BTS SIO. Mathématiques pour l'informatique

Lycée Carcouët

14 février 2023

BTS SIO. Mathématiques pour l'informatique

Résum

Arithme

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste

Éléments de la chéorie des

Produit cartésien de deux

Relations binaires

Application f

pplication f d'un ensem dans un ensemble F

Calcul matriciel

Arithmétique

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste Éléments de la théorie des ensembles

Produit cartésien de deux ensembles Relations binaires

Application f d'un ensemble E dans un

Calcul matricie Graphes et

Résumé

Arithmétique

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des prédicats

Langage ensembliste

Calcul beoléen

Éléments de la théorie des ensembles

Produit cartésien de deux

ensembles Relations binaires

Application f d'un er

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Arithmétique Systèmes de numération

Arithmétique modulaire Algèbres de Boole Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles
Relations binaires
Application f d'un ensemble E dans un

Calcul matriciel Graphes et ordonnancemen

Résumé

\rithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats

Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Relations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Résumé

Arithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la théorie des

Produit cartésien de deux ensembles

Relations bin

pplication f d'un

Calcul matriciel

Graphes et ordonnancement

En base dix, on utilise dix chiffres (0, 1, 2 . . ., 9).

$$2548 = 2000 + 500 + 40 + 8$$
$$= 2 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 8$$

$$67,89 = 60 + 7 + 0,8 + 0,09$$
$$= 6 \times 10^{1} + 7 \times 10^{0} + 8 \times 10^{-1} + 9 \times 10^{-2}$$

$$\begin{array}{rclcrcr}
 & 1101_b = 1 \times 2^3 & + & 1 \times 2^2 & + & 0 \times 2^1 & + & 1 \times 2^0 \\
 & = 1 \times 8 & + & 1 \times 4 & + & 0 \times 2 & + & 1 \\
 & = 13 & \end{array}$$

 1101_b (ou 1101_2 ou ...) correspond au nombre décimal 13.

Exposants négatifs : en utilisant $2^{-1}=\frac{1}{2}=0.5$; $2^{-2}=\frac{1}{2^2}=0.25$; $2^{-3}=\frac{1}{2^3}=0.125\ldots$, on peut représenter les nombres décimaux.

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

elations binaires

Application f d'un ensemb E dans un ensemble F

Calcul matriciel

On utilise 16 symboles : 0, 1, 2, ..., 9, A, B, C, D, E, F.

$$1AF507_h = 1 \times 16^5 + 10 \times 16^4 + 15 \times 16^3 + 5 \times 16^2 + 0 \times 16^1 + 7 \times 16^0$$

$$= 1048576 + 655360 + 61440 + 1280 + 0 + 7$$

$$= 1766663$$

Puissances de 16 : $16^2 = 256$, $16^3 = 4096$, ...

Résumé

Arithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste Calcul booléen

Éléments de la héorie des

ensembles Produit cartésien de deux

oduit cartesien de deux sembles

pplication f d'un ensem

Calcul matriciel

Arithmétique

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats

Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel Graphes et ordonnancemen

Résumé

Arithmétique

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats

Langage ensembliste

Éléments de la théorie des

ensembles
Produit cartésien de deux

ensembles

Relations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Résumé

Arithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deu: ensembles

A II ... C

Application f d'un e E dans un ensemble

Calcul matriciel

Graphes et

Dans les entiers naturels : pour tout dividende a et tout diviseur b non nul, il existe un unique quotient q et un unique reste r tels que

$$a = bq + r$$
 avec $0 \le r < b$

Si r = 0, on dit que

- ► a est divisible par b;
- b est un diviseur de a:
- ▶ a est un multiple de b.

Éléments de la théorie des

Produit cartésien de deux ensembles

elations binaires oplication f d'un ensen

dans un ensemble F

Calcul matriciel

Graphes et

Un nombre premier est un entier naturel qui admet exactement deux diviseurs : un et lui-même.

Exemples: 2; 3; 5; 7; 11; 13; 17; 19 sont des nombres premiers. 9 n'est pas un nombre premier (ses diviseurs sont 1; 3; 9). 0 et 1 non plus.

Test de primalité : pour savoir si un nombre n est premier ou pas, on le divise par tous les nombres premiers inférieurs ou égaux à \sqrt{n} .

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste

Éléments de la théorie des

Produit cartésien de deux ensembles

> ations binaires plication f d'un ensemb

pplication f d'un ensemble dans un ensemble F

alcul matriciel

Graphes et

Tout entier naturel *N* supérieur ou égal à 2 se décompose de manière unique en produit de nombres premiers.

