6 Introduction to formal statistical inference

Formal statistical inference uses probability theory to quantify the reliability of data-based conclusions. We want information on a population. We can use:

1. Point estimates:

E.g. sample mean

For example measure breaking strugth of 6 vire reper as 5,3,7,3,10,1

estimate
$$M \approx \overline{X} = \frac{5+3+7+3+10+1}{6} = 4.83$$
 tons

2. Interval estimates:

6.1 Large-sample confidence intervals for a mean

Many important engineering applications of statistics fit the following mold. Values for parameters of a data-generating process are unknown. Based on data, the goal is

Definition 6.1. A confidence interval for a parameter (or function of one or more parameters) is a data-based interval of numbers thought likely to contain the parameter (or function of one or more parameters) possessing a stated probability-based confidence or reliability.

A confidence interval is a realization of a **random interval**, an interval on the real line with a random variable at one or both of the endpoints.

Example 6.1 (Instrumental drift). Let Z be a measure of instrumental drift of a random voltmeter that comes out of a certain factory. Say $Z \sim N(0,1)$. Define a random interval:

$$(Z-2,Z+2)$$

Condomits are random variables

What is the probability that -1 is inside the interval?

$$P(-1 \text{ is in } (z-2,z+2)) = P(z-2 < -1 < z+2)$$

$$= P(z-1 < 0 < z+3)$$

$$= P(-1 < -z < 3)$$

$$= P(-3 < z < 1)$$

$$= \overline{\Phi}(1) - \overline{\Phi}(-3)$$

$$= 0.84$$

Example 6.2 (More practice). Calculate:

1.
$$P(2 \text{ in } (X - 1, X + 1)), X \sim N(2, 4)^{2}$$

$$P(2 + (X - 1, X + 1)) = P(X - 1 < 2 < X + 1)$$

$$= P(-1 < 2 - X < 1)$$

$$= P(-1 < X - 2 < 1)$$

$$= P(-\frac{1}{2} < Z < \frac{1}{2})$$

$$= P(-\frac{1}{2} < Z < \frac{1}{2})$$

$$= P(-\frac{1}{2} < Z < \frac{1}{2})$$

$$= O \cdot 6915 - 0.3085$$

$$= 0.383$$

2.
$$P(6.6 \text{ in } (X-2, X+1)), X \sim N(7, 2)$$

$$P(6.66(x-2, x+1)) = P(x-2 < 6.6 < x+1)$$

$$= P(-2 < 6.6 < x+1)$$

$$= P(-1 < x-6.6 < 2)$$

$$= P(-1.4 < x-7 < 1.6)$$

$$= P(-\frac{1.4}{\sqrt{2}} < 2 < \frac{1.6}{\sqrt{2}}) \quad 2 \sim N(0,1).$$

$$\approx P(-.99 < 2 < 1.13)$$

$$= \Phi(1.13) - \Phi(-.99)$$

$$= 6.8708 - .1611 = .7097$$

Example 6.3 (Abstract random intervals). Let's say X_1, X_2, \ldots, X_n are iid with $n \geq 25$, mean μ , variance σ^2 . We can find a random interval that provides a lower bound for μ with $1 - \alpha$ probability $\alpha \in (0, 1)$

$$\Rightarrow \frac{\overline{\chi} - \mu}{6/5n} \sim N(0,1)$$
 (standardization).

$$\Rightarrow P\left(\frac{\bar{x}-A}{5/5a} \leq Z_{1-\alpha}\right) \approx 1-\alpha$$

1.
$$P(\mu \in (-\infty, \overline{X} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}})), X_{i} \sim N(\mu, \sigma^2)$$

$$= \rho\left(-\frac{1}{2\log \sqrt{6}} < \sqrt{x} - \mu\right)$$

$$= \rho \left(-\frac{1}{2} < \frac{\widehat{X} - \mu}{6/5} \right)$$

2.
$$P(\mu \in (\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}})), X \sim N(\mu, \sigma^2)$$

A Large-n confidence interval for μ involving σ

A $1-\alpha$ confidence interval for an unknown parameter is the realization of a random interval that contains that parameter with probability $1-\alpha$.

culted the "confidence level"

For random variables X_1, X_2, \ldots, X_n iid with $E(X_1) = \mu$, $Var(X_1) = \sigma^2$, a $1 - \alpha$ confidence interval for μ is

$$(\overline{x}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\overline{x}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}) \qquad \text{``rol'zat'm''} \quad \text{of } \overline{X}$$

which is a realization from the random interval

$$(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}).$$

• Two-sided $1 - \alpha$ confidence interval for μ

$$\left(\bar{x} - z_{1-\alpha/2} \frac{6}{\sqrt{n}}\right) \bar{x} + z_{1-\alpha/2} \frac{6}{\sqrt{n}}$$

• One-sided $1-\alpha$ confidence interval for μ with a upper confidence bound

$$\left(-\omega, \overline{x} + \overline{z}_{1-\alpha} \frac{6}{\sqrt{n}}\right)$$

• One-sided $1-\alpha$ confidence interval for μ with a lower confidence bound

Example 6.4 (Fill weight of jars). Suppose a manufacturer fills jars of food using a stable filling process with a known standard deviation of $\sigma = 1.6g$. We take a sample of $n = 47 \ge 25$ jars and measure the sample mean weight $\overline{x} = 138.2g$. A two-sided 90% confidence interval $(\alpha = 0.1)$ for the true mean weight μ is:

$$(\bar{x} - z_{1-4/2} \frac{6}{\sqrt{n}}) \bar{x} + z_{1-4/2} \frac{6}{\sqrt{n}})$$

$$= (138.2 - z_{1-1/2} \frac{1.6}{\sqrt{47}}) 139.2 + (2.6) \frac{1.6}{\sqrt{47}})$$

$$= (138.2 - 1.6) (6.23), 138.2 + 1.6) (6.23)$$

$$= (132 - 1.6) (6.23), 138.2 + 1.6) (6.23)$$

Could have also writer as 138.2 ± 0.38 g

Interpretation: (1-2)
We are 90% unfident that the true mean fill weight is between 137.829 and 138.589.

entpoints limits

It we took 100 more samples of 47 jars each, roughly 90 of thon samples would yield a confidence introd Containing the true means fill weight, m.

