Reading Symbolical Context in Youtube Videos

{gernot.howanitz, erik.radisch}@uni-passau.de, bernhard.bermeitinger@unisg.ch 15 March 2019

Soziologie Slawistik eHumanities Kunstgeschichte Convolutional Neural Network Ontologie Wikipedia Multimodal Distributional Semantics Romanistik Passau Digital Humanities Contextualizing Bandera Kontext Video **Neuronale Netze** Informatik Knowledge Discovery Methoden kulturelle Muster Neoclassica **Images** Forschungsinfrastruktur Sprachwissenschaft multimodale Artefakte Multipath.Net Deep Learning Text Analyse visuell Anglistik Audio Daten

1. Corpus

2. Methods

3. Evaluation

4. Results

Corpus

Stepan Bandera (1909–1959)

Corpus (2013, 2015, 2018)

разоблачение мифов

http://www.hrendvabliki.com/ По старой НКВД-шной памяти - Степан

Methods

Detectron

- · Regional Convolutional Neural Network
- MaskRCNN (He, Gkioxari et al. 2017) as Regions-of-Interest localisator
- · ResNet101 (He, Zhang et al. 2015) for feature extraction

(Girshik et al. 2018)

Symbols

Ukrainian nationalist symbols	German fascist symbols	Polish nationalist symbols	Russian / Soviet nationalist symbols
Ukrainian coat of arms (208)	SS-Rune (106)	Polish coat of arms (38)	Hammer & Sickle (111)
Logo of Swoboda (129)	Swastika (187)	Falanga (91)	Ribbon of St. George (147)
Ukrainian flag (198)	Wolfsangel (96)		
Flag of UPA (212)			
OUN Symbol (57)			

Evaluation

Training Results

- $\varnothing mAP_{IoU=0.5} = 0.72$
- If proposed region and gold annotation match at least 50%, this region is correctly classified in 72% of the cases
- $IoU = \frac{Intersection}{Union}$, W = [0, 1]Measure for congruence of proposed region with gold annotation
- mean Average Precision
 Relation of correctly classified regions to all classifications
- Typically $mAP_{IoU=0.5}$ or $mAP_{IoU=0.75}$ is used

mAP per symbol

Flag of Ukraine: 0.51

Flag of UPA: 0.49

Ukrainian Coat of Arms: 0.63

Swastika: 0.80 SS runes: 0.69

Ribbon of St. George: 0.70

Hammer & Sickle: 0.72 Polish Coat of Arms: 0.75

Wolfsangel: 0.94

Symbol of OUN: 0.75

Swoboda: 0.58

Falanga: 0.93

Results

Symbols per video

Bounding boxes of a symbol

Symbols over time

Coocurrences

Corpus map

symbolical information from visual media

Training is hard!

RCNN as a possibility to automatically extract complex

Literature

- Girshick, Ross u. a. (2018). Detectron: FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet. original-date: 2017-10-05T17:32:00Z. url: https://github.com/facebookresearch/Detectron (last access March 14, 2019).
- He, Kaiming, Georgia Gkioxari u. a. (2017). Mask R-CNN. In: arXiv:1703.06870
 [cs]. arXiv: 1703.06870. url: http://arxiv.org/abs/1703.06870 (last access March 14, 2019).
- He, Kaiming, Xiangyu Zhang u. a. (2015). Deep Residual Learning for Image Recognition. In: arXiv:1512.03385 [cs]. arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385 (last access March 14, 2019).