Graded Homework 9 (due Wednesday, May 6)

Exercise 1. Someone proposes you to play the following game: start with an initial amount of $S_0 > 0$ francs, of your choice. Then toss a coin: if it falls on heads, you win $S_0/2$ francs; while if it falls on tails, you lose $S_0/2$ francs. Call S_1 your amount after this first coin toss. Then the game goes on, so that your amount after coin toss number $n \ge 1$ is given by

$$S_n = \begin{cases} S_{n-1} + \frac{S_{n-1}}{2} & \text{if coin number } n \text{ falls on heads} \\ \\ S_{n-1} - \frac{S_{n-1}}{2} & \text{if coin number } n \text{ falls on tails} \end{cases}$$

We assume moreover that the coin tosses are independent and fair, i.e., with probability 1/2 to fall on each side. Nevertheless, you should *not* agree to play such a game: explain why!

Hints:

First, to ease the notation, define $X_n = +1$ if coin n falls on heads and $X_n = -1$ if coin n falls on tails. That way, the above recursive relation may be rewritten as $S_n = S_{n-1} \left(1 + \frac{X_n}{2}\right)$ for $n \ge 1$.

- a) Compute recursively $\mathbb{E}(S_n)$; if it were only for expectation, you could still consider playing such a game, but...
- b) Define now $Y_n = \log(S_n/S_0)$, and use the central limit theorem to approximate $\mathbb{P}(\{Y_n > t\})$ for a fixed value of $t \in \mathbb{R}$ and a relatively large value of n. Argue from there why it is definitely not a good idea to play such a game! (computing for example an approximate value of $\mathbb{P}(\{S_{100} > S_0/10\})$)

Exercise 2. Let $\lambda > 0$ be fixed. For a given $n \geq \lceil \lambda \rceil$, let $X_1^{(n)}, \ldots, X_n^{(n)}$ be i.i.d. Bernoulli (λ/n) random variables and let $S_n = X_1^{(n)} + \ldots + X_n^{(n)}$.

- a) Compute $\mathbb{E}(S_n)$ and $\text{Var}(S_n)$ for a fixed value of $n \geq \lceil \lambda \rceil$.
- b) Deduce the value of $\mu = \lim_{n \to \infty} \mathbb{E}(S_n)$ and $\sigma^2 = \lim_{n \to \infty} \operatorname{Var}(S_n)$.
- c) Compute the limiting distribution of S_n (as $n \to \infty$).

Hint: Use characteristic functions. You might also have a look at tables of characteristic functions of some well known distributions in order to solve this exercise.

For a given $n \geq 1$, let now $Y_1^{(n)}, \dots, Y_n^{(n)}$ be i.i.d. Bernoulli(1/n) random variables and let

$$T_n = Y_1^{(n)} + \ldots + Y_{\lceil \lambda n \rceil}^{(n)}$$

where $\lambda > 0$ is the same as above.

- d) Compute the limiting distribution of T_n (as $n \to \infty$).
- e) Is it also the case that either S_n or T_n converge almost surely or in probability towards a limit? Justify your answer!

Exercise 3. (application of Lindeberg's principle to non i.i.d. random variables)

Let $(\sigma_n, n \ge 0)$ be a sequence of (strictly) positive numbers and $(X_n, n \ge 1)$ be a sequence of independent random variables such that $\mathbb{E}(X_n) = 0$, $\operatorname{Var}(X_n) = \sigma_n^2$ and $\mathbb{E}(|X_n|^3) \le K \sigma_n^3$ for every $n \ge 1$ (note that the constant K is uniform over all values of n).

For
$$n \geq 1$$
, define also $V_n = \text{Var}(X_1 + \ldots + X_n) = \sigma_1^2 + \ldots + \sigma_n^2$.

Using Lemma 9.12 in the lecture notes (equivalently, Lemma 2 in the video lecture 9.2b), find a sufficient condition on the sequence $(\sigma_n, n \ge 1)$ guaranteeing that

$$\frac{1}{\sqrt{V_n}}(X_1 + \ldots + X_n) \underset{n \to \infty}{\overset{d}{\longrightarrow}} Z \sim \mathcal{N}(0, 1)$$

Note: From the course, you already know a sufficient condition: $\sigma_n = 1$ for all $n \ge 1$, but this is too strong! The aim here is to find a sufficient condition which is most general possible.

b) Which of the following sequences $(\sigma_n, n \ge 1)$ satisfy the condition you have found in a)?

b1)
$$\sigma_n = n$$
 b2) $\sigma_n = \frac{1}{n}$ b3) $\sigma_n = 2^n$

 $\textit{Hint:} \text{ The following might be useful:} \quad \sum_{j=1}^n j^\alpha = \begin{cases} \Theta(n^{\alpha+1}) & \text{if } \alpha > -1 \\ \Theta(\log(n)) & \text{if } \alpha = -1 \\ \Theta(1) & \text{if } \alpha < -1 \end{cases}$

Exercise 4. Let $(X_n, n \ge 1)$ be a sequence of independent random variables such that

$$\mathbb{P}\left(\left\{X_n = +1/\sqrt{n}\right\}\right) = \mathbb{P}\left(\left\{X_n = -1/\sqrt{n}\right\}\right) = \frac{1}{2}$$

and let, for $n \geq 1$,

$$Y_n = X_1 + \ldots + X_n$$
 and $Z_n = X_{n+1} + \ldots + X_{2n}$

- a) Run multiple times the process Y and draw a histogram of Y_n for n = 100, n = 1'000 and n = 10'000, respectively. Draw also the graphs of the empirical mean and standard deviation of Y_n as a function of n. Do you observe that the histogram of Y_n converges as n grows large (i.e., that Y_n converges in distribution)?
- b) Same questions for the process Z.
- c) In the case(s) where you observed convergence in distribution, prove that the sequence of random variables indeed converges to a limit, using characteristic functions. What is the limiting distribution?

Hint: You may use approximations here, as well as the following:

$$\sum_{j=n_1+1}^{n_2} j^{\alpha} \simeq \int_{n_1}^{n_2} dx \, x^{\alpha}$$

as n_2 gets large (and n_1 is either fixed or getting large also).