Professor: Fred Khoury

1. Find the first four terms and the seventh term of the sequence:

a)
$$\left\{ \frac{2^n}{(n+1)(n+2)(n+3)} \right\}$$

b)
$$\left\{ \left(-1\right)^{n+1} - \left(0.1\right)^n \right\}$$

2. Find the specified term of the arithmetic sequence that has two given terms:

a)
$$a_{11}$$
: $a_1 = 2 + \sqrt{2}$, $a_2 = 3$

b)
$$a_{15}$$
; $a_3 = 7$, $a_{20} = 43$

3. Express the sum in terms of summation notation:

a)
$$4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$$

b)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{99 \cdot 100}$$

c)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7}$$

d)
$$1+x+\frac{x^2}{2}+\frac{x^3}{3}+\cdots+\frac{x^n}{n}$$

e)
$$1 - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^6}{6} + \dots + (-1)^n \frac{x^{2n}}{2n}$$

4. Find the *n*th term, and the tenth term of the sequence:

a)
$$\log 1000$$
, $\log 100$, $\log 10$, $\log 1$, \cdots

b)
$$x-8, x-3, x+2, x+7, \cdots$$

c)
$$1, -\frac{x}{3}, \frac{x^2}{9}, -\frac{x^3}{27}, \dots$$

d) 2,
$$2^{x+1}$$
, 2^{2x+1} , 2^{3x+1} , ...

5. Evaluate:

$$a) \sum_{k=2}^{6} \frac{2k-8}{k-1}$$

b)
$$\sum_{k=1}^{4} (2^k - 10)$$

c)
$$\sum_{k=1}^{7} (3^{-k})$$

6. Find the sum of the infinite geometric series if it exists:

a)
$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots$$

b)
$$1 - 0.1 + 0.01 - 0.001 + \cdots$$

$$c)$$
 250 – 100 + 40 – 16

7. Find the center and the radius of

a)
$$x^2 + y^2 + 6x + 8y + 9 = 0$$

$$c) \quad x^2 + y^2 - 4x + 12y = -4$$

b)
$$x^2 + y^2 + 8x - 6y + 16 = 0$$

d)
$$4x^2 + 4y^2 + 4x - 16y - 19 = 0$$

8. Find the vertex, focus, and directrix of the parabola.

$$a) \quad y^2 = -16x$$

c)
$$(x+2)^2 = \frac{1}{2}(y+3)$$

b)
$$x^2 = \frac{1}{9}y$$

d)
$$(y-2)^2 = -8(x+1)$$

9. Find an equation of a parabola that satisfies the given conditions

a)
$$Vertex: V(0, 1)$$
 focus: $F(0, 2)$

b) Focus:
$$F(1, 1)$$
 directrix: $x = -1$

c)
$$Vertex: V(1, 1)$$
 $directrix: y = 4$

Find the vertices, minors and foci of the ellipse, and then sketch the graph of **10.**

a)
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

$$b) 9x^2 + 6y^2 = 54$$

b)
$$9x^2 + 6y^2 = 54$$
 c) $\frac{25y^2}{36} + \frac{64x^2}{9} = 1$

$$d) 9x^2 + 4y^2 + 18x - 8y - 23 = 0$$

e)
$$\frac{(x-3)^2}{25} + \frac{(y+2)^2}{16} = 1$$

Find the vertices, the endpoints, the foci, and the equations of the asymptotes of the hyperbola. 11. Sketch its graph, showing the asymptotes.

a)
$$49x^2 - 36y^2 = 1764$$

$$d) \quad 4x^2 + 16x - 9y^2 + 18y = 29$$

b)
$$\frac{4x^2}{9} - \frac{25y^2}{16} = 1$$

e)
$$16(x+5)^2 - (y-3)^2 = 1$$

c)
$$25y^2 - 9x^2 = 1$$

12. Find the partial fraction decomposition

a)
$$\frac{x+34}{x^2-4x-12}$$

$$b) \quad \frac{4x^2 - 5x - 15}{x^3 - 4x^2 - 5x}$$

b)
$$\frac{4x^2 - 5x - 15}{x^3 - 4x^2 - 5x}$$
 c) $\frac{2x^2 + x}{(x-1)^2(x+1)^2}$

