Practical Introduction to Neural Network Potentials Day 5:

Equivariant message-passing neural networks

Review: Message-passing neural networks (MPNNs)

- 1. Initialize nodes \overrightarrow{x}_i and edges \overrightarrow{e}_{ij}
- 2. Pass messages between all atoms \overrightarrow{m}_{ij}
- 3. Accumulate messages \overrightarrow{M}_i
- 4. Repeat
- 5. Readout

Review: Message-passing neural networks (MPNNs)

Review: Message-passing neural networks (MPNNs)

$$f: X \mapsto y$$

f is a function that maps a molecule (X) to a property (y)

$$f: X \mapsto y$$

f is a function that maps a molecule (X) to a property (y)

151.12 Har.

$$f: X \mapsto y$$

f is a function that maps a molecule (X) to a property (y)

$$\mathcal{T}:X\mapsto X'$$

 \mathcal{T} is a function that transforms a molecules (X) to some other molecule (X')

$$f: X \mapsto y$$

f is a function that maps a molecule (X) to a property (y)

$$\mathcal{I}:X\mapsto X'$$

 \mathcal{T} is a function that transforms a molecules (X) to some other molecule (X')

$$f: X \mapsto y$$

f is a function that maps a molecule (X) to a property (y)

$$\mathcal{I}:X\mapsto X'$$

 \mathcal{T} is a function that transforms a molecules (X) to some other molecule (X')

f is invariant to $\mathcal T$ if the following is true for all X:

$$f(X) \equiv f(\mathcal{T}X)$$

Examples of Invariance

The molecular energy (f) is invariant to which of the following transformations (\mathcal{T}) ?

Examples of Invariance

The molecular energy (f) is invariant to which of the following transformations (\mathcal{T}) ?

Why Care about Invariance?

Models that ignore physical invariances perform poorly and train inefficiently:

Why Care about Invariance?

Models that ignore physical invariances perform poorly and train inefficiently:

Models that have unphysical invariances are wrong, no matter how much data:

$$\hat{y} = -0.6n_H - 38.1n_C - 54.8n_N - 75.2n_O - 99.9n_F$$

How do NN Potentials Enforce Invariance?

Atomic Energies

Completely variant (to translation, rotation, etc.)

Invariant (to translation, rotation, etc.)

Invariant (to translation, rotation, etc.)

Invariance is enforced at the level of the atomic feature vector.

How do NN Potentials Enforce Invariance?

Invariance is enforced at the level of the atomic feature vector. This could be a problem for two reasons:

1) We may want to model a variant property with a NN (e.g. dipole) Invariant AEVs can't do this.

How do NN Potentials Enforce Invariance?

Invariance is enforced at the level of the atomic feature vector. This could be a problem for two reasons:

- 1) We may want to model a variant property with a NN (e.g. dipole) Invariant AEVs can't do this.
- 2) Invariant AEVs contain less info than the original (variant) coordinates. We want to include this info (w/o losing invariance of prediction)

Is the molecular dipole $\overrightarrow{\mu} = (\mu_x, \mu_y, \mu_z)$ invariant or otherwise variant to each of the following transformations?

 $\overrightarrow{\mu} = (\mu_x, \mu_y, \mu_z)$ varies with rotation and reflection, unlike energy.

Atomic Dipole Variance

The dipole vector norm is invariant to rotation/reflection, but the dipole direction isn't

This specific type of directional variance is called equivariance

Definition: Equivariance

$$f: X \mapsto y$$

f is a function that maps a molecule (X) to a property (y)

$$\mathcal{I}:X\mapsto X'$$

 \mathcal{T} is a function that transforms a molecules (X) to some other molecule (X')

f is equivariant to $\mathcal T$ if the following is true for all X:

$$\mathcal{T}(f(X)) \equiv f(\mathcal{T}X)$$

Invariance

Equivariance

$$f(X) \equiv f(\mathcal{I}X)$$

$$\mathcal{T}(f(X)) \equiv f(\mathcal{T}X)$$

Problem: Our models are rotationally invariant

$$\overrightarrow{\mu}_{H_2} = (-0.4, -0.1)$$

$$\overrightarrow{\mu}_O = (-0.1, -0.1)$$

$$\overrightarrow{\mu}_H = (0.1, -0.4)$$

Predicting properties with rotational equivariance

Predicting properties with rotational equivariance

Pass messages

Update equivariant features

Update invariant features

For every node, accumulate all messages $\{\overrightarrow{m}_{ji}\}$ into a bundle \overrightarrow{M}_i

$$\overrightarrow{M}_i = \sum_j \overrightarrow{m}_{ji}$$

Update node states $\overrightarrow{h_i}$ based on message bundle \overrightarrow{M}_i

$$\overrightarrow{h_i} = f_U(\overrightarrow{h_i}, \overrightarrow{M}_i)$$

2. How do we form enforce an equivariant readout?

E(n) equivariance: The framework presented here

E(n) Equivariant Graph Neural Networks

Victor Garcia Satorras ¹ Emiel Hoogeboom ¹ Max Welling ¹

Generalizing equivariance

e3nn is a python library that implements general arbitrary equivariant convolutions

This is done with spherical harmonics and tensor products

e3nn

e3nn: a modular PyTorch framework for Euclidean neural networks

View My GitHub Profile

Welcome!

Getting Started

How to use the Resources Installation

Help

Contributing

Resources

Math that's good to know

e3nn_tutorial

e3nn_book

Papers

Previous Talks

Poster

Slack

Recurring Meetings / Events

Calendar

e3nn Team

Welcome to e3nn!

This is the website for the e3nn repository https://github.com/e3nn/e3nn/Documentation

E(3) is the Euclidean group in dimension 3. That is the group of rotations, translations and mirror. e3nn is a pytorch library that aims to create E(3) equivariant neural networks.

Equivariant NNs model invariant properties better than invariant NNs

(4.7 mEV is 0.108 kcal / mol)

Model	U_0	U	H	G
Schnet [25]	14	19	14	14
DimeNet++[54]	6.3	6.3	6.5	7.6
Cormorant [23]	22	21	21	20
LieConv [55]	19	19	24	22
L1Net [56]	13.5	13.8	14.4	14.0
SphereNet [57]	6.3	7.3	6.4	8.0
EGNN $[32]$	11	12	12	12
ET [40]	6.2	6.3	6.5	7.6
NoisyNodes [58]	7.3	7.6	7.4	8.3
PaiNN [27]	5.9	5.7	6.0	7.4
Allegro, 1 layer	5.7 (0.2)	5.3	5.3	6.6
Allegro, 3 layers	4.7 (0.2)	4.4	4.4	5.7

TABLE III: Comparison of models on the QM9 data set, measured by the MAE in units of [meV]. Allegro outperforms all existing message passing and transformer-based models, in particular even with a single layer. Best methods in bold, second-best method underlined.

Takeaways

NNs are powerful nonlinear regressors

Libraries like PyTorch make it easy to write and train complicated NNs

Training a NN can require significant hyperparameter tuning

Neural Networks aren't a one-size-fits-all tool

Takeaways

NNs are powerful nonlinear regressors

Libraries like PyTorch make it easy to write and train complicated NNs

Training a NN can require significant hyperparameter tuning

Neural Networks aren't a one-size-fits-all tool

A useful NN requires carefully considering the nature of the input/output

- To a first approximation, energy is linear in the number of atoms
- Chemistry is local, so atomic environments can be too
- Ad hoc AEVs (symfuns) aren't as expressive as NN-learned AEVs (MPNNs)
- Most (scalar) properties are invariant to Euclidian transforms
- Other (tensorial) properties are equivariant with these transforms