Serial No.: To Be Assigned

Filed : Herewith Page : 4 of 8

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A method for producing a plurality of semiconductor chips [[(20)]], particularly radiation-emitting semiconductor chips, each having at least one epitaxially produced functional semiconductor layer stack[[(51)]], comprising the following method steps:
- preparing a growth substrate wafer[[(1)]] substantially comprised of semiconductor material from a semiconductor material system that is in terms of lattice parameters the same as or similar to that on which a semiconductor layer sequence[[(5)]] for the functional semiconductor layer stack[[(51)]] is based,
- forming in said growth substrate wafer[[(1)]] a separation zone[[(4)]] disposed parallel to a main face[[(100)]] of said growth substrate wafer[[(1)]],
 - joining said growth substrate wafer (1) to an auxiliary carrier wafer[[(2]],
- detaching along said separation zone (4) a portion[[(11)]] of said growth substrate wafer[[(1)]] that faces away from said auxiliary carrier wafer[[(2)]] as viewed from said separation zone[[(4)]],
- forming on the portion[[(12)]] of said growth substrate wafer remaining on said auxiliary carrier wafer[[(2)]] a growth surface[[(121)]] for subsequent epitaxial growth of a semiconductor layer sequence[[(5)]],
- epitaxially growing said semiconductor layer sequence[[(5)]] on said growth surface[[(121)]],
- applying a chip substrate wafer[[(7)]] to said semiconductor layer sequence[[(5)]],
 - detaching said auxiliary carrier wafer[[(2)]], and
- singulating the composite composed of said semiconductor layer sequence[[(5)]] and said chip substrate wafer[[(7)]] into mutually separate semiconductor chips[[(20)]].

Serial No.: To Be Assigned

Filed : Herewith Page : 5 of 8

2. (Currently Amended) The method according to claim 1, wherein prior to the application of said chip substrate wafer[[(7)]], said semiconductor layer sequence[[(5)]] is structured into a plurality of epitaxial semiconductor layer stacks[[(51)]] disposed side by side on said auxiliary carrier wafer[[(2)]].

- 3. (Currently Amended) The method according to claim 2, wherein at least sidewalls of said epitaxial semiconductor layer stack[[(51)]] are provided at least partially with passivating material[[(9)]].
- 4. (Currently Amended) The method according to at least one of claims 1 to 3 claim 1, wherein prior to the application of said chip substrate wafer[[(7)]], said epitaxial semiconductor layer sequence[[(5)]] is provided with an electrical contact layer[[(6)]].
- 5. (Currently Amended) The method according to at least one of claims 1 to 4 claim 1, wherein said separation zone[[(4)]] is produced by ion implantation.
 - 6. (Original) The method according to claim 5, wherein hydrogen is implanted.
- 7. (Currently Amended) The method according to at least one of claims 1 to 6 claim 1, wherein the portion[[(11)]] of said growth substrate wafer[[(1)]] facing away from said auxiliary carrier wafer[[(2)]] as viewed from said separation zone[[(4)]] is thermally cleaved along said separation zone[[(4)]].
- 8. (Currently Amended) The method according to at least one of claims 1 to 7 claim 1, wherein said auxiliary carrier wafer[[(2)]] is transparent to electromagnetic radiation with wavelengths below 360 nm.

Serial No.: To Be Assigned

Filed : Herewith Page : 6 of 8

9. (Currently Amended) The method according to at least one of claims 1 to 8 claim 1, wherein said auxiliary carrier wafer is transparent to high-energy electromagnetic radiation, particularly laser radiation.

- 10. (Currently Amended) The method according to claim 9, wherein said auxiliary carrier wafer[[(2)]] is detached from said semiconductor layer sequence[[(5)]] or from said semiconductor layer stack[[(51)]] by a laser liftoff process.
- 11. (Currently Amended) The method according to at least one of claims 1 to 10 claim 1, wherein said auxiliary carrier wafer[[(2)]] is matched in terms of thermal expansion coefficient to said growth substrate wafer[[(1)]].
- 12. (Currently Amended) The method according to at least one of claims 1 to 11 claim 1, wherein said auxiliary carrier wafer (2) is polycrystalline.
- 13. (Currently Amended) The method according to at least one of claims 1 to 12 claim 1, wherein the joint between said growth substrate wafer[[(1)]] and said auxiliary carrier wafer[[(2)]] is produced by means of silicon oxide.
- 14. (Currently Amended) The method according to at least one of claims 1 to 13 claim 1, wherein said semiconductor layer sequence[[(5)]] includes at least one semiconductor layer based on GaN and the material of said growth substrate wafer[[(1)]] is also based on GaN.
- 15. (Currently Amended) The method according to claim 14, wherein said auxiliary carrier wafer[[(2)]] is composed of sapphire and/or AlN.
 - 16. (Currently Amended) The method according to at least one of claims 1 to 15

Serial No.: To Be Assigned

Filed : Herewith Page : 7 of 8

<u>claim 1</u>, wherein said growth surface[[(121)]] is prepared for the epitaxial growth of said semiconductor layer sequence[[(5)]] by etching and/or grinding.