```
In [1]:
        import pandas as pd
        import numpy as np
        from sklearn.model selection import KFold
        import seaborn as sas
        import matplotlib.pyplot as plt
        import sklearn
        from sklearn.model_selection import train_test_split
        from sklearn import datasets, linear model
        from sklearn.preprocessing import StandardScaler
        from scipy.cluster.hierarchy import linkage,fcluster
        from sklearn import metrics
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.svm import SVC
        import seaborn as sns
        from sklearn.linear model import LinearRegression
        import statsmodels.formula.api as smf
        from sklearn.cluster import KMeans, DBSCAN
        from sklearn import metrics
        import plotly.figure factory as ff
```

Task 1

```
In [2]: # Import the CSV file
import pandas as pd
df = pd.read_csv("merged_train.csv")
df.head()
```

Out[2]:

State	County	FIPS	Total Population	Percent White, not Hispanic or Latino	Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Pe A l
AZ	apache	4001	72346	18.571863	0.486551	5.947806	1.719515	50.598513	45.8
AZ	cochise	4003	128177	56.299492	3.714395	34.403208	11.458374	49.069646	37.90
AZ	coconino	4005	138064	54.619597	1.342855	13.711033	4.825298	50.581614	48.94
AZ	gila	4007	53179	63.222325	0.552850	18.548675	4.249798	50.296170	32.20
AZ	graham	4009	37529	51.461536	1.811932	32.097844	4.385942	46.313518	46.39
_	AZ AZ AZ	AZ apache AZ cochise AZ coconino AZ gila	AZ apache 4001 AZ cochise 4003 AZ coconino 4005 AZ gila 4007	AZ apache 4001 72346 AZ cochise 4003 128177 AZ coconino 4005 138064 AZ gila 4007 53179	State County FIPS Population Population White, not Hispanic or Latino AZ apache 4001 72346 18.571863 AZ cochise 4003 128177 56.299492 AZ coconino 4005 138064 54.619597 AZ gila 4007 53179 63.222325	State County FIPS Population Population Population Percent White, not Hispanic or Latino Black, not Hispanic or Latino AZ apache 4001 72346 18.571863 0.486551 AZ cochise 4003 128177 56.299492 3.714395 AZ coconino 4005 138064 54.619597 1.342855 AZ gila 4007 53179 63.222325 0.552850	State County FIPS Percent Population Population White, not Hispanic or Latino Black, not Hispanic or Latino Percent Hispanic or Latino AZ apache 4001 72346 18.571863 0.486551 5.947806 AZ cochise 4003 128177 56.299492 3.714395 34.403208 AZ coconino 4005 138064 54.619597 1.342855 13.711033 AZ gila 4007 53179 63.222325 0.552850 18.548675	State County FIPS Total Population Population White, not Hispanic or Latino Black, not Hispanic or Latino Percent Hispanic or Latino Percent Hispanic or Latino Percent Hispanic or Latino AZ apache 4001 72346 18.571863 0.486551 5.947806 1.719515 AZ cochise 4003 128177 56.299492 3.714395 34.403208 11.458374 AZ coconino 4005 138064 54.619597 1.342855 13.711033 4.825298 AZ gila 4007 53179 63.222325 0.552850 18.548675 4.249798	State County FIPS Total Population Population White, not Hispanic or Latino Black, not Hispanic or Latino Percent Hispanic or Latino Percent Foreign Born Percent Female AZ apache 4001 72346 18.571863 0.486551 5.947806 1.719515 50.598513 AZ cochise 4003 128177 56.299492 3.714395 34.403208 11.458374 49.069646 AZ coconino 4005 138064 54.619597 1.342855 13.711033 4.825298 50.581614 AZ gila 4007 53179 63.222325 0.552850 18.548675 4.249798 50.296170

Percent

```
In [3]: df.shape
```

Out[3]: (1195, 19)

```
In [4]: #*****HOLDOUT METHOD********
#Partitioning the data into Training(75%) and Validation set(25%)
X_train, X_val, Y_train, Y_val = train_test_split(df[df.columns[3:-3]], df[df.columns[-3:]], test_size = 0.25, random_state=0)
```

In [5]: print(X_train.shape)
print(Y_train.shape)

(896, 13) (896, 3)

In [6]: print(X_val.shape)
 print(Y_val.shape)

(299, 13) (299, 3)

In [7]: Y_train.head()

Out[7]:

	Democratic	Republican	Party
589	2115	2916	0
702	3439	9365	0
182	1915	3541	0
655	6945	11210	0
1062	8159	18333	0

In [8]: X_train.head()

Out[8]:

	Total Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Percent Age 29 and Under	Percent Age 65 and Older	н
589	14857	92.468197	3.163492	0.794238	0.511543	50.245675	34.832066	19.250185	
702	42406	94.168278	1.844079	1.903033	1.568174	50.853653	38.666698	17.426779	
182	10461	96.138037	0.248542	1.386101	1.720677	49.555492	21.202562	34.470892	
655	53460	96.127946	0.729517	1.060606	0.746352	50.787505	32.850730	19.943883	
1062	92530	55.510645	0.652761	40.121042	19.251054	49.605533	46.740517	12.576462	

Task 2

```
In [9]: #----Task 2----
         # Standardizing the demographic variables of train and Validation set
         scaler = StandardScaler()
         scaler.fit(X train)
         x train scaled = scaler.transform(X train)
         x_val_scaled = scaler.transform(X_val)
         x train scaled
Out[9]: array([[-0.3287239 ,
                               0.67151144, -0.26350303, ..., -0.17062413,
                  1.01406194,
                               0.77555586],
                               0.75868846, -0.40186143, ..., 1.0578614,
                [-0.24936845,
                  1.06814008,
                               0.60330794],
                [-0.34138666,
                               0.85969401, -0.56917509, ..., -0.30261512,
                  0.76501978,
                               1.31092049],
                [-0.04939121, -0.60217403, 0.44814651, ..., 0.32989637,
                  0.21930393, -0.22759351,
                [-0.22119984, 0.87722062, -0.51847681, ..., -0.3554369]
                  0.9134463 , 0.30929678],
                [-0.25241604,
                               0.49667986, -0.2376449, ..., 0.20906802,
                  0.2665856 , 0.41106862])
In [10]: Y train.iloc[:1,0]
Out[10]: 589
                2115
         Name: Democratic, dtype: int64
In [11]: | x_train_r=np.concatenate([x_train_scaled,Y_train],axis=1)
In [12]: x_train_r = pd.DataFrame(x_train_r, index=X_train.index, columns=df.columns[3
         :])
In [13]: x_train_r.head()
Out[13]:
                          Percent
                                   Percent
```

	Total Population	White, not Hispanic or Latino	Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Percent Age 29 and Under	Percent Age 65 and Older	Но
589	-0.328724	0.671511	-0.263503	-0.615359	-0.755821	0.169311	-0.329466	0.235729	-C
702	-0.249368	0.758688	-0.401861	-0.541263	-0.581859	0.424608	0.328073	-0.140923	-C
182	-0.341387	0.859694	-0.569175	-0.575808	-0.556751	-0.120504	-2.666568	3.379791	-1
655	-0.217527	0.859177	-0.518738	-0.597559	-0.717162	0.396831	-0.669213	0.379022	-C
1062	-0.104985	-1.223603	-0.526787	2.012669	2.329427	-0.099491	1.712521	-1.142828	C

