A3-Regresión Múltiple-Detección datos atípicos

Luis Maximiliano López Ramírez

2024-09-24

En la base de datos Al corte se describe un experimento realizado para evaluar el impacto de las variables: fuerza, potencia, temperatura y tiempo sobre la resistencia al corte. Indica cuál es la mejor relación entre estas variables que describen la resistencia al corte.

```
datos <- read.csv("AlCorte.csv")</pre>
```

1. Haz un análisis descriptivo de los datos: medidas principales y gráficos

```
# Medidas principales
summary(datos) # Resumen estadístico de todas las columnas
                    Potencia
                                                           Resistencia
##
        Fuerza
                                Temperatura
                                                 Tiempo
##
   Min.
           :25
                      : 45
                               Min.
                                     :150
                                            Min.
                                                    :10
                                                          Min.
                                                                 :22.70
                Min.
   1st Qu.:30
                1st Qu.: 60
                               1st Qu.:175
                                             1st Qu.:15
                                                          1st Qu.:34.67
                                             Median :20
## Median :35
                Median : 75
                               Median :200
                                                          Median:38.60
## Mean
           :35
                Mean
                        : 75
                               Mean
                                     :200
                                             Mean
                                                    :20
                                                          Mean
                                                                 :38.41
## 3rd Qu.:40
                               3rd Qu.:225
                3rd Qu.: 90
                                             3rd Qu.:25
                                                          3rd Ou.:42.70
## Max.
           :45
                Max.
                        :105
                               Max.
                                     :250
                                             Max.
                                                  :30
                                                          Max.
                                                                :58.70
# Calcular estadísticas descriptivas para variables numéricas
library(dplyr) # Para manipulación de datos
## Warning: package 'dplyr' was built under R version 4.3.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(psych) # Para funciones de análisis descriptivo más detalladas
## Warning: package 'psych' was built under R version 4.3.2
# Seleccionar solo las columnas numéricas
numericos <- datos %>% select(where(is.numeric))
# Estadísticas descriptivas detalladas
```

```
descriptivas <- psych::describe(numericos)</pre>
print(descriptivas)
                                sd median trimmed
##
                                                         min
              vars n
                        mean
                                                    mad
                                                               max
range skew
## Fuerza
                 1 30 35.00 4.55
                                     35.0
                                            35.00 7.41 25.0 45.0
20 0.00
## Potencia
                 2 30 75.00 13.65
                                    75.0
                                           75.00 22.24 45.0 105.0
60 0.00
                 3 30 200.00 22.74 200.0 200.00 37.06 150.0 250.0
## Temperatura
100 0.00
                 4 30 20.00 4.55
                                     20.0
                                            20.00 7.41 10.0 30.0
## Tiempo
20 0.00
## Resistencia 5 30 38.41 8.95
                                     38.6
                                           38.05 6.30 22.7 58.7
36 0.22
##
              kurtosis se
                 -0.66 0.83
## Fuerza
## Potencia
                 -0.66 2.49
## Temperatura
                 -0.66 4.15
## Tiempo
                 -0.66 0.83
                 -0.35 1.63
## Resistencia
# Gráficos
# Histograma de todas las variables numéricas
par(mfrow = c(2, 2)) # Dividir la ventana gráfica en una cuadrícula de
2x2
for(col in colnames(numericos)) {
  hist(numericos[[col]], main = paste("Histograma de", col), xlab = col,
col = "skyblue", border = "white")
```

Histograma de Fuerza

Histograma de Potencia

Histograma de Temperatura

Histograma de Tiempo

Boxplot de todas las variables numéricas
par(mfrow = c(1, 1)) # Restablecer la ventana gráfica

Histograma de Resistencia


```
boxplot(numericos, main = "Boxplot de variables numéricas", col =
"lightgreen")
```

Boxplot de variables numéricas


```
# Mapa de calor de correlaciones
library(corrplot)

## Warning: package 'corrplot' was built under R version 4.3.2

## corrplot 0.92 loaded

correlaciones <- cor(numericos, use = "complete.obs")
corrplot(correlaciones, method = "color", addCoef.col = "black", tl.cex = 0.8, number.cex = 0.7, main = "Mapa de calor de correlaciones")</pre>
```


