Versuchsprotokoll zum Versuch Nr. 206

Die Wärmepumpe

Johannes Kollek Jean-Marco Alameddine johannes.kollek@udo.edu jean-marco.alameddine@udo.edu

Durchführung: 20.10.2015 Abgabe: 27.10.2015

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3				
2	Aufbau und Durchführung 2.1 Aufbau					
3	Auswertung3.1 Bestimmung einer Ausgleichskurve	6 7				
4	Diskussion					
5	Anhang	11				
Lit	teratur	13				

1 Theorie

Aus dem zweiten Hauptsatz der Thermodynamik geht hervor, dass es unmöglich ist, ohne äußere Einwirkung einem kälteren Reservoir Teile dessen Wärmemenge zu entziehen, um sie einem wärmeren Reservoir zuzuführen. Der erste Hauptsatz beinhaltet jedoch die Möglichkeit, durch Zuführen zusätzlicher Arbeit auch den umgekehrten Prozess zu realisieren. Die zusätzliche Wärmemenge Q_1 im wärmeren Reservoir R_1 entspricht nun der aufgewendeten Arbeit A addiert mit der aus dem kälteren Reservoir R_2 entzogenen Wärmemenge Q_2 . Eine Wärmepumpe kann dies leisten.

Die Effizienz wird durch ihre Güteziffer bestimmt. Sie stellt sich zusammen aus der zugeführten Wärmemenge und der zu diesem Zweck aufgewendeten Arbeit:

$$v = \frac{Q_1}{A} = \frac{T_1}{T_1 - T_2}. (1)$$

Dabei ist T_1 die Temperatur in R_1 und T_2 die Temperatur in R_2 . Erfahrungsgemäß ist es jedoch schwierig ein absolut geschlossenes System innerhalb der Wärmepumpe zu gewährleisten, wodurch

$$Q_1 < Q_2 + A \tag{2}$$

ist. Für die reale Güteziffer gilt dann

$$v_{real} < \frac{T_1}{T_1 - T_2}. (3)$$

[1]

2 Aufbau und Durchführung

2.1 Aufbau

Abbildung 1: Skizze der Wärmepumpe [1].

Das Grundgerüst der Wärmepumpe bildet ein Kupferrohr, welches ein Transportmedium beinhaltet. Dieses Medium kann Wärmeenergie in Form von Phasenumwandlungsenergie aufnehmen bzw. abgeben. Es empfiehlt sich, einen Stoff mit möglichst hoher Kondensationswärme zu verwenden, um einen möglichst effizienten Wärmetransport zu ermöglichen. Deshalb wird beim vorliegenden Aufbau Dichlordifluormethan (Cl_2F_2C) eingesetzt.

Vom Kompressor K, welcher den Mediumkreislauf ermöglicht, durchläuft es das erste Reservoir R_1 . Unser reales Gas wurde nun so gewählt, dass es in R_1 bei der Temperatur T_1 sowie dem Druck p_b flüssig wird. Jenes Medium gibt beim Phasenübergang von gasförmig zu flüssig die Kondensationswärme ab, die es im Reservoir R_2 als Verdampfungswärme L pro Mol aufgenommen hat. Daraufhin durchläuft die Flüssigkeit ein Drosselventil. Der Strömungswiderstand am Drosselventil sorgt für den nötigen Druckunterschied $p_b - p_a$. Hinter dem Druckventil durchläuft das Medium das Reservoir R_2 . Durch den hier vorherrschend Druck p_a und die Temperatur T_2 verdampft die Flüssigkeit und nimmt die latente Wärme L auf. Wieder im Kompressor angekommen wird das Gas nahezu adiabatisch komprimiert. Der Druck steigt erneut an, so dass sich das Medium wieder verflüssigt und der Kreislauf fortgesetzt wird.

Zusätzlich befindet sich zwischen dem Reservoir R_1 und dem Drosselventil D ein Reiniger R, welcher die Flüssigkeit von Gasrückständen befreit. Gleichzeitig bewahrt das Drosselventil D den Kompressor davor, dass Flüssigkeitsreste in ihn gelangen. Beide Elemente sind jedoch nur aus Sicherheitsgründen installiert, so dass eine problemlose Durchführung gewährleistet ist. Sie spielen physikalisch für das Ergebnis keine Rolle.