Task 3

```
In [14]: #Predicting the number of democratic votes of validation set
         #Building the model for Democratic votes using Total population as one of the
          attribute
         model = linear model.LinearRegression()
         fitted model = model.fit(X = x train scaled[:,0].reshape(-1,1),y=Y train.iloc
         [:,0])
         print(fitted model.coef )
         [74711.50206856]
In [15]: #Predicting Democratic votes using Total population
         predicted = fitted model.predict(X=x val scaled[:,0].reshape(-1,1))
In [16]:
         corr_coef = np.corrcoef(Y_val.iloc[:,0],predicted)[1, 0]
         R squared = corr coef**2
         print('R-Square', R squared)
         R-Square 0.9436415220931651
In [17]: # R-Square using Model Score
         RSquare = model.score(X = x val scaled[:,0].reshape(-1,1),y = Y val.iloc[:,0])
         print('R-Square using model score', RSquare)
         R-Square using model score 0.9168242212210275
In [18]: # Building the model for Democratic votes using attributes initially identifie
         d in project 1
         # Total population, White Population, Age under 29, Population with less than Ba
         chelor's degree
         model = linear_model.LinearRegression()
         fitted model = model.fit(X = x train scaled[:,[0,2,6,11]],y=Y train.iloc[:,0])
         print(fitted model.coef )
         [70974.39559794 2081.86202157 -3066.18177846 -9907.59785116]
In [19]: ## Predicting Democratic votes using using attributes initially identified in
          project 1
         predicted = fitted model.predict(X=x val scaled[:,[0,2,6,11]])
```

```
In [20]: R_squared = corr_coef**2
    print('R-Square',R_squared)
    adjusted_r_squared = 1 - ((1-R_squared)*(len(Y_train)-1)/(len(Y_train)-x_val_s
        caled[:,[0,2,6,11]].shape[1]-1))
    print('Adjusted R-Square',adjusted_r_squared)
# R-Square using Model Score
RSquare = model.score(X = x_val_scaled[:,[0,2,6,11]],y = Y_val.iloc[:,0])
    print('R-Square using model score',RSquare)
    adjusted_r_squared_model = 1 - ((1-RSquare)*(len(Y_train)-1)/(len(Y_train)-x_v)
    al_scaled[:,[0,2,6,11]].shape[1]-1))
    print('Adjusted R-Square using model score',adjusted_r_squared_model)

R-Square 0.9436415220931651
    Adjusted R-Square 0.9433885098466698
    R-Square using model score 0.9018476013040684
    Adjusted R-Square using model score 0.9014069620282168
```

Out of all the attributes, "Total Population" performed well as a single predictor for democratic votes with R-Square 0.9168 using model score

Performance choosing the initial set of attributes: Total population, White Population, Age under 25, Population with less than Bachelor's degree'

R-Square 0.944 and Adjusted R-Square 0.943

11/18/2019

```
In [21]: # Now building the model for Democratic votes using all the attributes
         #to see how the R square changes with size of attributes
         model = linear model.LinearRegression()
         fitted model = model.fit(X = x_train_scaled,y=Y_train.iloc[:,0])
         print(fitted model.coef )
         [ 69224.38708039 -3209.1591268
                                           -1023.23488454 -6931.14708179
            3973.74580741
                             194.19056985 -5299.5676761
                                                           -1853.22320472
            1471.25963216
                            1467.0213699
                                            4037.7699931 -10519.02638282
            -158.13004477]
In [22]: #Predicting Democratic votes using all the attributes
         predicted = fitted model.predict(X=x val scaled)
In [23]:
         corr_coef = np.corrcoef(Y_val.iloc[:,0],predicted)[1, 0]
         R squared = corr coef**2
         print('R-Square', R_squared)
         adjusted_r_squared = 1 - ((1-R_squared)*(len(Y_train)-1)/(len(Y_train)-x_val_s
         caled.shape[1]-1))
         print('Adjusted R-Square',adjusted_r_squared)
         R-Square 0.9338361960241593
         Adjusted R-Square 0.932860992564198
```

```
In [24]: # R-Square using Model Score
RSquare = model.score(X = x_val_scaled,y = Y_val.iloc[:,0])
print('R-Square using model score',RSquare)
adjusted_r_squared_model = 1 - ((1-RSquare)*(len(Y_train)-1)/(len(Y_train)-x_v
al_scaled.shape[1]-1))
print('Adjusted R-Square using model score',adjusted_r_squared_model)
R-Square using model score 0.867055068427187
Adjusted R-Square using model score 0.8650955626330299
```

Considering all the attributes for predicting the number of democratic votes, we observe the R-Square 0.9338 and Adjusted R-Square 0.9328

```
In [25]: # Predicting Democratic votes using multiple attributes
         # Attributes considered - Total Population, Black population,
         #Population with less than a bachelor's degree, and the unemployed population.
         model = linear model.LinearRegression()
         fitted_model = model.fit(X = x_train_scaled[:,[0, 11, 9, 2]],y=Y_train.iloc[:,
         0])
         print(fitted model.coef )
         [70484.68208406 -9860.1194576
                                         1648.91035669 1392.98545067]
In [26]: | predicted = fitted_model.predict(X=x_val_scaled[:,[0, 11, 9, 2]])
In [27]: corr coef = np.corrcoef(Y val.iloc[:,0],predicted)[1, 0]
         R squared = corr coef**2
         print('R-Square', R squared)
         adjusted_r_squared = 1 - ((1-R_squared)*(len(Y_train)-1)/(len(Y_train)-x_val_s
         caled[:,[0, 11, 9, 2]].shape[1]-1))
         print('Adjusted R-Square',adjusted r squared)
         R-Square 0.9506205107948219
         Adjusted R-Square 0.9503988295862689
In [28]: # R-Square using Model Score
         RSquare = model.score(X = x_val_scaled[:,[0, 11, 9, 2]],y = Y_val.iloc[:,0])
         print('R-Square', RSquare)
         adjusted r squared model = 1 - ((1-RSquare)*(len(Y train)-1)/(len(Y train)-x v
         al_scaled[:,[0, 11, 9, 2]].shape[1]-1))
         print('Adjusted R-Square',adjusted_r_squared_model)
         R-Square 0.9043235928344125
         Adjusted R-Square 0.9038940691209868
```

Using the initial set of attributes as a starting point, We added and dropped variables based on how R square changed. We found the optimal set of attribute that outputed a high R square value and Adjusted R square value of 0.9506 and 0.9503 respectively for predicting number of democratic votes

Regression model for Republican votes

```
In [29]:
         #Building the model using all the attributes
          model = linear model.LinearRegression()
          fitted model = model.fit(X = x train scaled,y=Y train.iloc[:,1])
          print(fitted model.coef )
          [45467.5097118
                           1769.95034533 -3141.4206375
                                                          1167.17323402
           -6463.65917143 -1121.73432851 -955.67013341 2580.74056065
           5910.97457236 2037.10575397 3530.42010898 -3156.11275644
          -5992.05181735]
In [30]: #Predicting Republican votes using all the attributes
          predicted = fitted model.predict(X=x val scaled)
In [31]: | corr coef = np.corrcoef(Y val.iloc[:,1],predicted)[1, 0]
          R_squared = corr_coef**2
          print('R-Square', R squared)
          adjusted r squared = 1 - ((1-R \text{ squared})*(len(Y \text{ train})-1)/(len(Y \text{ train})-x \text{ val s})
          caled.shape[1]-1))
          print('Adjusted R-Square',adjusted_r_squared)
          RSquare = model.score(X = x val scaled,y = Y val.iloc[:,1])
          print('R-Square', RSquare)
          adjusted r squared model = 1 - ((1-RSquare)*(len(Y train)-1)/(len(Y train)-x v
          al scaled.shape[1]-1))
          print('Adjusted R-Square',adjusted_r_squared_model)
         R-Square 0.7239014362949742
         Adjusted R-Square 0.7198319563310679
         R-Square 0.7004235899502084
         Adjusted R-Square 0.6960080646320141
```

