Complexity of Reasoning in Kleene and Action Algebras

Stepan Kuznetsov

ESSLLI 2022 · Galway, Ireland · Gallimh, Éire

Lecture 4

• Now let us add **division** operators to Kleene algebras.

- Now let us add **division** operators to Kleene algebras.
- $A \leq C / B \iff A \cdot B \leq C \iff B \leq A \setminus C$

- Now let us add **division** operators to Kleene algebras.
- $A \leq C/B \iff A \cdot B \leq C \iff B \leq A \setminus C$
- Divisions have a natural language interpretation:

$$A \setminus B = \{ \beta \mid (\forall \alpha \in A) \ \alpha \beta \in B \}$$
$$B / A = \{ \beta \mid (\forall \alpha \in A) \ \beta \alpha \in B \}$$

- Now let us add **division** operators to Kleene algebras.
- $A \leq C/B \iff A \cdot B \leq C \iff B \leq A \setminus C$
- Divisions have a natural language interpretation:

$$A \setminus B = \{ \beta \mid (\forall \alpha \in A) \ \alpha \beta \in B \}$$
$$B / A = \{ \beta \mid (\forall \alpha \in A) \ \beta \alpha \in B \}$$

 Kleene algebras with divisions (residuated Kleene algebras) are called action algebras.

- Now let us add **division** operators to Kleene algebras.
- $A \leq C/B \iff A \cdot B \leq C \iff B \leq A \setminus C$
- Divisions have a natural language interpretation:

$$A \setminus B = \{ \beta \mid (\forall \alpha \in A) \ \alpha \beta \in B \}$$
$$B / A = \{ \beta \mid (\forall \alpha \in A) \ \beta \alpha \in B \}$$

- Kleene algebras with divisions (residuated Kleene algebras) are called action algebras.
- Adding conjunction—intersection yields action lattices.

- Now let us add **division** operators to Kleene algebras.
- $A \leq C / B \iff A \cdot B \leq C \iff B \leq A \setminus C$
- Divisions have a natural language interpretation:

$$A \setminus B = \{ \beta \mid (\forall \alpha \in A) \ \alpha \beta \in B \}$$
$$B / A = \{ \beta \mid (\forall \alpha \in A) \ \beta \alpha \in B \}$$

- Kleene algebras with divisions (residuated Kleene algebras) are called action algebras.
- Adding conjunction—intersection yields action lattices.
- The logic of all action lattices is action logic ACT.

- Now let us add **division** operators to Kleene algebras.
- $A \leq C/B \iff A \cdot B \leq C \iff B \leq A \setminus C$
- Divisions have a natural language interpretation:

$$A \setminus B = \{ \beta \mid (\forall \alpha \in A) \ \alpha \beta \in B \}$$
$$B / A = \{ \beta \mid (\forall \alpha \in A) \ \beta \alpha \in B \}$$

- Kleene algebras with divisions (residuated Kleene algebras) are called action algebras.
- Adding conjunction—intersection yields action lattices.
- The logic of all action lattices is action logic ACT.
- The logic of *-continuous action lattices is infinitary action logic \mathbf{ACT}_{ω} .

• An **action lattice** is an algebraic structure $(\mathcal{A}; \preceq, \backslash, /, \vee, \wedge, 0, 1, *)$, where:

- An **action lattice** is an algebraic structure $(\mathcal{A}; \leq, \setminus, /, \vee, \wedge, 0, 1, *)$, where:
 - 1. $(\mathcal{A}; \leq, \vee, \wedge)$ is a lattice, 0 is its least element;

- An **action lattice** is an algebraic structure $(\mathcal{A}; \leq, \setminus, /, \vee, \wedge, 0, 1, *)$, where:
 - 1. $(\mathcal{A}; \leq, \vee, \wedge)$ is a lattice, 0 is its least element;
 - 2. $(\mathcal{A}; \cdot, 1)$ is a monoid;

- An **action lattice** is an algebraic structure $(\mathcal{A}; \preceq, \backslash, /, \vee, \wedge, 0, 1, *)$, where:
 - 1. $(\mathcal{A}; \leq, \vee, \wedge)$ is a lattice, 0 is its least element;
 - 2. $(\mathcal{A}; \cdot, 1)$ is a monoid;
 - 3. \ and / are residuals of the product w.r.t. \leq : $A \leq C / B \iff A \cdot B \leq C \iff B \leq A \setminus C$;

- An **action lattice** is an algebraic structure $(\mathcal{A}; \leq, \setminus, /, \vee, \wedge, 0, 1, *)$, where:
 - 1. $(\mathcal{A}; \leq, \vee, \wedge)$ is a lattice, 0 is its least element;
 - 2. $(\mathcal{A}; \cdot, 1)$ is a monoid;
 - 3. \ and / are residuals of the product w.r.t. \leq : $A \leq C / B \iff A \cdot B \leq C \iff B \leq A \setminus C$;
 - 4. $A^* = \min_{\leq} \{b \mid 1 \leq b \text{ and } a \cdot b \leq b\}.$

- An **action lattice** is an algebraic structure $(\mathcal{A}; \preceq, \backslash, /, \vee, \wedge, 0, 1, *)$, where:
 - 1. $(\mathcal{A}; \leq, \vee, \wedge)$ is a lattice, 0 is its least element;
 - 2. $(\mathcal{A}; \cdot, 1)$ is a monoid;
 - 3. \ and \ are residuals of the product w.r.t. \(\preceq: A \leq C \) \(B \leq A \leq C; \)
 - 4. $A^* = \min_{\leq} \{b \mid 1 \leq b \text{ and } a \cdot b \leq b\}.$
- An action lattice is *-continuous, if $a^* = \sup_{\le} \{a^n \mid n \ge 0\}$.

• In the presence of divisions, many things regularise:

- In the presence of divisions, many things regularise:
 - 1. Product is monotone w.r.t. \leq (Lambek 1958).

- In the presence of divisions, many things regularise:
 - 1. Product is monotone w.r.t. \leq (Lambek 1958).
 - 2. The left Kleene star is always the right one.

- In the presence of divisions, many things regularise:
 - 1. Product is monotone w.r.t. ≤ (Lambek 1958).
 - 2. The left Kleene star is always the right one.
 - 3. The zero element is the annihilator for product.

