CapECL1

25/02/2025

Durée: 2h00

Exercice 1 (11 points)

On considère l'application définie sur $\mathbb R$ par

$$f(x) = \exp(\arctan(x).$$

La courbe représentative de f est notée C.

1. Étude en 0.

(a) Montrer que f admet un développement limité à tout ordre $n \in \mathbb{N}$ en 0, de la forme

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n).$$

- (b) Déterminer le développement limité à l'ordre 3 en 0 de f.
- (c) Calculer, pour $x \in \mathbb{R}$, $(1+x^2)f'(x)$. En déduire que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$,

$$(1+x^2)f^{(n+1)}(x) + (2nx-1)f^{(n)}(x) + n(n-1)f^{(n-1)}(x) = 0.$$

- (d) Soit $n \in \mathbb{N}^*$. Exprimer a_{n+1} en fonction de n, a_n et a_{n-1} .
- 2. Étude en 1. Déterminer une équation de la tangente T à C en 1 et préciser la position relative de T et C au voisinage de 1.
- 3. Étude en $+\infty$. Montrer que C admet une asymptote horizontale D en $+\infty$ et préciser la position relative de C et D.

Exercice 2 (10 points)

On considère l'application définie sur \mathbb{R}_+^* par

$$f(x) = \frac{\sqrt{4+x^2} \ln(1+\sinh(x))}{x}.$$

La courbe représentative de f est notée C.

- 1. Montrer que f est prolongeable par continuité en 0. On notera encore f le prolongement obtenu.
- 2. Étudier la dérivabilité de f en 0.
- 3. Montrer que $e^{-x} = o(\frac{1}{x})$ lorsque $x \to +\infty$.
- 4. Déterminer deux réels a et b tels que, lorsque $x \to +\infty$,

$$\ln(1+\sinh(x)) = ax + b + o(\frac{1}{x}).$$

5. Montrer que la courbe C admet une asymptote oblique Δ lorsque $x \to +\infty$, que l'on précisera. Préciser la position de C par rapport à Δ .

Exercice 3 (9 points)

Pour $n \in \mathbb{N}^*$, on considère l'équation

$$e^x = n - x$$
.

- 1. Montrer que cette équation admet une unique solution sur \mathbb{R}_+ . On la notera x_n .
- 2. Étudier la monotonie puis la limite de la suite (x_n) .
- 3. Démontrer que $x_n \sim \ln(n)$.
- 4. Pour $n \in \mathbb{N}^*$, montrer que

$$x_n = \ln(n) + \ln\left(1 - \frac{x_n}{n}\right).$$

CapECL1

5. En déduire l'existence d'un réel a tel que

$$x_n = \ln(n) + a \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right).$$

6. En déduire l'existence de deux réels b et c tels que

$$x_n = \ln(n) + a \frac{\ln(n)}{n} + b \frac{\ln(n)}{n^2} + c \frac{(\ln(n))^2}{n^2} + o\left(\frac{(\ln(n))^2}{n^2}\right).$$