Teoria de Linguagem

Conceitos Básicos: Conjuntos, Relações e Funções

Vinicius H. S. Durelli

oxtimes durelli@ufsj.edu.br

Organização

- Conjuntos
 - Operações sobre conjuntos
- 2 Relações
 - Endorelação
 - Propriedades
 - Fecho de uma relação
 - Fecho transitivo, fecho transitivo reflexivo
- Funções parciais e funções
 - Funções parciais
 - Imagem e conjunto imagem
 - Funções
- 4 Considerações finais

- Conjuntos
 - Operações sobre conjuntos
- 2 Relações
 - Endorelação
 - Propriedades
 - Fecho de uma relação
 - Fecho transitivo, fecho transitivo reflexivo
- Funções parciais e funções
 - Funções parciais
 - Imagem e conjunto imagem
 - Funções
- 4 Considerações finais

Conjuntos

Praticamente tudo em matemática pode ser descrito em termos de conjuntos (Hammack 2013).

Definição → Conjuntos

Um conjunto é uma **coleção de zero ou mais** *elementos* que não possuem qualquer ordem associada (Hammack 2013). □

→ O termo **elemento** é usado de forma ampla e pode designar **objetos concretos ou abstratos**.

Exemplos:

```
\{2,4,6,8\} \text{ conjunto com 4 elementos} \{a,e,i,o,u\} \text{ \'e o conjunto das vogais} \{0,1,2,3,4,5,6,7,8,9\} \text{ \'e o conjunto dos d\'igitos} \{(0,0),(1,0),(0,1),(1,1)\} \text{ conjunto com as coordenadas de um quadrado}
```

Conjuntos

Praticamente tudo em matemática pode ser descrito em termos de conjuntos (Hammack 2013).

Definição → Conjuntos

Um conjunto é uma **coleção de zero ou mais** *elementos* que não possuem qualquer ordem associada (Hammack 2013).

→ O termo elemento é usado de forma ampla e pode designar objetos concretos ou abstratos.

Exemplos:

$$\{2,4,6,8\}$$
 Conjuntos são delimitados por $\{e\}$ $\{a,e,i,o,u\}$ e os elementos são separados por ,

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ é o conjunto dos dígitos

 $\{(0,0),(1,0),(0,1),(1,1)\}$ conjunto com as coordenadas de um quadrado

Conjuntos podem ser finitos ou infinitos.

Pertinência...

No decorrer desta disciplina, **letras maiúsculas** são utilizadas para denotar conjuntos. Por exemplo, considerando um dos conjuntos apresentados anteriormente: $A = \{2, 4, 6, 8\}$.

Se um determinado a é elemento de um conjunto A, usamos a seguinte notação:

$$a \in A$$

o que é interpretado como:

a pertence ao conjunto A

Caso contrário, afirma-se que a não pertence ao conjunto A:

$$a \not\in A$$

Continência e subconjunto (1)...

Se todos os elementos de um conjunto A também são elementos de um conjunto B, então afirma-se que A está contido em B e denota-se por:

$$A \subseteq B$$

Exemplo:

$$\{a,b\}\subseteq\{b,a\}$$

Alternativamente, quando B contém A, denota-se por:

$$A \supseteq B$$

Nos casos em que $A \subseteq B$ ou $A \supseteq B$, afirma-se que A é um **subconjunto** de B.

Continência e subconjunto (2)...

Se $A \subseteq B$, mas existe $b \in B$ tal que $b \notin A$, então afirma-se que A está contido propriamente em B, ou que A é um subconjunto de B, e denota-se por:

$$A \subset B$$

Exemplo:

$$\{a,b\}\subset\{b,c,a\}$$

Se $A \subset B$, diz-se que A é um **subconjunto próprio** de B. (Alternativamente, pode-se dizer que B **contém propriamente** A, i.e., $A \supset B$.)

Igualdade. . .

Os conjuntos A e B são ditos conjuntos iguais, o que é denotado por:

$$A = B$$

se e somente se tais conjuntos possuem os mesmos elementos:

$$A = B$$
 se e somente se $A \subseteq B$ e $B \subseteq A$

Exemplos:

$$\{a, b, c\} = \{c, a, b\}$$
$$\{2, 4, 8\} = \{2, 2, 4, 4, 8, 8\}$$
$$\{a, e, i, o, u\} \neq \{x, y, z\}$$

Como definir conjuntos?

