A. Road Segmentation using Computer Vision

Road segmentation is one of the critical steps of lane detection, involving the identification of the road from images or video frames. Figure 1 shows the expected output of applying segmentation to an image or video frame extracted from a digital video recorder. Based on the expected output, it can be observed that the road is segmented and highlighted in blue. Some additional processing can then be carried out to identify the lane from the segments (i.e., lane detection).

Figure 1: Original image or video frame (left), and the sample output after segmentation (right) [1].

Lane detection not only that it plays an important role in autonomous vehicles, as autonomous vehicles rely on accurate lane detection for navigation, it also helps in advanced driver assistance systems for lane departure warning. Figure 2 shows some sample outputs of lane detection.

Figure 2: Visualisation of current lane (in red) and drivable lane (in blue) [2].

In this project, you are required to study existing computer vision-based systems or algorithms for road segmentation and develop one yourself. You will be developing your own system or algorithm and

evaluating its performance using the road segmentation dataset prepared by TrainingData [1]. Some of the images or video frames and the ground truths (or answers) are shown in Table 1.

Table 1: Sample images or video frames and their respective ground truths [1].

B. Expectations

Part I: Literature Review

This is an individual project divided into two parts. The first part involves reviewing and comparing (i) existing **computer vision-based systems or algorithms** for road segmentation, and (ii) the performance metrics typically adopted. Completing this should (i) give you some ideas on the purpose of road segmentation, (ii) the general steps involved in road segmentation, and (iii) how to quantify the outcomes or results you obtained.

Part II: Development

For the second part, the main task is to (i) develop your own computer vision-based system or algorithm for road segmentation using Python and OpenCV, and (ii) evaluate its performance by applying it to images from the road segmentation dataset prepared by TrainingData [3].

When developing your system or algorithm, you can either (i) design it based on an existing system or algorithm you have studied and try to improve it, or (ii) combine different algorithms, including those learned in class, to create a new one. Please note that you must highlight the differences between your system or algorithm and the existing ones. It is acceptable if the modifications do not help in improving the performance, as long as you identify the cause and explain why.

To-do List:

No.	Description	٧
1	Review and compare various systems or algorithms for road segmentation.	
2	Identify performance metrics normally adopted to evaluate the systems or algorithms.	
3	Submit your literature review to Turnitin before 14 th June 2024, 11:59PM.	
4	Download the road segmentation dataset from <u>here</u> .	
5	Develop a computer vision-based system or algorithm for road segmentation.	
6	Evaluate its performance based on the performance metrics identified.	
7	Submit your report to Turnitin before 29 th July 2024, 11:59PM.	
8	Submit your code to eLearn before 29 th July 2024, 11:59PM.	

C. Deliverables

No.	Description	Weightage
1	Literature Review in Standard Report Format	20%
	Format: Single-Column Font Size: 12 Point Spacing: Single	
2	Development of Road Segmentation System or Algorithm	15%
3	Project Report in IEEE Format (Template Provided)	5%

D. Submissions

The submission links will be created one week before the deadline on eLearn. For the literature review and the project report, please directly submit them to their respective Turnitin link on eLearn. In addition to these, please submit a copy of all the deliverables above to another submission link that will be created on eLearn. Please remember <u>not</u> to submit your program to Turnitin. Failure to adhere to this instruction will result in no marks being awarded.

E. References

- [1] TrainingData, "Road Segmentation Dataset", Kaggle. Accessed: 13th May 2024. [Photo]. Available: https://www.kaggle.com/datasets/trainingdatapro/roads-segmentation-dataset.
- [2] D. G., Lee, "Fast Drivable Areas Estimation with Multi-Task Learning for Real-Time Autonomous Driving Assistant", Applied Sciences, vol. 11, no. 22, 2021. Accessed: 13th May 2024. [Online]. Available: https://doi.org/10.3390/app112210713.

