

BACHARELADO EM ENGENHARIA CIVIL

ANDRÉ LOPES DE OLIVEIRA EVERTON SANTOS GABRIEL DE SOUSA MATSUMURA GUSTAVO MARCOS CAMPOS DOS SANTOS LEANDRO DE MAGALHÃES

ESTUDO DIRIGIDO:

Funções Elementares – Função Tangente

CARAGUATATUBA 2018

ANDRÉ LOPES DE OLIVEIRA EVERTON SANTOS GABRIEL DE SOUSA MATSUMURA GUSTAVO MARCOS CAMPOS DOS SANTOS LEANDRO DE MAGALHÃES

ESTUDO DIRIGIDO:

Funções Elementares – Função Tangente

Estudo Dirigido apresentado à disciplina de Cálculo Diferencial e Integral I, como exigência parcial à aprovação.

Orientadora: Prof^a. Ms. Cristina Meyer

CARAGUATATUBA 2018

SUMÁRIO

1 FUNÇÃO ELEMENTAR	
1.1 Representação Algébrica	4
1.2 Representação Gráfica	6
1.3 Domínio e Imagem	6
1.4 Período e Paridade	7
2 EXEMPLO 1 - REFLEXÃO E COMPRESSÃO	8
2.1 Problema e Representação Algébrica	8
2.2 Representação Gráfica	8
2.3 Domínio e Imagem	9
2.4 Período e Paridade	9
3 EXEMPLO 2 - VOLUME DE UM CONE DE REVOLUÇÃO	10
3.1 Problema e Representação Algébrica	10
3.2 Representação Gráfica	11
3.3 Domínio e Imagem	12
3.4 Período e Paridade	12
REFERÊNCIAS	14

LISTA DE GRÁFICOS

Gráfico 1 - Ciclo Trigonométrico	
Gráfico 2 - Função Elementar da Tangente	
Gráfico 3 - f(x) = -tan(π*x)	8
Gráfico 4 - Cone de Revolução	
Gráfico 5 - V1(x) = $(\pi^*1^{3*}tan(x))/3$	11
Gráfico 6 - $V2(x) = (\pi^2 2^3 \tan(x))/3$	11

1 FUNÇÃO ELEMENTAR

A seguir serão abordados os tópicos principais sobre a função elementar da tangente.

1.1 Representação Algébrica

Gráfico 1 - Ciclo Trigonométrico

Fonte: Gráfico plotado com GeoGebra (2018).

Dado um ponto A(cos(45), sen(45)), associado à um ângulo $\alpha = \pi/4 = 45^{\circ}$, estende-se uma reta $\overline{\text{CAB}}$ até o eixo das tangentes, aonde se encontra o ponto B. A medida de $\overline{\text{CB}}$ é a tangente do ângulo α , ou tg(α) (MEDEIROS et al, 2009).

Note que para a f(x) = y = tan(x), tal que:

- $0 < x < \pi/2 =>$ valores de y positivos e crescentes;
- $\pi/2$ < x < π => valores de y negativos e crescentes;
- π < x < $3\pi/2$ => valores de y positivos e crescentes;
- $-3\pi/2 < x < 2\pi => valores de y positivos e crescentes;$

Assim, verifica-se que:

Tabela 1 - Tangente de Ângulos de Eixo e Ângulos Notáveis

α rad	αο	tg(α)
0	0°	0
π/6	30°	√ 3/3
π/4	45°	1
π/3	60°	√3
π/2	90°	∄
π	180°	0
3 π/2	270°	∄
2 π	360°	0

Fonte: adaptado de Medeiros et al(2009, p. 332) e Reges(2014, p.26).

O cálculo da tangente é entendido como: tan(x) = sen(x)/cos(x). Por isso observa-se que nas situações em que $x = \pi/2$ ou $x = 3\pi/2$ ocorre que cos(x) = 0. Como tan(x) = sen(x)/0, logo $tan(\pi/2) = tan(3\pi/2) = \#$.

Uma função $f(x) = y = \tan(x)$, assim como qualquer outra função, pode ser vista como: $f(x) = a + b * \tan(c * x + d)$. Sendo a termo constante de y, b o coeficiente de y, c o coeficiente de x e d o termo constante de x. Para funções elementares temos a = d = 0 e b = c = 1 (PEREIRA, 2017).

