CS 228 : Logic in Computer Science

Krishna. S

• Given a propositional logic formula φ , is it unsatisfiable?

- ▶ Given a propositional logic formula φ , is it unsatisfiable?
- ► How does a solver do it?
- Assume it is in CNF

▶ Let C_1 , C_2 be two clauses. Assume $p \in C_1$ and $\neg p \in C_2$ for some literal p.

- ▶ Let C_1 , C_2 be two clauses. Assume $p \in C_1$ and $\neg p \in C_2$ for some literal p. Then the clause $R = (C_1 \{p\}) \cup (C_2 \{\neg p\})$ is a resolvent of C_1 and C_2 .
- ▶ Let $C_1 = \{p_1, \neg p_2, p_3\}$ and $C_2 = \{p_2, \neg p_3, p_4\}$. As $p_3 \in C_1$ and $\neg p_3 \in C_2$, we can find the resolvent. The resolvent is $\{p_1, p_2, \neg p_2, p_4\}$.
- ▶ Resolvent not unique : $\{p_1, p_3, \neg p_3, p_4\}$ is also a resolvent.

3 rules in Resolution

Let G be any formula. Let F be the CNF formula resulting from the CNF algorithm applied to G. Then G ⊢ F (Prove!)

3 rules in Resolution

- Let G be any formula. Let F be the CNF formula resulting from the CNF algorithm applied to G. Then G ⊢ F (Prove!)
- Let F be a formula in CNF, and let C be a clause in F. Then F ⊢ C (Prove!)

3 rules in Resolution

- Let G be any formula. Let F be the CNF formula resulting from the CNF algorithm applied to G. Then G ⊢ F (Prove!)
- Let F be a formula in CNF, and let C be a clause in F. Then F ⊢ C (Prove!)
- Let F be a formula in CNF. Let R be a resolvent of two clauses of F. Then F ⊢ R (Prove!)

Show that resolution can be used to determine whether any given formula is unsatisfiable.

▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.

Show that resolution can be used to determine whether any given formula is unsatisfiable.

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ▶ $Res^n(F) = Res^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^{n-1}(F)\}$

Show that resolution can be used to determine whether any given formula is unsatisfiable.

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ► $Res^n(F) = Res^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^{n-1}(F)\}$
- Res⁰(F) = F, there are finitely many clauses that can be derived from F.

Show that resolution can be used to determine whether any given formula is unsatisfiable.

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ► $Res^n(F) = Res^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^{n-1}(F)\}$
- Res⁰(F) = F, there are finitely many clauses that can be derived from F.
- ▶ There is some $m \ge 0$ such that $Res^m(F) = Res^{m+1}(F)$. Denote it by $Res^*(F)$.

Example

Let
$$F = \{\{p_1, p_2, \neg p_3\}, \{\neg p_2, p_3\}\}.$$

► *Res*⁰(*F*) = *F*

Example

Let
$$F = \{\{p_1, p_2, \neg p_3\}, \{\neg p_2, p_3\}\}.$$

- ► *Res*⁰(*F*) = *F*
- $Res^1(F) = F \cup \{p_1, p_2, \neg p_2\} \cup \{p_1, \neg p_3, p_3\}.$

Example

Let $F = \{\{p_1, p_2, \neg p_3\}, \{\neg p_2, p_3\}\}.$

- ► *Res*⁰(*F*) = *F*
- $Res^1(F) = F \cup \{p_1, p_2, \neg p_2\} \cup \{p_1, \neg p_3, p_3\}.$
- ▶ $Res^2(F) = Res^1(F) \cup \{p_1, p_2, \neg p_3\} \cup \{p_1, p_3, \neg p_2\}$

Let F be a formula in CNF. If $\emptyset \in Res^*(F)$, then F is unsatisfiable.

▶ If $\emptyset \in Res^*(F)$. Then $\emptyset \in Res^n(F)$ for some n.

Let F be a formula in CNF. If $\emptyset \in Res^*(F)$, then F is unsatisfiable.

- ▶ If $\emptyset \in Res^*(F)$. Then $\emptyset \in Res^n(F)$ for some n.
- ▶ Since $\emptyset \notin Res^0(F)$ (\emptyset is not a clause), there is an m > 0 such that $\emptyset \notin Res^m(F)$ and $\emptyset \in Res^{m+1}(F)$.

Let F be a formula in CNF. If $\emptyset \in Res^*(F)$, then F is unsatisfiable.

- ▶ If $\emptyset \in Res^*(F)$. Then $\emptyset \in Res^n(F)$ for some n.
- ▶ Since $\emptyset \notin Res^0(F)$ (\emptyset is not a clause), there is an m > 0 such that $\emptyset \notin Res^m(F)$ and $\emptyset \in Res^{m+1}(F)$.
- ▶ Then $\{p\}, \{\neg p\} \in Res^m(F)$. By the rules of resolution, we have $F \vdash p, \neg p$, and thus $F \vdash \bot$. Hence, F is unsatisfiable.

Prove the converse: F is unsatisfiable implies $\emptyset \in Res^*(F)$.

