1 Grundbegriffe

- Ein alphabet ist eine endliche, nichtleere Menge Σ von Buchstaben (oder Symbolen).
- Ein Wort über Σ ist eine endliche Folge von Elementen aus Σ .
- $\bullet\,$ Die länge eines Wortes w
 (bezeichnet mit |w|)ist ide Anzahl der Symbole in w.
- \bullet Das leere Wort ist das eindeutig bestimmte Wort der Länge 0 und wird mit dem grieschichen Buchstaben λ bezeichnet.
- Die Menge aller Wörter über Σ bezeichnen wir mit Σ^* .
- Eine formale Sprache über Σ ist eine jede Teilmenge von Σ^*
- \bullet Die leere Sprache ist die Sprache die keine Wörter enthält, und wird mit \emptyset bezeichnet.
- die Kardinalität einer Sprache L ist die Anzahl der Wörter von L und wirt mit $\|L\|$ bezeichnet.

2 Operationen

- Vereinigung $\{1,2\} \cup \{2,3\} = \{1,2,3\}.$
- Durschnitt $\{1,2\} \cap \{2,3\} = \{2\}.$
- Differenz $A B = \{x \in A \text{ und } x \notin B\}.$
- Komplement $\overline{A} = \{x \in \Sigma^* | x \notin B\}.$
- Konkatenation von Wörtern
 - Ist $u = v = \lambda$, so ist $uv = vu = \lambda$.
 - Ist $v = \Lambda$, so ist uv = u.
 - Ist $u = \lambda$ so ist uv = v.
 - Ist $u = u_1 u_2 \dots u_n undv = v_1 v_2 \dots v_m$ mit $u_i, v_i \in \Sigma$, so ist

$$uv = u_1u_2 \dots u_nv_1v_2 \dots \varepsilon_m.$$

- Konkatenation von Sprachen: $AB = \{ab | a \in A \text{ und } b \in B\}.$
- Iteration einer Sprache: $A^0 = \{\lambda\}, A^n = AA^{n-1}, A^* = \bigcup_{n>0} A^n$.
- Spiegelbildoperation von Wort $sp(u) = u_n \dot{u}_2 u_1$.
- Spiegelbildoperation von Sprache $sp(A) = \{sp(w) | w \in A\}.$
- Teilwortrelation auf Σ^* : $u \supseteq v \leftrightarrow (\exists v_1, v_2 \in \Sigma^*)[v_1 u v_2 = v]$.
- Anfangswortrelation auf Σ^* : $u \supseteq_a v \leftrightarrow (\exists w \in \Sigma^*)[uw = v]$.

3 Symbole

- $\bullet~\Sigma$ ein Alphabet von Terminalsymbolen
- N eine Endliche Menge von Nichtterminalen, $\Sigma \cap N = \emptyset$
- S Startsymbol, $S \in N$
- P Produktionsregeln, $P \subseteq (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$

4 Grammatik

 $G = (\Sigma, N, S, P)$

- Typ-0: Ohne Einschränkungen.
- Typ-1: $\forall p \to q \in P : |p| \le |q|$
- Typ-2: $\forall p \to q \in P : p \in N$
- Typ-3: $\forall p \to q \in P : |p| \in N \text{ und } q \in \Sigma \cup \Sigma N$

 $REG \subseteq CF \subseteq CS \subseteq \mathcal{L}_0$

4.1 Sonderregelung für λ

Typ-i Grammatiken mit $i \in \{1, 2, 3\}$ sind nichtferkürzend, daher $\lambda \notin L(G)$. Daher folgende Sonderregelung:

- 1. Die Regel $S \to \lambda$ ist als einzige verkürzende Regel für Grammatiken vom Typ 1, 2, 3 zugelassen.
- 2. Tritt die Regel $S \to \lambda$ auf, so darf S auf keiner rechten Seite einer Regel vorkommen.

Dies kann für alle Fälle mit folgender Umwandlung erreicht werden:

- 1. In allen Regeln der Form $S \to u$ aus P mit $u \in (N \cup \Sigma)^*$ wird jedes Vorkommen von S in u durch ein neues Nichtterminal S' ersetzt.
- 2. Zusätzlich enthält P' alle Regeln aus P, mit S ersetzt durch S'.
- 3. Die Regel $S \to \lambda$ wird hinzugefügt.

