Lab 3: Liquid Crystal Display (LCD) Driver in C

Instructor: Prof. Yammin Gong

Teaching Assistant: Francisco E Fernandes Jr and Khuong V. Nguyen

Spring 2019

Goals

- 1. Understand alternative function of GPIO pins.
- 2. Understand basic concepts of an LCD driver, particularly *Bias* and *Duty Ratio*.
- 3. Understand concepts of double buffering to ensure the coherency of displayed information.
- 4. Understand clock configurations of GPIO pins and LCD drivers.

Grading Rubrics (Total = 100 points)

- 1. **Pre-lab assignment:** 10 points.
- 2. Attendance and Class Participation: 8 points.
- 3. **Code Organization:** 8 points.
- 4. **Lab demo questions:** 10 points.
- 5. **First Objective:** 50 points.
- 6. **Second Objective:** 14 points.

Pre-lab Assignments:

- 1. Read Chapter 17 of Textbook.
- 2. Watch a Youtube Tutorial:
 - Lecture 14. LCD (http://web.eece.maine.edu/~zhu/book/tutorials.php)
- 3. **Complete the Pre-Lab** assignment available in a separate file on D2L (**10 points**).
 - **Due date for Monday labs:** April 01, 2019.
 - **Due date for Wednesday labs:** April 03, 2019.

Lab Objectives - Overview:

More details about each objective is presented at the end of this document.

- 1. First Objective (50 points):
 - a. Due date:
 - i. For Monday labs: April 08, 2019.
 - ii. For Wednesday labs: April 10, 2019.
 - b. Write a C program to display the first six letters of your last name in the LCD.
- 2. Second Objective (14 points):
 - a. Due date:
 - i. For Monday labs: April 15, 2019.
 - ii. For Wednesday labs: April 17, 2019.
 - b. Create a generic LCD driver in C to display any letter in any display position.

Introduction

PIN configuration: A total of 28 GPIO pins from Port A, B, and C drive the LCD display, as shown below. The duty ratio of this LCD is 4 and therefore there are four common terminals (COM0-COM3), which are connected to four GPIO pins. The other 24 GPIO pins are mapped to pixel bits stored in the internal LCD RAM. The mapping between GPIO pins and LCD RAM are given in the textbook. Each pin should be configured as Alternative Function 11 (LCD Driver).

Figure 1. PIN connection to six 14-segment digits and 4 bars.

LCD (24 segments, 4 commons, multiplexed 1/4 duty, 1/3 bias) on DIP28 connector

VLCD = PC3			
COM0 = PA8 (LCD_COM0)	COM1 = PA9 (LCD_COM1)	COM2 = PA10 (LCD_COM2)	COM3 = PB9 (LCD_COM3)
SEG0 = PA7 (LCD_SEG4)	SEG6 = PD11 (LCD_SEG31)	SEG12 = PB5 (CD_SEG9)	SEG18 = PD8 (LCD_SEG28)
SEG1 = PC5 (LCD_SEG23)	SEG7 = PD13 (LCD_SEG33)	SEG13 = PC8 (LCD_SEG26)	SEG19 = PB14 (LCD_SEG14)
SEG2 = PB1 (LCD_SEG6)	SEG8 = PD15 (LCD_SEG35)	SEG14 = PC6 (LCD_SEG24)	SEG20 = PB12 (LCD_SEG12)
SEG3 = PB13 (LCD_SEG13)	SEG9 = PC7 (LCD_SEG25)	SEG15 = PD14 (LCD_SEG34)	SEG21 = PB0 (LCD_SEG5)
SEG4 = PB15 (LCD_SEG15)	SEG10 = PA15 (LCD_SEG17)	SEG16 = PD12 (LCD_SEG32)	SEG22 = PC4 (LCD_SEG22)
SEG5 = PD9 (LCD_SEG29)	SEG11 = PB4 (LCD_SEG8)	SEG17 = PD10 (LCD_SEG30)	SEG23 = PA6 (LCD_SEG3)

