Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones				
	1.1. Definiciones	1			
	1.2. Sucesiones de funciones	3			
	1.3. Proceso de ortonormalización de Gram-Schmidt	9			
	1.4. Coeficientes de Fourier	10			
	1.5. Integrales impropias (valor principal)	14			
	1.6. Convergencia según Cesàro	15			
2.	Series de Fourier	19			
3.	Transformada de Fourier	35			
	3.1. Definiciones	35			
	3.2. Ejemplos	36			
	3.3. Propiedades	41			
	3.4. Aplicaciones	43			
4.	Convolución	45			
	4.1. Espacio S	45			
	4.2. Producto de convolución	46			
	4.3. El espacio S como anillo	49			
5.	Distribuciones temperadas	53			
	5.1. Definiciones	53			
	5.2. Sucesión de distribuciones	61			
	5.3. Producto de distribuciones	71			
	5.4. Distribuciones y ecuaciones diferenciales	72			
	5.5. Convergencia débil	73			
6.	Distribuciones y transformada de Fourier	79			
7.	Convolución de distribuciones	87			
	7.1. Definiciones	87			
	7.2. Propiedades de la convolución de distribuciones	89			
	7.3. Uso de convolución en Física	91			

IV ÍNDICE

8.	La función Gamma 93
	8.1. La función factorial
	8.2. La función Gamma
	8.3. Función Beta
	8.4. Notación doble factorial
	8.5. Fórmula de Stirling
	8.6. Otras funciones relacionadas
9.	Transformada de Laplace 103
	9.1. Definición
	9.2. Inversión de la transformada de Laplace
	9.3. Propiedades de la transformada de Laplace
	9.4. Lista de transformadas de Laplace
10	Aplicaciones de la transformada de Laplace
	10.1. Ecuaciones diferenciales lineales con coeficientes constantes
	10.2. Ecuaciones integrales
	10.3. Ecuaciones en derivadas parciales
	10.4. Sistema de ecuaciones lineales
11	.Polinomios ortogonales 123
	11.1. Definiciones
	11.2. Teoremas
	11.3. Relación de recurrencia
12	Polinomios de Hermite
	12.1. Definición
	12.2. Función generatriz
	12.3. Ortogonalidad
	12.4. Algunos resultados interesantes
	12.5. Solución por serie de la ecuación de Hermite

34 ÍNDICE

Capítulo 3

Transformada de Fourier

versión preliminar 3.2-16 de octubre de 2002

3.1. Definiciones

Sea $f \in \mathcal{C}[-L, L]$. Entonces

$$f(x) = \sum_{n = -\infty}^{\infty} C_n e^{\frac{in\pi x}{L}} \qquad \text{con } -L \le x \le L , \qquad (3.1)$$

donde

$$C_n = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-\frac{in\pi x}{L}} dx , \qquad \forall n \in \mathbb{Z} .$$
 (3.2)

Tomemos el límite cuando $L \to \infty$. Si definimos $k = \pi n/L$, vemos que, en este límite, k se vuelve continuo. Por otra parte,

$$\Delta k = \frac{\Delta n \pi}{L} = \frac{\pi}{L}$$
, pues $\Delta n = 1$.

Definimos

$$C_L(k) = \frac{L}{\pi} C_n .$$

Usando las anteriores definiciones en las ecuaciones (3.1) y (3.2) obtenemos:

$$f(x) = \sum_{Lk/\pi = -\infty}^{\infty} C_L(k) \frac{\pi}{L} e^{ikx} \left(\frac{\Delta kL}{\pi}\right) = \sum_{Lk/\pi = -\infty}^{\infty} C_L(k) e^{ikx} \Delta k ,$$

$$C_L(k) = \frac{L}{\pi} \frac{1}{2L} \int_{-L}^{L} f(x) e^{-ikx} dx .$$

Al hacer $L \to \infty$, obtenemos

$$f(x) = \int_{-\infty}^{\infty} C(k)e^{ikx} dk ,$$

$$C(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx .$$

Definimos ahora C(k) como la transformada de Fourier F(k) de la función f(x). La relación entre f y F está dada por el teorema de reciprocidad:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{-ikx} dk , \qquad (3.3a)$$

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{ikx} dx \equiv \mathcal{F}\{f, k\} . \tag{3.3b}$$

Definición 3.1 Si f es seccionalmente continua y además se cumple $\int_{-\infty}^{\infty} |f| < \infty$, entonces se dice que $f \in L^1$.

