Architettura degli Elaboratori

Esercitazione

Su cosa ci esercitiamo oggi?

- Algebra di Boole ed espressioni booleane
 - > Minimizzazione di espressioni booleane
- Funzioni di commutazione
 - Costruzione di tavole di verità
- Analisi di reti logiche
 - Calcolo della funzione associata a una rete logica

Algebra di Boole

Le costanti 0 e 1 godono delle seguenti proprietà

$$\rightarrow$$
 $\overline{0} = 1$

$$\rightarrow$$
 $\times \cdot 1 = \times$

$$\rightarrow x \cdot 0 = 0$$

$$x + 0 = x$$

$$x + 1 = 1$$

Algebra di Boole

$$\frac{\overline{x}}{x} = x$$

2.
$$x\cdot y = y\cdot x$$
, $x + y = y + x$

3.
$$x \cdot x = x$$
, $x + x = x$

4.
$$x \cdot \overline{x} = 0, x + \overline{x} = 1$$

5.
$$x \cdot (y+z) = x \cdot y + x \cdot z$$

6.
$$x \cdot (x+y) = x$$
, $x + x \cdot y = x$
6bis. $x \cdot (\overline{x}+y) = x \cdot y$ $x + \overline{x} \cdot y = x + y$,

7.
$$(x\cdot y)\cdot z = x\cdot (y\cdot z)$$

8.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$
, $\overline{x} + \overline{y} = \overline{x} \cdot \overline{y}$ Leggi di De Morgan

Proprietà di involuzione

Proprietà commutativa

Proprietà di idempotenza

Proprietà del complemento

Proprietà distributiva

Proprietà di assorbimento

Proprietà associativa

Algebra di Boole

Principio di dualità:

Data una espressione booleana valida, se ne ottiene un'altra valida (duale della precedente) scambiando le costanti 0 ed 1 e gli operatori AND e OR

Esempio

Data l'espressione booleana

$$(x+1) \cdot (y+0)$$

la sua duale è

Principio di dualità

- Diverse proprietà dell'algebra di Boole si ottengono applicando il principio di dualità
 - Proprietà delle costanti 0 e 1

$$x + 0 = x$$
è la duale di $x \cdot 1 = x$
 $x + 1 = 1$ è la duale di $x \cdot 0 = 0$

Proprietà commutativa

$$x + y = y + x$$
 è la duale di $x \cdot y = y \cdot x$

Principio di dualità

Proprietà di idempotenza

$$x + x = x$$
 è la duale di $x \cdot x = x$

> Proprietà del complemento

$$x + \overline{x} = 1$$
 è la duale di $x \cdot \overline{x} = 0$

Principio di dualità

- Diverse proprietà dell'algebra di Boole si ottengono applicando il principio di dualità
 - Proprietà di assorbimento

$$x + x \cdot y = x$$
 è la duale di $x \cdot (x+y) = x$
 $x + \overline{x} \cdot y = x+y$ è la duale di $x \cdot (\overline{x}+y) = x \cdot y$

Leggi di De Morgan

$$\overline{x + y} = \overline{x \cdot y}$$
 è la duale di $\overline{x \cdot y} = \overline{x + y}$

6bis.
$$x \cdot (\overline{x} + y) = x \cdot y$$
 $x + \overline{x} \cdot y = x + y$

6bis.
$$x \cdot (\overline{x} + y) = x \cdot y$$
 $x + \overline{x} \cdot y = x + y$

La prima eguaglianza è banale $x(\overline{x}+y)=x\overline{x}+xy$ (prop. distributiva) =xy (prop.complemento)

Per la seconda proprietà, mostriamo che le tavole di verità delle funzioni x+x·y e x+y sono uguali

- $x+\overline{x}y$, creiamo una tabella con
- \geq 2 colonne, (corrispondenti agli input x,y)
- >22= 4 righe (corrispondenti a tutti i possibili valori degli input)

×	У
0	0
0	1
1	0
1	1

Poi aggiungiamo una colonna per valutare \overline{x} in corrispondenza di tutti i possibili input

×	У	×
0	0	1
0	1	1
1	0	0
1	1	0

Aggiungiamo un'altra colonna per valutare $\overline{x}y$ in corrispondenza di tutti i possibili input

×	У	×	xy
0	0	1	0
0	1	1	1
1	0	0	0
1	1	0	0

Aggiungiamo un'altra colonna per valutare $x+\overline{x}y$ in corrispondenza di tutti i possibili input

×	У	×	₹y	x+ x y
0	0	1	0	0
0	1	1	1	1
1	0	0	0	1
1	1	0	0	1

Confrontiamo la tavola di verità di x+xy con quella di x+y

×	у	×	Ξy	x+ x y	х+у
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

Tavola di verità

Sono uguali!

