Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing

Jill-Jênn Vie Hisashi Kashima

The University of Tokyo, February 7, 2019

https://arxiv.org/abs/1811.03388

Who is this person?

2018

Actually, she does not exist

5 years of GAN progress on face generation

A Style-Based Generator Architecture for Generative Adversarial Networks (Karras, Laine and Aila, 2018) arxiv.org/abs/1812.04948

Al for Social Good

Al can:

- generate fakes
- recognize images/speech
- predict the next word
- play go (make decisions)

as long as you have enough data.

Can it also:

- generate exercises
- improve education
- predict student performance
- optimize human learning as long as you have enough data?

My research

Use machine learning techniques on data that comes from humans

Outline

Introduction

- Introduction to machine learning
- Knowledge Tracing and existing models
- Mowledge Tracing Machines
 - Encoding data into sparse features
 - Running logistic regression or factorization machines
- Experiments and results

What is machine learning?

Train a model on some data (e.g. pictures of cats)

Test it on new data

Tweak the parameters to optimize a value (e.g., maximize accuracy)

How to choose the best model?

Train model on some of your data, keep the remaining data hidden Try to predict the remaining data

What is a good machine learning model?

Can reconstruct training data at 90% predicts new points correctly 80% of the time

What is a bad machine learning model?

Can reconstruct training data at 100% predicts new points correctly 20% of the time

It is called overfitting

Formally

Introduction

00000000

We have existing data (x, y) and we want to learn a function y = f(x).

Examples

classification x can be an image and $y \in \{man, woman\}$ regression x can be the temperature over the last 7 days and y is the temperature of the next day

Two typical examples

Introduction

00000000

For regression: linear regression

We have existing data $(\mathbf{x}, y) \in \mathbb{R}^d \times \mathbb{R}$ and we want to learn a function $y = \langle \mathbf{w}, \mathbf{x} \rangle + \mathbf{b} = \sum_i w_i x_i + \mathbf{b}$.

Example if d = 1: we want to learn wx + b = y, an affine function!

Two typical examples

For regression: linear regression

We have existing data $(\mathbf{x}, y) \in \mathbb{R}^d \times \mathbb{R}$ and we want to learn a function $y = \langle \mathbf{w}, \mathbf{x} \rangle + \mathbf{b} = \sum_i w_i x_i + \mathbf{b}$.

Example if d = 1: we want to learn wx + b = y, an affine function!

For classification: logistic regression

We have existing data $(\mathbf{x}, y) \in \mathbb{R}^d \times \{0, 1\}$ and we want to learn a function $y = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle + \mathbf{b})$.

Is accuracy a good metric for classification?

Is accuracy a good metric for classification?

If 99% of people are in good health, and you are making a machine learning algorithm that always predicts a person is healthy... It will have accuracy 99%.

Is this a good machine?

Better metrics: AUC, F1 score, etc.

Math Learning

Items	5 - 5 = ?
New student	0

Math Learning

Items	5 - 5 = ?	17 - 3 = ?	
New student	0	0	

Math Learning

Items	5 - 5 = ?	17 - 3 = ?	13 - 7 = ?
New student	0	0	×

Math Learning

_	Items	5 - 5 = ?	17 – 3 = ?	13 – 7 = ?
	New student	0	0	×

Language Learning

	PRON	VERB	PRON	NOUN	CONJ	PRON	VERB	PRON	NOUN
correct:	She	is	my	mother	and	he	is	my	father
student:	she	is		mader	and	he	is		fhader
label:	0	0	×	*	0	0	0	×	×

Math Learning

Introduction

Items

$$5-5=?$$
 $17-3=?$
 $13-7=?$

 New student
 •
 •
 ×

Language Learning

	PRON	VERB	PRON	NOUN	CONJ	PRON	VERB	PRON	NOUN
correct:	She	is	my	mother	and	he	is	my	father
student:	she	is		mader	and	he	is		fhader
label:	0	0	×	×	0	0	0	×	×

Challenges

- Users can attempt a same item multiple times
- Users learn over time
- People can make mistakes that do not reflect their knowledge

Predicting student performance: knowledge tracing

Data

Introduction

A population of users answering items

• Events: "User i answered item j correctly/incorrectly"

Side information

- We know the skills required to solve each item $e.g., +, \times$
- Class ID, school ID, etc.

