NLP COURSE PROJECT

STUDY RECOMMENDER SYSTEM

USING GPT-3

Jan Deller,
Erwin Smith &
Jan Peter Prigge

+

0

THE PROJECT

WHAT?

BUILDING A STUDY
RECOMMENDER SYSTEM
USING SEMANTIC SEARCH
OF GPT-3

THE PROJECT

WHY?

PROBLEM

- × Study program titles don't always deliver what they promise
- × Students barely read the module descriptions thoroughly
- × Expectations are not beeing met
 - → HIGH STUDENT DROPOUT RATES

THE PROJECT

WHY?

SOLUTION

- ✓ Search through large study program and module descriptions automatically
- ✓ Match them with input of students like: Study field, future job goals, skills you want to learn, study and exam type
- ✓ Give recommendation about study program

 → TO MAKE BETTER DECISIONS

THE TEAM

WHO?

+

Python based data science dude

PETER
Joined

for free Wifi

JAN

Lightnin g fast Coder

0

THE PROCESS

HOW?

- 1. Gather module data of study programmes
- 2. Gather data of students as examples
- 3. Determine input parameters
- 4. Match with semantic search by GPT-3
- 5. Check results & test with other model

1. MODULE DATA

Fachhochschule Kiel Modulhandbuch: M.Sc. - Data Science

MADS-MMS - Mathematik und Multivariate Statistik MADS-MMS - Mathematics and Multivariate Statistics

Allgemeine Informationen	
Modulkürzel oder Nummer	MADS-MMS
Modulverantwortlich(e)	Prof. Dr. Schwörer, Tillmann (tillmann.schwoerer@fh-kiel.de)
Lehrperson(en)	Prof. Dr. Schwörer, Tillmann (tillmann.schwoerer@fh-kiel.de)
Wird angeboten zum	Wintersemester 2020/21
Moduldauer	1 Fachsemester
Angebotsfrequenz	Regelmäßig
Angebotsturnus	In der Regel jedes Semester
Lehrsprache	Englisch
Empfohlen für internationale Studierende	Ja
Ist als Wahlmodul auch für andere Studiengänge freigegeben (ggf. Interdisziplinäres Modulangebot - IDL)	Nein

Studiengänge und Art des Moduls (gemäß Prüfungsordnung)

Studiengang: M.Sc. - DS - Data Science

Modulart: Pflichtmodul Fachsemester: 1

Kompetenzen / Lernergebnisse

Kompetenzbereiche: Wissen und Verstehen; Einsatz, Anwendung und Erzeugung von Wissen; Kommunikation und Kooperation; Wissenschaftliches Selbstverständnis/Professionalität.

Students know

- fundamental statistical concepts and methods relevant for modern data science and understand for which type of tasks they are most suitable
- the connection between the covered statistical methods and algorithms and the linear algebra, calculus and probability theory on which they ground.

Students are able to

- apply statistical methods to real-world problems.
- reflect on advantages and limitations of algorithms in practical terms
- derive insights and build on the related scientific literature

MADS-MMS - Mathematics and Multivariate Statistics

Kompetenzen / Lernergebnisse

Kompetenzbereiche: Wissen und Verstehen; Einsatz, Anwendung und Erzeugung von Wissen; Kommunikation und Kooperation; Wissenschaftliches

Selbstverständnis/Professionalität.

Students know

- fundamental statistical concepts and methods relevant for modern data science and understand for which type of tasks they are most suitable
- the connection between the covered statistical methods and algorithms and the linear algebra, calculus and probability theory on which they ground.
 Students are able to
- apply statistical methods to real-world problems.
- reflect on advantages and limitations of algorithms in practical terms
- derive insights and build on the related scientific literature

Students are able to

- correctly interpret and communicate the approach and results both in technical and functional terms
- work successfully in teams, leveraging the individual skills of all team members
 Angaben zum Inhalt

Lehrinhalte Statistics:

- Clustering
- Dimensionality reduction
- Linear regression
- Logistic regression

Literatur

Math:

- Basic linear algebra and calculus
- Similarity and distance measures
- Matrix decomposition techniques
- Gradient descent
- Leskovec, Rajaraman and Ullman: Mining of Massive Datasets. Cambridge
- Univeristy Press, second edition. Available online: http://www.mmds.org. - James, Witten, Hastie, and Tibshirani: An Introduction to Statistical
- Learning with Applications in R. New York first edition. Available online: https://web.stanford.edu/~hastie/Papers/ESLII.pdf.
- Hothorn and Everitt: A Handbook of Statistical Analyses Using R.
- Routledge, third edition.
- Boyd and Vandenberghe: Introduction to Applied Linear Algebra.

