Course Practical Assignment - 1st Delivery (17 de març del 2019)

Josep Clotet Ginovart

Eric Martin Obispo

Bank client data

Description of input variables:

- 1. age (numeric)
- 2. job: type of job (categorical: 'admin', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')
- 3. marital : marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
- 4. education (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown')
- 5. default: has credit in default? (categorical: 'no', 'yes', 'unknown')
- 6. housing: has housing loan? (categorical: 'no', 'yes', 'unknown')
- 7. loan: has personal loan? (categorical: 'no', 'yes', 'unknown')# related with the last contact of the current campaign:
- 8. contact: contact communication type (categorical:'cellular','telephone')
- 9. month: last contact month of year (categorical: 'jan', 'feb', 'mar',..., 'nov', 'dec')
- 10. day of week: last contact day of the week (categorical:'mon','tue','wed','thu','fri')
- 11. duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.
- 12. campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13. pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 14. previous: number of contacts performed before this campaign and for this client (numeric)
- 15. poutcome: outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success') # social and economic context attributes
- 16. emp.var.rate: employment variation rate quarterly indicator (numeric)
- 17. cons.price.idx: consumer price index monthly indicator (numeric)
- 18. cons.conf.idx: consumer confidence index monthly indicator (numeric)
- 19. euribor3m: euribor 3 month rate daily indicator (numeric)
- 20. nr.employed: number of employees quarterly indicator (numeric)
- 21. y has the client subscribed a term deposit? (binary: 'yes', 'no')

Loading packages:

Loading data:

```
#dirwd<-"D:/Users/Usuari/Documents/ADEIpractica"
dirwd<-"D:/Documents/GitHub/ADEI"
setwd(dirwd)

df<-read.table( paste0(dirwd, "/bank-additional/bank-additional-full.csv"), header=TRUE, sep=";")
# General description of the bank data</pre>
```

Our chosen sample:

```
#load( pasteO(dirwd, "/bank-additional/Bank5000_raw.RData") )
summary(df)
```

```
##
         age
                             job
                                            marital
   Min.
          :18.00
                    admin.
                               :1234
                                        divorced: 556
##
   1st Qu.:32.00
                    blue-collar:1154
                                       married:3053
  Median :38.00
                    technician: 794
                                       single :1381
          :40.07
                    services : 500
                                       unknown: 10
##
  Mean
##
   3rd Qu.:47.00
                    management: 413
##
   Max. :87.00
                    retired
                              : 205
##
                    (Other)
                               : 700
##
                  education
                                  default
                                                                   loan
                                                  housing
                                                                      :4091
##
  university.degree :1472
                                       :3966
                                                      :2219
                               no
                                               no
                                                              no
## high.school
                       :1171
                               unknown:1034
                                               unknown: 137
                                                              unknown: 137
## basic.9y
                       : 716
                               yes
                                               yes
                                                      :2644
                                                                     : 772
                                                              yes
##
   professional.course: 602
##
   basic.4y
                       : 513
##
   basic.6y
                       : 291
                       : 235
##
   (Other)
##
         contact
                         month
                                    day of week
                                                    duration
##
   cellular :3130
                            :1743
                                    fri: 924
                                                 Min.
                                                            1.0
                     may
   telephone:1870
                            : 831
                                    mon:1018
                                                 1st Qu.: 101.0
                     jul
##
                            : 699
                                    thu:1039
                                                 Median : 178.0
                     aug
##
                            : 653
                                    tue:1045
                                                 Mean
                                                        : 254.8
                     jun
##
                     nov
                            : 509
                                    wed: 974
                                                 3rd Qu.: 317.0
##
                                                        :3785.0
                     apr
                            : 310
                                                 Max.
##
                     (Other): 255
                         pdays
                                        previous
##
       campaign
                                                              poutcome
##
                           : 0.0
                                             :0.0000
          : 1.000
                     Min.
                                      Min.
                                                       failure
                                                                  : 478
   1st Qu.: 1.000
                     1st Qu.:999.0
                                      1st Qu.:0.0000
                                                       nonexistent:4363
  Median : 2.000
                     Median :999.0
                                      Median :0.0000
                                                       success
                                                                  : 159
```

```
: 2.583
                            :963.2
                                            :0.1606
##
   Mean
                     Mean
                                     Mean
                     3rd Qu.:999.0
##
   3rd Qu.: 3.000
                                     3rd Qu.:0.0000
                    Max.
##
   Max.
          :33.000
                           :999.0
                                     Max.
                                            :4.0000
##
##
    emp.var.rate
                       cons.price.idx cons.conf.idx
                                                          euribor3m
##
           :-3.40000
                     Min.
                              :92.20
                                       Min.
                                              :-50.80
                                                                :0.635
  Min.
                                                       \mathtt{Min}.
   1st Qu.:-1.80000
                      1st Qu.:93.08
                                       1st Qu.:-42.70
                                                        1st Qu.:1.334
  Median : 1.10000
##
                      Median :93.77
                                       Median :-41.80
                                                        Median :4.857
##
   Mean : 0.06326
                       Mean
                              :93.57
                                       Mean
                                              :-40.43
                                                        Mean
                                                               :3.613
##
   3rd Qu.: 1.40000
                       3rd Qu.:93.99
                                       3rd Qu.:-36.40
                                                        3rd Qu.:4.961
##
   Max.
          : 1.40000
                      Max.
                              :94.77
                                       Max.
                                              :-26.90
                                                        Max.
                                                               :5.000
##
##
    nr.employed
                    У
##
  Min.
           :4964
                  no:4435
   1st Qu.:5099
##
                   yes: 565
##
   Median:5191
##
  Mean
           :5166
##
   3rd Qu.:5228
##
   Max.
           :5228
##
```

Inicialitzacio del control d'errors, missings i outliers:

```
columnes <- names(df) #list of column names

# creem 3 dataframes inicialitzats a 0 d'una fila amb les columnes de la nostra mostra;
# en ells hi posarem el nombre d'errors, missings i outliers per a cada variable
errors <- data.frame(matrix(0, ncol = length(columnes), nrow = 1))
colnames(errors)<-columnes

missings <- data.frame(matrix(0, ncol = length(columnes), nrow = 1))
colnames(missings)<-columnes

outliers <- data.frame(matrix(0, ncol = length(columnes), nrow = 1))
colnames(outliers)<-columnes

# columnes que portaran el control per individu:
df$num_missings <- 0
df$num_outliers <- 0
df$num_outliers <- 0
df$num_errors <- 0</pre>
```

UNIVARIATE DESCRIPTIVE ANALYSIS (to be included for each variable):

Aqui estudiem cada variable buscant missing values, outliers i possibles errors. En el cas que en trobem, els transformem en NAs i procedim a una imputacio manual o els eliminem, o una imputacio automatica (en un chunck posterior d'Imputation).

VARIABLES QUALITATIVE:

Tambe factoritzem aqui les categories (levels) de les variables qualitatives (discretes). Les etiquetes adicionals als factors s'afegeixen posteriorment als grafics per una questio estetica, es redueix la mida de les etiquetes i

es poden veure amb mes claredad cada una de les variables.

Job

Els "unknowns" seran imputats mes endavant automaticament.

```
# Jobs "unknown" will be a missing value (set to NA):
sel<-which(df$job=="unknown");length(sel)

## [1] 39

df$job[sel]<-NA

# Missings:
miss<-which(is.na(df$job));
missings$job<-length(miss); length(miss)

## [1] 39

df[miss, "num_missings"]<- df[miss, "num_missings"]+1

# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "job-":
df$job<-factor(df$job)
pie(summary(df$job))</pre>
```



```
levels(df$job)<-paste0("job-",levels(df$job))</pre>
```

Marital

Els "unknowns" seran imputats mes endavant automaticament.

```
# Marital "unknown" will be a missing value (set to NA):
sel<-which(df$marital=="unknown");length(sel)

## [1] 10

df$marital[sel]<-NA

# Missings:
miss<-which(is.na(df$marital));
missings$marital<-length(miss); length(miss)

## [1] 10

df[miss, "num_missings"]<- df[miss, "num_missings"]+1

# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "marital-":
df$marital<-factor(df$marital)
levels(df$marital)<-paste0("marital-",levels(df$marital))
pie(summary(df$marital))</pre>
```



```
## marital-divorced marital-married marital-single NA's
## 556 3053 1381 10
```

Education

Els "unknowns" seran imputats mes endavant automaticament. La categoria "illiterate" es ajuntada manualment a "basic.4y".

```
# Education "unknown" will will be a missing value (set to NA):
sel<-which(df$education=="unknown");length(sel)</pre>
## [1] 232
df$education[sel]<-NA
# Illiterates are consired as basic.4y.educated:
sel<-which(df$education=="illiterate");length(sel)</pre>
## [1] 3
df[sel, "education"] <- "basic.4y"</pre>
# Missings:
miss<-which(is.na(df$education));</pre>
missings$education<-length(miss); length(miss)</pre>
## [1] 232
df[miss, "num_missings"] <- df[miss, "num_missings"] +1</pre>
# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "education-":
df$education<-factor(df$education)</pre>
pie(summary(df$education))
```



```
levels(df$education)<-paste0("education-",levels(df$education))</pre>
```

Default (has credit in default?)

