МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана»

Построение трёхмерного изображения объёмных каркасных и эллипсоидных объектов с использованием ASCII-графики

Студент: Поляков Андрей Игоревич

Руководитель: Кострицкий Александр Сергеевич

Цели и задачи работы

Цель — разработка программного обеспечения для построения трёхмерного изображения объёмных объектов и эллипсоидов с использованием заданного пользователем набора ASCII-символов.

Задачи:

- 1. Проанализировать существующие методы построения трехмерных объектов и преобразования изображений в ASCII-графику.
- 2. Спроектировать программное обеспечение для построения трёхмерного изображения.
- 3. Выбрать средства реализации и реализовать спроектированное программное обеспечение.
- 4. Исследовать зависимость качества изображения от выбранного набора символов.

Формализованная постановка задачи

Информация о шрифте F

Подмножество символов CH={ch_1, ..., ch_n}

Описания объектов d 1, ..., d k

Информация о наблюдателе Z

Информация об источниках света ls_1, ..., ls_m

3D визуализатор каркасных объектов и эллипсоидов, использующий ASCII графику

Кадр сцены, выведенный в терминал

Качество изображения

Типы ASCII графики

Графика, основанная на яркости пикселей

Графика, основанная на форме

Сравнение алгоритмов закраски

Критерий	Простая	Метод Гуро	Метод Фонга
Количество расчетов осве-	1 на полигон	1 на вершину	1 на пиксель
щения			
Количество интерполяций	0	1 (интенсивность)	1 (нормали)
Количество операций с нор-	1 на полигон	1 на вершину	1 на пиксель
малями			
Вычислительная сложность	O(1)	$O(n_{\text{полигонов}})$	$O(n_{\text{пикселей}})$

Сравнение алгоритмов удаления невидимых ребер и поверхностей

Критерий	Варнок	Z -буфер	Трассировка лучей
Количество операций с пик-	Зависит от слож-	1 на пиксель	1 луч на пиксель (для
селями	ности сцены и	(сравнение и	обратной трассиров-
	деления окна	запись)	ки)
Количество буферов (зани-	1 (фреймбуфер)	2 (фреймбуфер и	Нет необходимости
маемая память)		Z -буфер)	в дополнительных
			буферах
Вычислительная сложность	$O(n_{\text{подокон}})$	$O(n_{\text{пикселей}})$	$O(n_{ m лучей})$

Разработка программного обеспечения

3D визуализатор каркасных объектов и эллипсоидов, использующий ASCII графику

Разработка программного обеспечения

Подготовка полигонов

Разработка программного обеспечения

Отрисовка и вывод изображения в ASCII графике

Средства разработки

- Язык программирования GO
- Пакет Go tui
- Пакет Go testing
- Yandex Forms

Модульное тестирование

- Модуль renderer:
 - Тесты пройдены, покрытие 29.5%
- Модуль object:
 - Тесты пройдены, покрытие 94.4%
- Модуль transformer:
 - Тесты пройдены, покрытие 36.5%

Сфера с радиусом 5, освещенная источником света, который находится в точке с координатами (10, 10, -10)

Сфера с радиусом 5, освещенная источником света, который находится в точке с координатами (-10, -10, 10)

Сфера с радиусом 5, освещенная источником света, который находится в точке с координатами (0, 0, 0)

Сфера с радиусом 5, освещенная источником света, который находится в точке с координатами (0, 0, -10)

Сфера с радиусом 5, освещенная источником света, который находится в точке с координатами (0, 0, 10)

Форма опроса

Изображения — оценка качества отображения освещенности

128 символов ASCII

32 символа ASCII

Результаты опроса — оценка качества отображения освещенности

Наборы символов:

- 1) 128 символов ASCII.
- 2) 32 символа ASCII.

Критерии:

- 1) Похожесть на сферу.
- 2) Правдоподобность бликов.
- 3) Глубина изображения.
- 4) Явность места расположения источника света.

Изображения — оценка качества отображения формы

128 символов ASCII

32 символа ASCII

Результаты опроса — оценка качества отображения формы

Наборы символов:

- 1) 128 символов ASCII.
- 2) 32 символа ASCII.

Критерии:

- 1) Похожесть на куб.
- 2) Чёткость рёбер.
- 3) Отсутствие искривления рёбер.

Заключение

В результате работы было разработано программное обеспечение, позволяющее строить трёхмерные изображения объёмных объектов и эллипсоидов с использованием заданного пользователем набора ASCII-символов.

Было проведено исследование, в результате которого было установлено, что уменьшение количества доступных символов негативно сказывается как на восприятии освещенности, так и на передаче формы объектов.

В ходе работы поставленная цель была достигнута, все задачи были выполнены.