COMPLEMENTOS de MATEMÁTICA

Aula Teórico-Prática – Ficha 5

INTEGRAÇÃO DUPLA

Calcule os seguintes integrais:

a)
$$\iint_{Q} xy(x+y)dxdy$$
, $Q = [0,1] \times [0,1]$.

a)
$$\iint_{Q} xy(x+y)dxdy$$
, $Q = [0,1] \times [0,1]$. **b)** $\iint_{Q} \sin(x+y)dxdy$, $Q = [0,\pi/2] \times [0,\pi/2]$.

c)
$$\iint_{Q} (\sqrt{y} + x - 3xy^2) dxdy$$
, $Q = [0,1] \times [1,3]$.

d)
$$\iint_{Q} x \sin(x^2 + y) dx dy, \ Q = \left[0, \sqrt{\pi/2}\right] \times \left[0, \pi/2\right].$$

e)
$$\iint_{Q} \sin^{2}(x) \sin^{2}(y) dx dy$$
, $Q = [0, \pi] \times [0, \pi]$.

f)
$$\iint_{Q} y^{-3} e^{2xy^{-1}} dx dy, \ Q = [0, 2] \times [1, 2].$$

Altere a ordem de integração em cada um dos integrais seguintes, após identificar e esboçar o domínio de integração:

$$\mathbf{a)} \quad \int_0^1 \left[\int_0^y f(x,y) dx \right] dy \, .$$

$$\mathbf{b)} \quad \int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy \, .$$

c)
$$\int_{-1}^{1} \left[\int_{0}^{x^2} f(x, y) dy \right] dx.$$

$$\mathbf{d)} \quad \int_0^{5/\sqrt{2}} \left[\int_y^{\sqrt{25-y^2}} f(x,y) dx \right] dy.$$

e)
$$\int_0^1 \left[\int_{-y}^y f(x,y) dx \right] dy.$$

$$\mathbf{f}) \quad \int_{1}^{3} \left[\int_{x}^{x^{2}} f(x, y) dy \right] dx.$$

$$\mathbf{g)} \quad \int_{1}^{2} \left[\int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy \right] dx \, .$$

- Calcule a área da região do plano limitada:
 - a) Pelas curvas $y = x^3$ e $y = x^2$, $0 \le x \le 1$. b) Pelas linhas x + y = 5 e xy = 6.
 - Superiormente pela parábola $y = 4x x^2$ e inferiormente pelas retas y = -3x + 6 e y = 0.
 - Pelas parábolas $y^2 = 10x + 25 \text{ e } y^2 = -6x + 9$.
- Calcule os seguintes integrais:

a)
$$\int_{1}^{2} \left[\int_{0}^{y^{2}} e^{x/y^{2}} dx \right] dy$$
.

$$\mathbf{b)} \quad \int_0^1 \left[\int_0^x y \sqrt{x^2 - y^2} \, dy \right] dx \, .$$

$$\mathbf{c}) \quad \int_0^1 \left[\int_0^1 \frac{x}{(xy+1)^2} \, dy \right] dx \, .$$

$$\mathbf{d)} \quad \int_{1/4}^{1} \left[\int_{x^2}^{x} \sqrt{\frac{x}{y}} dy \right] dx \,.$$

Calcule cada um dos integrais seguintes, alterando a ordem de integração, após identificar e esboçar o domínio de integração:

$$\mathbf{a)} \quad \int_0^1 \left[\int_{\sqrt{x}}^1 \sin\left(\frac{y^3 + 1}{2}\right) dy \right] dx \, .$$

b)
$$\int_0^1 \left[\int_{x^2}^1 \frac{x^3}{\sqrt{x^4 + y^2}} dy \right] dx$$
.

