(a)

Here \mathbf{F}_g is the gravitational force, \mathbf{T} is the tension in the string, \mathbf{F}_f is the frictional force and \mathbf{F}_N is the normal force.

(b)

Perpendicularly to the plane we still have:

$$F_N = mg\cos\theta$$

Along the plane:

 $T - mg\sin\theta - \mu mg\cos\theta = ma$

where a is the acceleration. Hence:

$$T = mg(\sin\theta + \mu\cos\theta) + ma$$

$$T = 5.1 \times 9.8 \times (\sin 30^{\circ} + 0.4 \cos 30^{\circ}) + 5.1 \times 3.0 = 58N$$

(c)

$$W_g = (mg\sin\theta)d = 5.1 \times 9.8 \times \sin 30^\circ \times 48 = 1199.5 \text{ J}$$

Make sure the sign is positive.

To two significant figures this is: 1200 J.

(d)

$$W_f = -\mu(mg\cos\theta)d = -0.4 \times 5.1 \times 9.8 \times \cos 30^\circ \times 48 = -831.1 \text{ J}$$

Make sure the sign is negative.

To two significant figures this is -830 J.

(e)

Either

Work done by spring + work done by gravity + work done by friction = 0 or

U gained by spring = U lost by gravity – work done *against* friction 1200 J - 830 J = 370 J.

When the mass hits the spring this is all kinetic energy, and if we ignore friction it will all be converted into potential energy stored in the spring, which we can call U. Using:

$$U = \frac{1}{2}kx^2$$

x = compression of the spring

$$x = \sqrt{\frac{2U}{k}} = \sqrt{\frac{2 \times 370}{95000}} = 0.088 \text{ m or } 88 \text{ mm}.$$

Question 2.

i) The moment of inertia of a body about a particular axis is

$$I = \int_{body}^{r^2} r^2 dm$$
, where r is the radial displacement of each element of mass dm from

the axis in question, and where the integration covers the whole of the body.

ii) For this body, consider the dm sketched, with radius r and thickness dr.

Here,
$$dm = \rho dV = \rho L^* 2\pi r^* dr$$
 So
$$dI = r^2 dm = \rho L^* 2\pi r^2 dr$$

This body lies entirely between r = a and r = b. So those are the limits of integration:

$$I = 2\pi\rho L \int_{body} r^3 dm = 2\pi\rho L(b^4/4 - a^4/4) = \frac{1}{2}\pi\rho L(b^4 - a^4)$$

Using $(b^4 - a^4) = (b^2 - a^2)(b^2 + a^2)$ and the total mass of the object, it's possible to simplify this further, but this was not sought here.

- b) $\tau = I\alpha$ where τ is the total (external) torque, I is the moment of inertia (or rotational inertia) and α is the angular acceleration.
- c) On contact, there is relative motion, so the friction is kinetic and $F_f = \mu_k N$. So the torque about the axle is $\tau = rF \sin \Theta = r F_f = \mu_k r N$.

Using Newton's second law of motion for rotation

$$\tau = I\alpha$$
 so $\alpha = \tau/I = \mu_k r N/I$.

Torque and angular acceleration are constant, so the definition of ω and α give:

$$\omega = \omega_0 + \alpha t$$
 (compare with $v = v_0 + at$ for linear)

where here the final condition is rolling, for which $\omega = v/r$, so

$$v/r = 0 + (\mu_k r N/I)t.$$

So
$$t = vI/\mu_k r^2 N = (48 \text{ m.s}^{-1} * 1.1 \text{ kg.m}^2)/(0.85 * (0.28 \text{ m})^2 * 960 \text{ N}) = 0.83 \text{ s.}$$

d) The runway exerts a torque to increase the ω of the wheel. The brakes exert a force to reduce the ω of the wheels. So the total accelerating torque on the wheel is less, so the wheels skid for longer.

Question 3.

a) The potential energy U is defined by dU = -dW where dW = F.ds is the work done by a conservative force F over a displacement ds. Here that force is $F = -\frac{GMm}{r^2}$.

$$U = \int \frac{GMm}{r^2} dr = -\frac{GMm}{r}$$
 plus a constant of integration.

Conventionally, we set the zero of U at infinity, so

$$U = -\frac{GMm}{r}$$

b) Newton's law of universal gravitation: $|F_{grav}| = \frac{GMm}{r^2}$

For m in circular orbit about m, write $|F_{grav}| = ma$, using Newton's 2nd law.

But the motion is uniform and circular so the acceleration is entirely centripetal, so $a = v^2/r$, so

$$\frac{GMm}{r^2} = m\frac{v^2}{r}$$
 and cancelling r ,

$$K = \frac{1}{2} mv^2 = \frac{GMm}{2r}$$

i) Newton's law of gravitation: $F_{\text{grav}} = -\frac{GMm}{r^2}$ Forces shown on one star in sketch.

