$Tutorat\ math\'ematiques: TD5$

Université François Rabelais

Département informatique de Blois

Algèbre

* * *

Problème 1

- 1. Soit E, un $\mathbb{K}-ev$ de vecteur nul 0_E , compléter et répondre aux questions :
 - (a) F est un s ev de $E \Leftrightarrow ...$ Le plus grand et le plus petit (pour l'inclusion) s - ev de E sont respectivement ... et
 - (b) Si F et G sont deux s ev de E alors :
 - $F \cap G$ est un
 - $F \cup G$ est un s ev de $E \Leftrightarrow ...$

Définir:

- F + G =
- F + F =
- F + E =
- (c) Quels sont les s ev de \mathbb{R}^2 ?
- 2. Dans l'espace vectoriel \mathbb{R}^3 , on considère les vecteurs : $u_1 = (1, -1, 0)$ et $u_2 = (0, 1, -1)$.
 - (a) Définir $F = \text{Vect}(u_1, u_2) = \dots$ Que peut-on dire de F?
 - (b) Donner les conditions nécessaires et suffisantes pour que v = (x, y, z) appartienne à F.
 - (c) Donner une famille génératrice du plan \mathcal{P} d'équation : x y + z = 0.

Problème 2

Soit l'espace vectoriel $E = \mathbb{R}^4$ muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$. On considère les vecteurs suivants :

$$u = (1, 0, 0, 1), v = (1, 0, 1, 1), w = (1, 0, -2, 1)$$
 et $t = (1, 0, -3, 1)$.

- 1. Définir F = Vect(u, v, w, t) et le rang r de la famille de vecteurs (u, v, w, t).
- 2. En utilisant la méthode d'échelonnement : déterminer r, une base échelonnée et la dimension de F.
- 3. Déduire de ce qui précède un supplémentaire G de F dans E.
- 4. Déterminer un système d'équation(s) caractérisant F.

Problème 3

Soient A, F et G les sous-ensembles de l'espace vectoriel $E = \mathbb{R}^3$ définis tels que :

$$A = \{(x, y, z) \in \mathbb{R}^3 / x \in \mathbb{Z}\}, F = \{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0\} \text{ et } G = \{a, b, a - b) / (a, b) \in \mathbb{R}^2\}.$$

- 1. Justifier que A n'est pas un sous-espace vectoriel de E.
- 2. Montrer que F est un sous-espace vectoriel de E, en donner une base. Idem pour G.
- 3. Déterminer les conditions nécessaires et suffisantes sur les réels x, y, z pour que u = (x, y, z) appartienne à G, en déduire un système d'équation(s) de G.
- 4. $F \cup G$ est-il un sous-espace vectoriel? Justifier.
- 5. Montrer que $F \cap G$ est un sous-espace vectoriel, en donner une base et sa dimension.
- 6. Définir F+G puis par un raisonnement que l'on indiquera, déduire de ce qui précède que F+G=E. Cette somme est-elle directe?
- 7. Quels sont les supplémentaires de F dans E? Illustrer par une figure.

Problème 4

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 telle que f(x,y,z)=(x+z,y-2z)

- 1. Montrer que f est effectivement une application linéaire.
- 2. Sans le démontrer, donner la dimension de $\mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ et la matrice A, représentative de f relativement aux bases canonique de \mathbb{R}^3 et \mathbb{R}^2 .
- 3. Déterminer le noyau de f, en donner une base et sa dimension. Que peut-on en déduire pour f?
- 4. Énoncer le théorème du rang pour f, puis, en déduire que f est surjective.

Problème 5

Soit l'endomorphisme f de \mathbb{R}^3 dont la matrice représentative dans la base canonique \mathcal{B} de \mathbb{R}^3 est :

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{array}\right)$$

- 1. Donner $f(e_1), f(e_2), f(e_3)$. Puis $\forall (x, y, z) \in \mathbb{R}^3, f(x, y, z)$.
- 2. Prouver que f est un automorphisme de \mathbb{R}^3 , en déduire son noyau et son image.
- 3. Déterminer $f^{-1}(x, y, z)$ pour tout (x, y, z) de \mathbb{R}^3 .
- 4. Déterminer la matrice B représentant $f \circ f$ dans \mathcal{B} .
- 5. Montrer que la famille $\mathcal{B}_1 = (u, v, w)$ avec u = (1, 1, 1), v = (1, -1, 0) et w = (1, 1, -2) est une base de \mathbb{R}^3 .
- 6. Déterminer la matrice D représentant f dans \mathcal{B}_1 .