- 6) Calcule o integral $\iint_{\Omega} y (1+x^2)^{-1} dxdy$, sendo Ω a região limitada pelas linhas y=0, $y=\sqrt{x}$ e x = 4.
- 7) Calcule o integral $\iint_{\Omega} x \cos(x+y) dx dy$, sendo Ω a região triangular com vértices em (0,0), $(\pi,0)$ e $(\pi/2,\pi/2)$.
- Calcule o integral $\iint_{\Omega} (x^4 + y^2) dx dy$, sendo Ω a região limitada pelas curvas $y = x^3$ e $y = x^2$.
- Calcule o integral $\iint_{\Omega} (3xy^2 y) dxdy$, sendo Ω a região limitada pelas linhas y = |x| e y = -|x|, $-1 \le x \le 1$.

FEUP-MIEIC 2013/2014

10) Calcule o integral $\iint_D (y^2 + 2)^{-1} dx dy$, sendo D a região limitada pelas linhas x = 0, y = 0, $x = y^2 + 2$, $0 \le y \le 2$.

- 11) Calcule o integral $\iint_D 2(x^2 + 3x + 2)^{-1} dy dx$, sendo D a região do 1° quadrante limitada pelas linhas y = x, y = 0 e x = 4.
- 12) Calcule o integral $\iint_D (2x y^2) dx dy$, sendo D a região limitada pelas retas y = -x + 1, y = x + 1 e y = 3.
- 13) Determine os seguintes integrais:
 - a) $\iint_R e^{y/x} dx dy$, $R = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \land 0 \le y \le x\}$.
 - **b**) $\iint_D x^2 e^{y^4} dx dy$, $D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \land x \le y \le 1\}$.
- **14)** Calcule o integral $\iint_D 2x dy dx$, sendo D a região triangular com vértices nos pontos O = (0,0), P = (2,0) e Q = (1,1).
- 15) Calcule o integral $\iint_{\Omega} (x + y + 1) dx dy$, sendo Ω a região:
 - a) Triangular com vértices nos pontos O = (0,0), P = (1,0) e Q = (1,1).
 - **b**) $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le a^2, a > 0\}.$
- **16**) Calcule o integral $\iint_{\Omega} \sqrt{x^2 + y^2} dx dy, \ \Omega = \left\{ (x, y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 \le 9 \right\}.$
- 17) Obtenha o valor médio da função f(x,y) = xy, definida na região do plano, D, tal que $0 \le x \le 1$ e $0 \le y \le \sqrt{1-x^2}$.

18) Seja a função f(x, y) definida na região do plano $Q = [0,1] \times [0,1]$, tal que:

$$f(x, y) = \begin{cases} 1 - x - y & \text{se } x + y \le 1 \\ 0 & \text{nos outros pontos de } Q \end{cases}$$

Calcule
$$\iint_Q f(x, y) dx dy$$
.

19) Seja a função f(x, y) definida na região do plano $Q = [0,1] \times [0,1]$, tal que:

$$f(x, y) = \begin{cases} x + y & \text{se } x^2 \le y \le 2x^2 \\ 0 & \text{nos outros pontos de } Q \end{cases}$$

Calcule
$$\iint_Q f(x, y) dx dy$$
.

- 20) Usando um integral duplo, determine os seguintes volumes:
 - Da pirâmide limitada pelos três planos coordenados e pelo plano x + 2y + 3z = 6.
 - Do sólido situado no 1º octante e limitado pelas superfícies $z = 4 x^2$ e x + y = 2.
 - Do sólido limitado superiormente pela superfície $z = x^3y$ e que tem por base a região triangular do plano xOy com vértices nos pontos (0,0), (2,0) e (0,1).
- 21) Em cada uma das alíneas seguintes, esboce a região S e reescreva o integral $\iint_S f(x,y)dxdy$ como um integral em coordenadas polares:
 - **a**) $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le a^2, a > 0\}.$ **b**) $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2x\}.$
- 22) Transforme o integral $\int_{1}^{2} \left| \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy \right| dx$ em coordenadas polares.
- **23**) Transforme o integral $\int_0^{2a} \left[\int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dy \right] dx$ em coordenadas polares e calcule-o.

