IE5202: Applied Forecasting Methods

Chen Nan

January 15, 2024

1 Module Outline

Lecture:	E3-06-05, 6:00-9:00pm, Monday (Blended)		
Instructor:	Associate Professor Chen Nan, E1-05-20		
Contact:	Phone: 65167914, Email: isecn@nus.edu.sg		
Office Hours:	By appointment		
Textbook:	Forecasting, Time Series, and Regression, by Bowerman, O'Connell, and Koehler		
References:	Linear Regression Analysis, by George A. F. Seber, Alan J. Lee		
	Time Series Analysis, by George E. P. Box, Gwilym M. Jenkins		
	Gregory C. Reinsel		
Prerequisites:	IE5002, IE6002 or equivalent, programming		
Grading:	Course Project: 70%		
	Project 0: 10%		
	Project 1: 30%		
	Project 2: 30%		
	In Class Quiz: 30%		
	Quiz 1: 10%		
	Quiz 2: 10%		
	Quiz 3: 10%		
Course Description:	se Description: This module focuses on the theory and practice of forecasting me		
	ods. It discusses a few major categories of forecasting problems, and		
	corresponding techniques. Extensive hands on projects will be pro-		
	vided to practice the skills in solving real life problems.		
Important Dates:	Drop without penalty deadlineJan 28, 2024		
	Drop without "F" grade deadline Mar 03, 2024		

2 Tentative Syllabus

Date	Topics	Remark
Jan 15, 2024	Module logistics, introduction, and reviews	
Jan 22, 2024	Regression Analysis	Online Videos
Jan 29, 2024	Interaction and Model Formulation	
Feb $05, 2024$	Model checking and diagnosis	
Feb 12, 2024	Public Holiday	No class
Feb 19, 2024	Model Selection, Case studies	Quiz 1
Feb 24, 2024	Recess Week	No class
Mar $04, 2024$	Computation and mixed effects model	
Mar $11, 2024$	Seasonality, regression on time	
Mar 18, 2024	Exponential smoothing	
Mar $25, 2024$	Autocorrelation and ARMA	Quiz 2
Apr $01, 2024$	Seasonal ARIMA Model	
Apr $08, 2024$	Neural networks for time series	
Apr 15, 2024	Forecasting spatial data	Quiz 3

3 Project Details

The projects are designed to assess your understandings of the theories and practice your skills in solving real problems. The dataset and background information of the project will be provided. For each project, the submission should include the following items

- A report not more than 10 pages with 1.5 spacing (soft copies), which documents the methods using, main findings, and interpretations. Codes and software printouts should NOT be included in the report. Useful graphs and tables should be included, to make the report self-contained (should not refer to your notebook or source codes).
- Complete codes used for the analysis, with reasonable details of comments (in Jupyter Notebook *.ipynb format)
- Forecasting results on the test dataset in a "csv" file.
- Please zip all your files, and name the submission file as STUDENTID.zip.

Your project is graded based on your methods, reports, and also the forecasting accuracies.