import pandas as pd

df = pd.read csv("Mall Customers.csv")

df.head()

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

df.rename(columns={'Genre': 'Gender'}, inplace=True)
df['Gender'].unique()

array(['Male', 'Female'], dtype=object)

X = df[["Gender", "Age", "Annual Income (k\$)", "Spending Score (1-100)"]]
X.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40

#label encoding

from sklearn import preprocessing

label_encoder = preprocessing.LabelEncoder()

X["Gender"] = label_encoder.fit_transform(X["Gender"])

X["Gender"].unique()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:7: SettingWithCc A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s

```
import sys
array([1, 0])
```

from sklearn.cluster import KMeans

cluster = []

for k in range(1, 11):
 kmean = KMeans(n_clusters=k).fit(X)
 cluster.append(kmean.inertia)

import matplotlib.pyplot as plt

plt.plot(range(1, 11), cluster, 'r-')
plt.xlabel("Cluster")
plt.ylabel("Inertia")
plt.show()

km = KMeans(n_clusters=5).fit(X)

X['Labels'] = km.labels_

X.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Labels
0	1	19	15	39	0
1	1	21	15	81	3
2	0	20	16	6	0
3	0	23	16	77	3
4	0	31	17	40	0

import seaborn as sns

 $sns.scatterplot(X['Annual Income (k\$)'], \ X['Spending Score (1-100)'], \ hue=X["Label Income (k\$)'], \ hue=$

plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni
FutureWarning


```
temp = pd.DataFrame()
temp['Annual Income (k$)'] = df['Annual Income (k$)']
temp['Spending Score (1-100)'] = df['Spending Score (1-100)']

wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(temp)
    wcss.append(kmeans.inertia_)

plt.plot(range(1, 11), wcss)
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



```
kmean=KMeans(n_clusters=5)
kmean.fit(temp)
```

identified_clusters = kmean.fit_predict(temp)
temp["Predicted Value"] = identified_clusters

plt.scatter(temp["Annual Income (k\$)"],temp['Spending Score (1-100)'],c=temp['Pred

<matplotlib.collections.PathCollection at 0x7fd755114150>

✓ 0s completed at 11:19 PM

X