

Háximo, minimo, elementos máximos e minimos

Definição: Seja (A, <) em cp o

Um elemento a ∈ A digemos um máximo de A se tre A ría

Um elemento b ∈ A digemos um minimo de A se tre A ría

Háximo é um elemento que se compare a tealos os outros e é maior ou igeal a tados.

Exemplo

 $(P(11,2.34,C) \forall x \in P(11.2.34) \times (11.2.34) \times (11.2.3$

11) 34 é o Háximo

Exemplo. (N, <) N= ?1, 2, 3, ... & , < acen visuae 1 é minimo pois 1 < x y x \in W Não há máximo Proposison: Sepa (A, 5) um cpo. O máximo, quando existe, é unico (o mesmo para o minimo) Remonstropes: The (low) Definição: Seja (A. <) em cpo Um elemento ae A diz-2e em elemento maximal se Yx EA terros n/a ou n/e a ser incompatives. Un elemento DEA diz-20 em elemento minimal EA temos Dia ou Ne b seo incompativeis. se Yx elements acional: Elements que é maior au igual a todos as clements que se compare Exemple Seja 1 = 35, 10, 20, 25 8. Determine, caso existe a máximo, o minimo ellmente máximo minimo de (A, 1) 515 [510] 5125/ 10/10 (0/20) 10 20120 25/25

Hini	mo	:	5	ρο	is	5	12	1	١	√ ne	A											
Háxi	m	•	Va	o t	Qη	M	źvi i	no	ı													
Γ1.			,	, ,			١ / ١	``	_													
Elem	علاد	3 (γ Ø	<i>ኢ</i>	no	. (ŊÜ	, ک	7													
.23	Ĺ	M	ovi	M	D	ogi	_	ν	ر ک	\circ	Иν	6	200	(, ל	0{	l	ක	-20		per		~
LONE	Ø M	ter	,																			
25	ے	M	ayi	Ma	eQ	pei	5	n	ز ز	5	₽ _N	ϵ	} 5	, 2.	5 {	.	ක	عد	On	pee	a	SE.
lest	ew	des)			•																
-0																						
Ela	me	nte	20	M.	νiΜ	<i>ci</i> s	<u> </u>	\$														
10														1,								
Ho	ijok	antec) , (Μ ΄, ι	OLC	ante	۰,	20	لعد	ىدېر	100	و	ソレ	tin	(A)							
))·_·	20	_	501	. 1	Δ	<u> </u>					B	24									
	efin:	()	· M		0 0 0	who	\$ /	. C	Δ	G)	90		. ~	~	200	1010	nto	da		James	A 2	,
	2	150	a 1	f x c	c R	2,110					3-	352			10,00		, C			June		
					_		<i>b</i>	€/	4	d	في -	2 0	ب	m	mir	olar	le	8	0	Junto	Bx	1
	k) \$1	n \	f x c	EB															0		
	,			1												1.						
No	1+ag	ω	: (on	lun.	to	do	m	als	ran	Her.	d	eB	•	. B	1						
			(on.	Jeir	140	de	V 25	Mive	M	ntes	de	- B	:	B							
Exer	ν 00	a .																				
CAC.	Cor	ونلا	lee	2_	0	<i>C</i> C	20	d	do	~	ء ا	Te e	ın									
	0	teen	nine	C	D .	Br,	e	0	$ g^{1}$	N	β.	Soge	in	න	O :	20 3						
												U						<u>;</u>				
		a)	B	<u>-</u> }	a,	b, a	٤ ک									h						
		1 \	0)		, 6								Ł	/			$>_{9}$				
		つ)	132	= 3	a,	h 6									ر ا							
		<u>c)</u>	R	-	} ^	C,	له	۷ .	,					9				$\dashv e$				
		_,)	= ,	, ω _ι	۲,	Ο,	9														
														b								
																à						

.

```
a
    B1: 7a.b, 64
    B1 = leghie
    B1 = 7 a {
6
    B2: 3a, h {
    B2 = 10, b, c, d, e, g 8
    B 2 = 304
    B3 = Pa, b, c, d, e, gf
    B3: 1h, i, g6
    B3 = 306
Definição: Soja (A, <) rem c.p.o e BCA
Se B' tom exemento minimo este exemento diz-se o SUPREHO
          Sa B' tom Demanto máximo este ecomento diz-se o INFI +0
 Supremo de B - é un majorante que é o mais paquero dos
 Zé o suplemo de B sa:
     a) É é majorante de B
     D) se y é qualque majorante de B ento 2 < y
```

```
Z é infino de B 20
```

a) Z é minorante

b) se y é gualque outro minorante entos y « z

Exemple

Com referência ao er anterior, determine: Jerpremo B, infimo B para B ignal a B1 e B2

Supremo Br = ? Br= le, q, h; le Hinimo de Bréa. Assim supremo

infomo B1 = ? B1 = {a{. a

Pinimo de Brea. Assim infino

Superno B2. ? B2 = Ø

Supremo B2 = ? B2 = Ø No há elemento minimo em B2 logo existe sempre B2 infimo Bo = ? B2 = aab, c, d e, g { Háximo B2 é g = infimo B2 = g

Notasco:

Supremo de B = VB

infimo de B.= NB

Se B= 1 κ, y {

VB = XVY

NB = XNY

VB1 = e

1B1 = a

Definiça: Um c.p. (A. <) dig-20 lem RETICULADO Le por code pou de elementos X, y EA existe supremo e infimo Exemple Vailique que (A, <) mas é um retailedo a, c avc = ? avc = !

da, c { 0 = } e, f { e thing } c, f { e c a }

=1 avc = c a 1 C =) la chilon a Háximo laté a ancea a,b: avb=? }a,b{"=}a,fE Now ha minimo d}e,fE =n 7 (A, <) no é um retiallado pois existem x,y toisque no existe Supumo entre key Exemplo Seja Il no vagio. Considere o copo (P(SZ), () Hostre que "u A, B & B (SZ) o supremo de d A, B & & AUB e o intimo é ANB AVB = AUB ??? AVB é majorante de PA, BE, E é o monor dos majorantes ACAUB, BCAUB, A<AUB, B<AUB AUB é majorante de 3 A, B?

Exemple: Seja C um qualquer majorante de 21,BE. Tomos A & C, B & C isto é, ACC, BCC. Assim AUBCC, isto é, AUB < C Assim, AUB é o supremo de lA, BE, isto é, AUB = AUB