

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 15.12.2016

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik (PL)

Prädikatenlogik

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von "Prädikaten"

Prädikatenlogik

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von "Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von "Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben. Alphabet der Prädikatenlogik:

 \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- ∀ Allquantor

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \blacksquare \exists Existenzquantor

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen
- , Komma

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

• Objektgleichheiten $R_1 \stackrel{.}{=} R_2$

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $R_1 \stackrel{\cdot}{=} R_2$
- Prädikat von Termen $p(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an.

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $R_1 \stackrel{\cdot}{=} R_2$
- Prädikat von Termen $p(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an.

Was sind die Stelligkeiten folgender Funktionen: f(a, b, c), g(a), h(a, b)?

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $R_1 \stackrel{.}{=} R_2$
- Prädikat von Termen $p(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an.

Was sind die Stelligkeiten folgender Funktionen: f(a, b, c), g(a), h(a, b)? 4, 1, 2.

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $R_1 \stackrel{.}{=} R_2$
- Prädikat von Termen $p(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an.

Was sind die Stelligkeiten folgender Funktionen: f(a, b, c), g(a), h(a, b)? 4, 1, 2.

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

