

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (MICROLAB)

2η Εργαστηριακή Αναφορά στο μάθημα "ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ VLSI" του 8ου Εξαμήνου

των φοιτητών της ομάδας 17,

Εμμανουήλ Αναστάσιου Σερλή, Α.Μ. 03118125 Κωνσταντίνου Ιωάννου, ΑΜ: 03119840

Ερώτημα 1:

Σκοπός του ερωτήματος είναι να υλοποιήσουμε έναν Ημιαθροιστή (Half Adder - HA) σε περιγραφή ροής δεδομένων (Dataflow), ενώ στα επόμενα ερωτήματα με βάση αυτόν τον αθροιστή θα δημιουργήσουμε πιο περίπλοκα λογικά κυκλώματα με χρήση δομικής περιγραφής.

• Κώδικας για την αρχιτεκτονική:

```
7 :
     entity haldAdder is
9
       Port (
10
       A: in std logic ;
11
       B: in std logic ;
12
       sum: out std logic ;
13
       carry: out std logic
14
        );
15 end haldAdder;
16
17 🖯
     architecture dataflow of haldAdder is
18
     begin
19
20
     carry <= A AND B ;
21
     sum <= A XOR B;
22
23 end dataflow;
```


• Αποτελέσματα Testbench:

Από την παραπάνω προσομοίωση επιβεβαιώνεται η αντιστοίχιση του πίνακα αλήθειας με τα αποτελέσματα του half-adder :

Inp	uts	Out	puts
Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

• Critical Path A \rightarrow Sum (delay = 6.9ns)

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	D
Ŋ Path 1	00	3	2	2	A	sum	6.900	3.937	2.963	00	input port clock	
┡ Path 2	00	3	2	2	A	carry	6.491	3.672	2.819	00	input port clock	

Το κρίσιμο μονοπάτι είναι το μονοπάτι με την μεγαλύτερη καθυστέρηση. Στη συγκεκριμένη περίπτωση είναι το Path1, δηλαδή η διαδρομή από το σήμα εισόδου Α ως την έξοδο sum.

Αναλυτικότερα τρέχοντας την εντολή "report_timing_summary -report_unconstrained" στο terminal, λαμβάνουμε:

lack:	inf				
Source:	A				
	(input port)				
Destination:	sum				
	(output port)				
Path Group:	(none)				
Path Type:	Max at Slow Process Co.	rner			
Data Path Delay:	6.900ns (logic 3.937n	s (57.056%)	route 2.	963	ns (42.944%))
Logic Levels:	3 (IBUF=1 LUT2=1 OBUF	=1)			
1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Palan tona	Tnon (no)	Dath (not		Nation Description (a)
Location	Delay type	Incr (ns)	Path (ns)		Netlist Resource(s)
Location T19	Delay type		0.000		
	net (fo=0)		0.000	r	A (IN)
		0.000	0.000	r	A (IN)
T19	net (fo=0)	0.000	0.000 0.000 0.950	r	A (IN)
T19	net (fo=0) IBUF (Prop_ibuf_I_0)	0.000 0.000 0.950 1.147	0.000 0.000 0.950 2.097	r	A (IN) A A_IBUF_inst/O A_IBUF
T19	net (fo=0) IBUF (Prop_ibuf_I_0) net (fo=2, routed)	0.000 0.000 0.950 1.147	0.000 0.000 0.950 2.097 2.247	r r	A (IN) A A_IBUF_inst/0
T19	net (fo=0) IBUF (Prop_ibuf_I_0) net (fo=2, routed) LUT2 (Prop_lut2_I1_0)	0.000 0.000 0.950 1.147 0.150	0.000 0.000 0.950 2.097 2.247 4.063	r	A (IN) A A_IBUF_inst/O A_IBUF sum_OBUF_inst_i_1/0
T19 T19 SLICE_X43Y1	net (fo=0) IBUF (Prop_ibuf_I_0) net (fo=2, routed) LUT2 (Prop_lut2_I1_0) net (fo=1, routed)	0.000 0.000 0.950 1.147 0.150 1.816	0.000 0.000 0.950 2.097 2.247 4.063 6.900	r	A (IN) A A_IBUF_inst/O A_IBUF sum_OBUF_inst_i_1/0 sum_OBUF

Ερώτημα 2

Τώρα βασιζόμενοι στον ΗΑ του πρώτου ερωτήματος θα δημιουργήσουμε έναν πλήρη αθροιστή FA.

