

Syllabus

SY B.Tech Electronics and Computer Engineering (Second Year: Semester III-IV)

From
Academic Year 2023-24
(Revision-1)
Approved by FOET and AC
SY B.Tech /EXCP/Revision 1.0

K.J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

It is notified for information of all concerned that the Board of Studies at its meeting held on 24/03/2023 and the subsequent meeting of the Faculty of Engineering and Technology (FoET) on 10/01/2023 and Academic Council held on 05/04/2023 amended the syllabus of S.Y. B. Tech EXCP. Same will be brought into force from Academic Year 2023-24 with immediate effect.

Preamble

The Department was established in 1983 and has been accredited thrice by the National Board of Accreditation in 1998, 2009, and 2013. The Department offers UG, PG, and Ph.D. programs. In the era of Industry 4.0, intelligent devices are an integral part of human life, This has resulted in the need for electronics engineers to acquire skill of hardware design and System Software so that they can effectively use their expertise in the domains which are combination of hardware - software; such as Embedded Systems, Robotics, IOT, Machine Vision, Data Analytics, and Artificial intelligence.

Due to the rapid evolution in all the above fields, engineers must possess proficiency in hardware and software. Electronics and Computer engineering aims to integrate two separate engineering domains, exposing the students to the needs of today's industry. It is necessary to map industry requirements into the educational system and develop a continuous knowledge cycle that gives exposure to new technologies. Industrial automation is an interdisciplinary topic covering areas ranging from algorithms to handling processes and system developments to digital manufacturing. By increasing automation through the use of sensors, IoT, and configurable robots on the assembly line, 'smart' factories will be able to mass-produce items satisfying individual customer orders and specifications. Efficiency in productivity and quality of the product can be improved through automation and Internet-of-Things (IoT). The Department strives to provide a conducive environment for the students to develop analytical and practical skills and apply them to real-world problems. The major emphasis of the curriculum is:

- To prepare the Learner with a sound foundation in the mathematical, scientific, and engineering fundamentals.
- To motivate the Learner in the art of self-learning and to use modern tools for solving real-life problems.
- To equip the learners with the skill set of Laboratory tools by including various laboratory courses in the curriculum.
- To equip the Learner with state-of-the-art programming languages to make them ready for placements.
- Our core courses are designed in a manner to prepare the Learner to be equally competent for qualifying competitive technical examinations.
- To encourage, motivate, and prepare the Learner for Lifelong-learning.
- To ingrain in the learner's mind the values of professionalism, ethics, effective leadership, and social responsibility.

HOD ETRX

Vision

To impart excellent quality-education by keeping pace with rapidly changing technologies and to create technical manpower of global standards with ethical and social values.

Mission

Efforts to impart quality and value-based education to:

- Raise satisfaction level of all stakeholders
- Create competent professionals
- Provide all possible support to promote research and development activities

Program Educational Objectives (PEOs)

A graduate of Electronics and Computer Engineering will:

- PEO 1. Adapt to upcoming technologies to solve real-life problems of society
- PEO 2. Pursue higher education or research, demonstrate entrepreneurial qualities
- PEO 3. Emerge as a leader with a professional and ethical outlook, exhibit effective communication, teamwork and multidisciplinary approach

Program Outcomes (POs)

After successful completion of the program an Electronics and Computer Engineering Graduate will be able to:

- PO 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety and the cultural, societal, and environmental considerations.
- PO 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and inter-

pretation of data, and synthesis of the information to provide valid conclusions.

- PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development.
- PO 7. Multidisciplinary competence: Recognize/ study/analyze/provide solutions to real-life problems of multidisciplinary nature from diverse fields
- PO 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO 9. **Individual and teamwork:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
- PO 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO 11. **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO 12. Lifelong Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

After successful completion of the program Electronics and Computer Engineering Graduate will be able to:

- PSO 1. Design, construct and implement hardware and software ased modern Electronic systems with varying complexities specialization to the solution of complex engineering problems.
- PSO 2. Demonstrate proficiency in use of software and hardware required in real-life applications.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Acronym	for a category of courses	Acronyms	used in the syllabus document
Acronym	Definition	Acronym	Definition
BS	Basic Science Courses	CA	Continuous Assessment
ES	Engineering Science	ISE	In Semester Exam
HS	Humanities and Social Sci-	ESE	End Semester Exam
	ences including Manage-		
	ment Courses		
PC	Professional Core Courses	IA	Internal Assessment
PE	Professional Elective	О	Oral
	Courses		
OE	Open Elective Courses	P	Practical
LC	Laboratory Courses	P&O	Practical and Oral
P	Project	TH	Theory
\mathbf{AC}	Audit Course	TUT	Tutorial
AOCC	Add on Credit Course	\mathbf{TW}	Term Work
AOAC	Add on Audit Course	ISE	In Semester Examination
AVAC	Add on Value Audit Course	CO	Course Outcome
EX	Exposure Course	PO	Program Outcome
Ι	Interdisciplinary Courses	PSO	Program Specific Outcome

Semester III - Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH-P- TUT	Total Hrs.	Credits As- signed TH-P- TUT	Total Cred- its	Course Cate- gory
116U40C301	Integral Transform and Vector Calculus	3-0-1	04	3-0-1	04	BS
116U40C302	Analog Electronic Circuits	3-0-0	03	3-0-0	03	PC
116U40C303	Digital Electronics	3-0-0	03	3-0-0	03	PC
116U40C304	Data Structures	3-0-0	03	3-0-0	03	PC
116U40C305	Networks, Signals and Systems	3-0-0	03	3-0-0	03	PC
116U40L301	Object Oriented Programming Laboratory	0-2-2	04	0-2-0	02	PC
116U40L302	Analog Electronic Circuits Laboratory	0-2-0	02	0-1-0	01	PC
116U40L303	Digital Electronics Laboratory	0-2-0	02	0-1-0	01	PC
116U40L304	Data Structures Laboratory	0-2-0	02	0-1-0	01	PC
116U40L305	Networks, Signals & Systems Laboratory	0-2-0	02	0-1-0	01	PC
	TOTAL	15-10-3	28	15-6-1	22	

Semester III - Examination Scheme

Course	Course	C	\mathbf{A}	ESE	\mathbf{TW}	O*	D0-0	T-4-1
Category	Name	ISE	IA	ESE	1 VV	O*	P&O	Total
116U40C301	Integral Trans-	30	20	50	25	-	_	125
	form and Vector							
	Calculus							
116U40C302	Analog Elec-	30	20	50	_	_	_	100
	tronic Circuits							
116U40C303	Digital Electron-	30	20	50	_	-	-	100
	ics							
116U40C304		30	20	50	-	-	-	100
116U40C305	Networks,	30	20	50	-	-	-	100
	Signals and							
	Systems							
116U40L301	Object Oriented	-	-	-	50*	-	25	75
	Programming							
	Laboratory							
116U40L302	Analog Elec-	-	-	-	25	-	25	50
	tronic Circuits							
	Laboratory							
116U40L303	Digital Electron-	-	_	-	25	-	25	50
	ics Laboratory							
116U40L304	Data Structures	-	-	-	25	-	25	50
	Laboratory							
116U40L305	Networks, Sig-	-	-	-	25	25	-	50
	nals & Systems							
	Laboratory							
T	OTAL	150	100	250	175	25	100	800

^{*}Term work based on laboratory performance of 25 marks and one test of 25 marks

Semester IV Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH-P- TUT	Total Hrs.	Credits As- signed TH-P- TUT	Total Cred- its	Course Cate- gory
116U40C401	Complex Analysis, Statistics and Optimiza- tion Techniques	3-0-1	04	3-0-1	04	BS
116U40C402	Analog and Digital Communication	3-0-0	03	3-0-0	03	PC
116U40C403	Analysis of Algorithms	3-0-0	03	3-0-0	03	PC
116U40C404	Database Management Systems	3-0-0	03	3-0-0	03	PC
116U40C405	Discrete Mathematics	3-0-1	04	3-0-1	04	PC
116U40L401	Microprocessors and Microcontrollers Labora- tory	1-2-0	03	0-2-0	02	PC
116U40L402	Analog and Digital Communication Laboratory	0-2-0	02	0-1-0	01	PC
116U40L403	Analysis of Algorithms Laboratory	0-2-0	02	0-1-0	01	PC
116U40L404	Database Management Systems Laboratory	0-2-0	02	0-1-0	01	PC
	TOTAL	16-8-2	26	15-5-2	22	

Semester IV - Examination Scheme

Course	Course	C	\mathbf{A}	DCD	CDXX7	0*	D0-0	m-4-1
Category	Name	ISE	IA	ESE	TW	O*	P&O	Total
116U40C401	Complex Anal-	30	20	50	25	-	-	125
	ysis, Statistics							
	and Optimiza-							
	tion Techniques							
116U40C402	Analog and Dig-	30	20	50	-	-	-	100
	ital Communica-							
11011400400	tion	9.0	20	5 0				100
116U40C403	Analysis of Al-	30	20	50	_	_	-	100
116U40C404	gorithms Database Man-	30	20	50				100
1100400404	agement Sys-	30	20	50	_	_	_	100
	tems							
116U40C405	Discrete Mathe-	30	20	50	25	_	_	125
1100100	matics	30						120
116U40L401	Microprocessors	-	_	-	50*	-	25	75
	and Micro-							
	controllers							
	Laboratory							
116U40L402	Analog and Dig-	-	_	-	25	25	-	50
	ital Communica-							
	tion Laboratory							
116U40L403	Analysis of Al-	-	-	-	25	-	25	50
	gorithms Labo-							
116U40L404	ratory Database Man-				25		25	50
110U4UL4U4	agement Sys-	-	_	_	25	_	25	50
	tems Laboratory							
T	OTAL	150	100	250	175	25	75	775

^{*}Term work based on laboratory performance of 25 marks and one test of 25 marks

Course Code	Course Title							
116U40C301	Integral Transform and Vector Calculus							
		TH P TUT To				Total		
Teaching Scheme (Hrs.)	03			_	_		01*	
Credits Assigned	03			_		01		04
				Ma	rks			
Examination Scheme	C	\mathbf{A}	ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		Г	rau	Total
	30	20	50	25	_	_	_	125

^{*} Batch wise Tutorial

Course prerequisites:

- Applied Mathematics-I
- Applied Mathematics-II
- Basics of Vector Algebra

Course Objectives:

The objective of this course is to introduce different methods of finding Laplace Transform and Inverse Laplace transform of given function. The course also familiarizes students with the concepts of Fourier series, Fourier Integral and Fourier Transform of a given function. The course also disseminates methods to find Z- Transform and Inverse Z- transform of a function. Concepts of Differentiation and Integration of Vector functions with their applications are also explained in this course. Using these methods it will be possible to analyze and interpret a given real life situation and think of possible solutions.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Apply Different methods to find Laplace Transform and Inverse Laplace Transform of a function
- CO 2. Find Fourier series, Fourier Integral and Fourier Transform of functions.
- CO 3. Apply Different methods to find Z-Transform and Inverse Z- Transform of a function.
- CO 4. Apply concepts of Gradient, curl and Divergence of a vector function to solve problems.
- CO 5. Apply concepts of Vector Integration to solve related problems.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Laplace	Transform	12	CO1
	1.1	Definition of Laplace Transform, Laplace Transform of		
		$\sin(at), \cos(at), \sinh(at), \cosh(at), erf(t), Heavi-side unit$		
		step, dirac-delta function, Laplace Transform of periodic		
		function		
	1.2	Properties of Laplace Transform (without proof): Lin-		
		earity, first shifting theorem, second shifting theorem,		
1		multiplication by t, division by t, Laplace Transform of		
1		derivatives and integrals, change of scale		
	1.3	Inverse Laplace Transform: Partial fraction method,		
		convolution theorem, Application of Laplace Transform:		
		Solution of ordinary differential equations		
	Fourier		10	CO2
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's		
		formulae, Fourier Series of Functions: Exponential,		
		trigonometric functions, even and odd functions, half		
2		range sine and cosine series		
_	2.2	Complex form of Fourier series		
	2.3	Fourier Integral , Fourier Transform and Inverse Fourier		
		Transform		
	Z-Trans		06	CO3
	3.1	Z-transform of standard functions		
	3.2	Properties of Z-transform(without proof): Linearity,		
3		change of scale, shifting property, Multiplication by K,		
_		Initial and Final value, Convolution theorem		
	3.3	Inverse Z- transform: Binomial expansion and Method		
		of Partial fraction		
		Differentiation	08	CO4
4	4.1	Gradient of scalar point function, divergence and curl of		
	1.2	vector point function.		
	4.2	Solenoidal and irrotational vector fields.		
		#Self-Learning topic: Scalar and vector product		
		of three and four vectors and their properties.		

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Vector I	ntegration	09	CO5
	5.1	Vector Integral: Line integral, Properties of line integral,		
		Surface integral, Volume integrals.		
5	5.2	Green's theorem in a plane (without proof) and related		
9		problems		
	5.3	Gauss divergence theorem (without proof), Stokes the-		
		orem (without proof) and related problems		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s	with country		Year of
				publication
1.	B.S. Grewal	Higher Engineering Mathe-	Khanna Publications,	43^{rd} Edition,
		$\mid matics \mid$	India	2014
2.	Erwin	Advanced Engineering	Wiley Eastern Lim-	10^{th} Edition,
	Kreyszig	Mathematics	ited, India	2015
3.	N.P. Bali and	A Textbook of Engineering	Laxmi Publications	9^{th} Edition,
	Manish Goyal	Mathematics	LTD, India	2016
4.	P.N. Wartikar	A text book of Applied	Pune Vidyarthi-	6 th Edition,
	and J.N.	Mathematics Vol I & II	Gruha, India	2012
	Wartikar			

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

Course Code	Course Title							
116U40C302	Analog Electronic Circuits							
		TH P TUT Tota					Total	
Teaching Scheme (Hrs.)	03			-	_	_		03
Credits Assigned	03			=		-	_	03
				Ma	rks			
Examination Scheme	CA		ESE	$\mathbf{T}\mathbf{W}$	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

• Elements of Electrical and Electronics Engineering

Course Objectives:

The objective of the course is to impart fundamental knowledge and applications of semi-conductor devices like BJT and MOSFET. This course aims to build a foundation for DC analysis, biasing circuits of BJT, FET and small signal analysis of mid, low and high frequency range amplifiers using hybrid models. The course imparts knowledge of frequency response of single stage amplifiers. It conveys the concept of different types of feedback used in amplifiers and oscillators. It explains the importance of Differential Amplifiers, current mirrors and its application. Analysis of the MOSFET based circuits provides the necessary foundation for Analog and digital VLSI design.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Analyze BJT transistor circuits for DC and AC operations
- CO 2. Analyze MOSFET circuits for DC and AC operations
- CO 3. Learn the dependency of the amplifier gain over the frequency range
- CO 4. Understand the concept of feedback and apply it to amplifiers and oscillators
- CO 5. Understand the need of Differential Amplifiers

Module	Unit	Details	Hrs.	CO
No.	No.			
	Bipolar	Junction Transistor (BJT)	10	CO1
	1.1	BJT (npn and pnp) construction, Working, input and		
		output characteristics, DC Load Line, Concept of Bias-		
		ing		
	1.2	DC Analysis of BJT circuits, Basic Transistor Applica-		
		tion: Amplifier and as a switch		
	1.3	Basic BJT amplifier configuration, Small signal hybrid		
1		pi model of BJT, Small signal mid – frequency analysis		
		of CE, CB and CC BJT amplifiers.		
		#Self learning topic: Stability factor S(Ico) for		
		all BJT biasing circuits		
	The Fiel	d Effect Transistor	10	CO2
	2.1	MOS Field-Effect Transistor: Construction, Working,		
		transfer and output characteristics, Enhancement and		
		Depletion MOSFETs		
2	2.2	MOSFET Biasing and DC Circuit Analysis, MOSFET		
		application as Amplifier and Switch		
	2.3	Basic MOSFET amplifier configuration, Small signal		
		model of MOSFET, Small signal mid – frequency anal-		
		ysis of CS,CG and CD MOSFET amplifiers.		
	Frequen	cy Response of Single Stage Amplifiers	08	CO3
	3.1	Low frequency Response: Effect of coupling and		
		bypass capacitor on frequency response of single stage		
3		Common Source MOSFET amplifier.		
	3.2	High frequency Response: High frequency model of		
		MOSFET, Miller effect and miller capacitance, Unity		
		gain bandwidth f_T and beta-cutoff frequency f_{β} , high		
		frequency response of single stage MOSFET amplifiers.		

