

Sex X=(Xn) & l. P. Então JN, Hn>, N, 120n/<1

 $\Rightarrow |x_n|^5 \le |x_n|^p$, $\forall n > N$

Logo x els.

Africa.

Africa: $A = \frac{1}{|x|} = \frac{1}{|x|} = \frac{1}{|x|}$

Veleto, Nxllp < 1 = |xnl < 1, Vn, logo

 $\|x\|_{s}^{s} = \sum_{n=1}^{\infty} |x_{n}|^{s} \leq \sum_{n=1}^{\infty} |x_{n}|^{p} = \|x\|_{p}^{p} \leq 1$

AFZ: ||x|| 5 = ||x|| p

Peloto,

$$||x|| = 1 \Rightarrow ||x|| \leq 1$$
 $||x|| = 1 \Rightarrow ||x|| \leq 1$
 $||x|| = 1 \Rightarrow ||x|| \leq 1$

Prove que fé L',
$$f \in L^{p_z}$$
, $1 \le P_1 < P_2 < \infty$

RES)
Como
$$P_1 \le P \le P_2$$
, $\exists \theta$, $P = \frac{\theta}{P_1} + \frac{1-\theta}{P_2}$
Assum
$$I = \frac{P\theta}{P_1} + \frac{P(1-\theta)}{P_2}$$

$$||f||_{p}^{p} = \int |f|^{p} = \int |f|^{1-\theta} p$$

kmm, and n> Max 2N, N'},
$$V_n = V_n^+ - V_n^-$$
 winpleze $S = V_n^+ - V_n^- + V_n^- +$

Dems) $Note que \sum_{n=1}^{\infty} n^{n} \chi_{E_{n}} \leq (|f(x)| + 1)^{p}$

Refute, rejor
$$x \in X$$
. Entao $\exists n_0, x \in E_{n_0}$.

Poi

I $n^e X_{E_n}(x) = N^e X_{E_{n_0}}(x) = N^e$

Moz $x \in E_{n_0} \Rightarrow N_{o-1} \leq |f(x)| \leq N_o$
 $\Rightarrow n_0 \leq |f(x)| + |f(x)| \leq N_o + |f(x)| \leq N_o$
 $\Rightarrow n_0 \leq |f(x)| + |f(x)| + |f(x)| + |f(x)| \leq N_o$
 $\Rightarrow |f(x)| \leq |f(x)| + |f(x)| + |f(x)| \leq N_o$

Alomothoro,

If $|f(x)|^p \leq \sum_{n=1}^\infty |f(x)|^p \leq N^p = N^p =$

logo Slim=li	\mathcal{M}
	プー版