

Definiție

Dacă \leq este o relație de ordine parțială (totală) pe A, spunem că (A, \leq) este mulțime parțial (total) ordonată.

Orice relație de ordine totală este reflexivă. Prin urmare, orice mulțime total ordonată este mulțime parțial ordonată.

Fie (A, \leq) o mulțime parțial ordonată.

- ▶ Relația < definită prin $x < y \iff x \le y$ și $x \ne y$ este relație de ordine strictă.
- ▶ Dacă $\emptyset \neq S \subseteq A$, atunci (S, \leq) este mulțime parțial ordonată.

Axioma alegerii (în engleză Axiom of Choice) (AC)

Dacă $(A_i)_{i \in I}$ este o familie de mulțimi nevide, atunci există o funcție f_C care asociază la fiecare $i \in I$ un element $f_C(i) \in A_i$.

- ► formulată de Zermelo (1904)
- a provocat discuţii aprinse datorită caracterului său neconstructiv: nu există nicio regulă pentru a construi funcţia alegere f_C.

Reformulare

Următoarea afirmație este echivalentă cu Axioma alegerii: Dacă $(A_i)_{i\in I}$ este o familie de mulțimi nevide, atunci $\prod_{i\in I}A_i$ este o mulțime nevidă.

H. Rubin, J. Rubin, Equivalents of the Axiom of Choice II, 1985

.

- ▶ Gödel (1940) a demonstrat că axioma alegerii este consistentă cu ZF.
- Cohen (1963) a demonstrat că negația axiomei alegerii este consistentă cu ZF. Prin urmare, axioma alegerii este independentă de ZF. Cohen a primit în 1966 Medalia Fields.

- O mulţime se numeşte finită dacă are un număr finit de elemente. O mulţime care nu este finită se numeşte infinită.
- Numărul elementelor unei mulțimi finite A se notează |A| și se mai numește și cardinalul lui A.

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Există o definiție riguroasă în teoria mulțimilor a cardinalului unei mulțimi, datorată lui von Neumann. Pentru orice mulțime A, cardinalul lui A, notat |A|, este tot o mulțime. Colecția tuturor cardinalelor nu este mulțime, ci clasă.

- |A| = |B| ddacă A și B sunt echipotente.
- Cardinalul unei mulțimi finite este numărul său de elemente. Cardinalele transfinite sunt cardinalele mulțimilor infinite.
- ▶ $|\mathbb{N}|$ se notează \aleph_0 (se citește *alef zero*).
- $ightharpoonup |\mathbb{R}|$ se notează \mathfrak{c} și se mai numește și puterea continuumului.
- ▶ O mulțime A este numărabilă ddacă $|A| = \aleph_0$.
- \triangleright $|2^{\mathbb{N}}| \neq \aleph_0$.
- $ightharpoonup |2^{\mathbb{N}}| = \mathfrak{c}.$

Cardinale

Definim următoarea relație pe clasa tuturor cardinalelor: pentru orice două mulțimi $A,\ B,$

$$|A| \le |B| \iff \text{există } f: A \to B \text{ funcție injectivă}.$$

Teorema Cantor-Schröder-Bernstein

Dacă există două funcții injective $f:A\to B$ și $g:B\to A$, atunci A și B sunt echipotente. Altfel scris, dacă $|A|\le |B|$ și $|B|\le |A|$, atunci |A|=|B|.

Proprietăți

- ► ≤ este o relație de ordine totală.
- Orice cardinal are un unic succesor, adică pentru orice cardinal κ există un unic cardinal κ^+ a.î. $\kappa < \kappa^+$ și nu există cardinale ν a.î. $\kappa < \nu < \kappa^+$.
- $ightharpoonup
 angle_0$ este cel mai mic cardinal transfinit. Succesorul lui $angle_0$ se notează $angle_1$.

Ipoteza continuumului (Continuum Hypothesis (CH))

Nu există nicio mulțime S a.î. $\aleph_0 < |S| < \mathfrak{c}$.

- avansată de Cantor în 1878.
- prima problemă din lista lui Hilbert de 23 probleme prezentate în 1900.
- Gödel (1940) a demonstrat că (CH) este consistentă cu ZFC.
- Cohen (1963) a demonstrat că negația lui (CH) este consistentă cu ZFC. Prin urmare, (CH) este independentă de ZFC.

LOGICA PROPOZIŢIONALĂ

Logica propozițională - informal

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- Maria a reacționat violent la acuzațiile lui Ion.
- Orice număr natural par > 2 este suma a două numere prime.
 (Conjectura lui Goldbach).
- Andrei este destept.
- Marţienilor le place pizza.

Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ► Pleacă!

Logica propozițională - informal

Considerăm anumite propoziții ca find atomice și le notăm

 p,q,r,\ldots sau p_1,p_2,p_3,\ldots

Exemple: p=Numărul 2 este par. q=Mâine plouă. r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

 $p \rightarrow q$ = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,). Exemplu: $\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$

Exemplu:

Fie propoziția:

 φ =Azi este marți, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este marți. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este marți și nu avem curs de logică.

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Definiția 1.1

Limbajul logicii propoziționale LP este format din:

- ▶ o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ▶ conectori logici: ¬ (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulțimea Sim a simbolurilor lui LP este

$$\textit{Sim} := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Definiția 1.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- ightharpoonup Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenție, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Definiția 1.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

Formule

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 1.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează Form. Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- ▶ Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- Form ⊆ Expr. Formulele sunt expresiile "bine formate".

Formule

Exemple:

- \triangleright $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule .
- \blacktriangleright $((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$, $(\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\triangleright \varphi = v$, unde $v \in V$;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $ightharpoonup \varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 1.5

Multimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.