Color Preserving Image Transformation with Scissor Collage

Ziv Epstein¹, Robin Pollak¹, and Dmitriy Smirnov¹

Computer Science Department, Pomona College
Claremont,CA
{ziv.epstein, robin.pollak, dmitriy.smirnov}@pomona.edu

_	_		
Λ	hsi	tra	ct

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modelling – Geometric Algorithms, languages and systems, K.3.1 Computer Uses in Education – Computer-assisted instruction

Keywords and phrases polygonal congruence, color matching, image transformation, geometry, rigid transformations

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.66

1 Introduction

2 Algorithm

We begin by accepting an uploaded photo ("target") and a search term used to retrieve a second photo ("base"). Then, using [?, Georg Fischer's triangulation algorithm] we split each image into polygons P_{base} , P_{target} comprised of Delaunay triangles. Next we use [?, k-means] to cluster the colors in each photo and select the top k=5 most important colors in each photo. The two sets $Colors_{base}$, $Colors_{target}$ of cardinality k are then assigned a one to one mapping, ϕ , using weighted bipartite matching.

Now, for both photos, we color each triangle using the color redistribution algorithm equal areas for all k colors across all triangles. Given these equally distributed colors we now recolor each triangle from $color_i \in Colors_{base}$ to $color_{\phi(i)} \in Colors_{target}$.

Finally, we use scissors congruence to recreate P_{target} from P_{base} .

2.1 Color Redistribution Algorithm

For each triangle we compute its average color and then color it with the closest of the k colors found while clustering the target image. Then we begin to balance the total area of each color, by creating k bins with an area threshold of T = (TotalArea)/k, where each bin corresponds to a color. Now, for a given bin B, if B's total area $Area_B > T$ we consider the smallest triangle $t_{min} \in B$ and check whether it could be removed from B while maintaining $Area_B > T$. If t_min can be removed in this way we recolor t_min to the closest bin that is not yet full. If t_min cannot be removed without $Area_B < T$ we instead consider the largest triangle $t_{max} \in B$. We divide t_max into two smaller triangles by drawing a ray from a vertex such that one of the new triangles t_max' has area $Area_B - T$ and recolor t_max' as described above.

66:2 Visualizing Scissors Congruence

3 Implementation

References –

William Wallace and John Lowry. 'Question 269'. New Series of the Mathematical Repository 3 (1814). Ed. by Thomas Leybourn, pp. 44–46.