COMP90051 Statistical Machine Learning Semester 2, 2015

PGM (Bayesian Network)

Random Variables and Events

- Random variables: the (uncertain) state of the world
 - Denoted by capital letters
 - * R: Is it raining? (binary, discrete)
 - * S: What's the wind speed? (continuous)
- Atomic event: a complete assignment of domain values to random variables
 - * **R** = True
 - * S = 100 km/h
 - * Atomic events are mutually exclusive and exhaustive

Joint Probability Distributions

- If the world consists of only two Boolean variables A
 and B, then there are four distinct atomic events:
 - * $A = True \land B = True$
 - * $A = True \land B = False$
 - * $A = False \land B = True$
 - * $A = False \land B = False$
- A joint probability distribution is an assignment of probabilities to every possible atomic event

Atomic event	Р
$A = True \land B = True$	0.1
$A = True \land B = False$	0.2
$A = False \land B = True$	0.3
$A = False \land B = False$	0.4

Joint Probability Distributions

- What's the size of the table given n variables with d domain values?
- Notation:
 - * $P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$ refers to a single entry in the joint probability distribution table;

Atomic event	Р
$A = True \land B = True$	0.1

* $P(X_1, X_2, ..., X_n)$ refers to the entire joint probability distribution table;

Marginalisation

• From the joint distribution P(A, B) we can find the marginal distributions P(A) and P(B)

Atomic event	Р
$A = True \land B = True$	0.1
$A = True \land B = False$	0.2
$A = False \land B = True$	0.3
$A = False \land B = False$	0.4

Atomic event	Р
A = True	0.3
A = False	0.7

Atomic event	Р
B = True	0.4
B = False	0.6

Conditional Probability

Definition:

$$P(A \mid B) = \frac{P(A,B)}{P(B)}$$
 obtain the conditional probability with the joint

Obtain the joint with the conditional probability:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

The chain rule:

$$P(A_1,...,A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1,A_2)...P(A_n \mid A_1,...,A_{n-1})$$

$$= \prod_{i=1}^n P(A_i \mid A_1,...,A_{i-1})$$

Independence

- A and B are independent iff:
 - * $P(A \land B) = P(A) \cdot P(B)$, equivently:
 - * P(A|B) = P(A) and P(B|A) = P(B)
- mutually exclusive events ≠ independent events
 - * For mutually exclusive: $P(A \lor B) = P(A) + P(B)$
- A and B are conditionally independent given C iff:
 - * $P(A \wedge B|C) = P(A|C) \cdot P(B|C)$
 - * E.g. naïve Bayesian:
 - $P(Y|X1,X2,X3) \propto P(X1|Y) \cdot P(X2|Y) \cdot P(X3|Y) \cdot P(Y)$

PGM: Bayesian Network

- A type of graphical model
- A Bayesian network is a Directed Acyclic Graph (DAG)
- A Bayesian network states conditional independence relationships between random variables
- Compact specification of full joint distributions

Bayesian Network

Nodes: random variables

- Arcs: interactions
 - * An arrow from one variable to another indicates direct influence
 - * A node is conditionally independent of its nondescendants given its parent

Unconditionally/complete independent:

Naïve Bayes: conditionally independent

• How about:

- Are *X* and *Z* independent?
- . Is Z independent of X given Y?

- Are *X* and *Z* independent?
- . Is Z independent of X given Y?

Common cause

- Are *X* and *Z* independent?
- Are they conditionally independent given *Y*?

- Are *X* and *Z* independent?
- . Is Z independent of X given Y?

Common cause

- Are *X* and *Z* independent?
 - Are they conditionally independent given *Y*?

Common effect

- Are *X* and *Z* independent?
- Are they conditionally independent given *Y*?

- Are X and Z independent? No
- . Is Z independent of X given Y? Yes

$$P(Z|X,Y) = P(Z|Y)$$

Common cause

- Are X and Z independent? No
- Are they conditionally independent given *Y*?

Common effect

- Are X and Z independent? Yes
- Are they conditionally independent given Y?

No

PGM: Model Representation

- Directed acyclic graph
- Conditional probability table (parameters)

Compact: just 10 rows vs 31 rows in a full joint table!

PGM: Training

- Constructing the structure of the network
 - domain expert to decide the causal relations
 - * structure learning algorithms exist, but complicated

PGM: Training

- Constructing the structure of the network
 - domain expert to decide the causal relations
 - structure learning algorithms exist, but complicated
- Parameter learning (filling the table)

Training

Α	В	Е	J	M
Т	F	Т	F	Т
F	Т	F	F	F
Т	F	Т	F	Т

Using EM method if there are missing values

A more realistic Bayes Network: Car diagnosis

- Initial observation: car won't start
- Orange: "broken, so fix it" nodes
- Green: testable evidence
- Gray: "hidden variables" to ensure sparse structure, reduce parameteres

Source: UIUC Artificial Intelligence (CS440/ECE448)

Car insurance

Source: UIUC Artificial Intelligence (CS440/ECE448)

PGM: Probability Inference

- A general scenario:
 - Query variables: X
 - * Evidence (observed) variables and their values: E = e
 - * Unobserved variables: Y
- Inference problem: answer questions about the query variables given the evidence variables
- Detail about probability inference will be explained next week.
 - * Enumeration
 - * Elimination Algorithm

Example: Probability Inference

Compute the probability that there is an earthquake given both John and Mary call.

$$P(E = T \mid J = T, M = T) = ?$$

Example: Probability Inference

Alarm sounds (evidence) meltdown? (query)

Reference

- [1] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach 3rd Edition.
- [2] Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence 2nd Edition
- [3] Some slides were derived from UIUC Artificial Intelligence (CS440/ECE448)