一. 选择填空

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
答案	C	A	В	D	В	D	В	D	A	D	A	C	D
空格号	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
答案	A	В	В	В	A	В	D	A	D	A	D	В	D
空格号	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)
答案	В	D	D	A	D	В	A	D	В	В	A	C	A
空格号	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)
答案	C	C	D	В	A	C	В	A	В	D	C	A	В

1. SSB 信号表达式为 $s(t) = m(t)\cos(2\pi f_c t) - \hat{m}(t)\sin(2\pi f_c t)$,其中 m(t) 是基带调制信号, $\hat{m}(t)$ 是 m(t) 的(1)变换。 $\hat{m}(t)$ 与 m(t)(2)。 s(t)的复包络是 $s_L(t) = \underline{(3)}$ 。 $s_L(t)$ 是(4)信号,其频谱只有(5)分量。

(1)	(A) 傅里叶	(B) 拉普拉斯	(C) 希尔伯特	(D) 希特勒	
(2)	(A) 正交	(B) 相等	(C) 反相	(D) 同相	
(2)	(A) $\hat{m}(t) + \mathbf{j} \cdot m(t)$		(B) $m(t) + j \cdot \hat{m}(t)$		
(3)	(C) $m(t) - \mathbf{j} \cdot \hat{m}(t)$		(D) $\hat{m}(t) - \mathbf{j} \cdot m(t)$		
(4)	(A) 因果	(B) 实	(C) 正弦	(D) 解析	
(5)	(A) 负频率	(B) 正频率	(C) 直流	(D) 线谱	

2. 若 16 进制 PAM 信号的符号速率是 100Baud,则比特速率是(6)bit/s,比特间隔是(7)ms,符号间隔是(8)ms。

	(6)	(A) 100	(B) 200	(C) 300	(D) 400
Ī	(7) (8)	(A) 1	(B) 2.5	(C) 5	(D) 10

3. 若基带调制信号m(t)相同,已调信号s(t)的功率相同,信道高斯白噪声的功率谱密度相同,则下列调制方式中,已调信号带宽最大的是(9),最小的是(10)。解调输出信噪比最大的是(11),最小的是(12)。解调输入信噪比最大的是(13),最小的是(14)。

(9) (10) (11) (12)	(A) 调制指数为 5 的 FM	(B) DSB-SC
(13) (14)	(C) 调制指数为 0.5 的 AM	(D) SSB

4.设 M 进制数字通信系统的比特错误率为 P_b 。每个符号携带 $\log_2 M$ 个比特,其中任何一个出错则符号错。记符号错误率为 P_s ,则 P_s 与 P_b 的一般关系是(15)。

(15)	(A) $P_s = P_h$	(B) $P_s \ge P_b$	(C) $P_s \leq P_b$	(D) $P_s \neq P_h$
(- /	` ' S U	` ' 8 U	` ' 8 U	` ' 8 U

5. PAM 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g(t-T_s)$ 的幅度序列	$\{a_n\}$ 是平稳随机序列。	s(t)的功率谱密度包含时钟
线谱分量的条件是 a_n 的均值 $E[a_n]$ (16)零,	g(t)的傅氏变换在 $f=$	$=\frac{1}{T_{\rm s}}$ 处的值 $G\left(\frac{1}{T_{\rm s}}\right)$ (17)零。

(C) 大于等于

(D) 小于等于

(B) 不等于

6. 若角调信号为 $s(t) = 2\cos(2\pi f_c t + 4\sin 200\pi t)$,则基带调制信号m(t)是频率为<u>(18)</u>Hz 的单音信号,已调信号s(t)的最大频偏为<u>(19)</u>Hz,近似带宽为<u>(20)</u>Hz。若s(t)是 PM 信号,相位偏移常数为 $K_p = 4$ (rad/V),则 $m(t) = \underline{(21)}$ 。若s(t)是 FM 信号,频率偏移常数为 $K_f = 400$

(A) 等于

(16)(17)

