

TRIGONOMETRIE

VI. Relations entre les angles :

a. Angles opposés : (x et -x)

<u>b.</u> Angles supplémentaires : $(\pi - x \text{ et } x)$

Angles opposés supplémentaires : ($\pi + x$ et x

<u>c.</u> Angles complémentaires : $(\frac{\pi}{2} - x \text{ et } x)$ Angles opposés complémentaires : $(\frac{\pi}{2} - x \text{ et } x)$

d. Résumer des formules précédentes :

	-x	$\pi - x$	$\pi + x$	$\frac{\pi}{2}$ - x	$\frac{\pi}{2} + x$
sin /	-sin x	sin x	-sin x	cos x	cos x
cos 🖊	cos x	-cos x	-cos x	sin x	-sin x
tan 🖊	– tan x	– tan x	tan x	$\frac{1}{\tan x}$	$\frac{-1}{\tan x}$

VII EQUATIONS TRIGONOM2TRIQUES:

Remarque:

• le plan (P) est rapporté a un repère orthonormé direct $(0,\vec{i},\vec{j})$.

TRIGONOMETRIE

page 🖠

- (C) est le cercle trigonométrique d'origine I lié au repère $(0,\vec{i},\vec{j})$ tel que $\overrightarrow{OI} = \vec{i}$ et $\overrightarrow{OJ} = \vec{j}$ et $\overrightarrow{OI'} = -\vec{i}$ et $\overrightarrow{OJ'} = -\vec{j}$.
 - **<u>A.</u>** Equations de la forme $x \in \mathbb{R}$: $\cos x = a$; $(a \in \mathbb{R})$:
 - a. Activité:
 - 1. Construire sur le cercle les points M de (C) tel que $\cos(\overline{i}, \overline{OM}) = \frac{1}{2}$.
 - 2. Déterminer pour chaque cas les abscisses curvilignes de M
- 3. Déterminer pour chaque cas les mesures de l'angle orienté $(\overrightarrow{i}, \overrightarrow{OM})$.
- 4. Que peut-on dire pour M de (C) tel que $\cos(\overline{i}, \overline{OM}) = 3$?
 - **<u>b.</u>** Conséquence :

$$\cos x = \frac{1}{2}$$
 équivaut à $\cos x = \cos \frac{\pi}{3} = \cos \frac{-\pi}{3}$

$$\begin{cases} x = \frac{\pi}{3} + 2k\pi \\ \text{ou} \\ x = -\frac{\pi}{3} + 2k\pi \end{cases}$$

d'où l'ensemble des solutions de l'équation (E) est $S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{3} + 2k\pi , x = -\frac{\pi}{3} + 2k\pi \mid k \in \mathbb{Z} \right\}$

<u>c.</u> Propriété :

Soit x de \mathbb{R} et a un réel donné.

L'équation: $x \in \mathbb{R}$: $\cos x = a$; $(a \in \mathbb{R})$ a pour solutions:

1^{er} cas: a ∈]-∞, -1[U]1,+∞[l'équation n'a pas de solution d'où S = Ø (ensemble des solutions)

 $2^{ième}$ cas: $a \in [-1,1]$ on a: $\cos x = a$ on cherche α de \mathbb{R} tel que $a = \cos \alpha$ d'où:

 $\cos x = a$ équivaut à $\cos x = \cos \alpha$

ensemble des solutions de l'équation (E) est $S=\left\{x\in\mathbb{R}\:/\:x=\alpha+2k\pi\:,\:x=-\alpha+2k\pi\:/\:k\in\mathbb{Z}\right\}$ Cas particulier :

- ✓ a = 0 ensemble des solutions de l'équation (E) est : $s = \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$.
- ✓ a=1 ensemble des solutions de l'équation (E) est : $s=\{2k\pi/k\in\mathbb{Z}\}$.
- ✓ a = -1 ensemble des solutions de l'équation (E) est : $s = \{\pi + 2k\pi / k \in \mathbb{Z}\}$.

TRIGONOMETRIE

page 🕕

d. Exercice:

Résoudre l'équation suivante :

$$1. (E_1): x \in \mathbb{R} / \cos x = \cos \frac{\pi}{4}.$$

2.
$$(E_2): x \in \mathbb{R} / \cos x = \frac{\sqrt{3}}{2}$$
.

3.
$$(E_3): x \in \mathbb{R} / \cos(2x) = -\frac{1}{2}$$
.

B. Equations de la forme $x \in \mathbb{R} : \sin x = a$; $(a \in \mathbb{R}) :$

a. Activité:

5. Construire sur le cercle les points M de (C) tel que
$$\sin\left(\overline{i}, \overline{OM}\right) = \frac{\sqrt{3}}{2}$$
.

