extreme value statistics

statistics and data analysis (chapter 11)

Björn Malte Schäfer

Graduate School for Fundamental Physics
Fakultät für Physik und Astronomie, Universität Heidelberg

June 25, 2016

statistical physics extreme value statistics copulas summary

outline

Markov-chains

- **1** Markov-chains
- 2 statistical physics
- 3 extreme value statistics
- 4 copulas
- 5 summary

- Markov-chains are random processes, where the outcome of the random experiment depends on previous outcomes
- example: chain bivariate Gaussian, where one of the variables is free and the other is set to the previous outcome
- only sensible if there's a nonzero correlation and off-diagonal parts in the covariance
- distribution p(x, y)

$$p(x,y) = \frac{1}{\sqrt{(2\pi)^2 \det C}} \exp\left(-\frac{1}{2} \begin{pmatrix} x \\ y \end{pmatrix}^t C^{-1} \begin{pmatrix} x \\ y \end{pmatrix}\right)$$
 (1)

but set $y_n = x_{-1}$ and draw new x_n

Metropolis-Hastings as a Markovian process

- Metropolis-Hasting is an example of a Markov-chain
- the position of the chain (i.e. the current configuration) is a memory of all previous samples

- select a lattice site
- switch its configuration from up→down and from down→up
- compute change in energy associated with the switch of configuration
 - keep the flip if you go to a lower energy state
 - carry out a flip which needs energy ϵ with the probability $\exp(-\epsilon/(kT))$
- repeat

Metropolis-Hastings sampling

generates samples for the configurations at thermodynamic equilibrium and establishes a distribution lattice sites. there's a competition between randomness by thermal fluctuations and magnetisation.

Markov-chains

Ising-model in 2d: configurations at different T

- more random patterns at high T
- formation of large zones of equal magnetisation at low T

Markov-chains (statistical physics) extreme value statistics copulas summary

Ising-model in 2d: equilibration

• the system finds a lowest energy state by equilibration

(statistical physics) extreme value statistics copulas summary

Ising-model in 2d: compass needles

Markov-chains

• configuration of compass needles with a dipolar interaction

statistical model of a polymer: analytic solution

- polymers contract under increasing temperatures: what's the reason for this?
- imagine a simple model of a polymer: it consists of *n* monomers
- each monomer has a long axis a and a short axis b
- total length:

$$l(i) = i \times a + (n - i) \times b \tag{2}$$

- if a tension σ is applied to the string of monomers, there's an energy change $\sigma \Delta l$ associated to a change of configuration
- a shortening of the chain of monomers is suppressed with the Boltzmann-factor

$$p \propto \exp\left(-\frac{\sigma\Delta l}{kT}\right) \tag{3}$$

at which the system can "borrow" thermal energy at temperature T

• $\Delta l = b - a$ for an exchange $b \to a$ somewhere in the chain

Björn Malte Schäfer

- in fact, the polymer generates an entropic force
- change in internal energy dU:

$$dU = \underbrace{\frac{\partial U}{\partial S}}_{T} dS + \underbrace{\frac{\partial U}{\partial l}}_{-\sigma} dl$$
 (4)

- internal energy U(S, l) is a function of entropy and volume, but we can change the dependencies by Legendre-transform to e.g. T. l with the free energy F(T, l) or to T, σ with the Gibbs enthalpy $G(T,\sigma)$
- partition sum counts all states weighted with the Boltzmann-factor

$$G(T, \sigma) = -kT \ln Z$$
 with $Z = \sum_{\text{states}} \exp\left(-\frac{\sigma I(s)}{kT}\right)$ (5)

with the string tension σ

Markov-chains

partition sums and thermodynamic potentials

- binomial coefficient $\binom{n}{k}$ gives the number of possibilities to disperse i short polymers among n-i long ones
- all states with the same number i of short polymers and n − i long polymers have the same energy
- partition sum

$$Z = \sum_{i} {n \choose i} \exp\left(-\frac{\sigma l(i)}{kT}\right) \tag{6}$$

substitution of l(i) yields:

$$Z = \left(\exp\left(-\frac{\sigma a}{kT}\right) + \exp\left(-\frac{\sigma b}{kT}\right)\right)^n \tag{7}$$

such that the n-particle partition function is the nth power of the 1-particle partition

• recover Hooke's law including a temperature dependence: $l = dG/d\sigma$ is a function of string tension σ and temperature T

Björn Malte Schäfer

- select a monomer from the string
- switch its configuration from $a \rightarrow b$ or from $b \rightarrow a$
- compute change in energy associated with the switch of configuration
 - replace always a short by a long element, release of energy
 - replace a long element by a short one with a probability $\exp(-\sigma \Delta l/(kT))$
- repeat

Markov-chains

Metropolis-Hastings sampling

generates samples for the configurations at thermodynamic equilibrium and establishes a distribution of the chain length. there's a competition between randomness by thermal fluctuations and string tension.

