M-оценки и ОМП

422 группа

Tue 28 Feb 2017

Содержание

M- и Z-оценки 1 2 Состоятельность 2 3 3 Скорость сходимости 3 4 Доверительные границы 4 4

f 1 M- и Z-оценки

По выборке $\mathbf{x} = (x_1, \dots, x_n)$, оценим параметр $\theta \in \Theta$. Введем функцию-критерий

$$m_{\theta}: \mathfrak{X} \to \bar{\mathbb{R}}.$$

показывающую насколько наблюдения соответствуют параметру и отображение

$$\theta \mapsto M_n(\theta) = \frac{1}{n} \sum_{i=1}^n m_{\theta}(x_i),$$

сопоставляющее каждому параметру его «подходящесть».

Определение (M-оценка¹). По принципу «наилучшей хорошести», оценка есть

$$\hat{\theta}_n = \operatorname*{argmax}_{\theta} M_n(\theta).$$

Замечание. Чтобы $\hat{\theta}_n$ было случайной величиной, требуем, чтобы $\hat{\theta}_n$ было измеримым, а для этого, чтобы Θ — польским (полным, измеримым, метрическим).

Замечание. Если взять $m = \log p_{\theta}$, то M-оценка есть ОМП.

Определение (Z-оценка²). Рассмотрим другие критерии $\psi_{\theta}(x)$ и отображение

$$\theta \mapsto \Psi_n(\theta) = \frac{1}{n} \sum_{i=1}^n \psi_{\theta}(x_i).$$

В качестве оценки найдем

$$\hat{\theta}_n = \operatorname{root}_{\theta} \Psi_n(\theta).$$

 $^{^1}$ «Maximum»

²«Zero»

3амечание. M-оценка может быть сведена к этой оценке $\psi_{\theta} = \partial m_{\theta}/\partial \theta$.

3амечание. ψ_{θ} должна быть, конечно, дифференцируема.

Пример. Пусть x_1, \ldots, x_n i.i.d. на $U[0, \theta)$, то $p_{\theta} = \theta^{-1} \mathbf{1}_{[0, \theta)}$ и

$$\theta \mapsto \sum_{i=1}^{n} (\log \mathbf{1}_{[0,\theta)}(x_i) - \log(\theta)).$$

Максимум z-оценки достигается на

$$\hat{\theta}_n = \max x_i$$
.

ОМП оценку не найти, потому что не продифференцировать индикатор.

2 Состоятельность

Пусть есть

$$M_n(\theta) = \frac{1}{n} \sum_{i=1}^n m_{\theta}(x_i) \xrightarrow[n \to \infty]{\mathsf{P}} \mathsf{E} m_{\theta} = M(\theta) = \int m_{\theta} \, \mathrm{d} \mathcal{P}_x.$$

Навесим агдтах на обе стороны:

$$M_n(\theta) \leadsto \hat{\theta}_n = \operatorname*{argmax}_{\theta} M_n(\theta).$$

Если бы argmax было непрерывным, то $\hat{\theta}_n \xrightarrow[n \to \infty]{\mathsf{P}} \theta^* = \operatorname{argmax} M(\theta)$. Нужно проверить следующие вещи:

- 1. Сходится ли $\hat{\theta}_n$ хоть к чему-нибудь.
- 2. Правда ли, что $\theta^* = \theta_0$.

argmax в принципе не является непрерывным. До тех пор, пока находимся в области притяжения параметра, всё хорошо, но как только из нее выходим, можем резко перескочить на другой экстремум.

2.1 Сходимость к чему-нибудь

Теорема (Вальд). Рассматриваем М-оценку. Пусть

1. m_{θ} полунепрерывна сверху по θ для почти всех x:

$$\lim_{\theta \to \theta_0} \sup \leq m_{\theta_0}, \quad \text{dir noumu } \operatorname{scex} x.$$

(если экстремум в θ_0 , то он хорошо выражен).

