1.4 Полные множества булевых функций

Множество булевых функций F называется полным,
 если любая булева функция может быть представлена некоторой формулой над F.

Пример.

- Множество функций $\{\neg,\&,\lor\}$
- является полным множеством в силу теоремы о представлении любой булевой функции ДНФ (или КНФ)
- Из множества можно удалить конъюнкцию (дизъюнкцию), поскольку & (v) можно выразить по законам де Моргана через ¬ и v (&)

w

Множество, состоящее из единственной функции штриха Шеффера $\{x \mid y = \neg(x \& y)\}$ является полным, поскольку

$$\neg x = (x \mid x)$$

 $x & y = \neg(x \mid y) = ((x \mid y) \mid (x \mid y))$

Множество функций (базис Жегалкина)

$$\{\oplus,\&,1\}$$

является полным множеством

Ŋė.

 Полином Жегалкина от п переменных представление булевой функции в виде

$$P(x_1,...,x_n) = \bigoplus_{\{i_1,i_2,...,i_m\}\subseteq I} a_{i_1i_2...i_m} x_{i_1} x_{i_2} ... x_{i_m}$$

lacktriangleright где $I = \{1, 2, ... n\}$, коэффициенты

полинома $a_{i_1i_2...i_m} \in \{0,1\}$ индексированы всеми возможными подмножествами множества I

Утверждение

Полином Жегалкина для любой булевой функции определен однозначно.

Пример

■ Пусть f=(1,1,0,0,1,0,1,1)

Функция f представляется некоторым полиномом Жегалкина от 3 переменных, т.е.

$$f = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{13}x_1x_3$$

$$\bigoplus a_{23}x_2x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$$

$$f(0,0,0) = a_0 = 1$$

$$f(0,0,1) = a_3 \oplus a_0 = a_3 \oplus 1 = 1$$
 $a_3 = 0$

$$f(0,1,0) = a_2 \oplus 1 = 0$$
 $a_2 = 1$

$$f(1,0,0) = a_1 \oplus 1 = 1$$
 $a_1 = 0$

$$f(1,1,0) = a_{12}x_1x_2 \oplus a_1x_1 \oplus a_2x_2 \oplus a_0 =$$

= $a_{12} \oplus 1 \oplus 1 = 1$

$$a_{12} = 1$$
 $a_{23} = 0$ $a_{13} = 1$ $a_{123} = 1$

$$f = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_2 \oplus 1$$

1.5 Классы Поста

w

- Функцию f называют функцией, сохраняющей константу 0, если f(0,0,...,0) = 0
- Функцию f называют функцией, сохраняющей константу 1, если f(1,1,...,1) = 1
- Множество всех функций, сохраняющих константу 0 обозначим Т₀. Множество всех функций, сохраняющих константу 1 -- Т₁.

Пример.

Функция f = (00111101) является функцией, сохраняющей и константу 0, и константу 1.

Отрицание не сохраняет ни 0, ни 1.

M

■ Пусть $f(x_1, x_2, ..., x_n)$ – булева функция. Двойственной к ней называется функция $f^*(x_1, x_2, ..., x_n) \equiv \neg f(\neg x_1, \neg x_2, ..., \neg x_n)$.

Если двойственная функция f^* совпадает с исходной функцией f, то такая функция f называется camodeoйcmeenhoй.

- Функция самодвойственна тогда и только тогда, когда на взаимно противоположных наборах она принимает взаимно противоположные значения.
- Множество всех самодвойственных функций обозначим S

ķΑ

Функцию f монотонная, если
 f(α) ≤ f(β) для всех наборов значений переменных таких, что α ≤ β

Множество всех монотонных функций принято обозначать через М

ķΑ

Если функция f не является монотонной, то найдутся два таких набора α, β и индекс i, что

$$\alpha = (\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n)$$

$$\beta = (\beta_1, ..., \beta_{i-1}, 1, \beta_{i+1}, ..., \beta_n)$$

и
$$f(\alpha)=1$$
, $f(\beta)=0$,

т.е. эти два набора различаются значениями в точности одной компоненты, а значение функции равно 0 на большем наборе и равно 1 на меньшем

Пример.

Функция f = (0011) монотонна.

■ Отрицание немонотонная функция

Ŋė.