• Κώδικας για την αρχιτεκτονική Προσθέτουμε τον ΗΑ ως component, και χρησιμοποιώντας 2 ΗΑs και λογικές πύλες έχουμε το ζητούμενο αποτέλεσμα.

```
28
29 - entity FullAdder is
30
       Port (
31
       A, B, Cin: in std logic ;
32
       sum, carry: out std logic
33
        );
34 @ end FullAdder;
35
36 - architecture structural of FullAdder is
38 @ component haldAdder ...
46
47
     signal s1,c1,c2 : std logic := '0';
48
49
     begin
50
     HA1 : haldAdder port map (A, B, s1, c1);
51
     HA2 : haldAdder port map (sl,Cin,sum,c2);
52
     carry <= cl OR c2;
53 end architecture;
54
```


• Αποτελέσματα Testbench:

Τα αποτελέσματα του testbench συμφωνούν με τον πίνακα αλήθειας του FA

	Inputs		Outputs						
Α	В	Cin	Sum	Carry					
0	0	0	0	0					
0	0	1	1	0					
0	1	0	1	0					
0	1	1	0	1					
1	0	0	1	0					
1	0	1	0	1					
1	1	0	0	1					
1	1	1	1	1					

• Critical Path: A \rightarrow Sum (7.125ns)

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay
4 Path 1	00	3	2	2	Α	sum	7.125	3.947	3.177
→ Path 2	∞	3	2	2	Α	carry	6.893	3.709	3.184

Το μονοπάτι με την μεγαλύτερη καθυστέρηση είναι το Path-1, δηλαδή το μονοπάτι από την είσοδο Α μέχρι την έξοδο sum.

Πιο αναλυτικά έχουμε:

Slack:	inf				
Source:	A				
	(input port)				
Destination:	sum				
	(output port)				
Path Group:	(none)				
Path Type:	Max at Slow Process Co.	rner			
Data Path Delay:	7.125ns (logic 3.947n	8 (55.403%)	route 3.	177	ns (44.597%))
Logic Levels:	3 (IBUF=1 LUT3=1 OBUF	=1)			
Location	Delay type	Incr (ns)	Path(ns)		Netlist Resource(s
T19		0.000	0.000	r	A (IN)
	net (fo=0)	0.000	0.000		A
T19	IBUF (Prop_ibuf_I_0)	0.950	0.950	r	A_IBUF_inst/0
	net (fo=2, routed)	1.370	2.320		A_IBUF
SLICE_X43Y1	LUT3 (Prop_lut3_I1_0)	0.152	2.472	r	sum_OBUF_inst_i_1/0
	net (fo=1, routed)	1.808	4.279		sum_OBUF
N17	OBUF (Prop_obuf_I_O)	2.845	7.125	r	sum_OBUF_inst/O
	net (fo=0)	0.000	7.125		sum
N17				r	sum (OUT)

Ερώτημα 3:

Τώρα βασιζόμενοι στους FA που φτιάξαμε και χρησιμοποιώντας τους ως components θα φτιάξουμε ένα πλήρη αθροιστή 4 bits.

