· (I)

CLAIMS

1. A compound of the formula I:

$$R^3$$
 R^2
 N
 F

5

wherein:

Z is -NH-, -O- or -S-;

R¹ represents bromo or chloro;

10 R³ represents C₁₋₃alkoxy or hydrogen;

R² is selected from one of the following three groups:

(i) $Q^{1}X^{1}$ -

wherein X¹ represents -O-,-S- or -NR⁴- wherein R⁴ is hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl and O¹ is selected from one of the following ten groups:

- 15 1) Q² (wherein Q² is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁.
- 20 6alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl and C₁₋₆fluoroalkylsulphonyl and which heterocyclic group may optionally bear a further 1 or 2 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl,
- 25 C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy

- and a group -(-O-)_f(C_{1-4} alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C_{1-4} alkyl),
- or Q² bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q¹ is Q² and X¹ is -O- then Q² must bear at least one substituent selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and optionally may bear a further 1 or 2 substituents as defined herein;
- 2) C₁₋₅alkylW¹Q² (wherein W¹ represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)-, -NQ³C(O)-, -C(O)NQ⁴-, -SO₂NQ⁵-, -NQ⁶SO₂- or -NQ⁷- (wherein Q³, Q⁴, Q⁵, Q⁶ and Q⁷ each independently represents hydrogen, C₁₋₃alkyl, C₁₋₃alkoxyC₂₋₃alkyl, C₂₋₅alkenyl, C₂₋₅alkynyl or C₁₋₄haloalkyl) and Q² is as defined herein;
 - 3) C₁₋₅alkylQ² (wherein Q² is as defined herein);
- 15 4) C₂₋₅alkenylQ² (wherein Q² is as defined herein);
 - 5) C₂₋₅alkynylQ² (wherein Q² is as defined herein);
 - 6) C_{1-4} alkyl W^2C_{1-4} alkyl Q^2 (wherein W^2 represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)- -N $Q^8C(O)$ -, -C(O)N Q^9 -, -SO₂N Q^{10} -, -N $Q^{11}SO_2$ or -N Q^{12} (wherein Q^8 , Q^9 , Q^{10} , Q^{11} and Q^{12} each independently represents hydrogen, C_{1-3} alkyl, C_{1-3} alkoxy C_{2-3} alkyl, C_{2-5} alkenyl, C_2 .
- 20 5alkynyl or C₁₋₄haloalkyl) and Q² is as defined herein);
 - 7) C_{2-5} alkenyl W^2C_{1-4} alkyl Q^2 (wherein W^2 and Q^2 are as defined herein);
 - 8) C₂₋₅alkynylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined herein);
 - 9) C_{1-4} alkyl Q^{13} (C_{1-4} alkyl) $_{j}$ (W^{2}) $_{k}Q^{14}$ (wherein W^{2} is as defined herein, j is 0 or 1, k is 0 or 1, and Q^{13} and Q^{14} are each independently selected from hydrogen, C_{1-3} alkyl, cyclopentyl,
- 25 cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1, 2 or 3 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁. 6alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl,
- 30 C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄

15 herein); and

4alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic

- 5 group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl), with the provisos that Q¹³ cannot be hydrogen and one or both of Q¹³ and Q¹⁴ must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at least one substituent selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl,
- aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl and C₁₋₆fluoroalkylsulphonyl and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined
- 10) C_{1-4} alkyl Q^{13} -C(O)- C_{1-4} alkyl Q^{14n} wherein Q^{13} is as defined herein and is not hydrogen and Q^{14n} is a 5-6-membered saturated or partially unsaturated heterocyclic group containing at least one nitrogen atom and optionally containing a further heteroatom selected from N and O wherein Q^{14n} is linked to C_{1-6} alkyl via a nitrogen atom or a carbon atom and wherein Q^{14n}
- optionally bears 1, 2 or 3 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂.