What if we just want to be sure that the true mean fill weight is high enough?

We could use a one-sided 90% CI with a lover bound. $(\bar{x} - \bar{z}_{1-\alpha}, \bar{x}_{1}, \omega)$ $= (138.2 - \bar{z}_{1}, \bar{x}_{1}, \omega)$ $= (138.2 - 1.28 (6.21), \omega)$ $= (137.91, \omega)$

We me 90% confider that he tree meen fill veight is above 137.91 g.

Example 6.5 (Hard disk failures). F. Willett, in the article "The Case of the Derailed Disk Drives?" (Mechanical Engineering, 1988), discusses a study done to isolate the cause of link code A failure in a model of Winchester hard disk drive. For each disk, the investigator measured the breakaway torque (in. oz.) required to loosen the drive's interrupter flag on the stepper motor shaft. Breakaway torques for 26 disk drives were recorded, with a sample mean of 11.5 in. oz. Suppose you know the true standard deviation of the breakaway torques is 5.1 in. oz. Calculate and interpret:

1. A two-sided 90% confidence interval for the true mean breakaway torque of the relevant type of Winchester drive.

$$6=5.1, \ \ \overline{z}=11.5, \ \ n=26, \ \ \ 1-\alpha=.9 \Rightarrow \alpha=.1$$

$$(\overline{z}-\overline{z}_{1-\alpha/2}\frac{5}{\sqrt{n}}, \overline{z}^{C}+\overline{z}_{1-\alpha/2}\frac{6}{\sqrt{n}})$$

$$=(11.5-\overline{z}_{.45}\frac{5.1}{65})11.5+\overline{z}_{.45}\frac{5.1}{\sqrt{2}6})$$

$$=(11.5-1.64(1.6002), 11.5+1.64(1.0002))$$

$$=(9.86,13.14)$$

we are 90% confident that the true meen brentaway tarque lies between 9.86 in . 02 and 13.14 is . 02.

2. An analogous two-sided 95% confidence interval.

$$\frac{1-\alpha = .95}{x^{\pm}} \Rightarrow \alpha = .05$$

$$\frac{x^{\pm}}{x^{\pm}} = \frac{3}{1-\alpha/2} \frac{5}{\sqrt{n}} = 11.5 \pm \frac{2}{.975} \frac{5.1}{\sqrt{26}}$$

$$= 11.5 \pm 1.96 (1.00 oz)$$

$$= (9.54, 13.46)$$
We are 95% confibrt that the true mean breakaway torque lies between 9.54 1.02. and 13.47 in.02.

Note: as confidence levels (1-2) increase, the confidence introday gets wider.

Example 6.6 (Width of a CI). If you want to estimate the breakaway torque with a 2-sided, 95% confidence interval with ± 2.0 in. oz. of precision, what sample size would you need?

intered precision = intend half width love = upper

precision = ZINA VI

=> we want Z1-4/2 \(\frac{6}{10} \le 2

i.e. $\frac{5.1}{\sqrt{n}} \leq 2$ $1.96 \frac{5.1}{\sqrt{n}} \leq 2$ $\frac{9.996}{\sqrt{n}} \leq 2$ $n \geq 24.98$

二フ n ≥ 25

We would need a sample of atleast 25 disks to have atleast a prezision of 2 in 07.

6.1.2 A generally applicable large-n confidence interval for μ

Although the equations for a $1-\alpha$ confidence interval is mathematically correct, it is severely limited in its usefulness because

it requires vs to know 6. It is unusual to have to estimate in and know 6 in red life.

If $n \geq 25$ and σ is unknown, $Z = \frac{\overline{X} - \mu}{s/\sqrt{n}}$, where

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

is still approximately standard normally distributed. So, you can replace σ in the confidence interval formula with the sample standard deviation, s.

• Two-sided $1 - \alpha$ confidence interval for μ

$$\left(\overline{x} - \overline{z}_{1-\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + \overline{z}_{1-\alpha/2} \frac{s}{\sqrt{n}}\right)$$

• One-sided $1-\alpha$ confidence interval for μ with a upper confidence bound

• One-sided $1-\alpha$ confidence interval for μ with a lower confidence bound

$$(\overline{x} - \overline{z}_{1-\sqrt{5}}, \infty)$$

Example 6.7. Suppose you are a manufacturer of construction equipment. You make 0.0125 inch wire rope and need to determine how much weight it can hold before breaking so that you can label it clearly. Here are breaking strengths, in kg, for 41 sample wires:

The sample mean breaking strength is 91.85 kg and the sample standard deviation is 17.6 kg. Using the appropriate 95% confidence interval, try to determine whether the breaking strengths meet the requirement of at least 85 kg. => onc-sided CI w/ lowerboard

$$\bar{x} = 91.85$$

 $S = 17.6$
 $N = 41$

$$(\bar{x} - \bar{z}_{1-\alpha} \frac{s}{\sqrt{n}}, \infty)$$

$$= (91.85 - \bar{z}_{.95} \frac{17.6}{\sqrt{41}}, \infty)$$

$$= (91.85 - 1.64 (\frac{17.6}{\sqrt{41}}), \infty)$$

$$= (87.3722, \infty)$$

1- 4=.95 => X=.05

With 95% confidence, we have shown that the true mean breaking strength is above 87.3422 kg. Hence, he weet the 85 kg requirement with 95% confidence.