• Κώδικας για την αρχιτεκτονική:

```
55 - entity bit4 Adder is
56
       Port (
       As: in std logic vector(3 downto 0);
57
       Bs: in std logic vector(3 downto 0);
59
       Cin: in std logic;
60
       s: out std logic vector(3 downto 0);
61
       cout: out std logic
62
        );
63 end bit4 Adder;
64
     architecture structural of bit4 Adder is
65 E
66
67 E component FullAdder ...
76
77
    signal c0: std logic;
78
   signal cl: std logic;
79
     signal c2: std logic;
80
81
    begin
82
    FA1: FullAdder port map (A=>As(0), B=>Bs(0), Cin=>Cin, sum=>s(0), carry=>c0);
83
    FA2: FullAdder port map (A=>As(1),B=>Bs(1),Cin=>c0,sum=>s(1),carry=>c1);
     FA3 : FullAdder port map (A=>As(2),B=>Bs(2),Cin=>c1,sum=>s(2),carry=>c2);
85
     FA4: FullAdder port map (A=>As(3),B=>Bs(3),Cin=>c2,sum=>s(3),carry=>cout);
86
87 end architecture;
88
```

Ουσιαστικά συνδέουμε 4 FAs σε σειρά και δίνουμε στον καθένα ως κρατούμενο εισόδου την έξοδο του ακριβώς προηγούμενου πλήρη αθροιστή. Περιμένουμε λοιπόν να δούμε ένα λογικό κύκλωμα όπως αυτό που φαίνεται παρακάτω.

• RTL Schematic:

Το RTL schematic λοιπόν συμφωνεί με την υλοποίηση που αναμέναμε. Απομένει λοιπόν να επιβεβαιώσουμε ότι έχουμε σωστά αποτελέσματα μέσω προσομοίωσης. Αξίζει να σημειώσουμε ότι στο schematic φαίνεται ξεκάθαρα η structural λογική που επιλέξαμε καθώς χρησιμοποιούμε τους FA ως black boxes.

Στην συνέχεια γράψαμε κώδικα για την προσομοίωση ο οποίος με την χρήση εμφολευμένων for loops δοκιμάζει διάφορες τιμές για τις εισόδους. Ένα κομμάτι της λογικής του κώδικα φαίνεται στην συνέχεια.

```
Cin<= '0';
  for i in 0 to 15 loop
    As <= std_logic_vector(to_unsigned(i, 4));
    for j in 0 to 15 loop
        Bs <= std_logic_vector(to_unsigned(j, 4));
        wait for 5ns;
    end_loop;
end_loop;</pre>
```

• Αποτελέσματα Testbench:

Τα αποτελέσματα για Cin =0:

Name	Value		29,870	ns	29,880	ns	29,890	ns	29,900	ns	29,910	ns	29,920	ns	29,930	ns	29,940	ns	29,950	ns	29,960	ns	29,97
1å Cin	0																						
> W As[3:0]	1000		000					1010									1100					1110	0
> W Bs[3:0]	0100	00	1000	0000	0001	0010	0011	0100	0101	0110	0111	1000	0000	0001	0010	0011	0100	0101	0110	0111	1000	0000	00
> W s[3:0]	1100	10	0000	1010	1011	1100	1101	1110	1111	0000	0001	0010	1100	1101	1110	1111	0000	0001	0010	0011	0100	1110	10
lo cout	0																						

Τα αποτελέσματα για Cin =1:

^{*}Σημειώνουμε ότι όταν cout =1 έχουμε ουσιαστικά μια επιπλέον δεκάδα.

• Critical Path: A[3:0] \rightarrow Cout (delay = 7.96ns)

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay
→ Path 1	00	4	3	3	As[0]	cout	7.960	4.050	3.911
→ Path 2	00	4	3	3	As[0]	s[3]	7.677	3.797	3.880
→ Path 3	00	3	2	3	As[0]	s[1]	7.378	3.915	3.462
→ Path 4	00	4	3	3	As[0]	s[2]	7.372	3.792	3.579
→ Path 5	00	3	2	3	As[0]	s[0]	7.092	3.681	3.411

Ερώτημα 4:

Χρησιμοποιώντας λοιπόν τον 4bit FA του προηγούμενου ερωτήματος θα φτιάξουμε έναν BCD FA.