(18) (19) (20) (A) 100 (B) 400 (C) 800 (D) 1000 (21) (22) (A) $\sin 200\pi t$ (B) $4\sin 200\pi t$ (C) $4\cos 200\pi t$ (D) $\cos 200\pi t$

7. 数据 1111000011110000 经过 AMI 编码后是(23), 经过 HDB3 编码后是(24)。

(23)	(A) +-+-0000+-+-0000	(B) +-+-0000-+-+0000
(24)	(C) + - + -000 - + - + -000 -	(D) + - + -000 - + - + - +00 +

8. 假设二进制数据独立等概,速率为 1000bit/s。双极性 NRZ 码、单极性 RZ 码(半占空比)、 AMI 码、数字双相码(Manchester 码)的主瓣带宽分别是(25)Hz、(26)Hz、(27)Hz、(28)Hz, 其中对时钟提取最有利的是(29)。

(25) (26) (27) (28)	(A) 500	(B) 1000	(C) 1500	(D) 2000
(29)	(A) 双极性 NRZ	(B) 单极性 RZ	(C) AMI	(D) Manchester

9. MPAM 的符号速率是 1000Baud, 按照奈奎斯特极限, 无符号间干扰传输时所需的信道带宽最小是(30)Hz, 相应的频带利用率是(31)Baud/Hz。

(30)	(A) 500	(B) 1000	(C) 1500	(D) 2000
(31)	(A) 0.5	(B) 1	(C) 1.5	(D) 2

10. 设m(t)是平稳过程,m在区间[-1,+1]内均匀分布。m(t)的平均功率是 $E[m^2(t)]=\underline{(32)}$ 。m(t)对载波进行 AM 调制得到 $[1+m(t)]\cos(2\pi f_c t)$,已调信号的调制效率是 $\underline{(33)}$,调制指数是 $\underline{(34)}$ 。

(32) (33) (34) (A) 1/4 (B) 1/3 (C) 1/2 (D) 1

11. MPAM 系统的符号速率是 1000Baud, 采用了升余弦滚降, 滚降系数为 0.5。此系统所需的信道带宽是(35)Hz, 相应的频带利用率是(36)Baud/Hz。

(35)	(A) 500	(B) 750	(C) 1000	(D) 1500
(36)	(A) 1	(B) 4/3	(C) 3/2	(D) 2

12. 下图是一个基带传输系统。为了使采样值中的符号间干扰最小,从时域来说,系统总体冲激响应x(t)按符号间隔 T_s 采样后的采样值 $\{x(kT_s)\}=\{x_k\}$ 应满足(37);从频域来说,系统的总体传递函数X(f)应满足(38)。为了使采样值中的信噪比最大,从时域来说,接收滤波器的冲激响应 $g_R(t)$ 应满足(39);从频域来说,接收滤波器的传递函数 $G_R(f)$ 应满足(40)。

(37)	(A) $x_k = \begin{cases} 1, & k = 0 \\ 0, & k = \pm 1, \pm 2, \dots \end{cases}$	(B) $x_k = \begin{cases} 0, & k = 0 \\ 1, & k = \pm 1, \pm 2, \dots \end{cases}$
(37)	(C) $\{x_k\}$ 的极性交替反转	(D) $x_k = 1, k = 0, \pm 1, \pm 2, \cdots$
(38)	(A) $\sum_{n=-\infty}^{\infty} X \left(f - \frac{n}{T_{s}} \right) = \begin{cases} T_{s}, & f \leq \frac{1}{2T_{s}} \\ 0 & f > \frac{1}{2T_{s}} \end{cases}$	(B) $\sum_{n=-\infty}^{\infty} X \left(f - \frac{n}{T_{s}} \right) = \begin{cases} T_{s}, & f \le \frac{1}{T_{s}} \\ 0 & f > \frac{1}{T_{s}} \end{cases}$
	(C) $\sum_{n=-\infty}^{\infty} X\left(f - \frac{n}{T_s}\right) = T_s, -\infty < f < \infty$	(D) $\sum_{n=-\infty}^{\infty} X \left(f - \frac{n}{T_{s}} \right) = 0, -\infty < f < \infty$
(20)	$(A) g_{R}(t) = g_{T}(-t)$	(B) $g_{R}(t) = g_{T}(t)$
(39)	(C) $g_{R}(t) = -g_{T}(t)$	(D) $g_{R}(t) = 1/g_{T}(t)$
(40)	(A) $G_{R}(f) = G_{T}(f)$	(B) $G_{\mathrm{R}}(f) = G_{\mathrm{T}}^*(-f)$
(40)	(C) $G_{R}(f) = G_{T}^{*}(f)$	(D) $G_{R}(f) = 1/G_{T}(f)$

