衡水中学 2019 年高考押题试卷理数

试卷

第I卷

一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.

- 1. 设集合 $A = \{x \mid x^2 x 6 < 0, x \in Z\}$, $B = \{z \mid z = |x y|, x \in A, y \in A\}$, 则 $A \cap B = ($
- A. $\{0,1\}$ B. $\{0,1,2\}$ C. $\{0,1,2,3\}$ D. $\{-1,0,1,2\}$
- 2. 设复数 z 满足 $\overline{} = 2 i$,则 $\overline{} = ($) $\overline{}$

 $\sqrt{ }$ A. 5 B. $\frac{1}{5}$ C. $\frac{\sqrt{5}}{5}$ D. $\frac{\sqrt{5}}{25}$

3. 若 $\cos(\alpha + \frac{\pi}{4}) = \frac{1}{3}$, $\alpha \in (0, \frac{\pi}{2})$, 则sin α 的值为 ()

A. $\frac{4-\sqrt{2}}{6}$ B. $\frac{4+\sqrt{2}}{6}$ C. $\frac{7}{18}$ D. $\frac{\sqrt{2}}{3}$

4. 已知直角坐标原点 O 为椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的中心, F_1 , F_2 为左、右焦点,

在区间(0,2) 任取一个数e ,则事件"以e 为离心率的椭圆C 与圆O : $x^2+y^2=a^2-b^2$ 没有交点"的概率为()

A. $\frac{\sqrt{2}}{4}$ B. $\frac{4-\sqrt{2}}{4}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{2-\sqrt{2}}{2}$

5. 定义平面上两条相交直线的夹角为: 两条相交直线交成的不超过90°的正角. 已知双曲线

 $E: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$,当其离心率 $e \in [\sqrt{1,2}]$ 时,对应双曲线的渐近线的夹角的

取值范围为()

A. $[0,\frac{\pi}{6}]$ B. $[\frac{\pi}{6},\frac{\pi}{3}]$ C. $[\frac{\pi}{4},\frac{\pi}{3}]$ D. $[\frac{\pi}{3},\frac{\pi}{2}]$

6. 某几何体的三视图如图所示,若该几何体的体积为 $3\pi + 2$,则它的表面积是()

A.
$$(\frac{3\sqrt{13}}{2} + 3)\pi + \sqrt{22} + 2$$

B.
$$(\frac{3\sqrt{13}}{4} + \frac{3}{2})\pi + \sqrt{22} + 2$$

C.
$$\frac{\sqrt{13}}{2}\pi + \sqrt{22} D$$
.

$$\frac{\sqrt{13}}{4}\pi + \sqrt{22}$$

7. 函数 $y = \sin x + \ln |x|$ 在区间[-3,3]的图象大致为()

A. B. C. D.

8. 二项式 $(ax + \frac{1}{bx})^n (a > 0, b > 0)$ 的展开式中只有第6 项的二项式系数最大,且展开式中的

第3项的系数是第4项的系数的3倍,则ab的值为()

A. 4

B. 8

C. 12

D. 16

9. 执行如图的程序框图,若输入的 x=0 , y=1 , n=1 ,则输出的 p 的值为 ()

A. 81 B.
$$\frac{81}{2}$$
 C. $\frac{81}{4}$ D. $\frac{8}{8}$

10. 已知数列
$$_1 = 1$$
, $_2 = 2$, 且 $_{n+2} - a = 2 - 2(-1)^n$, $_1 \in N^*$, 则 $_{2017}$ 的值为()

- A. $2016 \times 1010 1$ B. 1009×2017 C. $2017 \times 1010 1$
- D. 1009×2016
- 11. 已知函数 $f(x) = A\sin(\omega x + \varphi)$ ($A > 0, \omega > 0, |\varphi| < <math>\frac{\pi}{2}$) 的图象如图所示,令

g(x) = f(x) + f'(x) ,则下列关于函数 g(x) 的说法中不正确的是 ()

