

Nicholas Krämer

May 17, 2019

Institute for Numerical Simulation, University of Bonn

Outline

- 1. Gaussian Process Regression
- 2. Uncertainty Quantification and Inverse Problems
- 3. Emulators for Inverse Problems
- 4. Numerical Linear Algebra with Covariances

Gaussian Processes

Definition (Gaussian process)

A Gaussian process $Z \sim \text{GP}$ is a random field, for which any finite number of evaluations has multivariate Gaussian distribution.

- ► Generalisation of multivariate Gaussian distribution
- ▶ Uniquely defined by mean function $m = m(\cdot)$ and covariance function $k = k(\cdot, \cdot)$
- ▶ Write: $Z \sim GP(m, k)$

Gaussian Processes

Figure 1: Gaussian process (prior distribution) with constant mean.

- ▶ Goal: recover a function $f: \mathcal{X} \to \mathbb{R}$ from evaluations $f(\mathcal{X}_N) = (f(x_1), ..., f(x_N))$ at \mathcal{X}_N
- ► Condition law of GP on attaining measurements
- ► Result: $\hat{Z} \sim \text{GP}(m_f, k_f)$ with $m_f(x) = \sum_{i=1}^N c_i k(x, x_i)$
- ► Here, $k(\mathcal{X}_N, \mathcal{X}_N)c = f(\mathcal{X}_N)$.

Figure 2: Gaussian process prior distribution with constant mean (green), true function (black; dashed), observations.

Figure 3: Gaussian process posterior distribution (green), true function (black; dashed), observations.

Error estimates

- ▶ Use Matérn kernel $k_{\nu}(x,y) = \varphi_{\nu}(\|x-y\|), \varphi_{\nu}(s) \sim s^{\nu}K_{\nu}(s)$
- ▶ Repr. kernel Hilbert space $\mathcal{H}_k \cong H^{\nu+d/2}(\mathcal{X})$, $d = \dim(\mathcal{X})$
- Approximation order: $||f m_f||_{L^2} \lesssim h^{\nu + d/2}$
- h is fill distance of \mathcal{X}_N

Uncertainty Quantification and Inverse Problems

Uncertainty Quantification

- Goal: reduce uncertainty arising in computations (uncertain modelling, uncertain algorithms, ...)
- ► Inverse problem
- ► Given $\mathcal{G}: A \to Y$ and (noisy) measurements $y \in Y$, find $a \in A$ from

$$y = \mathcal{G}(a) + \eta, \quad \eta \sim \mathcal{N}(0, \sigma^2), \quad \sigma > 0$$

Inverse Problems: Differential Equation

Find $a \in [-1, 1]$ such that for

$$-\operatorname{div}(e^{1+0.5\sin(ax)}\nabla u(x))=1,\quad u(0)=u(1)=0$$

the measurements satisfy

$$u(1/3) = 1.1241, \quad u(1/2) = 1.34235, \quad u(2/3) = 1.87.$$

Bayesian Approach

- Knowledge is probability distribution
- Statistical estimators using that distribution

Figure 4: Bayesian answer to: "Which input parameter?"

Mathematically

- ▶ Prior distribution μ_0 on A
- Posterior distribution μ^{y} on A via Radon–Nikodym derivative

$$\frac{d\mu^{y}}{d\mu_{0}}(a) \propto e^{-\Phi(a)}, \quad \Phi(a) = \|y - \mathcal{G}(a)\|_{2}^{2}/(2\sigma^{2})$$

• Estimators: mean of μ^y , mode of μ^y , ...

