Chapter 6: Normal Distribution

Dr. Siddiqua Mazhar

Mid Michigan College

Oct 14, 2021

Normal Distribution

If the continous random variable has a symmetric, bell shape curve, it is considered to have a Normal Distribution.

Properties of the Normal Distribution

- Bell shaped
- Mean Median Mode in Center (all the same)
- Symmetric
- No gaps in data (continuous curve)
- Never crosses x-axis
- Area under the curve is equal to 1.
- Satisfies Empirical rule.

Uniform Distribution

All values have the same probability of occuring.

- Area must be equal to 1.
- Height for each value is greater or equal to 0 and less than or equal to 1.

Normal Distribution (Concept)

Empirical Rule

Normal Distrubution Questions

- Find area under the curve (Find Probabilities)
- Find the z-score
- Find the X-values on X-axis or Data points.

Standard Normal Distribution

Normal curve with

- $\mu = 0$
- $\sigma = 1$

Note: Transform any normal distribution to a standard normal distribution. by mapping mean to 0 and Standard deviation to 1.

Example: Testing Thermometers

Mean: $\mu = 0$ **S.D**.: $\sigma = 1$

Readings were normally distrubuted. Find the probability that a thermometer will have a reading of less than 1.58 degree.

Step 1: Find Z-score.

Step 2: Draw a picture.

Step 3: Find the area

- Using a Table
- Using a Calclulator

Empirical Rule

The table entry for \boldsymbol{z} is the area to the left of \boldsymbol{z} .

TABLE 5 Areas of a Standard Normal Distribution

		- 01		0.7		or	0.0	07	- 00	
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2 -1.1	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.9	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

For values of z less than -3.49, use 0.000 to approximate the area.

Empirical Rule

left of z.

TABLE	5(a) 0	natioued								
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.614
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.754
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813.
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.883
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.931
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.995
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.996
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.997
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.999
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.999
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.999

TABLE 5 continued

(b) Confidence Interval Critical Values z _c					
Level of Confidence c	Critical Value z _c				
0.70, or 70%	1.04				
0.75, or 75%	1.15				
0.80, or 80%	1.28				
0.85, or 85%	1.44				
0.90, or 90%	1.645				
0.95, or 95%	1.96				
0.98, or 98%	2.33				
0.99, or 99%	2.58				

For z values greater than 3.49, use 1.000 to approximate the an

TABLE 5 continued								
(c) Hypothesis Testing, Critical Values Z ₀								
Level of Significance	$\alpha = 0.05$	$\alpha = 0.01$						
Critical value z_0 for a left-tailed test	-1.645	-2.33						
Critical value zo for a right-tailed test	1.645	2.33						
Critical values $\pm z_0$ for a two-tailed test	±1.96	±2.58						

Using Calculator

Normalcdf(left value, right value, μ, σ)

Example: Testing Thermometers

Mean: $\mu = 0$ **S.D.**: $\sigma = 1$

Readings were normally distrubuted. Find the probability that a thermometer will have a reading greater than 1.23 degree.

Example: Testing Thermometers

Mean: $\mu = 0$ S.D.: $\sigma = 1$

Readings were normally distrubuted. Find the probability that a thermometer will have a reading between -2 and 1.5 degrees

Questions: Find the area under the curve

For Standard Normal Distrubution, find the following:

- $P(-1 \le z \le 1)$
- $P(-1.5 \le z < 1.5)$
- $P(-3.2 < z \le 3.2)$
- P(z < 1)
- $P(z \le 0.65)$
- P(z > -3.4)
- $P(0 < z \le 0.65)$

Finding Z scores From Areas

Work backward by using an area (probability) to find the distance from the mean (Z-score).

Step 1: Draw a picture.

Step 2: Use Table (In reveres) OR Calculate (INVNORM)

Using $invNorm(Area, \mu, \sigma)$

For thermometer, find the z-score that presents the bottom 95% of the data.

For thermometer, find the z-score that presents the top 30% of the data.

For thermometer, find the z-score that presents the bottom 10% of the data.

For thermometer, find the z-score that presents the top 80% of the data.

Find the z-score that give the area between the top 2.5% and the bottom 2.5%.

Example:

A population of man has a mean weight of 172lbs and a standard deviation of 29 lbs. Find probability that a randomly selected man will have a weight of less than 174 lbs.

Example:

IQ is normally distrubuted with a mean of 100 and standard deviation of 15. What percentage of people have an IQ between 85 and 125?

Key points

- Z- score is a distance
- Area is a Probability
- Z- score can be negative
- Area can not be negavtive

Finding a value from the z-score

$$z = \frac{X - \mu}{\sigma}$$

$$\sigma$$
. $z = X - \mu$

$$X = \sigma z + \mu$$

Example: Finding a value from the z-score

A population of man has a mean weight of 172lbs and a standard deviation of 29 lbs. What weight seperates the lightest 99.5% from the heaviest 0.5%

Example: Finding a value from the z-score

Grip-Reach for women is normally distrubuted. The mean is 27.0 inch with a standard deviation of 1.3 inch. Find the Grip-Reach that represents the longest 95% of women.

Exercise

According to an article in cnbc.com, the average student debt for new college graduates was \$37,172 in 2016. Assume the debt is normally distributed with a standard deviation of \$14,600. Find the probability that a new college graduate owes between \$20,000 and \$60,000.