PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-017144

(43)Date of publication of application: 17.01.2003

(51)Int.CI.

H01M 12/08

(21)Application number: 2001-200216

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

29.06.2001 (72)Ir

(72)Inventor: KUBOKI TAKASHI

/Z/inventor.

SATO TOMOKO OSAKI TAKAHISA

TAKAMI NORIO

(54) NONAQUEOUS ELECTROLYTE CELL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte cell with improved capacity.

SOLUTION: The nonaqueous electrolyte cell comprises a positive electrode 14; a negative electrode 17 facing the positive electrode 14; a nonaqueous electrolyte containing layer interposed between the positive electrode 14 and the negative electrode 17; and a case 1 housing the positive electrode 14, the negative electrode 17, and the nonaqueous electrolyte containing layer, to which, a plurality of vent holes 4 for supplying oxygen to the positive electrode 14 are opened. A lithium storing body 19, having a lithium storing layer 20 making the negative electrode 17 store lithium ion by releasing lithium ion at the potential baser than that of the negative electrode 17, is housed in the case 1 so as to fulfill the formula; 0.25P≤R≤0.98Q, where, R represent the distance between the vent holes and the surface of the lithium storing layer, P represents the distance between the inner surface of the case on which the vent

holes are formed, and an inner surface of the case facing the above inner surface, or 1/2 of the distance between two surfaces of the case facing each other on which, vent holes are formed, Q represents a shortest distance out of respective distances to the farthest part of the inside surface of the case at respective vent holes.

LEGAL STATUS

[Date of request for examination]

14.02.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

THIS PACE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-17144

(P2003-17144A)

(43)公開日 平成15年1月17日(2003.1.17)

(51) Int.Cl.7

H01M 12/08

識別記号

FΙ

H01M 12/08

テーマコード(参考)

K 5H032

Z

審査請求 未請求 請求項の数2 OL (全 11 頁)

(21)出願番号	特願2001-200216(P2001-200216)	(71)出願人	000003078
(==, 		(17)	株式会社東芝
(22)出顧日	平成13年6月29日(2001.6.29)		東京都港区芝浦一丁目1番1号
		(72)発明者	久保木 貴志
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝研究開発センター内
		(72)発明者	佐藤 倫子
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝研究開発センター内
		(74)代理人	100058479
			弁理士 鈴江 武彦 (外6名)

最終頁に続く

(54) 【発明の名称】 非水電解質電池

(57)【要約】

(修正有)

【課題】 容量が向上された非水電解質電池を提供する。

【解決手段】 正極14と、正極14と対向する負極17と、正極14及び負極17の間に配置される非水電解質含有層と、正極14、負極17及び前記非水電解質含有層を収納し、正極14に酸素を供給するための通気孔4が複数開口されている容器1とを有する非水電解質電池において、負極17よりも卑な電位でリチウムイオンを放出して負極17にリチウムイオンを吸蔵させるリチウム貯蔵層20を備えるリチウム貯蔵体19が下記式1を満足するように容器1内に収納される。

 $0. 25 P \le R \le 0. 98 Q$

(Rは、通気孔からリチウム貯蔵層表面までの距離、Pは、通気孔が形成された容器の内面とこの内面と対向する容器内面との距離、又は通気孔が形成されている容器の互いに対向する二つの面間の距離の1/2の大きさ、Qは通気孔各々についての容器の内面の最遠部までのそれぞれの距離のうち最短距離。)

(1)

【特許請求の範囲】

【請求項1】 正極と、前記正極と対向する負極と、前 記正極及び前記負極の間に配置される非水電解質含有層 と、前記正極、前記負極及び前記非水電解質含有層を収 納し、前記正極に酸素を供給するための通気孔が開口さ れている容器とを具備する非水電解質電池において、 前記負極よりも卑な電位でリチウムイオンを放出して前 記負極にリチウムイオンを吸蔵させるリチウム貯蔵層を 備えるリチウム貯蔵体が下記(1)式を満足するように 前記容器内に収納されていることを特徴とする非水電解 質電池。

1

0. $25P \le R \le 0$. 98Q(1)

但し、前記Rは、前記通気孔から前記リチウム貯蔵層表 面までの距離を示し、前記Pは、前記容器の一面に前記 通気孔が形成されている場合には前記通気孔が形成され た前記容器の内面とこの内面と対向する容器内面との距 離であり、また前記容器の互いに対向する二つの面に前 記通気孔が形成されている場合には前記二つの面間の距 離の1/2の大きさを表わし、前記Qは、前記通気孔各 々についての前記容器の内面の最遠部までのそれぞれの 距離のうち最も短い距離である。

【請求項2】 前記リチウム貯蔵体は、前記リチウム貯 蔵層が担持される導電性支持板をさらに備えることを特 徴とする請求項1記載の非水電解質電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水電解質電池に 係り、特に、正極活物質として酸素を利用する非水電解 質電池に関するものである。

[0002]

【従来の技術】近年、携帯電話や電子メール端末などの 携帯型情報機器の市場は急速に拡大しつつあり、これら の機器の小型軽量化が進むにつれて、電源にも小型かつ 軽量であることが求められるようになってきた。現在、 これらの携帯機器には高エネルギー密度であるリチウム イオン二次電池が多用されているが、さらに高容量が得 られる二次電池が求められている。

【0003】空気中の酸素を正極活物質に用いる空気電 池は、正極活物質を電池に内蔵する必要がないため、高 容量化が期待できる。負極活物質に金属リチウムを用 い、かつ正極活物質に酸素を用いるリチウム二次電池と して、以下に説明するような構成を有する空気リチウム 二次電池が知られている。

【0004】この空気リチウム二次電池は、正極と、負 極と、前記正極及び前記負極の間に介在されるポリマー 電解質膜と、前記正極上に積層される酸素透過膜とから 構成された4層積層物を具備している。この4層積層物 は、ラミネート製袋に封入されている。また、正極は、 コバルトを含有するアセチレンブラックからなる触媒層

