Compilerbau LL(K)-Parser 2

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

2 Literatur

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 3.Aufl. Springer Vieweg 2022;
- U.Meyer; Grundkurs Compilerbau; Rheinwerkverlag, 1. Aufl. 2021
- A.V.Aho, M.S.Lam,R.Savi,J.D.Ullman, Compiler Prinzipien, Techniken und Werkzeuge. 2. Aufl., Pearson Studium, 2008.
- Güting, Erwin; Übersetzerbau –Techniken, Werkzeuge, Anwendungen, Springer Verlag 1999

Top-Down-Analyse Agenda

- ► LL(k)-Parser
 - First und Follow-Mengen
 - Prädikativer Parser

LL(K) Grammatiken

Charakterisierung

Problem wie findet man bei einer Produktion

$$A \rightarrow \alpha_1 | \alpha_2 | \alpha_3 | \dots | \alpha_n$$

die richtige rechte Seite, wenn man k Terminalzeichen vorausschauen kann.

- Dazu definiert man zuerst die Menge
 - ightharpoonup FIRST_k(α) und
 - FOLLOW_k(A)
- ▶ Darauf aufbauend definiert man Steuermengen D(A $\rightarrow \alpha_i$)
- Eine starke LL(K) Grammatik hat disjunkte Steuermengen, so dass eindeutig eine Produktion ausgewählt werden kann.

LL(K) Grammatiken

Definition FIRST_k(α) und FOLLOW_k(A)

Sei $G = (N, \Sigma, P, S)$ eine kontextfreie Grammatik, $\alpha \in (N \cup \Sigma)^*$, k >0. Dann ist:

 $FIRST_k(\alpha) := start_k(\{w \mid \alpha \Rightarrow^* w\})$

Die Menge FIRST_k(α) beschreibt gerade die Anfangsstücke bis zur Länge k von aus α ableitbaren Terminalworte

Sei G = (N,Σ,P,S) eine kontextfreie Grammatik, $A \in N$, k > 0. Dann ist:

 $FOLLOW_k(A) := \{w \mid S \Rightarrow^* uAv \text{ und } w = FIRST_k(v)\}$

FOLLOW_k(A) beschreibt also Terminalzeichenfolgen bis zur Länge k, die innerhalb einer Ableitung in G auf das Nichtterminal A folgen können.

Berechnung von FIRST-Mengen

Algorithmus:

- Sei a ein Terminal dann ist: First(a) = {a}
- Sei A ein Nichtterminal mit A $\rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3 \mid \dots \mid \alpha_n$ dann ist: First(A) = First(α_1) \cup First(α_2) \cup First(α_3) \dots \cup First(α_n)
- Sei A ein Nichtterminal mit $A \to \alpha_1 \alpha_2 \alpha_3 \alpha_n$ dann ist: First(A) = First(α_1)First(α_2)First(α_3) ... First(α_n) (Konkatenation) $a \in FIRST(A)$, falls $a \in FIRST(\alpha_k)$ und $a \in FIRST(\alpha_i)$ für alle $a \in FIRST(\alpha_i)$
- Rekursiv anwenden bis nur noch Terminale auftreten.

Beispiel: Berechnung von FIRST-Mengen

Beispiel G = ({S,A,B},{a,b,c,d},P,S) mit P:

$$S \rightarrow ABCd$$

 $A \rightarrow a \mid B$
 $B \rightarrow b \mid \epsilon$

- Die FIRST-Mengen für k=1
 - First₁(B) = $\{b, \epsilon\}$
 - First₁(A) = {a} \cup FIRST₁(B) = {a, b, ε }
 - ightharpoonup First₁(S) = FIRST₁(ABcd)= {a, b, c}
- Bauen Sie die Grammatik in FLACI nach und Bestimmen Sie die First-Mengen

Berechnung von FOLLOW-Mengen

Algorithmus:

- Initialisiere FOLLOW(S) mit {\$}
 (\$ ist ein Eingabeende-Zeichen und nicht Teil des Eingabealphabet)
- **Pir jede Produktion** A → α Bβ und β ≠ ε:
 - Füge alle Symbole von FIRST(β) ohne $\{\epsilon\}$ in FOLLOW(B),
 - Für jede Produktion A $\rightarrow \alpha$ B oder A $\rightarrow \alpha$ B β mit $\epsilon \in FIRST(B)$: Füge alle Symbole aus FOLLOW(A) in FOLLOW(B) ein.
- Rekursiv anwenden bis nur noch Terminale auftreten.

