ORACLES AND CHOICE SEQUENCES FOR TYPE-THEORETIC PRAGMATICS

Jon Sterling October 8, 2015

joint work with Darryl McAdams

INTRODUCTION

[A man walked in.]

∇

$$\llbracket A \text{ man walked in.} \rrbracket$$

∇
(Σ $p \in Man$)

[A man walked in.]]
$$\nabla$$
 $(\Sigma p \in Man) WalkedIn(p)$

[He sat down] ▽

[He sat down]

∇

SatDown(???)

[A man walked in. He sat down]

∇

[A man walked in. He sat down]]
$$\nabla$$
 $(\Sigma x \in (\Sigma p \in Man) \ WalkedIn(p))$

$$[A man walked in. He sat down] \\ \nabla \\ (\Sigma x \in (\Sigma p \in Man) \ Walked In(p)) \ Sat Down(\pi_1(x))$$

THE "DONKEY SENTENCE"

[Every farmer who owns a donkey beats it.]] ∇ $(\Pi p \in (\Sigma x \in Farmer) (\Sigma y \in Donkey) Owns(x; y))$

THE "DONKEY SENTENCE"

[Every farmer who owns a donkey beats it.]] ∇ $(\Pi p \in (\Sigma x \in Farmer) (\Sigma y \in Donkey) Owns(x; y)) Beats(???; ???)$

THE "DONKEY SENTENCE"

[Every farmer who owns a donkey beats it.]] ∇ $(\Pi p \in (\Sigma x \in Farmer) (\Sigma y \in Donkey) \ Owns(x;y)) \ Beats(\pi_1(p); \pi_1(\pi_2(p)))$

 $\boldsymbol{\cdot}$ terms for presuppositions

- terms for presuppositions
- \cdot resolution of presuppositions

- terms for presuppositions
- resolution of presuppositions

- terms for presuppositions (this talk)
- resolution of presuppositions

require — FORMAL RULES

require — FORMAL RULES

```
require : (0;1) (operator)

require x : A in N \triangleq \text{require}(A; x.N) (notation)
```

require — FORMAL RULES

```
require : (0;1) (operator)

require x : A in N \triangleq \text{require}(A; x.N) (notation)

\frac{\Gamma \vdash A \text{ type } \Gamma, x : A \vdash N \in B}{\Gamma \vdash \text{require } x : A \text{ in } N \in B} (require)
```

require — EXAMPLES

[A man walked in. He sat down] $\nabla \\ (\Sigma x \in (\Sigma p \in Man) \ Walked In(p)) \ Sat Down(???)$

require — EXAMPLES

[A man walked in. He sat down]

 $(\Sigma x \in (\Sigma p \in Man) \ WalkedIn(p))$ require y : Man in SatDown(y)

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may <u>evaluate</u> to a canonical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may <u>evaluate</u> to a canonical proposition.

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may evaluate to a canonical proposition.

What we want:

$$(\Sigma x \in (\Sigma p \in Man) \ WalkedIn(p))$$
 require $y: Man$ in $SatDown(y)$ \sim $(\Sigma x \in (\Sigma p \in Man) \ WalkedIn(p)) \ \pi_1(x)$

The meaning of a sentence is a logical proposition.

The meaning of a sentence is a type-theoretic expression which may <u>evaluate</u> to a canonical proposition.

What we want:

$$(\Sigma x \in (\Sigma p \in Man) \ WalkedIn(p))$$
 require $y : Man$ in $SatDown(y)$ \sim $(\Sigma x \in (\Sigma p \in Man) \ WalkedIn(p)) \ \pi_1(x)$

where
$$M \sim N \stackrel{\text{def}}{=} (M \leq N) \land (N \leq M)$$

EVERY GRAMMATICAL SENTENCE HAS A MEANING

EVERY GRAMMATICAL SENTENCE HAS A MEANING

...but only some of them denote propositions (types)!

A NEGATIVE EXAMPLE

A NEGATIVE EXAMPLE

[The unicorn ran a marathon]

▽

A NEGATIVE EXAMPLE

[The unicorn ran a marathon]

 ∇

require x : *Unicorn* **in** $(\Sigma y \in Marathon) Ran(x; y)$

A NEGATIVE EXAMPLE

[The unicorn ran a marathon]

require x : *Unicorn* **in** $(\Sigma y \in Marathon) Ran(x; y)$

(not a proposition)

[The President ran a marathon]

▽

[The President ran a marathon]
∇

require x: President in $(\Sigma y \in Marathon) Ran(x; y)$

require x : President **in** $(\Sigma y \in Marathon) Ran(x; y)$

```
require x: President in (\Sigma y \in Marathon) Ran(x; y)
\downarrow \downarrow
(\Sigma y \in Marathon) Ran(Obama; y)
```

```
require x: President in (\Sigma y \in Marathon) Ran(x; y)
\downarrow \qquad \qquad (\Sigma y \in Marathon) Ran(Obama; y)
```

Evaluation is now non-deterministic

IS require COMPUTATIONALLY EFFECTIVE?	