Die beiden Rührmotoren gewährleisten eine gleichmäßige Temperaturverteilung im jeweiligen Reservoir.

Die interessanten Größen in diesem Versuch sind die Temperaturen T_1 und T_2 , die Drücke p_b und p_a sowie die Kompressorleistung P.

2.2 Durchführung

Vor Versuchsbeginn werden die beiden Reservoire mit Wasser befüllt. Danach werden sie möglichst isoliert an den vorgegebenen Kupferspiralen positioniert. Unmittelbar nach dem Einschalten der Rührmotoren und des Kompressors werden in festem Abstand die Temperaturen T_1 und T_2 an den jeweiligen Thermometern, sowie die beiden Drücke p_b und p_a an den jeweiligen Manometern und die Kompressorleistung P_K am Wattmeter gemessen und tabellarisch notiert.

Der Versuch endet nach dem Erreichen von $50\,^{\circ}\mathrm{C}$ in R_1 (nach $30\,\mathrm{min}$). Anschließend werden noch den beiden Manometern die Drucktemperaturen zum Erstellen einer Dampfdruckkurve entnommen.

3 Auswertung

Im Folgenden wird der Versuch ausgewertet.

Die Messerte wurden immer im Abstand von $\Delta t = 1$ min aufgenommen. Die Reservoire

wurden jeweils mit genau abgemessenen 41 Wasser befüllt. Die Temperaturen wurden auf 0,1 °C genau gemessen. Die Druckskala von p_b konnte man auf 0.1 bar ablesen, die von p_a auf 0.2 bar. Die Kompressorleistung wurde auf 1 W genau bestimmt.

3.1 Bestimmung einer Ausgleichskurve

Abbildung 2: Temperaturverlauf.

Die gemessenen Daten für die Temperatur T_1 des wärmeren sowie die Temperatur T_2 des kälteren Reservoirs wurden gegen die Zeit t in Sekunden abgetragen. Zum Plotten wurde Matplotlib [2] benutzt. Mithilfe von SciPy [3] wurde jeweils eine Ausgleichskurve für die folgende Funktion berechnet:

$$T(t) = A \cdot t^2 + B \cdot t + C \tag{4}$$

Die Parameter A, B und C wurden bestimmt zu

$$\begin{split} A_{T_1} &= (-3.876\,01 \pm 0.103\,82) \cdot 10^{-6}\,\mathrm{K/s^2} \\ B_{T_1} &= \; (0.023\,45 \pm 0.000\,19)\,\mathrm{K\,s^{-1}} \\ C_{T_1} &= \; (293.592 \pm 0.062)\,\mathrm{K} \\ A_{T_2} &= \; (4.348\,79 \pm 0.085\,33) \cdot 10^{-6}\,\mathrm{K/s^2} \\ B_{T_2} &= (-0.018\,15 \pm 0.000\,16)\,\mathrm{K\,s^{-1}} \\ C_{T_2} &= \; (294.936 \pm 0.062)\,\mathrm{K} \end{split}$$

Durch Ableiten und Einsetzen in die Ausgleichskurve

$$\frac{\mathrm{d}T}{\mathrm{d}t} = 2 \cdot A \cdot t + B \tag{5}$$

erhält man die Werte der Differentialquotienten, welche der Tabelle 1 entnommen werden können.

Für die Fehlerrechnung wurde bei der vorliegenden Rechnung und bei allen folgenden Rechnungen das Gaußsche Fehlerfortpflanzungsgesetz

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \Delta x_2\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n} \Delta x_n\right)^2} \tag{6}$$

für eine Funktion $f(x_1, x_2, \dots, x_n)$, bei der die Größen x_1, x_2, \dots, x_n voneinander unabhängig sind, verwendet. Uncertainties [4] hat jene und folgende Rechnungen übernommen.

