한국형 도심항공 모빌리티(K-UAM) 최적 입지 선정

2025년 상용화를 목표하는 한국형 도심항공교통(K – UAM)

- 도시 지상교통 혼갑 해결수단으로 부상한 UAM¹⁾은 교통형태의 변화와 기술발전으로 실현가능성이 증가했고 이에 따른 교통 혁신 유발을 전망하고 있음
- 국토교통부의 '도시의 하늘을 여는 한국형 도심항공교통 로드맵' 보고서에 따르면 현재 2025년까지 상용화를 목표로 아래와 같은 milestone을 계획 중

준비기 ('20~'24)

성장기 ('30~'35)

성숙기 ('35~)

- 이슈/과제 발굴
- 법/제도정비
- 시험/실증 기간

일부노선 상용화

- 초기

('25~'29)

- 도심 내/외 거점
- 연계교통체계 구축

- 비행노선 확대
- 도심 중심 거점
- 사업자 흑자 전환

- 이용 보편화
- 도시 간 이동 확대
- 자율 비행 실현

¹⁾ UAM (Urban Air Mobility): 도심 항공 교통을 의미하며 기체·운항·서비스를 총칭함. `중장거리 교통 수요` 를 분담하여 도로교통 혼잡을 감소시키고, `통행 시간의 단축` 에 기여할 것으로 전망됨

2025년 상용화를 위한 Vertiport 입지분석 필요 시점

- 실제 세계 도심항공 교통 시장 규모는 2030년에 약 74조원이며 연평균 31%증가로 예측함
- 2025년 K-UAM 상용화를 위해서 다양한 인프라 마련이 필요하지만 그 중에서도 가장 핵심이 되는 수직이착륙장(vertiport)¹⁾ 인프라 구축에 필요한 비용은 약 1,500만 \$(180억)~5,000만\$(600억)으로 추정하고 있음
- 따라서, 고비용이 투자되는 수직이착륙장(vertiport)인프라 설치 전 합리적이고 세밀한 분석을 통해 체계적인 준비가 필요함

1,500만\$ ~ 5,000만\$

(자료: 국토교통부)

수직이착륙장(vertiport) 구축에 필요한 예상비용

1) Vertiport: 도심 항공 기체가 수직 이착륙 할 수 있는 정류장을 말하며, McKinsey &Company는 규모가 큰 순으로 Vertihub, Vertibase, Vertipad 로 구분.

데이터 기반 도시 맞춤형 UAM 도입 방안 수립 필요

- 대도시들은 <mark>지상교통의 포화상태</mark>를 겪고 있으며, 지상의 혼잡을 피할 수 있고 빠른 속도를 가진 <mark>UAM이 교통문제를 완화</mark>시켜줄 것임
- UAM의 도입 기준(규모, 기체 운용, 정류장 관련 등)에 관한 연구가 진행되고 있으나 모든 도시에 적용될 수 있는 '만능 가이드라인 '을 제시하기는 어려움
- 항공, 교통 관련 <mark>보편적 기준</mark>에 따라 도입 방안을 수립하되, 각 도시에서 생산되는 <mark>데이터에 기반</mark>해 구체적인 시행안을 만들어 가야함
 - 1. URBAN AIR MOBILITY MARKET STUDY (NASA, 2018)
 - UAM에 요구되는 기술, 및 규정 등은 비교적 명확히 정의되어 있음
 - 반면 인프라(Vertiport)의 수 및 이동거리(distance)는 넓은 범위로 제시
 - 각 지역에 맞는 인프라 도입과 운항거리 기준 탐색 필요

Use case attribute	Description at end state			
Vehicle	2-5-passenger autonomous (unpiloted) VTOLs ¹			
Payload	~1,000 pounds			
Distance	~10-70 miles per trip "거리 기준과 인프라 규모 기준이 유통적"			
Scheduling and routes	Routes are predetermined and scheduled well in advance of flight time			
Infrastructure	~100-300 vertiports per MSA located in high-traffic areas capable and of handling ~3-6 VTOLs at once (on average); charging stations; service stations; UTM			
Technology	Improvements in battery technology, autonomous flight technology, detect-and-avoid (e.g., LiDAR, camera vision), electric propulsion, GPS-denied technology			
Potential regulatory requirements ²	Development of air worthiness standards, UTM, flight above people, weight and altitude restrictions, BVLOS, operator certification, identification, environmental restrictions			
Competing technology	Subway, bus, bike, rideshare, driverless cars (personal vehicle, ride-hail, or rideshare)			

