Вероятностный подход для задачи предсказания биологической активности ядерных рецепторов*

Володин С. Е., Попова М., Стрижов В. В. sergei.volodin@phystech.edu
Московский физико-технический институт

Решается задача предсказания биологической активности молекул протеинов (лиганд) с рецепторами: по признакам лиганда необходимо оценить вероятность связывания этой молекулы с одним или несколькими клеточными рецепторами и построить бинарный классификатор. Экспертные знания в области биохимии и фармакологии дают основания предполагать, что факты связывания одних и тех же молекул с различными рецепторами не независимы. В данной работе предлагается модель, позволяющая строить предсказания сразу для группы рецепторов, учитывая их схожесть. В работе проводится вычислительный эксперимент на реальных данных, в ходе которого предложенная модель сравнивается с независимыми моделями в терминах нескольких функционалов качества.

Ключевые слова: классификация, вероятность, classifier chains, multi-label, логистическая регрессия.

Введение

Проблема предсказания биологической активности лигандов и рецепторов является актуальной задачей в области биохимии и фармакологии [1], [2], [3], [4], [5], [6]. Данная статья посвящена решению этой задачи методами машинного обучения.

Компьютерное моделирование взаимодействия молекул является распространенным методом предсказания биологической активности клеточных рецепторов [4], [1]. Однако такой способ требует знания точной структуры лиганд, которая не всегда известна. По этой причине развитие методов машинного обучения [7], позволяющих делать предсказания на основании только числовых признаков лиганд, является актуальным.

Существует два основных подхода к решению описанной задачи. В рамках первого из них для каждого клеточного рецептора строятся независимые модели. Так, например в [8], [5] применяется метод опорных векторов, в [2] и [3] — нейронные сети, а в [9] — метод к ближайших соседей. Второй подход подразумевает построение одной модели для предсказания активности группы рецепторов. Такой подход позволяет строить более сложные модели, учитывающие информацию о схожести рецепторов [6]. В [10] проведен сравнительный анализ обоих подходов.

Таким образом, данная задача решена многими способами. Тем не менее, как показывает сопоставление результатов [10], лучшим оказывается второй подход, т.е. классификаторы, учитывающие при обучении все рецепторы сразу, а не независимо друг от друга. В данном случае это означает использование нескольких классификаторов и объеднение их в «цепочку» [11], [12], [13]. Как показывает практика, обучение нескольким задачам сразу дает существенный прирост в качестве конечного алгоритма по сравнению с рассмотрением этих задач по-отдельности [14], [15], [13].

В данной работе предлагается усовершенствованный метод classifier chains [13] — вероятностная модель последовательного вывода для предсказания биологической активно-

Работа выполнена при финансовой поддержке РФФИ, проект № 00-00-00000. Научный руководитель: Стрижов В. В. Задачу поставил: Эксперт И. О. Консультант: Попова М.

сти рецепторов [16], [14]. Предложенный алгоритм относится ко второму подходу, то есть позволяет строить предсказания для группы рецепторов, а также допускает добавление новых без необходимости повторного обучения. Проведен вычислительный эксперимент на реальных данных, в котором набор независимых моделей сравнивался с моделью последовательного вывода. Построенные модели сравнивались по нескольким критериям качества.

Постановка задачи классификации

Задана выборка $\mathfrak{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{L}}, \mathcal{L} = \{1, \dots, m\} - m$ пар объект-ответ. Каждый из объектов $\mathbf{x}_i \in \mathbb{R}^n$ — вектор действительных чисел. Объект может принадлежать каждому из l, что представляется вектором ответов $\mathbf{y}_i \in \{0, 1, \square\}^l$, 1 означает принадлежность классу, а \square означает пропуск в данных. Выборка разбита на обучающую и контрольную: $\mathfrak{D} = \mathfrak{L} \sqcup \mathfrak{T}$

Определяются $\mathbf{X}, \mathbf{Y}-$ случайные величины. Считается, что между классами есть зависимости:

$$P(\mathbf{Y}|\mathbf{X}) \neq \prod_{j=1}^{l} P(y_j|\mathbf{X})$$

Вводится предположение, что условное распределение $P(\mathbf{X}|\mathbf{Y})$ принадлежит семейству экспоненциальных распределений.

