Language Classification

DSIR-113020 Capstone Presentation Luke Heeringa

Objective

Problem Statement

Can machine learning be used to identify the language being spoken in an audio recording?

Parameters

5 second audio clips

5 major world languages

10 Mel-frequency cepstrum coefficients

Scenarios

Connect clients with appropriate interpretation services

Identify context for auto-transcription and auto-translation software

	Millions of Speakers	
	Native	Total
English	379	1,348
Spanish	480	543
French	77	267
Russian	154	258
Mandarin	918	1,120

Data Collection

BY SOURCE

- Audio-Lingua.eu
- EveryTongue.com
- Omniglot.com
- VoxForge.org
- CommonVoice.mozilla.org

BY LANGUAGE

- English 19,280
- Spanish 18,885
- French 18,021
- Russian 18,919
- Mandarin 18,163

What is a Mel Frequency Cepstrum Coefficient (MFCC)?

Neural Network Modeling

Validation Accuracy

Null model: 19.8%

Dense layer model: 37.5%

Gated Recurrent Units: 58.2%

Gated Recurrent Unit Network: Results

Demonstration