Notions Fondamentales de la Théorie des Langages

MAZOUZ Samia & LAICHI Boualem

blaichi@usthb.dz

USTHB – Faculté d'Informatique 2021/2022

ALPHABET

Définition (Alphabet)

Un alphabet X est un ensemble fini et non vide.

Les éléments de cet ensemble sont appelés des lettres ou symboles.

Exemples:

$$X = \{0, 1\}$$

$$X = \{0, 1, ..., 9\}$$

$$X = \{A, T, C, G\}$$

• Alphabet latin (Anglais, ...)
$$X = \{a, b, c, ..., z\}$$

Mots

Définition (Mot)

Un mot sur un alphabet X est une suite (combinaison) finie, éventuellement vide, d'éléments de X.

Exemples:

Alphabet	Mots
$\{0,1\}$	010 ,10 ,000 ,10011001, 111111, 0, 1
$\{A, C, G, T\}$	ATTGCT, TTTGTACGT, GTTTCA, A, G
{+, -, *, ÷, (,), 0,, 9}	5+3, 7***, +***))), ((4+8) ÷2), 0, 1

Mots

Notations:

- Le mot vide (suite vide d'éléments) est noté ε.
- L'ensemble des mots formés à partir d'un alphabet X est noté X*.

Exemple: Si X={a} alors X* est défini comme suit : $X*=\{\varepsilon, a, aa, aaa, aaaa, ...\}$

X+ est l'ensemble des mots non vides.

On a $X^*=X^+\cup\{\epsilon\}$.

Remarque: Les ensembles X* et X+ sont infinis.

1) Concaténation

Définition: Soient w₁ et w₂ deux mots de X*. On définit la concaténation comme la juxtaposition de w₁ et w₂ et on la note $\mathbf{w_1} \cdot \mathbf{w_2}$ (ou $\mathbf{w_1} \mathbf{w_2}$).

```
Ainsi, si w_1 = a_1...a_n et w_{2=}(b_1...b_m)
        alors w_1.w_2 = a_1...a_n b_1...b_m
```

Remarques:

- \circ ε.w=w.ε=w (ε est :
 - l'élément neutre de la concaténation)
- La concaténation n'est pas commutative $(w_1w_2 \neq w_2w_1)$
- La concaténation est associative $(w_1w_2)w_3 = w_1(w_2w_3)$

2) Longueur

Définition : On appelle longueur d'un mot w sur un alphabet X la somme des occurrences des différents symboles le constituant. Elle est notée $\lg(w)$ (ou |w|).

Formellement:

- \circ lg(ε)=0
- o $\lg(a)=1$ $\forall a∈X$
- $lg(a.w) = 1 + lg(w), \forall a \in X, \forall w \in X^*$

Exemples: lg(ab)=2 lg(aba)=3 lg(abb)=3

Notation: $|w|_a$ désigne le nombre de a dans le mot w. $|aba|_a = 2$

Remarque:

La fonction longueur est une application de X* vers N.

3) Miroir

Définition: On appelle mot miroir d'un mot w, noté **Mir(w)** ou w^R le mot obtenu en inversant les symboles de w.

Ainsi **si** $w=a_1...a_n$ **alors** $Mir(w)=a_n...a_1$.

Formellement:

- Mir(ε)= ε
- o Mir(a)=a \forall a∈X
- Mir(a.w) = Mir(w).a $\forall a \in X, \forall w \in X^*$

Exemples: Le miroir du mot abbaa est aabba.

Le miroir du aba est le mot lui-même (mot palindrome)

Remarque : $(W^R)^R = W$

4) Puissance

Définition : La puissance d'un mot w est définie par récurrence de la manière suivante :

- \circ W⁰ = ε
- \circ Wⁿ⁺¹ = Wⁿ.W \forall n≥1

Exemple:

Les puissances du mot abb sont :

```
{ε, abb, abbabb, abbabbabb, ...}
```

5) Factorisation

Définition: Soient v et w deux mots de X*.

- v est facteur ou sousmot du mot w si et seulement s'il existe deux mots u₁, u₂ appartenant à X* tel que : w = u₁.v.u₂
- Le mot v est facteur propre du mot w si $u_1 \neq ε$ et $u_2 \neq ε$.
- Le mot v est facteur gauche (ou préfixe) de w si u₁=ε.
- Le mot v est facteur droit (ou suffixe) de w si u₂=ε

Exemples: Soit le mot w= aabbba, nous avons :

- Le mot v1 = abb est facteur de w, c'est un facteur propre (aabbba)
- Le mot v2 = aab est facteur gauche de w (aabbba)
- Le mot v3 = ba est facteur droit de w (aabbba)

LANGAGE

Définition : Soit X un alphabet. On appelle langage formel défini sur X tout sous-ensemble de X*.

