

Everton Barbosa | 01252061

Giovana Branquinho | 01252073

João Henrique Sapia | 01252084

Larissa Lie Okamoto | 01252039

Leandro Almeida Silva | 01252021

Sabrina da Silva Araujo | 01252128

CONTROLE DE TEMPERATURA E UMIDADE NO CULTIVOS DE UVAS THOMPSON SEEDLESS INDOOR

SUMÁRIO:

CONTEXTO:	3
OBJETIVO:	15
JUSTIFICATIVA:	15
ESCOPO:	16
DESCRIÇÃO:	16
RESULTADOS ESPERADOS:	16
LIMITES:	16
EXCLUSÕES:	16
MACRO CRONOGRAMA:	18
RECURSOS NECESSÁRIOS	18
RISCOS ESPERADOS:	19
REQUISITOS:	19
PREMISSAS:	22
RESTRIÇÕES:	22
REFERÊNCIAS:	23

CONTEXTO:

Uva Thompson Seedless:

A uva *Thompson Seedless* tem sua origem no Oriente Médio, mais especificamente da Mesopotâmia, que hoje inclui partes do Iraque, Síria e Turquia. Sendo uma uva da espécie *Vitis* vinífera que, naturalmente, não tem sementes. Essa variedade foi selecionada ao longo de muitos anos por agricultores, justamente por ser fácil de comer e de cultivar. O nome "*Thompson Seedless*" foi dado em homenagem a William *Thompson*, um horticultor americano do século XIX, que ajudou a popularizar essa uva nos Estados Unidos, principalmente na Califórnia, distribuindo mudas e incentivando seu cultivo comercial.

Com o passar do tempo, acabou se espalhando pelo mundo, sendo cultivada em países como Brasil, Chile, Peru, Estados Unidos, Austrália e várias regiões da Europa. A *Thompson Seedless* é valorizada por sua doçura, firmeza e versatilidade, sendo amplamente utilizada tanto para consumo in natura quanto para produção de passas, e adapta-se bem a diferentes sistemas de cultivo, incluindo estufas, o que garante alta produtividade e qualidade para transporte e exportação.

No Brasil, as uvas têm uma grande importância devido à importação e exportação, em específico a uva *Thompson Seedless* que pode ser conhecida também como 'Sultanina', é considerada a mais importante uva sem sementes do mundo.

Sua principal característica é o vigor elevado, que é o crescimento rápido e produção de material vegetativo com folhas e ramos, tem o seu ciclo fenológico, onde é o seu período de desenvolvimento da planta, desde a poda até a colheita

com duração de 100 dias. Seus cachos são grandes, com um peso médio de 500 g, de formato cilíndrico e com a parte superior desenvolvida, são compactos, o que pode dificultar a exposição das flores ao sol e ar, por isso os produtores acabam aplicando ácido giberélico (uma substância que ajuda a diminuir o número de flores no cacho, isso se chama raleio de flores). Com menos flores, cada uma recebe mais sol e ventilação, cresce melhor e se transforma em uvas maiores e mais bonitas, atingindo o tamanho adequado para venda. Já as bagas, é o nome que se dá a cada frutinho individual dentro do cacho de uva, são pequenas, o que exige doses elevadas de ácido giberélico isolado ou combinado com bioestimulantes para atingir o tamanho comercial, com um manejo adequado, o diâmetro das bagas pode ultrapassar 20mm, tem um formato elíptico alongado, tem uma textura crocante e um sabor neutro e agradável, durante sua maturação, a sua aderência ao pedicelo(é onde a baga se liga ao cacho) é baixa, especialmente em períodos chuvosos, o que aumenta o risco de queda da fruta.

A qualidade da fruta é medida pelo °Brix (uma escala que mede a quantidade de sólidos solúveis principalmente açúcares em uma solução líquida), a uva Thompson, que normalmente ultrapassa 18° Brix, o que torna a fruta doce, sua acidez titulável (é a quantidade de ácido presente na uva, que deixa a fruta mais azeda, que algumas vezes pode depender do clima ou do ciclo da planta, assim a acidez fica muito alta), pode ser alta em alguns ciclos, então é recomendado a colheita da fruta com no mínimo 18°Brix, o que equilibra a doçura e a acidez.

