

MASTER II SECIL

Rapport Ordonnacement d'Application Temps-Réel

Analyse d'ordonnancement avec Cheddar

Jérémie RODEZ - Thiziri HALLI

Note : Parfois le nom du cpu ou du coeur évoque un autre protocole que celui utilisé, mais c'est le champ "Protocol" qui fait foi.

https://github.com/JRodez/ordonancement-m2

Année universitaire : 2022-2023

Dernière modification: 13/01/2023

Table des matières

Ι	Mode	1	2
	I.1	Rate Monotonic	2
	I.2	Earliest Deadline First	3
II	Mode	2	5
	II.1	Serveur à Scrutation	5
	II.2	Serveur Sporadique	6
III	Mode	3	7
	III.1	Rate Monotonic avec précédence	7
	III.2	Earliest Deadline First avec précédence	8
IV	Mode	4	9
	IV.1	Priority Inheritance Protocol	9
	IV.2	Priority Ceiling Protocol	0

I Mode 1

```
Exemple 1 = { T_1(P_1 = 8, C_1 = 2), T_2(P_2 = 10, C_2 = 2), T_3(P_3 = 8, C_3 = 1), T_4(P_4 = 16, C_4 = 2) } Exemple 2 = { T_1(P_1 = 8, C_1 = 3), T_2(P_2 = 16, C_2 = 3), T_3(P_3 = 4, C_3 = 1), T_4(P_4 = 8, C_4 = 1) } Exemple 3 = { T_1(P_1 = 6, C_1 = 2), T_2(P_2 = 9, C_2 = 3), T_3(P_3 = 15, C_3 = 3), T_4(P_4 = 8, C_4 = 2) } Exemple 4 = { T_1(P_1 = 6, C_1 = 2), T_2(P_2 = 12, C_2 = 4), T_3(P_3 = 24, C_3 = 4), T_4(P_4 = 6, C_4 = 1) }
```

Figure 1 – Exemples à tester pour le mode 1

I.1 Rate Monotonic

FIGURE 2 – Rate Monotonic sur l'exemple 1 du mode 1

FIGURE 3 – Rate Monotonic sur l'exemple 2 du mode 1

l'exemple 3 n'est pas ordonnancable avec Rate Monotonic :

```
| Substitute | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namerum prosperam core/monocore pm pp | Protocol = RATE_MONOTONC_PROTOCOL, NOT_PREEMPTIVE_Speed = 1 | Processor namer
```

FIGURE 4 – Rate Monotonic sur l'exemple 3 du mode 1

FIGURE 5 – Rate Monotonic sur l'exemple 4 du mode 1

I.2 Earliest Deadline First

Figure 6 – Earliest Deadline First sur l'exemple 1 du mode 1

Figure 7 – Earliest Deadline First sur l'exemple 2 du mode 1

l'exemple 3 n'est pas ordonnancable avec Earliest Deadline First :

FIGURE 8 – Earliest Deadline First sur l'exemple 3 du mode 1

FIGURE 9 – Earliest Deadline First sur l'exemple 4 du mode 1

II Mode 2

Valeurs numériques à tester :

- I. Tâches périodiques = { $T_1(P_1 = 8, C_1 = 2), T_2(P_2 = 16, C_2 = 2), T_3(P_3 = 8, C_3 = 1), T_4(P_4 = 8, C_4 = 1)$ }
- II. Période du serveur = 16, Capacité du serveur = 4
- III. Période du serveur = 6, Capacité du serveur = 2
- IV. Tâches apériodiques Tap₁(instant d'arrivée = 3, C_{Tap1} = 2), Tap₂(instant d'arrivée = 4, C_{Tap2} = 5)

FIGURE 10 – Exemples à tester pour le mode 2

II.1 Serveur à Scrutation

FIGURE 11 – Serveur à Scrutation sur l'exemple P=16 C=4 du mode 2

FIGURE 12 – Serveur à Scrutation sur l'exemple P=6 C=2 du mode 2

II.2 Serveur Sporadique

FIGURE 13 – Serveur Sporadique sur l'exemple P=16 C=4 du mode 2

FIGURE 14 – Serveur Sporadique sur l'exemple P=6 C=2 du mode 2

III Mode 3

III.1 Rate Monotonic avec précédence

Règle de transformation de RM avec précédence :

Règles d'ajustement :
$$r_i^* = \underset{k}{\text{Max}} \{r_i, r_k^*, T_k \rightarrow T_i\}$$

 $\text{Prio}_i^* = \underset{k}{\text{Max}} \{\text{Pro}_i, \text{Prio}_k^* + a, T_i \rightarrow T_k\}, a>0$

FIGURE 15 – Règle de transformation de RM avec précédence

FIGURE 16 – Rate Monotonic avec précédence sur l'exemple 1 du mode 3

FIGURE 17 – Rate Monotonic avec précédence sur l'exemple 2 du mode 3

III.2 Earliest Deadline First avec précédence

Règle de transformation de l'EDF avec précédence :

Règle d'ajustement :
$$r_i^* = Max\{r_i, r_k^* + C_k, T_k \rightarrow T_i\}$$

$$d_i^* = Min_k\{d_i, d_k^* - C_k, T_i \rightarrow T_k\}$$

FIGURE 18 - Règle de transformation de l'EDF avec précédence

FIGURE 19 – Earliest Deadline First avec précédence sur l'exemple 1 du mode 3

Figure 20 – Earliest Deadline First avec précédence sur l'exemple 2 du mode 3

IV Mode 4

Valeurs numériques à tester :

```
\begin{split} & \mathsf{TP}_1: r=1 \;; \mathsf{P}=20 \;, \mathsf{LR}=\left( \begin{array}{c} r_1[1] \;; \; \{r_1[1] \mid \mid r_2[1]\}; \{r_3(1) \mid \mid r_4[1]\} \end{array} \right) \\ & \mathsf{TP}_2: r=2 \;; \mathsf{P}=30 \;, \mathsf{LR}=\left( \begin{array}{c} \{r_4[2] \mid \mid r_1[2]\}; \; r_1[2] \end{array} \right) \\ & \mathsf{TP}_3: r=1 \;; \mathsf{P}=40 \;, \mathsf{LR}=\left( \begin{array}{c} r_3[3]; \; \{r_4[2] \mid \mid r_2[3]\}; \{r_3[1] \mid \mid r_4[2]\} \end{array} \right) \\ & \mathsf{TP}_4: r=0 \;; \mathsf{P}=50 \;, \mathsf{LR}=\left( \begin{array}{c} r_2[1]; \; \{r_3[2] \mid \mid r_2[2] \mid \mid r_3[2]\}; \{r_3[1] \mid \mid r_4[2]\} \end{array} \right) \end{split}
```

FIGURE 21 – Règle de transformation de RM avec précédence

IV.1 Priority Inheritance Protocol

FIGURE 22 – Priority Inheritance Protocol sur l'exemple du mode 4

IV.2 Priority Ceiling Protocol

FIGURE 23 – Priority Ceiling Protocol sur l'exemple du mode 4