Chapitre 25: Courbes et surfaces

I Courbes planes

On identifie ici le plan à \mathbb{R}^2 .

A) Fonctions implicites

• Problème:

Soit
$$f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$$
 et $\Gamma = \{(x, y) \in \Omega, f(x, y) = 0\}$

 Γ est-il le graphe d'une fonction $\varphi: I \to \mathbb{R}$

Exemple:

Le cercle d'équation $x^2 + y^2 = 1$

 Γ est réunion des graphes de $x \mapsto \pm \sqrt{1-x^2}$

Pour tout $M_0 = (x_0, y_0)$ distinct de $(\pm 1,0)$, il existe un voisinage $I \times J$ de M_0 tel que $\Gamma \cap I \times J$ soit le graphe de $I \to J$ $x \mapsto \varepsilon \sqrt{1 - x^2}$

$$x \mapsto \varepsilon \sqrt{1-x^2}$$

Si $M_0 = (\pm 1,0)$, un tel voisinage n'existe pas.

Analyse:

Si au voisinage de $M_0 \in \Gamma$, Γ est le graphe d'une fonction $\varphi: I \to J$, on aura $\forall x \in I, (x, y) \in \Gamma \cap V \Leftrightarrow y = \varphi(x)$

Et donc
$$\forall x \in I, f(x, \varphi(x)) = 0$$

En particulier, si
$$\varphi$$
 est de classe C^1 : $\forall x \in I, \frac{\partial f}{\partial x}(x, \varphi(x)) + \varphi'(x) \frac{\partial f}{\partial y}(x, \varphi(x)) = 0$

On en déduit la condition suffisante suivante (cf. théorème des fonctions implicites) pour que au voisinage de $M_0 = (x_0, y_0)$, Γ soit le graphe d'une fonction C^1 :

Il suffit que
$$f$$
 soit de classe C^1 et $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$

Alors, au voisinage de M_0 , Γ sera le graphe de $\varphi: I \to J$ tel que $\varphi(x_0) = y_0$ et

$$\forall x \in I, \varphi'(x) = -\frac{\frac{\partial f}{\partial x}(x, \varphi(x))}{\frac{\partial f}{\partial y}(x, \varphi(x))} \ (*)$$

Remarque:

Si f est de classe C^2 , $G:(x,y) \mapsto -\frac{\frac{\partial f}{\partial x}(x,y)}{\frac{\partial f}{\partial x}(x,y)}$ est de classe C^1 au voisinage de M_0

et le théorème de Cauchy-Lipschitz s'applique : il existe une unique solution maximale (I,φ) à (*)

• Théorème des fonctions implicites (d'une variable) :

Soit $\Omega \subset \mathbb{R}^2$ un ouvert, $f: \Omega \to \mathbb{R}$ de classe C^k , $k \ge 1$.

On note
$$\Gamma = \{(x, y) \in \Omega, f(x, y) = 0\}$$

Soit $M_0 \in \Omega$. Si $\frac{\partial f}{\partial v}(x_0, y_0) \neq 0$, alors il existe I ouvert voisinage de x_0 , Jintervalle ouvert voisinage de y_0 , $\varphi: I \to J$ de classe C^k tel que pour tout $M = (x, y) \in I \times J$, $f(x, y) = 0 \Leftrightarrow y = \varphi(x)$.

De plus,
$$\varphi(x_0) = y_0$$
 et $\forall x \in I, \varphi'(x) = -\frac{\frac{\partial f}{\partial x}(x, \varphi(x))}{\frac{\partial f}{\partial y}(x, \varphi(x))}$

Démonstration:

On pose F(x,y) = (x, f(x,y)). Alors $F: \Omega \to \mathbb{R}^2$ est de classe C^k , et $\operatorname{Jac}(F)_{(x_0,y_0)} = \begin{pmatrix} 1 & 0 \\ \frac{\partial f}{\partial x}(x_0,y_0) & \frac{\partial f}{\partial y}(x_0,y_0) \end{pmatrix}, \text{ donc } \operatorname{jac}(F)_{(x_0,y_0)} = \frac{\partial f}{\partial y}(x_0,y_0) \neq 0.$

Donc d'après le théorème d'inversion locale, il existe un voisinage U de $M_0 = (x_0, y_0)$ dans Ω et U' de $F(M_0) = (x_0, 0)$ dans \mathbb{R}^2 tels que $F: U \to U'$ soit un C^k -difféomorphisme, de réciproque $G: U' \rightarrow U$

$$(u,v) \mapsto (\alpha(u,v),\beta(u,v))$$

$$(u,v) \mapsto (\alpha(u,v),\beta(u,v)) = 0$$

On a :
$$\forall (x, y) \in U$$
, $G \circ F(x, y) = (x, y)$, c'est-à-dire
$$\begin{cases} \alpha(x, f(x, y)) = x \\ \beta(x, f(x, y)) = y \end{cases}$$

