

Contents

01 Mission Statement 02 Data Introduction

PART 01 Mission Statement

Goal?

People can control robotic prostheses with their minds.

Why this?

Amputated people need prostheses to make their live more convenient

PART 02 Data Introduction

Ninapro is a publicly available multimodal database to foster research on robotic & prosthetic hands controlled with artificial intelligence.

Ninapro includes **electromyography**, kinematic, inertial, eye tracking, visual, clinical and neurocognitive data.

Ninapro data are used worldwide by scientific researchers in machine learning, robotics, medical and neurocognitive sciences.

Data set has three dimensions: (samples, windows, channels)

```
def load data():
   X_train = np.load("/content/drive/MyDrive/subject 11/subject11_train_matrix.npy.part", mmap_mode='r', allow_pickle=True)
   X_test = np.load("/content/drive/MyDrive/subject 11/subject11_test_matrix.npy.part", mmap_mode='r', allow_pickle=True)
   y_train = np.load("/content/drive/MyDrive/subject 11/subject11_train_labels.npy",mmap_mode='r',allow_pickle=True)
   y test = np.load("/content/drive/MyDrive/subject 11/subject11 test labels.npy", mmap mode='r', allow pickle=True)
   # Reduce sample size
   # X_train = X_train[np.random.permutation(44000)[:2000],:,:]
   # X_test = X_test[np.random.permutation(22000)[:700],:,:]
   # y_train = y_train[np.random.permutation(44000)[:2000]]
   # y_test = y_test[np.random.permutation(22000)[:700]]
         spec = True:
          X_train = Win2Spec(X_train)
          X_test = Win2Spec(X_test)
   # if GAF = True:
          X_train = Win2GAF(X_train)
          X_test = Win2GAF(X_test)
   # y_train = pd.get_dummies(y_train)
   # y_test = pd.get_dummies(y_test)
   y_train = get_categorical(y_train)
   y_test = get_categorical(y_test)
   X_train = X_train.astype('float32')
   X_test = X_test.astype('float32')
   y_train = y_train.astype('float32')
   y_test = y_test.astype('float32')
   return X_train, X_test, y_train, y_test
```


Data Preview

```
plt.figure(figsize=(15,5))
rdm = np.random.randint(0,20000,10)
for i in rdm:
    plt.plot(X_train[i,:,0],'-o')
```


Short Time Fourier Transform (STFT)

The STFT is a Fourier Transform technique used to determine the frequency and phase of certain sections of a given signal.

This gives a Fourier spectrum, which is often then viewed on a spectrogram.

Python Command: scipy.signal.stft(x,window='hann'...)

Implement FFT on the data

```
plt.figure(figsize=(10,5))
# plt.plot(X_train[:,0,0])
for i in range(10):
    for j in range(12):
        x_fft = np.fft.rfft(X_train[i,:,j])
        plt.plot(abs(x_fft))
```


PART 03 Model Construction

A neural network is a series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way the human brain operates.

Convolutional Neural

In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of artificial neural network, most applied to analyze visual imagery.

CapsNet

A Capsule Neural Network (CapsNet) is a machine learning system that is a type of artificial neural network (ANN) that can be used to better model hierarchical relationships. The approach is an attempt to more closely mimic biological neural organization.

Lack of context

If the beak is located on the tail, for example, the classifier will still consider the image as one of a bird (although, obviously, no bird carries its beak on its tail).

Information loss

by which meaningful pixels (or neurons) are discarded since max pooling only select one neuron or one pixel from a cluster.

Output is a vector

Capsule gives us a vector as an output that has a direction.

Overcome all the drawbacks that are present on CNN.

Fewer data, Better results

Need fewer data to train same model

CapsNet Code

```
from keras import layers, models
from keras import backend as K
from tensorflow.keras.utils import to_categorical
def CapsNet(input_shape, n_class, num_routing):
        :param input_shape: data shape, 4d, [None, width, height, channels]
       :param n_class: number of classes
       :param num_routing: number of routing iterations
       :return: A Keras Model with 2 inputs and 2 outputs
       x = layers. Input(shape=input_shape)
       gru = layers. GRU(32)(x)
       # Layer 1: Just a conventional Conv2D layer
       conv1 = tf.keras.layers.Conv2D(filters=128,kernel_size=3, padding='valid',name='conv1',
                                                                  kernel_initializer= initializers.glorot_uniform(), activation='relu')(gru)
            = tf.keras.layers.Dropout(0.5)(conv1)
               tf.keras.lavers.BatchNormalization()(bn1)
                 tf. keras. layers. Conv2D (filters=128, kernel_size=3, padding='valid',
                                                                  kernel initializer= initializers.glorot uniform(),activation='relu')(bn1)
           = tf.keras.layers.Dropout(0.5)(conv2)
       bn2
              tf.keras.layers.BatchNormalization()(bn2)
                 tf.keras.layers.Conv2D(filters=256,kernel_size=3,padding='valid',
                                                                  kernel_initializer= initializers.glorot_uniform(), activation='relu')(bn2)
              tf.keras.layers.Dropout(0.5)(conv3)
               tf.keras.layers.BatchNormalization()(bn3)
                 tf.keras.layers.Conv2D(filters=256,kernel_size=3,padding='valid',
                                                                  kernel_initializer= initializers.glorot_uniform(),activation='relu')(bn3)
              tf.keras.layers.Dropout(0.5)(conv4)
           = tf.keras.layers.BatchNormalization()(bn4)
       # Layer 2: Conv2D layer with squash activation, then reshape to [None, num_capsule, dim_vector]
       primarycaps = PrimaryCap(bn4, dim_capsule=4, n_channels=4, kernel_size=4, strides=2, padding='valid')
       # Layer 3: Capsule layer. Routing algorithm works here.
       digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=8, routings=num_routing, name='digitcaps') (primarycaps)
       digit_probs = tf.keras.layers.Lambda(lambda x: tf.norm(x, axis=-1),
                                                                              name="digit probs") (digitcaps)
       model = tf.keras.Model(inputs=x,
                                                   outputs=digit_probs,
                                                   name="Efficient-CapsNet")
       return model
```


