

AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting

<u>Abdelhakim Benechehab</u> ¹², Vasilii Feofanov¹, Giuseppe Paolo¹, Albert Thomas¹, Maurizio Filippone³, Balázs Kégl¹

¹ Huawei Noah's Ark Lab, Paris ² Department of Data Science, EURECOM ³ Statistics Program, KAUST

Motivation

- Many forecasting Foundation
 Models (e.g., Moment) are univariate
 and deterministic
- How can we make them
 Multivariate and Probabilistic
 without changing their weights?

Problem Setup

- Input: multivariate time series $\mathbf{X} \in \mathbb{R}^{L \times D}$.
- Output: $\mathbf{Y} \in \mathbb{R}^{H \times D}$ with H being the forecasting horizon.
- What we want: use a pre-trained foundation model to predict \mathbf{Y} : $f_{\mathrm{FM}}(\mathbf{X})$

Adapter. A *feature space* transformation $\varphi: \mathbb{R}^D \to \mathbb{R}^{D'}$ such that:

$$\hat{\mathbf{Y}}(\mathbf{X};\varphi) = \varphi^{-1}(f_{\text{FM}}(\varphi(\mathbf{X})))$$

Goal: find the optimal adapter:

$$\arg\min_{\varphi} \|\mathbf{Y} - \varphi^{-1}(f_{\mathrm{FM}}(\varphi(\mathbf{X})))\|_{\mathrm{F}}^{2}$$

Analysing the linear case

Linear parametrization of the adapter: $\varphi(\mathbf{X}) = \mathbf{X}\mathbf{W}_{\varphi}$ where $\mathbf{W}_{\varphi} \in \mathbb{R}^{D \times D}$.

Assumptions:

- \mathbf{W}_{φ} is full rank.
- Linear predictor: $f_{\text{FM}}(\mathbf{X}) = \mathbf{W}_{\text{FM}}^{\top} \mathbf{X} + \mathbf{b}_{\text{FM}} \mathbf{1}^{\top}$.

Proposition. the solution of:

$$\min_{\mathbf{W}_{\varphi}} \|\mathbf{Y} - (\mathbf{W}_{\mathsf{FM}}^{\top} \mathbf{X} \mathbf{W}_{\varphi} + \mathbf{b}_{\mathsf{FM}} \mathbf{1}^{\top}) \mathbf{W}_{\varphi}^{-1} \|_{F}^{2}$$

writes as:

$$\mathbf{W}_{0}^{*} = (\mathbf{B}^{\top} \mathbf{A})^{+} \mathbf{B}^{\top} \mathbf{B},$$

where $\mathbf{A} = \mathbf{Y} - \mathbf{W}_{FM}^{\top} \mathbf{X}$, and $\mathbf{B} = \mathbf{b}_{FM} \mathbf{1}^{\top}$.

insight: The optimal adapter is **NOT** the identity!

Probabilistic Adapters

In practice, we learn an encoder $\varphi \triangleq \operatorname{enc}_{\varphi}$ and decoder $\varphi^{-1} \triangleq \operatorname{dec}_{\theta}$.

Using Variational Inference, we can build Probabilistic forecasts:

Proposition. VAE training objective:

 $\log p_{\theta}(\mathbf{Y}|\mathbf{X}, f_{\text{FM}}) \ge \mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X})} \left[\log p_{\theta}(\mathbf{Y}|\mathbf{X}, f_{\text{FM}}(\mathbf{Z}))\right] - \text{KL}\left(q_{\phi}(\mathbf{Z}|\mathbf{X}) \parallel p(\mathbf{Z})\right).$

Our approach: AdaPTS

Forecasting error - MSE

Dataset		Н	No adapter			with adapter		
			Moment	PCA	LinearAE	dropoutLAE	LinearVAE	VAE
	ETTh1	96 192	$0.411_{\pm 0.012} \ 0.431_{\pm 0.001}$			$0.395_{\pm 0.003}$ $0.446_{\pm 0.001}$	$0.400_{\pm 0.001}$ $0.448_{\pm 0.002}$	
	Illness	24 60	$2.902_{\pm 0.023}$ $3.000_{\pm 0.004}$		$2.624_{\pm 0.035}$ $3.110_{\pm 0.127}$	$2.76_{\pm 0.061}$ $2.794_{\pm 0.015}$	$2.542_{\pm 0.036}$ $2.752_{\pm 0.040}$	$2.461_{\pm 0.008}$ $2.960_{\pm 0.092}$
V	Veather	96 192	$0.177_{\pm 0.010}$ $0.202_{\pm 0.000}$	$0.176_{\pm 0.000} \\ 0.208_{\pm 0.001}$	$0.169_{\pm 0.000}$ $0.198_{\pm 0.001}$	$0.156_{\pm 0.001}$ $0.200_{\pm 0.001}$	$0.161_{\pm 0.001} \\ 0.204_{\pm 0.000}$	$0.187_{\pm 0.001} \\ 0.226_{\pm 0.000}$

Dimensionality Reduction

▶ VAE adapter achieve better or similar performance at only D'=2.

Latent representation

We visualize the latent representation learned by adapters for D'=2 (Illness H=24).

► Adapters help reduce **distribution shift** between training and test data.

Choice of adapters

Adapter	D' < D	Prob	non-linear
Identity	×	×	×
PCA	\mathscr{O}	×	×
Dropout LinAE	\mathscr{O}	\mathscr{O}	×
VAE	9	9	$ \mathscr{O} $

Calibration

Quantile calibration reliability diagram

Take Home Message

AdaPTS is a lightweight solution that enables channel-mixing, probabilistic forecasting, and dimensionality reduction when using univariate TSFMs.

Main References

- Benechehab et al. ICLR 2025
- Zero-shot Model-based Reinforcement Learning using Large Language Models
- Ilbert, Feofanov et al. ICDEW 2025

 User-friendly Foundation Model Adapters for

 Multivariate Time Series Classification

Want to Know More?

paper & code