Here, the separation between closest stars is $d = \sqrt{2} R$ and between the furthest pairs, 2R.

So
$$|F_{\text{total}}| = \frac{Gm^2}{(2R)^2} + 2\frac{Gm^2}{(\sqrt{2}R)^2}\cos 45^\circ$$

= $\frac{Gm^2}{(2R)^2} + 2\frac{Gm^2}{(\sqrt{2}R)^2}\frac{\sqrt{2}}{2}$

So
$$|F_{\text{total}}| = \frac{Gm^2}{R^2} \left(\frac{1}{4} + \frac{1}{\sqrt{2}} \right) = 0.96 \frac{Gm^2}{R^2}$$

ii) The acceleration is centripetal, so $|F_{\text{total}}| = ma = mR\omega^2$.

$$\omega = 2\pi/T$$
, so

 $T = 2\pi/\omega$ where, rearranging from above, $\omega = \sqrt{\frac{|F_{\text{total}}|}{mR}}$ so

$$T = 2\pi \sqrt{\frac{mR}{|F_{\text{total}}|}} = 2\pi \sqrt{\frac{mR}{0.96*Gm^2/R^2}} = 2\pi \sqrt{\frac{R^3}{0.96*Gm}}$$

iii) The stars are $d = \sqrt{2} R = 1$ light second apart. Rearranging the previous answer

$$\left(\frac{2\pi}{T}\right)^2 = 0.96 \frac{Gm}{R^3} \quad \text{so}$$

$$m = \left(\frac{2\pi}{T}\right)^2 \frac{R^3}{0.96 * G} = \left(\frac{2\pi}{20 * 60 \text{ s}}\right)^2 \frac{(3.0 * 10^8 \text{ m/}\sqrt{2})^3}{0.96 * 6.67 * 10^{-11} \text{ Nm}^2 \text{kg}^{-2}} \quad \text{(check units!)}$$

=
$$4.1 \times 10^{30} \text{ kg}$$
 (FYI about twice the mass of the sun)

Question 4 PHYS1131/1141 T1 2017 Solutions

a) i) 3 translational degrees of freedom and 2 rotational degrees of freedom gives 5 degrees of freedom.

ii)
$$\Delta P = \frac{mg}{A} = \frac{5.00 \times 9.80}{50.0 \times 10^{-4}} = 9800 Pa$$

$$\Rightarrow P = 1.01 \times 1.013 \times 10^5 + 9800$$

$$= 112113 Pa$$

$$= 1.12 \times 10^5 Pa \text{ (3 sig fig)}$$
OR
$$1.11 atm \text{ (3 sig fig)}$$

iii) As the mass is placed on quickly this is an adiabatic process.

$$P_A V_A^{\gamma} = P_B V_B^{\gamma}$$

In this case:

$$\gamma = \frac{C_P}{C_V} = \frac{f+2}{f} = \frac{7}{5}$$

We can also calculate the initial height (h_A: the height in state A):

$$h_A = \frac{V_A}{A} = \frac{1.00 \times 10^{-3}}{50.0 \times 10^{-4}} = 0.200m$$

So:

$$P_A h_A^{\gamma} A^{\gamma} = P_B h_B^{\gamma} A^{\gamma}$$

$$\Rightarrow h_B^{\gamma} = \frac{P_A h_A^{\gamma}}{P_B}$$

$$h_B^{1.4} = \frac{1.01 \times 0.200^{1.4}}{1.1067}$$

$$\Rightarrow h_B = 0.187m = 18.7cm \text{ (3 sig fig)}$$

iv) Yes the height will change as the temperature changes going from state B to C.

It is easiest to calculate the new height considering states A and C which are at the same temperature (though it is possible to calculate T_B = 306.8 K and use that, it takes longer though....).

States B and C have the same pressure as the weight has not changed.

$$P_A V_A = P_C V_C$$

 $\Rightarrow P_A h_A = P_C h_C$
 $\Rightarrow h_C = \frac{P_A h_A}{P_C} = \frac{1.01 \times 0.200}{1.1067} = 0.183m = 18.3cm \text{ (3 sig fig)}$

v) and vi)

P (atm)

Where P_A = 1.01 atm, V_A = 1.00 L, P_B = 1.11 atm, V_B = 0.937 L, P_C = 1.11 atm, V_C = 0.913 L.

