Topics and Techniques in Distribution Testing

A Biased but Representative Sample

Suggested Citation: Clément L. Canonne (2018), "Topics and Techniques in Distribution Testing", : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

Clément L. Canonne University of Sydney clement.canonne@sydney.edu.au

Contents

1	Wha	at is di	stribution testing?	3		
	1.1	Formu	llation, and relation to Hypothesis Testing	5		
	1.2	Why t	otal variation distance?	11		
	1.3	The ro	oad not taken: tolerant testing	13		
	1.4		ical notes	14		
				17		
2	Testing goodness-of-fit of univariate distributions					
	2.1	Unifor	mity testing	19		
		2.1.1	The ℓ_2 distance, and why	20		
		2.1.2	Collision-based	22		
		2.1.3	Unique elements	28		
		2.1.4	Modified χ^2	35		
		2.1.5	Empirical distance to uniform	40		
		2.1.6	Random binary hashing	49		
		2.1.7	Bipartite collisions	54		
		2.1.8	Empirical subset weighting	61		
		2.1.9	Discussion	67		
	2.2	Identit	cy testing	70		
		2.2.1	The return of χ^2	70		
		2.2.2	Reduction to (near)-uniformity testing: ℓ_2 distance	73		
		223	Reduction to uniformity testing	79		

		2.2.4 Bonus: bucketing	85				
		2.2.5 Discussion	88				
	2.3	Historical notes	89				
	2.4	Exercises	91				
	2.5	Deferred proofs	95				
3	Test	ting with Constrained Measurements	98				
	3.1	Continuous distributions and quantization	98				
	3.2	Random hashing and domain compression	98				
	3.3	Application: distributed inference	98				
4	Info	rmation-theoretic lower bounds	99				
	4.1	Proving hardness by reductions	99				
	4.2	Indistinguishability via moment-matching	99				
	4.3	Ingster's method	99				
	4.4	Application: distributed inference	99				
Αp	pend	endices 10					
A	A Some good inequalities 10						
В	Met	Metrics and divergences between probability distributions 10					
C	C Poissonization 10						
Re	eferer	ices	106				
		♥					

Topics and Techniques in Distribution Testing

Clément L. Canonne¹

 1 University of Sydney; clement.canonne@sydney.edu.au

ABSTRACT

We focus on some specific problems in distribution testing, taking goodness-of-fit as a running example. In particular, we do not aim to provide a comprehensive summary of all the topics in the area; but will provide self-contained proofs and derivations of the main results, trying to highlight the unifying techniques.

Nomenclature

- $a_n \lesssim b_n$ There exists a constant C > 0 such that $a_n \leq C \cdot b_n$ for every n. Similar to $a_n = O(b_n)$, but not necessarily asymptotic, and easier to write.
- $a_n \times b_n$ Both $a_n \lesssim b_n$ and $b_n \lesssim a_n$. Similar to $a_n = \Theta(b_n)$, but not necessarily asymptotic, and easier to write.
- $a_n = O(b_n)$ There exist a constant C > 0 and a value n_0 such that $a_n \leq C \cdot b_n$ for every $n \geq n_0$.
- $a_n = \Omega(b_n)$ There exist a constant C > 0 and a value n_0 such that $a_n \ge C \cdot b_n$ for every $n \ge n_0$. This is equivalent to $b_n = \Omega(a_n)$.
- $a_n = \Theta(b_n)$ Both $a_n = \Omega(b_n)$ and $a_n = O(b_n)$.
- $a_n \underset{n \to \infty}{\sim} b_n$ Asymptotic equivalence: $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ (stronger than $a_n = \Theta(b_n)$, as the "hidden constant" is 1).
- $a_n \gg b_n$ (Informal) a_n is much larger than, or "sufficiently" large compared to, b_n .

1

What is distribution testing?

This survey serves as an introduction and detailed overview of some topics in (probability) distribution testing, an area of theoretical computer science which falls under the general umbrella of property testing, and sits at the intersection of computational learning, statistical learning and hypothesis testing, information theory, and (depending whom one asks) the theory of machine learning. Broadly speaking, distribution testing is concerned with the following type of questions:

Given a **small** number of independent data points from some blackbox random source, can we **efficiently** decide whether the distribution of the data follows some purported model ("property"), or is statistically far from doing so?

Of course, there are many details to be made precise here. What type of assumptions on the data do we make – is it discrete, continuous, univariate, high-dimensional? What do we mean by "efficiently" – the number of data points (data efficiency), the running time of our algorithms (time efficiency), both? What do we mean by "far" – what notion of distance are we considering? And what type of error do we

allow – false positives (Type I), false negative (Type II)?

Some of these are left flexible, as we will see below when formally introducing the setting of distribution testing. However, the general idea is to focus on finite sample guarantees (no qualitative limiting statements as data size grows to infinity), for a fixed error probability target δ controlling both Type I and Type II, and making as few assumptions as possible under the (composite) alternative hypothesis. That is, we will answer questions of the form "either the distribution of the data satisfies the property, or it is pretty much anything far from that."

Adopting a Computer Science viewpoint, we will also assume that the "size" of the object considered – typically, the domain size for discrete data – is large, which allows us to focus on the first-order dependence on this quantity. This also implies we typically consider a worst-case (minimax) setting with respect to this quantity, making statements about the worst-case data size, or time, required to achieve our goal. This does not means the algorithms and ideas obtained do not lead to "practical" algorithms: rather, that people working in distribution testing are quite pessimistic and paranoid in nature, and want the guarantee that things are never too slow before the promise that they often are quite fast. (Moreover, as we will see later, the worst-case instances for most of our testing tasks are actually quite natural, and likely to arise in practice! Paranoia, for once, may be warranted.)

A note. For simplicity, throughout this survey we will sweep under the rug many measure-theoretic subtleties, and assume probability distributions, probability density functions (pdf), and probability mass functions (pmf) exist whenever required, and are suitably well-behaved. We will also typically identify a probability distribution with its pdf or pmf, and by a slight abuse of notation use **p** indifferently for the distribution itself and its pdf. Most, if not all, of those subtleties can be handled by inserting the words "Radon–Nikodym," "measurable," and "counting measure" in suitable places and order.

1.1 Formulation, and relation to Hypothesis Testing

In what follows, $k \in \mathbb{N}$ will be used to parametrize the domain of the probability distributions: namely, Δ_k will denote the set of probability distributions over a (known) domain \mathcal{X}_k .

We begin with the notion of distance we will be concerned about, the total variation distance (also known as *statistical distance*):

Definition 1.1 (Total variation distance). The total variation distance between two probability distributions $\mathbf{p}, \mathbf{q} \in \Delta_k$ is given by

$$\mathrm{d}_{\mathrm{TV}}(\mathbf{p},\mathbf{q}) = \sup_{S \subset \mathcal{X}_k} \left(\mathbf{p}(S) - \mathbf{q}(S) \right).$$

Given a subset $\mathcal{C} \subseteq \Delta_k$ of distributions, we further define the distance from $\mathbf{p} \in \Delta_k$ to \mathcal{C} as $d_{\text{TV}}(\mathbf{p}, \mathcal{C}) := \inf_{\mathbf{q} \in \mathcal{C}} d_{\text{TV}}(\mathbf{p}, \mathbf{q})$, and will say that \mathbf{p} is ε -far from \mathcal{C} if $d_{\text{TV}}(\mathbf{p}, \mathcal{C}) > \varepsilon$.

One can check that d_{TV} defines a metric on Δ_b , and takes values in [0,1]. Moreover, the total variation distance exhibits several important properties, some of which will be detailed at length in Appendix B; we recall a crucial one below.

E: Check it!

Fact 1.1 (Data Processing Inequality). Suppose X and Y are independent random variables with distributions \mathbf{p} and \mathbf{q} , and let f be any (possibly randomized) function independent of X, Y. Then the probability distributions \mathbf{p}_f and \mathbf{q}_f of f(X) and f(Y) satisfy

$$d_{TV}(\mathbf{p}_f, \mathbf{q}_f) \le d_{TV}(\mathbf{p}, \mathbf{q}).$$

That is, postprocessing cannot increase the total variation distance.

Assuming that \mathbf{p} , \mathbf{q} are absolutely continuous with respect to some dominating measure μ ,

$$d_{TV}(\mathbf{p}, \mathbf{q}) = \frac{1}{2} \int \left| \frac{d\mathbf{p}}{d\mu} - \frac{d\mathbf{q}}{d\mu} \right| d\mu$$
 (1.1)

In the discrete case where \mathbf{p}, \mathbf{q} are both over \mathbb{N} or a finite domain, this leads to

$$d_{\text{TV}}(\mathbf{p}, \mathbf{q}) = \frac{1}{2} \|\mathbf{p} - \mathbf{q}\|_{1}$$
 (1.2)

that is, "total variation is half the ℓ_1 distance between pmfs." This turns out to be a very useful connection, since ℓ_p norms are quite well-studied beasts: we get to use our arsenal of geometric inequalities — Hölder, Cauchy–Schwarz, and monotonicity of ℓ_p norms, to name a few.

One last piece of terminology: a property of distributions is a predicate we are interested in (e.g., "is the probability distribution unimodal?"). By identifying the predicate with the set of objects which satisfy it, we can equivalently view a property of distributions as a subset of probability distributions (typically, with some interesting structure). Which is what we will do: throughout, a property is just an arbitrary subset of distributions we are interested in. With this in hand, we are ready to provide a formal definition of what a "testing algorithm" is.

Definition 1.2 (Testing algorithm). Let $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$ and $\mathcal{C} = \bigcup_{k=1}^{\infty} \mathcal{C}_k$ be two properties of probability distributions, where $\mathcal{P}_k, \mathcal{C}_k \subseteq \Delta_k$ for all k; and $n : \mathbb{N} \times (0,1] \times (0,1] \to \mathbb{N}$, $t : \mathbb{N} \times (0,1] \times (0,1] \to \mathbb{N}$ be two functions. A testing algorithm for \mathcal{P} under \mathcal{C} with sample complexity n and time complexity t is a (possibly randomized) algorithm \mathcal{A} which, on input $k \in \mathbb{N}, \varepsilon \in (0,1], \delta \in (0,1]$, and a multiset S of $n(k,\varepsilon,\delta)$ elements of \mathcal{X}_k , runs in time at most $t(k,\varepsilon,\delta)$ and outputs $\mathbf{b} \in \{0,1\}$ such that the following holds.

- If S is i.i.d. from some $\mathbf{p} \in \mathcal{P}_k$, then $\Pr_{S,\mathcal{A}}[\mathbf{b} = 1] \ge 1 \delta$;
- If S is i.i.d. from some $\mathbf{p} \in \mathcal{C}_k$ such that $d_{\text{TV}}(\mathbf{p}, \mathcal{P}_k) > \varepsilon$, then $\Pr_{S,\mathcal{A}}[\mathbf{b} = 0] \ge 1 \delta$,

where in both cases the probability is over the draw of the i.i.d. sample S from the (unknown) \mathbf{p} , and the internal randomness of \mathcal{A} .

The sample complexity of testing \mathcal{P} under \mathcal{C} is then the minimum sample complexity $n(k, \varepsilon, \delta)$ achievable by a testing algorithm.

A few remarks are in order. First, in most of our applications we will take $C_k = \Delta_k$, so that the unknown distribution **p** is a priori arbitrary, and the goal is to check whether it belongs to the subset (property) of interest \mathcal{P}_k . However, this need not always be the case, and we may want to choose C_k differently to perform hypothesis testing

Figure 1.1: An example of property to test. Here, $\mathcal{P}_k \subseteq \mathcal{C}_k \subseteq \Delta_k$, where the property \mathcal{P}_k is depicted as the inner orange area ("yolk"), and the "egg white" is the area of rejection, *i.e.*, the subset of \mathcal{C}_k at total variation distance at least ε from \mathcal{P}_k .

under structural assumptions: for instance, to test whether an unknown unimodal distribution is actually Binomial (in this case, $\mathcal{P}_k \subsetneq \mathcal{C}_k \subsetneq \Delta_k$), or if say a log-concave distribution is monotone (in which case there is no inclusion relation between \mathcal{P}_k and \mathcal{C}_k , and both are strict subsets of Δ_k).

Another important point is that, while our main focus will be on discrete distributions, Definition 1.2 allows for continuous distributions as well. Finally, the above definition is quite flexible, and can be seen to allow for testing multiple distributions: for instance, taking $\mathcal{X}_k = [k] \times [k]$, $\mathcal{C}_k := \{ \mathbf{p} \in \Delta_k : \mathbf{p} = \mathbf{p}_1 \otimes \mathbf{p}_2 \}$ (product distributions), and $\mathcal{P}_k := \{ \mathbf{p}_1 \otimes \mathbf{p}_2 \in \mathcal{C}_k : \mathbf{p}_1 = \mathbf{p}_2 \}$, we obtain the question of two-sample testing (a.k.a. closeness testing), which asks to test whether two unknown distributions over [k] are equal, or far from each other.

Dependence on the error probability δ . Our definition of testing algorithm leaves the error probability δ as a free parameter; however, it

 $^{^1\}mathrm{TikZ}$ code for Fig. 1.1 adapted from https://tex.stackexchange.com/a/598086/31516.

is quite common in the distribution testing literature to set it as some arbitrary constant smaller than 1/2 (usually 1/3). Indeed, by a standard argument, an error probability 1/3 can be driven down to arbitrary δ at the price of a $O(\log(1/\delta))$ factor in the sample complexity.

Lemma 1.1 (Error probability amplification). Fix \mathcal{P} and \mathcal{C} , and suppose there exists a testing algorithm \mathcal{A} for \mathcal{P} under \mathcal{C} with sample complexity $n(k, \varepsilon, 1/3)$ and time complexity $t(k, \varepsilon, 1/3)$. Then there is a testing algorithm \mathcal{A}' for \mathcal{P} under \mathcal{C} with sample and time complexities $n'(k, \varepsilon, \delta) := n(k, \varepsilon, 1/3) \lceil 18 \ln(1/\delta) \rceil$ and $t'(k, \varepsilon, \delta) := O(t(k, \varepsilon, 1/3) \log(1/\delta))$.

Proof sketch. Fix \mathcal{P} , \mathcal{C} , \mathcal{A} as in the statement. Given k, ε , and $\delta \in (0, 1]$, let \mathcal{A}' be the algorithm which takes as input a multiset of $n'(k, \varepsilon, \delta)$ elements, partitions it (arbitrarily) in $m := \lceil 18 \ln(1/\delta) \rceil$ disjoint multisets S_1, \ldots, S_m , runs \mathcal{A} independently on those m multisets with error probability 1/3 to get $\mathbf{b}_1, \ldots, \mathbf{b}_m$, and finally outputs the majority answer $\mathbf{b} := \mathbb{1}\{\sum_{i=1}^m \mathbf{b}_i \geq m/2\}$. The running time is dominated by the m executions, giving the claimed $O(m \cdot t(k, \varepsilon, 1/3))$ bound. Thus, it suffices to check that the output is correct with probability at least $1-\delta$; this in turn follows from a Hoeffding bound (Theorem A.3). Indeed, by assumption, each \mathbf{b}_i is independently correct with some probability $p \geq 2/3$. Letting $X_i \sim \text{Bern}(p)$ be the indicator of the event " \mathbf{b}_i is the correct output," we have

$$\Pr[\mathbf{b} \text{ incorrect}] = \Pr\left[\frac{1}{m} \sum_{i=1}^{m} X_i < \frac{1}{2}\right] \le e^{-2(p-1/2)^2 m} \le e^{-m/18} \le \delta,$$

where we used our setting of m in the last inequality.

Importantly, this logarithmic dependence is not always the right one: as we will see in Chapter 2, there exist natural problems for which the right dependence on the error probability only scales as $\sqrt{\log(1/\delta)}$.

The learning baseline. Before setting out to design specific algorithms for various testing tasks and analyze their performance, it is good to have some sort of baseline to compare the result to. The most natural one is the *testing-by-learning* approach, which can essentially be summarized as follows: the sample complexity of testing $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$

under $C = \bigcup_{k=1}^{\infty} C_k$ is at most the sample complexity of, given k, learning an arbitrary distribution from $\mathcal{P}_k \cup C_k$. More specifically, we have the following:

Lemma 1.2 (Testing by Learning). Fix any $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$ and $\mathcal{C} = \bigcup_{k=1}^{\infty} \mathcal{C}_k$, and let $n_{\mathcal{L}}(k, \varepsilon, \delta)$ denote the sample complexity of learning an arbitrary probability distribution from $\mathcal{P}_k \cup \mathcal{C}_k \subseteq \Delta_k$ to total variation ε with error probability at most δ . Then, the sample complexity n of testing \mathcal{P} under \mathcal{C} satisfies

$$n(k, \varepsilon, \delta) \leq n_{\mathcal{L}}(k, \frac{\varepsilon}{2}, \delta)$$
.

This is not necessarily achieved by a computationally efficient tester.

Proof. Fix a learning algorithm \mathcal{A} for $\mathcal{P}_k \cup \mathcal{C}_k$ with sample complexity $n := n_{\mathcal{L}}(k, \frac{\varepsilon}{2}, \delta)$. By running it on n i.i.d. samples from \mathbf{p} (which we are promised either belongs to \mathcal{P}_k or \mathcal{C}_k), we obtain a distribution $\hat{\mathbf{p}}$ such that $d_{\text{TV}}(\hat{\mathbf{p}}, \mathbf{p}) \leq \varepsilon/2$ with probability at least $1 - \delta$. Assuming this is the case, then (i) if $\mathbf{p} \in \mathcal{P}_k$, then of course $d_{\text{TV}}(\hat{\mathbf{p}}, \mathcal{P}) \leq \varepsilon/2$; while (ii) if $d_{\text{TV}}(\mathbf{p}, \mathcal{P}) > \varepsilon$, by the triangle inequality (since total variation distance is a metric) we must have $d_{\text{TV}}(\hat{\mathbf{p}}, \mathcal{P}) > \varepsilon/2$.

But we have an explicit description of $\hat{\mathbf{p}}$ in our hands, so we can check which of the two cases holds – this may not be computationally efficient, but does not require any additional sample from \mathbf{p} . Thus, we have a *bona fide* testing algorithm for \mathcal{P} under \mathcal{C} .

Importantly, this baseline is with respect to the sample complexity of learning distributions from $\mathcal{P}_k \cup \mathcal{C}_k$, not just \mathcal{P}_k : the latter is in general much larger! For instance, if \mathcal{P}_k is a singleton but $\mathcal{C}_k = \Delta_k$ (e.g., as in identity testing, which we shall see in Chapter 2) then learning \mathcal{P}_k has sample complexity 0, but learning $\mathcal{P}_k \cup \mathcal{C}_k = \Delta_k$ has sample complexity $\Omega(k)$. This leads us to our baseline: since $\mathcal{P}_k \cup \mathcal{C}_k \subseteq \Delta_k$, the sample complexity of any distribution testing problem is at most the sample complexity of learning an arbitrary distribution over a known domain of the same size, which we record below:

Theorem 1.3 (Learning baseline). The sample complexity of learning an arbitrary probability distribution from Δ_k to total variation ε with

error probability at most δ is

$$n_{\mathcal{L}}(k, \varepsilon, \delta) = \Theta\left(\frac{k + \log(1/\delta)}{\varepsilon^2}\right),$$

giving an upper bound on the sample complexity of any testing problem.

The proof can be found in various places; e.g., Kamath et al. (2015) and Canonne (2020a). This testing-by-learning baseline, which is linear in the domain size k, motivates the name commonly given to testing algorithms which achieve significantly better sample complexity: sublinear algorithms.

Worst-case distance parameter ε . As defined, a testing algorithm must reject all distributions which are at distance greater than ε from the property, where ε is provided as an input parameter. In particular, the requirement is oblivious to the *true* distance $\varepsilon(\mathbf{p}) := \mathrm{d}_{\mathrm{TV}}(\mathbf{p}, \mathcal{P}_k) > \varepsilon$ of the unknown distribution \mathbf{p} to the property, and the sample complexity is just expressed as a function of the "worst-case" ε . Instead of this, one may want an *adaptive* algorithm which only takes the number of samples "needed" to reject, as a function of $\varepsilon(\mathbf{p})$: after all, in cases where $\varepsilon(\mathbf{p}) \gg \varepsilon$, one may reject after taking much fewer samples.

As it turns out, our focus on "worst-case ε " readily implies this adaptive setting, via the use of a doubling search. The idea is quite simple: given a testing algorithm \mathcal{A} , we create an adaptive testing algorithm \mathcal{A}' by repeatedly trying to guess the true distance $\varepsilon(\mathbf{p})$, starting at $\varepsilon_0 = 1$ and halving our current guess ε_j at every stage until we reach $\varepsilon_L = \varepsilon$, and calling \mathcal{A} for every guess, with parameters k, ε_j , and a suitable probability of failure δ_j at stage j. If any of these (at most $L := \lceil \log(1/\varepsilon) \rceil$) calls leads to a rejection, \mathcal{A}' outputs 0; otherwise, it outputs 1. The key is to choose δ_j suitably so that (1) by a union bound all invocations of \mathcal{A} are correct with probability at least $1 - \delta$, but (2) the union bound does not cost too much in terms of sample complexity. A standard way to do so is to set $\delta_j := \frac{\delta}{2(j+1)^2}$ (though many other choices of convergent series would do), so that $\sum_{j=0}^{\infty} \delta_j \leq \delta$.

The resulting sample complexity will then be, in the case $\varepsilon(\mathbf{p}) > \varepsilon$,

$$\sum_{j=0}^{\lceil \log(1/\boldsymbol{\varepsilon}(\mathbf{p})) \rceil} n(k, \boldsymbol{\varepsilon}_j, \delta_j) = \sum_{j=0}^{\lceil \log(1/\boldsymbol{\varepsilon}(\mathbf{p})) \rceil} n\left(k, 2^{-j}, \frac{\delta}{2(j+1)^2}\right),$$

where $n(\cdot,\cdot,\cdot)$ denotes the sample complexity of \mathcal{A} . Under very mild conditions on n, this will be of the order $n\left(k,\varepsilon(\mathbf{p}),\frac{\delta}{\log(1/\varepsilon(\mathbf{p}))}\right)$, and recalling that the dependence on the error probability is at worst logarithmic, this means that adapting to the true value of $\varepsilon(\mathbf{p})$ incurs a cost at most doubly logarithmic in $\varepsilon(\mathbf{p})$. Of course, when $\mathbf{p} \in \mathcal{P}_k$, our adaptive algorithm \mathcal{A}' should run for all of the $L := \lceil \log(1/\varepsilon) \rceil$ iterations (until ε_L) in order to output 1, in which case the sample complexity will be bounded as

$$\sum_{j=0}^{\lceil \log(1/\varepsilon) \rceil} \frac{n}{k} \binom{k}{2^{-j}}, \frac{\delta}{2(j+1)^2} \right).$$

We will see a concrete example of this technique in Exercise 2.11.

1.2 Why total variation distance?

The standard formulation of distribution testing, as stated in Definition 1.2, is tied to a specific metric between probability distribution: the total variation distance (Definition 1.1). It is natural to wonder of that choice is arbitrary, and, if not, what motivates it.

- Total variation distance provides a very strong guarantee, and for instance is the most stringent of all ℓ_p norms. This has practical consequences: if a source of data passes the test, then it will by nearly "as good as if it had the desired property" as far as any algorithm is concerned.
- It is well-behaved: total variation distance defines a proper metric, and thus satisfies for instance the triangle inequality (which cannot be said about, for instance, Kullback–Leibler divergence). It is also nicely bounded, and will not take infinite values due to pathological reasons.
- It satisfies the data processing inequality (Fact 1.1), which means it is robust to preprocessing. If data comes from two sources close in total variation distance, then post-processing this data cannot make their distribution statistically further apart. This is not the case for, among others, the ℓ_2 metric.

- Its relation to hypothesis testing: total variation distance has a natural and precise interpretation in terms of *distinguishability*. This is formalized in Lemma 1.4, and makes total variation distance the "right" notion of distance in applications such as cryptography, and when arguing about indistinguishability of data sources.
- Its connection to other distance measures. Total variation distance enjoys various inequalities relating it to other distance measures such as Kullback–Leibler divergence, ℓ_p metrics, Hellinger distance, Kolmogorov distance, and Wasserstein (Earthmover) metric. Some of those are elaborated upon in Appendix B.

Of course, total variation distance also has its drawbacks: it is sometimes too stringent, especially when considering distributions over continuous domains: in that case, absent further assumptions on the unknown continuous density, the testing problem becomes trivially impossible (LeCam, 1973). It also does not "tensorize" well (as opposed to, say, Hellinger distance or Kullback–Leibler divergence), meaning that the total variation distance between product measures does not have a nice form with respect to the total variation distances between individual marginals. And indeed, there are pros and cons to each choice; although in this case the above should convince you that the pros vastly outnumber the cons.

Relation to hypothesis testing. As aforementioned, there is a natural connection between total variation distance and hypothesis testing, which we recall below.

Lemma 1.4 (Pearson-Neyman). Any (possibly randomized) statistical test which distinguishes between \mathbf{p}_0 and \mathbf{p}_1 from a single sample must have Type I (false positive) and Type-II (false negative) errors satisfying

Type
$$I + Type II \ge 1 - d_{TV}(\mathbf{p}_0, \mathbf{p}_1)$$

Moreover, this is achieved by the test which outputs 1 if, and only if, the sample belongs to the set $S^* := \{ x : \mathbf{p}_1(x) > \mathbf{p}_0(x) \}$.

Proof. Fix any test \mathcal{A} distinguishing between two distributions \mathbf{p}_0 and \mathbf{p}_1 , given a single observation. Letting α and β denote the Type I and Type-II errors of \mathcal{A} , we have

$$\alpha + \beta = \Pr_{\mathbf{p}_0, R} [\mathcal{A}(X, R) = 1] + \Pr_{\mathbf{p}_1, R} [\mathcal{A}(X, R) = 0]$$

$$= \mathbb{E}_R [\Pr_{\mathbf{p}_0} [\mathcal{A}(X, R) = 1]] + \mathbb{E}_{\mathcal{A}} [\Pr_{\mathbf{p}_1} [\mathcal{A}(X, R) = 0]]$$

$$= \mathbb{E}_R [\Pr_{\mathbf{p}_0} [\mathcal{A}(X, R) = 1] + \Pr_{\mathbf{p}_1} [\mathcal{A}(X, R) = 0]]$$

where we denote by R the internal randomness of \mathcal{A} . Since, for any fixed realization r of this randomness R, the resulting test $\mathcal{A}(\cdot, r)$ is deterministic, we can define for any r the acceptance region $S_{\mathcal{A},r} := \{ x : \mathcal{A}(x,r) = 1 \}$, and write

$$\alpha + \beta = \mathbb{E}_{R}[\Pr_{\mathbf{p}_{0}}[X \in S_{\mathcal{A},R}] + \Pr_{\mathbf{p}_{1}}[X \notin S_{\mathcal{A},R}]]$$

$$= 1 + \mathbb{E}_{R}[\mathbf{p}_{0}(S_{\mathcal{A},R}) - \mathbf{p}_{1}(S_{\mathcal{A},R})]$$

$$\geq 1 + \inf_{S}(\mathbf{p}_{0}(S) - \mathbf{p}_{1}(S))$$

$$= 1 - \sup_{S}(\mathbf{p}_{1}(S) - \mathbf{p}_{0}(S))$$

$$= 1 - d_{TV}(\mathbf{p}_{0}, \mathbf{p}_{1}),$$

as claimed. Finally, it is immediate from the definition of total variation distance that the proposed test satisfies Type I+Type II = $1+\mathbf{p}_0(S^*)-\mathbf{p}_1(S^*)=1-\mathbf{d}_{\mathrm{TV}}(\mathbf{p}_0,\mathbf{p}_1)$.

1.3 The road not taken: tolerant testing

In Definition 1.2 and throughout this survey, we focus on the standard formulation version of testing, where the unknown distribution \mathbf{p} either belongs to the property \mathcal{P}_k or is far from it. A natural generalization of this, allowing for some "tolerance" to noise or misspecification in the former case, would be to ask to distinguish \mathbf{p} close to \mathcal{P}_k from \mathbf{p} far from it. This is called tolerant testing Parnas et al., 2006, and is formalized by introducing two parameters $0 \le \varepsilon' < \varepsilon \le 1$, and relaxing the first item of Definition 1.2 to

If S is i.i.d. from some $\mathbf{p} \in \Delta_k$ such that $d_{\text{TV}}(\mathbf{p}, \mathcal{P}_k) \leq \varepsilon'$, then $\Pr_{S,\mathcal{A}}[\mathbf{b} = 1] \geq 1 - \delta$;

(Note then that our regular, "non-tolerant" testing corresponds to taking $\varepsilon'=0$.) The tolerant testing task, sometimes called in Statistics testing with an *imprecise null*, typically requires a much higher sample complexity than the non-tolerant one (Valiant and Valiant, 2011), and both algorithms and lower bounds are obtained via significantly different techniques. For this reason, we will not here discuss tolerant testing in much, or indeed any detail: the interested reader is referred to, e.g., Wu and Yang (2020) for a primer on some of those techniques, and to Canonne et al. (2021) and references within for an overview of results on tolerant goodness-of-fit testing.

1.4 Historical notes

Hypothesis testing has a long and rich history in Statistics, starting with the work of Pearson (1900) introducing the χ^2 test, and leading to substantial advances over the next century. While it is difficult and slightly dangerous to reduce twelve decades of intense research and study in a few sentences,² standard approaches in Statistics share a few common features. First, they are asymptotic in nature (as opposite to focusing on finite-sample guarantees), establishing and studying the limiting distribution of a given test as the sample size goes to infinity. This enables one to compute confidence intervals, and obtain a swath of information from the limiting distribution; but by itself provides little insight regarding the intermediate, finite-sample regime. Second, they tend to focus on the so-called Type I error (significance of the test), i.e., the probability to mistakenly reject the null hypothesis \mathcal{H}_0 , and only after fixing this significance level set out to minimize the Type II error (that is, maximize the *power* of the test), which is the probability to mistakenly accept the alternative hypothesis \mathcal{H}_1 . This is, again, an oversimplification; the reader should refer to, e.g., Balakrishnan and Wasserman (2018b) for a complementary and more detailed view. Nonetheless, these features are two of the most salient points of contrast with the very recent and related take on hypothesis testing from the theoretical computer science community, distribution testing, which

²Which is exactly what the following paragraph will set out to do regardless.

perhaps shares most similarity with the work of Ingster (Ingster, 1986; Ingster, 1997).

Distribution testing was first introduced in an influential paper by Goldreich et al. (1998), which formally defined the broader field of property testing; Goldreich and Ron (2000) then specifically considered the question of testing uniformity of an unknown probability distribution (in an ℓ_2 sense), using the collision-based tester to test whether a random walk had (approximately) reached its stationary distribution.

This was, however, only implicitly using uniformity testing as a subroutine in the context of testing some property (expansion) of bounded-degree graphs. The work of Batu et al. (2000) first considers distribution testing for its own sake, studying the question of closeness testing (i.e., two-sample testing), where one seeks to decide from samples if two unknown distributions are equal. This initiated a long line of work on testing many properties – including uniformity, identity, closeness, monotonicity, independence (being a product distribution), to name only a few.

While the early papers focused on the dependence on the domain size k, treating the distance parameter ε as a small constant or a second-order concern, later works, beginning with Chan et~al.~(2014), started looking for the tight dependence on ε as well. Even more recently, the "right" dependence on δ , the error probability, has come into focus as well (Diakonikolas et~al.,~2018; Diakonikolas et~al.,~2021). This, in some sense, brings the theoretical computer science closer to the information theory literature, where the focus on the error~exponent (that is, the rate at which the error probability decays exponentially, as a function of the other parameters) is the standard view.

Another recent trend in distribution testing has been to consider different "accesses" to the data, rather than i.i.d. samples: for instance, access to so-called conditional samples (Canonne et al., 2015; Chakraborty et al., 2013), or the ability to ask for, or observe, the probability of individual elements of the domain (Rubinfeld and Servedio, 2009; Canonne and Rubinfeld, 2014; Onak and Sun, 2018). These types of access allow for much more efficient testing algorithms, but require significantly different algorithmic tools and proof techniques, and we will not discuss them here. For more on this, we defer the interested reader to another

survey, Canonne (2020b).

Finally, over the past few years distribution testing has ventured into adjacent areas of computer science and information theory, by incorporating various constraints and resources into its formulation. Examples include data privacy (and, more specifically, differential privacy (Dwork et al., 2006) and its variants) – see, e.g., (Kamath and Ullman, 2020), memory constraints, and bandwidth constraints (Tsitsiklis, 1993); of which we will cover a fraction in Chapter 3. This has been done by borrowing, extending, and (re)discovering ideas and techniques from these areas and Statistics; somewhat satisfyingly, leading distribution testing back to some of its roots.

This survey aims to describe some of these connections, and provide an overview of these ideas and techniques which took years for the author to learn about.

Testing goodness-of-fit of univariate distributions

In this chapter, we take an in-depth look at one of the most natural and "basic" properties to test, *uniformity*:

Is the unknown distribution the uniform distribution \mathbf{u}_k over the domain [k], or does it significantly deviate from being uniform?

Formally, recalling Definition 1.2, we define uniformity testing by letting $\mathcal{P}_k := \{\mathbf{u}_k\}$ (a singleton), and $\mathcal{C}_k = \Delta_k$. Of course, while the uniform distribution is a rather fundamental one, one might instead have a different reference distribution in mind, e.g., a particular Binomial distribution, or a Zipf one, or an arbitrary probability distribution provided as a vector of k probabilities. This generalization is known (in the computer science community) as identity testing, and also goes by the name of one-sample goodness-of-fit. While identity testing might seem to be a strictly more general problem than uniformity testing, the two are closely related. Clearly, identity testing is at least as hard as uniformity testing; but it turns out that a converse holds, and that uniformity is also the "hardest" case of identity testing, in a very strong sense. Namely, as we will see in Section 2.2, any testing algorithm for

uniformity implies one for identity testing, with essentially the same sample complexity!¹

Before delving into the details of this chapter, two more comments. First, "uniformity testing" refers to testing whether the unknown distribution \mathbf{p} is uniform on the whole, known domain: the different question of testing whether \mathbf{p} is uniform on its (unknown) support, i.e.,, testing $\mathcal{P}_k := \{ \mathbf{u}_S : S \subseteq [k] \}$ is known as generalized uniformity testing (Batu and Canonne, 2017), and has a strictly higher sample complexity.

