Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра інтелектуальних програмних систем Алгоритми та складність

Лабораторна робота №2

" Алгоритм, що за лінійний час визначає чи є текстовий рядок Т циклічним зсувом іншого рядка Т* " Варіант №2

Виконала студентка 2-го курсу

Групи ІПС-21

Сенечко Дана Володимирівна

Завдання

Розробіть алгоритм, який за лінійний час визначав би, чи ϵ текстовий рядок Т циклічним зсувом іншого рядка Т* (наприклад, abc та cab).

Теорія

Циклічний зсув рядка — це операція, при якій символи рядка переміщуються на одну або кілька позицій вліво або вправо, а крайні символи, що виходять за межі рядка, переміщаються на протилежний кінець. Наприклад, циклічний зсув рядка "abc" вправо на одну позицію дає рядок "cab", а вліво — рядок "bca".

Властивості циклічних зсувів:

- 1. Циклічні зсуви зберігають довжину рядка.
- 2. Якщо рядок має довжину n, існує рівно n різних варіантів циклічних зсувів, включаючи сам рядок.
- 3. Циклічні зсуви зберігають відносний порядок символів, але змінюють їх позиції у рядку.

Застосування циклічних зсувів:

1. Криптографія:

Циклічні зсуви використовуються в деяких алгоритмах шифрування для перетасування символів, таких як шифр Цезаря.

2. Рядкові операції:

Алгоритми пошуку, порівняння та перетворення рядків можуть включати циклічні зсуви для перевірки еквівалентності рядків за умов ротації.

Важливість перевірки циклічних зсувів:

Перевірка циклічних зсувів важлива в багатьох задачах комп'ютерної науки та інформатики, оскільки вона дозволяє ідентифікувати еквівалентні структури без прямого порівняння кожного можливого зсуву. Це прискорює багато алгоритмів та зменшує час обчислення.

Алгоритм

1. Перевірка довжини рядків:

Спочатку функція перевіряє, чи мають рядки **T** і **T*** однакову довжину за допомогою методу length(). Якщо довжина різна, функція повертає false, оскільки циклічний зсув можливий лише для рядків однакової довжини.

2. Створення подвоєного рядка:

Якщо довжина рядків однакова, створюється новий рядок S, який є результатом конкатенації рядка T^* самого з собою: $S = T^* + T^*$. Це дозволяє врахувати всі можливі циклічні зсуви рядка T^* .

3. Пошук підрядка:

У рядку S за допомогою методу find() виконується пошук рядка T. Якщо рядок T міститься в рядку S, це означає, що T є циклічним зсувом рядка T^* , і функція повертає true. В іншому випадку функція повертає false.

Цей псевдокод виконує описані вище дії:

function isCyclicShift(T, T_star):

if length(T) != length(T_star):

return false

$$S = T star + T star$$

if T in S:

return true

else:

return false

Складність алгоритму

Складність визначається операціями, які виконуються над рядками:

1. Перевірка довжини рядків:

Порівняння довжин двох рядків має постійну складність, тобто O(1).

2. Конкатенація рядка:

Оскільки ми додаємо рядок до себе, це займає O(n), де n — це довжина рядка T^* .

3. Пошук підрядка:

Операція пошуку рядка Т у рядку S за допомогою методу find() має лінійну складність O(n) у найгіршому випадку, оскільки алгоритм пошуку підрядка здійснюється за час, пропорційний довжині рядка.

Загальна складність:

Основні операції алгоритму — це конкатенація рядка та пошук підрядка, обидві виконуються за лінійний час. Таким чином, загальна складність алгоритму ϵ лінійною, тобто O(n), де n — це довжина рядка.

Мова реалізації алгоритму

C++

Модулі програми

bool isCyclicShift(std::string T, std::string T_star)

Цей модуль реалізує функцію, яка перевіряє, чи є один рядок циклічним зсувом іншого. Для роботи з рядками використовується бібліотека string.

• Основна функція int main()

Цей модуль відповідає за виведення повідомлень, введення даних від користувача та виклик функції перевірки циклічного зсуву. Також за допомогою циклу do/while додається можливість продовжити роботу з програмою скільки завгодно разів, або ж вийти з неї.

Інтерфейс користувача

Введення даних відбувається через консоль. Користувачеві пропонується ввести два рядки, після чого програма перевіряє, чи є один з рядків циклічним зсувом іншого. Після перевірки програма пропонує продовжити або завершити роботу.

Вхідні дані:

- Рядок Т перший рядок, який потрібно перевірити.
- Рядок Т* другий рядок, який потенційно є циклічним зсувом першого.

Користувач може виконати такі операції:

1. Введення рядків.

2. Повторний запит:

Після виведення результату програма пропонує користувачу виконати перевірку знову або завершити роботу.

3. Вихід з програми:

Користувач може завершити роботу програми, закривши консоль або через відповідну команду. Також програма коректно завершується при неправильно введеній відповіді.

Тестові приклади

1. Рядки є циклічними зсувами:

```
Enter the 1st line: abcd
Enter the 2nd line: dabc
The 1st line IS cyclic shift of the 2nd line. (3CVB BПРАВО)
або
```

Enter the 1st line: abcd

Enter the 2nd line: bcda The 1st line IS cyclic shift of the 2nd line. (3сув вліво)

2. Рядки однакової довжини з різними символами:

```
Enter the 1st line: abcd
Enter the 2nd line: wasd
The 1st line IS NOT cyclic shift of the 2nd line.
```

3. Рядки різної довжини:

```
Enter the 1st line: abcdefg Enter the 2nd line: abcde
The 1st line IS NOT cyclic shift of the 2nd line.
```

4. Циклічний зсув на кілька позицій:

```
Enter the 1st line: abcd
Enter the 2nd line: cdab
The 1st line IS cyclic shift of the 2nd line.
```

5. Циклічний зсув зі збігом (однакові рядки):

```
Enter the 1st line: aaaaa
Enter the 2nd line: aaaaa
The 1st line IS cyclic shift of the 2nd line.
```

6. Один символ у рядку:

```
Enter the 1st line: a
Enter the 2nd line: a
The 1st line IS cyclic shift of the 2nd line.
```

7. Порожні рядки:

```
Enter the 1st line:
Enter the 2nd line:
The 1st line IS cyclic shift of the 2nd line.
```

Висновки

Отже, у даній роботі було описано алгоритм перевірки циклічного зсуву рядка. Алгоритм полягає у тому, щоб перевірити, чи є один рядок циклічним зсувом іншого шляхом конкатенації одного з рядків із самим собою та пошуку іншого рядка в отриманому результаті. Якщо знайдено збіг, то рядки є циклічними зсувами.

Також було написано програму для реалізації цього алгоритму, яка приймає два рядки від користувача та виводить результат перевірки. Програма ефективно обробляє різні випадки: порожні рядки, однакові рядки, рядки різної довжини та випадки, коли один рядок є циклічним зсувом іншого.

Алгоритм працює за лінійний час O(n), де n — це довжина рядка, оскільки основні операції конкатенації та пошуку підрядка мають лінійну складність.

Використані літературні джерела

- https://en.wikipedia.org/wiki/Cyclic code
- https://en.wikipedia.org/wiki/Circular shift