Υπενθυμίζουμε ότι:

Ένας BCD full adder είναι ένα κύκλωμα που χρησιμοποιείται για να προσθέσει δύο BCD (Binary-Coded Decimal) αριθμούς, δηλαδή αριθμούς που έχουν κωδικοποιηθεί σε δυαδική μορφή, ώστε να αντιπροσωπεύσουν δεκαδικούς αριθμούς.

Σε έναν BCD full adder, κάθε αριθμός BCD διαιρείται σε τέσσερα δυαδικά ψηφία, τα οποία προστίθενται μεταξύ τους σύμφωνα με τους κανόνες της πρόσθεσης δυαδικών αριθμών. Το κυκλώματος προσθέτει επίσης τυχόν υπόλοιπα (carry) από τις προηγούμενες προσθέσεις και παράγει το άθροισμα BCD των δύο αριθμών εισόδου.

Η έξοδος του κυκλώματος είναι ένας BCD αριθμός, δηλαδή μια σειρά τεσσάρων δυαδικών ψηφίων που αντιπροσωπεύουν ένα δεκαδικό ψηφίο. Στον κάτωθι πίνακα, αναδεικνύεται η διαφορά στην αναπαράσταση ενός δεκαδικού αριθμού με binary και με BCD μορφή.

Decima		n	CD Sur	В			Binary Sum					
	S ₁	S2	54	S ₈	c	Z ₁	Z ₂	Z ₄	Z ₈	ĸ		
0	0	0	0	0	0	0	0	0	0	0		
1	1	0	0	0	0	1	0	0	0	0		
2	0	1	0	0	0	0	1	0	0	0		
3	1	1	0	0	0	1	1	0	0	0		
4	0	0	1	0	0	0	0	1	0	0		
5	1	0	1	0	0	1	0	1	0	0		
6	0	1	1	0	0	0	1	1	0	0		
7	1	1	1	0	0	1	1	1	0	0		
8	0	0	0	1	0	0	0	0	1	0		
9	1	0	0	1	0	1	0	0	1	0		
10	0	0	0	0	1	0	E	0	1	0		
11	1	0	0	0	1	1	1	0	1	0		
12	0	1	0	0	1	0	0	1	1	0		
13	1	1	0	0	1	1	0	1	1	0		
14	0	0	1	0	1	0	1	1	1	0		
15	1	0	1	0	1	1	1	1	1	0		
16	0	1	1	0	1	0	0	0	0	1		
17	1	1	1	0	1	1	0	0	0	1		
18	0	0	0	1	1	0	1	0	0	1		
19	1	0	0	1	1	1	1	0	0	1		

Κώδικας για την αρχιτεκτονική:

Χρησιμοποιώντας ως component τον 4bit-FA έχουμε

```
93 	☐ entity BCD Adder is
 94 Port (
 95 !
       X : in std logic vector ( 3 downto 0) ;
       Y : in std logic vector ( 3 downto 0) ;
 97
       Cin : in std logic;
 98
        Sum : out std logic vector ( 3 downto 0) ;
 99
       Carry : out std logic
100 :
        );
101 end BCD Adder;
103 - architecture structural of BCD_Adder is
104
105 # component bit4_Adder...
114
115 ; signal sum_up, X_down, Y_down: std logic vector(3 downto 0) ;
116 signal carry up, Carry temp, carry down: std logic;
117 !
      begin
118
119
      BITS4 ADDER1 : bit4 Adder port map (As => X, Bs => Y, Cin => Cin, s => sum up, cout => carry up);
120 :
      Carry_temp <= (sum_up(3) and sum_up(2)) or (sum_up(3) and sum_up(1)) or carry_up;
121
      Carry <= Carry_temp;
122 | X_down <= '0' & Carry_temp & Carry_temp & '0';
123
       BITS4_ADDER2 : bit4_Adder port map (As => X_down, Bs => sum_up, Cin => '0', s => Sum, cout => carry_down);
124
125 🖨 end architecture;
126
```


