#university #studying #subject-1101

Definizioni

Algebra Lineare

 $f: R \to R$ si legge "f definita in R a valori in R".

Strutture Algebriche

- Insieme: collezione di un elementi che hanno tutti una stessa caratteristica
- Funzione: dati due insiemi A e B, si dice f (funzione) una legge che associa ad ogni elemento di A
 uno di B.
- Gruppo: insieme su cui è definita un'operazione * (G, *) e valgono le proprietà:
 - · Associativa, Esistenza Elemento Neutro, Invertibilità
 - Si dice Abeliano se vale anche la Commutatività
- Anello: insieme su cui sono definite due operazioni + e * (G, +, *) e velgono le proprietà:
 - (G, +) è gruppo,
 - Con * vale associatività
 - Con * distributività
 - Si dice Commutativo se vale la Commutatività su *.
 - Si dice Unitario se esiste l'elemento neutro su *.
 - Si dice Campo se è commutativo e vale l'Invertibilità su *.

Matrici

- Matrice: tabella di n-righe e m-colonne:
 - Diagonale: se sopra e sotto la diagonale principale ci sono tutti zero.
 - Triangolare superiore o inferiore: se sopra o sotto la diagonale principale ci sono tutti zero.
 - Simmetrica: se la matrice è uquale alla sua trasposta.
 - Antisimmetrica: se la matrica è uguale all'opposta della sua trasposta.
- Determinante: numero associato ad ogni matrice quadrata.
- Rango: ci sono due definizioni:
 - · ordine massimo di un minore non nullo estraibile dalla matrice
 - numero di elementi speciali
- Teorema Matrici Invertibili dice che:
 - a) una matrice A è invertibile $\iff \det A \neq 0$
 - b) se $\det A \neq 0$ allora la matrice inversa è: $A^{-1} = \frac{1}{\det A} \cdot A_a = \frac{1}{\det A} \cdot (A_{ij})^T$
 - c) se A è invertibile allora $\det A^{-1} = \frac{1}{\det A}$
 - **Dimostrazione** (1*, L.7): si dimostra con il Teorema di Binet e i due Teoremi di Laplace.

Spazi Vettoriali

- Spazio Vettoriale: si dice spazio vettoriale su un campo K (K-spazio vettoriale) un insieme su cui sono definite due operazioni + e * (G, + *) e valgono le proprietà:
 - (G, +) è gruppo

- Con * vale associatività.
- Con * esiste elemento neutro.
- Vale distributività della somma rispetto al prodotto esterno. $(a+b)\cdot \vec{v} = a\vec{v} + b\vec{v}$
- Vale distributività del prodotto esterno rispetto alla somma. $a \cdot (\vec{v} + \vec{w}) = a\vec{v} + a\vec{w}$
- Sottospazio: W è sottospazio di V se $W \subseteq V$ e W è un K spazio vettoriale rispetto alle operazioni di somma e prodotto definite su V.
- Intersezione tra sottospazi: è sempre un sottospazio
- Unione tra sottospazi: è sottospazio solo se uno dei due è sottoinsieme dell'altro (ovvio)
- Combinazione Lineare: un vettore è combinazione lineare di $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$ se esistono a_1, a_2, \dots, a_n tali che $v = a_1 \vec{v_1} + a_2 \vec{v_2} + \dots + a_n \vec{v_n}$.
- Insieme di Generatori: dato un K-spazio vettoriale V, un insieme (v_1, v_2, \ldots, v_n) è detto insieme di generatori (indicato con $G\{v_1, v_2, \ldots, v_n\}$) se preso un qualunque vettore $\vec{z} \in V$ esso si può scrivere come combinazione lineare (C.L.) dei vettori di G.
- Base: un insieme (v_1, v_2, \dots, v_n) è detto Base di V se ogni elemento di V è combinazione lineare (C.L.) di v_1, v_2, \dots, v_n in modo unico.
 - B è base \iff i vettori di B sono L.I. e generatori.
- Linearmente Indipendenti: i vettori v_1,v_2,\ldots,v_n si dicono linearmente indipendenti se quando $a_1\vec{v_1}+a_2\vec{v_2}+\cdots+a_n\vec{v_n}=0$ allora ne deve seguire che $a_1=a_2=\cdots=a_n=0$
- Lemma di Steinitz: numero di vettori generatori \geq numero di vettori linearmente indipendenti.
- Teorema che caratterizza una base: dato $B = \{v_1, v_2, \dots, v_n\}$, B è un insieme \iff i vettori sono L.I. e generatori.
- Teorema sulle Basi: tutte le basi di un K-spazio vettoriale hanno lo stesso numero di elementi.
 - Dimostrazione (2*, L10): Si usa il Lemma di Steinitz.

