

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO DE MESTRADO PROFISSIONAL EM ENSINO DE FÍSICA MESTRADO NACIONAL PROFISSIONAL EM ENSINO DE FÍSICA

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio

Jefferson Rodrigues de Oliveira

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio

Jefferson Rodrigues de Oliveira

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação da Universidade de Brasília (UNB) no Curso de Mestrado Profissional de Ensino de Física (MNPEF), como parte dos requisitos necessários à obtenção do título de Mestre em Ensino de Física.

Prof. Dr. Vanessa Carvalho de Andrade Orientadora

FOLHA DE APROVAÇÃO

Jefferson Rodrigues de Oliveira

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação da Universidade de Brasília (UNB) no Curso de Mestrado Profissional de Ensino de Física (MNPEF), como parte dos requisitos necessários à obtenção do título de Mestre em Ensino de Física.

Aprovada em: 10/01/2017

BANCA EXAMINADORA:

Prof^a. Dra. Vanessa Carvalho de Andrade (Presidente IF-UNB)

Prof. Dr. Isaac Newton (Membro interno vinculado ao programa IF-UNB)

Prof. Dr. Albert Einstein (Membro interno vinculado ao programa IF-UNB)

Prof. Dr. Richard Feynman (Membro interno vinculado ao programa IF-UNB)

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

Oliveira, Jefferson Rodrigues de

Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio / Jefferson Rodrigues de Oliveira.

Brasília 2017.

16f.

Dissertação de Mestrado – Curso de Física. Área de Ensino de Física – Universidade de Brasília, 2017. Orientadora: Prof^a. Dra. Vanessa Carvalho de Andrade.

1. Cupim. 2. Dilema. 3. Construção. I. Universidade de Brasília. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

OLIVEIRA, Jefferson Rodrigues de. **Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio**. 2017. 16f. Dissertação de Mestrado – Universidade de Brasília.

CESSÃO DE DIREITOS

NOME DO AUTOR: Jefferson Rodrigues de Oliveira

TITULO DO TRABALHO: Games Digitais: Uma Abordagem de Física de Partículas

Elementares no Ensino Médio.

TIPO DO TRABALHO/ANO: Dissertação / 2017

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação pode ser reproduzida sem a autorização do autor.

Ao meu filho Davi Eduardo, fonte da minha inspiração...

Agradecimentos

Agradecimentos aqui.

Resumo

Resumo do trabalho

Abstract

Abstract here.

Lista de Figuras

2.1	Cupim cibernético	5
A.1	Uma figura que está no apêndice	15

Lista de Tabelas

2.1	Exemplo de uma	Tabela																													4	1
-----	----------------	--------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Lista de Quadros

1.6	Teste	3
4.1	Teste2	9

Lista de Gráficos

2.3	Cupim cibernético.																(б
	1																	

Lista de Fotografias

2.3	Cupim cibernético.				 	 												6

Lista de Abreviaturas e Siglas

FPE Física de Partículas Elementares

EM Ensino Médio

Lista de Símbolos

- a Distância
- a Vetor de distâncias
- \mathbf{e}_{j} Vetor unitário de dimensão n e com o j-ésimo componente igual a 1
- **K** Matriz de rigidez
- m_1 Massa do cumpim
- δ_{k-k_f} Delta de Kronecker no instante k_f

Sumário

1	INT	ΓRO	DUÇAO	1
	1.1	Que	estão de Pesquisa	1
	1.2	Obj	jetivo	1
	1.3	Mo	tivação	1
	1.4	Imp	portância e Justificativa	1
	1.5	Del	imitação da Pesquisa	1
	1.6	Org	ganização do Trabalho	2
	1.6	5.1	Introdução	2
	1.6	5.2	Fundamentação Teórica	2
	1.6	5.3	Aplicação do Produto	2
	1.6	5.4	Descrição do produto	2
	1.6	5.5	Descrição do produto	2
2	Fu	NDA	amentação Teórica	4
	2.1	Bas	se Legal	4
	2.2	Rev	visão Literária	5
	2.3	Ref	Gerenciais Teóricos	5
	2.3	3.1	David Ausubel - Aprendizagem Significativa	5
	2.3	3.2	Marc Prensk - Aprendizagem Baseada em Jogos Digitais	5
3	DE	SCR	LIÇÃO DO PRODUTO EDUCACIONAL	7
	3.1	A S	Sequência Didática	7
	3.2	O J	logo Digital	7

