

BÀI GIẢNG MÔN HỌC

KHAI PHÁ DỮ LIỆU (Data Mining) Chương 3: Khai phá luật kết hợp

Giảng viên: TS. Cao Thanh Sơn Bộ môn các hệ thống thông tin Email: ctsdhv@gmail.com

2017

Chương 3: Khai phá luật kết hợp

Based on slides **Data Mining: Concepts and Techniques**by
Jiawei Han, Micheline Kamber, and Jian Pei, 2011

and slides **Introduction to Data Mining**by
Tan, Steinbach, Kumar, 2005

Some illustrative images are downloaded from the Internet.

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Nội dung

- ☐ Khai phá luật kết hợp
- ☐ Một số khái niệm cơ bản
- ☐ Phương pháp sinh ứng viên: Apriori
- ☐ Phương pháp không sinh ứng viên: FP-Growth

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 3

Khai phá luật kết hợp

☐ Từ một tập hợp các giao dịch, hãy tìm các quy tắc để dự đoán sự xuất hiện của một mục (item) dựa trên sự xuất hiện của các mục khác trong giao dịch

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Ví dụ luật kết hợp

 $\begin{aligned} & \{ \text{Diaper} \} \rightarrow \{ \text{Beer} \}, \\ & \{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs, Coke} \}, \\ & \{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \}, \end{aligned}$

→ có nghĩa là cùng xuất hiện!

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Một số khái niệm cơ bản

- ☐ item: phần tử đại diện cho một loại đối tượng dữ liệu (ví dụ: Milk, Bread, ...)
- \Box items $I = \{i_1, ..., i_m\}$: tập gồm các mục (item)
- \Box itemset X: là tập gồm một hoặc nhiều mục (items), $X \subseteq I$
- ☐ Transaction Database D:
 - $D = \{T_1, T_2, ..., T_n\}$
 - $T_i \in D$: giao dịch (transaction), $T_i = (TID, X_T), X_T \subseteq I$
 - D: cơ sở dữ liệu giao dịch (transaction database)
 - |D|: số giao dịch có trong D
- \square k-itemset $X = \{x_1, x_2, ..., x_k\}$: itemset có chứa k mục.

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang

Một số khái niệm cơ bản

Items: {Beer, Coke, Diaper}

Itemset: {Beer, Coke, Diaper}, {Bread}, ...

Item: Bread

Transaction: 5

Πυ	items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Một số khái niệm cơ bản

- ☐ Support(X): mức hỗ trợ ứng với tập mục X
 - Mức hỗ trợ tuyệt đối (absolute support hay support count): tần suất xuất hiện của tập thuộc tính X trong CSDL giao dịch D, ký hiệu count(X)
 - Mức hỗ trợ tương đối (relative support): tỷ lệ các giao dịch có chứa X trên tổng các giao dịch có trong D.

$$supp(X) = \frac{count(X)}{|D|}$$

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 7

Một số khái niệm cơ bản

- Ví dụ
 - *X* = {Bread, Milk}
 - count(X) = 3
 - supp(X) = 3/5 = 60%

TID	Items
T ₁	Bread, Milk
T ₂	Bread, Diaper, Beer, Eggs
T ₃	Milk, Diaper, Beer, Coke
T ₄	Bread, Milk, Diaper, Beer
T ₅	Bread, Milk, Diaper, Coke

- ☐ Frequent itemset (tập phổ biến):
 - là tập mục có độ hỗ trợ lớn hơn một giá trị ngưỡng min_sup nào đó cho trước.

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Một số khái niệm cơ bản

- ☐ Luật kết hợp (Association rule)
 - Gọi $X \to Y$ là một luật kết hợp nếu $X \subseteq I$ và $Y \subseteq I$ và $X \cap Y = \emptyset$
 - Khi X xuất hiện trong D thì sẽ kéo theo sự xuất hiện của Y với một tỷ lệ nào đó.
 - Ví dụ: {Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

☐ Mức hỗ trợ (*support*) của luật kết hợp $X \to Y$ trong D là mức hỗ trợ của $X \cup Y$ trong D.

$$supp(X \to Y) = supp(X \cup Y) = \frac{count(X \cup Y)}{|D|}$$

 \square Độ tin cậy (*confidence*) của luật kết hợp $X \to Y$ trong D là tỷ lệ giao dịch có chứa cả X và Y với các giao dịch chỉ chứa X

$$conf(X \to Y) = \frac{count(X \cup Y)}{count(X)}$$

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 9

Một số khái niệm cơ bản

- Ví du luât kết hợp
 - $X \rightarrow Y$: {Milk, Diaper} \rightarrow {Beer}
 - $count(X \rightarrow Y) = count(X \cup Y) = 2$
 - count(X) = 3
 - |D| = 5
 - $supp(X \rightarrow Y) = \frac{count(X \cup Y)}{|D|} = \frac{2}{5} = 0.4$
 - $conf(X \rightarrow Y) = \frac{count(X \cup Y)}{count(X)} = \frac{2}{3} = 0.67$
- ☐ Cho một tập giao dịch T, mục đích của luật kết hợp là tìm tất cả các luật (được gọi là luật mạnh, hay luật có giá trị)
 - support ≥ min_sup threshold (ngưỡng hỗ trợ tối thiểu)
 - conficence ≥ min_conf threshold (ngưỡng tin cậy tối thiểu)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Khai phá luật kết hợp

