

Design of RCC box (1x2.0x2.0)

Dimensions of Box

No. of Cell	=	1	Clear Width of cell	=	2.00 m
Top Slab Thickness	=	0.200 m	Clear Height of Cell	=	2.00 m
Bot. Slab Thickness	=	0.225 m	C/C Width of structure	=	2.23 m
Side Wall Thickness	=	0.225 m	C/C Height of structure	=	2.21 m
Wearing Coat	=	65mm	Total Width of Structure	=	2.45 m
Haunch size	=	150 mm x 150 mm	Total Height of Structure	=	2.43 m
			Railing/CB width	=	0.50 m

Basic Parameters

Coefficient of Earth Pressure	=	0.5
Density of fill	=	2.00 t/m³
Density of Concrete	=	2.50 t/m³
Live Load Surcharge	=	1.20 m
Safe Bearing Pressure	=	10 t/m²
Modulus of Subgrade Reaction	=	1000 t/m²/m

Idealised Structure for Staad Analysis

Idealisation has been done at centreline of structure for 1m strip

Spacing between End Springs	=	0.11 m
Spacing between Intermediate Springs	=	0.33 m
Spring Constant at End Support	=	56.3 t/m
Spring Constant at Penultimate Support	=	194.8 t/m
Spring Constant at Intermediate Support	=	333.3 t/m

Load Calculation

1) Earth Pressure

2) Live Load Surcharge

$$\text{Live Load Surcharge} = 1.200 \text{ t/m}$$

3) Check for Base Pressure

Weight of Top Slab	=	1.23 t/m
Weight of Bottom Slab	=	1.38 t/m
Weight of Side wall	=	2.25 t/m
Weight of Intermediate side wall	=	0.00 t/m
Weight of Railing/Crash Barrier	=	2.45 t/m
Weight of wearing coat	=	0.25 t/m
Base Pressure Without Live Load	=	3.08 t/m² OK
Base Pressure With Live Load	=	4.10 t/m² OK

4) Live Load

A) 70R Track at Mid Span

Total Load = **35t**

a (m)	b1 (m)	b/lo	α	beff (m)	Overlap	Effective Width (m)	Width along Span (m)	Load Intensity (t/m²)	After Impact (t/m²)
1.11	0.97	7.19	2.60	2.42	Yes	2.42	5.10	2.84	3.55

B) 40T Bogie Load at Mid Span

Total Load = **40t**

a (m)	b1 (m)	b/lo	α	beff (m)	Overlap	Effective Width (m)	Width along Span (m)	Load Intensity (t/m²)	After Impact (t/m²)
0.50	0.99	7.19	2.60	2.00	Yes	3.93	0.79	6.42	8.02

C) 70R Wheel (CG of Train at Centre of Structure)

S.No.	Load	a	α	beff	Overlap	Eff. Width	Load Int.	With Imp.
1	17	1.12	2.60	2.44m	Yes	4.37	3.9t/m	4.9t/m
2	0	0.00	2.60	0.00m	No	1.00	0.0t/m	0.0t/m
3	0	0.00	2.60	0.00m	No	1.00	0.0t/m	0.0t/m
4	0	0.00	2.60	0.00m	No	1.00	0.0t/m	0.0t/m
5	0	0.00	2.60	0.00m	No	1.00	0.0t/m	0.0t/m
6	0	0.00	2.60	0.00m	No	1.00	0.0t/m	0.0t/m
7	0	0.00	2.60	0.00m	No	1.00	0.0t/m	0.0t/m

D) 70R Wheel (1st 17T on right wall)

S.No.	Load	a	α	beff	Overlap	Eff. Width	Load Int.	With Imp.
1	17	0.00	2.60	0.99m	No	1.00	8.5t/m	10.6t/m
2	17	0.86	2.60	2.36m	Yes	4.29	4.0t/m	5.0t/m
3	0		2.60	0.00m	No	1.00	0.0t/m	0.0t/m
4	0		2.60	0.00m	No	1.00	0.0t/m	0.0t/m
5	0		2.60	0.00m	No	1.00	0.0t/m	0.0t/m
6	0		2.60	0.00m	No	1.00	0.0t/m	0.0t/m
7	0		2.60	0.00m	No	1.00	0.0t/m	0.0t/m

* Effective width shall not be less than 1 otherwise intensity of load will be more than point load itself.