Sistemi Lineari

- Sistema Lineare: sistema di equazioni a più incognite di massimo 1° grado (c'è il termine noto)
- Teorema di Rouchè Capelli N°1: $\rho(A) = \rho(A,B) \iff$ Sistema possibile (ammette almeno una soluzione).
- Teorema di Rouchè Capelli N° 2: quando il sistema è possibile ($\rho(A) = \rho(A, B) = \rho$) allora esistono $\infty^{n-\rho}$ soluzioni. $n-\rho$ indica il numero di incognite libere.
- **Teorema di Cramer**: $\det A \neq 0 \iff$ Sistema determinato (ammette una e una sola (\exists !) soluzione).
 - L'unica soluzione si calcola con:

$$\left\{egin{array}{l} x_1 = rac{\det B_1}{\det A} \ x_2 = rac{\det B_2}{\det A} \ dots \ x_n = rac{\det B_n}{\det A} \end{array}
ight.$$

- B_1 si calcola sostituendo la 1^a colonna di A con B.
- B_2 si calcola sostituendo la 2^a colonna di A con B.
- . . .
- B_n si calcola sostituendo la n^a colonna di A con B.
- Dimostrazione (3*, L13):
- Nell'andata si dimostrano unicità, esistenza e formula.
- L'unicità e l'esistenza si dimostrano con il Teorema delle matrici invertibili.
- La formula si dimostra svolgendo l'equazione dell'esistenza.
- Il ritorno si dimostra con il teorema di Rouchè Capelli N°2.
- Sistema lineare omogeneo: sistema lineare con B nullo (non esistono termini noti).

Applicazioni Lineari

- Applicazione Lineare: corrispondenza (funzione) tra due K-spazi vettoriali.
- Immagine (im f): insieme del codominio formato dai vettori immagine dei vettori del dominio.
 - L'immagine è sottospazio del codominio, si **dimostra** (4*. L13) provando che è chiusa rispetto alla somma e al prodotto esterno.
 - Studio
 - $\dim imf = \rho$
 - Base: vettori L.I. di V (gli stessi che formano il rango)
 - Equazione Cartesiana: metodo matrice Z (si mettono in riga i vettori base, nell'ultima riga le incognite, si calcola il determinante)
- Nucleo $(\ker f)$: insieme del dominio formato dai vettori che hanno come immagine il vettore nullo.
 - Il nucleo è sottospazio del dominio, si **dimostra** (5*, L14) provando che è chiusa rispetto alla somma e al prodotto esterno esterno.
 - Studio
 - $\dim \ker f = \dim V \dim imf$
 - Base: $A \cdot X = 0$
 - Equazioni Cartesiane: ricavate dal sistema precedente (o metodo matrice Z)
- Iniettività: una funzione si dice iniettiva se presi due qualsiasi vettori del dominio diversi allora ne deve seguire che le loro immagini siano diverse.
- Suriettività: una funzione si dice suriettiva se ogni vettore del codominio è raggiunto da almeno un vettore del dominio.
- Teorema sul Nucleo e Iniettività: afferma che f è iniettiva $\iff \ker f = \{0\}$
 - Dimostrazione (6*, L14)
- Applicazione Identica: applicazione lineare cui legge corrisponde a $i(\vec{z}) = \vec{z}$
- Applicazione Inversa: Date due applicazioni lineari $f: V \to W$ e $g: W \to V$ se $g \circ f = i_v$ e $f \circ g = i_w$ allora f è invertibile e g è detta applicazione inversa di f ($g = f^{-1}$).
 - f e g devono essere suriettive e iniettive.

