1. Wstęp

Celem projektu było opracowanie programu komputerowego opartego na Metodzie Elementów Skończonych (MES), który umożliwia rozwiązanie niestacjonarnego problemu przewodzenia ciepła w dwuwymiarowym modelu z uwzględnieniem konwekcyjnych warunków brzegowych. Szkic problemu wygląda następująco (temperatura modelu i otoczenia, oraz geometria modelu na schemacie są tylko poglądowe, nie reprezentują danych z problemu):

Rozważany problem zakłada, że temperatura w czasie zmienia się pod wpływem przewodzenia ciepła wewnątrz analizowanego modelu oraz wymiany ciepła z otoczeniem za pomocą konwekcji na brzegach. Tego rodzaju zadanie wymaga zastosowania niestacjonarnego równania przewodzenia ciepła w postaci:

$$\frac{\partial}{\partial x} \left(k_x(t) \frac{\partial t}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y(t) \frac{\partial t}{\partial y} \right) + \left(Q - c \rho \frac{\partial t}{\partial \tau} \right) = 0$$

Które po dyskretyzacji ma postać:

$$[H]\{t\} + [C]\frac{\partial}{\partial \tau}\{t\} + \{P\} = 0$$

W projekcie zaimplementowano algorytmy obliczeniowe, które pozwalają na wyznaczenie rozkładu temperatur w kolejnych krokach czasowych na podstawie danych początkowych, właściwości materiałowych oraz warunków brzegowych. Program został wzbogacony o moduły umożliwiające wizualizację wyników w czasie, co pozwala na dokładną analizę dynamiki rozkładu temperatury w modelu.

Sprawozdanie dokumentuje realizację projektu, opisując działanie programu oraz analizę uzyskanych wyników.

2. Charakterystyka oprogramowania

Oprogramowanie zostało napisane w języku C++ w wersji 17, z zastosowaniem podejścia obiektowego. Poniżej przedstawiono główne klasy w kontekście rozwiązania niestacjonarnego problemu przewodzenia ciepła metodą elementów skończonych:

- GlobalData zawiera wszystkie dane wejściowe potrzebne do przeprowadzenia symulacji. Przechowuje ona zarówno parametry opisujące właściwości materiałowe modelu takie jak gęstość materiału, ciepło właściwe czy współczynnik przewodzenia ciepła jak również informacje o temperaturze otoczenia i współczynniku konwekcji. Klasa ta odpowiada również za przechowywanie parametrów symulacji, takich jak czas całkowity i krok czasowy.
- Node opisuje współrzędne punktu w przestrzeni oraz zawiera informację o tym, czy uczestniczy w wymianie ciepła z otoczeniem.
- Element reprezentuje pojedynczy element siatki MES. Każdy element zawiera
 odniesienia do identyfikatorów węzłów które go tworzą, oraz obiekty odpowiadające
 macierzom sztywności, pojemności cieplnej i wektorowi obciążeń. Klasa ta zawiera
 metody które umożliwiają wyliczanie lokalnych macierzy i wektorów.
- **Grid** jest kontenerem przechowującym wszystkie węzły i elementy siatki. Stanowi model geometryczny i zapewnia dostęp do węzłów oraz elementów.
- Jacobian przechowuje macierz Jacobiego, jej odwrotność oraz wyznacznik. Dzięki
 temu możliwe jest przekształcanie współrzędnych lokalnych na globalne oraz
 obliczanie pochodnych funkcji kształtu.
- **ElementUniv** reprezentuje element jednostkowy w układzie lokalnym. Jest uniwersalna, ponieważ na jej podstawie przeprowadzane są obliczenia dla wszystkich rzeczywistych elementów modelu. Klasa ta przechowuje funkcje kształtu, ich pochodne.
- **Surface** zawiera dane o wymianie ciepła na granicach elementu jednostkowego takie jak wektory obciążeń i macierze wymiany ciepła z otoczeniem dla każdej ze ścian elementu.
- EquationSolver przechowuje globalne macierze sztywności i pojemności cieplnej oraz wektor obciążeń. Na ich podstawie rozwiązywany jest układ równań różniczkowych, który pozwala na iteracyjne wyznaczanie rozkładu temperatur w czasie.

Dodatkowo oprogramowanie posiada klasy takie jak:

- Gauss zwracająca odpowiednie współczynniki Gaussa dla wybranej liczby punktów całkowania.
- **Matrix** reprezentującą dane w postaci macierzy lub wektora. Posiada podstawowe metody matematyczne typowe dla macierzy i wektorów.
- **Simulation** zawierającą wszystkie dane i wyniki naszej symulacji, oraz kontroluje przepływ wykonywania programu.
- **DataParser** odpowiadająca za wczytywanie danych z pliku i konwersje do danych zrozumiałych przez oprogramowanie MES.
- **VTKParser** posiadająca metody umożliwiające wpisanie danych do plików z rozszerzeniem .vtk, dla ParaView.

Uproszczony schemat działania oprogramowania.

3. Testy oprogramowania

a) <u>Siatka 4x4</u> Model geometryczny:

Porównanie wyliczonych temperatur dla 2 punktowego schematu całkowania:

Wyniki z oprogramowania				Wyniki testowe	
	Błąd dla	Maks.	Błąd dla		Maks.
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Temp.
110,037972	4,10E-06	365,815475	3,94E-06	110,037977	365,815471
168,837010	7,10E-06	502,591718	5,82E-06	168,837017	502,591712
242,800847	8,53E-06	587,372671	4,50E-06	242,800855	587,372667
318,614589	4,47E-06	649,387487	3,49E-06	318,614594	649,387483
391,255792	8,10E-07	700,068423	2,63E-06	391,255792	700,068420
459,036910	6,44E-06	744,063346	1,76E-06	459,036903	744,063344
521,586286	1,20E-05	783,382851	8,30E-07	521,586274	783,382850
579,034462	1,73E-05	818,992188	1,48E-07	579,034445	818,992188
631,689259	2,23E-05	851,431041	1,15E-06	631,689237	851,431043
679,907620	2,69E-05	881,057633	2,16E-06	679,907593	881,057635

Porównanie wyliczonych temperatur dla **3 punktowego** schematu całkowania:

	Wyniki z opr	Wyniki [.]	testowe		
	Błąd dla	Maks.	Błąd dla		Maks.
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Temp.
110,037972	4,10E-06	365,815475	3,94E-06	110,037977	365,815471
168,837010	7,10E-06	502,591718	5,82E-06	168,837017	502,591712
242,800847	8,53E-06	587,372671	4,50E-06	242,800855	587,372667
318,614589	4,47E-06	649,387487	3,49E-06	318,614594	649,387483
391,255792	8,10E-07	700,068423	2,63E-06	391,255792	700,068420
459,036910	6,44E-06	744,063346	1,76E-06	459,036903	744,063344
521,586286	1,20E-05	783,382851	8,30E-07	521,586274	783,382850
579,034462	1,73E-05	818,992188	1,48E-07	579,034445	818,992188
631,689259	2,23E-05	851,431041	1,15E-06	631,689237	851,431043
679,907620	2,69E-05	881,057633	2,16E-06	679,907593	881,057635

Porównanie wyliczonych temperatur dla **4 punktowego** schematu całkowania:

	Wyniki z opr	Wyniki	testowe		
	Błąd dla	Maks.	Błąd dla		Maks.
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Temp.
110,037972	4,10E-06	365,815475	3,94E-06	110,037977	365,815471
168,837010	7,10E-06	502,591718	5,82E-06	168,837017	502,591712
242,800855	6,52E-07	587,372671	4,50E-06	242,800855	587,372667
318,614589	4,47E-06	649,387487	3,49E-06	318,614594	649,387483
391,255792	8,10E-07	700,068423	2,63E-06	391,255792	700,068420
459,036910	6,44E-06	744,063346	1,76E-06	459,036903	744,063344
521,586286	1,20E-05	783,382851	8,30E-07	521,586274	783,382850
579,034462	1,73E-05	818,992188	1,48E-07	579,034445	818,992188
631,689259	2,23E-05	851,431041	1,15E-06	631,689237	851,431043
679,907620	2,69E-05	881,057633	2,16E-06	679,907593	881,057635

Rozkład temperatur po **pierwszej iteracji** i na **koniec symulacji**:

b) <u>Siatka 4x4 mix</u> Model geometryczny:

Porównanie wyliczonych temperatur dla **2 punktowego** schematu całkowania:

Wyniki z oprogramowania				Wyniki	testowe
	Błąd dla	Maks.	Błąd dla		Maks.
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Temp.
95,151849	2,25E-06	374,686330	2,54E-06	95,151847	374,686333
147,644419	1,94E-06	505,968107	3,52E-06	147,644417	505,968111
220,164455	2,17E-07	586,997845	5,29E-06	220,164455	586,997850
296,736437	3,00E-06	647,285578	6,18E-06	296,736440	647,285584
370,968271	5,20E-06	697,333980	6,60E-06	370,968276	697,333986
440,560142	2,51E-06	741,219105	6,78E-06	440,560144	741,219112
504,891200	1,39E-07	781,209563	6,60E-06	504,891200	781,209570
564,001514	2,66E-06	817,391499	7,13E-06	564,001511	817,391507
618,173861	5,02E-06	850,237312	7,67E-06	618,173856	850,237319
667,765554	7,23E-06	880,167597	8,20E-06	667,765547	880,167605

Porównanie wyliczonych temperatur dla **3 punktowego** schematu całkowania:

	Wyniki z oprogramowania				testowe
	Błąd dla	Maks.	Błąd dla		Maks.
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Temp.
95,159050	7,20E-03	374,668341	1,80E-02	95,151847	374,686333
147,655865	1,14E-02	505,954310	1,38E-02	147,644417	505,968111
220,178075	1,36E-02	586,989448	8,40E-03	220,164455	586,997850
296,750827	1,44E-02	647,280127	5,46E-03	296,736440	647,285584
370,982595	1,43E-02	697,329874	4,11E-03	370,968276	697,333986
440,573966	1,38E-02	741,215653	3,46E-03	440,560144	741,219112
504,904331	1,31E-02	781,240763	3,12E-02	504,891200	781,209570
564,013882	1,24E-02	817,420424	2,89E-02	564,001511	817,391507
618,185458	1,16E-02	850,264030	2,67E-02	618,173856	850,237319
667,776401	1,09E-02	880,192229	2,46E-02	667,765547	880,167605

Porównanie wyliczonych temperatur dla **4 punktowego** schematu całkowania:

	Wyniki z oprogramowania				testowe
	Błąd dla	Maks.	Błąd dla		Maks.
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Temp.
95,159070	7,22E-03	374,668262	1,81E-02	95,151847	374,686333
147,655896	1,15E-02	505,954252	1,39E-02	147,644417	505,968111
220,178112	1,37E-02	586,989415	8,44E-03	220,164455	586,997850
296,750866	1,44E-02	647,280107	5,48E-03	296,736440	647,285584
370,982633	1,44E-02	697,329861	4,13E-03	370,968276	697,333986
440,574004	1,39E-02	741,215643	3,47E-03	440,560144	741,219112
504,904367	1,32E-02	781,240850	3,13E-02	504,891200	781,209570
564,013916	1,24E-02	817,420505	2,90E-02	564,001511	817,391507
618,185489	1,16E-02	850,264105	2,68E-02	618,173856	850,237319
667,776431	1,09E-02	880,192298	2,47E-02	667,765547	880,167605

