EE466000 introduction to reinforcement learning Homework 2: Gridworld

Due: April 11, 2021 23:59

Goal

The goal of this assignment helps you understand bellman equation.

Todo

- Implement two algorithms:
 - ✓ bellman equation for $v_{\pi}(s)$
 - ✓ optimal value function.

Details

- File description
 - o hw2 ipynb.ipynb: You'll implement two algorithms in the file.
- Gridworld environment

Example Gridworld

- State: cell of the grid
- Action: north, south, east, and west
- Reward:

Actions take the agent off the grid \rightarrow R=-1 and its location unchanged Actions move the agent out of A or B \rightarrow R= 10 or 5,

its location is relocated to A' or B'

Other actions \rightarrow R=0

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

tables of two algorithms.

Requirements and Installation

- Python version: 3.6
- pip install matplotlib
- pip install numpy

Report

- Title, name, student ID
- Implementation
 - ✓ Briefly describe your implementation.
- Experiments and Analysis
 - ✓ Plot tables of two algorithms. (As example above)
 - ✓ Whether state values are reasonable?
 - ✓ Vary the discount rate(gamma), what happens? please plot it.

Reminder

- Please upload your code <u>main.py</u> and <u>report.pdf</u> to iLMS before 4/11 (Sat.) 23:59. No late submission allowed.
- DO NOT zip your code into a single file.
- Please do not copy&paste the code from your classmates.
- Please write a README file to explain how to run your code if you implemented extra functions.