

Rechnerarchitektur

Sommersemester 2024 Einführungsveranstaltung

Prof. Dr. Claudia Linnhoff-Popien Prof. Dr. Thomas Gabor

Mobile und Verteile Systeme Institut für Informatik LMU München 18.04.2024

Organisation der Vorlesung

Prof. Dr. Claudia Linnhoff-Popien Prof. Dr. Thomas Gabor

Fragen bitte immer zuerst an den Tutor der Ihnen zugeordneten Übungsgruppe Dabei bitte die @campus E-Mail verwenden

Assistenten:
Michael Kölle
Julian Hager
Tobias Rohe

Tutoren: Tea Barisic, Emily Burton, Çaner Çetinkaya, Isabella Debelic, Alexander Feist, Tommy Kiss, Bettina Kleemann, Justin Klein, Zexin Li, Rabea Lühmann, Roman Worbs

Vorstellungsrunde über Sli.do

Lehrstuhl besteht aus zwei Labs

Dabei haben wir folgende Schwerpunkte:

- Quantum Computing, Quantum Annealing, Quantum Machine Learning
- Autonome Systeme mittels Deep Learning, Reinforcement Learning, Artificial Neural Networks
- 3D Computer Vision, Shape Reconstruction, Construction Tree Generation
- Robustness and Uncertainty in Distributed and Autonomous Systems
- Location-Based Services, Ubiquitous Computing und Indoor Navigation

Vorlesung (6 ECTS, 8-10 Std./Woche)

Finden Sie Ihren individuellen Lernstil – nicht alle Module sind nötig, doch lösen Sie die Probeklausuraufgaben!

Statistik aus den Vorjahren

Vorlesung und Skript

- V2/T1/Ü2 18.04.24 bis 18.07.24,
- Präsenzvorlesungen:
 - Donnerstag, 14:00 16:00 Uhr Raum B 201
- Vorlesungen der Vorsemester als Video-on-Demand über LMUcast
- Vorlesungsskript zum Download auf Moodle

Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme

Rechnerarchitektur

Skript zur Vorlesung im Sommersemester 2024

Vorlesungsplan

	Datum	Vorlesung - VOD	Präsenz	Übungsbetrieb
1	18.04.24	A. Darstellung von Informationen (Kapitel 1 - 2)	Einführung und Orga.	Übungsblatt 01
		B. John von-Neumann-Modell (Kapitel 3 - 4)		Tutoriumsblatt 01
2	25.04.24	C. Boolesche Algebra (Kapitel 7.1)		Übungsblatt 02
		D. Logische Bausteine (Kapitel 7.2)		Tutoriumsblatt 02
3	02.05.24		K. SPIM (Kapitel 5 - 6)	Übungsblatt 03
				Tutoriumsblatt 03
	09.05.24	- Feiertag -		Übungsblatt 04
		- I ciei tug -		Tutoriumsblatt 04
4	16.05.24	E. Normalformen von Schaltfunktionen (Kapitel 7.3.1)		Übungsblatt 05
		F. Entwurf von Schaltungen (Kapitel 7.3.2 – 7.3.4)		Tutoriumsblatt 05
5	23.05.24	G. Karnaugh (Kapitel 7.4.1 - 7.4.2)	Wdh. Module A - F & K	Übungsblatt 06
		H. Quine-McCluskey-Verfahren (Kapitel 7.4.3)		Tutoriumsblatt 06
	30.05.24	- Feiertag -		Übungsblatt 07
		· ·		Tutoriumsblatt 07
6	06.06.24	I. Darstellung ganzer Zahlen (Kapitel 8.1)		Übungsblatt 08
		J. Darstellung reeller Zahlen (Kapitel 8.2)		Tutoriumsblatt 08
7	13.06.24	L. Addiernetze (ALU) (Kapitel 8.3)	Wdh. Module G - J	Übungsblatt 09
				Tutoriumsblatt 09
8	20.06.24	M. Schaltwerke (Kapitel 9)		Übungsblatt 10
				Tutoriumsblatt 10
9	27.06.24		N. Quantencomputing (Kapitel 10 - 13)	Übungsblatt 11
				Tutoriumsblatt 11
10	04.07.24	O. Fehlererkennung und -korrektur (Kapitel 14)		Übungsblatt 12
				Tutoriumsblatt 12
11	11.07.24	P. Datenspeicherung (Kapitel 15 - 17)	Orga. Klausur & Wdh. Module L - O	Übungsblatt 13
		Q. Pipelining (Kapitel 18)		Tutoriumsblatt 13

Wochenplan Übungsgruppen

Uhrzeit	Montag	Dienstag	Mittwoch	Donnerstag	Freitag
8:00					
9:00					
10:00	Übungsgruppe 01		Übungsgruppe 07		Übungsgruppe 10
11:00	- Obungsgruppe 01		Übungsgruppe 07		Obdingsgruppe 10
12:00			Übungsgruppe 08		Übungsgruppe 11
13:00			Obuligsgruppe 06		Obdingsgruppe 11
14:00	Üburrer		Übungsgruppe 09	Vorlesung	Übungsgruppe 12
15:00	- Übungsgruppe 02				
16:00	Übungggruppe 02	Übungsgruppe 05			
17:00	- Übungsgruppe 03	Obungsgruppe 03			
18:00	Übungsgruppe 04	Übungsgruppe 06			Online
19:00	Obuligsgluppe 04				
20:00					Präsenz (nach Möglichkeit)

