

## Why

Can we order the cone of positive semidefinite matrices?

## **Definition**

The positive semidefinite matrix order (or Loewner order) is a partial ordering  $\geq$  on  $S^d$  defined by

$$A \ge B \quad \longleftrightarrow \quad A - B \ge 0 \quad \longleftrightarrow \quad A - B \in \mathbf{S}^d_+.$$

We define the partial order > on symmetric matrices by

$$A > B \longleftrightarrow A - B > 0 \longleftrightarrow A - B \in \mathbf{S}_{++}^d$$

## **Properties**

Each of the following results from the geometric properties of the positive semidefinite cone:

$$\alpha A \geq 0 \quad \text{ for all } \delta > 0, A \geq 0,$$
 
$$A + B \geq 0 \quad \text{ for all } A, B \geq 0,$$
 
$$A \geq B \text{ and } B \geq A \longrightarrow A = B \quad \text{ for all } A, B \in \mathbf{S}^d,$$
 
$$\lim_{n \to \infty} A_n = A \longrightarrow A \geq 0 \quad \text{ for all sequences } (A_n)_n \text{ in } \mathbf{S}^d_+.$$

## Partial Order

 $A \geq B$  and  $B \geq A$  giving A = B means that  $\geq$  is antisymmetric. Moreover,

$$A\geq A\quad \text{ for all }A\in \mathbf{S}^d, \text{ and }$$
 
$$A\geq B \text{ and }B\geq C\longrightarrow A\geq C \text{ for all }A,B,C\in \mathbf{S}^d.$$

In other words,  $\geq$  is also reflexive and transitive. In other words,  $\geq$  is a partial order (see Orders).<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Future editions will include more formal accounts.

For  $d=1, \geq$  reduces to the familiar total order of the real line (see Real Order). The converse perspective is to see the positive semidefinite order as an extension of the order on  $\mathbf{R}$  to the space  $\mathbf{S}^d$ . Of course, the key difference is that two matrices may not be comparable. The order is partial.

For example, the matrices  $A, B \in \mathbf{S}^2$  defined by

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

are not comparable. Neither  $A \geq B$  nor  $B \geq A$  holds.

