AGR2i Administration et Gestion des Réseaux

Pierre BETTENS

pbettens(à)heb.be

ESI - École Supérieure d'Informatique

31/01/2013

Organisation

- Cours laboratoires (37.5h)
 - Exposé oral
 - Manipulation
- Évaluation
 - Examen oral au terme du cours
 - Évaluation du savoir par le biais d'une question théorique ouverte et de petites questions de connaissance générale *nix
 - Évaluation du savoir-faire par le biais d'une manipulation

Organisation - Supports

- Slides
- Supports divers
 - Internet
 - http://elearning.esi.heb.be
 - http://esi.namok.be
 - IM
 - IRC (irc.freenode.net / #esi)
 - Jabber (esi@chat.jabberfr.org)

Organisation - Supports

Références

- kirch Administration réseaux sous Linux Olaf KIRSH et Terry DAWSON ed. O'REILLY
- hunt TCP/IP Administration de réseau Craig Hunt ed. O'REILLY
- Idap LDAP,installation et mise en oeuvre Gerard CARTER ed. O'REILLY
- samba Samba, installation et mise en oeuvre Robert Eckstein, Davis Collier-Brawn, Peter Kelly ed. O'REILLY
- welsh Le système Linux

 Welsh, Dalheimer et Kaufmann

 ed. O'REILLY
- Remarque Ces références sont maintenant indisponibles en français, préférez les versions anglaises

Au menu

- Organisation
- Organisation Supports
- Organisation du laboratoire
- Organisation du travail
- Introduction à Linux (deuxième partie)
- Rappels réseaux

Au menu

- DNS Domain Name Server (avec manipulations)
- NIS Network Information System
- NFS Network File System
- SAMBA (avec manipulations)
- PAM Plugeable Authentification Modules (avec manipulations)
- LDAP Lightweight Directory Access Protocol (avec manipulations)

Au menu

- ACL Access Control List
- Serveur d'impression
 - CUPS Common Unix Printing System
- Serveur web
 - Apache (avec manipulations)

Rappel du cours SYS1
Gestion des utilisateurs
Scripts de démarrage
Shutdown
Sauvegarde de fichiers
Exécution de tâches périodiques cron
Manipulations

- Rappel du cours SYS1
 - Système de fichiers
 - Arborescance

- Rappel du cours SYS1 (suite)
 - Droits d'accès
 - drwxrwxrwx
 - Notions de processus
 - ps, top
 - Signaux, kill
 - Shell, bash

- Gestion des utilisateurs
 - User Group Other (u-g-o)
 - Group
 - Le fichier /etc/groups
 - Ajout d'un utilisateur à un groupe adduser <user> <group>
 - Liste des groupes groups

- Gestion des utilisateurs
 - Ajout d'un utilisateur

```
adduser ...
```

- Modification de /etc/passwd
- Modification de /etc/group
- Copie des fichiers "skelettes"
- Positionnement du mask (umask)
- Création (éventuelle) d'un répertoire home
- adduser versus useradd

- Gestion des utilisateurs
 - Le fichier /etc/passwd
 - Le fichier /etc/shadow
 - Notions plus pointues (durée de validité, ...)
 - Commande chage
 - Désactivation (temporaire) d'un compte
 - Chgt du passwd
 - Chgt du shell (/bin/false)
 - Suppression d'un utilisateur, userdel
 - userdel <login> --remove-all-file --remove-home
 - deluser *versus* userdel

- Scripts de démarrage
 - Démarrage du système (première partie en très bref)
 - BIOS
 - Chargeur de démarrage
 - lilo
 - grub
 - grub 2
 - Noyau
 - initrd.img éventuel
 - vmlinuz ou autre

- Scripts de démarrage
 - Système SysV
 - Exécution de /etc/inittab
 - Exécution des scripts /etc/rc?.d
 Chaque script est un lien vers le script se trouvant dans /etc/init.d
 - S pour start
 - K pour kill
 - Chaque répertoire comprend un ensemble de liens

- Shutdown
 - L'arrêt du système est une prérogative du root ... sauf mention du contraire !
 - Arrêt du système
 - Prévenir les utilisateurs!
 - Arrêt de chacun des scripts (rc*.d)
 - Arrêt du processus init (id=1)

Remarque Avec les versions *desktop* de linux, cette contrainte tend à disparaitre

Shutdown

- Diverses manières de faire
 - Commande shutdown
 Exemple, shutdown -h -F +10 System will shutdown in 10 minutes
 - Commande halt
 - Commande reboot
 - Commande init 'x'
 - Ctrl-Alt-Del ... pq et qd ça marche?
 - La série à éviter ...
 - bouton ON/OFF
 - Tirer la fiche ou couper le cable
 - Bouton reset
- ... ou cliquer où il faut dans l'environnement graphique

L'importance d'un backup n'apparait jamais aussi cruciale que le jour de la perte des données.

- Sauvegarde des fichiers
 - L'importance d'un backup n'apparait jamais aussi cruciale que le jour de la perte des données.
 - Définition d'une politique de sauvegarde
 - Que sauvegarder?
 - Sur quel(s) support(s)?
 - Moyens
 - Remarques

L'importance d'un backup n'apparait jamais aussi cruciale que le jour de la perte des données.

- Sauvegarde des fichiers
 - L'importance d'un backup n'apparait jamais aussi cruciale que le jour de la perte des données.
 - Définition d'une politique de sauvegarde
 - Que sauvegarder?
 - Sur quel(s) support(s)?
 - Moyens
 - Remarques

- Sauvegarde des fichiers
 - Définition d'une politique de sauvegarde
 - Que sauvegarder?
 - À quelle fréquence ?
 - Sur quel support?
 - Quel peut-être la période d'indisponibilité?
 - Quel coût engage-t-on?
 - De quel type d'erreur se protège-t-on?
 - Cause naturelle
 - Défaillance matérielle
 - Défaillance humaine

- Sauvegarde des fichiers Que sauvegarder?
 - Fichiers personnels
 - Par exemple
 - Sauvegarde quotidienne. (sur disque dur rapide)
 - Sauvegarde hebdomadaire (sur bande dans le local/batiment accessible)
 - Sauvegarde mensuelle (sur bande dans un autre local/batiment gros désastre)
 - Fichiers systèmes
 - Autres ...

