Department of Computer Science & Engineering, NITK, Surathkal Course Plan

CS250 - Computer Organization and Architecture

Course Objectives

- 1. Define the fundamental concepts in Architecture and Organization.
- 2. Introduce an Instruction Set Architecture and related concepts of a modern day computing device.
- 3. Provide a systematic treatment of the components in a modern Arithmetic Logic Unit, Processor Datapath, and Processor Control Unit.
- 4. Illustrate the various levels of the memory hierarchy and explain the concepts and the design of caches in detail.
- 5. Build a working system containing the fundamental units to execute simple programs

Course (Learning) Outcomes (COs)

- CO1 Outline the fundamental operations of a modern day computing device throught its Instruction Set Architecture.
- CO2 Explain the design and working of the different components in the ALU, Datapath and Control unit of a modern day computing device.
- CO3 Assess the use of various levels in the memory hierarchy of a modern day computing device.
- CO4 Design an ALU, Datapath and a Control unit for a modern day computing device in HDL.
- CO5 Design a full system for a modern day ISA and demonstrate working programs on it.

Table: CO200 – Course Coverage

Module – Title		Content
M1	Introduction to COA	Computer system and its submodules. Architecture vs. Organization. Frequency, Processor performance and power.
	PH-RV: Sections. 1.3-1.4, 1.6-1.7, Section A.7, Section 4.2, Sections 2.1 – 2.4.	
M2	Instruction Set Architecture	Addressing modes. Instruction classes. RISC-V ISA, MIPS and POWERPC LE ISA. Stages in compiling high level language programs. Structure of the object code. Procedure calls. Translating and starting a program. Assembly programming.
	PH-RV: Sections 2.5 – 2.10, 2.12, 2.18. PH-M: Sections 2.5 – 2.10, 2.12, 2.18. uPOWER ISA will be given in class.	
М3	Processor Datapath	Register File, Instruction memory, Data memory. A RISC-V datapath implementation. Datapath design using a HDL.
	PH-RV: Sections 4.1 – 4.4. Section A.8. PH-M: Sections 4.1 – 4.4. Section A.8.	
M4	Processor Control Unit	Instruction interpretation and execution. Combinatinal control, FSM Control, Microprogrammed control. Control Unit design using HDL.
	PH-RV: Appendix C. Section 4.4. PH-M: Appendix D. Section 4.4.	
M5	Memory Hierarchy	CPU – Memory interaction, organization of memory modules. Cache memory – Mapping and replacement policies.
	PH-RV: Sections 5.1 – 5.4.	
M6	I/O Subsystem	External Devices, I/O Modules, Programmed I/O, Interrupt-Driven I/O, Direct Memory Access, , I/O Channels and Processors, The External Interface: Thunderbolt and Infiniband.
	WS: Chapter 7	

Reference Texts

- 1. [PH-RV] David A Patterson and John L Hennessy. Computer Organization and Design The Hardware/Software Interface. Elsevier, 2017, RISC-V edition).
- 2. [PH-M] David A Patterson and John L Hennessy. Computer Organization and Design The Hardware/Software Interface. Elsevier, 2014, MIPS edition).
- 3. [WS] William Stallings, Computer organization and architecture Designing for performance, 10th Ed. Pearson Ed. 2016.
- 4. [SRS] Smruti Ranjan Sarangi, Computer Organization & Architecture, McGraw Hill, 2014.
- 5. Noam Nisan and Shimon Schocken, The Elements of Computing Systems: Building a modern computer from first principles. MIT Press, 2005.
- 6. David M. Harris and Sarah L. Harris, Digital Design and Computer Architecture. 2e. Elsevier. 2013.

Related NPTEL Courses (http://www.nptel.ac.in):

- Matthew Jacob High Performance Computing, IISc.
- Bhaskaran Raman Computer Organisation and Architecture, IITB.
- V Kamakoti, Foundations of Computer Systems Design, IITM.

Course Evaluation (Tentative): Tutorials and Assignments – 30%, Quizzes – 10%, Midterm – 20%, Endsem – 40%.