ANOVAs

Pablo E. Gutiérrez-Fonseca

2023-10-02

Load libraries

```
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(readxl)
# install.packages("ggplot2")
library(ggplot2)
```

Aquatic Macronvertebrates in two land uses (Agriculture and Urban streams)

```
## 1 Agriculture sample_3 Annelids
## 2 Agriculture sample_3 Tricoptera
                                                1
## 3 Agriculture sample_2 Diptera
                                                2
## 4 Agriculture sample_2 Decapoda
                                                2
## 5 Agriculture sample_1 Tricoptera
                                                4
## 6 Agriculture sample 2 Tricoptera
                                                6
## 7 Agriculture sample 1 Plecoptera
                                               15
## 8 Agriculture sample_3 Plecoptera
                                               19
## 9 Agriculture sample_3 Ephemeroptera
                                               21
## 10 Agriculture sample_1 Ephemeroptera
                                               31
## 11 Agriculture sample_2 Coleoptera
                                               33
## 12 Agriculture sample_2 Ephemeroptera
                                               51
                 sample_1 Coleoptera
## 13 urban
                                                1
## 14 urban
                 sample_3 Odonata
                                                1
## 15 urban
                 sample_3 Decapoda
                                                1
## 16 urban
                 sample_3 Sphaeriidae
                                                1
## 17 urban
                 sample_1 Diptera
                                                2
## 18 urban
                 sample 1 Tricoptera
## 19 urban
                 sample_2 Diptera
                                                2
## 20 urban
                 sample_2 Megaloptera
                                                2
# Assuming your data is stored in a data frame named 'data'
# Replace 'data' with your actual data frame name
# Perform ANOVA
anova_result <- aov(abundance ~ site + Error(sample), data = data)</pre>
# Display the ANOVA summary
summary(anova result)
##
## Error: sample
            Df Sum Sq Mean Sq F value Pr(>F)
## site
            1 118.77 118.77
                                44.34 0.0949 .
## Residuals 1 2.68
                         2.68
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
##
            Df Sum Sq Mean Sq F value Pr(>F)
             1 805.6
                        805.6
                                6.394 0.0184 *
## Residuals 24 3023.9
                        126.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Calculate total abundance and SD per site
abundance_summary <- data %>%
  group_by(site) %>%
  summarize(mean_abundance = mean(abundance),
            sd_abundance = sd(abundance))
# Create a bar plot with error bars
ggplot(abundance_summary, aes(x = site, y = mean_abundance, fill = site)) +
```

Total Abundance per Site with SD