Second, the formulation of identity testing crucially assumes that the reference distribution is fully known to the algorithm. One can also consider the task of testing, given samples from two distributions \mathbf{p}, \mathbf{q} (both unknown), whether $\mathbf{p} = \mathbf{q}$ or $\mathrm{d}_{\mathrm{TV}}(\mathbf{p}, \mathbf{q}) > \varepsilon$. This question, closeness testing (or two-sample goodness-of-fit), which we briefly alluded to in Chapter 1), can be seen to be at least as hard as identity testing: any algorithm for closeness testing can be used to perform identity testing by generating i.i.d. samples from the known reference distribution \mathbf{q} . But closeness testing, again, is strictly harder than identity testing: while, as we will see, the latter has sample complexity $\Theta(\sqrt{k}/\varepsilon^2)$, the former requires $\Theta(k^{2/3}/\varepsilon^{4/3} + \sqrt{k}/\varepsilon^2)$ samples (Chan et al., 2014), which is much larger as long as $\varepsilon \gg 1/k^{1/4}$.

In the rest of the chapter, we will go through an in-depth overview of uniformity and identity testing, with a full derivation of many results. This is the most detailed section of this monograph. We will start in Section 2.1 by describing and analyzing seven different uniformity testing algorithms, before turning in Section 2.2 to identity testing. There, we will describe the aforementioned reduction between uniformity and identity testing, which lets us use any of the algorithms from Section 2.1 to solve the more general problem; as well as a testing algorithm to perform identity testing directly, without reducing it to uniformity. The goal of this chapter is not to provide a list of various testing algorithms to the reader, then left to ponder what to do with it; but rather to highlight some general techniques and ideas in the course

¹There is a small print, of course, and some constant factors are lost.

²This adds a computational overhead, but as far as sample complexity is concerned this is not a problem.

of their analysis, applicable beyond these specific examples.

2.1 Uniformity testing

The sample complexity of uniformity testing with distance parameter $\varepsilon \in (0,1]$ is known to be $\Theta(\sqrt{k}/\varepsilon^2)$ (Paninski, 2008); this is, for a large range of parameters, significantly smaller than the domain size k, and in particular much better than the learning baseline of Theorem 1.3. This also means that we can reliably infer interesting properties of the distribution after observing only a negligible fraction of the domain elements! That is quite surprising, and nice. Now, how do we perform uniformity testing? And what should we keep in mind while doing so?

Although the sample complexity is of course a key aspect, there are several things to consider in a testing algorithm. To name a few:

Data efficiency: does the algorithm achieve the optimal sample complexity $\Theta(\sqrt{k}/\varepsilon^2)$?

Time efficiency: how fast is the algorithm to run (as a function of k, ε , and the number of samples n)?

Memory efficiency: how much memory does the algorithm require (as a function of k, ε , and n)?

Simplicity: is the algorithm simple to describe and implement?

"Simplicity": is the algorithm simple to *analyze*? This is not just a one-time thing: adapting and building upon a given algorithm will be much easier if the analysis does not require a long succession of technical, very specific, and complex steps.

Robustness: how *tolerant* is the algorithm to breaches of the promise? That is, does it accept distributions which are not *exactly* uniform as well, or is it very brittle?

Elegance: This is somewhat subjective, and each of us might have a different view of what it means. If you have strong feelings about this, however, know that you are not alone.

Generalizable: Does the algorithm have other features that might be desirable in other settings? For instance, if the algorithm has low sensitivity (in the Lipschitz sense), then it will be more resilient to adversarial perturbations of some of the samples – this is great for, *e.g.*, differential privacy applications.

In this chapter, we will have a detailed look at 7 different uniformity testing algorithms, each with its pros and cons. For each of them, we will provide a full proof of their performance, which will help us illustrate several techniques and ideas underlying the analysis of distribution testing algorithms. Table 2.1 summarizes the names, and some of the specificities, of those seven algorithms: we will discuss them in more detail in Section 2.1.9.

2.1.1 The ℓ_2 distance, and why

A key insight, which underlies a lot of the algorithms we will cover, is that here ℓ_2 distance is a good proxy for total variation distance:

$$d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = \frac{1}{2} \|\mathbf{p} - \mathbf{u}_k\|_1 \le \frac{\sqrt{k}}{2} \|\mathbf{p} - \mathbf{u}_k\|_2$$
 (2.1)

the inequality being Cauchy–Schwarz. So if $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) > \varepsilon$, then $\|\mathbf{p} - \mathbf{u}_k\|_2^2 > 4\varepsilon^2/k$ (and, well, if $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = 0$ then $\|\mathbf{p} - \mathbf{u}_k\|_2^2 = 0$ too, of course). Moreover, we have the very convenient fact, specific to the distance to uniform: for any distribution \mathbf{p} over [k],

$$\|\mathbf{p} - \mathbf{u}_k\|_2^2 = \sum_{i=1}^k (\mathbf{p}(i) - 1/k)^2 = \sum_{i=1}^k \mathbf{p}(i)^2 - 1/k = \|\mathbf{p}\|_2^2 - 1/k, \quad (2.2)$$

so combining the two we get that $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) > \varepsilon$ implies $\|\mathbf{p}\|_2^2 > (1 + 4\varepsilon^2)/k$.

Remark 2.1. The quantity $\|\mathbf{p}\|_2^2$ is commonly known as the *collision* probability of \mathbf{p} , due to the following easy fact: if X, Y are i.i.d. random variables distributed according to \mathbf{p} , then

$$\Pr[X = Y] = \sum_{i \in \mathcal{X}} \Pr[X = i, Y = i] = \sum_{i \in \mathcal{X}} \mathbf{p}(i)^2 = ||\mathbf{p}||_2^2$$
 (2.3)

	Sample complexity	Notes	References
Collision-based	$\frac{k^{1/2}}{\varepsilon^2}$	"Natural"	Goldreich and Ron, 2000; Diakonikolas et al., 2019b
Unique elements	$rac{k^{1/2}}{arepsilon^2}$	Low sensitivity $\varepsilon \gg 1/k^{1/4}$	Paninski, 2008
Modified χ^2	$\frac{k^{1/2}}{\varepsilon^2}$	(None)	Valiant and Valiant, 2017; Acharya et al., 2015; Diakonikolas et al., 2015
Empirical distance to uniform	$\frac{k^{1/2}}{\varepsilon^2}$	Low sensitivity	Diakonikolas et al., 2018
Random binary hashing	$rac{k}{arepsilon^2}$	Suboptimal, but fast	Acharya $et~al.,$ $2020c$
Bipartite collisions	$\frac{k^{1/2}}{arepsilon^2}$	Tradeoff possible	Diakonikolas et al., 2019a
Empirical subset weighting	$\frac{k^{1/2}}{\varepsilon^2}$	Tradeoff possible $\varepsilon \gg 1/k^{1/4}$	Acharya et al., 2020b

Table 2.1: The current landscape of uniformity testing, based on the algorithms covered in this survey. For ease of reading, we omit the $O(\cdot)$, $\Theta(\cdot)$, and $\Omega(\cdot)$'s from the table: all results should be read as asymptotic with regard to the parameters, up to absolute constants.

(this generalizes to higher-order collisions, with $\|\mathbf{p}\|_j^j$). It is easy to see, from Eq. (2.2), that among all probability distributions over a given support size k the collision probability is minimized for the uniform distribution: indeed, $\|\mathbf{p}\|_2^2 = \frac{1}{k} + \|\mathbf{p} - \mathbf{u}_k\|_2^2 \ge \frac{1}{k}$.

Remark 2.2. Eq. (2.1) provides an upper bound on the total variation distance in terms of the ℓ_2 distance. Recalling further that ℓ_p norms are monotone (non-increasing) in p, we further get that $||x||_1 \ge ||x||_2$ for any $x \in \mathbb{R}^d$, and therefore

E: Prove it: Exercise 2.1.

$$\frac{1}{2} \|\mathbf{p} - \mathbf{q}\|_{2} \le d_{TV}(\mathbf{p}, \mathbf{q}) \le \frac{\sqrt{k}}{2} \|\mathbf{p} - \mathbf{q}\|_{2}$$
 (2.4)

for any two $\mathbf{p}, \mathbf{q} \in \Delta_k$. Although loose by a factor \sqrt{k} (where k is the domain size), this relation turns out to be surprisingly useful in many occasions.

2.1.2 Collision-based

In view of Eq. (2.2), a very natural idea is to estimate $\|\mathbf{p}\|_2^2$, in order to distinguish between (i) $\|\mathbf{p}\|_2^2 = 1/k$ (uniform) and (ii) $\|\mathbf{p}\|_2^2 > (1+4\varepsilon^2)/k$ (ε -far from uniform). How to do that? Upon recalling Remark 2.1, the probability that two independent samples from \mathbf{p} take the same value (a "collision") is exactly $\|\mathbf{p}\|_2^2$. Thus, an obvious approach is to take n samples X_1, \ldots, X_n , count the number of pairs that show a collision, and use that as an unbiased estimator Z_1 for $\|\mathbf{p}\|_2^2$:

$$Z_1 = \frac{1}{\binom{n}{2}} \sum_{1 \le s < t \le n} \mathbb{1}\{X_s = X_t\}. \tag{2.5}$$

By the above, $\mathbb{E}[Z_1] = \|\mathbf{p}\|_2^2$. If we threshold Z_1 somewhere between (i) and (ii), at say $\tau := (1 + 2\varepsilon^2)/k$, we should be able to distinguish between our two cases and get a valid tester. But how large must n be for this to work?

Algorithm 1 Collision-Based Tester

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$

- 1: Set $\tau \leftarrow \frac{1+2\varepsilon^2}{k}$
- 2: Compute \triangleright Can be done in O(n) time if \mathcal{X} is known, $O(n \log n)$ if only k is.

$$Z_1 = \frac{1}{\binom{n}{2}} \sum_{1 \le s \le t \le n} \mathbb{1} \{x_s = x_t\} = \frac{1}{\binom{n}{2}} \sum_{j \in \mathcal{X}} \binom{N_j}{2}$$

where $N_j \leftarrow \sum_{t=1}^n \mathbb{1}\{x_t = j\}.$

3: if $Z_1 \ge \tau$ then return 0

▶ Not uniform

4: else return 1

▶ Uniform

Intuitively, we expect the test to work as long as the standard deviation of Z_1 (the "noise") is smaller than the gap between the

expectations in our two cases (the "signal"); that is,

$$\sqrt{\operatorname{Var}[Z_1]} \ll \Delta \mathbb{E}[Z_1] = \frac{4\varepsilon^2}{k}$$
 (2.6)

as this is the condition for the random fluctuations of our statistic Z_1 not to "cross" our threshold too often and lead to a wrong answer.

To make this quantitative, we can use Chebyshev's inequality, which requires us to bound $Var[Z_1]$. This is where things get tricky, since Z_1 is the sum of $\binom{n}{2}$ random variables which are *not* pairwise independent.³

We first show how to derive a (suboptimal) bound $n = O(\sqrt{k}/\varepsilon^4)$:

$$\operatorname{Var}[Z_{1}] = \mathbb{E}\left[Z_{1}^{2}\right] - \mathbb{E}[Z_{1}]^{2}$$

$$= \frac{1}{\binom{n}{2}^{2}} \sum_{1 \leq s < t \leq n} \sum_{1 \leq s' < t' \leq n} \mathbb{E}\left[\mathbb{1}\{X_{s} = X_{t}\}\mathbb{1}\{X_{s'} = X_{t'}\}\right] - \|\mathbf{p}\|_{2}^{4}$$

To handle this last sum despite the lack of independence of the summands, we will break it in 3 groups depending on the cardinality of $\{s, t, s', t'\}$, which can be either 4 (all indices are distinct), 3 (one index is common to the two pairs), or 2 (both pairs of indices are the same).

• In the first case, we have independence of the two indicator random variables, and

variables, and
$$\mathbb{E}[\mathbbm{1}\{X_s = X_t\} \mathbbm{1}\{X_{s'} = X_{t'}\}] = \mathbb{E}[\mathbbm{1}\{X_s = X_t\}] \mathbb{E}[\mathbbm{1}\{X_{s'} = X_{t'}\}] = \|\mathbf{p}\|_2^4.$$

• In the third case, the two indicator random variables are the same, and since $\mathbb{1}\{\}^2 = \mathbb{1}\{\}$ we get

$$\mathbb{E}[\mathbb{1}\{X_s = X_t\}\mathbb{1}\{X_{s'} = X_{t'}\}] = \mathbb{E}[\mathbb{1}\{X_s = X_t\}] = \|\mathbf{p}\|_2^2.$$

• The second case is the messiest one; still, one can verify that in this case $\mathbb{1}\{X_s = X_t\}\mathbb{1}\{X_{s'} = X_{t'}\}$ is 1 if, and only if, the three distinct samples corresponding to the 3 distinct indices among s, t, s', t' take the same value, from which

$$\mathbb{E}[\mathbb{1}\{X_s = X_t\}\mathbb{1}\{X_{s'} = X_{t'}\}] = \|\mathbf{p}\|_3^3.$$

³Namely, the summands $\mathbb{1}\{X_s = X_t\}$ in the definition of Z_1 are positively correlated: $\text{Cov}(\mathbb{1}\{X_s = X_t\}, \mathbb{1}\{X_{s'} = X_{t'}\}) \geq 0$, and are only independent if s, s', t, t' are all distinct.

It remains to count how many summands of each type we have. Clearly, we have exactly $\binom{n}{2}$ summands of the third type; it is also not too hard to see that we have $\binom{n}{2}\binom{n-2}{2}=6\binom{n}{4}$ summands of the first, and $6\binom{n}{3}$ of the second. (As a sanity check, $6\binom{n}{4}+6\binom{n}{3}+\binom{n}{2}=\binom{n}{2}^2$, so all our summands are accounted for.)

Getting back to our variance computation, this yields

$$\operatorname{Var}[Z_{1}] = \frac{1}{\binom{n}{2}^{2}} \left(6\binom{n}{4} \|\mathbf{p}\|_{2}^{4} + 6\binom{n}{3} \|\mathbf{p}\|_{3}^{3} + \binom{n}{2} \|\mathbf{p}\|_{2}^{2} \right) - \|\mathbf{p}\|_{2}^{4}$$

$$= \frac{1}{\binom{n}{2}^{2}} \left(\left(6\binom{n}{4} - \binom{n}{2}^{2} \right) \|\mathbf{p}\|_{2}^{4} + 6\binom{n}{3} \|\mathbf{p}\|_{3}^{3} + \binom{n}{2} \|\mathbf{p}\|_{2}^{2} \right)$$

$$\leq \frac{4}{n} \|\mathbf{p}\|_{3}^{3} + \frac{4}{n^{2}} \|\mathbf{p}\|_{2}^{2}$$

$$\leq \frac{4}{n} \mathbb{E}[Z_{1}]^{3/2} + \frac{4}{n^{2}} \mathbb{E}[Z_{1}]$$
(2.7)

first using that $6\binom{n}{4} < \binom{n}{2}^2$ to discard a negative term, then that $n \geq 2$ to get a simpler-looking upper bound on binomial coefficients, and finally writing $\|\mathbf{p}\|_3 \leq \|\mathbf{p}\|_2$ by monotonicity of ℓ_p norms.

In the uniform case (often called the *completeness* case for historical reasons), we seek to control the probability that Z_1 crosses our threshold $\tau := \frac{1+2\varepsilon^2}{2}$, that is

$$\Pr[Z_1 \ge \tau] = \Pr\left[Z_1 \ge (1 + 2\varepsilon^2)\mathbb{E}[Z_1]\right] \le \Pr\left[Z_1 \ge (1 + \varepsilon^2)\mathbb{E}[Z_1]\right]$$

while in the "far" case (often called the *soundness* case), we want to control

$$\Pr[Z_1 < \tau] \le \Pr\left[Z_1 < \frac{(1 - \varepsilon^2)(1 + 4\varepsilon^2)}{k}\right] \le \Pr\left[Z_1 < (1 - \varepsilon^2)\mathbb{E}[Z_1]\right]$$

using first that $(1 - \varepsilon^2)(1 + 4\varepsilon^2) \ge 1 + 2\varepsilon^2$ (for $\varepsilon \le 1/2$), and then the fact that in the "far" case $\mathbb{E}[Z_1] > \frac{1+4\varepsilon^2}{k}$.

To control our probability of error in both cases, it is thus sufficient to upper bound $\Pr[|Z_1 - \mathbb{E}[Z_1]| \ge \varepsilon^2 \mathbb{E}[Z_1]]$; by Chebyshev's inequality

(Theorem A.2), this is at most

$$\Pr[|Z_1 - \mathbb{E}[Z_1]| \ge \epsilon^2 \mathbb{E}[Z_1]] \le \frac{\operatorname{Var}[Z_1]}{\epsilon^4 \mathbb{E}[Z_1]^2}$$

$$\le \frac{4}{\epsilon^4 n \mathbb{E}[Z_1]^{1/2}} + \frac{4}{\epsilon^4 n^2 \mathbb{E}[Z_1]}$$

$$\le \frac{4\sqrt{k}}{\epsilon^4 n} + \frac{4k}{\epsilon^4 n^2}$$

which is at most 1/3, as desired, for $n \ge \frac{13\sqrt{k}}{\varepsilon^4}$. (For the third inequality, we relied on the fact that $\mathbb{E}[Z_1] = \|\mathbf{p}\|_2^2 \ge 1/k$ (cf. Remark 2.1).)

The above argument establishes that the collision-based tester has sample complexity $O(\sqrt{k}/\varepsilon^4)$. This is not the best one can get; in fact, by being (much) more careful one can show that this tester achieves the optimal sample complexity (as a function of k and ε)!

Theorem 2.1. The collision-based tester (Algorithm 1) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = O(\sqrt{k}/\varepsilon^2)$ and time complexity O(n).

Proof. Clearly, if we are to prove this tighter bound, we have to be less heavy-handed in one of the steps of the previous analysis, specifically in bounding the variance. An obvious candidate is the first step featuring an inequality instead of an equality, just after Eq. (2.7): there, we discarded a term since its coefficient $6\binom{n}{4} - \binom{n}{2}^2$ was negative.

Maybe we should not have. Starting again at Eq. (2.7) and recalling the relation $\binom{n}{2}^2 = 6\binom{n}{4} + 6\binom{n}{3} + \binom{n}{2}$ we saw earlier, we have

$${\binom{n}{2}}^{2} \operatorname{Var}[Z_{1}] = {\binom{6\binom{n}{4} - \binom{n}{2}}^{2}} \|\mathbf{p}\|_{2}^{4} + 6\binom{n}{3} \|\mathbf{p}\|_{3}^{3} + \binom{n}{2} \|\mathbf{p}\|_{2}^{2}$$

$$= {\binom{n}{2}} \|\mathbf{p}\|_{2}^{2} (1 - \|\mathbf{p}\|_{2}^{2}) + 6\binom{n}{3} (\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4}) \qquad (2.8)$$

A detour: this quite interesting! The first term is exactly the variance we would get had we had independent summands (this is exactly the variance of a Binomial with parameters $\binom{n}{2}$ and $\|\mathbf{p}\|_2^2$), while the second

is the "positive correlation" term. Indeed, one can see that the second term is always nonegative, as

$$\|\mathbf{p}\|_{2}^{4} = \left(\sum_{i} \mathbf{p}(i)^{3/2} \mathbf{p}(i)^{1/2}\right)^{2} \le \sum_{i} \mathbf{p}(i)^{3} \sum_{i} \mathbf{p}(i) = \|\mathbf{p}\|_{3}^{3}$$

by Cauchy–Schwarz (with equality if, and only if, \mathbf{p} is uniform on its support). Going back to our variance analysis, we will simplify a little the RHS above for the sake of conciseness, leading to

$$Var[Z_1] \le \frac{4}{n^2} \|\mathbf{p}\|_2^2 + \frac{4}{n} (\|\mathbf{p}\|_3^3 - \|\mathbf{p}\|_2^4)$$
 (2.9)

at the cost of some small constant factors (and assuming without loss of generality that $n \geq 2$).

• In the uniform case, we have $\|\mathbf{u}_k\|_3^3 = \|\mathbf{u}_k\|_2^4$ and Eq. (2.9) gives $\operatorname{Var}[Z_1] \leq \frac{4}{n^2k}$, and similarly as before

$$\Pr[Z_1 \ge \tau] = \Pr\Big[Z_1 \ge (1 + 2\varepsilon^2)\mathbb{E}[Z_1]\Big] \le \frac{\operatorname{Var}[Z_1]}{4\varepsilon^4\mathbb{E}[Z_1]^2} \le \frac{k}{\varepsilon^4 n^2}$$

by Chebyshev's inequality, and using $\mathbb{E}[Z_1] = 1/k$. This in turn is less than 1/3 as long as $n \ge \sqrt{3k}/\varepsilon^2$.

• In the "far" case, we will be a little more careful. Let $\alpha^2 := k \|\mathbf{p} - \mathbf{u}_k\|_2^2 \ge 4\varepsilon^2$, so that $\mathbb{E}[Z_1] = \frac{1+\alpha^2}{k}$. The probability that our tester errs in this case is

$$\Pr[Z_{1} < \tau] = \Pr\left[Z_{1} < \frac{1 + 2\varepsilon^{2}}{1 + \alpha^{2}} \mathbb{E}[Z_{1}]\right]$$

$$= \Pr\left[Z_{1} < \left(1 - \frac{\alpha^{2} - 2\varepsilon^{2}}{1 + \alpha^{2}}\right) \mathbb{E}[Z_{1}]\right]$$

$$\leq \Pr\left[Z_{1} < \left(1 - \frac{\alpha^{2}}{2(1 + \alpha^{2})}\right) \mathbb{E}[Z_{1}]\right]$$

$$\leq \frac{4(1 + \alpha^{2})^{2}}{\alpha^{4}} \cdot \frac{\operatorname{Var}[Z_{1}]}{\mathbb{E}[Z_{1}]^{2}}$$

$$\leq \frac{16(1 + \alpha^{2})^{2}}{\alpha^{4}n^{2} \|\mathbf{p}\|_{2}^{2}} + \frac{16(1 + \alpha^{2})^{2}}{\alpha^{4}n} \cdot \frac{\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4}}{\|\mathbf{p}\|_{2}^{4}}$$

the first inequality using $\alpha^2 \geq 4\varepsilon^2$, the second being Chebyshev's, and the third being Eq. (2.9). The first term is relatively familiar: since $\|\mathbf{p}\|_2^2 = (1 + \alpha^2)/k$ by definition of α , we have

$$\frac{16(1+\alpha^2)^2}{\alpha^4 n^2 \|\mathbf{p}\|_2^2} = \frac{16(1+\alpha^2)k}{\alpha^4 n^2} \le \frac{5k}{\varepsilon^4 n^2}$$
 (2.10)

the inequality since $x > 0 \mapsto \frac{1+x}{x^2}$ is decreasing and $\alpha^2 \ge 4\varepsilon^2$ (and $\varepsilon \le 1$ to write $1 + 4\varepsilon^2 \le 5$).

To handle the second, we write $\mathbf{p} = (\mathbf{p} - \mathbf{u}_k) + \mathbf{u}_k$ and expand:

$$\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4} \leq \|\mathbf{p} - \mathbf{u}_{k} + \mathbf{u}_{k}\|_{3}^{3} - \frac{1}{k^{2}}$$

$$= \|\mathbf{p} - \mathbf{u}\|_{3}^{3} + \frac{3}{k}\|\mathbf{p} - \mathbf{u}\|_{2}^{2} \qquad (2.11)$$

$$\leq \|\mathbf{p} - \mathbf{u}\|_{2}^{3} + \frac{3}{k}\|\mathbf{p} - \mathbf{u}\|_{2}^{2}$$

$$= \frac{\alpha^{3}}{k^{3/2}} + \frac{3\alpha^{2}}{k^{2}} \qquad (2.12)$$

where the first inequality uses $\|\mathbf{p}\|_2^2 \ge 1/k$, the equality follows from expanding the cubes in $\sum_i ((\mathbf{p}(i) - \mathbf{u}_k(i)) + \mathbf{u}_k(i))^3$ and observing the cancellations, the second inequality is monotonicity of ℓ_p norms, and the last equality stems from the definition of α . This gives

$$\frac{16(1+\alpha^{2})^{2}}{\alpha^{4}n} \cdot \frac{\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4}}{\|\mathbf{p}\|_{2}^{4}} = \frac{16k^{2}}{\alpha^{4}n} \cdot (\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4})$$

$$\leq \frac{16\sqrt{k}}{\alpha n} + \frac{48}{\alpha^{2}n}$$

$$\leq \frac{8\sqrt{k}}{\epsilon n} + \frac{12}{\epsilon^{2}n}.$$
(2.13)

Combining Eqs. (2.10) and (2.13), we get

$$\Pr[Z_1 < \tau] \le \frac{5k}{\varepsilon^4 n^2} + \frac{8\sqrt{k}}{\varepsilon n} + \frac{12}{\varepsilon^2 n} \le \frac{5k}{\varepsilon^4 n^2} + \frac{20\sqrt{k}}{\varepsilon^2 n}$$

which is less than 1/3 for $n \ge 64\sqrt{k}/\varepsilon^2$, as can be seen by solving the inequality $5x^2 + 20x \le 1/3$ (where $x = \frac{\sqrt{k}}{\varepsilon^2 n}$).

E: Check it:

Exercise 2.2.

Combining the uniform and far cases proves the theorem, showing that $n = O(\sqrt{k}/\varepsilon^2)$ samples suffice for the collision-based tester to be correct with probability at least 2/3 in both cases.

2.1.3 Unique elements

Another idea: count the number of elements that appear exactly *once* among the n samples taken. Why is that a sensible thing to do? We have seen that the uniform distribution will have the fewer collisions, so, equivalently, will have the maximum number of unique elements. In this case, the estimator Z_2 (the number of unique elements) is defined as

$$Z_2 = \frac{1}{n} \sum_{j \in \mathcal{X}} \mathbb{1}\{N_j = 1\},$$
 (2.14)

again with $N_j := \sum_{t=1}^n \mathbb{1}\{X_t = j\}$. It is a simple matter to verify that this statistic has expectation

$$\mathbb{E}[Z_2] = \sum_{i \in \mathcal{X}} \mathbf{p}(i)(1 - \mathbf{p}(i))^{n-1}$$
(2.15)

which is... a thing? Note that under the uniform distribution \mathbf{u}_k , this is exactly $(1-1/k)^{n-1} \approx 1-\frac{n}{k}$, and under arbitrary \mathbf{p} this is (making a few approximations not always valid) $\approx \sum_{i=1}^k \mathbf{p}(i)(1-n\mathbf{p}(i)) = 1-n\|\mathbf{p}\|_2^2$. So the gap in expectation between the two cases "should" be around $4\varepsilon^2 n/k$, and, if the variance analysis goes well and the stars align, we will be able to use Chebyshev's inequality and argue that we can distinguish the two for n large enough.

Now, before we actually delve into this analysis, it is worth mentioning a limitation of this tester, which is that we only expect it to work for $n \ll k$. Indeed, we count the number of distinct elements, and there will never ever be more than k of them if the domain size is k.⁴ That explains, intuitively, the condition for the test to work: we need n (the number of samples taken) to be smaller than k (the maximum number of distinct elements one can ever hope to see), which gives, since we will eventually get $n = \Theta(\sqrt{k}/\varepsilon^2)$, the condition $\varepsilon \gg 1/k^{1/4}$.

⁴More quantitatively, for $n \to \infty$ the approximations made in the above discussion completely break down; and we will instead get $\mathbb{E}[Z_2] \to 0$ in both the uniform and the far cases.

Algorithm 2 Unique-Elements Tester

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$ such that $\varepsilon \ge \frac{15}{k^{1/4}}$

- 1: Set $\tau \leftarrow (1 \frac{1}{k})^{n-1} \frac{n\varepsilon^2}{8k}$ \triangleright This is $\mathbb{E}_{\mathbf{u}_k}[Z_2] \frac{n\varepsilon^2}{8k}$
- 2: Compute \triangleright Can be done in O(n) time if \mathcal{X} is known, $O(n \log n)$ if only k is.

$$Z_2 = \frac{1}{n} \sum_{j \in \mathcal{X}} \mathbb{1}\{ \mathbb{N}_j = 1 \}$$

where $N_j \leftarrow \sum_{t=1}^n \mathbb{1}\{x_t = j\}.$

- 3: if $Z_2 \le \tau$ then return 0
- 4: else return 1

▶ Not uniform

▶ Uniform

Our first step is to make our back-of-the-envelope computation above rigorous, and lower bound the gap $\Delta(\mathbf{p}) := \mathbb{E}_{\mathbf{u}_k}[Z_2] - \mathbb{E}_{\mathbf{p}}[Z_2]$ between the far and uniform cases.

Lemma 2.2. If $n \leq k$, we have

$$\mathbb{E}_{\mathbf{u}_k}[Z_2] - \mathbb{E}_{\mathbf{p}}[Z_2] \ge \frac{n}{16k} d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k)^2.$$

Proof. Denote this gap by $\Delta(\mathbf{p})$. From (2.15), we can explicitly write

$$\Delta(\mathbf{p}) = (1 - 1/k)^{n-1} - \sum_{i \in \mathcal{X}} \mathbf{p}(i)(1 - \mathbf{p}(i))^{n-1}$$

$$= \sum_{i \in \mathcal{X}} \mathbf{p}(i) \left((1 - 1/k)^{n-1} - (1 - \mathbf{p}(i))^{n-1} \right)$$

$$= (1 - 1/k)^{n-1} \sum_{i \in \mathcal{X}} \mathbf{p}(i) \left(1 - \left(\frac{1 - \mathbf{p}(i)}{1 - 1/k} \right)^{n-1} \right)$$

where in the second line we used $\sum_i \mathbf{p}(i) = 1$ to "hide 1." Defining $f: [0,1] \to \mathbb{R}$ by

$$f(x) = x \left(1 - \left(\frac{1-x}{1-1/k} \right)^{n-1} \right)$$

and using the fact that $n \leq k$ to write $(1 - 1/k)^{n-1} \geq (1 - 1/k)^k \geq 1/4$ (as $k \geq 2$), we are left with $\Delta(\mathbf{p}) \geq \frac{1}{4} \sum_{i \in \mathcal{X}} f(\mathbf{p}(i))$. At this point, we would like to rely on tools from our arsenal (convexity or concavity for

: You are the

Jensen's inequality, monotonicity, etc.); unfortunately, the function f is not very well-behaved, and is neither concave, convex, or monotone. It does satisfy f(0) = f(1/k) = 0, f(1) = 1, but that is not quite enough. Instead, we will find a "good" lower bound g on f, which will allow us to reason more easily: specifically, we will set, for $x \in [0, 1]$,

$$g(x) = \frac{n-1}{k-1} \cdot (x-1/k) + \frac{n-1}{2(1-1/k)} (x-1/k)^2 \mathbb{1} \{x \le 1/k\}.$$

Let us demystify this choice a little. The first coefficient is simply f'(1/k), while the second has been chosen as the largest possible value such that $g'(0) \geq 0.5$ Moreover, when summing $\sum_i g(\mathbf{p}(i))$, the linear term will just cancel out and we will be left with a quadratic term of the form $\sum_i g(\mathbf{p}(i)) \approx \sum_i (\mathbf{p}(i) - 1/k)^2 \mathbb{1}{\{\mathbf{p}(i) \leq 1/k\}}$, which we can hope to relate to $\|\mathbf{p} - \mathbf{u}_k\|_2^2$ (the same thing, without the indicator). An illustration of f and g is given in Fig. 2.1.

Figure 2.1: Our choice of g, here depicted for k = 8, n = 7.

To continue our analysis, we will rely on the following technical claim, whose proof is calculus and left to the reader.

Claim 2.1. Fix $\alpha \in (0,1)$ and $\beta \geq 1$ such that $\frac{\alpha\beta}{1-\alpha} \leq 1$; and define

⁵While we will not require it, this ensures g is nondecreasing, which is nice.

$$f_{\alpha,\beta}, g_{\alpha,\beta} \colon [0,1] \to \mathbb{R} \text{ by } f_{\alpha,\beta}(x) = x \left(1 - \left(\frac{1-x}{1-\alpha} \right)^{\beta} \right) \text{ and}$$

$$g_{\alpha,\beta}(x) = \frac{\alpha\beta}{1-\alpha} (x-\alpha) + \frac{\beta}{2(1-\alpha)} (x-\alpha)^2 \mathbb{1} \{ x \le \alpha \} .$$

Then $g_{\alpha,\beta}$ is nondecreasing, and $f_{\alpha,\beta} \geq g_{\alpha,\beta}$.

Applying this to $\alpha := 1/k$ and $\beta := n - 1$ (which, since $n \leq k$, satisfy the assumptions) leads to

$$\Delta(\mathbf{p}) \ge \frac{1}{4} \sum_{i \in \mathcal{X}} g(\mathbf{p}(i))$$

$$= \frac{n-1}{8(1-1/k)} \sum_{i \in \mathcal{X}} (\mathbf{p}(i) - 1/k)^2 \mathbb{I}\{\mathbf{p}(i) \le 1/k\}$$

$$\ge \frac{n-1}{8(k-1)} \left(\sum_{i \in \mathcal{X}} |\mathbf{p}(i) - 1/k| \mathbb{I}\{\mathbf{p}(i) \le 1/k\} \right)^2$$

$$= \frac{n-1}{8(k-1)} d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k)^2,$$

where the first line uses $f \geq g$, the second from cancellation of the linear term of g, the third is Cauchy–Schwarz, and the last follows from the definition of total variation distance. Using $n \geq 2$ to write $\frac{n-1}{k-1} \geq \frac{n}{2k}$ concludes the proof.

At this point, we have half of the puzzle: it remains to get a handle on the variance of \mathbb{Z}_2 in both the far and uniform cases. We start by providing an exact (albeit unwieldy) expression for it.

$$\begin{aligned} \operatorname{Var}[Z_2] &= \frac{1}{n^2} \sum_{i,j \in \mathcal{X}} \mathbb{E}[\mathbb{1}\{N_i = 1\} \mathbb{1}\{N_j = 1\}] - \mathbb{E}[Z_2]^2 \\ &= \frac{1}{n^2} \sum_{i \in \mathcal{X}} \mathbb{E}[\mathbb{1}\{N_i = 1\}] + \frac{1}{n^2} \sum_{i \neq j} \mathbb{E}[\mathbb{1}\{N_i = 1\} \mathbb{1}\{N_j = 1\}] - \mathbb{E}[Z_2]^2 \\ &= \frac{1}{n} \mathbb{E}[Z_2] - \mathbb{E}[Z_2]^2 + \frac{n-1}{n} \sum_{i \neq j} \mathbf{p}(i) \mathbf{p}(j) (1 - (\mathbf{p}(i) + \mathbf{p}(j)))^{n-2}, \end{aligned}$$

where the last line relied on Eq. (2.14) to recognize $\mathbb{E}[Z_2]$ in the first term, and on the fact that $\mathbb{E}[\mathbb{1}\{N_i=1\}\mathbb{1}\{N_j=1\}] = n(n-1)\mathbf{p}(i)\mathbf{p}(j)(1-(\mathbf{p}(i)+\mathbf{p}(j)))^{n-2}$ for $i\neq j$. (Indeed, $\mathbb{1}\{N_i=1\}\mathbb{1}\{N_j=1\}$ is equal to

one if, and only if, out of the n samples two fall on i and j, respectively, and the n-2 others hit $\mathcal{X}\setminus\{i,j\}$.)