Default "unknown" sera considerada com a una categoria, no com a missing value.

```
table(df$default, useNA="always")
##
##
        no unknown
                                 <NA>
                         yes
##
      3966
               1034
                           0
# Missings:
miss<-which(is.na(df$default));</pre>
missings$default<-length(miss); length(miss)</pre>
## [1] 0
df[miss, "num_missings"] <- df[miss, "num_missings"] +1</pre>
# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "default-":
df$default<-factor(df$default)</pre>
summary(df$default)
##
        no unknown
##
      3966
               1034
levels(df$default)<-paste0("default-",levels(df$default))</pre>
Housing
Els "unknowns" seran imputats mes endavant automaticament.
sel<-which(df$housing=="unknown");length(sel)</pre>
## [1] 137
df$housing[sel]<-NA
# Missings:
miss<-which(is.na(df$housing));</pre>
missings$housing<-length(miss); length(miss)</pre>
## [1] 137
df[miss, "num_missings"] <- df[miss, "num_missings"] +1</pre>
# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "housing-":
df$housing<-factor(df$housing)</pre>
pie(summary(df$housing))
```



```
Loan (has personal loan?)

Loan "unknown" sera considerat com a missing value (NA), sera imputat mes endavant automaticament.

sel<-which(df$loan=="unknown");length(sel)

## [1] 137

df$loan[sel]<-NA

# Missings:
miss<-which(is.na(df$loan));
missings$loan<-length(miss); length(miss)

## [1] 137

df[miss, "num_missings"]<- df[miss, "num_missings"]+1

# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "loan-":
df$loan<-factor(df$loan)
pie(summary(df$loan))
```

levels(df\$housing)<-paste0("housing-",levels(df\$housing))</pre>


```
levels(df$loan)<-paste0("loan-",levels(df$loan))</pre>
```

Contact

```
summary(df$contact)
##
    cellular telephone
##
        3130
                   1870
# Missings:
miss<-which(is.na(df$contact));</pre>
missings$contact<-length(miss); length(miss)</pre>
## [1] 0
df[miss, "num_missings"]<- df[miss, "num_missings"]+1</pre>
# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "contact-":
df$contact<-factor(df$contact)</pre>
summary(df$contact)
    cellular telephone
##
                   1870
        3130
levels(df$contact) <-paste0("contact-",levels(df$contact))</pre>
```

Month

```
miss<-which(is.na(df$month));
missings$month<-length(miss); length(miss)</pre>
```

```
## [1] 0
df[miss, "num_missings"] <- df[miss, "num_missings"] +1

# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "month-":
df$month <- factor (df$month)
pie (summary (df$month))</pre>
```



```
levels(df$month) <-paste0("month-",levels(df$month))</pre>
```

Month -> definim noves factor categories per Season.

```
## season-spring season-summer season-autumnwinter
## 2120 2183 697
```


Day_of_week

```
miss<-which(is.na(df$day_of_week));</pre>
missings$day_of_week<-length(miss); length(miss)</pre>
## [1] 0
df[miss, "num_missings"] <- df[miss, "num_missings"] +1</pre>
# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "day of week-":
levels(df$day_of_week)<-c(levels(df$day_of_week), "1mon", "2tue", "3wed", "4thu", "5fri")</pre>
sel<-which(df$day of week=="mon"); df$day of week[sel]<-"1mon"</pre>
sel<-which(df$day_of_week=="tue"); df$day_of_week[sel]<-"2tue"</pre>
sel<-which(df$day_of_week=="wed"); df$day_of_week[sel]<-"3wed"</pre>
sel<-which(df$day_of_week=="thu"); df$day_of_week[sel]<-"4thu"</pre>
sel<-which(df$day of week=="fri"); df$day of week[sel]<-"5fri"</pre>
df$day_of_week<-factor(df$day_of_week)</pre>
summary(df$day_of_week)
## 1mon 2tue 3wed 4thu 5fri
## 1018 1045 974 1039 924
levels(df$day_of_week) <-paste0("day_of_week-",levels(df$day_of_week))</pre>
```

Poutcome (outcome of previous marketing campaign)

```
# Poutcome "nonexistent" will be considered a category, not a missing value.
table(df$poutcome, useNA="always")
```

```
##
##
       failure nonexistent
                                 success
                                                  <NA>
                       4363
##
            478
                                      159
# All missing data indicated as NA:
miss<-which(is.na(df$poutcome));</pre>
missings$poutcome<-length(miss); length(miss)</pre>
## [1] 0
df[miss, "num_missings"] <- df[miss, "num_missings"] +1</pre>
# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "poutcome-":
df$poutcome<-factor(df$poutcome)</pre>
pie(summary(df$poutcome))
```



```
levels(df$poutcome) <-paste0("poutcome-",levels(df$poutcome))

y (has the client subscribed a term deposit?)

miss<-which(is.na(df$y));
missings$y<-length(miss); length(miss)

## [1] 0

df[miss, "num_missings"] <- df[miss, "num_missings"] +1

# Factoritzem les categories (levels) de la columna i afegim l'etiqueta "y-":
df$y<-factor(df$y)
summary(df$y)</pre>
```

```
## no yes
## 4435 565
levels(df$y)<-paste0("y-",levels(df$y))</pre>
```

VARIABLES QUANTITATIVES:

Funcio de gran utilitat per a la deteccio d'outliers:

Age

```
summary(df$age)
##
      Min. 1st Qu. Median
                                Mean 3rd Qu.
                                                 Max.
##
     18.00
            32.00
                      38.00
                               40.07
                                       47.00
                                                87.00
# No tenim cap missing NA!
miss<-which(is.na(df$age))</pre>
missings$age<-length(miss); length(miss)</pre>
## [1] 0
df[miss, "num_missings"] <- df[miss, "num_missings"] +1</pre>
par(mfrow=c(1,2))
hist(df$age, breaks=10, main="age - histogram")
Boxplot(df$age)
## [1] 4570 4634 3623 3628 3631 4755 4612 4734 4740 4512
# Errors are under aged people:
err<-which(df$age < 18)</pre>
errors$age<-length(err); length(err)</pre>
## [1] 0
if(length(err)>0) df[err]<-NA</pre>
# Outliers:
out.var <- calcQ(df$age)</pre>
abline(h=out.var[["mouts"]], col="magenta", lwd=2); out.var[["mouts"]]
## 3rd Qu.
##
      69.5
# But our outliers will be the ones above 100 years (there is none):
abline(h=100, col="red", lwd=2)
```

age - histogram


```
out<-which(df$age > 100)
outliers$age<-length(out); length(out)

## [1] 0
if(length(out)>0) df[out]<-NA</pre>
```

Duration

Els outliers en la variable duracio han estat eliminats. Corresponen a duracions per sota els 5 segons (trucada massa curta a un client que potser no podia parlar en aquell moment o penja per error) i per sobre dels 1600 segons (26 minuts).

```
summary(df$duration)
##
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                 Max.
##
              101.0
                      178.0
                               254.8
                                        317.0
                                               3785.0
# No tenim cap missing NA!
miss<-which(is.na(df$duration));</pre>
missings$duration<-length(miss); length(miss)</pre>
df[miss, "num_missings"]<- df[miss, "num_missings"]+1</pre>
par(mfrow=c(1,2))
hist(df$duration, breaks=20, main="duration - histogram")
Boxplot(df$duration)
```

[1] 4929 3368 2817 4759 1285 2907 2033 3815 4998 3280

```
# Outliers:
out.var <- calcQ(df$duration)
abline(h=out.var[["mouts"]], col="magenta", lwd=2); out.var[["mouts"]]

## 3rd Qu.
## 641
abline(h=out.var[["souts"]], col="magenta", lwd=2); out.var[["souts"]]

## 3rd Qu.
## 965
# But our outliers will be the ones above 1600 and below 5 seconds:
abline(h=1600, col="red", lwd=2)</pre>
```

duration - histogram


```
out<-which( (df$duration < 5) | (df$duration > 1600) )
outliers$duration=length(out); length(out)

## [1] 14

df[out, "num_outliers"]<- df[out, "num_outliers"]+1

df[out, "duration"]<-NA

# Eliminem els outliers:
if(length(out)>0) df<-df[-out,]

# Final summary of duration variable:
# par(mfrow=c(1,1))
# summary(df$duration)
# Boxplot(df$duration)</pre>
```

Duration -> creem una columna de duracio en minuts:

```
df$minutes<-df$duration/60
summary(df$minutes)
       Min. 1st Qu. Median
                                  Mean 3rd Qu.
                                                     Max.
## 0.08333 1.68333 2.95000 4.17703 5.26667 26.33333
Campaign
# summary(df$campaiqn)
# No tenim cap missing NA!
miss<-which(is.na(df$campaign));</pre>
missings$campaign<-length(miss); length(miss)</pre>
## [1] 0
df[miss, "num_missings"] <- df[miss, "num_missings"] +1</pre>
par(mfrow=c(1,2))
hist(df$campaign, breaks=10, main="campaign - histogram")
Boxplot(df$campaign)
## [1] 1589 2285 707 2308 1158 1474 2149 2301 1604 2303
# Outliers:
out.var <- calcQ(df$campaign)</pre>
abline(h=out.var[["souts"]], col="magenta", lwd=2); out.var[["souts"]]
## 3rd Qu.
##
# But our outliers will be the ones contacted more than 25 times:
abline(h=25, col="red", lwd=2)
```

campaign - histogram


```
out<-which(df$campaign > 25)
df[out, "num_outliers"]<- df[out, "num_outliers"]+1
outliers$campaign=length(out); length(out)</pre>
```

```
## [1] 9
df[out, "campaign"] <-NA

# Final summary of campaign variable:
# par(mfrow=c(1,1))
# summary(df$campaign)
# Boxplot(df$campaign)</pre>
```

