MATH 5326-Algebraic Number Theory Final Exam

Orin Gotchey

December 11, 2022

Problem I

Let $m \equiv_4 1$ be a squarefree integer. Then the set of all elements $K = \mathbb{Q}(\sqrt{m})$ which are integral over $\mathbb{Z}[\sqrt{m}]$ is equal to $\mathbb{Z}[\frac{1+\sqrt{m}}{2}]$

Proof. First, let $\alpha = \frac{a+b\sqrt{m}}{2}$ for some integers $a,b \in \mathbb{Z}$ $a \equiv_2 b$. We demonstrate that α is algebraic over \mathbb{Z} :

$$\alpha^{2} = \frac{a^{2} + 2ab\sqrt{m} + b^{2}m}{4}$$

$$\alpha^{2} - a\alpha = \frac{a^{2} + 2ab\sqrt{m} + b^{2}m - 2ab\sqrt{m} - 2a^{2}}{4}$$

$$= \frac{-a^{2} + b^{2}m}{4}$$

Now,

$$a \equiv_2 b \implies a^2 \equiv_4 b^2 \equiv_4 b^2 m \implies \frac{-a^2 + b^2 m}{4} \in \mathbb{Z}$$

Thus, α is a root of the monic integer polynomial

$$f(x) = x^2 - ax + \frac{a^2 - b^2 m}{4} \in \mathbb{Z}[x]$$

Conversely, we assume that $\alpha = \frac{a}{b} + \frac{c}{d}\sqrt{m}$ is algebraic over \mathbb{Z} , with $b \neq 0 \neq d$, $\gcd(a,b) = 1$, $\gcd(c,d) = 1$. Thus, α is the root of some monic integer polynomial

$$f(x) = x^2 + \gamma_1 x + \gamma_0$$

for some $\gamma_1, \gamma_0 \in \mathbb{Z}$. Substituting α for x,

$$f(\alpha) = \frac{a^2}{b^2} + \frac{2ac}{bd}\sqrt{m} + m\frac{c^2}{d^2} + \gamma_1(\frac{a}{b} + \frac{c}{d}\sqrt{m}) + \gamma_0 = 0$$
 (1)

Now, 1 and \sqrt{m} are linearly independent over \mathbb{Z} , so we separate:

$$\frac{2ac}{bd}\sqrt{m} + \gamma_1 \frac{c}{d}\sqrt{m} = 0 \tag{2}$$

$$\frac{2ac}{bd} + \frac{\gamma_1 bc}{bd} = 0 \tag{3}$$

$$2ac + \gamma_1 bc = c(2a + \gamma_1 b) = 0 \tag{4}$$

(and...)
$$\frac{a^2}{b^2} + m\frac{c^2}{d^2} + \gamma_1 \frac{a}{b} + \gamma_0 = 0$$
 (5)

In view of (4), either c=0 or $\gamma_1=\frac{-2a}{b}$. In the former case, we get $\alpha\in\mathbb{Q}$ the root of some monic integer polynomial, so $\alpha\in\mathbb{Z}\subseteq\mathbb{Z}[\frac{1+\sqrt{m}}{2}]$ (in which case we'd be done). On the other hand, if a=0, then $\frac{mc^2}{d^2}\in\mathbb{Z}$. However, m is squarefree, so $d\mid c$ and $\alpha\in\mathbb{Z}[\sqrt{m}]$, and we're done. Thus, we may assume that $c\neq 0\neq a$ and $\gamma_1=\frac{-2a}{b}$. This implies that b|2a.

Case 1 In the case that b is an odd integer, then b|a since 2 is prime. b and a were chosen such that gcd(b, a) = 1, thus $b = \pm 1$. Rewriting (5),

$$\frac{-a^2}{b^2} + m\frac{c^2}{d^2} \in \mathbb{Z}$$
$$-a^2 + m\frac{c^2}{d^2} \in \mathbb{Z}$$
$$\therefore (d^2)|(mc^2)$$

m is still squarefree, so d|c, and thus $\alpha \in \mathbb{Z}$, completing this case.

Case 2 If b is even:

$$(\exists x \in \mathbb{Z} : 2x = b) : 2x|2a : x|a : x|\gcd(a, b)$$

Thus, x is a unit, so we can assume WLOG that b = 2.

So, a is an odd integer and b = 2.

$$\frac{a^2}{4} + m\frac{c^2}{d^2} + \frac{-2a^2}{4} + \gamma_0 = 0$$

$$\frac{-a^2}{4} + m\frac{c^2}{d^2} \in \mathbb{Z}$$

$$\frac{4mc^2}{d^2} \in \mathbb{Z}$$

$$\frac{m(2c)^2}{d^2} \in \mathbb{Z}$$

$$d^2 | m(2c)^2$$
m squarefree $\therefore d^2 | (2c)^2$

$$d | 2c$$

Arguing in a way symmetric to that above: if d were odd, then d|c. Since $gcd(d,c)=1,\ d=\pm 1$ In that case,

$$\frac{-a^2}{4} + mc^2 \in \mathbb{Z}$$
$$\frac{-a^2}{4} \in \mathbb{Z}$$

, which implies that $\alpha \in \mathbb{Z} \subseteq \mathbb{Z}[\frac{1+\sqrt{m}}{2}]$, and so we may assume that d is even. An argument perfectly symmetric to that above shows that therefore d=2, and with $\gcd(c,d)=1$, we see that c is odd.

$$\alpha = \frac{a+c\sqrt{m}}{2} = \frac{a-c}{2} + c\frac{1+\sqrt{m}}{2}$$

Recall that $a \equiv_2 c$, so $\alpha \in \mathbb{Z}[\frac{1+\sqrt{m}}{2}]$, completing the proof.

