Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Optimización con restricciones

El objetivo es tratar de optimizar pero no cualquier valor de la entrada es valido

Motivación

Un "parche": Projected Gradient Descent

¿Cuál es el peligro de usar GD as-is? Caer afuera de la región válida D. ¿Cómo lo podemos corregir "fácil"? Buscamos el valor válido θ_{t+1} más cercano al update propuesto $\tilde{\theta}_{t+1} \to \text{jGD} + \text{proyección ortogonal!}$

$$\theta_{t+1} = \Pi_D(\tilde{\theta}_{t+1}) = P_D \cdot (\theta_t - \gamma \cdot g_t)$$

Esto solo tiene sentido si proyectar es <u>barat</u>o, pero a veces lo es. Ejemplo: proyectar a valores no negativos es aplicar $\theta_{t+1} = max(\tilde{\theta}_{t+1}, 0)$.

Optimización con restricciones de igualdad

Definimos un problema de optimización con restricciones de igualdad en formato estándar:

un problema de optimización con restricciones de igualdad en tándar:
$$\min_{x \in \mathcal{S}} f(x_1, ..., x_n) = 0$$

$$\lim_{x \in \mathcal{S}} f(x_1, ..., x_n) = 0$$

$$\lim_{x \in \mathcal{S}} f(x_1, ..., x_n) = 0$$

$$\lim_{x \in \mathcal{S}} g_m(x_1, ..., x_n) = 0$$
restricción de igualdad
$$g_m(x_1, ..., x_n) = 0$$

donde $f, g_i : \mathbb{R}^n \to \mathbb{R}$ con $i = 1, \dots m$ están definidas sobre $R \subset \mathbb{R}^n$.

Se define la región válida $D = \{\vec{x} \in R : g_i(\vec{x}) = 0 \ \forall i = 1, ..., m\}.$

Se define el *Lagrangiano* del problema $\mathscr{L}: \mathbb{R}^{n+m} \to \mathbb{R}$:

$$\mathscr{L}(\vec{\lambda}, \vec{x}) = f(\vec{x}) + \lambda_1 g_1(\vec{x}) + ... + \lambda_m g_m(\vec{x}) = f(\vec{x}) + \vec{\lambda} \cdot \vec{g}(\vec{x})$$

Optimización con restricciones de desigualdad

Si agregamos condiciones de desigualdad queda:

min
$$f(x_1,...,x_n)$$

 $s.t. \ g_i(x_1,...,x_n) = 0$) $f(x_1,...,x_n) = 0$) $f(x_1,...,x_$

con
$$i = 1, ..., l$$
 y $j = 1, ..., k$ suponiendo $l + k = m$.

Ahora tenemos que la región válida es

$$D = \{\vec{x} \in R : g_i(\vec{x}) = 0 \ \forall i = 1, ..., l \land h_j(\vec{x}) \le 0 \ \forall j = 1, ..., k\}$$

Y el Lagrangiano es:

$$\mathscr{L}(\vec{\lambda}, \vec{x}, \vec{\mu}) = f(\vec{x}) + \sum_{i=1}^{l} \lambda_i g_i(\vec{x}) + \sum_{j=1}^{k} \mu_j h_j(\vec{x}) = f(\vec{x}) + \vec{\lambda} \cdot \vec{g}(\vec{x}) + \vec{\mu} \cdot \vec{h}(\vec{x})$$

Condiciones necesarias de Karush-Kuhn-Tucker (KKT)

Sea un punto $\vec{x}^* \in D$ tal que $f, g_i, h_i \in C^1(\mathcal{E}(\vec{x}^*))$. Bajo ciertas condiciones de regularidad, si \vec{x}^* es un mínimo local entonces existen $\vec{\lambda}^* \in \mathbb{R}^I, \vec{\mu}^* \in \mathbb{R}^k$ tales que:

- (Estacionariedad) $\nabla_{\vec{x}} \mathscr{L}(\vec{\lambda}^*, \vec{x}^*, \vec{\mu}^*) = \vec{0}$
- (Factibilidad primal) $g_i(\vec{x}^*) = 0 \quad \forall i$ $h_j(\vec{x}^*) \leq 0 \quad \forall j$
- ullet (Factibilidad dual) $\mu_{i}^{*} \geq 0 \quad orall j$
- **4** (Holgura complementaria) $\mu_i^* \cdot h_i(\vec{x}^*) = 0 \quad \forall j$

∀; /4; >0 ~ h; (2) €0

pero alques de los debe ses O

Derivada continua entorno al punto

Ejemplo analítico

$$\min_{\substack{x,y\\ x,y}} x^2 + y^2 \quad \text{f (*,5)}$$
s.t. $x + y = 1$ \quad \text{S1}
$$x \ge 0 \quad \text{Jh} \Rightarrow \text{h (*,5)} \Rightarrow \text{S2}$$

El Lagrangiano es:
$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y - 1) + \mu(-x)$$

Condiciones KKT:

Estacionariedad:
$$2x + \lambda - \mu = 0, \quad 2y + \lambda = 0$$

 $x + y = 1, \quad x > 0$ Factibilidad primal:

Factibilidad dual: $\mu > 0$

Holgura complementaria: $\mu x = 0$

Solución:

$$x^* = 0.5, \ y^* = 0.5, \ \lambda^* = -1, \ \mu^* = 0 \Rightarrow f^* = 0.5$$