An introduction to model theory

Byunghan Kim

Yonsei University

Korea Logic Day January 14, 2021

Outline

Gödel's theorems

- Gödel's theorems
- 2 Basic model theory
- Morley's theorem
- Applications
- 5 Forking
- 6 Homology theory
- Mim-independence

An introduction to model theory

Byunghan Kim

Yonsei University

Korea Logic Day January 14, 2021

Kurt Gödel (1906-1978)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ()

Gödel's theorems

•0000

Axioms for PA (Peano Arithmetic):

- For any arithmetical property P(x) on a variable x (more precisely any arithmetical formula P(x) with a free variable x),

$$(P(0) \land \forall x (P(x) \rightarrow P(Sx)) \rightarrow \forall x P(x).$$

Gödel's 1st Incompleteness Theorem

PA (ZFC, resp.) is incomplete, i.e. there is an arithmetical (mathematical, resp.) sentence σ such that neither σ nor its negation $\neg \sigma$ is provable from PA (ZFC resp.).

Gödel's 1st Incompleteness Theorem

PA (ZFC, resp.) is incomplete, i.e. there is an arithmetical (mathematical, resp.) sentence σ such that neither σ nor its negation $\neg \sigma$ is provable from PA (ZFC resp.).

Gödel's 2nd Incompleteness Theorem

Con(PA) (Con(ZFC), resp.) is not provable from PA (ZFC resp.).

More generally

Gödel's 1st Incompleteness Theorem

Assume that a logical system

- is consistent;
- a has a recursive(=computable) set of axioms;
- 3 and it can express PA.

Then the system is incomplete.

Gödel's 2nd Incompleteness Theorem

Under the same 3 assumptions above, the system can not prove its own consistency.

Gödel's Completeness Theorem

In a fixed logical system; a sentence σ is provable from some set Σ of sentences iff the sentence σ is true in every model of Σ .

Alfred Tarski (1901-1983)

イロト イ団ト イミト イミト 990

Gödel's theorems

Michael D. Morley (1930-)

Saharon Shelah (1945-)

00000000

Ehud Hrushovski (1959-)

000000000

$$\mathcal{M} = (|\mathcal{M}|, (P_i)_{i \in I}, (f_j)_{j \in J}, (c_k)_{k \in K}),$$

we mean a non-empty set $|\mathcal{M}|$, called the *universe* of the model, equipped with

predicates
$$P_i \subseteq |\mathcal{M}|^{n_i}$$
,
operations $f_j : |\mathcal{M}|^{n_j} \to |\mathcal{M}|$, and
constants $c_k \in |\mathcal{M}|$.

In this talk, for simplicity, we assume $I \cup J \cup K$ is countable (can be empty).

Gödel's theorems

Example

 $\mathbb{N}=(\mathbb{N},+,\times,S,0)$: The structure of natural numbers $\mathbb{Z}=(\mathbb{Z},+,-,\times,0)$: The structure of integers $\mathbb{Q}=(\mathbb{Q},+,-,\times,0,1)$: The field of rational numbers

 $\mathbb{C} = \big(\mathbb{C}, +, -, \times, 0, 1\big)$: The field of complex numbers

 $\mathbb{R}_{\mbox{ord}} = (\mathbb{R}, +, -, \times, <, 0, 1)$: The ordered field of real numbers

 $G = (G, \cdot, e)$: a group

G = (V, E): a graph

Fix a model $\mathcal{M} = (\mathcal{M}, (P_i)_{i \in I}, (f_j)_{j \in J}, (c_k)_{k \in K})$. By a formula (of \mathcal{M}), we mean a finite sequence of symbols from

$$\{P_i, f_j, c_k\} \cup \{=, \forall, \exists, \neg, \rightarrow, \leftrightarrow, \land, \lor\} \cup \{x, y, z, ...\}$$

which can be interpreted as a mathematical proposition.

Example

- $P \rightarrow \forall xy \lor f$ is not a formula.
- $\sigma_k := \forall a_0 a_1 \cdots a_k (a_k \neq 0 \rightarrow \exists x (a_0 + a_1 x + \cdots + a_k x^k = 0))$ is a formula (of a field) saying that every polynomial equation of degree k has a root.