- Sauvegarde des fichiers Sur quel support ?
 - Disquette (1.44Mib), ZIP, CD (700Mib) ... obsolètes
 - DVD
 - Capacité 8-9 Gib
 - Lecteurs USB
 - Bandes
 - Capacité jusqu'à 40 Gib
 - ... voire 400Gib
 - Cloud

- Sauvegarde des fichiers Moyens
 - Commande rsync
 - Commandes dump, restore
 - Sauvegarde incrémentale
 - Sur bandes
 - Commande tar

- Sauvegarde des fichiers Remarques
 - Les fichiers sur supports externes sont vulnérables
 - Protéger les supports externes
 - Vol
 - Destruction
 - ...
 - Préparer les scénarios de restauration (la restauration se fait toujours dans l'urgence)

- Exécution de tâches périodiques
 - Daemon associé cron
 - Format d'un fichier cron

```
#commentaire
#minute heure jour mois jour_semaine commande
0,15,30,45 12-13 * * 1-5 /home/login/allermanger
```

- Fichiers de configuration
 - /etc/crontab (lance les fichiers cron)
 - /etc/cron.allow
 - /etc/cron.deny

- Exécution de tâches périodiques
 - Commande crontab
 - -e Édite le fichier crontab de l'utilisateur
 - Utilise l'éditeur /usr/bin/editor
 - Le fichier se trouve là (ss debian) et ne peut être édité.
 /var/spool/cron/crontabs/'login'
 - -1 liste, -r remove

Rappels réseaux

En théorie Routage

- En théorie
 - Protocole TCP/IP

Application	Telnet, FTP, e-mail, etc.
Transport	TCP, UDP
Network	IP, ICMP, IGMP
Link	device driver and interface card

Protocole ARP et RARP

48-bit Ethernet address

- En théorie (II)
 - hostname, nom d'hote
 - netmask, masque de réseau
 - 192.168.208.0/18
 - 192.168.208.0, 255.255.192.0
 - gateway, passerelle
 - broadcast
 - Adresse dont tous les bits de la partie hôte sont à 1
 - Routage
 - Différence entre bridge (link layer), routeur (network layer), ...
 - routage statique
 - routage dynamique
 - Les commandes
 - ifconfig ou ifup/ifdown
 - netstat (-in, -alpe, ...)
 - route
 - ping
 - dig

- Configuration de l'interface.
 - Trouver l'interface
 - Appelation usuelle
 - et.h i sous Linux
 - dnet i sous Solaris
 - Recherche
 - dmesg | grep eth pour trouver les interfaces ethernet
 - netstat -in
 - Commande ifconfig
 - Commande netstat
 - Commande dig

- Configuration de l'interface (ifconfig, netstat)
 - Infos
 - Flag
 - R running
 - B broadcast
 - U up
 - L -loopback
 - MTU Maximum Transfert Unit (taille des paquets)
 - RX-info (paquets reçus)
 - TX info (paquets envoyés)
 - info: OK reçu, ERR erreur, DRP drop, OVR overruns
 - netstat -in
 - ifconfig eth0

- Configuration de l'interface (ifconfig, netstat)
 - Configuration de l'interface
 - ifconfig eth0 192.168.208.i netmask 255.255.192.0
 - voir /etc/network/interfaces
 - Activer / désactiver
 - ifconfig eth0 up
 - ifconfig eth0 down
 - Mode promiscuous (indiscret)
 - Par défaut l'interface ethernet ne passe aux protocoles des couches supérieures que les trames adressées au système local ... sauf en mode indiscret.

- Configuration de l'interface (ifup/ifdown)
 - Configuration dans le fichier /etc/network/interfaces

- Activer/Désactiver
 - ifup eth0[=<config>]
 - ifdown eth0

Routage

- Routage minimal
 - Réseau isolé
 - Pas de sous-réseau
 - Une route par interface
- Routage statique
 - Nombre limité de routeurs
 - Pas / peu d'évolution
 - Table de routage construite et maintenue manuellement via route
- Routage dynamique
 - Plusieurs routes mènent à la même destination
 - Les protocoles de routage mettent à jour les table en fct de l'évolution du réseau
 - Recherche d'une "meilleure" route

- Routage minimal
 - Tests du réseau via ping
 - Ajout d'une route :

route add default gw monGateway

- Routage statique
 - Message ICMP Redirect (Internet Control Message Protocol)
 - Messages envoyés par le protocole IP
 - Principe de construction de la table de routage :
 host envoie son paquet à R1 (routeur 1) qui consulte sa table de routage et
 l'envoie à R2. R1 envoie également un paquet ICMP Redirect à host
 l'informant que sa destination de départ (vers R1) était mauvaise. host met
 sa table à jour, il enverra désormais ce type de paquet vers R2
 - Dans les scripts de démarrage
 - Exécution de route
 - Supression des "protocoles de routage"

- Routage dynamique
 - Protocoles de routage intérieurs (destinés à des réseaux autonomes)
 - RIP Routing Information Protocol
 - Hello
 Tres peu utilisé
 - IS-IS Intermediate to Intermediate System
 Plus court chemin d'abord
 - OSPF Open Shortest Path First Adapté aux gros réseaux
 - Protocoles de routage extérieurs (permet l'échange d'informations entre réseaux autonomes)
 - EGP
 - BGP
 - via gated

- Routage dynamique RIP
 - Principe

RIP essaie de minimiser le coût en terme de métrique (nombre de *hops*) vers la destination.

Un hop représente le passage par une passerelle (gateway)

- Au démarrage, RIP signale sa présence
- Les gateways qui comprennent RIP envoient leur table de routage
- Sur cette base, mise à jour de ses routes (add or update)
- Suppression de route s'il ne reçoit pas d'update ou lorsque la métrique est supérieure à 15
- C'est un algorithme à vecteur de distance (distance-vector algorithm)
- Utilisé par Unix via le daemon routed
- Inconvénients
 - Convergence lente (problème de comptage à l'infini (counting to infinity))
 - Étendue faible (nombre de hops limité à 15)
 - Utilisation des classes (A,B ou C)

Ce problème est résolu par RIP-2

Routage dynamique - RIP - counting to infinity

Source O'Reilly TCP-IP Network Administration

- almond joint le réseau 3 en 2 hops
- pecan joint le réseau 3 en 1 hop
- Si filbert tombe ... almond annonce toujours 2, pecan attend l'update de filbert et annonce toujours 1 hop en attendant (180')
- Au time out pecan retire sa route, entend almond qui dit 2 et donc dit 3 ... ce qui fait changer la route de almond qui dit 4 ... 5,6, ... 16

- Routage dynamique RIP counting to infinity
 - Split horizon
 - Permet de résoudre le problème de comptage à l'infini car un routeur ne pourra plus annoncer de route sur le réseau d'où il obtient l'information
 - almond ne peut annoncer sa route vers filbert sur le réseau 12 ... donc à pecan
 - Poison reverse
 - Le principe est celui de split horizon auquel on ajoute la contrainte d'annoncer un coût de 16 sur le réseau d'où on obtient l'information
 - almond devra annoncer un coût de 16 sur le réseau 12
 - Mise à jour déclenchées (triggered updates)
 - Lorsqu'un serveur crache, le routeur n'attend pas la mise à jour normale mais envoie directement l'information à ses voisins
 - Sans triggered updates, si almond crache, salted et roasted entrent dans un comptage à l'infini
 - Avec les triggered updates, roasted et salted s'informent directement d'un coût de 16 vers les réseaux 12, 1 et 3

- Routage dynamique Hello / IS-IS
 - Principe Hello
 Hello essaie de minimiser le temps nécessaire pour arriver à destination (sur base de la valeur du timestamp contenu dans le paquet IP)
 - Principe IS-IS
 Intermediate system to intermediate system provient du protocole OSI. Il est un protocole à "plus court chemin d'abord".

