Задача 1.

Определить разрешающую способность дифракционной решётки шириной 2 см в третьем порядке, если постоянная решётки равна $5 \cdot 10^{-4}$ см. Какова наименьшая разность длин волн для двух разрешающих спектральных линий в жёлтой области ($\lambda = 600$ нм)? Сделать рисунок.

Разрешающей способностью называют способность решетки разделить две волны с близкими значениями длины λ на два отдельных максимума на экране, разрешающую способностью можно определить, как произведение порядка спектра на число щелей решетки

$$R = k \cdot N(1), d = \frac{l}{N}(2), N = \frac{l}{d}, R = k \cdot \frac{l}{d}(3).$$
 $R = 3 \cdot \frac{2 \cdot 10^{-2}}{5 \cdot 10^{-6}} = 1, 2 \cdot 10^{4}.$

Кроме того, разрешающая способность решетки определяется отношением длины волны λ к разности $\Delta\lambda$ длин волн и вычисляется по формуле:

$$R=rac{\lambda}{\Delta\lambda}, \Delta\lambda=rac{\lambda}{R}(4).~\Delta\lambda=rac{600\cdot10^{-9}}{1,2\cdot10^4}=5\cdot10^{-11}.$$

32.2. На какой угловой высоте Ф над горизонтом должно находиться Солнце, чтобы

<u>Задача 3.</u>

Где и какого размера получится изображение предмета высотой 2 см, расположенного на расстоянии 15 см от собирающей линзы с фокусным расстоянием 0,1 м?

AB = 2,0 cm
$$a = -15 \text{ cm}$$

$$f' = 0,10 \text{ m}$$

$$here a : A'B' = \frac{6}{a}; A'B' = AB = \frac{6}{a}; A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = \frac{6}{a}; A'B' = AB = \frac{6}{a}; A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

$$here a : A'B' = AB = \frac{4}{a+4!} A'B' = -4,0 \text{ cm}$$

Задача 4.

Оптическая сила стеклянной линзы в воздухе 5,5 дптр, а в жидкости 1,63 дптр. Чему равен показатель преломления жидкости?

Задача 5. На стеклянную призму с преломляющим углом 60° и
показателем преломления 1,5 падает луч света под углом 30°. Какой угол преломления луча при выходе его из призмы?

1) Отобразим условие задачи:

Дано:

$$\angle EFG = 50^{\circ}$$
;

$$\angle ABC = 60^{\circ};$$

Найти:

$$\gamma-?;$$

Решение:

1) Найдем угол преломления лучей в призме:

$$\angle OFN = \arcsin\left(\frac{\sin \angle EFG}{n}\right) = \arcsin\left(\frac{0,766}{1,6}\right) =$$

 $= \arcsin 0.478 = 28.6^{\circ};$

2) В четырехугольнике ОҒВИ:

$$\angle FON = 360^{\circ} - 90^{\circ} - 90^{\circ} - 60^{\circ} = 120^{\circ};$$

3) Угол падения луча на грань ВС:

$$\angle FNO = 180^{\circ} - 120^{\circ} - 28,6^{\circ} = 31_{\overline{0}4^{\circ}}$$

4) Угол преломления луча при выходе из призмы:

$$\gamma = \arcsin(n \cdot \sin 31.4^{\circ}) = \arcsin(1.6 \cdot 0.521) = 56^{\circ};$$

Ответ: $\gamma = 56^{\circ}$.

Задача 6.

Сравнить разрешающие способности дифракционных решёток, если одна из них имеет 420

штрихов на 1 мм при ширине 2 см, а другая – 700 штрихов на 1 мм при ширине 4,8 см.								

Задача 7.

Какой наибольший порядок спектра (590 нм) можно наблюдать при помощи дифракционной решётки, в которой 500 штрихов на 1 мм, если свет падает под углом 30°?

Дано:	Решение:
$\lambda = 590 \text{ HM} = 5.9 \cdot 10 - 7 \text{ M}$	Условие max на дифракционной решетке: $dsin\phi = k\lambda$, где k будет
N = 500	$k_{\max} = \frac{d}{\lambda}$, где
1 = 10-3 M	l d l 10 ⁻³
kmax – ?	$d = \frac{s}{N}, k_{\text{max}} = \frac{s}{\lambda} = \frac{s}{N\lambda} = \frac{1}{500 \cdot 5,9 \cdot 10^{-7}} = 3,4$

k может принимать только целые значения, следовательно, kmax = 3.

