Computing isomorphism classes of abelian varieties over finite fields.

Stefano Marseglia

Utrecht University

Simons Collaboration - May meeting

Stefano Marseglia May 6, 2023 1/15

Abelian varieties

- An abelian variety over a field k is a connected projective group scheme over k.
- Our goal: compute k-isomorphism classes of AVs for $k = \mathbb{F}_q$.
- eg. AVs of dim 1 are elliptic curves:

$$ZY^2 = X^3 + AXZ^2 + BZ^3$$
, $4A^3 + 27B^2 \neq 0$

- In higher dim: equations are too big.
- First step is to simplify the problem: work up to isogeny (=surjective homomorphism with finite kernel).

May 6, 2023 2/15

Isogeny classification over \mathbb{F}_q

ullet A/\mathbb{F}_q comes with a **Frobenius** endomorphism, that induces an action

Frob_A:
$$T_{\ell}A \rightarrow T_{\ell}A$$
 for any $\ell \neq p$,

where $T_{\ell}(A) = \underline{\lim} A[\ell^n] \simeq \mathbb{Z}_{\ell}^{2g}$.

- $h_A(x) := \text{char}(\text{Frob}_A)$ is a q-Weil polynomial and isogeny invariant.
- By Honda-Tate theory,

$$A \sim_{\mathbb{F}_q} B \iff h_A(x) = h_B(x),$$

and using the association

isogeny classes of
$$A \longmapsto h_A(x)$$

allows us to enumerate all AVs up to isogeny (see Dupuy-Kedlaya-Roe-Vincent and LMFDB).

• Also, $h_A(x)$ is squarefree \iff End_{\mathbb{F}_a}(A) is commutative.

Stefano Marseglia May 6, 2023

Squarefree case: Deligne ('69) and Centeleghe-Stix ('15)

- Fix a squarefree char. poly. h which is ordinary or with q = p prime.
- \rightsquigarrow an isogeny class $\mathscr{C}_h/\mathbb{F}_q$.
- Put $K := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$, an étale algebra = product of number fields.
- Put V = q/F.
- Deligne and C-S's results give:

Theorem

```
{abelian varieties over \mathbb{F}_q in \mathscr{C}_h}_{\simeq}
\uparrow
{fractional ideals of \mathbb{Z}[F,V] \subset K}_{\simeq}
=: ICM(\mathbb{Z}[F,V])
ideal class monoid
```

• Problem: $\mathbb{Z}[F, V]$ might not be maximal \rightsquigarrow non-invertible ideals.

Stefano Marseglia May 6, 2023

ICM: Ideal Class Monoid

Let R be an **order** in an étale \mathbb{Q} -algebra K.

• Recall: for **fractional** R-ideals I and J

$$I \simeq_R J \iff \exists x \in K^\times \text{ s.t. } xI = J$$

We have

$$ICM(R) \supseteq Pic(R) = {invertible fractional R-ideals} /_{\simeq_R}$$
 with equality ${}^{\updownarrow}$ iff $R = \mathcal{O}_K$

...and actually

$$ICM(R) \supseteq \bigsqcup_{\substack{R \subseteq S \subseteq \mathcal{O}_K \text{over-orders}}} Pic(S)$$
 with equality iff R is Bass

Stefano Marseglia

simplify the problem

Study the isomorphism problem locally: (Dade, Taussky, Zassenhaus '62)

weak equivalence:

$$I_{\mathfrak{p}} \simeq_{R_{\mathfrak{p}}} J_{\mathfrak{p}}$$
 for every $\mathfrak{p} \in \mathsf{mSpec}(R)$
$$\updownarrow$$

$$1 \in (I:J)(J:I) \quad \mathsf{easy to check!}$$

- We denote the set of weak eq. classes by W(R).
- If I and J are weakly equivalent (or isomorphic) then they have the same **multiplicator ring**: (I:I) = (J:J).

Stefano Marseglia May 6, 2023 6/15

Compute ICM(R)

Partition w.r.t. the multiplicator ring:

$$W(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} W_S(R)$$
$$ICM(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} ICM_S(R)$$

the "pedix" -S means "only classes with multiplicator ring S"

7 / 15

Theorem (M.)

For every over-order S of R, Pic(S) acts freely on $ICM_S(R)$ and

$$W_S(R) = ICM_S(R) / Pic(S)$$
.