Rozkład temperatur po pierwszej iteracji i na koniec symulacji:

c) <u>Siatka 31x31</u> Model geometryczny:

Porównanie wyliczonych temperatur dla **2 punktowego** schematu całkowania:

	Wyniki z opr	ogramowania		Wyniki	testowe
	Błąd dla	Maks.	Błąd dla		
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Maks. Temp.
100,000000	3,02E-04	149,556953	3,25E-04	99,999698	149,556628
100,000000	5,35E-04	177,444929	1,03E-04	100,000535	177,444826
100,000000	8,47E-04	197,266964	2,65E-04	100,000847	197,267229
100,000000	1,17E-03	213,152788	6,95E-04	100,001167	213,153483
100,000002	1,50E-03	226,682585	1,15E-03	100,001502	226,683740
100,000006	1,85E-03	238,607066	1,63E-03	100,001853	238,608699
100,000022	2,20E-03	249,346693	2,12E-03	100,002224	249,348810
100,000062	2,57E-03	259,165080	2,60E-03	100,002630	259,167680
100,000160	2,94E-03	268,240690	3,08E-03	100,003102	268,243765
100,000371	3,32E-03	276,701099	3,54E-03	100,003696	276,704640
100,000792	3,71E-03	284,641284	3,99E-03	100,004506	284,645277
100,001570	4,11E-03	292,134220	4,43E-03	100,005679	292,138649
100,002917	4,51E-03	299,237411	4,85E-03	100,007430	299,242261
100,005127	4,92E-03	305,997123	5,25E-03	100,010049	306,002377
100,008577	5,34E-03	312,451231	5,64E-03	100,013916	312,456874
100,013743	5,76E-03	318,631207	6,01E-03	100,019505	318,637221
100,021194	6,19E-03	324,563533	6,37E-03	100,027385	324,569903
100,031593	6,63E-03	330,270741	6,71E-03	100,038221	330,277451
100,045691	7,07E-03	335,772190	7,04E-03	100,052763	335,779227
100,064320	7,52E-03	341,084660	7,35E-03	100,071842	341,092009

Porównanie wyliczonych temperatur dla **3 punktowego** schematu całkowania:

	Wyniki z opr	Wyniki testowe			
	Błąd dla	Maks.	Błąd dla		
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Maks. Temp.
100,000000	3,02E-04	149,556953	3,25E-04	99,999698	149,556628
100,000000	5,35E-04	177,444929	1,02E-04	100,000535	177,444826
100,000000	8,47E-04	197,266964	2,65E-04	100,000847	197,267229
100,000000	1,17E-03	213,152788	6,94E-04	100,001167	213,153483
100,000002	1,50E-03	226,682585	1,16E-03	100,001502	226,683740
100,000006	1,85E-03	238,607066	1,63E-03	100,001853	238,608699
100,000022	2,20E-03	249,346693	2,12E-03	100,002224	249,348810
100,000062	2,57E-03	259,165080	2,60E-03	100,002630	259,167680
100,000160	2,94E-03	268,240690	3,08E-03	100,003102	268,243765
100,000371	3,32E-03	276,701099	3,54E-03	100,003696	276,704640
100,000792	3,71E-03	284,641284	3,99E-03	100,004506	284,645277
100,001570	4,11E-03	292,134220	4,43E-03	100,005679	292,138649
100,002917	4,51E-03	299,237411	4,85E-03	100,007430	299,242261
100,005127	4,92E-03	305,997123	5,25E-03	100,010049	306,002377
100,008577	5,34E-03	312,451231	5,64E-03	100,013916	312,456874
100,013743	5,76E-03	318,631207	6,01E-03	100,019505	318,637221

100,021194	6,19E-03	324,563533	6,37E-03	100,027385	324,569903
100,031593	6,63E-03	330,270741	6,71E-03	100,038221	330,277451
100,045691	7,07E-03	335,772190	7,04E-03	100,052763	335,779227
100,064320	7,52E-03	341,084660	7,35E-03	100,071842	341,092009