This looks quite unwieldy; however, we can rearrange the term $\mathbb{E}[Z_2]^2$ to obtain the nicer expression

$$\operatorname{Var}[Z_2] = \frac{\mathbb{E}[Z_2](1 - \mathbb{E}[Z_2])}{n} + \frac{n - 1}{n} \left(\sum_{i \neq j} \mathbf{p}(i) \mathbf{p}(j) (1 - \mathbf{p}(i) - \mathbf{p}(j))^{n-2} - \mathbb{E}[Z_2]^2 \right)$$

$$\leq \frac{1 - \mathbb{E}[Z_2]}{n} + \sum_{i \neq j} \mathbf{p}(i) \mathbf{p}(j) (1 - \mathbf{p}(i) - \mathbf{p}(j))^{n-2} - \mathbb{E}[Z_2]^2$$
(2.16)

For the uniform case, Eq. (2.16) simplifies quite a bit, and we get

$$\operatorname{Var}_{\mathbf{u}_{k}}[Z_{2}] \leq \frac{1}{n} \left(1 - \left(1 - \frac{1}{k} \right)^{n-1} \right) + \left(1 - \frac{2}{k} \right)^{n-2} - \left(1 - \frac{1}{k} \right)^{2(n-1)}$$

$$\leq \frac{n-1}{nk} + \left(1 - \frac{1}{k} \right)^{2(n-2)} - \left(1 - \frac{1}{k} \right)^{2(n-1)}$$

$$\leq \frac{1}{k} + \left(1 - \frac{1}{k} \right)^{2(n-2)} \left(1 - \left(1 - \frac{1}{k} \right)^{2} \right)$$

$$= \frac{1}{k} + \frac{2}{k} \left(1 - \frac{1}{k} \right)^{2(n-2)} \left(1 - \frac{1}{2k} \right) \leq \frac{3}{k}$$

$$(2.17)$$

where the second inequality follows from $1 - 2x \leq (1 - x)^2$, and $(1 - x)^m \geq 1 - mx$ for $m \geq 1$ and $x \leq 1$. (As a side note, we proved along the way that $\frac{1}{n}(1 - \mathbb{E}_{\mathbf{u}_k}[Z_2]) \leq \frac{1}{k}$, which will come in handy.)

This looks great! We just proved that, at least in the uniform case, $\operatorname{Var}_{\mathbf{u}_k}[Z_2] \leq 3/k$. By the same rule of thumb as in the previous argument (Eq. (2.6)), we expect our test to work as long as the standard deviation (the "noise") of our statistic is smaller than the gap in expectations (the "signal"), which by Lemma 2.2 gives the condition

$$\operatorname{Var}_{\mathbf{u}_k}[Z_2] \leq \frac{3}{k} \ll \frac{\varepsilon^4 n^2}{16k^2} \leq \Delta(\mathbf{p})^2$$
.

Reorganizing, this yields the condition $n \gg \sqrt{k/\varepsilon^2}$, which is exactly what we want to prove. The problem, of course, is that we so far only have bounded the variance in one of the two cases; to conclude, we need the last quarter of the puzzle.

To do so, we will invoke the following:

Lemma 2.3. Fix $m \ge 1$ and $k \in \mathbb{N}$. For any $x_1, \ldots, x_k \ge 0$ such that $\sum_{i=1}^k x_i = 1$, we have

$$\frac{m\sum_{1\leq i< j\leq k} x_i x_j ((1-x_i-x_j)^{m-1} - (1-x_i)^m (1-x_j)^m)}{\sum_{i=1}^k x_i (1-(1-x_i)^m)} \leq 1$$

Unfortunately, there is not much intuition we can provide about why this inequality holds; and we defer its proof to the end of the chapter (Section 2.5), focusing for now on how it will provide us with the last piece of said puzzle. In view of resuming from Eq. (2.16), we expand $\mathbb{E}[Z_2]^2$ to write

$$\sum_{i \neq j} \mathbf{p}(i)\mathbf{p}(j)(1 - \mathbf{p}(i) - \mathbf{p}(j))^{n-2} - \mathbb{E}[Z_2]^2$$

$$= \sum_{i \neq j} \mathbf{p}(i)\mathbf{p}(j)(1 - \mathbf{p}(i) - \mathbf{p}(j))^{n-2} - \sum_{i,j} \mathbf{p}(i)\mathbf{p}(j)(1 - \mathbf{p}(i))^{n-1}(1 - \mathbf{p}(j))^{n-1}$$

$$\leq \sum_{i \neq j} \mathbf{p}(i)\mathbf{p}(j) \Big((1 - \mathbf{p}(i) - \mathbf{p}(j))^{n-2} - (1 - \mathbf{p}(i))^{n-1}(1 - \mathbf{p}(j))^{n-1} \Big)$$

$$\leq \frac{1}{n-1} \sum_{i=1}^{k} \mathbf{p}(i)(1 - (1 - \mathbf{p}(i))^{n-1}) = \frac{1 - \mathbb{E}[Z_2]}{n-1}$$

where the last inequality is Lemma 2.3 applied with m = n - 1 and $x_i = \mathbf{p}(i)$. Then, using this in Eq. (2.16) (and bounding $1/(n-1) \le 2/n$) leads to

$$\operatorname{Var}[Z_2] \leq 3 \cdot \frac{1 - \mathbb{E}_{\mathbf{p}}[Z_2]}{n} = 3 \left(\frac{1 - \mathbb{E}_{\mathbf{u}_k}[Z_2]}{n} + \frac{\mathbb{E}_{\mathbf{u}_k}[Z_2] - \mathbb{E}_{\mathbf{p}}[Z_2]}{n} \right)$$

$$\leq 3 \left(\frac{1}{k} + \frac{\Delta(\mathbf{p})}{n} \right). \tag{2.18}$$

Before invoking Chebyshev's inequality, let us see why this is wonderful news. The first term of the bound, 3/k, is the same as in the uniform case, and we have discussed before how it would by itself lead to the desired sufficient condition $n \gg \sqrt{k}/\varepsilon^2$. The second is new; by the same rule of thumb, it will lead to the condition

$$\frac{3\Delta(\mathbf{p})}{n} \ll \Delta(\mathbf{p})^2$$

where one $\Delta(\mathbf{p})$ crucially cancels out, leaving us with $\Delta(\mathbf{p}) \gg 1/n$. Since $\Delta(\mathbf{p}) \geq \frac{\varepsilon^2 n}{16k}$, a sufficient condition then becomes $\frac{\varepsilon^2 n}{k} \gg \frac{1}{n}$, which then will be satisfied as soon as $n \gg \sqrt{k/\varepsilon}$.

Now that we have all the pieces of the puzzle, let us establish the main result of this subsection:

Theorem 2.4. The unique-elements tester (Algorithm 2) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = O(\sqrt{k}/\varepsilon^2)$ and time complexity O(n), provided that $\varepsilon \ge 15/k^{1/4}$.

Proof. For any $\mathbf{p} \in \Delta_k$, let as before $\Delta(\mathbf{p}) := \mathbb{E}_{\mathbf{u}_k}[Z_2] - \mathbb{E}_{\mathbf{p}}[Z_2]$. Of course, if $\mathbf{p} = \mathbf{u}_k$ then $\Delta(\mathbf{p}) = 0$, and we know from Lemma 2.2 that $\Delta(\mathbf{p}) \geq \Delta := \frac{n\varepsilon^2}{16k}$ whenever $d_{\mathrm{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$. We also obtained earlier (in Eqs. (2.17) and (2.18)) a bound in the variance of Z_2 in both the uniform and "far" cases, so we have all the ingredients we need. Define our threshold

$$au := \mathbb{E}_{\mathbf{u}_k}[Z_2] - \frac{\Delta}{2}$$

as in Algorithm 2.

• In the uniform case, the probability to output 0 (and thus make a mistake) is bounded as

$$\Pr[Z_2 \le \tau] = \Pr\left[Z_2 \le \mathbb{E}_{\mathbf{u}_k}[Z_2] - \frac{\Delta}{2}\right] \le \frac{4 \operatorname{Var}_{\mathbf{u}_k}[Z_2]}{\Delta^2} \le \frac{3072k}{\varepsilon^4 n^2}$$

by Chebyshev's inequality, using $\operatorname{Var}_{\mathbf{u}_k}[Z_2] \leq 3/k$ and the definition of Δ . This in turn is less than 1/3 as long as $n \geq 96\sqrt{k}/\varepsilon^2$.

• In the "far" case, since $\mathbb{E}_{\mathbf{p}}[Z_2] = \mathbb{E}_{\mathbf{u}_k}[Z_2] - \Delta(\mathbf{p})$ and $\Delta(\mathbf{p}) \geq \Delta$ the probability to err by outputting 1 is

$$\Pr[Z_2 > \tau] = \Pr\left[Z_2 > \mathbb{E}_{\mathbf{p}}[Z_2] + \frac{\Delta(\mathbf{p})}{2} + \frac{\Delta(\mathbf{p}) - \Delta}{2}\right]$$

$$\leq \Pr\left[Z_2 > \mathbb{E}_{\mathbf{p}}[Z_2] + \frac{\Delta(\mathbf{p})}{2}\right]$$

$$\leq \frac{4 \operatorname{Var}_{\mathbf{p}}[Z_2]}{\Delta(\mathbf{p})^2} \leq \frac{12}{k\Delta(\mathbf{p})^2} + \frac{12}{n\Delta(\mathbf{p})}$$

$$\leq \frac{3072k}{\epsilon^4 n^2} + \frac{192k}{\epsilon^2 n^2} \leq \frac{3264k}{\epsilon^4 n^2}$$

⁶We assume throughout $n \leq k$, and will enforce this at the end.

using $\operatorname{Var}_{\mathbf{p}}[Z_2] \leq 3/k + 3\Delta(\mathbf{p})/n$. The resulting bound is then less than 1/3 for $n \geq 99\sqrt{k}/\varepsilon^2$.

The above analysis shows that both errors are less than 1/3 for, say, $n = \lceil 99\sqrt{k}/\varepsilon^2 \rceil$. However, we did rely on Lemma 2.2, which requires $n \leq k$; given our choice of n, this in turns imposes a condition on ε (for instance, one can check that $\varepsilon \geq 15/k^{1/4}$ suffices).

2.1.4 Modified χ^2

If you are a statistician, or just took a Statistics class, or even got lost on Wikipedia at some point and ended up on the wrong page at the wrong time, you may know of Pearson's χ^2 test for goodness-of-fit: for every element i of the domain, count how many times it appeared in the samples, N_i . Compute $\sum_i \frac{(N_i - n/k)^2}{n/k}$. Compare the result to a predetermined threshold. This very natural idea, maybe not surprisingly, works well! In particular, since $N_i \sim \text{Bin}(n, \mathbf{p}(i))$, one can derive

$$\mathbb{E}\left[\sum_{i=1}^{k} \frac{(N_i - n/k)^2}{n/k}\right] = \frac{k}{n} \sum_{i=1}^{k} \mathbb{E}\left[\left(N_i - \frac{n}{k}\right)^2\right] = k(n-1) \|\mathbf{p} - \mathbf{u}_k\|_2^2 + k - 1,$$

does E: Check it!

using moments of a Binomial random variable and Eq. (2.2). This does look like a reasonable way to estimate the distance to uniformity via the ℓ_2 distance again... unfortunately, the variance will be quite annoying, due to the correlations between terms of the sums.

To make the task easier, it is helpful to think of taking Poisson(n) samples instead of exactly n, which will greatly simplifies the analysis. Then, under this (slightly different) sampling model the N_i 's become independent, with $N_i \sim \text{Poisson}(n\mathbf{p}(i))$: this is called Poissonization, and can be done more or less without loss of generality since a Poisson(n) random variable will be between 0.99n and 1.01n with overwhelming probability. (See Appendix C for more on Poissonization, and why we can use it "without loss of generality").

The bad news is that it does not actually lead to the optimal sample complexity: Poissonization introduces a bit more variance (as we introduce extra randomness ourselves by taking a random number of samples), and so the variance of this χ^2 test can be too big due to

Algorithm 3 Chi-Square Tester

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$ \triangleright Assumes Poissonization

- 1: Set $\tau \leftarrow 2n\varepsilon^2$
- 2: Compute \triangleright Can be done in O(n) time if \mathcal{X} is known, $O(n \log n)$ if only k is.

$$Z_3 = \sum_{j \in \mathcal{X}} \frac{(N_j - n/k)^2 - N_j}{n/k}$$

where $N_j \leftarrow \sum_{t=1}^n \mathbb{1}\{x_t = j\}.$

- 3: if $Z_3 \ge \tau$ then return 0
- 4: else return 1

- ▶ Not uniform
 - ▶ Uniform

the elements we only expect to see zero or once (so, most of them). The *good* news is that a simple correction of that test, of the form

$$Z_3 = \sum_{i=1}^k \frac{(N_i - n/k)^2 - N_i}{n/k}$$
 (2.19)

does have a much smaller variance, and a threshold test of the form " $Z_3 > \tau$?" will yield the right sample complexity.⁷ Recalling that $N_i \sim \text{Poisson}(n\mathbf{p}(i))$ for all i, the expectation of Z_3 will then just be

$$\mathbb{E}[Z_3] = nk \|\mathbf{p} - \mathbf{u}_k\|_2^2 \tag{2.20}$$

which is perfect. Analyzing this test boils down, again, to bounding the variance of Z_3 and invoking Chebyshev's inequality... Before doing so, we will make a change which looks innocuous, but will come in quite handy in Section 2.2 when generalizing beyond the uniform distribution: let us rewrite

$$Z_3 = \sum_{i=1}^k \frac{(N_i - n\mathbf{u}_k(i))^2 - N_i}{n\mathbf{u}_k(i)}$$

where, of course, $\mathbf{u}_k(i) = 1/k$ for all $i \in [k]$. Recalling that, by Poissonization, all the N_i 's are independent Poisson random variables, we

⁷In the multinomial ("non-Poissonized") case, substracting N_i was not necessary, since that would correspond to removing overall $\frac{k}{n}\sum_{i=1}^k N_i = k$, a constant term. In the Poissonized case, however, $\sum_{i=1}^k N_i \sim \operatorname{Poisson}(n)$, and $\frac{k}{n}\sum_{i=1}^k N_i$ is not a constant – it is a random variable with expectation k and (large) variance k^2/n .

will invoke the technical claim below, which follows from (somewhat tedious, but straightforward) computations involving the moments of Poisson random variables:

E: Verify it: Exercise 2.3.

Claim 2.2. Let
$$\mu, \lambda \geq 0$$
. If $X \sim \text{Poisson}(\lambda)$, then $\mathbb{E}[(X - \mu)^2 - X] = (\lambda - \mu)^2$ and $\mathbb{E}[((X - \mu)^2 - X)^2] = (\lambda - \mu)^4 + 2\lambda^2 + 4\lambda(\lambda - \mu)^2$.

Given this, by linearity of expectation we immediately get⁸

$$\mathbb{E}[Z_3] = \sum_{i=1}^k \frac{\mathbb{E}[(\mathbf{N}_i - n\mathbf{u}_k(i))^2 - \mathbf{N}_i]}{n\mathbf{u}_k(i)} = n \sum_{i=1}^k \frac{(\mathbf{p}(i) - \mathbf{u}_k(i))^2}{\mathbf{u}_k(i)}$$
$$= n \cdot \chi^2(\mathbf{p} \mid\mid \mathbf{u}_k)$$
(2.21)

which here can further be simplified by $\chi^2(\mathbf{p} \mid\mid \mathbf{u}_k) = k \|\mathbf{p} - \mathbf{u}_k\|_2^2$, as the denominator is constant and equal to 1/k; this establishes Eq. (2.20).

Turning to the variance, we want to relate $\operatorname{Var}[Z_3]$ to known quantities, and in particular $\mathbb{E}[Z_3]$. To do so, we use independence of the N_i 's followed by the second part of the above claim to get

$$\operatorname{Var}[Z_{3}] = \sum_{i=1}^{k} \frac{\operatorname{Var}[(N_{i} - n\mathbf{u}_{k}(i))^{2} - N_{i}]}{n^{2}\mathbf{u}_{k}(i)^{2}}$$

$$= \sum_{i=1}^{k} \frac{2n^{2}\mathbf{p}(i)^{2} + 4n^{3}\mathbf{p}(i)(\mathbf{p}(i) - \mathbf{u}_{k}(i))^{2}}{n^{2}\mathbf{u}_{k}(i)^{2}}$$

$$= 2\sum_{i=1}^{k} \frac{\mathbf{p}(i)^{2}}{\mathbf{u}_{k}(i)^{2}} + 4n\sum_{i=1}^{k} \frac{\mathbf{p}(i)(\mathbf{p}(i) - \mathbf{u}_{k}(i))^{2}}{\mathbf{u}_{k}(i)^{2}}$$

$$\leq 2\sum_{i=1}^{k} \frac{\mathbf{p}(i)^{2}}{\mathbf{u}_{k}(i)^{2}} + 4n\sqrt{\sum_{i=1}^{k} \frac{\mathbf{p}(i)^{2}}{\mathbf{u}_{k}(i)^{2}}} \cdot \sqrt{\sum_{i=1}^{k} \frac{(\mathbf{p}(i) - \mathbf{u}_{k}(i))^{4}}{\mathbf{u}_{k}(i)^{2}}}$$

$$\leq 2\sum_{i=1}^{k} \frac{\mathbf{p}(i)^{2}}{\mathbf{u}_{k}(i)^{2}} + 4n\sqrt{\sum_{i=1}^{k} \frac{\mathbf{p}(i)^{2}}{\mathbf{u}_{k}(i)^{2}}} \cdot \sum_{i=1}^{k} \frac{(\mathbf{p}(i) - \mathbf{u}_{k}(i))^{2}}{\mathbf{u}_{k}(i)}$$

$$= 2\sum_{i=1}^{k} \frac{\mathbf{p}(i)^{2}}{\mathbf{u}_{k}(i)^{2}} + 4\sqrt{\sum_{i=1}^{k} \frac{\mathbf{p}(i)^{2}}{\mathbf{u}_{k}(i)^{2}}} \mathbb{E}[Z_{3}], \qquad (2.22)$$

⁸Here, $\chi^2(\mathbf{p} \mid\mid \mathbf{q}) = \sum_{i=1}^k \frac{(\mathbf{p}(i) - \mathbf{q}(i))^2}{\mathbf{q}(i)}$ denotes the *chi-square divergence* between distributions \mathbf{p} and \mathbf{q} ; for a refresher on this notion of distance, the reader is referred to Appendix \mathbf{B} .

where the first inequality is Cauchy–Schwarz, and the second is monotonicity of ℓ_p norms: namely, $\ell_2 \leq \ell_1$. In order to proceed further, we need to bound the quantity $\sum_{i=1}^k \frac{\mathbf{p}(i)^2}{\mathbf{u}_k(i)^2}$. The trick here will be to write, using $(a+b)^2 \leq 2a^2 + 2b^2$,

$$\mathbf{p}(i)^2 = ((\mathbf{p}(i) - \mathbf{u}_k(i)) + \mathbf{u}_k(i))^2 \le 2(\mathbf{p}(i) - \mathbf{u}_k(i))^2 + 2\mathbf{u}_k(i)^2$$

since then we have

$$\begin{split} \sum_{i=1}^{k} \frac{\mathbf{p}(i)^2}{\mathbf{u}_k(i)^2} &\leq 2k + 2\sum_{i=1}^{k} \frac{(\mathbf{p}(i) - \mathbf{u}_k(i))^2}{\mathbf{u}_k(i)^2} = 2k + 2k\sum_{i=1}^{k} \frac{(\mathbf{p}(i) - \mathbf{u}_k(i))^2}{\mathbf{u}_k(i)} \\ &= 2k\left(1 + \frac{\mathbb{E}[Z_3]}{n}\right). \end{split}$$

Putting this back in Eq. (2.22), we get

$$\operatorname{Var}[Z_3] \le 4k \left(1 + \frac{\mathbb{E}[Z_3]}{n} \right) + 4\sqrt{2}k^{1/2}\mathbb{E}[Z_3] + 4\sqrt{2}\frac{k^{1/2}}{n^{1/2}}\mathbb{E}[Z_3]^{3/2} \quad (2.23)$$

In particular, in the uniform case $\mathbb{E}_{\mathbf{u}_k}[Z_3] = 0$, and so $\mathrm{Var}_{\mathbf{u}_k}[Z_3] \leq 4k$. Before formally analyzing the resulting sample complexity via (once more) Chebyshev's inequality, let us do the usual check and compare standard deviation (noise) to expectation gap (signal), and see if things look promising. The gap in expectation will be, given Eq. (2.21), at least $\Delta := nk \cdot \frac{4\varepsilon^2}{k} = 4n\varepsilon^2$; so, in the uniform case, we need $\mathrm{Var}_{\mathbf{u}_k}[Z_3] \ll \Delta^2$ which, given the above, is satisfied as long as $n \gg \sqrt{k/\varepsilon^2}$, since then

$$\operatorname{Var}_{\mathbf{u}_k}[Z_3] \le 4k \ll 16n^2 \varepsilon^4 \le \Delta^2$$
.

In the "far" case, for **p** at total variation distance at least ε from uniform, the condition is $\operatorname{Var}_{\mathbf{p}}[Z_3] \ll \Delta(\mathbf{p})^2 = \mathbb{E}_{\mathbf{p}}[Z_3]^2$, which by Eq. (2.23) will require

$$\max\left(k, \frac{k}{n} \mathbb{E}_{\mathbf{p}}[Z_3], k^{1/2} \mathbb{E}_{\mathbf{p}}[Z_3], \frac{k^{1/2}}{n^{1/2}} \mathbb{E}_{\mathbf{p}}[Z_3]^{3/2}\right) \ll \mathbb{E}_{\mathbf{p}}[Z_3]^2.$$

Considering each term separately, simplifying, and recalling that $\mathbb{E}_{\mathbf{p}}[Z_3] \geq 4n\varepsilon^2$, we see that this will also hold as long as $n \gg \sqrt{k/\varepsilon^2}$.

We will make this formal, and show the following:

Theorem 2.5. The χ^2 -based tester (Algorithm 3) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = O(\sqrt{k}/\varepsilon^2)$ and time complexity O(n) in the Poissonized setting.

Proof. For any $\mathbf{p} \in \Delta_k$, let as before $\Delta(\mathbf{p}) := \mathbb{E}_{\mathbf{p}}[Z_3]$. By Eq. (2.20), we know that if $\mathbf{p} = \mathbf{u}_k$ then $\Delta(\mathbf{p}) = 0$, and that $\Delta(\mathbf{p}) \geq \Delta := 4n\varepsilon^2$ whenever $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$ (recalling Eq. (2.1)). We also have our variance bound from Eq. (2.23). Define our threshold

$$\tau := \frac{\Delta}{2}$$

as in Algorithm 3.

• In the uniform case, where $\mathbb{E}_{\mathbf{u}_k}[Z_3] = 0$, the probability to output 0 (and thus make a mistake) is bounded as

$$\Pr[Z_3 \ge \tau] \le \frac{4 \operatorname{Var}_{\mathbf{u}_*}[Z_3]}{\Lambda^2} \le \frac{k}{\epsilon^4 n^2}$$

by Chebyshev's inequality, using $\operatorname{Var}_{\mathbf{u}_k}[Z_3] \leq 4k$ and the definition of Δ . This in turn is less than 1/3 as long as $n \geq \sqrt{3k}/\varepsilon^2$.

• In the "far" case, since $\mathbb{E}_{\mathbf{p}}[Z_3] \geq \Delta$ the probability to err by outputting 1 is

$$\begin{split} \Pr[Z_3 < \tau] &\leq \Pr\Big[|Z_3 - \mathbb{E}_{\mathbf{p}}[Z_3]| > \frac{\Delta(\mathbf{p})}{2}\Big] \\ &\leq \frac{4\operatorname{Var}_{\mathbf{p}}[Z_3]}{\Delta(\mathbf{p})^2} \\ &\leq \frac{16k\Big(1 + \frac{\mathbb{E}[Z_3]}{n}\Big) + 16\sqrt{2}k^{1/2}\mathbb{E}[Z_3] + 16\sqrt{2}\frac{k^{1/2}}{n^{1/2}}\mathbb{E}[Z_3]^{3/2}}{\mathbb{E}[Z_3]^2} \\ &\leq \frac{k}{n^2\varepsilon^4} + \frac{4k}{n^2\varepsilon^2} + \frac{4\sqrt{2}k^{1/2}}{n\varepsilon^2} + \frac{8\sqrt{2}k^{1/2}}{n\varepsilon} \\ &\leq \frac{5k}{n^2\varepsilon^4} + \frac{12\sqrt{2}k^{1/2}}{n\varepsilon^2} \end{split}$$

first using Eq. (2.23), simplifying, then $\mathbb{E}[Z_3] \geq n\varepsilon^2$. By solving the inequality $5x^2 + 12\sqrt{2}x \leq 1/3$, we see that the result is at most 1/3 for $n \geq 52\sqrt{k}/\varepsilon^2$.

The above analysis shows that both errors are less than 1/3 for, say, $n = \lceil 52\sqrt{k}/\varepsilon^2 \rceil$; this concludes the proof.

2.1.5 Empirical distance to uniform

Let us take a break from ℓ_2 and consider another, very natural thing to try: the *plugin estimator*. Since we have n samples from \mathbf{p} , we can compute the empirical estimator of the distribution, $\hat{\mathbf{p}}_n$, based on these n samples. Now, we want to test $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = 0$ vs. $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) > \varepsilon$? Why not consider

$$Z_4 := \mathrm{d}_{\mathrm{TV}}(\hat{\mathbf{p}}, \mathbf{u}_k) \tag{2.24}$$

the empirical distance to uniform? A reason might be: this sounds like a terrible idea. Unless $n = \Omega(k)$ (which is much more than what we want), we will not have observed most of the domain elements even once, and the empirical distribution $\hat{\mathbf{p}}_n$ will be at distance 1 - o(1) from uniform, even if \mathbf{p} is actually uniform.

That's the thing, though: the devil is in the o(1) details. Sure, $\mathbb{E}[Z_4]$ will be almost 1 whether \mathbf{p} is uniform or far from it unless $n = \Omega(k)$. But this "almost" will be different in the two cases! Carefully analyzing this tiny gap in expectation, and showing that Z_4 concentrates well enough around its expectation to preserve this tiny gap, amazingly leads to a tester with optimal sample complexity $n = \Theta(\sqrt{k}/\varepsilon^2)$. Let us see how.

For simplicity of exposition, we focus here on the case $n \leq k$, though the analysis of the test can be performed for extended to all parameter regimes – see Diakonikolas et~al.~(2018) for the full general case. The argument proceeds in two steps: first, computing and bounding the expectation of Z_4 under the uniform and the far cases separately is not going to really work, so instead we will bound the expectation gap $\Delta(\mathbf{p}) := \mathbb{E}_{\mathbf{p}}[Z_4] - \mathbb{E}_{\mathbf{u}_k}[Z_4]$ directly (a little like in the case of the unique elements-based tester). Then, once the gap in expectation is established, we will once again argue concentration of Z_4 as usual by a variance-based (Chebyshev's inequality) argument – but this time diversifying our toolkit and using a different tool, the Efron–Stein lemma, to bound the variance.

Uniformity testing 41

Algorithm 4 Empirical-distance tester

Require: Multiset of *n* samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$

 \triangleright Set the threshold τ , depending on the parameter regime.

- 1: if $n \leq k$ then
- $au \leftarrow \frac{n^2 \varepsilon^2}{32ek^2}$
- 3: else if $k < n \le k/\varepsilon^2$ then
- $\tau \leftarrow c_1 \cdot \varepsilon^2 \sqrt{n/k}$ $\triangleright c_1 > 0$ is some absolute constant.
- 5: **else**
- $\triangleright c_2 > 0$ is some absolute constant. $\tau \leftarrow c_2 \cdot \varepsilon$
- 7: Compute \triangleright Can be done in O(n) time if \mathcal{X} is known, $O(n \log n)$ if only k is.

$$Z_4 = \mathrm{d_{TV}}(\hat{\mathbf{p}}, \mathbf{u}_k) = \frac{1}{2} \sum_{i=1}^k \left| \frac{\mathbf{N}_j}{n} - \frac{1}{k} \right|$$

where $N_i \leftarrow \sum_{t=1}^n \mathbb{1}\{x_t = j\}.$

8: if $Z_4 \geq \mathbb{E}_{\mathbf{u}_k}[Z_4] + \tau$ then return 0

▶ Not uniform

9: else return 1

▶ Uniform

The expectation gap $\Delta(p)$. From the definition of total variation distance, we can rewrite

$$Z_4 = \sum_{i=1}^k \left(\hat{\mathbf{p}}_n(i) - \frac{1}{k} \right) \mathbb{I} \{ \hat{\mathbf{p}}_n(i) > 1/k \} = \frac{1}{n} \sum_{i=1}^k \left(N_i - \frac{n}{k} \right)_+$$

where as previously N_i denotes the number of samples falling on element i, and $x_{+} := \max(x,0)$. For the sake of the analysis, we will introduce the multivariate function

$$S(x_1, \dots, x_n) := \frac{1}{n} \sum_{i=1}^k \left(\frac{N_i(x_1, \dots, x_n) - \frac{n}{k}}{k} \right)_+$$
 (2.25)

and the function $\mu \colon \Delta_k \to \mathbb{R}$ given by

$$\mu(\mathbf{p}) := \mathbb{E}_{\mathbf{p}}[S(X_1, \dots, X_n)].$$

(Note that $\mathbb{E}_{\mathbf{p}}[Z_4] = \mu(\mathbf{p})$.) Then, since $N_i \sim \text{Bin}(n, \mathbf{p}(i))$ under \mathbf{p} , we have the exact expression

$$\mu(\mathbf{p}) = \frac{1}{n} \sum_{i=1}^{k} \sum_{\ell=0}^{n} \binom{n}{\ell} \mathbf{p}(i)^{\ell} (1 - \mathbf{p}(i))^{n-\ell} \left(\ell - \frac{n}{k}\right)_{+}$$
$$= \frac{1}{n} \sum_{i=1}^{k} \sum_{\ell=1}^{n} \binom{n}{\ell} \mathbf{p}(i)^{\ell} (1 - \mathbf{p}(i))^{n-\ell} \left(\ell - \frac{n}{k}\right)_{+}$$

since $(\ell - n/k)_+ > 0$ for $\ell \ge \lceil n/k \rceil = 1$ (recall that we assume $n \le k$). Using the facts that $\sum_{\ell=0}^{n} \binom{n}{\ell} \mathbf{p}(i)^{\ell} (1 - \mathbf{p}(i))^{n-\ell} = 1$ and $\sum_{\ell=0}^{n} \ell \binom{n}{\ell} \mathbf{p}(i)^{\ell} (1 - \mathbf{p}(i))^{n-\ell} = n \mathbf{p}(i)$, the inner sum considerably simplifies and we get

$$\mu(\mathbf{p}) = \frac{1}{k} \sum_{i=1}^{k} (1 - \mathbf{p}(i))^{n}$$
 (2.26)

Since our goal is to lower bound $\Delta(\mathbf{p}) = \mu(\mathbf{p}) - \mu(\mathbf{u}_k)$, the view of μ as a multivariate function suggests a Taylor expansion around $\mu(\mathbf{u}_k)$. Namely, for any $\mathbf{p} \in \Delta_k$, we can write by Taylor's theorem

$$\mu(\mathbf{p}) = \mu(\mathbf{u}_k) + \nabla \mu(\mathbf{u}_k)^{\top}(\mathbf{p} - \mathbf{u}_k) + \frac{1}{2}(\mathbf{p} - \mathbf{u}_k)^{\top}\mathbf{H}(\mathbf{q})(\mathbf{p} - \mathbf{u}_k)$$

where $\mathbf{q} = (1 - \theta)\mathbf{u}_k + \theta\mathbf{p}$ for some $\theta \in [0, 1]$, and \mathbf{H} is the Hessian of μ : $\mathbf{H}_{i,j}(\mathbf{q}) = \frac{\partial^2 \mu}{\partial x_i \partial x_j}(\mathbf{q})$. Given Eq. (2.26), we can compute explicitly both the gradient and the Hessian: first, denoting by $\mathbf{1}_k$ the all-one vector,

$$\nabla \mu(\mathbf{u}_k) = \left(\frac{\partial \mu}{\partial x_1}(\mathbf{u}_k), \dots, \frac{\partial \mu}{\partial x_k}(\mathbf{u}_k)\right) = -\frac{\mathbf{n}}{k} \left(1 - \frac{1}{k}\right)^{\mathbf{n} - 1} \mathbf{1}_k$$

so $\nabla \mu(\mathbf{u}_k)^{\top}(\mathbf{p} - \mathbf{u}_k) = -\frac{n}{k}(1 - \frac{1}{k})^{n-1} \sum_{i=1}^{k} (\mathbf{p}(i) - \frac{1}{k}) = 0$. Then, as μ is separable, \mathbf{H} will be diagonal: $\mathbf{H}_{i,j}(\mathbf{q}) = 0$ for $i \neq j$, while

$$\mathbf{H}_{i,i}(\mathbf{q}) = \frac{\mathbf{n}(\mathbf{n}-1)}{k} (1 - \mathbf{q}(i))^{n-2}$$

for all $i \in [k]$. Recalling our Taylor expansion, this means that

$$\Delta(\mathbf{p}) = \frac{1}{2} (\mathbf{p} - \mathbf{u}_k)^{\mathsf{T}} \mathbf{H}(\mathbf{q}) (\mathbf{p} - \mathbf{u}_k)$$

$$= \frac{n(n-1)}{2k} \sum_{i=1}^{k} (1 - \mathbf{q}(i))^{n-2} \left(\mathbf{p}(i) - \frac{1}{k} \right)^2$$
(2.27)

where again \mathbf{q} is a probability distribution such that $\mathbf{q} = (1 - \theta)\mathbf{u}_k + \theta\mathbf{p}$ for some $\theta \in [0, 1]$. To proceed, a natural idea is to restrict the sum to indices for which we can non-trivially bound $(1 - \mathbf{q}(i))^{n-2}$; in particular, focusing on the indices i for which $\mathbf{p}(i) < 1/k$ will do, since for those we must have $\mathbf{q}(i) \le 1/k$ as well. This leads to writing

$$\Delta(\mathbf{p}) \ge \frac{n(n-1)}{2k} \sum_{i=1}^{k} (1 - \mathbf{q}(i))^{n-2} \left(\mathbf{p}(i) - \frac{1}{k} \right)^{2} \mathbb{I} \{ \mathbf{p}(i) < 1/k \}
\ge \frac{n(n-1)}{2k} \left(1 - \frac{1}{k} \right)^{n-2} \sum_{i=1}^{k} \left(\mathbf{p}(i) - \frac{1}{k} \right)^{2} \mathbb{I} \{ \mathbf{p}(i) < 1/k \}
\ge \frac{n(n-1)}{2k} \left(1 - \frac{1}{k} \right)^{n-2} \frac{1}{k} \left(\sum_{i=1}^{k} \left(\frac{1}{k} - \mathbf{p}(i) \right) \mathbb{I} \{ \mathbf{p}(i) < 1/k \} \right)^{2}
\ge \frac{n(n-1)}{2k^{2}} \left(1 - \frac{1}{k} \right)^{k-2} \varepsilon^{2} \ge \frac{n^{2} \varepsilon^{2}}{4ek^{2}}$$
(2.28)

where the third inequality is Cauchy–Schwarz, the fourth is the definition of total variation distance along with $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$ (and, in the exponent, $n \leq k$), and the last is $(1 - 1/k)^{k-2} \geq 1/e$ for $k \geq 2$.