Esta uva tem um ciclo produtivo de aproximadamente 120 a 150 dias desde a poda até a colheita, em termos de preço para os produtores, as uvas incluindo a embalagem e o resfriamento tem um preço médio de R\$ 12,90 por quilo, um pouco acima da média histórica. Em agosto de 2025, o Brasil exportou 847 toneladas de uva Thompson Seedless, acima da média histórica de 584 toneladas para o mês. O volume representa uma alta taxa de 12,8% em relação a 2023 e de 2,3% em relação a 2024, totalizando 12,4 mil toneladas exportadas no ano, quase dobrando o resultado de 2024. As receitas somaram US\$ 1,69 milhão no mês e US\$ 31,5 milhões no ano, aumento de 73% sobre 2024. Os principais destinos são Holanda, Argentina, Reino Unido e Estados Unidos, com a maior parte enviada por transporte marítimo, principalmente pelas alfândegas de Fortaleza e Salvador. Pernambuco e Bahia são os maiores estados produtores.

Year	♦ Month	NCM Code	NCM Description	Statistical Unit	♦ US\$ FOB	Net Weight	Quantity
2025	September	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	12.184.147	4.747.163	4.744.667
2025	August	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	1.693.658	847.399	847.409
2025	July	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	2.365.992	1.214.360	1.214.360
2025	June	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	8.109.207	3.026.188	3.027.004
2025	May	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	8.326.978	3.086.598	3.088.504
2025	April	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	3.768.810	1.383.482	1.383.461
2025	March	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	1.374.219	480.091	480.090
2025	February	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	900.786	322.271	322.272
2025	January	08061000	Fresh grapes	QUILOGRAMA LIQUIDO	5.191.635	2.061.948	2.061.948

Desafios:

A uva Thompson Seedless é mais suscetível a doenças por motivos ligados à própria característica da planta, como por exemplo sua baixa resistência genética: pois não tem genes fortes de defesa contra fungos e bactérias, ao contrário de outras variedades. Outro motivo são os cachos compactos, devido ao espaço apertado, o ar circula pouco e a umidade acaba ficando mais alta dentro do cacho, ajudando a criar um ambiente ideal para fungos, como míldio, oídio e antracnose. Além de suas bagas serem delicadas e pequenas, com uma casca fina, facilitando a entrada de doenças e aumentando o risco de apodrecimento, juntamente com as condições climáticas.

Principais Doenças Fúngicas nas Uvas Thompson Seedless:

Míldio (Plasmoparaviticola)

É considerada uma das principais doenças fúngicas que existem em videiras, sendo capaz de infectar todas as partes da planta, suas condições ideais de desenvolvimento são temperaturas entre 18° C e 25° C e uma presença de água livre na superfície dos tecidos vegetais por pelo menos duas horas, já quando a umidade relativa do ar acima de 95% há uma formação de esporos que se encarregam de disseminar a doença.

Míldio em videiras:

Figura 1 - Inflorescências e bagas verdes com sintomas de míldio

Uma das melhores formas de controle é a prevenção, que envolve alguns cuidados com o objetivo de se obter uma quantidade adequada de insolação e ventilação da copa das plantas, também deve-se evitar fundo de vales para a instalação de vinhedo e a realização de podas verdes, podendo recorrer também ao uso de defensivos químicos é uma alternativa, mas se torna inviável durante a floração e no início da maturação, quando os danos já são irreversíveis.

• Oídio (Uncinula necator)

Ataca as variedades europeias (Vitis vinifera), incluindo **Thompson Seedless**, desenvolve-se melhor em tecidos jovens e persiste em bagas que ainda não atingiram um teor de açúcar próximo de 15%, para este fungo a umidade não é o fator principal, mas sim a temperatura que é ótima em 25°C.

O oídio é favorecido pelo tempo ameno, em condições de Umidade Relativa do ar abaixo de 90%, na faixa de temperatura de 6 °C a 32 °C, sendo o desenvolvimento mais rápido entre 21 °C e 30 °C, considerando a temperatura ótima em torno de 25 °C. O fungo desenvolve-se melhor em folhas sombreadas, dissemina-se em direção dos ventos predominantes e sobrevive de um ano para o outro.

Figura 4 - Folhas com sintomas de oídio

Oídio em videira.