Gráfico de dispersión para explorar relaciones entre variables
pairs(numericos, main = "Gráfico de dispersión de variables numéricas")

Gráfico de dispersión de variables numéricas

2. Encuentra el mejor modelo de regresión que explique la variable Resistencia. Analiza el modelo basándote en significancia del modelo

```
# Definir el modelo nulo (sin variables predictoras) y el modelo completo
(con todas las variables predictoras)
modelo_nulo <- lm(Resistencia ~ 1, data = datos) # Modelo nulo con solo
La media
modelo completo <- lm(Resistencia ~ Fuerza + Potencia + Temperatura +
Tiempo, data = datos) # Modelo completo con todas las variables
# Selección de variables utilizando el método "forward" (de abajo hacia
arriba)
Model forward <- step(modelo nulo, scope = list(lower = modelo nulo,
upper = modelo completo), direction = "forward")
## Start: AIC=132.51
## Resistencia ~ 1
##
##
                 Df Sum of Sq
                                  RSS
                                          AIC
                      1341.01 984.24 108.72
## + Potencia
                  1
                       252.20 2073.06 131.07
## + Temperatura
                 1
## <none>
                              2325.26 132.51
                        40.04 2285.22 133.99
## + Tiempo
                  1
## + Fuerza
                  1
                        26.88 2298.38 134.16
##
## Step: AIC=108.72
## Resistencia ~ Potencia
##
##
                 Df Sum of Sq
                                 RSS
                                         AIC
## + Temperatura
                      252.202 732.04 101.84
                 1
## <none>
                              984.24 108.72
                  1
                       40.042 944.20 109.47
## + Tiempo
                       26.882 957.36 109.89
## + Fuerza
                  1
##
## Step: AIC=101.84
## Resistencia ~ Potencia + Temperatura
##
##
            Df Sum of Sq
                            RSS
                                   AIC
                         732.04 101.84
## <none>
                  40.042 692.00 102.15
## + Tiempo 1
## + Fuerza 1
                  26.882 705.16 102.72
summary(Model forward)
##
## Call:
## lm(formula = Resistencia ~ Potencia + Temperatura, data = datos)
##
## Residuals:
##
        Min
                  10
                       Median
                                    30
                                             Max
## -11.3233 -2.8067 -0.8483
                                3.1892
                                          9.4600
```

```
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -24.90167
                           10.07207
                                    -2.472 0.02001 *
                                     7.033 1.47e-07 ***
## Potencia
                 0.49833
                            0.07086
## Temperatura
                 0.12967
                            0.04251
                                      3.050 0.00508 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.207 on 27 degrees of freedom
## Multiple R-squared: 0.6852, Adjusted R-squared: 0.6619
## F-statistic: 29.38 on 2 and 27 DF, p-value: 1.674e-07
# Selección de variables utilizando el método "backward" (de arriba hacia
abajo)
Model_backward <- step(modelo_completo, direction = "backward")</pre>
## Start: AIC=102.96
## Resistencia ~ Fuerza + Potencia + Temperatura + Tiempo
##
##
                 Df Sum of Sq
                                  RSS
                                         AIC
                        26.88
                               692.00 102.15
## - Fuerza
                  1
## - Tiempo
                  1
                        40.04 705.16 102.72
                               665.12 102.96
## <none>
## - Temperatura 1
                       252.20 917.32 110.61
## - Potencia
                      1341.01 2006.13 134.08
                  1
##
## Step: AIC=102.15
## Resistencia ~ Potencia + Temperatura + Tiempo
##
                 Df Sum of Sa
##
                                  RSS
                                         AIC
                        40.04
## - Tiempo
                               732.04 101.84
                               692.00 102.15
## <none>
## - Temperatura 1
                       252.20 944.20 109.47
## - Potencia
                  1
                      1341.02 2033.02 132.48
##
## Step: AIC=101.84
## Resistencia ~ Potencia + Temperatura
##
##
                 Df Sum of Sq
                                  RSS
                                         AIC
## <none>
                               732.04 101.84
## - Temperatura 1
                        252.2 984.24 108.72
## - Potencia
                  1
                       1341.0 2073.06 131.07
summary(Model backward)
##
## Call:
## lm(formula = Resistencia ~ Potencia + Temperatura, data = datos)
##
## Residuals:
```

```
Min
                 10 Median
                                    3Q
                                            Max
## -11.3233 -2.8067 -0.8483
                                3.1892
                                         9,4600
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -24.90167
                           10.07207
                                    -2.472 0.02001 *
                            0.07086
                                      7.033 1.47e-07 ***
## Potencia
                 0.49833
                            0.04251
                                    3.050 0.00508 **
## Temperatura
                 0.12967
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.207 on 27 degrees of freedom
## Multiple R-squared: 0.6852, Adjusted R-squared: 0.6619
## F-statistic: 29.38 on 2 and 27 DF, p-value: 1.674e-07
# Selección de variables utilizando el método "both" (combinación de
"forward" y "backward")
Model_both <- step(modelo_completo, direction = "both", trace = 1)</pre>
## Start: AIC=102.96
## Resistencia ~ Fuerza + Potencia + Temperatura + Tiempo
##
                 Df Sum of Sq
##
                                  RSS
                                         AIC
## - Fuerza
                  1
                        26.88
                               692.00 102.15
## - Tiempo
                  1
                        40.04 705.16 102.72
## <none>
                               665.12 102.96
## - Temperatura 1
                      252.20 917.32 110.61
## - Potencia
                  1
                      1341.01 2006.13 134.08
##
## Step: AIC=102.15
## Resistencia ~ Potencia + Temperatura + Tiempo
##
##
                 Df Sum of Sq
                                  RSS
                                         AIC
                        40.04
## - Tiempo
                              732.04 101.84
## <none>
                               692.00 102.15
## + Fuerza
                        26.88
                               665.12 102.96
                  1
## - Temperatura 1
                       252.20 944.20 109.47
## - Potencia
                  1
                      1341.02 2033.02 132.48
##
## Step: AIC=101.84
## Resistencia ~ Potencia + Temperatura
##
                 Df Sum of Sa
                                  RSS
                                         AIC
##
## <none>
                               732.04 101.84
## + Tiempo
                  1
                        40.04
                               692.00 102.15
## + Fuerza
                 1
                        26.88 705.16 102.72
## - Temperatura 1
                       252.20 984.24 108.72
                  1
## - Potencia
                     1341.01 2073.06 131.07
summary(Model_both)
```

```
##
## Call:
## lm(formula = Resistencia ~ Potencia + Temperatura, data = datos)
## Residuals:
##
       Min
                10
                    Median
                                3Q
                                       Max
## -11.3233 -2.8067 -0.8483
                            3.1892
                                    9.4600
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## Potencia
              0.49833
                        0.07086 7.033 1.47e-07 ***
## Temperatura
              0.12967
                        0.04251 3.050 0.00508 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.207 on 27 degrees of freedom
## Multiple R-squared: 0.6852, Adjusted R-squared: 0.6619
## F-statistic: 29.38 on 2 and 27 DF, p-value: 1.674e-07
```

