Introduction to Complex Analysis

Hsu-Hsiang Tsao

Spring of 2024

Introduction

$\label{eq:course_loss} \begin{split} \Gamma \text{his course [course description]} \\ \text{Additional information regarding this course is provided below:} \end{split}$			
(A) Instructor: FNameLName			
(I) Contact:			
(II) Office Hour:			
(B) Course Number/ID: Math 1XX			
Course Schedule:			
(A) Lecture: T,Th 0300PM to 0500PM			
(B) Discussion: M 1200PM to 0100PM			

(D) Textbook:

Note that [additional notes]

Contents

1	Pre	ries to Complex Analysis	4		
1.1 Complex numbers and the complex plane					
		1.1.1	Basic properties	4	
		1.1.2	Convergence	6	
		1.1.3	Sets in the complex plane	7	
	1.2	Funct	ions on the complex plane	8	
		1.2.1	Continuous functions	8	
		1.2.2	Holomorphic functions	8	
		1.2.3	Power series	10	
	1.3	Integr	ation along curves	13	

2	Cau	uchy's Theorem and Its Applications 18				
	2.1	Goursat's Theorem	18			
	2.2	Local existence of primitives and Cauchy's theorem in a disc	19			
	2.3	Evaluation of some integrals	20			
	2.4	Cauchy's integral formulas	24			
	2.5	Further applications	28			
		2.5.1 Morera's theorem	28			
		2.5.2 Sequences of holomorphic functions	28			
		2.5.3 Holomorphic functions defined in terms of integrals	29			
		2.5.4 Schwarz reflection principle	29			
		2.5.5 Runge's approximation theorem	29			
3	Mer	romorphic Functions and the Logarithm	30			
	3.1	Zero and poles	30			
	3.2	The Residue Formula	34			
	3.3	Singularities and meromorphic functions	35			
	3.4	4 The argument principle and applications				
	3.5	6 Homotopies and simply connected domains				
	3.6	The complex logarithm				
	3.7	Fourier series and harmonic functions				
4	The	e Fourier Transform	37			
5	Ent	tire Functions				
6	The	e Gamma and Zeta Functions	38			
	6.1	The gamma function	38			
		6.1.1 Analytic continuation	38			
	6.2	The zeta Function	38			
7	The	e Zeta Function and Prime Number Theorem 38				
8	Con	nformal Mappings 39				

9	9 An Introduction to Elliptic Functions							
10	Applications of Theta Functions	39						
	10.1	39						
	10.2	39						
	10.3	30						

1 Preliminaries to Complex Analysis

1.1 Complex numbers and the complex plane

1.1.1 Basic properties

Proposition 1.1.1 (Positivity of Squared Real Numbers). Suppose $r \in \mathbb{R}$. Then, $r^2 \geq 0$.

Corollary 1.1.1. Suppose $r \in \mathbb{R}$ and r < 0. Then, r does not have square roots in \mathbb{R} .

Remark 1.1.1. We introduce the imaginary numbers to fill the limitations of the real number system.

Definition 1.1.1 (i). $i = \sqrt{-1}$.

Proposition 1.1.2. Suppose $z \in \mathbb{C}$. Then, $\exists b \in \mathbb{R}$ such that z = bi.

Proof. Consider $x \in \mathbb{R}$ such that x < 0. It follows that

$$-x \ge 0 \implies -x = b^2$$
 (For some $b \in \mathbb{R}$)
 $\implies x = -b^2 = (bi)^2$.

Definition 1.1.2 (Complex number). A complex number z is an expression of the form z = a+bi for some $a, b \in \mathbb{R}$.

We call a the real part of z and denote it by Re(z).

Similarly, we call b the imaginary part of z and denote it by Im(z).

Remark 1.1.2. We denote the set of complex numbers by \mathbb{C} . Furthermore, \mathbb{C} is the algebraic closure (related to the Fundamental Theorem of Algebra) of \mathbb{R} .

Definition 1.1.3 (Complex conjugate). Suppose $z = a + bi \in \mathbb{C}$. Then, $\overline{z} = a - bi \in \mathbb{C}$ is the complex conjugate of z.

Definition 1.1.4 (Operations on \mathbb{C}). Suppose $x, y \in \mathbb{C}$ where x = a + bi and y = c + di for some $a, b, c, d \in \mathbb{R}$. Then, we define the

- (i) addition of x and y by x + y = (a + c) + (b + d)i;
- (ii) multiplication of x and y by $x \cdot y = ac + (bi)(di) + adi + bci = (ac bd) + (ad + bc)i$.

Remark 1.1.3. Addition and multiplication on \mathbb{C} satisfies (i) commutativity, (ii) associativity, and (iii) distributivity as in \mathbb{R} .

Proposition 1.1.3. Suppose $x, y \in \mathbb{C}$ where x = a + bi and y = c + di for some $a, b, c, d \in \mathbb{R}$. Then, x/y is the unique complex number such that $y \cdot (x/y) = x$.

Example 1.1.1. Express the following as a + bi for $a, b \in \mathbb{R}$

(i)
$$(9-12i) + (12i-16)$$
.
 $(9-12i) + (12i-16) = (9-16) + (-12+12)i = -7+0i$.

(ii)
$$(3+4i) \cdot (3-4i)$$
.

$$(3+4i) \cdot (3-4i) = 9-12i+12i+16 = 25.$$

(iii)
$$\frac{50+50i}{3+4i}$$

$$\frac{50+50i}{3+4i} = \frac{50+50i}{3+4i} \cdot \frac{3-4i}{3-4i} = \frac{(50+50i)(3-4i)}{25} = (2+2i)(3-4i)$$
$$= 6-8i+6i-8i^2 = 14-2i.$$

Remark 1.1.4 (Geometric Interpretation of \mathbb{C}). \mathbb{C} , geometrically, is a plane where the vertical axis represents the imaginary part of a complex number and the horizontal axis represents the real part of a complex number.

Proposition 1.1.4 (Re and Im Identity). Suppose $z \in \mathbb{C}$. Then,

$$Re(z) = \frac{z + \overline{z}}{2}$$
 and $Im(z) = \frac{z - \overline{z}}{2}$

Definition 1.1.5 (Modulus (Absolute value) of a complex number). The modulus of $z = a + bi \in \mathbb{C}$ is

$$|z| = \sqrt{a^2 + b^2},$$

which is the distance between z and 0.

Example 1.1.2 (Subsets of \mathbb{C} in the complex plane). (i)

(i)

Theorem 1.1.1 (Taylor Series for Common Functions). The following statements hold, $\forall z \in \mathbb{C}$:

$$(exp) e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!};$$

(cos)
$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n (z)^{2n}}{(2n)!};$$

(sin)
$$\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n (z)^{2n-1}}{(2n-1)!}$$
.

Remark 1.1.5 (cos, sin, exp are defined on \mathbb{C}). By considering cos, sin, and exp in terms of their respective Taylor Series, we observe that it is sensible that the above functions can be defined on \mathbb{C}

Theorem 1.1.2 (Euler's Theorem). $e^{iz} = \cos(z) + i\sin(z) \ \forall z \in \mathbb{C}$.

Proof. Outline: prove by Taylor series

Corollary 1.1.2. (i) $e^{i\pi} + 1 = 0$.

(ii)
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} \ \forall z \in \mathbb{C}.$$

(iii)
$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \ \forall z \in \mathbb{C}.$$

Definition 1.1.6 (Polar form). $(r, \theta) \rightarrow (x, y)$

$$r = \sqrt{x^2 + y^2}$$

 $\theta = \arctan\left(\frac{y}{\pi}\right)$

$$z = re^{i\theta}$$
 for $0 \le r \in \mathbb{R}$ and $\theta \in [0, 2\pi]$. $z = x + iy$ for $x, y \in \mathbb{R}$

By Euler,
$$x = r\cos(\theta)$$
, $y = r\sin(\theta)$

Remark 1.1.6 (Geometric Interpretation of Addition and Multiplication in \mathbb{C}). Consider arbitrary $v = re^{i\theta}$, $w = \tilde{r}e^{i\tilde{\theta}} \in \mathbb{C}$, where $r, \tilde{r} \geq 0$ and $\theta, \tilde{\theta} \in [0, 2\pi]$. We observe that $v \cdot w = r\tilde{r}e^{i(\theta + \tilde{\theta})}$.

Note that addition in $\mathbb C$ can be viewed as vector addition and multiplication in $\mathbb C$ can be deemed as rotation and scaling of the vectors.

For instance, multiplying w by z may be deemed as scaling w by r and rotating w by θ .

Definition 1.1.7 (Argument).

1.1.2 Convergence

Definition 1.1.8 (Convergence of a complex sequence). A sequence of complex numbers $(z_n)_{n\in\mathbb{N}}$ converges to $z\in\mathbb{C}$ and we write $\lim_{n\to\infty} z_n=z$ if

$$\lim_{n \to \infty} |z_n - z| = 0.$$

or, equivalently,

$$\forall \epsilon > 0 \ \exists N \geq 1 \ such \ that \ n > N \implies |z_n - z| < \epsilon$$

Theorem 1.1.3 (Convergence of Complex Sequence \iff Component-wise Convergence). Suppose $(z_n)_{n\in\mathbb{N}}$ is a sequence of complex numbers, where $\forall j\in\mathbb{N}\ z_j=x_j+y_j$ for some $x_j,y_j\in\mathbb{R}$. Then,

$$\lim_{n \to \infty} z_n = z \iff \lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} y_n = y,$$

where $x, y \in \mathbb{R}$ and $z = x + iy \in \mathbb{C}$.

Proof. (\Longrightarrow) Suppose that $\{z_n\}_{n\in\mathbb{N}}$ converges to $z\in\mathbb{C}$. By definition, we have that $\lim_{n\to\infty}|z_n-z|=0$, which implies that

$$\forall \epsilon > 0 \; \exists N_{\epsilon} > 0 \text{ such that } n > N_{\epsilon} \implies ||z_n - z| - 0| = |z_n - z| < \epsilon$$

$$\implies \sqrt{(x_n - x)^2 + (y_n - y)^2} = |z_n - z| < \epsilon$$

$$\implies |x_n - x| = \sqrt{(x_n - x)^2} \le \sqrt{(x_n - x)^2 + (y_n - y)^2} < \epsilon$$
and $|y_n - y| = \sqrt{(y_n - y)^2} \le \sqrt{(x_n - x)^2 + (y_n - y)^2} < \epsilon$.

By definition, $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ as desired.

 (\longleftarrow) Suppose $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$. By definition, we have that

$$\forall \epsilon > 0 \ \exists N_{\epsilon}, M_{\epsilon} > 0 \ \text{such that} \ n > N_{\epsilon} \implies |x_n - x| < \epsilon \ \text{and} \ n > M_{\epsilon} \implies |y_n - y| < \epsilon.$$

Consider arbitrary $\epsilon > 0$. Then, $E = \sqrt{\frac{\epsilon^2}{2}} > 0$ and, by the above statement, we have that

$$\exists N_E, M_E > 0 \text{ such that } n > N_E \implies |x_n - x| < E \text{ and } n > M_E \implies |y_n - y| < E.$$

Take $N = \max\{N_E, M_E\} > 0$. It follows that

$$n > N \implies |x_n - x|, |y_n - y| < E \implies |x_n - x|^2, |y_n - y|^2 < E^2$$

$$\implies (x_n - x)^2 + (y_n - y)^2 = |x_n - x|^2 + |y_n - y|^2 < 2E^2$$

$$\implies \sqrt{(x_n - x)^2 + (y_n - y)^2} < \sqrt{2E^2}$$

$$\implies |z_n - z| = ||z_n - z| - 0| < \sqrt{2\left(\sqrt{\frac{\epsilon^2}{2}}\right)^2} = \epsilon.$$

By definition, we obtain that $\lim_{n\to\infty} |z_n-z|=0$ and, therefore, $\lim_{n\to\infty} z_n=z$.

Definition 1.1.9 (Cauchy sequence of complex numbers). Suppose $(z_n)_{n\in\mathbb{N}}$ is a sequence of complex numbers. Then, $(z_n)_{n\in\mathbb{N}}$ is a Cauchy sequence or Cauchy if $|z_n-z_m|\to 0$ as $n,m\to\infty$ or, equivalently,

$$\forall \epsilon > 0 \ \exists N > 0 \ such \ that \ n, m > N \implies |z_n - z_m| < \epsilon.$$

Theorem 1.1.4 (Cauchyness of Complex Sequence \iff Component-wise Cauchy). Suppose $(z_n)_{n\to\infty}$ is a sequence of complex number, where $\forall j\in\mathbb{N}\ z_j=x_j+y_ji$ for some $x_j,y_j\in\mathbb{R}$. Then, $(z_n)_{n\to\infty}$ is Cauchy \iff $(x_n)_{n\to\infty}$ and $(y_n)_{n\to\infty}$ are both Cauchy.

Theorem 1.1.5 (\mathbb{C} is Complete). \mathbb{C} is Complete; that is, every Cauchy sequence in \mathbb{C} converges to a complex number.