0

2. INPUT DATA

Peron 1: JOE

- PREVIOUS INPUT:
- · Bachelor of Science in Technology Management
- Node.js, JavaScript, HTML/CSS, SQL
- -
- · English, German, French
- . FUTURE STUDIES INPUT:
- Computer Science
- · C, Python
- Full Stack developer
- Presentation
- · Group projects

Person 2: MURAT

- PREVIOUS INPUT:
- · Bachelor of Science in Electrical Engineering
- R&D Engineer
- Angular, Bootstrap, SQL, HTML, CSS, Javascript
- -
- English
- FUTURE STUDIES INPUT:
- · Electrical Engineering
- C++, Python
- IoT Engineer
- written
- · Group projects

Person 3: ISABEL

- PREVIOUS INPUT:
- · Bachelor of Science Physics
- Software Engineer
- · Angular, HTML, CSS, Javascript, SQL
- •
- English
- FUTURE STUDIES INPUT:
- Computer Application
- · Project management, SCRUM
- Technical Lead
- presentation
- Group projects

Person 4: HANNAN

- PREVIOUS INPUT:
- Bachelor of Science in Electrical Engineering
- Computer Vision Engineer
- Python, Matlab, C++
- -
- English
- FUTURE STUDIES INPUT:
- Data Science
- Neural Net Architecture
- Data scientist
- written
- solo

Person 5: TOBY

- PREVIOUS INPUT:
- Bachelor of Arts in Communication
- UI Developer
- · HTML5, CSS3, Java script, J Query, React
- -
- English
- FUTURE STUDIES INPUT:
- Software Development
- · Agile development
- Senior UI/UX Engineer
- written
- · group projects

3. PARAMETERS

5. TEST AGAINST OTHER MODELS

LOOKING INTO THE NOTEBOOK

THE TEST

THE TEST

PERSON B

PERSON C

INTEREST

STUDY FIELD

SKILLS 2 LEARN

FUTURE JOB

EXAM TYPE

STUDY TYPE

Solving problems

Data Science

Neural Net Architecture

Data Scientist

Written

Group Work

Computer Vision

Artificial Intelligence

Python

Technical Lead

Portfolio

Group Work

Mechanical industry

Engineering + Business

Project Mgmt, SAP

Manager

Don't care

Solo

PERSON A PERSON B PERSON C 0

ADA VS. PTDS + DMDE **₽**M (T & SM)BDT PTDS E M (MMS & AP) BDT ML

(MMS & AP)

K?? DL MMS * (T & SM) PTDS E M (AP & T)M M S

(K & SM)

BABBAGE

MAKES SENSE

CONTAINS
LITTLE DATA
SCIENCE
RELATED
STUFF

0

THE RESULTS

ADA VS. BABBAGE

- Very small scores for Person C → makes sense
- String-Matcher has almost same result for every person
- Both Engines show reasonable results
- "Babbage" Engine seems to be performing better
 good, because cheapest engine

IT-SECURITY

DATA SCIENCE INDUSTRIAL ENG.

A

```
result = openai.Engine("ada").search(
    documents=documents,
    query=inputParameters
)
program_scores = dc.calculate_scores_from_API_result(result)
print(program_scores)

[('IT Security', 17.595344827586203), ('Data Science', 26.47049999999998), ('Industrial Engineering', 8.020363636363635)]
```

String matcher

```
[('IT Security', 0.04507460892899427), ('Data Science', 0.08475135384837734), ('Industrial Engineering', 0.04665500749772917)]
```

```
result = openai.Engine("babbage").search(
    documents=documents,
    query=inputParameters
)
program_scores = dc.calculate_scores_from_API_result(result)
print(program_scores)

[('IT Security', 21.054379310344828), ('Data Science', 26.597583333333336), ('Industrial Engineering', 17.57963636363636)]
```

IT-SECURITY

DATA SCIENCE INDUSTRIAL ENG.

B

```
result = openai.Engine("ada").search(
   documents=documents,
   query=inputParameters
)
program_scores = dc.calculate_scores_from_API_result(result)
print(program_scores)

[('IT Security', 42.23079310344828), ('Data Science', 46.4680833333333), ('Industrial Engineering', 34.03454545454545)]
```

String matcher

[('IT Security', 0.03480233659767262), ('Data Science', 0.04974712306521012), ('Industrial Engineering', 0.042531495888057665)]

```
result = openai.Engine("babbage").search(
    documents=documents,
    query=inputParameters
)
program_scores = dc.calculate_scores_from_API_result(result)
print(program_scores)

[('IT Security', 30.900827586206898), ('Data Science', 35.4040833333333), ('Industrial Engineering', 21.868272727272725)]
```

IT-SECURITY

DATA SCIENCE INDUSTRIAL ENG.

```
result = openai.Engine("ada").search(
  documents=documents,
  query=inputParameters
program_scores = dc.calculate_scores_from_API_result(result)
print(program_scores)
[('IT Security', 33.93679310344829), ('Data Science', 30.7555833333333), ('Industrial Engineering', 39.35418181818182)]
```

String matcher

```
[('IT Security', 0.07004271796697953), ('Data Science', 0.08253510313833627), ('Industrial Engineering', 0.10848089101402013)]
```

```
result = openai.Engine("babbage").search(
  documents=documents,
  query=inputParameters
program scores = dc.calculate scores from API result(result)
print(program scores)
[('IT Security', 14.227448275862066), ('Data Science', 11.31891666666667), ('Industrial Engineering', 23.80699999999995)]
```

MULTIPLE PROGRAMS

- Overall reasonable results
- Better recommendations with GPT-3
- Babbage Engine also performs better here

THE LEARNINGS

- Individual setup / data preperation required for university specific module description structure
- The generated matching score might be intransparent
- Future related input matters
- Needs to be tested with German descriptions (not always available in english)

THE NEXT STEPS

- Gather more course description data and try more examples
- Create a proper concept for a use case at universities
- Build Frontend-Prototype
- Test with real users

THE NEXT STEPS

WIII IT MATCH?

Fill in a few details about your future studies and career:

NLP COURSE PROJECT

THANKS FOR LISTENING

Jan Deller,
Erwin Smith &
Jan Peter Prigge