Concentration Inequalities

Markov's inequality

For RV X with finite $\mathbb{E}[X]$ and $X \ge 0$:

$$\mathbb{P}(X \geqslant t) \leqslant \mathbb{E}[X]/t \quad t > 0$$

Pf. Refer to the property

$$\int_0^\infty \mathbb{P}(X \geqslant x) dx = x \mathbb{P}(X \geqslant x) \Big|_0^\infty - \int_0^\infty x d\mathbb{P}(X \geqslant x)$$

$$=0+\int_{0}^{\infty}f_{X}(x)dx=\mathbb{E}[X]$$
 From here, consider

$$\int_0^\infty \mathbb{P}(X\geqslant x)dx\geqslant \int_0^t \mathbb{P}(X\geqslant t)dx\geqslant t\mathbb{P}(X\geqslant t)$$

Chebyshev's inequality

For RV X with finite $\mathbb{E}[X]$, Var(X) and $X \ge 0$:

$$\mathbb{P}(|X - \mathbb{E}[X]| \geqslant t) \leqslant \mathsf{Var}(X)/t^2 \quad t > 0$$

Pf. Apply Markov's with $Y = |X - \mathbb{E}[X]|^2$

Chernoff's bound

For RV X with finite MGF = $\mathbb{E}[e^{\lambda X}]$, for any $t \ge 0$:

$$\mathbb{P}(X \geqslant t) = \mathbb{P}(e^{\lambda X} \geqslant e^{\lambda t}) \leqslant \mathbb{E}[e^{\lambda X - \lambda t}]$$

$$\mathbb{P}(X\leqslant -t)=\mathbb{P}(e^{-\lambda X}\geqslant e^{\lambda t})\leqslant \mathbb{E}[e^{-\lambda X-\lambda t}]$$

Pf. Apply Markov's with $Y=e^{\pm \lambda X}$ (notice $Y\geqslant 0$). One may select a λ that to maximize $\mathbb{E}[e^{\lambda X - \lambda t}]$.

Chernoff's bound corollaries

- C^2 -Subgaussian RV $\mathbb{E}[X] = 0$ and $\mathbb{E}[e^{\lambda X}] \geqslant$ $e^{\lambda^2 C^2/2}$, using Chernoff's bound: $\mathbb{P}(X \geqslant t) \leqslant$ $e^{\lambda^2 C^2/2 - \lambda t}$. Setting $\lambda = \frac{t}{C^2}$ yields the tightest bound: $\mathbb{P}(|X| \ge t) \le 2e^{-t^2/(2C^2)}$
- If $X \in [a, b]$, then $X \mathbb{E}[X]$ is $\frac{(a-b)^2}{2}$ subgaussian.

Hoeffding's bound

For IID RV $\in [a, b]$ with mean μ and empirical mean $\hat{\mu}_n$,

$$\mathbb{P}(|\hat{\mu}_n - \mu| \geqslant t) \leqslant 2e^{\frac{-2nt^2}{(b-a)^2}} \quad t > 0$$

Pf. $\hat{\mu}_n - \mu$ is $\frac{(b-a)^2}{4n}$ subgaussian (use the corollary).

Estimation

Emperical Mean and Variances

Let $X \in [[a, b]]$ be a random variable, $\bar{\mu}$ be the empirical mean, $\bar{\sigma}^2$ the empirical variance computed with μ , and $\hat{\sigma}^2$ with $\bar{\mu}$ respectively. One may bound $|\bar{\mu} - \mu|$ with the Hoeffding's bound on X_i , $|\bar{\sigma}^2 - \sigma|$ with the Hoeffding's bound on $Y_i = |X_i - \mu|^2$, and $|\hat{\sigma}^2 - \sigma^2|$ using the identity $(\hat{\sigma}^2 - \sigma^2) = (\bar{\sigma}^2 - \sigma^2) + (\bar{\mu} - \mu)^2$

Optimization

Consider a function $f: \mathbb{R}^d \to \mathbb{R}$ which we want to optimize wrt to its input \mathbf{x} : $\hat{\mathbf{x}} = \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$.

Derivative test

Gradient the first derivative $\nabla f(\mathbf{w})$ is defined by

$$\begin{bmatrix} \frac{\partial f}{\partial w_1}(\mathbf{w}) & \frac{\partial f}{\partial w_2}(\mathbf{w}) & \cdots & \frac{\partial f}{\partial w_d}(\mathbf{w}) \end{bmatrix}^\mathsf{T}$$

Hessian the second derivative $\nabla^2 f(\mathbf{w})$ is defined by

$$\begin{bmatrix} \frac{\partial^2 f}{\partial w_1^2}(\mathbf{w}) & \frac{\partial^2 f}{\partial w_1 \partial w_2}(\mathbf{w}) & \cdots & \frac{\partial^2 f}{\partial w_1 \partial w_d}(\mathbf{w}) \\ \frac{\partial^2 f}{\partial w_2 \partial w_1}(\mathbf{w}) & \frac{\partial^2 f}{\partial w_2^2}(\mathbf{w}) & \cdots & \frac{\partial^2 f}{\partial w_2 \partial w_d}(\mathbf{w}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial w_d \partial w_1}(\mathbf{w}) & \frac{\partial^2 f}{\partial w_d \partial w_2}(\mathbf{w}) & \cdots & \frac{\partial^2 f}{\partial w_d^2}(\mathbf{w}) \end{bmatrix}$$