- 2. Rothfeld, R. et al., 2021
 - UAM 통행 시간은 ①수속시간(process time), ②수직 이착륙시간(VTOL duration),
 ③순항시간(cruise time)으로 이루어짐
 - 단순 순항속도만으로 지상교통에 비해 통행시간을 줄일 것으로 보기 어려움
 - 연구의 기준 사례에서는 50~55분 가량의 차량 통행에 해당하는 거리를 UAM으로 이동시 통행 시간이 감소되는 효과가 있을 것으로 보임
 - 위와 같은 기준과 **도시별 혼갑시간대**, **통근시간** 등 **교통수요 데이터**를 결합하여 UAM이 효과를 볼 수 있는 계획안을 만들어야 함
- UAM station count: 24 stations
- UAM vehicle cruise speed: 180 km/h
- UAM total process time: 15 min
- UAM VTOL duration: 120 s in total
- UAM flight routes: direct (i.e., Euclidean) flight paths

"지상 교통에 비해 수속에 상당한 시간 소요"

Air Metro 관련 현황 연구의 UAM 도입 기준 사례

기존 新교통수단의 한계점 파악 및 포스트코로나 시대의 교통수단 행태변화

- 앞선 新교통수단의 사례에서 기존의 교통체계와의 연계를 충분히 고려하지 않아 도입하여 기대 수요에 비해 이용이 저조한 문제 지적되었음
- UAM 도입 시 기존 교통수단과의 환승편의성을 높이고 이용 플랫폼을 통합하는 등, 앞으로의 교통수단에 대한 사람들의 인식변화와 요구사항을 충족해야 함

분석범위: 수도권 지역을 대상으로 한 Vertibase 입지 후보지 제안

수도권(서울,인천,경기)만 고려

'수요자관점 국가교통현황 진단연구(국토교통부,2018)' 보고서에서 수요자 관점에서 교통시설 평가기준 중 하나는 혼잡도라고 언급함. 한국에서 수도권은 교통 혼잡도가 가장 높은 곳으로 UAM의 도입으로 교통문제 완화 효과가 가장 크게 나타날 수 있는 지역임. 교통수단간 높은 연계성을 지닌 Seamless 교통서비스를 제공하기 위한 대중교통 인프라가 잘 갖추어져 있음.

Vertibase 입지만 고려

'To take off, flying vehicles first need places to land (McKinsey & Company,2020)'는 3가지 유형의 UAM기지를 고안함. 그 중 Vertipad¹⁾는 초소형 거점이며, Vertihub²⁾는 가장 큰 구조물로 큰 면적이 필요함. 본 프로젝트에서는 데이터 기반 분석으로 편리성과 경제성을 갖출수 있고 가장 많은 입지 실현이 가능한 Vertibase³⁾의 입지를 제안하고자 함.

항공금지구역 고려X

'항공안전법 제78조'에 따르면 좁은 국토면적 및 안보여 건 등으로 수도권 내에 비행가능한 공역이 제한적인 상황 임. 하지만 앞으로 UAM의 상용화를 위해서 공역규제를 완화하거나 비행정보구역(관제공역, 비관제공역, 통제공 역, 주위공역)을 재정의할 필요가 있음. 따라서, 이러한 공 역규제가 완화될 것을 고려해 현재 정의된 항공금지구역 은 반영하지 않고, 데이터 기반 최적 입지 후보지를 선정함.

분석 전체 흐름도

STEP1

Vertibase 설치 후보 지역(TAZ) 선정

UAM 특성 고려한 수도권 중장거리 OD 추출

- UAM 도입의 핵심 목표 중 하나인 출퇴근 시간 단축을 고려하고자 첨두시 가정기반 출퇴근 OD 데이터¹⁾를 사용함
- UAM의 이동 효율성을 고려하기 위해 중장거리 통행으로 여겨지는 행정동 간 통행량 데이터를 활용함
- 서울시정개발연구원(2004년)은 도보의 수단분담률이 '0'이 되는 거리 기준을 단거리 통행의 개념으로 정의함
 - ✓ 본 분석 또한 이에 기반하여 도보 및 자전거 통행량이 '0'인 OD를 단거리 통행으로 정의하며, 이를 제외한 중장거리 통행만을 수요 분석 시 고려하였음