Tabelle 1: Differential quotienten

t[s]	$T_1[\mathbf{K}]$	$T_2[{\mathcal K}]$	$\frac{\mathrm{d}T_1}{\mathrm{d}t}[\mathrm{K}\mathrm{s}^{-1}]$	$\frac{\mathrm{d}T_2}{\mathrm{d}t}[\mathrm{K}\mathrm{s}^{-1}]$
420	29.6 ± 0.1	14.9 ± 0.1	0.021954 ± 0.000212	-0.014500 ± 0.000174
840	37.5 ± 0.1	19.5 ± 0.1	0.016940 ± 0.000260	-0.010846 ± 0.000214
1260	43.7 ± 0.1	5.7 ± 0.1	0.013684 ± 0.000325	-0.007193 ± 0.000267
1680	48.9 ± 0.1	3.5 ± 0.1	0.010428 ± 0.000399	-0.003988 ± 0.000328

3.2 Güteziffervergleich

Für eine ideale Wärmepumpe gilt

$$v_{ideal} = \frac{T_1}{T_1 - T_2}. (7)$$

Für die reale Wärmepumpe gilt jedoch die Formel

$$v_{real} = \frac{\mathrm{d}Q_1}{\mathrm{d}tN} = (m_1 c_w + m_k c_k) \frac{\mathrm{d}T_1}{\mathrm{d}tN}. \tag{8}$$

wobei N die Kompressorleistung, m_1 die Masse des Wassers in R_1 , m_k die Masse des zu heizenden Reservoirs inklusive Kupferrohre, c_w die spezifische Wärmekapazität des Wassers sowie c_k die spezifische Wärmekapazität des Reservoirs und der Kupferrohre ist. Da bei der Durchführung des Versuches 41 Wasser für R_1 verwendet wurden, berechnet sich m_1 zu $m_1 = \rho_{H_2O} \cdot V = 4176.48\,\mathrm{kg}$, wobei der Werte für ρ_{H_2O} der Literatur entnommen wurde. Das Produkt aus m_k und c_k wurde vom Versuchsaufbau zu 750 J K $^{-1}$ abgelesen, c_w wurde ebenfalls der Literatur zu 4.1819 kJ kg $^{-1}$ K $^{-1}$ entnommen. Die Kompressorleistung ergibt sich aus dem arithmetischen Mittelwert der Messdaten zu $N=124.77\,\mathrm{W}$. Für die Differentialquotienten wurden die Werte der Ausgleichskurve, angegeben in Tabelle 1, verwendet.

 $T_1[K]$ $T_2[K]$ $\Delta T[K]$ $t|\mathbf{s}|$ v_{real,T_1} v_{real,T_2} v_{ideal} 420 29.6 ± 0.1 14.9 ± 0.1 14.7 ± 0.1 2.948 ± 0.039 -2.117 ± 0.031 20.599 ± 0.193 840 37.5 ± 0.1 19.5 ± 0.1 18.0 ± 0.1 2.473 ± 0.043 -1.584 ± 0.034 11.096 ± 0.054 1260 43.7 ± 0.1 5.7 ± 0.1 38.0 ± 0.1 1.998 ± 0.050 -1.050 ± 0.040 8.339 ± 0.029

 1.522 ± 0.059

Tabelle 2: Güteziffervergleich.

Es fällt auf, dass sich die reale Güteziffer deutlich von der idealen Güteziffer unterscheidet. Gründe für diese Differenz werden im Kapitel Diskussion 4 besprochen.

 45.4 ± 0.1

3.3 Massendurchsatz

 48.9 ± 0.1

 3.5 ± 0.1

1680

Bei einer Wärmepumpe wird dem kälteren Reservoir, hier R_2 , die Wärmeenergie Q_2 in Form von Verdampfungswärme entzogen. Der Zusammenhang zwischen dem Massendurchsatz $\frac{\mathrm{d}m}{\mathrm{d}t}$ und der entnommenen Wärmemenge pro Zeit $\frac{\mathrm{d}Q_2}{\mathrm{d}t}$ wird durch

$$\frac{\mathrm{d}Q_2}{\mathrm{d}t} = L \cdot \frac{\mathrm{d}m}{\mathrm{d}t} \tag{9}$$

