JEE-ADVANCE-2014-P1-Model

Time: 09:00 AM to 12:00 Noon IMPORTANT INSTRUCTIONS Max Marks: 180

PHYSICS:

Section	Question Type	+Ve	- Ve	No.of	Total
		Marks	Marks	Qs	marks
Sec – I(Q.N : 1 – 10)	Questions with Multiple Correct Choice	3	0	10	30
Sec - II(Q.N : 11 - 20)	Questions with Integer Answer Type	3	0	10	30
Total			20	60	

CHEMISTRY:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 21 – 30)	Questions with Multiple Correct Choice	3	0	10	30
Sec - II(Q.N : 31 - 40)	Questions with Integer Answer Type	3	0	10	30
Total			20	60	

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 41 – 50)	Questions with Multiple Correct Choice	3	0	10	30
Sec - II(Q.N : 51 - 60)	Questions with Integer Answer Type	3	0	10	30
Total			20	60	

Sec: Sr.JPLCO space for rough work 2

Max Marks: 60

PART-III_MATHEMATICS

Section-1 (One or More options Correct Type)

This section contains 10 multiple choice equations. Each question has four choices (A) (B)(C) and (D) out of which ONE or MORE are correct.

- 41. The locus of a point, which is such that the lengths of tangents from it to two concentric circles having centre at (α, β) and radii λ and μ , are inversely proportional to their radii, is a circle C of area 10π then
 - A) centre of C is at centre of given circles
 - B) Centre of C is at $\sqrt{10}$ from centre of given circles
 - C) $\lambda^2 + \mu^2 = 10$
 - D) $\lambda^2 + \mu^2 = 100$
- 42. Tangents from P(2,3) to a circle C touch at A(1,4) and B(3,4) then
 - A) a+b+c=13 if equation of C is $x^2 + y^2 + ax + by + c = 0$
 - B) The radius of the circle is $\sqrt{2}$
 - C) The circumcentre of $\triangle PAB$ lies inside C
 - D) The area of $\triangle QAB$, where Q is centre of C, is 1 square unit
- 43. A circle C which touches the curve $y^2 + xy x^2 = 4$ at (2,2) and also touches the line x-3y-6=0 then
 - A) The number of possible circles C is infinite
 - B) Equation of C can be $x^2 + y^2 5x y + 4 = 0$
 - C) Equation of C can be $x^2 + y^2 8x 2y + \frac{29}{2} = 0$
 - D) The point (1,0) lies inside C

Sec: Sr.JPLCO space for rough work

Five circles $S_i = 0, i = 1, 2, 3, 4, 5$ have centres respectively at

 $C_1(0,0), C_2(2,2), C_3(6,10), C_4(1,-2), C_5(4,-3)$ and the line y = mx + c is common tangent to all five circles such that C_1, C_2, C_3 lie on one side and C_4, C_5 lie on other side of the tangent. It is given that sum of radii of $S_1 = 0$ and $S_2 = 0$ is equal to radius of $S_4 = 0$ and also sum of radii of $S_2 = 0$, $S_3 = 0$ is equal to the radius of $S_5 = 0$ then

- A) m = c
- B) m+c=0 C) $m^2+c^2=2$
- D) |m| = |c|
- Let the tangents drawn to the circle $x^2 + y^2 = 16$ from the point P(0,h) meet the x-axis 45. at A and B. If the area of $\triangle APB$ is minimum then which may be true
 - A) $h = 4\sqrt{2}$

- B) $AB = 8\sqrt{2}$
- C) in radius of $\triangle APB$ is $4(2-\sqrt{2})$ D) Perimeter of $\triangle APB$ is $8+4\sqrt{2}$
- 46. If ABCD is a square of side 4 units M is the midpoint of CD. Now circle with radius 2 and centre M intersects another circle with radius 4 and centre A at the points P and Q. If A is the origin and B is (4,0) and if P is (α, β) then $\lceil |\alpha| + |\beta| \rceil$ is ($\lceil |\alpha| + |\beta| \rceil$) is $(\lceil |\alpha| + |\beta| \rceil)$ is $(\lceil |\alpha| + |\alpha| +$
 - A) 3
- B) 4
- C) 5
- D) 6
- If a chord of the circle $x^2 + y^2 4x 2y c = 0$ is trisected at the points $\left(\frac{1}{3}, \frac{1}{3}\right)$ and $\left(\frac{8}{3}, \frac{8}{3}\right)$ 47. then
 - A) Length of the chord $7\sqrt{2}$ B) c = 20
 - C) Length of intercept of the circle on x-axis $4\sqrt{6}$
 - D) The circle passes through (-2,-2)