1.1.3 Sets in the complex plane

Proposition 1.1.5 (Metric On \mathbb{C}). Define $dist: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ by $dist(z, w) = |z - w| \ \forall (z, w) \in \mathbb{C} \times \mathbb{C}$. Then, $(\mathbb{C}, dist)$ is a metric space.

Definition 1.1.10 (Open and closed balls in \mathbb{C}). Suppose $z_0 \in \mathbb{C}$ and r > 0. Then, the open ball of center (or around) z_0 with radius r is the set

$$B_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \}.$$

The closed ball of center (or around) z_0 with radius r is the set

$$\overline{B_r(z_0)} = \{ z \in \mathbb{C} : |z - z_0| \le r \}.$$

Definition 1.1.11 (Open set in \mathbb{C}). $U \subset \mathbb{C}$ is open if

$$\forall z \in U \ \exists r > 0 \ such \ that \ B_r(z) \subset U.$$

Example 1.1.3. $\mathbb{C}/\mathbb{R}_{\geq 0}$, \mathbb{C} , \mathbb{R} are open in \mathbb{C} .

Definition 1.1.12 (Boundary).

Definition 1.1.13 (Bounded).

Definition 1.1.14 (Diameter).

Definition 1.1.15 (Compactness).

1.2 Functions on the complex plane

1.2.1 Continuous functions

Remark 1.2.1 (Limit of a complex function). We define the limit of complex functions as in Real Analysis, except we employ the metric on \mathbb{C} instead of the metric on \mathbb{R} .

Definition 1.2.1 (Continuous Complex Function). Suppose $\Omega \subset \mathbb{C}$. Then, $f: \Omega \to \mathbb{C}$ is continuous at $z_0 \in \Omega$ if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ such \ that \ z \in \Omega \ and \ |z - z_0| < \delta \implies |f(z) - f(z_0)| < \epsilon$$

or, equivalently, if for any sequence $(z_n)_{n\in\mathbb{N}}$ of complex numbers such that $\lim_{n\to\infty} z_n = z$ it holds that $\lim_{n\to\infty} f(z_n) = f(z_0)$.

Proposition 1.2.1. Suppose $\Omega \subset \mathbb{C}$ and $f: \Omega \to \mathbb{C}$ is continuous. Then, $g: \Omega \to \mathbb{R}$ defined by $g(z) = |f(z)| \ \forall z \in \Omega$ is continuous.

Definition 1.2.2 (Maximum and minimum of a complex function).

1.2.2 Holomorphic functions

Definition 1.2.3 (Holomorphic function). Suppose $\Omega \subset \mathbb{C}$ is open and $f: \Omega \to \mathbb{C}$. Then, f is holomorphic (complex differentiable) at $z_0 \in \Omega$ if

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \in \mathbb{C}$$

or, equivalently, if $\exists Z \in \mathbb{C}$ such that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ such \ that \ h \in \mathbb{C}, \ 0 < |h| < \delta \ and \ z_0 + \delta \in \Omega \implies \left| \frac{f(z_0 + h) - f(z_0)}{h} - Z \right| < \epsilon$$

or, equivalently, if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \in \mathbb{C}.$$

If such limit exists, we denote it by $f'(z_0)$ and call it the derivative of f at z_0 . We say f is holomorphic

- (i) on $S \subset \Omega$ if f is holomorphic at $p, \forall p \in S$;
- (ii) if f is holomorphic on Ω ;
- (iii) on a closed set $C \subset \mathbb{C}$ if f is holomorphic on an open set $U \subset \Omega$ containing C.

We sometimes use the terms differentiable, complex differentiable, or \mathbb{C} -differentiable, and holomorphic interchangeably.

Definition 1.2.4 (Continiously differentiable map). A map f is continuously differentiable if f is differentiable, and its derivative is continuous.

Remark 1.2.2. In the definition above, $h \in \mathbb{C}$ and h is sufficiently close to z_0 .

Furthermore, recall that

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h} \ exist \ in \ \mathbb{C}$$

means that $\exists f'(z_0) \in \mathbb{C}$ such that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ such \ that \ h \in \mathbb{C}/\{0\} \ with \ z_0 + h \in U \ and \ |h| < \delta$$

$$\implies \left| \frac{f(z_0 + h) - f(z_0)}{h} - f'(z_0) \right| < \epsilon.$$

We observe that holomorphicity is much stronger than differentiability, as the limits along the path, through which $(z_n)_{n\in\mathbb{N}}$ approaches z_0 , are required to be equal.

As an immediate result, holomorphic functions have strong rigidity properties not shared by real-differentiable functions

Example 1.2.1. Let $f(z) = \overline{z}$. Here, f is holomorphic nowhere.

Outline: Take arb. $z_0 \in z$. Take a convergent sequence in \mathbb{R} and a convergent sequence in \mathbb{C}/\mathbb{R} and compare the limit.

Example 1.2.2. Comapre the above function with f(x,y) = (x,-y)

Example 1.2.3 (Common Holomorphic Functions).

Theorem 1.2.1 (Equivalent Condition to Holomorphicity). Suppose $\Omega \subset \mathbb{C}$. Then, $f: \Omega \to \mathbb{C}$ is holomorphic at $z_0 \in \Omega \iff$

$$f(z_0+h)=f(z_0)+f'(h)+R(h) \ \forall h\in\mathbb{C} \ such \ that \ z_0+h\in\Omega \implies \lim_{h\to 0}\frac{R(h)}{h}=0.$$

Theorem 1.2.2 (Holomorphicity Implies Continuity). Suppose $\Omega \subset \mathbb{C}$. Then, $f: \Omega \to \mathbb{C}$ is holomorphic at $z_0 \in \Omega$ implies f is continuous at z_0 .

Proposition 1.2.2. Suppose $U \subset \mathbb{C}$ is connected, f, g are holomorphic on U, and f = g on a line segment in U. Then, $f(z) = g(z) \ \forall z \in U$.

Proposition 1.2.3 (?Check hypothesis). Suppose $U \subset \mathbb{C}$ is connected, and f is holomorphic on U. Then, f is infinitely differentiable on U.

Example 1.2.4. (a) $f(z) = z^n$. Calculate $\frac{f(z+h)-f(z)}{h}$...

Proposition 1.2.4 (Stability Properties of Holomorphic Functions). Suppose $U \subset \mathbb{C}$ is open, $f, g: U \to \mathbb{C}$ are holomorphic at $z_0 \in U$. Then,

(Addition Rule) f + g is holomorphic at z_0 and

$$(f+g)'(z_0) = f'(z_0) + g'(z_0);$$

(Product Rule) fg is holomorphic at z_0 and

$$(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0);$$

(Division Rule) $g(z_0) \neq 0$ implies f/g holomorphic at z_0 and

$$(f/g)'(z_0) = \frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{[g(z_0)]^2}.$$

(Chain Rule) Suppose $U, \Omega \subset \mathbb{C}$ are open, and $f: \Omega \to \mathbb{C}$ and $g: U \to \mathbb{C}$. Suppose further that

- (i) f is holomorphic at $z_0 \in \Omega$, and
- (ii) $f(z_0) \in U$ and g is holomorphic at $f(z_0)$.

Then, $(g \circ f)$ is holomorphic at z_0 and

$$(g \circ f)'(z_0 = g'(f(z_0)) \cdot f'(z_0).$$

Definition 1.2.5 (Complex Monomial, polynomial, and rational function). (i) A (Complex) monomial is a map $m: \mathbb{C} \to \mathbb{C}$ defined by

$$az^n \ \forall z \in \mathbb{C}$$

for some $a \in \mathbb{C}$ and $n \in \mathbb{N}$.

(ii) A (complex) polynomial is a map $p: \mathbb{C} \to \mathbb{C}$ defined by

$$p(z) = a_0 + a_1 z + \dots + a_n z^n = a_0 + \sum_{k=1}^n a_k z^k \ \forall z \in \mathbb{C}$$

for some $n \in \mathbb{N}$ and $a_0, \ldots, a_n \in \mathbb{C}$.

(iii) A (complex) rational function is a map $r = \frac{p}{q}$ for some (complex) polynomials p, q.

Corollary 1.2.1 (Holomorphicity of Polynomials and Rational Functions). (i) A polynomial is holomorphic on \mathbb{C} .

(ii) A rational function f/g is holomorphic on $\{z \in \mathbb{C} : g(z) \neq 0\} \subset \mathbb{C}$.

Example 1.2.5. For each of the following functions, determine $S \subset \mathbb{C}$ on which the function is holomorphic and determine its derivative if it exists.

- (i) $e^{\frac{1}{x^2}}$:
- (ii) $\frac{1}{\cos(z)}$:
- (iii) $\frac{iz^2+z+9}{z^2+1}$:
- (iv) |z|:
- $(v) \overline{z}$:

Definition 1.2.6 (Partial derivative of complex-valued).

1.2.3 Power series

Definition 1.2.7 (Power series). A power series is a formal expression

$$\sum_{n\in\mathbb{W}} a_n z^n \text{ where } a_n \in \mathbb{C} \ \forall n \in \mathbb{W}.$$

Definition 1.2.8 (Operations on power series). (Addition)

(Multiplication)

Remark 1.2.3. A power series defines a function when it converges

Example 1.2.6 (Geometric series). Let $a \in \mathbb{C}$ and $a_n = a^N \ \forall n \in \mathbb{W}$.

$$\sum_{n \in \mathbb{W}} a^n z^n = 1 + az + a^2 z^2 + \dots$$

converges if the limit of $S_N = \sum_{n \in \mathbb{W}}^{N-1} a^n z^n$ exists.

By the Geometric series identity, we have that

$$S_N = \frac{1 - (az)^n}{1 - az} \ \forall N \in \mathbb{W}.$$

We observe that $\lim_{N\to\infty} S_N = \frac{1}{1-az}$ if |az| < 1, and S_N diverges if |az| > 1; for |az| = 1, s_N diverge regardless of az. ...

The geometric series converges absolutely when $|z| < \left| \frac{1}{a} \right|$.

Definition 1.2.9. $\sum_{n\in\mathbb{W}} z_n$, where $z_n\in\mathbb{C}\ \forall n\in\mathbb{W}$, converge absolutely if $\sum_{n\in\mathbb{W}} |z_n|$ converges

Definition 1.2.10 (Radius of convergence). $\sum_{n \in \mathbb{W}} z_n$, where $z_n \in \mathbb{C} \ \forall n \in \mathbb{W}$, has a radius of convergence

$$r = \frac{1}{\lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}} \in \mathbb{R}$$

Example 1.2.7. $a_n = a^n \to r = \frac{1}{|a|}$, see example above.

Theorem 1.2.3 (Power Series Test for \mathbb{C}). Let r > 0 be the raidus of convergence of ...

- (i) $|z| < r \implies f(z)$ converges absolutely.
- (ii) $|z| > r \implies$, f(z) diverges
- (iii) If |z| = r, f(z) may converge or diverge

$$Proof.$$
 (i)

Remark 1.2.4. Differentiable function from \mathbb{R}^n to \mathbb{R}^n is "smooth-ish". Our goal is to develop geometric intuition for holomorphic function (\iff conformal)??

Remark 1.2.5 (Difference in Holomorphicity and Real Differentiability). For $f: \mathbb{R} \to \mathbb{R}$, the derivative of f is the "best" linear approximation; that is, $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$ for $x_0 \approx x$.

For $f: \mathbb{R}^n \to \mathbb{R}^n$, the derivative of f is the "best" linear approximation; that is, $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$ for $x_0 \approx x$, where $f'(x_0) \in \mathcal{M}^{n,n}(\mathbb{R})$.

Now, suppose $\Omega \subset \mathbb{C}$ is open and $f: \Omega \to \mathbb{C}$. Then, $f(z) \approx f(z_0) + f'(z_0)(z-z_0)$ for $z_0 \approx z$

Above, we have complex multiplication

Now, suppose
$$\Omega \subset \mathbb{R}^2$$
 is open and $f \colon \Omega \to \mathbb{R}^2$. Then, $f(x,y) \approx f(x_0,y_0) + f'(x_0,y_0) \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}$

Above we have matrix multiplication

Similarly, the derivative of complex f is a complex limit; the derivative of f in \mathbb{R}^2 is a matrix

Proposition 1.2.5 (Canonical Bijection Between \mathbb{C} and \mathbb{R}^2). $I: \mathbb{C} \to \mathbb{R}^2$ defined by

$$I(z) = (Re(z), Im(z)) \ \forall z \in \Omega.$$

is bijection from \mathbb{C} to \mathbb{R}^2 .

Remark 1.2.6. To identify a complex function $f: \Omega \to \mathbb{C}$, where $\Omega \subset \mathbb{C}$, as a function on \mathbb{R}^2 , we mean to consider the map $\tilde{f}: \tilde{\Omega} \to \mathbb{R}^2$, where $\tilde{\Omega} = \{(x,y) \in \mathbb{R}^2 : x + yi \in \Omega\}$, defined by

$$\tilde{f}(x,y) = (u(x,y), v(x,y)) \ \forall (x,y) \in \tilde{\Omega}$$

where u, v are real-valued functions defined on $\tilde{\Omega}$ such that f = u + iv.

