Fakultät für Maschinenbau Technische Universität Wien

STUDIENPLAN für das Diplomstudium der Studienrichtung MASCHINENBAU E 700

Fassung vom

1.Oktober 2001

gemäß Universitätsstudiengesetz BGBl I, Nr. 48/1997 in der geltenden Fassung

§ 1. Grundlage und Geltungsbereich des Studienplans

Die Studienkommission für die Studienrichtungen Maschinenbau, Wirtschaftsingenieurwesen-Maschinenbau und das Doktoratsstudium für technische Wissenschaften der Fakultät für Maschinenbau an der Technischen Universität Wien erlässt auf der Grundlage des Universitätsstudiengesetzes gemäß BGBl. I, Nr. 48/1997 (Anlage 1, 2.20) den vorliegenden Studienplan. Er definiert und regelt das Diplomstudium der Studienrichtung Maschinenbau an der Technischen Universität Wien und tritt mit 1.0ktober 2001 in Kraft. Die Inhalte und Ziele dieses Studienplanes orientieren sich am Qualifikationsprofil gemäß § 2.

§ 2. Qualifikationsprofil

In der modernen Industrie- und Informationsgesellschaft ändern sich die von den Absolventinnen und Absolventen der Studienrichtung Maschinenbau an einer Technischen Universität verlangten Qualifikationsmerkmale laufend. Um mit diesen Veränderungen Schritt zu halten, muss das Studium des Maschinenbaus vornehmlich die grundlegenden wissenschaftlichen Methoden und Kenntnisse, die für die berufliche Tätigkeit von akademisch gebildeten Maschinenbau-Ingenieuren erforderlich sind, vermitteln. Das Studium ist durch wissenschaftliche Tiefe, Methodenorientierung aber auch durch die Vermittlung von interdisziplinärem Wissen gekennzeichnet, wobei immer ein klarer Praxisbezug vorhanden ist. Gepaart mit der Vermittlung von Wissen sind auch die Vermittlung von Fähigkeiten in Bereichen wie Problemanalyse und Problemlösung, Kooperation und Kommunikation und dem verantwortungsbewussten Einsatz der Technik.

Durch eine breite, fundierte Grundlagenausbildung und eine methodenorientierte Fachausbildung steht den Absolventinnen und Absolventen des Maschinenbaustudiums eine Vielzahl von Einsatzgebieten und persönlichen Entwicklungs- und Entfaltungsmöglichkeiten offen. Die Absolventinnen und Absolventen der Studienrichtung Maschinenbau an der Technischen Universität Wien verfügen dementsprechend über folgende Qualifikationen:

Theoretisches Grundlagenwissen

Sie verfügen über eine fundierte mathematische sowie natur- und ingenieurwissenschaftliche Ausbildung, welche die Basis für das Verständnis der im Maschinenbau relevanten Zusammenhänge bildet. Die Beherrschung dieser wissenschaftlichen Grundlagen und Methoden ist, in Verbindung mit fundierten Kenntnissen auf dem immer wichtiger werdenden Gebiet der Informations- und Kommunikationstechnik, die Voraussetzung für eine kreative und innovative berufliche Tätigkeit in den einzelnen Teilgebieten des Maschinenbaus sowie in benachbarten Ingenieurdisziplinen.

Fachspezifische Kenntnisse und Fähigkeiten – Problemlösungskompetenz

Aufbauend auf dem erworbenen natur- und ingenieurwissenschaftlichen Grundlagenwissen, verfügen sie über fachspezifische Kenntnisse und Fähigkeiten in den verschiedenen Teilgebieten des Maschinenbaus, wobei nicht so sehr das eher kurzlebige produktorientierte, sondern verstärkt das längerfristige, methodenorientierte Know-how im Vordergrund steht. Sie sind damit in der Lage, mit angemessenen analytischen und konstruktiven Methoden Aufgabenstellungen wissenschaftlich zu analysieren und zu beschreiben sowie Lösungen zu erarbeiten. Durch die, entsprechend ihren persönlichen Neigungen und Begabungen, eigenverantwortlich gewählte Spezialausbildung (Vertiefungsstudium) in einem Teilbereich des Maschinenbaus sind sie in diesem Bereich mit dem letzten Stand der Technik vertraut. Sie sind ferner in der Lage, sich die zum Einstieg in eine neue Technologie notwendigen Informationen und Kenntnisse zu verschaffen, sich schnell in neue Wissensbereiche einzuarbeiten und unmittelbar nach Studienabschluss kreativ und innovativ Forschungs- und Entwicklungsarbeit zu leisten.

Wirtschafts- und Sozialkompetenz

Eine betriebswirtschaftliche sowie arbeits- und betriebswissenschaftliche Grundausbildung erlaubt ihnen, gesamtwirtschaftliche Zusammenhänge zu verstehen und anzuwenden.

Sie können kreativ in einem Team mitarbeiten bzw. ein solches führen sowie ihre Ideen und Ergebnisse in mündlicher und schriftlicher Weise präsentieren und überzeugend vertreten. Sie sind in der Lage, technische Entwicklungen in ihren sozialen und ökologischen Auswirkungen abzuschätzen und für eine menschengerechte Technik einzutreten.

Förderung von Praxis, Mobilität und Auslandserfahrung

Durch die Möglichkeit der Mitwirkung an universitär-industriellen Forschungskooperationen, Diplomarbeiten in einem Betrieb, etc., wird ein rascher Einstieg der Absolventinnen und Absolventen in die Berufswelt unterstützt. Durch Förderung der Mobilität im Rahmen von EU-Programmen bereits während des Diplomstudiums (Auslandssemester, etc.) können die Studierenden verbesserte Sprachkenntnisse und wichtige Auslandserfahrung erwerben.

§ 3. Struktur des Studiums

- (1) Die Studiendauer beträgt 10 Semester (5 Jahre). Das Gesamtstundenausmaß aller zu absolvierenden Lehrveranstaltungen beträgt 205 Semesterstunden (SSt), siehe § 7, (3) UniStG 97.
- (2) Das Studium Maschinenbau gliedert sich in drei Studienabschnitte, die jeweils mit einer Diplomprüfung abzuschließen sind. Tabelle 1 gibt einen Überblick über die Anzahl der Semester sowie die Anzahl der Semesterstunden für

Pflichtfächer gem. § 4, Z 24, UniStG, Wahlfächer (gebundene Wahl) gem. § 4, Z 25, UniStG und freie Wahlfächer gem. § 4, Z 25, UniStG,

in den einzelnen Studienabschnitten.

Tabelle 1: Anzahl der Semesterstunden (SSt)								
		hnitt Semester Pflichtfächer Wahlfächer (geb. Wahl)		freie Wahlfächer *)	Summe			
1.Abschn.	1 bis 2	44		_	44			
2.Abschn.	3 bis 6	77	9	6	92			
3.Abschn.	7 bis 10	Diplomarbeit	54	15	69			
Summe		121	63	21	205			

Die Zuordnung der freien Wahlfächer zu den Studienabschnitten ist in dieser Form nicht vorgeschrieben, sondern stellt eine Empfehlung dar.

- (3) Der Erste Studienabschnitt mit der Studieneingangsphase gem. § 4, Z 4 UniStG und § 38, (1) bis (4) UniStG umfasst zwei Semester (Semester 1 bis 2) mit 44 Semesterstunden Pflichtlehrveranstaltungen. Er schließt mit der Ersten Diplomprüfung ab.
- (4) Der Zweite Studienabschnitt umfasst vier Semester (Semester 3 bis 6) mit 77 Semesterstunden Pflichtlehrveranstaltungen und 9 Semesterstunden Wahllehrveranstaltungen (gebundene Wahl). Er schließt mit der Zweiten Diplomprüfung ab.
- (5) Der Dritte Studienabschnitt umfasst vier Semester (Semester 7 bis 10) mit einem Vertiefungsstudium von 54 Semesterstunden Wahllehrveranstaltungen (gebundene Wahl). Hier kann aus acht SCHWERPUNKTEN und zwar
 - Energietechnik,
 - Transporttechnik und Logistik,
 - Kraftfahrzeugtechnik,
 - Produktionstechnik,
 - Konstruktion und Werkstofftechnik,
 - Mechatronik,
 - Biomedizinische Technik sowie
 - Modellbildung und Simulation,

gemäß den Bedingungen des § 8, Absatz (1) bis (6) und § 8, Absatz (7), Tabellen 5a bis 5h dieses Studienplans ausgewählt werden. Daneben gibt es eine beschränkte Wahlmöglichkeit aus den SCHWERPUNKTEN des Studienplans Wirtschaftsingenieurwesen - Maschinenbau an der Technischen Universität Wien (siehe § 8, (4)). Im Dritten Studienabschnitt ist eine Diplomarbeit zu verfassen. Der Dritte Studienabschnitt schließt mit der Dritten Diplomprüfung ab.

