Probabilistic decision making

Markov Decision Processes (MDP) for Reinforcement Learning (RL)

- ♦ Decision problems
- ♦ Value iteration
- ♦ Policy iteration

Slides adapted from: Brian C. Williams (MIT 16.410), Manuela Veloso, Reid Simmons, & Tom Mitchell, CMU

Sequential decision problems

Sequential decision problems

Add uncertainty to state-space search \rightarrow MDP

Add sequentiality to Bayesian decision making \rightarrow MDP I.e., any environment in which rewards are not immediate

Examples:

- Tetris, spider solitaire
- Inventory and purchase decisions, call routing, logistics, etc. (OR)
- Elevator control
- Choosing insertion paths for flexible needles
- Motor control (stochastic optimal control)
- Robot navigation, foraging

How Might a Mouse Search a Maze for Cheese?

- State Space Search?
- As a Constraint Satisfaction Problem?
- Goal-directed Planning?
- Linear Programming?

What is missing?

Ideas in this lecture

- Problem is to accumulate rewards, rather than to achieve goal states.
- Approach is to generate reactive policies for how to act in all situations, rather than plans for a single starting situation.
- Policies fall out of value functions, which describe the greatest lifetime reward achievable at every state.
- Value functions are iteratively approximated.

MDP Examples: TD-Gammon [Tesauro, 1995] Learning Through Reinforcement

Learns to play Backgammon

States:

Board configurations (10²⁰)

Actions:

Moves

- +100 if win
- 100 if lose
- 0 for all other states
- Trained by playing 1.5 million games against self.
- Currently, roughly equal to best human player.

MDP Examples: Aerial Robotics [Feron et al.] Computing a Solution from a Continuous Model

Markov Decision Processes

- Motivation
- What are Markov Decision Processes (MDPs)?
 - Models
 - Lifetime Reward
 - Policies
- Computing Policies From a Model
- Summary

Example MDP

Model $M_{ij}^a \equiv P(j|i,a) = \text{probability that doing } a \text{ in } i \text{ leads to } j$

Each state has a reward R(i) or R(i, a), or R(i, a, i')

= -0.04 (small penalty) for nonterminal states

 $=\pm 1$ for terminal states

(reward is received when agent executes an action)

Sometimes written

T(s, a, s'): prob of transition from s to s' due to a

Example MDP

In search problems, aim is to find an optimal sequence

In MDPs, aim is to find an optimal *policy*i.e., best action for every possible state
(because can't predict where one will end up)

Optimal policy and state values for the given R(i):

MDP Problem

Given an environment model as a MDP create a policy for acting that maximizes lifetime reward

MDP Problem: Model

Given an environment <u>model as a MDP</u> create a policy for acting that maximizes lifetime reward

Markov Decision Processes (MDPs)

Model:

- Finite set of states, S
- Finite set of actions, A
- (Probabilistic) state transitions, δ(s,a)
- Reward for each state and action, R(s,a)

Example

Process:

- Observe state s_t in S
- Choose action a_t in A
- Receive immediate reward r_t
- State changes to s_{t+1}

- Legal transitions shown
- Reward on unlabeled transitions is 0.

MDP Environment Assumptions

- Markov Assumption:
 Next state and reward is a function only of the current state and action:
 - $S_{t+1} = \delta(S_t, a_t)$
 - $r_t = r(s_t, a_t)$
- Uncertain and Unknown Environment: δ and r may be nondeterministic and unknown

MDP Problem: Model

Given an environment <u>model as a MDP</u> create a policy for acting that maximizes lifetime reward

MDP Problem: Lifetime Reward

Given an environment model as a MDP create a policy for acting that maximizes <u>lifetime reward</u>

Utility (aka value)

In sequential decision problems, preferences are expressed between sequences of states

Usually use an *additive* utility function:

$$U([s_1, s_2, s_3, \dots, s_n]) = R(s_1) + R(s_2) + R(s_3) + \dots + R(s_n)$$
 (cf. path cost in search problems)

Utility of a state (a.k.a. its value) is defined to be $U(s_i) = \underbrace{\text{expected sum of rewards until termination}}_{\text{assuming optimal actions}}$

Given the utilities of the states, choosing the best action is just MEU: choose the action such that the expected utility of the immediate successors is highest.

Lifetime Reward

- Finite horizon:
 - Rewards accumulate for a fixed period.
 - \$100K + \$100K + \$100K = \$300K
- Infinite horizon:
 - Assume reward accumulates for ever
 - \$100K + \$100K + . . . = infinity
- Discounting:
 - Future rewards not worth as much (a bird in hand ...)
 - Introduce discount factor γ \$100K + γ \$100K + γ 2 \$100K...

