Math 115B: Linear Algebra

Homework 6

Due: Saturday, February 22nd at 11:59pm PT

- All answers should be accompanied with a full proof as justification unless otherwise stated.
- Homeworks should be submitted through Gradescope, which can be found on the course Canvas (Bruin Learn) page.
- As always, you are welcome and encouraged to collaborate on this assignment with other students in this course! However, answers must be submitted in your own words.
- Unless otherwise stated k denotes an arbitrary field and all vector spaces are over k. All inner product spaces are defined over a field F which is either \mathbb{R} or \mathbb{C} .
- You are welcome to use results of previous problems on later problems, even if you do not solve the previous parts.
- 1. $(\frac{-}{10})$ Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T, and use this to prove T is self adjoint.
- 2. $(\frac{-}{10})$ Prove Corollary 2 to Theorem 6.18. That is, prove that if T is a linear operator on a finite-dimensional complex inner product space V, then: V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 if and only if T is unitary.
- 3. $(\frac{-}{10})$ We say that matrix $A \in \mathbb{C}^{n \times n}$ is unitarily equivalent to $B \in \mathbb{C}^{n \times n}$ if there exists a unitary matrix $P \in \mathbb{C}^{n \times n}$ such that $A = P^{-1}BP$. Prove that this is an equivalence relation on $\mathbb{C}^{n \times n}$. (Replacing the field \mathbb{C} with the field \mathbb{R} and the word 'unitary' with 'orthogonal,' the same definition gives when two matrices are *orthogonally equivalent*.)
- 4. $(\frac{-}{6*5})$ Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $\lambda_1 T_1 + ... + \lambda_m T_m$ of T (where $\lambda_i \in \mathbb{C}$) to prove the following:
 - (a) If $g(t) \in \mathbb{C}[t]$ then $g(T) = \sum_{i=1}^{m} g(\lambda_i) T_i$.
 - (b) If some positive power of T is the zero transformation, then T itself is the zero transformation.
 - (c) Let U be a linear operator on V. Then U commutes with T if and only if U commutes with each T_i for all $i \in \{1, 2, ..., m\}$.
 - (d) There exists a normal operator U on V such that $U^2 = T$.
 - (e) T is invertible if and only if $\lambda_i \neq 0$ for all $i \in \{1, 2, ..., m\}$.
 - (f) T is a projection if and only if every eigenvalue of T is 1 or 0.

- (g) $T = -T^*$ if and only if every λ_i is *purely imaginary*, that is, it lies in the set $i\mathbb{R} := \{ix : x \in \mathbb{R}\}.$
- 5. $(\frac{-}{10})$ Show that if T is a normal operator on a complex finite-dimensional inner product space and U is a linear operator that commutes with T, then U also commutes with T^* .
- 6. $(\frac{-}{10})$ Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a projection, then it is also an orthogonal projection.
- 7. $(\frac{-}{2*5})$ Let U be a unitary operator on an inner product space V, and let W be a finite-dimensional U-invariant subspace of V. Prove that:
 - (a) U(W) = W
 - (b) W^{\perp} is U-invariant.
- 8. $(\frac{-}{10})$ Prove part (c) of the spectral theorem. In other words: assume that for a linear operator T on a finite dimensional inner product space V which is normal if $F=\mathbb{C}$ and self adjoint if $F=\mathbb{R}$, and let $W_1,...,W_m$ denote the eigenspaces corresponding to distinct eigenvalues of T and let T_i be the orthogonal projection of V onto W_i . Then $T_iT_j=\delta_{ij}T_i$, where $\delta_{ij}=0$ if $i\neq j$ and $\delta_{ii}=1$.