Pdays

Els valors 999 corresponen a mai contactats, son NA i s'imputen manualment al maxim(tret dels 999)+1.

```
# No tenim cap missing NA!
miss<-which(is.na(df$pdays));
missings$pdays<-length(miss); length(miss)
## [1] 0
df[miss, "num_missings"]<- df[miss, "num_missings"]+1</pre>
```

```
df[miss, "num_missings"] <- df[miss, "num_missings"] +1

# Values that are 999 mean never contacted before:
never <- which (df pdays == 999)
df pdays [never] <- 19 #imputacio manual al maxim+1

# Son outliers
df[out, "num_outliers"] <- df[out, "num_outliers"] +1
outliers pdays = length (never); length (never)</pre>
```

```
## [1] 4809
# They correspond to this percentage of rows:
length(never)/5000*100
## [1] 96.18
# No outliers!
# Final summary of pdays variable:
summary(df$pdays)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                               Max.
      0.00
             19.00
                     19.00
                              18.53
                                      19.00
                                              19.00
##
par(mfrow=c(1,2))
hist(df$pdays, breaks=10, main="pdays - histogram")
Boxplot(df$pdays)
```

pdays - histogram

[1] 3148 4902 3576 4135 4366 3627 3642 3644 3646 4352

Previous

```
# No tenim cap missing NA!
miss<-which(is.na(df$previous));
missings$previous<-length(miss); length(miss)
## [1] 0
df[miss, "num_missings"]<- df[miss, "num_missings"]+1
par(mfrow=c(1,2))</pre>
```

```
hist(df$previous, main="previous - histogram")

# Final summary of previous variable:
summary(df$previous)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.1598 0.0000 4.0000

Boxplot(df$previous)
```

previous - histogram

[1] 4769 4786 4805 4826 4850 4888 4925 3431 4516 4624

emp.var.rate

```
# Neither missing, outliers nor error values.
par(mfrow=c(1,2))
hist(df$emp.var.rate, main="emp.var.rate - histogram")
summary(df$emp.var.rate)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.40000 -1.80000 1.10000 0.06446 1.40000 1.40000
Boxplot(df$emp.var.rate)
```

emp.var.rate - histogram

cons.price.idx

```
# Neither missing, outliers nor error values.
par(mfrow=c(1,2))
hist(df$cons.price.idx, main="cons.price.idx - histogram")
summary(df$cons.price.idx)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
     92.20
             93.08
                     93.75
                             93.57
                                     93.99
                                             94.77
Boxplot(df$cons.price.idx)
```

cons.price.idx - histogram

cons.conf.idx

```
# Neither missing, outliers nor error values.
par(mfrow=c(1,2))
hist(df$cons.conf.idx, main="cons.conf.idx - histogram")
summary(df$cons.conf.idx)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -50.80 -42.70 -41.80 -40.43 -36.40 -26.90

Boxplot(df$cons.conf.idx)
```

cons.conf.idx - histogram

[1] 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626

euribor3m

```
# Neither missing, outliers nor error values.
par(mfrow=c(1,2))
hist(df$euribor3m, main="euribor3m - histogram")
summary(df$euribor3m)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.635 1.334 4.857 3.614 4.961 5.000
Boxplot(df$euribor3m)
```

euribor3m - histogram

nr.employed

```
# Neither missing, outliers nor error values.
par(mfrow=c(1,2))
hist(df$nr.employed, main="nr.employed - histogram")
summary(df$nr.employed)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
      4964
              5099
                      5191
                              5166
                                      5228
                                              5228
Boxplot(df$nr.employed)
```

nr.employed - histogram

DISCRETITZACIO DE VARIABLES NUMERIQUES:

Imputacio de variables numeriques abans de discretitzar-les:

La variable numerica campaign te certs individus que han estat considerats outliers previament. Aqui els imputem mitjancant la imputacio automatica imputePCA().

```
vars_con<-names(df)[c(1, 11:14, 16:20)]</pre>
res.imp<-imputePCA(df[,vars_con], ncp=8)
# Original:
summary(df$campaign)
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                 Max.
                                                          NA's
##
     1.000
              1.000
                      2.000
                               2.535
                                        3.000
                                               25.000
                                                             9
# Amb dades imputades:
summary(res.imp$completeObs[, "campaign"])
##
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                 Max.
##
     1.000
              1.000
                      2.000
                               2.535
                                               25.000
                                        3.000
# Acceptem la imputacio
df$campaign<-res.imp$completeObs[, "campaign"]</pre>
#summary(df[,vars_con])
```

Les variables numeriques originals que corresponen a conceptes quantitatius reals es mantenen com a numeriques, pero tambe s'han de crear factors addicionals com a discretitzacio de cada variable numerica. Les etiquetes adicionals als factors s'afegeixen posterior als grafics per una questio estetica, es redueix la mida de les etiquetes i es poden veure amb mes claredad cada una de les variables.

```
par(mfrow=c(1,1))

# AGE
qulist<-quantile(df$age, seq(0,1,0.25), na.rm=TRUE)

df$f.age<-factor( cut(df$age, breaks=qulist, include.lowest=T) )

# Es mostra una distribucio d'edats equitativa amb aquesta factoritzacio:
barplot(table(df$f.age), main="f.age - additional factors", ylab="frequency", las=1, cex.names=0.8)</pre>
```

f.age - additional factors


```
summary(df$f.age)

## [18,32] (32,38] (38,47] (47,87]

## 1352 1205 1220 1209

levels(df$f.age)<-paste0("f.age-", levels(df$f.age))

# DURATION
qulist<-quantile(df$duration, seq(0,1,0.25), na.rm=TRUE)

df$f.duration<-factor( cut(df$duration, breaks=qulist, include.lowest=T) )

# Es mostra una distribucio de duracions de la trucada equitativa amb aquesta factoritzacio:
barplot(table(df$f.duration), main="f.duration - additional factors", ylab="frequency", las=1, cex.name")</pre>
```

f.duration - additional factors


```
levels(df$f.duration)<-paste0("f.duration-", levels(df$f.duration) )</pre>
summary(df$f.duration)
##
          f.duration-[5,101]
                                   f.duration-(101,177]
##
                         1252
##
        f.duration-(177,316] f.duration-(316,1.58e+03]
##
                         1247
                                                    1244
# CAMPAIGN
qulist<-quantile(df\$campaign, seq(0,1,0.5), na.rm=TRUE)
df$f.campaign<-factor( cut(df$campaign, breaks=c(0,2,5,25), include.lowest=T) )</pre>
# Resultat de la factoritzacio de cops que s'ha contactat al client en la campanya actual:
barplot(table(df$f.campaign), main="f.campaign - additional factors", ylab="frequency", las=1, cex.name
```

f.campaign - additional factors


```
levels(df$f.campaign) <-paste0("f.campaign-", levels(df$f.campaign))
summary(df$f.campaign)

## f.campaign-[0,2] f.campaign-(2,5] f.campaign-(5,25]
## 3392 1181 413

# PDAYS

df$f.pdays<-factor( cut(df$pdays, breaks=c(0, 18, 19), include.lowest=T) )

# Resultat de la factoritzacio dels dies que fa
# que s'ha contactat al client en una altra campanya:
levels(df$f.pdays)<-c("sometime", "never")
barplot(table(df$f.pdays), main="f.pdays - additional factors", ylab="frequency", las=1, cex.names=0.8)</pre>
```

f.pdays - additional factors

f.previous - additional factors


```
levels(df$f.previous)<-paste0("f.previous-", levels(df$f.previous))
summary(df$f.previous)

## f.previous-never f.previous-some
## 4353 633

# EMP.VAR.RATE
df$f.emp.var.rate <-factor( cut(df$emp.var.rate, breaks=c(-Inf, 0, +Inf), include.lowest=T) )
barplot(table(df$f.emp.var.rate), main="f.emp.var.rate - additional factors", ylab="frequency", las=1,</pre>
```

f.emp.var.rate - additional factors


```
levels(df$f.emp.var.rate) <-paste0("f.emp.var.rate-", levels(df$f.emp.var.rate))
summary(df$f.emp.var.rate)

## f.emp.var.rate-[-Inf,0] f.emp.var.rate-(0, Inf]
## 2086 2900

# CONS.PRICE.IDX
qulist<-quantile(df$cons.price.idx, seq(0,1,0.25), na.rm=TRUE)
df$f.cons.price.idx <-factor( cut(df$cons.price.idx , breaks=unique(qulist), include.lowest=T) )
barplot(table(df$f.cons.price.idx), main="f.cons.price.idx - additional factors", ylab="frequency", lass")</pre>
```

f.cons.price.idx - additional factors


```
levels(df$f.cons.price.idx) <-pasteO("f.cons.price.idx-", levels(df$f.cons.price.idx))
summary(df$f.cons.price.idx)

## f.cons.price.idx-[92.2,93.1] f.cons.price.idx-(93.1,93.7]
## 1409 1086

## f.cons.price.idx-(93.7,94] f.cons.price.idx-(94,94.8]
## 1819 672

## CONS.CONF.IDX
qulist<-quantile(df$cons.conf.idx, seq(0,1,0.25), na.rm=TRUE)

df$f.cons.conf.idx <-factor( cut(df$cons.conf.idx , breaks=unique(qulist), include.lowest=T) )

barplot(table(df$f.cons.conf.idx), main="f.cons.conf.idx - additional factors", ylab="frequency", las=1</pre>
```

f.cons.conf.idx - additional factors


```
levels(df$f.cons.conf.idx) <-paste0("f.cons.conf.idx-", levels(df$f.cons.conf.idx) )
summary(df$f.cons.conf.idx)

## f.cons.conf.idx-[-50.8,-42.7] f.cons.conf.idx-(-42.7,-41.8]
## 1856 967

## f.cons.conf.idx-(-41.8,-36.4] f.cons.conf.idx-(-36.4,-26.9]
## 1231 932

# EURIBOR3M
qulist<-quantile(df$euribor3m, seq(0,1,0.25), na.rm=TRUE)

df$f.euribor3m <-factor( cut(df$euribor3m , breaks=unique(qulist), include.lowest=T) )
barplot(table(df$f.euribor3m), main="f.euribor3m - additional factors", ylab="frequency", las=1, cex.na</pre>
```

f.euribor3m - additional factors


```
levels(df$f.euribor3m) <-paste0("f.euribor3m-", levels(df$f.euribor3m))
summary(df$f.euribor3m)

## f.euribor3m-[0.635,1.33] f.euribor3m-(1.33,4.86] f.euribor3m-(4.86,4.96]
## 1254 1466 1130

## f.euribor3m-(4.96,5]
## 1136

# NR.EMPLOYED
qulist<-quantile(df$nr.employed, seq(0,1,0.25), na.rm=TRUE)

df$f.nr.employed <-factor( cut(df$nr.employed , breaks=unique(qulist), include.lowest=T) )
barplot(table(df$f.nr.employed), main="f.nr.employed - additional factors", ylab="frequency", las=1, cettings.")</pre>
```

f.nr.employed - additional factors


```
levels(df$f.nr.employed) <-paste0("f.nr.employed-", levels(df$f.nr.employed))
summary(df$f.nr.employed)

## f.nr.employed-[4.96e+03,5.1e+03] f.nr.employed-(5.1e+03,5.19e+03]
## 1639 1003

## f.nr.employed-(5.19e+03,5.23e+03]
## 2344</pre>
```