- (6) Neben den 184 Semesterstunden Lehrveranstaltungen der Pflicht und der gebundenen Wahl sind 21 Semesterstunden freie Wahlfächer aus dem Angebot aller anerkannten inländischen und ausländischen Universitäten und Hochschulen zu absolvieren (siehe § 4, Z 25, UniStG). Den Studierenden wird empfohlen, im Rahmen der freien Wahlfächer insbesondere ihre Fremdsprachenkompetenz weiter zu entwickeln.
- (7) Im Rahmen der Pflicht und Wahlfächer (gebundene und freie Wahl) sind Prüfungen über fremdsprachige Fachlehrveranstaltungen im Umfang von acht Semesterstunden in der entsprechenden Fremdsprache zu absolvieren. Der Studiendekan hat im Rahmen des § 10 UniStG dafür Sorge zu tragen, dass ein Angebot an fremdsprachigen Fachlehrveranstaltungen in ausreichendem Maße zur Verfügung steht.

§ 4. Definition und Beschreibung der Lehrveranstaltungsarten (LA)

Die in den folgenden Tabellen dieses Studienplans verwendeten Abkürzungen für die Beschreibung der Art einer Lehrveranstaltung haben die folgende Bedeutung:

VO (Vorlesung)
 Die Vermittlung des Inhaltes einer Lehrveranstaltung erfolgt durch Vortrag, eventuell unter Zuhilfenahme von Demonstrationen und Beispielen. Die Bereitstellung von Lehrmaterial ist anzustreben. Prüfungsmethode: S, M oder U, siehe § 9, (1).

2. RU (Rechenübung)

Ergänzend zur Vorlesung werden Übungsbeispiele vorgetragen, die die Inhalte der Vorlesung erläutern und für die Anwendung aufbereiten sollen. Lehrmaterial sollte zur Verfügung gestellt werden, und eine rege Interaktion zwischen Studierenden und Vortragenden ist anzustreben. Erfolgsnachweis: B, siehe § 9, (1).

3. UE (Übung)

In kleineren Gruppen haben die Studierenden unter Anleitung von Betreuern Übungsaufgaben zu lösen, die dem Verständnis und der Anwendung von zugehörigen Vorlesungsinhalten dienen sollen. Lehrmaterial ist zur Verfügung zu stellen, und eine rege Interaktion zwischen den Studierenden und dem Betreuer ist in einer Kleingruppe zu realisieren. Solche Übungen können auch mit Computerunterstützung durchgeführt werden. Erfolgsnachweis: B, siehe § 9, (1).

4. **VU** (Vorlesungsübung)

Stellt eine Kombination aus den Typen VO und RU dar. Erfolgsnachweis: B eventuell kombiniert mit (M oder S), siehe § 9, (1).

5. LU (Laborübung)

In kleineren Gruppen haben die Studierenden unter Anleitung von Betreuern experimentelle Aufgaben zu lösen, die dem Verständnis und der Anwendung von zugehörigen Vorlesungsinhalten dienen sollen. Experimentelle Einrichtungen und Arbeitsplätze sind zur Verfügung zu stellen, und eine rege Interaktion zwischen den Studierenden einer Kleingruppe und ihrem Betreuer ist herzustellen. Für jede Übung sind von den Studierenden Protokolle anzufertigen und abzugeben, die in die Beurteilung eingehen. Erfolgsnachweis: B und Protokollbeurteilung, siehe § 9, (1).

6. SE (Seminar)

Die Studierenden setzen sich mit einem gestellten aktuellen Thema auseinander und präsentieren die Ergebnisse vor dem Seminarleiter und den anderen Seminarteilnehmern in Form einer oder mehrerer Präsentationen mit anschließender Diskussion. Erfolgsnachweis: B und Beurteilung des Abschlussvortrags mit Diskussion, siehe § 9, (1).

7. **KU** (Konstruktionsübung)

Entwurf und Berechnung einer gestellten konstruktiven Aufgabe mit Anleitung durch den Lehrveranstaltungsleiter und begleitenden Betreuern. Ausarbeitung des grafischen Entwurfs und des zugehörigen Berechnungsberichts. Erfolgsnachweis: B und Beurteilung der Konstruktionszeichnungen mit Berechnungsbericht, siehe § 9, (1).

8. PA (Projektarbeit)

Die Studierenden setzen sich mit einem gestellten aktuellen Projektthema auseinander und fertigen dazu einen schriftlichen Bericht an. Die Beurteilung erfolgt laufend durch den Lehrveranstaltungsleiter. Der Arbeitsaufwand ist vom Lehrveranstaltungsleiter entsprechend der Semesterstundenanzahl abzuschätzen. Erfolgsnachweis: B und Beurteilung des Abschlussberichts, siehe § 9, (1).

9. **PR** (Praktikum)

Lehrwerkstätte im 2. Semester. Die Studierenden arbeiten unter Anleitung an Werkzeugmaschinen. Erfolgsnachweis: B, siehe § 9, (1).

§ 5. Das "European Credit Transfer System (ECTS)"

Dieser Studienplan unterstützt das ECT-System, und neben den Angaben über die Semesterstundenanzahl (SSt) in den Tabellen zu § 6, § 7 und § 8 sind jeweils auch die entsprechenden ECTS-Credits (EC) angegeben. Tabelle 2 zeigt die Gesamtübersicht der ECTS-Credits über die drei Studienabschnitte.

	Tabel	le 2: Anzahl de	r ECTS-Credit	s (EC)	
Abschnitt	Semester	Pflichtfächer	Wahlfächer (geb. Wahl)	freie Wahlfächer *)	Summe
1.Abschn.	1 bis 2	60		- 1	60
2. Abschn.	3 bis 6	100	13	7	120
3.Abschn.	7 bis 10	30	71	19	120
		(Diplomarb.)			_ _ -
Summe 190		190	84	26	300

^{*} Die Zuordnung der freien Wahlfächer zu den Studienabschnitten ist in dieser Form nicht vorgeschrieben, sondern stellt eine Empfehlung dar.

§ 6. Erster Studienabschnitt mit Studieneingangsphase

Der Erste Studienabschnitt umfasst die Pflichtlehrveranstaltungen im 1. und 2. Semester gemäß Tabelle 3. Die Spalte LA bezeichnet die Lehrveranstaltungsart gem. § 4, Z1 bis Z9, die Spalte SSt/Pflicht gibt die Anzahl der Pflichtsemesterstunden, die Spalte EC die Anzahl der ECTS-Credits gem. § 5 an, und die Spalte PM bezeichnet die Prüfungsmethode gem. § 9 (1). Die Lehrveranstaltungen der Studieneingangsphase gem. § 38, (1) bis (4) UniStG sind in Spalte EPh mit E bezeichnet.

(1) Liste der Lehrveranstaltungen des Ersten Studienabschnitts:

	Tabelle 3: 1. Studienabschnitt, 1. u	Tabelle 3: 1. Studienabschnitt, 1. und 2. Semester						
	Lehrveranstaltung	LA	SSt / Pflicht	EC	PM	EPh		
	Mathematik 1 für MB	VO	5	8.5	U			
	Mathematik 1 für MB	UE	2	3.5	В			
5	Mechanik 1	VO	3	4.5	S			
est	Mechanik 1	UE		3.0	В	E		
Semester	Physik für MB und VT	VO	2	2.0	M			
1. S	Chemie für Maschinenbau	VO		2.0	M			
_	Technisches Zeichnen / CAD	VU	3	4.5	В	E		
	Grundlagen der Fertigungstechnik	VO	2	2.5	S	Е		
	Summe 1. Semester	-	21	30.5	-	_		
	Lehrveranstaltung	LA	SSt / Pflicht	EC	PM	EPh		
	Mathematik 2 für MB und VT	VO	5	8.5	U			
	Mathematik 2 für MB und VT	UE	2	3.5	В			
er er	Mechanik 2	VO	3	4.5	S			
Semester	Mechanik 2	UE	2	3.0	В			
em	Grundlagen der Konstruktionslehre	vo	2	2.5	S	Е		
	Technisches Zeichnen / CAD	KU	3	2.0	В			
2	Grundlagen der Betriebstechnik	vo	2	2.5	S			
	Lehrwerkstätte	PR	4	3.0	В			
	Summe 2. Semester	-	23	29.5	-	-		
Summ	e Erster Studienabschnitt		44	60	-	-		