 Функция f линейная, если f представима в виде полинома Жегалкина первой степени, т.е.

$$f(x_1,...,x_n) = a_1 x_1 \oplus a_2 x_2 \oplus ... \oplus a_n x_n \oplus a_0$$

■ Множество всех линейных функций обозначают через *L*

■ Множества функций T₀, T₁, S , M , L называются *классами Поста*

Пример

■ Штрих Шеффера $x \mid y = \neg(x \& y)$ не принадлежит ни одному из классов Поста.

x	y	x/y
0	0	1
0	1	1
1	0	1
1	1	0

M

 Все свойства, кроме нелинейности, следуют из таблицы этой функции.
 Нелинейность доказывается выводом нелинейного полинома Жегалкина для штриха Шеффера

$$x \mid y = \neg (x \& y) = (x \& y) \oplus 1$$

Множество булевых функций *F* называют *замкнутым*, если любая формула над *F* представляет некоторую функцию из *F*

 Множество F булевых функций полное,

если замыкание F совпадает с множеством всех булевых функций

Теорема. *Каждый класс Поста замкнут.*

 Нужно показать, что для каждого класса Поста Р любая функция из Р, представляемая подстановкой функций из Р принадлежит этому же классу Р.

1-2. Замкнутость классов T_0 и T_1

Пусть f, g_1 , ..., g_n из класса T_0 , т.е. f(0,0,...,0)=0, $g_i(0)=0$

Тогда $f(g_1(0),...,g_n(0))=0$

Следовательно, подстановка функций из T_0 содержится в классе T_0

Для класса T₁ доказательство аналогично.

3. Замкнутость класса S

■ Пусть f , g₁, ..., g_n из класса S, т.е. f=f*, g_i= g_i*
Показать, что f(g₁, ..., g_n) из S

4. Замкнутость класса М

■ Пусть f , g₁, ..., g_n из класса М Показать, что f(g₁, ..., g_n) из М

5. Замкнутость класса L

 Очевидно, что при подстановке в линейную функцию вместо ее переменных произвольных линейных функций получится снова линейная функция.

 Доказана замкнутость каждого класса Поста.

Критерий Поста

 Множество булевых функций полно тогда и только тогда, когда оно не содержится целиком ни в одном из классов Поста.

Необходимость.

- Пусть множество F булевых функций полно.
 Предположим, что оно содержится целиком в одном из классов Поста Всякая суперпозиция над F снова лежала бы в классе Поста.
- Существуют функции, не содержащиеся ни в одном из классов Поста, например штрих Шеффера.
- Таким образом, нашлась функция, которую нельзя представить в виде суперпозиции над *F*, что противоречит предположению о полноте *F*

Достаточность

- Для доказательства полноты множества *F*, удовлетворяющего условию теоремы, построим формулы над *F* для отрицания и конъюнкции, поскольку множество, образованное этими функциями, полно.
- Тогда полным будет и множество F.

M

- По условию теоремы в F найдется хотя бы одна функция $f_1 \notin T_0$
- Если $f_1 \in T_1$, то можно реализовать константу 1.

$$f_1(0,...,0) = 1, f_1(1,...1) = 1$$

$$f_1(x, x, ..., x) = 1$$

ye.

■ Если $f_1 \notin T_1$, то можно реализовать отрицание.

$$f_1(0,...,0) = 1, f_1(1,...1) = 0$$

 $f_1(x, x,..., x) = \neg x$

Ŋ.

■ Для получения 0 нужно использовать $g \notin T_1$

$$0 = g(1,...,1) = g(f_1(x,...,x),...,f_1(x,...,x))$$

■ Таким образом, могут быть реализованы либо константы 0 и 1, либо только отрицание, либо константы и отрицание

В случае, если из первых двух классов

(T₀, T₁) построены только формулы для констант, с использованием немонотонной функции fм можно реализовать отрицание.

■ Если немонотонная функция f_M не сохраняет 0 и 1,

$$f_M(0,..., 0) = 1, f_M(1,..., 1) = 0$$

■ TO

$$\neg x = f_M(x, ..., x)$$

Реализация отрицания

- Если функция f_M немонотонная, то с использованием констант 0 и 1 из нее можно реализовать отрицание
- Для немонотонной функции f_M найдутся два таких набора α и β, α<β и индекс i, что

$$\alpha = (\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n)$$

$$\beta = (\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n)$$

и f(
$$\alpha$$
)=1, f(β)=0,
Тогда $\neg x = f_M(\alpha_1,...,\alpha_{i-1},x,\alpha_{i+1},...,\alpha_n)$

 Если реализовано только отрицание, с использованием несамодвойственной функции f_s можно реализовать константы.

Пусть
$$f_S \not\in S$$
 Тогда найдется такой набор $\alpha = (\alpha_1,...,\alpha_n)$,что $f_S(\neg\alpha) = f_S(\alpha)$

■ Определим функцию $h(x) = f_{S}(x^{\alpha_{1}},...,x^{\alpha_{n}})$

$$h(x) = f_S(x^{\alpha_1}, ..., x^{\alpha_n})$$

где
$$x^{\sigma} = \begin{cases} \neg x, \sigma = 0 \\ x, \sigma = 1 \end{cases}$$
 и $0^{\sigma} = \neg \sigma, 1^{\sigma} = \sigma$

Тогда

$$h(0) = f_S(\neg \alpha) = f_S(\alpha) = h(1)$$

Имея константы и отрицание, из нелинейной функции f_L можно реализовать коньюнкцию

$$g(x, y, z) = xyz \oplus xy \oplus x \oplus 1$$

$$g(x, y, 0) = xy \oplus x \oplus 1$$

$$g(x, y, 0) = x(y \oplus 1) \oplus 1 = \neg(x \& \neg y)$$

$$x \& y = \neg g(x, \neg y, 0)$$

- Таким образом, отрицание и конъюнкция реализованы формулами над *F*.
- Множество функций полное.