6.2 Small-sample confidence intervals for a mean (chi. 3 in the text)

The most important practical limitation on the use of the methods of the previous sections is

That restriction comes from the fact that without it,

There is no way (in general) to conclude that
$$\frac{X-\mu}{s/v_n}$$
 is approximately $N(o,1)$ (because we cannot use the CLT).

So, if one mechanically uses the large-n interval formula $\overline{x} \pm z \frac{s}{\sqrt{n}}$ with a small sample,

There is no way of assessing what actual level of confidence should be declared.

If it is sensible to model the observations as <u>iid normal random variables</u>, then we can arrive at inference methods for small-n sample means.

6.2.1 The Student t distribution

Definition 6.2. The (Student) t distribution with degrees of freedom parameter ν is a continuous probability distribution with probability density

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu}} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2} \qquad \text{for all } t.$$

The t distribution

- is bell-shaped and symmetric about 0
- has fatter tails than the normal, but approaches the shape of the normal as $\nu \to \infty$.

We use the t table (Table B.4 in Vardeman and Jobe) to calculate quantiles.

definition Q(19)

Example 6.8 (t quantiles). Say $T \sim t_5$. Find c such that $P(T \le c) = 0.9$.

Table B.4
t Distribution Quantiles

ν	Q(.9)	Q(.95)	Q(.975)	Q(.99)	Q(.995)	Q(.999)	Q(.9995)
1	3.078	6.314	12.706	31.821	63.657	318.317	636.607
2	1.886	2.920	4.303	6.965	9.925	22.327	31.598
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869

Figure 1: Student's t distribution quantiles.

Q(p) for u ty rendem variable is denoted ty, p
so
$$t_{5,0,9}=1.476$$
.

6.2.2 Small-sample confidence intervals, σ unknown

If we can assume that X_1, \ldots, X_n are iid with mean μ and variance σ^2 , and are also normally distributed, (even if n < 25)

We can then use $t_{n-1} - \alpha/2$ instead of $z_{1-\alpha/2}$ in the confidence intervals.

• Two-sided $1-\alpha$ confidence interval for μ

$$(\bar{x} - t_{n-1, 1-\alpha/2} \frac{s}{\sqrt{n}}) \bar{x} + t_{n-1, 1-\alpha/2} \frac{s}{\sqrt{n}})$$

• One-sided $1-\alpha$ confidence interval for μ with a upper confidence bound

• One-sided $1-\alpha$ confidence interval for μ with a lower confidence bound

Example 6.9 (Concrete beams). 10 concrete beams were each measured for flexural strength (MPa). Assuming the flexural strengths are iid normal, calculate and interpret a two-sided 99% CI for the flexural strength of the beams.

 $[1] \ 8.2 \ 8.7 \ 7.8 \ 9.7 \ 7.4 \ 7.8 \ 7.7 \ 11.6 \ 11.3 \ 11.8$

$$\begin{aligned}
\lambda &= \frac{1}{10} \left(8.2 + 8.7 + ... + 11.8 \right) = 9.2 \\
S &= \int \frac{1}{9} \left[\left(8.2 + 8.7 + ... + 11.8 \right) = 9.2 \\
Two sided 99% CI: $\left(\overline{x} - t_{n-1,1-4/2} \frac{5}{\sqrt{n}} \right) \overline{x} + t_{n-1,1-4/2} \frac{5}{\sqrt{n}} \right) \\
&= \left(9.2 - t_{0,0,0,0,0} \frac{1.76}{\sqrt{10}} \right) 9.2 + t_{0,0,0,0,0} \frac{1.76}{\sqrt{10}} \\
&= \left(9.2 - 3.250 \left(0.556 \right) \right) 9.2 + 3.250 \left(0.556 \right) \\
&= \left(7.343, 11.067 \right)
\end{aligned}$$$

We are 99% confided that he tag near flexural shought of this kind of bear is between Is the true mean flexural strength below the minimum requirement of 11 MPa? Find out with the appropriate 95% CI.

Ly us need as appropriate 95% CI.

$$(-\infty, \overline{x} + t_{n-1, 1-\alpha} \frac{s}{\sqrt{n}})$$

$$= (-\infty, 9.2 + t_{9.95} \frac{1.76}{\sqrt{10}})$$

$$= (-\infty, 9.2 + 1.8333 (0.556)$$

$$= (-\infty, 10.22)$$

We are 95% confident that he true men flexural strugth is below 10.22 MPa. (potice this is less than 11)

So at d=.05, wehave shown they men flexural strugth is below 11 MPa, and the requirement is met.

Example 6.10 (Paint thickness). Consider the following sample of observations on coating thickness for low-viscosity paint.

[1] 0.83 0.88 0.88 1.04 1.09 1.12 1.29 1.31 1.48 1.49 1.59 1.62 1.65 1.71 [15] 1.76 1.83

n=16

A normal QQ plot shows that they are close enough to normally distributed.