Από το schematic γίνεται φανερό ότι όταν το άθροισμα των δύο BCD 4bit αριθμών είναι μικρότερο ίσο του εννέα τότε αυτό περνά ως έξοδος του BCD, διαφορετικά μέσω του output carry γίνεται μια "κανονικοποίηση" για αναπαράσταση του αριθμού στο δεκαδικό σύστημα.

• Αποτελέσματα Testbench:

Στην συνέχεια μέσω ενός tenchbench code με for loops, τρέχουμε προσομοίωση για εισαγωγή bcd αριθμών μέχρι το εννέα.(έτσι ζητήθηκε)

 Γ ια Cin = 0:

 Γ ια Cin=1:

Σημειώνεται ότι το Carry = 1 αναπαριστά μια δεκάδα.

• Critical Path: Cin -> Carry (delay = 8.160ns)

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay
Path 1	00	4	3	4	Cin	Carry	8.160	4.083	4.078
Path 2	∞	4	3	4	Cin	Sum[3]	8.053	4.074	3.979
Path 3	00	4	3	4	Cin	Sum[2]	7.801	3.808	3.994
Path 4	00	4	3	4	Cin	Sum[1]	7.678	4.040	3.638
4 Path 5	∞	3	2	3	Cin	Sum[0]	7.131	3.698	3.434

Το κρίσιμο μονοπάτι είναι η διαδρομή από την είσοδο Cin μέχρι να παραχθεί το κρατούμενο Carry.

Πιο αναλυτικά:

Slack:	inf			
Source:	Cin			
	(input port)			
Destination:	Carry			
	(output port)			
Path Group:	(none)			
Path Type:	Max at Slow Process Co	rner		
Data Path Delay:	8.160ns (logic 4.083n	s (50.029%)	route 4.07	8ns (49.971%))
Logic Levels:	4 (IBUF=1 LUT5=1 LUT6	=1 OBUF=1)		
Location	Delay type	Incr(ns)	Path (ns)	Netlist Resource(s)
W16		0.000	0.000 r	Cin (IN)
	net (fo=0)	0.000	0.000	Cin
W16	IBUF (Prop_ibuf_I_0)	0.961	0.961 r	Cin_IBUF_inst/O
	net (fo=3, routed)	1.583	2.544	Cin_IBUF
SLICE_X43Y6	LUTS (Prop_lut5_I0_0)	0.152	2.696 r	Sum_OBUF[3]_inst_i_3/
	net (fo=4, routed)	0.685	3.381	BITS4_ADDER1/c1
SLICE_X42Y6	LUT6 (Prop_lut6_I2_0)	0.326	3.707 r	Carry_OBUF_inst_i_1/0
	net (fo=1, routed)	1.810	5.517	Carry_OBUF
N17	OBUF (Prop_obuf_I_O)	2.643	8.160 r	Carry_OBUF_inst/O
	net (fo=0)	0.000	8.160	Carry
N17			*	Carry (OUT)

Ερώτημα 5:

Ο BCD παράλληλος αθροιστής του ερωτήματος 5 αποτελείται από 4 4-bit BCD Full Adders σειριακά συνδεδεμένους μεταξύ τους. Έτσι, οι είσοδοι Α και Β του παράλληλου αθροιστή είναι των 16 bits, με 4 bits να αναλογούν σε κάθε επιμέρους 4-bit BCD Full Adder.

Στην συνέχεια παραδίδουμε τον κώδικα όλης της εργασίας συνοπτικά μαζεμένο.