Teorema 3.1 (Sin demostración)

Si $f \in L^1$ entonces la transformada de Fourier $F(k) = \mathcal{F}\{f,k\}$ existe y $\lim_{k \to +\infty} F(k) = 0$.

3.2. Ejemplos

a) Una gaussiana, $f(x) = Ne^{-\alpha x^2}$. Su transformada de Fourier es:

$$F(k) = \frac{N}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\alpha x^2} e^{ikx} dx = \frac{N}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(\sqrt{\alpha}x - ik/2\sqrt{\alpha})^2} e^{-k^2/4\alpha} dx.$$

Haciendo el cambio de variable $u = \sqrt{\alpha}x - ik/2\sqrt{\alpha}$, obtenemos

$$F(k) = \frac{1}{\sqrt{2\pi}} \frac{N}{\sqrt{\alpha}} e^{-k^2/4\alpha} \int_{-\infty - ik/2\sqrt{\alpha}}^{\infty - ik/2\sqrt{\alpha}} e^{-u^2} du = \frac{N}{\sqrt{2\pi\alpha}} e^{-k^2/4\alpha} \int_{-\infty}^{\infty} e^{-u^2} du$$
$$F(k) = \frac{N}{\sqrt{2\pi\alpha}} e^{-k^2/4\alpha} \sqrt{\pi} = \frac{N}{\sqrt{2\alpha}} e^{-k^2/4\alpha} ,$$

otra gaussiana. Si α es "grande":

Si α es "pequeño":

3.2. EJEMPLOS 37

Los anchos de la función y de su transformada están en razón inversa.

b) Una función Lorentziana $f(x) = \frac{a}{x^2 + a^2}$ con a > 0. La transformada de Fourier:

$$F(k) = \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{ikx}}{x^2 + a^2} dx = \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{ikx}}{(x + ai)(x - ai)} dx .$$

Haciendo una prolongación analítica al plano complejo de la función f(x) y luego considerando el contorno cerrado de integración Γ , para el caso k > 0, podemos aplicar el teorema del residuo:

$$\oint_{\Gamma} \frac{e^{ikz}}{(z+ai)(z-ai)} dz = 2\pi i \operatorname{Res}_{z=ia} = 2\pi i (z-ai) \left. \frac{e^{ikz}}{(z+ai)(z-ai)} \right|_{z=ai} = \frac{\pi}{a} e^{-ka} .$$

Podemos separar el contorno en dos tramos, un semicírculo y un tramo horizontal entre -L y L sobre el eje real. Al tomar el límite $L \to \infty$ es fácil mostrar que la integral sobre el semicírculo tiende a cero y la integral entre -L y L tiende a una integral real entre $-\infty$ y ∞ , es decir

$$\oint_{\Gamma} \frac{e^{ikz}}{(z+ai)(z-ai)} dz \xrightarrow[L\to\infty]{} \int_{-\infty}^{\infty} \frac{e^{ikx}}{(x+ai)(x-ai)} dx = \frac{\pi}{a} e^{-ka}.$$

Finalmente, nuestra transformada de Fourier resulta

$$F(k) = \frac{a}{\sqrt{2\pi}} \frac{\pi}{a} e^{-ka} = \sqrt{\frac{\pi}{2}} e^{-ka}$$
 para $k > 0$.

Análogamente, podemos mostrar, considerando el polo en el semiplano inferior y un contorno de integración que lo contenga, que

$$F(k) = \sqrt{\frac{\pi}{2}} e^{ka} \quad \text{para } k < 0 .$$

Para k = 0:

$$F(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{a}{x^2 + a^2} dx = \frac{1}{\sqrt{2\pi}} \arctan\left(\frac{x}{a}\right) \Big|_{-\infty}^{+\infty} = \frac{1}{\sqrt{2\pi}} \left(\frac{\pi}{2} - \frac{-\pi}{2}\right) = \sqrt{\frac{\pi}{2}}.$$

Reuniendo los resultados para los diferentes k tenemos

$$F(k) = \sqrt{\frac{\pi}{2}} e^{-|k|a}$$
.