- In the presence of divisions, many things regularise:
 - 1. Product is monotone w.r.t. ≤ (Lambek 1958).
 - 2. The left Kleene star is always the right one.
 - 3. The zero element is the annihilator for product.
- The following **Pratt's normality theorem** holds: if there exists $\sup_{\prec} \{a^n \mid n \geq 0\}$, then it should coincide with a^* .

- In the presence of divisions, many things regularise:
 - 1. Product is monotone w.r.t. ≤ (Lambek 1958).
 - 2. The left Kleene star is always the right one.
 - 3. The zero element is the annihilator for product.
- The following **Pratt's normality theorem** holds: if there exists $\sup_{\preceq} \{a^n \mid n \geq 0\}$, then it should coincide with a^* .
- This means that if the lattice is complete (allows infinite inf and sup), then it is *-continuous.

- In the presence of divisions, many things regularise:
 - 1. Product is monotone w.r.t. \leq (Lambek 1958).
 - 2. The left Kleene star is always the right one.
 - 3. The zero element is the annihilator for product.
- The following **Pratt's normality theorem** holds: if there exists $\sup_{\prec} \{a^n \mid n \geq 0\}$, then it should coincide with a^* .
- This means that if the lattice is complete (allows infinite inf and sup), then it is *-continuous.
- In particular, this holds for finite action lattices.

• The first (probably) appearance of divisions (residuals) connected to a partial order is due to Krull (1924), who introduced them in algebra, for ideals in rings.

- The first (probably) appearance of divisions (residuals) connected to a partial order is due to Krull (1924), who introduced them in algebra, for ideals in rings.
- **Residuated lattices** appear in the work of Ward & Dilworth (1939).

- The first (probably) appearance of divisions (residuals) connected to a partial order is due to Krull (1924), who introduced them in algebra, for ideals in rings.
- **Residuated lattices** appear in the work of Ward & Dilworth (1939).
- Later on, Lambek (1958) introduced the Lambek calculus for defining natural language syntax.

- The first (probably) appearance of divisions (residuals) connected to a partial order is due to Krull (1924), who introduced them in algebra, for ideals in rings.
- **Residuated lattices** appear in the work of Ward & Dilworth (1939).
- Later on, Lambek (1958) introduced the Lambek calculus for defining natural language syntax.
- The Lambek calculus is a basic substructural logic; on the connection of substructural logics and residuated lattices see Galatos et al. (2007).

• Action algebras were introduced by Pratt (1991); Kozen (1994) added ∧ and introduced action lattices.

- Action algebras were introduced by Pratt (1991); Kozen (1994)
 added ∧ and introduced action lattices.
- The motivation is in better properties of this class of algebras if compared with Kleene algebras.

- Action algebras were introduced by Pratt (1991); Kozen (1994)
 added ∧ and introduced action lattices.
- The motivation is in better properties of this class of algebras if compared with Kleene algebras.
- Namely, Kleene algebras do not form a finitely based variety (Redko 1964, Conway 1971), i.e., they cannot be axiomatised by a finite set of universally valid equations.

- Action algebras were introduced by Pratt (1991); Kozen (1994)
 added ∧ and introduced action lattices.
- The motivation is in better properties of this class of algebras if compared with Kleene algebras.
- Namely, Kleene algebras do not form a finitely based variety (Redko 1964, Conway 1971), i.e., they cannot be axiomatised by a finite set of universally valid equations.
- In contrast, action algebras do. Namely, as shown by Pratt, the condition for Kleene star can be replaced by "pure induction"

$$(A \setminus A)^* = A \setminus A,$$

and monotonicity: $A^* \leq (A+B)^*$.

- $\mathcal{P}(\Sigma^*)$, the algebra of formal languages:
 - the lattice structure is set-theoretic;
 - · is pairwise concatenation, $1 = \{\varepsilon\}$;
 - $x / y = \{u \in \Sigma^* \mid (\forall v \in y) \ uv \in x\},$
 - $y \setminus x = \{ u \in \Sigma^* \mid (\forall v \in y) \, vu \in x \};$
 - $x^* = \{u_1 \dots u_n \mid n \ge 0, u_i \in x\}.$

- $\mathcal{P}(\Sigma^*)$, the algebra of formal languages:
 - the lattice structure is set-theoretic;
 - · is pairwise concatenation, $1 = \{\varepsilon\}$;
 - $x / y = \{u \in \Sigma^* \mid (\forall v \in y) uv \in x\},\$ $y \setminus x = \{u \in \Sigma^* \mid (\forall v \in y) vu \in x\};\$
 - $x^* = \{u_1 \dots u_n \mid n \ge 0, u_i \in x\}.$
- $\mathcal{P}(W \times W)$, the algebra of relations:
 - the lattice structure is set-theoretic;
 - · is composition of relations, 1 is the diagonal;
 - $x / y = \{\langle a, b \rangle \mid (\forall \langle b, c \rangle \in y) \langle a, c \rangle \in x\},\ y \setminus x = \{\langle b, c \rangle \mid (\forall \langle a, b \rangle \in y) \langle a, c \rangle \in x\};$
 - x^* is the reflexive-transitive closure of x.

- $\mathcal{P}(\Sigma^*)$, the algebra of formal languages:
 - the lattice structure is set-theoretic;
 - · is pairwise concatenation, $1 = \{\varepsilon\}$;
 - $x / y = \{u \in \Sigma^* \mid (\forall v \in y) uv \in x\},\$ $y \setminus x = \{u \in \Sigma^* \mid (\forall v \in y) vu \in x\};$
 - $x^* = \{u_1 \dots u_n \mid n \ge 0, u_i \in x\}.$
- $\mathcal{P}(W \times W)$, the algebra of relations:
 - the lattice structure is set-theoretic;
 - · is composition of relations, 1 is the diagonal;
 - $x / y = \{\langle a, b \rangle \mid (\forall \langle b, c \rangle \in y) \langle a, c \rangle \in x\},\ y \setminus x = \{\langle b, c \rangle \mid (\forall \langle a, b \rangle \in y) \langle a, c \rangle \in x\};$
 - x^* is the reflexive-transitive closure of x.

These action lattices are distributive (as lattices) and *-continuous.

• However, non-*-continuous action lattices exist.