Beispiel: Berechnung von FOLLOW-Mengen

Beispiel G = ({S,A,B},{a,b,c,d},P,S) mit P:

$$S \rightarrow ABcd$$

 $A \rightarrow a \mid B$

$$B \rightarrow b \mid \epsilon$$

- Berechnen der FOLLOW-Mengen für k=1
 - \blacksquare FOLLOW₁(S) = {\$}
 - ightharpoonup FOLLOW₁(A) = FIRST₁(Bcd) = {b, c}
 - ► FOLLOW₁(B) = FIRST₁(cd) \cup FOLLOW₁(A)= {b,c}
- Die FIRST-Mengen
 - First₁(B) = $\{b, \epsilon\}$
 - First₁(A) = { a, b, ϵ }
 - $First_1(S) = \{a, b, c\}$

LL(K) Grammatiken

Definition Steuermengen D($A\rightarrow\alpha_i$)

Sei $G = (N, \Sigma, P, S)$ eine kontextfreie Grammatik, $A \in N$, k > 0 und sei $A \rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3 \mid \dots \mid \alpha_n$ die Mengen der A Produktionen. Dann ist für $1 \le i \le n$ die Steuermenge $D_k(A \rightarrow \alpha_i)$ definiert als:

 $D_k(A \rightarrow \alpha_i) := start_k(FIRST_k(\alpha_i)FOLLOW_k(A))$

- Bem: Die Steuermenge besteht aus den First-Mengen und falls die Worte kleiner k sind werden die Follow-Mengen konkateniert.
- Man kann zeigen, dass genau dann wenn die Steuermengen für eine Produktion A disjunkt sind, es sich um eine starke LL(K) Grammatik handelt.
- Im folgend betrachten wir LL(1) Grammatiken n\u00e4her.
 - Bestimmen FIRST- und FOLLOW-Mengen so wie die Steuermengen D

LL(K) Grammatiken

Berechnen der Steuermengen D($A\rightarrow\alpha_i$)

Beispiel G = ({S,A,B},{a,b,c,d},P,S) mit P:

 $S \rightarrow ABCd$

 $A \rightarrow a \mid B$

 $B \rightarrow b \mid \epsilon$

Die Steuermengen für G

{b,ε}

 $\{a, b, \epsilon\}$

 $\{a,b,c\}$

 $B \rightarrow b$

3

 $A \rightarrow a$

В

 $S \rightarrow ABcd$

{b}

{b,c}

{a}

{b, c}

{a, b, c}

Steuermengen

{b,c}

{b,c}

{\$}

Followmengen

Firstmengen

Aufgabe Follow-Mengen

Gegeben sei die folgende Grammatik G=(N, Σ ,P,E)

- Berechnen Sie die FIRST-Mengen.
- N = {E,E',T,T',F}, Σ = {+,*,(,),id} und P = { E \rightarrow TE', E' \rightarrow +TE' | ϵ , T \rightarrow FT', T' \rightarrow *FT' | ϵ , F \rightarrow (E) | id}
- N = {S,A,B}, Σ = {a,b,c,d} und P = {S \rightarrow Ac | dS | ϵ , A \rightarrow aB | cA | d, B \rightarrow b | ϵ }
- Führen Sie die Beispiele auch mit FLACI aus.