Моделью классификации называется функция $f \colon \mathbf{W} \times \mathbf{X} \times \mathbf{Y} \to [0,1]$, где \mathbf{W} — множество параметров, $\mathbf{w} \in \mathbf{W}$ — вектор параметров модели. Значение f — апостериорая вероятность:

$$f(\mathbf{w}, \mathbf{x}, \mathbf{y}) = P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}; \mathbf{w})$$

Функция потерь для значения параметра \mathbf{w} и подвыборки \mathcal{Z} определяется через функцию правдоподобия модельного распределения:

$$Q(\mathbf{f}|\mathbf{w}, \mathcal{Z}) = -\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}} \log \mathbf{f}(\mathbf{w}, \mathbf{x}, \mathbf{y}) P(\mathbf{X} = \mathbf{x})$$

Требуется найти вектор параметров $\mathbf{w}^* \in \mathbf{W}$, минимизирующий Q на обучающей выборке \mathfrak{L} :

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbf{W}} Q(\mathbf{f}|\mathbf{w}, \mathfrak{L})$$

Для вывода бинарного классификатора из вероятностной модели $P(\mathbf{y}|\mathbf{x})$ вводится функция потерь, т.е. штраф за ответ \mathbf{y} при правильном ответе $\mathbf{y}' \in \mathbf{Y}$:

$$L\colon Y\times Y\to \mathbb{R}$$

Бинарный классификатор $\mathbf{h} \colon \mathbf{X} \to \mathbf{Y}$ получается [14] при помощи Байесовского решающего правила:

$$\mathbf{h}(\mathbf{x}) = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbf{Y}} \mathbb{E}_{\mathbf{Y} \mid \mathbf{X}} L(\mathbf{Y}, \mathbf{y})$$

В качестве дополнительного критерия качества модели используются значения Precision и Recall для каждого класса j на контрольной выборке $\mathfrak T$ при 5 различных разбиениях.

Поскольку выборка содержит пропуски, разбиения должны быть построены таким образом, чтобы в каждой подвыборке было достаточное количество объектов с известным значением каждого признака.

Описание алгоритма

Таким образом, задача предсказания разбивается на два этапа:

- 1. Поиск параметра модели **w** максимизацией правдоподобия выборки на семействе распределений $P(\mathbf{y}|\mathbf{x};\mathbf{w})$. В результате решения задачи получается модель $P_{\mathbf{w}^*}(\mathbf{y}|\mathbf{x})$ как функция двух переменных
- 2. Поиск оптимального бинарного классификатора $h \colon \mathbf{X} \to \mathbf{Y}$, использующего найденное распределение $P(\mathbf{y}|\mathbf{x})$. Конкретная функция получается применением Байесовского решающего правила для каждого \mathbf{x} , подлежащего классификации. Конкретный классификатор зависит от выбранной функции потерь L.

Часть 1. Предлагаемый вид модели

Решим первую часть поставленной задачи, используя метод, описанный в [14]. Рассмотрим искомую величину

$$P(\mathbf{y}|\mathbf{x})$$

Докажем равенство

$$P(\mathbf{y}|\mathbf{x}) = P(y_1|\mathbf{x}) \prod_{i=2}^{l} P(y_i|y_1, ..., y_{i-1}, \mathbf{x})$$

Рассмотрим величину

$$P(y_i|y_1,...,y_{i-1},\mathbf{x}) = \frac{P(y_1,...,y_i,\mathbf{x})}{P(y_1,...,y_{i-1},\mathbf{x})}$$

Подставим их в произведение, получим телескопическое произведение:

$$P(y_1|\mathbf{x})\prod_{i=2}^{l}P(y_i|y_1,...,y_{i-1},\mathbf{x}) = \underbrace{\frac{P(y_1,\mathbf{x})}{P(\mathbf{x})}\underbrace{\frac{P(y_1,y_2,\mathbf{x})}{P(y_1,\mathbf{x})}} \cdot ... \cdot \underbrace{\frac{P(y_1,...,y_l,\mathbf{x})}{P(y_1,...,y_{l-1},\mathbf{x})}} = P(\mathbf{y}|\mathbf{x}) \blacksquare$$

Таким образом, для моделирования вероятности $P(\mathbf{y}|\mathbf{x})$ можно использовать условные вероятности классов

$$P(y_1|\mathbf{x}), P(y_2|y_1,\mathbf{x})..., P(y_l|y_1,...,y_{l-1},\mathbf{x})$$

Каждую из l этих вероятностей будем оценивать при помощи логистической регрессии. Обозначим

$$(x)_y = \begin{cases} x, & y = 1\\ 1 - x & y = 0 \end{cases}$$

Обозначим

$$g_i(y_1, ..., y_{i-1}, \mathbf{x}) = P(y_i = 1 | y_1, ..., y_{i-1}, \mathbf{x})$$

