♦ Calculator Key-In

More than 2000 years ago, Heron, a mathematician from Alexandria, Egypt, derived a formula for finding the area of a triangle when the lengths of its sides are known. This formula is known as **Heron's Formula**. To find the area of $\triangle ABC$ using this formula:

$$A$$
 C
 B

Step 1 Find the semiperimeter
$$s = \frac{1}{2}(a + b + c)$$
.
Step 2 Area = $A = \sqrt{s(s - a)(s - b)(s - c)}$

Example If
$$a = 5$$
, $b = 6$, and $c = 7$, find the area of $\triangle ABC$.

Solution Step 1
$$s = \frac{1}{2}(5 + 6 + 7) = 9$$

Step 2 $A = \sqrt{s(s - a)(s - b)(s - c)}$
 $= \sqrt{9(9 - 5)(9 - 6)(9 - 7)}$
 $= \sqrt{9 \cdot 4 \cdot 3 \cdot 2}$
 $= 6\sqrt{6}$

It is convenient to use a calculator when evaluating areas by using Heron's Formula. A calculator gives 14.7 as the approximate area of the triangle in the example above.

Exercises

The lengths of the sides of a triangle are given. Use a calculator to find the area and the three heights of the triangle, each correct to three significant digits. (*Hint*: $h = \frac{2A}{L}$.)

Use two different methods to find the exact area of each triangle whose sides are given.

- 13. Something strange happens when Heron's Formula is used with a=47, b=38, and c=85. Why does this occur?
- **14.** Heron also derived the following formula for the area of an inscribed quadrilateral with sides a, b, c, and d:

$$A = \sqrt{(s-a)(s-b)(s-c)(s-d)},$$
where the semiperimeter $s = \frac{1}{2}(a+b+c+d)$

Use this formula to find the area of an isosceles trapezoid with sides 10, 10, 10, and 20 that is inscribed in a circle.

