UMB CS 420 Mapping Reducibility

Monday, April 4, 2022

Announcements

- HW 8 extended
 - Due Wed 4/6 11:59pm EST
- HW 9 out soon

Last Time: TM Accepting Computations

A TM accepting computation is sequence of configurations, where:

So: any machine that can

recognize TM accepting

sequences ...

1. Start Config:

- State: start state,
- Head: at leftmost cell
- Tape: has input string

2. End Config:

• State: accept state

i.e., ... can be used to prove undecidability!

3. Middle Configs:

• State + Head + Tape: each step must be valid according to δ

$| x | q_3 |$ a | b | # $| x | x | q_5 |$ b |

Last Time: What Makes CFLs "Context-Free"?

- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | \ G \text{ is a CFG and } L(G) = \emptyset \}$ Why is this decidable?
- $ALL_{\mathsf{CFG}} = \{\langle G \rangle | \ G \text{ is a CFG and } L(G) = \Sigma^* \}$ But this is undecidable?

Decidable

Decidable

Undecidable

This unintuitive result is explained by ...

... the fact that PDAs can recognize non-accepting TM config sequences

This gives insight into what makes context-free languages "context-free"

Can be computed in a "context-free" way: check that pairs of configs are valid nondeterministically, ... and <u>accept</u> if **any** are not

... but PDAs cannot recognize accepting TM config sequences

Cannot be computed in a "context-free" way: check that pairs of configs are valid nondeterministically, ... and accept if all are not

The Post Correspondence Problem (PCP) A unique undecidable problem

A Non-Formal Languages Undecidable Problem: *PCP*

- Let P be a set of "dominos" $\left\{\left[\frac{t_1}{b_1}\right], \left[\frac{t_2}{b_2}\right], \ldots, \left[\frac{t_k}{b_k}\right]\right\}$ Where each t_i and b_i are strings

• E.g.,
$$P = \left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\}$$

- A match is:
 - A sequence of dominos with the same top and bottom strings

Repeats allowed

• E.g.,
$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$
 a b c a a a b c Same string

• Then: $PCP = \{ \langle P \rangle \mid P \text{ is a set of dominos with a match } \}$

Theorem: PCP is undecidable

 $PCP = \{ \langle P \rangle \mid P \text{ is a set of dominos with a match } \}$

<u>Proof</u> by contradiction:

<u>Assume</u> *PCP* is decidable, has decider R; use it to create decider for A_{TM} :

On input <*M*, *w*>:

- Construct a set of dominos P that has a match only when M accepts w
- 2. Run R with P as input
- 3. Accept if *R* accepts, else reject

So a match is a sequence of configs showing *M* accepting *w*!

Idea: P has M's TM configurations as its domino strings

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

PCP Dominos

- First domino: $\left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$ Start config (on bottom)
- Key idea: add dominos representing valid TM steps:

if
$$\delta(q, a) = (r, b, R)$$
, put $\left[\frac{qa}{br}\right]$ into P if $\delta(q, a) = (r, b, L)$, put $\left[\frac{cqa}{rcb}\right]$ into P

- For the tape cells that don't change: put $\left[\frac{a}{a}\right]$ into P
- Top can only "catch up" if there is an accepting config sequence

PCP Example

• Let w = 0100 and $\delta(q_0, 0) = (q_7, 2, \mathbf{R}) \, \operatorname{so} \left[\frac{q_0 0}{2q_7} \right] \, \operatorname{in} P$

PCP Dominos (accepting)

When accept state reached, let top "catch" up:

For every $a \in \Gamma$,

put $\left[\frac{a \, q_{\text{accept}}}{q_{\text{accept}}}\right]$ and $\left[\frac{q_{\text{accept}} \, a}{q_{\text{accept}}}\right]$ into P Bottom "eats" one char

Only possible match: accepting sequence of TM configs

Mapping Reducibility

Flashback: "Reduced"

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

<u>Thm</u>: *HALT*_{TM} is undecidable Proof, by contradiction:

PROBLEM: What if it takes forever to create this decider?

• Assume $HALT_{TM}$ has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

1. Run TM R on input $\langle M, w \rangle$. Use R to first check if M will loop on w

2. If R rejects, reject.

Then run *M* on *w* knowing it won't loop

- 3. If R accepts, simulate M on w until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

• Contradiction: A_{TM} is undecidable and has no decider!

We need: a formal definition of "reducibility"

Flashback: A_{NFA} is a decidable language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA} :

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure NFA \rightarrow DFA
- **2.** Run TM M on input $\langle C, w \rangle$.
- 3. If M accepts, accept; otherwise, reject."

We said this NFA→DFA algorithm is a TM, but it doesn't accept/reject?

More generally, we've been saying "programs = TMs", but programs do more than accept/reject?

Definition: Computable Functions

• Has TM that, instead of accept/reject, "outputs" final tape contents

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

- Example 1: All arithmetic operations
- Example 2: Converting between machines, like DFA→NFA
 - E.g., adding states, changing transitions, wrapping TM in TM, etc.

Definition: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \Longleftrightarrow f(w) \in B$$
. "if and only if"

The function f is called the **reduction** from A to B.

Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Proving Mapping Reducibility

Step 1:

Show there is computable fn f ... by creating a TM

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
. "if and only if"

Step 2:

Prove the iff is true

The function f is called the **reduction** from A to B.