- However, non-*-continuous action lattices exist.
- This is an example, modifying Kozen's one (1990) by adding divisions and avoiding suprema:

- However, non-*-continuous action lattices exist.
- This is an example, modifying Kozen's one (1990) by adding divisions and avoiding suprema:

Multiplication: componentwise addition in the middle;

$$\bot \cdot x = x \cdot \bot = \bot; \top \cdot y = y \cdot \top = \top \text{ for } y \neq \bot.$$

- However, non-*-continuous action lattices exist.
- This is an example, modifying Kozen's one (1990) by adding divisions and avoiding suprema:

 $\bullet \ \ \mbox{Multiplication: componentwise addition in the middle;}$

$$\bot \cdot x = x \cdot \bot = \bot; \top \cdot y = y \cdot \top = \top \text{ for } y \neq \bot.$$

• Unit: 1 = (0, 0).

- However, non-*-continuous action lattices exist.
- This is an example, modifying Kozen's one (1990) by adding divisions and avoiding suprema:

- Multiplication: componentwise addition in the middle; $\bot \cdot x = x \cdot \bot = \bot; \top \cdot y = y \cdot \top = \top$ for $y \neq \bot$.
- Unit: 1 = (0, 0).
- One can show that this monoid is residuated.

- However, non-*-continuous action lattices exist.
- This is an example, modifying Kozen's one (1990) by adding divisions and avoiding suprema:

- Multiplication: componentwise addition in the middle; $\bot \cdot x = x \cdot \bot = \bot; \top \cdot y = y \cdot \top = \top$ for $y \ne \bot$.
- Unit: 1 = (0, 0).
- One can show that this monoid is residuated.
- $x^* = T$ for x > (0,0); $\bot^* = (0,0)^* = (0,0)$.

- However, non-*-continuous action lattices exist.
- This is an example, modifying Kozen's one (1990) by adding divisions and avoiding suprema:

- Multiplication: componentwise addition in the middle; $\bot \cdot x = x \cdot \bot = \bot; \top \cdot y = y \cdot \top = \top$ for $y \neq \bot$.
- Unit: 1 = (0, 0).
- One can show that this monoid is residuated.
- $x^* = T$ for x > (0,0); $\bot^* = (0,0)^* = (0,0)$.
- $\sup\{(0,1)^n \mid n \ge 0\} = \sup\{(0,n) \mid n \ge 0\}$ does not exist.

- However, non-*-continuous action lattices exist.
- This is an example, modifying Kozen's one (1990) by adding divisions and avoiding suprema:

- Multiplication: componentwise addition in the middle;
 ⊥ · x = x · ⊥ = ⊥; ⊤ · y = y · ⊤ = ⊤ for y ≠ ⊥.
- Unit: 1 = (0, 0).
- · One can show that this monoid is residuated.
- $x^* = T$ for x > (0,0); $\bot^* = (0,0)^* = (0,0)$.
- $\sup\{(0,1)^n \mid n \ge 0\} = \sup\{(0,n) \mid n \ge 0\}$ does not exist.
- Extra properties: *commutativity* and *linearity* of \leq .

 Moreover, unlike the situation with Kleene algebras, for action lattices the inequational theories differ in the general case and in the *-continuous one.

- Moreover, unlike the situation with Kleene algebras, for action lattices the inequational theories differ in the general case and in the *-continuous one.
- This will follow from complexity considerations below, but there is also an explicit example.

- Moreover, unlike the situation with Kleene algebras, for action lattices the inequational theories differ in the general case and in the *-continuous one.
- This will follow from complexity considerations below, but there is also an explicit example.
- This example is based on the following induction-in-the-middle rule:

$$\frac{\rightarrow B \quad A \rightarrow B \quad A, B, A \rightarrow B}{A^* \rightarrow B} \ *L_{\mathrm{mid}}$$

- Moreover, unlike the situation with Kleene algebras, for action lattices the inequational theories differ in the general case and in the *-continuous one.
- This will follow from complexity considerations below, but there is also an explicit example.
- This example is based on the following induction-in-the-middle rule:

$$\frac{\rightarrow B \quad A \rightarrow B \quad A, B, A \rightarrow B}{A^* \rightarrow B} * L_{\text{mid}}$$

• This allows deriving the following sequent:

$$(p \land q \land (p \backslash q) \land (p / q))^+ \to p,$$

which can be falsified on a non-*-continuous action algebra.

Complexity of Action Logic

Theorem (Buszkowski & Palka 2007)

ACT $_{\omega}$ is Π^0_1 -complete.

Theorem (K. 2019-20)

ACT is Σ_1^0 -complete.

Complexity of Action Logic

Theorem (Buszkowski & Palka 2007)

ACT $_{\omega}$ is Π^0_1 -complete.

Theorem (K. 2019-20)

ACT is Σ_1^0 -complete.

 For simplicity, in what follows we shift to the commutative situation, and consider CommACT_ω and CommACT.

Complexity of Action Logic

Theorem (Buszkowski & Palka 2007)

ACT $_{\omega}$ is Π^0_1 -complete.

Theorem (K. 2019-20)

ACT is Σ_1^0 -complete.

- For simplicity, in what follows we shift to the commutative situation, and consider CommACT_ω and CommACT.
- In the commutative case, we have only one division: $A \setminus B \equiv B / A$.

Commutative Action Algebras/Lattices

A commutative action algebra is an action algebra satisfying ab = ba. Whereas action logic in general is neutral as to whether ab combines a and b sequentially or concurrently, commutative action logic in effect commits to concurrency.

Pratt (1991)

Multiplicative-additive Lambek Calculus

The core of ACT and ACT_ω is MALC, the inequational theory
of residuated lattices.

Multiplicative-additive Lambek Calculus

- The core of ACT and ACT_ω is MALC, the inequational theory
 of residuated lattices.
- We consider its commutative modification **CommMALC**, that is, left-hand sides are multisets.