$$d) \quad \frac{x^2 + 19x + 20}{x(x+2)(x-5)}$$

e)
$$\frac{4x^3 + 3x^2 + 5x - 2}{x^3(x+2)}$$

d)
$$\frac{x^2 + 19x + 20}{x(x+2)(x-5)}$$
 e) $\frac{4x^3 + 3x^2 + 5x - 2}{x^3(x+2)}$ f) $\frac{x^5 - 5x^4 + 7x^3 - x^2 - 4x + 12}{x^3 - 3x^2}$

$$g) \quad \frac{2x}{\left(x-1\right)^3}$$

h)
$$\frac{x^2 + 3x - 1}{(x+1)(x^2 + 2)}$$
 i) $\frac{2x}{(x-1)(x^2 + 1)^2}$

2

$$i) \quad \frac{2x}{(x-1)(x^2+1)^2}$$

j)
$$\frac{4x+2}{(x+2)(2x-1)}$$
 k) $\frac{x}{x^2+4x-5}$

$$k)$$
 $\frac{x}{x^2+4x-5}$

$$l) \quad \frac{2x^5 + 3x^4 - 3x^3 - 2x^2 + x}{2x^2 + 4x + 2}$$

Solution

1. a)
$$\left\{\frac{1}{12}, \frac{1}{15}, \frac{1}{15}, \frac{8}{105}, \frac{8}{45}\right\}$$

2. a)
$$d = 1 - \sqrt{2}$$
 $a_{11} = 12 - 9\sqrt{2}$ **b**) $d = \frac{36}{17}$; $a_{15} = \frac{551}{17}$

b)
$$d = \frac{36}{17}$$
; $a_{15} = \frac{551}{17}$

3. a)
$$\sum_{n=1}^{6} 2^{3-n}$$
 b) $\sum_{n=1}^{99} \frac{1}{n(n+1)}$ c) $\sum_{n=1}^{7} (-1)^{n-1} \frac{1}{n}$ d) $1 + \sum_{k=1}^{n} \frac{x^k}{k}$

$$b) \sum_{n=1}^{99} \frac{1}{n(n+1)}$$

$$c) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

$$d) 1 + \sum_{k=1}^{n} \frac{x^k}{k}$$

e)
$$1 + \sum_{k=1}^{n} (-1)^k \frac{x^{2k}}{2k}$$

4. a)
$$d = -1$$
; $a_n = -n + 4$; $a_{10} = -6$

b)
$$d = 5$$
; $a_n = x + 5n - 13$; $a_{10} = x + 37$

c)
$$r = -\frac{x}{3}$$
; $a_n = (-1)^{n-1} \left(\frac{x}{3}\right)^{n-1}$; $a_{10} = -\frac{x^9}{19683}$

d)
$$r = 2^x$$
; $a_n = 2^{(n-1)x+1}$; $a_{10} = 2^{9x+1}$

5.
$$a) -\frac{37}{10}$$

b)
$$-10$$
 c) $\frac{1093}{2187}$

6. *a*)
$$S = 3$$

b)
$$S = \frac{10}{11}$$

b)
$$S = \frac{10}{11}$$
 c) $S = \frac{1250}{7}$

7. *a*) Center
$$(-3, -4)$$
; radius: 4

b) Center
$$(-4,3)$$
; radius: 3

c) Center
$$(2,-6)$$
; radius: 6

d) Center
$$\left(-\frac{1}{2}, 2\right)$$
; radius: 3

8. a)
$$V(0,0)$$
 $F(-4,0)$ directrix: $x = 4$

b)
$$V(0,0)$$
 $F(0,\frac{1}{36})$ directrix: $y = -\frac{1}{36}$

c)
$$V(-2,-3)$$
 $F(-2,-\frac{23}{8})$ directrix: $y = -\frac{25}{8}$

d)
$$V(-1,2)$$
 $F(-3,2)$ directrix: $x = 1$

9. a)
$$x^2 = 4(y-1)$$

b)
$$(y-1)^2 = 4x$$

$$(x-1)^2 = -12(y-1)$$

10. a) $V(\pm 6, 0)$ $M(0, \pm 4)$ $F(\pm 2\sqrt{5}, 0)$

b) $V(0, \pm 3)$ $M(\pm \sqrt{6}, 0)$ $F(0, \pm \sqrt{3})$

c) $V\left(0, \pm \frac{6}{5}\right) M\left(\pm \frac{3}{8}, 0\right) F\left(0, \pm \frac{3\sqrt{231}}{40}\right)$

