#### Escola de Engenharia Mauá

ECM511 — Pesquisa Operacional e ~Métodos de Otimização

Prof. Joyce M Zampirolli joyce.zampirolli@maua.br

# Algoritmo Simplex

## Algoritmo simplex

- Passo 1: Converta o PPL para a forma padrão.
- Passo 2: Obtenha uma solução básica viável (se possível) a partir da forma padrão.
- Passo 3: Verifique se a base atual é ótima.
- Passo 4: Se a base atual não for ótima, determine qual variável não básica deve entrar na base, de modo a melhorar o valor atual da função objetivo. Determine, ainda, qual variável básica deve sair da base.
- **Passo 5:** Pivote o sistema (utilizando operações elementares) para obter uma nova solução básica viável com o valor melhorado da função objetivo. **Volte ao passo 3**.

### Algoritmo simplex

Exemplo - problemas das tintas:

Passo 1: Converta o PPL para a forma padrão.

max 
$$z = 3x_e + 2x_i$$
 (0)  
suj. a:  $x_e + 2x_i \le 6$  (1)  
 $2x_e + x_i \le 8$  (2)  
 $-x_e + x_i \le 1$  (3)  
 $x_i \le 2$  (4)  
 $x_e, x_i \ge 0$  (5)

$$\max z - 3x_e - 2x_i = 0$$

Versão **linha 0** da função objetivo

## Passo1: forma padrão

Passo 2: Obtenha uma solução básica viável (se possível) a partir da forma padrão.



Variáveis não básicas

Variáveis básicas

### Passo 2: solução básica viável

#### Solução básica atual

Variáveis não básicas:  $x_e = 0, x_i = 0$ 

Variáveis básicas: z = 0;  $s_1 = 6$ ,  $s_2 = 8$ ,  $s_3 = 1$ ,  $s_4 = 2$ 

No gráfico da região viável... corresponde ao ponto: \_\_\_\_A\_\_\_



### Passo 3: a base atual é ótima?

Observando a linha 0, podemos dizer que:

Se a variável **x**<sub>e</sub> aumentar em objetivo aumentará em <u>3</u> uni

Se a variável **x**<sub>i</sub> aumentar em objetivo aumentará em <u>2</u> unidam

A solução atual é ótima? Por quê?

De forma
aproximada,
"entrar na base",
significa "receber
valor > 0"

 $z = 3x_e + 2x_i$ 

Não! Se as variáveis  $x_e$  ou  $x_i$  entrarem na base, o

valor da função objetivo aumentará.

# Passo 4: quem entra na base?

**Quem entra**: se alguma variável tiver coeficiente negativo na linha 0, escolha a variável com o coeficiente mais negativo na linha 0 para **entrar na base**.

A variável  $x_e$  entra na base

Conforme o valor de  $x_e$  <u>aumenta</u>, o valor das variáveis básicas atuais pode aumentar ou diminuir. No entanto, as variáveis que diminuem de valor devem se manter <u>não negativas</u>.

**Restrição 1**:  $x_e + 2x_i + s_1 = 6$ . Como a variável  $x_i$  não vai entrar na base, seu valor não será alterado. Assim, conforme  $x_e$  aumenta de valor, o valor de  $s_1$  diminui. Portanto:

Valores atuais: 
$$\begin{array}{ccc} \mathbf{0} & \mathbf{6} & \mathbf{6} \\ x_e + 2x_i + s_1 = 6 & (s_1 \ge 0) \end{array}$$

O limite imposto pela restrição 1 é de <u>6</u> unidades

**Restrição 2**:  $2x_e + x_i + s_2 = 8$ . Neste caso, o limite de crescimento de  $x_e$  é dado por  $s_2$ .

O limite imposto pela restrição 2 é de 4 unidades

**Restrição 3**:  $-x_e + x_i + s_3 = 1$ . Neste caso:

A restrição 3 não limita o aumento da variável x<sub>e</sub>

**Restrição 4**:  $x_i + s_4 = 2$ . Neste caso:

A restrição 4 não limita o aumento da variável  $x_e$ 

#### Conclusão:

O menor limite de crescimento para a variável x<sub>e</sub> é de 4 unidades. Como este valor foi determinado pela variável s<sub>2</sub>, ela deverá sair da base.