		_			
CIT	TAA	Λ	RIC	`	
I	1 1 1 1 / 1	\boldsymbol{A}	\mathbf{R}	,	

4	Aı	PLICAÇÃO DO PRODUTO EDUCACIONAL	8
	4.1	Metodologia	8
	4.2	Relato de Aplicação	9
	4.2	2.1 Aula 1	9
	4.2	2.2 Aula 2	9
	4.2	2.3 Aula 3	9
	4.2	2.4 Aula 4	9
	4.2	2.5 Aula 5	9
	4.2	2.6 Aula 6	9
	4.2	2.7 Aula 7	9
	4.2	2.8 Aula 8	9
	4.2	2.9 Aula 9	9
	4.2	2.10 Aula 10	9
5	RE	esultados e Discussões	10
	5.1	Análise da Pesquisa Inicial	10
	5.2	Análise da Pesquisa Inicial	11
	5.3	Análise do Teste Inicial	11
	5.4	Análise da Primeira Aplicação do Jogo	11
	5.5	Análise da Apresentação do Vídeo	11
	5.6	Análise da Aula Expositiva 1 e 2	11
	5.7	Análise da Segunda Aplicação do Jogo	11
	5.8	Análise do Teste Final	11
	5.9	Análise da Pesquisa Final	11
6	Co	ONCLUSÃO	12
	6.1	Conclusão	
_			
К	EFEF	RÊNCIAS	13
A	PÊNI	dice A – Tópicos de Dilema Linear	15
	Λ 1	Uma Primoira Socão para o Apôndico	15

Anexo	A	_	Ехемі	PLO	DE U	JM	Prin	MEIRO) A	NEX	О.	 		 	16
A.1	Uma	a Se	ção do	Prin	neiro	An	exo .					 			16

1 Introdução

1.1 Questão de Pesquisa

Aqui estará o qual é a questão da pesquisa

1.2 Objetivo

Aqui estarão os principais objetivos da pesquisa

- Isso;
- Aquilo; e
- Aquele outro.

1.3 Motivação

Aqui estará a motivação do porquê des pesquisa. Exemplos de citação

(SANTOSA; MAGALHÃES, 2009); (FREIRE; LIMA, 2012); (BARSOTTI, 2012); (MACÊDO et al., 2012); (GRABOWSKI, 2006); (RAMOS, 2008); (FILHO, 2010); (SANTOS et al., 2010); (MENDES, 2009).

1.4 Importância e Justificativa

Aqui a importância e a justificativa do trabalho.

1.5 Delimitação da Pesquisa

Aqui o tema será delimitado.

1.6 Organização do Trabalho

Aqui comentarei sobre a organização do trabalho.

1.6.1 Introdução

O capítulo 1 contém a introdução do trabalho, onde são expostos a questão da pesquisa, o objetivo, a motivação do mesmo, a importância e justificativa e por fim, a delimitação do tema da pesquisa.

1.6.2 Fundamentação Teórica

O capítulo 2 contém a fundamentação teórica, onde são expostos a Legislação que , uma breve revisão de trabalhos relacionados ao tema

1.6.3 Descrição do Produto

1.6.4 Resultados e Discussões

1.6.5 Conclusão

2 Fundamentação Teórica

2.1 Base Legal

Manipuladores subatuados diferem dos totalmente atuados pois são equipados com um número de atuadores que é sempre menor que o número de graus de liberdade (GDL). Portanto, nem todos os GDL podem ser controlados ativamente ao mesmo tempo (SBORNIAN, 2004). Por exemplo, com um manipulador planar de 3 juntas equipado com dois atuadores, ou seja, duas juntas ativas e uma passiva, pode-se controlar ao mesmo tempo duas das juntas a qualquer instante, mas não todas. Para controlar todas as juntas de um manipulador subatuado, deve-se usar um controle sequencial. Este princípio foi provado pela primeira vez por arai usando argumentos dinâmicos linearizados (JOEA; JOHN, 2003), e é a base para a modelagem no espaço das juntas e no espaço Cartesiano. A Tabela 2.1 apresenta os resultados (ASSENMACHER et al., 1993; SILBERSCHATZ et al., 1991; CAROMEL et al., 1998, p. 50).

