

Lab #7+)

Mission Design

Systems Engineering / MBSE

In this lecture, you will learn what a System is, what Systems Engineering is, what MBSE/SysML is, how to use hardware and software in CubeSat development, and how to design your own mission.

2. Designing our own mission

- 1. How to Use Hardware (User Board, Sensors)
 - 1. How to Use a User Board
 - 2. How to Use a Sensor
- 2. How to Use Software (diagrams.net)

2. Designing our own mission

- In actual system development, it is necessary to design and develop a system under various constraints in order to realize something.
- To experience a part of design constraints and requirements, we must extend the HEPTA-Sat system by implementing new subsystems and functions using the HEPTA-Sat User board and some additional components.

2.1 How to Use User Board

◆ HEPTA-Sat is equipped with a breadboard-like board called the User board. Sensors and other components can be freely attached to the board.

2.1 How to Use User Board

The User board is connected to the other boards of HEPTA-Sat (EPS & C&DH board, Sensor & COM board) with 40 pins.

OBC Electrical Interface Table										
Pin No.	Interface Type		Component-1		Pin No.	Interfac	Interface Type		Component-1	
1	GND	0V	-	_	40	Vout	3.3V	VDD	XBee	
								VDD	SD Card	
2	VIN	5V	Vout	5V Converter	39	Vu	5V		5V Converter	
3	VB	-	-	_	38	-	5V	-	5V Converter	
4	nR	_	_	-	37	-	5V	_	5V Converter	
5	mosi	SPI	CMD	SD Card/user	36	_	~ 4.2∨	-	Vbat	
6	miso		DAT0		35	-	~4.2V	-	Vbat	
7	sck		CLK		34	-	~4.2V	-	Vbat	
8	Digital I/O	0	DAT3	SD Card	33	_	3.3V	-	3.3V Converter	
9	tx	UART-1	Din	Xbee/user	32	-	3.3V	-	3.3V Converter	
10	rx		Dout		31	-	3.3V	-	3.3V Converter	
11	mosi	_	_	user	30	Digital I/O	I/O	_	_	
12	miso	-	-	user	29	Digital I/O	I/O	-	_	
13	tx	Serial	RxD	CAM	28	sda	I2C	sda	9-axis	
10								sda	user	
14	rx	Serial	10/I	Analog Switch Analog Switch	27	scl		scl	9-axis	
			20/I					scl	user	
15	Analog In	I	_	user	26	Digital I/O	0	EN	3.3V Converter	
16	Analog In	I	V+	Battery	25	Digital I/O	I	2C	Analog Switch	
17	Analog In	I	OUTD	OP Amplifer	24	Digital I/O	I	1C	Analog Switch	
18	Analog I/O	I/O	I/O	user	23	Digital I/O	I	-	user	
19	Analog In	I	I		22	Digital I/O	I	pwm	user	
20	Analog In	I			21	Digital I/O	I	pwm	user	

2.1 How to Use User Board

The yellow lines in the figure below are common lines(electrically connected) for each(just like a breadboard).

2.1 How to Use User Board

The following interfaces are available on the User board.

Interface and Constraints

♦ Power supply interfaces :

3.3V or 5V (The power supply source is common to other parts of HEPTA-Sat.)

Communication Interfaces :

SPI: p5,p6,p7,p11,p12, **UART:** p9,p10 (When you use this port, you cannot use xbee.)

CAN:p29,p30, I2C: p27, p28, Analog In: p15, p18, PWM: p21, p22, p23.

2.1 How to Use Sensors

- Learn how to use Hardware with various mission components.
- Examples of mission components
 - Air Quality Sensors
 - Light Sensors
 - Atmospheric Pressure Sensors
 - Temperature and Humidity Sensors
 - Ultrasonic Distance Sensors?
 - Ultraviolet Sensors
 - Resistors
 - Jumper Wires
 - Breadboard

Ultraviolet Sensor

Air Quality Sensor

Ultrasonic Distance Sensor

Light Sensor

Atmospheric Pressure Sensor

Temperature and Humidity Sensor

2.1 How to Use Sensors

- How to Use Light Sensors
 - The function of each pin
 - SIG:Analog line ⇔mbed_p15
 - GND:GND(0V) ⇔GND line
 - VCC: 3.3~5V⇔mbed 5V or 3.3V

- Range of Spectral Bandwidth (360–970 nm)
- this sensor measures illuminance
- Illuminance is expressed as the amount of luminous flux incident on a unit area. The unit is lx.
- Let's download the following program from the "heptasat_program library"
 - **♥** Lab7-sample_light-sensor

