REMARKS

Claims 1-16 and 25 currently are pending.

Restriction Requirement

The examiner acknowledged the election with traverse of Group I (claims 1-16) but still deemed the requirement proper. Therefore, applicants cancel claims 18-24 which are drawn to an invention nonelected with traverse.

Sequence Disclosure

The examiner has required that the primers located on page 18 of the specification be included in a sequence disclosure. Therefore, applicants submit herein a revised sequence disclosure which includes the primers located on page 18 of the specification.

A copy of the Sequence Listing in computer readable form is attached hereto. The content of the paper copy of the Sequence Listing and the copy of the Sequence Listing in computer readable form is the same, and includes no new matter. It is believed that by submitting the present amendment and sequence listing diskette, the application now fully complies with the requirements of 37 CFR 1.821-1.825. Favorable action by the examiner is solicited.

Foreign Priority

Applicants soon will submit a certified translation of German patent (1970066.9) for proper claiming of priority under 35 USC § 119(a)-(d).

Arrangement of the Specification

As required by the examiner applicants insert proper headings in the specification.

35 USC § 112, first paragraph (Enablement)

The examiner rejected claims 1-16 because the specification while enabling for a DNA sequence encoding a hydroxyphenylpyruvate dioxygenase (HPPD) isolated from barley, an expression vector comprising said isolated DNA sequence, a method of transforming comprising said expression cassette and a plant transformed therewith, does not reasonably provide enablement for other plant DNA sequences encoding an HPPD or uses thereof.

To overcome the rejection applicants amend claim 1 so that it is directed to an isolated DNA sequence encoding a barley HPPD. This amendment is supported by the specification on page 7, line 26. Applicants also add new claim 25, which depends on claim 1.

35 USC § 112, second paragraph (Indefiniteness)

Applicants follow the examiner's suggestions and amend the claims accordingly.

Claim 6 has been amended to a process claim which comprises a definite step.

35 USC §102/§ 103

The examiner rejected claim 1 under 35 USC § 102(b) as being anticipated by the intervening reference Krupinska et al. because it discloses SEQ ID NO: 1.

Applicants will soon submit a copy of the a translation of the priority application which should overcome this rejection.

Claims 1-13, 5-12, 14 and 16 were rejected under 35 USC § 102(e) as being anticipated by Della Penna et al. (US 6,087,563). Claims 4, 13 and 15 were rejected as being obvious under 35 USC § 103(a) over Della Penna et al. Applicants first point out that claim 1 as amended is not disclosed by Della Penna et al. as this reference does

SEULBERGER et al., Serial No. 09/462,629

not disclose a barley HPPD. Furthermore, applicants herein submit a declaration signed by Dr. Jon Falk who has established new data and summarized the already present data. Kindly the consider the arguments in the declaration.

For the reasons expressed above, it is urged that the prior art references cited by the examiner either singly or in combination fail to anticipate or suggest the present invention as defined by the amended claims. Accordingly, a *prima facie* case of obviousness has not been established by the examiner, and the rejection under 35 USC § 103 should be withdrawn.

A check in the amount of \$400.00 is attached to cover the required two month extension of time fee.

Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11-0345. Please credit any excess fees to such deposit account.

Respectfully submitted,

KEIL & WEINKAUF

Herbert B. Keil Reg. No. 18,967

1101 Connecticut Ave., N.W. Washington, D.C. 20036 (202)659-0100

HBK/DSK/kas

<u>VERSION WITH MARKINGS TO SHOW CHANGES MADE</u> IN THE CLAIMS:

Cancel claims 18-24.

Amend claims 1-14 and add new claim 25 as follows:

- 1. (amended) [The] <u>An isolated DNA sequence encoding barley</u> [SEQ ID NO:1 and DNA sequences hybridizing therewith, encoding an] HPPD.
- 2. (amended) An expression cassette comprising a promoter and [a] the DNA sequence as claimed in claim 1.
- 3. (amended) An expression cassette as claimed in claim 2, comprising [the] <u>a</u> CaMV 35S promoter.
- 4. (amended) An expression cassette as claimed in claim 2, comprising [the] <u>a</u> seed-specific phaseolin promoter.
- 5. (amended) An expression cassette as claimed in claim 2, <u>further comprising</u> the DNA sequence as claimed in claim 1 being functionally linked to another protein in such a way that a joint translation product is formed.
- 6. (amended) [The use of] A process for transforming plants comprising the step of incorporating into plants the expression cassette as claimed in claim 2 [for transforming plants].
- 7. (amended) A method of transforming a plant, which comprises introducing [an] the expression cassette as claimed in claim 2 into a plant cell, into callus tissue, into an entire plant or into plant cell protoplasts.
 - 8. (amended) A method of transforming plants, which comprises
- 1) transferring the expression cassette as claimed in claim 2 into an agrobacterial

strain,

- 2) isolating the recombinant clones formed, and
- 3) [using the latter for transforming plants] <u>transforming a plant with the isolated</u> recombinant clones.
- 9. (amended) [A] <u>The</u> method as claimed in claim 8, the transformation being accomplished with the aid of the strain *Agrobacterium tumefaciens*.
- 10. (amended) [A] <u>The</u> method of transforming plants as claimed in claim 7, wherein the transformation is accomplished with the aid of electroporation.
- 11. (amended) [A] <u>The</u> method of transforming plants as claimed in claim 7, wherein the transformation is accomplished with the aid of the particle bombardment method.
- 12. (amended) A plant with an elevated vitamin E content, comprising [an] the expression cassette as claimed in claim 2.
- 13. (amended) [A] <u>The</u> plant as claimed in claim 12, selected from the group consisting of soya, barley, oat[s], wheat, oilseed rape, maize, [or] <u>and</u> sunflower[s].
- 14. (amended) A method of generating plants with an elevated vitamin E content, which comprises expressing, in plants, [a] the DNA sequence as claimed in claim 1.
- 25. (new) An isolated DNA sequence as claimed in claim 1, comprising the sequence SEQ ID NO: 1.

COPY OF ALL CLAIMS

- 1. (amended) An isolated DNA sequence encoding barley HPPD.
- 2. (amended) An expression cassette comprising a promoter and the DNA sequence as claimed in claim 1.
- 3. (amended) An expression cassette as claimed in claim 2, comprising a CaMV 35S promoter.
- 4. (amended) An expression cassette as claimed in claim 2, comprising a seed-specific phaseolin promoter.
- 5. (amended) An expression cassette as claimed in claim 2, further comprising the DNA sequence as claimed in claim 1 being functionally linked to another protein in such a way that a joint translation product is formed.
- 6. (amended) A process for transforming plants comprising the step of incorporating into plants the expression cassette as claimed in claim 2.
- 7. (amended) A method of transforming a plant, which comprises introducing the expression cassette as claimed in claim 2 into a plant cell, into callus tissue, into an entire plant or into plant cell protoplasts.
 - 8. (amended) A method of transforming plants, which comprises
- transferring the expression cassette as claimed in claim 2 into an agrobacterial strain,
- 2) isolating the recombinant clones formed, and
- 3) transforming a plant with the isolated recombinant clones.
- 9. (amended) The method as claimed in claim 8, the transformation being accomplished with the aid of the strain *Agrobacterium tumefaciens*.

- 10. (amended) The method of transforming plants as claimed in claim 7, wherein the transformation is accomplished with the aid of electroporation.
- 11. (amended) The method of transforming plants as claimed in claim 7, wherein the transformation is accomplished with the aid of the particle bombardment method.
- 12. (amended) A plant with an elevated vitamin E content, comprising the expression cassette as claimed in claim 2.
- 13. (amended) The plant as claimed in claim 12, selected from the group consisting of soya, barley, oat, wheat, oilseed rape, maize, and sunflower.
- 14. (amended) A method of generating plants with an elevated vitamin E content, which comprises expressing, in plants, the DNA sequence as claimed in claim 1.
- 15. A method as claimed in claim 14, wherein the DNA sequence is expressed in a tobacco plant.
- 16. A method as claimed in claim 14, wherein expression takes place in the leaves or the seeds of the plant.
- 25. (new) An isolated DNA sequence as claimed in claim 1, comprising the sequence SEQ ID NO: 1.