[그림 1.1] 수도권 첨두시 가정기반 출퇴근 수단분담률

[그림 1.2] 첨두시 통행량 (출발 : 흰색 , 도착: 빨간색)

오후 첨두(18-20시)

1) O/D Data (Origin/Destination Data): 기점및 종점 간 통행량데이터

오전 첨두(7-9시)

UAM Vertibase가 위치할 후보 TAZ 선정

- 통행 발생량이 크지 않은 TAZ¹⁾의 수요는 기존 교통수단으로 수요를 충족할 수 있음
- UAM은 도로교통에 혼잡이 발생하는 통행 발생량이 큰 경우의 교통수요를 분담하는 것이 중요함
- Knee(Elbow) Point 탐색 방법을 통해 통행 발생량이 큰 상위 TAZ 들을 고려하여 UAM vertibase 가 위치할 지역을 선정함
 - ① 대부분의 TAZ가 0~5,000 사이의 첨두시간 통행 발생량을 보임
 - ② 가장 통행발생이 많은 TAZ는 약 30,000에 달하는 수치를 보임

[그림 1.3] 통행 발생량 분포

- ① 206번째 TAZ가 Knee point로 도출됨
- ② 206개 TAZ가 통근시간대 중장거리 이동 수요의 47.60%인 것으로 나타남
- ③ 수도권 TAZ 1135개의 약 18%인 206개 TAZ가 수요의 절반 가량을 차지함

[그림 1.4] Knee Point Graph

UAM Vertibase가 위치할 후보 TAZ 선정

- 서울 내에서는 구도심(종로구,중구), 신도심(강남3구), 서남권(영등포, 구로구)에 많은 분포가 나타남
- 경기도의 고양시, 안양, 성남, 남양주 등 서울 통근권 의 많은 지역이 포함되었음
- 경기도의 평택, 양평, 포천 등 인구 규모가 작고 수도권 가장 외곽에 위치한 지역에서는 선정되지 않았음
- 인천의 경우, 주로 남부의 신도시 지역만이 포함되었는데, 원도심의 경우 타 지역이 아닌 지역내로 통근하는 단거리 통근 비중이 높은 것으로 해석됨

[그림 1.5] 상위 206개 TAZ의 위치분포

STEP2

TAZ의 군집화 및 군집별 대표 TAZ 선정

Agglomerative Clustering 시행

- STEP1에서 추출된 206개의 TAZ후보지에 모두 Vertibase를 설치할 수 없으므로 위도,경도 좌표데이터(거리) 기반으로 가까운 TAZ 군집화를 진행함
- K-means는 매번 랜덤하게 군집화를 진행하기 때문에 결과가 일정하지 않으며, DBSCAN은 hyper-parameter인 min_points와 epsilon의 최적값을 찾기 어려우며 군집 의 개수를 임의로 설정할 수 없다는 단점이 존재함 → 이 단점을 보완할 수 있는 응집형 계층적 군집화 알고리즘(Agglomerative Clustering)을 사용함
- 군집의 개수는 군집간 차이가 커지기 시작하는 시점이며 평균 silhouette score가 가장 큰 16개로 선택함*

[그림 2.1] Dendrogram 시각화

[그림 2.2] Silhouette score 시각화

군집별 거리기반 가중치에 따른 통행량 분석

- [그림2.3]은 Agglomerative Clustering으로 도출된 16개의 군집이며 각 군집 내 포인트는 행정동(TAZ)를 표시함
- 근거리기반으로 TAZ를 군집화 하였기 때문에, 군집내 다른 TAZ에서는 Vertibase가 설치될 군집 별 대표 TAZ로 이동하여 UAM을 이용할 수 있음
 - ✓ 따라서 군집내 대표 TAZ는 해당 TAZ 뿐만 아니라 주변 TAZ의 통행 발생량까지 고려해 선정해야 함
 - ✓ 주변지역의 수치를 반영하기 위해 거리가 가까울 수록 높은 가중치를 부여하는 Exponential Distance Decay Weights Method를 사용