2. argmax должно быть случайной величиной. Для этого отображение

$$\forall B_{\delta} \subset \Theta \ x \mapsto \sup_{\theta \in B_{\delta}} m_{\theta}(x)$$

должено быть

- а) измеримо
- b) ограничнено:

$$\int \sup_{B_{\delta}} m_{\theta}(x) \, \mathrm{dP} < \infty.$$

Замечание. Пусть $\Theta^* = \{\theta^* \in \Theta : M(\theta^*) = \sup_{\theta} M(\theta)\}$. Еще ослабим условие: максимум будет достигаться асимптотически. Пусть интересует

$$\hat{\theta}_n = \operatorname{argmax}(M_n(\theta) - o(1))$$

(не доходим до максимума — с точки зрения приложений ок, потому что ищем оценки численно). T.e. интересуемся

$$M_n(\hat{\theta}_n) \ge c \sup_{\theta} M_n(\theta), \quad c \xrightarrow[n \to \infty]{} 1, \ 0 \le c < 1.$$

Тогда для любой такой последовательности оценок, $\forall \epsilon > 0 \ \forall K \subset \Theta \ (K - \text{компакт})$, верно, что

$$\mathsf{P}\left(\mathrm{dist}\left(\hat{\theta}_n, \theta^*\right) \geq \epsilon, \hat{\theta}_n \in K\right) \xrightarrow[n \to \infty]{} 0.$$

Иными словами, это условие на то, как оценка не сходится— либо последовательность сходится, либо выходит за компакт.

Следствие. Поэтому для \mathbb{R}^n всё либо сходится по вероятности, либо уходит на бесконечности — не может колебаться на манер $(-1)^n$. Это очень здорово.

2.2 Равенство $\theta^* = \theta_0$

Говорили, что ОМП получаются, когда

$$M_n(\theta) = \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(x_i).$$

Совершим трюк: добавим константу, так что

$$M_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{\theta}(x_i)}{p_{\theta_0}(x_i)}.$$

На максимум не влияет, конечно. Тогда

$$\frac{1}{n} \sum_{i=1}^{n} \ln \frac{p_{\boldsymbol{\theta}}}{p_{\boldsymbol{\theta}_0}}(x_i) \xrightarrow{\mathsf{P}} \int_{\mathbb{R}} \ln \left(\frac{p_{\boldsymbol{\theta}}(x)}{p_{\boldsymbol{\theta}_0}(x)} \right) p_{\boldsymbol{\theta}_0}(x) \, \mathrm{d}x = \mathsf{E} \ln \frac{p_{\boldsymbol{\theta}}}{p_{\boldsymbol{\theta}_0}} \leq \ln \mathsf{E} \frac{p_{\boldsymbol{\theta}}}{p_{\boldsymbol{\theta}_0}} = \ln \int_{\mathbb{R}} \frac{p_{\boldsymbol{\theta}}}{p_{\boldsymbol{\theta}_0}}(x) p_{\boldsymbol{\theta}_0}(x) \, \mathrm{d}x = \ln 1 = 0$$

так что

$$M(\theta) \leq 0.$$

Интересуемся $\theta: M(\theta) = 0$. Это так, когда $p_{\theta} = p_{\theta_0}$ для почти всех x. В предположении свойства $u \partial e h m u \phi u u u p y e m o c m u$ задачи ($\theta_1 \neq \theta_2 \implies \mathcal{P}_{\theta_1} \neq \mathcal{P}_{\theta_2}$), получаем $\theta = \theta_0$.

Таким образом, нужно иметь адекватную модель (выполнялось бы условие идентифицируемости). Для выполнимость теоремы Вальда достаточно компактности и $\sqrt{\log p}$... Компактность на практике выполняется — можно взять достаточно большой отрезок всегда.

Так что состоятельность выполняется.

3 Скорость сходимости

При выполнении некоторых условий регулярности (простые почти никогда не выполняются, сложные сложно проверить) ОМП асимптотически нормальны, т.е.

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, I^{-1}(\theta_0)).$$

Если условия регулярности не выполняются, может быть все что угодно. Обычно, если $\Theta = \mathbb{R}^n$, то оценки сходятся оч быстро. Иначе медленно.

4 Доверительные границы

4.1 Аппроксимация Вальда

Исходя из нормальной аппроксимации, доверительные границы можно

$$(\hat{\theta}_n - \theta_0)^{\mathrm{T}} \Sigma^{-1} (\hat{\theta}_n - \theta) \xrightarrow{\mathrm{d}} \chi_d^2.$$

Проблемы:

- Границы лишь асимптотические.
- Нужно знать Σ , зависящую от оцениваемого параметра. Поэтому нужно еще и оценивать Σ^{-1} .