Theorem 1.2.4 (Cauchy-Riemann Equation). Suppose $\Omega \subset \mathbb{C}$ is open, $f: \Omega \to \mathbb{C}$ is holomorphic at $z_0 = x_0 + iy_0 \in \mathbb{C}$, and f = u + iv for some real-valued functions u, v defined on $\tilde{\Omega}$. Then,

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \text{ and } \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$

Furthermore, the derivative $(D\tilde{f})_{(x_0,y_0)} \colon \mathbb{R}^2 \to \mathbb{R}^2$ of \tilde{f} , as defined in the above remark, at (x_0,y_0) is represented by the matrix

$$\begin{bmatrix} \frac{\partial u}{\partial x}(x_0, y_0) & \frac{\partial u}{\partial y}(x_0, y_0) \\ \frac{\partial v}{\partial x}(x_0, y_0) & \frac{\partial v}{\partial y}(x_0, y_0) \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

where $a = \frac{\partial u}{\partial x}(x_0, y_0), b = \frac{\partial u}{\partial y}(x_0, y_0) \in \mathbb{R}$.

Definition 1.2.11 (Differential Operators Related to Complex-Valued Functions). (i) $\frac{\partial}{\partial z} = \frac{1}{2} \left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right]$

(ii)
$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left[\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right]$$

Theorem 1.2.5 (Converse of the Cauchy-Riemann Equation). Suppose f = u + iv is a complex-valued function defined on an open set $\Omega \subset \mathbb{C}$, where u, v are real-valued functions defined on $\tilde{\Omega} = \{(x,y) \in \mathbb{R}^2 : x + iy \in \Omega\}$. Suppose further that u, v are continuously differentiable and satisfy the Cauchy-Riemann equations on Ω . Then,

(i) f is holomorphic and

(ii)
$$\forall z = x + iy \in \Omega \text{ with } x, y \in \mathbb{R}, \ f'(z) = 2 \frac{\partial u(x,y)}{\partial z} = \frac{\partial f(z)}{\partial z}.$$

Proof. Omitted due to the non-triviality.

Remark 1.2.7. Conformality: infinitesimally preserve angles of the input or scale the input to 0.

Corollary 1.2.2 (Converse of the Cauchy-Riemann Equation). ????? Let $n \in \mathbb{N}$. If $f \in \mathbb{C}^n$ and the Cauchy-Riemann equation hold at z_0 , then f is holomorphic at z_0 .

1.3 Integration along curves

Definition 1.3.1 (Parameterized curve (Parameterization)). Let $[a,b] \subset \mathbb{R}$. A parameterized curve is a map $z: [a,b] \to \mathbb{C}$.

To mitigate the confusion between the terminologies "parameterized curve" and "curve" (to be subsequently defined), we refer to a parameterized curve more briefly as a **parameterization**.

Definition 1.3.2 (Smooth parameterization). Suppose $[a,b] \subset \mathbb{R}$ and $z \colon [a,b] \to \mathbb{C}$ is a parameterization. Then, z is smooth if

- (i) z'(t) exists in \mathbb{C} , $\forall t \in [a,b]$, z' is continuous on [a,b], and
- (ii) $z'(t) \neq 0 \ \forall t \in [a, b].$

That is, z is smooth if z is continuously differentiable on [a,b] with non-vanishing derivative on [a,b].

More generally, we say that a map f is smooth iff it is infinitely differentiable.

Definition 1.3.3 (Right-hand and left-hand derivative of a parameterization). Suppose $[a, b] \subset \mathbb{R}$ and $z : [a, b] \to \mathbb{C}$ is a parameterization. Then,

(i) the right-hand derivative of z at a is

$$z'(a) = \lim_{h \to 0^+} \frac{z(a+h) - z(a)}{h};$$

(ii) the left-hand derivative of z at b is

$$z'(b) = \lim_{h \to 0^-} \frac{z(a+h) - z(a)}{h};$$

Definition 1.3.4 (Piecewise-smooth parameterization). Suppose $[a,b] \subset \mathbb{R}$ and $z \colon [a,b] \to \mathbb{C}$ is a parameterization. Then, z is piecewise-smooth if

- (i) z is continuous, and
- (ii) $\exists a_0, a_1, \dots a_n \in [a, b]$, where $a_0 = a$ and $a_n = b$, such that z is smooth in the interval $[a_k, a_{k+1}], \forall k \in \{0, \dots, n-1\}$.

That is, we say that z is piecewise smooth it is continuous and there exist finite subdivisions of [a,b] such that z is smooth on each of the subdivisions.

Definition 1.3.5 (Equivalent parameterizations). Suppose $[a,b], [c,d] \subset \mathbb{R}$. Then, two parameterizations $z : [a,b] \to \mathbb{C}$ and $\tilde{z} : [c,d] \to \mathbb{C}$ are equivalent if there exists a continuously differentiable bijection $T : [c,d] \to [a,b]$ such that

- (i) T'(s) > 0, $\forall s \in [c, d]$ and
- (ii) $\tilde{z}(s) = z(T(s)), \forall s \in [c, d].$

We note that (i) ensures the preservation of orientation; that is, as $s \in [c, d]$ travels from c to d, we have that $t(s) \in [a, b]$ travels from a to b.

Definition 1.3.6 (Region). $\Omega \subset \mathbb{C}$ is a region if Ω is open and connected.

Definition 1.3.7 (Curve). Suppose $[a,b] \subset \mathbb{R}$ and $z \colon [a,b] \to \mathbb{C}$ is a parameterization. Then, the curve γ with parameterization (or parameterized by) z is the image of [a,b] under z, $\gamma = z([a,b]) \subset \mathbb{C}$, with orientation given by z as $t \in [a,b]$ travels from a to b.

If sufficient context is supplied and no misunderstandings may arise, we denote a curve with parameterization γ by γ , via some abuse of notation.

Definition 1.3.8 (Smooth and Piecewise-smooth curve??). Suppose $[a,b] \subset \mathbb{R}$ and $z \colon [a,b] \to \mathbb{C}$ is a parameterization of a curve $\gamma \subset \mathbb{C}$. Then, γ is a

- (i) smooth curve if z is smooth, and
- (ii) piecewise-smooth curve if z is piecewise-smooth.

Proposition 1.3.1. Suppose $[a,b] \subset \mathbb{R}$ and $z \colon [a,b] \to \mathbb{C}$ is a parameterization. Then,

$$\{k: k \text{ is equivalent to } z\}$$

determines a smooth curve $\gamma \subset \mathbb{C}$, where $\gamma = z([a,b])$, with orientation given by z as $t \in [a,b]$ travels from a to b.

Definition 1.3.9 (Reversed curve). Suppose $[a,b] \subset \mathbb{R}$ and $z : [a,b] \to \mathbb{C}$ is a parameterization of a curve $\gamma \subset \mathbb{C}$. Then, the reversed curve of γ is the curve γ^- obtained by reversing the orientation of γ .

Proposition 1.3.2 (A Parameterization for Reversed Curves). Suppose $[a,b] \subset \mathbb{R}$ and $z : [a,b] \to \mathbb{C}$ is a parameterization of a curve $\gamma \subset \mathbb{C}$. Then, $z^- : [a,b] \to \mathbb{C}$ defined by

$$z^{-}(t) = z(b+a-t) \ \forall t \in [a,b]$$

is a parameterization of γ^- .

Definition 1.3.10 (Endpoints of a curve). Suppose $[a,b] \subset \mathbb{R}$ and $z \colon [a,b] \to \mathbb{C}$ is a parameterization of a curve $\gamma \subset \mathbb{C}$. We say that

- (i) z(a), z(b) are endpoints of γ , and
- (ii) γ begins at z(a) and ends at z(b).

We note that the endpoints are independent on the parameterization (??For any parameterization \tilde{z} equivalent to z, $\tilde{z}(a) = z(a)$ and $\tilde{z}(b) = z(b)$)

Definition 1.3.11 (Closed and simple curve). (i) A smooth or piecewise-smooth curve $\gamma \subset \mathbb{C}$ is closed if for any parameterization $z : [a, b] \to \mathbb{C}$ of γ , we have that z(a) = z(b).

That is, γ is closed if its endpoints overlap.

(ii) A smooth or piecewise-smooth curve $\gamma \subset \mathbb{C}$ is simple if for any parameterization $z \colon [a,b] \to \mathbb{C}$ of γ , we have that $\forall x,y \in [a,b], \ x \neq y \implies z(x) \neq z(y)$.

That is, γ is simple if it is not self-intersecting.

(iii) Suppose γ is closed. Then, γ is a simple (closed) curve if

$$\forall x, y \in [a, b], x \neq y \text{ and } (x \neq a \text{ or } y \neq b) \implies z(x) \neq z(y)$$

or, equivalently, if

$$\forall x, y \in [a, b], \ z(x) = z(y) \implies x = y \ or \ (x = a \ and \ y = b).$$

 $\textbf{Definition 1.3.12} \ (\textbf{Positive and negative orientation}).$

Remark 1.3.1. Unless otherwise specified, we hereafter refer to any piecewise-smooth curve more briefly as a curve.

Example 1.3.1 (Example of a curve). Let r > 0 and $z_0 \in \mathbb{C}$. Then, $C_r(z_0) = \{z \in \mathbb{C} : |z - z_0 = r|\}$, the circle centered at z_0 with radius r, is a curve. In addition,

- (i) the parameterization $Z: [0, 2\pi] \to \mathbb{C}$, given by $Z(t) = z_0 + re^{it} \ \forall t \in [a, b]$, of $C_r(z_0)$ defines $C_r(z_0)$ in the positive orientation (counterclockwise);
- (ii) the parameterization \tilde{Z} : $[0, 2\pi] \to \mathbb{C}$, given by $\tilde{Z}(t) = z_0 + re^{-it} \ \forall t \in [a, b]$, of $C_r(z_0)$ defines $C_r(z_0)$ in the negative orientation (clockwise).

Definition 1.3.13 (Notation: C). We denote C a positively oriented circle.

Definition 1.3.14 (Integral of a complex-valued function along a smooth curve). Suppose $\gamma \subset \mathbb{C}$ is a smooth curve with parameterization $z \colon [a,b] \to \mathbb{C}$, and f is continuous on γ . Then, the integral of f along γ is

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt.$$

Proposition 1.3.3 (Well-Definedness of an Integral Along a Smooth Curve). Suppose $\gamma \subset \mathbb{C}$ is a smooth curve with parameterization $z \colon [a,b] \to \mathbb{C}$, and f is continuous on γ . Suppose further that $\tilde{z} \colon [c,d] \to \mathbb{C}$ is an equivalent parameterization of γ . Then,

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = \int_{c}^{d} f(\tilde{z}(s))\tilde{z}'(s).$$

That is, the integral of f along γ is independent of the parameterization of γ .

Proposition 1.3.4 (Integral of a Function Along a Piecewise-Smooth Curve). Suppose $\gamma \subset \mathbb{C}$ is a piecewise-smooth curve with parameterization $z \colon [a,b] \to \mathbb{C}$, and f is continuous on γ . Then,

$$\int_{\gamma} f(z)dz = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(z(t)) \cdot z'(t)dt,$$

where $z([a_k, a_{k+1}])$ is smooth $\forall k \in \{0, \dots, n-1\}$.

Definition 1.3.15 (Length of a smooth curve). Suppose $\gamma \subset \mathbb{C}$ is a smooth curve with parameterization $z \colon [a,b] \to \mathbb{C}$. Then, the length of γ is

$$length(\gamma) = \int_{a}^{b} |z'(t)| dt.$$

Proposition 1.3.5 (Properties of Integration of Complex-Valued Functions). Suppose $\gamma \subset \mathbb{C}$ is a smooth curve with parameterization $z \colon [a,b] \to \mathbb{C}$, and $f \colon \gamma \to \mathbb{C}$ is continuous. Then, the following statements hold.

(Linearity) Let $\lambda, \mu \in \mathbb{C}$. Then,

$$\int_{\gamma} \lambda f(z) + \mu g(z) dz = \lambda \int_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz.$$

(Reversed Orientation)

$$\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz.$$

(Inequality)

$$\left| \int_{\gamma} f(z) dz \right| \leq \sup_{z \in \gamma} |f(z)| \cdot length(\gamma)$$

Definition 1.3.16 (Primitive). Suppose f is a complex-valued function defined on an open subset $\Omega \subset \mathbb{C}$. Then, a complex-valued function F defined on Ω is a primitive of f on Ω if

(i) F is holomorphic on Ω and

(ii)
$$F'(z) = f(z) \ \forall z \in \mathbb{C}$$
.

Theorem 1.3.1 (Application of Fundamental Theorem of Calculus to Complex Integral). Suppose that $\Omega \subset \mathbb{C}$ is open, and f has a primitive F on Ω . Suppose further that $\gamma \subset \Omega$ is a curve (smooth or piecewise-smooth) with start point $w_1 \in \mathbb{C}$ and endpoint $w_2 \in \mathbb{C}$, and f is a continuous on γ . Then,

$$\int_{\gamma} f(z)dz = F(w_2) - F(w_1).$$

[Theorem 3.2 (Stein 22)]

Proof. Suppose $\Omega \subset \mathbb{C}$ is open and f has a primitive F on Ω . Suppose further that $\gamma \subset \Omega$ is a curve with parameterization $g: [a,b] \to \mathbb{C}$ where $g(a) = w_1, g(b) = w_2$, and f is continuous on γ .