 -0.517 ± 0.048

 7.095 ± 0.021

beschrieben, wobei L die Verdampfungswärme des Mediums ist [5]. Dabei gibt L an, welche Energie pro Mol erforderlich ist, um einen Stoff bei gleichbleibender Temperatur zu verdampfen. L kann dabei der Dampfdruckkurve des jeweiligen Stoffes entnommen werden, welche den Phasenübergang zwischen flüssig und gasförmig in einem pT-Diagramm beschreibt. Diese Kurve wird im Allgemeinen durch die Clausius-Clapeyronsche Gleichung beschrieben, aus der unter vereinfachten Bedingungen der Zusammenhang

$$ln(p) = -\frac{L}{R}\frac{1}{T} + const \tag{10}$$

folgt. Hierbei ist R die allgemeine Gaskonstante. Um nun den Wert von L für das genutzte Medium $\mathrm{Cl_2F_2C}$ zu bestimmen, wurden die Kehrwerte der Drucktemperaturen gegen den natürlichen Logarithmus des dazugehörigen Drucks abgetragen.

Abbildung 3: Dampfdruckkurve.

Durch lineare Ausgleichsrechnung mit Sci Py wurden die Parameter b und m der Ausgleichsgerade bestimmt zu:

$$m = (-2313.109 \pm 70.380) \,\mathrm{K}$$
 $b = 21.160 \pm 0.227$

Aus dem bereits genannten Zusammenhang (10) ergibt sich die Verdampfungswärme Lnun zu

$$L = -m \cdot R = (19231.19 \pm 572.47) \frac{J}{\text{mol}}.$$

Aus dem allgemeinen Zusammenhang für die Verdampfungswärme (9) kann nun der Massendurchsatz bestimmt werden:

3.4 Kompressorleistung

Um die Wärmemenge als Kondensationswärme an das Reservoir R_1 abgeben zu können, komprimiert der Kompressor K das Gas, so dass es flüssig wird. Da der Kompressor das

Tabelle 3: Massendurchsatz.

t[s]	$T_2[{\mathcal K}]$	$\frac{\mathrm{d}m}{\mathrm{d}t}[\mathrm{mol}\mathrm{s}^{-1}]$
420	14.9 ± 0.1	0.013732 ± 0.000480
840	19.5 ± 0.1	0.010274 ± 0.000390
1260	5.7 ± 0.1	0.006814 ± 0.000340
1680	3.5 ± 0.1	0.003354 ± 0.000330

Volumen V_1 bei einem Druck p_b zum Volumen V_2 verringert, errechnet sich die verrichtete Arbeit zu

$$W = -\int_{V_1}^{V_2} p_b dV. (11)$$

Idealerweise findet dieser Prozess nahezu adiabatisch statt, so dass aus der Adiabatengleichung für die verrichtete Arbeit

$$W = \frac{1}{\kappa - 1} \left(p_b \sqrt[\kappa]{\frac{p_a}{p_b}} - p_a \right) V_a \tag{12}$$

folgt. Um die mechanische Kompressorleistung $P_{\rm mech}$ zu bestimmen, wird der Quotient aus ΔW und Δt gebildet. Wird zudem das Volumen V_a durch den Quotienten aus der Masse m und der Dichte ρ ersetzt, ergibt sich

$$P_{\text{mech}} = \frac{1}{\kappa - 1} \left(p_b \sqrt[\kappa]{\frac{p_a}{p_b}} - p_a \right) \frac{1}{\rho} \frac{\Delta m}{\Delta t} \cdot M \cdot 10^{-3}. \tag{13}$$

 κ ist der Adiabatenkoeffizient des Mediums, für Cl $_2$ F $_2$ C durch $\kappa=1.14$ gegeben, p_a und p_b die Drücke bei denen der Kompressor arbeitet, ρ die Dichte des Gases unter $p_a, \frac{\Delta m}{\Delta t}$ der Massendurchsatz und M die Molmasse des Mediums, für Cl $_2$ F $_2$ C durch $M=120.91\,\mathrm{g\,mol^{-1}}$ gegeben. Der Faktor 10^{-3} wurde ergänzt, um den Massendurchsatz in SI-Einheiten umzurechnen.

Um die Dichte ρ zu bestimmen, wird die allgemeine Gasgleichung

$$pV = mR_sT \tag{14}$$

verwendet, R_S ist die spezifische Gaskonstante. Diese bestimmt sich durch gegebenes $\rho_0=5.51\,\mathrm{g\,l^{-1}}$ bei Normalbedingungen für das vorhandene Transportmedium zu $R_S=76.513\,\mathrm{J\,kg^{-1}\,K^{-1}}$.[1] Hieraus können die Dichten für alle Messzeitpunkte berechnet werden.