(2) Die Pflichtlehrveranstaltungen des Ersten Studienabschnittes bilden die folgenden Prüfungsfächer:

1. Mathematik und Naturwissenschaftliche Grundlagen (28 Semesterstunden)

Mathematik 1 für MB VO 5 UE 2

Mathematik 2 für MB u. VT VO 5 UE 2

Mechanik 1 VO 3 UE 2

Mechanik 2 VO 3 UE 2

Physik für MB und VT VO 2

Chemie für Maschinenbau VO 2

2. Einführung in den Maschinenbau (16 Semesterstunden)

Technisches Zeichnen / CAD VU 3 KU 3
Grundlagen der Konstruktionslehre VO 2
Grundlagen der Fertigungstechnik VO 2
Grundlagen der Betriebstechnik VO 2
Lehrwerkstätte PR 4

Die Bezeichnungen und Noten dieser Prüfungsfächer sind im Diplomprüfungszeugnis des Ersten Studienabschnittes auszuweisen, siehe § 9, (3)

§ 7. Zweiter Studienabschnitt

Der Zweite Studienabschnitt umfasst die Pflichtlehrveranstaltungen im 3. und 4. Semester gemäß Absatz (3), Tabelle 4a sowie die Pflicht- und gebundenen Wahllehrveranstaltungen im 5. und 6. Semester gemäß Absatz (3), Tabelle 4b. In diesen Tabellen bezeichnet die Spalte LA die Lehrveranstaltungsart gem. § 4, Z1 bis Z9. Die Spalte SSt/Pflicht gibt die Anzahl der Semesterstunden der Pflichtlehrveranstaltungen und die Spalte SSt/Wahl gibt die Anzahl der Semesterstunden der Lehrveranstaltungen der gebundenen Wahl an. Die Spalte EC bezeichnet die Anzahl der ECTS-Credits gem. § 5, und die Spalte PM bezeichnet die Prüfungsmethode gem. § 9 (1).

- (1) Im 6. Semester werden sechs Lehrveranstaltungen zu je zwei Semesterstunden (VO 2) in der gebundenen Wahl über die "Grundzüge des Maschinenbaus" angeboten. Davon sind von den Studierenden drei Lehrveranstaltungen im Gesamtausmaß von sechs Semesterstunden zu absolvieren. Wahllehrveranstaltungen über die "Grundzüge des Maschinenbaus" stellen teilweise Vorbedingungen für bestimmte Vertiefungen im Dritten Studienabschnitt dar. Diese Vorbedingungen sind in § 9, (2), Z4 festgelegt.
- (2) Im 6. Semester werden in der gebundenen Wahl zwei Lehrveranstaltungen mit je einer Vorlesung zu zwei Semesterstunden (VO 2) und einer Übung zu einer Semesterstunde (UE 1) über "Numerische Ingenieursmethoden" angeboten. Davon sind von den Studierenden eine Vorlesung (VO 2) mit der zugehörigen Übung (UE 1) im Gesamtausmaß von drei Semesterstunden zu absolvieren. Die Wahllehrveranstaltungen über "Numerische Ingenieursmethoden" stellen teilweise Vorbedingungen für bestimmte Vertiefungen im Dritten Studienabschnitt dar; siehe § 9, (2), Z4.

(3) Liste der Lehrveranstaltungen des Zweiten Studienabschnittes (Tabellen 4a, 4b)

	Tabelle 4a: 2. Studienabschnitt, 3. und 4. Semester							
	Lehrveranstaltung	LA	SSt / Pflicht	EC *)	PM			
	Statistik und Wahrscheinlichkeitsrechnung	VO	2	3.0	U			
	Statistik u. Wahrscheinlichkeitsrechnung f. MB	UE	1	1.0	В			
	Mechanik 3	vo	3	4.5	U			
	Mechanik 3	UE	2	2.5	В			
	Grundlagen der Thermodynamik	vo	2	3.0	S			
ster	Grundlagen der Thermodynamik	RU	1	1.5	В			
3. Semester	Einführung in die Informatik	vo	2	2.0	s			
3.8	Einführung in die Informatik	UE	2	1.5	В			
	Grundlagen d. Elektrotechnik f. MB u. WI-MB	vo	2	3.0	U			
	Maschinenelemente 1	vo	3	4.0	U			
	Grundlagen der Werkstoffeigenschaften	vo	2	2.5	U			
	Anwendung von Materialkennwerten	RU	1	1.5	В			
	Summe 3. Semester	-	23	29.5	-			
	Lehrveranstaltung		SSt / Pflicht	EC *)	PM			
	Strömungslehre	VO	3	4.5	U			
	Strömungslehre	RU	2	1.5	В			
	Maschinendynamik	vo	2	3.0	U			
	Maschinendynamik	UE	2	1.5	В			
ester	Grundlagen der Elektronik f. MB u. WI-MB	VO	2	3.0	U			
Seme	Maschinenelemente 1	KU	4	4.0	В			
4. S	Maschinenelemente 2	vo	3	4.0	U			
	Nichtmetallische Werkstoffe	vo	2	3.0	M			
	Werkstoffprüfung	LU	1	1.0	В			
	Allgemeine Betriebswirtschaftslehre 1	vo	2	3.0	S			
, .	Summe 4. Semester	-	23	28.5	-			

^{*} hinzu kommen ECTS-Credits für freie Wahlfächer gem. § 5, Tabelle 2.

Iseizi	Tabelle 4b: 2. Studienabschnitt, 5. und 6. Semester						
		Lehrveranstaltung	LA	SSt / Pflicht	SSt / Wahl	EC *)	PM
	Re	egelungstechnik	vo	3	-	5.0	U
	Re	egelungstechnik	RU	1	7-0	1.5	В
	M	esstechnik	vo	2	9 = 0	3.0	U
	w	ärmeübertragung	vo	2	7 4 5	3.0	s
ster	w	ärmeübertragung	RU	1	-	1.5	В
Semester	M	aschinenelemente 2	KU	4	_	4.0	В
5. S.	Gr	undl. d. Elektrotechnik u. Elektronik f. MB	LU	2		3.0	В
''	Ar	ngewandte Thermodynamik	vo	2	·=:	3.0	U
	Ar	gewandte Thermodynamik	RU	2		2.5	В
	Ni	chtmetallische Werkstoffe	LU	1	-	1.0	В
	Su	Summe 5. Semester		20	-	27.5	-
		Lehrveranstaltung	LA	SSt / Pflicht	SSt / Wahl	EC *)	PM
	Sp	anabhebende Fertigung	vo	2	o 2"	2.5	U
	Sp	anlose Fertigung	vo	2		2.5	U
	Re	gelungstechnik	LU	1	-	1.5	В
	Me	esstechnik	LU	1	-	1.5	В
	Gr	undlagen der Finite Elemente Methoden	vo	2	-	3.0	U
	Gr	undlagen der Finite Elemente Methoden	UE	1	7	1.0	В
	Gn	undlagen der Arbeitswissenschaft	vo	2	-	2.5	S
	chinenb.	Grundzüge des Leichtbaus	vo	*	(2)	(3.0)	U
ster	schir	Grundzüge der Transport- u. Fördertechnik	vo	4	(2)	(3.0)	M
Semest	Ma	Grundz. d. hydr. Masch. u. Anlagen	vo	-	(2)	(3.0)	U
6. S	e de	Grundzüge d. wärmetechn. Anlagen	vo	<u>:</u>	(2)	(3.0)	U
	dzüg	Grundzüge d. therm. Turbomaschinen	vo	-	(2)	(3.0)	S
	Grundziige des Mas	Grdzüge d. Verbrennungskraftmaschinen	vo	-	(2)	(3.0)	U
		Grundl. d. Mehrkörpersystemdynamik	vo	-	(2)	(3.0)	S
	hode	Grundl. d. Mehrkörpersystemdynamik	UE	-	(1)	(1.0)	В
	Num. Ing. Methoden	Grundlagen der numerischen Methoden der Strömungs- und Wärmetechnik	vo	-	(2)	(3.0)	U
		Grundlagen der numerischen Methoden der Strömungs- und Wärmetechnik	UE	-	(1)	(1.0)	В
		nme 6. Semester	-	11	9	27.5	-
,) , .	7	Summe 2. Studienabschnitt	-	77	9	113	

* hinzu kommen ECTS-Credits für freie Wahlfächer gem. § 5, Tabelle 2.