Calculate and interpret a two-sided 90% confidence interval for the true mean thickness.

$$N = 16 \qquad \forall = 0.1$$

$$\overline{x} = \frac{1}{16} \left(0.83 + ... + 1.83 \right) = 1.35 \text{ mm}$$

$$S = \int_{-15}^{1} \left[\left(0.83 - 1.35 \right)^2 + ... + \left(1.83 - 1.35 \right)^2 \right] = 0.34 \text{ mm}$$

$$(\bar{x} - t_{n-1,1-\frac{5}{2}} \int_{\sqrt{n}}^{\infty}, \bar{x} + t_{n-1,1-ah} \int_{\sqrt{n}}^{\infty})$$

$$= (1.35 - t_{15,.95} \int_{\sqrt{16}}^{0.34}, 1.35 + t_{15,.95} \int_{\sqrt{16}}^{0.34})$$

$$= (1.35 - 1.75 (0.085), 1.35 + 1.75 (0.085))$$

$$= (1.201, 1.499)$$

We are 90% confident that the true mean thickness is between 1.201 mm and 1.499 mm. 18

6.3 Hypothesis testing

Last section illustrated how probability can enable confidence interval estimation. We can also use probability as a means to use data to quantitatively assess the plausibility of a trial value of a parameter.

Statistical inference is using data from the sample to draw conclusions about the population.

- 1. Interval estimation (confidence intervals) estimating population parameters and specifying the degree of praisies of the estimate.
- 2. Hypothesis testing testing the validity of statements about the population that are framed in terms of parameters.

Definition 6.3. Statistical *significance testing* is the use of data in the quantitative assessment of the plausibility of some trial value for a parameter (or function of one or more parameters).

i.e. assess the plausibility of a process mean value of 13kg for fill wight of Significance (or hypothesis) testing begins with the specification of a trial value (or hypothesis).

Definition 6.4. A null hypothesis is a statement of the form

or

for some # that forms the basis of investigation in a significance test. A null hypothesis is usually formed to embody a status quo/"pre-data" view of the parameter. It is denoted H_0 .

Definition 6.5. An alternative hypothesis is a statement that stands in opposition to the null hypothesis. It specifies what forms of departure from the null hypothesis are of concern. An alternative hypothesis is denoted as H_a . It is of the form

Examples (testing the true mean value):

$$H_0: \mu = \# \quad H_0: \mu = \# \quad H_0: \mu = \#$$
 $H_a: \mu \neq \# \quad H_a: \mu > \# \quad H_a: \mu < \#$
two-sided

Often, the alternative hypothesis is based on an investigator's suspicions and/or hopes about the true state of affairs.

The goal is to use the data to debunk the null hypothesis in favor of the alternative.

- 1. Assume H_0 .
- 2. Try to show that, under H_0 , the data are preposterous. (using probability)
- 3. If the data are preposterous, reject H_0 and conclude H_a .

The outcomes of a hypothesis test consists of:

		The ultimately Offavo	Ha	(same of as from CI's)
True state of affairs	Н,	οK	Type I.	this is the probability of rejectly to when Ho is true.
of affects d	Ha	Type I error	oK	of is fixed before we look at duta.
		2	0	

Example 6.11 (Fair coin). Suppose we toss a coin n=25 times, and the results are denoted by X_1, X_2, \ldots, X_{25} . We use 1 to denote the result of a head and 0 to denote the results of a tail. Then $X_1 \sim Binomial(1, \rho)$ where ρ denotes the chance of getting heads, so $E(X_1) = \rho$, $Var(X_1) = \rho(1 - \rho)$. Given the result is you got all heads, do you think the coin is fair?

Null hypothesis Ho: the coin is fair Ho:
$$\rho = 0.5$$
Alternative hypothesis - $H_A: \rho \neq 0.5$

If Ho was correct, then
$$P(results creat heads) = \left(\frac{1}{2}\right)^{25} < 0.000001$$

 $= 7$ I don't think this with is fair (reject the infavor of Ha)

In the real life, we may have data from many different kinds of distributions! Thus we need a universal framework to deal with these kinds of problems.

We have
$$n=25$$
 225 find thinks \Longrightarrow by CLT we know

If $H_0: p=0.5(=EX_1)$, then

Then the probability of seeing as "lineird or variable" seeing as "lineird or variable" data is

$$P(z \text{ biggir time } 5 \text{ or less thin } 5)$$

$$C.000001!$$

Ue observe $X = 1$, so
$$\frac{X-0.5}{\sqrt{0.5(1-0.5)}/\sqrt{5.5}} = \frac{1-0.5}{\sqrt{0.5(0.5b_1)}} = 5$$
This is absords so we reject H_0 .

6.3.1 Significance tests for a mean

Definition 6.6. A test statistic is the particular form of numerical data summarization used in a significance test. (in the previous example, the test statistic was $\frac{\Xi - 0.5}{\sqrt{0.5(1-0.5)/35}} = 5$)

Definition 6.7. A reference (or null) distribution for a test statistic is the probability distribution describing the test statistic, provided the null hypothesis is in fact true.

(in the previous example, the null distribution was N(0,1))

Definition 6.8. The *observed level of significance or p-value* in a significance test is the probability that the reference distribution assigns to the set of possible values of the test statistic that are at least as extreme as the one actually observed.

(in the previous example, the p-value was < .000 001)

Let K he the fest statistic value (based on data)

Say Ho: M=Mo Ha: M = Mo

p-valu = P(of seeing data as or more "extreme" as K) = P(Z <- K or Z > K)

Based on our results from Section 6.2 of the notes, we can develop hypothesis tests for the true mean value of a distribution in various situations, given an iid sample X_1, \ldots, X_n where $H_0: \mu = \mu_0.$

Let K be the value of the test statistic, $Z \sim N(0,1)$, and $T \sim t_{n-1}$. Here is a table of p-values that you should use for each set of conditions and choice of H_a .

