Network Flow 网络流

Max flow-Min Cut 最大流最小割定理

Outline

- Network flow 网络流
- Flows and Cuts 流和割
- Residual Graph 残差图
- Augmenting Paths 增广路径
- Ford Fulkerson Algorithm 福特-福克森算法
- Max flow-Min Cut Theorem 最大流最小割
- Application Bipartite Matching

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source源点) and t (sink收点/汇点)
- Capacities (容量) on the edges: c(e) >= 0

Multiple Sources or Sinks

- What if you have a problem with more than one source and more than one sink?
- Modify the graph to create a single supersource and supersink

Network Flow

- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e) (容量约束)
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out (守恒约束)

- 优化目标: The flow leaving the source is as large as possible
 - · Denoted by |f|

Flows Def. An s-t flow is a function that satisfies: • For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity] • For each $\mathbf{v} \in \mathbf{V}$ - {s, t}: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation] Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$. (2) 0 4 0 0 capacity \rightarrow 15 flow \longrightarrow 11 Value = 24

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S
- Flow(S,T) <= Cap(S,T)

What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T=\{c, f, i, d, g, t\}$

Flows and Cuts Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$ Pf. $v(f) = \sum_{e \text{ out of } S} f(e)$ $\sum_{e \text{ out of } A} \int_{e \text{ in to } A} f(e) - \sum_{e \text{ in to } A} f(e)$ $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B) \quad \blacksquare$$

21

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 \Rightarrow Flow value \leq 28

Greedy algorithm. • Start with f(e) = 0 for all edge $e \in E$. • Find an s-t path P where each edge has f(e) < c(e). • Augment flow along path P. • Repeat until you get stuck. Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- · Augment flow along path P.
- Repeat until you get stuck.

\ locally optimality ⇒ global optimality

Residual Graph (残差图)

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph GR
 - G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c -f
 - G_R: edge e" from v to u with capacity f

The residual graph

the residual graph

Residual Graph

Original edge: $e = (u, v) \in E$.

• Flow f(e), capacity c(e).

Residual edge.

- . "Undo" flow sent.
- e = (u, v) and $e^{R} = (v, u)$.
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

29

Augmenting Path Algorithm

- Augmenting path (增广路径)
 - Vertices v_1, v_2, \dots, v_k
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for j=1 ... k-1

Augmenting Path Algorithm

• 从 s 到 t 的一条简单路径,若边 (u, v)的方向与 该路径的方向一致,称 (u, v)为正向边,方向不 一致时称为逆向边。

简单路: 1→3 → 2→4→5中。

(1, 3) (2, 4) (4, 5) 是正向边。(3, 2) 是逆向边。

Augmenting Path Algorithm

增广路径:

若路径上所有的边满足:

①所有正向边有: f (u, v) < c (u, v) ②所有逆向边有: f (u, v) > 0

则称该路径为一条增广路径(可增加流量)

找到这样一条路径,其流量未达到容量上

限。增广后,总流量增加了b。

Ford-Fulkerson Algorithm (1956)

```
Ford-Fulkerson(G, s, t, c) { foreach \ e \in E \ f(e) \leftarrow 0 G_f \leftarrow residual \ graph while \ (there \ exists \ augmenting \ path \ P) \ \{ \\ f \leftarrow Augment(f, \ c, \ P) \\ update \ G_f \\ \} return \ f }
```

先假定容量为非负整数:

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations. (每次都增加,但总量有限,一定会结束)

Ford-Fulkerson Algorithm (1956)

Ford-Fulkerson Algorithm (1956)

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut. (There exists a flow which has the same value of the minimum cut)

- Pf. We prove both simultaneously by showing TFAE (the following are equivalent):
 - (i) There exists a cut (A, B) such that v(f) = cap(A, B). 存在一个割的容量等于flow f的值
 - (ii) Flow f is a max flow. f是最大流
 - (iii) There is no augmenting path relative to f. 对于f没有增广路径

Max-Flow Min-Cut Theorem

- (i) ⇒ (ii) This was the corollary to weak duality lemma. 假设我们有一个割(A,B)的容量等于f的值,那么所有流的值<=(A,B)的容量,从而(2)成立
- (ii) \Rightarrow (iii) We show contrapositive.
- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

我们来证明它的逆否命题。对于f如果还有还有增广路径,那f不是最大流。这很显然。如果按照FF算法的话,我们还可以增加flow f的值,因此f就不会是最大流,因此逆否命题成立,也就代表(2)->(3)成立。

41

Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
 - 通过这些边可达: 要么是不是满的前向边, 要么是非空的反向边。
- By definition of $A, s \in A$.
- By definition of f, t ∉ A. (因为没有增广路径)

original network

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

Performance

 The worst case performance of the Ford-Fulkerson algorithm is horrible

Ford-Fulkerson: Exponential Number of Augmentations

- Q. Is generic Ford-Fulkerson algorithm polynomial in input size? m, n, and log C
- A. No. If max capacity is C, then algorithm can take C iterations.

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \le nC$ iterations. Pf. Each augmentation increase value by at least 1. •

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. •

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

40

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) { foreach \ e \in E \ f(e) \leftarrow 0 \Delta \leftarrow smallest \ power \ of \ 2 \ greater \ than \ or \ equal \ to \ C G_f \leftarrow residual \ graph  while \ (\Delta \geq 1) \ \{ \\ G_f(\Delta) \leftarrow \Delta - residual \ graph  while \ (there \ exists \ augmenting \ path \ P \ in \ G_f(\Delta)) \ \{ \\ f \leftarrow augment(f, c, P)   update \ G_f(\Delta)   \} \\ \Delta \leftarrow \Delta \ / \ 2   \}   return \ f
```

51

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and ${\it C.}$

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths. •

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.

Performance of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow

Application – Bipartite Matching

- Example given a community with n men and m women
- Assume we have a way to determine which couples (man/woman) are compatible for marriage
 - E.g. (Joe, Susan) or (Fred, Susan) but not (Frank, Susan)
- Problem: Maximize the number of marriages
 - No polygamy allowed
 - Can solve this problem by creating a flow network out of a bipartite graph

Bipartite Graph

- A bipartite graph is an undirected graph G=(V,E) in which V can be partitioned into two sets V₁ and V₂ such that (u,v) ∈ E implies either u ∈ V₁ and v ∈ V₁₂ or vice versa.
- That is, all edges go between the two sets V₁ and V₂ and not within V₁ and V₂.

Model for Matching Problem

 Men on leftmost set, women on rightmost set, edges if they are compatible

Optimal matching

Solution Using Max Flow

 Add a supersouce, supersink, make each undirected edge directed with a flow of 1

Since the input is 1, flow conservation prevents multiple matchings

Homework

找出最大流,求出它的流量值,并证明它是最大流。(不用交)