[그림 2.3] 16개 군집 시각화

$$y_i = x_i + \sum_{j=1}^k w_{ij} * x_j$$
 $y_i = \text{TAZ i의 최종 trip-score}$ $x = \text{TAZ의 통행 발생량}$ $w_{ij} = \exp\left(-\alpha * d_{ij}\right) (\alpha = 0.5)$ $w_{ij} = \text{TAZ i와 j의 가중치}$ $1 \le i,j \le k \quad (k = 각 군집내의 TAZ 수)$ $d_{ij} = \text{TAZ i에서 j까지 거리}$

(자료: https://aurin.org.au/resources/workbench-user-guides/portal-user-guides/analysing-your-data/spatial-weight-matrices-tools/distance-decay-spatial-weight-matrix/)

[그림 2.4] Exponential Distance Decay Weights Method

군집별 대표 TAZ 선정 결과

- 206개 TAZ에 대해 군집내 주변 TAZ의 통행발생까지 고려한 Trip-score(y_i)를 산출함
- 군집별로 해당 점수가 가장 높은 TAZ를 Vertibase가 설치될 대표 TAZ로 선정함

군집	TAZ명			
1	서울특별시 강남구 역삼1동			
2	경기도 고양시 일산구동 마두1동			
3	경기도 구리시 동구동			
4	경기도 용인시 처인구 역삼동			
5	경기도 안산시 단원구 초지동			
6	경기도 김포시 장기 본동			
7	경기도 시흥시 정왕1동			
8	경기도 성남시 분당구 판교동			
9	서울특별시 강서구 등촌3동			
10	서울특별시 중구 명동			
11	경기도 수원시 장안구 정자2동			
12	경기도 광주시 오포읍			
13	경기도 안양시 동안구 관양2동			
14	인천광역시 중구 운서동			
15	경기도 김포시 풍무동			
16	서울특별시 금천구 가산동			
15	경기도 김포시 풍무동			

[그림 2.5] 16개 군집별 TAZ 1개 도출

STEP3

Seamless 교통서비스를 위한 TAZ 내 Vertibase 위치 제안

환승가능반경 설정 및 환승가능권 내 정류장 개수 산출

- 동일 군집내 다른 TAZ의 이용객은 STEP2에서 추출된 대표 TAZ에 접근하여 UAM을 이용해야 함
- 즉, <mark>환승이 용이한 지점</mark>으로 Vertibase의 입지를 선정해야 선정된 TAZ뿐만 아니라 **군집내 타 지역 시민들이 UAM을 편리하게 이용**할 수 있음
- 이를 위해 모든 대중교통 정류장(버스정류장, 지하철역)을 Vertibase 입지 후보로 설정하고, 각 <mark>정류장의 환승가능권 내에 타 정류장의 수가 많은 곳</mark>에 우선순위를 부여함

1. 환승가능반경 300m 설정 기준

- '복합환승센터 설계 및 배치기준'에 따르면 환승 평면환산거리는 300m를 초과하면 안됨
- 기존 철도(일반철도, 도시철도, 광역철도)가 포함된 경우에는 거리 기준의 150%범위 내에서 허용하므로, 지하철역과의 직선거리가 300m여도 환승가능권에 속한다고 보았음
- 버스정류장은 위치 이동이 가능하기에, 환승가능권인 300m 내에 위치한 정류장들을 Vertibase에 더욱 근접하도록 위치를 옮겨 LOS을 높일 수 있을 것임

<직접접근교통수단의 승하차시설 배치 LOS>

LOS	환승시간	가중평균환산거리	
A	1분 이내	60m 이내	
В	1분~2분	60m∼120m	
С	2분~3분	120m~ 180m	
D	3분~4분	180m~ 240m	
Е	4분~5분	240m~ 300m	
F	5분 이상	300m 이상	

2. 환승가능권 내 정류장 개수 산출 예시

- 아래 그림은 환승가능권 설정 결과 (반경 300m)에 따라 환승가능한 인접 정류장의 수를 확 인한 예시
- 정발산역은 환승가능권 내 지하철역이 1개(3호선), 버스정류장은 9개임
- 해당 지역은 일산지역 교통의 중심지로, 많은 일산 주민들이 정발산역 부근에서 서울로 가기 위한 버스 및 지하철로 환승함

정류장 이름	정발산역		
구분	지하철역(3호선)		
시도	경기도		
시군구	일산 동 구		
읍면동	마두1동		
환승가능권 지하철역 수	1개		
환승가능권 버스정류장 수	97		

