Студент: Коротков Фёдор

Группа: 2362 Вариант: 39

Дата: 2 мая 2024 г.

Комбинаторика и теория графов

Индивидуальное домашнее задание №2

Задание 1. Является ли граф а) эйлеровым, полуэйлеровым? б) гамильтоновым, полугамильтоновым? в) двудольным? г) вершинно-двусвязным; д) рёберно-двусвязным е) постройте дерево блоков и точек сочленения.

Решение.

а) эйлеровым, полуэйлеровым?

Граф не является ни эйлеровым, ни полуэйлеровым, так как в графе есть вершины с нечётными степенями, и их больше двух (D, E, H, J).

б) гамильтоновым, полугамильтоновым?

В графе есть лист J, следовательно, граф не является гамильтоновым. Так как между шарнирами D и I нет простого пути, содержащего вершины A, B, E, H, K, L, то граф не является полугамильтоновым.

в) двудольным?

Так как при раскрашивании смежные вершины C и G оказались одного цвета, граф не является двудольным.

г) вершинно-двусвязным?

Так как в графе присутствуют шарниры (D, F, I), то граф не может быть вершинно-двусвязным.

д) рёберно-двусвязным?

Так как в графе есть мосты (FI, FJ), то граф не является рёберно-двусвязным.

1

е) постройте дерево блоков и точек сочленения.

Задание 2. Найдите хроматический многочлен данного графа:

Решение.

$$P(t) = P_{DEHI}(t)(t-1)^{3}(t-2)^{5}$$

$$P_{DEHI}(t) = t(t-1)(t^2 - 3t + 3)$$

Other:
$$P(t) = t(t-1)^4(t-2)^5(t^2-3t+3)$$

Задание 3. Из полного графа на 114 вершинах, удалили рёбра АВ, ВЕ, DE и GH. Постройте хроматический многочлен получив- шегося графа. Упрощать ответ не обязательно.

Решение.

$$\supset K_n = P_{K_n}(t), K_n - e = P_{K_n - e}(t)$$

$$(K_{114} - AB) = K_{114} + K_{113}$$

$$(K_{114} - AB - BE) = (K_{114} - AB) + (K_{113} - AB)$$

$$(K_{114} - AB - BE - DE) = (K_{114} - AB - BE) + (K_{113} - AB - BE)$$

$$(K_{114} - AB - BE - DE - GH) = (K_{114} - AB - BE - DE) + (K_{113} - AB - BE - DE) =$$

$$=(K_{114}-AB-BE)+2(K_{113}-AB-BE)+(K_{112}-AB-BE)=$$

$$= (K_{114} - AB) + 3(K_{113} - AB) + 3(K_{112} - AB) + (K_{111} - AB) =$$

$$= (K_{114} - AB) + 3(K_{113} - AB) + 3(K_{112} - AB) + (K_{111} - AB) =$$

$$= K_{114} + 4K_{113} + 6K_{112} + 4K_{111} + K_{110} = A_t^{114} + 4A_t^{113} + 6A_t^{112} + 4A_t^{111} + A_t^{110}$$

Ответ: $A_t^{114} + 4A_t^{113} + 6A_t^{112} + 4A_t^{111} + A_t^{110}$

Задание 4. а) Постройте код Прюфера для данного дерева:

б) Постройте дерево по коду Прюфера: 3 9 4 9 10 1 1 9 10.

Решение.

- а) Построим код Прюфера $2\ 3\ 7\ 7\ 11\ 5\ 5\ 11\ 10\ 11$
- б) Построим дерево по коду Код: 3 9 4 9 10 1 1 9 10

Порядок: 2 3 5 4 6 7 8 1 9

Задание 5. При помощи агоритма Козагаји найдите компоненты сильной связности данного графа:

В графе 7 компонент сильной связности. Каждая из них выделена своим цветом в графе.

Задание 6. Найдите максимальный поток через данную плоскую сеть:

Ответ: 18

Задание 7. Найдите максимальный поток через данную сеть:

Ответ: 25

Задание 8. Найдите наибольшее паросочетание в двудольном графе, заданном набором рёбер: (a, β) (a, η) (b, β) (b, ε) (c, α) (c, ζ) (d, ε) (e, ζ) (e, η) (e, θ) (f, γ) (f, δ) (f, η) (g, ζ) (h, β) (h, γ)

Решение.

 \mathbf{S}

Otbet: (a, $\eta)$ (b, $\beta)$ (c, $\alpha)$ (d, $\varepsilon)$ (e, $\theta)$ (f, $\delta)$ (g, $\zeta)$ (h, $\gamma)$

Задание 9. Найдите радиус, диаметр и центр данного дерева:

$egin{array}{ccc} Peшeнue. & 1 & 2 \\ & & 1 & 2 \\ \end{array}$ max2 3 6 5 5 $6 \quad 6 \quad 6 \quad 3 \quad 4 \quad 5 \quad 4 \quad 2$

радиус: 4 диаметр: 7 центры: 5, 8

Задание 10. Найдите радиус, диаметр и центр данного графа:

	A	B	C	D	E	F	G	H	I	J	K	L	max
A	(0	1	2	2	1	1	2	2	3	3	2	2	3
B	1	0	1	2	2	2	3	3	4	4	3	3	4
C	2	1	0	1	3	2	4	3	5	5	4	4	5
D	2	2	1	0	2	1	3	2	4	4	3	3	4
E	1	2	3	2	0	1	1	2	2	2	1	1	3
F	1	2	2	1	1	0	2	1	3	3	2	2	3
G	2	3	4	3	1	2	0	3	1	2	1	2	4
H	2	3	3	2	2	1	3	0	4	3	2	1	4
I	3	4	5	4	2	3	1	4	0	1	2	3	5
J	3	4	5	4	2	3	2	3	1	0	1	2	5
K	2	3	4	3	1	2	1	2	2	1	0	1	4
L	$\sqrt{2}$	3	4	3	1	2	2	1	3	2	1	0	4

радиус: 3 диаметр: 5 центры: А, Е, F

Задание 11. Постройте пример графа, для которого хроматическим многочленом является $t^4(t 1)^{6}(t-2)^{3}(t-3)^{3}$

Решение.