- Routage dynamique OSPF
 - Principe
 - OSPF (*Open shortest Path First*) est un protocole à liaison d'état (*link state*).
 - Là où RIP partage des infos sur le réseau vers ses voisins, OSPF partage des infos sur ses voisins au réseau.
 - (Rappel, ce sont des protocoles intérieurs)
 - OSPF peut découper le réseau en zone (area) reliées par un backbone.
 Certaines zones n'ont qu'un seul chemin vers le backbone ce sont les stub area
 - Chaque routeur construit un graphe "de plus court chemin d'abord" (au sens de Dijkstra) renseignant ses voisins.
 - Un coût est associé à chaque noeud du graphe.
 - Ce coût est estimé par l'envoi de paquet "OSPF Hello paquets" entre routeurs
 - L'écoute des ses paquets Hello renseigne le routeur sur l'état (state) de ses voisins et permet la mise à jour du graphe

Introduction
Résolveur
Serveur à cache seule
Serveur maître
Serveur esclave

- Lien entre les adresses IP et les noms
 - Table d'hôtes /etc/hosts
 - DNS
- Avantages du DNS par rapport à la table d'hôtes
 - Le DNS permet de gérer un plus grand nombre d'hôtes
 - Le DNS assure la dissémination de l'info
- Fonctionnement
 - Si le DNS reçoit une requête sur un hôte pour lequel il ne possède aucune donnée
 - Il fait suivre la requête à un serveur ayant autorité
 - Lorsque le serveur lui répond, il maintient l'information dans un cache.
 - La prochaine fois, il y répondra seul.

- Hiérarchie des domaines
 - Domaine racine
 - Domaine de premier niveau
 - Géographique be, fr, us, ...
 - Administratif
 com, edu, gov, mil, net, int, org, (depuis le début)
 aero, biz, coop, museum, pro, info, name (depuis 2000)
- Serveurs racines
 - a.root-servers.net
 - ...
- m.root-servers.net
- dig @a.root-servers.net.

- Implémenté grace à BIND Berkeley Internet Name Domain
- Client : le résolveur
- Serveur : daemon named
- Quatre niveaux de services
 - Résolveur uniquement
 - Serveur à cache seul
 - Serveur maître
 - Serveur esclave

DNS - Domain Name Server - Configuration du résolveur

- /etc/resolv.conf
- nameserver 'adresse'
 - Adresse représente l'adresse d'un serveur de noms
 - Jusqu'à 3 serveurs de nom autorisés
 - Les serveurs de noms sont intérrogés dans l'ordre
 - Si aucune entrée nameserver .. alors interrogation locale.
- domain 'nom'
 - Nom de domaine par défaut
 - Les noms SANS points sont concaténés au nom de domaine par défaut
 - Si la variable d'environement LOCALDOMAIN est définie elle prend le dessus
- search 'domaine'
 - Idem que domain mais avec plusieurs domaines

DNS - Domain Name Server - Configuration du résolveur

- options 'option ...'
 - debug (si compilé avec l'option)
 - ndots:n
 défaut 1, nombre de point (+1) rencontré dans le nom pour lequel le nom de domaine est concaténé
- timeout:n
 - Délai initial
 - Défaut 5
- attempts:n
 - Nombre de fois que le résolveur retente une requête
 - Défaut 2
- rotate
 - Répartit la charge entre les différents serveurs de noms

DNS - Domain Name Server - named

- Fichier de configuration named.conf
- Fichier d'accès à la racine db.root (par exemple)
- Fichier d'hôte local db.local
- Fichier de zone db. <mazone.org > (par exemple)
- Fichier de zone inverse db.<192.168.208> (par exemple)

DNS - Domain Name Server - named.conf

- Syntaxe proche de C
 - Commentaires /* */ ou // ou encore #
 - Déclaration se termine par ;
 - String entre " "
 - Groupe entre accolades { }
- Commande de configuration
 - acl Définit une liste de contrôle d'accès d'adresses IP
 - include Inclu un autre fichier
 - key Définit les clés de sécurité pour l'authentification
 - logging Définit ce qui doit être loggé
 - options Définit les options de configuration globale et des valeurs par défaut
 - server Définit les caractéristiques d'un serveur distant
 - zone Définit une zone

Une zone est une partie de l'espace de nom de domaine pour laquelle le serveur de noms a autorité

DNS - Domain Name Server - Fichier de zone

- Format de fichier de zone
 - [nom] [ttlx] IN type donnée
- nom
 - Nom de l'objet du domaine
 - Le nom est relatif au domaine courant sauf si il se termine par un '.' S'il est blanc, il se rapporte au dernier objet du domaine nommé
- ttl
 - Time-to-live
 - Généralement vide, la valeur de la directive \$TTL est utilisée
- IN
 - enregistrement de ressource internet
- type
 - Identifie la nature de l'enregistrement
 - SOA, NS, A, PTR, MX, CNAME, TXT
- donnée
 - Information spécifique au type d'enregistrement.
 - Exemple : pour un champ de type A, la donnée est l'adresse IP

DNS - Domain Name Server - Fichier de zone

- Enregistrement SOA
 - Numéro de série en 10 chiffres aaaammjjxx
 - Temps de raffraichissement
 - Temps en secondes entre les vérifications du numéro de série par les secondaires
 - Temps de réémission
 - Temps en secondes entre les vérifications du numéro de série par les secondaires si la première vérification a échoué
 - Temps d'expiration
 - Si un secondaire n'arrive pas à contacter le serveur primaire de la zone, il continue à répondre aux requêtes pendant la durée donnée
 - TTL