- A. 函数 g(x) 图象的对称轴方程为 $x = k\pi \frac{\pi}{12}(k \in Z)$
- B. 函数 g(x) 的最大值为 $2\sqrt{2}$
- C. 函数 g(x) 的图象上存在点 P ,使得在 P 点处的切线与直线l : y=3x-1 平行
- D. 方程 g(x) = 2 的两个不同的解分别为 x_1 , x_2 则 $x_1 x_2$ 最小值为 $\frac{\pi}{2}$
- 12. 已知函数 $f(x) = ax^3 3x^2 + 1$,若 f(x) 存在三个零点,则a 的取值范围是()
- A. $(-\infty, -2)$ B. (-2, 2) C. $(2, +\infty)$ D. $(-2, 0) \cup (0, 2)$

第Ⅱ卷

二、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分.

13. 向量 $\vec{a} = (m,n)$, $\vec{b} = (-1,2)$,若向量 \vec{a} , \vec{b} 共线,且 $\vec{d} = 2 \ \vec{b}$,则mn 的值为__.

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = > >$ 14. 设点 M 是椭圆 $\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$ 14. 设点 $\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$ 14. 设点 $\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$ 15. 以点 $\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$ 16. 以点 $\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$ 17. 以点 $\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$ 18. 以点 $\frac{a^2}{a^2} + \frac{b^2}{a^2} = 1$ 18. 以点 $\frac{a^$

焦点 F ,圆 M 与 y 轴相交于不同的两点 P 、 Q , 若 ΔPMQ 为锐角三角形,则椭圆的离心率 的 取 值 范 围 为_.

15. 设
$$x$$
 , y 满足约束条件 $\begin{cases} 2x + y - 3 \ge 0 \\ x - 2y + 2 \ge 0 \end{cases}$, 则 y 的取值范围为 .
$$\begin{cases} 2x - y - 2 \le 0 \end{cases}$$

16. 在平面五边形 ABCDE 中,已知 $\angle A = 120^\circ$, $\angle B = 90^\circ$, $\angle C = 120^\circ$, $\angle E = 90^\circ$,

AB=3 , AE=3 , 当五边形 ABCDE 的面积 $S \in [6\sqrt[4]{5},9]$ 利时,则 BC 的取值范围 为__.

三、解答题: 解答应写出文字说明、证明过程或演算步骤.

17. 已知数列
$$\{a_n\}$$
的前 n 项和为 S_n , $a = \frac{1}{2}$, $2S = S_n + 1 (n \ge 2, n \in N^*)$.

(1) 求数列 $\{a_n\}$ 的通项公式;

18. 如图所示的几何体 ABCDEF 中,底面 ABCD 为菱形,AB = 2a , $\angle ABC = 120^{\circ}$,AC与 BD 相交于 O 点,四边形 BDEF 为直角梯形, DE //BF , $BD \perp DE$, 培训学校

 $DE = 2BF = 2\sqrt{a}$, 平面 $BDEF \perp$ 底面 ABCD.

- (1) 证明: 平面 AEF 上 平面 AFC;
- (2) 求二面角 E AC F 的余弦值.

19. 某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段 时 间的训练后从该年级800 名学生中随机抽取100 名学生进行测试,并将其成绩分为 $A \setminus B$ $C \times D \times E$ 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答 下列问题:

5

- (1) 试估算该校高三年级学生获得成绩为 B 的人数;
- (2) 若等级 A 、 B 、 C 、 D 、 E 分别对应100 分、90 分、80 分、70 分、60 分,学校要求平均分达90 分以上为 "考前心理稳定整体过关",请问该校高三年级目前学生的"考前心理稳定整体"是否过关?
- (3) 为了解心理健康状态稳定学生的特点,现从 A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为 A 级的个数 ξ 的分布列与数学期望.

20. 已知椭圆
$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
 的离心率为 $\frac{\sqrt{2}}{2}$,且过点 $P(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2})$, 动直线 $l:$

y - kx + m 交椭圆C 于不同的两点 A , B , 且 \overrightarrow{OA} \overrightarrow{OB} = 0 (O 为坐标原点).