 6alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl)carbamoylC₁₋₆alkyl, oxo, hydroxy,
- 25 halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic
- group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl) or Q¹⁴ⁿ bears a single substituent selected from methylenedioxy and ethylenedioxy); (ii) Q¹⁵W³-

or a salt thereof.

15

wherein W³ represents -NQ¹6C(O)-, -C(O)NQ¹7-, -SO₂NQ¹8-, -NQ¹9SO₂- or -NQ²0- (wherein Q¹6, Q¹7, Q¹8, Q¹9 and Q²0 each independently represents C₂-5alkenyl, C₂-5alkynyl, C₁4haloalkyl), and Q¹5 is C₁-6haloalkyl, C₂-5alkenyl or C₂-5alkynyl; and
(iii) Q²¹W⁴C₁-5alkylX¹ wherein X¹ is as defined herein, W⁴ represents -NQ²²C(O)-,
5 C(O)NQ²³-, -SO₂NQ²⁴-, -NQ²⁵SO₂- or -NQ²6- (wherein Q²², Q²³, Q²⁴, Q²⁵ and Q²6 each independently represents hydrogen, C₁-3alkyl, C₁-3alkoxyC₂-3alkyl, C₂-5alkenyl, C₂-5alkynyl or C₁-4haloalkyl), and Q²¹ represents C₁-6haloalkyl, C₂-5alkenyl or C₂-5alkynyl;

- 10 2. A compound according to claim 1 wherein Z is -NH-.
 - 3. A compound according to claim 1 or claim 2 wherein R³ is methoxy.
 - 4. A compound according to any one of claims 1, 2 and 3 wherein X^1 is -0-.
 - 5. A compound according to any one of the preceding claims wherein R² is selected from group (ii) of the groups (i), (ii) and (iii) defined in claim 1.
- 6. A compound according to any one of the preceding claims wherein R² is selected from 20 group (iii) of the groups (i), (ii) and (iii) defined in claim 1.
 - 7. A compound according to any one of the preceding claims wherein R² is selected from group (i) of the groups (i), (ii) and (iii) defined in claim 1.
- A compound according to claim 7 wherein R² is Q¹X¹- wherein X¹ is as defined in claim 1 and Q¹ is selected from one of the following ten groups:
 Q² (wherein Q² is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C₂-5alkenyl, C₂-5alkynyl, aminoC₂-6alkanoyl, C₁-4alkylaminoC₂-6alkanoyl, di(C₁-4alkyl)aminoC₂-6alkanoyl, C₁-4alkylaminoC₂-6alkanoyl, C₁-6fluoroalkanoyl, carbamoylC₁-6alkyl, C₁-4alkylcarbamoylC₁-6alkyl, di(C₁-4alkyl)aminoC₂-6alkanoyl, C₁-6alkyl, di(C₁-4alkyl)aminoC₂-6alkanoyl, C₁-6alkyl, di(C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl, di(C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl, di(C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl, C₁-6alkyl)aminoC₂-6alkanoyl, C₁-6alkyl, C₁-6al