24) Usando um integral duplo, determine os seguintes volumes:

- a) Do sólido limitado pela superfície cilíndrica $x^2 + y^2 = 1$ e pelos planos z = 0 e x + z = 1.
- **b)** Do sólido limitado pelas superfícies $z = x^2 + y^2$, $x^2 + y^2 = 1$ e z = 0.
- c) Do sólido limitado pelo paraboloide $z = 4 x^2 y^2$ e pelo plano z = 0.
- **d**) Do sólido limitado pelas superfícies $x^2 + y^2 + z^2 = 4$, $x^2 + y^2 = 1$ e z = 0.
- e) Do sólido limitado pelas superfícies z = 2x + 1, $x^2 + y^2 = 2x$ e z = 0.

Soluções:

1) a) $\frac{1}{3}$.

b) 2.

c) $2\sqrt{3} - \frac{38}{3}$.

d) 1.

e) $\frac{\pi^2}{4}$.

f) $\frac{e^4 - e^2 - 2}{8}$.

2) a) $\int_0^1 \left[\int_x^1 f(x,y) dy \right] dx.$

- $\mathbf{b)} \quad \int_0^4 \left[\int_{x/2}^{\sqrt{x}} f(x, y) dy \right] dx.$
- c) $\int_0^1 \left[\int_{-1}^{-\sqrt{y}} f(x,y) dx \right] dy + \int_0^1 \left[\int_{\sqrt{y}}^1 f(x,y) dx \right] dy.$
- **d)** $\int_0^{5/\sqrt{2}} \left[\int_0^x f(x,y) dy \right] dx + \int_{5/\sqrt{2}}^5 \left[\int_0^{\sqrt{25-x^2}} f(x,y) dy \right] dx$.
- e) $\int_{-1}^{0} \left[\int_{-x}^{1} f(x, y) dy \right] dx + \int_{0}^{1} \left[\int_{x}^{1} f(x, y) dy \right] dx$.
- $\mathbf{f}) \qquad \int_{1}^{3} \left[\int_{\sqrt{y}}^{y} f(x, y) dx \right] dy + \int_{3}^{9} \left[\int_{\sqrt{y}}^{3} f(x, y) dx \right] dy \ .$
- **g**) $\int_0^1 \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y) dx dy$.
- 3) **a**) $\int_0^1 \left[\int_{x^3}^{x^2} dy \right] dx = \frac{1}{12}$.

- **b)** $\int_{2}^{3} \left[\int_{6x^{-1}}^{5-x} dy \right] dx = \frac{5}{2} + 6 \ln \frac{2}{3} .$
- c) $\int_{1}^{4} \left[\int_{0}^{4x-x^{2}} dy \right] dx \int_{1}^{2} \left[\int_{0}^{-3x+6} dy \right] dx = \frac{15}{2}.$

FEUP-MIEIC 2013/2014

d)
$$2\int_0^{\sqrt{15}} \left[\int_{(y^2 - 25)/10}^{(9 - y^2)/6} dx \right] dy = \frac{16\sqrt{15}}{3}.$$

4) a)
$$\frac{7}{3}(e-1)$$
.

b) $-\frac{1}{12}$.

c)
$$1 - \ln 2$$
.

d) $\frac{13}{80}$.

5) **a**)
$$\frac{2}{3} \left(\cos(2^{-1}) - \cos(1) \right)$$
.

b) $\frac{\sqrt{2}-1}{4}$.

6)
$$\int_0^4 \left[\int_0^{\sqrt{x}} \frac{y}{1+x^2} dy \right] dx = \frac{1}{4} \ln 17.$$

7) $\int_0^{\pi/2} \left[\int_y^{\pi-y} x \cos(x+y) dx \right] dy = -\frac{3\pi}{4}.$

8)
$$\int_0^1 \left[\int_{x^3}^{x^2} (x^4 + y^2) dy \right] dx = \frac{9}{280}.$$

9) Atendendo às propriedades dos integrais, conclui-se que $\iint_{\Omega} (3xy^2 - y) dx dy = 0.$

10)
$$\int_0^2 \frac{1}{y^2 + 2} \left[\int_0^{y^2 + 2} dx \right] dy = 2.$$

11)
$$2\int_0^4 \frac{1}{x^2 + 3x + 2} \left[\int_0^x dy \right] dx = -2\ln(5) + 4\ln(3)$$
.