Temperature Gradient Case

Consider Temperature Rise Case/Positive Temperature Gradient

The above locked in stress will generate axial force & Bending Moment which is discussed below for different structure.

Effect of Temperature Rise Case on Simply Supported Span

Loading in Simply Supported Structure

BM in Simply Supported Structure

Stress Shall be Calculated by following Procedure

Effect of Temperature Rise Case on Continuous Span

Loading in Continuous Span

BM in Continuous Span

Stress Shall be Calculated by following Procedure

The diagram shows the calculation of final stress. It consists of four parts connected by plus signs: 1. A stress diagram showing three linear segments with slopes EaT1, EaT2, and EaT3, each with a '+' sign at the top. 2. Axial Tension, represented by a rectangle with a vertical axis labeled 'P/A' and a horizontal axis labeled '-' (minus). 3. Bending Moment, represented by a rectangle with a vertical axis labeled '+' and a horizontal axis labeled '+'. 4. Final Stress, labeled 'Final Stress'.

$$\text{Stress Diagram} + \text{Axial Tension} + \text{Bending Moment} = \text{Final Stress}$$

**BM shall be hogging near end support and sagging near Intermediate support

Effect of Temperature Rise Case on Box/Frame

Loading in Box Frame

BM in Box Frame

Final BM due to Load & Moment

Stress in top slab Shall be Calculated by following Procedure

##BM shall be hogging for top slab

CHECK FOR TEMPERATURE EFFECT; As per IRC - 6:-

Effect of temperature gradient

$$F = E_c \alpha t A$$

$$E_c = \text{Modulus of Elasticity of concrete} = 2.74E+06 \text{ t/m}^2$$

$$\alpha = \text{Co-efficient of thermal expansion} = 1.20E-05$$

$$t = \text{Temperature differential} =$$

$$A = \text{Sectional area of section where temperature differential is } t$$

$$\text{Average thickness of deck slab} = 0.2$$

Effect of temperature Rise :

Sr No.	t	Factor	b	d	A=bxd	Force	Acting at	Ecc.
1	4.00	1.0	1.0	0.06	0.060	7.89	0.030	0.07
2	13.80	0.5	1.0	0.06	0.030	13.61	0.020	0.080
3	4.00	0.5	1.0	0.06	0.030	3.94	0.080	0.020
4	2.1	0.5	1.0	0.06	0.030	2.070	0.020	-0.080
					Sum=F	27.507	Sum=F*e	1.55

e* = Eccentricity of force from the centroidal axis of force

$$M = F * e = E_c \alpha t / 2Ae$$

Effect of Temperature Fall :-

Sr No.	t	Factor	b	d	A=bxd	Force	Acting at	Ecc.
1	0.70	1.0	1.0	0.040	0.040	0.92	0.020	0.080
2	9.90	0.5	1.0	0.040	0.020	6.51	0.013	0.087
3	0.70	0.5	1.0	0.05	0.025	0.58	0.057	0.043
4	5.80	0.5	1.0	0.040	0.020	3.81	0.013	-0.087
5	0.80	1.0	1.0	0.040	0.040	1.05	0.020	-0.080
6	0.80	0.5	1.0	0.05	0.025	0.66	0.057	-0.043
					Sum=F	13.523	Sum=F*e	0.219

Effect of Uniform Temperature:-

(As per Clause - 218.2,IRC-6)

Maximum temperature of Kolkata region = 47.5 degree
Minimum temperature of Kolkata region = 0.00 degree

Difference between Maximum & Minimum Air temperature = 47.5 degree

So, the bridge temperature at the time of constraint Max = 33.8 degree

So, the bridge temperature at the time of constraint Min = 13.8 degree

Therefore the Load effect due to Temperature Fall = (+/-) 27.5 degree
say 30.0 degree

While applying it to STAAD file, as E values are to be taken half for long time effect, temp. is reduced to half while keeping E value as full.
i.e 15 degree.

