Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Previously Presented) A process for preparing a N,N'-carbonyldiazole of formula (I)

where either

 X^1 , X^2 and X^3 independently of one another are each CR^1 or nitrogen, R^1 being hydrogen or straight-chain or branched C_γ - C_ϱ alkyl, and

R² is hydrogen,

or

X¹ and X³ are CR¹, the radical R¹ in X¹ being hydrogen or straight-chain or branched C₁-C₀ alkyl and the radical R¹ in X³ forming, together with R², a -CH=CH-CH=CH- bridge, and

X² is CR¹ or nitrogen, R¹ being hydrogen or straight-chain or branched C₂-C₄ alkyl,

by reacting azoles of the general formula (II),

wherein X¹, X², X³, and R² are as defined for formula (I) with phosogene in a polar solvent, which is characterized in that

- the polar solvent being selected from the group consisting of ethers, ketones and chlorinated aliphatic solvents, wherein the polar solvent possesses a maximum water content of 0.5% by weight, and
- (ii) the azole of the general formula (II) and the phosgene are metered into the solvent in such a way that in the time within which 1 mol of azole of the general formula (II) is metered in at the same time 0.17 to 0.34 mol of phosgene is metered in.
- (Original) Process according to Claim 1, characterized in that either two different azoles or else only one single azole of the general formula (II) are or is used.
- (Previously Presented) Process according to Claim 1, characterized in that
 one or two azoles of the general formula (II) is or are used in which
 independently of one another one or two of the moieties X¹, X² and X³ is or are
 nitrogen.
- 4. (Previously Presented) Process according to Claim 1, characterized in that one or two azoles of the general formula (II) is or are used in which independently of one another X¹ is CH, X² is nitrogen and X³ is CR¹, R¹ and R² together forming a -CH=CH-CH=CH-bridge.

- (Previously Presented) Process according to Claim 1, characterized in that imidazole, benzimidazole, pyrazole or 1,2,4-triazole is used as the azole of the general formula (II).
- (Previously Presented) Process according to Claim 1, characterized in that in total 0.2 to 0.3 mol, preferably 0.22 to 0.27 mol, in particular 0.24 to 0.26 mol of phosgene is used per mole of azole of the general formula (II).
- 7. (Previously Presented) Process according to Claim 1, characterized in that ethers used are linear or cyclic aliphatic ethers and diethers, especially MTBE, dimethyl ether, diethyl ether, dibutyl ether, THF, 2-methyl-THF, 2,5-dimethyl-THF, dioxane, ethylene glycol dimethyl ether or ethylene glycol diethyl ether, aromatic ethers, especially anisole and chlorinated derivatives of anisole, and also mixtures of the aforementioned solvents.
- 8. (Previously Presented) Process according to Claim 1, characterized in that ketones used are linear or cyclic aliphatic ketones, especially acetone, 2-butanone, diethyl ketone, dipropyl ketone, cyclopentanone, cyclohexanone or cycloheptanone, and also mixtures of the aforementioned solvents.
- (Previously Presented) Process according to Claim 1, characterized in that chlorinated aliphatic solvents used are methylene chloride, chloroform or 1,2-dichloroethane.
- (Previously Presented) Process according to Claim 1, characterized in that the polar solvent possesses a water content of not more than 0.2%, preferably 0.1% and in particular 0.05% by weight.
- 11. (Previously Presented) Process according to Claim 1, characterized in that the azole of the general formula (II) and also the phosgene are metered in simultaneously to the polar solvent from the group consisting of ethers, ketones and chlorinated aliohatic solvents is such a way that in the time within which

- 1 mol of azole of the general formula (II) is metered in at the same time 0.2 to 0.3 mol, in particular 0.24 to 0.28 mol, of phosgene is metered in.
- 12. (Previously Presented) Process according to Claim 1, characterized in that the reaction vessel is charged with up to 10% by weight, preferably 0.1% to 2% by weight, of the total amount of the azole of the general formula (II), in the form of a solution or suspension, in the reaction vessel, and subsequently the further amount of the azole, and the phosgene, are metered in simultaneously as specified in Claims 1 and 10.
- 13. (Previously Presented) Process according to Claim 1, characterized in that the reaction mixture is worked up by separating off the azole hydrochloride precipitate at 20 to 100°C, preferably 40 to 80°C, by filtration and isolating N,N'-carbonyldiazole from the filtrate by cooling the mother liquor to +40 to -70°C, preferably to +25 to -20°C, and filtering off the product that crystallizes out in the course of cooling.
- 14. (Previously Presented) Process according to Claim 1, characterized in that the reaction mixture is worked up by separating off the azole hydrochloride precipitate at 40 to 80°C by filtration as indicated in Claim 13 and concentrating the filtrate completely and thereby removing the solvent.