Graficamente:

Nuevamente, como en el caso de la Gaussiana, mientrás más ancha es la función, más angosta es su transformada, y viceversa. Observamos que:

$$i)$$
 $f(x) \xrightarrow{|x| \to \infty} 0 \text{ como } \frac{1}{x^2}$

F'(k) discontinua

$$f(x)$$
 infinitamente diferenciable

F(k) decrece más rápido que cualquier potencia

Esto coincide con los resultados generales sobre los coeficientes de Fourier del capítulo 2. Más adelante, en la sección 3.3, demostraremos el teorema análogo para transformadas de Fourier.

c) Consideremos la función, con a > 0,

$$f(x) = \begin{cases} 1 & |x| < a \\ 0 & |x| > a \end{cases}.$$

Su transformada de Fourier

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-a}^{+a} e^{ikx} dx = \sqrt{\frac{2}{\pi}} \frac{\operatorname{sen}(ka)}{k}$$

3.2. EJEMPLOS

Se observa, como en los ejemplos anteriores:

$$f(x)$$
 ancha $F(k)$ angosta

$$f(x)$$
 angosta $F(k)$ ancha

$$f(x)$$
 discontinua $F(k) \xrightarrow{|k| \to \infty} 0$ como $\frac{1}{k}$

$$f(x) \xrightarrow[|x| \to \infty]{} 0$$
 más rápido que $F(k)$ infinitamente cualquier potencia diferenciable

Ejercicio Para el caso anterior, evaluar $\mathcal{F}^{-1}\{F,x\}$, y mostrar que $f(x=\pm a)=\frac{1}{2}$.

d) Si $g(x) \in \mathbb{R}$ y es impar, i.e. g(-x) = -g(x), entonces

$$G(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{ikx} dx = \frac{2i}{\sqrt{2\pi}} \int_{0}^{\infty} g(x)\operatorname{sen}(kx) dx \equiv iG_{S}(k) ,$$

donde G_S es conocida como la transformada seno de Fourier de la función g(x), y viene definida por

$$G_S(k) = \sqrt{\frac{2}{\pi}} \int_0^\infty g(x) \operatorname{sen}(kx) \, dx$$
(3.4)

Como ilustración de la definición anterior, sea $f(x) = \operatorname{sgn}(x) e^{-\alpha |x|}$. Evaluemos su transformada de Fourier:

$$F(k) = iF_S(k) = i\sqrt{\frac{2}{\pi}} \int_0^\infty e^{-\alpha x} \operatorname{sen}(kx) \, dx$$

$$= i\sqrt{\frac{2}{\pi}} \int_0^\infty e^{-\alpha x} \left(\frac{e^{ikx} - e^{-ikx}}{2i}\right) \, dx$$

$$= \frac{1}{\sqrt{2\pi}} \left(\int_0^\infty e^{-(\alpha x - ikx)} \, dx - \int_0^\infty e^{-(\alpha x + ikx)} \, dx\right)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{-1}{\alpha - ik} e^{-(\alpha x - ikx)}\Big|_0^\infty - \frac{-1}{\alpha + ik} e^{-(\alpha x + ikx)}\Big|_0^\infty\right)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{1}{\alpha - ik} - \frac{1}{\alpha + ik}\right) = \frac{1}{\sqrt{2\pi}} \frac{2ik}{\alpha^2 + k^2}$$

$$F(k) = \sqrt{\frac{2}{\pi}} \frac{ik}{\alpha^2 + k^2}.$$

f(x) discontinua

- $F(k) \xrightarrow{|k| \to \infty} 0 \text{ como } \frac{1}{k}$
- $f(x) \xrightarrow[|x| \to \infty]{} 0$ más rápido que cualquier potencia
- F(k) infinitamente diferenciable

Notemos que $F \in L^1$, pero su integral entre $-\infty$ y ∞ resulta impropia, $\not P F = 0$.

