

Центр развития

РЫНОК МИНЕРАЛЬНЫХ УДОБРЕНИЙ

2019 год

PE3	BOME 2
1.	ОБЗОР СОСТОЯНИЯ ХИМИЧЕСКОЙ ОТРАСЛИ5
2.	ОБЗОР РЫНКА МИНЕРАЛЬНЫХ УДОБРЕНИЙ 10
3.	ГОСУДАРСТВЕННАЯ ПОЛИТИКА
4.	ПРОГНОЗ

Автор: Волкова А. В.

РЕЗЮМЕ

В 2015–2017 гг. темпы роста химического производства были выше, чем в среднем по обрабатывающему сектору, не опускаясь ниже 5%. На этом фоне результат 2018 г. выглядит слабым: рост производства в химической промышленности составил 2,7%, что примерно соответствует среднему показателю обрабатывающего сектора. Ключевыми драйверами роста химической промышленности в последние годы является производство полимеров и минеральных удобрений, где было запущено значительное количество новых мощностей.

Производство минеральных удобрений в РФ в период 2015—2017 гг. росло в среднем на 5,3% в год и в 2018 г. достигло 22,9 млн тонн в действующем веществе. Однако темпы роста в 2018 г. снизились на 1,5% в год из-за негативной динамики калийного сегмента, обусловленной резким снижением экспортных отгрузок.

Внутренний рынок удобрений отличается невысоким уровнем потребления. Отечественным покупателям поставляется около 30% выпущенной продукции, причем около половины внутреннего спроса обеспечивает промышленность. В последние годы использование удобрений в сельском хозяйстве РФ устойчиво растет, что является позитивным сигналом для данным $PA\Pi Y^1$, в 2018 г. потребление удобрений отечественными сельхозпроизводителями выросло на 9% – до 3,4 млн тонн в действующем веществе, что стало рекордом за последние 25 лет. По сравнению с уровнем десятилетней давности объем потребления вырос на 50%. В первом полугодии 2019 г. потребление удобрений на российском рынке выросло на 18,2% г/г – до 2,2 млн тонн в пересчете на д.в. (на 14,1%, до 5,46млн тонн в физическом весе). Сильнее всего выросли поставки на внутренний рынок карбамид-аммиачной смеси (+36%), концентрированных фосфорных (+32% и комплексных удобрений (+22%). Позитивная динамика спроса на удобрения объясняется как рыночными факторами (высокие цены на сельскохозяйственную продукцию), так и государственной политикой (субсидирование предприятий АПК, договоренности с производителями минеральных удобрений о фиксации отпускных цен перед началом весенней и осенней посевной).

Объем закупок удобрений за рубежом незначителен в масштабах внутреннего рынка — около 300 тыс. тонн в физическом весе, при этом значительная часть импортируемой продукции предназначена для промышленного использования. В то же время достаточно важным является импорт сложных удобрений (ок. 70 тыс. тонн в физическом весе), поскольку импортируются в основном удобрения в мелкой фасовке (в том числе таблетированные и жидкие), как для использования в сельском хозяйстве (на приусадебных участках, фермах), так и для ухода за домашними растениями. Розничный сегмент в России не так развит, как крупнотоннажный. Кроме того, есть «высокотехнологичные» ниши, где значительная доля зарубежных поставщиков. В первую очередь, это жидкие удобрения для декоративных и садовых растений, многокомпонентные удобрения с микроэлементами.

Ограниченная емкость внутреннего рынка определяет экспортную ориентацию российских производителей. На внешние рынки отгружается более 70% выпускаемых в стране минеральных удобрений. На фоне роста внутреннего производства и благоприятной конъюнктуры мирового рынка поставки азотных и смешанных удобрений на внешние рынки в последние годы устойчиво растут. Так, объем экспорта азотных удобрений в 2018 г. достиг 13.9 млн тонн в физическом весе (+8% к уровню 2017 г.). Хорошим сигналом является рост отгрузок

-

¹ Российская ассоциация производителей удобрений.

комплексных NPK удобрений, реализуемых с премией к цене простых продуктов. Их экспорт в 2017 г. вырос на 28% — до 5,8 млн тонн в физическом весе, в 2018 г. — еще на 2%. Экспорт калийных удобрений, напротив, в 2018 г. резко снизился, что было связано с сокращением объемов продаж «Уралкалия» на долгосрочных контрактах Китая и Индии из-за низких цен. Начало продаж на внешние рынки «ЕвроХима» никак не повлияло на совокупные результаты подотрасли, поскольку пока речь идет о пробных партиях и малых объемах. В первом полугодии 2019 г. на фоне сложной ситуации на мировом рынке снижались объемы экспортных поставок почти всех видов минеральных удобрений.

Ключевыми рынками сбыта российских удобрений являются Бразилия (23% в натуральном выражении по всем сегментам по итогам 2018 г.), а также Китай и США. В целом же российские удобрения поставляются более чем в 90 стран. В 2018 г. спрос со стороны Бразилии обеспечил большую часть роста экспорта поставок фосфорных и сложных удобрений. США наращивали закупки азотных удобрений. Как было отмечено выше, в 2018 г. сильно упали поставки калийных удобрений в Китай и Индию. Частично объем был перенаправлен на более высокомаржинальные рынки Латинской Америки, США и Азии. В 2019 г. по факту заключения контрактов можно ожидать восстановления традиционной структуры поставок.

В ближайшие годы внешний рынок останется ключевым для российских производителей. При этом конкурентная среда сильно изменилась за прошедшие годы и продолжит меняться в будущем. Самые серьезные перемены произошли на рынке азотных удобрений, в первую очередь – карбамида, где было введено большое количество новых мощностей, а Китай перестал быть основным поставщиком на мировом рынке, потеряв конкурентоспособность изза появления новых мощностей с более низкой себестоимостью производства. Ключевые страны-потребители развивают собственные производства, снижая объем закупок за рубежом. На рынке фосфорных удобрений наблюдается консолидация производственных мощностей, запускаются новые производства, сохраняется избыток предложения. Даже калийный сегмент – самый консервативный ввиду ограниченности сырьевой базы – перестраивается под новую конкурентную среду с большим количеством игроков. По данным IFA, мировые мощности по выпуску карбамида с 2014 по 2019 гг. выросли более, чем на 3 млн тонн в действующем веществе, аммиачной селитры – более, чем на 1 млн тонн д.в., диаммонийфосфата – на 2,7 млн тонн, хлорида калия – на 9 млн тонн. В контексте описанных выше изменений на мировом рынке происходит переформатирование торговых потоков. В сегменте азотных удобрений резко изменились позиции Китая, который перестал играть ведущую роль в мировой торговле. В сегменте фосфорных удобрений Китай, напротив, вышел в лидеры. Также планомерно укрепляет свои позиции Марокко. Россия входит в тройку лидеров мировой торговли минеральными удобрениями. За счет ввода новых мощностей (и потери конкурентоспособности китайской продукции) Россия к 2018 г. стала крупнейшим поставщиком карбамида на мировой рынок. Также страна стала вторым по величине поставщиком ДАФ/МАФ. В то же время доля в мировой торговле хлоридом калия снижается.

Обострение конкуренции на мировом рынке минеральных удобрений усложнит положение российских компаний в ближайшие годы. Однако, несмотря на это, в ближайшие годы российские производители азотных и смешанных удобрений сохранят устойчивые позиции на мировом рынке. Данный прогноз обусловлен тем, что при достаточно умеренной государственной политике в области индексирования цен на газ, они в течение рассматриваемого периода будут сохраняться на сравнительно низком уровне. Ситуация на калийном рынке будет определяться производственно-сбытовой политикой главных мировых игроков, скоростью выхода на проектные мощности новых рудников, а также закупочной

политикой главных покупателей (Китай/Индия). «Уралкалий», в любом случае, сохранит свои позиции в топе, однако объем отгрузок точно предсказать сложно. Новые российские игроки в прогнозный период будут способствовать росту объемов экспортных поставок хлорида калия из России, однако их вклад не будет решающим.

Таблица 1. Сводная таблица показателей развития российского рынка удобрений, минеральных или химических (в пересчете на 100% питательных веществ)

	2015	2016	2017	2018	1-е п/г 201 9			
Производственные показатели								
- объем производства, млн тонн	19,9	20,7	22,5	22,9	12,0			
- изменение объема производства, % к предыдущему году	1,6	3,7	9,0	1,5	2,0			
Емкость внутреннего рынка								
- объем потребления, млн тонн	5,1	5,1	6,0	6,6	4,5			
- изменение емкости рынка (продаж на внутреннем рынке), % к предыдущему году	-5,9	0,5	17,5	9,8	-31,2			
Уровень экспортного потенциала								
- объем экспорта, млн тонн	15,4	15,3	16,5	16,5	7,6			
- изменение объема экспорта, % к предыдущему году	7,6	-0,4	7,8	0,3	-9,6			
- доля экспорта в производстве, %	77,1	74						
Обеспеченность потребности внутреннего ры	Обеспеченность потребности внутреннего рынка продукцией российского производства							
- объем импорта, млн тонн	0,1	0,1	0,1	0,1	0,1			
- доля отечественной продукции в объеме видимого потребления, %	99	98	98	98	98			

Источник: Росстат (официальный сайт, ЕМИСС), ФТС РФ, расчеты Института «Центр развития».

1. ОБЗОР СОСТОЯНИЯ ХИМИЧЕСКОЙ ОТРАСЛИ

Химическая отрасль² является одним из основных локомотивов развития российской промышленности. Средние темпы роста химической промышленности в 2015–2017 гг. были выше, чем в среднем по обрабатывающему сектору, не опускаясь ниже 5%. На этом фоне результат 2018 г. выглядит слабым: рост производства в химической промышленности составил 2,7%, что примерно соответствует среднему показателю обрабатывающего сектора. Главным драйвером положительной динамики стало производство полиэтилена, которое увеличилось на 11% за счет модернизации действующих производств (в частности, в 2018 г. была завершена реконструкция реакторного блока производства полиэтилена на ООО «Ставролен»). Главным фактором снижения темпов роста стала негативная динамика сегмента калийных удобрений за счет падения объемов экспорта хлорида калия. В первом полугодии 2019 г. темпы роста химической промышленности выросли. Драйвером роста оставалась полимерная промышленность, хотя по сравнению с 2018 г. темпы роста несколько снизились по причине выхода новых заводов на проектные мощности. Еще более заметно выросло производство метанола. Увеличились и темпы роста минеральных удобрений, а по итогам второго полугодия можно ожидать еще большей позитивной динамики.

Предположительно, в 2019 г. темпы роста химической промышленности вновь будут заметно выше, чем в среднем по обрабатывающему сектору. Этому будут способствовать положительная динамика в сегменте минеральных удобрений (в том числе за счет новых мощностей), а также запуск нового нефтехимического комплекса «ЗапСибНефтехим» мощностью 2 млн тонн полимеров в год. Однако, с учетом того, что первые партии полимеров на новом заводе «Сибура» были получены осенью, выхода на проектную мощность можно ожидать только в следующем году.

Рис. 1. Индексы производства в 2015—2018 гг. (в %, значение показателя за год по полному кругу организаций)

² Код 20 ОКВЭД 2: Производство химических веществ и химических продуктов.

Таблица 2. Производство основных видов химической продукции в РФ в 2016-20199 гг.

	Годовые с	объемы про	изводства	, тыс. тонн		Прирос	т (сниже	ние)				
Наименование	2016	2017	2018	1-е п/г 2019	2016/ 2015	2017/ 2016	2018/ 2017	2019/ 1-е п/г 2018				
Производство основных химических веществ												
Удобрения минеральные или химические (в пересчете на 100% д.в.)	20 821	22 524	22 866	11 969	3,4%	8,2%	1,5%	2,0%				
Кислота серная, олеум	11 739	12 382	13 075	6 587	13,1%	5,5%	5,6%	0,3%				
Гидроксид натрия (сода каустическая)	1151	1239	1279	645	3,2%	7,6%	3,2%	2,5%				
Карбонат динатрия (карбонат натрия, сода кальцинированная)	3234	3489	3422	1 697	5,1%	7,9%	-1,9%	-2,6%				
Аммиак	-	17 056	17 704	9216	-	-	3,8%	1,4%				
Этилен	2791	2860	2990	1578	4,6%	2,5%	4,5%	3,8%				
Бензолы	1263	1359	1406	748	3,5%	7,6%	3,5%	1,8%				
Стирол	683	692	737	380	1,2%	1,3%	6,5%	2,4%				
Спирт метиловый (метанол)	-	3 981	4331	2326	-	-	8,8%	8,3%				
Пластмассы в первичных формах	7597	7759	8213	4267	4,5%	2,1%	5,9%	3,2%				
в том числе:												
полимеры этилена в первичных формах	1942	1980	2198	1149	8,3%	2,0%	11,0%	1,4%				
полимеры стирола в первичных формах	536	541	550	278	0,0%	0,9%	1,7%	2,8%				
полимеры винилхлорида или прочих галогенированных олефинов в первичных формах	824	945	1020	535	-2,8%	14,7%	7,9%	4,2%				
полимеры пропилена и прочих олефинов в первичных формах	1441	1451	1457	742	8,1%	0,7%	0,4%	3,5%				
Производство красок и лакс	В											
Материалы лакокрасочные и аналогичные для покрытий, краски и мастики полиграфические	1327	1384	1332	717	9,2%	4,3%	-3,8%	4,7%				
Производство искусственны	ых и синтети	ческих вол	окон				l					
Волокна химические	173	190	191	93	14,6%	9,8%	0,5%	-2,1%				
	<u> </u>	1	1	l				· ·				

Источник: Росстат (ЕМИСС).

Основной статьей российского экспорта остается продукция низких переделов (минеральные удобрения, синтетические каучуки, аммиак), в то время как ассортимент импортируемой химической продукции значительно шире поставляемой на экспорт и представлен главным образом продукцией с высокой добавленной стоимостью. Анализ торгового баланса в химической отрасли показывает, что Россия не может покрыть спрос на пластмассы, однако здесь в последние годы наблюдается позитивная динамика за счет ввода новых

импортозамещающих мощностей. По полипропилену — единственному из всех крупнотоннажных полимеров — в 2015—2016 гг. даже удалось достичь положительного внешнеторгового баланса. Отрицательный баланс наблюдается в сегменте химических волокон и средств защиты растений, моющих средств. На фоне укрепления рубля в 2019 г. импортная альтернатива для российских потребителей стала более доступной. Это привело к росту конкурентоспособности зарубежной продукции на российском рынке и росту объемов импорта.

Согласно оперативным ФТС РΦ, удельный данным вес продукции химической промышленности в товарной структуре импорта в январе-сентябре 2019 г. составил 19,2% (в январе-сентябре 2018 г. – 18,3%). В товарной структуре импорта из стран дальнего зарубежья доля этих товаров составила 19,9% (в январе-сентябре 2018 г. – 18,8%), из стран СНГ – 14,5% (14,4%). По сравнению с январем-сентябрем 2018 г. стоимостный объем ввоза продукции химической промышленности возрос на 4,7%, а физический – на 7,8%. Возросли объемы поставок продуктов органической химии на 17,4%, пластмасс и изделий из них – на 12,4%, каучука, резины и изделий из них – на 10,8%, удобрений – на 8,8%, продуктов неорганической химии – на 4,3%. При этом снизились поставки парфюмерных и косметических средств на 1,3%, красок и лаков – так же на 1,3%.

Доля экспорта продукции химической промышленности в январе-сентябре 2019 г. составила 6,4% (в январе-сентябре 2018 г. – 6,1%). В товарной структуре экспорта в страны дальнего зарубежья доля этих товаров составила 5,4% (в январе-сентябре 2018 г. – 5,1%), в страны СНГ – 13,7% (в январе-сентябре 2018 г. – 13,1%). Стоимостный объем экспорта возрос на 0,9%, а физический – на 3,3%. Возросли физические объемы экспорта красок и лаков – на 11,1%, продуктов органических химических соединений – на 9,0%, удобрений – на 2,5%, пластмасс и изделий из них – на 0,5%. При этом на 0,2% снизились физические объемы поставок каучука, резины и изделий из них.

