Random effects and mixed modeling:

General linear models +
fixed and random effects =
General linear mixed models

Outline

- Fixed versus random effects
 - Example with an ANOVA
 - Reasons to use one or the other
- Mixed models
- Lab
 - Going from fixed to random effects

General Linear Models

Linear Regression:

Continuous response, one continuous explanatory variable

T-test:

Continuous response, one discrete explanatory variable with only two categories

One-way ANOVA (Analysis of Variance):

Continuous response, one discrete explanatory variable with more than two categories

Two-way ANOVA:

Continuous response, two discrete explanatory variable

ANCOVA (Analysis of Covariance):

Continuous response, one discrete explanatory variable and one continuous explanatory variable

General Linear Models

So far, we assumed that each parameter in our model is estimated separately and independently:

$$y_i = \alpha + \beta x 1_i + \delta x 2_i + \dots + \varepsilon_i$$
$$\varepsilon_i \sim Norm(0, \sigma^2)$$

We refer to each of the parameters as "fixed effects".

- *Fixed effects:* factors whose levels are experimentally determined or whose interest lies in the specific effects of each level, such as effects of covariates, differences among treatments and interactions.
- Random effects: factors whose levels are sampled from a larger population, or whose interest lies in the variation among them rather than the specific effects of each level.
- The precise definitions of 'fixed' and 'random' are controversial; the status of particular variables depends on experimental design and context

One-way (factor) ANOVA – fixed effects

- Assume that we measured wing length in five different populations of little owls (Athene noctua)
- Is there a difference in wing length among the populations?

One-way (factor) ANOVA – fixed effects

With a means parameterization, we can write the model:

$$y_i = \alpha_{j(i)} + \varepsilon_i$$
$$\varepsilon_i \sim Norm(0, \sigma^2)$$

 y_i = observed wing length of owl i in population j

 $\alpha_{i(i)}$ = expected wing length of an owl in population j

 ε_i = the random wing deviation of owl i from its population mean

- In this model, the levels (groups) of the factor were assumed to be fixed by design; we have a special interest in the particular five little owl populations that we want to compare and have no interest in generalizing to other populations
- But what if aren't actually interested in the differences among the sites? What if instead we considered these five groups a random sample of some larger population of little owl and wanted to generalize our results?

One-way (factor) ANOVA – random effects In such a case, we can re-write the model:

$$y_{i} = \alpha_{j(i)} + \varepsilon_{i}$$

$$\varepsilon_{i} \sim Norm(0, \sigma^{2})$$

$$\alpha_{j(i)} \sim Normal(\mu, \tau^{2})$$

- y_i , $\alpha_{j(i)}$, and ε_i have the same interpretation but now each of the $\alpha_{j(i)}$ parameters are no longer assumed to be independent
- Instead, they come from a second normal distribution with a mean of μ and a variance of τ^2

One-way (factor) ANOVA – random effects In such a case, we can re-write the model:

$$y_{i} = \alpha_{j(i)} + \varepsilon_{i}$$

$$\varepsilon_{i} \sim Norm(0, \sigma^{2})$$

$$\alpha_{j(i)} \sim Normal(\mu, \tau^{2})$$

What is the interpretation of μ and τ^2 ?

 $\mu =$ mean winglength across all the five little owl populations $au^2 =$ variance in winglength across populations

Which to choose?

Fixed Effects

- You have a particular interest in the studied factor levels
- You have included all conceivable levels in a study
- No interest in the variance among levels
- No interest in generalizing to factor levels that you did not study

Which to choose?

Random Effects

- You don't have a particular interest in the studied factor levels and/or you could not have sampled all levels
- Interested in the variation among levels (but may still want to understand the effects for the observed levels)
- You want to generalize to a larger population (e.g., levels are more like samples)

Three reasons to go from fixed to random effects:

- Extrapolation to a wider population of inference
- Improved accounting for system uncertainty Randomness in ε and both τ . Acknowledges that repeating our study would result in different parameter estimates
- Efficiency of estimation -> shrinkage
 Parameters are no longer independent and will be pulled to the mean, "borrowing strength"

Mixed models

- In many situations, it is useful to make use of both fixed and random effects
- Mixed models contain both fixed and random effects
- Introduced by Fisher when studying correlations in traits among relatives
- Particularly useful for:
 - Repeated measures
 - Missing data

Mixed models in R

- Can be hard to fit mixed and random effects models using canned functions in most software packages
 - algorithms do not always converge, especially when the number of groups is small

Mixed models in R

- Can be hard to fit mixed and random effects models using canned functions in most software packages
- In R, can use:
 - **aov** function with "Error" term -- if predictors are all categorical and design is balanced
 - *nlme* package
 - *Ime4* package allows for unbalanced data sets, random effects on parameters (e.g., slope in an ANCOVA), and nonlinear models (not discussed here

Mixed models in R

- What to do when those don't work? Suggestions from Bolker:
 - Fit fixed-effects models instead. May loose power
 -> conservative results
 - 2. For nested design (e.g., subsamples in blocks) -> collapse groups data by computing means and do a single level analysis
 - 3. Fit model ignoring blocks and examine the variation in residuals between blocks -> must show between-group variation in residuals is both statistically and biologically irrelevant
 - 4. Switch to a Bayesian analysis -> computing/ software, while more difficult to learn, is much more flexible

Lab: ANOVA

- Review the ANOVA lab from last week
- Modify the data simulation with an assumption that means of populations are random drawn from a common population-level grand mean.