

ZB32L030

ARM® Cortex®-M0+ 32bit Micro-Controller Datasheet

Version R2.8.5 11/28, 2023

产品特性

■ ARM® Cortex®-M0+ 内核

- ➤ 32K/64K字节嵌入式Flash,具有擦写保护功能
- ➤ 8K字节SRAM
- ▶ 最高运行到24MHz
- ▶ 一个24位系统定时器
- ▶ 支持低功耗睡眠模式
- ▶ 内建单周期32位硬件乘法器
- ➤ 8us 唤醒时间@Fcpu=24Mhz

■ 工作条件

- ▶ 宽电压工作范围2.5V至5.5V
- ▶ 宽工作频率最高至24MHz
- ▶ 工作温度: -40° C至+85° C

■ 时钟源

◇ 4路可选时钟源

- ▶ 外部4MHz~24MHz高速晶振
- ▶ 外部32.768KHz晶振
- ▶ 内部4MHz~24MHz高速时钟
- ▶ 内部低速38.4KHz/32.768KHz时钟
- ▶ 支持硬件时钟监视

♦ RTC

- ➤ 支持RTC计数(秒/分/小时)及万年历功能 (日/月/年)
- ▶ 支持闹铃功能寄存器(秒/分/小时/日/月/年)
- ▶ 支持RTC从Deep Sleep模式唤醒系统

■ 电源管理

- POR,PDR,LVR
- 两种低功耗工作模式: Sleep、Deep Sleep Mode
- ▶ 低电压检测,可配置为中断或复位
- ▶ 唤醒@sleep:所有中断源都可唤醒
- ▶ 唤醒@Deep sleep: 所有GPIO PIN与 RTC(低速时钟工作)

■ 中断

- ▶ 嵌套向量中断控制器(NVIC)用于控制32 个中断源,每个中断源可设置为4个优先
- ▶ 支持串行调试(SWD)带2个观察点/4个断点

■ 通用I/O引脚

▶ 在48-Pin封装下39个I/O

■ 内置ISP Bootloader

▶ 支持通过UART 进行程序升级

■ 定时器/计数器

- ▶ 通用定时器: 4x16 bits
- ▶ 高级定时器: 3x16 bits,
 - 1x24bits(SysTick)
- ▶ 可编程的计数器:1x16 bits
- ▶ 看门狗计数器: WWDTx1, IWDTx1
- ▶ 基础定时器: 2x16bits
- ▶ 低功耗定时器: 1x16bits

■ 蜂鸣器频率发生器

▶ 可产生5个1KHz, 2KHz, 4KHz的蜂鸣信号

■ 通信接口

- ▶ UART0,1,2,3标准通讯接口
- ▶ 支持低速时钟的超低功耗LPUART
- ▶ SPIX2 标准通讯接口,最高达20Mbps
- ▶ I2CX2标准通讯接口,主模式最高支持 1Mbps,从模式最高支持800Kbps
- ➤ One-Wire通讯接口

ADC

- ▶ 12位1Msps采样速率,12位SAR型ADC
- ▶ 24通道: 16路的外部引脚, 2路的OPA 输出, 1路的1/3*VDD,1路的BGR 1.2V,1路的DAC
- ▶ 外部参考电压: VDD,GPIO(PB01) PIN
- ▶ 内置参考电压:2.5V

■ PWM

▶ 支持最多3个互补式输出

■ DAC(6-bits)X2

- 运算放大器(OPA)X2
- 电压比较器(VCX2) / 低电压检测器 (LVD)
- 硬件CRC-16模块
- 16字节(128位)的芯片唯一ID (UID)
- 开发工具
 - ➤ SWD全功能的嵌入式调试解决方案
- 封装形式: TSSOP28, QFN32, LQFP32/48

目录

产品物	5性		2
目录			3
图索引	·		5
表索引	·		6
[1]	简介		7
[2]	描述		8
	2.1	设备概述	8
	2.2	内部框图结构	9
	2.3	引脚定义	10
	2.4	引脚功能配置	13
	2.5	复用引脚功能说明	16
	2.6	模块与引脚信号说明	19
	2.7	串行接口说明	21
[3]	储存	器映像	22
[4]	典型	应用线路图	23
[5]	电气物	特性	24
	5.1	测试条件	24
		5.1-1 最小和最大数值	24
		5.1-2 典型数值	24
	5.2	绝对最大额定值	25
	5.3	工作条件	26
		5.3-1 通用工作条件	
		5.3-2 上电和掉电时的工作条件	
		5.3-3 内嵌复位和 LVD 模块特性	
		5.3-4 内置的参考电压	
		5.3-5 供电电流特性	
		5.3-6 从低功耗模式唤醒的时间 5.3-7 外部时钟源特性	
		5.3-8 内部时钟源特性	
		5.3-9 Flash 特性	
		5.3-10 电磁敏感特性	
		5.3-11 I/O Port 特性	
		5.3-12 ADC 特性	39

	5.3-13 VC 特性	41
	5.3-14 OPA 特性	
	5.3-15 TIM 定时器特性	
	5.3-16 通信接口	47
[6]	封装特性	
	6.1 TSSOP28 封装	
	6.2 QFN32 封装	51
	6.3 LQFP32 封装	52
	6.5 丝印说明	54
	6.5-1 TSSOP28	
	6.5-2 QFN32	54
	6.5-3 LQFP32	55
	6.5-3 LQFP48	55
[7]	型号命名	56
[8]	产品选型表	57
791	版太修订纪录	5.8

图索引

Figure 1	Block Diagram	S
Figure 2	ZB32L030 LQFP48	.10
	ZB32L030 LQFP32/QFN32	
_	ZB32L030 TSSOP28	
•	储存器映像图	
Figure 6	典型应用线路图	.23
•	I2C 时序图	
_	SPI 时序图(主机模式)	
_	SPI 时序图(从机模式 CPHA=0)	
•) SPI 时序图(从机模式 CPHA=1)	

表索引

Table 1	ZB32L030 芯片特性与周边配备	8
Table 2	引脚功能说明表	15
	选择芯片引脚表	
	模块与引脚信号说明表	
	串行接口说明表	

【1】简介

ZB32L030 是一款内嵌 32 位 ARM® Cortex®-M0+内核的超低功耗和宽电压工作范围 (2.5V~5.5V)的微控制器,最高可运行在 24MHz,内置 32K/64K 字节的嵌入式 Flash,8K 字节的 SRAM和 集成了 12 位 1Msps 高精度 SAR 型 ADC(16 channel)、DAC(6-bits)、OPAx2、RTC、比较器x2、UARTx4、LPUART、SPIx2、I2Cx2 和 PWMx (多路独立输出或互补式输出)等丰富的外设接口,具有高整合度、高抗干扰、高可靠性的特点。

ZB32L030 系列具有宽电压工作范围、低功耗、低待机电流、高集成度外设、高操作效率、快速唤醒及高性价比等优势,广泛适用于下列应用:

小家电、充电器、遥控器、电子烟、燃气报警器、数显表、温控器、记录仪、电机驱动、智能门锁、智能传感器、智能家居以及智慧城市等。

【2】 描述

2.1 设备概述

		ZB32L030XXX	ZB32L030XXX	ZB32L030XXX					
	引脚数	48	32	28					
	GPIO	39	25	22					
MCU	内核	Cortex M0+							
IVICO	频率		24Mhz						
	Flash		64K Bytes						
	SRAM		8K Bytes						
	基础 (16-bits)	2x1	6 bits(T10,T11) / 2x32	2 bits					
	通用(16-bits)		4 (T2,T2A,T2B,T2C)						
Timer	高级(16 bits)		3 (T1,T1A,T1B)						
rimer	PCA(16 bits)		1						
	SysTick(24 bits)		1						
	省电(LPTIMER)		1						
RTC/SYS	TICK/IWDG/WWDG		1/1/1/1						
	AWK		1						
	工作电压范围	2.5~5.5V							
	工作温度	-40~85 ℃							
	调试功能	SWD							
	唯一标识符		16 Bytes						
	UART	4	2	2					
通信	LPUART	1	0						
界面	SPI	2(16/20Mhz)	1(16/20Mhz)	1((16/20Mhz)					
	I2C	2	2	2					
	比较器	2	2	2					
	内部高速晶振	HI	RC : 4/8/16/22.12/24	ИНz					
时钟	内部低速晶振		SIRC: 32.768/38.4KH	Z					
ዞ') ተተ	外部高速晶振	HXT : 4M~24MHz							
	外部低速晶振								
	12 Bits A/D	17 CH	11 CH						
	OPAx2	2 2 0							
	蜂鸣器	1							
	封装	LQFP48	LQFP32/QFN32	TSSOP28					

