Chapitre 11 : Séries entières

I Séries entières et rayon de convergence

A) Définitions relatives aux séries entières

• Soit $(a_n)_{n\in\mathbb{N}}$ une suite de \mathbb{C} .

On appelle série entière de coefficients les a_n la série de fonctions de terme général $u_n(z) = a_n z^n$ (avec la convention $z^0 = 1$, soit $u_0(z) = a_0$). On notera souvent $\sum_{n=0}^{+\infty} a_n z^n$ une telle série. La variable z peut être réelle ou complexe.

• Opérations linéaires :

Soient $\sum_{n=0}^{+\infty} a_n z^n$, $\sum_{n=0}^{+\infty} b_n z^n$ deux séries entières, et $\lambda \in \mathbb{C}$.

On note $\sum_{n=0}^{+\infty} a_n z^n + \lambda \sum_{n=0}^{+\infty} b_n z^n$ la série entière de coefficients les $a_n + \lambda b_n$.

Donc, par définition : $\sum_{n=0}^{+\infty} a_n z^n + \lambda \sum_{n=0}^{+\infty} b_n z^n = \sum_{n=0}^{+\infty} (a_n + \lambda b_n) z^n$

• Produit de Cauchy de deux séries entières :

La série entière produit de deux séries entières $\sum_{n=0}^{+\infty} a_n z^n$ et $\sum_{n=0}^{+\infty} b_n z^n$ est la série

entière $\sum_{n=0}^{+\infty} c_n z^n$ où $c_n = \sum_{k=0}^n a_k b_{n-k}$

Extension

Si $(a_n)_{n\geq n_0}$ n'est définie qu'à partir d'un rang $n_0>0$, on ajoute $a_0=\ldots=a_{n_0-1}=0$

Exemple:

La série entière de coefficients les $\frac{1}{n}$ est $\sum_{n=1}^{+\infty} \frac{z^n}{n} = \sum_{n=0}^{+\infty} a_n z^n$ où $a_n = \begin{cases} 0 \text{ si } n = 0 \\ \frac{1}{n} \text{ sinon} \end{cases}$

Exemples de produits :

On pose $a_n = a^n$, $b_n = b^n$ pour $a, b \in \mathbb{C}$.

Les coefficients de la série entière produit sont $c_n = \sum_{k=0}^n a^k b^{n-k}$

Si
$$a \neq b$$
, $c_n = \frac{a^{n+1} - b^{n+1}}{a - b}$ donc $\left(\sum_{n=0}^{+\infty} a_n z^n\right) \times \left(\sum_{n=0}^{+\infty} b_n z^n\right) = \sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a - b} z^n$

Si a = b, $c_n = (n+1)a^n$.

Si $a \neq b$, la série entière produit $\left(\sum_{n=0}^{+\infty} a_n z^n\right) \times \left(\sum_{n=0}^{+\infty} b_n z^n\right)$ s'écrit aussi :

$$\left(\sum_{n=0}^{+\infty} a_n z^n\right) \times \left(\sum_{n=0}^{+\infty} b_n z^n\right) = \frac{a}{a-b} \sum_{n=0}^{+\infty} a_n z^n + \frac{b}{b-a} \sum_{n=0}^{+\infty} b_n z^n$$

Attention : ces énoncés ne contiennent aucune propriété de convergence.

B) Rayon de convergence

Morale:

Le rayon de convergence d'une série caractérise à peu près les modes de convergence de la série de fonctions $\sum_{n=0}^{+\infty} a_n z^n$ et les propriétés analytiques de la somme.

• Lemme d'Abel:

Soit $\sum_{n=0}^{+\infty} a_n z^n$ une série entière. On suppose que la *suite* $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée pour un certain $z_0 \in \mathbb{C}$.

Alors pour tout $z \in \mathbb{C}$, si $|z| < |z_0|$, alors la *série* de terme général $a_n z^n$ est absolument convergente.

Démonstration:

Supposons que $\forall n \in \mathbb{N}, |a_n z_0^n| \leq M$.

Alors pour $|z| < |z_0|$ et $n \ge 0$,

$$\left|a_n z^n\right| = \left|a_n z_0^n\right| \times \left|\left(\frac{z}{z_0}\right)^n\right| \le M r^n \text{ où } r = \left|\frac{z}{z_0}\right| \in [0;1[$$
.

Donc la série est absolument convergente.

Théorème:

Soit $\sum_{n=0}^{+\infty} a_n z^n$ une série entière.

L'ensemble des réels r positifs tels que la suite $(a_n r^n)_{n \in \mathbb{N}}$ est bornée est un intervalle de \mathbb{R}_+ contenant 0.

Démonstration:

- Si $(a_n r^n)_{n \in \mathbb{N}}$ est bornée, et si $0 \le s < r$, alors la série de terme général $a_n s^n$ converge (absolument), donc la suite $(a_n s^n)_{n \in \mathbb{N}}$ tend vers 0 et est donc bornée.
- Si r = 0, $(a_n r^n)_{n \in \mathbb{N}}$ est bornée...
- Rayon de convergence :

On appelle rayon de convergence de la série entière $\sum_{n=0}^{+\infty} a_n z^n$ l'élément $\sup\{r \ge 0, (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée}\}$ de $[0;+\infty]$

Si R est le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} a_n z^n$, l'ensemble des $r \ge 0$ tels que $(a_n r^n)_{n \in \mathbb{N}}$ est bornée est soit [0; R], soit [0; R[.

• Partition du plan associée à R.

Théorème:

- Si $R = +\infty$, alors pour tout $z \in \mathbb{C}$, la série de terme général $a_n z^n$ converge absolument
- Si R = 0, pour tout $z \in \mathbb{C} \setminus \{0\}$, la suite $a_n z^n$ n'est pas bornée; en particulier, la série diverge.

- Si $R \neq 0$ et $R \neq +\infty$:

Pour tout z tel que |z| < R, la série de terme général $a_n z^n$ est absolument convergente.

Si |z| > R, la suite $a_n z^n$ n'est pas bornée, donc la série diverge grossièrement.

Si |z| = R, on ne peut rien dire en général.

On a ainsi une partition du plan complexe en trois parties (dans le dernier cas).

Démonstration:

- Si $R = +\infty$, alors pour tout $z \in \mathbb{C}$, il existe $r \ge 0$ tel que r > |z| et $(a_n r^n)_{n \in \mathbb{N}}$ est bornée.

D'après le lemme d'Abel, la série de terme général $a_n z^n$ est absolument convergente.

- Pour tout $z \neq 0$, la suite $(a_n |z|^n)_{n \in \mathbb{N}}$ n'est pas bornée (définition du rayon de convergence)
- Si |z| > R, la suite $(a_n |z|^n)_{n \in \mathbb{N}}$ n'est pas bornée

Si |z| < R, il existe $r \in]z|$, R[tel que $(a_n r^n)_{n \in \mathbb{N}}$ est bornée.

Puis, d'après le lemme d'Abel, la série de terme général $a_n z^n$ est absolument convergente.

- Exemples:
- Série entière de rayon de convergence infini :

$$\forall n \in \mathbb{N}, a_n = 0 \; ; \; \forall n \in \mathbb{N}, a_n = \frac{1}{n!}$$

- Série entière de rayon de convergence nul : $\sum_{n=0}^{+\infty} n! . z^n$
- Série entière de rayon de convergence $R \in \left]0; +\infty\right[: \sum_{n=0}^{+\infty} \frac{z^n}{R^n}$

C) Rayon de convergence d'une somme et d'un produit

Théorème:

Soit R_a le rayon de convergence d'une série entière $\sum_{n=0}^{+\infty} a_n z^n$, R_b celui d'une série entière $\sum_{n=0}^{+\infty} b_n z^n$. Alors le rayon de convergence des séries somme et produit sont supérieurs à $\min(R_a,R_b)$. Et pour la somme : si $R_a \neq R_b$, le rayon de convergence de $\sum_{n=0}^{+\infty} (a_n + b_n) z^n$ est égal à $\min(R_a,R_b)$.

Démonstration:

Pour $|z| < \min(R_a, R_b)$, on a:

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n \text{ et } \sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

$$où c_n = \sum_{k=0}^n a_k b_{n-k}$$

Donc $\sum_{n=0}^{+\infty} (a_n + b_n) z^n$ est absolument convergente, idem pour $\sum_{n=0}^{+\infty} c_n z^n$ (théorème sur le produit de Cauchy). En particulier, $((a_n + b_n) z^n)_{n \in \mathbb{N}}$ et $(c_n z^n)_{n \in \mathbb{N}}$ sont bornées et donc le rayon de convergence de la série somme est $\geq |z|$. D'où

Si $R_a \neq R_b$, disons par exemple $R_a < R_b$.

Pour $r \in]R_a, R_b[, (a_n r^n)_{n \in \mathbb{N}}$ n'est pas bornée, $(b_n r^n)_{n \in \mathbb{N}}$ est bornée.

Donc $(a_n + b_n)r^n$)_{$n \in \mathbb{N}$} est non bornée.