Considering all the attributes for predicting the number of Republican votes, we observe the R-Square 0.7239 and Adjusted R-Square 0.7198

```
In [34]: | corr coef = np.corrcoef(Y val.iloc[:,1],predicted)[1, 0]
         R squared = corr coef**2
         print('R-Square', R squared)
         RSquare = model.score(X = x val scaled[:,0].reshape(-1,1),y = Y val.iloc[:,1])
         print('R-Square using model score', RSquare)
         R-Square 0.6718468162068596
         R-Square using model score 0.6567852066304897
In [35]: # Building the model for Republican votes using attributes initially identifie
         d in project 1
         #Total population, White population, Age above 65, Population with less than a h
         igh school degree
         model = linear model.LinearRegression()
         fitted_model = model.fit(X = x_train_scaled[:,[0,1,7,10]],y=Y_train.iloc[:,1])
         print(fitted model.coef )
         [45659.94144049 2177.72938456 -703.90624058 -2722.92493514]
In [36]:
         #Predicting Republican votes using initial set of attributes
         predicted = fitted model.predict(X=x val scaled[:,[0,1,7,10]])
In [37]:
         corr_coef = np.corrcoef(Y_val.iloc[:,1],predicted)[1, 0]
         R squared = corr coef**2
         print('R Square', R squared)
         adjusted r squared = 1 - ((1-R \text{ squared})*(len(Y \text{ train})-1)/(len(Y \text{ train})-x \text{ val s})
         caled[:,[0,1,7,10]].shape[1]-1))
         print('Adjusted R-Square',adjusted r squared)
         # R-Square using Model Score
         RSquare = model.score(X = x_val_scaled[:,[0,1,7,10]],y = Y_val.iloc[:,1])
         print('R-Square using model score', RSquare)
         adjusted r squared model = 1 - ((1-RSquare)*(len(Y train)-1)/(len(Y train)-x v
         al_scaled[:,[0,1,7,10]].shape[1]-1))
         print('Adjusted R-Square using model score',adjusted_r_squared_model)
         R Square 0.6802566781515079
         Adjusted R-Square 0.678821242363187
         R-Square using model score 0.6621606644934113
         Adjusted R-Square using model score 0.6606439895865355
In [38]:
         # Building the model for Republican votes using best set of attributes
         model = linear model.LinearRegression()
         fitted model = model.fit(X = x train scaled[:,[0,1,3,4,7,8,9,10,11,12]],y=Y tr
         ain.iloc[:,1])
         print(fitted_model.coef_)
         [45220.29033736 5065.79031785 3840.00607902 -5872.48026158
           2839.30463983 6066.05645897 2063.52147931 2586.73805496
          -2432.72004918 -5176.17669614]
In [39]: # Predicting Republican votes using best set of attributes
         predicted = fitted_model.predict(X=x_val_scaled[:,[0,1,3,4,7,8,9,10,11,12]])
```

```
In [40]: corr coef = np.corrcoef(Y val.iloc[:,1],predicted)[1, 0]
          R squared = corr_coef**2
          print('R-square', R squared)
          adjusted r squared = 1 - ((1-R \text{ squared})*(len(Y \text{ train})-1)/(len(Y \text{ train})-x \text{ val s})
          caled[:,[0,1,3,4,7,8,9,10,11,12]].shape[1]-1))
          print('Adjusted R-Square',adjusted_r_squared)
          R-square 0.7323279131009545
         Adjusted R-Square 0.729303369746163
In [41]:
         RSquare = model.score(X = x \ val \ scaled[:,[0,1,3,4,7,8,9,10,11,12]],y = Y \ val.i
          loc[:,1])
          print('R-Square using model score', RSquare)
          adjusted_r_squared_model = 1 - ((1-RSquare)*(len(Y_train)-1)/(len(Y_train)-x_v)
          al_scaled[:,[0,1,3,4,7,8,9,10,11,12]].shape[1]-1))
          print('Adjusted R-Square using model score',adjusted_r_squared_model)
         R-Square using model score 0.7115853695297715
         Adjusted R-Square using model score 0.7083264471515768
```

Using the initial set of attributes determined in project 1 as a starting point, We added and dropped variables based on how R square changed. We found the optimal set of attribute that outputed a high R square value and Adjusted R square value of 0.7323 and 0.729 respectively for predicting number of republican votes

Using LASSO regression, we found that no attributes were dropped

· What is the best performing linear regression model?

The Best performing linear model for predicting number of democratic votes is the one that has the following predictor variables: Total Population, Population that is Black, Population with less than a bachelor's degree, and the unemployed population.

What is the performance of the model?

For **Democratic** R square value-0.9506 and Adjusted R square -0.9503

We were able to determine that total population would be a default predictor based on a linear regression single test. We then ended up with 8 combination and form those combinations we started to drop values based on democratic parties intuition. We also dropped predictors based on democratic influences and confirmed by performing multiple linear regression tests.

· What is the performance of the model?

For **Republican** the R-squared: 0.7323 & Adjusted R-Square 0.7293

· How did you select the variables of the model?

Based on our analysis in project 1, we chose a initial set of attributes for both democratic and republican votes. Then, using Linear regression, we added and dropped attributes according to the adjusted R square value. We kept the attribute that increased the R-Square and droppedd the one's, that reduced the model's performance