Table 1 ZB32L030 芯片特性与周边配备

2.2 内部框图结构

Figure 1 Block Diagram

Note: S*: Maximum channels for Single output

C*: Maximum channels for complement output

1*: is UART0, UART1, UART2, UART3

2.3 引脚定义

Figure 2 ZB32L030 LQFP48

Figure 3 ZB32L030 LQFP32/QFN32

Figure 4 ZB32L030 TSSOP28

2.4 引脚功能配置

	Pin		Pin	Power	UARTx4	SPIx2	TIM2	TIM2A	TIM2B	TIM2C	ADC	Clock
	Num	1	Name	WKUP XTAL	LPUART	I2Cx2	PCA LPTIM	TIM1 TIM10	TIM1A TIM11	TIM1B	VCx2 OPAx2	IR LVD
48	32	28		ISP			Li ilivi	1114110	1114111		OI AXE	SWD
1	1	1	VCAP	Р								
2			PC13	WKUP					T2B_CH4	T2C_CH1		
3		2	PB05	XTLI					_			
4		3	PB04	XTLO								
5	2	4	PA01	XTHI	TXD_1	SDA_0						
6	3	5	PA02	XTHO	RXD_1	SCL_0		T1_CH1				
7	4	6	NRST	жите	10.5_1	362_0		11_0111				
8	-		AVSS	G								
9	5	7	AVDD	P								
10	6	8	PA00	WKUP			T2_CH1 T2_ETR	T1_CH1 T2A_CH1 TIM10_TOG		T2C_ETR	AIN0 VC0_P4 VC0_N0 VC0_O VC1_P0 VC1_N4	
11	7	9	PD00	WKUP		MOSI_1	T2_CH2	T1_CH1N T2A_CH2 T2A_ETR	TIM11_TOGN		AIN1 VC0_P5 VC0_N1 VC1_P1 VC1_N5	
12	8	10	PA14	WKUP	TXD_1	MISO_1	T2_CH3	T1_CH1 T2A_CH1	T2B_CH1 TIM11_TOG		AIN2 VC0_P6 VC0_N2 VC1_P2 VC1_O	
13	9	11	PA03	WKUP	RXD_1	CS_1	T2_CH4	T1_CH1N T2A_CH2	T1A_CH1	T1B_CH1 T2C_CH1	AIN3 VC0_P7 VC0_N3 VC1_P3	
14	10	12	PA04	WKUP	TXD_1	CS_0	PCA_CH4	T2A_CH3	T2B_ETR T1A_CH1	T1B_CH1N T2C_CH2	AIN4 VC0_P8 VC0_N4 VC1_P4	
15	11	13	PA05	WKUP		CLK_0	T2_CH1 T2_ETR PCA_ECI	T2A_CH4	T1A_CH1N		AIN5 VC0_P9 VC0_N5 VC1_P5	LVDO
16	12	14	PA06	WKUP		MISO_0	PCA_CH0	T2A_CH1		T1B_CH1	AIN6 VC0_P10 VC0_N6 VC0_O	

			D:	D	HADT	CDI2	TIMA	TIMES	TIMAD	TIMAGE	ADC	Clarate
١	Pin Num		Pin Name	Power WKUP XTAL	UARTx4 LPUART	SPIx2 I2Cx2	TIM2 PCA LPTIM	TIM2A TIM1 TIM10	TIM2B TIM1A TIM11	TIM2C TIM1B	ADC VCx2 OPAx2	Clock IR LVD
48	32	28		ISP								SWD
17		15	PA07	WKUP	TXD_3	MOSI_0	PCA_CH1	T1_CH1	T2B_CH1	T1B_CH1N T2C_CH1	AIN7 VC0_P11 VC0_N7 VC1_O	
18		16	PB00	WKUP	RXD_3		PCA_CH2		T1A_CH1 TIM11_G	T2C_CH2	AIN8 VC0_N10 VC1_N6	МСО
19		17	PB01	WKUP			PCA_CH3		T1A_CH1N TIM11_EXT	T2C_CH3	AIN9 EXVREF VC1_P6 VC1_N7	
20	13	18	PB02	WKUP			PCA_ECI LPT_TOG	T1_CH1 T1_BK	T1A_BK	T1B_BK	AIN16 VC1_P7 VC1_N8 OP2_INN	
21	14		PB10 PB11	WKUP	TX_LP RX_LP	CLK_1 SCL_1 SDA_1		T1_CH1 T2A_CH1 T1_CH1N		T2C_CH1 T1B_CH1	AIN17 VC1_P8 OP2_INP AIN18	
					IXX_LF	3DA_I		TI_CITIN		TID_CITI	OP2_O	
23	16	19	VSS	G								
24	17	20	VDD	Р								
25			PB12	WKUP	TXD_2	CS_1		T1_BK		T1B_CH1	AIN19 VC1_P9	
26	18		PB13	WKUP	RXD_2	CLK_1 SCL_1		T1A_CH1N		T2C_CH1 T1B_CH1N	AIN20 VC1_P10 OP1_INP	
27			PB14	WKUP		MISO_1 SDA_1	T2_CH1	T1_CH1	T1A_BK	T2C_CH1	AIN21 VC1_P11 OP1_O	
28	19		PB15	WKUP		MOSI_1	T2_CH2	T1_CH1N		T2C_CH2	AIN22 OP1_INN	
29		21	PA08	WKUP	TXD_0		T2_CH3	T1_CH1		T2C_CH3		
30		22	PA09	WKUP	TXD_0	SCL_0	T2_CH4	T1_CH1N T1_BK	T1A_CH1	T2C_CH4		
31	20	23	PA10	WKUP	RXD_0	SDA_0		T1_CH2	T1A_CH1	T1B_CH1 T2C_CH1 T1B_BK		
32	21	24	PC05	WKUP		SCL_1 MISO_0		T1_CH2N TIM10_EXT	T1A_CH1N		VC0_O	МСО
33	22	25	PC06	WKUP		SDA_1 MOSI_0		T1_CH3 TIM10_G	T1A_CH2	T1B_CH1 T2C_ETR	VC1_0	
34	23	26	PC07	WKUP	RXD_0			T1_CH3N	T1A_CH2N	T1B_CH1N T2C_ETR		SWDIO LVD_O
35			PD06	WKUP		SCL_1		T1_CH4	T1A_CH3	T1B_CH2		_

			Pin	Power	UARTx4	SPIx2	TIM2	TIM2A	TIM2B	TIM2C	ADC	Clock
	Pin		Name	WKUP	LPUART	I2Cx2	PCA	TIM1	TIM1A	TIM1B	VCx2	IR
1	Num	1		XTAL			LPTIM	TIM10	TIM11		OPAx2	LVD
48	32	28		ISP								SWD
36			PD07			SDA_1			T1A_CH3N	T1B_CH2N		
37	24	27	PD01	WKUP	TXD_0			T2A_CH1	T1A_CH4	T1B_CH3		SWCLK
					TXD_1							LVD_O
												MCO
38	25		PA15	WKUP	RXD_1	CS_0	T2_ETR	T2A_CH2		T1B_CH3N		
							T2_CH1	T1_CH1		T2C_CH4		
39	26		PB03	WKUP		CLK_0	T2_CH2	T2A_CH3		T2C_CH3	VC1_N9	
							LPT_GATE	T1_CH1N		T1B_CH1		
40	27		PC15	WKUP		MISO_0	PCA_CH0	T2A_CH4		T2C_CH2	VC0_P12	
							LPT_EXT			T1B_CH1N	VC1_P12	
			5644				201 0111	=1 =11		T1B_BK	VC1_N10	
41	28		PC14	WKUP		MOSI_0	PCA_CH1	T1_BK		T2C_CH1	VC0_P13	
42	29		PB06	WIZLID	TVD 0	CCL 0	LPT_GATE	T1 CU1			VC1_P13	
42	29		PB06	WKUP	TXD_0	SCL_0	T2_CH1 LPT_EXT	T1_CH1 T2A_CH2			VC0_P14 VC1_P14	
							LPI_EXI	LPT_TOG			VC1_F14	
43	30		PB07	WKUP	RXD_0	SDA 0	T2 CH2	T1 CH1N	T2B_CH1	T1B CH1	VC0 P15	
							LPT_TOGN				VC1_P15	
44	31	28	PD03	воото								
45			PB08	WKUP	TXD_0	SCL_0		T2A_CH1	T2B CH2	T2C CH2		
									_	T1B_CH1N		
46			PB09	WKUP	RXD_0	SDA_0			T2B_CH3	T1B_CH4		
						CS_1						
47	32		VSS	G								
48			VDD	Р								