Antracnose (Elsinoe ampelina)

É conhecida como "olho de passarinho" devido às suas lesões características nas bagas, é uma doença causada pelo fungo Elsinoe Ampelina, o desenvolvimento deste fungo é favorecido por condições especificas de clima, com uma faixa de tolerância, podendo se desenvolver em temperaturas entre 2°C a 32°C. No entanto, a temperatura considerada ideal para o seu progresso geral fica entre 24°C e 26°C. As infecções mais severas e agressivas costumam ocorrer em uma faixa de temperatura menor, entre 15°C e 18°C, desde que associada a uma umidade relativa do ar muito alta, próxima de 90%. Essas condições ideais de umidade são tipicamente encontradas em períodos de primavera e verão com alta ocorrência de chuvas, nevoeiros, cerrações ou ventos frios.

Figura 8 - Folhas da videira com sintomas de antracnose

Figura 7 - Bagas com sintomas de antracnose

As medidas preventivas podem contribuir para o controle da antracnose, como evitar a instalação do parreiral (terreno, plantação ou conjunto de parreiras: videiras) em áreas de baixada, instalar quebra-ventos e utilizar mudas sadias, mas se a área tiver um histórico de ocorrência da doença, aplicações de calda sulfocálcica no início da brotação são necessárias.

Temperatura e Umidade adequadas para a criação:

As uvas *Thompson Seedless* crescem melhor em climas quentes e secos, como os desertos do Arizona e da Califórnia.

- Temperatura do solo para raízes: 15–30 °C. Abaixo disso, o crescimento é retardado.
- Durante a floração e frutificação, temperaturas de 20–28 °C são ideais para formação e maturação dos bagos.
- Temperaturas acima de 30–35 °C podem reduzir a qualidade, afetando o acúmulo de açúcares e cor.
- Durante o inverno/dormência: 5–10 °C ajudam a quebrar a dormência das plantas.

Umidade relativa ideal

Crescimento vegetativo: 50–70 %

- Florescimento / frutificação: 50–65 %, níveis baixos ajudam a prevenir doenças fúngicas como míldio e oídio.
- Maturação / armazenamento pós-colheita: 90–95 % de umidade relativa, com temperatura próxima de 0 °C para manter frescor.

Viticultura:

A viticultura é o ramo da agricultura ligado ao cultivo da videira (*Vitis* vinifera), responsável pela produção de uvas para consumo in natura quanto para vinhos, sucos e passas, sendo uma prática agrícola milenar, com origem no Oriente Médio, entre a Armênia e a Pérsia, se expandindo por toda a Ásia Menor, Síria, Egito e países do mediterrâneo.

No Brasil, a viticultura tem um grande papel no mercado econômico, com um destaque a mais para o cultivo de uvas finas de mesa, como a *Thompson Seedless*, especialmente no Vale do São Francisco, correspondente a cerca de 95% das exportações nacionais. A área de cultivo cresceu de 1759 hectares em 1990 para aproximadamente 84.380 mil hectares atualmente, de modo que abrange desde o extremo sul do país até regiões semiáridas do Nordeste.

Mercado de Exportações:

O Brasil se encontra na 3° posição no ranking de exportações de frutas, atrás somente da China e da Índia, nos últimos anos, as exportações de uvas brasileiras, especialmente a *Thompson Seedless*, têm crescido bastante. Em 2024, o país enviou para o exterior mais de 150 mil toneladas de uvas frescas, com destaque para a *Thompson Seedless*, *Red Globe* e *Crimson Seedless*. Só em dezembro desse ano, foram exportados 15,16 mil toneladas, um aumento de 39% em relação ao mesmo mês de 2023. Já em 2025, até agosto, o Brasil havia exportado 12,4 mil toneladas, quase o dobro do mesmo período do ano anterior, gerando cerca de 31,5 milhões de dólares, uma taxa de 73% comparado a 2024. Em junho, foram 3,03 mil toneladas, um pouco abaixo de maio, mas 396% a mais que junho do ano passado. Em agosto, as exportações ficaram em torno de 850 toneladas, 20% abaixo de julho, mas ainda 2% acima do mesmo mês de 2024.

Os principais compradores das uvas brasileiras são a União Europeia, que recebe cerca da metade das exportações, os Estados Unidos e alguns países como Países Baixos, Reino Unido e Espanha. Entre as variedades mais enviadas, a *Thompson Seedless* se destaca por ser sem sementes, doce e firme,

perfeita para comer fresca e para o mercado internacional. Esse crescimento nas exportações mostra a qualidade da produção brasileira e como o país vem conquistando cada vez mais espaço no mercado mundial de uvas finas de mesa.

