Introduction

Rank&Select Plan

Definition

LOUDS

Implementation First attempt

Second try

traversal

Conclusion

Proving tree algorithms for succinct data structures

Reynald Affeldt ¹ Jacques Garrigue ²
Xuanrui Qi ³ Kazunari Tanaka ²

¹AIST

²Nagoya University

³Tufts University

November 22, 2018

https://github.com/affeldt-aist/succinct

Introduction

Plan
Definitions

LOUDS

Implementatio First attempt Second try

Structura traversal

Conclusion

Succinct Data Structures

- Representation optimized for both time and space
- "Compression without need to decompress"
- Much used for Big Data
- Application examples
 - Compression for Data Mining
 - Google's Japanese IME

Introduction

Rank&Select Plan

Definition

LOUE

Implementation First attempt Second try

traversal

6 1 :

Rank and Select

To allow fast access, two primitive functions are heavily optimized. They can be computed in constant time.

• rank(i) = number of 1's up to position i

• select(i) = position of the i^{th} 1: rank(select(i)) = i

bitstring	100	01	0100	111	0 0100	1101	0000	1111	0100	1001	1001	0100	0100	0101	0101	10	
indices	0		4	8	12	16	20	24	28	32	36	40	44	48	52	n-2	= 56
select(2) = 4						elect(\ 17) =	= 36		sele	ct(26	5) = 5	57				

Proved implementation in [Tanaka A., Affeldt, Garrigue 2016]

Today's story

roduction

Rank&Select Plan Definitions

LOUD

Implementation First attempt Second try

Structural traversal

Conclusion

Trees in Succinct Data Structures

Featuring two views

As data Efficient encoding of trees using rank and select (this talk)

As tool Implementation of dynamic succinct data structures using red-black trees (next talk)

- Both are proved is CoQ/SSREFLECT
- They can be combined together

Definitions

First attempt Second try

Basic CoQ definitions

rank is easily defined. select is its (minimal) inverse.

```
Variables (T : eqType) (b : T) (n : nat).
 Definition rank i s := count_mem b (take i s).
  Definition Rank (i : nat) (B : n.-tuple T) :=
    \#[set k : [1,n] | (k \le i) \&\& (tacc B k == b)]|.
 Lemma select_spec (i : nat) (B : n.-tuple T) :
    exists k, ((k \le n) \&\& (Rank b k B == i)) \mid \mid
              (k == n.+1) \&\& (count mem b B < i).
 Definition Select i (B : n.-tuple T) :=
    ex_minn (select_spec i B).
pred s y = last b up to y, succ s y = first b from y on.
 Definition pred s y := select (rank y s) s.
 Definition succ s y := select (rank y.-1 s).+1 s.
```

Getting the indexing right is a nightmare.

Here indices start from 1. but there is no fixed convention.

Rank&Selection

LOUDS

Implementation First attempt Second try

Structural traversal

. . .

L.O.U.D.S.

Level-Order Unary Degree Sequence [Navarro 2016, Chapter 8]

- Unary coding of node arities, put in breadth-first order
- Each node is arity 1's followed by a 0
- The structure of a tree uses just 2n + 2 bits
- Useful for dictionaries (Google Japanese IME)

Implementation

First attempt Second try

Implementation of primitives

We define an isomorphism between valid paths in the tree, and valid positions in the LOUDS.

The basic operations are

- Position of the root (2 with virtual root, counting from 0)
- Position of the ith child of a node
- Position of its parent
- Number of children

```
Variable B : seq bool.
Definition LOUDS child v i :=
  select false (rank true (v + i) B).+1 B.
Definition LOUDS_parent v :=
  pred false B (select true (rank false v B) B).
Definition LOUDS_children v :=
  succ false B v.+1 - v.+1.
```

Rank&Select Plan

LOUDS Implementation

First attempt Second try

Structural traversal

Conclusion

First attempt

 $count_smaller\ t\ p = number\ of\ nodes\ appearing\ before\ the$ path p in breadth first order.

```
Definition LOUDS_position (t : tree) (p : seg nat) :=
  (count_smaller t p + (count_smaller t (rcons p 0)).-1).+2.
(* number of 0's number of 1's virtual root *)
Definition LOUDS subtree B (p : seg nat) :=
  foldl (LOUDS child B) 2 p.
Theorem LOUDS positionE t (p : seg nat) :
  let B := LOUDS t in valid_position t p ->
  LOUDS_position t p = LOUDS_subtree B p.
Theorem LOUDS_parentE t (p : seg nat) x :
  let B := LOUDS t in valid_position t (rcons p x) ->
  LOUDS parent B (LOUDS position t (rcons p x)) = LOUDS position t p.
Theorem LOUDS childrenE t (p : seg nat) :
  let B := LOUDS t in valid_position t p ->
  children t p = LOUDS_children B (LOUDS_position t p).
```

First attempt

First attempt Second try

Various problems

- Breadth first traversal does not follow the tree structure
- Cannot use structural induction
- No natural correspondence to use in proofs
- Oh, the indices!

As a result

- LOUDS related proofs take more than 800 lines
- Many lemmas have proofs longer than 50 line
- The should be a better approach...