1. Economía de las variables

```
# Calcular AIC y BIC para cada modelo
calcular_aic_bic <- function(modelo) {</pre>
  aic <- extractAIC(modelo)[2]</pre>
                                                \# AIC con k = 2
  bic \leftarrow extractAIC(modelo, k = log(n))[2]
                                                # BIC con k = Log(n)
  return(c(AIC = aic, BIC = bic))
}
# Definir el número de observaciones (n)
n <- nrow(datos) # Asegúrate de que 'datos' es el nombre de tu DataFrame
# Obtener los valores de AIC y BIC para cada modelo
aic_bic_forward <- calcular_aic_bic(Model_forward)</pre>
aic bic backward <- calcular aic bic(Model backward)</pre>
aic_bic_both <- calcular_aic_bic(Model_both)</pre>
aic_bic_completo <- calcular_aic_bic(modelo_completo)</pre>
# Crear la tabla comparativa
comparacion_modelos <- data.frame(</pre>
  Modelo = c("Forward", "Backward", "Both", "Completo"),
  R2 = c(summary(Model_forward)$r.squared,
         summary(Model backward)$r.squared,
         summary(Model_both)$r.squared,
         summary(modelo completo)$r.squared),
  AIC = c(aic_bic_forward["AIC"],
          aic_bic_backward["AIC"],
          aic bic both["AIC"],
          aic_bic_completo["AIC"]),
```

```
BIC = c(aic_bic_forward["BIC"],
          aic_bic_backward["BIC"],
          aic_bic_both["BIC"],
          aic bic completo["BIC"])
)
# Mostrar la tabla comparativa
print(comparacion_modelos)
##
       Modelo
                     R2
                             AIC
                                      BIC
## 1 Forward 0.6851783 101.8392 106.0428
## 2 Backward 0.6851783 101.8392 106.0428
         Both 0.6851783 101.8392 106.0428
## 4 Completo 0.7139593 102.9630 109.9690
```