Et $\forall (u, v) \in U'$, $F \circ G(u, v) = (u, v)$, c'est-à-dire
$$\begin{cases} \alpha(u, v) = u \\ f(\alpha(u, v), \beta(u, v)) = v \end{cases}$$

Et
$$\forall (u,v) \in U', F \circ G(u,v) = (u,v), \text{ c'est-à-dire } \begin{cases} \alpha(u,v) = u \\ f(\alpha(u,v), \beta(u,v)) = v \end{cases}$$

Soit $M \in U$. Alors $F(M) = (x, f(x, y)) \in U'$

Et $M \in \Gamma$ si et seulement si f(x, y) = 0 c'est-à-dire si et seulement si $y = \beta(x, 0)$

(Si
$$f(x, y) = 0$$
, alors $y = \beta(x, f(x, y)) = \beta(x, 0)$ et si $y = \beta(x, 0)$, alors $f(x, y) = f(x, \beta(x, 0)) = 0$)

Donc au voisinage de (x_0, y_0) , Γ est le graphe de $x \mapsto \varphi(x) = \beta(x,0)$.

Calcul de φ :

On a $\forall x \in I$, $f(x, \varphi(x)) = 0$

Comme
$$\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$$
, au voisinage de x_0 , on a $\frac{\partial f}{\partial y}(x, \varphi(x)) \neq 0$

En dérivant l'égalité $f(x, \varphi(x)) = 0$, on obtient bien la formule voulue pour φ On procède par récurrence pour montrer que φ est de classe C^k .

B) Qu'est-ce qu'une courbe plane?

Définition, proposition :

On appelle courbe de classe $C^k, k \ge 2$ de \mathbb{R}^2 toute partie non vide Γ de \mathbb{R}^2 telle que pour tout $M_0 \in \Gamma$, il existe V voisinage de M_0 dans \mathbb{R}^2 tel qu'on ait l'une des propositions équivalentes suivantes :

(1) (défini par paramétrisation) : il existe *I* intervalle de \mathbb{R}^2 ouvert, $\psi: I \to \mathbb{R}^2$ de classe C^k régulière, tels que $V \cap \Gamma$ est le support de ψ $(V \cap \Gamma = \psi(I))$.

- (2) (défini par une fonction implicite) : il existe $f: V \to \mathbb{R}$ de classe C^k tel que $\overrightarrow{\operatorname{grad}} f(M_0) \neq \overrightarrow{0}$ et $V \cap \Gamma = \{M \in V, f(M) = 0\}$
- (3) (défini par une équation cartésienne): quitte à échanger x et y, il existe I voisinage de x_0 , J voisinage de y_0 et $\varphi: I \to J$ de classe C^k tels que $V \cap \Gamma = \{(x, \varphi(x)), x \in I\}$

De plus :

Si dans la représentation (1), on a $M_0 = \varphi(t_0)$, la droite passant par M_0 dirigée par $\vec{\psi}'(t_0) \neq \vec{0}$ est indépendante du choix de ψ . Elle est égale à la droite passant par M_0 et normale à $\overrightarrow{\operatorname{grad}} f(M_0)$ ou encore à la droite passant par M_0 de pente $m = \varphi'(t_0)$.

Définition:

Cette droite s'appelle tangente en M_0 à Γ .

Démonstration:

 $(3) \Rightarrow (1)$: en posant $\psi(t) = (t, \varphi(t))$,

 φ est de classe C^k et $\forall x \in I, \vec{\psi}'(x) = (1, \varphi'(x)) \neq \vec{0}$

Donc ψ est régulière.

 $(2) \Rightarrow (3)$: On peut appliquer le théorème des fonctions implicites :

Si $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$, il s'applique

Sinon, $\frac{\partial f}{\partial x}(x_0, y_0) \neq 0$ (car $\overrightarrow{\text{grad}} f(M_0) \neq \overrightarrow{0}$), donc en échangeant x et y, on trouve

 $\varphi: J \to I$ de classe C^k , $V = I \times J$ voisinage de M_0 tel que

$$\forall (x,y)\!\in V, (x,y)\!\in \Gamma \Longleftrightarrow x=\varphi(y)$$

 $(1) \Rightarrow (3)$:

Soit $\psi: I \to \mathbb{R}^2$ de support $V \cap \Gamma$, de classe C^k , régulier et t_0 tel que $\psi(t_0) = M_0 = (x_0, y_0)$. On a $\vec{\psi}'(t_0) \neq \vec{0}$

On note $\psi: I \to \mathbb{R}^2$. $t \mapsto (\alpha(t), \beta(t))$.

Si $\alpha'(t_0) \neq 0$, alors $\alpha: I \to K$ où K est un intervalle de \mathbb{R} , et quitte à restreindre I, on peut supposer que α est un C^k -difféomorphisme de I dans $K = \alpha(I)$

Posons $\varphi: K \to \mathbb{R}$ $x \mapsto \beta \circ \alpha^{-1}(x)$

Alors $V \cap \Gamma$ est le graphe de φ .