(Case 1): Suppose γ is smooth. It follows that

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(g(t)) \cdot g'(t)dt$$
 (By defintion (Stein 21))
$$= \int_{a}^{b} F'(g(t)) \cdot g'(t)dt$$
 (Since F is a primitive of f on Ω)
$$= \int_{a}^{b} \frac{d}{dt} F(g(t))$$
 (By the Chain Rule)
$$= F(g(b)) - F(g(a))$$
 (By the Fundamental Theorem of Calculus)
$$= F(w_{2}) - F(w_{1}).$$

(Case 2): Suppose γ is piecewise-smooth. By definition (Stein 19),

$$\exists a_0, a_1, \dots, a_n \in [a, b] \text{ such that } a = a_0 < a_1 < a_2 < \dots < a_n = b$$

and $g([a_k, a_{k+1}])$ is smooth $\forall k \in \{0, 1, \dots, n-1\}$,

and, therefore, we have that

$$\int_{\gamma} f(z)dz = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(g(t)) \cdot g'(t)dt \qquad ((Stein 21))$$

$$= \sum_{k=0}^{n-1} F(g(a_{k+1})) - F(g(a_k)) \qquad (By result in Case 1)$$

$$= F(g(a_n)) - F(g(a_0))$$

$$= F(g(b)) - F(g(a)) = F(w_2) - F(w_1).$$

Corollary 1.3.1 (Vanishing Integral Along a Closed Curve). Suppose that $\Omega \subset \mathbb{C}$ is an open set and f has a primitive on Ω . Suppose further that $\gamma \subset \Omega$ is a closed curve (smooth or piecewise-smooth), and f is continuous on γ . Then,

$$\int_{\gamma} f(z)dz = 0.$$

[Corollary 3.3 (Stein 23)]

Proof. Suppose that $\Omega \subset \mathbb{C}$ is an open set and f has a primitive F on Ω . Suppose further that $\gamma \subset \Omega$ is a closed curve (smooth or piecewise-smooth), and f is continuous on γ .

Denote w_2 and w_1 the endpoint and start point of γ respectively. By definition, γ is a closed curve implies that the start point and endpoint of γ coincide. As an immediate result fo the preceding theorem, we then obtain that

$$\int_{\gamma} f(z)dz = F(w_2) - F(w_1) = F(w_2) - F(w_2) = 0.$$

Corollary 1.3.2 (Vanishing Derivative Implies Constantness). Suppose f is holomorphic on a region $\Omega \subset \mathbb{C}$ and $f'(z) = 0 \ \forall z \in \Omega$. Then, f is constant on Ω .

[Corollary 3.4 (Stein 23)]

Proof. Suppose f is holomorphic on a region $\Omega \subset \mathbb{C}$ and $f'(z) = 0 \ \forall z \in \Omega$. Fix some $w_0 \in \Omega$. By Exercise 5 (Stein 25), $\forall w \in \Omega$ there exists a continuous path, which is a curve, $\gamma \subset \Omega$ connecting w_0 and w. Now, fix a $w \in \Omega$. By Theorem 3.2 (Stein 22), we obtain that

$$\int_{\gamma} f'(z)dz = f(w) - f(w_0)$$

$$\implies \int_{\gamma} 0dz = 0 = f(w) - f(w_0)$$

$$\implies f(w) = f(w_0),$$
(By assumption)

for f' has a primitive f on Ω and certainly f' is continuous on γ since it is constant on Ω . That is, we show that $\forall w \in \Omega$ $f(w) = f(w_0)$, which implies that f is constant on Ω as desired. \square

Example 1.3.2.

Theorem 1.3.2. Suppose $(z_n)_{n\in\mathbb{N}}$ is a sequence of complex numbers. Then, $z_n\to 0\iff |z_n|\to 0$

Corollary 1.3.3 (??).
$$\int_a^R f(z)dz \to 0$$
 as $R \to \infty \iff \left| \int_a^R f(z)dz \right| \to 0$ as $R \to \infty$

 $\textbf{Proposition 1.3.6.} \ \ https://math.stackexchange.com/questions/2226361/how-do-i-show-that-real-part-of-an-integral-equals-the-integral-of-the-real-part$

2 Cauchy's Theorem and Its Applications

2.1 Goursat's Theorem

Proposition 2.1.1 (Equivalent Conditions for Differentiability). Suppose f is a real-valued function defined on some open set $\Omega \subset \mathbb{R}$. f is differentiable at $z_0 \in \Omega \iff$

$$f(z) = f(z_0) + f'(z_0) \cdot (z - z_0) + R(z) \ \forall z \in \Omega / \{z_0\} \implies \lim_{z \to z_0} \frac{R(z)}{z - z_0} = 0$$

 \iff

$$f(z_0+h)=f(z_0)+f'(z_0)\cdot h+R(v) \ \forall h\in\mathbb{C} \ such \ that \ z_0+h\in\Omega \implies \lim_{h\to 0}\frac{R(v)}{h}=0.$$

Theorem 2.1.1 (Goursat's Theorem). Suppose f is a complex function holomorphic on some open set $\Omega \subset \mathbb{C}$ containing the closure of a triangle T. Then,

$$\int_T f(z)dz = 0.$$

Corollary 2.1.1 (Goursat's Theorem for Rectangles). Suppose f is a complex function holomorphic on some open set $\Omega \subset \mathbb{C}$ containing the closure of a rectangle R. Then,

$$\int_{R} f(z)dz = 0.$$

2.2 Local existence of primitives and Cauchy's theorem in a disc

Theorem 2.2.1 (Local Holomorphicity Implies Local Existence of Primitive). Suppose f is a complex function holomorphic on $B_r(z_0)$, for some r > 0 and $z_0 \in \mathbb{C}$. Then, f has a primitive on $B_r(z_0)$.

Theorem 2.2.2 (Cauchy's Theorem on a Disc). Suppose f is a complex function holomorphic on some open set $\Omega \subset \mathbb{C}$ containing $\overline{B_r(z_0)}$, for some r > 0 and $z_0 \in \mathbb{C}$. Then,

$$\int_{\partial B_r(z_0)} f(z)dz = 0.$$

Theorem 2.2.3 (Generalized Cauchy Theorem). Suppose f is a complex function holomorphic on some open set $\Omega \subset \mathbb{C}$ (toy contour) containing the closure of a closed curve $\gamma \subset \Omega$. Then,

$$\int_{\partial \gamma} f(z)dz = 0.$$

2.3 Evaluation of some integrals

Lemma 2.3.1 (Jordan's Inequality). $\frac{2t}{\pi} \leq \sin(t) \leq t \ \forall t \in [0, \pi].$

Lemma 2.3.2. $\sin(\pi - t) = \sin(t) \ \forall t \in \mathbb{R}.$

Proof. Suppose $t \in \mathbb{R}$. It follows that

$$\sin(\pi - t) = \sin(\pi)\cos(-t) + \sin(-t)\cos(\pi)$$
 (By the addition identity of sin)
= 0 + -\sin(t) \cdot (-1) = \sin(t). (Since \sin is odd)

Theorem 2.3.1 (Jordan's Lemma). Let R > 0 and $C_R = \{Re^{i\theta} : \theta \in [0, \pi]\}$. Suppose $g : C_R \to \mathbb{C}$ is continuous and define $f : C_R \to \mathbb{C}$ by

$$f(z) = e^{iaz}g(z) \ \forall z \in C_R$$

for some a > 0. Then,

$$\int_{C_R} f(z)dz \le \frac{\pi}{a} \cdot \sup_{z \in C_R} |g(z)|.$$

Proof. Let R > 0 and $C_R = \{Re^{i\theta} : \theta \in [0, \pi]\}$. Suppose $g : C_R \to \mathbb{C}$ is continuous and define $f : C_R \to \mathbb{C}$ by

$$f(z) = e^{iaz}g(z) \ \forall z \in C_R$$

for some a > 0. By the continuity of g and e^{iaz} on C_r , we have that

$$\int_{C_r} f(z)dz = \int_{C_r} e^{iaz} g(z)dz = \int_0^\pi e^{ia\left[re^{it}\right]} g(re^{it}) \cdot ire^{it} dt,$$

which implies that

$$\left| \int_{C_r} f(z) dz \right| = \left| \int_0^{\pi} e^{ia[r\cos(t) + ir\sin(t)]} g(re^{it}) \cdot ire^{it} dt \right|$$
 (By Euler's Identity)
$$\leq \int_0^{\pi} \left| e^{iar\cos(t)} e^{-ar\sin(t)} g(re^{it}) \cdot ire^{it} \right| dt$$
 (By a property of integration)
$$= r \int_0^{\pi} \left| e^{-ar\sin(t)} \right| \cdot \left| g(re^{it}) \right| dt$$

$$\leq rM \int_0^{\pi} \left| e^{-ar\sin(t)} \right| dt.$$
 (Where $M = \sup_{t \in [0,\pi]} \left| g(re^{it}) \right|$; (*1))

We note that $e^{-ar\sin(t)}$ is continuous on $\mathbb R$ implies the integral $\int_0^{\frac{\pi}{2}} e^{-ar\sin(t)} dt$ exists. Denote $\int_0^{\frac{\pi}{2}} e^{-ar\sin(t)} dt$ by I. we observe that

$$\int_0^\pi e^{-ar\sin(t)}dt = I + \int_{\frac{\pi}{2}}^\pi e^{-ar\sin(t)}dt$$
 (By a property of integration)
$$= I + \int_{\frac{\pi}{2}}^0 e^{-ar\sin(\pi - u)}(-1)du$$
 (By Change of Variable, where $u(t) = \pi - t$)
$$= I + \int_0^{\frac{\pi}{2}} e^{-ar\sin(\pi - u)}du$$
 (By a property of integration)
$$= I + \int_0^{\frac{\pi}{2}} e^{-ar\sin(u)}du = 2I.$$
 (By a previous lemma; (*2))

In addition, by Jordan's inequality, we obtain that

$$t \in [0,\pi] \implies \sin(t) \ge \frac{2t}{\pi} \implies -ar\sin(t) \le -ar\frac{2t}{\pi}$$

$$\implies e^{-ar\sin(t)} \le e^{-ar\frac{2t}{\pi}}$$

$$\implies 2I = 2\int_0^{\frac{\pi}{2}} e^{-ar\sin(t)} dt \le 2\int_0^{\frac{\pi}{2}} e^{-ar\frac{2t}{\pi}} dt$$

$$= \frac{\pi}{ar} (1 - e^{\frac{ar}{2}}) < \frac{\pi}{ar}. \quad (\text{Since } e^{\frac{ar}{2}} > 0 \implies 1 - e^{\frac{ar}{2}} < 1; (*_3))$$

Combining $(*_1)$, $(*_2)$, and $(*_3)$, we then yield

$$\left| \int_{C_r} f(z) dz \right| \leq rM \cdot (2I) \leq rM \cdot \left(\frac{\pi}{ar} \right) = \frac{\pi}{a} \cdot \sup_{t \in [0,\pi]} \left| g(re^{it}) \right|.$$

Theorem 2.3.2 (Real and Imaginary Parts of an Integral). Suppose $f: \Omega \to \mathbb{C}$ for some $\Omega \subset \mathbb{C}$, and $\int_{\gamma} f(z)dz$ exists for some curve $\gamma \subset \Omega$. Then,

$$\Im\left[\int_{\gamma}f(z)dz\right]=\int_{\gamma}\Im\left[f(z)\right]dz\ \ and\ \Re\left[\int_{\gamma}f(z)dz\right]=\int_{\gamma}\Re\left[f(z)\right]dz.$$

Remark 2.3.1 (Gaussian Distribution). We note that the Gaussian Distribution (normal distribution) is given by $f(x) = e^{-\pi x^2}$ and we have

$$\int_{-\infty}^{\infty} f(x)dx = 1.$$

Proposition 2.3.1. *Let* $\xi \in \mathbb{R}$ *. Then*

$$e^{-\pi\xi^2} = \int_{-\infty}^{\infty} e^{-2i\pi x\xi} f(x) dx$$

Proposition 2.3.2. $\int_{0}^{\infty} \frac{1-\cos(x)}{x^{2}} dx = \pi$.

Proof. [DO: DOUBLE CHECK THE VALIDITY OF INTERCHANGING SUMM-MATION AND INTEGRAL SIGNS] Consider arbitrary $\epsilon, r > 0$ such that $r > \epsilon$. Denote $\gamma_1, \gamma_2, \gamma_3^-$, and γ_4 the curve along the upper half arc of $B_r(0)$ with positive orientation; the line segment connecting -r to $-\epsilon$; the curve along the upper half arc of $B_\epsilon(0)$ with negative orientation; and the line segment connecting ϵ to r.