(4) Die Pflicht- und gebundenen Wahllehrveranstaltungen des Zweiten Studienabschnitts bilden die folgenden Prüfungsfächer:

1.	Wirtschaftswissenschaften, Statistik und Informa	tik (11	Semesterstunden)
	Allgemeine Betriebswirtschaftslehre 1 (Pflicht)	VO ₂	,
	Grundlagen der Arbeitswissenschaft (Pflicht)	VO 2	
	Statistik und Wahrscheinlichkeitsrechnung (Pflicht)	VO 2	
	Statistik u. Wahrscheinlichkeitsrechng. f. MB (Pflich	ıt)	UE 1
	Einführung in die Informatik (Pflicht)	VO 2	UE 2
2	Theoretische Marchinerlahm (29 Samuelanden)	,	
۷.	Theoretische Maschinenlehre (38 Semesterstunden Machanile 2 (PSieht)	/	TTT 0
	Mechanik 3 (Pflicht)	VO 3	UE 2
	Grdl. d. Finite Elemente Methoden (Pflicht)	VO 2	
	Num. Ing. Methoden (geb. Wahl)	VO 2	
	Maschinendynamik (Pflicht)		UE 2
	Regelungstechnik (Pflicht)		RU1 LU1
	Messtechnik (Pflicht)	VO 2	
	Strömungslehre (Pflicht)	VO 3	
	Grundlagen der Thermodyn. (Pflicht)	VO 2	
	Angew. Thermodynamik (Pflicht)	VO 2	
	Wärmeübertragung (Pflicht)	VO 2	RU 1
3.	Maschinenbau (26 Semesterstunden)		
	Maschinenelemente 1 (Pflicht)	VO 3	KU 4
	Maschinenelemente 2 (Pflicht)	VO 3	
	Grundzüge des Maschinenbaus (geb. Wahl)	VO 6	
	Grdlg. d. Elektrotechnik f. MB u. WI-MB (Pflicht)	VO 2	
	Grdlg. d. Elektronik f. MB u. WI-MB (Pflicht)	VO 2	
	Grdlg. d. Elektrotech. u. Elektronik f. MB (Pflicht)		LU 2
1	Technologie und Werkstoffe (11 Comesteratunden)		
٦.	Technologie und Werkstoffe (11 Semesterstunden) Spanabhebende Fertigung (Pflicht)	VO 2	
	- 0 0 0	VO 2	
	Spanlose Fertigung (Pflicht) Grundlagen d. Warkstoffeigenschaften (Pflicht)	VO 2	
	Grundlagen d. Werkstoffeigenschaften (Pflicht)	VO 2	
	Anwendung von Materialkennwerten (Pflicht)	RU 1	T T T 1
	Nichtmetallische Werkstoffe (Pflicht)	VO 2	_
	Werkstoffprüfung (Pflicht)		LU 1

Die Bezeichnungen und Noten dieser Prüfungsfächer sind im Diplomprüfungszeugnis des Zweiten Studienabschnitts auszuweisen, siehe § 9, (4).

§ 8. Dritter Studienabschnitt

Im Dritten Studienabschnitt (Vertiefungsstudium in den Semestern 7 bis 10) haben die Studierenden Lehrveranstaltungsprüfungen in der gebundenen Wahl sowie restliche freie Wahlfächer zu absolvieren. Die Wahllehrveranstaltungen sind in acht SCHWERPUNKTEN gemäß den Tabellen 5a bis 5h von Absatz (7) aufgelistet. Jeder Schwerpunkt enthält als SCHWERPUNKTPFLICHT fünf Lehrveranstaltungen zu je zwei Semesterstunden. Daneben sind drei bis fünf VERTIEFUNGEN mit je zehn bis zwölf Semesterstunden Umfang festgelegt. Ergänzend sind etwa fünf bis zehn weitere ERGÄNZENDE LEHRVERANSTALTUNGEN angeführt. In den folgenden Tabellen von Absatz (7) sind neben der Bezeichnung der Lehrveranstaltung in der Spalte LA die Lehrveranstaltungsart gem. § 4 Z1 bis Z9, in der Spalte SSt die Anzahl der Semesterstunden und in der Spalte EC die Anzahl der ECTS-Credits gemäß § 5 angeführt. Die Spalte PM bezeichnet den Prüfungsmodus gem. § 9, (1). Die gebundenen Wahllehrveranstaltungen des Dritten Studienabschnitts unterliegen den folgenden Bedingungen:

- (1) Das Vertiefungsstudium im Dritten Studienabschnitt besteht aus unterschiedlichen Wahllehrveranstaltungen (gebundene Wahl) im Gesamtumfang von 54 Semesterstunden.
- (2) Mindestens 34 Semesterstunden von unterschiedlichen Lehrveranstaltungen des Dritten Studienabschnittes sind aus einem einzigen der acht SCHWERPUNKTE zu wählen, und dieser ist damit als HAUPTSCHWERPUNKT definiert. Davon sind 10 Semesterstunden durch die fünf Lehrveranstaltungen der SCHWERPUNKT-PFLICHT abgedeckt. Die verbleibenden 24 Semesterstunden von unterschiedlichen Lehrveranstaltungen sind durch zwei VERTIEFUNGEN des HAUPTSCHWER-PUNKTS und gegebenenfalls weitere Lehrveranstaltungen des HAUPTSCHWER-PUNKTS abzudecken.
- (3) Die restlichen 20 Semesterstunden von unterschiedlichen Lehrveranstaltungen des Dritten Studienabschnitts können aus allen acht SCHWERPUNKTEN des vorliegenden Studienplans Maschinenbau gewählt werden.
- (4) Höchstens 10 von den restlichen 20 Semesterstunden gemäß Absatz (3) können durch Wahllehrveranstaltungen aus den vier SCHWERPUNKTEN
 - Produktions- und Produktmanagement,
 - Arbeitswelt und Organisationsgestaltung,
 - Wettbewerb und Unternehmensführung,
 - Finanzwirtschaft und Risikomanagement, des Diplomstudienplans der Studienrichtung Wirtschaftsingenieurwesen-Maschinenbau an der Technischen Universität Wien abgedeckt werden.
- (5) Die gebundenen Wahllehrveranstaltungen des Dritten Studienabschnitts im Umfang von 54 Semesterstunden bilden ein Fach mit der Bezeichnung des gewählten HAUPTSCHWERPUNKTS gem. Absatz (2). Die Bezeichnung und Note dieses Faches sind im Diplomprüfungszeugnis des Dritten Studienabschnitts auszuweisen, siehe § 9, (5), Z5, a).
- (6) Wird aus den acht angebotenen Schwerpunkten entweder "Energietechnik" oder "Transporttechnik und Logistik" oder "Kraftfahrzeugtechnik" oder "Konstruktion und Werkstofftechnik" als Hauptschwerpunkt gewählt, so sind aus diesem Schwerpunkt Konstruktionsübungen (KU) im Gesamtausmaß von mindestens fünf Semesterstunden zu absolvieren.

(7) Liste der Lehrveranstaltungen der gebundenen Wahl im Dritten Studienabschnitt (Tabellen 5a-5h)

I Shelle 32' & Studious hashwill believe the library to the		ii (Ia	bellen	>a->
Tabelle 5a: 3. Studienabschnitt, Schwerpunkt ENERGIE				,
Lehrveranstaltung	LA	SSt	EC	PM
SCHWERPUNKTPFLICHT				
Strömungen realer Fluide	VO	2	3.0	M
Höhere Festigkeitslehre	VO	2	3.0	U
Moderne Methoden der Regelungstechnik	VO	2	3.0	M
Thermodynamik in der Energietechnik	VO	2	3.0	U
Modellierung und Simulation wärmetechn. Prozesse	VO	2	3.0	U
VERTIEFUNGEN				
Wärmetechnik 1)				
Konstruktion und Berechnung wärmetechnischer Anlagen	VO	2	3.0	U
Konstruktion und Berechnung wärmetechnischer Anlagen Übungen	UE	1	1.0	В
Wärmetechnik Laborübungen	LU	2	2.0	В
Wärmetechnik Seminar	SE	2	3.0	В
Wärmetechnik Konstruktionsübungen/Projektarbeit	KU	5	5.0	В
Fortschr. u. alternat. Energieumwandlung 1)				
Thermodyn. alternative Verfahren der Energieumwandlung	vo	2	3.0	U
Alternative Energie Laborübungen	LU	2	2.0	В
Alternative Energie Seminar	SE	2	3.0	В
Alternative Energie Projektarbeit	PA	4	4.0	В
Hydraulische Energiesysteme 1)			70	
Ver- und Entsorgungssysteme	vo	2	3.0	U
Ver- und Entsorgungssysteme	RU	1	1.0	В
Hydraulische Energiesysteme Laborübungen	LU	2	2.0	В
Hydraulische Energiesysteme Seminar	SE	2	3.0	В
Hydraulische Energiesysteme Konstruktionsübungen	KU	5	5.0	В
Thermische Turbomaschinen 1)	110		3.0	
Rechnergest. Auslegg. d. therm. Turbomasch. u. Energieanl.	vo	2	3.0	S
Rechnergest. Auslegg. d. therm. Turbomasch. u. Energieanl. Übg.	UE	1	1.0	В
Thermische Turbomaschinen Laborübungen	LU	2	2.0	В
Thermische Turbomaschinen Seminar	SE	2	3.0	В
Thermische Turbomaschinen Konstruktionsübungen	KU	5	5.0	В
Thermische Energieanlagen 1)	ALC		3.0	
Grundzüge der thermischen Energieanlagen	vo	2	3.0	S
Thermische Energieanlagen Übungen	UE	1	1.0	В
Thermische Energieanlagen Laborübungen	LU	2	2.0	В
Thermische Energieanlagen Seminar	SE	$\frac{2}{2}$	3.0	В
Thermische Energieanlagen Projektarbeit	PA	4	4.0	В
ERGÄNZENDE LEHRVERANSTALTUNGEN	14		7.0	ъ
Kältetechnik	vo	2	3.0	U
Grundzüge der Heizung und Fernwärme	vo	2	3.0	U
Umweltschutz bei wärmetechnischen Anlagen	vo	$\frac{2}{2}$	3.0	U
Lüftung und Klimatechnik	vo	2	3.0	
Rohrleitungssysteme	vo	$\frac{2}{2}$	3.0	U
Ölhydraulik	vo	$\frac{2}{2}$	3.0	M
Dynamische Vorgänge in hydraulischen Systemen	1	$\frac{2}{2}$		M
Hydraulische Mess- und Versuchstechnik	VO VO	$\frac{2}{2}$	3.0	M
			3.0	M
Spezielle Konstruktionselemente der Druckluftschnile	T/O I			
Spezielle Konstruktionselemente der Drucklufttechnik Anlagenmodellierung mit 3D-CAD	VO VU	2 2	3.0	M B

Tabelle 5b: 3. Studienabschnitt, Schwerpunkt TRANSPO LOGISTIK		NIK (JND	
Lehrveranstaltung	LA	SSt	EC	PM
SCHWERPUNKTPFLICHT				
Einführung in die diskrete Simulation	VO	2	3.0	U
Transport- und Lagertechnik, Materialflusslehre	vo	2	3.0	M
Robotersysteme und Handhabungsgeräte	VO	2	3.0	U
Betriebliche Logistik	vo	2	3.0	S
Schwingungstechnik	vo	2	3.0	S
VERTIEFUNGEN				Ť
Fördertechnik 1)				
Konstruktion der Fördermittel	vo	2	3.0	M
Fördertechnik Laborübungen	LU	2	2.0	В
Fördertechnik Seminar	SE	2	3.0	В
Fördertechnik Konstruktionsübungen	KU	5	5.0	B
Schienenfahrzeugbau				
Schienenfahrzeugbau	vo	2	3.0	M
Schienenfahrzeugbau Laborübungen	LU	2	2.0	В
Schienenfahrzeugbau Seminar	SE	2	3.0	В
Schienenfahrzeugbau Konstruktionsübungen	KU	5	5.0	В
Logistische Planung 1)				
Instandhaltung und Layoutplanung	vo	2	3.0	S
Beschaffungs- und Supply-Chain Management	vo	2	3.0	Š
Produktionssteuerung (PROST)	UE	2	2.0	В
Seminar aus Logistik	SE	2	3.0	В
Projektarbeit Logistik	PA	4	4.0	В
ERGÄNZENDE LEHRVERANSTALTUNGEN				
Stetigförderer	VO	2	3.0	M
Tragwerkslehre	vo	2	3.0	M
Seilbahnbau	vo	2	3.0	M
Materialflusssimulation	vo	2	3.0	U
Spurführungstechnik	vo	2	3.0	M
Einführung in den Flugzeugbau	vo	2	3.0	M
Anwendung der Mehrkörperdynamik für Schienenfahrzeuge	vo	2	3.0	M
Man beachte die Vorbedingungen gem. § 9, (2), Z4.				

Tabelle 5c: 3. Studienabschnitt, Schwerpunkt KRAFTFA	HRZEUG	ГЕСН	INIK	
Lehrveranstaltung	LA	SSt	EC	PM
SCHWERPUNKTPFLICHT			-	1 11.
Grundzüge des Kraftfahrzeugbaus	VO	2	3.0	U
Thermodynamik in der Energietechnik	vo	2	3.0	U
Grundlagen der Fahrzeugdynamik	vo	2	3.0	S
Moderne Methoden der Regelungstechnik	vo	2	3.0	M
Strömungen realer Fluide	vo	2	3.0	M
VERTIEFUNGEN		_	5.0	112
Verbrennungsmotoren 1)				
Verbrennungskraftmaschinen-Vertiefung	vo	2	3.0	U
Dieselmotorentechnik	vo	1	1.5	M
Rennmotoren und Rennfahrzeuge	vo	1	1.5	M
Verbrennungskraftmaschinen Laborübungen	LU	1	1.0	B
Verbrennungskraftmaschinen Seminar	SE	2	3.0	В
Verbrennungskraftmaschinen Konstruktionsübung	KU	5	5.0	В
Kraftfahrzeugbau 1)	110		3.0	
Kraftfahrzeugbau Vertiefung	vo	2	3.0	M
Karosserieentwurf	vo	2	3.0	M
Kraftfahrzeugbau Laborübungen	LU	1	1.0	B
Kraftfahrzeugbau Seminar	SE	2	3.0	В
Kraftfahrzeugbau oder Sportwagenkonstruktion	KU	5	5.0	В
Motor, Kraftfahrzeug und Umwelt 1)			3.0	
Automobilemissionen und Umweltschutz	vo	2	3.0	U
Fahrzeugakustik	vo	2	3.0	M
Verbrennungskraftmaschinen Abgas Laborübungen	LU	$\frac{1}{2}$	2.0	В
Fahrzeugakustik Seminar	SE	2	3.0	В
Motor, Kraftfahrzeug und Umwelt Projektarbeit	PA	4	4.0	В
Fahrzeugdynamik				
Spezielle Probleme der Fahrzeugdynamik	vo	2	3.0	S
Stabilität bewegter Systeme	vo	2	3.0	Ü
Fahrzeugdynamik Seminar	SE	$\frac{1}{2}$	3.0	В
Fahrzeugdynamik Projektarbeit	PA	4	4.0	В
ERGÄNZENDE LEHRVERANSTALTUNGEN			1.0	
Berechnung und Messung innermotorischer Vorgänge	VO	1	1.5	M
Abgasemissionen von Kraftfahrzeugen	vo	2	3.0	M
Fahrwerkskonstruktion	vo	$\frac{1}{2}$	3.0	U
Reifenkonstruktion	VU	$\frac{1}{2}$	3.0	U
Geländegängige Fahrzeuge	vo	1	1.5	Ū
Fahrwerkskonstruktion Labor	LU	2	2.0	В
Anforderungen an metallische Werkstoffe für Kfz-Bauteile	SE	2	3.0	В
Kraft- und Schmierstoffe	VO	1	1.5	M
Sandwich Structures (Engl.)	vo	2	3.0	M
1) Man beachte die Vorbedingungen gem. § 9, (2), Z4.		- 1	5.0	171