Example

- $\varphi_1(x,y) := \exists z(x-y=z^2)$ is a formula (of a field).
- $\varphi_2 := \forall xy \exists z (x y = z^2)$ is a formula.

In φ_1 , x,y are called *free* variables. We write a formula

$$\varphi = \varphi(x_1, ...x_n)$$

when free variables of φ are in $\{x_1,...,x_n\}$, i.e. φ can be understood as a **proposition of the variables** $x_1,...,x_n$.

Hence the truth or falsity of a formula $\varphi(x_1,...,x_n)$ in \mathcal{M} depends on the realization $(a_1,...,a_n) \in \mathcal{M}$. For example,

$$\mathbb{R} \models \varphi_1(x,y)[3,1], \text{ but } \mathbb{R} \not\models \varphi_1(1,3) \text{ or } \mathbb{R} \models \neg \varphi_1(1,3).$$

On the other hand,

$$\mathbb{Q} \not\models \varphi_1(x,y)[3,1], \text{ but } \mathbb{Q} \models \varphi_1(x,y)[5,1].$$

A sentence is a formula having no free variable. For example φ_2 and σ_k . Hence the truth or falsity of a sentence only depends on the model.

For example, for any $k \ge 1$.

$$\mathbb{R} \not\models \varphi_2, \sigma_{2k}, \quad \mathbb{R} \models \sigma_{2k-1}, \quad \mathbb{C} \models \varphi_2, \sigma_k$$

Note that in \mathbb{R}_{ord} , the formula $\varphi_1(x,y)$ is equivalent to another formula $y \leq x$. Similarly, a formula $\exists z(z^2+xz+y=0)$ saying the quadratic polynomial with coefficients x,y has a root is equivalent to another formula $4y \leq x^2$.

- Th(\mathcal{M}) = { $\sigma \mid \sigma$ is a sentence true in \mathcal{M} }.
- $\mathcal{M} \equiv \mathcal{N}$ (elementarily equivalent) if $\mathsf{Th}(\mathcal{M}) = \mathsf{Th}(\mathcal{N})$ (a priori $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{N})$.
- Let $\Sigma = \{\sigma_i \mid i \in I\}$ be a set of sentences (in \mathcal{L}).
 - We say Σ is *satisfiable* if there is some model \mathcal{M} such that all σ_i is true in \mathcal{M} .
 - Σ is *finitely satisfiable* if for each finite subset J of I. $\Sigma_J := \{ \sigma_i \mid i \in J \}$ is satisfiable.

Byunghan Kim Yonsei University The most important consequences of Gödel's completeness theorem are:

Gödel's Compactness Theorem

Given a set Σ of sentences, it is finitely satisfiable iff it is satisfiable.

Theorem

(Löwenheim-Skolem) For any infinite model \mathcal{M} , and any infinite cardinal κ , there is \mathcal{M}_{κ} of cardinality κ such that $\mathcal{M}_{\kappa} \equiv \mathcal{M}$.

Corollary

For \mathbb{N} (or \mathbb{Q} , \mathbb{R} ..), there is a non-standard one.

Notation

Give an infinite model \mathcal{M} and an infinite cardinal κ , $I(\mathcal{M}, \kappa)$ is the number of non-isomorphic models \mathcal{M}_{κ} of cardinality κ such that $\mathcal{M}_{\kappa} \equiv \mathcal{M}$.

Theorem

Morley's Categoricity Theorem If $I(\mathcal{M}, \kappa) = 1$ for some uncountable κ , then for any uncountable cardinal κ' , $I(\mathcal{M}, \kappa') = 1$.

Example) For \mathbb{C} , given any uncountable κ , there is a unique field $F_{\kappa} \equiv \mathbb{C}$, which simply is an algebraically closed field of Char=0 of cardinality κ . (But there are *countably many* countable ones.)

- An elliptic curve over a field F is a curve defined by the polynomial equation $y^2 = x^3 + ax + b$ where we assume $a, b \in F$.
- A basic fact on elliptic curves is that one can geometrically associate the canonical abelian group structure E_{ab} on a given elliptic curve $y^2 = x^3 + ax + b$ (a, b \in F). Mordell-Weil theorem says that if $F = \mathbb{Q}$ then every such group E_{ab} is finitely generated so that it is of the form $\mathbb{Z}^r \oplus G$ where r is some finite number (possibly 0) and G is some finite abelian group. r is said to be the rank of the elliptic curve.
- A question remains as to whether the ranks of elliptic $v^2 = x^3 + ax + b$ are bounded as a, b range over \mathbb{Q} .
- In Seoul ICM2014, Manjul Bhargava received Fields prize due to his work on that an average rank of elliptic curves over $\mathbb Q$ is bounded.