Exemples:

- L₁ = l'ensemble des mots de {a, b}* qui commencent par a
 = {a, aa, ab, aaa, aab, aba, abb,}
 - $= \{aw / w \in \{a,b\}^*\}$
- □ L₂ = l'ensemble des mots de {a, b}* de longueur strictement inférieure à 3

```
= \{\varepsilon, a, b, aa, ab, ba, bb\}
```

Remarque: L₁ est un langage infini et L₂ est un langage fini.

LANGAGE

- □ Un langage vide est un langage qui ne contient aucun mot. Il est noté Ø.
- Un langage fini est un langage qui contient un nombre fini de mots. Dans l'exemple précédent L₂ est fini. Un langage fini peut être décrit par l'énumération des mots qui le composent.
- Un langage infini est un langage qui contient une infinité de mots.
 Dans l'exemple précédent L₁ est infini. De façon générale, un langage infini peut être décrit par :
 - 1) application d'opérations à des langages plus simples,
 - 2) un ensemble de règles appelées grammaires.
- Un langage est dit propre s'il ne contient pas le mot vide.
- Le langage Ø est différent du langage {ε}

OPÉRATIONS SUR LES LANGAGES

Les langages étant des ensembles, on peut effectuer sur eux les opérations définies sur les ensembles :

• Union :
$$L_1 \cup L_2 = \{w \mid w \in L_1 \text{ ou } w \in L_2\}$$

• Intersection :
$$L_1 \cap L_2 = \{w \mid w \in L_1 \text{ et } w \in L_2\}$$

• Complément :
$$\overline{L} = \{w \mid w \in X^* \text{ et } w \notin L\}$$

• Produit :
$$L_1 \times L_2 = \{(w_1, w_2) / w_1 \in L_1 \text{ et } w_2 \in L_2\}$$

OPÉRATIONS SUR LES LANGAGES

De plus, les opérations définies sur les mots peuvent être étendues aussi aux langages.

Soient deux langages L_1 et L_2 respectivement définis sur les alphabets X_1 et X_2 et soit L un langage défini sur l'alphabet X.

La concaténation de langages

$$L_1.L_2 = \{w_1.w_2 / w_1 \in L_1 \text{ et } w_2 \in L_2\}$$

Exemple: Si $L_1 = \{a, ba\}$ et $L_2 = \{b, bb, ab\}$ alors

 $L_1.L_2=\{ab, abb, aab, bab, babb, baab\}$

Remarques:

$$\{\epsilon\}$$
.L = L. $\{\epsilon\}$ = L

$$\varnothing$$
.L = L. \varnothing = \varnothing

OPÉRATIONS SUR LES LANGAGES

Langage miroir

$$L^{R} = \{ w^{R} / w \in L \}$$

Puissance concaténative

$$L^{o} = \{\varepsilon\} \text{ et } L^{n+1} = L^{n}.L$$

Fermeture itérative ou Etoile

$$L^*=L^0 \cup L^1 \cup L^2 \cup ... \cup L^k \cup ...$$

$$= \cup_{i \geq 0} L^i$$

o L'étoile propre (ou ε libre)

$$L^+=\cup_{i>1} L^i$$

Remarques: $si \ \epsilon \in L$ alors $\epsilon \in L^*$ et $\epsilon \in L^+$

$$L^*$$
 et $\epsilon \in L^+$

si $\varepsilon \notin L$ alors $\varepsilon \in L^*$ et $\varepsilon \notin L^+$

Un langage peut être décrit comme étant un ensemble de mots satisfaisant un certain nombre de règles...

...appelées grammaire.

Définition (Grammaire)

Une grammaire (ou système de substitution) est un quadruplet

- T est un ensemble non vide de terminaux (l'alphabet sur lequel est défini le langage).
 - Les symboles de T sont désignés par les lettres minuscules de l'alphabet latin (a, b, c,..).
- N est un ensemble de non-terminaux tel que T∩N=∅, ce sont des symboles intermédiaires pour produire de nouveaux objets (c'est les symboles qu'il faut encore définir).
 - Ils sont désignés par les lettres majuscules de l'alphabet latin (A, B, C, ...
- S∈N est appelé axiome.

