CLAIMS

What is claimed is:

1	1. A method for evaluating and outputting a final clustering solution for		
2	a plurality of multi-dimensional data records, said data records having multiple,		
3	heterogeneous feature spaces represented by feature vectors, said method		
4	comprising:		
5	defining a distortion between two feature vectors as a weighted sum of		
6	distortion measures on components of said feature vector;		
7	clustering said multi-dimensional data records into k-clusters using a		
8	"convex programming" formulation; and		
9	selecting feature weights of said feature vectors.		
1	2. The method according to claim 1, wherein said selecting of feature		
2	weights are optimized by an "objective" function to produce said solution of a		
3	final clustering that simultaneously minimizes average intra-cluster dispersion and		
4	maximizes average inter-cluster dispersion along all said feature spaces.		
1	3. The method according to claim 1, wherein said clustering includes		

initially applying a local minima of said clustering.

2

3

4

- 1 4. The method of claim 1, wherein said clustering comprises a k-means clustering algorithm.
- The method of claim 2, wherein said minimizing distortion of individual clusters includes taking said data records and iteratively determining *Voronoi* partitions until said "objective" function, between two successive iterations, is less than a specified threshold.
- 1 6. The method of claim 1, wherein said clustering comprises analyzing word
 2 data, and said feature vectors comprise multiple-word frequencies of said data
 3 records.
 - 7. The method of claim 1, wherein said clustering comprises analyzing data records having numerical and categorical attributes, and said feature vectors comprise linearly-scaled numerical attributes and each q-ary categorical feature using a 1-in-q representation of said data records.
- 8. A method for evaluating and outputting a clustering solution for a plurality of multi-dimensional data records, said data records having multiple, heterogeneous feature spaces represented by feature vectors, said method
- 4 comprising:
- 5 defining a distortion between two said feature vectors as a weighted sum

of distortion measures on components of said feature vector;

clustering said multi-dimensional data records into k-clusters using a "convex programming" formulation of a generalized k-means clustering function; and

selecting optimal feature weights of said feature vectors by an "objective" function to produce said solution of a final clustering that simultaneously minimizes average intra-cluster dispersion and maximizes average inter-cluster dispersion along all said feature spaces.

- 9. The method of claim 8, wherein said clustering includes initially applying a local minima of said clustering.
- 10. The method of claim 8, wherein said minimizing distortion of individual clusters includes taking said data records and iteratively determining *Voronoi* partitions until said "objective" function, between two successive iterations, is less than a specified threshold.
- 11. The method of claim 8, wherein said clustering comprises analyzing word data, and said feature vectors comprise multiple-word frequencies of said data records.

4j
O.
þ
إيا
ij.
4J
Q1
æ
Ľ,
F.
Ħ
<u>_</u> 1

1	12.	The method of claim 8, wherein said clustering comprises analyzing data
2	records	s having numerical and categorical attributes, and said feature vectors
3	compri	se linearly-scaled numerical attributes and each q-ary categorical feature
4	using a	1-in-q representation of said data records.

- 13. A computer system for data mining and outputting a final clustering solution, wherein said system includes a memory for storing a database having a plurality of multi-dimensional data records, each having multiple, heterogeneous feature spaces represented by feature vectors, said system including a processor for executing instructions comprising:
- defining a distortion between two feature vectors as a weighted sum of distortion measures on components of said feature vector;
- clustering said multi-dimensional data records into k-clusters using a "convex programming" formulation; and selecting feature weights of said feature vectors.
- 14. The system of claim 13, wherein said instruction for selecting of said feature weights are optimized by implementing an "objective" function to produce said solution of a final clustering that simultaneously minimizes average intra-cluster dispersion and maximizes average inter-cluster dispersion along all said feature spaces.

2

1

2

3

4

5

- 1 15. The system of claim 13, wherein said instruction of said clustering includes an instruction for initially applying a local minima of said clustering.
- 1 16. The system of claim 13, wherein said instruction for clustering includes instructions for implementing a k-means clustering algorithm.
- 1 17. The system of claim 14, wherein said instruction for minimizing
 2 distortion of individual clusters includes taking said data records and iteratively
 3 determining *Voronoi* partitions until said "objective" function, between two
 4 successive iterations, is less than a specified threshold.
 - 18. The system of claim 13, wherein said instruction for clustering includes instructions for analyzing word data.
- 1 19. The system of claim 13, wherein said instruction for clustering includes 2 instructions for analyzing data records having numerical and categorical attributes.
 - 20. A program storage device readable by machine, tangibly embodying a program of instructions executable by said machine to perform a method for evaluating and outputting a final clustering solution from a set of data records having multiple, heterogeneous feature spaces represented as feature vectors, said method comprising:

6	defining a distortion between two feature vectors as a weighted sum of		
7	distortion measures on components of said feature vector;		
8	clustering said multi-dimensional data records into k-clusters using a		
9	"convex programming" formulation; and		
10	selecting feature weights of said feature vectors.		
1	21. The device of claim 20, wherein said selecting of feature weights are		
2	optimized by an "objective" function to produce said solution of a final clustering		
3	that simultaneously minimizes average intra-cluster dispersion and maximizes		
4	average inter-cluster dispersion along all said feature spaces.		
1	22. The device of claim 20, wherein said clustering includes initially		
2	applying a local minima of said clustering.		
1	23. The device of claim 20, wherein said clustering comprises a k-means		
2	clustering algorithm.		

- 1 24. The device of claim 21, wherein said minimizing distortion of
 2 individual clusters includes taking said data records and iteratively determining
 3 *Voronoi* partitions until said "objective" function, between two successive
- 4 iterations, is less than a specified threshold.

- 1 25. The device of claim 20, wherein said clustering comprises analyzing 2 word data, and said feature vectors comprise multiple-word frequencies of said 3 data records.
- The device of claim 20, wherein said clustering comprises analyzing
 data records having numerical and categorical attributes, and said feature vectors
 comprise linearly-scaled numerical attributes and each q-ary categorical feature
 using a 1-in-q representation of said data records.