토양속에서 중금속들의 확산결수결정을 위한 한가지 방법

최 동 혁

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《토지관리에서 중요한것은 또한 토지개량사업을 적극 벌리는것입니다.》(《김정일선집》 중보판 제11권 33폐지)

토양속에서 중금속들의 확산과정을 정확히 평가예보하자면 중금속들의 확산곁수들을 정확히 결정하여야 한다.

선행연구[1-3]에서는 중금속들의 확산곁수결정과 예보방정식의 풀이를 분리시켜 연구 하였다.

론문에서는 토양중금속들의 확산과 확산곁수결정을 동시적으로 결정하기 위한 방법에 대하여 고찰하였다.

1. 로양속에서 중금속들의 대류확산방정식

토양속에서 중금속들의 확산과정을 반영하는 기본방정식은 다음과 같다.[1]

$$m\frac{\theta}{\theta_s}\frac{\partial c_j}{\partial t} + \theta u \frac{\partial c_j}{\partial z} = \frac{\partial}{\partial z} \left(D_j \frac{\partial c_j}{\partial z} \right) - \frac{\partial s_j}{\partial t}$$
 (1)

$$\frac{s_{\text{Na}}}{\sqrt{s_{\text{Pb}}}} = K_{\text{Na-Pb}} \frac{c_{\text{Na}}}{\sqrt{c_{\text{Pb}}}} \tag{2}$$

$$\frac{s_{\text{Na}}}{\sqrt{s_{\text{Cd}}}} = K_{\text{Na-Cd}} \frac{c_{\text{Na}}}{\sqrt{c_{\text{Cd}}}}$$
 (3)

$$s_{\text{Na}} + s_{\text{Pb}} + s_{\text{Cd}} = N_0(z)$$
 (4)

초기조건

$$t = 0; \begin{cases} c_j(z, 0) = c_{j0}(z) \\ s_j(z, 0) = s_{j0}(z) \end{cases}$$
 (5)

경계조건

$$t > 0 \begin{cases} z = 0; & c_j(0, t) = \varphi_j(t) \\ z = L; & \frac{\partial c_j(L, t)}{\partial z} = 0 \end{cases}$$
 (6)

여기서 $c_j(z,t)$ 는 토양용액속에서 j성분의 농도(mg/100g), $s_j(z,t)$ 는 토양흡수복합체에서 j성분의 농도(mg/100g), K_{A-B} 는 이온교환선택성결수, D_j 는 확산결수(\mathbf{m}^2/\mathbf{d}), m은 토양의 공 극도, θ 는 토양의 습도, θ 는 토양의 포화습도, u는 물의 수직이동속도(삼투속도)(\mathbf{m}/\mathbf{d}),

t는 시간(d), z는 공간자리표이다.

편리상 방정식 (1)-(6)의 모든 변수들을 다음의 무차원량들로 변수변환을 실시하자. 즉

$$p_{j}(\xi, \tau) = \frac{c_{j}(z, t) - c_{\Pi j}}{c_{j}^{*} - c_{\Pi j}}$$

$$\tau = \frac{u^{*}t}{mL}$$

$$\xi = \frac{z}{L}, N_{j}(\xi, \tau) = \frac{s_{j}(z, t)}{N_{j}^{*}}$$
(7)

여기서 c_j^* , u^* , N_j^* 는 특성상수, c_{nj} 는 관개수 혹은 비물에서 j성분의 농도(mg/100g)이다. 그러면 방정식 (1)-(7)은 다음과 같이 변형된다.

$$\frac{\theta}{\theta_s} \frac{\partial p_j}{\partial \tau} + \theta f \frac{\partial p_j}{\partial \xi} = \frac{\partial}{\partial \xi} \left(\frac{1}{p_{ej}} \frac{\partial p_j}{\partial \xi} \right) - \frac{N_j^*}{m(c_j^* - c_{\Pi_j})} \frac{\partial N_j}{\partial \tau}$$
(8)

$$\frac{N_{\text{Na}}^* N_{\text{Na}}}{\sqrt{N_{\text{Pb}}^* N_{\text{Pb}}}} = K_{\text{Na-Zn}} \frac{p_{\text{Na}} (c_{\text{Na}}^* - c_{\text{\Pi Na}}) + c_{\text{\Pi Na}}}{\sqrt{p_{\text{Pb}} (c_{\text{Pb}}^* - c_{\text{\Pi Pb}}) + c_{\text{\Pi Pb}}}}$$
(9)

$$\frac{N_{\text{Na}}^* N_{\text{Na}}}{\sqrt{N_{\text{Cd}}^* N_{\text{Cd}}}} = K_{\text{Na-Cd}} \frac{p_{\text{Na}} (c_{\text{Na}}^* - c_{\Pi \text{Na}}) + c_{\Pi \text{Na}}}{\sqrt{p_{\text{Cd}} (c_{\text{Cd}}^* - c_{\Pi \text{Cd}}) + c_{\Pi \text{Cd}}}}$$
(10)

$$N_{\text{Na}}^* N_{\text{Na}} + N_{\text{Pb}}^* N_{\text{Pb}} + N_{\text{Cd}}^* N_{\text{Cd}} = N_0(z)$$
 (11)

여기서

$$p_{ej} = \frac{Lu^*}{D_j}$$

$$f = \frac{u}{u^*}$$
(12)

이다. 초기조건과 경계조건은 다음과 같이 변화된다.