ロピレンカーボネート及びLiPF6からなるポリマー 電解質フィルムとをニッケル網もしくはアルミニウム網 に圧着させたものからなる。一方、負極は、リチウム箔 から形成されている。

2

【0005】しかしながら、このような空気リチウムニ 次電池は、負極に金属リチウムを使用しているため、充 放電サイクルを繰り返すと金属リチウム表面にデンドラ イトが生成する。生成したデンドライトは、欠落すると 容量低下につながり、また成長して正極と接触すると短 絡する恐れがある。

【0006】この欠点を補うために負極に炭素材料を用 いる空気リチウムイオン二次電池が提案されている (特 開平10-83836号公開公報)。炭素材料は、リチ ウムイオンを可逆的に吸蔵・放出する能力があり、負極 に金属リチウムを用いた空気リチウム二次電池と比較し てサイクル特性の向上が可能となる。

【0007】特開平10-83836号公開公報では、 炭素質物及び導電剤を含む正極にリチウム過酸化物(L i 2 O2) のような酸化リチウムを添加し、この酸化リチ ウムをリチウム源として使用している。

【0008】この特開平10-83836号公開公報に 記載されたリチウムイオン二次電池では、使用前に充電 を行う必要がある。しかしながら、酸化リチウムを含有 する正極を充電すると、導電剤に接触している部分の酸 化リチウムからリチウムが放出されることにより一部の 酸化リチウムが正極から脱落するため、高い容量を得ら れないという問題点がある。

[0009]

20

【発明が解決しようとする課題】本発明は、容量が向上 された非水電解質電池を提供することを目的とする。

[0010]

【課題を解決するための手段】本発明に係る非水電解質 電池は、正極と、前記正極と対向する負極と、前記正極 及び前記負極の間に配置される非水電解質含有層と、前 記正極、前記負極及び前記非水電解質含有層を収納し、 前記正極に酸素を供給するための通気孔が開口されてい る容器とを具備する非水電解質電池において、前記負極 よりも卑な電位でリチウムイオンを放出して前記負極に リチウムイオンを吸蔵させるリチウム貯蔵層を備えるリ チウム貯蔵体が下記(1)式を満足するように前記容器 内に収納されていることを特徴とするものである。

[0011]

0. $25P \le R \le 0$. 98Q(1)

但し、前記Rは、前記通気孔から前記リチウム貯蔵層表 面までの距離を示し、前記Pは、前記容器の一面に前記 通気孔が形成されている場合には前記通気孔が形成され た前記容器の内面とこの内面と対向する容器内面との距 離であり、また前記容器の互いに対向する二つの面に前 記通気孔が形成されている場合には前記二つの面間の距 と、ポリアクリルニトリル、エチレンカーボネート、プ50離の1/2の大きさを表わし、前記Qは、前記通気孔各

々についての前記容器の内面の最遠部までのそれぞれの 距離のうち最も短い距離である。

[0012]

【発明の実施の形態】以下、本発明に係る非水電解質電池(ここでいう非水電解質電池には、一次電池及び二次電池の双方の場合が包含される)の一例を説明する。

【0013】この非水電解質電池は、正極と負極と前記 正極及び前記負極の間に配置される非水電解質含有層と を含む電極群と、前記電極群が収納され、前記正極に酸 素を供給するための通気孔が複数開口されている容器と を具備する。この容器内に、前記負極よりも卑な電位で リチウムイオンを放出して前記負極にリチウムイオンを 吸蔵させるリチウム貯蔵層を備えるリチウム貯蔵体が下 記(1)式を満足するように収納されている。

[0014]

0. $25P \le R \le 0$. 98Q (1)

但し、前記Rは、前記通気孔から前記リチウム貯蔵層表面までの距離を示し、前記Pは、前記容器の一面に前記通気孔が形成されている場合には前記通気孔が形成された前記容器の内面とこの内面と対向する容器内面との距離で、また前記容器の互いに対向する二つの面に前記通気孔が形成されている場合には前記二つの面間の距離の1/2の大きさを表わし、前記Qは、前記通気孔それぞれについての前記容器の内面の最遠部までのそれぞれの距離のうち最も短い距離である。

【0015】なお、リチウム貯蔵層表面とは、リチウム 貯蔵層の占有表面を示すものではない。例えば、後述す る図10に示すように、リチウム貯蔵層に穴が開口され ている場合、Rは開口部分(占有表面)と通気孔4との 距離を意味するものではなく、実際に存在するリチウム 貯蔵層のうち通気孔に最も近い表面と通気孔との距離を Rとする。

【0016】また、この非水電解質二次電池では、電極群の最外層に位置する正極と容器の通気孔形成面との間に、酸素拡散層を備えることができる。

【0017】以下、リチウム貯蔵体、正極、負極、非水 電解質含有層、空気拡散層及び容器について説明する。

【0018】1) リチウム貯蔵体

リチウム貯蔵体は、負極よりも卑な電位でリチウムイオンを放出する材料を含有するリチウム貯蔵層と、前記リチウム貯蔵層が担持される導電性支持板とを備えることが望ましい。また、リチウム貯蔵層側を負極に接触させることが好ましい。

【0019】電極群の最外層に負極が配置されている場合、この負極上に導電性支持体を持たないリチウム貯蔵層を積層すると、リチウム貯蔵層の体積がリチウムイオンの放出に伴って減少する際にリチウム貯蔵層の形が崩れやすくなるため、負極からリチウム貯蔵層が剥離する恐れがある。導電性支持体に保持させたリチウム貯蔵層を負極に積層することによって、リチウム貯蔵層の体積

