CMI - 2020-2021: DS-Analysis Calculus-2 Infinite series

We look at infinite series.

Definition 1 Let $a_n \in \mathbb{R}, n \geq 1$. Write

$$s_n = \sum_{i=1}^n a_i, \ n = 1, 2, 3, \cdots$$

Note that $\{s_n : n = 1, 2, \dots\}$ is the sequence of partial sums. If $\{s_n\}$ converges, and the limit is s, we say that the series $\sum_{n=1}^{\infty} a_n$ converges, and the limit s is called sum of the series. We will denote this by $\sum_{n=1}^{\infty} a_n = s$.

If $\{s_n\}$ does not converge, we say that the series $\sum_{n=1}^{\infty} a_n$ diverges.

Note: The following are easily proved.

- (i) If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- (ii) If $\sum_{n=1}^{\infty} a_n = s$, and $\sum_{n=1}^{\infty} b_n = t$, then $\sum_{n=1}^{\infty} a_n + b_n = s + t$; also $\sum_{n=1}^{\infty} ca_n = cs$, for any constant $c \in \mathbb{R}$.

Some examples:

- 1) Let |r| < 1. Then the geometric series $\sum_{n=0}^{\infty} r^n = \frac{1}{(1-r)}$.
- If $|r| \geq 1$, then the series does not converge, because $\{r_n\}$ does not converge to 0.
- 2) The converse of (i) above is not true. Take $a_n = 1/n$, $n \ge 1$. Then $a_n \to 0$, but $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- 3) $\sum_{n=1}^{\infty} \frac{1}{n^k} < \infty$, for $k = 2, 3, \dots$; that is, $\sum_{n=1}^{\infty} \frac{1}{n^k}$ is convergent for $k = 2, 3, \dots$.
- 4) Let $x \in \mathbb{R}$ be fixed. Then $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$. This is an example of a power series expansion.

Some general results on infinite series are discussed below.

Consider a series with non-negative terms, that is, $a_n \geq 0$ for all n. Then clearly the sequence $\{s_n\}$ of partial sums is an increasing sequence of non-negative numbers. If $\{s_n\}$ is bounded above, we know that $\lim_{n\to\infty} s_n =$

 $\sup\{s_n: n=1,2,\cdots\}$. If $\{s_n\}$ is not bounded above, then $s_n \to +\infty$, that is, $\{s_n\}$ doesn't converge. Thus we have proved the following result.

Theorem 2 Let $a_n \ge 0$, $n = 1, 2, 3, \dots$; and $s_n = a_1 + a_2 + \dots + a_n$, $n \ge 1$, be the sequence of partial sums. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence $\{s_n\}$ is bounded above. If $\{s_n\}$ is bounded above, then

$$\sum_{n=1}^{\infty} a_n = \sup\{s_n : n = 1, 2, 3, \dots\}.$$

Definition 3 We say that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely if the series $\sum_{n=1}^{\infty} |a_n|$ converges.

We give below two results without proofs.

Theorem 4 If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then the series $\sum_{n=1}^{\infty} a_n$ also converges; that is, absolute convergence implies convergence.

While the result above may not be surprising, the next one, due to Leibniz, may be somewhat surprising.

Theorem 5 Let $\sum_{n=1}^{\infty} a_n$ be a series such that

- (a) $\lim_{n\to\infty} a_n = 0$;
- (b) $|a_{n+1}| \le |a_n|, n \ge 1$;
- (c) the terms a_n are alternately positive and negative.

Then the series $\sum_{n=1}^{\infty} a_n$ is convergent.

To get an idea of the proof, without loss of generality, let $a_1 > 0$. Put $s_n = \sum_{k=1}^n a_k$, $n \ge 1$. Then note that

$$s_2 < s_4 < s_6 < \dots < s_7 < s_5 < s_3 < s_1$$
.