1. Receita de Exportação e Volume Exportado de Uva: 2016 a 2025

Conforme o gráfico acima, demonstra uma diminuição no volume de exportações, mas por se tratar de um gráfico atual até agosto/2025, tendem a aumentar, uma vez que as uvas são mais comercializadas em novembro/dezembro.

Evolução da Sazonalidade do Valor das Exportações de uva do Brasil: 2016 a 2025.

Fonte: Observatório de Mercado de uva da Embrapa

Principais Produtores de Uvas no Brasil:

1. Rio Grande do Sul

- Regiões: Serra Gaúcha (principal), Campanha Gaúcha
- **Destaque:** Produção de uvas de mesa, vinícolas e suco de uva.
- **Principais cidades produtoras:** Caxias do Sul, Bento Gonçalves, Farroupilha, Garibaldi.

2. São Paulo

- Regiões: Vale do São Francisco (interior do estado e também Petrolina/PE)
- **Destaque:** Produção de uvas de mesa irrigadas, exportação para Europa e América do Norte.
- Principais cidades produtoras: Jales, São José do Rio Preto, cidades do Vale do Ribeira.

3. Pernambuco / Bahia (Vale do São Francisco)

- Regiões: Petrolina (PE) e Juazeiro (BA)
- **Destaque:** Uvas de mesa irrigadas, colheita o ano todo devido ao clima semiárido e irrigação.
- Exportação: Grande parte é exportada para Europa.

4. Santa Catarina

Regiões: Vale do Itajaí

• **Destaque:** Uvas de mesa e produção de vinhos finos.

5. Paraná e Minas Gerais

• **Destaque:** Produção menor, voltada para consumo interno, vinícolas regionais e suco.

Principais Normas e Regulamentos relacionados a uva:

No mercado da viticultura, produtores tem que seguir algumas normas normativas que ditam o que o produtor tem que seguir em seu plantio, entre elas estão inclusas:

1. Legislação do MAPA (Ministério da Agricultura e Pecuária)

- Instrução Normativa nº 14/2018 estabelece o Regulamento Técnico de Identidade e Qualidade da Uva (Vitis spp.), fixando padrões mínimos de:
- √ classificação por variedade e cor;
- √ tamanho e uniformidade dos cachos:
- ✓ limites de defeitos e contaminações;
- ✓ rotulagem e apresentação.
- Instrução Normativa nº 1/2020 define critérios para produção integrada de frutas, incluindo uvas, com foco em boas práticas agrícolas (BPA), rastreabilidade e sustentabilidade.

2. Boas Práticas Agrícolas (BPA)

As boas práticas exigem um controle do uso de agrotóxicos, irrigação racional, manejo do solo e controle de pragas, além disso as normas podem seguir padrões NBR ISO 22000 que estabelece requisitos para garantir a segurança de alimentos em toda a cadeia produtiva, desde a produção primária até o consumidor final e a certificação internacional, um programa de certificação agrícola, que transforma os requisitos do consumidor em exigências de boas práticas agrícolas (GlobalG.A.P.).

3. Produção orgânica

• Regida pelo Decreto nº 6.323/2007 e Lei nº 10.831/2003.

Exige certificação de conformidade orgânica e proíbe o uso de fertilizantes e agrotóxicos sintéticos.

Cultivo de uvas em estufas

O cultivo protegido de uvas oferece diversas vantagens aos viticultores, principalmente para aqueles com produção em regiões com climas mais frios. Abaixo podemos verificar alguns benefícios:

- Alta qualidade das frutas: Em geral, as uvas produzidas indoor, por não ter contato com as ações da natureza e possuir uma umidade mais controlada, mantém a aparência sem rachaduras, desenvolvem com maior acúmulo de açúcar, ficando mais doces e maiores, garantindo um sabor e aparência de excelência.
- Controle do crescimento: O desenvolvimento da uva em estufas, garante um prolongamento da estação, com a antecipação do crescimento na primavera e com uma dormência tardia no outono, produzindo brotos com um bom amadurecimento para a próxima colheita.
- **Amadurecimento da uva prolongado**: Com a temperatura com maior controle em estufas, as uvas passam a amadurecer de 2 a 4 semanas, em alguns casos um mês antes em comparação com a viticultura tradicional a céu aberto.
- Redução de doenças: Com um controle adequado das condições da estufa, é possível proporcionar um ambiente mais desfavorável para o desenvolvimento das doenças fúngicas mais comuns como o míldio e o oídio.
- Controle da colheita: com a flutuação de temperatura e umidade menores, é possível prever com mais assertividade o período correto para colheita da fruta.
- Menor interferência da natureza: As estufas são como proteções para as uvas, evitando as chuvas, geadas, ventos e granizo, que danificam o cultivo fisicamente. Além de evitar a vinda de pássaros e insetos que se alimentam da fruta.