がリチウムイオンの放出に伴って減少しても、支持体で 負極にリチウム貯蔵層を担持させることができるため、 リチウム貯蔵層の負極からの剥離を抑制することができ る。なお、電極群の最外層が両方とも正極である場合、 リチウム貯蔵層は電極群の内部に配置されるため、電極 や非水電解質含有層でリチウム貯蔵層を保持することが でき、導電性支持体がなくても負極からの剥離を抑制す ることができる。

【0020】導電性支持体としては、例えば、無孔の金属板、多孔質構造の金属板、金属ワイヤーを編んだネット状の板等を挙げることができる。導電性支持体を形成する金属としては、例えば、銅、ステンレス、ニッケルなどを挙げることができる。

【0021】リチウム貯蔵層のリチウム含有量は、1重量%以上にすることが好ましい。

【0022】負極としてリチウムイオンを吸蔵・放出する炭素質物を含むものを使用する場合、負極よりも卑な電位でリチウムイオンを放出する材料としては、例えば、リチウム金属、リチウム合金などを挙げることができる。また、負極としてリチウム金属酸化物を用いる場合、負極よりも卑な電位でリチウムイオンを放出する材料としては、例えば、リチウム金属、リチウム合金、炭素質物などを挙げることができる。使用する材料の種類は、1種類または2種類以上にすることができる。

【0023】前記リチウム合金としては、例えば、リチウムアルミニウム合金、リチウムスズ合金、リチウム路合金、リチウムケイ素合金などを挙げることができる。

【0024】前記リチウムー金属酸化物としては、例えば、リチウムスズ酸化物、リチウムケイ素酸化物、リチウムチタン酸化物、リチウムニオブ酸化物、リチウムタングステン酸化物などを挙げることができる。

【0025】負極よりも卑な電位でリチウムを放出する材料が粉末である場合、結着剤と共にシート状に成型することができる。前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレンープロピレンーブタジエンゴム(EPBR)、スチレンーブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などを用いることができる。

7 【0026】また、負極よりも卑な電位でリチウムを放出する材料として、リチウム金属やリチウム合金などの金属材料を使用すると、金属材料は単独でシート形状に加工することが可能なため、結着剤を使用せずにリチウム貯蔵層を形成することができる。

【0027】リチウム貯蔵体は、負極における正極と対向していない面に配置されることが望ましい。正極と対向する面に配置される場合、リチウムイオンがリチウム貯蔵層から負極へ移動するのに伴ってリチウム貯蔵層の体積が収縮した際に非水電解質含有層と正極、負極との50 間に液枯れを生じる恐れがある。リチウム貯蔵層が正極

30

と対向していない負極面に配置されることによって、リ チウムイオンの放出に伴うリチウム貯蔵層の体積収縮に 起因する液枯れを抑制することができる。

【0028】リチウム貯蔵層の面積は、負極の面積と同 じか、もしくは小さいことが好ましい。リチウム貯蔵層 の面積を負極面積よりも大きくすると、リチウム貯蔵層 と正極が直接対向する部分が生じてリチウム貯蔵層と正 極との間で充放電反応を生じる恐れがあるからである。

【0029】2)正極

この正極は、正極集電体と、この正極集電体に担持され 10 た正極層とを含む。

【0030】この正極は、例えば、以下の(A)または (B) に説明する方法で作製される。

【0031】(A)炭素質物と結着剤とを乾式混合し、 この混合物をフィルム状に圧延して製膜した後、乾燥す ることにより正極層を得る。この正極層を正極集電体に 圧着することにより正極を得る。

【0032】(B)炭素質物と結着剤とを溶媒中で混合 し、得られたスラリーを集電体に塗布し、乾燥した後、 圧延することにより正極を得る。

【0033】炭素質物としては、例えば、ケッチェンブ ラック、アセチレンブラック、カーボンブラック、ファ ーネスブラック、活性炭、活性炭素繊維、木炭類等を挙 げることができる。

【0034】炭素質物の表面には、コバルトフタロシア ニンなどの酸素発生過電圧を低下させる機能を有する微・ 粒子を担持させても良い。このような構成にすることに よって、酸素の還元反応の効率を高めることが可能であ る。

層を集電体に接着させる機能を有する。かかる結着剤と しては、例えば、ポリテトラフルオロエチレン (PTF E)、ポリフッ化ビニリデン (PVdF)、エチレン-プロピレンーブタジエンゴム(EPBR)、スチレンー ブタジエンゴム(SBR)などを用いることができる。

【0036】正極集電体としては、酸素の拡散を速やか に行わせるために多孔質の導電性基板(メッシュ、パン チドメタル、エクスパンディドメタル等)を用いること が好ましい。前記導電性基板の材質としては、例えば、 ステンレス、ニッケル、アルミニウム、鉄、チタンなど を挙げることができる。なお、前記集電体は、酸化を抑 制するために表面に耐酸化性の金属または合金が被覆さ れていても良い。

【0037】正極における炭素質物および結着剤の配合 割合は、炭素質物70~98重量%、結着剤2~30重 量%の範囲であることが好ましい。

【0038】3) 負極

この負極は、負極集電体と、前記負極集電体に担持され る負極活物質含有層とを含む。

【0039】負極活物質としては、例えば、リチウムイ

オンを吸蔵放出する材料を用いることができる。

【0040】リチウムイオンを吸蔵放出する材料として は、従来よりリチウムイオン電池またはリチウム電池に 使用されている材料を使用することができる。中でも、 金属酸化物、金属硫化物、金属窒化物およびリチウムイ オンを吸蔵放出する炭素質物よりなる群から選択される 少なくとも1種類の材料を、負極活物質として使用する ことが好ましい。

6

【0041】リチウムイオンを吸蔵放出する炭素質物と しては、例えば黒鉛、コークス、炭素繊維、球状炭素な どの黒鉛質材料もしくは炭素質材料、熱硬化性樹脂、等 方性ピッチ、メソフェーズピッチ、メソフェーズピッチ 系炭素繊維、メソフェーズ小球体などに500~300 0℃で熱処理を施すことにより得られる黒鉛質材料また は炭素質材料を挙げることができる。