d) center (-1, 1) V(-1, -2), (-1, 4) $F(-1, 1 \pm \sqrt{5})$ M(-3, 1), (1, 1)

e) center(3, -2) V(-2, -2), (8, -2) F(0, -2), (6, -2) M(3, -6), (3, 2)

11. a) $V(\pm 6, 0)$ $W(0, \pm 7)$ $F(\pm \sqrt{85}, 0)$ $y = \pm \frac{7}{6}x$

b) $V\left(\pm\frac{3}{2}, 0\right)$ $W\left(0, \pm\frac{4}{5}\right)$ $F\left(\pm\frac{\sqrt{289}}{10}, 0\right)$ $y = \pm\frac{8}{15}x$

c) $V\left(0, \pm \frac{1}{5}\right) W\left(\pm \frac{1}{3}, 0\right) F\left(0, \pm \frac{\sqrt{34}}{15}\right) y = \pm \frac{3}{5}x$

d) center (-2, 1) V(-5, 1), (1, 1) W(-2, -1), (-2, 3) $F(-2 \pm \sqrt{13}, 1)$ $y = \pm \frac{2}{3}(x+2) + 1$

e) center $\left(-5, 3\right)$ $V\left(-\frac{21}{4}, 3\right), \left(-\frac{19}{4}, 3\right)$ $W\left(-5, 2\right), \left(-5, 4\right)$ $F\left(\pm\frac{\sqrt{17}}{4}, 3\right)$ $y = \pm 4\left(x+5\right) + 3$

12. a)
$$\frac{5}{x-6} - \frac{4}{x+2}$$

$$b) \quad \frac{3}{x} + \frac{2}{x-5} - \frac{1}{x+1}$$

12. a)
$$\frac{5}{x-6} - \frac{4}{x+2}$$
 b) $\frac{3}{x} + \frac{2}{x-5} - \frac{1}{x+1}$ c) $\frac{\frac{1}{2}}{x-1} + \frac{\frac{3}{4}}{(x-1)^2} - \frac{\frac{1}{2}}{x+1} + \frac{\frac{1}{4}}{(x+1)^2}$ d) $-\frac{2}{x} - \frac{1}{x+2} + \frac{4}{x-5}$ e) $\frac{3}{x^2} - \frac{1}{x^3} + \frac{4}{x+2}$ f) $x^2 - 2x + 1 - \frac{4}{x^2} + \frac{2}{x-3}$

$$d$$
) $-\frac{2}{x} - \frac{1}{x+2} + \frac{4}{x-5}$

$$e) \frac{3}{x^2} - \frac{1}{x^3} + \frac{4}{x+2}$$

$$f$$
) $x^2 - 2x + 1 - \frac{4}{x^2} + \frac{2}{x - 3}$

$$(g) \frac{2}{(x-1)^2} + \frac{2}{(x-1)^3}$$

$$h) \quad \frac{-1}{x+1} + \frac{2x+1}{x^2+2}$$

g)
$$\frac{2}{(x-1)^2} + \frac{2}{(x-1)^3}$$
 h) $\frac{-1}{x+1} + \frac{2x+1}{x^2+2}$ i) $\frac{\frac{1}{2}}{x-1} + \frac{-\frac{1}{2}x - \frac{1}{2}}{x^2+1} + \frac{-x+1}{(x^2+1)^2}$

$$j) \quad \frac{\frac{6}{5}}{x+2} + \frac{\frac{8}{5}}{2x-1} = \frac{6}{5(x+2)} + \frac{8}{5(2x-1)}$$

$$k) \quad \frac{5}{6(x+5)} + \frac{1}{6(x-1)}$$

k)
$$\frac{5}{6(x+5)} + \frac{1}{6(x-1)}$$
 l) $x^3 - x^2 + \frac{-1}{3(2x+1)} + \frac{2}{3(x+2)}$