(B) BUNDESREPUBLIK DEUTSCHLAND

PATENT- UND MARKENAMT

® Offenlegungsschrift

_® DE 100 63 999 A 1

(2) Aktenzeichen: 100 63 999.2 (2) Anmeldetag: 21. 12. 2000

(4) Offenlegungstag: 14. 8. 2002

(5) Int. Cl.⁷: H 03 H 11/24

(7) Anmelder:

Rohde & Schwarz GmbH & Co. KG, 81671 München, DE

(14) Vertreter:

Mitscherlich & Partner, Patent- und Rechtsanwälte, 80331 München

(72) Erfinder:

Will, Thomas, 85221 Dachau, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

US US US US	56 66 089 51 57 323 44 38 415 43 19 184 42 71 503
US	42 71 503

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Der Inhalt dieser Schrift weicht von den am Anmeldetag eingereichten Unterlagen ab Prüfungsantrag gem. § 44 PatG ist gestellt

Mikrowellen-Dämpfungsglied

Bei einem Mikrowellen-Dämpfungsglied sind zur Einhaltung einer minimalen Durchgangsdämpfung (0 dB) und trotzdem großen Dynamikbereichs seiner schrittweise einstellbaren Dämpfung zwei an sich bekannte Dämpfungsglieder (D1, D2) in Serie geschaltet, deren Dämpfung durch das Verbinden von mehreren Widerständen (Fig. 1: R1-R10; Fig. 2: R1-R11) mittels Schaltelemente (Fig. 1: T1-T12; Fig. 2: T1-T13) zu T-, überbrückte T-, Pi-, Doppel-Pi- oder Doppel-T-Schaltungen zwischen verschiedenen Werten umschaltbar ist.

[0001] Die Erfindung betrifft ein Mikrowellen-Dämpfungsglied laut Oberbegriff des Hauptanspruches.

[0002] Mikrowellen-Dämpfungsglieder, deren Dämpfung in einem großen Dynamikbereich schrittweise einstellbar ist, werden üblicherweise durch die Reihenschaltung mehrerer, beispielsweise 5 bis 10 einzelner Dämpfungsglieder realisiert. In moderner Schaltungstechnik werden diese einzelnen Dämpfungsglieder dabei meist monolitisch auf einem 10 Halbleitersubstrat hergestellt (beispielsweise nach US Patent 5 666 089). Die Dämpfung der einzelnen Dämpfungsglieder wird bestimmt durch Widerstände, die in T-, überbrückter (bridged) T-, Pi- oder Doppel-Pi-Schaltung angeordnet sind und die für die Durchgangsdämpfung (im Ideal- 15 fall 0 dB) mittels eines oder mehrere Schalttransistoren unmittelbar zwischen Ein- und Ausgang des einzelnen Dämpfungsgliedes überbrückt werden. Ein solches bekanntes Stufendämpfungsglied besitzt daher den Nachteil, daß infolge der Aneinanderreihung mehrerer solcher Dämpfungsglieder 20 die Durchgangsdämpfung insgesamt relativ hoch ist, da die in Reihe liegenden Schalttransistoren endlichen Durchgangswiderstand besitzen.

[0003] Um diesen Nachteil zu vermeiden ist es auch schon bekannt, die Dämpfung eines einzigen Dämpfungsgliedes durch das Verbinden von mehreren Widerständen zu T-, Pioder Doppel-Pi-Schaltungen zwischen verschiedenen Werten umzuschalten (US Patent 5 157 323) und für die Einstellung der Durchgangsdämpfung nur einen einzigen Schalttransistor zur Überbrückung dieser T-, Pi-, oder Doppel-Pi-Schaltungen vorzusehen. Damit ist zwar eine nahe bei 0 dB liegende Durchgangsdämpfung erreichbar, dafür ist aber wieder der Dynamikbereich der einstellbaren Dämpfung eingeschränkt, da der überbrückende Schalttransistor nur eine relativ geringe Isolation von höchstens 16 dB besitzt und daher die maximale Dämpfung eines solchen Mikrowellen-Dämpfungsgliedes auf 16 dB beschränkt ist.