Task 4

Decision Tree

```
In [47]: print(classifier.tree_.__getstate__()['nodes'])
len(classifier.tree_.__getstate__()['nodes'])
```

```
1, 100, 11, -0.08037002, 0.85103407, 896, 896.)
       7, 12, -1.57463121, 0.99675236, 328, 328.)
  2,
           1, 0.13988956, 0.28290479, 61,
  3,
       4,
                        , 0.
 -1,
      -1, -2, -2.
                                        57,
                                             57.)
       6, 11, -2.27329141, 0.81127812,
  5,
                                              4.)
      -1, -2, -2.
 -1,
                   , 0.
                                         1,
                                              1.)
 -1,
      -1, -2, -2.
                         , 0.
                                              3.)
           0, -0.34515437, 0.98895258, 267, 267.)
  8,
      15,
  9,
      10, 11, -0.18558561, 0.30337484, 37, 37.)
                    , 0. ,
 -1,
      -1, -2, -2.
                                        29, 29.)
 11,
      12, 9, -0.91212842, 0.81127812,
                                         8,
                                              8.)
                    , 0.
 -1,
      -1, -2, -2.
                                         5,
                                              5.)
 13,
      14,
           5, 0.40603571, 0.91829583,
                                         3,
                                              3.)
                    , 0.
 -1,
      -1, -2, -2.
                                         2,
                                              2.)
 -1,
      -1, -2, -2.
                         , 0.
                                         1,
                                              1.)
                                     , 230, 230.)
 16,
      17, 1, -1.39712286, 1.
                    , 0.
                                     , 10,
( -1,
      -1, -2, -2.
                                             10.)
(18,
      99, 10, 0.07734165, 0.9985091, 220, 220.)
(19,
      42,
          4, -0.37913467, 0.99998349, 209, 209.)
(20,
      25, 8, -0.14533475, 0.8890349, 62,
                                             62.)
 21,
      24, 7,
              0.36920083, 0.86312057,
                                        14,
                                            14.)
(22,
      23, 2, 0.18771875, 0.65002242,
                                        12,
                                             12.)
      -1, -2, -2.
                     , 0.
 -1,
                                        10,
                                             10.)
                        , 0.
 -1,
      -1, -2, -2.
                                         2,
                                              2.)
(-1,
      -1, -2, -2.
                         , 0.
                                         2,
                                              2.)
 26,
      27, 1, 0.62267354, 0.69621226,
                                        48,
                                            48.)
(-1,
      -1, -2, -2.
                         , 0.
                                        16,
                                             16.)
 28,
      41, 11, -0.1682383 , 0.85714844,
                                        32,
                                             32.)
      40, 6, 0.67939885, 0.73550858,
                                        29,
(29,
                                             29.)
      39, 8, 0.51208383, 0.60518658,
 30,
                                        27,
                                             27.)
 31,
      34, 4, -0.49395105, 0.83664074,
                                        15,
                                             15.)
 32,
      33, 11, -0.27043697, 0.46899559,
                                        10,
                                             10.)
 -1,
      -1, -2, -2.
                   , 0.
                                         9,
                                              9.)
      -1, -2, -2.
                         , 0.
 -1,
                                              1.)
      36, 6, -0.97654212, 0.97095059,
                                         5,
 35,
                                              5.)
( -1,
      -1, -2, -2.
                     , 0.
                                         2,
                                              2.)
      38, 8, 0.11499928, 0.91829583,
 37,
                                         3,
                                              3.)
                     , 0.
 -1,
      -1, -2, -2.
                                         1,
                                              1.)
 -1,
      -1, -2, -2.
                                         2,
                                              2.)
      -1, -2, -2.
 -1,
                                     , 12,
                                             12.)
 -1,
      -1, -2, -2.
                                         2,
                                              2.)
                        , 0.
                                         3,
 -1,
      -1, -2, -2.
                                              3.)
 43,
      92, 3,
              0.05903428, 0.97903461, 147, 147.)
      83, 8, 2.13687468, 0.93925472, 118, 118.)
 44,
      82, 12, -0.01478512, 0.88247445, 103, 103.)
 45,
(46,
      53, 11, -1.47726208, 0.93255384,
                                        89, 89.)
      48, 8, 1.62924671, 0.42622866, 23,
(47,
                                             23.)
                     , 0.
      -1, -2, -2.
                                             17.)
( -1,
                                        17,
      52, 5, 0.71812838, 0.91829583,
(49,
                                         6,
                                              6.)
 50,
      51, 11, -2.57235062, 0.91829583,
                                         3,
                                              3.)
      -1, -2, -2. , 0.
 -1,
                                         1,
                                              1.)
      -1, -2, -2.
                     , 0.
, 0.
                                         2,
 -1,
                                              2.)
      -1, -2, -2.
(-1,
                                         3,
                                              3.)
      57, 10, -1.00663757, 0.98937558,
 54,
                                        66, 66.)
      56, 11, -1.36946547, 0.43949699,
                                            11.)
 55,
                                        11,
(-1,
      -1, -2, -2. , 0.
                                        1,
                                              1.)
                        , 0.
(-1,
      -1, -2, -2.
                                        10,
                                             10.)
```

```
(58,
      69, 0, 0.06232688, 0.99976152,
                                    55.
                                         55.)
      60, 0, -0.26622814, 0.90592822,
 59,
                                    28,
                                         28.)
      -1, -2, -2. , 0. ,
(-1,
                                    3,
                                          3.)
      62, 9, -0.40477926, 0.79504028,
 61,
                                    25,
                                         25.)
      -1, -2, -2. , 0. ,
                                    10,
(-1,
                                         10.)
 63,
      64, 0, -0.21745228, 0.97095059,
                                    15,
                                         15.)
                                     4,
(-1,
      -1, -2, -2. , 0. ,
                                         4.)
      66, 7, -0.58334582, 0.99403021,
(65,
                                    11, 11.)
      -1, -2, -2. , 0.
 -1,
                                          4.)
                                     7,
(67,
      68, 10, -0.69751415, 0.86312057,
                                          7.)
      -1, -2, -2.
                  , 0.
, 0.
(-1,
                                     2,
                                          2.)
                                     5,
(-1,
      -1, -2, -2.
                                          5.)
(70,
      81, 12, -1.04157078, 0.91829583,
                                    27,
                                         27.)
(71,
      80, 6, 0.92913273, 0.99277445,
                                    20,
                                         20.)
(72,
      75, 7, -0.46444936, 0.89603823,
                                    16,
                                         16.)
      74, 10, -0.92671674, 0.50325833,
(73,
                                          9.)
(-1,
     -1, -2, -2. , 0.
                                          1.)
     -1, -2, -2.
(-1,
                                     8,
                                          8.)
                       , 0.
     79, 6, -0.03350545, 0.98522814,
                                     7,
                                          7.)
(76,
(77,
     78, 9, 0.89954698, 0.81127812,
                                     4,
                                          4.)
 -1,
      -1, -2, -2.
                   , 0.
                                     3,
                                          3.)
(-1,
     -1, -2, -2.
                                     1,
                                          1.)
 -1,
     -1, -2, -2.
                                     3,
                                          3.)
(-1,
     -1, -2, -2.
                      , 0.
                                     4,
                                          4.)
                                     7,
(-1,
     -1, -2, -2.
                      , 0.
                                          7.)
                 , 0.
 -1,
     -1, -2, -2.
                                    14,
                                         14.)
(84,
     85, 3, -0.4157771, 0.83664074,
                                    15, 15.)
     -1, -2, -2. , 0. ,
 -1,
                                     7,
                                          7.)
     87, 4, 0.10013912, 1.
(86,
                                     8,
                                          8.)
     -1, -2, -2. , 0.
(-1,
                                     2,
                                          2.)
     89, 4, 0.30861057, 0.91829583,
(88,
                                          6.)
(-1,
     -1, -2, -2.
                 , 0. ,
                                        3.)
     91, 4, 0.71367368, 0.91829583,
 90,
                                     3,
                                          3.)
      -1, -2, -2. , 0. ,
(-1,
                                     2,
                                        2.)
     -1, -2, -2.
 -1,
                                     1,
                                          1.)
(93,
     96, 9, 0.22570178, 0.92936363,
                                    29,
                                         29.)
     95, 8, 3.66894639, 0.54356444,
 94,
                                    16,
                                         16.)
     -1, -2, -2. , 0. ,
                                    14,
 -1,
                                        14.)
                  , 0.
     -1, -2, -2.
(-1,
                                    2,
                                         2.)
 97,
     98, 7, 0.72845934, 0.9612366, 13,
                                         13.)
     -1, -2, -2. , 0.
                                     8,
(-1,
                                          8.)
                     , 0.
(-1, -1, -2, -2.
                                     5,
                                          5.)
     -1, -2, -2.
                       , 0.
                                    11,
                                         11.)
(-1,
(101, 110, 1, -1.93926793, 0.55336838, 568, 568.)
(102, 103, 3, 2.75355005, 0.99613448, 41,
( -1, -1, -2, -2. , 0. ,
                                    13,
                                        13.)
(104, 105, 1, -3.12038493, 0.90592822, 28, 28.)
(-1, -1, -2, -2, , 0, , 7,
                                        7.)
(106, 109, 1, -2.37764275, 0.45371634,
                                    21, 21.)
(107, 108,
         3, 3.70863354, 0.91829583,
                                        6.)
                                   6,
(-1, -1, -2, -2, , 0.
                             , 2,
                                          2.)
     -1, -2, -2.
( -1,
                     , 0.
                                     4,
                                          4.)
(-1, -1, -2, -2.
                      , 0.
                                   15,
                                         15.)
(111, 196, 3, 0.07042832, 0.45868582, 527, 527.)
(112, 193, 5, 1.17786229, 0.53017385, 424, 424.)
(113, 158, 10, -0.27290677, 0.50723272, 418, 418.)
(114, 115, 2, -0.58004016, 0.66366113, 168, 168.)
```

```
(-1, -1, -2, -2, 0.
                                  , 24,
                                          24.)
(116, 141, 6, -0.33900376, 0.72469719, 144, 144.)
(117, 140, 9, 0.75768894, 0.86853396,
                                     69,
(118, 139, 10, -0.29305258, 0.93484902,
                                          57.)
(119, 120, 12, -0.6469022, 0.89865338,
                                      54,
                                          54.)
(-1, -1, -2, -2.
                                      3,
                   , 0.
                                          3.)
(121, 138, 7, 1.93100727, 0.84786175,
                                     51,
                                          51.)
(122, 131, 2, -0.52002695, 0.80309098,
                                     49,
                                          49.)
(123, 124, 1, 0.77033558, 0.56650951,
                                      30,
                                          30.)
(-1, -1, -2, -2,
                  , 0. ,
                                      15,
                                          15.)
(125, 126, 7, 0.24093483, 0.83664074,
                                      15,
                                          15.)
                   , 0. ,
(-1, -1, -2, -2.
                                      2,
                                           2.)
(127, 128, 10, -0.54269454, 0.61938219,
                                     13,
                                          13.)
(-1, -1, -2, -2.
                  , 0.
                                          10.)
                                      10,
(129, 130, 3, -0.59259918, 0.91829583,
                                      3,
                                           3.)
                  , 0.
, 0.
(-1, -1, -2, -2.
                                      1,
                                           1.)
(-1, -1, -2, -2.
                                       2,
                                           2.)
(132, 135, 10, -0.52860704, 0.98194079,
                                     19,
                                         19.)
(133, 134, 0, -0.35401343, 0.54356444,
                                      8,
                                           8.)
(-1, -1, -2, -2.
                  , 0.
                                      1,
                                           1.)
                   , 0.
(-1, -1, -2, -2.
                                           7.)
(136, 137, 5, -1.3264969, 0.43949699, 11,
                                         11.)
                  , 0.
(-1, -1, -2, -2.
                                      1,
                                           1.)
                       , 0.
(-1,
     -1, -2, -2.
                                     10,
                                          10.)
(-1, -1, -2, -2.
                       , 0.
                                      2,
                                           2.)
                      , 0.
(-1, -1, -2, -2,
                                      3,
                                           3.)
(-1, -1, -2, -2.
                       , 0.
                                     12,
                                          12.)
(142, 155, 9, 1.04082423, 0.52936087,
                                      75,
                                          75.)
                                          71.)
(143, 154, 9, -0.2200299, 0.41786426,
                                      71,
(144, 149, 12, -0.17743065, 0.6098403,
                                     40,
                                          40.)
(145, 146, 3, -0.42516482, 1.
                                     8,
                                           8.)
(-1, -1, -2, -2. , 0.
                                      3,
                                           3.)
(147, 148, 9, -1.51887619, 0.72192809,
                                      5,
                                           5.)
(-1, -1, -2, -2, , 0, ,
                                      1,
                                          1.)
(-1, -1, -2, -2.
                                      4,
                                           4.)
(150, 151, 12, 1.07181042, 0.33729007,
                                     32,
                                          32.)
                  , 0.
(-1, -1, -2, -2.
                                      24,
                                          24.)
(152, 153, 6, -0.20031215, 0.81127812,
                                      8,
                                           8.)
(-1, -1, -2, -2, , 0.
                                      2,
(-1,
     -1, -2, -2.
                                      6,
                                           6.)
(-1, -1, -2, -2)
                      , 0.
                                         31.)
                                     31,
(156, 157, 4, -0.40317059, 0.81127812,
                                      4,
                                          4.)
(-1, -1, -2, -2, , 0.
                                      3,
                                           3.)
(-1, -1, -2, -2.
                   , 0.
(159, 170, 4, -0.71062896, 0.37334332, 250, 250.)
(160, 169, 8, -0.68556282, 0.74248757, 38, 38.)
(161, 164, 12, 0.77434984, 0.91829583,
                                      24,
                                         24.)
(162, 163, 8, -0.79894298, 0.81127812,
                                     8,
                                           8.)
                  , 0.
, 0.
(-1, -1, -2, -2.
                                      6,
                                           6.)
(-1, -1, -2, -2.
                                      2,
                                           2.)
(165, 168, 7, -0.18964487, 0.54356444,
                                    16, 16.)
(166, 167, 2, -0.32445248, 0.91829583,
                                    3,
                                           3.)
(-1, -1, -2, -2.
                                      2,
                   , 0.
                                           2.)
                      , 0.
(-1, -1, -2, -2.
                                      1,
                                           1.)
                      , 0.
                                 , 13,
(-1,
     -1, -2, -2.
                                          13.)
( -1, -1, -2, -2.
                       , 0.
                                   , 14,
(171, 180, 11, 0.20588898, 0.27425064, 212, 212.)
```

```
(172, 173, 9, -0.30048504, 0.73550858,
                                        29,
                                             29.)
(-1, -1, -2, -2.
                    , 0.
                                        12,
                                            12.)
(174, 177, 0, -0.24804918, 0.93666738,
                                        17,
                                            17.)
(175, 176, 12, 1.22702581, 0.86312057,
                                        7,
                                             7.)
                       , 0.
                                         5,
(-1, -1, -2, -2.
                                             5.)
(-1, -1, -2, -2.
                                         2,
                                             2.)
(178, 179, 11, -0.00373855, 0.46899559,
                                       10,
                                            10.)
                        , 0.
(-1, -1, -2, -2.
                                         1,
                                             1.)
                         , 0.
     -1, -2, -2.
(-1,
                                         9,
                                             9.)
(181, 192, 5, -0.15476202, 0.15174889, 183, 183.)
(182, 183, 8, -1.90594471, 0.32275696,
                                        68,
                                            68.)
(-1, -1, -2, -2.
                     , 0.
                                         1,
                                             1.)
(184, 191, 11, 0.63255814, 0.26377744,
                                        67,
                                            67.)
(185, 190, 11, 0.58593363, 0.65002242,
                                        18,
                                            18.)
(186, 187, 0, -0.12371872, 0.33729007,
                                        16,
                                            16.)
(-1, -1, -2, -2.
                                        14,
                                            14.)
(188, 189, 4, -0.45904274, 1.
                                         2,
                                             2.)
(-1, -1, -2, -2.
                         , 0.
                                             1.)
                                         1,
                         , 0.
(-1,
     -1, -2, -2.
                                         1,
                                             1.)
(-1, -1, -2, -2.
                         , 0.
                                         2,
                                             2.)
                         , 0.
 -1,
      -1, -2, -2.
                                       49,
                                            49.)
                                     , 115, 115.)
(-1, -1, -2, -2.
                         , 0.
(194, 195, 0, -0.34596957, 0.91829583,
                                             6.)
                                         6,
                     , 0.
(-1, -1, -2, -2.
                                         2,
                                             2.)
(-1, -1, -2, -2.
                        , 0.
                                         4,
                                             4.)
(-1, -1, -2, -2.
                       , 0.
                                     , 103, 103.)]
```