 Denotação por extensão: listando todos os elementos (em qualquer ordem).

$$V = \{a, e, i, o, u\}$$

 Denotação por compreensão: quando conjuntos são muito grandes ou complexos para serem descritos por extensão, eles podem ser definidos em termos de suas propriedades usando a notação:¹

$$A = \{x \mid x \text{ possui uma determinada propriedade P}\}$$

Tal notação é denominada set-builder notation.

Como definir conjuntos?

 Denotação por extensão: listando todos os elementos (em qualquer ordem).

$$V = \{a, e, i, o, u\}$$

 Denotação por compreensão: quando conjuntos são muito grandes ou complexos para serem descritos por extensão, eles podem ser definidos em termos de suas propriedades usando a notação:¹

$$P = \{n \in \mathbb{N} \mid \text{n \'e um n\'umero par}\}$$

ou

$$P = \{n \in \mathbb{N} : n \in um \text{ número par}\}$$

¹Tal notação é denominada set-builder notation.

Alguns conjuntos importantes...

Conforme mencionado, um conjunto pode possuir um número **finito** ou **infinito** de elementos. Naturalmente:

- Conjuntos finitos podem ser denotados por extensão.
- Conjuntos infinitos são denotados por compreensão.

Alguns conjuntos infinitos:

- N Conjunto dos números naturais
- $\ensuremath{\mathbb{Z}}$ Conjunto dos números inteiros
- Q Conjunto dos números racionais
- I Conjunto dos números irracionais
- ${\mathbb R}$ Conjunto dos números reais

Um conjunto importante é o **conjunto vazio**, i.e., $\{\}$. Tal conjunto é representado pelo símbolo \emptyset .

Exercícios...

• Especifique os conjuntos abaixo usando denotação por compreensão:

$$\bullet$$
 {2, 4, 8, 16, 32, 64, . . . }

$$\bullet \ \{\ldots,-6,-3,0,3,6,9,12,15,\ldots\}$$

2 Escreva os conjuntos abaixo usando denotação por extensão:

•
$$\{5x - 1 : x \in \mathbb{Z}\}$$

•
$$\{x \in \mathbb{Z} : -2 \le x < 7\}$$

- Conjuntos
 - Operações sobre conjuntos
- 2 Relações
 - Endorelação
 - Propriedades
 - Fecho de uma relação
 - Fecho transitivo, fecho transitivo reflexivo
- Funções parciais e funções
 - Funções parciais
 - Imagem e conjunto imagem
 - Funções
- 4 Considerações finais

União

A união de dois conjuntos A e B é denotada por:

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

→ O conjunto resultante contém todos os elementos em A e B.

União

A união de dois conjuntos A e B é denotada por:

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

→ O conjunto resultante contém todos os elementos em A e B.

Intersecção

A intersecção de dois conjuntos A e B é denotada por:

$$A \cap B = \{x \mid x \in A \text{ e } x \in B\}$$

O conjunto resultante contém todos os elementos que aparecem em ambos os conjuntos.

Intersecção

A intersecção de dois conjuntos A e B é denotada por:

$$A \cap B = \{x \mid x \in A \text{ e } x \in B\}$$

O conjunto resultante contém todos os elementos que aparecem em ambos os conjuntos.

Diferença

A diferença de dois conjuntos A e B é denotada por:

$$A - B = \{x \mid x \in A \text{ e } x \notin B\}$$

O conjunto resultante contém todos os elementos que aparecem somente em A.

Diferença

A diferença de dois conjuntos A e B é denotada por:

$$A - B = \{x \mid x \in A \text{ e } x \notin B\}$$

O conjunto resultante contém todos os elementos que aparecem somente em A.

Complemento

A operação de complemento é definida em relação ao conjunto universo, i.e., U:

$$\sim A = A' = \overline{A} = \{x \mid x \in U \text{ e } x \notin A\}$$

 \longrightarrow O conjunto resultante contém todos os elementos contidos em U e que não aparecem em A.

Complemento

A operação de complemento é definida em relação ao conjunto universo, i.e., U:

$$\sim A = A' = \overline{A} = \{x \mid x \in U \text{ e } x \notin A\}$$

 \longrightarrow O conjunto resultante contém todos os elementos contidos em U e que não aparecem em A.

