LABORATORIO 2 - CISCO CYBER OPS

Wireshark per Osservare la Stretta di Mano TCP a 3 Vie.

Obbiettivi:

- 1. Preparare gli host per catturare il traffico
- **2**. Analizzare i pacchetti utilizzando Wireshark
- 3. Visualizzare i pacchetti utilizzando tcpdump

Introduzione

In questo laboratorio, utilizzeremo Wireshark per catturare ed esaminare i pacchetti generati tra il browser del PC tramite HyperText Transfer Protocol (HTTP) e un server Web. Quando un'applicazione, come HTTP o File Transfer Protocol (FTP), viene avviata per la prima volta su un host, TCP utilizza l'handshake a tre vie per stabilire una sessione TCP affidabile tra i due host. Ad esempio, quando un PC utilizza un browser Web per navigare in Internet, viene avviata un'handshake a tre vie e viene stabilita una sessione tra l'host del PC e il server Web. Un PC può avere più sessioni TCP attive simultanee con vari siti Web.

1. Preparare gli host per catturare traffico

Una volta avviata la Virtual Machine andiamo ad **Mininet** con il comando "sudo lab.support.files/scripts/cyberops_topo.py "e successivamente avviamo gli host H1 e H4 con "xterm", dove H4 verrà utilizzato come server web.

Per motivi di sicurezza, non è possibile eseguire Firefox dall'account utente root. Sull'host H1, utilizzare il comando switch user per passare dall'account utente root all'account utente analyst:

```
"Node: H1"

[root@secOps analyst] su analyst
[analyst@secOps "] firefox &
[1] 1225

[analyst@secOps "] firefox &
[1] 1225

[analyst@secOps "] firefox &
[not@secOps analyst] // home/analyst/lab,support.files/scripts/reg_server_start.sh
[root@secOps analyst] // home/analyst/lab,suppo
```

Dopo l'apertura della finestra di Firefox, avviata su H1, avviamo anche una sessione **tcpdump** nel terminale Node: H1 e invia l'output a un file chiamato capture.pcap . Con l'opzione -v, osserviamo l'avanzamento. Questa cattura si fermerà dopo aver catturato 50 pacchetti, poiché è configurata con l'opzione -c 50.

Dopo l'avvio accediamo al indirizzo 172.16.0.40 nel browser web Firefox.

2. Analizzare i pacchetti utilizzando Wireshark

In questa fase andiamo ad analizzare i pacchetti avviando Wireshark e aprendo il file capture.pcap e applichiamo un filtro tcp alla cattura per analizzare più nel dettaglio ciò che ci interessa

capture.pcap [Wireshark 2.5.1]						
File Edit	View Go	Capture Analyze Statistics	Telephony Tool	s Internals Help		
• •		🦸 🕒 🖺 🗶 G	Q 🚱 🦠	> % & Y		
Filter:	tcp			▼ Expression	Clear Apply Save	
No.	Time	Source	Destination	Protocol Le	ngth Info	
	5.369163		172.16.0.40		74 39164 → 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=409602686 TSecr=0 WS=512	
29	5.369291	172.16.0.40	10.0.0.11	TCP	74 80 → 39164 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK_PERM=1 TSval=2410809909 TSecr=40960268	86 WS=5
30	5.369345	10.0.0.11	172.16.0.40	TCP	66 39164 → 80 [ACK] Seq=1 Ack=1 Win=29696 Len=0 TSval=409602687 TSecr=2410809909	
31	5.369732	10.0.0.11	172.16.0.40	HTTP	358 GET /favicon.ico HTTP/1.1	
32	5.369765	172.16.0.40	10.0.0.11	TCP	66 80 → 39164 [ACK] Seq=1 Ack=293 Win=30208 Len=0 TSval=2410809910 TSecr=409602687	
33	5.375275	172.16.0.40	10.0.0.11	HTTP	390 HTTP/1.1 404 Not Found (text/html)	

Andiamo quindi ad esaminare le informazioni contenute nei pacchetti. il primo frame è l'inizio dell'handshake a tre vie tra il PC e il server su H4. Nel riquadro dell'elenco dei pacchetti, per esaminarlo andiamo ad esplorare la voce "Transmission Control Protocol" e "Flags"

In questo caso vediamo che la porta sorgente è la 39164 e quella di destinazione è la porta 80, quindi una porta nota (protocollo HTTP), inoltre possiamo vedere che è impostata la Flag SYN

Successivametne andiamo a selezionare il secondo frame, che sarebbe il pacchetto successivo nell'handshake a tre vie. Questo è il server web che risponde alla richiesta iniziale di avviare una sessione.

Adesso la porta di origine è la 80 e quella di destinazione è la porta 39164, a diffferenza del primo frame qui Il numero di sequenza relativo è 0 e il numero di conferma relativo è 1.

Infine, selezioniamo il terzo frame che rappresenta l'ultimo pacchetto nell'handshake a tre vie.

Come nel primo frame la porta di origine è la 39164 e quella di destinazione è la porta 80. Ed e' impostata la Flag di conferma ACK. I numeri di sequenza e di conferma relativi vengono impostati su 1 come punto di partenza. La connessione TCP

viene stabilita e la comunicazione tra il computer sorgente e il server Web può iniziare.

3. Visualizzare i pacchetti utilizzando tcpdump

È anche possibile visualizzare il file pcap e filtrare le informazioni desiderate, aprendo una finestra del terminale e digitando "man tcpdump". Utilizzando le pagine del manuale disponibili con il sistema operativo Linux, è possibile leggere o cercare al loro interno le opzioni per selezionare le informazioni desiderate dal file pcap. Per esempio cercheremo le informazioni con lo switch -r che consente di leggere il pacchetto dal file salvato, utilizzando l'opzione -w con tcpdump o altri strumenti che scrivono file pcap o pcap-ng, come Wireshark.

Quindi andiamo ad utilizzare il comando sottostante per visualizzare i primi 3 pacchetti TCP acquisiti: