

Поняття алгоритму. Блок-схемний метод задання алгоритмів

к.т.н., доцент кафедри прикладної математики Рижа Ірина Андріївна

Вступ

Програмні продукти

- додаток на мобільному телефоні;
- комп'ютерна гра;
- розрахунок за надані послуги чи придбаний у крамниці товар.

Програмування

- це мистецтво, яке можна осягнути вивченням засад і положень, використовуючи вже існуючі прийоми та напрацювання чи створюючи нові надбання.
 - Це НЕ означає просто навчитись писати команди на тій чи іншій мові програмування.
 - Це вироблений спосіб мислення, скерований на творення якісного й оптимального способу одержання результату.

Про що ця лекція???

- ▶ Розглянемо поняття алгоритму та його властивості.
- ▶ Викладемо особливості зображення алгоритму у вигляді блок-схеми.

Задання алгоритму

Поняття алгоритму

Алгоритм

- конструктивно задане правило (закон), за яким вхідній інформації (умовам задачі)
 ставиться у відповідність нова вихідна інформація (розв'язок задачі);
- деякий скінченний набір операцій, виконання яких одна за однією через скінченне число кроків приводить до поставленої мети (розв'язку задачі);
- ▶ базове поняття і не означається через простіші поняття.

Властивості алгоритму

1. Скінченність

 Алгоритм є скінченим об'єктом, що є необхідною умовою його механічної реалізовності.

2. Масовість

 Алгоритм повинен бути застосовним до широкого класу задач, які відрізняються тільки вхідними даними.

3. Визначеність (детермінованість)

- Описання множини операцій, якою визначається алгоритм, НЕ повинні допускати двояких тлумачень.
- При виконанні операцій НЕ повинно виникати питань, що саме і як треба робити.
 Строго визначеним повинен бути і порядок виконання операцій.

Властивості алгоритму

4. Дискретність

- Процес, який визначається алгоритмом, повинен мати дискретний (перервний)
 характер, тобто являти собою послідовність окремих завершених кроків.
- Кожна операція алгоритму повинна виконуватися за скінченний час, а виконання наступної операції повинно починатися після завершення попередньої.

5. Результативність

- Виконання послідовності операцій, якою визначається алгоритм, через скінченне число кроків приводить до цілком певного результату.
- Виконання алгоритму НЕ може закінчуватися невизначеною ситуацією або ж зовсім НЕ закінчуватися.
- Кожен алгоритм передбачає наявність деяких вхідних даних і його виконання за скінченний час приводить до цілком певних результатів.

Властивості алгоритму

6. Формальність

 Будь-який виконавець, здатний сприймати і виконувати вказівки алгоритму, виконає поставлене завдання.

7. Захищеність

 Алгоритм повинен бути захищеним від несанкціонованого використання (використання без дозволу авторів) та некваліфікованого користувача (некоректне задання початкових даних).

8. Дружелюбність

Алгоритм завжди готовий вказати виконавцю на його помилки.

Конструювання алгоритмів

Система операцій (вказівок) виконавця

- набір операцій, виконанню яких навчено виконавця і які можуть бути включені у множину операцій, якою визначається алгоритм.
 - Якщо вказівка про виконання завдання входить до системи допустимих для виконавця вказівок, то множина операцій, якою визначається алгоритм, містить едину операцію.
 - ▶ Покрокова деталізація "зверху вниз"
 - Якщо серед вказаних операцій є такі, що НЕ входять до системи операцій виконавця, то такі операції розкладаються на сукупність *простіших* операцій. Таке розкладання операцій на простіші продовжується доти, поки утвориться сукупність операцій, кожна з яких входить до системи операцій виконавця.

Форми задання алгоритмів

Зображення алгоритму у вигляді блок-схеми

Блок-схема

 - графічне зображення алгоритму, при якому окремі кроки (етапи) алгоритму зображаються з допомогою геометричних фігур (символів, блоків), кожна з яких несе відповідне логічно-змістове навантаження.

Лінії потоків

- лінії, які з'єднують символи і задають зв'язки між етапами алгоритму.

Символ ПРОЦЕСУ (арифметичний блок)

- безумовне виконання дії: обчислення певного виразу (арифметичного, логічного тощо) чи надання значення відповідному даному;
- ▶ прямокутник з відношенням сторін a:b=2:3, де $a \in \{10, 15, 20, 50, 75, 100 \text{ мм}\}$;
- ▶ має тільки один вихід та, як правило, один вхід.

$$Y = \sin(x),$$
$$I = I + 1$$

Символ РОЗГАЛУЖЕННЯ (блок умовного переходу)

- прийняття відповідного рішення;
- \triangleright ромб з діагоналями a та b;
- має один вхід і два виходи, кожен з яких у залежності від виконання умови, позначається "так" або "ні" (+ або -) і задає напрям продовження обчислень.

Символ ПОЧАТКУ-КІНЦЯ обчислень

- початок і кінець алгоритму;
- ightharpoonup прямокутник з заокругленими кінцями і висотою $\frac{a}{2}$;
- блок-початок має єдиний вихід (з'єднання з наступним блоком), а блок-кінець єдиний вхід.

Символ ВВОДУ-ВИВОДУ

- ▶ початкова ініціалізація змінних (ввід) із зовнішнього носія;
- вивід значень змінних та виразів на зовнішній носій;
- ▶ паралелограм з висотою а та шириною 0,8b.

Винесення інформації за межі символу

- використовується у випадках, коли не всю інформацію про перетворення, які виконує символ, можна у ньому розмістити;
- ▶ порядок виконання перетворень відповідає порядку їхнього запису у символі.

Документування перетворень

- використовується для полегшення аналізу алгоритму та підвищення його читабельності;
- коментарі записуються у довільній формі.

Приклад 1.

Розглянемо довільне ціле число N. Перевірити, чи задане число є парним і двоцифровим.

- 1. N парне?
- 2. N двоцифрове?

Функція entire(x) виділяє цілу частину аргументу x, тобто

$$entire(5,7)=5, \quad entire(-4,2)=-4.$$

- $1. \ \ 2*entire(N/2) = N$
- 2. entire(N/10)

Дякую за увагу!

Далі буде...