Local min: x^* s.t. for some neighborhood around x^* $f(\mathbf{x}) \geqslant f(\mathbf{x}^*)$ for all \mathbf{x} from the neighborhood

Global min: \mathbf{x}^* s.t. $\forall \mathbf{x} \in \mathbb{R}^d$, $f(\mathbf{x}) \geqslant f(\mathbf{x}^*)$

Stationary points: \mathbf{x} s.t. $\nabla f(\mathbf{x}) = \mathbf{0}$. It can either be a local max, min, or saddle point.

Conditions for local min: On top of $\nabla f(\mathbf{x}) = \mathbf{0}$:

- (necessary) $\mathbf{v}^\mathsf{T} \nabla^2 f(\mathbf{x}) \mathbf{v} \ge 0, \ \forall \mathbf{v} \in \mathbb{R}^d$
- (sufficient) $\mathbf{v}^\mathsf{T} \nabla^2 f(\mathbf{x}) \mathbf{v} > 0, \ \forall \mathbf{v} \in \mathbb{R}^d \{\mathbf{0}\}\$

Alternatively, the entries of $\nabla^2 f(\mathbf{x})$ must be ≥ 0

Convexity

f is convex if for any $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^d$ and $\alpha \in (0,1)$

$$f(\alpha \mathbf{w}_1 + (1 - \alpha)\mathbf{w}_2) \leqslant \alpha f(\mathbf{w}_1) + (1 - \alpha)f(\mathbf{w}_2)$$

If f is differentiable, then

- Once: $f(\mathbf{w}_1) \geqslant f(\mathbf{w}_2) + \nabla f(\mathbf{w}_2)^{\top} (\mathbf{w}_1 \mathbf{w}_2)$
- Twice: $\nabla^2 f(\mathbf{x})$ is positive semi-definite everywhere.

Jensen's inequality if f is convex, for any distribution D

$$f(\mathbb{E}_{\mathbf{w} \sim D}[\mathbf{w}]) \leqslant \mathbb{E}_{\mathbf{w} \sim D}[f(\mathbf{w})]$$

Lipchitz smooth $\|\nabla f(\mathbf{w}_1) - \nabla f(\mathbf{w}_2)\|_2 \leq L \|\mathbf{w}_1 - \mathbf{w}_2\|_2$. All L-smooth function must satisfy $f(\mathbf{w}_1) \leq f(\mathbf{w}_2) +$ $\nabla f(\mathbf{w}_2)^{\top} (\mathbf{w}_1 - \mathbf{w}_2) + \frac{L}{2} \|\mathbf{w}_1 - \mathbf{w}_2\|_2^2$

Gradient Descent

Assume f is once differentiable, $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \nabla f(\mathbf{w}_t)$.

Gradient Descent Convergence

If f if L-smooth, gradient descent converges $\alpha \frac{1}{4}$: $f(\mathbf{w}') \leq f(\mathbf{w}) + \nabla f(\mathbf{w})^{\top} (\mathbf{w}' - \mathbf{w}) + \frac{L}{2} \|\mathbf{w}' - \mathbf{w}\|_{2}^{2}$ Substituting $\mathbf{w} = \mathbf{w}_t$ and $\mathbf{w}' = \mathbf{w}_{t+1} = \mathbf{w}_t^2 - \eta_t \nabla f(\mathbf{w}_t)$, $f(\mathbf{w}_{t+1}) \le f(\mathbf{w}_t) - \left(\eta_t - \frac{\eta_t^2 L}{2}\right) \|\nabla f(\mathbf{w}_t)\|_2^2$

Choose $0 < \eta_t < \frac{2}{L}$, $f(\mathbf{w}_{t+1}) - f(\mathbf{w}_t) \le \frac{-\eta}{2} \|\nabla f(\mathbf{w}_t)\|_2^2 |\mathsf{PAC}|$ Learning Telescopic sum and rearrangement:

$$\begin{split} \sum_{i=0}^t \|\nabla f(\mathbf{w}_i)\|_2^2 &\leqslant \frac{2}{\eta} (f(\mathbf{w}_0) - f(\mathbf{w}_{t+1})) \\ &\leqslant \frac{2}{\eta} (f(\mathbf{w}_0) - f_{\min}) \\ \min_i \|\nabla f(\mathbf{w}_i)\|_2^2 &\leqslant \frac{2(f(\mathbf{w}_0) - f_{\min})}{\eta \binom{t+1}{\eta} \binom{t+1}{\eta}} \end{split}$$
 if we want gradient $\leqslant \epsilon$, set $t \geqslant \begin{vmatrix} \frac{2}{\eta} (f(\mathbf{w}_0) - f_{\star}) \\ \frac{2}{\eta} (f(\mathbf{w}_0) - f_{\star}) \\ \frac{2}{\eta} (f(\mathbf{w}_0) - f_{\star}) \end{vmatrix}$