13. 眼图在特定采样时刻的张开度决定了系统的(41)容限。

(41) (A) 失	[B) 干扰	(C) 噪声	(D) 抖动	
------------	--------	--------	--------	--

14. MPAM 系统的传输速率是 200Baud,当系统的总体传递函数 X(f)是下列中的(42)时,采样点将存在符号间干扰,此时可以采用(43)来减小符号间干扰。

15.设基带信号m(t)是平稳过程,其自相关函数为 $R_m(\tau) = \begin{cases} 1-1000|\tau|, & |\tau| < 0.001s \\ 0 & \text{else} \end{cases}$,则已调信号 $m(t)\cos(2\pi f_c t)$ 的功率为(44),主瓣带宽为(45)kHz。

(44) (45)	(A) 1/2	(B) 1	(C) 2	(D) 4

16.FM 鉴频器输出端噪声的功率谱密度呈现出(46)形状。

(46) (A) 双曲线 (B) 抛物线 (C) 平坦 (D) 上凸		(46)	(A) 双曲线	(B) 抛物线	(C) 平坦	1(1/)
--	--	------	---------	---------	--------	-------

17. 部分响应系统通过引入人为的(47)来提高频谱利用率,其频谱利用率可达到(48)Baud/Hz。下列框图中,(49)是第一类部分响应基带传输系统框图。

18. 考虑几种二进制信号的时钟提取方案,假设数据独立等概,不考虑噪声。对幅度为 0、1 的单极性归零信号来说,平方没有意义,由于此信号包含时钟的线谱分量,故可以采用下面的方案(50)。双极性升余弦滚降信号适合采用线谱法,即方案(51)。双极性归零信号由于其自身的特点,可直接采用方案(52)来得到方波时钟。

- 二. 基带信号 $m(t) = \cos(200\pi t)$ 对载波 $\cos(2000\pi t)$ 做 AM 调制得到已调信号 $s(t) = 2[2+m(t)]\cos(2000\pi t)$ 。
- (1)求s(t)的复包络 $s_L(t)$ 的傅氏变换 $S_L(f)$ 、功率谱密度 $P_L(f)$;
- (2)求s(t)的傅氏变换S(f)、功率谱密度 $P_s(f)$ 。

解答

 $(1)I(t)\cos(2\pi f_c t)-Q(t)\sin(2\pi f_c t)$ 的复包络是 $I(t)+j\cdot Q(t)$ 对照可知 $s(t)=2\lceil 2+m(t)\rceil\cos(2000\pi t)$ 的复包络是

$$s_{L}(t) = 2[2 + m(t)] = 4 + 2\cos 200\pi t = 4 + e^{j200\pi t} + e^{-j200\pi t}$$

其傅氏变换是 $4\delta(f)+\delta(f-100)+\delta(f+100)$

注意复单频信号 $\mathrm{e}^{\mathrm{j}2\pi f_0 t}$ 的功率是 1,频率是 f_0 ,功率谱密度是 $\delta(f-f_0)$ 。对照可知复包络的功率 谱密度为 $16\delta(f)+\delta(f-100)+\delta(f+100)$