Llistat de variables continues i discretes:

```
vars<-names(df); vars</pre>
    [1] "age"
                             "job"
                                                 "marital"
##
    [4] "education"
                             "default"
                                                 "housing"
   [7] "loan"
                             "contact"
                                                 "month"
                             "duration"
                                                 "campaign"
## [10] "day_of_week"
        "pdays"
                             "previous"
                                                 "poutcome"
## [13]
## [16]
        "emp.var.rate"
                             "cons.price.idx"
                                                 "cons.conf.idx"
                                                 "у"
## [19] "euribor3m"
                             "nr.employed"
## [22] "num_missings"
                             "num_outliers"
                                                 "num_errors"
## [25] "f.season"
                             "minutes"
                                                 "f.age"
                                                 "f.pdays"
## [28] "f.duration"
                             "f.campaign"
## [31] "f.previous"
                                                 "f.cons.price.idx"
                             "f.emp.var.rate"
## [34] "f.cons.conf.idx"
                            "f.euribor3m"
                                                 "f.nr.employed"
# Variables continues
vars_con<-names(df)[c(1, 11:14, 16:20)]; vars_con</pre>
    [1] "age"
##
                           "duration"
                                             "campaign"
                                                               "pdays"
    [5] "previous"
                           "emp.var.rate"
                                             "cons.price.idx" "cons.conf.idx"
```

```
## [9] "euribor3m"
                          "nr.employed"
# Variables discretes
vars_dis<-names(df)[c(2:10, 15, 21, 25, 27:36)]; vars_dis</pre>
##
   [1] "job"
                            "marital"
                                                "education"
   [4] "default"
                            "housing"
                                                "loan"
   [7] "contact"
                            "month"
                                                "day_of_week"
## [10] "poutcome"
                            "y"
                                                "f.season"
## [13] "f.age"
                            "f.duration"
                                                "f.campaign"
## [16] "f.pdays"
                            "f.previous"
                                                "f.emp.var.rate"
## [19] "f.cons.price.idx" "f.cons.conf.idx"
                                                "f.euribor3m"
## [22] "f.nr.employed"
```

DATA QUALITY REPORT:

Per variable:

Nomes es mostren aquelles variables que tenen un valor diferent a 0 en el camp que expresa la grafica en concret.

barplot(t(c(missings[, c(2,3,4,6,7)])), main="total missings per variable", xlab="marital")

total missings per variable


```
## Find a range of y's that'll leave sufficient space above the tallest bar
ylim <- c(0, 1.1*max( outliers[, c(11,12,13)] ))
## Plot, and store x-coordinates of bars in xx
data = t( c(outliers[, c(11,12,13)]) )
ylabels <- barplot(data, ylim = ylim, main="total outliers per variable")
## Add text at top of bars
text(x = ylabels, y = data, label = data, pos = 3)</pre>
```

total outliers per variable


```
\#barplot(\ t(c(errors[,\ 13])),\ main="total\ errors\ per\ variable")
```

Per individu:

Cap individu en te mes d'un. Es mostra en format taula el numero d'individus que tenen 0 i/o 1 (o mes) missings, errors i outliers. Per ultim, es mostren alguns dels individus que han tingut algun outlier i que aquest ha estat imputat.

```
table(df$num_missings)
##
##
           1
                     3
## 4591 241
             149
                     5
table(df$num_errors)
##
      0
##
## 4986
table(df$num_outliers)
##
##
      0
           2
## 4977
           9
head(df[which(df\num_outliers>0), ], 2) #individus amb algun outlier
##
                         job
                                     marital
                                                                education
        age
## 5565
                 job-admin. marital-married education-university.degree
         39
## 9014 30 job-blue-collar marital-married
                                                       education-basic.9y
##
           default
                       housing
                                   loan
                                                  contact
                                                               month
```

```
## 5565 default-no housing-yes loan-no contact-telephone month-may
## 9014 default-no housing-no loan-no contact-telephone month-jun
             day of week duration campaign pdays previous
##
## 5565 day_of_week-1mon
                               14 2.556241
                                               19
## 9014 day of week-4thu
                               53 2.585502
##
                    poutcome emp.var.rate cons.price.idx cons.conf.idx
## 5565 poutcome-nonexistent
                                                   93.994
                                      1.1
                                                                  -41.8
## 9014 poutcome-nonexistent
                                      1.4
                                                   94.465
##
        euribor3m nr.employed
                                 y num_missings num_outliers num_errors
                       5191.0 y-no
## 5565
            4.857
                                               0
                                                            2
                                                                       0
## 9014
            4.866
                       5228.1 y-no
                                               0
                                                            2
                                                                       0
##
             f.season
                        minutes
                                        f.age
                                                       f.duration
## 5565 season-spring 0.2333333 f.age-(38,47] f.duration-[5,101]
## 9014 season-summer 0.8833333 f.age-[18,32] f.duration-[5,101]
              f.campaign
                               f.pdays
                                             f.previous
## 5565 f.campaign-(2,5] f.pdays-never f.previous-never
## 9014 f.campaign-(2,5] f.pdays-never f.previous-never
##
                 f.emp.var.rate
                                          f.cons.price.idx
## 5565 f.emp.var.rate-(0, Inf] f.cons.price.idx-(93.7,94]
## 9014 f.emp.var.rate-(0, Inf] f.cons.price.idx-(94,94.8]
##
                      f.cons.conf.idx
                                                   f.euribor3m
## 5565 f.cons.conf.idx-(-41.8,-36.4] f.euribor3m-(1.33,4.86]
## 9014 f.cons.conf.idx-(-42.7,-41.8] f.euribor3m-(4.86,4.96]
                            f.nr.employed
## 5565 f.nr.employed-(5.1e+03,5.19e+03]
## 9014 f.nr.employed-(5.19e+03,5.23e+03]
```

Outliers Multivariants:

No hem aconseguit trobar una configuracio del aq.plot que ens doni una bona grafica per a veure les distancies de Mahalanobis i detectar outliers multivariants.

```
# Consider subset of numeric variables:
# summary(df[,vars_con])
vars_con_sub<-vars_con[c(1:2)]
x<-df[,vars_con_sub]
# aq.plot(x, delta=qchisq(0.995, df=ncol(x)))
index <- data.frame(aq.plot(x, delta=qchisq(0.975, df=ncol(x)), quan=0.5, alpha=0.05))</pre>
```


table(index\$outliers)

```
##
## FALSE TRUE
## 4429 557
```

IMPUTATION:

Factors:

De totes les variables discretes que hem analitzat, hem vist que algunes es podrien imputar facilment amb imputeMCA(), ja que els unknown (passats previament a NA) corresponen nomes una petita part de la mostra.

```
res.impf<-imputeMCA(df[,vars_dis], ncp=10)</pre>
# Original:
summary(df$marital)
## marital-divorced
                      marital-married
                                          marital-single
                                                                       NA's
##
                                  3046
                                                                         10
summary(df$loan)
    loan-no loan-yes
##
                           NA's
       4080
                  769
##
                            137
summary(df$job)
##
          job-admin.
                        job-blue-collar
                                          job-entrepreneur
                                                                  job-housemaid
##
                 1231
                                    1151
                                                         154
                                                                             135
```

```
##
                             job-retired job-self-employed
                                                                   job-services
      job-management
##
                                     204
                                                                            498
                  411
                                                         148
                                             job-unemployed
                                                                           NA's
##
         job-student
                          job-technician
                                                         122
                                                                             39
##
                  100
                                     793
summary(df$education)
##
               education-basic.4y
                                               education-basic.6y
##
                               516
                                                               289
                                            education-high.school
##
               education-basic.9y
##
                               715
                                                              1168
##
   education-professional.course
                                     education-university.degree
##
                               599
##
                              NA's
##
                               231
summary(df$housing)
##
    housing-no housing-yes
                                    NA's
##
          2212
                                     137
# Amb dades imputades:
summary(res.impf$completeObs$marital)
## marital-divorced
                      marital-married
                                          marital-single
##
                 554
                                  3055
                                                    1377
summary(res.impf$completeObs$loan)
##
    loan-no loan-yes
##
       4217
                  769
summary(res.impf$completeObs$job)
##
          job-admin.
                        job-blue-collar
                                          job-entrepreneur
                                                                 job-housemaid
##
                 1246
                                                                            135
                                    1171
##
      job-management
                             job-retired job-self-employed
                                                                   job-services
##
                  411
                                     205
                                                                            498
                                                         148
##
         job-student
                          job-technician
                                             job-unemployed
##
                  100
                                                         122
summary(res.impf$completeObs$education)
##
               education-basic.4y
                                               education-basic.6y
##
                               533
                                                               289
               education-basic.9y
##
                                            education-high.school
##
                               767
##
   education-professional.course
                                     education-university.degree
##
                               615
                                                              1564
summary(res.impf$completeObs$housing)
##
    housing-no housing-yes
          2261
##
# Acceptem la imputacio:
df$marital<-res.impf$completeObs[,"marital"]</pre>
df$loan<-res.impf$completeObs[,"loan"]</pre>
df$job<-res.impf$completeObs[,"job"]</pre>
df$education<-res.impf$completeObs[,"education"]</pre>
```

```
df$housing<-res.impf$completeObs[,"housing"]
#summary(df[,vars_dis])</pre>
```

PROFILING:

CONTINOUS DESCRIPTION - Numeric Target (Duration):

La funcio d'R "condes" ens descriu la variable continua "duration" a partir d'altres variables quantitatives o de les variables categoriques. Aixo ho fa mitjançant els tres outputs diferenciats mes avall; etiquetats com a "quanti", "quali" i "\$category".