7. Déterminer pour chaque cas les mesures de l'angle orienté
$$(\overline{i}, \overline{OM})$$
.

8. Que peut-on dire pour M de (C) tel que
$$\sin(\overline{i}, \overline{OM}) = -5$$
?

<u>b.</u> Conséquence :

$$\sin x = \frac{\sqrt{2}}{2} \text{ équivaut à } \sin x = \sin \frac{\pi}{4} = \sin \frac{3\pi}{4} \text{ ; } \left(\frac{3\pi}{4} = \pi - \frac{\pi}{4}\right)$$

d'où l'ensemble des solutions de l'équation (E) est

$$S = \left\{ x \in \mathbb{R} \ / \ x = \frac{\pi}{4} + 2k\pi \ , \ x = \frac{3\pi}{4} + 2k\pi \ / \ k \in \mathbb{Z} \right\}$$

c. Propriété:

Soit x de \mathbb{R} et a un réel donné.

L'équation:
$$x \in \mathbb{R}$$
: $\cos x = a$; $(a \in \mathbb{R})$ a pour solutions:

$$2^{ième}$$
 cas : a ∈ $[-1,1]$ on a : cos x = a on cherche α de \mathbb{R} tel que a = sin α d'où :

$$\sin x = a$$
 équivaut à $\sin x = \sin \alpha$

ensemble des solutions de l'équation (E) est
$$S = \{x \in \mathbb{R} \mid x = \alpha + 2k\pi , x = \pi - \alpha + 2k\pi \mid k \in \mathbb{Z}\}$$

TRIGONOMETRIE

þage 🖠

d. Cas particulier :

a = 0 ensemble des solutions de l'équation (E) est :
$$s = \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$
.

✓
$$a=1$$
 ensemble des solutions de l'équation (E) est : $s = \{2k\pi/k \in \mathbb{Z}\}$.

$$a=-1$$
 ensemble des solutions de l'équation (E) est : $s=\left\{\pi+2k\pi/k\in\mathbb{Z}\right\}$.

e. Exercice:

Résoudre l'équation suivante :

$$(E_1): x \in \mathbb{R} / \sin x = -\frac{1}{2}$$
.

$$(E_2): x \in \mathbb{R} / \sin x = 1.$$

3.
$$(E_3): x \in \mathbb{R} / \sin\left(2x + \frac{\pi}{4}\right) = \frac{1}{2}$$
.

$$(E_4): x \in \mathbb{R} / \sin x = \cos x .$$

$\underline{\mathbf{C}}$. Equations de la forme $\mathbf{x} \in \mathbb{R}$: $\mathbf{tanx} = \mathbf{a}$; $(\mathbf{a} \in \mathbb{R})$:

a. Activité:

- Il faut au départ déterminer l'ensemble de définition de l'inéquation $\left(x \neq \frac{\pi}{2} + k\pi , k \in \mathbb{Z}\right)$
- Soit la droite (T) tangente au cercle (C) en I, coupe la demi-droite [OM) au point T (condition $M \neq J$ et $M \neq J'$).
- la droite (T) est muni du repère (I, \vec{i})
- **1.** Déterminer la condition sur x pour tan(x) est définie.
- 2. Construire sur la droite (T) le point T tel que : $\tan(\overline{i}, \overline{OT}) = \frac{1}{2}$.
- 3. Construire sur le cercle les points M intersection de la droite (OT) et le cercle (C).
- 4. Déterminer pour chaque cas les abscisses curvilignes de M.
- 5. Peut-on écrire les abscisses curvilignes de M d'une façon simple ?
- 6. Déterminer les mesures de l'angle orienté $(\overrightarrow{i}, \overrightarrow{OM})$.
- 7. Que peut-on dire pour M de (C) tel que $\tan(\overline{i}, \overline{OM}) = -5$?

<u>b.</u> Conséquence :

Avec
$$x \neq \frac{\pi}{2} + k\pi$$
, $k \in \mathbb{Z}$

$$\tan x = \frac{1}{2}$$
 équivaut à $\tan x = \tan \frac{\pi}{6} = \tan \left(\pi + \frac{\pi}{6}\right)$

TRIGONOMETRIE

page 13

équivaut à
$$x = \frac{\pi}{6} + k\pi / k \in \mathbb{Z}$$

conclusion : d'où l'ensemble des solutions de l'équation (E) est $S = \left\{ x \in \mathbb{R} \ / \ x = \frac{\pi}{6} + k\pi \ / \ k \in \mathbb{Z} \right\}$

c. Propriété:

Soit x de \mathbb{R} et a un réel donné.

