David Mareček, <u>Rudolf Rosa</u> marecek@ufal.mff.cuni.cz, rosa@ufal.mff.cuni.cz

From Balustrades to Pierre Vinken:

Looking for Syntax in Transformer Self-Attentions

Charles University, Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

BlackboxNLP Workshop, Firenze, 1 August 2019

From balustrades to Pierre Vinken

http://clipart-library.com/clipart/28144.htm

by Jan Hein van Dierendonck

Transformer self-attentions → **syntactic trees**

Mareček & Rosa: From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

- Common pattern in Transformer NMT self-attention heads
 - "balusters"

- Common pattern in Transformer NMT self-attention heads
 - "balusters"
- Resemble syntactic phrases

- Common pattern in Transformer NMT self-attention heads
 - "balusters"
- Resemble syntactic phrases
 - To what extent?
 - → That's our research question!

1. Balusters → phrase candidates

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm
- 3. Compare to standard syntactic trees

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm
- 3. Compare to standard syntactic trees: ~40%; baseline ~30%

Experiment setup

- Balusters: Transformer NMT system
 - Encoder: 6 layers x 16 heads

Experiment setup

- Balusters: Transformer NMT system
 - Encoder: 6 layers x 16 heads
 - Europarl: French ↔ English,
 German ↔ English, French ↔ German

Experiment setup

- Balusters: Transformer NMT system
 - Encoder: 6 layers x 16 heads
 - Europarl: French ↔ English,
 German ↔ English, French ↔ German

- Standard syntactic trees: Stanford parser
 - Penn Treebank, French Treebank, Negra Corpus
 - Only for evaluation

Balustrades (~70% of the attention heads)

Diagonals (especially 1st layer)

Mareček & Rosa: From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

Attend to end, mixed, scattered...

Phrase candidates

- All balusters of length ≥ 2 from all heads
 - Subselecting only some of the heads: see the paper!

Phrase candidates

- All balusters of length ≥ 2 from all heads
 - Subselecting only some of the heads: see the paper!
- Phrase score
 - Average attention weight
 - Sum over all heads
 - Equalize over different phrase lengths

Binary constituency tree

- Binary constituency tree
- Tree score = sum of phrase scores

$$s(T) = s(ab) + s(abc)$$

- Binary constituency tree
- Tree score = sum of phrase scores
- CKY algorithm
 - Finds tree (set of phrases) with maximal score

$$s(T) = s(ab) + s(abc)$$

Results

EOS

Results

Results

English				
system	precision	recall	F1 score	
rbal	30.1%	24.3%	26.8%	
lbal	27.8%	20.8%	23.8%	
rand.init	25.1%	20.0%	22.3%	
en → de	35.4%	30.6%	32.8%	
en → fr	35.4%	30.2%	32.6%	
German				
system		recall	F1 score	
rbal	39.1%	31.3%	34.8%	
lbal	38.1%	27.6%	32.0%	
rand.init	33.7%	25.9%	29.3%	
de → en	46.1%	39.6%	42.6%	
$de \rightarrow fr$	46.7%	40.9%	43.6%	
French				
system	precision		F1 score	
rbal	34.3%	28.7%	31.3%	
lbal	32.5%	25.4%	28.5%	
rand.init	26.1%	24.4%	25.3%	
fr → en	44.4%	39.7%	41.9%	
$fr \rightarrow de$	46.9%	41.7%	44.2%	

Table 2: Scores of baseline trees and our extracted trees using all attention heads, evaluated against standard

Summary

- Transformer NMT encoder self-attentions
 - diagonals, shifted diagonals, scattered attention...
 - balustrades: can be interpreted as phrases
- Linguistically uninformed syntax extraction
 - baluster → phrase, attention weight → phrase score
 - binary constituency parsing using CKY
 - no training, no hyperparameters, using all heads
 - see the paper for subselecting only some heads
- Resulting structures are quite syntactically sane
- F1 score 6-13 points above baseline (30% → 40%) Mareček & Rosa: From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

Thank you for your attention

David Mareček, <u>Rudolf Rosa</u> marecek@ufal.mff.cuni.cz, rosa@ufal.mff.cuni.cz

From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

Charles University, Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

ufal.cz/grants/lsd