(2)解一

$$s(t) = 2[2 + \cos 200\pi t] \cos(2000\pi t)$$

$$= 4\cos(2000\pi t) + 2\cos(200\pi t) \cos(2000\pi t)$$

$$= 2e^{j2000\pi t} + 2e^{-j2000\pi t} + \cos(2200\pi t) + \cos(1800\pi t)$$

$$= 2e^{j2000\pi t} + 2e^{-j2000\pi t} + \frac{1}{2}e^{j2200\pi t} + \frac{1}{2}e^{-j1800\pi t}$$

由此可知

$$S(f) = 2\delta(f - 1000) + \frac{\delta(f - 1100)}{2} + \frac{\delta(f - 900)}{2} + 2\delta(f + 1000) + \frac{\delta(f + 1100)}{2} + \frac{\delta(f + 900)}{2}$$

$$P_{s}(f) = 4\delta(f - 1000) + \frac{\delta(f - 1100)}{4} + \frac{\delta(f - 900)}{4} + 4\delta(f + 1000) + \frac{\delta(f + 1100)}{4} + \frac{\delta(f + 900)}{4}$$

解二:复包络的频谱是带通信号频谱的正频率部分向下搬移后除以 2,因此带通信号频谱的正频率部分是复包络频谱右移后乘以 2。带通信号频谱的负频率部分是正频率部分的共轭对称,故为复包络频谱的共轭对称的左移。因此可以写出¹

$$S(f) = \begin{cases} \frac{1}{2} S_{L}(f - f_{c}) & f > 0 \\ \frac{1}{2} S_{L}^{*}(-f - f_{c}) & f < 0 \end{cases} = \frac{1}{2} S_{L}(f - f_{c}) + \frac{1}{2} S_{L}^{*}(-f - f_{c})$$

注意上式中的第 2 个等式和第 3 个等式等价, 前提是 f_c 足够大。 此例中的 $S_L(f) = 4\delta(f) + \delta(f-100) + \delta(f+100)$ 是实偶函数, 故有

$$S(f) = \frac{1}{2} S_{L}(f - f_{c}) + \frac{1}{2} S_{L}(f + f_{c})$$

$$= 2\delta(f - 1000) + \frac{\delta(f - 1100)}{2} + \frac{\delta(f - 900)}{2} + 2\delta(f + 1000) + \frac{\delta(f + 1100)}{2} + \frac{\delta(f + 900)}{2}$$

功率谱密度也是搬移关系,但系数 $\frac{1}{2}$ 要变成 $\frac{1}{4}$ 。

三. Figure $1 + s(t) = m(t)\cos(2\pi f_c t)$,其中基带信号 m(t) 的带宽为 W,功率为 P_m 。 $n_w(t)$ 是功率谱密度为 $N_0/2$ 的高斯白噪声。理想带通滤波器的中心频率是 f_c ,其带宽正好能使 s(t) 无失真通过。 $n_i(t)$ 是带通滤波器输出的窄带高斯噪声。理想低通滤波器的截止频率是 W 。 $s_o(t)$ 和 $n_o(t)$ 分别是低通滤波器输出端的有用信号及噪声。试写出 $n_i(t)$ 、 $s_o(t)$ 、 $n_o(t)$ 的表达式,并求带通滤波器输出端的信噪比 $\left(\frac{S}{N}\right)_i$ 以及低通滤波器输出端的信噪比 $\left(\frac{S}{N}\right)_o$ 。

Figure 1

 \mathbf{m} 一 白噪声通过带通滤波器后是窄带噪声,故可将 $n_{i}(t)$ 写成如下形式

¹ 注意这里的数学关系: 设 $x_0 > 0$ 。函数 f(x) 右移是 $f(x-x_0)$,左移是 $f(x+x_0)$ 。函数 f(x) 的镜像对称是 f(-x),其右移是 $f(x_0-x)$,左移是 $f(-x_0-x)$ 。例如对 g(t) 匹配的匹配滤波器的冲激响应是 g(t) 的镜像右移: $g(t_0-t)$ 。

$$n_{i}(t) = n_{c}(t)\cos 2\pi f_{c}t - n_{s}(t)\sin 2\pi f_{c}t$$

带通滤波器带宽是 B=2W,故噪声 $n_i(t)$ 的功率是 $2N_0W$ 。而 $s(t)=m(t)\cos(2\pi f_c t)$ 的功率是 $\frac{P_m}{2}$,