Before turning to proving concentration of Z_4 (that is, showing that the expectation gap, our signal, is not drowned by the random fluctations of Z_4 around its expectation), we will make an observation which will help in the analysis. Since we restricted ourselves to the regime $n/k \leq 1$, the *i*-th summand of S in Eq. (2.25) is non-zero only when $N_i \geq 1$, and thus we can rewrite

$$Z_{4} = \frac{1}{n} \sum_{i=1}^{k} \left(\left(N_{i} - \frac{n}{k} \right) + \frac{n}{k} \mathbb{1} \{ N_{i} = 0 \} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{k} \left(N_{i} - \frac{n}{k} \right) + \frac{1}{k} \sum_{i=1}^{k} \mathbb{1} \{ N_{i} = 0 \}$$

$$= \frac{1}{k} \sum_{i=1}^{k} \mathbb{1} \{ N_{i} = 0 \}$$
(2.29)

where the last equality follows from $\sum_{i=1}^{k} N_i = n$. That is, in this regime, Z_4 is exactly the fraction of *unseen elements* of the domain; this readily allows one to retrieve Eq. (2.26), and also lets us relate Z_4

to the "unique elements" statistic Z_2 from Section 2.1.3.

Concentration of \mathbb{Z}_4 **.** As you may have guessed, we will show that \mathbb{Z}_4 concentrates around its expectation via Chebyshev's inequality, which requires us to bound $\operatorname{Var}[\mathbb{Z}_4]$ in both the uniform and "far" cases. In order to diversify our toolkit, we will do so by invoking the *Efron-Stein inequality*, which allows us to bound the variance of a function of n independent random variables by the expected quadratic change of this function when only one sample is re-randomized: for a function f of n variables,

$$Var[f(X)] \le \frac{1}{2} \sum_{t=1}^{n} \mathbb{E}\left[\left(f(X) - f(X^{(t)})\right)^{2}\right]$$
 (2.30)

where $X = (X_1, \dots, X_n)$ and $X^{(t)} = (X_1, \dots, X'_t, \dots, X_n)$, with X'_t being an independent copy of X_t .

We apply this to Z_4 , *i.e.*, the function S defined in Eq. (2.25); given that S is symmetric and that all X_t 's are i.i.d. and distributed according to \mathbf{p} , we get

$$\operatorname{Var}[Z_4] \leq \frac{n}{2} \mathbb{E}_{\mathbf{p}} \Big[\big(S(X_1, \dots, X_{n-1}, X_n) - S(X_1, \dots, X_{n-1}, X_n') \big)^2 \Big]$$
$$= \frac{n}{2k^2} \mathbb{E}_{\mathbf{p}} \Big[\Big(\sum_{i=1}^k (\mathbb{1}\{N_i = 0\} - \mathbb{1}\{N_i' = 0\}) \Big)^2 \Big]$$

where we wrote $N_i := N_i(X_1, \ldots, X_{n-1}, X_n)$ and $N_i' := N_i(X_1, \ldots, X_{n-1}, X_n')$, and used the expression of S from Eq. (2.29). To handle this quantity, observe that since only the n-th sample changes, $\sum_{i=1}^k |\mathbb{1}\{N_i = 0\} - \mathbb{1}\{N_i' = 0\}|$ is at most 1: and this happens when X_n falls on an element i not yet observed in the first n-1 samples while X_n' falls on an element j already

⁹Again, this relation only holds in the specific regime $n \leq k$; while we do not cover the case n > k here, the guarantees of Z_4 extend to this other regime; the identity Eq. (2.29), however, does not.

observed, or vice-versa. That is, we can write

$$\operatorname{Var}[Z_4] \leq \frac{n}{k^2} \sum_{i \neq j} \mathbf{p}(i) \mathbf{p}(j) \operatorname{Pr}[N_i(X_1, \dots, X_{n-1}) = 0, N_j(X_1, \dots, X_{n-1}) \geq 1]$$

$$= \frac{n}{k^2} \sum_{i \neq j} \mathbf{p}(i) \mathbf{p}(j) \Big((1 - \mathbf{p}(i))^{n-1} - (1 - \mathbf{p}(i) - \mathbf{p}(j))^{n-1} \Big)$$

$$\leq \frac{n}{k^2} \sum_{i,j} \mathbf{p}(i) \mathbf{p}(j) \Big(1 - (1 - \mathbf{p}(j))^{n-1} \Big)$$

$$= \frac{n}{k^2} \Big(1 - \sum_{i=1}^k \mathbf{p}(j) (1 - \mathbf{p}(j))^{n-1} \Big)$$

$$(2.31)$$

where the first inequality follows the above discussion, taking the expectation over X_n, X'_n and using symmetry between the two cases mentioned; the second inequality uses monotonicity of the function $y \mapsto (1-x)^m - (1-x-y)^m$ on [0,x], and adds back the diagonal terms i=j to the sum afterwards; and the last equality uses $\sum_i \mathbf{p}(i) = 1$. Very conveniently, in the uniform case Eq. (2.31) leads to the bound

$$\operatorname{Var}_{\mathbf{u}_{k}}[Z_{4}] \le \frac{n}{k^{2}} \left(1 - \left(1 - \frac{1}{k} \right)^{n-1} \right) \le \frac{n(n-1)}{k^{3}}$$
 (2.32)

which combined with our bound Eq. (2.28) on the expectation gap leads to the condition

$$\frac{n^2}{k^3} \ll \frac{n^4 \varepsilon^4}{k^4}$$

satisfied for $n \gg \sqrt{k/\varepsilon^2}$. In the far case, a similar bound is easy to obtain for any \mathbf{p} with $\|\mathbf{p}\|_{\infty} \lesssim 1/k$, since

$$\operatorname{Var}_{\mathbf{p}}[Z_4] \leq \frac{n}{k^2} \left(1 - \sum_{j=1}^k \mathbf{p}(j) (1 - \|\mathbf{p}\|_{\infty})^{n-1} \right) \leq \frac{n(n-1)}{k^2} \cdot \|\mathbf{p}\|_{\infty},$$
(2.33)

so it would be quite nice if we could argue this was, in some sense, the *only* case we needed to worry about. Which brings us to the second new tool to add to our toolkit: an argument based on *stochastic dominance*, which will let us do exactly that. First, let us recall the key concept:

¹⁰Interestingly, the bound we just obtained is exactly $\operatorname{Var}[Z_4] \leq \frac{n}{k^2}(1 - \mathbb{E}[Z_2])$, where Z_2 is the "unique elements tester" from Section 2.1.3.

Definition 2.1. Let A, B be two (real-valued) random variables. We say that A stochastically dominates B if $\Pr[A \ge t] \ge \Pr[B \ge t]$ for all $t \in \mathbb{R}$; or, in terms of cumulative distribution functions, $F_A(t) \le F_B(t)$ for all t.

In our case, we have a random variable Z_4 , and in the "far" case we want to prove $\Pr[Z_4 \geq \tau]$ is large (where τ is our threshold, based on the expectation gap). So if, for each \mathbf{p} in the 'far" case, we can argue there is a \mathbf{p}' with $\|\mathbf{p}'\|_{\infty} \lesssim 1/k$ (i.e., which we know how to analyze) such that $Z_4(\mathbf{p})$ stochastically dominates $Z_4(\mathbf{p}')$, then we are good.

To do so, we need two more steps: first, the notion of *majorization*, and how this relates to stochastic dominance.

Definition 2.2. For a vector $x \in \mathbb{R}^k$, define $x^{\downarrow} \in \mathbb{R}^k$ as the vector with the same components, but sorted in non-increasing order. Then, given two vectors $x, y \in \mathbb{R}^k$, we say that y majorizes x (denoted $y \succeq x$) if $\sum_{i=1}^{\ell} y_i^{\downarrow} \geq \sum_{i=1}^{\ell} x_i^{\downarrow}$ for all $1 \leq \ell \leq k$, and $\sum_{i=1}^{k} y_i^{\downarrow} = \sum_{i=1}^{k} x_i^{\downarrow}$.

The key relation between vector majorization and stochastic dominance is given in the following theorem:

Theorem 2.6. Let $f: \mathbb{R}^k \to \mathbb{R}$ by a symmetric convex function. For a probability distribution $\mathbf{p} \in \Delta_k$ and $n \in \mathbb{N}$, define the random variable $X_n(\mathbf{p})$ as follows: let N_1, \ldots, N_k be the counts of each domain element among n i.i.d. samples from \mathbf{p} , and set $X_n(\mathbf{p}) = f(N_1, \ldots, N_k)$. Then, for any \mathbf{p} , \mathbf{q} such that $\mathbf{p} \succeq \mathbf{q}$, $X_n(\mathbf{p})$ stochastically dominates $X_n(\mathbf{q})$.

We will not prove this theorem, but instead use it as follows. First, we show that for every \mathbf{p} which is far from uniform there exists some $\bar{\mathbf{p}}$ which majorizes \mathbf{p} , is still far from uniform, and importantly has small ℓ_{∞} norm:

Lemma 2.7. For any $\mathbf{p} \in \Delta_k$, let $\bar{\mathbf{p}} \in \Delta_k$ denote the probability distribution obtained by averaging \mathbf{p} over its $K := \lceil k/2 \rceil$ heaviest elements. Then (1) $\mathbf{p} \succeq \bar{\mathbf{p}}$, (2) $\|\bar{\mathbf{p}}\|_{\infty} \le 2/k$, and (3) $\mathrm{d}_{\mathrm{TV}}(\bar{\mathbf{p}}, \mathbf{u}_k) \ge \frac{1}{2} \mathrm{d}_{\mathrm{TV}}(\mathbf{p}, \mathbf{u}_k)$.

Proof. Clearly, all properties are invariant by permutation of the domain, so we can assume for simplicity that \mathbf{p} is non-increasing: $\mathbf{p}(1) \geq \mathbf{p}(2) \geq$

 $\cdots \geq \mathbf{p}(k)$, and $\bar{\mathbf{p}}(1) = \cdots = \bar{\mathbf{p}}(K) = \frac{1}{K} \sum_{i=1}^{K} \mathbf{p}(i)$, $\bar{\mathbf{p}}(i) = \mathbf{p}(i)$ for $i \geq K$. In particular, this immediately implies (1), as well as (2) (since $\|\bar{\mathbf{p}}\|_{\infty} = \bar{\mathbf{p}}(1) \leq 2/k$).

Let us prove (3), which states that this averaging does not decrease the distance too much. Consider the minimal set $S \subseteq [k]$ such that $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = \mathbf{p}(S) - \mathbf{u}_k(S)$: we know that $S = \{x : \mathbf{p}(x) > 1/k\}$. By motonicity of \mathbf{p} , this implies that $S = \{1, \ldots, \ell\}$ for some $\ell \geq 1$.

- If $\ell \geq K$, then $\bar{\mathbf{p}}(S) = \mathbf{p}(S)$, and so $d_{\text{TV}}(\bar{\mathbf{p}}, \mathbf{u}_k) = d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k)$;
- otherwise, $\ell < K$, in which case we look at $T = [k] \setminus S$, which satisfies $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = \mathbf{u}_k(T) \mathbf{p}(T)$. Let $T' := \{K+1, \ldots, k\} \subsetneq T$; by monotonicity, $\frac{\mathbf{p}(T \setminus T')}{|T \setminus T'|} \geq \frac{\mathbf{p}(T')}{|T'|}$, implying $\mathbf{p}(T') \leq \frac{|T'|}{|T|}\mathbf{p}(T)$. But then, since $\mathbf{p} = \bar{\mathbf{p}}$ on T',

$$\begin{split} \mathrm{d}_{\mathrm{TV}}(\bar{\mathbf{p}},\mathbf{u}_k) &= \sup_{R \subseteq [k]} (\mathbf{u}_k(R) - \bar{\mathbf{p}}(R)) \ge \mathbf{u}_k(T') - \bar{\mathbf{p}}(T') \\ &= \frac{|T'|}{|T|} \mathbf{u}_k(T) - \mathbf{p}(T') \ge \frac{|T'|}{|T|} (\mathbf{u}_k(T) - \mathbf{p}(T)) \\ &= \frac{|T'|}{|T|} \mathrm{d}_{\mathrm{TV}}(\mathbf{p},\mathbf{u}_k) \ge \frac{1}{2} \mathrm{d}_{\mathrm{TV}}(\mathbf{p},\mathbf{u}_k) \,, \end{split}$$

the last inequality following from $\frac{|T'|}{|T|} = \frac{k-K}{k-\ell} \ge \frac{k-\lceil k/2 \rceil}{k-1} \ge \frac{1}{2}$.

This concludes the proof of the lemma.

Note that by the data processing inequality Fact 1.1, we have $d_{TV}(\bar{\mathbf{p}}, \mathbf{u}_k) \leq d_{TV}(\mathbf{p}, \mathbf{u}_k)$, so the averaging can change the distance to uniformity by a factor at most $2.^{11}$

Combining Theorem 2.6 and Lemma 2.7 (conveniently, the function S from Eq. (2.25) is indeed symmetric and convex), we get that for every \mathbf{p} such that $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$, there exists some "nicer" $\bar{\mathbf{p}}$ such that $d_{\text{TV}}(\bar{\mathbf{p}}, \mathbf{u}_k) \geq \varepsilon/2$ with $\|\bar{\mathbf{p}}\|_{\infty} \leq 2/k$ and, for any choice of threshold τ ,

$$\Pr_{\mathbf{p}}[Z_4 \ge \tau] \ge \Pr_{\bar{\mathbf{p}}}[Z_4 \ge \tau]. \tag{2.34}$$

¹¹Moreover, this factor 2 cannot be improved upon, as one can check with, e.g., $\mathbf{p} = \frac{k}{k-1} \varepsilon \delta_1 + \left(1 - \frac{k}{k-1} \varepsilon\right) \mathbf{u}_k$, for which $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = \varepsilon$, but $d_{\text{TV}}(\bar{\mathbf{p}}, \mathbf{u}_k) = \frac{1+o(1)}{\varepsilon} \varepsilon$.

Thus, it suffices to choose a suitable τ for which the RHS is at least 2/3 (along with $\Pr_{\mathbf{u}_k}[Z_4 \geq \tau] \leq 1/3$, of course) to conclude. By Eq. (2.28) (but for $\varepsilon/2$, not ε), we know that the expectation gap for such a $\bar{\mathbf{p}}$ is at least $\Delta(\bar{\mathbf{p}}) \geq \frac{n^2 \varepsilon^2}{16ek^2}$. Moreover, now we can use Eq. (2.33) to get the variance bound

$$\operatorname{Var}_{\bar{\mathbf{p}}}[Z_4] \le \frac{2n(n-1)}{k^3},$$
 (2.35)

which lets us establish the following theorem:

Theorem 2.8. The empirical-distance tester (Algorithm 4) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = O(\sqrt{k}/\varepsilon^2)$ and time complexity O(n).

Proof. As discussed above, we only prove here the case $n \leq k$, *i.e.*, $\varepsilon = \Omega(1/k^{1/4})$; however, the statement holds for all regimes. For any $\mathbf{p} \in \Delta_k$, let $\Delta(\mathbf{p}) := \mathbb{E}_{\mathbf{p}}[Z_4] - \mathbb{E}_{\mathbf{u}_k}[Z_4]$. Clearly, if $\mathbf{p} = \mathbf{u}_k$ then $\Delta(\mathbf{p}) = 0$; if $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$, by stochastic dominance it suffices to consider the corresponding $\bar{\mathbf{p}}$, which satisfies $\Delta(\bar{\mathbf{p}}) \geq \frac{n^2 \varepsilon^2}{16ek^2} := \Delta$. We also have our variance bounds from Eqs. (2.32) and (2.33). Define our threshold $\tau := \frac{\Delta}{2} = \frac{n^2 \varepsilon^2}{32ek^2}$

$$\tau := \frac{\Delta}{2} = \frac{n^2 \varepsilon^2}{32ek^2}$$

as in Algorithm 4 (for this regime of parameters).

• In the uniform case, the probability to output 0 (and thus make a mistake) is bounded as

$$\Pr[Z_4 \ge \mathbb{E}_{\mathbf{u}_k}[Z_4] + \tau] \le \frac{\operatorname{Var}_{\mathbf{u}_k}[Z_4]}{\tau^2} \le \frac{n(n-1)}{k^3} \cdot \frac{(32e)^2 k^4}{n^4 \varepsilon^4}$$

which is less than 1/3 as long as $n \ge 32e\sqrt{3k}/\varepsilon^2$.

In the "far" case, the probability to err by outputting 1 is

$$\Pr_{\mathbf{p}}[Z_4 < \mathbb{E}_{\mathbf{u}_k}[Z_4] + \tau] \leq \Pr_{\bar{\mathbf{p}}}[Z_4 < \mathbb{E}_{\mathbf{u}_k}[Z_4] + \tau]
\leq \Pr_{\bar{\mathbf{p}}}[Z_4 < \mathbb{E}_{\bar{\mathbf{p}}}[Z_4] - \tau]
\leq \frac{\operatorname{Var}_{\mathbf{p}}[Z_4]}{\tau^2}
\leq \frac{2n(n-1)}{k^3} \cdot \frac{(32e)^2 k^4}{n^4 \varepsilon^4}$$

using Eq. (2.33), simplifying, then $\mathbb{E}[Z_3] \geq n\varepsilon^2$. This is less than 1/3 as long as $n \geq 32e\sqrt{6k}/\varepsilon^2$.

The above analysis shows that both errors are less than 1/3 for, say, $n = \lceil 32e\sqrt{6k}/\varepsilon^2 \rceil$; this concludes the proof.

Remark 2.3. It is unclear whether one could avoid using the first (very convenient) "stochastic dominance hammer" (Theorem 2.6), and instead relate directly the bound on $\operatorname{Var}_{\mathbf{p}}[Z_4]$ from Eq. (2.31) to $\Delta(\mathbf{p})$ for arbitrary "far" distribution \mathbf{p} in order to obtain the right sample complexity.

2.1.6 Random binary hashing

Now we turn to a tester that is *not* sample-optimal – but has other advantages, and whose analysis contains a couple insighful aspects. The main idea is that, while large domains are complicated, if there is one thing we know how to do optimally it is estimating the bias of a coin. That is, we know how to handle the case k = 2:

Fact 2.1 (Bias of a coin). Given i.i.d. samples from a Bernoulli with unknown parameter $\alpha \in [0,1]$, estimating α to an additive η with probability $1-\delta$ can be done with (and requires) $\Theta\left(\frac{\log(1/\delta)}{\eta^2}\right)$ samples.

E: Prove this! Exercise 2.4.

Of course, we do not have a probability distribution over $\{0,1\}$ here, we have a much more problematic (k-1)-dimensional object. However, what prevents us from making our n samples into i.i.d. samples from a Bernoulli? Let us uniformly randomly partition the domain [k] in two sets S and $[k] \setminus S$, and convert each sample into a $\{0,1\}$ value accordingly: $X_i' := \mathbb{1}\{X_i \in S\}$, for $1 \leq i \leq n$.

This gives us n i.i.d. samples from a Bernoulli random variable with parameter $\alpha_S(\mathbf{p}) := \mathbf{p}(S)$: let us estimate it! Since we know S, we know exactly what this should be under the uniform distribution: $\alpha_S(\mathbf{u}_k) = \mathbf{u}_k(S) = |S|/k$. If only we could argue that $\alpha_S(\mathbf{p})$ noticeably differs from $\mathbf{u}_k(S)$ (with high probability over the random choice of S) whenever \mathbf{p} is ε -far from uniform, we would have a tester: just estimate the bias $\alpha_S(\mathbf{p})$ to high enough accuracy. Luckily for us, this is, indeed, the case:

Algorithm 5 Binary Hashing Tester

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$

- 1: Set $\tau \leftarrow \frac{\varepsilon}{2\sqrt{2k}}$
- 2: Pick a random subset $S \subseteq [k]$ by including each $i \in [k]$ independently with probability 1/2. \triangleright 4-wise independence suffices.
- 3: Compute

 \triangleright Can be done in O(n) time.

$$Z_5 = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{x_i \in S\}$$

4: if $\left|Z_5 - \frac{|S|}{k}\right| \ge \tau$ then return 0

▶ Not uniform

5: else return 1

▶ Uniform

Algorithm 6 Amplifying the Binary Hashing Tester

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$

 $\triangleright T \in \mathbb{N}$ is an absolute constant, whose value is related to the hidden constant in Fact 2.1.

- 1: Partition the *n* samples into multisets M_1, \ldots, M_T of size $\lfloor n/T \rfloor$
- 2: for all $1 \le t \le T$ do \triangleright Repeat the tester independently
- 3: Run Algorithm 5 on the samples from M_t and parameters ε, k
- 4: Let $\mathbf{b}_i \in \{0,1\}$ be the output $\triangleright \mathbf{b}_1, \dots, \mathbf{b}_T$ are i.i.d.
- 5: Use Fact 2.1 on $\mathbf{b}_1, \dots, \mathbf{b}_T$ with parameters $\eta \leftarrow \frac{1}{200}$ and $\delta \leftarrow \frac{1}{3}$ to get $\hat{\mathbf{b}} \in [0, 1]$: estimate of the probability Algorithm 5 returns 0
- 6: if $\hat{\mathbf{b}} \geq \frac{1}{100} + \eta$ then return 0

▶ Not uniform

7: else return 1

▶ Uniform

Lemma 2.9 (Random Binary Hashing). Let $\mathbf{p}, \mathbf{q} \in \Delta_k$. Then

$$\Pr_{S}\bigg[\left|\mathbf{p}(S)-\mathbf{q}(S)\right| \geq \frac{1}{2\sqrt{2}}\|\mathbf{p}-\mathbf{q}\|_{2}\,\bigg] \geq \frac{1}{48}\,,$$

where $S \subseteq [k]$ is a uniformly random subset of [k].

We defer the proof of this lemma to the end of the subsection, and show how to use it. The first observation is that, regardless of the random choice of S, if $\mathbf{p} = \mathbf{u}_k$ then $\mathbf{p}(S) = \mathbf{u}_k(S) = |S|/k$ with probability

one, and so estimating the bias $\alpha_S(\mathbf{p})$ will (with high probability) not lead to any rejection. However, if $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$, then by Eq. (2.1) $\|\mathbf{p} - \mathbf{u}_k\|_2 \geq 2\varepsilon/\sqrt{k}$, and so $|\mathbf{p}(S) - |S|/k| \geq \varepsilon/\sqrt{2k}$ with constant probability (over the choice of S). Whenever this happens, estimating the bias $\alpha_S(\mathbf{p})$ to $\pm \varepsilon/(2\sqrt{2k})$ will allow us to detect that \mathbf{p} was far from uniform, and this can be done with

$$n symp rac{1}{(arepsilon/\sqrt{k})^2} = rac{k}{arepsilon^2}$$

samples by Fact 2.1. Of course, there is a catch: we will only detect it when there is some bias to detect, i.e., when the random set S we choose is "good;" which we only proved happens with probability at least 1/48. But a constant probability to distinguish between uniform and far from uniform is enough: repeating independently the test several times will let us amplify the success probability to 2/3.

Theorem 2.10. The binary hashing tester (Algorithm 6) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = O(k/\varepsilon^2)$ and time complexity O(n).

Proof. Set $\tau \leftarrow \frac{\varepsilon}{2\sqrt{2k}}$, as in Algorithm 5, and for $\mathbf{p} \in \Delta_k$ let $\alpha_S(\mathbf{p}) := \mathbf{p}(S)$ denote the bias of the resulting coin; note that this is a random variable, over the choice of $S \subseteq [k]$, and that $\mathbb{E}[Z_5 \mid S] = \alpha_S(\mathbf{p})$. We will use Fact 2.1 to get, for $n = O(1/\tau^2)$, a probability at least 99/100 to correctly estimate the bias up to an additive τ .

• In the uniform case, $\alpha_S(\mathbf{u}_k) = |S|/k$ always, and the probability to output 0 (and thus make a mistake) is therefore bounded for every S by

$$\Pr[|Z_5 - \alpha_S(\mathbf{u}_k)| \ge \tau \mid S] \le 1/100,$$

where the inequality holds by Fact 2.1.

• In the "far" case, denote by $\mathcal E$ the event that S is "good," that is

$$\mathcal{E} := \{ |\alpha_S(\mathbf{p})) - \alpha_S(\mathbf{u}_k) | \ge \varepsilon / \sqrt{2k} = 2\tau \}$$

which by Lemma 2.9 we know satisfies $\Pr_S[\mathcal{E}] \geq 1/48$.

The probability to err by outputting 1 is then at most

$$\Pr_{\mathbf{p},S}[|Z_5 - \alpha_S(\mathbf{u}_k)| < \tau] \leq \Pr_{\mathbf{p},S}[|Z_5 - \alpha_S(\mathbf{u}_k)| < \tau \mid \mathcal{E}] \Pr_S[\mathcal{E}] + \Pr_S[\overline{\mathcal{E}}]$$

$$\leq \frac{1}{48} \Pr_{\mathbf{p},S}[|Z_5 - \alpha_S(\mathbf{p})| > \tau \mid \mathcal{E}] + \frac{47}{48}$$

$$\leq \frac{1}{48} \cdot \frac{1}{100} + \frac{47}{48} < \frac{98}{100}$$

where we again used Fact 2.1.

The above analysis shows that Algorithm 5 will output 0 (reject) with probability less than 1/100 under the uniform distribution, but with probability at least 2/100 under any "far" distribution. This is enough to be able to distinguish between the two cases: by repeating the test independently O(1) times to estimate the rejection probability (which can be seen as a Bernoulli random variable with bias either more than 2/100 or less than 1/100), Fact 2.1 (again!) guarantees that we can decide which of the two cases holds, and be correct with probability at least 2/3: this is what Algorithm 6 does. This concludes the proof.

It only remains to provide the proof of the binary hashing lemma:

Proof of Lemma 2.9. If $\mathbf{p} = \mathbf{q}$, then the statement trivially holds as $|\mathbf{p}(S) - \mathbf{q}(S)| = 0$ with probability one; we thus assume $\mathbf{p} \neq \mathbf{q}$. Write $\delta := \mathbf{p} - \mathbf{q} \in \mathbb{R}^k$, so that $\mathbf{p}(S) - \mathbf{q}(S) = \sum_{i=1}^k \delta_i S_i$, where S_1, \ldots, S_k are independent Bern(1/2) (where S_i indicates whether $i \in S$). Equivalently, since $\sum_{i=1}^k \delta_i = 0$ we can write $\mathbf{p}(S) - \mathbf{q}(S) = \frac{1}{2}Z$, where $Z := \sum_{i=1}^k \delta_i \xi_i$ for ξ_1, \ldots, ξ_k i.i.d. Rademacher (uniform on $\{\pm 1\}$). By linearity of expectation, it is immediate to check that $\mathbb{E}[Z] = 0$ (although we will not use this), and that by independence

$$\mathbb{E}\left[Z^2\right] = \sum_{1 \le i, j \le k} \delta_i \delta_j \mathbb{E}\left[\xi_i \xi_j\right] = \sum_{i=1}^k \delta_i^2 = \|\delta\|_2^2,$$

so what we want to prove can be rewritten $\Pr\left[Z^2 \geq \frac{1}{2}\mathbb{E}\left[Z^2\right]\right] \geq 1/48$. That is, we want an *anticoncentration* result, 12 which suggests one of the most versatile tools for this, the Paley–Zygmund inequality:

¹²Indeed, we aim to show that, with constant probability, Z stays away from its expectation $\mathbb{E}[Z] = 0 - i.e.$, that it does not concentrate too much around $\mathbb{E}[Z]$.

Theorem 2.11 (Paley–Zygmund inequality). Let U be a non-negative random variable with finite variance. Then, for every $\theta \in [0, 1]$,

$$\Pr[U \ge \theta \mathbb{E}[U]] \ge (1 - \theta)^2 \frac{\mathbb{E}[U]^2}{\mathbb{E}[U^2]}.$$

We will apply this to Z^2 , which is indeed non-negative. Unfortunately, this means we need to compute $\mathbb{E}[Z^4]$, in order to compare it to $\mathbb{E}[Z^2]^2$. We could do so directly, by expanding $(\sum_{i=1}^k \delta_i \xi_i)^4$, keeping track of the various products appearing and using linearity of expectation. This is quite fastidious; instead, we will take a shortcut and bound the moment-generating function (MGF) of Z. For any $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda Z}\right] = \prod_{i=1}^{k} \mathbb{E}\left[e^{\lambda \delta_{i}\xi_{i}}\right] \leq \prod_{i=1}^{k} e^{\frac{\lambda^{2}}{2}\delta_{i}^{2}} = e^{\frac{\lambda^{2}}{2}\|\delta\|_{2}^{2}}$$

relying on, e.g., Hoeffding's Lemma for the inequality. Using the Taylor expansion of e^x along with the fact that Z is symmetric (so all its odd moments cancel out), we have $\mathbb{E}\left[e^{\lambda Z}\right] = \sum_{\ell=0}^{\infty} \frac{\lambda^{2\ell}}{(2\ell)!} \mathbb{E}\left[Z^{2\ell}\right] \geq \frac{\lambda^4}{4!} \mathbb{E}\left[Z^4\right]$, and so, for any $\lambda \neq 0$,

$$\mathbb{E}\left[Z^{4}\right] \leq \frac{24}{\lambda^{4}} e^{\frac{\lambda^{2}}{2} \|\delta\|_{2}^{2}} = \frac{3}{2} \|\delta\|_{2}^{4} \cdot \left(\frac{4}{\|\delta\|_{2}^{2} \lambda^{2}} \cdot e^{\frac{\lambda^{2}}{4} \|\delta\|_{2}^{2}}\right)^{2}.$$

In particular, by studying the function $x > 0 \mapsto e^x/x$ we see that the RHS is minimized for $\lambda = 2/\|\delta\|_2$, showing that $\mathbb{E}[Z^4] \leq \frac{3e^2}{2} \|\delta\|_2^4$. We can finally apply Theorem 2.11, getting that, for every $\theta \in [0, 1]$,

$$\Pr[Z^2 \ge \theta \mathbb{E}[Z^2]] \ge (1 - \theta)^2 \frac{\mathbb{E}[Z^2]^2}{\mathbb{E}[Z^4]} \ge (1 - \theta)^2 \frac{2}{3e^2} \ge \frac{(1 - \theta)^2}{12}.$$

Choosing $\theta = 1/2$ then concludes the proof.

Remark 2.4. The proof of this lemma established a little more than stated: first, we actually showed a tradeoff, where for every $\alpha \in [0, 1/2]$

$$\Pr_{S}[|\mathbf{p}(S) - \mathbf{q}(S)| \ge \alpha \|\mathbf{p} - \mathbf{q}\|_{2}] \ge \frac{1}{12}(1 - 4\alpha^{2})^{2}.$$

Second, although our proof via the MGF used full independence of the ξ_i 's (and thus a truly uniformly random set S), this was only to obtain

bounds on the first 4 moments of Z, which is all that the Paley–Zygmund lemma eventually requires. Any distribution for S with the same first 4 moments will then lead to the same guarantees! In particular, instead of a truly uniformly random S, one can instead use a 4-wise independent hash function, which requires significantly less randomness and can be much easier.

Finally, we conclude this section by mentioning a generalization of the binary hashing lemma Lemma 2.9 to an arbitrary number of parts:

Theorem 2.12 (Domain Compression Lemma). There exist absolute constants $c_1, c_2 > 0$ such that the following holds. For any $2 \le \ell \le k$ and any $\mathbf{p}, \mathbf{q} \in \Delta_k$,

$$\Pr_{\Pi} \left[d_{\mathrm{TV}}(\mathbf{p}_{\Pi}, \mathbf{q}_{\Pi}) \geq c_1 \sqrt{rac{\ell}{k}} d_{\mathrm{TV}}(\mathbf{p}, \mathbf{q}) \right] \geq c_2 \,,$$

where $\Pi = (\Pi_1, \dots \Pi_\ell)$ is a uniformly random partition of [k] in ℓ subsets, and $\mathbf{p}_{\Pi} \in \Delta_{\ell}$ denotes the probability distribution on $[\ell]$ induced by \mathbf{p} and Π via $\mathbf{p}_{\Pi}(i) = \mathbf{p}(\Pi_i)$.

This theorem, which we will not prove, can be seen as some type of "one-sided" dimensionality reduction for probability distributions, and lets us trade domain size for distances. In some settings, this can lead to better sample complexities, e.g., by starting with some testing algorithm and optimizing its sample complexity $n(\ell, \varepsilon \sqrt{\ell/k}, 1/3)$ as a function of ℓ : we will get back to this in Section 3.2.

2.1.7 Bipartite collisions

Recall that in the collision-based tester from Section 2.1.2, we took a multiset S of n samples from \mathbf{p} and defined our statistic Z_1 as the (normalized) number of "collisions" in S. That is fine, but requires to keep in memory all the samples observed so far. One related idea would be to instead take two multisets S_1, S_2 of size n_1 and n_2 , and only count "bipartite collisions" – i.e., collisions between a sample of S_1 and one of S_2 :

$$Z_6 = \frac{1}{n_1 n_2} \sum_{(x,y) \in S_1 \times S_2} \mathbb{1}\{x = y\}$$
 (2.36)

One can check that $\mathbb{E}[Z_6] = \|\mathbf{p}\|_2^2$: we are back to using ℓ_2 as a proxy! Compared to the "vanilla" collision-based test, this is more flexible $(S_1, S_2 \text{ need not be of the same size})$, and thus lends itself to some settings where a tradeoff between n_1 and n_2 is desirable: we will see that one needs $n_1 n_2 \gtrsim k/\varepsilon^4$ and $\min(n_1, n_2) \gtrsim 1/\varepsilon^2$, and the resulting sample complexity is $n = n_1 + n_2$. For the case $n_1 = n_2$, this retrieves the optimal $n \approx \sqrt{k/\varepsilon^2}$.

