AstroVitals AI: Intelligent Monitoring for Astronaut Health in Space

Name: Ethan Phan

Track Chosen: Conceptual Design Track

Course: ITAI 2372

GitHub Repo: FP_GROUP01_Ethan_Phan_ITAI2372

1. Project Proposal

Title: AstroVitals AI — Real-Time Health Monitoring for Astronauts

Objective:

Develop a conceptual AI solution designed to monitor astronauts' health during space missions

in real-time. The system will predict and alert for potential health risks, enhance decision-making

support, and provide insights for remote medical teams.

Background & Motivation:

Long-duration missions (ISS, lunar bases, Mars) expose astronauts to health risks including

radiation, cardiovascular changes, and psychological stress. Traditional monitoring is passive and

depends on post-incident intervention. AI offers an opportunity for early detection and

continuous prediction, increasing astronaut safety.

Significance to NASA Missions:

• Enhances autonomy during long-duration, deep-space missions.

- Reduces reliance on Earth-based medical intervention.
- Prevents mission disruption through predictive alerts.

2. Solution Design

System Overview:

AstroVitals AI is a multi-layer system combining biomedical sensors, edge AI processing, and a deep learning model trained on Earth-based astronaut analog data.

Key Components:

- **Input Data:** ECG, EEG, blood pressure, heart rate, O2 levels, stress indicators (galvanic skin response), and facial emotion recognition via embedded cameras.
- Edge AI Module: Processes sensor data in real-time using compact neural networks on edge devices.
- Central Model: A hybrid system using:
 - LSTM networks for temporal pattern recognition (e.g., arrhythmia prediction)

- Anomaly detection models for rare medical events
- o Computer vision models for facial stress detection
- Dashboard Interface: Sends alerts and summaries to the crew and mission control

Data Flow Diagram:

 $(Sensor Inputs) \rightarrow [Edge Processing] \rightarrow [AI Health Engine] \rightarrow [Alerts + Visual Reports]$

Anticipated Use Cases:

- Early prediction of cardiac irregularities
- Stress level analysis during high workload periods
- Oxygen desaturation detection in EVA

Deployment Architecture (Conceptual):

- Raspberry Pi/NVIDIA Jetson for edge AI compute
- Secure local database synced with Earth-based system (when bandwidth allows)

3. Testing Plan

Simulation-Based Validation:

- Use Earth-based analog environments (e.g., HI-SEAS, HERA, NEEMO) datasets for modeling and testing.
- Compare predictions against medical logs from analog astronauts
- Use stress and cardiovascular datasets from astronauts pre/post-mission for retrospective testing

Evaluation Metrics:

- Precision/Recall for anomaly detection
- Time-to-alert for emergent health issues
- False positive/negative rates

AI Model Verification:

• Test LSTM model using time-series datasets of vital signs

4. Resources & Future Work
Resources:
• PhysioNet (MIT Health Data Repository)
NASA Life Sciences Data Archive
 PyTorch/TensorFlow for prototyping models
GitHub repo for documentation
Future Directions:
• Integrate with digital twin technology for astronauts
• Expand to include dietary intake + mental health journaling
• Enable autonomous recommendations (e.g., rest, oxygen boost)

• Validate facial emotion detection using NASA's Emotion Face Dataset

Ethical Considerations:

- Data privacy + informed consent for biometric analysis
- Avoid over-reliance on AI over human judgment