

Outline

- ML Why, What and When?
- Types of Machine Learning
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning
 - Reinforcement learning
- · Supervised Learning with Linear Regression
- · Designing a Learning System

2

ML - Why?

Big data

5

- Large datasets from growth of automation/web. E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.
 - E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.
- Self-customizing programs
 - E.g., Amazon, Netflix product recommendations
- Understanding human learning (brain, real AI).

ML - What?

"Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." - Tom Mitchell (1998)

3

4

ML vs Traditional programming **Traditional Programming** Data Output Computer Program **Machine Learning** Program Computer Output

ML - When to Use Machine Learning??

- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

. There is no need to "learn" to calculate payroll

6

ML - Examples

- Recognizing patterns:
 - Facial identities or facial expressionsHandwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- · Recognizing anomalies:
 - · Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- · Prediction:
 - Future stock prices or currency exchange rates

8

10

State of the Art Applications of Machine Learning

9

Autonomous Car Technology

Path
Planning

Laser Terrain Mapping

Adaptive Vision

Sebastlar

Stanley

Macas a 3th half Milley Year QS Ask of dail

Macas a 3th half Milley Year QS Ask of dail

11 12

13 14

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- · Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - · Rewards from sequence of actions

15 16

17 18

Reinforcement Learning Given a sequence of states and actions with (delayed) rewards, output a policy Policy is a mapping from states → actions that tells you what to do in a given state Examples: - Credit assignment problem Game playing - Robot in a maze - Balance a pole on your hand

21

24 23

Supervised Learning with Linear Regression

25 26

Linear Regression (LR)

- A statistical regression method used for predictive analysis
- LR shows the linear relationship between the independent (predictor) variable i.e. X-axis and the dependent (output) variable i.e. Y-axis

https://www.analyticsvidhya.com/blog/2021/10/ everything-you-need-to-know-about-linear-

27

Linear Regression (LR) • How to compute the **best-fit line**? $y=h_{\beta}(x)=\beta_0+\beta_1 x$, where: y = Dependent variable, x = Independent variable, β_0 = constant/Intercept, β_1 = Slope. For each training example (x_i, y_i) , we can compute the *random error* (or, residual) $\varepsilon_i = y_{predicted} - y_i$ Source:

28

where $y_{\text{predicted}} = h_{\beta}(x_i) = \beta_0 + \beta_1 x_i$

Linear Regression (LR) - Best-fit Line

- What is the best fit line, i.e., what are the best values for $\beta_{\scriptscriptstyle 0}$ and $\beta_{\scriptscriptstyle 1}$?
- **Cost Function:**
 - Measuring the error a given line $y = h_{\beta}(x) = \beta_0 + \beta_1 x$ has with respect to a set of training examples $\{(x_1, y_1),, (x_n, y_n)\}$
 - For instance, the Mean Squared Error (MSE) cost function:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

• The line $y = h_{\beta}(x) = \beta_0 + \beta_1 x$ is "best fit" if MSE is minimised

• Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$

• Parameters: β_0 , β_1

• Cost function: $J(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (h_{\beta}(x_i) - y_i)^2$

•Goal: minimize $J(\beta_0, \beta_1)$

Gradient descent

Have some function $J(\beta_0, \beta_1)$ Want argmin $J(\beta_0, \beta_1)$

 β_0, β_1

ullet Start with some eta_0 , eta_1

Outline:

• Keep changing β_0, β_1 to reduce $J(\beta_0, \beta_1)$ until we hopefully end up at minimum

31

32

34

Gradient descent

Repeat until convergence {

$$\beta_j := \beta_j - \alpha \, \frac{\partial}{\partial \beta_j} J(\beta_0, \beta_1) \quad \text{(for } j = 0 \text{ and } j = 1\text{)}$$

 α : Learning rate (step size)

 $rac{\partial}{\partialeta_i}J(eta_0,eta_1)$: derivative (rate of change)

