Week 9

- 1) What is the closed-form expression of the generating function for the sequence: 7,0,7,0,7,0.....?
 - A. $\frac{1}{(1-x^2)}$
 - B. $\frac{1}{(1+x^2)}$ C. $\frac{7}{(1-x^2)}$ D. $\frac{7}{(1+x^2)}$

Correct Answer: C

Solution:

The expression $\frac{1}{(1-x^2)}$ generates the function $x^0 + x^2 + x^4 + x^6 + \cdots$,

i.e.,
$$\frac{1}{(1-x^2)} = x^0 + x^2 + x^4 + x^6 + \cdots$$
,

Multiplying 7 on both the sides of the equation gives $\frac{7}{(1-x^2)}$.

Now, the expression $\frac{7}{(1-x^2)}$ generates the function $7 + 7x^2 + 7x^4 + 7x^6 + \cdots$,

Therefore, the generating function for the sequence 7,0,7,0,7,0..... is $\frac{7}{(1-x^2)}$.

Lecture 367: Generating function examples Part 3.

- 2) What is the coefficient of x^4 in $(1-x)^{-5}$?
 - A. 70
 - B. 126
 - C. 56
 - D. 84

Correct Answer: A

Solution: To find the coefficient of x^k in expression $(1-x)^n$

$$\binom{n+r-1}{r} = \binom{5+4-1}{4} = \binom{8}{4} = 70$$

1

Lecture 371: Picking 7 balls The creative way.

- 3) What is the sequence in the generating series for the expression $5x^2 + 10x^3 + 15x^4 + 20x^5 + \cdots$?
 - A. 5, 10, 15, 20,...
 - B. 1, 1, 5, 10, 15, 20,...
 - C. 0, 5, 0, 10, 0, 15, 0, 20,...
 - D. 0, 0, 5, 10, 15, 20,...

Correct Answer: D

Solution: Consider the coefficients of each x^n term. So $a_0 = 0$, since the coefficient of a_0 is 0 (a_0 is the constant term). $a_1 = 0$, since the coefficient of a_1 is 0, Since 5 is the coefficient of x^2 , so, 5 is the term a_2 of the sequence, and so on, Therefore, $a_0 = 0$, $a_1 = 0$, $a_2 = 5$, $a_3 = 10$, $a_4 = 15$, and $a_5 = 20$. So, we have the sequence 0, 0, 5, 10, 15, 20, ...

Lecture 369: Binomial expansion explained.

- 4) What is the generating function of the sequence 0, 1, 2, 3, 4,?
 - A. Derivative of the function $(1 + x + x^2 + x^3 + x^4 + \cdots)$
 - B. $(1 + x + x^2 + x^3 + x^4 + \cdots)$
 - C. Derivative of the function $(x + 2x^2 + 3x^3 + 4x^4 + \cdots)$
 - D. $(1 + x + 4x^2 + 8x^3 + 16x^4 + \cdots)$

Correct Answer: Aa

Solution: the derivative of the function $(1 + x + x^2 + x^3 + x^4 + \cdots)$ is:

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{d}{dx}(1+x+x^2+x^3+x^4+\cdots)$$

$$\left(\frac{1}{(1-x)^2}\right) = (0+1+2x+3x^2+4x^3+\cdots)$$

Lecture 365: Generating function examples Part 1.

- 5) In how many ways can 200 players be distributed among 10 teams, so that each team gets atleast 7 players and not more than 12?
 - A. The coefficient of x^{200} in $(x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12})^{12}$
 - B. The coefficient of x^{200} in $(x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12})^7$
 - C. The coefficient of x^{200} in $(x^7 + x^8 + x^9 + x^{10} + x^{11})^{10}$
 - D. The coefficient of x^{200} in $(x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12})^{10}$

Correct Answer: D

Solution: 200 players are to be divided in 10 teams, each having not more than 12 and atleast 7 players. Since each team must get atleast 7 players this becomes the minimal condition, hence we start with x^7 , also, each team must get at max. 12 players, hence we end at x^{12} . So, the expression becomes $(x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12})$. Now this case must be repeated for all the ten teams, so we raise this expression to the power of 10, i.e., $(x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12})^{10}$, therefore the coefficient of x^{200} in this expression gives us the total number of ways in which 200 players be distributed among 10 teams, so that each team gets at least 7 players and not more than 12.