- C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆alk
- 5 6fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-
- membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl),
 - or Q^2 bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q^1 is Q^2 and X^1 is -O- then Q^2 must bear at least one substituent
- selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and optionally may bear a further 1 or 2 substituents as defined herein;
 - 2) C₁₋₅alkylW¹Q² (wherein W¹ represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)-, -NQ³C(O)-, -C(O)NQ⁴-, -SO₂NQ⁵-, -NQ⁶SO₂- or -NQ⁷- (wherein Q³, Q⁴, Q⁵, Q⁶ and Q⁷ each
- 20 independently represents hydrogen, C₁₋₃alkyl, C₁₋₃alkoxyC₂₋₃alkyl, C₂₋₅alkenyl, C₂₋₅alkynyl or C₁₋₄haloalkyl) and Q² is as defined herein;
 - 3) C₁₋₅alkylQ² (wherein Q² is as defined herein);
 - 4) C₂₋₅alkenylQ² (wherein Q² is as defined herein);
 - 5) C₂₋₅alkynylQ² (wherein Q² is as defined herein);
- 6) C₁₋₄alkylW²C₁₋₄alkylQ² (wherein W² represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)- NQ⁸C(O)-, -C(O)NQ⁹-, -SO₂NQ¹⁰-, -NQ¹¹SO₂- or -NQ¹²- (wherein Q⁸, Q⁹, Q¹⁰, Q¹¹ and Q¹² each independently represents hydrogen, C₁₋₃alkyl, C₁₋₃alkoxyC₂₋₃alkyl, C₂₋₅alkenyl, C₂₋₅alkynyl or C₁₋₄haloalkyl) and Q² is as defined herein);
 - 7) C₂₋₅alkenylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined herein);
- 30 8) C_{2-5} alkynyl W^2C_{1-4} alkyl Q^2 (wherein W^2 and Q^2 are as defined herein);
 - 9) C₁₋₄alkylQ¹³(C₁₋₄alkyl)_j(W²)_kQ¹⁴ (wherein W² is as defined herein, j is 0 or 1, k is 0 or 1, and Q¹³ and Q¹⁴ are each independently selected from hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2

heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C1-4alkoxy and which cyclic group may bear 1, 2 or 3 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋ 6alkanoyl, aminoC2-6alkanoyl, C1-4alkylaminoC2-6alkanoyl, di(C1-4alkyl)aminoC2-6alkanoyl, 5 C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋ 4alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋ 4alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, 10 di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁. 4alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_eringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl), with the provisos that O¹³ 15 cannot be hydrogen and one or both of Q¹³ and Q¹⁴ must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at least one substituent selected from C2-5alkenyl, C2-5alkynyl, C1-6alkanoyl, aminoC2-6alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋ 6alkanoyl, $C_{1.6}$ fluoroalkanoyl, carbamoyl, $C_{1.4}$ alkylcarbamoyl, di($C_{1.4}$ alkyl)carbamoyl, 20 carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋ 6 alkylsulphonyl and C₁₋₆fluoroalkylsulphonyl and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and 10) C₁₋₄alkylQ¹³-C(O)-C₁₋₄alkylQ¹⁴ⁿ wherein Q¹³ is as defined herein and is not hydrogen and Q¹⁴ⁿ is a 5-6-membered saturated or partially unsaturated heterocyclic group containing at 25 least one nitrogen atom and optionally containing a further heteroatom selected from N and O wherein Q¹⁴ⁿ is linked to C₁₋₆alkyl via a nitrogen atom and wherein Q¹⁴ⁿ optionally bears 1, 2 or 3 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC2-6alkanoyl, C1-4alkylaminoC2-6alkanoyl, di(C1-4alkyl)aminoC2-6alkanoyl, C1-4alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, 30 di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋ 4alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋

4alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino,

di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl) or Q¹⁴ⁿ bears a single substituent selected from methylenedioxy and ethylenedioxy).

- 9. A compound according to claim 7 wherein R^2 is Q^1X^1 wherein X^1 is as defined in claim 1 and Q^1 is selected from one of the following ten groups:
- 10 1) Q² (wherein Q² is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and which heterocyclic
- group may optionally bear a further 1 or 2 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆alkylsulphonyl
- 6 fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-
- 25 membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl),
 - or Q^2 bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q^1 is Q^2 and X^1 is -O- then Q^2 must bear at least one substituent
- selected from C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and optionally may bear a further 1 or 2 substituents as defined herein;