DNS - Domain Name Server - Fichier de zone

Directives

- \$TTL
 - Valeur par défaut du TTL pour les enregistrement.
 - Soit un nombre de secondes (valeur chiffrée)
 - Soit une combinaison de chiffres et de lettres w, d, h, m, s
- \$ORIGIN
 - Définit le nom de domaine par défaut
 - Écrase la valeur du domaine définie par la déclaration de zone
- \$INCLUDE
 - Inclu un fichier externe (à l'endroit de la directive)
- \$GENERATE
 - Génère une série d'enregistrements
 - Ces enregistrement ne diffèrent que par une valeur numérique
 - \$GENERATE 1-4 \$ CNAME \$.1to4 Génère
 - 1 CNAME 1.1to4 2 CNAME 2.1to4 3 CNAME 3.1to4 4 CNAME 4.1to4

cat /etc/bind/named.conf

```
include "/etc/bind/named.conf.options";
// prime the server with knowledge of the root servers
zone "."
    type hint:
    file "/etc/bind/db.root":
};
zone "localhost" {
    type master;
    file "/etc/bind/db.local";
};
zone "127.in-addr.arpa" {
    type master;
    file "/etc/bind/db.127";
};
(\ldots)
include "/etc/bind/named.conf.local";
```

- cat /etc/bind/db.root
- Récupéré tel quel, il contient les adresses des serveurs racines

```
// extrait
. 3600000 IN NS A.root-servers.net
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
A.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:BA3E::2:30
```

- cat /etc/bind/db.local
- Permet de convertir l'adresse de rebouclage en localhost
- Excepté le nom de machine, fichier identique sur ttes les machines

```
BIND data file for local loopback interface
$TTI
       604800
       SOA localhost, root, localhost, (
    ΤN
                       : Serial
            604800
                      : Refresh
             86400
                       ; Retry
           2419200 ; Expire
            604800 ) ; Negative Cache TTL
    ΤN
          localhost.
    ΤN
           127.0.0.1
    ΤN
      AAAA ::1
```

- cat /etc/bind/db.127
- Résolution inverse pour l'adresse de rebouclage

DNS - Domain Name Server - Serveur maître

- cat /etc/bind/named.conf.local
- Ajout au fichier named.conf.local (inclu dans named.conf) de la (des)
 zone(s) à traiter

```
zone "esi.be" {
  type master;
  file "/etc/bind/db.esi.be";
};

zone "208.168.192.in-addr.arpa" {
  type master;
  file "/etc/bind/db.192.168.208";
};
```

DNS - Domain Name Server - Serveur maître

- cat /etc/bind/**db.esi.be**
- Principalement des enregistrements A et CNAME

```
86400
STTI.
    TN SOA
 Serveurs de noms et de mail
     ΤN
        NS
             gouyasse.esi.be.
        MX 10 monisp.be.
; Definition de localhost
localhost IN A 127.0.0.1
: Hotes de la zone
                       192.168.208.1
gouyasse IN
ns1
           ΙN
              CNAME gouvasse.esi.be
quintine IN A
                          192.168.208.2
```

DNS - Domain Name Server - Serveur maître

- cat /etc/bind/**db.192.168.208**
- Principalement des enregistrements PTR

```
$TTL 86400

© IN SOA gouyasse.esi.be ...

IN NS gouyasse.esi.be

1 IN PTR gouyasse.esi.be

2 IN PTR quintine.esi.be
```

DNS - Domain Name Server - Serveur esclave

La différence avec un serveur maître réside dans les fichiers de zone.
 Ceux-ci sont écrits (par le daemon) sur base d'une requête au serveur maître et ne contiennent pas à priori les informations sur la zone.

DNS - Domain Name Server - Serveur esclave

cat /etc/bind/named.conf.local

```
zone "esi.be" {
  type slave;
  file "/etc/bind/db.esi.be";
  masters { 'adresse ip du maitre'; };
};

zone "208.168.192.in-addr.arpa" {
  type slave;
  file "db.192.168.208";
  masters { 'adresse ip du maitre'; };
};
```

- Contrôle du processus
 - Utilisation du script bind9
 - /etc/init.d/bind9 start|stop|reload
 - Commande rndc de gestion du processus
 - status
 - stop
 - start /restart
 - reload
 - stats
 - trace / notrace
 - querylog

DNS - Domain Name Server - Contrôle via rndc

• cat /etc/bind/rndc.conf

```
key rndc_key {
    algorithm "hmac-md5";
    secret "...";
};

options {
    default-server localhost;
    default-key rndc_key;
};
```

- Permet le contrôle du processus named à distance et sécurisé
- Default serveur représente la machine à contrôler

DNS - Domain Name Server - Contrôle via rndc

/etc/named.conf ajout

```
controls {
  inet 127.0.0.1 allow {localhost; } keys {rndc_key; };
};

key "rndc_key" {
  algorithm hmac-md5;
  secret " ... idem que l'autre ...";
};
```

Named autorise certaines adresses IP à le contrôler

DNS - Domain Name Server - nsloockup / dig

- Test de la configuration
 - dig <nom de domaine>
 - nsloockup est deprecated

DNS - Domain Name Server - Utilisation de dig

- dig
 - Retourne les serveurs maitres
- SOA
 - Retourne le champs SOA
 - +multiline permet de le rendre "lisible" sur plusieurs lignes
- +trace
 - Permet d'avoir une simulation de l'ordre des requêtes
 - Semble interroger directement le serveur maître (sans le trace fait une requête locale si on gère la zone)

NFS - Network File System

Introduction

Daemon

Droits d'accès

Commandes associées

NFS - Network File System

- NFS Network File System
- Permet le partage de fichiers en réseau
- Idéalement transparent pour l'utilisateur
- Avantages
 - Réduit l'espace disque total puisque partage
 - Simplifie la gestion centralisée
 - Utilise le set de commandes habituel
- Approche client / serveur
 - Le serveur
 - Système qui rend les répertoires disponibles
 - export
 - Le client
 - Système qui attache des répertoires distants à son filesystem
 - mount
- Initialement développé par Sun MicroSystem

NFS - Ses daemons

- nfsd [nservers]
 - prend en charge les requêtes des clients
 - partie serveur
 - nservers spécifie le nombre de daemon qui tournent
- mountd
 - traite les demandes de montage des clients
 - lancés par les serveurs
- nfslogd
 - responsable du journal de NFS
- rquotad
 - relatif aux quotas des utilisateurs
 - · tourne sur les clients et les serveurs
- lockd
 - gère les verrous sur les fichiers
 - tourne sur les clients et les serveurs
- statd
 - tourne sur les clients et les serveurs
 - surveillance de l'état du réseau (pour la gestion des locks)

NFS - Partage de fichiers

- Pourquoi?
 - fournir de l'espace à des clients sans disque
 - éviter la duplication des données
 - offrir des données et programmes centralisés
 - partager des données
- Fichier /etc/exports
 - Exemple

```
/usr/man gouyasse(rw) quintine(ro)
/usr/local (ro)
```