Übung (2 SWS)

- Probeklausurblätter werden wöchentlich am Donnerstag um 17 Uhr veröffentlicht
- Bearbeitungszeit: 10 Tage

Tutoriumsaufgaben:

- Bezogen auf Vorlesung und begleitende Themen
- Präsentation von Aufgabentypen und Lösungswegen
- Keine Abgabe erforderlich
- Lösungen in Übungsgruppen und VOD

Probeklausuraufgaben:

- Vertiefung des Vorlesungsstoffs
- Lösen mit Vorlesungswissen und Sekundärliteratur
- Abgabe via Moodle möglich
- Eine Teilmenge der Probeklausuraufgaben wird in ähnlicher Form in der Klausur gestellt

Abgabe der Probeklausuraufgaben

- Abgabe: Sonntag, 18 Uhr; bei Technikproblemen bis 23:59 Uhr
- Abgabe nur via Moodle,
- akzeptierte Formate: .pdf, .jpg, .png, .txt, .s, .java (keine Word-Dokumente).
- Handschriftlich nur für nicht-textbasierte Aufgaben; erfordert Scan oder klare Fotografie.
- Korrekturdauer ca. 8 Tage

Besprechung der Probeklausurblätter

- Besprechung in den wöchentlichen Übungsgruppen
- Lösungen zu den Tutoriums- und Probeklausuraufgaben werden vorgerechnet
- Übungsgruppen starten in der zweiten Semesterwoche
- Es gibt Präsenz und Online-Übungsgruppen (via Zoom)
- Anmeldung zu den Übungsgruppen über Moodle

Sondertutorium

- Zur Klausurvorbereitung & Klärung von offenen Fragen
- Wann: Montag, den 15.07.2024
- Wo: Remote via Zoom von 18.00 bis 20.00 Uhr
- Einwahldaten: Zu gegebener Zeit über Moodle

Klausur

- Es wird eine Hauptklausur & eine Nachholklausur angeboten
- Stoff: Vorlesung/Tutoriumsaufgaben/Probeklausuraufgaben
- Hauptklausur (aktuelle Planung):
 - Wann: Voraussichtlich 18.07.2024 im Zeitraum 13:00 21:00 Uhr
 - Dauer: 120 Minuten
- Nachholklausur (aktuelle Planung):
 - Wann: Voraussichtlich 10.10.2024 im Zeitraum 13:00 21:00 Uhr
 - Dauer: 120 Minuten
- Anmeldung:
 - Über Moodle
 - Anmeldung zum Kurs auf Moodle wird vorausgesetzt!
 - Anmeldetermine werden frühzeitig kommuniziert
- Einsicht: Termine werden frühzeitig auf Moodle ausgeschrieben

Fragen, Updates, News, etc.

- Klären Sie alle Probleme zunächst mit Ihrem Tutor/Ihrer Tutorin!!
- Frage kann mit Tutor nicht geklärt werden
 - E-Mail an rechnerarchitektur@mobile.ifi.lmu.de
 - Hängen Sie unbedingt den E-Mail-Verkehr mit ihrem Tutor an!
- Aktuelle Neuigkeiten
 - Skript Updates, Terminverschiebungen, Updates der FAQ
 - Immer kommuniziert über Moodle
- !!! Es lohnt sich, häufig Moodle zu besuchen, um sich über News bezüglich der Vorlesung zu informieren !!!

Fragerunde über Sli.do

Was bedeutet Rechnerarchitektur?

"Das Studium der Computerarchitektur befasst sich mit der Organisation und Verbindung der Komponenten von Computersystemen. Computerarchitekten konstruieren Computer aus Grundbausteinen wie Speicher, Recheneinheiten und Bussen" - Stone (1975)

Komponenten

eines Rechners

Von Neumann Architektur

Assemblerprogrammierung

ARM/64 – 2011 – RISC – 64 Bit – ca. **230 Instructions**

MIPS - 1981 - RISC - 32/64 Bit- ca. **50 Instructions**

Instruction Set = Befehlssatz eines Chips
RISC/CISC = Reduced/Complex Instruction Set Computing

Intel x86 AMD 64 – 1978 – CISC – 12/32/64 Bit – ca. **3700 Instructions**

Logische Bausteine

In 1	ln 2	Out
0	0	0
0	1	0
1	0	0
1	1	1

In 1	ln 2	Out
0	0	0
0	1	1
1	0	1
1	1	1

In	Out
0	1
1	0

Schaltnetze

- Encoder/Decoder
- Multiplexer
- Schaltfunktionen

- Normalfunktionen
- Optimierung von Schaltnetzen

Arithmetik

Wie werden Zahlen im Rechner dargestellt?

Binär

1011111...

Dezimal

-1,375

- 1er/2er Komplement Darstellung
- Sign/Magnitude Darstellung
- IEEE-754 Darstellung

- Halb / Volladdierer
- ALU

Register und Speicher

1-Bit Speicher

Quantum Computing

Klassischer Schaltkreis

Quanten-Schaltkreis

Vielen Dank!

Heute anschauen: Modul A & B

Verfügbar auf Moodle:

