Skip to content Mapping Node

The Mapping node transforms the input vector by applying translation, rotation, and scaling.

Inputs

The inputs of the node are dynamic. In particular, the Location input is only available in the Texture and Point vector types.

Vector

The vector to be transformed.

Location

The amount of translation along each axis.

Rotation

The amount of rotation along each axis. XYZ order.

Scale

The amount of scaling along each axis.

Properties

Vector Type

The node applies the transformation differently depending on the semantic type of the input vector.

Point:

For this vector type, the node performs a straightforward transformation.

Transforming a texture coordinates is analogous to transforming a UV map. For instance, translating the texture coordinates along the **positive** X axis would result in the evaluated texture to move in the **negative** X axis, much like if one translated a UV map. Similarly, scalin the texture coordinates **up** would result in the evaluated texture to scale **down**. So transforming the texture coordinates would appear to have the opposite effect on the evaluated texture.

The order of transformation is: Scale -> Rotate -> Translate, which means:

- Translation moves the input along the local rotation axis.
- Rotation rotates the input around the origin of the space.
- Scaling scales the input along the global axis.

Texture:

For this vector type, the node performs an inverse transformation.

Inverse transforming a texture coordinates would, as opposed to the Point type, transform the evaluated texture itself. For instance, translating the texture coordinates along the positive X axis would result in the evaluated texture to move in the positive X axis, as one would expected. Similarly, scaling the texture coordinates up would result in the evaluated texture to scale up, as one would expect.

The order of transformation is: Translate -> Rotate -> Scale, which means:

- Translation moves the input along the global axis.
- Rotation rotates the input around the translation vector.
- Scaling scales the input along the local rotation axis.

Vector:

For this vector type, a *Point* transformation is performed, but with zero translation.

Normal

For this vector type, the node performs the inverse transpose of the transformation and normalize the result. Such transformation ensures correct normals after non-uniform scaling. So this type should be used when transforming normals.

_

Outputs

Vector

The input vector after transformation.

Examples

Mapping node example.

Previous
Displacement Node

Copyright ©: This page is licensed under a CC-BY-SA 4.0 Int. License Made with Furo Last updated on 2025-05-10

No Normal No

View Source View Translation Report issue on this page