1

Let S be a non-empty bounded subset of \mathbb{R} .

- (1.a) Prove that $\inf S \leq \sup S$.
- (1.b) What can you say about S if $\inf S = \sup S$.

 $\mathbf{2}$

Let A be a non-empty subset of \mathbb{R} which is bounded below and let

$$-A = \{-a : a \in A\}. \tag{1}$$

Prove that $\inf A = -\sup(-A)$.

3

Let S and T be two non-empty bounded subsets of $\mathbb R$ and let

- (3.a) [1.1.4 of Lebl 2023] Prove that if $S \subset T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
- (3.b) Prove that $\sup(S \cup T) = \max\{\sup(S), \sup(T)\}.$

4

Let $F \subset \mathbb{R}$ be a closed set bounded above. Prove that $\sup F \in F$.

5

Let's work with the vector space \mathbb{R}^n and A a non-empty subset of \mathbb{R}^n . Prove that A is open if and only if it can be written as the union of a family of open balls of the form

$$B_r(x) = \{ y \in \mathbb{R}^n : ||x - y||_2 < r \}.$$
 (2)

6

(6.a) Show that if a sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers converges to a, then the sequence $\{|a_n|\}_{n\in\mathbb{N}}$ converges to |a|.

(6.b) Show (via an example) that the converse is not true.

References

Lebl, Jiri (July 11, 2023). Basic Analysis I: Introduction to Real Analysis, Volume I. version 6.0. URL: https://www.jirka.org/ra/realanal.pdf.