Table B.2 | Conversion factors

	Prefixes		
$1 \text{ Å (angstrom)} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$	10-15	femto-	= f
$1 \mu \text{m} (\text{micrometer}) = 10^{-4} \text{cm}$	10^{-12}	pico-	= p
$1 \text{ mil} = 10^{-3} \text{ in.} = 25.4 \ \mu\text{m}$	10-9	nano-	= n
2.54 cm = 1 in.	10-6	micro-	$=\mu$
$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	10^{-3}	milli-	= m
$1 J = 10^7 \text{ erg}$	10*3	kilo-	= k
	10+6	mega-	= M
	10+9	giga-	= G
	10*12	tera	= T

Table B.3 | Physical constants

Table 19.5 (Thy steat constants	
Avogadro's number	$N_A = 6.02 \times 10^{+23}$ atoms per gram
*	molecular weight
Boltzmann's constant	$k = 1.38 \times 10^{-23} \text{ J/K}$ = $8.62 \times 10^{-5} \text{ eV/K}$
Electronic charge (magnitude)	$e = 1.60 \times 10^{-19} \mathrm{C}$
Free electron rest mass	$m_0 = 9.11 \times 10^{-31} \mathrm{kg}$
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \text{H/m}$
Permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
Planck's constant	= 8.85×10^{-12} F/m $h = 6.625 \times 10^{-34}$ J-s = 4.135×10^{-15} eV-s
*	$\frac{h}{2\pi} = \hbar = 1.054 \times 10^{-34} \text{ J-s}$
Proton rest mass	$M = 1.67 \times 10^{-27} \mathrm{kg}$
Speed of light in vacuum	$c = 2.998 \times 10^{10} \mathrm{cm/s}$
Thermal voltage ($T = 300 \text{ K}$)	$V_t = \frac{kT}{e} = 0.0259 \text{ V}$
	kT = 0.0259 eV

Table B.4 | Silicon, gallium arsenide, and germanium properties (T = 300 K)

Property	Si	GaAs	Ge
Atoms (cm ⁻³)	5.0×10^{12}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity, $\chi(V)$	4.01	4.07	4.13
Effective density of states in conduction band, N _c (cm ⁻³)	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, N_v (cm ⁻³)	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm ⁻³)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility (cm ² /V-s)			
Electron, μ_n	1350	8500	3900
Hole, μ_p	480	400	1900
Effective mass $\left(\frac{m^*}{m_0}\right)$			
Electrons	$m_i^* = 0.98$	0.067	1.64
× .	$m_i^* = 0.19$		0.082
Holes	$m_{ia}^* = 0.16$	0.082	0.044
€	$m_{nk}^* = 0.49$	0.45	0.28
Density of states effective mass			
Electrons $\frac{m_{\text{clo}}^*}{m_{ij}}$	1.08	0.067	0.55
Holes $\left(\frac{m_{\omega\rho}^*}{m_o}\right)$	0.56	0.48	0.37
Conductivity effective mass			
Electrons $\frac{m_{cn}^*}{m_o}$	0.26	0.067	0.12
Holes $\left(\frac{m_{cF}^*}{m_v}\right)$	0.37	0.34	0.21