PART 04 Results and Conclusion

Model training

```
🔃 histories, model = train_model(model, X_train, y_train, X_test , y_test, batch_size=batch_size, save_to= 'temp', epochs = epochs)
□ Epoch 1/10
  1377/1377 [===
                 ______] - ETA: Os - loss: 0.4572 - categorical accuracy: 0.3522
  Epoch 00001: val_categorical_accuracy improved from -inf to 0.50337, saving model to temp_best_model.h5
  Epoch 2/10
  1377/1377 [===
                    == ] - ETA: 0s - loss: 0.3120 - categorical_accuracy: 0.6233
  Epoch 00002: val categorical accuracy improved from 0.50337 to 0.63058, saving model to temp best model.h5
  Epoch 3/10
  1377/1377 [==
                    == ] - ETA: Os - loss: 0.2583 - categorical_accuracy: 0.7134
  Epoch 00003: val categorical accuracy improved from 0.63058 to 0.65262, saving model to temp best model.h5
  Epoch 4/10
  1377/1377 [ _______ ] - ETA: Os - loss: 0.2212 - categorical accuracy: 0.7799
  Epoch 00004: val_categorical_accuracy improved from 0.65262 to 0.67697, saving model to temp_best_model.h5
  Epoch 5/10
  1377/1377 [======] - ETA: Os - loss: 0.1861 - categorical accuracy: 0.8436
  Epoch 00005: val categorical accuracy did not improve from 0.67697
  Epoch 6/10
  1377/1377 [==
               ______] - ETA: Os - loss: 0.1511 - categorical accuracy: 0.9056
  Epoch 00006: val_categorical_accuracy did not improve from 0.67697
  Epoch 7/10
  1377/1377 [=====] - ETA: Os - loss: 0.1196 - categorical accuracy: 0.9515
  Epoch 00007: val categorical accuracy did not improve from 0.67697
              1377/1377 [====
  Epoch 8/10
  Epoch 00008: val categorical accuracy did not improve from 0.67697
  Epoch 9/10
  1377/1377 [=
                    ==] - ETA: Os - loss: 0.0762 - categorical accuracy: 0.9904
  Epoch 00009: val_categorical_accuracy did not improve from 0.67697
           1377/1377 [=====
  Epoch 10/10
          Epoch 00010: val categorical accuracy did not improve from 0.67697
  691/691 [=====] - 30s 44ms/step - loss: 0.2926 - categorical_accuracy: 0.6770
  Train: 0.842, Test: 0.677
```


Model training


```
# summarize history for accuracy
plt.plot(histories.history['categorical_accuracy'])
plt.plot(histories.history['val_categorical_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```

```
# summarize history for loss
plt.clf
plt.plot(histories.history['loss'])
plt.plot(histories.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```


Model Pruning to specific layer

```
▼ Model Pruning
        def plot_histogram(weights_list: list,
                            include_zeros=True,
                            title=''):
                """A function to plot weights distribution"""
                weights = []
                for w in weights_list:
                        weights.extend(list(w.ravel()))
                if not include_zeros:
                        weights = [w \text{ for } w \text{ in weights if } w != 0]
                fig = plt.figure(figsize=(10, 7))
                ax = fig. add subplot(111)
                ax.hist(weights,
                                bins=100.
                                facecolor='green',
                                edgecolor='black',
                                alpha=0.7,
                                range=(-0.15, 0.15))
                ax.set_title('Weights distribution {}'.format(title))
                ax.set_xlabel('Weights values')
                ax.set_ylabel('Number of weights')
[31] weights_array_layer7 = model.layers[7].get_weights()[0]
        bias_array_layer7 = model.layers[7].get_weights()[1]
        # print(model.layers[7].get_weights()[0].shape)
        # plt.plot(weights_array_layer7[0,1,:,:])
        # np.min(np.abs((model.layers[7].get_weights()[0])))
        plot_histogram(weights_array_layer7, include_zeros=False, title='before pruning')
        weights_array_layer7_pruned = np. where(np. abs(weights_array_layer7)>5e-4, weights_array_layer7,0)
        plot_histogram(weights_array_layer7_pruned, include_zeros=False, title='after pruning')
        model.layers[7].set_weights([weights_array_layer7_pruned, bias_array_layer7])
```


Model Pruning to specific layer

Before Pruning:

After Pruning:

- model.fit(X_train,y_train,validation_data=(X_test,y_test))
- (keras.callbacks.History at 0x7f42c0739510)

Big Thanks To:

Professor S. Farokh Atashzar, Werable Technology VIP Softwear Team "Papers with Code - Ninapro DB2 Dataset." NinaPro DB2 Dataset | Papers With Code, https://paperswithcode.com/dataset/ninapro-db2.

Atzori, M., Gijsberts, A., Castellini, C. et al. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci Data 1, 140053 (2014). https://doi.org/10.1038/sdata.2014.53

Wang, Yiwei et al. "Multitask CapsNet: An Imbalanced Data Deep Learning Method for Predicting Toxicants." ACS omega vol. 6,40 26545-26555. 29 Sep. 2021, doi:10.1021/acsomega.1c03842