vii) Need to use:

$$W = -\int P \cdot dV$$

where:

$$PV = P_A V_A \Rightarrow P = \frac{P_A V_A}{V}$$

Which results in:

$$W = -\int_{V_C}^{V_A} \frac{P_A V_A}{V} \cdot dV = -P_A V_A \int_{V_C}^{V_A} \frac{dV}{V}$$

$$= -1.01 \times 1.013 \times 10^5 \times 1.00 \times 10^{-3} \times \left[\ln V\right]_{0.913 \times 10^{-3}}^{1.00 \times 10^{-3}}$$

$$= -102.313 \ln \left(\frac{1.00}{0.913}\right)$$

$$= -9.31J \text{ (3 sig fig)}$$

b) i) Use:

$$\Delta V = 3\alpha V_i \Delta T$$

= 3 × 17 × 10⁻⁶ × (5.00 × 10⁻²)³ × (275 – 25)
= 1.6 × 10⁻⁶ m³ (2 sig fig)

ii) Need to know the mass of copper:

$$m_C = \rho_C \times V_C = 8.96 \text{g/cm}^3 \times (0.0500)^3 \text{cm}^3 = 1120 g = 1.120 kg$$

Then use:

$$0 = m_w c_w (T_f - T_{iw}) + m_C c_C (T_f - T_{iC}) + m_A c_A (T_f - T_{iw})$$

$$T_f (m_w c_w + m_C c_C + m_A c_A) = m_w c_w T_{iw} + m_C c_C T_{iC} + m_A c_A T_{iw}$$

$$T_f = \frac{m_w c_w T_{iw} + m_C c_C T_{iC} + m_A c_A T_{iw}}{m_w c_w + m_C c_C + m_A c_A}$$

$$= \frac{50.0 \times 4186 \times 20.0 + 1.12 \times 390 \times 275 + 0.500 \times 910 \times 20.0}{50.0 \times 4186 + 1.12 \times 390 + 0.500 \times 910}$$

$$= 20.5^{\circ} C \text{ (3 sig fig)}$$

Question 5.
<u>a)</u>
(i) Tis upwards.
Consider two components opposite each other.
Tension The horizontal components
- resultant & Cancel and the vertical
Components acid.
Tension All around the trampoline we
Cun split it into paixs such
as this.
=> resultant tension is apwards.
A Total
(ii) 4/2
They
ting the state of
It will be in equilibrium when the forces are bollanced
\Rightarrow mg = Tsin Θ .
$-\sin\theta = \underline{mg} - \underline{\sim}$
tuna - 1 (Con diagram 1)
tune = hea (from cliagram 1) 42
In small angle approximation tant = sint = 0.
and has a last 4 ma
$\frac{\partial}{\partial x} = \frac{mq}{42} \Rightarrow heq = \frac{Lmq}{2T}$
air) Simple harmonic motion origins when the force is proportional
to the distance from equilibrium and directed back
Cii) Simple harmonic motion occurs when the force is proportional to the distance from equilibrium and directed back lowered the equilibrium position.
From Newbon's second law: ma = md²h = + Tsin+ mg. dt²
$ma = md^2h = Tsin\theta + ma$
(taking down as tre and up as regalive)

(b)
$$f = 6.11 \, \text{kHz}$$
 $V = 343 \, \text{m/s}$ $10.7 \, \text{m/s}$

(i) nest contains observers

$$\Rightarrow f' = f\left(\frac{v}{v - v_{5}}\right)$$

$$= 6.11 \times \left(\frac{343}{343 - 10.7}\right)$$

$$= 6.3067 \, \text{kHz}$$

$$= 6.31 \, \text{kHz}$$
 (3 sig lig)

(ii) Now consider swiftlet flying towards the wall as the observe: the wall is the source
$$\Rightarrow f'' = f'\left(\frac{v + v_{5}}{v}\right)$$

$$= 6.3067 \times \left(\frac{343 + 10.7}{343}\right)$$

$$= 6.50346 \, \text{kHz}$$

$$= 6.50 \, \text{kHz}$$
 (3 sig lig)

(iii) $f''' = f\left(\frac{v + v_{5}}{v - v_{5}}\right)$

$$= 6.11 \times \left(\frac{343 + 14.1}{343 - 10.7}\right)$$

$$= 6.5600 \, \text{kHz}$$

$$= 6.57 \, \text{kHz}$$
 (3 sig lig)

(c) (i) $f_{\text{beat}} = 4.00 \, \text{Hz} = 1 \, \text{fz} - \text{fz}$

For beats $f = 444 \, \text{Hz}$ or $f = 4.36 \, \text{Hz}$

but it is bo light $f = 1.56 \, \text{m/s}$

$$f'' = 444 \, \text{Hz}$$

$$f'' = 444 \, \text{Hz}$$