Получаем выражение вероятности $P(\mathbf{y}|\mathbf{x})$ через функции g_i :

$$P(\mathbf{y}|\mathbf{x}) = P(y_1|\mathbf{x}) \prod_{i=2}^{l} P(y_i|y_1, ..., y_{i-1}, \mathbf{x}) = \prod_{i=1}^{l} (g_i(y_1, ..., y_{i-1}, \mathbf{x}))_{y_i}$$

Вероятности

$$P(y_i = 1 | y_1, ..., y_{i-1}, \mathbf{x}) = g_i(y_1, ..., y_{i-1}, \mathbf{x})$$

предсказываются при помощи логистической регрессии, т.е.

$$g_i(y_1,...,y_{i-1},\mathbf{x}) = \sigma(\mathbf{w}_i^T || y_1...y_{i-1}\mathbf{x}^T ||^T + w_i^0),$$
 где $\sigma(x) = \frac{1}{1 + e^{-x}}$

Получаем семейство моделей

$$P(\mathbf{y}|\mathbf{x}) = (\sigma(\mathbf{w}_1^T \mathbf{x} + w_1^0))_{y_1} \prod_{i=2}^{l} (\sigma(\mathbf{w}_i^T || y_1 ... y_{i-1} \mathbf{x}^T ||^T + w_i^0))_{y_i}$$

Таким образом, общая задача оптимизации \mathbf{w}^* распадается на l независимых оптимизационных задач максимизации правдоподобия, т.е. на обучение l логистических регрессий. i-я логистическая регрессия принимает в качестве признаков \mathbf{x} , а также ответы $y_1, ..., y_{i-1}$ Данный алгоритм называется PCC (Probabilistic Classifier Chain) [14]

Часть 2. Бинарный классификатор

Решим вторую часть задачи, т.е. построим бинарный классификатор по известному распределению $P(\mathbf{y}|\mathbf{x})$, выбирая некоторую функцию потерь (см. [14]).

При фиксированной функции потерь L и объекте $\mathbf{x} \in \mathbf{X}$ оптимальное предсказание $\mathbf{h}(\mathbf{x}) \in \mathbf{Y}$ в соответствии с Байесовским решающим правилом имеет вид [14]:

$$\mathbf{h}(\mathbf{x}) = \mathop{\arg\min}_{\mathbf{y} \in \mathbf{Y}} \mathbb{E}_{\mathbf{Y} | \mathbf{X}} L(\mathbf{Y}, \mathbf{y})$$

В качестве примеров рассмотрим следующие функции потерь $L(\mathbf{y}, \mathbf{y}')$ и приведем полученный алгоритм $h(\mathbf{x})$ [14]:

- 1. Hamming Loss. Получаем $h_i(\mathbf{x}) = \text{sign}(P(y_i = 1|\mathbf{x}) \frac{1}{2})$
- 2. Subset 0/1 Loss. Получаем $h(\mathbf{x}) = \arg\max_{\mathbf{x}} P(\mathbf{y}|\mathbf{x})$
- 3. Rank Loss. Получаем $f_i(\mathbf{x}) = P(y_i = 1|\mathbf{x})$

Используемая вероятность $P(y_i = 1|\mathbf{x})$ может быть получена из известного распределения $P(\mathbf{y}|\mathbf{x})$ по формуле полной вероятности:

$$P(y_i = 1|\mathbf{x}) = \sum_{y \in \{0,1\}^l} [y_i = 1] P(\mathbf{y}|\mathbf{x})$$

Таким образом, искомые вероятности выражаются через известное распределение $P(\mathbf{y}|\mathbf{x})$.

Описать, как решается проблема с пропусками при обучении и придумать нормальный алгоритм (классификация уже имеющимися звеньями)

Описать, как производить разбиение

Oписать, как выбирать порог логистической регрессии $\frac{\lambda_+}{\lambda_-}$ по точке на ROC-кривой.

Часть 2. Работа с пропусками

Приведенный выше алгоритм РСС построения $P(\mathbf{y}|\mathbf{x})$ по имеющейся обучающей выборке неприменим для выборок, для которых в ответах могут содержаться пропуски: $y_i \in \{0, 1, \square\}$. Эта проблема решается следующим образом:

- 1. Логистические регрессии 1,...,l обучаются последовательно
- 2. Для обучения i-й логистической регрессии берутся объекты с известным значением признака y_i

3. Предыдущие неизвестные значения признаков $y_1, ..., y_{i-1}$ предсказываются частично уже построенным РСС для классов 1, ..., i-1.

