A ci		
(a)	Show that the point $T(-6, 6)$ is outside the circle.	
		••••••
		••••••
	σ tangents from T to the circle are drawn.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	
	σ tangents from T to the circle are drawn.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	
	tangents from T to the circle are drawn. Show that the angle between one of the tangents and CT is exactly 45°.	

The two tangents touch the circle at A and B. (c) Find the equation of the line AB, giving your answer in the form y = mx + c. [4] (d) Find the x-coordinates of A and B. [3]