1 Fun with least squares

In ordinary least squares we learn to predict a target scalar $y \in \mathbb{R}^l$ given a feature vector $\vec{x} \in \mathbb{R}^d$. Each element of \vec{x} is called a feature, which could correspond to a scientific measurement. For example, the *i*-th element of \vec{x} , denoted by $(\vec{x})_i$, could correspond to the velocity of a car at time *i*. y could represent the final location (say just in one direction) of the car.

For the purpose of predicting y from \vec{x} we are given n samples (\vec{x}_i, y_i) with $i = 1, \ldots, n$ (where feature vectors and target scalars are observed in pairs), which we also call the training set. In this problem we want to predict the unobserved target y corresponding to a new \vec{x} (not in the training set) by some linear prediction $\hat{y} = \vec{x}^{\top} \hat{\vec{w}}$ where the weight $\hat{\vec{w}} \in \mathbb{R}^d$ minimizes the least-squares training cost

$$\sum_{i=1}^{n} (\vec{x}_i^{\top} \vec{w} - y_i)^2 = \|\mathbf{X} \vec{w} - \vec{y}\|_2^2$$

where in the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, the transposed sample feature vectors \vec{x}_i^{\top} constitute the d-dimensional row vectors, and the n-dimensional vectors of training measurements $\vec{x}^j = ((\vec{x}_1)_j, \dots, (\vec{x}_n)_j)^{\top}$ for $j = 1, \dots, d$ correspond to the column vectors and $\vec{y} = (y_1, \dots, y_n)^{\top}$.

Let us actually build on the example mentioned above and view the measurements $(\vec{x}_i)j$ of each sample \vec{x}_i as a sequence of measurements, e.g. velocities of car i, over time $j = 1, \ldots, d$.

- (a) Is this problem in a supervised or unsupervised learning setting? **Please** explain.
- (b) Suppose that we want to learn (from our training set) to predict the location y from only the first t measurements. Denoting the prediction of y at time t by \hat{y}^t , we thus want to use $(\vec{x})_j$, $j = 1, \ldots, t$ to predict y. If we now learn how to obtain \hat{y}^t for each $t = 1, \ldots, d$, we end up with a sequence of estimators $\hat{y}^1, \ldots, \hat{y}^d$ for each car.

Provide a method to obtain \hat{y}^t for each t. Note that we will obtain a different model for each t.

(c) Someone suggests that maybe the measurements themselves are partially predictable from the previous measurements, which suggests employing a two stage strategy to solve the original prediction problem: First we predict the t-th measurement $(\vec{x})_t$ based on the previous measurements $(\mathbf{x})_1, \ldots, (\mathbf{x})_{t-1}$. Then we look at the differences (sometimes

deemed the "innovation") between the actual t-th measurement we obtained and our prediction for it, i.e. $(\Delta \vec{x})_t := (\vec{x})_t - (\hat{\vec{x}})_t$. Finally, we use $(\Delta \vec{x})_1, \ldots, (\Delta \vec{x})_t$ to obtain a prediction \tilde{y}^t .

In order to learn the maps which allow us to (1) take $(\mathbf{x})_1, \ldots, (\mathbf{x})_{t-1}$ to obtain $(\Delta \vec{x})_1, \ldots, (\Delta \vec{x})_t$ and (2) take $(\Delta \vec{x})_1, \ldots, (\Delta \vec{x})_t$ to predict \tilde{y}^t , we again use our training set. Specifically for each t, in stage (1), we fit the vectors of training measurements $\vec{x}^1, \ldots, \vec{x}^{t-1}$ linearly to \vec{x}^t using least squares for each t. In stage (2), we use the innovation vectors $(\Delta \vec{x}^1, \ldots, \Delta \vec{x}^t)$ to predict \vec{y}^t again using least squares. Let's define the matrix $\tilde{\mathbf{X}}^t := (\Delta \vec{x}^1, \ldots, \Delta \vec{x}^t)$ and $\tilde{\mathbf{X}} = \tilde{\mathbf{X}}^d$.

Show how we can learn the best linear predictions $\hat{\vec{x}}^t$ from $\vec{x}^1, \dots, \vec{x}^{t-1}$. Then **provide an expression** for \tilde{y}^t depending on the innovations $\Delta \vec{x}^1, \dots, \Delta \vec{x}^t$.

When presented with a new feature vector \vec{x} , are the sequence of final predictions of the one-stage training \hat{y}^t in (a) and two-stage training \tilde{y}^t in (b) the same? **Explain your reasoning.**

(d) Which well-known procedure do the steps to obtain \tilde{X} from X remind you of? (HINT: Think about how the column vectors in \tilde{X} are geometrically related.)

Is there an efficient way to update the weight vector $\hat{\vec{w}}^t$ from $\hat{\vec{w}}^{t-1}$ when computing the sequence of predictions \hat{y}^t ?

(e) Now let's consider the more general setting where we now want to predict a target vector $\vec{y} \in \mathbb{R}^k$ from a feature vector $\vec{x} \in \mathbb{R}^d$, thus having a training set consisting of observations (\vec{x}_i, \vec{y}_i) for $i = 1, \ldots, n$.

Instead of learning a weight vector $\vec{w} \in \mathbb{R}^d$, we now want a linear estimate $\hat{\vec{y}} = \hat{\mathbf{W}}\vec{x}$ with a weight matrix $\hat{\mathbf{W}} \in \mathbb{R}^{k \times d}$ instead. From our samples, we obtain wide matrices $\mathbf{Y} \in \mathbb{R}^{k \times n}$ with columns $\vec{y}_1, \ldots, \vec{y}_n$ and $\mathbf{X} \in \mathbb{R}^{d \times n}$ with columns $\vec{x}_1, \ldots, \vec{x}_n$. In order to learn $\hat{\mathbf{W}}$ we now want to minimize $\|\mathbf{Y} - \mathbf{W}\mathbf{X}\|_F^2$ where $\|\cdot\|_F$ denotes the Frobenius norm of matrices, i.e. $\|\mathbf{L}\|_F^2 = \operatorname{trace}(\mathbf{L}^{\top}\mathbf{L})$.

Show how to find $\hat{\mathbf{W}} = \arg\min_{\mathbf{W} \in \mathbb{R}^{d \times d}} \|\mathbf{Y} - \mathbf{W}\mathbf{X}\|_F^2$ using vector calculus.

(f) In the setting of problem (e), **argue why** the computation of the best linear prediction $\hat{\vec{y}}$ of a target vector \vec{y} using a feature vector \vec{x} can be

solved by separately finding the best linear prediction for each measurement $(\mathbf{y})_j$ of the target vector \vec{y} .