Goal: classification problem

Predict the performance of new users on existing items

Method

Learn parameters of questions from historical data e.g., difficulty Measure parameters of new students e.g., expertise

Model	Basically	Original AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67

Model	Basically	Original AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86

Model	Basically	Original AUC	Fixed AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86	0.75

Model	Basically	Original AUC	Fixed AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86	0.75
Item Response Theory (Rasch 1960) (Wilson et al., 2016)	Online Logistic Regression		0.76

Model	Basically	Original AUC	Fixed AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86	0.75
Item Response Theory (Rasch 1960) (Wilson et al., 2016)	Online Logistic Regression		0.76

$$\underbrace{\mathsf{PFA}}_{\mathsf{LogReg}} \leq \underbrace{\mathsf{DKT}}_{\mathsf{LSTM}} \leq \underbrace{\mathsf{IRT}}_{\mathsf{LogReg}} \leq \underbrace{\mathsf{KTM}}_{\mathsf{FM}}$$

Limitations and contributions

- Several models for knowledge tracing were developed independently
- In our paper, we prove that our approach is more generic

In this paper

- Knowledge Tracing Machines unify most existing models
 - Encoding student data to sparse features
 - Then running logistic regression or factorization machines
- Better models found
 - It is better to estimate a bias per item, not only per skill
 - Side information improves performance more than higher dim.

Our small dataset

Introduction

- User 1 answered Item 1 correct
- User 1 answered Item 2 incorrect
- User 2 answered Item 1 incorrect
- User 2 answered Item 1 correct
- User 2 answered Item 2 ???

user	item	correct
1	1	1
1	2	0
2	1	0
2	1	1
2	2	???

dummy.csv

Our approach

Encode data to sparse features

					, KTM												
					•				,	PFA							$\overline{}$
				←		IRT		 →	,								
				Us	ers		Items			Skills			Wins			Fails	
user	item	correct		1	2	Q_1	Q_2	Q ₃	KC ₁	KC ₂	KC ₃	KC ₁	KC ₂	KC ₃	KC ₁	KC ₂	KC ₃
2	2	1		0	1	0	1	0	1	1	0	0	0	0	0	0	0
2	2	0	encode	0	1	0	1	0	1	1	0	1	1	0	0	0	0
2	3	0		0	1	0	0	0 1	0	1	0 1	0	2	0	0	1	0
1	2	???		0	1	0	0	1	0	1	1	0	2	0	0	2	1
1	1	???		1	0	0	0	0	0	0	0	0	0	0	0	0	0

data.csv

sparse matrix X

Run logistic regression or factorization machines

Model 1: Item Response Theory

Learn abilities θ_i for each user iLearn easiness e_j for each item j such that:

$$Pr(\mathsf{User}\ i\ \mathsf{Item}\ j\ \mathsf{OK}) = \sigma(\theta_i + e_j) \quad \sigma: x \mapsto 1/(1 + \exp(-x))$$

 $\operatorname{logit} Pr(\mathsf{User}\ i\ \mathsf{Item}\ j\ \mathsf{OK}) = \theta_i + e_j$

Really popular model, used for the PISA assessment

Logistic regression

Learn **w** such that $\operatorname{logit} Pr(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$

Graphically: IRT as logistic regression

Encoding "User i answered Item j" with sparse features:

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle = \theta_i + e_j = \operatorname{logit} Pr(\operatorname{User} i \operatorname{Item} j \operatorname{OK})$$

	Users	Items					
U_0	U_1	U_2	<i>I</i> ₀	I_1	I_2		
0	1	0	0	1	0		
0	1	0	0	0	1		
0	0	1	0	1	0		
0	0	1	0	1	0		
0	0	1	0	0	1		

Then logistic regression can be run on the sparse features.

Oh, there's a problem

Introduction

	Users			I	tems	5		
	U_0	U_1	U_2	<i>I</i> ₀	I_1	<i>I</i> ₂	y pred	y
User 1 Item 1 OK	0	1	0	0	1	0	0.575135	1
User 1 Item 2 NOK	0	1	0	0	0	1	0.395036	0
User 2 Item 1 NOK	0	0	1	0	1	0	0.545417	0
User 2 Item 1 OK	0	0	1	0	1	0	0.545417	1
User 2 Item 2 NOK	0	0	1	0	0	1	0.366595	0

We predict the same thing when there are several attempts.

Count number of attempts: AFM

Keep a counter of attempts at skill level:

_					
	user	item	skill	correct	attempts (for the same skill)
	1	1	1	1	0
	1	2	2	0	0
	2	1	1	0	0
	2	1	1	1	1
	2	2	2	0	0

Count successes and failures: PFA

Count separately successes W_{ik} and fails F_{ik} of student i over skill k.

user	item	skill	correct	wins	fails
1	1	1	1	0	0
1	2	2	0	0	0
2	1	1	0	0	0
2	1	1	1	0	1
2	2	2	0	0	0

Model 2: Performance Factor Analysis

 W_{ik} : how many successes of user i over skill k (F_{ik} : #failures)

Learn β_k , γ_k , δ_k for each skill k such that:

$$\operatorname{logit} \mathit{Pr}(\operatorname{\mathsf{User}}\ i\ \operatorname{\mathsf{Item}}\ j\ \operatorname{\mathsf{OK}}) = \sum_{\operatorname{\mathsf{Skill}}\ k\ \operatorname{\mathsf{of}}\ \operatorname{\mathsf{Item}}\ j} rac{eta_k}{p} + W_{ik}\gamma_k + F_{ik}\delta_k$$

	Skills	;		Wins		Fails			
S_0	S_1	S_2	S_0	S_1	S_2	S_0	S_1	S_2	
0	1	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	1	0	
0	0	1	0	0	0	0	0	0	

Better!

	Skills			Wins			Fails				
	<i>S</i> ₀	S_1	<i>S</i> ₂	<i>S</i> ₀	S_1	<i>S</i> ₂	<i>S</i> ₀	S_1	<i>S</i> ₂	y pred	y
User 1 Item 1 OK	0	1	0	0	0	0	0	0	0	0.544	1
User 1 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0
User 2 Item 1 NOK	0	1	0	0	0	0	0	0	0	0.544	0
User 2 Item 1 OK	0	1	0	0	0	0	0	1	0	0.633	1
User 2 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0

Test on a large dataset: Assistments 2009

346860 attempts of 4217 students over 26688 items on 123 skills.

model	dim	AUC	improvement
PFA: skills, wins, fails AFM: skills, attempts	0	0.685 0.616	+0.07
7 ti Wi. 3kiii3, attempts		0.010	

Model 3: a new model (but still logistic regression)

model	dim	AUC	improvement
KTM: items, skills, wins, fails	0	0.746	+0.06
IRT: users, items	0	0.691	
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

Here comes a new challenger

How to model pairwise interactions with side information?

Logistic Regression

Learn a 1-dim bias for each feature (each user, item, etc.)

Factorization Machines

Learn a 1-dim bias and a k-dim embedding for each feature

How to model pairwise interactions with side information?

If you know user *i* attempted item *j* on mobile (not desktop) How to model it?

y: score of event "user i solves correctly item j"

IRT

Introduction

$$y=\theta_i+e_j$$

Multidimensional IRT (similar to collaborative filtering)

$$y = \theta_i + e_i + \langle \mathbf{v}_{\mathsf{user}} \, i, \mathbf{v}_{\mathsf{item}} \, i \rangle$$

How to model pairwise interactions with side information?

