Cinétique chimique

#chapitre6 #chimie

Soit la réaction $|\alpha|A + |\beta|B = |\gamma|C + |\delta|D$

Réaction

Vitesse de formation/disparition

$$v_C = rac{dn_C}{dt} \; v_A = -rac{dn_A}{dt} \; \mathsf{en} \; mol \cdot s^{-1}$$

Vitesse de réaction

$$v = \frac{d\xi}{dt} \ v = -\frac{1}{\alpha} \frac{d[A]}{dt}$$

Temps de demi-réaction

$$\xi(t_{rac{1}{2}})=rac{\xi(t_f)}{2}$$
 avec $t_{rac{1}{2}}
eq rac{t_f}{2}$

Facteurs cinétiques

Concentration des réactifs

Augment la probabilité que les réactives se rencontrent.

Température

Augmente la probabilité qu'un choc soit efficace.

Présence d'un catalyseur

Loi de vitesse et ordre de réaction

Loi de vitesse

$$v = f([A], \dots, [D])$$

•
$$v = k[A]^{mA}[B]^{mB}$$

Ordre initial

ordre aux instants proches de le moment initial pour les réaction sans ordre.

Loi d'Arrhenius

$$rac{d \ln(k)}{dT} = rac{E_A}{RT^2} \ k(T) = Ae^{-rac{E_A}{RT}}$$

Etude d'ordres simples

Ordre	Loi de vitesse	Loi integrée	Temps de demi-réaction
0	$rac{d[A]}{dt} = - \mid lpha \mid k$	$[A] = [A_0] - \mid lpha \mid kt$	$t_{rac{1}{2}}=rac{[A_0]}{2 lpha k}$
1	$rac{d[A]}{dt} = - \mid lpha \mid k[A]$	$[A]=[A_0]e^{- lpha kt}$	$t_{rac{1}{2}}=rac{\ln(2)}{ lpha k}$
2	$rac{d[A]}{dt} = - \mid lpha \mid k[A]^2$	$rac{1}{[A]} = rac{1}{A_0} + \mid lpha \mid kt$	$t_{rac{1}{2}}=rac{1}{ lpha k[A]_0}$

Détermination expérimentale de l'ordre d'une réaction

Se ramener à une vitesse de la forme $v=k_{app}[A]^p$ par un choix approprié des conditions expérimentales

Choix des conditions

Mélange stœchiométrique

$$v = k_{app} imes [A]^p$$
 avec $egin{cases} k_{app} = k imes (rac{lpha}{eta})^n \ p = m+n \end{cases}$

• Cette méthode permet donc d'accéder à l'ordre global de la réaction.

dégénérescence de l'ordre

Mettre l'un des réactifs en excès.

•
$$v = k_{app} imes [B]^n$$
 avec $k_{app} = k[A]_0^m$

• Cette permet de déterminer l'ordre partiel par rapport à un réactif largement limitant par rapport aux autres.