Out[47]: 197

```
In [48]: y_pred = classifier.predict(x_val_scaled)
```

```
In [49]: conf_matrix = metrics.confusion_matrix(Y_val['Party'], y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [50]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
    print([accuracy, error, precision, recall])
[0.7591973244147158, 0.24080267558528423, 0.5308641975308642, 0.5584415584415]
```

Naive Bayes Classifier

In [52]:

584]

y pred = classifier.predict(x val scaled)

```
In [53]: conf_matrix = metrics.confusion_matrix(Y_val['Party'], y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [54]: | accuracy = metrics.accuracy score(Y val['Party'], y pred)
         error = 1 - accuracy
         precision = metrics.precision score(Y val['Party'], y pred)
         recall = metrics.recall_score(Y_val['Party'], y_pred)
         F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
         print([accuracy, error, precision, recall, F1 score])
         [0.7959866220735786, 0.20401337792642138, 0.6142857142857143, 0.5584415584415
         584, 0.7927124130729645]
In [55]:
                 ------Naive Bayes Classifier using different attributes -
         classifier = GaussianNB()
         classifier.fit(x_train_scaled[:,[0,1,2,3,4,6,7,9,11,12]],Y_train['Party'])
Out[55]: GaussianNB(priors=None, var_smoothing=1e-09)
In [56]: | y_pred = classifier.predict(x_val_scaled[:,[0,1,2,3,4,6,7,9,11,12]])
In [57]: conf matrix = metrics.confusion matrix(Y val['Party'], y pred)
         sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
         cm.Blues)
         plt.ylabel('Actual')
         plt.xlabel('Predicted')
         plt.title('Confusion matrix')
         plt.tight layout()
                      Confusion matrix
                                                 180
                   196,000
                                   26.000
            0
                                                 - 150
                                                 - 120
                                                 - 90
                    31.000
                                   46.000
                                                 - 60
                                                - 30
```

```
In [58]:
        accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
         error = 1 - accuracy
         precision = metrics.precision_score(Y_val['Party'], y_pred,average=None)
         recall = metrics.recall_score(Y_val['Party'], y_pred,average=None)
         F1 score = metrics.f1 score(Y val['Party'], y pred,average='weighted')
         print([accuracy, error, precision, recall, F1 score])
```

1

[0.8093645484949833, 0.1906354515050167, array([0.86343612, 0.63888889]), arr ay([0.88288288, 0.5974026]), 0.8072274117013812]

0

Predicted

Considering our initial analysis in project 1

Attributes 'White population', 'Less than Bachelor's degree','Age 65 and over' favored Republican

Attributes 'Black population', 'Foreign Born', 'Age under 29' favored Democrats

Attributes 'Median Household income', 'Unemployment', 'Hispanic or Latino', 'Percent Rural' do not favor any party

So choosing these attributes to classify the labels with higher accuracy and f1 score