Will make the math work

Converges for γ <1

MDP Problem: Lifetime Reward

Given an environment model as a MDP create a policy for acting that maximizes lifetime reward

$$V = r_0 + \gamma r_1 + \gamma^2 r_2 \dots$$

MDP Problem: Policy

Given an environment model as a MDP create a <u>policy</u> for acting that maximizes lifetime reward

$$V = r_0 + \gamma r_1 + \gamma^2 r_2 \dots$$

Policy $\pi: S \rightarrow A$

• Selects an action for each state.

Optimal policy $\pi^*: S \rightarrow A$

Selects action for each state that maximizes lifetime reward.

- There are many policies, not all are necessarily optimal.
- There may be several optimal policies.

A sequential decision problem for a fully Observable stochastic environment with Markovian transition model and additive Rewards is called an MDP

Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing Policies From a Model
 - Value Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration (appendix)
- Summary

Value Function V^{π} for a Given Policy π

• $V^{\pi}(s_t)$ is the accumulated lifetime reward resulting from starting in state s_t and repeatedly executing policy π :

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \dots$$
$$V^{\pi}(s_t) = \sum_{i} \gamma^{i} r_{t+i}$$

where r_t , r_{t+1} , r_{t+2} . . . are generated by following π , starting at s_t .

Assume
$$\gamma = .9$$

An Optimal Policy π^* Given Value Function V^*

Idea: Given state s

- Examine all possible actions a_i in state s.
- Select action a_i with greatest lifetime reward.

Lifetime reward Q(s, a_i) is:

- the immediate reward for taking action: r(s,a) ...
- plus lifetime reward starting in target state: $V(\delta(s, a))$...
- discounted by γ.

$$\pi^*(s) = \operatorname{argmax}_a [r(s,a) + \gamma V^*(\delta(s,a))]$$

Must Know:

- Value function
- Environment model.
 - $\delta: S \times A \rightarrow S$
 - $r: S \times A \rightarrow \Re$

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

$$\gamma = 0.9$$

- a: $0 + 0.9 \times 100 = 90$
- b: $0 + 0.9 \times 81 = 72.9$
- > select a

 π :

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

$$\gamma = 0.9$$

- a: $100 + 0.9 \times 0 = 100$
- b: $0 + 0.9 \times 90 = 81$
- > select a

 π :

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

$$\gamma = 0.9$$

- a: ?
- b: ?
- c: ?
- > select?

 π :

Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing Policies From a Model
 - Value Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration
- Summary

• Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a one step horizon:

$$V_{1}^{*}(s) = \max_{a_{i}} [r(s, a_{i})]$$

Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Optimal value function for an n step horizon:

$$V_{n}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{n-1}^{*}(\delta(s, a_{i}))]$$

Example

Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Optimal value function for an n step horizon:

$$V_{n}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{n-1}^{*}(\delta(s, a_{i}))]$$

➤ Optimal value function for an infinite horizon:

$$V^*(s) = \max_{a_i} \left[r(s, a_i) + \gamma V^*(\delta(s, a_i)) \right]$$

Bellman equation

Definition of utility of states leads to a simple relationship among utilities of neighboring states:

expected sum of rewards

= current reward

+ expected sum of rewards after taking best action

Bellman equation (1957):

Model $M_{ij}^a \equiv P(j|i,a) = \text{probability that doing } a \text{ in } i \text{ leads to } j$

up

left

down

right

$$U(i) = R(i) + \max_{a} \sum_{j} U(j) M_{ij}^{a}$$

$$U(1,1) = -0.04$$

+
$$\max\{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),$$

$$0.9U(1,1) + 0.1U(2,1)$$

$$0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)$$

3 +1 -1 1 START 1 2 3 4

One equation per state = n <u>nonlinear</u> equations in n unknowns

Value iteration algorithm

Idea: Start with arbitrary utility values

Update to make them locally consistent with Bellman eqn.

Everywhere locally consistent \Rightarrow global optimality

repeat until "no change"

$$U(i) \leftarrow R(i) + \max_{a} \sum_{j} U(j) M_{ij}^{a}$$
 for all i

Convergence

Define the max-norm $||U|| = \max_s |U(s)|$, so $||U - V|| = \max$ maximum difference between U and V

Let U^t and U^{t+1} be successive approximations to the true utility U

Theorem: For any two approximations U^t and V^t

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

I.e., Bellman update is a **contraction**: any distinct approximations must get closer to each other so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution

But MEU policy using U^t may be optimal long before convergence of values

Solving MDPs by Value Iteration

Insight: Can calculate optimal values iteratively using Dynamic Programming.