Problem II

Let $K = \mathbb{Q}(\theta)$ where θ is a root of $f(x) := x^6 + 2x^2 + 2 = 0$. Let $\alpha := \theta^4 + \theta^2 = \theta^2(1 + \theta^2)$. The minimal polynomial of α is $g(x) = \theta^2(1 + \theta^2)$.

Proof.

$$\begin{split} \alpha &= \theta^4 + \theta^2 \\ \alpha^2 &= \theta^8 + 2\theta^6 + \theta^4 \\ &= (\theta^2 + 2)\theta^6 + \theta^4 \\ &= (\theta^2 + 2)(-2\theta^2 - 2) + \theta^4 \\ &= -2\theta^4 - 6\theta^2 - 4 + \theta^4 \\ &= -\theta^4 - 6\theta^2 - 4 \\ \alpha^3 &= (-\theta^4 - 6\theta^2 - 4)(\theta^4 + \theta^2) \\ &= -\theta^8 - \theta^6 - 6\theta^6 - 6\theta^4 - 4\theta^4 - 4\theta^2 \\ &= -\theta^8 - 7\theta^6 - 10\theta^4 - 4\theta^2 \\ &= -\theta^6(\theta^2 + 7) - 10\theta^4 - 4\theta^2 \\ &= (2\theta^2 + 2)(\theta^2 + 7) - 10\theta^4 - 4\theta^2 \\ &= (2\theta^4 + 16\theta^2 + 14) - 10\theta^4 - 4\theta^2 \\ &= -8\theta^4 + 12\theta^2 + 14 \end{split}$$

Observe: α , α^2 , α^3 are \mathbb{Z} -linear combinations of $\{\theta^2, \theta^4, 1\}$. Namely,

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & -6 & -4 \\ -8 & 12 & 14 \end{bmatrix} \begin{bmatrix} \theta^4 \\ \theta^2 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha^2 \\ \alpha^3 \end{bmatrix}$$

We are going to perform a kind of row reduction on the coefficient matrix, keeping track of the effects on the α^{i} 's.

$$\begin{bmatrix} 1 & 1 & 0 & \alpha \\ 0 & -5 & -4 & \alpha^2 + \alpha \\ 0 & 20 & 14 & \alpha^3 + 8\alpha \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & \alpha \\ 0 & -5 & -4 & \alpha^2 + \alpha \\ 0 & 0 & -2 & \alpha^3 + 8\alpha + 4(\alpha^2 + \alpha) \end{bmatrix}$$

Thus, we see that

$$\alpha^3 + 4\alpha^2 + 12\alpha = -2$$

, i.e.

$$\alpha^3 + 4\alpha^2 + 12\alpha + 2 = 0$$

. Thus, α is a root of $g(x) := x^3 + 4x^2 + 12x + 2$. This polynomial is monic, and is irreducible by Eisenstein. \square

Problem III

Let $p \equiv_4 3$ be a prime, and let $K = \mathbb{Q}(\sqrt{p})$. It is known that h_K is odd. As a result, there exist integers $a, b \in \mathbb{Z}$ such that $a^2 - pb^2 = (-1)^{\frac{p+1}{4}}2$

Proof. Consider the ideal $< 2, 1 + \sqrt{p} >$ in K. Then $< 2, 1 + \sqrt{p} > = < 2, 1 + \sqrt{p} - 2\sqrt{p} > = < 2, 1 - \sqrt{p} >$

$$<2, 1 + \sqrt{p}>^2 =$$
 $= <2, 1 + \sqrt{p}> <2, 1 - \sqrt{p}>$
 $= <4, 1 - p>$
 $= <2>$

The last equality follows because $1-p\equiv_4 2\implies \exists m\in\mathbb{Z}: (1-p)+4m=2$, and both 4 and 1-p are generated by 2. Therefore, the ideal $<2,1+\sqrt{p}>^2$ is principal. The order of the class $[<2,1+\sqrt{p}>]$ then divides both two and $h_K(\text{odd})$, so it must be 1. Thus, $<2,1+\sqrt{p}>$ is principal. This means that there exist $a,b\in\mathbb{Z}$ such that $<2,1+\sqrt{p}>=< a+b\sqrt{p}>$. Then,

$$<2>=<2,1+\sqrt{p}>^2=^2==$$

Since $a^2 - pb^2 \in \mathbb{Z}$ and 2 both generate the same ideal, they must differ by a unit in \mathbb{Z} . Thus,

$$a^2 - pb^2 = \pm 2$$

. We know that $a^2, b^2 \equiv_8 1$ or 4, and that $p \equiv_8 3 + 4(\frac{p+1}{4})$, so we break into cases:

$[a^2]_8$	$[b^2]_8$	$[p]_8$	$[a^2 - bp^2]_8$
1	1	3	6
1	1	7	2
1	4	3	5
1	4	7	5
4	1	3	1
4	1	7	5
4	4	3	0
4	4	7	0

To recap: if $p \equiv_8 3$, then $a^2 - bp^2 \equiv_8 6$, so $a^2 - bp^2 = (-2)$. Conversely, if $p \equiv_8 7$, then $a^2 - bp^2 \equiv_8 2$, so $a^2 - bp^2 = 2$. Combining these two cases into one equation, we see that

$$a^2 - pb^2 = (-1)^{\frac{p+1}{4}}2$$