Endomorfismi

- **Endomorfismo**: applicazione lineare dove dominio = codominio.
- **Isomorfismo**: un'applicazione lineare biettiva (iniettiva e suriettiva), quindi necessariamente endomorfismo.
- Autovalore: dato un endomorfismo $f:V\to V$, λ si dice autovalore se esiste un vettore $v\in V$ con $v\neq 0$ tale che $f(v)=\lambda v$. λ autovalore $\iff\exists v\in V,v\neq 0\mid f(v)=\lambda v$
- Autovettore: dato un endomorfismo $f: V \to V$, $v \in V$, $v \neq 0$ si dice autovettore se esiste un $\lambda \in K$ tale che $f(v) = \lambda v$. $v \in V, v \neq 0$ autovettore $\iff \exists \lambda \in K \mid f(v) = \lambda v$
- Autospazio: dato un endomorfismo $f:V\to V$, si dice autospazio V_λ il sottospazio di V definito nel modo seguente: $V_\lambda=\{v\in V\mid f(v)=\lambda v\}\subseteq V$
- Polinomio Caratteristico: data una matrice A il P. C. = $\det(A T \cdot I)$.
- Molteplicità Algebrica: per molteplicità algebrica di λ si intende il numero di volte in cui λ è soluzione del polinomio caratteristico.
- Molteplicità Geometrica: per molteplicità geometrica di λ si intende la dimensione dell'autospazio V_{λ} .
- Endomorfismo Associato all'Autovalore: indichiamo con f_{λ} l'endomorfismo associato all'autovalore $\lambda.\ f_{\lambda}(v) = f(v) \lambda v$
- Teorema sulle Molteplicità: dato un endomorfismo $f:V \to W$ e un autovalore $\lambda \in K$ allora $0 < g_{\lambda} \le m_{\lambda}$.

- Endomorfismo Semplice: un endomorfismo si dice semplice se esiste una base formata interamente da autovettori.
- Matrici simili: due matrici A e B si dicono simili se $\exists P \in \mathbb{K}^{n,n} \mid P^{-1}AP = B$.
- Teorema sulla diagonalizzazione: una matrice $A \in \mathbb{K}^{n,n}$ è diagonalizzabile $\iff f_A : \mathbb{K}^n \to \mathbb{K}^n$ è semplice oppure se è simile a una matrice diagonale.
 - Matrice Diagonalizzata: matrice che ha sulla diagonale principale le molteplicità algebriche degli autovalori.
 - Matrice Diagonalizzante: matrice che ha in colonna una base degli autovettori.
- Teorema Autospazio: sia V un K-spazio vettoriale e $f:V\to W$ un endormofismo. Allora ne segue che $V_{\lambda} = \ker f_{\lambda}$.
 - **Dimostrazione** (7*, L19): si usa la definizione dell'autospazio.

Geometria

- Punto Impoprio: $P_{\infty}(x',y',0)$, anche detto "Punto all'infinito P_{∞} "
- Individuazione Retta nel Piano:
 - 1°: Retta perpendicolare a un vettore e passante per un punto: ax + by + c = 0
 - 2°: Retta parallela a un vettore e passante per un punto: $\frac{x-x_0}{l} = \frac{y-y_0}{m}$
 - 3°: Retta passante per due punti: $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$
- Individuazione Retta nello Spazio:
 - 1°: non più valida