[0004] Es ist daher Aufgabe der Erfindung, ein monolitisch integrierbares Mikrowellen-Dämpfungsglied aufzuzeigen, das bei minimalster Durchgangsdämpfung von nahezu 40 dB trotzdem die Einstellung der Dämpfung in einem großen Dynamikbereich von mehr als 16 dB ermöglicht.

[0005] Diese Aufgabe wird erfindungsgemäß gelöst durch ein Dämpfungsglied laut Hauptanspruch. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.

[0006] Durch die Aufteilung der einstellbaren Dämpfung auf zwei in Kette hintereinander geschaltete einstellbare Dämpfungsglieder ist es möglich, die Dämpfung in einem großen Dynamikbereich einstellbar zu machen, beispielsweise zwischen 0 und 45 dB. Trotzdem ist eine minimale Durchgangsdämpfung von nahezu 0 dB gewährleistet. Gemäß einer Weiterbildung der Erfindung hat es sich als vorteilhaft erwiesen, das eingangsseitige erste Dämpfungsglied zwischen verschiedenen relativ niedrigen Dämpfungswerten, beispielsweise 0, 5, 10 und 15 dB, und das darauf fol- 55 gende zweite Dämpfungsglied zwischen verschiedenen relativ hohen Dämpfungswerten von beispielsweise 0, 20 und 30 dB umschaltbar zu machen, so daß durch die Kombination dieser getrennt voneinander einstellbaren Dämpfungswerte der beiden Dämpfungsglieder jeder beliebige Dämpfungswert zwischen 0 und 45 dB in 5 dB Schritten eingestellt werden kann.

[0007] Die Aufteilung der einstellbaren Dämpfung in einen hochdämpfenden und einen niedrigdämpfenden Teil ermöglicht es, den niedrigdämpfenden Teil mit einem einzigen Längstransistor für die Durchgangsdämpfung zu überbrücken und für den höherdämpfenden Teil ein dafür besser geeignetes Schaltelement mit höherer Isolation vorzusehen.

2

Als besonders geeignet hierfür hat sich ein Schaltelement erwiesen, das aus zwei in Serie geschalteten Feldeffekttransistoren und einem vom Verbindungspunkt dieser beiden Transistoren gegen Masse wirkenden dritten Transistor besteht. Hierdurch kann die Isolation des für die Durchgangsdämpfung vorgeschenen Schaltelements gegenüber einem einzigen Transistor verdoppelt werden, so daß der Dynamikbereich des zweiten Dämpfungsgliedes ebenfalls mindestens verdoppelt werden kann. Durch die Zweiteilung kann das Dämpfungsglied einfacher als integrierte Schaltung realisiert werden, da extrem große bzw. kleine und damit lange bzw. breite Flächenwiderstände auf dem Halbleitersubstrat vermieden werden.

[0008] Als Schaltelemente für das Umschalten der Widerstände zu den T-, Pi oder Doppel-Pi-Schaltungen sind beispielsweise Mikroschalter, PIN-Dioden oder Transistoren geeignet, vorzugsweise werden bei monolitisch integrierbaren Dämpfungsgliedern hierfür Feldeffekttransistoren benutzt.

[0009] Die Erfindung wir im Folgenden anhand schematischer Zeichnungen an Ausführungsbeispielen näher erläutert

[0010] Fig. 1 zeigt das Prinzipschaltbild eines erfindungsgemäßen Mikrowellen-Dämpfungsgliedes, das aus der Kettenschaltung von zwei zwischen Eingang E und Ausgang A angeordneten Dämpfungsgliedern D1 und D2 besteht. Das Dämpfungsglied D1 ist als T-Schaltung ausgebildet und besteht aus mehreren Widerständen R1 bis R4, die jeweils mittels Schalttransistoren T1 bis T7 zu verschiedenen Widerstandswerten schaltbar sind. Das zweite Dämpfungsglied D2 ist als Doppel-Pi-Glied ausgebildet und besteht aus mehreren Widerständen R5 bis R10, die wiederum mittels Schalttransistoren T8 bis T12 zu verschiedenen Widerstandswerten zusammenschaltbar sind. Die Widerstände mit gleicher Indexbezeichnung sind jeweils gleich groß dimensioniert. Die Schalttransistoren mit gleicher Indexbezeichnung werden jeweils gleichzeitig ein- oder ausgeschaltet. [0011] Die Schalttransistoren T3 und T9 der Dämpfungsglieder D1 und D2 dienen dazu, den dämpfenden Teil jeweils vom Signalpfad wegzuschalten. Vorzugsweise sind zum gleichen Zweck noch die zusätzlichen Schalttransistoren T1 und T5 vorgesehen, die eine bessere Anpassung gewährleisten, wenn die 0 dB-Zustände der Dämpfungsglieder eingeschaltet werden.