Multiplicative-additive Lambek Calculus

- The core of ACT and ACT_ω is MALC, the inequational theory
 of residuated lattices.
- We consider its commutative modification CommMALC, that is, left-hand sides are multisets.
- Axioms and rules: $\overline{A \to A} \ Id \qquad \overline{\Gamma_1 0 \to B} \ 0L$ $\frac{\Gamma \to B}{\Gamma, 1 \to B} 1L \qquad \frac{\Gamma, A, B \to C}{\Gamma, A \cdot B \to C} L \qquad \frac{\Gamma \to A \quad \Delta \to B}{\Gamma, A \to A \cdot B} R$ $\frac{\Gamma, A \to C \quad \Gamma, B \to C}{\Gamma, A \lor B \to C} \lor L \qquad \frac{\Pi \to A}{\Pi \to A \lor B} \lor R_1 \quad \frac{\Pi \to B}{\Pi \to A \lor B} \lor R_2$ $\frac{\Gamma, A \to C}{\Gamma, A \land B \to C} \land L_1 \qquad \frac{\Gamma, B \to C}{\Gamma, A \land B \to C} \land L_2 \qquad \frac{\Pi \to A \quad \Pi \to B}{\Pi \to A \land B} \land R$ $\frac{\Pi \to A \quad \Gamma, B \to C}{\Gamma, \Pi, A \setminus B \to C} \setminus L \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} / L$

Rules for Kleene Star

• In CommACT $_{\omega}$:

$$\frac{\left(\Gamma, A^n \to C\right)_{n=0}^{\infty}}{\Gamma, A^* \to C} * L_{\omega} \qquad \frac{\Gamma_1 \to A \quad \dots \quad \Gamma_n \to A}{\Gamma_1, \dots, \Gamma_n \to A^*} * R_n, \ n \ge 0$$

Rules for Kleene Star

• In CommACT $_{\omega}$:

$$\frac{\left(\Gamma, A^n \to C\right)_{n=0}^{\infty}}{\Gamma, A^* \to C} *L_{\omega} \qquad \frac{\Gamma_1 \to A \quad \dots \quad \Gamma_n \to A}{\Gamma_1, \dots, \Gamma_n \to A^*} *R_n, \ n \ge 0$$

• In CommACT:

$$\begin{array}{cccc} \xrightarrow{\rightarrow} & B & A, B \xrightarrow{\rightarrow} & B \\ \hline & A^* \xrightarrow{\rightarrow} & B & & \hline & & \Gamma, A \xrightarrow{\rightarrow} & A^* \\ & & & & \hline & & \Gamma, A \xrightarrow{\rightarrow} & C \\ \hline & & & & & \Gamma, \Pi \xrightarrow{\rightarrow} & C \end{array}$$

• A Minsky machine $\mathcal M$ operates several *counters* (registers), which hold natural numbers.

- A Minsky machine \mathcal{M} operates several *counters* (registers), which hold natural numbers.
- Instructions of \mathcal{M} can be of the following sorts:

INC(p, r, q)	being in state p , increase register r by 1 and move to state q ;
$JZDEC(p, r, q_0, q_1)$	being in state p , check whether the value of r is 0: if yes, move to state q_0 , if no, decrease r by 1 and move to state q_1 .

- A Minsky machine \mathcal{M} operates several *counters* (registers), which hold natural numbers.
- Instructions of \mathcal{M} can be of the following sorts:

INC(p, r, q)	being in state p , increase register r by 1
	and move to state q ;
$JZDEC(p,r,q_0,q_1)$	being in state p , check whether the value of r is 0:
	if yes, move to state q_0 ,
	if no, decrease r by 1 and move to state q_1 .

• We consider only *deterministic* Minsky machines.

- A Minsky machine \mathcal{M} operates several *counters* (registers), which hold natural numbers.
- Instructions of $\mathcal M$ can be of the following sorts:

INC(p, r, q)	being in state p , increase register r by 1
	and move to state q ;
$JZDEC(p,r,q_0,q_1)$	being in state p , check whether the value of r is 0:
	if yes, move to state q_0 ,
	if no, decrease r by 1 and move to state q_1 .

- We consider only *deterministic* Minsky machines.
- Two counters are sufficient for a Σ_1^0 -complete halting problem (Minsky 1961).

- A Minsky machine \mathcal{M} operates several *counters* (registers), which hold natural numbers.
- Instructions of \mathcal{M} can be of the following sorts:

INC(p, r, q)	being in state p , increase register r by 1
	and move to state q ;
$JZDEC(p,r,q_0,q_1)$	being in state p , check whether the value of r is 0:
	if yes, move to state q_0 ,
	if no, decrease r by 1 and move to state q_1 .

- We consider only *deterministic* Minsky machines.
- Two counters are sufficient for a Σ^0_1 -complete halting problem (Minsky 1961).
- ... thus, *non-halting* is Π_1^0 -complete.

- A Minsky machine \mathcal{M} operates several *counters* (registers), which hold natural numbers.
- Instructions of \mathcal{M} can be of the following sorts:

INC(p, r, q)	being in state p , increase register r by 1
	and move to state q ;
$JZDEC(p, r, q_0, q_1)$	being in state p , check whether the value of r is 0:
	if yes, move to state q_0 ,
	if no, decrease r by 1 and move to state q_1 .

- We consider only *deterministic* Minsky machines.
- Two counters are sufficient for a Σ_1^0 -complete halting problem (Minsky 1961).
- ... thus, *non-halting* is Π_1^0 -complete.
- Sometimes it is more convenient to use three counters.

$$\begin{split} A_{\text{INC}(p,r,q)} &= p \setminus (q \cdot r) \\ A_{\text{JZDEC}(p,r,q_0,q_1)} &= ((p \cdot r) \setminus q_1) \wedge (p \setminus (q_0 \vee z_r)). \end{split}$$

• Each instruction I of M is encoded by a formula A_I :

$$\begin{split} A_{\text{INC}(p,r,q)} &= p \setminus (q \cdot r) \\ A_{\text{JZDEC}(p,r,q_0,q_1)} &= ((p \cdot r) \setminus q_1) \wedge (p \setminus (q_0 \vee z_r)). \end{split}$$

• Moreover, we add three extra formulae: $N_r = z_r \setminus z_r$ for each counter r (i.e., a, b, or c).

$$\begin{split} A_{\text{INC}(p,r,q)} &= p \setminus (q \cdot r) \\ A_{\text{JZDEC}(p,r,q_0,q_1)} &= ((p \cdot r) \setminus q_1) \wedge (p \setminus (q_0 \vee z_r)). \end{split}$$

