

PSAVC: Pràctica de Detecció

Detector eficient de COVID-19 mitjançant tècniques de *Group Testing*

Plantejament

- La fracció d'individus infectats de COVID-19 entre els individus asintomàtics és relativament baixa (≤ 20%)
- Ús d'un test bàsic de COVID-19 per la detecció d'individus infectats asimptomàtics
- En escenaris on la probabilitat de que un individu estigui infectat és baixa es pot reduir el número de tests necessaris i es pot millorar el compromís entre probabilitat de detecció i falsa alarma utilitzant tècniques de cribat en grup conegudes com a *Group Testing*.

Test bàsic

• Test bàsic: La companyia que fabrica el test ens diu que la funció de test y té la següent estadística segons quina és la hipòtesi vàlida:

 \mathcal{H}_0^B : Individu o grup d' individus no infectat: $y \sim N(m_0, \sigma_0^2), m_0 = 5; \sigma_0^2 = 1$ \mathcal{H}_1^B : Individu o grup d' individus infectat: $y \sim N(m_1, \sigma_1^2), m_1 = 10; \sigma_1^2 = 1.2$

• El test bàsic pren la decisió comparant el test amb un llindar γ i les prestacions obtingudes són:

$$\widehat{\mathcal{H}}_{1}^{B} \\
y \geqslant \gamma \\
\widehat{\mathcal{H}}_{0}^{B}$$

$$\mathcal{H}_{0}^{B} \bullet \xrightarrow{P_{R} = 1 - P_{FA}^{B}} \bullet \widehat{\mathcal{H}}_{0}^{B}$$

$$P_{M} = 1 - P_{D}^{B} \qquad P_{FA}^{B} = \Pr\left(\widehat{\mathcal{H}}_{1}^{B} \middle| \mathcal{H}_{0}^{B}\right)$$

$$\mathcal{H}_{1}^{B} \bullet \xrightarrow{P_{D}^{B} = \Pr\left(\widehat{\mathcal{H}}_{1}^{B} \middle| \mathcal{H}_{1}^{B}\right)} \bullet \widehat{\mathcal{H}}_{1}^{B}$$

Detector clàssic

- Esquema clàssic: Es fa un test bàsic per cada individu i ...
 - ... es decideix $\widehat{\mathcal{H}_0^C}$ si el detector bàsic ha decidit $\widehat{\mathcal{H}_0^B}$
 - ... es decideix $\widehat{\mathcal{H}_1^C}$ si el detector bàsic ha decidit $\widehat{\mathcal{H}_1^B}$
- Per tant, les prestacions de l'esquema clàssic són les del test bàsic:

$$P_{FA}^{C} = \Pr\left(\widehat{\mathcal{H}_{1}^{C}}\middle|\mathcal{H}_{0}\right) = P_{FA}^{B}$$

$$P_{D}^{C} = \Pr\left(\widehat{\mathcal{H}_{1}^{C}}\middle|\mathcal{H}_{1}\right) = P_{D}^{B}$$

... i el número de tests és fixe: 1 per individu.

Detector per Group Testing (GT)

Estudi previ del test bàsic

Modelat de la funció de test:

Individu o grup d'individus no infectat: $y \sim N(m_0, \sigma_0^2), m_0 = 5; \sigma_0^2 = 1$ Individu o grup d'individus infectat: $y \sim N(m_1, \sigma_1^2), m_1=10; \sigma_1^2=1.2$

El test basic pren la decisió comparant el test amb un llindar γ i les prestacions obtingudes són:

$$\widehat{\mathcal{H}}_{1}^{B} \\
y \gtrless \gamma \\
\widehat{\mathcal{H}}_{0}^{B}$$

Apartat 3.1:

- $P_{FA}^{B} = \Pr\left(\widehat{\mathcal{H}}_{1}^{B} \middle| \mathcal{H}_{0}^{B}\right)$ en funció de γ ? $P_{D}^{B} = \Pr\left(\widehat{\mathcal{H}}_{1}^{B} \middle| \mathcal{H}_{1}^{B}\right)$ en funció de γ ? $\Longrightarrow P_{D}^{B}$ en funció de P_{FA}^{B} ?

Estudi Previ del detector GT (i)

Apartat 3.2.a:

- $Pr(\mathcal{H}_1^{B1} | \mathcal{H}_0) = ?$
- $Pr(\mathcal{H}_1^{B1} | \mathcal{H}_1) = ?$

-

Estudi Previ del detector GT (ii)

Estat del grup on participa Decisió del l'individu l^{er} test bàsic analitzat $(un \ per \ grup)$ $\in \{\mathcal{H}_0^{B1}, \mathcal{H}_1^{B1}\}$

Apartat 3.2.b:

- $\Pr\left(\widehat{\mathcal{H}_1^{B1}}\middle|\mathcal{H}_0\right) = 2$
- $\Pr\left(\widehat{\mathcal{H}_1^{B1}}\middle|\mathcal{H}_1\right) = ?$

Estudi Previ del detector GT(iii)

Estudi Previ del detector GT (iv)

Estudi Previ del detector GT (v)

Activitat 4.1. Avaluació de la ROC i del número de tests dels detectors clàssic i de GT amb K=2,3,4

Activitat 4.2. Avaluació de la ROC i del número de tests dels detectors clàssic i de GT amb K=2,3,4 i $p=0.01,\ 0.1\ y\ 0.2$

Exemple de prestacions

	p	K	P_{FA}^{B}	P_{FA}^{C},P_{FA}^{GT}	P_D^C, P_D^{GT}	# Tests/individu
Clàssic			9.9991e-05	9.9991e-05	0.8789	1
СТ	0.01	11	4.5073e-04	4.0587e-05	0.8789	0.1894
GT		2	6.2277e-03	9.9975e-05	0.9777	0.5258
СТ	0.1	3	4.5073e-04	8.0449e-05	0.8789	0.5877
GT		2	1.0314e-03	9.9980e-05	0.9218	0.6833
GT	0.2	2	4.5073e-04	8.4673e-05	0.8789	0.8378
GI		2	5.2932e-04	9.9990e-05	0.8881	0.8396

Activitat 4.3..4.6. Simulació del detector clàssic i el detector de *Group Testing* per MonteCarlo

Simulació per $p=0.1, P_{FA}^C \leq 0.005, P_{FA}^{GT} \leq 0.005$, esquema de GT amb K=2:

- Avaluar el llindar γ_C que cal utilitzar en el test bàsic quan aquest s'aplica en el detector clàssic (4.3)
- Avaluar el llindar γ_{GT} que cal utilitzar en el test clàssic quan aquest s'aplica en el detector GT amb K=2.(4.3)

Programació en Matlab: (4.4, 4.5)

• Generar una població de *N* individus com a realitzacions d'una variable aleatòria amb valors 0 (no infectat) o 1 (infectat) amb probabilitat *1-p*, *p* respectivament.

	estado individuos			
•	Implementar el detector clàssic	\leftarrow N \longrightarrow		
	decision_clasico			

Activitat 4.5. Simulació del detector clàssic i el detector de *Group Testing* per MonteCarlo Programació en (continuació):

- Implementar el detector GT:
 - Organitzar els individus en grups de tamany K

- Avaluar l'estat de cada grup

$$\leftarrow$$
 N/K \longrightarrow

Realitzar tests bàsics necessaris i guardar la decisió de cada individu en format $-N/K \longrightarrow$

matriu

Re-ordenar les decisions preses per cada individu en un vector de tamany *N*:

Incorporar en el software un comptador del número de tests total realitzats.

Activitat 4.5. Simulació del detector clàssic i el detector de *Group Testing* per MonteCarlo Programació en Matlab(continuació):

- Càlcul de mètriques de prestacions:
 - Comptabilitzar quants dels N individus de la població corresponen a cada cas:

	$\widehat{\mathcal{H}_0^{\mathcal{C}}}$	$\widehat{\mathcal{H}_1^{\mathcal{C}}}$	$\widehat{\mathcal{H}_0^{GT}}$	$\widehat{\mathcal{H}_{1}^{GT}}$
\mathcal{H}_0				
\mathcal{H}_1				

- Utilitzar la taula anterior per estimar els valors de P_{FA}^{C} , P_{D}^{C} , P_{FA}^{GT} , P_{D}^{GT}
- Calcular el número de tests realitzats per individu en el detector de GT
- Afegir els valors obtinguts a les figures de l'activitat 4.1 per veure si les estimacions de les prestacions obtingudes per MonteCarlo són acurades.

IMPORTANT: Per que les estimacions siguin acurades totes les caselles de la taula han de comptabilitzar 100-500 o més individus. Si no es compleix cal augmentar N. Quin valor de N esperem necessitar per $P_{FA} \le 0.005$?