HOMEWORK 3

Benedetta Nassi - 1000059819

IL DATASET:

Training set:

un input **indipendente**. Un'immagine RGB viene appiattita in un <u>vettore di valori numerici</u>, ciascuno dei quali rappresenta l'intensità di un canale di colore per quel pixel specifico. L'MLP impara delle relazioni tra questi singoli valori numerici e le classi di output.

Per un MLP, ogni pixel dell'immagine è

Validation set:

Test set:

Le immagini del training set contengono un quadrato 5x5 di colore casuale posizionato in modo casuale.

PROBLEMA DI SHORTCUT LEARNING

L'MLP può facilmente rilevare correlazioni tra i <u>valori RGB</u> di quei pixel e le <u>etichette</u> delle classi, imparando a sfruttare questa "**scorciatoia**" a discapito della comprensione del contenuto effettivo dell'immagine, <u>evitando</u> di apprendere le feature **significative.**

SOLUZIONE

Ho creato la funzione <u>maschera quadrati</u> che analizza ogni immagine dividendola in piccole patch 5x5. Per ogni patch, calcola la sua media e deviazione standard dei valori RGB. Queste statistiche vengono poi confrontate con la media e la deviazione standard dell'intera immagine.

Rilevamento dei quadrati:

Se la media del colore di una patch o la sua deviazione standard differisce in modo significativo dalla media o variabilità dell'intera immagine, quella patch viene considerata un'anomalia (cioè il nostro quadrato).

Mascheramento con il grigio:

Le patch anomale vengono mascherate, cioè i loro pixel vengono impostati su un colore **grigio** (valore di 0.5 per i canali RGB)

Il grigio perchè è il colore più neutro, quindi non apporta informazioni di colore specifiche che potrebbero, a loro volta, diventare nuove "scorciatoie" per l'MLP.

TECNICHE CONTRO L'OVERFIT:

REGOLARIZZAZIONE L2: riduce i parametri verso valori piccoli e uniformi. Impedisce quindi ad una singola feature di influenzare troppo la previsione, **riducendo** così **l'overfitting** e migliorando la capacità del modello di generalizzare a nuovi dati.

PCA: concentrandosi sulle componenti più significative, la PCA può filtrare efficacemente il rumore presente nei dati originali dei pixel.

BAGGING: crea più versioni di MLP addestrandoli su diversi campioni bootstrap dei dati di addestramento. Mediando le previsioni di più modelli, il bagging porta spesso a migliori prestazioni di generalizzazione su dati non visti.

EARLYSTOPPING: monitora le prestazioni del modello durante l'addestramento e interrompe il processo di addestramento quando le prestazioni iniziano a degradare (indicando overfitting) quindi trova il punto ottimale per la generalizzazione.

MODEL SELECTION: GRID-SEARCH

hidden layer sizes

definisce l'architettura della rete neurale, ovvero quanti hiddenlayer e quanti neuroni sono presenti nell'MLP

- troppo elevato: può portare a una rete eccessivamente complessa capace di memorizzare il rumore del set di addestramento, perdendo la capacità di generalizzare su nuove immagini.
- troppo basso: rende la rete sottodimensionata (non ha abbastanza capacità computazionale).

controlla l'intensità
della regolarizzazione L2

- troppo alto: penalizza eccessivamente i pesi, limitando la capacità di apprendimento della rete e potendo portare a underfitting.
- **troppo basso:** equivale poca o nessuna regolarizzazione il che rende il modello più incline all'**overfitting.**

learning rate init

determina la dimensione dei passi che la rete compie durante l'ottimizzazione per aggiornare i pesi. Influenza la velocità e la stabilità del processo di ottimizzazione dei parametri

- troppo alto: può far sì che l'ottimizzazione "salti" oltre il punto ottimale, rischiando di oscillare e non convergere.
- troppo basso: rende il processo di apprendimento molto lento, rischiando che questo si blocchi in un minimo locale.

RISULTATI

Migliori parametri trovati: {'alpha': 0.1, 'hidden_layer_sizes': (100, 50, 10), 'learning_rate_init': 0.01}

Al seguito della mia soluzione sono riportati i risultati ottenuti, il modello classifica con un'accuracy del 52% circa

Test Accuracy: 0.5199

F1 Macro: 0.5145257194999784

	Confusion Matrix										
	aero -	549	47	49	30	22	8	21	19	202	53
	automobile -	20	672	10	16	7	11	13	16	99	136
	uccello -	83	27	324	105	117	92	124	77	28	23
	gatto -	32	22	56	385	47	168	140	60	28	62
abel	cervo -	51	12	122	76	386	31	166	101	39	16
True Label	cane -	14	11	73	300	41	352	74	80	29	26
	rana -	3	18	46	105	77	19	659	25	13	35
	cavallo -	33	12	31	74	57	72	45	597	19	60
	pecora -	70	88	4	30	16	17	9	6	694	66
	camion -	31	178	6	38	6	15	22	26	97	581
		aero -	automobile -	- nccello	gatto -	Predicte	ed Label	rana -	cavallo -	pecora -	camion -