clear
$$\xi f$$
 that

Varie; $J = \delta^2 \left(I - \frac{1}{h} - \frac{(x_i - x_i)^2}{55 \times 2} \right)$

Varie; $J = \delta^2 \left(I - \frac{1}{h} - \frac{(x_i - x_i)^2}{55 \times 2} \right)$
 $J = Var(y_i) + Var(\hat{y}_i) - 2(ar(y_i), \hat{y}_i)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_0 + \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_0 + \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_0 + \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_0 + \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_0 + \hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i) \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Var(\hat{p}_1 x_i) - 2(ar(y_i), \hat{p}_1 x_i \right)$
 $J = \delta^2 + \left(Va$

$$= (h + \frac{(x_1 + x_2)^2}{SSX}) = 2$$

$$= (h + \frac{(x_1 + x_2)^2}{SSX}) = 2 (h + \frac{(x_1 + x_2)^2}{SSX}) = 2 (h + \frac{(x_1 + x_2)^2}{SSX}) = 2 (h + \frac{(x_1 + x_2)^2}{SSX})$$

$$= (h + \frac{(x_1 + x_2)^2}{SSX}) = 2 (h + \frac{(x_1 + x_2)^2}{SSX}) = 2 (h + \frac{(x_1 + x_2)^2}{SSX})$$