Table 2 引脚功能说明表

2.5 复用引脚功能说明

	Pin						GPIOX_	AFR[i+3:i]				
ı	Num	1	•	1	2	,		-		7		F/C
48	32	28	0	1	2	3	4	5	6	7	8	F/Config
1	1	1	VCAP	Р	Р	Р	Р	Р	Р	Р	Р	Р
2			PC13			T2C_CH1		T2B_CH4				LVDIN0
3		2	PB05									XTLI
4		3	PB04									XTLO
5	2	4	PA01	SDA 0		TVD 1						XTHI
				SDA_0	T1 CU1	TXD_1						
6	3	5	PA02	SCL_0	T1_CH1	RXD_1						XTHO
7	4	6	NRST									
8			AVSS	G	G	G	G	G	G	G		G
9	5	7	AVDD	Р	Р	Р	Р	Р	Р	Р		Р
10	6	8	PA00	TIM10_TOG	T1_CH1	T2_CH1	T2_ETR	T2A_CH1	T2C_ETR		VC0_O	AIN0
												VC0_P4
												VC0_N0 VC1_P0
												VC1_I 0 VC1_N4
11	7	9	PD00	TIM10_TOGN	T1_CH1N	T2_CH2		T2A_CH2	T2A_ETR	MOSI_1	TIM11_TOGN	
				_	_			_	_	_	_	VC0_P5
												VC0_N1
												VC1_P1
												VC1_N5
12	8	10	PA14	TXD_1	T1_CH1	T2_CH3	T2A_CH1	T2B_CH1	TIM11_TOG	MISO_1	VC1_O	AIN2
												VC0_P6 VC0_N2
												VC1_P2
												_
13	9	11	PA03	RXD_1	T1_CH1N	T1A_CH1	T1B_CH1	T2A_CH2	T2_CH4	CS_1	T2C_CH1	AIN3
												VC0_P7
												VC0_N3
14	10	12	PA04	CS_0	TXD_1	PCA_CH4	T1A_CH1	T1B_CH1N	T2A_CH3	T2B_ETR	T2C_CH2	VC1_P3 AIN4
	10	12	1704	C3_0	IXD_I	T CA_CH4	I IIA_CIII	TIB_CITIN	12/12/13	IZD_LIK	120_0112	VC0_P8
												VC0_N4
												VC1_P4
15	11	13	PA05	CLK_0	PCA_ECI	T2_ETR	T1A_CH1N	T2_CH1	T2A_CH4	LVDO		AIN5
												VC0_P9
												VC0_N5
16/	12	14	PA06	MISO_0	PCA_CH0		T1B_CH1	T2A_CH1		VC0_O	-	VC1_P5 AIN6
10/	12	14	PAUD	IVII3O_U	PCA_CHU		I IB_CHI	12A_CHI		VC0_0		VC0_P10
												VC0_N6
17		15	PA07	MOSI_0	PCA_CH1	T1_CH1	T1B_CH1N	T2B_CH1	T2C_CH1	VC1_O	TXD_3	AIN7
												VC0_P11
												VC0_N7

4.0		4.0	DD	DC4 5::0	l	T4 A 5111	TIN 46 4 . 6		T0.6. 6:::0	1466	D)/E 2	
18		16	PB00	PCA_CH2		T1A_CH1	TIM11_G		T2C_CH2	MCO	RXD_3	AIN8
												VC0_N10
10		47	DD01	DCA CUD		T4 A CUIANI	TIMAL EVE		TOC CITO			VC1_N6
19		17	PB01	PCA_CH3		TTA_CHTN	TIM11_EXT		T2C_CH3			AIN9 EXVREF
												VC1_P6
												VC1_F0 VC1_N7
20	13	18	PB02		PCA_ECI	LPT_TOG	T1_CH1	T1_BK	T1A_BK	T1B_BK		AIN16
	.5		1 002		I CA_ECI	1111100	11_0111	TT_BIX	TIA_BIC	TTB_BR		VC1_P7
												VC1_N8
												OP2_INN
21	14		PB10	SCL_1	CLK_1	T1_CH1		T2A_CH1	T2C_CH1		TX_LP	AIN17
				_	_	_		_	_			VC1_P8
												OP2_INP
22	15		PB11	SDA_1		T1_CH1N		T1B_CH1			RX_LP	AIN18
												OP2_O
23	16	19	VSS	G								
24	17	20	VDD	Р								
25			PB12	CS_1	T1B_CH1		T1_BK		LXT_out		TXD_2	AIN19
				_	_		_		_		-	VC1_P9
26	18		PB13	CLK_1	SCL_1	T1A_CH1N	T1B_CH1N		HXT_out	T2C_CH1	RXD_2	AIN20
												VC1_P10
												OP1_INP
27			PB14	MISO_1	SDA_1	T1_CH1	T2_CH1	T1A_BK	SIRC_out	T2C_CH1		AIN21
												VC1_P11
												OP1_O
28	19		PB15	MOSI_1	T1_CH1N	T2_CH2	T2C_CH2		HIRC_out			AIN22
												OP0_INN
29		21	PA08	TXD_0		T1_CH1	T2_CH3		BEEP	T2C_CH3		
30		22	PA09	TXD_0	T1_CH1N	T1A_CH1	T2_CH4	T1_BK	1-Wire	T2C_CH4	SCL_0	
31	20	23	PA10	RXD_0	T1_CH2	T1A_CH1	T1B_CH1	T1B_BK	RTC_1hz	T2C_CH1	SDA_0	
32	21	24	PC05	TIM10_EXT	MISO_0	T1_CH2N	T1A_CH1N		MCO	VC0_O	SCL_1	
33	22	25	PC06	TIM10_G	MOSI_0	T1_CH3	T1A_CH2	T1B_CH1	T2C_ETR	VC1_O	SDA_1	
34	23	26	PC07		RXD_0	T1_CH3N	T1A_CH2N	T1B_CH1N	T2C_ETR	LVD_O		SWDIO
					>							(Config)
35			PD06	SCL_1		T1_CH4	T1A_CH3	T1B_CH2				
36			PD07			11_6111	T1A_CH3N	T1B_CH2N				
	24	27	_	SDA_1	TVD 0	T1 A C114	_		11/15 0	MCO		
37	24	27	PD01	TXD_1	TXD_0	T1A_CH4	T1B_CH3	T2A_CH1	LVD_O	МСО		SWCLK
												(Config)
38	25		PA15	CS_0	RXD_1	T1_CH1	T1B_CH3N	T2_ETR	T2_CH1	T2A_CH2	T2C_CH4	
39	26		PB03	CLK_0	LPT_GATE		T1_CH1N	T1B_CH1	T2_CH2	T2A_CH3	T2C_CH3	VC1_N9
40	27		PC15	MISO_0		PCA_CH0	LPT_EXT	T1B_CH1N	T2A_CH4	T1B_BK	T2C_CH2	VC0_P12
												VC1_P12
												VC1_N10
41	28		PC14	MOSI_0		LPT_GATE	PCA_CH1	T1_BK		T2C_CH1		VC0_P13
												VC1_P13

42	29		PB06	SCL_0	TXD_0	LPT_EXT	LPT_TOG	T1_CH1	T2A_CH2	T2_CH1	VC0_P14
											VC1_P14
43	30		PB07	SDA_0	RXD_0	LPT_TOGN	T1_CH1N	T1B_CH1	T2_CH2	T2B_CH1	VC0_P15
											VC1_P15
44	31	28	PD03								
			(BOOT0)								
45			PB08	SCL_0	TXD_0	T1B_CH1N	T2A_CH1	T2B_CH2	T2C_CH2		
46			PB09	SDA_0	RXD_0	CS_1		T2B_CH3	T1B_CH4	_	
47	32		VSS	G							
48			VDD	Р							