If you know user *i* attempted item *j* on mobile (not desktop) How to model it?

y: score of event "user i solves correctly item j"

IRT

Introduction

$$y=\theta_i+e_j$$

Multidimensional IRT (similar to collaborative filtering)

$$y = \theta_i + e_j + \langle \mathbf{v}_{\mathsf{user}} \,_i, \mathbf{v}_{\mathsf{item}} \,_j \rangle$$

With side information

$$y = \theta_i + e_j + w_{\mathsf{mobile}} + \langle \mathbf{v}_{\mathsf{user}} \, i, \mathbf{v}_{\mathsf{item}} \, j \rangle + \langle \mathbf{v}_{\mathsf{user}} \, i, \mathbf{v}_{\mathsf{mobile}} \rangle + \langle \mathbf{v}_{\mathsf{item}} \, j, \mathbf{v}_{\mathsf{mobile}} \rangle$$

Graphically: logistic regression

Graphically: factorization machines

Formally: factorization machines

Each user, item, skill k is modeled by bias w_k and embedding v_k .

Steffen Rendle (2012). "Factorization Machines with libFM". In: *ACM Transactions on Intelligent Systems and Technology (TIST)* 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

Training using MCMC

Introduction

```
Priors: w_k \sim \mathcal{N}(\mu_0, 1/\lambda_0) v_k \sim \mathcal{N}(\mu, \Lambda^{-1})
Hyperpriors: \mu_0, \dots, \mu_n \sim \mathcal{N}(0, 1), \lambda_0, \dots, \lambda_n \sim \Gamma(1, 1) = U(0, 1)
```

Algorithm 1 MCMC implementation of FMs

for each iteration do

Sample hyperp. $(\lambda_i, \mu_i)_i$ from posterior using Gibbs sampling

Sample weights w

Sample vectors **V**

Sample predictions v

end for

Implementation in C++ (libFM) with Python wrapper (pyWFM).

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1-57:22. DOI: 10.1145/2168752.2168771

Datasets

Name	Users	Items	Skills	Skills/i	Entries	Sparsity	Attempts/u
fraction	536	20	8	2.800	10720	0.000	1.000
timss	757	23	13	1.652	17411	0.000	1.000
есре	2922	28	3	1.321	81816	0.000	1.000
assistments	4217	26688	123	0.796	346860	0.997	1.014
berkeley	1730	234	29	1.000	562201	0.269	1.901
castor	58939	17	2	1.471	1001963	0.000	1.000

Accuracy results on the Assistments dataset

AUC results on the Assistments dataset

model	dim	AUC	improvement
KTM: items, skills, wins, fails, extra	5	0.819	
KTM: items, skills, wins, fails, extra	0	0.815	+0.05
KTM: items, skills, wins, fails	10	0.767	
KTM: items, skills, wins, fails	0	0.759	+0.02
DKT (Wilson et al., 2016)	100	0.743	+0.05
IRT: users, items	0	0.691	
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

Bonus: interpreting the learned embeddings

Take home message

Knowledge tracing machines unify many existing EDM models

- Side information improves performance more than higher d
- We can visualize learning (and provide feedback to learners)

It has better results than deep neural networks

- It is important to find simple models that fit data
- Instead of monster models that overfit data

Introduction

Do you have any questions?

Read our article:

Knowledge Tracing Machines

https://arxiv.org/abs/1811.03388

Try the code:

https://github.com/jilljenn/ktm

Feel free to chat (or tell me about your favorite manga or anime):

vie@jill-jenn.net

- Corbett, Albert T and John R Anderson (1994). "Knowledge tracing: Modeling the acquisition of procedural knowledge". In: User modeling and user-adapted interaction 4.4, pp. 253–278.
- Piech, Chris, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-Dickstein (2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513.
- Rasch, Georg (1960). "Studies in mathematical psychology: I.

 Probabilistic models for some intelligence and attainment tests.".

 In:
- Rendle, Steffen (2012). "Factorization Machines with libFM". In:

 ACM Transactions on Intelligent Systems and Technology (TIST)
 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771.