First-Mengen Lösung 1

Grammatik:

N = {E,E',T,T',F},
$$\Sigma$$
 = {+,*,(,),id} und
P = {E \rightarrow TE', E' \rightarrow +TE' | ϵ , T \rightarrow FT', T' \rightarrow *FT' | ϵ , F \rightarrow (E) | id}

P in FLACI

Lösung:

FIRST(E) = {(, id}
FIRST (ES) = {+,
$$\epsilon$$
}
FIRST(T) ={(,id}
FIRST(TS) = {*, ϵ }
FIRST(F) = {(,id}

First-Mengen

Lösung 2

►
$$N = \{S,A,B\}, \Sigma = \{a,b,c,d\} \text{ und }$$

$$P = \{S \rightarrow Ac \mid dS \mid \epsilon, A \rightarrow aB \mid cA \mid d, B \rightarrow b \mid \epsilon \}$$

P in FLACI

Lösung:

$$FIRST(S) = \{a,c,d, \epsilon\}$$

$$FIRST(A) = \{a,c,d\}$$

$$FIRST(B) = \{b, \epsilon\}$$

Aufgabe Follow-Mengen

Gegeben sei die folgende Grammatik G=(N, Σ ,P,E)

- Bestimmen Sie die Follow-Mengen.
- Bestimmen Sie die initialen Steuermengen.
- N = {E,E',T,T',F}, Σ = {+,*,(,),id} und P = { E → TE', E' → +TE' | ε , T → FT', T' → *FT' | ε , F → (E) | id}
- N = {S,A,B}, Σ = {a,b,c,d} und P = {S \rightarrow Ac | dS | ϵ , A \rightarrow aB | cA | d, B \rightarrow b | ϵ }
- Führen Sie die Beispiele auch mit FLACI aus.

Follow-Mengen Lösung 1

P in FLACI

$$T \rightarrow FTS$$

Lösung:

FOLLOW(E) =
$$\{\$,\}$$

FOLLOW(ES) = $\{\$,\}$
FOLLOW(T) = FIRST(ES) \cup FOLLOW(ES) = $\{+,\$,\}$

$$FOLLOW(TS) = \{\$,\},+\}$$

$$FOLLOW(F) = FIRST(TS) \cup FOLLOW(TS) = \{*,\$,),+\}$$

■ First-Mengen

$$FIRST(E) = \{(, id)\}$$

FIRST (ES) =
$$\{+, \epsilon\}$$

$$FIRST(T) = \{(id)\}$$

$$FIRST(TS) = \{*, \epsilon\}$$

$$FIRST(F) = \{(id)\}$$

FOLLOW-Mengen

Lösung 2

S -> EPSILON

S -> AC

S -> dS

A-> aB

A-> CB

A/-> d

B-> b

B -> EPSILON

Lösung:

 $FOLLOW(S) = \{\$\}$

 $FOLLOW(A) = \{c\}$

 $FOLLOW(B) = \{c\}$

FIRST-Mengen

 $FIRST(S) = \{a,c,d, \epsilon\}$

 $FIRST(A) = \{a,c,d\}$

 $FIRST(B) = \{b, \epsilon\}$

Steuermengen

- Eine kontextfreie Grammatik ist genau dann eine LL(1)-Grammatik, wenn für jedes Nichtterminal A mit A $\rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3 \mid \dots \mid \alpha_n$ gilt:
 - ▶ Die Mengen FIRST₁(α_1), ... ,FIRST₁(α_n) sind paarweise disjunkt,
 - Genaue eine Menge $FIRST_1(\alpha_i)$ darf das leere Wort enthalten. Dafür muss dann die zugehörige $FOLLOW_1(A)$ disjunkt zu allen anderen $FIRST_1(\alpha_i)$ sein.
- Dig Steuermengen vereinfachen sich zu:
 - $D(A \rightarrow \alpha_i) := FIRST_1(\alpha_i) \text{ falls } \epsilon \notin FIRST_1(\alpha_i) \text{ oder}$ $(FIRST_1(\alpha_i) \{\epsilon\}) \cup FOLLOW_1(A) \text{ sonst}$

Aufgaben LL(1)

Gehören folgende Grammatiken zu LL(1)?

- G(N, Σ , P, S) mit N = {A,B, S}, Σ ={x,y,z} und P = {S \rightarrow A | B, A \rightarrow x A | y, B \rightarrow x B | z }
- $G(N, \Sigma, P, K)$ mit $N = \{K,E,S\}$, $\Sigma = \{a,b,d,c\}$ und $P = \{K \rightarrow S \mid \epsilon, S \rightarrow a S b \mid \xi, E \rightarrow d \mid c E\}$

Begründen Sie ihre Aussagen. Überprüfen Sie dies mit FLACI.

