ML4HC Project 3: Medical imaging segmentation

09/04/2020

Background

Computer Tomography (CT)

often used to evaluate:

Presence, size and location of tumors

Organs in the pelvis, chest and abdomen

- Colon health (CT colongraphy)
- Vascular condition/blood flow
- Pulmonary embolism (CT angiography)
- Abdominal aortic aneurysms (CT angiog
- Bone injuries
- Cardiac tissue
- Traumatic injuries
- Cardiovascular disease

Magnetic Resonance Imaging (MRI)

often used to evaluate:

- Blood vessels
- Abnormal tissue
- Breasts
- Bones and joints
- Organs in the pelvis, chest a spleen)
- Spinal injuries
- Tendon and ligament tears

Positron Emission Tomography (PET)

often used to evaluate:

Neurological diseases such as Alzheimer's and Multiple

Sclerosis

Cancer

Effectiveness of treatments

Heart conditions

Ultrasound

often used to evaluate:

- Pregnancy
- Abnormalities in the heart and blood vessels
- Organs in the pelvis and abdomen
- Symptoms of pain, swelling and infection

X-Ray

typically used to evaluate:

- Broken bones
- Cavities
- Swallowed objects
- Lungs
- Blood vessels
- Breast (mammography)

Convolutional neural network architecture

Medical imaging dataset

http://medicaldecathlon.com/

Medical Segmentation Decathlon

Generalisable 3D Semantic Segmentation

Covid-19 CT scan dataset (for your own interest):

https://github.com/ieee8023/covid-chestxray-dataset

Project 3 Prostate structure segmentation

Prostate cancer

- Second most common cause of cancer death in male (%)
- Prostate anatomy from diagnostic biopsies is difficult to determine, leading to cancer detection failure.
- Some attributes the failure to the hesitation to sample one of the two major parts of the glands
 - Peripheral zone (PZ, more easily reached)
 - Central gland (CG, less accessible)
- Task: outline these two non-overlapping adjacent regions of the gland

Data

- 3D prostate magnetic resonance images (MRIs) from
 - Boston University
 - Radboud University, Nijmegen Medical Centre, the Netherlands.
- Image types: a mix of
 - 1.5T (standard)
 - 3T (higher clarity and better detail, more likely to have artifacts present)

1.5T

3T

Data

Image size

depth x 256 x 256 (original size: 1.5T 320x320; 3T 400x400)

Labels

- 0: background
- 1: Peripheral zone (PZ)
- 2: Central Gland (CG)

Example

Data

- 60 subjects
 - Training: 50 subjects
 - Testing: 10 subjects
 - 2 test sets: one with random rotation, the other without
- Example (degree=73°, counter-clockwise)

Segmentation methods

- Simple Linear Iterative Clustering (SLIC)
- Markov random field (MRF)
- Convolutional neural networks (U-Net and etc.)

U-net: Convolutional networks for biomedical image segmentation.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

U-net

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

U-net

Segmentation evaluation metrics

Precision

- Overall:
 - measures the prevalence of correctly labelled pixels
 - limitation: it has bias in the presence of very imbalanced classes
- Per-class:
 - measures the proportion of correctly labelled pixels for each class and then averages over the classes.
 - limitation: not suitable for data with strong background class

Segmentation evaluation metrics

Intersection over Union (IoU, also called Jaccard index)

 measures the intersection over the union of the labelled segments for each class and reports the average

$$IoU = \frac{groundtruth \cap prediction}{groundtruth \cup prediction}$$

 limitation: it evaluates the amount of pixels correctly labelled, but not necessarily how accurate the segmentation boundaries are.

Intersection over Union (IoU)

Example

Intersection:

 $A \cap B$

Segmentation evaluation metrics formulation

Confusion matrix C

$$C_{ij} = \sum_{I \in \mathcal{D}} |\{x \mid L_{gt}^{I}(x) = i \text{ and } L_{pd}^{I}(x) = j, x \in I\}|$$

Overall precision

$$OP = \frac{\sum_{i}^{L} C_{ii}}{\sum_{i}^{L} \sum_{j}^{L} C_{ij}}$$

Per-class precision

$$PC = \frac{1}{L} \sum_{i}^{L} \frac{C_{ii}}{\sum_{j}^{L} C_{ij}}$$

IoU

$$IoU = \frac{1}{L} \sum_{i}^{L} \frac{C_{ii}}{\sum_{j}^{L} C_{ij} + \sum_{k}^{L} C_{ki} - C_{ii}}$$

Tasks

- Segment images in the test sets into background, PZ and CG regions.
- The method/model need to be invariant to rotation

Deliverable

- Environment
- Segmentation results of two test sets.
 - Report OP, PC and IoU
- You can use more than one jupyter notebooks
- Document in details the usage of each jupyter notebook in a README.txt file (in a sequential order)
- A short report including methods, results (in tables or figures) and individual contribution.
- Please do not hardcode results
- Deadline: 29/04/2020 (send the zip file to xlyu@inf.ethz.ch)