

Keys

Patrick je mlad i perspektivan botaničar koji svoje dane provodi klasificirajući lišće raznih biljaka prema bojama na koje ga podsjeća njihov mirs nakon tarenja u tarioniku s tučkom. Zbog svoje strasti, prijatelji su ga prozvali VEGETABLE.

Njegov glavni neprijatelj (kako u znanosti, tako i u ostalim segmentima života) jest gospodin Malnar. On svoje vrijeme provodi klasificirajući životinje prema rapsodiji okusa koje njihovo meso proizvede u njegovim ustima nakon termičke obrade. Zbog svoje strasti, prijatelji su ga prozvali ANIMAL.

Tako je jednog dana gospodin Malnar ušao u Patrickov život, pogledao njegove eksperimente i uskliknuo: "Prestani se igrati s travkama, tvoja strast je hrana nekih mojih strasti, dođi i pogledaj moje štakore, navest ću te na pravi put.". Patrick je pristao...

Gospodin Malnar dizajnirao je novi eksperiment, escape room za štakore. U eksperimentu se nalazi n soba označenih brojevima od 0 do n-1. Na početku, u svakoj se sobi nalazi po jedan majušan ključ. Svaki ključ je zasebnog tipa, a tip ključa označavamo brojem između 0 i n-1, uključivo. Tip ključa u sobi i ($0 \le i \le n-1$) je r[i]. Primijetite da više soba može sadržavati ključeve istog tipa, tj. vrijednosti r[i] nisu nužno različite.

U eksperimentu postoji i m dvosmjernih hodnika označenih brojevima od 0 do m-1. Hodnik j ($0 \le j \le m-1$) spaja par različitih soba u[j] i v[j]. Par soba može biti spojen sa više hodnika.

U eksperimentu sudjeluje jedan štakor koji svojim malenim ručicama skuplja ključeve i kreće se između soba koristeći hodnike. Kažemo da štakor **prolazi** hodnikom j kada koristi taj hodnik da bi se proputovao od sobe u[j] do sobe v[j], ili obratno. Štakor može proći hodnikom j ako je do tog trenutka pokupio ključ tipa c[j].

U bilo kojem tretnuku eksperimenta, štakor koji se nalazi u sobi x može napraviti sljedeće:

- pokupiti ključ u sobi x, čiji tip je r[x] (osim ako ga je već prije pokupio)
- proći hodnikom j, gdje je ili u[j] = x ili v[j] = x, ako je (nekad prije) pokupio ključ tipa c[j]. Primijetite da štakor **nikada** ne odbacuje ključeve jer ih može beskonačno držati u ustima.

Eksperiment **počinje** tako da se štakor nalazi u nekoj sobi s bez ijednog ključa. Soba t je **dohvatljiva** iz sobe s ako štakor koji započinje eksperiment u sobi s može napraviti neki slijed akcija opisanih gore tako da dođe do sobe t.

Za svaku sobu i ($0 \le i \le n-1$), označimo broj soba koje su iz nje dohvatljive sa p[i]. Krešimira zanima skup indeksa i za koje je p[i] minimalan, za svaki $0 \le i \le n-1$.

Patrick je ubrzo shvatio da se nalazi u prisustvu nadmočnije osobe i pokleknuo: "U pravu si gospodine, moje travke ovo ne bi mogle, pomoći ću ti da dovršiš eksperiment".

Mislim da je ovo bio početak jednog divnog prijateljstva...

Implementacijski detalji

Potrebno je implementirati sljedeću proceduru:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: polje duljine n. Za svaki i ($0 \le i \le n-1$), ključ u sobi i je tipa r[i].
- u, v: dva polja duljine m. Za svaki j ($0 \le j \le m-1$), hodnik j spaja sobe u[j] i v[j].
- c: polje duljine m. Za svaki j ($0 \le j \le m-1$), tip ključa koji je potreban za prolaz hodnikom j je c[j].
- Procedura treba vratiti polje s duljine n. Za svaki $0 \le i \le n-1$, vrijednosti s[i] treba biti 1 ako za svaki j takav da $0 \le j \le n-1$, $p[i] \le p[j]$. Inače, vrijednost s[i] treba biti 0.

Primjeri

Primjer 1

Promotrimo sljedeći poziv:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Ako štakor započinje eksperiment u sobi 0, može napraviti sljedeće akcije:

Trenutna soba	Akcija
0	Pokupi ključ tipa 0
0	Prođi hodnikom 0 do sobe 1
1	Pokupi ključ tipa 1
1	Prođi hodnikom 2 do sobe 2
2	Prođi hodinkom 2 do sobe 1
1	Prođi hodnikom 3 do sobe 3

Stoga je soba 3 dohvatljiva iz sobe 0.

Sličnim dedukcijama možemo konstruirati niz koraka koji pokazuju da su sve sobe dohvatljive iz sobe 0, što implicira da je p[0] = 4. Donja tablica pokazuje dohvatljive sobe za svaku početnu sobu:

Početna soba i	Dohvatljive sobe	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

Najmanja vrijednost p[i] kroz sve sobe jest $\,2$, i ta se vrijednost dobiva za $\,i=1$ or $\,i=2$. Stoga, procedura treba vratiti $\,[0,1,1,0]$.

Primjer 2

Donja tablica prikazuje popis dohvatljivih soba za svaku sobu:

Početna soba i	Dohvatljive sobe	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4,6]	2

Najmanja vrijednost p[i] kroz sve sobe jest $\,2$, i ta se vrijednost dobiva za $\,i\in\{1,2,4,6\}$. Stoga, procedura treba vratiti $\,[0,1,1,0,1,0,1]$.

Primjer 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Donja tablica prikazuje popis dohvatljivih soba za svaku sobu:

Početna soba i	Dohvatljive sobe	p[i]
0	[0,1]	2
1	[0, 1]	2
2	[2]	1

Najmanja vrijednost p[i] kroz sve sobe jest $\,1$, i ta se vrijednost dobiva za $\,i=2$. Stoga, procedura treba vratiti $\,[0,0,1].$

Ograničenja

- $2 \le n \le 300000$
- $1 \le m \le 300000$
- $0 \le r[i] \le n-1$ za svaki $0 \le i \le n-1$
- $0 \leq u[j], v[j] \leq n-1$ i u[j]
 eq v[j] za svaki $0 \leq j \leq m-1$
- $0 \leq c[j] \leq n-1$ za svaki $0 \leq j \leq m-1$

Podzadaci

- 1. (9 bodova) c[j]=0 za svaki $0\leq j\leq m-1$ i $n,m\leq 200$
- 2. (11 bodova) $n, m \le 200$
- 3. (17 bodova) $n, m \leq 2000$
- 4. (30 bodova) $c[j] \leq 29$ (za svaki $0 \leq j \leq m-1$) i $r[i] \leq 29$ (za svaki $0 \leq i \leq n-1$)
- 5. (33 boda) Bez dodatnih ograničenja.

Ogledni ocjenjivač

Ogledni ocjenjivač čita ulaz u sljedećem obliku:

- redak 1: *n m*
- redak 2: r[0] r[1] ... r[n-1]
- redak 3 + j ($0 \le j \le m 1$): $u[j] \ v[j] \ c[j]$

Ogledni ocjenjivač ispisuje povratnu vrijednost procedure find reachable u sljedećem formatu:

• redak 1: s[0] s[1] \dots s[n-1]