L'équation: $x \in \mathbb{R}$: tanx = a; $(a \in \mathbb{R})$ a pour solutions:

Ensemble de définition de l'équation (E) est $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi ; k \in \mathbb{Z} \right\}$ (c.à.d. $x \neq \frac{\pi}{2} + k\pi ; k \in \mathbb{Z}$)

On a: $\tan x = a$ on cherche α de \mathbb{R} tel que $a = \tan \alpha$ d'où:

 $\tan x = a \frac{\text{équivaut à}}{1} \tan x = \tan \alpha$

équivaut à $x = \alpha + 2k\pi$; $k \in \mathbb{Z}$

ensemble des solutions de l'équation (E) est $S = \{x \in \mathbb{R} \mid x = \alpha + k\pi \mid k \in \mathbb{Z}\}$ avec $a = \tan \alpha$

d. Exercice:

Déterminer l'ensemble de définition de l'équation suivantes puis résoudre ces équations :

$$(E_1): x \in \mathbb{R} / \tan x = \sqrt{3}.$$

$$(E_2): x \in \mathbb{R} / \tan x = 0.$$

3.
$$(E_3): x \in \mathbb{R} / \tan \left(2x + \frac{\pi}{4}\right) = -1.$$

Inéquations trigonométriques dans \mathbf{K} (avec \mathbf{K} est un intervalle de \mathbb{R} :

A. $x \in K$; $\cos x \le a$ ou $x \in K$; $\cos x \le a$ ou $x \in K$; $\cos x \ge a$ ou $x \in K$; $\cos x \ge a$.

a. Remarques préliminaires :

- Il n'y a pas de règle générale.
- Nous allons toujours nous servir d'une illustration sur le cercle trigonométrique .
- On construit le cercle trigonométrique d'origine I (C) lié au repère orthonormé repère $(0,\vec{i},\vec{j})$ tel que $\overrightarrow{OI} = \vec{i}$ et $\overrightarrow{OJ} = \vec{j}$ et $\overrightarrow{OI'} = -\vec{i}$ et $\overrightarrow{OJ'} = -\vec{j}$.
- le premier tour de cercle à partir de son origine I dans le sens positif (antihoraire d'une montre) représente l'intervalle $\left[0,2\pi\right[$ (intervalle fermée présente un tour du cercle et un point qui est I), le $2^{i\text{ème}}$ tour représente l'intervalle $\left[2\pi,4\pi\right[\ldots$

TRIGONOMETRIE

- premier tour de cercle à partir de son origine I dans le sens négatif (horaire d'une montre) représente l'intervalle $\left]-2\pi,0\right]$ (intervalle fermée présente un tour du cercle et un point qui est I), le $2^{i\text{ème}}$ tour représente l'intervalle $\left]-4\pi,-2\pi\right]$...etc....
- on trace la droite d'équation (D): x = a (parallèle à l'axe des ordonnées ou à l'axe de « sinus ».
- on trace la partie(S) du segment [I',I] tel que leurs abscisses vérifient la condition suivante :
- ≥ abscisses ≤ a pour l'inéquation $x \in K$; $\cos x \le a$. abscisses < a pour l'inéquation $x \in K$; $\cos x < a$.
- ≥ abscisses ≥ a pour l'inéquation $x \in K$; $\cos x \ge a$. abscisses > a pour l'inéquation $x \in K$; $\cos x > a$.
- \bullet On détermine tous les points $\,M_{(\alpha)}^{}\,du$ cercle dont leurs projections appartiennent à $\left(S\right)$. (α abscisses curvilignes de M) .
- ullet Finalement l'ensemble des solutions de l'inéquation c'est l'ensembles des lpha qui appartiennent à K .

Remarque : Pour certaines inéquations en utilise d'autres méthodes .

<u>b.</u> Exemple $n^{\circ} 1$:

- 1. Résoudre l'inéquation suivante : $(E_1)x \in [0,2\pi]$; $\cos x \le \frac{1}{2}$.
- 2. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_2)x \in [0,4\pi]$; $\cos x \le \frac{1}{2}$.
- 3. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_3)x \in [-2\pi, 0]$; $\cos x \le \frac{1}{2}$.

