CS168: Discussion 5 - Routers II

•••

Intro to the Internet Fall 2024

Logistics

- Midterm on October 15th (announcement on Ed 10/1)
- Project 2 due on October 4th (Friday)
- Homework 1 due on September 30th (Monday)

Today's topics

- link-state routing
- addressing

Each router knows its own local "link state":

- State of each link to its neighbor (up/down)
- Associated costs

- 1. Router floods its link state to all other routers.
- 2. Each router learns global network topology
- 3. Then, computes shortest path themselves!
 - With Dijkstra's, etc

- 1. Router floods its link state to all other routers.
- 2. Each router learns global network topology
- 3. Then, computes shortest path themselves!

Distance Vector vs Link State

Distance-Vector

- Global computation (distributed across all nodes)
- Only local data (local node plus whatever our neighbours told us).

Link-State

- Local computation
- Using global data (from all parts of the network)

IP Addressing

Requirements of Addressing

- Scalable Routing
 - Minimize state exchange needed to create paths
- Efficient Forwarding
 - Small forwarding tables
 - Fast lookups
- Host must be able to recognize packet is for them
 - An end-to-end check on routing
 - L3: IP addresses (dynamically assigned)

IP Address

- 32 bits (for IPv4), split into 4 bytes, written in decimal (each decimal between 0 and 255)
- Network prefix: /<bits>
 - Size of network address, counting from the leftmost bit
 - Example: 1.2.3.0/23

Network prefixes (netmasks)

- Prefix dedicated to network address
- How can we tell if a host is in a network?
 - Check if the prefix matches!

```
Mask: 123.96.0.0/12
```

01111011 . 01100000 . 00000000 . 00000000

Addr: 123.100.42.6

01111011 . 01100100 . 00101010 . 00000110

Classful Addressing

Network classes: A (/8): first 8 bits devoted to network • First bit is fixed to **0**. • first byte from 0 to 127 Can have ~16M hosts, only 2^7 = 128 nets. Host bits **Network bits** 0***** ****** ****** ****** B (/16): first 16 bits devoted to network (first byte from 128 to 191) First two bits are fixed to 10 Can have ~65K hosts, ~16K nets Host bits **Network bits** 10***** ****** ***** C (/24): first 24 bits devoted to network (first byte from 192 to 223) First three bits are fixed to 110 Can have only 254 hosts (255 is reserved for last byte) ~2M nets **Network bits** 110**** ***** ****** ****** Host bits Why is this a bad idea?

Very limited choices lead to waste of addresses

Classless Inter-Domain Routing (CIDR)

- Use two 32-bit numbers to represent a network
 - Network address = IP Address bitwise AND Subnet Mask
 - IP Address is 192.138.12.2
 - Subnet Mask is 255.248.0.0

```
network address 192.136.0.0/13
```

```
IP Address 1100 0000 . 1000 1010 . 0000 1100 . 0000 0010 Subnet Mask 1111 1111 . 1111 1000 . 0000 0000 . 0000 0000
```

- Flexible division of bits:
 - More choices for the size of the network and hosts
- Offers better size routing table and efficient IP address space

Prefixes

- Easy to Add New Hosts
 - New host (5.6.7.213)
 - Forwarding table doesn't need to be updated!

Feedback Form:

https://tinyurl.com/cs168-disc-fa24