Exemple : $660 = 2^2 \times 3 \times 5 \times 11$. On a essayé de diviser 660 par les nombres premiers, en commençant par le plus petit, jusqu'à obtenir 1.

Pour trouver tous les diviseurs de 360, on le décompose en produit de facteurs premiers :

$$360 = 2^3 \times 3^2 \times 5$$

Puis on prend tous les facteurs 1 par 1, 2 par 2, etc.

On obtient le PGCD de deux entiers

soit en cherchant le plus grand entier commun dans la liste des diviseurs de chacun;

exemple:

- les diviseurs de 24 sont 1, 2, 3, 4, 6, 8, 12, 24;
- ceux de 54 sont 1, 2, 3, 6, 9, 18, 27, 54.

Le plus grand diviseur commun est 6.

- soit à l'aide de leurs décompositions en facteurs premiers :
 - $ightharpoonup 72 = 2^3 \times 3^2$
 - ► $54 = 2 \times 3^3$

$$PGCD(72,54) = 2 \times 3^2$$

Résumé

Arithme

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

Entiers premiers entre eux

Deux entiers sont dits **premiers entre eux** si leur seul diviseur commun est 1.

Exemple: 20 et 33 sont premiers entre eux car leur PGCD est 1.

BTS SIO. Nathématique

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

pplication f d'un ensemb dans un ensemble F

Calcul matriciel

Soit n un entier naturel non nul. Deux entiers a et b sont dits congrus modulo n si a et b ont le même reste dans la division euclidienne par n.

Notation:
$$a \equiv b \pmod{n}$$
 ou $a \equiv b \mod n$

Exemples:

$$36 \equiv 6 \quad (5)$$

$$125 \equiv 6 \quad (7)$$

$$13 \equiv 3$$
 (2)

Définition équivalente : deux entiers naturels a et b (avec a > b) sont congrus modulo n si a - b est divisible par n.

Résumé

Arithmétique

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles Relations binaires

application f d'un e

: dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

- 1. Transitivité. Si $a \equiv b$ (n) et $b \equiv c$ (n), alors $a \equiv c$ (n)
- 2. Somme. Si $a \equiv b$ (n) et $c \equiv d$ (n), alors $a + c \equiv b + d$ (n).
- 3. Multiplication. Si $a \equiv b$ (n) et $c \equiv d$ (n), alors $ac \equiv bd$ (n). En particulier: Si $a \equiv b$ (n), alors $ka \equiv kb$ (n). Conséquence: si $a \equiv b$ (n), alors $a^p \equiv b^p$ (n) pour tout $p \in \mathbb{N}^*$.

Attention : on peut ajouter, soustraire, multiplier membre à membre des congruences, mais pas diviser.

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

ensembles
Relations binaires

Application f d'un ensem E dans un ensemble F

Calcul matriciel

Résumé

Algèbres de Boole

Algèbres de Boole Calcul des propositions Calcul des prédicats Langage ensembliste

Calcul booléen

Arithmétique

numération

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un ensemble E dans ur

Calcul matriciel Graphes et ordonnancemen

Résumé

Arithmétic

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

alcul des prédicats

Éléments de la

ensembles Produit cartésien de deu

ensembles

Relations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

Négation d'une proposition P

Table de vérité :

Р	$\neg P$
1	0
0	1

BTS SIO. Mathématiques pour l'informatique

Résum

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de B

Calcul des propositions

Calcul des prédicats Langage ensembliste

Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

ensembles Produit cartésien de deux

sembles

pplication f d'un en

.

Graphes et ordonnancement

Conjonction de deux propositions P et Q

 $P \wedge Q$ se lit "P et Q".

Р	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

Calcul des propositions

Disjonction de deux propositions P et Q

 $P \vee Q$ se lit "P ou Q".

Р	Q	$P \lor Q$
0	0	0
0	1	1
1	0	1
1	1	1

Calcul des propositions

Implication

 $P \Rightarrow Q$ se lit P implique Q.

P	Q	$P \Rightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

NB : c'est équivalent à $(\neg P) \lor Q$

Mathématiques

Résum

Arithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boo

Calcul des propositions

Calcul des prédicats Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deu

ensembles

Relations binaires

Application f d'un enseml E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

Équivalence

 $P \Leftrightarrow Q$ se lit "P équivaut à Q".

