2023 届宁德市普通高中毕业班五月份质量检查

数学试题参考答案及评分标准

说明:

- 1.本解答指出了每题要考察的主要知识和能力,给出一种或几种解法供参考.如果考生的解法与给出的解法不同,可根据试题的主要考察内容比照评分标准确定相应的评分细则.
- 2.对解答题,当考生的解答在某一步出现错误,但整体解决方案可行且后续步骤没有出现推理或计算错误,则错误部分依细则扣分,并根据对后续步骤影响的程度决定后继部分的给分,但不得超过后续部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
 - 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
 - 4.解答题只给整数分数,填空题不给中间分.
- 一、选择题:本题考查基础知识和基本运算,每小题 5 分,满分 40 分.
 - 1. D 2. C 3. B 4. B 5. C 6. D 7. A 8. B
- 二、选择题:本题共4小题,每小题5分,共20分.全部选对的得5分,有选错的得0分,部分选对的得3分.
 - 9. ABD 10. BC 11. ACD 12. AD
- 三、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.
 - 13. 5 14. $f(x) = -x^2$ (答案不唯一: 如 $f(x) = x + 1 e^x$, $f(x) = \cos x 1$ 等) 15. -1 16. 8
- 三、解答题: 本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.
- 17. 本小题主要考查等差数列的通项公式、求和等基础知识,考查运算求解能力,逻辑推理能力,化归与转化思想等.满分 10 分.

代入 $a_1 + b_1 = 3$, $a_2 + b_2 = 8$ 得 $2a_1 + 1 = 3$, $2a_2 + 4 = 8$,

又因为数列 $\{a_n\}$ 为等差数列,故公差为 $d=a_2-a_1=1$,…………4分

(2) 证明: 由(1) 可得 $b_n = n + n^2$,

所以
$$S_n = \frac{1}{b_1} + \frac{1}{b_2} + \frac{1}{b_3} + \dots + \frac{1}{b_n}$$

$$= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$$

$$= 1 - \frac{1}{n+1} \dots \qquad ... 8 分$$

又因为 $n \in \mathbb{N}^*$,所以 $0 < \frac{1}{n+1} \le \frac{1}{2}$ (n = 1时等号成立),

18. 本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系,空间角的计算等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分 12 分.

解法一: (1) 取 AB 的中点 F, 连结 BD, DF.

在四边形 ABCD中, $BC \perp CD$, AB / / CD , 故四边形 ABCD 为直角梯形,

$$\nabla AB = 2BC = 2CD = 2$$
, $\&AF = BF = \frac{1}{2}AB = 1$, $BD = \sqrt{2}$.

又由CD//BF, CD=BF, 所以四边形BCDF为正方形,

故
$$DF = 1 = \frac{1}{2}AB$$
,

从而 *BD* ⊥ *AD*;2 分

$$\mathbb{X} PD = 1$$
, $PB = \sqrt{3}$,

由 $PD \cap AD = D$, $PD \subset$ 平面 PAD, $AD \subset$ 平面 PAD,

又BD \subset 平面ABCD,

所以平面 *PAD* ⊥ 平面 *ABCD*5 分

(2) 取 AD 的中点 O, 连接 OP, OF,

由 PA = PD = 1, 所以 $PO \perp AD$,

因为平面 PAD 上平面 ABCD, 且平面 PAD 个平面 ABCD = AD,

所以 PO ⊥ 平面 ABCD6 分

又O, F为AD, AB的中点,

所以
$$OF//BD$$
,且 $OF = \frac{1}{2}BD = \frac{\sqrt{2}}{2}$,

由(1) 知 $BD \perp AD$, 故 $OF \perp AD$.

以O为原点,OF、OA、OP 所在的直线分别为

x, y, z轴,建立如图的空间直角坐标系,

$$\text{ for } \overrightarrow{AD} = \left(0, -\sqrt{2}, 0\right), \quad \overrightarrow{PB} = \left(\sqrt{2}, -\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \quad \overrightarrow{AP} = \left(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right),$$

设
$$\frac{PM}{PB} = \lambda$$
, $\lambda \in (0,1)$, 则 $\overrightarrow{PM} = \lambda \overrightarrow{PB} = \left(\sqrt{2}\lambda, -\frac{\sqrt{2}}{2}\lambda, -\frac{\sqrt{2}}{2}\lambda\right)$,

$$\overrightarrow{AM} = \overrightarrow{AP} + \overrightarrow{PM} = \left(\sqrt{2}\lambda, -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\lambda, \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\lambda\right),$$