Κώδικας για την αρχιτεκτονική:

```
-- half Adder (1)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity haldAdder is
 Port (
 A: in std_logic;
 B: in std_logic;
 sum: out std_logic;
 carry: out std_logic
 );
end haldAdder;
architecture dataflow of haldAdder is
begin
carry <= A AND B;
sum \le A XOR B;
end architecture;
```

```
-- Full Adder (2)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity FullAdder is
Port (
A,B,Cin: in std_logic;
sum,carry: out std_logic
);
end FullAdder;
architecture structural of FullAdder is
component haldAdder
port (
A: in std_logic;
```

```
sum: out std_logic;
 carry:out std_logic
 );
end component;
signal s1,c1,c2 : std_logic := '0';
begin
HA1 : haldAdder port map (A,B,s1,c1);
HA2: haldAdder port map (s1,Cin,sum,c2);
carry \le c1 OR c2;
end architecture;
-- 4-bit Parallel Adder (3)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bit4_Adder is
 Port (
 As: in std_logic_vector(3 downto 0);
 Bs: in std_logic_vector(3 downto 0);
 Cin: in std_logic;
 s: out std_logic_vector(3 downto 0);
 cout: out std_logic
 );
end bit4_Adder;
architecture structural of bit4_Adder is
component FullAdder
 port (
 A: in std_logic;
 B: in std_logic;
 Cin: in std_logic;
 sum: out std_logic;
 carry:out std_logic
 );
end component;
signal c0: std_logic;
signal c1: std_logic;
signal c2: std_logic;
begin
```

B: in std_logic;

```
FA1: FullAdder \ port \ map \ (A=>As(0),B=>Bs(0),Cin=>Cin,sum=>s(0),carry=>c0); \\ FA2: FullAdder \ port \ map \ (A=>As(1),B=>Bs(1),Cin=>c0,sum=>s(1),carry=>c1); \\ FA3: FullAdder \ port \ map \ (A=>As(2),B=>Bs(2),Cin=>c1,sum=>s(2),carry=>c2); \\ FA4: FullAdder \ port \ map \ (A=>As(3),B=>Bs(3),Cin=>c2,sum=>s(3),carry=>cout); \\ end \ architecture; \\ \end{cases}
```

```
-- BCD Adder (4)
       library IEEE;
       use IEEE.STD LOGIC 1164.ALL;
    entity BCD_Adder is
        Port (
        X: in std_logic_vector (3 downto 0);
        Y: in std_logic_vector (3 downto 0);
        Cin: in std logic;
        Sum: out std_logic_vector(3 downto 0);
        Carry: out std_logic
        );
       end BCD Adder;
       architecture structural of BCD_Adder is
       component bit4_Adder
        port (
         As: in std logic vector(3 downto 0);
         Bs: in std_logic_vector(3 downto 0);
         Cin: in std_logic;
         s: out std_logic_vector(3 downto 0);
         cout: out std_logic
        );
       end component;
       signal sum_up, X_down, Y_down: std_logic_vector(3 downto 0);
       signal carry_up,Carry_temp, carry_down: std_logic;
       begin
       BITS4 ADDER1: bit4 Adder port map (As => X, Bs => Y, Cin => Cin, s => sum up, cout
       => carry_up);
       Carry\_temp \le (sum\_up(3) and sum\_up(2)) or (sum\_up(3) and sum\_up(1)) or carry\_up;
        Carry <= Carry_temp;
        X_down <= '0' & Carry_temp & Carry_temp & '0';
        BITS4 ADDER2: bit4 Adder port map (As => X down, Bs => sum up, Cin => '0', s => Sum,
       cout => carry_down);
end architecture;
```

```
--BCD parallel adder(5)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity lab02_ex05 is
Port (
 X5: in std_logic_vector (15 downto 0);
 Y5: in std_logic_vector (15 downto 0);
 Cin5: in std logic;
 Sum5 : out std_logic_vector ( 15 downto 0);
 Carry5: out std_logic
 );
end lab02_ex05;
architecture Structural of lab02_ex05 is
component BCD_Adder
 Port (
 X: in std_logic_vector (3 downto 0);
 Y: in std_logic_vector (3 downto 0);
 Cin: in std_logic;
 Sum: out std_logic_vector(3 downto 0);
 Carry: out std_logic
 );
end component;
signal s1,s2,s3,s4,x_temp1,y_temp1,x_temp2,y_temp2,x_temp3,y_temp3,x_temp4,y_temp4:
std_logic_vector(3 downto 0);
signal c51,c52,c53: std_logic;
begin
x \text{ temp1} \le (X5(3)\&X5(2)\&X5(1)\&X5(0));
y_{temp1} \le (Y5(3)&Y5(2)&Y5(1)&Y5(0));
BCD_full_1: BCD_Adder port map(X = x_{temp1}, Y = y_{temp1}, Cin = Cin5, Sum = s1, Carry = c51);
x_{temp2} \le (X5(7)\&X5(6)\&X5(5)\&X5(4));
y_{temp2} \le (Y5(7)\&Y5(6)\&Y5(5)\&Y5(4));
BCD_full_2: BCD_Adder port map(X => x_temp2, Y => y_temp2, Cin=>c51, Sum=>s2, Carry=>c52);
x_{temp3} \le (X5(11)\&X5(10)\&X5(9)\&X5(8));
y \text{ temp3} \le (Y5(11)\&Y5(10)\&Y5(9)\&Y5(8));
BCD_full_3: BCD_Adder port map(X => x_temp3, Y => y_temp3, Cin=>c52, Sum=>s3, Carry=>c53);
x_{temp4} \le (X5(15)\&X5(14)\&X5(13)\&X5(12));
y_{temp4} \le (Y5(15)&Y5(14)&Y5(13)&Y5(12));
BCD full 4: BCD Adder port map(X => x \text{ temp4}, Y => y \text{ temp4}, Cin => c53, Sum => s4, Carry => Carry5);
Sum5 \le s4\&s3\&s2\&s1;
end architecture;
```