Introduction

Plan
Definitions

LOUDS

Implementation First attempt Second try

Structural traversal

Conclusion

Second try

- Introduce traversal up to a path
- For easy induction, work on forests rather than trees
- A generating forest need not be on the same level!

Introduction

Rank&Select Plan Definitions

LOUD

Implementation First attempt Second try

Structural traversal

Conclusio

```
Traversal and Remainder
```

```
Variable (A B : Type) (f : tree A -> B).
(* Traversal of nodes before path p *)
Fixpoint lo_traversal_lt (w : forest A) (p : seq nat) : seq B.
(* Generating forest for nodes following path p *)
Fixpoint lo traversal res (w : forest A) (p : seg nat) : forest A.
(* Relation between them *)
Lemma lo_traversal_lt_cat w p1 p2 :
  lo_traversal_lt w (p1 ++ p2) =
  lo_traversal_lt w p1 ++ lo_traversal_lt (lo_traversal_res w p1) p2.
(* Complete traversals are all equal *)
Theorem lo_traversal_lt_max t p :
  size p >= height t ->
  lo_traversal_lt [:: t] p = lo_traversal_lt [:: t] (nseq (height t) 0).
```

All paths lead to Rome!

Rank&Select
Plan
Definitions

Implementation
First attempt
Second try

Structural traversal

Conclusion

Indices and Positions in LOUDS

```
(* LOUDS_lt is a path-indexed traversal *)
Definition LOUDS lt w p := flatten
  (lo_traversal_lt (node_description \o children_of_node) w p).
(* This corresponds to the standard definition of LOUDS *)
Theorem LOUDS_lt_ok (t : tree A) p :
  size p >= height t -> LOUDS t = true :: false :: LOUDS_lt [:: t] p.
(* Position of a node in the LOUDS *)
Definition LOUDS position w p := size (LOUDS lt w p).
(* Index of a node in level-order *)
Definition LOUDS index w p := size (lo traversal lt id w p).
Lemma LOUDS position select w p p' :
 valid_position (head dummy w) p ->
 LOUDS_position w p =
  select false (LOUDS index w p) (LOUDS lt w (p ++ p')).
Lemma LOUDS_index_rank w p p' n :
 valid_position (head dummy w) (rcons p n) ->
 LOUDS_index w (rcons p n) =
 size w + rank true (LOUDS_position w p + n) (LOUDS_1t w (p ++ n : p')).
```

12 / 15

Introduction

Rank&Select Plan Definitions

LOUD

Implementation First attempt Second try

Structural

Conclusion

Properties proved

```
Theorem LOUDS_childE (t : tree A) (p p' : seq nat) x :
  let B := LOUDS_1t [:: t] (rcons p x ++ p') in
  valid_position t (rcons p x) ->
  LOUDS_child B (LOUDS_position [:: t] p) x =
  LOUDS_position [:: t] (rcons p x).
Theorem LOUDS_parentE (t : tree A) p p' x :
  let B := LOUDS_lt [:: t] (rcons p x ++ p') in
  valid_position t (rcons p x) ->
  LOUDS_parent B (LOUDS_position [:: t] (rcons p x)) =
  LOUDS_position [:: t] p.
Theorem LOUDS_childrenE (t : tree A) (p p' : seq nat) :
  let B := LOUDS_lt [:: t] (rcons p 0 ++ p') in
  valid position t p ->
  children t p = LOUDS_children B (LOUDS_position [:: t] p).
```

Introduction

Plan

LOUD

Implementation First attempt Second try

Structural traversal

Conclusion

Bonus: A Structural Traversal

Breadth-first traversal uses induction on the height:

```
Variable f : tree A -> B.
Fixpoint lo_traversal'' n (1 : forest A) :=
   if n is n'.+1 then
     map f l ++ lo_traversal'' f n' (children_of_forest l)
   else [::].
Definition lo_traversal t := lo_traversal'' (height t) [:: t].
```

We can avoid that by doing the traversal in 2 steps; 1st, build a list of levels, and then catenate them.

```
Fixpoint level_traversal t :=
  let: Node a cl := t in
  [:: f t] :: foldr (fun t1 => merge1 (level_traversal t1)) nil cl.

Fixpoint level_traversal_cat (t : tree A) ss {struct t} :=
  let: (s, ss) :=
   if ss is s :: ss then (s, ss) else (nil, nil) in
  let: Node a cl := t in
  (f t :: s) :: foldr level_traversal_cat ss cl.

Definition lo_traversal_cat t := flatten (level_traversal_cat t nil).
```

level_traversal is structural, but its complexity is bad.

Introduction

Rank&Select Plan Definitions

LOUD

Implementation First attempt Second try

Structural traversal

Conclusion

Conclusion

Advantages of the new approach

- All proofs are by induction on paths
- Common lemmas arise naturally
- Down to about 500 lines in total, long proofs about 25

Remaining problems

- There are still long lemmas (lo_traversal_lt_max, ...)
- Paths all over the place

Future work

• Can we apply that to other breadth-first traversals

Proofs

https://github.com/affeldt-aist/succinct