8. High Availability and Replication.

Introduction to PostgreSQL

HIGH AVAILABILITY

High Availability

- Minimizing downtime
- Ensuring that the database service remains accessible even during failures.
- Often related to how a cluster hands loads at peak times

Failover and Replication

- Replication ensures data is copied to multiple instances
- Failover automatically switches to a standby instance if the primary fails.
- Automated failover tools ike Patroni, repmgr, PgPool-II, and PostgreSQL Automatic Failover (PAF) can automate failover and manage the high availability setup

Load Balancing:

- Balancing read queries across replicas helps distribute the load, enhancing performance and availability.
- The highest demands on the system tend to be read requests.

REPLICATION

Replication

 Copying data from one database (primary) to others (replicas).

Streaming Replication:

- Uses WAL (Write-Ahead Logging) to stream changes from the primary to replicas in near real-time.
- Replicas can be set up as hot standbys (readable) or warm standbys (not readable until promoted).

Log Shipping:

 The primary server periodically ships completed WAL files to the standby servers, which apply them to their copy of the database

3

REPLICATION

Logical Replication:

- Replicates data changes based on logical changes (like inserts, updates, deletes)
- Allows selective data replication, supports bidirectional replication, and is useful for replicating only specific tables or data subsets.

Synchronous Replication:

- Ensures that transactions are committed to both the primary and at least one standby before being acknowledged to the client.
- Asynchronous Replication:
 - Primary does not wait for the replica's acknowledgment

PLANNING

- Create the primary and standby servers so that they are as similar as possible, at least from the perspective of the database server.
 - Path names associated with tablespaces will be passed across unmodified, so both primary and standby servers must have the same mount paths for tablespaces.
 - Hardware need not be exactly the same
 - Experience shows that maintaining two identical systems is easier than maintaining two
 dissimilar ones over the lifetime of the application and system.
 - The hardware architecture must be the same replicating a 32-bit system to a 64-bit system will not work.
- The servers should be running the same major version
 - WAL log shipping between servers running different major releases is not possible.
 - Different minor release versions probably will work, but should be avoided

STANDBY SERVER OPERATION

- A server is in standby mode if a standby.signal file exists in the data directory when the server is started.
- In standby mode:
 - The server continuously applies WALs received from the primary server
 - Standby mode is exited and the server switches to normal operation when pg_ctl promote is run, or pg_promote() is called.
 - Before failover, any WAL immediately available in the archive or in pg_wal will be restored, but no attempt is made to connect to the primary.

6

SETTING UP REPLICATION

- Configuration on the Primary Server
 - Edit postgresql.conf:
 - Set wal_level to replica or logical (for logical replication).
 - Set max_wal_senders to the number of standby servers
 - Set archive_mode to on and configure archive_command if using log shipping.
 - Configure listen_addresses to allow connections from standby servers.
 - Edit pg_hba.conf:
 - Add entries to allow replication connections from the standby servers.
- Configuration on the Standby Server
 - Base Backup:
 - Use pg_basebackup or other methods to create a copy of the primary server's data directory.
 - Edit postgresql.conf with settings like primary_conninfo, pointing to the primary server.
 - primary_conninfo specifies the connection details for the primary server, including host, port, user, and password

REPLICATION PROCESS

- Once configured, the standby server connects to the primary server and starts streaming WAL records.
- The standby server replays these records to keep its copy of the database updated with the primary server.
- In streaming replication, this process is continuous, with the standby receiving changes as they occur on the primary.

FAILOVER

- In case of a primary server failure
 - A standby can be promoted to act as the new primary.
 - This can be done manually or automatically using tools like pg_auto_failover or Patroni.
- Switchover
 - A planned switch where the roles of primary and standby are reversed, usually for maintenance or load balancing.

0

MONITORING REPLICATION

- Several tools and views for monitoring replication,
 - pg_stat_replication on the primary server
 - pg_stat_wal_receiver on standby servers.
 - These views provide information on replication status, lag, and connection details.

MONITORING REPLICATION

- Several tools and views for monitoring replication,
 - pg_stat_replication on the primary server
 - pg_stat_wal_receiver on standby servers.
 - These views provide information on replication status, lag, and connection details.

Handling Replication Lag

- Replication lag can occur due to network issues, slow disk I/O, or high write activity on the primary.
- Monitor and tune parameters like max_standby_streaming_delay to manage how standbys handle replication delays.

CAP Theorem

Find the balance of consistency and availability needed for specific use cases

End Module