- Moreover, we add three extra formulae: $N_r = z_r \setminus z_r$ for each counter r (i.e., a, b, or c).
- The encoding is due to Lincoln et al. 1992.

$$\begin{split} A_{\text{INC}(p,r,q)} &= p \setminus (q \cdot r) \\ A_{\text{JZDEC}(p,r,q_0,q_1)} &= ((p \cdot r) \setminus q_1) \wedge (p \setminus (q_0 \vee z_r)). \end{split}$$

- Moreover, we add three extra formulae: $N_r = z_r \setminus z_r$ for each counter r (i.e., a, b, or c).
- The encoding is due to Lincoln et al. 1992.
- However, we now consider non-halting instead of halting, and model it using Kleene star instead of exponential.

$$\begin{split} A_{\text{INC}(p,r,q)} &= p \setminus (q \cdot r) \\ A_{\text{JZDEC}(p,r,q_0,q_1)} &= ((p \cdot r) \setminus q_1) \wedge (p \setminus (q_0 \vee z_r)). \end{split}$$

- Moreover, we add three extra formulae: $N_r = z_r \setminus z_r$ for each counter r (i.e., a, b, or c).
- The encoding is due to Lincoln et al. 1992.
- However, we now consider non-halting instead of halting, and model it using Kleene star instead of exponential.
- Also, in succedents of our sequents we now have to represent an *arbitrary* configuration of the Minsky machine being encoded, which is also implemented using Kleene star.

$$E = \bigwedge_{I} A_{I} \wedge N_{a} \wedge N_{b} \wedge N_{c}$$

$$E = \bigwedge_{I} A_{I} \wedge N_{a} \wedge N_{b} \wedge N_{c}$$
 \leftarrow this formula encodes the machine

$$E = \bigwedge_{I} A_{I} \wedge N_{a} \wedge N_{b} \wedge N_{c}$$
 \leftarrow this formula encodes the machine

$$D = \left(\mathbf{a}^* \cdot \mathbf{b}^* \cdot \mathbf{c}^* \cdot \bigvee_{q \in Q} q\right) \vee \left(\mathbf{b}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{a}}\right) \vee \left(\mathbf{a}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{b}}\right) \vee \left(\mathbf{a}^* \cdot \mathbf{b}^* \cdot z_{\mathbf{c}}\right)$$

$$E = \bigwedge_{I} A_{I} \wedge N_{a} \wedge N_{b} \wedge N_{c}$$
 \leftarrow this formula encodes the machine

$$D = (\mathbf{a}^* \cdot \mathbf{b}^* \cdot \mathbf{c}^* \cdot \bigvee_{q \in Q} q) \vee (\mathbf{b}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{a}}) \vee (\mathbf{a}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{b}}) \vee (\mathbf{a}^* \cdot \mathbf{b}^* \cdot z_{\mathbf{c}})$$

$$\uparrow$$

this formula encodes any valid configuration

$$E = \bigwedge_{I} A_{I} \wedge N_{a} \wedge N_{b} \wedge N_{c}$$
 \leftarrow this formula encodes the machine

$$D = (\mathbf{a}^* \cdot \mathbf{b}^* \cdot \mathbf{c}^* \cdot \bigvee_{q \in Q} q) \vee (\mathbf{b}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{a}}) \vee (\mathbf{a}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{b}}) \vee (\mathbf{a}^* \cdot \mathbf{b}^* \cdot z_{\mathbf{c}})$$

$$\uparrow$$

this formula encodes any valid configuration

 $z_{\rm a}, z_{\rm b}, z_{\rm c}$ are for zero check in JZDEC, run in parallel with the main execution.

$$E = \bigwedge_{I} A_{I} \wedge N_{a} \wedge N_{b} \wedge N_{c}$$
 \leftarrow this formula encodes the machine

$$D = (\mathbf{a}^* \cdot \mathbf{b}^* \cdot \mathbf{c}^* \cdot \bigvee_{q \in Q} q) \vee (\mathbf{b}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{a}}) \vee (\mathbf{a}^* \cdot \mathbf{c}^* \cdot z_{\mathbf{b}}) \vee (\mathbf{a}^* \cdot \mathbf{b}^* \cdot z_{\mathbf{c}})$$

$$\uparrow$$

this formula encodes any valid configuration

 $z_{\rm a}, z_{\rm b}, z_{\rm c}$ are for zero check in JZDEC, run in parallel with the main execution.

Lemma

 E^* , a^a , b^b , c^c , $q \to D$ is derivable in **CommACT**_{ω} iff the machine runs infinitely starting from (q, a, b, c).

Encoding Infinite Computation

• E^* , a^a , b^b , c^c , $q \to D$ is derivable if and only if so is E^n , a^a , b^b , c^c , $q \to D$ for any $n \ge 0$.

Encoding Infinite Computation

- E^* , a^a , b^b , c^c , $q \to D$ is derivable if and only if so is E^n , a^a , b^b , c^c , $q \to D$ for any $n \ge 0$.
- This corresponds to *n* steps of execution.

Encoding Infinite Computation

- E^* , a^a , b^b , c^c , $q \to D$ is derivable if and only if so is E^n , a^a , b^b , c^c , $q \to D$ for any $n \ge 0$.
- This corresponds to *n* steps of execution.
- Since our machine is deterministic, partial computations form an infinite one. (In the non-deterministic case, use Kőnig's lemma.)

Encoding Infinite Computation

- E^* , a^a , b^b , c^c , $q \to D$ is derivable if and only if so is E^n , a^a , b^b , c^c , $q \to D$ for any $n \ge 0$.
- This corresponds to *n* steps of execution.
- Since our machine is deterministic, partial computations form an infinite one. (In the non-deterministic case, use König's lemma.)
- Base case: n = 0, and a^a , b^b , b^c , $q \to D$ is derivable ((q, a, b, c) is a valid configuration).

