1	4	3	
0	2	1	
0	3	0	1

Figure 6: An N-labeling of $\nu = (4, 3, 3)$. The descents occur at cells (2, 3), (3, 1), (3, 2), (3, 3) yielding maj $(\sigma) = 2 + 1 + 1 + 1 = 5$. The inversion triples are formed by ((3, 2), (3, 1), (3, 3)), ((1, 2), (1, 3)), and ((1, 2), (1, 4)) yielding inv $(\sigma) = 3$.

The reading order of a diagram ν is the order on cells that goes left-to-right along rows starting from the top row and working down. The standardization of a labeling $\sigma: \nu \to \mathbb{N}$ with content $\alpha = (\alpha_0, \alpha_1, \cdots)$, denoted by $\operatorname{st}(\sigma)$, is an injective labeling $\sigma: \nu \to \{1, \cdots, |\nu|\}$ that labels the 0's appearing in ν 1, 2, \cdots , α_0 in the order that they appear in the reading order. The 1's appearing in ν are labeled $\alpha_0 + 1, \cdots, \alpha_0 + \alpha_1$ in reading order and so on. A triple consists of cells with row-column coordinates of the form u = (r, c), v = (r - 1, c) and w = (r, c + k) for $r, c, k \ge 1$, where u, w must be cells of ν , but v is allowed to be a cell immediately below ν . Extend $\operatorname{st}(\sigma)$ to cells immediately below ν by labeling them $-\infty$. A triple is an inversion triple of σ if the labels $\operatorname{st}(\sigma)(u), \operatorname{st}(\sigma)(w), \operatorname{st}(\sigma)(v)$ are decreasing clockwise. The statistic inv (σ) counts the number of inversion triples of σ .

A descent of σ is a cell u = (r + 1, c) in ν , such that v = (r, c) is also in ν and $\sigma(u) > \sigma(v)$. Letting $\mathrm{Des}(\sigma)$ denote that set of descents we define the **major index** statistic

$$\operatorname{maj}(\sigma) := \sum_{u \in \operatorname{Des}(\sigma)} (\operatorname{leg}(u) + 1),$$

where leg(u) is the number of cells of ν in the same column as u and above u. See Fig 6 for an example.

Lemma 5.2.1. The monomial coefficient $\langle [q^i t^j] \tilde{H}_{\mu[n]}, h_{\eta[n]} \rangle$ stabilizes once $n \geq \max(|\mu| + \mu_1 + |\eta| + i, |\eta| + \eta_1)$.

Proof. Fix partitions μ, ν and i, j and let $M^{(n)}$ denote the set of being enumerated in (26). Then

$$\langle [q^i t^j] \tilde{H}_{\mu[n]}, h_{\eta[n]} \rangle = |M^{(n)}|$$

and we wish to show $|M^{(n)}|$ stabilizes.

Suppose $n \ge |\mu| + \mu_1 + |\eta| + i$ and $n \ge |\eta| + \eta_1$ so that $\mu[n]$ and $\eta[n]$ are well-defined. Define the map $\gamma_n: M^{(n)} \to M^{(n+1)}$ as follows. For $\sigma \in M^{(n)}$, shift the bottom row of the corresponding diagram to the right by one cell and insert a new cell labelled 0 in the bottom left corner. So for instance:

We have to check that the map is well-defined and surjective. We claim that the first $\mu_1 + 1$ entries of the bottom row of any $\sigma' \in M^{(n+1)}$ are 0. Suppose for contradiction that there was a non-zero value a among these first $\mu_1 + 1$ cells. Then there are at least $n + 1 - |\mu| - (\mu_1 + 1) = n - |\mu| - \mu_1$ entries right of a. Of these, at most $|\eta| - 1$ are allowed to be non-zero (since a is one of the $|\eta|$ non-zero values in the labeling). Hence a would contribute at least $n - |\mu| - \mu_1 - (|\eta| - 1) > i$ inversion triples formed by taking a, the phantom cell below it, and a 0 entry to the right of it. This contradicts that $inv(\sigma') = i$ for $\sigma' \in M^{(n+1)}$.

This implies that if we let σ be obtained from a $\sigma' \in M^{(n+1)}$ by deleting the bottom left cell and shifting the bottom row to the left by one, then $\sigma \in M^{(n)}$ and $\gamma_n(\sigma) = \sigma'$, which implies that γ_n is well-defined and bijective. Indeed, the first μ_1 cells of the bottom row of σ will be labeled 0 and so the status of descents and inversion triples doesn't change when going from σ' to σ . Thus, σ' and σ have the same inv and maj values.