

School of Computing

The Tourist Problem: Graph Model and Graph Coloring Video 5.4

Hon Wai Leong

Department of Computer Science National University of Singapore

Email, FB: leonghw@comp.nus.edu.sg

Experience the fun of problem solving

(Q-Module: The Tourist Problem) Page 1

Re-Cap...

- □ Solved TP v1.0
 - **Used notion of non-conflict**
 - **Done Activity 1 to solve TP instance**
- ☐ The method works, but
 - * tedious, error-prone, does not scale

- **☐** We seek a better method
 - *Answer: Use a GRAPH

The Graph Model

□ What is a graph?

$$\Leftrightarrow$$
 eg: $y = sin(bx)$

y=sinbx b=1 b=2 b=3 b=0.5

□ No. Not this type of graph.

A Graph Model

- \square Graph G = (V, E)
 - \bullet V is a set of vertices, (aka nodes, circles)
 - \star E is a set of edges (aka arcs, links)

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{ (1,2), (1,5), (2,3), (2,5), (3,4), (4,5), (4,6) \}$$

A graph is a model with vertices and edges (arc) that connect pairs of vertices.

Graphs (or networks) are A&E

The Graph Model

- \Box Graph G = (V, E)
 - \diamond V is a set of vertices, nodes (circles)
 - \star E is a set of edges (connections)

Nodes are Places

An Instance of Tourist Problem	
Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG

Edges represent "conflicts"

In our graph, nodes are places, and edges in the graph means conflicts.

(Q-Module: The Tourist Problem) Page 6

Graph Model for the Tourist Problem

An Instance of Tourist Problem		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	

The graph G = (V, E) captures all the conflicts for our tourist problem instance.

Graph Model for the Tourist Problem

□ What's good about the graph model?

- very simple!
- easy to spot the conflicts and the non-conflicts

Two places that are *adjacent* (connected by an edge) conflicts with each other;

Two places that are not adjacent have no conflict;

Can verify with

JB and BG (conflict)

OR and SZG. (no conflict)

Graph Model for the Tourist Problem

□ What's good about the graph model?

- very simple!
- easy to spot conflictsand the non-conflicts

Now we use conflict graph
To do bus scheduling

WOW!

"Bus scheduling" become "colouring of vertices in G".

On Day 1, can schedule SZG, OR [Any more? Why?]

On Day 2, can schedule JB, CG, VC

On Day 3, can schedule BG, SI

On Day 4, can schedule JG

(Q-Module: The Tourist Problem) Page 9

Graph Coloring Problem

□ Given a graph G = (V, E), colour the vertices in V so that any two vertices that are connected by an edge in E will have *different* colors.

We want to minimize the number of colors.

Number of colours used to colour the graph G

Number of days needed to complete the schedule

TP Activity #2:

Bus Scheduling via Graph Colouring (8 minutes)

Instruction:

Download and print a copy of TP-Activity-2.pdf.

Then complete the activity – colour the graphs with the minimum number of colours.

Have your answers ready at hand before continuing to Video 5.5

TP Activity 2: (10 minutes) [Graph Colouring]

The Tourist Problem

Your Name: _____

The tourist problem instance in the lecture can be modeled with the following conflict graph. Two possible colorings of the graph are given in the lecture.

Q1: Give a different way to colour the vertices of the graph on the left. How many colours?

Q1: # colors: _____

Q2: What about this one?

Q3: Try coloring the following graphs with the minimum number of colors.

A

Q3(b): # colors: ____

(End of video 5.4)

If you want to contact me,

Email: leonghw@comp.nus.edu.sg

School of Computing