设平面 ADM 的一个法向量为 n = (x, y, z),则

$$\begin{cases} \overrightarrow{AD} \cdot \boldsymbol{n} = -\sqrt{2}y = 0, \\ \overrightarrow{AM} \cdot \boldsymbol{n} = \sqrt{2}\lambda x - \frac{\sqrt{2}}{2}(\lambda + 1)y + \frac{\sqrt{2}}{2}(1 - \lambda)z = 0, \end{cases}$$

因为二面角P-AD-M的大小为 45° ,所以

$$\left|\cos\langle \boldsymbol{m},\boldsymbol{n}\rangle\right| = \frac{\left|\boldsymbol{m}\cdot\boldsymbol{n}\right|}{\left|\boldsymbol{m}\right|\left|\boldsymbol{n}\right|} = \frac{\left|\lambda-1\right|}{\sqrt{\left(\lambda-1\right)^2+\left(2\lambda\right)^2}} = \frac{\sqrt{2}}{2},$$

由 $\lambda \in [0,1]$,解得: $\lambda = \frac{1}{3}$,

所以线段 PB 上存在点 M,当 $\frac{PM}{PB} = \frac{1}{3}$ 时,使得二面角 P - AD - M 大小为 45° 12 分解法二: (1) 取 AD 的中点 O, AB 的中点 F ,连结 PO, BO, DF .

在四边形 ABCD 中, $BC \perp CD$, AB / /CD , 故四边形 ABCD 为直角梯形,

$$\nabla AB = 2BC = 2CD = 2$$
,

故CD//BF,且CD=BF=BC=1,

所以四边形 BCDF 为正方形,

故 ΔADF 为等腰直角三角形,

从而
$$AD = \sqrt{2}$$
 , $\angle BAD = 45^{\circ}$,

ΔPAD 为等腰直角三角形......1 分

在
$$\triangle ABO$$
 中, $BO^2 = \left(\frac{\sqrt{2}}{2}\right)^2 + 2^2 - 2 \times \frac{\sqrt{2}}{2} \times 2 \times \cos 45^\circ = \frac{5}{2}$,

又因为PA = PD = 1, 所以 $PO \perp AD$,

$$PO = \frac{1}{2}AD = \frac{\sqrt{2}}{2}$$
, $X PB = \sqrt{3}$,

所以 $PB^2 = PO^2 + BO^2$,

 $\triangle AO \cap BO = O$, $AO \subset \overline{\Upsilon}$ $\triangle ABCD$, $OB \subset \overline{\Upsilon}$ $\triangle ABCD$,

又PO \subset 平面PAD,

(2) 过 B 作 Bz / / PO,则 Bz 上 平面 ABCD.......6 分

以 B 为原点,BA、BC、Bz 所在的直线分别为 x、y、z 轴,建立如图的空间直角坐标

系,则
$$B(0,0,0)$$
, $A(2,0,0)$, $C(0,1,0)$, $D(1,1,0)$, $P\left(\frac{3}{2},\frac{1}{2},\frac{\sqrt{2}}{2}\right)$,

设
$$\frac{BM}{BP}=\lambda$$
 , $\lambda\in\left[0,1\right]$, 则 $\overrightarrow{BM}=\lambda\overrightarrow{BP}=(\frac{3}{2}\lambda,\frac{1}{2}\lambda,\frac{\sqrt{2}}{2}\lambda)$,

$$\overrightarrow{AM} = \overrightarrow{BM} - \overrightarrow{BA} = \left(\frac{3}{2}\lambda - 2, \frac{1}{2}\lambda, \frac{\sqrt{2}}{2}\lambda\right),$$

设平面 ADM 的一个法向量为 n = (x, y, z),

$$\begin{aligned} & \text{constant} \\ & \overrightarrow{AM} \cdot \boldsymbol{n} = -x + y = 0, \\ & \overrightarrow{AM} \cdot \boldsymbol{n} = \left(\frac{3}{2}\lambda - 2\right)x + \frac{1}{2}\lambda y_2 + \frac{\sqrt{2}}{2}\lambda z = 0, \end{aligned}$$

