Advanced Microeconomics I Note 1: Individual preference and choice

Xiang Han (SUFE)

Introduction

- Individual decision making
- Suppose that X is a nonempty set of alternatives (the grand set), and an agent must choose from this set (or a subset of X).
- Two approaches to model an agent's decision making:
 - Preference-based approach
 - Choice-based approach

Preferences - binary relations

• Generally, given two sets S and T, the Cartesian product $S \times T$ is the set of all ordered pairs (s, t), where $s \in S$ and $t \in T$:

$$S \times T = \{(s,t) : s \in S, t \in T\}$$

- A binary relation B on X is a subset of $X \times X$, i.e., $B \subseteq X \times X$.
- If $(x, y) \in B$, then write xBy.
- If $(x, y) \notin B$, then write $x \bar{B} y$.

Some common properties of a binary relation

A binary relation B on X is

- **reflexive** if xBx for all $x \in X$.
- **irreflexive** if $x\bar{B}x$ for all $x \in X$.
- symmetric if xBy implies yBx for all $x, y \in X$.
- asymmetric if xBy implies yBx for all $x, y \in X$.
- transitive if xBy and yBz imply xBz for all $x, y, z \in X$.
- negatively transitive if $x\bar{B}y$ and $y\bar{B}z$ imply $x\bar{B}z$ for all $x,y,z\in X$.
- **complete** if for all $x, y \in X$, xBy or yBx.

4/20

Preferences

- There are various ways of defining /modeling preferences.
- First, consider the "P-model".
- The *primitive* of the model is a binary relation *P* on *X*, and *P* is interpreted as the "strictly better than" relation.
- We want to make sure that the preferences are "rational" or "consistent".
- We impose two conditions on the strict preference relation *P*:
 - P is asymmetric: if x is strictly better than y, then y is not strictly better than x.
 - ▶ P is negatively transitive: if x is not strictly better than y and y is not strictly better than z, then x is not strictly better than z.
- Did we require too little?

Proposition. If P is asymmetric and negatively transitive, then

- (1) P is irreflexive.
- (2) P is transitive.
- (3) For any $x, y, z \in X$, xPy and $z\overline{P}y$ imply xPz; $y\overline{P}x$ and yPz imply xPz.

6/20

- Next, consider the ">-model".
- In this case, the primitive of the model is a binary relation \succeq on X, and \succeq is interpreted as the "weakly better than" relation.
- We require ≥ to be *complete* and *transitive*.
- It can be shown that if

 is complete and transitive, then it is reflexive and negatively transitive.

The P-model and the \succeq -model are "equivalent", in the following sense.

Proposition.

- (i) Given the asymmetric and negatively transitive P, define a new binary relation \succeq' on X as follows: for any $x,y\in X$, $x\succeq' y$ if $y\bar{P}x$. Then \succeq' is complete and transitive.
- (ii) Given the complete and transitive \succeq , define a new binary relation P' on X as follows: for any $x,y\in X$, xP'y if $x\succeq y$ and $y\not\succeq x$. Then P' is asymmetric and negatively transitive.

Proof of (i). Completeness: Consider any $x,y\in X$. If xPy, then by the asymmetry of P, we have $y\bar{P}x$. Hence by the definition of \succeq' , $x\succeq' y$. If $x\bar{P}y$, then by the definition of \succeq' , $y\succeq' x$.

Transitivity: Consider any $x,y,z\in X$ with $x\succeq' y$ and $y\succeq' z$. By the definition of \succeq' , $y\bar{P}x$ and $z\bar{P}y$. Then by the negative transitivity of P, $z\bar{P}x$. It follows that $x\succeq' z$.

Proof of (ii). Asymmetry is obvious.

Negative transitivity: Consider any $x,y,z\in X$ with $x\bar{P'}y$ and $y\bar{P'}z$. Suppose that $y\not\succeq x$. Then by the completeness of \succeq , $x\succeq y$. Hence by the construction of P', xP'y, contradiction. So we have $y\succeq x$. By a similar argument, it can be shown that $z\succeq y$. By the transitivity of \succeq , $z\succeq x$. Given the construction of P', it follows that $x\bar{P'}z$.

- From now on, we use the ≻-model.
- Define a **preference relation** on X as a binary relation \succeq on X. The preference relation \succeq is **rational** if it is complete and transitive.
- Given a preference relation \succeq on X,
 - ▶ denote its "asymmetric component" as \succ : $x \succ y$ if $x \succeq y$ but $y \not\succeq x$.
 - ▶ denote its "symmetric component" as \sim : $x \sim y$ if $x \succeq y$ and $y \succeq x$.