Ответ: kmax = 3.

Задача 8.

Анализатор в 2 раза ослабляет интенсивность падающего на его поляризованного света. Какой угол между главными плоскостями поляризатора и анализатора? Потерями света в анализаторе пренебречь.

32.11. Анализатор в k=2 раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол α между плоскостями пропускания поляризатора и анализатора. Потерями интенсивности света в анализаторе пренебречь.

Дано:
$$k=2$$
 Решение: $I = I_0 \cos^2 \alpha$, $k = \frac{I_0}{I} = 2$, $\frac{I}{I_0} = \cos^2 \alpha$, $\cos^2 \alpha = \frac{1}{2}$, $\alpha = \arccos \sqrt{\frac{1}{2}} = 45^0$

Ответ: 45⁰

Задача 9. Предмет расположен на расстоянии 15 см от вершины оптической вогнутого зеркала на его Изображение получилось на расстоянии 30 см от зеркала. Найти, куда и на сколько сместится изображение, если предмет приблизить к зеркалу на 1 CM.

$$a_{1}=-15cu$$
 $b_{1}=-30cu$
 $b_{1}=-30cu$
 $b_{2}=a_{1}+b$;
 $b_{3}=\frac{1}{4}$; $\Rightarrow \frac{1}{a_{1}+b}+\frac{1}{b_{3}}=\frac{1}{4}$ (*)

Henghous impossible functions of the properties of the

$$\theta_{2} - \theta_{1} = \frac{a_{1}\theta_{1}(a_{1} + \Delta)}{a_{1}(a_{1} + \Delta) + \theta_{1}\Delta}; \Rightarrow \begin{bmatrix} \theta_{2} - \theta_{1} = -\frac{\theta_{1}^{2}\Delta}{a_{1}(a_{1} + \Delta) + \theta_{1}\Delta} \end{bmatrix}$$

Jocue nogunamotion: les-les=5cm>0.

Ha 5 cm. 161<0, mo mospomenne cuerunce buelo

Задача 10.

Луч естественного света отражается от плоского стеклянного дна сосуда, наполненного водой. Каким должен быть угол падения луча, если отраженный луч был максимально поляризован? Показатель преломления стекла 1,52, воды — 1,33.

(3) Myr observer, ingritains b ememirinan conge, reasonnement territain micromitis, empirimental em nobsprencerms ementa. Thu reason year noisental d emportuentain ebem manerimental nominappolari. Tomagavant nperiorimental nucucirios $n_1 = 1, 43$, nonagament nperiorimental esenual $n_2 = 1,52$ $190_5 = 190_6 = 10_6 = 10_7$, 05 - year buncvepa 1 = 1,52 1 = 1,52 1 = 1,52 1 = 1,52 1 = 1,52

Задача 11.

Во сколько раз ослабляется свет при прохождении через 2 николя, оптические оси которых составляю 63°, если в каждом тратится 10% падающего света?

32.13. Во сколько раз ослабляется интенсивность света, проходящего через два николя плоскости пропускания которых образуют угол $\alpha = 30^\circ$, если в каждом из николей в отдельности теряется 10 % интенсивности падающего на него света?

Дано:
$$\alpha = 30^{\circ}$$
 Решение:
$$I_1 = \frac{1}{2}I_0(1-k), \frac{I_0}{I} = \frac{2}{k-1}, I_2 = I_1(1-k)\cos^2\alpha$$

$$\frac{I_0}{I_2} = \frac{I_0}{I_1(1-k)\cos^2\alpha} = \frac{2}{(1-k)^2\cos^2\alpha}, \frac{I_0}{I_2} = 3,3$$

Ответ: в 3,3 раза.

Задача 12.

Собирающая линза с показателем преломления 1,5 даёт действительное изображение на расстоянии 0,1 м от неё. Если предмет и линзу опускают в воду, не изменяя расстояния между ними, то изображение получается на расстоянии 0,6 м от линзы. Найти фокусное расстояние линзы. Показатель преломления воды 1,33.

```
Otbet. 1/a+1/b=(n-1)*(1/R1-1/R2); 1/a+1/b1=(n/n1-1)*(1/R1-1/R2); 1/a+1/b=1/F; F=(a*b)/(a+b); (1/a+1/b)/(1/a+1/b1)=(n-1/(n/n1-1); 1/a=((1/b1)*(n-1)-(1/b)*(n/n1-1))/((n/n1)-n)); b1=0,6; b=0,1; n=1,5; n1=1,33; 1/a=1,195; a=0,837; F=0,089;
```

Задача 13. Фокусное расстояние объектива и окуляра микроскопа соответственно 5мм и 5 см. Предмет расположен на расстоянии 0,1 мм от главного фокуса

объектива. Найти длину тубуса микроскопа и его увеличение для нормального глаза.

