Introduction to Arduino

ROCHESTER MAKERSPACE

2021

Class Objectives

- 1. Become familiar with Arduino hardware and software
- 2. Be aware of the range of Arduino-supported boards and how to choose one for your project
- 3. Understand how to connect and operate Arduino hardware from a PC or Mac
- 4. Understand how to create and run a program on an Arduino
- 5. Understand how to control a simple circuit from an Arduino
- 6. Get a starter list of resources for learning more
- 7. Be excited by the possibilities!

Computers, Microcontrollers, Arduino

Conventional computers can be described by 5 main components:

- CPU the Central Processing Unit executes instructions
- Program memory the instructions
- Data memory the data
- I/O interfaces and devices connecting disks, screens, keyboards, mice, etc.
- Software Operating system, utility programs, applications

Microcontrollers are a computers on a chip typically including a CPU, and program and data memory with connectors for General Purpose Input and Output (GPIO).

Arduino is an open-source board design, originally designed in 2006, that is combined with a free, basic development environment

Microcontrollers -> Computer systems

Arduino Uno R3

The canonical Arduino design

Focus is on experimentation and learning

A simple, low-cost, small computer

- Genuine: \$22, Clone: \$11
- Modest processing power (16 Mhz)
- Small space for code (32KB)
- Small space for data (2KB)
- Wide range of GPIO connectivity options for devices or circuits
- Easy USB connection and good, free software development environment

Huge community of 'makers' providing videos, tutorials, examples, projects, devices, advice

Many Arduino variants

Faster processor

Bigger programs

More data

More pins to connect devices

More portable

Different form factor

ROCHESTER MAKERSPACE 2021

6

New Arduino Nanos

Arduino Nano Every \$11.90

- ATMega4809 20 Mhz
- 48 KB Flash, 6 KB RAM

Arduino Nano 33 IoT \$18.40

- SAMD21, 32-bit, 48 Mhz
- 256 KB Flash, 32 KB RAM
- WiFi, Bluetooth, BLE, 6 Axis IMU

Arduino Nano 33 BLE \$20.20

- nRF52840, 32-bit, 64 Mhz
- 1 MB Flash, 256 KB RAM
- Bluetooth, BLE, 9 Axis IMU

Arduino Nano 33 Sense \$31.10

- nRF52840, 32-bit, 64 Mhz
- 1 MB Flash, 256 KB RAM
- Bluetooth, BLE, 9 Axis IMU
- Humitity, Temp, Pressure, Mic, gesture ,proximity, light sensors

Arduino Nano Every

Arduino Nano 33 BLE

Arduino Nano 33 Sense

ROCHESTER MAKERSPACE 2021

Arduino GPIO

Simple direct connection for digital input and output

Simple direct connection for analog input

Onboard pulse width modulation (PWM)

4 ways to connect to other chips:

GPIO – Digital I/O or Analog Input

12C – Inter-Integrated-Circuit

SPI – Serial Peripheral Interface

Serial – asynchronous serial

12C

I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a synchronous, multi-master, multi-slave, packet switched, single-ended, serial computer bus invented in 1982 by Philips Semiconductor (now NXP Semiconductors). It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication. Alternatively I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).

Wikipedia

SPI

The Serial Peripheral Interface (SPI) is a synchronous serial communication interface specification used for short distance communication, primarily in embedded systems. The interface was developed by Motorola in the mid 1980s and has become a de facto standard. Typical applications include Secure Digital cards and liquid crystal displays. Wikipedia

Red numbers in paranthesis are the name to use when referencing that pin. Analog pins are references as A0 thru A5 even when using as digital I/O

Arduino Integrated Development Environment (IDE)

Free download from

https://www.arduino.cc/en/Main/Software

Simple, fixed program structure

Uses a programming language that is a simplified variant of c++

Support for other processors, ESP8266, STM32, Pi Pico, etc.

Alternatives:

- Arduino IDE 2.0
- Platform IO (VS Code/Atom)

```
∞ sketch_feb06a | Arduino 1.8.7
                                                                File Edit Sketch Tools Help
  sketch feb06a
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
                                       Adafruit Circuit Playground Express on COM7
```

Arduino Integrated Development Environment (IDE)

Change board type

- Arduino UNO or Arduino UNO clone
 - Tools | Board | Arduino AVR
 Boards | Arduino \Genuine
 UNO
- Arduino Leonardo or Arduino Leonardo clone (Velleman – white board)
 - Tools | Board | Arduino AVRBoards | Arduino Leonardo

Blink (File | Examples | 01.Basics | Blink)

- Focus: basic code of a sketch
- Experiment: change the rate of blinking

Can use Built In LED connected to pin 13

Button (File | Examples | 01. Digital | Button)

- Focus: breadboarding, variables
- Experiment: reverse the effect of a button press

Can use Built In LED connected to pin 13

ReadAnalogVoltage (File | Examples | 01.Basics | ReadAnalogVoltage)

- Focus: analog input, monitor/plotter
- Experiment: convert to use the 3.3v pin

Fade (File | Examples | 01.Basics | Fade)

Focus: PWM

Experiment: change the variables

Sweep (File|Examples|Servo|Swee[)

- Focus: #includes, motor control
- Experiment: restrict the servo range of motion

BlinkWithoutDelay (File | Examples | 02.Digital | BlinkWithoutD elay)

- Focus: code execution timing
- Experiment: print to the serial monitor at the same time

Can use Built In LED connected to pin 13

Debounce (File | Examples | 02. Digital | Debounce)

- Focus: the mechanical world
- Experiment: how short can your delay be without flickering the led?

Can use Built In LED connected to pin 13

Resources

https://www.instructables.com/id/Arduino-Projects/ A great source of inspiration

Shows many cool projects you can accomplish with an Arduino

Introduction to Arduino: A piece of cake! Alan G. Smith (alan@introtoarduino.com)

Hardcopy available at http://www.amazon.com
The most recent PDF is free at http://www.introtoarduino.com

https://www.arduino.cc

The official web site for Arduino

Tutorials, documentation, example projects, shop

https://www.adafruit.com A DIY site loaded with Arduino and Raspberry Pi products

Tutorials, step-by-step instructions, example projects, shop

https://www.sparkfun.com/ An electronics retailer with lots of Arduino and Raspberry Pi products

https://www.pololu.com/ An online retailer with lots of robotics components

https://www.seeedstudio.com/

An online retailer of project components

https://blog.tinkercad.com/official-guide-to-tinkercad-circuits / Cloud-based 3D CAD and Circuit design tool

Nightlight example

Night Light – a simple circuit to switch on an LED when it gets dark

- Open | Maker/Documents/ArduinoClass/nightlight/nightlight.ino
- Demonstrates use of analog input and digital output
- Demo: https://www.youtube.com/watch?v=2GqKbUyhUww

Nightlight example - Breadboard

Nightlight example - Schematic

