統計應用方法

Homework 1

1. (55 points)

Bird colonies. One of nature's patterns connects the percent of adult birds in a colony that return from the previous year and the number of new adults that join the colony. Here are data for 13 colonies of sparrowhawks:²

Percent returning	New adults	Percent returning	New adults	Percent returning	New adults
74 66 81 52 73	5 6 8 11 12	62 52 45 62	15 16 17 18	46 60 46 38	18 19 20 20

a. (10 points) Please plot the data with X indicating "Percent returning" and Y indicating "New adults". Comment on the main features of the plot. Any possible outliers? (可用軟體畫)

Ans:可以看出"Percent returning"和"New adults"是負向關,下圖看不太出明顯的 outlier,從 residual 也沒有看出來,因此認為沒有明顯的 outlier。

> residuals(model)

1 2 3 4 5 6 7
-4.43656125 -5.86874481 0.69159937 -5.12506604 2.25941580 1.91516341 -0.12506604
8 9 10 11 12 13
-1.25322666 4.91516341 0.05079629 5.30711752 2.05079629 -0.38138727

b. (10 points) Apply the formula to compute \bar{X} , \bar{Y} , $S_x^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / (n-1)$, $S_y^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2 / (n-1)$ and Pearson's correlation:

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}} = \frac{\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y}}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Ans:

編號	1	2	3	4	5	6	7	8	9	10	11	12	13	sum	avg
x	74	66	81	52	73	62	52	45	62	46	60	46	38	757	58.230
															77
у	5	6	8	11	12	15	16	17	18	18	19	20	20	185	14.230
															77
х-	15.769	7.769	22.769	-	14.769	3.769	-	-	3.769	-	1.769	-	-		
mean	23	23	23	6.230	23	23	6.230	13.230	23	12.230	23	12.230	20.230		
				76			76	76		76		76	76		
y -	-	-	-	-	-	0.769	1.769	2.7692	3.769	3.7692	4.769	5.7692	5.7692		
mean	9.2307	8.230	6.2307	3.230	2.2307	23	23	3	23	3	23	3	3		
	6	76	6	76	6										
Produ	-	-	-	20.13	-	2.899	-	-	14.20	-	8.437	-	-	-	-
ct	145.56	63.94	141.86	017	32.946	40	11.02	36.639	710	46.100	86	70.562	116.71	619.692	47.668
	213	674	982		74		366	05		59		13	597	30	63
(x-	248.66	60.36	518.43	38.82	218.13	14.20	38.82	175.05	14.20	149.59	3.130	149.59	409.28	2038.30	156.79
mean)	863	094	786	248	017	710	248	325	710	171	17	171	402	769	289
^2															
(y-	85.207	67.74	38.822	10.43	4.9763	0.591	3.130	7.6686	14.20	14.207	22.74	33.284	33.284	336.307	25.869
mean)	10	556	48	786	3	71	17	3	710	10	556	02	02	69	82
^2															
S_x^2	169.85														
	897														
S_y^2	28.025														
	64														
Corr	-														
	0.7484														
	673														

計算得到 $\bar{X}=58.23077,\ \bar{Y}=14.23077,\ S_x^2=169.85897,\ S_y^2=28.02564,\ {\rm and}\ r=$

-0.7484673 \circ

Excel 計算過程:

1	A	В	С	D	E	F	G	Н	I	J	K	L
1 2	K	Y	Xmean	Ymean	X-Xmean	Y-Ymean	(X-Xmean) ²	(Y-Ymean) ²	S_x^2	S_y^2	(x-Xmean)*(Y-Ymean)	S
2	74	5	58.2307692	14.2307692	15.76923077	-9.230769231	248.6686391	85.20710059	169.858974	28.025641	-145.5621302	-0.7484673
3	66	6	58.2307692	14.2307692	7.769230769	-8.230769231	60.36094675	67.74556213			-63.94674556	
4	81	8	58.2307692	14.2307692	22.76923077	-6.230769231	518.4378698	38.82248521			-141.8698225	
5	52	11	58.2307692	14.2307692	-6.230769231	-3.230769231	38.82248521	10.43786982			20.13017751	
6	73	12	58.2307692	14.2307692	14.76923077	-2.230769231	218.1301775	4.976331361			-32.94674556	
7	62	15	58.2307692	14.2307692	3.769230769	0.769230769	14.20710059	0.591715976			2.899408284	
8	52	16	58.2307692	14.2307692	-6.230769231	1.769230769	38.82248521	3.130177515			-11.02366864	
9	45	17	58.2307692	14.2307692	-13.23076923	2.769230769	175.0532544	7.668639053			-36.63905325	
10	62	18	58.2307692	14.2307692	3.769230769	3.769230769	14.20710059	14.20710059			14.20710059	
11	46	18	58.2307692	14.2307692	-12.23076923	3.769230769	149.591716	14.20710059			-46.10059172	
12	60	19	58.2307692	14.2307692	1.769230769	4.769230769	3.130177515	22.74556213			8.437869822	
13	46	20	58.2307692	14.2307692	-12.23076923	5.769230769	149.591716	33.28402367			-70.56213018	
14	38	20	58.2307692	14.2307692	-20.23076923	5.769230769	409.2840237	33.28402367			-116.7159763	
15 s	um	sum					sum	sum			sum	
16	757	185					2038.307692	336.3076923			-619.6923077	
17 a	ivg	avg						avg			avg	
18	58.2307692	14.2307692					156.7928994	25.86982249			-47.66863905	

R 計算過程:

c. (10 points) Use R (軟體) to compute Pearson's correlation, Kendall's tau and Spearman's rho. (相關係數指令在講義)

Ans:

```
> cor(Percent_returning, New_adults, method = "pearson") # Pearson's correlation
[1] -0.7484673
> cor(Percent_returning, New_adults, method = "kendall") # Kendall's tau
[1] -0.5960396
> cor(Percent_returning, New_adults, method = "spearman") # Spearman's rho
[1] -0.7538043
```

d. (15 points) Please fit the regression model:

$$Y = \alpha + \beta X + \varepsilon$$
.

Find $\hat{\alpha}$, $\hat{\beta}$ (用上課給的公式) and

$$\hat{\sigma}^2 = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 / (n-2) = \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta}X_i)^2 / (n-2)$$

Ans: 計算得到 $\hat{\alpha} = -0.3040229$, $\hat{\beta} = 1.93426$, and $\sigma^2 = 13.44609$ 。

$$f = \frac{34}{5} = -0.3040229$$

$$\mathcal{T}^{\Sigma} = \sum_{\lambda=1}^{N} \left(\gamma_{\lambda} - \hat{\alpha} - \hat{\beta} \gamma_{\lambda} \right) / (N-\Sigma) = \sum_{\lambda=1}^{N} \left(\gamma_{\lambda} - \hat{\alpha} - \hat{\beta} \gamma \right)^{\Sigma} / (N-\Sigma)$$

R 計算過程:

```
> beta_estimate <- r*sqrt(S_sub_y_square)/sqrt(S_sub_x_square)
> ## [1] -0.3040229
> alpha_estimate <- y_mean-(beta_estimate*x_mean)
> ## [1] 31.93426
> sigma_estimate_squre <- sum((y-alpha_estimate-(beta_estimate*x))^2)/(length(x)-2)
> sigma_estimate_squre
[1] 13.44609
```

e. (5 points) What is the value of

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}?$$

Is it true that $R^2 = r^2$

Ans:

$$P^{2} = \left(-\frac{\sum_{i=1}^{n} (x_{i} - \hat{x}_{i})^{2}}{\sum_{i=1}^{n} (x_{i} - \hat{x}_{i})^{2}} = \left(-\frac{140.900}{336.3000} = 0.5602033\right)$$

$$\therefore R^2 = Y^2$$
, is simple regression

R 計算過程:

- > R_squre <- 1 sum((y-alpha_estimate-(beta_estimate*x))^2)/sum((y-y_mean)^2)
 > r_squre <- r^2
 > R_squre
 [1] 0.5602033
 > r_squre
 [1] 0.5602033
- f. (5 points) Please plot $e_i = Y_i \hat{Y}_i$ (Y axis) versus \hat{Y}_i (X axis). Comment on the residual plot. What does this plot indicate?