【0042】前記金属酸化物としては、例えば、スズ酸 化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸 化物、タングステン酸化物などを挙げることができる。

【0043】前記金属硫化物としては、例えば、スズ硫 20 化物、チタン硫化物などを挙げることができる。

【0044】負極集電体としては、例えば、多孔質構造 の導電性基板、無孔の導電性基板を用いることができ る。これら導電性基板は、例えば、銅、ステンレス、ま たはニッケルから形成することができる。特に、多孔質 構造の導電性基板は、リチウム貯蔵層から負極活物質含 有層へのリチウムイオンの拡散速度を速くすることがで きるため、好ましい。多孔質構造の導電性基板として は、メッシュ、パンチドメタル、エクスパンディドメタ ル等を用いたり、あるいは金属箔に負極活物質含有層を 【0035】結着剤は、正極層の形状を保ち、かつ正極 30 担持させた後、前記金属箔に孔を開けたものを多孔質構 造の導電性基板として用いることができる。

【0045】炭素質物のような負極活物質を含む負極 は、例えば、負極活物質と結着剤とを溶媒の存在下で混 練し、得られた懸濁物を集電体に塗布し、乾燥した後、 所望の圧力で1回プレスもしくは2~5回多段階プレス することにより作製することができる。

【0046】前記結着剤としては、例えば、ポリテトラ フルオロエチレン(PTFE)、ポリフッ化ビニリデン (PVdF)、エチレンープロピレンーブタジエンゴム (EPBR)、スチレンーブタジエンゴム (SBR)、 カルボキシメチルセルロース (CMC) などを用いるこ とができる。

【0047】前記炭素質物および前記結着剤の配合割合 は、炭素質物80~98重量%、結着剤2~20重量% の範囲であることが好ましい。

【0048】4) 非水電解質含有層

非水電解質含有層としては、例えば、液状非水電解質が 含浸されているセパレータ、固体非水電解質層などを使 用することができる。

【0049】液状非水電解質は、例えば、非水溶媒にリ

50

チウム塩を溶解することにより調製される。

【0050】非水溶媒としては、リチウム二次電池の溶媒として公知の非水溶媒を用いることができる。例えば、プロピレンカーボネート(PC)及びエチレンカーボネート(EC)のうちの少なくとも一方から構成される第1の溶媒と、PC及びECよりも低粘度であり、かつドナー数が18以下である1種以上の非水溶媒(以下、第2の溶媒と称す)との混合溶媒を主体とする非水溶媒を用いることが好ましい。

【0051】第2溶媒としては、例えば、ジメチルカー 10 ボネート (DMC)、エチルメチルカーボネート (EM C)、ジエチルカーボネート (DEC)、メチルプロピルカーボネート (MPC)、イソプロピオメチルカーボネート、プロピオン酸エチル、プロピオン酸メチル、γーブチロラクトン (γ-BL)、酢酸エチル、酢酸メチルなどが挙げられる。これらの第2溶媒は、単独または2種以上の混合物の形態で用いることができる。中でも、分子内に炭酸エステル結合あるいはエステル結合を含む鎖状カーボネートが好ましい。また、第2溶媒の沸点は、90℃以上であることが好ましい。

【0052】前記混合溶媒中の前記第1溶媒の配合量は、体積比で10~80%であることが好ましい。より好ましい第1溶媒の配合量は体積比率で20~75%である。

【0053】前記混合溶媒の好ましい組成としては、ECとPC、ECとDEC、ECとPCとDEC、ECとアーBL、ECと γ -BL、ECと γ -BLとDEC、ECとPCと γ -BL、ECとPCと γ -BLとDECを挙げることができる。各混合溶媒では、ECの体積比率を $10\sim80\%$ の範囲内にすることが好ましい。より好ましいECの体積比率は、 $25\sim65\%$ の範囲である。

【0054】リチウム塩としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメタンスルホニルアミドリチウム [LiN(CF3SO2)2] などが挙げられるが、これらに限定されるものではない。

【0055】リチウム塩の非水溶媒に対する溶解量は、 0.5~2.5モル/Lとすることが望ましい。

【0056】セパレータとしては、例えば、ポリエチレン、ポリプロピレンまたはポリビニリデンフルオライド (PVdF)を含む多孔質フィルムや、合成樹脂製不織布、あるいはガラス繊維製不織布などを用いることができる。

【0057】セパレータの多孔度は、30~90%の範囲にすることが好ましい。これは次のような理由によるものである。多孔度を30%未満にすると、セパレータにおいて高い電解液保持性を得ることが困難になる恐れがある。一方、多孔度が90%を超えると、十分なセパ

レータ強度を得られなくなる恐れがある。多孔度のより 好ましい範囲は、35~60%である。

【0058】固体非水電解質層としては、例えば、リチウム塩及び高分子材料を含むフィルムを用いることができる。高分子材料としては、例えば、ポリエチレンオキサイド(PEO)、ポリアクリロニトリル(PAN)、PVdF等を挙げることができる。リチウム塩としては、前述した液状非水電解質において説明したのと同様なものを挙げることができる。

【0059】固体非水電解質には、イオン導電性を向上させるために有機溶媒が含有されていることが好ましい。かかる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γーブチロラクトン(γ-BL)、フッ素含有のカーボネート類、鎖状カーボネート類等を挙げることができる。前記有機溶媒は、これらを単独で用いてもよいが、2種類以上を組み合わせて用いてもよい。このような固体非水電解質は、リチウムイオンのイオン導電性を高めることができる。

20 【0060】5)酸素拡散層

この酸素拡散層としては、例えば、ポリエチレン、ポリプロピレン、あるいはPTFEなどのフッ素樹脂を含む多孔質フィルムや、ポリプロピレンやPTFEなどの合成樹脂製不織布、ガラス繊維不織布等を挙げることができる。