Vale do São Francisco:

Embora o Vale do São Francisco possua uma temperatura favorável para a produção de Uvas Thompson Seedless, por localizar em um clima semiárido, também possui o problema com chuvas irregulares, longos períodos de seca e

alta incidência de luz solar. Esses aspectos afetam diretamente no cultivo das uvas.

Chuvas irregulares e longos períodos de seca: Fazem com que os produtores tenham que irrigar as plantações com a água do Rio São Francisco, gerando mais trabalho e irrigações com grandes lâminas de água que podem gerar rachaduras de bagas.

Excesso de radiação solar: a grande incidência de luz, embora não afetem diretamente o sabor e a produção da uva, pode causar "queimas" na fase de crescimento e maturação das bagas, alterando a coloração da fruta e prejudicando a sua aparência comercial.

Períodos de ventos: Na região do Vale do São Francisco, principalmente no mês de agosto os ventos podem variar de 10 a 25km/h provocando danos a produtividade e na qualidade de frutos, por meio da danificação de folhas, quebra de novos ramos, abertura dos estômatos e abortamento de flores.

OBJETIVO:

O objetivo do projeto é criar um sistema para acompanhar a temperatura e a umidade dentro de estufas de uvas *Thompson Seedless*. Para isso, usamos sensores DHT11 ligados a um Arduino, que envia os dados para um banco MySQL. Tudo pode ser acompanhado pelo produtor em uma plataforma web, permitindo monitorar em tempo real as condições ideais de cultivo e garantindo uvas de melhor qualidade e maior produtividade

JUSTIFICATIVA:

Através da regulação da temperatura e umidade em produções indoor, baseada nos dados provenientes da nossa solução, é possível reduzir consideravelmente a perda na produção, que tem como principal causa de perda o desenvolvimento e proliferação de fungos, que podem prejudicar toda uma safra.

Com este controle, somado a investimento, a viabilidade de produção em locais onde o clima natural não adequado, torna-se cada vez mais possível, expandindo o mercado em território nacional e contribuindo com o aumento da exportação.

ESCOPO:

DESCRIÇÃO:

Aplicar sensores DHT11 em estufas de uva *Thompson Seedless* para monitorar temperatura e umidade durante o cultivo

RESULTADOS ESPERADOS:

Aumentar a eficiência do cultivo, tendo maior coleta de cachos de uva e redução da perda devido ao mau controle de temperatura e umidade, como as doenças.

LIMITES:

Faixa de temperatura do sensor:

Mede apenas de 0 °C a 50 °C. Não funciona em temperaturas negativas.

Faixa de umidade relativa:

Mede de 20% a 90%. Valores fora dessa faixa não são confiáveis.

Frequência de leitura:

Capaz de gerar nova leitura a cada **1–2 segundos**, mas é comum usar intervalos maiores (ex.: 5–30 s).

Precisão limitada:

Pequenas variações podem afetar análises mais exigentes.

Aplicação restrita:

Indicado apenas para monitorar **ambientes ≥ 0 °C**. Não é adequado para refrigeração em -1 °C (recomendado para uvas).

Uso em laboratório/condições controladas:

Projeto se limita a ambientes de teste ou simulações de armazenamento, não sendo sistema industrial

EXCLUSÕES:

Temperaturas negativas:

Leituras abaixo de 0 °C estão excluídas, pois o DHT11 não suporta essa faixa.

Controle automático:

O projeto **apenas monitora e alerta**; não aciona sistemas de refrigeração ou umidificação.

Variáveis fisiológicas das uvas:

Não serão avaliados aspectos como **firmeza, açúcares, acidez ou aparência**; apenas temperatura e umidade.