P	Q	$P \Leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

BTS SIO. Mathématiques

Résum

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Bo

Calcul des propositions

Calcul des prédicats Langage ensembliste

Calcul booléen

Éléments de la théorie des ensembles

ensembles

Produit cartésien de deu

nsembles

elations binaires

plication f d'un ensem

Calcul matriciel

Propriétés des connecteurs logiques

$$\neg(\neg P) = P$$

$$(P \lor Q) \Leftrightarrow (Q \lor P)$$

$$(P \wedge Q) \Leftrightarrow (Q \wedge P)$$

Distributivité:

$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$$

$$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$$

BTS SIO.

Mathématiques pour l'informatique

Résumé

Arithmé

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats Langage ensembliste

Éléments de la théorie des

ensembles

ensembles

pplication f d'un

E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

Propriétés des connecteurs logiques

BTS SIO. Mathématique

Résumé

Arithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats

Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux

Relations binaires

Application f d'un ens

C-1--1------

Graphes et

Élements neutres

 ${\mathscr V}$ étant une proposition vraie et ${\mathscr F}$ une proposition fausse, pour toute proposition P :

$$P \vee \mathscr{F} \Leftrightarrow P$$

$$P \wedge \mathscr{V} \Leftrightarrow P$$

Tiers-exclu:

$$P \vee \neg P \Leftrightarrow \mathscr{V}$$

Non-contradiction:

$$P \wedge \neg P \Leftrightarrow \mathscr{F}$$

Propriétés de \Rightarrow et \Leftrightarrow

$$(P\Rightarrow Q)\Leftrightarrow (\neg P\vee Q)$$

 $(P\Leftrightarrow Q)\Leftrightarrow (P\Rightarrow Q)\wedge (Q\Rightarrow P)$
 $(P\Rightarrow Q)\Leftrightarrow (\neg Q\Rightarrow \neg P)$

Calcul des propositions

Arithmétique

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats

Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un ensemble E dans ur

Calcul matriciel Graphes et ordonnancemen

Résumé

ک میں ماعانی A

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un ens

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

- ▶ $\exists x \in \mathbb{R}, \quad x > 2$ Comprendre : "il existe un réel x tel que x > 2".
- ▶ $\forall x \in \mathbb{R}, \quad x > 2$ Comprendre: "pour tout réel x, x > 2".

La première proposition est vraie (x=10 convient), la seconde est fausse (par exemple pour x=0). La troisième est vraie : pour tout nombre réel x, il existe un nombre y tel que x+y=5 (y=5-x convient).

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des prédicats

Langage ensembliste

Calcul hooléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Application f d'un enser

Calcul matriciel

Algèbres de Boole

Langage ensembliste

Résumé

Algèbres de Boole

Langage ensembliste

$$E = \{a,b,c,d\}, F = \{c,d\}$$

 $ightharpoonup c \in E$ signifie que c est un **élément** de E.

$$c \in F$$
; $a \in E$ mais $a \notin F$.

F est inclus dans E : on écrit F ⊂ E et on dit que F est un sous-ensemble de E.

$$F \subset E, F \subset F, \varnothing \subset F$$
.

Résumé

Arithm

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Application f d'un ens

E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

Pour $A \subset E$ et $B \subset E$.

- ► Le **complémentaire** de A dans E est noté $C_E A$ ou \overline{A} . C'est $\{x \in E : x \notin A\}$.
- ▶ **Réunion** : $A \cup B = \{ x \in E ; x \in A \lor x \in B \}$
- ▶ Intersection : $A \cap B = \{ x \in E ; x \in A \land x \in B \}$ Si $A \cap B = \emptyset$, A et B sont disjoints.

Résumé

Arithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

ensembles Froduit cartésien de deux

ensembles

Kelations binaires Application f d'un ensei

Calcul matriciel

Arithmétique

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats

Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel Graphes et ordonnancemen

Résumé

\rithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats

Langage ensembliste

Calcul booléen Éléments de la théorie des

ensembles Produit cartésien de deu

ensembles

Application f d'un en

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

$$a + (b + c) =$$

Résum

A rithma

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de l

théorie des ensembles

Produit cartésien de deux

lations binaires

olication f d'un ensen

Calcul matriciel

$$a + (b + c) = (a + b) + c$$

Résum

Arithmé

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

ensembles Produit cartésien de deu

Produit cartésien de deux ensembles

elations binaires

plication f d'un ensemb dans un ensemble F

Calcul matriciel

$$a.(b.c) =$$

Résum

A rithmá

Systèmes de numération

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

ensembles Produit cartésien de deu

roduit cartesien de deux ensembles

lations binaires

plication f d'un ensem dans un ensemble F

Calcul matriciel

$$a.(b.c) = (a.b).c$$

Résum

Arithmá

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

théorie des ensembles

Produit cartésien de deux ensembles

elations binaires

olication f d'un enseml ans un ensemble F

Calcul matriciel

Commutativité

$$a + b =$$

$$a.b =$$

Mathématiques pour l'informatique

Résum

. . . .