F. Marking Rubrics for Part I: Literature Review (20%)

Criteria	Unsatisfactory	Satisfactory	Good
G. T. C. T. C.	(0-3)	(4-6)	(7-10)
Literature Search and	Review at most three	Review at least four	Review at least five
Relevance of Literature	existing systems,	systems, techniques, or	existing systems,
(2%)	techniques, or	algorithms and most of	techniques, or
	algorithms and all the	them is relevant to the	algorithms and all of
	reviews are not	project aim. Majority of	them is relevant to the
	relevant to the project	the articles are	project aim. All the
	aim. Articles are mostly	selected from	articles are selected
	selected from informal	academic, scholarly	from academic,
	sources of information	peer-reviewed journal	scholarly peer-
	such as blogs,	or conference articles,	reviewed journal or
	unverified websites	or trusted sources.	conference articles, or
	and/or non-peer		trusted sources.
	reviewed sources.		
Comprehension and	Limited understanding	Adequate	Clear understanding
Summary (6%)	and incomplete	understanding and	and concise
	summary of key	summary of key	summarization of key
	concepts. Key concepts	concepts. Key concepts	concepts. Key concepts
	are misunderstood or	are generally	are accurately
	not fully explained.	understood, but some	understood and
	Summary lacks	important details may	effectively
	coherence and may	be missing from the	summarized. Summary
	contain inaccuracies.	summary. Summary	provides a
		provides a basic	comprehensive
		overview of the	overview of the
		literature but lacks	literature, capturing
		depth.	essential details and
			insights.
Critical Analysis (6%)	Limited critical	Some critical	Thorough critical
	evaluation of	evaluation of	evaluation of
	approaches and	approaches and	approaches and
	limitations. Analysis	limitations. Analysis	limitations. Analysis is
	lacks depth and may	demonstrates a basic	insightful and
	rely on surface-level	understanding of	demonstrates a deep
	observations.	strengths, weaknesses,	understanding of the
		and implications of	strengths, weaknesses,
		different approaches.	and implications of
OL 11	147 11 1 1 1 1	11/11/11	different approaches.
Clarity and	Writing lacks clarity	Writing is clear but	Clear writing with
Organization (4%)	and organization. Ideas	lacks consistent	consistent organization
	are presented in a	organization. Ideas are	of ideas. Ideas are
	disorganized manner,	generally well-	logically organized and
	making it difficult to	presented but may be	clearly presented,
	follow the argument.	scattered or repetitive	facilitating
	Sentence structure and	in places. Sentence	understanding.

	grammar may impede understanding.	structure and grammar are generally correct but may require improvement for	Sentence structure and grammar are strong, enhancing readability and flow.
		greater clarity.	
Citation and	No in-text citations or	With a few errors (<3)	Error free reference list
References	reference list, or there	in the reference list or	and in-text citations.
(2%)	are many errors in in-	in-text citations.	No missing of
	text citations or	Missing of a few (<3)	references.
	reference list.	references that should	
	Mismatch of citations	have been included.	
	and references.		

G. Marking Rubric for Part II: Development of Road Segmentation System or Algorithm (20%)

Report Writing (5%)

You have to submit a report using the double-column IEEE format with <u>no more than 6 pages</u>, that consists of the following:

1) Introduction

- Clear definition of the problem.
- Explain why it is important to solve the problem.
- Describe the difference(s) between your proposed algorithm and existing algorithms.
- 2) Methodology and Proposed Algorithm
 - Description of steps taken to develop the system or the proposed algorithm.
 - Description and justification of the design of the system or the proposed algorithm.
- 3) Results and Discussions
 - Describe the experimental setup.
 - Describe the results.
 - Discussions of the results.

4) References

Criteria	Unsatisfactory	Satisfactory	Excellent
	(0-3)	(4-6)	(7-10)
Introduction	Introduction is missing	Introduction provides a	Introduction is well-
(10%)	or lacks clarity in	basic overview of the	written and effectively
	explaining the purpose	project, including its	sets the stage for the
	and scope of the	purpose, scope, and	report, clearly
	project. It may not	background	explaining the project's
	provide sufficient	information road	objectives, significance,
	background	segmentation. It sets	and relevance to road
	information on road	the context for the	segmentation using
	segmentation or the	report but could be	computer vision. It
	motivation for the	more concise or	engages the reader and
	system development.	engaging.	generates interest in
			the topic.