Input: CSDL giao dịch D, Các giá trị ngưỡng

min_sup, min_conf

Output: Tất cả các luật mạnh

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Phương pháp khai phá tập phổ biến

- ☐ Tìm tập phổ biến (finding frequent itemsets)
 - Input: tập các mục I, CSDL giao dịch D, các giá trị ngưỡng min_sup, min_conf
 - Method (naïve algorithm):
 - đếm số lần xuất hiện của tất cả các tập con của I trong D
 chỉ giữ lai các tập con thoả mãn min sup
 - Note: không hiệu quả, có *m* mục cần tính 2^m-1 tập con của *l*.
- ☐ Sinh luật kết hợp từ các tập phổ biến (generating association rules from frequent itemsets)
 - Input: tập các tập phổ biến
 - Method:
 - \circ với mỗi tập phổ biến X và $A \subset X$
 - o kiểm tra luật $A \rightarrow (X A)$ có thoả mãn min_conf hay không?

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 1

Apriori Algorithm [1]

Input:

- \square D, a database of transactions;
- min_sup, the minimum support count threshold.

Output: *L*, frequent itemsets in *D*.

Method:

```
L_1 = \text{find\_frequent\_1-itemsets}(D);
(1)
        for (k = 2; L_{k-1} \neq \phi; k++) {
(2)
            C_k = \operatorname{apriori\_gen}(L_{k-1});
(3)
            for each transaction t \in D { // scan D for counts
(4)
                 C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
(5)
(6)
                 for each candidate c \in C_t
(7)
                      c.count++;
(8)
(9)
            L_k = \{c \in C_k | c.count \ge min\_sup\}
(10)
        return L = \bigcup_k L_k;
(11)
```

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Apriori Algorithm [1]


```
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
(1)
            for each itemset l_2 \in L_{k-1}
(2)
                if (l_1[1] = l_2[1]) \wedge (l_1[2] = l_2[2])
(3)
                     \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) then {
(4)
                     c = l_1 \bowtie l_2; // join step: generate candidates
                     if has_infrequent_subset(c, L_{k-1}) then
(5)
                          delete c; // prune step: remove unfruitful candidate
(6)
                     else add c to C_k;
(7)
(8)
(9)
        return C_k;
procedure has_infrequent_subset(c: candidate k-itemset;
            L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
(1)
        for each (k-1)-subset s of c
            if s \notin L_{k-1} then
(2)
(3)
                 return TRUE;
        return FALSE;
(4)
PhD. CAO THANH SƠN - Chương 3: Khai phá luật kết hợp
                                                                                  Trang 13
```

Ví dụ áp dụng giải thuật Apriori

☐ Cho CSDL giao dịch D như sau [1]:

TID	List of item_IDs		
T100	11, 12, 15		
T200	I2, I4		
T300	12, 13		
T400	11, 12, 14		
T500	I1, I3		
T600	12, 13		
T700	I1, I3		
T800	11, 12, 13, 15		
T900	11, 12, 13		

- ☐ Giả sử min_sup = 2
- Để thuận tiện, giả sử rằng các mục trong một giao dịch hay trong tập mục được sắp xếp theo thứ tự từ điển.

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Ví dụ áp dụng giải thuật Apriori (2)

Compare candidate support count with minimum support count

\boldsymbol{L}_1	
Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
{I4}	2
{I5}	2

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 15

Scan D for
count of each
candidate
candidate

up. coun
6
7
6
2
2

Compare candidate support count with minimum support count

Sup. count
6
7
6
2
2

Generate C_2	C_2		C_2			L_2	
candidates	Itemset	Scan D for	Itemset	Sup. count	Compare candidate	Itemset	Sup. count
from L_1	{I1, I2}	count of each	{I1, I2}	4	support count with	{I1, I2}	4
→	{I1, I3}	candidate	{I1, I3}	4	minimum support	{I1, I3}	4
	{I1, I4}	candidate	(II, I4)	i	count	{11, 15}	2
	{I1, I5}		{11, 15}	2	_	{12, 13}	4
	{12, 13}		{12, 13}	4	5	{12, 14}	4 2 2
	{12, 14}		{12, 14}	2		{12, 15}	2
	{12, 15}		{12, 15}	2			
	{13, 14}		(13, 14)	0			
	{13, 15}	8	(13, 15)	- 1	_		
	{14, 15}		(I4, I5)	0	-		