因为二面角P-AD-M的大小为 45° ,

所以平面 ADM 与平面 ABCD 所成的角也等于 45° ,

$$\left|\cos\langle \boldsymbol{m},\boldsymbol{n}\rangle\right| = \frac{\left|\boldsymbol{m}\cdot\boldsymbol{n}\right|}{\left|\boldsymbol{m}\right|\left|\boldsymbol{n}\right|} = \frac{\left|2\sqrt{2}(1-\lambda)\right|}{\sqrt{\lambda^2 + \lambda^2 + 8(1-\lambda)^2}} = \frac{\sqrt{2}}{2},$$

所以线段 PB 上存在点 M, 当 $\frac{BM}{RP} = \frac{2}{3}$, 即 $\frac{PM}{PR} = \frac{1}{3}$ 时, 使得二面角 P-AD-M 大小为 45° .

解法三: (1) 同解法二;

(2) 过M 点作 $MH \perp OB \uparrow H$, 过H作 $HE \perp AD \uparrow E$, 连结ME

由 (1) 知平面 $POB \perp$ 平面 ABCD ,所以 $MH \perp$ 平面 ABCD ,故 $MH \perp AD$,

所以AD 上平面MHE,因而ME 上AD,

因为平面 $PAD \perp$ 平面 ABCD, 二面角 P-AD-M 大小为 45° ,

所以二面角 M - AD - B 大小为 45° ,从而 $\angle MEH = 45^\circ$,故 MH = EH …………8 分 设 MH = h ,则 EH = h ,

因为 $HE \perp AD$, $BD \perp AD$, 从而HE//BD,

所以
$$\frac{OH}{OB} = \frac{EH}{BD} = \frac{h}{\sqrt{2}}$$
,

从而
$$\frac{BH}{OB} = \frac{\sqrt{2} - h}{\sqrt{2}} \dots 9$$
 分

因为 $MH \perp OB$, $PO \perp OB$, 从而MH//PO,

所以
$$\frac{BH}{OB} = \frac{MH}{PO} = \frac{BM}{PB}$$
,

即
$$\frac{\sqrt{2}-h}{\sqrt{2}} = \frac{h}{\frac{\sqrt{2}}{2}}$$
 ,解得 $h = \frac{\sqrt{2}}{3}$, 11 分

解法一: (1) 由余弦定理得 $b^2 = a^2 + c^2 - 2ac \cos B$,

得
$$\begin{cases} a=8, \\ c=5 \end{cases}$$
 成 $\begin{cases} a=5, \\ c=8. \end{cases}$

解法三: (1) 同解法一;

(2) 在
$$\triangle ABC$$
 中,由余弦定理得 $\cos A = \frac{25 + 49 - 64}{2 \times 5 \times 7} = \frac{1}{7}$,

又
$$\cos A = 1 - 2\sin^2\frac{A}{2}$$
 ,所以 $\frac{1}{7} = 1 - 2\sin^2\frac{A}{2}$,所以 $\sin\frac{A}{2} = \frac{\sqrt{21}}{7}$.

$$\sin \angle ADB = \sin(\frac{2\pi}{3} - \frac{A}{2}) = \frac{\sqrt{3}}{2}\cos\frac{A}{2} + \frac{1}{2}\sin\frac{A}{2} = \frac{\sqrt{3}}{2} \times \frac{2\sqrt{7}}{7} + \frac{1}{2} \times \frac{\sqrt{21}}{7} = \frac{3\sqrt{21}}{14}$$
.10 \(\frac{1}{2}\)

在 ΔABD 中,由
$$\frac{AD}{\sin \frac{\pi}{3}} = \frac{AB}{\sin \angle ADB}$$
,

20. 本小题主要考查列联表、二项分布、概率的期望等基础知识,考查运算求解能力、数据处理能力、应用意识,考查统计思想、化归与转化思想.满分12分.