Ans:下圖自己畫的可以看到所有的點算是均勻地散落在0的兩側,用R library 指令檢查發現雖然不是完全分布均勻但也沒有相差太多,因此算是符合假設的情況。

*y_sub_i_estimate 改為 y_sub_i_estimator

2. (45 points) 全部用軟體的指令

Milk or soda? The presence of soda vending machines in schools, under contracts with soft drink companies, is the subject of hot debate. Many see a link to childhood obesity as well as tooth decay and caffeine dependence. Has the soft drink industry changed our drinking habits? The Census Bureau reports U.S. per capita consumption of milk and carbonated soft drinks (in gallons per year) between 1980 and 2000:

Year	1980	1985	1990	1995	1998	1999	2000
Milk Soda	27.6 35.1	26.7 35.7	25.7 46.2	23.9		22.9 49.7	23.3

(10 points) Please plot the data with X indicating "Soda" and Y indicating "Milk". Comment on the main features of the plot. Any possible outliers? 這裡我建議把 Milk 當成 Y, 是因為牛奶攝取是營 養學家或家長比較在意的.

Ans: Milk 與 Soda 的關係為負相關,從 residuals 可以看到第3明顯與其他離群,所以3可能是 outlier °

> residuals(model)

1 2 3 4 5 6 7 0.228245389 -0.502526419 1.458966933 -0.002576684 -0.761553191 -0.353868617 -0.066687411

b. (10 points) Use R (軟體) to compute Pearson's correlation, Kendall's tau and Spearman's rho.

Ans:

```
> cor(Soda, Milk, method = "pearson") # Pearson's correlation
[1] -0.9262881
> cor(Soda, Milk, method = "kendall") # Kendall's tau
[1] -0.9047619
> cor(Soda, Milk, method = "spearman") # Spearman's rho
[1] -0.9642857
```

c. (10 points) Use R to fit the regression model:

$$Y = \alpha + \beta X + \varepsilon$$
.

Show your output and explain the meaning of β .

Ans:可以知道α為 37.27160, β為-0.28205,β為斜率的估計值,意為當 Soda 每改變±1 單位時,那麼 Milk 的改變量為-0.28205。

```
> model <- lm(Milk ~ Soda)
> summary(model)
Call:
lm(formula = Milk ~ Soda)
Residuals:
                  2
 0.228245 -0.502526 1.458967 -0.002577 -0.761553 -0.353869 -0.066687
Coefficients:
                         Error t value Pr(>|t|)
            Estimate Std.
                         .30151 16.194 1.64e-05 ***
(Intercept) 37.27160
            -0.28205
                         .05131 -5.497 0.00272 **
Soda
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7928 on 5 degrees of freedom
Multiple R-squared: 0.858,
                              Adjusted R-squared: 0.8296
F-statistic: 30.21 on 1 and 5 DF, p-value: 0.002722
```

d. (15 points) Show the residual plot and normal plot. Make your comments.

Hint: You need to know the purposes of these two plots and judge whether the plots support the assumptions that

$$\varepsilon_i \sim^{iid} N(0,\sigma^2).$$

Ans:從 residual plot 可以看出資料並沒有均勻地散落在0的兩側,表示資料可能不滿足線性假設,而在 normal plot 可以看到是常態分佈滿足上方的假設也能夠看出第3點為 outlier 與其他點分離太遠。