Let R be the open region enclosed by γ_1 , γ_2 , γ_3 , and γ_4 . Define $f: \mathbb{C}/\{0\} \to \mathbb{C}$ by $f(z) = \frac{1-e^{iz}}{z^2} \ \forall z \in \mathbb{C}/\{0\}$. We observe that f is holomorphic on $\mathbb{C}/\{0\}$, which is open and containing \overline{R} . By Cauchy's Theorem, we obtain that

$$\int_{\partial R} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \int_{\gamma_3^-} f(z)dz + \int_{\gamma_4} f(z)dz = 0$$

$$\implies \int_{-r}^{-\epsilon} f(t)dt + \int_{\epsilon}^{r} f(t)dt = -\int_{\gamma_1} f(z)dz + \int_{\gamma_3} f(z)dz. \tag{*}_1$$

We observe that, by the smoothness of γ_1 and continuity of f on γ_1 ,

$$\left| \int_{\gamma_1} f(z)dz \right| \le \sup_{z \in \gamma_1} |f(z)| \cdot length(\gamma_1) = \frac{2}{r^2} \cdot \pi r = \frac{2\pi}{r},$$

where $\frac{2\pi}{r} \to 0$ as $r \to \infty$ implies

$$\int_{\gamma_1} f(z)dz \to 0 \text{ as } r \to \infty. \tag{*2}$$

We note that $\sup_{z \in \gamma_1} |f(z)| = \frac{2}{r^2}$ since

$$z = x + iy \in \gamma_1 \implies 0 \le y \le r \implies 1 = e^{-0} \ge e^{-y}$$

which yield that

$$|f(z)| = \left| \frac{1 - e^{iz}}{z^2} \right| = \left| \frac{1 - e^{ix}e^{-y}}{z^2} \right| = \frac{\left| 1 - e^{ix}e^{-y} \right|}{|z^2|} \le \frac{1 + e^{-y}}{r^2} \le \frac{2}{r^2}$$

Furthermore, we observe that $z \in \gamma_3$ implies that

$$f(z) = \frac{1 - e^{iz}}{z^2} = \frac{1 - \sum_{k=0}^{\infty} \frac{(iz)^k}{k!}}{z^2}$$
 (By the Taylor Series expansion of exp)
$$= \frac{-\sum_{k=1}^{\infty} \frac{(iz)^k}{k!}}{z^2} = \frac{-i}{z} + \frac{1}{2} + \sum_{k=3}^{\infty} \frac{i^k z^{k-2}}{k!}$$

$$= \frac{-i}{z} + \frac{1}{2} + \sum_{j=0}^{\infty} \frac{i^{j+3} z^{j+1}}{(j+3)!}.$$
 (By re-indexing)

It follows that [DO: REWORK THE FOLLOWING; TRY NOT TO INTEGRATE AN INFINITE SERIES]

$$\begin{split} \int_{\gamma_3} f(z) dz &= \int_{\gamma_3} \frac{-i}{z} + \frac{1}{2} + \sum_{j=0}^{\infty} \frac{i^{j+3} z^{j+1}}{(j+3)!} dz \\ &= \int_{\gamma_3} \frac{-i}{z} dz + \int_{\gamma_3} \frac{1}{2} dz + \int_{\gamma_3} \sum_{j=0}^{\infty} \frac{i^{j+3} z^{j+1}}{(j+3)!} dz \\ &= -i \int_0^{\pi} \frac{1}{\epsilon e^{it}} \cdot i \epsilon e^{it} dt + \int_0^{\pi} \frac{1}{2} \cdot i \epsilon e^{it} dt + \int_0^{\pi} \sum_{j=0}^{\infty} \frac{i^{j+3} (\epsilon e^{it})^{j+1}}{(j+3)!} \cdot i \epsilon e^{it} dt \\ &= \pi + i \epsilon \int_0^{\pi} \frac{1}{2} e^{it} dt + \epsilon^2 \int_0^{\pi} \sum_{i=0}^{\infty} \epsilon^j i^{j+4} \frac{e^{it(j+2)}}{(j+3)!} dt \end{split}$$

which converges to π as $\epsilon \to 0$, since $\lim_{\epsilon \to 0} \left[i\epsilon \int_0^\pi \frac{1}{2} e^{it} dt \right] = 0$ and

$$\forall k \in \mathbb{N}/\{1,2\} \lim_{\epsilon \to 0} \left[i\epsilon^{k-1} \int_0^{\pi} \frac{i^k e^{it(k-1)}}{k!} dt \right] = 0$$

implies the series converges to 0 as $\epsilon \to 0$ by a limit property. Combining $(*_1)$, $(*_2)$, and the above result, we then obtain that $r \to \infty$ and $\epsilon \to 0$ yield that

$$\int_{-r}^{-\epsilon} f(t)dt + \int_{\epsilon}^{r} f(t)dt = -\int_{\gamma_1} f(z)dz + \int_{\gamma_3} f(z)dz \to 0 + \pi = \pi.$$

That is, we have

$$\int_{-\infty}^{\infty} \frac{1 - e^{it}}{t^2} dt = \int_{-\infty}^{\infty} f(t) dt = \lim_{r \to \infty, \epsilon \to 0} \left[\int_{-r}^{-\epsilon} f(t) dt + \int_{\epsilon}^{r} f(t) dt \right] = \pi,$$

implying

$$\Re\left[\int_{-\infty}^{\infty}\frac{1-e^{it}}{t^2}dt\right]=\int_{-\infty}^{\infty}\Re\left[\frac{1-e^{it}}{t^2}\right]dt=\int_{-\infty}^{\infty}\frac{1-\cos(t)}{t^2}dt=\Re(\pi)=\pi$$

and, therefore,

$$\int_0^\infty \frac{1 - \cos(t)}{t^2} dt = \frac{\pi}{2}.$$
 (Since $\frac{1 - \cos(t)}{t^2}$ is even)

2.4 Cauchy's integral formulas

Theorem 2.4.1 (Cauchy's Integral Formula). Suppose f is holomorphic on an open subset $\Omega \subset \mathbb{C}$ containing $\overline{B_r(z_0)}$ for some r > 0 and $z_0 \in \mathbb{C}$. Then,

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(w)}{w - z} dw \ \forall z \in B_r(z_0)$$

where we assume $\partial B_r(z)$ has positive orientation.

Corollary 2.4.1 (Generalized Cauchy's Integral Formula). Suppose f is holomorphic on an open subset $\Omega \subset \mathbb{C}$ containing $\overline{B_r(z_0)} \subset \Omega$ for some r > 0 and $z_0 \in \mathbb{C}$. Then, f is infinitely complex differentiable on Ω and

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial B_n(z_0)} \frac{f(w)}{(w-z)^{n+1}} dw \ \forall z \in B_r(z_0)$$

where we assume $\partial B_r(z)$ has positive orientation.

Corollary 2.4.2 (Cauchy's Inequality). Suppose f is holomorphic on an open subset $\Omega \subset \mathbb{C}$ containing $\overline{B_r(z_0)} \subset \Omega$ for some r > 0 and $z_0 \in \mathbb{C}$. Then,

$$\left| f^{(n)}(z_0) \right| \le \frac{n! \cdot ||f||_C}{r^n} \ \forall n \in \mathbb{W},$$

where $||f||_C = \sup_{z \in \partial B_r(z_0)} |f(z)|$.

Proof. Suppose f is holomorphic on an open subset $\Omega \subset \mathbb{C}$ containing $\overline{B_r(z_0)} \subset \Omega$ for some r > 0 and $z_0 \in \mathbb{C}$. Suppose that $n \in \mathbb{W}$. Then, we have that

$$\left|f^{(n)}(z_0)\right| = \left|\frac{n!}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(w)}{(w-z_0)^{n+1}} dw\right| \qquad \text{(By Cauchy's Integral Formula)}$$

$$= \frac{n!}{2\pi i} \left|\int_0^{2\pi} \frac{f(z_0 + Re^{it})}{(z_0 + Re^{it} - z_0)^{n+1}} \cdot iRe^{it} dt\right| \qquad \text{(Since } f \text{ is continuous on } \partial B_r(z_0))$$

$$= \frac{n!}{2\pi} \left|\int_0^{2\pi} \frac{f(z_0 + Re^{it})}{(Re^{it})^n} dt\right| \leq \frac{n!}{2\pi} \int_0^{2\pi} \left|\frac{f(z_0 + Re^{it})}{(Re^{it})^n}\right| dt \qquad \text{(By a property of integral)}$$

$$= \frac{n!}{2\pi} \int_0^{2\pi} \frac{\left|f(z_0 + Re^{it})\right|}{R^n} dt \leq \frac{n!}{2\pi R^n} \int_0^{2\pi} ||f||_C dt \qquad \text{(Since } z_0 + Re^{it} \in \partial B_r(z_0))$$

$$= \frac{n!}{2\pi R^n} \cdot ||f||_C \cdot (2\pi) = \frac{n!}{R^n} ||f||_C$$

Theorem 2.4.2 (Dominated Convergence Theorem). Suppose $(f_k)_{k\in\mathbb{N}}$ is a sequence of Riemann integrable functions from $\Omega\subset\mathbb{C}$ to \mathbb{C} converging pointwise to a Riemann integrable function $f\colon\Omega\to\mathbb{C}$. Suppose further that $\exists g\colon\Omega\to\mathbb{C}$ such that

(i)
$$k \in \mathbb{N}$$
 and $z \in \Omega \Longrightarrow |f_k(z)| \le |g(z)|$, and (ii) $\int_{\gamma} |g(z)| dz < \infty$, where $\gamma \subset \Omega$ is a curve.

Then,

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} \lim_{n \to \infty} f_n(z) dz.$$

Remark 2.4.1. The above is a special case of Lebesgue's Dominated Convergence Theorem.

Theorem 2.4.3 (Holomorphicity on Open Set Implies Locally Analytic). Suppose f is holomorphic on an open subset $\Omega \subset \mathbb{C}$ containing $\overline{B_r(z_0)} \subset \Omega$ for some r > 0 and $z_0 \in \mathbb{C}$. Then, f is analytic on $B_r(z_0)$; that is, f has a power series expansion at z_0 such that

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \ \forall z \in B_r(z_0).$$

Definition 2.4.1 (Bounded complex function). Suppose $\Omega \subset \mathbb{C}$. Then, $f: \Omega \to \mathbb{C}$ is bounded if $\exists M > 0$ such that $|f(z)| \leq M \ \forall z \in \Omega$.

Definition 2.4.2 (Entire function). A function $f: \mathbb{C} \to \mathbb{C}$ is entire if f is holomorphic on \mathbb{C} .

Theorem 2.4.4 (Livouile's Theorem). Suppose $f: \mathbb{C} \to \mathbb{C}$ is bounded and entire. Then, f is constant.

Proof. Suppose $f: \mathbb{C} \to \mathbb{C}$ is bounded and entire. By definition, $\exists B > 0$ such that $\forall z \in \mathbb{C}$ $|f(z)| \leq B$. Consider arbitrary $z_0 \in \mathbb{C}$. It follows that r > 0 implies that $B_r(z_0) \subset \mathbb{C}$ and

der arbitrary
$$z_0 \in \mathbb{C}$$
. It follows that $r > 0$ implies that $B_r(z_0) \subset \mathbb{C}$ and
$$|f'(z_0)| \leq \frac{1! \cdot \sup_{z \in \partial B_r(z_0)} |f(z)|}{R^1}$$
 (By Cauchy's Inequality)
$$\leq \frac{B}{R}.$$

It follows that $|f'(z_0)| = 0$, for if not we would obtain that $|f'(z_0)| > 0 \implies \frac{2B}{|f'(z_0)|} > 0$ implies that

$$|f'(z_0)| \le \frac{B}{\frac{2B}{|f'(z_0)|}} = \frac{B}{1} \cdot \frac{|f'(z_0)|}{2B} = \frac{|f'(z_0)|}{2},$$

which is a contradiction. Thus, we showed that $\forall z_0 \in \mathbb{C}$, $|f'(z_0)| = 0$ and, therefore, $f'(z_0) = 0$. By Corollary 3.4 (Stein-Shakarchi 23), f is constant on \mathbb{C} as desired.

Alternative Proof. Outline: Prove via the analyticity of f on \mathbb{C} .

Theorem 2.4.5 (Fundamental Theorem of Algebra; Existence of Root for Non-Constant Complex Polynomial). Suppose p is a non-constant polynomial with complex coefficients. Then, p has a root in \mathbb{C} .

Proof. Suppose p is a non-constant polynomial with complex coefficients. By definition,

$$\exists a_0, a_1, \dots, a_n \in \mathbb{C} \text{ such that } p(z) = a_0 + a_1 z + \dots + a_n z^n \ \forall z \in \mathbb{C}.$$

Since p is non-constant, $\exists m \in \mathbb{N}$ such that $a_m \neq 0$. By re-indexing, we may assume, without loss of generality, that n is the largest such index such that $a_n \neq 0$.