Module	Unit	Details	Hrs.	CO
No.	No.			
	Feedbac	k Circuits	08	CO4
4	4.1	Negative feedback: Basic feedback theory, character-		
4		istics of negative feedback, Effect of negative feedback		
		with derivation for input impedance, output impedance,		
		gain and bandwidth for the four feedback topologies.		
		(no numerical examples to be included)		
	4.2	Positive Feedback: Introduction and		
		classification of oscillators, Barkhausen		
		criterion for sustained oscillations.		
		Audio frequency oscillators: Transistorized		
		RC phase shift oscillator and Wein bridge oscil-		
		lator. (theoretical description only – no anal-		
		ysis or numerical examples to be included)		
		Radio frequency oscillators: LC tank circuit,		
		Hartley, Colpitt's and clapp's oscillators, (theoretical		
		description only – no analysis or numerical examples to		
		be included)		
		#Self learning topic: Crystal Oscillator		
		tial Amplifiers	09	CO5
	5.1	Single ended and Differential signaling		
		MOSFET Differential Amplifiers: Terminology		
		and qualitative description, DC transfers characteris-		
		tics, differential gain, common mode gain, and CMRR.		
		AC (small signal analysis) and DC analysis of MOSFET		
5		differential amplifier		
	5.2	Current mirrors: Basic two transistor MOSFET cur-		
		rent mirror, Three transistor MOSFET current mirror		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${ m Author/s}$		with country	Year of
				publication
1.	Donald A.	Microelectronics: Circuit	McGraw Hill, India	4 th Edition,
	Neamen	Analysis and Design		2021
2.	Robert L.	Electronic Devices and Cir-	Pearson Education,	11^{th} Edition,
	Boylestad,	cuit theory	India	2015
	Louis Nashe-			
	lesky			
3.	Behzad	Fundamentals of Microelec-	Wiley, India	3^{rd} Edition,
	Razhavi	tronics		2021
4.	S. Saliva-	Electronic Devices and Cir-	McGraw Hill, India	4 th Edition,
	hanan, N.	cuit		2017
	Suresh Ku-			
	mar			
5.	Jacob Mill-	Millman's Electronic De-	McGraw Hill, India	4 th Edition,
	man and C.	vices and circuits		2015
	Halkias			

Course Code				Course	se Title			
116U40C303	Digital Electronics							
	TH		TH P TUT		P		U T	Total
Teaching Scheme (Hrs.)	03			_	_	_		03
Credits Assigned	03		03		_		_	03
	Marks							
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		F	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

• Number systems to different bases and conversion from one base to another

Course Objectives:

Digital systems have a prominent role in everyday life. To understand the operation of digital systems, it is necessary to have a basic knowledge of digital circuits and their logical functions. The objective of this course is to familiarize the student with fundamental principles of digital design. It provides coverage of classical hardware design for both combinational and sequential logic circuits

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Use different techniques of minimization for combinational logic design
- CO 2. Design combinational logic circuits using MSI devices
- CO 3. Design sequential circuits using MSI devices
- CO 4. Analyze and design synchronous sequential circuits using flip flops
- CO 5. Understand characteristics of different logic families and semiconductor Devices

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Fundam	entals of Digital Design	10	CO1
	1.1	Review of basic gates, Universal gates, Minimization of		
		logical expressions with Boolean Algebra		
	1.2	Review of Number system and coding techniques.		
	1.3	Combinational logic representation using truth table,		
		sum of products(SOP) and products of sum(POS), Min-		
1		imization of logical expressions with Karnaugh Map (up		
		to five variables) and realization.		
	1.4	Quine McCluskey Method for minimization		
	Combina	ational Logic Circuits	10	CO2
	2.1	Design of different combinational circuits, Adder,		
		subtractor, controlled adder/ subtractor, BCD		
		adder/subtractor, Use of MSI devices		
	2.2	Multiplexer, demultiplexer, decoder, encoder, compara-		
		tor, multiplexer tree and decoder tree. Use of MSI de-		
		vices		
2	2.3	Introduction, realization of logic expressions with		
		PROM, PLA and PAL.		
		#Self Learning Topic: Carry Look ahead adder		
	_	ial Logic Design	09	CO3
	3.1	Latches and flip flops		
3	3.2	Asynchronous counters, synchronous counter, up/down		
		counter, mod counter, shift register		
	3.3	Design using MSI counters and shift register		
		tate Machines Design	10	CO4
	4.1	Mealy and Moore Machines, Clocked synchronous state		
		machine analysis		
	4.2	Development of state diagram, State reduction tech-		
4		niques and state assignment, Clocked synchronous state		
	4.0	machine design.		
	4.3	Design applications like sequence detectors, vending ma-		
		chines		

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Logic Fa	milies and Programmable Devices	06	CO ₅
5	5.1	Introduction to CPLD and FPGA architectures.		
9	5.2	Introduction to HDL		
		#Self Learning Topic: Types of logic fami-		
		lies (TTL and CMOS), characteristic parameters		
		(propagation delays, power dissipation, Noise		
		Margin, Fan-out and Fan-in)		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	Morris Mano	Digital Design: With an In-	Pearson Education,	5^{th} Edition,
	and Michael	troduction to Verilog HDL	India	2013
	D. Ciletti			
2.	R.P.Jain	Modern Digital Electronics	McGraw Hill Educa-	4^{th} Edition,
			tion, India	2015
3.	John M	Digital logic: Applications	Thomson Brooks/	Second
	Yarbrough	and design	Cole, India	Indian
				Reprint,2007
4.	A.P.	Digital Principles and Ap-	McGraw Hill Educa-	10^{th} Edition,
	Malvino and	plications	tion, India	2015
	D.P.Leach			

Course Code				Course	e Title			
116U40C304		Data Structures						
	TH		TH P TUT		P		IJ T	Total
Teaching Scheme (Hrs.)	03			_		_		03
Credits Assigned	03		03 -		_	03		
	Marks							
Examination Scheme	\mathbf{C}	$\mathbf{C}\mathbf{A}$		$\mathbf{T}\mathbf{W}$		Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

• Any Programming language

Course Objectives:

The objective of this course is to introduce different types of data structure and how data structures can be used in software development. The course is designed to develop skills to implement and analyze simple linear and nonlinear data structures. The course enables students to gain knowledge about practical applications of data structures. It also strengthens the ability of the students to identify and apply the suitable data structure for the given real world problem.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand and implement the different data structures used in problem solving
- CO 2. Apply linear and non-linear data structure in application development
- CO 3. Explain concepts of advanced data structures like set, map dictionary
- CO 4. Demonstrate sorting and searching methods

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introduc	ction	02	CO1
1	1.1	Introduction to Data Structures		
		Types of Data Structures, ADT (Abstract data		
		type)		
	Linear I	Data Structure	18	CO1
				CO2
	2.1	Linked List: Introduction, Representation of Linked		
		List, Linked List vs Array, Implementation of Linked		
		List, Circular Linked List, Doubly Linked List, Applica-		
2		tion – Polynomial Representation and Addition, other		
		additional applications/Case study		
	2.2	Stack: The Stack as an ADT, Stack operations, Ar-		
		ray Representation of Stack, Linked Representation of		
		Stack, Application of stack –Recursion and evaluation		
		of postfix and prefix expressions, Case study		
	2.3	Queues: The Queue as an ADT, Queue operation, Ar-		
		ray Representation of Queue, Linked Representation of		
		Queue, Circular Queue, Priority Queue, Double ended		
		queue, Application of Queues –Application of queue in		
		Josephus Problem, Other applications, Case study.		
		#Self learning Topic: Sparse Matrix Addition		
	Non-Lin	ear Data Structures: Trees, Graph	10	CO2
	3.1	Trees: Basic trees concept, Binary tree representation,		
		Binary tree operation, Binary tree traversal, Binary		
		search tree implementation, Threaded binary trees. Dif-		
		ferent Search Trees -AVL tree, Multiway Search Tree,		
3		B Tree, B+ Tree and Tree, Applications, Case study of		
		trees.		
	3.2	Graph - Introduction, Graph Terminologies, Represen-		
		tation, Graph Traversals – Depth First Search (DFS)		
		and Breadth First Search (BFS). Applications/Case		
		study of Graphs.		
		#Self learning topic: Red-Black Trees		