【0061】6)容器

この容器は、例えば、金属板、樹脂層を有するシート等 から形成することができる。

【0062】前記金属板は、例えば、鉄、ステンレス、アルミニウムから形成することができる。

【0063】前記シートとしては、金属層と、前記金属層を被覆する樹脂層とから構成されることが好ましい。前記金属層は、アルミニウム箔から形成することが好ましい。一方、前記樹脂層は、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂から形成することができる。前記樹脂層は、単層もしくは多層構造にすることができる。

【0064】次いで、前述したP及びQについて図1~ 図5を参照して説明する。

【0065】図1は本発明に係る非水電解質電池の一例(例えば、薄型非水電解質電池)を示す平面図で、図2は図1の非水電解質電池の容器をa-b線に沿って切断した際に得られる断面図で、図3は図1の非水電解質電池の容器をa-b線に沿って切断した際に得られる別の断面図で、図4は、本発明に係る非水電解質電池の一例(例えば、コイン型非水電解質電池)を示す平面図で、図5は図4の非水電解質電池の容器をa-b線に沿って切断した際に得られる断面図である。

において高い電解液保持性を得ることが困難になる恐れ 【0066】図1はフィルム製の袋状容器1を用いる薄がある。一方、多孔度が90%を超えると、十分なセパ 50 型非水電解質電池の一例であり、正極端子2及び負極端

子3が容器1から延出されている。複数の通気孔4は、 容器1の一面に形成されている。この図1に示す構造を 有する非水電解質電池において、前記Pは、前記通気孔 4が形成されている面5とこの形成面5と対向する面6 との距離を表わす。前記Qについては、各通気孔4から 容器1の内面の最遠部までの距離を測定し、測定された 距離のうちの最小値をQとする。

【0067】また、図3に示すように、袋状容器1の互 いに対向する二つの面7a,7bに通気孔4が形成され ている場合には、前記Pの定義が前述した図2の場合と 異なる。すなわち、前記二つの面7a,7b間の距離が 2Pで、前記Pは、この2Pの1/2の大きさとなる。

【0068】一方、図4は金属製容器を用いるコイン型 非水電解質電池の一例であり、かかる金属製容器は、複 数の通気孔4が開口されている金属製正極容器8と、こ の正極容器8が絶縁ガスケット9を介してかしめ固定さ れる金属製負極容器10とを備える。電極群は、正極容 器8及び負極容器10で囲まれた空間内に収納される。

【0069】このコイン型非水電解質電池においては、 Pは、通気孔4が形成されている正極容器8と負極容器 10との距離を表わす。一方、Qについては、各通気孔 4から金属製容器の内面の最遠部までの距離を測定し、 測定された距離のうちの最小値をQとする。

【0070】次いで、本発明に係る非水電解質電池の一 例を図6~図8を参照して説明する。

【0071】図6は本発明に係る非水電解質電池の一例 (例えば、薄型非水電解質電池)を示す断面図で、図7 は図6の非水電解質電池についての模式的な平面図で、 図8は図6の非水電解質電池の容器をa-b線に沿って 切断した際に得られる模式的な断面図である。

【0072】フィルム製の袋状容器1内には、電極群1 1が収納されている。電極群11は、例えば多孔質な導 電性基板からなる正極集電体12に正極層13が担持さ れた構造を有する正極14と、例えば多孔質な導電性基 板からなる負極集電体15に負極活物質含有層16が担 持された構造を有する負極17と、正極14及び負極1 7の間に配置される非水電解質含有層18とを含む。

【0073】正極端子2は、一端が正極集電体12に接 続され、かつ他端が容器1の外部に延出されている。一 方、負極端子3は、一端が負極集電体15に接続され、 かつ他端が容器1の外部に延出されている。

【0074】リチウム貯蔵体19は、負極17よりも卑 な電位でリチウムイオンを放出する材料を含有するリチ ウム貯蔵層20と、前記リチウム貯蔵層20が担持され る導電性支持体21とを備える。リチウム貯蔵体19 は、リチウム貯蔵層20が負極集電体15と接するよう に前記電極群11に積層されている。また、導電性支持 体21は、負極端子3と電気的に接続されている。

【0075】通気孔としての空気孔4は、容器1のうち

層としての空気拡散層22は、空気孔4が形成されてい る面と正極集電体12との間に配置されている。着脱可 能なシールテープ23は、空気孔4を塞ぐように容器1 の空気孔4形成面に貼着されている。

10

【0076】シールテープ14を剥すと、空気孔4を通 して容器1内に空気が供給される。供給された空気は、 空気拡散層22を通過することによって正極表面に一様 に拡散し、この空気中の酸素ガスが正極活物質として利 : 用される。

【0077】この図4~図6に示す構造を有する非水電 解質電池において、距離Rは、空気孔4からリチウム貯 蔵層20の表面までの距離であり、下記関係式(1)を 満足する。

[0078]

0. $25P \le R \le 0.98Q$ (1)

この関係式(1)について説明する。非水電解液電池の 使用を開始するにはシールテープの剥離等により通気孔 を開放させ、容器内に通気孔から酸素を供給する必要が あるが、酸素供給開始時にはリチウム貯蔵層から負極活 物質含有層へのリチウムの拡散が完了していないことが 20 ある。距離Rを0.25Pよりも小さくすると、リチウ ム貯蔵体と通気孔との距離が近くなり、酸素供給開始時 に容器内に残存するリチウム貯蔵層が容器内に供給され た酸素により酸化されるため、高い放電容量を得られな い。一方、距離Rが0.98Qよりも大きくなると、リ チウム貯蔵体と負極との接触面積が小さくなるため、リ チウム貯蔵体から負極に十分な量のリチウムを供給する ことが困難になり、高い放電容量を得られない。