SEQUENCE LISTING

<110> Seulberger, Harald Lerchl, Jenms Schmidt, Ralf-Michael Krupinska, Karin Falk, Jon 20> DNA sequence encoding a hydroxyphenylpyruvate dioxygenase, and its overproduction in plants <130> 0050/48141 <140> US 09/462,629 <141> 2000-01-11 <150> PCT/EP98/03832 <151> 1998-06-23 <160> 16 <170> WordPerfect version 6.1 <210> 1 <211> 1565 <212> DNA <213> hppd from barley <220> <221> CDS <222> 9 ... 1313 <400> 1 cgcacacc atg ccg ccc acc ccc acc ccc gcg gct acc ggc gcc 50 Met Pro Pro Thr Pro Thr Pro Ala Ala Thr Gly Ala Ala 5 gcc gcg gtg acg ccg/gag cac gcg cga ccg cac cga atg gtc cgc ttc 98 Ala Ala Val Thr Pro Glu His Ala Arg Pro His Arg Met Val Arg Phe 15 20 aac ccg cgc agc/gac cgc ttc cac acg ctc tcc ttc cac cac gtc gag 146 Asn Pro Arg Ser Asp Arg Phe His Thr Leu Ser Phe His His Val Glu tto tgg tgc/gcg gac gcc gcc tcc gcc gcc ggc cgc ttc gcg ttc gcg 194 Phe Trp Cyś Ala Asp Ala Ala Ser Ala Ala Gly Arg Phe Ala Phe Ala 55 ctc ggd gcg ccg ctc gcc gcc agg tcc gac ctc tcc acg ggg aac tcc 242 Leu Gly Ala Pro Leu Ala Ala Arg Ser Asp Leu Ser Thr Gly Asn Ser

70

75

65

						ctc Leu 85									ttc/ Phe	290
						ggc Gly										338
						gcg Ala										386
gcg Ala	gtg Val	cgc Arg	tcc ser 130	gta Val	gcg Ala	ctg Leu	cgc Arg	gtc Val 135	gca Ala	gac Asp	gcc Ala	gcc Ala	gag Glu 140	gcc Ala	ttc Phe	434
						ggc Gly										482
ctc Leu	ggc Gly 160	cgc Arg	ggc Gly	ttc Phe	gcg Ala	ttc Phe 165	gcg Ala	gag Glu	gtc Val	gag Glu	ctc Leu 170	tac Tyr	ggc Gly	gac Asp	gtc Val	530
gtg Val 175	ctc Leu	cgc Arg	ttc Phe	gtc Val	agc Ser 180	cac His	ccg Pro	gac	ggc Gly	acg Thr 185	gac Asp	gtg Val	ccc Pro	ttc Phe	ttg Leu 190	578
						acc Thr										626
						gtc Val										674
						ttc Phe										722
						acg Thr 245										770
ctc Leu 255	gcc Ala	aac Asn	aac/ Asn	tcg Ser	gag Glu 260	ggc Gly	gtg Val	ctg Leu	ctg Leu	ccg Pro 265	ctc Leu	aac Asn	gag Glu	ccg Pro	gtg Val 270	818
						agc Ser										866
ggc	ggc	ccg	ggc	gtg	cag	cac	atc	gcg	gtg	gcc	agc	agt	gac	gtg	ctc	914

Gly Gly Pro Gly 290	Val Gln His Ile	Ala Val Ala Ser 295	Ser Asp Val Leu 300	
		cgc tcc gcc atg Arg Ser Ala Met		962
		tac tac gaa ggc Tyr Tyr Glu Gly 330	/	1010
		cag atc aag gaa Gln Ile Lys Glu 345		1058
		caa ggg gtg ttg Gln Gly Val Leu 360		1106
		acc ttg ttc ctg Thr Leu Phe Leu 375		1154
		gag aga ggg gaa Glu Arg Gly Glu		1202
		ggc aac ttc tcc Gly Asn Phe Ser 410		1250
		ctt gaa gcc aag Leu Glu Ala Lys 425		1298
gtt cag gga tca Val Gln Gly Ser	taggatagaa gctg	gteett gtateatggt	ctcatggagc	1350
aaaagaaaac aatgt	tgttt gtaatatgc	g togcacaatt atat	caatgt tataattggt	1410
gaagctgaag acagá	tgtat cctatgtate	g atgggtgtaa tgga	tggtag aggggctcac	1470
acatgaagaa aatgt	agcgt tgacattgtt	t gtacaatett gett	gcaagt aaaataaaga	1530
<pre><210> 2 <211> 434 <212> PRT <213> hppd from</pre>		a aaaaa		1565