Correction:

- 1. On résout l'inéquation $(E_1)x \in [0,2\pi]$; $\cos x \le \frac{1}{2}$
- ✓ On construit le cercle trigonométrique d'origine I (C) lié au repère orthonormé repère $(0,\vec{i},\vec{j})$.
- ✓ On construit la droite (D) : $x = \frac{1}{2}$ (parallèle à l'axe des ordonnées)
- ✓ On trace la partie (S) de [I'I] (qui vérifie les abscisses $\leq \frac{1}{2}$).

TRIGONOMETRIE

page 1

Conclusion:

1. L'ensemble des solutions de (E_1) est : $S_1 = \left[\frac{\pi}{3}, 2\pi - \frac{\pi}{3}\right] = \left[\frac{\pi}{3}, \frac{5\pi}{3}\right]$

2. En déduit l'ensembles des solutions de l'inéquation (E_2) est $S_2 = \left[\frac{\pi}{3}, \frac{5\pi}{3}\right] \cup \left[\frac{\pi}{3} + 2\pi, \frac{5\pi}{3} + 2\pi\right] = \left[\frac{7\pi}{3}, \frac{11\pi}{3}\right]$

3. En déduit l'ensembles des solutions de l'inéquation $\left(\mathbf{E}_{3}\right)$ est :

$$S_3 = \left[\frac{\pi}{3}, \frac{5\pi}{3}\right] \cup \left[\frac{\pi}{3} - 2\pi, \frac{5\pi}{3} - 2\pi\right] = \left[\frac{-7\pi}{3}, \frac{-11\pi}{3}\right]$$

c. Exemple n° 2:

1. Résoudre l'inéquation suivante : $(E_1)x \in [0,2\pi]$; $\cos x > \frac{1}{2}$.

2. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_2)x \in [0,4\pi]$; $\cos x > \frac{1}{2}$.

3. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_3)x \in [-2\pi, 0]$; $\cos x > \frac{1}{2}$.

Correction:

1. On résout l'inéquation $(E_1)x \in [0,2\pi]$; $\cos x > \frac{1}{2}$

✓ On construit le cercle trigonométrique d'origine I (C) lié au repère orthonormé repère $(0,\vec{i},\vec{j})$.

✓ On construit la droite (D) : $x = \frac{1}{2}$ (parallèle à l'axe des ordonnées)

✓ On trace la partie (S) de [I'I] (qui vérifie les abscisses $\leq \frac{1}{2}$).

TRIGONOMETRIE

Conclusion:

- 1. L'ensemble des solutions de (E_1) est : $S_1 = \left[0, \frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 2\pi\right]$
- 2. En déduit l'ensembles des solutions de l'inéquation (E_2) est

$$S_{2} = \left(\left[0, \frac{\pi}{3} \right] \cup \left[\frac{5\pi}{3}, 2\pi \right] \right) \cup \left(\left[0 + 2\pi, \frac{\pi}{3} + 2\pi \right] \cup \left[\frac{5\pi}{3} + 2\pi, 2\pi + 2\pi \right] \right)$$
$$= \left(\left[0, \frac{\pi}{3} \right] \cup \left[\frac{5\pi}{3}, 2\pi \right] \cup \left(\left[2\pi, \frac{7\pi}{3} \right] \cup \left[\frac{11\pi}{3}, 4\pi \right] \right)$$

3. En déduit l'ensembles des solutions de l'inéquation (E_3) est :

$$S_{3} = \left(\left[0 - 2\pi, \frac{\pi}{3} - 2\pi \right] \cup \left[\frac{5\pi}{3} - 2\pi, 2\pi - 2\pi \right] \right) = \left(\left[-2\pi, \frac{-5\pi}{3} \right] \cup \left[\frac{-\pi}{3}, 0 \right] \right)$$

B. $x \in K$; $\sin x \le a$ ou $x \in K$; $\sin x < a$ ou $x \in K$; $\sin x \ge a$ ou $x \in K$; $\sin x > a$.

a. Remarques préliminaires :