En effet, pour $(x, y) \in V$,

 $(x, y) \in \Gamma$ si et seulement si il existe $t \in I$ tel que $(x, y) = \psi(t) = (\alpha(t), \beta(t))$ c'est-à-dire si et seulement si il existe $t \in I$ tel que $\alpha(t) = x$ et $\underbrace{\beta(\alpha^{-1}(x))}_{\varphi(x)} = y$

Si $\alpha'(t_0) = 0$, alors $\beta'(t_0) \neq 0$ et on fait la même chose en échangeant x et y.

 $(3) \Rightarrow (2)$: on pose $f(x, y) = y - \varphi(x)$

Exemples : coniques à centre :

$$\lambda x^2 + \mu y^2 = 1$$
 où $\lambda \mu \neq 0$

On pose
$$f(x, y) = \lambda x^2 + \mu y^2 - 1$$

Alors
$$f$$
 est de classe C^1 et $\overrightarrow{\text{grad}} f(x, y) = \begin{pmatrix} 2\lambda x \\ 2\mu y \end{pmatrix}$

Problème:

 $\overrightarrow{\text{grad}} f$ s'annule t'il sur Γ d'équation f(x, y) = 0?

On doit avoir
$$\begin{cases} 2\lambda x = 0 \\ 2\mu y = 0 \text{, système qui n'a pas de solution.} \\ \lambda x^2 + \mu y^2 = 1 \end{cases}$$

Donc Γ est une courbe, et tout point de Γ est régulier.

La tangente à Γ en $(x_0, y_0) \in \Gamma$ a pour équation $\langle \overrightarrow{M_0M}, \overrightarrow{\text{grad}} f(M_0) \rangle = 0$

C'est-à-dire
$$2\lambda . x(x-x_0) + 2\mu . y(y-y_0) = 0$$
, ou $\lambda x_0 x + \mu y_0 y = 1$

Plus généralement, si q(x,y) est une forme quadratique non dégénérée, et si Γ est la conique d'équation q(x,y)=c $(c \neq 0)$, alors la tangente en $(x_0,y_0)\in\Gamma$ à Γ a pour équation $\varphi(M_0M)=c$ où φ est la forme polaire de q.

Exercice:

Courbes de niveaux de $f(x, y) = x^3 + y^3 - 3axy$ (a > 0):

On pose
$$\Gamma_k = \{(x, y) \in \mathbb{R}^2, f(x, y) = k\}$$

- Pour quels $k \in \mathbb{R}$ Γ_k est-elle singulière (admet-elle un point singulier)?
- Tracer les Γ_k singulières
- Allure des Γ_k
- (1) Γ_k est la courbe d'équation $f_k(x, y) = 0$ où $f_k = f k$

Comme $\overrightarrow{\text{grad}} f_k = \overrightarrow{\text{grad}} f$, Γ_k est singulière si et seulement si $\overrightarrow{\text{grad}} f$ s'annule sur

$$\Gamma_k$$
. On a $\overrightarrow{\text{grad}} f(x, y) = \begin{pmatrix} 3x^2 - 3ay \\ 3y^2 - 3ax \end{pmatrix}$

Donc
$$\overrightarrow{\operatorname{grad}} f(x, y) = 0 \Leftrightarrow \begin{cases} x^2 = ay \\ y^2 = ax \end{cases} \Rightarrow \begin{cases} x^2 = ay \\ y^4 = a^2x^2 = a^3y \end{cases} \Rightarrow \begin{cases} x = y = 0 \\ \text{ou } y = a, x = \pm a \end{cases}$$

La réciproque est fausse si x = -a, donc on ne garde que $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} a \\ a \end{pmatrix}$

Remarque : ce sont les points critiques de f.

La matrice hessienne de
$$f$$
 en $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ est $H(0,0) = \begin{pmatrix} 0 & -3a \\ -3a & 0 \end{pmatrix}$

Donc det(H(0,0)) < 0; on a donc un col.

$$H(a,a) = \begin{pmatrix} 6a & -3a \\ -3a & 6a \end{pmatrix}$$
, donc $\det(H(a,a)) > 0$, $\operatorname{Tr}(H(a,a)) > 0$; on a un minimum local strict.

On a $(0,0) \in \Gamma_0$; le point (0,0) est un point double de Γ_0 car (0,0) est un col de f.

On a $(a,a) \in \Gamma_{-a^3}$; le point (a,a) est un point isolé de Γ_{-a^3} car (a,a) est un minimum local strict de f.