[0012] Zwischen Eingang E und Ausgang G des ersten Dämpfungsgliedes D1 ist ein Schalttransistor T2 angeordnet. Das T-Glied ist auf drei unterschiedliche Widerstandswerte umschaltbar. Der linke und rechte Teil des Längszweiges zwischen Eingang E und Verbindungspunkt F bzw. Verbindungspunkt F und Ausgang G besteht jeweils aus der Parallelschaltung eines Widerstandes R1, einer Reihenschaltung eines Widerstandes R2 und eines Schalttransistors T4 sowie eines den Widerstand R1 überbrückenden Schalttransistors T5. Der Querzweig des T-Gliedes besteht aus der Parallelschaltung eines Widerstandes R3, einer diesen überbrückenden Reihenschaltung eines Widerstandes R4 mit Schalttransistor T6 sowie eines überbrückenden Schalttransistors T7. Der größte Widerstand des Längszweiges des Dämpfungsgliedes D1 wird bestimmt durch die Reihenschaltung der Widerstände R1. Ein mittlerer Widerstand wird dadurch eingestellt, das parallel zum Widerstand R1 mittels des Schalttransistors T4 der Widerstand R2 geschaltet wird. Der kleinste Widerstand wird eingestellt durch die Parallelschaltung von R1, R2 und der Source-Drain-Strecke des Schalttransistors T5. Durch geeignete Wahl des Transistors T5 und der übrigen Widerstände R1 bis R4 können so die verschiedensten gewünschten Widerstandswerte eingestellt werden. Der Source-Drain-Widerstand eines Feldef-

4

fekttransistors liegt je nach Typ etwa zwischen zwei und zwanzig Ohm, die Widerstände R1 bis R4 sind in der Grö-Benordnung von 10 bis 500 Ohm gewählt.

[0013] Mit dem so konfigurierten Dämpfungsglied D1 können mit folgender Schaltung die Dämpfungswerte 0, 5, 10 und 15 dB eingeschaltet werden:

0 dB: T2 ist eingeschaltet, alle anderen Schalttransistoren sind ausgeschaltet.

Für Dämpfung: T2 ausgeschaltet und T1 bzw. T3 eingeschaltet.

5 dB: Im Längszweig wird der kleinste Widerstand eingeschaltet, im Querzweig der größte, das bedeutet, daß T4 und T5 eingeschaltet und T6 und T7 jeweils ausgeschaltet sind. 10 dB: T4 und T6 sind eingeschaltet, T5 und T7 sind ausge-

15 dB: T4 und T5 sind ausgeschaltet, T6 und T7 sind eingeschaltet.

[0014] Im Dämpfungsglied D2 sind auf ähnliche Weise verschiedene Widerstandswerte mit zwei Schaltzuständen für die Doppel-Pi-Schaltung wählbar. Der Längszweig des 20 Doppel-Pi-Gliedes zwischen Eingang G und Ausgang A bzw. zwischen den beiden Längstransistoren T8 besteht aus der Reihenschaltung der beiden Widerstände R5, parallel zu diesen ist jeweils die Reihenschaltung eines Widerstandes R7 und eines Schalttransistors T11 angeordnet. Die drei 25 Querzweige des Doppel-Pi-Gliedes bestehen aus den Widerständen R6 und R9, parallel zu den Widerständen R6 ist die Reihenschaltung eines Widerstandes R8 und Schalttransistors T12 angeordnet, parallel zum Widerstand R9 des mittleren Querzweiges ist die Reihenschaltung eines Widerstandes R10 und eines Schalttransistors T12 angeordnet. Die Querzweige sind über die Transistoren T9 jeweils an Masse geschaltet. Für die Einstellung der Durchgangsdämpfung (0 dB) ist im Dämpfungsglied D2 an Stelle nur eines einzigen Schalttransistors eine aus drei Schalttransistoren 35 T9 und T10 bestehende T-Konfiguration vorgesehen. Für die Durchgangsdämpfung ist der gegen Masse geschaltete Transistor T9 nichtleitend und das Dämpfungsglied D2 wird damit zwischen den Schaltungspunkten G und A durch die Reihenschaltung der beiden Transistoren T10 überbrückt. 40 Bei nichtleitenden Transistoren T10 und Einstellung der verschiedenen Dämpfungswerte durch die Widerstände R5 bis R10 ist der Transistor T9 leitend gegen Masse, hierdurch wird die Isolation der Überbrückung erhöht und das Dämpniert werden.