Sec: Sr.JPLCO

space for rough work

17

Sri Chaitanya IIT Academy

02-08-15_Sr.IPLCO_JEE-ADV_(2014_P1)_RPTA-1_Q'Paper

- 18. Consider the family of circles $x^2 + y^2 2x 2\lambda y 8 = 0$ passing through two fixed points A and B. Also S=0 is a circle of this family, the tangents to which at A and B intersect on the line x + 2y + 5 = 0 then
 - A) AB=6
 - B) radius of S=0 is $3\sqrt{2}$
 - C) $\alpha + \beta = 4$ where centre of S=0 is (α, β)
 - D) Common chord of family of circles is y-axis
- 49. The locus of the centre of the circles which touches the circle $x^2 + y^2 2x 4y + (1 2\sqrt{3}) = 0$ internally and the tangents to which from (1,2) is making 60^0 angle with each other is
 - A) a circle

B) curve with perimeter $\frac{4}{3}(1+\sqrt{3})\pi$

C) an ellipse

- D) a curve which bounds an area $\frac{8}{9}(2+\sqrt{3})\pi$
- 50. If the lines x+2y=1 and $\lambda x+y=4$ cut the lines of the pair xy-x-y+1=0 at A,B,C,D which are concyclic then
 - A) $\lambda = 2$

- B) $\lambda = -2$
- C) radius of circle = $\sqrt{5}$
- D) radius of circle 5/2

Sec: Sr.IPLCO

space for rough work

18

Section-2 (Integer Value Correct Type)

This section contains 10 questions. The answer to each question is a **single digit integer**, **ranging** from 0 to 9 (both inclusive).

- Tangents are drawn to the circle $x^2 + y^2 = 1$ at the points where it is met by the circles $x^2 + y^2 (\lambda + 6)x + (8 2\lambda)y 3 = 0, \lambda$ being parameter. If the locus of point of intersection of these tangents is y = mx + c then $\frac{c}{m}$ equals
- 52. If (α, β) is a point on the circle whose centre is on x-axis and which touches the line x+y=1 at (3,-2) then greatest value of $\alpha+\beta$ equals
- 53. Two circles can be drawn to pass through (1,0),(4,0) and touch y-axis. If they intersect at an angle θ , then the value of $25\cos\theta 2$ equals
- 54. Consider a square ABCD of side length 2. Let P be the set of all segments of length 2 with end points on adjacent sides of square ABCD. The mid points of the segments in P enclose a region with area Δ then the value of $[\![\Delta \pi]\!]$ equals where [] is G.I.F
- 55. Two parallel chords of a circle of radius 2 are distance $\sqrt{3}+1$ apart. If the chords subtend at the centre, angles of $\frac{\pi}{k}$ and $\frac{2\pi}{k}$, where k > 0, then the value of [k] equals ([] is G.I.F)
- 56. Let AB be a chord of the circle $x^2 + y^2 4x 4y + 4 = 0$ which subtend an angle 90^0 at the point (2,3), and if locus of the mid point of AB is a circle having centre at (α, β) then $\alpha\beta$ equals

Sec: Sr.JPLCO space for rough work

Sri Chaitanya IIT Academy

02-08-15_Sr.IPLCO_JEE-ADV_(2014_P1)_RPTA-1_Q'Paper

- 57. The number of integral values of x for which the chord of the circle $x^2 + y^2 = 125$ passing through the point P(x,8) gets bisected at the point P(x,8) and has integral slope is
- 58. If the equation of the locus of the middle point of a chord of the circle $x^2 + y^2 = 2(x + y)$ such that the pair of lines joining the origin to the point of intersection of the chord and the circle are equally inclined to the x-axis is ax + by = 1 then a + b equals
- 59. Two chords of lengths $a^2 1$ and 3(a+1) of a circle with centre at (2,1), bisect each other and if length of the chord of the circle subtending 90^0 at its centre is k then the value of $\frac{\sqrt{2}}{3}k$ equals
- 60. If the in circle of $\triangle ABC$ touches the sides BC, CA, AB respectively are D(3,4), E(4,3), F(5,0) and if the slope of internal bisector of A is

$$\frac{m}{n}$$
, $m, n \in \mathbb{N}$, $G.C.D(m, n) = 1$ then $m + n =$