Atmosfera controlada:

Não haverá monitoramento de gases (O_2, CO_2, SO_2) ou controle de atmosfera modificada.

Amostras danificadas:

Serão excluídas uvas com **podridão, fungos visíveis ou rachaduras**, para não distorcer resultados.

Leituras inválidas:

Valores fora da faixa de operação do sensor ou com erro de leitura serão descartados da análise.

MACRO CRONOGRAMA:

RECURSOS NECESSÁRIOS:

Dividimos nossas necessidades em três categorias: Colaboradores, Ferramentas e Itens.

Recursos	Quantidade	Carga-Horária
Project Owner	1-Rotativo	40 horas - Semanais
Scrum Master	1-Rotativo	40 horas - Semanais
Gestor de Banco de	1	1488 horas - Fim do
Dados		Projeto

1	1488 horas - Fim do Projeto
1	1488 horas - Fim do Projeto
1	1488 horas - Fim do Projeto
1	1488 horas - Fim do Projeto
1	1488 horas - Fim do Projeto
6	
6	
6	
6	
6	
6	
6	
1	
3	
1	
6	
Constante	
	1 1 1 1 1 6 6 6 6 6 6 1 3 1

RISCOS ESPERADOS:

A implementação do nosso sensor em vinícolas pode enfrentar alguns desafios como:

- -Má instalação, traz uma redução na precisão do sensor além de perda de dados.
- -Conexão de internet instável, a lentidão de rede pode impedir monitoramento constante da safra.
- -Ambiente muito quente, a alta temperatura pode danificar o sensor, impossibilitando o registro de dados.

REQUISITOS:

Criação da identidade visual da empresa: Criação do *Style Guide* da empresa que determina o padrão de cores, fontes e formatos a serem utilizados para tudo que envolver a imagem da empresa, como apresentações, documentação, site e etc;

Criação da tabela de controle do Arduino: tabela elaborada no MySQL constando a coleta dos dados do Arduino referente à temperatura e umidade (xx tempo) e colocar na tabela elaborada no MySQL; (tabelas do MySQL);

Criação da tabela de dados de cadastro: tabela elaborada no MySQL constando a coleta dos dados dos clientes para cadastro, com nome da empresa, CNPJ, e-mail, CEP, responsável, telefone, data de cadastro e senha;

Criação da tabela para o cliente: tabela elaborada no MySQL constando a coleta dos dados do Arduino com dados relevantes para visualização do cliente, com a temperatura: "Temperatura baixa", "Temperatura ideal", "Temperatura alta"; e a umidade: "Umidade baixa", "Umidade ideal", "Umidade alta" (colunas da tabela do MySQL);

Elaboração da documentação do projeto: desenvolvimento do documento com o detalhamento do projeto, contemplando contexto, objetivo, justificativa, escopo, requisitos, diagramação da solução, premissas e restrições, marcos do projeto, equipe envolvida, orçamento, sustentação e diagrama de solução técnica; (tudo que constará em nossa documentação);

Simulação com Arduino: montar o Arduino físico de DHT11, conectando-o ao computador para coletar os dados referentes à temperatura e umidade;

Criação do protótipo do site institucional: desenvolver o prototipo do site da empresa, para visualização do cliente da nossa história, missões, visões e valores, com página principal (Sobre nós), página de contato, página do cliente (com as informações referentes ao Arduino); (o que terá em nosso site);

Criação do protótipo da página de cadastro: desenvolver o protótipo da página de cadastro do cliente, contendo, nome da empresa, CNPJ, e-mail, telefone e endereço;

Criação do protótipo página de login do usuário: desenvolver o protótipo da página de login do cliente na qual ele poderá visualizar todos os Arduino da empresa em tempo real, junto com a análise da temperatura e umidade; (o que terá em nosso site);

Criar simulador financeiro: desenvolver uma calculadora financeira que irá simular (o que será simulado na calculadora) de acordo com os dados captados pelo Arduino;

Montar o Arduino: montar o Arduino de controle de temperatura e umidade, juntando os componentes (protoboard, Arduino, jumpers, cabo HDMI, DHT11) que realizarão a leitura e conectando ao notebook para captação de dados;

Configurar o projeto no GitHub: passar toda a parte técnica (códigos, tabelas) para o GitHub, para melhor desempenho no trabalho em equipe do projeto;

Criação do projeto no Trello: desenvolver um dashboard dos backlogs para uma gestão de projeto detalhada, organizada e planejada, com todos os membros da equipe, para controle de prazos, atividades, responsáveis, tarefas e a classificação (Importante, Necessário e Oportunidade);

Criação do diagrama de visão de negócio: desenvolver um diagrama que apresentará de forma ilustrativa e de fácil compreensão todo o processo que envolverá o negócio, para melhor entendimento do cliente;

Criação do Virtual Box: criar um ambiente virtual para implementação do projeto, no sistema Lubuntu extensão Linux.