Algorithm:

Iteratively calculate value using Bellman's Equation:

$$V_{t+1}^*(s) \leftarrow \max_a [r(s,a) + \gamma V_t^*(\delta(s,a))]$$

• Terminate when values are "close enough"

$$|V^*_{t+1}(s) - V^*_{t}(s)| < \varepsilon$$
 for all s

• Agent selects optimal action by one step lookahead on V^* : $\pi^*(s) = \operatorname{argmax}_a [r(s,a) + \gamma V^*(\delta(s,a))]$

Convergence of Value Iteration

• If terminate when values are "close enough"

$$|V_{t+1}(s) - V_t(s)| < \varepsilon$$

Then:

$$\text{Max}_{s \text{ in S}} |V_{t+1}(s) - V^*(s)| < 2\varepsilon\gamma/(1 - \gamma)$$

- Converges in polynomial time.
- Convergence guaranteed even if updates are performed infinitely often, but asynchronously and in any order.

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$\gamma = 0.9$$

- a: $0 + 0.9 \times 0 = 0$
- b: $0 + 0.9 \times 0 = 0$
- \rightarrow Max = 0

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$y = 0.9$$

- a: $100 + 0.9 \times 0 = 100$
- b: $0 + 0.9 \times 0 = 0$
- c: $0 + 0.9 \times 0 = 0$
- \triangleright Max = 100

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

- a: $0 + 0.9 \times 0 = 0$
- \rightarrow Max = 0

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$V_{t+1}^*(s) \leftarrow \max_a [r(s,a) + \gamma V_t^*(\delta(s,a))]$$

No more update = converged

Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing policies from a modelValue Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration
- Summary

Policy iteration

Idea: search for optimal policy and utility values simultaneously

Algorithm:

```
\pi \leftarrow an arbitrary initial policy
repeat until no change in \pi
compute utilities given \pi
update \pi as if utilities were correct (i.e., local MEU)
```

To compute utilities given a fixed π :

$$U(i) = R(i) + \sum_{i} U(j) M_{ij}^{\pi(i)} \qquad \text{for all } i$$

i.e., n simultaneous <u>linear</u> equations in n unknowns, solve in $O(n^3)$

•Why use policy iteration? May converge faster; convergence guarantees.

Policy Iteration

Idea: Iteratively improve the policy

- 1. Policy Evaluation: Given a policy π_i calculate $V_i = V^{\pi i}$, the utility of each state if π_i were to be executed.
- 2. Policy Improvement: Calculate a new maximum expected utility policy π_{i+1} using one-step look ahead based on V_i .
- π_i improves at every step, converging if $\pi_i = \pi_{i+1}$.
- Computing V_i is simpler than for Value iteration (no max):

$$V^*_{t+1}(s) \leftarrow r(s, \pi_i(s)) + \gamma V^*_{t}(\delta(s, \pi_i(s)))$$

- Solve linear equations in O(N³)
- Solve iteratively, similar to value iteration.

POMDP

POMDP has an observation model O(s,e) defining the probability that the agent obtains evidence e when in state s

Agent does not know which state it is in \Rightarrow makes no sense to talk about policy $\pi(s)!!$

Theorem (Astrom, 1965): the optimal policy in a POMDP is a function $\pi(b)$ where b is the belief state $(P(S|e_1, \ldots, e_t))$

Can convert a POMDP into an MDP in (continuous, high-dimensional) belief-state space,

where T(b, a, b') is essentially a filtering update step

Solutions automatically include information-gathering behavior

The real world is an unknown POMDP

Issues

Complexity: polytime in number of states (by linear programming) but number of states is exponential in number of state variables

- \rightarrow Boutilier *et al*, Parr & Koller: use structure of states (but U, Q summarize infinite sequences, depend on everything)
- \rightarrow reinforcement learning: sample S, approximate $U/Q/\pi$
- → hierarchical methods for policy construction (next lecture)

Unknown transition model: agent cannot solve MDP w/o T(s, a, s')

→ reinforcement learning

Missing state: there are state variables the agent doesn't know about \rightarrow [your ideas here]

Reinforcement learning

Agent is in an unknown MDP or POMDP environment

Only feedback for learning is percept + reward

Agent must learn a policy in some form:

- transition model T(s, a, s') plus value function U(s)
- action-value function Q(a, s)
- policy $\pi(s)$

Deep reinforcement learning

Sometimes, dimensionality of state is very high (e.g., images)

-> Represent and learn the policy as a deep neural network.