	LCD						
STM32L Pin	LCD Pin	СОМЗ	COM2	COM1	COM0	LCD Pin	
PA7 (LCD_SEG4)	1	1N	1P	1D	1E	SEG 0	
PC5 (LCD_SEG23)	2	1DP	1COLON	1C	1M	SEG 1	
PB1 (LCD_SEG6)	3	2N	2P	2D	2E	SEG 2	
PB13 (LCD_SEG13)	4	2DP	2COLON	2C	2M	SEG 3	
PB15 (LCD_SEG15)	5	3N	3P	3D	3E	SEG 4	
PD9 (LCD_SEG29)	6	3DP	3COLON	3C	3M	SEG 5	
PD11 (LCD_SEG31)	7	4N	4P	4D	4E	SEG 6	
PD13 (LCD_SEG33)	8	4DP	4COLON	4C	4M	SEG 7	
PD15 (LCD_SEG35)	9	5N	5P	5D	5E	SEG 8	
PC7 (LCD_SEG25)	10	BAR2	BAR3	5C	5M	SEG 9	
PA15 (LCD_SEG17)	11	6N	6P	6D	6E	SEG 10	
PB4 (LCD_SEG8)	12	BAR0	BAR1	6C	6M	SEG 11	
PB9 (LCD_COM3)	13	СОМЗ					
PA10 (LCD_COM2)	14		COM2				
PA9 (LCD_COM1)	15			COM1			
PA8 (LCD_COM0)	16				COM0		
PB5 (LCD_SEG9)	17	6J	6K	6A	6B	SEG 12	
PC8 (LCD_SEG26)	18	6H	6Q	6F	6G	SEG 13	
PC6 (LCD_SEG24)	19	5J	5K	5A	5B	SEG 14	
PD14 (LCD_SEG34)	20	5H	5Q	5F	5G	SEG 15	
PD12 (LCD_SEG32)	21	4J	4K	4A	4B	SEG 16	
PD10 (LCD_SEG30)	22	4H	4Q	4F	4G	SEG 17	
PD8 (LCD_SEG28)	23	3J	3K	3A	3B	SEG 18	
PB14 (LCD_SEG14)	24	3H	3Q	3F	3G	SEG 19	
PB12 (LCD_SEG12)	25	2J	2K	2A	2B	SEG 20	
PB0 (LCD_SEG5)	26	2H	2Q	2F	2G	SEG 21	
PC4 (LCD_SEG22)	27	1J	1K	1A	1B	SEG 22	
PA6 (LCD_SEG3)	28	1H	1Q	1F	1G	SEG 23	

Lab 3: Lab Assignment

First Objective:

- Write a C program to display the first six letters of your last name in the LCD.
 - A startup code is provided on D2L under Lab 3 section (filename: *Lab 3 Startup Code.zip*) containing the following files: **LCD.c**, **LCD.h**, **main.c**, and **stm32l476.h**.
 - **Download** and **extract** the startup code.
 - Create a new C Project using System Workbench for STM32 IDE.
 - Move the files **main.c** and **LCD.c** to your project's **src** folder.
 - Move the files LCD.h and stm32l476xx.h to your project's inc folder.
 - o For the first objective, all your code should be written in the *LCD.c* file.
 - You are required to complete four functions:
 - *LCD_PIN_Init()* that enables GPIO clocks and configures GPIO pins as the alternative function 11 (Pre-Lab, Questions 1 to 4).
 - LCD_Configure() that performs the LCD configuration in the flowchart (Pre-Lab, Question 5).
 - *LCD_Display_Name*() that display the first six letters of your last name by setting up the LCD_RAM registers (Pre-Lab, Question 6).

Second Objective:

- Create a generic LCD driver in C to display any letter in any LCD position.
 - You are required to complete LCD_WriteChar() function located in the LCD.c file.