FRACTIONAL TEMPORAL SEIR MODEL WITH SIGNORINI BOUNDARY CONDITIONS

Authors: Omar Elamraoui, EL Hassan Essoufi, Abderrahim Zafrar Copyright © O.Elamraoui, E-H.Essoufi, A.Zafrar, 2025. All rights reserved.

This supplementary material contains MATLAB code for simulating, analyzing, and visualizing a fractional-order SEIR epidemic model with memory effects and Signorini boundary conditions, as presented in:

"Switching Cases for Fractional Time SEIR Model with Memory and Space Diffusion"

FILES INCLUDED

📂 Main Simulation and Analysis Files

Main_SEIR_Frac_Memory.m

Main driver script for the SEIR model with fractional temporal memory and Signorini boundary conditions.

- Runs simulations and generates output plots.
- Configurable for different parameter studies (e.g., infection rate, recovery rate).
- show_Sensitivity_Param.m

Driver script to:

- Perform sensitivity analysis by varying a parameter.
- Generate plots for S, E, I, R over time for each parameter setting.
- ◆ SEIR_Show_var_alpha.m

Script for:

- Studying and plotting the effect of varying the fractional-order parameter alpha on the SEIR dynamics.
- SEIR_var_alpha_fun.m

Function supporting SEIR_Show_var_alpha.m:

- Runs simulations across different alpha values.
- Returns the time evolution of SEIR components.

Core Functions

- analyze_param_impact.m
 - Runs SEIR simulations for a range of values of a specified parameter (e.g., \beta, \gamma, \alpha).
 - Returns S, E, I, R solutions in cell arrays for easy comparison.
- run_SEIR_simulation.m
 - Solves the fractional-order SEIR model over space and time using FEM and Uzawa's method.
 - Incorporates memory effects and Signorini boundary conditions.
 - Returns S, E, I, R matrices over time.
- UzawaSignoriniSolver.m
- Solves the variational inequality for Signorini boundary conditions using a regularized Uzawa method.
- Returns solution vector, boundary projections, Lagrange multipliers, and error metrics.

Helper Functions

- kpde2dumsh.m, kpde2dstf.m, kpde2drhs.m, kpde2dmss.m
 - Generate meshes, assemble finite element matrices, and compute RHS vectors.

REQUIREMENTS

MATLAB R2019b or newer (recommended)

No specialized toolboxes required — only standard MATLAB functions

ACKNOWLEDGMENTS

Finite element matrix assembly methods adapted from: Koko J., Fast finite element assembly in MATLAB and Octave, 2016. https://perso.isima.fr/~jokoko/codes.html

CONTACT

For questions or further details, please contact: Omar Elamraoui (oelamraoui34@gmail.com)