<400> 2

Met 1	Pro	Pro	Thr	Pro 5	Thr	Thr	Pro	Ala	Ala 10	Thr	Gly	Ala	Ala	Ala 15	Ala
Val	Thr	Pro	Glu 20	His	Ala	Arg	Pro	His 25	Arg	Met	Val	Arg	Phe 30	Asn	Pro
Arg	Ser	Asp 35	Arg	Phe	His	Thr	Leu 40	Ser	Phe	His	His	Val	/	Phe	Tr
Cys	Ala 50	Asp	Ala	Ala	ser	Ala 55	Ala	Gly	Arg	Phe	Ala 60	Phe	Ala	Leu	Gly
Ala 65	Pro	Leu	Ala	Ala	Arg 70	Ser	Asp	Leu	Ser	Thr 75	Gly	Asn	Ser	Ala	His 80
Ala	Ser	Gln	Leu	Leu 85	Arg	Ser	Gly	Ser	Leu 90	Ala	Phe	Leu	Phe	Thr 95	Ala
Pro	Tyr	Ala	Asn 100	Gly	Суз	Asp	Ala	Ala 105	Thr	Ala	Ser	Leu	Pro 110	Ser	Ph€
Ser	Ala	Asp 115	Ala	Ala	Arg	Arg	Phe 120	Ser	Ala	Asp	His	Gly 125	Ile	Ala	Val
Arg	Ser 130	Val	Ala	Leu	Arg	Val/ 135	Ala	Asp,	Ala	Ala	Glu 140	Ala	Phe	Arg	Ala
Ser 145	Arg	Arg	Arg	Gly	Ala 150	Arg	Pro	Ala	Phe	Ala 155	Pro	Val	Asp	Leu	Gly 160
Arg	Gly	Phe	Ala	Phe 165	Ala	Glu	val	Glu	Leu 170	Tyr	Gly	Asp	Val	Val 175	Leu
Arg	Phe	Val	Ser 180	His	Pro	Asp	Gly	Thr 185	Asp	Val	Pro	Phe	Leu 190	Pro	Gly
Phe	Glu	Gly 195	Val	Thr	Asn	Pro	Asp 200	Ala	Val	Asp	Tyr	Gly 205	Leu	Thr	Arg
Phe	Asp 210	His	Val	Val	Glý	Asn 215	Val	Pro	Glu	Leu	Ala 220	Pro	Ala	Ala	Ala
Tyr 225	Ile	Ala	Gly	Phe	Thr 230	Gly	Phe	His	Glu	Phe 235	Ala	Glu	Phe	Thr	Ala 240
Glu	Asp	Val	Gly	Thr 245	Thr	Glu	Ser	Gly	Leu 250	Asn	Ser	Val	Val	Leu 255	Ala
Asn	Asn	Ser	Glu 260	Gly	Val	Leu	Leu	Pro 265	Leu	Asn	Glu	Pro	Val 270	His	Gly
Thr	Lys	Arg 275	Arg	Ser	Gln	Ile	Gln 280	Thr	Phe	Leu	Glu	His 285	His	Gly	Gly

```
Pro Gly Val Gln His Ile Ala Val Ala Ser Ser Asp Val Leu Arg Thr
    290
                        295
Leu Arg Lys Met Arg Ala Arg Ser Ala Met Gly Gly Phe Asp/Phe Leu
305
                    310
                                         315
Pro Pro Pro Leu Pro Lys Tyr Tyr Glu Gly Val Arg Arg Leu Ala Gly
                                     330
Asp Val Leu Ser Glu Ala Gln Ile Lys Glu Cys Gln Glu Leu Gly Val
                                345
Leu Val Asp Arg Asp Gln Gly Val Leu Gln Ile Phe Thr Lys
        355
                             360
                                                 365
Pro Val Gly Asp Arg Pro Thr Leu Phe Leu Glu Met Ile Gln Arg Ile
                        375
                                             380
Gly Cys Met Glu Lys Asp Glu Arg Gly Glu/Glu Tyr Gln Lys Gly Gly
385
                    390
                                        395
Cys Gly Gly Phe Gly Lys Gly Asn Phe Ser Glu Leu Phe Lys Ser Ile
                405
                                    410
Glu Asp Tyr Glu Lys Ser Leu Glu Ala Lys Gin Ser Ala Ala Val Gln
            420
                                <u>4</u>25
Gly Ser
<210> 3
<211> 14
<212> DNA
<213> Artificial sequencé
<220>
<221> misc_feature
<222> 1.. 14
<223> primer
<400>3
ttttttttt ttag
                                                       14
<210> 4
<211> 14
<212> DNA
<213> Artifiçial sequence
<220>
<221> misc_feature
<222> 1.. 14
<223> primer
```