1.2 Representação Gráfica

Gráfico para tan(x)

x: 0.022083861 | y: 0.022087451

Gráfico 2 - Função Elementar da Tangente

Fonte: Plotado com Google (2018).

Mais informações

-6

O Gráfico 2 expressa o gráfico da função elementar da tangente, também conhecido como *tangentóide* (MEDEIROS et al, 2009). Os "buracos" que ocorrem no período de $\pi/2$ são chamados de *assíntotas verticais*, pois percebe-se que há algo como uma "reta vertical vazia" que divide no meio o período da função (PEREIRA, 2017).

1.3 Domínio e Imagem

Domínio: $D(f) = \{x \in \mathbb{R} \mid x \neq \pi/2 + k^*\pi; k \in \mathbb{Z}\}.$

Imagem: $Im(f) = \{y \in \mathbb{R}\}\ OU\ (-\infty\ ;\ +\infty).$

1.4 Período e Paridade

Período de tan(x): $tan(x) = tan(x+k^*\pi) \mid k \in \mathbb{Z}) \Rightarrow \pi$.

Paridade: Ímpar, pois a função é simétrica em relação à origem.

2 EXEMPLO 1 - REFLEXÃO E COMPRESSÃO

Segue um exemplo de aplicação de funções tangenciais aplicando as operações de reflexão e compressão de funções.

2.1 Problema e Representação Algébrica

tan(x) (Função elementar)
$$tan(x) => -tan(x) \qquad (Reflexão)$$

$$-tan(x) => -tan(\pi^*x) \qquad (Compressão por \pi)$$

$$f(x) = -tan(\pi^*x) \qquad (Representação Algébrica)$$

2.2 Representação Gráfica

Gráfico 3 -
$$f(x) = -tan(\pi^*x)$$

Aproximadamente 752.000.000 resultados (0,44 segundos)

Gráfico para $-tan(\pi^*x)$

Fonte: Plotado com Google (2018).

O Gráfico 3 representa a função $f(x) = -tan(\pi^*x)$.

2.3 Domínio e Imagem

Domínio: $D(f) = \{x \in \mathbb{R} \mid x \neq \frac{1}{2} + k; k \in \mathbb{Z}\}.$

Observe que diferente do da função elementar, como o período é 1 e não π , por conta da compressão por π , a expressão é conforme acima.

Imagem: $Im(f) = \{y \in \mathbb{R}\}.$

Observe que isto não se altera, embora os valores de y tenham sido invertidos em relação a função elementar, por conta da operação de reflexão, os valores de y se mantém no intervalo de $(-\infty ; +\infty)$. Note que agora ela é uma função decrescente.

2.4 Período e Paridade

Período de f(x): $f(x) = f(x+k) \mid k \in \mathbb{Z} => 1$.

Lembre-se que a função elementar f(x) = a + b * tan(c * x + d), logo, por esta razão, sendo o coeficiente $c = \pi$, temos que os valores de x são comprimidos por π , como demonstra o Gráfico 3. Por isso, se na função elementar f(x) = tan(x) o período é igual a π , na função $f(x) = tan(\pi^*x)$, o período será $\pi/\pi = 1$. A reflexão de b = -1 não altera o período.

Paridade: Ímpar.

Neste caso, a função continua a ser simétrica em relação à origem. Note que se houvesse uma translação de qualquer espécie, a \neq 0 OU d \neq 0, a função não seria nem par nem ímpar, pois não seria nem simétrico em relação ao eixo das ordenadas (par) e nem em relação à origem (ímpar).

3 EXEMPLO 2 - VOLUME DE UM CONE DE REVOLUÇÃO

Segue um exemplo de aplicação de funções tangenciais proposto por Reges (2014), no qual ele demonstra como determinar o volume de um cone de revolução apenas conhecendo a medida de um cateto e o seu ângulo em relação com a hipotenusa. Desta forma, este é o exemplo de uma composição de funções, sendo uma delas a função tangencial.

3.1 Problema e Representação Algébrica

Segue o problema:

Rotacionando-se um triângulo retângulo em torno de um de seus catetos, obtemos um cone circular reto, chamado de cone de revolução. É possível determinar uma fórmula para o volume deste cone conhecendo-se apenas a medida de um cateto e o ângulo formado por tal cateto e a hipotenusa? (REGES, 2014, p. 41, grifo do autor).

a a a

Gráfico 4 - Cone de Revolução

Fonte: adaptado de Reges(2014, p.41).

