Polar Equations to Rectangular

Period____

Convert each equation from polar to rectangular form.

1)
$$r = \cot \theta \csc \theta$$

2)
$$r = 2\cot\theta\csc\theta$$

3)
$$r = 4\cot\theta\csc\theta$$

4)
$$r = 2\sin \theta$$

5)
$$r = -2\cos\theta - 2\sin\theta$$

6)
$$r = 2\cos\theta + 2\sin\theta$$

7)
$$r = 2\cos\theta$$

8)
$$r = 4\sin \theta$$

9)
$$r = 3\tan \theta \sec \theta$$

$$10) \ \ r = 4\sin\left(\theta + \frac{\pi}{4}\right)$$

11)
$$r^2 = 2\sec(2\theta)$$

12)
$$r^2 = \csc(2\theta)$$

13)
$$r = -4\cos\theta + 4\sin\theta$$

14)
$$r = -2\cos\theta + 6\sin\theta$$

15)
$$r = -2\cos\theta$$

16)
$$r^2 = 4\csc(2\theta)$$

Answers to Polar Equations to Rectangular

$$1) \ \ x = y^2$$

2)
$$x = \frac{y^2}{2}$$

3)
$$x = \frac{y^2}{4}$$

4)
$$x^2 + (y-1)^2 =$$

5)
$$(x+1)^2 + (y+1)^2 = 2$$

6)
$$(x-1)^2 + (y-1)^2$$

7)
$$(x-1)^2 + y^2 = 1$$

8)
$$x^2 + (y-2)^2 = 4$$

9)
$$y = \frac{x^2}{3}$$

1)
$$x = y^2$$

2) $x = \frac{y^2}{2}$
3) $x = \frac{y^2}{4}$
4) $x^2 + (y-1)^2 = 1$
5) $(x+1)^2 + (y+1)^2 = 2$
6) $(x-1)^2 + (y-1)^2 = 2$
7) $(x-1)^2 + y^2 = 1$
8) $x^2 + (y-2)^2 = 4$
9) $y = \frac{x^2}{3}$
10) $(x-\sqrt{2})^2 + (y-\sqrt{2})^2 = 4$
11) $x^2 - y^2 = 2$
12) $y = \frac{1}{2x}$
13) $(x+2)^2 + (y-2)^2 = 8$
14) $(x+1)^2 + (y-3)^2 = 10$
15) $(x+1)^2 + y^2 = 1$
16) $y = \frac{2}{x}$

11)
$$x^2 - y^2 = 2$$

12)
$$y = \frac{1}{2x}$$

13)
$$(x+2)^2 + (y-2)^2 = 8$$

14)
$$(x+1)^2 + (y-3)^2 = 10$$

15)
$$(x+1)^2 + y^2 = 1$$

16)
$$y = \frac{2}{x}$$