

Aufgabenvorstellung Diplomarbeit

Kollaborative Problemlösung in modularen Anlagen mittels persönlicher digitaler Assistenz

Bearbeiter: Meret Feldkemper

Betreuer: Sebastian Heinze

Abgabe: 02.05.2019

Problemstellung und Motivation

Ironies of Automation [1] **Assistenzsysteme** Können den Menschen beim Automatisierung nimmt zu Bewältigen von Aufgaben unterstützen Mensch ist in kritischen Situationen für Können Informationen aus dem Prozess Entscheidungen verantwortlich ergänzen Müssen die Kompetenzen des Menschen würdigen **Modularisierung** [2] Können positive Erlebnisse fördern Hat Auswirkungen auf den Betrieb der Anlage Bezug zwischen örtlicher Kennzeichnung und Kennzeichnung im Automatisierungssystem muss eindeutig sein

Aufgabenstellung

Menschen lösen Probleme unterschiedlich [3]

Veränderungsorientierung

Explorer

- Überwindet vorgegebene Grenzen
- Sucht Herausforderungen

Developer

- Liebt Pläne und Vorgaben
- Gut organisiert
- Vermeidet Risiken

Verarbeitungsstil

External

- Ideen durch Diskussionen wachsen lassen
- Handelt, wenn andere noch nachdenken

Internal

- Entwickelt Idee für sich alleine
- Ruhige Umgebung
- Stilles Nachdenken

Entscheidungsfokus

People

- Konsequenzen in Bezug auf Personen
- Schätzt die Harmonie

Task

- Aufgabenbezogener Entscheider
- Begründbare, logische Entscheidungen

Digitale Assistenz unterstützt den Menschen

Aufgaben [4]

- Aufmerksamkeit aktivieren
 - Steuern der Aufmerksamkeit des Nutzers
- Informationen integrieren
 - Erklärung von Symbolen
 - Erläutern von Konsequenzen
- Entscheidungen unterstützen
 - Bereitstellen aller Informationen
 - Vorschlag von Lösungsansätzen

Anforderungen [5]

- Interaktivität
 - Möglichkeit zur Interaktion
- Diagnose
 - Effekte bei fehlerhaften Eingaben müssen bekannt sein
- Korrektur
 - Die Assistenz muss den Nutzer auf bei abweichenden Handlungen geeignet unterstützen können

Gute User Experience kann den Nutzer positiv beeinflussen

Der Mensch [6]

Motivation

- Setzte Problemlöseprozess in Gang
- Das Motiv ist wichtig

Emotionen

- Negative Emotionen
 - Vermindert Selbstreflektion
- Positive Emotionen
 - Können zu Oberflächlichkeiten führen

Das System [7]

Gute Gestaltung

- Komplexität reduzieren
- Erwartungen des Nutzers erfüllen

Positive Erlebnisse generieren

- Ausgewogenes Zusammenspiel zwischen Herausforderungen und Erfolgen
- Bedürfnisse des Menschen müssen angesprochen werden
 - Freude, Spaß und Stolz generieren

Zeitplan

Analyse -

— 23.01.19

- Welche Informationen müssen angezeigt werden?
- Welche Anpassungsmöglichkeiten muss es geben?
- Wie interagieren Assistent und Mensch?

Konzept

05.02.19

- **Konzeptuelles Design**
 - Welche Informationen sind miteinander verknüpft?
 - Welche Funktionen hängen zusammen?
- **Physikalisches Design**
 - Wie werden die Informationen dargestellt?

