IT496: Introduction to Data Mining

Lecture 08

Choosing a Hypothesis Space

[Inductive Bias, Bias-Variance Trade-off, Model Complexity and Expressiveness Trade-off]

Arpit Rana 11th August 2023

Supervised Learning Process

Supervised Learning: Example

Problem: whether to wait for a table at a restaurant.

Example	Input Attributes											
	Alt		Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait	
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Yes$	
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$	
X 3	No	Yes	No	No	Some	\$	No	No	Burger	0 - 10	$y_3 = Yes$	
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$	
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$	
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0 - 10	$y_6 = Yes$	
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0 - 10	$y_7 = No$	
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0 - 10	$y_8 = Yes$	
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$	
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$	
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0 - 10	$y_{11} = No$	
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Yes$	

- Alternate: whether there is a suitable alternative restaurant nearby.
- Bar: whether the restaurant has a comfortable bar area to wait in.
- Fri/Sat: true on Fridays and Saturdays.
- Hungry: whether we are hungry right now.
- Patrons: how many people are in the restaurant (values are None, Some, and Full).

- Price: the restaurant's price range (\$, \$\$, \$\$\$).
- Raining: whether it is raining outside.
- Reservation: whether we made a reservation.
- Type: the kind of restaurant (French, Italian, Thai, or Burger).
- WaitEstimate: host's wait estimate: 0-10, 10-30, 30-60, or >60 minutes.

Supervised Learning: Example

Problem: whether to wait for a table at a restaurant.

	Example	Input Attributes											
	2.miipie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait	_
Training Data	\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$	
	\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$	
	X 3	No	Yes	No	No	Some	\$	No	No	Burger	0 - 10	$y_3 = Yes$	<i>c</i> ()
	\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$	y = f(x)
	x ₅ •	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$	Unknown
	x ₆ •	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0 - 10	$y_6 = Yes$	Target
	X 7 •	No	Yes	No	No	None	\$	Yes	No	Burger	0 - 10	$y_7 = No$	function f
	x ₈ .	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0 - 10	$y_8 = Yes$	
	X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$	
	\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$	
	\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = No$	
	X ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$	Instances
	Instance Space (X)	ソス	x 2 x	2 2	x 2	x 3	x 3	x 2	x 2	x 4	x 4	= 9216	
	1 (/	,						Size	of Hypo	othesis Spac	e (H)	_ 29216	

of Boolean Functions

Inservet Attailantes

O ... +

Hypothesis Space vs. Hypothesis

What do we mean by a Hypothesis Space (a.k.a. Model Class) and a hypothesis?

There are three different levels of specificity for using the term Hypothesis or Model:

- a broad hypothesis space (like "polynomials"),
- a hypothesis space with <u>hyperparameters</u> filled in (like "degree-2 polynomials"), and
- a specific hypothesis with all <u>parameters</u> filled in (like $5x^2 + 3x 2$).

Hypothesis Space vs. Hypothesis

What do we mean by a Hypothesis Space (a.k.a. Model Class) and a hypothesis?

There are three different levels of specificity for using the term Hypothesis or Model:

$$y = f(x) = bx + a$$

$$= f(x) = e^{-bx}$$

$$= f(x) = \sin(bx)$$

$$= f(x) = bx^{2}$$

$$= f(x) = \sqrt{bx + a}$$

$$= f(x) = 3x + 2$$
Hyperparameter:
$$degree=1$$

$$y = f(x) = bx + a$$

$$= f(x) = \sqrt{bx + a}$$

$$= f(x) = 3x + 2$$

Hypothesis Space vs. Hypothesis

How do we choose a good Hypothesis Space or Model Class?

Hypothesis Space Selection is Subjective

Most probable hypothesis given the data -

$$h' = \underset{h \in \mathcal{H}}{\operatorname{arg} \, max} \, P(h \mid S) \quad \equiv \quad h' = \underset{h \in \mathcal{H}}{\operatorname{arg} \, max} \, P(S \mid h) \, P(h)$$

• We can say that the prior probability P(h) is high for a smooth degree-1 or -2 polynomial and lower for a degree-12 polynomial with large, sharp spikes.

Hypothesis Space Selection is Subjective

The observed dataset S alone does not allow us to make conclusions about unseen instances. We need to make some assumptions!