Suppose, to the contrary, that p has no roots in \mathbb{C} . It follows that

$$\forall z \in \mathbb{C}/\{0\} \ p(z) = a_0 + a_1 z + \dots + a_n z^n \implies \frac{p(z)}{z^n} = \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z} + a_n$$

$$\implies \lim_{|z| \to \infty} \frac{a_k}{z^{n-k}} = 0 \ \forall k \in \{0, \dots, n-1\} \implies \lim_{|z| \to \infty} \frac{p(z)}{z^n} = a_n \neq 0.$$

By definition, we then obtain that

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \text{such that} \; |z| > \delta \implies \left| \frac{p(z)}{z^n} - a_n \right| < \epsilon$$

$$\implies \left| \left| \frac{p(z)}{z^n} \right| - |a_n| \right| \le \left| \frac{p(z)}{z^n} - a_n \right| < \epsilon \qquad \text{(By triangle inequality)}$$

$$\implies |z^n| \cdot (-\epsilon + |a_n|) < |p(z)| < |z^n| \cdot (\epsilon + |a_n|).$$

In particular, we have that

$$\exists R > 0 \text{ such that } |z| > R \implies |z^n| \cdot \left(-\frac{|a_n|}{2} + |a_n| \right) = \frac{|a_n|}{2} \cdot |z^n| < |p(z)| \quad \text{(Since } \frac{|a_n|}{2} > 0 \text{)}$$

$$\implies \frac{1}{|p(z)|} < \frac{2}{|a_n| \cdot |z^n|} = \frac{2}{|a_n| \cdot |z|^n} < \frac{2}{|a_n| \cdot R^n}.$$

Thus, we have that $\left|\frac{1}{p(z)}\right| \leq \frac{2}{|a_n|R^n} \ \forall z \in \mathbb{C}/[\overline{B_R(0)}].$

We observe that $\frac{1}{p}$ is holomorphic and, hence, continuous on \mathbb{C} , since $p(z) \neq 0 \ \forall z \in \mathbb{C}$ by assumption. In addition, $\overline{B_R(0)}$ is compact implies $\left[\frac{1}{p}\right]\left(\overline{B_R(0)}\right)$ is also compact, since continuity preserves compactness. By the Heine-Borel Theorem, we then yield that $\left[\frac{1}{p}\right]\left(\overline{B_R(0)}\right)$ is bounded. That is, $\exists M > 0$ such that $M \geq \left|\frac{1}{p(z)}\right| \ \forall z \in \overline{B_R(0)}$. Let $M^* = \max\left\{M, \frac{2}{|a_n|R^n}\right\}$. Then,

$$M^* \ge \left| \frac{1}{p(z)} \right| \ \forall z \in \mathbb{C}.$$

By definition, $\frac{1}{p}$ is bounded. As an immediate result of Liouvile's Theorem, $\frac{1}{p}$ is constant. Therefore, p is also constant, which is a contradiction. Hence, we conclude that p has a root in \mathbb{C}

Corollary 2.4.3 (Degree of Polynomial and Number of Roots). Suppose that p is a polynomial of degree $n \in \mathbb{N}$. Then, p has precisely n roots in \mathbb{C} and

$$p(z) = a_n(z - w_1)(z - w_2) \cdot \dots \cdot (z - w_n) \ \forall z \in \mathbb{C}$$

where a_n is the coefficient of the n-th term of p and w_1, \ldots, w_n are the n roots of p.

Proof. Prove via induction.

Theorem 2.4.6 (Vanishing on a Convergent Sequence Implies Identically the Zero Map). Suppose $\Omega \subset \mathbb{C}$ is open and connect, $f \colon \Omega \to \mathbb{C}$ is holomorphic, and $\exists z_0 \in \Omega$ such that z_0 is a limit point of $\{z \in \Omega : f(z) = 0\}$, where $\{z \in \Omega : f(z) = g(z)\} \neq \emptyset$. Then, f is the zero function on Ω .

Proof. Suppose $\Omega \subset \mathbb{C}$ is open and connect, $f \colon \Omega \to \mathbb{C}$ is holomorphic, and $z_0 \in \Omega$ is a limit point of $\{z \in \Omega : f(z) = 0\} \neq \emptyset$. By definition, there exists a sequence $(w_k)_{k \in \mathbb{N}}$ of points in $\{z \in \Omega : f(z) = 0\}$ converging to z_0 .

By the openness of Ω , $\exists r > 0$ such that $B_r(z_0) \subset \Omega$. Furthermore, by the holomorphicity of f on $B_r(z_0)$, we have, by Theorem 4.4 (Stein-Shakarchi 49), that f is analytic on $B_r(z_0)$ and

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \ \forall z \in B_r(z_0).$$

We claim that $f(z) = 0 \ \forall z \in B_r(z_0)$. Suppose, to the contrary, that $f(z) \neq 0$ for some $z \in B_r(z_0)$. Then, $\exists M \in \mathbb{W}$ such that $a_M \neq 0$. Let m be the smallest such whole number. It follows that

$$f(z) = a_0 + a_1 z^1 + \dots + a_m (z - z_0)^m + a_{m+1} (z - z_0)^{m+1} + \dots$$

$$= a_m (z - z_0)^m + a_{m+1} (z - z_0)^{m+1} + \dots$$

$$= a_m (z - z_0)^m \left(1 + \frac{a_{m+1}}{a_m} (z - z_0)^1 + \dots \right)$$

$$= a_m (z - z_0)^m \left(1 + \sum_{j=1}^{\infty} \frac{a_{m+j}}{a_m} (z - z_0)^j \right)$$

$$= a_m (z - z_0)^m \left(1 + g(z) \right),$$

where $g: B_r(z_0) \to \mathbb{C}$ is defined by $g(z) = \sum_{j=1}^{\infty} \frac{a_{m+j}}{a_m} (z-z_0)^j \ \forall z \in B_r(z_0)$. We observe that that g is continuous since it is a polynomial. In addition, we have that $g(z_0) = 0$ and

$$\lim_{z \to z_0} g(z) = g(z_0) = 0.$$

It follows that $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{such that} \; |z - z_0| < \delta \implies |g(z) - 0| < \epsilon$. In particular, we have

$$\exists \delta > 0 \text{ such that } |z - z_0| < \delta \implies |g(z)| < \frac{1}{2}.$$
 (*)

In addition, by the definition of a convergent sequence, it holds that

$$\forall \epsilon > 0 \exists N > 0 \text{ such that } k > N \implies |w_k - z_0| < \epsilon.$$

In particular, $\exists N > 0$ such that $k > N \implies |w_k - z_0| < \delta$. Take K > N such that $w_K \neq z_0$. Then, we obtain that

$$K > N \implies |w_K - z_0| < \delta \implies |g(w_K)| < \frac{1}{2}$$

$$\implies |g(w_K)| \neq 1 \implies g(w_k) \neq -1 \implies 1 + g(w_k) \neq 0$$

$$\implies f(w_K) = a_m (w_K - z_0)^m (1 + g(w_K)) \neq 0.$$
(By (*))

However, by assumption, $w_K \in \{z \in \Omega : f(z) = 0\} \implies f(w_K) = 0$, which is a contradiction. Therefore, $f(z) = 0 \ \forall z \in B_r(z_0)$ as desired. That is, we showed that for any limit point $z_0 \in \Omega$ of $\{z \in \Omega : f(z) = 0\}$, we have that f(z) = 0 on some ball B_{z_0} of z_0 and, hence, $B_{z_0} \subset \{z \in \Omega : f(z) = 0\}$.

Denote U the interior of $\{z \in \Omega : f(z) = 0\}$. By definition, U is open and $U \subset \{z \in \Omega : f(z) = 0\}$. Consider arbitrary limit point $u \in \Omega$ of U. We have that there exists a ball B_u of u contained in $\{z \in \Omega : f(z) = 0\}$ by the above conclusion. It follows that $u \in U$ since u is interior to U. By definition, U is also closed and $U \neq \emptyset$.

We observe that Ω/U and U are disjoint, open, and such that $\Omega = U \cup [\Omega/U]$. By the connectedness of Ω , we have that $U = \emptyset$ or $\Omega/U = \emptyset$. It follows that $\Omega/U = \emptyset$ and $\Omega = U \cup [\Omega/U] = U$. Thus, $\forall z \in \Omega = U \subset \{z \in \Omega : f(z) = 0\}$ f(z) = 0 as desired.

Theorem 2.4.7 (Principle of Isolated Zeros of Analytic Functions). **WRITE PROOF PLEASE** All zeroes of a (non-identically zero) analytic function on a connected open set U of C are isolated, i.e. for each zero $a \in U$ there exists an open neighbourhood $V \subset U$ of C in which C is the only zero of C.

Corollary 2.4.4. Suppose $\Omega \subset \mathbb{C}$ is open and connect, $f, g: \Omega \to \mathbb{C}$ are holomorphic, and $\exists z_0 \in \Omega$ such that z_0 is a limit point of $\{z \in \Omega : f(z) = g(z)\}$, where $\{z \in \Omega : f(z) = g(z)\} \neq \emptyset$. Then, $f(z) = g(z) \ \forall z \in \Omega$.

Definition 2.4.3 (Analytic Continuation of an Analytic Function). Suppose $f: \Omega \to \mathbb{C}$ and $g: \Omega' \to \mathbb{C}$ are analytic, where $\Omega, \Omega' \subset \mathbb{C}$ are regions such that $\Omega \subset \Omega'$. Then, g is an analytic continuation of f into Ω' if $g(z) = f(z) \ \forall z \in \Omega$.

Theorem 2.4.8 (Uniqueness of Analytic Continuation). If an analytic function has an analytic continuation, then the analytic continuation is unique.

Proof. Let $\Omega, \Omega' \subset \mathbb{C}$ be regions such that $\Omega \subset \Omega'$. Suppose that $f: \Omega \to \mathbb{C}$ is analytic with analytic continuations $g, g': \Omega' \to \mathbb{C}$ into Ω' . [DO: ELABORATE] By definition, we have that

$$g(z) = f(z) = g'(z) \ \forall z \in \Omega.$$

It follows, from Corollary 4.9 (Stein-Shakarchi 52), that $g(z) = g'(z) \ \forall z \in \Omega'$. That is, g = g' by definition.

2.5 Further applications

2.5.1 Morera's theorem

Theorem 2.5.1 (Morera's theorem on a Ball). Suppose f is a complex-valued function continuous in $B_r(z_0)$ for some r > 0 and $z_0 \in \mathbb{C}$ such that for any parameterized triangle $T \in B_r(z_0)$

$$\int_T f(z)dz = 0.$$

Then, f is holomorphic on $B_r(z_0)$.

Theorem 2.5.2 (Morera's theorem on an Open Set). Suppose f is a complex-valued function continuous in the interior of a toy contour γ such that for any parameterized triangle $T \in interior(\gamma)$

$$\int_T f(z)dz = 0.$$

Then, f is holomorphic in the interior of a toy contour γ

2.5.2 Sequences of holomorphic functions

Theorem 2.5.3 (Uniform Convergence Preserves Holomorphicity). Suppose $\Omega \subset \mathbb{C}$ is open and $f_n \colon \Omega \to \mathbb{C}$ is holomorphic, $\forall n \in \mathbb{N}$. Suppose further that $(f_n)_{n \in \mathbb{N}}$ converges uniformly to $f \colon \Omega \to \mathbb{C}$ on every compact subset of Ω . Then, f is holomorphic on Ω .

Proof. Suppose $\Omega \subset \mathbb{C}$ is open and $f_n \colon \Omega \to \mathbb{C}$ is holomorphic, $\forall n \in \mathbb{N}$. Suppose further that $(f_n)_{n \in \mathbb{N}}$ converges uniformly to $f \colon \Omega \to \mathbb{C}$ on every compact subset of Ω .

Consider arbitrary $z_0 \in \Omega$. By the openness of Ω , it follows that $\exists r > 0$ such that $B_r(z_0) \in \Omega$. Let $R = \frac{r}{2}$. Then, $\overline{B_R(z_0)} \subset \Omega$. Consider arbitrary parameterized triangle $T \in B_r(z_0)$ whose interior is contained in $B_R(z_0)$. It follows, from Goursat's Theorem that

$$\forall n \in \mathbb{N} \ \int_T f_n(z) dz = 0$$

since, $\forall n \in \mathbb{N}$, f_n is holomorphic on $B_R(z_0)$ by assumption. Furthermore, $\overline{B_R(z_0)}$ is compact and $(f_n)_{n \in \mathbb{N}}$ converges to f on every compact subset of Ω implies that f is continuous on $B_R(z_0)$ and

$$\int_{T} f(z)dz = \int_{T} \lim_{n \to \infty} f_n(z)dz = \lim_{n \to \infty} \int_{T} f_n(z)dz = 0.$$
 (Since $T \in \overline{B_R(z_0)}$)

As an immediate, f is holomorphic on $B_R(z_0)$ by Morera's Theorem since $\int_T f(z)dz = 0$ for every parameterized triangle $T \subset B_R(z_0)$. In particular, f is holomorphic on z_0 .

Since we considered arbitrary $z_0 \in \Omega$, we showed that f is holomorphic on $z_0, \forall z_0 \in \Omega$. Hence, f is holomorphic as desired.

Corollary 2.5.1.

2.5.3 Holomorphic functions defined in terms of integrals

2.5.4 Schwarz reflection principle

Definition 2.5.1 (Symmetry about the real-axis). Suppose $\Omega \subset \mathbb{C}$. Then, Ω is symmetric about the real-axis if it satisfies the property

$$z \in \Omega \iff \overline{z} \in \Omega.$$

Definition 2.5.2 (Extends continuously). Suppose $U \subset \Omega \subset \mathbb{C}$ and $f: U \to \mathbb{C}$ is continuous. Then, f extends continuously to Ω if there exists a map $\tilde{f}: \Omega \to \mathbb{C}$ such that

(i)
$$\tilde{f}(z) = f(z) \ \forall z \in U, \ and$$

(ii) \tilde{f} is continuous.