 - $\begin{array}{l} \bullet \quad 2^{\bullet} \colon \frac{x x_0}{l_v} = \frac{y y_0}{m_v} = \frac{z z_0}{n_v} \\ \bullet \quad 3^{\bullet} \colon \frac{x x_1}{x_2 x_1} = \frac{y y_1}{y_2 y_1} = \frac{z z_1}{z_2 z_1} \end{array}$
 - 4°: Piano nello Spazio passante per tre punti: ax + by + cz + d = 0
- Retta nello spazio: la retta nello spazio viene vista come intersezione di piani.
- Rette Sghembe: due rette si dicono sghembe se non esiste alcun piano che le contiene
- Fascio di rette: $\lambda \pi_1 + \mu \pi_2 = 0 \rightarrow \pi_1 + K \pi_2 = 0$ con $\lambda \neq 0$
- Conica: luogo geometrico dei punti del piano Oxy che con le loro coordinate (x,y) soddisfano l'equazione di 2° grado in x e y: $a_{11}x^2 + a_{22}y^2 + a_{33} + 2a_{12}xy + 2a_{13}x + 2a_{23}y = 0$
 - Matrice B: una 3×3 simmetrica (si usa la formula sopra).
 - Matrice A: le prime due righe e colonne della matrice B.
 - Classificazione:
 - Irriducibile (det $B \neq 0$, quindi $\rho(B) = 3$):
 - Ellisse $(\det A > 0)$:
 - Reale $(\operatorname{Tr} A \cdot \det B < 0)$
 - Immaginaria ($\operatorname{Tr} A \cdot \det B > 0$)
 - Parabola ($\det A = 0$)
 - Iperbole $(\det A < 0)$:
 - Equilatera (TrA = 0)
 - Riducibile (det B=0, quindi $\rho(B)<3$):
 - Rette spezzate distinte $(\rho(B) = 2)$
 - Rette spezzate coincidenti ($\rho(B) = 1$)
- Punti base: 4 punti per cui passano infinite coniche.
- Ellisse: luogo geometrico dei punti del piano per cui è costante la somma della distanza da due punti fissi detti fuochi (F_1 e F_2).
 - Equazioni:
 - $-\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$
 - $-F_{1x} = -F_{2x} = \sqrt{a^2 + b^2}$

-
$$F_{1y}=F_{2y}=0$$

-
$$lpha X^2 + eta Y^2 = \gamma$$

- α e β sono le soluzioni del P.C. di A

$$-\gamma = -\frac{\det B}{\det A}$$

- Centro:

$$\left\{egin{array}{l} a_{11}x_C + a_{12}y_C + a_{13} = 0 \ a_{21}x_C + a_{22}y_C + a_{23} = 0 \end{array}
ight.$$

- Circonferenza: luogo geometrico dei punti del piano per cui è costante la distanza da un punto fisso detto centro.
 - Equazione (due forme):

• 1°:
$$x^2 + y^2 + ax + by + c = 0$$

• 2°:
$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

- Centro: (α, β)
- Raggio: r
- Centro: $\left(-\frac{a}{2}, -\frac{b}{2}\right)$
- Raggio: $\sqrt{(-\frac{a}{2})^2 + (-\frac{b}{2})^2 c}$
- Condizioni: $a_{11} = a_{22} \neq 0$ e $a_{12} = 0$.
- Iperbole: luogo geometrico dei punti del piano per cui è costante la differenza della distanza da due punti fissi detti fuochi (F_1 e F_2).
 - Equazione (due forme):

•
$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$$

•
$$F_{1x} = -F_{2x} = \sqrt{a^2 + b^2}$$

•
$$F_{1y} = F_{2y} = 0$$

$$\bullet \quad \alpha X^2 + \beta Y^2 = \gamma$$

• α e β sono le soluzioni del P.C. di A

•
$$\gamma = -\frac{\det B}{\det A}$$

- Asintoti: gli asintoti di un'iperbole sono delle rette che approssimano il comportamento dei rami dell'iperbole all'infinito. Man mano che i rami dell'iperbole si sviluppano, tendono ad avvicinarsi sempre di più agli asintoti senza mai toccarli.
- Parabola: luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e una retta detta direttrice.
 - Equazione Canonica: $\beta Y^2 = 2\gamma X$.

$$oldsymbol{eta} = \mathrm{Tr} A$$

•
$$\gamma = +\sqrt{-\frac{\det B}{\operatorname{Tr} A}}$$

· Centro: non esiste

* vedi file per le dimostrazioni.

Ln indica la lezione numero n.