224. В микроскопе фокусное расстояние объектива равно 5,4 мм, окуляра 20 мм. Каково будет увеличение предмета, находящегося от объектива на расстоянии 5,6 мм, если его рассматривать глазами с нормальным зрением? Какова при этом будет длина тубуса?

Решение

 По условию задачи заданы величины F₁ и d₁, что позволяет записать следующие соотношения

$$\Gamma_1 = \frac{f_1}{d_1};$$

$$\frac{1}{F_1} = \frac{1}{d_1} + \frac{1}{f_1};$$

Рис. 224. Схема микроскопа

2. Определим из системы уравнений величины f1 и Г1

$$f_1 = \frac{F_1 d_1}{d_1 - F_1}; \quad \Gamma_1 = \frac{F_1}{d_1 - F_1};$$

3. Увеличение микроскопа можно определить через длину тубуса

$$\Gamma_1 = \frac{\ell}{F_1}$$
,

тогда уравнение увеличения можно переписать следующим образом

$$\frac{\ell}{F_1} = \frac{F_1}{d_1 - F_1}; \implies \ell = \frac{F_1^2}{d_1 - F_1} = 145.8 \text{ mm}.$$

4. Определим увеличение микроскопа

$$\Gamma = \frac{\ell L}{F_1 F_2} = 337.5.$$

<u>Задача 14.</u>

Определить фокусное расстояние вогнутого сферического зеркала, если оно даёт действительное изображение предмета, увеличенное в 4 раза. Расстояние между предметом и его изображением 15 см.

$$\frac{Dano}{f = 15cm = 0,15m} \quad No \quad popmyre \quad \partial no \quad cope furecano \\
f = \frac{1}{3} \quad 2e fuana \quad f = \frac{1}{a} + \frac{1}{b} \\
a = ? \quad Ho \quad f = \frac{1}{a} = 3 \quad B = fa = \frac{2}{3} \\
Toda \quad f = \frac{1}{a} + \frac{3}{a} = \frac{4}{a} \cdot Orcoda \quad a = 4f = 064$$

$$Orber, \quad a = 60cm$$

Задача 15.

Человек посмотрел на дно водоёма сверху по

вертикальному направлению и определил его глубину в 0,9 м. Чему равна действительная глубина водоёма?

Для решения задачи сделаем рисунок. При этом для решения этой задачи нам нужно рассмотреть ход параксиального луча, то есть луча, который распространяется под малым углом к оси ОО1. На рисунке углы а и в не являются малыми, это сделано исключительно для наглядности рисунка.

Запишем закон преломления света:

 $n2\sin\alpha=n1\sin\beta$

Здесь α и β — угол падения и угол преломления соответственно, n1 и n2 — показатели преломления сред. Показатель преломления воздуха n1 равен 1, показатель преломления воды n2 равен 1,33.

Так как углы α и β являются малыми, тогда можно воспользоваться тем, что в таком случае $\sin \alpha \alpha$ и $\sin \beta \approx \beta$ (здесь углы, разумеется, выражены в радианах). Тогда:

$$n_2 lpha = n_1 eta$$

$$\beta = \frac{n_2}{n_1} \alpha$$
 (1)

Также из прямоугольных треугольников можно получить следующее:

$$\left\{egin{aligned} tglpha = rac{L}{h_0} \ tgeta = rac{L}{h} \end{aligned}
ight.$$

Имеем:

$$h_0 \cdot tg\alpha = h \cdot tg\beta$$

Опять же, если углы lpha и eta являются малыми, тогда можно воспользоваться тем, что в таком случае tglphapproxlpha и tgetapproxeta (здесь углы, разумеется, выражены в радианах).

