

Outline

- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Bagging: Bootstrap Aggregation
- Random Forest: Basic Concepts and Methods
- Boosting and AdaBoost
- Classification of Class-Imbalanced Data Sets
- Classifying Data Streams with Skewed Distribution

Ensemble Methods: Increasing the Accuracy

Training

Test data

Ensemble

Prediction

 M_2

- Ensemble methods
 - Use a combination of models to increase accuracy.
 - Combine a series of k learned models, M_1 , M_2 , ..., M_3 , ..., M_4 , with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: Trains each model using a subset of the training set
 - Models learned independently, in parallel
 - □ Simple voting: Outcome is determined by the majority of the parallel models
 - Boosting: Trains each new model instance to emphasize the training instances that previous models misclassified (correcting the "errors" of previous model)
 - Models learned in order (a sequential ensemble)
 - Weighted voting: Outcome is determined by the majority but the sequential models were built by assigning greater weights to misclassified instances of the previous models

Bagging: Bootstrap Aggregation

Test_data

Ensemble

Prediction

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - □ A classifier model M_i is learned for each training set D_i
- Classification: Classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - ☐ The bagged classifier M* counts the votes and assigns the class with the most votes to **X**
- Prediction: It can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy: Improved accuracy in prediction
 - Often significantly better than a single classifier derived from D
 - For noise data: Not considerably worse, more robust

Random Forest: Basic Concepts

- □ Random Forest (first proposed by L. Breiman in 2001)
 - A variation of bagging for *decision trees*
 - Data bagging
 - Use a subset of training databy sampling with replacement for each tree
 - Feature bagging
 - At each node use a random selection of attributes as candidates and split by the best attribute among them
 - Comparing with original bagging, the random forests method increases the diversity among generated trees
 - During classification, each tree votes and the most popular class is returned

Methods for Constructing Random Forest

- Two Methods to construct Random Forest:
 - Forest-RI (random input selection)
 - Randomly select, at each node, F attributes as candidates for the split at the node
 - ☐ The CART methodology is used to grow the trees to maximum size
 - Forest-RC (random linear combinations)
 - Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than typical bagging or boosting

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses - weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1} , to pay more attention to the training tuples that were misclassified by M_i
 - □ The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Adaboost (Freund and Schapire, 1997)

- Given a set of d class-labeled tuples, $(X_1, y_1), ..., (X_d, y_d)$
- □ Initially, all the weights of tuples are set the same (i.e., 1/d)
- ☐ Generate *k* classifiers in *k* rounds. At round i,
 - □ Tuples from D are sampled (with replacement) to form a training set D_i of the same size
 - Each tuple's chance of being selected is based on its weight
 - □ A classification model M_i is derived from D_i
 - ☐ Its error rate is calculated using D_i as a test set
 - ☐ If a tuple is misclassified, its weight is increased; otherwise, it is decreased
- \square Error rate: err(X_i) is the misclassification error of tuple X_i
- \Box Classifier M_i error rate is the sum of the weights of the misclassified tuples:
- The weight of classifier M_i's vote is $\log \frac{1 error(M_i)}{error(M_i)}$ $= \sum_{j}^{n} w_j \times err(\mathbf{X_j})$

Classification of Class-Imbalanced Data Sets

- □ Class-imbalance problem: Rare positive examples but numerous negative ones
 - E.g., medical diagnosis, fraud transaction, accident (oil-spill), and product fault
- Traditional methods assume a balanced distribution of classes and equal error

costs: Not suitable for class-imbalanced data

- ☐ Typical methods on imbalanced data in two-class classification
 - Oversampling: Re-sampling of data from positive class
 - □ **Under-sampling**: Randomly eliminate tuples from negative class
 - Threshold-moving: Move the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

Classifying Data Streams with Skewed Distribution

- Classify data stream with skewed distribution (i.e., rare events)
- **Biased sampling:** Save only the positive examples in the streams
- \square Ensemble: Partition negative examples of S_m into k portions to build k classifiers
- Effectively reduce classification errors on the minority class