Learning rate

36

Gradient descent for linear regression

Repeat until convergence{

$$eta_j := eta_j - lpha \, rac{\partial}{\partial eta_j} J(eta_0, eta_1) \quad ext{(for } j=0 ext{ and } j=1 ext{)}$$
 }

• Linear regression model

$$\begin{split} h_{\beta}(x) &= \beta_0 + \beta_1 x \\ J(\beta_0, \beta_1) &= \frac{1}{n} \sum_{i=1}^n \left(h_{\beta}(x_i) - y_i \right)^2 \end{split}$$

Computing partial derivative

$$\begin{split} \bullet \frac{\partial}{\partial \beta_j} J(\beta_0, \beta_1) &= \frac{\partial}{\partial \beta_j} \frac{1}{n} \sum_{i=1}^n \left(h_\beta(x_i) - y_i \right)^2 \\ &= \frac{\partial}{\partial \beta_j} \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)^2 \end{split}$$

•
$$j = 0$$
: $\frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1) = \frac{2}{n} \sum_{i=1}^n (h_\beta(x_i) - y_i)$
• $j = 1$: $\frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1) = \frac{2}{n} \sum_{i=1}^n (h_\beta(x_i) - y_i) x_i$

•
$$j = 1$$
: $\frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1) = \frac{2}{n} \sum_{i=1}^n (h_\beta(x_i) - y_i) x$

37

38

Gradient descent for linear regression

Repeat until convergence {
$$\beta_0 \ := \beta_0 - \alpha \, \frac{2}{n} \! \sum_{i=1}^n \! \left(h_\beta(x_i) - y_i \right)$$

$$\beta_1 := \beta_1 - \alpha \frac{2}{n} \sum_{i=1}^n (h_{\beta}(x_i) - y_i) x_i$$

Update $\,eta_0\,$ and $\,eta_1\,$ simultaneously

Regression: How to

• And, how about multi-dimensional datasets?

- E.g., scikit-learn (see: https://scikit-learn.org/stable/)
- E.g., tensorflow (see: https://www.tensorflow.org/)

39

40

Designing a Learning System

- Choose the training experience
- Choose exactly what is to be learned i.e. the target function
- Choose how to represent the target function
- Choose a learning algorithm to infer the target function from the experience

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - · Hundreds new every year
- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

41

Various Function Representations

- · Numerical functions
 - Linear regression
 - · Neural networks
- Support vector machines
- Symbolic functions
 - Decision trees

 - Rules in propositional logic
 - Rules in first-order predicate logic
- · Instance-based functions
 - Nearest-neighbor
 - · Case-based
- · Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search/Optimization Algorithms

- Perceptron
- Backpropagation
- · Dynamic Programming
 - HMM Learning
 - PCFG Learning
- Divide and Conquer
 - Decision tree induction
 - · Rule learning
- · Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - · Neuro-evolution

43 44

Evaluation

- Accuracy
- · Precision and recall
- Squared error
- · Likelihood
- · Posterior probability
- Cost / Utility
- Margin
- Entropy
- · K-L divergence
- etc.

ML in Practice

Loop

- Learn models
- Model Selection Model Training
- Model Selection
 Model Training
 Model Evaluation
 Toults Interpret results
- Hyperparameter tuning

 Consolidate and deploy discovered knowledge

45 46

Summary

47

- Learning can be viewed as using direct or indirect experience to approximate a chosen target function.
- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques.

ML for a practitioner

- If you:
 - · Are a beginner
 - · Need quick results
 - Dataset is simple (small and well-structured, e.g. a CSV file)
- Then consider Weka (https://www.cs.waikato.ac.nz/ml/weka/)
 - GUI

48

· Easy to use

49 50

51 52

53 54

55 56

57

ML for a practitioner

- Are really serious about ML
- Are ready to spend substantial amount of time to learn
- Datasets can be really complex/noisy
- Then it's time to move on to a more serious tools:
 - R, python
 - Needs programming, application integration, libraries (tensorflow, pytorch, numpy, scikit-learn, etc.)!

| Section (Notice 2) | Section

59 60