Algorithm 7 Bipartite Collision-Based Tester

Require: Multisets S_1, S_2 of n_1 and n_2 samples $x_1, \ldots, x_{n_1} \in \mathcal{X}$, $y_1, \ldots, y_{n_2} \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$

- 1: Set $\tau \leftarrow \frac{1 + \frac{1}{2}\varepsilon^2}{k}$
- 2: Compute \triangleright Can be done in O(n) time if \mathcal{X} is known, $O(n \log n)$ if only k is.

$$Z_6 = \frac{1}{n_1 n_2} \sum_{s=1}^{n_1} \sum_{t=1}^{n_2} \mathbb{1}\{x_s = y_t\}.$$

3: if $Z_6 \ge \tau$ then return 0

Not uniform

4: else return 1

▶ Uniform

To bound the variance of Z_6 , we start by expanding the square Z_6^2 and breaking the resulting double sum in 4 cases to get

$$\begin{split} & n_{1}^{2} n_{2}^{2} \mathbb{E} \Big[Z_{6}^{2} \Big] = \sum_{(x,y) \in S_{1} \times S_{2}} \sum_{(x',y') \in S_{1} \times S_{2}} \mathbb{E} \big[\mathbb{1} \big\{ x = y \big\} \mathbb{1} \big\{ x' = y' \big\} \big] \\ &= \sum_{x \in S_{1}} \sum_{y \in S_{2}} \mathbb{E} \big[\mathbb{1} \big\{ x = y \big\} \big] \\ &+ \sum_{x \in S_{1}} \sum_{y \neq y' \in S_{2}} \mathbb{E} \big[\mathbb{1} \big\{ x = y = y' \big\} \big] \\ &+ \sum_{x \neq x' \in S_{1}} \sum_{y \in S_{2}} \mathbb{E} \big[\mathbb{1} \big\{ x = x' = y \big\} \big] \\ &+ \sum_{x \neq x' \in S_{1}} \sum_{y \neq y' \in S_{2}} \mathbb{E} \big[\mathbb{1} \big\{ x = y \big\} \big] \mathbb{E} \big[\mathbb{1} \big\{ x' = y' \big\} \big] \\ &= n_{1} n_{2} \|\mathbf{p}\|_{2}^{2} + n_{1} n_{2} (n_{1} + n_{2} - 2) \|\mathbf{p}\|_{3}^{3} + n_{1} n_{2} (n_{1} - 1) (n_{2} - 1) \|\mathbf{p}\|_{2}^{4} \,. \end{split}$$

Exercise 2.6.

From $\operatorname{Var}[Z_6] = \mathbb{E}[Z_6^2] - \mathbb{E}[Z_6]^2$, we obtain

$$\operatorname{Var}[Z_{6}] = \frac{1}{n_{1}n_{2}} \|\mathbf{p}\|_{2}^{2} + \frac{n_{1} + n_{2} - 2}{n_{1}n_{2}} \|\mathbf{p}\|_{3}^{3} - \frac{n_{1} + n_{2} - 1}{n_{1}n_{2}} \|\mathbf{p}\|_{2}^{4}$$

$$\leq \frac{1}{n_{1}n_{2}} \|\mathbf{p}\|_{2}^{2} + \frac{n_{1} + n_{2}}{n_{1}n_{2}} (\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4}), \qquad (2.37)$$

using as in the proof of Theorem 2.1 the fact that $\|\mathbf{p}\|_3^3 \ge \|\mathbf{p}\|_2^4$ to obtain the slightly nicer-looking upper bound of Eq. (2.37). Note that when $n_1 = n_2 = \frac{n}{2}$, we retrieve the bound on $\text{Var}[Z_1]$ from Eq. (2.9)! Specifically, we have exactly the same expression as in Eq. (2.9), but with the factor 4/n replaced by $\frac{1}{n_1 n_2}$ and $4/n^2$ replaced by $\frac{n_1 + n_2}{n_1 n_2}$. This is good – we could follows the exact same analysis as in the proof of Theorem 2.1 to obtain, in the uniform case,

$$\Pr_{\mathbf{u}_k} \left[Z_6 \ge \frac{1 + 2\varepsilon^2}{k} \right] \le \frac{k}{4\varepsilon^4 n_1 n_2},$$

and, in the "far" case,

$$\Pr_{\mathbf{p}} \left[Z_6 < \frac{1 + 2\varepsilon^2}{k} \right] \le \frac{5k}{4\varepsilon^4 n_1 n_2} + \frac{n_1 + n_2}{n_1 n_2} \left(\frac{2\sqrt{k}}{\varepsilon} + \frac{3}{\varepsilon^2} \right). \tag{2.38}$$

At first glance, this looks perfect: our tester will be correct in both cases as long as $n_1 n_2 \gtrsim k/\varepsilon^4$, which is what we want, and $\frac{n_1 n_2}{n_1 + n_2} \gtrsim \max\left(\frac{\sqrt{k}}{\varepsilon}, \frac{1}{\varepsilon^2}\right)$. However, that last condition is an issue: if we wanted to set $n_1 \gg n_2$, for instance, then we would still need

$$n_2 \gtrsim \max\left(\frac{\sqrt{k}}{\varepsilon}, \frac{1}{\varepsilon^2}\right),$$

which, given that the "vanilla" collision-based tester corresponded to $n_1 = n_2 \times \frac{\sqrt{k}}{\epsilon^2}$, is not much of a tradeoff between n_1 and n_2 at all...

So, where did we go wrong? Recall that in order to handle the "far" case, ¹³ in the proof of Theorem 2.1 we had set $\alpha^2 := k \|\mathbf{p} - \mathbf{u}_k\|_2^2 \ge 4\varepsilon^2$, and bounded

$$\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4} \le \frac{\alpha^{3}}{k^{3/2}} + \frac{3\alpha^{2}}{k^{2}}$$

¹³We only have to worry about the far case, as the uniform case is already good – the issue arises in the second term of the variance, which is zero under the uniform distribution.

While this was enough for the "vanilla" collision-based tester, for the bipartite one this is too loose: specifically, we are losing too much after Eq. (2.11), when bounding $\|\mathbf{p} - \mathbf{u}\|_3^3$ by $\|\mathbf{p} - \mathbf{u}\|_2^3$. We could, instead of monotonicity of ℓ_p norms, write $\|\mathbf{p} - \mathbf{u}\|_3^3 \leq \|\mathbf{p} - \mathbf{u}\|_{\infty} \|\mathbf{p} - \mathbf{u}\|_2^2$ to get

$$\|\mathbf{p}\|_{3}^{3} - \|\mathbf{p}\|_{2}^{4} \leq \|\mathbf{p} - \mathbf{u}\|_{\infty} \|\mathbf{p} - \mathbf{u}\|_{2}^{2} + \frac{3}{k} \|\mathbf{p} - \mathbf{u}\|_{2}^{2} \leq 2\|\mathbf{p}\|_{\infty} \frac{\alpha^{2}}{k} + \frac{3\alpha^{2}}{k^{2}}$$

where the second inequality uses the triangle inequality and $\|\mathbf{p}\|_{\infty} \geq 1/k$ to bound $\|\mathbf{p} - \mathbf{u}\|_{\infty}$. Is that better? This is not immediately clear, since $\|\mathbf{p}\|_{\infty}$ could be much larger than α/\sqrt{k} . Yet, if we were lucky enough to have $\|\mathbf{p}\|_{\infty} \lesssim 1/k$, then this bound would be perfect! For instance, if we had $\|\mathbf{p}\|_{\infty} \leq 2/k$, then we *could* write

$$\operatorname{Var}_{\mathbf{p}}[Z_6] \stackrel{?}{\leq} \frac{1}{n_1 n_2} \cdot \frac{1 + \alpha^2}{k} + \frac{n_1 + n_2}{n_1 n_2} \cdot \frac{7\alpha^2}{k^2}.$$
 (2.39) If only...

As mentioned above, we clearly do *not* have that for every \mathbf{p} such that $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$. Still, we saw in Section 2.1.5 an argument, based on stochastic dominance, which effectively allowed to assume this was the case, losing only a factor 2 in the distance parameter ε . This was done by considering, for any given \mathbf{p} , the "averaging" $\bar{\mathbf{p}}$ defined in Lemma 2.7.

Can we do the same here? Unfortunately, no. This stochastic dominance argument relied on our statistic Z_4 being a symmetric and convex function of the sample counts N_1, \ldots, N_k . This is clearly not the case here: letting N_1, \ldots, N_k and M_1, \ldots, M_k be the counts of each domain element in the samples from S and T, respectively, we can rewrite

$$Z_6 = \frac{1}{n_1 n_2} \sum_{i=1}^k N_i M_i \tag{2.40}$$

which is neither symmetric nor convex in the N_i, M_i 's, and so we cannot our stochastic dominance hammer (Theorem 2.6). Sure, but maybe we could still use some stochastic mallet? After all, we have $Z_6 = S(N_1M_1, N_2M_2, \ldots, N_kM_k)$ for a function $S: \mathbb{R}^k \to \mathbb{R}$ which is symmetric and linear (and so a fortiori convex) in its arguments! Unfortunately...still no. As we will verify in Exercise 2.7, stochastic dominance here fails in a spectacular way. So we are left with the variance

bound which follows from what we had established, but features an $\|\mathbf{p}\|_{\infty}$ where we would like O(1/k).

$$\operatorname{Var}_{\mathbf{p}}[Z_6] \le \frac{1}{n_1 n_2} \cdot \frac{1 + \alpha^2}{k} + \frac{n_1 + n_2}{n_1 n_2} \cdot \frac{5 \|\mathbf{p}\|_{\infty} \alpha^2}{k} \,. \tag{2.41}$$

Nonetheless we can enforce *some* bound on $\|\mathbf{p}\|_{\infty}$, by using an extra number of samples n_3 to detect if something looks amiss. This is exactly what Algorithm 8 will allow us to do, ensuring that $\|\mathbf{p}\|_{\infty} \lesssim 1/n_3$. For technical reasons, this will require $n_3 \leq k^{2/3}$; as we will see in Exercise 2.9 we could improve this mild restriction to any $n_3 \leq k^{(s-1)/s}$, for any constant $s \geq 3$, at the cost of worse constants.

Algorithm 8 ℓ_{∞} Tester via 3-way collision

Require: Multiset S of n_3 samples $x_1, \ldots, x_{n_3} \in \mathcal{X}$ and $k = |\mathcal{X}|$

- 1: Check if any value $i \in [k]$ appears at least 3 times in S
- 2: if this happens and $n_3 \le k^{2/3}$ then return 0 \triangleright Not uniform
- 3: **else return** 1 ▷ Uniform

Lemma 2.13. Given n_3 i.i.d. samples from a distribution $\mathbf{p} \in \Delta_k$, Algorithm 8 distinguishes with probability at least 5/6 between (i) $\mathbf{p} = \mathbf{u}_k$ (i.e., $\|\mathbf{p}\|_{\infty} = 1/k$) and (ii) $\|\mathbf{p}\|_{\infty} > 10/n_3$, provided that $n_3 \le k^{2/3}$.

Proof. Suppose that $\mathbf{p} = \mathbf{u}_k$. For any $s \geq 2$, the probability $p(n_3, k, s)$ to observe an s-way collision among n_3 i.i.d. samples from the uniform distribution on k elements is bounded as

$$p(n_3, k, s) \le \frac{1}{k^{s-1}} \binom{n_3}{s}$$
 (2.42)

(see, e.g., Suzuki et al. (2006, Theorem 2)), which for s=3 gives the bound $p(n_3,k,3) \leq \frac{n_3^3}{6k^2}$, which is at most 1/6 for $n_3 \leq k^{2/3}$.

Now, assume $\|\mathbf{p}\|_{\infty} > 10/n_3$, and consider any element $i \in [k]$ such that $\mathbf{p}(i) = \|\mathbf{p}\|_{\infty}$. The number of times N_i this element i appears among the n_3 samples follows a Binomial distribution with parameters n_3 and $\|\mathbf{p}\|_{\infty}$ (and thus mean $n_3\|\mathbf{p}\|_{\infty} > 10$), and so by a Chernoff bound (Theorem A.6) we have $\Pr[N_i < 3] < 1/6$.

We will prove a more general theorem first; before showing how to instantiate it to take advantage of Lemma 2.13:

Theorem 2.14. The bipartite collision-based tester (Algorithm 7) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/6) = n_1 + n_2$ and time complexity O(n), provided that $n_1 n_2 \ge 96k/\varepsilon^4$ and $\min(n_1, n_2) \ge 480 \min(k \|\mathbf{p}\|_{\infty}, \sqrt{2k})/\varepsilon^2$.

Proof. Fix any $\mathbf{p} \in \Delta_k$. We also have our variance bounds from Eqs. (2.37) and (2.41). Define our threshold

$$\tau := \frac{1 + \frac{1}{2}\varepsilon^2}{k}$$

as in Algorithm 7.

• In the uniform case, $\mathbb{E}_{\mathbf{u}_k}[Z_6] = 1/k$, and the probability to output 0 (and thus make a mistake) is bounded as

$$\Pr[Z_6 \ge \tau] = \Pr\Big[Z_6 \ge (1 + \frac{\varepsilon^2}{2}) \mathbb{E}_{\mathbf{u}_k}[Z_6]\Big] \le \frac{4 \operatorname{Var}_{\mathbf{u}_k}[Z_6]}{\varepsilon^4 \mathbb{E}_{\mathbf{u}_k}[Z_6]^2} \le \frac{4k}{n_1 n_2 \varepsilon^4}$$

using Eq. (2.37); this is less than 1/6 as long as $n_1 n_2 \ge 24k/\varepsilon^4$.

• In the "far" case, define α by $\mathbb{E}_{\bar{\mathbf{p}}}[Z_6] = \frac{1+\alpha^2}{k}$, so that $\alpha^2 \geq \varepsilon^2$ but also $\|\mathbf{p}\|_{\infty} \leq \|\mathbf{p}\|_2 = \sqrt{(1+\alpha^2)/k}$. The probability to err by outputting 1 is

$$\Pr[Z_{6} < \tau] \leq \Pr_{\bar{\mathbf{p}}}[Z_{6} < \tau] = \Pr_{\bar{\mathbf{p}}}\left[Z_{6} < \frac{1 + \frac{1}{2}\varepsilon^{2}}{1 + \alpha^{2}}\mathbb{E}_{\bar{\mathbf{p}}}[Z_{6}]\right]$$

$$\leq \Pr_{\bar{\mathbf{p}}}\left[Z_{6} < \left(1 - \frac{\alpha^{2}}{2(1 + \alpha^{2})}\right)\mathbb{E}_{\bar{\mathbf{p}}}[Z_{6}]\right]$$

$$\leq \frac{4(1 + \alpha^{2})^{2}}{\alpha^{4}} \cdot \frac{\operatorname{Var}_{\mathbf{p}}[Z_{6}]}{\mathbb{E}_{\bar{\mathbf{p}}}[Z_{6}]^{2}}$$

$$\leq \frac{k}{n_{1}n_{2}} \cdot \frac{4(1 + \alpha^{2})}{\alpha^{4}} + \frac{n_{1} + n_{2}}{n_{1}n_{2}} \cdot \frac{20k\|\mathbf{p}\|_{\infty}}{\alpha^{2}}$$

$$\leq \frac{8k}{n_{1}n_{2}\varepsilon^{4}} + \frac{40}{\min(n_{1}, n_{2})} \cdot \min\left(\frac{k\|\mathbf{p}\|_{\infty}}{\alpha^{2}}, \frac{\sqrt{k}\sqrt{1 + \alpha^{2}}}{\alpha^{2}}\right)$$

$$\leq \frac{8k}{n_{1}n_{2}\varepsilon^{4}} + \frac{40}{\min(n_{1}, n_{2})\varepsilon^{2}} \min\left(k\|\mathbf{p}\|_{\infty}, \sqrt{2k}\right)$$

using Eq. (2.41), then $n_1 + n_2 \leq 2 \max(n_1, n_2)$, then $\alpha^2 \geq \varepsilon^2$ and that the function $x \mapsto \frac{1}{x^2} \sqrt{1 + x^2}$ is decreasing (and $\varepsilon \leq 1$). This is less than 1/12 + 1/12 = 1/6 as long as (1) $n_1 n_2 \geq 96k/\varepsilon^4$ and (2) $\min(n_1, n_2) \geq 480 \min(k \|\mathbf{p}\|_{\infty}, \sqrt{2k})/\varepsilon^2$.

The above analysis shows that both errors are less than 1/6 for any $n = n_1 + n_2$ satisfying the two conditions from the statement; this concludes the proof.

By choosing $n_1 = n_2 = \frac{n}{2}$, we first obtain:

Corollary 2.15. The bipartite collision-based tester (Algorithm 7) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/6) = O(\sqrt{k}/\varepsilon^2)$ and time complexity O(n).

Perhaps more interesting is combining Corollary 2.16 and Lemma 2.13, which leads to the next result:

Corollary 2.16. The bipartite collision-based tester (Algorithm 7) combined with the ℓ_{∞} testing algorithm (Algorithm 8) form a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = n_1 + n_2$ and time complexity O(n), provided that $n_1 n_2 \geq 4800 k/\varepsilon^4$ and $\max(n_1, n_2) \leq k^{2/3}$.

Proof. Without loss of generality, suppose that $n_2 \leq n_1 \leq k^{2/3}$. The overall algorithm runs Algorithm 8 on S_1 , and records the output as $b_1 \in \{0,1\}$; and in parallel runs Algorithm 7 on the multisets S_1 and S_2 , and records the output as $b_2 \in \{0,1\}$. The output of the algorithm is then b_1b_2 , *i.e.*, the AND the two decisions: it declares "uniform" only if both sub-algorithms declared it.

- In the uniform case, by a union bound both algorithms return 1 with probability at least 1 (1/6 + 1/6) = 2/3, as desired.
- In the "far" case, we have two possibilities. If $\|\mathbf{p}\|_{\infty} > 10/n_3$, then Algorithm 8 will return $b_1 = 0$ with probability at least 5/6, and then regardless of the output of Algorithm 7 we have $b_1b_2 = 0$ and will return 0. If $\|\mathbf{p}\|_{\infty} \leq 10/n_3$, however, then we have $n_1n_2 \geq 96k/\varepsilon^4$ and $\min(n_1, n_2) \geq 480k\|\mathbf{p}\|_{\infty}/\varepsilon^2$, and

so Algorithm 7 will return $b_2 = 0$ with probability at least 5/6. Either way, we return 0 with probability at least 5/6 > 2/3.

This concludes the proof.

2.1.8 Empirical subset weighting

To conclude, we will look at a somewhat different type of algorithms, in that this one can inherently be seen as *adaptive*: it works in two stages, where the second depends on what the outcome of the first stage was. As in the previous section, it also allows for some tradeoff, dividing the n total samples into two sets of size n_1 and n_2 .

Fix an integer $1 \leq n_1 \leq n$. Take n_1 i.i.d. samples from \mathbf{p} , and consider the set $S \subseteq \mathcal{X}$ (not multiset) induced by those n_1 samples. The quantity of interest will be $\mathbf{p}(S)$, the (unknown) probability weight of that random set S:

$$\mathbf{p}(S) = \sum_{j=1}^{k} \mathbf{p}(j) \mathbb{1}\{ N_j \ge 1 \}$$
 (2.43)

where, as before, N_j is the number of occurrences of j among the n_1 samples. One can check the expectation of this random variable is

$$\mathbb{E}[\mathbf{p}(S)] = \sum_{i=1}^{k} \mathbf{p}(i)(1 - (1 - \mathbf{p}(i))^{n_1})$$
 (2.44)

which should be roughly (making a few not necessarily warranted approximations) $\mathbb{E}[\mathbf{p}(S)] \approx n_1 ||\mathbf{p}||_2^2$. Under the uniform distribution, this is exactly $(1 - (1 - 1/k)^{n_1}) \approx n_1/k$, where the approximation is valid for $n_1 \ll k$.

Great: we have a new estimator for (more or less) the ℓ_2 norm. Now, assuming things went well, as the end of this first stage we have a set S such that $\mathbf{p}(S)$ is approximately either n_1/k or $n_1 \|\mathbf{p}\|_2^2 \geq n_1(1+\Omega(\varepsilon^2))/k$ (we just argued that this is what happens in expectation). As on, let's do a second stage! Take the next $n_2 := n - n_1$ samples, and count the

¹⁴The tricky part, of course, will be to argue that $\mathbf{p}(S)$ does concentrate enough around its expectation for this to also happen with constant probability.

number of them which fall in S: this is allows you to estimate $\mathbf{p}(S)$ up to an additive $n_1 \varepsilon^2/k$, as long as

$$n_2 \gg \frac{k}{n_1 \varepsilon^4}$$

(see Fact 2.2 below). This lets us retrieve the same condition $n_1 n_2 \gg$ k/ε^4 as in the previous section; and, similarly, for $n_1 = n_2 = n/2$ this leads to the optimal $n \simeq \sqrt{k/\varepsilon^2}!$ Only drawback: we need $n_1 \ll k$ for our approximations to be valid – indeed, after that, $\mathbb{E}[\mathbf{p}(S)]$ cannot be approximately $n_1 \|\mathbf{p}\|_2^2$ anymore: the former is at most one, the latter at least n_1/k . This is, at its core, the same issue as with the "unique elements" algorithm from Section 2.1.3, and this imposes the condition $\varepsilon \gg 1/k^{1/4}$.

Algorithm 9 Empirical Subset Weighting Tester

Require: Multisets S_1, S_2 of n_1 and n_2 samples $x_1, \ldots, x_{n_1} \in \mathcal{X}$, $y_1, \ldots, y_{n_2} \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and $k = |\mathcal{X}|$ 1: Set $\tau \leftarrow \frac{n_1 \varepsilon^2}{64k}$

- 2: Compute S, the set of samples from S_1 . ▷ Can be done in $O(n_1 \log n_1)$ time, and $O(n_1)$ expected (e.g., via cuckoo hashing).
- 3: Compute \triangleright Can be done in $O(n_2)$ time.

$$Z_7 = \frac{1}{n_2} \sum_{t=1}^{n_2} \mathbb{1}\{y_t \in S\}.$$

4: if
$$Z_7 \ge 1 - (1 - \frac{1}{k})^{n_1} + 2\tau$$
 then return 0 \triangleright Not uniform 5: else return 1 \triangleright Uniform

The key part of the analysis is in analyzing the random variable $\mathbf{p}(S)$ from the first stage of the algorithm; the second stage, whose goal is to estimate $\mathbf{p}(S)$, is much simpler to handle. To do so, as usual by now, we begin by bounding the expectation gap

$$\Delta(\mathbf{p}) := \mathbb{E}_{\mathbf{p}}[\mathbf{p}(S)] - \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] \tag{2.45}$$

when \mathbf{p} is far from uniform. From Eq. (2.44), we can explicitly write,

for every $\mathbf{p} \in \Delta_k$,

$$\Delta(\mathbf{p}) = \sum_{i=1}^{k} \mathbf{p}(i)(1 - (1 - \mathbf{p}(i))^{n_1}) - (1 - (1 - 1/k)^{n_1})$$
$$= \sum_{i=1}^{k} \mathbf{p}(i)((1 - 1/k)^{n_1} - (1 - \mathbf{p}(i))^{n_1}),$$

"hiding one" by writing $(1 - (1 - 1/k)^{n_1}) = \sum_{i=1}^k \mathbf{p}(i)(1 - (1 - 1/k)^{n_1})$. We are in luck: the resulting expression turns out to be exactly the same as in the expectation for Z_2 (Lemma 2.2), with n_1 instead of n-1! We can therefore reuse the analysis we had then, and immediately get:

Lemma 2.17. If $n \leq k$, we have

$$\Delta(\mathbf{p}) \ge \frac{n_1}{16k} d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k)^2.$$

We will here introduce (and use) another concept we have not seen yet, that of *negative association* between random variables. This is a stronger notion than negative correlation, and is very useful when dealing with random variables which are dependent "but in a way which helps us" (to prove concentration):

Definition 2.3 (Negative Association). The random variables X_1, \ldots, X_n are said to be *negatively associated* if, for all disjoint subsets $I, J \subseteq [n]$ and functions $f: \mathbb{R}^{|I|} \to \mathbb{R}, g: \mathbb{R}^{|J|} \to \mathbb{R}$, we have

$$\mathbb{E}[f((X_i)_{i\in I})g((X_j)_{j\in J})] \le \mathbb{E}[f((X_i)_{i\in I})]\mathbb{E}[g((X_j)_{j\in J})]$$

whenever f, g are both non-increasing or both non-decreasing.

As it turns out, the sample counts N_1, \ldots, N_k are negatively associated (see, e.g., (Dubhashi and Ranjan, 1998, Section 2.2)), which we will use below.¹⁵ We will rely on this to bound the variance explicitly,

¹⁵What we will use does not require the full power of negative associativity and could be obtained directly, but it is a good concept to know, so – why not?

starting with the expected square:

$$\mathbb{E}\left[\mathbf{p}(S)^{2}\right] = \sum_{i=1}^{k} \sum_{j=1}^{k} \mathbf{p}(i)\mathbf{p}(j)\mathbb{E}\left[\mathbb{1}\left\{N_{i} \geq 1\right\}\mathbb{1}\left\{N_{j} \geq 1\right\}\right] \\
= \sum_{i=1}^{k} \mathbf{p}(i)^{2}\mathbb{E}\left[\mathbb{1}\left\{N_{i} \geq 1\right\}\right] + 2\sum_{i < j} \mathbf{p}(i)\mathbf{p}(j)\mathbb{E}\left[\mathbb{1}\left\{N_{i} \geq 1\right\}\mathbb{1}\left\{N_{j} \geq 1\right\}\right] \\
\leq \sum_{i=1}^{k} \mathbf{p}(i)^{2}\mathbb{E}\left[\mathbb{1}\left\{N_{i} \geq 1\right\}\right] + 2\sum_{i < j} \mathbf{p}(i)\mathbf{p}(j)\mathbb{E}\left[\mathbb{1}\left\{N_{i} \geq 1\right\}\right]\mathbb{E}\left[\mathbb{1}\left\{N_{j} \geq 1\right\}\right] \\
= \sum_{i=1}^{k} \mathbf{p}(i)^{2}\Pr[N_{i} \geq 1] + \left(\sum_{i=1}^{k} \mathbf{p}(i)\Pr[N_{i} \geq 1]\right)^{2} - \sum_{i=1}^{k} \mathbf{p}(i)^{2}\Pr[N_{i} \geq 1]^{2} \\
= \sum_{i=1}^{k} \mathbf{p}(i)^{2}\Pr[N_{i} \geq 1](1 - \Pr[N_{i} \geq 1]) + \mathbb{E}[\mathbf{p}(S)]^{2},$$

where the inequality follows from negative associativity, and we got the third equality by completing the sum $2\sum_{i< j} x_{i,j} = \sum_{i,j} x_{i,j} - \sum_i x_{i,i}$. That is, we just proved

$$\operatorname{Var}[\mathbf{p}(S)] \le \sum_{i=1}^{k} \mathbf{p}(i)^{2} \operatorname{Pr}[\mathbf{N}_{i} \ge 1] \operatorname{Pr}[\mathbf{N}_{i} = 0]. \tag{2.46}$$

By upper bounding the last factor by 1, we then get

$$\operatorname{Var}[\mathbf{p}(S)] \le \|\mathbf{p}\|_{\infty} \mathbb{E}[\mathbf{p}(S)] \le n_1 \|\mathbf{p}\|_{\infty}^2 \tag{2.47}$$

where for the last step we used that

$$\mathbb{E}_{\mathbf{p}}[\mathbf{p}(S)] = \sum_{i=1}^{k} \mathbf{p}(i) (1 - (1 - \mathbf{p}(i))^{n_1}) \le 1 - (1 - \|\mathbf{p}\|_{\infty})^{n_1} \le n_1 \|\mathbf{p}\|_{\infty}.$$

Of course, Eq. (2.47) requires a bound on $\|\mathbf{p}\|_{\infty}$, which we do *not* have for the "far" case. ¹⁶ Yet, by observing that the function $x \in [0,1] \mapsto x(1-x)^m$ is maximized at $\frac{1}{m+1}$ (where it is at most $\frac{1}{2(m+1)}$) we can get

$$\operatorname{Var}[\mathbf{p}(S)] \le \sum_{i=1}^{k} \mathbf{p}(i) \operatorname{Pr}[\mathbf{N}_{i} \ge 1] \cdot \mathbf{p}(i) (1 - \mathbf{p}(i))^{n_{1}} \le \frac{\mathbb{E}[\mathbf{p}(S)]}{2n_{1}}. \quad (2.48)$$

¹⁶Unfortunately, we cannot in this case use our stochastic dominance hammer, or even gavel, as it is not true in general that $\mathbf{p}(S)$ stochastically dominates $\mathbf{q}(S)$ whenever $\mathbf{p} \succeq \mathbf{q}$.

This allows us to prove that the first stage of the algorithm will (with high probability) succeed, in that the random variable $\mathbf{p}(S)$ will significantly differ under the uniform and "far" cases.

Lemma 2.18. For $\mathbf{p} \in \Delta_k$ such that $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$, we have

$$\Pr_{\mathbf{u}_k}[\mathbf{u}_k(S) \geq \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + \tau] \leq \frac{1}{6}, \quad \Pr_{\mathbf{p}}[\mathbf{p}(S) \leq \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + 3\tau] \leq \frac{1}{6},$$

where $\tau := \frac{n_1 \varepsilon^2}{64k}$; provided that $k \ge n_1 \ge 115\sqrt{k}/\varepsilon^2$ and $\varepsilon \ge 15/k^{1/4}$.

Proof. Let $\mathbf{p} \in \Delta_k$. As usual by now, we will invoke Chebyshev's inequality to prove the desired bounds.

• In the uniform case,

$$\Pr_{\mathbf{u}_k} \left[\mathbf{u}_k(S) \ge \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + \frac{n_1 \varepsilon^2}{64k} \right] \le \frac{4096k^2 \operatorname{Var}_{\mathbf{u}_k}[\mathbf{u}_k(S)]}{n_1^2 \varepsilon^4} \le \frac{4096k^2 \operatorname{Var}_{\mathbf{u}_k}[\mathbf{u}_k(S)]}{n_1 \varepsilon^4} \le \frac{4096k^2 \operatorname{Var}_{\mathbf{u}_k}[\mathbf{u}_k(S)]}{n_1^2 \varepsilon^4} \le \frac{4096k^2 \operatorname{Var}_{\mathbf{u}_k}[\mathbf{u}_k(S$$

using Eq. (2.47), which implies $\operatorname{Var}_{\mathbf{u}_k}[\mathbf{u}_k(S)] \leq \frac{n_1}{k^2}$; this is less than 1/6 as long as $\frac{17}{n_1} \geq 24576/\varepsilon^4$.

• In the "far" case, we have by Lemma 2.17 we have $\Delta(\mathbf{p}) \geq \frac{n_1 \varepsilon^2}{16k} \geq \frac{\varepsilon^2}{16} \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)],$

$$\Pr\left[\mathbf{p}(S) < \mathbb{E}_{\mathbf{u}_{k}}[\mathbf{u}_{k}(S)] + \frac{3n_{1}\varepsilon^{2}}{64k}\right] \leq \Pr\left[\mathbf{p}(S) < \mathbb{E}_{\mathbf{u}_{k}}[\mathbf{u}_{k}(S)] + \frac{3}{4}\Delta(\mathbf{p})\right]$$

$$= \Pr\left[\mathbf{p}(S) < \mathbb{E}_{\mathbf{p}}[\mathbf{p}(S)] - \frac{1}{4}\Delta(\mathbf{p})\right]$$

$$\leq \frac{16\operatorname{Var}[\mathbf{p}(S)]}{\Delta(\mathbf{p})^{2}}$$

$$\leq \frac{128k}{n_{1}^{2}\varepsilon^{2}} \cdot \frac{\mathbb{E}_{\mathbf{p}}[\mathbf{p}(S)]}{\Delta(\mathbf{p})}$$

$$\leq \frac{2176k}{n_{1}^{2}\varepsilon^{4}}$$

using Eq. (2.47), then $\frac{\mathbb{E}_{\mathbf{p}}[\mathbf{p}(S)]}{\Delta(\mathbf{p})} = 1 + \frac{\mathbb{E}_{\mathbf{u}_k}[\mathbf{p}(S)]}{\Delta(\mathbf{p})} \le 1 + \frac{16}{\varepsilon^2} \le \frac{17}{\varepsilon^2}$. This is less than 1/6 whenever $n_1 \ge 115\sqrt{k}/\varepsilon^2$.

 $^{^{17}}$ It is worth pointing out, in case this was not apparent, that this survey does *not* focus on optimizing the constants.

Observing that our condition $\varepsilon \geq 15/k^{1/4}$ implies $115\sqrt{k}/\varepsilon^2 \geq 24576/\varepsilon^4$ concludes the proof of the lemma.

The second stage then boils down to using n_2 samples to distinguish between the two cases: (1) $\mathbf{p}(S) \leq \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + \tau$ and (2) $\mathbf{p}(S) \geq \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + 3\tau$, assuming one of the two holds (which will if the first stage is successful). To do so, we will require the following result, which can be seen as a "localized" variant of Fact 2.1.¹⁸

E: Prove this! Exercise 2.5.

Fact 2.2 (Bias of a coin, distinguishing). Given i.i.d. samples from a Bernoulli with unknown parameter $\alpha \in [0,1]$, and parameters $\beta, \eta \in (0,1]$, distinguishing with probability $1-\delta$ between $\alpha \leq \beta$ and $\alpha \geq \beta(1+\eta)$ can be done with (and requires) $\Theta\Big(\frac{\log(1/\delta)}{\beta\eta^2}\Big)$ samples. This is achieved by the empirical estimator.

We are now ready to establish the guarantees of our algorithm.

Theorem 2.19. The empirical subset weighting tester (Algorithm 9) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = n_1 + n_2$ and time complexity $O(n_1 \log n_1 + n_2)$ (expected $O(n_1 + n_2)$), provided that $n_1 n_2 \ge Ck/\varepsilon^4$, $115\sqrt{k}/\varepsilon^2 \le n_1 \le k$, and $\varepsilon \ge 15/k^{1/4}$.