Так можно делать в низких размерностях и при больших выборках.

4.2 Метод профилей правдоподобия

Пусть есть $\boldsymbol{\theta}$, dim $\boldsymbol{\theta} = k$. НУО, выделим $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$, dim $\boldsymbol{\theta}_1 = k_1$. Рассмотрим логарифм функции правдоподобия как функцию двух аргументов

$$\ell(\boldsymbol{\theta}) = \ell(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2).$$

Построим профиль

$$r(\boldsymbol{\theta}_2) = \ell(\hat{\boldsymbol{\theta}}_1(\boldsymbol{\theta}_2), \boldsymbol{\theta}_2),$$

где $\hat{\boldsymbol{\theta}}_1(\boldsymbol{\theta}_2)$ — MLE оценка $\boldsymbol{\theta}_1$ с данным $\boldsymbol{\theta}_2$: $\hat{\boldsymbol{\theta}}_1(\boldsymbol{\theta}_2) = \operatorname{argmax}_{\boldsymbol{\theta}_1} \ell(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$.

3амечание. Если $m{ heta}_2=(\hat{m{ heta}_2})_{
m MLE},$ то $\hat{m{ heta}}_1(\hat{m{ heta}_2})_{
m MLE}=(\hat{m{ heta}_1})_{
m MLE}.$

Утверждение. Пусть истинный параметр $\boldsymbol{\theta}_0 = (\boldsymbol{\theta}_{10}, \boldsymbol{\theta}_{20})$. Тогда

$$z^2 := -2\left(r(\boldsymbol{\theta}_{10}) - \ell(\hat{\boldsymbol{\theta}}_n)\right) \xrightarrow{\mathrm{d}} \chi^2(k_1).$$

Идея доказательства. Знаем, что $\hat{\boldsymbol{\theta}}_n$ имеет нормальное распределение, $\ell(\hat{\boldsymbol{\theta}}_n) \sim \chi^2$. Тогда в пределе ℓ должна выглядеть как сумма квадратов — можно разложить по Тейлору, будет что-то вроде

 $\cdots + \frac{1}{2} \left(\boldsymbol{\theta}_0 - \hat{\boldsymbol{\theta}}_n \right)^2 + \ldots$

Условия регулярности нужны чтобы убить все члены старше второго.

Нужно уметь обращать r, чтобы

$$\boldsymbol{\theta}_{10}: \operatorname{qnt}_{\chi^2}(\gamma_1) \leq -2 \, (\dots) \leq \operatorname{qnt}_{\chi^2}(\gamma_2).$$

Так что заменили задачу оценивания Σ^{-1} на задачу обращения детерминированной функции r. В качестве бонуса — профиль должен быть похож на квадратичную функцию, тогда доверительный интервал по квантилям будет правильно выбран (частный случай «локальной асимптотической нормальности»).

На глаз можно посмотреть график |z|. Когда всё хорошо, он будет выглядеть как модуль.

Пример. Пусть $\xi \sim N(\mu_0, \sigma_0^2)$, $\boldsymbol{\theta} = (\mu, \sigma^2)$. Пусть μ_0 известна; оценим по выборке σ^2 . Т.к. $\chi^2(1) = (N(0,1))^2$, то

$$z^{2} = -2(\underbrace{r(\mu_{0})}_{\max_{\sigma^{2}}\ell(\mu_{0},\sigma^{2})} - \ell(\mu_{0},\widehat{\sigma^{2}})) \xrightarrow{\mathrm{d}} (\mathrm{N}(0,1))^{2}.$$

Значит $z \xrightarrow{\mathrm{d}} \mathrm{N}(0,1)$. Ясно, что в $\widehat{\sigma^2} = \widehat{\sigma^2}_{\mathrm{MLE}}, |z| = 0$. На остальных значениях это модуль-галочка, причем по значениям |z| — квантилям $\mathrm{N}(0,1)$ — можно построить доверительный интервал для $\widehat{\sigma^2}$.

Замечание. В R — пакет bbmle, функция mle2. На выходе — объект типа mle. Это оценки + summary(mle). Построить профиль можно при помощи функции p <- profile(m). Вызывает optim и т.п. Профили можно рисовать: plot(p). Подсчет доверительных интервалов: confint(p).