relations between tension, length and temperature

Markov-chains

force-length relation

temperature-length relations

- system shows the correct behaviour: increased restoring force for increasing length, and contraction under temperature increase
- credit: M. Kretschmer

marginalisation conditions and stat. dependence

- back to the Gaussian chain: the nonzero covariance between successive draws links the random events to each other
- depending on the dimensionality n of the Guassian one has constructed a Markovian proces with length n
- only if the covariance is diagonal, the process separates into independent random processes, then, the length of the Markovian process is 1 and the Gaussians are 1-dimensional
- there might be very unusual ways of linking the individual events
- for instance, one could draw n random numbers, order them by magnitude and keep the largest (or the smallest):

$$x_n \ge x_{n-1} \ge \ldots \ge x_2 \ge x_1 \tag{8}$$

with the largest value x_+ and the smallest value x_-

 the events are not independent, because the choice of x± depends on all other samples

maximum distribution

Markov-chains

- distribution of the largest value x_+ in n draws from p(x)dx
- cumulative distribution $P(x) = \int_{-\infty}^{x} dx \, p(x)$: probability for a sample to be < x
- probability that *n* samples are < x: $P(x)^n$
- probability that at least one sample is > x in n trials: $1 P(x)^n$
- differentiate for the probability density

$$p_{+}(x) = \frac{d}{dx} (1 - P(x)^{n}) = nP(x)^{n-1} p(x)$$
(9)

- distribution of the smalles value x_{-} in n draws from p(x)dx
- complementary cumulative distribution $1 P(x) = \int_{x}^{\infty} dx \, p(x)$: probability for a sample to be > x
- probability that *n* samples are > x: $(1 P(x))^n$
- probability that at least one sample is < x in n trials: $1 (1 P(x))^n$
- differentiate for the probability density

$$p_{-}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(1 - (1 - P(x))^n \right) = n(1 - P(x))^{n-1} p(x) \tag{10}$$

alternative derivation

- it is possible to derive the extreme value distribution in a marginalisation process
- (but using the cumulative distribution is much easier!)
- probability distribution for the largest samples requires that the other
 n-1 samples were each larger than the previous (if ordered)
- look at two samples x₁ and x₂ and construct

$$p_{+}(x_{2}) = \int_{x_{2} > x_{1}} dx_{1} \, p(x_{1}) p(x_{2}) \tag{11}$$

which is a marginalisation over the condition $x_2 > x_1$

in analogy: look at 3 samples x₁, x₂ and x₃:

$$p_{+}(x_{3}) = \int_{x_{3} > x_{2}} dx_{2} p(x_{3}) \int_{x_{2} > x_{1}} dx_{1} p(x_{2}) p(x_{1})$$
 (12)

 ordering cuts off a part of the distribution and correlates the otherwise independent distribution Markov-chains

- start with the exponential probability density $p(x) = \exp(-x)$ with the cumulative distribution $P(x) = 1 - \exp(-x)$
- use a centralise variable $u = x \ln(u)$ such that the expectation value is zero

$$G(u) = P(x_{+} - \ln u < u) = P(u + \ln u) = (1 - \exp(-u)/u)^{n} = \exp(-\exp(-u))$$
(13)

extreme value distribution

$$p_{+}(x) = \frac{d}{dx} \exp(-\exp(-x)) = \exp(-\exp(-x)) \exp(-x)$$
 (14)

- heuristically, extreme value distributions look very similar
- there are three major types of extreme value distributions: Weibull, Gumbel and Frechet

extreme value statistics from a uniform distribution

 maximum (blue) and minimum (green) distributions based on the uniform distribution

extreme value statistics from a uniform distribution

maximum (blue) and minimum (green) distributions based on the Gaussian distribution

extreme value statistics

Markov-chains

copulas

bivariate processes and copulas

- a copula of a multivariate distribution is a generalisation of covariance, which is only exhaustive for Gaussian distributions (as a second moment, but of course there might be some nonzero, higher-order mixed moment)
- example: Gumbel's bivariate cumulative distribution

$$P(x,y) = \frac{1}{1 + \exp(-x) + \exp(-y)}$$
 (15)

• look at the edges $x \to \infty$ or $y \to \infty$

$$P_x(x) = P(x, \infty) = \frac{1}{1 + \exp(-x)}$$
 and $P_y(y) = P(\infty, y) = \frac{1}{1 + \exp(-y)}$ (16)

• use identities $x = P_x^{-1}(P_x(x))$ and $y = P_y^{-1}(P_y(y))$:

$$P(x,y) = \frac{1}{1 + \exp(-P_x^{-1}P_x(x)) + \exp(-P_y^{-1}(P_y(y)))}$$
(17)

Björn Malte Schäfer

copula density

• define $u = P_x(x)$ und $v = P_v(y)$:

$$P(P_x^{-1}(x), P_y^{-1}(y)) = \frac{uv}{u + v - uv} = C(u, v)$$
 (18)

• C(u, v) is the cupola and lets you extrapolate the distribution P(x, y)from the edges $P_{\nu}(x)$ and $P_{\nu}(y)$:

$$P(x, y) = C(P_x(x), P_y(y))$$
 (19)

cupola density is the derivative of the cupola (which is a cumulative distribution)

$$c(u,v) = \frac{\partial^2}{\partial u \partial v} C(u,v)$$
 (20)

for Gumbel's bivariate distribution:

$$c(u, v) = 2\frac{uv}{(u + v - uv)^3}$$
 (21)

• if two distributions are identical, C(u, v) = uv, so independent distributions have c(u, v) = 0

statistical physics extreme value statistics copulas (summary)

summary

Markov-chains

- random processes with dependence:
 - Markov-chains
 - statistical systems
 - extreme values
- Markov-chains show correlations along a sequence of random numbers
- statistical systems are based on randomness: Ising-model for magnetisation, polymer-model for a string
- extreme value statistics introduce correlations through ordering