Tabelle 4: Kompressorleistung.

t[s]	$\rho[\operatorname{gl}^{-1}]$	$P_{\rm mech}[\rm Js^{-1}]$
420	19.961 ± 0.907	17.697 ± 1.736
840	17.568 ± 0.925	22.014 ± 1.641
1260	16.870 ± 0.937	17.809 ± 1.326
1680	16.296 ± 0.945	10.143 ± 1.120

4 Diskussion

Auffällig bei der Auswertung ist vor allem der deutliche Unterschied zwischen v_{ideal} und v_{real} , wie man der Tabelle 2 entnehmen kann. Die Abweichung von ca. 82% lässt sich auf verschiedene Faktoren zurückführen, dessen Ursprünge im Versuchsaufbau liegen. Zunächst war die Isolierung der Reservoire an sich unzureichend und etwas marode. Wir konnten die Wärme bzw. die Kälte an den Behältern deutlich erfühlen. Dieses Isolierungsproblem führte zu einer äußeren Erwärmung von R_2 , sowie einer äußeren Abkühlung von R_1 , somit zu Energieverlust. Dasselbe Phänomen konnten wir auch an den Kupferrohren wahrnehmen. Außerdem ließ sich der Deckel der Behälter, auf Grund der nicht ausreichend befestigten Halterungsplattformen, nicht richtig anpassen. Dies führte zu zusätzlichem Wärmeaustausch mit der Umgebung.

Ein anderes Problem liegt in der nicht richtig umgesetzten Kompressorleistung (124.77 W im Vergleich zu den berechneten Werten in Tabelle 4). Zusätzlich komprimiert der Kompressor das Medium nur annähernd adiabatisch.

Abschließend wollen wir noch erwähnen, dass die ideale Güteziffer von einem reversiblen Carnot-Prozess ausgeht, welcher in dieser Form nicht realisiert werden kann. Überraschenderweise ist es uns trotz all dieser Umstände gelungen, eine recht gleichmäßige Messung sowie eine planmäßige Durchführung zu erzielen.

5 Anhang

		iot	galo.			130
t/min	t1/00	Po Sur	Tz/00	Pa/sar	P/W	· Wilmekapazdit
0	20.8	5.5	243	5,3	0	des Reservoire!
1	216	6	21.0	48	135	750 1/K
2	22,9	6,3	19,8	4, 8	125	· Dampfolist kurvenmete
3	74,3	6.5	1817	Ce, 8	125	Pat =17.5 bor
4	7516	6.9	17,5	4,8	125	Po= 18 Sor
5	27.0	7	16.6	4,7	125	.05
6	2813	7.3	75.7	4,6	125	
7	79,6	715	14,9	4,4	125	
8	30.9	7,8	14.1	4,3	123	
g	371	8.0	13, 3	4,2	122	
10	33,2	8,2	12,4	411	122	
17	343	8,5	11,7	4,0	122	
12	35,4	8.8	10.9	4.0	124	31
13	36:4	9.0	10,3	3,9	124	
14	37,5	9,2	915	3,8	125	
13	38,4	9,5	8,9	3,8	125	
16	3 9,3	9,6	8,3	3,85	125	
17	40.3	10.093	717	3, 7	122	
18	41,2	10.0	7,2	3,7	125	
19	42,0	10,2	6,7	3,6	125	
20	42,8	10,5	6,2	3,6	125	
21	43,7	10,6	517	3,6	125	
72	44,5	10,9	513	3.6	125	
73	45,2	11.0	5,0	3,55	125	
74	46.0	11,2	416	3,5	125	
25	46,8	145	43	3.5	126	A.F.
26	.47.5	11.5	4.0	3,5	126	11.

 ${\bf Abbildung\ 4:\ Original daten\ Seite\ 1.}$

Abbildung 5: Originaldaten Seite 2.

Literatur

- [1] TU Dortmund. Versuchsanleitung, Versuch Nr. 206. 2015.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Eric Jones, Travis E. Oliphant, Pearu Peterson u. a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [4] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties*. Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [5] TU Dortmund. Versuchsanleitung, Versuch Nr. 203. 2015.