- Format: répertoire [machine (options)] ...
- Wildcard et/ou adresses IP autorisés
- Particularités de Solaris
 - commande share
 - fichier dfstab

NFS - Droits d'accès

- Fichier autorise l'accès de machines
- Les droits d'accès Unix sont de rigueur
- Droits d'accès basés sur les uid et gid ... c'est donc mieux (ou pas) s'ils correspondent d'une machine à l'autre.
- L'utilisateur root
 - directive root_squash
 - uid root -> uid nobody
 - directives squash_uids, squash_gids et all_squash
 - directive map_daemon, permet de faire correspondre un UID à un autre (voir rpc.ugidd)

NFS - Commande exportfs

- Commande exportfs
 - -a lors de l'init
 - r pour une relecture
- Construit le fichier /var/lib/nfs/xtab
 - · Contient les infos sur les fichiers exportés
 - Lu pas mountd
- Possibilité d'export "temporaire"
 - exportfs hercule:/usr/local -o rw pour l'ajout
 - exportfs -u hercule:/usr/local-pour la suppression

NFS - Commandes showmount / mount

- Commande showmount
 - Permet de voir les répertoires exportés pas une machine
 - showmount -e gouyasse

```
export list for gouyasse
/usr/man gouyasse,quintine
/local (everyone)
```

- Commande mount.
 - mount machine:répertoire-distant répertoire-local
 - machine est un serveur NFS
 - répertoire-distant un répertoire exporté
 - répertoire-local doit exister
 - Ajout éventuel du type de filesystem
 - -t nfs
- Commande umount

NFS - Fichier /etc/fstab

- Fichier /etc/fstab
- Les répertoires exportés peuvent apparaître dans le fichier

```
gouyasse:/usr/man /usr/man nfs rw 0 0
```

• Propose des options supplémentaires aux options habituelles du fichier

NIS - Network Information Service *yellow pages*

NIS - Network Information Service yellow pages

Introduction

Daemon

Commandes associées

NIS - Network Information Service *yellow pages*

- Base de données administrative (comparable au DNS mais différent)
 - Similitudes
 - Contrôle centralisé
 - Propagation automatique des fichiers de configuration importants
 - Différences
 - Gère des petits réseaux privés (pas Internet)
 - NIS partage des infos plus variées (dans ses tables NIS)
 - La table d'hôte de NIS contient moins d'informations que celle de DNS

Définition

NIS convertit plusieurs fichiers standards en bases de données qui peuvent être interrogées via le réseau, ces bds sont appelées *tables NIS*

NIS - Network Information Service *yellow pages*

- Quels fichiers?
 - /etc/passwd
 - /etc/group
 - /etc/ethers (utilisé par le protocole RARP)
 - /etc/hosts
 - /etc/networks
 - /etc/protocols
 - /etc/services
 - /etc/aliases
- Ces fichiers sont transformés en table /etc/networks -> networks.byname networks.byaddr
- Les tables NIS sont stockées dans /var/yp/<nom du domaine>

NIS - les daemons

- ypserv
 Daemon responsable de la partie serveur de NIS
- ypbind
 Daemon permettant la liaison au serveur et à ses tables NIS

NIS - les commandes (serveur)

- ypcat fournit la liste des tables NIS
- domainname <nom du domaine> vérifie et met en place le nom du domaine NIS (défini pour le boot dans /etc/sysconfig/network, NISDOMAIN=..)
- cd /var/yp; make construction des tables NIS
- ypserv lancement du serveur NIS
- ypbind processus de liaison
- ypwich renseigne le serveur NIS

NIS - les commandes (client)

- domainname <nom du domaine> idem serveur
- ypbind

Samba

Introduction
API Netbios, protocole NBT
Daemons
Configuration
Browsing list, master browser
Serveur WINS
Authentification
Utilitaires

Samba

- Permet la communication entre machines hétérogènes
- Mets en oeuvre le protocole SMB (natif sous MS Windows)
- Administration centralisée sur le serveur
- Site associé : http://samba.org
- Installation
 - samba
 - samba-common
 - smbfs
 - smbclient

Samba - Netbios

- Définition: NetBIOS représente le mode de nommage Microsoft pour partager des resources entre machines dans un réseau local
- NetBIOS est une API au niveau applications (couche 4) sur les ports 137, 138 et 139
 - couche 3 : transport, NetBT, implémentation de NetBIOS sur IP
 - Sans serveur WINS (voir plus loin) NetBT fait la résolution de noms par broadcast
 - Implique de travailler sur le même segment IP (par défaut), pas de routage
 - Les machines sur un même segment finiront toujours par se "voir"
 - couche 2 : internet IP
 - couche 1 : accès réseau

Remarques :

- Jadis, NetBIOS était directement implémenté via NetBEUI¹ (couche 2) sans utiliser TCP/IP
- On ne distingue pas ici les notions de domaine et de groupe de travail.

^{1.} NetBUI est un protocole IBM datant de 1985

Samba - Netbios

- Un nom NetBIOS est composé de 15 + 1 caractères
 - Les premiers représentent le nom NetBIOS
 - Nom de la machine ou
 - Nom du domaine/workgroup
 - Le 16^e caractérise le rôle
 - 00 service station de travail
 - 1B maître explorateur du domaine
 - 1D serveur WINS
 - ...
 - \$ nmblookup -A <ip> ou C: nbtstat -A <ip>
- Chaque machine déclare (par broadcast) deux noms²
 - le workgroup ou le domaine
 - nom de machine

Samba - daemon

- smbd
 - daemon responsable du partage des ressources
 - File sharing
 - Printing services
 - Administre l'authentification locale
- nmbd
 - daemon NetBios
 - Comprend et répond aux requêtes NetBios sur TCP/IP produites par SMB
 - Permet la participation au "Network Neighborhood"
 - Prend en charge les requêtes de résolution de nom et d'enregistrement des noms
- windbindd
 - Démarré lorsque Samba est membre d'un domaine Windows NT ou Active Directory
- Activation
 - lancement des daemons, nmbd, smbd
 - utilisation du script /etc/init.d/samba (start/stop/..)
 - via inetd

Samba - smb.conf

- Configuration centralisée dans le fichier /etc/samba/smb.conf (vérifier la situation)
 - Localisation dépendante du binaire
 - # smbd -b | grep smb.conf
- Fichier divisé en sections
 - Débute par [nom du partage]
 - Une section se termine par le début de la suivante (ou fin de fichier)
 - Chaque section correspond à un partage, (excepté pour la section global)
 - Sections particulières
 - global Configuration générale de Samba
 - homes Correspond au répertoire HOME de l'utilisateur
 - **printers** Définit le partage des imprimantes.