- (1) 求椭圆C的方程.
- (2) 讨论 $3m^2-2k^2$ 是否为定值?若为定值,求出该定值,若不是请说明理由.
- 21. 设函数 $f(x) = -a^2 \ln x + x^2 ax(a \in R)$.
- (1) 试讨论函数 f(x) 的单调性;
- (2) 设 $\varphi(x) = 2x + (a^2 a)\ln x$,记 $h(x) = f(x) + \varphi(x)$,当a > 0时,若方程 $h(x) = m(m \in R)$ 有两个不相等的实根 x_1 , x_2 ,证明 $h'(\frac{x_1 + x_2}{2}) > 0$.

请考生在 22、23 题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.

22. 选修 4-4: 坐标系与参数方程

 $\begin{cases} x=3+\alpha\cos t \\ \text{在直角坐标系 } xOy \, \text{中,曲线} C_1: \end{cases} \begin{cases} x=3+\alpha\sin t \\ y=2+\alpha\sin t \end{cases} (t 为参数, \ a>0), \ \text{在以坐标原点为极} \end{cases}$

- 点,x轴的非负半轴为极轴的极坐标系中,曲线 C_2 : $\rho = 4\sin\theta$.
- (1) 试将曲线 C_1 与 C_2 化为直角坐标系 xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;
- (2) 当a=3时,两曲线相交于 A ,B 两点,求 AB .
- 23. 选修 4-5: 不等式选讲

已知函数
$$f(x) = |2x - 1| + |x + 1|$$

(1) 在下面给出的直角坐标系中作出函数 y = f(x) 的图象,并由图象找出满足不等式 $f(x) \le 3$ 的解集;

(2) 若函数 y = f(x) 的最小值记为m,设 $a,b \in R$,且有 $a^2 + b^2 = m$,试证明:

$$\frac{1}{a^2+1} + \frac{4}{b^2+1} \ge \frac{18}{7}$$

参考答案及解析

理科数学(Ⅱ)

一、选择题

1-5: BCAAD-----6-10: AABCC 11 , 12: CD

二、填空题

13.
$$-8$$
 14. $\frac{\sqrt{6}-\sqrt{2}}{2} < e < \frac{\sqrt{5}-1}{2}$ 15. $\begin{bmatrix} \frac{2}{5} \end{bmatrix} \stackrel{7}{\cancel{1}} = 6$. $\begin{bmatrix} 3,3 & 3 \end{pmatrix}$

三、解答题

17. 解: (1) 当
$$n=2$$
 时,由 $2S_n=S_{n-1}+1$ 及 $a_1=\frac{1}{2}$,得 $2S_2=S_1+1$,即 $2a_1+2a_2=a_1+1$,解 得 $a_2=\frac{1}{4}$

$$\mathbb{X} \boxplus 2S_n = S_{n-1} + 1$$
, ①

可知
$$2S_{n+1} = S_n + 1$$
,②

②-①得
$$2a_{n+1} = a_n$$
,即 $\frac{a_{n+1}}{a_n} = \frac{1}{2} (n \ge 2)$.

且
$$n=1$$
 时, $\frac{a_2}{a_1}=\frac{1}{2}$ 适合上式,因此数列 $\{a_n\}$ 是以 $\frac{1}{2}$ 为首项, $\frac{1}{2}$ 为公比的等比数列,故
$$a_n=\frac{1}{2^n}(n\in N^*)\;.$$

$$a_n = \frac{1}{2^n} (n \in N^*) .$$

(2)
$$\mbox{th}$$
 (1) $\mbox{$\mathbb{Z}$} b_n = \log_{\frac{1}{2}} a_n (n \in N^*)$,

可知
$$b_n = \log_{\frac{1}{2}} \frac{1}{2} = n$$
,

所以
$$\frac{1}{b_n b_{n+1}} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
,

故
$$T_n = \frac{1}{b_n b_2} + \frac{1}{b_2 b_3} + \cdots + \frac{1}{b_n b_{n+1}} = \left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1} \right) \right] = 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

18. 解. (1) 因为底面 ABCD 为菱形, 所以 $AC \perp BD$,

又平面 $BDEF \perp$ 底面 ABCD, 平面 $BDEF \cap$ 平面 ABCD = BD,

因此 $AC \perp$ 平面 BDEF ,从而 $AC \perp EF$.

