

Laboratórios de Matemática 1

Cursos: LEEC

Trabalho curricular (P1/V2)

Início: 2016-10-15 Fim: 2015-11-05

Nome:	Nº	/
Nome:	N°	C/T/
Nome:	N°	C/T/
Nome:	N°	C/T /

OBSERVAÇÕES

- O Trabalho Curricular é um projecto a desenvolver em grupo no qual todos os elementos devem obrigatoriamente contribuir equitativamente na sua execução; é um trabalho formado por duas partes distintas, por um relatório e defesa.
- A parte 1 consiste
 - Na implementação de scripts (comandos e código) que suportem a resolução do problema, usando o Python como plataforma de desenvolvimento;
 - Na realização de um relatório parcial em formato electrónico, devendo respeitar o modelo a indicar pelo respectivo docente;
- O relatório parcial e resolução desta 1ª parte deve ser enviado por email ao respectivo docente, até às 23h da data limite indicada.
- Para efeitos de formação de grupos de trabalho, aceitam-se grupos de 3 ou 4 elementos.
- A deteção de plágio será punida com a anulação integral do trabalho, sendo atribuída à componente TC de todos os elementos dos grupos, potencialmente indiciados, uma classificação nula;
- O presente trabalho encontra-se disponível desde o dia 15 de outubro de 2014.

1	2	3	4	5	6	Script	Relatório	Total
5	5	5	5	10	10	5	5	50

Tema: Estudo da descarga de um condensador carregado

Considere o circuito elétrico da figura, relativo à descarga de um condensador.

A tensão V, ou diferença de potencial entre os terminais A e B do condensador, é dada pela lei das malhas e exprime-se pela equação

$$0 = RC\frac{dV}{dt} + V \tag{1}$$

onde R é o valor da resistência e C a capacidade do condensador. Sabe-se que a diferença de potencial entre A e B é uma função da família

$$V(t) = a \cdot e^{-t/b} + c \tag{2}$$

onde a, b e c são constantes reais. Seja ε a força electromotriz do gerador,

- 1. Sabendo que inicialmente (estando K em 2) a diferença de potencial entre A e B é V_0 , i.e., $V(0) = \varepsilon$, determine uma relação entre as constantes.
- 2. Quando K passa de 2 para 1, o condensador entra em descarga. Ao fim de "muito tempo", fica completamente descarregado e a diferença de potencial entre A e B é nula, i.e., $\lim_{t\to\infty}V(t)=0$. Nestas condições, determine uma relação entre as constantes.
- 3. Imponha que a função V verifique a equação 1 e resolva o sistema com as 3 equações obtidas, em ordem às constantes a, b e c.
- 4. Defina a função V_D , tensão aos terminais do condensador, para a descarga.
- 5. Designa-se por constante de tempo, τ , o instante em que a reta tangente à curva de carga na origem, intersecta a assíntota ao gráfico.
 - a) determine o valor de τ e o valor de tensão nesse instante;
 - b) indique o seu significado.
- 6. Considere que $\varepsilon=50$ V, $R=400\Omega$ e C=10mF. O comutador do circuito está na posição 2 e no instante t=0s, passa para a posição 1, ficando nessa posição. Represente no mesmo gráfico,
 - a) a tensão aos terminais do condensador para $t \in [0,4\tau]s$;
 - b) a reta tangente à curva de carga na origem;
 - c) a assíntota ao gráfico de V_D ;
 - d) as coordenadas do ponto de intersecção entre a reta tangente e a assíntota;
 - e) as coordenadas do ponto da curva de carga para o mesmo instante do ponto referido em d)