Bayesian Methods for Ecological and Environmental Modelling Combining diverse data sets

Peter Levy

2019-09-11

This session

- ▶ No new theory
- Example applications of Bayesian approach to real problems
- ► Focus on
 - propagating uncertainty
 - combining different data sources

Bayesian approach particularly suited to these

For any given ecological problem, we often have more than one source of information:

old data and new data e.g. last year's experiment and this year's

For any given ecological problem, we often have more than one source of information:

- old data and new data e.g. last year's experiment and this year's
- data from different methods e.g. regular surveys and citizen science

For any given ecological problem, we often have more than one source of information:

- old data and new data e.g. last year's experiment and this year's
- data from different methods e.g. regular surveys and citizen science
- data from different space/time scales e.g. ground-based versus satellite

For any given ecological problem, we often have more than one source of information:

- old data and new data e.g. last year's experiment and this year's
- data from different methods e.g. regular surveys and citizen science
- data from different space/time scales e.g. ground-based versus satellite
- data on different (but related) ecosystem properties
 e.g. evaporation and run-off, or population of species A and species B.

Bayes Theorem

Bayes Theorem relates the parameters of a model to observed data:

$$P(\theta|D) = P(\theta) \frac{P(D|\theta)}{P(D)}$$

- ightharpoonup posterior probability of the parameter set heta given the observed data D
- prior probability of the parameters $P(\theta)$
- ▶ likelihood of the data given the parameters $P(D|\theta)$
- ▶ marginal probability of observing the data P(D).

Bayes Theorem

Bayes Theorem relates the parameters of a model to observed data:

$$P(\theta|D) = P(\theta) \frac{P(D|\theta)}{P(D)}$$

We combine different data sources by specifying them in either the prior distribution or the likelihood function.

How to combine data sources?

Incorporating in the prior

old data and new data e.g. last year's experiment and this year's

Incorporating in the likelihood function

- data from different methods e.g. regular surveys and citizen science
- data from different space/time scales e.g. ground-based versus satellite
- data on different (but related) ecosystem properties

Incorporating in the prior

$$P(\theta|D) = P(\theta) \frac{P(D|\theta)}{P(D)} \tag{1}$$

D_{old} informs $P(\theta)$

- Estimate model parameters with old data
- Obtain posterior distribution
- ▶ Now use this as subsequent prior distribution
- Re-estimate model parameters with new data
- examples
 - time series of river flow
 - N₂O gas emissions from a pasture field

Incorporating in the prior

Data from different space/time scales

- Incorporating in the likelihood function
- Represent the effect of space/time scale explicitly
- We can consider small-scale observations as samples from a distribution in space/time.
- ▶ Large-scale observations measure the mean of this distribution.
- examples
 - satellite observations with coarse resolution and individual forest measurements
 - catchments naturally integrate over large areas, comprising a population of small sub-catchments

Data from different methods

- Incorporating in the likelihood function
- May be very straightforward
 - ightharpoonup just need appropriate σ for each observation
- May need a discrepancy term to account for systematic error in different methods
- data from different methods
 - soil moisture in the UK

Data from different (but related) ecosystem properties

So long as the model makes a prediction of an observed quantity, or is at least correlated with it, we can include it in the likelihood function.

- example
 - land-use change in the UK the next practical

Practical

Brief introduction to BayesianTools R package - more this afternoon

- multiple terms for multiple data sets in the likelihood function
 - ▶ land-use change in the UK