	ı	Iwo-side	~~~	re-wided	
Situation	K	$H_a: \mu eq \mu_0$	$H_a: \mu < \mu_0$	$H_a: \mu > \mu_0$	
$n \ge 25, \sigma$ known	$\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$	P(Z > K)	P(Z < K)	P(Z > K)	compact to Novadle,
$n \geq 25, \sigma$ unknown	$\frac{\overline{x}-\mu_0}{s/\sqrt{n}}$	P(Z > K)	P(Z < K)	P(Z > K)	, '
$n < 25, \sigma$ unknown (data iid $N(\mu, \varsigma^2)$)	$\frac{\overline{x}-\mu_0}{s/\sqrt{n}}$	P(T > K)	P(T < K)	$P(T > K) \leftarrow$	- compare to tn-1

Steps to perform a hypothesis test:

- 1. State Ho and Ha
- d, significance level, usually a small number 0.1, 0.05,
- State form of the test statistic, its distribution under the null hypothesis, and all assumption.
- Calculate to test statistic and p-value
- 5. Make a dension based on the p-value

 -if he produce < < >> reject to, otherwise we fail to reject the.

 6. Interpret the conclusion using context of problem.

Example 6.12 (Cylinders). The strengths of 40 steel cylinders were measured in MPa. The sample mean strength is 1.2 MPa with a sample standard deviation of 0.5 MPa. At significance level $\alpha = 0.01$, conduct a hypothesis test to determine if the cylinders meet the strength requirement of 0.8 MPa.

1.
$$H_0: \mu = 0.8$$

 $H_a: \mu = 0.8$

2.
$$\alpha = 0.01$$

3. Since 6 unknown,
$$n = 40 \times 25$$
,
$$K = \frac{\overline{X} - 0.8}{5/\sqrt{n}}$$
 is the test statistic

I assume X1, -, X40 are iid v/ men in and verian or Then Kin(0,1) by the CLT when Ho.

4.
$$K = \frac{1.2 - 0.8}{0.5 / \sqrt{40}} = 5.06$$

$$\rho$$
-value: $\rho(Z > 5.06) = 1 - \rho(Z \le 5.06)$
= $1 - \Phi(5.06)$
 $\approx 1 - 1 = 0$

- 5. Since prealer << d, I reject Ho in favor of Ha.
- 6. There is overwhelming evidence to conclude that the cylinders meet the strength requirement of 0.8 MPa.

Example 6.13 (Concrete beams). 10 concrete beams were each measured for flexural strength (MPa). The data is as follows.

 $[1] \ 8.2 \ 8.7 \ 7.8 \ 9.7 \ 7.4 \ 7.8 \ 7.7 \ 11.6 \ 11.3 \ 11.8$

The sample mean was 9.2 MPa and the sample variance was 3.0933 MPa. Conduct a hypothesis test to find out if the flexural strength is different from 9.0 MPa.

- 2. Choose d = 0.01
- 3. I vill now the test statistic $K = \frac{\overline{X} 9}{s/\sqrt{n}}$ (unknown of) and since n = 0 < 25, we must assume $X_{13-3} \times 10^{110} \, \text{N}(\mu, 6^2)$. Then if our assumptions hold, $K \sim t_{n-1} = t_9$ under the null hypothesis.

4.
$$K = \frac{9.2 - 9}{\sqrt{\frac{3.6933}{10}}} = 0.3596$$

p-value = P(as or more extreme test stutistic veloc)Trtq = P(|T| > 0.3596) $P(|T| > t_{1.995})$

$$=$$
 $01 = \alpha$

- 5. Since the p-value > of I fail to reject Ho.
- 6. There is not enough avoidance to carchele that the true mean flexural strength of the beams is different from 9 Mpa.

6.3.2 Hypothesis testing using the CI

We can also use the $1-\alpha$ confidence interval to perform hypothesis tests (instead of p-values). The confidence interval will contain μ_0 when there is little to no evidence against H_0 and will not contain μ_0 when there is strong evidence against H_0 .

Steps to perform a hypothesis test using a confidence interval:

- 1. State hypotheses to and ta
- 2. State be significance level, of
- 3. State the form of I-d CI along with all assumptions necessary
 -use one-sided CI for the sided tests (i.e. Ha: MER or Ha: MER) and
 two-sided CI for two-sided tests (Ha: MF#)
- 4. Calculate the CI
- 5. Bound on 1-a CI, either reject to (if Mo is not in the introd) or fail to reject (if Mo is in the introd).
- 6. Interpret the conclusion in the context of the problem.

Example 6.14 (Breaking strength of wire, cont'd). Suppose you are a manufacturer of construction equipment. You make 0.0125 inch wire rope and need to determine how much weight it can hold before breaking so that you can label it clearly. You have breaking strengths, in kg, for 41 sample wires with sample mean breaking strength 91.85 kg and sample standard deviation 17.6 kg. Using the appropriate 95% confidence interval, conduct a hypothesis test to find out if the true mean breaking strength is above 85 kg.

- $2. \quad \alpha = 0.05$
- 3. One sided test and he care about the lower bound. I will use $\left(5c 2_{1-\alpha} \frac{5}{5n}, \infty\right) \leftarrow \frac{\text{since } n = 41 \ge 25, \text{ he}}{\text{can use the } 2_{1-\alpha} \text{ quantile}}$ And to the CLT
 - I am assuming

 i) the data points are iid with mean M and remance 62

 ii) Ho holds.
- 4. From example 6.7, the CI is (87.3422, 00)
- 5. Since 85 is not in the CI, we reject Ho.
- 6. There is significent evidence to conclude that the true mean brainly strength of wire is greater than \$5 kg. Hence the requirement is met.

Example 6.15 (Concrete beams, cont'd). 10 concrete beams were each measured for flexural strength (MPa). The data is as follows.