Рис. 2. Сальдо внешнеторгового баланса по отдельным продуктам химической промышленности в январе-сентябре 2019 г., млн долл. США

Загрузка мощностей по выпуску ключевых продуктов химического комплекса в период 2015—2017 гг. росла. Исключение составляли волокна и нити химические. В 2018 г. снизилась загрузка мощностей в сегменте минеральных удобрений: в сегментах азотных и смешанных удобрений — за счет ввода новых мощностей, в сегменте калийных удобрений — за счет падения объемов производства. При этом уровень загрузки мощностей в промышленности минеральных удобрений выше, чем в среднем по химической отрасли.

Таблица 3. Уровень использования среднегодовой производственной мощности по выпуску отдельных видов химической продукции в 2014–2017 гг., в %

	2015	2016	2017	2018
Аммиак	94,36	93,42	89,74	92,59
Волокна и нити химические	62,20	66,05	65,99	62,9
Кислота серная, олеум	72,98	80,44	79,74	80,76
Материалы лакокрасочные и аналогичные для нанесения покрытий, краски и мастики полиграфические	42,45	44,02	48,53	49,77
Пластмассы в первичных формах	77,77	81,18	82,53	83,38
Удобрения минеральные или химические (в пересчете на 100% питательных веществ)	85,1	88,91	90,16	85,83
Удобрения фосфорные минеральные или химические (в пересчете на 100% фосфора)	78,55	81,52	90,09	89,19
Удобрения калийные минеральные или химические (в пересчете на 100% калия)	90,91	81,65	83,83	76,39
Удобрения азотные минеральные или химические (в пересчете на 100% питательных веществ)	85,1	88,91	88,73	86,29

Источник: Росстат (ЕМИСС).

Концентрация производства в сегменте удобрений существенно выше, чем в целом по отрасли, что обусловлено спецификой производства, в т.ч. ограниченным доступом к сырьевым ресурсам.

Таблица 4. Коэффициенты концентрации производства в 2018 г.

	По 4-м	По 4-м
	предприятиям	предприятиям
Химическое производство	22,00	39,33
Производство основных химических веществ, удобрений и азотных соединений, пластмасс и синтетического каучука в первичных формах	27,58	46,22
Производство удобрений и азотных соединений	52,21	91,26

Источник: Росстат.

В последние годы цены на минеральные удобрения, по данным Росстата, росли темпами меньшими, чем в среднем в химической отрасли. Темпы роста цен для отечественных сельхозпроизводителей были еще сдержаннее, по сравнению с динамикой экспортных цен.

Таблица 5. Индексы цен производителей по видам экономической деятельности (период с начала отчетного года в % к соответствующему периоду предыдущего года)

		2017	2018	Янвсент. 2019
Производство химических веществ и	Bcero	99,26	112,08	105,07
химических продуктов	Внутренний рынок	100,52	110,78	105,33
	Экспорт	96,62	114,26	105,75
Производство основных химических	Bcero	98,72	114,7	105,57
веществ, удобрений и азотных соединений,	Внутренний рынок	99,92	114,82	105,83
пластмасс и синтетического каучука в первичных формах	Экспорт	96,92	114,57	106,18
Удобрения азотные минеральные или	Bcero	94,8	114,1	113,3
химические	Внутренний рынок	97	106,4	112,9
	Другие отечественные потребители	96,5	108,8	113,2
	Отечественные сельскохозяйственные потребители	97,4	104,4	112,6
	Экспорт	93,6	118,5	113,5
Удобрения калийные минеральные или	Bcero	85,4	121,7	136,4
химические	Внутренний рынок	87,8	121,1	144,7
	Другие отечественные потребители	87,6	121,5	145,3
	Отечественные сельскохозяйственные потребители	91,8	105,2	131,8
	Экспорт	84,5	121,9	133
Удобрения, не включенные в другие	Всего	85,3	107,8	104,7
группировки	Внутренний рынок	85,7	121,6	103,7
	Другие отечественные потребители	86,7	118,3	112,7
	Отечественные сельскохозяйственные потребители	85,5	122,7	101,5
	Экспорт	85,1	106,6	104,9

Источник: Росстат.

2. ОБЗОР РЫНКА МИНЕРАЛЬНЫХ УДОБРЕНИЙ

2.1. Тенденции на мировом рынке

Спрос на минеральные удобрения на мировом рынке

В 2016-2017 гг. спрос на минеральные удобрения в мире рос, чему способствовало увеличение посевных площадей, а также государственная политика ряда стран, направленная на повышение объемов внесения минеральных удобрений³. Объем потребления минеральных удобрений мировым сельским хозяйством составил в 2018 с/х году 188.8 млн тонн, снизившись на 0,7% по сравнению с 2017 г. Спрос на минеральные удобрения со стороны промышленного сектора составил в 2018 г. 62 млн тонн (25% от суммарного объема мирового рынка минеральных удобрений). Объем внесения минеральных удобрений на один гектар посевной площади превысил 70 кг N/га, 29 кг P₂O₅/га, 24 K₂O/га. В региональном разрезе крупнейшими потребителями минеральных удобрений являются Азия и Америка. При этом более половины мирового спроса на удобрения приходится на четыре страны: Китай, Индию, США и Бразилию, которые в первую очередь и определяют динамику развития мирового рынка.

Таблица 6. Объемы мирового потребления минеральных удобрений сельским хозяйством

		Объем потребле	ения, млн тонн д.в.	
	2016	2017	2018	2019 (f)
N	107.1	106.4	106.5	107.1
P ₂ O ₅	45.4	46.3	45.3	46.0
K ₂ O	35.9	37.4	37.0	37.4
Итого	188.5	190.1	188.8	190.5
		Изме	нение, %	
N	0,6%	-0,7%	0,1%	0,6%
P ₂ O ₅	1,4%	2,0%	-2,2%	1,5%
K ₂ O	2,0%	4,2%	-1,1%	1,1%
Итого	1,0%	0,8%	-0,7%	0,9%

Источник: IFA (Short-Term Fertilizer Outlook 2016–2017, 2019–2020).

Падение мирового потребления минеральных удобрений было обусловлено комбинацией нескольких ключевых факторов:

- низкими ценами на большинство сельскохозяйственных культур на мировом рынке,
- неблагоприятными погодными условиями в важнейших регионах-потребителях (США, ЕС),
- девальвацией национальных валют в странах—импортерах минеральных удобрений (в частности, турецкой лиры и аргентинского песо),
- напряжением в торговле между США/КНР и РФ/Украиной,
- санкциями против Ирана,

• повышением эффективности использования минеральных удобрений в КНР и развитых странах.

10

³ Введение карты здоровья в Индии, президентская инициатива по удобрениям в Нигерии.

В третьем и четвертом кварталах 2018 г. возникли дополнительные сложности на рынке минеральных удобрений из-за низкого уровня воды в европейской речной системе. Хотя в начале декабря условия нормализовались, некоторые поставки на рынок ЕС были сдвинуты на первый квартал 2019 г. Из-за раннего снега и в целом неблагоприятных погодных условий в США в этом стране потребление было низким, сезон внесения начался позднее.

Лето 2019 г. усугубило ситуацию не только на рынке минеральных удобрений, но и в мировой экономике в целом. Торговая война между США и КНР вышла на новый уровень, одним из следствий (согласно предположениям экспертов) стала девальвация юаня до 11-летних минимумов по отношению к доллару США, что ожидаемо повлияло на конъюнктуру большинства товаров.

Спрос на калийные удобрения в первом полугодии 2019 г. был поддержан благоприятной ситуацией в сельском хозяйстве Бразилии и торговой войной между США и Китаем, спровоцировавшей рост экспорта бразильской сои⁴. Ситуация на рынке США была противоположной: на фоне неблагоприятных погодных условий спрос на калийные удобрения, как и на другие продукты отрасли, был крайне низким, уровни запасов выросли. Спрос на калийные удобрения в странах Европы, Ближнего Востока и Африки был стабильным. в Юго-Восточной Азии спрос на калийные удобрения оставался слабым, и объемы торговли на ключевых рынках были гораздо ниже традиционного уровня на фоне устойчиво низких цен на пальмовое масло. Ситуация, как ожидается, изменится к лучшему в четвертом квартале 2019 г. На рынке Китая имел место дисбаланс между контрактными объемами поставок и потреблением, результатом чего стали накопленные портовые запасы. Результатом слабого спроса стали объявления о сокращении объемов производства. Так, «Уралкалий» объявил о сокращении в 300 тыс. тонн, аналогичное заявление было сделано K+S, «Беларуськалий» сообщил о планах сократить производство на 0,9–1,2 млн тонн, канадская Nutrien – на 0,7 млн тонн⁵.

Производство и торговые потоки: время перемен

Структура предложения на мировом рынке минеральных удобрений за последние несколько лет заметно изменилась. Самые серьезные перемены произошли на рынке азотных удобрений, в первую очередь — карбамида, где было введено большое количество новых мощностей, а Китай перестал быть основным поставщиком на мировом рынке. Ключевые страны-потребители развивают собственные производства, снижая объем закупок за рубежом. На рынке фосфорных удобрений наблюдается консолидация производственных мощностей, запускаются новые производства, сохраняется избыток предложения. Даже калийный сегмент — самый консервативный ввиду ограниченности сырьевой базы — перестраивается под новую конкурентную среду с большим количеством игроков.

По данным IFA, мировые мощности по выпуску карбамида с 2014 по 2019 гг. выросли более, чем на 3 млн тонн в действующем веществе, аммиачной селитры — более, чем на 1 млн тонн д.в., диаммонийфосфата — на 2,7 млн тонн, хлорида калия — на 9 млн тонн.

⁵ URL: https://www.vedomosti.ru/business/articles/2019/10/07/813051-uralkalii-investiruet-v-uvelichenie-proizvodstvamlrd

⁴ 25%-ная пошлина на импорт сои из США была введена в июле 2018 г., после чего китайские потребители перешли на закупки из Бразилии и Агентины. Американские фермеры переориентировались на кукурузу, которая является азотосодержащей культурой.

Источник: IFA.

Рис. 3. Мировые мощности по производству азотных удобрений, млн тонн д.в.

Источник: IFA.

Рис. 4. Мировые мощности по производству фосфоросодержащих удобрений, млн тонн д.в.

Источник: IFA.

Рис. 5. Мировые мощности по производству хлорида калия, млн тонн д.в.

В азотном сегменте дополнительный объем предложения был обеспечен запуском новых заводов в странах с дешевым природным газом. В 2016 г. основной прирост дали США и Россия. В этом же году в Нигерии в рамках программы снижения импортозависимости Indorama Eleme Fertilizer завершила строительство крупнейшего в мире завода, рассчитанного на выпуск до 1,5 млн тонн карбамида в год. Проект превратил Нигерию из нетто-импортера в нетто-экспортера удобрений (на экспорт отгружается около 60% продукции завода).

Запуск новых мощностей в США изменил внешнеторговый баланс и этой страны. Стимулом для наращивания мощностей стала «сланцевая революция», обеспечившая американских производителей дешевым сырьем. В результате экспортные поставки азотных удобрений за последние пять лет выросли более, чем на 1 млн тонн, а объемы импорта снизились (более существенно, за счет опережающего удовлетворения внутреннего спроса).

Импортозамещающие мощности вводились и в других странах. Наиболее заметное влияние на рынок оказал ввод новых мощностей в Индии. В частности, были запущены производства карбамида Matix, Chambal, Ramagundam (мощностью около 1,3 млн тонн по физ. весу каждое), до 2022 г. ожидается запуск еще трех аналогичных заводов. Как следствие, импорта азотных удобрений Индией снизился в обозначенный период почти вдвое.

Еще одним важным фактором, повлиявшим на мировые торговые потоки, стали санкции против Ирана. Ежегодно страна поставляла на мировой рынок 4 млн тонн карбамида и 5 млн тонн аммиака. Преимуществом иранских удобрений всегда считалась сравнительная дешевизна и короткий путь доставки на крупные азиатские рынки. С введением санкций традиционные потребители в Индии, Турции и Европейском союзе вынуждены отказаться от закупок⁸.

На фоне появления новых игроков с минимальной себестоимостью производства, в Китае из-за скачка цен на уголь, используемый в качестве сырья, производство азотных удобрений оказалось неконкурентоспособным. Профильные мощности в стране были сокращены на 50%. На внутреннем рынке страны эффект от падения производства был инициированной правительством программой «zero – growth fertilizer and pesticides» и ежегодного прироста потребления снижением химических удобрений с 5 до 1%. В последующие годы производство удобрений в КНР значительно сократилось за счет ужесточения экологических И закрытия устаревших производств. Динамика экспорта карбамида из КНР в 2017-2018 гг. показывала почти двукратное снижение ежегодно (8,9 млн тонн в 2016 г., 4,6 млн тонн в 2017 г., 2,4 млн тонн в 2018 г.). При этом в 2019 г. на фоне снижения цен на карбамид экспорт из Китая вновь вырос: за 9 мес. 2019 г. на внешние рынки страна поставила 3,2 млн тонн карбамида – почти в 3 раза больше, чем годом ранее.

Рис. 6. Нигерия. Внешняя торговля карбамидом, тыс. тонн (физ. вес)⁶

Источник: Trademap, local data.

Рис. 7. США. Внешняя торговля азотными удобрениями, тыс. тонн (физ. вес)⁷

Рис. 8. Индия. Внешняя торговля карбамидом, тыс. тонн (физ. вес)

⁶ 2015 г. – нет данных.

⁷ 2015 г. – нет данных.

⁸ URL: https://wtcmoscow.ru/services/international-partnership/analitycs/rossiyskaya-ekonomika-mineralnye-udobreniya/

Отдельно стоит остановиться на рынке Турции. Динамика объемов импортных закупок этой страной до 2017 г. была положительной, исключение составил только 2018 год, когда объемы импорта снизились более, чем на 700 тыс. тонн в физическом весе в связи со снижением спроса на карбамид. В то же время товарная структура поставок претерпела существенные изменения. Резко снизились селитры, закупки аммиачной ee структуре импорта в 2014 г. составляла 23%, а в 2019 г. упала до 2% за счет перехода на Данная ситуация карбамид. связана С введенным после теракта 2016 г. запрета на продажу и перевозки внутри страны аммиачной селитры, известково-аммиачной селитры и нитрата калия. Турецкие производители начали менее разрабатывать опасные например, ИАС с более низким содержанием азота и более высоким содержанием кальция. Продажи в 2018 г. возобновились, однако их объемы несопоставимы с прошлыми.

В 2018–2019 гг. темпы ввода новых мощностей в азотном сегменте замедлились, однако запуск новых заводов по-прежнему происходил. В частности, Кіта (Египет) запустила новый завод мощностью 396 тыс. тонн аммиака и 530 тыс. тонн карбамида в год⁹, SOCAR

Рис. 9. Китай. Внешняя торговля карбамидом, тыс. тонн (физ. вес)

Рис. 10. Турция. Импорт азотных удобрений, тыс. тонн (физ. вес)

(Азербайджан) ввела в эксплуатацию завод по производству 650 тыс. тонн карбамида в год.

В сегменте фосфорных удобрений значимым событием, серьезно повлиявшим на рынок, стал запуск новых мощностей ОСР и Ma'aden во втором полугодии 2019 г.

Новый игрок появился в Саудовской Аравии: в 2018 г. путем объединения производственных активов была образована Sabic Agri-nutrient Investments 10 . Мощности SANI на момент учреждения составили: мочевина — 5 млн тонн в год, аммиак — 3,4 млн, МАФ и ДАФ — по 1,5 млн, NPK — 900 тыс.

