DRILLING FORMULAE

WARNING SIGNS OF REDUCING OVERBALANCE

- 1. Increasing Drill Rate.
- 2. Increasing Torque and Drag.
- 3. Increased Cuttings Size.
- 4. Increased Background/Trip Gas.
- 5. Presence of Connection Gas
- 6. Improper Hole Fill during Trip.
- 7. Increased Chlorides and Mud Temperature.
- 8. Decreasing Shale Density.

WARNING SIGNS/INDICATORS OF A KICK

- 1. Increase in FLOW RATE.
- 2. Increase in PIT LEVEL.
- DRILLING BREAK.
- 4. FLOW with PUMPS OFF.
- 5. Increase in SPM/Decrease in Pump Pressure.

DRILLING FORMULAE

NINTH PRINTED EDITION FEB 2002

CONTENTS

PART 1: VOLUMES

PART 2: TRIPPING

PART 3: STUCK PIPE

PART 4: WELL CONTROL

PART 5: CASING/CEMENTING

PART 6: HYDRAULICS

PART 7: MISCELLANEOUS

PART 8: CONVERSION FACTORS

This is not an official publication of GlobalSantaFe Corporation. Use of the information contained herein is strictly at the discretion of the user.

INDEX

Page	PART 1: VOLUMES
1.1	Volume Formula, Strokes, Time
1.2	Drill Pipe Sizes and Capacities
1.3	Casing Capacities
1.4	Common Annular Volumes
1.5	Drill Collar Weights and Capacities
	PART 2: TRIPPING
2.1	Buoyancy Factor (also see page 4.2)
2.2	Ton Miles
2.3	Ton Miles for Wiper Trip and Mixed String, Steel
	Displacement and Closed End Displacement
2.4	Weights/Foot
2.5	Slug Volume and Weight, Length of Dry Pipe
2.6	Level/Pressure Drop when Tripping
2.7	Pressure Drop Pulling Wet Pipe and Collars
	PART 3: STUCK PIPE
3.1	Free Length of Stuck Pipe
3.2	Stretch of Pipe
3.3	Maximum Overpull

INDEX (continued)

Page	PART 4: WELL CONTROL
4.1	Pressures, Weights and Gradients
4.2	Equivalent Mud Weights and Buoyancy Factors
4.3	Kill Mud Weight, ICP, FCP
4.4	Step Down Chart
4.5	Influx Heights/Gradients
4.7	Fracture Mud Weight, Gradient and Pressure
4.8	MAASP, Maximum Casing Pressure
4.9	Volume Increase, Trip Margin
4.10	Boyles Law, Gas Expansion for T° and 'Z'
4.11	Gas Percolation Rate
4.12	PSI/Barrel, Mud to Bleed Due to Bubble Rise (Volumetric)
4.13	Shut in Procedures, Start Up Procedure
4.14	Kill Methods
4.15	Barite Required
4.16	Volume Increase due to Weighting Up
4.17	Usable Fluid Volume, Accumulator Volume Required
4.18	Accumulator Precharge Pressure
4.19	Combined Stripping and Volumetric Formulae
4.20	Deviated Step-Down Calculation
	PART 5: CASING/CEMENTING
5.1	Buoyant Force
5.3	Balance Mud Weight, Sacks Required
5.4	Balanced Plugs

INDEX (continued)

Page	PART 6: HYDRAULICS
6.1	Annular Velocity, ECD
6.2	ECD
6.3	GPM for Optimisation, Surface HHP Rule of Thumb
6.4	Critical Velocity
6.5	GPM to obtain Critical Velocity, TFA
6.6	Pressure Drop across Bit, Nozzle Area
6.7	Nozzle Sizes
6.8	TFA Comparison Chart, Average Nozzle Sizes
6.9	Jet Velocity
6.10	HHP at Bit, HSI
6.11	% HHP, Impact Force
6.12	Psi/Stroke/Weight Relationship, PV, YP, Apparent Viscosity
6.13	Hydraulic Rules of Thumb
	PART 7: MISCELLANEOUS
7.1	
	Critical RPM, Test Volume
7.2	Mud Building Formulae
7.3	Mass Balance Equation
7.4	Micron Sizes, Cone Capacities, pH, Marsh Funnel,
7.5	Pressure Gradients
	PART 8: CONVERSION FACTORS
8.1	

iii

GUIDE TO THE USE OF DRILLING FORMULAE

- 1. All formulae titles are listed in bold type as a main entry.
- 2. A statement identifying the purpose of the formula usually follows the entry.
- 3. A sample problem is given in each formula. These numbers are given for an example only. In the actual application of each formula, the real numbers are to be provided by you.
- 4. The title of the formula is listed again followed by the formula in bold type.
- 5. This section shows how the elements of the formula are applied and worked through. You must provide the correct numbers that apply to the problem you are solving.

6. Solution to the formula, based on the sample information given in (3)

- 1. BOYLES LAW
- 2. This formula expresses relationship between gas volume and gas pressure.
- 3. Original Pressure $(P_1) = 6000 \text{ psi}$ Original Volume $(V_1) = 20 \text{ bbl}$ Current Pressure $(P_2) = 1000 \text{ psi}$
- 4. BOYLES LAW
- 5. $P_1 \times V_1 \times = P_2 \times V_2$

Find V₂

$$\mathbf{V}_2 = \frac{\mathbf{P}_1 \times \mathbf{V}_1}{\mathbf{P}_2}$$

$$=\frac{6000 \times 20}{1000}$$

$$=\frac{120000}{1000}$$

= 120 barrels

NOTES

NOTES

PART 1: VOLUMES

SQUARE SIDED TANK VOLUME, bbls

$$= \frac{\text{Length, ft x Width, ft x Depth, ft}}{5.6146}$$

CYLINDRICAL TANK VOLUME, bbls

$$=\frac{.7854 \text{ x (Diameter, ft)}^2 \text{ x Depth, ft}}{5.6146}$$

PIPE VOLUME

$$=\frac{\text{ID}^2, \text{inches}}{1029}, \text{bbl ft or } \frac{\text{ID}^2, \text{millimetres}}{1,273,000}, \text{m}^3/\text{m}$$

ANNULAR VOLUME, bbl/ft

$$=\frac{(\mathrm{Dh}^2 - \mathrm{dp}^2)}{1029}$$

Dh = Hole wall diameter, inches dp = Tubular OD, inches

STROKES TO PUMP

= Volume ÷ Pump Output/Stroke

TIME, minutes

or

= Volume ÷ Pump Output/Stroke ÷ SPM

ANNULAR VOLUME, bbls/ft (2 Tubings)

$$=\frac{(D_1^2-D_2^2-D_3^2)}{1029}$$

D₁= Outer Casing D₂= OD of Inner Tubing D₃= OD of Inner Tubing

DRILL PIPE SIZES AND CAPACITIES

OD (in)	Nominal Weight (lbs/ft)			ID (in)	Barrels per foot
	IU	EU	IEU	, f	•
	8.5			3.063	.0091
	9.5	9.5		2.992	.0087
3.5	11.2			2.900	.0082
	13.3	13.3	13.3	2.764	.0074
	15.5	15.5	15.5	2.602	.0066
	11.85	11.85		3.476	.01174
4.0	14.00	14.00	14.00	3.340	.01084
	15.70		15.30	3.240	.01020
	12.75			4.000	.01554
	13.75	13.75		3.958	.01522
4.5	16.60	16.60	16.60	3.826	.01422
		18.15	18.15	3.754	.01369
	20.00	20.00	20.00	3.640	.01287
	16.25		16.25	4.408	.01887
5.0	19.50		19.50	4.276	.01776
	20.50	20.50		4.214	.01725
6.625			25.2	5.965	.0346

5" HWDP, 49.3 lbs/ft, 3" ID Bore, NC50 Capacity = .0087 bbls/ft Displacement = .01795 bbls/ft

4½" HWDP, 41.0 lbs/ft, 2¾" ID Bore, NC46 (4" IF) Capacity = .0073 bbls/ft Displacement = .0149 bbls/ft

4" HWDP, 29.7 lbs/ft, 29/16" ID Bore, NC40 (4" FH) Capacity = .0064 bbls/ft Displacement = .0108 bbls/ft

 $3\frac{1}{2}$ " HWDP, 25.3 lbs/ft, $2^1/_{16}$ " ID Bore, NC38 ($3^1/_2$ " IF) Capacity = .0041 bbls/ft Displacement = .0092 bbls/ft

CAPACITY OF CASING

OD (in)	Wt/Ft (lbs)	ID (in)	Drift Diameter (ins)	Barrels per foot	Annular Capacity bbls/ft
			, ,		3.5"
	17.0	6.538	6.413	.04152	.0296
	20.0	6.456	6.331	.0405	.0286
	23.0	6.366	6.241	.0394	.0275
	26.0	6.276	6.151	.0383	.0264
7	29.0	6.184	6.059	.0371	.0253
	32.0	6.094	5.969	.0361	.0242
	35.0	6.004	5.879	.0350	.0231
	38.0	5.920	5.795	.0340	.0222
					5"
	32.30	9.001	8.845	.0787	.0544
	36.00	8.921	8.765	.0773	.053
$9^{5}/_{8}$	40.00	8.835	8.679	.0758	.0516
	43.50	8.755	8.599	.0745	.0502
	47.00	8.681	8.525	.0732	.0489
	53.50	8.535	8.379	.0708	.0465
					5"
	48.0	12.715	12.559	.1571	.1328
	54.5	12.615	12.459	.1546	.1304
$13^{3}/_{8}$	61.0	12.515	12.359	.1521	.1279
	68.0	12.415	12.259	.1497	.1255
	72.0	12.347	12.191	.1481	.1239
				-	5"
$18^{5}/_{8}$	87.50	17.755	17.567	.3062	.2821
					5"
	94.0	19.124	18.936	.3553	.3311
20	106.5	19.00	18.812	.3507	.3265
	133.0	18.73	18.542	.3408	.3166

COMMON ANNULAR VOLUMES

Bit Diameter		Tubular OD		bbls/ft
26"	to	5"	=	.6324
17.5"	to	5"	=	.2733
17.5"	to	9.5"	=	.2098
17.5"	to	8"	=	.2353
12.25"	to	5"	=	.1215
12.25"	to	6.625"	=	.1032
12.25"	to	8"	=	.0836
8.5"	to	5"	=	.0459
8.5"	to	6.25"	=	.0322
8.5"	to	6.5"	=	.0292

DRILL COLLAR WEIGHTS, lb/ft

ID, inches								
OD, ins	1.5"	1.75"	2"	2.25"	2.5"	2.8125"	3"	3.25"
4.5	48	46	43	41				
4.75	54	52	50	47	44			
5.0	61	59	56	53	50			
5.25	68	65	63	60	57	53		
5.5	75	73	70	67	64	60	57	
5.75	83	80	78	75	72	67	64	
6.0	90	88	85	83	79	75	72	68
6.25	98	96	94	91	88	83	80	76
6.5	107	105	102	99	96	92	88	85
6.75	116	114	111	108	105	101	98	94
7.0	125	123	120	117	114	110	107	103
7.25	134	132	130	127	124	119	116	112
7.5	144	142	140	137	134	129	126	122
7.75	154	152	150	147	144	139	136	132
8.0	165	163	160	157	154	150	147	143
8.25	176	174	171	168	165	161	158	154
8.5	187	185	182	179	176	172	169	165
8.75	198	196	194	191	188	183	180	176
9.0		208	206	203	200	195	192	188
9.25		220	218	215	212	207	204	200
9.5		233	230	228	224	220	217	213
9.75		246	243	240	237	233	230	226
10.0			256	254	250	246	243	239
10.25			270	267	264	259	257	252
10.5			284	281	278	273	270	266
10.75			298	295	292	287	285	280
11.0					306	302	299	295
11.25					321	317	314	310
11.5					336	332	329	325
11.75					352	348	345	340
12.0					368	363	361	356
CAPACITI	ES							
bbls/ft	.0022	.003	.0039	.0049	.0061	.0077	.0087	.0103

2747 lbs of steel will displace 1 bbl 1000 lbs of steel will displace .364 bbl

NOTES

PART 2: TRIPPING

BUOYANCY FACTOR

Used to calculate weight of a STEEL tubular in mud.

Dry Weight/Foot = 90 lbs Mud Weight = 11.2 ppg

BUOYANCY FACTOR

$$= \frac{(65.44 - \text{Mud Wt, ppg})}{65.44}$$

$$= \frac{(65.44 - 11.2)}{65.44}$$

$$= \frac{54.24}{65.44}$$

$$= \frac{.829}{.829}$$

BUOYED WEIGHT, lbs/ft

= Dry Weight, lbs/ft x Buoyancy Factor

=90 x .829

= 74.61 lbs/ft

If SG mud weight is used, replace 65.44 with 7.856. For PCF use 490.

See page 4.2 for list of Buoyancy Factors.

TON MILES

For complete round trip

M = Total Weight of Blocks, Hook and

Drill String Compensator (if any) = 40,000 lbs

C = Buoyed Weight of BHA minus the

Buoyed Weight of equal length of Drill Pipe = 27,240 lbs

TON MILES

$$= \frac{\mathbf{W} \times \mathbf{D} \times (\mathbf{D} + \mathbf{L})}{10,560,000} + \frac{\mathbf{D} \times (\mathbf{M} + .5\mathbf{C})}{2,640,000}$$

$$= \frac{17.52 \times 10,000 \times (10,000 + 93)}{10,560,000} + \frac{10,000 \times (40,000 + 13,620)}{2,640,000}$$

$$= \frac{1,768,293,600}{10,560,000} + \frac{536,200,000}{2,640,000}$$

$$= 167.4 + 203.1$$
370.5 Ton Miles

DRILLING TON MILES

No Reaming at Connections = (RTTM after Drilling - RTTM before Drilling) x 2*

Ream Once at Connections = (RTTM after Drilling - RTTM before Drilling) x 3**

Ream Twice at Connections = (RTTM after Drilling - RTTM before Drilling) x 4**

RTTM = Round Trip Ton Miles * Remove for Top Drive ** Gives extra safety margin for Top Drives

CORING TON MILES

= (RTTM after Coring - RTTM before Coring) x 2

CASING TON MILES

$$= \left[\frac{\text{Block Wt, lbs}}{1000} + \frac{\text{Total Buoyed Wt. of Casing, lbs}}{4000} \right] \times \frac{\text{Shoe Depth, ft}}{5280}$$

WIPER TRIP TON MILES

$$= \left[\frac{\text{String Wt after}^{1}/_{2} \text{ the Stands pulled x Wiper Trip Stands Pulled}}{56774} \right] + \left[\frac{\text{Block Wt x Wiper Trip Stands Pulled}}{28387} \right]$$

TON MILES FOR MIXED STRING

Use same formula for TON MILES but replace W with $W_{\mbox{\scriptsize AVG}}$

 W_{AVG} = Average Buoyed lbs/ft of Drill Pipe

C = Average Buoyed Weight of Equal Length of Drill Pipe

eg. 3½"DP = 2187 ft x 15.5 lbs/ft = 33,898 lbs 5"DP = 6766 ft x 19.5 lbs/ft = 131,937 lbs Total = 8953 ft = 165,835 lbs Avg. Wt = 165835 ÷ 8953 = 18.52 lbs/ft

If 10 ppg then W_{AVG}

 $= 18.52 \times .847*$

= 15.69 lbs/ft

*Buoyancy Factor

STEEL DISPLACEMENT

For volume taken up by steel tubular.

Dry weight of Pipe = 21.9 lbs/ft (see next page)

DISPLACEMENT, bbls/ft

$$= \frac{\text{Dry Weight, lbs/ft}}{2747}$$

$$=\frac{21.9}{2747}$$

 $= .00797 \, bbls / \, ft$

2747 = weight, lbs of 1 bbl of steel

CLOSED END DISPLACEMENT, bbls/ft

= Steel Displacement, bbls/ft + Pipe Capacity, bbls/ft

WEIGHTS PER FOOT

Figures taken from API RP 7G

5" Drill Pipe, IEU, Nom. Wt 19.5, XH

 $\begin{array}{lll} \text{Grade E} &=& 20.9 \text{ lbs/ft} \\ \text{Grade X} &=& 21.4 \text{ lbs/ft} \\ \text{Grade G} &=& 21.9 \text{ lbs/ft} \\ \text{Grade S} &=& 22.5 \text{ lbs/ft} \end{array}$

31/2" Drill Pipe, EU, Nom. Wt 15.5, NC 38

 $\begin{array}{lll} \mbox{Grade E} &= & 16.39 \mbox{ lbs/ft} \\ \mbox{Grade X} &= & 16.69 \mbox{ lbs/ft} \\ \mbox{Grade G} &= & 16.88 \mbox{ lbs/ft} \\ \mbox{Grade S} &= & 17.56 \mbox{ lbs/ft} \mbox{ (NC 40)} \end{array}$

$6^{5}/8$ " Drill Pipe, IEU, Nom. Wt 25.2, FH

 $\begin{array}{lll} \text{Grade E} &=& 27.3 \text{ lbs/ft} \\ \text{Grade X} &=& 27.15 \text{ lbs/ft} \\ \text{Grade G} &=& 28.2 \text{ lbs/ft} \\ \text{Grade S} &=& 29.63 \text{ lbs/ft} \end{array}$

$6^{5}/_{8}$ " Drill Pipe, IEU, Nom. Wt 27.7, FH

 $\begin{array}{lll} \mbox{Grade E} &= & 29.06 \mbox{ lbs/ft} \\ \mbox{Grade X} &= & 30.11 \mbox{ lbs/ft} \\ \mbox{Grade G} &= & 30.11 \mbox{ lbs/ft} \\ \mbox{Grade S} &= & 31.54 \mbox{ lbs/ft} \end{array}$

5" Heavy Wall Drill Pipe = 49.3 lbs/ft

Drill Collars and Casing

Use tables on page 1.5 to get actual wt/ft for specific ODs and IDs.

SLUG VOLUME/WEIGHT/LENGTH

How big should your slug be or how heavy?

Mud Weight = 10 ppg
Pipe Capacity = .01776 bbls/ft
Required Level drop in mud below Rotary
Table (L.dry) = 200 ft
Slug Weight = 11.5 ppg

VOLUME OF SLUG, bbls

$$= \frac{\text{M.Wt, ppg x L.dry, ft x Pipe Cap, bbls/ft}}{\text{(Slug Wt, ppg - Mud Wt, ppg)}}$$

$$= \frac{10 \times 200 \times .01776}{(11.5 - 10)}$$
$$= \frac{35.52}{1.5}$$
$$= 23.68 \text{ bbl}$$

SLUG WEIGHT, ppg

$$= \left[\frac{\text{M.Wt, ppg x L.dry x Pipe Cap, bbls/ft}}{\text{Slug Vol, bbls}}\right] + \text{M.Wt, ppg}$$

(using a Slug Volume of 25 bbls)

$$= \left[\frac{10 \times 200 \times .01776}{25} \right] + 10$$

$$= \left[\frac{35.52}{25} \right] + 10$$

$$= 1.42 + 10 = 11.42 \text{ ppg}$$

LENGTH OF DRY PIPE, ft

$$L. dry = \left(Slug \ Length \ x \ \frac{Slug \ Weight}{Mud \ Weight}\right) - Slug \ Length$$

Note: Slug Length = Slug Volume ÷ Pipe Capacity

LEVEL/PRESSURE DROP WHEN TRIPPING (DRY PIPE)

Due to pulling out of the hole

Mud Weight = 10.5 ppg

Metal Disp. = .00797 bbls/ft (see page 2.3)

Casing Capacity without any pipe in hole = .1522 bbls/ft

Stand Length = 93 ft

LEVEL DROP/STAND

 $= \frac{\text{Metal Disp, bbls/ft } x \text{ Stand Length, ft}}{(\text{Casing Cap, bls/ft - Metal Disp, bls/ft)}}$

$$=\frac{.00797 \times 93}{(.1522 - .00797)}$$

$$=\frac{.74121}{.14423}$$

$$= 5.14 \text{ ft}$$

PRESSURE DROP, psi

= Level Drop, ft x M. Wt, ppg x .052

$$= 5.14 \times 10.5 \times .052$$

= 2.8 psi

LEVEL DROP FOR DRILL COLLARS

LEVEL DROP, ft

 $= \frac{Metal\ Displacement,\ bbls/ft}{Casing\ Capacity,\ bbls/ft}\ x\ Collar\ Length,\ ft$

PRESSURE DROP WET PIPE

If returns are <u>not</u> routed back to Trip Tank via Mud Bucket, then use

PRESSURE DROP/STAND

Gradient in psi/ft Capacity/Disp. in bbls/ft

NOTE: Annular Capacity = Casing Capacity – (Metal Displacement + Pipe Capacity)

LENGTH OF COLLARS TO PULL

Amount of collars to pull to achieve a required level drop.

Level drop required = 25 ft

Casing capacity = .1552 bbls/ft

Metal displacement = .0546 bbls/ft

LENGTH OF COLLARS TO PULL, ft

$$= 25 \text{ ft } \times \frac{.1522}{.0546}$$

$$=25 \times 2.787$$

= $\underline{70 \text{ ft}}$

NOTES

PART 3: STUCK PIPE

Formulae for STEEL Pipe Only!

FREE LENGTH OF STUCK PIPE

e = Differential Stretch of Pipe = 24 inches

Differential Pull to obtain 'e' = 30,000 lbs

Wdp = Drill Pipe PLAIN END* Weight = 17.93 lbs/ft

*Excludes Tool Joints - see Table 1, p.4 in RP7G, Jan 1, 1995. Plain end weight for 5" (19.5 lbs/ft) Drill Pipe = 17.93 lbs/ft

FREE LENGTH OF STUCK PIPE, ft

 $=\frac{735,294 \text{ x e x Wdp}}{}$

Differential Pull, lbs

$$= \frac{735,294 \times 24 \times 17.93}{30,000}$$

$$= \frac{316,411,714}{30,000}$$

= 10,547 ft

STRETCH OF SUSPENDED STRING

Stretch due to its own weight.

Length of String (L) =
$$10,520$$
 ft

Mud Wt
$$= 11 ppg$$

STRETCH, inches

$$= \frac{L^{2}, ft}{96,250,000} \times \left[65.44 - (1.44 \times Mud Wt, ppg) \right]$$

$$= \frac{10,520^{2}}{96,250,000} \times \left[65.44 - (1.44 \times 11) \right]$$

$$=1.1498 \text{ x } [65.44 - (15.84)]$$

$$=1.1498 \times 49.6$$

$$= 57 inches$$

GENERAL STRETCH FORMULA

Stretch due to weight on end of steel pipe.

Length of Pipe = 800 ft

Casing Weight attached to end of Pipe = 350,000 pounds

Pipe OD = 5" Pipe ID = 4.276"

Example shows stretch of pipe when running casing to seafloor wellhead.

STRETCH, inches

$$= \frac{\text{Stretching Force, pounds x Pipe Length, ft}}{1,963,500 \text{ x (Pipe OD}^2 - \text{Pipe ID}^2)}$$

$$= \frac{350,000 \times 800}{1,963,500 \times (5^2 - 4.276^2)}$$

$$= \frac{280,000,000}{1,963,500 \times 6.7158}$$

$$=\frac{280,000,000}{13,186,473}$$

= 21.2 inches

PLAIN END WEIGHT, lbs/ft

Weight of steel pipe (excluding tool joints).

=
$$2.67 \times (\text{Pipe OD}^2 - \text{Pipe ID}^2)$$

OD = inches

ID = inches

MAXIMUM OVERPULL (MOP)

Overpull in pounds, allowed on stuck pipe.

MOP (Single Grade Only e.g. S)

$$= (Pa(S) x.9) - B.st$$

Pa = max. allowable design load in tension,

e.g. 560760 lbs for 5", Grade S

B.st = Buoyed String Weight (Hook Load less Hook Weight),

e.g. = 229,500 lbs

$$= (560,760 \text{ x } .9) - 229,500$$

=504,684-229,500

= 275,184 pounds

NOTES

PART 4: WELL CONTROL

HYDROSTATIC PRESSURE (all depths TVD)

CONSTANTS:

```
x .052
PPG x FT
                    = PSI
                                 SG
                                       x MT x .1
                                                     = kg/cm^2,
SG
     x FTx .433
                    = PSI
                                 SG
                                       x MT x 9.8
                                                     = kPa
SG
     x MT x 1.42
                    = PSI,
                                 Kg/m^3 x MT ÷ 102
                                                    = kPa,
PPG x MT x .171
                    = PSI
                                 PPG
                                       x MT x 1.176 = kPa
SG
     x MT x .098
                    = BARS,
                                 PPG
                                       x FT
                                             x .358 = kPa,
PCF x FTx .0069
                    = PSI,
```

MT = metres, FT = feet

PRESSURE, psi

= Mud Weight x Constant x Depth, (TVD)

PRESSURE GRADIENT, psi/ft

= Mud Weight x Constant

OR

= Pressure, psi ÷ TVD, ft

MUD WEIGHT

= Pressure, psi ÷ TVD, ft ÷ Constant

OR

= Pressure Gradient, psi/ft ÷ Constant

FORCE

= Pressure x Area

LENGTH TO CREATE A PRESSURE, ft

= Pressure, psi ÷ Gradient psi/ft

OR

= Pressure, psi ÷ Mud Weight ppg ÷ .052

FORMATION PRESSURE, psi

= (Mud Wt, ppg x.052 x Bit TVD, ft) + SIDPP, psi

BUOYANCY FACTORS AND MUD WEIGHT EQUIVALENTS

PPG	BUOYANCY FACTOR	PSI/FT	SG	Kg/M ³	PCF
8.34	.873	.433	1.0	1000	62.4
8.4	.872	.436	1.01	1008	62.8
8.6	.868	.447	1.03	1032	64.3
8.8	.865	.457	1.06	1056	65.8
9.0	.862	.468	1.08	1080	67.3
9.2	.860	.478	1.10	1104	68.8
9.4	.856	.488	1.13	1128	70.3
9.6	.853	.499	1.15	1152	71.3
9.8	.850	.509	1.18	1176	73.3
10.0	.847	.519	1.20	1200	74.8
10.2	.844	.530	1.22	1224	76.3
10.4	.841	.540	1.25	1248	77.8
10.6	.839	.551	1.27	1272	79.3
10.8	.836	.561	1.29	1296	80.8
11.0	.833	.571	1.32	1320	82.3
11.2	.829	.582	1.34	1344	83.8
11.4	.826	.594	1.37	1368	85.3
11.6	.823	.603	1.39	1392	86.8
11.8	.820	.613	1.41	1416	88.3
12.0	.817	.623	1.44	1440	89.8
12.2	.814	.634	1.46	1464	91.3
12.4	.810	.644	1.49	1488	92.8
12.6	.808	.655	1.51	1512	94.3
12.8	.804	.665	1.53	1536	95.8
13.0	.801	.675	1.56	1560	97.3
13.2	.798	.686	1.58	1584	98.7
13.4	.795	.696	1.61	1608	100.3
13.6	.792	.706	1.63	1632	101.8
13.8	.789	.717	1.65	1656	103.3
14.0	.786	.727	1.68	1680	104.8
14.2	.783	.738	1.70	1704	106.3
14.4	.780	.748	1.73	1728	107.8
14.6	.777	.758	1.75	1752	109.3
14.8	.774	.769	1.77	1776	110.8
15.0	.771	.779	1.80	1800	112.3
15.2	.768	.790	1.82	1824	113.8
15.4	.765	.800	1.85	1848	115.3
15.6	.763	.810	1.87	1872	116.8
15.8	.759	.821	1.89	1896	118.3
16.0	.755	.831	1.92	1920	119.8
16.3	.751	.848	1.96	1956	122
16.6	.746	.862	1.99	1992	124
17.0	.740	.883	2.04	2040	127
17.3	.735	.900	2.08	2076	130
17.6	.731	.914	2.11	2112	132
18.0	.725	.935	2.16	2160	135
18.3	.720	.952	2.20	2196	137
18.6	.716	.966	2.23	2232	139
19.0	.710	.987	2.28	2280	142

KILL MUD WEIGHT/ICP/FCP

Bit TVD = 10,000 ft Mud Weight = 10.6 ppg SIDPP = 800 psi

Slow Circulating Rate Pressure @ 40 SPM = 900 psi

KILL MUD WEIGHT, ppg

- = $(SIDPP, psi \div .052 \div TVD, ft) + Mud Wt, ppg$
- $= (800 \div .052 \div 10{,}000) + 10.6$
- = 1.54 + 10.6
- = 12.14 ppg

ICP (Initial Circulating Pressure)

- = Slow Circulating Rate Pressure, psi + SIDPP, psi
- = 900 + 800
- = 1,700 psi

FCP (Final Circulating Pressure)

- = Slow Circulating Rate Pressure, psi x Kill Mud Wt Old Mud Wt
- $= 900 \text{ x } \frac{12.14}{10.6}$
- = 900 x 1.1453
- = <u>1,031 psi</u>

Note: After a correct Start-Up the actual SCR pressure = Actual ICP - SIDPP

If using units other than PPG, Feet and PSI then refer to page 4.1 for constants.

STEP DOWN CHART*

Used to calculate pressure drop versus strokes as KILL MUD is pumped to the BIT. There are 2 ways this can be done:-

FIXED STROKE INTERVAL OR FIXED PRESSURE INTERVAL

FIXED STROKE INTERVAL

PSI Drop/100 Strokes =
$$\frac{ICP - FCP}{Surface to Bit Strokes} \times 100 *$$

*(This number should be replaced if you use a different stroke interval e.g. 50, 200, 300 etc)

FIXED PRESSURE INTERVAL

**(This number should be replaced if you use a different pressure interval e.g. 40, 60, etc)

<u>Fixed Strokes</u> <u>Fixed Pressure</u>

$$= \frac{(1600 - 900)}{1084} \times 100 = \frac{1084 \times 50}{(1600 - 900)}$$

= 65 psi approx. = 77 strokes approx.

STROKES	<u>PSI</u>		STROKES	<u>PSI</u>	
0	1600	(ICP)	0	1600	(ICP)
100	1535		77	1550	
200	1470		154	1500	
300	1405		231	1450	
400	1340		308	1400	
500	1275		385	1350	
600	1210		462	1300	
700	1145		539	1250	
800	1080		616	1200	
900	1015		693	1150	
1000	950		770	1100	
1084	900	(FCP)	847	1050	
			924	1000	
			1001	950	
			1084	900	(FCP)

With Kill Mud at the Bit the pressure is then held constant for remainder of Kill. Used for WAIT and WEIGHT Method.

Note: See page 4.20 for Deviated Step Down

INFLUX HEIGHT/GRADIENT

SIDPP = 800 psi SICP = 900 psi Collar Length = 538 ft Annular Volume around Collars = .0836 bbls/ft Annular Volume around Pipe = .1215 bbls/ft Mud Weight = 10.6 ppg

Total Annular Volume around Collars

- = Collar Length, ft x Collar Annular Volume, bbls/ft
- = 538 ft x .0836 bbls/ft
- = <u>45 barrels</u>

If INFLUX is LESS THAN volume around collars e.g. 20 barrels

INFLUX HEIGHT, ft

- = Influx Volume, bbls ÷ Annular Volume around Collar bbls/ft
- = 20 ÷ .0836
- = 239 ft

If INFLUX is GREATER THAN volume around collars e.g. 75 bbls

INFLUX HEIGHT, ft

$$= \left[\frac{(Influx\ Vol.,bbls - Collar\ Ann.\ Vol,bbls)}{Annular\ Volume\ around\ Pipe,bbls/ft} \right] + Collar\ Length,ft$$

$$=\frac{(75-45)}{.1215}+538$$

$$=\frac{30}{.1215}+538$$

$$= 247 + 538$$

= 785 feet

INFLUX HEIGHT/GRADIENT (continued)

Using example on previous page where:

Influx Volume = 20 bbls Influx Height = 239 ft

INFLUX GRADIENT, psi/ft

= (Mud Wt, ppg x .
$$\theta$$
52) - $\left[\frac{\text{SICP, psi - SIDPP, psi}}{\text{Influx Height, ft}}\right]$

$$= (10.6 \text{ x } .052) - \left[\frac{900 - 800}{239} \right]$$

$$= .5512 - \left[\frac{100}{239}\right]$$

$$= .5512 - .4184$$

$$=.1328 \text{ psi/ft}$$

Gradient of .2 or less = Gas Gradient of .4 or more = Water

In between could be oil or mixture of oil, water and gas.

FRACTURE MUD WEIGHT/GRADIENT/PRESSURE

Fracture can be calculated using a Leak Off Pressure Test.

Shoe TVD
$$= 8000 \text{ ft}$$

Leak Off Test (LOT) was 2000 psi with 10.0 ppg mud in hole.

FRACTURE MUD WEIGHT (MAX. EQUIV. MUD WT), ppg

= (LOT, psi
$$\div$$
 Shoe TVD, ft \div .052) + Mud Wt, ppg

$$= (2000 \div 8000 \div .052) + 10.0$$

$$=$$
 4.81 + 10.0

$$=$$
 14.81 ppg

FRACTURE GRADIENT, psi/ft

- = Fracture Mud Wt, ppg x .052
- = 14.81 x .052
- = <u>.77 psi/ft</u>

FRACTURE PRESSURE, psi

- = Fracture Mud Wt, ppg x .052 x Shoe TVD, ft
- = 14.81 x .052 x 8000 ft
- = <u>6161 psi</u>

MAASP

Maximum pressure allowed on casing pressure gauge during operations.

Fracture Mud Wt, ppg = 14.81 (See example on previous page) Current Mud Wt, ppg = 10.6 ppg

Shoe TVD, ft = 8000 ft

MAASP, psi

$$= (14.81 - 10.6) \times .052 \times 8000$$

$$= 4.21 \times .052 \times 8000$$

$$= 1751 \text{ psi}$$

MAXIMUM SURFACE CASING PRESSURE

Approximate max. pressure at Casing Pressure gauge during a well kill operation. (Occurs when influx of gas is almost at surface). Using Wait and Weight.

Formation Pressure (Fp) = 6000 psi (See page 4.1 for formula)

Pit Gain = 20 bbls Kill Mud Weight = 11.5 ppg Surface Annular Volume = .1279 bbls/ft

MAXIMUM CASING PRESSURE, psi

$$=200~x~\sqrt{\frac{Fp, psi~x~Pit~Gain, bbls~x~Kill~Mud~Wt, ppg}{Surface~Ann.~Vol,~bbls/ft~x~\textit{1,000,000}}}$$

$$= 200 \,\mathrm{x} \,\sqrt{\frac{6000 \,\mathrm{x} \,20 \,\mathrm{x} \,11.5}{.1279 \,\mathrm{x} \,1.000,000}}$$

$$=200 \text{ x } \sqrt{\frac{1,380,000}{127,900}}$$

$$= 200 \times \sqrt{10.7897}$$

$$=200 \times 3.2848$$

$$=$$
 657 psi

VOLUME INCREASE

Approximate volume gain at surface due to gas expansion when circulating out a kick.

Formation Pressure (Fp) = 6000 psi (see page 4.1 for formula).

Pit Gain = 20 bbls Surface Annular Volume = .1279 bbls/ft Kill Mud Wt = 11.5 ppg

VOLUME INCREASE, bbls

$$= 4 x \sqrt{\frac{Fp, psi x Pit Gain, bbls x Ann. Vol, bbl/ft}{Kill Mud Wt, ppg}}$$

$$= 4 \times \sqrt{\frac{6000 \times 20 \times .1279}{11.5}}$$

$$= 4 \times \sqrt{\frac{15348}{11.5}}$$

$$= 4 \times \sqrt{1334.6}$$

$$= 4 \times 36.5$$

$$= 146 \text{ bbls}$$

TRIP MARGIN

Approximate Mud Wt. value to be added after killing a kick.

Yield Point of Mud = 14 Hole Diameter (Dh) = $12\frac{1}{4}$ " Pipe Outside Diameter (dp) = 5"

TRIP MARGIN, ppg

$$= \frac{\text{Yield Point x .085}}{\text{(Dh - dp)}}$$

$$=\frac{14 \times .085}{(12.25-5)}$$

$$=\frac{1.19}{7.25}$$

= 0.164 ppg

BOYLES LAW

This formula expresses relationship between gas volume and gas pressure.

Original Pressure $(P_1) = 6000 \text{ psi}$ Original Volume $(V_1) = 20 \text{ bbls}$ Current Pressure $(P_2) = 1000 \text{ psi}$

BOYLES LAW

$$P_1 \times V_1 = P_2 \times V_2$$

Find V_2

$$V_2 = \frac{P_1 \times V_1}{P_2}$$

$$=\frac{6000 \times 20}{1000}$$

$$=\frac{120,000}{1000}$$

 $= 120 \, barrels$

GAS EXPANSION FOR To AND 'Z'

This formula is based on Boyles Law and Charles Law, incorporating temperature and compressibility effects.

$$\mathbf{V}_2 = \frac{\mathbf{V}_1 \mathbf{x} \ \mathbf{P}_1 \mathbf{x} \ \mathbf{T}_2 \mathbf{x} \ \mathbf{Z}_2}{\mathbf{P}_2 \mathbf{x} \ \mathbf{T}_1 \mathbf{x} \ \mathbf{Z}_1}$$

$$T^o = F^o + 460$$

$$P = psi + 14.7$$

GAS PERCOLATION RATE, ft/hr

How fast is gas percolating (migrating) up the hole.

SIDPP at time Zero = 700 psi SIDPP after 15 mins = 725 psi Mud Weight = 10.5 ppg

GAS PERCOLATION RATE, ft/hr

$$= \frac{\text{SIDPP increase, psi/hour}}{\text{(Mud Wt, ppg x .052)}}$$

Increase per 15 minute interval = 25 psi Increase per hour = 4 x 25 psi = 100 psi

$$=\frac{100}{(10.5 \times .052)}$$

$$=\frac{100}{.546}$$

$$= \underline{183 \text{ ft/hr}}$$

(SIDPP can be replaced with SICP)

PSI/BARREL

A factor representing the pressure exerted by 1 barrel of mud in the annulus.

Mud Weight = 11 ppg Annular Volume = .1215 bbls/ft

PSI/BARREL

$= \frac{\text{Mud Weight, ppg x .} \theta 52}{\text{Annular Volume, bbls/ft}}$

$$=\frac{11 \times .052}{.1215}$$

$$=\frac{.572}{.1215}$$

= 4.7 psi/barrel

(Can be used for inside Pipe by using Pipe Capacity instead of Annular Volume).

MUD TO BLEED DUE TO BUBBLE RISE (VOLUMETRIC)

Method of bringing gas to surface without SIDPP reading and unable to circulate.

Pressure rise allowed while well is shut in = 100 psi Current psi/barrel factor = 14 psi (see above formula)

VOLUME TO BLEED, bbls

= \frac{\text{Pressure Rise on Casing Pressure Gauge, psi}}{\text{Current psi/bbl factor}}

$$=\frac{100}{14}$$

= 7 barrels

e.g

If SICP = 800 psi,

Allow 50 to 100 psi for Safety.

Let SICP rise with well shut in due to gas migration to 800 + Safety, e.g.

875 psi.

Allow SICP to continue to rise to 875 + 100 = 975 psi.

At 975 psi carefully manipulate choke to maintain 975 psi while

bleeding-off 7 barrels of mud (see above answer).

Once 7 bbls has been bled, shut in and allow SICP to rise to 975 + 100 = 1075.

Again continue to hold at 1075 psi while bleeding 7 bbls.

Process is repeated until gas arrives at choke.

Shut in and remove gas by Lubricating Method.

SOFT SHUT IN PROCEDURE (Drilling)

Choke open while Drilling

- 1. Pick up off bottom to clear first tooljoint.
- 2. Check flow (if Positive go on).
- 3. Open H.C.R. or Failsafe.
- 4. Close Annular or Ram (if space out known).
- 5. Close Remote Adjustable Choke.
- 6. Close Gate Valve at Choke in case it leaks.
- Complete Shut In e.g. monitor for leaks, contact toolpusher, hang off, install Kick Joint etc.

HARD SHUT IN PROCEDURE (Drilling)

Choke closed while Drilling

- 1. Pick up off bottom to clear first tooljoint.
- 2. Check flow (if Positive go on)
- 3. Open H.C.R. or Failsafe.
- 4. Close Annular or Ram (if space out known).
- 5. Close Gate Valve at Choke in case it leaks.
- Complete Shut In e.g. monitor for leaks, contact toolpusher, hang off, install Kick Joint etc.

SOFT SHUT IN PROCEDURE (Tripping)

Choke open while Drilling

- 1. Install Safety Valve.
- Close Safety Valve.
- 3. Open H.C.R. or Failsafe.
- 4. Close Annular or Ram (if space out is known).
- 5. Close Remote Adjustable Choke.
- 6. Close Gate Valve at Choke in case it leaks.
- 7. Complete Shut In e.g. monitor for leaks, contact toolpushert etc.
- 8. Prepare course of action e.g. strip to bottom, kill at current depth, etc.

HARD SHUT IN PROCEDURE (Tripping)

Choke closed while Drilling

- 1. Install Safety Valve
- 2. Close Safety valve
- 3. Open H.C.R. or Failsafe.
- 4. Close Annular or Ram (if space out known).
- 5. Close Gate Valve at Choke in case it leaks.
- 6. Complete Shut In e.g. monitor for leaks, contact toolpusher. etc.
- 6. Prepare course of action e.g. strip to bottom, kill at current depth, etc.

START UP PROCEDURE

Bring Pumps up to Kill Speed holding CASING PRESSURE constant.

For deep water 'floater' application, Casing pressure may require to be lowered during start up by an amount equal to Choke Line Friction Loss. One way to do this is to monitor kill line pressure during start up i.e. bring pumps up to kill speed holding kill line pressure constant by manipulating the choke on the choke line. Once up to speed the Casing Pressure would have reduced by choke line friction loss.

DRILLERS METHOD

1st Circulation.

Start Up - bring pumps up to speed holding casing pressure constant.

Once up to speed look at drill pipe pressure and hold this constant for one complete circulation.

2nd Circulation.

Start Up - bring pumps up to speed holding casing pressure constant.

Once up to speed, continue to hold casing pressure constant until kill mud is at the bit. At this point, switch over to drill pipe pressure and hold constant until kill mud reaches surface.

Note

: As the Annulus may not be clean after 1st Circulation, it is recommended that the procedure for Wait and Weight be used in place of 2nd Circulation.

WAIT AND WEIGHT METHOD

Start Up - bring pumps up to speed holding casing pressure constant.

Once up to speed look at drill pipe. This should read approximately ICP*.

Allow drill pipe pressure to fall to FCP in accordance with step down chart or graph.

With kill mud at bit hold drill pipe pressure at FCP until kill mud reaches surface.

*If drill pipe pressure is greater than or less than ICP then (without shutting down) redo step down chart based on new ICP and FCP. If you feel that difference is too great or have any doubts then shut down and discuss possible cause of pressure difference.

Recalculate slow circulating rate pressure.

New SCR = New ICP - SIDPP

then recalculate FCP

= New SCR, psi x Kill Mud Wt
Old Mud Wt

BARITE REQUIRED

Amount added to mud to obtain kill weight.

Original Mud Wt (W_1) = 10 ppg Kill Mud Wt (W_2) = 11.5 ppg Pit Volume = 840 barrels

BARITE REQUIRED, pounds/barrel

$$=\frac{1470\,(W_2-W_1)}{(35-W_2)}$$

$$=\frac{1470\,(11.5-10)}{(35-11.5)}$$

$$=\frac{1470 \times 1.5}{23.5}$$

$$=\frac{2205}{23.5}$$

= 94 pounds/barrel

TOTAL BARITE, pounds

- = Mud Volume in Pits, bbls x Barite Required, lbs/bbl
- = 840 x 94
- = <u>78,960 pounds</u>

VOLUME INCREASE/100 BARRELS OF MUD

(due to adding barite)

$= \frac{\textbf{Barite Required, pounds/barrel}}{15}$

$$=\frac{94}{15}$$

= 6.3 barrels/100 barrels of Mud

(each 15 sacks of Barite added increases volume by approx 1 barrel).

TOTAL VOLUME after weight up

$$= \frac{Barrels/100 \ barrels \ of \ Mud \ x \ Pit \ Volume}{100} + Pit \ Volume$$

$$=\frac{6.3 \times 840}{100} + 840$$

$$=\frac{5292}{100} + 840$$

$$=53 + 840$$

= <u>893 barrels</u>

USABLE FLUID VOLUME

Gallons of usable fluid in a *single* Accumulator Bottle. Multiply by number of bottles to get total.

USABLE FLUID VOLUME, gals/bottle

API RP53 gives recommended pressures for various units:-

Precharge Pressure is normally 1000 psi Minimum Operating is normally 1200 psi Accumulator Operating Pressure is 3000 psi for most current units

Check API RP 53 for 500 psi units

Minimum Operating Pressure is the pressure required to operate a Ram against full rated Wellbore Pressure.

MINIMUM OPERATING PRESSURE

$= \frac{BOP\,Ram\,Maximum\,Rated\,Working\,Pressure}{Ram\,Closing\,Ratio}$

Note:- This calculated value of minimum operating pressure is normally applied in the Usable Fluid equation <u>only</u> when the result is greater than the API recommendation of 1200 psi

ACCUMULATOR VOLUME REQUIRED

GALLONS OF FLUID REQUIRED,

$$= V_R \div \left(\frac{Precharge\ Pressure}{Min.\ Operating\ Press.} - \frac{Precharge\ Pressure}{Acc.\ Operating\ Press.} \right)$$

V_R = Volume required to perform chosen functions, (either from API specs, client requirements or local regulations).

ACCUMULATOR PRECHARGE PRESSURE

A method of measuring average Accumulator Precharge Pressure by operating the unit with charge pumps switched off.

Accumulator Starting Pressure (Ps) = 3000 psi Accumulator Final Pressure (Pf) = 2200 psi Total Accumulator Volume = 180 gallons Volume of Fluid Removed = 20 gallons

AVERAGE PRECHARGE PRESSURE, psi

$$= \frac{Volume \ of \ Fluid \ Removed, bbls}{Total \ Accumulator \ Volume, bbls} \ x \left[\frac{Pf \ x \ Ps}{Ps - Pf} \right]$$

$$=\frac{20}{180} x \left[\frac{2200 \times 3000}{3000 - 2200} \right]$$

$$=.1111 \, \mathrm{x} \left[\frac{6,600,000}{800} \right]$$

$$= .1111 \times 8250$$

COMBINED STRIPPING AND VOLUMETRIC FORMULAE

The following calculations are used for stripping pipe in the hole when influx migration is a potential problem.

 V_k = Kick Volume, bbls

A₁ = Open Hole Capacity, bbls/ft

A₂ = Drill Collar to Open Hole Capacity, bbls/ft

 V_1 = Closed End Displacement of 1 stand of drill pipe, bbls

V₂ = Volume to Bleed, bbls
Mg = Mud Gradient, psi/ft
Ig = Influx Gradient, psi/ft
SICP = Shut in Casing Pressure, psi
Pw = Chosen Working Pressure, psi

Ps = Safety Pressure for Hydrostatic Pressure lost when BHA penetrates kick, psi

Pchoke = Choke Pressure Reading, psi

Step 1 Calculate Ps, psi

$$Ps = \left(\frac{V_k}{A_2} - \frac{V_k}{A_1}\right) x (Mg - Ig)$$

Step 2 Choose Pw

Between 50 and 200 psi

Step 3 Calculate V₂ bbls

$$V_2 = Pw x \frac{A_2}{Mg}$$

Step 4 Strip into hole without bleeding mud, until SICP increases to **Pchoke**₁.

$$Pchoke_1 = SICP + Ps + Pw$$

- Step 5 Continue stripping in the hole holding casing pressure constant at **Pchoke**₁. This will require mud to be bled from the well. Fill pipe regularly.
- Step 6 The amount of mud gained in the Trip Tank over and above the drill pipe closed end displacement (V_1) will be the effect of gas expansion. (Some rigs have a Stripping Tank to allow for bleed-off of V_1 every stand).
- Step 7 When gain in Trip Tank due to gas expansion equals V₂, continue to strip with choke closed to build casing pressure up to **Pchoke**₂.

$$Pchoke_2 = Pchoke_1 + Pw$$

- Step 8 Continue stripping in hole holding casing pressure constant at **Pchoke**₂.
- Step 9 Repeat Steps 6, 7 and 8 (increasing **Pchoke** by Pw each time V₂ is measured in Trip Tank) until back to bottom.
- Step 10 Kill well as per standard well control techniques.

DEVIATED STEP DOWN CALCULATION

The following can be used to calculate step down pressure on a deviated well.

MD	0	1000'	2000'	3000'	4000'	5000'
TVD	0	1000'	2000'	2500'	3000'	3400'

SCR = 500 psi

P circ (x) = Pressure to circulate at depth of interest

P circ (x)

$$= \left[SCR + \left((FCP - SCR)x \frac{MD(x)}{MD \text{ total}} \right) \right] + \left[SIDPP - \left(SIDPP x \frac{TVD(x)}{TVD \text{ total}} \right) \right]$$

For
$$x = 3000$$
 ft TVD (4000 ft MD)

$$= \left[500 + \left((550 - 500) \times \frac{4000}{5000} \right) \right] + \left[300 - \left(300 \times \frac{3000}{3400} \right) \right]$$

$$= \left[500 + (50 \times .8) \right] + \left[300 - (300 \times .8823) \right]$$

$$= \left(500 + 40 \right) + \left(300 - 265 \right)$$

$$= 540 + 35$$

$$= 575 \text{ psi}$$

Equivalent using Vertical Step Down calculation

= 600 psi

NOTES

NOTES

PART 5: CASING/CEMENTING

BUOYANT FORCE ON CASING

Effect of cementing operation on a String of Casing. Most dangerous with Shallow strings of large diameter. Heavy cement may want to float the casing out of the hole.

```
C_1
                 Casing Length
                                               1500ft
Cwt
                 Casing Wt/Ft
                                               106.5 lbs/ft
Ccap
        =
                 Casing Cap
                                               .3507 bbls/ft
                 Cement Weight
Wemt
        =
                                               15.4 ppg
B.F. cmt =
                 Cement Buoyancy Factor =
                                               .765
M.Wt
                 Mud Weight
                                               9.0 ppg
```

BUOYANCY FORCE

A minus number means a force upward: a positive number means a force downward.

NOTES

BALANCE MUD WEIGHT

Weight of Mud to displace cement if Buoyant force is upward.

Wcmt = Cement Weight = 15.4 ppg Cwt = Casing Wt/ft = 106.4 lbs/ft B.F.cmt = Cement Buoyancy Factor = .765

Ccap = Casing Capacity = .3507 bbls/ft

BALANCE MUD WEIGHT

$$= Wcmt - \left[\frac{Cwt \times B.F.cmt}{42 \times Ccap} \right]$$

$$= 15.4 - \left[\frac{106.4 \times .765}{42 \times .3507} \right]$$

$$=15.4 - \left[\frac{81.396}{14.729} \right]$$

$$=15.4 - 5.5$$

$$= 9.9 \,\mathrm{ppg}$$

SACKS OF CEMENT

Volume of Cement required = 500 bbls Yield/sack of cement = 1.15 cu. ft/sack

SACKS

= \frac{\text{Volume of Cement, bbls x 5.6146}}{\text{Yield/Sack, cu. ft}}

$$=\frac{500 \times 5.6146}{1.15}$$

$$=\frac{2807.3}{1.15}$$

= 2441 sacks

BALANCED PLUGS

CEMENT VOLUME REQUIRED, bbls

$$= \left(\frac{\text{Dia. of Hole}^2}{1029}\right) x \text{ Required Plug Length, ft}$$

WATER SPACER AHEAD, bbls

Choose a volume but be careful that loss of hydrostatic does not cause kick.

LENGTH OF SPACER IN ANNULUS, ft (V1)

 $= \frac{Spacer\ Volume,\ bbls}{Ann.\ Volume,\ bbls/ft}$

VOLUME OF SPACER BEHIND CEMENT, bbls (V2)

= V1 x Pipe Cap, bbls/ft

LENGTH OF BALANCED CEMENT COLUMN, ft

MUD TO DISPLACE PLUG INTO POSITION, bbls

=
$$[(C.base - L. plug) \times Pipe Cap, bbls/ft] - V2$$

STROKES TO DISPLACE

= Mud to Displace, bbls
Pump Output/Stroke

C.base = Base of Plug, ft

L.Plug = Length of Cement Plug, ft

V2 = Spacer volume behind cement, bbls

EXAMPLE

Plug Length required = 400 ft
Water Spacer ahead = 20 bbls
Annular Volume = .1215 bbls/ft
Pipe Capacity = .01776 bbls/ft
Hole Capacity = .1458 bbls/ft
Depth of Plug base = 10,000 ft
Pump Output = .109 bbls/stroke

Cement Volume Required, bbls

- $= .1458 \times 400 \text{ ft}$
- = 58.32 bbls

Length of Spacer in Annulus, ft

$$=\frac{20}{1215} = \frac{164.6 \text{ ft}}{}$$

Volume of Spacer behind Cement, bbls

$$= 164.6 \text{ x } .01776 = 2.92 \text{ bbls}$$

Length of Balanced Cement Column

$$= \frac{58.32}{.1215 + .01776} = \frac{58.32}{.13926} = \frac{418.8 \text{ ft}}{}$$

Mud to Displace into Position, bbls

- $= (10,000 \text{ ft} 418.8) \times .01776$
- $= 170.16 \, \text{bbls} 2.92 \, \text{bbls}$
- =167.24

Strokes to Displace

$$=\frac{167.24}{.109} = \frac{1534 \text{ strokes}}{}$$

NOTES

PART 6: HYDRAULICS

ANNULAR VELOCITY ft/min

450 gallons per minute (GPM) Flow Rate = Dh Hole Diameter = $12\frac{1}{4}$ " Pipe OD dp

ANNULAR VELOCITY, ft/min

$$=\frac{24.51 \text{ x GPM}}{\left(\text{Dh}^2 - \text{dp}^2\right)}$$

$$=\frac{24.51 \times 450}{\left(12.25^2 - 5^2\right)}$$

$$=\frac{11029.5}{125.0625}$$

= 88.2 ft/min

EQUIVALENT CIRCULATING DENSITY (ECD)*

For low mud weight.

Mud Wt 11 ppg 13

Mud Wt -Yield Point = Dh = db = Hole Diameter = $12\frac{1}{4}$ " Pipe OD = 5" dp

ECD, ppg

= Mud Wt, ppg +
$$\left[\frac{\text{Yield Point x }.I}{(\text{Dh - dp})}\right]$$

$$= 11 + \left[\frac{13 \times .1}{(12.25 - 5)} \right]$$

$$=11+\left[\frac{1.3}{7.25}\right]$$

$$=11+.18$$

$$= 11.18 \text{ ppg}$$

*Field Approximation

EQUIVALENT CIRCULATING DENSITY*

For Mud Weights greater than 13 ppg.

Mud Weight = 15 ppg Yield Point = 18 Plastic Viscosity = 30

Dh = Hole Diameter = $12\frac{1}{4}$ " dp = Pipe OD = 5" V = Annular Velocity = 90 ft/min

ECD, ppg

$$= \mathbf{M.Wt} + \left[\frac{0.1}{(\mathbf{Dh} - \mathbf{dp})} \times \left(\mathbf{YP} + \left(\frac{(\mathbf{PV} + \mathbf{V})}{300 \times (\mathbf{Dh} - \mathbf{dp})} \right) \right) \right]$$

$$= 15 + \left[\frac{0.1}{(12.25 - 5)} \times \left(18 + \left(\frac{30 \times 90}{300 \times (12.25 - 5)} \right) \right) \right]$$

$$= 15 + \left[\frac{0.1}{7.25} \times \left(18 + \left(\frac{2700}{(300 \times 7.25)} \right) \right) \right]$$

$$= 15 + \left[.0138 \times \left(18 + \left(\frac{2700}{2175} \right) \right) \right]$$

$$= 15 + (.0138 \times (18 + 1.2414))$$

$$= 15 + (.0138 \times 19.2414)$$

$$= 15 + .2655$$

*Field Approximation

ECD USING ANNULAR PRESSURE LOSS

 $= 15.26 \, ppg$

ECD ppg = (Annular Pressure Loss $\div .052 \div \text{TVD}$, ft.) + Mud Wt., ppg

GALLONS PER MINUTE FOR OPTIMIZATION: Roller Cone Bits

= Bbls/Stroke x SPM x 42

Recommended range is between 30 and 70 GPM/inch of Bit Diameter.

E.g. $30 \text{ GPM x } 12\frac{1}{4}$ " = 367.5 GPM

 $70 \text{ GPM x } 12\frac{1}{4}$ " = 857.5 GPM

HHP REQUIRED AT SURFACE (INPUT)

This is the 10 D rule.

HHP required at surface.

 $= 10 \text{ (Bit Size)}^2$

CRITICAL VELOCITY, ft/min

Mud Velocity above which flow changes from Laminar to Turbulent.

Mud Wt = 11 ppg Plastic Viscosity = 30 Yield Point = 15

Dh = Hole Diameter = $12\frac{1}{4}$ " dp = Pipe OD = 5"

CRITICAL VELOCITY, ft/min

$$= 60 \text{ x} \left[\frac{1.08 \text{ PV} + 1.08 \sqrt{\text{PV}^2 + (9.26 \text{ (Dh - dp)}^2 \text{ x YP x M.Wt})}}{\text{M.Wt x (Dh - dp)}} \right]$$

$$= 60 \times \left[\frac{(1.08 \times 30) + 1.08 \sqrt{30^2 + (9.26 (12.25 - 5)^2 \times 15 \times 11)}}{11 \times (12.25 - 5)} \right]$$

$$= 60 \times \left[\frac{32.4 + 1.08\sqrt{900 + (9.26(52.5625) \times 165)}}{79.75} \right]$$

$$= 60 \,\mathrm{x} \left[\frac{32.4 + 1.08 \sqrt{900 + 80310}}{79.75} \right]$$

$$= 60 \,\mathrm{x} \left[\frac{32.4 + 1.08 \,\sqrt{81210}}{79.75} \right]$$

$$= 60 \,\mathrm{x} \left[\frac{32.4 + (1.08 \,\mathrm{x} \, 284.974)}{79.75} \right]$$

$$= 60 \,\mathrm{x} \left[\, \frac{32.4 + 307.77}{79.75} \right]$$

$$=60 \times \left(\frac{340.17}{79.75}\right)$$

$$= 60 \times 4.265$$

GPM TO OBTAIN CRITICAL VELOCITY

Critical Velocity =
$$256 \text{ ft/min}$$

Dh = Hole Diameter = $12\frac{1}{4}$ "
dp = Pipe OD = 5"

GPM

$$= \frac{Critical\ Velocity\ x\ (Dh^2 - dp^2)}{24.51}$$

$$=\frac{256 \times (12.25^2 - 5^2)}{24.51}$$

$$=\frac{256 \times 125.0625}{24.51}$$

$$=\frac{32016}{24.51}$$

$$= 1306 \text{ GPM}$$

TOTAL FLUID AREA (TFA) FOR PDC AND ROCK BITS

As a RULE OF THUMB and a possible starting point for designing hydraulics

$$D = Bit Diameter = 12\frac{1}{4}$$
"

AVERAGE TFA, square inches

$$=^{1}/_{10}(\mathbf{D})$$

=0.1(12.25)

=1.225 sq ins

PRESSURE DROP ACROSS THE BIT

Two formulae: one for Total Area of the Nozzles, sq. ins.: the other for nozzle size in 32nds.

PRESSURE DROP, psi

$$= \frac{\text{GPM}^2 \times \text{M Wt, ppg}}{10863.1 \times \text{Nozzle Area}^2} \qquad \text{OR} \qquad = \frac{156.482 \times \text{GPM}^2 \times \text{M. Wt}}{\left(J_1^2 + J_2^2 + J_3^2\right)^2}$$

$$= \frac{450^2 \times 12}{10863.1 \times .3313^2} \qquad \text{OR} \qquad = \frac{156.482 \times 450^2 \times 12}{\left(12^2 + 12^2 + 12^2\right)^2}$$

$$= \frac{202500 \times 12}{10863.1 \times .10976} \qquad \text{OR} \qquad = \frac{156.482 \times 202500 \times 12}{\left(144 + 144 + 144\right)^2}$$

$$= \frac{2430000}{1192.33} \qquad \text{OR} \qquad = \frac{380251260}{\left(432\right)^2}$$

$$= \frac{2038 \text{ psi}}{186624} \qquad \text{OR} \qquad = \frac{380251260}{186624}$$

$$= 2038 \text{ psi}$$

NOZZLE AREA

NOZZLE AREA, square inches

$$= \sqrt{\frac{\text{GPM}^2 \text{ x Mud Wt.}}{10863.1 \text{ x P}_{\text{Bit}}}}$$

(See page 6.8 for table of Nozzle Size/TFA comparison)

NOZZLE SIZES

For bits with 2, 3 or more nozzles.

M. Wt = 12 ppg Pressure Drop at Bit = 2038 psi GPM = 450 No. of Jets = 3

NOZZLE SIZE

$$= 3.536 \sqrt{\frac{\text{GPM}}{\text{No. of Jets}} \sqrt{\frac{\text{M. Wt, ppg}}{\text{Pressure Drop at Bit}}}}$$

$$=3.536\sqrt{\frac{450}{3}\sqrt{\frac{12}{2038}}}$$

$$=3.536\sqrt{150\sqrt{.00589}}$$

$$=3.536\sqrt{150 \times .0767}$$

$$= 3.536 \sqrt{11.51}$$

$$= 3.536 \times 3.3926$$

$$= 11.99$$

Interpretation of answers.

Example:If answer is between 11.8 and 12.2, choose 3 x 12/32nds.

Example:If answer is between 11.5 and 11.8, choose 1 x 11/32nds and 2 x 12/32nds.

Example:If answer is between 11.2 and 11.5, choose 2 x 11/32nds and 1 x 12/32nds.

T.F.A. COMPARISON CHART

T.F.A Comparison Chart (Total Flow Area)													
Jet	T.F.A	T.F.A	T.F.A	T.F.A	T.F.A	T.F.A	T.F.A	T.F.A	T.F.A				
Size	of	of	of	of	of	of	of	of	of				
	1 Jet	2 Jets	3 Jets	4 Jets	5 Jets	6 Jets	7 Jets	8 Jets	9 Jets				
7/32"	.038	.076	.114	.152	.190	.228	.266	.305	.342				
8/32"	.049	.098	.147	.196	.245	.295	.344	.393	.442				
9/32"	.062	.124	.186	.249	.311	.373	.435	.497	.559				
10/32"	.077	.153	.230	.307	.383	.460	.537	.614	.690				
11/32"	.093	.186	.278	.371	.464	.557	.650	.742	.835				
12/32"	.110	.221	.331	.442	.552	.663	.773	.884	.994				
13/32"	.130	.259	.389	.518	.648	.778	.907	1.037	1.167				
14/32"	.150	.300	.450	.600	.750	.900	1.050	1.200	1.350				
15/32"	.172	.344	.516	.688	.860	1.032	1.204	1.376	1.548				
16/32"	.196	.392	.588	.784	.980	1.176	1.372	1.568	1.764				
18/32"	.249	.498	.747	.996	1.245	1.494	1.743	1.992	1.241				
20/32"	.307	.613	.921	1.228	1.535	1.842	2.148	2.455	2.762				
22/32"	.371	.742	1.113	1.484	1.855	2.226	2.597	2.969	3.339				
24/32"	.441	.883	1.325	1.767	2.209	2.650	3.092	3.534	3.976				

AVERAGE NOZZLE SIZE IN 32nds

TFA = Total Fluid Area in square inches = 0.6

0.7854 = Constant

3 = for 3 Nozzles (use 4 if 4 nozzle bit)

$$= \left(\sqrt{\frac{\text{TFA}}{0.7854 \times 3}}\right) \times 32$$

$$= \left(\sqrt{\frac{0.6}{0.7854 \times 3}}\right) \times 32$$

$$=\left(\sqrt{0.2547}\right)$$
x 32

 $= 0.5046 \times 32$

=16.148

for 3 nozzle bit = 16 : 16 : 16 approx

NOZZLE (JET) VELOCITY, ft/sec

Speed at which mud travels through each nozzle. Often called Jet Velocity.

GPM = 450

Nozzle Size = $3 \times 12/32$ nds

or = .3313 square inches

NOZZLE VELOCITY, ft/sec

$$= \frac{418.3 \text{ x GPM}}{J_1^2 + J_2^2 + J_3^2} = \frac{\text{GPM}}{3.12 \text{ (Nozzle Area)}}$$

$$= \frac{418.3 \times 450}{12^2 + 12^2 + 12^2} = \frac{450}{3.12 \times .3313}$$

$$=\frac{188235}{144+144+144} = \frac{450}{1.0336}$$

$$=\frac{188235}{432}$$
 $=435 \text{ ft/sec}$

= 436 ft/sec

HYDRAULIC HORSEPOWER AT BIT (HHP)

GPM = 450Pressure Loss at Bit = 2038 psi Total Pump Pressure = 3000 psi Bit Diameter = $12\frac{1}{4}$ "

HHP AT BIT

= GPM x Pressure Loss at Bit, psi

1714

$$=\frac{450 \times 2038}{1714}$$

$$=\frac{917100}{1714}$$

= 535 HHP

TOTAL HHP

$$= \frac{\text{GPM x Total Pump Pressure, psi}}{1714}$$

$$=\frac{450 \times 3000}{1714}$$

 $= 787.6 \, \text{HHP}$

HSI OF BIT DIAMETER

$$= \frac{\text{HHP at Bit}}{.7854 \text{ x Bit Dia}^2} \qquad \text{OR} \qquad \frac{\text{GPM x P Bit}}{1346 \text{ (Bit OD)}^2}$$

$$=\frac{535}{.7854 \times 12.25^2}$$

$$=\frac{535}{117.86}$$

= 4.5 HSI

 $P_{Bit} \; = \; Pressure \; Loss \; across \; the \; Bit$

HSI = Horsepower per Square Inch of Bit Diameter.

% HHP AT BIT

Percentage of total HHP. Optimum hydraulics range is 50 to 65%. (Generally 50% for Roller Cone and 65% for Fixed Cutter Bits)

There are two formulae: one using HHP, the other using Pressure.

HHP Total = 787.6; Total Pressure = 3000 HHP at Bit = 535; Pressure Loss at Bit = 2038

% HHP

$$= \frac{\text{HHP at Bit x } 100}{\text{Total HHP}} \qquad \qquad = \frac{\text{Pressure Loss at Bit x } 100}{\text{Total Pump Pressure}}$$

$$=\frac{535 \times 100}{787.6} \qquad \qquad =\frac{2038 \times 100}{3000}$$

$$= \underline{67.9\%}$$
 $= \underline{67.9\%}$

IMPACT FORCE, lbs

GPM = 450 M.Wt = 12 ppg Jet Velocity = 435 ft/sec

IMPACT FORCE, lbs

$$= \frac{\text{GPM x M.Wt, ppg x Jet Velocity, ft/sec}}{1932}$$

$$=\frac{450 \times 12 \times 435}{1932}$$

 $= 1216 \, lbs$

PRESSURE/STROKE/MUD WEIGHT RELATIONSHIP

Effect on pump pressure due to changes in SPM or Mud Weight.

Current Pressure = 3000 psi Current SPM = 80 Current Mud Wt = 11 New SPM = 90 New Mud Wt = 12

NEW PRESSURE, psi (for SPM change)

- Current Pressure, psi x (New SPM

= Current Pressure, psi x $\left(\frac{\text{New SPM}}{\text{Old SPM}}\right)$

$$=3000 \,\mathrm{x} \left(\frac{90}{80}\right)^{2}$$

$$=3000 \times (1.125)^2$$

$$= 3000 \times 1.2656$$

NEW PRESSURE, psi (for Mud Weight change)

= Current Pressure, psi x $\frac{\text{New M. Wt}}{\text{Old M. Wt}}$

$$=3000 \times \frac{12}{11}$$

$$=3000 \times 1.0909$$

$$=3273 \, \mathrm{psi}$$

* A more accurate answer can be obtained by using the power 1.86 instead of 'squaring'. This needs a special function key on your calculator.

PLASTIC VISCOSITY/YIELD POINT

PV = Fann 600 Reading - Fann 300 Reading

(General Rule: keep as low as possible)

YP = Fann 300 Reading - PV

(General Rule: no less than Mud Weight.ppg)

Fann 600 reading = 2PV + YP

Fann 300 reading = YP + PV

APPARENT VISCOSITY

2

HYDRAULIC RULES OF THUMB

General rules of optimization of hydraulics (remember that technology is extending values given below).

Flow Rate: 30 - 70 gpm/inch of Bit diameter

(values higher than 70 are not uncommon, values lower than 70 may not provide adequate hole cleaning, especially in high angle wells)

HSI: 2.5 to 7

(values up to 12 are not uncommon)

%Pressure Loss at Bit: 50 - 65%

(May be different depending on requirement for Hole Cleaning; Generally 50% for Roller Cone and 65% for Fixed Cutter Bits)

Jet Velocity: 350 - 450 feet/second

(may vary with changes to above)

NOTES

NOTES

PART 7: MISCELLANEOUS

CRITICAL RPM (accurate to + or - 15%)

RPM to avoid due to excessive vibration.

CRITICAL RPM

$$= \frac{33055}{L^2} \times \sqrt{(OD^2 + ID^2)}$$

$$=\frac{33055}{31^2} \times \sqrt{(5^2+4.276^2)}$$

$$=\frac{33055}{961}\,\mathrm{x}\,\sqrt{43.284}$$

$$= 34.3964 \times 6.579$$

= 226 RPM

Rule of thumb: for 5" drill pipe, do not exceed 200 RPM for any depth.

TEST VOLUME

Approximate volume of Mud to pump to achieve a desired test pressure.

Test pressure required = 7500 psi

 V_m = Mud volume between testing pump and other end of system (e.g. closed ram), = 15 bbls.

TEST VOLUME, bbls

 $= V_m x.000003 x Test Pressure, psi$

 $=15 \times .000003 \times 7500$

=.34 bbls

MUD BUILDING FORMULAS

 V_C = Volume of clay based mud, bbls. V_F = Final volume of mud required, bbls.

 $\begin{array}{lll} MW_F & = & Final \ mud \ wt. \\ MW_C & = & Clay \ based \ Mud \ wt. \\ V_W & = & Volume \ of \ starting \ water. \\ MW_W & = & Weight \ of \ water, \ ppg. \end{array}$

1.
$$V_C = V_F \left[\frac{(35 - MW_F)}{(35 - MW_C)} \right]$$

2.
$$V_W = V_C \left[\frac{(21.66 - MW_C)}{(21.66 - MW_W)} \right]$$

3. Clay Req. =
$$V_W \left[\frac{910 (MW_C - MW_W)}{(21.66 - MW_C)} \right]$$

4. Barite Req. =
$$V_C \left[\frac{1470 \, (MW_F - MW_C)}{(35 - MW_F)} \right]$$

5. Volume Check =
$$V_W + \frac{Clay Req.}{910} + \frac{Barite Req.}{1470}$$

Note: Bentonite increases pit volume by approx. 1 bbl every 9 sxs. Barite increases pit volume by approx. 1 bbl every 15 sxs.

EXAMPLE FOR MUD BUILDING

500 bbls., of clay based mud weighing 9.5 ppg is required. Weight of water = 8.4 ppg, weight of clay based mud = 8.8 ppg.

1.
$$V_C = 500 \left[\frac{35 - 9.5}{35 - 8.8} \right] = 486.6 \text{ bbls}$$

2.
$$V_W = 486.6 \left[\frac{21.66 - 8.8}{21.66 - 8.4} \right] = 472 \text{ bbls}$$

3. Clay Req. =
$$472 \left[\frac{910 (8.8 - 8.4)}{21.66 - 8.8} \right] = 13,360 \text{ pounds}$$

4. Barite Req. =
$$486.6 \left[\frac{1470 (9.5 - 8.8)}{35 - 9.5} \right] = 19,636 \text{ pounds}$$

5. Vol. Check =
$$472 + \frac{13360}{910} + \frac{19636}{1470}$$

= $472 + 14.7 + 13.3$
= 500 bbls

MASS BALANCE EQUATION:

States that Density x Volume of the individual components = sum of Volumes x Final Density.

$$D_1 V_1 + D_2 V_2 + D_3 V_3 = V_{sum} D_F$$

Pits 1, 2 and 3 contain the following:

Pit 1 = 80 bbls. of 11.2 ppg mud

Pit 2 = 240 bbls. of 10.0 ppg mud

Pit 3 = 100 bbls. of 8.4 ppg drillwater

What will be the weight of mud if all three pits are mixed together?

$$(11.2 \times 80) + (10 \times 240) + (8.4 \times 100) = (80 + 240 + 100) D_F$$

$$896 + 2400 + 840 = 420 D_F$$

$$\frac{4136}{420} = D_F$$

$$9.85 \text{ ppg} = D_F$$

MICRON SIZES

Clay and Bentonite - less than 1
Barite - 2 - 60
Silt - 2 - 74
API Sand - greater than 74
Talcum Powder - 5 - 50
Kitchen Flour - 1 - 80

MICRON CUT POINTS

Centrifuge - 3 - 5 Micron

Desilter 3" - 4" Cones 12 - 60 Micron

Desander 5" - 12" Cones 30 - 60 Micron

PRESSURE AT CONE MANIFOLD

A rule of thumb for required pump pressure at cone manifold on Desilters or Desanders.

 $= 4 \times M. Wt (ppg)$

CONE CAPACITIES

4" 50 GPM/cone 6" 100 GPM/cone 8" 155 GPM/cone 10" 500 GPM/cone 12" 600 GPM/cone

pН

Measure of effective acidity or alkalinity of mud.

Range is 0 - 14. pH 7 is neutral.

Greater than 7 is ALKALINE.

Less than 7 is ACID.

MARSH FUNNEL

Time for fresh water to drain

= $26 \sec \pm 1/2 \sec$ quart.

NORMAL FORMATION PRESSURE		
.465 psi/ft or 8.94 ppg.		
FRESH WATER GRADIENT		
.433 psi/ft. or 8.33 ppg		
OVERBURDEN GRADIENT		
1.0 psi/ft. or 19.3 ppg		
VOLUME OF A CONE	AREA OF A	CONE
$= {}^{1}/_{3} \pi r^{2} h$	$=\pi r s$	
h = vertical height	r = radius	s= length along cone from base to point
VOLUME OF A SPHERE	AREA OF A	SPHERE
$=$ $^4/_3 \pi r^3$	$=4 \pi r^3$	
r = radius		

 $= \frac{1}{3}$ Base Area x Vertical Height

NOTES

PART 8: CONVERSION FACTORS

All Gallons are U.S. unless otherwise stated

MULTIPLY	BY	TO OBTAIN	
Acres	.4047	hectares	
Acres	43560.	square feet	
Acres	.00156	square miles	
Atmospheres	76.	Cms of mercury	
Atmospheres	760.	Millimetres of mercury	
Atmospheres	29.92	Inches of mercury	
Atmospheres	33.90	Feet of water	
Atmospheres	1.0333	Kgs/sq cm	
Atmospheres	14.70	psi	
Atmospheres	1.058	Tons/sq ft	
Atmospheres	101325.	Newtons/m ²	
Barrel	5.6146	Cubic ft	
Barrel	.15897	Cubic metres	
Barrels-oil	42.	Gallons-oil	
Barrel of water	.1588	Metric tons	
Barrel (36 A.P.I.)	.1342	Metric tons	
Barrel/hour	.0936	Cubic ft per minute	
Barrel/hour	.7	Gallons per minute	
Barrel/hour	2.695	Cubic ins/sec	
Barrel/day	.02917	Gallons per minute	
Bbls/ft	.52161	Cubic metres/metre	
Bars	100000.	Newtons/m ²	
Bars	.9869	Atmospheres	
Bars	2089.	Lbs/sq ft	
Bars	14.50	psi	
Bars	100	Kilopascals	
Bars/mt	4.421	psi/ft	
Btu	.2520	Kilogram - calories	
Btu	.2928	Watt hour	
Btu	777.5	Foot-lbs	
Btu	.0003927	Horsepower - hours	
Btu	107.5	Kilogram - metres	
Btu	.0002928	Kilowatt - hours	
Btu/min	12.96	Foot - lbs/sec	
Btu/min	.02356	Horsepower	
Btu/min	.01757	Kilowatts	
Btu/min	17.57	Watts	
Centigrams	.01	Grams	
Centilitres	.01	Litres	

	2025	T 1	
Centimetres	.3937	Inches	
Centimetres	.01	Metres	
Centimetres	10.	Millimetres	
Centimetres of mercury	.01316	Atmospheres	
Centimetres of mercury	.4461	Feet of water	
Centimetres of mercury	136.0	Kgs/sq metre	
Centimetres of mercury	27.85	Lbs/sq ft	
Centimetres of mercury	.1934	psi	
		Γ-	
Centimetres/second	1.969	Feet/min	
Centimetres/second	.03281	Feet/sec	
Centimetres/second	.036	Kilometres/hr	
Centimetres/second	.6	Metres/min	
Centimetres/second	.02237	Miles/hr	
Centimetres/second	.0003728	Miles/min	
Centimetres/second/second	.03281	Feet/sec/sec	
Centipoise	1.0	Millipascal seconds	
Cubic centimetres	.00003531	Cubic feet	
Cubic centimetres	.06102	Cubic inches	
Cubic centimetres	.000001	Cubic metres	
Cubic centimetres	.0002642	Gallons	
Cubic centimetres	.001	Litres	
Cubic centimetres	.002113	Pints (liq)	
Cubic feet	.1781	Barrels	
Cubic feet	28320.	Cubic cms	
Cubic feet	1728.	Cubic inches	
Cubic feet	.02832	Cubic metres	
Cubic feet	7.48052	Gallons	
Cubic feet	28.32	Litres	
Cubic feet	59.84	Pints (liq)	
Cubic feet/minute	472.0	Cubic cm/sec	
Cubic feet/minute	.1247	Gallons/sec	
Cubic feet/minute	.472	Litres/sec	
Cubic feet/minute	62.43	Lbs of water/min	
Cubic feet/minute	10.686	Barrels per hour	
Cubic feet/minute	28.8	Cubic in/sec	
Cubic feet/second	.646317	Million gals/day	
Cubic feet/second	448.831	Gallons/min	
Cubic feet/second	1699.	Litres/min	
Capic recoscould	10//.		
Cubic inches	16.39	Cubic centimetres	
Cubic inches	.0005787	Cubic feet	
Cubic inches	.00001639	Cubic metres	
Cubic inches	.004329	Gallons	
Cubic inches	.01639	Litres	
Cubic inches	.03463	Pints (liq)	

Cubic metres	6.2905	Barrels
Cubic metres	1000000.	Cubic centimetres
Cubic metres	35.31	Cubic feet
Cubic metres	61023.	Cubic inches
Cubic metres	1.308	Cubic yards
Cubic metres	264.2	Gallons
Cubic metres	1000.	Litres
Cubic metres	2113.	Pints (liq)
Decigrams	.1	Grams
Decilitres	.1	Litres
Decimetres	.1	Metres
Degrees (angle)	60.	Minutes
Degrees (angle)	.01745	Radians
Degrees (angle)	3600.	Seconds
Degrees/sec	.01745	Radians/sec
Degrees/sec	.1667	Revolutions/min
Degrees/sec	.002778	Revolutions/sec
-		
Dekagrams	10.	Gram
Dekalitres	10.	Litres
Dekametres	10.	Metres
Fathoms	6.	Feet
Feet	30.48	Centimetres
Feet	12.	Inches
Feet	.3048	Metres
Feet	.3600	Varas (Texas)
Feet	.3333	Yards
Feet of water	.02950	Atmospheres
Feet of water	.8826	Inches of mercury
Feet of water	.03048	Kgs/sq cm
Feet of water	62.43	Lbs/sq ft
Feet of water	.4335	psi
Feet/min	.508	Centimetres/sec
Feet/min	.01667	Feet/sec
Feet/min	.01829	Kilometres/hr
Feet/min	.3048	Metres/min
Feet/min	.01136	Miles/hr
Feet/sec	.68182	Miles per hour
Feet/sec/sec	30.48	Cms/sec/sec
Feet/sec/sec	.3048	Metres/sec/sec
1 000/300/300	.50+0	14101103/300/300

Foot-pounds	.002186 .000000505	Btu Horsepower-hrs
Foot-pounds	.0003241	Kilogram-calories
Foot-pounds	.1383	Kilogram - metres
Foot-pounds	.000003766	Kilowatt-hrs
Foot-pounds	1.3558	Newton-metres
Foot-pounds/min	.001286	Btu/min
Foot-pounds/min	.01667	Foot-pounds/sec
Foot-pounds/min	.0000303	Horsepower
Foot-pounds/min	.0003241	Kg-calories/min
Foot-pounds/min	.0000226	Kilowatts
Foot-pounds/sec	.07717	Btu/min
Foot-pounds/sec	.001818	Horsepower
Foot-pounds/sec	.01945	Kg-calories/min
Foot-pounds/sec	.001356	Kilowatts
Gallons	.02381	Barrel
Gallons	.83267	Gallons (Imperial)
Gallons	.00378	Cubic metres
Gallons	3785.	Cubic centimetres
Gallons	.1337	Cubic feet
Gallons	231.	Cubic inches
Gallons	.003785	Cubic metres
Gallons	3.785	Litres
Gallons	8.	Pints (liq)
Gallons	4.	Quarts (liq)
Gallons (Imperial)	1.20095	Gallons
Gallons (Imperial)	277.419	Cubic inches
Gallons (Imperial)	4.546	Litres
Gallons of water	8.3453	Pounds of water
Gallons/min	1.429	Barrels per hour
Gallons/min	.1337	Cubic ft/min
Gallons/min	34.286	Barrels/day
Gallons/min	.06308	Litres/sec
Gallons/min	8.0208	Cubic ft/hr
Gallons/min	.002228	Cubic ft/sec
Gallons of water/min	6.0086	Tons water/24 hrs
Grains/U.S. gallons	17.118	Parts/million
Grains/U.S. gallons	142.86	Lbs/million gal
Grains/Imperial gallons	14.286	Parts/million
Grams	980.7	Dynes
Grams	15.43	Grains
Grams	.001	Kilograms
Grams	1000.	Milligrams
Grams	.03527	Ounces (Avoir.)
Grams	.002205	Pounds

Grams/cm	.0056	Pounds/inch
Grams/cubic cm Grams/cubic cm	62.43 .03613	Pounds/cubic foot Pounds/cubic inch
Grams/litre Grams/litre Grams/litre	8.345 .062427 1000.	Pounds/1000 gals Pounds/cubic foot Parts/million
Hectare	2.47105	Acres
	100.	
Hectograms		Grams
Hectolitres	100.	Litres
Hectowatts	100.	Watts
Horsepower Horsepower Horsepower Horsepower Horsepower Horsepower Horsepower	42.44 33000. 550. 1.014 10.70 .7457	Btu/min Foot-lbs/min Foot-lbs/sec Horsepower (metric) Kg-calories/min Kilowatts Watts
Horsepower (boiler) Horsepower (boiler)	33479. 9.803	Btu/hr Kilowatts
Horsepower-hours Horsepower-hours Horsepower-hours Horsepower-hours	2547. 1980000. 641.7 273700. .7457	Btu Foot-lbs Kilogram-calories Kilogram - metres Kilowatt-hours
Inches	2.540	Centimetres
Inches of Mercury Inches of Mercury Inches of Mercury Inches of Mercury Inches of Mercury	.03342 1.133 .03453 70.73 .4912	Atmospheres Feet of water Kgs/sq cm Lbs/sq ft psi
Inches of Water	.002458 .07355 .002540 .5781 5.202 .03613	Atmospheres Inches of Mercury Kgs/sq cm Ounces/sq in Lbs/sq ft psi
Kilograms Kilograms Kilograms Kilograms Kilograms Kilograms	980665. 2.205 .001102 1000. 9.81 .981	Dynes Lbs Tons (short) Grams Newtons decaNewtons

Kilograms/metre	.6720	Lbs/ft
Kilograms/metre	.98067	decaNewtons/metre
8		
Kilogram - metres	7.233	Ft-lbs
Kilogram - metres	.98	Newton-metre
Kilograms/cm ²	.9678	Atmospheres
Kilograms/cm ²	32.81	Feet of water
Kilograms/cm ²	28.96	Inches of mercury
Kilograms/cm ²	2048.	Lbs/sq ft
Kilograms/cm ²	14.22	psi
Kilograms/cm ²	.981	Bars
Kilograms/cm ²	98.1	Kilopascals
2		
Kilograms/m ³	.001	SG
Kilograms/m ³	.00833	pounds/gallon
Kgs/sq millimetre	1000000.	Kgs/sq metre
regs/sq minimetre	1000000.	1185/54 1116116
Kilolitres	1000	Litmag
Kilolities	1000.	Litres
Kilometres	100000.	Centimetres
Kilometres	3281.	Feet
Kilometres	1000.	Metres
Kilometres	.6214	Miles
Kilometres	.5396	Miles (nautical)
Knomeres	.5570	wines (nauticar)
Kilometres/hr	27.79	Centimetres/sec
	27.78	
Kilometres/hr	54.68	Feet/min
Kilometres/hr	.9113	Feet/sec
Kilometres/hr	.5396	Knots
Kilometres/hr	16.67	Metres/min
Kilometres/hr	.6214	Miles/hr
Tenomen est	.0211	1V11105/111
V mag/hm/g a a	27.78	ama/aaa/aaa
Kms/hr/sec		cms/sec/sec
Kms/hr/sec	.9113	Ft/sec/sec
Kms/hr/sec	.2778	Metres/sec/sec
Kilopascal	.1	Newton/cm ²
Kilopascal	1000.	Newtons/m ²
Kilopascal	.0102	Kg/cm ²
	.145	
Kilopascal	.143	psi
77.1	56.00	D. / .
Kilowatts	56.92	Btu/min
Kilowatts	44250.	Foot-lbs/min
Kilowatts	737.6	Foot-lbs/sec
Kilowatts	1.341	Horsepower
Kilowatts	14.34	Kg-calories/min
Kilowatts	1000.	Watts
1x110 watts	1000.	** 411.5
Vilovett have-	2415	Dto
Kilowatt-hours	3415.	Btu
Kilowatt-hours	2655000.	Foot-lbs
Kilowatt-hours	1.341	Horsepower-hrs
Kilowatt-hours	860.5	Kilogram-calories
Kilowatt-hours	367100.	Kilogram - metres
		5

Knot Knot	1. 1.151	Nautical miles/hr Statute miles/hr
Litres Litres Litres Litres Litres Litres Litres Litres Litres	.03531 61.02 .001 .001308 .2642 .0063	Cubic centimetres Cubic feet Cubic inches Cubic metres Cubic yards Gallons Bbls
Litres/min Litres/min	.0005886 .004403	Cubic ft/sec Gals/sec
Metres Metres Metres Metres	100. 3.281 39.37 .001 1000.	Centimetres Feet Inches Kilometres Millimetres
Metres/min Metres/min Metres/min Metres/min	1.667 3.281 .05468 .06 .03728	Centimetres/sec Feet/min Feet/sec Kilometres/hr Miles/hr
Metres/sec Metres/sec Metres/sec Metres/sec Metres/sec Metres/sec	196.8 3.281 3.6 .06 2.237 .03728	Feet/min Feet/sec Kilometres/hr Kilometres/min Miles/hr Miles/min
Microns	.000001	Metres
Miles Miles Miles	160900. 5280. 1.609	Centimetres Feet Kilometres
Mile (Nautical) Mile (Nautical)	6080.27 1.15	Feet Mile (statute)
Miles/hr Miles/hr Miles/hr Miles/hr Miles/hr	44.70 88. 1.467 1.609 .8684 26.82	Centimetres/sec Feet/min Feet/sec Kilometres/hrs Knots Metres/min

Miles/min Miles/min Miles/min Miles/min	2682. 88. 1.609 60.	Centimetres/sec Feet/sec Kilometres/min Miles/hr
Milliers	1000.	Kilograms
Milligrams	.0010	Grams
Millilitres	.0010	Litres
Millimetres Millimetres	.1 .03937	Centimetres Inches
Milligrams/litre	1.	Parts/million
Million gals/day	1.54723	Cubic feet/sec
Minutes (angle)	.0002909	Radians
Newton	.22481	Pounds
Newton/cm ² Newton/cm ² Newton/m ² Newton/m ²	10 10000 .0001 .001 .000145	kilopascal Newton/m ² Newton/cm ² kilopascal psi
Newton-metre Newton-metre	.7376 1.02	Ft-lbs Kilogram - metres
Ounces Ounces Ounces Ounces (fluid)	437.5 .0625 28.349527	Grains Pounds Grams Cubic inches
Ounces (fluid)	.02957	Litres
Ounces/sq inch	.0625	psi
Parts/million Parts/million Parts/million	.0584 .07016 8.345	Grains/U.S. gal Grains/Imperial gal Lbs/million gal
Pascal	1.0	Newton/m ²
Pounds Pounds Pounds Pounds Pounds Pounds Pounds Pounds	16. 7000. .0005 453.5924 .4536 .445 4.45	Ounces Grains Tons (short) Grams Kilograms Decanewton Newton
Pounds of Water Pounds of Water Pounds of Water	.01602 27.68 .1198	Cubic feet Cubic inches Gallons
Pounds/ft	1.4881	kilograms/metre

Pounds/100 ft ²	.4788	Pascals
Pounds/cubic foot	.01602	Grams/cubic cm
Pounds/cubic foot	16.02	Kgs/cubic metre
Pounds/cubic foot	.0005787	Lbs/cubic inch
	.1337	
Pounds/cubic foot	.1337	pounds/gallon
Pounds/cubic inch	27.68	Grams/cubic cm
Pounds/cubic inch	27680.	Kgs/cubic metre
Pounds/cubic inch	1728.	Lbs/cubic foot
1 ounds/edole men	1720.	Eos/edole foot
Pounds of water/min	.000267	Cubic ft/sec
Pounds/foot	1.488	Kgs/metre
		2
Pounds/gallon	.12	Grams/cubic cm
Pounds/gallon	120.	Kgs/metre ³
Pounds/gallon	.01175	Bars/metre
Pounds/gallon	.1198	SG
Pounds/gallon	.052	psi/ft
Pounds/gallon	7.48	lbs/cu. ft. (pcf)
-		
Pounds/inch	178.6	Grams/cm
Pounds/sq foot	.01602	Feet of water
Pounds/sq foot	.0004883	Kgs/sq cm
Pounds/sq foot	.006945	psi
1		1
Psi	.06804	Atmospheres
Psi	2.307	Feet of water
Psi	2.036	Inches of mercury
Psi	.07031	Kgs/sq cm
Psi	6.895	Kilopascals
Psi	6894.76	Newtons/m ²
		- 14 // 14 - 12 // 14
Psi/ft	22.624	Kilopascals/metre
Psi/ft	.2262	bars/metre
Psi/ft	19.23	pounds/gallon
Pounds-force	4.448	Newtons
		_
Pounds-force	0.4448	Decanewtons
Secs/quart	1.057	Secs/litre
	4.5.0	
Square centimetre	.1550	Square inchs
Square foot	.0929	Square metres
Square foot	.1296	Square vara (Texas)
a : 1	ć 1 -2	
Square inch	6.452	Square centimetres
Square inch	645.2	Square millimetres
Carrona Irilamastus	2071	Canama:1-
Square kilometre	.3861	Square mile

Square metre		10.	Square feet		
Square mile Square mile		2.590 640.			Square kilometres Acre
Specific Gravity (SG)			0981		Bars/metre
Temp (C.) + 17.78 Temp (F.) - 32		1.8 .5555			Temp (F.) Temp (C.)
Tons (long) Tons (long) Tons (long)		1016. 2240. 1.12			Kilograms Pounds Tons (short)
Tonne (metric) Tonne (metric) Tonne (metric)		1000. 2205. 981.			Kilograms Pounds Decanewtons
1000000 1000 100 10 10	= = = =	10 ⁶ 10 ³ 10 ² 10 ¹ Base Unit	= mega = kilo = hecto = deca	= = = =	M k h da
0.1 .01	=	10 ⁻¹ 10 ⁻²	= deci = centi	= =	d c
.001 .000001	= =	10 ⁻³ 10 ⁻⁶	= milli = micro	= =	m μ

1/32 inch x .7937 = millimetre.