Reducing the Optimality Gap

If f is also convex, the error converges $\propto \frac{1}{4}$:

$$f(\mathbf{w}_*) \geqslant f(\mathbf{w}_t) + \nabla f(\mathbf{w}_t)^{\top} (\mathbf{w}_* - \mathbf{w}_t).$$

Expanding the square:

$$\frac{1}{2} \|\mathbf{w}_{t+1} - \mathbf{w}_*\|_2^2 = \frac{1}{2} \|\mathbf{w}_t - \mathbf{w}_*\|_2^2$$
$$-\eta \nabla f(\mathbf{w}_t)^\top (\mathbf{w}_t - \mathbf{w}_*) + \frac{\eta^2}{2} \|\nabla f(\mathbf{w}_t)\|_2^2$$

Convexity implies

$$\eta \nabla f(\mathbf{w}_t)^{\top} (\mathbf{w}_* - \mathbf{w}_t) \leq \eta (f(\mathbf{w}_*) - f(\mathbf{w}_t))$$

and L-smoothness implies (proven prior)

$$\frac{\eta^2}{2} \|\nabla f(\mathbf{w}_t)\|_2^2 \leqslant \eta(f(\mathbf{w}_t) - f(\mathbf{w}_{t+1}))$$

put altogether

$$|f(\mathbf{w}_{t+1}) - f(\mathbf{w}_*)| \le \frac{1}{2\eta} (\|\mathbf{w}_t - \mathbf{w}_*\|_2^2 - \|\mathbf{w}_{t+1} - \mathbf{w}_*\|_2^2)$$

Summing telescopically and using how $f(\mathbf{w_t})$ decreases:

$$f(\mathbf{w}_{T+1}) - f(\mathbf{w}_*) \leqslant \frac{1}{2\eta(T+1)} \|\mathbf{w}_0 - \mathbf{w}_*\|_2^2$$
 if we want LHS $\leqslant \epsilon$, set $t = \left|\frac{1}{2\eta\epsilon} \|\mathbf{w}_0 - \mathbf{w}_*\|_2^2\right|$

Stochastic Gradient Descent

 $\mathbb{E}_{x,y\sim\mathcal{D}}[\nabla_{\mathbf{w}}\ell(\mathbf{w};\mathbf{x},\mathbf{y})].$ Define $\mathbf{g}_{\mathbf{w}} = \nabla_{\mathbf{w}}\ell(\mathbf{w};\mathbf{x},\mathbf{y}).$ Then, $\nabla_{\mathbf{w}} = \mathbb{E}[\mathbf{g}_{\mathbf{w}}]$. Finally, force $\mathbb{E}[\|\mathbf{g}_{\mathbf{w}}\|_2^2] \leqslant G^2, \forall \mathbf{w}$: $\mathbb{E}_{t}\left[\frac{1}{2}\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}\right] = \mathbb{E}_{t}\left[\frac{1}{2}\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} - \eta \mathbf{g}_{t}^{\top}(\mathbf{w}_{t} - \mathbf{w}_{\star}) + \frac{\eta^{2}}{2}\|\mathbf{g}_{t}\|_{2}^{2}\right]$ $= \frac{1}{2} \mathbb{E}_t[\|\mathbf{w}_t - \mathbf{w}_\star\|_2^2] - \eta \mathbb{E}_t[\mathbf{g}_t^\top (\mathbf{w}_t - \mathbf{w}_\star)] + \frac{\eta^2}{2} \mathbb{E}_t[\|\mathbf{g}_t\|_2^2]$ $\leq \frac{1}{2}\mathbb{E}_{t}[\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2}] - \eta \nabla_{\mathbf{w}} f(\mathbf{w})(\mathbf{w}_{t} - \mathbf{w}_{\star}) + \frac{\eta^{2}}{2}G^{2}$ $\eta \nabla_{\mathbf{w}} f(\mathbf{w})(\mathbf{w}_t - \mathbf{w}_*) \le \frac{1}{2} \mathbb{E}_t[\|\mathbf{w}_t - \mathbf{w}_*\|_2^2] - \frac{1}{2} \mathbb{E}_t[\|\mathbf{w}_{t+1} - \mathbf{w}_*\|_2^2] + \frac{\eta^2}{2} G^2$ $\eta(f(\mathbf{w}_t) - f(\mathbf{w}_*)) \le (\text{convexity of } f)$

Let $f(\mathbf{w}) = \mathbb{E}_{x,y \sim \mathcal{D}}[\ell(\mathbf{w}; \mathbf{x}, \mathbf{y})]$ and the grad $\nabla_{\mathbf{w}} =$

 $\eta \mathbb{E}[(f(\mathbf{w}_t) - f(\mathbf{w}_*))] \le \frac{1}{2} \mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_*\|_2^2] - \frac{1}{2} \mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_*\|_2^2] + \frac{\eta^2}{2} G^2$

