CONTENTS 1

P8106 HW2

Shihui Zhu

Contents

College Dataset	2
(a) EDA	-
(b) Smoothing Spline Models	
(c) GAM	ļ

College Dataset

(a) EDA

Load data set from "College.csv"

```
college <- read_csv("College.csv")[-1] #remove college names</pre>
```

Partition the dataset into two parts: training data (80%) and test data (20%)

```
set.seed(1)
rowTrain <- createDataPartition(y = college$Outstate, p = 0.8, list = FALSE)</pre>
```

Perform exploratory data analysis using the training data:

From the scatter plots above we see that most of the predictors are not linearly associated with response variable (Outstate). For example, data points from plots of *Accept*, *Enroll*, *F.Undergrad*, *P.Undergrad*, *Personal* are clustered in the left side of the plot. This suggests that we may need to use nonlinear model to model our data.

(b) Smoothing Spline Models

Fit smoothing spline models using Terminal as the only predictor of Outstate for a range of degrees of freedom, as well as the degree of freedom obtained by generalized cross-validation, and plot the resulting fits. Describe the results obtained.

For a range of degrees of freedom

```
df ranges from (1, nx], nx the number of unique x values, in this case, number of unique Terminal values

Terminal.grid <- seq(from = min(unique(train.set$Terminal))-10, max(unique(train.set$Terminal))+10, by

fit.ss <- smooth.spline(train.set$Terminal, train.set$0utstate, lambda = 0.03, cv = FALSE, df = seq(from fit.ss$df
```

[1] 4.550054

The smoothing spline model fitted using a range of degrees of freedom is 4.10501 with $\lambda = 0.03$.

Now we can use cross-validation to select the degrees of freedom:

The smoothing spline model fitted using CV has degrees of freedom is 4.892078 with $\lambda = 0.0210592$.

(c) GAM

##

##

Fit GAM using all predictors

s(Expend) + s(Grad.Rate)

s(Personal) + s(PhD) + s(Terminal) + s(S.F.Ratio) + s(perc.alumni) +

```
## Parametric coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11779.07
                          74.68
                                   157.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
##
                   edf Ref.df
                                  F p-value
## s(Apps)
                 4.447 5.422 2.510 0.025598 *
## s(Accept)
                 4.186 5.134 4.088 0.001209 **
## s(Enroll)
                 1.000 1.000 21.136 6.27e-06 ***
                 1.000 1.000 5.263 0.022291 *
## s(Top10perc)
                 1.000 1.000 1.030 0.310786
## s(Top25perc)
## s(F.Undergrad) 5.507 6.536 2.078 0.063787 .
## s(P.Undergrad) 1.000 1.000 1.225 0.269120
## s(Room.Board) 2.472 3.143 14.600 < 2e-16 ***
## s(Books)
                 2.169 2.706 1.568 0.282200
## s(Personal)
                 1.000 1.000 4.639 0.031845 *
## s(PhD)
                 1.806 2.287 0.891 0.446154
                 1.000 1.000 1.164 0.281302
## s(Terminal)
## s(S.F.Ratio)
                 3.686 4.647 2.242 0.047853 *
## s(perc.alumni) 6.052 7.162 4.127 0.000229 ***
                 6.868 7.935 19.494 < 2e-16 ***
## s(Expend)
## s(Grad.Rate)
                 3.556 4.470 2.816 0.022655 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.819
                       Deviance explained = 83.7%
## GCV = 2.8242e+06 Scale est. = 2.5265e+06 n = 453
gam.full$df.residual
## [1] 405.2527
Plot results:
plot(gam.full)
```


The total degrees of freedom of the GAM model is 405.2527.