Sl231b: Matrix Computations

Lecture 9: Least Squares and Orthogonal Projection

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 14, 2021

MIT Lab, Yue Qiu

Brief Overview

Overdetermined System: Ax = b, $A \in \mathbb{R}^{m \times n}$ (m > n), the equation

lack often has no solution, since

$$b \in \mathbb{R}^m$$
, while $\mathcal{R}(A)$ is a subspace (at most of dimensional n) of \mathbb{R}^m

has unique solution when

$$b \in \mathcal{R}(A)$$
 and $rank(A) = n$

has infinite solutions when

$$b \in \mathcal{R}(A)$$
 and $rank(A) < n$

In practice, we need to find the full rank least square (LS) solution x_{LS} ,

$$x_{LS} = \arg\min \|b - Ax\|_2^2,$$

where $\|\cdot\|_2$ represents the vector 2-norm and A is full rank.

4 D > 4 D > 4 E > 4 E > E 990

Outline

- ► Motivation Applications
- ► Geometric Interpretation of Least Square
- ► Projection onto Subspaces
- Orthogonal Projection

Linear Representation

In many applications, we can use the following representation

$$y = Ax$$

or

$$y = Ax + v$$
,

where

- ▶ y is known (given data);
- ► A is given or stipulated;
- x is to be determined;
- v models the noise or error.

Data Fitting

Given a set of input-output data pairs $(x_i, y_i) \in \mathbb{R}^2$, i = 1, ..., m, find a function f(x) that fits the data well.

Data Fitting Using Polynomials

Applying a polynomial model $f(x) = \sum_{i=0}^{p} a_i x^i$ and use LS

"True" curve: the true f(x), p = 5.

Fitted curve: estimated f(x), a obtained by LS with p = 5.

4 D L 4 D L 4 D L 2 D O O

Autoregessive (AR) Model for Time Series

model current output y_t as being related to its past values in a linear manner

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \ldots + a_q y_{t-q} + v_t, \quad t = 0, 1, \ldots$$

for some coefficient $\mathbf{a} \in \mathbb{R}^q$ and some positive integer q (correlation length).

using AR model predictions can also be made

$$\hat{y}_{t+d} = a_1 \hat{y}_{t+d-1} + a_2 \hat{y}_{t+d-2} + \ldots + a_q \hat{y}_{t+d-q}, \quad d = 1, 2, \ldots$$

where we denote $\hat{y}_{t-i} = y_{t-i}$ for i = 1, ..., q.

←□ → ←□ → ← □ → ← □ → ○○○

MIT Lab, Yue Qiu

AR Model for Stock Market

- blue: Hang Seng Index during a certain time period.
- red: training phase, $\hat{y}_t = \sum_{i=1}^q a_i y_{t-i}$, a is obtained by LS, and q = 10.
- **Proof** green: prediction phase, $\hat{y}_{t+d} = \sum_{i=1}^{q} a_i \hat{y}_{t+d-i}$.

MIT Lab, Yue Qiu

Geometric Interpretation of Least Square

$$\mathsf{x}_{LS} = \arg\min_{\mathsf{x} \in \mathbb{R}^n} \|\mathsf{b} - \mathsf{A}\mathsf{x}\|_2^2$$

- 1. find $\tilde{b} \in \mathcal{R}(A)$ such that $\|b \tilde{b}\|_2$ is minimized
 - recall the distance between two vectors using vector norms
- 2. solve $Ax_{LS} = \tilde{b}$ to obtain x_{LS}

Question: how to obtain $\tilde{b} \in \mathcal{R}(A)$?

Projection

Projectors

A projector is a square matrix that satisfies

$$P^2 = P$$
.

- such a matrix is called idempotent
- ▶ geometric interpretation?

Note: this definition of projectors include both

- orthogonal projectors (key in our course)
- oblique projectors (will not be addressed)

Question: onto which subspace does P project?

Answer: $\mathcal{R}(P)$

Projection Direction

How to distinguish orthogonal and oblique projection?

Figure 1: orthogonal projection

Figure 2: oblique projection

Answer: the projection direction Pv - v

Note: P(Pv - v) = 0, which means $(Pv - v) \in \mathcal{N}(P)$.

Complementary Projector

If P is a projector, then I - P is also a projector (why?)

$$(I - P)^2 = I - 2P + P^2 = (I - P)$$

The projector I - P is called the complementary projector of P.

Question: onto which subspace does I - P project?

Answer: $\mathcal{N}(P) = \mathcal{R}(I - P)$

First, $\mathcal{N}(P) \subset \mathcal{R}(I - P)$ (give your explanation here)

Second, $\mathcal{R}(I-P) \subset \mathcal{N}(P)$ (you are supposed to work it out indepently)

Then,

$$\mathcal{R}(I-P) = \mathcal{N}(P) \text{ and } \mathcal{R}(P) = \mathcal{N}(I-P)$$

$$\mathcal{R}(P) \cap \mathcal{N}(P) = \{0\}$$

Projection onto Subspaces

Suppose $\mathcal{V}=\mathcal{U}\oplus\mathcal{W}$, then there is a projector P such that $\mathcal{R}(P)=\mathcal{U}$ and $\mathcal{N}(P)=\mathcal{W}$, we say that P is a projector onto \mathcal{U} along \mathcal{W} .

Previous analysis show that the projector $P \in \mathbb{R}^{m \times m}$ separates \mathbb{R}^m into two subspaces

- ▶ R(P)
- ▶ *N*(P)

and

$$\mathbb{R}^m = \mathcal{R}(P) \oplus \mathcal{N}(P)$$
 can you prove this?

P projects \mathbb{R}^m onto $\mathcal{R}(P)$ along $\mathcal{N}(P)$.

Orthogonal Projection

Orthogonal projector

An orthogonal projector P is the one that projects onto a subspace $\mathcal U$ along a subspace $\mathcal W$ when $\mathcal U$ and $\mathcal W$ are orthogonal.

Warning: orthogonal projectors are not orthogonal matrices.

Theorem

A projector P is orthogonal if and only if $P = P^T$.

Proof?