Eksamen info102 mai 2016 - Løsningsforslag

Oppgave 1 Grafer og trær

- a) Hva er en Euler-graf
 - Graf med sykel som passerer alle kantene en og bare en gang.
- b) Hva er en Hamilton-graf
 - Graf med sykel som besøker alle nodene en og bare en gang.
- c) Avgjør om den følgende grafen er en Euler- og/eller Hamilton-graf.

Dette er ikke en Euler-graf siden nodene a og c har odde grad. (jfr Eulers teorem). Det er en Hamilton-graf: stien ebdcagfe er en Hamilton-sykel.

d) Lag et binært søketre ved å sette inn følgende tall i den gitte rekkefølgen.

Oppgave 2 Mengder, relasjoner og funksjoner

Ta utgangspunkt i følgende mengder: $A = \{1,2,3\}, B = \{2,3,4,5\}, C=\{3,6\}$

a) Hva er

- 1. $A \cup B = \{1,2,3,4,5\}$
- 2. $A \cap B = \{2,3\}$
- 3. $A \times B = \{(1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3), (3, 4), (3, 5)\}$
- 4. $A-B = \{1\}$
- 5. (A-C) \cap (B-C) = {2}
- 6. (C-A) \cap (C-B) = {6}
- 7. $(A \cup C) ((B \cap C) \cup (A C)) = \{6\}$
- 8. $(A \times C) \cap (C \times B) = \{(3, 3)\}$
- 9. $\wp(C) = {\emptyset, \{3\}, \{6\}, \{3,6\}}$
- 10. $|\wp(A)| = 8$

b) Sant eller galt?

- 1. A∈ ℘(A) ja
- 2. A⊆ ℘ (A) nei
- 3. A∈A×A nei
- 4. A⊂A×A nei
- 5. ∅ ∈ A nei
- 6. Ø<u></u>A ja
- 7. $\emptyset \in \wp(A)$ ja
- 8. $\emptyset \subset \wp(A)$ ja
- 9. ∅∈A×A nei
- 10. Ø⊂A×A ja

c) Vis ved hjelp av mengdealgebra at følgende likhet holder for vilkårlige mengder A og B.

$$(B \cup (B \cap A)) \cap ((A \cap B) \cup A) = (A \cap B)$$

Løsning:

Noen alternative løsninger i varierende detalj:

$$(B \cup (B \cap A)) \cap ((A \cap B) \cup A) = komm$$

$$((B \cap A) \cup B)) \cap ((A \cap B) \cup A) = komm$$

$$((A \cap B) \cup B)) \cap ((A \cap B) \cup A) = distr (baklengs)$$

$$(A \cap B) \cup (\underline{B \cap A}) = komm$$

$$(A \cap B) \cup (A \cap B) = idem$$

 $(A \cap B)$

```
\begin{array}{ll} (\underline{B} \cup (\underline{B} \cap \underline{A})) \cap ((\underline{A} \cap \underline{B}) \cup \underline{A}) &= distr \\ ((\underline{B} \cup \underline{B}) \cap (\underline{B} \cup \underline{A})) \cap ((\underline{A} \cup \underline{A}) \cap (\underline{B} \cup \underline{A})) &= idem \\ (\underline{B} \cap (\underline{B} \cup \underline{A})) \cap (\underline{A} \cap (\underline{B} \cup \underline{A})) &= assoc/komm-pirk + idem \\ (\underline{A} \cap \underline{B}) \cap (\underline{A} \cup \underline{B}) &= distr \\ (\underline{A} \cap \underline{B} \cap \underline{A}) \cup (\underline{A} \cap \underline{B} \cap \underline{B}) &= komm + idem \\ (\underline{A} \cap \underline{B}) \cup (\underline{A} \cap \underline{B}) &= idem \\ (\underline{A} \cap \underline{B}) &= idem \end{array}
```

$$\begin{array}{l} (\underline{B} \cup (\underline{B} \cap \underline{A})) \cap ((\underline{A} \cap \underline{B}) \cup \underline{A}) &= distr \\ ((\underline{B} \cup \underline{B}) \cap (\underline{B} \cup \underline{A})) \cap ((\underline{A} \cup \underline{A}) \cap (\underline{B} \cup \underline{A})) &= idem \\ (\underline{B} \cap (\underline{B} \cup \underline{A})) \cap (\underline{A} \cap (\underline{B} \cup \underline{A})) &= assoc \\ \underline{B} \cap ((\underline{B} \cup \underline{A}) \cap ((\underline{B} \cup \underline{A}) \cap \underline{A})) &= komm \\ \underline{B} \cap ((\underline{B} \cup \underline{A}) \cap ((\underline{B} \cup \underline{A}) \cap \underline{A})) &= assoc \\ \underline{B} \cap (((\underline{B} \cup \underline{A}) \cap (\underline{B} \cup \underline{A})) \cap \underline{A}) &= idem \\ \underline{B} \cap (((\underline{B} \cap \underline{A}) \cup (\underline{A} \cap \underline{A})) &= idem \\ \underline{B} \cap (((\underline{B} \cap \underline{A}) \cup \underline{A}) &= distr \\ ((\underline{B} \cap (\underline{B} \cap \underline{A}) \cup (\underline{A} \cap \underline{A})) &= assoc \\ (((\underline{B} \cap \underline{B}) \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A}) \cup ((\underline{B} \cap \underline{A})) &= idem \\ ((\underline{B} \cap \underline{A$$

Oppgave 3 Logikk

a) Hva er en tautologi?

