Akademia Górniczo-Hutnicza

im. Stanisława Staszica w Krakowie

Podstawy konstrukcji maszyn

Jakub Wosiak – 406098

Urszula Starowicz – 407177

Grupa 3

Data wykonania: kwiecień 2022

Spis treści:

- 1) Projektowanie wału schodkowego
- 2) Obliczenie średnicy wału
- 3) Dobór łożysk
- 4) Linia ugięcia
- 5) Sztywność
- 6) Wpust pod koło zębate
- 7) Obliczenie wytrzymałości zmęczeniowej wału

Dane wejściowe:

$$a = 0.075m$$
 $Ft1 = -4300N$
 $b = 0.18m$ $Fr1 = -1200N$
 $c = 0.315m$ $Ft2 = -1720N$
 $r1 = 0.12m$ $Fr2 = -1100N$
 $r2 = 0.3$ $n = 500rpm$

1. Projektowanie wału schodkowego a. Obliczenie momentu skręcającego

$$Ms = r1 * F1t = r2 * F2t = 516Nm$$

Wykres momentu skręcającego

b. Moment zginający w płaszczyźnie XY

Rysunek poglądowy sił tnących w płaszczyźnie XY

Wykres sił tnących w płaszczyźnie XY

Równania równowagi:

$$\begin{cases}
\Sigma MyA = 0 \\
\Sigma Fy = 0
\end{cases}$$

$$Ft1 * a + Rb * (a + b) + Fr2 * c = 0$$

$$RyA + Ft1 + RyB + Fr2 = 0$$

$$RyB = 2623,53N$$

$$RyA = 2776,47N$$

c. Moment zginający w płaszczyźnie XZ

Równania równowagi:

$$\begin{cases}
\Sigma MzA = 0 \\
\Sigma Fz = 0
\end{cases}$$

$$Fr1 * a + RzB * (a + b) + Ft2 * c = 0$$

$$RzA + Fr1 + RzB + Ft2 = 0$$

$$RzB = 2477,65N$$

$$RzA = 442,35N$$

Wykres sił tnących w płaszczyźnie XZ

Siły Ft1, Ft2, Fr1 oraz Fr2 są ujemne co oznacza, że są skierowane w przeciwnym kierunku do założonych na rysunku poglądowym.

d. Wyznaczanie równań momentów gnących

$$x\epsilon < 0; \ a >$$
 $My = RyA * x$
 $Mz = RzA * x$
 $x\epsilon < a; \ a + b >$
 $My = RyA * x + Ft1 * (x - a)$
 $Mz = RzA * x + Ft2 * (x - a)$
 $x\epsilon < a + b; \ c >$
 $My = RyA * x + Ft1 * (x - a) + RyB * (x - a - b)$
 $Mz = RzA * x + Ft2 * (x - a) + RzB * (x - a - b)$

Wykres momentu zginającego w płaszczyźnie XY

Wykres momentów gnących w płaszczyźnie XZ

e. Obliczanie wypadkowego momentu gnącego

$$Mw(x) = \sqrt{My^2 + Mz^2}$$

$$x\epsilon < 0$$
; $a >$

$$Mw(x) = 2811,487x$$

$$x\epsilon < a$$
; $a + b >$

$$Mw(x) = \sqrt{15997592,3834x^2 - 2215614,99x + 120647,25}$$

$$x\epsilon < a + b$$
; $c >$

$$Mw(x) = \sqrt{15446800x^2 - 3120731,034x + 387267.11596}$$

Wykres momentu zginającego wypadkowego

f. Moment wypadkowy zredukowany obliczony zgodnie z hipotezą HMH

$$Mzr(x) = \sqrt{Mw(x)^2 + \frac{3}{4}Ms^2}$$

$$x\epsilon < 0$$
; $a >$

$$Mzr(x) = 2811,487x$$

$$x\epsilon < a$$
; $a + b >$

$$Mzr(x) = \sqrt{15997592,3834x^2 - 2215614,99x + 120647,25 + \frac{3}{4} * 516^2}$$

$$Mzr(x) = \sqrt{15446800x^2 - 3120731,034x + 653523,1596}$$

Wykres momentu zredukowanego zgodnie z hipotezą HMH

Wartości wyliczone w skrypcie MatLaba	
Reakcja poprzeczna w podporze	0N
Reakcja pionowa w łożysku B w płaszczyźnie YZ	2,4776kN
Reakcja pionowa w łożysku A w płaszczyźnie YZ	442,3529N
Reakcja pionowa w łożysku B w płaszczyźnie XY	2,6235kN
Reakcja pionowa w łożysku A w płaszczyźnie XY	2,7765kN
Reakcja wypadkowa w łożysku A	2,8115kN
Reakcja wypadkowa w łożysku A	3,6086kN

2. Obliczanie średnicy wału

Wał będzie wykonany ze stali C25, którego naprężenia dopuszczalne obustronne wynoszą 55MPa.

