

¿Qué han escuchado del concepto de Machine Learning?

Autoaprendizaje

Recursos asincrónicos

- ¿Revisaste los recursos de la semana 1 (Guía y desafío)?
- ¿Tienes dudas sobre alguno de ellos?

Ideas fuerza

Machine
Learning es un
subcampo de la
IA que permite
analizar datos,
identificar
patrones a partir
de los datos.

Entender las
diferentes tareas
que se pueden
resolver con ML
(Aprendizaje
Supervisado, no
supervisado y
reforzamiento) y
escoge el indicado
según sea el caso.

Conocer los usos y métodos de la librería scikit learn para la aplicación de algoritmos de aprendizaje con python

/*Conceptos Básicos de Machine Learning*/

¿Qué es el Machine Learning?

Inteligencia Artificial

Subdisciplina del campo de la informática que busca la creación de máquinas que puedan imitar un comportamiento "inteligente".

Machine Learning

Busca dotar a las máquinas de capacidad de aprendizaje/generalización a partir de la experiencia (Datos).

Deep Learning

Rama del ML que utiliza redes neuronales profundas para el aprendizaje.

¿Cómo funciona el Machine Learning?

Para trabajar con técnicas de Machine Learning se utilizan entidades en el mundo real como: clientes, productos, fotos, canciones, fenómenos, etc.

El primer paso es poder representar estas entidades a partir de vectores numéricos, para que estos puedan ser comprendidos por una computadora.

¿Qué es un modelo de Machine Learning?

Representación de un problema o sistema que aprende a partir de los **datos** (relación entre los diferentes datos) utilizando un algoritmo de aprendizaje y se utiliza para hacer predicciones o tomar decisiones en nuevos datos.

/*Tareas con Machine Learning*/

Tareas con Machine Learning

Tipos de aprendizaje

Aprendizaje supervisado busca descubrir la relación VIO Patrones existente entre Variables de entrada y de Aplica para set de datos salida. etiquetados

Aprendizaje no supervisado relaciones entre variables busca descubrir de entrada sin una guía Aplica para set de datos del aprendizaje. sin etiquetas.

Aprendizaje SupervisadoClasificación y regresión

Existen 2 tipos de aprendizaje supervisado dependiendo de la naturaleza de la variable objetivo.

Clasificación: Cuando la variable objetivo es una categoría. Por ej, clasificación de imágenes, predicción de fuga, clasificación de correos.

Regresión: Cuando la variable objetivo es un valor numérico. Por ej, predicción del precio de vivienda, predicción de demanda.

Entrada	Salida
2	4
5	10
7	14
10	?

Aprendizaje No Supervisado Técnicas

Reducción de dimensionalidad: Se utiliza para reducir la cantidad de dimensiones aprovechando la relación entre las diferentes variables.

Clustering: Se utiliza para agrupar conjunto de datos que se asemejan entre ellos. Por ejemplo, segmentación de clientes para descubrir segmentos de clientes similares entre sí.

Aprendizaje No Supervisado Técnicas

Reducción de dimensionalidad: Se utiliza para reducir la cantidad de dimensiones aprovechando la relación entre las diferentes variables.

Clustering: Se utiliza para agrupar conjunto de datos que se asemejan entre ellos. Por ejemplo, segmentación de clientes para descubrir segmentos de clientes similares entre sí.

Lenguaje 1

Lenguaje 2

Aprendizaje No Supervisado Técnicas

Reducción de dimensionalidad: Se utiliza para reducir la cantidad de dimensiones aprovechando la relación entre las diferentes variables.

Clustering: Se utiliza para agrupar conjunto de datos que se asemejan entre ellos. Por ejemplo, segmentación de clientes para descubrir segmentos de clientes similares entre sí.

Ejercicio: Detección de dígitos con clustering

Detección de dígitos con clustering

Utilicemos clusters

A continuación veremos cómo el uso de clusters puede ayudarnos a identificar patrones utilizando Python, y las bibliotecas que nos provee para esto.

Observa atentamente la presentación de tu profesor (la forma de llegar a estos resultados la comprenderás más adelante en el módulo)

Aprendizaje por Reforzamiento Elementos del aprendizaje por reforzamiento

Corresponde a un problema de optimización, en el cual un agente aprende a tomar decisiones en un entorno interactivo para maximizar una recompensa.

Agente: Puede realizar **acciones** dentro de un entorno, con el objetivo de obtener una recompensa.

Entorno: Corresponde al contexto en que está inserto el agente.

Recompensa: Es la respuesta que entrega en entorno al agente respecto a la acción que realizó en el

estado que se encontraba.

Ejercicio: Comprendiendo las tareas de Machine Learning

Ejercicio

Clasifiquemos tareas de Machine Learning

- 1. Clasifique los siguientes ejemplos:
 - a. Predecir la demanda de los clientes a diferentes productos.
 - Analizar el sentimiento de las reseñas de los clientes.
 - Detección de transacciones fraudulentas en tiempo real.
 - d. Segmentar clientes para realizar ofertas dirigidas a los segmentos.
 - e. Predicción de fuga de clientes.
 - f. Diagnósticos con imágenes.
 - g. Visualización de múltiples variables en espacios más pequeños.
 - h. Predicción de falla en equipos mineros.
 - i. Predicción de la necesidad de camas críticas en el sector de salud.
 - i. Enseñar a un robot a caminar.
 - k. Predicción del precio de una propiedad

/*Retomando la Regresión Lineal*/

Retomando la regresión lineal

Scikit learn

La principal librería de machine learning para python es **scikit-learn**. En ella, encontraremos diferentes módulos como:

- Dataset de prueba
- Funciones para preparación de datos (esquemas de evaluación)
- Algoritmos de aprendizaje supervisado y no supervisado
- Métricas de evaluación
- Mucho más

Retomando la regresión lineal

Perspectiva del Machine Learning

Para realizar el ejemplo de la regresión lineal desde la perspectiva del Machine Learning vamos a proceder a aplicar los siguientes pasos:

Objetivo: Dotar al algoritmo de una buena capacidad de generalización en nuevos datos, para poder utilizar el algoritmo en los procesos pertinentes.

Ejercicio: Entrenando una regresión lineal

Regresión Lineal

Vamos a poner en práctica lo aprendido utilizando Python. Observa la presentación que hará tu profesor en Jupyter Notebook; con esto:

- Importaremos la librería scikit learn y las otras librerías necesarias.
- Cargaremos el dataset de diabetes de la librería.
- Realizaremos los pasos descritos en la unidad para entrenar el modelo (división, entrenamiento, predicción y evaluación).
- Concluiremos sobre el modelo

latam

Desafío

"Introducción al Machine Learning"

- ¿Leíste el desafío de esta semana? ¿Comprendes bien lo que se solicita en cada caso?
- ¿Hay contenidos que necesitas repasar antes de comenzar este desafío?
- ¿Necesitas algún ejemplo o indicación para alguna pregunta o requerimiento específico?