 $\frac{1}{T+1} \sum_{t=0}^{T} \mathbb{E}[f(\mathbf{w}_t) - f(\mathbf{w}_*)] \leq \frac{\|\mathbf{w}_0 - \mathbf{w}_*\|_2^2}{2\eta(T+1)} + \frac{\eta G^2}{2}$ Let $\overline{\mathbf{w}}_T = \frac{1}{T+1} \sum_{t=0}^T \mathbf{w}_t$ and $\eta = \frac{\|\mathbf{w}_0 - \mathbf{w}_*\|_2}{G\sqrt{T+1}}$, we pick $T = \left[\frac{\|\mathbf{w}_0 - \mathbf{w}_*\|_2^2 + G^2}{2\epsilon^2}\right]$ if we want error $\leq \epsilon$

Summing telescopically and divide both sides by $\eta(T+1)$:

Define error: $err_{\mathcal{D}}(h) := \mathbb{P}_{\mathbf{x} \sim \mathcal{D}}(c(\mathbf{x}) \neq h(\mathbf{x})).$

Learning Finite Classes

For finite C, the probability error $\geq \epsilon$ yet h is chosen from n data points is $(1-\epsilon)^n$. Suppose this for some h is $|\mathcal{C}|(1-\epsilon)^n \leqslant \delta$ gives $n = \lceil \frac{\log(|\mathcal{C}|) + \log(1/\delta)}{\rceil} \rceil$

Bounding Empirical Error

Define $\widehat{\operatorname{err}}_{\mathcal{D}}(h) := \sum_{i=1}^n \mathbb{I}\{c(\mathbf{x}) \neq h(\mathbf{x})\}$. Hoeffding's bound give, for an h, $\mathbb{P}(|\hat{\mathsf{err}}(h) - \mathsf{err}(h)| \ge \epsilon) \le 2e^{-2n\epsilon^2}$. Union bound for all classes gives $2|\mathcal{C}|e^{-2n\epsilon^2} \leq \delta$ which gives $n = \left[\frac{1}{2\epsilon^2} \log \left(\frac{2|\mathcal{C}|}{\delta}\right)\right]$.

Empirical Error Trick

Given $\mathbb{P}(\forall h, |\hat{\mathsf{err}}(h) - \mathsf{err}(h)| \leq \epsilon/2) \geq 1 - \delta$. Let \hat{h} optimizes err and h_* optimizes err(h). This means $\operatorname{err}(\hat{h}) \leqslant \operatorname{err}(\hat{h}) + \epsilon/2 \leqslant \operatorname{err}(h_*) + \epsilon/2 \leqslant \operatorname{err}(h_*) + \epsilon$

Perceptron Algorithm

Assuming $y_i = \pm 1$ and $\|\mathbf{x}_i\|_2^2, \|\mathbf{w}_*\|_2^2 \leq 1$, $\exists \mathbf{w_*}, y_i = \operatorname{sign}(\mathbf{w_*^\top} \mathbf{x}) \text{ and } |\mathbf{w_*^\top} \mathbf{x}| \geqslant \gamma$

The perceptron algorithm starts with $\mathbf{w}_0 = 0$ and updates $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i x_i$ for a misclassified i. First, $\mathbf{w}_{*}^{\top}\mathbf{w}_{t+1} = \mathbf{w}_{*}^{\top}(\mathbf{w}_{t} + y_{i}\mathbf{x}_{i}) = \mathbf{w}_{*}^{\top}\mathbf{w}_{t} + y_{i}\mathbf{w}_{*}^{\top}\mathbf{x}_{i} \geqslant$ $\mathbf{w}_{*}^{\top}\mathbf{w}_{t} + \gamma$ so $\mathbf{w}_{*}^{\top}\mathbf{w}_{t} \geq t\gamma$. Moreover, $\|\mathbf{w}_{t+1}\|_{2}^{2} =$ $\|\mathbf{w}_t + y_i \mathbf{x}\|_2^2 = \|\mathbf{w}_t\|_2^2 + 2y_i \mathbf{w}_t^{\top} \mathbf{x}_i + y_i^2 \|\mathbf{x}_i\|_2^2$. Since $\|y_i \mathbf{w}_t^{\top} \mathbf{x}_i \leq 0, \|\mathbf{w}_{t+1}\|_2^2 \leq \|\mathbf{w}_t\|_2^2 + 1 \text{ so } \|\mathbf{w}_t\| \leq \sqrt{t}.$ Put together, $t \leq \frac{1}{c^2}$ is when the model converges.

Linear Regression

Suppose $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{v} \in \mathbb{R}^{n \times 1}$, there exists $\mathbf{w}_* \in$ $\mathbb{R}^{d \times 1}$ such that $\mathbf{y} = \mathbf{X} \mathbf{w}_* + \boldsymbol{\eta}$ for $\boldsymbol{\eta} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

MLE Solution (OLS)

The MLE gives the training objective to be $\ell(\mathbf{w}) =$ $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$. The gradient is $2(\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - \mathbf{X}^{\top}\mathbf{y})$ and hessian $2\mathbf{X}^{\top}\mathbf{X}$, giving $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$.