Análogamente a la definición de la transformada seno de Fourier, si $g(x) \in \mathbb{R}$ y es par, i.e. g(-x) = g(x), entonces

$$G(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{ikx} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} g(x)\cos(kx) dx \equiv G_C(k) ,$$

donde G_C es conocida como la transformada coseno de Fourier de la función g(x), y viene definida por

$$G_C(k) = \sqrt{\frac{2}{\pi}} \int_0^\infty g(x) \cos(kx) dx$$
(3.5)

e) Consideremos ahora una función $f(x) \notin L^1$. Sea $f(x) = \operatorname{sgn}(x)$. $f(x) \notin L^1$, ya que $\int_{-\infty}^{\infty} |f(x)| dx$ diverge. Intentemos de todas maneras evaluar la transformada de Fourier:

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \operatorname{sgn}(x) e^{ikx} dx$$

$$= i\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \operatorname{sen}(kx) dx \qquad \text{(integral Cesàro)}$$

$$= \begin{cases} \frac{i}{k} \sqrt{\frac{2}{\pi}} & \text{si } k \neq 0 \\ 0 & \text{si } k = 0 \end{cases}$$

3.3. PROPIEDADES 41

3.3. Propiedades

Algunas propiedades de la transformada de Fourier. Sean $f, g \in L^1$ y $\alpha, \beta \in \mathbb{C}$.

$$\mathcal{F}\{\alpha f + \beta g, k\} = \alpha \mathcal{F}\{f, k\} + \beta \mathcal{F}\{g, k\}$$
 \mathcal{F} es lineal (3.6a)

$$\mathcal{F}\{f(x-a),k\} = e^{ika}\mathcal{F}\{f,k\} = e^{ika}F(k) \tag{3.6b}$$

$$\mathcal{F}\{f, -k\} = (\mathcal{F}\{f, k\})^* \qquad \text{si } f \in \mathbb{R}$$
 (3.6c)

$$\mathcal{F}\lbrace e^{ax}f(x),k\rbrace = \mathcal{F}\lbrace f,k-ai\rbrace = F(k-ai) \tag{3.6d}$$

$$\mathcal{F}\lbrace e^{iax} f(x), k \rbrace = \mathcal{F}\lbrace f, k+a \rbrace = F(k+a) \tag{3.6e}$$

$$\mathcal{F}\{f(\alpha x), k\} = \frac{1}{|\alpha|} \mathcal{F}\left\{f(x), \frac{k}{\alpha}\right\} = \frac{1}{|\alpha|} F\left(\frac{k}{\alpha}\right)$$
(3.6f)

Teorema 3.2 Cuanto más derivable es f(x) tanto más rápido decrece $F(k) \xrightarrow[k]{\to \infty} 0$.

Demostración Sea f(x) continua en $-\infty < x < \infty$. Si $f, f' \in L^1$, entonces

$$F(k) \xrightarrow[k]{-\infty} 0$$
,

pero también

$$kF(k) \xrightarrow[k]{\to\infty} 0$$
,

ya que

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{ikx} dx \stackrel{\text{ipp}}{=} f(x) \frac{e^{ikx}}{ik\sqrt{2\pi}} \bigg|_{-\infty}^{\infty} - \frac{1}{ik\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{ikx} dx = -\frac{1}{ik} \mathcal{F}\{f', k\} ,$$

o sea

$$-ikF(k) = \mathcal{F}\{f',k\} \xrightarrow[|k| \to \infty]{} 0,$$

pues $f' \in L^1$.

Sean ahora $f, f', f'', f''', \dots, f^{(n-1)} \in L^1$ continuas en $-\infty < x < \infty$. Sea $f^{(n)} \in L^1$, entonces integrando n veces por partes obtenemos

$$\mathcal{F}\{f^{(n)}, k\} = (-ik)^n F(k) \xrightarrow[|k| \to \infty]{} 0,$$

lo cual demuestra lo enunciado en el teorema.

q.e.d.