• Αποτελέσματα testbench: Γράφοντας κώδικα με for loops για να έχουμε όλες τις περιπτώσεις εισόδων έχουμε τα παρακάτω αποτελέσματα στη προσομοίωση.

					269.950	ns													
Name	Value	Lini	260 ns	liiii	270 ns	Luur	280 ns	Livia	290 ns	Luu	300 ns		310 ns	liiii	320 ns	Lini	330 ns	Livi	340 ns
₩ Cin5	0																		
> W X5[15:0]	5							5									10		
> V Y5[15:0]	106	96	101	106	111	116	121	126	131	136	141	146	151	156	1	6	11	16	21
> W Sum5[15:0]	117	101	112	117	122	121	132	137	136	147	152	151	258	263	17	22	27	32	37
₩ Carry5	0																		

Name	Value		11,274	ns	11,276 ns	11,278 ns	11,280 ns	11,282 ns	11,284	ns	11,286 ns	11,288 ns	11,290 ns	11,292 ns
¼ Cin5	0													
> ₩ X5[15:0]	0000000	0000000000100												
> W Y5[15:0]	0000000	0000000110	011001		000000011001	1011	0000	000110011101		X	00000001100	1111	000000011	0100001
> W Sum5[15:0]	0000000	0000001000	000011		000000100000	0101	0000	0010000000111		X	000000100000	1001	000000100	0000101
1 Carry5	0													

• Critical Path: Cin5 -> Sum5[13] (delay = 15.265ns)

