Föreläsning 4 INDEX

Kompendium i LISAM

Index

Index används för att redovisa en utveckling över tiden

Det uttrycker värdet av en storhet relativt värdet av en annan storhet (värdet vid en tidpunkt relativt värdet vid en bastidpunkt)

Därför är index enhetsoberoende.

Index

Källa: SCB Historisk statistik för Sverige, Översiktstabeller; SCB Statistisk årsbok; SCB Statistiska meddelanden PR 15 SM 0401, Konsumentprisindex 1830–2003.

403 Priset på bensin 1948–2003 i löpande priser och i 2003 års priser Price of petrol in current prices and 2003 prices

Källa: SCB Historisk statistik för Sverige, Översiktstabeller; SCB Statistisk årsbok; SCB Statistiska meddelanden PR 15 SM 0401, Konsumentprisindex 1830–2003.

Inflationstakt Årlig procentuell förändring av KPI

Inflationstakt

Jämförelse av indexserier

Vikter i KPI 2016

Hushållens konsumtion 2019

Länk till sida om KPI och KPIF, två olika inflationsmått

• https://www.scb.se/hitta-statistik/artiklar/2017/kpi-och-kpif-tva-olika-inflationsmatt/

Exempel: Priset på Hasses superstrumpa 2019 – 2023 i kronor

år	Pris SEK	Pris i EURO
2019	35,00	3,10
2020	36,00	3,19
2021	37,50	3,32
2022	39,00	3,45
2023	40,00	3,54

Priserna i Euro utgår från en fast växelkurs (1 EURO=11,30 SEK).

Om vi nu delar varje pris med priset för 2019 så fås relativtal

År	Kronpris	Europris
2019	35/35 = 1	3,10/3,10=1
2020	36/35 = 1,03	3,19/3,10=1,03
2021	37,50/35 = 1,07	3,32/3,10=1,07
2022	39/35 = 1,11	3,45/3,10=1,11
2023	40/35 = 1,14	3,54/3,10=1,14

Notera att vi får samma värdeserie oavsett vilken valuta vi använder (Observera dock att fast växelkurs är ett nödvändigt villkor för detta) Omräkning till index: Multiplicera relativtalen med 100.

År	Index
2019	100
2020	103
2021	107
2022	111
2023	114

Indexvärdet för 2019 är exakt 100 av naturliga orsaker. År 2019 kallas därför basår.

Varje indexvärde innehåller den procentuella förändringen av priset jämfört med basåret. Tex index för $2021 = 107 \rightarrow Priset$ har ökat med 7% mellan 2019 och 2021.

För att uttrycka den procentuella förändringen från år t_1 till år t_2 beräknas:

(Index år t_2 minus index år t_1)/Index år $t_1 \times 100$

t ex från 2021 till 2023: $[(114 - 107)/107] \times 100 = 6.5 \rightarrow 6.5\% \text{ ökning}$

Alternativt: Index år t_2 /Index år $t_1 \times 100$

t ex från 2021 till 2023: $[114/107] \times 100 = 106.5 \rightarrow 6.5\%$ ökning

Basåret kan bytas genom att dividera varje värde i indexserien med värdet för det nya basåret, samt multiplicera med 100

Index år t, basår t_1 =

(Index år
$$t$$
, basår t_0 /Index år t_1 , basår t_0) \cdot $100 = I_t(t_1) = I_t(t_0)/I_{t_1}(t_0) \cdot 100$

Ex. Byte till basår 2021

År(100)	Index Basår 2019	Index Basår 2021
2019	100	$(100/107) \cdot 100 = 93,5$
2020	103	$(103/107) \cdot 100 = 96,3$
2021	107	100
2022	111	$(111/107) \cdot 100 = 103$
2023	114	$(114/107) \cdot 100 = 107$

Allmän formel:

Beräkning av enkla index:

$$I_t = (\text{Pris år } t / \text{Pris bas år } t_0) \times 100 = (p_t / p_{t_0}) \times 100$$

