东南大学考试卷

课程名称 ____工科数分(上)期中____ 考试学期 __18-19-2__ 得分 _______

适用专业 选学工科数分各类专业 考试形式 闭卷 考试时间长度 120 分钟

题号	_	_	三	四	五	六
得分						
评阅人						

一、填空题(本题共8小题,每小题4分,共32分)

- 1. 当 $x \to 0$ 时, $x \sin ax$ 与 $x^2 \ln(1 bx)$ 是等价无穷小, 则 $a = _____, b = _____$;
- 2. 曲线 $y = \ln x$ 上与直线 x + y = 1 垂直的切线方程为_____;

3. 设
$$f(x) = \begin{cases} ax + b, & x < 0 \\ \ln(1 + e^x), & x \ge 0 \end{cases}$$
,若 $f(x)$ 在 $x = 0$ 处可导,则常数 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}};$

5.
$$\lim_{x \to 0} \frac{\sqrt[4]{1 + \cos x \sin x} - 1}{2^x - 1} = \underline{\qquad};$$

6. 设
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
, 则 $f^{(n)}(x) =$ ______;

7. 设
$$x \neq 0$$
, 求极限 $\lim_{n \to \infty} \frac{(1 - \cos \frac{x}{n})(n^2 + 1)}{\arctan(nx)} =$ ______;

8. 极限
$$\lim_{x \to \infty} \left[\frac{x^2}{(x-a)(x-b)} \right]^x = _______;$$

二、 计算下列各题(本题共5小题,每小题8分,满分40分)

1. 求极限
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right) \arctan \frac{1}{x}$$
.

2. 已知
$$f(x)$$
 在 $x = 0$ 点的邻域内有定义,且 $\lim_{x \to 0} \frac{2x + f(x)}{x^2} = 2$, 求 $\lim_{x \to 0} \frac{e^{2x^2} - 1 + xf(x)}{x^3}$.

3. 求函数
$$f(x) = \begin{cases} e^x, & x < -1 \\ x^2 + \frac{x}{e} - 1, & -1 \le x \le 1 \end{cases}$$
 的导函数. $e^{-x}, & x > 1$

4. 设
$$y = y(x)$$
 是由方程 $e^{x+y} + \cos(xy) = 0$ 所确定的隐函数, 求 $\frac{dy}{dx}$.

5. 设
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}, \ \ \text{求} \ \frac{\mathrm{d}y}{\mathrm{d}x} \not \mathbb{Z} \ \frac{\mathrm{d}^2y}{\mathrm{d}x^2}.$$

三、 (本题满分7分) 已知 $f(x)=\left[\frac{1}{1+[x]}\right]$,(其中[t]为取整函数,表示不超过t的最大的整数.)在区间 [0,2] 上讨论 f(x) 的连续性(即指出连续区间、间断点及其类型).

四、 (本题满分7分) 已知函数 f(x)在x=1处连续,且 $\lim_{x\to 1}\frac{f(x)-5x+2}{\ln x}=2$,试证f(x)在x=1处可导,并求f'(1)的值.

五、 (本题满分7分) 设 $x_n = \frac{\cos 2}{1!} + \frac{\cos 3}{2!} + \dots + \frac{\cos(n+1)}{n!}$,证明数列 $\{x_n\}$ 收敛.

六、 (本题满分7分) 设f(x)在区间[0, 1]上二阶可导, 且f(0) = f(1) = 0. 证明:

- (1) 至少存在一点 $c \in (0, 1)$, 使得 $f'(c) = -\frac{2}{c}f(c)$;
- (2) 至少存在一点 $\xi \in (0, 1)$, 使得 $\xi^2 f''(\xi) + 4\xi f'(\xi) + 2f(\xi) = 0$.