- Il n'y a pas de règle générale.
- Nous allons toujours nous servir d'une illustration sur le cercle trigonométrique .
- On construit le cercle trigonométrique d'origine I (C) lié au repère orthonormé repère $(0,\vec{i},\vec{j})$ tel que $\overrightarrow{OI} = \vec{i}$ et $\overrightarrow{OJ} = \vec{j}$ et $\overrightarrow{OI'} = -\vec{i}$ et $\overrightarrow{OJ'} = -\vec{j}$.
- le premier tour de cercle à partir de son origine I dans le sens positif (antihoraire d'une montre) représente l'intervalle $\left[0,2\pi\right[$ (intervalle fermée présente un tour du cercle et un point qui est I), le $2^{i\text{ème}}$ tour représente l'intervalle $\left[2\pi,4\pi\right[$...etc....
- premier tour de cercle à partir de son origine I dans le sens négatif (horaire d'une montre) représente l'intervalle $\left]-2\pi,0\right]$ (intervalle fermée présente un tour du cercle et un point qui est I), le $2^{i\text{ème}}$ tour représente l'intervalle $\left]-4\pi,-2\pi\right]$...etc....
- on trace la droite d'équation (Δ) : y = a (parallèle à l'axe des ordonnées ou à l'axe de « cosinus ».
- ullet on trace la partie ig(S'ig) du segment ig[J',Jig] tel que leurs ordonnées qui vérifient la condition suivante :
- ightharpoonup ordonnées \leq a pour l'inéquation $x \in K$; $\cos x \leq$ a . ordonnées < a pour l'inéquation $x \in K$; $\cos x <$ a .
- > ordonnées ≥ a pour l'inéquation $x \in K$; $\cos x \ge a$. ordonnées > a pour l'inéquation $x \in K$; $\cos x > a$.
 - On détermine tous les points $M_{(\alpha)}$ du cercle dont leurs projections appartiennent à $\left(S'\right)$. (α abscisses curvilignes de M) .
 - ullet Finalement l'ensemble des solutions de l'inéquation c'est l'ensembles des lpha qui appartiennent à K .
 - Remarque : Pour certaines inéquations en utilise d'autres méthodes .

 <u>b.</u> Exemple :
 - 1. Résoudre l'inéquation suivante : $(E_1)x \in [0,2\pi]$; $\sin x \le \frac{\sqrt{3}}{2}$.

TRIGONOMETRIE

- 2. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_2)x \in [0,4\pi]$; $\sin x \le \frac{\sqrt{3}}{2}$.
- 3. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_3)x \in [-2\pi, 0]$; $\sin x \le \frac{\sqrt{3}}{2}$.
- 4. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_4)x \in]-\pi,\pi[;\sin x \le \frac{\sqrt{3}}{2}]$.

Correction:

- 1. On résout l'inéquation $(E_1)x \in [0,2\pi]$; $\sin x \le \frac{\sqrt{3}}{2}$
- ✓ On construit le cercle trigonométrique d'origine I (C) lié au repère orthonormé repère $(0,\vec{i},\vec{j})$
- ✓ On construit la droite (D) : $y = \frac{\sqrt{3}}{2}$ (parallèle à l'axe des abscisses)
- ✓ On trace la partie (S') de [J'J] (qui vérifie les ordonnées $\leq \frac{\sqrt{3}}{2}$).

Conclusion:

L'ensemble des solutions de (E_1) est : $S_1 = \left[0, \frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3}, 2\pi\right]$

2. En déduit l'ensembles des solutions de l'inéquation (E_2) est

$$\begin{split} \mathbf{S}_{2} &= \left(\left[0, \frac{\pi}{3} \right] \cup \left[\frac{2\pi}{3}, 2\pi \right] \right) \cup \left(\left[0 + 2\pi, \frac{\pi}{3} + 2\pi \right] \cup \left[\frac{2\pi}{3} + 2\pi, 2\pi + 2\pi \right] \right) \\ &= \left(\left[0, \frac{\pi}{3} \right] \cup \left[\frac{2\pi}{3}, 2\pi \right] \right) \cup \left(\left[2\pi, \frac{7\pi}{3} \right] \cup \left[\frac{8\pi}{3} \pi, 4\pi \right] \right) \\ &= \left[0, \frac{\pi}{3} \right] \cup \left[\frac{2\pi}{3}, \frac{7\pi}{3} \right] \cup \left[\frac{8\pi}{3} \pi, 4\pi \right] \end{split}$$

TRIGONOMETRIE

page 18

3. En déduit l'ensembles des solutions de l'inéquation (E_3) est :

$$S_{3} = \left[0 - 2\pi, \frac{\pi}{3} - 2\pi\right] \cup \left[\frac{2\pi}{3} - 2\pi, 2\pi - 2\pi\right] = \left[-2\pi, \frac{-5\pi}{3}\right] \cup \left[\frac{-4\pi}{3}, 0\right].$$

Conclusion : L'ensemble des solutions de $\left(E_1\right)$ est : $S_3 = \left[-2\pi, \frac{-5\pi}{3}\right] \cup \left[\frac{-4\pi}{3}, 0\right]$.

4. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_4)x \in]-\pi,\pi[$; $\sin x \le \frac{\sqrt{3}}{2}$.

$$\begin{split} \mathbf{S}_4 &= \left(\mathbf{S}_1 \cap \left[0, \pi\right[\right) \cup \left(\mathbf{S}_3 \cap \left]-\pi, 0\right]\right) \\ &= \left(\left[0, \frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3}, \pi\right[\right] \cup \left(\left]-\pi, 0\right]\right) \\ &= \left[-\pi, \frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3}, \pi\right[\end{split}$$

 \underline{C} $x \in K$; $tanx \le a$ ou $x \in K$; tanx < a ou $x \in K$; $tanx \ge a$ ou $x \in K$; tanx > a.

- **a.** Remarques préliminaires :
- Il n'y a pas de règle générale.
- Nous allons toujours nous servir d'une illustration sur le cercle trigonométrique.
- On construit le cercle trigonométrique d'origine I (C) lié au repère orthonormé repère $(0,\vec{i},\vec{j})$ tel que $\overrightarrow{OI} = \vec{i}$ et $\overrightarrow{OJ} = \vec{j}$ et $\overrightarrow{OJ'} = -\vec{i}$ et $\overrightarrow{OJ'} = -\vec{j}$.
- le premier demi-tour de cercle à partir de son origine I dans le sens positif (antihoraire d'une montre) représente l'intervalle $\left[0,\pi\right]$ (intervalle fermée présente un tour du cercle et un point qui est I), le 3^{ieme} demi-tour représente l'intervalle $\left[2\pi,3\pi\right]$...etc....(car $\tan(\pi+x)=\tan x$)
- premier demi-tour de cercle à partir de son origine I dans le sens négatif (horaire d'une montre) représente l'intervalle $\left[-\pi,0\right]$ (intervalle fermée présente un tour du cercle et un point qui est I) , le $3^{i\text{ème}}$ demi-tour représente l'intervalle $\left[-4\pi,-3\pi\right]$...etc....
- on trace la droite $\left(\Delta_{\mathrm{T}}\right)$ tangente au cercle au point \mathbf{I} (parallèle à l'axe des ordonnées ou à l'axe de « sinus ») tel que la droite $\left(\Delta_{\mathrm{T}}\right)$ est muni du repère $\left(\mathbf{I}, \mathbf{j}\right)$.
- on trace la partie (S_T) de la droite (Δ_T) tel que leurs abscisses (par rapport de la droite (Δ_T)) vérifient la condition suivante :
- *abscisses* ≤ a pour l'inéquation $x \in K$; $\cos x \le a$. abscisses < a pour l'inéquation $x \in K$; $\cos x < a$.
- \triangleright abscisses ≥ a pour l'inéquation $x \in K$; $\cos x \ge a$. abscisses > a pour l'inéquation $x \in K$; $\cos x > a$.

TRIGONOMETRIE

- On détermine tous les points $M_{(\alpha)}$ du cercle tel que la demi-droite $\left[OM\right)$ coupe la partie $\left(S_{\scriptscriptstyle T}\right)$. (α abscisses curvilignes de M) . (on élimine J et J')
- ullet Finalement l'ensemble des solutions de l'inéquation c'est l'ensembles des lpha qui appartiennent à K .

Remarque :

- Il faut au départ déterminer l'ensemble de définition de l'inéquation
- Pour certaines inéquations en utilise d'autres méthodes.

b. Exemple $n^{\circ} 1$:

- 1. Résoudre l'inéquation suivante : $(E_1)x \in [0,\pi]$; $\tan x > \frac{1}{2}$.
- 2. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_2)x \in [0,2\pi]$; $\tan x > \frac{1}{2}$.
- 3. En déduit l'ensembles des solutions de l'inéquation suivante : $(E_3)x \in [-\pi, 0]$; $\tan x > \frac{1}{2}$.

Correction:

1. On résout l'inéquation $(E_1)x \in [0,\pi]$; $\tan x > \frac{1}{2}$

✓ On construit le cercle trigonométrique d'origine I (C) lié au repère orthonormé repère $(0,\vec{i},\vec{j})$.

✓ On construit la droite $\left(\Delta_T\right)$ tangente au cercle au point I l'origine du cercle (parallèle à l'axe des ordonnées)

✓ On trace la partie (S_T) de (Δ_T) (qui vérifie les abscisses $> \frac{1}{2}$).