Circuit Example

2.1 How to Use Sensors

- ♦ How to Use Atmospheric Pressure Sensors
 - The function of each pin
 - SDA:I2C data line⇔mbed_p28
 - SCL:I2C clk line⇔mbed_p27
 - GND:GND(0V) ⇔GND_line
 - VIN: 3.0V~5V⇔mbed_3.3V or 5V
 - Features of Atmospheric Pressure Sensor
 - ◆ Atmospheric pressure :50kPa ~ 110kPa, Resolution: 20bit
 - ho Temperatures:-40°C \sim + 85, Resolution:12bit
 - Altitude : Resolution 20bit
 - Let's download the following program from the "heptasat_program library"
 - Lab7-sample_pressure-sensor

Atmospheric Pressure Sensor

Circuit Example

2.1 How to Use Sensors

- How to Use Ultraviolet Sensor
 - The function of each pin
 - SIG:Analog line⇔mbed_p15
 - GND:GND(0V) ⇔GND_line
 - VCC: 3.3 or 5V⇔mbed_3.3V or 5V
 - NC: Not connect
 - Features of Ultraviolet Sensor
 - Spectral sensitivity range : 320∼410 nm
 - Peak Sensitivity: 355 nm
 - UVA Sensitivity : 5 μW/ cm2
 - Let's download the following program from the "heptasat_program library"
 - Lab7-sample_uv-sensor

Ultraviolet Sensor

Circuit Example

2.1 How to Use Sensors

- How to Use Temperature and Humidity Sensor
 - The function of each pin
 - SIG:Analog line⇔mbed_p15
 - GND:GND(0V) ⇔GND_line
 - VCC: 3.3 or 5V⇔mbed_3.3V or 5V
 - NC: Not connect
 - Features of Ultraviolet Sensor
 - Humidity range : 20~90%
 - **♦** Temperature range : 0~50°C
 - **♦** Humidity Accuracy : ±5%
 - **♦** Temperature Accuracy : ±2%
 - Let's download the following program from the "heptasat_program library"
 - Lab7-sample_temp-humid-sensor

Temperature and Humidity Sensor

Circuit Example

2.1 How to Use Sensors

- How to Use Air Quality Sensor
 - The function of each pin
 - SIG:Analog line⇔mbed_p15
 - GND:GND(0V) ⇔GND_line
 - **♦** VCC: 3.3 or 5V⇔mbed_3.3V or 5V
 - NC: Not connect
 - Features of Ultraviolet Sensor
 - The main gases detected are carbon monoxide, alcohol, acetone, thinner, formaldehyde and other slightly toxic gases.
 - Air quality is represented by four statuses.
 - Let's download the following program from the "heptasat_program library"
 - Lab7-sample_air-quality-sensor

Air Quality Sensor

Circuit Example

2.1 How to Use Sensors

- ♦ How to Use Ultrasonic Distance Sensor
 - The function of each pin
 - Trig: Signal output ⇔mbed_p21
 - Echo: Signal input ⇔mbed_p12
 - GND:GND(0V) ⇔GND_line
 - VCC: 5V⇔mbed_ 5V
 - Features of Ultraviolet Sensor
 - Determine the possible distance 2cm∼450cm
 - Distance resolution: 0.3cm
 - Sensor angle: 15° max
 - Let's download the following program from the "heptasat_program library"
 - Lab7-sample_ultrasonic-sensor

Ultrasonic Distance Sensor

Circuit Example

2.2 How to Use Software (diagrams.net)

- You will use diagrams.net as a tool to represent the system in a model.
- diagrams.net is an open source, online, desktop software used to draw diagrams(https://www.diagrams.net/).
- Try entering the site from the link above and clicking on "Start".

Blog

Security-first diagramming for teams.

Bring your storage to our online tool, or go max privacy with the desktop app.

2.2 How to Use Software (diagrams.net)

- Click on "Create New Diagram" (you need to create a Google account first).
- Click on "File", then click on "Save".

2.2 How to Use Software (diagrams.net)

- Name the file "test_Diagram" then download it in XML file format...
- Upload the downloaded file to the link
- Finally, check if the uploaded file can be opened.

2.2 How to Use Software (diagrams.net)

- Try entering the site from the link(https://www.diagrams.net/) again.
- Then click on "Download".
- Download the appropriate installer for your computer from the GitHub page.
- Finally, check if the drawio-desktop application can be opened.

Bring your storage to our online tool, or go max privacy with the desktop app.

No login or registration required.

2.2 How to Use Software (diagrams.net)

- Click on "Open Existing Diagram".
- Open the XML file of test_Diagram.
- Once you have completed this step, the installation of diagrams.net is complete.

2.3 HEPTA-Sat Sample Mission Example

- Copy the XML file "HEPTA-Sat_Sample_Model" from the USB port of HEPTA-Sat to your PC or copy the file from the link.
- In this chapter, we show an example of mission design using the file "HEPTA-Sat Sample Model".

©2022 UNISEC All rights reserved. Do not Reproduce without Permission.