На рынке калийных удобрений появление новых мощностей происходит в рамках региональной локализации сырьевой базы. В мае 2017 г. введен в эксплуатацию новый рудник в Канаде мощностью 2 млн тонн в год компании К+S AG. В том же году на рынке появился новый игрок: в Туркменистане начал работать Гарлыкский калийный комбинат мощностью 1,4 млн тонн в год, спроектированный и построенный белорусскими компаниями¹¹. В 2018 г.

⁹ URL: https://www.tecnimont.it/en/media/news/first-ammonia-production-kima-fertilizer-complex

¹⁰ Jubail Fertilizer – 50% National Chemical Fertilizer – 33%, Guif Petrochemical Industrial – 30%, Ma'aden Phoshphate – 35% и Ma'aden Wa'ad Al-Shamal Phosphate – 15%, Saudi Arabian Fertilizer – 43%. По данным https://wtcmoscow.ru/services/international-partnership/analitycs/rossiyskaya-ekonomika-mineralnye-udobreniya/
¹¹ URL: https://eurasia.expert/belarus-na-mirovom-rynke-kaliya-vozmozhnosti-i-podvodnye-kamni/

первый калий был получен на проекте «ЕвроХим—ВолгаКалий». Кроме того, в 2018 г. на рынке появился новый лидер в результате слияния двух канадских производителей удобрений Agrium и Potash Corp. была создана компания Nutrien. В настоящее время это крупнейший производитель калийных удобрений и второй по величине производитель азотных удобрений в мире.

Однако необходимо отметить, что влияние ввода новых мощностей на рынок хлорида калия пока существенно меньше ожидаемого из-за различных обстоятельств. Так, по данным СМИ, производственные мощности туркменского Гарлыкского ГОКа задействованы менее, чем на 5%¹². Сообщается о проблемах на производствах K+S в Зигмундсхалее и Саскачеване.

Таблица 7. Мощности по производству удобрений

N	2017	2018	Р	2017	2018	К	2017	2018	NPK	2017	2018
Китай	59	58,4	Китай	22,1	22,1	Канада	22,4	23,3	Китай	87,8	87,2
РФ	15,9	16,9	США	8,5	8,5	РФ	9,36	10,7	РФ	28,66	31,2
США	13,4	14,1	Марокко	6,5	7,4	Беларусь	7,7	7,9	Канада	27,1	28
Индия	12,8	12,7	РФ	3,4	3,5	Китай	6,7	6,7	США	23	23,6
Индонезия	5,6	6,7	KCA	2,9	2,9	Германия	3,6	3,5	Индия	15	15
Тринидад и Тобаго	4	4,99	Индия	2,2	2,2	Израиль	2,4	2,4	Беларусь	8,8	8,9
Украина	4,6	4,6	Тунис	2	2	Чили	1,7	1,7	KCA	7,16	7,2
Канада	4,3	4,4	Бразилия	1,6	1,6	Иордания	1,5	1,5	Марокко	6,48	7,3
KCA	4,3	4,3	Иордания	1,2	1,2	США	1	1	Индонезия	6,2	7,3
Иран	4,3	4,26	Мексика	0,9	0,9	Туркменистан	0,8	0,8	Германия	6,2	6,2
Прочие	56,9	55,6		9,1	9,2		2,4	2,5		88,6	88,5
Всего	185,1	187,0		60,4	61,5		59,6	62,0		305,0	310,4

Источник: Nutrien (по данным IFA 2017–2018 гг.).

Мировая торговля и позиции российских поставщиков

В контексте описанных выше изменений на мировом рынке происходит переформатирование торговых потоков. В сегменте азотных удобрений резко изменились позиции Китая, который перестал играть ведущую роль в мировой торговле. В сегменте фосфорных удобрений Китай, напротив, вышел в лидеры. Также планомерно укрепляет свои позиции Марокко. Россия входит в тройку лидеров мировой торговли минеральных удобрений. За счет ввода новых мощностей (и потери конкурентоспособности китайской продукции) Россия к 2018 г. стала крупнейшим поставщиком карбамида на мировой рынок. Также страна стала вторым по величине поставщиком ДАФ/МАФ. В то же время доля в мировой торговле хлоридом калия снижается.

⁻

 $^{^{12} \} URL: https://www.hronikatm.com/2018/11/garlyikskiy-gok-ne-rabotaet-prezident-berdyimuhamedov-grozit-belgorhimpromu-sudom/, https://regnum.ru/news/economy/2717474.html$

Источники: ITC, UN Comtrade, Ассоциация производителей удобрений КНР Рис. 11. Доли ТОП-5 экспортеров в мировой торговле в 2012—2018 гг.

Рис. 12. Крупнейшие импортеры минеральных удобрений в 2018 г.

Крупнейшим импортером азотных удобрений является Бразилия с суммарным объемом импорта по группе почти в 10 млн тонн в физ. весе и наращивающая объемы закупок за рубежом. Другие крупные импортеры — США, Индия, европейские страны — напротив снижают объемы импорта. Так, объем внешних поставок карбамида в США снизился в 2018 г. на 9% до 5,5 млн тонн в физ. весе, в Индию — на 8% (также до 5,5 млн тонн). При этом в целом по мировому рынку динамика объемов мировой торговли азотными удобрениями положительная, в первую очередь за счет стран Латинской Америки.

Индия остается крупнейшим импортером фосфоросодержащих удобрений. В 2018 г. страна увеличила закупки DAP на 54%, до 6,3 млн тонн в физ. весе. На втором месте по объемам импорта DAP находится Пакистан, увеличивший закупку этого вида удобрений на 11%, до 1,9 млн тонн. Объемы импорта MAP нарастили США (более чем в 1,5 раза, до 1,7 млн тонн) и страны Африки. Бразилия, напротив, снизила закупки на 8%, до 3,3 млн тонн.

В сегменте калийных удобрений положительным для рынка был рост объемов закупок Бразилии (+5%, до 2,4 млн тонн). Также увеличила объем импорта Индонезия (+1%, до 0,8 млн тонн). Динамика импорта большинства других крупных стран-потребителей в 2018 г. была отрицательной. Китай, развивающий собственное производство, снизил объем внешних закупок на 36%, до 1,5 млн тонн, Индия – на 37%, до 0,7 млн тонн.

Конъюнктура мирового рынка

Ключевым фактором, определившим динамику цен на карбамид в последние несколько лет, стало резкое падение китайского экспорта, компенсировавшее рост предложения из-за ввода новых мощностей в других странах мира. Еще одним важным фактором, повлиявшим на мировые торговые потоки, стали санкции против Ирана. Как следствие, цены на карбамид в октябре впервые с 2015 г. поднялись выше 300 долл. (FOB Балтика). В результате, несмотря на негативную корректировку в зимний период, средние цены по итогам 2018 г. показали прирост в 14% по отношению к 2017 г. Динамика цен на аммиачную селитру в 2018 г. была нехарактерной для обычной сезонности этого продукта: наблюдалось снижение в сезон спроса — до минимумов (157 долл. в мае (FOB Балтика) и 178 долл. в декабре), рост в межсезонье — до 217 долл. в августе. Украина практически закрыла свой рынок для российских производителей удобрений, что вызвало временный переизбыток объемов аммиачной селитры и ее производных продуктов со стороны РФ и привело к колебаниям на рынке. Средняя цена за 2018 г. была на 2% ниже уровня 2017 г.

Рис. 13. Динамика цен на основные виды удобрений в 2006-2019 гг., долл./т

На мировом рынке фосфатных удобрений цены на аммофос выросли с 385 долл. (FOB Балтика) в начале года до 433 долл. в сентябре. Среднегодовые значения цен были на 18,7% выше уровня 2017 г. Цены на NPK (10-26-26) в 2018 г. плавно росли от 290 долл. в начале года до 350 долл. в конце, отражая рост стоимости основных компонентов — фосфатов и хлористого калия¹³.

Для рынка хлорида калия 2018 год был стабильным, с тенденцией к росту в конце года. Одним из ключевых драйверов стала Бразилия. В четвертом квартале 2018 г. цены на хлорид калия росли в период тендеров Юго-Восточной Азии на фоне ограниченной доступности гранулированного МОР, а также сезонного роста спроса в США. По итогам квартала рост составил 17%, до 274 долл. (FOB Балтийское море, спот). По итогам года средние цены выросли на 12% год к году, до 256 долл. за тонну.

В первом квартале 2019 г. цены на карбамид и КАС снизились из-за сезонного ослабления спроса. Исключением был рынок Китая, где высокие издержки производства не позволяют производителям идти на существенное изменение цен. В то же время цены на аммиачную

-

¹³ ОХК «УРАЛХИМ».

селитру были достаточно стабильны. Во втором квартале 2019 г. цены на карбамид возобновили рост, который повлек за собой увеличение цен на аммиачную селитру. С замедлением на изменения конъюнктуры рынка отреагировал рынок КАС, поскольку в ключевом регионе потребления — США — сезонный рост спроса произошел с опозданием из-за неблагоприятных погодных условий. Слабый спрос со стороны США вкупе с ростом экспорта из КНР и ростом предложения с новых мощностей ОСР и Ma'aden, негативно повлиял на рынок фосфорных удобрений. Средний уровень цен на DAP (FOB Тампа) в первом квартале 2019 г. снизился до 400 долл. за тонну. Во втором квартале цены снизились еще на 12%. Чтобы поддержать цены, несколько производителей удобрений объявили о сокращении выпуска по итогам первого полугодия 2019 г. Так, один из крупнейших мировых поставщиков — компания Мозаіс — для балансировки рынка объявила о сокращении производства фосфорных удобрений в США на 300 тыс. тонн. В случае сложных удобрений падение было менее значительным, премия к корзине продуктов увеличилась¹⁴.

В третьем квартале 2019 г. негативное влияние на рынок карбамида оказало значительное увеличение экспорта из Китая (+1 млн тонн, или 42% ко второму кварталу 2019 г.), при том что спрос в мире оставался сезонно низким. Цены на базисе FOB Балтика снизились с 270 долл. в начале квартала до 230 долл. в конце. Средний уровень цен за квартал составил 247 долл. (-1,2% к уровню второго квартала 2019 г. и -6,1% год к году). В четвертом квартале 2019 г. можно ожидать стабилизации цен на фоне активизации сезонного спроса в Бразилии, Европе, Индии, Бангладеш, Эфиопии и Ираке. На фоне снижения цен на карбамид, цены на аммиачную селитру и NPK также снижались. Средняя цена на аммиачную селитру составила 196 долл. (FOB Балтика) (-0,6% ко второму кварталу, -8,2% год к году). NPK 16-16-16 за третий квартал 2019 г. составила 295 долл. (FOB Балтика) (-3,3% ко второму кварталу, -4,4% год к году). Цены на КАС, снизившиеся в первой половине года, в третьем квартале оставались стабильными на уровне 142 долл. (FOB Балтика), что на 2% выше уровня второго квартала, однако на 18% ниже уровня третьего квартала 2018 г. 15.

Суммарно за 9 мес. 2019 г. цены на все перечисленные основные виды минеральных удобрений показали прирост в 2–3% за исключением КАС. В четвертом квартале вероятно продолжение нисходящей ценовой динамики из-за слабого спроса.

Рынок калийных удобрений в первом полугодии 2019 г. оставался наиболее стабильным по сравнению с рынками азотных и фосфорных удобрений. Глобальный спрос был относительно устойчивым, в первую очередь благодаря спросу со стороны Латинской Америки.

Еще одним продуктом, влияющим на ценообразование сложных минеральных удобрений, является сера. Котировки серы с октября 2018 г. снижались. К августу 2019 г. падение составило около 50%. Цены на ближневосточную серу опустились ниже 70 долл. за тонну (fob) впервые с августа 2016 г. Согласно оценкам экспертов Argus Media, к концу третьего квартала текущего года цены на гранулированную серу в Китае — ключевом рынке сбыта — могут опуститься до 74—76 долл. за тонну (cfr). Минимальные уровни ожидаются в октябре, после чего покупатели, в первую очередь китайские, активизируются.

¹⁴ URL: http://www.kaicc.ru/sites/default/files/rossiyskiy_i_mirovoy_rynok_udobreniy_i_szr_26.04.2019.pdf, https://www.kommersant.ru/doc/4026275

¹⁵ URL: https://www.acron.ru/press-center/press-releases/200678/

2.2. Обзор российского рынка

Ключевые производственные показатели

В последние шесть лет производство минеральных удобрений в РФ устойчиво росло, достигнув в 2018 г. 22,9 млн тонн в действующем веществе (д.в.). Темпы роста на фоне других секторов промышленности были крайне высокими, CAGR в период 2015—2017 гг. составил 5,3%. В 2018 г. прирост объемов производства снизился до 1,5%, что было связано с негативным результатом калийного сегмента.

Таблица 8. Основные показатели российского рынка минеральных удобрений в 2015–2018 гг., тыс. тонн д.в.

Показатель	2016	2017	2018	1-е п/г 2019
Загрузка мощностей	88,91	90,16	85,83	н.д.
Ресурсы	20 386	22 489	23 124	12 157
- производство	20 665	22 524	22 866	11 969
- импорт	84	90	150	70
- изменение запасов*	-363	-125	107	118
Использование				
- продажи на внутреннем рынке	5098	5991	6579	4528
- экспорт	15 288	16 498	16 544	7 630
Доля экспорта в производстве	74	73	72	64
Доля импорта в потреблении	2	2	2	2

^{*} У торговых организаций и производителей.

Источник: Росстат, ФТС РФ, расчеты Института «Центр развития» НИУ ВШЭ¹⁶.

Источник: Росстат.

Рис. 14. Динамика производства минеральных удобрений в России в 1998–2018 гг., млн тонн д.в.

 16 Источники данных по внешней торговле в пересчете на д.в.: до 2015 г. – Росстат, 2016 г. – расчеты Института «Центр развития» НИУ ВШЭ.

В 2019 г. ожидается заметный рост производственных показателей благодаря расширению производственных мощностей. В частности, ввод в конце 2018 г. нового агрегата карбамида и увеличения мощности производства азотной кислоты Группой «Акрон» даст заметный прирост по карбамиду и КАС.

Ниже приведены подробные данные по выпуску ключевых минеральных удобрений в России (объемы производства даны в физическом весе).

Источник: Росстат.
Рис. 15. Видовая структура производства минеральных удобрений в России в 2018 г.

Таблица 9. Объем производства важнейших видов минеральных удобрений в 2016–2019 гг., тыс. тонн (физ. вес)

				4 1-	Изі	менение
	2016	2017	2018	1-е п/г 2019	2018/ 2017	1-е п/г 2019/ 1-е п/г 2018
Азотные удобрения						
Карбамид (с масс. долей N более 45% в сухом продукте)	6393	7985	8340	4458	4,4%	0,0%
Аммиачная селитра (в т.ч. в водном р-ре)	9082	9460	9611	5280	4,2%	4,2%
Сульфат аммония	1335	1326	1433	708	-0,7%	-3,4%
Фосфорные удобрения						
Аммофос	34	904	958	478,5	5,9%	-4,9%
Диаммофос	2,4	22,9	77,9	72,3		19,3%
Комплексные удобрения						
NPK	6219	7153	7747	3761	8,3%	-0,8%
Калийные удобрения						
Хлорид калия	10 897	12 081	11 633	6166	-3,7%	3,1%

Источник: Росстат.

Тенденция развития промышленности минеральных удобрений – расширение ассортимента выпускаемой продукции. На фоне истощения почв в результате интенсификации производства сельскохозяйственных культур отмечается рост спроса на удобрения с различным содержанием вторичных питательных веществ (сера, кальций, магний) и с добавлением различных микроэлементов. По оценкам игроков рынка, широкое применение получают жидкие формы удобрений (в частности КАС), которые отличаются равномерностью внесения и распределения в слоях почвы, что способствует повышению удержания питательных веществ и влаги, что актуально для засушливых регионов¹⁷. Важно отметить, что в России развивается также производство тукосмесей, объем потребления которых отечественными аграриями находится на низком уровне. Ввиду специфики сегмента (производство NPK смесей с соотношением питательных веществ ПО спецификациям клиентов) заданным тукосмесительные установки – в основном небольшой мощности, работающие на свой регион.