故
$$\left(\frac{S}{N}\right)_{i} = \frac{P_{m}}{4N_{0}W}$$
。

 $s(t) = m(t)\cos(2\pi f_c t) = 2\cos\left(2\pi f_c t + \frac{\pi}{4}\right)$ 相乘:

$$m(t)\cos(2\pi f_{c}t) \times 2\cos\left(2\pi f_{c}t + \frac{\pi}{4}\right) = m(t)\left[\cos\frac{\pi}{4} + \cos\left(4\pi f_{c}t + \frac{\pi}{4}\right)\right]$$

通过低通滤波器后是

$$s_{o}(t) = m(t)\cos\frac{\pi}{4} = \frac{m(t)}{\sqrt{2}}$$

其功率是 $\frac{P_m}{2}$ 。

 $n_{\rm i}(t) = n_{\rm c}(t)\cos 2\pi f_{\rm c}t - n_{\rm s}(t)\sin 2\pi f_{\rm c}t$ 与 $2\cos\left(2\pi f_{\rm c}t + \frac{\pi}{4}\right)$ 相乘:

$$\begin{split} & \left[n_{c}\left(t\right) \cos 2\pi f_{c}t - n_{s}\left(t\right) \sin 2\pi f_{c}t \right] \times 2 \cos \left(2\pi f_{c}t + \frac{\pi}{4}\right) \\ & = n_{c}\left(t\right) \left[\cos \frac{\pi}{4} + \cos \left(4\pi f_{c}t + \frac{\pi}{4}\right) \right] - n_{s}\left(t\right) \left[\cos \frac{3\pi}{4} + \cos \left(4\pi f_{c}t - \frac{\pi}{4}\right) \right] \end{split}$$

通过低通滤波器后是

$$n_{o}(t) = n_{c}(t)\cos\frac{\pi}{4} - n_{s}(t)\cos\frac{3\pi}{4} = \frac{n_{c}(t)}{\sqrt{2}} + \frac{n_{s}(t)}{\sqrt{2}}$$

 $n_{c}(t)$ 、 $n_{s}(t)$ 功率都是 $2N_{0}W$ 。 $n_{o}(t)$ 的功率是 $\frac{2N_{0}W}{2} + \frac{2N_{0}W}{2} = 2N_{0}W$ 。 输出信噪比为 $\left(\frac{S}{N}\right)_{o} = \frac{P_{m}}{4N_{0}W}$ 。

解二 以
$$\cos\left(2\pi f_{c}t + \frac{\pi}{4}\right)$$
为参考载波,可将 $s(t)$ 写成

$$s(t) = m(t)\cos\left(2\pi f_{c}t + \frac{\pi}{4} - \frac{\pi}{4}\right) = \operatorname{Re}\left\{m(t)e^{-j\frac{\pi}{4}} \cdot e^{j\left(2\pi f_{c}t + \frac{\pi}{4}\right)}\right\}$$

其复包络是

$$m(t)e^{-j\frac{\pi}{4}} = m(t)\cos\left(\frac{\pi}{4}\right) - j \cdot m(t)\sin\left(\frac{\pi}{4}\right)$$

相应可以将窄带噪声写成如下形式:

$$n_{\rm i}(t) = n_{\rm c}(t)\cos\left(2\pi f_{\rm c}t + \frac{\pi}{4}\right) - n_{\rm s}(t)\sin\left(2\pi f_{\rm c}t + \frac{\pi}{4}\right)$$

 $n_{_{\mathrm{I}}}(t)$ 的功率仍然是 $2N_{_{0}}W$, $n_{_{\mathrm{c}}}(t)$ 、 $n_{_{\mathrm{s}}}(t)$ 的功率也都是 $2N_{_{0}}W$ 。