Table 3 选择芯片引脚表

2.6 模块与引脚信号说明

模块功能	引脚名称	说明					
	VDD	电源					
Power	AVDD	电源					
Power	VCAD.	LDO 内核供电					
	VCAP	(仅限内部电路使用,外部连接电容至少 1uf)					
Ground	VSS	接地					
Ground	AVSS	接地					
GPIO	PAx, PBx, PCx, PDx	通用数字输入/输出引脚					
NRST	NRST	复位输入端口,低有效,芯片复位					
ADC	AIN0~AIN23	ADC 输入通道 0~23					
ADC	EXVREF	ADC 外部参考电压					
	OPx_INN	OPA 负端输入					
OPA	OPx_INP	OPA 正端输出					
X=0,1,2	OPx_O	OPA 输出					
_	VCxN0~VCxN11	选择 VC0, VC1 负端输入					
VC	VCxP0~VCxP11	选择 VC0,VC1 正端输入					
X=0,1	VCx_O	VC0,VC1 比较输出					
LVD	LVD_O	电压侦测输出					
		当复位时 BOOT0 (PD03) 管脚为低电平,芯片工作于					
ISP	BOOT0	用户模式,芯片执行 FLASH 内的程序代码,可通过					
		SWD 协议对 FLASH 进行编程。					
WKUP	All GPIO	外部唤醒脚位					
LPUART	TXD_LP	LPUART 数据发送端					
LPUAKI	RXD_LP	LPUART 数据接收端					
UART	TXD_x	UARTx 数据发送端					
x=0,1,2,3	RXD_x	UARTx 数据接收端					
	MISO_x	SPI 模块主机输入从机输出数据信号					
SPI	MOSI_x	SPI 模块主机输出从机输入数据信号					
x=0,1	SCK_x	SPI 模块时钟信号					
	CS_x	SPI 片选择使能					
I2C	SDA_x	I2C 模块数据信号					
x=0,1	SCL_x	I2C 模块时钟信号					
通用定时器 TIMx	Tx_CH1, 2, 3, 4	TimerX 的捕获输入/比较输出/PWM 输出 CH1,2,3,4					
X=2,2A,2B,2C	Tx_ETR	Timerx 的外部计数输入信号					

模块功能	引脚名称	说明
可编程计数阵列	PCA_ECI	外部时钟输入信号
PCA	PCA_CH0~PCA_CH4	捕获输入/比较输出/PWM 输出 0~4
	TIM1_CH1,2,3,4	TIM1 PWM 输出 channel 1/2/3/4
	TIM1_CH1N,2N,3N	TIM1 PWM 输出 反相 channel 1N/2N/3N
	TIM1_BKIN	TIM1 刹车信号输入
高级定时器	TIM1A_CH1,2,3,4	TIM1A PWM 输出 channel 1/2/3/4
Advanced	TIM1A_CH1N,2N,3N	TIM1A PWM 输出 反相 channel 1N/2N/3N
Timer1,1A,1B	TIM1A_BKIN	TIM1A 刹车信号输入
	TIM1B_CH1,2,3,4	TIM1B PWM 输出 channel 1/2/3/4
	TIM1B_CH1N,2N,3N	TIM1B PWM 输出 反相 channel 1N/2N/3N
	TIM1B_BKIN	TIM1B 刹车信号输入
	LP_ETR	LP Timer 的外部计数输入信号
低功耗定时器	LP_GATE	LP Timer 的门控信号
LPTimer	LP_TOG	比较输出正端
	LP_TOGN	比较输出负端
	TIM10_ETR, TIM11_ETR	Timer10,11 的外部计数输入信号
基本定时器	TIM10_G, TIM11_G	Timer10,11 的门控信号
Timer10,11	TIM10_TOG, TIM11_TOG	比较输出正端
	TIM10_TOGN, TIM11_TOGN	比较输出负端

Table 4 模块与引脚信号说明表

2.7 串行接口说明

Number		4	2	2		F	
Serial	0	1	2	3	4	5	6
I2C	SCL_0	SCL_1					
120	SDA_0	SDA_1					
	CS_0	CS_1					
SPI	CLK_0	CLK_1					
381	MISO_0	MISO_1					
	MOSI_0	MOSI_1					
UART	TXD_0	TXD_1	TXD_2	TXD_3			
UAKI	RXD_0	RXD_1	RXD_2	RXD_3			
LDLIADT	TXD_LP						
LPUART	RXD_LP						
	T1_CH1	T1A_CH1	T1B_CH1	T2_CH1	T2A_CH1	T2B_CH1	T2C_CH1
	T1_CH2	T1A_CH2	T1B_CH2	T2_CH2	T2A_CH2	T2B_CH2	T2C_CH2
	T1_CH3	T1A_CH3	T1B_CH3	T2_CH3	T2A_CH3	T2B_CH3	T2C_CH3
	T1_CH4	T1A_CH4	T1B_CH4	T2_CH4	T2A_CH4	T2B_CH4	T2C_CH4
PWM							
独立 输出	PCA_CH0						
410 111	PCA_CH1						
	PCA_CH2						
	PCA_CH3						
	PCA_CH4						
PWM	T1_CH1,1N	T1A_CH1,1N	T1B_CH1,1N				
互补	T1_CH2,2N	T1A_CH2,2N	T1B_CH2,2N				
输出	T1_CH3,3N	T1A_CH3,3N	T1B_CH3,3N				

Table 5 串行接口说明表

Note:

PWM 互补输出: Tx_CH1 → Positive, Tx_CH1N → Negative

【3】 储存器映像

Figure 5 储存器映像图

【4】 典型应用线路图

Figure 6 典型应用线路图

【5】 电气特性

5.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

5.1-1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 T_A=25°C 和 T_A=T_{op,Max}下 执行的测试(T_{op,Max} 与选定 Part Number 所对应的的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3 \Sigma$)得到。

5.1-2 典型数值

除非特别说明,典型数据是基于 $T_A=25^\circ$ C 和 $VDD=3.3V(2.5V \leqslant VDD \leqslant 5.5V$ 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95% 产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

5.2 绝对最大额定值

符号	参数描述	条件	最小值	典型值	最大值	单位
VDD-VSS	外部电源电压		2.5		5.5	V
AVDD-AVSS	71'即电极电压	2.3			5.5	V
V _{IO}	IO 电压		-0.3		VDD+0.3	V
T _{STG}	存储温度		-40	25	150	°C
T _{OP}	工作温度		-40	25	85	°C
F _{CPU}	CPU 工作频率		32.768K	4M	24M	Hz
V _{ESD, HBM}	参见 5.3-10.1					
V _{ESD} , CDM	参见 5.3-10.1					
V _{ESD, MM}	参见 5.3-10.1					

注意

- 1. 温度测试方法: CP 阶段测试高温 85°C, 低温-40°C 和高温 85°C 的 chip level 测试仅在实验室 和 Production Quality Qualification 时测试
- 2. 频率测试方法: CP 阶段测试 24MHz 频率, Final Test 只关注于封装工艺的缺陷

5.3 工作条件

5.3-1 通用工作条件

符号	参数描述	条件	最小值	最大值	单位	参考
VDD	电源电压	-	2.5	5.5	V	
Cs	VCAP 电容	-	0.47	2.2	μF	推荐 1.0µF
T _{OP}	工作温度		-40	85	°C	

注意:

- 1. 推荐工作条件是确保半导体芯片正常工作的条件。在推荐工作条件的范围内,电气特性的所有规格值 均可得到保证。 务必在推荐工作条件下使用半导体芯片。超出该条件的使用可能会影响半导体的可 靠性。
- 2. 对于本数据手册中未记载的项目、使用条件或逻辑组合的使用,本公司不做任何保障。如果用户考虑 在所列条件之外使用本芯片,请事前联系销售代表。

5.3-2 上电和掉电时的工作条件

符号	参数	条件	最小值	典型值	最大值	单位
V _{POR}	POR 释放电压(上电过程)		2.2	2.25	2.2	V
V_{BOR}	BOR 检测电压(掉电过程)		2.2	2.25	2.3	V