Observando los resultados se puede observar que el mejor modelo por economía es el de Resistencia = Potencia + Temperatura ya que solamente tiene 2 variables predictoras y si bien es cierto que tiene menor coeficiente de determinación que el modelo completo, éste tiene menor AIC y BIC, por lo que lo que resulta mejor el modelo anterior.

2. Significación global (Prueba para el modelo)

```
# Ajustar el modelo lineal
modelo <- lm(formula = Resistencia ~ Potencia + Temperatura, data =
datos)
# Resumen del modelo
resumen modelo <- summary(modelo)</pre>
# Extraer la significancia global (valor p asociado al estadístico F)
p valor global <- resumen modelo$fstatistic[1]</pre>
df1 <- resumen modelo$fstatistic[2]</pre>
df2 <- resumen_modelo$fstatistic[3]</pre>
# Calcular el valor p a partir de la estadística F
p_valor <- pf(p_valor_global, df1, df2, lower.tail = FALSE)</pre>
cat("Significancia global del modelo (valor p):", p valor, "\n")
## Significancia global del modelo (valor p): 1.674456e-07
# Regla de decisión con un nivel de significancia de 0.05
nivel significancia <- 0.05
if (p valor < nivel significancia) {</pre>
  cat("El modelo es significativo a un nivel de", nivel significancia,
"\n")
} else {
cat("El modelo NO es significativo a un nivel de", nivel significancia,
```

```
"\n")
## El modelo es significativo a un nivel de 0.05
## 3. Significación individual (Prueba para cada 22)
# Extraer los valores p para cada coeficiente
p_valores_coef <- resumen_modelo$coefficients[, 4] # Los valores p están</pre>
en la cuarta columna de los coeficientes
# Nivel de significancia
nivel significancia <- 0.05
# Probar la significancia de cada coeficiente
for (i in 1:length(p valores coef)) {
  if (p_valores_coef[i] < nivel_significancia) {</pre>
    cat(rownames(resumen_modelo$coefficients)[i], "es significativo con
p-valor de", p valores coef[i], "\n")
  } else {
    cat(rownames(resumen_modelo$coefficients)[i], "NO es significativo
con p-valor de", p valores coef[i], "\n")
  }
}
## (Intercept) es significativo con p-valor de 0.02001412
## Potencia es significativo con p-valor de 1.46543e-07
## Temperatura es significativo con p-valor de 0.005082118
## 4. Variación explicada por el modelo
# Obtener el R² directamente del resumen
r cuadrado <- resumen modelo$r.squared
cat("El coeficiente de determinación (R²) es:", r cuadrado, "\n")
## El coeficiente de determinación (R2) es: 0.6851783
# 3. Analiza la validez del modelo encontrado:
## 1. Análisis de residuos (homocedasticidad, independencia, etc)
## 1. Normalidad de los residuos
% Hipótesis de Normalidad (Anderson-Darling)
               (H_0:Los residuos siguen una distribución normal.
               H_1:Los residuos no siguen una distribución normal.
# Cargar la librería para la prueba Anderson-Darling
library(nortest)
```