(2) On a
$$\Gamma_0$$
: $x^3 + y^3 = 3axy$

En coordonnées polaires, $\rho^3(\cos^3\theta + \sin^3\theta) = 3a\rho^2\sin\theta.\cos\theta$

Donc $\rho = 0$ ou $\rho(\cos^3 \theta + \sin^3 \theta) = 3a \sin \theta . \cos \theta$

Si $\cos^3 \theta + \sin^3 \theta = 0$, c'est-à-dire $\cos \theta = -\sin \theta$, alors $0 = -3a\cos^2 \theta$, c'est-à-dire $\cos \theta = \sin \theta = 0$, ce qui est impossible.

Donc Γ_0 est la courbe d'équation polaire

$$\rho = \frac{3a\cos\theta\sin\theta}{\cos^3\theta + \sin^3\theta} = \frac{3a\cos\theta\sin\theta}{(\cos\theta + \sin\theta)(1 - \sin\theta\cos\theta)}$$

(Le cas $\rho = 0$ est pris en compte avec $\theta = 0$)

On a une branche infinie pour $\theta \to \theta_0 = \frac{\pi}{4}$:

$$\begin{split} \lim_{\theta \to \theta_0} \rho \sin(\theta - \theta_0) &= \lim_{\theta \to \theta_0} \rho(\sin \theta \cos \theta_0 - \cos \theta \sin \theta_0) \\ &= \lim_{\theta \to \theta_0} \frac{\rho(\cos \theta + \sin \theta)}{\sqrt{2}} \\ &= \frac{3a \cos \theta_0 \sin \theta_0}{1 - \cos \theta_0 \sin \theta_0} \frac{1}{\sqrt{2}} \\ &= \frac{-3a/2}{1 + \frac{1}{2}} \frac{1}{\sqrt{2}} = \frac{-a}{\sqrt{2}} \end{split}$$

On a donc une asymptote d'équation x + y = -a.

(La courbe s'appelle une strophoïde droite)

On a
$$\Gamma_{-a^3} = \{(x, y) \in \mathbb{R}^2, x + y + a = 0\} \cup \{(a, a)\}$$

 Γ_{-a^3} est en effet la courbe d'équation $x^3 + y^3 - 3axy + a^3 = 0$,

et on a
$$X^3 + Y^3 - 3aXY + a^3 = (X + Y + a)((X - \frac{1}{2}Y - \frac{1}{2}a)^2 + \frac{3}{4}(Y - a)^2)$$

Donc

$$x^{3} + y^{3} - 3axy + a^{3} = 0 \Leftrightarrow x + y + a = 0 \text{ ou } (x - \frac{1}{2}y - \frac{1}{2}a)^{2} + \frac{3}{4}(y - a)^{2} = 0$$

$$\Leftrightarrow x + y + a = 0 \text{ ou } \begin{cases} x - \frac{1}{2}y - \frac{1}{2}a = 0 \\ \frac{3}{4}(y - a)^{2} = 0 \end{cases}$$

$$\Leftrightarrow x + y + a = 0 \text{ ou } x = y = a$$

On obtient après étude pour l'allure des autres lignes de niveau :

C) Image d'une courbe par un difféomorphisme

Théorème:

Soit Γ une courbe de classe C^k d'un ouvert U de \mathbb{R}^2 , $\phi:U\to U'\subset\mathbb{R}^2$ un C^k – difféomorphisme.

Alors $\phi(\Gamma)$ est une courbe de U'.

- Si M_0 est un point régulier de Γ , $\phi(M_0)$ en est un de $\phi(\Gamma)$ et la tangente à $\phi(\Gamma)$ en $\phi(M_0)$ est dirigée par $d\phi_{M_0}(\vec{u})$ où \vec{u} dirige la tangente à Γ en M_0
- M_0 est stationnaire si et seulement si $\phi(M_0)$ l'est.

Corollaire:

Si ϕ est un automorphisme de \mathbb{R}^2 , la tangente à $\phi(\Gamma)$ en $\phi(M_0)$ est l'image par ϕ de la tangente à Γ en M_0

Démonstration :

Il existe un paramétrage local de Γ , $t \in I \mapsto \psi(t)$ où $\psi(t_0) = M_0$, ψ étant de classe C^k régulier, $\vec{\psi}'(t_0) \neq \vec{0}$.

Alors $\phi(\Gamma)$ admet au voisinage de M_0 le paramétrage $t \in I \mapsto \phi \circ \psi(M_0)$, de classe C^k et $\overrightarrow{\phi} \circ \overrightarrow{\psi}'(t_0) = d\phi_{(\psi(t_0))}(\overrightarrow{\psi}'(t_0)) \neq 0$

Les résultats en découlent.

Exercice:

Trouver les bijections affines de \mathbb{R}^2 qui conservent l'astroïde

$$A: \begin{cases} x(t) = a\cos^3 t \\ y(t) = a\sin^3 t \end{cases} = \psi(t), t \in \mathbb{R}$$

Etude de A:

- ψ est périodique, donc on peut faire l'étude sur $[\alpha, \alpha + 2\pi]$
- $\psi(t+\pi)$ est symétrique de $\psi(t)$ par rapport à O; on peut faire l'étude sur $[\alpha, \alpha+\pi]$ puis faire une symétrie par rapport à O.