Name	Slack	^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay
→ Path 1		00	10	9	5	Cin5	Sum5[13]	15.265	5.284	9.981
3 Path 2		00	10	9	5	Cin5	Sum5[15]	15.210	5.070	10.140
Path 3		00	10	9	5	Cin5	Carry5	15.105	5.307	9.798
Path 4		00	10	9	5	Cin5	Sum5[14]	15.001	5.049	9.951
3 Path 5		00	9	8	5	Cin5	Sum5[12]	14.385	5.135	9.250
→ Path 6		00	9	8	5	Cin5	Sum5[10]	14.170	4.912	9.258
→ Path 7		00	9	8	5	Cin5	Sum5[9]	14.147	4.913	9.234
→ Path 8		00	8	7	5	Cin5	Sum5[11]	13.320	4.777	8.543
→ Path 9		00	7	6	5	Cin5	Sum5[8]	12.570	4.908	7.662
4 Path 10		00	7	6	5	Cin5	Sum5[5]	11.348	4.678	6.671

Το κρίσιμο μονοπάτι είναι το μονοπάτι από την είσοδο cin5 ως την έξοδο Sum5[13].

Πιο αναλυτικά:

Destination: Sum5[13] (output port)

Path Group: (none)

Path Type: Max at Slow Process Corner

Data Path Delay: 15.265ns (logic 5.284ns (34.617%) route 9.981ns (65.383%))

Logic Levels: 10 (IBUF=1 LUT5=4 LUT6=4 OBUF=1)

Location	Delay type	Incr(ns)	Path(ns)	Netlist Resource(s)
R19		0.000	0.000 r	Cin5 (IN)
	net (fo=0)	0.000	0.000	Cin5
R19	<pre>IBUF (Prop_ibuf_I_0)</pre>	0.982	0.982 r	Cin5_IBUF_inst/O
	net (fo=4, routed)	2.056	3.038	Cin5_IBUF
SLICE_X43Y19	LUT5 (Prop_lut5_I2_0)	0.150	3.188 r	Sum5_OBUF[3]_inst_i_2/O
	net (fo=3, routed)	0.668	3.856	Sum5_OBUF[3]_inst_i_2_n_0
SLICE_X42Y19	LUT6 (Prop_lut6_I3_0)	0.326	4.182 r	Sum5_OBUF[5]_inst_i_2/O
	net (fo=5, routed)	0.804	4.985	Sum5_OBUF[5]_inst_i_2_n_0
SLICE_X43Y22	LUT5 (Prop_lut5_I2_0)	0.150	5.135 r	Sum5_OBUF[7]_inst_i_2/O
	net (fo=3, routed)	0.668	5.803	Sum5_OBUF[7]_inst_i_2_n_0
SLICE_X42Y22	LUT6 (Prop_lut6_I3_0)	0.326	6.129 r	Sum5_OBUF[8]_inst_i_2/O
	net (fo=5, routed)	0.988	7.117	Sum5_OBUF[8]_inst_i_2_n_0
SLICE_X42Y26	LUT5 (Prop_lut5_I0_0)	0.124	7.241 f	Sum5_OBUF[11]_inst_i_3/O
	net (fo=3, routed)	1.072	8.313	Sum5_OBUF[11]_inst_i_3_n_0
SLICE_X43Y26	LUT6 (Prop_lut6_I0_0)	0.124	8.437 r	Sum5_OBUF[12]_inst_i_2/O
	net (fo=5, routed)	0.971	9.408	Sum5_OBUF[12]_inst_i_2_n_0
SLICE_X43Y29	LUT5 (Prop_lut5_I0_0)	0.152	9.560 r	Sum5_OBUF[15]_inst_i_3/O
	net (fo=4, routed)	0.602	10.162	Sum5_OBUF[15]_inst_i_3_n_0
SLICE_X43Y30	LUT6 (Prop_lut6_I5_0)	0.326	10.488 r	Sum5_OBUF[13]_inst_i_1/O
	net (fo=1, routed)	2.153	12.641	Sum5_OBUF[13]
W16	OBUF (Prop_obuf_I_O)	2.624	15.265 r	Sum5_OBUF[13]_inst/O
	net (fo=0)	0.000	15.265	Sum5[13]
W16				Sum5[13] (OUT)