又 $BD \perp DE$, 所以 $DE \perp$ 平面 ABCD,

 $\pm AB = 2a$, $DE = 2BF = \sqrt{2}a$, $\angle ABC = 120^{\circ}$,

可知 $AF = \sqrt{4a^2 + 2a^2} = \sqrt{6}a$, BD = 2a ,

$$EF = \sqrt{4a^2 + 2a^2} = \sqrt{6}a$$
, $AE = \sqrt{4a^2 + 8a^2} = 2\sqrt{3}a$

从而 $AF^2 + FE^2 = AE^2$, 故 $EF \perp AF$.

又 $AF \cap AC = A$, 所以 $EF \perp$ 平面 AFC.

又 $EF \subset$ 平面 AEF ,所以平面 $AEF \perp$ 平面 AFC .

(2) 取 EF 中点G, 由题可知OG//DE, 所以OG 上 平面 ABCD, 又在菱形 ABCD 中,

 $OA \perp OB$,所以分别以 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OG} 的方向为 x , y , z 轴正方向建立空间直角坐标系 O-xyz (如图示),

则O(0,0,0) , A(3a,0,0) , C(-3a,0,0) , $E(0,-\sqrt{a},22a)$, $F(0,\sqrt{a},2a)$,

所以
$$\overrightarrow{AE} = (0, -a, \sqrt{2}a) - (\sqrt{3}a, 0, 0) = (\sqrt{3}a, -a, \sqrt{2}a)$$
,

$$\overrightarrow{AC} = (-\sqrt[4]{a}, 0, 0) - (\sqrt[4]{a}, 0, 0) = (-2\sqrt[4]{a}, 0, 0), \quad \overrightarrow{EF} = (0, a, \sqrt[4]{a}) - (0, -a, 2\sqrt[4]{a})$$

$$=(0,2a,-\sqrt{2}a)$$
.

由(1)可知 $EF \perp$ 平面 AFC,所以平面 AFC 的法向量可取为 $\overrightarrow{EF} = (0, 2a, -\sqrt{2}a)$.

设平面 AEC 的法向量为n = (x, y, z),

则
$$\begin{cases} \overrightarrow{n} \cdot \overrightarrow{AE} = 0 \\ \overrightarrow{n} \cdot \overrightarrow{AC} = 0 \end{cases}$$
 即 $\begin{cases} -\sqrt{3x - y + 2}\sqrt{2z} = 0 \\ x = 0 \end{cases}$ 即 $\begin{cases} y = 2\sqrt{2z} \\ x = 0 \end{cases}$ 令 $z = \sqrt{2}$, 得 $y = 4$,

所以 $\vec{n} = (0, 4, \sqrt{2})$.

从而
$$\cos < \overrightarrow{n}, \overrightarrow{EF} > = \frac{\overrightarrow{n} \cdot \overrightarrow{EF}}{|\overrightarrow{n}| \cdot |\overrightarrow{EF}|} = \frac{6a}{6\sqrt[3]{a}} = \frac{\sqrt{3}}{3}.$$

故所求的二面角 E - AC - F 的余弦值为 $\frac{\sqrt{3}}{3}$.

19. 解 (1) 从条形图中可知这100人中,有56名学生成绩等级为B,

所以可以估计该校学生获得成绩等级为B的概率为 $\frac{56}{100} = \frac{14}{25}$,

则该校高三年级学生获得成绩为 B 的人数约有 $800 \times \frac{14}{25} = 448$.