Définition (Grammaire) Suite

P est un ensemble de règles de productions ou de réécritures.

Chaque règle est de la forme $\alpha \rightarrow \beta$ où $\alpha \in (T \cup N)*N(T \cup N)*$ et $\beta \in (T \cup N)*$

Remarque: α et β sont des combinaisons entre terminaux et nonterminaux. De plus, α contient au moins un non-terminal.

Une règle de production $\alpha \to \beta$ signifie que : la séquence de symboles α peut **être remplacée** par la séquence de symboles β

o α est appelé membre gauche et β membre droit.

Exemple G = (T, N, S, P)

- T={a}
- N={S}
- \circ P={S \rightarrow aS, S \rightarrow a}

Intuitivement, cette grammaire permet de générer les mots :

 $S \rightarrow a$

 $S \rightarrow aS \rightarrow aa$

 $S \rightarrow aS \rightarrow aaS \rightarrow aaa$

 $S \rightarrow aS \rightarrow aaS \rightarrow$

Donc les mots: a, a², a³,... ainsi le langage généré (ou engendré)

par la grammaire G est : {aⁿ/n≥1}

Notations:

Plusieurs règles ayant même membre gauche :

- Seront regroupées en écrivant une seule fois le membre gauche
- A droite du symbole → les différents membres droits séparés par /.

Exemple: Les trois règles suivantes ont le même membre gauche

 $A \rightarrow Ba$

 $A \rightarrow bA$

 $A \rightarrow aA$

On notera les 3 règles comme suit : A → Ba / bA / aA

Remarque: Le symbole / signifie un choix qui n'induit aucun sens de priorité.

Définition (Dérivation directe)

Soit G=(T, N, S, P) une grammaire.

Soient $w_1 \in (T \cup N)^*N(T \cup N)^*$ et $w_2 \in (T \cup N)^*$.

w₁ dérive (ou produit) directement w₂

(ou w₂ dérive directement à partir de w₁) si et seulement si :

il existe une production $\alpha \rightarrow \beta$ dans P telle que :

 $w_1 = u\alpha v$ et $w_2 = u\beta v$ (α est un facteur de w_1)

En d'autres termes : $u\alpha v \rightarrow u\beta v$

(α est remplacé par β dans w_1) avec $u, v \in (T \cup N)^*$.

On écrit alors $w_1 \Rightarrow^{(1)} w_2$ ou simplement $w_1 \Rightarrow w_2$

Exemples:

Soit
$$G=(\{0, 1\}, \{S\}, S, \{S \rightarrow 0S1/01\})$$

S dérive directement 0S1 :

$$S \Rightarrow^{(1)} 0S1 \text{ (Règle S} \rightarrow 0S1)$$

o 0S1 dérive directement 0011 :

$$0S1 \Rightarrow ^{(1)} 0011$$
 (Règle S $\rightarrow 01$)

o 0S1 dérive directement 00S11 :

$$0S1 \Rightarrow {}^{(1)} 00S11 \text{ (Règle S} \rightarrow 0S1)$$

Définition (Dérivation indirecte)

Soit G=(T, N, S, P) une grammaire. Soient $w_1 \in (T \cup N)*N(T \cup N)*$ et $w_2 \in (T \cup N)*$. On dit que w_1 dérive (ou produit) indirectement w_2 (ou w_2 dérive indirectement à partir de w_1) si et seulement si : w_2 peut être obtenu par **une succession de zéro, une ou plusieurs** dérivations directes à partir de w_1 . On écrit $w_1 \Rightarrow^* w_2$.

Remarques:

- o Dans le cas d'une dérivation de longueur zéro, aucune règle de la grammaire n'est utilisée. Donc, on a $w_2 = w_1$.
- o On peut indiquer la longueur **n** de la dérivation (nombre de dérivations directes) comme suit : $w_1 \Rightarrow^{(n)} w_2$ exp : $w_1 \Rightarrow^{(3)} w_2$

21

Exemples: En considérant la grammaire précédente

$$G=(\{0,1\}, \{S\}, S, \{S\rightarrow 0S1/01\})$$
 on a :

- o S \Rightarrow ⁽¹⁾ 0S1 et 0S1 \Rightarrow ⁽¹⁾ 0011 donc S \Rightarrow * 0011
- o S \Rightarrow ⁽¹⁾ 0S1 et 0S1 \Rightarrow ⁽¹⁾ 00S11 donc S \Rightarrow * 00S11 ou S \Rightarrow ⁽²⁾ 00S11
- o S ⇒* 000111 car S ⇒ (1) 0S1⇒ (1) 00S11⇒ (1) 000111

