1)

Under what conditions on a, b, and c, the following system has (i) no solution (ii) infinite solutions.

$$-2x + y + z = a$$
, $x - 2y + z = b$, $x + y - 2z = c$

2)

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$$
, $X = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ and $b = \begin{bmatrix} 1 & 6 & 4 \end{bmatrix}^T$. Using Gauss-Jordan method, find the inverse of the matrix A . Hence solve $AX = b$.

3)

Find the LU-decomposition/factorization of $A = \begin{bmatrix} 2 & -6 & 10 \\ 1 & 5 & 1 \\ -1 & 15 & -5 \end{bmatrix}$. Hence find the solution of AX = b, where $X = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$, and $b = \begin{bmatrix} 4 & 4 & 6 \end{bmatrix}^T$.

- 8. Let V be the vector space containing all real valued continuous functions over \mathbb{R} . Verify that the set W of solutions of differential equation: $2\frac{d^2y}{dx^2} 9\frac{dy}{dx} + 2y = 0$ is a subspace of V.
- 9. Express (1, -2, 5) as a linear combination of the vectors $\{(1, -2, 5), (1, 2, 3), (2, -1, 1)\}$.
- 10. In \mathbb{R}^3 , let $W = \{(x, y, z) | x y z = 0\}$. Prove that W is a subspace of \mathbb{R}^3 and hence find a basis for this subspace.
- 11. Verify the following sets of functions are linearly independent in the vector space $C[-\pi, \pi]$
 - (a) $\{x, e^x, e^{-x}\}$
 - (b) $\{x|x|, x^2\}.$