概率论

[TOC]

大数定律

对于随机变量序列\${X_n}\$,对任意的\$\epsilon > 0\$,有 \$\$ \lim\limits_{n\rightarrow \infty}P(\\dfrac{1} {n}\sum\limits_{k=1}^nE(X_k)\\geq \epsilon) = 0 \$\$ 切比雪夫大数定律

定理:对于独立同分布的随机变量\${X_n}\$,\$E(X_n)=\mu,D(X_n)=\sigma^2\$,则\${X_n}\$服从大数定律。

中心极限定理

\$X i\$独立同分布

 $\frac{\sin N(0,1)}{\$

统计量与抽样分布

统计量

统计量是随机变量,且不含任何未知参数

正态分布的一些性质

两个独立的正态分布,和也是正态分布。

正态分布的k阶原点矩 \$\$X\sim N(0,1),E(X^k)=(k-1)!!,k是偶数;E(X^k) = 0,k是奇数 \$\$

正态总体

\$\chi^2\$分布

\$\chi_n^2 = \sum\limits_{i=1}^nX_i^2\$, \$X_i\$独立同分布, \$X_i\sim N(0,1)\$

性质:

- 1. \$\chi^2_1\sim\chi^2(n_1),\chi^2_2\sim \chi^2(n_2)\$且\$\chi^2_1,\chi^2_2\$相互独立,则有 \$\chi^2_1+\chi^2_2\sim \chi^2(n_1+n_2)\$
- 2. $\ \chi^2 \le \chi^2 = n,D(\chi^2) = 2n$

t分布

\$T = \dfrac{X}{\sqrt{Y/n}},X\sim N(0,1),Y\sim \chi^2(n)\$,且X和Y相互独立。

关于y轴对称。

F分布

\$F=\dfrac{U/n 1}{V/n 2},U\sim\chi^2(n 1),V\sim\chi^2(n 2)\$且U和V相互独立。\$F\sim F(n 1,n 2)\$

性质:

- 1. $F\sim F(n_1,n_2)\$ Rightarrow \dfrac{1}{F}\sim F(n_2,n_1)\$

上分位点

\$P(X > \lambda_\alpha) = \alpha\$,\$\lambda_\alpha\$为X的\$\alpha\$分位点。

 $\$ \\$\u_{1-\alpha} = -u_{\alpha}(n) \\$\\$_{1-\alpha}(n) = -t_{\alpha}(n) \\$\\$\\$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)} \$\$

正态总体的样本均值与样本方差的分布

设\$X_1,X_2,...,X_n\$是来自正态总体\$N(\mu,\sigma^2)\$的一个样本,则 \$\$\bar{X}\sim N(\mu,\dfrac{\sigma^2} {n}) \$\$ \$\$\dfrac{nS_n^2}{\sigma^2}\sim \chi^2(n-1)\quad or \quad \dfrac{(n-1)S_{n-1}^2}{\sigma^2}\sim \chi^2(n-1)\$\$ \$\$\bar{X}与S^2相互独立\$\$

\$\$设X_1,X_2,...,X_n是来自正态总体N(\mu,\sigma^2)的一个样本。则T=\dfrac{(\bar{X}-\mu)}{S_{n-1}\\sqrt{n}}\sim t(n-1)\$\$\$\$X_1,..,X_{n_1}是来自正态总体N(\mu_1,\sigma_1^2)的一个样本,Y_1,..,Y_{n_2}是来自正态总体N(\mu_2,\sigma_2^2)的一个样本,且两样本相互独立,\$\$\$记S_1^2=\dfrac{1}{n_1 - 1}\sum\limits_{i=1}^{n_1}(X_i-\bar{X})^2\$\$\$\$记S_2^2=\dfrac{1}{n_2 - 2}\sum\limits_{i=1}^{n_2}(Y_i-\bar{Y})^2\$\$\$\$F=\dfrac{S_1^2\sigma^2_1}{S_2^2\sigma^2_2}\sim F(n_1-1,n_2-2)\$\$

 $\$ \bar{X}-\bar{Y} \sim N(\mu_1,\mu_2,(\dfrac{1}{n_1} + \dfrac{1}{n_2})\sigma^2) \$\$

参数估计

矩估计

以样本矩作为总体矩的估计从而得到参数的估计量

有几个参数就求几阶原点矩,然后得到方程组求解。

估计值在参数上面加一个\$\hat{\lambda}\$

注意: 方差和期望之间的转换方式,以及样本方差\$S_{n-1}^2\$和\$S_n^2\$的不同,这里用的是后者。

无论总体X服从何种分布,总体均值\$EX=μ\$,总体方差 $$DX=σ^2$$ 作为未知参数,其矩估计量一定是样本均值和样本方差,即

 $\$ \hat{\mu} = \overline{X},\hat{\sigma}^2 = \dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\langle X)^2 = S_n^2 \$

相关系数的矩估计: \$\$ \rho_{XY} = \dfrac{cov(X,Y)}{\sqrt{D(X)D(Y)}} = \dfrac{E((X-E(X))(Y-E(Y)))}{\sqrt{(E((X-E(X))^2)E((Y-E(Y))^2)}} \$\$ 然后用\$\bar{X}\$和\$\$S_n^2\$替换.

矩估计特殊情况

一阶不行时求二阶。

极大似然估计

选择出现样本情况概率最高的参数取值。

求出最大似然函数,对每个参数求偏导可得。

连续性随机变量,将概率密度相乘即可。

离散型随机变量将分布律相乘。

极大似然估计的不变性

设\$\hat{\theta}\$是\$\theta\$的极大似然估计,\$u(u(\theta))\$是\$\theta\$的函数,且有单值反函数:\$\theta = \theta(u)\$,则\$\hat{u}=u(\hat{\theta})\$是\$u(\theta)\$的极大似然估计。

\$\hat{\theta}\$是\$\theta\$的极大似然估计,则\$u(\hat{\theta})\$是\$u(\theta)\$的极大似然估计

如果极大似然方程组无解,可以直接考虑极大似然函数,使其最大,求得其最大时参数的取值(例如均匀分布的极大似然估计)

估计量的评选标准

无偏性

 $E(\hat) = \theta$

设总体X方差\$\sigma^2\$未知,\$\sigma^2\$的据估计量

\$S_n^2 = \dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{x})^2\$是有偏的

\$E(S_n^2) = \dfrac{n-1}{n}\sigma^2 \neq \sigma^2\$,所以\$\hat{\sigma}^2 = S_n^2\$是有偏的。所以修正样本方差\$\dfrac{n}{n-1}S_n^2 = S_{n-1}^2\$是无偏的。

有效性

\$\hat{\theta_1},\hat{\theta_2}\$是\$\theta\$的无偏估计量,方差小的较为有效。这里指无偏估计量的方差。若\$D(\hat{\theta_1})\leq D(\hat{\theta_2})\$,则称\$\hat{\theta_1}\$较\$\hat{\theta_2}\$有效(对于任意的n)。

一致性

 $\hat x_n = \hat x_n, x_n}, \lim \lim_{n\to\infty} \hat x_n = \hat x_n, x_n}, \lim \lim_{n\to\infty} \hat x_n = \hat x_n, x_n}, \lim \lim_{n\to\infty} \hat x_n = 1$

样本k阶矩是总体k阶矩的一致性估计量(由大数定律证明)

 $\frac{1}{n}\sum_{i=1}^nX_i^k\righti^{1}_{n}\sum_{i=1}^nE(X_i^k)=E(X^k)$

设\$\theta_n\$是\$\theta\$的无偏估计量,且\$lim_{n\rightarrow \infty}D(\hat{\theta_n}) = 0\$,则\$\hat{\theta}\$是\$\theta\$的一致估计量

矩法得到的估计量一般为一致估计量

区间估计

区间估计:根据样本给出未知参数的一个范围,并保证真参数以指定的较大概率属于这个范围。 $P(\hat{t}) = 1 - \alpha$

基本方式是找一个分布(正态分布 or t or \$\chi^2\$分布 or t分布 or F分布),这个分布中仅包含需要做区间估计得参数

置信区间与置信度

定义: 设总体 含未知参数 \$\theta\$; 对于样本\$X_1,...,X_n\$找出统计量: \$\$\hat{\theta_i} = \theta_i(X_1,..,X_n),(i = 1,2),\hat{\theta_1} < \hat{\theta_2} \$\$ 使得\$P(\hat{\theta_1} < \theta < \hat{\theta_2}) = 1 - \alpha\$, \$0 < \alpha < 1\$

称区间\$[\hat{\theta_1},\hat{\theta_2}]\$为\$\theta\$的置信区间,\$1-\alpha\$为该区间的置信度。

正态总体,求均值的µ区间估计

已知方差,估计均值

已知方差\$\sigma^2\$,则\$U = \dfrac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)\$

 $P(\lambda_1 \leq U \leq U \leq 1 - \alpha_2) = 1 - \alpha$

\$\$代入U得:[\bar{X}-u_{\alpha/2}\dfrac{\sigma}{\sqrt{n}},\bar{X}+u_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}] \$\$

未知方差,估计均值

 $T = \frac{X}{mu}{S_{n-1}/\sqrt{n}} \sin t(n-1)$

 $p(\lambda_1) = 1-\lambda_1$

 $\$ [\bar{X}-t_{\alpha/2}(n-1)\dfrac{S_n}{\sqrt{n-1}}},\bar{X}+t_{\alpha/2}(n-1)\dfrac{S_n}{\sqrt{n-1}}} \$\$

正态总体, 求方差\$\sigma^2\$的区间估计

 $\$ \chi = \dfrac{nS_n^2}{\sigma^2} \sim \chi^2(n-1) \$\$

使概率对称 \$P(\chi^2 < \lambda_1) = P(\chi^2 > \lambda_2) = \dfrac{\alpha}{2}\$

 $\$ \chi^2_{1-\dfrac{\alpha}{2}} \leq \dfrac{nS_n^2}{\sigma^2} \leq \chi^2_{\dfrac{\alpha}{2}}(n) \$\$

\$\$[\dfrac{nS_n^2}{\chi^2_{\alpha/2}(n-1)},\dfrac{nS_n^2}{\chi^2_{1-\alpha/2}(n-1)}] \$\$

双正态总体情形

使用的是修正的样本方差\$S_{n-1}^2\$

求\$\mu_1-\mu_2,\dfrac{\sigma^2_1}{\sigma^2_2}\$的区间估计。

\$\sigma_1^2,\sigma_2^2\$已知, 求\$\mu_1,\mu_2\$的置信区间

 $\$ \bar{X}-\bar{Y} \sim N(\mu_1-\mu_2,\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2})\$\$

化为标准正态分布后查表

 $$$[(\bar{X}-\bar{Y})-u_{\alpha/2}\sqrt{\frac{sigma_1^2}{n_1}+\bar{X}-\bar{Y}})-u_{\alpha/2}\sqrt{\frac{1}^2},(\bar{X}-\bar{Y})+u_{\alpha/2}\sqrt{\frac{1}^2}{n_1}+\bar{X}-\bar{Y}}) $$$

如果\$\sigma_1.\sigma_2\$位置,但是\$\sigma_1=\sigma_2=\sigma,\sigma未知\$,取\$\sigma^2=\dfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}\$

方差比\$\dfrac{\sigma_1^2}{\sigma_2^2}\$的置信区间

 $F=\dfrac{S_1^2/\simeq 1^2}{S_2^2/\simeq 2^2} \sim F(n_1-1,n_2-1)$

置信区间\$(\dfrac{S_1^2}{S_2^2}\dfrac{1}{F_{\alpha/2}(n_1-1,n_2-1)},\dfrac{S_1^2}{S_2^2}\dfrac{1}{F_{1-}}{alpha/2}(n_1-1,n_2-1)})\$

单侧置信区间

在单侧置信区间中,都是分位点都是\$\alpha\$

对\$0 < \alpha < 1\$,样本\$X_1,..,X_n\$,确定统计量\$\hat{\theta}(X_1,...,X_n)\$使\$P(\theta > \hat{\theta_1}) = 1 - \alpha\$,则称\$(\hat{\theta_1}, +\infty)\$是\$\theta\$的置信度\$1 -\alpha\$的单侧置信区间,\$\hat{\theta}\$称为单侧置信下限。

类似有\$P(\theta <\hat{\theta_2}) = 1 -\alpha\$, 位单侧置信上限。

例如\$X\sim N(\mu,\sigma^2)\$, 求\$\mu\$的单侧置信下限, \$T= \dfrac{\bar{X} - \mu}{S_{n-1}/\sqrt{n}} \sim t(n-1)\$

分布: 求上限从大于入手, 求小于从小于入手

求单侧置信区间但未说明求上下限,根据具体问题判断,例如寿命问题求下限

非正态总体均值的区间估计 (大样本法)

当n充分大时,根据中心极限定理有 \$\$\dfrac{\sum\limits_{i=1}^nX_i-n\mu}{\sqrt{n}\sigma}\rightarrow N(0,1) \$\$

 $\frac{\bar{X}-\mu}{\simeq N(0,1) $$$

若\$\sigma\$未知,可以用样本标准差\$S_{n-1}\$代替 \$\$U=\dfrac{\bar{X}-\mu}{S_{n-1}/\sqrt{n}} \sim N(0,1),(近似)\$\$

主义使用的标准差, 要给方差开方

假设检验

简单假设:\$H_0:x=a,H_1:x\neq a\$

复合假设:\$x < a\$

u检验法

一般根据拒绝的概率计算出拒绝域,检查样本是否在拒绝域之中。

第一步: 统计假设

第二步: \$H_0\$成立时,考虑一个统计量U。(统计量及分布)

第三步: 由\$P(|U| > u_{\alpha/2}) = \alpha\$,得到拒绝域

第四步:根据样本得到U的观测值

第五步: 得出结论

假设检验基本步骤

1. 根据问题提出原假设\$H_0\$和对立假设\$H_1\$

- 2. 构造一个合适的统计量(往往由参数估计而来),并在\$H_n\$成立的条件下推导出该统计量的分布
- 3. 给出小概率\$\alpha\$,确定临界值和拒绝域W
- 4. 由样本算出统计量的观察值
- 5. 若观察值落在拒绝域W,则拒绝\$H 0\$,若在接受域,接受\$H 0\$

正态总体均值的假设检验

单个正态总体均值的假设检验

\$\sigma^2\$已知(u检验法)

 $$U = \frac{N}{\sum_{x\in N(0,1)}} \sin N(0,1)$

拒绝域为\$W={|U|\geq u_{\alpha/2}}\$

单边检验

 $H_0:\mu = \mu_0, H_1:\mu > \mu_0$

拒绝域\$W = {\dfrac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\geq u_{\alpha}}\$

 $H_0:\mu = \mu_0, H_1:\mu < \mu_0$

拒绝域\$W = {\dfrac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\leq -u_{\alpha}}\$

\$\sigma^2\$未知 (t检验法)

 $T = \frac{X}-\mu_0}{S/\sqrt{n}} \lesssim t(n-1)$

拒绝域\$W={|T|\geq t_{\alpha/2}(n-1)}\$

对于单边检验, 判断大于号还是小于号后, 使用的\$t {\alpha}(n-1)\$

双正态总体的情形

\$\sigma_1,\sigma_2\$已知

 $$U = \frac{(\bar{X}-\bar{Y}) - (\bar{X}-\bar{Y}) - (\bar{X}-$

拒绝域(双边)\$W={|U|\geq u_{\alpha/2}}\$

单边(\$H_1:\mu_1 < \mu_2\$时)\$W={U\leq -u_{\alpha}}\$

单边(\$H_1:\mu_1 > \mu_2\$时)\$W={U\geq u_{\alpha}}\$

\$\sigma_1,\sigma_2\$未知但相等,\$\sigma_1=\sigma_2=\sigma\$

\$S_w = \sqrt{\dfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}}\$代替\$\sigma\$

 $T=\frac{1}{n_1}+\frac{1}{n_2}}\sim t(n_1+n_2-2)$

正太总体方差的假设检验

单正太总体

 $H_0:\simeq ^2 = \sigma_0^2, H_1:\simeq \alpha_0^2$

 $\ \circ 2=\drac{(n-1)S^2}{\simeq 0^2} \sin \cosh^2(n-1)$

 $W={ \cdot ^2\leq \cdot ^2}(n-1)} \subset { \cdot ^2\leq \cdot ^2}(n-1)}$

双正太总体 (F检验法)

 $H_0:\simeq 1^2 = \sigma_2^2, H_1:\simeq 1^2 \leq 1^2 \leq 1^2$

 $F=\dfrac{S_1^2/\simeq 1^2}{S_2^2/\simeq 2^2} \le F(n_1-1,n_2-1)$

在假设\$H_0\$成立的条件下, \$F=\dfrac{S_1^2}{S_2^2}\sim F(n_1-1,n_2-1)\$

拒绝域\$W={F\leq F_{1-\alpha/2}(n_1-1,n_2-1)}\cup {F\geq F_{\alpha/2}(n_1-1,n_2-1)}\$

非正太总体均值的检验

一个总体均值的检验

假设X为任意总体,\$EX=\mu,DX=\sigma^2\$,\$X_1,...,X_n\$是一组样本,\$\bar{X}是样本均值,S^2是修正的样本方差,\mu_0是已知参数,记U=\dfrac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}或U=\dfrac{\bar{X}-\mu_0}{\S.\sqrt{n}}\$, 当n充分大时,统计量U近似服从标准正态分布。

两个正态总体的检验

\$X 1,...,X m,S^2 1,Y 1,Y 2,...,Y n,S^2 2\$,修正样本方差

拟合优度检验(分布拟合优度检验)(不考)

不知道总体的分布类型

\$H_0:F(x)=F_0(x,\theta)\$, \$F_0\$为某个已知的分布函数, \$\theta = (\theta_1,...,\theta_r)\$为未知参数

利用事件的频率与概率之间的偏差构造检验统计量

皮尔逊统计量

\$\$H_0:O(X=x_i),i=1,2,...,k\$\$

(1)计算\$X 1,...,X n\$中取\$x i\$的实际频数\$n i = {X 1,...,X n中取x i的个数}\$

(2)计算实际频数与理论频数的偏差平方和\$\chi^2=\sum\limits_{i=1}^k\dfrac{(n_i-np_i)^2}{np_i}\sim \chi^2(k-1)\$

(3)拒绝域为\$W={\chi^2\geq \chi^2_\alpha(k-1)}\$

一般的假设检验问题

- 1. 将样本空间分为k个互不相交的事件\$A_i,A_2,...,A_k\$
- 2. 计算每个事件\$A_i\$上的理论频数,若参数\$\theta\$未知,先算出\$\theta\$的极大似然估计\$\hat{\theta}\$, 计算理论上样本落在事件\$A_i\$中的概率\$\hat{p_i}=P(X\in A_i|\theta = \hat{\theta}),i=1,2...,k\$,最后得到每个事件的理论频数\$n\hat{p_i}\$
- 3. 计算\$X_1,...,X_n\$中取\$x_i\$的实际频数\$n_i = {X_1,...,X_n中取x_i的个数}\$
- 4. 计算实际频数与理论频数的偏差平方和\$\chi^2=\sum\limits_{i=1}^k\dfrac{(n_i-n\hat{p_i})^2} {n\hat{p_i}}\sim \chi^2(k-1)\$
- 5. 拒绝域为\$W={\chi^2\geq \chi^2_\alpha(k-1)}\$

注意:通常要求\$n\geq 50\$,将样本空间划分为事件,要求每个事件的理论频数不应太小

期中之前的内容

基本概念

条件概率: $P(B|A) = \frac{P(AB)}{P(A)} \cdot P(AB) = P(A)P(B|A) = P(B)P(A|B)$

全概率公式与贝叶斯公式:

全概率公式: \$A_i\$是\$\Omega\$的一个划分, \$P(B) = \sum\limits_{i=1}^nP(A_i)P(B|A_i)\$

贝叶斯公式: A_i \$是\$\Omega\$的一个划分, $P(A_j|B) = \frac{P(A_j)P(B|A_j)}{B}$

 ${\sum_{i=1}^n P(A_i)P(B|A_i)}$

分布函数

二项分布的峰值: 当\$(n+1)p\$是整数时。 $$k_0=(n+1)p-1$$ 或\$(n+1)p\$,当\$(n+1)p\$不是整数时, $$k_0=(n+1)p$]

若随机变量\$X\thicksim B(n,p)\$,则当n充分大,p充分小时,令\$\lambda = np\$,则有\$P{X=k}=C_n^kp^k(1-p)^{n-k}\approx \dfrac{\lambda^k}{k!}e^{-\lambda}\$

离散型:几何分布:\$X\thicksim g(p)\$

连续型:均匀分布\$X\sim U[a,b]\$, \$E(x) = \dfrac{a+b}{2},D(x) = \dfrac{(b-a)^2}{12}\$

二项分布 $X\$ thicksim B(n,p)\$,E(x) = np,D(x) = npq\$

超几何分布\$X\thicksim H(n,N,M)\$

泊松分布: $p{X=k} = \frac{k}{e^{-\lambda}}, k=0,1,2,...,\lambda > 0$, 记作\$X\thicksim P(\lambda)\$,\$E(x) = \lambda,D(x) = \lambda\$

指数分布 (无记忆性) \$X\thicksim E(\lambda)\$\$E(x) = \dfrac{1}{\lambda},D(x) = \dfrac{1}{\lambda^2}\$

正态分布\$p(x)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-\dfrac{(x-\mu)^2}{2\sigma^2}}\$,\$X\thicksim N(\mu,\sigma^2)\$.

若\$X\thicksim N(\mu,\sigma^2),Y=\dfrac{X-\mu}{\sigma}\thicksim N(0,1)\$,以及\$3\sigma\$原理

 $X\$ $N(\mu), = X+b, Y+b, Y+b, Esim N(a\mu+b, a^2\mu^2)$

\$F(x) = P(X\leq x) (-\infty < x < +\infty)\$称为随机变量X的随机变量。

随机变量函数的分布

对于连续型随机变量,其密度函数为\$p(x),y = g(x)\$是x的连续函数,\$Y = g(x)\$是连续性随机变量。\$x Y = g(x)\$的密度函数 $$p_Y(y)$ \$

- 1. 分布函数法: 先求\$Y=q(X)\$的分布函数, 再求导。
- 2. 公式法。

随机向量的函数的分布

同样求出对应的分布函数,然后求导,如 $Z = max\{X,Y\},F(Z < z) = P(X < z,y < Z)$ \$,然后积分

随机变量的数字特征(期望,方差)

期望的性质

期望的线性性质: 不要求独立, \$E(aX+bY)=aE(X)+bE(y)\$

若X, Y相互独立, \$E(XY)=E(X)E(Y)\$

方差的性质

 $D(aX+b)=a^2D(X)$

\$D(X+Y)=D(x)+D(Y)+E((X-E(X))(Y-E(Y)))\$, X和Y独立时\$D(X+Y)=D(X)+D(Y)\$

切比雪夫不等式\$P(|X-EX|\geq \epsilon)\leq \dfrac{D(X)}{\epsilon^2}\$

注意样本方差和总体方差的区别

协方差

cov(X,Y)=E(XY)-E(X)E(Y)\$

相关系数: \$\rho=\dfrac{cov(X,Y)}{\sqrt{D(X)D(Y)}}\$,\$|\rho|=1\Leftrightarrow P(cX+aY=b)=1\$,X和Y以概率1成线性关系。

X和Y不相关

 $\Delta Y = 0\$ Cov(X,Y)=0\Leftrightarrow E(XY)=E(X)E(Y)\Leftrightarrow D(X+Y)=D(X)+D(Y)\$.