we see that

$$x_0 = \begin{pmatrix} d \\ 0_{n-r} \end{pmatrix}$$

is a special solution of Rx = b', and thus to Ax = b. In other words, we get a special solution by assigning the first r components of b' to the pivot variables and setting the nonpivot variables (the *free variables*) to zero.

Here is an example of the preceding construction taken from Kumpel and Thorpe [107]. The linear system

$$x_1 - x_2 + x_3 + x_4 - 2x_5 = -1$$
$$-2x_1 + 2x_2 - x_3 + x_5 = 2$$
$$x_1 - x_2 + 2x_3 + 3x_4 - 5x_5 = -1,$$

is represented by the augmented matrix

$$(A,b) = \begin{pmatrix} 1 & -1 & 1 & 1 & -2 & -1 \\ -2 & 2 & -1 & 0 & 1 & 2 \\ 1 & -1 & 2 & 3 & -5 & -1 \end{pmatrix},$$

where A is a 3×5 matrix. The reader should find that the row echelon form of this system is

$$(A',b') = \begin{pmatrix} 1 & -1 & 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

The 3×5 matrix A' has rank 2. We permute the second and third columns (which is equivalent to interchanging variables x_2 and x_3) to form

$$R = \begin{pmatrix} I_2 & F \\ 0_{1,2} & 0_{1,3} \end{pmatrix}, \qquad F = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 2 & -3 \end{pmatrix}.$$

Then a special solution to this linear system is given by

$$x_0 = \begin{pmatrix} d \\ 0_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0_3 \end{pmatrix}.$$

We can also find a basis of the kernel (nullspace) of A using F. If x = (u, v) is in the kernel of A, with $u \in \mathbb{R}^r$ and $v \in \mathbb{R}^{n-r}$, then x is also in the kernel of R, which means that Rx = 0: that is,

$$\begin{pmatrix} I_r & F \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u + Fv \\ 0_{m-r} \end{pmatrix} = \begin{pmatrix} 0_r \\ 0_{m-r} \end{pmatrix}.$$

Therefore, u = -Fv, and Ker (A) consists of all vectors of the form

$$\begin{pmatrix} -Fv \\ v \end{pmatrix} = \begin{pmatrix} -F \\ I_{n-r} \end{pmatrix} v,$$