相干解调的输出是复包络的实部,输出信号为 $m(t)\cos\left(\frac{\pi}{4}\right) = \frac{m(t)}{\sqrt{2}}$,输出噪声为 $n_c(t)$ 。

四. 设有 PAM 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g(t-nT_b)$, 其中序列 $\{a_n\}$ 中的元素以独立等概方式取值于

谱密度表达式。

解一:

$$\mu(t) = E\left[s(t)\right] = E\left[\sum_{n=-\infty}^{\infty} a_n g\left(t - nT_{\rm b}\right)\right] = \sum_{n=-\infty}^{\infty} E\left[a_n\right] g\left(t - nT_{\rm b}\right) = \sum_{n=-\infty}^{\infty} g\left(t - nT_{\rm b}\right)^2$$

$$x(t) = s(t) - \mu(t) = \sum_{n=-\infty}^{\infty} a_n g(t - nT_b) - \sum_{n=-\infty}^{\infty} g(t - nT_b) = \sum_{n=-\infty}^{\infty} (a_n - 1) g(t - nT_b)$$

 $\mu(t)$ 是周期信号,其傅里叶级数为

$$\mu(t) = \sum_{n=-\infty}^{\infty} g(t - nT_b) = \frac{1}{T_b} \sum_{m=-\infty}^{\infty} G\left(\frac{m}{T_b}\right) e^{j2\pi \frac{m}{T_b}t}$$

相应的功率谱密度为

$$P_{\mu}(f) = \frac{1}{T_{\rm b}^2} \sum_{m=-\infty}^{\infty} \left| G\left(\frac{m}{T_{\rm b}}\right) \right|^2 \delta\left(f - \frac{m}{T_{\rm b}}\right)$$

x(t)中的 a_n -1以独立等概方式取值于 $\{\pm 2\}$,其均值为0,方差为4,故x(t)的功率谱密度为

$$P_{x}(f) = \frac{4}{T_{b}} |G(f)|^{2}$$

再将 g(t) 的傅氏变换 $G(f) = \frac{T_b}{2} \operatorname{sinc}\left(\frac{fT_b}{2}\right)$ 代入,得到

 $^{^2}$ 注意数学期望。若 X 是随机变量, E[3X]=3E[X]。若 a 是常数, E[aX]=aE[X]。 X 、 a 若随 t 变化,则成为 E[a(t)X(t)]=a(t)E[X(t)]。

$$P_{\mu}(f) = \frac{1}{T_{b}^{2}} \sum_{n=-\infty}^{\infty} \left| G\left(\frac{n}{T_{b}}\right) \right|^{2} \delta\left(f - \frac{n}{T_{b}}\right)$$

$$= \frac{1}{4} \sum_{n=-\infty}^{\infty} \operatorname{sinc}^{2}\left(\frac{n}{2}\right) \delta\left(f - \frac{n}{T_{b}}\right)$$

$$= \frac{1}{4} \delta(f) + \frac{1}{\pi^{2}} \sum_{n=+1,+3,\dots} \frac{1}{n^{2}} \delta\left(f - \frac{n}{T_{b}}\right)$$

$$P_{x}(f) = \frac{4}{T_{b}} |G(f)|^{2} = T_{b} \operatorname{sinc}^{2}\left(\frac{fT_{b}}{2}\right) = \frac{4 \sin^{2}\left(\frac{\pi fT_{b}}{2}\right)}{T_{b}(\pi f)^{2}}$$

解二: $\{a_n\}$ 是不相关的幅度序列, a_n 的均值是 1,方差是 4。根据课本上的公式可知 s(t)的功率 谱密度为

$$P_{s}(f) = \frac{4}{T_{b}} \left| G(f) \right|^{2} + \frac{1}{T_{b}^{2}} \sum_{m=-\infty}^{\infty} \left| G\left(\frac{m}{T_{b}}\right) \right|^{2} \delta\left(f - \frac{m}{T_{b}}\right)$$