注:由设计保证,不在生产中测试

5.3-3 内嵌复位和 LVD 模块特性

符号	参数	条件	最小值	典型值	最大值	单位
	VDD Detectable threshold	LVD_CR[2:0] = 000 (@25°C)	4.38	4.39	4.53	
		LVD_CR[2:0] = 001 (@25°C)	3.91	3.93	4.03	
		LVD_CR[2:0] = 010 (@25°C)	3.54	3.56	3.66	
Vleve		LVD_CR[2:0] = 011 (@25°C)	3.25	3.27	3.36	V
Vieve		LVD_CR[2:0] = 100 (@25°C)	3.00	3.04	3.10	V
		LVD_CR[2:0] = 101 (@25°C)	2.78	2.82	2.87	
		LVD_CR[2:0] = 110 (@25°C)	2.60	2.61	2.68	
		LVD_CR[2:0] = 111 (@25°C)	2.43	2.45	2.51	
I _{comp}	Detector's current	@25°C	1	1.5	2	μΑ

符号	参数	条件	最小值	典型值	最大值	单位
$T_{response}$	Detector's response time when VDD fall below or rise above the threshold.	@25°C	30	50	80	μs
T _{setup}	Detector's setup time when ENABLE. VDD unchanged.	@25°C	3	5	10	μs

注:数据基于考核结果,不在生产中测试

5.3-4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V.	Internal 2.5V	常温 25°C	2.54*(1-5%)	2.54V	2.54*(1+5%)	V
V_{CAP}	Reference Voltage	2.8~5.5V	2.34 (1-3%)	2.341	2.34 (1+3%)	
V.	/ Internal 2.5V -40~85°C		2 E 4*/1 60/1	2 5 41/	2 5 4 * / 1 + 6 9 /)	\/[1]
V _{CAP}	Reference Voltage	2.8~5.5V	2.54*(1-6%)	2.54V	2.54*(1+6%)	V[1]

注: [1] 数据基于测试分析结果,不在生产中测试。

5.3-5 供电电流特性

符号	参数		条件		典型值	最大值	单位
I _{DD}	All Peripherals			4M	298.3	411	
(Run	clock OFF, Run	V _{core} =1.2V	Clocksource:	8M	423.6	553	
Mode	while(1) in	VDD=2.5V-5.5V	HIRC	16M	673.5	846	μΑ
in RAM)	RAM			24M	916.3	1128	
	All Peripherals			4M	562.2	701	
	clock ON, Run	V _{core} =1.2V	Clocksource:	8M	966.7	1143	
	while(1) in Flash	VDD=2.5V-5.5V	HIRC	16M	1768.2	1988	μA
				24M	2550.7	2885	
	while(1) in V			4M	421.3	527	
		V _{core} =1.2V VDD=2.5V-5.5V	Clocksource: HIRC	8M	692	804	
I _{DD}				16M	1229.7	1394	μA
(Run	Flash			24M	1752.4	2000	
Mode in	All Peripherals		Clocksource: LXT32.768KHz Driver=1	Ta=-40°C	78.61	111.5	μΑ
FLASH)	clock ON, Run	V _{core} =1.2V		Ta=25°C	70.86	94.1	
rlasn)	while(1) in	VDD=2.5V-5.5V		Ta=50°C	72.85	92.7	
	Flash		Driver – I	Ta=85°C	78.54	98.4	
	All Peripherals clock OFF, Run while(1) in Vcore=1.2V VDD=2.5V-5.5V	Clashaarmaa	Ta=-40°C	77.56	110.5		
			Clocksource: LXT32.768KHz Driver=1	Ta=25°C	69.76	93	- μA
				Ta=50°C	71.7	91.5	
	Flash		Driver – i	Ta=85°C	77.45	97.1	
				4M	319.34	461	
	All Peripherals	V _{core} =1.2V	Clocksource:	8M	491.9	651	
	clock ON	VDD=2.5V-5.5V	HIRC	16M	837	943	μA
				24M	1176.9	1345	1
				4M	177.3	291.1	
I _{DD}	All Peripherals	V _{core} =1.2V	Clocksource:	8M	207.97	321.1	
(Sleep Mode)	clock OFF	VDD=2.5V-5.5V	HIRC	16M	269.11	383.6	- μΑ
wode)				24M	318.9	438	
				Ta=-40°C	77.29	109.5	
	All Peripherals	V _{core} =1.2V	Clocksource:	Ta=25°C	64.39	89.5	- - μΑ -
	clock ON	VDD=2.5V-5.5V	LXT32.768KHz	Ta=50°C	68.87	89.5	
			Driver=1	Ta=85°C	72.6	93.1	

符号	参数		条件		典型值	最大值	单位
				Ta=-40°C	76.21	108.2	
	All Peripherals	V _{core} =1.2V	Clocksource:	Ta=25°C	62.94	88.2	
	clock OFF	VDD=2.5V-5.5V	VDD=2.5V-5.5V LXT32.768KHz Driver=1	Ta=50°C	67.32	86.3	μA
			Driver – i	Ta=85°C	71.27	90.7	
	All Peripherals clock OFF, except RTC, IWDG, LPTIM, AWK	V _{core} =1.2V VDD=2.5V-5.5V		Ta=-40°C	0.75	1.0	
			Clocksource:	Ta=25°C	1.11	1.5	
			SIRC 32.768KHz	Ta=50°C	2.0	3.3	μΑ
				Ta=85°C	7.71	12.9	
		V _{core} =1.2V VDD=2.5V-5.5V		Ta=-40°C	0.75	1.0	
	All Peripherals		Clocksource: SIRC 32.768KHz	Ta=25°C	1.08	1.5	μΑ
	clock OFF, except RTC			Ta=50°C	2.0	3.3	
_	except Nic			Ta=85°C	7.69	12.8	
		V _{core} =1.2V VDD=2.5V-5.5V		Ta=-40°C	0.75	1.0	- 11Δ
	All Peripherals		Clocksource:	Ta=25°C	1.09	1.4	
I_{DD}	clock OFF, except IWDG		SIRC 32.768KHz	Ta=50°C	1.99	3.3	μA
(Deep	except iwbd			Ta=85°C	7.69	12.8	
Sleep				Ta=-40°C	0.75	1.0	μΑ
Mode)	All Peripherals	V _{core} =1.2V	Clocksource: SIRC 32.768KHz	Ta=25°C	1.09	1.4	
	clock OFF, except LPTIM	VDD=2.5V-5.5V		Ta=50°C	2.0	3.3	
	except LF IIIVI			Ta=85°C	7.69	12.8	
				Ta=-40°C	0.75	1.0	
	All Peripherals	V _{core} =1.2V	Clocksource:	Ta=25°C	1.08	1.4	
	clock OFF, except AW	VDD=2.5V-5.5V	SIRC 32.768KHz	Ta=50°C	2.0	3.3	μΑ
	cacept Avv			Ta=85°C	7.69	12.8	
				Ta=-40°C	0.53	0.72	
	All Peripherals	V _{core} =1.2V		Ta=25°C	0.83	1.18	
	clock OFF	VDD=2.5V-5.5V		Ta=50°C	1.62	2.6	μΑ
				Ta=85°C	7	12	

注:

- 1. 数据基于 TT Wafer 考核结果,不在生产中测试
- 2. 除非特别说明, 典型值(Typ)是在 Ta=25°C, VDD=3.3V 的条件下测得
- 3. 除非特别说明,最大值(Max)是在 Ta=-40°C~85°C, VDD=2.5V~5.5V的条件下测得的最大值
- 4. 使用 LXT 32.768KHz 时,外部晶振并联了一个 $3M\Omega$ 电阻

5.3-6 从低功耗模式唤醒的时间

唤醒时间是芯片由外部中断唤醒,从深度睡眠模式唤醒的时间。时钟源是 HIRC。

符号	参数	条件 (HIRC Frequency @VDD=3.3V)	最小值	典型值	最大值	单位
	4MHz		30			
	Deep sleep mode to active mode	8MHz		17		
T _{wakeup}		16MHz		11		μs
		22.12MHz		8.6		
		24MHz		8.0		

