

MATHS

Classe: Bac Maths

Sujet: Prototype N°5

Durée: 4 h

Nom du prof: Profs Takiacademy

Sousse (Khezama - Sahloul- Msaken) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan / Mahdia / Le Kef / Tataouine / Tozeur / kasserine

Exercice 1

Q 36 min

3 pts

n étant un entier naturel non nul, on place dans une urne n boules rouges, n0 boules noires et n0 boules blanches. Un joueur tire une boule de l'urne; on suppose que tous les tirages sont équiprobables.

- S'il tire une boule rouge, il perd.
- S'il tire une boule noire, il gagne.
- S'il tire une boule blanche, il remet cette boule dans l'urne et effectue un nouveau tirage, toujours avec équiprobabilité. S'il tire alors une noire, il gagne sinon il perd.
- Démontrer que la probabilité que ce joueur gagne est f(n) où f est l'application de \mathbb{R}_+^* dans \mathbb{R} telle que $f(x) = \frac{(x+8)(x+24)}{2(x+14)^2}.$
 - **b** Déterminer l'entier $\mathfrak n$ pour que cette probabilité soit maximale. Calculer alors cette probabilité.
 - f c Déterminer l'entier f n pour que cette probabilité soit minimale. Calculer alors cette probabilité.
- Dans cette question, on suppose que n = 16. Pour jouer, le joueur a misé 8 dinars. p et q étant des entiers naturels tels que p > q > 8.
 - S'il gagne à l'issue du premier tirage, on lui remet p dinars.
 - S'il gagne à l'issue du deuxième tirage, on lui remet q dinars.
 - S'il perd il ne reçoit rien.

Soit X la variable aléatoire égale au gain algébrique du joueur.

- a Déterminer la loi de X en fonction de p et q ainsi que son espérance mathématique.
- **b** On suppose que p et q sont tels que le jeu est équitable.
 - \Box Montrer alors que 3p + q = 60.
 - \square Déterminer les couples (p, q) possibles pour que le jeu soit équitable.
 - \Box Pour p = 16 et q = 12, calculer l'espérance mathématique et l'écart type de la variable aléatoire X.

Exercice 2

0 60 min

5 pts

Dans le plan complexe rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$, on considère les points A et B d'affixes respectives 1 et $(\sqrt{2}-1)(1-i)$.

Soit g l'application du plan dans le plan qui à tout point M(z) associe le point M'(z') tel que $z' = -\frac{\sqrt{2}}{4}(1+\mathfrak{i})z + \frac{\sqrt{2}}{2}$.

- Montrer que g est une similitude directe et déterminer ses éléments caractéristiques.
- Déterminer l'écriture complexe associé à l'homothétie ${f h}$ de centre ${f B}$ et de rapport $-\sqrt{2}$.
- a Montrer que l'écriture complexe de l'application $S = g \circ h$ est $z' = \frac{1}{2}(1+i)z$.
 - f b Déterminer alors la nature et les éléments caractéristiques de f S.
- On pose $M_0 = A$; $M_1 = S(M_0)$ et pour tout $n \in \mathbb{N}$, $M_{n+1} = S(M_n)$. Soit z_n l'affixe de M_n .

- a Montrer que pour tout $n \in \mathbb{N}$, $z_n = \frac{1}{\left(\sqrt{2}\right)^n} e^{i\frac{n\pi}{4}}$.
- b Montrer que pour tout $n \in \mathbb{N}$, on a : $\operatorname{aff}\left(\overrightarrow{M_n M_{n+1}}\right) = \frac{1}{\left(\sqrt{2}\right)^{n+1}} e^{i(n+3)\frac{\pi}{4}}$
- Pour tout $n \in \mathbb{N}^*$, on pose L_n la longueur du polygone $M_0M_1M_2\dots M_n$.

 $\begin{array}{l} \text{Montrer que } L_n = (\sqrt{2}+1) \left(1-\left(\frac{1}{\sqrt{2}}\right)^n\right). \\ \text{Calculer alors } \lim_{n \to +\infty} \ L_n. \end{array}$

- - f a Montrer que $f S^n$ est une similitude directe et préciser ses éléments caractéristiques.
 - **b** En déduire les valeurs de n pour lesquelles S^n est une homothétie de rapport négatif.
 - c Caractériser l'application $\phi = S_{(OB)} \circ S^{12}$.

Exercice 3

5 pts

On considère dans $\mathbb{N} \times \mathbb{N}$ l'équation $(E): x^2 - 8y^2 = 1$ dont les solutions sont les couples (x, y) d'entiers naturels. **A**- Dans cette partie on se propose de montrer que cette équation admet une infinité de couples solutions.

- Soit (x_n) et (y_n) les suites des entiers définies sur $\mathbb N$ par : $\begin{cases} x_0 = 1, & y_0 = 0 \\ x_{n+1} = 3 & x_n + 8 & y_n \\ y_{n+1} = x_n + 3 & y_n \end{cases}$
 - a Montrer que pour tout entier naturel n, (x_n, y_n) est solution de (E).
 - **b** Donner trois couples solutions de (E).
- 2 Montrer que pour tout entier naturel $n, x_n > 0$ et $y_n \ge 0$.
 - **b** En déduire que (x_n) est strictement croissante.
 - c Montrer alors que (E) admet une infinité de couples solutions.