4 D > 4 P > 4 P > 4 P >

Byunghan Kim Yonsei University

Gödel's theorems

Theorem (Junguk Lee)

The following are equivalent.

- Ranks of elliptic curves over Q are bounded.
- Some (any) uncountable model $\widetilde{\mathbb{Q}}(\equiv \mathbb{Q})$ satisfies the weak Mordell-Weil condition, that is, for any E_{ab} $(a,b\in\widetilde{\mathbb{Q}})$ and every $m\geq 1$, E_{ab}/mE_{ab} is finite.

- Hilbert's 17th problem: If a polynomial $f(x_1, ..., x_n) \in \mathbb{R}[x_1, ..., x_n]$ is positive definite (i.e. $f(a_1, ..., a_n) \geq 0$ for any real a_i) then can f be a sum of squares of rational functions?
- James Ax's solution to Schanuel's conjecture for function fields: Given formal power series $f_1, \ldots, f_n \in t\mathbb{C}[[t]]$, if they are linearly independent over \mathbb{Q} , then

$$\operatorname{tr.degree}_{\mathbb{C}(t)}(t, f_1, \dots, f_n, e^{f_1}, \dots, e^{f_n}) \geq n.$$

- Hardy's conjecture: the inverse of (log x)(log log x) is not asymptotic to a composition of exp, log and semialgebraic functions.
- A solution to Hilbert's 5th problem for local groups by I.
 Goldbring: Every locally Euclidean local group is locally isomorphic to a Lie group.

- Mordell-Lang conjecture by E. Hrushovski.
- Due to T. Scanlon using Hrushovki-Zilber dichotomy: abc conjecture for a certain case; Voloch's conjecture in number theory; and more.
- André-Oort conjecture by J. Pila using A. Wilkie's work on o-minimality.
- Hrushovski's work on approximate groups and its evolvement toward combinatorial regularity theory for groups and graphs.
- O-minimal GAGA and a conjecture of Griffiths.
- And many more

S. Shelah singled out (in 60-70s) a larger class of structures, called stable. properly containing that of uncountable categorical structures, which commonly shares the dimension property crucial in the proof of Morley's Theorem.

Definition

Gödel's theorems

- \mathcal{M} is unstable if there is $\varphi(x,y)$ and $a_i \in \mathcal{M}$ (i=1,2,3..)such that $\mathcal{M} \models \varphi(a_i, a_i)$ iff i < j.
- M is stable if it is not unstable.

uncountable categorical (ACF) \subseteq superstable (DCF) \subseteq stable (SCF). Ordered fields are unstable.

Byunghan Kim Yonsei University

For $A, B, C \subseteq \mathcal{M}$, write $A \downarrow_B C$ if $\operatorname{tp}(A/B \cup C)$ does not fork over A. (Never mind ! In ACF, algebraic independence; in VS, linear independence.)

Theorem

(Shelah, late 60s) \mathcal{M} stable. Then for $A, B, C, D \subseteq \mathcal{M}$,

- (Symmetry) $A \downarrow_B C$ iff $C \downarrow_B A$,
- (Transitivity) when $B \subseteq C \subseteq D$, we have $A \downarrow_B C$ and $A \downarrow_C D$ iff $A \downarrow_B D$.
- (Local Character) if A is finite, then there is countable $B' \subseteq B$ such that $A \downarrow_{B'} B$.

Theorem

Gödel's theorems

(B. Kim, late 90s): (Symmetry), (Transitivity) and (Local Character) are equivalent, for any \mathcal{M} .