Et utsagn som alltid er sant.

b) Bevis ved selvmotsigelse at det følgende er en tautologi:

$$(A \Rightarrow (C \text{ or (not B)})) \Rightarrow (B \Rightarrow ((\text{not A}) \text{ or C}))$$

Anta at utsagnet er usant, dvs at premissen er sann og konklusjonen gal

- $1 (A \Rightarrow (C \text{ or (not B)})) = T (antakelse)$
- 2. $(B \Rightarrow ((not A) or C)) = F (antakelse)$
- 3. B=T (fra 2.)
- 4. ((not A) or C) = F (fra 2.)
- 5. $A \Rightarrow C = T (fra \ 1 \ og \ 3)$
- 4. og 5. utgjør en selvmotsigelse siden $A \Rightarrow C \equiv ((\text{not } A) \text{ or } C)$
- c) Relasjonen *liker* \subseteq *Personer* \times *Personer* er definert ved at *liker*(x,y) er sant hviss personen x liker personen y.

Oversett det følgende til predikatlogikk:

- 1. Per liker noen. .
 - $\exists x \ liker(Per, x)$
- 2. Alle liker Per

 $\forall x \ liker(x, Per)$

3. Per liker ikke noen som Pål liker.

$$\forall x(liker(Pål, x) \Rightarrow not liker(Per, x))$$

4. Pål liker bare seg selv.

liker(Pål, Pål) and $\forall x(liker(Pål, x) \Rightarrow x=Pål)$

d) Bevis at sannhetsverditabellen til et utsagn med n utsagnsvariable har 2^n rekker (utenom overskriften).

Bevis ved induksjon mhp n.

Basis n=1:

La oss anta at utsagnet kun har utsagnsvariabelen P, for eksempel utsagnet (P or (not P))

Р	(not P)	(P or (not P))
Т	F	Т
F	Т	Т

Tabellen har 2^1 rekker (vi regner ikke med overskriften i tabellen). Dette viser at påstanden holder for basistilfellet.

Induksjonssteg Vi skal vise at hvis påstanden holder for utsagn med k utsagnsvariable så holder den også for utsagn med k+1 utsagnsvariable.

Anta, induksjonshypotesen, at påstanden holder for k utsagnsvariable.

La oss se på en tabell for variablene $P_1, ..., P_k$.

I en tabell for P_1 , ..., P_k , P_{k+1} vil en vilkårlig kombinasjon av sannhetsverdier for P_1 , ..., P_k forekomme <u>to qanqer</u>: én gang for $P_{k+1} = T$ og én gang for $P_{k+1} = F$.

P_2		P_k	P_{k+1}	
	:			
F		Т	Т	
F		Т	F	
	:			
	F	; F	; F T	

Dette betyr at tabellen for P_1 , ..., P_{k+1} er dobbelt så stor som tabellen for P_1 , ..., P_k : Induksjonhypotesen gir oss dermed at den har 2^*2^k rekker. Dvs at den har 2^{k+1} rekker, som vi ønsket å vise. Da er også induksjonssteget vist og ved prinsippet for matematisk induksjon kan vi nå konkludere at påstanden holder.

Vedlegg til eksamen INFO102

Mengde algebra (Gitt en universell mengde U)

Assosiative lover

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Kommutative lover

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Identitetslover

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cup U = U$$

$$A \cap U = A$$

Idempotente lover

$$A \cup A = A$$

$$A \cap A = A$$

Distributive lover

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Komplement lover

$$A \cup \sim A = U$$

$$\sim$$
(\sim A) = A

$$A \cap \sim A = \emptyset$$

De Morgans lover

Boole'sk algebra

Kommutative lover

$$(P \text{ and } Q) \equiv (Q \text{ and } P)$$

 $(P \text{ or } Q) \equiv (Q \text{ or } P)$

Assosiative lover

$$(P \text{ and } (Q \text{ and } R)) \equiv ((P \text{ and } Q) \text{ and } R)$$

 $(P \text{ or } (Q \text{ or } R)) \equiv ((P \text{ or } Q) \text{ or } R)$

Distributive lover

$$(P \text{ and } (Q \text{ or } R)) \equiv ((P \text{ and } Q) \text{ or } (P \text{ and } R))$$

 $(P \text{ or } (Q \text{ and } R)) \equiv ((P \text{ or } Q) \text{ and } (P \text{ or } R))$

Idempotente lover

$$(P \text{ and } P) \equiv P$$

 $(P \text{ or } P) \equiv P$

Absorbsjonslover

$$(P \text{ and } (P \text{ or } Q)) \equiv P$$

 $(P \text{ or } (P \text{ and } Q)) \equiv P$

De Morgans lover

not (P and Q)
$$\equiv$$
 ((not P) or (not Q))
not (P or Q) \equiv ((not P) and (not Q))

Dobbel negasjon

$$(not (not P)) \equiv P$$