B- Dans cette partie on montrera qu'il n'existe aucun couple (n,p) solution avec p est **premier**. On suppose que (n,p) est solution de (E) avec p un nombre premier.

- 1 a Montrer que n est impair .
 - b Montrer que l'un des entiers $\mathfrak{n}-1$ ou $\mathfrak{n}+1$ n'est pas un multiple de 4.
- On suppose que n-1=4k+2 où k est un entier naturel.
 - a Montrer que $(2k+1)(k+1) = p^2$

MATHS

- b Vérifier que 2k + 1 et k + 1 sont premiers entre eux.
- c En déduire que $p^2 = 2k + 1$ ou $p^2 = k + 1$.
- d Conclure .
- On suppose que n + 1 = 4k + 2 où k est un entier naturel.
 - a) Montrer que $k(2k+1) = p^2$
 - b Conclure.

Exercice 4

U 84 min

7 pts

- Pour tout $x \in]0; +\infty[$ on pose : $h(x) = x^2 + 1 + 4 \ln x$ et $f(x) = \frac{\ln x}{(1+x^2)^2}$.
 - a) Dresser le tableau des variations de h et déduire que l'équation h(x) = 0 admet dans $]0; +\infty[$ une seule solution
 - b Montrer que pour tout $x \in]0; +\infty[$, on a : $f'(x) = \frac{x h(\frac{1}{x})}{(1+x^2)^3}$ et dresser le tableau des variations de f.
- Soit la fonction K définie sur]0; $+\infty$ [par $K(x) = \frac{1}{4x^2(1+x^2)}$.

On désigne respectivement par \mathscr{C}_k et \mathscr{C}_f les courbes des fonctions K et f dans un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

- a Vérifier que : $K(x) f(x) = \frac{h(\frac{1}{x})}{4(1+x^2)^2}$ puis étudier la position de \mathscr{C}_k et \mathscr{C}_f .
- b On a tracé dans l'annexe la courbe \mathscr{C}_k et on a placé le point A de \mathscr{C}_k d'abscisse $\frac{1}{\alpha}$ Construire dans le même repère la courbe \mathscr{C}_f .
- Pour tout $x \in]0; +\infty[$ on pose : $F(x) = \int_{1}^{x} f(t)dt$ si x > 0 et $F(0) = \frac{\pi}{4}$.
 - Montrer que F est dérivable sur]0; $+\infty$ [et que $F'(x) = \frac{(1-x^2)\ln(x)}{(1+x^2)^2}$
 - Soit $g(x) = \tan(x)$ pour $x \in \left[0, \frac{\pi}{2}\right]$ a Montrer que g réalise une bijection de $\left[0; \frac{\pi}{2}\right]$ sur $\left[0; +\infty\right[$.
 - b Montrer que g^{-1} est dérivable sur $[0; +\infty[$ et que $(g^{-1})'(x) = \frac{1}{1+x^2}$
- Pour tout $x \in]0; +\infty[$ on pose : $U(x) = \frac{x \ln(x)}{1+x^2}$
 - a Vérifier que $U'(x) = F'(x) + (g^{-1})'(x)$.
 - b En déduire que pour tout $x \in]0$; $+\infty[$, on a : $F(x) = U(x) g^{-1}(x) + \frac{\pi}{4}$.

MATHS

- c Etudier alors la continuité et la dérivabilité de F à droite en 0 puis dresser le tableau de variation de F.
- d On note & l'aire de la partie du plan limitée par \mathscr{C}_f , l'axe des abscisses et les droites d'équations $x=\frac{1}{\sqrt{3}}$ et $x=\sqrt{3}$.

$$\text{Montrer que} \quad \mathcal{A} \geqslant \left| \frac{\sqrt{3} \ln(3)}{8} - \frac{\pi}{12} \right|$$

- $\text{Pour tout } n \in \mathbb{N}^* \text{ on donne la suite } V_n = \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{t \ln(t)}{1+t^2} dt \quad \text{ et } \quad I_n = \int_{\frac{1}{n}}^1 t \ln(t) dt.$
 - a A l'aide d'une intégration par parties montrer que : $I_n = \frac{ln(n)}{2n^2} + \frac{1}{4n^2} \frac{1}{4}$
 - $\text{b} \ \ \text{Montrer que}: \forall n \in \mathbb{N}^* \text{, on a}: \quad \int_{\frac{1}{n+1}}^{\frac{1}{n}} t \, ln(t) dt \leq V_n \leq \frac{1}{2} \int_{\frac{1}{n+1}}^{\frac{1}{n}} t \, ln(t) dt$
 - $\text{c} \ \ \text{En d\'eduire que}: I_{n+1}-I_n \leq V_n \leq \frac{1}{2}\left(I_{n+1}-I_n\right) \text{ puis calculer } \lim_{n \to +\infty} \ V_n.$