Week 7: Digital Video Data

DIGITAL ASSET DEVELOPMENT

Contents

- Video standards
- Video compression
- Working with video

Digital Video Technology

- Video is among the most processorintensive of digital assets
- Storage and transmission of digital video are major challenges
- Important to be able to:
 - Capture and edit high quality video
 - Compress video data significantly
 - Stream video for simultaneous playback

Video Parameters

- Video in this context simply refers to moving picture data
- The basic properties of digital video largely follow from those of images
- Key parameters:
 - Frame size: height and width in pixels
 - Bit depth of uncompressed data
 - Frame rate (frames per second or fps)
 - Aspect ratio

Understanding Video

- All this seems straightforward in theory
 - However, there are various complications, many of which arise for historical reasons
- Digital video content largely originated in other forms
 - Film and TV
 - These used a variety of frame sizes, frame rates and aspect ratios
- Hence there are many ways of defining video formats

Frame Rate and Resolution

- Standard frame rates are 24, 25 and 30
 - 24 fps for cinema film
 - 30 fps for TV in US (and some other areas)
 - 25 fps for UK and European broadcast TV
- Cinema film comes in a variety of (high resolution) frame sizes
- NTSC and PAL (standards for US and UK television) use different resolutions
 - HD formats complicate matters still further

Aspect Ratios

- Image aspect ratio: width/height ratio
 - Typically 4:3 (1.33:1) for standard TV formats and 16:9 (1.78:1) for widescreen HD
 - Cinema typically uses either 1.85:1 or 2.39:1
- Pixel aspect ratio: describes the shape of individual pixels
 - PC monitors have square pixels
 - Some video standards use other values
 - 1.33:1 pixel ration is used for some widescreen HD video

Progressive / Interlaced Scan

- Pre-HD television broadcast systems used interlacing to build up a picture
 - Due to old cathode ray tube technology
 - Odd lines if the frame were scanned and then the even lines
 - Doesn't apply to cinema film or PC monitors
- HD TV is usually progressive scan (all frame lines scanned sequentially)
 - Denoted by p or i suffix on format name

Video Standards

- Many generic video standards, often defined by hardware manufacturers
- Examples:
 - DV PAL: standard for UK non-HD television
 - HDV: defines standard HD resolutions
 - AVCHD: generic format for HD camcorders
 - DVCPRO: created by Panasonic
 - XDCAM: created by Sony
- All very complicated!

Video Compression

- Compression of video data has been an ongoing issue for many industries
 - The Web, mobile video and digital TV all rely on efficient video compression
- Obviously, we can compress a single image using (eg) JPG compression
- Most video compressors also look at the changes between single video frames
 - Known as temporal compression

MPEG Compression

- Motion Picture Expert Group: open standard; very commonly used
- MPEG contains three types of frame
 - I-frames, P-frames and B-frames
- I-frames (short for intra-coded) are compressed as normal JPGs
 - See earlier lecture for details
 - Typically, every 12th or 15th frame in an MPEG file will be an I-frame

MPEG Predictive Coding

- P-frames use predictive coding
 - Only <u>changes</u> from the previous frame are recorded
 - Areas of a frame that are static are ignored
- For B-frames we only record differences from <u>either</u> the previous <u>or</u> next frame
 - This method gives the highest level of compression
 - Known as bidirectional predictive coding

Results of MPEG Coding

- Frames are arranged into sequences called Groups Of Pictures (GOP)
 - Specific orderings of I, P and B-frames
 - eg. IBBPBBPBBPBB(I)
 - I and P-frames known as anchor frames
- Works well for (eg) "talking head" shots with a static background
- Fails when we have too much motion in scene (picture goes "blocky")

Video and Audio

- Most video has an audio soundtrack
- Audio within digital video is also compressed
 - Thus, we have to store both types of data in a single file
- Video formats are therefore examples of container formats
 - Support different kinds of data streams
 - Flash movies and some 3D and game formats are other examples

Container Formats

- A container format is one which can store data using a range of codecs
- A typical container format:
 - Supports multiple codecs
 - Can handle different data types (for example, audio plus video streams)
 - Can interleave these data streams
 - Can be extended, for example to support streaming or searchable data

Example Codecs

Audio:

- MP3 (MPEG Audio Layer 3)
- AAC (Advanced Audio Coding)
- ATRAC (Adaptive Transform Acoustic Coding)

Video:

- MPEG 1, 2 and 4 (open standards)
- H.264 (widely implemented standard)
- DivX, Xvid,... (implementations of MPEG-4)
- Sorenson (used for QuickTime downloads)
- Cinepak (old "legacy" codec)

Example Container Formats

- Two of the major video container formats are AVI and QuickTime
- AVI (Audio Video Interleave) files can use a wide choice of codecs
 - DivX/MPEG-4, Cinepak, uncompressed
 - File size varies greatly due to this
 - Standard for Windows video tools
- QuickTime acts as a similarly generic container format for MacOS systems

Working With Video Data

- Editing and processing video assets has significant hardware requirements
 - Large amounts of storage space
 - PC with a lot of RAM
- There is also the issue of capturing video (and audio) at suitable quality
- The other major problem is choice of format and codec
 - Capture, storage and output formats

Software Tools for Video

- Obviously, a package such as Premiere is essential for editing work
- There are other useful (free) tools
 - VLC is very handy as it plays most video
 - K-Lite Codec Pack: wide array of codecs
 - Media Player Classic: has very handy feature for exporting stills from a video clip
 - Format Factory: reads and converts a huge variety of video and audio formats

Video Editing

- The key to modern video editing tools is that they are non-destructive
- Premiere uses this approach
 - Video clips are handled by reference
 - The project file consists of a series of instructions to be applied to the video data
 - Thus, the project file is very small
- Premiere is also a multi-track editor
 - Separate streams of video and audio data