Systèmes de numération

Algèbres de Boole

Calcul des propositio
Calcul des prédicats
Langage ensembliste
Calcul booléen

Calcul Booleen

théorie des ensembles

Produit cartésien de deu

elations binaires

pplication f d'un ense

Calcul matriciel

Commutativité

$$a + b = b + a$$

$$a.b = b.a$$

Mathématiques pour l'informatique

Résume

Systèmes de numération

....

Algèbres de Boole

Calcul des prédicats

Calcul booléen

Éléments de la théorie des

ensembles Produit cartésien de des

nsembles

Relations binaires

plication f d'un ensei

Calcul matriciel

Éléments neutres

$$a + 0 =$$

$$a.1 =$$

Mathématiques pour l'informatique

Résumé

A rithmá

Systèmes de numératior Arithmétique modulaire

Algèbres de Boole

Calcul des propositio Calcul des prédicats Langage ensembliste

Calcul booléen

théorie des ensembles

Produit cartésien de deux

elations binaires

pplication f d'un ense

Calcul matriciel

Éléments neutres

$$a + 0 = a$$

$$a.1 = a$$

Mathématiques pour l'informatique

Résume

Arithmé

Systèmes de numératior Arithmétique modulaire

Algèbres de Boole

Calcul des propositio Calcul des prédicats Langage ensembliste

Calcul booléen

Éléments de la théorie des ensembles

ensembles Produit cartésien de deux

ensembles

Application f d'un

oplication f d'un ensemi dans un ensemble F

Calcul matriciel

Distributivité de . par rapport à +

$$a.(b + c) =$$

Calcul booléen

Distributivité de . par rapport à +

$$a.(b + c) = a.b + a.c$$

Résum

Arithme

Systèmes de numeration
Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

théorie des ensembles

Produit cartésien de deux ensembles

elations binaires

oplication f d'un enseml dans un ensemble F

Calcul matriciel

Distributivité de + par rapport à .

$$a + (b.c) =$$

Calcul booléen

Distributivité de + par rapport à .

$$a + (b.c) = (a + b).(a + c)$$

Résum

Arithme

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

ensembles

ensembles

elations binaires p

المناسفينين المالت

Tiers-exclus

Mathématiques pour l'informatique

Résum

.

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des propositio Calcul des prédicats Langage ensembliste

Calcul booléen

Eléments de la théorie des ensembles

Produit cartésien de deux

elations binaires

plication f d'un ens

Calcul matriciel

Tiers-exclus

 $a + \overline{a} = 1$

Résum

. .

Systèmes de numération

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste

Calcul booléen

théorie des

Produit cartésien de deux

lations binaires

plication f d'un ens dans un ensemble F

Calcul matriciel

Non-contradiction

 $a.\overline{a} =$

Mathématiques pour l'informatique

Résume

A 2.1

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste

Calcul booléen

Eléments de la théorie des ensembles

Produit cartésien de deux ensembles

lations binaires

plication f d'un ens

Calcul matriciel

Non-contradiction

 $a.\overline{a}=0$

Mathématiques pour l'informatique

Résum

.

Svetàmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste Calcul booléen

Éléments de la théorie des

ensembles Produit cartésien de deu

Relations binaires

oplication f d'un er

Calcul matriciel

$\overline{1} =$

 $\overline{0} =$

 $\overline{\overline{a}} =$

Résum

Arithméti

Arithmétique modulaire

Algèbres de Boole

Calcul des propositi Calcul des prédicats Langage ensemblisti Calcul booléen

Éléments de la théorie des

Produit cartésien de deu

Relations binaires

polication f d'un e

$\overline{1} = 0$

$$\overline{0} = 1$$

$$\overline{a} = a$$

Résum

Arithmé

Arithmétique modulaire

Algèbres de Boole

Calcul des propositio
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

ensembles Produit cartésien de deu

Relations binaires

polication f d'un e

Calcul matricial

Idempotence

$$a.a =$$

$$a + a =$$

Mathématiques pour l'informatique

Résumé

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

ensembles

ensembles

Relations binaires

pplication f d'un ensen

Calcul matriciel

Idempotence

$$a.a = a$$

$$a + a = a$$

Mathématiques pour l'informatique

Résumé

Arithmá

Systèmes de numération

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste

Calcul booléen

Éléments de la théorie des

ensembles

nsembles

Application f d'un a

pplication f d'un ensen

Calcul matriciel

$$a + 1 =$$

a.0 =

Mathématiques pour l'informatique

Résumé

Systèmes de numération

Antimetique modulaire

Algèbres de Boole

Calcul des prédicats

Langage ensembliste

Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux

elations binaires

Application f d'un er

dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

a + 1 = 1

$$a.0 = 0$$

Calcul booléen

Lois de De Morgan

 $\overline{a.b} =$

Mathématiques pour l'informatique

Résum

Arithmé

Systèmes de numération

Algèbres de Boole

Calcul des propositio
Calcul des prédicats
Langage ensembliste
Calcul booléen

Élémente de

théorie des ensembles

Produit cartésien de deux

elations binaires

plication f d'un ensem dans un ensemble F

Calcul matriciel

Calcul booléen

Lois de De Morgan

Mathématiques pour l'informatique

Résum

Arithmé

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste Calcul booléen

Éléments de la théorie des

ensembles

Produit cartésien de de

ensembles

elations binaires oplication f d'un e

oplication f d'un enser dans un ensemble F

Calcul matriciel

Lois de De Morgan

$$\overline{a+b} = \overline{a}.\overline{b}$$

Mathématiques pour l'informatique

Résum

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

théorie des ensembles

Produit cartésien de deux ensembles

elations binaires

plication f d'un ensem dans un ensemble F

Calcul matriciel

$$a + ab =$$

Mathématiques pour l'informatique

Résum

Systèmes de numération

Algèbres de Boole

Calcul des propositio Calcul des prédicats Langage ensembliste

Calcul booléen

théorie des ensembles

Produit cartésien de deux ensembles

lations binaires

plication f d'un en

Calcul matriciel

$$a + ab = a$$

a absorbe son multiple.

Résum

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

ensembles Produit cartésien de des

ensembles

Relations binaire

oplication f d'un enseml dans un ensemble F

Calcul matriciel

$$a(a + b) =$$

Résum

Systèmes de numération

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

ensembles Produit cartésien de deu:

ensembles Relations binaires

plication f d'un en

dans un ensemble F

Calcul matriciel

$$a(a+b)=a$$

Résum

. . . .

Systèmes de numération

Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la

théorie des ensembles

Produit cartésien de deux ensembles

lations binaires

plication f d'un ensen

Calcul matriciel

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles Relations binaires Application f d'un ensemble E dans un ensemble F

Résumé

Algèbres de Boole

Éléments de la théorie des ensembles

A 1.1 /.1

Systèmes de numération
Arithmétique modulaire lgèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires Application f d'un ensemble E dans un ensemble F

Calcul matriciel Graphes et ordonnancemen

Résumé

Arithmétique

Arithmétique modulaire

Algèbres de Boole

alcul des propositions alcul des prédicats

Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un e

Calcul matriciel

Produit cartésien de deux ensembles

 $E \times F$, le produit cartésien de deux ensembles E et F, est l'ensemble des couples (x,y) où x est un élément de E et y est un élément de F.

$$E \times F = \{(x,y) ; x \in E, y \in F\}$$

BTS SIO. Nathématiques

Résumé

Arithme

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deux

ensembles

elations binaires pplication f d'un en

: dans un ensemble F

Calcul matriciel

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la :héorie des

ensembles Produit cartésien de deux

nsembles

plication f d'un ense

Calcul matriciel

Graphes et

Si un ensemble E a un nombre n fini d'éléments, on appelle ce nombre le **cardinal** de E. On le note card(E).

Si card(E) = n et card(F) = p, alors $card(E \times F) = n \times p$.

Arithmétique

numération
Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel Graphes et

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats

Langage ensembliste
Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux

ensembles
Relations binaires

Application f d'un er

plication f d'un ensemble dans un ensemble F

Calcul matriciel

Une relation binaire \mathcal{R} d'un ensemble E vers un ensemble F est la donnée d'une partie (un sous-ensemble) noté G de $E \times F$, appelée le graphe de \mathcal{R} .

Pour $x \in E$ et $y \in F$, $x \Re y$ signifie $(x,y) \in G$.

