SEMAINE DU 03/10 AU 07/10

1 Cours

Complexes

Corps des nombres complexes Partie réelle, partie imaginaire, module, conjugué et interprétation géométrique.

Groupe \mathbb{U} des nombres complexes de module 1 Définition, notation $e^{i\theta}$, relations d'Euler et formule de Moivre, argument et interprétation géométrique, racines $n^{\text{èmes}}$ de l'unité et d'un complexe non nul.

Equations du second degré Racines carrées d'un complexe, résolution d'une équation du second degré à coefficients complexes, somme et produit des racines.

Trigonométrie Linéarisation. Développement. Sommes trigonométriques.

Géométrie Interprétation géométrique de l'argument de $\frac{c-a}{b-a}$ pour $(a,b,c)\in\mathbb{C}^3$. Conditions d'alignement et de perpendicularité. Interprétation géométrique des applications $z\in\mathbb{C}\mapsto az+b$.

Exponentielle complexe Définition et propriétés. Module et argument de e^z .

Notion d'application

Définitions Ensembles d'arrivée et de départ, graphe, image.

Composition Définition, associativité, application identité.

Injectivité Définition. Composition et injectivité.

Surjectivité Définition. Composition et surjectivité.

Bijectivité Définition. Bijection réciproque. Si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. $f: E \to F$ est bijective **si et seulement si** il existe $g: F \to E$ telle que $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_F$ et dans ce cas, $g = f^{-1}$.

2 Méthodes à maîtriser

- $\blacktriangleright \ z \in \mathbb{R} \iff \overline{z} = z, \, z \in i\mathbb{R} \iff \overline{z} = -z.$
- $ightharpoonup z \in \mathbb{U} \iff \overline{z} = \frac{1}{z}.$
- $\blacktriangleright \ z \in \mathbb{R} \iff \arg z \equiv 0[\pi], \ z \in \mathbb{i}\mathbb{R} \iff \arg z \equiv \frac{\pi}{2}[\pi].$
- \blacktriangleright Extraction de racines $n^{\rm èmes}$ par méthode trigonométrique.
- lacktriangle Extraction de racines carrées, résolution d'équations du second degré à coefficients dans $\mathbb C.$
- ightharpoonup Linéariser $\cos^k \theta$ ou $\sin^k \theta$, développer $\cos k\theta$ et $\sin k\theta$ pour $(k, \theta) \in \mathbb{N} \times \mathbb{R}$.
- Les points d'affixes a, b, c sont alignés si et seulement si $\frac{c-a}{b-a} \in \mathbb{R}$ et forment un angle droit en le point d'affixe a si et seulement si $\frac{c-a}{b-a} \in i\mathbb{R}$.
- ▶ Résoudre dans \mathbb{C} une équation du type $e^z = a$.
- ightharpoonup Savoir prouver l'injectivité en pratique : « Soit (x, x') tel que $f(x) = f(x') \dots$ ».
- ▶ Savoir prouver la surjectivité en pratique : recherche d'un antécédent (résolution d'une équation).
- ▶ Savoir prouver la bijectivité en pratique :
 - Existence et unicité d'une solution de l'équation y = f(x) où y est fixé et x est l'inconnue.
 - Déterminer g telle que $g \circ f = Id$ et $f \circ g = Id$.
 - Montrer que f est injective et surjective.

3 Questions de cours

- ▶ Soient A, B, et C trois points deux à deux distincts d'affixes respectives a, b et c. Montrer que le triangle ABC est équilatéral direct si et seulement si $a+jb+j^2c=0$ puis que ABC est équilatéral si et seulement si $a^2+b^2+c^2=ab+bc+ca$.
- ▶ Soit $(f,g) \in F^E \times G^F$. Montrer que si f et g sont injectives, alors $g \circ f$ est injective et que si $g \circ f$ est injective, alors f est injective.
- ▶ Soit $(f,g) \in F^E \times G^F$. Montrer que si f et g sont surjectives, alors $g \circ f$ est surjective et que si $g \circ f$ est surjective, alors g est surjective.
- $\blacktriangleright\,$ Déterminer une bijection de $\mathbb N$ sur $\mathbb Z.$