Inference of rotational kinematics from accelerometer signals

Data-processing model

Contents

General structure	1
data structures	1
input	1
output	2
window	2
hyperparameters	2
execution model	2
function evaluation and differentiation	2
relation to machine learning	2
Case 1: "Horizontal plane, planar non-alignment"	4
coordinate-transformation layer	4
error function	5
output:	6
Other cases	8
Case 1b: "Horizontal plane, non-alignment about tangential axis"	8
Case 1c: "Horizontal plane, non-alignment about radial axis"	8
Case 2: "Vertical plane, aligned"	8
Case 2b: "Vertical plane, planar non-alignment"	9
Appendix: answers to student exercises	9
Case 1b: "Horizontal plane, non-alignment about tangential axis"	9
Case 2b: "Vertical plane, planar non-alignment"	

General structure

data structures

input

 \vec{X}_i i = 1 to N where i is the input position

where $\vec{X} \stackrel{\text{def}}{=} \{A_x, A_y, A_z, \Delta t\}$ is the raw accelerometer sensor data

output

$$\vec{O}_i$$
 $i = 1 \text{ to M}$ M <= N

the contents of \vec{O}_i vary from one model to another, but typically represent the time evolution of constraint-parameter values and of the rotational kinematic variables.

window

The window selects a subset of the input data to process, generating a single output vector from it. It is the main processing element in the program. *K* consecutive input vectors treated in a single processing step. Other terms used analogously: "sliding window size", "filter size", "kernel size".

hyperparameters

- input length
- window size K, stride
- optimization parameters

execution model

- 1. Initialize
 - a. load data
 - b. set hyperparameter values
 - c. initialize window
- 2. window-based processing
 - a. update constants of the function evaluator from the current window data.
 - b. call the optimization routine.
 - c. write output
- 3. terminate
 - a. visualize input, output, performance stats
 - b. write output to file

function evaluation and differentiation

For these two capabilities we rely on the services provided by existing machine-learning libraries such as Theano or TensorFlow.

relation to machine learning

To describe the data processing, some vocabulary and notation from current machine-learning architectures is borrowed (CNN's and RNN's), but our learning model is very different in a number of important ways.

- the number of parameters in our models is very small (anywhere from 2 to about 10)
- both the parameters and the hidden variables correspond to human-interpretable, physically-based properties of a mechanical system.
- The system has no memory (outside of the current window). Based on a total error function for the current window position, we fully optimise the parameter values. The output, after each stride, is the (newly optimized) values the parameters.
- we do *not* rely on the usual operations such as convolutions or sigmoids. (Modeling of the low-level signal conditioning, a later extension, would introduce convolution layer(s).)
- in our equivalent of a hidden layer, a hidden (vector) variable is computed *independently* for each input vector. (There are no cross-connecting nodes in the computational graph). The values parametrising the function used to do this, however, are the same for each input vector within the current window position. This provides a form of local regularization.

Case 1: "Horizontal plane, planar non-alignment"

coordinate-transformation layer

For each input element \vec{X}_k k=1 to K within the current window position, we compute the *local kinematics* \vec{l}_k associated with the point on the rigid body corresponding to the sensor location.

$$\vec{l}_k = \vec{T}_{\{r,\emptyset\}}(\vec{X}_k)$$

where \vec{l}_k is the 4-vector

$$\vec{l}_k \stackrel{\text{\tiny def}}{=} \{a_r, a_t, v, \Delta v\}_k$$

composed of estimates for the radial acceleration a_r , tangential acceleration a_t , tangential velocity v and anticipated change in velocity over the current time interval Δt . Function T is composed of

$$\binom{a_r}{a_t} = Rot_{\emptyset} \binom{A_x}{A_y}$$

and

$$v = \sqrt{ra_r}$$

where

$$Rot_{\emptyset} = \begin{pmatrix} cos\varphi & -sin\varphi \\ sin\varphi & cos\varphi \end{pmatrix}$$

The vector function \vec{T} is parametrised by the constraints parameters $\vec{c} \stackrel{\text{def}}{=} \{r, \emptyset\}$

whose values are determined though iterative minimization of an error function defined below.

