PESIT Department of Computer Science and Engineering

Simple Data Cube Example

Consider the following data that represents the availability of parts in warehouses and provided by particular suppliers.

Part	Location	Supplier
P1	A	S 1
P1	В	S2
P1	С	S3
P2	С	S4
P2	С	S4
P2	С	S5
P2	D	S4
P3	Е	S6

Data Dimensions

- 3 Parts (P1, P2, P3)
- 5 Locations (A, B, C, D, E)
- 6 suppliers (S1, S2, S3 S4, S5, S6)

For this data, the following cuboids can be computed:

Dimension of Cuboid	Dimensions Included	Number of cells
3–D Base Cuboid	Part, Location, Supplier	$3 \times 5 \times 6 = 90$
2–D Cuboids	Part, Location	$3 \times 5 = 15$
	Part, Supplier	3 x 6 = 18
	Location, Supplier	$5 \times 6 = 30$
1–D Cuboids	Part	3
	Location	5
	Supplier	6
0–D Apex Cuboid	None	1

Each of the cuboids will be shown in the subsequent pages. In each cuboid, cells that have a minimum count of 2 will be highlighted.

Apex Cuboid

Q

Base Cuboid

The cuboid is shown below in the form of slices by Part.

Part P1

	S1	S2	S3	S4	S5	S6
A	1					
В		1				
С			1			
D						
Е						

Part P2

	S1	S2	S3	S4	S5	S6
A						
В						
С				2	1	
D				1		
Е						

Part P3

	S1	S2	S3	S4	S5	S6
A						
В						
С						
D						
Е						1

As can be seen, only 1 out of the 90 cells has the minimum support count.

2-D Cuboids

Part, Location

	A	В	C	D	Е
P1	1	1	1		
P2			3	1	
P3					1

Part, Supplier

	S1	S2	S3	S4	S5	S6
P1	1	1	1			
P2				3		
P3						1

Location, Supplier

	S1	S2	S3	S4	S5	S6
A	1					
В		1				
С			1	2	1	
D				1		
Е						1

1-D Cuboids

Part

P1	P2	P3
3	4	1

Location

A	В	С	D	Е
1	1	4	1	1

Supplier

S1	S2	S3	S4	S5
1	1	1	3	1