第八节 网络层概念及 IP 格式

一、课程目标

了解网络层相关概念,掌握 IP 地址格式和数据报格式。

二、课程内容

1、观点争论:在计算机通信中,可靠交付应当由谁来负责?是网络还是端系统?

网络派:虚电路服务端派:数据报服务

2、网络层的两个层面:控制平面和数据平面。

路由器中既有转发表又有路由选择软件

3、网际协议 IP

网际协议 IP(Internet Protocol) 是 TCP/IP 体系结构中两个最主要的协议之一。与 IP 协议配套使用的还有三个协议:

(1) 地址解析协议 ARP(Address Resolution Protocol)

- (2) 网际控制报文协议 ICMP (Internet Control Message Protocol)
- (3) 网际组管理协议 IGMP (Internet Group Management Protocol)

- 4、虚拟互连网络:针对不同网络采用了不同的寻址方案、不同的最大分组长度、不同的网络接入机制、不同的状态报告方法、不同的路由选择技术等等问题,需要采用设备将不同网络进行连接(屏蔽各种物理网络的差异性)。此类中间设备包括:
 - (1) 在物理层使用转发器(repeater)或集线器(hub)。
 - (2) 在数据链路层使用网桥(bridge)或交换机(switch)。
 - (3) 在网络层使用路由器(router)。
 - (4) 在网络层以上使用网关(gateway)。

5、IP 地址:

- (1)IP 地址就是给每个连接在互联网上的主机(或路由器)的每一个接口分配一个在全世界范围是唯一的 32 位的标识符。
- (2)IP 地址由互联网名字和数字分配机构 ICANN(Internet Corporation for Assigned Names and Numbers)进行分配。其中,亚太地区互联网信息中心 APNIC 分配管理四大 RIRs 的 23.91%。CNNIC 以国家互联网络注册机构的身份于 1997年1月成为 APNIC 的联盟会员。
 - (3) 点分十进制记法、网络号和主机号:

IP 地址采用两级结构,由两个字段组成。第一个字段是网络号,它标志主机(或路由器)所连接到的网络;第二个字段是主机号,它标志该主机(或路由器)。

6、IP 地址划分: 在互联网发展早期采用的是分类的 IP 地址。

(1) 常用的 A、B、C 三类地址:

网络类别	网络数	第1个网络号	最后一个网络号	每个网络中主机数
А	126 (2 ⁷ - 2)	1	126	16777214 (2 ²⁴ – 2)
В	16384 (2 ¹⁴)	128.0	191.255	65534 (2 ¹⁶ – 2)
С	2097152 (2 ²¹)	192.0.0	223.255.255	254 (2 ⁸ – 2)

(2) 采用分类地址的好处:

第一, IP 地址管理机构在分配 IP 地址时只分配网络号, 而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理; 第二, 路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。

(3) 若干特殊含义的 IP 地址:

网络号	主机号	源地址使用	目的地址使用	代表的意思
0	0	可以	不可	在本网络上的本主机
0	X	可以	不可	在本网络上主机号为 X 的主机
全1	全1	不可	可以	只在本网络上进行广播(各路由器均不转发)
Υ	全1	不可	可以	对网络号为 Y 的网络上的所有主机进行广播
127	非全0或全1的任何数	可以	可以	用于本地软件环回测试

7、**子网划分**: 1985 年起, IP 地址中增加了"子网号字段", 使两级的 IP 地址 变成为三级的 IP 地址。这种做法叫作划分子网(subnetting)。

IP地址 :: = {<网络号>, <子网号>, <主机号>}

(1)子网划分有固定长度子网和变长子网两种。暂时只讨论固定长度子网:

每次增加二进制1 192.168.1.0 每次增加32 每次增加32							
序号	第1个可用的IP地址 网络号 子网号(十进制)			最后1个可用的IP地址			
0	192.168.1	000	00000(0)	192.168.1.00000001	192.168.1. <mark>1</mark>	192.168.0. <mark>000</mark> 11110	192.168.1. <mark>30</mark>
1	192.168.1	001	00000(32)	192.168.1. <mark>001</mark> 00001	192.168.1. <mark>33</mark>	192.168.0. <mark>001</mark> 11110	192.168.1. <mark>62</mark>
2	192.168.1	010	00000(64)	192.168.1. <mark>010</mark> 00001	192.168.1. <mark>65</mark>	192.168.0. <mark>010</mark> 11110	192.168.1. <mark>94</mark>
3	192.168.1	011	00000(96)	192.168.1. <mark>011</mark> 00001	192.168.1. <mark>97</mark>	192.168.0. <mark>011</mark> 11110	192.168.1. <mark>126</mark>
4	192.168.1	100	00000(128)	192.168.1.10000001	192.168.1.129	192.168.0. <mark>100</mark> 11110	192.168.1. <mark>158</mark>
5	192.168.1	101	00000(160)	192.168.1. <mark>101</mark> 00001	192.168.1. <mark>161</mark>	192.168.0. <mark>101</mark> 11110	192.168.1.190
6	192.168.1	110	00000(192)	192.168.1. <mark>110</mark> 00001	192.168.1. <mark>193</mark>	192.168.0. <mark>110</mark> 11110	192.168.1.222
7	192.168.1	111	00000(224)	192.168.1.11100001	192.168.1. <mark>225</mark>	192.168.0. <mark>111</mark> 11110	192.168.1.254
	主机号全0表示网络 主机号全1表示广播地址						

子网掩码用来标志性网络号和子网号。

在真实网络中,子网划分和子网掩码实例,以及交换机的路由逻辑:

问题: 已知 IP 地址是 141.14.72.24, 子网掩码是 255.255.192.0。试求网络地址。

8、变长子网: 为了在一个划分子网的网络中可同时使用几个不同的子网掩码,提高 IP 地址资源的利用率, RFC 1009 提出变长子网掩码 VLSM (Variable Length Subnet Mask)。在 VLSM 的基础上又进一步研究出无分类编址方法 CIDR (Classless Inter-Domain Routing)。

CIDR 消除了 A 类、B 类和 C 类地址以及划分子网的概念,更加有效地分配 IPv4 的地址空间, CIDR 变长的"网络前缀"(network-prefix)来代替分类地址中的网络号和子网号; IP 地址从三级编址(使用子网掩码)又回到了两级编址。CIDR 使用"斜线记法"(slash notation),例如 128.14.32.0/20。

问题: 以 128.14.32.0/20 为例,回答下列问题。 (1) 地址块共有多少个地址? (2) 地址块最小地址是? 最小可用地址是? (3) 地址块最大地址是? 最大可用地址是? 20位网络位不变 12位主机位 最小IP地址 10000000 00001110 0010 0000 00000000 128.14.32.0 10000000 00001110 0010 0000 0000001 128.14.<mark>32</mark>.1 00001110 10000000 0010 0000 00000010 128.14.32.2 128.14.32.3 10000000 00001110 0010 0000 00000011 10000000 00001110 0010 0000 00000100 128.14.32.4 10000000 00001110 0010 1111 11111100 128.14.47.252 10000000 00001110 128.14.47.253 0010 1111 11111101 00001110 10000000 0010 1111 11111110 128.14.<mark>47</mark>.254 10000000 00001110 0010 1111 11111111 128.14.47.255 可指派的地址数是212-2 最大IP地址

常用的 CIDR 地址块:

CIDR 前缀长度	点分十进制	包含的地址数	相当于包含分类的网络数
/13	255.248.0.0	512 K	8个B类或2048个C类
/14	255.252.0.0	256 K	4个B类或1024个C类
/15	255.254.0.0	128 K	2个B类或512个C类
/16	255.255.0.0	64 K	1个B类或256个C类
/17	255.255.128.0	32 K	128个C类
/18	255.255.192.0	16 K	64个C类
/19	255.255.224.0	8 K	32个C类
/20	255.255.240.0	4 K	16个C类
/21	255.255.248.0	2 K	8个C类
/22	255.255.252.0	1 K	4个C类
/23	255.255.254.0	512	2个C类
/24	255.255.255.0	256	1个C类
/25	255.255.255.128	128	1/2个C类
/26	255.255.255.192	64	1/4个C类
/27	255.255.255.224	32	1/8个C类

- 9、路由聚合 (route aggregation): 一个 CIDR 地址块可以表示很多地址,对这种地址的聚合。例如,原来 202.193.96.0~202.193.96.103 八条 C 类网络,可以合并写一条: (202.193.96.0/21,下一跳)。
- 10、超网:前缀长度不超过 23 位的 CIDR 地址块都包含了多个 C 类地址, 对这些地址的整合。

ISP 共有 64 个 C 类网络。如果不采用 CIDR 技术,则在与该 ISP 的路由器交换路由信息的每一个路由器的路由表中,就需要有 64 个项目。但采用地址聚合后,只需用路由聚合后的 1 个项目 206.0.64.0/18 就能找到该 ISP。

11、IP 数据报格式:由首部(固定 20 字节+变长可选字段)和数据两部分组成。

版本---占4位,指 IP 协议的版本,目前为 IPv4。

首部长度---占4位,可表示的最大数值是15个单位,一个单位为4字节,因此IP的首部长度最大值是60字节。

总长度---占 16 位,指首部和数据之和的长度,单位为字节,数据报的最大长度为 2^16-1=65535 字节,总长度必须不超过最大传送单元 MTU(数据链路层使用 CSMA/CD 协议的的 MAC 帧的有效长度为 64~1518 字节, IP 数据报部分为 46~1500 字节)。

标识---占 16 位,是一个计数器,用来产生 IP 数据报的标识。

标志---占 3 位,最低位 MF(more fragment), MF=1 表示后面还有分片,=0 表示最后一个分片。中间位 DF(don't fragment), DF=0 时才允许分片。

片偏移---占 13 位,指出较长的分组在分片后某片在原分组中的相对位置。 片偏移以 8 个字节为偏移单位。

生存时间---占8位,记为TTL,指数据报在网路中可通过的路由器数的最大值。

协议---占8位,指出数据报携带的数据使用何种协议,以便目的主机的 IP 层将数据部分上交给那个处理过程。

首部校验和---占 16 位, 计算过程分为按位异或和取反两步。(1) IP 头部以 16 位为一个单位,逐个模 2 加(相当于异或);(2) 得到的结果取反,作为校验和放入校验和字段。

12、IPv6 (解决 IPv4 地址空间不足等问题)

IPv6 优势:

- (1) 更大的地址空间。IPv6 把地址从 IPv4 的 32 位增大 4 倍,即增大到 128 位,使地址空间增大了 2 倍。这样大的地址空间在可预见的将来是不会用完的。
- (2)扩展的地址层次结构。IPv6 由于地址空间很大,因此可以划分为更多的层次。
- (3) 灵活的首部格式。IPv6 数据报的首部和 IPv4 的并不兼容。IPv6 定义了许多可选的扩展首部,不仅可提供比 IPv4 更多的功能,而且还可提高路由器的处理效率,这是因为路由器对扩展首部不进行处理(除逐跳扩展首部外)。
- (4) 改进的选项。IPv6 允许数据报包含有选项的控制信息,因而可以包含一些新的选项。但 IPv6 的首部长度是固定的,其选项放在有效载荷中。我们知道,IPv4 所规定的选项是固定不变的,其选项放在首部的可变部分。
- (5)允许协议继续扩充。这一点很重要,因为技术总是在不断地发展的(如网络硬件的更新),而新的应用也还会出现。但我们知道,IPv4的功能是固定不变的。
 - (6) 支持即插即用(即自动配置)。因此 IPv6 不需要使用 DHCP。
- (7) 支持资源的预分配。IPv6 支持实时视像等要求保证一定的带宽和时延的应用。
- (8) IPv6 首部改为 8 字节对齐(即首部长度必须是 8 字节的整数倍)。原来的 IPv4 首部是 4 字节对齐。

13、IPv6 使用冒号十六进制记法,

十进制记法: 104.230.140.100.255.255.255.255.0.0.17.128.150.10.255.255 冒号十六进制记法: 68E6:8C64:FFFF:FFFF:0:1180:960A:FFFF

零压缩: FF05:0:0:0:0:0:0:B3 ----> FF05::B3

14、IPv4 向 IPv6 过渡采用双协议栈和隧道技术。

三、重点习题

P202: 全部