注:数据基于考核结果,不在生产中测试

5.3-7 外部时钟源特性

5.3-7.1 低速外部时钟 LXT

符号	参数	条件	最小值	典型值	最大值	单位
F _{sclk}	Crystal frequency			32.768		KHz
ESR _{sclk}	Supported crystal equivalent series resistance		40	65	85	KOhm
R _{FB}	Feedback resistance			1000		Kohm
C _{sclk} ⁽¹⁾	Supported crystal external load range	There are two Csclk on 2 crystal pins respectively		12		pF
	Current consumption	ESR=65KOhm Csclk=12pF @max driving		760		nA
Idd ⁽²⁾	when stable	ESR=65KOhm Csclk=12pF @7 Driving		370		nA
DC _{sclk}	Duty cycle			50		%
T _{start} (3)	Start-up time	ESR=65KOhm Csclk=12pF 40%~60% duty cycle reached		300		ms

Note:

- (1) 建议使用晶体给出参考值
- (2) RCC LXTCR.LXTDRV=0011, ESR=65K
- (3) 数据基于考核结果,不在生产中测试

5.3-7.2 高速外部时钟 HXT

符号	参数	条件	最小值	典型值	最大值	单位
F _{FCLK}	Crystal frequency		4	16	24	MHz
ESR _{FCLK}	Supported crystal equivalent series resistance		30	60	1500	Ohm
R _{FB}	Feedback Resistance			383		Kohm
C _{FCLK} ⁽¹⁾	Supported crystal external external load range	There are 2 C _{FCLK} on 2 crystal pins individually			12	pF
1.1.1(2)	Supported crystal external	24MHz Xtal ESR=30Ohm C _{FCLK} =12pF @max driving		300		μΑ
Idd ⁽²⁾	external load range	24MHz Xtal ESR=30Ohm C _{FCLK} =12pF @Default setting		200		μА
DC _{FCLK} Duty cycle			40	50	60	%
T _{start} Start-up time		24MHz	545	587	640	μs

Note:

- 1. 建议使用晶体给出参考值
- 2. Current consumption could vary with oscillating frequency, RCC_HXTCR.HXTDRV=110.
- 3. 数据基于考核结果,不在生产中测试

5.3-8 内部时钟源特性

5.3-8.1 内部 HIRC 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
			4.0			
F _{MCLK}	Internal RC Oscillation		4.0	8.0	24	MHz
I MCLK	frequency		4.0	16.0		1011 12
				24		
	Chart on time Not	F _{MCLK} =4MHz	2.5	2.65	3	μs
T _{Mstart} ⁽¹⁾	Start-up time Not including software calibration	F _{MCLK} =8MHz	2.5	2.65	3	μs
I Mstart ''		F _{MCLK} =16MHz	2.5	2.65	3	μs
		F _{MCLK} =24MHz	2.5	2.65	3	μs
		F _{MCLK} =4MHz	85	85 104	117	μΑ
1 .	MCLK Current consumption	F _{MCLK} =8MHz	95	113	126	μΑ
IMCLK		F _{MCLK} =16MHz	111.54	131.425	150.27	μΑ
		F _{MCLK} =24MHz	131	150	163	μΑ
DC _{MCLK}	Duty cycle			52		%
D	Frequency Deviation	VDD=2.5V~5.5V	-2.5		+2.5	%
D _{evM}		Ta=-40°C~85°C				%

注:数据基于考核结果,不在生产中测试

5.3-8.2 内部 SIRC 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
Г	Internal RC Oscillation		32	32.768		I/I I=
F _{ACLK}	frequency			38.4		KHz
T _{Astart} (1)	Start-up time				120	μs
	Current consumption	32.768	0.24	0.25	1.92	μΑ
IACLK		38.4	0.14	0.29	2.16	
DC _{ACLK}	Duty cycle			52		%
_	E	VDD = 2.5V ~ 5.5V	-10		. 10	%
D _{evA}	Frequency Deviation	Ta = -40°C ~ 85°C			+10	%

注:数据基于考核结果,不在生产中测试

5.3-9 Flash 特性

符号	参数	条件	最小值	典型值	最大值	单位
EC _{flash}	EC _{flash} Sector Endurance		20k			cycles
RET _{flash}	Data Retention		20			Years
т	Byte/Half Word/Word		20	45	CO	
T_{prog}	Program Time	30	43	60	μS	
T _{Sector-erase}	Sector Erase Time		3.5	3.7	4.5	ms
$T_{Chip-erase}$	Chip Erase Time		20	30	40	ms

5.3-10 电磁敏感特性

5.3-10.1 ESD 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ESD, HBM}	ESD @ Human Body Mode		5			KV
V _{ESD, CDM}	V _{ESD, CDM} ESD @ Charge Device Mode V _{ESD, MM} ESD @ Machine Mode		1			KV
V _{ESD, MM}			350			V
I _{Latchup}	Latch up current	25 °C	200			mA

5.3-10.2 静态栓锁 (Static Latch-up)

为了评估栓锁性能,需要在3个样品上进行2个互补的静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的 I/O 引脚上注入电流。

这个测试符合 EIA/JESD78A 集成电路栓锁标准。

符号	参数	条件	类型
LU	Static latch-up class	TA = +25 °C conforming to JESD78A	Class I Leve

5.3-11 I/O Port 特性

5.3-11.1 Output 特性 — Port PA,PB,PC,PD

符号	参数	条件	最小值	最大值	单位
V _{ОН}	High level	Sourcing 4 mA, VDD = 3.3 V (see Note 1)	VDD-0.2		V
	output voltage Source Current	Sourcing 6 mA, VDD = 3.3 V (see Note 2)	VDD-0.3		V
.,,	Low level	Sinking 4 mA, VDD = 3.3 V (see Note 1)		VSS+0.2	\
V _{OL}	output voltage Sink Current	Sinking 6 mA, VDD = 3.3 V (see Note 2)		VSS+0.3	V
V _{OHD}	High level output voltage	Sourcing 8 mA, VDD = 3.3 V (see Note 1)	VDD-0.2		· >
	Double Source Curre	Sourcing 12 mA, VDD = 3.3 V (see Note 2)	VDD-0.3		V
V _{OLD}	Low level output voltage	Sinking 8 mA, VDD = 3.3 V (see Note 1)		VSS+0.2	V
	Double Sink Current	Sinking 12 mA, VDD = 3.3 V (see Note 2)		VSS+0.3	V

Note:

- 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.
- 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.
- 3. 由综合评估得出,不在生产中测试。

5.3-11.2 Input 特性 — Port PA,PB,PC,PD

符号	参数	条件	最小值	典型值	最大值	单位
		VDD=2.5	1.4			V
V _{IT+}	Positive-going input threshold voltage	VDD=3.3	1.8			V
	V _{IT} - threshold voltage Negative-going input threshold voltage Input voltage hysteresis	VDD=5.5	3			V
		VDD=2.5			0.9	V
V _{IT-}	V _{IT} _	VDD=3.3			1.3	V
		VDD=5.5			2.4	V
		VDD=2.5		0.5		V
V_{hys}	Input voltage hysteresis (VIT+ - VIT-)	VDD=3.3		0.5		V
	,	VDD=5.5		0.6		V
R _{pullhigh}	Pullup Resistor	Pullup enable	40	60	70	Kohm
R _{pulldown}	Pulldown Resistor	Pulldown enable	60	80	100	Kohm
C _{input}	Input Capacitance			5		pf

注: 由综合评估得出,不在生产中测试。

5.3-11.3 Port Leakage 特性 — Port PA,PB,PC,PD

符号	参数	条件	最小值	最大值	单位
I _{lkg}	Leakage current	See Note 1, 2	2.5V / 3.6V	±50	nA

Notes:

- 1. The leakage current is measured with VSS or VDD applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.
- 3. 由综合评估得出,不在生产中测试。

5.3-11.4 Port 外部输入采样要求 — Timer Gate/Timer Clock

符号	参数	条件	最小值	最大值	单位
T _(int)	External interrupt timing	External trigger signal for the interrupt flag (see Note 1)	30		ns
T _(cap)	Timer Captuter timing	TIM1/TIM2 capture pulse width Fsystme = 4MHz	0.5		μs
f _{EXT}	Timer clock frequency applied to pin	TIM1, TIM2, TIM10, TIM11 external clock input Fsystme = 4MHz	0	f _{TIMxCLK} /4	MHz
T _(PCA)	PCA clock frequency applied to pin	PCA external clock input Fsystme = 4MHz	0	f _{PCACLK} /4	MHz

Note:

- 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int).
- 2. 由综合评估得出,不在生产中测试。

5.3-12 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		VDD	V
V_{REF}	ADC reference Voltage	>		VDD		٧
I _{ADC}			0.7	0.9	1.2	mA
C_{ADC}	ADC input capacitance			16	18.4	pF
R _{ADC}	ADC Sampling switch impedance			0.6		kΩ
FADCCLK	ADC clock Frequency		0.5	4	16	MHz
T _{ADCSTART}	Startup time of ADC bias current		2	3	4	μs
T _{ADCCONV}	Conversion time			16	20	cycles
ENOB			9.5	10	10.4	Bit
DNL	Differential non-linearity		-1	±1	2	LSB
INII	Integral non-linearity		-3	±1	3	LSB
INL	Integral non-linearity	Calibrated VREF=5V	-6	±1	±1	LSB
Eo	Offset error	VKEF=3V		0		LSB
Eg	Gain error		-11	0		LSB

注:由设计保证,不在生产中测试

注:校准后量测范围为未校准的 offset~gain error 之间

5.3-12.1 ADC 输入阻抗

ADC 典型应用图请参考如图(A).

