Harvard CS 121 and CSCI E-207 Lecture 17: Reductions

Harry Lewis

November 2, 2010

• Reading: Sipser §4.2, §5.1.

Last time we proved these problems undecidable:

• Given a TM M and an input w, does M accept w? (or: does M halt on input w?)

• For a particular fixed machine M_0 : given w, does M_0 accept w?

These are proxies for two variants of:

Will this program terminate given this input?

What if we vary the TM but keep the input fixed?

I.e. what about:

• Given M, does M halt on the empty string?

Given M, does M halt on the empty string? = $\mathsf{HALT}^{\varepsilon}_{\mathsf{TM}}$

Undecidable, **Proof** by contradiction:

Suppose H were a TM that decided $\{\langle M \rangle: M \text{ halts on } \varepsilon \}$. Then H could be used to decide HALT_{TM}:

Given $\langle M, w \rangle$,

Construct $\langle M_w \rangle$, where M_w is a TM that writes

w on the empty tape and then runs M.

Then run H on input $\langle M_w \rangle$

H halts on $\langle M_w \rangle \Leftrightarrow M_w$ halts on $\varepsilon \Leftrightarrow M$ halts on w But HALT_{TM} is undecidable. $\Rightarrow \Leftarrow$

• We have *reduced* HALT_{TM} to the problem HALT $_{\text{TM}}^{\varepsilon}$

What about

• For a fixed M_0 and a fixed w_0 , does M_0 halt on input w_0 ?

"Co-X"

- For any property X that a set might have, a set S is **co-X** iff \overline{S} has property X.
- For example, a co-finite set of natural numbers is a set that is missing only a finite number of elements.
- A co-regular language is . . . ?
- A co-recursive language is ...?
- What about a co-CF language?
- Proved last time:
 - A language is recursive if and only if it is both r.e. and co-r.e.

Non-r.e. Languages

Theorem: The following co-r.e. languages are not r.e.:

- $\overline{\mathsf{A}_{\mathsf{TM}}} = \{ \langle M, w \rangle : M \text{ does not accept } w \}$
- $\overline{\mathsf{HALT}_{\mathsf{TM}}} = \{ \langle M, w \rangle : M \text{ does not halt on } w \}$
- $\overline{\mathsf{HALT}^{arepsilon}_{\mathsf{TM}}} = \{\langle M \rangle : M \text{ does not halt on } \varepsilon\}$

Proof: If these languages were r.e., then A_{TM} , $HALT_{TM}$, and $HALT_{TM}^{\varepsilon}$ would be both r.e. and co-r.e. and hence recursive.

Is it possible to determine, given a TM M, whether M accepts a finite or infinite set?

• Let $A_{\text{finite}} = \{\langle M \rangle : L(M) \text{ is finite} \}$. Is A_{finite} recursive?

Is it possible to determine, given a TM M, whether M accepts a finite or infinite set?

- Let $A_{\text{finite}} = \{\langle M \rangle : L(M) \text{ is finite} \}$. Is A_{finite} recursive?
- Suppose F decides A_{finite} . To decide A_{TM} , given $\langle M \rangle$ and $\langle w \rangle$, construct $\langle M_w^* \rangle$ so that
 - \bullet If M accepts w then M_w^* accepts its input, regardless of what it is, and
 - If M does not accept w then M_w^* runs forever.
- Then run F on input $\langle M_w^* \rangle$.
- $L(M_w^*)$ is either Σ^* (and therefore infinite) or \emptyset (and therefore finite) depending on whether or not M accepts w.

Reduce A_{TM} to A_{finite} ; since A_{TM} is undecidable, so is A_{finite}

Formalizing the Notion of Reduction

- L_1 "reduces" to L_2 if we can use a "black box" for L_2 to build an algorithm for L_1 .
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is computable if there is a Turing machine that for every input $w \in \Sigma_1^*$, M halts with just f(w) on its tape.
- A (mapping) reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a computable function

$$f:\Sigma_1^* o\Sigma_2^*$$
 such that, for any $w\in\Sigma^*$, $w\in L_1$ iff $f(w)\in L_2$

We write $L_1 \leq_m L_2$.

Properties of Reducibility

Lemma: If $L_1 \leq_m L_2$, then

- if L_2 is decidable (resp., r.e.), then so is L_1 ;
- if L_1 is undecidable (resp., non-r.e.), then so is L_2 .

Examples of Reductions from Last Lecture

• For every r.e. L, $L \leq_m A_{TM}$.

• $A_{TM} \leq_m HALT_{TM}$.

• $\mathsf{HALT}_{\mathsf{TM}} \leq_m \mathsf{HALT}_{\mathsf{TM}}^{\varepsilon}$.

Rice's Theorem

Informally: <u>every</u> (nontrivial) property of r.e. languages is undecidable.

Rice's Theorem: Let \mathcal{P} be any subset of the class of r.e. languages such that \mathcal{P} and its complement are both nonempty. Then the language $L_{\mathcal{P}} = \{\langle M \rangle : L(M) \in \mathcal{P}\}$ is undecidable.

Thus, given a TM M, it is undecidable to tell if

- $L(M) = \emptyset$,
- L(M) is regular,
- $|L(M)| = \infty$, etc.

Proof of Rice's Theorem

- We will reduce L_{ε} to $L_{\mathcal{P}}$.
- Suppose without loss of generality that $\emptyset \notin \mathcal{P}$.
- Pick any $L_0 \in \mathcal{P}$ and say $L_0 = L(M_0)$.
- Define $f(\langle M \rangle) = \langle M' \rangle$, where M' is TM that on input w,
 - \cdot first simulates M on input arepsilon
 - \cdot then simulates M_0 on input w
- Claim: f is a mapping reduction from L_{ε} to $L_{\mathcal{P}}$.
- Since L_{ε} is undecidable, so is $L_{\mathcal{P}}$.

Recursion Theory over ${\mathcal N}$

- We have presented this theory as a theory of languages
- Classically it is treated as a theory of sets of numbers
- The two are equivalent since strings can be converted to numbers (treating strings as numerals, for example) and v.v.
- So it makes sense to say "The set of primes is recursive"

Recursive functions

- A function f is recursive if f is computable
- ullet e.g. if there is a TM that always leaves f(w) on the tape when started with input w
- Similarly we can speak of a recursive function from numbers to numbers
- Thm: A set is r.e. iff it is the range of a recursive function

Recursive functions

- A function f is recursive if f is computable
- ullet e.g. if there is a TM that always leaves f(w) on the tape when started with input w
- Similarly we can speak of a recursive function from numbers to numbers
- Thm: A set is r.e. iff it is the range of a recursive function or is \emptyset