Ze skryptu napisanego w MatLabie średnice dopuszczalne, wyliczone ze wzoru

$$d >= \sqrt[3]{\frac{32 \cdot M_z}{\pi \cdot k_{go}}}$$

wynoszą:

 Dla xε<0; a> średnica minimalna jest równa 0.0338m, czyli 33.8 mm – dobraliśmy średnicę 35mm

- Dla x∈<a; a+b> średnica minimalna jest równa 0.0451m, czyli 45.1mm dobraliśmy średnicę 50mm
- Dla xε<a+b; c> średnica minimalna jest równa 0.0441m, czyli 44.1mm dobraliśmy średnicę 45mm

Wartości dobrane spełniają również warunek, że najszersza średnica nie jest większa niż 120% najwęższej średnicy wału. Staraliśmy się przy doborze średnic końcowych pilnować, by były przemnożone przez 1.1, by uzyskać średnicę rzeczywistą z teoretycznej.

3. Dobór łożysk

Nasze założenia:

- n = 500 rmp
- L10h = 50000

Z obliczeń w skrypcie z MatLaba otrzymujemy, że trwałość wymagana łożyska L10 = 1500 mln obrotów.

Nośność łożyska również została wyliczona w skrypcie i wynosi:

CA = 4.5057*10^4N – dobieramy łożysko na początku wału 6407 – do średnicy wewnętrznej 35mm

CB = 5.7831*10^4N – dobieramy łożysko w punkcie B 6310 – do średnicy wewnętrznej 50mm

4. Linia ugięcia

Dla Płaszczyzny XY:

$$EIw''(x) = -Mv(x)$$

$$M(x) = EIw''(x) = RyA * x + Ft1 * (x - a) + RyB * (x - (a + b))$$

$$EIw'(x) = RyA * \left(\frac{x^2}{2}\right) + Ft1 * \frac{(x-a)^2}{2} + RyB * \frac{\left(x - (a+b)\right)^2}{2} + C$$

$$EIw(x) = RyA * \frac{x^3}{6} + Ft1 * \frac{(x-a)^3}{6} + RyB * \frac{(x-(a+b))^3}{6} + Cx + D$$

Dla płaszczyzny XZ:

$$EIw''(x) = -Mz(x)$$

$$M(x) = EIw''(x) = RzA * x + Ft1 * (x - a) + RyC * (x - (a + b))$$

$$EIw'(x) = RyA * \frac{x^2}{2} + Ft1 * \frac{(x-a)^2}{2} + RyC * \frac{(x-(a+b))^2}{2} + C$$

$$EIw(x) = RyA * \frac{x^3}{6} + Ft1 * \frac{(x-a)^3}{6} + RyC * \frac{(x-(a+b))^3}{6} + Cx + D$$

5. Sztywność

a) Linia ugięcia

$$-EIw(x)'' = R_{ay} * x + F_{2r} * (x - a) + R_{By} * (x - (a + b)) + F_{1t} * (x - c)$$

$$-EIw(x)' = \frac{1}{2} * R_{ay} * x^2 + \frac{1}{2} * F_{2r} * (x - a)^2 + \frac{1}{2} * R_{By} * (x - (a + b))^2$$

$$+ \frac{1}{2} * F_{1t} * (x - c)^2 + C$$

$$-EIw(x) = \frac{1}{6} * R_{ay} * x^3 + \frac{1}{6} * F_{2r} * (x - a)^3 + \frac{1}{6} * R_{By} * (x - (a + b))^3$$

$$+ \frac{1}{6} * F_{1t} * (x - c)^3 + Cx + D$$

b) Strzałki ugięcia w położeniu kół zębatych

Płaszczyzna XY:

Podstawiając pod x punkty łożysk, gdzie ugięcie jest równe zero, wyliczamy C i D w skrypcie MatLaba. Maksymalne ugięcie ma wynosić mniej niż 0.85mm.

$$C = -40946250$$

$$D = 6,9479 * 10^{9}$$

$$w(a) = -\frac{1}{EI} * \left(\frac{1}{6} * R_{ay} * a^{3} + \frac{1}{6} * R_{By} * (b)\right)^{3}$$

$$+ \frac{1}{6} * F_{1t} * (a - c)^{3} - 40946250 * a + 6,9479 * 10^{9}) = -0.74mm$$

$$w(c) = -\frac{1}{EI} * \left(\frac{1}{6} * R_{ay} * c^{3} + \frac{1}{6} * F_{2r} * (c - a)^{3}\right)$$

$$+ \frac{1}{6} * R_{By} * (c - (a + b))^{3} = -40946250 * c + 6,9479 * 10^{9}) = -0.39mm$$

