Análisis de sensibilidad para procesos stickbreaking con divergencia Kullback-Leibler

Seminario de Teoría de la Información,

Machine Learning y Estadística.

IIMAS - UNAM

12 de abril del 2023

Trabajo conjunto con:

Mario Diaz y Ramsés H. Mena

Contexto

Estadística bayesiana No Paramétrica

- Análisis de sensibilidad
- Procesos stick-breaking

Contexto

- Divergencia Kullback-Leibler

Teoría de la Información

Contexto

Agenda

I. Preliminares

- Estadística bayesiana (no paramétrica)
- Divergencia Kullback-Leibler

II. Análisis de sensibilidad de procesos stick-breaking

III. Análisis de sensibilidad de procesos stick-breaking intercambiables

Estadística bayesiana

Alternativa a la estadística clásica donde los parámetros son aleatorios con un distribución de probabilidad asociada y los datos son tratados como valores fijos.

Estadística bayesiana

Alternativa a la estadística clásica donde los parámetros son aleatorios con un distribución de probabilidad asociada y los datos son tratados como valores fijos.

 Considerada como una forma de hacer estadística más coherente y libre de contradicciones¹.

 $^{^1}$ Berger, J.O. & Wolpert, R. (1988). The Likelihood Principle. Hayward: Institute of Mathematical Statistics.

Estadística bayesiana

· Alternativa a la estadística clásica donde los parámetros son aleatorios con un distribución de probabilidad asociada y los datos son tratados como valores fijos.

 Considerada como una forma de hacer estadística más coherente y libre de contradicciones¹.

- Podemos dar respuesta a: ¿Qué valor de heta es más plausible dados los datos?

Thomas Bayes

$$f(\theta \mid \mathbf{X}) \propto f(\mathbf{X} \mid \theta) \qquad f(\theta)$$

Thomas Bayes

Distribución posterior

 $f(\theta \mid \mathbf{X}) \propto f(\mathbf{X} \mid \theta)$

 $f(\theta)$

Distribución a priori

Verosimilitud

Thomas Bayes

· Independencia física no implica que exista una independencia estocástica.

El aprendizaje estadístico demanda dependencia estocástica entre las variables aleatorias que son réplicas del mismo fenómeno.

Independencia física **solo** implica una simetría con la ley conjunta de las variables aleatorias, i.e., las etiquetas son no informativas.

Definición (Intercambiabilidad finita)

Un conjunto finito de v.a.'s X_1, \ldots, X_n se dice intercambiable (finito) si

$$(X_1, ..., X_n) \stackrel{d}{=} (X_{\pi(1)}, ..., X_{\pi(n)})$$

para toda permutación σ de $\{1,\ldots,n\}$.

Definición (Intercambiabilidad finita)

Un conjunto finito de v.a.'s X_1, \ldots, X_n se dice intercambiable (finito) si

$$(X_1, ..., X_n) \stackrel{d}{=} (X_{\pi(1)}, ..., X_{\pi(n)})$$

para toda permutación σ de $\{1,\ldots,n\}$.

Definición (Intercambiabilidad)

Una colección de variables aleatorias $\{X_i\}_{i=1}^{\infty}$ se dice intercambiable si toda sub-colección finita es intercambiable.

Teorema de representación de De Finetti²

Sea $\mathbb X$ un espacio polaco dotado con su sigma álgebra de Borel $\mathcal X$ y denotemos por $\mathscr P_{\mathbb X}$ el espacio de medidas de probabilidad sobre $(\mathbb X,\mathcal X)$. Entonces una colección de v.a.ś $\{X_i\}_{i=1}^\infty$ $\mathbb X$ -valuadas es intercambiable si existe una y sólo una medida $\mathcal Q$ sobre $\mathscr P_{\mathbb X}$ tal que

$$\mathbb{P}\left(X_1 \in A_1, \dots, X_n \in A_n\right) = \int_{\mathscr{P}_{\times}} \prod_{i=1}^n P(A_i) \mathcal{Q}(dP)$$

Teorema de representación de De Finetti²

Sea $\mathbb X$ un espacio polaco dotado con su sigma álgebra de Borel $\mathcal X$ y denotemos por $\mathscr P_{\mathbb X}$ el espacio de medidas de probabilidad sobre $(\mathbb X,\mathcal X)$. Entonces una colección de v.a.ś $\{X_i\}_{i=1}^\infty$ $\mathbb X$ -valuadas es intercambiable si existe una y sólo una medida $\mathcal Q$ sobre $\mathscr P_{\mathbb X}$ tal que

$$\mathbb{P}\left(X_1 \in A_1, \dots, X_n \in A_n\right) = \int_{\mathscr{P}_{\times}} \prod_{i=1}^n P(A_i) \mathcal{Q}(dP)$$