- 2) C_{1-5} alkyl W^1Q^2 (wherein W^1 represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)-, -NQ 3 C(O)-, -C(O)NQ 4 -, -SO₂NQ 5 -, -NQ 6 SO₂- or -NQ 7 (wherein Q 3 , Q 4 , Q 5 , Q 6 and Q 7 each independently represents hydrogen, C_{1-3} alkyl, C_{1-3} alkoxy C_{2-5} alkyl, C_{2-5} alkynyl or C_{1-4} haloalkyl) and Q 2 is as defined herein;
- 5 3) C₁₋₅alkylQ² (wherein Q² is as defined herein);
 - 4) C₂₋₅alkenylQ² (wherein Q² is as defined herein);
 - 5) C₂₋₅alkynylQ² (wherein Q² is as defined herein);
 - 6) C_{1-4} alkyl W^2C_{1-4} alkyl Q^2 (wherein W^2 represents -O-, -S-, -SO-, -SO₂-, -C(O)-, -OC(O)- -NQ⁸C(O)-, -C(O)NQ⁹-, -SO₂NQ¹⁰-, -NQ¹¹SO₂- or -NQ¹²- (wherein Q⁸, Q⁹, Q¹⁰, Q¹¹ and Q¹²
- each independently represents hydrogen, C₁₋₃alkyl, C₁₋₃alkoxyC₂₋₃alkyl, C₂₋₅alkenyl, C₂₋₅alkynyl or C₁₋₄haloalkyl) and Q² is as defined herein);
 - 7) C₂₋₅alkenylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined herein);
 - 8) C₂₋₅alkynylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined herein);
 - 9) C_{1-4} alkyl $Q^{13}(C_{1-4}$ alkyl) $_{j}(W^{2})_{k}Q^{14}$ (wherein W^{2} is as defined herein, j is 0 or 1, k is 0 or 1,
- and Q¹³ and Q¹⁴ are each independently a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1, 2 or 3 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁. 6fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl,
- 20 carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkylamino, C₁₋₄alkylamino, C₁₋
- 25 ₄alkyl, di(C₁₄alkyl)aminoC₁₄alkyl, C₁₄alkylaminoC₁₄alkoxy, di(C₁₄alkyl)aminoC₁₄alkoxy and a group -(-O-)₁(C₁₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₄alkyl), with the proviso that one or both of Q¹³ and Q¹⁴ bears at least one
- 30 substituent selected from aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein); and

- 10) C_{1-4} alkyl Q^{13} -C(O)- C_{1-4} alkyl Q^{14n} wherein Q^{13} is as defined herein and Q^{14n} is a 5-6-membered saturated or partially unsaturated heterocyclic group containing at least one nitrogen atom and optionally containing a further heteroatom selected from N and O wherein Q^{14n} is linked to C_{1-6} alkyl via a nitrogen atom or a carbon atom and wherein Q^{14n} optionally
- bears 1, 2 or 3 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁. 6alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy,
- halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic
- group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl) or Q¹⁴ⁿ bears a single substituent selected from methylenedioxy and ethylenedioxy).
 - 10. A compound according to claim 1 of the formula Ia:

$$R^{3a}$$
 R^{2a}
 R^{1a}
 R^{2a}

(Ia)

wherein:

Za is -NH-, -O- or -S-;

25 R^{1a} represents bromo or chloro;

R^{3a} represents C₁₋₃alkoxy or hydrogen;

 X^{1a} represents -O-,-S- or -NR^{4a}- wherein R^{4a} is hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl; R^{2a} is selected from one of the following groups:

- C₁₋₅alkylR^{5a} (wherein R^{5a} is a 5- or 6-membered heterocyclic ring selected from morpholine, pyrrolidine, piperidine and piperazine which heterocyclic ring bears at least one substituent selected from aminoC₂₋₄alkanoyl, C₁₋₄alkylaminoC₂₋₄alkanoyl, di(C₁₋₄alkylaminoC₂₋₄alkanoyl, methylenedioxy and 5 ethylenedioxy);
 - 2) C₂₋₅alkenylR^{5a} (wherein R^{5a} is as defined herein);
 - 3) C₂₋₅alkynylR^{5a} (wherein R^{5a} is as defined herein);
 - 4) C_{1-5} alkyl R^{6a} C(O)(CH₂)_{ma} R^{7a} (wherein ma is 1 or 2, R^{6a} is a 5- or 6-membered heterocyclic ring selected from morpholine, pyrrolidine, piperidine and piperazine which heterocyclic ring
- may bear one or two substituents selected from fluoro, hydroxy and methyl, and R^{7a} is a 5- or 6-membered heterocyclic ring selected from pyrrolidine, piperidine, piperazine and morpholine which heterocyclic ring is linked to $(CH_2)_{ma}$ via a nitrogen atom or a carbon atom and which heterocyclic ring may bear one or more substituents selected from hydroxy, halogeno, C₁₋₄alkanoyl, methylenedioxy and ethylenedioxy); and
- 5) C₁₋₅alkylR^{6a}(CH₂)_{ma}C(O)R^{8a} (wherein ma and R^{6a} are as defined herein and R^{8a} is a 5- or 6-membered heterocyclic ring selected from pyrrolidine, piperidine, piperazine and morpholine which heterocyclic ring is linked to C(O) via a nitrogen atom or a carbon atom and which heterocyclic ring may bear one or more substituents selected from hydroxy, halogeno, C₁.

 4alkanoyl, methylenedioxy and ethylenedioxy)
- 20 or a salt thereof.
 - 11. A compound according to claim 1 of the formula Ib:

$$R^3$$
 R^{2b}
 N
 R^{2b}
 N

(Ib)

wherein:

Z, R¹ and R³ are as defined in claim 1 and R^{2b} is selected from one of the following three groups:
(i) Q^{1b}X¹-

wherein X^1 is as defined in claim 1 and Q^{1b} is selected from one of the following ten groups: 1) Q^{2b} (wherein Q^{2b} is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C_{2-5} alkenyl, C_{2-5} alkynyl, C_{1-6} fluoroalkyl, amino C_{2-5}

- 5 6alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and C₁₋₆fluoroalkylsulphonyl and which heterocyclic group may optionally bear a further 1 or 2 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₆
- 4alkyl)aminoC₂₋₆alkanoyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkyl, C₁₋
- 4alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents
- 20 selected from C₁₋₄alkyl), or Q^{2b} bears a single substituent selected from methylenedioxy and ethylenedioxy); with the proviso that if Q^{1b} is Q^{2b} and X¹ is -O- then Q^{2b} must bear at least one substituent selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and optionally may
- 25 bear a further 1 or 2 substituents as defined herein;
 - 2) C₁₋₅alkyIW¹Q² (wherein W¹ and Q² are as defined in claim 1);
 - 3) C_{1.5}alkylQ^{2b} (wherein Q^{2b} is as defined herein);
 - 4) C₂₋₅alkenylQ² (wherein Q² is as defined in claim 1);
 - 5) C_{2.5}alkynylQ² (wherein Q² is as defined in claim 1);
- 30 6) C₁₋₄alkylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined in claim 1);
 - 7) C₂₋₅alkenylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined in claim 1);
 - 8) C₂₋₅alkynylW²C₁₋₄alkylQ² (wherein W² and Q² are as defined in claim 1);