_

¹⁷ URL: http://vestnikapk.ru/articles/otraslevye-reytingi/nuzhen-im-bereg-turetskiy/

Своими тукосмесительными установками располагают «ФосАгро-Регион», «ЕвроХим», «УРАЛХИМ», а также частные неинтегрированные компании. В 2019 г. Группа «Акрон» в дополнение к производству на «Дорогобуже» на площадке в Великом Новгороде ввела в эксплуатацию установку мощностью 600 тыс. тонн в год.

Импортные поставки

Объем закупок удобрений за рубежом незначителен в масштабах внутреннего рынка – около 300 тыс. тонн в физическом весе.

В наибольшем объеме импортируется хлорид калия – около 160 тыс. тонн в физическом весе в 2018 г. Однако большая часть этого объема предназначена для использования в химической, пищевой промышленности и медицине, а также в лабораториях. В структуре импорта азотных удобрений (60 тыс. тонн в физическом весе в 2018 г.) значительный объем приходится на химические реактивы и реагенты, используемые для очистки выхлопных газов. Именно за счет импорта, не предназначенного для использования в сельском хозяйстве, росли в последние годы внешние поставки.

Объем импорта сложных удобрений составил в 2018 г. около 70 тыс. тонн в физическом весе. Этот небольшой объем является достаточно важным, так как значительную часть импорта составляют удобрения в мелкой фасовке (в том числе таблетированные и жидкие). Импортируются удобрения для использования как в сельском хозяйстве (на приусадебных участках, фермах), так и для ухода за домашними растениями. Розничный сегмент в России не так развит, как крупнотоннажный. Кроме того, есть «высокотехнологичные» ниши, где значительна доля зарубежных поставщиков. В первую очередь, это жидкие удобрения для декоративных и садовых растений, многокомпонентные удобрения с микроэлементами.

Экспортные ориентиры

Ограниченная емкость внутреннего рынка определяет экспортную ориентацию российских производителей. На внешние рынки отгружается более 70% выпускаемых в стране минеральных удобрений. Негативное влияние ввода новых экспортноориентированных мощностей и экспансии китайских производителей привело к снижению объемов экспорта азотных удобрений в 2015 г., однако затем ситуация улучшилась по причине изменения конкурентной среды (см. обзор мирового рынка выше). На фоне роста внутреннего производства и благоприятной конъюнктуры мирового рынка поставки азотных и смешанных удобрений на внешние рынки в последние годы устойчиво растут. Экспорт калийных удобрений, напротив, в 2018 г. резко снизился, что было связано с сокращением объемов продаж «Уралкалия» на долгосрочных контрактах Китая и Индии из-за низких цен. Начало продаж на внешние рынки «ЕвроХима» никак не повлияло на совокупные результаты подотрасли, поскольку пока речь идет о пробных партиях и малых объемах.

Таблица 10. Сводная динамика экспортных отгрузок минеральных удобрений в 2016-2019 гг.

	06	ъемы экспо	ртных отгр	узок		Изменение	!		
	2016	2017	2018	1-е п/г 2019	2017/2016	2018/2017	1-е п/г 2019/ 1-е п/г 2018		
Физический вес, тыс. тонн									
Азотные	12 773	12 826	13 916	6534	0%	8%	-2%		
Смешанные	9242	10 482	11 314	5264	13%	8%	-13%		
Калийные	9486	10 665	8833	3912	12%	-17%	-16%		
Простые фосфорные	11	7	12	4	-34%	55%	4%		
		Денежны	й эквивалеі	нт, млн долл. (США				
Азотные	2171	2337	2787	1390	8%	19%	8%		
Смешанные	2608	2748	3403	1648	5%	24%	-6%		
Калийные	1856	2129	2033	1014	15%	-4%	1%		
Простые фосфорные	1	1	1	0	-23%	65%	12%		

Источник: ФТС РФ/ІТС.

Хорошим сигналом является рост отгрузок комплексных NPK удобрений, реализуемых с премией к цене простых продуктов. Их экспорт в 2017 г. вырос на 28% — до 5,8 млн тонн в физическом весе, в 2018 г. — еще на 2%. Также росли экспортные поставки карбамида, аммиачной селитры и КАС. В первом полугодии 2019 г. на фоне сложной ситуации на мировом рынке снижались объемы экспортных поставок почти всех видов минеральных удобрений.

Таблица 11. Динамика экспортных отгрузок важнейших минеральных удобрений в 2016–2019 гг., тыс. тонн (физ. вес)

	Обт	ьем экспо	рта, тыс.	тонн		Измен	нение
	2016	2017	2018	1-е п/г 2019	2017/ 2016	2018/ 2017	1-е п/г 2019/ 1-е п/г 2018
Азотные удобрения							
Мочевина, в т.ч. в водном растворе	5972	6355	6956	3334	6%	9%	-2%
Нитрат аммония, в т.ч. в водном растворе	3532	3497	3592	1599	-1%	3%	3%
Карбамидо-аммиачная смесь	1971	1696	2276	1188	-14%	34%	-1%
Известково-аммиачная селитра	614	616	602	178	0%	-2%	-40%
Сульфат аммония	559	531	374	157	-5%	-29%	-25%
Фосфорные удобрения							
Суперфосфаты и прочие простые фосфорные удобрения	11	7	12	4	-34%	55%	3%
Калийные удобрения							
Хлорид калия	9419	10 608	8753	3880	13%	-17%	-16%
Сульфат калия	67	57	77	27	-16%	36%	-27%
Смешанные удобрения							
NPK	4551	5829	5920	2755	28%	2%	-9%
Аммофос	1954	2235	2490	868	14%	11%	-27%
Диаммофос	1218	1085	1442	923	-11%	33%	-2%
Удобрения, содержащие нитраты и фосфаты	551	676	687	429	23%	2%	-5%
Прочие NP	780	485	640	167	-38%	32%	-51%
Прочие NK	181	130	99	116	-28%	-24%	54%

Источник: ФТС РФ/ITC.

Ключевыми рынками сбыта российских удобрений являются Бразилия (23% в натуральном выражении по всем сегментам по итогам 2018 г.), а также Китай и США. В целом же российские удобрения поставляются более чем в 90 стран.

Рис. 16. Структура российского экспорта минеральных удобрений в 2018 г. по странам-получателям (физ. вес)

Несмотря на то что российские производители работают над диверсификацией поставок, с каждым годом расширяя географию экспорта, список основных потребителей остается неизменным. При этом позиции РФ и объемы отгрузок в разрезе стран в последние несколько лет менялись достаточно заметно. Спрос со стороны Бразилии обеспечил большую часть роста экспорта поставок фосфорных и сложных удобрений. США наращивали закупки азотных и калийных удобрений. Также росли поставки в европейские страны, однако здесь необходимо делать поправки на отгрузки через финские и эстонские терминалы в третьи страны.

Как было отмечено выше, в 2018 г. сильно упали поставки калийных удобрений в Китай и Индию. Частично объем был перенаправлен на более высокомаржинальные рынки Латинской Америки, США и Азии. В 2019 г. по факту заключения контрактов можно ожидать восстановления традиционной структуры поставок.

Таблица 12. Изменение экспортных поставок минеральных удобрений на ключевые рынки сбыта

	2045		2047	2010	Изменение				
	2015	2016	2017	2018	2016/2015	2017/2016	2018/2017		
Азотные									
Бразилия	2,88	3,60	3,40	3,37	25%	-5%	-1%		
США	2,23	1,72	1,79	2,42	-23%	4%	35%		
Финляндия	0,16	0,15	0,41	1,01	-7%	180%	146%		
Эстония	0,00	0,38	0,50	0,60		31%	19%		
Перу	0,54	0,51	0,60	0,49	-7%	19%	-19%		
Прочие	5,78	6,43	6,12	6,03	11%	-5%	-2%		
Калийные									
Бразилия	1,81	1,65	2,27	2,38	-9%	38%	5%		
Китай	2,31	2,60	2,26	1,45	12%	-13%	-36%		
США	1,20	0,54	0,54	0,83	-55%	0%	54%		
Индонезия	0,71	0,60	0,79	0,80	-15%	32%	1%		
Индия	1,38	0,90	1,07	0,67	-35%	19%	-37%		
Прочие	3,77	3,20	3,76	2,70	-15%	17%	-28%		
Смешанные									
Бразилия	1,03	1,37	1,58	2,17	33%	15%	37%		
Украина	0,99	1,34	2,09	1,07	36%	56%	-49%		
Китай	0,72	0,89	1,06	0,99	24%	19%	-6%		
США	0,64	0,41	0,42	0,97	-36%	36% 4%			
Прочие	5,49	5,23	5,33	6,12	-5%	2%	15%		

Источник: Trademap/UN Comtrade.

Говоря о рынках сбыта, необходимо остановиться на вопросе торговых барьеров. Позитивным фактором для российских поставщиков стало снятие части торговых ограничений на ключевых рынках. В частности, в 2014 г. были отменены ввозные пошлины на ДАФ в Бразилии, в 2017-м — в Аргентине. В 2016 г. были отменены пошлины на карбамид и аммиачную селитру российского производства в США. В 2018 г. Еврокомиссия снизила размер антидемпинговой пошлины на аммиачную селитру из России с 47,07 до 32,71 евро на тонну. В то же время в октябре 2019 г. Еврокомиссией была утверждена постоянная ввозная пошлина на карбамидо-аммиачную смесь из России, которая будет действовать пять лет. Для «ЕвроХима» она составит

от 27,77 евро на тонну, для остальных поставщиков из РФ – 42,47 евро. В качестве обоснования были озвучены низкие цены на газ в РФ, что, по мнению Еврокомиссии, является признаком искусственного субсидирования отрасли. С учетом того, что доля экспорта КАС в страны ЕС составляет чуть более 13% от совокупного объема поставок на внешние рынки, серьезных последствий от указанных ограничений ждать не стоит. Это подтверждают игроки рынка: так, согласно комментариям МХК «ЕвроХим», существенных потерь решение не принесет, поскольку экспорт в Европу в зависимости от рыночной конъюнктуры будет перенаправлен в страны Северной и Южной Америки. Также пошлина на российские удобрения действует в Индии.

Особая ситуация с Украиной. В 2014 г. Украина увеличила антидемпинговые пошлины на ввоз аммиачной селитры из России для «Акрона» с 9,76 до 20,51%, для «ЕвроХима» — с 0 до 36,03%, для остальных поставщиков — с 11,91 до 36,03%. Объем поставок российской аммиачной селитры снизился, но вырос ввоз других азотных удобрений на фоне перебоев в работе местных предприятий. В 2017 г. были введены антидемпинговые пошлины в размере 31,84% на карбамид КАС, затем введен запрет импорта гранулированной и кальцинированной аммиачной селитры и сульфата аммония с марта 2018 г. до конца 2019 г., обсуждалось полное эмбарго на импорт удобрений из РФ. Арбитражный суд ВТО признал ограничения неправомерными, отметив, что Украина неверно применяла энергокорректировки при расчете разницы в ценах на газ¹⁸. Пока официальных действий по снятию ограничений не последовало, говорить о потенциальном росте присутствия российских производителей на украинском рынке рано.

Развитие внутреннего рынка

Внутренний рынок удобрений отличается невысоким уровнем потребления. Отечественным покупателям поставляется около 30% выпущенной продукции, причем около половины внутреннего спроса обеспечивает промышленность.

В то же время в последние годы динамика спроса положительная, объем потребления минеральных удобрений в России растет. Так, по данным РАПУ в 2018 г. потребление удобрений отечественными сельхозпроизводителями выросло на 9%, до 3,4 млн тонн в д. в., что стало рекордом за последние 25 лет. По сравнению с уровнем десятилетней давности объем потребления вырос на 50%. В 2019 г. рост спроса продолжился вследствие высоких цен на сельскохозяйственную продукцию. Согласно данным РАПУ, в первом полугодии 2019 г. потребление удобрений на российском рынке выросло на 18,2%, до 2,2 млн тонн в пересчете на д. в. (на 14,1%, до 5,46 млн тонн в физическом весе). Сильнее всего выросли поставки на внутренний рынок карбамид-аммиачной смеси (+36%), концентрированных фосфорных (+32%) и комплексных (+22%) удобрений. По данным РАПУ, крупнейший поставщик минеральных удобрений — «ФосАгро» (27% в первом полугодии 2019 г.). На долю МХК «ЕвроХим» пришлось 18% отгрузок, ОХК «УРАЛХИМ» — 13%, «Акрона» — 11%, «Куйбышевазота» — 10% 19.

Росту внутреннего потребления способствовало повышение платежеспособности аграриев на фоне благоприятной конъюнктуры рынков сельскохозяйственной продукции, а также государственная политика по поддержке аграриев (в том числе меры поддержки и

¹⁸ URL: https://www.kommersant.ru/doc/3694311

¹⁹ URL: https://www.google.ru/amp/s/www.vedomosti.ru/amp/b4512e76ab/business/articles/2019/07/26/807417-rossiiskie-agrarii

сдерживание цен — подробнее см. главу "Государственная политика"). Кроме того, на увеличение отгрузок на российский рынок оказали влияние внешние факторы: снижение объемов экспорта в Бразилию, Индию, Китай.

Рис. 17. Приобретение минеральных удобрений АПК России в 2009–2019 гг., млн тонн д. в.

Увеличение объемов потребления удобрений сельским хозяйством РФ нагляднее всего иллюстрируют данные об объемах внесения минеральных удобрений на гектар посева, которые составили по итогам 2018 г. 56 кг/га (на 1 кг больше, чем годом ранее). За пять лет внесение минеральных удобрений на гектар посева выросло на 40%. Выросла также удобряемая площадь — с 49% от общей посевной площади в 2012 г. до 59% в 2018 г. Важно отметить, что рост удобряемости сельскохозяйственных земель происходил на фоне увеличения посевных площадей, которые за рассматриваемый период расширились на 3,7 млн га.

Примечание. Данные приведены без учета микропредприятий. С 2014 г. – с учетом данных по Республике Крым и г. Севастополю. Источник: Росстат.

Рис. 18. Объемы внесения минеральных удобрений под сельскохозяйственные культуры на гектар посева в 2012–2016 гг.

Самыми удобряемыми культурами являются сахарная свекла, картофель и овощные культуры (из расчета внесенных удобрений на гектар посева). При этом суммарно по объемам внесения лидируют зерновые культуры в силу больших площадей посева.

Таблица 13. Объемы внесения минеральных удобрений под с/х культуры в 2015-2018 гг.

Внесено минеральных удобрений в		Обт	ьем		Изменение			
пересчете на 100% питательных веществ, тыс. тонн		2016	2017	2018	2015/ 2014	2016/ 2015	2017/ 2016	2018/ 2017
Bcero	2027	2273	2473	2532				
под сельскохозяйственные культуры	2012	2253	2450	2510	4%	12%	9%	2%
в том числе под:								
зерновые культуры (без кукурузы)	1165	1279	1385	1443	5%	10%	8%	4%
сахарную свеклу	241	276	303	292	19%	15%	10%	-4%
лен-долгунец	1	1	1	2	0%	0%		100%
подсолнечник	97	126	151	140	-9%	29%	20%	-7%
овощные и бахчевые культуры	14	15	14	14	8%	7%	-7%	
картофель	52	47	43	52	21%	-10%	-9%	21%
кормовые культуры	168	174	198	205	2%	4%	14%	4%
На гектар посева, килограммов								
под сельскохозяйственные культуры	42	49	55	56	5%	17%	12%	2%
в том числе под:								
зерновые культуры (без кукурузы)	45	51	58	60	7%	13%	14%	3%
сахарную свеклу	274	294	301	305	7%	7%	2%	1%
лен-долгунец	33	42	32	63	18%	27%	-24%	97%
подсолнечник	25	32	37	34	-11%	28%	16%	-8%
овощные и бахчевые культуры	166	195	198	187	-3%	17%	2%	-6%
картофель	328	326	354	392	7%	-1%	9%	11%
кормовые культуры – всего	14	16	19	20	8%	14%	19%	5%

Примечание. Данные приведены без учета микропредприятий. С 2014 г. – с учетом данных по Республике Крым и г. Севастополю.