Naive Bayes with multiple attributes

Accuracy = 80.936 F1 Score = 0.617

SVM Classifier

```
In [61]: conf_matrix = metrics.confusion_matrix(Y_val['Party'], y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [62]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
    print([accuracy, error, precision, recall, F1_score])
```

[0.8561872909698997, 0.14381270903010035, 0.8695652173913043, 0.5194805194805194, 0.8427573869824246]

```
In [64]: y_pred = classifier.predict(x_val_scaled[:,[0,2,3,4,5,6,7,8,9,10,11,12]])
```

```
In [65]: conf_matrix = metrics.confusion_matrix(Y_val['Party'], y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [66]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='micro')
    print([accuracy, error, precision, recall, F1_score])
```

```
In [67]: #------SVM using multiple attributes using RBF-----
classifier = SVC(kernel = 'rbf')
classifier.fit(x_train_scaled[:,[0,2,3,4,5,6,7,8,9,10,11,12]],Y_train['Party'
])
```

```
In [68]: y_pred = classifier.predict(x_val_scaled[:,[0,2,3,4,5,6,7,8,9,10,11,12]])
```



```
In [70]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
    print([accuracy, error, precision, recall, F1_score])
```

[0.8561872909698997, 0.14381270903010035, 0.854166666666666, 0.5324675324675 324, 0.8439136515658254]

K Nearest Neighbours

```
In [73]: conf_matrix = metrics.confusion_matrix(Y_val['Party'], y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [74]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
    print([accuracy, error, precision, recall, F1_score])
```

[0.7959866220735786, 0.20401337792642138, 0.666666666666666, 0.4155844155844 156, 0.7785751801282641]

```
In [75]: #K-Nearest Neighbours using multiple variables and 5
classifier = KNeighborsClassifier(n_neighbors = 5)
classifier.fit(x_train_scaled[:,[0,1,6,11]],Y_train['Party'])
```

```
In [76]: y_pred = classifier.predict(x_val_scaled[:,[0,1,6,11]])
```



```
In [78]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
    print([accuracy, error, precision, recall, F1_score])
```

[0.842809364548495, 0.15719063545150502, 0.7678571428571429, 0.5584415584415584, 0.8339490435009738]

```
In [79]: #K-Nearest Neighbours using multiple variables and n=5
classifier = KNeighborsClassifier(n_neighbors = 5)
classifier.fit(x_train_scaled[:,[0,1,4,6,11]],Y_train['Party'])
```

```
In [80]: y_pred = classifier.predict(x_val_scaled[:,[0,1,4,6,11]])
```



```
In [82]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
    print([accuracy, error, precision, recall, F1_score])
```

[0.8461538461538461, 0.15384615384615385, 0.803921568627451, 0.53246753246753 24, 0.8347841653027823]

```
In [83]: #K-Nearest Neighbours using multiple variables and n=3
    classifier = KNeighborsClassifier(n_neighbors = 3)
    classifier.fit(x_train_scaled[:,[1,4,6,11]],Y_train['Party'])
```

```
In [84]: y_pred = classifier.predict(x_val_scaled[:,[1,4,6,11]])
```

```
In [85]: conf_matrix = metrics.confusion_matrix(Y_val['Party'], y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [86]: accuracy = metrics.accuracy_score(Y_val['Party'], y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(Y_val['Party'], y_pred)
    recall = metrics.recall_score(Y_val['Party'], y_pred)
    F1_score = metrics.f1_score(Y_val['Party'], y_pred,average='weighted')
    print([accuracy, error, precision, recall, F1_score])
```

[0.8394648829431438, 0.1605351170568562, 0.7230769230769231, 0.61038961038961 04, 0.8347940131547956]

Considering our initial analysis in project 1

Attributes 'White population', 'Less than Bachelor's degree','Age 65 and over' favored Republican

Attributes 'Black population', 'Foreign Born', 'Age under 29' favored Democrats

Attributes 'Median Household income', 'Unemployment', 'Hispanic or Latino', 'Percent Rural' do not favor any party

So choosing these attributes to classify the labels with higher accuracy and f1 score

Classifier- SVM with parameters 'rbf'

Attributes- All except 'Percent white population' since it heavily favors Democrats

-What is the best performing classification model?

SVM with Kernel -RBF and attributes- All except 'Percent white population' since it heavily favors Democrats

-What is the performance of the model?

Accuracy -0.8562 F1 Score -0.8439

-How did you select the parameters of the model?

We chose the parameters by considering the ones that increase the accuracy and f1 score on a selectedd set of attributes

-How did you select the variables of the model? Considering our initial analysis in project 1

Attributes 'White population', 'Less than Bachelor's degree','Age 65 and over' favored Republican

Attributes 'Black population', 'Foreign Born', 'Age under 29' favored Democrats

Attributes 'Median Household income', 'Unemployment', 'Hispanic or Latino', 'Percent Rural' do not favor any party

So choosing these attributes to classify the labels with higher accuracy and f1 score And selecting other attributes that increase the accuracy and f1 score

```
In [90]: cont_matrix = metrics.cluster.contingency_matrix(Y,clusters)
    sns.heatmap(cont_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Contingency matrix')
    plt.tight_layout()
```


[0.005608925119335567, 0.730755188271051]

```
In [93]: clustering = linkage(X_scaled[:,[0,1,2,3,4,9,10,11,12]], method="complete", me
    tric="euclidean")
    clusters = fcluster(clustering, 2, criterion="maxclust")
```


[0.03369805816713174, 0.6273018740347583]

```
In [97]: #-----Kmeans-----
```

```
In [99]: cont_matrix = metrics.cluster.contingency_matrix(Y,clusters)
    sns.heatmap(cont_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.
    cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Contingency matrix')
    plt.tight_layout()
```



```
In [100]: adjusted_rand_index = metrics.adjusted_rand_score(Y, clusters)
    silhouette_coefficient = metrics.silhouette_score(X_scaled, clusters, metric =
    "euclidean")
    print([adjusted_rand_index, silhouette_coefficient])
```

[0.19751656022671712, 0.30700290833697047]

```
In [101]: # Plot clusters found using K-Means clustering
    #df['clusters'] = clusters
    #ax=df.plot(kind="scatter", x="Party", y="Total Population", c="clusters", col
    ormap=plt.cm.brg)
```

```
In [102]: clustering = DBSCAN(eps = 1, min_samples = 6, metric = "euclidean").fit(X_scal
ed)
clusters = clustering.labels_
```


[-0.01636849483422864, 0.05066332497562545]

Task 6

```
In [106]: x_train_scaled6=df.iloc[:,3:16]
y_train=df.iloc[:,-1]
```

```
In [107]: x_train_scaled6.head()
```

Dorcont

Out[107]:

In [108]:

y_train.head()

		Total Population	Percent White, not Hispanic or Latino	Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Percent Age 29 and Under	Percent Age 65 and Older	M Hous In
-	0	72346	18.571863	0.486551	5.947806	1.719515	50.598513	45.854643	13.322091	;
	1	128177	56.299492	3.714395	34.403208	11.458374	49.069646	37.902276	19.756275	
	2	138064	54.619597	1.342855	13.711033	4.825298	50.581614	48.946141	10.873943	
	3	53179	63.222325	0.552850	18.548675	4.249798	50.296170	32.238290	26.397638	
	4	37529	51.461536	1.811932	32.097844	4.385942	46.313518	46.393456	12.315809	4

```
Out[108]: 0
               1
          1
               0
               1
          2
               0
          Name: Party, dtype: int64
In [109]:
          #Scaling numerical variables
          # Standardize test data
          scaler = StandardScaler()
          scaler.fit(x_train_scaled6)
          x train scaled6 = scaler.transform(x train scaled6)
In [110]:
                   -----SVM using mltiple attributes-----
          classifier = SVC(kernel = 'rbf')
          classifier.fit(x_train_scaled6[:,[0,2,3,4,5,6,7,8,9,10,11,12]],y_train)
Out[110]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
              decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
              kernel='rbf', max_iter=-1, probability=False, random_state=None,
              shrinking=True, tol=0.001, verbose=False)
In [111]: y_pred = classifier.predict(x_train_scaled6[:,[0,2,3,4,5,6,7,8,9,10,11,12]])
```



```
In [113]: accuracy = metrics.accuracy_score(y_train, y_pred)
    error = 1 - accuracy
    precision = metrics.precision_score(y_train, y_pred)
    recall = metrics.recall_score(y_train, y_pred)
    F1_score = metrics.f1_score(y_train, y_pred,average='weighted')
    print([accuracy, error, precision, recall, F1_score])
```