Module	Unit	Details	Hrs.	CO
No.	No.			
	Non-Lin	ear Data Structures: Map, Dictionary	07	CO3
	4.1	Set: Set ADT, Set Implementation,		
		Partitions with Union-Find operations,		
		Tree based partition implementation.		
		Map: Map ADT, Implementation,		
		Hash Tables Application of Maps		
		Dictionary: Dictionary ADT, Implementation,		
4		Application of Dictionaries		
_		#Self-learning topic: Application of Dictionar-		
		ies, Exploring case studies on use of map and		
		dictionary		
		ng and Sorting	08	CO4
	5.1	Sorting: Introduction to Sorting, Bubble Sort, Inser-		
		tion Sort, Selection Sort, Merge Sort, Shell Sort, Count-		
5		ing Sort		
	5.2	Searching: Search concept, Linear Search, Binary		
		Search, Hashed List Search, Comparison of searching		
		Techniques		
		#Self-learning topic: Application of Dictionar-		
		ies, Exploring case studies on use of map and		
		dictionary		
		Total	45	

Recommended Books:

S.No.	Name/s of Au-	Title of Book	Name of Pub-	Edition and
	thor/s		lisher with coun-	Year of
			try	publication
1.	Ellis Horowitz, Sar-	Fundamentals Of	University Press,	2^{nd} Edition,
	taj Sahni, Susan	Data Structures In C	India	2012
	Anderson-Freed			
2.	Richard F. Gilberg &	Data Structures A	CENGAGE Learn-	2^{nd} Edition,
	Behrouz A. Forouzan	Pseudocode Approach	ing, India	2004
		with C		
3.	Reema Thareja	Data Structure and	Oxford University	2^{nd} Edition,
		Algorithm	Press, India	2011
4.	Jean Paul Tremblay,	An introduction to	McGraw Hill Edu-	2^{nd} Edition,
	Paul G. Sorenson	data structures with	cation, India	2017
		applications		
5.	Aaron M Tanenbaum,	Data structure Using	Pearson Education,	12^{th} Impres-
	Yedidyah Langsam	C	India	sion, 2013
	and Moshe J Au-			
	gentstein			
6.	Michael T Goodrich,	Data Structure and	Wiley, India	1^{st} Edition,
	Roberto Tamassia,	Algorithm in $C++$		2011
	David Mount			

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40C305	Networks, Signals and Systems							
	TH		P		P TUT		Total	
Teaching Scheme (Hrs.)	03			_	_	_		03
Credits Assigned	03		03		_		_	03
	Marks							
Examination Scheme	C	CA		$\mathbf{T}\mathbf{W}$		Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

- Elements of Electrical and Electronics Engineering (116U06C107)
- Partial fraction expansion, matrices, Laplace transforms, and differential equations

Course Objectives:

This course is an introduction to the fundamental concepts and techniques of signals and systems in the continuous time domain. It will also help the students to understand Electrical Networks and find their applications in various allied disciplines of Electronics and Computer Engineering.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Analyze DC and AC circuits using mesh, nodal analysis, and network theorems.
- CO 2. Analyze transient and steady-state response using Laplace Transform
- CO 3. Determine two-port network parameters
- CO 4. Understand operations of continuous signals and systems
- CO 5. Apply Fourier series and transform for spectral analysis

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introduc	ction to Network Elements and Sources	10	CO1
1	1.1	Introduction to Linearity and Nonlinearity, Distributed		
1		& Lumped Parameters 2-port Networks		
	1.2	Network analysis (AC and DC) using dependent		
		Sources: Mesh and Nodal analysis, Superposition,		
		Thevenin's, Norton's and Max power transfer theorems.		
	1.3	Introduction to Graph Theory, Cut set, Tie set matrix,		
		Principle of Duality		
		#Self learning topic: Millman's and Tellegan's		
		theorem		
		at response of R-L, R-C, R-L-C circuits	12	CO2
2	_ `	and Parallel combination)		
_	2.1	One-sided and two-sided Laplace Transform and Inverse		
		Laplace Transform. Definition, Concept of Region of		
		Convergence (ROC), BIBO stability and pole-zero dia-		
		grams, the Impulse response of a system.		
	2.2	Test inputs for transient response: step, impulse, and		
		ramp input, Initial conditions, Solution based on time		
		domain analysis and Laplace Transform		600
		rt networks Z, Y. ABCD and Hybrid Parameters	06	CO3
	3.1	Driving point and transfer function, Concept of reci-		
3	0.0	procity and symmetry		
	3.2	Two-port network parameters and their interrelation		
	3.3	Interconnection of two-port networks		
		#Self learning topic: Inverse transmission and		
	Introduc	Inverse Hybrid Parameters.	10	CO4
	4.1	ction to CT signals and systems Definition of basic signal: Elementary Continuous Time	10	CO4
	4.1	(CT) signals, Operations on a signal like shifting, flip-		
		ping, scaling, addition, multiplication. Signal classifica-		
		tion, Decomposition of a signal in different basic com-		
		ponents		
4	4.2	Concept of system, Classification of systems with sta-		
	1.4	bility, Convolution and correlation in CT, Concept of		
		Impulse Response, Convolution integral and system re-		
		sponse and its properties, correlation and its properties.		
		True properties, contended and the properties.		

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Fourier	Transform	07	CO5
	5.1	Fourier series: Properties and uses, Single sided double		
		sided Spectra. Amplitude & phase spectra, Power Spec-		
_		tral Density, Parseval's relation, Gibbs Phenomenon.		
5	5.2	Fourier transform: The Fourier Transform (FT) of basic		
		signals, Energy and Power Spectral Density.		
		#Self-learning topic: Trigonometric series, Ex-		
		ponential series		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${f Author/s}$		with country	Year of
				publication
1.	C. K. Alexan-	Fundamental of Electric	McGraw Hill Educa-	8 th Edition,
	der and M. N.	Circuits	tion, India	2021
	O. Sadiku			
2.	D. Roy	Networks and Systems	New Age Publication ,	2^{nd} Edition,
	Choudhury		India	2018
3.	J.G. Proakis,	Digital Signal Processing:	Pearson Education,	4 th Edition,
	D. G.	Principles, Algorithms and	India	2020
	Manolakis	Applications		
4.	Ashok Am-	Analog and Digital Signal	Thomson Learning,	2^{nd} Edition,
	bardar	Processing	India	2019

Course Code	Course Title								
116U40L301	Object Oriented Programming Laboratory								
	TH P TUT Tota								
Teaching Scheme (Hrs.)	_			0	02		02		
Credits Assigned	_			02		-	=	02	
		Marks							
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 1		F	rau	Total	
	_	_	_	50*	_	_	25	75	

^{*}Term work based on laboratory performance of 25 marks and one test of 25 marks

Course prerequisites:

- Programming in C(111U06L101)
- Python Programming(116U06L108)

Course Objectives:

The objective of this course is to familiarize the student with concepts and features of Object Oriented Programming. The student will be able to develop programs and applications using Java.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand concepts of Object Oriented Programming and basic characteristics of Java.
- CO 2. Understand the principles of packages, inheritance and interfaces.
- CO 3. Define exceptions and use I/O streams.
- CO 4. Develop a Java application with threads and generics classes.
- CO 5. Design and build simple Graphical User Interfaces.

