Finite automata and formal languages (DIT323, TMV029)

Nils Anders Danielsson, partly based on slides by Ana Bove

Today

- ▶ Proofs.
- ▶ Induction for the natural numbers.
- Inductively defined sets.
- ▶ Recursive functions.

Some basic proof methods

Some basic proof methods

- ▶ To prove $p \Rightarrow q$, assume p and prove q.
- ▶ To prove $\forall x \in A$. P(x), assume that we have an $x \in A$ and prove P(x).
- ▶ To prove $p \Leftrightarrow q$, prove both $p \Rightarrow q$ and $q \Rightarrow p$.
- ▶ To prove $\neg p$, assume p and derive a contradiction.
- ▶ To prove p, prove $\neg \neg p$.
- ▶ To prove $p \Rightarrow q$, assume $\neg q$ and prove $\neg p$.

(There may be other ways to prove these things.)

Induction

Mathematical induction

For a natural number predicate P we can prove $\forall n \in \mathbb{N}$. P(n) in the following way:

- ▶ Prove P(0).
- For every $n \in \mathbb{N}$, prove that P(n) implies P(n+1).

With a formula:

$$P(0) \land (\forall n \in \mathbb{N}. \ P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}. \ P(n)$$

Which of the following variants of induction are valid?

- 1. $P(0) \land (\forall n \in \mathbb{N}. \ n \ge 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}. \ n \ge 1 \Rightarrow P(n).$ 2. $P(1) \land (\forall n \in \mathbb{N}. \ n \ge 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}. \ n > 1 \Rightarrow P(n).$
- 2. $P(1) \land (\forall n \in \mathbb{N}. \ n \ge 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}. \ n \ge 1 \Rightarrow P(n).$ 3. $P(1) \land P(2) \land (\forall n \in \mathbb{N}. \ n \ge 2 \land P(n) \Rightarrow P(n+1)) \Rightarrow$

Respond at https://pingo.coactum.de/729558.

 $\forall n \in \mathbb{N}. \ n > 1 \Rightarrow P(n).$

Counterexamples

- ▶ One can sometimes prove that a statement is invalid by using a counterexample.
- ▶ Example: The following statement does not hold for $P(n) := n \neq 1$ and n = 1:

$$P(0) \land (\forall n \in \mathbb{N}. \ n \ge 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}. \ n \ge 1 \Rightarrow P(n)$$

The hypotheses hold, but not the conclusion.

Counterexamples

More carefully:

▶ Let us prove

$$\neg (\forall \text{ natural number predicates } P.\ P(0) \land \\ (\forall n \in \mathbb{N}.\ n \geq 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow \\ \forall n \in \mathbb{N}.\ n \geq 1 \Rightarrow P(n)).$$

We assume

$$\forall \ \text{natural number predicates} \ P. \ P(0) \land \\ (\forall n \in \mathbb{N}. \ n \geq 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow \\ \forall n \in \mathbb{N}. \ n \geq 1 \Rightarrow P(n),$$

and derive a contradiction.

Counterexamples

- ▶ Let us use the predicate $P(n) := n \neq 1$.
- We have P(0), i.e. $0 \neq 1$.
- ▶ We also have $\forall n \in \mathbb{N}. \ n \geq 1 \land P(n) \Rightarrow P(n+1), \text{ i.e.}$ $\forall n \in \mathbb{N}. \ n \geq 1 \land n \neq 1 \Rightarrow n+1 \neq 1.$
- ▶ Thus we get $\forall n \in \mathbb{N}. \ n \geq 1 \Rightarrow P(n).$
- ▶ Let us use n = 1.
- ▶ We have $1 \ge 1$.
- ▶ Thus we get P(1), i.e. $1 \neq 1$.
- ▶ This is a contradiction, so we are done.

Complete induction

We can also prove $\forall n \in \mathbb{N}$. P(n) in the following way:

- ▶ Prove P(0).
- ▶ For every $n \in \mathbb{N}$, prove that if P(i) holds for every natural number $i \leq n$, then P(n+1) holds.

With a formula:

$$\begin{split} P(0) & \wedge \\ (\forall n \in \mathbb{N}. \ (\forall i \in \mathbb{N}. \ i \leq n \Rightarrow P(i)) \Rightarrow P(n+1)) \Rightarrow \\ \forall n \in \mathbb{N}. \ P(n) \end{split}$$

Which of the following variants of complete induction are valid?

1.
$$(\forall n \in \mathbb{N}. \ (\forall i \in \mathbb{N}. \ i < n \Rightarrow P(i)) \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}. \ P(n).$$

2.
$$P(1) \land (\forall n \in \mathbb{N}. \ n \geq 1 \land (\forall i \in \mathbb{N}. \ i \leq n \Rightarrow P(i)) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}. \ P(n).$$

Respond at https://pingo.coactum.de/729558.

