Email training, N5 October 9-16

Problem 5.1. Prove the inequality

$$\sqrt{a+1} + \sqrt{2a-3} + \sqrt{50-3a} < 12.$$

Problem 5.2. Let the parabola $y = x^2 + px + q$ is given, which intersects coordinate axes in 3 different points. Consider the circumcircle of the triangle having vertices these 3 points. Prove that there is a point that belongs to that circle, regardless of values p and q. Find that point.

Problem 5.3. Find all integer polynomials P for which $(x^2 + 6x + 10)P^2(x) - 1$ is the square of an integer polynomial.

Problem 5.4. a) Find the minimum number of elements that must be deleted from the set $\{1, 2, ..., 2018\}$ such that the set of the remaining elements does not contain two elements together with their product. b) Does there exist, for any k, an arithmetic progression with k terms in the infinite sequence

$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$$

Problem 5.5. Prove that not all zeros of a polynomial of the form $x^n + 2nx^{n-1} + 2n^2x^{n-2} + \dots$ can be real.

Problem 5.6. Let the polynomial $P(x) = a_{2n}x^{2n} + a_{2n-1}x^{2n-1} + \ldots + a_1x + a_0$ with all coefficients $a_i \in [100, 101]$ is given. Find the minimal possible value of n for which P(x) has a root.

Problem 5.7. -

The chord AC and BD of a circle with centre O intersects at the point K. The circumcenters of triangles AKB and CKD are M and N respectively. Prove that

Problem 5.8. -

OM = KN.

A convex quadrangle ABCD is inscribed in a circle with the center O. The angles \angle AOB, \angle BOC, \angle COD and \angle DOA, taken in some order, are of the same size as the angles of quadrangle ABCD. Prove that ABCD is a square.

Solution submission deadline October 16, 2022