9) C_{1-4} alkyl $Q^{13b}(C_{1-4}$ alkyl $)_j(W^2)_kQ^{14b}$ (wherein W^2 is as defined in claim 1, j is 0 or 1, k is 0 or 1, and Q13b and Q14b are each independently selected from hydrogen, C1-3alkyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 5 substituents selected from oxo, hydroxy, halogeno and C1-4alkoxy and which cyclic group may bear 1, 2 or 3 substituents selected from C2-5alkenyl, C2-5alkynyl, C1-6fluoroalkyl, C1-6alkanoyl, aminoC2-6alkanoyl, C1-4alkylaminoC2-6alkanoyl, di(C1-4alkyl)aminoC2-6alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl, C_{1-4} alkylcarbamoyl, $di(C_{1\text{--}4}alkyl) carbamoyl, carbamoyl\\ C_{1\text{--}6}alkyl, C_{1\text{--}4}alkyl carbamoyl\\ C_{1\text{--}6}alkyl, di(C_{1\text{--}6}alkyl), d$ 10 $_4$ alkyl)carbamoyl $C_{1\text{-6}}$ alkyl, $C_{1\text{-6}}$ alkylsulphonyl, $C_{1\text{-6}}$ fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C1-4cyanoalkyl, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, C1-4alkoxyC1-4alkyl, C1-4alkylsulphonylC1-4alkyl, C1-4alkoxycarbonyl, C1-4aminoalkyl, C1-4alkylamino, $di(C_{1-4}alkyl)amino, C_{1-4}alkylaminoC_{1-4}alkyl, \\ di(C_{1-4}alkyl)aminoC_{1-4}alkyl, C_{1-4}alkylaminoC_{1-4}alkyl, \\ di(C_{1-4}alkyl)aminoC_{1-4}alkyl, \\ di(C_{1-4}alkyl)aminoC_{1-4}alkyl$ alkoxy, di(C1-alkyl)aminoC1-alkoxy and a group -(-O-)f(C1-alkyl)gringD (wherein f is 0 or 15 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl), with the provisos that Q^{13b} cannot be hydrogen and one or both of Q13b and Q14b must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at 20 least one substituent selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, aminoC₂. 6alkanoyl, C1-4alkylaminoC2-6alkanoyl, di(C1-4alkyl)aminoC2-6alkanoyl, C1-4alkoxyC1-4alkylaminoC2-6alkanoyl, C1-6fluoroalkanoyl, carbamoyl, C1-4alkylcarbamoyl, di(C1-4alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₆ 4alkyl)carbamoylC1-6alkyl and C1-6fluoroalkylsulphonyl and which heterocyclic group 25 optionally bears 1 or 2 further substituents selected from those defined herein); and 10) C₁₋₄alkylQ¹³-C(0)-C₁₋₄alkylQ¹⁴ⁿ (wherein Q¹³ and Q¹⁴ⁿ are as defined in claim 1); (ii) Q15W3- (wherein W3 and Q15 are defined in claim 1); and (iii) Q21W4C1-5alkylX1 (wherein X1, W4 and Q21 are as defined in claim 1); or a salt thereof.

12. A compound according to claim 11 wherein R^{2b} is $Q^{1b}X^1$ -wherein X^1 is as defined in claim 1 and Q^{1b} is selected from one of the following ten groups:

- 1) Q^{2b} (wherein Q^{2b} is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group bears at least one substituent selected from C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁.

 4alkylcarbamoylC₁₋₆alkyl and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and which heterocyclic group may optionally bear a further 1 or 2 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁₋₆alkanoyl, aminoC₂₋₆alkanoyl, C₁₋₄alkylaminoC₂₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₂₋₆alkanoyl, C₁₋₆fluoroalkanoyl, carbamoyl, C₁₋₄alkylcarbamoyl, di(C₁₋₄alkyl)carbamoyl, carbamoylC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋₆alkylsulphonyl, C₁₋₆a
- fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-
- membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl),
 - or Q^{2b} bears a single substituent selected from methylenedioxy and ethylenedioxy);
 - 2) C₁₋₅alkylW¹Q^{2b} (wherein W¹ is as defined in claim 1 and Q^{2b} is as defined herein);
- 20 3) C₁₋₅alkylQ^{2b} (wherein Q^{2b} is as defined herein);
 - 4) C₂₋₅alkenylQ^{2b} (wherein Q^{2b} is as defined herein);
 - 5) C₂₋₅alkynylQ^{2b} (wherein Q^{2b} is as defined herein);
 - 6) C₁₋₄alkylW²C₁₋₄alkylQ^{2b} (wherein W² is as defined in claim 1 and Q^{2b} is as defined herein);
 - 7) C₂₋₅alkenylW²C₁₋₄alkylQ^{2b} (wherein W² is as defined in claim 1 and Q^{2b} is as defined
- 25 herein);
 - 8) C₂₋₅alkynylW²C₁₋₄alkylQ^{2b} (wherein W² is as defined in claim 1 and Q^{2b} is as defined herein);
 - 9) C_{1-4} alkyl $Q^{13b}(C_{1-4}$ alkyl $)_j(W^2)_kQ^{14b}$ (wherein W^2 is as defined in claim 1, j is 0 or 1, k is 0 or 1, and Q^{13b} and Q^{14b} are each independently selected from hydrogen, C_{1-3} alkyl, cyclopentyl,
- 30 cyclohexyl and a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1, 2 or 3 substituents selected from C₂₋₅alkenyl, C₂₋₅alkynyl, C₁₋₆fluoroalkyl, C₁.

