Detecting changes in dispersion in COVID-19 case counts using a negative binomial model

JSM 2024

Rachael Aber, Yanming Di, Ben Dalziel

August 5, 2024

Table of Contents

Why study variability?

Negative binomial model

Results

Concluding remarks

References

Table of Contents

Why study variability?

Negative binomial model

Results

Concluding remarks

References

► Highly variable case count time series suggest transmission heterogeneity or changes in R

- ► Highly variable case count time series suggest transmission heterogeneity or changes in R
- ► Metrics of variability are overlooked: "How is variability related to different phases of an epidemic?" [2]

- ► Highly variable case count time series suggest transmission heterogeneity or changes in R
- ► Metrics of variability are overlooked: "How is variability related to different phases of an epidemic?" [2]
- ► Adam et al.[1] found that COVID-19 transmission heterogeneity decreased over time

► Dispersion of a case count time series may be a useful metric—part of a framework that models variance flexibly

- ▶ Dispersion of a case count time series may be a useful metric—part of a framework that models variance flexibly
- ► A 'mean crowding' parameter [4] was proposed: mean number per individual of other individuals in the same quadrat

[5]

- ▶ Dispersion of a case count time series may be a useful metric—part of a framework that models variance flexibly
- ► A 'mean crowding' parameter [4] was proposed: mean number per individual of other individuals in the same quadrat
- Useful way to think about dispersion in case count time series, degree of dispersion is degree of clustering/crowding of cases

[5]

Table of Contents

Why study variability?

Negative binomial model

Results

Concluding remarks

References

Let λ_t be epidemic intensity at time t, I_t be incidence at time t, and θ_t be dispersion at time t

Let λ_t be epidemic intensity at time t, I_t be incidence at time t, and θ_t be dispersion at time t

$$I_{t} = NB(\mu = \lambda_{t}, \theta_{t} = I_{t-1})$$
(1)

[3]

Let λ_t be epidemic intensity at time t, I_t be incidence at time t, and θ_t be dispersion at time t

$$I_{t} = NB(\mu = \lambda_{t}, \theta_{t} = I_{t-1})$$
(1)

[3]

Adjusted for population size using an offset in the model

Let λ_t be epidemic intensity at time t, I_t be incidence at time t, and θ_t be dispersion at time t

$$I_{t} = NB(\mu = \lambda_{t}, \theta_{t} = I_{t-1})$$
(1)

[3]

- Adjusted for population size using an offset in the model
- Linear predictor includes a natural spline in time to account for autocorrelation in case counts

$$log(E[Y_i]/n_i) = \beta_1 h_1(t_i) + \beta_2 h_2(t_i) + \beta_3 h_3(t_i)$$
 (2)

$$log(E[Y_i]) - log(n_i) = \beta_1 h_1(t_i) + \beta_2 h_2(t_i) + \beta_3 h_3(t_i)$$
(3)
$$log(E[Y_i]) = \beta_1 h_1(t_i) + \beta_2 h_2(t_i) + \beta_3 h_3(t_i) + log(n_i)$$

Let λ_t be epidemic intensity at time t, I_t be incidence at time t, and θ_t be dispersion at time t

$$I_{t} = NB(\mu = \lambda_{t}, \theta_{t} = I_{t-1})$$
(1)

[3]

- Adjusted for population size using an offset in the model
- Linear predictor includes a natural spline in time to account for autocorrelation in case counts

$$log(E[Y_i]/n_i) = \beta_1 h_1(t_i) + \beta_2 h_2(t_i) + \beta_3 h_3(t_i)$$
 (2)

$$log(E[Y_i]) - log(n_i) = \beta_1 h_1(t_i) + \beta_2 h_2(t_i) + \beta_3 h_3(t_i)$$
(3)
$$log(E[Y_i]) = \beta_1 h_1(t_i) + \beta_2 h_2(t_i) + \beta_3 h_3(t_i) + log(n_i)$$
(4)

Model fit on a rolling basis to each time series

Negative binomial model

$$f_t(I) = {I+\theta-1 \choose I} \left(\frac{\mu}{\mu+\theta}\right)^I \left(\frac{\theta}{\mu+\theta}\right)^{\theta}$$
 (5)

Negative binomial model

$$f_{t}(I) = \binom{I + \theta - 1}{I} \left(\frac{\mu}{\mu + \theta}\right)^{I} \left(\frac{\theta}{\mu + \theta}\right)^{\theta} \tag{5}$$

$$E(I) = \mu \tag{6}$$

$$Var(I) = \mu + \frac{\mu^2}{\theta} \tag{7}$$

Negative binomial model

 $f_t(I) = \binom{I + \theta - 1}{I} \left(\frac{\mu}{\mu + \theta}\right)^I \left(\frac{\theta}{\mu + \theta}\right)^{\theta} \tag{5}$

$$E(I) = \mu \tag{6}$$

$$Var(I) = \mu + \frac{\mu^2}{\theta} \tag{7}$$

ightharpoonup LRT framework: at each time step along a time series, fit null model and θ change model, conduct LRT to produce p-value