对于不相关幅度序列,PAM 信号的均值对应功率谱密度的离散谱,扣除均值后的部分对应连续谱。因此上式右边的第 1 项是 x(t)的功率谱密度,第 2 项是 $\mu(t)$ 的功率谱密度。

五. Figure 2(a)中的基带传输系统在 $[0,T_b]$ 时间内等概发送+g(t)或-g(t)。 g(t)的傅氏变换的模平方 $\left|G(f)\right|^2$ 示于 Figure 2(b)。发送信号叠加了功率谱密度为 $N_0/2$ 的高斯白噪声后通过冲激响应为 $h(t)=g(t_0-t)$ 的滤波器,在 t_0 时刻采样得到样值y。

Figure 2

- (1) 画出滤波器输出的噪声的功率谱密度图,并求噪声功率;
- (2) 求发送+g(t)条件下,样值y的均值、方差以及y<0的概率。

解答:

 $(1)h(t)=g(t_0-t)$ 的傅氏变换为 $G^*(f)e^{-j2\pi ft_0}$, $\left|H(f)\right|^2=\left|G(f)\right|^2$ (或者: 时域镜像、时延不改变信号的能量谱密度,故 $\left|H(f)\right|^2=\left|G(f)\right|^2$)。 滤波器输出的噪声的功率谱密度为 $\frac{N_0}{2}\left|H(f)\right|^2=\frac{N_0}{2}\left|H(f)\right|^2$ 。功率谱密度图如 Figure 3 所示。

对功率谱密度积分,可求得噪声功率为 $\frac{N_0W}{2}$ 。

(2)发送+g(t)条件下,样值y的均值由有用信号贡献,方差由噪声贡献。均值为

$$\int_{-\infty}^{\infty} h(\tau) g(t_0 - \tau) d\tau = \int_{-\infty}^{\infty} g(t_0 - \tau) g(t_0 - \tau) d\tau = E_g = \int_{-\infty}^{\infty} |G(f)|^2 df = W$$

(或者:因为是匹配滤波器,所以最佳采样时刻的输出是 $R_{g}(0) = E_{g}$)

噪声是平稳过程,无论在何时采样,其方差(功率)都是 $\frac{N_0W}{2}$ 。

事件"y < 0"就是事件"噪声比-W更负"。由于高斯噪声的对称性,其概率等于"噪声比W更大"的概率,为³

$$\frac{1}{2}\operatorname{erfc}\left(\frac{W}{\sqrt{2\times\frac{N_0W}{2}}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{W}{N_0}}\right)$$

或者: y是一个高斯随机变量,其概率密度为

$$\frac{1}{\sqrt{2\pi \times \frac{N_0 W}{2}}} \exp\left(-\frac{\left(y-W\right)^2}{2 \times \frac{N_0 W}{2}}\right) = \frac{1}{\sqrt{\pi N_0 W}} \exp\left(-\frac{\left(y-W\right)^2}{N_0 W}\right)$$

 3 互补误差函数 erfc 的定义是 $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty \mathrm{e}^{-t^2} \, \mathrm{d}t$ 。实际上也可以这样理解:令 X 是均值为零,方差为 $\frac{1}{2}$ 的高斯随机变量,则 $\operatorname{erfc}(x)$ 就是 X > x 的概率。若 Z 是均值为零,方差为 σ^2 的高斯随机变量,则 $\operatorname{Pr}\{Z > z\} = \operatorname{Pr}\left\{\frac{Z}{\sqrt{2\,\sigma^2}} > \frac{Z}{\sqrt{2\,\sigma^2}}\right\}$,

