

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

GROUP 32
Alban Bornet
Gizay Ceylan
Wei-Hsiang Lin
Lukas Vogelsang

Network Tour of Data Science
EE-558

Term Project:
Twitter for publication success? A computational investigation

akosiorek.github.io/ml/2019/06/23/...

- Is it a general trend
- Is it a useful strategy

I – Basic analysis of Twitter dataset

8605 researchers

17 Features:

of tweets # of followers # of friends

.

.

% of male-female researcher % of phd-prof researcher

.

.

.

I — Basic analysis of Twitter dataset Correlation of features

Correlation matrix

Options:

- a) different method?
- b) different data?

Strong correlation:

#hashtags and #conf_hashtags

No correlation:

#publications and #followers

→ confounds: e.g., age?

I – Basic analysis of Twitter datasetSpectral-clustering prediction

Approach:

Prediction results:

PhD vs. Prof?

	precision	recall
PhD (N=911)	0.75	0.68
Prof (N=570)	0.56	0.64

	_	_	_
D A -		Fema	
1/// 2		Lomai	
IVIA			

	precision	recall
Male (N=4147)	0.83	0.72
Female (N=953)	0.22	0.35

→ Academic position can be predicted (above chance) from Twitter data

II – Twitter and Scholar time-series

Citations numbers

Granger causality

Granger causality

Graph properties

Figure 2: Left: Granger causality matrix from Twitter activity time-series to Google Scholar citation time-series Right: Degree distribution of the Twitter activity matrix

Number of connected components: 463 Average clustering coefficient: 0.155

Correlation between H-index and degree of nodes

Correlation coefficient: 0.32

P-value: p<0.001

EPFL Probing Twitter time-series predictive power

EPFL Feature enhancement with graph filtering

Results

- Twitter time-series are not able to predict publication success on their own, better than chance level.
- Graph filtering allows Twitter time-series to "unleash" their (small) predictive power.

Conclusion/Discussion

- 1. Twitter features have predictive power for identifying academic status.
- 2. Node-degrees in the Granger causality matrix from Twitter to publication time-series is correlated to publication success.
- 3. Pure Twitter time-series can predict publication success only if they are framed, using graph filtering, in the network they live in.