Proof. Fix any $\mathbf{p} \in \Delta_k$, and define

$$\tau := \frac{n_1 \varepsilon^2}{64k}$$

as in Algorithm 9 and Lemma 2.18. We assume that $n_2 \geq C \cdot \frac{k}{n_1 \varepsilon^4}$, where C > 0 is the constant hidden in the $O(\cdot)$ of Fact 2.2, so that we can apply this lemma with $\beta := \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + \tau$, $\eta := \frac{2\tau}{\beta}$, and $\delta := 1/6$. Here, we implicitly used that $\mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] \leq \frac{n_1}{k}$, to get

$$\frac{1}{\beta\eta^2} = \frac{\beta}{4\tau^2} \lesssim \frac{k}{n_1\varepsilon^4} \,.$$

• In the uniform case, by Lemma 2.18 and Fact 2.2 we have that, with probability at least $(1-\frac{1}{6})^2 \geq 2/3$, $\mathbf{u}_k(S) \leq \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + \tau = \beta$ and our estimate Z_7 of $\mathbf{u}_k(S)$ detects it, so that we output 1.

¹⁸Localized, as it depends on the "location" β we focus on, while Fact 2.1 holds for all possible values – and is thus a worst-case result (over the unknown value α).

• In the "far" case, similarly by Lemma 2.18 and Fact 2.2, with probability at least $(1 - \frac{1}{6})^2$, $\mathbf{p}(S) \geq \mathbb{E}_{\mathbf{u}_k}[\mathbf{u}_k(S)] + 3\tau = \beta(1 + \eta)$ and our estimate Z_7 of $\mathbf{p}(S)$ detects it, so that we output 0.

The above analysis shows that both errors are less than 1/3 for any $n = n_1 + n_2$ such that $n_1 n_2 \ge Ck/\varepsilon^4$ and $k \ge n_1 \ge \left\lceil 115\sqrt{k}/\varepsilon^2 \right\rceil$; this concludes the proof.

Setting $n_1 = n_2$ in the above theorem, we get as an immediate corollary:

Corollary 2.20. The empirical subset weighting tester (Algorithm 9) is a testing algorithm for uniformity with sample complexity $n(k, \varepsilon, 1/3) = O(\sqrt{k}/\varepsilon^2)$ and time complexity $O(n \log n)$ (expected O(n)), provided that $\varepsilon \geq 15/k^{1/4}$.

2.1.9 Discussion

In this section, we have covered and analyzed seven different algorithms for uniformity testing; ¹⁹ some, such as the collision-based tester and the bipartite collision tester, or the unique element tester and the empirical-distance tester, were related, and many (but not all) relied on the use of ℓ_2 distance as a proxy for total variation distance. Before concluding this section, let us have a look at some of their differences, and specific advantages of each of them.

• The collision-based tester, besides being a very natural idea (which turns out to yield the optimal sample complexity!), is as a byproduct an estimator of the ℓ_2 norm of the distribution, *i.e.*, its collision probability. This could be useful by itself, if one is interested in this quantity for its own sake. Perhaps more importantly, the use of ℓ_2 as proxy (via Cauchy–Schwarz), combined with monotonicity of ℓ_p norms ($\ell_2 \leq \ell_1$), implies that this tester actually provides some amount of tolerance (robustness to model misspecification): instead of just between $\mathbf{p} = \mathbf{u}_k$ and $\mathrm{d}_{\mathrm{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$, it enables one

¹⁹There may (and surely are) other possible algorithms one could consider, of course; yet, we hope that this chapter provided a good and representative overview of the ideas, techniques, and tools one could use to analyze such algorithms.

to distinguish between $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \leq \varepsilon/(2\sqrt{k})$ and $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$. This seemingly small tolerance happens to be quite helpful in many settings. Of course, the same comment applies to the bipartite collision tester, but also to the random binary hashing tester (which also relies on, and estimates, the squared ℓ_2 distance).

- Both the unique elements tester and the empirical-distance tester have low sensitivity, meaning that changing the value of a single one of the n samples cannot change the value of the resulting statistic (Z_2 or Z_4) by much: roughly, $\approx 1/n$ or $\approx 1/k$. While the different renormalization makes it a little tricky to compare, the collision-based tester, for instance, has much worse sensitivity, as changing one sample can have a much larger effect on the statistic (since Z_1 is a quadratic function of the sample counts). Having low sensitivity, which is essentially an ℓ_1 Lipschitzness guarantee, in turn is very desirable to obtain robust algorithms (i.e., robust to data corruption, adversarial or not), or, importantly, to obtain differentially private algorithms (Dwork et al., 2006), since the amount of random noise added to ensure data privacy is directly related to this sensitivity. In particular, the unique elements tester and the empirical-distance tester each have been used to obtain optimal, or near-sample-optimal, differentially private uniformity testing algorithms (Acharya et al., 2018; Aliakbarpour et al., 2018).
- This low sensitivity is one of the aspects which allows the empirical-distance tester to achieve the optimal "high-probability bound," that is, the optimal dependence on the error probability δ . Indeed, while our bounds for $\delta = 1/3$, combined with the standard amplification from Lemma 1.1, yield the upper bound

$$n(k, \varepsilon, \delta) = O\left(\frac{\sqrt{k}}{\varepsilon^2} \log \frac{1}{\delta}\right)$$
 (2.49)

on the sample complexity of uniformity testing for general $\delta \in (0,1]$, the "right" bound is

$$n(k, \varepsilon, \delta) = \Theta\left(\frac{1}{\varepsilon^2} \left(\sqrt{k \log \frac{1}{\delta}} + \log \frac{1}{\delta} \right) \right)$$
 (2.50)

which can be much smaller for vanishing δ , e.g., $\delta = 1/2^{\Omega(k)}$. The bound Eq. (2.50) is achieved by the empirical-distance tester, but with a different analysis to prove concentration around the mean: namely, instead of a Chebyshev-based (variance) bound, one can use instead the so-called bounded differences inequality (McDiarmid's inequality) and its "Bernstein-type variant" (bounded variances inequality) (Dubhashi and Panconesi, 2009, Chapters 5.4 and 8) to show that the statistic Z_4 concentrates very tightly. The low sensitivity of Z_4 , as it happens, plays a crucial role when applying those bounds.

- The random binary hashing testing, albeit not sample-optimal, only requires to store a *single* bit of information per sample. (Moreover, this can be generalized to ℓ bits by hashing to 2^{ℓ} elements instead of two, leveraging Theorem 2.12.) This can be very valuable in memory-limited or communication-limited settings (we will get back to this in Chapter 3), or in the case of *local* differential privacy (Kasiviswanathan *et al.*, 2011), where this can be used to obtain a sample-optimal locally private uniformity testing algorithm (Acharya *et al.*, 2021) (as optimally privatizing *one* bit is much easier than a full log k-bit sample).
- Finally, the χ^2 tester...just works. It also nicely generalizes to other problems (identity testing, as we will see in Section 2.2; or even, with appropriate modifications, to "closeness testing" (two-sample goodness-of-fit) or other related testing tasks. Among other enjoyable properties, its asymptotic distribution (as the number of samples $n \to \infty$) can be obtained, letting us (asymptotically) obtain confidence intervals. It also does provide, as the collision-based tester, some amount of tolerance, in the so-called χ^2 divergence; while beyond the scope of this survey, this χ^2 -divergence tolerance can be used as a blackbox to obtain testing algorithms for other properties than uniformity (Acharya et al., 2015).

2.2 Identity testing

Having developed techniques, insights, and mathematical muscle memory for the task of uniformity testing, we now turn to its natural generalization, identity testing, where we now seek to test whether the unknown distribution \mathbf{p} is equal to some specific, fixed reference distribution \mathbf{q} – our "model" – of which we have the full, explicit description. Fortunately, many of the ideas from the previous chapter can be extended or reused for this more general problem; as we will see in the last subsection, there even exists a way to reuse the exact same algorithms as for uniformity. But first, let us get reacquainted with a familiar algorithm, the χ^2 tester.

2.2.1 The return of χ^2

We will only make a small change to our statistic Z_3 from Section 2.1.4, to replace the uniform distribution by our reference distribution \mathbf{q} ; the analysis itself, besides a simple "trick," will also be almost identical. We will again work here in the Poissonized sampling model, and let

$$Z = \sum_{i=1}^{k} \frac{(N_i - \mathbf{n}\mathbf{q}(i))^2 - N_i}{\mathbf{n}\mathbf{q}(i)};$$
 (2.51)

that is, we now have $\mathbf{q}(i)$ instead of $\mathbf{u}_k(i) = 1/k$ in the numerator and denominator, and as before N_i denotes the number of occurrences of $i \in [k]$ among our Poisson(n) samples.

This is where we face a technical hurdle, due to the fact that $\mathbf{q}(i)$ in the denominator, while known, could be arbitrarily close to 0, which would make the variance of Z blow up for no particularly good reason. Fortunately, there is an easy fix: we can just replace \mathbf{q} by the mixture

$$\mathbf{q}' := \frac{1}{2}\mathbf{q} + \frac{1}{2}\mathbf{u}_k \tag{2.52}$$

which will guarantee that each element has probability at least 1/(2k) under \mathbf{q}' . Moreover, given samples from an unknown distribution \mathbf{p} it is easy to generate the same number of samples from the (also unknown) distribution $\mathbf{p}' := \frac{1}{2}\mathbf{p} + \frac{1}{2}\mathbf{u}_k$. If $\mathbf{p} = \mathbf{q}$, then of course $\mathbf{p}' = \mathbf{q}'$, and if

E: We will check this in Exercise 2.12. $d_{TV}(\mathbf{p}, \mathbf{q}) > \varepsilon$ then $d_{TV}(\mathbf{p}', \mathbf{q}') > \varepsilon/2$, since

$$2d_{\mathrm{TV}}(\mathbf{p}', \mathbf{q}') = \sum_{i=1}^{k} |\mathbf{p}'(i) - \mathbf{q}'(i)| = \sum_{i=1}^{k} \left| \frac{1}{2} \mathbf{p}(i) - \frac{1}{2} \mathbf{q}(i) \right| = d_{\mathrm{TV}}(\mathbf{p}, \mathbf{q}).$$

That is, this transformation only costs us a constant factor in the distance parameter. For simplicity, in what follows we will write directly \mathbf{p} , \mathbf{q} instead of \mathbf{p}' , \mathbf{q}' , and assume throughout that $\min_{i \in [n]} \mathbf{q}(i) \geq 1/(2k)$.

Algorithm 10 Chi-Square Tester (for Identity)

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and explicit description of $\mathbf{q} \in \Delta_k$. \triangleright Assumes Poissonization

- 1: Independently replace, with probability 1/2, each x_i by a uniformly random element of \mathcal{X} . \triangleright Generate samples from $\mathbf{p}' = \frac{1}{2}\mathbf{p} + \frac{1}{2}\mathbf{u}_k$ in time $O(n \log k)$.
- 2: Set $\tau \leftarrow \frac{1}{2}n\varepsilon^2$ > This is $2n(\varepsilon/2)^2$, since the "mixture trick" above leads to a factor-2 loss in the distance parameter ε .
- 3: Compute

$$Z = \sum_{i \in \mathcal{X}} \frac{(N_j - n\mathbf{q}'(i))^2 - N_j}{n\mathbf{q}'(i)}$$

where $N_j \leftarrow \sum_{t=1}^n \mathbb{1}\{x_t = j\}$ and $\mathbf{q}'(i) := \frac{\mathbf{q}(i) + 1/k}{2}$.

4: if $Z \ge \tau$ then return 0

⊳ Not q

5: else return 1

▶ Equal to **q**

Since, by Poissonization, the N_i 's are independent Poisson random variables with $N_i \sim \text{Poisson}(n\mathbf{p}(i))$, we can once more use Claim 2.2, leading to

$$\mathbb{E}[Z] = n \sum_{i=1}^{k} \frac{(\mathbf{p}(i) - \mathbf{q}(i))^2}{\mathbf{q}(i)} = n \cdot \chi^2(\mathbf{p} \parallel \mathbf{q})$$
 (2.53)

From this, we immediately get that if $\mathbf{p} = \mathbf{q}$ then $\mathbb{E}[Z] = 0$. Moreover, if $d_{\text{TV}}(\mathbf{p}, \mathbf{q}) > \varepsilon$, then the relation between χ^2 divergence and total variation distance (Lemma B.1) implies that $\mathbb{E}[Z] > 4n\varepsilon^2$.

To compute the variance, we use independence of the N_i 's and the

second part of the same Claim 2.2 to get

$$\operatorname{Var}[Z] = \sum_{i=1}^{k} \frac{\operatorname{Var}[(N_i - n\mathbf{q}(i))^2 - N_i]}{n^2 \mathbf{q}(i)^2}$$

$$\leq 2 \sum_{i=1}^{k} \frac{\mathbf{p}(i)^2}{\mathbf{q}(i)^2} + 4 \sqrt{\sum_{i=1}^{k} \frac{\mathbf{p}(i)^2}{\mathbf{q}(i)^2}} \mathbb{E}[Z], \qquad (2.54)$$

following the exact same steps as for Eq. (2.22) in the uniformity testing case. As before, to continue we need to bound the quantity $\sum_{i=1}^k \frac{\mathbf{p}(i)^2}{\mathbf{q}(i)^2}$; this is where the fact that $\min_{i \in [k]} \mathbf{q}(i) \geq 1/(2k)$ will be crucial. Indeed, the first inequality is as in the uniformity testing case, the second now relies on this fact:

$$\begin{split} \sum_{i=1}^{k} \frac{\mathbf{p}(i)^2}{\mathbf{q}(i)^2} &\leq 2k + 2\sum_{i=1}^{k} \frac{(\mathbf{p}(i) - \mathbf{q}(i))^2}{\mathbf{q}(i)^2} \\ &\leq 2k + 4k\sum_{i=1}^{k} \frac{(\mathbf{p}(i) - \mathbf{q}(i))^2}{\mathbf{q}(i)} \\ &= 2k\left(1 + 2\frac{\mathbb{E}[Z]}{n}\right). \end{split}$$

Compared to variance analysis in the uniformity testing case, we only lose a factor 2 in the second term. Plugging this bound in Eq. (2.54), we get

$$\operatorname{Var}[Z] \le 4k \left(1 + 2 \frac{\mathbb{E}[Z]}{n} \right) + 4\sqrt{2}k^{1/2}\mathbb{E}[Z] + 8 \frac{k^{1/2}}{n^{1/2}}\mathbb{E}[Z]^{3/2}$$
 (2.55)

Up to some constant factors, this is the same as (2.23). The only other difference is that, after transformation to ensure $\min_{i \in [k]} \mathbf{q}(i) \ge 1/(2k)$, the distance has become $\varepsilon/2$; so we also lose a constant factor in the expectation gap, which by Eq. (2.53) will be at least $\Delta := nk \cdot \frac{4(\varepsilon/2)^2}{k} = n\varepsilon^2$. The rest, as they say, is Chebyshev: in the $\mathbf{p} = \mathbf{q}$ case, we will need

$$\operatorname{Var}_{\mathbf{p}}[Z] \leq 4k \ll n^2 \varepsilon^4 \leq \Delta^2$$
,

which holds whenever $n \gg \sqrt{k/\varepsilon^2}$. In the "far" case $(d_{\text{TV}}(\mathbf{p}, \mathbf{q}) > \varepsilon/2)$, we want $\text{Var}_{\mathbf{p}}[Z] \ll \Delta(\mathbf{p})^2 = \mathbb{E}_{\mathbf{p}}[Z]^2$, which by Eq. (2.55) will require

$$\max\!\left(k,\frac{k}{n}\mathbb{E}_{\mathbf{p}}[Z],k^{1/2}\mathbb{E}_{\mathbf{p}}[Z],\frac{k^{1/2}}{n^{1/2}}\mathbb{E}_{\mathbf{p}}[Z]^{3/2}\right)\ll\mathbb{E}_{\mathbf{p}}[Z]^2\,.$$

Using $\mathbb{E}_{\mathbf{p}}[Z] \geq n\varepsilon^2$, we see that this also holds for $n \gg \sqrt{k}/\varepsilon^2$. By an argument nearly identical to the proof of Theorem 2.5, we obtain:

Theorem 2.21. The χ^2 -based tester (Algorithm 10) is a testing algorithm for identity with sample complexity $n(k, \varepsilon, 1/3) = O(\sqrt{k}/\varepsilon^2)$ and time complexity $O(n \log k + k)$ in the Poissonized setting.

This was relatively painless, and shows that the general case of identity testing is no harder than uniformity testing – up to constant factors. The key insight, here, was to use this "mixture trick" (Eq. (2.52)) to replace \mathbf{q} by a slightly modified version, \mathbf{q}' with some nice guarantees. (Of course, if in practice the known \mathbf{q} already satisfies $\min_i \mathbf{q}(i) \geq 1/(2k)$, this step is not necessary.)

One can interpret this trick as applying a suitable randomized transformation to the samples (*i.e.*, to the input distribution), which maps the reference distribution \mathbf{q} to something a little closer to uniform, while somewhat preserving the pairwise distances between distributions. That is, coming up with a pair of mappings (Φ, Ψ) with $\Phi \colon \Delta_k \to \Delta_{k'}$ and $\Psi \colon [k] \to [k']$, such that (1) $\Phi(\mathbf{q}) \approx \mathbf{u}_{k'}$, (2) $\operatorname{dist}(\Phi(\mathbf{p}), \Phi(\mathbf{q})) \approx \operatorname{dist}(\mathbf{p}, \mathbf{q})$ for all \mathbf{p} , and (3) $x \sim \Psi(\mathbf{p})$ whenever $x \sim \mathbf{p}$.

Here, we chose $\mathbf{k} = \mathbf{k}'$ and $\Phi(\mathbf{p}) = \frac{1}{2}\mathbf{p} + \frac{1}{2}\mathbf{u}_k$ (and dist being the total variation distance, for a rather liberal interpretation of \approx), which worked for the χ^2 -based tester; in the next two subsections, we will see variants of this idea, applying more generally to any tester.

2.2.2 Reduction to (near)-uniformity testing: ℓ_2 distance

The first idea is, given how convenient ℓ_2 distance has proven itself as a proxy for total variation distance when testing uniformity, to attempt to perform *identity* testing in ℓ_2 distance as well. This will not quite work, unfortunately, as the ℓ_2 guarantee will only translate to a good ℓ_1 /total variation one when the reference distribution \mathbf{q} is somewhat "close to uniform" (in a specific sense: when it has small ℓ_2 norm $\|\mathbf{q}\|_2$). Which is when the type of randomized mapping we just discussed will come in handy, providing a principled way to ensure this condition holds.

A good ℓ_2 **tester.** Our first step is thus to get a good ℓ_2 testing algorithm; for simplicity of analysis, we will throughout this section work in the Poissonized sampling setting, and establish the following theorem:

Theorem 2.22. Given the explicit description of a probability distribution $\mathbf{q} \in \Delta_k$, parameter $\varepsilon \in (0,1]$, and Poisson(n) i.i.d. samples from an unknown $\mathbf{p} \in \Delta_k$, Algorithm 11 runs in time $O(n \log n + k)$ and distinguishes between $\|\mathbf{p} - \mathbf{q}\|_2 \le \varepsilon$ and $\|\mathbf{p} - \mathbf{q}\|_2 \ge 2\varepsilon$ with probability at least 2/3 as long as $n \ge 100 \max(\|\mathbf{q}\|_2/\varepsilon^2, 2/\varepsilon)$.

Algorithm 11 Robust ℓ_2 Tester (for Identity)

Require: Multiset of n samples $x_1, \ldots, \overline{x_n \in \mathcal{X}}$, parameters $\boldsymbol{\varepsilon} \in (0, 1]$ and explicit description of $\mathbf{q} \in \Delta_{\ell}$. \triangleright Assumes Poissonization

1: Set $\tau \leftarrow 2n^2 \varepsilon^2$

2: Compute

$$Z = \sum_{j \in \mathcal{X}} \left((\mathbf{N}_j - n\mathbf{q}(i))^2 - \mathbf{N}_j \right)$$

where $N_j \leftarrow \sum_{t=1}^n \mathbb{1}\{x_t = j\}.$

3: if $Z \ge \tau$ then return 0

 \triangleright Far from \mathbf{q} (in ℓ_2)

4: else return 1

 \triangleright Close to \mathbf{q} (in ℓ_2)

Proof. Before computing the expectation and variance of the statistic Z from Algorithm 11, which does look a lot like a simpler version of Algorithms 3 and 10 (we "just" omitted the denominators!), we will make a simple observations observations. Namely, that by the reverse triangle inequality, if $\|\mathbf{p}\|_2 \geq 2\|\mathbf{q}\|_2$ then $\|\mathbf{p} - \mathbf{q}\|_2 \geq \frac{1}{2}\|\mathbf{p}\|_2$.

Turning to the analysis of the moments of Z, we can simply recall Claim 2.2 and capitalize on all our previous hard work:

$$\mathbb{E}_{\mathbf{p}}[Z] = \mathbf{n}^2 \|\mathbf{p} - \mathbf{q}\|_2^2 \tag{2.56}$$

and

$$\operatorname{Var}_{\mathbf{p}}[Z] = \sum_{i=1}^{k} \left(2n^{2}\mathbf{p}(i)^{2} + 4n^{3}\mathbf{p}(i)(\mathbf{p}(i) - \mathbf{q}(i))^{2} \right)$$

$$\leq 2n^{2} \|\mathbf{p}\|_{2}^{2} + 4n^{3} \|\mathbf{p}\|_{2} \|\mathbf{p} - \mathbf{q}\|_{2}^{2}$$
(2.57)

where the second inequality just uses $\mathbf{p}(i) \leq ||\mathbf{p}||_{\infty} \leq ||\mathbf{p}||_{2}$. We are now ready to conclude:

• If $\|\mathbf{p} - \mathbf{q}\|_2 \leq \varepsilon$, then $\mathbb{E}_{\mathbf{p}}[Z] \leq n^2 \varepsilon^2$ and by Markov's inequality

$$\Pr\left[Z \ge 3n^2 \varepsilon^2\right] \le \frac{\mathbb{E}_{\mathbf{p}}[Z]}{3n^2 \varepsilon^2} \le \frac{1}{3}$$

(we did not even need Chebyshev!).

• If $\|\mathbf{p} - \mathbf{q}\|_2 \ge 2\varepsilon$, then $\mathbb{E}_{\mathbf{p}}[Z] \ge 4n^2\varepsilon^2$ and by Chebyshev's

$$\Pr\left[Z < 3n^2 \varepsilon^2\right] \le \frac{16 \operatorname{Var}_{\mathbf{p}}[Z]}{\mathbb{E}_{\mathbf{p}}[Z]^2} \le \frac{32 \|\mathbf{p}\|_2^2}{n^2 \|\mathbf{p} - \mathbf{q}\|_2^4} + \frac{64 \|\mathbf{p}\|_2}{n \|\mathbf{p} - \mathbf{q}\|_2^2}$$

(this time we did). This is where our earlier observation will come in handy: indeed, it guarantees that $\|\mathbf{p}\|_2 \leq 2\max(\|\mathbf{q}\|_2, \|\mathbf{p} - \mathbf{q}\|_2)$, and so

$$\begin{split} \Pr\Big[Z < 3n^2 \varepsilon^2\Big] & \leq 64 \max \left(\frac{\|\mathbf{q}\|_2^2}{16n^2 \varepsilon^4}, \frac{1}{4n^2 \varepsilon^2}\right) + 128 \max \left(\frac{\|\mathbf{q}\|_2}{4n \varepsilon^2}, \frac{1}{2n \varepsilon}\right) \\ & = \max \left(\frac{4\|\mathbf{q}\|_2^2}{n^2 \varepsilon^4} + \frac{32\|\mathbf{q}\|_2}{n \varepsilon^2}, \frac{16}{n^2 \varepsilon^2} + \frac{64}{n \varepsilon}\right) \end{split}$$

which can be seen to be at most 1/3 for $n \ge \max(100 \|\mathbf{q}\|_2/\varepsilon^2, 200/\varepsilon)$.

This concludes the proof of the theorem.

To see how useful Theorem 2.22 is, let us apply it to uniformity testing to rederive the optimal sample complexity. After all, as mentioned above, in the particular case $\mathbf{q} = \mathbf{u}_k$ the statistic Z of Theorem 2.22 is simply a rescaling of Z_3 from Algorithm 3, and its analysis is early similar (relying on Claim 2.2) – so it should not be surprising that the guarantees they provide match.

Applying Theorem 2.22 with $\|\mathbf{q}\|_2 = 1/\sqrt{k}$ and distance parameter $\varepsilon' := \varepsilon/\sqrt{k}$ (from the relation TV/ℓ_2 , Eq. (2.1)), we can distinguish between $\|\mathbf{p} - \mathbf{u}_k\|_2 \leq \varepsilon/\sqrt{k}$ and $\|\mathbf{p} - \mathbf{u}_k\|_2 \geq 2\varepsilon/\sqrt{k}$ with

$$n \simeq \max\left(\frac{1/\sqrt{k}}{\varepsilon'^2}, \frac{1}{\varepsilon'}\right) \simeq \frac{\sqrt{k}}{\varepsilon^2}$$

samples, as promised. This then implies a uniformity testing algorithm with a small extra guarantee in the "close" case: distinguishing between $\|\mathbf{p} - \mathbf{u}_k\|_2 \leq \varepsilon / \sqrt{k}$ and $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \geq \varepsilon$. More generally, Theorem 2.22 will allow us to obtain this type of sample complexity for identity testing as long as the reference \mathbf{q} has ℓ_2 norm $\|\mathbf{q}\|_2 \lesssim 1/\sqrt{k}$.

From arbitrary \mathbf{q} to small ℓ_2 norm. Since the theorem we just established (Theorem 2.22) is particularly well suited to reference distributions \mathbf{q} which are "close to uniform" in the sense of having very small ℓ_2 norm, it would be very convenient if we could assume this "without loss of generality" of every reference \mathbf{q} . Of course, this is not true – but, as we will see, there is a neat transformation Φ which will essentially give us this, at nearly no cost.

Namely, define, for every $i \in [k]$, the value $k_i := \lfloor k\mathbf{q}(i) \rfloor + 1$; and, accordingly,

$$k' := \sum_{i=1}^{k} k_i \le \sum_{i=1}^{k} (k\mathbf{q}(i) + 1) = 2k.$$
 (2.58)

The tranformation $\Phi_{\mathbf{q}}$ will map a distribution $\mathbf{p} \in \Delta_k$ to a distribution $\Phi_{\mathbf{q}}(\mathbf{p}) \in \Delta_{k'}$ which, for each $i \in [k]$, has $k_i \geq 1$ elements with probability $\mathbf{p}(i)/k_i$:

$$\Phi_{\mathbf{q}}(\mathbf{p})(j) = \sum_{i=1}^{k} \frac{\mathbf{p}(i)}{k_i} \mathbb{1}\{j \in S_i\}, \qquad j \in [k']$$
 (2.59)

where $S_i := \{1 + \sum_{\ell=1}^{i-1} k_{\ell}, \dots, \sum_{\ell=1}^{i} k_{\ell} \}$ for all $i \in [k]$.

Example 2.1. If k = 2 and $\mathbf{q}(1) = 1/3$, $\mathbf{q}(2) = 2/3$, then $k_1 = 1$, $k_2 = 2$, k' = 3, and for any $\mathbf{p} \in \Delta_2$ we have $\Phi_{\mathbf{q}}(\mathbf{p}) \in \Delta_3$ with

$$\Phi_{\mathbf{q}}(\mathbf{p})(1) = \mathbf{p}(1), \quad \Phi_{\mathbf{q}}(\mathbf{p})(2) = \Phi_{\mathbf{q}}(\mathbf{p})(3) = \frac{\mathbf{p}(2)}{2},$$

and $S_1 = \{1\}, S_2 = \{2, 3\}.$

One advantage of the transformation $\Phi_{\mathbf{q}}$ described in Eq. (2.59) is its efficiency: knowing \mathbf{q} , one can compute all k_i in time linear in k. Moreover, given samples from any (unknown) distribution $\mathbf{p} \in \Delta_k$, one can easily simulate samples from $\Phi_{\mathbf{q}}(\mathbf{p})$ with the following randomized mapping $\Psi_{\mathbf{q}} \colon [k] \to [k']$:

77

 $\Psi_{\mathbf{q}}$: Given $i \in [k]$, return one of the k_i elements from S_i uniformly at random.

One can check that, if $x \sim \mathbf{p}$, then $\Psi_{\mathbf{q}}(x) \sim \Phi_{\mathbf{q}}(\mathbf{p})$. Thus, so far we have defined a pair of mappings $(\Phi_{\mathbf{q}}, \Psi_{\mathbf{q}})$, which depend on our reference distribution \mathbf{q} and allow us to go from distributions and samples over [k] to distributions and samples over a slightly larger domain [k']. What did we gain in doing so?

The next two lemmas will provide the answer, by showing that (1) the transformation $\Phi_{\mathbf{q}}$ preserves distances between distributions, and that (2) after applying $\Phi_{\mathbf{q}}$ to our reference distribution \mathbf{q} , the "new" reference distribution $\Phi_{\mathbf{q}}(\mathbf{q})$ has small ℓ_2 norm. Which is great, as these two properties are exactly what we need to apply the ℓ_2 tester from Theorem 2.22! Specifically, we have the following guarantees:

Lemma 2.23 (Distances are preserved). For any $\mathbf{p}_1, \mathbf{p}_2 \in \Delta_k$, we have

$$d_{\mathrm{TV}}(\Phi_{\mathbf{q}}(\mathbf{p}_1), \Phi_{\mathbf{q}}(\mathbf{p}_2)) = d_{\mathrm{TV}}(\mathbf{p}_1, \mathbf{p}_2) \,.$$

Proof. Unrolling the definitions, since $[k'] = \coprod_{i=1}^k S_i$ we have

$$2d_{\text{TV}}(\Phi_{\mathbf{q}}(\mathbf{p}_1), \Phi_{\mathbf{q}}(\mathbf{p}_2)) = \sum_{i=1}^{k} \sum_{j \in S_i} |\Phi_{\mathbf{q}}(\mathbf{p}_1)(j) - \Phi_{\mathbf{q}}(\mathbf{p}_2)(j)|$$

$$= \sum_{i=1}^{k} \sum_{j \in S_i} \frac{|\mathbf{p}_1(i) - \mathbf{p}_2(i)|}{k_i}$$

$$= \sum_{i=1}^{k} |\mathbf{p}_1(i) - \mathbf{p}_2(i)|$$

$$= 2d_{\text{TV}}(\mathbf{p}_1, \mathbf{p}_2),$$

where we used the fact that $k_i = |S_i|$ for all $i \in [k]$.

Lemma 2.24 ($\Phi_{\mathbf{q}}(\mathbf{q})$ is nice). We have

$$\left\|\Phi_{\mathbf{q}}(\mathbf{q})\right\|_2 \le \frac{\sqrt{2}}{\sqrt{k'}}.$$

Proof. This is again a game of unrolling:

$$\|\Phi_{\mathbf{q}}(\mathbf{q})\|_{2}^{2} = \sum_{i=1}^{k} \sum_{j \in S_{i}} \Phi_{\mathbf{q}}(\mathbf{q})(j)^{2} = \sum_{i=1}^{k} \sum_{j \in S_{i}} \frac{\mathbf{q}(i)^{2}}{k_{i}^{2}} = \sum_{i=1}^{k} \frac{\mathbf{q}(i)^{2}}{k_{i}} \leq \sum_{i=1}^{k} \frac{\mathbf{q}(i)}{k} = \frac{1}{k}$$

where the inequality follows from $k_i = 1 + \lfloor k\mathbf{q}(i) \rfloor \geq k\mathbf{q}(i)$. To conclude, recall from Eq. (2.58) that $k' \leq 2k$.

With these two lemmas, we can combine the transformation $(\Phi_{\mathbf{q}}, \Psi_{\mathbf{q}})$ with the ℓ_2 testing algorithm from the previous subsection to get an efficient identity testing algorithm in total variation distance:

Algorithm 12 Identity Tester via ℓ_2 Reduction

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and explicit description of $\mathbf{q} \in \Delta_k$. \triangleright Assumes Poissonization

- 1: Compute the values k_1, \ldots, k_k, k' , the corresponding disjoint sets S_1, \ldots, S_k , and the distribution $\Phi_{\mathbf{q}}(\mathbf{q})$, as in Eq. (2.59).
- 2: Convert samples $x_1, \ldots, x_n \in \mathcal{X}$ to samples $x'_1, \ldots, x'_n \in \mathcal{X}' := [k']$, where $x'_i \leftarrow \Psi_{\mathbf{q}}(x_i)$. \triangleright Requires randomness: $\Psi_{\mathbf{q}}$ is randomized.
- 3: Set $\varepsilon' := \varepsilon/\sqrt{k'}$, and invoke the robust ℓ_2 tester (Algorithm 11) on $x'_1, \ldots, x'_n, \varepsilon'$, and reference $\Phi_{\mathbf{q}}(\mathbf{q})$.
- 4: **if** Algorithm 11 returns 0 **then return** 0

⊳ Not q

5: else return 1

▶ Equal to **q**

Theorem 2.25. The ℓ_2 -reduction-based tester (Algorithm 12) is a (time-efficient) testing algorithm for identity with sample complexity $n(k, \varepsilon, 1/3) = O(\sqrt{k/\varepsilon^2})$ in the Poissonized setting.²⁰

Proof. The proof follows quite readily from what we have done already: given $N \sim \operatorname{Poisson}(n)$ i.i.d. samples from some \mathbf{p} , we get, after passing them through $\Psi_{\mathbf{q}}$, a set of N i.i.d. samples from $\Psi_{\mathbf{q}}(\mathbf{p})$. Of course, if $\mathbf{p} = \mathbf{q}$ then $\Phi_{\mathbf{q}}(\mathbf{p}) = \Phi_{\mathbf{q}}(\mathbf{q})$; but also, by Lemma 2.23, if $d_{\mathrm{TV}}(\mathbf{p}, \mathbf{q}) > \varepsilon$ then $d_{\mathrm{TV}}(\Phi_{\mathbf{q}}(\mathbf{p}), \Phi_{\mathbf{q}}(\mathbf{q})) > \varepsilon$, and so

$$\left\|\Phi_{\mathbf{q}}(\mathbf{p}) - \Phi_{\mathbf{q}}(\mathbf{q})\right\|_2 > 2\varepsilon / \sqrt{k'} = 2\varepsilon'$$
.