- $\psi(-t)$ est symétrique de $\psi(t)$ par rapport à l'axe Ox. On fait donc l'étude sur $\left[0, \frac{\pi}{2}\right]$, puis une symétrie d'axe Ox.
- $\psi(\frac{\pi}{2}-t)$ est symétrique de $\psi(t)$ par rapport à la bissectrice. On fait donc l'étude sur $\left[0,\frac{\pi}{4}\right]$

 $\forall t \in \left[0, \frac{\pi}{4}\right], x'(t) = -3a\cos^2 t \sin t, y'(t) = 3a\sin^2 t \cos t, m(t) = -\tan t$

On a deux points stationnaires M(0), $M(\frac{\pi}{2})$ (sur $[0, \frac{\pi}{2}]$)

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ affine bijective qui conserve l'astroïde, c'est-à-dire telle que f(A) = A. f est de classe C^{∞} est conserve A, donc f permute les points stationnaires.

Comme f est affine, elle conserve O, isobarycentre de A, B, C, D.

$$1^{\text{er}}$$
 cas: si $f(A) = A$, comme $f(O) = O$, on a $f(C) = C$

Soit
$$f(B) = B$$
, et donc $f = Id$

En effet, comme f(O) = O, f s'exprime sous la forme

$$(x, y) \mapsto (ax + by, cx + dy)$$

Comme
$$f(A) = A$$
, on a $(a, c) = (1,0)$

Comme
$$f(B) = B$$
, on a $(b,d) = (0,1)$

Soit f(B) = D, et donc $g = s_{r'r} \circ f$ conserve A et fixe A, B, O.

Donc
$$g = \text{Id et } f = s_{xx'}$$
.

Etude générale :

On note G l'ensemble des applications affines bijectives qui conservent A.

Alors G est un sous-groupe du groupe des transformations affines.

Par ailleurs, on dispose de quatre isométries directes $rot(O, \frac{k\pi}{2}) = r_k$ (k = 0..3)

Si
$$f \in G$$
, il existe $k \in [0,3]$ tel que $r_k(A) = f(A)$

Donc
$$g = r_k^{-1} \circ f \in G$$
 vérifie $g(A) = A$

Donc soit
$$g = Id$$
, et donc $f = r_k$

soit
$$g = s_{xx'}$$
 et $f = r_k \circ s_{xx'}$, réflexion.

Donc
$$\#G = 8$$
 et $G = \{r_k, k = 0..3\} \cup \{r_k \circ s_k, k = 0..3\}$

II Courbes et surfaces de l'espace

A) Surfaces d'équation cartésienne z = f(x, y) où f est de classe C^k , $k \ge 1$

• Plan tangent:

Théorème:

Pour tout $M_0 = (x_0, y_0, z_0)$ de la surface Σ d'équation z = f(x, y), il existe un unique plan tangent à Σ , c'est le plan $T_{\Sigma}(M_0)$ d'équation

$$z = z_0 + \frac{\partial f}{\partial x}(M_0)(x - x_0) + \frac{\partial f}{\partial y}(M_0)(y - y_0)$$

Démonstration:

Admis

• Position du plan tangent : étude à l'ordre 2.

Théorème:

On suppose que f est de classe C^k , $k \ge 2$ et on pose $r = \frac{\partial^2 f}{\partial x^2}(x_0, y_0)$,

$$t = \frac{\partial^2 f}{\partial y^2}(x_0, y_0), \ s = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$

Si $rt - s^2 = \det \begin{pmatrix} r & s \\ s & t \end{pmatrix} > 0$, la surface Σ reste d'un même côté du plan tangent au

voisinage de M_0

Si $rt-s^2 < 0$, Σ coupe le plan tangent dans tout voisinage de M_0 ; dans tout voisinage de M_0 , Σ a des points de part et d'autre de $T_{\Sigma}(M_0)$.

Définition:

Si $rt - s^2 > 0$, on dit que M_0 est elliptique

Si $rt - s^2 < 0$, on dit que M_0 est hyperbolique

Si $rt - s^2 = 0$, on dit que M_0 est dégénéré.

Démonstration:

Considérons $\varphi(x,y) = f(x,y) - l(x,y)$ où l(x,y) = 0 est l'équation du plan tangent $T_{\Sigma}(M_0)$

Ici,
$$l(x, y) = \underbrace{z_0}_{f(x_0, y_0)} + (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$$

Signe de $\varphi(x, y)$:

On a
$$\frac{\partial \varphi}{\partial x}(x_0, y_0) = \frac{\partial \varphi}{\partial y}(x_0, y_0) = 0$$
, $\varphi(x_0, y_0) = 0$

Donc (x_0, y_0) est un point critique de φ .