12)
$$\int_{1}^{3} \left[\int_{1-y}^{y-1} (2x - y^{2}) dx \right] dy = -\frac{68}{3}.$$

13) a)
$$\int_0^1 \left[\int_0^x e^{y/x} dy \right] dx = \frac{e-1}{2}.$$

b)
$$\int_0^1 e^{y^4} \left[\int_0^y x^2 dx \right] dy = \frac{e-1}{12}.$$

14) $\iint_D 2x dy dx = 2 \iint_D x dy dx = 2 \overline{x} A(D) = 2(1)(1) = 2$, tal que A(D) designa a área da região D e \overline{x} a coordenada, segundo o eixo dos xx, do seu centroide.

15) a) $\iint_{\Omega} x dx dy + \iint_{\Omega} y dx dy + \iint_{\Omega} dx dy = \overline{x} A(\Omega) + \overline{y} A(\Omega) + A(\Omega) = \frac{2}{3} \frac{1}{2} + \frac{1}{3} \frac{1}{2} + \frac{1}{2} = 1$, tal que $A(\Omega)$ designa a área da região Ω e $(\overline{x}, \overline{y})$ as coordenadas do seu centroide.

FEUP-MIEIC 2013/2014

b) $\iint_{\Omega} x dx dy + \iint_{\Omega} y dx dy + \iint_{\Omega} dx dy = \overline{x} A(\Omega) + \overline{y} A(\Omega) + A(\Omega) = 0 + 0 + \pi a^2 = \pi a^2, \text{ tal que } A(\Omega)$ designa a área da região Ω e (\bar{x}, \bar{y}) as coordenadas do seu centroide.

16)
$$\int_0^{2\pi} \left[\int_2^3 r^2 dr \right] d\theta = \frac{38\pi}{3}$$
.

17)
$$f_m = \frac{\iint_D f(x, y) dx dy}{\iint_D dx dy} = \frac{4}{\pi} \iint_D xy dx dy = \frac{2}{\pi} \int_0^{\pi/2} \sin(2\theta) \left[\int_0^1 r^3 dr \right] d\theta = \frac{1}{2\pi}.$$

18)
$$\int_0^1 \left[\int_0^{1-x} (1-x-y) dy \right] dx = \frac{1}{6}.$$

19)
$$\int_0^1 \left[\int_{\sqrt{y/2}}^{\sqrt{y}} (x+y) dx \right] dy = \frac{21}{40} - \frac{\sqrt{2}}{5} .$$

b)
$$\frac{20}{3}$$
.

c)
$$\frac{2}{15}$$

21) a)
$$\int_0^{2\pi} \left[\int_0^a f(r\cos\theta, r\sin\theta) r dr \right] d\theta.$$

21) a)
$$\int_0^{2\pi} \left[\int_0^a f(r\cos\theta, r\sin\theta) r dr \right] d\theta .$$
 b)
$$\int_{-\pi/2}^{\pi/2} \left[\int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr \right] d\theta .$$

22)
$$\int_0^{\pi/4} \left[\int_{2/(\sin(\theta) + \cos(\theta))}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr \right] d\theta.$$

23)
$$\int_0^{\pi/2} \left[\int_0^{2a\cos\theta} r^3 dr \right] d\theta = \frac{3}{4} \pi a^4.$$

24) a)
$$\pi$$
.

$$\mathbf{b)} \quad \frac{\pi}{2}.$$

c)
$$8\pi$$
.

d)
$$\frac{2\pi}{3}(8-3\sqrt{3})$$
.

e)
$$3\pi$$