INTRODUCTION to ANNS

L7-1

RECALL The DISCINIVATIVE MIDELINGTHANG

SOFTMAX REGRESSON: f(XiO): XWT+ 6

- · CONTEX
- · LINEAR IN X
- · DEESEN Barony Las DINUTY IN THE SAME

XOR PHOBLEM

XI

O'S=0

A LINEAR MANIFORM

Fulls to Classify

X CORRECTLY!

ANN with single hover lossed $f(X;\theta) = \left[\sigma_{a}((X W^{(i)} + b^{(i)}) W^{(i)} + b^{(2)} \right]^{2})$ Where $\theta = \left\{ W^{(i)}, b^{(i)}, W^{(i)}, b^{(2)} \right\}$ $\sigma_{a}(\cdot) \text{ is an "Activation function"}$ Apply this to the XOR PioBlem.

LET W" = [! :] $\leftarrow \mathbb{R}^{2\times 2}$ $b''' = [0 - 1] \leftarrow \mathbb{R}^{2}$ $b''' = [1 - 2] \leftarrow \mathbb{R}^{2}$ $b''' = [1 - 2] \leftarrow \mathbb{R}^{2}$ $b''' = [0 - 1] \leftarrow \mathbb{R}^{2}$ $b''' = [1 - 2] \leftarrow \mathbb{R}^{2}$ $b''' = [0 - 1] \leftarrow \mathbb{R}^{2}$

Oa (Zi) = Max (O, Zi) = D'RECTIFIED LINEAR UNIT"

RELU"

 $\mathcal{D} \left(\mathcal{Z}^{(1)} \right) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} - \mathcal{D} \left(\mathcal{Z}^{(1)} \right)$ Da"Wat + b" = [i] + o = [i] (=) [i]

Since 10 Abore

Montensal Approximation theorem Class Assignments. - LINEM MODELS SUM 15 XWT+6 CAN ONLY more linear functions - The reconstruct functions Allow ANNS to learn NON- I was provided in the inset SPACE. - VNIVERSAL APPROXIMATION Threenen' - AN ANN with AT last one tervarbygen Con ADPACKURE "AND" Pore L. Marsonsh finition in finite ormisons been enough shopen units. This extens to the veniumes it the function.

HypenBolic TANGET

PETITION LINEAR UNIT

$$\sqrt{rew}(z) = \begin{cases} 2 & 2 \geq 0 \\ 0 & eise \end{cases}$$

· No f(xie) REQUIRES Successive

ADDICTION OF THE CHON POR

HIMA BACK PROPOSATION

D LECTURE 08

· NLL is Now-Corrox, many local mirrors

RECOL THAT MLE finos ême ihat MAXIMIRES
THE Libelihous of the assumed OATA:

PART = ANGMAX Z P(1); 0)

-D LETS USE BAYES Theorem TO EXPRESS AND DELATED OBJECTIVE:

PLOID(i) + L(D;0) a- PIX.Y) -> L(0;0) + P(D;0)
POT R.V.

(DOBJECTIVE OMAF - ANSMIN - ZISP(010)

= mond = \frac{2}{500} \left\{ \frac{P(0)}{P(0)}}

= ATTENT - I 109 P(D; B) + 105 P(B) - 109 P(D)

= ARSMIT - 2 109 P(Dia) + 109 Pla)

2 IMPORTANT THINGS:

O WE STARTED BY DESCRIBING O AS A R.V.

IN L(DiO), BUT HAVE REDUCED THE

Problem to Whom B REPRESENTS A POINT
ESTIMATE!

3 THE DIFFEREN BITTERN DANS AND DANE 1.05 11

REGULARIZATION CENT ... Common PARAMETER, ZATIONS for P(0) () & ~ UNIF () 19 = AROMIN - Z 100 P(D;0) + 103 UNI(X) = ARSMIN - I 109 P(D:0) = GALE this, MAP is A General entrol at MLE (2) 0 ~ N(0,002) - GRESIAN PRIOR ON O Ome = Mismin - 2 109 P(V; 0) + 109 1 1000 6 200 7 = ADYMIN - 2 log P(0:0) + 9 Lz REGULARIZATION (3) 0 ~ LAPILLE (0,00) = PARP = ARSMIN - & 103 P(DIO) + LOS [1 0 - 10] = Angmir - 2 los P(Die) - 181

Li REGULANZATION

L78 Since 9

DROPOUT

RANDOMY SELECTS NOTES IN EACH hover lossen, 2,
ANUS GETTS THEM to ZERO DUNING TRAINING.

This is AN Elevent - Chise Operation:

a'er = 8 mo all

Where

M; ~ { 0 with P=Print

I win P=1-Powert

T is a const function of Powert

Thes:

DUNING TRAINING: $Z_{j}^{(2+1)} = d^{(2)} W_{j}^{T(2+1)}$ DUNING INFERENCE: $Z_{j}^{(2+1)} = a^{(2)} W_{j}^{T(2+1)}$

GRAD. ENT MOMENTEM

SET MONORM & MOMENTEM
SET NONORM &
SET LEARNING FIR h

INITIALIZE O, LEIOCHY V

UNTIL: Stopping Condition

REPORT:

X.Y - DATA MINIPATED SE M VO FROM IN EL LL (X(5), Y(5)) U) V = XV - AVO G = Q + V Popular Variants

- NESTERN

- RMS Prop

- ADAM