Realizar la prueba de Anderson-Darling sobre los residuos de los

```
modeLos
resultado_modelo <- ad.test(modelo$residuals)</pre>
# Mostrar los resultados de las pruebas
cat("Resultados de la prueba de normalidad Anderson-Darling:\n")
## Resultados de la prueba de normalidad Anderson-Darling:
cat("\nModelo:\n")
##
## Modelo:
print(resultado_modelo)
##
## Anderson-Darling normality test
##
## data: modelo$residuals
## A = 0.41149, p-value = 0.3204
# Verificar normalidad en base al valor p
if (resultado modelo$p.value > 0.05) {
  cat("\nSe tiene normalidad en el Modelo.\n")
} else {
  cat("\nNo se tiene normalidad en el Modelo.\n")
## Se tiene normalidad en el Modelo.
# Gráficos de normalidad y distribuciones para Modelo 1
par(mfrow = c(2, 2)) # Configurar para mostrar 4 gráficos en una
cuadrícula 2x2
# Calcular los límites del eje Y para los histogramas
ylim_1 <- range(density(modelo$residuals)$y)</pre>
# QQ-Plot del Modelo 1
qqnorm(modelo$residuals, main = "QQ-Plot: Modelo")
qqline(modelo$residuals)
# Histograma del Modelo 1
hist(modelo$residuals, freq = FALSE, ylim = ylim_1,
     main = "Histograma: Modelo", xlab = "Residuos")
lines(density(modelo$residuals), col = "red")
curve(dnorm(x, mean = mean(modelo$residuals)), sd = sd(modelo$residuals)),
      from = min(modelo$residuals), to = max(modelo$residuals), add =
TRUE, col = "blue", lwd = 2)
```


-15 -5 0 5 10 Residuos

Histograma: Modelo

2. Verificación de media cero

% Hipótesis de Media Diferente de Cero (t de Student)

```
H_0: \mu = 0 (El promedio de los residuos es igual a cero) H_1: \mu \neq 0 (El promedio de los residuos es diferente de cero)
```

```
# Realiza la prueba t para los residuos de los modelos sin y con
interacción
resultado_t_modelo <- t.test(modelo$residuals)

# Mostrar los resultados de las pruebas t
cat("Resultados de la prueba t de Student para los residuos:\n")

## Resultados de la prueba t de Student para los residuos:
cat("\nModelo:\n")

##
## Modelo:
print(resultado_t_modelo)

##
## One Sample t-test
##
## data: modelo$residuals
## t = 8.8667e-17, df = 29, p-value = 1</pre>
```

```
## 95 percent confidence interval:
## -1.876076 1.876076
## sample estimates:
      mean of x
##
## 8.133323e-17
# Verificar si el promedio de los residuos es significativamente
diferente de cero
if (resultado t modelo$p.value > 0.05) {
  cat("\nEl promedio de los residuos del Modelo no es significativamente
diferente de cero.\n")
} else {
  cat("\nEl promedio de los residuos del Modelo es significativamente
diferente de cero.\n")
##
## El promedio de los residuos del Modelo no es significativamente
diferente de cero.
## 3. Homocedasticidad, linealidad e independencia
% Hipótesis de Autocorrelación (Durbin-Watson y Breusch-Godfrey)
          (H_0:Los errores no están autocorrelacionados (independencia).
          H_1:Los errores están autocorrelacionados.
% Hipótesis de Homocedasticidad (Breusch-Pagan y Goldfeld-Quandt)
        (H_0:La varianza de los errores es constante (homocedasticidad).
        H_1:La varianza de los errores no es constante (heterocedasticidad).
# Cargar la librería necesaria
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
# Gráficos de residuos contra valores ajustados para ambos modelos
par(mfrow = c(2, 2)) # Configurar para mostrar 4 gráficos en una
cuadrícula 2x2
# Modelo 1: Sin Interacción
plot(modelo$fitted.values, modelo$residuals,
     main = "Residuos vs. Ajustados: Modelo 1 (Sin Interacción)",
```

