COMPSCI361: Machine Learning Data Preprocessing

Katerina Taskova and Jörg Simon Wicker The University of Auckland

Data Preprocessing

Data Preprocessing

Data Reduction

Dimensionality Reduction Principal Components Analysis

Feature Selection

Data Reduction

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database may store terabytes of data, complex data analysis may take a very long time to run on the complete data set
- Data reduction strategies
 - Dimensionality reduction
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature selection
 - Numerosity reduction
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data compression

Curse of dimensionality

x_1	<i>x</i> ₂																			×n
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	11	12	22	24
0	0	0	0	0	0	0	0	0	0	0	74	38	99	2	4	0	0	0	0	0
0	0	0	0	0	0	0	0	84	69	55	0	0	0	0	0	0	0	0	0	0
0	0	0	0	66	35	14	62	0	0	0	0	0	0	0	0	0	0	0	0	0
32	48	54	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, classification, regression becomes less meaningful

Dimensionality Reduction

- Why dimensionality reduction?
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant/redundant features and reduce noise
 - Reduce computational resources (memory and time)
 - Allow easier visualization
- Dimensionality reduction techniques
 - Unsupervised linear method: Principal Component Analysis
 - Supervised method: Feature selection

Principal Component Analysis - PCA

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space
- How? We find the eigenvectors and eigenvalues of the covariance matrix of the input attributes,
 - Eigenvectors: the directions that data variances occur, and they define the new attribute space
 - Eigenvalues: the amount of variance along the corresponding eigenvector

Demo: https://setosa.io/ev/principal-component-analysis/

PCA approaches

PCA – steps

- Given n data instances (each a vector in d-dimensions), find $k \le d$ principal components that can be best used to represent the data
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal vectors (i.e. length of 1 and perpendicular to each other), i.e. principal components
 - The input data is a linear combination of the *k* principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength (e.g. as measured by the eigenvalue)
 - Since the components are sorted, the size of the data can be reduced by eliminating the d-k weak components, i.e. those with low variance.
- The resulting vectors are orthogonal, are they correlated? No
- Can you use PCA on categorical data? Yes

Example code step by step PCA calculation in Python in reference 3

Feature or Attribute Selection

Reduce dimensionality by removing set of attributes

- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 e.g. purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 e.g. students' ID is often irrelevant to the task of predicting students' GPA

Two types of methods: Filters (fast) and Wrappers (high accuracy, expensive)

 Filters separate feature selection from classifier learning. No bias toward any learning algorithm

For nominal data, given two attributes A and B with values a_1, \ldots, a_c and b_1, \ldots, b_r the correlation can be calculated using the χ^2 test:

$$\chi^2 = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

- With o_{ij} being the actual frequency of the event (a_i, b_j)
- And e_{ij} the expected frequency (n is the number of instances)

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n}$$

■ Numerical data can be compared using Pearson's correlation coefficient

$$\rho_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\bar{A}\bar{B}}{n\sigma_A \sigma_B}$$

- With means \bar{A} and \bar{B} , number of instances n, and standard deviations σ_A and σ_B
- If σ_A and σ_B is zero than the coefficient is undefined.
- Values in the range [-1, 1].

So what does the correlation measure?

By Kiatdd - Own work, CC BY-SA 3.0, commons.wikimedia.org/w/index.php?curid=37108966

■ How can it be used to remove redundant or unimportant features?

Heuristic Search in Attribute Selection

- There are 2^{d-1} possible attribute combinations of d attributes \rightarrow exhaustive search is not feasible (e.g. $d=300, 2.04 \times 10^{90}$ combinations)
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Relief - Instance-based heuristic for feature selection

Input: Data set with n_d input attributes and n instances that bellong to one of two classes (i.e.binary classification problem), and number of randomly selected insatnces $n_r < n_r$ First normalize the input attributes Create a weight vector W with one weight $w_i \in W$ for each attribute Initialize the weights $W = [w_1, w_2, \dots, w_n] = 0$ for $j \in 1 \dots n_r$ do Randomly select instance $R = [r_1, \dots, r_n]$ Choose instance $H = [h_1, \dots, h_n]$ as the closest neighbour of R in the same class (nearHit) w.r.t to some (Euclidian) distance measure Choose instance $M = [m_1, \dots, m_n]$ as the closest neighbour of R in the other class (nearMiss) w.r.t to some (Euclidian) distance measure for $i \in 1 \dots n_d$ do % update the weights $w_i = w_i + distance(R, M; i-th attribute) - distance(R, H; i-th attribute)$ $w_i = w_i + (r_i - m_i)^2 - (r_i - h_i)^2$ % Euclidian distance end end for $i \in 1 \dots n_d$ do return $w_i = \frac{w_i}{}$

Relief Example (cont.)


```
In our case hr= 1, so no more iterations
 W=[4 1] after step 3 -> no change as only one southon south
You can use these weights to rank the attribules
          Larger weight more important
            In our case | X is the more important
                        Easy to verify: from the plat we
                             can see that we can use oney XI to create decision boundary that will separate to a samples
                           Also note that the variance in the data
```

15 larger in the X1 dimension (gink to PCA

Relief summary

- Relief takes into account **all** attributes
- Result is a weight vector that represents the importance of each feature
- lacktriangle Features are then selected based on a threshold au or ranked
- The algorithm above is the basic version of Relief, there are various extensions (ReliefF, RReliefF,...)

Wrappers

- The correlation method and Relief are filters
- Main idea of wrappers:
 - Generate a subset of the features and evaluate the performance of the classifier on the subset
 - Add or remove attributes from the subset and see if the performance of the classifier improves
 - Risk of overfitting, especially if choosing the same classifier as for the main learning task

Preprocessing

- So, to summarize...
 - When are preprocessing approaches useful?
 - When should you avoid them?
 - How about specific cases
 - Many correlated features?
 - Many independent features?
 - Which algorithms you know already would need preprocessing?
 - How about Decision trees? Why?
 - How about Regression? Why?
 - Are we cheating in preprocessing: for example by creating new examples?

- Preprocessing is an important part in machine learning and data analysis
- Missing values can be caused by various reasons depending on what the reasons are, they must be addressed differently
- Various imputation approaches exist, they use the information of other instances and values to impute the missing values
- Noisy data can be addressed for example by binning, clustering, or regression
- Feature selection can be used to reduce the number of redundant and unimportant features
- Imbalanced data sets can be a problem for evaluation and classifiers
- Sampling can be used to overcome class imbalance problems

- 1. Material in Chapter 3 in Han's Data Mining
- 2. Detailed math and application of PCA: Chapter 12.1 and Appendix C Bishop's Pattern Recognition and Machine Learning
- 3. Step by step code on PCA calculation (Python notebook on Canvas)
- 4. Example code on using sckit-learn PCA implementation https://colab.research.google.com/github/cpearce/ PythonDataScienceHandbook/blob/master/notebooks/05. 09-Principal-Component-Analysis.ipynb

Thank you for your attention!

https://ml.acukland.ac.nz