#### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

# «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

# ПАРАЛЛЕЛЬНОЕ И РАСПРЕДЕЛЕННОЕ ПРОГРАММИРОВАНИЕ. WORK15

#### ОТЧЕТ О ПРАКТИКЕ

| студента 3 курса 311 группы<br>направления 02.03.02 — Фундаментальная информатика и 1 | информационные |
|---------------------------------------------------------------------------------------|----------------|
| технологии                                                                            |                |
| факультета КНиИТ                                                                      |                |
| Вильцева Данила Денисовича                                                            |                |
|                                                                                       |                |
|                                                                                       |                |
|                                                                                       |                |
|                                                                                       |                |
|                                                                                       |                |
| Проверил                                                                              |                |
|                                                                                       |                |
| Старший преподаватель                                                                 | М. С. Портенко |

# СОДЕРЖАНИЕ

| 1 | Work 15                          | 3  |
|---|----------------------------------|----|
|   | 1.1 Условие задачи               | 3  |
|   | 1.2 Решение. Параллельная версия | _  |
| 2 | Результат работы                 | 8  |
| 3 | Результат работы. Таблицы        | 1( |
| 4 | Характеристики компьютера        | 11 |

#### 1 Work 15

#### 1.1 Условие задачи

Аналогично работе с ОМР выполните следующие задания через МРІ.

Выполните разработку параллельного варианта для одного из итерационных методов:

#### 3. верхней релаксации.

Для тестовой матрицы из нулей и единиц проведите вычислительные эксперименты, результаты занесите в таблицу 1.

Таблица 1. Время выполнения последовательного и параллельного итерационного алгоритмов решения систем линейных уравнений и ускорение

| Номер | Порядок<br>системы | Последовательный алгоритм - | Параллельный<br>алгоритм |           |
|-------|--------------------|-----------------------------|--------------------------|-----------|
| 10014 | 01101011111        |                             | Время                    | Ускорение |
| 1     | 10                 |                             |                          |           |
| 2     | 100                |                             |                          |           |
| 3     | 500                |                             |                          |           |
| 4     | 1000               |                             |                          |           |
| 5     | 1500               |                             |                          |           |
| 6     | 2000               |                             |                          |           |
| 7     | 2500               |                             |                          |           |
| 8     | 3000               |                             |                          |           |

Какой из алгоритмов Гаусса или итерационный обладает лучшими показателями ускорения? Заполните таблицу 2.

Таблица 2. Ускорение параллельных алгоритмов Гаусса и итерационного (вариант) решения систем линейных уравнений

| Номер | Порядок | Ускорение алгоритма | Ускорение итерационного |
|-------|---------|---------------------|-------------------------|
| теста | системы | Гаусса              | алгоритма (вариант)     |
| 1     | 10      |                     |                         |
| 2     | 100     |                     |                         |
| 3     | 500     |                     |                         |
| 4     | 1000    |                     |                         |
| 5     | 1500    |                     |                         |
| 6     | 2000    |                     |                         |
| 7     | 2500    |                     |                         |
| 8     | 3000    |                     |                         |

#### 1.2 Решение. Параллельная версия

```
#include <iostream>
#include <time.h>
#include <cmath>
#include <windows.h>
#include <cstdlib>
#include <mpi.h>
using namespace std;
int ProcNum;
int ProcRank;
int* pParallelPivotPos; // The Number of pivot rows selected at the iterations
int* pProcPivotIter;  // The Iterations, at which the rows were pivots
int* pProcInd;
int* pProcNum;
// Function that converts numbers form LongInt type to
// double type
double LiToDouble(LARGE_INTEGER x) {
        double result = ((double)x.HighPart) * 4.294967296E9 +
                (double)((x).LowPart);
        return result;
}
// Function that gets the timestamp in seconds
double GetTime() {
        LARGE_INTEGER lpFrequency, lpPerfomanceCount;
        QueryPerformanceFrequency(&lpFrequency);
        QueryPerformanceCounter(&lpPerfomanceCount);
        return LiToDouble(lpPerfomanceCount) / LiToDouble(lpFrequency);
}
double* upper_relaxation_method(double** a, double* b, int n, double eps, double w, double*

    x, double* xn) {
        int i, j, k = 0;
        double norma;
        for (i = 0; i < n; i++)
        {
                xn[i] = 0;
                x[i] = xn[i];
        }
        do
        {
                k++;
                norma = 0;
```

```
for (i = 0; i < n; i++)
                {
                         x[i] = b[i];
                         for (j = 0; j < n; j++)
                         {
                                 if (i != j)
                                         x[i] = x[i] - a[i][j] * x[j];
                         x[i] /= a[i][i];
                         x[i] = w * x[i] + (1 - w) * xn[i];
                         if (fabs(x[i] - xn[i]) > norma)
                                 norma = fabs(x[i] - xn[i]);
                         xn[i] = x[i];
                         MPI_Reduce(&norma, &xn[i], 1, MPI_DOUBLE, MPI_SUM, 0,
\hookrightarrow MPI_COMM_WORLD);
        } while (norma > eps);
        return x;
}
double experiment(double* res, double** a, double* b, int n, double eps, double w, double*
\rightarrow x, double* xn)
{
        double stime, ftime; // время начала и конца расчета
        stime = GetTime();
        upper_relaxation_method(a, b, n, eps, w, x, xn); // вызов функции интегрирования
        ftime = GetTime();
        return (ftime - stime) / CLOCKS_PER_SEC;
}
int main()
{
        setlocale(LC_CTYPE, "RUSSIAN");
        int n;
        double eps;
        double w;
        cout << "Введите размерность матрицы N*N:";
        cin >> n;
        double** a = new double* [n];
        for (int i = 0; i < n; i++)
                a[i] = new double[n];
```

```
double* b = new double[n];
double* x = new double[n];
double* xn = new double[n];
for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
                a[i][j] = rand() / double(1000);
        }
}
for (int i = 0; i < n; i++)
        b[i] = rand() / double(1000);
}
eps = 0.001;
w = 1.12;
double time; // время проведенного эксперимента
double res; // значение вычисленного интеграла
double min_time; // минимальное время работы
                                  // реализации алгоритма
double max_time; // максимальное время работы
                                  // реализации алгоритма
double avg_time; // среднее время работы
                                 // реализации алгоритма
int numbExp = 10; // количество запусков программы
// первый запуск
MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);
MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);
min_time = max_time = avg_time = experiment(&res, a, b, n, eps, w, x, xn);
// оставшиеся запуски
for (int i = 0; i < numbExp - 1; i++)</pre>
{
        time = experiment(&res, a, b, n, eps, w, x, xn);
        avg_time += time;
        if (max_time < time) max_time = time;</pre>
        if (min_time > time) min_time = time;
// вывод результатов эксперимента
```