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 16

Ví dụ áp dụng giải thuật Apriori (4)

Join: $C_3 = L_2 \bowtie L_2 = \{\{I1, I2\}, \{I1, I3\}, \{I1, I5\}, \{I2, I3\}, \{I2, I4\}, \{I2, I5\}\}\}$ $\bowtie \{\{I1, I2\}, \{I1, I3\}, \{I1, I5\}, \{I2, I3\}, \{I2, I4\}, \{I2, I5\}\}\}$

$$= \{\{I1, I2, I3\}, \{I1, I2, I5\}, \{I1, I3, I5\}, \{I2, I3, I4\}, \{I2, I3, I5\}, \{I2, I4, I5\}\}.$$

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Tropp 1

Ví dụ áp dụng giải thuật Apriori (5)

Join: $C_3 = L_2 \bowtie L_2 = \{\{I1, I2\}, \{I1, I3\}, \{I1, I5\}, \{I2, I3\}, \{I2, I4\}, \{I2, I5\}\}\}$ $\bowtie \{\{I1, I2\}, \{I1, I3\}, \{I1, I5\}, \{I2, I3\}, \{I2, I4\}, \{I2, I5\}\}\}$

$$= \{\{I1, I2, I3\}, \{I1, I2, I5\}, \frac{\{I1, I3, I5\},}{\{I2, I3, I4\}, \{I2, I3, I5\}, \{I2, I4, I5\}\}}.$$

	C_3		C_3	(Compare candidate	L_3	
Generate C_3	Itemset	Scan D for	Itemset	Sup, count	support count	Itemset	Sup. count
candidates	{I1, I2, I3}	count of each	{I1, I2, I3}	2	with minimum	{I1, I2, I3}	2
from L_2		candidate			support count		
	$\{I1,I2,I5\}$	──	$\{I1, I2, I5\}$	2		{I1, I2, I5}	2
					l		

The algorithm uses $L_3 \bowtie L_3$ to generate a candidate set of 4-itemsets, C_4 . The join results in {{I1, I2, I3, I5}},

 $C_4 = \phi$, and the algorithm terminates

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Sinh luật kết hợp

- □ Với mỗi tập phổ biến W tìm được, sinh ra mọi tập con thực sự X (khác rỗng) của nó
- lacktriangle Với mỗi tập phổ biến W và một tập con thực sự X khác rỗng, sinh luật X o (W X) thoả mãn min_conf

$$conf(X \to (W - X)) = \frac{count(W)}{count(X)} \ge min_conf$$

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 19

Sinh luật kết hợp – Ví dụ [1]

TID	List of item_IDs
T100	I1, I2, I5
T200	12, 14
T300	12, 13
T400	I1, I2, I4
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

- $\{I1, I2\} \Rightarrow I5, \quad conf = 2/4 = 50\%$
- $\{I1, I5\} \Rightarrow I2, \quad conf = 2/2 = 100\%$
- {I2,I5} \Rightarrow I1, conf = 2/2 = 100%I1 \Rightarrow {I2,I5}, conf = 2/6 = 33%
 - $I2 \Rightarrow \{I1, I5\}, \quad conf = 2/7 = 29\%$
- I5 \Rightarrow {I1, I2}, conf = 2/2 = 100%

- \square *W* = {I1, I2, I5}
- ☐ Các luật kết hợp nào có thể sinh từ *W*?
- ☐ Tập con thực sự không rỗng của W:

{I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}

- □ Ngưỡng *min_conf* = 70%,
- □ Output?

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Thuật toán Apriori

- □ Bài tập
 - min_sup = 2
 - *min_conf* = 60%

TID	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E
	I .

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Trang 2

Giải thuật FP-Growth

- ☐ Tìm tập phổ biến với giải thuật FP-Growth
 - Phát hiện các tập phổ biến không cần tạo các ứng viên
 - Đọc tài liệu [1, 2, 3]

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp

Tài liệu tham khảo

- [1] Jiawei Han, Micheline Kamber, Jian Pei, *Data Mining: Concepts and Techniques*, 3rd ed, Morgan-Kaufmann Publishers, 2012.
- [2] Nguyễn Hà Nam, Nguyễn Trí Thành, Hà Quang Thuỵ, *Giáo trình khai phá dữ liệu*, NXB Đại học Quốc gia Hà Nội, 2013.
- [3] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, *Introduction to Data Mining*, Addison-Wesley, 2005
- [4] WEKA, www.cs.waikato.ac.nz/ml/weka/

PhD. CAO THANH SO'N - Chương 3: Khai phá luật kết hợp