[그림 3.1] 교통수단 환승시간별 LOS(서비스 수준)

[그림 3.2] 경기도 일산 정발산역 (일산동구청)

TAZ별 Vertibase 설치 정류장 우선순위 부여 결과

- 앞서 Vertibase 입지 후보지역을 기존 대중교통 정류장으로 설정하고, 환승가능 반경 내 타 정류장의 수를 산출하였음
- 군집별로 선정된 대표 TAZ내 대중교통 정류장들에 대해 Vertibase 입지 우선순위를 부여한 결과(1위 정류장)는 [그림3.4]와 같음

[우선순위 산정]

- 1. 환승가능 반경 내 수송인원의 규모가 큰 지하철역의 개수로 1차 우선순위 부여
- 2. 지하철 역의 개수가 동일할 경우 환승가능 반경 내 버스정류장 수로 최종 우선순위 도출

[그림 3.3] 교통수단 별 정류장 1개당 1일 이용량

이름	지역	군집번호	지하철역 수	버스정류장 수
푸르지오110동앞	경기도 김포시 풍무동	14	1	8
안양법원	경기도 안양시동안구 관양2동	12	1	15
신현3리	경기도 광주시 오포읍	11	0	10
벽산아파트	경기도 수원시장안구 정자2동	10	0	13
성내미육교.판교박물관	경기도 성남시분당구 판교동	7	0	10
시화농협	경기도 시흥시 정왕1동	6	0	18
신영아파트.초당마을	경기도 김포시 장기본동	5	1	8
초지역	경기도 안산시단원구 초지동	4	2	4
시청.용인대역1번출구	경기도 용인시처인구 역삼동	3	1	13
삼환.신일아파트	경기도 구리시 동구동	2	0	17
정발산역	경기도 고양시일산동구 마두1동	1	1	9
가산디지털단지역1호선	서울특별시 금천구 가산동	15	2	22
을지로2가.파인에비뉴	서울특별시 중구 명동	9	2	12
발산역	서울특별시 강서구 등촌3동	8	1	13
2호선강남역	서울특별시 강남구 역삼1동	0	2	21
KT인천공항지사	인천광역시 중구 운서동	13	0	1

[그림 3.4] 군집별 우선순위 1위 후보지(정류장) 산출 결과

RESULT

RESULT

- ▶ UAM의 도입은 지상교통의 포화상태를 겪고 있는 대도시의 교통 혼잡을 완화시켜줄 것으로 기대됩니다.
- ▶ 본 프로젝트는 수도권 행정동 간 통행 분석, 군집 분석 및 타 대중교통수단과의 연계 분석을 수행함으로써 수도권 내 Vertibase 최적 입지 16곳 을 선정하였습니다.
- ▶ UAM이라는 교통수단의 특성을 고려하여 해당 교통수단의 높은 수요가 기대되는 후보 지역을 선정하고, 해당 지역내에서 Vertibase를 설치할 후보지를 제안하였습니다.
- ➤ 최종 선정된 후보지의 위치는 특정 지하철역 혹은 버스 정류장으로, 이곳은 Vertibase 설치 시 타 대중교통수단과의 연계가 가장 수월할 것으로 보이는 장소입니다. 따라서, 해당 위치의 반경 300m를 최종 후보지로 제안함으로써 국내 UAM 운용 체계 확립 에 도움이 되고자 합니다.
- ▶ 즉, 본 프로젝트는 UAM의 유용하며 지속가능한 신대중교통수단으로써의 자리매김을 위한 초기 분석으로 장래 교통시스템의 Seamless (끊김없는) 형태 및 Maas (Mobility as a Service) 제공에 크게 기여할 것으로 기대됩니다.

