Sardana_Module4 HW

2023-02-06

Problem Set1 1

```
n = 20
p = 0.7
E_x <- n*p
q <- (1-p)
V_x <- n*p*q
V_x
## [1] 4.2
# Probability of Y greater than 15
# There are 100 microRNA's independent of each other.

P_Y <- 1-pnorm(15, E_x, sd = sqrt(V_x)/sqrt(100))
P_Y
## [1] 5.317746e-07</pre>
```

Problem Set 2 # Require package mvtnorm

```
require(mvtnorm)
## Loading required package: mvtnorm
mean x = 7
var x = 3
mean_y <- 12
var_y <- 7
covar_xy <- 3
# No. of simulations = 1000
nsim <- 1000
XmeanLess.sim <- rep(NA, nsim)</pre>
for (i in 1:nsim) {
  data_simulation <- rmvnorm(100, mean = c(mean_x, mean_y), sigma = matrix(c(</pre>
var_x, covar_xy, covar_xy, var_y),ncol = 2)) # Generate a sample of size 100
from the bivariate normal distribution
  mean_simulation <- apply(data_simulation, 2, mean) # Find the mean of data
simulation
```

```
Xmean <- mean_simulation[1]</pre>
  Ymean <- mean_simulation[2]</pre>
  XmeanLess.sim[i] <- (Xmean + 0.5 < Ymean) # Logical statement</pre>
}
# Mean of all Monte Carlo simulations
mean(XmeanLess.sim)
## [1] 1
Sub part of Problem 2
# Monte carlo simulation for 95% confidence interval
mean(XmeanLess.sim) + c(-1,1) * 1.96 * sqrt(var(XmeanLess.sim) / nsim)
## [1] 1 1
Problem3 Calculate the mean of new random variable
n = 1000
# X1 follows chi square distribution
x1 \leftarrow rchisq(n, df = 8)
# x2 follows gamma distribution
x2 \leftarrow rgamma(n, shape = 1, scale = 2)
# x3 follows t test distribution
x3 \leftarrow rt(n, df = 5)
y \leftarrow sqrt(x1)*x2 + 4*(x3)^2
mean(y)
## [1] 12.21762
Problem4
an \leftarrow sqrt(2*log(n)) - 0.5*(log(log(n))+log(4*pi))*(2*log(n))^(-1/2)
bn \leftarrow (2*log(n))^(-1/2)
e <- double(); n <- 10000 # Serfling p.90
for (i in 1:1000) e[i] <- (max(rnorm(n))-an)/bn</pre>
plot(density(e),ylim=c(0,0.5))
f \leftarrow function(x) \{ exp(-x) * exp(-exp(-x)) \}
curve(f,range(density(e)$x),add=TRUE,col = "blue")
curve(dnorm,add=TRUE,col = "red")
```

density.default(x = e)

According to kernel density bandwidth selection, the big bandwidth over smooth the density curve, however a small bandwidth overfit the kernel density distribution.

In the above graph, black line is near to the original data produced.

The density of blue line fits much better to the black line than the red.