Источник: Росстат.

Основными сельскохозяйственными регионами-потребителями являются Краснодарский и Ставропольский край, Ростовская и Курская области. Наибольший прирост объемов внесения минеральных удобрений в 2018 г. имел место в Смоленской и Калужской областях, Чеченской Республике. В то же время Татарстан после рекордного 2017 г. заметно снизил объем внесения минеральных удобрений.

Таблица 14. Рейтинг регионов по объемам внесения минеральных удобрений, тыс. тонн д. в.

Nº	Субъект федерации	2016	2017	2018	Изменение, 2017/2016	Изменение, 2018/2016
1	Краснодарский край	2834	3039	2998	7%	-1%
2	Ставропольский край	1891	2066	2259	9%	9%
3	Ростовская область	1899	2008	2105	6%	5%
4	Курская область	1648	1811	1849	10%	2%
5	Воронежская область	1239	1432	1464	16%	2%
6	Липецкая область	1205	1279	1248	6%	-2%
7	Белгородская область	1116	1174	1147	5%	-2%
8	Республика Татарстан	1027	1432	1141	39%	-20%
9	Тамбовская область	1007	1177	1083	17%	-8%
10	Орловская область	902	976	1025	8%	5%

Продолжение таблицы 14

11	Брянская область	679	749	787	10%	5%	
12	Тульская область	503		559			
13	Пензенская область	539	540	519	0%	-4%	
14	Рязанская область	417	482	514	15%	7%	
15	Волгоградская область	351	402	401	14%	0%	
16	Республика Башкортостан	408	417	367	2%	-12%	
17	Красноярский край	352	395	355	12%	-10%	
18	Республика Мордовия	330	360	352	9%	-2%	
19	Нижегородская область	214	276	296	29%	7%	
20	Алтайский край	287	291	281	1%	-3%	

Примечание. Данные приведены без учета микропредприятий.

Источник: Росстат.

Структура внесения минеральных удобрений по действующим веществам достаточно стабильна: 61% приходится на азот, 24% на фосфор, 15% на калий. При этом в структуре потребления по формам удобрений растет доля NPK. Самым востребованным минеральным удобрением на российском рынке остается аммиачная селитра, на которую приходится более половины в структуре закупок аграриев, что, в том числе, объясняется ее доступностью и дешевизной. По данным РАПУ, в 2019 г. на фоне рекордных цен на зерно именно сегмент азотных удобрений показал рост спроса перед весенней посевной, близкий к ажиотажному. При этом есть тенденция роста спроса на комплексные удобрения (которая является позитивной как для рынка, так и для сельского хозяйства), однако неустойчивой. Ввиду большей стоимости комплексных удобрений их рынок более чувствителен к росту цен, что иллюстрирует провал 2015 г., когда доля NPK 16:16:16 снизилась до 8 с 22% годом ранее. Более свежие данные по количественной структуре потребления минеральных удобрений российским сельским хозяйством отсутствуют, однако отраслевые ассоциации подтверждают, что она продолжает диверсифицироваться, рост объем поставок обеспечивается в основном за счет комплексных NPK-удобрений, жидкие минеральных удобрений, сложных фосфорных удобрений 20 .

Наибольшее количество калия в долевом соотношении питательных веществ потребляют картофель и сахарная свекла. Под остальные культуры в наибольших объемах вносится азот.

²⁰ URL: https://www.agroinvestor.ru/markets/news/32157-agrarii-uvelichili-zakupki-udobreniy-na-18-2/

Примечание. Данные приведены без учета микропредприятий. С 2014 г. – с учетом данных по Республике Крым и г. Севастополю. Источник: Росстат.

Рис. 19. Структура внесения минеральных удобрений под урожай 2018 г., млн тонн д. в.

Цены на минеральные удобрения на внутреннем рынке

В 2015 г. на внутреннем рынке минеральных удобрений ценовая ситуация складывалась драматично. Цены выросли на 30–50% в зависимости от вида удобрения. В 2016 г. рынок успокоился, с апреля началась нисходящая динамика, которая продлилась и в 2017-м. За 2017 г. удобрения на российском рынке подешевели в среднем на 15%. Рост закупок удобрений аграриями стал в том числе следствием снижения цен.

В 2018 г. под влиянием повышения цен на мировом рынке и удешевления рубля удобрения в России значительно подорожали. В результате во втором полугодии было решено снизить нагрузку на аграриев и зафиксировать цены. Соответствующие договоренности были достигнуты Министерством сельского хозяйства с ключевыми российскими поставщиками удобрений²¹.

_

²¹ URL: https://quote.rbc.ru/news/article/5b87ea2b9a7947e4312c1d03

Таблица 15. Средние цены на удобрения отечественного производства, приобретенные сельскохозяйственными организациями, руб./тонна (физ. вес, значение показателя за год)

Удобрения	2015	2016	2017	2018	2015/ 2014	2016/ 2015	2017/ 2016	2018/ 2017
Азофоска	21 266	21 502	18 007	18 905	42%	1%	-16%	5%
Аммофос	29 034	28 089	24 872	29 022	46%	-3%	-11%	17%
Диаммофос	23 742	25 793	21 983	25 858	33%	9%	-15%	18%
Диаммофоска	24 135	24 440	20 484	23 950	36%	1%	-16%	17%
Калимагнезия	9 732	13 424	11 379	14 251	13%	38%	-15%	25%
Мочевина (карбамид)	18 179	17 332	16 277	16 305	30%	-5%	-6%	0%
Нитрат аммония (селитра аммиачная)	14 726	14 166	13 540	13 582	22%	-4%	-4%	0%
Нитрофоска	21 804	21 699	18 573	20 984	47%	0%	-14%	13%
Сульфат аммония	9 848	11 581	11 700	12 251	31%	18%	1%	5%
Суперфосфат двойной	17 309	17 212	16 789		22%	-1%	-2%	
Суперфосфат простой	16 060	15 751	14 455	22 868	-17%	-2%	-8%	58%
Удобрения комплексные жидкие NPK	19 925	19 807	14 608	8 330	29%	-1%	-26%	-43%
Хлорид калия	16 047	16 373	16 164	17 697	44%	2%	-1%	9%

Источник: Росстат.

Помесячная динамика цен закупки, которую приводит Росстат, иллюстрирует, что рост цен в сентябре сменился снижением. По итогам года цены на двухкомпонентные фосфорные удобрения показали прирост в 17–18% к уровню 2017 г., средние цены на карбамид и аммиачную селитру не изменились. В 2019 г. цены на МАФ/ДАФ продолжили снижение, также снижались цены на аммиачную селитру.

Источник: Росстат.

Рис. 20. Помесячная динамика цен производителей на важнейшие виды удобрений для продажи сельскохозяйственным организациям, руб./тонна без НДС (физ. вес)

Минеральные удобрения на внутреннем рынке реализуются с дисконтом от экспортной альтернативы, что является важным фактором поддержания спроса и установкой государственной политики. В частности, по данным Росстата, в 2018 г. средние цены на карбамид для российских с/х производителей (кроме малых предприятий) были на 6% ниже, чем на экспорт, для аммофоса — на 5%, аммиачной селитры — на 8%, хлорида калия — 16%²². При этом важно отметить, что статистические данные Росстата не отражают механизма «фиксации цены», что может быть связано с особенностями статистического учета.

2.3. Основные игроки рынка

Российская промышленность минеральных и химических удобрений в достаточной степени консолидирована: большинство предприятий входит в состав химических холдингов, осуществляющих полный цикл производства продукции — от добычи минерального сырья до товарных поставок. В последние несколько лет в этой достаточно консервативной отрасли произошел целый ряд структурных изменений: появились новые игроки, запускались новые заводы, менялись собственники предприятий.

Самым высококонкурентным является рынок азотных удобрений. Крупнейший игрок - МХК «ЕвроХим» обеспечивает менее четверти от общего объема производства. В числе других крупных игроков – ОХК «УРАЛХИМ», ГК «Акрон», ПАО «ФосАгро», а также СДС Среди предприятий, «Азот». на долю которых приходится менее 5% от суммарного объема выпуска азотных удобрений в РФ – «Куйбышевазот», АО «Минудобрения» (Россошь), «Аммоний», нефтехим Салават» и др. Конкуренция в этом сегменте за последние 4 года заметно выросла благодаря появлению новых крупных игроков (АО «Аммоний», «ЕвроХим-Северо-Запад»). Среди других новых игроков Михайловский завод химреактивов (Алтайский край), завершивший в 2016 г. строительство цеха сульфата

Источник: ОХК «УРАЛХИМ».

Рис. 21. Структура производства азотных удобрений в РФ в 2018 г.

аммония. Это первое производство минеральных удобрений за Уралом, рассчитанное на выпуск 20–30 тыс. тонн продукта в год.

В сегменте фосфоросодержащих удобрений более 50% производства обеспечивает «ФосАгро». Второй по величине производитель – МХК «ЕвроХим»²³. На третьем месте – «УРАЛХИМ».

Существенно меньшей, но достаточно серьезной является концентрация производства на рынке удобрений, содержащих три питательных элемента. При оценке объемов производства в пересчете на питательное вещество основной объем выпуска приходится на предприятия, входящие в группу «ФосАгро» (около 38%), на втором месте — «Акрон» (чуть менее 30%). Также крупными продуцентами являются «Минудобрения» (Россошь), «ЕвроХим», «УРАЛХИМ». Доля других производителей мала.

 $^{^{22}}$ Дисконт рассчитан как соотношение среднеарифметических цен на внутреннем рынке за период к среднеарифметическим ценам на экспорт. Фактический процент дисконта, рассчитанный как базисная цена минус % скидки, выше.

²³ Подробно структура российской промышленности минеральных удобрений описана в исследовании за 2015 г. URL: https://dcenter.hse.ru/data/2015/12/22/1132768850/IV%20%D0%BA%D0%B2%202015.pdf

- МХК «ЕвроХим» входит в тройку европейских и десятку мировых лидеров отрасли минеральных удобрений. Компания была создана в 2001 г. и формировалась по смешанному принципу: в ее состав вошли как предприятия, специализирующиеся на фосфорсодержащих удобрений (000 «ЕвроХим выпуске Белореченские Минудобрения», ООО «ПГ «Фосфорит»), так и азотные предприятия (ОАО «НАК "Азот"», ОАО «Невинномысский Азот»). Кроме того, в структуру компании вошли Ковдорский горно-обогатительный комбинат, выпускающий апатитовый концентрат, а также месторождения углеводородного сырья и природного газа в Новом Уренгое («Севернефть-Уренгой»). В 2018 г. на Усольском калийном комбинате были выпущены первые партии хлорида калия, что сделало МХК «ЕвроХим» одним из трех мировых игроков, осуществляющих свою деятельность сразу в трех сегментах рынка. Летом 2019 г. было запущено производство аммиака «ЕвроХим–Северо-Запад» мощностью 1 млн тонн в год. Другие проекты «ЕвроХима» включают расширение Ковдорского горно-обогатительного комбината, ЕвроХим-ВолгаКалий, разработку месторождений фосфатных руд на юге Казахстана. Помимо российских активов, компания расширяет свою деятельность за рубежом. Так, в июне 2019 г. Группа объявила о запуске третьего нового завода по производству блендов в Бразилии. Завод будет производить до 6000 тонн удобрений в день. В первом полугодии 2019 г. чистая прибыль компании выросла втрое год к году и составила 612 млн долл. Показатель EBITDA вырос на 21%, до 819 млн долл. Чистый ковенантный долг «ЕвроХима» на конец первого полугодия составил 3,4 млрд долл. (на уровне конца $2018 \text{ г.})^{24}$.
- АО «ОХК "УРАЛХИМ"» является российским лидером в производстве аммиачной селитры, а также занимает второе место в России по объемам производства аммиака и азотных удобрений. Компания также осуществляет выпуск фосфорных и сложных удобрений. Суммарные мощности составляют более 2,8 млн тонн аммиака, 2,5 млн тонн аммиачной селитры, 1,2 млн тонн карбамида и 0,8 млн тонн фосфорных и сложных удобрений в год. Производственные активы компании включают в себя: Филиал «Азот» (г. Березники); Филиал «КЧХК» (Кирово-Чепецкий химический «Минеральные удобрения» ΑO комбинат); OAO (г. Пермь), «Воскресенские минеральные удобрения». Логистические активы включают в себя терминал по перевалке и краткосрочному хранению сыпучих минеральных удобрений Riga fertilizer terminal (Латвия), терминал по перевалке жидкого аммиака SIA Ventamonjaks (ООО «Вентамоньякс», Латвия). Выручка компании в 2018 г. составила 110,2 млрд руб. (+18% г/г). Скорректированная ЕВІТDA выросла до 37,7 млрд руб. по сравнению с 25,6 млрд руб. в 2017 г. Чистый убыток составил 34,1 млрд руб. против прибыли в 31,0 млрд руб. в тот же период 2017 г. На предприятиях компании трудится около 10 тыс. человек.
- Ассортимент производимой продукции Группы «Акрон» включает сложные и азотные удобрения, а также промышленные продукты. Производственные мощности представлены двумя химическими предприятиями в РФ (ОАО «Акрон», ОАО «Дорогобуж»). Группа осуществляет собственную добычу фосфатного сырья на мощностях ЗАО «Северо-Западная Фосфорная Компания» ГОК «Олений Ручей». Кроме того, реализуется проект по созданию собственной калийной сырьевой базы: ведется разработка калийного месторождения ЗАО «Верхнекамская калийная компания» (Талицкий ГОК), а также разведка калийных месторождений в провинции

-

²⁴ URL: http://www.finmarket.ru/news/5051962

Саскачеван (Канада). Транспортно-логистические возможности Группы «Акрон» включают парк собственных железнодорожных вагонов и три перевалочных терминала в балтийских портах – в Калининграде (Россия), Силламяэ и Мууга (Эстония). Мощности по выпуску удобрений составляют 2,6 млн тонн по NPK удобрениям, 1,8 млн тонн по аммиачной селитре, 1 млн тонн по КАС, 0,8 млн тонн по карбамиду. В 2018 г. компания запустила новый агрегат по выпуску карбамида мощностью 200 тыс. тонн в год на площадке в Великом Новгороде, а также провела модернизацию действующего оборудования. В 2019 г. на комбинате была запущена тукосмесительная установка мощностью 600 тыс. тонн в год. Чистая прибыль компании в первом полугодии 2019 г. выросла в 5,0 раз, до 17 196 млн руб., по сравнению с результатом за первое полугодие 2018 г. – 3425 млн руб. ЕВІТОА вырос на 34%, до 21 035 млн руб. (по отношению к 15 666 млн руб. годом ранее) ²⁵.