(Discuss substitution before the proof)

8/1;

If *F* in CNF is unsatisfiable, then $\emptyset \in Res^*(F)$.

▶ Let F have k clauses C_1, \ldots, C_k .

If *F* in CNF is unsatisfiable, then $\emptyset \in Res^*(F)$.

- ▶ Let F have k clauses C_1, \ldots, C_k .
- ▶ wlg, assume that no C_i has both p and $\neg p$

If *F* in CNF is unsatisfiable, then $\emptyset \in Res^*(F)$.

- ▶ Let F have k clauses C_1, \ldots, C_k .
- ▶ wlg, assume that no C_i has both p and $\neg p$
- ▶ Induct on the number *n* of propositional variables that occur in *F*.

9/1;

If *F* in CNF is unsatisfiable, then $\emptyset \in Res^*(F)$.

- ▶ Let F have k clauses C_1, \ldots, C_k .
- ▶ wlg, assume that no C_i has both p and $\neg p$
- ▶ Induct on the number *n* of propositional variables that occur in *F*.
- ▶ If n = 1, then the possible clauses are p, $\neg p$ and $p \lor \neg p$. The third one is ruled out, by assumption.

If *F* in CNF is unsatisfiable, then $\emptyset \in Res^*(F)$.

- ▶ Let F have k clauses C_1, \ldots, C_k .
- ▶ wlg, assume that no C_i has both p and $\neg p$
- ▶ Induct on the number *n* of propositional variables that occur in *F*.
- ▶ If n = 1, then the possible clauses are p, $\neg p$ and $p \lor \neg p$. The third one is ruled out, by assumption.
- ▶ If $F = \{\{p\}\}$ or $F = \{\{\neg p\}\}$, F is satisfiable.

If *F* in CNF is unsatisfiable, then $\emptyset \in Res^*(F)$.

- ▶ Let F have k clauses C_1, \ldots, C_k .
- ▶ wlg, assume that no C_i has both p and $\neg p$
- ▶ Induct on the number *n* of propositional variables that occur in *F*.
- ▶ If n = 1, then the possible clauses are p, $\neg p$ and $p \lor \neg p$. The third one is ruled out, by assumption.
- ▶ If $F = \{\{p\}\}$ or $F = \{\{\neg p\}\}$, F is satisfiable.
- ▶ Hence, $F = \{\{p\}, \{\neg p\}\}$. Clearly, $\emptyset \in Res(F)$.

▶ Inductive hypothesis : If F has $\leq n$ variables and is unsat, then $\emptyset \in Res^*(F)$.

- ▶ Inductive hypothesis : If F has $\leq n$ variables and is unsat, then $\emptyset \in Res^*(F)$.
- ▶ Let F have n + 1 variables p_1, \ldots, p_{n+1} .

- Inductive hypothesis : If F has ≤ n variables and is unsat, then ∅ ∈ Res*(F).
- ▶ Let *F* have n + 1 variables p_1, \ldots, p_{n+1} .
 - ▶ Let G_0 be the conjunction of all C_i in F such that $\neg p_{n+1} \notin C_i$.
 - ▶ Let G_1 be the conjunction of all C_i in F such that $p_{n+1} \notin C_i$.

- Inductive hypothesis : If F has ≤ n variables and is unsat, then ∅ ∈ Res*(F).
- ▶ Let *F* have n + 1 variables p_1, \ldots, p_{n+1} .
 - ▶ Let G_0 be the conjunction of all C_i in F such that $\neg p_{n+1} \notin C_i$.
 - ▶ Let G_1 be the conjunction of all C_i in F such that $p_{n+1} \notin C_i$.
- ▶ Clauses in F= Clauses in G0 \cup Clauses in G1

- Inductive hypothesis : If F has ≤ n variables and is unsat, then ∅ ∈ Res*(F).
- ▶ Let *F* have n + 1 variables p_1, \ldots, p_{n+1} .
 - ▶ Let G_0 be the conjunction of all C_i in F such that $\neg p_{n+1} \notin C_i$.
 - ▶ Let G_1 be the conjunction of all C_i in F such that $p_{n+1} \notin C_i$.
- ▶ Clauses in F= Clauses in G0 \cup Clauses in G1

- ▶ Let $F_0 = \{C_i \{p_{n+1}\} \mid C_i \in G_0\}$
- ▶ Let $F_1 = \{C_i \{\neg p_{n+1}\} \mid C_i \in G_1\}$

Let $F = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}, \{\neg p_2, \neg p_3\}\}$ and n = 2.

- $\qquad \bullet \quad G_0 = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}\}, \ G_1 = \{\{p_2\}, \{\neg p_2, \neg p_3\}\}.$
- $ightharpoonup F_0 = \{\{p_1\}, \{p_2\}, \{\neg p_1, \neg p_2\}\} \text{ and } F_1 = \{\{p_2\}, \{\neg p_2\}\}$
- ▶ If $p_{n+1} = false$ in F, then F is equisatisfiable with F_0

Let $F = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}, \{\neg p_2, \neg p_3\}\}$ and n = 2.