RESULT

기대효과 및 활용방안

- 1. UAM 입지선정관련 연구의 기초적 참고 자료로 활용
- 2. UAM 상용화 전 체계적 분석으로 도출된 입지로 비용절감
- 3. 정량적 분석을 고려한 연구이므로, 추후 법적, 행정적 변수를 고려하여 실제 적용가능한 결과도출 가능
- 4. 타 교통수단과의 연계성을 중요하게 다루었기 때문에, 미래 교통이 표방하는(Seamless, MaaS)바에 부합

5. 본 프로젝트 방법을 기반으로 추후 타지역으로 확장 가능성 존재

REFERENCES

데이터셋

- 오전, 오후 시간대 통행데이터 및 존체계 데이터 ('data/OD_MMODE_HBW_18_AMPEAK_F.TXT', 'data/OD_MMODE_HBW_18_PMPEAK_F.TXT', 'data/zone.csv')
 - : 국가교통DB (https://www.ktdb.go.kr/) 수도권 PA목적별 주수단 OD(오전/오후 첨두시, 가정기반출퇴근)
- 대한민국 행정동 경계 위치정보 ('data/HangJeongDong_ver20160201.geojson')
 - : 원출처 통계지리정보서비스(https://github.com/vuski/admdongkor
- 수단별 이용량 데이터 ('/data/이용량 지표(수단통행량)_20210830.csv)
 - : 교통카드빅데이터 통합정보시스템(https://www.stcis.go.kr/pivotIndi/wpsPivotIndicator.do?siteGb=P&indiClss=IC01#) 이용량지표
- 지하철 위치정보 데이터 ('data/subway_info.csv')
 - : 공공데이터포털(https://www.data.go.kr/data/15013205/standard.do) 전국도시철도역사정보표준데이터
- 서울시 버스정류장 위치정보 데이터 ('data/서울시버스정류소좌표데이터(2021.01.14.).csv')
 - : 서울 열린데이터광장(http://data.seoul.go.kr/dataList/OA-15067/S/1/datasetView.do) 서울특별시 버스정류소 위치정보
- 경기도 버스정류장 위치정보 데이터 ('data/버스정류소현황-경기.csv')
 - : 경기데이터드림 (https://data.gg.go.kr/portal/data/service/selectServicePage.do?infld=GDKWAGWYRKJYIRVX110226832213&infSeq=1) 버스정류소 현황
- 인천 버스정류장 위치정보 데이터 ('data/인천광역시_정류소현황목록_20210504.csv')
 - : 인천데이터포털 (https://www.incheon.go.kr/data/DATA010201/view?docld=15074309) 인천광역시_인천시 시내버스 정류소 현황

REFERENCES

참고문헌

[논문]

- Rothfeld, R., Fu, M., Balać, M., & Antoniou, C. (2021). Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco. Sustainability, 13(4), 2217.
- 김경환, 이덕환, 최종문, & 오일성. (2010). 지하철과 버스의 서비스권역 비교 및 이용자들의 도보거리 추정: 부산시를 중심으로. 대한토목학회논문집 D, 30(6D), 541-552.
- 민재선, 강병엽, 이영재, 정봉철, & 이재우. (2020). 도심항공교통 (UAM) 운용을 위한 버티포트 (Vertiport) 구축에 관한 연구. 한국항공우주학회 학술발표회 초록집, 681-682.
- 정준영, & 황호연. (2021). K-means 알고리즘을 활용한 수도권 도심항공 모빌리티 (UAM) 수직이착륙장 위치 선정 및 평가. 한국항행학회논문지, 25(1), 8-16.

[보고서]

- EASA. (2021). Study on the societal acceptance of Urban Air Mobility in Europe.
- Johnston, T., Riedel, R., & Sahdev, S. (2020). To take off, flying vehicles first need places to land. McKinsey and Company.
- 국토교통부. (2018). 수요자관점 국가교통현황 진단 연구.
- 국토교통부. (2020) 도시의 하늘을 여는 한국형 도심항공교통(K-UAM) 로드맵.
- 김강수, 김형태. (2008). 수도권 공간구조와 통근통행의 효율성. KDI정책연구시리즈.
- 김순관. (2014). 서울시 출근자의 대중교통 행복지수 높이기. 정책리포트, (180), 1-18.
- 윤혁렬, & 기현균. (2019). 서울형 통합교통서비스 (MaaS) 도입 방안. 정책리포트, 1-23.
- 이범규. (2011). 대중교통 환승패턴 분석 및 환승체계 개선방안 연구. 대전발전연구원.
- 이신해. (2004). 서울시 단거리 승용차 통행 감축방안 연구. 서울: 서울시정개발연구원.

[법령]

- 복합환승센터 설계 및 배치 기준 [국토교통부고시 제2013-430호, 2013. 7. 20., 일부개정]
- 항공안전법 제 78조 [법률 제17613호, 2020. 12. 8., 일부개정]

감사합니다.