5 Reguläre Sprachen

5.1 DFA

5.1.1 Definition

 $M = (\Sigma, Z, \delta, z_o, F)$

- Σ: Alphabet
- Z: endliche Menge von Zustäanden mit $\Sigma \cap Z = \emptyset$
- $\delta: Z \times \Sigma \to Z$ Überführungsfunktion
- $z_0 \in Z$ Startzustand
- $F \subseteq Z$ Endzustände

5.1.2 Beispiel

δ	z_o	z_1	z_2	z_3
0	z_1	z_3	z_2	z_3
1	z_3	z_2	z_2	z_3

5.1.3 $DFA \rightarrow Grammar$

- \bullet N=Z,
- $S = z_0$,
- P:
 - Gilt $\delta(z, a) = z'$, so ist $z \to az'$ in P.
 - Ist $z' \in F$, so ist zusätzlich $z \to a$ in P.
 - ist $\lambda \in A$ (d.h., $z_o \in F$), so ist auch $z_0 \to \lambda$ in P, und die bisher konstruierte Grammatik wird gemäß der Sonderregel für λ modifiziert.

5.2 NFA

 $M = (\Sigma, Z, \delta, S, F)$

- Σ: Alphabet
 - Z: endliche Menge von Zuständen mit $\Sigma \cap Z = \emptyset$
 - $\delta: Z \times \Sigma \to \mathcal{P}(Z)$: Überführungsfunktionen zur Potenzmenge von Z
 - $S \subseteq Z$: Menge der Startzustände
 - $F \subseteq Z$ Menge der Endzustände

5.2.1 $NFA \rightarrow DFA$ (Rabin und Scott)

NFA $M = (\Sigma, Z, \delta, S, E)$ und DFA $M' = (\Sigma, \mathcal{P}(Z), \delta', z'_0, F)$

- zustandsmenge von M': $\mathcal{P}(Z)$,
- $\delta'(Z', a) = \bigcup_{z \in Z'} \delta(z, a) = \hat{\delta}(Z', a)$ für, all $Z' \subseteq Z$ und $a \in \Sigma$,
- $z'_0 = S$,
- $F = \{Z' \subseteq Z | Z' \cap E \not \emptyset\}$

5.3 $Grammatik \rightarrow NFA$

- $Z = N \cup \{X\}$, wobei $X \notin N \cup \Sigma$ ein neues Symbol ist,
- •

$$F = \begin{cases} \{S, X\} & \text{falls } S \to \lambda \text{ in } P \\ \{X\} & \text{falls } S \to \lambda \text{ nicht in } P, \end{cases}$$

- $S' = \{S\}$ und
- für alle $A \in N$ und $a \in \Sigma$ sei

$$\delta(A,a) = \left(\bigcup_{A \to aB \in P} \{B\}\right) \cup \bigcup_{A \to a \in P} \{X\}.$$

5.4 Regex

- ∅ und λ sind reguläre Ausdrücke
- Jedes $a \in \Sigma$ ist ein regulärer Ausdruck.
- Sind α und β reguläre Ausdrücke, so sind auch
 - $-\alpha\beta$
 - $-(\alpha+\beta)$ und
 - $-(\alpha)^*$

 $regul\"{a}re Ausdr\"{u}cke$

• Nichts sonst ist ein regulärer Ausdruck

5.5 $NFA \rightarrow L(M)$ Gleichungssysteme

Bilde ein Gleichungssystem mit n Variablen und n Gleichungen:

- 1. Jedes $z_i \in \mathbb{Z}, 1 \leq i \leq n$ ist Variable auf der linken Seite einer Gleichung
- 2. Gilt $z_j \in \delta(z_i, a)$ für $z_i, z_j \in Z$ und $a \in \Sigma$, so ist az_j Summand auf der rechten Seite der Gleichung $z_i, z_i = \dots$
- 3. Gilt $z_i \in F$, so ist \emptyset^* Summand auf der rechten Seite der Gleichung " $z_i = \dots$ ".

Todo: Die z_i werden als reguläre Sprachen interpretiert und gemäß Lemma 2.24 und Satz 2.226 ausgerechnet. Es gilt dann: $L(M) = \bigcup_{z_i \in S} z_i$ bzw. $L(;) = L(\alpha)$ für den regulären Ausdruck $\alpha = \sum_{z_i \in S} z_i$.

