

Algorítmica Grado en Ingeniería Informática

Tema 1 – La eficiencia de los algoritmos

Este documento está protegido por la Ley de Propiedad Intelectual (Real Decreto Ley 1/1996 de 12 de abril). Queda expresamente prohibido su uso o distribución sin autorización del autor. Manuel Pegalajar Cuéllar manupc@ugr.es

Departamento de Ciencias de la Computación e Inteligencia Artificial http://decsai.ugr.es

Objetivos del tema

- Conocer el concepto de algoritmo.
- Plantearse la búsqueda de varias soluciones distintas para un mismo problema y evaluar la bondad de cada una de ellas.
- ☑Tomar conciencia de la importancia del análisis de la eficiencia de un algoritmo como paso previo a su implementación en un lenguaje de programación.
- Conocer la notación asintótica para describir la eficiencia de un algoritmo, distinguiendo entre los distintos tipos de análisis que se pueden realizar: caso más favorable, más desfavorable y promedio.
- ■Saber realizar el análisis de eficiencia de un algoritmo, tanto a nivel teórico como empírico, y saber contrastar resultados experimentales con los teóricos.
- ☑Conocer las técnicas básicas de resolución de ecuaciones de recurrencia: expansión de la recurrencia, método de la ecuación característica y utilización de fórmulas maestras.

Estudia este tema en...

- ■G. Brassard, P. Bratley, "Fundamentos de Algoritmia", Prentice Hall, 1997, pp. 65-166
- J.L. Verdegay: Lecciones de Algorítmica. Editorial Técnica AVICAM (2017).

Anotación sobre estas diapositivas:

El contenido de estas diapositivas es esquemático y representa un apoyo para las clases presenciales teóricas. No se considera un sustituto para apuntes de la asignatura.

Se recomienda al alumno completar estas diapositivas con notas/apuntes propios, tomados en clase y/o desde la bibliografía principal de la asignatura.

Algorítmica

Grado en Ingeniería Informática

La eficiencia de los algoritmos

- 2. La eficiencia de algoritmos: Problema, tamaño, instancia. Principio de Invarianza.
- 3. La notación asintótica. Órdenes peor, mejor y exacto.
- 4. Análisis de algoritmos.
- 5. Resolución de recurrencias.

Secuencia finita ordenada de pasos exentos de ambigüedad tal que, al llevarse a cabo con fidelidad, dará como resultado la tarea para la que se ha diseñado.

- **■**Ejemplos:
 - Una receta de cocina.
 - Un programa de PC.

Secuencia finita ordenada de pasos exentos de ambigüedad tal que, al llevarse a cabo con fidelidad, dará como resultado la tarea para la que se ha diseñado.

- Ejemplos:
 - Una receta de cocina.
 - Un programa de PC.

Secuencia **finita** ordenada de pasos exentos de ambigüedad tal que, al llevarse a cabo con fidelidad, dará como resultado la tarea para la que se ha diseñado.

- **■**Ejemplos:
 - Una receta de cocina.
 - Un programa de PC.

Secuencia finita **ordenada** de pasos exentos de ambigüedad tal que, al llevarse a cabo con fidelidad, dará como resultado la tarea para la que se ha diseñado.

- Ejemplos:
 - Una receta de cocina.
 - Un programa de PC.

Secuencia finita ordenada de pasos **exentos de ambigüedad** tal que, al llevarse a cabo con fidelidad, dará como resultado la tarea para la que se ha diseñado.

- **■**Ejemplos:
 - Una receta de cocina.
 - Un programa de PC.

Secuencia finita ordenada de pasos exentos de ambigüedad tal que, al **llevarse a cabo con fidelidad**, dará como resultado la **tarea para la que se ha diseñado**.

- **■**Ejemplos:
 - Una receta de cocina.
 - Un programa de PC.

Propiedades/características de un algoritmo:

- **Es una noción abstracta.** No depende del lenguaje donde se implemente (C++, Basic, Fortran,...).
- **Está bien definido.** Cada paso está claramente expresado y sin ambigüedades.
- **Es coherente.** Con los mismos datos iniciales siempre se obtiene el mismo resultado.
- **Finitud.** El algoritmo debe terminar.
- Efectividad. Debe resolver el problema planteado.

Si alguna de estas características se incumple, entonces no es un algoritmo

- Un ejemplo de "mal algoritmo": Receta de cocina mal planteada:
 - 1. Poner aceite en una sartén.
 - 2. Esperar a que el aceite esté caliente.
 - 3. Echar carne.
 - 4. Echar sal.
 - 5. Mientras que la carne no esté lista, mover la carne.
 - 6. Servir la carne.

Este "algoritmo" no es válido:

- No está **bien definido** (¿cuánto aceite se echa? ¿cuánta sal? ¿A qué potencia de fuego?).
- No es **coherente** (no siempre proporciona el mismo resultado —a veces muy aceitoso/salado, etc.-).
- Es más, no hemos dicho que se encienda el fuego, por lo que **tampoco es finito** dado que el aceite jamás llegará a estar caliente.

■Un ejemplo de **"buen algoritmo"**:

- 1. Encender el horno a 210°C y esperar a que esté a dicha temperatura.
- 2. Esparcir 6ml de aceite de oliva homogéneamente en la bandeja del horno.
- 2. Colocar 2 truchas en la bandeja del horno.
- 3. Esperar 35' o hasta que las truchas comiencen a tostarse por encima.
- 4. Apagar el horno.

Cumple con la definición y todas sus propiedades:

- Secuencia finita ordenada de pasos exentos de ambigüedad tal que, al llevarse a cabo con fidelidad, dará como resultado la tarea para la que se ha diseñado.
- Está bien definido, es coherente, termina y es efectivo.
- Es abstracto: No depende de dónde se implemente.

Algorítmica

Grado en Ingeniería Informática

La eficiencia de los algoritmos

- La notación asintótica. Órdenes peor, mejor y exacto.
- 4. Análisis de algoritmos.
- 5. Resolución de recurrencias.

¿Porqué estudiar eficiencia?

- Existe un método para resolver un problema: ¿Es viable implementarlo?
- Existen varios métodos que resuelven el mismo problema. ¿Cuál de ellos es mejor? ¿En qué situaciones? Ejemplos: Algoritmos de ordenación (inserción, burbuja, selección, heapsort, quicksort, mergesort...)

¿Cómo medimos la eficiencia?

- En tiempo: Tiempo que tarda un algoritmo en resolver un problema.
- **En espacio:** Recursos (memoria, espacio en disco, etc.) necesarios para resolver el problema.
- En la asignatura nos centramos en el estudio de la eficiencia basándonos en el tiempo de ejecución de un algoritmo.

Notación que utilizaremos

- **Problema:** Es el problema general que queremos resolver (ordenación, búsqueda, multiplicación de matrices, etc.)
- Instancia del problema: Problema concreto a resolver. Ejemplo: Ordenar el vector (9, 6, 10, 24, 11, 14).
- Caso: Instancia o conjunto de instancias de un problema con dificultad idéntica o muy similar. **Tres tipos: Caso peor, caso mejor, caso promedio.**
- **Tamaño del caso:** Tamaño de la instancia o instancias del problema a resolver. Para el problema de ordenar un vector del ejemplo anterior, su tamaño de caso es n=6.

- Ejemplo: Se han implementado los algoritmos de ordenación por Inserción (rojo), Burbuja (verde) y Selección (azul).
- Se han ordenado vectores aleatorios de tamaño 1000, 2000, 3000, ..., 10000 (los mismos vectores con los 3 algoritmos).

Se ha medido el tiempo que tarda cada algoritmo en ordenar el vector. ¿Cuál es

el mejor algoritmo, a simple vista?

Gráfica

- Eje X: Tamaño del caso
- Eje Y: Tiempo de ejecución

¿Qué es el caso peor?

Es la instancia o el conjunto de instancias del problema que hacen que nuestro algoritmo ejecute el **máximo número de operaciones** posible y, por tanto, que tarde el máximo tiempo en ejecutarse comparado con otras instancias de caso **del mismo tamaño**.

¿Qué es el caso mejor?

Es la instancia o el conjunto de instancias del problema que hacen que nuestro algoritmo ejecute el **mínimo número de operaciones** posible y, por tanto, que tarde el mínimo tiempo en ejecutarse comparado con otras instancias de caso **del mismo tamaño**.

En la asignatura utilizaremos la **notación O(·)** para indicar la **eficiencia** de un algoritmo en el **caso peor**, y la **notación \Omega(\cdot)** para indicar la eficiencia en el **caso mejor**.

Ejemplo: Proyecto Code::Blocks Insercion, Tema 1

```
□ void Insercion(double *v, int posini, int posfin) {
 8
            double aux:
            int currentpos;
10
11
            for (int i= posini+1; i<=posfin; i++) {</pre>
12
13
                currentpos= i;
                while (currentpos>posini && v[currentpos]<v[currentpos-1]) {</pre>
14
15
                    aux= v[currentpos];
16
                    v[currentpos]= v[currentpos-1];
17
18
                    v[currentpos-1]= aux;
19
20
                    currentpos--;
21
22
23
24
```

- **Tamaño del caso "n": posfin-posini+1** (las *n* componentes a ordenar)
- Mejor caso del algoritmo: Cuando "v" está ya ordenado.
- Peor caso del algoritmo: Cuando "v" está ordenado descendentemente.

¿Cómo calcularemos la eficiencia de un algoritmo?

- Método Empírico: Se implementa el algoritmo y se mide el tiempo de ejecución.
- **Método Teórico:** Se calcula una función matemática que indique cómo evolucionará el tiempo de ejecución del algoritmo según varíe el tamaño **n** del caso.
- **Método Híbrido:** Mezcla de ambos.

La eficiencia de un algoritmo, en cualquier caso, es independiente del lenguaje de programación donde se implemente gracias al **Principio de Invarianza**.

Principio de Invarianza

Dadas dos implementaciones **I1** e **I2** de un mismo algoritmo, el tiempo de ejecución para una misma instancia de tamaño \mathbf{n} , $\mathbf{T}_{I1}(\mathbf{n})$ y $\mathbf{T}_{I2}(\mathbf{n})$, no diferirá en más de una constante multiplicativa. Es decir, **existe una constante positiva K que verifica:**

$$T_{I1}(n) \leq K * T_{I2}(n)$$

Ejemplo: Burbuja implementado en C++ y en Java

- C++: Proyecto Code::Blocks Burbuja , Tema 1
- Java: Proyecto NetBeans BurbujaJava, Tema 1

```
□ void Burbuja(double *v, int posini, int posfin) {
 8
            int i, j;
 9
            double aux:
            bool haycambios= true;
10
                                                                        □ public static void Burbuja (double [] v, int posini, int posfin) {
11
12
            i= posini;
                                                                              int i, j;
                                                                     17
13
            while (haycambios) {
                                                                              double aux:
14
                                                                              boolean haycambios= true;
                haycambios=false; // Suponemos vector ya ordena
15
16
                                                                     21
                                                                              i= posini:
17
                // Recorremos vector de final a i
                                                                     22
                                                                              while (haycambios) {
                for (j= posfin; j>i; j--) {
18
19
                                                                                  haycambios=false; // Suponemos vector ya ordenado
                    // Dos elementos consecutivos mal ordenados
20
                    if (v[j-1]>v[j]) {
21
                                                                                  // Recorremos vector de final a i
22
                         aux= v[j]; // Los intercambiamos
                                                                                  for (j = posfin; j > i; j - -) {
                                                                     27
                         v[j] = v[j-1];
                                                                     28
24
                         v[i-1] = aux:
                                                                     29
                                                                                       // Dos elementos consecutivos mal ordenados
25
                                                                                       if (v[i-1]>v[i]) {
                         // Al intercambiar, hay cambio
26
                                                                                           aux= v[j]; // Los intercambiamos
27
                         haycambios= true;
                                                                                           v[i] = v[i-1];
28
                                                                     33
                                                                                           v[j-1] = aux;
29
                                                                                           // Al intercambiar, hay cambio
31
                i++;
                                                                                           haycambios= true;
                                                                     37
                                                                                  i++;
```


53

return 0;

La eficiencia de los algoritmos: Problema, tamaño ,instancia. Principio de invarianza.

Ejemplo: Medición del tiempo de ejecución

- Caso: Peor (Para este algoritmo: vector ordenado al revés)
- **Instancias:** Tamaños de 1.000 a 10.000, de 1.000 en 1.000

```
public static void main(String[] args) {
                                                                          final int SIZE= 10000:
                                                                          double []vect= new double[SIZE];
                                                                          long tini, tfin;
                                                                          for (int TAM= 1000; TAM<=SIZE; TAM+= 1000) {</pre>
                                                            50
       int main()
                                                            51
                                                                              // Ejemplo: Vector al revés
     \Box{
                                                            52
           const int SIZE= 10000;
                                                                              for (int i= 0; i<TAM; i++)
           double vect[SIZE]:
                                                                                  vect[i]= TAM-i;
           unsigned long tini, tfin;
                                                            55
41
                                                                              tini= System.currentTimeMillis(); // Tiempo inicial
                                                            56
           for (int TAM= 1000; TAM<=SIZE; TAM+= 1000) {
                                                            57
                                                                              Burbuja(vect, 0, TAM-1);
43
                                                                              tfin= System.currentTimeMillis(); // Tiempo final
                                                            58
               // Eiemplo: Vector al revés
44
                                                            59
45
               for (int i= 0; i<TAM; i++)
                                                            60
                                                                              System.out.println("N: "+TAM+" T (ms): "+(tfin-tini));
                   vect[i]= TAM-i;
46
                                                            61
               tini= clock(); // Tiempo inicial
49
               Burbuja(vect, 0, TAM-1);
50
               tfin= clock(); // Tiempo final
               cout<<"N: "<<TAM<<" T (ms.): "<<1000.0*(tfin-tini)/(double)CLOCKS PER SEC<<endl;</pre>
52
```


La eficiencia de los algoritmos: Problema, tamaño ,instancia. Principio de invarianza.

Ejemplo: Burbuja implementado en C++ y en Java

- C++: Proyecto Code::Blocks Burbuja , Tema 1
- Java: Proyecto NetBeans BurbujaJava, Tema 1

```
□ void Burbuja(double *v, int posini, int posfin) {
           int i, j;
9
           double aux;
           bool haycambios= true;
10
                                                                  public static void Burbuja (double [] v, int posini, int posfin) {
11
12
           i= posini;
                                                                        int i, j;
                                                               17
          while (haycambios) {
                                                                        double aux:
14
                                                                        boolean havcambios= true:
                                                               Output - Burbujalava (run) X
             Burbuja
                                                                      run:
                                                                      N: 1000 T (ms): 5
           (ms.): 25.738
           (ms.): 37.284
           (ms.): 57.888
                                                                          4000 T
           (ms.): 83.674
    7000 T (ms.): 110.139
    8000 T (ms.): 146.526
    9000 T (ms.): 186.037
 N: 10000 T (ms.): 224.521
                                                                         9000 T (ms):
 Process returned 0 (0x0)
                            execution time : 0.889 s
                                                                      N: 10000 T (ms): 54
 Press ENTER to continue.
                                                                      BUILD SUCCESSFUL (total time: 0 seconds)
                                                                            i++;
```


Ejemplo: Burbuja implementado en C++ y en Java

- C++: Proyecto Code::Blocks Burbuja, Tema 1
- Java: Proyecto NetBeans BurbujaJava, Tema 1

Algorítmica

Grado en Ingeniería Informática

La eficiencia de los algoritmos

- 1. El concepto de algoritmo.
- 2. La eficiencia de algoritmos: Problema, tamaño, instancia. Principio de Invarianza.
- 3. La notación asintótica. Órdenes peor, mejor y exacto.
- 4. Análisis de algoritmos.
- 5. Resolución de recurrencias.

La notación O

Se dice que **un algoritmo A es de orden O**(**f**(**n**)), donde **f**(**n**) es una función matemática **f**(**n**):**N->** \mathbf{R}^+ , cuando existe una implementación del mismo cuyo tiempo de ejecución $\mathbf{T}_A(\mathbf{n})$ es menor o igual que **K*f**(**n**), donde **K** es constante, para "tamaños de casos grandes".

Formalmente:

A es
$$O(f(n)) \leftrightarrow \exists K \in \Re^+, \exists n_0 \in N : T_A(n) \leq K \cdot f(n) \forall n > n_0$$

La **notación O** nos permite conocer cómo se comportará el algoritmo en términos de eficiencia en instancias del **caso peor del problema**:

"Como mucho, sabemos que el algoritmo no tardará más de K*f(n) en ejecutarse, en el peor de los casos".

Ejemplos de órdenes de eficiencia

Constante: O(1)

Lineal: O(n)

Cuadrático: O(n²)

Logarítmico: O(log(n))

Exponencial: (aⁿ)

Etc.

Si decimos que un algoritmo **A** es de orden **O**(**f**(**n**)), queremos decir que siempre podremos encontrar una constante positiva **K** tal que, **para valores muy grandes del tamaño de caso** *n*, el tiempo de ejecución del algoritmo siempre será inferior o igual a **K** multiplicando a **f**(**n**):

$$T_A(n) \leq K \cdot f(n)$$

Ejemplo: Gráfica de varias funciones f(n)

- Algoritmo A: O(n)
- Algoritmo B: O(n²)
- Algoritmo C: O(2ⁿ)
- Algoritmo D: O(log(n))

Cuestiones

- ■¿Qué algoritmo es más eficiente?
- ■Si tuvieras que resolver un problema, ¿qué algoritmo de los anteriores implementarías para resolverlo?

Equivalencia entre órdenes de eficiencia

Para saber si dos órdenes de eficiencia O(f(n)) y O(g(n)) son equivalentes o no, podemos aplicar las siguiente reglas:

O(f(n))
$$\equiv$$
 O(g(n)) sii: $\lim_{n\to\infty} \frac{f(n)}{g(n)} \to K \in \mathbb{R}^+$

O(f(n)) > **O(g(n))** sii:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \to \infty$$

O(f(n)) < **O(g(n))** sii:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \to 0$$

Por comodidad, ante equivalencia de órdenes de eficiencia siempre nos referiremos al más simple.

La notación asintótica: Órdenes peor, mejor y exacto

Ejemplo 1. Algoritmo A: $O(n^2)$; Algoritmo B: $O((4n+1)^2 + n)$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2}{(4n+1)^2 + n} = \lim_{n\to\infty} \frac{n^2}{(16n^2 + 1^2 + 2\cdot 4n\cdot 1) + n} \to \frac{1}{16}$$

Son equivalentes

Ejemplo 2. Algoritmo A: O(2"); Algoritmo B: O(3")

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{2^n}{3^n} = \lim_{n\to\infty} \left(\frac{2}{3}\right)^n \to 0$$

A es más eficiente que B

La notación asintótica: Órdenes peor, mejor y exacto

Ejemplo 3. Algoritmo A: **O(n)**; Algoritmo B: **O(n·log(n))**

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n}{n \cdot \log(n)} = \lim_{n\to\infty} \frac{1}{\log(n)} \to 0$$

A es más eficiente que B

Ejemplo 4. Algoritmo A: $O((n^2+29)^2)$; Algoritmo B: $O(n^3)$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{(n^2 + 29)^2}{n^3} \to \infty$$

B es más eficiente que A

La notación asintótica: Órdenes peor, mejor y exacto

Ejemplo 5. Algoritmo A: **O(n)**; Algoritmo B: **O(log(n))**

$$\lim\nolimits_{n\to\infty}\frac{f(n)}{g(n)}=\lim\nolimits_{n\to\infty}\frac{n}{\log(n)}=\lim\nolimits_{n\to\infty}\frac{10^n}{n}\to\infty$$

B es más eficiente que A

La notación **Ω**

Se dice que **un algoritmo A es de orden** $\Omega(f(n))$, donde f(n) es una función matemática $f(n):N->R^+$, cuando existe una implementación del mismo cuyo tiempo de ejecución $T_A(n)$ es mayor o igual que K*f(n), donde K es constante, para "tamaños de casos grandes".

Formalmente:

A es
$$\Omega(f(n)) \leftrightarrow \exists K \in \Re^+, \exists n_0 \in N : T_A(n) \ge K \cdot f(n) \forall n > n_0$$

La **notación Ω** nos permite conocer cómo se comportará el algoritmo en términos de eficiencia en instancias del **caso mejor del problema**:

"Como poco, sabemos que el algoritmo no tardará menos de K*f(n) en ejecutarse, en el mejor de los casos".

Ejemplo 1: Proyecto Code::Blocks Insercion, Tema 1

```
□ void Insercion(double *v, int posini, int posfin) {
 8
            double aux:
            int currentpos;
10
11
            for (int i= posini+1; i<=posfin; i++) {</pre>
12
13
                currentpos= i;
                while (currentpos>posini && v[currentpos]<v[currentpos-1]) {</pre>
14
15
                    aux= v[currentpos];
16
                    v[currentpos] = v[currentpos-1];
17
18
                    v[currentpos-1]= aux;
19
20
                    currentpos--;
21
22
23
24
```

- □¿Cuándo se da el **caso peor** del algoritmo? ¿Qué operaciones se ejecutan?
- Cuando el **tamaño del caso n** tiende a infinito, en el **peor** de los casos el número de operaciones se puede aproximar como $K \cdot n^2$. Inserción es $O(n^2)$

Ejemplo 1: Proyecto Code::Blocks Insercion, Tema 1

```
□ void Insercion(double *v, int posini, int posfin) {
 8
            double aux:
            int currentpos;
10
11
            for (int i= posini+1; i<=posfin; i++) {</pre>
12
13
                currentpos= i;
                while (currentpos>posini && v[currentpos]<v[currentpos-1]) {</pre>
14
15
                    aux= v[currentpos];
16
                    v[currentpos] = v[currentpos-1];
17
18
                    v[currentpos-1]= aux;
19
20
                    currentpos--;
21
22
23
24
```

- □¿Cuándo se da el **caso mejor** del algoritmo? ¿Qué operaciones se ejecutan?
- Cuando el **tamaño del caso n** tiende a infinito, en el **mejor** de los casos el número de operaciones se puede aproximar como $K \cdot n$. Inserción es $\Omega(n)$

Ejemplo 2: Proyecto Code::Blocks BurbujaJava, Tema 1

```
15 □ public static void Burbuja (double [] v, int posini, int posfin) {
17
          int i, i;
          double aux:
          boolean havcambios= true:
          i= posini;
          while (haycambios) {
22
24
              haycambios=false; // Suponemos vector ya ordenado
25
              // Recorremos vector de final a i
26
27
              for (i = posfin; i>i; i--) {
29
                  // Dos elementos consecutivos mal ordenados
                  if (v[i-1]>v[i]) {
31
                      aux= v[i]; // Los intercambiamos
32
                      v[i] = v[i-1];
                      v[i-1] = aux;
                      // Al intercambiar, hay cambio
                      haycambios= true;
39
              i++;
41
```

- □¿Cuándo se da el **caso peor** del algoritmo? ¿Qué operaciones se ejecutan?
- □¿Cuándo se da el **caso mejor** del algoritmo? ¿Qué operaciones <mark>se ejecutan</mark>?
- **Q**ué **ordenes O y Ω** tiene el algoritmo Burbuja?

Orden exacto 0

Se dice que **un algoritmo A es de orden exacto \theta(f(n))**, donde f(n) es una función matemática $f(n):N->R^+$, cuando el algoritmo es **simultáneamente de orden O(f(n))** y $\Omega(f(n))$.

Propiedades de los órdenes de eficiencia

Transitivi dad: $f(n) \in O(g(n))$ $y g(n) \in O(h(n)) \Rightarrow f(n) \in O(h(n))$. Ídem para $\Theta y \Omega$.

Reflexiva : $f(n) \in O(f(n))$. Ídem para $\Theta y \Omega$.

Simétrica : $f(n) \in \Theta(g(n))$ sii $g(n) \in \Theta(f(n))$.

Suma: Si $T1(n) \in O(f(n))$ y $T2(n) \in O(g(n))$,

entonces $T1(n) + T2(n) \in O(m \acute{a}x\{f(n), g(n)\})$.

Producto: Si $T1(n) \in O(f(n))$ y $T2(n) \in O(g(n))$,

entonces $T1(n) \times T2(n) \in O(f(n) \times g(n))$

Ejemplo. Demostración de la transitividad

Normalmente, podemos usar el **Principio de Invarianza** para las demostraciones.

Transitividad: f(n) es O(g(n)) y g(n) es O(h(n))-> f(n) es O(h(n))

f(n) es $O(g(n)) \rightarrow f(n) \le K1 \cdot g(n)$, para al menos un K1 positivo

g(n) es $O(h(n)) -> g(n) <= K2 \cdot h(n)$, para al menos un K2 positivo

Entonces, sustituyendo g(n) por K2·h(n) tenemos:

 $f(n) \le K1 \cdot g(n) \le K1 \cdot K2 \cdot h(n) = K3 \cdot h(n) - f(n)$ es O(h(n)), con K3=K1·K2

Otras propiedades de los órdenes de eficiencia

■ Regla del máximo:

$$O(f(n) + g(n)) = max\{ O(f(n)), O(g(n)) \}$$

Regla de la suma:

$$O(f(n) + g(n)) = O(f(n)) + O(g(n))$$

Regla del producto:

$$O(f(n) * g(n)) = O(f(n)) * O(g(n))$$

La notación asintótica: Órdenes peor, mejor y exacto

Ejemplo 1. Aplicación de la regla de la suma

En un programa, se ejecuta un código que tiene eficiencia O(n²) y, a continuación, un código que tiene eficiencia O(n). ¿Cuál es la eficiencia del programa completo?

Por la regla de la suma: O(f(n) + g(n)) = O(f(n)) + O(g(n))

Por tanto: $O(n^2) + O(n) = O(n^2 + n)$ -> El programa tiene eficiencia $O(n^2 + n)$

Ejemplo 2. Aplicación de la regla del máximo

Un programa se ejecuta en un tiempo igual a T(n)=n²+n, ¿cuál es su eficiencia?

Por el principio de invarianza: $T(n) \le K \cdot (n^2 + n) - Nos vale cualquier <math>K > = 1$

Entonces: El orden del programa es $O(n^2+n)$

Por la regla del máximo: $O(f(n) + g(n)) = max\{ O(f(n)) , O(g(n)) \}$

Por tanto: $O(n^2+n) = max\{O(n^2), O(n)\}$ -> El programa es $O(n^2)$

Ejemplo 3. Aplicación de la regla del producto

Un programa consiste en un bucle cuya eficiencia es O(n). Dentro del bucle, en cada iteración se ejecuta un código cuya eficiencia es $O(n^2)$. ¿Cuál es la eficiencia del programa?

En total, si la ejecución del bucle es O(n) y en cada iteración se ejecuta el cuerpo del bucle, que es $O(n^2)$, en total se realizan $O(n)^*$ $O(n^2)$ operaciones.

Por la regla del producto: O(f(n) * g(n)) = O(f(n)) * O(g(n))

Por tanto: $O(n)^* O(n^2) = O(n^*n^2) = O(n^3) -> El programa es <math>O(n^3)$

La notación asintótica: Órdenes peor, mejor y exacto

Órdenes con varios parámetros

En ocasiones, nos encontramos que el tamaño del problema no depende de una única variable **n**, sino de varias.

En estos casos, se analiza de igual forma que en el caso de una variable, considerando que la función **f** tiene varias variables.:

A es
$$O(f(n,m)) \leftrightarrow \exists K \in \Re^+ : T_A(n,m) \leq K \cdot f(n,m) \forall n,m$$

Se dice que el algoritmo será de orden O(f(n,m)) si, para cualquier valor "muy grande" de n y m, su tiempo de ejecución $T_A(n,m)$ es menor o igual que una constante positiva por f(n,m).

Ejemplo. Suma de matrices de **n** filas y **m** columnas

$$A_{n,m} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

$$B_{n,m} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{pmatrix}$$

$$A_{n,m} + B_{n,m} = C_{n,m}; c_{ij} = a_{ij} + b_{ij}$$

Orden de eficiencia del algoritmo de suma de matrices: **O(n*m)**, con **n=nº filas** y **m=nº columnas** de las matrices.

Algorítmica

Grado en Ingeniería Informática

La eficiencia de los algoritmos

- 1. El concepto de algoritmo.
- 2. La eficiencia de algoritmos: Problema, tamaño, instancia. Principio de Invarianza.
- 3. La notación asintótica. Órdenes peor, mejor y exacto.
- 4. Análisis de algoritmos.
- 5. Resolución de recurrencias.

Calcular de forma teórica la función **f(n)** del orden **O** de un algoritmo

- 1. Analizar el problema y **detectar de qué variables/parámetros depende el tamaño** del mismo.
 - Ejemplo: Para el problema de ordenación de un vector, su tiempo de ejecución dependerá del tamaño del vector a ordenar.
 - Ejemplo: Para el problema de la suma de matrices, su tamaño del caso depende del número de filas y de columnas de las matrices a sumar.
- 2. Aplicar las reglas de análisis de eficiencia de las operaciones en el algoritmo.

El análisis de la eficiencia de los algoritmos se basa en el tipo de sentencias que encontremos:

- Operaciones elementales
- Sentencias condicionales
- Sentencias repetitivas
- Secuencias de sentencias
- Llamadas a funciones no recursivas
- Llamadas a funciones recursivas

Sentencias simples / Operaciones elementales

- Las sentencias simples son aquellas cuya ejecución no depende del tamaño del caso (operaciones sobre tipos básicos como suma, multiplicación, comparaciones, operaciones booleanas, entrada/salida de datos desde teclado/fichero o hacia consola/fichero, etc.)
- **Ejemplos:**

```
x= x+8;
cin>>x;
ofstream fich;
fich.open("mifichero.txt");
```

Cálculo de eficiencia de operaciones elementales

El tiempo de ejecución de una operación elemental (sentencias simples) está acotado por una constante, y **su orden es O(1)**.

Sentencias condicionales

□Constan de la evaluación de una condición, la ejecución de un bloque de sentencias en caso de cumplirse la condición y, opcionalmente, otro bloque de código a ejecutar en caso de que no se cumpla la condición.

```
if (EvaluacionCondicion) {
         BloqueSentencias1;
} else {
         BloqueSentencias2;
}
```

Cálculo de eficiencia de sentencias condicionales (caso peor)

■ El tiempo de ejecución en el caso peor de una sentencia condicional está acotado por:

max{O(EvaluacionCondicion),

O(BloqueSentencias1),

O(BloqueSentencias2) }

Cálculo de eficiencia de sentencias condicionales (caso mejor)

■ El tiempo de ejecución en el **caso mejor** de una **sentencia condicional** está acotado por:

 $min{\Omega(EvaluacionCondicion)}$,

 Ω (BloqueSentencias1),

 $\Omega(BloqueSentencias2)$ }

Ejemplo. Proyecto Code::Blocks SentenciasCondicionales, Tema 1

DECSAL

```
EvaluacionCondición (n%2==1)-> O(1), \Omega(1)
                                                                #include <iostream>
                                                                using namespace std;
BloqueSentencias1 (cout) -> O(1), \Omega(1)
                                                                int main()
BloqueSentencias2 (for) -> O(n), \Omega(n)
                                                                    int n;
                                                                    cout<<"Dime un número: ";
                                                          10
                                                                    cin>>n:
                                                          11
                                                         12
Eficiencia de la sentencia condicional:
                                                         13
                                                                   if (n%2 == 1)
                                                          14
                                                                      cout<<"Es impar";
Max{O(1), O(1), O(n)}->O(n)
                                                          16
                                                                   else {
                                                                      for (int | i = 1; i <=n; i++)
                                                          17
                                                                         cout<<i:
Min{\Omega(1), \Omega(1), \Omega(n)} \rightarrow \Omega(1)
                                                          19
```

La sentencia condicional tiene eficiencia O(n). En el peor de los casos, tardará O(n) en ejecutarse.

La sentencia condicional tiene eficiencia \Omega(1). En el mejor de los casos, tardará $\Omega(1)$ en ejecutarse.

Sentencias repetitivas

□Constan de la evaluación de una condición y la ejecución de un bloque de sentencias, mientras que dicha condición se cumpla.

Mientras (Condición), **hacer**: BloqueSentencias

Cálculo de eficiencia de sentencias repetitivas

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.

Entonces la eficiencia será:

$$O(g(n) + h(n)*(g(n)+f(n)))$$

Cálculo de eficiencia de sentencias repetitivas

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.

Entonces la eficiencia será:

$$O(g(n) + h(n)*(g(n)+f(n)))$$

La evaluación de la condición realiza al menos una vez

Sentencias repetitivas

Mientras (Condición), **hacer**: BloqueSentencias

Cálculo de eficiencia de sentencias repetitivas

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.

Entonces la eficiencia será:

$$O(g(n) + h(n)*(g(n)+f(n)))$$

En cada iteración, se ejecuta el bloque de sentencias y después se vuelve a evaluar la condición.

Sentencias repetitivas

Mientras (Condición), **hacer**: BloqueSentencias

Cálculo de eficiencia de sentencias repetitivas

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.

Entonces la eficiencia será:

$$O(g(n) + h(n)*(g(n)+f(n)))$$

Y todo ello se realiza un total de h(n) veces.

Sentencias repetitivas

Mientras (Condición), **hacer**: BloqueSentencias

EvaluacionCondición (n>0)-> g(n)=1

BloqueSentencias -> f(n)=1

Repeticiones -> n

Eficiencia de la sentencia repetitiva:

$$g(n) + h(n)*(g(n)+f(n)) = 1+n*(1+1)= 2*n+1 -> O(2*n+1)$$

Aplicando la **regla del máximo**: $O(2*n+1) = max{O(2*n), O(1)} = O(2*n)$

Simplificando la constante: La sentencia repetitiva es **O(n)**

Sentencias repetitivas: Bucles for en C++/Java

Constan de la evaluación de una condición, la ejecución de un bloque de sentencias y una actualización, mientras que dicha condición se cumpla.

for (Inicialización; Condición; Actualización), **hacer:**

BloqueSentencias

Cálculo de eficiencia de bucles for

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.
- La actualización tenga eficiencia a(n)
- La inicialización tenga eficiencia i(n)

Entonces la eficiencia será:

$$O(i(n)+g(n) + h(n)*(g(n)+f(n)+a(n)))$$

Cálculo de eficiencia de sentencias repetitivas (bucles for)

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.
- La actualización tenga eficiencia a(n)
- La inicialización tenga eficiencia i(n)

Entonces la eficiencia será:

$$O(i(n)+g(n) + h(n)*(g(n)+f(n)+a(n)))$$

La inicialización se ejecuta siempre. La condición, al menos una vez

Sentencias repetitivas

for (Inicialización; Condición; Actualización), **hacer**: BloqueSentencias

Cálculo de eficiencia de sentencias repetitivas (bucles for)

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.
- La actualización tenga eficiencia a(n)
- La inicialización tenga eficiencia i(n)

Entonces la eficiencia será:

$$O(i(n)+g(n) + h(n)*(g(n)+f(n)+a(n)))$$

En cada iteración se ejecuta el bloque de sentencias, luego la actualización finalmente la evaluación de la condición.

Sentencias repetitivas

for (Inicialización; Condición; Actualización), **hacer**: BloqueSentencias

Cálculo de eficiencia de sentencias repetitivas (bucles for)

Suponiendo que:

- El bloque de sentencias tenga eficiencia f(n),
- La evaluación de la condición tenga eficiencia g(n)
- El bucle se ejecute h(n) veces.
- La actualización tenga eficiencia a(n)
- La inicialización tenga eficiencia i(n)

Entonces la eficiencia será:

$$O(i(n)+g(n) + h(n)*(g(n)+f(n)+a(n)))$$

Y todo ello se ejecuta h(n) veces

Sentencias repetitivas

for (Inicialización; Condición; Actualización), **hacer**: BloqueSentencias

Comenzaremos analizando el bucle interno.

```
int main()
 6
     \Box{
            int n;
            cout<<"Dime un número: ";
10
            cin>>n:
11
12
            while (n>0) {
13
                for (int i= 1; i<=n; i*=2)
                    cout<<i;
14
15
                n--;
16
17
18
            return 0;
19
```


Comenzaremos analizando el bucle interno.

```
Inicialización: O(1)
```

```
int main()
     \Box {
            int n;
            cout<<"Dime un número: ";
10
            cin>>n:
11
12
            while (n>0) {
                for > int i= 1; i<=n; i*=2)
13
14
                     cout<<i:
15
                n--;
16
17
18
            return 0;
19
```


int main() \Box { int n; Comenzaremos analizando el bucle interno. cout<<"Dime un número: "; 10 cin>>n: 11 Inicialización: O(1) 12 while (n>0) { for (int i → 1 i<=n i*=2) 13 cout<<i; 14 Condición: O(1) 15 n--; 16 17 18 return 0; 19

Comenzaremos analizando el bucle interno.

Inicialización: O(1)

Condición: O(1)

Actualización: O(1)

```
int main()
     \Box{
            int n;
            cout<<"Dime un número: ";</pre>
10
            cin>>n:
11
            while (n>0) {
12
13
                 for (int i= 1; i≤=n→ i*=2
14
15
                 n--;
16
17
18
            return 0;
19
```

Comenzaremos analizando el bucle interno.

Inicialización: O(1)

Condición: O(1)

Actualización: O(1)

Bloque de sentencias: O(1)

```
int main()
     \Box{
            int n;
            cout<<"Dime un número: ";
10
            cin>>n:
11
            while (n>0) {
12
13
                for (int i= 1; i<=n; i*=2)
14
15
16
            return 0;
18
19
```


Comenzaremos analizando el bucle interno.

Inicialización: O(1)

Condición: O(1)

Actualización: O(1)

Bloque de sentencias: O(1)

Veces que se ejecuta: log₂(n)

En la iteración 1, i=1

En la iteración 2, i=2

En la iteración 3, i=4; en la 4, i=8, ... total: log2(n) hasta que i>n

```
int main()
            int n;
            cout<<"Dime un número: ";
10
            cin>>n:
11
            while (n>0) {
12
                for (int i= 1; i<=n; i*=2)
13
14
                     cout<<i;
15
16
            return 0;
19
```


Comenzaremos analizando el bucle interno.

Eficiencia del bucle for:

$$O(1)+O(1)+O(\log_2(n))*(O(1)+O(1)+O(1))=$$

 $O(\log_2(n))$

```
int main()
             int n;
             cout<<"Dime un número: ";
10
             cin>>n:
11
12
             while (n>0) {
13
                 for (int i= 1; i<=n; i*=2)
{}^{1}_{15}O(log_{2}(n))
                      cout<<i;
16
17
18
             return 0;
19
```


Ahora pasamos al bucle externo (while):

Condición: O(1)

Ahora pasamos al bucle externo (while):

Condición: O(1)

Bloque sentencias: $O(\log_2(n) + 1)$

```
int main()
               int n;
               cout<<"Dime un número: ";
10
               cin>>n:
11
12
               while (n>0) {
13
                    for (int i= 1; i<=n; i*=2
{}^{1}\mathbf{O}(\mathbf{log}_{2}(\mathbf{n}))
                         cout<<i;
16
17
18
               return 0;
19
```


Ahora pasamos al bucle externo (while):

Condición: O(1)

Bloque sentencias: $O(\log_2(n) + 1)$

Veces que se ejecuta: n'

```
Total: 1+n*(1+(\log_2(n)+1))=O(n*\log_2(n))
```

El bucle while tiene eficiencia: **O**(**n*log**₂(**n**))

```
int main()
              int n;
              cout<<"Dime un número: ";
10
              cin>>n:
11
12
              while (n>0) {
                   for (int i= 1: i<=n: i*=2
<sup>1</sup>O(log<sub>2</sub>(n))
                        cout<<i;
16
17
18
              return 0;
19
```


Secuencias de sentencias

■Constan de la ejecución secuencias de bloques de sentencias.

Sentencia 1; Sentencia 2;

. . .

Sentencia S;

Cálculo de eficiencia de secuencias de sentencias

Asumiendo que cada sentencia i tiene eficiencia $O(f_i(n))$, la eficiencia de la secuencia se obtiene aplicando las reglas de la suma y del máximo:

$$O(f_1(n)+f_2(n)+...+f_S(n)) = max\{ O(f_1(n)), O(f_2(n)), ..., O(f_S(n)) \}$$

Ejemplo. Proyecto Code::Blocks SentenciasRepetitivas2, Tema 1 int main() int n; Primera sentencia: O(1) cout<<"Dime un número: "; 10 cin>>n; 11 12 while (n>0) { 13 for (int i= 1; i<=n; i*=2) 14 cout<<i; 15 n--; 16 17 18 return 0; 19

Ejemplo. Proyecto Code::Blocks SentenciasRepetitivas2, Tema 1

Primera sentencia: O(1)

Segunda sentencia: O(1)

```
int main()
 6
            int n;
            cout<<"Dime un número: ";
           cin>>n;
11
12
           while (n>0) {
13
                for (int i= 1; i<=n; i*=2)
14
                    cout<<i;
15
                n--;
16
17
18
            return 0;
19
```


Ejemplo. Proyecto Code::Blocks SentenciasRepetitivas2, Tema 1

Primera sentencia: O(1)

Segunda sentencia: O(1)

Tercer bloque de sentencias: O(n*log2(n))

```
int main()
            int n;
            cout<<"Dime un número: ";
10
            cin>>n:
11
12
           while (n>0) {
13
                for (int i= 1; i<=n; i*=2)
14
                    cout<<i;
15
                n--;
16
17
18
            return 0;
19
```


Ejemplo. Proyecto Code::Blocks SentenciasRepetitivas2, Tema 1

Primera sentencia: O(1)

Segunda sentencia: O(1)

Tercer bloque de sentencias: O(n*log2(n))

Total: $Max{O(1), O(1), O(n*log2(n))}$

Eficiencia del programa: **O(n*log2(n))**

```
int main()
            int n;
            cout<<"Dime un número:
10
            cin>>n:
11
12
            while (n>0) {
13
                for (int i= 1; i<=n; i*=2)
14
                    cout<<i:
15
16
17
18
            return 0;
19
```


Eficiencia de una función

La eficiencia de una función es el máximo entre las eficiencias de las sentencias que la componen.

Eficiencia de una llamada a función

La eficiencia de una llamada a función dependerá de si sus parámetros de entrada dependen o no del tamaño del problema.

Pregunta. Proyecto Code::Blocks EficienciaFunciones1, Tema 1

¿Cuál es la eficiencia de la función?

Pregunta. Proyecto Code::Blocks EficienciaFunciones1, Tema 1

¿Cuál es la eficiencia de los códigos siguientes?

```
¿ Alguno es O(n²)?

¿ Alguno es O(n·√n)?

¿ Alguno es O(1) ?

¿ Alguno es O(n)?

¿ Alguno es O(log(n))?

¿ Alguno es

O(n*log(n))?

¿ Alguno es

O(√n*log(n))?
```

```
for (int i= 1; i<n; i++)</pre>
26
                if (esPrimo(1234567))
27
28
                     cout<<i:
            for (int i= 1; i<n; i++)
22
                if (esPrimo(i))
23
                     cout<<i:
24
            for (int i= 1; i<2000; i++)
30
                if (esPrimo(i))
31
32
                     cout<<i;
39
            for (int i = n; i > 0; i/=2)
                if (esPrimo(i))
40
41
                     cout<<i:
```

Moraleja: Nos tenemos que fijar muy bien en cuáles son las variables de las que depende el tamaño del caso, y también en el número de veces que se ejecuta cada bucle.

Pregunta. ¿Cuál es la eficiencia del siguiente código?

```
void Ejemplo(int *v, int N) {
    for (int i= 0; i<N; i++) {
        v[i]= (i*2+20-4*i)/N;
        v[i]= LlamarV(v, N-1)*LlamarV(v, N-2);
    }
}
int LlamarV(int *s, int N) {
    for (int i= N-1; i>0; i= i/2)
        V[i]= V[i]-1;
    return V[0];
}
```

```
¿Quién vota por...

O(n³)?

O(n²)?

O(n)?

O(n*log(n))?

O(n*log²(n))?
```


Eficiencia de una función recursiva

- Se calcula el tiempo de ejecución **T(n)** de la función con respecto al tamaño **n** del caso del problema, considerando el tamaño que resuelven las llamadas recursivas.
- ■Se expresa como una ecuación en recurrencias.
- Se resuelve la ecuación en recurrencias para calcular el orden de eficiencia.

Ejemplo. Proyecto Code::Blocks Factorial, Tema 1

¿Cuál es la eficiencia de la función?

```
if (n<=1) return 1;
else return n*|factorial(n-1);</pre>
```

Variable de la que depende el tamaño del problema: *n*

Ejemplo. Proyecto Code::Blocks Factorial, Tema 1

¿Cuál es la eficiencia de la función?

```
□unsigned long factorial(int n) {
      if (n<=1) return 1;
     else return n*factorial(n-1);
```

Variable de la que depende el tamaño del problema: n

Tiempo que tarda en ejecutarse la función: T(n)

Evaluación de la condición: O(1)

Ejemplo. Proyecto Code::Blocks Factorial, Tema 1

¿Cuál es la eficiencia de la función?

```
□unsigned long factorial(int n) {
     if (n<=1) return 1:
     else return parfactorial(n-1);
```

Variable de la que depende el tamaño del problema: n

Tiempo que tarda en ejecutarse la función: T(n)

Evaluación de la condición: O(1)

Tiempo el bloque if: O(1)

Ejemplo. Proyecto Code::Blocks Factorial, Tema 1

¿Cuál es la eficiencia de la función?

```
if (n<=1) return 1:
else return n*factorial(n-1):
```

Variable de la que depende el tamaño del problema: n

Tiempo que tarda en ejecutarse la función: T(n)

Evaluación de la condición: O(1)

Tiempo del bloque if: O(1)

Tiempo del bloque else: O(1)+lo que tarde la función en resolver el problema de tamaño n: T(n-1) -> 1+T(n-1)

Eficiencia de una función recursiva

- **Casos base**: No depende de la recursividad.
- **Casos generales:** Depende de la recursividad.
- ■Caso mejor: El caso general más favorable.
- ■Caso peor: El caso general más desfavorable.

Ejemplo. Proyecto Code::Blocks Factorial, Tema 1

¿Cuál es la eficiencia de la función?

$$T(n) = \begin{cases} 1 & n <= 1 \text{(caso base)} \\ 1 + T(n-1) & n > 1 \text{(caso general)} \end{cases}$$

```
□ unsigned long factorial(int n) {
     if (n<=1) return 1;
     else return n*factorial(n-1);
```


Ejemplo. Proyecto Code::Blocks BusquedaBinaria, Tema 1

```
int BusquedaBinaria(double *v, int posini, int posfin, double aBuscar) {

int centro= (posini+posfin)/2;
if (posini>posfin) return -1;
else if (v[centro] == aBuscar) return centro;
else if (aBuscar < v[centro])
    return BusquedaBinaria(v, posini, centro-1, aBuscar);
else
    return BusquedaBinaria(v, centro+1, posfin, aBuscar);
}</pre>
```

Variables de las que depende el problema: *n= posfin-posini+1*

Tiempo de ejecución de la función: T(n)

Líneas 8-10: O(1)

Líneas 11-14: max{condición, Bloque-if, Bloque-else}=

 $\max\{O(1), T(n/2), T(n/2)\}$

Ejemplo. Proyecto Code::Blocks BusquedaBinaria, Tema 1

```
int BusquedaBinaria(double *v, int posini, int posfin, double aBuscar) {

int centro= (posini+posfin)/2;
if (posini>posfin) return -1;
else if (v[centro] == aBuscar) return centro;
else if (aBuscar < v[centro])
    return BusquedaBinaria(v, posini, centro-1, aBuscar);
else
    return BusquedaBinaria(v, centro+1, posfin, aBuscar);
}</pre>
```

Casos base:

$$T(n) = O(1)$$
 si n<1 (primer if)

T(n) = O(1) si v[n/2] = aBuscar

Caso general:

$$T(n)=1+T(n/2)$$

$$T(n) = \begin{cases} 1 & \text{casobase} \\ 1 + T(n/2) & \text{casogeneral} \end{cases}$$

Ejemplo. Proyecto Code::Blocks Fibonacci, Tema 1

Tamaño del problema: n

Caso base: n<=1

```
5
6
7
8
return Fibonacci(n-1)+Fibonacci(n-2);
9
10

Gunsigned long Fibonacci(int n) {
    if (n<=1) return n;
    return Fibonacci(n-1)+Fibonacci(n-2);
}</pre>
```

Eficiencia caso base: T(n) = O(1)

Caso general:

Dos llamadas recursivas consecutivas, que resuelven los problemax de tamaño n-1 y de tamaño n-2, que tardan en ejecutarse T(n-1) y T(n-2)

$$T(n) = \begin{cases} 1 & \text{caso base} \\ T(n-1) + T(n-2) & \text{caso general} \end{cases}$$


```
void fusionaMS(double *v, int posIni, int centro, int posFin, double *vaux) {
 9
           int i= posIni;
10
           int j= centro;
11
12
           int k= 0:
13
           while (i<centro && j<=posFin) {
14
15
16
                if (v[i]<=v[j]) {</pre>
17
                    vaux[k] = v[i];
18
                    i++:
19
                } else {
20
                    vaux[k] = v[i];
21
22
                    i++;
23
                k++;
24
25
26
           while (i<centro) {
27
                vaux[k]= v[i];
28
29
                i++, k++;
30
31
           while (j<=posFin) {
                vaux[k] = v[j];
32
                i++, k++;
33
34
35
           memcpy(v+posIni, vaux, k*sizeof(double));
36
37
```



```
void fusionaMS(double *v, int posIni, int centro, int posFin, double *vaux) {
 9
           int i= posIni;
10
           int j= centro;
11
12
           int k= 0:
                                                       ¿Qué hace este código?
13
           while (i<centro && j<=posFin) {
14
15
16
                if (v[i]<=v[j]) {</pre>
17
                    vaux[k] = v[i];
18
                    i++:
19
                } else {
20
                    vaux[k] = v[i];
21
22
                    i++;
23
                k++;
24
25
26
           while (i<centro) {
27
                vaux[k]= v[i];
28
29
                i++, k++;
30
31
           while (j<=posFin) {
                vaux[k] = v[j];
32
                i++, k++;
33
34
35
           memcpy(v+posIni, vaux, k*sizeof(double));
36
37
```



```
void fusionaMS(double *v, int posIni, int centro, int posFin, double *vaux) {
 9
           int i= posIni;
10
           int j= centro;
11
12
           int k= 0:
                                                      ¿Qué hace este código?
13
           while (i<centro && j<=posFin) {
14
15
                                                      ¿De qué
16
               if (v[i]<=v[j]) {</pre>
17
                                                      variable/variables
                   vaux[k] = v[i];
18
                   i++:
19
                                                      depende el tamaño del
               } else {
20
                   vaux[k] = v[i];
                                                      caso?
21
22
                   i++;
23
               k++;
24
25
26
           while (i<centro) {
27
28
               vaux[k] = v[i];
29
               i++, k++;
30
31
           while (j<=posFin) {
               vaux[k] = v[j];
32
               i++, k++;
33
34
35
           memcpy(v+posIni, vaux, k*sizeof(double));
36
37
```



```
void fusionaMS(double *v, int posIni, int centro, int posFin, double *vaux) {
 9
           int i= posIni;
10
           int j= centro;
11
12
           int k= 0:
                                                      ¿Qué hace este código?
13
           while (i<centro && j<=posFin) {
14
15
                                                      ¿De qué
16
               if (v[i]<=v[j]) {</pre>
17
                                                      variable/variables
                   vaux[k] = v[i];
18
                   i++:
19
                                                      depende el tamaño del
20
               } else {
                   vaux[k] = v[i];
                                                      caso?
21
22
                   1++;
23
               k++;
24
                                                      ¿Qué eficiencia tiene?
25
26
           while (i<centro) {
27
28
               vaux[k] = v[i];
29
               i++, k++;
30
31
           while (j<=posFin) {
               vaux[k] = v[j];
32
               i++, k++;
33
34
35
           memcpy(v+posIni, vaux, k*sizeof(double));
36
37
```



```
void fusionaMS(double *v, int posIni, int centro, int posFin, double *vaux) {
 9
           int i= posIni;
10
           int j= centro;
11
12
           int k= 0:
                                                     ¿Qué hace este código?
13
           while (i<centro && j<=posFin) {
14
15
                                                     ¿De qué
16
               if (v[i]<=v[j]) {</pre>
17
                                                     variable/variables
                   vaux[k] = v[i];
18
                   i++:
19
                                                     depende el tamaño del
20
               } else {
                   vaux[k] = v[i];
                                                     caso?
21
22
                   1++;
23
               k++;
24
                                                     ¿Qué eficiencia tiene?
25
26
           while (i<centro) {
27
               vaux[k] = v[i];
28
                                                            Solución: O(n)
29
               i++, k++;
30
31
           while (j<=posFin) {
               vaux[k] = v[j];
32
               i++, k++;
33
34
35
           memcpy(v+posIni, vaux, k*sizeof(double));
36
37
```



```
woid MergeSort(double *v, int posIni, int posFin, double *vaux) {
40
41
           if (posIni>=posFin) return;
42
43
44
           int centro= (posIni+posFin)/2;
45
46
           MergeSort(v, posIni, centro, vaux);
47
           MergeSort(v, centro+1, posFin, vaux);
48
           fusionaMS(v, posIni, centro+1, posFin, vaux);
49
```

Tamaño del problema: n= posFin-posIni+1

Caso base (if): T(n) = O(1)

Caso General: Se hace el cálculo de centro - O(1) -, y luego dos llamadas recursivas que solucionan el problema de tamaño n/2. Finalmente, se ejecuta fusionaMS, que es O(n)


```
□ void MergeSort(double *v, int posIni, int posFin, double *vaux) {
40
41
           if (posIni>=posFin) return O(1)
42
43
           int centro= (posIni+posFin)/2; O(1)
44
45
                                                 T(n/2)
           MergeSort(v, posIni, centro, vaux);
46
                                                         T(n/2)
           MergeSort(v, centro+1, posFin, vaux);
47
48
           fusionaMS(v, posIni, centro+1, posFin, vaux)
                                                         O(n)
```

Tamaño del problema: n= posFin-posIni+1

Caso base (if): T(n) = O(1)

Caso General: Se hace el cálculo de centro - O(1) -, y luego dos llamadas recursivas que solucionan el problema de tamaño n/2. Finalmente, se ejecuta fusionaMS, que es O(n)

$$T(n) = \begin{cases} 1 & \text{caso base} \\ 2T(n/2) + n & \text{caso general} \end{cases}$$

Algorítmica

Grado en Ingeniería Informática

La eficiencia de los algoritmos

- 1. El concepto de algoritmo.
- 2. La eficiencia de algoritmos: Problema, tamaño, instancia. Principio de Invarianza.
- La notación asintótica. Órdenes peor, mejor y exacto.
- 4. Análisis de algoritmos.
- 5. Resolución de recurrencias.

- ■Una vez planteada la ecuación en recurrencias de una función recursiva, debemos resolverla para conocer su orden de eficiencia.
- ■Métodos:
 - Desarrollo en series de la fórmula.
 - ■Método de la ecuación característica.

Ejemplo. Desarrollo en series de Factorial

$$T(n)=1+T(n-1)$$

```
if (n<=1) return 1;
else return n*|factorial(n-1);</pre>
```

```
T(n)=1+T(n-1)=1+(1+T(n-2))=
=2*1+T(n-2)=2*1+(1+T(n-3))=
=3*1+T(n-3)=3*1+(1+T(n-4))=\dots
...
=i*1+T(n-i)=\dots
=(n-1)*1+T(n-(n-1))=(n-1)*1+T(1)=(n-1)*1+1
T(n)=1*n \le K*n, luego el algoritmo es O(n)
```


Ejemplo. Desarrollo en series de BusquedaBinaria

```
T(n)= 1+T(n/2)

| int BusquedaBinaria(double *v, int posini, int posfin, double aBuscar) {
| int centro= (posini+posfin)/2;
| if (posini>posfin) return -1;
| else if (v[centro] == aBuscar) return centro;
| else if (aBuscar < v[centro])
| return BusquedaBinaria(v, posini, centro-1, aBuscar);
| else return BusquedaBinaria(v, centro+1, posfin, aBuscar);
| else return BusquedaBinaria(v, centro+1, posfin, aBuscar);
```

```
= 2 + 1 + T(n/8) = 3 + T(n/8) = ...

...

= i + T(n/2^{i}) = ...

= log_{2}(n) + T(n/2^{log_{2}(n)}) = log_{2}(n) + T(1) -> el algoritmo es O(log_{2}(n))
```

T(n)=1+T(n/2)=1+(1+T(n/4))=2+T(n/4)

- ■El método de la ecuación característica para **resolución de ecuaciones recurrentes** nos proporciona una metodología muy organizada para obtener la eficiencia de los algoritmos de forma simple.
- ■Estudiaremos los siguientes casos:
 - Ecuaciones Lineales Homogéneas de coeficientes constantes.
 - Ecuaciones Lineales No Homogéneas de coeficientes constantes.

- ■Además tendremos en cuenta otros aspectos:
 - Cambios de variable.
 - Cambios de recorrido (rango).

Ecuaciones lineales homogéneas de coeficientes constantes (ELH)

■Son del tipo:

$$T(n) = a_1 \cdot T(n-1) + a_2 \cdot T(n-2) + ... + a_k \cdot T(n-k)$$

■Todos los coeficientes a_i que van multiplicando a las "T's" son constantes numéricas.

Pasos para obtener la ecuación caracteerística (en ELH)

1. Se reescribe T(n-i) como x^i , y se pasan todos los términos a un lado:

$$a_0 t_n + a_1 t_{n-1} + a_2 t_{n-2} + \dots + a_k t_{n-k} = 0$$

2. Se saca factor común x^{n-k}:

$$(a_0 x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k) x^{n-k} = 0$$

Como x^{n-k} no es 0 (los tiempos no pueden ser 0), se saca de la ecuación.

Pasos para obtener la ecuación caracteerística (en ELH)

3. Ecuación característica (resultante de los 2 pasos anteriores):

$$a_0 x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k = 0$$

4. A la anterior expresión se le denomina **polinomio característico:**

Llamaremos polinomio característico al polinomio

$$p(x) = a_0 x^k + a_1 x^{k-1} + a_2 x^{k-2} + ... + a_k$$

5. Por el **Teorema Fundamental del Álgebra**, sabemos que:

$$P(x)=(x-R_1)*(x-R_2)*...*(x-R_k)$$

Debemos calcular las raíces del polinomio.

Pasos para obtener la ecuación caracteerística (en ELH)

6. Por último, sacamos el tiempo de ejecución con la expresión siguiente:

$$t_{n} = \sum_{i=1}^{r} \sum_{j=0}^{M_{i}-1} c_{ij} R_{i}^{n} n^{j}$$

- \mathbf{R}_{i} son las raíces del polinomio.
- · **c**_{ii} son coeficientes constantes.
- r es el número de raíces distintas del polinomio característico.
- \mathbf{M}_{i} es la multiplicidad de la raíz \mathbf{R}_{i} del polinomio (el número de veces que \mathbf{R}_{i} es raíz de p(x)).

Resolución de recurrencias: Ecuaciones lineales homogéneas de coeficientes constantes

Ejemplo 1: Calcular la eficiencia de Fibonacci recursivo

Ecuación en recurrencias: T(n) = T(n-1) + T(n-2)

$$T(n)-T(n-1)-T(n-2)=0$$

$$x^{n}-x^{n-1}-x^{n-2}=0$$

$$(x^2-x-1)x^{n-2}=0$$

$$p(x) = x^2 - x - 1$$

$$p(x)=(x-(1+\sqrt{5})/2)*(x-(1-\sqrt{5})/2)$$

$$R_1 = (1 + \sqrt{5})/2$$
 $M_1 = 1$

$$R_2 = (1 - \sqrt{5})/2$$
 $M_2 = 1$

$$t_n = \sum_{i=1}^r \sum_{j=0}^{M_i - 1} c_{ij} R_i^n n^j$$

$$t_n = c_{10}((1+\sqrt{5})/2)^n + c_{20}((1-\sqrt{5})/2)^n$$

El algoritmo es $O((1+\sqrt{5})/2)^n)$

Resolución de recurrencias: Ecuaciones lineales homogéneas de coeficientes constantes

Ejemplo 2: Calcular la eficiencia de un programa recursivo

Ecuación en recurrencias : T(n)=5T(n-1)-8T(n-2)+4T(n-3)

$$T(n)-5T(n-1)+8T(n-2)-4T(n-3)=0$$

$$x^{n}-5x^{n-1}+8x^{n-2}-4x^{n-3}=0$$

$$(x^3-5x^2+8x-4)x^{n-3}=0$$

$$p(x) = x^3 - 5x^2 + 8x - 4$$

$$p(x)=(x-2)^2(x-1)$$

$$R_1 = 2 M_1 = 2$$

$$R_2 = 1 M_2 = 1$$

$$t_{n} = \sum_{i=1}^{r} \sum_{i=0}^{M_{i}-1} c_{ij} R_{i}^{n} n^{j}$$

$$t_n = c_{10} 2^n n^0 + c_{11} 2^n n^1 + c_{20} 1^n n^0$$

El algoritmo es O(n·2ⁿ)

Resolución de recurrencias: Ecuaciones lineales homogéneas de coeficientes constantes

Ejemplo 3: Calcular la eficiencia de un programa recursivo

Ecuación en recurrencias : T(n)=2T(n-1)-T(n-2)

$$T(n)-2T(n-1)+T(n-2)=0$$

$$x^{n}-2x^{n-1}+x^{n-2}=0$$

$$(x^2-2x+1)x^{n-2}=0$$

$$p(x) = x^2 - 2x + 1$$

$$p(x)=(x-1)^2$$

$$R_1 = 1 M_1 = 2$$

$$t_n = \sum_{i=1}^r \sum_{j=0}^{M_i - 1} c_{ij} R_i^n n^j$$

$$t_n = c_{10}1^n n^0 + c_{11}1^n n^1$$

El algoritmo es O(n)

Ecuaciones lineales no homogéneas de coeficientes constantes (ELNH)

■En la ecuación recurrente aparecen otros términos no resursivos (que no son "T"). Ejemplo

$$T(n)=T(n-1)+1$$

- ■Todos los coeficientes a_i que van multiplicando a las "T's" son constantes numéricas.
- Todos los términos no recursivos se pueden expresar como una constante \mathbf{b}_i elevado a \mathbf{n} que multiplica a un polinomio $\mathbf{q}_i(\mathbf{n})$ que depende de \mathbf{n} y tiene grado \mathbf{d}_i .
- ■Forma general de las ELNH:

$$a_0 t_n + a_1 t_{n-1} + a_2 t_{n-2} + \dots + a_k t_{n-k} = b_1^n q_1(x) + b_2^n q_2(x) + \dots + b_z^n q_z(x)$$

■Ejemplo para T(n)= T(n-1)+1

Basta con hacer $b_1=1$ y $q_1(n)=1$ y tenemos $T(n)=T(n-1)+1^n \cdot q_1(n)$

Pasos para obtener la ecuación caracteerística (en ELNH)

1. Se pasan todos los términos **recurrentes** a un lado:

$$a_0T(n) + a_1T(n-1) + a_2T(n-2) + ... + a_kT(n-k)_{n-k} = b_1^nq_1(x) + b_2^nq_2(x) + ... + b_z^nq_z(x)$$

2. Se resuelve la parte recurrente como si fuera homogénea:

$$a_0T(n) + a_1T(n-1) + a_2T(n-2) + ... + a_kT(n-k)_{n-k} = 0$$

Y así obtendremos el polinomio característico de la parte homogénea, $\mathbf{p}_{H}(\mathbf{x})$

3. El polinomio característico de la ELNH se calcula como:

$$P(x) = p_{H}(x)(x-b_{1})^{d_{1}+1}(x-b_{2})^{d_{2}+1}...(x-b_{z})^{d_{z}+1} = 0$$

4. Se aplica la fórmula para cálculo de la eficiencia de la forma usual.

DECSA

La eficiencia de los algoritmos

Resolución de recurrencias: Ecuaciones lineales homogéneas de coeficientes constantes

Ejemplo 1: Cálculo de eficiencia de T(n)=T(n-1)+1

$$T(n)-T(n-1) = 1$$

Parte Homogénea:

$$T(n)-T(n-1)=0$$

$$p_{H}(x) = x-1$$

Parte No Homogénea:

Hacemos 1 =
$$b_1^n \cdot q_1(n)$$
; entonces $b_1 = 1$, $q_1(n) = 1$ con grado $d_1 = 0$

$$p(x)=(x-1)\cdot(x-b_1)^{d_1+1}=(x-1)\cdot(x-1)^1=(x-1)^2$$

$$R_1 = 1 M_1 = 2$$

$$t_n = \sum_{i=1}^r \sum_{j=0}^{M_i - 1} c_{ij} R_i^n n^j$$

$$t_n = c_{10}1^n n^0 + c_{11}1^n n^1$$

El algoritmo es O(n)

Resolución de recurrencias: Ecuaciones lineales homogéneas de coeficientes constantes

Ejemplo 2: Cálculo de eficiencia de T(n)=T(n-1)+n

$$T(n)-T(n-1)=n$$

Parte Homogénea:

$$T(n)-T(n-1)=0$$

$$p_{H}(x) = x-1$$

Parte No Homogénea:

Hacemos
$$n = b_1^{n} \cdot q_1(n)$$
; entonces $b_1 = 1$, $q_1(n) = n$ con grado $d_1 = 1$

$$p(x)=(x-1)\cdot(x-b_1)^{d_1+1}=(x-1)\cdot(x-1)^2=(x-1)^3$$

$$R_1 = 1 M_1 = 3$$

$$t_n = \sum_{i=1}^r \sum_{j=0}^{M_i - 1} c_{ij} R_i^n n^j$$

$$t_n = c_{10}1^n n^0 + c_{11}1^n n^1 + c_{12}1^n n^2$$

El algoritmo es O(n²)

Ejemplo 3: Cálculo de eficiencia de T(n)= T(n-1)+n+3ⁿ

$$T(n)-T(n-1) = n + 3^n$$

Parte Homogénea:

$$T(n)-T(n-1)=0$$

$$p_H(x) = x-1$$

$t_n = \sum_{i=1}^r \sum_{j=0}^{M_i - 1} c_{ij} R_i^n n^j$

$$t_n = c_{10}1^n n^0 + c_{11}1^n n^1 + c_{12}1^n n^2 + c_{20}3^n n^0$$

El algoritmo es O(3ⁿ)

Parte No Homogénea:

Hacemos
$$n = b_1^{n} \cdot q_1(n)$$
; entonces $b_1 = 1$, $q_1(n) = n$ con grado $d_1 = 1$

Hacemos
$$3^n = b_2^n \cdot q_2(n)$$
; entonces $b_2 = 3$, $q_2(n) = 1$ con grado $d_2 = 0$

$$p(x)=(x-1)\cdot(x-b_1)^{d_1+1}\cdot(x-b_2)^{d_2+1}=(x-1)\cdot(x-1)^2\cdot(x-3)^1=(x-1)^3\cdot(x-3)^2$$

$$R_1 = 1 M_1 = 3 ; R_2 = 3 M_2 = 1$$

Cambio de variable

Cuando **T(n) no está expresado en función de T(n-k)**, es necesario hacer un cambio de variable para que esto sea así.

El polinomio característico se expresa en función de la nueva variable.

Los cambios de variable más normales que haremos son $n=2^m$, $n=3^m$, $n=4^m$, $n=\log(m)$, etc.

¡No olvidar deshacer el cambio!

Ejemplo 1: Cálculo de eficiencia de BusquedaBinaria

Ecuación en recurrencias T(n) = T(n/2) + 1

Cambio $n=2^m$; luego $m=\log_2(n)$

$$T(2^m)=T(2^{m-1})+1$$

$$T(2^{m})-T(2^{m-1})=1$$
 (**ELNH**)

Parte Homogénea:

$$T(2^m)$$
- $T(2^{m-1})$ = 0

$$p_{H}(x) = x-1$$

Parte No Homogénea:

Hacemos 1 =
$$b_1^{m} \cdot q_1(m)$$
; entonces b_1 =1, $q_1(m)$ =1 con grado d_1 =0

$$p(x)=(x-1)\cdot(x-b_1)^{d1+1}=(x-1)^2$$
; $R_1=1$ $M_1=2$

$$t_{m} = \sum_{i=1}^{r} \sum_{j=0}^{M_{i}-1} c_{ij} R_{i}^{m} m^{j}$$

$$t_m = c_{10}1^m m^0 + c_{11}1^m m^1$$

Deshacemos el cambio

$$t_n = c_{10} 1^{\log(n)} \log(n)^0 + c_{11} 1^{\log(n)} \log(n)^1$$

El algoritmo es O(log(n))

Ejemplo 2: Cálculo de eficiencia de MergeSort

Ecuación en recurrencias T(n) = 2*T(n/2)+n

$$T(2^m) = 2*T(2^{m-1}) + 2^m$$

$$T(2^{m})-2*T(2^{m-1})=2^{m}$$
 (ELNH)

Parte Homogénea:

$$T(2^m)-2*T(2^{m-1})=0$$

$$p_{H}(x) = x-2$$

$t_{m} = \sum_{i=1}^{r} \sum_{j=0}^{M_{i}-1} c_{ij} R_{i}^{m} m^{j}$

$$t_m = c_{10} 2^m m^0 + c_{11} 2^m m^1$$

Deshacemos el cambio

$$t_n = c_{10} n \cdot \log(n)^0 + c_{11} n \cdot \log(n)^1$$

El algoritmo es $O(n \cdot log(n))$

Parte No Homogénea:

Hacemos $2^m = b_1^m \cdot q_1(m)$; entonces $b_1 = 2$, $q_1(m) = 1$ con grado $d_1 = 0$

$$p(x)=(x-2)\cdot(x-b_1)^{d1+1}=(x-2)^2$$
; $R_1=2$ $M_1=2$

Cambio de recorrido/rango

Cuando **la ecuación en recurrencias no es lineal**, debemos transformarla a lineal (si es posible). Este cambio se denomina de recorrido o rango. Normalmente, los cambios que haremos serán del tipo U(n) = log(T(n)).

¡No olvidar deshacer el cambio!

Ejemplo de ecuaciones no lineales:

$$T(n)=2^{n}\cdot T(n-1)$$

$$T(n)=T^2(n-1)$$

Resolución de recurrencias: Ecuaciones lineales homogéneas de coeficientes constantes

Ejemplo 1: Cálculo de eficiencia con cambio de rango

Ecuación en recurrencias $T(n) = T^2(n-1)$

$$\log(T(n)) = \log(T^2(n-1)) = 2 \cdot \log(T(n-1))$$

Cambio
$$U(n) = log(T(n))$$

$$U(n) = 2 \cdot U(n-1)$$

$$U(n)-2 \cdot U(n-1)=0$$
 (**ELH**)

$$p(x) = x-2$$

$$R_1 = 2 M_1 = 1$$

$$U_{n} = \sum_{i=1}^{r} \sum_{j=0}^{M_{i}-1} c_{ij} R_{i}^{n} n^{j}$$

$$U_n = c_{10} 2^n n^0 = c_{10} 2^n$$

Deshacemos el cambio $T(n)= 2^U(n)$

$$t_n = 2 \wedge (c_{10} 2^n)$$

El algoritmo es $O(2^{(c_{10}^2)})$

Ejemplo 2: Cálculo de eficiencia con cambio de rango

Ecuación en recurrencias $T(n)=2^{n}T^{2}(n-1)$

$$T(n)= 2^{n}T^{2}(n-1) - \log_{2}(T(n)) = \log_{2}(2^{n}T^{2}(n-1))$$

$$\log_2(T(n)) = \log_2(2^n) + \log_2(T^2(n-1)) -> U(n) = \log_2(T(n))$$

U(n) = n + 2U(n-1), que sí sabemos resolver:

$$U(n)-2U(n-1)=n$$

$$(x-2)(x-1)^2=0$$

$$U(n) = c_{10}^{2n} + c_{20}^{2n} + c_{21}^{2n} - T(n) = 2 \wedge (c_{10}^{2n} + c_{20}^{2n} + c_{21}^{2n})$$

El algoritmo es $O(2 \land (c_{10} 2^n + c_{20} + c_{21} n))$

Algorítmica Grado en Ingeniería Informática

Tema 1 – La eficiencia de los algoritmos

Este documento está protegido por la Ley de Propiedad Intelectual (Real Decreto Ley 1/1996 de 12 de abril). Queda expresamente prohibido su uso o distribución sin autorización del autor. Manuel Pegalajar Cuéllar manupc@ugr.es

Departamento de Ciencias de la Computación e Inteligencia Artificial http://decsai.ugr.es