• On cherche tous les points $M_{(\alpha)}$ de (C) tel que la demi-droite [OM) coupe la partie $(S_{\scriptscriptstyle T})$. (α abscisses curvilignes de M) . (on élimine J et J')

TRIGONOMETRIE

Conclusion:

2. L'ensemble des solutions de (E_1) est : $S_1 = \left\lceil \frac{\pi}{6}, \frac{\pi}{2} \right\rceil$

3. En déduit l'ensembles des solutions de l'inéquation (E_2) est

$$S_2 = \left\lceil \frac{\pi}{6}, \frac{\pi}{2} \right\rceil \cup \left\lceil \frac{\pi}{6} + \pi, \frac{\pi}{2} + \pi \right\rceil = \left\lceil \frac{\pi}{6}, \frac{\pi}{2} \right\rceil \cup \left\lceil \frac{7\pi}{6}, \frac{3\pi}{2} \right\rceil$$

En déduit l'ensembles des solutions de l'inéquation (E_3) est $:S_3 = \left\lceil \frac{\pi}{6} - \pi, \frac{\pi}{2} - \pi \right\rceil = \left\lceil \frac{-5\pi}{6}, \frac{-\pi}{2} \right\rceil$.

Exercices:

Résoudre les équations suivantes :

1.
$$(E_1)x \in [0,2\pi]$$
; $\cos\left(\frac{\pi}{12}-x\right) = \frac{1}{2}$.

On a:

$$\cos\left(\frac{\pi}{12} - x\right) = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \Leftrightarrow \begin{cases} \frac{\pi}{12} - x = \frac{\pi}{3} + 2k\pi \\ \frac{\pi}{12} - x = -\frac{\pi}{3} + 2k\pi \end{cases}; \quad (k \in \mathbb{Z})$$
$$\Leftrightarrow \begin{cases} x = -\frac{\pi}{4} - 2k\pi \\ x = \frac{5\pi}{12} - 2k\pi \end{cases}; \quad (k \in \mathbb{Z})$$

Conclusion: l'ensemble des solution de l'équation dans \mathbb{R} est $S = \left\{ -\frac{\pi}{4} - 2k\pi; \frac{5\pi}{12} - 2k\pi/k \in \mathbb{Z} \right\}$

On cherche les solutions qui appartiennent à $\left[0,2\pi\right]$

• Pour les solutions $x_2 = \frac{5\pi}{12} - 2k\pi$, on a :

$$\begin{split} \frac{5\pi}{12} - 2k\pi &\in \left[0, 2\pi\right] \Leftrightarrow 0 \leq \frac{5\pi}{12} - 2k\pi \leq 2\pi \quad ; \ \left(k \in \mathbb{Z}\right) \\ &\Leftrightarrow -\frac{5}{12} \leq -2k \leq 2 - \frac{5}{12} \\ &\Leftrightarrow -\frac{1}{2} \times \frac{19}{12} \leq k \leq -\frac{5}{12} \times \left(-\frac{1}{2}\right) \\ &\Leftrightarrow -\frac{19}{24} \leq k \leq \frac{5}{24} \end{split}$$

Puisque $k \in \mathbb{Z}$ donc: k = 0 d'où: $x_2 = \frac{5\pi}{12} - 2k\pi = \frac{5\pi}{12} \in [0, 2\pi]$

Conclusion 1: l'ensemble des solution de l'équation dans \mathbb{R} est $S = \left\{ -\frac{\pi}{4} - 2k\pi; \frac{5\pi}{12} - 2k\pi/k \in \mathbb{Z} \right\}$

TRIGONOMETRIE

• Pour les solutions $x_1 = -\frac{\pi}{4} - 2k\pi$, on a :

$$-\frac{\pi}{4} - 2k\pi \in [0, 2\pi] \Leftrightarrow 0 \le -\frac{\pi}{4} - 2k\pi \le 2\pi \quad ; \quad (k \in \mathbb{Z})$$

$$\Leftrightarrow \frac{\pi}{4} \le -2k\pi \le 2\pi + \frac{\pi}{4}$$

$$\Leftrightarrow \frac{1}{4} \le -2k \le \frac{9}{4}$$

$$\Leftrightarrow -\frac{1}{2} \times \frac{9}{4} \le k \le -\frac{1}{2} \times \frac{1}{4}$$

$$\Leftrightarrow -\frac{9}{8} \le k \le \frac{-1}{8}$$

Conclusion 2: Puisque
$$k \in \mathbb{Z}$$
 donc: $k = -1$ d'où: $x_1 = -\frac{\pi}{4} - 2k\pi = \frac{7\pi}{4} \in \left[0, 2\pi\right]$

Conclusion: l'ensemble des solution de l'équation dans
$$\left[0,2\pi\right]$$
 est : $S = \left\{\frac{5\pi}{12}; \frac{7\pi}{4}\right\}$.