Remarque: $000111 = 0^31^3 \neq (01)^3 = 010101$

Définition (Langage)

Le langage engendré par une grammaire **G=(T,N,S,P)**, noté **L(G)** est exactement l'ensemble des mots appartenant à T* générés (directement ou indirectement) à partir de l'axiome.

$$L(G)=\{w \mid S \Rightarrow *w \text{ et } w \in T^*\} \text{ ou } L(G)=\{w \mid S \Rightarrow *w\} \cap T^*$$

Le langage généré par G contient exactement :

- les mots dérivables à partir de l'axiome
- ne contenant que des symboles terminaux.

Exemple: Soit $G=(\{a, b\}, \{S\}, S, \{S \rightarrow aSb / ab\})$

On distingue deux types deux règles :

Une règle récursive : S → aSb

Le non-terminal S apparaît dans le membre gauche ainsi que dans le membre droit.

Cette règle va être utilisée de manière récursive comme suit :

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow \Rightarrow a^nSb^n$$

Donc, S ⇒* aⁿSbⁿ avec n≥0

Notons que le mot obtenu n'est pas un mot du langage généré par la grammaire car il contient un non-terminal.

Une règle d'arrêt : S→ ab

Il n'y a pas de non-terminal S dans le membre droit. Dans ce cas précis, il n y a que des terminaux dans le membre droit.

On peut utiliser la règle d'arrêt à tout moment, donc :

$$S \Rightarrow^* a^nSb^n \Rightarrow a^nabb^n = a^{n+1}b^{n+1} \text{ avec } n \ge 0$$

Donc,
$$S \Rightarrow^* a^{n+1}b^{n+1}$$
 avec n≥0

Dans ce cas, le mot obtenu ne contient que des terminaux et donc c'est un mot du langage généré par la grammaire.

Il n'y a pas d'autres dérivations possibles, donc :

$$L(G) = {a^{n+1}b^{n+1}/n≥0}$$

= {aⁿbⁿ/n≥1}

Définition (Grammaires équivalentes)

Deux grammaires G_1 et G_2 sont dites équivalentes, notées $G_1 \equiv G_2$, si elles engendrent (génèrent) le même langage.

$$G_1 \equiv G_2 \Leftrightarrow L(G_1)=L(G_2)$$

Exemple:

Montrer que les deux grammaires G₁ et G₂ sont équivalentes:

$$G_1$$
= ({a, b}, {S, A, B}, S, {S \rightarrow AB, A \rightarrow aA/ ϵ , B \rightarrow bB/ ϵ }
 G_2 = ({a, b}, {S, B}, S, {S \rightarrow aS/B, B \rightarrow bB/ ϵ }

Dans G_1 : $S \to AB$ et $A \to aA \to aaA \to aaaA...$ donc $A \Rightarrow *a^n$ (pareil: $B \Rightarrow *b^m$)

Donc $L(G_1) = \{a^nb^m / n \ge 0 \text{ et } m \ge 0\}$

Dans
$$G_2$$
: $S \rightarrow aS \rightarrow aaS \rightarrow ... \rightarrow a^nS \rightarrow a^nB \rightarrow a^nbB \rightarrow a^nbbB \rightarrow ... \rightarrow a^nb^mB \rightarrow a^nb^m$
Donc $L(G_2) = \{a^nb^m / n \ge 0 \text{ et } m \ge 0\}$

Ces deux grammaires génèrent le même langage : <mark>{aʰbʰ / n≥0 et m≥0}</mark>

Remarque: Un langage peut être généré par plusieurs grammaires, mais une grammaire ne génère qu'un seul langage.

Noam Chomsky a décomposé les grammaires formelles en catégories de pouvoir d'expression croissant, c'est-à-dire en groupes successifs pouvant chacun générer une variété de langages plus large que le groupe précédent.

On parle de Hiérarchie (Classification) de Chomsky.

Chomsky a défini quatre types de grammaires formelles suivant la nature des règles de production des grammaires.

Type 3 (Grammaires régulières): Une grammaire G=(T, N, S, P) est de type 3 ssi elle est soit régulière **droite** soit régulière **gauche**.

