

Spécifications demandées:

Un gain en tension Av en boucle ouverte de > 5000V/V

GBW de \geq 5 MHz

Une puissance dissipée \leq 1 mW

Une vitesse de balayage (slew rate) \geq 10 V/ μ s

Une plage dynamique en sortie Vo ~1 V

ICMR au minimum de 0.9 V à 1.5 V

Marge de phase de \geq 60 degrés

0 décalage systématique à l'entrée

Le niveau DC de la sortie Vo = VDD/2.

Taille minimum

Une charge capacitive à la sortie Vo de CL= 1 pF

VDD de 1.8 V par rapport à la masse (VSS = 0 V)

INTRODUCTION

Conception d'un ampli-op OTA sur la technologie 180nm de TSMC

SCHÉMA DU CIRCUIT CONÇU

SCHÉMA DU CIRCUIT CONÇU (DONNÉES)

CMOS							
	W	L	W/L	Fingers	M	Total	
M1	2.0μm	1μm	2	1	1	1	
M2	2.0μm	1μm	2	1	1	1	
М3	2.5μm	1μm	2.5	2	2	4	
M4	2.5μm	1μm	2.5	2	2	4	
M5	2.5μm	1μm	2.5	2	2	4	
M6	2.5μm	1μm	2.5	2	21	42	
M7	2.5μm	1μm	2.5	2	10	20	
M8	2.5μm	1μm	2.5	2	2	4	

Passifs						
	Valeur	W	L			
R1	5ΚΩ	2μm	28.82μm			
R2	70ΚΩ	1.15µm	240.08μm			
C1	583.355fF	17μm	17μm			

I_polarisation

DES MASQUES DE L'OTA

D	D	D	D	D	D	D	D	D	
D	D	D	D	D	D	D	D	D	
D	D	6	6	6	6	6	D	D	
D	D	6	4	6	3	6	D	D	
D	D	6	6	6	6	6	D	D	
D	D	6	3	6	4	6	D	D	
D	D	6	6	6	6	6	D	D	
D	D	D	D	D	D	D	D	D	
D	D	D	D	D	D	D	D	D	
D	D	D	D	D	D	D	D	D	
D	7	7	8	7	5	7	7	D	
D	7	7	5	7	8	7	7	D	
D	D	D	D	D	D	D	D	D	
D	D	D	D						
D	1	2	D						
D	D	D	D						

TABLEAU RÉSUMÉ

	Demandé	Calculs	Simulations	Parasites
Slew Rate (V/us)	10	29.16	22.576	19.94
Av1 (V/V)	-	-162.43	-	-
Av2 (V/V)	-	-204.10	-	-
A (dB)	74	90.41	76	76.21
Gain BW (MHz)	5	139.30	40	36.19
Pole 2 (MHz)	-	12.93	-	-
Zero 1 (MHz)	-	22.17	-	-
P CMR (V)	1.5	1.63	1.8	1.8
N CMR (V)	0.8	0.82	0.812	0.812
Marge Phase (°)	60	89.93	82.49	77.80
Pdiss (uW)	1mW	223.2	232.5	232.2
Plage Sortie (V)	1	1.497	1.72	1.72
Taille	1mmx1mm	-	-	88umx82um
Décalage (uV)	0	0	2.90	4.8
CMRR	-	65585	-	-

GAINS

GAINS

MARGES DE PHASE

MARGES DE PHASE

PLAGE DE SORTIE

PLAGE DE SORTIE

DÉCALAGE

DÉCALAGE

GRAPHIQUES CORNER

SLEW RATE

SLEW RATE

SATURATION

SATURATION

RÉSULTAT DU DRC FINAL

RÉSULTAT DU LVS ET PEX

Chose à améliorer pour un futur design Un meilleur Excel pour faire les calculs de W/L Layout plus compacte (optimisation des coût) Meilleure utilisation du logiciel Raccourcis claviers

CONCLUSION

QUESTION 6

Figure 11.15 Schematic used to describe latch up 2021

Source: Baker, 1998