Aufgaben LL(1) Lösung

Gehören folgende Grammatiken zu LL(1)?

G(N, Σ , P, S) mit N = {A,B, S}, Σ ={x,y,z} und P = {S \rightarrow A | B, A \rightarrow x A | y, B \rightarrow x B | z }

LSG: Nein Ich kann beliebige viele x am Anfang mit der Regel $A \to x A$ oder der Regel $B \to x B$ schreiben bis das finale y oder z kommt. Erst am Schluss des Wortes kann ich entscheiden welche Regel ich genutzt habe.

G(N, Σ , P, K) mit N = {K,E, S}, Σ ={a,b,d,c} und P = {K \rightarrow S | ϵ , S \rightarrow a S b | E, E \rightarrow d | c E }

Lsg: Dies ist eine LL(1) Grammatik, wenn man das Wort von links nach rechts liest kann man anhand es nächsten Zeichen sehe, welche Regel anzuwenden ist. Bei a muss es die Regel $S \rightarrow a S b$, bei d die Regel $E \rightarrow d$ und bei c die Regel $E \rightarrow c E$.

Berechnung von FIRST-Mengen

- Systematisches Verfahren:
 - Bestimmen einer Menge N_{ϵ} aller Nichtterminale aus denen das leere Wort abgeleitet werden kann $N_{\epsilon} := \{ X \in N \mid X \Rightarrow^* \epsilon \}$
 - Man zeichne einen Graphen, dessen Knoten die Nichtterminale sind. Für jede Produktion $A \rightarrow X_1...X_m$ mit dem Nichtterminal X_1 füge eine gerichtete $A \rightarrow X_1$ Kante ein.
 - Falls $X_1 \in N_{\epsilon}$ und X_2 ein Nichtterminal füge eine Kante $A \to X_2$ hinzu. Falls $X_1 \in N_{\epsilon}$ und $X_2 \in N_{\epsilon}$ und X_3 ein Nichtterminal füge eine Kante $A \to X_3$ hinzu, usw.
- Eine Kante A →B drückt aus: FIRST(B) sollte vor FIRST(A) berechnet werden.

Betrachte folgende Grammatik G₂

```
stmt
                  assignment | cond | loop
assignment → id := expr
cond
             → if boolexpr then stmt cond-rest
cond-rest → fi | else stmt fi
             → while boolexpr do stmt od
loop
             → boolexpr | numexpr
expr
             \rightarrow
boolexpr
                  numexpr cop numexpr
             → term nexpr | term
numexpr
             \rightarrow + term nexpr | \epsilon
nexpr
term
             → factor nterm | factor
nterm
             → * factor nterm | ε
factor
             → id | const | (numexpr)
```

Die Menge $N_{\epsilon} := \{nterm, nexpr\}$

Graphen zu den FIRST-Mengen

- Graphen zu der Berechnung der FIRST-Mengen
 - Berechnen der FIRST-Mengen von assigment, cond und loop zuerst und dann die FIRST-Menge von stmt
 - Berechnen der FIRST-Menge von factor, dann die von term, dann die von numexpr, dann die von boolexpr. Am Schluss wird die FIRST-Menge von expr berechnet.
 - Die FIRST-Mengen zu cond-rest, nexpr, nterm sind unabhängig

Die FIRST- und Steuermengen

FIRST-Mengen	Produktion		Steuermengen D
{id}	assignment →	id := expr	{id}
{if}	cond → cond-rest	if boolexpr then stmt	{if}
{fi, else}	cond-rest →	fi	{fi}
		else stmt fi	{else}
{while}	loop →	while boolexpr do stmt od	{while}
{id, if,while}	stmt →	assigment	{id}
		cond	{if}
		loop	{while}
{id,const,(}	factor →	id	{id}
		const	{const}
		(expr)	{(}
{id,const,(}	term →	factor nterm	{id,const,(}
{id,const,(}	numexpr →	term nexpr	{id,const,(}
{id,const,(}	boolexpr →	numexpr cop numexpr	{id,const,(}
{id,const,(}	expr →	boolexpr	{id,const,(}
		numexpr	{id,const,(}