Grammaire régulière droite :

Si toutes les productions dans P sont de la forme :

 $A \rightarrow wB$ ou $A \rightarrow w$ avec $A, B \in N$ et $w \in T^*$

Exemples : A \rightarrow aabB A \rightarrow B A \rightarrow aa A \rightarrow ϵ : sont de type 3 (RD27

 $A \rightarrow aBB$ $A \rightarrow aBa$ $A \rightarrow AB$: ne sont pas de type 3

Grammaire régulière gauche :

Si toutes les productions dans P sont de la forme :

 $A \rightarrow Bw$ ou $A \rightarrow w$ avec $A, B \in N$ et $w \in T^*$

Exemples: $A \rightarrow Baab$ $A \rightarrow B$ $A \rightarrow aa$ $A \rightarrow \epsilon$: sont de type 3 (RG)

Remarques:

- Les trois dernières règles sont droites et gauches en même temps.
- Une grammaire de type 3 ne doit pas contenir en même temps :
 - des règles régulières droites (A → wB) et
 - des règles régulières gauches (A → Bw).

(Pour qu'une grammaire soit régulière : il faut que toutes ses règles soient régulières droites ou toutes régulières gauches)

Type 2 (Grammaires algébriques ou grammaires à contexte libre)

Une grammaire G=(T, N, S, P) est de type 2 si et seulement si toutes les productions de P sont de la forme :

$$\mathbf{A} \rightarrow \alpha$$
 avec $A \in \mathbb{N}$ et $\alpha \in (\mathbb{T} \cup \mathbb{N})^*$

Exemples : $A \rightarrow aBb$ $A \rightarrow aBBa$ $A \rightarrow BB$ $A \rightarrow Bab$ $A \rightarrow abB$ $A \rightarrow \epsilon$

sont de type 2 (algébriques)

Remarque:

La seule condition porte sur le membre gauche qui est constitué d'un seul non-terminal.

Type 1 (Grammaires Contextuelles)

Une grammaire G=(T, N, S, P) est de type 1 si et seulement si toutes les règles de production de P sont de la forme :

$$\alpha A\beta \rightarrow \alpha w\beta$$
 avec $\alpha, \beta \in (T \cup N)^*, A \in N, w \in (T \cup N)^+$

et une contrainte sur le mot vide : seul l'axiome peut générer le mot vide et dans ce cas il n'apparaît dans aucun membre droit d'une règle de production.

La règle $\alpha A \beta \rightarrow \alpha w \beta$ signifie que le non terminal **A** est remplacé par **w** si son contexte gauche est α et son contexte droit est β .

Exemples : aAb→aBBb aA→aBBa Ab→BBb A→AB/a sont de type 1

Remarque: Les grammaires contextuelles sont appelées aussi grammaires à contexte lié.

Type 0 (Grammaire sans restriction ou Grammaire Générale)

Une grammaire G=(T, N, S, P) est de type 0 si la forme des règles de production dans P n'est l'objet d'aucune restriction

Donc, Type 3: $A \rightarrow wB$ (ou $A \rightarrow Bw$) et $A \rightarrow w$ $A \in N$ et $w \in T^*$

Type 2: $A \rightarrow w$ $A \in N$ et $w \in (T \cup N)^*$

Type 1 : $\alpha A\beta \rightarrow \alpha w\beta$

Type 0: aucune contrainte

Ainsi, nous avons la hiérarchie de Shomsky:

type $3 \subseteq \text{type } 2 \subseteq \text{type } 1 \subseteq \text{type } 0$

32

Remarque: Pour une grammaire G donnée, on cherche à trouver le plus petit type de G au sens de l'inclusion (du plus haut rang)

Exemple : Soit une grammaire G=({a, b}, {S, A}, S, P) où:

 $P=\{S\rightarrow aaS/A, A\rightarrow bbA/bb\}.$

G est une grammaire de **type 2** car toutes les règles sont de la forme : $\mathbf{A} \rightarrow \alpha$ avec $A \in \mathbb{N}$ et $\alpha \in (T \cup \mathbb{N})^*$

Mais elle est aussi de **type 3** (régulière droite) car toutes les règles sont de la forme : $\mathbf{A} \rightarrow \mathbf{w} \mathbf{B}$ ou $\mathbf{A} \rightarrow \mathbf{w}$ avec $\mathbf{A}, \mathbf{B} \in \mathbf{N}$ et $\mathbf{w} \in \mathbf{T}^*$

Dans ce cas, on dira qu'elle est de type 3.

C'est le plus petit type au sens de l'inclusion.

Etant donnée une grammaire G, on vérifie dans l'ordre :

Si elle est de type 3

Sinon si elle est de type 2

Sinon si elle est de type 1

Sinon elle est de type 0.