An example

Lemma

Every natural number $n \ge 8$ can be written as a sum of multiples of 3 and 5.

An example

Proof.

Let P(n) be $n \geq 8 \Rightarrow \exists i, j \in \mathbb{N}$. n = 3i + 5j. We prove that P(n) holds for all $n \in \mathbb{N}$ by complete induction on n:

▶ Base cases (n = 0, ..., 7): Trivial.

n-2=3i+5j. Thus we get

- ▶ Base cases (n = 8, n = 9, n = 10): Easy.
- ▶ Step case $(n \ge 10$, inductive hypothesis $\forall i \in \mathbb{N}. \ i \le n \Rightarrow P(i)$, goal P(n+1): Because $n-2 \ge 8$ the inductive hypothesis for n-2 implies that there are $i,j \in \mathbb{N}$ such that
 - 1 + n = 3 + (n 2) = 3(i + 1) + 5j.

Proofs

How detailed should a proof be?

- ▶ Depends on the purpose of the proof.
- ▶ Who or what do you want to convince?
 - ► Yourself?
 - A fellow student?
 - ▶ An examiner?
 - ► An experienced researcher?
 - ► A computer program (a proof checker)?

Discuss the following proof of $\forall n \in \mathbb{N}. \ \sum_{i=0}^n i = n \frac{n+1}{2}.$ Would you like to add/remove/change anything?

By induction on
$$n$$
:

$$n = 0: \sum_{i=0}^{0} i = 0 = 0 \frac{0+1}{2}.$$

 $(k+1) + k \frac{k+1}{2} =$

 $(k+1)\left(1+\frac{k}{2}\right)=(k+1)\frac{k+2}{2}.$ Respond at https://pingo.coactum.de/729558.

Inductively

defined sets

Inductively defined sets

The natural numbers:

$$\frac{n\in\mathbb{N}}{\mathrm{zero}\in\mathbb{N}} \qquad \qquad \frac{n\in\mathbb{N}}{\mathrm{suc}(n)\in\mathbb{N}}$$

Compare:

data Nat = Zero | Suc Nat

Inductively defined sets

Booleans:

 $\mathsf{true} \in \mathit{Bool}$

 $\mathsf{false} \in \mathit{Bool}$

Compare:

data Bool = True | False

Inductively defined sets

Finite lists:

$$\frac{x \in A \quad xs \in List(A)}{\mathsf{cons}(x, xs) \in List(A)}$$

Compare:

data List a = Nil | Cons a (List a)

Which of the following expressions are lists of natural numbers (members of $List(\mathbb{N})$)?

nil.
 cons(nil, 5).

3. cons(5, nil).

Respond at https://pingo.coactum.de/729558.

Lists

Alternative notation for lists:

- ▶ [] instead of nil.
- x : xs instead of cons(x, xs).
- ► [1,2,3] instead of cons(1, cons(2, cons(3, nil))).

An example:

```
\begin{aligned} length &\in List(A) \to \mathbb{N} \\ length(\mathsf{nil}) &= \mathsf{zero} \\ length(\mathsf{cons}(x,xs)) &= \mathsf{suc}(length(xs)) \end{aligned}
```

```
\begin{array}{ll} length([1,2,3]) &= \\ length(\mathsf{cons}(1,\mathsf{cons}(2,\mathsf{cons}(3,\mathsf{nil})))) &= \\ \mathsf{suc}(length(\mathsf{cons}(2,\mathsf{cons}(3,\mathsf{nil})))) &= \\ \mathsf{suc}(\mathsf{suc}(length(\mathsf{cons}(3,\mathsf{nil})))) &= \\ \mathsf{suc}(\mathsf{suc}(\mathsf{suc}(length(\mathsf{nil})))) &= \\ \mathsf{suc}(\mathsf{suc}(\mathsf{suc}(\mathsf{suc}(\mathsf{zero}))) &= \\ 3 &= \\ \end{array}
```

Not well-defined:

```
\begin{array}{ll} bad \in List(A) \rightarrow \mathbb{N} \\ bad(\mathsf{nil}) &= \mathsf{zero} \\ bad(\mathsf{cons}(x,xs)) = bad(\mathsf{cons}(x,xs)) \end{array}
```

Another example:

$$\begin{split} f \in List(A) \times List(A) &\to List(A) \\ f(\mathsf{nil}, & ys) = ys \\ f(\mathsf{cons}(x, xs), ys) &= \mathsf{cons}(x, f(xs, ys)) \end{split}$$

What is the result of f([1,2],[3,4])?