Conjunto das partes (power sets)

Definição → Conjunto das partes

Se A é um conjunto, o conjunto das partes de A é outro conjunto, denotado por $\mathcal{P}(A)$ e definido como o conjunto de todos os subconjuntos de A (Hammack 2013).

$$2^A = \mathcal{P}(A) = \{S \mid S \subseteq A\}$$

Por exemplo, dado um conjunto $A = \{1, 2, 3\}$, $\mathcal{P}(A)$ é o conjunto de todos os subconjuntos de A:

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Produto cartesiano

Definição \rightarrow Produto cartesiano

O produto cartesiano de dois conjuntos é outro conjunto denotado por $A \times B$ (Hammack 2013). \Box

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Por exemplo, dado os conjuntos $A=\{1,2,3\}$ e $B=\{\alpha,\beta\}$, $A\times B$ é o conjunto a seguir:

$$A \times B = \{(1, \alpha), (1, \beta), (2, \alpha), (2, \beta), (3, \alpha), (3, \beta)\}$$

- Cada elemento de um produto cartesiano é denominado par ordenado.
- É usual denotar o produto cartesiano de um conjunto com ele mesmo como um expoente, i.e., $A \times A = A^2$.

- Conjuntos
 - Operações sobre conjuntos
- 2 Relações
 - Endorelação
 - Propriedades
 - Fecho de uma relação
 - Fecho transitivo, fecho transitivo reflexivo
- 3 Funções parciais e funções
 - Funções parciais
 - Imagem e conjunto imagem
 - Funções
- 4 Considerações finais

O que são relações?

Na Matemática duas entidades podem se relacionar de várias formas.

$$5 \leqslant 10$$

$$x \neq y$$

$$9 \in \mathbb{Z}$$

$$\mathbb{Z} \not\subseteq \mathbb{N}$$

Considere o conjunto $A = \{1, 2, 3, 4, 5\}$. Elementos de A podem ser comparados por meio do símbolo <. Por exemplo, 1 < 4, 2 < 3, 2 < 4 e assim por diante.

O que são relações?

Na Matemática duas entidades podem se relacionar de várias formas.

$$x \neq y$$

$$9 \in \mathbb{Z}$$

$$\mathbb{Z} \not\subseteq \mathbb{N}$$

- Considere o conjunto $A = \{1, 2, 3, 4, 5\}$. Elementos de A podem ser comparados por meio do símbolo <. Por exemplo, 1 < 4, 2 < 3, 2 < 4 e assim por diante.
 - Imagine que você tivesse que explicar < para alguém competente em formalismo matemático mas não muito brilhante.

O que são relações?

Na Matemática duas entidades podem se relacionar de várias formas.

$$x \neq y$$

$$9 \in \mathbb{Z}$$

$$\mathbb{Z} \not\subseteq \mathbb{N}$$

- Considere o conjunto $A = \{1, 2, 3, 4, 5\}$. Elementos de A podem ser comparados por meio do símbolo <. Por exemplo, 1 < 4, 2 < 3, 2 < 4 e assim por diante.
 - Imagine que você tivesse que explicar < para alguém competente em formalismo matemático mas não muito brilhante.

$$R = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}$$

Relações (1)

Definição → Relações

Suponha dois conjuntos A e B. Uma relação (binária) \mathcal{R} de A em B é um subconjunto de um produto cartesiano (Menezes 2011).

Formalmente:

$$\mathcal{R} \subseteq A \times B$$

sendo que:

- A é denominado domínio;
- *B* é denominado **contradomínio**.

Relações (2)

Uma relação $\mathcal{R} \subseteq A \times B$ é também denotada como $\mathcal{R} : A \to B$. Um elemento $(a,b) \in \mathcal{R}$ pode ser denotado de forma infixada: $a\mathcal{R}b$.

Endorelação (autorelação)

Definição → Endorelação

Dado um conjunto A. Então uma relação $\mathcal{R}:A\to A$ (domínio e contradomínio no mesmo conjunto) é dita uma endorelação (Menezes 2011).

Uma endorelação $\mathcal{R}:A\to A$ é normalmente denotada por: (A,\mathcal{R}) .

- Matemática: para formalizar conceitos como "maior igual" e "igual".
- Teoria dos Grafos: para modelar o conceito de adjacência.
- Ciência da Computação: para descrever conceitos relacionados às linguagens formais e autômatos.

Exemplo

ightharpoonup Considerando o conjunto $A = \{1, 2, 3\}$ e o conjunto resultante:

$$\mathcal{R} = \{(1,1),(2,1),(2,2),(3,3),(3,2),(3,1)\} \subseteq \textit{A} \times \textit{A}$$

- lacktriangledown O conjunto $\mathcal R$ é uma relação que associa elementos de A, e.g., $(1,1)\in\mathcal R$, portanto, temos $1\mathcal R1$.
- \triangle Qual a relação representada por \mathcal{R} ?