- 6alkanoyl, amino C_{2-6} alkanoyl, C_{1-4} alkylamino C_{2-6} alkanoyl, idi(C_{1-4} alkyl)amino C_{2-6} alkanoyl, C_{1-4} alkoxy C_{1-4} alkylamino C_{2-6} alkanoyl, C_{1-6} fluoroalkanoyl, carbamoyl, C_{1-4} alkylcarbamoyl, di(C_{1-4} alkyl)carbamoyl, carbamoyl C_{1-6} alkyl, C_{1-4} alkylcarbamoyl C_{1-6} alkyl, di(C_{1-4} alkyl)carbamoyl C_{1-6} alkyl, C_{1-6} alkylsulphonyl, C_{1-6} fluoroalkylsulphonyl, oxo, hydroxy,
- 5 halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic
- group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl), with the provisos that Q^{13b} cannot be hydrogen and one or both of Q^{13b} and Q^{14b} must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which heterocyclic group bears at least one substituent selected from C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋
- optionally bears 1 or 2 further substituents selected from those defined herein); and 10) C₁₋₄alkylQ^{13b}-C(O)-C₁₋₄alkylQ^{14b} (wherein Q^{13b} and Q^{14b} are as defined herein and with the provisos that Q^{13b} cannot be hydrogen and one or both of Q^{13b} and Q^{14b} must be a 5-6-membered saturated or partially unsaturated heterocyclic group as defined herein which
- 20 heterocyclic group bears at least one substituent selected from C₁₋₄alkoxyC₁₋₄alkylaminoC₂₋₆alkanoyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl and di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl and which heterocyclic group optionally bears 1 or 2 further substituents selected from those defined herein).
- 25 13. A compound according to claim 1 selected from:
 - 4-(4-bromo-2-fluoroanilino)-7-({1-[(N,N-dimethylamino)acetyl]piperidin-4-yl}methoxy)-6-methoxyquinazoline,
 - 4-(4-chloro-2-fluoroanilino)-7-({1-[(N,N-dimethylamino)acetyl]piperidin-4-yl}methoxy)-6-methoxyquinazoline,
- 30 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-{[1-(pyrrolidin-1-ylacetyl)piperidin-4-yl]methoxy}quinazoline,
 - 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-{[1-(piperidin-1-ylacetyl)piperidin-4-yl]methoxy}quinazoline,