Module	Unit	Details	Lab	Tut	CO
No.	No.				
	Introduc	ction to OOP and JAVA fundamentals	06	06	CO1
	1.1	Object Oriented Programming, Abstraction,			
1		objects and classes, Encapsulation, Inheri-			
		tance, Polymorphism			
	1.2	OOP in Java, Characteristics of Java, The			
		Java Environment, Java Source File Struc-			
		ture, Compilation			
	1.3	Fundamental Programming Structures in			
		Java, Defining classes in Java, constructors,			
		methods, access specifiers, static members			
	1.4	Comments, Data Types, Variables, Op-			
		erators, Control Flow, Arrays, Packages,			
		JavaDoc comments			
		nce and interfaces	06	06	CO2
	2.1	Inheritance, Super classes, sub classes, Pro-			
		tected members, constructors in sub classes,			
		the Object class, abstract classes and meth-			
2		ods, final methods and classes			
	2.2	Interfaces, defining an interface, implement-			
		ing interface, differences between classes and			
		interfaces and extending interfaces, Object			
		cloning, inner classes, Array Lists, Strings			
		on handling and I/O	08	08	CO3
	3.1	Exceptions, exception hierarchy, throwing and			
		catching exceptions, built-in exceptions, cre-			
3		ating own exceptions, Stack Trace Elements			
	3.2	Input / Output Basics, Streams, Byte streams			
		and Character streams, Reading and Writing			
		Console, Reading and Writing Files			

Module	Unit	Details	Lab	Tut	CO
No.	No.				
	Multith	reading and generic programming	04	04	CO4
	4.1	Differences between multi-threading and mul-			
		titasking, thread life cycle, creating threads,			
		synchronizing threads, Inter-thread communi-			
4		cation, daemon threads, thread groups.			
	4.2	Generic Programming, Generic classes,			
		generic methods, Bounded Types, Restric-			
		tions and Limitations.			
	Event di	riven programming	06	06	CO ₅
	5.1	Graphics programming, Frame, Components,			
5		working with 2D shapes, Using color, fonts,			
9		and images			
	5.2	Basics of event handling, event handlers,			
		adapter classes, actions, mouse events, AWT			
		event hierarchy			
	5.3	Introduction to Swing, layout management,			
		Swing Components, Text Fields, Text Areas,			
		Buttons, Check Boxes, Radio Buttons, Lists-			
		choices- Scrollbars, Windows, Menus, Dialog			
		Boxes.			
		Total	30	30	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and	
	Author/s		with country	Year of	
				publication	
1.	Herbert	JAVA The Complete Refer-	McGraw Hill Educa-	11^{th} Edition,	
	Schildt	ence	tion, India	2020	
2.	Cay	Core Java Volume - I Fun-	Pearson Education,	11^{th} Edition,	
	Horstmann	damentals: 1 (Core Series)	India	2020	
3.	Cay	Core Java Volume - II Ad-	Pearson Education,	11^{th} Edition,	
	Horstmann	vanced Features	India	2020	
4.	Herbert	Java A Beginner's Guide	McGraw Hill Educa-	8^{th} Edition,	
	Schildt		tion, India	2020	
5.	Sachin	Programming in JAVA	Oxford University, In-	Revised 2^{nd}	
	Malho-	lho- dia		Edition, 2018	
	tra,Saurabh				
	Chaudhary				
6.	E Balagu-	Programming with JAVA	McGraw Hill Educa-	6^{th} Edition,	
	rusamy		tion, India	2019	

Course Code	Course Title								
$116 \mathrm{U}40 \mathrm{L}302$		Analog Electronic Circuits Laboratory							
		TH P TUT Total							
Teaching Scheme (Hrs.)		_		02		_		02	
Credits Assigned		_			01		_	01	
		Marks							
Examination Scheme	C	A	ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 1		Г	F&O	Total	
	_	_	_	25	_	_	25	50	

Term work will consist of experiments covering entire syllabus of "Analog Electronic Circuits" (116U40C302). Students will be graded based on continuous assessment of their term work.

Course Code	Course Title								
116U40L303	Digital Electronics Laboratory								
		TH P TUT Total							
Teaching Scheme (Hrs.)	_			02		_		02	
Credits Assigned		_		0)1	-	_	01	
				Ma	rks				
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 1		F	rau	Total	
	_	_	_	25	_	_	25	50	

Term work will consist of experiments covering entire syllabus of "Digital Electronics" (116U40C303). Students will be graded based on continuous assessment of their term work.

Course Code	Course Title								
116U40L304	Data Structures Laboratory								
		TH P TUT Total							
Teaching Scheme (Hrs.)		_		0)2	-	02		
Credits Assigned		_		01		-	_	01	
		Marks							
Examination Scheme	\mathbf{C}	A	ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	LSE	1 VV		P	P&U	Total	
	_	_	_	25	_	_	25	50	

Term work will consist of experiments covering entire syllabus of "Data Structures" (116U40C304). Students will be graded based on continuous assessment of their term work.

Course Code	Course Title									
116U40L305	Networks, Signals & Systems Laboratory									
		TH P TUT Tota								
Teaching Scheme (Hrs.)		_		02		_		02		
Credits Assigned		_		0	1	-	_	01		
				Ma	rks					
Examination Scheme	\mathbf{C}	$\mathbf{C}\mathbf{A}$		TW		Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total		
	_	_	_	25	25	_	_	50		

Term work will consist of experiments covering entire syllabus of "Networks, Signals and Systems" (116U40C305). Students will be graded based on continuous assessment of their term work.

Course Code	Course Title								
116U40C401	Comp	Complex Analysis, Statistics and Optimization Techniques							
	TH			P		\mathbf{TUT}		Total	
Teaching Scheme		03		=	=	01*		04	
(Hrs.)									
Credits Assigned		03		-		0	1	04	
					Marks				
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	LSE	T AA		P	F&U	Total	
	30	20	50	25	_	_	_	125	

^{*} Batch wise Tutorial

Course prerequisites:

- Basics of Statistics and Probability
- Introductory Linear programming problems
- Applied Mathematics-I

Course Objectives:

This course exposes students to the concepts of Correlation, Regression for given bivariate data. Students are made familiar with different discrete and continuous probability distributions. The course acquaints students with concepts of Large sample test, Small sample test and Chi–Square test. The course familiarizes students with different methods of solving Linear and Non Linear Programming problems. The course explains analytic functions and the method of evaluating line integrals using Cauchy integral theorem and Cauchy integral formula. The course explains how to write a function of complex variable in terms of Taylors and Laurent's series.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Apply concepts of correlation, regression for given bivariate data
- CO 2. Apply concepts of Binomial, Poisson, Exponential and Normal distribution to solve Engineering problems
- CO 3. Apply Large sample test and small sample test to analyze collected data
- CO 4. Apply concepts of Linear and Nonlinear programming methods to solve problems
- CO 5. Apply the concept of analytic functions in evaluation of complex integrals and expansion of Taylors and Laurents series

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Correlat	ion and Regression	06	CO1
	1.1	Correlation, Co-variance, Karl Pearson Coefficient of		
1				
	1.2	Regression Coefficients, lines of regression & logistic		
		regression		
	Probabi	lity and Probability Distribution	12	CO2
2	2.1	Conditional Probability, Bayes' theorem, Joint Proba-		
		bility		
	2.2	Discrete and Continuous Probability Distribution		
	2.3	Binomial Distribution, Poisson Distribution		
	2.4	Continuous Uniform Distribution, Normal Distribution,		
		#Self-Learning topic: Addition and multiplica-		/
		tion rules of probability		/
		g Theory	07	CO3
	3.1	Sampling distribution. Test of Hypothesis. Level of sig-		
		nificance, critical region. One tailed and two tailed tests.		
		Interval Estimation of population parameters. Large		
		and small samples.		
	3.2	Difference between sample mean and population means		
3		for large samples, Test for significance of the difference		
		between the means of two large samples.		
	3.3	Student's t-distribution: Test for significance of the dif-		
		ference between sample mean and population means,		
		Test for significance of the difference between the means		
		of two Samples, paired t-test.		
	3.4	Chi-square distribution as a Test of Independence, Test		
		of the Goodness of fit and Yate's correction.		