(2) 这100 名学生成绩的平均分为 $\frac{1}{100}$ (32×100+56×90+7×80+3×70+2×60)=91.3,

因为91.3 > 90, 所以该校高三年级目前学生的"考前心理稳定整体"已过关.

(3) 由题可知用分层抽样的方法抽取11个学生样本,其中A级4个,B级7个,从而任意 选取3个,这3个为A级的个数 ξ 的可能值为0,1,2,3.

$$P(\xi = 0) = \frac{C_{47}^{0}C_{7}^{3}}{C_{11}^{3}} = \frac{7}{33}, \quad P(\xi = 1) = \frac{C_{47}^{1}C_{7}^{2}}{C_{11}^{3}} = \frac{28}{55},$$

$$P(\xi = 2) = \frac{C_{47}^{2}C_{11}^{1}}{C_{11}^{3}} = \frac{14}{55}, \quad P(\xi = 3) = \frac{C_{11}^{3}C_{11}^{0}}{C_{11}^{3}} = \frac{A}{165}.$$

$$P(\xi = 2) = \frac{C_4^2 C_7^1}{C_{11}^3} = \frac{14}{55}, \quad P(\xi = 3) = \frac{C_7^3 C_7^0}{C_{11}^3} = \frac{\Lambda}{165}.$$

因此可得 ξ 的分布列为:

ξ	0	1	2	3
	7	28	14	4
Р	33	55	55	165

则
$$E(\xi) = 0 \times \frac{7}{33} + 1 \times \frac{28}{55} + 2 \times \frac{14}{55} + 3 \times \frac{4}{165} = \frac{12}{11}$$

20. 解: (1) 由题意可知
$$\frac{c}{a} = \frac{\sqrt{2}}{2}$$
,所以 $a^2 = 2c^2 = 2(a^2 - b^2)$,即 $a^2 = 2b^2$,①

又点
$$P(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2})$$
 在椭圆上,所以有 $\frac{2}{4a^2} + \frac{3}{4b^2} = 1$,②

由①②联立,解得 $b^2 = 1$, $a^2 = 2$,

故所求的椭圆方程为 $\frac{x^2}{2} + \frac{x^2}{2} = 1$.

(2)
$$\oplus A(x_1, y_1), \quad B(x_2, y_2), \quad
\oplus \overrightarrow{OA} \cdot \overrightarrow{OB} = 0,$$

可知 $x_1x_2 + y_1y_2 = 0$.

联立方程组
$$\begin{cases} y = kx + m \\ \frac{x^2}{2} + y^2 = 1 \end{cases},$$

消去 y 化简整理得 $(1+2k^2)x^2+4kmx+2m^2-2=0$,

由
$$\Delta = 16k^2m^2 - 8(m^2 - 1)(1 + 2k^2) > 0$$
 , 得 $1 + 2k^2 > m^2$, 所以 $x + x = -\frac{4km}{1 + 2k^2}$,

$$x_1 x_2 = \frac{2m^2 - 2}{1 + 2k^2}, \quad (3)$$

又由题知 $x_1x_2 + y_1y_2 = 0$,

 $\mathbb{P} x_1 x_2 + (kx_1 + m)(kx_2 + m) = 0 ,$

整理为
$$(1+k^2)xx + km(x+x) + m^2 = 0.$$

将③代入上式,得
$$(1+k^2)$$
 $\frac{2m^2-2}{1+2k^2}-km\cdot\frac{4km}{1+2k^2}+m^2=0$.

光间登理侍
$$\frac{3m^2-2-2k^2}{1+2k^2}$$
= 0 ,从训侍到 $5m^2-2k^2=2$.