El primer dels quals (\$quanti) ens mostra la correlacio de la variable estudiada "duration" amb altres variables numeriques, mostrant nomes les correlacions que tenen un p-value per sota del llindar o nivell de significacio del 5% (en aquest cas). Com mes petit es el p-valor, menys evidencia hi ha de que la hipotesi nul.la sigui certa i mes segurs estem del rebuig de la hipotesi nul.la. Aquesta hipotesi nul.la H0 afirma que la correlacio o resultat obtingut es fruit d'una aleatorietat de les dades i no pot ser atribuible a una causa especifica. Per tant, a partir d'ara, direm que quan el p-valor esta per sota del nivell de significacio establert, els resultats son significatius.

Comentar que ens apareix el valor NA pero no tenim cap valor en la nostra mostra (ho vam estar mirant a classe), tot i aixi no afecta al resultat obtingut, simplement l'obviem. De la mateixa manera obviem la correlació d'1 entre la duracio de la trucada en segons i en minuts, ja que es una correlacio perfecta deguda a una conversio d'unitats. Dit aixo, observem lleugeres correlacions negatives significatives (ordenades de mes correlacio positiva a no correlacio i despres a mes correlacio negativa) entre la duracio de la trucada i la variable pdays, euribor3m, nr.employed i campaign. Es pot veure com la duracio de la trucada augmenta com menys cops s'ha contactat al client en aquesta campanya (campaign), el quals es logic perque un client molt contactat estara cansat ja de rebre trucades. Tambe es pot veure com la duracio de la trucada augmenta com menys dies fa que s'ha contactat a un client en relacio a una campanya anterior (pdays), el que pot estar relacionat amb l'interes del client per les diferents campanyes actuals que se li han exposat. Finalment tenim dos indicados socioeconomics que tenen una lleugera correlacio negativa amb la duracio de la trucada.

El segon output (\$quali) ens mostra els factors (variables categoriques) que estan mes relacionades amb la variable target "duration". Ens mostra els resultats significatius ordenats per factors de mes a menys relacionats la duracio. Obviant la discretitzacio de la duracio (f.duration) que obviament esta molt relacionada, observem com la la decisio final (y) del client a contractar un servei esta forca relacionada amb la duracio d'una trucada. Molt menys relacionades (pero llegurament) ho estan les variables "f.campaign", "month", aixi com altres indicadors socioeconomics.

El tercer output (\$category) ens indica una estimacio de les unitats que la durada de la trucada esta per sobre (+) o per sota (-) de la mitja global quan el registre pertany a la categoria en questio; ordenades per p-valor. Deixant de banda les categories de f.duration que son fruit de la discretitzacio, pot veure com quan el producte es contractat (y-yes), la duracio de la trucada esta 148 segons per sobre, com era d'esperar en una contractacio per telefon. Altres resultats obtinguts interessants son que la duracio de la trucada esta 72 segons per sobre quan s'ha contactat amb el client en aquesta campanya 1 o 2 cops (f-campaign-[0,2]) i que tambe augmenta en 38 segons quan el resultat de la campanya anterior va ser positiu pel mateix client (poutcome-success). Tambe podem destacar el mes d'abril (month-apr), en el qual les duracions de les trucades estan 28 segons per sobre de la mitja, o la primavera (season-spring) amb 18 segons per sobre de la mitja. D'altra banda podem veure com en el mes d'agost (month-aug) la duracio de les trucades esta 28 segons per sota la mitja, en el novembre (month-nov) 20 segons per sota, i que els clients que mai han estat contactats abans (f.pdays-never) estan 28 segons menys al telefon que la mitja.

El oneway.test d'R ens compara si dues o mes mostres de variables amb distribucio normal tenen o no la mateixa mitjana (no cal assumir igualtat de variancies pels grups implicats que es comparen). En aquest cas ens permet concluore que la mitjana de la durada de la trucada en els casos que s'ha contractat el servei es significativament diferent a la dels casos en els quals no s'ha contractat el servei. L'estadadistic de contrast

```
segueix una distribucio F de Fisher i pren el valor 447.7, que es molt significatiu (p-value < 1e-16).
```

pos_duration<-which(names(df)=="duration"); pos_duration</pre>

[1] 11

```
condes(df, num.var=pos_duration, proba = 0.05)
```

```
## $quanti
                correlation
                                 p.value
## <NA>
                         NΑ
                                      NΑ
## minutes
                 1.00000000 0.000000e+00
                -0.03190702 2.425821e-02
## pdays
## euribor3m
                -0.03512962 1.311237e-02
## num outliers -0.04065979 4.085021e-03
## nr.employed -0.04831097 6.438109e-04
   campaign
                -0.07479199 1.241586e-07
##
## $quali
##
                             R.2
                                      p.value
## f.duration
                    0.694658017
                                 0.000000e+00
## y
                    0.164777620 3.759496e-197
## f.campaign
                    0.004516830
                                1.263332e-05
## f.cons.conf.idx
                   0.004067507
                                 1.465565e-04
## f.nr.employed
                    0.002912867
                                 6.975062e-04
## f.cons.price.idx 0.003246051
                                 1.031905e-03
## f.season
                    0.002391413
                                 2.566167e-03
## month
                                 2.674014e-03
                    0.005064462
## f.euribor3m
                                 6.473152e-03
                    0.002462249
## poutcome
                    0.001851161
                                 9.887924e-03
## f.pdays
                    0.001211656
                                1.396985e-02
## day_of_week
                    0.002352912 1.942616e-02
##
## $category
##
                                        Estimate
                                                       p.value
## f.duration-(316,1.58e+03]
                                      314.511430 0.000000e+00
## y-yes
                                      148.441504 3.759496e-197
## season-spring
                                       15.716194 5.877554e-04
## poutcome-success
                                       38.359032 5.480212e-03
## f.campaign-[0,2]
                                       20.816748
                                                  7.136472e-03
## f.nr.employed-[4.96e+03,5.1e+03]
                                        9.017147 8.355482e-03
## f.cons.conf.idx-[-50.8,-42.7]
                                       14.076002 1.238528e-02
## f.pdays-sometime
                                       21.670172 1.396985e-02
## month-may
                                        9.867780
                                                  1.599295e-02
## f.cons.price.idx-(93.7,94]
                                                  2.081111e-02
                                       11.621760
## f.cons.conf.idx-(-41.8,-36.4]
                                       16.349262 2.392080e-02
                                       27.731238 2.403940e-02
## month-apr
## day of week-3wed
                                       13.376659 4.495212e-02
## education-high.school
                                       11.950501 4.670195e-02
## month-nov
                                      -20.376410 4.421467e-02
## f.duration-(177,316]
                                      -12.420618 3.175920e-02
## day_of_week-1mon
                                      -15.133836 1.838350e-02
## season-summer
                                       -6.135532 1.752241e-02
## f.pdays-never
                                      -21.670172 1.396985e-02
                                      -14.862166 7.024095e-03
## f.cons.conf.idx-(-36.4, -26.9]
```

```
## f.cons.conf.idx-(-42.7, -41.8]
                                      -15.563098 4.192506e-03
## f.euribor3m-(4.96,5]
                                       -19.423787 1.079935e-03
## month-aug
                                      -28.383026 6.707022e-04
## f.nr.employed-(5.19e+03,5.23e+03]
                                      -16.466612 1.395228e-04
## f.cons.price.idx-(93.1,93.7]
                                      -22.699701 8.027710e-05
## f.campaign-(5,25]
                                      -36.153827 2.638343e-06
## f.duration-(101,177]
                                     -113.196196 4.416490e-92
## y-no
                                     -148.441504 3.759496e-197
## f.duration-[5,101]
                                     -188.894616 8.444088e-278
# mitjana de la duracio per categoria de la duracio
# tapply(df$duration, df$f.duration, mean)
# duracio global
summary(df$duration)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
             101.0
                     177.0
                             250.6
                                     316.0
                                            1580.0
# mitjana de la duracio per categoria de la y
tapply(df$duration, df$y, mean)
##
       y-no
               y-yes
## 217.4563 514.3393
oneway.test(df$duration~df$y)
##
##
   One-way analysis of means (not assuming equal variances)
##
## data: df$duration and df$v
## F = 447.7, num df = 1.00, denom df = 605.83, p-value < 2.2e-16
```

CATEGORICAL DESCRIPTION - Factor (Y, Final Decision):

La funcio d'R "catdes" ens descriu la variable categorica "y" a partir d'altres variables categoriques o de les variables quantitatives. Aixo ho fa mitjancant outputs diferenciats mes avall. Notem que el nostre llindar de signifiacio en aquest cas es del 0.025 per tal de limitar una mica la gran quantitat de resultats mostrats.