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO	
No.	No.				
	Optimization Techniques				
	4.1	Types of solution, Standard and Canonical form of LPP,			
		Basic and feasible solutions, simplex method.			
	4.2	Artificial variables, Big –M method (method of penalty).			
	4.3	Duality			
4	4.4	Unconstrained optimization, problems of two variables			
4		with one equality constraint using Lagrange's Multiplier			
		method.			
	4.5	Problems of two variables with one inequality constraint			
		using Kuhn-Tucker conditions			
	Complex	x Differentiation and Integration	07	CO ₅	
	5.1	Analytic Function: Necessary and sufficient conditions			
		(only statement), Cauchy Reimann equations in polar			
		form, Harmonic function, orthogonal trajectories			
	5.2	Line Integral, Cauchy's Integral theorem for simply con-			
5		nected regions, Cauchy's Integral formula (Only State-			
J		ment)			
	5.3	Taylor's and Laurent's series (Only Statement)			
		Total	45		

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	B.S. Grewal	Higher Engineering Mathe-	Khanna Publications,	43^{rd} Edition,
		matics	India	2014
2.	Erwin	Advanced Engineering	Wiley Eastern Lim-	10^{th} Edition,
	Kreyszig	Mathematics	ited, India	2015
3.	J. K. Sharma	Operation Research: Theory	Laxmi Publications	6^{th} Edition,
		and Applications	LTD, India	2017
4.	S.C.Gupta	$Fundamentals\ of\ Mathemat-$	Sultan Chand & Sons,	11^{th} Edition,
	and	ical Statistics	India	2009
	V.K.Kapoor			
5.	Ronald	$Probabilities \ {\it \& Statistics for}$	Pearson Education,	9^{th} Edition,
	E.Walipole,	$Engineers \ \mathcal{E} \ Scientists$	India	2010
	Raymond			
	H.Myers			
6.	P.N. Wartikar	A text book of Applied	Pune Vidyarthi-	6^{th} Edition,
	and J.N.	$Mathematics \ Vol \ I \ \ensuremath{\mathcal{E}} \ II$	Gruha, India	2012
	Wartikar			

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

Course Code	Course Title							
116U40C402	Analog and Digital Communication							
		TH			P		J T	Total
Teaching Scheme (Hrs.)	03			_		_		03
Credits Assigned	03			_		-	_	03
		Marks						
Examination Scheme	\mathbf{C}	A	ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

• Basic Electronic Circuits

Course Objectives:

The objective of the course is to introduce basic principles and techniques used in analog and digital communication systems. The course includes analog and digital communication systems such as modulation, demodulation, transmitter and receiver. The course also introduces analytical techniques to evaluate the performance of communication systems in time and frequency domains.

Course Outcomes:

- CO 1. Understand various amplitude modulation techniques
- CO 2. Learn frequency and phase modulation and demodulation techniques
- CO 3. Understand the working principle of radio receivers
- CO 4. Learn and describe Pulse code modulation and demodulation
- CO 5. Understand and analyze various digital modulation and demodulation technique

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO		
No.	No.					
	Amplitu	de Modulation and Demodulation	10	CO1		
	1.1	Basic block diagram of communication system, types,				
		concept of modulation and demodulation. Amplitude				
		Modulation (AM) waveform, mathematical representa-				
		tion, spectrum, modulation index, and bandwidth. De-				
		modulation: practical diode detector				
	1.2	DSB-SC system: Balanced modulator, Ring modula-				
		tor, Demodulation: Coherent Detector, Product detec-				
1		tor				
	1.3	SSB system: Filter method, Phase shift method, and				
		Third method, concept of pilot carrier SSB, Demodula-				
		tion, Coherent detector, envelope detector; Concept of				
		VSB and ISB.				
	#Self-Learning topic: Introduction to Noise and					
		noise parameters like noise figure, factor, gain				
		and properties of white noise.				
		Indulation and Demodulation Angle Modulation: waveform, mathematical representa-	12	CO2		
	2.1					
		spectrum, bandwidth, Narrow Band FM, Wide Band				
		FM.				
	2.2	FM system: FET reactance modulator, Armstrong's				
2		method, Noise triangle in FM, pre-emphasis and de-				
	2.2	emphasis				
	2.3	FM Demodulation: Foster-Seeley discriminator, Ratio				
	D 11 D	detector, comparison between AM, FM and PM	0.5	GOS		
	Radio R		05	CO3		
	3.1	Limitations of TRF receiver, Super-heterodyne receiver,				
3		characteristics, choice of intermediate frequency, image				
	2.0	frequency AM FM Court of ACC 1 AFC				
	3.2	Receivers: AM, FM. Concept of AGC and AFC				

Somaiya Vidyavihar University K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO			
No.	No.						
	Pulse Modulation and Demodulation						
	4.1	Sampling theorem for low pass signals (no derivations),					
		PAM, PWM and PPM systems and applications					
4	4.2	PCM: transmitter and receiver; noise considerations in					
4		PCM. DPCM: transmitter and receiver; noise considerations					
	4.3						
		in DPCM, Adaptive delta modulation.					
	Digital I	Modulation Techniques	10	CO ₅			
	5.1	Concept of binary modulation techniques: BPSK,					
		DPSK, DEPSK, BFSK, BASK					
5	5.2	M-ary modulation techniques: QPSK, concept of M-ary					
9		PSK, M-ary FSK, QAM, MSK and GMSK					
	5.3	Inter symbol interference, SNR and BER, Properties of					
		white Gaussian noise, Matched filter receiver.					
		Total	45				

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${ m Author/s}$		with country	Year of
				publication
1.	B.P. Lathi,	Modern Digital and Analog	Oxford University	4^{th} Edition,
	Zhi Ding	$Communication\ System$	Press, India	2017
2.	Herbert	Principles of Communica-	McGraw-Hill Electri-	4^{th} Edition,
	Taub,Donald	tion Systems	cal and Electronic En-	2017
	Schilling,		gineering Series, India	
	Goutam Saha			
3.	Wayne	Electronics Communication	Pearson Education,	5^{th} Edition,
	Tomasi	Systems	India	2008
4.	Ronald	Communication systems	McGraw Hill Educa-	2^{nd} Edition,
	E.Walipole,	Analog and Digital	tion, India	2017
	Raymond			
	H.Myers			
5.	Gorge	Electronic Systems	McGraw Hill Educa-	6^{th} Edition,
	Kennedy,		tion, India	2017
	Bernard			
	Davis, SRM			
	Prasanna			
6.	Bernad Sklar	Digital Communications	Pearson Education,	4^{th} Edition,
			India	2012

Somaiya Vidyavihar University K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40C403	Analysis of Algorithms							
		TH			P		TUT	
Teaching Scheme (Hrs.)	03			_		_		03
Credits Assigned	03			_		-	_	03
	Marks							
Examination Scheme	\mathbf{C}	$\mathbf{C}\mathbf{A}$		$\mathbf{T}\mathbf{W}$		Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

• Data Structures

Course Objectives:

The course aims to teach various techniques for practical problem-solving in computing. The different algorithm paradigms for problem-solving will be used to illustrate efficient problem-solving methods. The analysis of the algorithm will be demonstrated to show its efficiency of the algorithm. The complexity theory of the problems is introduced to students for further study of algorithms.