Souvent E=F: la relation binaire $\mathcal R$ sera définie sur un ensemble E.

Résumé

Arithme

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deux

sembles

Relations binaires

pplication f d'un ensemble f dans un ensemble F

Calcul matriciel

• \mathscr{R} est **réflexive** si

$$\forall x \in E \qquad x \Re x$$

• R est symétrique si

$$\forall (x,y) \in E \times E \qquad x \mathcal{R} y \Rightarrow y \mathcal{R} x$$

• R est antisymétrique si

$$\forall (x,y) \in E \times E \qquad (x\mathscr{R}y) \wedge (y\mathscr{R}x) \Rightarrow x = y$$

• \mathscr{R} est transitive si

$$\forall (x,y,z) \in E \times E \times E \qquad (x\mathscr{R}y) \land (y\mathscr{R}z) \Rightarrow x\mathscr{R}z$$

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux

Relations binaires

plication f d'un ensem

Calcul matriciel

Relation d'équivalence

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste

Éléments de la théorie des

Produit cartésien de deux

ensembles Relations binaires

Relations binain

pplication f d'un ensemble dans un ensemble F

Calcul matriciel

Graphes et

\mathscr{R} est une relation d'équivalence si elle est

- réflexive
- symétrique
- transitive.

- réflexive
- antisymétrique
- transitive.

Exemples:

```
\leq et \geq dans \mathbb{R}:
```

la relation d'inclusion est une relation d'ordre dans $\mathcal{P}(E)$ (l'ensemble des parties (ou sous-ensembles) de E).

Résumé

Arithm

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deux

ensembles

terations bina

Application f d'un ensemi E dans un ensemble F

Calcul matriciel

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deux

nsembles

Relations binaires

Application f d'un ensemble E dans un ensemble F

alcul matriciel

Graphes et ordonnancement

Une relation d'ordre $\mathscr R$ sur E est une relation d'ordre total si

$$\forall (x,y) \in E^2$$
 $(x\Re y) \lor (y\Re x)$

On peut comparer tous les éléments. Sinon l'ordre est partiel.

A 1.1 Z.1

Arithmetique
Systèmes de
numération
Arithmétique modulaire
Algèbres de Boole
Calcul des propositions
Calcul des prédicats

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles Relations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel Graphes et ordonnancemen

Résumé

Arithméti

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats

Langage ensembliste

Éléments de la

ensembles
Produit cartésien de deu

ensembles

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

ensembles

Produit cartésien de deu
ensembles

Relations binaires

Application f d'un ensemble

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Graphes et

Une application f associe à tout élément d'un ensemble E un élément unique d'un ensemble F.

Notation :

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

f(x) s'appelle **l'image** de x, E est l'ensemble de départ, F est l'ensemble d'arrivée.

f(E) s'appelle **l'image** de E. Bien sûr, $f(E) \subset F$.

F dans un ensemble I

f est une application de $E = \{a,b,c,d\}$ vers $F = \{w,x,y,z\}$.

$$f(E) = \{w, x, z\}$$

L'image de a est x.

Les antécédents de x sont a et c.

F dans un ensemble F

Une application f de E dans F est une injection si deux éléments distincts de E ont des images distinctes :

$$\forall x \in E, \ \forall x' \in E, \qquad x \neq x' \Rightarrow f(x) \neq f(x')$$

Cela revient à dire : $f(x) = f(x') \Rightarrow x = x'$. Ou que deux flèches ne pointent pas vers le même élément de F.

E dans un ensemble F

i est une injection de $E = \{a,b,c\}$ vers $F = \{w,x,y,z\}$.

Une application f de E dans F est une surjection si tout élément F admet un antécédent (au moins).

$$\forall y \in F, \exists x \in E \mid f(x) = y$$

Exemple : s est une surjection de $E = \{a,b,c,d\}$ vers $F = \{x,y,z\}$.

Résumé

Arithm

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Application f d'un ensemb

Calcul matriciel

Calcul des proposition Calcul des prédicats Langage ensembliste

Éléments de la théorie des

ensembles
Produit cartésien de deu

ensembles

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Graphes et

Une application f de E dans F est une bijection si elle est injective et surjective.

Exemple : h est une bijection de $E = \{a,b,c,d\}$ vers $F = \{w,x,y,z\}$.

L'application, notée $g \circ f$, de E vers G, qui à tout x de E associe g(f(x)) est la composée de f et g.