图(A).ADC 典型应用图

- 1. C_{parasitic} 为 PCB 上的电容, 其电容值大小取决于 PCB 线路配置(大约 7pF)。若电容值过大将会降低 ADC 精准度, 或需降低 ADC clock 频率来维持 ADC 精准度。
- 2. 表(B)中最大 RAIN 值为参考 ADC 规格表中 CADC 与 RADC 和图 A 所得。

表(B). RAIN对应 fADCCLK

<i>t₅</i> (μs)	f _{ADCCLK} (Hz)	SAM	$R_{AIN}(k\Omega)$
0.167	24M	4	0.05
0.333	12M	4	0.5
0.667	6M	4	2.0
2.67	3M	8	10
5.33	1.5M	8	20
10.7	0.75M	8	40
21.3	0.375M	8	50

5.3-13 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{in}	Input voltage range		0		5.5	V
V_{incom}	Input common mode range		0		5.5	٧
V_{offset}	Input offset	@25°C	-8.7	±5	16.4	mV
I_{comp}	Comparator's current		7.66	9.36	11.26	μΑ
$T_{response}$	Comparator's response		106ns	155.5ns	220.8ns	ns

注:数据基于考核结果,不在生产中测试

5.3-14 OPA 特性

 $V_{OP1_O} = V_{DACO} + (V_{OP1_INP} - V_{OP1_INN}) *GAIN GAIN = R2/R1 = 16$

 $V_{OP2 O}$ = User Define.

OPA1: (AVDD=2.5V~5.5 V, AVSS=0 V, Ta=- 40°C ~ +85°C)

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	Analog supply voltage		2.5		5.5	٧
V _{CM}	Common mode input range	Except differential mode	0.1		VDDA-0.1	V
	input range	Differential mode	-0.2		VDDA	V
Vio	Input offset voltage	OPA1 0.2 <v<sub>CM<vdda-0.2< td=""><td>-5</td><td></td><td>5</td><td>mV</td></vdda-0.2<></v<sub>	-5		5	mV
VIO	(follower mode)	OPA2 0.2 <v<sub>CM<vdda-0.2< td=""><td>-5</td><td></td><td>5</td><td>mV</td></vdda-0.2<></v<sub>	-5		5	mV
ΔVio	Input offset voltage drift	OPA1 -40~85°C 0.2 <v<sub>CM<vdda-0.2< td=""><td>-16</td><td></td><td>24</td><td>μV/°C</td></vdda-0.2<></v<sub>	-16		24	μV/°C
∆Vio	Input offset voltage drift	OPA2 -40~85°C 0.2 <v<sub>CM<vdda-0.2< td=""><td>-18.18</td><td></td><td>30.3</td><td>μV/°C</td></vdda-0.2<></v<sub>	-18.18		30.3	μV/°C
I_{LOAD}	Drive current				50	μΑ
IOP	Operating current	VDDA=5V	0.86	0.88	0.89	mA
	Common mode	0.2 <v<sub>CM<vdda-0.2 25°C</vdda-0.2 </v<sub>	59.28			dB
CMRR		0.2 <v<sub>CM<vdda-0.2 -40~85°C</vdda-0.2 </v<sub>	57.69			dB
CIVIRR	rejection ratio	0.5 < V _{CM} < VDDA - 0.5 25°C	58.06			dB
		0.5 < V _{CM} < VDDA - 0.5 -40 ~ 85 ° C	56.48			dB
PSRR	Power supply rejection ratio	0.2 < V _{CM} < VDDA - 0.2	59.44			dB
	Slew rate	VDDA=5V	6.45	26	32.8	
SR	(from 10 and 90% of output voltage, OPA2)	VDDA=3.3V	10.5	20	25.14	V/µS
Rin	Input Resistive (Differential gain)			20		kΩ
R _{LOAD}	Resistive load		100			kΩ
C _{LOAD}	Capacitive load				40	pF
VOH _{SAT}	High saturation voltage	R _{LOAD} =Min. Input at V _{DDA}	V _{DDA} -0.1			V
VOLSAT	Low saturation voltage	R _{LOAD} =Min. Input at 0V			0.1	V

符号	参数	条件	最小值	典型值	最大值	单位
	Unit gain	Gain=1	0.99	1	1.01	
PGA	Non-inverting gain	Gain=17	16.65		16.8	
gain	Inverting gain	Gain=-16	-15.75		-15.79	
(OP1)	Differential gain (V _{DAC OP} =1/2VDD)	Gain=16 @25°C	15.4	16	16.32	
	PGA gain error	Gain=16	-5%		+5%	
	rua gain enoi	Gain=10	-370		+ 370	
PGA BW (OP1)	PGA bandwidth (Unit gain)	R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		700		
	PGA bandwidth (Non-inverting gain)	Gain=17 R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		1000		
	PGA bandwidth (Inverting gain)	Gain=-16 R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		1000		
	PGA bandwidth (Differential gain)	Gain=16 R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		1000		
	PGA bandwidth (Unit gain)	Gain=1 R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		800		KHz
PGA BW (OP1)	PGA bandwidth (Non-inverting gain)	Gain=17 R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		50		
R1=10K R2=160K C _C =20P	PGA bandwidth (Inverting gain)	Gain=-16 R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		50		
	PGA bandwidth (Differential gain)	Gain=16 R _{LOAD} =100 kΩ C _{LOAD} =40pF@25°C		50		

Note: GPA 配置请参考 user manual

OP_DAC2 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_Ref	Reference Voltage	V _{REF} = VDD	2.5		5.5	V
V REF		V _{REF} = VCAP		VCAP		V
VOH _{SAT}	High saturation voltage	V _{REF} = VDD			VDD-1	V
DNL		V _{REF} = VDD	-0.1		0.1	LSB
		V _{REF} = VCAP	-0.2		0.2	LSD
INL		V _{REF} = VDD	-0.5		0.5	LCD
IINL		V _{REF} = VCAP	-0.6		0.6	LSB
Offact Error		V _{REF} = VDD	0.1		0.2	LSB
Offest Error		V _{REF} = VCAP	0.1		0.3	LSD
G : 5		V _{REF} = VDD		-10		%FSR
Gain Error		V _{REF} = VCAP		-1		70 FSK

5.3-15 TIM 定时器特性

符号	参数	条件	最小值	最大值	单位
T _(int)	External interrupt timing	External trigger signal for the interrupt flag(see Note 1)	1120		ns
T _(cap)	Timer Captuter timing	TIM1/TIM2 capture pulse width Fsystme =4MHz	30		μs
f _{EXT}	Timer clock frequency applied to pin	TIM1, TIM2, TIM10, TIM11 external clock input Fsystme =4MHz	0	F _{TIMxCLK} /20	MHz
T _(PCA)	PCA clock frequency applied to pin	PCA external clock input Fsystme =4MHz	0	F _{PCACLK} /20	MHz

Note:

- 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int).
- 2. 由综合评估得出,不在生产中测试。

