

Adaptive Distributional Word Models for Robust Semantic Information Systems

Jonas Müller

Master Thesis, Human-Computer Interaction Supervisors: PD Dr. Joachim Baumeister, Chris Zimmerer, M.Sc.

Introduction

Setting: Repair and Maintenance of Complex Machinery

- Predominantly manual tasks demanding two-handed interaction
- ► **Problem**: Looking up information in technical documentation interrupts task
- ► **Solution**: Hands-free interaction with voice assistant

But: Problems with Current Voice Assistants

- Require rigid input phrase structures
- User has to learn how to paraphrase requests
- Result: Non-natural interaction, suboptimal usability

KNOWN REQUEST PATTERN

UNKNOWN REQUEST PATTERN

Objectives

- **Enhance robustness** of voice assistants in the domain of Technical Service with respect to varying phrasing
- 2. Integrate findings into an existing information system
- 3. Develop mechanism to adapt to user feedback

Language Representation Models

Idea: Utilize state-of-the-art language representation models

- Map words/sentences onto multi-dimensional vectors
- Vectors encode syntactic and semantic relations

Word Vector Models

Generate vectors for each individual word

- Word2Vec [1]
- ► GloVe [2]
- FastText [3]

Contextualized Vector Models

Take word context into consideration

- ► ELMo [4]
- ► BERT [5]

Approach: Evaluate pre-trained, self-trained and transferlearned model instances

Methods: Intrinsic Evaluation

Question: How well do vectors capture semantic similarity?

Methods: Extrinsic Evaluation

Question: How well do vectors perform in a downstream task?

Task 1 – Multiclass Classification

Classify a natural language request to one out of four categories.

Task 2 – Binary Classification

Classify, if two natural language requests are semantically equal.

Example

Request	Category (Task 1)	Equal (Task 2)
What is the resistance of x ? What is the ohmage value of x ?	Electric Resistance Electric Resistance	Yes
What is the pressure at x? Which voltage should I measure at x?	Pressure Electric Potential	No

Results

Intrinsic Evaluation

Figure 1: Spearman correlations between expert annotated ratings and the best performing instance of each model.

Extrinsic Evaluation

	Baseline	Word2Vec	GloVe	FastText	ELMo	BERT
Task 1	0.8001	0.8878	0.8624	0.9465	0.9058	0.4907
Task 2	0.7936	0.9737	0.9886	0.9898	0.9909	0.8033

Table 1: F1 scores of best performing instance of each model.

Figure 2: 3D t-SNE projections of natural language request vectors.

Implementation

- Prototypically integrated well-performing models into information system Service Mate
- Asking user if a given answer was adequate enables system to learn and adapt dynamically

References

- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
- [2] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word representation.
- In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532-1543, 2014.
- [3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5:135–146, 2017.
- Matthew Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. Deep contextualized word representations.

- In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227-2237, 2018.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