Teorema 3.3 Cuanto más rápido $f(x) \xrightarrow[|x| \to \infty]{} 0$, tanto más derivable es F(k).

Demostración Sea $f \in L^1$. Entonces F(k) es continua. En efecto,

$$\begin{split} \Delta F(k) &= F(k+h) - F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \left\{ e^{i(k+h)x} - e^{ikx} \right\} dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{ikx} e^{ihx/2} \left\{ e^{ihx/2} - e^{-ihx/2} \right\} dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{ikx} e^{ihx/2} 2i \operatorname{sen} \left(\frac{hx}{2} \right) dx \; . \end{split}$$

Que $f \in L^1$ dice que $\int_{-\infty}^{\infty} |f| < \infty$, luego $\forall \epsilon > 0 \; \exists \; A$ suficientemente grande, tal que $\int_{A}^{\infty} |f| < \epsilon$, $\int_{-\infty}^{-A} |f| < \epsilon$. Además, se tiene que

$$\left| \operatorname{sen}\left(\frac{hx}{2}\right) \right| \le \frac{1}{2} |hx| \le \frac{hA}{2} \quad \text{para } x \in [-A, A].$$

Teniendo en cuenta los resultados anteriores podemos acotar $|\Delta F|$, a saber

$$\begin{split} |\Delta F| &\leq \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} |f(x)| \left| \operatorname{sen} \left(\frac{hx}{2} \right) \right| \, dx \\ &\leq \sqrt{\frac{2}{\pi}} \left\{ \int_{-\infty}^{-A} |f(x)| \, dx + \int_{A}^{\infty} |f(x)| \, dx + \int_{-A}^{A} |f(x)| \, \frac{hA}{2} \, dx \right\} \\ &\leq \sqrt{\frac{2}{\pi}} \left\{ \epsilon + \epsilon + \frac{hA}{2} \int_{-A}^{A} |f(x)| \, dx \right\} \,, \end{split}$$

lo cual es tan pequeño como se quiera. Lo anterior implica que F(k) es continua. Sea ahora f(x) y $xf(x) \in L^1$, entonces afirmamos que F(k) es derivable. En efecto

$$\frac{d}{dk} \left[\sqrt{2\pi} F(k) \right] = \frac{d}{dk} \int_{-\infty}^{\infty} f(x) e^{ikx} dx = \int_{-\infty}^{\infty} \frac{\partial}{\partial k} \left[f(x) e^{ikx} \right] dx = i \int_{-\infty}^{\infty} x f(x) e^{ikx} dx.$$

El intercambio entre la integral y la derivada queda legitimado ya que hay convergencia uniforme porque la última de las integrales tiene un mayorante convergente: $\int_{-\infty}^{\infty} |xf(x)| < \infty$ pues $xf(x) \in L^1$. De lo anterior tenemos que

$$F'(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ix f(x) e^{ikx} dx = \mathcal{F}\{ix f(x), k\} .$$

Finalmente, si $f(x), xf(x), \ldots, x^n f(x) \in L^1$, entonces, de una forma análoga al caso anterior, podemos probar que la derivada de la transformada de Fourier existe, porque $F^{(n)}(k) = \mathcal{F}\{(ix)^n f(x), k\}$.

q.e.d.

También se puede probar que, en general, mientras más ancha es una función, más angosta es su transformada de Fourier y viceversa, como ya observamos en los ejemplos de la sección 3.2.

3.4. APLICACIONES 43

Definición 3.2 Sea f(x) tal que $x | f(x) |^2, x^2 | f(x) |^2 \in L^1$. Definimos la posición media de la distribución $| f(x) |^2$

$$\langle x \rangle = \frac{1}{C} \int_{-\infty}^{\infty} x |f(x)|^2 dx , \qquad (3.7)$$

con

$$C = \int_{-\infty}^{\infty} |f(x)|^2 dx ,$$

y el ancho de la distribución $|f(x)|^2$

$$\Delta x = \sqrt{\langle (x - \langle x \rangle)^2 \rangle} = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} , \qquad (3.8)$$

Teorema 3.4 Sea Δx el ancho medio asociado a una función $f(x) \in L^1$. Sea $F(k) = \mathcal{F}\{f(x),k\}$ la transformada de Fourier de f, con ancho Δk . Entonces se cumple

$$\Delta k \Delta x \ge \frac{1}{2} \ .$$

La igualdad se consigue sólo si f(x) es una gaussiana.