Grammatik G₂

G₂ gehört nicht zu LL(1)

- Beobachtung:
 - Die Steuermengen für die Produktion expr sind nicht disjunkt.
 - \Rightarrow die Grammatik G₂ gehört nicht zu LL(1)
- Das Problem liegt an der Produktion von expr

expr → boolexpr | numexpr

Ein Token-Vorausschau reicht nicht um zwischen den beiden Produktionen zu entscheiden.

Das lässt sich beheben durch folgende Produktionen:

expr \rightarrow numexpr bool-rest boolrest \rightarrow cop numexpr | ϵ

Betrachte folgende Grammatik G_{2n} stmt → assignment | cond | loop assignment \rightarrow id := expr cond → if boolexpr then stmt cond-rest $cond-rest \rightarrow fi \mid else stmt fi$ loop→ while boolexpr do stmt od expr → numexpr bool-rest boolrest → cop numexpr | ε boolexpr → numexpr cop numexpr numexpr → term nexpr nexpr \rightarrow + term nexpr | ϵ term → factor nterm nterm → * factor nterm | ε factor \rightarrow id | const | (expr)

- Die Menge $N_ε$:= {nterm, nexpr, boolrest}
 - Für diese Produktionen müssen die FOLLOW-Mengen bestimmt werden.
- Die Graphen zur Berechnung der FIRST-Mengen

Die FIRST- und Steuermengen

FIRST-Mengen	Produktion		Steuermengen D
{id, if,while}	stmt →	assigment	{id}
		cond	{if}
		loop	{while}
{id}	assignment →	id := expr	{id}
{if}	cond →	if boolexpr then stmt cond-	{if}
	rest		
{fi, else}	$cond\text{-rest} \to$	fi	{fi}
		else stmt fi	{else}
{while}	loop →	while boolexpr do stmt od	{while}
{id,const,(}	expr →	boolexpr bool-rest	{id,const,(}
{cop}	bool-rest→	cop numexpr	{cop}
		ε	{\$, od, fi, else,)}
{id,const,(}	boolexpr →	numexpr cop numexpr	{id,const,(}

Die FIRST- und Steuermengen

FIRST- Mengen	Produktion		Steuermengen D
{id,const,(}	$numexpr \rightarrow$	term nexpr	{id,const,(}
{+}	nexpr→	+ term nexpr ε	{+} {\$, od, fi, else,), then, do,cop}
{id,const,(}	term →	factor nterm	{id,const,(}
{*}	nterm →	* factor nterm ε	{*} {\$, od, fi, else,), then, do,cop,+}
{id,const,(}	factor →	id const (expr)	{id} {const} {(}

Aufgabe

Erstellen Sie die beiden vorherigen Grammatiken mit FLACI und überprüfen Sie die First-Mengen.

Berechnung der FOLLOW-Menge

- Systematisches Verfahren
 - Trage alle Nichtterminale als Knoten in einen Graphen. Der Graph hat noch keine Kanten. Markiere den Knoten mit dem Startsymbol mit dem Symbol \$ (Ende der Eingabe)
 - 2. Betrachte der Reihe nach, alle Produktionen in P. Für jede Produktion jedes Nichtterminal B auf der rechten Seite.
 - 1. $A \rightarrow \alpha B\beta$ mit $\beta \neq \epsilon$:
 - 1. Markiere den Knoten B mit allen Symbolen, die in FIRST(β) liegen.
 - 2. Falls $\varepsilon \in FIRST(\beta)$, dann füge eine Kante A \rightarrow B hinzu.
 - 2. $A \rightarrow \alpha B$: Füge die Kante $A \rightarrow B$ hinzu.
 - 3. Falls es Zyklen gibt, werden alle Knoten des Zyklus gleich behandelt
 - 4. Die FOLLOW-Menge eines Nichtterminals ist die Vereinigung seiner eigenen Markierungen mit den Markierungen aller seiner Vorgänger im Graphen.