EXPENSIVE

Emulators for Inverse Problems

Statistical Estimators

Quadrature for conditional mean estimator:

$$\hat{x}_{CM} = \int_{A} s d\mu^{y}(s) \approx \sum_{m=1}^{M} \omega_{m} \xi_{m} \frac{d\mu^{y}}{\mu_{0}}(\xi_{m})$$

- ► *Challenge:* evaluations of R.–N. derivative need evaluation of *G* which tends to be expensive
- lacktriangle Solution: use an approximation of ${\cal G}$
- Gaussian process: $m_{\mathcal{G}} \approx \mathcal{G}$

Approximate probability distributions

"New" posterior distribution via Radon-Nikodym derivative:

$$\frac{\mathrm{d}\mu_{\mathrm{N}}^{\mathrm{y}}}{\mathrm{d}\mu_{\mathrm{0}}}(a) \propto \exp\left(-\frac{\|\mathrm{y}-\mathrm{m}_{\mathcal{G}}(a)\|_{2}^{2}}{2\sigma^{2}}\right)$$

▶ Hope: $\mu_N^y \approx \mu^y$ as long as $m_{\mathcal{G}} \approx \mathcal{G}$

Posterior consistency

Theorem (Stuart & Teckentrup (2018); simplified)

Assuming \mathcal{X} compact and $\mathcal{G} \in H^s(\mathcal{X})$, $s > \dim(\mathcal{X})/2$,

$$d_{Hell}(\mu^{y},\mu_{N}^{y}) \leq C_{2} \|\mathcal{G} - m^{\mathcal{G}}\|_{L^{2}}$$

A. M. Stuart and A. L. Teckentrup

Posterior consistency for Gaussian process
approximations of Bayesian posterior distributions.

Mathematics of Computation, 2018

Convergence rates

Figure 5: Approximation of Hellinger distance and expected convergence rates for a model problem, $s \in \{1,5\}$ unknown inputs.

What we could have covered as well...

- ► Approximation of $\Phi(a) = \|y \mathcal{G}(a)\|_2^2/(2\sigma^2)$ instead of \mathcal{G} → Same rates
- Use sample paths of $GP(m_f, k_f)$ instead of m_f to approximate \mathcal{G} or Φ
 - \rightarrow slightly lower rates (h^{ν} instead of $h^{\nu+m/2}$)
- A. M. Stuart and A. L. Teckentrup

 Posterior consistency for Gaussian process
 approximations of Bayesian posterior distributions.

 Mathematics of Computation, 2018

Likelihood Functions

- Denote the likelihood function $\ell(a) := e^{-\Phi}(a)$
- Approximation of likelihood function gives same results!
- ▶ Let $m_{\ell} \approx \ell$ be a GP approx.

Theorem (\rightarrow this thesis; simplified)

Assuming \mathcal{X} compact and $\mathcal{G} \in H^s(\mathcal{X})$, $s > \dim(\mathcal{X})/2$,

$$d_{Hell}(\mu^{y}, \mu_{N,\ell}^{y}) \leq C_{2} \|\ell - m_{\ell}\|_{L^{2}}$$

Essential to the proof

Lemma (\rightarrow this thesis; simplified)

There exist constants $C_1, C_2 > 0$ and $N_0 \in \mathbb{N}$ such that

$$C_1 \leq \mathbb{E}[m_{\ell,n}] \leq C_2$$

holds for all $n \geq N_0$.

Use additionally: Use $(a - b)^2 = (a^2 - b^2)^2/(a + b)^2$ as well as straightforward inequalities

Convergence rates

Figure 6: Approximation of Hellinger distance and expected convergence rates for a model problem, $s \in \{1,5\}$ unknown inputs.

Furthermore

More rates:

- If using sample path–approximations, we may recover the same rate h^{ν} as for an approximation of \mathcal{G} or Φ
- See the thesis for proofs and more simulations

Connection to Bayesian quadrature:

- ► Integrals of Gaussian processes are Gaussian processes
- ▶ If m_ℓ is available, $\mathbb{E}[m_\ell]$ is free

Conclusion (so far)

- Approximate posterior distributions are as good as the approximation of the forward map/potential
- ► The same can be shown for the likelihood function
- ► The rates can be observed in practice

Further work

- Slightly weaken assumptions for consistency estimates
- Emulation of vector-valued functions (in high dimension)

Numerical Linear Algebra with Covariances

- ► Gaussian process regression requires solving the linear system $k(X_N, X_N)c = f(X_N)$
- $K := k(\mathcal{X}_N, \mathcal{X}_N)$ is symmetric and positive definite
- ► It is also not sparse and ill-conditioned

Covariances are ill-conditioned

Figure 7: Smallest eigenvalue λ_{\min} of covariance matrices constructed on Halton points in d=2.