Płaszczyzna XZ:

$$C = -24615000$$

$$D = 6.7262 * 10^{9}$$

$$w(a) = -\frac{1}{EI} * (\frac{1}{6} * R_{Az} * a^{3} + \frac{1}{6} * R_{Bz} * (b)^{3} + \frac{1}{6} * F_{1r} * (a - c)^{3}$$

$$-24615000 * a + 6.7262 * 10^{9}) = 0.17mm$$

$$w(c) = -\frac{1}{EI} * \left(\frac{1}{6} * RAz * c^{3} + \frac{1}{6} * F_{2t} * (c - a)^{3} + \frac{1}{6} * R_{Bz} * (c - (a + b))^{3} \right)$$
$$-24615000 * a + 6,7262 * 10^{9}) = -0.34mm$$

c) Kat skręcenia

Maksymalne skręcenie powinno być poniżej 0.01 stopnia.

Płaszczyzna XY:

$$w(a)' = -\frac{1}{EI} * (\frac{1}{2} * R_{ay} * a^2 + \frac{1}{2} * R_{By} * b^2 + \frac{1}{2} * F_{1t} * (a - c)^2 - 40946250) = 0.0074$$

$$w(c)' = -\frac{1}{EI} * (\frac{1}{2} * R_{ay} * c^2 + \frac{1}{2} * F_{2r} * (c - a)^2 + \frac{1}{2} * R_{By} * (c - (a + b))^2 - 40946250) = -0.0045$$

Płaszczyzna XZ:

$$w(a)' = -\frac{1}{EI} * (\frac{1}{2} * R_{Az} * a^2 + \frac{1}{2} * R_{Bz} * (b)^2$$

$$+ \frac{1}{2} * F_{1r} * ((a - c)^2 - 24615000) = 0.0031$$

$$w(c)' = -\frac{1}{EI} * (\frac{1}{2} * R_{Az} * c^2 + \frac{1}{2} * F_{2t} * (c - a)^2$$

$$+ \frac{1}{2} * R_{Bz} * (c - (a + b))^2 - 24615000) = 0.0012$$

d) Pierwsza prędkość krytyczna

Gęstość stali konstrukcyjnej wysokiej jakości C25 to 7850 kg/m³.

$$m = \sigma * S$$

$$S = \pi * c * \left(\frac{d}{2}\right)^{2}$$

$$Alf a = \frac{\pi^{2}}{c^{2}} * \sqrt{\frac{E \cdot I \cdot l}{m}} = 1,2857 * 10^{3}$$

e) Pierwsza prędkość krytyczna obrotowa

$$n = 30 * \sqrt{\frac{1}{f}} = 2,3154 * 10^3 [obr/min] - dla płaszczyzny XY$$

$$n = 1.6257 * 10^3 [obr/min] - dla płaszczyzny XZ$$

Prędkości różnią się o ponad 20%, więc wał nie ulegnie uszkodzeniom oraz wartości te nie są dla siebie wielokrotnościami ¼ - dla płaszczyzny XY współczynnik między prędkościami wynosi 0.018, a dla XZ 0.0126, więc nie pojawi się również problem rezonansu.

6. Wpust pod koło zębate

Wpust wykonany jest ze stali:

S195
$$Re = 195MPa$$
 $k_t = 41MPa$ $k_d = 97.5MPa$ Koło zębate D1 = 240 mm

Na podstawie normy PN 85001 wstępnie dobieramy wpust:

$$d = 50 \ mm \ t1 = 5.5 \ mm \ t2 = 3.8 \ mm \ l \in [36, 160] \ mm \ h = 9 \ mm$$

1. Ze względu na ścinanie

$$\frac{4F_{1t}}{b \cdot l_0 \cdot 1} \le kt$$

$$l_0 \ge \frac{4F_{1t}}{b \cdot k_t \cdot 1}$$

$$l_0 \ge 29,97 \ mm$$

2. Ze względu na docisk

$$\frac{F_{1t}}{t2 \cdot l_0 \cdot 1} \le kd$$

$$l0 \ge 11,6 mm$$

Wpust pod koło D1 dobieramy o długości l = 36 mm co stanowi najkrótszy dostępny wpust.

