

Computational Health Informatics Vorlesung WiSe 2020/21

- Medizinische Statistik
 - 1. Motivation
 - 2. Medizinische Studien
 - 3. Stochastik
 - 4. Deskriptive Statistik
 - 5. Induktive Statistik

Medizinische Statistik

Motivation

- Erkenntnisse und Entscheidungen in der Medizin sind naturgegeben mit Unsicherheiten behaftet
- Es ist unmöglich alle Einflussfaktoren auf ein Merkmal zu kennen
 - Vorgänge und Zusammenhänge im Menschen sind zu komplex
- Auch bei bekannten und gesicherten Risikofaktoren für eine Krankheit gibt es z.T. extreme Ausreißer

- Statistische Methoden erlauben es, trotz
 Unberechenbarkeit von Einzelvorgängen allgemein gültige Aussagen herzuleiten
 - Basis für wissenschaftliche Erkenntnis
 - Basis für das ärztliche Handeln

Stochastik

- Wissenschaft der mathematischen Behandlung von Zufallserscheinungen
- Wahrscheinlichkeitsrechnung
 - Mathematisch-theoretische Grundlagen für induktive Statistik (Insb. theoretische Verteilungen: Binomial-, Poisson-, Normalverteilung, ...)
 - Fachspezifische Anwendungen:
 - Medizinische Statistik
 - Qualitätssicherung in der Medizin

Stochastik

- Statistik
 - Deskriptive Statistik (Strukturierung, Zusammenfassung, Darstellung)
 - Induktive Statistik (Schließen auf → Grundgesamtheit)

Deskriptive Statistik

- Merkmale sind Eigenschaften, die für die Studie relevant sind und statistisch ausgewertet werden
- Klassifikation nach verschiedenen Aspekten:
 - Diskret oder stetig
 - Skalenniveau
 - Nominalskala: Nur begriffliche Unterscheidung
 - Ordinal-/Rangskala: Natürliche Rangfolge
 - Invervallskala: Nullpunkt, negative Werte
 - Verhältnisskala: Nullpunkt, nur positive Werte

- Unterscheidung in Ziel- und Einflussgrößen
 - Ziel einer Studie: Erkenntnisse über Zielgrößen
 - Einflussgrößen:
 - Faktoren: Werden erfasst und ausgewertet
 - Begleitmerkmale: Werden eventuell erfasst,
 aber in aktueller Studie nicht ausgewertet
 - Störgrößen: Werden nicht berücksichtigt

Beispiel

- Hypothese: Rauchen beeinflusst die Entstehung von Lungenkarzinomen
 - Zielgröße: Entstehung von Lungenkarzinomen
 - Zu untersuchender Faktor: Rauchen
 - Begleitmerkmale: Z.B. das Alter
 - Störgrößen: Genetische Veranlagungen, Umwelteinflüsse, ...

Charkteristische Kenngrößen (Auswahl)

- Univariate Datenbeschreibung: Ein Merkmal
 - Lagemaße: Arithmetisches Mittel ("Mittelwert", "Durchschnitt"), Median, Quartile und Quantile, Modus, geometrisches Mittel, ...
 - Streuungsmaße: Varianz, Standardabweichung,
 Variationskoeffizient, Spannweite, ...
 - Formmaße: Schiefe, Wölbung, ...

Box-Plot

Box-Plot

- Innerhalb der Box liegen 50% der Datenwerte
- Kleinsten 25% bzw. 75% der Datenwerte sind ≤ 25%- bzw. 75%-Quantil
- Mittlerer Strich gibt den Median an
 - Kleinsten 50% der Datenwerte sind ≤ Median
- Whisker zeigen als Wert Median ± 1,5 · IQA an
 - IQA: Interquartilsabstand = Bereich zwischen 25%- und 75%-Quantil

Charkteristische Kenngrößen (Auswahl)

- Bivariate Datenbeschreibung: Zwei Merkmale
 - Gibt es einen stochastischen (nicht funktionalen)
 Zusammenhang?
 - Darstellung durch Punktwolken, ...
 - Korrelationsanalyse: Kovarianz,
 Pearson'scher Korrelationskoeffizient, ...
 - Vorsicht bei Interpretationen!

- Bivariate Datenbeschreibung (Forts.)
 - Regressionsanalyse
 - Häufig eingesetzt (Ursache/Wirkungsanalysen)
 - Regressionsgrade bei linearem Zusammenhang
 - Nichtlineare Regression sonst
 - Regression 1. Art: x gegeben, y Zufallsvariable
 - Regression 2. Art: x und y Zufallsvariable
 - Herleitung einer mathematischen Gleichung für den Zusammenhang (→ Theorie!)

Beispiel

- Fitness eines Menschen messen über die Fähigkeit, Sauerstoff aufzunehmen
 - Schwer messbar, daher Untersuchung, ob stattdessen ein Surrogat-Parameter genommen werden kann
 - Gibt es einen Zusammenhang zwischen run time bei einem 3-km-Lauf und oxygen?

Stichprobenkovarianz quantifiziert die gemeinsame Abweichung

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Vergleichbarkeit (Unabhängigkeit von Einheiten) durch Normierung:

→ Korrelationskoeffizient nach Pearson

$$r = \frac{s_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \cdot \sum_{i=1}^n (y_i - \bar{y})^2}}$$

 $r \in [-1, 1]$ $r = \pm 1$ bedeutet vollständiger positiver/negativer Zusammenhang

 \bar{x} , \bar{y} : Mittelwerte der n Messwerte, s_x und s_y deren Standardabweichung (\rightarrow später Induktive Statistik)

Warnendes Beispiel

Anscombe-Quartett

- Vier Datensätze aus jeweils 11 Datenpunkten
- Alle vier Datensätze haben die gleichen statistischen Eigenschaften:
 - Mittelwert x = 9,00
 - Mittelwert y = 7,50
 - Standardabw. x = 3.32
 - Standardabw. y = 2,03
 - Korrelation x, y = 0.816
 - Lineare Regression: y = 3,00 + 0,50 x
- => Wichtigkeit, Daten vor der statistischen Auswertung grafisch darzustellen!