- More on rationality
- Completeness: can you always compare?
 - Suppose that I offer you a trip to the moon, do you want to go to the northern part or the southern part?
- Two common sources of intransitivity:
 - Aggregation
 - The use of similarities

Choice correspondence

- Generally, given two sets S and T, a **correspondence** $f: S \to T$ is a rule that assigns a set $f(a) \subseteq T$ to every $a \in S$.
 - ▶ A *single-valued* correspondence is essentially a function.
- Let \mathcal{D} be a collection of nonempty subsets of X.
 - Notice that D may not include all the subsets of X.
- $C: \mathcal{D} \to X$ is a **choice correspondence** if for every $A \in \mathcal{D}$, $C(A) \subseteq A$ and $C(A) \neq \phi$.
 - \blacktriangleright A full description of an agent's choice behavior in all possible scenarios (as defined by $\mathcal{D})$

Weak axiom of revealed preference

- A choice correspondence C satisfies the **weak axiom of revealed preference** (WARP) if the following is true: if for some $A \in \mathcal{D}$ with $x, y \in A$ we have $x \in C(A)$ and $y \notin C(A)$, then for any $B \in \mathcal{D}$ with $x, y \in B$ we must have $y \notin C(B)$.
 - If, in some case, x is chosen over y, then y should never be chosen in the presence of x.
- An equivalent definition. C satisfies WARP if the following is true: if for some $A \in \mathcal{D}$ with $x, y \in A$ we have $x \in C(A)$, then for any $B \in \mathcal{D}$ with $x, y \in B$ and $y \in C(B)$ we must have $x \in C(B)$.
 - If, in some case, x is chosen in the presence of y, then y should never be chosen over x.
- ullet The *richness* of the domain ${\mathcal D}$ is important.

- Sometimes, WARP can be decomposed into the following two conditions on a choice correspondence *C*.
- Sen's property α : given any $A, B \in \mathcal{D}$, if $x \in A \subseteq B$ and $x \in C(B)$, then $x \in C(A)$.
 - Amartya Sen's paraphrase of this: if the world champion in some game is a Pakistani, then he must also be the champion of Pakistan.
- Sen's property β : given any $A, B \in \mathcal{D}$, if $A \subseteq B$, $x \in C(A)$, $y \in C(A)$ and $x \in C(B)$, then $y \in C(B)$.
 - Sen's paraphrase: if the world champion in some game is a Pakistani, then all champions (in this game) of Pakistan are also world champions.
- WARP implies Sen's properties α and β .
- If $\mathcal D$ includes at least all the subsets of X of size 2, then Sen's properties α and β imply WARP.
- If for any $A, B \in \mathcal{D}$ we have $A \cap B \in \mathcal{D}$, then Sen's properties α and β imply WARP.

From preference to choice correspondence

• Given a preference relation \succeq on X, an *induced* correspondence is C_{\succeq} : for any $A \in \mathcal{D}$, $C_{\succeq}(A) = \{x \in A : x \succeq y, \forall y \in A\}$.

Proposition. Assume that X is finite. If \succeq is rational, then C_{\succeq} is a well-defined choice correspondence that satisfies WARP.

Proof. To show that C_\succeq is a well-defined choice correspondence, it is sufficient to show that $C_\succeq(A)$ is nonempty for every $A \in \mathcal{D}$. Assume to the contrary, for some $A \in \mathcal{D}$, $C_\succeq(A) = \phi$. Consider any $x \in A$. Since $x \notin C_\succeq(A)$, there exists $y \in A$ such that $x \not\succeq y$. By the completeness of \succeq , we have $y \succeq x$ and hence $y \succ x$. That is, for every alternative in A we can find a strictly better one in A. Since A is finite, there exists a cycle that consists of $k \ge 2$ alternatives $x_1, ..., x_k \in A$ with $x_1 \succ x_2 \succ ... \succ x_{k-1} \succ x_k \succ x_1$, which contradicts to the transitivity of \succeq .

It remains to show that C_{\succeq} satisfies WARP. Suppose not. Then there exist $x,y\in X$ and $A,B\in \mathcal{D}$ such that $x,y\in A,\ x,y\in B,\ x\in C_{\succeq}(A),\ y\notin C_{\succeq}(A)$, and $y\in C_{\succeq}(B)$. $y\in C_{\succeq}(B)$ implies $y\succeq x$, and $x\in C_{\succeq}(A)$ implies $x\succeq z$ for all $z\in A$. By transitivity, $y\succeq z$ for all $z\in A$. It follows that $y\in C_{\succeq}(A)$, contradiction. \square

From choice correspondence to preference: rationalizing

A choice correspondence C can be **rationalized** if there exists a rational preference relation \succeq on X such that $C = C_{\succeq}$, i.e., $C(A) = C_{\succeq}(A)$ for all $A \in \mathcal{D}$.