Encoding INC(p, a, q)

$$\frac{p \rightarrow p}{\frac{E^{k-1}, \mathbf{a}^{a+1}, \mathbf{b}^b, \mathbf{c}^c, q \rightarrow D}{E^{k-1}, \mathbf{a}^a, \mathbf{b}^b, \mathbf{c}^c, q \cdot \mathbf{a} \rightarrow D}} \cdot L$$

$$\frac{p \rightarrow p}{\frac{E^{k-1}, A_{\text{INC}(p, \mathbf{a}, q)}, \mathbf{a}^a, \mathbf{b}^b, \mathbf{c}^c, p \rightarrow D}}{E^k, \mathbf{a}^a, \mathbf{b}^b, \mathbf{c}^c, p \rightarrow D}} \land L \text{ several times}$$

$$\land L \text{ several times}$$

Encoding JZDEC(p, a, q)

$$\begin{array}{c} \bullet \ a \neq 0 \\ \frac{p \rightarrow p \quad a \rightarrow a}{p, a \rightarrow p \cdot a} \cdot R \quad E^{k-1}, a^{a-1}, b^b, c^c, q_1 \rightarrow D \\ \hline \frac{E^{k-1}, (p \cdot a) \setminus q_1, a^a, b^b, c^c, p \rightarrow D}{E^{k-1}, A_{\text{JZDEC}}(p, a, q_0, q_1)}, a^a, b^b, c^c, p \rightarrow D \\ \hline E^k, a^a, b^b, c^c, p \rightarrow D \end{array} \wedge L \text{ several times}$$

Encoding JZDEC(p, a, q)

•
$$a \neq 0$$

$$\frac{p \rightarrow p \quad a \rightarrow a}{p, a \rightarrow p \cdot a} \cdot R \quad E^{k-1}, a^{a-1}, b^b, c^c, q_1 \rightarrow D} \setminus L$$

$$\frac{E^{k-1}, (p \cdot a) \setminus q_1, a^a, b^b, c^c, p \rightarrow D}{E^{k-1}, A_{\text{JZDEC}}(p, a, q_0, q_1)}, a^a, b^b, c^c, p \rightarrow D} \wedge L$$

$$\frac{E^k, a^a, b^b, c^c, p \rightarrow D}{E^k, a^a, b^b, c^c, p \rightarrow D} \wedge L \text{ several times}$$

•
$$a = 0$$

$$\frac{E^{k-1}, b^b, c^c, q_0 \to D}{E^{k-1}, b^b, c^c, z_a \to D} \land L \text{ s.t.}$$

$$\frac{p \to p}{E^{k-1}, q_0 \lor z_a, b^b, c^c \to D} \lor L$$

$$\frac{E^{k-1}, p \setminus (q_0 \lor z_a), b^b, c^c, p \to D}{E^{k-1}, A_{\text{JZDEC}(p, a, q_0, q_1)}, b^b, c^c, p \to D} \land L$$

$$\frac{E^{k-1}, A_{\text{JZDEC}(p, a, q_0, q_1)}, b^b, c^c, p \to D}{E^k, b^b, p \to D} \land L \text{ several times}$$

• As usual, proving the backwards direction, from derivation to computation, is technically more involved.

- As usual, proving the backwards direction, from derivation to computation, is technically more involved.
- Again, we reduce to finite proofs of sequents E^n , a^a , b^b , c^c , $q \to D$.

- As usual, proving the backwards direction, from derivation to computation, is technically more involved.
- Again, we reduce to finite proofs of sequents E^n , a^a , b^b , c^c , $q \to D$.
- In fact, it is possible that such a proof does not directly correspond to a counter machine computation: it could include "subprograms."

- For example, let the machine include the following instructions: INC(p, a, q) and JZDEC(q, a, p, p), and consider a 4-step execution starting from (p, 0, 0, 0).
- This execution has the following "non-canonical" representation:

$$\frac{p \to p}{\underbrace{\frac{(q \cdot \mathbf{a}) \setminus p, \mathbf{a}, q \to p}{E, q, \mathbf{a} \to p} \setminus L}_{\underbrace{E, p \setminus (q \cdot \mathbf{a}), p \to p}_{\wedge L} \land L} \underbrace{\frac{q, \mathbf{a} \to q \cdot \mathbf{a} \quad p \to D}{(q \cdot \mathbf{a}) \setminus p, q, \mathbf{a} \to D} \setminus L}_{\underbrace{\frac{E, p \setminus (q \cdot \mathbf{a}), p \to p}{E^2, p \to p} \land L}}_{\underbrace{E^3, p \setminus (q \cdot \mathbf{a}), p \to D}_{\wedge L} \land L}$$

$$\frac{\underbrace{E^3, p \setminus (q \cdot \mathbf{a}), p \to D}_{E^4, p \to D} \land L}_{\wedge L}$$

• Here we perform the INC step, and then start a "subroutine" which performs INC and JZDEC, returning to the same state. Finally, we perform JZDEC.

- Here we perform the INC step, and then start a "subroutine" which performs INC and JZDEC, returning to the same state. Finally, we perform JZDEC.
- The crucial point is that such a "subroutine" could not use the zero branch of JZDEC.

- Here we perform the INC step, and then start a "subroutine" which performs INC and JZDEC, returning to the same state. Finally, we perform JZDEC.
- The crucial point is that such a "subroutine" could not use the zero branch of JZDEC.
- This is due to the fact that *D* is available only on the main branch.

Let \widetilde{E}_i denote any formula in the conjunction E or a conjunction of such formulae. The backwards implication is proved by joint induction of 6 statements:

- 1. Sequents of the form $\widetilde{E}_1, \dots, \widetilde{E}_k, a^a, b^b, c^c \to t$, where $t \in Q \cup Z$, are never derivable, neither are sequents of the form $\widetilde{E}_1, \dots, \widetilde{E}_k, a^a, b^b, c^c \to t \cdot r$, where $r \in R$.
- 2. Sequents of the form $\widetilde{E}_1, \ldots, \widetilde{E}_k, z_r, a^a, b^b, c^c \to t$, where $r \in R$ and $t \in Q \cup Z_{\bar{r}}$, are never derivable, neither are sequents of the form $\widetilde{E}_1, \ldots, \widetilde{E}_k, z_r, a^a, b^b, c^c \to t \cdot r'$, where $r, r' \in R$ and $t \in Q \cup Z_{\bar{r}}$.
- 3. If $\widetilde{E}_1, \dots, \widetilde{E}_k, z_a, a^a, b^b, c^c \to D$ is derivable, then a = 0. Similarly for b and c.