- $G_0 = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}\}, G_1 = \{\{p_2\}, \{\neg p_2, \neg p_3\}\}.$
- $ightharpoonup F_0 = \{\{p_1\}, \{p_2\}, \{\neg p_1, \neg p_2\}\} \text{ and } F_1 = \{\{p_2\}, \{\neg p_2\}\}$
- ▶ If $p_{n+1} = false$ in F, then F is equisatisfiable with F_0
- ▶ If $p_{n+1} = true$ in F, then F is equisatisfiable with F_1

Let $F = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}, \{\neg p_2, \neg p_3\}\}$ and n = 2.

- $G_0 = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}\}, G_1 = \{\{p_2\}, \{\neg p_2, \neg p_3\}\}.$
- $ightharpoonup F_0 = \{\{p_1\}, \{p_2\}, \{\neg p_1, \neg p_2\}\} \text{ and } F_1 = \{\{p_2\}, \{\neg p_2\}\}$
- ▶ If $p_{n+1} = false$ in F, then F is equisatisfiable with F_0
- ▶ If $p_{n+1} = true$ in F, then F is equisatisfiable with F_1
- ▶ Hence F is satisfiable iff $F_0 \vee F_1$ is.

Let $F = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}, \{\neg p_2, \neg p_3\}\}$ and n = 2.

- $G_0 = \{\{p_1, p_3\}, \{p_2\}, \{\neg p_1, \neg p_2, p_3\}\}, G_1 = \{\{p_2\}, \{\neg p_2, \neg p_3\}\}.$
- $ightharpoonup F_0 = \{\{p_1\}, \{p_2\}, \{\neg p_1, \neg p_2\}\} \text{ and } F_1 = \{\{p_2\}, \{\neg p_2\}\}$
- ▶ If $p_{n+1} = false$ in F, then F is equisatisfiable with F_0
- ▶ If $p_{n+1} = true$ in F, then F is equisatisfiable with F_1
- ▶ Hence F is satisfiable iff $F_0 \vee F_1$ is.
- ▶ As F is unsatisfiable, F_0 and F_1 are both unsatisfiable.

▶ By induction hypothesis, $\emptyset \in Res^*(F_0)$ and $\emptyset \in Res^*(F_1)$.

- ▶ By induction hypothesis, $\emptyset \in Res^*(F_0)$ and $\emptyset \in Res^*(F_1)$.
- ▶ Hence, $\emptyset \in Res^*(G_0)$ or $\{p_{n+1}\} \in Res^*(G_0)$, and $\emptyset \in Res^*(G_1)$ or $\{\neg p_{n+1}\} \in Res^*(G_1)$.

- ▶ By induction hypothesis, $\emptyset \in Res^*(F_0)$ and $\emptyset \in Res^*(F_1)$.
- ▶ Hence, $\emptyset \in Res^*(G_0)$ or $\{p_{n+1}\} \in Res^*(G_0)$, and $\emptyset \in Res^*(G_1)$ or $\{\neg p_{n+1}\} \in Res^*(G_1)$.
- ▶ If $\emptyset \in Res^*(G_0)$ or $\emptyset \in Res^*(G_1)$, then $\emptyset \in Res^*(F)$.

- ▶ By induction hypothesis, $\emptyset \in Res^*(F_0)$ and $\emptyset \in Res^*(F_1)$.
- ▶ Hence, $\emptyset \in Res^*(G_0)$ or $\{p_{n+1}\} \in Res^*(G_0)$, and $\emptyset \in Res^*(G_1)$ or $\{\neg p_{n+1}\} \in Res^*(G_1)$.
- ▶ If $\emptyset \in Res^*(G_0)$ or $\emptyset \in Res^*(G_1)$, then $\emptyset \in Res^*(F)$.
- ▶ Else, $\{p_{n+1}\} \in Res^*(G_0)$ and $\{\neg p_{n+1}\} \in Res^*(G_1)$.

- ▶ By induction hypothesis, $\emptyset \in Res^*(F_0)$ and $\emptyset \in Res^*(F_1)$.
- ▶ Hence, $\emptyset \in Res^*(G_0)$ or $\{p_{n+1}\} \in Res^*(G_0)$, and $\emptyset \in Res^*(G_1)$ or $\{\neg p_{n+1}\} \in Res^*(G_1)$.
- ▶ If $\emptyset \in Res^*(G_0)$ or $\emptyset \in Res^*(G_1)$, then $\emptyset \in Res^*(F)$.
- ▶ Else, $\{p_{n+1}\} \in Res^*(G_0)$ and $\{\neg p_{n+1}\} \in Res^*(G_1)$.
- ▶ Hence $\emptyset \in Res^*(F)$.

Resolution Summary

Given a formula ψ , convert it into CNF, say ζ . ψ is satisfiable iff $\emptyset \notin Res^*(\zeta)$.

- ▶ If ψ is unsat, we might get \emptyset before reaching $Res^*(\zeta)$.
- If ψ is sat, then truth tables are faster : stop when some row evaluates to 1.