alternative hypothesis: true mean is not equal to 0

```
xlab = "Valores Ajustados", ylab = "Residuos", pch = 19, col =
"blue")
abline(h = 0, col = "red", lwd = 2)
# Pruebas de autocorrelación de errores
cat("Pruebas de autocorrelación de errores o independencia:\n")
## Pruebas de autocorrelación de errores o independencia:
# Modelo 1: Sin Interacción
dw modelo <- dwtest(modelo)</pre>
bg_modelo <- bgtest(modelo)</pre>
cat("\nModelo:\n")
##
## Modelo:
# Verificar autocorrelación en base al valor p
if (dw_modelo$p.value > 0.05) {
  cat("\nNo se rechaza Ho: Los errores no están autocorrelacionados
(Durbin-Watson).\nTiene independencia.\n")
} else {
  cat("\nSe rechaza Ho: Los errores están autocorrelacionados (Durbin-
Watson).\nNo tiene independencia.\n")
}
##
## No se rechaza Ho: Los errores no están autocorrelacionados (Durbin-
Watson).
## Tiene independencia.
if (bg modelo$p.value > 0.05) {
  cat("No se rechaza H<sub>0</sub>: Los errores no están autocorrelacionados
(Breusch-Godfrey).\nTiene independencia.\n")
} else {
  cat("Se rechaza Ho: Los errores están autocorrelacionados (Breusch-
Godfrey).\nNo tiene independencia.\n")
}
## No se rechaza Ho: Los errores no están autocorrelacionados (Breusch-
Godfrey).
## Tiene independencia.
# Pruebas de homocedasticidad
cat("\nPruebas de homocedasticidad:\n")
##
## Pruebas de homocedasticidad:
# Modelo 1: Sin Interacción
bp modelo <- bptest(modelo)</pre>
```

```
gq_modelo <- gqtest(modelo)</pre>
cat("\nModelo:\n")
##
## Modelo:
# Verificar homocedasticidad en base al valor p
if (bp_modelo$p.value > 0.05) {
  cat("\nNo se rechaza Ho: La varianza de los errores es constante
(Breusch-Pagan).\nTiene homocedasticidad.\n")
} else {
  cat("\nSe rechaza Ho: La varianza de los errores no es constante
(Breusch-Pagan).\nNo tiene homocedasticidad.\n")
}
##
## No se rechaza H_0: La varianza de los errores es constante (Breusch-
Pagan).
## Tiene homocedasticidad.
if (gq_modelo$p.value > 0.05) {
  cat("No se rechaza H<sub>0</sub>: La varianza de los errores es constante
(Goldfeld-Quandt).\nTiene homocedasticidad.\n")
} else {
  cat("Se rechaza H<sub>0</sub>: La varianza de los errores no es constante
(Goldfeld-Quandt).\nNo tiene homocedasticidad.\n")
## No se rechaza Ho: La varianza de los errores es constante (Goldfeld-
Quandt).
## Tiene homocedasticidad.
```

os vs. Ajustados: Modelo 1 (Sin I

2. No multicolinealidad de Xi

```
# Cargar el paquete 'car'
library(car)
## Warning: package 'car' was built under R version 4.3.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.2
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
##
       logit
## The following object is masked from 'package:dplyr':
##
##
       recode
# Calcular el VIF
vif_valores <- vif(modelo)</pre>
# Mostrar los valores de VIF
print(vif_valores)
```

```
## Potencia Temperatura
## 1 1
```

VIF < 5: No hay una multicolinealidad significativa entre las variables. Los valores en este rango suelen ser aceptables.