Några vanliga användningar av index:

Direkt tolkning av indexvärdena

 Deflatering: om man har en värdeserie av konsumtionen i löpande priser och en indexserie över prisutvecklingen, så kan man få den deflaterade värdeutvecklingen

 Relativprisindex: för att jämföra en varas prisutveckling med ett mer generellt index (t.ex. konsumentprisindex)

Kvantiteter och försäljningsvärden

Om q_t är försäljningskvantiteten och p_t priset av en vara år t, då kan försäljningsvärdet beräknas som

$$v_t = p_t \cdot q_t$$

Ex. Priser, kvantiteter och försäljningsvärden för Hasses superstrumpa:

<u>År=t</u>	Pris	Kvantitet	Försäljningsvärde
2019	35.00	150	5250
2020	36.00	145	5220
2021	37.50	165	6187,5
2022	39.00	160	6240
2023	40.00	155	6200

Deflatering:

Försäljningsvärdena är uttryckta i så kallade löpande priser Genom deflatering kan vi uttrycka dem i priser för ett visst år (i så kallade fasta priser)

- En värdeserie i löpande priser divideras *värde för värde* med en prisindexserie.
- Dessutom kan man sen ändra basåret genom att multiplicera samtliga deflaterade värden med prisindex för det nya basåret.

Hasses superstrumpa, forts

År	Värden i löpande priser	Index Basår 2019	Värden i 2020 års priser
2019	5250	100	$(5250 / 100) \cdot 103 = 5407,5$
2020	5220	103	5220
2021	6187,5	107	$(6187,5 / 107) \cdot 103 = 5956$
2022	6240	111	$(6240 / 111) \cdot 103 = 5790$
2023	6200	114	$(6200 / 114) \cdot 103 = 5602$

Ex: $(6187.5 / 107) \cdot 103 = 6187.5 / (107/103) = 5956$

Implicitprisindex

Man kan också räkna "baklänges" om vi har en serie med löpande försäljningsvärden och en motsvarande serie uttryckt i (fasta) priser för basår *t*

Genom att dividera löpande pris-serien värde för värde med fastpris-serien och sen multiplicera med 100, får vi en ny index-serie med basår t.

Detta kallas ett implicitprisindex.

Hasses superstrumpa, forts

År	Värden i löpande priser	Värden i 2021 års priser	Implicitprisindex (Basår=2021)
2019	5250	5617.50	$(5250/5617.50) \times 100 = 93.5$
2020	5220	5423	$(5220/5423) \times 100 = 96.3$
2021	6187.50	6187.50	100
2022	6240	6015	(6240/6015) × 100=104
2023	6200	5819	$(6200/5819) \times 100 = 107$

Avvikelser från tidigare framräknad indexserie beror på avrundningsfel

Sammansatta prisindex

Ofta producerar ett företag (eller en bransch) fler än en vara. Då baserar man indexet vanligtvis på flera (ev. samtliga) varor.

Generell konstruktion: $I_t = \sum_i I_{t,i} \cdot w_{t,i}$

där

 $I_{t,i}$ = prisindex år t för vara i

 $w_{t,i}$ = vikt år t för vara i

och summationen görs över alla varor som ingår.

Olika viktsystem

Laspeyre's viktsystem:

$$w_{t,i} = (p_{i_0} \cdot q_{i_0}) / \sum_{j} (p_{j_0} \cdot q_{j_0})$$

dvs vikten för vara *i* utgörs av varans andel av totalförsäljningen (av ingående varor) för basåret.

Paasche's viktsystem:

$$w_{t,i} = (p_{i_0} \cdot q_{i_t}) / \sum_{j} (p_{j_0} \cdot q_{j_t})$$

dvs vikten för vara *i* utgörs av varans andel av totalförsäljningen <u>för år t</u> i *basårspriser* .

