O que é Estatística

- Estatística: ciência de aprendizagem a partir de dados.
- Envolve a coleta e análise de dados e sua consequente transformação em informação.
- Objetivos: postular, refutar ou validar hipóteses científicas sobre um fenômeno observável.
- Analogamente: tomada de decisão nos mais variados problemas onde existe incerteza.
- Usando Teoria das Probabilidades, os estatísticos formalizam este processo de forma a aperfeiçoá-lo.
- Os métodos estatísticos tem um forte embasamento matemático.

Informação Dados \rightarrow Análise \rightarrow Tomada de Decisão

Problema de decisão médica

Paciente chega ao consultório com uma queixa. Médico suspeita que ele tem uma certa doença com probabilidade 0,6.

Problema de decisão na área financeira

Investir ou não em um ativo financeiro que pode valorizar nos próximos dias com probabilidade 0,6.

A distribuição de Bernoulli

Estamos interessados na ocorrência de um sucesso ou falha com

$$P(\text{sucesso}) = p$$
 e $P(\text{fracasso}) = 1 - p$

Definindo-se

$$X = \begin{cases} 1, & \text{se ocorre sucesso} \\ 0, & \text{se ocorre fracasso} \end{cases}$$

então

$$P(X=x) = \begin{cases} p^x (1-p)^{1-x} & \text{se } x=0,1\\ 0 & \text{caso contrário.} \end{cases}$$

$$X \sim \text{Bernoulli}(p), 0$$

A distribuição Binomial

 \boldsymbol{n} ensaios de Bernoulli independentes, são executados, com \boldsymbol{n} fixo e

$$P(sucesso) = p$$

 ${\cal Y}$: número total de sucessos obtidos, independente da ordem em que eles ocorrem.

 $Y \sim \text{Binomial}(n, p)$.

$$P(Y = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n$$

sendo

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

e $m! = \prod_{i=1}^{m} i$ (define-se 0! = 1).

Distribuição Geométrica

Ensaios de Bernoulli realizados de forma independente e com a mesma probabilidade de sucesso (p).

X: número de experimentos necessários antes de ocorrer primeiro sucesso.

Exemplos:

- número de inspeções necessárias antes de encontrar-se um item defeituoso em um lote,
- número de nascimentos antes de nascer um menino,

$$P(X = k) = (1 - p)^k p, \ k = 0, 1, 2, \dots$$

Exemplo: Um motorista vê uma vaga de estacionamento em uma rua. Há cinco carros na frente dele, e cada um deles tem probabilidade 0,2 de tomar a vaga. Qual a probabilidade de a vaga ser tomada pelo carro que está imediatamente a frente dele?

X: número de carros que passam pela vaga antes que ela seja tomada (sucesso). Cada motorista toma a vaga ou não de forma independente.

$$P(X = 5) = (0, 8)^4 \ 0, 2 = 0,082.$$

Figura 1: Gráficos das probabilidades geométricas para $p=0,2,\ 0,5,\ 0,7$ e 0,9.

A distribuição de Poisson

Usada para modelar o número de ocorrências de um certo fenômeno, durante um intervalo fixo de tempo ou região fixa do espaço.

Exemplos:

- o número de chamadas recebidas por uma central telefônica durante uma hora,
- o número de defeitos por unidade de comprimento de uma fita magnética,
- o número de nmetóides encontrados por unidade de superfície de solo,
- o número diário de novos casos de câncer de mama, etc.

X: número de ocorrências por intervalo fixo (de tempo ou espaço)

$$X \sim \text{Poisson}(\lambda)$$

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ \lambda > 0, \quad k = 0, 1, \dots$$

(e = 2, 71828...).

A constante λ pode ser interpretada como o número esperado (ou número médio) de ocorrências por unidade de tempo ou espaço.

Distribuição Hipergeométrica

População: r elementos do tipo I, N-r do tipo II

Amostra: k elementos do tipo I, n-k do tipo II

Itens sorteados sem reposição

X: número de elementos do tipo I na amostra

$$P(X = k) = \frac{\binom{r}{k} \binom{N - r}{n - k}}{\binom{N}{n}}, \quad k = 0, \dots, \min(r, n)$$

Exemplo: Um fabricante garante que produz 10% de itens defeituosos. De um lote com 100 itens serão selecionados 5 ao acaso. Qual a probabilidade de nenhum ser defeituoso?

População: N = 100, r=10 (itens defeituosos)

Amostra: n = 5, k = 0

X: número de defeituosos na amostra

$$P(X = 0) = \frac{\binom{10}{0} \binom{90}{5}}{\binom{100}{5}} \approx 0,584$$

Figura 2: Exemplo de uma curva normal.

Figura 3: Graficos da curva normal para alguns valores de μ e $\sigma.$

Figura 4: Graficos das funções de densidades exponenciais.

