

~	3.	You are given a heap with n elements that supports Insert and Extract-Min. Which of the following tasks can you achieve in $O(\log n)$ time?
1/1 point		None of these.
		Find the median of the elements stored in the heap.
		Find the fifth-smallest element stored in the heap.
		Correct
		Find the largest element stored in the heap.
1/1 point	4.	You are given a binary tree (via a pointer to its root) with n nodes. As in lecture, let size(x) denote the number of nodes in the subtree rooted at the node x. How much time is necessary and sufficient to compute size(x) for every node x of the tree? $\Theta(n\log n)$
		$\Theta(n^2)$
		$\Theta(n)$
		Correct For the lower bound, note that a linear number of quantities need to be computed. For the upper bound, recursively compute the sizes of the left and right subtrees, and use the formula size(x) = 1 + size(y) + size(z) from lecture.
		$\Theta(height)$

1/1 point 5. Suppose we relax the third invariant of red-black trees to the property that there are no three reds in a row. That is, if a node and its parent are both red, then both of its children must be black. Call these relaxed red-black trees. Which of the following statements is not true?

\bigcirc	Every red-black tree is also a relaxed red-black tree.
	There is a relaxed red-black tree that is not also a red-black tree.
	The height of every relaxed red-black tree with n nodes is $O(\log n).$
	Every binary search tree can be turned into a relaxed red-black tree (via some coloring of the nodes as black or red).

Correct

A chain with four nodes is a counterexample.