ortsetzung von Absatz (7)							
Tabelle 5d: 3. Studienabschnitt, Schwerpunkt PRODUKTIONSTECHNIK							
Lehrveranstaltung	LA	SSt	EC	PM			
SCHWERPUNKTPFLICHT							
Einführung in die diskrete Simulation	VO	2	3.0	U			
Produktionstechnik	VO	2	3.0	S			
Grundlagen des QM, Prüfwesen und Zertifizierung	VO	2	3.0	U			
Transport- und Lagertechnik, Materialflusslehre	VO	2	3.0	M			
Betriebliche Logistik	VO	2	3.0	S			
VERTIEFUNGEN							
Planung v. Produktionssystemen 1)							
Planung von Produktionssystemen	vo	2	3.0	S			
Flexible Systeme	VO	2	3.0	U			
Flexible Systeme Seminar	SE	2	3.0	В			
Planung von Produktionssystemen Projektarbeit	PA	4	4.0	В			
Produktionsmesstechnik							
Produktionsmesstechnik	vo	2	3.0	U			
Produktionsmesstechnik Laborübungen	LU	2	2.0	В			
Produktionsmesstechnik Seminar	SE	2	3.0	В			
Produktionsmesstechnik Projektarbeit	PA	4	4.0	В			
Produktionsautomatisierung							
Automatisierungs- und Steuerungstechnik	vo	2	3.0	U			
SPS: Programmierung und Kommunikation	vo	2	3.0	Ū			
Produktionsautomatisierung Seminar	SE	2	3.0	В			
Produktionsautomatisierung Projektarbeit	PA	4	4.0	В			
Robotertechnik							
Robotersysteme und Handhabungsgeräte	vo	2	3.0	U			
Autonome mobile Roboter	vo	2	3.0	Ū			
Robotersysteme und Handhabungsgeräte Übungen	UE	2	2.0	В			
Robotersysteme und Handhabungsgeräte Seminar	SE	2	3.0	В			
Robotersysteme und Handhabungsgeräte Projektarbeit	PA	4	4.0	В			
Laser- und Umformtechnik	1	-	1,0				
Grundlagen der Lasertechnik	vo	2	3.0	U			
Geräte und Verfahren der Laser- und Umformtechnik	vo	2	3.0	Ŭ			
Laser- und Umformtechnik Laborübungen	LU	2	2.0	В			
Laser- und Umformtechnik Seminar	SE	2	3.0	В			
Produkt- u. materialspez. Fertigungslösungen m. Lasern Projektarb.	PA	4	4.0	В			
ERGÄNZENDE LEHRVERANSTALTUNGEN	1 - 1 -						
Auslegung von Werkzeugmaschinen	VO	2	3.0	U			
Ausl. v. Flexiblen Montagesystemen u. –komponenten	vo	2	3.0	U			
Programmierung von Werkzeugmaschinen	LU	2	2.0	В			
Programmierung von Robotern Laborübungen	LU	4	4.0	В			
Nanotechnologie	vo	2	3.0	U			
Intelligent Manufacturing Systems	vo	2	3.0	U			
Montage- und Demontagesysteme	vo	2	3.0	Ü			
Modellierung und Simulation in der Produktionstechnik	vo	$\frac{2}{2}$	3.0	U			
Präzisionsbearbeitung mit Lasern	vo	$\frac{2}{2}$		U			
1) Man heachte die Vorhedingungen gem & 9 (2) 74	1 40		3.0	U			

Fortsetzung von Absatz (7)				
Tabelle 5e: 3. Studienabschnitt, Schwerpunkt KONSTRUK	TION U	JND		
WERKSTOI				
Lehrveranstaltung	LA	SS	EC	PM
SCHWERPUNKTPFLICHT				
Spezielle Maschinenelemente	VO	2	3.0	U
Höhere Konstruktionslehre und Produktentwicklung	vo	2	3.0	M
Metallische Ingenieurwerkstoffe	vo	2	3.0	U
Fügetechnik	vo	2	3.0	
Geometrische Kinematik	VU	2		U
VERTIEFUNGEN	VU		3.0	M
Getriebebau				
Zahnradgetriebebau				
Getriebebau Rechenübungen	VO	2	3.0	Ū
	RU	1	1.0	В
Getriebebau Laborübungen	LU	2	2.0	В
Planetenkoppelgetriebe Seminar	SE	2	3.0	В
Getriebebau Konstruktionsübungen Konstruktionslehre	KU	5	5.0	В
		_ (
Produktentwicklung, Innovation, ECO-Design	VU	2	3.0	M
Höhere Konstruktionslehre u. Produktentwicklung	UE	2	2.0	В
ECO-Design Seminar	SE	2	3.0	В
Produktentwicklung / Projektarbeit	PA	4	4.0	В
Werkstoffeinsatz				
Werkstoffeinsatz (inkl. Werkstoffverbunde)	VO	2	3.0	U
Werkstoffkreislauf	VO	2	3.0	U
Werkstoffkundliche Untersuchungen	LU	2	2.0	В
Werkstoffe für den Maschinenbau Seminar	SE	2	3.0	В
Grundsätze der Werkstoffauswahl Projektarbeit	PA	4	4.0	_B_
Werkstoffversagen (Werkstoffbezogene Schadensanalyse)				
Werkstoffdiagnostik	VO	2	3.0	M
Korrosionsverhalten	VO	2	3.0	U
Schadensanalyse (inkl. Fügezonen)	VU	2	3.0	S
Betriebsfestigkeit	SE	2	3.0	В
Analyse des Bauteilversagens	PA	4	4.0	В
Leichtbau 1)				
Leichtbau mit faserverstärkten Werkstoffen	VO	2	3.0	M
Leichtbau Rechenübung	RU	2	2.0	В
Leichtbau Laborübungen	LU	1	1.0	В
Leichtbau Seminar	SE	2	3.0	В
Leichtbau Konstruktionsübungen	KU	5	5.0	В
ERGÄNZENDE LEHRVERANSTALTUNGEN				
Tribologie für Maschinenbauer	VO	2	3.0	S
Spezielle Maschinenelemente	LU	2	2.0	В
CAE/CAD für Maschinenbauer	UE	4	4.0	В
Informationstechnologie der CAD-Systeme	VO	2	3.0	M
Spezialkunststoffe	VO	2	3.0	M
Composites engineering	VO	2	3.0	M
Num. Methoden der Schweißbarkeitsanalyse	VU	2	3.0	В
Bruchmechanik	VU	2	3.0	S
Light Metals (Engl.)	VO	2	3.0	M
Qualitätsmanagement	VO	2	3.0	S
1) Man heachte die Vorhedingungen gem 89 (2) 74	VO	2	3.0	S

¹⁾ Man beachte die Vorbedingungen gem. § 9, (2), Z4.

Tabelle 5f: 3. Studienabschnitt, Schwerpunkt MEC	HATRON	IK		
Lehrveranstaltung	LA	SSt	EC	PM
SCHWERPUNKTPFLICHT				
Identifikation-Experimentelle Modellbildung	VO	2	3.0	M
Sensoren und Aktoren in der Mechatronik	VO	2	3.0	S
Angewandte Dynamik und nichtlineare Schwingungen	vo	2	3.0	U
Moderne Methoden der Regelungstechnik	vo	2	3.0	M
Mikroelektronik	VO	2	3.0	S
VERTIEFUNGEN				
Technische Dynamik 1)				
Ausgewählte Kapitel der Maschinendynamik	vo	2	3.0	M
Numerische Methoden der Technischen Dynamik	VO	2	3.0	M
Numerische Methoden der Technischen Dynamik Übungen	UE	1	1.0	В
Technische Dynamik Seminar	SE	2	3.0	В
Technische Dynamik Projektarbeit	PA	4	4.0	В
Mess- und Interfacetechnik		-		
Digitale Messsignalerfassung und PC-Messtechnik	vo	2	3.0	S
Interfacetechnik	UE	2	2.0	В
Digitale Messsignalerfassung und PC-Messtechnik	LU	1	1.0	В
Messtechnik Seminar	SE	2	3.0	В
Messtechnik Projektarbeit	PA	4	4.0	В
Informationstechnik				
Echtzeitdatenverarbeitung (Bussysteme)	VO	2	3.0	M
Informationstechnik	VO	2	3.0	U
Praktikum zu Informationstechnik	LU	2	2.0	В
Informationstechnik Seminar	SE	2	3.0	В
Informationstechnik Projektarbeit	PA	4	4.0	В
Regelungstechnik				
Digitale Regelung	VO	2	3.0	M
Digitale Regelung Übungen	UE	2	2.0	В
Regelungstechnik Vertiefungslabor	LU	2	2.0	В
Regelungstechnik Seminar	SE	2	3.0	В
Regelungstechnik Projektarbeit	PA	4	4.0	В
ERGÄNZENDE LEHRVERANSTALTUNGEN				
Intelligente Regelverfahren	VO	2	3.0	M
Experimentelle Modalanalyse	vo	2	3.0	S
Adaptive und Prädiktive Regelung	vo	2	3.0	M
Stochastische Prozesse und Systeme	vo	2	3.0	M
Introduction to Microelectromechanical Systems (MEMS)	vo	2	3.0	U