4. Haz el análisis de datos atípicos e influyentes del mejor modelo encontrado

1. Datos atípicos

1. Estandarización extrema de los residuos

```
Datos = datos
library(dplyr)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.2
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
##
       %+%, alpha
Datos$residuos_estandarizados <- rstudent(modelo)</pre>
#Introduce una columna en Datos con los residuos estandarizados de los n
datos
#Gráfico auxiliar:
ggplot(data = Datos, aes(x = predict(modelo), y =
abs(residuos estandarizados))) +
geom_hline(yintercept = 3, color = "red", linetype = "dashed") +
# se identifican en rojo observaciones con residuos estandarizados
absolutos > 3
geom point(aes(color = ifelse(abs(residuos estandarizados) > 3, 'red',
'black'))) +
scale color identity() +
labs(title = "Distribución de los residuos estandarizados", x =
"predicción modelo") +
theme bw() + theme(plot.title = element text(hjust = 0.5))
```

Distribución de los residuos estandarizados


```
#Cuenta e identifica cuántos datos atípicos hay:
Atipicos = which(abs(Datos$residuos_estandarizados)>3)

#Muestra Las observaciones con altos residuos estandarizados
Datos[Atipicos, ]

## [1] Fuerza Potencia Temperatura
## [4] Tiempo Resistencia
residuos_estandarizados
## <0 rows> (or 0-length row.names)
```

2. Distancia de Leverage

```
leverage = hatvalues(modelo)
#Calcula el leverage de los n datos

# Gráfico auxiliar:
plot(leverage, type="h", main="Valores de Apalancamiento",
ylab="Apalancamiento")
abline(h = 2*mean(leverage), col="red") # Límite comúnmente usado
```

Valores de Apalancamiento


```
# Cuenta e identifica cuántos datos atípicos hay:
high_leverage_points = which(leverage > 1.99*mean(leverage))
#Muestra las observaciones con alto leverage
Datos[high_leverage_points, ]
      Fuerza Potencia Temperatura Tiempo Resistencia
##
residuos_estandarizados
## 19
                               200
                                       20
                                                  22.7
          35
                   45
0.1595110
## 20
          35
                  105
                               200
                                       20
                                                  58.7
1.1543546
## 21
          35
                   75
                               150
                                       20
                                                  34.5
0.5460190
## 22
                   75
                               250
                                                 44.0
          35
                                       20
0.1876539
```

1. Datos influyentes

1. Distancia de Cook

```
cooksdistance <- cooks.distance(modelo)
#Calcula la distancia de Cook de Los n datos
#Gráfico auxiliar:
plot(cooksdistance, type="h", main="Distancia de Cook", ylab="Distancia")</pre>
```

```
de Cook")
abline(h = 1, col="red") # Límite comúnmente usado
```

Distancia de Cook

#Calcula la DfBeta de los n datos para cada βj

abline(h = c(-1, 1), col="red") # Límites comunes

ylab="DfBetas")

```
#Cuenta e identifica cuántos datos atípicos hay:
puntos_influyentes = which(cooksdistance > 1)

#Muestra Las observaciones influyentes
Datos[puntos_influyentes, ]

## [1] Fuerza Potencia Temperatura
## [4] Tiempo Resistencia
residuos_estandarizados
## <0 rows> (or 0-length row.names)

## 2. DfBetas

dfbetas_values = dfbetas(modelo)
```

plot(dfbetas_values[, 1], type="h", main='DfBetas para el coeficiente 0',

DfBetas para el coeficiente 0


```
#Cuenta e identifica cuántos datos atípicos hay:
puntos_influyentes = which(abs(dfbetas_values[, 2]) > 1)

#Muestra Las observaciones influyentes
Datos[puntos_influyentes, ]

## [1] Fuerza Potencia Temperatura
## [4] Tiempo Resistencia
residuos_estandarizados
## <0 rows> (or 0-length row.names)

plot(dfbetas_values[, 2], type="h", main='DfBetas para el coeficiente 1',
ylab="DfBetas")
abline(h = c(-1, 1), col="red") # Límites comunes
```

