ZAD. 1.

Udowodnić, że jeśli $x_n \to x$ oraz $y_n \to y$ w przestrzeni unormowanej X, to $x_n + y_n \to x + y$. Pokazać, że jeśli $\lambda_n \to \lambda$, gdzie $\lambda_n, \lambda \in \mathbb{C}$, to $\lambda_n x_n \to \lambda x$.

Skoro $x_n \to x$ oraz $y_n \to y$, wiemy, że zachodzi

$$(\forall \ \varepsilon > 0)(\exists \ N)(\forall \ n \ge N) \|x_n - x\| < \varepsilon$$

$$(\forall \ \varepsilon > 0)(\exists \ N)(\forall \ n \ge N) \|y_n - y\| < \varepsilon$$

Weźmy więc dowolnego ε > 0. Wtedy dla x_n znajdziemy N_x że dla $n \ge N_x$ wszystkie x_n są co oddalone od x o mniej niż ε . Tak samo dla y_n znajdziemy N_y które to spełnia. Możemy więc wybrać

$$N = max(N_x, N_v).$$

Wtedy dla dowolnego n \geq N zachodzą dwie nierówności:

$$\|\mathbf{x}_{\mathsf{n}} - \mathbf{x}\| < \varepsilon$$

$$\|\mathbf{y}_{\mathsf{n}} - \mathbf{y}\| < \varepsilon$$

które po dodaniu tworzą

$$\varepsilon > \|x_n - x\| + \|y_n - y\| \ge \|x_n - x + y_n - y\| = \|(x_n + y_n) - (x + y)\|.$$

.....

Weźmy dowolny $\varepsilon > 0$ wtedy również

$$\frac{\varepsilon}{\|\mathbf{x}\| + 1} > 0$$

$$\frac{\varepsilon}{|\lambda|+1} > 0$$

są dowolnie małe, w zależności od doboru arepsilon. Czyli znajdziemy N takie, że dla wszystkich n \geq N zachodzi

$$|\lambda_n - \lambda| < \frac{\varepsilon}{\|\mathbf{x}\| + 1}$$

$$\|\mathbf{x}_{n} - \mathbf{x}\| < \frac{\varepsilon}{\|\lambda\| + 1}$$

Niech M będzie takie, że dla każdego n \geq M jest

$$|\lambda_n| - |\lambda| \le ||\lambda_n| - |\lambda|| \le |\lambda_n - \lambda| < 1$$

i wtedy

$$\frac{|\lambda_{\mathsf{n}}|}{|\lambda|+1} < 1.$$

Weźmy dowolny n taki, że n \geq max(N, M), wtedy:

$$\begin{split} \|\lambda_n x_n - \lambda x\| &= \|\lambda_n x_n - x \lambda_n + x \lambda_n - x \lambda\| = \|\lambda_n (x_n - x) + x (\lambda_n - \lambda)\| \leq \\ &\leq \|\lambda_n (x_n - x)\| + \|x (\lambda_n - \lambda)\| = |\lambda_n| \|x_n - x\| + \|x\| |\lambda_n - \lambda| < \\ &< |\lambda_n| \frac{\varepsilon}{|\lambda| + 1} + \|x\| \frac{\varepsilon}{\|x\| + 1} < \varepsilon + \varepsilon = 2\varepsilon \end{split}$$

ZAD. 2.

Pokazać zupełność przestrzeni $L^p(0,1)$ dla $p \ge 1$.

Wskazówka: Postępować tak jak w przypadku p = 1. Skorzystać z nierówności

$$\|\sum |f_n|\|_p \geq \sum \|f_n\|_p.$$

.....

Twierdzenie: Przestrzeń unormowana jest zupełna 👄 każdy szereg bezwzględnie zbieżny jest zbieżny.

Weźmy dowolny szereg bezwzględnie zbieżny

$$\sum_{n=1}^{\infty} \|f_n\|_p = b < \infty.$$

Chcemy pokazać, że jest on zbieżny, to znaczy że szereg jego sum częściowych

$$S_n = \sum_{k=1}^n |f_n|$$

jest zbieżny, czyli

$$\sum_{k=1}^{\infty} S_k = s < \infty.$$

Niech $g(x) = \sum_{n=1}^{\infty} |f_n(x)|$. Funkcja ta jest mierzalna i nieujemna bo jest granicą punktową szeregów funkcji nieujemnych i mierzalnych. Zatem mamy

$$\|g\|_p = \Big(\int\limits_0^1 |g(x)|^p dx\Big)^{\frac{1}{p}} = \Big(\int\limits_0^1 (\sum_{n=1}^\infty |f_n(x)|)^p\Big)^{\frac{1}{p}} \leq \Big(\int\limits_0^1 \sum |f_n|^p\Big)^{\frac{1}{p}} \leq \sum \Big(\int\limits_0^1 |f_n|^p\Big)^{\frac{1}{p}} \leq \sum \Big(\int\limits_0^1 |f_n|^p\Big)^{\frac{1}{p}} = \sum \|f_n\| < \infty.$$

W takim razie szereg ∑ fn(x) jest bezwzględnie zbieżny prawie wszędzie. Możemy więc określić

$$h(x) = \begin{cases} \sum_{i=0}^{\infty} |f_n(x)| & \text{gdy zbieżny} \\ 0 & \end{cases}$$

ia ni cholery nie rozumiem co sie dzieie

ZAD. 3.

W przestrzeni $C_{\mathbb{R}}[0,1]$ znaleźć odległość funkcji x^n od dwuwymiarowej podprzestrzeni $E=\{ax+b:a,b\in\mathbb{R}\}$.

Tutaj pamiętam, że najładniejszą opcją będzie przewrócenie funkcji xⁿ tak, żeby zaczynała i kończyła się w 0. Ale to na koniec, najpierw chcę się nauczyć robić to cierpiąc.

Zauważmy, że E to wykres funkcji g(x) = ax + b. Odległość między funkcją f a dowolną funkcją z tej przestrzeni to najmniejsza wartość

$$||f - g|| = \int_{0}^{1} |f(x) - g(x)| dx = \int_{0}^{1} |x^{n} - (ax + b)| dx = \pm \int_{0}^{1} x^{n} - (ax + b) dx$$