1. The permutation $a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$. Find a^{10} giving your answer in cycle notation.

a=(1243)	We	found	that	a =
a (12 43)				
	10 (1243)		
= e.e/	1243	12-	110	()>>

2. Use the inverse matrix method without the aid of the calculator to solve the system $\begin{cases} x + 2y = 19 \\ 3x - y = 15 \end{cases}$ |A| = |(-1) - (2)(3) - (9(3) + A)

alator to solve the system
$$\begin{cases} x + 2y - 19 \\ 3x - y = 15 \end{cases}$$

	-	2 - 18		
		31 15	_	
1	,	2 \ / \ \ \	. ,	1
	3	-1)(y)=	<u>-</u>	

premultiple by A^{-1} , we get $\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
1 & 2 \\
3 & -1
\end{pmatrix} \begin{pmatrix}
1 & 9 \\
3 & -1
\end{pmatrix} \begin{pmatrix}
1 & 9 \\
3 & -1
\end{pmatrix}$

$$= -\frac{1}{7} \begin{pmatrix} -1 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 19 \\ 15 \end{pmatrix}$$

$$= -\frac{1}{7} \begin{pmatrix} -49 \\ -47 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$$
the solution is $\begin{pmatrix} x = 7 \\ 6 \end{pmatrix}$

Let $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ $= \begin{pmatrix} -49 \\ -47 \end{pmatrix}$ $= \begin{pmatrix} 7 \\ 6 \end{pmatrix}$ $= \begin{pmatrix} 7 \\ 6$ table for G.

The operation table for Zais:

-	0	<i>t</i>	2	3		
0	0	1	2	3		 "
1	/	2	3	0		
2	2	2 3	0	. 1.		
3	3	0	ı	2	•	
Be	Couse	of	ison	morp	Dhism	1

we know that the operation table for G is

	a	b	C	d
a	a	b	c	d
Ь	b	С	9	a
c	C	9	а	b /
9	d	α	h	c. /
7				

4. The three complex numbers 1, w and z form a cyclic group under multiplication. Find w and z. Since it is a cyclic group under multiplication. and 1a = a + a & C. 1 must be the identity. and thus either wor & or both to must be a generator WLOG, wis the generator and by using the complex plane,

we know that $W = \begin{bmatrix} -1 \\ 370 \end{bmatrix}$, $Z = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$,

and thus W and Z Should be $\begin{bmatrix} -1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix}$,

5. Calculate the values of x for which the determinant $\begin{bmatrix} 1 & 3 & x \\ 1 & 4 & 7 \end{bmatrix}$ is zero. $\begin{vmatrix} x & 5 & -1 \\ 1 & 4 & 1 \end{vmatrix} = x \begin{vmatrix} 3 & x \\ 4 & 1 \end{vmatrix} - 5 \begin{vmatrix} 1 & x \\ 7 & 1 \end{vmatrix} + -1 \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix}$ $= \times (21 - 4 \times) - 5(7 - x) + -1(4 - 3)$ $= 2|x-4x^2-35+5x-|$ $= -4x^2 + 26x - 36 = 0$ thus, when a 2x2-013x+18=0. (x-2)(2x-9)20 $x = 20r = \frac{9}{2}$ the determinant is zero. 6. Let X = [0, 2] and $Y = \{0, 1, 2, 3\}$. Sketch the set $X \times Y$ in the grid. Hence or otherwise determine $|(X \times Y) \cap (Y \times X)|$. and (Yxx) is fupping the graph along y=x. thus. (xxY) n(Yxx)={(1,6),(1,2),(1)3) (2,1) (2,2) (2/3)? Therefor \((xxY) \cap(Yxx) \) = 6.4

9. In $\triangle ABC$, median [AM] has midpoint D. Prove that the cevian [BN] trisects side [AC].

10. The centre of a group G, denoted Z(G), is the set of elements in G that commute with every element of G. That is, $Z(G) = \{a \in G \mid ax = xa \text{ for all } x \in G\}$. Prove that Z(G) is a subgroup of G.