Comme la matrice hessienne de φ est la même que celle de f,

Si $rt-s^2 > 0$, $\varphi(x_0, y_0)$ sera un extremum local strict donc φ est de signe constant au voisinage de (x_0, y_0) .

Si $rt-s^2 < 0$, $\varphi(x_0, y_0)$ sera un col donc φ change de signe dans tout voisinage de M_0 .

Remarque:

Lorsque le point est elliptique, M_0 est un point isolé de $\Sigma \cap T_{\Sigma}(M_0)$

S'il est hyperbolique, c'en est un point double.

Exemples fondamentaux :

Paraboloïdes:

- (PE): $z = x^2 + y^2$; on a $f(x, y) = x^2 + y^2$, $H(x, y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Donc tout point de (PE) est elliptique
- (PH): $z = x^2 y^2$; on a $f(x, y) = x^2 y^2$, $H(x, y) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$. Donc tout point est hyperbolique.

Pour tout $M_0 \in (PH)$, $(PH) \cap T_{(PH)}(M_0)$ est une réunion de deux droites : ce sont les génératrices de (PH) qui passent par M_0 . (déjà vu)

B) Nappes paramétrées de classe C^k , $k \ge 1$.

• Définition :

C'est une application de classe C^k $\psi: U \to \mathbb{R}^3$ où U est un ouvert de \mathbb{R}^2 .

Le support de ψ est $\Sigma = \psi(U)$

• Point régulier, stationnaire :

$$(u,v)$$
 est dit régulier lorsque $\operatorname{rg}\left(\frac{\partial \vec{\psi}}{\partial u}(u,v), \frac{\partial \vec{\psi}}{\partial v}(u,v)\right) = 2$, c'est-à-dire si

$$\frac{\partial \vec{\psi}}{\partial u}(u,v) \wedge \frac{\partial \vec{\psi}}{\partial v}(u,v) \neq \vec{0}$$

Il est dit stationnaire dans le cas contraire.

• Plan tangent :

Théorème:

Soit $M_0 = \psi(u_0, v_0)$ un point du support Σ de ψ .

Si M_0 est régulier, il existe un voisinage V de (u_0,v_0) dans U tel que, quitte à permuter les coordonnées (x,y,z), $\psi(V)$ soit une surface C^k d'équation cartésienne z = f(x,y).

Dans ce cas, le plan tangent à $\psi(V)$ en M_0 est dirigé par $\left(\frac{\partial \vec{\psi}}{\partial u}(u_0, v_0), \frac{\partial \vec{\psi}}{\partial v}(u_0, v_0)\right)$, c'est-à-dire normal à $\frac{\partial \vec{\psi}}{\partial u}(u_0, v_0) \wedge \frac{\partial \vec{\psi}}{\partial v}(u_0, v_0) \neq \vec{0}$

Démonstration:

Il suffit d'appliquer le théorème d'inversion local à $(u,v) \mapsto (\psi_1(u,v),\psi_2(u,v))$ où $\vec{\psi}(u,v) = (\psi_1,\psi_2,\psi_3)$

C) Surface d'équation F(x, y, z) = 0 où F est de classe C^k , $k \ge 1$.

• Point régulier, point singulier :

Un point $M_0 = (x_0, y_0, z_0)$ de Σ d'équation F(x, y, z) = 0 est régulier si $\overrightarrow{\text{grad}}F(M_0) \neq \vec{0}$, singulier si $\overrightarrow{\text{grad}}F(M_0) = \vec{0}$

• Plan tangent en un point régulier :

Théorème:

Si M_0 est régulier, quitte à permuter les coordonnées, au voisinage de M_0 , Σ a une équation de la forme z = f(x, y) et le plan tangent à Σ en M_0 est le plan normal à $\overrightarrow{\text{grad}}F(M_0)$ passant par M_0 .

D) Courbes sur une surface

• Théorème :

Soit Σ une surface, $\Gamma \subset \Sigma$ une courbe et $M_0 \in \Gamma \subset \Sigma$

Si M_0 est régulier à la fois sur Σ et sur Γ , alors la tangente $T_{\Gamma}(M_0)$ à Γ en M_0 est incluse dans le plan tangent $T_{\Sigma}(M_0)$ à Σ en M_0

Démonstration:

On peut supposer que Σ a pour équation F(x,y,z)=0, où F est de classe C^k , et que Γ est paramétrée par $\psi: t \mapsto (x(t),y(t),z(t))$ aussi de classe C^k (au voisinage de M_0)

On a $\Gamma \subset \Sigma$, donc $\forall t \in I, F(\psi(t)) = 0$ et en dérivant $\langle \operatorname{grad} F(\psi(t)), \vec{\psi}'(t) \rangle = 0$ Donc en M_0 , $\langle \operatorname{grad} F(M_0), \vec{\psi}'(0) \rangle = 0$.