Simulated time series data set

► Validity/power simulations: Gaussian and uniform epidemic curves with an attack rate of 0.1

Simulated time series data set

Simulated case counts

- ➤ Validity/power simulations: Gaussian and uniform epidemic curves with an attack rate of 0.1
- ightharpoonup Varied magnitude of θ change, location of the change, underlying population size, and epidemic curve shape

Simulated time series data set

- ➤ Validity/power simulations: Gaussian and uniform epidemic curves with an attack rate of 0.1
- ightharpoonup Varied magnitude of θ change, location of the change, underlying population size, and epidemic curve shape
- ► Epidemic curves over 60 time steps each were produced, and the LRT procedure was applied to each

Performance: simulated data

Figure 1: Detecting dispersion changes in incidence time series. A/B: Simulated incidence when dispersion is constant/changes. C/D: Constant/changing dispersion used above. E: Performance of LRT with simulated data that has different absolute differences in theta (x-axis of each pane) illustrates p-value distribution across different population sizes. O mark the null and alternative hypotheses indicated in panels C and D.

Application to empirical data

➤ Weekly case counts from US counties between 2020-01-04 and 2023-03-18

Application to empirical data

- ➤ Weekly case counts from US counties between 2020-01-04 and 2023-03-18
- ▶ Estimated θ_t for 154 time steps for 144 US counties (IRLS procedure implemented via the NBPSeq package[7] and from Di et al.[6])

Application to empirical data

- ▶ Weekly case counts from US counties between 2020-01-04 and 2023-03-18
- Estimated θ_t for 154 time steps for 144 US counties (IRLS procedure implemented via the NBPSeq package[7] and from Di et al.[6])
- Investigated large counties (largest three counties in each state)

Table of Contents

Why study variability?

Negative binomial model

Results

Concluding remarks

References

Figure 2: Method applied to case counts between 2020-01-04 and 2023-03-18 for Jefferson County, AL. A: Case counts . B: LRT statistic C: Log dispersion parameter.

Results: empirical data

Figure 3: Incidence and dispersion in large counties in the US. A: Binned log of the dispersion parameter. B: Log of the dispersion parameter for each of the large counties (y-axis). C: Log incidence for each of the large counties (y-axis). D: LRT p-values for each of the large counties (y-axis).

Table of Contents

Why study variability?

Negative binomial model

Results

Concluding remarks

References

► LRT procedure performed well for relevant range of population sizes

- ► LRT procedure performed well for relevant range of population sizes
- ▶ Dispersion is high at unexpected times (near peak incidence)

- LRT procedure performed well for relevant range of population sizes
- ▶ Dispersion is high at unexpected times (near peak incidence)
- Concentration of changes in dispersion parameter near peak incidence

- LRT procedure performed well for relevant range of population sizes
- ▶ Dispersion is high at unexpected times (near peak incidence)
- Concentration of changes in dispersion parameter near peak incidence
- Methods that use population-level data are important: timing/allocation of public health resources can be achieved with limited resources

Table of Contents

Why study variability?

Negative binomial model

Results

Concluding remarks

References

[2] Matthew Graham et al. "Measles and the canonical path to elimination". en. In: Science 364.6440 (May 2019), pp. 584–587. ISSN: 0036-8075, 1095-9203.
[3] Bryan T. Grenfell, Ottar N. Bjørnstad, and Bärbel F. Finkenstädt. "Dynam-

Dillon Adam et al. *Time-varying transmission heterogeneity of SARS and COVID-19 in Hong Kong.* Tech. rep. ISSN: 2693-5015 Type: article. Mar.

[1]

2022.

- ics of Measles Epidemics: Scaling Noise, Determinism, and Predictability with the TSIR Model". In: *Ecological Monographs* 72.2 (2002). Publisher: Ecological Society of America. pp. 185–202. ISSN: 0012-9615.
- Ecological Society of America, pp. 185–202. ISSN: 0012-9615.
 [4] Monte Lloyd. "Mean Crowding". In: The Journal of Animal Ecology 36.1 (Feb. 1967), p. 1. ISSN: 00218790.
- [5] Bjarke Frost Nielsen, Kim Sneppen, and Lone Simonsen. "The counterintuitive implications of superspreading diseases". en. In: *Nature Communications* 14.1 (Oct. 2023), p. 6954. ISSN: 2041-1723.
- [6] Di Yanming et al. "The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seg" In Staffstical Applications in

Thanks!

