

Overview

An RL algorithm: a mapping from experience history to actions.

Standard RL

Given: an MDP

 Project: learn a state-to-action mapping to maximize cumulative reward per episode.

- Output: "Policy"
- Involves value functions to distill data.
- Standard RL Pros & cons:
 - Data inefficient (not the objective)
 - General-Purpose (achieves objective on any MDP)
 - Asymptotically optimal

<u>Meta RL</u>

- Given: a distribution of MDPs / "tasks"
- Project: learn a data-to-action mapping maximize cumul. reward over entire interaction period (fixed). Min regret.
- "Meta-RL policy" or "Fast RL"
- Involves a sequence model (RNN/Transformer) to ingest data (and may be an incremental task-inference module). E.g., RL², VariBAD.
 - Meta RL Pros & cons:
 - Data-efficient (objective = min regret)
 - OOD issue (not trained for that)
 - Long-context problem (compute bottleneck, context truncation, gradient problems, long range credit assignment difficulty, compounding errors)

 RL^3 : Injects RL into Meta-RL: Augment experience inputs with Q^* estimates

Distribution of MDPs

• Same state, action space. Different reward, transition functions, with commonalities.

Meta-Episode Example

Many episode on one MDP <-> 1 meta-episode

Meta Reinforcement Learning

Objective: Learn a data-to-action mapping to maximizes cumulative reward

$$\mathcal{J}(\pi) = \mathbb{E}_{M_i \sim \mathcal{M}} \left[\sum_{t=0}^{H} \gamma^t \, \mathbb{E}_{(s_t, a_t) \sim \rho_{i, t}^{\pi}} \left[R_i(s_t, a_t) \right] \right]$$

- As a meta-level Markov decision process:
 - Each meta-episode: sample a new MDP, or "task", play for H interactions.
 - Optimal meta policy maximizes cumulative reward. Least regret given H interactions lacktriangle .
 - Dynamics different across meta-episodes, because every meta-episode is a new MDP.
 - It's POMDP at meta-level, where hidden variable is task identity, aka BAMDP.
 - Beliefs over tasks capture history sufficiently.
 - Conditioning meta-policy on (s_t, b_t) is sufficient.

RL²: Fast RL using Slow RL (Duan et al. 2016)

- RL² maps raw-data to actions directly (A simple black-box method).
 (Note: Some approaches map data-to-beliefs first e.g., VeriBAD (Zintgraf et al., 2019))
- Trained with standard "slow" deep RL.
- No general-purpose components.

RL³: Inject RL into RL²

- Insert a RL subroutine: estimate Q*-values e.g., use Q-learning.
- Provide to meta-RL. (Provide action-counts too).
- Meta-RL decides how to use.
- Over time, Q-values improve.

RL³: Inject RL into RL²: But why?

Claim: Q-injection 🧳 improves OOD generalization and long-context reasoning.

ep-greedy uct
exploration count-based
curiosity-driven ucb
sac
boltzman dqn

Inherent generality:

Key component in generalpurpose RL

Bottom line: Over time, data becomes overwhelming, Q-estimates more useful.

RL³: Inject RL into RL²: But Why?

Theoretical Reasons

Excellent task discriminators / identifiers:

Rare for MDPs to have same Q-value function, or same evolution of Q-estimates.

Related to meta-value function:

Equivalent in the limit!

for any $\epsilon > 0$, there exists $\kappa \in \mathbb{N}$ such that for $t \geq \kappa$,

$$\left| \max_{a \in A} \left[Q_i^t(s, a) \right] - \bar{V}^*(\bar{b}) \right| \le \epsilon \quad \forall s \in S.$$

RL³ vs RL² - Gridworlds Results Demo

RL³ vs RL² - Gridworlds Results

OOD

RL³ achieves lower regret. ~20% higher returns Efficiency

RL³ with state-abstractions: RL³-coarse: 2x fast, 90% of RL³.

Bonus: RL³ meta-training: ~30% more sample efficient

RL³ vs RL² - Random MDPs Results

Conclusion

- We introduced RL³, aiming to combine best of RL and RL² to achieve good efficiency (minimize regret), better long-term reasoning, better OOD generalization.
- Intuitions: Universality, summarization, actionability, long-term credit assignment and with helps task identification. With time, data gets overwhelming, Q-estimates useful, eventually sufficient.
- Key takeaways:
 - RL³ retains short-term efficiency of RL² on all domains
 - RL³ benefits increase with horizon.
 - RL³ benefits increase with distribution shift.
 - Bonus result: meta-training efficiency.
- Plug & play