Test — Mathematics for Data Science

Courses 1 and 2: Vector spaces, linear applications, matrices

Exercise (A): Short proofs

- 1. Let $A, B \in \mathbb{R}^{n \times n}$ and let V be a real vector space. Prove that $(AB)^{\top} = B^{\top}A^{\top}$.
- 2. Justify that $rank(A) = rank(A^{\top})$.
- 3. Let $A, B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times p}$, $Q \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$. Prove each of the following properties of the transpose. Each item should be proved in a few lines.
 - (a) Linearity. $(A+B)^{\top} = A^{\top} + B^{\top}$ and $(\alpha A)^{\top} = \alpha A^{\top}$.
 - (b) **Product rule.** $(AC)^{\top} = C^{\top}A^{\top}$.
 - (c) **Involution.** $(A^{\top})^{\top} = A$.
 - (d) **Invertibility and transpose.** If A is square and invertible, then $(A^{-1})^{\top} = (A^{\top})^{-1}$.

Exercise (B): Short computations

Let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 3}.$$

- 1. Compute rank(A). Give a basis of range(A) and a basis of ker(A).
- 2. Solve Ax = b and describe all solutions.
- 3. Consider the linear map $x \mapsto Cx : \mathbb{R}^3 \to \mathbb{R}^2$. Is it injective? surjective? Compute $\operatorname{rank}(C)$, $\dim \ker(C)$, and give a basis of $\ker(C)$.
- 4. Let $U = \{(x, y, z) \in \mathbb{R}^3 : x 2y + z = 0\}$. Prove that U is a subspace. Find dim U and a basis of U.

Exercise (C): True/False

Work over \mathbb{R} . Justify briefly whether the following assertions are True or False.

- 1. If $v_1, v_2, v_3 \in \mathbb{R}^3$ satisfy that any two of vectors are linearly independent, then $\{v_1, v_2, v_3\}$ is linearly independent.
- 2. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is linear and dim $\ker(T) = 1$, then dim range(T) = 2.
- 3. If $Q \in \mathbb{R}^{n \times n}$ satisfies $Q^{\top}Q = I_n$, then the columns of Q form an orthonormal basis of \mathbb{R}^n .

Answer elements — Mathematics for Data Science

Exercise (A): Short proofs

- 1. Entrywise, $((AB)^{\top})_{ij} = (AB)_{ji} = \sum_{k} a_{jk} b_{ki} = \sum_{k} b_{ki} a_{jk} = (B^{\top}A^{\top})_{ij}$, hence $(AB)^{\top} = B^{\top}A^{\top}$.
- 2. $\operatorname{rank}(A)$ equals the dimension of the row space of A, which is the column space of A^{\top} . Thus $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$.
- 3. Let $A, B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times p}$, and $\alpha \in \mathbb{R}$. We write M_{ij} for the (i, j)-entry of a matrix M
 - (a) **Linearity.** For all i, j,

$$((A+B)^{\top})_{ij} = (A+B)_{ji} = A_{ji} + B_{ji} = (A^{\top})_{ij} + (B^{\top})_{ij} = (A^{\top} + B^{\top})_{ij},$$

hence $(A+B)^{\top} = A^{\top} + B^{\top}$. Likewise,

$$((\alpha A)^{\top})_{ij} = (\alpha A)_{ji} = \alpha A_{ji} = \alpha (A^{\top})_{ij} = (\alpha A^{\top})_{ij},$$

hence $(\alpha A)^{\top} = \alpha A^{\top}$.

(b) **Product rule.** For $A \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times p}$, the product $AC \in \mathbb{R}^{m \times p}$ has entries

$$(AC)_{ji} = \sum_{k=1}^{n} A_{jk} C_{ki}.$$

Therefore, for all i, j,

$$((AC)^{\top})_{ij} = (AC)_{ji} = \sum_{k=1}^{n} A_{jk} C_{ki} = \sum_{k=1}^{n} (C^{\top})_{ik} (A^{\top})_{kj} = (C^{\top}A^{\top})_{ij}.$$

Hence $(AC)^{\top} = C^{\top}A^{\top}$.

(c) **Involution.** For all i, j,

$$\left((A^{\top})^{\top} \right)_{ij} = (A^{\top})_{ji} = A_{ij},$$

hence $(A^{\top})^{\top} = A$.

(d) Invertibility and transpose. Let $A \in \mathbb{R}^{n \times n}$ be invertible. Then

$$I_n = (AA^{-1})^{\top} = (A^{-1})^{\top}A^{\top}$$
 and $I_n = (A^{-1}A)^{\top} = A^{\top}(A^{-1})^{\top}$.

Thus $(A^{-1})^{\top}$ is both a left and a right inverse of A^{\top} , so A^{\top} is invertible and

$$(A^{\top})^{-1} = (A^{-1})^{\top}.$$

Exercise (B): Short computations

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix}.$$

1. Rank, bases of range and kernel of A. Row-reduction gives

$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hence rank(A) = 2 with pivots in columns 1 and 2. A basis of range(A) is given by the first two *original* columns:

$$\{(1,2,3)^{\top}, (1,1,2)^{\top}\}.$$

From the reduced system $x_1 - x_3 = 0$, $x_2 + x_3 = 0$, letting $x_3 = t$ we get

$$\ker(A) = \operatorname{span}\{(1, -1, 1)^{\top}\}.$$

2. Solve Ax = b. Using the same reduction on the augmented system yields

$$x_1 - x_3 = -1,$$
 $x_2 + x_3 = 2.$

With $x_3 = t$,

$$x = (-1, 2, 0)^{\top} + t(1, -1, 1)^{\top}, \quad t \in \mathbb{R}.$$

3. Map $x \mapsto Cx$. Injectivity/surjectivity, rank, kernel. The columns of C span \mathbb{R}^2 (e.g., the first two are independent), so rank(C) = 2. Thus $x \mapsto Cx : \mathbb{R}^3 \to \mathbb{R}^2$ is surjective but not injective. By rank–nullity,

$$\dim \ker(C) = 3 - \operatorname{rank}(C) = 1.$$

Solving Cx = 0 gives $x = s(2, -1, 3)^{\top}$, hence

$$\ker(C) = \operatorname{span}\{(2, -1, 3)^{\top}\}.$$

4. $U = \{(x, y, z) : x - 2y + z = 0\}$. $U = \ker \phi$ where $\phi(x, y, z) = x - 2y + z$ is linear, hence U is a subspace. Writing x = 2y - z,

$$(x, y, z) = y(2, 1, 0) + z(-1, 0, 1).$$

Therefore dim U = 2 and a basis is $\{(2, 1, 0), (-1, 0, 1)\}.$

Exercise (C): True/False

- 1. **False.** We could have $v_1 + v_2 + v_3 = 0$.
- 2. **True.** By rank–nullity, dim range $(T) = 3 \dim \ker(T) = 2$.
- 3. True. $Q^{\top}Q = I$ implies the columns are orthonormal and span \mathbb{R}^n .