Homework9

Qi'ao Chen 21210160025

December 1, 2021

Exercise 1. Show that the following is not a field

Proof. As
$$a = 1 + 1$$
, $b = a + 1 = 1 + 1 + 1$, we have $a \cdot a = (1 + 1) \cdot (1 + 1) = 1 + 1 + 1 + 1 = 0 = b$. Then $a \cdot b = 1 = 0$. Hence this is not a field.

Proof. Let $\varphi(x)$ be the formula $\exists y(x \cdot y + y = 1)$. Find a quantifier-free formula $\psi(x)$ equivalent to $\varphi(x)$ in all algebraically closed fields \Box

Proof.
$$x+1\neq 0$$

Exercise 2. Let $\varphi(x,y,z)$ be the formula $\exists w(x\cdot w^2+y\cdot w+z=0)$. Find a quantifier-free formula $\psi(x,y,z)$ equivalent to $\varphi(x,y,z)$ in all algebraically closed fields

Proof.
$$x \neq 0$$

Exercise 3. If M is a structure and $\varphi(x)$ is a formula in one variable, then $\varphi(M)$ denotes the set $\{a \in M : M \vDash \varphi(a)\}$. Show that if $M \preceq N$ and $\varphi(M)$ is finite, then $\varphi(M) = \varphi(N)$

Proof. Suppose $|\varphi(M)| = n$, then let ψ_n be

$$\exists x_1 \dots x_n (\bigwedge_{\substack{i \neq j \\ 1 \leq i \leq n \\ 1 \leq j \leq n}} x_i \neq x_j \wedge \bigwedge_{i=1}^n \varphi(x_i))$$

and let $\psi:=\psi_n\wedge\neg\psi_{n+1}$. Apparently $\neg\psi_{n+1}\vDash\neg\psi_{n+m}$ for all $m\geq 1$. Thus ψ states that there is exactly n solutions for $\varphi(x)$ and we have $M\vDash\psi$. As $M\preceq N$, we have $N\vDash\psi$ and N has exactly n solutions for $\varphi(x)$. But for any $m\in M$, $M\vDash\varphi(m)\Leftrightarrow N\vDash\varphi(m)$. Hence $\varphi(M)=\varphi(N)$

Exercise 4. Let T be a theory with quantifier elimination. Let M be a structure and N be an extension. Suppose that M and N are both models of T. Let $\varphi(\bar{x})$ be a quantifier-free L(M)-formula in several variables. Suppose that $N \vDash \exists \bar{x} \varphi(\bar{x})$. Show that $M \vDash \exists \bar{x} \varphi(\bar{x})$

Proof. Given any formula $\psi(x, \bar{a})$ where $\bar{a} \in M^n$ and let $\chi(\bar{y}) := \exists \bar{x} \ \psi(\bar{x}, \bar{y})$, which is equivalent to a quantifier-free formula $\theta(\bar{y})$. As $N \vDash \chi(\bar{a})$ we have $N \vDash \theta(\bar{a})$. As M is a submodel of $N, N \vDash \theta(\bar{a}) \Leftrightarrow M \vDash \theta(\bar{a})$. Hence we have $M \vDash \exists \bar{x} \ \psi(\bar{x}, \bar{y})$, that is $M \vDash \exists \bar{x} \varphi(\bar{x})$

Exercise 5. Let K be an algebraically closed field. Let $L\supseteq K$ be an extension field. Let P(x,y,z), Q(x,y,z) and R(x,y,z) be polynomials over K. Suppose that the system of equations

$$P(x, y, z) = 0$$
$$Q(x, y, z) = 0$$
$$R(x, y, z) = 0$$

has a solution in L. Show that it has a solution in K

Proof. By the fact, there is a model $M\supseteq L\supseteq K$ s.t. M and K are both algebraically closed field. By Theorem 36, $K\preceq M$. Let $\psi(x,y,z)$, an \mathcal{L}_K -formula, be

$$P(x,y,z)=0 \land Q(x,y,z)=0 \land R(x,y,z)=0$$

As $L \vDash \exists xyz \ \psi(x,y,z)$, $M \vDash \exists xyz \ \psi(x,y,z)$ and hence $K \vDash \exists xyz \ \psi(x,y,z)$