Samba - smb.conf

Format de fichier

```
parametre = valeur
```

- Les commentaires commencent pas # ou;
- Exemple

```
# A sample share for sharing your CD-ROM with others.
[cdrom]
   comment = Samba server's CD-ROM
; valid users = user1, user2
   writable = no
   locking = no
   path = /cdrom
   public = yes
```

Samba - variables

- Samba comprend une série de variables ...
- %I adresse IP du client
- %m nom netbios du client
- Ces variables permettent l'écriture de scripts personnalisés
 - On ajoutera, par exemple,

```
[monJoliPartage]
...
include /etc/samba/smb.conf.%m
...
```

Si le fichier existe il est inclu ... sinon non.

Samba - voisinage réseau browsing list

- Liste de browsing (d'exploration)
 - Permet de visualiser les partages Samba et Microsoft Windows dans le voisinage réseau
 - Le voisinage réseau est l'ensemble des machines faisant tourner NetBIOS dans un segment
 - Pour visualiser les partages sur une machine hors segment (derrrière un routeur), l'interroger via son IP sur le port 139
 - Permet de visualiser plusieurs workgroups ou domaines
 - Paramètre browseable = yes/no (\$ en fin de nom sous MS Windows)
- Chaque machine informe le maître explorateur (master browser) de sa présence toutes les 12'

Samba - explorateur principal master browser

- Détient la liste de browsing qu'il met à jour grâce aux annonces des autres (via __MSBROWSE___ [01])
- Est élu
 - Le choix se fait en fonction de l'OS, le rôle, la version, ...
 - Paramètre os level = number
 - Une élection est déclenchée
 - dès que l'on ne trouve pas de master browser
 - un client détecte la disparition d'un master browser
 - un serveur samba démarre et "demande" l'élection
- Entraine une certain inertie
 - Après chaque élection, broadcast du nouveau master browser et ack des autres
 - Avant de considérer une machine comme éteinte, master browser attend 3 mise à jour, soit +- 36 minutes
- Pour limiter l'inertie
 - Rendre un serveur inéligible (master browser = no)
 - Utiliser un serveur WINS

Samba - serveur WINS

- Serveur WINS
 - Système de centralisation des listes de noms des machines
 - Permet la correspondance adresse IP / noms NetBIOS
- Permet de limiter les broadcast et fonctionne "derrière les routeurs"
 - Les clients se signalent au serveur WINS (via son IP)
 - Les clients font leur requête de demande de noms/IP au serveur WINS (via son IP)
- Si un client ne s'identifie pas auprès du serveur WINS il ne pourra pas interroger le serveur WINS mais
 - S'il est sur le même segment, le serveur WINS recevra (un jour) sont broadcast de signalement et l'insrira pour ses clients
 - S'il n'est pas sur le même segment, il est invisible

Samba - authentification

- Types d'authentification
 - share authentification 'à la ressource'
 - user authentification lors de la connexion
 - server comme pour user mais le serveur s'adresse à un autre serveur pour l'authentification
 - domain contrôle via un 'contrôleur de domain' (responsable de l'authentification)

Samba - authentification

- Manières d'authentifier
 - Peu d'utilisateurs, peu de changements (création/destruction de comptes) smbpasswd file
 - passdb backend = smbpasswd, guest
 - fichier, /etc/samba/smbpasswd
 - Possibilité de synchroniser les passwords Samba avec les passwords *nix password program = /usr/bin/passwd %u
 - Nombre d'utilisateurs plus conséquent (mais <250), le serveur peut jouer le rôle de PDC tdbsam (trivial database)
 - lubsairi (lirviai ualabase)
 - passdb backend = tdbsam
 - fichier(s) .tdb dans le répertoire /var/lib/samba/
 - Possibilité identique de synchronisation des passwords
 - Ne permet pas la réplication (un seul PDC dans le domaine)

Samba - authentification

- Manières d'authentifier
 - Lorsque la charge est plus importante, le serveur est PDC et il existe un (des) BDC dans le domaine
 Annuaire Idap
 - passdb backend = ldapsam:ldap://<hostname>
 - serveur Idap local ou distant pour un BDC
 - Active Directory
 - attendre Samba4 pour un implémentation complète de AD

Samba - utilitaires

- testparm /etc/samba/smb.conf
 - Permet de vérifier la validité syntaxique du fichier de conf
- /etc/init.d/samba [start|stop|restart]
 - Relance le daemon samba
 - Le script s'appelle smb ou samba suivant les distributions
- smbmount.
 - package debian smbfs
 - syntaxe smbmount //<netbios name>/<share name> <mount point>
- smbclient
 - commande à tout faire
 - FTP
 - impression
 - envoi de messages
 - ...
- smbpasswd
 - ajoute un utilisateur "samba"

Samba - SWAT

- Disponibilité du service (/etc/services)
- Permet la configuration de samba via un interface web (plutôt que l'édition du fichier smb.conf)
- Gestion par initd
- Le serveur écoute sur le port 901

http://localhost:901

Introduction
Principes
Configuration
Fonctionnement
Linux PAM api

- Principe
 - Certaines applications nécéssitent une authentification
 - login
 - sudo
 - S11
 - ...
 - Systèmes d'authentification évoluent
 - /etc/passwd
 - /etc/shadow
 - Annuaire LDAP
 - ...
 - Cette évolution impose la réécriture d'une partie de code de **chaque** application nécéssitant une authentification
 - L'idée ; on délègue l'authentification à des modules dynamiques
- Définition
 - Pluggable Authentication Module sont des bibliothèques responsables d'une partie de l'authentification.

Bibliothèque

- /lib/security
- Une application est développée pour se lier avec ces bibliothèques

Avantage

- L'administrateur système configure le comportement de ces applications (ssh, ftp, login, ...) via PAM
 - La configuration se fait dans /etc/pam.d/ (un fichier par application)
 - Anciennement la configuration se faisait dans un fichier /etc/pam.conf unique
- Configuration fine
 - Refus simple de connexion
 - Connexion "limitée"; plage horaire, ressources, ...

Condition

Il faut que l'application soit PAM enabled

Format des fichiers

- module-type control-flag module-path args
- module-type
 - authenticate
 - Identifie le user comme étant qui il prétend
 - Vérifie l'appartenance à un groupe

account

- Pas d'authentification mais des permissions/restrictions en fonction des ressources
 - temps (moment de la journée)
 - resources système (nombre d'utilisateurs connectés)
 - lieu (root se logge d'une console pas d'un terminal)

session

Destiné aux actions a exécuter avant/après la mise à disposition du service

password

Utilisé pour renouveler le jeton d'authentification

- Format des fichiers
 - module-type control-flag module-path args
- control-flag

Gère la manière de réagir au "résultat" du module.

