Recall:

Note. Any two vectors in \mathbb{R}^2 define a parallelogram:

Notation
$$\text{area}(v_1,v_2) = \begin{pmatrix} \text{area of the parallelogram} \\ \text{defined by } v_1 \text{ and } v_2 \end{pmatrix}$$

Theorem

If
$$v_1, v_2 \in \mathbb{R}^2$$
 then

$$area(v_1, v_2) = |det[v_1 v_2]|$$

Idea of the proof.

$$\mathbf{v}_1 = \left[\begin{array}{c} a \\ b \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} c \\ d \end{array} \right]$$

$$\mathbf{v}_1 = \begin{bmatrix} a \\ b \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} c \\ d \end{bmatrix} \qquad \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

We obtain:

$$area(P) = (a+c) \cdot (b+d) - ab - cd - 2cb$$

= $(ab + ad + cb + cd) - ab - cd - 2cb$
= $ad - cb = |det[ab]| = |det[v_1 v_2]|$

Example.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

area
$$(V_1, V_2) = | det [V_1, V_2] |$$

$$= | det [\frac{z}{3}, \frac{z}{2}] |$$

$$= \left| \frac{z}{3-z} \right|^{-2}$$

$$= \left| \frac{z}{3-z} \right|^{-2} = \left| -4-6 \right| = 10$$

Determinants and linear transformations

Recall: If A is a 2×2 matrix then it defines a linear transformation

$$T_A \colon \mathbb{R}^2 \to \mathbb{R}^2$$
 $T_A(\mathbf{v}) = A\mathbf{v}$

Note. T_A maps parallelograms to parallelograms:

Theorem

If A is a 2×2 matrix and $\mathbf{v}_1, \mathbf{v}_1 \in \mathbb{R}^2$ then

$$\operatorname{area}(T_A(v_1), T_A(v_2)) = |\det A| \cdot \operatorname{area}(v_1, v_2)$$

area
$$(T_A(v_1), T_A(v_2)) = area (Av, Av_2)$$

$$= | det [Av, Av_2]|$$

So:
area
$$(T_A(v_1), T_A(v_2)) = |\det(A \cdot [v_1, v_2])|$$

= $|\det(A) \cdot (\det[v_1, v_2])|$
 $|\det(A) \cdot (\det[v_1, v_2])|$
 $|\det(A) \cdot (\det[v_1, v_2])|$

Generalization:

Theorem

If A is a 2×2 matrix then for any region S of \mathbb{R}^2 we have:

$$area(T_A(S)) = |det A| \cdot area(S)$$

Idea of the proof.

The area of S can be approximated by the sum of small squares covering S.

area (S)
$$\approx$$
 Z area (small square)
area (T_A(S)) \approx Z area (T_A(small square))
= Z ldet Al. area (small sq.)
= |det Al. Z area (small sq.)
 \approx |det Al. area (S)

Sign of the determinant

Example.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$T_A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \quad \text{det } A = 5 > 0, \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

TA preserves direction of engles between vectors mple. (We say that TA preserves orientation) Example.

TA reverses direction of anges between vectors (We say that TA reverses orientation)

Theorem

If A is a 2×2 matrix then the linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ preserves orientation if $\det A > 0$ and reverses orientation if $\det A < 0$.