Answers Type: Equal **Text Areas:** PlainText

Possible Answers:

65

Maths2

Section Id: 64065339708

Section Number: 2

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions:

Number of Questions to be attempted: 9

Section Marks: 25

Display Number Panel: Yes

Group All Questions: No

Enable Mark as Answered Mark for Review and

Clear Response :

Maximum Instruction Time: 0

Sub-Section Number: 1

Sub-Section Id: 64065384326

Question Shuffling Allowed: No

Is Section Default?: null

Question Number: 12 Question Id: 640653586910 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Yes

Time: 0

Correct Marks: 0

Question Label: Multiple Choice Question

THIS IS QUESTION PAPER FOR THE SUBJECT "FOUNDATION LEVEL: MATHEMATICS FOR DATA

SCIENCE II (COMPUTER BASED EXAM)"

ARE YOU SURE YOU HAVE TO WRITE EXAM FOR THIS SUBJECT? CROSS CHECK YOUR HALL TICKET TO CONFIRM THE SUBJECTS TO BE WRITTEN.

(IF IT IS NOT THE CORRECT SUBJE	ECT, PLS CHECK THE SECTION	ON AT THE <u>TOP</u> FOR	THE SUBJECTS
REGISTERED BY YOU)			

E SECTION AT THE <u>TOP</u> FOR THE SUBJE		
2		
64065384327		
Yes		
null		
Question Type : SA Calculator : None		
struction Time : 0		
Question Label : Short Answer Question		
If A is a 2×3 matrix of rank 1, then what is the nullity of AA^{T} ?		

Sub-Section Number: 3

Sub-Section Id: 64065384328

Question Shuffling Allowed: Yes Question Number: 14 Question Id: 640653586912 Question Type: MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following options is/are true?

Options:

6406531958425. \checkmark There exists an onto linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$.

6406531958426. \checkmark There does not exist a one-one linear transformation $T: \mathbb{R}^3 \to \mathbb{R}$.

There exists a linear transformation $T:\mathbb{R}^3\to\mathbb{R}^2$ such that rank(T)=nullity(T).

There does not exist a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^3$ such that rank(T)=nullity(T).

Question Number : 15 Question Id : 640653586926 Question Type : MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Consider the vector space $V = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \mid c = a + b, a, b, c \in \mathbb{R} \right\}$

and $T: V \to \mathbb{R}^4$ defined by T(A) = (a, b, c, a + b - c).

Choose the correct option(s).

Options:

6406531958448. * T is onto but not one-one 6406531958449. \checkmark T is one-one but not onto. 6406531958450. * Nullspace of T is a 2 dimensional subspace of V. 6406531958451. \checkmark Range of T is a 2 dimensional subspace of \mathbb{R}^4 . Question Number: 16 Question Id: 640653586927 Question Type: MSQ Is Question Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0 Correct Marks: 2 Max. Selectable Options: 0 Question Label: Multiple Select Question Let A be a 3×3 rotation matrix. Choose the correct option(s). **Options:** 6406531958452. \checkmark The rows of A are orthogonal. 6406531958453. \checkmark A is an orthogonal matrix.

4

Yes

null

64065384329

6406531958454. \divideontimes The columns of A are not orthonormal.

6406531958455. * $\det(A) = 0$.

Question Shuffling Allowed:

Sub-Section Number:

Is Section Default?:

Sub-Section Id:

Question Number: 17 Question Id: 640653586922 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

An inner product on a vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ satisfying the following conditions:

Condition 1: $\langle v, v \rangle > 0$ for all $v \in V \setminus \{0\}$; $\langle v, v \rangle = 0$ if and only if v = 0.

Condition 2: $\langle v_1 + v_2, v_3 \rangle = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle, \forall v_1, v_2, v_3 \in V.$

Condition 3: $\langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle, \forall v_1, v_2 \in V$.

Condition 4: $\langle cv_1, v_2 \rangle = c \langle v_1, v_2 \rangle, \forall v_1, v_2 \in V$.

Let $V = \mathbb{R}^2$ and consider the function defined as:

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

 $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 - x_2 y_1 - x_2 y_2.$

Which of the following is/are satisfied by the above function?

Options:

6406531958442. * Condition 1 is satisfied.

6406531958443. **✓** Condition 2 is satisfied.

6406531958444. * Condition 3 is satisfied.

6406531958445. ✓ Condition 4 is satisfied.

