Scheme Core Typing Relation

October 24, 2021

The Scheme Core static semantics is given as a three-place relation between a variable typing context Γ , expression e, and type T, written $\Gamma \vdash e : T$, pronounced "under Γ , e has type T". Formally, the static semantics is taken to be the smallest relation closed under the following rules:

Variables and values

$$\frac{\text{T-num}}{\Gamma \vdash n : \text{num}} \qquad \frac{\text{T-false}}{\Gamma \vdash false : \text{bool}} \qquad \frac{\text{T-true}}{\Gamma \vdash true : \text{bool}} \qquad \frac{\frac{\text{T-var}}{(x : T) \in \Gamma}}{\Gamma \vdash x : T}$$

Unary operators

$$\frac{\Gamma\text{-NOT}}{\Gamma \vdash e : \text{bool}}$$
$$\frac{\Gamma \vdash (\text{not } e) : \text{bool}}{\Gamma \vdash (\text{not } e) : \text{bool}}$$

Binary operators

$$\frac{\Gamma\text{-BINOP-ARITH}}{\Gamma \vdash e_1 : \text{num}} \quad \Gamma \vdash e_2 : \text{num} \quad b \in \{+, *, -, /\}}{\Gamma \vdash (b e_1 e_2) : \text{num}}$$

$$\frac{\Gamma\text{-BINOP-COMP}}{\Gamma \vdash e_1 : \text{num}} \quad \Gamma \vdash e_2 : \text{num} \quad b \in \{=, <\}}{\Gamma \vdash (b e_1 e_2) : \text{bool}}$$

Let expressions

$$\frac{\Gamma_{\text{-LET}}}{\Gamma \vdash e_1 : T_1} \frac{(\Gamma, x : T_1) \vdash e_2 : T_2}{\Gamma \vdash (\text{let } x e_1 e_2) : T_2}$$

${\bf Conditionals}$