Implementierung — 20.03.19 -

- Grafischer Aufbau der Interaktionsplattform
- Implementierung der Anpassungen

Verifikation -

17.04.19 -

- Welche Informationen können dargestellt werden?
- Auswertung der Anpassungsmöglichkeiten

Abgabe

02.05.19

Korrekturlesen

Quellen

- [1] Lisanne Bainbridget. "Ironies of Automation". In: Automatica 19.6 (1983), S. 775–779.
- [2] Michael Obst, Thomas Holm, Stephan Bleuel, Ulf Claussnitzer, Lars Evetz, Tobias Jäger, Tobias Nekolla, Stephan Pech, Stefan Schmitz und Leon Urbas. "Automatisierung im Life Cycle modularer Anlagen". In: *Atp Edition* 1-2. January (2013), S. 24–31.
- [3] Tilmann Betsch, Joachim Funke und Henning Plessner. *Denken Urteilen, Entscheiden, Problemlösen*. Berlin Heidelberg, 2011.
- [4] H. Wandke. "Assistance in human–machine interaction: A conceptual framework and a proposal for a taxonomy". In: *Theoretical Issues in Ergonomics Science* 6.2 (2005), S. 129–155.
- [5] Bernd Ludwig. *Planbasierte Mensch-Maschine- Interaktion in multimodalen Assistenzsystemen*. Berlin Heidelberg: Springer Vieweg, 2015.
- [6] Dietrich Dörner. "Denken , Problemlösen und Intelligenz". In: Psychologische Rundschau XXXV.1 (1984), S. 10–20.
- [7] Marc Hassenzahl. "User Experience (UX) Towards an experiential". In: ACM International Conference Proceeding Series 339 (2008), S. 11–15.

Vielen Dank für Ihre Aufmerksamkeit!

Für spätere Fragen:

meret.feldkemper@tu-dresden.de

Es gibt vielfältige Möglichkeiten mit dem System zu interagieren

Tastatur

Touch

 Interaktion durch Berühren des Bildschirms

Maus

- Zweidimensionale Bewegung
- Benötigt flache Oberfläche

Sprache

Muss sicher erkannt werden

Joystick

- Bedienung durch kippen
- Für Zielverfolgungsaufgaben
- Verwendung als Mausersatz

Gestik

Wird durch Kamera erfasst

Informationen können dem Nutzer durch unterschiedliche Geräte zur Verfügung gestellt werden

Smartwatch

- Wenige, wichtige Informationen
- Handsfree
- Informationen über Nutzer

Headset

- Bereitstellung von Informationen
- Handsfree

Tablet

- Einfach zu Handhaben
- Nur eine Hand frei

AR-Brille

 Einblenden von Informationen in das Sichtfeld

Desktopcomputer

- Stationär
- Großes Display

Projektor

- Beleuchtung des wichtigen Objekts
- Fest verbaut

Kommunikation zwischen Mensch und Maschine kann vielfältig erfolgen

Dialog zwischen Mensch und Maschine

- Entsteht beim Lösen einer Aufgabe in Kooperation
- Es sind mehrere Schritte notwendig

Formulare/Masken

- Gruppiert Interaktionselemente
- Vielfältige Verwendung

Kommando

- Eingabe über Tastatur
- Mensch muss sich erinnern
- benutzerbestimmt

Fenster

Abgegrenzter steuerbarer Bereich

Menü

- Sortierte Kommandos in Liste
- Auswahl durch Nutzer
- Statisches Menü: systembestimmt

Direkte Manipulation

- Direkte Bearbeitung der Objekte
- Größe, Position verändern

Modulare Anlagen sind zustandsgesteuert und stellen ihre Funktionen als Services zur Verfügung

Merkmale

- Geschlossene funktionale Einheit
- Verfahrenstechnische Grundfunktion als Dienst
- Zustandsbasiert mit Services gesteuert

Abhängigkeiten von Services

- Allow: Erlaubt den Zustandswechsel
- Prohibit: Verbietet den Zustandswechsel
- Change: Betriebsartwechsel
- **Sync:** Synchronisiert Services

Zugängliche Daten

- Strukturdaten
 - Prozessgrafiken
 - Verriegelungs-, Steuerungs- und Regelungsstrukturen
 - Steuerungsfunktionen
- Dynamische Daten
 - Prozesswerte
 - Sollwerte
 - Status
 - Leistungsdaten