Die Follow-Mengen als Graphen

Aufbau des Graphen laut Vorschrift der vorherigen Folie

Nach dem 1. Schritt (alle Nichterminale + \$ an Startknoten)

```
stmt
           assignment | cond | loop
stmt \rightarrow
assignment →
                 id := expr
           if boolexpr then stmt cond-rest
cond →
                                              assignment
                                                                        cond
                                                                                              gool
cond-rest
                 fi | else stmt fi
loop ->
           while boolexpr do stmt od
                                                                     cond-rest
           numexpr bool-rest
expr/
boølrest
                 cop numexpr | ε
boolexpr
                numexpr cop numexpr
                                                                      bool-rest
                                                  expr
numexpr
                term nexpr
           \rightarrow
nexpr
                 + term nexpr | ε
                                                                      numexpr
                                                                                             nexpr
term →
           factor nterm
                 * factor nterm | E
nterm
                                               boolexpr
factor
                id | const | (expr)
                                                                         term
                                                                                             nterm
```

factor

Die Follow-Mengen als Graphen

Aufbau des Graphen laut Vorschrift der vorherigen Folie

Der 2. Schrittes (A $\rightarrow \alpha$ B: Füge die Kante A \rightarrow B hinzu und bei A $\rightarrow \alpha$ B β , falls $\epsilon \in FIRST(\beta)$, dann füge eine Kante A \rightarrow B hinzu)

```
assignment | cond | loop
stmt \rightarrow
assignment →
                  id := expr
cond →
           if boolexpr then stmt cond-rest
cond-rest
                  fi | else stmt fi
loop /→
           while boolexpr do stmt od
            numexpr bool-rest
expr \rightarrow
boolrest
                  cop numexpr | ε
boolexpr
                  numexpr cop numexpr
numexpr
                  term nexpr
                  + term nexpr | ε
nexpr
term →
           factor nterm
nterm
                  * factor nterm | E
                  id | const | (expr)
factor
```


Die Follow-Mengen als Graphen

Aufbau des Graphen laut Vorschrift der vorherigen Folie

ightharpoonup Markiere den Knoten B mit allen Symbolen, die in FIRST(β) liegen).

```
nur Statement stmt
stmt → assignment | cond | loop
assignment → id := expr
         → /if boolexpr then stmt cond-rest
             fi I else stmt fi
cond-rest →
loop → /while boolexpr do stmt od
expr →/ numexpr bool-rest
boolrest → cop numexpr | ε
boolexpr → numexpr cop numexpr
numexpr → term nexpr
nexpr
         → + term nexpr | ε
             → factor nterm
term
hterm \rightarrow * factor nterm | \epsilon
factor
       \rightarrow id | const | (expr)
```


Die Follow-Mengen als Graphen

Aufbau des Graphen laut Vorschrift der vorherigen Folie

ightharpoonup Markiere den Knoten B mit allen Symbolen, die in FIRST(β) liegen).

```
Der Rest
stmt → assignment | cond | loop
assignment → id := expr
       → /if boolexpr then stmt cond-rest
cond-rest → fi | else stmt fi
loop → while boolexpr do stmt od
expr →/ numexpr bool-rest
boolrest → cop numexpr | ε
boolexpr → numexpr cop numexpr
numexpr → term nexpr
         \rightarrow + term nexpr | \epsilon
nexpr
              → factor nterm
term
hterm \rightarrow * factor nterm | \epsilon
        \rightarrow id | const | (expr)
factor
```


Die Follow-Mengen als Graphen

- Aufbau des Graphen laut Vorschrift der vorherigen Folie
 - Nach dem 4. Schritt

Aufbau eines prädikativen Analysators Analysetabelle - Prinzip

- Für eine LL(1) Grammatik lassen sich prädikative Parser recht einfach erstellen.
 - Die richtigen Produktionen lassen sich anhand des gelesene Eingabezeichen eindeutig bestimmen.
 - Man kann damit ein PDA erstellen

Analysetabelle-Beispiel

Betrachte folgende reduzierte Grammatik G_a (Teilgrammatik G_{2n})