- Холдинг «Сибирский деловой союз» (СДС) объединяет под своим управлением сибирские азотные предприятия Кемеровское АО «Азот» и ООО «Ангарский азотнотуковый завод». Суммарно эти предприятия располагают мощностями для производства 1,07 млн тонн аммиака, 1,2 млн тонн аммиачной селитры, 574 тыс. тонн карбамида, 314 тыс. тонн сульфата аммония. В 2018 г. в состав АО «СДС Азот» вошло АО «Мелеузовские минеральные удобрения». По итогам 2018 г. АО «Мелеузовские минеральные удобрения» произвело почти 500 тыс. тонн готовой продукции: 270 тыс. тонн аммиачной селитры и почти 220 тыс. тонн азотной кислоты. По сообщениям СДС «Азот», компания также намерено приобрести АО «Аммоний»²⁶.
- Основным направлением деятельности **Группы «ФосАгро»** является производство фосфорсодержащих удобрений, высокосортного (с содержанием Р₂О₅ 39% и более) фосфатного сырья – апатитового концентрата, а также кормовых фосфатов, азотных удобрений и аммиака. В настоящий момент компания является крупнейшим в России и в Европе производителем фосфорсодержащих минеральных удобрений, крупнейшим мировым производителем высокосортного фосфорного сырья, ведущим в Европе и единственным в России производителем кормового монокальцийфосфата (МСР), а также единственным в России производителем нефелинового концентрата. В 2014 г. компанией было завершено строительство нового производства NPKS- и PKS-удобрений мощностью 100 тыс. тонн в год. Производственные активы Группы «ФосАгро» – АО «Апатит», АО «ФосАгро-Череповец» (создано в результате слияния ОАО «Аммофос» и ОАО «Череповецкий Азот»), Балаковский филиал АО «Апатит», Волховский филиал АО «Апатит» (в 2019 г. объединило ЗАО «Метахим» и АО «ФосАгро-Транс», г. Череповец). Также в структуру Группы входят ООО «ФосАгро-Регион» (дистрибуция) и научный центр ОАО «НИУИФ». Совокупные мощности по выпуску удобрений находятся на уровне 9 млн тонн. В структуре производства в 2018 г. 36% пришлось на комплексные NPK(S) удобрения, 33% на DAP\MAP, 24% на карбамид и аммиачную селитру, 7% – на прочие фосфорные удобрения. Выручка компании в первом полугодии 2019 г. составила 130,4 млрд руб. (+17% г/г), чистая прибыль — 32,9 млрд руб. (+235%), ЕВІТDA — 43 млрд руб. (+31%). Количество сотрудников – более 24 тыс. человек. В Волхове компания приступила к реализации проекта по строительству нового производства фосфорсодержащих удобрений и энергоустановки на базе Волховского филиала АО «Апатит». Ввод в эксплуатацию нового завода намечен на 2023 г.; это позволит

²⁵ URL: https://www.acron.ru/press-center/press-releases/200660/

²⁶ URL: http://www.sds-azot.ru/ru/press-tsentr/1034-sds-azot-uvelichivaet-aktivy

увеличить переработку апатитового концентрата внутри Группы «ФосАгро» на 1 млн тонн в год и нарастить выпуск фосфорсодержащих удобрений.

Среди других игроков, присутствующих на рынке, — АО «Аммоний», «Газпром нефтехим Салават», «Минудобрения» (г. Россошь), «Тольяттиазот», «КуйбышевАзот», «Менделеевсказот».

Производственный потенциал предприятий:

- AO «Аммоний» 717,5 тыс. тонн в год аммиака, 717,5 тыс. тонн в год карбамида, 380 тыс. тонн аммиачной селитры;
- «Газпром нефтехим Салават» 650 тыс. тонн карбамида и аммиака;
- «КуйбышевАзот» 1,1 млн тонн в год аммиака; 360 тыс. тонн карбамида, 625 тыс. тонн аммиачной селитры и 530 тыс. тонн сульфата аммония. В 2020 г. планируется запуск новой установки гранулированного сульфат-нитрата аммония мощностью 760 тыс. тонн в год. Также прорабатывается проект строительства производства карбамида, агрегатов азотной кислоты и аммиачной селитры;
- «Минудобрения» (Россошь) 1,1 млн тонн в год аммиака, 520 тыс. тонн аммиачной селитры, 1100 тыс. тонн нитроаммофоски;
- «Тольяттиазот» 960 тыс. тонн в год карбамида, 3 млн тонн в год жидкого аммиака (завод является крупнейшим в РФ продуцентом товарного аммиака). Ведется строительство агрегата производства карбамида мощностью 800 тыс. тонн в год;
- На «Щекиноазот» выпускается сульфат аммония 160 тыс. тонн в год. На Ефремовском химическом заводе производится до 500 тыс. тонн в год серной кислоты. В конце 2018 г. было запущено новое производство серной кислоты мощностью 200 тыс тонн в год. Реализуется проект строительства нового производства азотной кислоты мощностью 270 тысяч тонн в год и аммиачной селитры мощностью 340 тысяч тонн в год (анонсируемый год запуска 2022-й). Также прорабатывается проект производства аммиака и карбамида мощностью 525 и 700 тыс. тонн в год соответственно.

Особняком стоит калийный производитель — «Уралкалий», контролирующий более 20% мирового рынка калия и являющийся до недавнего времени единственным игроком российского рынка в данном сегменте. В структуре компании 5 рудников по добыче калийных солей и 7 обогатительных фабрик на территории Верхнекамского месторождения калийномагниевых солей; общая численность сотрудников — около 11 тыс. человек. Порядка 20% акций «Уралкалия» контролирует компания «УРАЛХИМ». Чистая прибыль «Уралкалия» по МСФО в первом полугодии составила 54,393 млрд руб. против убытка в 242 млн руб. годом ранее²⁷. В 2018 г. первый хлористый калий был получен на Усольском комбинате МХК «ЕвроХим». Общая годовая выработка в 2018 г. составила 250 тыс. тонн хлорида калия. Проектной мощности в 2,3 млн тонн в год планируется достичь в 2021—2022 гг. Также компания реализует второй калийный проект «ЕвроХим—ВолгаКалий» на Гремячинском калийном месторождении в Волгоградской области. Кроме « ЕвроХима» калий планирует производить «Акрон»: компания реализует проект по строительству калийного ГОКа в Пермском крае. Таким образом, в ближайшие годы российскую калийную отрасль ждут серьезные структурные изменения.

-

²⁷ URL: https://1prime.ru/state_regulation/20190829/830281581.html

Отдельно можно остановится на производстве водорастворимых удобрений. До недавнего времени единственным производителем был «УРАЛХИМ» (Воскресенские МУ), выпускающий около 50 тыс. тонн моноаммонийфосфата специального водорастворимого и туковых смесей NPK на его основе. В конце 2018 г. возобновил работу второй российский производитель ВРУ – Гидрометаллургический завод (г. Лермонтов), простаивавший с 2017 г. из-за экономических сложностей. Предприятие выпускает гранулированные удобрений фосфатной группы, в том числе монокалийфосфата (единственный производитель в РФ). Заявленный годовой объем производства на сегодняшний день – 13 тыс. тонн, планируется модернизация и наращивание объемов производства²⁸.

Рис. 22. Выручка крупнейших компаний-производителей, млрд руб.

Рис. 23. Чистая прибыль крупнейших компаний-производителей, млрд руб.²⁹

 29 Для МХК «ЕвроХим» произведен перерасчет в рубли по среднему курсу доллара. Данные за 2016 г. по ОХК «УРАЛХИМ» отсутствуют.

²⁸ URL: https://kavkaz.rbc.ru/kavkaz/28/08/2019/5d652be19a79475068156e65

Таблица 1. Структура управления в промышленности минеральных удобрений³⁰

АО «ОХК "УРАЛХИМ"» ³¹	ОАО «ФосАгро»	ОАО «Акрон»	АО «МХК "ЕвроХим"»	ОАО «СДС Азот»	Другие производители	
Филиал «ПМУ» АО «ОХК "УРАЛХИМ"» в г. Перми	ОАО «Апатит»	ОАО «Акрон»	рон» ОАО НАК «Азот» Кемеровское АО «Азот»		ОАО «Уралкалий»	
AO «Воскресенские минеральные удобрения»	ОАО «ФосАгро- Череповец»	ПАО «Дорогобуж» АО «Невинномысский азот» Аз		ООО «Ангарский Азотно-туковый завод»	ОАО «Тольяттиазот»	
Филиал «Азот» АО «ОХК "УРАЛХИМ"» в г. Березники	Балаковский филиал AO «Апатит»	AO «Северо-Западная Фосфорная Компания»	· · · · · · · · · · · · · · · · · · ·		ОАО «КуйбышевАзот»	
Филиал «КЧХК» AO «ОХК		ЗАО «Верхнекамская Калийная	ООО ПГ «Фосфорит»	удобрения	OAO	
"УРАЛХИМ"» в г. Кирово- Чепецке	ЗАО «Метахим»	Компания» (калийный проект)	AO «Ковдорский ГОК»	ОАО «Газпром	«Минудобрения» г. Россошь	
Портовые терминалы: Riga	-	Зарубежные активы: North Atlantic Potash Inc. (Канада, проект)	«ЕвроХим-Усольский калийный комбинат»	нефтехим Салават»	_	
Fertilizer terminal (Латвия), Ventamonjaks (Латвия)	(Усть-Луга)		(Усть-Луга) (Канада, проект) Проекты: ООО «Ев	Проекты: ООО «ЕвроХим– ВолгаКалий»	Газохимический завод	Прочие
			Зарубежные активы:	АО «Аммоний»		
		Терминалы: ООО «Андрекс» (Калининград), AS BCT	EuroChemAntwerpen (Бельгия), AO «Лифоса» (Литва)	ООО «Менделеевсказот»		
		(Силламяэ, Эстония	TOO «ЕвроХим-Удобрения» (Казахстан, проект), EuroChem Migao (КНР)	ОХК «Щекиноазот»		
			Терминалы: Мурманский	ОАО «Щекиноазот»		
			балкерный терминал, Туапсинский балкерный терминал, терминал наливных грузов в Силламяэ (Эстония), EuroChem Antwerpen	Ефремовский химический завод		

 $^{^{30}}$ По данным на август 2019 г.

 $^{^{31}}$ Компания также владеет 19,99 % акций «Уралкалия», 9,74 % акций «Тольяттиазота».

3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА

3.1. Стратегические ориентиры и планы развития

Стратегические ориентиры развития промышленности минеральных удобрений заложены в «Стратегии развития химического и нефтехимического комплекса на период до 2030 года»³². В марте 2018 г. была утверждена «дорожная карта» по развитию производства минеральных удобрений на период до 2025 года³³.

Стратегия предусматривает рост внутреннего потребления минеральных удобрений, а также рост доли российских производителей на мировом рынке, что предполагается обеспечить вводом новых мощностей по удобрениям и сырью для их производства.

Первый вариант документа был разработан в 2012–2013 гг. и актуализирован с учетом новых экономических условий в 2014–2016 гг. В варианте от 2016 г. были пересмотрены в сторону кардинального уменьшения прогнозные ожидания по вводу новых мощностей и балансу спроса и предложения. Показатели, заложенные в исходном варианте Стратегии, были приняты в инновационного сценария. Причиной пересмотра Стратегии были экономические условия (кризис, сложности с получением финансирования и т.п.), которые стали причиной пересмотра инвестиционных программ в химической отрасли. Сроки запуска новых мощностей сдвигались, что вносило коррективы в потенциал развития производства. Однако в промышленности минеральных удобрений ситуация несколько лучше, чем, например, в полимерной. Значительная часть заявленных проектов реализуется более-менее в срок. Самые проблемные – проекты по освоению калийных удобрений (в частности, на 7 лет позже ожидаемого была начата промышленная эксплуатация Гремячинского месторождения «ЕвроХима», неоднократно переносились сроки завершения разработки Талицкого участка Верхнекамской калийной компании), а также новые крупные заводы по выпуску азотных удобрений, для части которых не решен пока вопрос с сырьем (проекты на Дальнем Востоке и в Калининградской области). При этом существуют проекты, не включенные в Стратегию. И это также влияет на прогноз объемов производства, но уже со знаком плюс.

По прошествии двух лет после утверждения Стратегии можно сделать вывод о том, что ее реалистичный сценарий действительно является таковым. Фактические результаты, промышленностью достигнутые минеральных удобрений, близки к целевым показателям, обозначенным в реалистичном сценарии (и в ряде показателей превосходят их). Так, согласно Стратегии, потребление минеральных удобрений В Российской Федерации возрастет с 39 кг/га в 2012 г. до 55,7 кг/га в 2030 г. И уже в 2018 г. объем внесения удобрений составил 56,2 кг/га.

Источник: Росстат, Стратегия развития химического и нефтехимического комплекса.

Рис. 24. Внесение удобрений в РФ, кг/га

 $^{^{32}}$ Утверждена приказом Минпромторга РФ и Минэнерго РФ от 8 апреля 2014 г. № 651/172. Актуализирована приказом № 33/11 от 14 января 2016 г.

³³ Утверждена распоряжением Правительства Российской Федерации от 29 марта 2018 г. № 532-р.

Достигнутые на сегодняшний день производственные показатели соответствуют реалистичному сценарию Стратегии (22,86 млн тонн — факт 2018 г., 22,56 млн тонн — цели, обозначенные в Стратегии).

Таблица 17. Прогноз динамики мощностей и объемов производства, баланса спроса и предложения на внутреннем рынке минеральных удобрений согласно «Стратегии-2030», тыс. тонн

Показатель	2015	Консервативный сценарий			Инновационный сценарий				
		2018	2020	2025	2030	2018	2020	2025	2030
Мощности	23,9	28,5	32,1	33,1	33,3	26,6	34,8	50,2	56,0
Производство	19,4	21,3	22,5	24,5	26,9	21,0	26,1	37,0	45,1
Потребление	4,6	5,0	5,1	5,7	6,3	4,9	5,4	7,0	8,7
Экспорт	14,8	16,4	17,4	18,8	20,6	16,1	20,7	30,0	36,5
Поморожен	2015	Реалистичный сценарий			Факт				
Показатель		2018	2020	2025	2030	2018			
Мощности	23,9	30,1	34,2	37,8	39,7	25,6			
Производство	19,4	22,6	24,1	28,0	32,0	22,9			
Потребление	4,6	5,2	5,7	6,9	8,7	6,6			
Экспорт	14,8	17,3	18,5	21,2	23,3	16,5			

Источник: «Стратегия развития химического и нефтехимического комплекса на период до 2030 года», Росстат, ФТС РФ, расчеты Института «Центр развития» НИУ ВШЭ.

Инвестиционные проекты, рассматриваемые в Стратегии, и актуальные на момент проведения исследования сроки их реализации приведены в таблице ниже. Список дополнен новыми проектами, анонсированными игроками рынка. Согласно плану мероприятий («дорожной карты») по развитию производства минеральных удобрений, Минпромторгом и Минэкономразвития должен быть сформирован актуализированный перспективный портфель инвестиционных проектов на период до 2030 г.

Таблица 18. Инвестиционные проекты, предусмотренные к реализации до 2025 г. в рамках «Стратегии-2030»

Продукция/компания	Прирост мощностей, тыс. тонн в год	Ожидаемые сроки ввода (Стратегия-2030 в ред. 2016 г.)	Фактические/ожидаемые сроки ввода (по сообщениям компаний в СМИ)
Калий хлористый			
ООО «ЕвроХим–ВолгаКалий» (I очередь)	2 300	2017	2021
«Уралкалий», г. Березники (Соликамск-3)	400 <i>(600³⁴)</i>	2017	2022
«Уралкалий», Усть-Яйвинский рудник ³⁵	2800	2020	2022
ПАО «Уралкалий», г. Березники (Соликамск-2)	2500	2020	2025
«Уралкалий», Половодовский калийный проект	2800	-	2025
ЗАО «Верхнекамская калийная компания», г. Березники/Талицкий ГОК (Акрон)	1000	2019	2021-2025 (выход на проектную мощность)

 $^{^{34}}$ В скобках приводятся уточненные данные по мощностям.

³⁵ Замещение выбывающих мощностей «Березники-2».

