

ldea

Use Twitter data to improve the performance of an epidemiological model like SIR to predict the future covid-19 infection case

Why Will it Work?

- SIR model
 - Adv.: simple, reasonably predictive
 - Dis.: over-simplified
- Fluctuations
 - Events such as quarantine, border closure.
 - Twitter OBSERVED SIR

Fluctuations

Methodology

SIR Model

+ Machine
Learning Model

Twitter Model

SIR Model

- 3 differential equations
 - susceptible (S), infected (I),and resistant (R).

 $\frac{dS}{dt} = -\beta \frac{SI}{N}$ $\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$ $\frac{dR}{dt} = \gamma I$ N = S + I + R

Twitter Significant Word Extraction

Top **20 words** having strongest correlation with # of new cases

Calculate Correlation 1000 most frequently occurred Unigrams/Bigrams

... Like This

df.limit(10).toPandas().drop(columns='user_id')

lang	text	created_at	status_id	
en	The UFC is about to be the most popular sport	2020-03-13T00:00:00Z	1238253442063310848	0
en	The great toilet paper depression of 2020 #Toi	2020-03-13T00:00:00Z	1238253441778098177	1
en	The 'Spotlight Show' with @janeyleegrace on @u	2020-03-13T00:00:00Z	1238253440486313988	2
en	Because we all the time in the world right? @s	2020-03-13T00:00:00Z	1238253439051870208	3
en	French pastry chef shows off Easter eggs model	2020-03-13T00:00:00Z	1238253440821649408	4
en	ICYMI - Hour 2 of #TheGamePlan with @DaveWNSP	2020-03-13T00:00:00Z	1238253442034020354	5
en	With rising #Coronavirus cases in India, which	2020-03-13T00:00:00Z	1238253441564266496	6
en	#ICYMI: #Ontario #MPPs may temporarily suspend	2020-03-13T00:00:00Z	1238253441517928448	7
en	Despite having only 3 confirmed #coronavirus c	2020-03-13T00:00:00Z	1238253440603541504	8
en	Autonomous #Robots Are Helping Kill #Coronavir	2020-03-13T00:00:00Z	1238253440461135873	9

Implementation

Which Data to Use?

- Data about covid-19 from www.canada.ca
 - # Confirmed, Susceptible, Recovery cases for covid-19 from
 - March 4 to March 31st
 - Population of Canada

- Tweets
 - Hashtag #Covid19, #Coronavirus, etc
 - ~40M Tweets from March 4 to March 31st
 - ~8M Tweets known to be in English

SIR Model Implementation

- Clean using Spark SQL
- Using least square method to determine the parameters for SIR
- Solve ODEs for SIR model using deSolve library
- Optimize parameters using nlminb function
- Use the SIR model to make analysis and predictions

```
library(deSolve)
N <- 10000000 # population
IO <- 24 # initial infected case
RMO <- 24*0.15 # initial recover case
SO <- N - IO - RMO # inital susceptible population
init <-c(S = S0, I = I0, R = RM0) #
# define the parameter as constance
pars \leftarrow c(beta = 0.22763126, gamma = 0.03032535, N = N)
sir <- function(time, state, pars) {
  with(as.list(c(state, pars)), {
    dS <- -beta * S * I/N
    dI <- beta * S * I/N - aamma * I
    dR <- gamma * I
    return(list(c(dS, dI, dR)))
march\_time = seq(1, 31, by = 1)
march_res.sir <- as.data.frame(ode(y = init, times = 1:31, func = sir, parms = pars))
```

Twitter Model Pipeline & Implementation

Process

Store

Calculate

Final Model Implementation

- Spark SQL to combine all data
- Spark ML to train a Linear Regression model

```
df cases = df cases.select(
        'date'.
        F.col('numconf').cast('Long'),
        F.lit(1).alias('temp'))
df sir = df sir.select(
        'date',
        F.col('predict_infection').cast('Float'),)
df_words = df_words.select('date', *most_corr_cols)
window = Window.partitionBy('temp').orderBy('date')
data = df_words.join(df_cases, on='date', how='right')\
            .join(df_sir, on='date', how='left')\
            .select(
                F.date_add('date', 4).alias('prediction_date'),
                F.lead('numconf', 4).over(window).alias('label'),
                'numconf'.
                F.lead(F.col('predict infection').alias('baseline prediction').4)\
                        .over(window).alias('sir_prediction'),
                *[F.col(c).cast('Long') for c in most_corr_cols]
```

Result

Predicted Results Comparison

	April 01	April 02	April 03	April 04
SIR (baseline)	10863	13228	16107	19611
Combined SIR + Twitter	9237	10932	12951	14598
True Data	9595	11268	12519	13882

Let's Draw Them Together

How Good is Our Model?

	RM	ISE	MAPE	
Data	Train	Test	Train	Test
SIR (baseline)	290.425	3575.761	25.892%	25.134%
Combined SIR + Twitter	78.339	484.970	3.238%	3.830%

RMSE: Root Mean Squared Error

MAPE: Mean Absolute Percentage Error

Some Other Insights

- The model is good for prediction window of 1-7 days
- 4th-day prediction is the best
- Possible reasons:
 - Social media has short-term effects
 - A delay in receiving COVID-19 test results
 - The baseline model is not good enough
- Advice: STAY AT HOME!