- Remarque : Les modules sont empilés, et exécutés dans l'ordre .. le résultat de l'un influence le suivant
- required
 - Exigé pour la réussite du module-type
 - Un échec n'est renseigné qu'à la fin de la pile d'appel
- requisite
 - Idem que required
 - Mais s'interromp dès l'échec ... n'attend pas l'exécution de toute la pile
- sufficient
 - La réussite de ce module est suffisante .. on ne continue pas la pile d'appel en cas de réussite
- optional
 - Optionel .. n'influence pas la suite

- Format des fichiers
 - module-type control-flag module-path args
- module-path
 - Nom du module
 - S'il commence par / c'est un nom complet sinon /lib/security
- args
 - Arguments pour le module, dépend de celui-ci
 - debug, no-warn, use-first-pass, ...

Exemple

```
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_env.so
auth sufficient /lib/security/pam_ldap.so
auth required /lib/security/pam_unix.so try_first_pass
```

Déroulement

- Vérification dans /etc/securetty que la connexion peut se faire sinon échec ... à la fin
- Positionnement des variables d'environnement
- Authentification via LDAP (/etc/ldap.conf)
 - Si réussite, fin
- En cas d'échec de pam_ldap, authentification Unix .. avec le passwd précédent

PAM - Pluggable Authentication Module PAM enabled

- Tester si l'application pampgm supporte PAM
 - Voir quelles sont les librairies liées ou
 - 1dd pampgm
 - Essayer de le configurer
 - Ajouter le fichier pampgm dans /etc/pam.d

```
$ cat /etc/pam.d/pampgm
auth required pam_permit.so
auth required pam_warn.so
```

- Lancer le programme pampgm
 - -Module pam_permit autorise tout le monde
 - -Module parm_warm logge dans syslog

PAM - Pluggable Authentication Module Linux-PAM API

• Ecrire un programme PAM enabled

```
#include <security/pam_appl.h>
#include <security/pam_misc.h>
...
pam_authenticate();
...
```

```
cc -o application .... -lpam -lpam_misc -ldl
```

LDAP - Lightweight Directory Access Protocol

Préalables Le protocole Hiérarchie Schéma Serveur

Fichiers LDIF
OpenLDAP

LDAP - Lightweight Directory Access Protocol

Définition

- LDAP est un protocole d'accès à un annuaire.
- Un annuaire est une base de données spécialisée,
 - stocke des données légèrement typées
 - les données sont structurées en arbre
 - un annuaire est très performant en lecture mais pas en écriture

Exemples

- annuaire de personnes, type "pages blanches"
- comptes Unix
- carnet d'adresses + photos
- données d'identification
- parc matériel
- ... tout ce qui peut-être nommé et attaché à de l'information

LDAP - Lightweight Directory Access Protocol Annuaire *versus* SGBD

Annuaire

- Lectures rapides
- Stocke des objets et leurs attributs (typés)
- Organisation en arbre
- Réplication simple (chaque modification est reportée dans les annuaires secondaires, ...)
- Stocke grande quantité de données mais de faible volume

SGBD

- Rapidité d'accès en lecture et écriture
- Typage fort

LDAP - Lightweight Directory Access Protocol Les concepts

LDAP fournit

- Un protocole permettant l'accès à l'information
- Un modèle d'information, définit le type d'informations
- Des conventions de nommage, définissent comment l'information est organisée
- Un modèle fonctionnel, définit comment on accède à l'information
- Un modèle de sécurité
- Un modèle de duplication, définit la répartition entre différents serveurs
- Des APIs pour développer des applications
- LDIF, un format d'échange de données

LDAP - Lightweight Directory Access Protocol Le protocole

- Le protocole définit
 - comment s'établit la communication client-serveur
 - permet à l'utilisateur de se connecter, rechercher, comparer, ...
 - des mécanismes de chiffrement
 - des règles d'accès
 - un protocole serveur-serveur, pour la synchronisation, réplication, ...
- Pour info ...
 - LDAP est initialement une passerelle d'accès à des annuaires X500

LDAP - Lightweight Directory Access Protocol Modèle des données

- Modèle de données hiérarchique
- Chaque noeud de l'arbre correspond à une entrée de l'annuaire
- Les entrées correspondent à des objets, ayant des attributs
- Chaque serveur contient une entrée spéciale, rootDSE (root directory specific entry) qui contient la description de l'arbre
- objetClass top : permettra de définir la "véritable" racine de l'arbre
- L'arbre est appelé Directory Information Tree, DIT
- L'ensemble des définitions relatives aux données, s'appelle un schéma

LDAP - Lightweight Directory Access Protocol Classe d'objet

- Les classes d'objet (objectClass) modélisent les objets et leurs attributs
- Une classe est définie par
 - un nom
 - un OID (object ID)
 - des attributs obligatoires
 - des attributs optionnels
 - un type (structurel, abstrait ou auxiliaire)
 - structurel description d'un objet basique, personne, groupe, entité organisationnelle de la société, ...
 - abstrait propre à LDAP, top, alias
 - auxiliaire permettent d'ajouter de l'info complémentaire à un objet structurel, mailRecipient, ...
- Un attribut est défini par
 - un nom
 - un oid
 - syntaxe et règles de comparaison
 - format de valeur

LDAP - Lightweight Directory Access Protocol Classe d'objet (suite)

- OID
 - Les objets et leur oid sont normalisés (RFC2256) [lien]
 - oid est une séquence de nombres entiers

```
2.5 - fait réference au service X500
1.3.6.1.4.1.4203 - openLDAP
```

- On ne modifie pas les schémas existants (pas propre, risque d'incompatibilité)
- Notion d'héritage entre objets
- Pour l'ÉSI, (1.3.6.1.4.1.23162)
- Les classes d'objet forment une hierarchie
- La racine est l'objet top
- Chaque objet hérite de son parent
- On précise la classe d'un objet à l'aide de objectClass

LDAP - Lightweight Directory Access Protocol Classe d'objet (suite)

```
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetPerson
```

classe person

 a comme attributs: commonName, surname, description, seeAlso, telephoneNumber, userPassword

classe organizationalPerson

- ajoute les attributs : organizationUnitName, title, ...
- classe inetPerson
 - ajoute les attributs : mail, uid, photo, ...