Donc pour tout $r \in R_a, R_b$, le rayon de convergence de la série somme est plus petit que r.

Comme de plus il est plus grand que R_a , ce rayon vaut R_a .

Exemples:

 $\forall n \in \mathbb{N}, a_n = -b_n = 1.$

Alors $R_a = R_b = 1$ mais $R_{\Sigma} = +\infty$.

On prend $(a_n)_{n\in\mathbb{N}}$ telle que $\frac{1-z}{1+z} = \sum_{k=0}^{+\infty} a_n z^k$, et $b_n = (-1)^n a_n$;

Ainsi,
$$\sum_{k=0}^{+\infty} b_n z^n = \frac{1+z}{1-z}$$
.

Et
$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = \begin{cases} 1 \text{ si } n = 0 \\ 0 \text{ sinon} \end{cases}$$

On a alors $R_a = R_b = 1$, mais $R_{\Pi} = +\infty$

Avec
$$\sum_{k=0}^{+\infty} a_n z^n = \frac{1-z/2}{1+z}$$
, $R_a = 1$, $\sum_{k=0}^{+\infty} b_n z^n = \frac{1+z}{1-z/2}$, $R_b = 2$.

Et $R_{\Pi} = +\infty$.

D) Méthodes de calcul du rayon de convergence

• Un outil pratique : la règle de d'Alembert.

Théorème:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de complexes telle que :

(1) Il existe $N \in \mathbb{N}$ tel que $\forall n \ge N, a_n \ne 0$.

(2) La suite
$$\left| \frac{a_{n+1}}{a_n} \right|$$
 tend vers $l \in [0; +\infty]$

Alors le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} a_n z^n$ est $R = \frac{1}{l} \in [0; +\infty]$

$$(1/\infty = 0, 1/0 = \infty)$$

Attention : ce théorème n'est qu'une condition suffisante.

Démonstration:

Pour $z \neq 0$,

$$\lim_{n \to +\infty} \left| \frac{a_{n+1} z^{n+1}}{a_n z^n} \right| = |z|l$$

Discussion:

Pour $0 < l < +\infty$,

- Si |z| < 1/l, d'après la règle de d'Alembert sur les séries numérique, la série de terme général $a_n z^n$ est absolument convergente donc le rayon de convergence est $\ge 1/l$.
- Si |z| > 1/l, alors $|a_n z^n| \to +\infty$, donc $(a_n |z|^n)_{n \in \mathbb{N}}$ n'est pas bornée, et le rayon de convergence est $\leq 1/l$.

Si l=0, on a toujours convergence absolue, donc le rayon de convergence est $+\infty$ Si $l=+\infty$, on a toujours divergence grossière si $z \neq 0$, donc le rayon de convergence est nul.

Exemple:

$$\sum_{n=0}^{+\infty} \frac{n! z^n}{(n+1)...(2n+1)}$$
; rayon de convergence, étude en $\pm R$?

On a
$$\frac{a_{n+1}}{a_n} = \frac{(n+1) \times n!}{(n+2)...(2n+3)} \times \frac{(n+1)...(2n+1)}{n!} = \frac{(n+1)^2}{(2n+2)(2n+3)} \to \frac{1}{4}$$

Donc le rayon de convergence vaut R = 4

Etude en ± 4 :

On a
$$\frac{4^{n+1}a_{n+1}}{4^na_n} = \frac{2(n+1)}{2n+3} < 1$$

Donc la suite $(4^n a_n)_{n \in \mathbb{N}}$ décroît.

On cherche un équivalent de $u_n = 4^n a_n$ en $+\infty$.

On va chercher α et K > 0 tels que $u_n \sim Kn^{\alpha}$.

On cherche déjà α tel que la suite de terme général $\ln\left(\frac{u_n}{n^{\alpha}}\right)$ converge.

On va étudier plutôt la série de terme général $\ln\left(\frac{u_n}{n^{\alpha}}\right) - \ln\left(\frac{u_{n-1}}{(n-1)^{\alpha}}\right)$:

$$\ln\left(\frac{u_n}{n^{\alpha}}\right) - \ln\left(\frac{u_{n-1}}{(n-1)^{\alpha}}\right) = \ln\frac{u_n}{u_{n-1}} + \alpha \ln\frac{n-1}{n}$$

$$= \ln\left(\frac{2n}{2n+1}\right) + \alpha \ln\left(1 - \frac{1}{n}\right)$$

$$= -\ln\left(1 + \frac{1}{2n}\right) + \alpha \ln\left(1 - \frac{1}{n}\right)$$

$$= -\left(\alpha + \frac{1}{2}\right)\frac{1}{n} + O\left(\frac{1}{n^2}\right)$$

Ainsi, si on prend $\alpha = -\frac{1}{2}$, la série converge (absolument), donc la suite de terme

général $\ln \frac{u_n}{n^{\alpha}}$ converge vers $\lambda \in \mathbb{R}$, et $\frac{u_n}{n^{\alpha}} \to e^{\lambda}$, c'est-à-dire $u_n \sim e^{\lambda} n^{\alpha}$

On a donc aussi trouvé K tel que $u_n \sim \frac{K}{\sqrt{n}}$

Ainsi : en R = 4, il y a divergence car $4^n a_n \sim \frac{K}{\sqrt{n}}$

Et en R = -4, il y a convergence par critère de Leibniz.

Séries hypergéométriques :

On pose $a_0 = 1$, $\forall n \in \mathbb{N}$, $a_{n+1} = a_n \times F(n)$ où

$$F = \frac{(X - \alpha_1)...(X - \alpha_r)}{(X - \beta_1)...(X - \beta_s)}, \text{ avec } \forall i \in [1, r], \alpha_i \in \mathbb{C}, \forall i \in [1, s], \beta_i \in \mathbb{C} \setminus \mathbb{N}$$

On cherche le rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$.

S'il existe $i_0 \in [1, r]$ tel que $\alpha_{i_0} \in \mathbb{N}$, alors $F(\alpha_{i_0}) = 0$, et $\forall n > \alpha_{i_0}, a_n = 0$, donc le rayon de convergence est infini.

Si $\forall i \in \left[1, r\right], \alpha_i \notin \mathbb{N}$, alors $\forall n \in \mathbb{N}, \alpha_n \neq 0$

Et
$$\left| \frac{a_{n+1}}{a_n} \right| = \left| F(n) \right| \underset{n \to +\infty}{\sim} n^{r-s}$$
, soit $\left| \frac{a_{n+1}}{a_n} \right| \to \begin{cases} 0 \text{ si } r < s \\ 1 \text{ si } r = s \end{cases}$, et le rayon de convergence $+\infty \text{ si } r > s$

est alors
$$\begin{cases} + \infty \sin r < s \\ 1 \sin r = s \\ 0 \sin r > s \end{cases}$$

• Par le comportement des suites et séries de $a_n z^n$.

Avoir à l'esprit la partition :

Exemple:

Si pour $z_0 \in \mathbb{C}$, la série de terme général $a_n z_0^n$ est semi-convergente mais pas absolument convergente, le rayon de convergence est $|z_0|$.

Soient
$$a,b \in \mathbb{C}^*$$
; on pose $a_0 = 1$, et pour $n \in \mathbb{N}$,
$$\begin{cases} a_{n+1} = a.a_n & \text{si } n \equiv 0 \text{ [2]} \\ a_{n+1} = b.a_n & \text{si } n \equiv 1 \text{ [2]} \end{cases}$$

Quel est le rayon de convergence de la série entière de coefficients les a_n ?

On montre par récurrence que
$$\forall n \in \mathbb{N}, \begin{cases} a_{2n+1} = a^{n+1}b^n \\ a_{2n} = a^nb^n \end{cases}$$

Pour r > 0, la suite $(a_n r^n)_{n \in \mathbb{N}}$ est bornée si et seulement si les deux suites $(a_{2n} r^{2n})_{n \in \mathbb{N}}$ et $(a_{2n+1} r^{2n+1})_{n \in \mathbb{N}}$ sont bornées, c'est-à-dire si et seulement si $r^2 |ab| \le 1$.

Donc le rayon de convergence vaut $\frac{1}{\sqrt{|ab|}}$

• Comparaison avec les séries, séries majorantes.

Le rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$ est non nul si et seulement si il existe $\rho > 0$, $M \ge 0$ tels que $\forall n \in \mathbb{N}, |a_n| \le M \rho^n$.

En effet:

Si le rayon de convergence est non nul, il existe r > 0 tel que la suite $(a_n r^n)_{n \in \mathbb{N}}$ est bornée, c'est-à-dire qu'il existe M tel que $\forall n \in \mathbb{N}, \left|a_n r^n\right| \leq M$, et $\rho = \frac{1}{r}$ convient.

Inversement, si $\forall n \in \mathbb{N}, |a_n| \leq M\rho^n$, alors le rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$ est supérieur à $\frac{1}{\rho}$.