Алгоритмы

Алгоритм 1 Обучение РСС для выборок без пропусков

```
Вход: Обучающая выборка \mathfrak{L} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in L} Выход: Векторы \mathbf{w}_i \in \mathbb{R}^{n+i-1}, \ i \in \overline{1,l}
1: u_j \leftarrow j-й столбец матрицы y_{ij}, \ j \in \overline{1,l}
2: для i=1,\ldots,l
3: X^i \leftarrow ||Xy_1...y_{i-1}||^{\square}. Эта матрица имеет строки X^i_j
4: \mathbf{w}_i = \arg\max\prod_{j \in L} (\sigma(\mathbf{w}^T_i X^i_j))_{y_{ij}} — обучение логистической регрессии вернуть \mathbf{w}_1,...,\mathbf{w}_l
```

Алгоритм 2 Предсказание вероятности $P(\mathbf{y}|\mathbf{x})$ для пары объект-ответ

```
Вход: Объект \mathbf{x} \in \mathbb{R}^n, векторы \mathbf{w}_i, пороги w_i^0, вектор \mathbf{y} \in \{0,1\}^m Выход: Условная вероятность P(\mathbf{y}|\mathbf{x}) \in [0,1]
1: P \leftarrow 1
2: для i = 1, \dots, l
3: \mathbf{x}' \leftarrow ||\mathbf{x}^T y_1 \dots y_{i-1}||^{\Box T}
4: P \leftarrow P \cdot (\sigma(\mathbf{w}_i^T \mathbf{x}' + w_i^0))_{y_i} вернуть P
```

Вычислительный эксперимент

Целью эксперимента является получение характеристик простого алгоритма для дальнейшего сравнения его с предлагаемым в статье. Базовый алгоритм использует подход Binary Relevance [14], в котором зависимости между классами не учитываются. Таким образом, алгоритм представляет собой l независимых логистических регрессий, по одному классификатору для каждого класса.

Эксперимент проведен на реальных данных, имеющих двойное происхождение. Объектами являются лиганды, их признаки \mathbf{x}_i смоделированы при помощи специальной программы. Ответы $\mathbf{y}_i = (y_{i1},...,y_{il})$ являются результатами биохимических экспериментов, показывающих, связывается ли данный лиганд с рецептором j. Пропуск в ответах означает, что эксперимент либо не был проведен, либо не позволяет с достаточной уверенностью говорить о каком-либо результате. Каждый объект имеет 165 признаков. Признаки являются химическими параметрами молекулы. В выборке содержится 8513 объектов, количество объектов с измеренным ответом j составляет около половины. В таблице 1 указано точное распределение ответов по классам.

Таблица 1. Количество связывающихся с рецепторами лигандов

Рецептор	Неизвестно	Не связывается	Связывается
NR-AhR	3413 (40%)	4503 (52%)	597 (7%)
NR-AR-LBD	3213 (37%)	5129 (60%)	171 (2%)
NR-AR	2904 (34%)	5398 (63%)	${f 211}(2\%)$
SR-MMP	3925 (46%)	3870 (45%)	718 (8%)
NR-ER	3746 (44%)	4232 (49%)	535 (6%)
SR-HSE	3309 (38%)	4961 (58%)	243 (2%)
SR-p53	3174 (37%)	5029 (59%)	310 (3%)
NR-PPAR-gamma	3393 (39%)	4987 (58%)	133 (1%)
SR-ARE	3791 (44%)	4029 (47%)	693 (8%)
NR-Aromatase	4544 (53%)	3835 (45%)	${f 134}(1\%)$
SR-ATAD5	2951 (34%)	5360 (62%)	$202 \ (2\%)$
NR-ER-LBD	3107 (36%)	5168 (60%)	238 (2%)

Для определения эффективности данного метода вычисляются значения функционала AUC для каждого из разбиений $\mathfrak{D} = \mathfrak{L} \sqcup \mathfrak{T}$ на тестовую и контрольную выборку. Разбиения выполнены по методу k-fold, где k=5. Вычисляется среднее значение AUC, а также стандартное отклонение.

На графиках (1, 2) показаны ROC-кривые классов для одного из разбиений, а также значение функционала AUC.

