

LOG1810

STRUCTURES DISCRÈTES

TD 5: RELATIONS

H2025

Solutionnaire

Exercice 1:

Considérez les graphes suivants :

Graphe 1

Graphe 3

a) Donnez la fermeture symétrique des trois graphes.

Fermeture réflexive du graphe 1

Fermeture réflexive du graphe 2

Fermeture réflexive du graphe 3

b) Donnez la fermeture transitive des trois graphes.

Fermeture transitive du graphe 1

Fermeture transitive du graphe 2

Fermeture transitive du graphe 3

Exercice 2

Soit $\Gamma=\{1,2,3\}.$ On définit une relation $\mathcal A$ sur Γ^2 par :

$$(a,b) \mathcal{A}(c,d) \Leftrightarrow ((a-c) \text{ est pair}) \text{ et } ((b-d) \text{ est divisible par } 3).$$

Donnez la représentation matricielle de \mathcal{A} .

Réponse :

	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)
(1,1)	1	0	0	0	0	0	1	0	0
(1,2)	0	1	0	0	0	0	0	1	0
(1,3)	0	0	1	0	0	0	0	0	1
(2,1)	0	0	0	1	0	0	0	0	0
(2,2)	0	0	0	0	1	0	0	0	0
(2,3)	0	0	0	0	0	1	0	0	0
(3,1)	1	0	0	0	0	0	1	0	0
(3,2)	0	1	0	0	0	0	0	1	0
(3,3)	0	0	1	0	0	0	0	0	1

Exercice 3:

Soit la relation R définie sur \mathbb{R}^2 par :

$$(x, y) R(x', y') \Leftrightarrow (\exists a > 0, \exists b > 0, x' = a x \text{ et } y' = b y).$$

a) Montrez que c'est une relation d'équivalence. Justifiez votre réponse

Réponse :

Pour qu'une relation soit une relation d'équivalence, elle doit être *réflexive*, *symétrique* et *transitive*.

Réflexivité: Pour tout $(x, y) \in \mathbb{R}^2$, en choisissant a = 1 et b = 1 (puisque 1 > 0), on a

$$x = 1 \cdot x$$
 et $y = 1 \cdot y$.
Ainsi, $(x, y) R(x, y)$. La relation est réflexive (1).

Symétrie: Supposons que (x, y) R(x', y'), c'est-à-dire qu'il existe a > 0 et b > 0 tels que

$$x' = a x$$
 et $y' = b y$.

Si x et y sont non nuls, alors

$$x = \frac{1}{a} x'$$
 et $y = \frac{1}{b} y'$,

avec $\frac{1}{a} > 0$ et $\frac{1}{b} > 0$.

Si x = 0 (ou y = 0), alors x' = 0 (ou y' = 0) et la symétrie se vérifie.

Ainsi, (x', y') R (x, y). La relation est symétrique (2).

Transitivité: Soient (x, y), (x', y') et (x'', y'') dans \mathbb{R}^2 tels que

$$(x,y) R (x',y')$$
 et $(x',y') R (x'',y'')$.

Alors, il existe a > 0, b > 0 avec

$$x' = a x$$
 et $y' = b y$,

et c > 0, d > 0 tels que

$$x'' = c x' \quad \text{et} \quad y'' = d y'.$$

En substituant, on obtient

$$x'' = (c a)x$$
 et $y'' = (d b)y$.

Puisque ca > 0 et db > 0, on a bien (x, y) R(x'', y''). La relation est transitive (3).

De (1) et (2) et (3), La relation est une relation d'équivalence.

b) Donner les classes d'équivalence des éléments suivants : A = (1,0), B = (0,-1), C = (1,1).

Réponse :

Pour tout $P = (x, y) \in \mathbb{R}^2$, la classe d'équivalence de P est notée :

$$[P] = \{(x', y') \in \mathbb{R}^2 \mid (x, y) R (x', y')\}.$$

• Pour A = (1,0): Soit $(x, y) \in [A]$. Alors,

 $\exists \ a>0, \ \exists \ b>0 \quad \text{tels que} \quad x=a\cdot 1=a \quad \text{et} \quad y=b\cdot 0=0.$ Donc, x>0 et y=0, ce qui donne

$$[A] = \{(x, 0) \in \mathbb{R}^2 \mid x > 0\}.$$

• Pour B = (0, -1): Soit $(x, y) \in [B]$. Alors,

 $\exists \ a>0, \ \exists \ b>0 \quad \text{tels que} \quad x=a\cdot 0=0 \quad \text{et} \quad y=b\cdot (-1)=-b.$ Comme b>0, on obtient y=-b<0 et

$$[B] = \{(0, y) \in \mathbb{R}^2 \mid y < 0\}.$$

• Pour C = (1,1): Soit $(x, y) \in [C]$. Alors,

 $\exists \ a>0, \ \exists \ b>0 \quad \text{tels que} \quad x=a\cdot 1=a \quad \text{et} \quad y=b\cdot 1=b.$ Avec a>0 et b>0, on a x>0 et y>0, donc

$$[C] = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \text{ et } y > 0\}.$$