[0015] Mit dieser Schaltungskonfiguration des Dämpfungsgliedes D2 können wieder folgende Dämpfungswerte 0, 20 und 30 dB eingestellt werden:

0 dB: T10 eingeschaltet, alle anderen Schalttransistoren aus- 50

Für Dämpfung: T10 ausgeschaltet, T8 und T9 eingeschaltet. 20 dB: T11 eingeschaltet, T12 ausgeschaltet.

30 dB: T11 ausgeschaltet, T12 eingeschaltet.

[0016] Das Dämpfungsglied D1 ist also insgesamt zwi- 55 schen den niedrigen Dämpfungswerten 0/5/10/15 dB umschaltbar, das darauf folgende Dämpfungsglied D2 zwischen höheren Dämpfungswerten 0/20/30 dB, so daß die Gesamtanordnung der beiden in Reihe geschalteten Dämpfungsglieder D1 und D2 insgesamt in 5 dB-Schritten zwischen 0 und 45 dB umschaltbar ist. Die Durchgangsdämpfung wird nur durch die Reihenschaltung der beiden Überbrückungsschalttransistoren T2 bzw. T9/T10 bestimmt und ihr Wert liegt in der Größenordnung unterhalb von 2 dB. Die einzelnen Schalttransistoren werden durch eine nicht dargestellte Steuerschaltung so gesteuert, daß die verschiedenen oben erwähnten Schaltkonfigurationen der Widerstände entstehen. Die beiden Dämpfungsglieder D1 und D2 werden

dabei jeweils getrennt voneinander eingestellt.

[0017] Fig. 2 zeigt ein weiteres Ausführungsbeispiel für die Ausbildung der beide in Kette geschalteten Dämpfungsglieder D1 und D2. D1 ist in diesem Ausführungsbeispiel ein überbrücktes T-Glied, D2 ein Doppel-T-Glied. Das Dämpfungsglied D1 besteht im Längszweig aus der Reihenschaltung der beiden Transistoren T1 und der Widerstände R1. Zwischen Eingang E und Ausgang G ist wieder ein einziger Überbrückungstransistor T2 vorgesehen. Parallel zur Reihenschaltung der beiden Widerstände R1 ist ein Widerstand R3, die Reihenschaltung eines Widerstandes R4 und eines Schalttransistors T6 und ein Schalttransistor T7 angeordnet. Im Querzweig zwischen dem Schaltungspunkt Fund Masse ist ein Widerstand R2 geschaltet, der mit einem Schalttransistor T5 überbrückbar ist, parallel dazu ist außerdem die Reihenschaltung eines Widerstandes R5 und eines Schalttransistors T4 angeordnet. Gegen Masse ist ein Schalttransistor T3 angeordnet. Das Dämpfungsglied D2 besteht im Querzweig zwischen Eingang G und Ausgang A aus der Reihenschaltung der beiden Schalttransistoren T8, der beiden Widerstände R6 sowie des mittleren Widerstandes R7. Parallel zu den beiden Widerständen R6 ist jeweils die Reihenschaltung eines Widerstandes R10 und eines Schalttransistors T12 angeordnet, parallel zum Widerstand R7 die Reihenschaltung eines Widerstandes R11 und eines Transistors T13. Die Überbrückung des Dämpfungsgliedes D2 für die Durchgangsdämpfung erfolgt wieder wie in Fig. 1 durch zwei in Reihe geschaltete Schalttransistoren T9 und einen in der Mitte hiervon gegen Masse geschalteten Schalttransistor T11. Die beiden Querzweige zwischen den Schaltungspunkten H bzw. J gegen Masse bestehen aus einem Widerstand R8, zu dem parallel die Reihenschaltung eines Widerstandes R9 mit einem Schalttransistor T14 geschaltet ist. Die Verbindung gegen Masse erfolgt über die Schalttransistoren T10. Die Quertransistoren T3 und T10 in Fig. 2 dienen wieder dazu, den dämpfenden Teil der beiden Dämpfungsglieder D1 und D2 vom Signalpfad wegzuschalten. Zusätzlich sind zum gleichen Zweck wieder die Transistoren T1 und T8 vorgesehen.