L'apartat "Link between the cluster variable and the categorical variables (chi-square test)" ens mostra les variables categoriques que han caracteritzat al factor "y" ordenades de mes a menys caracteritzacio del factor (de menys a mes p-value). La columna "df" mostra els Degrees of Freedom, que corresponen amb el nombre de categories del factor menys 1. Les variables categoriques que han influenciat mes en la decisio final (y) son la f.duration (pero es una dada que s'obte a posteriori de la trucada, no ens serveix per a generar un perfil de client), f.pdays (nombre de dies des de l'ultim contacte), poutcome (si la ultima campanya va ser acceptada per aquest client o no), el mes (month), previous (si havia estat contactat o no abans d'aquesta campanya), diferents indicadors socioeconomics, contact (via de contacte), el job (feina), etc.

L'apartat "Description of each cluster by the categories" ens mostra per a cada categoria de la "y" (y-yes, y-no), una descripcio de les variables categoriques per tal de poder estudiar-ne el seu enllac. La primera columna Cla/Mod esn mostra el tant per cent de la categoria de la fila indicada que pertany a la resposta (y) corresponent. D'altra banda, per a una resposta (y-yes, y-no) fixada, la segona columna Mod/Cla ens mostra el tant per cent de valors de la fila corresponent que pertanyen a la resposta fixada. Aquesta columna pot esser comparada amb la columna Global i d'aquesta manera trobar sobrerepresentacions en algunes categories, ja que la tercera columna ens indica el tant per cent de valors que representa la categoria sense tenir en compte la resposta (y) fixada. Per acabar, v.test ens indica si la categoria de la fila es troba sobrerepresentada (v.test>0) o infrarepresentada (v.test<0) dins una resposta (y) fixada. Al cluster "y-no", podem veure com el

fet de no haver contactat mai al client abans o fer-ho a través del telèfon fixe, estan sobrerepresentats en la resposta (y) negativa, pel que no són bones caracteritzacions d'individu a l'hora d'acceptar el producte. Al cluster "y-yes", podem veure una lleguera sobrerepresentacio dels individus que van ser contactats fa fa menys de 7 dies en altres campanyes i d'aquells que una campanya anterior va resultar exitosa, el que es pot interpretar com que en aquests casos el client es més propens a donar un si com a resposta. Així com el fet de realitzar la trucada al telèfon mòbil o altres categories, que estan sobrerepresentades i poden ser observades en la llista donada per R. Tambe hi ha certs valors socioeconomics que estan mes o menys representats en la resposta positiva que en la negativa del client, i viceversa.

L'apartat "Link between the cluster variable and the quantitative variables" ens mostra les variables quantitatives que han caracteritzat al factor "y" ordenades de mes a menys caracteritzacio del factor (de menys a mes correlacio). Les variables quantitatives que han influenciat mes en la decisio final (y) son la duration i minutes (pero son dades que s'obtenen a posteriori de la trucada, no ens serveixen per a generar un perfil de client), pdays (nombre de dies des de l'ultim contacte), previous (si havia estat contactat o no abans d'aquesta campanya), diferents indicadors socioeconomics, etc.