 $[1] \ 8.2 \ 8.7 \ 7.8 \ 9.7 \ 7.4 \ 7.8 \ 7.7 \ 11.6 \ 11.3 \ 11.8$

The sample mean was 9.2 MPa and the sample variance was 3.0933 MPa. At $\alpha = 0.01$, test the hypothesis that the true mean flexural strength is 10 MPa using a confidence interval.

2. q = 0.01

3. This is a two sided test: $\frac{\text{we use an assurption}}{\text{(plus an assurption)}} = \frac{s}{n=10-25}.$ 1-a CI: $(\overline{x} - t_{n-1/1-\alpha/2}, \frac{s}{\sqrt{n}}), \overline{x} + t_{n-1/1-\alpha/2}, \overline{y}, \overline{y}$

We assume data are iid N(µ, 62) and Ho is true.

- 4. From example 6.9, the CI is (7.393, 11.007)
- 5. Since 10 is within the intord, we fail to reject Ho.
- 6. There is not enough evidence to conclude that the true mean flex weal stringth is different from 10 MPa.

Example 6.16 (Paint thickness, cont'd). Consider the following sample of observations on coating thickness for low-viscosity paint.

[1] 0.83 0.88 0.88 1.04 1.09 1.12 1.29 1.31 1.48 1.49 1.59 1.62 1.65 1.71 [15] 1.76 1.83

Using $\alpha = 0.1$, test the hypothesis that the true mean paint thickness is 1.00 mm. Note, the 90% confidence interval for the true mean paint thickness was calculated from before as (1.201, 1.499).

- 1. Ho: M=1, Ha: M\$1
- 2. d = 0.1
- 3. Since we have a two sided test, n=16 < 25, of unknown, $1-\alpha$ CI: $(\bar{x}-t_{n-1,1-n/2}\sqrt{n}, \bar{x}+t_{n-1,1-n/2}\sqrt{n})$ assuming data are iid $N(\mu,6^2)$ and H_0 holds.
- 4. from before, the (I is (1.201, 1.499)
- 5. Since 1 mm is not with intend, we rejet the inference of Ha.
- 6. There is enough evidence to conclude that the true mean paint thickness is not Imm.

6.4 Inference for matched pairs and two-sample data

An important type of application of confidence interval estimation and significance testing is when we either have *paired data* or *two-sample* data.

6.4.1 Matched pairs

Recall,

paired data is bismak responses that consists of several determines of basically the same Characteristic (Ch. 1)

Examples:

Practice SAT scores before and after a prepiousse.

Severity of a disease before and after treatment

Leadily edge and trailing edge measurement for each piece in a sample

Bug bites on the right arm vs. lefterm (one has repelled and the oter doors it).

One simple method of investigating the possibility of a consistent difference between paired data is to

- 1. Reduce the two measurements on each object to a single difference between them
- 2. Methous of confidence that estimation and significance festry applied to different (use Normal or to distributions When appropriate).

Example 6.17 (Fuel economy). Twelve cars were equipped with radial tires and driven over a test course. Then the same twelve cars (with the same drivers) were equipped with regular belted tires and driven over the same course. After each run, the cars gas economy (in km/l) was measured. Using significance level $\alpha = 0.05$ and the method of critical values, test for a difference in fuel economy between the radial tires and belted tires. Construct a 95% confidence interval for true mean difference due to tire type.