By Theorem 2.22, Algorithm 11 will then distinguish between our two cases $\|\Phi_{\mathbf{q}}(\mathbf{p}) - \Phi_{\mathbf{q}}(\mathbf{q})\|_2 = 0 \le \varepsilon'$ and $\|\Phi_{\mathbf{q}}(\mathbf{p}) - \Phi_{\mathbf{q}}(\mathbf{q})\|_2 \ge 2\varepsilon'$ with probability at least 2/3, as long as

$$n \geq 100 \max \left(\left\| \Phi_{\mathbf{q}}(\mathbf{q}) \right\|_2 / \varepsilon'^2, 2 / \varepsilon' \right) = 100 \max \left(k' \left\| \Phi_{\mathbf{q}}(\mathbf{q}) \right\|_2 / \varepsilon^2, \sqrt{k'} / \varepsilon \right).$$

²⁰We do not state its exact time complexity here, as this would involve annoying considerations on how to efficiently represent $\Phi_{\mathbf{q}}, \Psi_{\mathbf{q}}$, and the complexity of sampling from the randomized function $\Psi_{\mathbf{q}}$.

Since $k' \|\Phi_{\mathbf{q}}(\mathbf{q})\|_2 \leq \sqrt{2k'}$ by Lemma 2.24 and $k' \leq 2k$ by Eq. (2.58), the right-hand-side is at most $200\sqrt{k}/\varepsilon^2$, and so having $n \geq 200\sqrt{k}/\varepsilon^2$ suffices.

To conclude this subsection, it is worth highlighting the connection between this ℓ_2 reduction and the χ^2 -based tester from Theorem 2.21. Indeed, while we focused on the fact that the tranformation $\Phi_{\bf q}$ preserved the total variation distance between distributions (Lemma 2.23), one can also see it as converting χ^2 divergences (to $\bf q$) to ℓ_2 distances: $\chi^2(\bf p || \bf q) \approx k \|\Phi_{\bf q}(\bf p) - \Phi_{\bf q}(\bf q)\|_2^2$. Thus, in this sense, Algorithm 10 can be seen as an "unrolled" version of Algorithm 12, where the mapping $\Phi_{\bf q}$ is explicitly expanded into Algorithm 11, converting ℓ_2 testing of $\Phi_{\bf q}(\bf p), \Phi_{\bf q}(\bf q)$ into χ^2 testing of $\bf p, q$.

E: See Exercise 2.14.

2.2.3 Reduction to uniformity testing

So far, we have seen in Section 2.2.1 a transformation which brought the reference distribution \mathbf{q} (and, actually, all distributions) a little closer to uniform, while preserving the total variation distances up to a factor 2 (Eq. (2.52)); and, in Section 2.2.2, a different transformation which brought down the ℓ_2 norm of the reference \mathbf{q} to "near-uniform levels" while exactly preserving the total variation distances. In this section, we will describe a third mapping, which transforms the reference \mathbf{q} to the actual uniform distribution (on a slightly larger domain), while nearly preserving total variation distances.

The advantage of this particular transformation is that it provides an actual reduction, in the formal computer science sense, from identity testing to uniformity testing. After applying this mapping, one can use any uniformity testing algorithm (e.g., any of those we saw in Section 2.1) as a blackbox, without any modification, to perform the testing. As an algorithm designer, or (in the case of the author of this survey) a somewhat lazy person, this is particularly satisfying.

This transformation will be done in three steps: 21 (1) a mapping

²¹Recall that $\Phi_{\mathbf{q}}$ denotes a mapping between probability distributions, while $\Psi_{\mathbf{q}}$ is the corresponding (randomized) mapping between samples: for any distribution \mathbf{p} , applying $\Psi_{\mathbf{q}}$ on a sample $x \sim \mathbf{p}$ yields a sample $\Psi_{\mathbf{q}}(x)$ distributed according to $\Phi_{\mathbf{q}}(\mathbf{p})$. Importantly, computing $\Psi_{\mathbf{q}}(x)$ only requires knowledge of \mathbf{q} , and *not* of \mathbf{p} .

 $(\Phi_{\mathbf{q}}^{(1)}, \Psi_{\mathbf{q}}^{(1)})$ which transforms any "well-behaved" reference distribution \mathbf{q} over [k+1] into the uniform distribution over some larger domain [k'], and exactly preserves total variation distances; (2) a mapping $(\Phi_{\mathbf{q}}^{(2)}, \Psi_{\mathbf{q}}^{(2)})$, which transforms any "not-too-badly behaved" reference \mathbf{q} over [k] into a "well-behaved" (in the sense of (1)) distribution over [k+1], roughly preserving the distances; and, finally, a simple mapping $(\Phi_{\mathbf{q}}^{(3)}, \Psi_{\mathbf{q}}^{(3)})$ which transforms an arbitrary reference distribution \mathbf{q} over [k] into a "not-too-badly behaved" (in the sense of (2)) distribution over the same domain, also roughly preserving the distances. Combining the three will give us the overall mappings

$$\Phi_{\mathbf{q}} := \Phi_{\mathbf{q}}^{(1)} \circ \Phi_{\mathbf{q}}^{(2)} \circ \Phi_{\mathbf{q}}^{(3)} : \Delta_{k} \to \Delta_{k} \to \Delta_{k+1} \to \Delta_{k'}
\Psi_{\mathbf{q}} := \Psi_{\mathbf{q}}^{(1)} \circ \Psi_{\mathbf{q}}^{(2)} \circ \Psi_{\mathbf{q}}^{(3)} : [k] \to [k] \to [k+1] \to [k']$$
(2.60)

such that $\Phi_{\mathbf{q}}(\mathbf{q}) = \mathbf{u}_{k'}$, and $d_{\mathrm{TV}}(\Phi_{\mathbf{q}}(\mathbf{p}_1), \Phi_{\mathbf{q}}(\mathbf{p}_2)) \approx d_{\mathrm{TV}}(\mathbf{p}_1, \mathbf{p}_2)$ for all $\mathbf{p}_1, \mathbf{p}_2 \in \Delta_k$. Moreover, we will also have $k' \times k$: the domain size does not increase by more than a constant factor.

From well-behaved to uniform. In Section 2.2.2, the main idea was to associate each element $i \in [k]$ with a set of $k_i = 1 + \lfloor k\mathbf{q}(i) \rfloor$ elements S_i , so that upon sampling i we would return an element of S_i uniformly at random. This reduction has almost all properties we wanted, except that it did not map \mathbf{q} to the uniform distribution on $[k'] = \coprod_i S_i$: only to something with small ℓ_2 norm. The reason for this boils down to our choice of k_i , and, more specifically looking at Eq. (2.59), to the sad fact that

$$\frac{\mathbf{q}(i)}{1+|\mathbf{k}\mathbf{q}(i)|} \neq \frac{1}{k}$$

but instead the LHS is some quantity which depends on i. The deeper reason for this being that $k\mathbf{q}(i)$ is not in general a positive integer (why would it be?), as otherwise we would just set $k_i := k\mathbf{q}(i)$ instead, and end up with $\mathbf{q}(i)/k_i = 1/k$ for all i. But we can dream, and this motivates the following definition of "well-behaved" distribution \mathbf{q} :

Definition 2.4 (Grained distribution). Given a parameter $\gamma > 0$, we say that a probability distribution $\mathbf{q} \in \Delta_k$ is γ -grained if every probability is a positive multiple of γ , that is, if $\mathbf{q}(i) \in \gamma \mathbb{N}$ for every $i \in [k]$.

Now, suppose our reference distribution \mathbf{q} over $[k]^{22}$ is (1/k')-grained, for some suitable integer $k' \geq k$ (we will take k' = 4k or so). Then, we can, for every $i \in [k]$, set

$$k_i := k' \mathbf{q}(i) \in \mathbb{N} \tag{2.61}$$

and then define accordingly the disjoint sets S_1, \ldots, S_k and the mappings $\Phi_{\mathbf{q}}^{(1)}, \Psi_{\mathbf{q}}^{(1)}$ as in Section 2.2.2, with this different choice of k_i 's:

$$\Phi_{\mathbf{q}}^{(1)}(\mathbf{p})(j) = \sum_{i=1}^{k} \frac{\mathbf{p}(i)}{k_i} \mathbb{1}\{j \in S_i\} = \frac{1}{k'} \sum_{i=1}^{k} \frac{\mathbf{p}(i)}{\mathbf{q}(i)} \mathbb{1}\{j \in S_i\}, \qquad j \in [k']$$
(2.62)

(note that $k' = \sum_{i=1}^{k} k' \mathbf{q}(i) = \sum_{i=1}^{k} k_i$). We directly have the analogue of Lemma 2.23, with the same proof: for any $\mathbf{p}_1, \mathbf{p}_2 \in \Delta_k$,

$$d_{TV}(\Phi_{\mathbf{q}}^{(1)}(\mathbf{p}_1), \Phi_{\mathbf{q}}^{(1)}(\mathbf{p}_2)) = d_{TV}(\mathbf{p}_1, \mathbf{p}_2).$$
 (2.63)

(The interested reader can also verify that the χ^2 divergences to \mathbf{q} are now exactly mapped to ℓ_2 distances, not just approximately as in Exercise 2.14). However, we now have a much stronger version of Lemma 2.26: $\Phi_{\mathbf{q}}(\mathbf{q})$ is not just "nice," it is *the* uniform distribution!

E: Check it!

Lemma 2.26 ($\Phi_{\mathbf{q}}(\mathbf{q})$ is uniform). We have $\Phi_{\mathbf{q}}(\mathbf{q}) = \mathbf{u}_{k'}$ (and, in particular, $\|\Phi_{\mathbf{q}}(\mathbf{q})\|_2 = 1/\sqrt{k'}$).

This follows readily from Eq. (2.62), which implies that $\Phi_{\mathbf{q}}^{(1)}(\mathbf{q})(j) = 1/k'$ for all $j \in [k']$. This completes the first step of our reduction; in the next two, we will see how to go from an arbitrary reference distribution \mathbf{q} to one which satisfies our very strong assumptions – that is, one which is (1/k')-grained for some reasonable parameter k'.

From not-too-badly behaved to well-behaved. Let us assume we have a reference distribution $\mathbf{q} \in \Delta_k$, and we want to "convert" it to a (1/k')-grained distribution. A very natural idea is to simply shave off the extra probability mass from each point, to make each probability be a multiple of 1/k'; and then to somehow move all that remaining

²²As discussed above, we will later apply this to a reference distribution over [k+1]; but for ease of notation here we keep k as the domain size parameter.

probability mass on a single new element, say k + 1. That is, for every $i \in [k]$, we go from $\mathbf{q}(i)$ to

 $\frac{\lfloor k' \mathbf{q}(i) \rfloor}{k'}$

and put probability $1 - \sum_{i=1}^{k} \lfloor k' \mathbf{q}(i) \rfloor / k'$ (which is also a multiple of 1/k') on k+1. Rewriting the above $\frac{\lfloor k' \mathbf{q}(i) \rfloor}{k' \mathbf{q}(i)} \cdot \mathbf{q}(i)$, this leads to defining $\Phi_{\mathbf{q}}^{(2)} \in \Delta_{k+1}$ as

$$\Phi_{\mathbf{q}}^{(2)}(\mathbf{p})(j) := \begin{cases} \frac{\lfloor k' \mathbf{q}(j) \rfloor}{k' \mathbf{q}(j)} \cdot \mathbf{p}(j) & j \in [k] \\ 1 - \sum_{i=1}^{k} \frac{\lfloor k' \mathbf{q}(i) \rfloor}{k' \mathbf{q}(i)} \mathbf{p}(i) & j = k+1 \end{cases}$$
(2.64)

for $\mathbf{p} \in \Delta_k$. This almost works: the issue is that some of the $\mathbf{q}(j)$'s could be arbitrarily small, and for those $\Phi_{\mathbf{q}}^{(2)}(\mathbf{q})(j)=0$: this violates the requirement that a grained distribution only takes positive values (no 0), and also could lead to some other issues about distances not being well preserved: for instance, one could have some distributions $\mathbf{p}_1, \mathbf{p}_2$ such that $\mathrm{d}_{\mathrm{TV}}(\Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_1), \Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_2))=0$, yet $\mathrm{d}_{\mathrm{TV}}(\mathbf{p}_1, \mathbf{p}_2)=1$!

E: Can you see why?

This will not happen, fortunately, if our reference distribution \mathbf{q} is not too badly behaved: say, if it puts probability mass at least 1/(2k) on every $i \in [k]$. Then, as long as $k' \geq 4k$, we will have $k'\mathbf{q}(i) \geq 2$ for all i, and so

$$\min_{i \in [k]} \frac{\lfloor k' \mathbf{q}(i) \rfloor}{k' \mathbf{q}(i)} \ge \frac{1}{2}.$$

This will be enough to approximately preserve total variation distances: since then, for any two $\mathbf{p}_1, \mathbf{p}_2 \in \Delta_k$, we will have

$$d_{TV}(\Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_{1}), \Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_{2})) = \frac{1}{2} \sum_{i=1}^{k+1} \left| \Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_{1})(i) - \Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_{2})(i) \right|$$

$$\geq \frac{1}{2} \sum_{i=1}^{k} \left| \Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_{1})(i) - \Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_{2})(i) \right|$$

$$= \frac{1}{2} \sum_{i=1}^{k} \frac{\left| k' \mathbf{q}(i) \right|}{k' \mathbf{q}(i)} |\mathbf{p}_{1}(i) - \mathbf{p}_{2}(i)| \quad \text{(Eq. (2.64))}$$

$$\geq \frac{1}{4} \sum_{i=1}^{k} |\mathbf{p}_{1}(i) - \mathbf{p}_{2}(i)| \quad \text{(good behavior)}$$

$$= \frac{1}{2} d_{TV}(\mathbf{p}_{1}, \mathbf{p}_{2}) \quad (2.65)$$

83

(Of course, as usual, $d_{TV}(\Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_1), \Phi_{\mathbf{q}}^{(2)}(\mathbf{p}_2)) \leq d_{TV}(\mathbf{p}_1, \mathbf{p}_2)$ by the data processing inequality (Fact 1.1)). So, under this "not-too-badly behaved" assumption on the reference distribution \mathbf{q} and for $k' \geq 4k$, our transformation $\Phi_{\mathbf{q}}^{(2)}$ from Eq. (2.64) (1) maps \mathbf{q} to an (1/k')-grained distribution $\Phi_{\mathbf{q}}^{(2)}(\mathbf{q})$ over [k+1], and (2) preserves total variation distance between distributions up to a factor 2.

To conclude, it only remains to point out that $\Psi_{\mathbf{q}}^{(2)}$ can be easily implemented as follows:

 $\Psi_{\mathbf{q}}^{(2)}$: Given $i \in [k]$, return i with probability $\frac{\lfloor k' \mathbf{q}(j) \rfloor}{k' \mathbf{q}(j)}$ and k+1 otherwise.

The last step is thus to show how to go from a completely arbitrary reference distribution \mathbf{q} to a "not-too-badly behaved" one. Fortunately, this last step will not be too hard: we are almost there!

From arbitrary to not-too-badly behaved. This last mapping is the simplest: recall that its goal is to ensure that the reference distribution \mathbf{q} puts at least probability 1/(2k) on each element of the domain, while still roughly preserving the total variation distance between distributions. But we have seen this one already: this is just the "mixture trick" of Eq. (2.52), where the mappings are actually independent of \mathbf{q} :

$$\Phi_{\mathbf{q}}^{(3)}(\mathbf{p}) = \frac{1}{2}\mathbf{p} + \frac{1}{2}\mathbf{u}_k$$

and $\Psi_{\mathbf{q}}^{(3)}$ is just the randomized function which returns a uniformly random value with probability 1/2:

 $\Psi_{\mathbf{q}}^{(3)}$: Given $i \in [k]$, return i with probability $\frac{1}{2}$ and a uniformly random element of [k] otherwise.

We then have, as in Section 2.2.1, that $d_{\text{TV}}\left(\Phi_{\mathbf{q}}^{(3)}(\mathbf{p}_1), \Phi_{\mathbf{q}}^{(3)}(\mathbf{p}_2)\right) \geq \frac{1}{2}d_{\text{TV}}(\mathbf{p}_1, \mathbf{p}_2)$ for all $\mathbf{p}_1, \mathbf{p}_2$, and that $\min_i \Phi_{\mathbf{q}}^{(3)}(\mathbf{q})(i) \geq 1/(2k)$.

Putting it together. Combining the 3 mappings described and analyzed above for k' := 4k, we get the following:

Theorem 2.27. Given an arbitrary reference distribution $\mathbf{q} \in \Delta_k$, the pair $(\Phi_{\mathbf{q}}, \Psi_{\mathbf{q}})$ defined in Eq. (2.60) maps distributions and samples over

- [k] to distributions and samples over [4k], and satisfies (1) $\Phi_{\mathbf{q}}(\mathbf{q}) = \mathbf{u}_{4k}$;
- (2) for every $\mathbf{p}_1, \mathbf{p}_2 \in \Delta_k$,

$$d_{TV}(\Phi_{\mathbf{q}}(\mathbf{p}_1), \Phi_{\mathbf{q}}(\mathbf{p}_2)) \geq \frac{1}{4} d_{TV}(\mathbf{p}_1, \mathbf{p}_2).$$

As a direct consequence, we get the following general theorem:

Theorem 2.28. The uniformity-reduction-based tester (Algorithm 13) is a testing algorithm for identity with sample complexity $n(k, \varepsilon, 1/3) = n_U(4k, \varepsilon/4, 1/3)$, where n_U denotes the sample complexity of the chosen uniformity testing algorithm. In particular, by choosing any optimal uniformity testing algorithm, one obtains $n(k, \varepsilon, 1/3) = O(\sqrt{k/\varepsilon^2})$.

Algorithm 13 Identity Tester via Uniformity Reduction

Require: Multiset of n samples $x_1, \ldots, x_n \in \mathcal{X}$, parameters $\varepsilon \in (0, 1]$ and explicit description of $\mathbf{q} \in \Delta_k$. \triangleright Assumes Poissonization if the uniformity testing algorithm used in Line 3 does.

- 1: Compute the mappings $\Psi_{\mathbf{q}}$ as in Eq. (2.60), for $k' \leftarrow 4k$
- 2: Convert samples $x_1, \ldots, x_n \in \mathcal{X}$ to samples $x'_1, \ldots, x'_n \in \mathcal{X}' := [k']$, where $x'_i \leftarrow \Psi_{\mathbf{q}}(x_i)$. \triangleright Requires randomness: $\Psi_{\mathbf{q}}$ is randomized.
- 3: Invoke any uniformity tester over [k'] on x'_1, \ldots, x'_n , with distance parameter $\varepsilon/4$.
- 4: if the uniformity tester returns 0 then return 0 \triangleright Not q

To close this subsection, let us discuss some aspects of this reduction. The first is its generality: since the reduction only requires knowledge of the reference distribution **q** and defers the testing to any uniformity testing of one's choosing, one can apply it in other settings than the "standard" one where samples are fully available: for instance, in some of the constrained measurements settings discussed in Chapter 3. This means that in these cases as well, one can focus on getting a good uniformity testing algorithm, and then see it extended immediately to identity testing "for free"!

The second is its cost. The above argument transforms the identity testing question with parameters (k, ε) to uniformity testing with

parameters $(4k, \varepsilon/4)$. Since the cost of the latter scales as \sqrt{k}/ε^2 , the "blowup" in sample complexity between uniformity and identity testing is $\sqrt{4}/(1/4)^2 = 32$. This might seem a lot! Yet, we did not make here any attempt at optimizing the parameters: one can check (see Exercise 2.15) that choosing better parameters reduces this blowup to "only" a factor ≈ 12.2 .

2.2.4 Bonus: bucketing

We would be remiss to end this section without at least mentioning a simple, yet powerful technique which, too, almost reduces identity to uniformity testing. This technique, bucketing, was one of the first proposed; and while it does not quite lead to the optimal sample complexity, it almost gets us there. We hereafter provide only an outline of the main ideas and argument; the reader is encouraged to fill in the details.

Given our reference distribution $\mathbf{q} \in \Delta_k$ and a parameter $\boldsymbol{\varepsilon} \in (0, 1]$, the starting point is to partition the domain into a logarithmic number of "buckets" $B_1 \dots, B_L \subseteq [k]$ such that \mathbf{q} is roughly constant (up to a multiplicative factor) on each B_i :

$$B_j := \left\{ i \in [k] : \frac{1}{2^j} < \mathbf{q}(i) \le \frac{1}{2^{j-1}} \right\}, \quad j \in [L]$$
 (2.66)

where $L := \log \frac{2k}{\epsilon}$. We also define the "leftover bucket"

$$B_0 := \left\{ i \in [k] : \mathbf{q}(i) \le \frac{1}{2^L} \right\}$$

which by our choice of L only contains elements with probability at most $\varepsilon/(2k)$ under \mathbf{q} , and so $\mathbf{q}(B_0) \leq \varepsilon/2$. Thus, this leftover bucket will not contribute too much to the distance as long as $\mathbf{p}(B_0) \leq 3\varepsilon/4$ as well, which can be checked separately with $O(1/\varepsilon)$ samples from \mathbf{p} (cf. Fact 2.2). We can therfore effectively ignore it in the rest of the analysis.

One nice property of this bucketing is that, for every $j \in [L]$, we have

$$\frac{|B_j|}{2^j} \le \mathbf{q}(B_j) = \sum_{i \in B_j} \mathbf{q}(i) \le \frac{|B_j|}{2^{j-1}}.$$
 (2.67)

and $|B_j| < 2^j$. In particular, denoting by \mathbf{q}_j the conditional distribution of \mathbf{q} on B_j , it is a simple matter to check that

$$\|\mathbf{q}_j\|_2^2 = \sum_{i \in B_j} \frac{\mathbf{q}(i)^2}{\mathbf{q}(B_j)^2} \le \frac{4}{|B_j|^2}.$$
 (2.68)

so, great! Each of the conditional distributions \mathbf{q}_j has very small ℓ_2 norm, and we should be able to use the ℓ_2 testing algorithm of Theorem 2.22.

Moreover, for any $\mathbf{p} \in \Delta_k$, we have

$$2d_{\text{TV}}(\mathbf{p}, \mathbf{q}) = \sum_{j=0}^{L} \sum_{i \in B_{j}} |\mathbf{p}(i) - \mathbf{q}(j)|$$

$$\leq \sum_{j=0}^{L} \sum_{i \in B_{j}} \mathbf{q}(B_{j}) \left(\left| \frac{\mathbf{p}(i)}{\mathbf{q}(B_{j})} - \frac{\mathbf{p}(i)}{\mathbf{p}(B_{j})} \right| + \left| \frac{\mathbf{p}(i)}{\mathbf{p}(B_{j})} - \frac{\mathbf{q}(i)}{\mathbf{q}(B_{j})} \right| \right)$$

$$= \sum_{j=0}^{L} \sum_{i \in B_{j}} \mathbf{p}(i) \left| \frac{\mathbf{q}(B_{j})}{\mathbf{p}(B_{j})} - 1 \right| + \sum_{j=0}^{L} \mathbf{q}(B_{j}) \sum_{i \in B_{j}} |\mathbf{p}_{j}(i) - \mathbf{q}_{j}(i)|$$

$$= \sum_{j=0}^{L} |\mathbf{p}(B_{j}) - \mathbf{q}(B_{j})| + 2 \sum_{j=0}^{L} \mathbf{q}(B_{j}) d_{\text{TV}}(\mathbf{p}_{j}, \mathbf{q}_{j}),$$

where \mathbf{p}_j is as before the conditional distribution of \mathbf{p} on B_j . Letting $\bar{\Phi}_{\mathbf{q}}(\mathbf{p}), \bar{\Phi}_{\mathbf{q}}(\mathbf{q})$ denote the "flattened" distributions on [L] induced by \mathbf{p}, \mathbf{q} , what this does is relating the total variation distance between \mathbf{p} and \mathbf{q} to the weighted distance between conditionals and distance between "flattenings:"

$$d_{\text{TV}}(\mathbf{p}, \mathbf{q}) \le d_{\text{TV}}(\bar{\Phi}_{\mathbf{q}}(\mathbf{p}), \bar{\Phi}_{\mathbf{q}}(\mathbf{q})) + \sum_{j=0}^{L} \mathbf{q}(B_j) d_{\text{TV}}(\mathbf{p}_j, \mathbf{q}_j).$$
(2.69)

What does it tell us? Define $H(\mathbf{q}) := \{ j \in [L] : \mathbf{q}(B_j) \ge \varepsilon/(4L) \}$. On the one hand, if $\mathbf{p} = \mathbf{q}$ then $d_{\text{TV}}(\bar{\Phi}_{\mathbf{q}}(\mathbf{p}), \bar{\Phi}_{\mathbf{q}}(\mathbf{q})) = 0$, and $d_{\text{TV}}(\mathbf{p}_j, \mathbf{q}_j) = 0$ for all $j \in [L]$. On the other hand, if $d_{\text{TV}}(\mathbf{p}, \mathbf{q}) > \varepsilon$ then

$$\frac{\varepsilon}{4} \le d_{\text{TV}}(\bar{\Phi}_{\mathbf{q}}(\mathbf{p}), \bar{\Phi}_{\mathbf{q}}(\mathbf{q})) + \sum_{j \in H(\mathbf{q})} \mathbf{q}(B_j) d_{\text{TV}}(\mathbf{p}_j, \mathbf{q}_j). \tag{2.70}$$

where we used that $\mathbf{q}(B_0) \leq \varepsilon/2$ and $\sum_{j \notin H(\mathbf{q})} \mathbf{q}(B_j) < L \cdot \varepsilon/(4L) = \varepsilon/4$. So if \mathbf{p} is ε -far from \mathbf{q} , then one of the two terms of the RHS must

be at least $\varepsilon/8$; even more, in the latter case this implies that at least one of the $|H(\mathbf{q})|$ terms of the sum $d_{\text{TV}}(\mathbf{p}_j, \mathbf{q}_j)$ must be at least $\varepsilon_j := \varepsilon/(8L\mathbf{q}(B_j))!$ If $\mathbf{p} = \mathbf{q}$, however, all $|H(\mathbf{q})| + 1$ terms are 0. So this leads to the following natural testing idea, which we will refer to as the "bucketing-based tester":

E: Can you see why?

- test $d_{TV}(\bar{\Phi}_{\mathbf{q}}(\mathbf{p}), \bar{\Phi}_{\mathbf{q}}(\mathbf{q})) = 0$ vs. $d_{TV}(\bar{\Phi}_{\mathbf{q}}(\mathbf{p}), \bar{\Phi}_{\mathbf{q}}(\mathbf{q})) > \varepsilon/8$: Now, this is itself another identity testing task, so it seems like we are back to square one! But not quite: since the domain of the distributions is only logarithmic, we can afford to do this with the baseline approach (Lemma 1.2) by learning the distribution $\bar{\Phi}_{\mathbf{q}}(\mathbf{p})$. This only costs us $O(L/\varepsilon^2) = O(\log(k/\varepsilon)/\varepsilon^2)$) samples.
- test, for every $j \in H(\mathbf{q})$, $d_{\text{TV}}(\mathbf{p}_j, \mathbf{q}_j) = 0$ vs. $d_{\text{TV}}(\mathbf{p}_j, \mathbf{q}_j) > \varepsilon_j$: another identity testing task, but now where the reference \mathbf{q}_j has small ℓ_2 norm (by Eq. (2.68)). of course, to do this, we need to get enough samples from \mathbf{p}_j , *i.e.*, enough samples from \mathbf{p} must fall in each B_j . What is "enough"? Since $\|\mathbf{q}_j\|_2 \approx 1/\sqrt{B_j}$, using Theorem 2.22 as in the proof of Theorem 2.25 we obtain that

$$\max\left(\frac{|B_j|\|\mathbf{q}_j\|_2}{\boldsymbol{\varepsilon}_j^2}, \frac{1}{\boldsymbol{\varepsilon}_j}\right) \asymp \frac{\sqrt{|B_j|}}{\boldsymbol{\varepsilon}_j^2} \asymp \frac{|B_j|^{5/2}L^2}{\boldsymbol{\varepsilon}^2 2^{2j}}$$

samples (up to constants) are enough (where we relied on Eq. (2.67)). Moreover, since we restrict ourselves to $j \in H(\mathbf{q})$, if $\mathbf{p} = \mathbf{q}$ we will get on expectation at least

$$\mathbf{n}\mathbf{q}(B_j) \ge \frac{\mathbf{n}|B_j|}{2^j}$$

and, since we restrict ourselves to $j \in H(\mathbf{q})$ where $n\mathbf{q}(B_j) \ge n/(4L)$, when $\mathbf{p} = \mathbf{q}$ the actual number of samples observed in B_j will be at least half of this with overwhelming probability by a Chernoff bound. If we do not get that many samples for some j, then we immediately reject: this is sufficient evidence that $\mathbf{p} \ne \mathbf{q}$. So, based on the above, all we need for this to work is to have

E: Check it!

$$\frac{n|B_j|}{2^j} \gg \frac{|B_j|^{5/2}L^2}{c^{2}2^{2j}}$$
,

that is,

$$n \gg \frac{|B_j|^{3/2} L^2}{\varepsilon^2 2^j} \,.$$

Recalling first that $|B_j| < 2^j$ and then that $|B_j| \le k$ for all $j \in [L]$, the RHS is at most $\sqrt{k}L^2/\varepsilon^2 = \tilde{O}(\sqrt{k}/\varepsilon^2)$, as desired.

Some final bookkeeping: we lose an extra factor $\log L = \log \log(k/\varepsilon)$ for a union bound over all L+1 tests performed, by actually running each of them with error probability $\delta := 1/(3(L+1))$. Overall, modulo to the missing details "left to the reader," we established the following:

Theorem 2.29. The bucketing-based tester is testing algorithm for identity with sample complexity $n(k, \varepsilon, 1/3) = \tilde{O}(\sqrt{k}/\varepsilon^2)$.

2.2.5 Discussion

This concludes this section on identity testing: to summarize, we saw 4 different approaches. The first, in Section 2.2.1, defines and analyzes directly a χ^2 -type test statistic, which generalizes the one we had in the case of uniformity testing (Section 2.1.4). The second, in Section 2.2.2, takes a different route, by first obtaining a simple " ℓ_2 tester" (which implies, by the usual ℓ_2/ℓ_1 relation, a total variation one) which works well whenever the distribution q has small ℓ_2 norm; and then providing a reduction to this case, via a randomized transformation of both the input distribution \mathbf{q} and the samples (from the unknown \mathbf{p}). The third, which we covered in Section 2.2.3, goes even further, and *only* provides a reduction via a sequence of such ranodmized transformations: showing that one can leverage any uniformity testing algorithm as a blackbox to solve the more general identity testing problem. As for the fourth, it relies on partitioning the domain into a small number of buckets, on each of which the reference distribution is not uniform – but close enough.

All four approaches have their pros and cons: the first might be more efficient in practice, while the second can generalize to other problems than identity testing (namely, any testing problem where bringing down the ℓ_2 norm of some probability distribution helps). The third, besides being intellectually satisfying, naturally extends to other settings such

: That's you!

as the "constrained measurements" ones discussed in Chapter 3. Finally, the fourth, albeit not optimal, not only introduces the very useful bucketing technique, but is often "good enough" to get nearly optimal results. Of course, more broadly, we may be tempted to say that the more techniques at our disposal, the better; and that four is greater than one.

2.3 Historical notes

From the computer science perspective, distribution testing begun with the influential work of Goldreich et al. (1998), who define it as a variant of the general paradigm of property testing. Goldreich and Ron (2000) then implicitly relied on uniformity testing (or, more specifically, uniformity testing with respect to ℓ_2 distance) to test whether the endpoints of short random walks of a graph were uniformly distributed. To do so, they introduced and analyzed the collision-based tester, although their analysis did not lead to the optimal sample complexity, but instead to a quartic dependence on ε . A systematic study of distribution testing was then initiated in Batu et al. (2000), focusing on closeness (two-sample) testing; identity testing was first considered in Batu et al. (2001). These papers, and many which followed, introduced several important and versatile algorithmic ideas, such as the bucketing technique from Section 2.2.4, and reductions between distribution testing questions. However, it is only with the work of Paninski (2008) that the tight bound of $\Theta(\sqrt{\epsilon^2})$ for uniformity testing was established through both an information-theoretic lower bound and a matching upper bound via the unique-elements tester we covered in Section 2.1.3.²³ Interestingly, the optimality of first uniformity tester proposed, the collision-based tester of Goldreich and Ron (2000), was only established nearly two decades later, by Diakonikolas et al. (2019b).

The right dependence on the error probability δ was shown to be $\sqrt{\log(1/\delta)}$ (cf. Eq. (2.50)), instead of the "obvious" logarithmic dependence, by Huang and Meyn (2013) (for a restricted range of parameters) and Diakonikolas et al. (2018) (for the general case). The

²³With some caveats: the upper bound is restricted to the regime $\varepsilon \gtrsim 1/k^{1/4}$, and its original analysis had a flaw, discussed in p. 96.

latter established this result by analyzing the empirical-distance tester (Section 2.1.5), showing as a byproduct that it *did*, contrary to the common belief, not only work, but in fact achieve the optimal sample complexity.

The bipartite collision tester (Section 2.1.7) was proposed by Diakonikolas et al. (2019a) in the context of uniformity testing in the so-called streaming setting (as it allows to trade the memory required to store a small set of samples for the size of the second set of samples, which arrive one by one as a "stream"). The empirical-subset-weighing tester of Section 2.1.8 can be found in Acharya et al. (2020b), where it was developed to establish a separation between adaptive and non-adaptive testing algorithms under some type of measurement constraints (where the algorithms only have partical access to the samples; a setting we will discuss at length in Chapter 3). Finally, the binary hashing technique of Section 2.1.6 is due to Acharya et al. (2020c), and the general form of the domain compression lemma (Theorem 2.12) as well as some of its generalizations can be found in Acharya et al. (2020c), Acharya et al. (2020a), and Amin et al. (2020).

The optimal bound for *identity* testing was then established separately by Chan *et al.* (2014) (where it is implicit, from their result on ℓ_2 testing), (Acharya *et al.*, 2015), which analyzes the χ^2 -based tester of Section 2.2.1 (as a key routine to obtain a flurry of testing results, for various properties), and Valiant and Valiant (2017), which we will discuss in more detail in a moment. The ℓ_2 -based reduction for identity testing covered in Section 2.2.2 is due to Diakonikolas and Kane (2016), where it is used as the main building block for a general testing framework. The identity-to-uniformity reduction detailed in Section 2.2.2 was then obtained by Goldreich (2016). We slightly departed from the original presentation of these results, in order to provide a more unified view.