Criação do site institucional estático: criação do site institucional estático utilizando o Visual Code com HTML, JavaScript e CSS.

Criar modelagem lógica do projeto: criação de modelo com coerência nas tabelas e nos diagramas;

Criar script do banco de dados: desenvolvimento de script da criação do banco/tabelas criadas em BD local;

Criação da página de login do usuário estático: criação da página de login estático utilizando o Visual Code com HTML, JavaScript e CSS;

Criação da página de cadastro estática: criação da página de cadastro estático utilizando o Visual Code com HTML, JavaScript e CSS;

Criação da dashboard estática: criar uma dashboard que seja significativa para o negócio, demonstrando o que é importante para o cliente;

Criação de gráficos da variação de registros: desenvolver a partir dos dados coletados com o Arduino, os gráficos da variação, mostrando a importância da nossa solução para as empresas;

Criação de métricas estáticas: desenvolver análise a partir dos dados coletados, para criação de métricas para comparação de cada implementação realizada;

Configurar o projeto no SharePoint: passar todas as documentações para o SharePoint, para melhor desempenho no trabalho em equipe do projeto e fácil acesso a todos os integrantes do projeto;

Criação do diagrama de solução técnica: desenvolver um diagrama que apresentará de forma ilustrativa e de fácil compreensão como funciona a nossa solução, para melhor entendimento do cliente;

Criação da planilha de riscos: criar uma tabela que apontará todos os possíveis riscos do projeto;

Configurar API Local/Sensor: utilizar APIs para envio de dados para o Banco de Dados local;

Instalação do MySQL na VM: instalar o MySQL no servidor de dados da solução, para inserção de dados do Arduino (VM Linux);

Criação do site institucional funcional: desenvolver o site institucional funcional utilizando a ferramenta adequada para a aplicação;

Criação da página de cadastro funcional: criação da página de login funcional utilizando a ferramenta adequada para a aplicação;

Criação da página de login do usuário funcional: desenvolver a página de cadastro funcional utilizando a ferramenta adequada para a aplicação;

Criação da dashboard dinâmica: desenvolver a dashboard dinâmica, utilizando a ferramenta adequada para a aplicação;

Criação do fluxograma do suporte: desenvolvimento de um fluxograma do suporte, utilizando a ferramenta adequada para a aplicação;

Criação da Ferramenta de help desk: desenvolvimento da ferramenta de help desk, utilizando a ferramenta adequada para a aplicação;

PREMISSAS:

Para a realização do projeto são necessárias algumas premissas, tais como:

- Produtor de uvas tipo Thompson Seedless;
- O nosso cliente deve realizar a produção da fruta em estufas;
- O cliente irá monitorar a temperatura e umidade, de acordo com os dados fornecidos pela nossa solução, para obter o resultado esperado de alta qualidade da fruta e produção prolongada;
- O sensor será instalado nas vigas de crescimento das parreiras para realizar o controle adequado de temperatura e umidade;

RESTRIÇÕES:

- Clientes serem produtores de uvas de outro tipo, além de Thompson;
- Clientes produzirem a fruta no modelo tradicional em ambientes externos;

REFERÊNCIAS:

https://www.embrapa.br/observatorio-da-uva

https://www.hfbrasil.org.br/br/uva-cepea-exportacao-bate-recorde-em-receita-em-2023.aspx

https://www.correiodopovo.com.br/not%C3%ADcias/rural/viticultura-tem-queda-de-54-32-nas-exporta%C3%A7%C3%B5es-1.1547012

https://observatoriosdemercado.github.io/uva/2025/externo/agosto/

https://comexstat.mdic.gov.br/en/home

https://www.hfbrasil.org.br/br/estatistica/uva.aspx

https://ceagesp.gov.br/hortiescolha/hortipedia/uva/