Vergleich mehrerer Stichproben

- Berechnung von Kenngrößen für jede Stichprobe
- Prüfung mit statistischen Tests, ob die Unterschiede der Mittelwerte zufällig bedingt sind, oder ob von einem signifikaten Unterschied zwischen den Stichproben ausgegangen werden kann; Bsp.:
 - Mehrere Therapieformen
 - Vor und nach einer Therapie
 - Erkrankte/gesunde Personen
 - Personen mit/ohne Risiko

Induktive Statistik

- Ziel: Aus Stichprobenwerten Informationen bezüglich der Grundgesamtheit und der betrachteten Zufallsvariablen X gewinnen
- Punktschätzungen
 - Wahrscheinlichkeiten aus relativen Häufigkeiten berechnen

- (Punktschätzungen (Forts.))
 - Annahme: Nur statistische Fehler → Normalverteilung (Gauß-Verteilung)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Normierte Gauss-Verteilung

- Gesamtfläche = 1
- Zentriert um μ
- Bei den Werten $\mu \pm \sigma$ ist die Gauss-Verteilung auf das 1/e fache des Maximums abgefallen
- Die Fläche im Bereich zwischen diesen beiden Werten $\mu \pm \sigma$ beträgt 0,6826

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{\mu-\sigma}^{\mu+\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 68.26\%$$

Messwert innerhalb des Intervalls	Wahrscheinlichkeit
$ x - \mu < 1\sigma$	68.26%
$ x - \mu < 2\sigma$	95.45%
$ x - \mu < 3\sigma$	99.73%

- (Punktschätzungen (Forts.))
 - Erwartungswert der Grundgesamtheit aus arithmetischem Mittel \bar{x} der Stichprobe mit n (n»1) Werten:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- (Punktschätzungen (Forts.))
 - Varianz der Grundgesamtheit als Quadrat der Standardabweichung s_x der Stichprobe:

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

 In der Praxis wird diese Standardabweichung auch kurz (& ungenau) als "Fehler" bezeichnet

- (Punktschätzungen (Forts.))
 - Ergebnis: Schätzung des "wahren" Werts x_w der zugrunde liegenden Grundgesamtheit:

$$x_w = \bar{x} \pm s_x$$

- Hier wurde der **Vertrauensbereich** s_x genutzt
 - Mit einer Wahrscheinlichkeit von 68,26% weicht der wahre Wert x_w von dem Mittelwert \bar{x} um nicht mehr als s_x (absolut) ab
- Manchmal wird als Vertrauens-/Konfidenzintervall $\pm 3s_x$ angegeben \Rightarrow 99,73% statt 68,26%

- (Punktschätzungen (Forts.))
 - Der Mittelwert \bar{x} und die Standardabweichung s_x der Stichprobe sind selbst Zufallsvariablen und damit Gauß-verteilt
 - Statt s_x wird oft auch die Standardabweichung des arithmetischen Mittels \bar{x} angegeben: $\pm \frac{s_x}{\sqrt{n}}$
 - Diese Unsicherheit des Mittelwertes wird mit steigender Stichprobengröße n beliebig klein, allerdings steigt der Aufwand enorm an

- (Punktschätzungen (Forts.))
 - Bei kleiner Stichprobe (wenig Meßwerte n) erfolgt eine Aufweitung bei der Angabe des Konfidenzintervalls durch Multiplikation von s_x mit einem zu n gehörenden Wert der "Student-" / t-Verteilung $t_{n-1;1-\frac{\alpha}{2}}$ (aus Tabelle ablesbar bzw. berechnen)
 - \circ α ist die Irrtumswahrscheinlichkeit, häufig α=5% → Konfidenzintervall 95% (oder auch α=1%)

Fehlerfortpflanzung

• Wenn die zu bestimmende Größe f von zwei Zufallsvariablen x und y abhängt, dann kann aus der Funktionsbeziehung f(x,y) und den Standardabweichungen s_x und s_y der beiden Messgrößen x und y die Standardabweichung von f berechnet werden:

$$s_f = \sqrt{s_x^2 \left(\frac{\partial f}{\partial x}\right)^2 + s_y^2 \left(\frac{\partial f}{\partial y}\right)^2}$$

Quellen und weiterführende Literatur

- [ITR18] U. Hübner, M. Esdar, J. Hüsers, J.-D. Liebe, J. Rauch, J. Thye, J.-P. Weiß: IT-Report Gesundheitswesen Wie reif ist die IT in deutschen Krankenhäusern?, Forschungsgruppe Informatik im Gesundheitswesen, 2018
- [Demt15] W. Demtröder: **Experimentalphysik 1**, 7. Auflage, Springer Verlag 2015

- [Erdm11] M. Erdmann, T. Hebbeker: **Experimentalphysik 1**, Springer 2011
- [ErHe13] M. Erdmann, T. Hebbeker:
 Experimentalphysik 5, Springer Spektrum 2013
- [WeHe13] K. Weltner, H. Wiesner, P. Engelhard, H. Schmidt: Mathematik für Physiker und Ingenieure 1, 17. Auflage, Springer Verlag 2013

- [TrWi00] H. J. Trampisch, J.Windeler, B. Ehle, S. Lange: **Medizinische Statistik**, 2. Auflage, Springer Verlag 2000
- Weis08] C. Weiß: Basiswissen Medizinische Statistik, 4. Auflage, Springer Verlag 2008