Antes do próximo passo (pivotação): Tabela Simplex

# A tabela simplex

#### Variáveis do problema

|                   |   | Base          | z | $x_e$ | $x_i$ | $s_1$ | $s_2$ | $s_3$ | $s_4$ | b |
|-------------------|---|---------------|---|-------|-------|-------|-------|-------|-------|---|
| sas               |   | $\mathcal{Z}$ |   |       |       |       |       |       |       |   |
| básic             |   | $s_1$         |   |       |       |       |       |       |       |   |
| Variáveis básicas | _ | $s_2$         |   |       |       |       |       |       |       |   |
| ıriáv             | - | $s_3$         |   |       |       |       |       |       |       |   |
| 7                 | - | $s_4$         |   |       |       |       |       |       |       |   |
|                   | - | •             |   |       |       |       |       |       |       |   |

Valores do lado direito das equações

Tabela da iteração atual:

Pág. 80

A variável  $x_e$  vai entrar na base no lugar da variável  $s_2$ 

|   |               | 1 |       | ı     | <b>.</b> | ı     | ı     | ,     |   |
|---|---------------|---|-------|-------|----------|-------|-------|-------|---|
|   | Base          | z | $x_e$ | $x_i$ | $s_1$    | $s_2$ | $s_3$ | $s_4$ | b |
| - | $\mathcal{Z}$ | 1 | -3    | -2    | 0        | 0     | 0     | 0     | 0 |
|   | $s_1$         | 0 | 1     | 2     | 1        | 0     | 0     | 0     | 6 |
|   | $s_2$         | 0 | 2     | 1     | 0        | 1     | 0     | 0     | 8 |
|   | $s_3$         | 0 | -1    | 1     | 0        | 0     | 1     | 0     | 1 |
|   | $s_4$         | 0 | 0     | 1     | 0        | 0     | 0     | 1     | 2 |
|   |               |   |       |       |          |       |       |       |   |

Indique ao lado da tabela as operações a serem feitas!

Tabela da iteração atual:



Indique ao lado da tabela as operações a serem feitas!

Resultado da iteração:

| Base           | Z | $x_e$ | $X_i$ | $s_1$ | $s_2$ | $s_3$ | $  S_4  $ | b  |
|----------------|---|-------|-------|-------|-------|-------|-----------|----|
| $\overline{z}$ | 1 | 0     | -1/2  | 0     | 3/2   | 0     | 0         | 12 |
| $s_1$          | 0 | 0     | 3/2   | 1     | -1/2  | 0     | 0         | 2  |
| $x_e$          | 0 | 1     | 1/2   | 0     | 1/2   | 0     | 0         | 4  |
| $s_3$          | 0 | 0     | 3/2   | 0     | 1/2   | 1     | 0         | 5  |
| $S_4$          | 0 | 0     | 1     | 0     | 0     | 0     | 1         | 2  |
|                |   |       |       |       |       |       |           |    |

#### Nova solução básica

Variáveis não básicas: 
$$x_i = 0, s_2 = 0$$

Variáveis básicas: 
$$z = 12$$
;  $x_e = 4$ ,  $s_1 = 2$ ,  $s_3 = 5$ ,  $s_4 = 2$ 

No gráfico da região viável... corresponde ao ponto: \_\_\_\_\_\_ B

Em relação ao valor anterior, a solução melhorou

$$em(z_{novo}-z_{antigo}) = \underline{12-0} = \underline{12}$$
nidades



### Passo 3: a base atual é ótima?

A solução básica atual é ótima? Por quê?

Não: ainda existem variáveis fora da base

com coeficientes **negativos** na linha 0.

#### Passo 4: troca de base

Teste da razão

|              |                |   |       | <b>\</b>           |       |       |       |       |           |                        |
|--------------|----------------|---|-------|--------------------|-------|-------|-------|-------|-----------|------------------------|
| _            | Base           | z | $x_e$ | $x_i$              | $s_1$ | $s_2$ | $s_3$ | $S_4$ | b         | <br>                   |
| _            | z              | 1 | 0     | -1/2               | 0     | 3/2   | 0     | 0     | 12        | T.R.                   |
| $\leftarrow$ | <b>-</b> $s_1$ | 0 | 0     | 3/2                | 1     | -1/2  | 0     | 0     | 2         | 2/(3/2) = <b>4/3</b> * |
| _            | $x_e$          | 0 | 1     | 1/2                | 0     | 1/2   | 0     | 0     | 4         | 4/(1/2) = <b>8</b>     |
| _            | $s_3$          | 0 | 0     | 3/2                | 0     | 1/2   | 1     | 0     | 5         | 5/(3/2) = <b>10/3</b>  |
|              | $S_4$          | 0 | 0     | 1                  | 0     | 0     | 0     | 1     | 2         | 2/1 = <b>2</b>         |
|              |                |   | l '   | <del>†</del> – – – | -     |       |       | •     | t — — — · | <b>"</b>               |

Antes da pivotação, uma observação importante...