Tabelle 5g: 3. Studienabschnitt, Schwerpunkt BIOMEDIZINIS	CHE	TECE	INIK	
Lehrveranstaltung				PM
SCHWERPUNKTPFLICHT	LA	SSt	LC	1,161
Biokompatible Werkstoffe	vo	2	3.0	M
Finite Elemente in der Biomechanik			3.0	M
Thermodynamik lebender Systeme			3.0	M
Grundlagen der Biomechanik	VO	2 2	3.0	S
Anatomie für Techniker			3.0	M
VERTIEFUNGEN	VO	2	3.0	141
Rehabilitationstechnik				
Mechanische Konzepte der Prothetik und Rehabilitationstechnik	vo	2	3.0	S
Techn. Wiederherstellung v. Körperfunktionen durch funktionelle Elektrostimulation	vo	2	3.0	S
Rehabilitationstechnik Laborübungen	LU	2	2.0	В
Rehabilitationstechnik Seminar	SE	2	3.0	В
Rehabilitationstechnik Projektarbeit	PA	4	4.0	В
Biomechanik				
Biomechanik	vo	2	3.0	S
Biomechanik Übungen	UE	1	1.0	B
Biomechanik Laborübungen	LU	2	2.0	В
Biomechanik Seminar	SE	2	3.0	В
Biomechanik Projektarbeit	PA	4	4.0	В
Bioströmungsmechanik				
Elemente der Bioströmungsmechanik	vo	2	3.0	M
Grundlagen der Atemphysiologie und der Beatmungstechnik	vol	1	1.5	M
Biomechanik und Messtechnik im Herz-Kreislaufsystem	vol	1	1.5	M
Strömungslehre und Wärmeübertragung Laborübungen	LU	2	2.0	В
Bioströmungsmechanik Seminar		2	3.0	В
Bioströmungsmechanik Projektarbeit	PA	4	4.0	В
Biomechanik des Bewegungsapparates 1)				
Modellbildung des Bewegungsapparates	vo	2	3.0	S
Der Motor Muskel	vo	2	3.0	U
Der Motor Muskel Laborübungen	LU	2	2.0	В
Biomechanik des menschlichen Bewegungsapparates Seminar	SE	2	3.0	В
Biomechanik des menschlichen Bewegungsapparates Projektarb.	PA	4	4.0	В
ERGÄNZENDE LEHRVERANSTALTUNGEN				
Unfallbiomechanik	VO	2	3.0	S
Mechanische Eigenschaften biologischer Gewebe	vo	2	3.0	M
Mechanische Eigenschaften biologischer Gewebe	LU	2	2.0	В
Biophysik	vo	2	3.0	M
Physiologie f. Biomedizinische Technik	vo	2	3.0	U
Computerunterstützte Abbildungsverfahren	vo	2	3.0	U
Ergonomie und Arbeitsgestaltung	vo	2	3.0	U
Bioethik und biomedizinische Technikfolgenabschätzung	VO	2	3.0	M

Tabelle 5h: 3. Studienabschnitt, Schwerpunkt MODELLBILDUNG UND SIMULATION				
Lehrveranstaltung	LA	SSt	EC	PM
SCHWERPUNKTPFLICHT				
Mathematik 3		2	3.0	U
Einführung in die kontinuierliche Simulation	VO VO	2	3.0	M
Dimensionsanalyse			3.0	M
Identifikation-Experimentelle Modellbildung			3.0	M
Höhere Festigkeitslehre			3.0	U
VERTIEFUNGEN				
FE und andere numerische Ingenieursmethoden				
Nichtlineare Finite Elemente-Methoden	vo	2	3.0	U
Nichtlineare Finite Elemente-Methoden Übungen	UE	2	2.0	B
FE-Methoden Übungen	UE	2	2.0	B
FE u. a. Numerische Ingenieursmethoden Seminar	SE	2	3.0	B
FE u. a. Numerische Ingenieursmethoden Projektarbeit	PA	4	4.0	B
Methoden der Strömungsmechanik 1)				
Numerische Methoden der Strömungsmechanik	vo	2	3.0	$ _{\mathbf{M}}$
Numerische Methoden der Strömungsmechanik Übungen	RU	2	2.0	В
Strömungslehre und Wärmeübertragung Laborübungen	LU	2	2.0	B
Mathematische Methoden der Strömungslehre Seminar	SE	2	3.0	B
Strömungsmechanik Projektarbeit	PA	4	4.0	B
Turbulenz				
Turbulente Strömungen		2	3.0	M
Berechnung turbulenter Strömung m. Computerprogrammen		2	2.0	В
Strömungslehre und Wärmeübertragung Laborübungen		2	2.0	В
Turbulente Strömungen in der Praxis: Fallstudien		2	3.0	В
Turbulente Strömungen Projektarbeit		4	4.0	В
Dynamische Systeme i. d. Festkörpermechanik 1)				
Nichtlineare Dynamik und Chaos	vo	2	3.0	M
Spezielle Probleme der Mehrkörpersystemdynamik	vo	2	3.0	S
Numerik in der Dynamik Übungen		2	3.0	В
Dynamische Systeme Seminar		2	3.0	В
Dynamische Systeme Projektarbeit	SE PA	4	4.0	B
ERGÄNZENDE LEHRVERANSTALTUNGEN				
Einführung in die kontinuierliche Simulation Übung	UE	2	2.0	В
Problemaufbereitung f. FE-Berechnungen		2	3.0	В
Technische Plastizitätstheorie		2	3.0	M
Einführung in die Kontinuumsmechanik		2	3.0	U
Elastizitätstheorie		2	3.0	Ū
Hamiltonsche Systeme		2	3.0	Ū
Modellbildung in der Technischen Mechanik		2	3.0	B
Moderne Berechnungsverfahren im Druckgerätebau		2	3.0	M
Modellierung und Visualisierung	VU VU	2	3.0	В

§ 9. Prüfungsordnung

(1) Prüfungsart und Prüfungsmethoden.

In diesem Studienplan sind im Ersten und im Zweiten Studienabschnitt ausschließlich Lehrveranstaltungsprüfungen gem. § 4, Z 26 und 26a UniStG vorgesehen. Im Dritten Studienabschnitt ist neben den Prüfungen über die Lehrveranstaltungen der gebundenen Wahl aus den SCHWERPUNKTEN eine kommissionelle Gesamtprüfung vorgesehen. Weiters ist eine Durchschnittsnote aus den Teilnoten der freien Wahlfächer zu bilden.

Die für die Lehrveranstaltungsprüfungen angewandte Prüfungsmethode ist in den Tabellen zu § 6, (1), § 7, (3) und § 8, (7) in der Spalte PM (Prüfungsmethode) angegeben. Die verwendeten Abkürzungen haben die folgende Bedeutung:

- S Schriftliche Prüfung nach dem Ende der Lehrveranstaltung,
- M... Mündliche Prüfung nach dem Ende der Lehrveranstaltung,
- U Schriftliche und Mündliche Prüfung nach dem Ende der Lehrveranstaltung,
- BBegleitende Erfolgskontrolle und laufende Beurteilung während der Lehrveranstaltung.

Beim Lehrveranstaltungstyp VU gem. § 4, Z4 kann eine Kombination zwischen B und (S oder M) vorliegen. Die angegebene Methode lautet dann S oder M.

(2) Prüfungsvoraussetzungen und Vorbedingungen.

Die Überprüfung der folgenden Voraussetzungen und Vorbedingungen obliegt den jeweiligen Leitern der Lehrveranstaltungen für welche die Voraussetzungen zu erfüllen sind bzw. dem Betreuer der Diplomarbeit.

- 1. Die Anmeldung zur Lehrveranstaltungsprüfung aus "Mechanik 1, VO 3" setzt einen erfolgreichen Abschluss der Lehrveranstaltungsprüfung "Mechanik 1, UE 2" voraus.
- 2. Die Anmeldung zur Lehrveranstaltungsprüfung aus "Mechanik 2, VO 3" setzt einen erfolgreichen Abschluss der Lehrveranstaltungsprüfungen "Mechanik 1, UE 2" und "Mechanik 2, UE 2" voraus.
- 3. Die Anmeldung zur Lehrveranstaltung "Maschinenelemente 1, KU 4" (4.Semester), setzt den erfolgreichen Abschluss der Lehrveranstaltungsprüfungen "Grundlagen der Konstruktionslehre, VO 2" und "Technisches Zeichnen / CAD, KU 3" (2.Semester), voraus.