(To avoid repeated calculations of the square-root operation over the iterations of the optimization loop, we will replace parameter r by $\rho \stackrel{\text{def}}{=} \sqrt{r}$ and, after optimization is completed, use

$$v = \rho \sqrt{a_r}$$

for the calculation of v.)

error function

For each j = 1 to K-1 we predict the velocity associated with the next time step:

$$\tilde{v}_{j+1} = (a_t)_j \Delta t$$

and the error e_j resulting from a comparison with the velocity is computed from the input data of time step j+1:

$$e_j = \tilde{v}_{j+1} - v_{j+1}$$

The total error is the direct sum of the e_i

$$e = \frac{1}{K - 1} \sum_{j=1}^{K - 1} e_i$$

The cost is minimized against the constraint parameters \vec{c} .

Parameter-learning architecture

output:

As the kernel strides along the input data, it produces an output at each window position

$$i = 1 \text{ to } N/\text{stride}$$

Outputs are new time-series sequences. There are two categories of outputs available:

1. constraint parameters $\vec{c}_i = \{r, \emptyset\}_i$ discussed previously; and

2. motion or system-state variables $\vec{s}_i = \{\alpha, \omega\}_i$ where

$$\alpha = r\bar{a_t}$$
$$\omega = \bar{v}/r$$

where the overhead bar indicates an average over all K-1 values in the current processing window, and r is calculated from the optimization parameter ρ via

$$r = \rho^2$$

Data processing and output

- \vec{c}_i constraint parameters
- \vec{S}_j global kinematic state variables
- $\vec{o}()$ output function
- \vec{l}_k local-kinematics windowing
- \vec{X}_i input

Other cases

Case 1b: "Horizontal plane, non-alignment about tangential axis"

Student exercise.

Case 1c: "Horizontal plane, non-alignment about radial axis"

Student exercise

Case 2: "Vertical plane, aligned"

Figure 1 A system rotating in a vertical plane (viewed from the side, i.e. viewing axis parallel to the Earth's surface)

Here we begin with a sensor whose x-axis is aligned with the radial (outwards) direction.

Process is the same as before, only the function T is now with the following:

$$\binom{a_r}{a_t} = \binom{A_x}{A_y} - g\binom{\cos\theta}{\sin\theta}$$

The calculations based on a_r and a_t proceed the same as before.

Optimization parameters are: (r, θ)

Output of state variable now includes θ as well: $\vec{s}_i = \{\alpha, \omega, \theta\}_i$

Case 2b: "Vertical plane, planar non-alignment"

Student exercise

Appendix: answers to student exercises

Case 1b: "Horizontal plane, non-alignment about tangential axis"

Here the sensor y-axis remains aligned with the tangential. We need only perform a rotation in the x-z plane to recover the radial component:

$$\begin{pmatrix} a_r \\ a_t \end{pmatrix} = \begin{pmatrix} \cos\varphi & 0 & -\sin\varphi \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$

This should remove the gravitational component. One can verify this by evaluating the acceleration component perpendicular to the plane of rotation:

$$a_{\neg} = (\sin\varphi \quad 0 \quad \cos\varphi) \begin{pmatrix} A_{\chi} \\ A_{y} \\ A_{z} \end{pmatrix}$$

Its value should equal g.

Case 2b: "Vertical plane, planar non-alignment"

Here, function T is

$$\binom{a_r}{a_t} = Rot_{\emptyset} \binom{A_x}{A_y} - g \binom{cos\theta}{sin\theta}$$

Optimization parameters are: (r, \emptyset, θ) . For a fixed axis, r and \emptyset are constant, but θ varies . For non-fixed axes, the first two parameters can be treated as slowly varying or piecewise constant.