Règle de Hadamard (hors programme):

Le rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$ est $R = \frac{1}{\overline{\lim_{n \to +\infty} \sqrt[n]{|a_n|}}}$

Où : Si u_n est une suite bornée de réels positifs, on pose :

 $\overline{\lim_{n\to+\infty}} u_n = \lim_{n\to+\infty} \sup\{u_k, k \ge n\} \text{ (α limite supérieure α)}$

C'est-à-dire que $\lim_{n\to+\infty} u_n$ est la plus grande valeur d'adhérence de u.

Si u_n est positive non majorée, $\overline{\lim}_{n\to+\infty} u_n = +\infty$

Notes:

Si $0 \le u_n \le M$, $v_m = \sup\{u_k, k \ge m\}$ est bien définie, et $\forall m \in \mathbb{N}, 0 \le v_{m+1} \le v_m$, donc $(v_m)_{m \in \mathbb{N}}$ converge bien.

 $\lim_{m \to +\infty} v_m \text{ est une valeur d'adhérence de } u : \forall m \in \mathbb{N}, \exists k_m \ge m, v_m \ge u_{k_m} \ge v_m + \frac{1}{m}$

Toute valeur d'adhérence de u est plus petite que $\overline{\lim_{n \to +\infty}} u_n$: si $u_{\varphi(n)} \to \alpha$, alors $\forall m \in \mathbb{N}, v_m \ge \alpha$.

Démonstration de la règle de Hadamard :

Pour
$$r \ge 0$$
, on a $\overline{\lim_{n \to +\infty}} \sqrt[n]{|a_n| r^n} = r \times \overline{\lim_{n \to +\infty}} \sqrt[n]{|a_n|} = \frac{r}{R}$ où on a posé $R = \frac{1}{\overline{\lim_{n \to +\infty}} \sqrt[n]{|a_n|}}$

Si
$$r > R$$
, il existe $N \in \mathbb{N}$ tel que $\forall m \ge N, \sup \left\{ \sqrt{\left|a_k\right| r^k}, k \ge m \right\} > \rho$ où $\rho \in \left[1, \frac{r}{R}\right[$.

Donc pour tout $m \ge N$, il existe $k \ge m$ tel que $\sqrt[k]{|a_k|r^k} \ge \rho$, et $|a_k|r^k \ge \rho^k > 1$, donc $a_k r^k \to 0$.

Si r < R: il existe $N \in \mathbb{N}$ tel que $\forall m \ge N$, $\forall m \ge N, \sup \{\sqrt[k]{|a_k|r^k}, k \ge m\} < \rho$ où $\rho \in \left]\frac{r}{R}, 1\right[$

Donc $\forall k \ge m \ge N, \sqrt[k]{|a_k|r^k} < \rho$, soit $|a_k|r^k \le \rho^k$, et la série converge.

II Différents modes de convergence d'une série entière

Problème:

Dans quelle mesure le rayon de convergence détermine-t-il les modes de convergence ?

On considère ici une série entière $\sum_{n=0}^{+\infty} a_n z^n$ de rayon de convergence R.

A) Domaine de convergence simple

Théorème:

Le domaine de convergence simple de $\sum_{n=0}^{+\infty} a_n z^n$, c'est-à-dire le domaine de

définition de $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ vérifie :

- (1) Pour les réels, $]-R, R[\subset Def_{\mathbb{R}}(f) \subset [-R, R]$
- (2) Pour les complexes, $D_o(0,R) \subset \operatorname{Def}_{\mathbb{C}}(f) \subset D_f(0,R)$

Démonstration:

Voir I.

Pour |z| < R, il y a convergence absolue.

Pour |z| > R, il y a divergence grossière.

Exemples:

Avec R = 1:

(1)
$$\sum_{n=0}^{+\infty} z^n$$
: $\operatorname{Def}_{\mathbb{C}}(f) = D_o(0,1)$

(2)
$$\sum_{n=0}^{+\infty} \frac{z^n}{(n+1)^2}$$
: $\operatorname{Def}_{\mathbb{C}}(f) = D_f(0,1)$

(3)
$$\sum_{n=0}^{+\infty} \frac{z^{n+1}}{n+1}$$
: $\operatorname{Def}_{\mathbb{C}}(f) = D_f(0,1) \setminus \{1\}$

$$\sum_{n=0}^{+\infty} \frac{z^{15(n+1)}}{n+1} : \mathrm{Def}_{\mathcal{C}}(f) = D_f(0,1) \setminus \mathbf{U}_{15}$$

B) Convergence uniforme et normale

Théorème :

Une série entière de rayon de convergence R non nul converge normalement donc uniformément sur tout disque fermé de centre 0 et de rayon r < R

Attention

En général, une série entière ne converge pas uniformément sur $D_o(0,R)$ ni sur $\mathrm{Def}_{\mathbb{C}}(f)$.

Démonstration:

Pour $r \in [0, R[$, $\sup_{|z| \le r} \left| a_n z^n \right| = \left| a_n \right| r^n$, terme général d'une série convergente car $0 \le r < R$.

C) Application à
$$f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$$
.

Théorème :

f est continue sur le disque ouvert de convergence absolue.

Attention : en général, f n'est pas continue sur $Def_c(f)$

En effet, pour r < R, f est limite uniforme sur $D_f(0,r)$ d'une suite de fonctions continues, donc f est continue.

Ainsi, f est continue sur $\bigcup_{r < R} D_f(0, r) = D_o(0, R)$.

Exercices de compléments :

(On suppose que $0 < R < +\infty$)

- (1) Si $\sum_{n=0}^{+\infty} a_n R^n$ est absolument convergente, alors on a convergence normale sur $D_f(0,R)$. Donc le domaine de définition de f est $D_f(0,R)$ et f y est continue.
- (2) Cas de la variable réelle : utilisation des séries alternées.

On suppose que $\forall n \in \mathbb{N}, (-1)^n a_n \ge 0$, et que $|a_n R^n|$ décroît vers 0.

Alors $\sum_{n=0}^{+\infty} a_n x^n$ converge uniformément (mais pas toujours normalement) sur

[0,R], et $D_{\mathbb{R}}(f)$ contient R et est continu en R.

En effet:

Pour
$$x \in [0, R]$$
, $u_n(x) = a_n x^n = (-1)^n \underbrace{(-1)^n a_n R^n}_{\ge 0} \underbrace{\left(\frac{x}{R}\right)^n}_{\ge 0}$

Donc $u_n(x)$ est alternée, et de plus $|u_n(x)|$ décroît vers 0.

Donc la série de terme général $u_n(x)$ converge (critère de Leibniz)

De plus, pour tout
$$n \in \mathbb{N}$$
, $\left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \le |u_{n+1}(x)| \le |a_n R^n|$

Donc
$$||R_n||_{\infty} \to 0$$

Il y a donc convergence simple, et la suite $(R_n)_{n\in\mathbb{N}}$ converge uniformément vers 0, donc la série converge uniformément.

(3) Théorème de convergence radiale d'Abel:

Soit
$$\sum_{n=0}^{+\infty} a_n z^n$$
 une série entière, $z_0 \in \mathbb{C}^*$ tel que $\sum_{n=0}^{+\infty} a_n z_0^n$ converge.

Alors
$$\sum_{n=0}^{+\infty} a_n z^n$$
 est uniformément convergente sur $[0, z_0]$

En particulier, $f_{/[0,z_0]}$ est continue en z_0 .

Démonstration:

On pose $z = z_0 u$ pour $u \in [0;1]$

Alors
$$\sum_{n=0}^{+\infty} a_n z^n = \sum_{n=0}^{+\infty} a'_n u^n$$
 où $a'_n = a_n z_0^n$

On est donc ramené au même problème avec $z_0 = 1$, ce qu'on suppose.

On suppose donc que $\sum_{n=0}^{+\infty} a_n$ converge et on veut montrer que $\sum_{n=0}^{+\infty} a_n x^n$ est uniformément convergente sur [0;1]. Posons $r_n = \sum_{k=0}^{+\infty} a_k$.

On va montrer le critère de Cauchy pour la convergence uniforme.

Soient $n, m \in \mathbb{N}$ avec $n \ge m$. Alors:

$$\sum_{k=m}^{n} a_k x^k = \sum_{k=m}^{n} (r_{k-1} - r_k) x^k = \sum_{j=m-1}^{n-1} r_j x^{j+1} - \sum_{j=m}^{n} r_j x^j$$
$$= \sum_{j=m}^{n} r_j (x^{j+1} - x^j) + r_{m-1} x^m - r_n x^{n+1}$$

Donc
$$\left| \sum_{k=m}^{n} a_k x^k \right| \le \sum_{j=m}^{n} |r_j| |x|^j |1-x| + |r_{m-1}| |x|^m - |r_n| |x|^{n+1}$$

Soit $\varepsilon > 0$, et $N \in \mathbb{N}$ tel que $\forall n \ge N, |r_n| \le \varepsilon$

Pour
$$n \ge m \ge N$$
, $\left| \sum_{k=m}^{n} a_k x^k \right| \le \varepsilon \left(\sum_{j=m}^{n} x^j \left| x - 1 \right| + x^m + x^{n+1} \right) \le 2\varepsilon x^m \le 2\varepsilon$

Remarque:

Comme conséquence, on a le fait que pour toute série entière de rayon de convergence R, $x \in \operatorname{Def}_{\mathbb{R}}(f) \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue (même en $\pm R$ si ils sont dans

 $\operatorname{Def}_{\mathbb{R}}(f)$

(4) Expression intégrale des coefficients :

On suppose que R > 0, on note $f(z) = \sum_{n=0}^{+\infty} a_n z^n$.