0	Не сохр. 0+ не сохр.1
	Не самодв. + отрицание
1	Сохр. 1, не сохр. 0
	Не самодв. + отр.
¬χ	Не сохр. 0, не сохр.1
	Не монотонная + константы 0,1
х&у	Не линейная+ отрицание+константы

Пример.

- Проверить на полноту множество булевых функций $F = \{ \approx, \lor, 0 \}$
- Для исследования используют критериальную таблицу. Строки таблицы соответствуют функциям исследуемого множества, а столбцы -- классам Поста

	T ₀	T ₁	S	M	L
~		+			+
V	+	+		+	
0	+			+	+

- В множестве *F* есть функции, не принадлежащие каждому из пяти классов Поста.
- Согласно теореме Поста, множество *F* полное

Выразить константы, отрицание, конъюнкцию через функции

$$F = \{\approx, \vee, 0\}$$

- Константу 1 можно получить из эквиваленции, которая не сохраняет 0, но сохраняет 1
- $\blacksquare 1 = (x \sim x)$

 ■ Отрицание можно получить из немонотонной функции (~) и констант

X	У	x~y
0	0	1
0	1	0
1	0	0
1	1	1

■ Тогда ¬x=(0~x)

- Конъюнкция может быть получена из нелинейной функции (дизъюнкция), отрицания и констант
- Поскольку (x & y)=¬(¬x V ¬y)=
- $= (0 \sim (\neg x \ V \ \neg y)) = (0 \sim ((0 \sim x) \ V \ (0 \sim y)))$

- Полная система логических функций называется базисом, если она перестает быть полной при исключении из неё любой функции.
- Система функций {&,v, ¬} полная, но не является базисом. Система {&, ¬}
 базис

Теорема о максимальном числе функций в базисе

 Максимально возможное число булевых функций в базисе — четыре.

Доказательство.

- Очевидно, что в базисе не более 5 функций – по одной функции для каждого из пяти основных замкнутых классов
- Если какая-то функция в базисе не принадлежит сразу нескольким классам, то в базисе меньше пяти функций.

■ В базисе обязательно имеется функция

 $F(X_1, X_2, ..., X_n)$, не сохраняющая константу 0, т. е. такая, что F(0, 0, ..., 0) = 1.

Существует две возможности:

либо F(1, 1, ..., 1) = 0, т. е. $F(X_1, X_2, ..., X_n)$ не сохраняет также константу 1;

либо F(1, 1, ..., 1) = 1 и тогда эта функция не может быть самодвойственной

В любом случае этой функции достаточно на 2 класса.

1.6 Многозначные логические функции

- Многозначная логика это совокупность логических систем, опирающихся на принцип многозначности, в соответствии с которым всякое высказывание имеет одно (и только одно) из трёх или более истинностных значений.
- В зависимости от множества истинностных значений различают конечнозначные и бесконечнозначные логики.

 ■ Первые многозначные логики построили независимо друг от друга польский логик Я. Лукасевич в 1920г. и американский логик Э. Пост в 1921г.

В *п*-значной логике Э. Поста (1921) высказываниям приписывались значения из конечного множества натуральных чисел 1, 2, ... *п*, где *п* больше единицы и конечно.

- Я. Лукасевичем была предложена трехзначная логика, основанная на предположении, что высказывания бывают истинными, ложными и возможными, или неопределенными.
- «Я буду в Москве в декабре будущего года».
- Событие, описываемое этим высказыванием, сейчас никак не предопределено ни позитивно, ни негативно. Значит, высказывание не является ни истинным, ни ложным, оно только возможно.

Трехзначная система
 Лукасевича

- "истина" обозначается 1, "ложь" 0, "неопределенно" – 1/2.
- В качестве основных функций взяты отрицание (Nx) и импликация (Cxy);
- производными являются конъюнкция (Кху) и дизъюнкция (Аху).
- Тавтология принимает значение 1.

Отрицание и импликация определяются таблицами так:

Cxy	1	1/2	0
1	1	1/2	0
1/2	1	1	1/2
0	1	1	1

X	NX
1	0
1/2	1/2
0	1

w

- Конъюнкция определяется как минимум значений аргументов: Кху = min(x,y);
- дизъюнкция как максимум значений *Аху=тах(х,у)*.

 Проверить какие равносильности двузначной логики выполняются в логике Лукасевича