Flow is in the Air: Best Practices of Building Analytical Data Pipelines with Apache Airflow

Dr. Dominik Benz, inovex GmbH

PyConDe Karlsruhe, 27.10.2017

The Flow in Airflow

A typical data lake

Airflow: let's DAG!

- Workflow is (python) code
 - Specify tasks & dependencies programmatically

Manages workflow metadata

lice GUI ©

- developed at AirBnB by Maxime Beauchemin (former Yahoo / Facebook)
- open-sourced June 2015
- > ~4200 commits, 81 releases, 332 contributors
- in Apache Incubator starting 2016/05
- → used in several projects since 09/2015 ©


```
from airflow import DAG
default args = { 'owner': 'airflow',
  'retries': 2,
dag = DAG('tutorial', default args=default args)
t1 = BashOperator( task id='print date',
  bash command='date',
  dag=dag)
t2 = HiveOperator( task id='make query',
  sql='select x from y where z group by k',
  dag=dag)
t2.set upstream(t1)
```

Airflow: Architectural components

Basic Concepts

- > **DAG**: graph of operator usages (=tasks)
- Operator: "Transformation" step
 - Sensor: Operator which polls with frequency / timeout (e.g. LocalFileSensor)
 - Executor: Trigger operation (e.g. HiveOperator, BashOperator, PigOperator, ...)
- Task: Usage of Operator in DAG
 - > **Task Instance**: run of a Task at a point in time
- Hook: Interface to external System (JDBCHook, HTTPHook, ...)

command	does
airflow initdb	initialize metadata DB schema
airflow test <dag> <task> <date></date></task></dag>	test task of a dag (shows command only)
airflow run <dag> <task> <date></date></task></dag>	run task of a dag
airflow backfill <dag> -s <start_date> -e <end_date></end_date></start_date></dag>	reload / backfill dag
<pre>airflow clear <dag> -s <start_date> -e <end_date> -t <task_regex></task_regex></end_date></start_date></dag></pre>	clear state of dag / tasks
airflow backfill <dag> -s <start_date> -e <end_date> -m true</end_date></start_date></dag>	mark dag runs as success without running

- XCom: send "messages" between tasks
- Trigger Rules: specify handling for multiple upstream dependencies (e.g. all_success, one_success, ..)
- Variables: define key/value mappings in airflow metadata DB (value can be nested JSON as well)
- Branching: Define python function to choose which downstream path to follow
- > **SubDAGs**: encapsulate repeating functionality

The Flow in Airflow

What else is out there?

	Oozie	Azkaban	Luigi	Airflow	Schedoscope
Language	Java	Java	Python	Python	Scala
WF specification	static (XML)	static (.job file)	static (task = extend class)	dynamic (task = instantiate operator)	dynamic
Schema / Change Management	no	no	no	no	yes
Test Framework	no	no	no	no	yes
WF trigger	data, time	time	data, time	data (sensors), time	goal

Other voices ...

 Comparison (2016) of Airflow, Luigi, Pinball by Marton Trencseni (data science manager at Facebook) http://bytepawn.com/luigi-airflow-pinball.html:

"If I had to build a new ETL system today from scratch, I would use Airflow"

> Databricks Airflow integration <u>https://databricks.com/blog/2017/07/19/integrating-apache-airflow-with-databricks.html</u>:

"We implemented an Airflow operator called DatabricksSubmitRunOperator, enabling a smoother integration between Airflow and Databricks"

Structuring / Cutting DAGs

- one DAG per data source
- one DAG per "project"
- one DAG per data sink

Structuring DAG resources

- keep code in template files
- > for hive templates: use
 hiveconf_jinja_translate
- use template searchpath (see next slide)
- keep template files "airflow agnostic" (if possible)


```
from airflow import DAG
default args = { 'owner': 'airflow',
  'retries': 2,
dag = DAG('src pos', default args=default args,
 template searchpath=(
    '/base/workflows/src pos/hive',
    '/base/workflows/src pos/sqoop'))
insert = HiveOperator( task id='insert',
  sql='insert.sql',
  dag=dag)
```

. . .

Configuration Management

- > Built-in: definition of
 - Connections (e.g. to Hive, DBs, ..)
 - Variables (key/value)
- Often other (non-python) tools present
 - > e.g. Realtime tools, ..
- Goal: single source of configuration
 - inject e.g. via "user_defined_macros"

Configuration Management (ctd.)

conf.py

```
ENV_NAME="prod"
PRJ_NAME="myprj"
...
```

insert.sql

```
INSERT INTO TABLE
${ENV_NAME}_${PRJ_NAME}_target
SELECT .. FROM ..
```

dag definition

```
from airflow import DAG
import conf
dag = DAG('src pos',
default args=default args,
user defined macros=conf. dict )
insert = HiveOperator(
task id='insert',
  sql='insert.sql',
 dag=dag)
```

Develop & Deploy Workflows

PERSONAL

- data engineers or data scientists
- test via "airflow test"

GIT

INTEGRATION

- perfomance tests, integration tests
- fixes

PRODUCTIVE jenkins

- monitoring
- backfilling of failed jobs

LocalExecuto

LocalExecuto r

LocalExecutor / CeleryExecutor

Integrating with the Enterprise

- Often existing workflow / scheduling tools present (e.g. control M, ...)
- Existing integration in e.g. ticketing systems
- › Idea: "Hierarchy" of engines:
 - Enterprise engine: scheduling, coarse-grained
 - Airflow: workflow, finegrained

Writing Plugins & Extensions

- > Extension points:
 - > operators
 - > hooks
 - > executors
 - > macros
 - > UI adaption (views, links)
- › Easy but also needed ②
- > Start from existing classes, adapt

- > Developed so far:
 - SSHFileSensor
 - HiveServer2Operator (you have to!)
 - > SparkSQLOperator
 - > SparkOperator
 - **>** ...
- > integrate via airflow_plugin_directory

config, topic	explanation
airflow.cfg: parallelism	max nr. of task instances to run in parallel (per metadata DB / installation)
airflow.cfg: dag_concurrency	how many parallel tasks are allowed per dag (attention: further tasks will not be scheduled !)
LDAP integration	works, but problems with LDAPs who implement another "memberOf" attribute (fixed in 1.9, see AIRFLOW-1095)
Kerberos	kerberos relogin process ("airflow kerberos") broken; workaround = own BashOperator who does kinit with a keytab
Hive integration via impyla	Problems with 1.8.2 (thrift-sasl version mismatch); solution = downgrade thrift_sasl to 0.2.1 (instead of 0.3.0)
	fore sure more to come ©

inovex

What's the flow ..

- Airflow = workflow is code
- > Programmatically define DAGs of Operators
- Integrates seamlessly into "pythonic" data science stack
- > Easily extensible (which is needed)
- Lowers the gap between data science + engineering
- Clean management of workflow metadata (state, runs, ...)
- > Under active development
- > Fun to use, & real-world project proven ©

