MEME15203 Statistical Inference

Assignment 2

UNIVERSITI TUNKU ABDUL RAHMAN

FES Faculty: Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Dr Yong Chin Khian Lecturer:

Session: January 2022 Due by: 10/3/2022

Q1. Consider a random sample from a Exponential distribution, $X_i \sim Exp(\theta)$. Find the asymtotic normal distribution of $Y_n = \bar{X}_n^4$.

(10 marks)

- Suppose that $X_i \sim N(\mu, \sigma^2), i = 1, ..., 13, Z_j \sim N(0, 1), j = 1, ..., 5,$ and Q2. $W_k \sim \chi^2(v), k = 1, \dots, 12$ and all random variables are independent. State the distribution of each of the following variables if it is a "named" distribution. [For example $X_1 + X_2 \sim N(2\mu, 2\sigma^2)$
 - (a)
 - $\frac{\sum_{j=1}^{5} W_k}{\sum_{j=1}^{5} (Z_j \bar{Z})^2} + \frac{\sum_{j=1}^{5} W_k}{\sum_{j=1}^{5} (Z_j \bar{Z})^2}$
 - (c)

(10 marks)

- Suppose that $X_i \sim N(\mu, \sigma^2), i = 1, ..., 11, Z_j \sim N(0, 1), j = 1, ..., 9$, and Q3. $W_k \sim \chi^2(v), k = 1, \dots, 10$ and all random variables are independent. State the distribution of each of the following variables if it is a "named" distribution. [For example $X_1 + X_2 \sim N(2\mu, 2\sigma^2)$
 - $\frac{8\sum_{i=1}^{11}(X_i-\bar{X})^2}{10\sigma^2\sum_{j=1}^{9}(Z_j-\bar{Z})^2}.$ $\frac{W_1}{\sum_{k=1}^{9}W_k}$

 - $\frac{\bar{X}}{\sigma^2} + \frac{\sum_{i=1}^{11} Z_i}{\sum_{i=1}^{11} Z_i}$ (c)

(10 marks)

Let X_1, X_2, \ldots, X_n denote a random sample from the density function given by Q4.

$$f(x) = \begin{cases} \frac{5}{\theta} x^4 e^{-x^5/\theta}, & \theta > 0, x > 0, \\ 0, & \text{otherwise} \end{cases}$$

- (a) find the MME of θ .
- (b) Find the MLE of θ .

MEME15203 Statistical Inference

(c) Find the CRLB of θ .

(15 marks)

- Q5. Let X_1, X_2, \ldots, X_n denote a random sample from an exponentially distributed population with mean $\lambda = \frac{1}{\theta}$. Let $\Theta \sim \chi^2(2v)$.
 - (a) Find the Bayes estimator for $\lambda = \frac{1}{\theta}$ under square error loss.
 - (b) Show that it is a biased but consistent estimator for $\lambda = \frac{1}{\theta}$.

(20 marks)

Q6. A pmf on the integers with an integer parameter, θ , is

$$f(x|\theta) = \frac{1}{2}I[x = \theta - 5 \text{ or } x = \theta + 5].$$

For X_1 and X_2 iid from this distribution, compare MSE's for the two estimators of θ ,

$$\hat{\theta} = \begin{cases} X_1 + 5, & \text{if } X_1 = X_2 \\ \bar{X}, & \text{if } X_1 \neq X_2 \end{cases} \text{ or } \tilde{\theta} = \hat{\theta} - \frac{5}{2}.$$

(15 marks)

- Q7. Consider a random sample of size n from a distribution with discrete pdf $f(x:p) = p(1-p)^x; x = 0, 1, \ldots$, zero otherwise.
 - (a) Find the MLE of p.
 - (b) Find the MLE of $\theta = \frac{1-p}{p}$.
 - (c) Find the CRLB for variance of unbiased estimators of θ .
 - (d) Is MLE of θ a UMVUE?
 - (e) Is MLE of θ MSE consistent?
 - (f) Find the asymptotic distribution of the MLE of θ .

(20 marks)