Exemplo

ightharpoonup Considerando o conjunto $A = \{1, 2, 3\}$ e o conjunto resultante:

$$\mathcal{R} = \{(1,1),(2,1),(2,2),(3,3),(3,2),(3,1)\} \subseteq \textit{A} \times \textit{A}$$

- \longrightarrow O conjunto \mathcal{R} é uma relação que associa elementos de A, e.g., $(1,1) \in \mathcal{R}$, portanto, temos $1\mathcal{R}1$.
- \triangle Qual a relação representada por \mathcal{R} ?

R: A relação **maior-igual** (i.e., \geq) agora é representada por meio do conjunto \mathcal{R} .

Exemplo

ightharpoonup Considerando o conjunto $A = \{1, 2, 3\}$ e o conjunto resultante:

$$\mathcal{R} = \{(1,1),(2,1),(2,2),(3,3),(3,2),(3,1)\} \subseteq \textit{A} \times \textit{A}$$

- \longrightarrow O conjunto \mathcal{R} é uma relação que associa elementos de A, e.g., $(1,1) \in \mathcal{R}$, portanto, temos $1\mathcal{R}1$.
- \triangle Qual a relação representada por \mathcal{R} ?

R: A relação **maior-igual** (i.e., \geq) agora é representada por meio do conjunto \mathcal{R} .

Algumas propriedades importantes (1)

Uma expressão relacional xRy é uma "sentença" que pode ser verdadeira ou falsa.

- 5 < 10 é verdadeira;
- 10 < 5 é falsa.
- Relações podem ser vistas como operadores lógicos. As sentenças de tais operadores resultam em verdadeiro ou falso, dependendo dos operandos (i.e., $x \in y$).

(Relações têm propriedades diferentes) Exemplos:

- A relação \leqslant em \mathbb{Z} satisfaz $x \leqslant x$ para qualquer $x \in \mathbb{Z}$.
- ullet O mesmo não pode ser dito para a relação < . 2

²Note que x < x nunca é verdadeiro.

Algumas propriedades importantes (2)

Seja A um conjunto e $\mathcal R$ uma relação. Então $\mathcal R$ é uma relação:

Definição → Relação Reflexiva

Se $\forall a \in A$, aRa (Menezes 2011; Hammack 2013).

Para ilustrar tal propriedade, considere o conjunto $A = \mathbb{Z}$. Alguns exemplos de relações reflexivas incluem:

- \leq , visto que $a \leq a$;
- \bullet =, visto que a = a.

Algumas relações que não são reflexivas:

- <
- ≠.

Algumas propriedades importantes (3)

Seja A um conjunto e $\mathcal R$ uma relação. Então $\mathcal R$ é uma relação:

Definição o Relação Simétrica

Se $\forall a,b \in A$, $a\mathcal{R}b \implies b\mathcal{R}a$ (Menezes 2011; Hammack 2013). \square

Considere o conjunto $A = \mathbb{Z}$. Alguns exemplos de relações simétricas incluem:

- \neq , visto que $a \leqslant b$ e $b \neq a$;
- \bullet =, visto que a = b e b = a.

Algumas relações que não são simétricas:

• \leq , pois $a \leq b$ não implica que $b \leq a$.

Algumas propriedades importantes (4)

Seja A um conjunto e $\mathcal R$ uma relação. Então $\mathcal R$ é uma relação:

Definição → Relação Transitiva

Se $\forall a, b, c \in A$, $((a\mathcal{R}b) \land (b\mathcal{R}c)) \implies a\mathcal{R}c$ (Menezes 2011; Hammack 2013), ou seja, para todo $a, b, c \in A$, caso $a\mathcal{R}b$ e $b\mathcal{R}c$, então $a\mathcal{R}c$.

Considere o conjunto $A = \mathbb{Z}$. Alguns exemplos de relações transitivas incluem:

- \leq , visto que se $a \leq b$ e $b \neq c$, então $a \leq c$;
- =, visto que a = b e b = c, então a = c.

Algumas relações que não são simétricas:

Fecho de uma relação...

Definição \rightarrow Fecho de uma Relação

Sejam $\mathcal{R}:A\to A$ uma endorelação e P um conjunto de propriedades. Então o fecho de \mathcal{R} em relação a A é a menor endorelação em A que contém \mathcal{R} e que satisfaz as propriedades de P (Menezes 2011). \square

No decorrer desta disciplina, o fecho de uma relação é denotado por: $FECHO-P(\mathcal{R})$

Portanto, para qualquer conjunto de propriedades, a relação sempre é subconjunto de seu fecho, ou seja:

$$\mathcal{R} \subseteq \mathsf{FECHO-P}(\mathcal{R})$$

Fecho transitivo e fecho transitivo reflexivo

Seja \mathcal{R} uma endorelação em A. Então:

Definição - Fecho Transitivo

O fecho de \mathcal{R} em relação ao conjunto de propriedades transitiva é denotado por \mathcal{R}^+ e é definido como (Menezes 2011):

- Se $(a,b) \in \mathcal{R}$, então $(a,b) \in \mathcal{R}^+$;
- Se $(a,b) \in \mathcal{R}^+$ e $(b,c) \in \mathcal{R}^+$, então $(a,c) \in \mathcal{R}^+$;
- Os únicos elementos de \mathcal{R}^+ são construídos como acima.