Step 2a: "forward" direction (\Rightarrow) : if $w \in A$ then $f(w) \in B$ $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \bullet$ $ightharpoonup HALT_{\mathsf{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w\}$ **Step 2b:** "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b: Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Thm: A_{TM} is mapping reducible to $HALT_{\mathsf{TM}}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• To show: $A_{\mathsf{TM}} \leq_{\mathsf{m}} \mathit{HALT}_{\mathsf{TM}}$

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

Step 1: computable fn $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ where:

 $\langle M, w \rangle \in A_{\mathsf{TM}}$ if and only if $\langle M', w' \rangle \in HALT_{\mathsf{TM}}$

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

1. Construct the following machine M' M' = "On input x:

- **1.** Run *M* on *x*.
- 2. If M accepts, accept.
- **3.** If *M* rejects, enter a loop."

Output $\langle M', w \rangle$."

M' is like M, except it always loops when it doesn't accept

Converts *M* to *M'*

Language A is *mapping reducible* to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Step 2: M accepts w if and only if

M' halts on w

Output new M'

- \Rightarrow If M accepts w, then M' halts on w
 - M' accepts (and thus halts) if M accepts
- \Leftarrow If M' halts on w, then M accepts w
- \leftarrow (Alternatively) If M doesn't accept w, then M' doesn't halt on w (contrapositive)
 - Two possibilities for non-acceptance:
 - 1. M loops: M' loops and doesn't halt
 - 2. M rejects: M' loops and doesn't halt

The following machine F computes a reduction f.

$$F =$$
 "On input $\langle M, w \rangle$:

1. Construct the following machine M'.

$$M'$$
 = "On input x :

- 1. Run M on x.
- 2. If M accepts, accept.
- **3.** If M rejects, enter a loop."
- **2.** Output $\langle M', w \rangle$."

Uses of Mapping Reducibility

To prove Decidability

To prove Undecidability

Thm: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

Must create decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs."

We know this is true bc of the iff (specificall y reverse direction)

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Coro: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Proof by contradiction.

• Assume B is decidable.

Then A is decidable (by the previous thm).

• <u>Contradiction</u>: we already said *A* is undecidable

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Summary: Showing Mapping Reducibility

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
. "if and only if"

Step 1:

Show there is computable fn f ... by creating a TM

Step 2:

Prove the iff is true

The function f is called the **reduction** from A to B.

Step 2a: "forward" direction (\Rightarrow) : if $w \in A$ then $f(w) \in B$

Step 2b: "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b: Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Summary: Using Mapping Reducibility

To prove decidability ...

• If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Known

To prove undecidability ...

Unknown
(want to prove)

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!

Alternate Proof: The Halting Problem

 $HALT_{\mathsf{TM}}$ is undecidable

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Must be known $A_{\mathsf{TM}} \leq_{\mathrm{m}} HALT_{\mathsf{TM}}$

- Since A_{TM} is undecidable,
- ... and we showed mapping reducibility from A_{TM} to $HALT_{TM}$,
- then *HALT*_{TM} is undecidable _

Flashback:

EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Proof by contradiction:

• Assume EQ_{TM} has decider R; use to create E_{TM} decider:

 $= \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Alternate Proof: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Show mapping reducibility: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$

Step 1: create computable fn $f: \langle M \rangle \rightarrow \langle M_1, M_2 \rangle$, computed by S

```
S = "On input \langle M \rangle, where M is a TM:

1. Construct: \langle M, M_1 \rangle, where M_1 is a TM that rejects all inputs.

2. Output: \langle M, M_1 \rangle
```

Step 2: show iff requirements of mapping reducibility (exercise)

And use theorem ...

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Flashback: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

<u>Proof</u>, by contradiction:

• Assume E_{TM} has decider R; use to create A_{TM} decider:

S= "On input $\langle M,w \rangle$, an encoding of a TM M and a string w:

- 1. Use the description of M and w to construct the TM M_1
- 2. Run R on input $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.
 2. If x = w, run M on input w and accept if M does."
- 3. If R accepts, reject; if R rejects, accept."

If M accepts w, M_1 not in E_{TM} !

• So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$ $ilde{E}_{\mathsf{TM}}$

Alternate Proof: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Show mapping reducibility??: $A_{TM} \leq_m E_{TM}$

Step 1: create computable fn $f: \langle M, w \rangle \rightarrow \langle M' \rangle$, computed by S

 $M_1 =$ "On input x:

```
S = "On input \langle M, w \rangle, an encoding of a TM M and a string w:
```

- 1. Use the description of M and w to construct the TM M_1
- Output: $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.
 2. If x = w, run M on input w and accept if M does."
- 3. If R accepts, reject; if R rejects, accept."

If M accepts w, M_1 not in E_{TM} !

- So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$
- It's good enough! Still proves E_{TM} is undecidable
 - Because undecidable langs are closed under complement

Step 2: show iff requirements of mapping reducibility (exercise)

Undecidable Langs Closed under Complement

Proof by contradiction

- Assume some lang L is undecidable and \overline{L} is decidable ...
 - Then \overline{L} has a decider

Contradiction!

- ... then we can create decider for L from decider for \overline{L} ...
 - Because decidable languages are closed under complement (hw8)!

Check-in Quiz 4/4

On gradescope