Here's the updated code:

Step 1: Install HNSW Library

If you haven't already installed hnswlib, you can do so with:

bash

pip install hnswlib

Step 2: Build the HNSW Index

Replace the FAISS index with an HNSW index.

python

Copy

Copy

import hnswlib

import numpy as np

Assuming passage_embeddings is a numpy array of shape (num_passages, embedding_dim)

num_passages, embedding_dim = passage_embeddings.shape

Create an HNSW index

index = hnswlib.Index(space="cosine", dim=embedding_dim) # Use "cosine" for cosine similarity

Initialize the index

index.init_index(max_elements=num_passages, ef_construction=200, M=16)

Add embeddings to the index

index.add_items(passage_embeddings)

Set the number of nearest neighbors to retrieve

index.set_ef(50) # ef should be >= k (number of nearest neighbors to retrieve)

Step 3: Query the HNSW Index

Update the retrieval part of the code to use HNSW.

python

Copy

def retrieve_passages(query, k=5):

Encode the guery

query_embedding = encoder.encode([query])[0] # Get the first (and only) embedding

Retrieve the top-k passages

nearest_neighbors, distances = index.knn_query(query_embedding, k=k)

Get the retrieved passages

retrieved_passages = [passages[i] for i in nearest_neighbors[0]]

return retrieved_passages

Step 4: Integrate with the RAG Generator

Now, integrate the HNSW retriever with the RAG generator. python

Copy

from transformers import RagTokenizer, RagSequenceForGeneration

Load the RAG tokenizer and generator

tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-ng") generator = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-ng")

Define the RAG guery function

def rag_query(query, k=5):

Retrieve relevant passages

retrieved_passages = retrieve_passages(query, k=k)

Combine retrieved passages into a single context

context = " ".join(retrieved_passages)

Generate an answer using the RAG model

inputs = tokenizer(context, query, return_tensors="pt", max_length=512, truncation=True) generated_ids = generator.generate(inputs["input_ids"]) generated_answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

return generated_answer, retrieved_passages

Step 5: Test the RAG Model

Test the updated RAG pipeline with a sample query. python

guery = "What is the capital of France?"

answer, retrieved_passages = rag_query(query)

print("Generated Answer:", answer)

print("Retrieved Passages:", retrieved_passages)

Step 6: Save and Load the HNSW Index

To avoid rebuilding the index every time, you can save and load it.

Save the HNSW Index

python

index.save_index("hnsw_index.bin")

Load the HNSW Index

python Copy

index = hnswlib.Index(space="cosine", dim=embedding_dim)

index.load_index("hnsw_index.bin")

index.set_ef(50) # Set ef after loading the index

Full Updated Code

Here's the complete updated code for your RAG pipeline using HNSW:

python

import hnswlib

import numpy as np

from sentence_transformers import SentenceTransformer

from transformers import RagTokenizer, RagSequenceForGeneration

Step 1: Encode Passages

encoder = SentenceTransformer("all-MiniLM-L6-v2")
passage_embeddings = encoder.encode(passages) # Assuming passages is a list of strings
num_passages, embedding_dim = passage_embeddings.shape

Step 2: Build HNSW Index

index = hnswlib.Index(space="cosine", dim=embedding_dim)
index.init_index(max_elements=num_passages, ef_construction=200, M=16)
index.add_items(passage_embeddings)
index.set_ef(50)

Copy

Copy

Step 3: Define Retriever

def retrieve_passages(query, k=5):

query_embedding = encoder.encode([query])[0]

nearest_neighbors, distances = index.knn_query(query_embedding, k=k)

return [passages[i] for i in nearest_neighbors[0]]

Step 4: Load RAG Generator

tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
generator = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")

Step 5: Define RAG Query Function

def rag_query(query, k=5):

retrieved_passages = retrieve_passages(query, k=k)

context = " ".join(retrieved_passages)

inputs = tokenizer(context, query, return_tensors="pt", max_length=512, truncation=True)

generated_ids = generator.generate(inputs["input_ids"])

generated_answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

return generated_answer, retrieved_passages

Step 6: Test the RAG Model

query = "What is the capital of France?"

answer, retrieved_passages = rag_query(query)

print("Generated Answer:", answer)

print("Retrieved Passages:", retrieved_passages)

Key Points

HNSW is used for efficient retrieval of passages.

The RAG generator uses the retrieved passages to generate answers.

You can save and load the HNSW index for faster startup times.