【0079】距離Rを0.25P以上、0.98Q以下 30 にすることによって、以下の(a) \sim (c)に説明する 効果を得ることができる。

【0080】(a)リチウム貯蔵体から負極活物質含有 層へリチウムが拡散していく際、リチウム貯蔵体の体積 収縮が生じるが、この体積収縮に伴って今まで圧縮収納 されていた空気拡散層が膨張するため、電極群中に隙間 が生じるのを回避することができる。

【0081】(b) リチウム貯蔵体から負極に十分な量 のリチウムを供給することができる。

【0082】(c)使用開始時に容器内に残存するリチ ウム貯蔵層が、通気孔から容器内に取り込まれた酸素に 40 より酸化されるのを抑えることができる。

【0083】これら(a)~(c)の結果、非水電解質 電池の放電容量を向上することができる。

【0084】以上の説明では、本発明に係る非水電解質 電池の一例として空気リチウム電池を挙げたが、負極活 物質として、ナトリウム、アルミニウム、マグネシウ ム、セシウムなどからなる金属イオンを吸蔵・放出でき る材料を使用した他の空気金属電池にも適用することが 可能である。なお、他の空気金属電池においては、電解 正極14と対向する面に多数開口されている。酸素拡散 50 質として、ナトリウム、アルミニウム、マグネシウム、

セシウムなどの金属塩を使用するとよい。

[0085]

【実施例】以下、本発明の実施例を前述した図面を参照 して詳細に説明する。

【0086】 (実施例1)

<正極の作製>ケッチェンブラック (EC600JD TM) 90重量%と、ポリテトラフルオロエチレン10 重量%とを乾式混合した後、圧延することにより縦が4 0mmで、横が28mmで、厚さが200μmのフィル ム状の正極層を得た。この正極層を正極集電体であるチ タン製メッシュに圧着し、正極を得た。得られた正極の 正極集電体が露出した部分に正極端子の一端を接続し た。

【0087】<負極の作製>メソフェーズピッチ炭素繊 維97重量%と、ポリビニリデンフルオライド3重量% とをNーメチルピロリドン中で湿式混合し、得られたス ラリーを集電体である銅箔に塗布し、乾燥させた。次い で、集電体に直径1mmの孔を1cm2当り1~5個の 割合で開口させることにより、縦が40mmで、横が2 $8 \, \text{mm}$ で、厚さが $2 \, 0 \, 0 \, \mu \, \text{m}$ のフィルム状の負極を作製 $20 \,$ した。得られた負極のうち、負極集電体が露出している 部分に負極端子の端部を接続した。

【0088】<リチウム貯蔵体の作製>縦が38mm で、横が26mmで、厚さ100μmの金属リチウム箔 を、縦が38mmで、横が26mmで、厚さ100μm 一のニッケル製メッシュに圧着してリチウム貯蔵体を作製 した。ニッケル製メッシュのうち、リチウム貯蔵層の外 周部から露出している部分にリードを溶接し、さらにこ のリードを負極の負極集電体露出部分に接続した。

【0089】<液状非水電解質の調製>エチレンカーボ 30 ネート50体積%とプロピレンカーボネート50体積% を混合した非水溶媒中に過塩素酸リチウム(LiCIO 4) を1. 0モル/L溶解させることにより液状の非水 電解質を調製した。

【0090】<電池組立て>セパレータとして厚さ50 0μmのガラス繊維製不織布を、また、空気拡散層とし て厚さが400μmのPTFE製多孔質フィルムを用意 した。さらに、アルミニウム箔の両面を樹脂層で被覆し た構成のラミネートフィルムを袋状に加工し、片面に直 径が0.8mmの空気孔を8個開口した。

【0091】リチウム貯蔵体、負極、セパレータ、正極 および空気拡散層を順次積層し、この際にリチウム貯蔵 体のリチウム貯蔵層を負極集電体と接触させ、電極群と して積層物を得た。この積層物をラミネートフィルム製 の袋内に空気拡散層が空気孔形成面と対向するように収 納した。次いで、空気孔形成面にシールテープを貼付し て空気孔を閉塞した。また、正極端子および負極端子の 先端をラミネートフィルム製袋の開口部から延出させ た。

12

後、袋状ラミネートフィルムの開口部を熱融着処理して 封口することにより、前述した図4~図6に示す構造を 有する非水電解質二次電池を製造した。

【0093】得られた電池の容器の空気孔形成面と垂直 な断面を透過X線装置を用いて観察し、距離P、Q、R を測定したところ、以下に説明する結果が得られた。

【0094】8つの空気孔のうち任意の空気孔につい て、空気孔からリチウム貯蔵層表面までの距離Rを測定 したところ、1.5 mmであった。また、8 つの空気孔 それぞれについて、空気孔から容器内面の最遠部までの 距離を測定し、得られた8つの距離のうちの最小値5. 3mmをQとした。さらに、容器における空気孔が形成 されている面とこの形成面と対向する面との距離1.8 mmをPとした。

【0095】得られた値から0.25Pを算出すると、 0. 45であった。また、0. 98Qは、5. 19であ った。よって、距離Rは、前述した関係式(1)を満足 している。

【0096】 (実施例2~4) 空気拡散層とセパレータ の厚さおよび空気穴の位置を変更することにより距離 P、Q、Rを下記表1に示すように変更すること以外 は、前述した実施例1と同様にして非水電解質二次電池 を製造した。

-【0097】 (実施例5) 以下に説明するリチウム貯蔵 体を用いること以外は、前述した実施例1で説明したの と同様にして製造を行い、図9及び図10に示す構造を 有する非水電解質二次電池を得た。

【0098】<リチウム貯蔵体の作製>縦が38mm で、横が26mmで、厚さが100μmの金属リチウム 箔24 (リチウム貯蔵層)を縦が38mmで、横が26 mmで、厚さが100μmのニッケル製メッシュ25に 圧着し、さらに電池組立て時に空気孔が上部に配置され る位置に直径3mmの穴26を開口させ、リチウム貯蔵 体を得た。