LDAP - Lightweight Directory Access Protocol Définition d'un Schéma

- Lorsqu'une entrée est crée, le serveur vérifie si la syntaxe est conforme sur base du schéma associé, c'est le schema checking
- /etc/lpdap/schema/local.schema

```
objectClass esiPerson
superior inetOrgPerson
requires
sn,
cn
allows
uidNumber,
gidNumber,
homeDirectory,
dateArrivee,
dateDepart
```

LDAP - Lightweight Directory Access Protocol Configuration du serveur

- Formats différents suivants l'implémentation
 - slapd.conf, U-M slapd, OpenLDAP, NEtscape Directory
 - ...
- Il existe deux objets abstraits particuliers qui permettent de faire des liens entre les noeuds ou entre des annuaires
 - aliases
 - referrals
- Un annuaire LDAP peut être constitué d'un seul serveur ou de plusieurs
 - Serveur seul
 - Service referal
 - Service duplication

LDAP - Lightweight Directory Access Protocol Identifiant d'un objet

- L'identifiant unique (clé dans un SGBD) est le DN
- **DN**, *Distinguished name* est le nom unique dans l'annuaire, il représente le chemin absolu depuis *top*
- Exemple: uid=pbt, ou=prof, dc=esi, dc=be
- Il se compose
 - des attributs obligatoires
 - de la liste des ou organisationnal unit
 - des organisations o

LDAP - Lightweight Directory Access Protocol LDIF - LDAP Data Interchange Format

- LDIF permet de représenter les données
- Utilisé pour
 - importer / exporter des bds
 - faire des modifications sur des entrées

```
dn : cn=PbT, ou=prof, dc=esi, dc=be
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: PbT
mail : pbettens@heb.be
...
```

LDAP - Lightweight Directory Access Protocol LDIF - LDAP Data Interchange Format (suite)

- Permet de faire des modifications, ajouts, suppression, ...
- Exemple d'ajout

```
dn: cn=Juste Leblanc, ou=sales, o=Ed Oreilly, c=fr
changetype: modify
add: telephonenumber
telephonenumber: (408) 123 - 456
```

• Exemple de suppression

```
dn: cn=Juste Leblanc, ou=sales, o=Ed Oreilly, c=fr
changetype: delete
```

LDAP - Lightweight Directory Access Protocol Modèle fonctionnel

- Le modèle fonctionnel définit les opérations de bases pouvant être exécutées sur le serveur
 - search, compare, add, modify, delete, rename, bind ...
 - (voir webographie pour les détails)
- Pour une recherche, on devra définir le scope de celle-ci
 - search scop = base
 permet de rechercher un élement
 - search scope = onlevel search permet de rechercher sur le niveau enfant
 - search scope = subtree
 permet la recherche dans tout l'arbre "enfant"

LDAP - Lightweight Directory Access Protocol Déployer un service LDAP

- Déployer un annuaire nécessite une réflexion au sein de la société. Ces aspects sortent du cadre de cette présentation ... mais en bref
- Aspects organisationnels
 - Nature des données stockées
 - Que doit servir l'annuaire ?
 - Maintient des données à jour, sources des données, pérennité
 - Confidentialité, authentification, contrôle d'accès, ...
- Choix du schéma
- Choix du modèle de nommage
 - Nombre d'entrées actuelles et évolution
 - Type des entrées
 - Nombre de serveurs et répartition des données sur ceux-ci
 - choix du DN distinghished name
 - choix du suffixe, exemple dc=esi, dc=be
- Duplication ? Réplication ?
- ...

- OpenLDAP est une implémentation libre de LDAP
- http://openldap.org
- Related software
 - Transport, OpenSSL (http://openssl.org)
 - Authentification, Kerberos
 - Threads, OpenLDAP supporte POSIX pthreads

- Installation
 - Via les packages
 - slapd
 - ldap-utils
 - Méthode "traditionnelle"
 - configure; make; make install ...
- daemons
 - slapd, pour la gestion de l'annuaire
 - slurpd, pour la réplication

- Configuration
 - via le fichier /etc/ldap/slapd.conf
 - Adaptation du fichier de configuration
 - Adresse IP du serveur LDAP
 - Position du DN de l'annuaire
 - SSL yes/no
 - Schema(s) supplémentaire(s) éventuel(s)
- Script
 - Gestion du serveur via
 - /etc/init.d/slapd start|stoprestart|force-reload

- Organisation de l'annuaire
 - Vérification des schemas
 - (probablement), création d'un schema particulier /etc/ldap/schema/local.schema
- Gestion du contenu (fichier(s) LDIF)
 - Ajout d'utilisateur, ldapadd

LDAP - Lightweight Directory Access Protocol Logiciels LDAP

Serveurs

- OpenLDAP
- Netscape Directory Server
- Innosoft's Distributed Directory Server
- .
- D'autres supportent les requêtes
 - Novell'NetWare Directory Services
 - Microsoft Active Directory
 - Lotus Domino
- Type de clients
 - Logiciels avec accès natif, Netscape Communicator, MS Outlook, Browsers
 - Acces via passerelle
 - Utilisation des API, Java; Perl, C,
 - Natif ds l'OS, MS Windows NT5, PAM LDAP, NIS versus LDAP

Serveur webApache

Installation Configuration

- Un serveur web permet la propagation de l'information sur un réseau IP
- Apache est un logiciel fournissant le ń service ż serveur web
- Installation
 - apt-get install apache2 apache2-doc libapache2-mod-php
- Fichiers de configuration
 - httpd.conf (obsolète dans la version apache2)
 - apache2.conf
 - conf.d/
 - mod-enabled/ (versus mod-available/)
 - sites-enabled/ (versus sites-available/)
 - ports.conf
 - ... brefls -1 /etc/apache2

- Script de gestion du(des) daemon(s)
 - /etc/init.d/apache2 [start|stop...]
 - Nombre de daemons (essaim)
 - StartServers 5
 MinSpareServers 5
 MaxSpareServers 10
- Les pages web ... emplacement
 - Directive DocumentRoot
 - #cat sites-enabled000-default
- Chargement des modules
 - Apache propose des modules logiciels offrant diverses fonctionnalités
 - voir /etc/apache2/mods_enabled qui contient des liens vers certains fichiers dans mods_available

- Journalisation
 - Préciser l'emplacement des fichiers log ErrorLog
 - Quantitié d'infos LogLevel
 - Format des logs Logformat
- Contrôle d'accès
 - Order deny, allow Deny from all Allow from esi.be
 - Possibilité d'authoriser l'accès sur base de login/password ... voir directive Auth*

- Points NON abordés
 - Serveurs mandataires (proxy)
 - Sécurité / encryptage (certificat)
 - Fichier .htaccess
 - Hôtes virtuels

Crédits

- **freemind** http ://freemind.sourceforge.net *Génération d'un Mind Map*
- Génération des slides sur base du Map freemind
 - Scripts Perl
 - freemind2s5.pl de Vincent Oberle
 - freemind2beamer.pl modification (incomplète) du script dePierre Bettens
 - Format PDF
 - LATEX
 - package beamer