Going back to Valiant and Valiant (2017), their work actually introduces and addresses a refinement of identity testing, which they term "instance-optimal identity testing" and which statisticians may be more familiar with under the name local minimax testing. That is, they parameterize the sample complexity of the testing problem in terms

2.4. Exercises 91

of the distance parameter ε and a suitable functional of the reference distribution \mathbf{q} , instead of the domain size k. Namely, they provide upper and lower bounds (which match in many cases) of a quantity related to the 2/3 "norm" $\|\mathbf{q}\|_{2/3}$ of the reference distribution \mathbf{q} . Note that, when maximizing this quantity over all possible reference distributions $\mathbf{q} \in \Delta_k$, we retrieve the usual \sqrt{k} dependence; yet, this may be significantly smaller, for particular choices of \mathbf{q} , leading to better sample complexity for identity testing to \mathbf{q} in those cases. For more on this, we refer the reader to Blais *et al.* (2017) (where a discussion and alternative characterization as a function of \mathbf{q} are provided) and Diakonikolas and Kane (2016), as well as the excellent survey of Balakrishnan and Wasserman (2018a).

To conclude, the case of uniformity (or, more broadly, identity testing) for continuous densities has been considered by Ingster (see Ingster (1997), and references within), under smoothness assumptions on the unknown density. As mentioned in Chapter 1, such assumptions are necessary to obtain non-trivial bounds: as an example, for Lipschitz densities over [0,1] (corresponding to the Sobolev space $W^{1,\infty}$), Ingster's results establish a tight sample complexity of $\Theta\left(1/\varepsilon^{5/2}\right)$, attained by a χ^2 test. He further showed that in the adaptive setting (as discussed on p.10), the sample complexity scales as $\Theta\left(\log\log(1/(\varepsilon(\mathbf{p})\vee\varepsilon))/(\varepsilon(\mathbf{p})\vee\varepsilon)^{5/2}\right)$.

Acknowledgment. Exercise 2.7 (and thus the failure of stochastic dominance for the bipartite collision tester) is due to Moritz Schauer, who provided a counterexample to stochastic dominance in this case (Schauer, 2021).

2.4 Exercises

Exercise 2.1. Prove the monotonicity of ℓ_p norms: if $1 \le r \le s \le \infty$, then $||x||_s \le ||x||_r$ for every $x \in \mathbb{R}^n$.

Exercise 2.2. Prove Eq. (2.14): that is, the "unique elements" statistic Z_2 from Section 2.1.3 has expectation $\mathbb{E}_{\mathbf{p}}[Z_2] = \sum_{i \in \mathcal{X}} \mathbf{p}(i) (1 - \mathbf{p}(i))^{n-1}$.

Exercise 2.3. Establish Claim 2.2, using (or computing) the expression for the first 4 moments of a Poisson(λ) random variable.

Exercise 2.4. Establish the upper bound part of Fact 2.1, by proving *via* an Hoeffding or Chernoff bound that the empirical estimator achieves the stated sample complexity. (The lower bound can be shown by considering the case $\alpha = 1/2$, but we have not seen in this chapter the information-theoretic tools to establish it: this will be in Chapter 4.)

Exercise 2.5. Establish the upper bound part of Fact 2.2, by proving via a Chernoff bound that appropriately thresholding the empirical estimator achieves the stated sample complexity. (For the lower bound, same remark as for Exercise 2.4.)

Exercise 2.6. Follow the analysis of Theorem 2.1 to derive, for the bipartite collisions tester, the guarantee Eq. (2.38) from the variance bound Eq. (2.37).

Exercise 2.7. Show that, in contrast to what we did in the empirical-distance tester case (Section 2.1.5), one cannot invoke stochastic dominance in the analysis of the bipartite collision tester to obtain the wishful variance bound Eq. (2.39) instead of Eq. (2.41). Specifically, show that it fails even for k = 2: if $M \sim \text{Bin}(n_1, p)$, $N \sim \text{Bin}(n_2, p)$ and $M' \sim \text{Bin}(n_1, q)$, $N' \sim \text{Bin}(n_2, q)$ (all independent) with $1/2 \le q , it is$ *not*always true that

$$MN + (n_1 - M)(n_2 - N) \succeq M'N' + (n_1 - M')(n_2 - N')$$

Hint: consider the case $n_1 = 1$, and $\Pr[MN + (n_1 - M)(n_2 - N) \ge 1]$ as a function of p.

Exercise 2.8. It is known that $x \leq y$ if, and only if, x = Ay for some doubly stochastic matrix A (Arnold, 1987, Theorem 2.1). Check that the averaging from Lemma 2.7 indeed corresponds to multiplying the pmf \mathbf{p} (seen as a vector) by such a matrix.

Exercise 2.9 (*). Generalize Lemma 2.13 to relax the condition $n_3
leq k^{2/3}$ to $n_3
leq k^{(s-1)/s}$, for any fixed (constant) integer s
ge 3, by considering s-collisions instead of 3-collisions in Algorithm 8. How does the ℓ_{∞} guarantee bound in (ii) change with s?

Exercise 2.10 (\star). Recall that our χ^2 -based statistic (Eq. (2.19)) was analyzed under the Poissonized sampling model, which led us to define

2.4. Exercises 93

it with a $-N_i$ term in the numerator. We will show that this term is necessary: that is, under the Poissonization assumption, consider the "simpler" statistic

$$Z_3' := \sum_{i=1}^k \frac{(N_i - n/k)^2}{n/k}$$
.

Show that its expectation is $nk\|\mathbf{p} - \mathbf{u}_k\|_2^2 + k$ (so the expectation gap remains the same), but that the variance now contains an extra term $\frac{k^2}{n}$. What sample complexity does this yield?

Exercise 2.11 (*). Combine the doubling search technique discussed in Section 1.1 with the sample complexity of uniformity testing given in Eq. (2.50) to prove the following. There is an adaptive uniformity testing algorithm which, on input k and $\varepsilon \in (0,1]$, and access to samples from an unknown distribution $\mathbf{p} \in \Delta_k$:

- correctly distinguishes between (1) $\mathbf{p} = \mathbf{u}_k$ and (2) $\varepsilon(\mathbf{p}) := d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) > \varepsilon$, with probability at least 2/3;
- always takes at most

$$O\left(\frac{1}{\epsilon^2}\left(\sqrt{k\log\log\frac{1}{\epsilon}} + \log\log\frac{1}{\epsilon}\right)\right)$$

samples; but also

• if $\varepsilon(\mathbf{p}) > \varepsilon$, takes at most

$$O\left(\frac{1}{\varepsilon(\mathbf{p})^2}\left(\sqrt{k\log\log\frac{1}{\varepsilon(\mathbf{p})}} + \log\log\frac{1}{\varepsilon(\mathbf{p})}\right)\right)$$

samples, with probability at least 2/3; and, finally,

• show that this constant-probability bound on the number of samples also holds in expectation.

That is, in the "far" case this algorithm never does much worse (up to a log log factor) than an ideal algorithm provided with the exact value $\varepsilon(\mathbf{p})$ and asked to distinguish between $\mathbf{p} = \mathbf{u}_k$ and $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = \varepsilon(\mathbf{p})$.

Exercise 2.12. Given two probability distributions \mathbf{p}, \mathbf{q} , an integer $n \geq 1$, and a parameter $\alpha \in [0,1]$, consider the following two sampling processes:

- Sample $N \sim \text{Poisson}(n)$, and draw N i.i.d. samples from the mixture $(1 \alpha)\mathbf{p} + \alpha\mathbf{q}$.
- Sample $N \sim \text{Poisson}(n)$, and draw N i.i.d. samples from \mathbf{p} . Then, for each $1 \leq i \leq N$, independently sample $B_i \sim \text{Bern}(\alpha)$: if $B_i = 1$, replace the *i*-th sample by a new (and independent from everything else) sample drawn from \mathbf{q} .

Show that these two processes result in the same distribution.

Exercise 2.13 (*). Establish the analogue of Theorem 2.22 for the two-distribution case (when both \mathbf{p} , \mathbf{q} are unknown, and you are given n i.i.d. samples from each). Specifically, consider the statistic $Z' = \sum_{i=1}^{k} ((X_i - Y_i)^2 - X_i - Y_i)$ for which you will have to establish the following counterpart of Claim 2.2:

Claim 2.3. If $X \sim \operatorname{Poisson}(\lambda)$ and $Y \sim \operatorname{Poisson}(\mu)$ are independent, then $\mathbb{E}\left[(X-Y)^2 - X - Y\right] = (\lambda - \mu)^2$ and $\mathbb{E}\left[((X-Y)^2 - X - Y)^2\right] = (\lambda - \mu)^4 + 2(\lambda + \mu)^2 + 4(\lambda + \mu)(\lambda - \mu)^2$.

Show that the sample complexity is $O(\max(\|\mathbf{p}\|_2, \|\mathbf{q}\|_2)/\varepsilon^2)$. Try to establish the (incomparable) bound $O(\min(\|\mathbf{p}\|_2, \|\mathbf{q}\|_2)/\varepsilon^2 + 1/\varepsilon)$.

Exercise 2.14. Show that the transformation Φ from Section 2.2.2 (Eq. (2.59)) "maps χ^2 divergence to ℓ_2 distance" in the following, approximate way: for any $\mathbf{p}, \mathbf{q} \in \Delta_k$,

$$\|\Phi_{\mathbf{q}}(\mathbf{p}) - \Phi_{\mathbf{q}}(\mathbf{q})\|_{2}^{2} = \sum_{i \in \mathcal{X}} \frac{(\mathbf{p}(i) - \mathbf{q}(i))^{2}}{1 + \lfloor k\mathbf{q}(i) \rfloor}.$$

Conclude that, assuming $\min_i \mathbf{q}(i) \ge 1/(2k)$ (as we could in Section 2.2.1 after using the "mixture trick" of Eq. (2.52)),

$$\frac{1}{2}\chi^2(\mathbf{p} \mid\mid \mathbf{q}) \leq \frac{k}{\|\Phi_{\mathbf{q}}(\mathbf{p}) - \Phi_{\mathbf{q}}(\mathbf{q})\|_2^2} \leq \chi^2(\mathbf{p} \mid\mid \mathbf{q})$$

for every $\mathbf{p} \in \Delta_k$.

Exercise 2.15 (***). Generalize the transformation Φ from Section 2.2.3 in two ways: first, by replacing the mixture $\Phi_{\mathbf{q}}^{(3)}(\mathbf{p}) = \frac{1}{2}\mathbf{p} + \frac{1}{2}\mathbf{u}_k$ by $\alpha \mathbf{p} + (1-\alpha)\mathbf{u}_k$, where $\alpha \in (0,1)$. Second, by replacing the choice k' = 4k in $\Phi^{(2)}(\mathbf{p})$ by $k' = \beta k$, for some integer β such that $\beta(1-\alpha) \geq 1$.

1. By tracking down the various restrictions on α, β and their use across $\Phi^{(1)}$, $\Phi^{(2)}$, and $\Phi^{(3)}$, show that doing so now maps identity testing with parameters (k, ε) to uniformity testing with parameters

 $\left(\beta k, \alpha \left(1 - \frac{1}{\beta(1 - \alpha)}\right) \varepsilon\right)$

- 2. Check that setting $(\alpha, \beta) = (1/2, 4)$ as in Section 2.2.3 recovers Theorem 2.28, and the blowup factor of 32 discussed at the end of the section.
- 3. Recalling that the sample complexity scales as \sqrt{k}/ε^2 , optimize over (α, β) to find the optimal choice of parameters, and prove that the resulting blowup is ≈ 12.2 .
- 4. What would be the optimal choice of (α, β) , and the corresponding blowup, in a setting where the sample complexity of uniformity testing scales as k/ε^2 instead of \sqrt{k}/ε^2 ? (This is not that farfetched: we will see in Section 3.2 an example of such a setting.)

2.5 Deferred proofs

We here provide the omitted proofs from the chapter. The first, from Section 2.1.3, is due to Nazarov (2021).

Lemma 2.30 (Lemma 2.3, restated). Fix $m \ge 1$ and $k \in \mathbb{N}$. For any $x_1, \ldots, x_k \ge 0$ such that $\sum_{i=1}^k x_i = 1$, we have

$$\frac{m\sum_{1\leq i< j\leq k} x_i x_j ((1-x_i-x_j)^{m-1} - (1-x_i)^m (1-x_j)^m)}{\sum_{i=1}^k x_i (1-(1-x_i)^m)} \leq 1$$

Proof. Define $(y_i)_{1 \leq i \leq k}$ by $y_i := 1 - (1 - x_i)^m$, and note that Bernoulli's inequality implies that $y_i \leq mx_i$ for all i. In particular, $\sum_{i=1}^k y_i \leq m$. Further, since $x_i + x_j \leq 1$ for all $i \neq j$, we have $0 \leq 1 - x_i - x_j \leq (1 - x_i)(1 - x_j)$, which implies $(1 - x_i - x_j)^{m-1} \leq (1 - x_i)^{m-1}(1 - x_j)^{m-1}$.

This lets us bound the numerator as

$$m \sum_{i < j} x_i x_j \Big((1 - x_i - x_j)^{m-1} - (1 - x_i)^m (1 - x_j)^m \Big)$$

$$= \frac{m}{2} \sum_{i \neq j} x_i x_j \Big((1 - x_i - x_j)^{m-1} - (1 - x_i)^m (1 - x_j)^m \Big)$$

$$\leq \frac{m}{2} \sum_{i \neq j} x_i x_j (1 - x_i)^{m-1} (1 - x_j)^{m-1} (1 - (1 - x_i)(1 - x_j))$$

$$\leq \frac{m}{2} \sum_{i,j} x_i x_j (1 - x_i)^{m-1} (1 - x_j)^{m-1} (x_i + x_j)$$

To relate this to the denominator, which can be rewritten as $\sum_{i=1}^{k} x_i y_i$, we rely on the following inequality: for every $x \in [0, 1]$

$$1 - (1 - x)^m = m \int_0^x (1 - u)^{m-1} dm \ge mx (1 - x)^{m-1}$$
and so $x_i (1 - x_i)^{m-1} \le \frac{1}{m} y_i$ for all i . It follows that
$$m \sum_{i < j} x_i x_j \Big((1 - x_i - x_j)^{m-1} - (1 - x_i)^m (1 - x_j)^m \Big)$$

$$\le \frac{1}{2m} \sum_{i,j} y_i y_j (x_i + x_j) = \frac{1}{m} \sum_{i=1}^k x_i y_i \sum_{j=1}^k y_j$$

$$\le \sum_{i=1}^k x_i y_i,$$

concluding the proof.

Note: The variance analysis from Paninski (2008). The proof of Theorem 2.4 presented in this survey departs from the original one from Paninski (2008). The argument analyzing the expectation gap (Lemma 2.2) is similar, although we tried to make it a little simpler and intuitive (which, admittedly, is very subjective). The main difference is in bounding the variance in the "far" case; indeed, while (Paninski, 2008) relies for this on the Efron–Stein inequality, the argument given is flawed, and the claimed variance bound does not follow.

Specifically, the proof of Paninski (2008, Lemma 2) claims the bound

$$\operatorname{Var}_{\mathbf{p}}[Z_2] \le n \sum_{i=1}^{k} p(i) (1 - (1 - \mathbf{p}(i))^{n-1})$$

which, if true, would imply (after renormalizing to match our notation)

$$\operatorname{Var}_{\mathbf{u}_k}[Z_2] \le \frac{1}{n} (1 - (1 - 1/k)^{n-1}) \underset{k \to \infty}{\sim} \frac{1}{k}$$

while the (exact) variance in the uniform case can be computed explicitly, and is asymptotically $\operatorname{Var}_{\mathbf{u}_k}[Z_2] \sim_{k \to \infty} \frac{2}{k}$. This shows that the former upper bound cannot hold as stated. The issue arises in the first step, when bounding the quantity $\frac{1}{2} \sum_{t=1}^{n} \mathbb{E}\left[(S-S^{(t)})^2\right]$ after applying the Efron–Stein inequality, as $(S-S^{(t)})^2$ can take values 0, 1,or 4 (not just 0 or 1), and some events leading to these have been overlooked. It is not clear to us how to fix their proof, which is why we chose to provide an alternative argument to bound the variance. Interestingly, the analysis from Paninski (2008, Lemma 2) can be used (partially) to bound the variance of a different statistic, Z_4 , and we did so to derive Eq. (2.31) in Section 2.1.5.

A

Some good inequalities

We only mention here a few good bounds that we found to be useful, and sufficient in many or most settings. There are, of course, many others, and many refinements or variants of the bounds we present here. We refer the reader to, e.g., Vershynin (2018, Chapter 2) or Boucheron $et\ al.$ (2013) for a much more comprehensive and insightful coverage.

We start with the mother of all concentration inequalities, Markov's inequality:

Theorem A.1 (Markov's inequality). Let X be a non-negative random variable with $\mathbb{E}[X] < \infty$. For any t > 0, we have

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}$$

Applying this to $(X - \mathbb{E}[X])^2$, we get

Theorem A.2 (Chebyshev's inequality). Let X be a random variable with $\mathbb{E}[X^2] < \infty$. For any t > 0, we have

$$\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

By applying Markov's inequality to the moment-generating function (MGF) of $\sum_{i=1}^{n} X_i$ in various ways, one can also obtain the following statements:

Theorem A.3 (Hoeffding bound). Let X_1, \ldots, X_n be independent random variables, where X_i takes values in $[a_i, b_i]$. For any $t \geq 0$, we have

$$\Pr\left[\sum_{i=1}^{n} X_i > \sum_{i=1}^{n} \mathbb{E}[X_i] + t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$
(A.1)

$$\Pr\left[\sum_{i=1}^{n} X_{i} < \sum_{i=1}^{n} \mathbb{E}[X_{i}] - t\right] \le \exp\left(-\frac{2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right)$$
(A.2)

Corollary A.4 (Hoeffding bound). Let X_1, \ldots, X_n be i.i.d. random variables taking value in [0,1], with mean μ . For any $\gamma \in (0,1]$ we have

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\gamma\right]\leq2\exp\left(-2\gamma^{2}n\right)\tag{A.3}$$

Theorem A.5 (Chernoff bound). Let X_1, \ldots, X_n be independent random variables taking value in [0,1], and let $P := \sum_{i=1}^n \mathbb{E}[X_i]$ For any $\gamma \in (0,1]$ we have

$$\Pr\left[\sum_{i=1}^{n} X_i > (1+\gamma)P\right] < \exp\left(-\gamma^2 P/3\right) \tag{A.4}$$

$$\Pr\left[\sum_{i=1}^{n} X_i < (1-\gamma)P\right] < \exp\left(-\gamma^2 P/2\right) \tag{A.5}$$

In particular, if X_1, \ldots, X_n are i.i.d. with mean μ , then for any $\gamma \in (0, 1]$ we have

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\gamma\mu\right]\leq2\exp\left(-\gamma^{2}n\mu/3\right)\tag{A.6}$$

As a rule of thumb, the "multiplicative" (Chernoff) from Theorem A.5 is preferable to the "additive" bound (Hoeffding) from Corollary A.4 whenever $\mu := P/n \ll 1$. In case one only has an upper or lower bound on the quantity $P = \sum_{i=1}^{n} \mathbb{E}[X_i]$, the following version of the Chernoff bound can come in handy:

Theorem A.6 (Chernoff bound (upper and lower bound version)). In the setting of Theorem A.5, suppose that $P_L \leq P \leq P_H$. Then for any

 $\gamma \in (0,1]$, we have

$$\Pr\left[\sum_{i=1}^{n} X_i > (1+\gamma)P_H\right] < \exp\left(-\gamma^2 P_H/3\right) \tag{A.7}$$

$$\Pr\left[\sum_{i=1}^{n} X_i < (1-\gamma)P_L\right] < \exp\left(-\gamma^2 P_L/2\right) \tag{A.8}$$

Theorem A.7 (Bernstein's inequality). Let X_1, \ldots, X_n be independent random variables taking values in [-a, a], and such that $\mathbb{E}[X_i^2] \leq v_i$ for all i. Then, for every $t \geq 0$, we have

$$\Pr\left[\left|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mathbb{E}[X_i]\right| \ge t\right] \le \exp\left(-\frac{t^2}{2(\sum_{i=1}^{n} v_i + \frac{a}{3}t)}\right).$$

In particular, if X_1, \ldots, X_n are i.i.d. with mean μ and $\mathbb{E}[X_1^2] \leq v$, then for any $\gamma \geq 0$ we have

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \gamma\right] \leq \exp\left(-\frac{\gamma^{2}n}{2(v+\frac{a}{3}\gamma)}\right).$$

Observe that this tail bound exhibits both behaviours: it decays in a subgaussian fashion for small γ , before switching to a subexponential tail bound for large γ .

We conclude this section by providing a very convenient bound, specifically for Poisson random variables, which shares the same "twotail" behaviour:

Theorem A.8 (Poisson concentration). Let X be a Poisson(λ) random variable, where $\lambda > 0$. Then, for any t > 0, we have

$$\Pr[X \ge \lambda + t] \le e^{-\frac{t^2}{2\lambda}\psi(\frac{t}{\lambda})} \le e^{-\frac{t^2}{2(\lambda + t)}}$$
(A.9)

and, for any $0 < t < \lambda$,

$$\Pr[X \le \lambda - t] \le e^{-\frac{t^2}{2\lambda}\psi(-\frac{t}{\lambda})} \le e^{-\frac{t^2}{2(\lambda + t)}}, \tag{A.10}$$

where $\psi(u) := 2 \frac{(1+u)\ln(1+u)-u}{u^2}$ for $u \ge -1$. In particular, for any $t \ge 0$,

$$\Pr[|X - \lambda| \ge t] \le 2e^{-\frac{t^2}{2(\lambda + t)}}.$$
(A.11)

References

- Acharya, J., C. L. Canonne, Y. Han, Z. Sun, and H. Tyagi. (2020a). "Domain Compression and its Application to Randomness-Optimal Distributed Goodness-of-Fit". In: *Proceedings of Thirty Third Conference on Learning Theory*. Ed. by J. Abernethy and S. Agarwal. Vol. 125. *Proceedings of Machine Learning Research*. PMLR. 3–40. URL: http://proceedings.mlr.press/v125/acharya20a.html.
- Acharya, J., C. L. Canonne, C. Freitag, Z. Sun, and H. Tyagi. (2021). "Inference Under Information Constraints III: Local Privacy Constraints". *IEEE J. Sel. Areas Inf. Theory.* 2(1): 253–267.
- Acharya, J., C. L. Canonne, Y. Liu, Z. Sun, and H. Tyagi. (2020b). "Interactive Inference under Information Constraints". *CoRR*. abs/2007.10976.
- Acharya, J., C. L. Canonne, and H. Tyagi. (2020c). "Inference under information constraints II: Communication constraints and shared randomness". *IEEE Trans. Inform. Theory.* 66(12): 7856–7877. ISSN: 0018-9448. DOI: 10.1109/TIT.2020.3028439. URL: https://doi.org/10.1109/TIT.2020.3028439.
- Acharya, J., C. Daskalakis, and G. C. Kamath. (2015). "Optimal Testing for Properties of Distributions". In: Advances in Neural Information Processing Systems 28. Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett, and R. Garnett. Curran Associates, Inc. 3577–3598.

Acharya, J., Z. Sun, and H. Zhang. (2018). "Differentially Private Testing of Identity and Closeness of Discrete Distributions". In: *NeurIPS*. 6879–6891.

- Aliakbarpour, M., I. Diakonikolas, and R. Rubinfeld. (2018). "Differentially Private Identity and Equivalence Testing of Discrete Distributions". In: *ICML*. Vol. 80. *Proceedings of Machine Learning Research*. PMLR. 169–178.
- Amin, K., M. Joseph, and J. Mao. (2020). "Pan-Private Uniformity Testing". In: *Proceedings of Thirty Third Conference on Learning Theory*. Ed. by J. Abernethy and S. Agarwal. Vol. 125. *Proceedings of Machine Learning Research*. PMLR. 183–218. URL: http://proceedings.mlr.press/v125/amin20a.html.
- Arnold, B. C. (1987). Majorization and the Lorenz order: a brief introduction. Vol. 43. Lecture Notes in Statistics. Springer-Verlag, Berlin. vi+122. ISBN: 3-540-96592-0. DOI: 10.1007/978-1-4615-7379-1. URL: https://doi.org/10.1007/978-1-4615-7379-1.
- Balakrishnan, S. and L. Wasserman. (2018a). "Hypothesis testing for high-dimensional multinomials: A selective review". *The Annals of Applied Statistics*. 12(2): 727–749. ISSN: 1932-6157. DOI: 10.1214/18-AOAS1155SF. URL: https://doi.org/10.1214/18-AOAS1155SF.
- Balakrishnan, S. and L. Wasserman. (2018b). "Hypothesis testing for high-dimensional multinomials: a selective review". *Ann. Appl. Stat.* 12(2): 727–749. ISSN: 1932-6157. DOI: 10.1214/18-AOAS1155SF. URL: https://doi.org/10.1214/18-AOAS1155SF.
- Batu, T. and C. L. Canonne. (2017). "Generalized uniformity testing". In: 58th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2017. IEEE Computer Soc., Los Alamitos, CA. 880–889.
- Batu, T., E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. (2001). "Testing random variables for independence and identity". In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001. 442–451.
- Batu, T., L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. (2000). "Testing that distributions are close". In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000. 189–197.

Blais, E., C. L. Canonne, and T. Gur. (2017). "Distribution Testing Lower Bounds via Reductions from Communication Complexity". In: *Computational Complexity Conference*. Vol. 79. *LIPIcs*. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. 28:1–28:40.

- Boucheron, S., G. Lugosi, and P. Massart. (2013). *Concentration inequalities*. Oxford University Press, Oxford. x+481. ISBN: 978-0-19-953525-5. DOI: 10.1093/acprof:oso/9780199535255.001.0001. URL: https://doi.org/10.1093/acprof:oso/9780199535255.001.0001.
- Canonne, C. L. (2020a). "A short note on learning discrete distributions". arXiv: 2002.11457 [math.ST].
- Canonne, C. L. (2020b). A Survey on Distribution Testing: Your Data is Big. But is it Blue? Graduate Surveys. No. 9. Theory of Computing Library. 1–100. DOI: 10.4086/toc.gs.2020.009. URL: http://www.theoryofcomputing.org/library.html.
- Canonne, C. L., A. Jain, G. Kamath, and J. Li. (2021). "The Price of Tolerance in Distribution Testing". *CoRR*. abs/2106.13414. arXiv: 2106.13414. URL: https://arxiv.org/abs/2106.13414.
- Canonne, C. L., D. Ron, and R. A. Servedio. (2015). "Testing probability distributions using conditional samples". SIAM Journal on Computing. 44(3): 540–616. DOI: 10.1137/130945508.
- Canonne, C. L. and R. Rubinfeld. (2014). "Testing Probability Distributions Underlying Aggregated Data". In: *Proceedings of ICALP*. 283–295.
- Chakraborty, S., E. Fischer, Y. Goldhirsh, and A. Matsliah. (2013). "On the Power of Conditional Samples in Distribution Testing". In: *Proceedings of ITCS*. Berkeley, California, USA: ACM. 561–580. ISBN: 978-1-4503-1859-4. DOI: 10.1145/2422436.2422497.
- Chan, S., I. Diakonikolas, G. Valiant, and P. Valiant. (2014). "Optimal Algorithms for Testing Closeness of Discrete Distributions". In: *Proceedings of SODA*. 1193–1203.
- Diakonikolas, I., T. Gouleakis, D. M. Kane, J. Peebles, and E. Price. (2021). "Optimal testing of discrete distributions with high probability". In: STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by S. Khuller and V. V. Williams. ACM. 542-555. DOI: 10.1145/3406325.3450997. URL: https://doi.org/10.1145/3406325.3450997.

Diakonikolas, I., T. Gouleakis, D. M. Kane, and S. Rao. (2019a). "Communication and Memory Efficient Testing of Discrete Distributions".
In: COLT. Vol. 99. Proceedings of Machine Learning Research. PMLR. 1070–1106.

- Diakonikolas, I., T. Gouleakis, J. Peebles, and E. Price. (2018). "Sample-optimal identity testing with high probability". In: 45th International Colloquium on Automata, Languages, and Programming. Vol. 107. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern. Art. No. 41, 14.
- Diakonikolas, I., T. Gouleakis, J. Peebles, and E. Price. (2019b). "Collision-based testers are optimal for uniformity and closeness". *Chic. J. Theoret. Comput. Sci.*: Art. 1, 21. DOI: 10.4086/cjtcs.2019.001. URL: https://doi.org/10.4086/cjtcs.2019.001.
- Diakonikolas, I. and D. M. Kane. (2016). "A New Approach for Testing Properties of Discrete Distributions". In: 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2016. IEEE Computer Society.
- Diakonikolas, I., D. M. Kane, and V. Nikishkin. (2015). "Testing Identity of Structured Distributions". In: *Proceedings of SODA*.
- Dubhashi, D. and D. Ranjan. (1998). "Balls and bins: a study in negative dependence". Random Structures Algorithms. 13(2): 99–124. ISSN: 1042-9832. DOI: 10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0 CO;2-M. URL: https://doi.org/10.1002/(SICI)1098-2418(199809)13:2%3C99::AID-RSA1%3E3.0.CO;2-M.
- Dubhashi, D. P. and A. Panconesi. (2009). Concentration of measure for the analysis of randomized algorithms. Cambridge University Press, Cambridge. xvi+196. ISBN: 978-0-521-88427-3. DOI: 10.1017/CBO9780511581274. URL: https://doi.org/10.1017/CBO9780511581274.
- Dwork, C., F. McSherry, K. Nissim, and A. Smith. (2006). "Calibrating noise to sensitivity in private data analysis". In: *Theory of cryptog-raphy*. Vol. 3876. *Lecture Notes in Comput. Sci.* Springer, Berlin. 265–284.

Goldreich, O. (2016). "The uniform distribution is complete with respect to testing identity to a fixed distribution". *Electronic Colloquium on Computational Complexity (ECCC)*. 23: 15. URL: http://eccc.hpi-web.de/report/2016/015.

- Goldreich, O., S. Goldwasser, and D. Ron. (1998). "Property Testing and Its Connection to Learning and Approximation". *Journal of the ACM*. 45(4): 653–750.
- Goldreich, O. and D. Ron. (2000). "On Testing Expansion in Bounded-Degree Graphs". *Electronic Colloquium on Computational Complexity (ECCC)*. 7(20).
- Huang, D. and S. Meyn. (2013). "Generalized error exponents for small sample universal hypothesis testing". *IEEE Transactions on Information Theory*. 59(12): 8157–8181.
- Ingster, Y. I. (1986). "A minimax test of nonparametric hypotheses on the density of a distribution in L_p metrics". Teor. Veroyatnost. i Primenen. 31(2): 384–389. ISSN: 0040-361X.
- Ingster, Y. I. (1997). "Adaptive chi-square tests". Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 244(Veroyatn. i Stat. 2): 150–166, 333. ISSN: 0373-2703. DOI: 10.1007/BF02673632.
 URL: https://doi.org/10.1007/BF02673632.
- Kamath, G. and J. R. Ullman. (2020). "A Primer on Private Statistics". CoRR. abs/2005.00010. arXiv: 2005.00010. URL: https://arxiv.org/abs/2005.00010.
- Kamath, S., A. Orlitsky, D. Pichapati, and A. T. Suresh. (2015). "On Learning Distributions from their Samples". In: *Proceedings of the 28th Conference on Learning Theory, COLT 2015.* Vol. 40. *JMLR Workshop and Conference Proceedings.* JMLR.org. 1066–1100.
- Kasiviswanathan, S. P., H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. (2011). "What can we learn privately?" *SIAM J. Comput.* 40(3): 793–826. ISSN: 0097-5397.
- LeCam, L. (1973). "Convergence of estimates under dimensionality restrictions". *Ann. Statist.* 1: 38–53. ISSN: 0090-5364. URL: http://links.jstor.org/sici?sici=0090-5364(197301)1:1%3C38:COEUDR% 3E2.0.CO;2-V&origin=MSN.

References 111

Nazarov, F. (2021). "An inequality $k \frac{\sum_{i \neq j} x_i x_j ((1-x_i-x_j)^{k-1}-(1-x_i)^k (1-x_j)^k)}{\sum_{i=1}^n x_i (1-(1-x_i)^k)} \le 2$ ". Mathematics Stack Exchange. URL: https://math.stackexchange. com/q/4240571.

- Onak, K. and X. Sun. (2018). "Probability-Revealing Samples". In: International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. Ed. by A. J. Storkey and F. Pérez-Cruz. Vol. 84. Proceedings of Machine Learning Research. PMLR. 2018–2026. URL: http://proceedings.mlr.press/v84/onak18a.html.
- Paninski, L. (2008). "A Coincidence-Based Test for Uniformity Given Very Sparsely Sampled Discrete Data". *IEEE Transactions on Information Theory.* 54(10): 4750–4755.
- Parnas, M., D. Ron, and R. Rubinfeld. (2006). "Tolerant property testing and distance approximation". *Journal of Computer and System Sciences*. 72(6): 1012–1042.
- Pearson, K. (1900). "X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 50(302): 157–175. DOI: 10.1080/14786440009463897.
- Rubinfeld, R. and R. A. Servedio. (2009). "Testing monotone high-dimensional distributions". *Random Structures and Algorithms*. 34(1): 24–44. ISSN: 1042-9832. DOI: 10.1002/rsa.v34:1.
- Schauer, M. (2021). "Stochastic dominance between (products of) binomials". MathOverflow. eprint: https://mathoverflow.net/q/406217. URL: https://mathoverflow.net/q/406217.
- Suzuki, K., D. Tonien, K. Kurosawa, and K. Toyota. (2006). "Birthday paradox for multi-collisions". In: *Information security and cryptology—ICISC 2006*. Vol. 4296. *Lecture Notes in Comput. Sci.* Springer, Berlin. 29–40.
- Tsitsiklis, J. N. (1993). "Decentralized detection". In: Advances in Statistical Signal Processing. Ed. by H. V. Poor and J. B. Thomas. Vol. 2. JAI Press. 297–344.

112 References

Valiant, G. and P. Valiant. (2011). "Estimating the Unseen: An $n/\log n$ -sample Estimator for Entropy and Support Size, Shown Optimal via New CLTs". In: Symposium on Theory of Computing Conference, STOC'11. 685–694.

- Valiant, G. and P. Valiant. (2017). "An Automatic Inequality Prover and Instance Optimal Identity Testing". SIAM Journal on Computing. 46(1): 429–455.
- Vershynin, R. (2018). High-dimensional probability. Vol. 47. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge. xiv+284. ISBN: 978-1-108-41519-4. DOI: 10. 1017/9781108231596. URL: https://doi.org/10.1017/9781108231596.
- Wu, Y. and P. Yang. (2020). "Polynomial Methods in Statistical Inference: Theory and Practice". Found. Trends Commun. Inf. Theory. 17(4): 402-586. DOI: 10.1561/0100000095. URL: https://doi.org/10. 1561/0100000095.