Definition

- \mathcal{M} simple if \mathcal{M} has one of the equivalent conditions.
- \mathcal{M} supersimple if for B, finite $A \subseteq \mathcal{M}$, there is finite $B' \subseteq B$ such that $A \downarrow_{B'} B$.

```
\subseteq supersimple (PsF)
superstable
                                             \subseteq simple (PAC)
                ⊂ stable
```


Theorem (K., Pillay)

- If $\mathcal M$ is simple then it has 3-amalgamation.
- Moreover in any M, suppose that there is a ternary relation among subsets of M satisfying basic independence properties, i.e., (Symmtery), (Transitivity), (Local Character), (Extension), (Finite character), (3-amalgamation). Then M is simple and the ternary relation is ↓.

For $A, B, C \subseteq \mathcal{M}$ write $A \downarrow_B^K C$ if $tp(A/B \cup C)$ does not Kim-fork over A.

Fact

 $A \downarrow_B C$ implies $A \downarrow_B^K C$.

Theorem

(K.) If \mathcal{M} is simple then $A \downarrow_B C$ iff $A \downarrow_B^K C$ for any $A, B, C \subseteq \mathcal{M}$.

If X is a family of sets, ordered by inclusion then we consider it to be a category with a single inclusion map $\iota_{u,v}:u\to v$ between any sets $u, v \in X$ with $u \subseteq v$. The set X is called downward-closed if whenever $u \subseteq v \in X$, then $u \in X$. For a downward closed X and a functor $f: X \to \mathcal{C}_B$ and $u \subseteq v \in X$, we write $f_v^u := f(\iota_{u,v})$ and $f_{\nu}^{u}(u) := f_{\nu}^{u}(f(u)) \subseteq f(v).$

<ロト <回ト < 重ト < 重ト < 重ト < 1000 × 100

Byunghan Kim Yonsei University

A (closed independent) p-functor is a functor $f: X \to \mathcal{C}_B$ such that:

- **①** For some finite $s \subseteq \omega$, X is a downward-closed subset of $\mathcal{P}(s)$;
- ② $f(\emptyset) = \emptyset$; and for $i \in s$, $f(\{i\})$ (if it is defined) is of the form acl(b) where $b \in p$.
- **③** For all non-empty $u \in X$, we have that $f(u) = \operatorname{acl}(\bigcup_{i \in u} f_u^{\{i\}}(\{i\}))$ and the set $\{f_u^{\{i\}}(\{i\}) : i \in u\}$ is independent over \emptyset .

Let $n \geq 0$ be a natural number. An *n-simplex in p* is a *p*-functor $f: \mathcal{P}(s) \to \mathcal{C}$ for some set $s \subseteq \omega$ with |s| = n + 1. The set s is called the *support of f*, or supp(f).

Let $S_n(p)$ denote the collection of all *n*-simplices in p; and let $C_n(p)$ denote the free abelian group generated by $S_n(p)$; its elements are called *n*-chains in p. The support of a chain c is the union of the supports of all the simplices that appear in c with a nonzero coefficient.

Let $n \geq 1$ and $0 \leq i \leq n$. The *ith boundary operator* $\partial_n^i : \mathcal{C}_n(p) \to \mathcal{C}_{n-1}(p)$ is defined as follows: If $f \in \mathcal{S}_n(p)$ is an n-simplex with domain $\mathcal{P}(s)$, where $s = \{s_0 < \ldots < s_n\}$, then we define

$$\partial_n^i(f) := f \upharpoonright \mathcal{P}(s \setminus \{s_i\}).$$

The definition is extended linearly to all chains in $C_n(p)$. If $n \ge 1$ and $0 \le i \le n$, then the boundary map $\partial_n : C_n(p) \to C_{n-1}(p)$ is defined as

$$\partial_n(c) := \sum_{0 \le i \le n} (-1)^i \partial_n^i(c).$$

We write ∂^i and ∂ for ∂^i_n and ∂_n , respectively, if the n is clear from context.

The kernel of ∂_n is denoted by $\mathcal{Z}_n(p)$, and its elements are called *(n-)cycles*. The image of ∂_{n+1} in $\mathcal{C}_n(p)$ is denoted by $\mathcal{B}_n(p)$, and its elements are called *(n-)boundaries*.

It can be shown (by the usual combinatorial argument) that $\mathcal{B}_n(p)\subseteq\mathcal{Z}_n(p)$, or more briefly, " $\partial_n\circ\partial_{n+1}=0$." Therefore we can define simplicial homology groups relative to p:

Definition

The *nth* (simplicial) homology group of the type $p \in S(B)$ is

$$H_n(p) = \mathcal{Z}_n(p)/\mathcal{B}_n(p).$$

Let n > 1.

