LECTURE 04 - ULTRA-DEEP SUBMICRON AND BICMOS TECHNOLOGIES

LECTURE ORGANIZATION

Outline

- Ultra-deep submicron CMOS technology
 - Features
 - Advantages
 - Problems
- BiCMOS technology process flow
 - CMOS is typical submicron (0.5 μm)
- Summary

CMOS Analog Circuit Design, 3rd Edition Reference

New material

ULTRA-DEEP SUBMICRON (UDSM) CMOS TECHNOLOGY

USDM Technology

- $L_{min} \le 0.1$ microns
- Minimum feature size less than 100 nanometers
- Today's state of the art:
 - 22 nm drawn length
 - 5 nm lateral diffusion (12 nm gate length)
 - 1 nm transistor gate oxide
 - 8 layers of copper interconnect
- Specialized processing is used to increase drive capability and maintain low off currents

65 Nanometer CMOS Technology

TEM cross-section of a 35 nm NMOS and PMOS transistors.[†]

NMOS: PMOS:

220 nm pitch

These transistors utilize enhanced channel increase drive capability and to reduce off currents.

strains to

[†] P. Bai, et. Al., "A 65nm Lobic Technology Featuring 35nm Gate Lengths, Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57 µm² SRAM Cell, *IEEE Inter. Electron Device Meeting*, Dec. 12-15, 2005. CMOS Analog Circuit Design

UDSM Metal and Interconnects

Physical aspects:

Thysical aspects.				
Layer	Pitch	Thickness	Aspect	
	(nm)	(nm)	Ratio	
Isolation	220	230	-	
Polysilicon	220	90	-	
Contacted Gate Pitch	220	-	-	
Metal 1	210	170	1.6	
Metal 2	210	190	1.8	
Metal 3	220	200	1.8	
Metal 4	280	250	1.8	
Metal 5	330	300	1.8	
Metal 6	480	430	1.8	
Metal 7	720	650	1.8	
Metal 8	1080	975	1.8	

What are the Advantages of UDSM CMOS Technology?

Digital Viewpoint:

- Improved I_{on}/I_{off}
- Reduced gate capacitance
- Higher drive current capability
- Reduced interconnect density
- Reduction of active power

Analog Viewpoint:

- More levels of metal
- Higher f_T
- Higher capacitance density
- Reduced junction capacitance per g_m
- More speed

70 Mbit SRAM chip:

What are the Disadvantages of UDSM CMOS Technology (for Analog)?

- Reduction in power supply resulting in reduced headroom
- Gate leakage currents
- Reduced small-signal intrinsic gains
- Increased nonlinearity (IIP3)
- Increased noise and poorer matching (smaller area)

Intrinsic gain and IP3 as a function of the gate overdrive for decreasing V_{DS} :

[†] Anne-Johan Annema, et. Al., "Analog Circuits in Ultra-Deep-Submicron CMOS," *IEEE J. of Solid-State Circuits*, Vol. 40, No. 1, Jan. 2005, pp. 132-143.

What is the Gate Leakage Problem?

Gate current occurs in thin oxide devices due to direct tunneling through the thin oxide. Gate current depends on:

1.) The gate-source voltage (and the drain-gate voltage)

$$i_{GS} = K_1 v_{GS} \exp(K_2 v_{GS})$$
 and $i_{GD} = K_3 v_{GD} \exp(K_4 v_{GD})$

2.) Gate area – NMOS leakage $\approx 6 nA/\mu m^2$ and PMOS leakage $\approx 3 nA/\mu m^2$

Unfortunately, the gate leakage current is nonlinear with respect to the gate-source and gate-drain voltages. A possible model is:

Base current cancellation schemes used for BJTs are difficult to apply to the MOSFET.

UDSM CMOS Technology Summary

- Increased transconductance and frequency capability
- Low power supply voltages
- Reduced parasitics
- Gate leakage causes challenges for analog applications of UDSM technology
 - Can no longer use the MOSFET for capacitance
 - Conflict between matching and gate leakage
- Other issues
 - Noise
 - Zero temperature coefficient behavior
 - Etc.