- These assumptions induce the <u>bias</u> (a.k.a. inductive or learning bias) of a learning algorithm.
- Two ways to induce bias:
 - Restriction: Limit the hypothesis space (e.g., degree-2 polynomials)
 - *Preference*: Impose ordering on hypothesis space (e.g., prefer simpler than complex)

Hypothesis Space Selection is not only subjective but is empirical also.

Part of hypothesis space selection is <u>qualitative and subjective</u>:
 We might select polynomials rather than decision trees based on something that we know about the problem,

and

• part is <u>quantitative and empirical</u>:

Within the class of polynomials, we might select Degree = 2, because that value performs best on the validation data set.

Experimental Evaluation of Learning Algorithms

The overall <u>objective</u> of the Learning Algorithm is to find a *hypothesis* that -

- is <u>consistent</u> (i.e., fits the training data), but more importantly,
- <u>generalizes well</u> for previously unseen data.

Experimental Evaluation defines ways to Measure the Generalizability of a Learning Algorithm.

Experimental Evaluation of Learning Algorithms

Sample Error

The sample error of hypothesis *h* with respect to the target function *f* and data sample S is:

$$error_S(h) = rac{1}{n} \sum_{x \in S} \delta(h(x), f(x))$$

It is *impossible* to asses true error, so we try to estimate it using sample error.

True Error

The *true error* of hypothesis h with respect to the target function f and the distribution D is the probability that h will misclassify an instance drawn at random according to D:

$$error_D(h) = P_{x \in D}[h(x)
eq f(x)]$$

Generalization Error

Generalization error (a.k.a. out-of-sample error) is a measure of how accurately an algorithm is able to predict outcome values for *previously unseen data*.

Choosing a Hypothesis Space - I

One way to analyze hypothesis spaces is by

- the <u>bias</u> they impose (regardless of the training data set), and
- the <u>variance</u> they produce (from one training set to another).

Bias

The tendency of a predictive hypothesis to deviate from the expected value when averaged over different training sets.

- Bias often results from restrictions imposed by the hypothesis space.
- We say that a hypothesis is <u>underfitting</u> when it fails to find a pattern in the data.

Variance

The amount of change in the hypothesis due to fluctuation in the training data.

- We say a function is <u>overfitting</u> the data when it pays too much attention to the particular data set it is trained on.
- It causes the hypothesis to perform poorly on unseen data.

Bias-Variance Trade-off

- High Variance-High Bias
 The model is inconsistent and also inaccurate on average
- Low Variance-High Bias
 Models are consistent but low on average
- High Variance-Low Bias
 Somewhat accurate but inconsistent on average
- Low Variance-Low Bias
 Model is consistent and accurate on average

Analogy with throwing darts at a board.

Choosing a Hypothesis Space - II

Another way to analyze hypothesis spaces is by

- the *expressiveness* (i.e., ability of a model to represent a wide variety of functions or patterns) of a hypothesis space, and
 - Can be measured by the size of the hypothesis space
- the *model complexity* (i.e., how intricate the relationships a model can capture) of a hypothesis space.
 - Can be estimated by the number of parameters of a hypothesis

<u>Note-1</u>: Sometimes the term *model capacity* is used to refer to model complexity and expressiveness together.

<u>Note-2</u>: In general, the required amount of training data depends on the model complexity, representativeness of the training sample, and the acceptable error margin.

Choosing a Hypothesis Space - II

There is a <u>tradeoff</u> between the <u>expressiveness</u> of a hypothesis space and the <u>computational</u> <u>complexity</u> of finding a good hypothesis within that space.

- Fitting a straight line to data is an easy computation; fitting high-degree polynomials is somewhat harder; and fitting unusual-looking functions may be undecidable.
- After learning h, computing h(x) when h is a linear function is guaranteed to be fast, while computing an arbitrarily complex function may not even guaranteed to terminate.

For example:

• In Deep Learning, representations are not simple but the h(x) computation still takes only a bounded number of steps to compute with appropriate hardware.

Bias-Variance vs. Model's Complexity

The relationship between <u>bias</u> and <u>variance</u> is closely related to the machine learning concepts of <u>overfitting</u>, <u>underfitting</u>, and <u>model's complexity</u>.

- Increasing a model's complexity typically increases its variance and reduces its bias.
- Reducing a model's complexity increases its bias and reduces its variance.

This is why it is called a *tradeoff*.

Learning as a Search

Given a hypothesis space, data, and a bias, the problem of learning can be reduced to one of <u>search</u>.

Next lecture **Evaluation**

Evaluation 18th August 2023