[0.8610878661087866, 0.13891213389121337, 0.8663594470046083, 0.5784615384615 385, 0.8513070326051845]

```
In [114]:
          fips = df['FIPS'].tolist()
          values=y_pred.tolist()
          colorscale = [
               'rgb(255,0,0)',
               'rgb(0,0,255)'
          fig=ff.create choropleth(
                                    fips=fips,colorscale = colorscale,values=values,scope
          =['USA','HI'],
                                    county_outline={'color':'white','width':0.2}
                                   )
          fig.layout['title'] = 'Party WINS by County'
          fig.layout.template='plotly_dark'
          fig.show()
          #The next following line of code is only for rendering purposes
           #fig.write image("images/fig1.pdf")
```

C:\Users\ubemi\Anaconda3\lib\site-packages\pandas\core\frame.py:6692: FutureW
arning:

Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

Party WINS by County


```
In [115]: #For Original dataset
          fips = df['FIPS']
          values=df['Party']
          colorscale = [
               'rgb(255,0,0)',
               'rgb(0,0,255)'
          1
          fig=ff.create_choropleth(
                                    fips=fips,colorscale = colorscale,values=values,scope
          =['USA','HI'],
                                       county_outline={'color':'white','width':0.2}
          fig.layout['title'] = 'Party WINS by County'
          fig.layout.template= 'plotly_dark'
          fig.show()
          #The next folowing line of code is only for rendering purposes
          #fig.write_image("images/fig1.pdf")
```

Party WINS by County

Classifying the Test set using the chosen model with parameters and attributes

```
In [116]: import pandas as pd
    data = pd.read_csv("demographics_test.csv")
    data.head()
```

Out[116]:

	State	County	FIPS	Total Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	P
0	NV	eureka	32011	1730	98.265896	0.057803	0.462428	0.346821	51.156069	27.1
1	TX	zavala	48507	12107	5.798299	0.594697	93.326175	9.193029	49.723301	49.3
2	VA	king george	51099	25260	73.804434	16.722090	4.441805	2.505938	50.166271	40.1
3	ОН	hamilton	39061	805965	66.354867	25.654340	2.890944	5.086945	51.870615	40.7
4	TX	austin	48015	29107	63.809393	8.479060	25.502456	9.946061	50.671660	37.3

```
In [117]: data.shape
```

Out[117]: (400, 16)

```
In [118]: x_test_scaled=data.iloc[:,3:]
```

```
In [119]: x_test_scaled.head()
```

Out[119]:

	Total Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Percent Age 29 and Under	Percent Age 65 and Older	M Hous In
0	1730	98.265896	0.057803	0.462428	0.346821	51.156069	27.109827	15.606936	
1	12107	5.798299	0.594697	93.326175	9.193029	49.723301	49.302057	12.480383	
2	25260	73.804434	16.722090	4.441805	2.505938	50.166271	40.186065	11.868567	
3	805965	66.354867	25.654340	2.890944	5.086945	51.870615	40.779686	14.161657	
4	29107	63.809393	8.479060	25.502456	9.946061	50.671660	37.351840	17.799842	

```
In [120]: #Scaling numerical variables
    # Standardize test data
    scaler = StandardScaler()
    scaler.fit(X_train)
    x_train_scaled = scaler.transform(X_train)
    x_test_scaled = scaler.transform(x_test_scaled)
    x_test_scaled.shape
```

Out[120]: (400, 13)

```
In [121]:
          #Merging scaled and other value
          x test merge=np.concatenate([np.array(data.iloc[:,0:3]),x test scaled],axis=1)
In [122]: x_test_merge.shape
Out[122]: (400, 16)
In [123]:
          #Predicting Democratic votes using selected attributes
          model = linear model.LinearRegression()
          fitted_model = model.fit(X = x_train_scaled[:,[0, 11, 9, 2]],y=Y_train.iloc[:,
          01)
          print(fitted model.coef )
           predicted_demo = fitted_model.predict(X=x_test_scaled[:,[0, 11, 9, 2]])
          [70484.68208406 -9860.1194576
                                           1648.91035669 1392.98545067]
In [124]: predicted demo.shape
Out[124]: (400,)
In [125]: | predicted_demo[0:50]
Out[125]: array([ -6024.19745779,
                                    -6969.50285341,
                                                     22049.55580997, 183916.24158932,
                                     9702.31461902,
                                                     13947.69864219,
                                                                      34278.96273618,
                   6705.1164912 ,
                 100413.7281802 ,
                                    28674.05187982, -11253.02270416,
                                                                      -5347.44993859,
                   -3446.95628052,
                                    20649.49585335, 146790.7196577,
                                                                      -4606.35407089,
                   4227.32667003,
                                    71177.07659226,
                                                     39776.44738931,
                                                                        6111.817256
                   -2410.20884863,
                                    -6610.79983302,
                                                     -5723.3989571 ,
                                                                       1951.03312637,
                                                      7135.30796894,
                    -891.76941812,
                                    -3664.79926432,
                                                                      50165.9284927 ,
                   5876.69864661,
                                    29797.24296704,
                                                     88406.35340686,
                                                                      12270.97372962,
                                    -3272.82222137,
                  66583.31453208,
                                                      2887.8473437 ,
                                                                       9785.19752946,
                   8212.57663177,
                                     2396.64880875,
                                                      4472.53810407,
                                                                      -2604.53721651,
                  15165.97887305,
                                    20390.0093405 ,
                                                     46656.4432557 ,
                                                                      37986.49126741,
                   -4857.76849921, 120051.66116874,
                                                     -8331.0472549 ,
                                                                       -4137.50193053,
                  27744.11477966,
                                    14226.33789101])
In [126]:
          result demo=np.concatenate([x test merge[:,0:2],predicted demo[:,None]],axis=1
          result_demo1=np.concatenate([x_test_merge[:,0:3],predicted_demo[:,None]],axis=
          1)
In [127]: | result_demo[0:10]
Out[127]: array([['NV', 'eureka', -6024.197457785998],
                  ['TX', 'zavala', -6969.502853408365],
                  ['VA', 'king george', 22049.555809972666],
                       , 'hamilton', 183916.24158932114],
                  ['OH',
                 ['TX', 'austin', 6705.1164911999185],
                 ['MI', 'barry', 9702.314619023346],
                  ['NM', 'valencia', 13947.698642187906],
                 ['TX', 'ellis', 34278.96273617705],
                       'mercer', 100413.72818020337],
                  ['NJ',
                  ['PA', 'cambria', 28674.05187982477]], dtype=object)
```

```
In [128]:
          #Predicting Republican votes using selected attributes
          model = linear model.LinearRegression()
          fitted_model = model.fit(X = x_train_scaled[:,[0,1,3,4,7,8,9,10,11,12]],y=Y_tr
          ain.iloc[:,1])
          print(fitted model.coef )
          predicted_rep = fitted_model.predict(X=x_test_scaled[:,[0,1,3,4,7,8,9,10,11,12
          11)
          [45220.29033736 5065.79031785
                                           3840.00607902 -5872.48026158
            2839.30463983
                           6066.05645897
                                           2063.52147931 2586.73805496
           -2432.72004918 -5176.17669614]
In [129]:
          predicted rep.shape
Out[129]: (400,)
In [130]: predicted rep[0:50]
Out[130]: array([ 8448.1371131 ,
                                     4049.96280682,
                                                     19807.21462961, 114298.5293142,
                   6386.57639088,
                                    14633.71966504,
                                                     17024.35221377,
                                                                      29730.06181932,
                  55620.65955875,
                                    28811.48695693,
                                                      -537.17941533,
                                                                      13890.97176422,
                   6510.78435913,
                                     4635.54292584,
                                                     98752.76986795,
                                                                       3427.20111128,
                   2255.83320775,
                                    62426.94677451,
                                                     35551.94834098,
                                                                      16331.98393355,
                   4962.67008321,
                                    -9272.37385646,
                                                     -3130.04361176,
                                                                       5891.94681573,
                   7839.25142585,
                                    7293.13354901,
                                                     10765.87948668,
                                                                      36570.61900946,
                   1590.84514293,
                                    25271.53746993,
                                                     59375.56752416,
                                                                      -1174.14000816,
                  42806.99337793,
                                      930.76625423,
                                                      7056.81273428,
                                                                      16351.59219585,
                  11264.75821966,
                                     8939.45281196,
                                                      7114.71408548,
                                                                       6124.06342319,
                  10763.11165727,
                                    15779.1448899 ,
                                                     37157.25556503,
                                                                      22357.32611469,
                                                      2816.01904595, -13088.03253914,
                  -6993.00830573,
                                    84845.64134817,
                                     9188.98431561])
                  24898.27443261,
In [131]:
          result votes=np.concatenate([result demo,predicted rep[:,None]],axis=1)
           result votes1=np.concatenate([result demo1,predicted rep[:,None]],axis=1)
In [132]: result votes[0:10]
Out[132]: array([['NV', 'eureka', -6024.197457785998, 8448.13711310336],
                  ['TX', 'zavala', -6969.502853408365, 4049.962806815296],
                  ['VA', 'king george', 22049.555809972666, 19807.21462960806],
                  ['OH', 'hamilton', 183916.24158932114, 114298.52931419964],
                  ['TX', 'austin', 6705.1164911999185, 6386.576390883141],
                  ['MI', 'barry', 9702.314619023346, 14633.719665042463],
                  ['NM', 'valencia', 13947.698642187906, 17024.35221377254],
                 ['TX', 'ellis', 34278.96273617705, 29730.061819320897],
                       , 'mercer', 100413.72818020337, 55620.659558749976],
                  ['PA', 'cambria', 28674.05187982477, 28811.48695692587]],
                dtype=object)
```