Résumé

Arithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Application f d'un ensemble

E dans un ensemble F

Calcul matriciel

A

Arithmétique

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats

Calcul booléen

Éléments de la théorie des ensembles

deux ensembles
Relations binaires
Application f d'un

ensemble E dar

Calcul matriciel Graphes et

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Calcul des prédicats

Langage ensembliste

Éléments de la théorie des

Produit cartésien de deux ensembles

Relations bir

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

Matrice de dimension n liques notation: A = [aij]

Dij et l'étérent sitre ligne i, colonne j.

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

théorie des ensembles

ensembles

Relations bina

Application f d'un ensen

Calcul matriciel

$$\begin{pmatrix} \Lambda & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 0 & 7 & 8 \\ 9 & 6 & M \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & M \end{pmatrix}$$

- on 2joute des notrices de même dimension - la sonne à la même dimension.

on ajoute le éléments situé à brière position 5 + 10 = 15 Mathématiques

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

elations binaires

Application f d'un ensemble E dans un ensemble F

Calcul matriciel

$$2\begin{pmatrix} 1 & 3 \\ 4 & 5 \\ 10 & 100 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 8 & 10 \\ 20 & 200 \end{pmatrix}$$

Mathématiques

pour l'informatique

Résumé

Arithm

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste

Éléments de la chéorie des

ensembles Produit cartésien de deux

elations binaires

relations binaires

oplication f d'un ensemi

Calcul matriciel

Multiplication de matrices (1 2 3) × (10 40 50 60) (4 5 6) × (20 70 80 90) (2) × 3, 3 × 47

- On feut multiplier est le nombre de volonnes de la 1 été est égal au nombre de lignes de la 2 ême (3, et 3,)

_ le résultat est une matrice de dimension (2x19)

Résumé

Δrithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deux

nsembles Jelations binaires

pplication f d'un ense

Calcul matriciel

Pour coluber cet étément (lique 2, colonne 3), on "multiplie" la lique 9 de la Mère, por la colonne 3 de la 2000: Mathématiques

Résum

. . .

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deux

ensembles Relations binaires

A II ... C

Application f d'un ensemble F dans un ensemble F

Calcul matriciel

Matrice identité (ou unité) I:

$$A \times I = I \times A = A$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

 $\begin{pmatrix} \Lambda & O \\ O & \Lambda \end{pmatrix} \begin{pmatrix} \Lambda & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} \Lambda & 2 \\ 3 & 4 \end{pmatrix}$

Mathématiques
pour l'informatique

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des proposition Calcul des prédicats Langage ensembliste

Éléments de la théorie des

théorie des ensembles

> roduit cartésien de deux nsembles

Relations bin

pplication f d'un ensen dans un ensemble F

Calcul matriciel

Inverse d'une matrice A.

exemple:
$$A = \begin{pmatrix} 1 & 2 \\ 8 & 4 \end{pmatrix}$$
La calculatrice donne $A^{-1} = \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & 1 \end{pmatrix}$

Résumé

Algèbres de Boole

Calcul matriciel

Résumé

Systèmes lineaires $\begin{cases} x + 2y = 5 \\ 8x + 4y = 7 \end{cases}$ s'écrit $\begin{pmatrix} 8 & 2 \\ 8 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$

La solution et == -0,5 et y=2,75

Ainsi, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{6} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 5 \\ \frac{1}{7} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{3} \end{pmatrix}$

$$A \times = B$$
 $A^{-1}A \times = A^{-1}B$
 $A \times = A^{-1}B$

Application f d'un ensemble

E dans un ensemble F

Calcul matriciel

Arithmétique

Systèmes de

Arithmétique modulaire

Algèbres de Boole

Calcul des propositions

Langage ensembliste

Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binaires

Application f d'un ensemble E dans un

Calcul matricie Graphes et

ordonnancement

Résumé

Arithmé

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats

Langage ensembliste Calcul booléen

Éléments de la théorie des ensembles

Produit cartésien de deux ensembles

Relations binair

Application f d'un ensem E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

Matrice d'adjacence

Figure – Un graphe orienté (4 sommets, 7 arêtes).

Ce graphe peut être représenté par la matrice d'adjacence :

$$M = egin{array}{cccc} S_1 & S_2 & S_3 & S_4 \ S_1 & 0 & \boxed{1} & 0 & 1 \ 0 & 0 & 0 & 1 \ S_3 & 0 & 1 & 0 & 1 \ S_4 & 0 & 1 & 1 & 0 \ \end{array}
ight)$$

Le 1 indique la présence d'un arc de S_1 vers S_2

BTS SIO.

