

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400 \, \text{V}$. The separation of the plates is $0.80 \, \text{cm}$.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

Calculate, for the electron between the plates, the magnitude of		
(i)	the force on the electron,	
ii)	force =	
	acceleration =	
iii	i)	

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

acceleration =
$$m s^{-2}$$
 [3]

A s	phere	e has volume V and is made of metal of density $ ho$.
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.
		[1]
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.
		[3]
(c)		e sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .
	(i)	For this sphere travelling at constant speed, calculate
		1. its kinetic energy,
		kinetic energy = J
		2. its rate of loss of gravitational potential energy.
		rate = J s ⁻¹ [5]
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.
		[2]

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400 \, \text{V}$. The separation of the plates is $0.80 \, \text{cm}$.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

Calculate, for the electron between the plates, the magnitude of		
(i)	the force on the electron,	
ii)	force =	
	acceleration =	
iii	i)	

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

acceleration =
$$m s^{-2}$$
 [3]

A s	phere	e has volume V and is made of metal of density $ ho$.
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.
		[1]
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.
		[3]
(c)		e sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .
	(i)	For this sphere travelling at constant speed, calculate
		1. its kinetic energy,
		kinetic energy = J
		2. its rate of loss of gravitational potential energy.
		rate = J s ⁻¹ [5]
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.
		[2]

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400 \, \text{V}$. The separation of the plates is $0.80 \, \text{cm}$.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

Calculate, for the electron between the plates, the magnitude of		
(i)	the force on the electron,	
ii)	force =	
	acceleration =	
iii	i)	

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

acceleration =
$$m s^{-2}$$
 [3]

A s	phere	e has volume V and is made of metal of density $ ho$.
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.
		[1]
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.
		[3]
(c)		e sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .
	(i)	For this sphere travelling at constant speed, calculate
		1. its kinetic energy,
		kinetic energy = J
		2. its rate of loss of gravitational potential energy.
		rate = J s ⁻¹ [5]
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.
		[2]

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400 \, \text{V}$. The separation of the plates is $0.80 \, \text{cm}$.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

Calculate, for the electron between the plates, the magnitude of		
(i)	the force on the electron,	
ii)	force =	
	acceleration =	
iii	i)	

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

acceleration =
$$m s^{-2}$$
 [3]

A s	phere	e has volume V and is made of metal of density $ ho$.
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.
		[1]
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.
		[3]
(c)		e sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .
	(i)	For this sphere travelling at constant speed, calculate
		1. its kinetic energy,
		kinetic energy = J
		2. its rate of loss of gravitational potential energy.
		rate = J s ⁻¹ [5]
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.
		[2]

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400 \, \text{V}$. The separation of the plates is $0.80 \, \text{cm}$.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

Calculate, for the electron between the plates, the magnitude of		
(i)	the force on the electron,	
ii)	force =	
	acceleration =	
iii	i)	

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

acceleration =
$$m s^{-2}$$
 [3]

A s	phere	e has volume V and is made of metal of density $ ho$.
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.
		[1]
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.
		[3]
(c)		e sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .
	(i)	For this sphere travelling at constant speed, calculate
		1. its kinetic energy,
		kinetic energy = J
		2. its rate of loss of gravitational potential energy.
		rate = J s ⁻¹ [5]
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.
		[2]

Fig. 6.1

The lower plate is earthed and the upper plate is at a potential of $+400 \, \text{V}$. The separation of the plates is $0.80 \, \text{cm}$.

- (a) On Fig. 6.1,
 - (i) draw an arrow at P to show the direction of the force on the electron due to the electric field between the plates,
 - (ii) sketch the path of the electron as it passes between the plates and beyond them. [3]
- (b) Determine the electric field strength E between the plates.

Calculate, for the electron between the plates, the magnitude of		
(i)	the force on the electron,	
ii)	force =	
	acceleration =	
iii	i)	

Fig. 6.1

The electric field between the plates is found to be $3.0 \times 10^4 \, N \, C^{-1}$ in the downward direction.

- (a) (i) On Fig. 6.1, mark with a + the plate which is at the more positive potential.
 - (ii) Calculate the potential difference between the plates.

acceleration =
$$m s^{-2}$$
 [3]

A s	phere	e has volume V and is made of metal of density $ ho$.
(a)	Wri	te down an expression for the mass m of the sphere in terms of V and $ ho$.
		[1]
(b)	The	sphere is immersed in a liquid. Explain the apparent loss in the weight of the sphere.
		[3]
(c)		e sphere in (b) has mass 2.0×10^{-3} kg. When the sphere is released, it eventually in the liquid with a constant speed of 6.0cm s^{-1} .
	(i)	For this sphere travelling at constant speed, calculate
		1. its kinetic energy,
		kinetic energy = J
		2. its rate of loss of gravitational potential energy.
		rate = J s ⁻¹ [5]
	(ii)	Suggest why it is possible for the sphere to have constant kinetic energy whilst losing potential energy at a steady rate.
		[2]