Sergio Ribeiro Augusto

Objetivos

Apresentar os fundamentos da Lógica Fuzzy (Nebulosa)

Estudo da implementação de controladores Fuzzy

Tópicos

- apresentação dos conceitos fundamentais da lógica Fuzzy
- Exemplo Controladores Fuzzy
- Aplicações
- Simulação utilizando SW Matlab
- Seminários

Avaliação

 Apresentação de um seminário na última aula

Bibliografia

- 1. Ross, Timothy J.; Fuzzy Logic with Engineering Applications, 4th Edition: Wiley 2016
- 2. An Introduction to Fuzzy Control.2. ed. New York: Springer, 1996.
- 3. Fuzzy Control and Modelling. New York: IEEE Press, 2000.
- 4. Studies in Fuzziness and Soft Computing.
 New York: Physica-Verlag, 2003.

O que é Lógica Fuzzy?

- ✓ Basicamente é uma lógica multi-valorada que permite valores intermediários serem definidos entre avaliações convencionais como sim/não , verdadeiro/falso, preto/branco, quente/frio. Noções como morno, ligeiramente frio, podem ser formuladas matematicamente e processadas por computador.
- ✓Foi iniciada em 1965 por Lotfi A. Zadeh (Berkeley –CA)

O que é Lógica Fuzzy? (cont.)

Permite expressar o conhecimento de um especialista ou de um "operador" de um sistema em linguagem natural

Exemplos de Aplicações

- √ Controle de Sistemas Dinâmicos
- ✓ Otimização (ex: elevadores)
- ✓ Análise de Sinais
 - **✓TV**
 - √ Câmeras (autofocus)

Conjuntos Fuzzy

Conjuntos Fuzzy: Foco

Introdução
Terminologia
Operações com conjuntos Fuzzy
Construção das funções de pertinência

Conjuntos Fuzzy

Conjuntos com Fronteiras Fuzzy

A = Conjunto das Pessoas Altas

Conjuntos Fuzzy (cont.)

- ✓ consiste de um universo de discurso X e uma função de pertinência $\mu_{A}(x)$ \in [0,1];
- ✓ Pessoas têm diferentes visões do conjunto fuzzy e função de pertinência pode ser diferente dependendo do contexto/aplicação.

Funções de pertinência

Características Subjetivas membership functions - MFs

Conjuntos Fuzzy

Definição formal:

Um conjunto fuzzy A em X é expresso como um conjunto de pares ordenados:

$$A = \{(x, \mu_{_{A}}(x)) \mid x \in X \}$$

Conjunto Fuzzy

Função de Pertinência (MF)

Universo ou universo de discurso

Um conjunto Fuzzy é totalmente caracterizado pela função de pertinência - MF

Conjuntos Fuzzy com Universos Discretos

Conjunto Fuzzy A = "número ideal de crianças"

 $X = \{0, 1, 2, 3, 4, 5, 6\}$ (discreto)

$$A = \{(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)\}$$

Conjuntos Fuzzy com Universos Discretos (cont.)

Conjunto dos inteiros aproximadamente igual a 6

 $A = \{ 0.1/3, 0.3/4, 0.6/5, 1/6, 0.6/7, 0.3/8, 0.1/9 \}$

Representação

X discreto

$$\{(x, \mu_A(x))\} = \mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + ... \mu_A(x_m)/x_{m1}$$

$$A = \sum_{X} \mu_{A}(x) / x$$

·X contínuo

$$A = \int \mu_A(x) / (x)$$

Conjuntos Fuzzy com Universos Contínuos

Conjunto Fuzzy B = "em torno de 50 anos"

X = conjunto dos números reais positivos (contínuo)

$$B = \{(x, \mu_B(x)) \mid x \text{ em } X\}$$

$$\mu_{B}(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^{2}}$$

Separação Fuzzy

Separação Fuzzy formada por valores linguísticos "jovem", "adulto", e "idoso":

Terminologia das funções de pertinência

Operações com conjuntos Fuzzy (definições mais comuns)

Sub-conjunto:

$$A \subseteq B \iff \mu_A \leq \mu_B$$

Complemento:

$$A = X - A \Leftrightarrow \mu_{\overline{A}}(x) = 1 - \mu_{\overline{A}}(x)$$

União (OR):

$$C = A \cup B \Leftrightarrow \mu_{c}(x) = \max(\mu_{A}(x), \mu_{B}(x)) = \mu_{A}(x) \vee \mu_{B}(x)$$

Intersecção (AND):

$$C = A \cap B \Leftrightarrow \mu_{c}(x) = \min(\mu_{A}(x), \mu_{B}(x)) = \mu_{A}(x) \wedge \mu_{B}(x)$$