On peut utiliser la méthode suivante :

On utilise le cercle trigonométrique puis on construit sur le cercle les points $M_{(\alpha)}$ (approximatif pour certain abscisses curvilignes) tel que α est solution de l'équation donner puis on donne les solutions qui appartiennent à l'intervalle donné de la façon suivante

- 1er tour antihoraire présente l'intervalle $\left[0,2\pi\right]$.
- $2^{ième}$ tour antihoraire présente l'intervalle $\left[2\pi,4\pi\right]$ etc.
- 1er tour horaire présente l'intervalle $\left[-2\pi,0\right]$.
- 2^{ième} tour antihoraire présente l'intervalle $[-4\pi, -2\pi]$ etc.

D'après le cercle trigonométrique l'ensemble des solution sur l'intervalle

$$\checkmark \quad [0,2\pi] \text{ est } S = \left\{ \frac{5\pi}{12}; \frac{7\pi}{4} \right\}$$

$$\checkmark [-2\pi,0] \text{ est } S = \left\{ \frac{-19\pi}{12}; \frac{-\pi}{4} \right\}$$

$$\checkmark \quad \left[-\pi, \pi\right] \text{ est } S = \left\{\frac{5\pi}{12}; \frac{-\pi}{4}\right\}$$

2.
$$(E_2)x \in [0,\pi]$$
; $\sqrt{2}\cos\left(2x - \frac{\pi}{4}\right) = 0$.

On a:

$$\sqrt{2}\cos\left(2x - \frac{\pi}{4}\right) \Leftrightarrow \sqrt{2}\cos\left(2x - \frac{\pi}{4}\right) = 0$$
$$\Leftrightarrow \cos\left(2x - \frac{\pi}{4}\right) = 0$$

TRIGONOMETRIE

page 22

$$\Leftrightarrow \cos\left(2x - \frac{\pi}{4}\right) = \cos\frac{\pi}{2}$$

$$\Leftrightarrow 2x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi \; ; \; k \in \mathbb{Z}$$

$$\Leftrightarrow 2x = \frac{\pi}{2} + \frac{\pi}{4} + k\pi \; ; \; k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{3\pi}{8} + \frac{k\pi}{2} \; ; \; k \in \mathbb{Z}$$

Conclusion : Les solutions sur sont de la forme $S = \left\{ \frac{3\pi}{8} + \frac{k\pi}{2} / k \in \mathbb{Z} \right\}$

$$(E_3)x \in \mathbb{R} ; \cos 2x = \sin \left(x - \frac{\pi}{4}\right).$$

On a:

$$\cos 2x = \sin\left(x - \frac{\pi}{4}\right) \Leftrightarrow \sin\left(\frac{\pi}{2} - 2x\right) = \sin\left(x - \frac{\pi}{4}\right) \quad ; \quad \left(\operatorname{car} \cos y = \sin\left(\frac{\pi}{2} - y\right)\right)$$

$$\Leftrightarrow \begin{cases} \frac{\pi}{2} - 2x = x - \frac{\pi}{4} + 2k\pi \\ \frac{\pi}{2} - 2x = \pi - \left(x - \frac{\pi}{4}\right) + 2k\pi \end{cases} \quad ; \quad \left(k \in \mathbb{Z}\right) \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x - x = -\frac{\pi}{4} - \frac{\pi}{2} + 2k\pi \\ -2x + x = \pi + \frac{\pi}{4} - \frac{\pi}{2} + 2k\pi \end{cases} \quad ; \quad \left(k \in \mathbb{Z}\right) \end{cases}$$

$$\Leftrightarrow \begin{cases} -3x = -\frac{3\pi}{4} + 2k\pi \\ -x = \frac{3\pi}{4} + 2k\pi \end{cases} \quad ; \quad \left(k \in \mathbb{Z}\right) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\pi}{4} - \frac{2}{3}k\pi \\ x = -\frac{3\pi}{4} - 2k\pi \end{cases} \quad ; \quad \left(k \in \mathbb{Z}\right) \end{cases}$$

Conclusion:

Les solutions sur sont de la forme $S = \left\{ x = \frac{\pi}{4} - \frac{2}{3}k\pi, x = -\frac{3\pi}{4} - 2k\pi/k \in \mathbb{Z} \right\}.$

Remarque : • pour trouver le nombres des points à construire pour le première solution :

- $x = \frac{\pi}{4} \frac{2}{3}k\pi$ on pose $\frac{2}{3}k\pi = 2\pi$ donc k = 3 d'où on a trois points à construire .
- $x = -\frac{3\pi}{4} 2k\pi$ on pose $2k\pi = 2\pi$ donc k = 1 d'où on a un point à construire.