Hierarchical Matrices

- ► Approximate blocks of *K* with low rank approximations
- $K \approx H_K$ tree of low rank approximations
- ► Storage and MVM in $O(N \log N)$

Figure 8: Left: full matrix, right: hierarchical matrix

Inverting Hierarchical Matrices

Ν	Relative error		
400	$5.28 \cdot 10^{-8}$		
800	$5.96 \cdot 10^{-7}$		
1600	$5.63 \cdot 10^{-6}$		
3200	$6.28 \cdot 10^{-5}$		

Table 1: Relative error of solving Kc = f with LU decomposition: \mathcal{H}^2 -matrix and full matrix

MVM is more stable

Ν	Relative error		
512	$3.9 \cdot 10^{-13}$		
1024	$3.5 \cdot 10^{-13}$		
2048	$6.3 \cdot 10^{-13}$		
4096	$6.9 \cdot 10^{-13}$		
8192	$8.3 \cdot 10^{-13}$		

Table 2: Relative error of matrix-vector multiplication (MVM) using compression accuracy $\epsilon = 10^{-12}$.

Krylov Solvers & Preconditioners

- ► MVM is "reliable" and cheap (O(N log N))
- ► This motivates use of Krylov solvers: CG, GMRES, ...
- Problem: extreme ill-conditioning of covariance matrices
- ► Solution: Preconditioners
 - · Nyström, incomplete Cholesky, ...
 - · Localized Kernel spaces

Localised Kernel Spaces

Figure 9: Condition numbers cond(K) and cond(KP) where the preconditioner is constructed with localised bases on $X = \mathbb{S}^2$.

Localised Kernel Spaces

N	n	Iter.	Runtime GMRES	RMSE of Interp.
4096	91	7	< 1.0 sec	$5.2 \cdot 10^{-10}$
8192	111	11	1.0 sec	$4.8 \cdot 10^{-9}$
16384	124	12	2.0 sec	$3.9 \cdot 10^{-9}$
32768	142	8	3.0 sec	$3.3 \cdot 10^{-9}$
65536	162	13	15.0 sec	$8.4 \cdot 10^{-9}$
131072	183	8	13.0 sec	$1.4 \cdot 10^{-9}$

Table 3: GMRES with localised kernel spaces on the sphere $X = \mathbb{S}^2$; thin-plate spline kernel.

Bounded domains

N	n	Iterations	RMSE of Interp.
512	88	8	$1.3 \cdot 10^{-4}$
1024	108	13	$4.4 \cdot 10^{-5}$
2048	131	16	$1.4 \cdot 10^{-5}$
4096	156	44	$4.9 \cdot 10^{-6}$
8192	183	127	$1.2 \cdot 10^{-6}$

Table 4: GMRES with localised kernel spaces on $X = [0, 1]^2$ for the Matérn covariance.

Further work

Algorithm:

- ► Good *preconditioners* for covariance matrices
- Efficient assembly of hierarchical matrices

Hierarchical matrices and covariances

- Establish asymptotic smoothness of covariance functions (only done for very few)
- Error estimates w.r.t. interpolation error

Further Reading

Localised Bases for Kernel Spaces:

Localised Bases for Kernel Spaces on the Unit Sphere E. Fuselier, T. Hangelbroek, F.J. Narcowich, J.D. Ward, G.B. Wright, SIAM Journal Numerical Analysis, 2013

ASKIT:

ASKIT: An Efficient, Parallel Library for High-Dimensional Kernel Summations

W. B. March, B. Xiao, C. D. Yu, G. Biros, SIAM Journal Scientific Computing, 2016

Further Reading

Gaussian processes, hierarchical matrices, Krylov methods:

Approximating Gaussian processes with H^2 -matrices.

S. Börm, J. Garcke, ECML, 2007

Hierarchical Matrices and RBF Interpolation:

Hierarchical Matrix Approximation for Kernel-Based Scattered Data Interpolation.

A. Iske, S. Le Borne, M. Wende, SIAM Journal Scientific Computing, 2017