Porównanie wyliczonych temperatur dla **4 punktowego** schematu całkowania:

	Wyniki z oprogramowania				Wyniki testowe	
	Błąd dla	Maks.	Błąd dla			
Min. Temp.	Min.	Temp.	Maks.	Min. Temp.	Maks. Temp.	
100,000000	3,02E-04	149,556953	3,25E-04	99,999698	149,556628	
100,000000	5,35E-04	177,444929	1,02E-04	100,000535	177,444826	
100,000000	8,47E-04	197,266964	2,65E-04	100,000847	197,267229	
100,000000	1,17E-03	213,152788	6,94E-04	100,001167	213,153483	
100,000002	1,50E-03	226,682585	1,16E-03	100,001502	226,683740	
100,000006	1,85E-03	238,607066	1,63E-03	100,001853	238,608699	
100,000022	2,20E-03	249,346693	2,12E-03	100,002224	249,348810	
100,000062	2,57E-03	259,165080	2,60E-03	100,002630	259,167680	
100,000160	2,94E-03	268,240690	3,08E-03	100,003102	268,243765	
100,000371	3,32E-03	276,701099	3,54E-03	100,003696	276,704640	
100,000792	3,71E-03	284,641284	3,99E-03	100,004506	284,645277	
100,001570	4,11E-03	292,134220	4,43E-03	100,005679	292,138649	
100,002917	4,51E-03	299,237411	4,85E-03	100,007430	299,242261	
100,005127	4,92E-03	305,997123	5,25E-03	100,010049	306,002377	
100,008577	5,34E-03	312,451231	5,64E-03	100,013916	312,456874	
100,013743	5,76E-03	318,631207	6,01E-03	100,019505	318,637221	
100,021194	6,19E-03	324,563533	6,37E-03	100,027385	324,569903	
100,031593	6,63E-03	330,270741	6,71E-03	100,038221	330,277451	
100,045691	7,07E-03	335,772190	7,04E-03	100,052763	335,779227	
100,064320	7,52E-03	341,084660	7,35E-03	100,071842	341,092009	

Rozkład temperatur po pierwszej iteracji i na koniec symulacji:

4. Wnioski

a) Dokładność wyników

Wyniki uzyskane z programu dla siatki 4x4 wykazują bardzo wysoką zgodność z wynikami testowymi, a błędy (zarówno minimalnych, jak i maksymalnych temperatur) znajdują się w zakresie od 10^{-5} do 10^{-7} , co świadczy o poprawności implementacji. Większe błędy pojawiły się w bardziej złożonych geometrach (siatki 4x4 mix i siatki 31x31) oraz dla większej liczby punktów całkowania. Przyczyną większych błędów może być różnica w implementacji oprogramowania testowego lub przy większej ilości punktów całkowania może występować kumulacja zaokrągleń numerycznych.

b) Schematy całkowania

Testowanie programu przy użyciu różnych schematów całkowania (2, 3 i 4-punktowego) pozwoliło na ocenę stabilności i dokładności obliczeń. Wyniki pokazują, że zastosowanie większej liczby punktów całkowania nie zawsze znacząco wpływa na poprawę dokładności.

c) Rozkład temperatur

Zwizualizowanie rozkładu temperatur pozwoliło lepiej zrozumieć jak zmienia się temperatura modelu. Najszybciej nagrzewają się rogi modelu ze względu na większą ilość punktów w których zachodzi warunek brzegowy. Środek modelu nagrzewa się najwolniej, ponieważ wymiana ciepła w modelu zachodzi przez przewodzenie.

Program spełnił założone cele, umożliwiając dokładne obliczenia rozkładu temperatur w czasie dla problemu niestacjonarnego przewodzenia ciepła. Implementacja MES została wykonana prawidłowo, co potwierdzają niskie błędy w wynikach i ich zgodność z wynikami testowymi.