Sample Complexity

$$\begin{split} \|\mathbf{y} - \mathbf{X}\hat{\mathbf{w}}\|_2^2 &= \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{X}\mathbf{w}_*\|_2^2 \\ &- 2\boldsymbol{\eta}^\top \mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*) + \|\boldsymbol{\eta}\|_2^2 \\ \|\mathbf{y} - \mathbf{X}\hat{\mathbf{w}}\|_2^2 &\leqslant \|\boldsymbol{\eta}\|_2^2 \text{ because of MLE} \\ \|\mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*)\|_2^2 &\leqslant 2\boldsymbol{\eta}^\top \mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*) \\ \|\mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*)\|_2 &\leqslant \frac{2\boldsymbol{\eta}^\top \mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*)}{\|\mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*)\|_2} \end{split}$$

Let $r = \operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{X}^{\top}\mathbf{X})$, then there exists orthonormal bases $\mathbf{\Phi} \in \mathbb{R}^{n \times r}$ such that $\mathbf{\Phi}^{ op} \mathbf{\Phi} = \mathbf{I}_r$ and $\mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*) = \mathbf{\Phi}\mathbf{z}$ for some $\mathbf{z} \in \mathbb{R}^r$. Cauchy-Schwartz:

$$\frac{\boldsymbol{\eta}^{\top}\mathbf{X}(\hat{\mathbf{w}}-\mathbf{w}_{*})}{\|\mathbf{X}(\hat{\mathbf{w}}-\mathbf{w}_{*})\|_{2}} = \frac{\boldsymbol{\eta}^{\top}\boldsymbol{\Phi}\mathbf{z}}{\|\boldsymbol{\Phi}\mathbf{z}\|_{2}} = \frac{\boldsymbol{\eta}_{r}^{\top}\mathbf{z}}{\|\mathbf{z}\|_{2}} \leqslant \|\boldsymbol{\eta}_{r}\|_{2}$$

Since η_r is normal, $\mathbb{E}[\|\eta_r\|] = \sigma\sqrt{r}$, implying $\|\mathbf{X}(\hat{\mathbf{w}} - \|\mathbf{x}\|)$ $\|\mathbf{w}_*\|_2^2 \le 4\|\eta_r\|_2^2$ and $\mathbb{E}[\|\mathbf{X}(\hat{\mathbf{w}} - \mathbf{w}_*)\|_2^2] \le 4\sigma^2 r$. Define negative sums are equal in magnitude, $V := \frac{1}{n} \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{X}\mathbf{w}_*\|_2^2 - 4\frac{\sigma^2 r}{n} \leqslant \frac{4}{n} \|\boldsymbol{\eta}_r\|_2^2 - 4\frac{\sigma^2 r}{n}$, then $\mathbb{E}\left[e^{\lambda V}\right]\leqslant \left(\mathbb{E}\left[e^{\frac{4\lambda}{n}\left(\eta_{r,1}^2/\sigma^2-1\right)}\right]\right)^r$ $\eta_{r,1}^2/\sigma^2$ is standard normal. We use the MGF for z^2-1 if $z \in \mathcal{N}(0,1)$ as follows: $\mathbb{E}[e^{\lambda(z^2-1)}] \leqslant e^{2\lambda}$, set $\lambda =$ $\frac{4\lambda\sigma^2}{n}$, $\mathbb{E}[e^{\lambda V}] \leqslant e^{\frac{32r\lambda^2\sigma^4}{n^2}}$

Agnostic Linear Regression Model

Suppose \mathbf{w}_* leads to the smallest true error OPT := $err(\mathbf{w}_*)$. We first bound $err(\mathbf{w}) \leq 4$ because of normalization constraint. For a given w, Hoeffding's give

$$\mathbb{P}(|\hat{\mathsf{err}}(\mathbf{w}) - \mathsf{err}(\mathbf{w})| \geqslant t) \leqslant 2 \exp\left(\frac{-2nt^2}{4}\right)$$

Quantization define a grid $\mathcal{H}_{\epsilon'}$ of size ϵ' , $|\mathcal{H}_{\epsilon'}| = (\frac{2}{7})^d$. $\mathbb{P}(\exists \mathbf{w} \in \mathcal{H}_{\epsilon'} : |\hat{\mathsf{err}}(\mathbf{w}) - \mathsf{err}(\mathbf{w})| \ge t) \le 2(\frac{2}{\cdot})^d e^{(\frac{-2nt^2}{4})}$

Set
$$t = \epsilon$$
 and RHS $\leq \delta$ gives $n = O(\frac{d \ln(1/\epsilon') + \ln(1/\delta)}{\epsilon^2})$.
So $\operatorname{err}(\hat{\mathbf{v}}) \leq \operatorname{err}(\mathbf{v}_*) + \epsilon/2$ when \mathbf{v} nearest to \mathbf{w} in $\mathcal{H}_{\epsilon'}$.

