Álgebra

Tarea 1-Grupo 8064

We are merely explorers of infinity in the pursuit of absolute perfection.

The man who knew infinity (film)

1.	Una	regla	de	infer	encia	es	una	serie	de	afirm	acio	nes
	CIIu	10514	uc	111101	CIICIU	00	alla	50110	uc	ammi	acioi	100

$$p_1,\ldots,p_n,q$$

tal que la afirmación compuesta $p_1 \wedge \cdots \wedge p_n \implies q$ es una tautología. A las proposiciones p_1, \ldots, p_n se les llama *premisas*, *hipótesis*, o *antecedentes*, y a q se le llama *conclusión*, *tesis*, o *consecuente*.

Una forma común de esquematizar una regla de inferencia es la siguiente:

 $\begin{array}{c}
p_1 \\
\vdots \\
p_n \\
\vdots \\
q
\end{array}$

Demuestre que los siguientes casos son reglas de inferencia:

a) Conjunción

$$\frac{p}{q}$$

$$\therefore p \wedge q$$

b) Idempotencia

i)
$$ii) \qquad iii) \qquad iv)$$

$$\frac{p}{\cdot n \wedge n}, \qquad \frac{p \wedge p}{\cdot n}, \qquad \frac{p}{\cdot n \vee n}, \qquad \frac{p \vee p}{\cdot n}.$$

c) Simplificación

$$\frac{p \wedge q}{\therefore p}, \qquad \qquad \frac{p \wedge q}{\therefore q}.$$

d) Adición

$$\frac{p}{\cdot n \vee a}$$
.

e) Modus ponens

$$\frac{p \implies q}{\therefore q}.$$

f) Tollendo ponens

$$\frac{p \vee q}{\neg q}.$$

- g) Dilema
 - i) constructivo:

$$(p \implies q) \lor (r \implies s)$$

$$p$$

$$r$$

$$\therefore q \lor s$$

- 2. Demuestre las siguientes equivalencias lógicas:
 - a) Contraposición:

$$(p \implies q) \equiv (\neg q \implies \neg p).$$

b) Distributividad de \implies sobre si misma:

$$[p \implies (q \implies r)] \equiv [(p \implies q) \implies (p \Rightarrow r)].$$

c) Exportación:

$$[p \implies (q \implies r)] \equiv [(p \land q) \implies r].$$

d) Distributividad de \implies sobre \lor :

$$[p \implies (q \lor r)] \equiv [(p \implies q) \lor (p \implies r)].$$

e) Distributividad de \implies sobre \land :

$$[p \implies (q \land r)] \equiv [(p \implies q) \land (p \implies r)].$$

f) Negación de la implicación:

$$\neg \left(p \implies q \right) \equiv \left(p \wedge \neg q \right).$$

g) Reducción al absurdo:

$$(p \implies q) \equiv [(p \land \neg q) \implies \bot].$$

3. Muestre que los siguientes argumentos no son válidos:

4. Escriba cada uno de los siguientes conjuntos en forma extensiva (comprensiva) si este está escrito en forma comprensiva (extensiva):

a)
$$A = \{x \in \mathbb{N} \mid (x < 6) \land (x \text{ es impar})\},$$

a)
$$A = \{x \in \mathbb{N} \mid (x < 6) \land (x \text{ es impar})\},$$
 f) $F = \{\dots, -6, -4, -2, 0, 2, 4, 6, \dots\},$

b)
$$B = \{\ldots, -2, -1, 0, 1, 2\},\$$

g)
$$G = \{ w \in \mathbb{Z} \mid -1 < w < 1 \},$$

c)
$$C = \{ y \in \mathbb{Z} \mid y \ge -3 \},\$$

h)
$$H = \{0, 3, 6, 9, \dots\},\$$

d)
$$D = \{-6, -4, -2, 0, 2, 4, 6\},\$$

e)
$$E = \{ z \in \mathbb{N} \mid -\frac{6}{5} \le z \le \frac{15}{4} \},$$

$$i) \ I = \{x \mid x \in \mathbb{N} \land x > 3\}.$$

- 5. Sean A, B, y C subconjuntos de X. Demuestre que $A \cap B \subseteq C$ si y sólo si $A \subseteq (X B) \cup C$.
- 6. Demuestre que son equivalentes

a)
$$C \subseteq A$$

b)
$$(A \cap B) \cup C = A \cap (B \cup C)$$
 para cualquier conjunto B.

7. Demuestre las siguientes identidades:

$$a) \ 2^A \cap 2^B = 2^{A \cap B},$$

c)
$$(A \cap B) \times (P \cap Q) = (A \times P) \cap (B \times Q),$$

b)
$$(A \cup B) \times P = (A \times P) \cup (B \times P)$$

b)
$$(A \cup B) \times P = (A \times P) \cup (B \times P)$$
, d) $(A - B) \times P = (A \times P) - (B \times P)$.

8. Considere $B \subseteq X$ un conjunto arbitrario y $A_i \subseteq X$, para cada $i \in I$, con I un conjunto no vacío de índices. Demuestre lo siguiente:

a)
$$\left(\bigcup_{i\in I} A_i\right) \cap B = \bigcup_{i\in I} (A_i \cap B),$$
 c) $X - \left(\bigcup_{i\in I} A_i\right) = \bigcap_{i\in I} (X - A_i),$

c)
$$X - \left(\bigcup_{i \in I} A_i\right) = \bigcap_{i \in I} (X - A_i),$$

b)
$$\left(\bigcap_{i\in I}A_i\right)\cup B=\bigcap_{i\in I}\left(A_i\cup B\right),$$

d)
$$X - \left(\bigcap_{i \in I} A_i\right) = \bigcup_{i \in I} (X - A_i).$$

9. Demuestre que si \mathcal{C} es una familia arbitraria de conjuntos, entonces

$$a) \bigcap_{X \in \mathcal{C}} 2^X = 2^{\bigcap \mathcal{C}},$$

b)
$$\bigcup_{X \in \mathcal{C}} 2^X \subseteq 2^{\bigcup \mathcal{C}}$$
. ¿Por qué no se cumple la otra contención?

10. Sean A, B, y C conjuntos.

a) Si
$$A \subseteq B$$
, entonces $A \cap C \subseteq B \cap C$.

b) Si
$$C \subseteq A$$
 y $C \subseteq B$, entonces $C \subseteq A \cap B$.

11. (**Punto extra**) Sean A, B, C, y D conjuntos. Demuestre lo siguiente:

$$a) \ A - B = A - (A \cap B),$$

$$d) A = B \iff \mathcal{P}(A) = \mathcal{P}(B),$$

b)
$$(A \cup B) - C = (A - C) \cup (B - C)$$
, e) $A \times A = B \times B \iff A = B$,

$$e) \ A \times A = B \times B \iff A = B$$

$$c) \ A \subseteq B \iff \mathcal{P}(A) \subseteq \mathcal{P}(B),$$

$$f) \ A \times B = \emptyset \iff A = \emptyset \ o \ B = \emptyset.$$

Nota: el punto extra no es obligatorio, únicamente tiene como propósito subir un punto sobre calificación en la tarea.