【0099】得られた電池の容器の空気孔形成面と垂直 な断面を透過X線装置を用いて観察し、距離P、Q、R を測定したところ、以下に説明する結果が得られた。

【0100】8つの空気孔4のうち任意の空気孔4につ いて、空気孔4からリチウム貯蔵層24表面までの距離 40 Rを測定したところ、1.4 mmであった。また、8つ の空気孔4それぞれについて、空気孔4から容器1の内 面の最遠部までの距離を測定し、得られた8つの距離の うちの最小値5.0mmをQとした。さらに、容器1に おける空気孔4が形成されている面5とこの形成面5と 対向する面6との距離1.3mmをPとした。

【0101】得られた値から0.25Pを算出すると、 0.33であった。また、0.98Qは、4.90であ った。よって、距離Rは、前述した関係式(1)を満足 している。

【0092】袋の開口部から液状非水電解質を注液した 50 【0102】(比較例1)電極群のリチウム貯蔵体側が

空気孔と対向するように電極群を容器内に収納すること 以外は、前述した実施例1と同様にして製造を行い、図 11及び図12に示す構造の非水電解質二次電池を得 た。

【0103】8つの空気孔4のうち任意の空気孔4について、空気孔4からリチウム貯蔵層20表面までの距離Rを測定したところ、0.3mmであった。このような距離Rは、前述した関係式(1)を満足していない。

【0104】(比較例2)以下に説明するリチウム貯蔵体を用いること以外は、前述した実施例1で説明したのと同様にして製造を行い、図13及び図14に示す構造を有する非水電解質二次電池を得た。

【0105】<リチウム貯蔵体の作製>縦が40mmで、横が28mmのニッケル製メッシュ27の端部のみにリチウム箔28を圧着してリチウム貯蔵体を得た。

*【0106】8つの空気孔4のうち任意の空気孔4について、空気孔4からリチウム貯蔵層28表面までの距離Rを測定したところ、5.2mmであった。このような距離Rは、前述した関係式(1)を満足していない。

【0107】得られた実施例1~5及び比較例1~2の非水電解質二次電池を組み立て後、20℃で24時間放置した。次いで、非水電解質二次電池からシールテープを除去し、放電電流0.4mAで2.0Vまで放電した後、充電電流0.2mAで4.0Vまで充電する充放電サイクル試験を20℃で実施し、1サイクル目及び20サイクル目の放電容量を測定し、その結果を下記表1に示す。

[0108]

【表1】

	距離R	0. 25P	0. 98Q	1 サイクル目放電容量	20 4/71目放電容量
	(mm)	(mm)	(mm)	(mAh)	
実施例 1	1. 5	0.45	5. 19	216	(mAh)
実施例2	1. 5	1. 25	5. 19		206
実施例3	0. 7	0. 25		215	202
実施例4	1. 5		5.00	221	211
実施例5		0.45	1. 65	204	194
	1. 4	0.33	4. 9	210	200
比較例1	О. З	0.45	5. 19	8 4	15
比較例2	5. 2	0. 45	5. 19	5	<1

【0109】表1から明らかなように、実施例1~5の 二次電池は、初期容量及びサイクル性能の双方が比較例 1~2の二次電池に比べて優れていることがわかる。

【0110】実施例1の電池を充放電サイクル試験終了後に再度充電して分解し、負極中央部及び端部を粉末X線回折により分析したところ、負極中央部及び端部のいずれにおいてもリチウムと炭素が1:6.2の割合でリチウムイオンがインターカレートしていた。

【0111】一方、比較例1の電池を充放電サイクル試験終了後に分解したところ、セパレータと負極の間に気泡が生じていた。また、比較例2の電池を充放電サイクル試験終了後に分解し、正極の炭素材料を粉末X線回折により分析したところ、炭素へのリチウムイオンのインターカレートはほとんど観察されなかった。

【0112】(実施例6)以下に説明する負極及びリチウム貯蔵体を用いること以外は前述した実施例1と同様にして製造を行い、図15に示す構造を有する非水電解質二次電池を得た。

【0113】<負極の作製>メソフェーズピッチ炭素繊維97重量%と、ポリビニリデンフルオライド3重量%とをNーメチルピロリドン中で湿式混合し、得られたスラリーを集電体である銅製メッシュに塗布し、乾燥させることにより、集電体30の両面に負極活物質含有層31を保持させ、縦が40mmで、横が28mmで、厚さ

が200μmのフィルム状の負極32を作製した。得られた負極のうち、負極集電体が露出している部分に負極端子3の端部を接続した。

0 【0114】 < リチウム貯蔵体の作製> 縦が $38\,\mathrm{mm}$ で、横が $26\,\mathrm{mm}$ で、厚さ $200\,\mathrm{\mu}$ m の金属リチウム箔 をリチウム貯蔵層 $33\,\mathrm{c}$ して用意した。

【0115】<電池組立て>前述した実施例1で説明したのと同様な空気拡散層、正極、液状非水電解質及びセパレータを用意した。さらに、袋状に加工したラミネートフィルムを用意し、両面に直径が0.8mmの8個の空気孔をそれぞれ開口した。

【0116】空気拡散層22、正極14、セパレータ18、負極32(負極活物質含有層31、負極集電体30)、リチウム貯蔵層33、負極32(負極集電体30、負極活物質含有層31)、セパレータ18、正極14及び空気拡散層22を順次積層し、この積層物を前述した実施例1で説明したのと同様にラミネートフィルム

4及び空気拡散層 2 2を順次積層し、この積層物を前述した実施例 1 で説明したのと同様にラミネートフィルム製の袋内に収納した。次いで、袋状容器の両面にシールテープをそれぞれ貼付して空気孔を閉塞した。また、正極端子および負極端子の先端をラミネートフィルム製袋の開口部から延出させた。