Продолжение таблицы 18

«ЕвроХим – Усольский калийный комбинат» (I очередь)	2322	2017	2018
«ЕвроХим – Усольский калийный комбинат» (II очередь)	1222	2022	2022
«ЕвроХим–ВолгаКалий»	2300	2021	2021
Аммиак			
«Аммоний», г. Менделеевск	455 (717 без метанола)	2015	2015
«Метафракс» ³⁶ , г. Губаха	450	2016	2021
«Неманазот», Калининградская обл.	1500	2017	не ранее 2022 (согласование)
«Куйбышевазот», г. Тольятти	489,1	2017	2017
«Акрон», г. Великий Новгород	700	2017	2016
«Дорогобуж», Смоленская обл. (Акрон)	130 (модернизация)		2019
«Щекиноазот»	135	2017	2017
«Новомосковская АК Азот» (ЕвроХим)	28	2016	2016
ОАО «ФосАгро – Череповец» (ФосАгро)	760	2017	2017
«ЕвроХим-Северо-Запад», г. Кингисепп	1000	2018	2018
«ЕвроХим Северо-Запад-2»	1200	-	2025
ОАО "Невинномысский Азот" (ЕвроХим)	900	2025	н.д.
ГХК в Республике Саха	200 (1100?)	2020	н.д.
ГХК в Хабаровском крае	1 000	2020	н.д.
ЗАО "Восточно-Сибирская ГХК", г.Якутск	500	2025	н.д.
Иркутский ГХК	500	2025	н.д.
Находкинский завод минудобрений	1800	-	2023
НПП "Платекс", Саратовская обл.	912,5	-	2024
Аммиачная селитра			
ООО «Ангарский азотно-туковый завод» (СДС Азот)	270	2015	н.д.
ОАО «Аммоний», г. Менделеевск	130 (380)	2015	2015
ОАО «Новомосковская АК Азот» (ЕвроХим)	340	2015	2015
Кемеровское ОАО «Азот» (СДС Азот)	500 (220)	2016	2021
ОАО «Дорогобуж» (Акрон)	400	2019	н.д.
ОАО «Невинномысский Азот»	916	2025	
«Щекиноазот»	340	-	2021
«КуйбышевАзот» - сульфонитрат аммония	760	-	2020
НПП "Платекс", Саратовская обл.	766,5	-	2024
Карбамид			
ОАО «Новомосковская АК Азот» (ЕвроХим)	100	2017	2017
ОАО «Аммоний», г. Менделеевск	717,5	2015	2015
ОАО «Акрон», г. Великий Новгород (Акрон)	150,2 (200)	2015-2018	2018
ОАО «ФосАгро – Череповец» (ФосАгро)	500	2017	2017

³⁶ Производство аммиака и карбамида предназначено для сырьевого обеспечения мощностей «Метафракса» по выпуску карбамидоформальдегидного концентрата.

Продолжение таблицы 18

«Куйбышевазот», г. Тольятти	547,5	2018	2020			
ООО «Неманазот», Калининградская обл.	1 100	2019	н.д.			
ОАО «Метафракс», г. Губаха	560	2020	2021			
ЗАО «Восточно-Сибирская ГХК»	500	2020	2022 (?)			
ОАО «Тольяттиазот»	206,5	2020	2021			
Ф-л «ПМУ» АО «ОХК "УРАЛХИМ"»	275 (расширение)	2019	2021			
Ф-л «Азот» АО «ОХК "УРАЛХИМ"»	319	2019				
ОАО "Невинномысский Азот"	1172	2025	н.д.			
«Щекиноазот»	700	-	2022			
Должанский ЗМУ («Орелметахим»)	700	-	2022			
Находкинский завод минудобрений, 2 этап	2000	-	2024 (?)			
НПП "Платекс", Саратовская обл.	766,5	-	2024			
Сульфат аммония						
«Куйбышевазот», г. Тольятти	140	-	2018			
Смешанные минудобрения						
ОАО «Дорогобуж» (Акрон)	110 (?)	2018	2021 (?)			
ООО «ЕвроХим– БМУ»	50 (ВРУ)	-	2019			
ПАО «Акрон», г. Н. Новгород	60 (азофоска)	-	2016			
Волховский ф-л АО «Апатит» (ФосАгро)	1000 (МАФ и др.)	-	2023			

Источник: «Стратегия развития химического и нефтехимического комплекса на период до 2030 года» в ред. 2016 г. (на основании данных компаний на момент разработки документа), данные официальной отчетности и сообщения компаний в СМИ (уточнение статуса проекта Институтом «Центр развития» НИУ ВШЭ).

«Дорожная карта» по развитию производства минеральных удобрений на период до 2025 года, утвержденная в 2018 г., представляет собой план из 16 позиций, направленных на совершенствование механизмов госрегулирования развития производства минеральных удобрений в России. Планируется решение следующих задач:

- государственная поддержка экспортных поставок отечественных минеральных удобрений по согласованным направлениям (отказ от введения экспортных пошлин, негативно влияющих на конкурентоспособность российской продукции на внешнем рынке);
- стимулирование инвестиционной деятельности производителей минеральных удобрений;
- развитие внутреннего рынка минеральных удобрений, включая стимулирование использования минеральных удобрений в растениеводстве и развитие национальной логистической инфраструктуры подотрасли минеральных удобрений;
- снижение влияния инфраструктурных ограничений;
- повышение эффективности регулирования в области экологии, промышленной безопасности и капитального строительства;
- стабилизация системы налогового и таможенного регулирования.

В соответствии с дорожной картой, в июне 2018 г. был утвержден³⁷ прогнозный план сельскохозяйственными производителями минеральных удобрений по субъектам Российской Федерации на среднесрочный период (до 2025 года). Согласно плану объем внесения минеральных удобрений в РФ к 2025 г. должен вырасти на 18% от текущего уровня, до 3,45 млн тонн. Максимальный прирост, как ожидается, будет иметь место в Краснодарском крае (+23%, 82 млн тонн), Ставропольском крае (+30% к уровню 2018 г., или +64 млн тонн), Тамбовской

Рис. 25. Прогнозный план внесения с/х производителями минеральных удобрений, тыс. тонн д.в.

области (+40%, 50 млн тонн), Брянской области (+23%, 18 млн тонн), Республике Татарстан (+19%, 28 млн тонн), Орловской области (+23%, 23 млн тонн), Ростовской области (+13%, 35 млн тонн).

Также был реализован пилотный проект по запуску биржевой торговли удобрениями (на базе карбамида марки Б). Ведется работа по расширению перечня выставляемых на торги товаров, а также списка участников биржи.

Были подготовлены поправки в Водный кодекс РФ, снимающие ограничения на размещение складов минудобрений в российских портах, введенные в 2013 г. и усложняющие строительство терминалов по перевалке минеральных удобрений в российских портах. Однако Водный кодекс с изменениями на 2 августа 2019 г. В все еще содержал указанные ограничения. Также ведется работа над совершенствованием нормативно-правовой базы (в т.ч. в части сертификации удобрений), программ развития транспортной инфраструктуры, механизмов государственной поддержки инвестиционных проектов.

3.2. Меры государственной политики в отношении промышленности минеральных удобрений и госрегулирование внутреннего рынка

В отношении российских производителей предусмотрена поддержка преимущественно в части сохранения долгосрочной конкурентоспособности и инвестиционной активности.

Государственная поддержка предприятий и меры стимулирования промышленной деятельности осуществляются в соответствии с Федеральным законом «О промышленной политике в Российской Федерации»³⁹. Основным рабочим документом в настоящее время является государственная программа Российской Федерации «Развитие промышленности и повышение ее конкурентоспособности». Основным институциональным образованием, предоставляющим поддержку в рамках проектного финансирования, субсидии под кредиты и прочие меры, является Фонд развития промышленности (ФРП).

В официальных документах отмечается, что в текущей рыночной конъюнктуре высокая стоимость капитала и увеличенные капитальные затраты на создание производств (по

_

³⁷ Распоряжение Министерства сельского хозяйства РФ от 22 июня 2018 г. № 13-р.

³⁸ URL: http://docs.cntd.ru/document/901982862

³⁹ Федеральный закон РФ от 31 декабря 2014 г. № 488-ФЗ «О промышленной политике в Российской Федерации» (вступил в силу 30.06.2015).

сравнению с конкурентами) приводят к тому, что основная часть новых инвестиционных проектов в РФ оказывается в зоне риска. Приводится оценка, что при операционной себестоимости существующих мощностей по карбамиду на уровне 110–115 долл.в США за тонну по базису FCA для новых производств себестоимость продукции с учетом стоимости капитала поднимается до уровня 235–240 долл. США за тонну. В числе рисков — рост тарифов естественных монополий, стоимости сырья. В такой ситуации сроки реализации инвестиционных проектов могут сдвигаться, проектные показатели — пересматриваться. Снижение регуляторной и тарифной нагрузки, реализация мер по развитию инвестиционнофинансового обеспечения, а также иные меры поддержки могут значительно улучшить экономические показатели инвестиционных проектов⁴⁰.

Среди проектов, получивших поддержку:

- ОАО «Гидрометаллургический завод». Техническое перевооружение ОАО «"ГМЗ» в рамках проекта увеличения глубины переработки фосфорного сырья (субсидии в размере 130 млн руб., 2017 г.);
- ООО «ПГ "Фосфорит"». Техническое перевооружение производства для увеличения выпуска серной кислоты, экстракционной фосфорной кислоты, аммофоса и диаммонийфосфата (займ в размере 500 млн руб., 2017 г.);
- АО «НАК "Азот"». Создание производства гранулированного карбамида с серой (займ в размере 500 млн руб., 2017 г.);
- АО «Невинномысский Азот». Модернизация производства аммиака (займ в размере 500 млн руб., 2017 г.);
- ПАО «Куйбышевазот». Строительство установки для получения сульфат-нитрата аммония (субсидии в размере 89 млн руб., 2016 г.).

Для капиталоемких проектов, которыми являются новые производства по выпуску минеральных удобрений, ценным инструментом поддержки являются специальные инвестиционные контракты (СПИК).

Специальные инвестиционные контракты, заключенные в промышленности минеральных удобрений:

- «ЕвроХим». Освоение Талицкого участка Верхнекамского месторождения калийномагниевых солей в Пермском крае (объем инвестиций 87,68 млрд руб.);
- ООО «ЕвроХим–ВолгаКалий». Создание горно-обогатительного комбината по добыче и обогащению калийных солей (объем инвестиций 57,25 млрд руб.);
- ООО «ЕвроХим Усольский калийный комбинат». Создание производства хлористого калия (объем инвестиций 72,86 млрд руб.);
- ПАО «Уралкалий». Создание комплекса по добыче руды на южной части Соликамского и Ново-Соликамского участков Верхнекамского месторождения калийно-магниевых солей ПАО «Уралкалий» (объем инвестиций 36,8 млрд руб.);
- ПАО «Уралкалий». Создание Половодовского калийного комбината по добыче и переработке руды (объем инвестиций 117,83 млрд руб.);

⁴⁰ План мероприятий («дорожная карта») по развитию производства минеральных удобрений на период до 2025 года.

- ПАО «Уралкалий». Создание комплекса по добыче руды Усть-Яйвинского рудника и освоение промышленного производства хлористого калия (объем инвестиций 35,73 млрд руб.);
- АО «ЕвроХим Северо-Запад». Строительство производства аммиака (объем инвестиций 28,73 млрд руб.);
- На ПМЭФ-2019 соглашение о намерении заключить СПИК «Щекиноазот» подписал в рамках проекта о построении в Тульской области комплекса по производству аммиака и карбамида.

Механизм СПИК действует с 2015 г. как вариант соглашения государства с частными компаниями, которые берут на себя обязательства по инвестициям в обмен на обязательство со стороны государства о не ухудшении бизнес-условий в результате изменений госрегулирования. В 2019 г. был введен в действие усовершенствованный СПИК 2.0 путем внесения поправок в закон «О промышленной политике в России», Бюджетный и Налоговый кодексы.

Ключевые изменения⁴¹:

- Срок действия контрактов продлевается до 15 лет для проектов с инвестициями до 50 млрд руб. и до 20 лет выше 50 млрд руб. (ранее срок действия был ограничен 10 годами);
- Отменяется требование о минимальном объеме инвестиций, который ранее был установлен в размере 750 млн руб.;
- Отменяются ограничения по сроку действия льготы по налогу на прибыль;
- Нулевая ставка по налогу на прибыль будет применяться на все доходы от проекта в рамках СПИК (ранее доходы от реализации СПИК должны были составлять не менее 90% от совокупных, что ограничивало доступ к льготам для проектов по модернизации);
- Предусматривается возможность раздельного налогового учета доходов и расходов деятельности в рамках СПИК;
- Объем государственной поддержки ограничивается: налоговые и неналоговые вложения из бюджета не превысят 50% от вложений инвестора в СПИК.

Кроме того, в поправках к закону о промышленной политике учитывается ситуация с повышением НДС на 20%, которая стала противоречием условий СПИК о неизменности налоговой нагрузки: гарантии неповышения совокупной налоговой нагрузки исключаются из закона⁴². В рамках федерального налогообложения инвестор может претендовать на нулевую ставку налога на прибыль. Среди региональных налогов предусматривается обнуление ставки налога на прибыль, снижение налогов на землю, имущество и транспорт.

Также следует отметить, что СПИК 2.0 доступен только тем инвесторам, которые намерены разработать и/или внедрить современные технологии (перечень таких технологий будет утвержден Правительством РФ) в целях освоения производства промышленной продукции, конкурентоспособной на мировом рынке. СПИК 2.0 будет представлять собой четырехсторонний контракт между инвестором, РФ, субъектом РФ и муниципальным образованием. Заключен может быть только с одним инвестором, по результатам конкурсного отбора.

-

⁴¹ URL: https://www.rbc.ru/economics/28/05/2019/5cebbc7d9a79473eabb69841

⁴² URL: https://www.kommersant.ru/doc/3922737

Ключевым фактором, определяющим спрос на минеральные удобрения на внутреннем рынке, является государственная политика в сфере АПК. В 2019 г. на поддержку аграриев в рамках Государственной программы развития сельского хозяйства⁴³ предусмотрено выделение 307,9 млрд руб., в 2020 г. – 290,1 млрд руб. При этом система выделения субсидий со следующего года существенно изменится.

В 2013 г. субсидии, предоставляемые на приобретение удобрений, семян и средств защиты растений, были заменены единой погектарной выплатой. Эффективность данного инструмента не была очевидной, в том числе по причине привязки объемов субсидий к посевным площадям, а не технологиям растениеводства. В любом случае, оценить, какое количество средств несвязанной поддержки будет использовано на приобретение удобрений, затруднительно, поскольку аграрии самостоятельно определяют, на что тратить деньги. Ожидается, что с 2020 г. механизмы субсидирования будут кардинально изменены. Проект постановления предполагает консолидацию «единой субсидии» и «несвязанной поддержки» с последующим разделением на средства поддержки («компенсирующая» субсидия) и развития («стимулирующая» субсидия)⁴⁴. Компенсирующая субсидия (фактически действующая сейчас) будет включать, в том числе, выделение средств на проведение комплекса агротехнологических работ в посевной растениеводстве ПО ставке на один гектар площади. Получатели сельхозтоваропроизводители, отвечающие критериям малого и среднего предприятия + повышающий коэффициент не менее 2 при проведении работ по фосфоритованию, гипсованию. «Стимулирующая» субсидия будет предоставляться на развитие приоритетных подотраслей АПК (в том числе для внесения удобрений в объеме, установленном уполномоченным органом). В числе приоритетных определены:

- производство зерновых и зернобобовых культур,
- производство масличных культур,
- производство овощей открытого грунта,
- развитие виноградных насаждений,
- производство продукции плодово-ягодных насаждений,
- производство льна-долгунца,
- производство молока,
- развитие специализированного мясного скотоводства,
- развитие овцеводства,
- развитие малых форм хозяйствования,
- развитие субъектов с низким уровнем социально-экономического развития (10 субъектов, занявших худшие позиции по экономическому развитию).