Conclusion : La relation R définie par

$$(x, y) R(x', y') \Leftrightarrow (\exists a > 0, \exists b > 0: x' = a x \text{ et } y' = b y)$$

est une relation d'équivalence sur \mathbb{R}^2 et ses classes d'équivalence sont

$$[A] = \{(x,0) \in \mathbb{R}^2 \mid x > 0\}, \quad [B] = \{(0,y) \in \mathbb{R}^2 \mid y < 0\}, \quad [C] = \{(x,y) \in \mathbb{R}^2 \mid x > 0 \text{ et } y > 0\}.$$

Exercice 4:

Dites si les relations suivantes sont des relations d'ordre partiel. Justifiez vos réponses.

a) La relation R sur un ensemble à trois éléments, représentée par la matrice suivante :

$$M_R = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Réponse:

Réflexivité : Les éléments diagonaux sont $m_{11}=1,\,m_{22}=1$ et $m_{33}=1.$ La relation est donc réflexive.

Antisymétrie : On observe que $m_{12}=1$ et $m_{21}=1$ pour des indices différents, ce qui montre que la relation n'est pas antisymétrique.

Transitivité : En calculant $M_R^2=M_R\times M_R$ et en comparant les coefficients obtenus avec ceux de M_R , on constate que la propriété de transitivité n'est pas respectée pour tous les couples.

La relation représentée par la matrice M_R n'est pas un ordre partiel, du fait du défaut d'antisymétrie ou de transitivité.

LOG1810-H2025 Travail dirigé 5 7

b) La relation \ll définie sur \mathbb{R}^2 par :

$$(x,y) \ll (x',y') \Leftrightarrow [x < x'] \text{ ou } [x = x' \text{ et } y \le y'].$$

Réponse:

1. $(x = x \text{ et } y \le y) \text{ donc } (x, y) \ll (x, y)$. $\ll \text{ est réflexive.}$

$$\begin{cases} (x,y) \ll (x',y') \\ (x',y') \ll (x,y) \end{cases} \Rightarrow \begin{cases} x < x' \text{ ou } (x = x' \text{ et } y \le y') \\ x' < x \text{ ou } (x' = x \text{ et } y' \le y) \end{cases}$$

$$\Rightarrow \begin{cases} x < x' \\ x' < x \end{cases} \text{ ou } \begin{cases} x < x' \\ x' = x \text{ et } y' \le y \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' < x \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' = x \text{ et } y' \le y \end{cases}$$

$$\Rightarrow \begin{cases} x = x' \text{ et } y \le y' \\ x' = x \text{ et } y' \le y \end{cases} \Rightarrow \begin{cases} x = x' \\ y = y' \end{cases} \Rightarrow (x,y) = (x',y')$$

« est antisymétrique.

$$\begin{cases} (x,y) \ll (x',y') \\ (x',y') \ll (x'',y'') \end{cases} \Rightarrow \begin{cases} x < x' \text{ ou } (x = x' \text{ et } y \le y') \\ x' < x'' \text{ ou } (x' = x'' \text{ et } y' \le y'') \end{cases}$$

$$\Rightarrow \begin{cases} x < x' \\ x' < x'' \text{ ou } \end{cases} \begin{cases} x < x' \\ x' = x'' \text{ et } y' \le y'' \text{ ou } \end{cases} \begin{cases} x = x' \text{ et } y \le y' \\ x' < x'' \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' < x'' \end{cases} \text{ ou } \begin{cases} x = x' \text{ et } y \le y' \\ x' = x'' \text{ et } y' \le y'' \end{cases}$$

$$\Rightarrow (x < x'') \text{ ou } (x < x'' \text{ et } y' < y'') \text{ ou } (x < x'' \text{ et } y' < y'') \text{ ou } (x = x'' \text{ et } y \le y'')$$

$$\Rightarrow (x < x'') \text{ ou } (x = x'' \text{ et } y \le y'') \Rightarrow (x, y) \ll (x'', y'')$$

« est transitive.

Conclusion: la relation << est un ordre partiel.

Exercices suggérés pour la semaine :

Rosen **8e Edition**, chapitre 9:

Section 9.1: 9.1.3, 9.1.4, 9.1.6, 9.1.7.

Section 9.3 : 9.3.4, 9.3.23-9.3.28.

Section 9.4: 9.4.5-9.4.7, 9.4.9, 9.4.12, 9.4.13, 9.4.25.

Section 9.5: 9.5.1, 9.5.2, 9.5.3, 9.5.21-9.5.23, 9.5.24, 9.5.26, 9.5.27, 9.5.28.

Section 9.6: 9.6.1, 9.6.2, 9.6.3, 9.6.4, 9.5.7, 9.5.9.