2022-2023 MP2I

26. Groupe symétrique

Exercice 1. © On pose $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 3 & 1 & 6 \end{pmatrix}$ et $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 2 & 1 & 4 \end{pmatrix}$. Déterminer $\sigma_1 \circ \sigma_2$, $\sigma_2 \circ \sigma_1$. Déterminer la décomposition en cycles à supports disjoints et la signature de σ_1 et σ_2 .

Exercice 2. © Déterminer la décomposition en cycles à supports disjoints et la signature des permutations suivantes :

- $1) \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 6 & 3 & 4 & 5 & 1 & 9 & 8 & 7 \end{pmatrix}$
- $3) \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 4 & 9 & 7 & 6 & 1 & 3 & 8 \end{pmatrix}$
- 4) $(1,2,...,n-1) \circ (1,n)$ dans S_n

Exercice 3. (m) Déterminer la signature de $\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{pmatrix}$.

Exercice 4. (i) Combien peut-on trouver de cycles de longueur p dans S_n ?

Exercice 5. (m) Soit σ une permutation de S_n et c un p-cycle de la forme $c = (a_1 \ a_2 \ \dots \ a_p)$. Montrer que $\sigma \circ c \circ \sigma^{-1}$ est un p-cycle que l'on déterminera.

Exercice 6. \bigcirc Montrer que toute permutation de S_n peut s'écrire comme le produit de transpositions de la forme :

$$(1,i), i \in \{2,\ldots,n\}.$$

Exercice 7. (i) Même question que dans l'exercice précédent avec les transpositions :

$$(i, i+1), i \in \{1, \dots, n-1\}.$$

Exercice 8. (i) Dans S_n , on considère le cycle $\sigma = (1, 2, ..., n - 1, n)$ et la transposition $\tau = (1, 2)$. Montrer que toute permutation de S_n peut s'écrire comme un produit où n'apparaissent que les permutations σ et τ .

Exercice 9. (m) Soit $n \geq 2$ et τ une transposition de S_n .

- 1) Montrer que l'application $\sigma \mapsto \tau \circ \sigma$ est une bijection de S_n vers S_n .
- 2) En déduire le cardinal de A_n formé des permutations de signature 1. Que peut-on dire de (A_n, \circ) ?

Exercice 10. (m) Soient τ_1 et τ_2 deux transpositions de S_n . Montrer que l'on a $\tau_1 \circ \tau_2 = \operatorname{Id}$ ou $(\tau_1 \circ \tau_2)^2 = \operatorname{Id}$ ou $(\tau_1 \circ \tau_2)^3 = \operatorname{Id}$.

Exercice 11. (i) Soit $n \geq 3$. Quel est l'ensemble des permutations qui commutent avec tous les éléments de S_n ?

Exercice 12. (*) Compter le nombre de permutations $\sigma \in \mathcal{S}_n$ telles que $\operatorname{Card}\{i \mid \sigma(i) < i\} = 1$.