解: (1)(i) 依题意得2×2列联表如下:

	正确识别	错误识别	合计
A 组软件	40	20	60
B组软件	20	20	40
合计	60	40	100

......1 ජ

因为
$$\chi^2 = \frac{100(40 \times 20 - 20 \times 20)^2}{60 \times 40 \times 60 \times 40} = \frac{25}{9} \approx 2.778 < 3.841$$
, 3分

$$\perp P(\chi^2 \ge 3.841) = 0.05$$

所以没有95%的把握认为软件类型和是否正确识别有关,......4分

故方案二在一次测试中通过的概率为

$$P = C_2^1 \cdot \frac{2}{3} \left(1 - \frac{2}{3} \right) \cdot C_2^2 \cdot \left(\frac{1}{2} \right)^2 + C_2^2 \left(\frac{2}{3} \right)^2 \cdot C_2^1 \cdot \frac{1}{2} \left(1 - \frac{1}{2} \right) + C_2^2 \left(\frac{2}{3} \right)^2 \cdot C_2^2 \left(\frac{1}{2} \right)^2 = \frac{4}{9} .$$

.....7 分

(2) 方案二每次测试通过的概率为

$$=-3\left(P_1P_2-\frac{4}{9}\right)^2+\frac{16}{27}$$

又
$$P_1 + P_2 = \frac{4}{3}$$
,此时 $P_1 = P_2 = \frac{2}{3}$.

因为每次测试都是独立事件,

故 n 次实验测试通过的次数 $X \sim B(n,P)$, 期望值 E(X) = nP = 16,

21. 本题主要考查直线、双曲线、直线与双曲线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想、数形结合思想,考查考生分析问题和解决问题的能力,满分 12 分.

解法一: (1) 因为点M满足 $|MF_1|-|MF_2|=4$,

所以点M的轨迹为双曲线的右支,……………………………………………1分

(未注明右支或<math>x>0 扣 1 分)

(2) 设BC与AQ的交点为D.

显然直线 BC 的斜率存在,设 BC 的方程为 y = kx + m,

联立方程
$$\begin{cases} y = kx + m, \\ x^2 - 4y^2 = 4, \end{cases}$$
 消去 y 得 $(4k^2 - 1)x^2 + 8kmx + 4m^2 + 4 = 0$,

又
$$k_{AC} = \frac{y_2}{x_2 - 2}, k_{AB} = \frac{y_1}{x_1 - 2}$$
,因为 $k_{AC} \cdot k_{AB} = -1$,

故
$$(k^2+1)x_1x_2+(mk-2)(x_1+x_2)+m^2+4=0$$
,

代入
$$(k^2+1)\frac{4m^2+4}{4k^2-1}+(mk-2)(-\frac{8km}{4k^2-1})+m^2+4=0$$
,整理得 $20k^2+3m^2+16km=0$,

所以点D为AQ中点,且直线AD的方程为 $y = -\frac{1}{k}(x-2)$,

联立
$$\begin{cases} y = k(x - \frac{10}{3}), & \text{解得} \\ y = -\frac{1}{k}(x - 2), & \text{y} = \frac{-4k}{3(k^2 + 1)}. \end{cases}$$

代入曲线
$$E$$
 的方程 $\left[\frac{14k^2+6}{3(k^2+1)}\right]^2 - 4\left[\frac{-8k}{3(k^2+1)}\right]^2 = 4$,

解得 $k^4 - k^2 = 0$,即 $k = \pm 1$,所以直线 BC 的斜率为 ± 1 … … … … 12 分解法二: (1) 同解法一;

设 BC 的方程为
$$x = my + t$$
 , 联立方程
$$\begin{cases} x = my + t, \\ x^2 - 4y^2 = 4, \end{cases}$$

消去 x 得 $(m^2-4)y^2+2tmy+t^2-4=0$,

$$k_{AC} = \frac{y_2}{x_2 - 2}, k_{AB} = \frac{y_1}{x_1 - 2}$$

因为
$$k_{AC} \cdot k_{AB} = -1$$
,所以 $\frac{y_2}{x_2 - 2} \cdot \frac{y_1}{x_1 - 2} = -1$,

$$\text{Pr} \lambda (m^2 + 1) \times \frac{t^2 - 4}{m^2 - 4} + m(t - 2)(-\frac{2tm}{m^2 - 4}) + (t - 2)^2 = 0,$$

联立
$$\begin{cases} x = my + \frac{10}{3}, & \text{解得} \\ y = -m(x-2), & \end{cases} \quad y = \frac{6m^2 + 10}{3(m^2 + 1)}, \quad y = \frac{-4m}{3(m^2 + 1)}.$$

