

# Acknowledgement

# The series of the IT & Japanese language course is Supported by AOTS and OEC.



Ministry of Economy, Trade and Industry



Overseas Employment Corporation

## What you have Learnt Last Week

## We were focused on following points.

- Usage of function, loop, and Numpy
- Software development Life cycle
- Importance of Security compliance, Bash Scripting,
  Ansible, docker and docker compose
- API testing with Postman and Introduction of Jira
- IAM Permission and S3 bucket
- Introduction to AWS, Azure and GCP
- Supervised Machine Learning Algorithms

# What you will Learn Today

## We will focus on following points.

- 1. Introduction to Un-Supervised Machine Learning
- 2. Overview of Popular Un-Supervised Learning Algorithms
- 3. Applications of Un-Supervised Machine learning algorithms
- 4. Types of hierarchical clustering
- 5. Q&A Session

## Introduction to Unsupervised Machine Learning

## **Definition & Key Concepts**

**Definition:** Machine learning on **unlabeled data** (no predefined output).

**Goal:** Find hidden patterns, groupings, or structure.

#### **Key Concepts:**

- Clustering: Group similar items together.
- Dimensionality Reduction: Reduce features while keeping information.

**Examples:** Customer segmentation, anomaly detection, topic modeling.

# **Overview of Popular Algorithms**

## Categories of Unsupervised Learning

#### **Clustering Algorithms:**

- •K-Means
- DBSCAN
- Hierarchical Clustering
- •Gaussian Mixture Models (GMM)

#### **Dimensionality Reduction:**

- PCA
- •t-SNE
- UMAP

# **Applications of Unsupervised Learning**

#### **Real-World Use Cases**

- •Healthcare: Patient grouping, gene expression analysis.
- Finance: Fraud detection, risk segmentation.
- •E-Commerce & Marketing: Customer segmentation, recommendation systems.
- •NLP: Topic modeling, word embeddings.
- •Cybersecurity: Anomaly detection in logs.

# **Clustering Techniques**

#### Hierarchical vs. Partitional

Hierarchical Clustering: Builds a tree (dendrogram) of clusters.

- •Agglomerative: Start with each point as a cluster, merge step by step.
- Divisive: Start with one big cluster, split into smaller clusters.

Partitional Clustering: Directly divides data into k groups (e.g., K-

Means).

# **K-Means Clustering**

## **Partitional Clustering Method**

#### **Steps:**

- 1.Choose number of clusters (k).
- 2. Assign points to nearest cluster center.
- 3. Recalculate cluster centers  $\rightarrow$  repeat until stable.
- •Strengths: Simple, efficient.
- •Limitations: Requires predefined k, sensitive to outliers.
- •Use Case: Customer segmentation in marketing.

# **DBSCAN** (Density-Based Clustering)

## **Density-Based Approach**

Groups points that are closely packed together.

Can detect **arbitrary-shaped clusters** and noise.

Advantages: Finds outliers, no need to specify number of clusters.

**Limitations:** Struggles if density varies a lot.

Use Case: Anomaly detection in credit card fraud.

# **Hierarchical Clustering**

## **Agglomerative & Divisive**

#### **Agglomerative (Bottom-Up):**

- Each data point starts as its own cluster.
- Merge closest pairs until all points form one cluster.

- •Divisive (Top-Down):
  - •Start with one cluster  $\rightarrow$  recursively split into smaller clusters.

•Visualized using dendrograms (tree-like diagrams).

# Gaussian Mixture Models (GMM)

## **Probabilistic Clustering**

Assumes data is generated from multiple Gaussian distributions.

Each cluster has a probability distribution.

- •Strengths: Flexible, handles overlapping clusters.
- •Limitations: Computationally expensive, may overfit.
- •Use Case: Speech recognition, soft clustering in finance.

# **Dimensionality Reduction**

## Why Reduce Dimensions?

High-dimensional data = harder to visualize & process.

#### **Goals:**

- •Reduce features while preserving structure.
- Improve efficiency & visualization.

Techniques: PCA, t-SNE, UMAP.

## PCA, t-SNE & UMAP

## **Popular Dimensionality Reduction Methods**

#### PCA (Principal Component Analysis):

- Projects data onto fewer dimensions.
- Best for linear patterns.

#### t-SNE:

- Non-linear, preserves local structure.
- Good for visualizing clusters.

#### **UMAP:**

•Similar to t-SNE but faster & preserves both local & global structure.

Applications: Data visualization, preprocessing for ML models.

## **Association Rule Learning**

## **Discovering Relationships in Data**

**Definition:** Finds hidden relationships between items in large datasets.

Rule Format: IF (item A) THEN (item B).