adial 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2 welted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9 Hereal Oil -0.2 0.4 0.1 -0.1 0.1 0 0.2 0.5 0.2 0.1 0.3 $\bar{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, $H_a: M_d \neq 0$ 1. In the fact statistic $K = \frac{\bar{d} - 0}{S_d/r_0}$ which has 4 t_{h-1} distributions the fact statistic $K = \frac{\bar{d} - 0}{S_d/r_0}$ which has 4 t_{h-1} distributions t_{h-1} distributio	adial 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2 welted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9 Herene 0.1 -0.2 0.4 0.1 -0.1 0.1 0 0.2 0.5 0.2 0.1 0.3 $\bar{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, $H_a: M_d \neq 0$ 1. In such the fest statistic $K = \frac{\bar{d} - 0}{S_d/s_0}$ which has a t_{h-1} distribution of t_{12} ,	adial 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2 welted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9 Herene 0.1 -0.2 0.4 0.1 -0.1 0.1 0 0.2 0.5 0.2 0.1 0.3 $\bar{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, H_a : $M_d \neq 0$ 0.05 If no to fest statistic $K = \frac{\bar{d} - 0}{S_d / \ln}$ which has 4 t_{h-1} distribution t_{h-1} time t_{h-1} distribution t_{h-1} are iiid $N(M_d, S_d^2)$ draws $\frac{0.142}{0.198/\ln 2} = 2.48$													
belted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9 iHereal 0:1-0:2 0:4 0.1-0:1 0.1 0 0:2 0:5 0.2 0.1 0:3 $\vec{d} = 0.142$, $S_d = 0.198$: $\mu_d = 0$, $\mu_d = 0$, $\mu_d = 0$ 0.05 will his the fest statistic $K = \frac{\vec{d} - 0}{S_d / v_n}$ which has a t_{n-1} distribution. - t_{n-1} true	belted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9 Heren 0.1 -0.2 0.4 0.1 -0.1 0.1 0 0.2 0.5 0.2 0.1 0.3 $\vec{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, $H_a: M_d \neq 0$ 0.05 will have the fact statistic $K = \frac{\vec{d} - 0}{S_d/\sqrt{n}}$ which has a t_{n-1} distribution of t_{n-1	belted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9 iHerate 0.1 -0.2 0.4 0.1 -0.1 0.1 0 0.2 0.5 0.2 0.1 0.3 $\vec{d} = 0.142$, $S_d = 0.198$: $\mu_d = 0$, $\mu_a : \mu_d \neq 0$ 0.05 will have the fest statistic $K = \frac{\vec{d} - 0}{S_d / s_0}$ which has a t_{h-1} distribution of the statistic $K = \frac{\vec{d} - 0}{S_d / s_0}$ which has a t_{h-1} distribution of t_{h-1} distribution o	car	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
Herene 0:1-0:2 0:1 0.1 -0:1 0.1 0 0:2 0:5 0.2 0:1 0:3 $\vec{d} = 0.142, S_d = 0.198$ $\mu_d = 0, H_a: \mu_d \neq 0$ 0:05 $\pi = \frac{\vec{d} - 0}{S_d / r_0} \text{which has a } t_{n-1} $	Herene 0:1-0:2 0:4 0.1-0.1 0.1 0 0:2 0.5 0.2 0:1 0:3 $ \vec{d} = 0.142, S_d = 0.198 $ $ \mu_d = 0, H_a: \mu_d \neq 0 $ 0:05 $ \vec{n} nsc +nc \text{test statistic} K = \frac{\vec{d} - 0}{S_d / r_n} \text{which has a } t_{n-1} which h$	Herene 0:1-0:2 0:4 0.1-0.1 0.1 0 0:2 0.5 0.2 0.1 0.3 $ \vec{d} = 0.142, S_d = 0.198 $ $ \mu_d = 0, H_a: \mu_d \neq 0 $ 0:05 $ \vec{n} \text{in section test statistic } K = \frac{\vec{d} - 0}{S_d / s_n} \text{which has a } t_{n-1} which h$	adial	4.2	4.7	6.6	7.0	6.7	4.5	5.7	6.0	7.4	4.9	6.1	5.2
$\bar{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, $H_a: M_d \neq 0$ 0.05 J_{iii} has the fest statistic $K = \frac{\bar{d} - 0}{S_d / J_n}$ which has a t_{n-1} distribution. $J_{ii} = 0.142$	$\bar{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, $H_a: M_d \neq 0$ 0.05 $J_{all} = 0.142$	$ \bar{d} = 0.142 $, $S_d = 0.198$ $ M_d = 0 $, $H_a: M_d \neq 0 $ $ 0.05 $ ill now the fest statistic $K = \frac{\bar{d} - 0}{S_d / s_n} $ which has a t_{n-1} distribution of t_{n-1} distribution t_{n-1} dist	belted	4.1	4.9	6.2	6.9	6.8	4.4	5.7	5.8	6.9	4.7	6.0	4.9
$\overline{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, H_a : $M_d \neq 0$ 0.05 If we here test statistic $K = \frac{\overline{d} - 0}{S_d / n}$ which has a t_{n-1} distribution. $-H_a$ true	$\overline{d} = 0.142$, $S_d = 0.198$ $M_d = 0$, H_a : $M_d \neq 0$ 0.05 In we the fest statistic $K = \frac{\overline{d} - 0}{S_d / s_n}$ which has a t_{n-1} distribution of t_{n-1} dis	$d = 0.142$, $s_d = 0.198$ $M_d = 0$, $H_a: M_d \neq 0$ 0.05 Ill has the fest statistic $K = \frac{\overline{d} - 0}{s_d/\sqrt{n}}$ which has a t_{h-1} districtly true $-H_0$ true $-d_{17-17}d_{12}$ are iid $N(M_d, \sigma_d^2)$ draws $\frac{0.142}{0.198/\sqrt{n}2} = 2.48$ t_h	Heren	Oil	-0,2	0,4	0.1	-0.1	0.1	0	0,2	0,5	0.2	0.1	0.
	0.142	$\frac{0.142}{0.198/62} = 2.48$	ມ _{ູສ} = 0.05	0,	Ha:	Md #	0		d -	0 .	بالدائل	has	4	t _{h-} ,	distr
$\frac{1}{0.198/fiz} = 2.48$ $\frac{1}{100} = \frac{1}{100} = 1$	Ilne = P((T) > 2.48) < P(1T) > tn,945) / = P(T)		0.05 - H - H - O.14 0.198	10, the tri	Hair, test no diz = 2	Ad to statis	stie	k = N (₎	M _{a,}	67)	dra	has ws			

5. She p-value < of, we reject Ho.
6. Are is enough evidence to conclude that find evonough diffus between radial and belted tires.

.05

Two rided 95% CI for the true mean fine I elonomy diffrence: $(\bar{d} - t_{11,1-4/2} \frac{5d}{15}) \bar{d} + t_{11,1-4/2} \frac{5d}{\sqrt{n}}) = (0.142 - t_{11,0.425} \frac{0.148}{\sqrt{n}}) \cdot 0.142 + t_{11,0.425} \frac{0.148}{\sqrt{n}})$ $= (0.142 - 2.2 \frac{0.148}{\sqrt{n}}) \cdot 0.142 + 2.2 \frac{0.148}{\sqrt{n}})$ = (0.0166, 0.2674)

We is 95% imfident that for he cortype studied, radial tires get between 0.0166km/le and 0.2674 km/l more in fuel economy. This belted tires in average.

Example 6.18 (End-cut router). Consider the operation of an end-cut router in the manufacture of a company's wood product. Both a leading-edge and a trailing-edge measurement were made on each wooden piece to come off the router. Is the leading-edge measurement different from the trailing-edge measurement for a typical wood piece? Do a hypothesis test at $\alpha = 0.05$ to find out. Make a two-sided 95% confidence interval for the true mean of the difference between the measurements.