Therefore $\{s_{2k+1}\}$ is a decreasing sequence, while $\{s_{2k}\}$ is an increasing sequence. Both the sequences are in the bounded interval $[s_2, s_1]$. Hence both the sequences converge. Since $a_n \to 0$, it follows that

$$\lim_{k \to \infty} s_{2k+1} = \lim_{k \to \infty} s_{2k} = \sum_{n=1}^{\infty} a_n.$$

Example 1: The series $\sum_{n=1}^{\infty} (-1)^{(n+1)}/n$ is convergent by the above theorem. But it is not absolutely convergent. (Note: It turns out that $\sum_{n=1}^{\infty} (-1)^{(n+1)}/n = \log 2$.)

We now discuss some useful tests for convergence of series. Comparison test given below is the most commonly used.

Theorem 6 (Comparison test) (i) Let $a_n \geq 0$, $b_n \geq 0$ for $n = 1, 2, 3, \cdots$ Suppose that there exist constant C > 0, such that $a_n \leq Cb_n$ for all $n \geq 1$. Then convergence of $\sum_{n=1}^{\infty} b_n$ implies the convergence of $\sum_{n=1}^{\infty} a_n$, and

$$\sum_{n=1}^{\infty} a_n \leq C \sum_{n=1}^{\infty} b_n.$$

(ii) Assume that $a_n > 0$, $b_n > 0$ for all n. Suppose that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \beta \neq 0.$$

Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

(iii) If $\beta = 0$ in (ii) above, we can conclude only that convergence of $\sum_{n=1}^{\infty} b_n$ implies convergence of $\sum_{n=1}^{\infty} a_n$.

Assertion (i) of the above theorem follows from Theorem 2; assertions (ii) and (iii) can be derived using (i).

Exercise: Give examples to illustrate assertions (i)-(iii) of Theorem 6.

Theorem 7 (Ratio test) Let $a_n > 0$, $n = 1, 2, 3, \cdots$

(i) Suppose there exist $\beta < 1, N \ge 1$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le \beta$$
, for all $n \ge N$.

Then $\sum_{n=1}^{\infty} a_n$ converges.

(ii) Suppose there exist $\beta > 1$, $N \ge 1$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge \beta$$
, for all $n \ge N$.

Then $\sum_{n=1}^{\infty} a_n$ diverges.

Assertion (i) can be derived using comparison test without much difficulty by showing $|a_{N+k}| \leq a_N \beta^k$, $k \geq 1$. Under the hypothesis of assertion (ii), it easily follows that a_n can not converge to 0, and hence the series diverges.

Exercise: Suppose $\lim_{n\to\infty} |(a_{n+1}/a_n)| = \gamma$. If $\gamma < 1$, show that $\sum_{n=1}^{\infty} a_n$ converges. If $\gamma > 1$ show that the series diverges. (In some books this exercise may be given as the ratio test.)

Example 2: Consider $\sum_{n=1}^{\infty} n/(2^n)$. Clearly $\lim_{n\to\infty} |(a_{n+1}/a_n)| = \frac{1}{2}$. So, taking $\beta = 3/4$ in ratio test, it follows that this series converges.

Example 3: Consider $\sum_{n=1}^{\infty} n! a^n$, where 0 < a < 1. Clearly this series diverges.

Theorem 8 (Root test) Let $a_n > 0$, $n = 1, 2, 3, \dots$ Suppose

$$\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = \beta$$

- (i) If $\beta < 1$ then $\sum_{n=1}^{\infty} a_n$ is convergent. (ii) If $\beta > 1$ then $\sum_{n=1}^{\infty} a_n$ is divergent.

For proving assertion (i), let $x \in (\beta, 1)$. By definition of β , clearly $|a_n| < x^n$. Use comparison test to get the desired result.

To prove assertion (ii), as $\beta > 1$, note that $a_n > 1$ for infinitely many n. So a_n can not converge to 0, implying the divergence of the series.

Example 4: Using root test show that $\sum_{n=2}^{\infty} (1/\log n)^n$ converges.

Example 5: Consider $\sum_{n=1}^{\infty} (n^n)/(2^n)$. In this case $(a_n)^{\frac{1}{n}} = n/2 \to +\infty$. Hence the series diverges.