Methodology and Approach (40%)	Methodology and approach are poorly described or lack detail, making it difficult to understand how the system was developed or implemented. Key steps or algorithms may be omitted or poorly explained.	Methodology and approach are adequately described, providing a clear overview of the steps followed in developing the system. It outlines the key algorithms, techniques, and tools used but may lack some detail or clarity in explanations.	Methodology and approach are thoroughly described, offering a comprehensive overview of the steps taken to develop the system. It provides detailed explanations of the key algorithms, techniques, and tools used, making it easy for the reader to follow the development process.
Results and Discussion (40%)	Results and discussion are missing or lack meaningful analysis of the system's performance or effectiveness. It may not include any empirical results or visualizations to support the findings.	Results and discussion provide some analysis of the system's performance or effectiveness, presenting empirical results or visualizations to support the findings. However, the analysis may be superficial or lacking in depth.	Results and discussion offer a comprehensive analysis of the system's performance or effectiveness, providing insightful interpretation of empirical results or visualizations. It includes detailed discussions, or observations to evaluate the system's strengths and limitations effectively.
Writing Style and Clarity (10%)	Writing style is poor, with numerous grammatical errors, unclear phrasing, or awkward sentence structures. It may be difficult to understand or follow the flow of ideas.	Writing style is generally clear but may contain some grammatical errors, awkward phrasing, or inconsistencies in tone or voice. It may require some effort to understand or follow the flow of ideas.	Writing style is polished and engaging, with clear phrasing, proper grammar, and consistent tone or voice throughout the report. It is easy to understand and follow the flow of ideas, enhancing readability and comprehension.

OpenCV and Python Program (15%)

Criteria	Unsatisfactory	Satisfactory	Excellent
	(0-3)	(4-6)	(7-10)
Code Quality	Code is poorly	Code is reasonably	Code is well-structured
(20%)	structured, lacks	structured and	and thoroughly
	comments or	contains some	documented with clear
	documentation, and	comments or	comments explaining
	may contain numerous	documentation to	its logic and
	redundancies or	explain key sections or	functionality. It follows
	inefficiencies. Variable	functions. It generally	best practices for
	names and formatting	follows best practices	programming, with
	are inconsistent.	but may contain a few	efficient algorithms
		redundancies or	and minimal
		inefficiencies. Variable	redundancies. Variable
		names and formatting	names and formatting
		are generally	are consistent and
		consistent.	descriptive.
Accuracy	Road segmentation	Road segmentation	Road segmentation
(20%)	results are inaccurate	results are generally	results are highly
	or inconsistent, with	accurate but may	accurate and reliable,
	frequent	exhibit some	with minimal errors or
	misclassifications or	inconsistencies or	inconsistencies in
	errors in identifying	occasional errors in	identifying road areas.
	road areas. It may	identifying road areas.	It demonstrates robust
	struggle to segment	It performs adequately	performance across a
	roads under certain	under most conditions.	wide range of
	conditions or in		conditions and
III	complex environments.		environments.
Error Handling	Program lacks robust	Program includes basic	Program includes
(20%)	error handling and may	error handling to	comprehensive error
	crash or produce	handle common	handling to anticipate
	unexpected behavior	exceptions or errors	and handle various
	when encountering	gracefully. It provides	exceptions or errors
	errors or exceptions. It	some feedback to the	effectively. It provides
	does not provide informative error	user in case of errors	informative error
		but may not cover all	messages and feedback
	messages or feedback to the user.	possible failure scenarios.	to the user, guiding them on how to
	to the user.	scenarios.	resolve issues or
Minimal Human	Program requires	Program requires some	mitigate failures. Program operates
Intervention	significant manual	manual intervention or	autonomously with
(20%)	intervention or	adjustment to optimize	minimal human
(20/0)	adjustment to function	performance but can	intervention. It can
	properly. It relies	operate semi-	accurately perform
	heavily on user input or	autonomously with	road segmentation and
	meavily on user illput of	minimal user input. It	adapt to changing
		minimai usei iliput. it	auapt to changing

	tuning parameters for	may require occasional	conditions without
	road segmentation.	parameter tuning or	requiring constant
		adjustments for	parameter tuning or
		specific scenarios.	manual adjustments.
Advanced Algorithms	Program implements	Program implements	Program demonstrates
and Techniques	basic algorithms and	some modifications or	significant
(20%)	techniques covered in	advancements to the	modifications or
	class, with no	algorithms and	advancements to the
	significant	techniques covered in	algorithms and
	modifications or	class. It demonstrates a	techniques covered in
	advancements. It	reasonable	class. It incorporates
	shows limited	understanding of	innovative solutions or
	understanding of	advanced concepts but	optimizations, showing
	advanced concepts.	may not fully leverage	a deep understanding
		their potential.	of advanced concepts
			and their practical
			applications.