DfBetas para el coeficiente 1

DfBetas para el coeficiente 2


```
#Cuenta e identifica cuántos datos atípicos hay:
puntos_influyentes = which(abs(dfbetas_values[, 2]) > 1)

#Muestra Las observaciones influyentes
Datos[puntos_influyentes,]

## [1] Fuerza Potencia Temperatura
## [4] Tiempo Resistencia
residuos_estandarizados
## <0 rows> (or 0-length row.names)
```

3. Resúmenes de los datos atípicos e influyentes

1. Influence measures

Calculan: • Distancia de leverange (hii) • Distancia de Cook • DfBetas

```
influencia = influence.measures(modelo)
#Calcula Las medidas de Los n datos

#Resumen de datos influyentes:
summary(influencia)

## Potentially influential observations of
## lm(formula = Resistencia ~ Potencia + Temperatura, data = datos) :
##
## dfb.1_ dfb.Ptnc dfb.Tmpr dffit cov.r cook.d hat
## 8 0.71 -0.55 -0.55 -0.92 0.65_* 0.24 0.12
```

```
## 19 -0.04
              0.07
                       0.00
                                -0.08
                                               0.00
                                                       0.20
                                       1.40_*
                       -0.25
## 21
       0.22
              0.00
                                 0.27
                                       1.35 *
                                               0.03
                                                       0.20
                                -0.09
## 22
      0.07
              0.00
                       -0.09
                                       1.39_*
                                               0.00
                                                       0.20
```

Detecta los datos con posible influencia

2. Influence Plot

Calcula: • Distancia de leverange (hii) • Distancia de Cook • Residuos estandarizados

```
library(car)
influencePlot(modelo)
```



```
## StudRes Hat CookD

## 8 -2.535832 0.11666667 0.235696235

## 12 2.043589 0.11666667 0.164507739

## 19 -0.159511 0.20000000 0.002199712

## 20 1.154355 0.20000000 0.109693544

## 29 -2.216952 0.033333333 0.049338917

# grafica los residuos con estandarización

#extrema, el laverage y la distancia de cook

#Muestra las observaciones influyentes
```

3. Plot del modelo

Gráfica y detecta atípicos o influyentes en los gráficos: • Residuos vs valores ajustados • Qaplot de los residuos • Residuos estandarizados vs valores ajustados • Residuos estandarizados vs Distancia de Leverage y de Cook

```
par(mfrow=c(2, 2))
plot(modelo, col='blue', pch=19)
```


Los datos atípicos e influyentes que tenemos en as distintas pruebas son los siguientes:

Datos atípicos

Estandarización extrema de los residuos

Se buscaron datos atípicos cuyos residuos están a más de 3 dessviaciones estándar pero no encontró ni uno.

Distancia de Leverage

Usando que los datos estuvieran a más de 1.99*media se encontraron 4 datos atípicos siendo estos los datos cuyos índices son 19, 20, 21 y 22

Datos influyentes

Distancia de cook

No se encontraron datos cuya distancia de cook fuera mayor a 1 sin embargo, el dato con el úndice 8 es el que tiene mayor distancia de cook

DfBetas

Con la prueba de DfBetas en cada coeficiente no se encontraron datos influyentes cuyos dfbetas_values fueran mayores a 1 sin embargo, en la gráfica de cada coeficiente el dato con el índice 8 es el que tiene mayor valor de DfBetas

Datos atípicos e influyentes

Influence Measures

Según esta prueba los datos POTENCIALMENTE influyentes son los datos 8, 19, 21, 22, los últimos 2 se debieron por la distancia de leverage y el dato 8 se debió por la distancia de cook y las dfbetas

Influence Plot

Con esta gráfica y prueba los posibles datos influyentes fueron los datos 8, 12, 19, 20, 29. Los datos 8, 12, 29 se debieron a la estandarización extrema de los residuos pero la razón por la que nos salieron previamente fue porque se bajó el umbral de desviaciones estándar a 2, por lo que fue más flexible en ese sentido y los datos 19 y 20 se debieron a la distancia de Leverage

Conclusión: Parece que los datos atípicos e influyenes que más se repiten son justamente los de la prueba de Influence Measures ya que dicta posibles datos influeyentes en nuestro modelo