21.
$$\text{M}$$
: (1) $\text{d} f(x) = -a^2 \ln x + x^2 - ax$, $\text{d} f'(x) = -\frac{a^2}{x} + 2x - a$

$$= \frac{2x^2 - ax - a^2}{x} = \frac{(2x+a)(x-a)}{x} .$$

因为函数 f(x) 的定义域为 $(0, +\infty)$, 所以,

① 若 a>0 时,当 $x\in(0,a)$ 时,f'(x)<0 ,函数 f(x) 单调递减,当 $x\in(a,+\infty)$ 时,f'(x)>0 ,函数 f(x) 单调递增;

②若a = 0 时, 当 f'(x) = 2x > 0 在 $x \in (0, +\infty)$ 内恒成立,函数 f(x) 单调递增;

③若a < 0 时,当 $x \in (0, -\frac{a}{2})$ 时, f'(x) < 0 ,函数 f(x) 单调递减,当 $x \in (-\frac{a}{2}, +\infty)$ 时, f'(x) > 0, 函数 f(x) 单调递增.

(2) 证明: 由题可知 $h(x) = f(x) + \varphi(x) = x^2 + (2-a)x - a \ln x(x > 0)$,

所以
$$h'(x) = 2x + (2-a) - \frac{a}{x} = \frac{2x^2 + (2-a)x - a}{x} = \frac{(2x-a)(x+1)}{x}$$
.

所以当
$$x \in (0, -\frac{a}{2})$$
时, $h'(x) < 0$;当 $x \in (-\frac{a}{2} + \infty)$ 时, $h'(x) > 0$;当 $x = \frac{a}{2}$ 时, $h'(\frac{a}{2} = 0)$ 欲证 $h'(\frac{a}{2} + \infty)$ 以为 $h'(x) = 0$,以为 $h'(x) = 0$,

增,故只需证明 $\frac{x_1 + x_2}{2} > \frac{a}{2}$.

设 x_1 , x_2 是方程h(x) = m的两个不相等的实根,不妨设为 $0 < x_1 < x_2$,

$$\operatorname{III} \begin{cases} x_1^2 + (2-a)x_1 - a \ln x_1 = m \\ x_2^2 + (2-a)x_2 - a \ln x_2 = m \end{cases}$$

从而
$$a = \frac{x_1^2 - x_2^2 + 2x_1 - 2x_2}{x_1 - x_2 + \ln x_1 - \ln x_2}$$

两式相减并整理得
$$a(x_1 - x_2 + \ln x_1 - \ln x_2) = x_1^2 - x_2^2 + 2x_1 - 2x_2$$
,
从而 $a = \frac{x_1^2 - x_2^2 + 2x_1 - 2x_2}{x_1 - x_2 + \ln x_1 - \ln x_2}$,
故只需证明 $\frac{x + x}{2} > \frac{x^2 - x^2 + 2x_1 - 2x_2}{2(x_1 - x_2 + \ln x_1 - \ln x_2)}$,

$$\mathbb{R}[x_1 + x_2] = \frac{x^2 - x^2 + 2x - 2x}{x_1 - x_2 + \ln x_1 - \ln x_2}.$$

因为 $x_1 - x_2 + \ln x_1 - \ln x_2 < 0$,

所以(*) 式可化为
$$\ln x_1 - \ln x_2 < \frac{2x_1 - 2x_2}{x + x_1}$$
,

即
$$\ln \frac{x_1}{x_2} < \frac{2\frac{x_1}{x_2} - 2}{\frac{x_1}{x_2} + 1}$$
.

因为
$$0 < x < x$$
,所以 $0 < \frac{x_1}{x_2} < 1$,

不妨令
$$t = \frac{x_1}{x_2}$$
,所以得到 $\ln t < \frac{2t-2}{t+1}$, $t \in (0,1)$.

设
$$R(t) = \ln t - \frac{2t-2}{t+1}$$
, $t \in (0,1)$, 所以 $R'(t) = \frac{1}{t} - \frac{4}{(t+1)^2} = \frac{(t-1)^2}{t(t+1)^2} \ge 0$, 当且仅当 $t = 1$ 时,

等号成立,因此 R(t) 在(0,1) 单调递增.

$$\mathbb{Z} R(1) = 0$$
,

因此 R(t) < 0 , $t \in (0,1)$,

故ln
$$t < \frac{2t-2}{t+1}$$
, $t ∈ (0,1)$ 得证,

从而
$$h'(\frac{x_1+x_2}{2}) > 0$$
得证.