$$\operatorname{err}(\mathbf{v}) = \mathbb{E}_{(\mathbf{x},y)} \left[(y - \mathbf{v}^{\top} \mathbf{x})^2 \right]$$

$$\begin{split} &= \mathbb{E}_{(\mathbf{x},y)} \left[(y - \mathbf{w}^{\top} \mathbf{x} + \mathbf{w}^{\top} \mathbf{x} - \mathbf{v}^{\top} \mathbf{x})^{2} \right] \\ &= \mathbb{E}_{(\mathbf{x},y)} \left[(y - \mathbf{w}^{\top} \mathbf{x})^{2} \right] + \mathbb{E}_{(\mathbf{x},y)} \left[(\mathbf{w}^{\top} \mathbf{x} - \mathbf{v}^{\top} \mathbf{x})^{2} \right] \end{split}$$

$$+2\mathbb{E}_{(\mathbf{x},y)}\left[(y-\mathbf{w}^{\top}\mathbf{x})(\mathbf{w}^{\top}\mathbf{x}-\mathbf{v}^{\top}\mathbf{x})\right]$$

$$+2\mathbb{E}_{(\mathbf{x},y)}\left[(y-\mathbf{w}^{\mathsf{T}}\mathbf{x})(\mathbf{w}^{\mathsf{T}}\mathbf{x}-\mathbf{v}^{\mathsf{T}}\mathbf{x})\right]$$

$$\leqslant \mathsf{err}(\mathbf{w}) + \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}} \left[(\mathbf{w}^{\top} \mathbf{x} - \mathbf{v}^{\top} \mathbf{x})^2 \right]$$

$$+ \ 2 \sqrt{\mathsf{err}(\mathbf{w}) \cdot \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}} \left[(\mathbf{w}^{\top} \mathbf{x} - \mathbf{v}^{\top} \mathbf{x})^2 \right]}$$

$$= \operatorname{err}(\mathbf{w}) + \operatorname{err}_q + 2\sqrt{\operatorname{err}(\mathbf{w}) \cdot \operatorname{err}_q}$$

$$\leq \operatorname{err}(\mathbf{w}) + \operatorname{err}_q + 4\sqrt{\operatorname{err}_q}$$

Therefore, we want $err_a + 4\sqrt{err_a} \leq \epsilon/4$:

$$\begin{aligned} \mathsf{err}_q &= \mathbb{E}_{(\mathbf{x},y)} \left[(\mathbf{w}^\top \mathbf{x} - \mathbf{v}^\top \mathbf{x})^2 \right] \\ &= \mathbb{E}_{(\mathbf{x},y)} \left[\| \mathbf{w} - \mathbf{v} \|_2^2 \| \mathbf{x} \|_2^2 \right] \end{aligned}$$

$$\leq \|\mathbf{w} - \mathbf{v}\|_2^2 \cdot \mathbb{E}_{(\mathbf{x},y)} [\|\mathbf{x}\|_2^2]$$

$$\leq \left(\frac{\epsilon}{2}\right)^2 \cdot \|\mathbf{1}_d\|_2^2 = \frac{(\epsilon)^2 d}{4}$$

$$\leqslant \left(\frac{1}{2}\right) \cdot \|\mathbf{1}_d\|_2^2 = \frac{\epsilon}{4}$$
As such, $\epsilon' \in O(d/\sqrt{\epsilon})$, $n = O(\frac{d\ln(d/\epsilon) + \ln(1/\delta)}{2})$

Total Variation Distance

Given observations from $\mathbf{p}=(p_1,\ldots,p_k)$, we measure the closesness of an estimate $\hat{\mathbf{p}} = (\hat{p}_1, \dots, \hat{p}_k)$:

$$d_{\mathsf{TV}}(\hat{\mathbf{p}}, \mathbf{p}) = \max_{S \subseteq \{1, 2, \dots, k\}} \sum_{i \in S} (p_i - \hat{p}_i)$$

Break it down to positive and negative terms:

$$\sum_{i: p_i > \hat{p}_i} |p_i - \hat{p}_i| - \sum_{i: p_i < \hat{p}_i} |\hat{p}_i - p_i|$$

This value is maximal when $p_i > \hat{p}_i$. Since positive and $A_i \sim \text{Ber}(q)$ and $A' = \mathbb{I}\{\sum_{i=1}^m A_i \geq \frac{m}{2}\}$.

$$\max_{S\subseteq\{1,2,...,k\}}\sum_{i\in S}(p_i-\hat{p}_i)=\frac{1}{2}\sum_{i=1}^k|p_i-\hat{p}_i|$$
 Estimator: $X_i:i=1,2,\ldots,n$, we assign a Bernoulli

random variable for each class where $\hat{p}_i = \frac{\sum_{j=1}^n \mathbb{I}(X_j = i)}{r}$

$$d_{\mathsf{TV}}(\hat{\mathbf{p}}, \mathbf{p}) = \max_{S \subseteq \{1, 2, \dots, k\}} \sum_{i \in S} (p_i - \hat{p}_i)$$

$$= \max_{S \subseteq \{1, 2, \dots, k\}} \sum_{i \in S} \frac{\mathbb{I}(X_j = i)}{n} - \sum_{i \in S} p_i$$