1. knowledge-sensitive judgments

- 1. knowledge-sensitive judgments
- 2. non-deterministic computation

- 1. knowledge-sensitive judgments (forcing)
- 2. non-deterministic computation

- 1. knowledge-sensitive judgments (forcing)
- 2. non-deterministic computation

- 1. knowledge-sensitive judgments (forcing)
- 2. non-deterministic computation (use choice sequences)

- 1. knowledge-sensitive judgments (forcing)
- 2. deterministic computation (use choice sequences)

- 1. knowledge-sensitive judgments (forcing)
- 2. deterministic computation (use choice sequences)

assertion acts (judgments) are intensional (local)

 $|_{x} \mathcal{J}(x)$

(general judgment)

assertion acts (judgments) are intensional (local)

$$|_{x} \mathcal{J}(x)$$

$$\mathcal{J}_{2} (\mathcal{J}_{1})$$

(general judgment) (hypothetical judgment)

assertion acts (judgments) are intensional (local)

$$\begin{array}{c}
|_{x} \mathcal{J}(x) \\
\mathcal{J}_{2} (\mathcal{J}_{1}) \\
M \Downarrow N
\end{array}$$

(general judgment)
(hypothetical judgment)
(evaluation)

$ _{x} \mathcal{J}(x)$	(general judgment
\mathcal{J}_2 (\mathcal{J}_1)	(hypothetical judgment
$M \Downarrow N$	(evaluation)
$A = B \ type$	(typehood)

$ _{x} \mathcal{J}(x)$	(general judgment)
\mathcal{J}_2 (\mathcal{J}_1)	(hypothetical judgment)
$M \Downarrow N$	(evaluation)
$A = B \ type$	(typehood)
A true	(truth)

$ _{x} \mathcal{J}(x)$	(general judgment)
$\mathcal{J}_2(\mathcal{J}_1)$	(hypothetical judgment)
$M \Downarrow N$	(evaluation)
$A = B \ type$	(typehood)
A true	(truth)
$M = N \in A$	(membershin)

$w \Vdash _{x} \mathcal{J}(x)$	(general judgment)
$w \Vdash \mathcal{J}_2 (\mathcal{J}_1)$	(hypothetical judgment)
$w \Vdash M \Downarrow N$	(evaluation)
$w \Vdash A = B \ type$	(typehood)
$w \Vdash A \ true$	(truth)
$w \Vdash M = N \in A$	(membership)

$$w \Vdash |_{x} \mathcal{J}(x)$$

 $w \Vdash \mathcal{J}_{2} (\mathcal{J}_{1})$

(general judgment) (hypothetical judgment)

$$\begin{array}{lll} w \Vdash \mid_x \mathcal{J}(x) & \Longleftrightarrow & \cdots \\ w \Vdash \mathcal{J}_2 \; (\mathcal{J}_1) & \Longleftrightarrow & \cdots \end{array}$$

$$\begin{split} w \Vdash \mid_{x} \mathcal{J}(x) &\iff \forall u \succeq w. \forall x \in \mathcal{M}_{u}. \ u \Vdash \mathcal{J}(x) \\ w \Vdash \mathcal{J}_{2} \ (\mathcal{J}_{1}) &\iff \forall u \succeq w. \ u \Vdash \mathcal{J}_{1} \Rightarrow u \Vdash \mathcal{J}_{2} \end{split}$$

$$w \Vdash |_{x} \mathcal{J}(x) \iff \forall u \geq w. \forall x \in \mathcal{M}_{u}. \ u \Vdash \mathcal{J}(x)$$
$$w \Vdash \mathcal{J}_{2} (\mathcal{J}_{1}) \iff \forall u \geq w. \ u \Vdash \mathcal{J}_{1} \Rightarrow u \Vdash \mathcal{J}_{2}$$

where \mathscr{M}_w is the species of constructions that have been effected by stage w

INTENSIONAL / EPHEMERAL TRUTH (KRIPKE)

INTENSIONAL / EPHEMERAL TRUTH (KRIPKE)

 $w \Vdash A \ true \iff \exists m \in \mathcal{M}_w.$

INTENSIONAL / EPHEMERAL TRUTH (KRIPKE)

$$w \Vdash A \ true \iff \exists m \in \mathcal{M}_w. \ w \Vdash m = m \in A$$

 $w \Vdash A true \iff$

 $w \Vdash A true \iff \exists \mathfrak{B} \mathbf{bars} w.$

 $w \Vdash A \ true \iff \exists \mathfrak{B} \ \mathbf{bars} \ w. \forall u \in \mathfrak{B}.$

 $w \Vdash A \ true \iff \exists \mathfrak{B} \ \mathbf{bars} \ w. \forall u \in \mathfrak{B}. \exists m \in \mathcal{M}_u.$

 $w \Vdash A \ true \Longleftrightarrow \exists \mathfrak{B} \ \mathbf{bars} \ w. \forall u \in \mathfrak{B}. \exists m \in \mathcal{M}_u. \ u \Vdash m = m \in A$

require — DYNAMICS

$$\frac{\Xi(\vec{u}) \quad |_{n} \, \rho(n) < n \, (n \in \mathbb{N}^{+})}{\Xi(\vec{u} - \rho)} \qquad \text{(spread law)}$$

$$\frac{\alpha \models_{\overline{t}} A \Downarrow A' \quad |\varkappa_{A'}(t)| = \ell \quad \operatorname{hd}(\alpha)(\ell) = j \quad \operatorname{tl}(\alpha) \models_{\overline{t}} \left[\varkappa_{A'}(j)/x\right] N \Downarrow N'}{\alpha \models_{\overline{t}} \operatorname{\mathbf{require}} x : A \text{ in } N \Downarrow N'}$$
(for $\alpha \in \mathfrak{S}$)

