[6.2] Suppose that $|A\rangle = \alpha_u |u\rangle + \alpha_d |d\rangle$ and $|b\rangle = \beta_u |u\rangle + \beta_d |d\rangle$. Show that if $|A\rangle$ and $|B\rangle$ are normalized then so is $|A\rangle \otimes |B\rangle$.

Solution. The basis for S_A is $\{|a'\},|a\}\}$ and for S_B it is $\{|b'\},|b\}\}$. So a basis for S_{AB} is $\{|a'b'\},|a'b\},|ab'\},|ab\}\}$.

Alice's basis is orthonormal \Leftrightarrow $\langle a'|a\rangle = \delta_{a'a}$. Bob's basis is orthonormal \Leftrightarrow $\langle b'|b\rangle = \delta_{b'b}$.

Hence

$$\begin{split} \left\langle \mathbf{a}'\mathbf{b}'\middle|\mathbf{a}\mathbf{b}\right\rangle &= \left(\left.\left\langle \mathbf{a}'\mathbf{b}'\middle|\right.\right) \left(\left.\middle|\mathbf{a}\mathbf{b}\right\rangle\right.\right) = \left(\left.\left\{\mathbf{a}'\middle|\otimes\left\langle\mathbf{b}'\middle|\right.\right) \left(\left.\middle|\mathbf{a}\right\}\otimes\middle|\mathbf{b}\right\rangle\right.\right) \\ &= \left\langle \mathbf{a}'\middle|\mathbf{a}\right\rangle \left\langle \mathbf{b}'\middle|\mathbf{b}\right\rangle \text{ since we do not combine a's and b's.} \end{split}$$

Note that $\langle a'|a\rangle$ and $\langle b'|b\rangle$ are complex numbers so we drop the tensor sign.

Therefore $\langle a'b' | ab \rangle = \delta_{a'a} \delta_{b'b}$