By linearity of expectation, $\mathbb{E}\left[\sum_{i \in S} \frac{\mathbb{I}(X_j = i)}{n}\right] = \sum_{i \in S} p_i$

This means $\sum_{i \in S} \frac{\mathbb{I}(X_j = i)}{n}$ is a random variable with mean $\sum_{i \in S} p_i$ and range [0,1]. Applying Hoeffding's bound,

$$\mathbb{P}\left(\left|\sum_{i\in S} \frac{\mathbb{I}(X_j=i)}{n} - \sum_{i\in S} p_i\right| \geqslant \epsilon\right) \leqslant 2e^{-2\epsilon^2 n}$$

$$\mathbb{P}(|d_{\mathsf{TV}}(\hat{\mathbf{p}}, \mathbf{p})| \ge \epsilon) \le 2^k 2e^{-2\epsilon^2 n}$$

 2^k is the number of possible S. Hence, $2^k 2e^{-2\epsilon^2 n} \leqslant \delta$ yields the bound for $n \geqslant \frac{k \log(2) + \log(2\delta)}{2\epsilon^2}$

Hypothesis Testing

 H_0 : null hypothesis (nothing happens) H_1 : alternative. Define $\alpha = \mathbb{P}(\text{reject } H_0|H_0)$ (significance) and \bullet Set $T = \binom{n}{2} \cdot \frac{1+\epsilon^2/2}{L}$, accept if C < T, reject if $C \ge T$ $1 - \beta = \mathbb{P}(\text{reject } H_1 | H_0) \text{ (power)}. p-\text{value: } p$ $\mathbb{P}(\text{event}|H_0 \text{ is accepted}). p \leqslant \alpha \text{ means we reject } H_0.$

Unknown Null Hypothesis

Given two unknown distr p_* (reference) and q_* (test) $q_1,q_2,\ldots,q_n \sim q_*$ Let $s=\frac{1}{n}\sum_{i=1}^n d_{\mathsf{TV}}(p_*,q_i)$ and $\bar{s} = \mathbb{E}_{q_{\frac{1}{2}}}[s]$. Hoeffding gives

$$p = \mathbb{P}(|s - \bar{s}| \ge |s_{\text{obs}} - \bar{s}|) \le 2e^{-2n|s_{\text{obs}} - \bar{s}|^2}$$

if accept $H_0 := \{p_* = q_*\}$, sample $p_1, p_2, \dots, p_N \sim p_*$ define $\hat{s} = \frac{1}{n} \sum_{i=1}^{n} d_{\mathsf{TV}}(p_*, p_i) : \mathbb{P}(|\hat{s} - \bar{s}| \ge \epsilon) \le 2e^{-2N\epsilon^2}$

$$p \leqslant \mathbb{P}(|s - \bar{s}| \geqslant |s_{\mathsf{obs}} - \hat{s}| - |\hat{s} - \bar{s}|)$$

$$\leq \mathbb{P}(|s-\bar{s}| \geq |s_{\mathsf{obs}} - \hat{s}| - |\hat{s} - \bar{s}| ||\hat{s} - \bar{s}| \leq \epsilon)$$

$$+\mathbb{P}(|\hat{s}-\bar{s}| \geq \epsilon)$$
 (total probability)

$$\leqslant \mathbb{P}(|s-\bar{s}|\geqslant |s_{\mathsf{obs}}-\hat{s}|-\epsilon) + \mathbb{P}(|\hat{s}-\bar{s}|\geqslant \epsilon)$$

$$< 2e^{2n(|s_{\mathsf{obs}} - \bar{s}| - \epsilon)^2} + 2e^{2N\epsilon^2}$$

choose $\epsilon = \frac{|s_{\rm obs} - \bar{s}|}{2}$ and n = N: $p \leqslant 4e^{\frac{n|s_{\rm obs} - \bar{s}|^2}{2}}$

Multiple Null Hypotheses

Given $H_0^{(i)}, i=1,2,\ldots,K$, suppose each has significance α . Define FWER := $\mathbb{P}(\geqslant 1 \text{ false rejections}) \leqslant$ $\sum_{i=1}^{K} \mathbb{P}(\text{reject } H_0^{(i)}|H_0^{(i)}) = \alpha K, \text{ we set } \alpha \to \alpha/K$

Improving Success Probability

Testing algorithm \mathcal{A} passes with prob 1-q, $q \in [0,0.5]$, using n samples (depends on k and ϵ). Suppose

$$\mathbb{P}(\mathcal{A}'=0) = \mathbb{P}\left(\sum_{i=1}^{m} \mathcal{A}_{i} \geqslant \frac{m}{2}\right)$$

$$= \mathbb{P}\left(\frac{1}{m} \sum_{i=1}^{m} \mathcal{A}_{i} - q \geqslant \frac{1}{2} - q\right)$$

$$\leq e^{-2m(\frac{1}{2} - q)^{2}} = e^{-\frac{m}{2}(1 - 2q)^{2}}$$

Estimation Uniformity Testing

Let $\mathbf{u}_k = (1/k, 1/k, \dots, 1/k)$. Let our estimator be $\hat{\mathbf{p}}$ such that $d_{\text{TV}}(\hat{\mathbf{p}}, \mathbf{p}) \leq \epsilon/3$.