5.3-16 通信接口

5.3-16.1 I2C 特性

符号	参数	标准模式	(100K)	快速模式	दे(400K)	高速模:	式(1M)	单位
11) 7	Ø ¾	最小值	最大值	最小值	最大值	最小值	最大值	平位
tSCLL	SCL 时钟低时间	4.95		1.15		0.495		us
tSCLH	SCL 时钟高时间	4.95		1.15		0.495		us
tSU.SDA	SDA 建立时间	5		5		5		ns
tHD.SDA	SDA 保持时间	5		5		5		ns
tHD.STA	开始条件保持时间	3*pclk		3*pclk		3*pclk		us
tSU.STA	重复的开始条件建立时间	12*pclk		12*pclk		2*pclk		us
tSU.STO	停止条件建立时间	2*pclk		2*pclk		2*pclk		us
tBUF	总线空闲 (停止条件至开始条件)	14*pclk		14*pclk		4*pclk		us

Figure 7 I2C 时序图

5.3-16.2 SPI 特性

符号	参数	条件	最小值	最大值	单位
4-	ᆸᇩᇈᄼᆄᄱ	主机模式	2*pclk		ns
tc _(SCK)	串行时钟的周期(频率)	从机模式	4*pclk		ns
tw	串行时钟的高电平时间	主机模式	1*pclk		ns
tw _(SCKH)	中有的好的商化(时间	从机模式	2*pclk		ns
tu.	串行时钟的低电平时间	主机模式	1*pclk		ns
tw _(SCKL)	中有的好的成化上的问	从机模式	2*pclk		ns
tsu _(SSN)	从机选择的建立时间	从机模式	3*pclk		ns
th _(SSN)	从机选择的保持时间	从机模式	3*pclk		ns
$t_{V_{(MO)}}$	主机数据输出的生效时间			5	ns
th _(MO)	主机数据输出的保持时间		0		ns
tv _(SO)	从机数据输出的生效时间			30+1.5*pclk	ns
th _(SO)	从机数据输出的保持时间		0.5*pclk		ns
tsu _(MI)	主机数据输入的建立时间 Data input setup time		30		ns
th _(MI)	主机数据输入的保持时间 Data input hold time		0		ns
tsu _(SI)	从机数据输入的建立时间 Data input setup time		0		ns
th _(SI)	从机数据输入的保持时间 Data input hold time		10+1.5*pclk		ns

Note:由设计保证,不在生产中测试

Figure 8 SPI 时序图(主机模式)

Figure 9 SPI 时序图 (从机模式 CPHA=0)

Figure 10 SPI 时序图(从机模式 CPHA=1)

【6】 封装特性

6.1 TSSOP28 封装

Bottom View

Dimensions

SYMBOL	MILIMETERS			INCHES		
	MIN	TYP	MAX	MIN	TYP	MAX
Α			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
A3	0.39	0.44	0.49	0.015	0.017	0.019
b	0.18		0.30	0.007	-	0.012
С	0.14		0.18	0.006		0.007
D	9.60	9.70	9.80	0.378	0.382	0.386
E1	4.30	4.40	4.50	0.169	0.173	0.177
Е	6.20	6.40	6.60	0.244	0.252	0.260
е	0.65BSC				0.026BSC	
L	0.45		0.75	0.018		0.030
L1	1.00REF			0.039REF		
θ	0		8°	0.000		8°

6.2 QFN32 封装

Dimensions

SYMBOL	MILIMETERS			INCHES		
	MIN	TYP	MAX	MIN	TYP	MAX
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0	0.02	0.05	0	0.001	0.002
b	0.18	0.25	0.30	0.007	0.010	0.012
С	0.18	0.20	0.25	0.007	0.008	0.010
D	4.90	5.00	5.10	0.193	0.197	0.201
D1	3.25	3.5	3.75	0.140	0.144	0.148
e	0.50REF			0.02REF		
Nd	3.50REF				0.138REF	
E	4.90	5.00	5.10	0.193	0.197	0.201
E1	3.25	3.65	3.75	0.140	0.144	0.148
L	0.30	0.38	0.45	0.012	0.015	0.018

6.3 LQFP32 封装

Dimensions

SYMBOL	MILIMETERS			INCHES		
	MIN	TYP	MAX	MIN	TYP	MAX
Α			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
A3	0.59	0.64	0.69	0.023	0.025	0.027
b	0.31		0.43	0.012		0.017
D	8.80	9.00	9.20	0.346	0.354	0.362
D1	6.90	7.00	7.10	0.272	0.276	0.280
Ε	8.80	9.00	9.20	0.346	0.354	0.362
E1	6.90	7.00	7.10	0.272	0.276	0.280
6	0.80 BSC				0.0315 BSC	
L	0.45		0.75	0.018		0.030
L1	1.00 REF				0.039 REF	
θ	0.00		7°	0		7°

6.4 LQFP48 封装

Dimensions

SYMBOL		MILIMETER	S	INCHES		
	MIN	TYP	MAX	MIN	TYP	MAX
Α			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
A3	0.59	0.64	0.69	0.023	0.025	0.027
b	0.17		0.27	0.007		0.011
D	8.80	9.00	9.20	0.346	0.354	0.362
D1	6.90	7.00	7.10	0.272	0.276	0.280
E	8.80	9.00	9.20	0.346	0.354	0.362
E1	6.90	7.00	7.10	0.272	0.276	0.280
е	0.50 BSC				0.020 BSC	
L	0.45		0.75	0.018		0.030
L1	1.00 REF				0.039 REF	
θ	0.00		7°	0		7°

6.5 丝印说明

6.5-1 TSSOP28

- 1. 第一行:商标+产品型号前 10 位,具体参考第 7 章型号命名。
- 2. 第二行: 前 6/7 位代表 Lot ID, 最后 1 位代表产品的版本(Revision)。
- 3. 第三行:前4位代表生产的年和周,第5位代表封装测试厂

6.5-2 QFN32

- 1. 第一行:商标+产品型号 5~10 位,具体参考第 7 章型号命名。
- 2. 第二行: 前 6/7 位代表 Lot ID, 最后 1 位代表产品的版本(Revision)
- 3. 第三行:前4位代表生产的年和周,第5位代表封装测试厂

6.5-3 LQFP32

- 1. 第一行: 商标+产品型号前 5 位。
- 2. 第二行:产品型号 6~12 位,具体参考第 7 章型号命名
- 3. 第三行:前 6/7 位代表 Lot ID,最后 1 位代表产品的版本(Revision)
- 4. 第四行:前4位代表生产的年和周,第5位代表封装测试厂

6.5-3 LQFP48

- 1. 第一行:商标+产品型号前5位。
- 2. 第二行:产品型号 6~12 位,具体参考第 7 章型号命名
- 3. 第三行: 前 6/7 位代表 Lot ID, 最后 1 位代表产品的版本(Revision)
- 4. 第四行:前4位代表生产的年和周,第5位代表封装测试厂

【7】 型号命名

 $6 = -40 \sim 85^{\circ}C$

【8】 产品选型表

型号	Flash (KB)	SRAM (KB)	封装	包装	最小包装 (MPQ)	最小起订量 (MOQ)
ZB32L030G8P6T	64	8	TSSOP28	Tape & Reel	9000	72000
ZB32L030K8Q6T	64	8	QFN32	Tape & Reel	3000	15000
ZB32L030K8T6R	64	8	LQFP32	Tray	2500	15000
ZB32L030C8T6R	64	8	LQFP48	Tray	2500	15000

【9】 版本修订纪录

Version	Date.	Description
R2.0	2021-0806	Release datasheet
R2.1	2022-0301	Modified:
		(1)Table4,5
		(2)Add SPI 时序图
R2.2	2022-0427	Updated:
		(1)Block Diagram
R2.3	2022-0601	Modified:
		(1)电气特性量测值
R2.5	2022-0817	Modified:
		(1)电气特性参数值与内容
		(2)Updated <u>5.3-7</u>
		(3)Updated [4]
		(4)Updated [7]
R2.6	2022-0913	Modified:
		(1) 参数与内容修正
R2.7	2022-1020	Modified:
		增加封装Type
R2.8	2022-1101	Modified:
		(1) 修改 32PIN assignment.
		(2) 修正ADC电气特性
R2.8.1	2023-0303	Modified:
		补充LVD电气特性
R2.8.2	2023-0327	Modified:
<u> </u>		参数和排版修正
R2.8.3	2023-0711	Modified:
		I2C & SPI 特性数据调整
R2.8.4	2023-0921	Modified:
		产品选型表更新

R2.8.5	2023-11-28	Modified:
		ESD特性参数修正