В таблице 2 приведено сравнение метода Binary Relevance с результатами из [17], для получения которых использовались те же данные и способ разбиения, что и в данной работе.

Таблица 2. Значение AUC для различных рецепторов и моделей классификации

Рецептор	Binary Relevance	Random Forest [17]
NR-AhR	0.83 ± 0.03	0.93
NR-AR-LBD	0.86 ± 0.08	0.88
NR-AR	0.83 ± 0.09	0.83
SR-MMP	0.87 ± 0.03	0.95
NR-ER	0.78 ± 0.04	0.81
SR-HSE	0.79 ± 0.04	0.86
SR-p53	0.79 ± 0.07	0.88
NR-PPAR-gamma	0.79 ± 0.04	0.86
SR-ARE	0.78 ± 0.02	0.84
NR-Aromatase	0.81 ± 0.05	0.84
SR-ATAD5	0.81 ± 0.06	0.83
NR-ER-LBD	0.80 ± 0.07	0.83

Сравнение результатов показывает, что простой алгоритм уступает в качестве классификации методу Random Forest. Для некоторых рецепторов эта разница значительна.

Заключение

Рис. 1. ROC-кривая и значения функционала AUC для классов 1-6, метод Binary Relevance

Рис. 2. ROC-кривая и значения функционала AUC для классов 6-12, метод Binary Relevance

Литература

- [1] R. DVORSKÝ V HORŇÁK and E. ŠTURDÍK. Receptor-ligand interaction and molecular modelling.
- [2] Tong Q Xie XQ Myint KZ, Wang L. Molecular fingerprint-based artificial neural networks qsar for ligand biological activity predictions. *Molecular Pharmaceutics*, 2012.
- [3] Xie XQ Myint KZ. Ligand biological activity predictions using fingerprint-based artificial neural networks (fann-qsar). *Methods Mol. Biol.*, 2015.
- [4] Bonnie Berger Vinay Pulim, Jadwiga Bienkowska. Lthreader: Prediction of extracellular ligand—receptor interactions in cytokines using localized threading. *Protein Science*, 2008.
- [5] Changhong Zhou Wenjun Zhang Zhengjun Cheng, Yuntao Zhang and Shibo Gao. Classification of 5-ht1a receptor ligands on the basis of their binding affinities by using pso-adaboost-sym.
- [6] Laurent Jacob and Jean-Philippe Vert. Protein-ligand interaction prediction: an improved chemogenomics approach. *BIOINFORMATICS*, 2008.
- [7] Peter Willett. Chemical similarity searching. Journal of Chemical Information and Computer Sciences, 1998.
- [8] Yusuke Komiyama et al. Masayuki Yarimizu, Cao Wei. Tyrosine kinase ligand-receptor pair prediction by using support vector machine. *Advances in Bioinformatics*, 2015.
- [9] Nagamani Sukumar Curt Breneman Scott Oloff[†], Shuxing Zhang and Alexander Tropsha. Chemometric analysis of ligand receptor complementarity: Identifying complementary ligands based on receptor information (colibri). *J. Chem. Inf. Model.*, 2006.
- [10] M. Popova. Feature selection and multi-task prediction of biological activity for nuclear receptors. 11(1):111–112, 2015.
- [11] Jose Barranqueroa José Ramón Quevedoa Juan José del Coza Eyke Hüllermeierb Elena Montañesa, Robin Sengeb. Dependent binary relevance models for multi-label classification. *Pattern Recognition*, 2013.
- [12] Ivor W. Tsang Weiwei Liu. On the optimality of classifier chain for multi-label classification.
- [13] Geoff Holmes Eibe Frank Jesse Read, Bernhard Pfahringer. Classifier chains for multi-label classification.
- [14] Eyke H.0 Krzysztof Dembczynski, Weiwei Cheng. Bayes optimal multilabel classification via probabilistic classifier chains. 2010.
- [15] Haytham Elghazel Maxime Gasse, Alex Aussem. On the optimality of multi-label classification under subset zero-one loss for distributions satisfying the composition property. 2015.
- [16] Eduardo F. Morales Pablo Hernandez-Leal Julio H. Zaragoza Pedro Larrañaga L. Enrique Sucar, Concha Bielza. Multi-label classification with bayesian network-based chain classifiers.
- [17] Olexandr Isayev Sherif Farag Stephen J. Capuzzi, Regina Politi and Alexander Tropsha. Qsar modeling of tox21 challenge stress response and nuclear receptor signaling toxicity assays.