- 4. If $\widetilde{E}_1, \dots, \widetilde{E}_k, q, a^{a'}, b^{b'}, c^{c'} \to p$ is derivable, where $p, q \in Q$, then the machine can move from $\langle q, a' + a, b' + b, c' + c \rangle$ to $\langle p, a, b, c \rangle$ in k steps for any a, b, c.
- 5. If $\widetilde{E}_1, \dots, \widetilde{E}_k, q$, $a^{a'}$, $b^{b'}$, $c^{c'} \to p \cdot a$, where $p, q \in Q$, is derivable, then the machine can move from $\langle q, a' + a, b' + b, c' + c \rangle$ to $\langle p, a + 1, b, c \rangle$ in k steps for any a, b, c. Similarly for b and c.
- 6. If $\widetilde{E}_1, \dots, \widetilde{E}_k, p, a^a, b^b, c^c \to D$ is derivable $(p \in Q)$, then the machine can perform k steps, starting from $\langle p, a, b, c \rangle$.

• Thus, derivability in **CommACT** is capable of simulating non-halting for counter machines, which yields the commutative version of Buszkowski's theorem:

• Thus, derivability in **CommACT** is capable of simulating non-halting for counter machines, which yields the commutative version of Buszkowski's theorem:

Theorem

CommACT $_{\omega}$ is Π_{1}^{0} -hard.

 Thus, derivability in CommACT is capable of simulating non-halting for counter machines, which yields the commutative version of Buszkowski's theorem:

Theorem

CommACT $_{\omega}$ is Π_{1}^{0} -hard.

• For the Π_1^0 upper bound, there are several methods, one of which we shall discuss tomorrow.

 Thus, derivability in CommACT is capable of simulating non-halting for counter machines, which yields the commutative version of Buszkowski's theorem:

Theorem

CommACT $_{\omega}$ is Π_{1}^{0} -hard.

- For the Π_1^0 upper bound, there are several methods, one of which we shall discuss tomorrow.
- Next, we aim to prove undecidability of CommACT.

 Thus, derivability in CommACT is capable of simulating non-halting for counter machines, which yields the commutative version of Buszkowski's theorem:

Theorem

CommACT $_{\omega}$ is Π_{1}^{0} -hard.

- For the Π_1^0 upper bound, there are several methods, one of which we shall discuss tomorrow.
- Next, we aim to prove undecidability of CommACT.
- This will be done by encoding circular computations by circular proofs.

Circular Proofs for Circular Computations

Lemma

If the machine runs **circularly** starting from (q, a, b, c), then E^* , a^a , b^b , c^c , $q \to D$ admits a circular proof, thus, a proof in **CommACT**.

$$\frac{E^*, p, a^a, b^b, c^c \to D}{\vdots}$$

$$\frac{p, a^a, b^b, c^c \to D}{E^*, p, a^a, b^b, c^c \to D}$$

$$\frac{E^*, p, a^a, b^b, c^c \to D}{\vdots}$$

$$\frac{E^*, p, a^a, b^b, c^c \to D}{\vdots}$$

$$\frac{E^*, p, a^a, b^b, c^c \to D}{\vdots}$$

$$\frac{E^*, E, Q \to D}{E^*, Q \to D}$$
*L

 Now we have to translate this circular argument into a proof in CommACT.

- Now we have to translate this circular argument into a proof in CommACT.
- Recall the rule for * there:

$$\frac{\to B \quad A, B \to B}{A^* \to B}$$

- Now we have to translate this circular argument into a proof in CommACT.
- Recall the rule for * there:

$$\frac{\to B \quad A, B \to B}{A^* \to B}$$

• First we establish *L, the decomposition rule:

$$\frac{\frac{\Gamma \to C}{\Gamma, 1 \to C} \ 1L}{\frac{A^* \to 1 \lor (A \cdot A^*)}{\Gamma, A^* \to C}} \frac{\frac{\Gamma, A, A^* \to C}{\Gamma, A \cdot A^* \to C}}{\frac{\Gamma, 1 \lor (A \cdot A^*) \to C}{\Gamma, A^* \to C}} \frac{\cdot L}{\lor L}$$

- Now we have to translate this circular argument into a proof in CommACT.
- Recall the rule for * there:

$$\frac{\to B \quad A, B \to B}{A^* \to B}$$

• First we establish *L, the decomposition rule:

$$\frac{\frac{\Gamma \to C}{\Gamma, 1 \to C} \ 1L}{\frac{A^* \to 1 \lor (A \cdot A^*)}{\Gamma, A^* \to C}} \frac{\frac{\Gamma, A, A^* \to C}{\Gamma, A \cdot A^* \to C}}{\frac{\Gamma, 1 \lor (A \cdot A^*) \to C}{\Gamma, A^* \to C}} \frac{\cdot L}{\lor L}$$

• This will be needed for modelling computation before the cycle.

$$\frac{\rightarrow B \quad A \rightarrow B \quad \dots \quad A^{k-1} \rightarrow B \quad A^k, B \rightarrow B}{A^* \rightarrow B}$$

Next, we establish an extended version of induction:

$$\frac{\rightarrow B \quad A \rightarrow B \quad \dots \quad A^{k-1} \rightarrow B \quad A^k, B \rightarrow B}{A^* \rightarrow B}$$

• This is established by cutting with $A^* \equiv (1 \lor A \lor ... \lor A^{k-1})(A^k)^*$.

$$\frac{\rightarrow B \quad A \rightarrow B \quad \dots \quad A^{k-1} \rightarrow B \quad A^k, B \rightarrow B}{A^* \rightarrow B}$$

- This is established by cutting with $A^* \equiv (1 \lor A \lor ... \lor A^{k-1})(A^k)^*$.
- Now we have a circular proof of E^* , p, a^a , b^b , $c^c \to D$ from itself, and let k be the number of *L applications on the cycle.

$$\frac{\rightarrow B \quad A \rightarrow B \quad \dots \quad A^{k-1} \rightarrow B \quad A^k, B \rightarrow B}{A^* \rightarrow B}$$

- This is established by cutting with $A^* \equiv (1 \lor A \lor ... \lor A^{k-1})(A^k)^*$.
- Now we have a circular proof of E^* , p, a^a , b^b , $c^c \to D$ from itself, and let k be the number of *L applications on the cycle.
- For simplicity, let $F = (p \cdot a^a \cdot b^b \cdot c^c) \setminus D$. Then our sequent is equivalent to $E^* \to F$.

$$\frac{\rightarrow B \quad A \rightarrow B \quad \dots \quad A^{k-1} \rightarrow B \quad A^k, B \rightarrow B}{A^* \rightarrow B}$$

- This is established by cutting with $A^* \equiv (1 \lor A \lor ... \lor A^{k-1})(A^k)^*$.
- Now we have a circular proof of E^* , p, a^a , b^b , $c^c \to D$ from itself, and let k be the number of *L applications on the cycle.
- For simplicity, let $F = (p \cdot a^a \cdot b^b \cdot c^c) \setminus D$. Then our sequent is equivalent to $E^* \to F$.
- From the circular proof, we can easily extract $E^i \to F$ for $0 \le i < k$ (by replacing E^* with E^i).