We say p has n-amalgamation (or n-existence) if for any p-functor $f: \mathcal{P}^-(n)(:=\mathcal{P}(n)\setminus\{n\}) \to \mathcal{C}$, there is an (n-1)-simplex g in p such that $g\supseteq f$.

(Indeed we need to consider *p*-functor over any set.)

For a tuple c, we write $\overline{c} := \operatorname{acl}(c)$; and for sets A, C, $\operatorname{Aut}(A/C)$ denotes the group of $A \cup C$ -permuting embeddings fixing C pointwise.

Fix independent $c_1, \ldots, c_{n+1} \in p$. We let

$$\widetilde{c_1...c_n} := \overline{c_1...c_n} \cap \operatorname{dcl}(\bigcup_{i=1}^n \overline{c_1...\hat{c}_i...c_{n+1}});$$

and let

$$\partial(c_1...c_n) := \operatorname{dcl}(\bigcup_{i=1}^n \overline{c_1...\hat{c}_i...c_n}).$$

We also put

$$\Gamma_n(p) := \operatorname{Aut}(\widetilde{c_1...c_n}/\partial(c_1...c_n)).$$

Hurewicz Correspondences

(J. Goodrick, K., A. Kolesnikov) Assume \mathcal{M} is stable, and p has $(\leq n+1)$ -amalgamation. Then

$$H_n(p) = \Gamma_n(p),$$

which is always a profinite abelian group.

For a proof we need to generalize the notion of groupoids.

Definition

If $n \geq 2$, an n-ary polygroupoid is a structure $\mathcal{H} = (I, P_2, \dots, P_{n-1}, P, Q)$ with n disjoint sorts $I = P_1, P_2, \dots, P_n = P$ equipped with an (n+1)-ary relation $Q \subseteq P^{n+1}$ and a system of maps $\langle \pi^k : 2 \leq k \leq n \rangle$ satisfying the following axioms:

- For each $k \in \{2, ..., n\}$, the function π^k maps an element $u \in P_k$ to a compatible k-tuple $(\pi_1^k(u), ..., \pi_k^k(u)) \in (P_{k-1})^k$.
- ② If $Q(u_1, \ldots, u_{n+1})$ holds, then (u_1, \ldots, u_{n+1}) is a compatible (n+1)-tuple of elements of P.
- **3** Whenever $Q(u_1, \ldots, u_{n+1})$ holds, then for any $i \in \{1, \ldots, n+1\}$, u_i is the unique element x in P such that $Q(u_1, \ldots, u_{i-1}, x, u_{i+1}, \ldots, u_{n+1})$ holds.
- The Q-relation is associative.

Fact

(Shelah) \mathcal{M} is simple iff it does not have the tree property.

Definition

 \mathcal{M} is NSOP₁ if it does not have SOP₁ tree property.

 SOP_1 tree property implies the tree property. Hence if $\mathcal M$ is simple then $\mathcal M$ is NSOP_1 .

Stable	Simple	$NSOP_1$
Infinite set	The random graph	The paramet. equi. rel.s
ACF	Bounded PAC fields	ω -free PAC fields
V = vector sapce	$(V,\langle, angle)$ / a finite F	$(V,\langle, angle)$ / an ACF

Question

(K., 2009) If \mathcal{M} is NSOP₁ then whether \downarrow^K (with some naivety) supplies a well-behaving independence notion.

The question is corrected and positively answered over submodels by Kaplan and Ramsey (\downarrow^K is named Kim-independence by them).

• I. Kaplan and N. Ramsey, "On Kim-independence," Journal of European Math. Soc. (2020) 1423–1474.

Later the result is extended to all NSOP₁ \mathcal{M} with existence.

 J. Dobrowolski, B. Kim, and N. Ramsey, "Independence over arbitrary sets in NSOP₁ theories," preprint.

Then recently further studies on NSOP₁ structures are being produced by many other model theory researchers.

Consequently, the maximal solution to Lachlan's problem is obtained.

• B. Kim, "On the number of countable models of a countable NSOP₁ theory without weight ω ," J. of Symbolic Logic, 84 (2019) 1168-1175.