- 1. [1, 2, 3, 4].
- 2. [4, 3, 2, 1].
- 3. [2, 1, 4, 3]. **4**. [1, 3, 2, 4].

5. [1, 4, 2, 3].

Respond at https://pingo.coactum.de/729558.

$$\begin{aligned} &append \in List(A) \times List(A) \rightarrow List(A) \\ &append(\mathsf{nil}, \qquad ys) = ys \\ &append(\mathsf{cons}(x, xs), ys) = \mathsf{cons}(x, append(xs, ys)) \end{aligned}$$

► Two mutually defined functions:

```
egin{aligned} odd, even &\in \mathbb{N} 
ightarrow Bool \ odd(\mathsf{zero}) &= \mathsf{false} \ odd(\mathsf{suc}(n)) &= even(n) \ even(\mathsf{zero}) &= \mathsf{true} \ even(\mathsf{suc}(n)) &= odd(n) \end{aligned}
```

Another function:

```
odd' \in \mathbb{N} \to Bool

odd'(\mathsf{zero}) = \mathsf{false}

odd'(\mathsf{suc}(n)) = not(odd'(n))
```

▶ Can we prove $\forall n \in \mathbb{N}.odd(n) = odd'(n)$?

First attempt:

- ▶ Let us use mathematical induction.
- ► Inductive hypothesis:

$$P(n) \coloneqq odd(n) = odd'(n)$$

▶ Base case (P(zero)):

```
odd(zero) = false = odd'(zero)
```

Step case $(\forall n \in \mathbb{N}.P(n) \Rightarrow P(\operatorname{suc}(n)))$:

▶ Given $n \in \mathbb{N}$, let us assume odd(n) = odd'(n):

```
egin{array}{ll} odd(\operatorname{suc}(n)) &= \ even(n) &= \{?\ref{eq:suc} \} \ not(odd'(n)) &= \ odd'(\operatorname{suc}(n)). \end{array}
```

Step case $(\forall n \in \mathbb{N}.P(n) \Rightarrow P(\operatorname{suc}(n)))$:

▶ Given $n \in \mathbb{N}$, let us assume odd(n) = odd'(n):

```
egin{array}{ll} odd(\operatorname{suc}(n)) &= \ even(n) &= \{\ref{eq:suc} \ not(odd'(n)) = \ odd'(\operatorname{suc}(n)). \end{array}
```

▶ Let us generalise the inductive hypothesis:

$$P(n) \coloneqq odd(n) = odd'(n) \land \\ even(n) = not(odd'(n))$$

```
Base case (P(zero)):
```

First part:

```
odd({\sf zero}) = \\ {\sf false} = \\ odd'({\sf zero})
```

► Second part:

```
even(zero) = true = not(false) = not(odd'(zero))
```

Step case $(\forall n \in \mathbb{N}.P(n) \Rightarrow P(\operatorname{suc}(n)))$:

- ▶ Given $n \in \mathbb{N}$, let us assume odd(n) = odd'(n) and even(n) = not(odd'(n)).
- First part:

```
\begin{array}{ll} odd(\operatorname{suc}(n)) &= \\ even(n) &= \{\operatorname{By \ the \ second \ IH.}\} \\ not(odd'(n)) &= \\ odd'(\operatorname{suc}(n)) \end{array}
```

```
Step case (\forall n \in \mathbb{N}.P(n) \Rightarrow P(\operatorname{suc}(n))):
```

- ▶ Given $n \in \mathbb{N}$, let us assume odd(n) = odd'(n) and even(n) = not(odd'(n)).
- ► Second part:

```
\begin{array}{ll} even(\operatorname{suc}(n)) &= \\ odd(n) &= \{\operatorname{By \ the \ first \ IH.}\} \\ odd'(n) &= \\ not(not(odd'(n))) &= \\ not(odd'(\operatorname{suc}(n))) \end{array}
```

Discuss how you would prove $\forall n \in \mathbb{N}. \ even(n) = nots(n, true).$

```
nots \in \mathbb{N} \times Bool \rightarrow Bool
nots(zero, b) = b
nots(suc(n), b) = nots(n, not(b))
odd, even \in \mathbb{N} \to Bool
odd(zero) = false
odd(suc(n)) = even(n)
even(zero) = true
even(suc(n)) = odd(n)
```

Respond at https://pingo.coactum.de/729558.

Today

- ▶ Proofs.
- Proofs by induction.
- ► Inductively defined sets.
- ▶ Recursive functions.

Next lecture

- ► Structural induction.
- ▶ Some concepts from automata theory.