Course Outcomes:

- CO 1. Analyze the asymptotic running time and space complexity of algorithms
- CO 2. Describe various algorithm design strategies to solve different problems
- CO 3. Develop string matching techniques
- CO 4. Describe the classes P, NP, and NP-Complete

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO				
No.	No.							
	Introduction to analysis of algorithm							
	1.1	Performance analysis, space and time complexity,						
		Growth of function-Big-Oh; Omega; Theta Notation,						
1		Analysis of insertion sort						
		Recursion Tree Method, Masters Method						
		#Self-Learning topic: Introduction to random-						
		ized algorithm.						
	Algorith	m Design Techniques	30	CO2				
	2.1	Divide and Conquer Technique						
		General method, Finding minimum and maximum						
		algorithm and analysis, Analysis of Merge sort and						
		Quick sort						
	2.2	Greedy Technique						
		General method, Knapsack problem, Minimum						
2		cost spanning trees-Kruskal's and Prims algorithm,						
		Single source shortest path						
	2.3	Dynamic Programming Technique						
		General method, Multistage graphs, 0/1 knapsack,						
		Traveling salesman problem, Single source shortest						
		path, All pairs shortest path, Matrix chain multiplica-						
	2.4	tion						
	2.4	Backtracking Technique						
		General method, Sum of subsets, N queens prob-						
	0.5	lem, Graph coloring						
	2.5	Branch and Bound						
	String 1	General method, 0/1 Knapsack	05	CO3				
	3.1	Iatching Algorithms The naïve string-matching Algorithms, String matching	บอ	003				
3	9.1	with finite automata						
	3.2	The Knuth-Morris-Pratt algorithm						
	3.3	Longest common subsequence						
	ა.ა	Longest common subsequence						

Somaiya Vidyavihar University K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Non-det	erministic Polynomial Algorithms	05	CO4
	4.1	Polynomial-time, Polynomial-time verification, NP-		
4		Completeness, and reducibility		
	4.2	NP-Completeness proof: Vertex Cover Problem, Clique		
		Problem		
		Total	45	

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${f Author/s}$		with country	Year of
				publication
1.	Т. Н.	Introduction to Algorithms	PHI Learning Pvt.	3^{rd} Edition,
	Coreman,		Ltd. (Originally MIT	2010
	C.E.Leiserson,		Press), India	
	R.L. Rivest,			
	and C. Stein			
2.	Ellis	Fundamentals of Computer	University Press, In-	2^{nd} Edition,
	Horowitz,	Algorithms	dia	2008
	Sartaj Sahni,			
	S. Rajsekaran			
3.	Alfred V.	Data Structures and Algo-	Pearson Education,	4^{th} Impres-
	Aho, John	rithm	India	sion, 2009
	E. Hopcroft,			
	Jeffrey D.			
	Ullman			
4.	Michael	Algorithm Design Founda-	Wiley Student Edi-	Student Edi-
	Gooddrich	tion, Analysis and Internet	tion, India	tion, 2006
	& Roberto	Examples		
	Tammassia			

Somaiya Vidyavihar University K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116U40C404	Database Management Systems								
	TH			P		TUT		Total	
Teaching Scheme (Hrs.)	03			_	_		_		
Credits Assigned	03		03		_		-	_	03
	Marks								
Examination Scheme	C	\mathbf{A}	ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 **		Г	rau	Total	
	30	20	50	_	_	_	_	100	

Course prerequisites:

• Nil

Course Objectives:

The objective of this course is to impart knowledge of database management system and its use in enterprise business and enable students to perform entity-relationship modeling and relational database design. Student will learn and use Structured Query Language (SQL). The course gives knowledge of applying normalization techniques to the database. Along with it, students are also introduced to the concept of transaction and query processing.

Course Outcomes:

- CO 1. Understand the features of Relational database management systems
- CO 2. Apply data models to real world scenario
- CO 3. Apply the concept of data models to relational database design
- CO 4. Illustrate the concept of security, Query processing, indexing and Normalization for Relational database
- CO 5. Apply the concept of transaction, concurrency control and recovery techniques

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO			
No.	No.						
	Databas	Database concepts and Systems					
	1.1	Introduction- Purpose of Database Systems, DBMS sys-					
		tem architecture, Data Models, Data Independence					
1	1.2	Database languages, Database Users and Administrator					
	1.3	Different types of Database Systems					
	Databas	e Models and SQL	12	CO2			
	2.1	Database design phases, E-R Model					
	2.2	Constraints, E-R Diagrams, E-R design issues					
	2.3	Entity set, Extended E-R features					
2	2.4	Relational model concepts, Constraints					
	2.5	Relational Algebra: Unary, Binary and Set theory rela-					
		tional operations					
	2.6	Data definition commands, attribute constraints, SET					
		operations, Aggregate functions, Null Values, Nested					
		sub queries, complex queries, Views Data control com-					
		mands					
	2.7	Data manipulation commands: Insert, Update, Joined					
		relations					
	2.8	Integrity and security: Domain constraints, Referential					
		integrity, Triggers; Security and Authorization in SQL					
	Relation	al Database Design	10	CO3			
3	3.1	Design guidelines for relational schemas, Functional de-					
J		pendencies					
	3.2	First Normal form, Second Normal form, Third normal					
		form.					
	3.3	Decomposition using functional dependencies, Boyce					
		Codd normal form; decomposition using multivalued de-					
		pendencies, fourth normal form.					
	3.4	The database design and implementation process					

Somaiya Vidyavihar University K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Indexing	g, Hashing, Query processing and Optimization	10	CO4
	4.1	Basic concepts, ordered indices: dense and sparse, mul-		
		tilevel indices, secondary indices		
4	4.2	Hashing: Static hashing, dynamic hashing, comparison		
4		of ordered indexing and hashing		
	4.3	Query processing: Steps involved in query processing,		
		measures of query cost, algorithms for SELECT and		
		PROJECT operations.		
	4.4	Optimization: Overview, Transformation of relational		
		expressions, Estimating statistics, Choice of evaluation		
		plan		
	Transac	tions, Concurrency control and Recovery system	07	CO ₅
	5.1	Transaction Concepts, Transaction state, ACID proper-		
		ties, concurrent executions, Serializability, Recoverabil-		
		ity		
5	5.2	Concurrency control: Lock based, Timestamp based,		
J		validation based protocol, Deadlock Handling		
	5.3	Recovery system: Failure classification, Recovery and		
		Atomicity, Log based recovery, Shadow paging		
	•	Total	45	

S.No.	Name/s of Au-	Title of Book	Name of Publisher	Edition and	
	m thor/s		with country	Year of	
				publication	
1.	Elmasri and Na-	Fundamentals of	Pearson Education,	7^{th} Edition,	
	vathe	Database Systems	India	2019	
2.	Korth, Slber-	Database System Con-	McGraw Hill Educa-	7^{th} Edition,	
	chatz,Sudarshan	cepts	tion, India	2018	
3.	Raghu Ramakrish-	Database Manage-	McGraw Hill Educa-	3^{rd} Edition,	
	nan and Johannes	$ment\ Systems$	tion, India	2017	
	Gehrke				
4.	C.J Date	Introduction to	Pearson Education,	8^{th} Edition,	
		Database Systems	India	2018	

K.J. Somaiya College of Engineering (A Constituent College of Somaiya Vidyavihar University)

Course Code				Course	e Title						
116U40C405	Discrete Mathematics										
	TH			P		TUT		Total			
Teaching Scheme (Hrs.)	03			_		01*		04			
Credits Assigned	03		03		_		_		0	1	04
		Marks									
Examination Scheme	C	\mathbf{A}	ESE	TW	0	Р	P&O	Total			
Examination Scheme	ISE	IA	LSE	1 VV	O	P	P&U	Total			
	30	20	50	25	_	_	_	125			

^{*} Batch wise Tutorial

Course prerequisites:

• Basic Mathematics

Course Objectives:

The objective of this course is to enable students to think logically and mathematically. It will help them to solve the problems with mathematical reasoning, algorithmic thinking, and modeling.