Koło zębate
$$D2 = 600 \text{ mm}$$

Na podstawie normy PN 85001 wstępnie dobieramy wpust:

$$d = 40 \ mm \ t1 = 5.5 \ mm \ t2 = 3.8 \ mm \ l \in [36, 160] \ mm \ h = 9 \ mm$$

1. Ze względu na ścinanie

$$\frac{4F2t}{b \cdot l_0 \cdot 1} \le kt$$

$$l_0 \ge \frac{4F2t}{b \cdot k_t \cdot 1}$$

$$l_0 \ge 11.98 \, mm$$

2. Ze względu na docisk

$$\frac{F_{2t}}{t2 \cdot l_0 \cdot 1} \le kd$$

$$l0 \ge 4.64 \, mm$$

Wpust pod koło D2 dobieramy o długości l = 36 mm co stanowi najkrótszy dostępny wpust.

Wartości wyliczone w skrypcie MatLaba	
Kąt skręcenia pierwszego wpustu	34.127 stopnia
Docisk na wał na pierwszy wpust	31.4327 MPa
Docisk na koło na pierwszy wpust	31.4327 MPa
Kąt skręcenia na drugi wpust	13.6508 stopnia
Docisk wału na drugi wpust	12.5731MPa
Docisk na koło na drugi wpust	12.5731 MPa

7. Obliczenie wytrzymałości zmęczeniowej wału

Rzeczywisty współczynnik bezpieczeństwa wg naprężeń normalnych:

$$\delta_{\alpha} = \frac{Z_{go}\varepsilon}{\sigma_{g\alpha}\beta_{\sigma}}$$

 Z_{go} – wytrzymałość na zmęczenie
przy prubie obrotowo giętkiej

 $\varepsilon-W$ spółczynnik wielkości przedmiotu

$$\sigma_{g lpha} = rac{M_g \, 10^3}{W_g} \quad - \quad Amplituda \, cyklu \, naprężęń \, gnących$$

$$M_g$$
 – moment gnący

$$W_g = \frac{\pi d^3}{32}$$
 – Wskaźnik wytrzymałości

$$\beta_{\sigma} = \beta_{k\sigma} + \beta_{p\alpha} - 1$$

Współczunnik uwzględniający działania karbu i stnan powierzchni

 $\beta_{k\alpha}$ – współczynnik działania karbu na zginanie

 $\beta_{k\alpha}$ – współczynnik stanu powierzchni

Rzeczywisty współczynnik bezpieczeństwa wg naprężeń stycznych:

$$\delta_{\tau} = \frac{Z_{so}\varepsilon}{\tau_{s\alpha}\beta_{\tau}}$$

 Z_{so} – wytrzymałość na zmęczenie
przy prubie o

$$au_{slpha} = rac{T10^3}{W_o} - Amplituda cyklu naprężęń stycznych$$

ε – Współczynnik wielkości przedmiotu

T – moment skręcający

$$W_o = \frac{\pi d^3}{16}$$
 – Wskaźnik wytrzymałości

 $\beta_{\tau} = \beta_{k\tau} + \beta_{p\tau} - 1$ — Współczunnik uwzględniający działania karbu i stnan powierzchni

 $eta_{k au}$ — współczynnik działania karbu dla skręcenia

 $\beta_{k\tau}$ – współczynnik stanu powierzchni

Rzeczywisty współczynnik bezpieczeństwa dla obciążeń złożonych

$$\delta = \frac{\delta_{\sigma}\delta_{\tau}}{\sqrt{\delta_{\sigma}^2 + \delta_{\tau}^2}}$$

Przykładowe obliczenia

$$d_{wat} = 50 mm$$

$$M_g = 101.4662$$

$$T = 516 N$$

$$Z_{go} = 220 MPa$$

$$\varepsilon = 0.825$$

$$W_g = \frac{\pi \cdot 50^3}{32} = 12272 mm^3$$

$$\sigma_{g\alpha} = \frac{101.4662 \cdot 10^3}{12272} = 8.2682$$
$$\beta_{\sigma} = 1.85 + 1.1 - 1$$
$$\delta_{\sigma} = \frac{220 \cdot 0.825}{8.2682 \cdot 1.85} = 11.2572$$

$$Z_{so} = 130 MPa$$

$$W_o = \frac{\pi \cdot 50^3}{16} = 24544 mm^3$$

$$\tau_{s\alpha} = \frac{516 \cdot 10^3}{24544} = 21.0237$$

$$\beta_{\tau} = 1.4 + 1.05 - 1$$

$$\delta_{\tau} = \frac{130 \cdot 0.825}{21.0237 \cdot 1.45} = 3.5182$$

$$\delta = 3.358$$

$$\delta \ge 1.5$$