Stefano Marseglia May 6, 2023

To sum up:

To compute ICM(R), we need to:

- compute the overorders $R \subseteq S \subseteq \mathcal{O}_K$... solved by Hofmann-Sircana '19.
- for each such S, compute Pic(S) ...
 ... use:

$$1 \to S^{\times} \to \mathscr{O}_{K}^{\times} \to \frac{\left(\mathscr{O}_{K}/\mathfrak{f}\right)^{\times}}{\left(S/\mathfrak{f}\right)^{\times}} \to Pic(S) \to Pic(\mathscr{O}_{K}) \to 1$$

where $\mathfrak{f} = (S : \mathcal{O}_K)$ is the conductor. See Klüners-Pauli '05.

• for each S, compute $W_S(R)$, as I now will explain.

Stefano Marseglia May 6, 2023

Weak equivalence classes

- Fix an overorder S of R.
- We compute $W_S(R)$ recursively.
- If $S = \mathcal{O}_K$ then $W_S(R)$ consists only of the class of $1 \cdot \mathcal{O}_K$.
- If $S \subseteq \mathcal{O}_K$ then pick a non-invertible prime \mathfrak{p} of S.
- Put $T = (\mathfrak{p} : \mathfrak{p}) \supseteq S$ and let $J_1, ..., J_n$ be the representatives of $W_T(R)$.
- Proposition: each class in $W_S(R)$ admits a representative I such that $IT = J_i$ for a unique i, which implies

$$\mathfrak{p}I = \mathfrak{p}J_i \subset I \subset J_i$$
.

• Enough to list all the sub- S/\mathfrak{p} -vector spaces of $J_i/\mathfrak{p}J_i$.

Stefano Marseglia May 6, 2023 9/15

back to AVs:

- To sum up:
- Given a **squarefree** *q*-Weil polynomial *h* which is ordinary or over the prime field...
- ... \rightsquigarrow algorithm to compute the isomorphism classes of AVs in \mathscr{C}_h .
- See

https://github.com/stmar89/AlgEt

for a Magma package to compute the ideal class monoid of an order in an étale algebra. (Should appear in the next Magma release)

Stefano Marseglia May 6, 2023 10 / 15

About the computation

• input: all ordinary, or over a prime field, squarefree isogeny classes of dimension g over \mathbb{F}_q for:

$$g = 1$$
 $q = 2,..., 128$
 $g = 2$ $q = 2,..., 128$
 $g = 3$ $q = 2,3,4,5,7,8,9,16,25$
 $g = 4$ $q = 2,3,4$
 $g = 5$ $q = 2$

for a total of 615.269 isogeny classes.

• output: got 1.659.022.602 isomorphism classes.

Some stats

	g=1	g=2	g=3	g=4	g=5
q=2	1	2	4	12	54
q=3	1	3	9	57	_
q=4	2	5	27	285	_
q=5	1	5	36	_	_
q=7	2	8	97	_	_ [
q=8	2	17	259	_	_ [
q=9	2	14	242	_	_ [
q=11	2	15	_	_	_ [
q=13	2	20	_	_	_
q=16	4	53	2352	_	_
q=17	2	29	_	_	_
q=19	2	35	_	_	_
q=23	2	47	_	_	_
q=25	3	63	5024	_	_

Table: (rounded) average number of isomorphism classes per isogeny class.

Stefano Marseglia May 6, 2023 12 / 15

Some stats

	g=1	g=2	g=3	g=4	g=5
q=2	1	1	1	1	4
q=3	1	1	2	8	_
q=4	1	2	4	48	_
q=5	1	2	4	_	_
q=7	2	4	24	_	_
q=8	3	6	36	_	_
q=9	2	8	48	_	_
q=11	1	4	_	_	_
q=13	2	8	_	_	_
q=16	4	16	480	_	_
q=17	1	8	_	_	_
q=19	2	16	_	_	_
q=23	1	12	_	_	_
q=25	2	24	1440	_	_

Table: most frequent size

Stefano Marseglia May 6, 2023

Some stats

	g=1	g=2	g=3	g=4	g=5
q=2	1	5	40	668	7849
q=3	2	10	162	9188	_
q=4	2	20	1404	346064	_
q=5	2	29	2196	_	_
q=7	2	66	15824	_	_
q=8	3	180	44226	_	_
q=9	3	136	39960	_	_
q=11	4	142	_	_	_
q=13	4	220	_	_	_
q=16	5	832	2271240	_	_
q=17	4	672	_	_	_
q=19	4	568	_	_	_
q=23	6	1184	_	_	_
q=25	6	935	8674136	_	_

Table: max. number of isomorphism classes per isogeny class.

 Stefano Marseglia
 May 6, 2023
 14 / 15

Thank you!

 Stefano Marseglia
 May 6, 2023
 15 / 15