Proposition. Suppose that $\mathcal D$ includes at least all subsets of X of size up to 3, and |C(A)|=1 for all $A\in \mathcal D$ (i.e., C is a "choice function"). Then C can be rationalized if and only if C satisfies Sen's property α .

Proof. "Only if" part. If C can be rationalized, then there exists rational \succeq such that $C = C_{\succ}$. From the previous discussion, we know that C_{\succ} satisfies WARP, hence Sen's property α .

"If" part. Define \succ on X as follows: for any $x, y \in X$, let $x \succ y$ if $\{x\} = C(\{x,y\}).$

First, we show that \succeq is rational. Consider any $x, y \in X$. We have $x \succeq y$ if $\{x\} = C(\{x,y\}), y \succeq x \text{ if } \{y\} = C(\{x,y\}). \text{ So } \succeq \text{ is complete. Suppose that } \succeq \text{ is}$ not transitive. Then there exist $x, y, z \in X$ such that $x \succ y, y \succ z, x \not\succ z$ and $|\{x, y, z\}| = 3$. It follows that $C(\{x, y\}) = \{x\}$, $C(\{y, z\}) = \{y\}$ and $C(\{x,z\}) = \{z\}$. Then consider the set $\{x,y,z\} \in \mathcal{D}$. Given that C satisfies Sen's property α , we have: $C(\{x,y\}) = \{x\}$ implies $C(\{x,y,z\}) \neq \{y\}$, $C(\{y,z\}) = \{y\} \text{ implies } C(\{x,y,z\}) \neq \{z\}, \text{ and } C(\{x,z\}) = \{z\} \text{ implies }$ $C(\lbrace x,y,z\rbrace) \neq \lbrace x\rbrace$. That is, $C(\lbrace x,y,z\rbrace) = \phi$, contradiction.

It remains to show that $C = C_{\succ}$. Consider any $A \in \mathcal{D}$ and let $C(A) = \{x\}$. For any $y \in A$, Sen's property α implies $C(\{x,y\}) = \{x\}$. So $x \succ y$ for all $y \in A$. It follows that $x \in C_{\succ}(A)$. Suppose that there exists $y \in C_{\succ}(A)$ and $y \neq x$. Then clearly $y \succeq x$ and $x \succeq y$. But $y \succeq x$ implies $C(\{x,y\}) = \{y\}$, and $x \succeq y$ implies $C(\lbrace x,y\rbrace)=\lbrace x\rbrace$, contradiction. Therefore, $C_{\succ}(A)=\lbrace x\rbrace=C(A)$.

Proposition. Suppose that \mathcal{D} includes at least all subsets of X of size up to 3, and C is a choice correspondence. C can be rationalized if and only if C satisfies the weak axiom of revealed preference.

Proof. The "only if" part can be shown in the same way as in the previous proof.

"If" part. Define \succeq on X as follows: for any $x, y \in X$, let $x \succeq y$ if $x \in C(\{x, y\})$.

We first show that \succeq is rational. Completeness is obvious: for any $x,y \in X$, $x \succeq y$ if $x \in C(\{x,y\})$, and $y \succeq x$ if $y \in C(\{x,y\})$. Suppose that \succeq is not transitive. Then there exist $x,y,z \in X$ such that $x \succeq y, y \succeq z$ and $x \not\succeq z$. It follows that $x \in C(\{x,y\})$, $y \in C(\{y,z\})$, $z \in C(\{x,z\})$, and $x \notin C(\{x,z\})$. Since $z \in C(\{x,z\})$ and $x \notin C(\{x,z\})$, by WARP $x \notin C(\{x,y,z\})$. Applying WARP again, it can be seen that $x \notin C(\{x,y,z\})$ and $x \in C(\{x,y\})$ imply $y \notin C(\{x,y,z\})$, then $y \notin C(\{x,y,z\})$ and $y \in C(\{y,z\})$ imply $z \notin C(\{x,y,z\})$. Therefore, $C(\{x,y,z\}) = \phi$, contradiction.

It remains to show that $C = C_{\succeq}$. Consider any $A \in \mathcal{D}$. If $x \in C(A)$, then for any $y \in A$, WARP implies $x \in C(\{x,y\})$. So $x \succeq y$ for all $y \in A$. It follows that $x \in C_{\succeq}(A)$. That is, $C(A) \subseteq C_{\succeq}(A)$. Suppose that for some $x \in C_{\succeq}(A)$, $x \notin C(A)$. Then there exists $y \in C(A)$ and $y \ne x$. By WARP $x \notin C(\{x,y\})$. It follows that $x \not\succeq y$, contradicting to the fact that $x \in C_{\succeq}(A)$. Hence, $C_{\succeq}(A) \subseteq C(A)$. In sum, $C(A) = C_{\succeq}(A)$.

20 / 20