Operações com conjuntos Fuzzy

Operações com conjuntos Fuzzy

Outras definições são possíveis OR (Lukasiewicz):

$$C = A \cup B \Leftrightarrow \mu_c(x) = \min(1, \mu_A(x) + \mu_B(x))$$

AND (produto):

$$C = A \cap B \Leftrightarrow \mu_c(x) = \mu_A(x) \times \mu_B(x)$$

Funções de Pertinência

Triangular MF:

$$trim f(x; a, b, c) = \max \left(\min \left(\frac{x - a}{b - a}, \frac{c - x}{c - b} \right), 0 \right)$$

Trapezoidal MF:

trapmf
$$(x; a, b, c, d) = \max \left(\min \left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right), 0\right)$$

Gaussiana MF:

gaussmf
$$(x; \sigma, c) = e^{-\frac{1}{2} \left(\frac{x-c}{\sigma}\right)^2}$$

Sino "bell" MF:

gbellmf
$$(x; a, b, c) = \frac{1}{1 + \left|\frac{x - c}{a}\right|^{2b}}$$

Funções de Pertinência

Funções de Pertinência de um universo de discurso (Exemplo)

Regras Fuzzy e Lógica Fuzzy

Focos de estudo

Relações Fuzzy
Regras Fuzzy : Se - então
Composição Fuzzy
Lógica Fuzzy

Relação Fuzzy

✓ Estabelece uma relação entre dois ou mais conjuntos fuzzy.

√ Caso discreto:

$$R = \sum_{X \times Y} \mu_A(x, y) / (x, y)$$

Exemplo Relação binária discreta

```
X=Y=\{1,2,3\} (universo de discurso)
Relação aproximadamente igual (R(x,y)):
              1/(1,1) + 1/(2,2) + 1/(3,3)
    + 0.8/(1,2) + 0.8/(2,3) + 0.8/(2,1) + 0.8/(3,2)
                + 0.3/(1/3) + 0.3/(3,1)
Função de pertinência:
\mu_{R}(x,y) = 1 se x = y
          0.8 \text{ se } |x-y| = 1
          0.3 \text{ se } |x-y| = 2
```


Exemplo Relação (cont.)

Em forma matricial:

Operações sobre relações

Defini-se as operações AND, OR e complemento de maneira similar às definidas quando do estudo dos conjuntos fuzzy.

Variáveis Linguísticas

Variável numérica recebe um valor numérico:

Temperatura = 65

Variável Linguística recebe um "valor linguístico":

Temperatura é baixa

Conjunto de termos:

```
T(idade) = {jovem, não jovem, muito jovem, ...
```

Idoso, não idoso, muito idoso ...}

Termos

Regras Fuzzy - Se (....) / então (....)

Formato Geral (expressão simbólica):

Se x é A então y é B (implicação fuzzy)

Exemplos:

- Se a pressão é alta, então o volume é pequeno.
- Se a estrada está molhada, então ela é perigosa.

Implicação Fuzzy

- A declaração: Se x é A então y é B , com x € X e y € Y tem uma função de pertinência dada pela relação de implicação μ_{A->B}(x,y) € [0,1];
- $\mu_{A\rightarrow B}(x,y)$ mede o grau de verdade da relação de implicação entre x e y.
- Existem várias relações possiveis na literatura.
- Exemplos:

$$\mu_{R}(x,y) = \mu_{A\to B}(x,y) = \min(\mu_{A}(x), \mu_{B}(y))$$
 (MAMDANI)
 $\mu_{R}(x,y) = \mu_{A\to B}(x,y) = \mu_{A}(x) \times \mu_{B}(y)$ (LARSEN)

Exemplo Mamdani

$$A = 0.1/x_1 + 0.4/x_2 + 0.7/x_3 + 1/x_4$$

$$B = 0.2/y_1 + 0.5/y_2 + 0.9/y_3$$

$$R(x,y) =$$

	У1	<i>y</i> ₂	У 3
X ₁	0.1	0.1	0.1
X ₂	0.2	0.4	0.4
<i>X</i> ₃	0.2	0.5	0.7
X ₄	0.2	0.5	0.9

Composição Fuzzy (Generalized Modus Ponens)

Como determinar y & Y dado x & X? Resp: Composição Fuzzy. Uma possibilidade (Zadeh):

$$\mu_{B}(y) = \sup_{x} \min(\mu_{A}(x), \mu_{A->B}(x, y))$$

Usando a implicação Mandami:

$$\mu_B(y) = \sup_x \min(\mu_A(x), \min(\mu_A(x), \mu_B(x)))$$

Regra única com um único antecedente Regra: Se x é A então y é B

Representação Gráfica:

Regra única com múltiplos antecedentes:

Regra: Se x é A e y é B então z é C

Representação Gráfica:

Múltiplas regras com múltiplos antecedentes

Regra 1: Se x é A₁ e y é B₁ então z é C₁

Regra 2: Se x é A₂ e y é B₂ então z é C₂

Representação gráfica:

Lógica Fuzzy: MATLAB Demo

>> ruleview mam21

Regras Fuzzy – Mamdani e Sugeno (Motivação)

Mamdani

Se a pressão é alta então o volume é pequeno

Sugeno

Se a velocidade é média então a resistência = 5*velocidade