Lecture 373: Generating function Problem 2.

6) How many 5 lettered words can be formed from the following words, given that you have to pick one letter per line?

- A. 3
- B. 6
- C. 8
- D. 4

Correct Answer: B

Solution:

For the words in row 1, we represent it by; $x \cdot x + x + x$

For the words in row 2, we represent it by; x + x + x

For the words in row 3, we represent it by; $x + x \cdot x \cdot x$

Multiplying above equations:

$$(x \cdot x + x + x) \cdot (x + x + x) \cdot (x + x \cdot x \cdot x)$$
$$(x^2 + x + x) \cdot (x + x + x) \cdot (x + x^3)$$
$$(x^2 + 2x) \cdot (3x) \cdot (x + x^3)$$

After expanding we get the: $3x^4 + 3x^6 + 6x^3 + 6x^5$

Therefore, coefficient of x^5 denotes the number of 5 lettered words formed from the given sequence.

Lecture 360: Words and the polynomials Explained.

- 7) A bag contains several blue, green, purple and yellow candies, in how many ways can Amit eat 8 candies from these blue, green, purple and yellow colored candies?
 - A. 495
 - B. 165
 - C. 330
 - D. 32

Correct Answer: B

Solution: There are four different colored candies, we have to select 8 candies,

Thus, $C_1 + C_2 + C_3 + C_4 = 8$, so, the number of solutions for this equation is:

$$\binom{n+r-1}{r} = \binom{8+4-1}{8} = \binom{11}{8} = 165$$

Therefore, Amit can eat these four different colored candies in 165 ways.

Lecture 370: Picking 7 balls The naive way.

8) Find the closed form expression of the generating function for the sequence: 1, 11, 121, 1331, 14641.....?

4

A.
$$\frac{1}{1-x}$$

B.
$$\frac{1}{1-11x}$$

C.
$$\frac{1}{1-21x}$$

D.
$$\frac{1}{1-2x}$$

Correct Answer: B

The expression $\frac{1}{1-ax}$ generates the function $a^0x^0 + a^1x^1 + a^2x^2 + a^3x^3 + \cdots$

i.e.,
$$\frac{1}{1-ax} = 1 + ax + a^2x^2 + a^3x^3 + \cdots$$

Substituting 11 in place of, we get

$$\frac{1}{1 - 11x} = 1 + 11x + 11^2x^2 + 11^3x^3 + \cdots$$
$$\frac{1}{1 - 11x} = 1 + 11x + 121x^2 + 1331x^3 + 14641x^4 + \cdots$$

Therefore, the generating function for the sequence 1, 11, 121, 1331, 14641, is $\frac{1}{1-11x}$. Lecture 366: Generating function examples Part 2.

9) State whether true/false:

 $(1+x)^6$ is the generating function for the sequence:

$$\binom{6}{0}, \binom{6}{1}, \binom{6}{2}, \dots, \binom{6}{5}, \binom{6}{6}, 0, 0, 0, \dots$$

A. True

B. False

Correct Answer: A

Solution: $(1+x)^n$ is the generating function for the sequence $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{n}$, 0,0,0, ..., therefore, the above-mentioned statement is true.

Lecture 367: Binomial expansion Explained.

10) The sequence generated by the function $\frac{x+1}{(1-x)^3}$

A. 1,-1,1,-1,1,-1,...

B. 1, 2, 4, 8, 16, ...

Correct Answer: C

Solution:

$$\frac{d}{dx} \left(\frac{x}{(1-x)^2} \right) = \frac{d}{dx} (x + 2x^2 + 3x^3 + 4x^4 + \cdots)$$
$$\left(\frac{x+1}{(1-x)^3} \right) = (x + 4x + 9x^2 + 16x^3 + \cdots)$$
$$\left(\frac{x+1}{(1-x)^3} \right) = (1^2x + 2^2x + 3^3x^2 + 4^4x^3 + \cdots)$$

Hence the function $\frac{x+1}{(1-x)^3}$ generates the sequence 1^2 , 2^2 , 3^2 , 4^2 , 5^2 , ...

Lecture 365: Generating function examples Part 1.