Devido ao fato de que no máximo n_a coordenadas generalizadas (ângulos das juntas ou variáveis cartesianas) podem ser controladas num dado instante, o vetor de coordenadas generalizadas é dividido em duas partes, representando as coordenadas generalizadas ativas e as coordenadas generalizadas passivas (CALLAGHAN et al., 1995).

Considerando um robô manipulador rígido, malha aberta, e de n-juntas em série. Seja q a representação de seu vetor de posição angular das juntas e τ a representação de seu vetor de torque. A equação dinâmica pelo método de Lagrange é dada por:

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}}) - \frac{\partial L}{\partial q} = \tau^{T}.$$
(2.1)

TABELA 2.1 – Exemplo de uma Tabela

Parâmetro	Unidade	Valor da simulação	Valor experimental
Comprimento, α	m	8, 23	8,54
Altura, β	m	29, 1	28, 3
Velocidade, v	m/s	60, 2	67,3

FIGURA 2.1 – Cupim cibernético.

O Lagrangiano L é definido como a diferença entre as energias cinética e potencial do sistema:

$$L = T - P \tag{2.2}$$

A energia cinética total dos ligamentos é representada:

$$T = \frac{1}{2}\dot{q}^T M(q)\dot{q} \tag{2.3}$$

2.2 Revisão Literária

2.3 Referenciais Teóricos

2.3.1 David Ausubel - Aprendizagem Significativa

2.3.2 Marc Prensk - Aprendizagem Baseada em Jogos Digitais

GRÁFICO 2.3 – Cupim cibernético.

3 Descrição do Produto Educacional

3.1 A Sequência Didática

Total de aulas: 10 Público alvo: estudantes da terceira série do ensino médio total de turmas: 4 Escola Pública do Distrito Federal

1^a Aula: Pesquisa inicial - jogos digitais 2^a Aula: Pré-teste 3^a Aula: 1^a Aplicação do jogo 4^a Aula e 5^a Aula: Vídeo "O Discreto charme das partículas elementares" 6^a Aula e 7^a Aula: Aula expositiva 8^a Aula: Segunda aplicação do jogo

3.2 O Jogo Digital

Scratch O jogo tem um estilo RPG/Aventura, no qual o jogador controla o personagem principal. O jogo uma sua forma principal um quiz (perguntas e resposta) com um total de 20 perguntas pertinentes à FPE. o foco das perguntas é a teoria, não foi dado ênfase à matemática Dinamica do jogo

4 Aplicação do Produto Educacional

4.1 Metodologia

A metodologia é baseada na execução

Neste trabalho realizou-se o projeto de uma metodologia de controle subótimo redundante da junta passiva de um manipulador com três graus de liberdade instantaneamente. Para este propósito usou-se nas formulações o vetor gradiente de uma função escalar que estima o acoplamento entre a junta passiva e as ativas desse manipulador. Aqui a redundância foi usada da melhor maneira possível sem focalizar o efeito global. Portanto, este método deve ser denominado de controle ótimo local por redundância. A principal vantagem dessa formulação é a computação em tempo real, que é necessária para o controle do manipulador experimental. Além disso esse método pode ser usado com diferentes tipos de controladores, uma vez que as alterações são feitas nas equações dinâmicas do manipulador.

A consequência direta observada nessa formulação é a redução dos torques na fase de controle da junta passiva, e consequente redução da energia elétrica gasta. Isso ocorre devido ao fato de que ao longo da trajetória do manipulador o índice de acoplamento de torque tende a ser maximizado, e portanto, menor é o torque necessário nos atuadores para se conseguir o posicionamento da junta passiva do manipulador.

Outros resultados indiretos obtidos são: um movimento mais uniforme e suave do manipulador e um tempo de acomodação menor tanto no posicionamento da junta passiva quanto das ativas, conforme podemos obervar nos gráficos de desempenho dos resultados apresentados. Isso ocorre porque a maximização do acoplamento entre as juntas facilita o controle. Assim ocorrem menos picos de torque, e como as juntas ativas tem "menos trabalho" para posicionar a passiva estas se movem menos na direção contrária ao movimento daquelas, diminuindo assim as velocidades alcançadas e os tempos de posicionamento.