A chaque type de grammaire est associé un type de langage :

- Les grammaires de type 3 génèrent les langages réguliers.
- Les grammaires de type 2 génèrent les langages algébriques ou à contexte libre
- Les grammaires de type 1 génèrent les langages contextuels ou à contexte lié
- Les grammaires de type 0 génèrent tous les langages récursivement énumérables.

Définition (Type d'un langage)

Un langage est de type i s'il existe une grammaire de type i qui le génère (engendre).

Un langage est strictement de type i :

- o s'il est engendré par une grammaire de type i
- o et il **n'existe pas** de grammaire de **type supérieur à i** qui l'engendre.

Exemple: {aⁿb^m / n, m ≥0} est de type 3 mais {aⁿbⁿ / n≥0} est strictement de type 2

Remarques:

- Un langage peut être généré par différentes grammaires qui peuvent être de type différent.
- Un langage prend le plus petit type au sens de l'inclusion.

Exemple : Soit le langage $L_1 = \{ ww^R / w \in \{a, b\}^* \}$

 $L_1 = \{\varepsilon, aa, bb, abba, aaaa, bbbb, abbbba, abaaba, ... \}$

L₁ est généré par la grammaire G₁=({a, b}, {S}, S, P) où: $P=\{S\rightarrow aSa / bSb / \epsilon \}.$

G n'est pas de type 3 car la règle S→ aSa n'est ni régulière droite ni régulière gauche.

Cette grammaire est de type 2 car toutes les règles sont de la forme : $\mathbf{A} \to \alpha$ avec $A \in \mathbb{N}$ et $\alpha \in (T \cup \mathbb{N})^*$.

Donc L₁ est de type 2 car il est généré par une grammaire de type 2.

L₂ est généré par la grammaire G₂=({a, b}, {S, A, B}, S, P) où P={ S \rightarrow AB, A \rightarrow aaA/ ϵ , B \rightarrow bB/ ϵ }

 G_2 n'est pas de type 3 car la règle $S \rightarrow AB$ n'est ni régulière droite ni régulière gauche.

Par contre, G_2 est de type 2 car toutes les règles sont de la forme $\mathbf{A} \rightarrow \alpha$ avec $A \in \mathbb{N}$ et $\alpha \in (T \cup \mathbb{N})^*$.

L₂ est donc de type 2 car il est généré par G₂ qui est de type 2.

Peut-on trouver une grammaire de type 3 qui le génère ?

Soit la grammaire $G_3=(\{a, b\}, \{S, B\}, S, P)$ où $P=\{S\rightarrow aaS/B, B\rightarrow bB/\epsilon\}).$

G₃ est une grammaire de type 3. En effet, elle est régulière droite. Toutes les règles sont de la forme :

 $\mathbf{A} \to \mathbf{w} \mathbf{B}$ ou $\mathbf{A} \to \mathbf{w}$ avec $A, B \in \mathbb{N}$ et $\mathbf{w} \in T^*$.

La grammaire G₃ génère le langage L₂.

Donc, L₂ est de type 3. C'est le plus petit type au sens de l'inclusion.

Etant donné un langage L, on cherche toujours à déterminer le type le plus petit au sens de l'inclusion.

EXEMPLES CLASSIQUES DE LANGAGES

```
Type 3: L={ a^nb^m / n, m \ge 0 }.
L=\{\varepsilon, a, b, aa, bbb, aaabb, abbb, ..., a---ab-----b, ....\}
Une grammaire de type 3 qui engendre L est :
   G= ({a,b}, {S,B}, S, {S \rightarrow aS / B; B \rightarrow bB / \varepsilon }.
Type 2: L={ a^nb^n / n \ge 0}
L=\{\varepsilon, ab, aabb, aaabbb, aaaabbbb, ..., a---ab---b, ...\}
Une grammaire de type 2 qui engendre L est :
    G = (\{a,b\},\{S\},S,\{S \rightarrow aSb / \epsilon\})
```

LANGAGES ET AUTOMATES

Enfin, à chaque type de langage est associé un type d'automate qui permet de reconnaître les langages de sa classe :

- Les langages de Type 3 appelés aussi langages réguliers sont reconnus par des automates d'états finis.
- Les langages de Type 2 appelés aussi langages algébriques sont reconnus par des automates à piles.
- Les langages de Type 1 appelés aussi langages contextuels sont reconnus par des automates à bornes linéaires.
- Les langages de Type 0 appelés aussi langages récursivement énumérables sont reconnus par des machines de Turing.