Pour tout $x \in [0; R[, \varphi: t \mapsto f(re^{it})]$ est définie et continue sur \mathbb{R} , et :

$$\forall n \in \mathbb{N}, \frac{1}{2\pi} \int_0^{2\pi} f(re^{it}) e^{-i.nt} dt = a_n r^n$$

Démonstration:

 $t\mapsto re^{it}$ est continue à valeurs dans $D_o(0,R)$ où f est continue donc φ est continue sur \mathbb{R} .

Soit $n \in \mathbb{N}$. On a:

$$\int_0^{2\pi} f(re^{it})e^{-i.nt}dt = \int_0^{2\pi} \left(\sum_{k=0}^{+\infty} a_k (re^{it})^k\right) e^{-i.nt}dt = \int_0^{2\pi} \sum_{k=0}^{+\infty} a_k r^k e^{i(k-n)t}dt$$

On pose $u_k(t) = a_k r^k e^{i(k-n)t}$. Alors u_k est continue et $||u_k||_{\infty} = |a_k| r^k$, terme général d'une série convergente (r < R)

Donc $\sum_{n=0}^{+\infty} u_n$ est normalement, donc uniformément convergente sur $[0;2\pi]$, et on peut intervertir l'intégrale et la somme :

$$\int_0^{2\pi} f(re^{it})e^{-i.nt}dt = \sum_{k=0}^{+\infty} a_k r^k \int_0^{2\pi} e^{i(k-n)t}dt = 2\pi a_n r^n$$

Théorème de Liouville :

Soit f une fonction entière. On suppose qu'il existe A, B, C > 0 tels que $\forall z \in \mathbb{C}, |f(z)| \leq A + B|z|^C$. Alors f est un polynôme

(Fonction entière : somme d'une série entière de rayon de convergence infini)

Démonstration :

Supposons que
$$\forall z \in \mathbb{C}, f(z) = \sum_{n=0}^{+\infty} a_n z^n$$
.

Pour tout
$$n \in \mathbb{N}$$
 et $r > 0$, on a $a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(re^{it}) e^{-i.nt} dt$

Donc
$$|a_n| \le \frac{1}{2\pi r^n} \int_0^{2\pi} |f(re^{it})| dt \le \frac{1}{r^n} (A + Br^C)$$

Pour n > C, le passage à la limite quand $r \to +\infty$ donne $a_n = 0$, c'est-à-dire

$$f(z) = \sum_{n=0}^{C} a_n z^n$$

III Propriétés analytiques de la somme d'une série entière

Morale:

Sur]-R; R[, on calcule avec la somme d'une série entière comme avec un polynôme.

A) Régularité

Lemme:

Une série entière $\sum_{n=0}^{+\infty} a_n z^n$ et la série dérivée formelle $(\sum_{n=1}^{+\infty} n a_n z^{n-1})$ ont le même rayon de convergence.

Démonstration:

On note R le rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$, R celui de $\sum_{n=1}^{+\infty} n a_n z^{n-1}$.

Pour $r \in [0; R'[$, on a pour $n \ge 1$: $a_n r^n = n a_n r^{n-1} \times \frac{r}{n}$

Comme $(na_n r^{n-1})_{n \in \mathbb{N}^*}$ est bornée, $(a_n r^n)_{n \in \mathbb{N}}$ l'est aussi.

Donc $[0; R'[\subset [0; R], \text{ et } R \ge R']$.

Si $r \in [0; R[$, soit $s \in]r, R[$. Alors $(a_n s^n)_{n \in \mathbb{N}}$ est bornée, et :

$$\forall n \ge 1, na_n r^{n-1} = a_n s^n \times \frac{1}{s} n \left(\frac{r}{s}\right)^{n-1}$$

Comme $(a_n s^n)_{n \in \mathbb{N}}$ est bornée, et $\lim_{n \to +\infty} n \left(\frac{r}{s}\right)^{n-1} = 0$, la suite $(na_n r^{n-1})_{n \ge 1}$ est bornée, et donc $r \le R'$.

Donc $[0; R[\subset [0; R'], d'où l'autre inégalité puis <math>R = R'$.

Théorème:

La somme d'une série entière de rayon de convergence R est de classe C^{∞} et indéfiniment dérivable terme à terme sur -R, R[.

Remarque:

Ce théorème remplace l'appel au théorème sur les caractérisations C^k des séries de fonctions (Mais il ne donne *aucune* information sur $\pm R$)

Corollaire : unicité du développement en série entière de séries entière de rayon de convergence non nul :

Si $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour $x \in]-R, R[$ où R est le rayon de convergence, strictement

positif, alors $\forall n \in \mathbb{N}, a_n = \frac{f^{(n)}(0)}{n!}$ (C'est-à-dire que la série est la série de Taylor)

Démonstration:

Pour le théorème :

Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ de rayon de convergence R > 0.

Posons $u_n(x) = a_n x^n$. Alors u_n est de classe C^1 .

Le rayon de convergence de $\sum_{n=0}^{+\infty} u'_n$ est encore R.

Donc sur tout segment [-r,r] où r < R, les deux séries $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} u'_n$ sont normalement convergentes donc uniformément convergentes.

Ainsi, f est de classe C^1 , dérivable terme à terme sur [-r,r] pour tout r < R, donc sur]-R,R[.

Ensuite, par récurrence, f est de classe C^{∞} sur -R, R[.

Ainsi,
$$\forall k \in \mathbb{N}^*, \forall x \in]-R, R[, f^{(k)}(x) = \sum_{n=0}^{+\infty} n(n-1)...(n-k-1)a_n x^{n-k}]$$

Donc $\forall k \in \mathbb{N}^*, f^{(k)}(0) = k! a_k$, ce qui établit ainsi le corollaire.

B) Algèbre des fonctions développables en série entière sur -a;a[.

Définition :

Une fonction $f:]-a; a[\to \mathbb{C}$ (pour a > 0) est dite développable en série entière s'il existe une série entière $\sum_{n=0}^{+\infty} a_n z^n$ de rayon de convergence $R \ge a$ telle que $\forall x \in]-a; a[, f(x) = \sum_{n=0}^{+\infty} a_n x^n]$.

Exemple:

 $x \mapsto \frac{1}{1-x}$ est développable en série entière sur]-1;1[et $\forall x \in$]-1;1[, $f(x) = \sum_{n=0}^{+\infty} x^n$.

Notation (ici seulement):

On note DSE(a) l'ensemble des fonctions $f:]-a; a[\to \mathbb{C}$ développables en série entière, où $a \in [0; +\infty]$.

Théorème:

- DSE(a) est une sous-algèbre de $C^{\infty}(]-a;a[,\mathbb{C})$, stable par dérivation et primitivation.
- Pour $f:]-a; a[\to \mathbb{C}$, développable en série entière avec $\forall x \in]-a; a[, f(x) = \sum_{n=0}^{+\infty} a_n x^n]$, et pour tout segment $[u, v] \subset]-a; a[,$ on a $\int_u^v f(x) dx = \sum_{n=0}^{+\infty} a_n \int_u^v t^n dt$.

Démonstration:

On a vu que si $f \in DSE(a)$, alors f est de classe C^{∞} sur -a; a[, dérivable terme à terme.

Si $\forall x \in]-a; a[, f(x) = \sum_{n=0}^{+\infty} a_n x^n]$, alors $\forall x \in]-a; a[, f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}]$, et le rayon de convergence de la série dérivée est égal au rayon de convergence de la série.

Donc $f' \in DSE(a)$.

Si $\forall x \in]-a; a[f(x) = \sum_{n=0}^{+\infty} a_n x^n]$, on prend $F(x) = C + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$; alors le rayon de convergence de cette série entière est égal à celui de sa dérivée, qui est f. Donc $F \in \mathrm{DSE}(a)$.

Montrons que DSE(a) est une sous-algèbre de $C^{\infty}(]-a;a[,\mathbb{C})$.

Déjà, DSE(a) n'est pas vide (contient par exemple les fonctions polynomiales).

Et DSE(a) est stable par + et \times , d'après les théorèmes sur le rayon de convergence des sommes et produits.

Soit $R \ge a$ le rayon de convergence de $\sum_{n=0}^{+\infty} a_n x^n$. Pour $[u,v] \subset]-a;a[$, prenons $r = \max(|u|,|v|) < a$. Sur [-r,r], et donc sur [u,v], $\sum_{n=0}^{+\infty} a_n x^n$ est normalement convergente, donc on peut intégrer terme à terme sur [u,v]

• Caractérisation des fonctions développables en série entière :

Théorème:

Soit
$$f:]-a; a[\rightarrow \mathbb{C} (a > 0)]$$

Alors $f \in DSE(a)$ si et seulement si f est de classe C^{∞} et

$$\forall x \in \left] -a; a \right[\lim_{n \to +\infty} \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt = 0$$

De plus, pour $f \in DSE(a)$, on a $\forall x \in]-a; a[f(x)] = \sum_{n=0}^{+\infty} \frac{f^n(0)}{n!} x^n$.