Proof: We use the 3-step subgroup test to show Z(G) = G.

(i) let m, n \(\) Z(G). | premultiply by m-1

(mn) \(\

 $(mn) \times$ = m(nx) - = (mx)n $= x(mn) \quad \forall x \in G$

Thus, mn & Z(G). V and closure is verified.

ex = xe = x x & G, e \ Z(G)

(iii) Let $m \in Z(G)$.

premultiply by m-1

w get

m-1mx = m-1xm

x = m-1xm.

postmultiply by m-1 we get

xm-1 = m-1xmm-1

= m-1x - + x \in G.

and +ms m-1 \in Z(G).

Thus, inverse exists.

Therefore, by 3-steep

subgroup test, ve conclude that. 2(9) < 9. 1.

Solutions to FM1 Test #1

- 1. Since a is a 4-cycle, $a^4 = e$. So $a^{10} = a^2 = (14)(23)$.
- 2. We have $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 19 \\ 15 \end{pmatrix} = -\frac{1}{7} \begin{pmatrix} -1 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 19 \\ 15 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$. Hence x = 7, y = 6.
- 3. The operation table for G is

	$\mid a \mid$	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

- 4. The three roots of unity form the required cyclic group. These roots are 1, $[1, 120^{\circ}]$ and $[1, 240^{\circ}]$. So w = $[1, 120^{\circ}]$ and $z = [1, 240^{\circ}]$ will do.
- 5. Expanding the determinant across the first row gives x(21-4x)-5(7-x)-(4-3). Hence we solve $2x^2-13x+18=$ 0, whence $x = 2, \frac{9}{2}$.
- 6. The diagram illustrates $X \times Y$. The diagram for $Y \times X$ will be the reflection of the given diagram in the line y = x. We conclude $|(X \times Y) \cap (Y \times X)| = 4$.

- 7. We are given that (S, +) is a group and clearly S is a proper subset of \mathbb{Z} . So $(S, +) \leq (\mathbb{Z}, +)$. Since $(\mathbb{Z}, +)$ is cyclic we conclude (S, +) is cyclic since every subgroup of a cyclic group is also cyclic. A generator for (S, +)is gcd(261, 126) = 9. So $S = \langle 9 \rangle$. Since $9 \mid 333$, we conclude $333 \in S$.
- 8. (a) Using the calculator $\operatorname{rref}(A) = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. So a basis for $\operatorname{null}(A)$ is $\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \\ \hat{n} \end{pmatrix} \right\}$.
 - (b) We spot $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ as a particular solution. Hence the full solution is $\vec{v} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + t \begin{pmatrix} 1\\-2\\1\\0 \end{pmatrix}, \ t \in \mathbb{R}.$
- 9. Menelaus's theorem with unsigned lengths gives

$$\frac{AN}{NC} \times \frac{CB}{BM} \times \frac{MD}{DA} = 1.$$

Menelaus's theorem with unsigned lengths $grad = \frac{AN}{NC} \times \frac{CB}{BM} \times \frac{MD}{DA} = 1$.

Solving for AN: NC, gives AN: NC = 1: 2, which is to say cevian [BN] trisects side [AC].

- 10. We use the 3-step subgroup test.
 - i. Suppose $a,b \in Z(G)$ and $x \in G$. Then (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab). Hence $ab \in Z(G)$. So Z(G) is closed under the group operation.
 - ii. Since ex = xe for all $x \in G$, we have $e \in Z(G)$.
 - iii. Suppose $a \in Z(G)$ and $x \in G$. Then ax = xa. So $axa^{-1} = x$, from which it follows that $xa^{-1} = a^{-1}x$. Thus $a^{-1} \in Z(G)$.

Hence Z(G) is a subgroup of G.