Quindi abbiamo dimostrato il secondo teorema di assorbimento

$$F=\overline{x}(x+y)+\overline{z}+yz$$

Minimizzare la seguente funzione

$$F=\overline{x}(x+y)+\overline{z}+yz$$

```
Si ha
F=\overline{x}(x+y)+\overline{z}+yz
=\overline{x}x+\overline{x}y+\overline{z}+yz \text{ (prop. distributiva)}
=\overline{x}y+\overline{z}+yz \text{ (prop. complemento)}
=\overline{x}y+(\overline{z}+yz)
=\overline{x}y+\overline{z}+y \text{ (secondo teorema assorbimento)}
=y(\overline{x}+1)+\overline{z} \text{ (prop. distributiva)}
=y+\overline{z} \text{ (proprietà della costante 1)}
```


Ricavare la tavola di verità della seguente funzione

$$F=x\cdot\overline{(y+z)}$$

Per ottenere la tavola di verità della funzione

 $F=x\cdot(y+z)$, creiamo una tabella con

>3 colonne, (corrispondenti agli input x,y,z)

>23= 8 righe (corrispondenti a tutti i possibili valori

degli input)

×	У	Z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Poi aggiungiamo una colonna per valutare y+z in corrispondenza di tutti i possibili input

×	У	Z	y+z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Aggiungiamo un'altra colonna per valutare y+z in corrispondenza di tutti i possibili input

×	У	Z	y+z	y+z
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Infine, aggiungiamo una colonna per valutare $F = x \cdot (y+z)$ in corrispondenza di tutti i possibili input

×	У	Z	y+z	y+z	F
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

Tavola di verità

Ricavare la tavola di verità della seguente funzione

$$F=x\cdot(\overline{x+y})$$

Inoltre considerare la funzione \overline{F} e ricavare la sua tavola di verità

Per ottenere la tavola di verità della funzione

 $F=x\cdot(x+y)$, creiamo una tabella con

- \geq 2 colonne, (corrispondenti agli input x,y)
- >22= 4 righe (corrispondenti a tutti i possibili valori degli input)

×	У
0	0
0	1
1	0
1	1

Poi aggiungiamo una colonna per valutare x+y in corrispondenza di tutti i possibili input

×	У	х+у
0	0	0
0	1	1
1	0	1
1	1	1

Aggiungiamo un'altra colonna per valutare $\overline{x+y}$ in corrispondenza di tutti i possibili input

	×	У	х+у	х+у
Ī	0	0	0	1
	0	1	1	0
	1	0	1	0
	1	1	1	0

Infine, aggiungiamo una colonna per valutare $F = x \cdot (\overline{x+y})$ in corrispondenza di tutti i possibili input

×	У	х+у	x+y	F
0	0	0	1	0
0	1	1	0	0
1	0	1	0	0
1	1	1	0	0

Tavola di verità

La tavola di verità di F ha tutti 0

$$F = x \cdot (\overline{x + y})$$

$$= x \cdot (\overline{x} \cdot \overline{y}) \text{ (legge di De Morgan)}$$

$$= x \cdot \overline{x} \cdot \overline{y}$$

$$= 0 \text{ (prop. complemento)}$$

Fè la funzione costante 0

 $F=x\cdot(\overline{x+y})$

La sua tavola di verità si ottiene direttamente dalla tavola precedente, complementando tutti gli output:

×	У	F	
0	0	0	1
0	1	0	1
1	0	0	1
1	1	0	1

La tavola di verità di F ha tutti 1 F è la funzione costante 1

Tavola di verità

Applicando la legge di De Morgan si ha

$$F = x \cdot (\overline{x+y})$$

$$= \overline{x} + (\overline{x+y})$$

$$= \overline{x} + (x+y) \text{ (prop. involuzione)}$$

$$= \overline{x} + x + y$$

$$= 1 + y \text{ (prop. complemento)}$$

$$= 1 \text{ (prop. della costante 1)}$$

Fè la funzione costante 1

$$F = \overline{x + xy + zt}$$

Minimizzare la seguente funzione logica

$$F = \overline{x + xy + zt}$$

```
Si ha
F=\overline{x+x\overline{y}+zt}
=\overline{x(1+\overline{y})+zt} \text{ (prop. distributiva)}
=\overline{x+zt} \text{ (prop. della costante 1)}
=\overline{x}(\overline{zt}) \text{ (legge di De Morgan)}
=\overline{x}(\overline{z+t}) \text{ (legge di De Morgan)}
```


Minimizzare la seguente funzione logica

F=xyz+xyz+xyz

Minimizzare la seguente funzione logica

```
Si ha
F=\overline{z}(\overline{x}\overline{y}+x\overline{y}+\overline{x}y+xy) \text{ (prop. distributiva)}
=\overline{z}[\overline{y}(\overline{x}+x)+y(\overline{x}+x)] \text{ (prop. distributiva)}
=\overline{z}(\overline{y}+y) \text{ (prop. del complemento)}
=\overline{z} \text{ (prop. del complemento)}
```


$$(x+y)\overline{y} = x \cdot \overline{y} + y \cdot \overline{y}$$
$$= x \cdot \overline{y}$$