Uma extensão deste trabalho pode ser a implementação de um controle ótimo global por redundância da junta passiva do manipulador. Para isto pode-se fazer o planejamento off-line da trajetória das juntas de modo a minimizar a energia consumida. Alguns estudos

QUADRO 4.1 - Teste2

Coluna 1	amp; Coluna 2
Conteúdo 1	amp; Conteúdo 2

foram feitos nesse sentido, usando o Princípio Mínimo de Pontryagin, mas sem resultados satisfatórios até o momento.

4.2 Relato de Aplicação

- 4.2.1 Aula 1
- 4.2.2 Aula 2
- 4.2.3 Aula 3
- 4.2.4 Aula 4
- 4.2.5 Aula 5
- 4.2.6 Aula 6
- 4.2.7 Aula 7
- 4.2.8 Aula 8
- 4.2.9 Aula 9
- 4.2.10 Aula 10

5 Resultados e Discussões

5.1 Análise da Pesquisa Inicial

Neste trabalho realizou-se o projeto de uma metodologia de controle subótimo redundante da junta passiva de um manipulador com três graus de liberdade instantaneamente. Para este propósito usou-se nas formulações o vetor gradiente de uma função escalar que estima o acoplamento entre a junta passiva e as ativas desse manipulador. Aqui a redundância foi usada da melhor maneira possível sem focalizar o efeito global. Portanto, este método deve ser denominado de controle ótimo local por redundância. A principal vantagem dessa formulação é a computação em tempo real, que é necessária para o controle do manipulador experimental. Além disso esse método pode ser usado com diferentes tipos de controladores, uma vez que as alterações são feitas nas equações dinâmicas do manipulador.

A consequência direta observada nessa formulação é a redução dos torques na fase de controle da junta passiva, e consequente redução da energia elétrica gasta. Isso ocorre devido ao fato de que ao longo da trajetória do manipulador o índice de acoplamento de torque tende a ser maximizado, e portanto, menor é o torque necessário nos atuadores para se conseguir o posicionamento da junta passiva do manipulador.

Outros resultados indiretos obtidos são: um movimento mais uniforme e suave do manipulador e um tempo de acomodação menor tanto no posicionamento da junta passiva quanto das ativas, conforme podemos obervar nos gráficos de desempenho dos resultados apresentados. Isso ocorre porque a maximização do acoplamento entre as juntas facilita o controle. Assim ocorrem menos picos de torque, e como as juntas ativas tem "menos trabalho" para posicionar a passiva estas se movem menos na direção contrária ao movimento daquelas, diminuindo assim as velocidades alcançadas e os tempos de posicionamento.

Uma extensão deste trabalho pode ser a implementação de um controle ótimo global por redundância da junta passiva do manipulador. Para isto pode-se fazer o planejamento off-line da trajetória das juntas de modo a minimizar a energia consumida. Alguns estudos foram feitos nesse sentido, usando o Princípio Mínimo de Pontryagin, mas sem resultados satisfatórios até o momento.

- 5.2 Análise da Pesquisa Inicial
- 5.3 Análise do Teste Inicial
- 5.4 Análise da Primeira Aplicação do Jogo
- 5.5 Análise da Apresentação do Vídeo
- 5.6 Análise da Aula Expositiva 1 e 2
- 5.7 Análise da Segunda Aplicação do Jogo
- 5.8 Análise do Teste Final
- 5.9 Análise da Pesquisa Final

6 Conclusão

6.1 Conclusão

Neste trabalho realizou-se o projeto de uma metodologia de controle subótimo redundante da junta passiva de um manipulador com três graus de liberdade instantaneamente. Para este propósito usou-se nas formulações o vetor gradiente de uma função escalar que estima o acoplamento entre a junta passiva e as ativas desse manipulador. Aqui a redundância foi usada da melhor maneira possível sem focalizar o efeito global. Portanto, este método deve ser denominado de controle ótimo local por redundância. A principal vantagem dessa formulação é a computação em tempo real, que é necessária para o controle do manipulador experimental. Além disso esse método pode ser usado com diferentes tipos de controladores, uma vez que as alterações são feitas nas equações dinâmicas do manipulador.

A consequência direta observada nessa formulação é a redução dos torques na fase de controle da junta passiva, e consequente redução da energia elétrica gasta. Isso ocorre devido ao fato de que ao longo da trajetória do manipulador o índice de acoplamento de torque tende a ser maximizado, e portanto, menor é o torque necessário nos atuadores para se conseguir o posicionamento da junta passiva do manipulador.