- 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-{[1-(morpholin-4-ylacetyl)piperidin-4-yl]methoxy}quinazoline,
- 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-({1-[(3aR,6aS)-tetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrol-5-ylacetyl]piperidin-4-yl}methoxy)quinazoline,
- 5 7-({1-[(4-acetylpiperazin-1-yl)acetyl]piperidin-4-yl}methoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline,
 - (3S)-4-(4-chloro-2-fluoroanilino)-7-({1-[(3-hydroxypyrrolidin-1-yl)acetyl]piperidin-4-yl}methoxy)-6-methoxyquinazoline,
 - 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-[(1-{[N-(2-methoxyethyl)amino]acetyl}piperidin-
- 10 4-yl)methoxy]quinazoline,
 - 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-({1-[(N-methylamino)acetyl]piperidin-4-yl}methoxy)quinazoline,
 - 4-(4-chloro-2-fluoroanilino)-7-({1-[(3,3-difluoropyrrolidin-1-yl)acetyl]piperidin-4-yl}methoxy)-6-methoxyquinazoline,
- 15 4-(4-chloro-2-fluoroanilino)-7-(2-{1-[(N,N-dimethylamino)acetyl]piperidin-4-yl}ethoxy)-6-methoxyquinazoline,
 - 4-(4-bromo-2-fluoroanilino)-7-(2-{1-[(N,N-dimethylamino)acetyl]piperidin-4-yl}ethoxy)-6-methoxyquinazoline,
 - 4-(4-chloro-2-fluoroanilino)-7-({(3R)-1-[(N,N-dimethylamino)acetyl]piperidin-3-
- 20 yl}methoxy)-6-methoxyquinazoline,
 - 4-(4-Chloro-2-fluoroanilino)-7-({(3S)-1-[(N,N-dimethylamino)acetyl]piperidin-3-yl}methoxy)-6-methoxyquinazoline,
 - 4-(4-bromo-2-fluoroanilino-6-methoxy-7- $\{3-[(3aR,6aS)-tetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrol-5-yl]propoxy\}$ quinazoline,
- 25 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-{2-[(3aR,6aS)-tetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrol-5-yl]ethoxy}quinazoline, and salts thereof.
- 14. A compound according to any one of the preceding claims in the form of a30 pharmaceutically acceptable salt.
 - 15. A process for the preparation of a compound according to claim 1 of the formula I or salt thereof which comprises:

(a) the reaction of a compound of the formula II:

 R^3 R^2 N

(II)

10 wherein R² and R³ are as defined in claim 1 and L¹ is a displaceable moiety, with a compound of the formula III:

R¹

15

(III)

- 20 wherein R¹ and Z are as defined in claim 1;
 - (b) the reaction of a compound of the formula IV:

$$R^3$$
 HX^2
 N
 F
 (IV)

25

30 wherein Z, R¹ and R³ are as defined in claim 1 with a compound of formula V:

R5-L1

(V)

wherein R^5 is Q^1 , Q^{15} or $Q^{21}W^4C_{1-5}$ alkyl, X^2 is X^1 or W^3 and L^1 is as defined herein and wherein Q^1 , Q^{15} , Q^{21} , W^4 , X^1 and W^3 are as defined in claim 1;

(c) the reaction of a compound of the formula VI:

5

$$\begin{array}{c|c}
R^3 \\
L^1 \\
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
N \\
\end{array}$$

10

(VI)

with a compound of the formula VIIa-c:

 $Q^{1}-X^{1}-H$ (VIIa) $Q^{15}-W^{3}-H$ (VIIb) $Q^{21}-W^{4}-C_{1-5}$ (VIIc)

(wherein L^1 is as defined herein and R^1 , R^3 , Z, Q^1 , Q^{15} , Q^{21} W^3 , W^4 and X^1 are as defined in claim 1);

20 (d) the deprotection of a compound of the formula VIII:

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^4

25

wherein R¹, R³ and Z are all as defined in claim 1, and R⁶ represents a protected R² group

30 wherein R² is as defined in claim 1 but additionally bears one or more protecting groups P²;

(e) the addition of a substituent to a compound of the formula IX:

25

$$\mathbb{R}^3$$
 \mathbb{R}^7
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

wherein R^1 , R^3 and Z are as defined in claim 1, and R^7 represents an R^2 group which has yet to be substituted with its final substituent;

- 10 and when a salt of a compound of formula I is required, reaction of the compound obtained with an acid or base whereby to obtain the desired salt.
- 16. A pharmaceutical composition which comprises a compound of the formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof, in association with a15 pharmaceutically acceptable excipient or carrier.
 - 17. Use of a compound of the formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for use in the production of an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal.
 - 18. A method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof.