Lecture 30: Review

Pratheepa Jeganathan

12/06/2019

Course Evaluations Now Open

- Axess is now open to complete end-term course evaluations.
- ► You can find it on
 - Axess > Student > Course and Section Evaluations
- If you complete all of the feedback you will see your grades by 12/13/2019 otherwise 12/17/2019

Final examination

- Final examination information
 - In-class examination.
 - Time: According the Stanford calendar: Wednesday, December 11, 2019 @ 3:30PM-6:30 PM.
 - ► Location: Skilling Auditorium.

Final examination

- Students are not allowed to take final examinations earlier than the scheduled date and time (except for the event of extraordinary circumstance that is determined solely by me).
- ► What to bring
 - A CALCULATOR.
 - ► FOUR SINGLE-SIDED PAGES OF NOTES.

Expected outcomes

By the end of the course, students should be able to:

- Enter tabular data using R.
- Plot data using R, to help in exploratory data analysis.
- ► Formulate regression models for the data, while understanding some of the limitations and assumptions implicit in using these models.
- Fit models using R and interpret the output.
- Test for associations in a given model.

Expected outcomes (cont.)

- Use diagnostic plots and tests to assess the adequacy of a particular model.
- ► Find confidence intervals for the effects of different explanatory variables in the model.
- ▶ Use some basic model selection procedures, as found in R, to find a *best* model in a class of models.
- ► Fit simple ANOVA models in R, treating them as special cases of multiple regression models.
- Fit simple logistic and Poisson regression models.

Evaluation

The final letter grade for this course will be determined by each method of assessment weighted as follows:

- ▶ 7 weekly homework assignments (55%)
- ► Midterm examination (15%)
- ► Final examination (30%)
- ▶ Quiz and Bonus points (5%+5.2%)

The final percentage to letter grade conversion:

$$A+=97-110.2$$
 $A=96-94$ $A-=90-93$ $B+=87-89$ $B=84-86$ $B-=80-83$ $C+=77-79$ $C=74-76$ $C-=70-73$ $D+=67-69$ $D=64-66$ $D-=60-63$

Topics covered

- ► Simple linear regression.
- Diagnostics for simple linear regression.
- ► Multiple linear regression.
- Diagnostics.
- Interactions and ANOVA.
- ► Weighted Least Squares.
- Autocorrelation.
- ▶ Bootstrapping 1m.
- Model selection.
- Multicollinearity.
- Penalized regression.
- Logistic regression.

Least squares

- ▶ We used "least squares" regression. This measures the goodness of fit of a line by the sum of squared errors, SSE.
- Least squares regression chooses the line that minimizes $SSE(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i \beta_0 \beta_1 \cdot X_i)^2$.

Geometry of least squares

► The following picture depicts the geometry involved in least squares regression.

What is a *t*-statistic?

- Start with $Z \sim N(0,1)$ is standard normal and $S^2 \sim \chi^2_{\nu}$, independent of Z.
- ▶ Then, $T \sim t_{\nu}$ has a t-distribution with ν degrees of freedom.
- ► Generally, a *t*-statistic has the form

$$T = \frac{\hat{\theta} - \theta}{SE(\hat{\theta})}$$

Interval Estimates

A $(1 - \alpha) \cdot 100\%$ confidence interval:

$$\widehat{\beta}_1 \pm SE(\widehat{\beta}_1) \cdot t_{n-2,1-\alpha/2}.$$

- ▶ Interval for regression line $\beta_0 + \beta_1 \cdot X$
 - $(1-\alpha) \cdot 100\%$ confidence interval for $\beta_0 + \beta_1 X$:

$$\widehat{\beta}_0 + \widehat{\beta}_1 X \pm SE(\widehat{\beta}_0 + \widehat{\beta}_1 X) \cdot t_{n-2,1-\alpha/2}$$

where
$$SE(\widehat{\beta}_0 + \widehat{\beta}_1) = \widehat{\sigma} \sqrt{\frac{1}{n} + \frac{(\overline{X} - X)^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}}$$

Interval Estimates

- ▶ Prediction intervals for $\beta_0 + \beta_1 X_{new} + \epsilon_{new}$
 - $(1-\alpha)\cdot 100\%$ prediction interval for $\beta_0+\beta_1X_{new}+\epsilon_{new}$ is

$$\widehat{\beta}_0 + \widehat{\beta}_1 X_{\mathsf{new}} \pm t_{n-2,1-\alpha/2} \cdot SE\big(\widehat{\beta}_0 + \widehat{\beta}_1 X_{\mathsf{new}} + \varepsilon_{\mathsf{new}}\big),$$

where
$$SE(\widehat{\beta}_0 + \widehat{\beta}_1 X_{\text{new}} + \varepsilon_{\text{new}}) = \widehat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(\overline{X} - X_{\text{new}})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}$$
.

Sums of squares

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 X_i)^2$$

$$SSR = \sum_{i=1}^{n} (\overline{Y} - \widehat{Y}_i)^2 = \sum_{i=1}^{n} (\overline{Y} - \widehat{\beta}_0 - \widehat{\beta}_1 X_i)^2$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = SSE + SSR$$

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = \widehat{Cor}(X, Y)^2.$$

F-test in simple linear regression

- ► Full (bigger) model : FM : $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Reduced (smaller) model: RM : $Y_i = \beta_0 + \varepsilon_i$
- The F-statistic has the form $F = \frac{(SSE(RM) SSE(FM))/(df_{RM} df_{FM})}{SSE(FM)/df_{FM}}.$
- ightharpoonup Reject H_0 : RM is correct, if

$$F > F_{1-\alpha,1,n-2}$$

or

$$P - value = P(F_{1,n-2} > F) \le \alpha.$$

Assumptions in the simple linear regression model

► $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ ► Errors ε_i are assumed independent $N(0, \sigma^2)$.

Diagnostic plots for linearity

```
simple.lm = lm(y2 \sim x2, data=anscombe)
plot(anscombe$x2, resid(simple.lm),
     ylab='Residual', xlab='X',
     pch=23, bg='orange', cex=1.2)
abline(h=0, lwd=2, col='red', lty=2)
Residual
                 6
                                     10
                                              12
                                Χ
```

Diagnostic plots for linearity

```
par(mfrow=c(2,2))
plot(simple.lm)
```


Diagnostic plots for linearity (Quadratic model)

```
quadratic.lm = lm(y2 ~ poly(x2, 2), data=anscombe)
Xsort = sort(anscombe$x2)
plot(anscombe$x2, anscombe$y2, pch=23,
    bg='orange', cex=1.2, ylab='Y', xlab='X')
lines(Xsort, predict(quadratic.lm, list(x2=Xsort)),
    col='red', lty=2, lwd=2)
```


Χ

Diagnostic plots for linearity

```
par(mfrow=c(2,2))
plot(quadratic.lm)
```


Simple linear diagnostics

- Outliers
- ► Nonconstant variance

Simple linear diagnostics

Multiple linear regression model

- ▶ Rather than one predictor, we have p = 6 predictors.
- $Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \varepsilon_i$
 - ► Errors ε are assumed independent $N(0, \sigma^2)$, as in simple linear regression.
 - Coefficients are called (partial) regression coefficients because they "allow" for the effect of other variables.

Overall F-test

► Full (bigger) model :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots \beta_p X_{ip} + \varepsilon_i$$

Reduced (smaller) model:

$$Y_i = \beta_0 + \varepsilon_i$$

▶ The *F*-statistic has the form $F = \frac{(SSE(R) - SSE(F))/(df_R - df_F)}{SSE(F)/df_F}$.

Matrix formulation

- $Y_{n\times 1} = X_{n\times (p+1)}\beta_{(p+1)\times 1} + \varepsilon_{n\times 1}$
- **X** is called the *design matrix* of the model
- $ightharpoonup \epsilon \sim N(0, \sigma^2 \mathbf{I}_{n \times n})$ is multivariate normal *SSE* in matrix form

$$SSE(\beta) = (\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$

OLS estimators

► Normal equations yield

$$\widehat{\boldsymbol{eta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

► Properties:

$$\hat{\boldsymbol{\beta}} \sim \textit{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

Confidence interval for $\sum_{j=0}^{p} a_j \beta_j$

- ▶ Suppose we want a $(1 \alpha) \cdot 100\%$ CI for $\sum_{j=0}^{p} a_j \beta_j$.
- ▶ Just as in simple linear regression:

 - Standard error:

$$SE\left(\sum_{j=0}^{p} a_{j} \widehat{\beta}_{j}\right) = \sqrt{\widehat{\sigma}^{2} \boldsymbol{a}^{T} (\boldsymbol{\mathsf{X}}^{T} \boldsymbol{\mathsf{X}})^{-1} \boldsymbol{a}}$$

General *F*-tests

▶ Given two models $R \subset F$ (i.e. R is a subspace of F), we can consider testing

$$H_0: R$$
 is adequate (i.e. $\mathbb{E}(Y) \in R$)

VS.

$$H_a$$
: F is adequate (i.e. $\mathbb{E}(Y) \in F$)

► The test statistic is

$$F = \frac{(SSE(R) - SSE(F))/(df_R - df_F)}{SSE(F)/df_F}$$

▶ If H_0 is true, $F \sim F_{df_R - df_F, df_F}$ so we reject H_0 at level α if $F > F_{df_R - df_F, df_F, 1-\alpha}$.

Diagnostics: What can go wrong?

- Regression function can be wrong: maybe regression function should have some other form (see diagnostics for simple linear regression).
- ▶ Model for the errors may be incorrect:
 - may not be normally distributed.
 - may not be independent.
 - may not have the same variance.
- ▶ Detecting problems is more *art* then *science*, i.e. we cannot *test* for all possible problems in a regression model.
- ▶ Basic idea of diagnostic measures: if model is correct then residuals $e_i = Y_i \widehat{Y}_i, 1 \le i \le n$ should look like a sample of (not quite independent) $N(0, \sigma^2)$ random variables.

Diagnostics

```
url = 'http://stats191.stanford.edu/data/scottish_races.table
races.table = read.table(url, header=T)
attach(races.table)
races.lm = lm(Time ~ Distance + Climb)
```

Diagnostics

```
par(mfrow=c(2,2))
plot(races.lm, pch=23 ,bg='orange',cex=1.2)
                                                        Standardized residuals
                                                                             Normal Q-Q
                   Residuals vs Fitted
Residuals
                                                             က
      -1000
                                  8000
                                                                                                     2
                        Fitted values
                                                                           Theoretical Quantiles
/IStandardized residuals
                                                        Standardized residuals
                     Scale-Location
                                                                        Residuals vs Leverage
                                                                            ok's distance
                           6000 8000
                                                                            0.2
                                                                                 0.3
                                                                                      0.4
                                                                                           0.5
                        Fitted values
                                                                                 Leverage
```

Diagnostics measures

► DFFITS:

$$DFFITS_{i} = \frac{\widehat{Y}_{i} - \widehat{Y}_{i(i)}}{\widehat{\sigma}_{(i)} \sqrt{H_{ii}}}$$

Cook's Distance:

$$D_i = \frac{\sum_{j=1}^n (\widehat{Y}_j - \widehat{Y}_{j(i)})^2}{(p+1)\widehat{\sigma}^2}$$

DFBETAS:

$$DFBETAS_{j(i)} = \frac{\widehat{\beta}_j - \widehat{\beta}_{j(i)}}{\sqrt{\widehat{\sigma}_{(i)}^2 (X^T X)_{jj}^{-1}}}.$$

Diagnostics measures

##

influence.measures(races.lm)

Influence measures of

```
##
## dfb.1_ dfb.Dstn dfb.Clmb dffit cov.r cook.d
## 1 0.03781 -0.016613 -0.004743 0.03861 1.1595 5.13e-04
## 2 -0.05959 0.067223 -0.073404 -0.11957 1.1269 4.88e-03
## 3 -0.04858 -0.006707 0.028036 -0.06310 1.1329 1.37e-03
## 4 -0.00767 -0.005677 0.008766 -0.01368 1.1556 6.44e-03
## 5 -0.05047 0.084718 -0.145019 -0.20949 1.0837 1.47e-03
## 6 0.00348 -0.004311 0.007567 0.01219 1.1536 5.12e-03
```

lm(formula = Time ~ Distance + Climb) :

9 -0.01437 0.000913 0.006163 -0.01664 1.1453 9.52e-09 ## 10 0.04703 0.013056 -0.036517 0.06399 1.1431 1.41e-09 ## 11 -0.30124 0.768854 -0.479935 0.78583 3.4524 2.11e-09

7 -0.89062 -0.712743 2.364517 2.69897 0.8179 1.89e+00
8 -0.00845 -0.001650 0.005567 -0.01116 1.1467 4.29e-09

12 -0.01150 0.009662 -0.007493 -0.01673 1.1492 9.62e-0

Outliers

- ▶ Observations $(Y, X_1, ..., X_p)$ that do not follow the model, while most other observations seem to follow the model.
- ▶ One solution: Bonferroni correction, threshold at $t_{1-\alpha/(2*n),n-p-2}$.
- ▶ Bonferroni: if we are doing many t (or other) tests, say m >> 1 we can control overall false positive rate at α by testing each one at level α/m .

Outliers

```
library(car)
outlierTest(races.lm)
```

```
## rstudent unadjusted p-value Bonferroni p
## 18 7.610958 1.3968e-08 4.889e-07
```



```
url = 'http://stats191.stanford.edu/data/jobtest.table'
jobtest.table = read.table(url, header=T)
jobtest.table$MINORITY = factor(jobtest.table$MINORITY)
plot(jobtest.table$TEST, jobtest.table$JPERF, type='n')
points(jobtest.table$TEST[(jobtest.table$MINORITY == 0)],
points(jobtest.table$TEST[(jobtest.table$MINORITY == 1)],
```



```
jobtest.lm1 = lm(JPERF ~ TEST, jobtest.table)
plot(jobtest.table$TEST, jobtest.table$JPERF, type='n')
points(jobtest.table$TEST[(jobtest.table$MINORITY == 0)],
points(jobtest.table$TEST[(jobtest.table$MINORITY == 1)],
abline(jobtest.lm1$coef, lwd=3, col='blue')
   ω
jobtest.table$JPERF
   9
   2
   က
   \alpha
                        1.0
                                              2.0
            0.5
                                   1.5
                                                         2.5
```

jobtest.table\$TEST

##

(Intercept)

TEST

```
jobtest.lm4 = lm(JPERF ~ TEST * MINORITY, data = jobtest.ta
print(summary(jobtest.lm4))
##
## Call:
```

Residuals: ## Min 1Q Median 3Q Max ## -2.0734 -1.0594 -0.2548 1.2830 2.1980

##

Estimate Std. Error t value Pr(>|t|)

1.0501 1.914

0.9544 2.093

0.6704 1.959 0.0677 .

1.5403 -1.242 0.2321

0.0736 .

0.0527 .

Coefficients:

2.0103

MINORITY1 -1.9132

TEST:MINORITY1 1.9975

1.3134

lm(formula = JPERF ~ TEST * MINORITY, data = jobtest.tal

```
plot(jobtest.table$TEST, jobtest.table$JPERF, type='n')
points(jobtest.table$TEST[(jobtest.table$MINORITY == 0)],
points(jobtest.table$TEST[(jobtest.table$MINORITY == 1)],
abline(jobtest.lm4$coef['(Intercept)'], jobtest.lm4$coef['abline(jobtest.lm4$coef['(Intercept)'] + jobtest.lm4$coef['jobtest.lm4$coef['TEST'] + jobtest.lm4$coef['TEST:MINORITY == 1)],
```


ANOVA models: one-way

Source	SS	df	MS	E (MS)
Treatment	$SSTR = \sum_{i=1}^{r} n_i \left(\overline{Y}_{i.} - \overline{Y} \right)^2$	r – 1	$MSTR = \frac{SSTR}{r - 1}$	$\frac{\sigma^2 + \sum_{i=1}^r n_i \alpha_i^2}{\sum_{i=1}^r n_i \alpha_i^2}$
Error	SSE = $\sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$	$\sum\nolimits_{i=1}^r (n_i-1)$	$MSE = \frac{SSE}{\sum_{i=1}^{r} (n_i - 1)}$	$r-1$ σ^2

ANOVA models: two-way

▶ In the balanced case, everything can again be summarized from the ANOVA table

Source	SS	DF	MS
A	$SSA = nm \sum_{i=1}^{r} \left(\overline{Y}_{i} - \overline{Y}_{} \right)^{2}$	r-1	SSA/(r-1)
В	$SSB = nr \sum_{j=1}^{m} (\overline{Y}_{.j.} - \overline{Y}_{})^{2}$	m-1	SSB/(m-1)
A:B	$SSAB = n \sum_{i=1}^{r} \sum_{m} \sum_{j=1}^{m} \left(\overline{Y}_{ij}, -\overline{Y}_{i} - \overline{Y}_{.j}, + \overline{Y}_{} \right)^{2}$	(m-1)(r-1)	SSAB/(m-1)(r-1)
ERROR	$SSE = \sum_{i=1}^{r} \sum_{j=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij.})^{2}$	(n-1)mr	SSE/(n-1)mr

ANOVA models: two-way

Source	$\mathbb{E}(MS)$
А	$\sigma^2 + nm \frac{\sum_{i=1}^r \alpha_i^2}{r-1}$
В	$\sigma^2 + nr \frac{\sum_{j=1}^{m} \beta_j^2}{m-1}$
A:B	$\sigma^2 + n \frac{\sum_{i=1}^{r} \sum_{j=1}^{m} (\alpha \beta)_{ij}^2}{(r-1)(m-1)}$
ERROR	σ^2

Weighted Least Squares

- A way to correct for errors with unequal variance (but we need a model of the variance).
- Weighted Least Squares

$$SSE(\beta, w) = \sum_{i=1}^{n} w_i (Y_i - \beta_0 - \beta_1 X_i)^2.$$

▶ In general, weights should be like:

$$w_i = \frac{1}{\mathsf{Var}(\varepsilon_i)}.$$

WLS estimator:

$$\hat{\beta}_W = (X^T W X)^{-1} (X^T W Y).$$

- ▶ If weights are ignored standard errors are wrong!
- ▶ Briefly talked about efficiency of estimators.

Correlated errors: NASDAQ daily close 2011

```
url = 'http://stats191.stanford.edu/data/nasdaq 2011.csv'
nasdaq.data = read.table(url, header=TRUE, sep=',')
plot(nasdaq.data$Date, nasdaq.data$Close, xlab='Date', ylal
     pch=23, bg='red', cex=1.2)
    9
    28
NASDAQ close
    56
    54
    22
    20
```

2011-01-03 2011-03-17 2011-05-31 2011-08-11 2011-10-24

ACF

acf(nasdaq.data\$Close)

Series nasdaq.data\$Close

AR(1) noise

- Suppose that, instead of being independent, the errors in our model were $\varepsilon_t = \rho \cdot \varepsilon_{t-1} + \omega_t$, $-1 < \rho < 1$ with $\omega_t \sim N(0, \sigma^2)$ independent.
- ▶ If ρ is close to 1, then errors are very correlated, $\rho = 0$ is independence.
- This is "Auto-Regressive Order (1)" noise (AR(1)). Many other models of correlation exist: ARMA, ARIMA, ARCH, GARCH, etc.

Correcting for AR(1)

ightharpoonup Suppose we know ho, if we "whiten" the data and regressors

$$\tilde{Y}_{t+1} = Y_{t+1} - \rho Y_t, t > 1$$

$$\tilde{X}_{(t+1)j} = X_{(t+1)j} - \rho X_{tj}, i > 1$$

for $1 \leq t \leq n-1$. This model satisfies "usual" assumptions, i.e. the errors $\tilde{\varepsilon}_t = \omega_{t+1} = \varepsilon_{t+1} - \rho \cdot \varepsilon_t$ are independent $N(0, \sigma^2)$.

- ▶ For coefficients in new model $\tilde{\beta}$, $\beta_0 = \tilde{\beta}_0/(1-\rho)$, $\beta_j = \tilde{\beta}_j$.
- **Problem**: in general, we don't know ρ , but estimated it.
- ▶ If correlation structure is ignored standard errors are wrong!
- Another example of whitening when we can model the variance.

Bootstrapping 1m

- ▶ Using WLS (weighted least squares) requires a model for the variance of ϵ given X.
- Ignoring this changing variance (heteroskedasticity) and using OLS leads to bad intervals, p-values, etc. because standard errors are incorrect.
- ► The (pairs) bootstrap uses the OLS estimator but is able to get a correct estimator of standard error.

Bootstrapping 1m

```
library(car)
n = 50
X = rexp(n)
Y = 3 + 2.5 * X + X * (rexp(n) - 1) # our usual model is for
Y.lm = lm(Y \sim X)
pairs.Y.lm = Boot(Y.lm, coef, method='case', R=1000)
confint(pairs.Y.lm, type='norm') # using bootstrap SE
## Bootstrap normal confidence intervals
##
                  2.5 % 97.5 %
##
## (Intercept) 2.366167 3.005671
## X
               2.550590 3.393426
```


Model selection criteria

ightharpoonup Mallow's C_p :

$$C_p(\mathcal{M}) = \frac{SSE(\mathcal{M})}{\widehat{\sigma}^2} + 2 \cdot p(\mathcal{M}) - n.$$

Akaike (AIC) defined as

$$AIC(\mathcal{M}) = -2 \log L(\mathcal{M}) + 2p(\mathcal{M})$$

where $L(\mathcal{M})$ is the maximized likelihood of the model.

Bayes (BIC) defined as

$$BIC(\mathcal{M}) = -2 \log L(\mathcal{M}) + \log n \cdot p(\mathcal{M})$$

- ► Adjusted R²
- Stepwise (step) vs. best subsets (leaps).

K-fold cross-validation

- ightharpoonup Fix a model \mathcal{M} .
- ▶ Break data set into K approximately equal sized groups (G_1, \ldots, G_K) .
- ► for (i in 1:K)
 - Use all groups except G_i to fit model, predict outcome in group G_i based on this model $\widehat{Y}_{j,\mathcal{M},G_i}, j \in G_i$.
- Estimate

$$CV(\mathcal{M}) = \frac{1}{n} \sum_{i=1}^K \sum_{j \in G_i} (Y_j - \widehat{Y}_{j,\mathcal{M},-G_i})^2.$$

Multicollinearity

- Detecting collinearity
 - Large values of pairwise correlation coefficient, the regression results do not conform to prior expectations
 - Variance inflation factors, condition indices
- Working with Collinear data
 - Standardization
 - Principal components regression
 - Penalization