Outros resultados indiretos obtidos são: um movimento mais uniforme e suave do manipulador e um tempo de acomodação menor tanto no posicionamento da junta passiva quanto das ativas, conforme podemos obervar nos gráficos de desempenho dos resultados apresentados. Isso ocorre porque a maximização do acoplamento entre as juntas facilita o controle. Assim ocorrem menos picos de torque, e como as juntas ativas tem "menos trabalho" para posicionar a passiva estas se movem menos na direção contrária ao movimento daquelas, diminuindo assim as velocidades alcançadas e os tempos de posicionamento.

Uma extensão deste trabalho pode ser a implementação de um controle ótimo global por redundância da junta passiva do manipulador. Para isto pode-se fazer o planejamento off-line da trajetória das juntas de modo a minimizar a energia consumida. Alguns estudos foram feitos nesse sentido, usando o Princípio Mínimo de Pontryagin, mas sem resultados satisfatórios até o momento.

REFERÊNCIAS 12

Referências

ALMEIDA JUNIOR, E. R. d. B. de; OLIVEIRA, E. C. d. S. de. O uso do Scratch para o ensino de Física. 2011.

ARYSTIDES, B.; MEDEIROS, C. S. de. Incorporaï; $\frac{1}{2}$ ï; $\frac{1}{2}$ o de tempo em SGBD orientado a objeto. In: SIMPï; $\frac{1}{2}$ SIO BRASILEIRO DE BANCO DE DADOS, 13., 1996, Petrolina. **Anais...** Petrolina: EMBRAPA, 1995. p. 90–98.

ASSENMACHER, H.; BREITBACH, T.; BUHLER, P.; HÜBSCH, V.; SCHWARZ, R. Panda: supporting distributed programming in L++. In: EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, 7., 1993, Kaiserslautern. **Proceedings...** Berlin: Springer, 1993. p. 361–383. (Lecture Notes in Computer Science, v. 707).

BARSOTTI, D. C. USO DE FERRAMENTAS TECNOLÓGICAS NO ENSINO DE FÍSICA PARA O ENSINO MÉDIO: MODELAGEM MATEMÁTICA A PARTIR DO SOFTWARE MODELLUS. Tese (Doutorado) — UNIVERSIDADE DE FEDERAL DE SÃO CARLOS, 2012.

CALLAGHAN, B.; PAWLOWSKI, B.; STAUBACH, P. **NFS** version **3** protocol specification: RFC 1831. London, 1995. 68 p.

CAROMEL, D.; KLAUSER, W.; VAYSSIERE, J. Towards seamless computing and metacomputing in Java. Concurrency in Practice and Experience, v. 10, n. 11–13, p. 1043–1061, set./nov. 1998. Disponível em: http://www-sop.inria.fr/\~sloop/javall-/index.ht. Acesso em: 20 fev. 2000.

CONFERENCE ON COFFEE IMPORTANCE, 1., 2000, Java Island. **Proceedings...** Java Island: Java Island Press, 2000.

FILHO, G. F. de S. Simuladores computacionais para o ensino de física básica: uma discussão sobre produção e uso. 2010.

FREIRE, S.; LIMA, N. Ensino médio articulado ao ensino profissionalizante: Novas perspectivas. **HOLOS**, v. 2, p. 105–113, 2012.

FURMENTO, N.; ROUDIER, Y.; SIEGEL, G. Parallélisme et distribution en C++: une revue des langages existants. Valbonne, 1995. (RR 95-02). Disponível em: http://www-sop.inria.br/science/skd.gz. Acesso em: 29 fev. 2003.

GRABOWSKI, G. Ensino médio integrado à educação profissional. **BRASIL. Ministério da Educação. Secretaria de Educação à Distância. Ensino Médio integrado à Educação Profissional. Boletim, Brasília**, n. 7, p. 05–15, 2006.

REFERÊNCIAS 13

ITALUS: grupo de usuários LATEX do ITA. 2004. Disponível em: http://www.comp.ita-.br/italus/>. Acesso em: 22 jul. 2004.