Laspeyre's system är vanligast. Vikterna baseras på försäljningsfördelningen under basåret. Det är dock problematiskt om försäljningen varierar starkt mellan varugrupper från år till år. Paasche's system används i det senare fallet och är mindre stabilt.

Exempel forts. Hasses kläder

Priser och försäljningskvantiteter på Hasses superstrumpa och Hasses boxershorts

Strumpor		Boxers	horts	
	Pris	Kvantitet	Pris	Kvantitet
2019	37.50	1400	85.00	630
2020	39.00	1310	90.00	488
2021	40.00	1492	93.00	513

Sammansatt prisindex med Laspeyre's viktsystem (Basår 2019):

År	Index
2019	100
2020	$\frac{39.00}{37.50} \cdot 100 \cdot \frac{37.50 \cdot 1400}{37.50 \cdot 1400 + 85.00 \cdot 630} + \frac{90.00}{85.00} \cdot 100 \cdot \frac{85.00 \cdot 630}{37.50 \cdot 1400 + 85.00 \cdot 630} =$
	$\frac{39.00}{37.50} \cdot 100 \cdot \frac{52500}{106050} + \frac{90.00}{85.00} \cdot 100 \cdot \frac{53550}{106050} = 104.95$
2021	$\frac{40.00}{37.50} \cdot 100 \cdot \frac{52500}{106050} + \frac{93.00}{85.00} \cdot 100 \cdot \frac{53550}{106050} = 108.05$

Ovanstående index kallas *fastbasindex*. Beräkningarna utgår från priser och/eller kvantiteter under ett basår.

Vid långa indexserier blir detta ett problem. Vikterna måste återspegla förändringen i försäljningsvärden.

Då använder man kedjeindex istället och man beräknar förändringen från ett år till det nästa (genom så kallade länkar).

Länkar och kedjor

En indexlänk från år *t*-1 till år *t* beräknas som ett sammansatt index med år *t*-1 som basår. Länken är då det värdet som indexet får år *t*. Länken konstrueras som

$$L_{t-1,t} = \sum_{i=1}^{n} \frac{p_{i,t}}{p_{i,t-1}} \cdot w_{i,t-1,t}$$

där $p_{i,t}$ är priset på vara i år t $p_{i,t-1}$ är priset på vara i år t-1 $w_{i,t-1,t}$ är den vikt som används för varan mellan år t till år t-1 n är antalet varor som ska ingå i indexet

Med t ex Laspeyre's viktsystem beräknas årslänken som

$$L_{t-1,t} = \sum_{i} \frac{p_{i,t}}{p_{i,t-1}} \cdot \frac{\text{Försäljningsvärdet för vara } i \text{ år } t-1}{\text{Totala försäljningsvärdet år } t-1} = \sum_{i} \frac{p_{i,t}}{p_{i,t-1}} \cdot \frac{p_{i,t-1} \cdot q_{i,t-1}}{\sum_{i} p_{j,t-1} \cdot q_{j,t-1}}$$

Ett (kedje)index för år t med basår 0 fås därefter som

$$I_t = L_{0,1} \cdot L_{1,2} \cdot \dots \cdot L_{t-1,t} \cdot 100$$

Användande av representantvaror

För företag och branscher med många varor blir det opraktiskt att beräkna vikter med alla varors priser och försäljningskvantiteter.

I stället väljs ur varje varugrupp en *representantvara*, vars prisoch kvantitetsutveckling speglar varugruppen väl.

Priserna på representantvaran används i formeln för det sammansatta indexet.

Vikterna bestäms utifrån totalförsäljningen i respektive varugrupp.

Om $p_{i,t}$ = Priset på representantvaran från grupp i år t, och $v_{i,t}$ = Värdet hos totala försäljningen av grupp i år t

kan årslänken med Laspeyrevikter beräknas som

$$L_{t-1,t} = \sum_{i} \frac{p_{i,t}}{p_{i,t-1}} \cdot \frac{v_{i,t-1}}{\sum_{j} v_{j,t-1}}$$

där summeringen görs över alla grupper av varor (el. tjänster)

Observera att i denna formel (och även i tidigare formler) summerar vi också i nämnaren över alla grupper, men för att inte blanda ihop med den första summan används summationsindexet j där.

