

Segunda Olimpiada Mesoamericana de Física

Universidad Autónoma de Chiapas Centro Mesoamericano de Física Teórica

	Calificae	Calificación:	
Nombre:	TODO - procedimiento	Todas las hojas de	
Resuelva cada uno de los siguientes problem	as indicando TODO su procedimento.	10000	
solución deberán ser enviadas por el delegado	de su país a lxgutierrez@mctp.mx		

1. Se debe determinar experimentalmente el coeficiente de arrastre de un automóvil en las condiciones de diseño de 1 atm, $70^{\circ}F$ y $60 \, mi/h$, en un gran túnel de viento en una prueba a escala completa (Fig. 1). El área frontal del automóvil es de $22.26 \, ft^2$. Si la fuerza que actúa sobre el automóvil en la dirección del flujo se mide en $F_D = 68 \, lb_f$, determine el coeficiente de arrastre de este automóvil. La densidad del aire a $1 \, atm$ y $70^{\circ}F$ es igual a $0.07489 \, lb_m/ft^3$.

Figura 1

- 2. El volumen de 1kg de helio, en un dispositivo de cilindro-émbolo, es $7\mathrm{m}^3$, en un principio. A continuación, el helio se comprime hasta $3\mathrm{m}^3$, manteniendo constante su presión en $150\,\mathrm{kPa}$. Determine las temperaturas inicial y final del helio, así como el trabajo requerido para comprimirlo, en kJ. La constante del gas es $R=2.0769\,\mathrm{kJ/kg\cdot K}$.
- 3. Un trozo de papel aluminio cuya masa es de 5×10^{-2} kg está suspendido por medio de un cordel en un campo eléctrico dirigido en sentido vertical hacia arriba. Si la carga del papel metálico es de $3\,\mu\text{C}$, determine la magnitud del campo eléctrico capaz de reducir la tensión del cordel a cero. $(g=9.8\,\text{m/s}^2)$
- 4. Dos cajas, con masas de 65 kg y 125 kg, están en contacto y en reposo sobre una superficie horizontal. Se ejerce una fuerza de 650 N sobre la caja de 65 kg. Si el coeficiente de fricción cinética es de 0.18. calcule:
 - (a) La aceleración del sistema.
 - (b) La fuerza que cada caja ejerce sobre la otra.
 - (c) Resuelva el problema con las cajas invertidas.

Figura 2

5. Calcule el potencial eléctrico total en el punto P situado a diferentes distancias con respecto a las cargas, como se muestra en la figura. La distancia de separación d entre las cargas es $d=0.24\,\mathrm{m}$.

 $q_1 = 2 \,\text{mC},$ $q_2 = 5 \,\text{mC},$ $q_3 = -3 \,\text{mC},$

 $q_4 = 1 \,\mathrm{mC},$

 $k = 8.99 \times 109 \,\mathrm{N \, m^2/C^2}.$

Figura 3

- 6. Un recipiente con gas tiene un manómetro con mercurio. La lectura del manómetro es $L=23~\mathrm{cm}.$
 - (a) Calcular la presión del gas.
 - (b) ¿Cuál sería la altura manométrica 1 si el líquido fuera agua? Densidad del mercurio: $\rho=13600 {\rm kg/m}^3$. Presión atmosférica: $P_0=1$ atmósfera.
- 7. En el sistema de la Fig.(4) se conocen las masas de las cubos, m_1 y m_2 y el de la cuña M así como el ángulo α de la última. Las masas de las poleas y de la cuerda que sostiene las masas son despreciables. La cuña de masa M tiene suficiente espacio para desplazarse a la derecha sin que choque con la pared. Suponga que $m_2 > m_1$ tal que el cubo suspendido caiga debido a la gravedad. Ignore todo fricción.
 - (a) ¿Muestre los diagramas de cuerpo libre para las 3 masas?
 - (b) ¿Escriba todas las ecuaciones para poder calcular la aceleración de la masa M?
 - (c) ¿Escriba la aceleración de la cuña M?

¹Se llama presión manométrica a la diferencia entre la presión absoluta o real y la presión atmosférica.

Figura 4

MUCHA SUERTE!!!