Démonstration :

Si
$$f \in DSE(a)$$
, alors f est de classe C^{∞} , et f s'écrit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

De plus,
$$\forall n \in \mathbb{N}, a_n = \frac{f^{(n)}(0)}{n!}$$
.

Comme f est de classe C^{∞} , on peut appliquer la formule de Taylor avec reste intégral :

Pour tout
$$x \in]-a, a[$$
 et tout $n \in \mathbb{N}$, $f(x) - \underbrace{\sum_{k=0}^{n} \frac{x^{k}}{k!} f^{(k)}(0)}_{\sum_{k=0}^{n} a_{k}x^{k}} = \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$

Comme
$$\lim_{n \to +\infty} \sum_{k=0}^{n} a_k x^k = f(x)$$
, on a $\lim_{n \to +\infty} \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt = 0$.

Réciproquement, si f est de classe C^{∞} sur]-a,a[, et si pour tout $x \in]-a,a[$, $\lim_{n \to +\infty} \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt = 0$, alors pour tout $n \in \mathbb{N}$,

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} = \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt \to 0$$

Donc $\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$ converge pour tout $x \in]-a,a[$, et a pour somme f(x).

Le rayon de convergence de la série de Taylor est donc $\geq a$ et $f \in DSE(a)$.

Attention:

il existe des fonctions de classe C^{∞} qui ne sont pas développables en série entière :

$$f: x \mapsto \begin{cases} 0 \text{ si } x = 0 \\ e^{-1/x^2} \text{ si } x \neq 0 \end{cases} \text{ ; alors } f \text{ est de classe } C^{\infty} \text{ sur } \mathbb{R}, \text{ et } \forall n \in \mathbb{N}, f^{(n)}(0) = 0.$$

Si f était développable en série entière sur -a; a[pour a > 0, on aurait

$$\forall x \in]-a; a[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n = 0 \text{ ce qui est faux.}$$

Pour
$$f(x) = \int_0^{+\infty} \frac{e^{-t}}{1 + tx^2} dt$$
, f est de classe C^{∞} sur \mathbb{R} et $\forall n \in \mathbb{N}$, $f^{(2n)}(0) = (n!)^2$.

Donc pour tout $x \neq 0$, la série de terme général $\sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$ diverge.

C) Compléments hors programme : série entière de la variable complexe et caractérisation analytique

Caractérisation analytique :

Soit U un ouvert de \mathbb{R} ou \mathbb{C} , $f:U\to\mathbb{C}$.

f est dite analytique sur U lorsque pour tout $x_0 \in U$, il existe une suite $(a_n(x_0))_{n \in \mathbb{N}}$

telle que $\sum_{n=0}^{+\infty} a_n(x_0)t^n$ a un rayon de convergence $R(x_0) > 0$ et il existe r > 0 vérifiant :

$$B_o(x_0, r) \subset U$$
, $r \le R(x_0)$ et $\forall x \in B_o(x_0, r), f(x) = \sum_{n=0}^{+\infty} a_n(x_0)(x - x_0)^n$

En d'autre terme, f est analytique lorsque f est développable en série entière au voisinage de tout point de U.

Attention:

On a deux notions différentes:

Les fonctions analytiques de variable réelle ($U \subset \mathbb{R}$)

Les fonctions analytiques de variable complexe $(U \subset \mathbb{C})$

Exemple:

Pour
$$z \in \mathbb{C}$$
, $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$

Alors exp est analytique sur C.

En effet:

Soient $z_0 \in \mathbb{C}, h \in \mathbb{C}$.

Alors
$$\exp(z_0 + h) = e^{z_0} e^h = \sum_{n=0}^{+\infty} \frac{e^{z_0}}{n!} h^n$$

Et
$$e^z = \sum_{n=0}^{+\infty} \frac{e^{z_0}}{n!} (z - z_0)^n$$
 a un rayon de convergence infini.

Proposition:

Si
$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$
 pour $|z| < R$, alors f est analytique sur $D_o(0, R)$.

Démonstration:

Il faut montrer que pour tout $z_0 \in D_o(0,R)$, il existe r > 0 tel que pour tout $h \in \mathbb{C}$

tel que
$$|h| < r$$
, $f(z_0 + h) = \sum_{n=0}^{+\infty} a_n(z_0)h^n$ avec un rayon de convergence $R \ge r$.

On prend
$$r = R - |z_0|$$
.

Pour
$$|h| < r$$
, on a $f(x_0 + h) = \sum_{n=0}^{+\infty} a_n (z_0 + h)^n = \sum_{n=0}^{+\infty} a_n \sum_{i=0}^n C_n^i z_0^{n-i} h^i = \sum_{n=0}^{+\infty} \sum_{i=0}^{+\infty} u_{n,i}$

Où
$$u_{n,i} = \begin{cases} a_n C_n^i z_0^{n-i} h^i & \text{si } i \leq n \\ 0 & \text{sinon} \end{cases}$$

Pour appliquer la formule de Fubini, on étudie les quantités pour n fixé $\sigma_n = \sum_{i=1}^{+\infty} |u_{n,i}|$ et $\sum_{i=1}^{+\infty} \sigma_n$

Pour tout n, σ_n est bien défini car pour i > n, $u_{n,i} = 0$.

De plus,
$$\sigma_n = \sum_{i=0}^n C_n^i |a_n| |z_0|^{n-i} |h|^i = |a_n| (|z_0| + |h|)^n$$

La série de terme général σ_n converge car $|z_0|+|h|<|z_0|+r=R$, et donc la série de terme général $a_n(|z_0|+|h|)^n$ converge absolument.

D'après le théorème de Fubini, on a :

$$f(z_0 + h) = \sum_{n=0}^{+\infty} \sum_{i=0}^{+\infty} u_{n,i} = \sum_{i=0}^{+\infty} \sum_{n=0}^{+\infty} u_{n,i} = \sum_{i=0}^{+\infty} \sum_{n=i}^{+\infty} C_n^i a_n z_0^{n-i} h^i = \sum_{i=0}^{+\infty} \alpha_i(z_0) h^i$$

• Dérivabilité au sens complexe :

Définition:

Soit $f:U\to\mathbb{C}$, U étant un ouvert de \mathbb{C} , et $z_0\in\mathbb{C}$ $z_0\in U$.

f est dite \mathbb{C} -dérivable en z_0 si le terme $\frac{f(z_0+h)-f(z_0)}{h}$ tend vers une valeur finie (notée $f'_{\mathbb{C}}(z_0)$) lorsque $h \in \mathbb{C}^*$ tend vers 0.

Given $\mathcal{F}_{\mathcal{C}}(2_0)$) for square $n \in \mathcal{F}$, tend vers 0.

Si f est \mathbb{C} -dérivable en tout $z_0 \in U$, f est dite holomorphe sur U.

Remarque:

On peut montrer que si f est holomorphe sur U, alors elle est de classe C^{∞} au sens complexe, et même elle est analytique sur U.

Exemple:

Toute fonctions polynomiale est holomorphe sur C.

 $z \mapsto \overline{z}$ n'est C-dérivable en aucun point.

Proposition:

Si f est somme d'une série entière de rayon de convergence R non nul, alors f est holomorphe sur $D_o(0,R)$.

Démonstration:

On sait que sur
$$B_f(0, R - |z_0|)$$
, on a $f(z) = \sum_{n=0}^{+\infty} a_n(z_0)(z - z_0)^n$

Or,
$$\sum_{n=1}^{+\infty} a_n(z_0)h^{n-1}$$
 un rayon de convergence supérieur ou égal à celui de

$$\sum_{n=0}^{+\infty} a_n(z_0)h^n$$
 (on reconnaît presque la série entière dérivée)

Donc
$$h \mapsto \sum_{n=1}^{+\infty} a_n(z_0) h^{n-1}$$
 est définie et continue sur $D_0(0, R - |z_0|)$ (au moins)

Donc
$$\lim_{\substack{h \to 0 \\ 0 < |h| < R - |z_0|}} \frac{f(z_0 + h) - f(z_0)}{h}$$
 existe et vaut $\lim_{\substack{h \to 0 \\ 0 < |h| < R - |z_0|}} \frac{f(z_0 + h) - f(z_0)}{h} = a_1(z_0)$

IV Application des séries entières

A) Développement des fonctions usuelles

- Méthode utile :
- Par somme, produit, dérivation, primitivation sur des développements en séries entières, on obtient de nouveaux développements.
- Utilisation d'une équation différentielle :

Si on sait que f est solution d'une équation différentielle, en injectant $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et en dérivant terme à terme sur l'intervalle de convergence, on obtient des relations entre les a_n .

Attention : il faut toujours s'assurer que la série entière obtenue a un rayon de convergence non nul, et que la fonction trouvée est bien solution.

