Duração: 90 minutos

Teste de Análise Matemática EE - versão A

Nome: ______ Nr.: ____ Curso: __

GRUPO I (7 valores)

Em cada uma das perguntas seguintes, assinale a resposta correcta no quadrado correspondente. Cada resposta correcta vale 1 valor.

1. Qual das seguintes expressões representa a curva C na figura, percorrida a partir do ponto (-2,0) e com fim no ponto (2,0)?

$$r(t) = (3\cos t, 2\sin t), \ t \in [0, \pi]$$

$$r(t) = (2\cos(\pi - t), 3\sin(\pi - t)), \ t \in [0, \pi]$$

$$r(t) = (2\cos t, 3\sin t), \ t \in [0, \pi]$$

Nenhuma das anteriores.

2. Qual dos conjuntos abaixo representa o domínio da função vetorial $\vec{r}(t) = (\ln(t+1), \frac{1}{t})$?

$$D =]-1, +\infty[$$

$$D =]-1, +\infty[\setminus\{0\}]$$

$$D = \mathbb{R} \backslash \{0\}$$

Nenhum dos anteriores.

- (0,-1) \square ; (0,0) \square ; (1,0) \square ; Nenhum dos anteriores.
- 4. Considere a função real de duas variáveis reais, $f(x,y) = \sqrt{x+y} \cdot \ln(x^2+y^2-1)$. Qual destes domínios planos representa o domínio de f?

Nenhuma	das	anteriores.

5. Qual destas funções reais de duas variáveis reais tem por domínio \mathbb{R} ?

$$f(x,y) = \begin{cases} \frac{1}{x^2 - y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

$$f(x,y) = \frac{1}{x^2 + y^2}$$

$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

Nenhuma das anteriores.

6. Considere a função real de duas variáveis rea
is definida no seu domínio, $f(x,y)=\frac{xy}{x^2+y^2}$ $\lim_{(x,y)\to(0,0)} f(x,y)$. Indique qual a afirmação verdadeira:

Existe $\lim_{(x,y)\to(0,0)} f(x,y)$ e é igual a zero .

Não existe
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 pois $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) \neq \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$.

Não existe $\lim_{(x,y)\to(0,0)} f(x,y)$ pois $\lim_{(x,y)\to(0,0)} f(x,y)$ depende do valor de k.

Nenhuma das anteriores.

7. Considere a função real de duas variáveis reais definida no seu domínio, $f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$

e o ponto (0,0). Indique qual a afirmação verdadeira:

f é contínua em (0,0).

f não é contínua em (0,0) porque não existe $\lim_{(x,y)\to(0,0)} f(x,y)$.

f não é contínua em (0,0) porque existe $\lim_{(x,y)\to(0,0)} f(x,y)$ mas $\lim_{(x,y)\to(0,0)} f(x,y) \neq f(0,0)$.

Nenhuma das anteriores.

GRUPO II (13 valores)

Apresente todos os cálculos efectuados.

1. Considere a função vetorial que define uma curva em \mathbb{R}^3 , $\vec{r}(t) = \sin^2 t \cdot \vec{a} + \cos^2 t \cdot \vec{b} + \vec{c}$ onde $\vec{a} = \vec{e}_2$, $\vec{b} = \vec{e}_3, \vec{c} = 2\vec{e}_1 - 3\vec{e}_2$. Escreva a função à custa das suas componentes.

2. Considere a função vetorial $\vec{r}(t) = (t^2 -$	$-t,\sin t$).
--	----------------

(a) Determine $\vec{r}'(t)$.

(b) Determine a equação da reta tangente à curva representada por $\vec{r}(t)$ no instante t=0.

(c) Determine os instantes em que o vetor tangente à curva representada por $\vec{r}(t)$ é um vetor vertical?

- 3. Considere a função real de duas variáveis $f(x,y)=\left\{\begin{array}{l} \frac{x^2-y^2}{x^2+y^2} \text{ se }(x,y)\neq (0,0)\\ 1 \text{ se }(x,y)=(0,0) \end{array}\right.$
 - (a) Estude a continuidade da função f no seu domínio.

(b) Determine $f'_y(0,0)$, se existir.

4.	Determine a expressão da	função f''_{xy} para	$f(x,y) = \ln(y - $	3x), definida no se	u domínio.