Predicting Learning Commons Usage: Duration and Occupancy A Statistical Learning Approach

Emma Naiyue Liang, Ryan Rankin, Jaryt Salvo, & Jason Turk

MATH 7550 Statistical Learning || BGSU

December 4, 2024

Distribution Statistics

Duration (minutes):

Statistic	Value
Minimum	6.00
1st Quartile	44.00
Median	68.00
Mean	81.78
3rd Quartile	103.00
Maximum	822.00

Occupancy (students):

Statistic	Value
Minimum	1.00
1st Quartile	7.00
Median	11.00
Mean	11.62
3rd Quartile	15.00
Maximum	40.00

Feature Categories Overview

Category	Key Features
Temporal	Time of day, Day of week, Week of semester
Academic	Course level, GPA categories, Credit load
Visit	Duration patterns, Group sizes, Visit frequency
Course	Subject areas, Level progression, Course mix
Student	Major groups, Class standing, Academic progress

Engineering Approach

- Temporal patterns
- Academic context

- Student behavior
- Group dynamics

Total_Visits, Semester_Visits, Avg_Weekly_Visits

Major_Category, Has_Multiple_Majors

Course_Level, Advanced_Course_Ratio

Class_Standing_Self_Reported, Class_Standing_BGSU

Expected_Graduation_Date, Months_Until_Graduation

Engineered Into

Dropped Raw Features

Raw Feature

Class_Standing

Expected_Graduation

Course_Code_by_Thousands

Feature Engineering Strategy

Student IDs

Major

Co Co

Course_ivame	Course_Name_Category
Course_Number	Unique_Courses, Course_Level_Mix
Course_Type	Course_Type_Category

Raw features were transformed into more informative derived features,

capturing higher-level patterns and relationships in the data.

C N C .

Response Distributions o	Feature Engineering ○○●	Model Building	Evaluation 0000	Conclusion O
Complete Featu	ıre List (~50 P	re-Dummied)		

Comp	ete	Feature	List (~50	Pre-Du	ummied)

Category **Features**

Student De-

mographics

Academic

Performance

Course Infor-

mation

Temporal

Features

Visit Metrics

Graduation

Course_Level.

Expected_Graduation.

Months_Until_Graduation

gree_Type

Student_IDs, Gender, Class_Standing, Class_Standing_Self_Reported,

Total_Credit_Hours_Earned, Term_Credit_Hours, Credit_Load_Category,

Term_GPA, Cumulative_GPA, Change_in_GPA, GPA_Category, GPA_Trend Course_Name, Course_Number, Course_Type, Course_Type_Category,

Check_In_Time. Check_Out_Time. Check_In_Date. Check_In_Hour.

Duration_In_Min, Group_Size, Group_Size_Category, Group_Check_In, To-

tal_Visits, Semester_Visits, Week_Volume, Avg_Weekly_Visits, Occupancy

Course_Code_by_Thousands, Course_Name_Category,

Semester_Week,

Expected_Graduation_Date.

Class_Standing_BGSU, Has_Multiple_Majors, Major, Major_Category, De-

Course_Level_Mix, Advanced_Course_Ratio, Unique_Courses

Check_In_Day, Check_In_Month, **Semester**,

Check_In_Week, Is_Weekend, Time_Category

Common Models for Both Tasks

Model	Hyperparameters
Ridge	$\alpha \in [10^0, 10^2]$
Lasso	$\alpha \in [10^{-2}, 10^{0}]$
Penalized-Splines	knots: $\{9, 11, 13, 15\}$, degree: 3, ridge: $\alpha \in [10^0, 10^2]$
KNN	$\begin{array}{ll} \textbf{neighbors} \colon \{15,17,19,21\}, \\ \textbf{weights} \colon \{\text{uniform, distance}\} \end{array}$

Implementation Details

- **Duration**: Log-normal
- Occupancy: Poisson & Weibull
- Integer rounding for occupancy

- Grid search optimization
- Feature selection
- Cross-validation

Model Pipeline Configurations

CV Method	Description	Pipeline	Implementation
kfold	Random k splits	vanilla	$Scaling \to Model$
rolling	Fixed-size window moving forward	interact _select	$\begin{array}{l} Scaling \to Interactions \\ \to SelectKBest \to Model \end{array}$
expanding	Growing window with fixed start point	pca_lda	$ \begin{array}{l} Scaling \to PCA/LDA \\ \to Interactions \\ \to SelectKBest \to Model \end{array} $

Scaling Methods

- **StandardScaler**: $(x \mu)/\sigma$ sensitive to outliers
- **RobustScaler**: $(x Q_2)/(Q_3 Q_1)$ resistant to outliers
- MinMaxScaler: $(x x_{min})/(x_{max} x_{min})$ preserves zeros

Duration Prediction:

Component	Value
Model Pipeline CV Method RMSE R ²	PenalizedSplines vanilla kfold 59.47 0.059
Ridge α Spline degree Spline knots Scaler	14.38 3 15 RobustScaler

Occupancy Prediction:

Component	Value
Model	PenalizedSplines
Pipeline	vanilla
CV Method	rolling
RMSE	3.64
R ²	0.303
Ridge α	29.76
Spline degree	3
Spline knots	15
Scaler	RobustScaler

Key Insight

Both tasks achieved best results with PenalizedSplines and vanilla features, though with different CV methods & regularization.

Occupancy: Best Model Diagnostics

Main Results:

- PenalizedSplines with vanilla features performed best
- Occupancy prediction shows promise ($R^2 = 0.303$)
- Duration prediction remains challenging ($R^2 = 0.059$)

Future Directions:

- Incorporate weather data
- Explore non-linear relationships further
- Investigate time series approaches

Impact

While duration prediction remains difficult, our occupancy model shows strong potential for a victory #CautiousOptimism

Thank You

For Your Attention

Questions & Discussion Welcome