	则 $k_1 \cdot k_2 = \frac{-4m-1}{4} = -1$,所以 $m = \frac{3}{4}$,
	所以直线 BC 的方程为 $\frac{3}{4}x + ny = 1$,从而直线 BC 恒过定点 $(\frac{4}{3}, 0)$,
	故原坐标系下直线 BC 恒过定点 $(\frac{10}{3},0)$
	由 A,B,Q,C 四点共圆,设 BC 的直线方程为 $y=k(x-\frac{10}{3})$,
	即 $kx - y - \frac{10}{3}k = 0$; 设 AQ 的直线方程为 $y = -\frac{1}{k}(x-2)$, 即 $x + ky - 2 = 0$.
	所以过四点 A, B, Q, C 的二次曲线系方程为 $(kx - y - \frac{10}{3}k)(x + ky - 2) + \lambda(x^2 - 4y^2 - 4) = 0$,
	11 分
	等式左边 xy 的系数为 k^2-1 ,所以 $k^2-1=0$,所以 $k=\pm 1$,即直线 BC 的斜率为 ± 1 .
	12 分
解污	五: (1) 同解法一;
	(2) 由直线 BC 不过点 $(2,0)$,故设直线 BC 的方程为 $m(x-2)+ny=1$,5 分
	所以由 $x^2 - 4y^2 = 4$ 得 $(x-2+2)^2 - 4y^2 = 4$,
	即[$(2m+1)(x-2)+2ny$] ² $-4y^2=4[m(x-2)+ny]^2$,
	两边同除以 $(x-2)^2$ 得 $\left[(2m+1)+2n\cdot\frac{y}{x-2}\right]^2-4\left(\frac{y}{x-2}\right)^2=4(m+n\cdot\frac{y}{x-2})^2$,
	设 $\frac{y}{x-2} = k$, 上式整理得 $4k^2 - 4nk - 4m - 1 = 0$.
	设直线 AC , AB 的斜率分别为 k_1 , k_2 , 则 $k_1 \cdot k_2 = \frac{-4m-1}{4} = -1$,
	解得 $m = \frac{3}{4}$,
	所以直线 BC 的方程为 $\frac{3}{4}(x-2) + ny = 1$, 即 $\frac{3}{4}(x-\frac{10}{3}) + ny = 0$,
	从而 BC 恒过定点 $(\frac{10}{3},0)$
	下同解法五.
22. 力、	本小题主要考查导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想等.满分12分.
	解法一、(1) 当 $a \le 0$ 时,由 $e^x > 0$,且 $x \in (0,\pi)$ 时 $\sin x > 0$,
	故 $f(x) \le 1$ 成立;

当a > 0时,即为 $f(x)_{max} \le 1$. (2) $f(x) = \frac{4\sin x}{x}$, $f'(x) = \frac{4(\cos x - \sin x)}{x}$, 所以 f(x) 在 $\left(0, \frac{\pi}{4}\right)$ 单调递增,在 $\left(\frac{\pi}{4}, \pi\right)$ 单调递减, 先证 $\frac{\pi}{2} - x_1 < x_2$, 由 $\frac{\pi}{4} < \frac{\pi}{2} - x_1$, 故即证 $f(x_2) < f\left(\frac{\pi}{2} - x_1\right)$,由 $f(x_1) = f(x_2)$, $\text{If } h'(x) = f'\left(\frac{\pi}{2} - x\right) - f'(x) = -4 \times \frac{\left(\sin x - \cos x\right)\left(e^x - e^{\frac{\pi}{2} - x}\right)}{\frac{\pi}{2}} < 0,$ 现证 $\frac{\pi - x_2}{e^{\pi - x_2}} < \sin x_2$,即证 $\frac{\pi - x_2}{e^{\pi - x_2}} < \sin(\pi - x_2)$, $x_2 \in \left(\frac{\pi}{4}, \pi\right)$. 设g(t)=e^t sin t-t, $t \in \left(0, \frac{3\pi}{4}\right)$, 则 $g'(t)=e^{t}(\sin t + \cos t)-1$, 设 $p(t)=e^{t}(\sin t + \cos t)-1$, 由 $p'(t)=2e^t\cos t$, 所以 p(t) 在 $\left(0,\frac{\pi}{2}\right)$ 单调递增, 在 $\left(\frac{\pi}{2},\frac{3\pi}{4}\right)$ 单调递减, $\mathbb{X} p(0) = 0$, $p\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} - 1 > 0$, $p\left(\frac{3\pi}{4}\right) = -1 < 0$,