#### **Measures:**

- •Support: Frequency of itemset.
- •Confidence: Likelihood of B given A.
- •Lift: Strength of the rule compared to random chance.

**Applications:** Market basket analysis, cross-selling.

# **Apriori & Eclat Algorithms**

## **Techniques for Association Rules**

#### **Apriori Algorithm:**

- •Uses iterative approach.
- •Generates frequent itemsets  $\rightarrow$  derives association rules.

#### **Eclat Algorithm:**

- •Uses vertical data format (item-transaction lists).
- More efficient for large datasets.

Both widely used in retail & recommendation systems.

# **Market Basket Analysis**

### **Classic Application of Association Rules**

**Goal:** Find products often bought together.

Example: "Customers who buy bread also buy butter."

#### **Business Use:**

- Cross-selling strategies.
- Store layout & promotions.

Widely used in Amazon, Walmart, e-commerce platforms.

# **Anomaly Detection in Unsupervised Learning**

## **Identifying Outliers**

**Definition:** Detect unusual patterns that deviate from normal behavior.

**Use Cases:** Fraud detection, network intrusion, equipment failure.

#### **Approaches:**

- Isolation Forest
- Autoencoders

## **Isolation Forest**

## **Tree-Based Anomaly Detection**

Works by randomly partitioning data.

Outliers are easier to isolate (require fewer splits).

Advantages: Fast, scalable, effective on high-dimensional data.

**Application:** Credit card fraud detection, cybersecurity.

## **Autoencoders for Anomaly Detection**

## **Neural Network Approach**

Autoencoders: Neural networks that learn compressed representations.

#### **Anomaly Detection:**

•Train on normal data  $\rightarrow$  low reconstruction error.

High error = anomaly.

**Applications:** Fraud detection, medical imaging, sensor data.

# **Evaluation Metrics for Unsupervised Learning**

#### **Cluster Validation**

**Silhouette Score:** Measures how similar a point is to its own cluster vs. others.

**Davies-Bouldin Index:** Lower = better clustering.

**Dunn Index:** Higher = better clustering separation.

Used to compare clustering quality without labels.

# Challenges in Unsupervised Learning

#### **Practical Issues**

Choosing Number of Clusters: Hard to decide optimal k.

**High-Dimensional Data:** More features = harder clustering.

Interpretability: Results may be less intuitive for decision-making.

Scalability: Some algorithms struggle with big datasets.

## Real-World Use Cases of Unsupervised Learning

## **Industry Applications**

Customer Segmentation: Grouping users for targeted marketing.

Recommendation Systems: Suggesting products/content.

Fraud Detection: Identifying unusual transactions.

**Document/Topic Clustering:** Organizing news, research papers, or support tickets.

# **Future Trends in Unsupervised Learning**

### **Emerging Directions**

**Self-Supervised Learning:** Uses unlabeled data to generate pseudo-labels.

**Hybrid Approaches:** Combine unsupervised + reinforcement learning.

**AI-Driven Automation:** Smart assistants, autonomous systems.

Goal: More intelligent, adaptive, and explainable AI systems.

# Game 1

#### **Cloud Fundamentals Maze**

**Step1:** Start the Game by Clicking the

Link

**Step2:** Click on the Game It will Start

https://codepen.io/HT-Design/full/EaVzBOg



# Game 2

#### **Cloud Services Maze**

**Step1:** Start the Game by Clicking

the Link

**Step2:** Click on the Game It will Start

https://codepen.io/HT-Design/full/wBKbVvZ



# Assignment



# Quiz

# Everyone student should click on submit button before time ends otherwise MCQs will not be submitted

#### [Guidelines of MCQs]

- 1. There are 20 MCQs
- 2. Time duration will be 10 minutes
- 3. This link will be share on 12:25pm (Pakistan time)
- 4. MCQs will start from 12:30pm (Pakistan time)
- 5. This is exact time and this will not change
- 6. Everyone student should click on submit button otherwise MCQs will not be submitted after time will finish
- 7. Every student should submit Github profile and LinkedIn post link for every class. It include in your performance

# Assignment

## Assignment should be submit before the next class

#### [Assignments Requirements]

- 1. Create a post of today's lecture and post on LinkedIn.
- 2. Make sure to tag @Plus W @Pak-Japan Centre and instructors LinkedIn profile
- 3. Upload your code of assignment and lecture on GitHub and share your GitHub profile in respective your region group WhatsApp group
- 4. If you have any query regarding assignment, please share on your region WhatsApp group.
- 5. Students who already done assignment, please support other students



# ありがとうございます。 Thank you.

شكريا



For the World with Diverse Individualities