[0018] Mit dem Netzwerk nach Fig. 2 sind wieder folgende Dämpfungswerte einstellbar:

Für Dämpfungsglied D1

fungsglied D2 kann für höhere Dämpfungswerte dimensio- 45 0 dB: T2 ist eingeschaltet, alle anderen Schalttransistoren sind ausgeschaltet.

> Für Dämpfung: T1, T3 sind eingeschaltet, T2 ist ausgeschaltet.

> 5 dB: T6 und T7 sind eingeschaltet, T4 und T5 sind ausgeschaltet.

> 10 dB: T7 ist ausgeschaltet, T6 ist eingeschaltet, T5 ist ausgeschaltet, T4 ist eingeschaltet.

> 15 dB: T6 und T7 sind ausgeschaltet, T4 und T5 sind eingeschaltet.

Schaltmöglichkeiten für das Dämpfungsglied D2

Durchgangsdämpfung 0 dB: T9 eingeschaltet, alle übrigen Schalttransistoren ausgeschaltet.

Für Dämpfung: T9 ausgeschaltet, T11 eingeschaltet, T10 eingeschaltet, T8 eingeschaltet.

20 dB: T12 und T13 eingeschaltet, T14 ausgeschaltet.

30 dB: T12 und T13 ausgeschaltet, T14 eingeschaltet.

[0019] Die beiden Schalttransistoren T12 und T13 werden im Ausführungsbeispiel gleichzeitig geschaltet, ihre Widerstände können jedoch verschieden groß sein.

Patentansprüche

- 1. Dämpfungsglied mit minimaler Durchgangsdämpfung (0 dB) und großem Dynamikbereich (z. B. 0 bis 45 dB) seiner schrittweise einstellbaren Dämpfung, 5 dadurch gekennzeichnet, daß zwischen Eingang (E) und Ausgang (A) zwei Dämpfungsglieder (D1, D2) in Serie geschaltet sind, deren Dämpfung durch das Verbinden von mehreren Widerständen (Fig. 1: R1-R10; Fig. 2: R1-R11) mittels Schaltelmente (Fig. 1: 10 T1-T12; Fig. 2: T1-13) zu T-, überbrückte T-, Pi-, Doppel-Pi- oder Doppel-T-Schaltungen zwischen verschiedenen Werten umschaltbar ist.
- 2. Dämpfungsglied nach Anspruch 1, dadurch gekennzeichnet, daß das eine Dämpfungsglied (D1) zwischen 15 verschiedenen relativ niederen Dämpfungswerten (0, 5, 10, 15 dB) und das andere Dämpfungsglied (D2) zwischen verschiedenen relativ hohen Dämpfungswerten (0, 20, 30 dB) umschaltbar ist.
- 3. Dämpfungsglied nach Anspruch 1 oder 2, dadurch 20 gekennzeichnet, daß das erste Dämpfungsglied zwischen 0, 5, 10, 15 dB in 5 dB Schritten und das zweite Dämpfungsglied zwischen 0, 20 und 30 dB in 10 dB Schritten umschaltbar ist.
- 4. Dämpfungsglied nach einem der vorhergehenden 25 Ansprüche, dadurch gekennzeichnet, daß die Widerstände des ersten Dämpfungsgliedes (D1) zu verschiedenen T-, oder überbrückten T-Schaltungen und die Widerstände des zweiten Dämpfungsgliedes (D2) zu verschiedenen Pi-, Doppel-Pi- oder Doppel-T-Schaltungen verbindbar sind.
- 5. Dämpfungsglied nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das unmittelbar zwischen Eingang (G) und Ausgang (A) angeordnete Schaltelement für die Durchgangsdämpfung 35 (0 dB) mindestens eines der Dämpfungsglieder (D1 oder D2) aus drei in T-Schaltung angeordneten Transistoren (Fig. 1: T9, T10; Fig. 2: T9, T11) besteht, von denen einer (Fig. 1: T9; Fig. 2: T11) gegen Masse geschaltet ist.
- 6. Dämpfungsglied nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schaltelemente Feldeffekttransistoren sind, die monolitisch integriert mit den Widerständen auf einen gemeinsamen Halbleitersubstrat ausgebildet sind.