注意
$$\frac{Z}{\sqrt{2\sigma^2}}$$
 的方差是 $\frac{1}{2}$,故 $\Pr\{Z>z\} = \frac{1}{2} \operatorname{erfc}\left(\frac{z}{\sqrt{2\sigma^2}}\right)$ 。

y<0的概率是

$$\Pr\{y < 0\} = \int_{-\infty}^{0} \frac{1}{\sqrt{\pi N_0 W}} \exp\left(-\frac{(y - W)^2}{N_0 W}\right) dy$$

$$= \int_{-\infty}^{-W} \frac{1}{\sqrt{\pi N_0 W}} \exp\left(-\frac{x^2}{N_0 W}\right) dx$$

$$= \int_{W}^{\infty} \frac{1}{\sqrt{\pi N_0 W}} \exp\left(-\frac{x^2}{N_0 W}\right) dx$$

$$\stackrel{t = \frac{x}{\sqrt{N_0 W}}}{= \frac{1}{2} \times \frac{2}{\sqrt{\pi}} \int_{\sqrt{\frac{W}{N_0}}}^{\infty} e^{-t^2} dt}$$

$$= \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{W}{N_0}}\right)$$

六. Figure 4(a)中基带传输系统的传输速率是 $R_s = \frac{1}{T_s}$,幅度序列 $\{a_n\}$ 的元素均值为 0,方差为 1,且不同的元素相互独立。系统的总体冲激响应 x(t) 的时域波形如 Figure 4(b)所示。第 m 个采样值是 $y_m = a_m + i_m + \gamma_m$,其中 γ_m 是噪声分量, i_m 是符号间干扰。

分别就符号速率为 $R_s=1000$ Baud、 $R_s=2000$ Baud 的情形,求符号间干扰 i_m 的均值、方差,并求 $\sum_{n=0}^{\infty} X(f-nR_s)=?$

Figure 4

解答

不考虑噪声, y_m 是对 $\sum_{n=-\infty}^{\infty} a_n x (t-nT_s)$ 在 $t=mT_s$ 的采样值, 即

$$y_m = \sum_{n=-\infty}^{\infty} a_n x (mT_s - nT_s) = \sum_{n=-\infty}^{\infty} a_n x_{m-n} = a_m + \sum_{n \neq m} a_n x_{m-n}$$

其中的最后一项是符号间干扰:

$$i_m = \sum_{n \neq m} a_n x_{m-n}$$

另外,频域的平移叠加对应时域采样。 $\frac{1}{T_{\rm s}}\sum_{n=-\infty}^{\infty}X\left(f-nR_{\rm s}\right)$ 是理想采样

$$x(t)\sum_{n=-\infty}^{\infty}\delta(t-kT_s)=\sum_{n=-\infty}^{\infty}x_n\delta(t-nT_s)$$
的傅氏变换。

当 R_s =1000Baud 时, $T_s = \frac{1}{1000}$, 根据图(b)可知

$$x_k = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

此时 $i_m = 0$,其均值均值、方差都是零。

$$x(t)\sum_{n=-\infty}^{\infty}\delta(t-kT_{s}) = \sum_{n=-\infty}^{\infty}x_{n}\delta(t-nT_{s}) = \delta(t)$$

其傅氏变换 $\frac{1}{T_s}\sum_{n=-\infty}^{\infty}X(f-nR_s)$ 是 1,故

$$\sum_{n=-\infty}^{\infty} X\left(f - nR_{\rm s}\right) = \frac{1}{1000}$$

当 R_s =2000Baud 时, $T_s = \frac{1}{2000}$,根据图(b)可知

$$x_k = \begin{cases} 1 & k = 0 \\ \frac{1}{2} & k = \pm 1 \\ 0 & \text{else} \end{cases}$$

此时 $i_m = \frac{a_{m-1} + a_{m+1}}{2}$, 其均值=0, 方差是 $\frac{1+1}{4} = \frac{1}{2}$ 。 今

$$\sum_{n=-\infty}^{\infty} x_n \delta\left(t - nT_{\rm s}\right) = \frac{\delta\left(t + T_{\rm s}\right)}{2} + \delta\left(t\right) + \frac{\delta\left(t - T_{\rm s}\right)}{2}$$

因此

$$\sum_{n=-\infty}^{\infty} X(f - nR_s) = T_s (1 + \cos 2\pi f T_s) = \frac{\cos^2 \left(\frac{\pi f}{1000}\right)}{500}$$