We say that \tilde{f} is a continuous extension of f

Theorem 2.5.4 (Symmetry Principle). Let $\Omega \subset \mathbb{C}$ be open, $\Omega^+ = \{z \in \Omega : Im(z) > 0\}$, $\Omega^- = \{z \in \Omega : Im(z) < 0\}$, and $I = \Omega \cap \mathbb{R}$. Suppose that $f^+ : \Omega^+ \to \mathbb{C}$ and $f^- : \Omega^- \to \mathbb{C}$ are holomorphic and extend continuously to I, and satisfies

$$f^+(x) = f^-(x) \ \forall x \in I.$$

Then, $f: \Omega \to \mathbb{C}$, defined by

$$f(z) = \begin{cases} f^+(z) & \text{if } z \in \Omega^+ \\ f^-(z) & \text{if } z \in \Omega^- \text{, } \forall z \in \Omega, \\ f^-(z) = f^+(z) & \text{if } z \in I \end{cases}$$

is holomorphic on Ω .

Theorem 2.5.5 (Schwarz Reflection Principle). Let $\Omega \subset \mathbb{C}$ be open, $\Omega^+ = \{z \in \Omega : Im(z) > 0\}$, $\Omega^- = \{z \in \Omega : Im(z) < 0\}$, and $I = \Omega \cap \mathbb{R}$. Suppose that $f : \Omega^+ \to \mathbb{C}$ is holomorphic, extends continuously to I, and satisfies $f(x) \in \mathbb{R} \ \forall x \in I$. Then, there exists a function $F : \Omega \to \mathbb{C}$ that is holomorphic and $F(z) = f(z) \ \forall z \in \Omega^+$.

In particular, F is defined by

$$F(z) = \begin{cases} \frac{f(z)}{f(\overline{z})} & \text{if } z \in \Omega^+ \cup I \\ & \text{if } z \in \Omega^- \end{cases}, \ \forall z \in \Omega.$$

2.5.5 Runge's approximation theorem

3 Meromorphic Functions and the Logarithm

3.1 Zero and poles

Definition 3.1.1 (Zeros of a complex function). Suppose f is a complex-valued function defined on $\Omega \subset \mathbb{C}$. Then, f has a zero at $z_0 \in \Omega$ and we say z_0 is a zero of f if $f(z_0) = 0$.

Definition 3.1.2 (Deleted neighborhood). A deleted (or punctured) neighborhood of radius r > 0 and center $z_0 \in \mathbb{C}$ is the set

$$N_r^*(z_0) = \{z \in \mathbb{C} : 0 < |z - z_0| < r\} = N_r(z_0) / \{z_0\}.$$

Definition 3.1.3 (Pole of a complex function). Suppose $r > 0, z_0 \in \mathbb{C}$ and f is a complex valued function defined on $N_r^*(z_0)$. Then, f has a pole at z_0 if $\tilde{f}: N_r(z_0) \to \mathbb{C}$ defined by

$$\tilde{f}(z) = \begin{cases} 0 & \text{if } z = z_0 \\ \frac{1}{f(z)} & \text{if } z \neq z_0 \end{cases} \forall z \in N_r(z_0)$$

is holomorphic on $N_r(z_0)$.

Definition 3.1.4 (Vanishing). Suppose X is a set. Then, $f: X \to \mathbb{C}$ vanishes at $x_0 \in X$ if $f(x_0) = 0$.

Suppose $A \subset X$. We say that f vanishes on A if $\forall a \in A$ f(a) = 0.

Theorem 3.1.1 (Factorization of Holomorphic Function with a Zero). Suppose $\Omega \subset \mathbb{C}$ is open and connected, $f: \Omega \to \mathbb{C}$ is non-vanishing, holomorphic, and has a zero at $z_0 \in \Omega$. Then, there exist r > 0, a map $g: B_r(z_0) \to \mathbb{C}$, and a unique $n \in \mathbb{N}$ such that

- (i) $B_r(z_0) \subset \Omega$,
- (ii) g is non-vanishing and holomorphic, and

(iii)
$$f(z) = (z - z_0)^n g(z) \ \forall z \in \Omega.$$

Proof. Suppose $\Omega \subset \mathbb{C}$ is open and connected, $f: \Omega \to \mathbb{C}$ is non-vanishing, holomorphic, and has a zero at $z_0 \in \Omega$. By Theorem 4.4 (Stein-Shakarchi 49), f is analytic on Ω .

Since f is non-vanishing and analytic on Ω , which is connected and open, the zeros of f are isolated by the Principle of isolated zeros of analytic functions. Hence, $\exists r > 0$ such that $B_r(z_0) \subset \Omega$ and $\forall z \in B_r^*(z_0) \ f(z) \neq 0$.

By the analyticity of f, f has the expansion

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \ \forall z \in B_r(z_0),$$

where the coefficients are given by

$$a_k = \frac{f^{(k)}(z_0)}{k!} \ \forall k \in \mathbb{W}. \tag{*}$$

Since f is not identical zero on $B_r(z_0)$, we have that there exists a smallest positive integer $n \in \mathbb{N}$ such that $a_n \neq 0$. We note that here a_0 must be zero, as $f(z_0) = 0 = a_0(1) + a_1(0) + a_2(0)^2 + \dots$

implies that $a_0 = 0$. It follows that $\forall z \in B_r(z_0)$

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k = 0(z - z_0)^0 + 0(z - z_0)^1 + \dots + a_n (z - z_0)^n + \dots$$
$$= (z - z_0)^n \left(a_n + a_{n+1} (z - z_0)^{n+1} + \dots \right)$$
$$= (z - z_0)^n \sum_{k=0}^{\infty} a_{n+k} (z - z_0)^k.$$

Define $g: B_r(z_0) \to \mathbb{C}$ by $g(z) = \sum_{k=0}^{\infty} a_{n+k} (z-z_0)^k \ \forall z \in B_r(z_0)$. We observe that g is well-defined since the series $\sum_{k=0}^{\infty} a_{n+k} (z-z_0)^k$ converges since it has the same radius of convergence as the series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$, which is the power series expansion of f on $B_r(z_0)$.

To see this, we first denote the radius of convergence of $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ by R. We observe that $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ converge on $B_r(z_0)$. Hence, $R \geq r > 0$, for if R = 0 the series diverges for every $z \in \mathbb{C}/\{z_0\}$, which is a contradiction. In addition, if R < r we would then obtain that $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ diverges on $\{z \in \mathbb{C} : r > |z-z_0| > R\}$ by the power series test, which is a contradiction.

Hence, we may conclude that $R \neq 0$. If $R = \infty$, then we have that $\lim_{N \to \infty} \sup_{k \in \mathbb{N}_{>N}} |a_k|^{1/k} = 0$. If $R \in \mathbb{R}_{<0}$, then we have that $\lim_{N \to \infty} \sup_{k \in \mathbb{N}_{>N}} |a_k|^{1/k} = \frac{1}{R}$.

We observe that the sequence $\left(\sup_{k\in\mathbb{N}_{>N}}|a_k|^{1/k}\right)_{N\in\mathbb{N}}$ converges and, therefore is bounded. It follows that $\left(\sup_{k\in\mathbb{N}_{>N}}|a_{n+k}|^{1/k}\right)_{N\in\mathbb{N}}$ converges since it is decreasing and bounded, as it is a subsequence of $\left(\sup_{k\in\mathbb{N}_{>N}}|a_k|^{1/k}\right)_{N\in\mathbb{N}}$. We recall from elementary analysis that a convergent subsequence of a convergent sequence converges to the limit of the convergent sequence. Hence, we then have that

$$\lim_{N \to \infty} \sup_{k \in \mathbb{N}_{>N}} |a_{n+k}|^{\frac{1}{k}} = \lim_{N \to \infty} \sup_{k \in \mathbb{N}_{>N}} |a_k|^{\frac{1}{k}}$$

implying that the radius of the series $\sum_{k=0}^{\infty} a_{n+k} (z-z_0)^k$ equals R as claimed. Hence, $\sum_{k=0}^{\infty} a_{n+k} (z-z_0)^k$ converges on $B_r(z_0)$ as desired.

It suffices to show that g is holomorphic and nonvanishing, and n is unique. Suppose, to the contrary, that g is not non-vanishing. Then, $\exists \tilde{z} \in B_r(z_0)$ such that $g(\tilde{z}) = 0$. It follows that

$$f(\tilde{z}) = (\tilde{z} - z_0)^n g(\tilde{z}) = 0$$

$$\implies \tilde{z} = z_0$$
(Since z_0 is the only zero of f in $B_r(z_0)$)
$$\implies g(\tilde{z}) = g(z_0) = a_n = 0,$$

which is a contradiction since $a_n \neq 0$. Thus, g is indeed nonvanishing on $B_r(z_0)$. In addition, the coefficients of $\sum_{k=0}^{\infty} a_{n+k}(z-z_0)^k$ are holomorphic by (*), which implies that g is also holomorphic.

To prove n is unique, we suppose that there exists $m \in \mathbb{N}$ and a nonvanishing holomorphic function $h: B_r(z_0) \to \mathbb{C}$ such that

$$f(z) = (z - z_0)^m h(z) \ \forall z \in B_r(z_0).$$

It follows that $\forall z \in B_r(z_0), (z-z_0)^m h(z) = (z-z_0)^n g(z)$. If m > n, we then yield that

$$\forall z \in B_r^*(z_0) \ (z - z_0)^{m-n} h(z) = g(z) \implies g(z_0) = \lim_{z \to z_0} g(z) = \lim_{z \to z_0} (z - z_0)^{m-n} h(z) = 0$$

by the continuity of g since g is holomorphic. Similarly, if n > m, we then have that

$$\forall z \in B_r^*(z_0) \ (z-z_0)^{n-m} g(z) = h(z) \implies h(z_0) = \lim_{z \to z_0} h(z) = \lim_{z \to z_0} (z-z_0)^{n-m} g(z) = 0$$

by the continuity of h since h is holomorphic. We obtained a contradiction in both cases since g and h are nonvanishing in $B_r(z_0)$. Therefore, we conclude that n=m and g=h. Here, we complete the proof.

Theorem 3.1.2 (Factorization of Complex Function with a Pole). Suppose that $\Omega \subset \mathbb{C}$ is open and connected, and $z_0 \in \Omega$. Suppose further that f is defined on a deleted neighborhood $B_R^*(z_0) \subset \Omega$ for some R > 0 and has a pole at z_0 . Then, there exist r > 0, a map $h: B_r(z_0) \to \mathbb{C}$, and a unique $n \in \mathbb{N}$ such that

- (i) $B_r(z_0) \subset B_R(z_0)$,
- (ii) h is non-vanishing and holomorphic, and

(iii)
$$f(z) = \frac{h(z)}{(z-z_0)^n} \ \forall z \in B_r^*(z_0).$$

Proof. Suppose that $\Omega \subset \mathbb{C}$ is open and connected, and $z_0 \in \Omega$. Suppose further that f is defined on some deleted neighborhood $B_R^*(z_0) \subset \Omega$ for some R > 0 and has a pole at z_0 .

By definition of a pole, we have that $\frac{1}{f}$: $B_R(z_0) \to \mathbb{C}$, defined by $\left[\frac{1}{f}\right](z) = \frac{1}{f(z)} \ \forall z \in B_R^*(z_0)$ and $\left[\frac{1}{f}\right](z_0) = 0$, is holomorphic and, thus, analytic. By the Principle of isolated zeros of an analytic function, we have that $\exists r' > 0$ such that $\left[\frac{1}{f}\right](z) \neq 0 \ \forall z \in B_{r'}^*(z_0)$ and $B_{r'}(z_0) \subset B_R(z_0)$.

Let $\tilde{f}: B_{r'}(z_0) \to \mathbb{C}$ be the restriction of $\frac{1}{f}$ on $B_{r'}(z_0)$. We observe that \tilde{f} has a zero in $B_{r'}(z_0)$, namely z_0 , and is not identically zero in $B_{r'}(z_0)$.

Applying Theorem 1.1 (Stein-Shakarchi 73) to \tilde{f} , we then obtain that there exist r > 0 such that $B_r(z_0) \subset B_{r'}(z_0) \subset B_R(z_0)$, a map $g \colon B_r(z_0) \to \mathbb{C}$, and a unique positive integer n such that g is nonvanishing and holomorphic, and $\forall z \in B_r(z_0) \ \tilde{f}(z) = (z - z_0)^n g(z)$.

Define $h: B_r(z_0) \to \mathbb{C}$ by $h(z) = \frac{1}{g(z)} \ \forall z \in B_r(z_0)$. We observe that h is well-defined and nonvanishing since g is nonvanishing. Moreover, h is holomorphic since g is holomorphic. Lastly, we have that $\forall z \in B_r^*(z_0)$

$$f(z) = \frac{1}{\left(\frac{1}{f(z)}\right)} = \frac{1}{\tilde{f}(z)} = \frac{1}{(z-z_0)^n g(z)} = \frac{h(z)}{(z-z_0)^n}$$

as desired. Here, we complete the proof.