Hasse's kläder

Försäljningsvärden för grupperna

Q		
Ar	Strumpor och sockor	Underkläder
2019	210650	151300
2020	245400	179500
2021	266300	199100

Priser för representantvaror

	Strumpor och sockor	Underkläder
År	Hasses superstrumpa	Hasses boxer
2019	37.50	85.00
2020	39.00	90.00
2021	40.00	93.00

Årslänkar

$$L_{19,20} = \frac{39.00}{37.50} \cdot \frac{210650}{210650 + 151300} + \frac{90.00}{85.00} \cdot \frac{151300}{210650 + 151300} = 1.048$$

$$L_{20,21} = \frac{40.00}{39.00} \cdot \frac{245400}{245400 + 179500} + \frac{93.00}{90.00} \cdot \frac{179500}{245400 + 179500} = 1.029$$

Kedjeindex med basår 2019

År Index

2019 100

2020 1.048.100=104.8

2021 1.048 1.029 100 = 107.8

Relativprisindex

Antag att vi har ett framräknat prisindex för någon vara, tjänst eller grupp av varor och tjänster.

Indexet i sig mäter prisutvecklingen på just den varan/tjänsten/gruppen, men det är ofta intressant att studera utvecklingen i förhållande till den allmänna prisutvecklingen (totalt eller för en större grupp till vilken varan/tjänsten/gruppen hör).

Man kan då använda sig av s k relativprisindex.

Låt I_t^0 vara prisindexet för den aktuella varan/tjänsten/gruppen och låt I_t^v vara prisindexet för den större gruppen.

Relativprisindexet blir då

$$(I_t^0 / I_t^V) \cdot 100$$

 I_t^{ν} är ofta konsumentprisindex (se nedan) eller något branschindex.

Relativprisindex är egentligen bara en variant av deflatering. Man vill alltså tolka den 'lokala' prisförändringen när den generella prisförändringen har räknats bort. (den aktuella varan har en högre (index>100) eller lägre (index<100) prisutveckling än varorna generellt.

Exempel:

Nedan visas det nyligen framräknade kedjeprisindexet för Hasses kläder tillsammans med konsumentprisindex för motsvarande period.

Kedjeprisindex	KPI (basår 1980)	KPI (basår 2019)
2019 100	257.3	100
2020 104.8	258.5	100.5
2021 107.8	260.8	101.4

Värdena visar direkt att prisutvecklingen hos Hasses är högre än den allmänna prisutvecklingen. Uttryckt i ett relativprisindex blir den alltså:

2019: 100

2020: $(104.8/100.5) \cdot 100 = 104.3$

2021: $(107.8/101.4) \cdot 100 = 106.3$

dvs 6.3% högre än den allmänna prisutvecklingen mellan 2019 och 2021

Konsumentprisindex

Indelning av marknaden i grupper av varor och tjänster görs med jämna mellanrum.

Val av representantvaror/tjänster från varje grupp (regelbunden revision av val)

Basår byts med långa intervall: Fn 1980, innan dess 1949

Beräkning för hela marknaden men också för diverse undergrupper (Nationalräkenskaperna)

Indexets utformning:

Uppdelning i långtidsindex (årsvisa) och korttidsindex (månadsvisa)

Båda är kedjeprisindex

Årslänkar beräknas f n med *Edgeworths viktsystem* (ett medelvärde av Laspeyre's och Paasche's viktsystem)

Månadslänkar beräknas f n med Laspeyre's viktsystem Sammanjämkning i januari och december

Konsumentprisindex används för att

- Mäta inflation
- Omräkna värden i löpande priser till värden i priser för ett visst år.
 Detta används bl a för att bedöma försäljningsutveckling och efterfrågan.