На «компенсирующую» и «стимулирующую» субсидии в 2020 г. предусмотрено выделение 60,9 млрд руб., в том числе 34 млрд руб. – на поддержку сельхозпроизводства по отдельным подотраслям растениеводства и животноводства (компенсирующая часть) и 26,9 млрд руб. – на

_

⁴³ Утверждена Постановлением Правительства РФ № 717 от 14 июля 2012 г., новая редакция утверждена 8 февраля 2019 г

⁴⁴ URL: https://m-ty.ru/gos-podderzhka-apk-2020-g/

стимулирование развития приоритетных подотраслей АПК (стимулирующая часть) 45 . В дальнейшем предполагается изменять структуру выделения средств в пользу стимулирующей части 46 .

Помимо финансовой поддержки, государство уделяет пристальное внимание вопросу обеспеченности российских аграриев минеральными удобрениями. В частности:

- Перед Минпромторгом и Минсельхозом с участием Минтранса и ФАС стоит задача координировать деятельность производителей минеральных удобрений и сельскохозяйственных товаропроизводителей при поставках минеральных удобрений, в том числе путем заключения соответствующего соглашения между отраслевыми объединениями;
- Минпромторг совместно с Минсельхозом разрабатывает механизм поставок минеральных удобрений в субъекты Российской Федерации под финансовые гарантии с последующим распределением минеральных удобрений мелкими партиями в адрес товаропроизводителей;
- ФАС России обеспечивает мониторинг цен на минеральные удобрения с ежемесячным докладом в Правительство Российской Федерации и в случае необходимости должно принять меры в соответствии с антимонопольным законодательством Российской Федерации.

Ценообразование на внутреннем рынке минеральных удобрений остается одним из самых болезненных вопросов, которому, как было отмечен выше, уделяется самое пристальное внимание государственных органов. Еще в 2015 г. руководством страны была поставлена задача разработать внедрить механизм сдерживания роста цен на приобретаемые сельскохозяйственными товаропроизводителями минеральные удобрения, обусловленная ростом цен на минеральные удобрения. ФАС были предложены четыре варианта решения вопроса высоких цен на минеральные удобрения на отечественном рынке: привязка цены на минеральные удобрения к экспортному паритету, фиксация цены на определенный период, квотирование экспорта, плавающая экспортная пошлина. Механизм экспотных пошлин был признан неэффективным и не отвечающим задачам развития промышленности минудобрений. В настоящее время ключевым инструментом, регулирующим цены для отечественных потребителей, является предоставление скидок от экспортной альтернативы в виде фиксации цен перед посевными, что, на наш взгляд, является компромиссным решением, учитывающим интересы производителей и потребителей.

Отдельной темой, обсуждаемой на уровне Правительства РФ, является биржевая торговля минеральными удобрениями. Цель проекта — развитие организованного механизма реализации минеральных удобрений, переход к формированию рыночных цен на минеральные удобрения в РФ. Биржевые торги минеральными удобрениями были запущены в декабре 2017 г. В настоящее время проводятся торги аммофосом, аммиачной селитрой, карбамидом, карбамидо-аммиачной смесью. За период с января по октябрь 2019 г. было подписано 89 биржевых договоров на поставку 8,97 тыс. тонн минеральных удобрений. Общая стоимость контрактов составила 189 млн руб.

_

 $^{^{45}}$ Проект Федерального закона «О федеральном бюджете на 2020 год и на плановый период 2021 и 2022 годов» (подготовлен Минфином России, ID проекта 04/13/09-19/00095294) (ред. до внесения в ГД ФС РФ, текст по состоянию на 25.09.2019).

⁴⁶ URL: https://www.agroinvestor.ru/analytics/news/32120-minselkhoz-razrabotal-novye-pravil-subsidiy/

Проектом⁴⁷ Приказа ФАС и Минпромторга от 04.09.2019 определяются базовые условия по биржевой торговле минеральными удобрениями. В частности, минимальная величина продаваемых на бирже минеральных удобрений для компаний, которые занимают доминирующее положение на рынке, должна составлять 5% от объемов производства, 10% от объема реализации с учетом сезонности по месяцам. Участники торгов – конечные потребители и трейдеры. Сообщается, что регион продаж ограничен внутренним рынком (во избежание злоупотреблений по экспорту товара определены допустимые базисы поставок). Предполагается, что новое регулирование вступит в силу с 1 января 2020 г.

Рис. 26. Объем биржевых торгов минеральными удобрениями

В настоящее время реализация удобрений в ходе биржевых торгов сдерживается рядом сложностей. По словам игроков рынка, для многих сельхозпроизводителей предпочтительными остаются традиционные каналы поставок, обеспечивающие сервис с доставок (условия реализации на бирже – франко-завод). Также прямые долгосрочные контракты с потребителями воспринимаются участниками рынка как некий гарант долгосрочных отношений и стабильных объемов продаж, также они зачастую дают большую выгоду по цене, чем спотовые продажи на бирже. Особенно справедливо это утверждение в условиях слабой рыночной конъюнктуры. намерен⁴⁸ В декабре 2019 г. ФАС обсудить реальность привлечения биржевой торговле. сельхозтоваропроизводителей К He исключается возможность предоставления приоритетной субсидии тем, кто приобретает биржевые товары.

В целом, с учетом особенностей рынка минудобрений (в первую очередь сезонности, накладывающей определенные ограничения на релевантность котировок в течение года), вклад инструмента в повышение прозрачности ценообразования на внутреннем рынке не очевиден. При этом, с учетом задачи наращивания объемов экспортных отгрузок, представляется целесообразным запуск экспортных торгов (после выработки соответствующих нормативноправовых актов и форм контрактов).

47

⁴⁷ Проект Приказа Федеральной антимонопольной службы и Министерства промышленности и торговли РФ «Об утверждении минимальной величины продаваемых на бирже минеральных удобрений, и требований к биржевым торгам, в ходе которых заключаются сделки с минеральными удобрениями хозяйствующим субъектом, занимающим доминирующее положение на соответствующих товарных рынках» (подготовлен ФАС России 04.09.2019).

⁴⁸ URL: https://www.google.ru/amp/s/www.business-class.su/amp/2019/11/25/regulyarnost-i-ravnomernost-v-permi-obsudili-mirovye-trendy-rynka-mineralnyh-udobrenii

ПРОГНОЗ

4.1. Прогноз развития мирового рынка

В 2020 г. ожидается рост мирового рынка минеральных удобрений. С учетом ожидаемых благоприятных погодных условий и расширения площади посева зерновых, потребление в сельском хозяйстве может увеличиться на 2,5%, до 193 млн тонн д. в. К 2023 г. спрос на удобрения, как ожидается, достигнет 203 млн тонн д. в., прогнозируемый САGR спроса в период до 2023 г. составляет 1,3%. Суммарный объем рынка минеральных удобрений с учетом промышленных направлений переработки может достигнуть 268 млн тонн д. в. Почти 80% прироста мирового потребления придется на страны Латинской Америки, Южной Азии, Африки и Восточной Европы. В 2020 г. прогнозируется рост внутренних цен на овощные культуры и сокращение запасов фосфатных и калийных удобрений в Индии и Китае, а также расширение пахотных земель в Бразилии. По прогнозам Мозаіс, рост потребления удобрений по видам в 2020 г. составит: калийных – 1,8%, фосфатных – 1,4%, азотных – 1,0%.

В части ценовой динамики сохранится влияние традиционных конъюнктурных факторов: динамики цен на зерновые культуры, складских запасов, волатильности национальных валют. Однако на первый план выйдут макроэкономические тенденции, трансформирующие конкурентную среду. В том числе — геополитические, вносящие коррективы в глобальные торговые потоки.

Все более значимыми становятся новые тенденции и принципы земледелия, активно продвигаемые все в большем количестве стран. В развитых странах внесение минеральных удобрений на единицу площади пахотных земель фактически достигло оптимума. Интенсификация сельского хозяйства в дальнейшем будет происходить за счет эффективности использования удобрений, роста доли инновационных и кастомизированных продуктов, удобрений с микроэлементами. При этом растет популярность тем экологичности и безопасности землепользования, одним из основных принципов которых является акцент на органических экоудобрениях. В тренде экоземледелия — также Китай и Индия (как по экологическим, так и по экономическим соображениям). В Китае в рамках новой экологической политики правительство предлагало сократить применение химических удобрений в основных аграрных районах к 2020 г. на 50% и сделать фокус на использовании органических удобрений. Другие развивающиеся страны, ориентируясь на современные тенденции мирового продовольственного спроса, также проявляют интерес к этому виду деятельности⁴⁹.

По данным IFA, в период с 2018 по 2023 гг. объем инвестиций в мировое производство минеральных удобрений может достигнуть 110 млрд долл. США. Анонсировано строительство 70 новых установок суммарной мощностью 65 млн тонн. С учетом прогнозных темпов роста спроса (1,3% в год) и предложения (1,6% в год), рынок в ближайшие годы будет профицитным.

⁴⁹ URL: https://wtcmoscow.ru/services/international-partnership/analitycs/rossiyskaya-ekonomika-mineralnye-udobreniya/

Рис. 27. Темпы ввода новых мощностей в 2017–2023 г., млн тонн д. в.

Рис. 28. Ввод новых мощностей в 2019–2023 г., млн тонн (физ. вес)

В изменении конкурентной среды особое значение приобретает появление новых игроков и переформатирование торговых потоков. В сегменте азотных удобрений новые производства вытесняют с премиальных рынков традиционных экспортеров, которые не могут конкурировать с этими производствами из-за высоких расходов на транспорт до экспортных портов. В зоне риска в этом контексте находятся в том числе российские экспортеры. При этом Китай, как показала ситуация 2019 г., несмотря на все ограничения, крайне оперативно реагирует на изменение конъюнктуры мирового рынка, незамедлительно наращивая экспортные отгрузки, как только цены начинают идти вверх.

Важно отметить, что заметный прирост мощностей ожидается в странах СНГ. В частности, в 2019 г. в Азербайджане SOCAR запустила завод по выпуску карбамида мощностью 660 тыс. тонн в год, ключевым рынком сбыта обозначается Турция. В Туркменистане запущено производство карбамида мощностью 1,16 млн тонн в год. Также планируется наладить выпуск комплексных удобрений. В Таразе (Казахстан) были увеличены мощности по выпуску аммофоса и т.д. Выход на проектную мощность новых проектов серьезно повлияет на конкурентную среду.

На рынке калийных удобрений также растет конкуренция и появляются новые игроки. Так, белорусский «Славкалий» рассчитывает к 2021 г. ввести в строй новое производство на Нежинском ГОКе мощностью 2 млн тонн в год, значительно расширив присутствие Беларуси на мировом рынке. На условиях конкуренции в ближайшие годы скажется трансформация калийного рынка в России, где тоже реализуются инвестиционные проекты. Также необходимо принимать во внимание выход на проектные мощности рудников, запущенных в предыдущие годы, и тот факт, что в настоящее время ведущие игроки сдерживают рост объемов производства для балансировки рынка и восстановления позитивной конъюнктуры.

Источник: IFA.

Рис. 29. Прогноз изменения мировых мощностей по производству азотных удобрений, млн тонн д. в.

Рис. 30. Прогноз изменения мировых мощностей по производству фосфоросодержащих удобрений, млн тонн д. в.

Рис. 31. Прогноз изменения мировых мощностей по производству хлорида калия, млн тонн д. в.

4.2. Перспективы развития экспорта

С учетом планов по вводу новых мощностей и ограниченного потенциала роста емкости внутреннего рынка вопрос конкурентоспособности российских производителей на мировом рынке становится с каждым годом все острее.

Обострение конкуренции на мировом рынке минеральных удобрений усложнит положение российских компаний в ближайшие годы. Однако, несмотря на обострение конкуренции, в ближайшие годы российские производители азотных и смешанных удобрений сохранят устойчивые позиции на мировом рынке. Данный прогноз обусловлен тем, что при достаточно умеренной государственной политике в области индексирования цен на газ, последние в

течение рассматриваемого периода будут сохраняться на сравнительно низком уровне. Ситуация на калийном рынке будет определяться производственно-сбытовой политикой главных мировых игроков, скоростью выхода на проектные мощностей новых рудников, а также закупочной политикой главных покупателей (Китай/Индия). «Уралкалий», в любом случае, сохранит свои позиции в топе, однако объем отгрузок точно предсказать сложно. Новые российские игроки в прогнозный период будут способствовать росту объемов экспортных поставок хлорида калия из России, однако их вклад не будет решающим.

Таблица 19. Сводный анализ российской промышленности минеральных удобрений

Сильные стороны

- Уникальная сырьевая база,
- Обеспеченность энергоресурсами,
- Относительно низкая себестоимость производства при текущих ценах на газ,
- Наличие собственных транспортных и перевалочных мощностей у ключевых игроков рынка,
- Диверсифицированная сбытовая сеть

Возможности

- Рост спроса на удобрения в мире,
- Позитив на ключевых рынках сбыта: рост индийской экономики, восстановление экономики Бразилии,
- Снятие торговых ограничений на ключевых рынках,
- Компенсационный эффект ограниченного предложения из-за нестабильной ситуации в ряде стран-конкурентах.

Слабые стороны

- Часть производственных мощностей характеризуются повышенными эксплуатационными расходами и затратами на сырье и электроэнергию,
- Зависимость значительного числа производителей от поставщиков сырья,
- Длинное логистическое плечо до портов отгрузки и основных потребителей,
- Ограниченность портовых мощностей,
- Нехватка инновационного потенциала, зависимость от зарубежных поставщиков технологий и оборудования

Угрозы

- Экономическая нестабильность (на местном и глобальном уровне),
- Ухудшение конъюнктуры на мировом рынке,
- Рост издержек (сырье, электроэнергия, транспортные тарифы),
- Протекционизм на национальных рынках,
- Изменение баланса спроса и предложения за счет опережающего ввода новых мощностей,
- Снижение цен на газ у конкурентов на фоне увеличения объемов добычи на нетрадиционных месторождениях⁵⁰,
- Реализация программ импортозамещения основными странами-потребителями

Важно отметить, что позиции российских компаний усиливаются в том числе за счет расширения присутствия за рубежом. В частности:

- «УРАЛХИМ» и «Уралкалий» подписали соглашение о вхождении в акционерный капитал бразильской компании Fertilizantes Heringer, обанкротившейся в начале 2019 г. 51;
- «УРАЛХИМ» сохраняет интерес к инвестициям в производство минеральных удобрений в Зимбабве. Также компания совместно с Grupo Opaia SA намерены создать совместное производство аммиака и карбамида мощностью 1,2 млн тонн на территории Анголы;
- «ФосАгро» может принять участие в освоении второго по величине в ЮАР месторождения фосфатов Elandsfontein.

⁵⁰ Для азотных и смешанных удобрений.

⁵¹ URL: https://www.icis.com/explore/resources/news/2019/09/27/10423445/potash-producers-must-survive-q4-amid-market-downturn

4.3. Прогноз развития внутреннего производства

Российское производство в ближайшие годы будет развиваться за счет инвестиционных проектов по расширению мощностей, реализуемых компаниями (перечень инвестиционных проектов приведен в главе «Государственная политика»).

В среднесрочной перспективе самые значимые изменения ожидаются на рынке хлорида калия, за счет роста производства на новом калийном руднике «ЕвроХима». С учетом первого проекта «ЕвроХима», а также проектов «Уралкалия» и «Акрона», к 2025 г. мощности могут вырасти на 6 млн тонн в физ. весе. Также серьезно вырастут мощности по производству карбамида (более чем на 3 млн тонн), аммиачной селитры (1,8 млн тонн). Мощности по выпуску сложных удобрений, если будет реализован проект «ФосАгро», увеличатся почти на 1 млн тонн (без учета туков).

Внутренний спрос, хотя и будет расти, останется на незначительном уровне, по сравнению с возможностями производства. Со стороны сельского хозяйства ожидаемый рост объемов потребления составляет 0,4 млн тонн к уровню 2018 г. Таким образом, как было отмечено выше, уровень загрузки новых мощностей будет зависеть от ситуации на мировом рынке и конкурентоспособности российских компаний.