Mathématiques pour l'informatique

Résumé

Arithm

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

ensembles Produit cartésien de deux ensembles

Relations binaires

Application f d'un enseml E dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

S_1 S_2 S_3 S_4 S_4

- La suite ordonnée (S_1, S_2, S_4) est un **chemin** de longueur 2.
- (S_2,S_4,S_3,S_2) est un **circuit** de longueur 3 : c'est un chemin dont le premier et le dernier sommet sont confondus.
- (S_1,S_2,S_4,S_3) est un **chemin hamiltonien** : c'est un chemin qui passe par tous les sommets une fois et une seule. Il est de longueur 3 (on passe par trois arcs).

Résumé

Arithm

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste Calcul booléen

léments de la héorie des

Produit cartésien de deux ensembles

application f d'un ensemble dans un ensemble F

Calcul matriciel

Soit M la matrice associée à un graphe G. Le coefficient d'indice ij (ligne i, colonne j) de la matrice M^n est le nombre de chemins de longueur n reliant S_i à S_j .

Exemple:

$$M^{2} = \begin{array}{ccccc} S_{1} & S_{2} & S_{3} & S_{4} & & S_{1} & S_{2} & S_{3} & S_{4} \\ S_{1} & 0 & 1 & 1 & 1 & 1 \\ S_{2} & 0 & 1 & 1 & 0 & 0 \\ S_{3} & 0 & \boxed{1} & 1 & 1 & 1 \\ S_{4} & 0 & 1 & 0 & 2 & 0 \end{array}; M^{3} = \begin{array}{ccccc} S_{1} & S_{2} & S_{3} & S_{4} \\ S_{1} & 0 & 2 & 1 & \boxed{2} \\ S_{2} & 0 & 1 & 0 & 2 \\ S_{3} & 0 & 2 & 1 & 2 \\ S_{4} & 0 & 2 & 2 & 1 \end{array}$$

Il y a $\boxed{1}$ chemin de longueur 2 reliant S_3 à S_2 . Il y a $\boxed{2}$ chemins de longueur 3 reliant S_1 à S_4 . Il y a 1 circuit de longueur 3 reliant S_2 à S_2 .

Résumé

\rithmét

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions
Calcul des prédicats
Langage ensembliste
Calcul booléen

Éléments de la théorie des

Produit cartésien de deux ensembles

Relations binaires Application f d'un ensem

L dans un ensemble /

Calcul matriciel

Graphes et ordonnancement

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la théorie des

nsembles Produit cartésien de deux ensembles

elations binaires f d'un ensemi

plication f d'un ens dans un ensemble F

alam I amandatal

Calcul matriciel

Graphes et ordonnancement

Les matrices d'adjacence booléennes ne comportent que des 0 et des 1 (1 s'il existe un arc d'un sommet à un autre, 0 sinon). On ne veut plus savoir combien il y a de chemins de telle longueur mais seulement s'il existe un chemin ou pas entre deux sommets.

L'addition et la multiplication booléennes sont notées \oplus et \otimes Les puissances sont notées $M^{[p]}$

$$M^{[p]} = \underbrace{M \otimes M \otimes \cdots \otimes M}_{p \text{ facteurs}}$$

Calcul des proposition
Calcul des prédicats
Langage ensembliste

Éléments de la théorie des

Produit cartésien de deux ensembles

Application f d'un ensem

dans un ensemble /

Calcul matriciel

Graphes et ordonnancement

En pratique (pour l'épreuve), on effectue les calculs sur les matrices d'adjacence normalement puis on remplace tous les coefficients non nuls par des 1.

Exemple : si on demande de calculer $A^{[2]}$, on calcule

$$A^2 = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 et on en déduit

$$A^{[2]} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Systèmes de numération Arithmétique modulaire

Algèbres de Boole

Calcul des propositions Calcul des prédicats Langage ensembliste

Éléments de la héorie des

Produit cartésien de deux ensembles

Relations binaires Application f d'un enser

dans un ensemble F

Calcul matriciel

Graphes et ordonnancement

La fermeture transitive d'un graphe à n sommets S_1, \ldots, S_n , est le graphe obtenu en ajoutant tous les arcs de S_i à S_j s'il existe un chemin de S_i à S_j .

Si M est la matrice d'adjacence du graphe, la matrice de la fermeture transitive du graphe est

$$\widehat{M} = M \oplus M^{[2]} \oplus \cdots \oplus M^{[n]}$$