【0117】袋の開口部から実施例1で説明したのと同様に液状非水電解質を注液した後、袋状ラミネートフィ 50 ルムの開口部を熱融着処理して封口することにより、図

15に示す構造を有する非水電解質二次電池を製造した。

【0118】得られた電池の容器の空気孔形成面と垂直な断面を透過X線装置を用いて観察し、距離P、Q、Rを測定したところ、以下に説明する結果が得られた。

【0119】16個の空気孔4のうち任意の空気孔4について、空気孔4からリチウム貯蔵層33表面までの距離Rを測定したところ、1.5mmであった。また、16個の空気孔4それぞれについて、空気孔4から容器1の内面の最遠部までの距離を測定し、測定された16種 10類の距離のうちの最小値5.3mmをQとした。さらに、容器1における空気孔が形成されている二つの面の距離3.6mmの1/2である1.8mmをPとした。

【0120】得られた値から0.25 Pを算出すると、0.45 であった。また、0.98 Qは、5.19 であった。よって、距離Rは、前述した関係式(1)を満足していた。

【0121】(実施例7~8)空気拡散層とセパレータの厚さおよび空気穴の位置を変更することにより距離 P、Q、Rを下記表1に示すように変更すること以外は、前述した実施例6と同様にして非水電解質二次電池を製造した。

【0122】(比較例3)前述した図6に示す構造を有する電極群を2つ用意し、リチウム貯蔵体19が最外層に位置するように重ね合せ、積層型電極群を得た。このような電極群を容器内に収納すること以外は、前述した実施例6と同様にして非水電解質二次電池を得た。すな*

*わち、この電池では、容器1の通気孔4が形成されてい

【0123】16個の空気孔のうち任意の空気孔について、空気孔からリチウム貯蔵層20表面までの距離Rを 測定したところ、0.3mmであった。このような距離 Rは、前述した関係式(1)を満足していない。

る面とリチウム貯蔵体19とが対向している。

16

【0124】(比較例4)以下に説明するリチウム貯蔵体を用いること以外は、前述した実施例6で説明したのと同様にして非水電解質二次電池を得た。

【0125】<リチウム貯蔵体の作製>縦が40mmで、横が28mmのニッケル製メッシュの端部のみにリチウム箔を圧着してリチウム貯蔵体を得た。

【0126】16個の空気孔のうち任意の空気孔について、空気孔からリチウム貯蔵層表面までの距離Rを測定したところ、5.2mmであった。このような距離Rは、前述した関係式(1)を満足していない。

【0127】得られた実施例6~8及び比較例3~4の非水電解質二次電池を組み立て後、20℃で24時間放置した。次いで、非水電解質二次電池からシールテープを除去し、放電電流0.4mAで2.0Vまで放電した後、充電電流0.2mAで4.0Vまで充電する充放電サイクル試験を20℃で実施し、1サイクル目及び20サイクル目の放電容量を測定し、その結果を下記表2に示す。

[0128]

【表2】

	距離R	0. 25P	0. 98Q	1 サイクル目放電容量	20 サイクル目放電容量
	(mm)	(mm)	(mm)	(mAh)	(mAh)
実施例6	1. 5	0.45	5. 19	430	408
実施例7	1. 5	1. 25	5. 19	415	395
実施例8	1. 5	0.45	1.65	420	400
比較例3	0. 3	0.45	5. 19	150	3 5
比較例4	5. 2	0.45	5. 19	20	2

【0129】表2から明らかなように、実施例6~8の二次電池は、初期容量及びサイクル性能の双方が比較例3~4の二次電池に比べて優れていることがわかる。

[0130]

【発明の効果】以上詳述したように本発明によれば、放電容量が向上された非水電解質電池を提供することができる。

【図面の簡単な説明】

【図1】本発明に係る非水電解質電池の一例(例えば、 薄型非水電解質電池)を示す平面図。

【図2】図1の非水電解質電池の容器を a - b 線に沿って切断した際に得られる断面図。

【図3】図1の非水電解質電池の容器をa-b線に沿って切断した際に得られる別の断面図。

【図4】本発明に係る非水電解質電池の一例(例えば、コイン型非水電解質電池)を示す平面図。

【図5】図4の非水電解質電池の容器をa-b線に沿って切断した際に得られる断面図。

【図6】本発明に係る非水電解質電池の一例(例えば、 薄型非水電解質電池)を示す断面図。

【図7】図6の非水電解質電池の平面を示す模式図。

【図8】図6の非水電解質電池の容器を a - b 線に沿って切断した際に得られる断面を示す模式図。

【図9】実施例2の非水電解質電池の平面を示す模式 図。

【図10】実施例2の非水電解質電池をa-b線に沿って切断した際に得られる断面を示す模式図。

0 【図11】比較例1の非水電解質電池の平面を示す模式

図。

【図12】比較例1の非水電解質電池をa-b線に沿って切断した際に得られる断面を示す模式図。

【図13】比較例2の非水電解質電池の平面を示す模式 図。

【図14】比較例2の非水電解質電池をa-b線に沿って切断した際に得られる断面を示す模式図。

【図15】実施例6の非水電解質電池を示す断面図。 【符号の説明】

- 1 …容器、
- 2…正極リード、
- 3…負極リード、
- 4…通気孔、

- 11…電極群、
- 12…正極集電体、
- 13…正極層、
- 14…正極、
- 15…負極集電体、
- 16…負極活物質含有層、
- 17…負極、
- 18…セパレータ、
- 19…リチウム貯蔵体、
- 10 20…リチウム貯蔵層、
- 21…導電性支持体、
 - 22…空気拡散層、
 - 23…テープシール。

【図12】

フロントページの続き

(72)発明者 大崎 隆久

神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 高見 則雄

神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5H032 AA00 AS05 AS06 AS12 CC00 CC11 HH05

THIS PAGE BLANK (USPTO)