

Visual Processing Model in Toads (10')

Nghi Huynh

Rational (1')

- How are prey stimuli distinguished from non-prey stimuli?
- What are the visual features of prey?

Background (2'): The visual pathway of a toad

A simplified model for prey-predation in toad

Algorithm (3'): Why directed graph?

A Directed Graph of Visual Processing in Toad

Input:

- a) Rectangle moves in the direction of motion
- b) Rectangle moves perpendicular to the direction of motion
- c) Squares of different size

Output = $\{0,1\}$

- 0: attack
- 1: avoid

Mathematical description

• A generator function: to generate the responses of retinal ganglion cells (R2, R3, R4)

$$R_i = \kappa \nu^{\delta}$$

 $R_i = \kappa v^{\delta}$ κ, δ : constants ν : angular velocity

• A weight function: to calculate the weight of optic tectal (T5.1, T5.2) and pretectal (TH3) cells

$$W_i = \sum E_i - \sum I_i$$

 E_i : excitatory input of cell type i I_i : inhibitory input of cell type i

Results (3'): Responses of Retinal ganglion cells

14

Responses of T5.2 neuron and TH3 neuron

Summary (1'):

- Attack behavior: retinal ganglion cells (R2, R3), optic tectal cells, especially T5.2.
- Avoidance behavior: retinal ganglion cells (R3, R4), pretectal cells- TH3
- Future application: test on multiple stimuli to predict the corresponding behavior