Differnes	-,001	, 602	7,003	003	. 06
leading_edge trailing_edge	0.168	0.170	0.165	0.165	0.170
piece	1.000	2.000	3.000	4.000	5.000

6.4.2 Two-sample data

Paired	difference	ces provide	e inference	methods	of a special	kind for	comparison.	Methods	s that
can be	used to	compare	two means	where tw	o different	unrelated	d samples wi	ll be disc	ussed
next.									

Examples:

Notation:

6.4.2.1 Large samples $(n_1 \ge 25, n_2 \ge 25)$

The difference in sample means $\overline{x}_1 - \overline{x}_2$ is a natural statistic to use in comparing μ_1 and μ_2 .

If σ_1 and σ_2 are **known**, then Proposition 5.1 tells us

$$E(\overline{X}_1 - \overline{X}_2) =$$

$$\operatorname{Var}(\overline{X}_1 - \overline{X}_2) =$$

If, in addition, n_1 and n_2 are large,

So, if we want to test $H_0: \mu_1 - \mu_2 = \#$ with some alternative hypothesis, σ_1 and σ_2 are known, and $n_1 \geq 25, n_2 \geq 25$, then we use the statistic

K =

which has a N(0,1) distribution if

- 1. H_0 is true
- 2. The sample 1 points are iid with mean μ_1 and variance σ_1^2 , and the sample 2 points are iid with mean μ_2 and variance σ_2^2 .

The confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for $\mu_1 - \mu_2$ are:

If σ_1 and σ_2 are **unknown**, and $n_1 \geq 25, n_2 \geq 25$, then we use the statistic

K =

and confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for $\mu_1 - \mu_2$:

Example 6.19 (Anchor bolts). An experiment carried out to study various characteristics of anchor bolts resulted in 78 observations on shear strength (kip) of 3/8-in. diameter bolts and 88 observations on strength of 1/2-in. diameter bolts. Let Sample 1 be the 1/2 in diameter bolts and Sample 2 be the 3/8 indiameter bolts. Using a significance level of $\alpha = 0.01$, find out if the 1/2 in bolts are more than 2 kip stronger (in shear strength) than the 3/8 in bolts. Calculate and interpret the appropriate 99% confidence interval to support the analysis.

- n1 = 88, n2 = 78
- $\overline{x}_1 = 7.14, \overline{x}_2 = 4.25$
- $s_1 = 1.68, s_2 = 1.3$

6.4.2.2 Small samples

If $n_1 < 25$ or $n_2 < 25$, then we need some **other assumptions** to hold in order to complete inference on two-sample data.

A test statistic to test $H_0: \mu_1 - \mu_2 = \#$ against some alternative is K =

Also assuming - H_0 is true, - The sample 1 points are iid $N(\mu_1, \sigma_1^2)$, the sample 2 points are iid $N(\mu_2, \sigma_2^2)$, - and the sample 1 points are independent of the sample 2 points.

Then $K \sim$

 $1-\alpha$ confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for $\mu_1 - \mu_2$ under these assumptions are of the form:

Example 6.20 (Springs). The data of W. Armstrong on spring lifetimes (appearing in the book by Cox and Oakes) not only concern spring longevity at a 950 N/mm² stress level but also longevity at a 900 N/mm² stress level. Let sample 1 be the 900 N/mm² stress group and sample 2 be the 950 N/mm² stress group. Let's do a hypothesis test to see if the sample 1 springs lasted significantly longer than the sample 2 springs.

900 N/mm2 Stress	950 N/mm2 Stress						
216, 162, 153, 216, 225, 216, 306, 225, 243, 189	225, 171, 198, 189, 189, 135, 162, 135, 117, 162						

Figure 2: Normal plots of spring lifetimes under two different levels of stress.

Example 6.21 (Stopping distance). Suppose μ_1 and μ_2 are true mean stopping distances (in meters) at 50 mph for cars of a certain type equipped with two different types of breaking systems. Suppose $n_1 = n_2 = 6$, $\overline{x}_1 = 115.7$, $\overline{x}_2 = 129.3$, $s_1 = 5.08$, and $s_2 = 5.38$. Use significance level $\alpha = 0.01$ to test $H_0: \mu_1 - \mu_2 = -10$ vs. $H_A: \mu_1 - \mu_2 < -10$. Construct a 2-sided 99

6.5 Prediction intervals

Methods of confidence interval estimation and hypothesis testing concern the problem of reasoning from sample information to statements about underlying *parameters* of the data generation (such as μ).

Sometimes it is useful to not make a statement about a parameter value, but create bounds on other *individual values* generated by the process.

How can we use out data x_1, \ldots, x_n to create an interval likely to contain one additional (as yet unobserved) value x_{n+1} from the same data generating mechanism?

Let X_1, \ldots, X_n be iid Normal random variables with

$$E(X_i) = \mu \text{ for all } i = 1, \dots, n$$

$$\operatorname{Var}(X_i) = \sigma^2 \text{ for all } i = 1, \dots, n$$

Then,

Let X_{n+1} be an additional observation from the same data generating mechanism.

$$E(\overline{X}_n - X_{n+1}) =$$

$$\operatorname{Var}(\overline{X}_n - X_{n+1}) =$$

So,

Generally, σ is unknown, so replace σ by s, and

Then, $1 - \alpha$ **Prediction intervals** for X_{n+1} are

Table B.4 *t* Distribution Quantiles

. DISU							
ν	Q(.9)	Q(.95)	Q(.975)	Q(.99)	Q(.995)	Q(.999)	Q(.9995)
1	3.078	6.314	12.706	31.821	63.657	318.317	636.607
2	1.886	2.920	4.303	6.965	9.925	22.327	31.598
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.849
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
20	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291

This table was generated using MINITAB.