5.6 Pumping Lemma REG

Sei $L \in \text{REG}$. Dann existiert eine (von L abhängige) Zahl $n \geq 1$, so dass sich alle Wörter $x \in L$ mit $|x| \geq n$ zerlegen lassen in x = uvw wobei gilt:

- 1. $|uv| \leq n$,
- 2. $|v| \ge 1$,
- 3. $(\forall i \geq 0)[uv^i w \in L]$.

5.7 Mihill Nerode Minimalautomaten

5.7.1 Mihill Nerode Relation

 xR_Ly zwichen x und y gild genau dann, wenn $(\forall z \in \Sigma^*)[xz \in L \leftrightarrow yz \in L]$. Dies induziert eine Zerlegung von Σ^* in Äquivalenzklassen:

$$[x] = \{ y \in \Sigma^* | x R_L y \}$$

Die Anzahl der Äquivalenzklassen ist Index $(R_L) = \|\{[x]|x \in \Sigma^*\}\|.$

$$L \in REG \leftrightarrow \operatorname{Index}(R_L) < \infty$$

Algorithmus

Eingabe: DFA $M = (\Sigma, Z, \delta, z_0, F)$.

Ausgabe: Ein zu M äquivalenter Minimalautomat

Schritte:

- 1. Entferne alle von z_0 aus nicht erreichbaren Zustände aus Z.
- 2. Erstelle eine Tabelle aller (ungeordn
neten) Zustandspaare $\{z,z'\}$ on M mit $z \neq z'$.
- 3. Markiere alle Paare $\{z, z'\}$ mit $z \in F \leftrightarrow z' \notin F$.
- 4. Seit $\{z, z'\}$ ein unmarkiertes paar. Prüfe für jedes $a \in \Sigma$, ob $\{\delta(z, a), \delta(z', a)\}$ bereits markiert ist. Ist mindestens ein Test erfolgreich, so markiere auch $\{z, z'\}$.
- 5. Wiederhole Schritt 4, bis keine Änderung mehr eintritt.
- 6. Bilde maximale Mengen paarweise nicht disjunkter unmarkierter Zustandspaare und verschmelze jeweils alle Zustände einer Menge zu einem neuen Zustand.

5.8 Abschlusseigenschaften Definitionen

- 1. Vereinigung, falls $(\forall A, B \subseteq \Sigma^*)[(A \in \mathcal{C} \land B \in \mathcal{C}) \implies A \cup B \in \mathcal{C}];$
- 2. Komplement, falls $(\forall A \subseteq \Sigma^*)[A \in \mathcal{C} \implies \overline{A} \in \mathcal{C}];$
- 3. Schnitt, falls $(\forall A, B \subseteq \Sigma^*)[(A \in \mathcal{C} \land B \in \mathcal{C}) \implies A \cap B \in \mathcal{C}];$
- 4. Differenz, falls $(\forall A, B \subseteq \Sigma^*)[(A \in \mathcal{C} \land B \in C) \implies A \cap B \in \mathcal{C}];$
- 5. Konkatenation, falls $(\forall A, B \subseteq \Sigma^*)[(A \in \mathcal{C} \land B \in \mathcal{C}) \implies AB \in \mathcal{C}];$
- 6. Iteration (Kleene-Hülle), falls $(\forall A \subseteq \Sigma^*)[A \in \mathcal{C} \implies A^* \in \mathcal{C}];$
- 7. Spiegelung, falls $(\forall A \subseteq \Sigma^*)[A \in \mathcal{C} \implies sp(A) \in \mathcal{C}];$

5.9 Characterisierung

- 1. Es gibt eine rechtslineare Grammatik G mit L(G) = L.
- 2. Es gbt eine linklineare Grammatik G mit L(G) = L.
- 3. Es gibt einen DFA M mit L(M) = L.
- 4. Es gibt einen NFA M mit L(M) = L.
- 5. Es gibt einen regulären Ausdruck α mit $L(\alpha) = L$.
- 6. Für die Myhill-Nerode-Relation R_L gilt: Index $(R_L) < \infty$.

6 Kontextfreie Sprachen

bla