• Next, we replace E with F, making $E^* \to F$ on top an axiom.

- Next, we replace E with F, making $E^* \to F$ on top an axiom.
- When we descend to the root, we get E^k , $F \to F$.

- Next, we replace E with F, making $E^* \to F$ on top an axiom.
- When we descend to the root, we get E^k , $F \to F$.
- Appplying our extended induction rule, we get $E^* \to F$, q.e.d.

- Next, we replace *E* with *F*, making $E^* \to F$ on top an axiom.
- When we descend to the root, we get E^k , $F \to F$.
- Appplying our extended induction rule, we get $E^* \to F$, q.e.d.
- Due to lack of time, we omitted the zero-checks, which would also involve circular reasoning (or using "pure induction," $(z_{\rm a}\setminus z_{\rm a})^*=z_{\rm a}\setminus z_{\rm a}).$

- Next, we replace *E* with *F*, making $E^* \to F$ on top an axiom.
- When we descend to the root, we get E^k , $F \to F$.
- Appplying our extended induction rule, we get $E^* \to F$, q.e.d.
- Due to lack of time, we omitted the zero-checks, which would also involve circular reasoning (or using "pure induction," (z_a \ z_a)* = z_a \ z_a).
- In fact, circular proofs can always be rebuilt into inductive ones, but proving this in a general setting is much harder.

• Not any circular derivation, however, corresponds to a circular run of the machine.

- Not any circular derivation, however, corresponds to a circular run of the machine.
- For example, if the machine just increases one counter, INC(q, a, q), then E*, a^a, b^b, c^c, q → D is also derivable in CommACT.

- Not any circular derivation, however, corresponds to a circular run of the machine.
- For example, if the machine just increases one counter, INC(q, a, q), then E*, a^a, b^b, c^c, q → D is also derivable in CommACT.
- In this case $E = q \setminus (q \cdot a)$, and the circular derivation, for a = b = c = 0, is as follows:

$$\frac{E^*, q_S \to a^* \cdot q_S \quad a \to a}{\frac{E^*, q_S, a \to a \cdot (a^* \cdot q_S)}{E^*, q_S, a \to a \cdot (a^* \cdot q_S)} \cdot R} \quad a \cdot (a^* \cdot q_S) \to a^* \cdot q_S}{E^*, q_S, a \to a^* \cdot q_S} \cdot L, \setminus L$$

$$\frac{q_S \to q_S}{\frac{E^*, q_S \setminus (q_S \cdot a), q_S \to a^* \cdot q_S}{E^*, E, q_S \to a^* \cdot q_S}} \wedge L$$

$$\frac{q_S \to a^* \cdot q_S}{\frac{E^*, q_S \to a^* \cdot q_S}{E^*, q_S \to a^* \cdot q_S}} \times L$$

$$\frac{E^*, q_S \to a^* \cdot q_S}{E^*, q_S \to a^* \cdot q_S} \times L$$

$$E^*, q_S \to D$$

$$Cut$$

• Therefore, we use an indirect technique for proving complexity, based on **effective inseparability**.

- Therefore, we use an indirect technique for proving complexity, based on **effective inseparability.**
- Let
 © be the set of machines and input data such that the
 machine works circularly, and let
 W be the one where the
 machine halts.

- Therefore, we use an indirect technique for proving complexity, based on **effective inseparability.**
- Let
 © be the set of machines and input data such that the
 machine works circularly, and let
 W be the one where the
 machine halts.
- There is no decidable set \mathcal{K} which separates \mathcal{C} from \mathcal{H} (i.e., $\mathcal{C} \subseteq \mathcal{K}$ and $\mathcal{H} \cap \mathcal{K} = \emptyset$), therefore **CommACT** is undecidable; but we do not know its complexity yet.

- Therefore, we use an indirect technique for proving complexity, based on **effective inseparability.**
- Let
 © be the set of machines and input data such that the
 machine works circularly, and let
 W be the one where the
 machine halts.
- There is no decidable set \mathcal{K} which separates \mathcal{C} from \mathcal{H} (i.e., $\mathcal{C} \subseteq \mathcal{K}$ and $\mathcal{H} \cap \mathcal{K} = \emptyset$), therefore **CommACT** is undecidable; but we do not know its complexity yet.
- Folklore: $\mathscr C$ and $\mathscr H$ are *effectively* inseparable.

Effective Inseparability

(Here W_u is the u-th r.e. set; f is computable.)

• (Corollary of) **Myhill's theorem:** if A separates $\mathscr C$ and $\mathscr H$ and A is r.e., then A is Σ_1^0 -complete.

- (Corollary of) **Myhill's theorem:** if A separates $\mathscr C$ and $\mathscr H$ and A is r.e., then A is Σ_1^0 -complete.
- Therefore, we obtain the necessary result:

- (Corollary of) **Myhill's theorem:** if A separates \mathscr{C} and \mathscr{H} and A is r.e., then A is Σ_1^0 -complete.
- Therefore, we obtain the necessary result:

Theorem

CommACT is Σ_0^1 -complete.

- (Corollary of) **Myhill's theorem:** if *A* separates \mathscr{C} and \mathscr{H} and *A* is r.e., then *A* is Σ_1^0 -complete.
- Therefore, we obtain the necessary result:

Theorem

CommACT is Σ_0^1 -complete.

 The reasoning in the non-commutative case is similar, however, the encoding of computations is more involved.