BICMOS TECHNOLOGY

Typical 0.5µm BiCMOS Technology

Masking Sequence:

1. Bu	iried	n^+]	layer
-------	-------	---------	-------

2. Buried p^+ layer

3. Collector tub

4. Active area

5. Collector sinker

6. *n*-well

7. *p*-well

8. Emitter window

9. Base oxide/implant

10. Emitter implant

11. Poly 1

12. NMOS lightly doped drain

13. PMOS lightly doped drain

14. n^+ source/drain

15. p^+ source/drain

16. Silicide protection

17. Contacts

18. Metal 1

19. Via 1

20. Metal 2

21. Via 2

22. Metal 3

23. Nitride passivation

Notation used in the following slides:

BSPG = Boron and Phosphorus doped Silicate Glass (oxide)

Kooi Nitride = A thin layer of silicon nitride on the silicon surface as a result of the reaction of silicon with the HN3 generated, during the field oxidation.

TEOS = Tetro-Ethyl-Ortho-Silicate. A chemical compound used to deposit conformal oxide films.

n+ and p+ Buried Layers

Starting Substrate:

n^+ and p^+ Buried Layers:

Epitaxial Growth

Comment:

- As the epi layer grows vertically, it assumes the doping level of the substrate beneath it.
- In addition, the high temperature of the epitaxial process causes the buried layers to diffuse upward and downward.

Collector Tub

Comment:

• The collector area is developed by an initial implant followed by a drive-in diffusion to form the collector tub.

Active Area Definition

Comment:

- The silicon nitride is use to impede the growth of the thick oxide which allows contact to the substrate
- α-silicon is used for stress relief and to minimize the bird's beak encroachment

Field Oxide

Comments:

• The field oxide is used to isolate surface structures (i.e. metal) from the substrate

Collector Sink and n-Well and p-Well Definitions

Base Definition

Definition of the Emitter Window and Sub-Collector Implant

Emitter Implant

Comments:

• The polysilicon above the base is implanted with n-type carriers

Emitter Diffusion

Comments:

• The polysilicon not over the emitter window is removed and the n-type carriers diffuse toward the base forming the emitter

Formation of the MOS Gates and LD Drains/Sources

Comments:

- The surface of the region where the MOSFETs are to be built is cleared and a thin gate oxide is deposited with a polysilicon layer on top of the thin oxide
- The polysilicon is removed over the source and drain areas
- A light source/drain diffusion is done for the NMOS and PMOS (separately)

Heavily Doped Source/Drain

Comments:

• The sidewall spacers prevent the heavy source/drain doping from being near the channel of the MOSFET

Siliciding

Comments:

• Siliciding is used to reduce the resistance of the polysilicon and to provide ohmic contacts to the base, emitter, collector, sources and drains

Contacts

Comments:

- A dielectric is deposited over the entire wafer
- One of the purposes of the dielectric is to smooth out the surface
- Tungsten plugs are used to make electrical contact between the transistors and metal1

Metal1

Metal1-Metal2 Vias

Metal2

Metal2-Metal3 Vias

Comments:

• The metal2-metal3 vias will be filled with metal3 as opposed to tungsten plugs

Completed Wafer

Silicon-Germanium

Physical Perspective (130nm):

SUMMARY

- UDSM technology typically has a minimum channel length less than 0.1 µm
- UDSM transistors utilize enhanced channel strains to increase drive capability and reduce off currents
- Advantages of UDSM technology include:
 - Smaller devices
 - Higher speeds and transconductances
 - Improved I_{on}/I_{off}
- Disadvantages of UDSM technology include:
 - Gate leakage currents
 - Reduced small signal gains
 - Increased nonlinearity
- BiCMOS technology
 - Offers both CMOS transistors and a high performance vertical BJT
 - CMOS is typically a generation behind
 - Silicon germanium can be used to enhance the BJT performance