Grammatil	<-Rege	In	Nummer	Steuermenge
numexpr	\rightarrow	term nexpr	(1)	{id,const,(}
nexpr	\rightarrow	+ term nexpr	(2)	{+}
		3	(3)	{\$,)}
term	\rightarrow	factor nterm	(4)	{id,const,(}
nterm	\rightarrow	* factor nterm	(5)	{* }
		3	(6)	{\$,),+}
factor	\rightarrow	id	(7)	{id}
		const	(8)	{const}
		(numexpr)	(9)	{(}

- Damit lassen sich Ausdrücke formulieren wie
 - id*(id+id*(id+id))
 - id+id*const

Aufbau eines prädikativen Analysators Analysetabelle- Tabelle

- Analysetabelle: für jedes Nichtterminal und jedes Eingabezeichen
 - Spalte zeigt die Nummer der Produktion an, die gewählt wird.
 - Wo keine Einträge sind, liegt ein Fehlerzustand vor.

	Eingabesymbol						
Nichtterminal	id	const	+	*	()	\$
numexpr(E)	1	1			1		
nexpr(N)			2			3	3
Term (T)	4	4			4		
nterm(R)			6	5		6	6
factor(F)	7	8			9		

Analysetabelle-Beispiel

Betrachte folgende reduzierte Grammatik G_a (Teilgrammatik G_{2n})

Grammo	atik-Regein	Nummer
$E \rightarrow$	TN	(1)
$N \rightarrow$	+ T N	(2)
	3	(3)
$T \rightarrow$	FR	(4)
$R \rightarrow$	* F R	(5)
	3	(6)
$\digamma \longrightarrow$	id	(7)
	const	(8)
	(E)	(9)

Damit lassen sich Ausdrücke formulieren wie

- id*(id+id*(id+id))
- id+id*const

Analysetabelle-Funktionsweise des Kellerautomaten

Betrachte den Eingabestring: id+id*id

Stack	Eingabe	Regel
E\$	id+id*id\$	
TN\$	id+id*id\$	1
FRN\$	id+id*id\$	4
idRN\$	id+id*id\$	7
RN\$	+id*id\$	Match(id)
N\$	+id*id\$	6
+TN\$	+id*id\$	2
+TN\$	+id*id\$	Match(+)
FRN\$	id*id\$	4
idRN\$	id*id\$	7
RN\$	*id\$	Match(id)

Analysetabelle-Funktionsweise des Kellerautomaten

Betrachte den Eingabestring: id+id*id

Stack	Eingabe	Regel
RN\$	*id\$	Match(id)
*FRN\$	*id\$	5
FRN\$	id\$	Match(*)
idRN\$	id\$	7
RN\$	\$	Match(id)
N\$	\$	6
\$	\$	6
		Match(\$)

rekursiver Abstieg - Prinzip

- Rekursives Parsing besteht aus einer Gruppe von Prozeduren.
 - Eine Prozedur für jedes Nichtterminal
 - Eine Startprozedur, welche die anderen Prozeduren aufruft und anhält wenn der Eingabestring erfolgreich gelesen wurde.
- Pseudocode:

```
void procedure A() { // Prozedur zum Nichtterminal A

// Wähle eine A-Produktion A→X1...Xn;

for(i = 1 bis n) {
    if(X ein Nichtterminal) call X(); // rufe Prozedur zu X;
    else if (X = dem aktuelle Eingabezeichen) call nexttoken();
    else // Fehleroutine aufrufen !
}
```

rekursiver Abstieg - Beispiel

```
■ Betrachte den Ausschnitt
stmt → assignment | {id}
cond | {if}
loop {while}
assignment →id := expr
{id}
```

Aufbau der Prozeduren

```
procedure stmt() {
    if (token == 'id') assigment();
    elseif(token == 'if') cond();
    elseif(token== 'while') loop;
    else error();
}
```

```
procedure assigment() {
   if(token == 'id') {
    match('id');
    match(':=');
    expr();
   else error();
procedure match(token t){
   if(token == t) nexttoken();
   else error;
```