3.4. Aplicaciones

a) Consideremos la ecuación de Laplace en dos dimensiones

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0 \ .$$

Busquemos soluciones para $y \ge 0$ que satisfagan las condiciones de contorno

$$\Phi(x,0) = f(x)$$
 y $\Phi(x,y) \xrightarrow[y \to \infty]{} 0$.

Solución

Realicemos separación de variables, *i.e.* escribimos $\Phi(x, y) = X(x)Y(y)$. Al introducir esta forma para $\Phi(x, y)$ en la ecuación diferencial obtenemos

$$\frac{1}{X(x)}\frac{d^2X(x)}{dx^2} = -\frac{1}{Y(y)}\frac{d^2Y(y)}{dy^2} = -\alpha^2 ,$$

donde $\alpha > 0$ es la constante de separación. Las soluciones de las respectivas ecuaciones diferenciales son:

$$\frac{d^2X(x)}{dx^2} + \alpha^2X(x) = 0 \longrightarrow X(x) = \overline{A}e^{i\alpha x} + \overline{B}e^{-i\alpha x} ,$$

$$\frac{d^2Y(y)}{dy^2} - \alpha^2Y(y) = 0 \longrightarrow Y(y) = \overline{C}e^{-\alpha y} + \overline{D}e^{\alpha y} .$$

Al aplicar la condición de contorno $\Phi(x,y) \xrightarrow[y\to\infty]{} 0$ concluimos que $\overline{D}=0$.

Planteamos la solución más general superponiendo sobre todos los valores posibles de la constante de separación α :

$$\Phi(x,y) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \left[A(\alpha) e^{i\alpha x} + B(\alpha) e^{-i\alpha x} \right] e^{-\alpha y} d\alpha .$$

Imponiendo la condición de borde para y = 0:

$$\Phi(x,0) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \left[A(\alpha) e^{i\alpha x} + B(\alpha) e^{-i\alpha x} \right] d\alpha = f(x) .$$

Al definir $A(-\alpha) = B(\alpha)$ podemos compactar las dos integrales en sólo una:

$$\Phi(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(\alpha)e^{i\alpha x} d\alpha = f(x) .$$

Identificamos los coeficientes, $A(\alpha) = \mathcal{F}\{f(x), \alpha\}$, y reemplazamos en la solución general,

$$\Phi(x,y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathcal{F}\{f(x),\alpha\} e^{i\alpha x} e^{-|\alpha|y} d\alpha ,$$

obteniendo la solución del problema de contorno.

b) Consideremos la ecuación diferencial del oscilador armónico amortiguado y forzado por una fuerza externa:

$$\frac{d^2x(t)}{dt^2} + 2\alpha \frac{dx(t)}{dt} + \omega_0^2 x(t) = f(t) .$$

Solución

Aplicando la transformada de Fourier a ambos lados de la ecuación diferencial, obtenemos

$$(-i\omega)^2 \mathcal{F}\{x(t),\omega\} + 2\alpha(-i\omega)\mathcal{F}\{x(t),\omega\} + \omega_0^2 \mathcal{F}\{x(t),\omega\} = \mathcal{F}\{f(t),\omega\} \equiv F(\omega).$$

Despejando para la transformada de Fourier de la solución:

$$\mathcal{F}\{x(t),\omega\} = \frac{F(\omega)}{-\omega^2 - 2\alpha i\omega + \omega_0^2}.$$

Tomando la antitransformada obtenemos la solución

$$x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{F(\omega)}{\omega^2 - \omega_0^2 + 2\alpha i\omega} e^{-i\omega t} d\omega.$$

El procedimiento anterior resulta útil para resolver ecuaciones diferenciales lineales con coeficientes constantes.