- Las v.a.'s son condicionalmente iid dado P

Ejemplo: caso paramétrico

En términos paramétricos

$$f(X_1, ..., X_n) = \int_{\Theta} f(\theta) \prod_{i=1}^n f(X_i | \theta) d\theta$$

Ejemplo: caso paramétrico

En términos paramétricos

$$f(X_1, ..., X_n) = \int_{\Theta} f(\theta) \prod_{i=1}^n f(X_i | \theta) d\theta$$

O de forma jerárquica

$$X_{i} \mid \theta \stackrel{iid}{\sim} f(\cdot \mid \theta)$$

$$\theta \sim f(\theta)$$

Ejemplo: caso paramétrico

En términos paramétricos

$$f(X_1, ..., X_n) = \int_{\Theta} f(\theta) \prod_{i=1}^n f(X_i | \theta) d\theta$$

O de forma jerárquica

$$X_{i} \mid \theta \stackrel{iid}{\sim} f(\cdot \mid \theta)$$

$$\theta \sim f(\theta)$$

 \triangleright ¿ Cómo especificar $f(\theta)$?

• Modelos conjugados, i.e., elegir $f(\theta)$ tal que $f(\theta \mid \mathbf{X})$ pertenezca a la misma familia.

- Modelos conjugados, i.e., elegir $f(\theta)$ tal que $f(\theta \mid \mathbf{X})$ pertenezca a la misma familia.
- Elegir una priori no informativa para "dejar a los datos hablar por ellos mismos",
 e.g.

- Modelos conjugados, i.e., elegir $f(\theta)$ tal que $f(\theta | \mathbf{X})$ pertenezca a la misma familia.
- Elegir una priori no informativa para "dejar a los datos hablar por ellos mismos",
 e.g.
- 1. Distribución uniforme (impropia) en un intervalo acotado (no acotado).

- Modelos conjugados, i.e., elegir $f(\theta)$ tal que $f(\theta \mid \mathbf{X})$ pertenezca a la misma familia.
- Elegir una priori no informativa para "dejar a los datos hablar por ellos mismos",
 e.g.
- 1. Distribución uniforme (impropia) en un intervalo acotado (no acotado).
- 2. Distribución de Jeffrey, i.e., $f(\theta) \propto |I(\theta)|^{\frac{1}{2}}$

- Modelos conjugados, i.e., elegir $f(\theta)$ tal que $f(\theta \mid \mathbf{X})$ pertenezca a la misma familia.
- Elegir una priori no informativa para "dejar a los datos hablar por ellos mismos",
 e.g.
- 1. Distribución uniforme (impropia) en un intervalo acotado (no acotado).
- 2. Distribución de Jeffrey, i.e., $f(\theta) \propto |I(\theta)|^{\frac{1}{2}}$
- 3. Distribución de referencia 3 , i.e., buscar $f(\theta)$ maximice

$$\int f(t) \int f(\mathbf{X} \mid \theta) \log \left(\frac{f(\mathbf{X} \mid \theta)}{f(\theta)} \right) d\theta dt$$

 $^{^3}$ Berger, J.O. & Bernardo, J. & Sun. D (2009). The Formal Definition of Reference Priors. The Annals of Statistics.

Recordando el Teorema de representación

$$\mathbb{P}\left(X_1 \in A_1, \dots, X_n \in A_n\right) = \int_{\mathscr{P}_{\times}} \prod_{i=1}^n P(A_i) \mathcal{Q}(dP)$$

donde

- ightharpoonup P es una medida de probabilidad aleatoria (MPA)
- \mathcal{Q} es la distribución de De Finetti (priori de P)

Recordando el Teorema de representación

$$\mathbb{P}\left(X_1 \in A_1, \dots, X_n \in A_n\right) = \int_{\mathscr{P}_{\times}} \prod_{i=1}^n P(A_i) \mathcal{Q}(dP)$$

donde

- ightharpoonup P es una medida de probabilidad aleatoria (MPA)
- \mathcal{Q} es la distribución de De Finetti (priori de P)
- D de forma jerárquica

$$X_i \mid P \stackrel{iid}{\sim} P$$

$$P \sim Q$$

Objetivo: Construir distribuciones $\mathcal Q$ para medidas de probabilidad aleatorias P

Objetivo: Construir distribuciones $\mathcal Q$ para medidas de probabilidad aleatorias P

Método 1: Especificar @ e.g.

- ► Vía distribuciones infinito dimensionales con distribuciones finito dimensionales específica.
- Especificar la lay de la sucesión de v.a.'s mediante distribuciones predictiva.

Objetivo: Construir distribuciones ${\mathcal Q}$ para medidas de probabilidad aleatorias P

Método 1: Especificar @ e.g.

- ► Vía distribuciones infinito dimensionales con distribuciones finito dimensionales específica.
- Especificar la lay de la sucesión de v.a.'s mediante distribuciones predictiva.