$$h_0 \cdot \alpha = h \cdot \beta$$

В полученное уравнение подставим выражение (1):

$$h_0 \cdot lpha = h \cdot rac{n_2}{n_1} lpha$$

$$h_0 = \frac{n_2}{n_1} h$$

Задача решена в общем, подставим данные задачи в полученную формулу и посчитаем численный ответ:

$$h_0 = rac{1,33}{1} \cdot 4 = 5,32$$
 M

Задача 16. На установку для получения колец Ньютона падает нормально монохроматический свет (0,5 мкм). Определить толщину воздушного слоя там, где наблюдается 5-е светлое кольцо.

$$\begin{split} R^2 &= \left(\, R - h \right)^2 + r^2 = R^2 - 2Rh + h^2 + r^2 \\ h &= 5 \cdot 10^{-8} \, \, \text{M}, \quad R \approx 1 \div 10 \, \, \text{M} \quad \Rightarrow h^2 \to 0 \\ h &= \frac{r^2}{2R}. \end{split}$$

Радиус светлых колец Ньютона для отраженного света

$$r_{k\max} = \sqrt{(2k-1)\frac{\lambda R}{2n}}$$

Тогда

$$h = \frac{(2k-1)\frac{\lambda R}{2n}}{2R} = \frac{(2k-1)\lambda}{4n} = \frac{(2\cdot 3-1)\cdot 500\cdot 10^{-9}}{4\cdot 1,33} = 4,699\cdot 10^{-7} \text{ m.};$$

Ответ:

$$h = 4,699 \cdot 10^{-7} M.$$

Задача 17.

Вертикальная клинаподобная мыльная плёнка наблюдается под углом 90° в отраженном свете через

красное стекло, которое пропускает лучи с длиной волны 631 нм. Расстояние между соседними красными полосами 3 мм. Какое расстояние между соседними синими полосами, если наблюдение вести через синее стекло, которое пропускает свет с длиной волны 460 нм?

Дано:

$$\lambda_1 = 631 \text{ HM} = 631 \cdot 10^{-9} \text{ M}$$
 $l_1 = 3 \text{ MM} = 3 \cdot 10^{-3} \text{ M}$
 $\lambda_2 = 400 \text{ HM} = 400 \cdot 10^{-9} \text{ M}$
 $n = 1,33$

Обозначим через h_1 и h_2 толщины пленки, соответствующие соседним полосам. Тогда

$$\Delta h = h_2 - h_1 = \frac{\lambda_1}{2n}.$$

(см. рис.). Учитывая, что угол у клина мал, можно считать, что

$$\Delta h = l_1 tg \gamma$$
;

отсюда

$$tg \gamma = \frac{\Delta h}{l_1} = \frac{k\lambda_1}{2nl}$$

Расстояние l_2 между соседними синими полосами

$$l_2 = \frac{\Delta h}{tg\gamma} = \frac{\lambda_2 2nl_1}{2nk\lambda_1} = \frac{\lambda_2 l_1}{k\lambda_1} = \frac{400 \cdot 10^{-9} \cdot 3 \cdot 10^{-3}}{1 \cdot 631 \cdot 10^{-9}} = 1,902 \cdot 10^{-3} \text{ M}$$

Ответ:

$$l_2 = 1,902 \cdot 10^{-3} M$$

Задача 18.

Микроскоп даёт увеличение в 640 раз. Предмет находится от объектива на 0,41 см. Фокусное расстояние объектива 0,4 см. Определить фокусное расстояние окуляра и длину тубуса микроскопа, если изображение получается на расстоянии 24 см от окуляра.

Задача 19.
В тонкой клинообразной пластинке в отраженном
свете при нормальном падении лучей с длиной волны 450 нм наблюдаются тёмные интерференционные
полосы, расстояние между которыми 1,5 мм. Найти
угол между гранями пластинки, если n=1,5.

Задача 20. стеклянную пластинку (n1=1,5) нанесена Ha прозрачная плёнка (n2=1,4). На плёнку нормально к поверхности падает монохроматический свет (600 нм). Какая наименьшая толщина плёнки, если в

результате интерференции отраженные лучи максимально ослаблены?

$$\delta = (2 \cdot k + 1) \cdot \frac{\lambda}{2}(1).$$

$$\delta = 2 \cdot d \cdot n$$
 (2).

$$(2 \cdot k + 1) \cdot \frac{\lambda}{2} = 2 \cdot d \cdot n \;,\; d = \frac{(2 \cdot k + 1) \cdot \frac{\lambda}{2}}{2 \cdot n} \quad (3).$$

$$d=rac{rac{\lambda}{2}}{2\cdot n}=rac{\lambda}{4\cdot n}$$

Задача 21.