Conforme o Gráfico 4, sendo o ângulo OPQ = θ , tem-se:

Resolução: $V=(\pi^*r^{3*}tan(\theta))/3$ (Para detalhes da resolução veja Reges (2014)).

3.2 Representação Gráfica

Considerando que $V(x) = (\pi^*r^{3*}tan(x))/3$, usa-se como exemplos as situações em que r = 1, Gráfico 5, e r = 2, Gráfico 6:

Gráfico 5 - V1(x) =
$$(\pi^*1^{3*}tan(x))/3$$

Gráfico para π*1³*tan(x)/3

Fonte: Plotado com Google (2018).

Gráfico 6 - $V2(x) = (\pi^*2^{3*}tan(x))/3$

Gráfico para $\pi^*2^3*tan(x)/3$

Fonte: Plotado com Google (2018).

3.3 Domínio e Imagem

Domínio: $D(V1) = \{x ∈ \mathbb{R} \mid x \neq \pi/2 + k*π; k ∈ \mathbb{Z}\}.$

Observe que é o mesmo domínio da função elementar.

Imagem: $Im(V1) = \{y \in \mathbb{R}\}\ OU\ (-\infty\ ; +\infty).$

Observe que $-\infty < y < +\infty$, assim como na função elementar. No entanto, note que a proporção dos valores de y para cada x são ligeiramente diferentes. Lembrando-se de que a função elementar f(x) = a + b * tan(c * x + d), temos que b = $\pi*1^3*1/3 => b = \pi/3 => b = 1,0471975512$. Logo, em relação à função fundamental f(x), V1(x) é alongada verticalmente por 1,0471975512. Claro que esta variação é imperceptível ao se olhar para o Gráfico 5.

É interessante notar que, neste caso, os volumes do cone tem valores aproximadamente iguais aos obtidos por tan(x).

Domínio: $D(V2) = \{x ∈ ℝ \mid x ≠ π/2 + k*π; k ∈ ℤ\}.$

É o mesmo domínio da função elementar.

Imagem: $Im(V2) = \{y \in \mathbb{R}\}\ OU\ (-\infty; +\infty).$

Note que que no caso de V2(x) a proporção dos valores de y para cada x são explicitamente diferentes em relação à função fundamental. Agora temos que b = $\pi^*2^{3*}1/3$ => b = $8*\pi/3$ => b = 8,37758040957. Logo, em relação à função fundamental f(x), V2(x) é alongada verticalmente por 8,37758040957. Neste caso a variação é bem explícita, como demonstra o Gráfico 6. Conforme o valor do raio aumentar essa diferença será cada vez mais perceptível.

3.4 Período e Paridade

O período e a paridade de V1(x), V2(x) e Vr(x) são iguais, por isso trataremos da função Vr(x).

Período de Vr(x): $Vr(x) = Vr(x+k^*\pi) \mid k \in \mathbb{Z}) => \pi$.

Paridade: Ímpar.

Como com no capítulo **2 EXEMPLO 1 – REFLEXÃO E COMPRESSÃO**, aqui função continua a ser simétrica em relação à origem e caso houvesse uma translação de qualquer espécie a função não seria nem par nem ímpar.

REFERÊNCIAS

MEDEIROS, V.Z. et al. Capítulo 9 – **Trigonometria**. p. 319 – 335. In: MEDEIROS, V.Z. et al. **Pré-Cálculo**. 2ª Edição. São Paulo: Cengage Learning, 2009. 538 p.

MEYER, C. Aulas e Resumos: **Cálculo Diferencial e Integral.** Caraguatatuba: IFSP, 2018.

PEREIRA, P. C. A. **Trigonometria na Circunferência.** Youtube: Equaciona Matemática, 2017. Disponível em: https://www.youtube.com/playlist? list=PLEfwqyY2ox86JU-fviQa08fMH67W6oAKo> Acesso em: 5 de março de 2018.

REGES, V. G. Aplicações da Trigonometria. p. 41-43. in REGES, V. G. Trigonometria e Aplicações. Maringá: UEM, 2014. 51 p. Disponível em: http://www.sites.uem.br/profmat/reges_gaieski.pdf> Acesso em: 5 de março de 2018.