- On peut aussi étudier le reste de Taylor.
- A partir de la série géométrique :

Théorème:

(1) Pour tout
$$z \in D_o(0,1)$$
, $\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$, de rayon de convergence égal à 1.

(2) Pour tout
$$p \in \mathbb{N}$$
 et $z \in D_o(0,1)$,

$$\sum_{n=n}^{+\infty} n \cdot (n-1) \cdot \dots (n-p+1) z^n = \frac{p! z^p}{(1-z)^{p+1}}, \text{ de rayon de convergence égal à 1}$$

Ou aussi
$$\sum_{n=0}^{+\infty} C_{n+p}^p z^n = \frac{1}{(1-z)^{p+1}}$$

Démonstration

Le rayon de convergence est 1 d'après le critère de d'Alembert.

Pour z non nul tel que
$$|z| < 1$$
, on pose $\varphi(t) = \sum_{n=0}^{+\infty} (tz)^n, t \in \left| \frac{1}{|z|}; \frac{1}{|z|} \right| \supset [-1;1]$

Alors φ est dérivable en série entière, de rayon de convergence $\frac{1}{|z|}$, sur $\frac{1}{|z|}$; $\frac{1}{|z|}$ et :

$$\forall t \in \left] \frac{1}{|z|}; \frac{1}{|z|} \right[\varphi(t) = \frac{1}{1 - tz}$$

On dérive terme à terme (φ est à variable réelle) :

$$\forall p \in \mathbb{N}, \forall t \in \left| \frac{1}{|z|}; \frac{1}{|z|} \right|, \varphi^{(p)}(t) = \sum_{n=p}^{+\infty} n \cdot (n-1) \cdot \dots (n-p+1) t^{n-p} z^n = \frac{p! z^p}{(1-tz)^{p+1}}$$

Avec
$$t = 1$$
, la formule devient $\sum_{n=p}^{+\infty} n \cdot (n-1) \cdot \dots (n-p+1) z^n = \frac{p! z^p}{(1-z)^{p+1}}$

Qui est bien la formule voulue pour z non nul.

• Fractions rationnelles:

Théorème:

Soit $F \in \mathbb{C}(X)$ dont 0 n'est pas pôle, et $R = \min(A)$ où A est l'ensemble modules des pôles de F. (on prend $R = +\infty$ si $F \in \mathbb{C}[X]$)

Alors F est développable en série entière sur $D_o(0,R)$, et le développement s'obtient à partir de la décomposition en éléments simples de F et des formules valables pour $m \ge 1$ et $z_0 \ne 1$:

$$\frac{1}{(1-z_0)^m} = \left(\frac{-1}{z_0}\right)^m \sum_{n=0}^{+\infty} C_{m+n-1}^n \left(\frac{z}{z_0}\right)^n.$$

Complément:

Le rayon de convergence de la série obtenue est exactement R.

Démonstration:

On a
$$F = E + \sum_{i=0}^{N} \sum_{j=1}^{m_i} \frac{a_{i,j}}{(X - z_i)^j}$$

Pour $|z| < \min(|z_i|, i \in [0; N])$, on a

$$F(z) = E(z) + \sum_{i=0}^{N} \sum_{j=1}^{m_i} \frac{a_{i,j}}{(-z_i)^j} \frac{1}{(1-z/z_i)^j}$$
$$= E(z) + \sum_{i=0}^{N} \sum_{j=1}^{m_i} \frac{a_{i,j}}{(-z_i)^j} \sum_{n=0}^{+\infty} C_{n+j-1}^{j-1} \left(\frac{z}{z_i}\right)^n$$

$$Rdc \ge min(|z_i|)$$

Donc la série entière a un rayon de convergence au moins égal à $\min(|z_i|, i \in [0; N])$

Montrons maintenant que le rayon de convergence est égal à $\min(|z_i|, i \in [0; N])$:

On peut supposer par exemple que le minimum est $|z_0|$

Alors pour
$$|z| < |z_0|, |F(z)| \xrightarrow{z \to z_0} +\infty$$

Or, si le rayon de convergence de la série était supérieur à $|z_0|$, cette série entière serait continue en z_0 , donc F(z) aurait une limite finie en z_0 , ce qui est faux.

Logarithme, arc tangente:

Théorème:

Pour $x \in]-1;1[$, on a :

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

$$\ln(1-x) = -\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

Arctan(x) =
$$\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Tous de rayon de convergence égal à 1.

Démonstration:

On intègre terme à terme $\sum_{n=0}^{+\infty} (-x)^n \text{ sur } [0; a] \subset]-1;1[$:

$$\ln(1+a) = \int_0^a \frac{dt}{1+t} = \int_0^a \sum_{n=0}^{+\infty} (-t)^n dt = \sum_{n=0}^{+\infty} (-1)^n \frac{a^{n+1}}{n+1}$$

(Possible car la rayon de convergence de $\sum_{n=0}^{+\infty} (-x)^n$ vaut 1)

De même pour les autres.

Complément :

La première et la troisième formules sont valables en x = 1.

En effet:

On utilise un argument de continuité en x=1 (on sort ici du chapitre « séries entières », et on travaille comme avec des séries de fonctions quelconques) :

On pose, pour
$$x \in [-1;1]$$
, $u_n(x) = (-1)^n \frac{x^{2n+1}}{2n+1}$

D'après le critère de Leibniz, on a convergence simple de $(u_n)_{n\in\mathbb{N}}$ sur [0;1]:

$$\left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \le \left| u_{n+1}(x) \right| = \frac{x^{2n+1}}{2n+1} \le \frac{1}{2n+1} \to 0$$

Donc la série de terme général u_n converge uniformément sur [0;1], et donc $x \mapsto \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ est continue en 1.

Donc Arctan(1) =
$$\lim_{x \to 1^{-}} Arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$$

On utilise le même argument pour ln.

• Formule du binôme :

Théorème:

Soit $\alpha \in \mathbb{C}$.

- La série entière $\sum_{n=0}^{+\infty} \frac{\alpha.(\alpha-1)...(\alpha-n+1)}{n!} z^n$ a pour rayon de convergence 1 si $\alpha \notin \mathbb{N}$, $+\infty$ sinon.
- Si $\alpha \in \mathbb{N}$, alors pour tout $z \in \mathbb{C}$, $\sum_{n=0}^{+\infty} \frac{\alpha \cdot (\alpha 1) \cdot \cdot \cdot (\alpha n + 1)}{n!} z^n = (1 + z)^{\alpha}$
- Sinon, pour $x \in]-1;1[, \sum_{n=0}^{+\infty} \frac{\alpha \cdot (\alpha 1) \cdot \cdot \cdot (\alpha n + 1)}{n!} x^n = (1+x)^{\alpha} = e^{\alpha \ln(1+x)}$

Démonstration:

Si $\alpha \in \mathbb{N}$, alors pour $n \ge \alpha + 1$, $\alpha ... (\alpha - n + 1) = 0$, et la formule est donnée par celle du binôme de Newton.

Si $\alpha \notin \mathbb{N}$, d'après le critère de d'Alembert, le rayon de convergence vaut 1.

Calcul de
$$f(x) = \sum_{n=0}^{+\infty} \frac{\alpha . (\alpha - 1) ... (\alpha - n + 1)}{n!} x^n$$
 pour $x \in]-1;1[$.

On considère $g(x) = f(x)(1+x)^{-\alpha}$. Alors g est de classe C^{∞} sur]-1;1[, et

$$\forall x \in]-1; 1[, g'(x) = (1+x)^{-\alpha-1}(f'(x)(1+x) - \alpha f(x))]$$

Or, pour $x \in]-1;1[$,

$$f'(x)(1+x) - \alpha f(x) = \left(\sum_{n=1}^{+\infty} n a_n x^{n-1}\right) (1+x) - \alpha \sum_{n=0}^{+\infty} a_n x^n \text{ où } a_n = \frac{\alpha . (\alpha - 1) ... (\alpha - n + 1)}{n!}$$

$$f'(x)(1+x) - \alpha f(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} + \sum_{n=1}^{+\infty} n a_n x^n - \alpha \sum_{n=0}^{+\infty} a_n x^n$$

$$= \sum_{j=0}^{+\infty} (j+1) a_{j+1} x^j + \sum_{j=1}^{+\infty} j a_j x^j - \sum_{j=0}^{+\infty} \alpha a_j x^j$$

$$= \sum_{j=0}^{+\infty} \left((j+1) a_{j+1} + (j-\alpha) a_j \right) x^j$$

Or,
$$\forall j \in \mathbb{N}, a_{j+1} = \frac{\alpha - j}{j+1} \alpha_j$$
. Donc $\forall x \in]-1; 1[, g'(x) = 0$
Or, $g(0) = f(0) = 1$, donc $g = 1$ et $\forall x \in]-1; 1[, f(x) = (1+x)^{\alpha}$.

B) Construction de nouvelles fonctions

Définition:

On définit les fonctions de la variable complexe suivantes :

 $\exp, \sinh, \cosh, \cos, \sin pour tout z \in \mathbb{C}$:

$$\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}, \cos(z) = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \ \operatorname{sh}(z) = \sum_{n=0}^{+\infty} \frac{z^{2n+1}}{(2n+1)!}, \ \operatorname{ch}(z) = \sum_{n=0}^{+\infty} \frac{z^{2n}}{(2n)!}$$

Toutes de rayon de convergence infini.

