Replication of results

This section describes the step wise procedure to do topology optimization of C-clip using Altair OptiStruct 14.0. The C-clip is fixed at left end and loads are applied in 'z' direction at inner side of right end. The magnitude of load is 100 N and applied at last five nodes of both top side and bottom side. The optimization problem is defined as minimizing the compliance along with a volume constraint, i.e., allowable volume is 50% of the total volume. The design domain and non-design domain are differentiated with orange and gray colors respectively.

Importing the geometry file:
Go to File → Import → Geometry → choose the geometry file (ROR-Geometry.stp) → Import. Rename it as 'Design'. Figure 1 shows the geometry after the import.

Figure 1: Geometry without nondesign domain and no loads

- Meshing the geometry: Click on 3D \to tetramesh \to choose the component \to click on mesh \to return.
- Creating component, material and property and assigning it to the geometry:

Creating a material: Materials \rightarrow give mat name = 'steel' \rightarrow choose type = 'isotropic' \rightarrow card image = 'MAT1' \rightarrow then click on create \rightarrow return. Creating property: Property \rightarrow give prop name = 'Design' \rightarrow type = '3D' \rightarrow card image = 'PSOLID' \rightarrow material = 'steel' \rightarrow click on create \rightarrow return. Repeat this procedure for creating 'Non-Design' property by giving prop name as Non-Design.

Creating a component : Component \to comp name = 'Non-design' \to property \to 'Non-Design' \to create \to return.

Assigning elements to Non-design component: Mesh \rightarrow Organize \rightarrow Elements \rightarrow To Component \rightarrow choose elements from the components \rightarrow dest component = 'Non-design' \rightarrow move \rightarrow return.

Assigning properties to Design component: Components \rightarrow click Property \rightarrow choose Design \rightarrow OK; click Material \rightarrow choose steel \rightarrow OK.

• Creating and applying the loads:

Creating the displacement BC's: Load Collecters \rightarrow load colname = 'Fixed' \rightarrow create \rightarrow return. Repeat the same procedure with load colname = 'Loads' to create load.

Applying the displacement BC's: Make sure that current select load is 'Fixed', other wise right click on it and choose 'Make Current'. To apply displacement constraints click on Analysis \rightarrow constraints \rightarrow nodes \rightarrow select the nodes \rightarrow tick on dof1 to dof6 \rightarrow create \rightarrow return.

Applying the force BC's: Make the 'Loads' as the current collecter. Analysis \rightarrow forces \rightarrow select nodes \rightarrow choose = 'constant components' \rightarrow give X, Y, Z components of force \rightarrow create \rightarrow return. Figure 2 shows the geometry includes the non-design domain after applying the boundary conditions.

Figure 2: Geometry with nondesign domain and loads

• Creating loadsteps:

Analysis \rightarrow loadsteps \rightarrow name = 'LS' \rightarrow choose SPC = 'Fixed' and LOAD = 'Loads' \rightarrow type = 'linear static' \rightarrow create \rightarrow return.

• Setting optimization paramets:

Analysis \rightarrow optimization \rightarrow topology \rightarrow create \rightarrow desvar = 'TopOpt' \rightarrow type = 'PSOLID' \rightarrow props \rightarrow Design \rightarrow select \rightarrow create \rightarrow return. responses \rightarrow response name = 'volfrac' \rightarrow response type \rightarrow choose volfrac \rightarrow create \rightarrow return. Repeat this to create another response, i.e, compliance.

dconstraints \rightarrow constraint = 'volcon' \rightarrow tick on upper bound \rightarrow give the volume fraction value as $0.5 \rightarrow$ response = 'volfrac' \rightarrow create \rightarrow return. objective \rightarrow choose min \rightarrow response = 'compliance' \rightarrow loadsteps \rightarrow LS \rightarrow create \rightarrow return \rightarrow return.

• Running the OptiStruct:

Analysis \to Optistruct \to run options = 'optimization' \to click on Optistruct.

• Viewing results:

Analysis \rightarrow OptiStruct \rightarrow HyperView. This opens HyperView software.

To view results, click Iteration to last number using the drag and drop bar, then go to Iso \rightarrow current value = '0.6' \rightarrow Apply. Figure 3 shows the optimal design obtained for the boundary conditions.

Figure 3: Optimal design obtained for density threshold value of 0.6

Figure 4: Displacement contours of the optimal design

Figure 5: Stress contours of the optimal design