Public Health 241 - Spring 2018 Assignment 5

1. (a) $\widehat{OR} = \frac{16 \times 32}{8 \times 24} = 2.667$

(b)
$$\widehat{var}(\widehat{OR}) = \frac{1}{16} + \frac{1}{8} + \frac{1}{24} + \frac{1}{32} = 0.2604$$

- (c) For a 90% confidence interval we a need a z-value such that (100% 90%)/2 = 5% of the standard normal density are greater than z, i.e. we need the 95th percentile of the standard normal density:
 - . display invnormal(0.95)
 - 1.6448536

 $\log(2.667) \pm 1.645\sqrt{0.2604} = (0.141, 1.820)$

(d) $(e^{0.141}, e^{1.820}) = (1.15, 6.17)$

- (e) Since the confidence interval does not include the null value 1, the data provide evidence (at a 10% significance level) for an association between employment history and the risk for oral cancer.
- (f) $\chi^2 = \frac{80(16 \times 32 8 \times 24)^2}{40 \times 40 \times 24 \times 56} = 3.81 \qquad (p = 0.051)$

The χ^2 test rejects the null hypothesis of independence at a 10% significance level (but would accept the null hypothesis at the 5% significance level). As is to be expected, this agrees with the confidence interval we calculated.

(g) $OR_{ss} = \frac{16 \times 32}{9 \times 25} = 2.28$

The regular point estimate differs from the small-sample adjusted point estimate by about 17%. This is a considerable discrepancy so that the approximations used in the original confidence interval calculation may be somewhat suspect and exact confidence interval may be preferable.

(h)

$$(\log \widehat{OR})_{SS} = \log \frac{16.5 \times 32.5}{8.5 \times 24.5} = 0.946$$

$$\widehat{var}(\log \widehat{OR})_{SS} = \frac{1}{16.5} + \frac{1}{8.5} + \frac{1}{24.5} + \frac{1}{32.5} = 0.250$$

$$90\%CI \text{ for } \log(OR) = 0.946 \pm 1.645 \times \sqrt{0.250} = (0.124, 1.768)$$

$$90\%CI \text{ for } OR = (e^{0.124}, e^{1.768}) = (1.13, 5.86)$$

The upper limit of the approximate confidence interval differs from the upper limit of the small-sample confidence interval by about 5%. This is not a huge difference, but again we may be worried that the approximations used in the original confidence interval calculation may be somewhat suspect so that exact confidence interval may be preferable.

(i) . cci 16 24 8 32, level(90)

				Proportion	
	Exposed	Unexposed	Total	Exposed	
Cases	16	24	I 40	0.4000	
Controls	8	32	l 40	0.2000	
Total	24	56	80 	0.3000	
 	Point	Point estimate		Interval]	
Odds ratio	2.6	2.666667		7.03807	(exact)
Attr. frac. ex.		.625		.8579156	(exact)
Attr. frac. pop		. 25	l 		
,		chi2(1) =	3.81 Pr>chi	12 = 0.0510	

The exact confidence interval (1.03, 7.04) is substantially wider than the approximate confidence intervals calculated above, even if small-sample adjustments are used. The normal approximation that forms the basis for those approximate confidence intervals may not be appropriate.

- $2. \quad (a)$
 - . generate alc2 = 0
 - . replace alc2 = 1 if alcgp >=2
 - . tab alc2 alcgp

			alcgp			
alo	2	0	1	2	3	Total
	+					+
	0	35	38	0	0	73
	1	0	0	31	31	62
	+					+
Tota	al	35	38	31	31	135

. tab alc2 casestatus [freq=freq]

alc2	casestatus 0	1	Total
0 1	666 109	104 96	•
Total	775	200	J 975

(b) . cc casestatus alc2 [freq=freq], wo

	alc2 Exposed	Unexposed	Proportion Total Exposed		
Cases Controls		104 666	200 775	0.4800 0.1406	
Total	205	770	975	0.2103	
	.8226977		[95% Cont	f. Interval]	
Odds ratio Attr. frac. ex. Attr. frac. pop			4.000589 .7500368	7.951467 .8742371	-
-	chi2(1) = 110.26 Pr>chi2 = 0.0000				

(c) . cc casestatus alc2 [freq=freq]

	Exposed U	Jnexposed	l To	otal	Proportion Exposed	
Cases Controls		104 666	•	200 775	0.4800 0.1406	
Total		770	† 	975	0.2103	
		Point estimate		% Conf.	Interval]	
Odds ratio Attr. frac. ex. Attr. frac. pop	5.640	0085 6977	3.93	37435 60276		• • • • • •
7		chi2(1) =	110.26	Pr>chi	2 = 0.0000	

The end points of the approximate confidence interval are less than 2% off from those of the exact confidence interval. The sample sizes of cases and controls appear large enough to justify the normal approximation.

- (d) Either of the two last tables gives a χ^2 -statistic of 110.26. Stata rounds the p-value down to zero, but we can obtain an actual p-value using the chi2tail() command:
 - . display chi2tail(1, 110.26)
 - 8.595e-26

Like the confidence interval, the χ^2 -test provides strong evidence against the null hypothesis that alcohol consumption is independent of the risk of esophageal cancer.