DATA ANALYSIS AND VISUALIZATION

INSTRUCTOR: UMME AMMARAH

ARTIFICIAL NEURAL NETWORK

WHY DEEP LEARNING?

Amount of data

WHAT IS NEURAL NETWORK

It is a powerful learning algorithm inspired by how the brain works.

PERCEPTRON

ADDING SIGMOID UNIT (ACTIVATION FUNCTION)

Perceptron with a smooth activation function is called a neuron.

$$z = w^T x + b$$

$$a = \sigma(z)$$

EXAMPLE

sigmoid:
$$a = \frac{1}{1 + e^{-z}}$$

$$y = a = f(z)$$

ACTIVATION FUNCTIONS

BOOLEAN GATES

AND

x_1	<i>X</i> ₂	t
0	0	0
0	1	0
1	0	0
1	1	1

$$f(x_1, x_2, ..., x_n) = \begin{cases} 1 & \sum w_i x_i + b \ge 0 \\ 0 & \sum w_i x_i + b < 0 \end{cases}$$

OR

$$x_1$$
 x_2
 t

 0
 0
 0

 0
 1
 1

 1
 0
 1

 1
 1
 1

PERCEPTRON

- A perceptron is actually a linear classifier.
- It's weights wi and b represent a line that divides input space into 2 regions.

XOR PROBLEM

- A perceptron cannot model the XOR problem because XOR is not a linear classification problem. No single line can separate the 0s (black) from the 1s (white).
- But combination of two lines can.

Not linearly separable

MULTILAYER PERCEPTRONS

- Combination of perceptrons can solve the XOR problem.
- Two lines can divide the XOR space into 0-region and I-region
- 3 perceptrons can model XOR. Two perceptrons for the two lines and a final perceptron to combine them into a final decision.

A *network* of 3 neurons is more powerful than 1 neuron.

Just like the brain!

PERCEPTRON

- Importantly, the weights of a perceptron can be learned.
- Perceptron learning rule:

$$w_i \leftarrow w_i + \eta(y-t)x_i$$

if output y and desired target t are different.

MULTI-LAYER PERCEPTRON

▶ A single perceptron can model the basis set {AND, OR, NOT} of logic gates.

- All Boolean functions can be written using combinations of these basic gates.
- Therefore, combinations of perceptrons (MLPs) can model all Boolean functions.

MLPS AND CLASSIFICATION BOUNDARIES

A perceptron divides input space into 2 regions. Dividing boundary is a line.

MLPS AND CLASSIFICATION BOUNDARIES

Weights determine the linear boundary and classification into region 1 and region 2.

Yellow region modelled by ANDing 4 linear classifiers (perceptrons). First layer contains 4 perceptrons for modelling 4 lines and second layer contains a perceptron for modelling an AND gate

NON-CONTIGUOUS BOUNDARIES

- Yellow region equals OR(polygon I, polygon 2). Each polygon equals AND of some lines. Each line equals I perceptron.
- Since inputs and outputs are visible, all layers in-between are known as <u>hidden layers</u>

NEURAL NETWORK

Output of a neural network can be visualised graphically as *forward* propagation of information.

MATHEMATICAL REPRESENTATION

Neural Network Representation

Neural Network Representation

WEIGHTS

BIAS

FORWARD PROPAGATION

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

NEURAL NETWORK TYPES

Standard NN

Convolutional NN

Recurrent NN