<400>	4	
ttttt	ttttt ttca	14
<210>	5	
<211>		
<211>		
<213>	Artificial sequence	
<220>		
	misc_feature	
<222>	1 $\overline{14}$	
<223>	primer	
<400>	5	
ttttt	ttttt ttac	14
<210>	6	
<211>	14	
<212>		
	Artificial sequence	
<220>	•	
<221>	misc_feature	
<222>	$1\overline{14}$	
<223>	primer	
<400>	6	
ttttt	ttttt ttgt	14
<210>	7	
<211>		
<211>		
\213 >	Artificial sequence	
<220>		
<221>	misc feature	
	$1\overline{10}$	
	primer	
-4005	7	
<400>		
tacaa	egagg	10
ر ۱۵۱۸۰	0	
<210>		
<211>		
<212>		
<213>	Artificial sequence	

<220>	
<221> misc feature	
<222> 1 10	
<223> primer	
(223) Primer	
<400> 8	
(400 <i>)</i> 6	
	10
ggaaccaatc	10
<210> 9	
<211> 10	
<212> DNA	
<213> Artificial sequence	
.000	
<220>	
<221> misc_feature	
<222> 1 10	
<223> primer	
<400> 9	
aaactccgtc	10
<210> 10	
<211> 10	
<212> DNA	
<213> Artificial sequence	
<220>	
<221> misc_feature	
<222> 1 10	
<223> primer	
<400> 10	
tggtaaaggg	10
<210> 11	
<211> 10	
<212> DNA	
<213> Artificial sequence	
<220>	
<221> misc_feature	
<222> 1 10	
<223> primer	
<400> 11	
ctgcttgatg	10

8

```
<210> 12
<211> 10
<212> DNA
<213> Artificial sequence
<220>
<221> misc_feature
<222> 1.. 10
<223> primer
<400> 12
gttttcgcag
                                                       10
<210> 13
<211> 10
<212> DNA
<213> Artificial sequence
<220>
<221> misc_feature
<222> 1.. 10
<223> primer
<400> 13
gatctcagac
                                                       10
<210> 14
<211> 10
<212> DNA
<213> Artificial sequence
<220>
<221> misc feature
<222> 1.. 10
<223> primer
<400> 14
gatctaaccg
                                                       10
<210> 15
<211> 10
<212> DNA
<213> Artificial sequence
<220>
<221> misc_feature
```

<222> 1.. 10

<223> primer	
<400> 15	
gatcatggtc	10
<210> 16	
<211> 10	
<212> DNA	
<213> Artificial sequence	
<220>	
<221> misc_feature	
<222> 1 10	
<223> primer	
<400> 16	
7400 40	
gatctaaggc	10

•

FIG. 1

[Fig. 1/7]

. .

 $\left[\frac{2}{7}\right]$

FIG. 2

[Fig. 2/7]

(___

(:

I IIa IIb III IV

3100 nt \rightarrow

1600 nt \rightarrow

[3/7]

FIG. 3

[Fig. 3/7]

200 bp

stop

FIG. 4

[Fig. 4/7]

[5/7]

FIG. 5

Fig. 5/7

Primer combination

A B B 9' 11 11' 9 9' 11 11'

FIG. 6

[Fig. 6/7]

A. Model B. Field

9 10 11 12 29.5. → 21.6.

rbcS

HvSD36 - 1.6 kb

Fig. 7/7

[7/7]

FIG. 7

в в н х

-

.