4. Vorbedingungen für die Wahl von VERTIEFUNGEN im HAUPTSCHWER-PUNKT, gem. § 8, (2).

Die VERTIEFUNG(EN)			
DIE VERTIEFUNG(EN)	erfordert(n) den erfolgreichen Abschluss der		
<u> </u>	Wahllehrveranstaltungsprüfung		
Wignest askerile Televille 5	(geb.Wahl im 6.Semester) über		
Wärmetechnik, Tabelle 5a	Grundzüge der wärmetechn. Anlagen, VO 2.		
	Grundlagen numerischer Methoden der		
Power 1	Strömungs- und Wärmetechnik, VO 2, UE 1.		
Fortschr. und alternat. Energie-	Grundzüge der wärmetechnischen Anlagen,		
umwandlung, Tabelle 5a	VO 2.		
Hydraulische Energiesysteme,	Grundzüge der hydraul. Maschinen und		
Tabelle 5a	Anlagen, VO 2		
Thermische Turbomaschinen,	Grundzüge der Thermischen Turbomaschinen,		
Tabelle 5a	VO 2.		
Thermische Energieanlagen,	Grundlagen numerischer Methoden der		
Tabelle 5a	Strömungs- und Wärmetechnik, VO 2, UE 1.		
	Grundzüge d. Thermischen Turbomaschinen,		
	VO 2.		
Fördertechnik, Logistische	Grundzüge der Transport- und Fördertechnik,		
Planung, Tabelle 5b	VO 2		
Verbrennungsmotoren,	Grundzüge der Verbrennungskraftmaschinen,		
Kraftfahrzeugbau, Motor, KfZ	VO 2.		
u. Umwelt, Tabelle 5c			
Planung von Produktions-	Grundzüge der Transport- und Fördertechnik,		
systemen, Tabelle 5d	VO 2.		
Leichtbau, Tabelle 5e	Grundzüge des Leichtbaus, VO 2.		
Technische Dynamik,			
Tabelle 5f	Grundlagen der Mehrkörpersystemdynamik,		
Biomechanik des Bewegungs-	VO 2, UE 1		
apparates, Tabelle 5g	,		
Methoden der	Grundlagen numerischer Methoden der		
Strömungsmechanik, Tabelle 5h			
Dynamische Systeme in der	Grundlagen der Mehrkörpersystemdynamik,		
Festkörpermechanik, Tabelle 5h	h VO 2, UE 1		

- 5. Prüfungen über Pflichtlehrveranstaltungen und Lehrveranstaltungen der gebundenen Wahl des Zweiten Studienabschnitts (gem. § 7, (3), Tabelle 4b) ab Beginn des 5. Semesters erfordern den erfolgreichen Abschluss der Ersten Diplomprüfung bis spätestens Ende des 5. Semesters. Für Prüfungen über Wahllehrveranstaltungen der gebundenen Wahl des Dritten Studienabschnitts ist der erfolgreiche Abschluss der Ersten Diplomprüfung Vorbedingung.
- 6. Die Diplomarbeit darf erst nach erfolgreichem Abschluss der Zweiten Diplomprüfung begonnen werden.

(3) Erste Diplomprüfung.

Die Erste Diplomprüfung besteht aus dem erfolgreichen Abschluss der Lehrveranstaltungsprüfungen aller im Ersten Studienabschnitt vorgesehenen Lehrveranstaltungen gemäß Tabelle 3 von § 6, (1). Im Diplomprüfungszeugnis sind die gem. § 6, 0, Z1 bis Z2 festgelegten Prüfungsfächer samt den Semesterstundenanzahlen und dem Notenmittelwert gemäß § 10, (4), UniStEVO ausgewiesen. Die gemäß § 45, (3),

UniStG ermittelte Gesamtbeurteilung der Ersten Diplomprüfung ist ebenfalls auszuweisen.

(4) Zweite Diplomprüfung.

Die Zweite Diplomprüfung besteht aus dem erfolgreichen Abschluss der Lehrveranstaltungsprüfungen aller im Zweiten Studienabschnitt vorgesehenen Lehrveranstaltungen gemäß Tabelle 4a und 4b von § 7, (3). Im Diplomprüfungszeugnis sind die gemäß § 7, (4), Z1 bis Z4 festgelegten Prüfungsfächer samt den Semesterstundenanzahlen und dem Notenmittelwert gemäß § 10, (4), UniStEVO ausgewiesen. Bei der Notenmittelwertbildung sind Pflichtlehrveranstaltungen und Lehrveranstaltungen der gebundenen Wahl in gleicher Weise zu behandeln. Die gemäß § 45, (3), UniStG ermittelte Gesamtbeurteilung der Zweiten Diplomprüfung ist ebenfalls auszuweisen.

(5) Dritte Diplomprüfung.

Die Dritte Diplomprüfung besteht aus vier Teilen gem. Ziffer 1 bis 4:

- 1. Erfolgreiche Ablegung der Lehrveranstaltungsprüfungen aller im Dritten Studienabschnitt vorgeschriebenen Lehrveranstaltungen der gebundenen Wahl gem. § 8, (1) bis (7).
- 2. Erfolgreich abgelegte Prüfungen über alle freien Wahlfächer im Gesamtumfang von 21 Semesterstunden.
- 3. Erfolgreiche Abfassung einer Diplomarbeit.
- 4. Die kommissionelle Gesamtprüfung. Diese erfolgt mündlich vor einem Prüfungssenat gem. § 56 UniStG. und dient der Präsentation und Verteidigung der Diplomarbeit unter Berücksichtigung eines vom Studiendekan dem Diplomarbeitsthema zugeordneten Fachgebiets.
- 5. Das Diplomprüfungszeugnis über die Dritte Diplomprüfung weist folgende Prüfungsfachbezeichnungen und Noten aus:
 - a) Den gemäß § 10, (4), UniStEVO gebildeten Notenmittelwert aus den in Z1 genannten Lehrveranstaltungsprüfungen unter der Bezeichnung des gem. § 8, (5) definierten Faches.
 - b) Den gemäß § 10, (4), UniStEVO gebildeten Notenmittelwert aus den in Z2 genannten Prüfungen unter der Fachbezeichnung "Freie Wahlfächer".
 - c) Die Note der mündlichen kommissionellen Gesamtprüfung unter der Bezeichnung des dem Diplomarbeitsthema zugeordneten Fachgebiets gemäß Ziffer 4.
 - d) Darüber hinaus weist das Diplomprüfungszeugnis die gemäß § 45, (3), UniStG ermittelte Gesamtbeurteilung der Dritten Diplomprüfung aus.

§ 10. Übergangsbestimmungen

- (1) Dieser Studienplan tritt gem. § 1 mit 1.Oktober 2001 in Kraft. Die Lehrveranstaltungen des Ersten Studienabschnitts werden im Studienjahr 2001/2002 erstmals angeboten. Die Lehrveranstaltungen des Zweiten und Dritten Studienabschnitts werden, beginnend mit 1.Oktober 2001, gleitend eingeführt, so dass alle Lehrveranstaltungen des 3. und 4.Semesters spätestens am 1.Oktober 2002, jene des 5. und 6.Semesters spätestens am 1.Oktober 2003 und alle Lehrveranstaltungen des Dritten Studienabschnittes spätestens am 1.Oktober 2004 zur Verfügung stehen.
- (2) Um den Abschluss des Studiums Maschinenbau in der Übergangsphase jederzeit zu ermöglichen, sind mit Beginn des Wintersemesters 2001/2002 Äquivalenzlisten

zur Verfügung zu stellen, nach denen eine Anrechnung der Lehrveranstaltungen des alten Studienplans für jene des vorliegenden, neuen Studienplans und eine Anrechnung der Lehrveranstaltungen des neuen Studienplans für jene des alten möglich ist. Es ist unzulässig, eine Lehrveranstaltung des alten Studienplans aus dem Angebot zu nehmen, bevor eine äquivalente Lehrveranstaltung im neuen Studienplan angeboten wird.

(3) Im übrigen gelten die Übergangsbestimmungen für Studierende gemäß § 80, (1) bis (10), UniStG, in der letztgültigen Fassung.

ANHANG zum Studienplan Maschinenbau (E 700)

Liste empfohlener freier Wahlfächer	
Einfluss von Gesetzen auf Bau und Betrieb von KFZ	VO 1.0
Europäisches Technologierecht	VO 2.0
Rechtsfragen des Umweltschutzes	VO 2.0
Europäisches Wirtschaftsrecht	VO 2.0
Patentrecht	VO 1.0
Internationales und Europäisches Patentrecht	VO 1.0
Sachverständigenrecht	VO 2.0
Technical English I	VO 4.0
Technical English Π	VO 4.0