L'apartat "Description of each cluster by quantitative variables". D'aquesta part de l'analisi no en podem extreure informacio dels individus que conformen el cluster "y-no", donat que els valors que es presenten de les categories dins el cluster i de manera general no presenten una diversificacio notable. Per altra banda del cluster "y-yes" si que en poden extreure informacio, podem veure que la mitjana de la duracio de les trucades dels individus del cluster duplica la mitjana global (donat que la duració és un consequencia del desenvolupament de la trucada). Altres factors con l'euribor o la taxa de variacio de la ocupacio tambe tenen un impacte en la decisio final.

```
pos y<-which(names(df)=="y"); pos y
## [1] 21
catdes(df, num.var=pos_y, proba = 0.001)
##
## Link between the cluster variable and the categorical variables (chi-square test)
## -----
##
                        p.value df
                  1.461354e-121
## f.duration
## f.pdays
                   1.117730e-99
                                1
## poutcome
                   3.053387e-95
                                2
## f.nr.employed
                   1.703080e-89
                                2
## f.euribor3m
                   5.470503e-79
## month
                   1.690776e-65
## f.emp.var.rate
                   4.141030e-61
## f.cons.price.idx 5.572278e-38
## f.previous
                   6.896103e-38
## f.cons.conf.idx
                   4.786677e-23
## contact
                   2.110136e-21
## job
                   4.816597e-17 10
## default
                   9.768051e-13
## f.season
                   7.457294e-10
## f.age
                   7.936723e-09
## education
                   8.419496e-08
## marital
                   6.658281e-05
## f.campaign
                   5.052372e-04
##
## Description of each cluster by the categories
## $`y-no`
```

```
##
                                                    Cla/Mod
                                                                Mod/Cla
## f.emp.var.rate=f.emp.var.rate-(0, Inf]
                                                    95.06897 62.2488146
## f.pdays=f.pdays-never
                                                    90.64255 98.4195078
## f.duration=f.duration-[5,101]
                                                    98.96166 27.9747121
## f.nr.employed=f.nr.employed-(5.19e+03,5.23e+03] 94.70990 50.1241815
## f.previous=f.previous-never
                                                   91.01769 89.4558591
## poutcome=poutcome-nonexistent
                                                    91.01769 89.4558591
## contact=contact-telephone
                                                    94.31330 39.6929329
## f.cons.price.idx=f.cons.price.idx-(93.7,94]
                                                    94.11765 38.6543238
## f.duration=f.duration-(101,177]
                                                    95.41432 26.7780537
## f.nr.employed=f.nr.employed-(5.1e+03,5.19e+03]
                                                   96.11167 21.7656356
## f.cons.conf.idx=f.cons.conf.idx-(-42.7,-41.8]
                                                    96.07032 20.9753895
## default=default-unknown
                                                    95.05814 22.1494694
                                                    93.33716 36.6899977
## month=month-may
## f.euribor3m=f.euribor3m-(4.86,4.96]
                                                    94.51327 24.1137954
## f.euribor3m=f.euribor3m-(4.96,5]
                                                    94.36620 24.2041093
## job=job-blue-collar
                                                    93.85141 24.8137277
## f.euribor3m=f.euribor3m-(1.33,4.86]
                                                    92.70123 30.6841273
## f.cons.price.idx=f.cons.price.idx-(93.1,93.7]
                                                   92.90976 22.7816663
## f.age=f.age-(38,47]
                                                    92.54098 25.4910815
## education=education-basic.9y
                                                    93.08996 16.1210205
## f.campaign=f.campaign-(5,25]
                                                    94.18886 8.7830210
## marital=marital-single
                                                   85.69354 26.6425830
## job=job-retired
                                                    78.53659 3.6351321
## f.age=f.age-[18,32]
                                                   85.35503 26.0555430
## job=job-student
                                                    70.00000 1.5804922
## month=month-apr
                                                    78.70968 5.5091443
## education=education-university.degree
                                                    85.23018 30.0970874
## f.season=season-autumnwinter
                                                    81.62084 12.7342515
## month=month-sep
                                                    57.37705 0.7902461
## month=month-mar
                                                    57.57576 0.8579815
## f.cons.conf.idx=f.cons.conf.idx-(-36.4,-26.9]
                                                    81.22318 17.0918943
## default=default-no
                                                    87.20283 77.8505306
## month=month-oct
                                                    54.63918 1.1966584
## contact=contact-cellular
                                                    85.55413 60.3070671
## f.cons.price.idx=f.cons.price.idx-[92.2,93.1]
                                                    80.48261 25.6039738
## f.previous=f.previous-some
                                                    73.77567 10.5441409
## poutcome=poutcome-success
                                                    37.82051 1.3321291
## f.pdays=f.pdays-sometime
                                                    39.54802 1.5804922
## f.emp.var.rate=f.emp.var.rate-[-Inf,0]
                                                    80.15340 37.7511854
## f.euribor3m=f.euribor3m-[0.635,1.33]
                                                    74.16268 20.9979679
## f.nr.employed=f.nr.employed-[4.96e+03,5.1e+03]
                                                   75.96095 28.1101829
## f.duration=f.duration-(316,1.58e+03]
                                                    71.46302 20.0722511
##
                                                       Global
                                                                   p.value
## f.emp.var.rate=f.emp.var.rate-(0, Inf]
                                                    58.162856 3.963838e-61
                                                    96.450060 2.410684e-59
## f.pdays=f.pdays-never
## f.duration=f.duration-[5,101]
                                                    25.110309 4.912295e-55
## f.nr.employed=f.nr.employed-(5.19e+03,5.23e+03] 47.011633 2.158488e-37
## f.previous=f.previous-never
                                                    87.304452 1.438650e-30
## poutcome=poutcome-nonexistent
                                                    87.304452 1.438650e-30
## contact=contact-telephone
                                                    37.384677 3.447929e-23
## f.cons.price.idx=f.cons.price.idx-(93.7,94]
                                                    36.482150 7.057265e-21
## f.duration=f.duration-(101,177]
                                                    24.929803 3.376202e-20
## f.nr.employed=f.nr.employed-(5.1e+03,5.19e+03] 20.116326 1.424235e-19
```

```
## f.cons.conf.idx=f.cons.conf.idx-(-42.7, -41.8]
                                                    19.394304 1.401017e-18
## default=default-unknown
                                                    20.697954 1.230324e-14
                                                    34.917770 1.726364e-14
## month=month-may
## f.euribor3m=f.euribor3m-(4.86,4.96]
                                                    22.663458 1.693548e-13
## f.euribor3m=f.euribor3m-(4.96,5]
                                                    22.783795 6.639818e-13
## job=job-blue-collar
                                                   23.485760 4.385552e-11
## f.euribor3m=f.euribor3m-(1.33,4.86]
                                                    29.402327 6.796806e-09
                                                   21.780987 4.701642e-07
## f.cons.price.idx=f.cons.price.idx-(93.1,93.7]
## f.age=f.age-(38,47]
                                                    24.468512 9.135370e-07
## education=education-basic.9y
                                                   15.383073 1.890871e-05
## f.campaign=f.campaign-(5,25]
                                                    8.283193 1.084374e-04
## marital=marital-single
                                                    27.617329 2.164341e-05
## job=job-retired
                                                     4.111512 1.457985e-05
## f.age=f.age-[18,32]
                                                    27.115925 3.567657e-06
## job=job-student
                                                    2.005616 2.508620e-07
## month=month-apr
                                                     6.217409 1.047741e-07
                                                    31.367830 9.372698e-08
## education=education-university.degree
## f.season=season-autumnwinter
                                                    13.858805 1.173628e-09
                                                     1.223426 3.276634e-10
## month=month-sep
## month=month-mar
                                                     1.323706 7.597160e-11
## f.cons.conf.idx=f.cons.conf.idx-(-36.4,-26.9]
                                                    18.692339 1.352020e-14
## default=default-no
                                                    79.302046 1.230324e-14
## month=month-oct
                                                     1.945447 8.959508e-18
## contact=contact-cellular
                                                    62.615323 3.447929e-23
## f.cons.price.idx=f.cons.price.idx-[92.2,93.1]
                                                    28.259126 3.335427e-29
## f.previous=f.previous-some
                                                    12.695548 1.438650e-30
## poutcome=poutcome-success
                                                     3.128761 2.946325e-55
## f.pdays=f.pdays-sometime
                                                     3.549940 2.410684e-59
## f.emp.var.rate=f.emp.var.rate-[-Inf,0]
                                                    41.837144 3.963838e-61
## f.euribor3m=f.euribor3m-[0.635,1.33]
                                                    25.150421 3.042037e-70
## f.nr.employed=f.nr.employed-[4.96e+03,5.1e+03]
                                                   32.872042 1.759629e-84
## f.duration=f.duration-(316,1.58e+03]
                                                    24.949860 1.316787e-95
##
                                                        v.test
## f.emp.var.rate=f.emp.var.rate-(0, Inf]
                                                     16.495331
## f.pdays=f.pdays-never
                                                     16.245323
## f.duration=f.duration-[5,101]
                                                     15.625090
## f.nr.employed=f.nr.employed-(5.19e+03,5.23e+03]
                                                    12.778626
## f.previous=f.previous-never
                                                     11.492513
## poutcome=poutcome-nonexistent
                                                     11.492513
## contact=contact-telephone
                                                      9.918824
## f.cons.price.idx=f.cons.price.idx-(93.7,94]
                                                      9.372891
## f.duration=f.duration-(101,177]
                                                      9.206281
## f.nr.employed=f.nr.employed-(5.1e+03,5.19e+03]
                                                      9.050417
## f.cons.conf.idx=f.cons.conf.idx-(-42.7,-41.8]
                                                      8.797336
## default-default-unknown
                                                      7.712857
## month=month-may
                                                      7.669524
## f.euribor3m=f.euribor3m-(4.86,4.96]
                                                      7.370998
## f.euribor3m=f.euribor3m-(4.96,5]
                                                      7.186654
                                                      6.590430
## job=job-blue-collar
## f.euribor3m=f.euribor3m-(1.33,4.86]
                                                      5.795870
## f.cons.price.idx=f.cons.price.idx-(93.1,93.7]
                                                      5.038105
## f.age=f.age-(38,47]
                                                      4.909404
## education=education-basic.9y
                                                      4.277402
## f.campaign=f.campaign-(5,25]
                                                      3.870893
```

```
## marital=marital-single
                                                    -4.247225
## job=job-retired
                                                    -4.334942
## f.age=f.age-[18,32]
                                                    -4.635100
## job=job-student
                                                    -5.157057
## month=month-apr
                                                    -5.318243
## education=education-university.degree
                                                    -5.338484
## f.season=season-autumnwinter
                                                    -6.083806
## month=month-sep
                                                    -6.285090
## month=month-mar
                                                    -6.508368
## f.cons.conf.idx=f.cons.conf.idx-(-36.4,-26.9]
                                                    -7.700814
## default=default-no
                                                    -7.712857
## month=month-oct
                                                    -8.586582
## contact=contact-cellular
                                                    -9.918824
## f.cons.price.idx=f.cons.price.idx-[92.2,93.1]
                                                    -11.217779
## f.previous=f.previous-some
                                                    -11.492513
## poutcome=poutcome-success
                                                    -15.657639
## f.pdays=f.pdays-sometime
                                                    -16.245323
## f.emp.var.rate=f.emp.var.rate-[-Inf,0]
                                                   -16.495331
## f.euribor3m=f.euribor3m-[0.635,1.33]
                                                    -17.718064
## f.nr.employed=f.nr.employed-[4.96e+03,5.1e+03] -19.475855
## f.duration=f.duration-(316,1.58e+03]
                                                    -20.746562
##
## $`y-yes`
                                                               Mod/Cla
                                                      Cla/Mod
## f.duration=f.duration-(316,1.58e+03]
                                                    28.536977 63.734291
## f.nr.employed=f.nr.employed-[4.96e+03,5.1e+03] 24.039048 70.736086
## f.euribor3m=f.euribor3m-[0.635,1.33]
                                                    25.837321 58.168761
## f.emp.var.rate=f.emp.var.rate-[-Inf,0]
                                                    19.846596 74.326750
## f.pdays=f.pdays-sometime
                                                    60.451977 19.210054
## poutcome=poutcome-success
                                                    62.179487 17.414722
## f.previous=f.previous-some
                                                    26.224329 29.802513
                                                    19.517388 49.371634
## f.cons.price.idx=f.cons.price.idx-[92.2,93.1]
## contact=contact-cellular
                                                    14.445868 80.969479
## month=month-oct
                                                    45.360825 7.899461
## default=default-no
                                                    12.797167 90.843806
## f.cons.conf.idx=f.cons.conf.idx-(-36.4,-26.9]
                                                    18.776824 31.418312
## month=month-mar
                                                    42.424242 5.026930
## month=month-sep
                                                    42.622951 4.667864
## f.season=season-autumnwinter
                                                    18.379161 22.800718
## education=education-university.degree
                                                    14.769821 41.472172
## month=month-apr
                                                    21.290323 11.849192
## job=job-student
                                                    30.000000 5.385996
## f.age=f.age-[18,32]
                                                    14.644970 35.547576
## job=job-retired
                                                   21.463415 7.899461
## marital=marital-single
                                                    14.306463 35.368043
## f.campaign=f.campaign-(5,25]
                                                    5.811138 4.308797
## education=education-basic.9y
                                                    6.910039 9.515260