Definition 3.1.5 (Order (multiplicity) of a pole). Suppose $z_0 \in \mathbb{C}$ and f is a complex-valued function defined on some deleted neighborhood $B_R^*(z_0)$ for some R > 0 and has a pole at z_0 . Then, the order of the pole z_0 is the unique positive integer n such that

$$f(z) = \frac{h(z)}{(z - z_0)^n} \ \forall z \in B_r^*(z_0)$$

for some r > 0 such that $B_r(z_0) \subset B_R(z_0)$, where $h: B_r(z_0) \to \mathbb{C}$ is nonvanishing and holomorphic.

Theorem 3.1.3 (Rational Decomposition of Complex Function with a Pole). Suppose $z_0 \in \mathbb{C}$ and f is a complex-valued function defined on some deleted neighborhood $B_R^*(z_0)$ for some R > 0 and has a pole at z_0 . Then, there exist $\exists r > 0$ and a map $G: B_r(z_0) \to \mathbb{C}$ such that

- (i) $B_r(z_0) \subset B_R(z_0)$,
- (ii) G is holomorphic, and

(iii)
$$\forall z \in B_r^*(z_0)$$

$$f(z) = \frac{A_0}{(z - z_0)^n} + \frac{A_1}{(z - z_0)^{n-1}} + \dots + \frac{A_{n-1}}{(z - z_0)^1} + G(z).$$

Proof. Suppose $z_0 \in \mathbb{C}$ and f is a complex-valued function defined on some deleted neighborhood $B_R^*(z_0)$ for some R > 0 and has a pole at z_0 .

By Theorem 1.2 (Stein-Shakarchi 74), we obtain that there exist r > 0, $h: B_r(z_0) \to \mathbb{C}$, and a unique positive integer n such that $B_r(z_0) \subset B_R(z_0)$, a nonvanishing and holomorphic map $h: B_r(z_0) \to \mathbb{C}$, and $\forall z \in B_r^*(z_0)$

$$f(z) = \frac{h(z)}{(z - z_0)^n}.$$

Since h is holomorphic, it is analytic and has the expansion in $B_r(z_0)$

$$h(z) = A_0 + A_1(z - z_0) + A_2(z - z_0)^2 + \dots \ \forall z \in B_r(z_0)$$

by Theorem 4.4 (Stein-Shakarchi 49). Define $G: B_r(z_0) \to \mathbb{C}$ by

$$G(z) = A_n + A_{n+1}(z - z_0) + A_{n+2}(z - z_0)^2 + \dots \ \forall z \in B_r(z_0).$$

Here, G is well-defined since the series $A_n + A_{n+1}(z - z_0) + A_{n+2}(z - z_0)^2 + \dots$ converges in $B_r(z_0)$ as it has the same radius of convergence as $A_0 + A_1(z - z_0) + A_2(z - z_0)^2 + \dots$, which converges in $B_r(z_0)$. In addition, by Theorem 4.4 (Stein-Shakarchi 49), the coefficients of the series defining G are holomorphic. Hence, G is also holomorphic.

Lastly, we have that $\forall z \in B_r^*(z_0)$

$$f(z) = \frac{h(z)}{(z - z_0)^n} = \frac{A_0 + A_1(z - z_0) + A_2(z - z_0)^2 + \dots}{(z - z_0)^n}$$

$$= \frac{A_0}{(z - z_0)^n} + \frac{A_1}{(z - z_0)^{n-1}} + \dots + \frac{A_{n-1}}{(z - z_0)^1} + A_n + A_{n+1}(z - z_0)^1 + \dots$$

$$= \frac{A_0}{(z - z_0)^n} + \frac{A_1}{(z - z_0)^{n-1}} + \dots + \frac{A_{n-1}}{(z - z_0)^1} + G(z).$$

Definition 3.1.6 (Principal part and residue of a complex function with a pole). Suppose $z_0 \in \mathbb{C}$ and f is a complex-valued function defined on some deleted neighborhood $B_R^*(z_0)$ for some R > 0 and has a pole at z_0 .

Then, by Theorem 1.3 (Stein-Shakarchi 75), there exist r > 0, a holomorphic map $G: B_r(z_0) \to \mathbb{C}$, and a unique positive integer n such that $B_r(z_0) \subset B_R(z_0)$ and $\forall z \in B_r^*(z_0)$

$$f(z) = \frac{A_0}{(z - z_0)^n} + \frac{A_1}{(z - z_0)^{n-1}} + \dots + \frac{A_{n-1}}{(z - z_0)^1} + G(z).$$

- (i) The sum $\frac{A_0}{(z-z_0)^n} + \frac{A_1}{(z-z_0)^{n-1}} + \cdots + \frac{A_{n-1}}{(z-z_0)^1}$ is the principal part of f at the pole z_0 , and
- (ii) the coefficient A_{n-1} is the residue of f, which we denote by $res_{z_0}(f)$, at the pole z_0 .

Proposition 3.1.1.

Theorem 3.1.4 (Characterization of Residue). Suppose f is a complex-valued function that has a pole of order n at $z_0 \in \mathbb{C}$. Then,

$$res_{z_0}(f) = \frac{1}{(n-1)!} \lim_{z \to z_0} \left[\frac{d}{dz} \right]^{n-1} (f(z) \cdot (z - z_0)^n).$$

3.2 The Residue Formula

Theorem 3.2.1 (Residue Formula for a Ball Containing One Pole). Suppose that $B \subset \mathbb{C}$ is a ball, $z_0 \in B$ is the only pole of f in B, and f is holomorphic on an open set $\Omega \subset \mathbb{C}$ containing $\overline{B}/\{z_0\}$. Then,

$$\int_{\partial B} f(z)dz = 2\pi i res_{z_0}(f).$$

Corollary 3.2.1 (Residue Formula for a Ball Containing Multiple Poles). Suppose that $B \subset \mathbb{C}$ is a ball, $z_1, \ldots, z_N \in B$ are all the poles of f in B, and f is holomorphic on an open set $\Omega \subset \mathbb{C}$ containing $\overline{B}/\{z_1, \ldots, z_N\}$. Then,

$$\int_{\partial B} f(z)dz = 2\pi i \sum_{k=1}^{N} res_{z_k}(f).$$

Corollary 3.2.2 (Generalized Residue Formula). Suppose that $\gamma \subset \mathbb{C}$ is a toy contour with positive orientation, $z_1, \ldots, z_N \in B$ are all the poles of f in $int(\gamma)$, and f is holomorphic on an open set $\Omega \subset \mathbb{C}$ containing $\overline{int(\gamma)}/\{z_1, \ldots, z_N\}$. Then,

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{N} res_{z_k}(f).$$

3.3 Singularities and meromorphic functions

Theorem 3.3.1 (Riemann's Theorem on Removable Singularities). Suppose f is a complex-valued function that is holomorphic on an open set $\Omega \subset \mathbb{C}$, except possibly at a point $p_0 \in \Omega$. If f is bounded on $\Omega \setminus \{z_0\}$, then z_0 is a removable singularity.

Corollary 3.3.1 (Equivalent Statements to Riemann's Theorem on Removable Singularities).

Corollary 3.3.2 (Characterization of Pole). Suppose f has an isolated singularity at $z_0 \in \mathbb{C}$. Then, z_0 is a pole of $f \iff \lim_{z \to z_0} |f(z)| = \infty$.

Theorem 3.3.2 (Casorati-Weirstrass). Suppose $z_0 \in \mathbb{C}$ and f is holomorphic on $B_r^* z_0$ for some r > 0 and has an essential singularity at z_0 . Then, $f(B_r^* z_0)$ is dense in \mathbb{C} .

Definition 3.3.1 (Meromorphic function).

Definition 3.3.2 (One point compactfication).

Definition 3.3.3 (Isolated singularities at infinity).

3.4 The argument principle and applications

3.5 Homotopies and simply connected domains

Definition 3.5.1 (???Homotopic curves). Suppose $\gamma, \Gamma \subset \mathbb{C}$ are piecewise smooth curves with the endpoints (that is $\gamma \colon [a,b] \to \mathbb{C}$ and $\Gamma \colon [c,d] \to \mathbb{C}$ implies $\gamma(a) = \Gamma(c)$ and $\gamma(b) = \Gamma(d)$).

Then, γ and Γ are homotopic curves in an open set $U \subset \mathbb{C}$ if

(i)

(ii)

Definition 3.5.2 (Simply-Connected Region). A set $\Omega \subset \mathbb{C}$ is a simply-connected region if

- (i) Ω is open, and
- (ii) every pair of curves in Ω of the same endpoints are homotopic.

Example 3.5.1 (Simply-Connected Region). Suppose R > 0 and $z_0 \in \mathbb{C}$. Then, $B_R(x_0) \subset B_r(z_0)$ for some R > 0 and $x_0 \in B_r(z_0)$ implies that $B_r(z_0)/B_R(x_0)$ is not simply-connected.

 \mathbb{C} and $\mathbb{C}/\mathbb{R}_{\leq 0}$ are simply connected.

Theorem 3.5.1 (Equivalence of Integral Along Homotopic Curves). Suppose $\Omega \subset \mathbb{C}$ is a open, $f: \Omega \to \mathbb{C}$ is holomorphic on Ω , and $\gamma, \Gamma \subset \Omega$ are homotopic curves in Ω . Then,

$$\int_{\gamma} f(z)dz = \int_{\Gamma} f(z)dz.$$

Theorem 3.5.2 (Holomorphicity on Simply-Connected Region Implies Existence of Primitive on the Region). Suppose $U \subset \mathbb{C}$ is open and simply-connected, and f is a complex function holomorphic on U. Then, f has a primitive on U.

Corollary 3.5.1 (Holomorphicity in Simply Connected Region Implies Vanishing INtegral Along Closed Curves).

3.6 The complex logarithm

Remark 3.6.1 (Locally and globally defined complex logarithm). Defining complex logarithms globally on $\mathbb{C}/\{0\}$ leads to non-well-definedness. Thus, we restrict the domain on which we define complex logarithms to simply connected regions $\Omega \subset \mathbb{C}$ such that $1 \in \Omega$ and $0 \notin \Omega$.

Theorem 3.6.1 (Existence of Complex Logarithm on a Branch).

Definition 3.6.1 (Principle branch).

Proposition 3.6.1 (Property of Complex Logarithm on the Principle Branch).

Remark 3.6.2. The complex logarithm on the principle branch is an extension of the usual real logarithm.

Theorem 3.6.2.

3.7 Fourier series and harmonic functions

4 The Fourier Transform

5 Entire Functions

6 The Gamma and Zeta Functions

6.1 The gamma function

6.1.1 Analytic continuation

Definition 6.1.1 (Analytic Continuation of an Analytic Function). Suppose $f: \Omega \to \mathbb{C}$ and $g: \Omega' \to \mathbb{C}$ are analytic, where $\Omega, \Omega' \subset \mathbb{C}$ are regions such that $\Omega \subset \Omega'$. Then, g is an analytic continuation of f into Ω' if $g(z) = f(z) \ \forall z \in \Omega$.

Theorem 6.1.1 (Uniqueness of Analytic Continuation). If an analytic function has an analytic continuation, then the analytic continuation is unique.

Proof. Let $\Omega, \Omega' \subset \mathbb{C}$ be regions such that $\Omega \subset \Omega'$. Suppose that $f: \Omega \to \mathbb{C}$ is analytic with analytic continuations $g, g': \Omega' \to \mathbb{C}$ into Ω' . By definition, we have that

$$g(z) = f(z) = g'(z) \ \forall z \in \Omega.$$

It follows, from Corollary 4.9 (Stein-Shakarchi 52), that $g(z) = g'(z) \ \forall z \in \Omega'$. That is, g = g' by definition.

6.2 The zeta Function

Definition 6.2.1 (Analytic Continuation of an Analytic Function). Suppose $f: \Omega \to \mathbb{C}$ and $g: \Omega' \to \mathbb{C}$ are analytic, where $\Omega, \Omega' \subset \mathbb{C}$ are regions such that $\Omega \subset \Omega'$. Then, g is an analytic continuation of f into Ω' if $g(z) = f(z) \ \forall z \in \Omega$.

Theorem 6.2.1 (Uniqueness of Analytic Continuation). If an analytic function has an analytic continuation, then the analytic continuation is unique.

Proof. Let $\Omega, \Omega' \subset \mathbb{C}$ be regions such that $\Omega \subset \Omega'$. Suppose that $f: \Omega \to \mathbb{C}$ is analytic with analytic continuations $g, g': \Omega' \to \mathbb{C}$ into Ω' . By definition, we have that

$$g(z) = f(z) = g'(z) \ \forall z \in \Omega.$$

It follows, from Corollary 4.9 (Stein-Shakarchi 52), that $g(z) = g'(z) \ \forall z \in \Omega'$. That is, g = g' by definition.

Definition 6.2.2 (Zeta function).

- 7 The Zeta Function and Prime Number Theorem
- 8 Conformal Mappings
- 9 An Introduction to Elliptic Functions
- 10 Applications of Theta Functions
- 10.1
- 10.2
- 10.3