Лабораторная работа № 5.1.1 Фотоэффект

Илья Прамский

Сентябрь 2024

1 Теоретическая справка

Фотоэффект - испускание электронов фотокатодом, облучаемым светом - хорошо объясняется фотонной теорией света: фотон с энергией $\hbar\omega$ выбивает электрон из поверхности металла и сообщает электрону кинетическую энергию

Энергетический баланс этого взаимодействия описывается уравнением:

$$\hbar\omega = W + E_{max} \tag{1}$$

где W - работа выхода электрона из катода, E_{max} - максимальная кинетическая энергия электрона после выхода из фотокатода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывный - он простирается от нуля до E_{max} .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода располагают второй электрод(анод), на который подаётся потенциал. При достаточно большом ускоряющем напряжении(V>0) фототок достигает насыщения: все испущенные электроны попадают на анод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода. Данная зависимость изображена на рисунке 1.

Рис. 1. Зависимость фототока от напряжения на аноде

Подставляя в 1 уравнение $E_{max}=eV_0$, получаем уравнение Эйнштейна для фотоэффекта:

$$eV_0 = \hbar\omega - W \tag{2}$$

В самом простом случае, зависимость силы тока от напряжения $\sqrt{I} = f(V_0 - V)$.

Для экспериментальной проверки уравнения Эйнштейна, по графикам данной зависимости определяются потенциалы запирания при разных частотах света и строится зависимость $V_0(/omega)$, которая должна иметь вид:

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{3}$$

Получается, по наклону прямой можно найти постоянную Планка

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{4}$$

2 Экспериментальная установка

Схема установки приведена на рисунке 2. Свет от источника S с помощью конденсора фокусируется на входную щель призменного монохроматора YM-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента $\Phi-25$

Рис. 2. Схема экспериментальной установки

Рис. 3. Схема монохроматора

Основные элементы монохроматора представлены на рисунке 3.

Входная щель 1 с микрометрическим винтом 9 для её открытия на нужную ширину(0,01 - 4 мм).

Коллиматорный объектив 2 с микрометрическим винтом 8, что позволяет смещать объектив относительно шели

Система призм 3, предназначенная для выделения частоты и поворота лучей на 90 градусов

Поворотный столик 6 с винтом 7 для вращения барабана с целью поворота призмы, чтобы в поле зрения были другие участки спектра

Зрительная труба с объективом 4, окуляром 5, острием указателя 10.

Корпус 10, оптическая скамья длярасположения линзы и источника, пульт управления.

3 Ход работы

Для начала подготовим установку к работе. Для этого расположим неоновую лампу и линзу на оптическую скамью, настроим их так, чтобы свет попадал на входную щель. Далее откроем входную щель, включим подсветку окуляра и настроимся на чёткое изображение кончика указателя. Далее, для улучшения точности, вращая винт 8, настроим изображение спектра света так, чтобы избежать параллакса света и кончика указателя. Установка подготовлена к работе.

Градуировка монохроматора

Пользуясь таблицой из методических материалом, проградуируем барабан монохроматора по спектру неоновой лампы. Для этого построим(по известным из таблицы данным и полученной информации об углах из эксперимента) график зависимости длины волны света от угла на барабане.

λ , Å	5331	5341	5401	5852	5882	5945	5976	6030	6074	6096	6143	6164	6217
φ	2205	2212	2254	2513	2529	2560	2574	2600	2618	2628	2649	2658	2682
λ , Å	6267	6305	6334	6383	6402	6507	6533	6599	6678	6717	6929	7032	
φ	2702	2719	2731	2750	2759	2798	2806	2833	2860	2873	2944	2972	

Таблица 1 – Таблица с длинами волн полос спектра и соответствующими им углами на барабане

Исследование зависимости фототока от величины запирающего потенциала

Установим вместо неоновой лампы электрическую, настроим её на резкое изображение на входной щели, затем установим показания вольтметра близким к нулю при закрытом входе монохроматора. После этого откроем входную щель.

Теперь же измерим зависимость фототока от напряжения. В моём случае установка была неисправна, из-за чего при выставлении какого-то фиксированного значения напряжения V, фототок со временем стремительно увеличивался. В связи с этим реальная зависимость стала больше похожей на линейную

По указанию преподавателя, я рассмотрел зависимость, как линейную (I=f(V)), но получил различие со справочными данными на несколько порядков, из-за чего я решил взять данные по данному пункту у одногруппник. Рассмотрев как изменяется фототок в зависимости от напряжения, построим графики зависимости $\sqrt{I}=f(V)$ для 5 разных частот и для каждой из них найдём значение запирающего потенциала.

$\lambda, ext{Å}$												
5331		5852		6074		6334		6599		7032		
$\sqrt{I}, A^{\frac{1}{2}},$	V, B	$\sqrt{I}, A^{\frac{1}{2}}$	V, B									
0,32	0,70	0,32	0,35	0,32	0,30	0,32	0,34	0,32	0,32	0,32	0,38	
0,39	1,17	0,39	0,62	0,39	0,52	0,39	0,52	0,39	0,48	0,39	0,51	
0,45	1,58	0,45	0,87	0,45	0,80	0,45	0,68	0,45	0,62	0,45	0,65	
0,50	2,00	0,50	1,11	0,50	1,05	0,50	0,86	0,50	0,77	0,50	0,78	
$0,\!55$	2,46	0,55	1,39	0,55	1,22	0,55	1,05	$0,\!55$	0,94	$0,\!55$	0,93	

Найдём коэффициенты k и b для полученных линейных зависимостей, а затем, приравняв фототок к нулю, найдём потенциал насыщения.

λ , Å	$k, \frac{A^{\frac{1}{2}}}{B}$	$\sigma_k, \frac{A^{\frac{1}{2}}}{B}$	$b, A^{\frac{1}{2}}$	$\sigma_b, A^{\frac{1}{2}}$	V_0, B	σ_{V_0}, B
5331	0,132	0,006	0,23	0,01	1,74	0,11
5852	0,222	0,011	0,25	0,01	1,11	0,07
6074	0,242	0,011	$0,\!25$	0,01	1,04	0,06
6334	0,328	0,019	0,21	0,01	0,65	0,06
6559	0,370	0,020	0,21	0,01	$0,\!55$	0,05
7032	0,420	0,020	0,17	0,02	0,39	0,05

Далее построим график зависимости $V_0 = f(\omega)$. Получилось

Получается, $k=\frac{\hbar}{e}=1,62\pm0,15\cdot10^{-15}\frac{\mathrm{Дж}\cdot c}{\mathrm{Kn}}$. $\hbar=2,6\pm0,2\cdot10^{-34}\mathrm{Дж}\cdot c$.

4 Вывод

В ходе данной работы было исследовано явление фотоэффекта, проверена справедливость уравнения Эйнштейна для фотоэффекта при помощи рассмотрения зависимостей, которые она задаёт между величинами. Получившееся значение $\frac{\hbar}{e}=1,62\pm0,15\cdot10^{-15}\frac{\text{Дж}\cdot c}{\text{Кл}}$, теоретическое же равно $6,57\cdot10^{-16}\frac{\text{Дж}\cdot c}{\text{Кл}}$.