

Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4145 Linea	r Metho	ds			
Academic contact during examination: Sigrid Grepsta Phone: 412 09 825	nd				
Examination date:					
Examination time (from-to):					
Permitted examination support material: D:No written or handwritten material. Calculator Casio fx-82ES PLUS, Citizen SR-270X, Hewlett Packard HP30S					
Other information: There are 5 problems on the exam and each problem counts for 20 points. All solutions should be stated in a precise and rigorous way, with any assumptions written down and arguments justified.					
Language: English Number of pages: 3 Number of pages enclosed: 0					
		Checked by:			
Informasjon om trykking av eksamensoppgave					
Originalen er:					
1-sidig □ 2-sidig □	-				
sort/hvit □ farger □	Date	Signature			
skal ha flervalgskjema □					

Problem 1

a) (5 points)

Let A be an $m \times n$ matrix. State the singular value decomposition of A and describe all its building blocks.

b) (15 points)

Determine the singular value decomposition of

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

and express the inverse of A in terms of its singular value decomposition.

Problem 2 Let T be a bounded linear operator on a Hilbert space X and we denote the operator norm of T by ||T||.

- a) (10 points) Show that $||T|| = ||T^*||$, where T^* is the adjoint of T.
- **b)** (10 points) Show that $||T^*T|| = ||T||^2$.

Problem 3

- **a)** (10 points)
 - (1) Suppose $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ are normed spaces. Define for a linear transformation $T: X \to Y$ the operator norm of T.
 - (2) Let X be a vector space and let $\|.\|_a$ and $\|.\|_b$ be two norms on X. Define when the norms $\|.\|_a$ and $\|.\|_b$ are equivalent on X.
 - (3) Suppose $(x_n)_{n\in\mathbb{N}}$ is a sequence in a normed space $(X, \|.\|_X)$. Define the series $\sum_{n=1}^{\infty} x_n$ of $(x_n)_{n\in\mathbb{N}}$.
 - (4) Let M be a subset of an innerproduct space $(X, \langle ., . \rangle)$. Define the *orthogonal complement* of M.
 - (5) Let T be a linear transformation on a finite-dimensional vector space X. Define the *characteristic polynomial* and the *minimal polynomial* of T.

b) (10 points)

Determine if the following statements are true or false and if the statement is not true, give a counterexample.

- (1) A linear transformation T between the normed spaces $(X, ||.||_X)$ and $(Y, ||.||_Y)$ is continuous if and only if T is a bounded operator.
- (2) Any linear transformation on a finite-dimensional vector space is unitarily equivalent to an upper-triangular matrix.
- (3) Any Cauchy sequence in a normed space $(X, ||.||_X)$ converges to an element in X.
- (4) Let X be an infinite-dimensional Hilbert space. Then any isometric linear operator on X is a unitary operator on X.
- (5) The kernel of any bounded linear map on an infinite-dimensional normed space $(X, ||.||_X)$ is closed.

Problem 4

a) (10 points)

Let $T: (C[1,3], \|.\|_{\infty}) \to (C[1,3], \|.\|_{\infty})$ be given by $Tf(x) = \int_1^3 \alpha e^{-(x-y)} f(y) dy$ for some positive real number α .

- (1) Show that T is a bounded operator.
- (2) Determine the operator norm of T.
- (3) Determine the set of α 's for which T is a contraction.
- **b)** (10 points)
 - (1) Give an example of a linear operator on a normed space that is not bounded.
 - (2) Let T be a linear operator on $(X, \|.\|)$ that is not bounded. Show that then X has to be infinite-dimensional.

Problem 5 (20 points)

Let $M_e = \{f \in L^2[-2,2] : f(-x) = f(x)\}$ be the subspace of even functions of $L^2[-2,2]$ and $M_o = \{f \in L^2[-2,2] : f(-x) = -f(x)\}$ be the subspace of odd functions of $L^2[-2,2]$.

(1) Show that M_e is closed.

- (2) Determine the orthogonal complement of M_o .
- (3) Find the projection onto M_o^{\perp} .
- (4) Show that $M_o \cap M_o^{\perp} = \{0\}.$