In one sample problem, when trying to estimate μ from $Y_i \sim N(\mu, \sigma^2)$ we looked at the estimator

$$\hat{\mathbf{Y}}_{\alpha} = \alpha \cdot \bar{\mathbf{Y}}.$$

► The "quality" of the estimator decomposed as

$$E((\hat{Y}_{\alpha} - \mu)^2) = \mathsf{Bias}(\hat{Y}_{\alpha})^2 + \mathsf{Var}(\hat{Y}_{\alpha})$$

```
nsample = 40
ntrial = 500
mu = 0.5
sigma = 2.5
MSE = function(mu.hat, mu) {
  return(sum((mu.hat - mu)^2) / length(mu))
}
alpha = seq(0.0,1,length=20)
mse = numeric(length(alpha))
```

```
plot(alpha, mse, type='l', lwd=2, col='red',
      ylim=c(0, max(mse)),
      xlab=expression(paste('Shrinkage parameter,', alpha))
      ylab=expression(paste('MSE(', alpha, ')')),
      cex.lab=1.2)
MSE(\alpha)
        0.0
                   0.2
                             0.4
                                       0.6
                                                 8.0
                                                           1.0
                          Shrinkage parameter, \alpha
```

Ridge regression

$$\hat{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \frac{1}{2n} \|Y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

Ridge with glmnet

```
library(lars)
data(diabetes)
plot(glmnet(diabetes$x, diabetes$y, alpha=0))
         10
                        10
                                      10
                                                    10
                                                                  10
    400
Coefficients
    200
    -200
          0
                       500
                                     1000
                                                   1500
                                                                 2000
                                    L1 Norm
```

Ridge with glmnet

LASSO

$$\hat{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \frac{1}{2n} \|Y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

LASSO with glmnet

LASSO with glmnet

Logistic regression model

Logistic model

$$E(Y|X) = \pi(X) = \frac{\exp(X^T \beta)}{1 + \exp(X^T \beta)}$$

- ▶ This automatically fixes $0 \le E(Y) = \pi(X) \le 1$.
- ▶ The logistic transform: $logit(\pi(X)) = log(\frac{\pi(X)}{1-\pi(X)}) = X^T \beta$
- An example of a generalized linear model
 - ▶ link function logit($\pi(X)$) = $X^T \beta$
 - ▶ Variance function: $Var(Y|X) = \pi(X)(1 \pi(X))$

Odds Ratios

- One reason logistic models are popular is that the parameters have simple interpretations in terms of odds.
- Logistic model:

$$OR_{X_j} = \frac{ODDS(Y = 1 | \dots, X_j = x_j + h, \dots)}{ODDS(Y = 1 | \dots, X_j = x_j, \dots)} = e^{h\beta_j}$$

▶ If $X_j \in 0, 1$ is dichotomous, then odds for group with $X_j = 1$ are e^{β_j} higher, other parameters being equal.

Deviance

- ► For logistic regression model \mathcal{M} , $DEV(\mathcal{M})$ replaces $SSE(\mathcal{M})/\sigma^2$.
- In least squares regression, we use

$$\frac{SSE(\mathcal{M}_R) - SSE(\mathcal{M}_F)}{\sigma^2} \sim \chi^2_{df_R - df_F}$$

- ▶ This is replaced with $DEV(\mathcal{M}_R) DEV(\mathcal{M}_F) \stackrel{n \to \infty}{\sim} \chi^2_{df_R df_F}$
- For Poisson and binary regression, $\sigma^2 = 1$ (dispersion parameter of glm).

Poisson log-linear regression model

Log-linear model

$$E(Y|X) = \exp(X^T \beta)$$

- ▶ This automatically fixes $E(Y|X) \ge 0$.
- An example of a generalized linear model
 - link function $\log(E(Y|X)) = X^T \beta$
 - ▶ Variance function: Var(Y|X) = E(Y|X)
- Interpretation:

$$\frac{E(Y|\ldots,X_j=x_j+h,\ldots)}{E(Y|\ldots,X_j=x_j,\ldots)}=e^{h\beta_j}$$

Reference

► Lecture notes of Jonathan Taylor .