22. 解: (1) 曲线
$$C$$
 $\begin{cases} x = 3 + \alpha \cos t, \\ y = 2 + \alpha \sin t \end{cases}$ 消去参数 t 可得普通方程为 $(x-3)_2 + (y-2)_{\frac{\pi}{2}} a_{\frac{\pi}{2}}$

曲线 C_2 : $\rho = 4\sin\theta$,两边同乘 ρ . 可得普通方程为 $x^2 + (y-2)^2 = 4$.

把
$$(y-2)^2 = 4 - x^2$$
 代入曲线 C 的普通方程得: $a^2 = (x-3)^2 + 4 - x^2 = 13 - 6x$,

而对 C_2 有 $x^2 \le x^2 + (y-2)^2 = 4$,即 $-2 \le x \le 2$,所以 $1 \le a^2 \le 25$ 故当两曲线有公共点时,

a 的取值范围为[1, 5].

(2) 当
$$a = 3$$
时,曲线 C_1 : $(x-3)^2 + (y-2)^2 = 9$,

两曲线交点 A , B 所在直线方程为 $x=\frac{2}{3}$. 曲线 $x^2+(y-2)^2=4$ 的圆心到直线 $x=\frac{2}{3}$ 的距离为 $d=\frac{2}{3}$,

所以
$$|AB| = 2\sqrt{4-\frac{4}{9}} = \frac{8\sqrt{2}}{3}$$
.

23.解: (1) 因为
$$f(x) = |2x-1| + |x+1| = \begin{cases} -3x, x < -1 \\ -x+2, -1 \le x \le \frac{1}{2}, \\ 3x, x > \frac{1}{2} \end{cases}$$

所以作出图象如图所示,并从图可知满足不等式 $f(x) \le 3$ 的解集为[-1,1].

(2) 证明: 由图可知函数 y = f(x) 的最小值为 $\frac{3}{2}$, 即 $m = \frac{3}{2}$.

所以
$$a^2 + b^2 = \frac{3}{2}$$
 从而 $a^2 + 1 + b^2 + 1 = \frac{7}{2}$

从而

$$\frac{1}{a^2+1} + \frac{4}{b^2+1} = \frac{2}{7} \left[(a^2+1) + (b^2+1) \right] \left(\frac{1}{a^2+a} + \frac{4}{b^2+1} \right) = \frac{2}{7} \left[5 + \left(\frac{b^2+1}{a^2+1} + \frac{4(a^2+1)}{b^2+1} \right) \right] \ge \frac{1}{a^2+1} + \frac{4}{b^2+1} = \frac{2}{7} \left[\frac{a^2+1}{a^2+1} + \frac{4(a^2+1)}{a^2+1} + \frac{4}{b^2+1} + \frac{4$$

$$= \frac{2}{7} \left[5 + 2\sqrt{\frac{b^2 + 1}{a^2 + 1}} \cdot \frac{4(a^2 + 1)}{b^2 + 1}\right] = \frac{18}{7}.$$

$$= \frac{2}{7} [5 + 2\sqrt{\frac{b^2 + 1}{a^2 + 1}} \cdot \frac{4(a^2 + 1)}{b^2 + 1}] = \frac{18}{7}.$$
当且仅当 $\frac{b^2 + 1}{a^2 + 1} = \frac{4(a^2 + 1)}{b^2 + 1}$ 中3, 等 5 及少,
$$p \ a^2 = \frac{1}{6}, \quad b^2 = \frac{4}{3} \text{ 时,有最小值,}$$
所以 $\frac{1}{a^2 + 1} + \frac{4}{b^2 + 1} \ge \frac{18}{7}$ 得证.

即
$$a^2 = \frac{1}{6}$$
, $b^2 = \frac{4}{2}$ 时, 有最小值,

所以
$$\frac{1}{a^2+1} + \frac{4}{b^2+1} \ge \frac{18}{7}$$
 得证.