Sub-Section Number: 5

Sub-Section Id: 64065384330

Question Shuffling Allowed: No

Is Section Default?: null

Question Id: 640653586913 Question Type: COMPREHENSION Sub Question Shuffling

Allowed: No Group Comprehension Questions: No Question Pattern Type: NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (18 to 22)

Question Label: Comprehension

Let V_1 denote the vector space of solutions of AX = 0, where

$$A = \begin{pmatrix} 2 & 1 & 4 \\ -1 & 1 & 0 \\ 1 & 2 & 4 \end{pmatrix} \text{ and } X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}. \text{ Let } V_2 \text{ denote the vector}$$
 space of solutions of the system $BY = 0$, where $B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ and $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$. Answer the given subquestions.

Sub questions

Question Number: 18 Question Id: 640653586914 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

What is the nullity of *A*?

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1

Question Number: 19 Question Id: 640653586915 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

What is the rank of *B*?

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

2

Question Number: 20 Question Id: 640653586916 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 1 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following forms a basis β for V_1 ?

Options:

6406531958432.
$$\checkmark$$
 $\{(-\frac{4}{3}, -\frac{4}{3}, 1)\}$

6406531958433.
$$\checkmark$$
 $\{(\frac{1}{5}, 1, \frac{2}{5})\}$

Question Number: 21 Question Id: 640653586917 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 2

Question Label: Short Answer Question

Define a linear transformation

$$T: V_2 \to \mathbb{R}^2$$
 by $T(x, y, z) = (x, x + y + z)$.

What is the rank of T?

Response Type: Numeric	
Evaluation Required For SA : Yes	
Show Word Count : Yes	
Answers Type: Equal	
Text Areas : PlainText	
Possible Answers :	
1	
Question Number : 22 Question Id : 640653586918	Question Type : SA Calculator : None
Response Time : N.A Think Time : N.A Minimum In	struction Time : 0
Correct Marks : 1	
Question Label : Short Answer Question	
Let $S: V_1 \to V_2$ be a linear transformation.	
If $m \times n$ is the order of the matrix D of the	
linear transformation S with respect to some ordered basis α_1 for V_1 and an ordered basis	
α_2 for V_2 , what is $2m-3n$?	
Response Type: Numeric	
Evaluation Required For SA : Yes	
Show Word Count : Yes	
Answers Type: Equal	
Text Areas : PlainText	
Possible Answers :	
-1	
Sub-Section Number :	6
Sub-Section Id :	64065384331

Question Shuffling Allowed: No

Is Section Default?: null

Question Id: 640653586919 Question Type: COMPREHENSION Sub Question Shuffling Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (23 to 24)

Question Label: Comprehension

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x,y,z) = (x+y+z,x-y-z,x).

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 23 Question Id: 640653586920 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 2

Question Label: Short Answer Question

If
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 denotes the matrix of T

with respect to $\{(1,1,1),(1,1,0),(1,0,0)\}$

for domain and co-domain, then what is

2b + 2e + 2h?

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

4

Question Number: 24 Question Id: 640653586921 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks : 2 Max. Selectable Options : 0

Question Label: Multiple Select Question

Let *B* denote the matrix of *T* with respect to the standard ordered basis for both domain and codomain. Choose the correct option(s).

Options:

6406531958438. \checkmark A is similar to B.

6406531958439. * A is not similar to B.

6406531958440. $\checkmark \det(A) = \det(B) = 0.$

6406531958441. $\star \det(A) = \det(B) = 2.$

Question Id: 640653586923 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (25 to 26)

Question Label: Comprehension

Let W be the subspace of \mathbb{R}^4 with the standard inner product, spanned by the ordered set $\beta = \{(1, -1, 0, 0), (0, 1, 1, 0)\}$. Let $\{v_1, v_2\}$ denote the orthonormal basis of W obtained by applying the Gram-Schmidt process on β .

Based on the above data, answer the given subquestions.

Sub questions

Question Number : 25 Question Id : 640653586924 Question Type : SA Calculator : None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

Possible Answers :
Text Areas : PlainText
Answers Type : Equal
Show Word Count : Yes
valuation Required For SA : Yes
Response Type: Numeric
Question Label : Short Answer Question If $P_W(0,1,0,1)=(a,b,c,d),$ what is $3(a+b+c+d)$?
Correct Marks : 3
Response Time : N.A Think Time : N.A Minimum Instruction Time : 0
Question Number : 26 Question Id : 640653586925 Question Type : SA Calculator : None
<u>'</u>
Possible Answers :
Text Areas : PlainText
Answers Type: Equal
show Word Count: Yes
valuation Required For SA : Yes
Response Type: Numeric
map. What is the numry of TW:
Let $P_W : \mathbb{R}^4 \to W$ denote the projection map. What is the nullity of P_W ?

64065339709 Section Id:

Section Number: 3

Section type: Online

Mandatory or Optional: Mandatory