- JOEA, J. G.; JOHN, J. G. Importance of coffee in computer sciences. In: CONFERENCE ON COFFEE IMPORTANCE, 1., 2000, Java Island. **Proceedings...** Java Island: Java Island Press, 2003. p. 99–100.
- MACÊDO, J. A. de; DICKMAN, A. G.; ANDRADE, I. S. F. de. Simulações computacionais como ferramentas para o ensino de conceitos básicos de eletricidade. **Caderno Brasileiro de Ensino de Física**, v. 29, p. 562–613, 2012.
- MENDES, J. F. O uso do software Modellus na integração entre conhecimentos teóricos e atividades experimentais de tópicos de Mecânica sob a perspectiva da aprendizagem significativa. Tese (Doutorado) UNIVERSIDADE DE BRASÍLIA, 2009.
- MORGADO, M. L. C. **Reimplante dentário**. Trabalho de Conclusão de Curso (Especialização do curso) Faculdade de Odontologia, Universidade Federal do Nananana, São Paulo, 2003.
- NASCIMENTO, E. A. do. **Análise de curvas curvilíneas da trajetória da bola**. 1970. 36 f. Dissertação (Mestrado em Ciência do Futebol) Cosmos University, Cidade do Cabo, 1971.
- PATAGONIOS, J. **Um exemplo de TG**. 98 p. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) Instituto Teórico Aeroglifo, Santa Pindamonhangaba, 2001.
- RAMOS, M. Concepção do ensino médio integrado. Texto apresentado em seminário promovido pela Secretaria de Educação do Estado do Pará nos dias, v. 8, 2008.
- SANTOS, G. S.; MADUREIRA, R. B.; SILVA, V. A. da. O uso de recursos tecnológicos como metodologia de ensino em física: O que dizem os professores? 2010.
- SANTOSA, R. A. dos; MAGALHÃES, N. S. Desmonte tecnológico como ferramenta para o ensino de física. 2009.
- SBORNIAN, W. **Um exemplo de dissertação de mestrado**. 2002. 98 f. Dissertação (Mestrado em Ciência da Computação) Instituto de Alguma Coisa, Universidade Sei Lá de Onde, Santa Pindamonhangaba, 2002. Disponível em: http://www.santapinda-edu/~sbor/dissert.p. Acesso em: 25 fev. 2002.
- SBORNIAN, W. **Um exemplo de tese de doutorado**. 2004. 169 f. Tese (Doutorado em Aeronáutica) Instituto de Alguma Coisa, Universidade Sei Lá de Onde, Santo Antônio da Patrulha, 2004. 1 CD–ROM.
- SILBERSCHATZ, A.; PETERSON, J. L.; GALVIN, P. B. Operating system concepts. 3rd. ed. New York: Springer, 1991.

Apêndice A - Tópicos de Dilema Linear

A.1 Uma Primeira Seção para o Apêndice

A matriz de Dilema Linear M e o vetor de torques inerciais b, utilizados na simulação são calculados segundo a formulação abaixo:

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$
 (A.1)

FIGURA A.1 – Uma figura que está no apêndice

Anexo A - Exemplo de um Primeiro Anexo

A.1 Uma Seção do Primeiro Anexo

Algum texto na primeira seção do primeiro anexo.

FOLHA DE REGISTRO DO DOCUMENTO			
1. CLASSIFICA??O/TIPO	2. DATA	3. DOCUMENTO N?	4. N? DE P?GINAS
$_{ m DM}$	25 de março de 2015	DCTA/ITA/DM-018/2015	16
 5. T?TULO E SUBT?TULO: Games Digitais: Uma Abordagem de Física de Partículas Elementares no Ensino Médio 			
6. AUTOR(ES): Jefferson Rodrigues de Oliveira			
 7. INSTITUI??O(?ES)/?RG?O(S) INTERNO(S)/DIVIS?O(?ES): Instituto Tecnológico de Aeronáutica – ITA 			
8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR: Cupim; Cimento; Estruturas			
9. PALAVRAS-CHAVE RESULTANTES DE INDEXA??O: Cupim; Dilema; Construção			
10. APRESENTA??O: (X) Nacional () Internacional			
ITA, São José dos Campos. Curso de Mestrado. Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont. Coorientadora: Prof ^a . Dr ^a . Doralice Serra. Defesa em 05/03/2015. Publicada em 25/03/2015.			
11. RESUMO:			
Resumo do trabalho			
12. GRAU DE SIGILO:			
(X) OSTEN	$SIVO \qquad () RE$	SERVADO ()	SECRETO