Hierzu 2 Seite(n) Zeichnungen

50

55

60

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 63 999 A1 H 03 H 11/24 14. August 2002

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 63 999 A1 H 03 H 11/24 14. August 2002

MITS-1-27150

(Salact GR)

DELPHION

RESEARCH

PRODUCTS

INSIDE DELPHION

Edeles early moles

My Account

Search: Quick/Number Boolean Advanced Derwent

Derwent Herp

Derwent Record

View: Expand Details Go to: Delphion Integrated View

Tools: Add to Work File: Create new Work File

Propert Title:

Microwave damping element has two damping elements connected in series between input and output whose damping can be changed by connecting several resistances with switch

elements

POriginal Title:

DE10063999A1: Mikrowellen-Dämpfungsglied

ROHDE & SCHWARZ GMBH & CO KG Non-standard company

₽Inventor:

WILL T;

ଟି Accession/

2002-644782 / 200270

Update:

PIPC Code:

H03H 11/24;

PDerwent Classes:

U25;

☑ Manual Codes:

U25-D07(Attenuators)

ଟ Derwent

Abstract:

(<u>DE10063999A</u>) **Novelty** - The device has minimal through damping and a large dynamic range of its stepwise adjustable damping. It has two damping elements (D1,D2) connected in series between its input and output whose damping can be changed by connecting several resistances (R1-R10)

with switch elements (T1-T12) to form T, bridged T, pi, double-pi or double-T circuits.

Use - For microwave damping.

Advantage - Enables a dynamic damping range of 16 dB to be achieved despite minimal through

damping of 0 dB.

ଟ୍ଟ Images:

Description of Drawing(s) - The drawing shows a schematic representation of an inventive device damping elements D1,D2, resistances R1-R10, switch elements T1-T12 <u>Dwg.1/2</u>

운 Family:

PDF Patent

Pub. Date Derwent Update Pages Language IPC Code

☑ DE10063999A1 * 2002-08-14

200270

6 German

H03H 11/24

Local appls.: DE2000001063999 Filed:2000-12-21 (2000DE-1063999)

Show legal status actions

First Claim:

1. Dämpfungsglied mit minimaler Durchgangsdämpfung (0 dB) und großem Dynamikbereich (z. B. 0 bis 45 dB) seiner schrittweise einstellbaren Dämpfung, **dadurch gekennzeichnet**, daß zwischen Eingang (E) und Ausgang (A) zwei Dämpfungsglieder (D1, D2) in Serie geschaltet sind, deren Dämpfung durch das Verbinden von mehreren Widerständen (Fig. 1: R1–R10; Fig. 2: R1–R11) mittels Schaltelemente (Fig. 1: T1–T12; Fig. 2: T1–13) zu T-, überbrückte T-, Pi-, Doppel-Pi-

oder Doppel-T-Schaltungen zwischen verschiedenen Werten umschaltbar ist.

http://www.delphion.com/derwent/p/dwdetails?pan=2002-644782&pshown=1

6/7/2006 (sloane)

Microwaye damping element has two damping elements connected in series between input and output w... Page 2 of 2

Priority Number:

Application NumberFiledOriginal TitleDE20000010639992000-12-21

운Title Terms:

MICROWAVE DAMP ELEMENT TWO DAMP ELEMENT CONNECT SERIES INPUT OUTPUT

DAMP CAN CHANGE CONNECT RESISTANCE SWITCH ELEMENT

Pricing Current charges

Derwent Searches: Boolean | Accession/Number | Advanced

Data copyright Thomson Derwent 2003

THOMSON

Copyright © 1997-2006 The Thomson Corporation

Subscriptions | Web Seminars | Privacy | Terms & Conditions | Site Map | Contact Us | Help