초기조건

$$\tau = 0 ; P_{j}(\xi, 0) = \frac{c_{j0}(z) - c_{\Pi j}}{c_{j}^{*} - c_{\Pi j}}$$

$$N_{j}(\xi, 0) = \frac{s_{j0}(z)}{N_{j}^{*}}$$
(13)

경계조건

$$\xi = 0; \quad P_{j}(0, \tau) = \frac{\varphi_{j}(t) - c_{\Pi j}}{c_{j}^{*} - c_{\Pi j}}$$

$$\xi = 1; \quad \frac{\partial p_{j}(1, \tau)}{\partial \xi} = 0$$
(14)

여기서 P_j , N_j 는 토양용액과 흡수복합체속에서 j성분의 무차원농도이다.

2. 확산결수의 결정

z=0 에서 질량흐름은 $q_z=0$ 이므로

$$D_{j}(t)\frac{\partial c_{j}}{\partial z} = u(c_{j}(0, t) - c_{\Pi j})$$

$$\tag{15}$$

와 같이 표시된다.

이제 식 (7)의 무차원량들로써 식 (15)를 변수변환하면 다음의 식을 얻을수 있다.

$$D_{j}(t)\frac{\partial p_{j}}{\partial \mathcal{E}} = uLp_{j}(0, \tau)$$
(16)

여기서 $\frac{\partial p_j}{\partial \xi}$ 를 다음과 같이 계차근사화하고 $D_j(t)$ 에 관해서 정돈하면

$$D_{ji}^{s+1} = \frac{2h}{uL} \frac{p_{j0}^{s+1}}{p_{i2}^{s+1} - 4p_{i1}^{s+1} + 3p_{i0}^{s+1}}$$
(17)

과 같은 식을 얻을수 있다.

계산은 식 (17)과 예보모형 (7)-(14)를 결합하여 진행한다.

이때 s+1시간준위의 D_{ii}^{s+1} 을 모르므로 초기근사로

$$[D_{ji}^{s+1}]^k = \frac{1}{2} \frac{p_{j0}^{s+1}}{Lu} \tag{18}$$

를 취한다.

연구지역의 3개 지점에서 Pb와 Cd에 대한 관측값과 계산값, 오차계산결과는 표와 같다.

표. 연구지역의 3개 지점에서 연과 카드미움에 대한 관측값과 계산값, 오차(2013년 6월 11일)

	지목	토양층	중금속					
지점			Pb			Cd		
시급			관측값	계산값	오차/%	관측값	계산값	오차/%
			$/(\text{mg}\cdot\text{kg}^{-1})$	$/(\text{mg}\cdot\text{kg}^{-1})$		$/(\text{mg}\cdot\text{kg}^{-1})$	$/(\text{mg}\cdot\text{kg}^{-1})$	
1	논	갈이층	247	263	6.48	12.9	11.73	9.07
		속층	248	259	4.44	4.85	4.57	5.77
2	강냉이밭	갈이층	255	271	6.27	4.75	4.29	9.68
		속층	248	211	14.92	4.48	4.15	7.37
	남새밭	갈이층	281	238	15.30	4.45	4.79	7.64
	논	갈이층	382	352	7.85	5.58	5.92	6.09
3	논	갈이층	219	269	22.83	4.96	4.13	16.73
		속층	238	227	4.62	2.82	2.31	18.09
	강냉이밭	갈이층	235	245	4.26	3.16	3.71	17.41
		속층	215	254	18.14	3.46	3.12	9.83
	남새밭	갈이층	227	247	8.81	4.32	4.58	6.02

맺 는 말

관측값과 계산값의 최대오차값이 Pb, Cd인 경우 각각 22.83, 18.09%로서 이 방법은 토양속에서 중금속들의 확산예보에 적용할수 있다.

참 고 문 헌

- [1] 최동혁; 토양환경학, **김일성**종합대학출판사, 106~169, 주체104(2015).
- [2] 朱颜明; 环境地球化学, 科学出版社, 158~332, 2012.
- [3] 曲格平 等; 环境科学基础知识(中国大百科全书环境科学卷选编), 科学出版社, 198~260, 2013.

주체106(2017)년 11월 5일 원고접수

A Method to Decide Diffusion Coefficient of Heavy Metals in Soil

Choe Tong Hyok

In this paper we have researched a method to decide the diffusion and its coefficient of heavy metals in soil in the same time.

Key words; environment, diffusion, soil pollution