Donc la direction de $T_{\Gamma}(M_0)$ est incluse dans celle de $T_{\Sigma}(M_0)$. Comme les deux passent par M_0 , on a bien $T_{\Gamma}(M_0) \subset T_{\Sigma}(M_0)$.

Application:

- (1) Si une droite D est incluse dans une surface Σ , alors pour tout $M_0 \in D$, $D \subset T_{\Sigma}(M_0)$ car $D = T_D(M_0)$
- (2) Cylindre de révolution : le plan tangent en M_0 au cylindre (C_y) est défini par la génératrice verticale D de M_0 et la tangente en M_0 au cercle C passant par M_0 inclus dans (C_y) .
- (3) Cas des nappes paramétrées $\psi: U \to \mathbb{R}^3$

Pour $u_0 \in U$ fixé, $v \mapsto \psi(u_0, v)$ est un arc tracé sur la nappe. Sa tangente en (u_0, v_0) est dirigée par $\frac{\partial \psi}{\partial v}(u_0, v_0)$ (idem pour v_0)

Intersection de deux surfaces :

Théorème:

Soient Σ_1 , Σ_2 deux surfaces de classe C^k , $k \ge 1$ on suppose que $\Sigma_1 \cap \Sigma_2 \ne \emptyset$, et on prend $M_0 \in \Sigma_1 \cap \Sigma_2$. On suppose de plus que les plans tangents en M_0 $T_{\Sigma_1}(M_0)$ et $T_{\Sigma_0}(M_0)$ sont distincts.

Alors il existe un voisinage U de M_0 dans \mathbb{R}^3 tel que $U \cap (\Sigma_1 \cap \Sigma_2) = \Gamma$ soit un arc de classe C^k régulier.

La tangente à
$$\Gamma$$
 en M_0 est alors $T_{\Gamma}(M_0) = T_{\Sigma_1}(M_0) \cap T_{\Sigma_2}(M_0)$

Démonstration:

On peut supposer qu'au voisinage de $M_{\scriptscriptstyle 0}$, $\Sigma_{\scriptscriptstyle 1}$ et $\Sigma_{\scriptscriptstyle 2}$ ont pour équation

$$\Sigma_1 : f(x, y, z) = 0$$
 et $\Sigma_2 : g(x, y, z) = 0$

Ainsi, $\overrightarrow{\operatorname{grad}} f(M_0) \wedge \overrightarrow{\operatorname{grad}} g(M_0) \neq \vec{0}$, c'est-à-dire

$$\begin{pmatrix} \frac{\partial f}{\partial x}(M_0) \frac{\partial g}{\partial y}(M_0) - \frac{\partial f}{\partial y}(M_0) \frac{\partial g}{\partial x}(M_0) \\ \vdots \end{pmatrix} \neq \vec{0}$$

On suppose par exemple que $\frac{\partial f}{\partial x}(M_0)\frac{\partial g}{\partial v}(M_0) - \frac{\partial f}{\partial v}(M_0)\frac{\partial g}{\partial x}(M_0) \neq 0$

Alors $H:(x,y,z)\mapsto (f(x,y,z),g(x,y,z),z)$ a pour matrice jacobienne

$$\operatorname{Jac}(H)_{M_0} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z} \\ 0 & 0 & 1 \end{pmatrix} \in GL_3(\mathbb{R})$$

Donc le théorème d'inversion locale s'applique.

Au voisinage de M_0 , les égalités $\begin{cases} u = f(x, y, z) \\ v = g(x, y, z) \text{ s'inversent en } \\ w = z \end{cases} \begin{cases} x = \alpha(u, v, w) \\ y = \beta(u, v, w) \\ z = w \end{cases}$ Donc $(x, y, z) \in \Gamma$ si et seulement si u = v = 0 c'est-à-dire $\begin{cases} x = \alpha(0, 0, z) \\ y = \beta(0, 0, z) \end{cases}$

Donc Γ est paramétrée par $\begin{cases} x = \varphi(z) \\ y = \psi(z) \end{cases}$ où $\varphi: z \mapsto \alpha(0,0,z), \ \psi: z \mapsto \beta(0,0,z)$ sont de classe C^k .