Пучок параллельных лучей падает на поверхность воды под углом 30° ширина пучка в воздухе 5 см. Найти ширину пучка в воде.

Условие:
$$b = 10$$
 см; $i = 60^{\circ}$. $b' = ?$ $n = 1,33$.

Решение. Из построения (рис. 93) следует, что $b = AB \cdot \cos i$; $b' = AB \cdot \cos r$. Отсюда $\frac{b}{b'} = \frac{\cos i}{\cos r}$. Но

 $\frac{\sin t}{\sin r} = n$. Следовательно, $\sin r = \frac{\sin t}{n}$; $\sin r = \frac{0,866}{1,33} = 0,651$; $r = 41^\circ$. Определим b':

$$b' = b \frac{\cos r}{\cos i};$$

 $b' = 10 \cdot \frac{0.869}{0.500} \approx 17.4 \ (cm).$

Задача 22.

Оптическая сила плоско-выпуклой линзы (n=1,5) 0,5 дптр. Линза выпуклой стороной лежит на стеклянной пластинке. Определить радиус 7-го тёмного кольца Ньютона в прошедшем свете (0,5 мкм).

Задача 23. Какое расстояние между 20 и 21 светлыми кольцами Ньютона, если расстояние между 2 и 3 — 1 мм, а наблюдение ведется в отраженном свете?

№3 13. Каково расстояние между 20-м и 21-м максимумами светлых колец Ньютона, если расстояние между 2-м и 3-м – 1 мм, а наблюдение ведётся в отражённом свете?

Дано:
$$\Delta r_{3,2} = 1 \text{ мм}$$
 $\Delta r_{21,20} - ?$

Решение.

Радиус m-го светлого кольца Ньютона (в отражённом свете):

$$r_m = \sqrt{\left(m - \frac{1}{2}\right) \, \lambda \, R} \ ,$$

где λ — длина волны света;

R – радиус кривизны линзы.

Для двух соседних колец с номерами m и (m+1):

$$r_m = \sqrt{\left(m-\frac{1}{2}\right)\,\lambda\,R}\ , \qquad r_{m+1} = \sqrt{\left(m+\frac{1}{2}\right)\,\lambda\,R}\ .$$

Разность радиусов двух колец:

$$\Delta r_{m+1,\,m} = r_{m+1} - r_m = \sqrt{\left(m + \frac{1}{2}\right)\,\lambda\,R} \, - \sqrt{\left(m - \frac{1}{2}\right)\,\lambda\,R} \, = \left(\sqrt{2\,m + 1} \, - \sqrt{2\,m - 1}\,\right)\,\sqrt{\frac{\lambda\,R}{2}} \ .$$

Задача 24.

Луч естественного света последовательно проходит через две поляризационные призмы, угол между главными плоскостями которых 60° . Какая доля начального потока выйдет из анализатора?

мм. 3,1 ное

224. В микроскопе фокусное расстояние объектива равно 5,4 мм, окуляра 20 мм. Каково будет увеличение предмета, находящегося от объектива на расстоянии 5,6 мм, если его рассматривать глазами с нормальным зрением? Какова при этом будет длина тубуса?

Решение

 По условию задачи заданы величины F₁ и d₁, что позволяет записать следующие соотношения

$$\Gamma_{1} = \frac{\mathbf{f}_{1}}{\mathbf{d}_{1}};$$

$$\frac{1}{\mathbf{F}_{1}} = \frac{1}{\mathbf{d}_{1}} + \frac{1}{\mathbf{f}_{1}};$$

Рис. 224. Схема микроскопа

Определим из системы уравнений величины f₁ и Г₁

$$f_1 = \frac{F_1 d_1}{d_1 - F_1}; \quad \Gamma_1 = \frac{F_1}{d_1 - F_1};$$

3. Увеличение микроскопа можно определить через длину тубуса

$$\Gamma_1 = \frac{\ell}{F_1}$$
,

тогда уравнение увеличения можно переписать следующим образом

$$\frac{\ell}{F_1} = \frac{F_1}{d_1 - F_1}; \implies \ell = \frac{F_1^2}{d_1 - F_1} = 145.8 \text{ mm}.$$

4. Определим увеличение микроскопа

$$\Gamma = \frac{\ell L}{F_1 F_2} = 337.5.$$