Shrinkage strain = 0.0002

MOMENT OF RESISTANCE OF RECTANGULAR CONCRETE SECTION

As per IRC:112-2011

ULTIMATE LIMIT STATE

Grade of Concrete f_{ck} = 30 N/mm²

As per clause 6.4.2.8, IRC:112-2011

$$f_{cd} = \frac{a \cdot f_{ck}}{\gamma_m} = 13.40$$

$$a = 0.67$$

Grade of steel f_y = 500 N/mm²

f_{yd} = 434.8 N/mm²

Refer Fig. 6.2 of IRC:112-2011

For steel reinforcement, simplified bilinear diagram is used

$$\begin{aligned} \text{Minimum strain in steel reinforcement} &= 0.87f_y/E_s \\ E_s &= 2.0E+05 \text{ MPa} \end{aligned}$$

$$\begin{aligned} Cu &= f_{cd} \cdot b \cdot (3/7x_{u,lim} + 2/3 \cdot 4/7x_{u,lim}) \\ &= 17/21 \cdot f_{cd} \cdot b \cdot x_u \\ &= 0.8095 \cdot f_{cd} \cdot b \cdot x_u \end{aligned}$$

$$cg \text{ of compression block from top} = 0.416x_u$$

$$Tu = (f_y/1.15) \cdot A_{st}$$

$$R_{lim} = M_{u,Lim}/bd^2 = 0.8095 f_{cd} \cdot (x_u/d) \cdot (1 - 0.416 \cdot x_u/d)$$

$$x_{u,li} \frac{P_t}{100} = \frac{A_{st}}{bd} = 0.973 \frac{f_{cd}}{f_{yd}} \left[1 - \sqrt{1 - 2.055 \frac{R}{f_{cd}}} \right]$$

$$R_{lim} = M_{u,Lim}/bd^2 = 4.97$$

It is $P_{t,lim} = 97.3 \frac{f_{cd}}{f_{yd}} \left[1 - \sqrt{1 - 2.055 \frac{R_{lim}}{f_{cd}}} \right]$ astic branch is used
use 8.2.1 (f), IRC:112-2011

Calculation of Reinforcement

Tensile reinforcement can be calculated from the following formula

$$\text{where, } R = M_u/bd^2$$

Limiting percentage of steel reinforcement for balanced section

$$\text{where, } R_{lim} = M_{u,Lim}/bd^2$$

Summary Of Moments (Basic combination)

Case	Member	Section	Node	Design Factored BM (t-m)	Remark
Basic combination	Top slab	Wall face	14	3.0	Top face
		Mid Span	15	4.5	Bottom face
	Bot. slab	Wall face	2	3.8	Top face
		Mid Span	5	6.0	Bottom Face
	Side wall	Tob slab face	12	4.1	Earth face
		Mid Span	11	1.9	Earth face
			11	0.7	Inner face
		Tob slab face	10	4.3	Earth face

Grade of Concrete = M30
 Grade of Steel = Fe500
 f_{cd} = 1366 t/m²
 f_{yd} = 44343 t/m²
 Rlim = 4.97

Summary of Reinforcement

Minimum required reinforcement

Section Mark as	Depth Provided	Min. Reinf. Reqd. on tension face	Min. Reinf. Reqd. on Comp.fac e
			m
14	0.20	2.4	1.2
15	0.20	2.4	1.2
2	0.23	2.7	1.35
5	0.23	2.7	1.35
12,11,10	0.23	2.7	1.35

Nodes	Design Bending Moment	Ru = Mu/(bd^2)	Effective Depth Required	Effective Depth Provided	Reinforcement Required (Subject to min.)	Reinforcement Provided					Check		
						m	m	cm ² /m	Bar Dia (mm)	Spacing (mm)	Bar Dia (mm)	Spacing (mm)	cm ² /m
14	3.0	1.763	0.08	0.130	5.17	10	180	10	180	10	180	8.73	OK
15	4.5	2.271	0.09	0.140	7.17	10	180	10	180	10	180	8.73	OK
2	3.8	1.578	0.09	0.16	5.52	10	180	10	180	10	180	8.73	OK
5	6.0	2.567	0.11	0.15	8.86	10	180	12	180	12	180	10.65	OK
12	4.1	2.427	0.09	0.13	7.12	10	180	10	180	10	180	8.73	OK
11	1.9	1.142	0.06	0.13	3.35	10	180	10	180	10	180	8.73	OK
11	0.7	0.413	0.04	0.13	1.21	10	180	0	180	0	180	4.36	OK
10	4.3	2.548	0.09	0.13	7.48	10	180	10	180	10	180	8.73	OK