## f.age=f.age-(38,47]
                                                    7.459016 16.337522
## f.cons.price.idx=f.cons.price.idx-(93.1,93.7]
                                                    7.090239 13.824057
## f.euribor3m=f.euribor3m-(1.33,4.86]
                                                    7.298772 19.210054
## job=job-blue-collar
                                                    6.148591 12.926391
## f.euribor3m=f.euribor3m-(4.96,5]
                                                    5.633803 11.490126
## f.euribor3m=f.euribor3m-(4.86,4.96]
                                                    5.486726 11.131059
## month=month-may
                                                    6.662837 20.825853
```

```
## default-default-unknown
                                                    4.941860 9.156194
## f.cons.conf.idx=f.cons.conf.idx-(-42.7,-41.8]
                                                    3.929679 6.822262
## f.nr.employed=f.nr.employed-(5.1e+03,5.19e+03]
                                                    3.888335 7.001795
## f.duration=f.duration-(101,177]
                                                    4.585680 10.233393
## f.cons.price.idx=f.cons.price.idx-(93.7,94]
                                                    5.882353 19.210054
## contact=contact-telephone
                                                    5.686695 19.030521
## f.previous=f.previous-never
                                                    8.982311 70.197487
## poutcome=poutcome-nonexistent
                                                    8.982311 70.197487
## f.nr.employed=f.nr.employed-(5.19e+03,5.23e+03]
                                                    5.290102 22.262118
## f.duration=f.duration-[5,101]
                                                     1.038339 2.333932
## f.pdays=f.pdays-never
                                                    9.357455 80.789946
## f.emp.var.rate=f.emp.var.rate-(0, Inf]
                                                    4.931034 25.673250
                                                       Global
                                                                   p.value
## f.duration=f.duration-(316,1.58e+03]
                                                    24.949860 1.316787e-95
## f.nr.employed=f.nr.employed-[4.96e+03,5.1e+03]
                                                   32.872042 1.759629e-84
## f.euribor3m=f.euribor3m-[0.635,1.33]
                                                    25.150421 3.042037e-70
## f.emp.var.rate=f.emp.var.rate-[-Inf,0]
                                                    41.837144 3.963838e-61
## f.pdays=f.pdays-sometime
                                                    3.549940 2.410684e-59
## poutcome=poutcome-success
                                                    3.128761 2.946325e-55
## f.previous=f.previous-some
                                                    12.695548 1.438650e-30
## f.cons.price.idx=f.cons.price.idx-[92.2,93.1]
                                                   28.259126 3.335427e-29
## contact=contact-cellular
                                                    62.615323 3.447929e-23
## month=month-oct
                                                    1.945447 8.959508e-18
## default=default-no
                                                    79.302046 1.230324e-14
## f.cons.conf.idx=f.cons.conf.idx-(-36.4,-26.9]
                                                    18.692339 1.352020e-14
## month=month-mar
                                                    1.323706 7.597160e-11
## month=month-sep
                                                     1.223426 3.276634e-10
## f.season=season-autumnwinter
                                                    13.858805 1.173628e-09
## education=education-university.degree
                                                    31.367830 9.372698e-08
## month=month-apr
                                                    6.217409 1.047741e-07
                                                    2.005616 2.508620e-07
## job=job-student
## f.age=f.age-[18,32]
                                                    27.115925 3.567657e-06
## job=job-retired
                                                    4.111512 1.457985e-05
## marital=marital-single
                                                    27.617329 2.164341e-05
## f.campaign=f.campaign-(5,25]
                                                    8.283193 1.084374e-04
## education=education-basic.9y
                                                    15.383073 1.890871e-05
## f.age=f.age-(38,47]
                                                    24.468512 9.135370e-07
## f.cons.price.idx=f.cons.price.idx-(93.1,93.7]
                                                   21.780987 4.701642e-07
## f.euribor3m=f.euribor3m-(1.33,4.86]
                                                    29.402327 6.796806e-09
## job=job-blue-collar
                                                    23.485760 4.385552e-11
## f.euribor3m=f.euribor3m-(4.96,5]
                                                    22.783795 6.639818e-13
## f.euribor3m=f.euribor3m-(4.86,4.96]
                                                    22.663458 1.693548e-13
## month=month-mav
                                                    34.917770 1.726364e-14
## default=default-unknown
                                                    20.697954 1.230324e-14
## f.cons.conf.idx=f.cons.conf.idx-(-42.7,-41.8]
                                                    19.394304 1.401017e-18
## f.nr.employed=f.nr.employed-(5.1e+03,5.19e+03]
                                                    20.116326 1.424235e-19
## f.duration=f.duration-(101,177]
                                                    24.929803 3.376202e-20
## f.cons.price.idx=f.cons.price.idx-(93.7,94]
                                                    36.482150 7.057265e-21
## contact=contact-telephone
                                                    37.384677 3.447929e-23
## f.previous=f.previous-never
                                                    87.304452 1.438650e-30
## poutcome=poutcome-nonexistent
                                                    87.304452 1.438650e-30
## f.nr.employed=f.nr.employed-(5.19e+03,5.23e+03] 47.011633 2.158488e-37
## f.duration=f.duration-[5,101]
                                                    25.110309 4.912295e-55
## f.pdays=f.pdays-never
                                                   96.450060 2.410684e-59
```

```
## f.emp.var.rate=f.emp.var.rate-(0, Inf]
                                                  58.162856 3.963838e-61
##
                                                      v.test
## f.duration=f.duration-(316,1.58e+03]
                                                   20.746562
## f.nr.employed=f.nr.employed-[4.96e+03,5.1e+03]
                                                   19.475855
## f.euribor3m=f.euribor3m-[0.635,1.33]
                                                   17.718064
## f.emp.var.rate=f.emp.var.rate-[-Inf,0]
                                                   16.495331
## f.pdays=f.pdays-sometime
                                                   16.245323
## poutcome=poutcome-success
                                                   15.657639
## f.previous=f.previous-some
                                                   11.492513
## f.cons.price.idx=f.cons.price.idx-[92.2,93.1]
                                                   11.217779
## contact=contact-cellular
                                                    9.918824
## month=month-oct
                                                    8.586582
## default=default-no
                                                    7.712857
## f.cons.conf.idx=f.cons.conf.idx-(-36.4, -26.9]
                                                    7.700814
## month=month-mar
                                                    6.508368
## month=month-sep
                                                    6.285090
## f.season=season-autumnwinter
                                                    6.083806
## education=education-university.degree
                                                    5.338484
## month=month-apr
                                                    5.318243
## job=job-student
                                                    5.157057
## f.age=f.age-[18,32]
                                                    4.635100
## job=job-retired
                                                    4.334942
## marital=marital-single
                                                    4.247225
## f.campaign=f.campaign-(5,25]
                                                   -3.870893
## education=education-basic.9y
                                                   -4.277402
## f.age=f.age-(38,47]
                                                   -4.909404
## f.cons.price.idx=f.cons.price.idx-(93.1,93.7]
                                                   -5.038105
## f.euribor3m=f.euribor3m-(1.33,4.86]
                                                   -5.795870
## job=job-blue-collar
                                                   -6.590430
## f.euribor3m=f.euribor3m-(4.96,5]
                                                   -7.186654
## f.euribor3m=f.euribor3m-(4.86,4.96]
                                                   -7.370998
## month=month-may
                                                   -7.669524
## default-default-unknown
                                                   -7.712857
## f.cons.conf.idx=f.cons.conf.idx-(-42.7,-41.8]
                                                   -8.797336
## f.nr.employed=f.nr.employed-(5.1e+03,5.19e+03]
                                                   -9.050417
## f.duration=f.duration-(101,177]
                                                   -9.206281
## f.cons.price.idx=f.cons.price.idx-(93.7,94]
                                                   -9.372891
## contact=contact-telephone
                                                   -9.918824
## f.previous=f.previous-never
                                                  -11.492513
## poutcome=poutcome-nonexistent
                                                  -11.492513
## f.nr.employed=f.nr.employed-(5.19e+03,5.23e+03] -12.778626
## f.duration=f.duration-[5,101]
                                                  -15.625090
## f.pdays=f.pdays-never
                                                  -16.245323
## f.emp.var.rate=f.emp.var.rate-(0, Inf]
                                                  -16.495331
##
##
## Link between the cluster variable and the quantitative variables
Eta2
                                   P-value
                 0.164777620 3.759496e-197
## duration
                 0.164777620 3.759496e-197
## minutes
## nr.employed
                 0.121012601 8.238443e-142
## euribor3m
                 0.090010720 3.115343e-104
## pdays
                 0.086552345 4.048268e-100
```

```
## emp.var.rate
                  0.085417483 8.992557e-99
## previous
                  0.042523921 5.101307e-49
## cons.price.idx 0.018386453
                               6.794885e-22
## cons.conf.idx 0.004669195
                               1.369222e-06
## campaign
                  0.004489048
                               2.189058e-06
## <NA>
                           NΑ
##
## Description of each cluster by quantitative variables
## $`y-no`
                      v.test Mean in category
##
                                               Overall mean sd in category
                   24.561104
                                 5175.3298261 5166.47621340
                                                                64.3842715
## nr.employed
## euribor3m
                   21.182621
                                    3.7992890
                                                 3.61448034
                                                                 1.6425449
                                                18.52647413
## pdays
                   20.771698
                                   18.7918266
                                                                 1.6986882
                   20.635071
                                    0.2287424
                                                                 1.4946001
## emp.var.rate
                                                 0.06446049
## cons.price.idx
                    9.573739
                                   93.6004884
                                                93.57245006
                                                                 0.5619158
## campaign
                                    2.5940749
                                                 2.53512993
                                                                 2.5654605
                    4.730529
## cons.conf.idx
                   -4.824514
                                  -40.5398961
                                               -40.42591256
                                                                 4.4454152
## previous
                                    0.1255362
                  -14.559593
                                                 0.15984757
                                                                 0.4004406
## duration
                  -28.660364
                                  217.4563107
                                               250.62194144
                                                               191.6321071
## minutes
                  -28.660364
                                    3.6242718
                                                 4.17703236
                                                                 3.1938685
##
                   Overall sd
                                    p.value
## nr.employed
                   71.7679377 3.291367e-133
## euribor3m
                              1.381286e-99
                    1.7370025
## pdays
                    2.5433666 7.804981e-96
## emp.var.rate
                    1.5850448 1.329502e-94
## cons.price.idx
                    0.5830800
                              1.031083e-21
## campaign
                    2.4808187
                              2.239356e-06
## cons.conf.idx
                    4.7037753 1.403451e-06
## previous
                    0.4691873 5.075919e-48
## duration
                  230.3904064 1.190744e-180
## minutes
                    3.8398401 1.190744e-180
##
## $`y-yes`
##
                      v.test Mean in category
                                               Overall mean sd in category
## minutes
                                     8.572322
                                                 4.17703236
                                                                 5.3967235
                   28.660364
## duration
                   28.660364
                                   514.339318
                                               250.62194144
                                                               323.8034093
## previous
                   14.559593
                                     0.432675
                                                 0.15984757
                                                                 0.7821222
## cons.conf.idx
                    4.824514
                                   -39.519569
                                               -40.42591256
                                                                 6.3242738
## campaign
                   -4.730529
                                     2.066427
                                                 2.53512993
                                                                 1.5845655
## cons.price.idx -9.573739
                                    93.349503
                                                                 0.6904449
                                                93.57245006
## emp.var.rate
                  -20.635071
                                    -1.241831
                                                 0.06446049
                                                                 1.6751620
## pdays
                  -20.771698
                                    16.416517
                                                18.52647413
                                                                 5.4725311
## euribor3m
                  -21.182621
                                     2.144969
                                                 3.61448034
                                                                 1.7676126
                                  5096.076481 5166.47621340
                                                                86.9764988
## nr.employed
                  -24.561104
##
                   Overall sd
                                    p.value
## minutes
                    3.8398401 1.190744e-180
## duration
                  230.3904064 1.190744e-180
## previous
                    0.4691873 5.075919e-48
## cons.conf.idx
                    4.7037753
                              1.403451e-06
                               2.239356e-06
## campaign
                    2.4808187
## cons.price.idx
                    0.5830800 1.031083e-21
## emp.var.rate
                    1.5850448 1.329502e-94
## pdays
                    2.5433666 7.804981e-96
```

euribor3m 1.7370025 1.381286e-99 ## nr.employed 71.7679377 3.291367e-133