Lorsqu'elles sont définies, on peut aussi définir :

$$\tan(z) = \frac{\sin(z)}{\cos(z)}$$
 (pour $z \in \mathbb{C}$ tel que $\cos z \neq 0$)

$$\cot(z) = \frac{\cos(z)}{\sin(z)}, \text{ th}(z) = \frac{\sin(z)}{\cos(z)}$$

Théorème:

- (1) La fonction exponentielle est définie et continue sur \mathbb{C} et réalise un morphisme de groupe $(\mathbb{C},+)$ vers (\mathbb{C}^*,\times) , surjectif de noyau $2i\pi\mathbb{Z}$ où $\frac{\pi}{2}$ est la plus petite solution strictement positive de $\cos x = 0$
- (2) Pour tout $a \in \mathbb{C}$, $t \in \mathbb{R} \mapsto e^{at}$ est de classe C^{∞} de dérivée $t \mapsto ae^{at}$.

De même, \sin, \cos, \cosh, \sinh sont de classe C^{∞} sur \mathbb{R} ...

(3) Les formules de trigonométrie sont aussi valables dans $\ensuremath{\mathbb{C}}$:

Pour $z \in \mathbb{C}$,

$$\cos z = \operatorname{ch}(i.z)$$
, $\operatorname{ch}(z) = \cos(i.z)$

$$\sin z = \frac{\sinh(iz)}{i}$$
, $\sinh(z) = \frac{\sin(iz)}{i}$

$$\cos(z) = \sin(z + \frac{\pi}{2}), \ \sin(z) = \cos(z - \frac{\pi}{2}) = \cos(\frac{\pi}{2} - z)$$

Pour $z, z' \in \mathbb{C}$, on a $\cos(z + z') = \cos z \cos z' - \sin z \sin z' \dots$

Démonstration:

- La fonction exponentielle est somme d'une série entière de rayon de convergence infini, donc est définie et continue sur C. Le théorème sur le produit de séries absolument convergentes donne :

$$\forall z, z' \in \mathbb{C}, e^{z+z'} = e^z e^{z'}$$

Comme $e^0 = 1$, on a $\forall z \in \mathbb{C}, e^z \in \mathbb{C}^*$ et $z \mapsto e^z$ est un morphisme de groupes.

La restriction de exponentielle à \mathbb{R} est à valeurs réelles. De plus, on peut dériver terme à terme : $\forall x \in \mathbb{R}, \exp(x) = \exp(x)$.

Par ailleurs, $exp(\mathbb{R})$ est un intervalle de \mathbb{R} , ne contenant pas 0.

Comme $1 = \exp(0) \in \exp(\mathbb{R})$, on a donc $\forall x \in \mathbb{R}, \exp(x) > 0$.

Donc exp est positive et strictement croissante sur \mathbb{R} .

Pour tout $x \in \mathbb{R}_+$, on a $\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \ge x^0 + \frac{x^1}{1!} = 1 + x \to +\infty$.

Donc $\lim_{x \to +\infty} e^x = +\infty$, $\lim_{x \to -\infty} e^x = \lim_{x \to +\infty} \frac{1}{e^{-x}} = 0$

Donc $\mathbb{R}^*_+ \subset \exp(\mathbb{C})$.

On cherche l'image de $i\mathbb{R}$ par exp :

$$\forall x \in \mathbb{R}, \overline{\exp(ix)} = \sum_{n=0}^{+\infty} \frac{(ix)^n}{n!} = \sum_{n=0}^{+\infty} (-i)^n \frac{x^n}{n!} = \exp(-ix)$$

Donc $|\exp(ix)|^2 = \exp(ix) \times \exp(-ix) = 1$.

Ainsi, $\exp(i\mathbb{R}) \subset \mathbb{U}$ et contient 1.

Montrons que -1∈ exp($i\mathbb{R}$)

On pose pour
$$t \in \mathbb{R}$$
, $\varphi(t) = \exp(i.t) = \sum_{n=0}^{+\infty} \frac{i^n}{n!} t^n$

Ainsi, on reconnaît $Re(\varphi(t)) = \cos t$.

 $cos(\mathbb{R})$ est un intervalle de \mathbb{R} , inclus dans [-1;1]

(Car
$$\forall t \in \mathbb{R}, |\cos t| = |\operatorname{Re}(\varphi(t))| \le |\varphi(t)| = 1$$
)

Et contient 1 car $\cos 0 = 1$.

Si $\cos(\mathbb{R})$ contient un élément négatif ou nul, alors il existe t_1 tel que $\cos(t_1) = 0$

Alors
$$\cos(2t_1) = \text{Re}(\varphi(2t_1)) = \text{Re}(\varphi(t_1)^2) = \cos^2 t_1 - \sin^2 t_1 = -\sin^2 t_1 = -1$$

(Car $|\varphi(t_1)| = 1$)

Et $\cos(\mathbb{R})$ contient effectivement un élément négatif, car sinon :

On pose $a = \inf(\cos \mathbb{R}) \ge 0$

Il existe une suite $(t_n)_{n\in\mathbb{N}}$ de réels telle que $(\cos t_n)_{n\in\mathbb{N}}$ tend vers a en décroissant.

Alors pour tout *n*, $\cos(2t_n) = \cos^2(t_n) - \sin^2(t_n) = 2\cos^2(t_n) - 1$

Et par passage à la limite, $\cos(2t_n) \rightarrow 2a^2 - 1$.

Donc $2a^2 - 1 \ge a$, soit $(a-1)(a+\frac{1}{2}) \ge 0$

Ainsi, soit $a \ge 1$, soit $a \le -\frac{1}{2}$. Comme a est positif, on a $a \ge 1$ et donc $\cos = 1$ ce qui est faux car $\cos''(0) = -1$ (d'après le développement)

Donc $-1 \in \exp(i\mathbb{R})$, et $-1 \in \cos(\mathbb{R})$.

Donc $\cos(\mathbb{R}) = [-1,1]$.

Pour tout u=a+ib de module 1, il existe t_0 tel que $\cos(t_0)=a$, et alors $\sin t_0=\pm\sqrt{1-\cos^2 t_0}=\pm b$.

On a donc $e^{\pm it_0} = u$.

- Existence de $\frac{\pi}{2}$, plus petite racine positive de $\cos x = 0$.

Déjà, la fonction cosinus est parie (d'après le développement)

Donc $X = \{a \ge 0, \cos a = 0\}$ est un fermé non vide de \mathbb{R}_+ (car la fonction cos est paire)

Donc il admet une borne inférieure qui est en fait son minimum (car X est fermé) D'où l'existence. - Etude de $t \mapsto e^{iat} = \sum_{n=0}^{+\infty} \frac{a^n t^n}{n!}$ somme d'une série entière de rayon de

convergence infini, donc de classe C^{∞} , dérivable terme à terme...

- Formules de trigonométrie :

Par exemple:

$$\cos(2z) = 2\cos^2 z - 1$$
:

On a
$$\cos^2 z + \sin^2 z = (\cos z + i \sin z)(\cos z - i \sin z) = e^{iz}e^{-iz} = 1$$

Puis

$$\cos 2z = \frac{e^{2iz} + e^{-2iz}}{2} = \frac{(e^{iz})^2 + (e^{-iz})^2}{2} = \frac{(\cos z + i\sin z)^2 + (\cos z - i\sin z)^2}{2}$$
$$= \cos^2 z - \sin^2 z = 2\cos^2 z - 1$$

Application:

Domaine de définition de tangente :

On étudie l'équation
$$\begin{cases} \cos z = 0 \\ z \in \mathbb{C} \end{cases}$$
, c'est-à-dire $e^{iz} = -e^{-iz}$, ou encore $e^{2iz} = -1$

Or,
$$e^{i\pi} = -1$$

En effet,
$$\cos \frac{\pi}{2} = 0$$
 (définition), et $\cos \pi = 2\cos^2 \frac{\pi}{2} - 1 = -1$

Donc
$$\cos z = 0 \Leftrightarrow e^{2i(z-\frac{\pi}{2})} = 1 \Leftrightarrow z - \frac{\pi}{2} \in \pi.\mathbb{Z} \iff z = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

Donc Dom_c tan =
$$\mathbb{C} \setminus \{\frac{\pi}{2} + \pi.\mathbb{Z}\}$$

C) Prolongement de fonctions continues

1) Exemple de l'exponentielle réelle

On suppose connue la fonction $\exp: \mathbb{R} \to \mathbb{R}^*_+$ de classe C^1 telle que $\exp' = \exp$ et $\exp(0) = 1$.

Alors, pour tout
$$x \in \mathbb{R}$$
, on a $\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

En effet:

Par récurrence, exp est de classe C^{∞} .

Pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on a:

$$\left| \int_0^x \frac{(x-t)^{n-1}}{(n+1)!} \exp^{(n)}(t) dt \right| \le \varepsilon(x) \int_0^x \frac{\left|x-t\right|^n}{n!} e^t dt \qquad (\varepsilon(x) = \operatorname{sgn} x)$$

$$\le \varepsilon(x) \int_0^x \frac{\left|x-t\right|^n}{n!} e^{|x|} dt$$

$$\le \varepsilon(x) e^{|x|} \left[\frac{(x-t)^{n+1}}{(n+1)!} \right]_0^x = \varepsilon(x)^{n+1} e^{|x|} \frac{x^{n+1}}{(n+1)!}$$

$$\le \frac{\left|x\right|^{n+1}}{(n+1)!} e^{|x|} \xrightarrow[n \to +\infty]{} 0$$

Donc
$$\forall x \in \mathbb{R}$$
, $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{n!} \exp^{(k)}(0) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$

On peut prolonger cette fonction à \mathbb{C} , (car le rayon de convergence est infini), en posant $\forall z \in \mathbb{C}$, $\exp z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$

2) Exponentielle matricielle

Pour
$$A \in M_n(\mathbb{C})$$
, on peut poser $\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$

3) Logarithme complexe (hors programme)

On pose, pour
$$z \in \mathbb{C}$$
 tel que $|z-1| < 1$, $\ln z = \sum_{n=0}^{+\infty} (-1)^n \frac{(z-1)^{n+1}}{n+1}$

Remarque : on sait que
$$\forall x \in]0;2[, \ln x = \sum_{n=0}^{+\infty} (-1)^n \frac{(x-1)^{n+1}}{n+1}]$$

Alors

- ln est définie et de classe C^{∞} sur $D_o(1,1)$.
- $\forall z \in D_o(1,1), \exp(\ln z) = z$

-
$$\forall z \in \mathbb{C}, \frac{\left|e^{z}-1\right|<1}{\left|\operatorname{Im} z\right|<\frac{\pi}{2}} \Rightarrow \ln(e^{z}) = z$$

$$|z-1| < 1$$

$$|z-1| < 1$$

$$|z'-1| < 1$$

$$|z'z-1| < 1$$

$$|z'z-1| < 1$$

Démonstration

(1) $\sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}$ est une série entière de rayon de convergence égal à 1.

Donc $x \mapsto \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}$ est défini et continue sur $D_o(0,1)$.

Donc ln est défini et continu sur $D_o(1,1)$

(2) $\exp(\ln z)$ est définie pour tout $z \in D_o(1,1)$.

On va montrer que $\forall z \in D_o(1,1), z \exp(-\ln z) = 1$

Lemme:

- Soit $u:[0;1] \to D_o(1,1)$ de classe C^1 . Alors $t \mapsto \ln(u(t))$ est de classe C^1 de dérivée $\frac{u'}{u}$.
- Soit $v:[0;1] \to \mathbb{C}$ de classe C^1 . Alors $t \mapsto \exp(v(t))$ est de classe C^1 de dérivée $t \mapsto v'(t)e^{v(t)}$.

Démonstration du lemme :

On a
$$\ln(u(t)) = \sum_{n=1}^{+\infty} \underbrace{(-1)^n \frac{(u(t)-1)^{n+1}}{n+1}}_{\alpha_n(t)}$$
.

On applique le théorème de dérivation des séries :

- Pour tout $n \in \mathbb{N}$, α_n est de classe C^1 et $\alpha'_n(t) = u'(t) \times (-1)^n (u(t) 1)^n$
- La série converge simplement en un point (même en tous)
- La série de terme général α'_n converge uniformément sur [0;1].

En effet, elle converge normalement car si on note $M' = \|u'\|_{\infty}$, $M = \|u - 1\|_{\infty}$, on a M < 1 et donc $\|\alpha'_n\|_{\infty} \le M'M^n$, terme général d'une série convergente.

Ainsi:

$$\ln u$$
 est de classe C^1 et $(\ln u)'(t) = \sum_{n=0}^{+\infty} u'(t)(1-u(t))^n = \frac{u'(t)}{1-(1-u(t))} = \frac{u'(t)}{u(t)}$

Maintenant:

Pour $z \in D_o(1,1)$ fixé, posons $u(t) = t \cdot z + (1-t) \in [1,z]$ et $\varphi(t) = u(t)e^{-\ln(u(t))}$

Comme u est de classe C^1 à valeurs dans $D_o(1,1)$, φ est de classe C^1 , et

$$\forall t \in [0;1], \varphi'(t) = e^{-\ln(u(t))} \left(u'(t) - \frac{u'(t)}{u(t)} u(t) \right) = 0$$

Donc $\varphi = \varphi(0) = 1$

En particulier, $\varphi(1) = 1 = ze^{-\ln z}$.

(3) Si
$$|e^z - 1| < 1$$
 et $|\text{Im } z| < \frac{\pi}{2}$,

Tout d'abord, $e^{\ln(e^z)} = e^z$

Donc il existe $k(z) \in \mathbb{Z}$ tel que $\ln(e^z) = z + 2ik(z)\pi$.

k est continue car $k(z) = \frac{\ln(e^z) - z}{2i\pi}$.

Etude du domaine $\left\{z \in \mathbb{C}, \left|e^z - 1\right| < 1 \text{ et } \left|\operatorname{Im} z\right| < \frac{\pi}{2}\right\} = D$.

Soit z = x + iy pour $x, y \in \mathbb{R}$.

Alors
$$|e^z - 1|^2 = (e^{x+iy} - 1)(e^{x-iy} - 1) = e^{2x} - 2\cos y \cdot e^x + 1$$

Donc
$$D = \{z = x + iy \in \mathbb{C}, |y| < \frac{\pi}{2} \text{ et } e^x < 2\cos y\}$$

D est convexe car c'est le sous-graphe de $y \mapsto \ln(2\cos y)$ qui est concave sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Donc *D* est connexe par arcs.

Donc k est continu sur D connexe par arcs à valeurs dans \mathbb{Z} .

Donc k = k(0) = 0.

(4) Soient u, v tels que |u-1| < 1, |v-1| < 1, |uv-1| < 1.

On a déjà $\exp(\ln u + \ln v) = \exp(\ln u) \exp(\ln v) = uv = \exp(\ln(uv))$

Donc $ln(u) + ln(v) = ln(uv) + 2ik(u, v)\pi$ où $k \in \mathbb{Z}$.

On fixe $u = u_0$ tel que $|u_0 - 1| < 1$. Alors $u_0 \ne 1$.

On fait varier v dans le domaine $D(u_0)$ défini par $\begin{cases} |v-1| < 1 \\ |u_0v-1| < 1 \end{cases}$, c'est-à-dire

$$\left| v - \frac{1}{u_0} \right| < \left| \frac{1}{u_0} \right|.$$

 $D(u_0)$ est une intersection de deux disques, donc est convexe, donc connexe par arcs.

De plus, il contient v = 1.

Donc d'après le théorème des valeurs intermédiaires appliqué à $D(u_0)\to \mathbb{Z}$, $k(u_0,v)=k(u_0,1)=0$. $v\mapsto k(u_0,v)$

V Application classique des séries entières

Résolution d'équations fonctionnelles (surtout différentielles) :

On cherche des solutions de l'équation (E): $x^2y''+4xy'+(2-x^2)y-1=0$

Analyse:

On cherche f dérivable en séries entières solution de E de rayon de convergence R non nul, disons $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

Alors f est de classe C^{∞} , dérivable terme à terme sur]-R,R[. Donc :

$$\sum_{n=2}^{+\infty} n(n-1)a_n x^n + \sum_{n=1}^{+\infty} 4na_n x^n + \sum_{n=0}^{+\infty} 2a_n x^n - \sum_{n=0}^{+\infty} a_n x^{n+2} = 1$$

Par unicité du développement en séries entières de rayon de convergence non nul, on a :

Pour
$$n = 0$$
: $2a_0 = 1$, soit $a_0 = \frac{1}{2}$.

Pour n = 1: $4a_1 + 2a_1 = 0$, soit $a_1 = 0$

Pour $n \ge 2$: $n(n-1)a_n + 4na_n + 2a_n - a_{n-2} = 0$, soit:

$$a_n(n^2 + 3n + 2) = a_n(n+1)(n+2) = a_{n-2}$$

Si *n* est impair, $a_n = 0$

Si *n* est pair,

$$a_{2p} = \frac{a_{2(p-1)}}{(2p+2)(2p+1)} = \frac{a_{2(p-2)}}{(2p+2)(2p+1)(2p)(2p-1)} = \dots = \frac{a_0 \times 2}{(2p+2)!} = \frac{1}{(2p+2)!}$$

Donc
$$f(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n+2)!} = \begin{cases} \frac{1}{x^2} (\operatorname{ch}(x) - 1) & \text{si } x \neq 0 \\ 1/2 & \text{si } x = 0 \end{cases}$$

Réciproquement, soit f défini par $f(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n+2)!}$; alors f a un rayon de

convergence infini (critère de d'Alembert), donc f est de classe C^{∞} sur \mathbb{R} , et on vérifie que f est solution sur \mathbb{R} de (E). (soit directement, soit avec les coefficients)