Using SVM to predict the Party label with selected attributes and parameters

```
In [137]: FinalResult[0:50]
```

```
Out[137]: array([['NV', 'eureka', -6024.197457785998, 8448.13711310336, 0],
                  ['TX', 'zavala', -6969.502853408365, 4049.962806815296, 1],
                 ['VA', 'king george', 22049.555809972666, 19807.21462960806, 0],
                  ['OH', 'hamilton', 183916.24158932114, 114298.52931419964, 1],
                  ['TX', 'austin', 6705.1164911999185, 6386.576390883141, 0],
                  ['MI', 'barry', 9702.314619023346, 14633.719665042463, 0],
                  ['NM', 'valencia', 13947.698642187906, 17024.35221377254, 0],
                 ['TX', 'ellis', 34278.96273617705, 29730.061819320897, 0],
                       , 'mercer', 100413.72818020337, 55620.659558749976, 1],
                  ['PA', 'cambria', 28674.05187982477, 28811.48695692587, 0],
                         'switzerland', -11253.022704164916, -537.179415334198, 0],
                  ['IN'.
                  ['NV', 'lander', -5347.449938586022, 13890.97176421507, 0],
                 ['NE', 'cherry', -3446.9562805248133, 6510.7843591255805, 0],
                        'radford city', 20649.49585335145, 4635.542925836518, 1],
                  ['FL', 'lee', 146790.71965769678, 98752.76986794514, 0],
                         'arenac', -4606.354070889967, 3427.2011112836262, 0],
                  ['TX', 'shackelford', 4227.326670028375, 2255.833207747317, 0],
                 ['NJ', 'gloucester', 71177.07659225757, 62426.946774506796, 0],
                        'trumbull', 39776.447389311674, 35551.94834097943, 0],
                  ['OH',
                 ['OH',
                        'lawrence', 6111.8172560003295, 16331.983933554318, 0],
                       , 'burke', -2410.2088486253742, 4962.67008321255, 0],
                  ['ND'
                  ['TX', 'hardeman', -6610.799833020032, -9272.373856460184, 0],
                 ['NE', 'keya paha', -5723.398957104731, -3130.043611760877, 0],
                  ['VA', 'norton city', 1951.033126371036, 5891.946815732452, 1],
                  ['ND', 'bowman', -891.7694181218612, 7839.251425850991, 0],
                  ['UT',
                        'duchesne', -3664.7992643152866, 7293.133549005066, 0],
                  ['MN', 'carlton', 7135.307968940106, 10765.879486679254, 0],
                  ['FL', 'okaloosa', 50165.92849270195, 36570.619009456495, 1],
                  ['TX', 'oldham', 5876.698646612975, 1590.8451429272645, 0],
                  ['MT', 'lewis and clark', 29797.24296703842, 25271.537469930496,
                  0],
                 ['NY', 'rockland', 88406.3534068598, 59375.567524162645, 1],
                  ['TX', 'waller', 12270.973729624407, -1174.1400081634565, 0],
                 ['VA', 'falls church city', 66583.31453208286, 42806.99337793428,
                  ['PA', 'potter', -3272.822221371145, 930.7662542251637, 0],
                 ['MI', 'gratiot', 2887.8473437005123, 7056.8127342763655, 0],
                        'shiawassee', 9785.197529456611, 16351.592195850704, 0],
                  ['MN', 'polk', 8212.576631771899, 11264.758219664274, 0],
                         'billings', 2396.648808748123, 8939.452811962861, 0],
                  ['ND'
                  ['ND', 'mckenzie', 4472.538104065949, 7114.714085481639, 0],
                  ['WY', 'weston', -2604.5372165075823, 6124.06342318819, 0],
                        'jefferson', 15165.97887305365, 10763.111657272366, 0],
                  ['VT', 'bennington', 20390.009340504996, 15779.144889896157, 0],
                  ['FL'
                         'clay', 46656.443255695434, 37157.25556503171, 1],
                  ['AZ', 'yuma', 37986.49126741439, 22357.32611469449, 1],
                 ['TX', 'terrell', -4857.76849921095, -6993.008305726038, 0],
                  ['MA', 'bristol', 120051.6611687351, 84845.64134817488, 1],
                 ['WV', 'webster', -8331.047254895453, 2816.0190459522346, 0],
                  ['TX', 'collingsworth', -4137.501930530125, -13088.032539137017,
                  0],
                       , 'chautauqua', 27744.11477965668, 24898.274432609353, 0],
                  ['TN', 'fayette', 14226.337891005938, 9188.98431561122, 0]],
                dtype=object)
```

```
In [140]: Final['Democratic Votes'] = np.where(Final['Democratic Votes'] < 0, 0, Final[
    'Democratic Votes'])
Final['Republican Votes'] = np.where(Final['Republican Votes'] < 0, 0, Final[
    'Republican Votes'])</pre>
```

In [141]: Final.head()

Out[141]:

	State	County	Democratic Votes	Republican Votes	Party
0	NV	eureka	0	8448.14	0
1	TX	zavala	0	4049.96	1
2	VA	king george	22049.6	19807.2	0
3	ОН	hamilton	183916	114299	1
4	TX	austin	6705.12	6386.58	0

```
In [142]: Final.to_csv("output.csv",index=False)
```

```
In [143]:
         fips = Final1['FIPS']
         values=Final1['Party']
         colorscale = [
             'rgb(255,0,0)',
            'rgb(0,0,255)'
         ]
         fig=ff.create_choropleth(
                               fips=fips,colorscale = colorscale,values=values,scope
         =['USA','HI'],
                               county_outline={'color':'white','width':0.2})
         fig.layout['title'] = 'Party WINS by County'
         fig.layout.template= 'plotly_dark'
         fig.show()
         #The next folowing line of code is only for rendering purposes
         #fig.write_image("images/fig1.pdf")
```

C:\Users\ubemi\Anaconda3\lib\site-packages\pandas\core\frame.py:6692: FutureW
arning:

Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

Party WINS by County