Course Outcomes:

- CO 1. Use various mathematical notations, apply various proof techniques to solve real-world problems
- CO 2. Learn and apply core ideas of Set Theory, Relations Functions
- CO 3. Use graphs and their types, to solve the practical examples
- CO 4. Understand the use of Algebraic Structures and lattice, to solve the problems

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO	
No.	No.				
	Set The	ory	03	CO1	
	1.1	Sets, Venn diagrams, Operations on Sets			
1					
	1.3	Partitions of sets, The Principle of Inclusion and Exclu-			
		sion			
	Logic		04	CO1	
	2.1	Propositions and logical operations, Truth tables			
	2.2	Equivalence, Implications			
2	2.3	Laws of logic, Normal Forms			
_	2.4	Predicates and Quantifiers			
	2.5	Mathematical Induction			
3		s, Digraphs	09	CO2	
J	3.1	Relations, Paths and Digraphs			
	3.2	Properties and types of binary relations			
	3.3	Manipulation of relations, Closures, Warshall's algo-			
		rithm			
	3.4	Equivalence relationss			
		nd Lattice	09	CO3	
4	4.1	Partial ordered relations (Posets) ,Hasse diagram			
_	4.2	Lattice, sublattice			
	4.3	Types of Lattice ,Boolean Algebra.			
		ns and Pigeon Hole Principle	03	CO3	
	5.1	Definition and types of functions: Injective, Surjective			
5		and Bijective			
	5.2	Composition, Identity and Inverse			
	5.3	Pigeon-hole principle, Extended Pigeon-hole principle			
	_	and Subgraphs	04	CO4	
	6.1	Definitions, Paths and circuits, Types of Graphs , Eule-			
6		rian and Hamiltonian			
	6.2	Planer graphs			
	6.3	Isomorphism of graphs			
	6.4	Subgraph			

K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO			
No.	No.						
	Algebrai	ic Structures	13	CO4			
	7.1	Algebraic structures with one binary operation: semi-					
7							
'	7.2	Cyclic groups, Normal subgroups					
	7.3	Hamming Code ,Minimum Distance					
	7.4 Group codes ,encoding-decoding techniques						
	7.5	Parity check Matrix ,Maximum Likelihood					
		Total	45				

S.No.	Name/s of Au-	Title of Book	Name of Publisher	Edition and
	m thor/s		with country	Year of
				publication
1.	Kenneth H.	Discrete Mathematics	McGraw Hill Educa-	6 th Edition,
	RosenKenneth	and its applications	tion, India	2017
	H. Rosen			
2.	Bernard Kolman,	$Discrete\ Mathematical$	Pearson Education,	6 th Edition,
	Robert C. Busby	Structures	India	2017
3.	C. L. Liu, D. P. Mo-	Elements of Discrete	McGraw Hill Educa-	4 th Edition,
	hapatra	$Mathematics\ West$	tion, India	2012
4.	Douglas West	Graph Theory	Pearson Education,	2^{nd} Edition,
			India	2017

Course Code	Course Title							
116U40L401	Microprocessors and Microcontrollers Laboratory							
	TH			P		TUT		Total
Teaching Scheme (Hrs.)	01			02		_		03
Credits Assigned	_			02		-	=	02
				Ma	rks			
Examination Scheme	\mathbf{C}	A	ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	L S L	T AA		P	F&U	Total
	_	_	_	50*	_	_	25	75

^{*}Term work based on laboratory performance of 25 marks and one test of 25 marks

Course prerequisites:

- Programming in C (116U06L101)
- Digital Electronics (116U40C303)

Course Objectives:

- To provide practical exposure and impart knowledge to the students on microprocessors, 80x86 family.
- To give the knowledge and practical exposure on interfacing devices with 8051 like LED displays, Keyboards, DAC/ADC, and various other devices

Course Outcomes:

- CO 1. Explain basic operation of 8086 microprocessor system and its architectural features
- CO 2. Develop 8086 based assembly language programs
- CO 3. Understand the internal design of 8051 microcontrollers along with its features
- CO 4. Build applications using 8051 and various I/O devices

Somaiya Vidyavihar University K.J. Somaiya College of Engineering

Module	Unit	Details	Th	Lab	CO
No.	No.				
	Introduc	ction to Intel 8086 Microprocessors	03	00	CO1
	1.1	Basic functions of the microprocessor, Pro-			
		grammer's model of 8086 microprocessor,			
		8086 CPU architecture and the pipelined op-			
		eration, memory segmentation, Advanced fea-			
		tures of 8086 processor			
1		#Self-Learning topic: Read and Write			
		Timing diagrams of 8086 microproces-			
		sor			
	Intel 808	86 Microprocessor Programming	03	12	CO2
	2.1	Programming 8086 microprocessor in assem-			
		bly language. Study of assembler directives			
		and procedures. Programs based on String			
		Instructions			
2		#Self-Learning topic: Stack and stack			
		related instructions			
	Introduc	ction to Microcontroller and its Features	03	00	CO3
3	3.1	Overview of microcontrollers, Architectural			
		features and its purpose, Internal memory or-			
		ganization, Study of on chip peripherals like			
		IO Ports, timers, interrupts, serialcommuni-			
		cation, Concept of PWM			

K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Th	Lab	CO
No.	No.				
	Microco	ntroller Hardware and Software Applications	06	18	CO4
	using 80	51			
	4.1	Introduction to Embedded C Programming,			
		Programming of on-chip peripherals like			
4		timers, interrupts, serial port of 8051			
	4.2	Interfacing various off-chip peripherals with			
		8051 like LEDs, solid state switches, 7-			
		segment displays, HEX key-pad, relays, LCD,			
		speed control of DC motor using PWM, speed			
		& direction control of stepper motor, ADC			
		and DAC interface with microcontroller 8051			
		Total	15	30	

List of Programs:

- 1. Programs for 16 bit arithmetic operations for 8086 (using various addressing modes)
- 2. Programs for sorting an array for 8086
- 3. Program for searching for a number or character in a string for 8086
- 4. Program for string manipulations for 8086
- 5. Program for Arithmetic shifting operations
- 6. Program for shift, rotate, and palindrome verification operation
- 7. Program for verify Fibonacci series
- 8. Generation of symmetrical/asymmetrical square waves using a timer
- 9. Serial communication with PCs
- 10. Interfacing of switch controlled LED with 8051
- 11. Interfacing of Keypad and LCD with 8051
- 12. Interfacing of seven segment display with 8051
- 13. Interfacing of DC motor with
- 14. Interfacing of stepper motor with 8051
- 15. Interfacing ADC to 8051
- 16. Interfacing DAC to 8051

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and	
	Author/s		with country	Year of	
			publication		
1.	John Uffen-	8086/8088 family: Design	Prentice Hall of India,	3^{rd} Edition,	
	beck	Programming and Interfac-	India	2007	
		ing			
2.	Douglas Hall	Microprocessor and Inter-	McGraw Hill Educa-	3^{rd} Edition,	
		facing	tion, India	2017	
3.	Kenneth Ay-	The 8051 Microcontroller	Delmar Cengage	3^{rd} Edition,	
	ala	Architecture, Programming	Learning, India	2012	
		$and \ Applications$			
4.	Mazidi and	The 8051 Microcontrollers	Pearson International,	2^{nd} Edition,	
	Mazidi	$\ensuremath{\mathfrak{C}}$ Embedded Systems	India	2012	

Course Code	Course Title							
116U40L402	Analog and Digital Communication Laboratory						ory	
	TH			P		TUT		Total
Teaching Scheme (Hrs.)		_		0	02		_	02
Credits Assigned		_		01		-	_	01
		Marks						
Examination Scheme	\mathbf{C}	A	ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		Г	F&O	Total
	_	_	_	25	25	_	_	50

Term work will consist of experiments covering entire syllabus of "Analog and Digital Communication" (116U40C402). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

Course Code	Course Title									
116U40L403	Analysis of Algorithms Laboratory									
	TH			P		TUT		Total		
Teaching Scheme (Hrs.)	_			0	02		_			
Credits Assigned	_			01		_		01		
	Marks									
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total		
	ISE	IA	ESE	T 44		I	1 & O	Total		
	_	_	_	25	_	_	25	50		

Term work will consist of experiments covering entire syllabus of "Analysis of Algorithms" (116U40C403). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

Course Code	Course Title									
116U40L404	Database Management Systems Laboratory									
	TH			P		TUT		Total		
Teaching Scheme (Hrs.)	_			02		_		02		
Credits Assigned	_			01		_		01		
	Marks									
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total		
	ISE	IA	DOL	1 1		.	1 & O	Total		
	_	_	_	25	_	_	25	50		

Term work will consist of experiments covering entire syllabus of "Analysis of Algorithms" (116U40C403). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.