## 2 Результат работы

Введите размерность матрицы N\*N:10 execution time : 1.8204e-07; 1.462e-07; 2.301e-07

Введите размерность матрицы N\*N:100 execution time : 4.6529e-07; 3.749e-07; 8.724e-07

Введите размерность матрицы N\*N:500 execution time : 1.52253e-06; 1.4353e-06; 1.7096e-06 Введите размерность матрицы N\*N:1000 execution time : 5.01069e-06; 4.2747e-06; 5.681e-06

Введите размерность матрицы N\*N:1500 execution time : 9.49917e-06; 9.1884e-06; 9.9701e-06

Введите размерность матрицы N\*N:2000 execution time : 1.11124e-05; 1.06317e-05; 1.20982e-05

Введите размерность матрицы N\*N:2500 execution time : 1.66678e-05; 1.62406e-05; 1.74302e-05

Введите размерность матрицы N\*N:3000 execution time : 2.37601e-05; 2.25053e-05; 2.61351e-05

# 3 Результат работы. Таблицы

| Номер теста | Порядок системы | Последовательный алгоритм | Пара        | ллельный алгоритм |
|-------------|-----------------|---------------------------|-------------|-------------------|
|             |                 |                           | Время       | Ускорение         |
| 1           | 10              | 4.70599e-08               | 1.8204e-07  | 0.258             |
| 2           | 100             | 6.3934e-07                | 4.6529e-07  | 1.374067          |
| 3           | 500             | 3.39393e-06               | 1.52253e-06 | 2.229118          |
| 4           | 1000            | 3.96223e-05               | 5.01069e-06 | 7.90755           |
| 5           | 1500            | 3.32889e-05               | 9.49917e-06 | 3.50446           |
| 6           | 2000            | 2.66843e-05               | 1.11124e-05 | 2.40125           |
| 7           | 2500            | 4.23384e-05               | 1.66678e-05 | 2.54013           |
| 8           | 3000            | 5.99791e-05               | 2.37601e-05 | 2.24136           |

| Номер теста | Порядок системы | Ускорение Гаусса | Ускорение верхней релаксации |
|-------------|-----------------|------------------|------------------------------|
|             |                 |                  |                              |
| 1           | 10              | 0                | 0.258                        |
| 2           | 100             | 2,65             | 1.374067                     |
| 3           | 500             | 2,76             | 2.229118                     |
| 4           | 1000            | 2,972222         | 7.90755                      |
| 5           | 1500            | 2,806            | 3.50446                      |
| 6           | 2000            | 3,5494           | 2.40125                      |
| 7           | 2500            | 3,3397           | 2.54013                      |
| 8           | 3000            | 3.465            | 2.24136                      |

### 4 Характеристики компьютера

| Характеристики устройства |                                                     |  |
|---------------------------|-----------------------------------------------------|--|
| Имя устройства            | DESKTOP-MSS8D39                                     |  |
| Процессор                 | Intel(R) Core(TM) i5-6500 CPU @<br>3.20GHz          |  |
| Оперативная память        | 8,00 ГБ                                             |  |
| Код устройства            | E3BB953D-13B0-42A7-944B-1ED9FD0E<br>C328            |  |
| Код продукта              | 00330-80000-00000-AA153                             |  |
| Тип системы               | 64-разрядная операционная<br>система, процессор x64 |  |