Fecho transitivo e fecho transitivo reflexivo

Seja $\mathcal R$ uma endorelação em A. Então:

Definição -> Fecho Transitivo

O fecho de \mathcal{R} em relação ao conjunto de propriedades transitiva é denotado por \mathcal{R}^+ e é definido como (Menezes 2011):

- Se $(a, b) \in \mathcal{R}$, então $(a, b) \in \mathcal{R}^+$;
- Se $(a,b) \in \mathcal{R}^+$ e $(b,c) \in \mathcal{R}^+$, então $(a,c) \in \mathcal{R}^+$;
- ullet Os únicos elementos de \mathcal{R}^+ são construídos como acima.

Definição → Fecho Transitivo Reflexivo

O fecho de \mathcal{R} em relação ao conjunto de propriedades transitiva e reflexiva é denotado por \mathcal{R}^* e é definido como (Menezes 2011):

$$\mathcal{R}^* = \mathcal{R}^+ \cup \{(a, a) \mid a \in A\}$$

- Conjuntos
 - Operações sobre conjuntos
- 2 Relações
 - Endorelação
 - Propriedades
 - Fecho de uma relação
 - Fecho transitivo, fecho transitivo reflexivo
- Funções parciais e funções
 - Funções parciais
 - Imagem e conjunto imagem
 - Funções
- 4 Considerações finais

Funções parciais

Para o estudo das linguagens formais, o conceito de função parcial é de suma importância: vários formalismos apresentados são baseados em funções parciais.

Definição → Função Parcial

Uma função parcial é uma relação $f\subseteq A\times B$ tal que (Menezes 2011):

se
$$(a,b)\in f$$
 e $(a,c)\in f$, então $b=c$

Cada elemento do domínio está relacionado com, no máximo, um elemento do contradomínio. Uma função parcial $f\subseteq A\times B$ é denotada por:^a

$$f:A \rightarrow B$$

 $^{^{}a}$ Ou simplesmente $f:A \rightarrow B$ quando é claro que se trata de uma função parcial.

Imagem e conjunto imagem

Seja $f: A \rightarrow B$ uma função parcial. Então:

Definição → *Imagem*

- Se para $a \in A$ existe $b \in B$ tal que f(a) = b, então afirma-se que f está definida para a e que b é a imagem de a;
- Caso contrário, afirma-se que f não é definida para a.

Definição → Conjunto Imagem

O conjunto imagem de f, denotado por f(a), é tal que (Menezes 2011):

$$f(a) = \{b \in B \mid \text{ existe } a \in A \text{ tal que } f(a) = b\}$$

Funções

Uma **função total**, ou simplesmente função, é um caso particular de função parcial.

Definição → Função

Uma aplicação, função total, ou simplesmente função é uma função parcial $f: A \to B$ a qual é total, ou seja, para todo $a \in A$ existe um $b \in B$ tal que $f: A \to B$ (Menezes 2011).

Uma função (total) é uma função parcial definida para **todos** os elementos do domínio.

- Conjuntos
 - Operações sobre conjuntos
- 2 Relações
 - Endorelação
 - Propriedades
 - Fecho de uma relação
 - Fecho transitivo, fecho transitivo reflexivo
- Funções parciais e funções
 - Funções parciais
 - Imagem e conjunto imagem
 - Funções
- 4 Considerações finais

Considerações finais...

Na aula de hoje nós vimos:

- Conjuntos;
 - Operações envolvendo conjuntos.
- Relações;
 - Endorelações;
 - Fecho de relações;
 - Fecho transitivo;
 - Fecho transitivo reflexivo.
- Funções parciais;
- Funções (totais).

Na próxima aula:

• Alfabetos, palavras e linguagens formais;

Referências

Menezes, Paulo Blauth (2011). Linguagens Formais e Autômatos. 6th ed. Livros Didáticos Informática da UFRGS. Bookman, p. 256. Hammack, Richard (2013). Book of Proof. Richard Hammack, p. 314.

©Próxima aula: exercício(s) sobre o conteúdo da aula de hoje! ⊚