Método 2: Construir directamente a P

- ► Transformación de procesos estocásticos.
- Modelos de muestreo de especies.

Distribución continua y generalización de la distribución beta

Distribución continua y generalización de la distribución beta

► Soporte el simplex n-1 dimensional, i.e.,

$$\left\{ \mathbf{x} \in [0,1]^n : \sum_i x_i = 1 \right\}$$

· Distribución continua y generalización de la distribución beta

► Soporte el simplex n-1 dimensional, i.e.,

$$\left\{ \mathbf{x} \in [0,1]^n : \sum_i x_i = 1 \right\}$$

Con densidad dada por:

$$f(\mathbf{x}) = \frac{\Gamma\left(\sum_{i=1}^{n} \alpha_i\right)}{\prod_{i=1}^{n} \Gamma(\alpha_i)} \frac{\prod_{i=1}^{n} x_i^{\alpha_i - 1}}{\prod_{i=1}^{n} \Gamma(\alpha_i)}$$

Construcción

Sean
$$X_1, ..., X_n \stackrel{ind}{\sim} Ga(\alpha_1, \theta)$$
 entonces $V = \sum_i X_i \sim Ga(\alpha_0, \theta)$

$$(Y_1, ..., Y_n) = \left(\frac{X_1}{V}, ..., \frac{X_n}{V}\right) \sim Dir(\alpha_1, ..., \alpha_n)$$

donde
$$\alpha_0 = \sum_i \alpha_i$$

Considerar $X = \{1, \ldots, k\}$ y un modelo multinomial - Dirichlet, i.e.

Considerar $X = \{1, ..., k\}$ y un modelo multinomial - Dirichlet, i.e.

 $X \mid (p_1, p_2, ..., p_n)$ tienen densidad proporcional a

$$\prod_{i=1}^{n} p_n^{\delta_i(X_i)}$$

Considerar $X = \{1, ..., k\}$ y un modelo multinomial - Dirichlet, i.e.

 $X \mid (p_1, p_2, ..., p_n)$ tienen densidad proporcional a

$$\prod_{i=1}^{n} p_n^{\delta_i(X_i)}$$

La verosimilitud es proporcional a

$$\prod_{i=1}^{n} p_n^{\sum_{i=1}^{N} \delta_i(X_i)}$$

Considerar $X = \{1, ..., k\}$ y un modelo multinomial - Dirichlet, i.e.

• $X | (p_1, p_2, ..., p_n)$ tienen densidad proporcional a

$$\prod_{i=1}^{n} p_n^{\delta_i(X_i)}$$

La verosimilitud es proporcional a

$$\prod_{i=1}^{n} p_n^{\sum_{i=1}^{N} \delta_i(X_i)}$$

$$i=1$$

La posterior es

$$\operatorname{Dir}\left(\alpha_1 + \sum_{i=1}^N \delta_1(X_i), \ldots, \alpha_n + \sum_{i=1}^N \delta_n(X_i)\right)$$

Proceso Dirichlet

 Vía distribuciones infinito dimensionales con distribuciones finito dimensionales específicas, i.e.,

Definición

Sea $\alpha>0$ una medida finita sobre un espacio Polaco. Se dice que una MPA P tiene una distribución Dirichlet si para toda partición medible $\left(B_1,\ldots,B_n\right)$ de \mathbb{X} , $\left(P(B_1),\ldots,P(B_n)\right)\sim \operatorname{Dir}\left(\alpha(B_1),\ldots,\alpha(B_n)\right)$

Proceso Dirichlet

Vía distribuciones predictivas

$$\mathbb{P}(X_1 \in dx_1, ..., X_n \in dx_n) = \prod_{i=1}^n \frac{\alpha(dx_i) + \sum_{j=1}^{i-1} \delta_{x_j}(dx_i)}{\alpha(X) + i - 1}$$

· Una consecuencia directa es que

$$\mathbb{P}(X_i = X_j) = \frac{1}{\theta + 1}$$

Proceso Dirichlet

Vía modelo de muestre de especies ("stick-breaking")

$$P(B) = \sum_{i=1}^{\infty} \omega_i \delta_{z_i}(B)$$

donde

$$w_1 = v_1$$

$$w_n = v_n \prod_{i \le n} (1 - v_i)$$

$$y v_i \sim Be(1,\theta)$$

Procesos stick-breaking

• Muchas y muy variadas formas de definirlas a través de particulares elecciones de la colección v_i , e.g.:

- Procesos independientes (proceso Dirichlet)
- Procesos dependientes (proceso geométrico) donde $v_i = v \sim Be(a,b)$.
- Procesos intercambiables, donde

$$v_i | \nu \sim \nu$$

$$\nu \sim Dir(\beta, \nu_0)$$

i Gracias!