Exemple : Conoïde de Plücker :

On note K la surface paramétrée en coordonnées cylindriques par $z = a \sin(2\theta)$ (a > 0)

- Quels sont les points stationnaires? équation du plan tangent en un point régulier
- Equation cartésienne f(x, y, z) = 0 de K.
- Etude de $K \cap T_K(M)$
- (1) Soit $\psi: (r, \theta) \mapsto (r \cos \theta, r \sin \theta, a \sin 2\theta)$

On a
$$\frac{\partial \psi}{\partial r}(r,\theta) = \begin{pmatrix} \cos\theta \\ \sin\theta \\ 0 \end{pmatrix}$$
, $\frac{\partial \psi}{\partial \theta}(r,\theta) = \begin{pmatrix} -r\sin\theta \\ r\cos\theta \\ 2a\cos\theta \end{pmatrix}$

On pose
$$\vec{n} = \frac{\partial \psi}{\partial r} \wedge \frac{\partial \psi}{\partial \theta} = \begin{pmatrix} 2a\cos 2\theta \sin \theta \\ -2a\cos \theta \cos 2\theta \\ r \end{pmatrix}$$

Alors
$$\vec{n} = \vec{0} \Leftrightarrow \begin{cases} r = 0 \\ \cos 2\theta = 0 \end{cases} \Leftrightarrow \begin{cases} r = 0 \\ \theta = \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z} \end{cases}$$

On a donc deux points stationnaires $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Equation du plan tangent en un point non stationnaire $M_0 = \psi(r_0, \theta_0)$: $ar_0 \sin \theta_0 \cos \theta_0 (x - r_0 \cos \theta_0) - 2a \cos 2\theta_0 \cos \theta_0 (y - r_0 \sin \theta_0) + 2r_0 (z - a \sin \theta_0) = 0$

Ou $2a\cos 2\theta_0(x\sin\theta_0 - y\cos\theta_0) + r_0z = ar_0\sin 2\theta_0$

(Remarque : le plan est horizontal si et seulement si $2a\cos 2\theta_0 = 0$)

(2) Equation cartésienne :

Soit $M = (x, y, z) \in \mathbb{R}^3$. On a les équivalences :

$$M = (x, y, z) \in K \Leftrightarrow \exists (r, \theta) \in U, \begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = a \sin 2\theta \end{cases} \qquad (U = \mathbb{R}_+ \times] - \pi, \pi])$$

$$\Leftrightarrow \exists (r, \theta) \in U, \begin{cases} r = \sqrt{x^2 + y^2} \\ (x^2 + y^2)z = 2axy \\ x = r \cos \theta \\ y = r \sin \theta \\ z = a \sin 2\theta \end{cases}$$

$$y = r\sin\theta$$

Ainsi, $M = (x, y, z) \in K \Rightarrow (x^2 + y^2)z = 2axy$

Réciproquement, si $(x^2 + y^2)z = 2axy$

On pose $r = \sqrt{x^2 + y^2}$

Si $r \neq 0$, on note θ réel tel que $e^{i\theta} = \frac{x + iy}{\sqrt{x^2 + y^2}}$

Alors
$$z = \frac{2ar^2 \cos \theta \sin \theta}{r^2} = a \sin 2\theta$$
, donc $M \in K$

Si r = 0, c'est-à-dire x = y = 0,

Il existe $\theta \in \mathbb{R}$ tel que $z = a \sin 2\theta$ si et seulement si $|z| \le a$.

Ainsi,
$$M = (x, y, z) \in K \Leftrightarrow \begin{cases} (x^2 + y^2)z = 2axy \\ |z| \le a \text{ si } x = y = 0 \end{cases}$$

Remarque:

Le conoïde K et la surface Σ d'équation $(x^2 + y^2)z = 2axy$ vérifient $\Sigma = K \cap (z'z) \ (= K \cap \delta \text{ où } \delta = \{(0,0,z), |z| \ge a\})$

(3) Intersection de $T_K(M_0)$ et K:

$$K \text{ est représenté par } (r,\theta) \mapsto \begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = a \sin 2\theta \end{cases}$$

Et $T_K(M_0)$: $2a\cos 2\theta_0(x\sin \theta_0 - y\cos \theta_0) + r_0z = ar_0\sin 2\theta_0$ Ainsi,

$$\begin{split} M(r,\theta) &\in T_K(M_0) \cap K \iff 2a\cos 2\theta_0 r\sin(\theta_0-\theta) + r_0 a\sin 2\theta = ar_0\sin 2\theta_0 \\ &\iff r\cos 2\theta_0\sin(\theta_0-\theta) = r_0\sin(\theta-\theta_0)\cos(\theta+\theta_0) \\ &\iff \begin{cases} \sin(\theta-\theta_0) = 0 \\ \cos 2\theta_0 = r_0\cos(\theta+\theta_0) \end{cases} \end{aligned} \tag{1}$$

L'équation (1) est celle de la droite
$$D: \begin{cases} z = a \sin 2\theta_0 \\ y = r \sin \theta_0 \end{cases}$$
, $r \in \mathbb{R}$ $x = r \cos \theta_0$

L'équation (2) est celle d'une ellipse passant par O si $\cos 2\theta_0 \neq 0$ Conclusion :

Si $\cos 2\theta_0 \neq 0$, $T_K(M_0) \cap K$ est la réunion de la génératrice de M_0 et d'une ellipse passant par M_0 .