- If p = u_k, d_{TV}(p̂, u_k) ≤ ε/3
- If $d_{\mathsf{TV}}(\mathbf{p}, \mathbf{u}_k) \geqslant \epsilon$, d_{TV} is a metric so $d_{\mathsf{TV}}(\hat{\mathbf{p}}, \mathbf{u}_k) \geqslant |\mathsf{Then}|$ $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) - d_{\text{TV}}(\mathbf{p}, \hat{\mathbf{p}}) \geqslant 2\epsilon/3$. $\epsilon/2$ could be used.

Sample complexity: $n \geqslant \frac{k \log(2) + \log(2\delta)}{2\epsilon^2}$

Collision Uniformity Testing

Let $C = \sum_{i < j} \mathbb{I}\{X_i = X_j\}$ be the number of pairwise collisions among n samples from \mathbf{p} . $\mathbb{E}[C] = \binom{n}{2} \|\mathbf{p}\|_2^2$.

- If $\mathbf{p} = \mathbf{u}_k$, $\mathbb{E}[C] = \binom{n}{2} \cdot \frac{1}{7}$
- $d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) \ge \epsilon$, $\|\mathbf{p}\|_2^2 > \frac{1+\epsilon^2}{k} \Rightarrow \mathbb{E}[C] > \binom{n}{2} \cdot \frac{1+\epsilon^2}{k}$

Claim: $Var(C) \leq n^2 \|\mathbf{p}\|_2^2 + n^3 \|\mathbf{p}\|_3^3, \|\mathbf{p}\|_3^3 = \sum_{i=1}^k p_i^3$ Observe that because $n \geqslant \sqrt{k}$, $\|\mathbf{p}\|_2 \geqslant \frac{1}{\sqrt{k}}$, and $\|\mathbf{p}\|_3 \leqslant \|\mathbf{p}\|_2$, we can further bound the variance by $Var[C] \leq 2n^3 ||\mathbf{p}||_2^3$

Using $\mathbb{P}(|C - \mathbb{E}[C]| \ge 2\sigma) \le \frac{1}{4}$ and $\sigma = \sqrt{\mathsf{Var}[C]} \le$ $\sqrt{2n^3}\|\mathbf{p}\|_2^{3/2}$ we prove

• Case 1 (Uniform): $p = u_k$

$$\mathbb{E}[C] = \binom{n}{2} \cdot \frac{1}{k},$$
$$\sigma \leqslant \sqrt{2n^3} \cdot \frac{1}{1^{\frac{3}{2}}}$$

We want $C < T = \binom{n}{2} \cdot \frac{1+\epsilon^2/2}{h}$, so:

$$\mathbb{E}[C] + 2\sigma < T \quad \Rightarrow \quad n = O\left(\frac{\sqrt{k}}{\epsilon^2}\right)$$

• Case 2 (Far): $d_{TV}(\mathbf{p}, \mathbf{u}_k) \ge \epsilon/2$

$$\|\mathbf{p}\|_2^2 \geqslant \frac{1+\epsilon^2+\alpha}{k},$$

$$\mathbb{E}[C] \geqslant \binom{n}{2} \cdot \frac{1 + \epsilon^2 + \alpha}{k}$$

We want $C \geqslant T$, so:

$$\mathbb{E}[C] - 2\sigma \geqslant T \quad \Rightarrow \quad n = O\left(\frac{\sqrt{k}}{\epsilon^2}\right)$$

Conclusion: $n = \Theta\left(\frac{\sqrt{k}}{\epsilon^2}\right)$ suffice to separate error $\leq 1/4$.

ℓ_2 Identity Testing

Goal: Given i.i.d. samples from unknown q and explicit p, test:

• H_0 : $\mathbf{p} = \mathbf{q} \text{ vs. } H_1$: $\|\mathbf{p} - \mathbf{q}\|_1 \ge \epsilon$

Key idea: Use a test statistic that estimates $\|\mathbf{p} - \mathbf{q}\|_2^2$.

Tester: Let $X_i \sim \mathsf{Pois}(nq_i)$, define

$$Z = \sum_{i=1}^{k} (X_i - np_i)^2 - X_i$$

 $\mathbb{E}[Z] = n^2 \|\mathbf{p} - \mathbf{q}\|_2^2$ (bias-corrected estimator)

Theorem: With $n = \Theta\left(\frac{\sqrt{k}}{\epsilon^2}\right)$ samples, this tester distinguishes H_0 from H_1 with constant probability.

Why it works:

- Under H_0 , $\mathbb{E}[Z] = 0$
- Under H_1 , $\|\mathbf{p} \mathbf{q}\|_1 \ge \epsilon \Rightarrow \|\cdot\|_2^2 \ge \epsilon^2/k$
- So $\mathbb{E}[Z] \geqslant n^2 \cdot \epsilon^2/k$
- With variance $Var(Z) = O(n^2)$, Chebyshev implies signal is detectable with $n = \Theta(\sqrt{k}/\epsilon^2)$