Distribution Reinforcement

Transverse steel as per Cl 16.6.1.1.(3) IRC 112:-2011
at least 20% of tension steel

S.No.	Surface	Reinf. Reqd/cm ² /m	Reinf. Provided			Status
			Dia	Spacing	cm ² /m	
1. Top Slab	Top	1.4	10	225	3.49	OK
	Bottom	1.4	10	225	3.49	OK
2. Bottom Slab	Top	1.8	10	225	3.49	OK
	Bottom	1.8	10	225	3.49	OK
3. Side wall	Earth	1.5	10	225	3.49	OK
	Inner	1.5	10	200	3.93	OK

Design for SLS Rare Combinations

Grade of Concrete	=	M30
Grade of Steel	=	Fe500
f_{cd}	=	1366 t/m ²
f_{Yd}	=	40000 t/m ²

Summary Of Moments for SLS case(Rare combination)

Case	Element	Location	Node	Design BM (t-m)	
Normal	Top slab	Wall face	14	2.1	Hogging moment
		Mid Span	15	3.0	Sagging moment
	Bot. slab	Wall face	2	2.8	Sagging moment
		Mid Span	5	3.5	Hogging moment
	Side wall	Slab Face at top	12	2.9	Hogging moment
		Mid Span	11	1.3	Hogging moment
			11	0.0	Sagging moment
		Slab face at bottom	10	3.1	Hogging moment
Temp. Linear	Top slab	Wall face	14	2.0	Hogging moment
		Mid Span	15	2.7	Sagging moment
	Bot. slab	Wall face	2	2.6	Sagging moment
		Mid Span	5	3.2	Hogging moment
	Side wall	Slab Face at top	12	2.6	Hogging moment
		Mid Span	11	1.2	Hogging moment
			11	0.0	Sagging moment
		Slab face at bottom	10	2.8	Hogging moment
Temp. Linear+ Gradient	Top slab	Wall face	14	1.6	Hogging moment
		Mid Span	15	1.7	Sagging moment
	Bot. slab	Wall face	2	1.6	Sagging moment
		Mid Span	5	0.5	Hogging moment
	Side wall	Slab Face at top	12	0.6	Hogging moment
		Mid Span	11	0.6	Hogging moment
			11	0.0	Sagging moment
		Slab face at bottom	10	1.8	Hogging moment

Check for stress in concrete and steel

Calculation of Xu, Section Modulus for Top Slab

effective depth of section

0.1300

Assume neutral axis

0.0484

Modular ratio

6.4516

Comparing moment of area(for Compression and tension) about neutral axis

$$B \cdot X_u \cdot x_u / 2 = m \cdot a_s \cdot (d - x_u)$$

$$\text{Moment of area above neutral axis} \quad 0.0012$$

$$\text{Moment area below neutral axis} \quad 0.0004594$$

$$\text{Goal seek} \quad 0.000712$$

$$0.001181 \text{ m}^4$$

$$0.000022 \text{ m}^4$$

$$0.0012031$$

$$0.0248557$$

$$0.0147443$$

Crack moment of inertia of concrete

Moment of inertia of steel

Total crack moment of inertia

Z top

Z bottom

Calculation of Xu, Section Modulus for Bottom Slab

Calculation of Xu, Section Modulus for Side wall

Stress calculations at different section

Section Mark as	Design Bending Moment	Section Modulus		Stress		Check
		t-m	Zt	Zb	Steel	
14	2.1	0.0249	0.0147	928.51	85	ok
15	3.0	0.0249	0.0147	1317.95	121	ok
2	2.8	0.0267	0.0131	1375.49	105	ok
5	3.5	0.0267	0.0131	1718.25	131	ok
11	2.9	0.0227	0.0117	1587.31	127	ok
12	1.3	0.0227	0.0117	726.05	58	ok
12	0.0	0.0227	0.0117	0.00	0	ok
10	3.1	0.0227	0.0117	1701.08	136	ok