### Importante: teste da razão

O teste da razão **não é feito** nas linhas em que o **coeficiente** da variável que está entrando na base é **negativo ou igual a zero**. Exemplo:

|   | •                |   | <b>. .</b> |       |       |       |       |       | _ |                  |                 |
|---|------------------|---|------------|-------|-------|-------|-------|-------|---|------------------|-----------------|
|   | Base             | Z | $x_e$      | $x_i$ | $s_1$ | $S_2$ | $S_3$ | $S_4$ | b |                  |                 |
| - | z                | 1 | -3         | -2    | 0     | 0     | 0     | 0     | 0 | T.R.             |                 |
|   | $s_1$            | 0 | 1          | 2     | 1     | 0     | 0     | 0     | 6 | 6/1 = <b>6</b>   | Faça esta       |
|   | - s <sub>2</sub> | 0 | (2)        | 1     | 0     | 1     | 0     | 0     | 8 | 8/2 = <b>4</b> * | indicação!<br>— |
|   | $s_3$            | 0 | -1         | 1     | 0     | 0     | 1     | 0     | 1 | +∞               |                 |
|   | $S_4$            | 0 | 0          | 1     | 0     | 0     | 0     | 1     | 2 | +∞               |                 |
| , |                  |   |            |       |       |       |       |       |   |                  |                 |

### Passo 4: troca de base

|              | Base              | z | $x_e$ | $x_i$ |     | b  |                                |
|--------------|-------------------|---|-------|-------|-----|----|--------------------------------|
| _            | z                 | 1 | 0     | -1/2  | ••• | 12 | <b>5</b> <sup>+</sup>          |
| <del>-</del> | <b>-</b> $s_1$    | 0 | 0     | 3/2   | ••• | 2  | × 1/3 × -1/3 × -1 × -2/3 ÷ 3/2 |
|              | $\mathcal{X}_{e}$ | 0 | 1     | 1/2   | ••• | 4  |                                |
|              | $s_3$             | 0 | 0     | 3/2   |     | 5  | +                              |
| _            | $s_4$             | 0 | 0     | 1     |     | 2  | +                              |
| _            |                   |   |       |       |     |    | _                              |

#### Passo 5: pivotação



Nova solução vusicu.

Pág. 82

Variáveis não básicas:  $s_1 = 0$ ,  $s_2 = 0$ 

Variáveis básicas: z = 38/3;  $x_i = 4/3$ ,  $x_e = 10/3$ ,  $s_3 = 3$ ,  $s_4 = 2/3$ 

No gráfico, esta nova solução corresponde ao ponto  $\underline{C}$ Em relação ao valor anterior, a solução melhorou em  $(z_{novo}-z_{antigo}) = \underline{(38/3)-12=2/3}$  unidades

### Passo 3: a base atual é ótima?

A solução atual é ótima? Por quê? Sim, porque não existem variáveis não básicas com coeficientes negativos na linha 0. Graficamente, o que o algoritmo simplex fez?

# Iterações do algoritmo



### Passo 3: a base atual é ótima?

A solução atual é ótima? Por quê?

Sim, porque não existem variáveis não básicas com

coeficientes negativos na linha 0.

Graficamente, o que o algoritmo simplex fez?

Percorreu vértices da região viável (soluções básicas)

até determinar a solução ótima do problema.

#### Exercício

$$Max Z = 5 x_1 + 4x_2 + 3x_3$$

$$2x_1 + 3x_2 + x_3 \le 5$$

$$4x_1 + 2x_2 + 2x_3 \le 11$$

$$3x_1 + 2x_2 + 2x_2 \le 8$$

$$x_1, x_2, x_3 \ge 0$$

#### Solução ótima

$$X_1^* = 2;$$

$$x_2^* = 0;$$

$$x_3^* = 1;$$

$$z^* = 13$$
;

#### Exercício

3a) Resolva o modelo a seguir usando o algoritmo simplex.

max 
$$z = 2x_1 - x_2 + x_3$$
  
suj. a:  $3x_1 + x_2 + x_3 \le 60$   
 $x_1 - x_2 + 2x_3 \le 10$   
 $x_1 + x_2 - x_3 \le 20$   
 $x_1, x_2, x_3 \ge 0$ 

#### Solução ótima

$$x_1^* = 15;$$
  
 $x_2^* = 5$   
 $x_2^* = 0$   
 $z^* = 25$ 

#### Exercício

$$Max Z = 4 x_1 + 3 x_2$$

$$x_1 + 3x_2 \le 7$$

$$2x_1 + 2x_2 \le 8$$

$$x_1 + x_2 \le 3$$

$$x_2 \leq 2$$

$$x_1, x_2 \ge 0$$

#### Solução ótima

$$x_1^* = 3;$$

$$x_2^* = 0;$$

$$z^* = 12$$
;