Vector Differentiation Supplementary Notes

This notes is a very small part of vector differentiation properties to get you started. You can prove each property easily by yourself by using 2×2 matrices and 2×1 vectors.

1 Matrix Transpose

Define square matrices A, B, C,

- 1. $(A^T)^T = A$
- $2. (\boldsymbol{A} + \boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T$
- 3. $(c\mathbf{A})^T = c\mathbf{A}^T$
- $4. \ (\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$
- 5. $(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C})^T = \boldsymbol{C}^T\boldsymbol{B}^T\boldsymbol{A}^T$
- 6. $\mathbf{A}^T = \mathbf{A}$ if \mathbf{A} is symmetric

Note: the above property works not only for square matrices, but any matrix which dimensions are compatible with one another, e.g. for AB where A is an $n \times d$ matrix and B is a $d \times k$ matrix.

2 Basic Rules

1. Chain Rule. Given vector-valued functions f, y, taking in vector $x \in \mathbb{R}^d$ as an input: f(y(x)). Then,

$$\frac{dfy(\boldsymbol{x})}{d\boldsymbol{x}} = \frac{df}{dy} \cdot \frac{dy}{d\boldsymbol{x}}$$

2. **Total Derivatives**. Given vector-valued function f, y, taking in vector $\boldsymbol{x} \in \mathbb{R}^d$ as an input: $f(\boldsymbol{x}, y(\boldsymbol{x}))$. Then,

$$\frac{df(\boldsymbol{x},y(\boldsymbol{x}))}{d\boldsymbol{x}} = \frac{df}{d\boldsymbol{x}} + \frac{df}{dy} \cdot \frac{dy}{d\boldsymbol{x}}$$

3 Vector Differentiation

Define a column vector $\boldsymbol{x} = [x_1, x_2, ..., x_d]^T$, $\boldsymbol{x} \in \mathbb{R}^2$, The derivative of a scalar output function $f(\boldsymbol{x})$ with respect to a **column** vector \boldsymbol{x} can be defined as a **row** vector,

$$\nabla f(\boldsymbol{x}) = \frac{d}{d\boldsymbol{x}} f(\boldsymbol{x}) = \left[\frac{\partial f}{\partial x_1} \ \frac{\partial f}{\partial x_2} \ \dots \ \frac{\partial f}{\partial x_d} \right]$$

or a **column** vector (which is the transpose of the above), depending on whichever format is necessary. The following are some of the common properties,

1. Let a scalar y be defined as an inner product of two vectors $\boldsymbol{b} \in \mathbb{R}^d$, $\boldsymbol{x} \in \mathbb{R}^d$, and \boldsymbol{b} does not depend on \boldsymbol{x} ,

$$y = \boldsymbol{b}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{y},$$

then,

$$\frac{dy}{dx} = \boldsymbol{b}^T.$$

1

Note: it can be also b, depending on which format is necessary.

2. Let a scalar y be defined as an inner product of the two same vectors $x \in \mathbb{R}^d$,

$$y = \boldsymbol{x}^T \boldsymbol{x},$$

then,

$$\frac{dy}{dx} = 2x^T.$$

Note: similarly, it can be also 2x, depending on which format is necessary

3. Let a scalar y be defined as a product of vector $\boldsymbol{b} \in \mathbb{R}^n$, $n \times d$ matrix \boldsymbol{A} , and vector $\boldsymbol{x} \in \mathbb{R}^d$, and \boldsymbol{A} does not depend on \boldsymbol{x} or \boldsymbol{y} ,

$$y = \boldsymbol{b}^T \boldsymbol{A} \boldsymbol{x},$$

then,

$$\frac{dy}{dx} = \boldsymbol{b}^T \boldsymbol{A}, \ \frac{dy}{d\boldsymbol{b}} = \boldsymbol{x}^T \boldsymbol{A}^T.$$

4. Let a scalar y be defined as a product of a vector $\mathbf{x} \in \mathbb{R}^d$, $n \times d$ matrix \mathbf{A} , and another vector \mathbf{x} , where \mathbf{A} does not depend on \mathbf{x} ,

$$y = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x},$$

then,

$$\frac{dy}{d\boldsymbol{x}} = \boldsymbol{x}^T (\boldsymbol{A} + \boldsymbol{A}^T).$$

In the case where A is a symmetric matrix,

$$\frac{dy}{d\boldsymbol{x}} = 2\boldsymbol{x}^T \boldsymbol{A}$$

Note: in the symmetric matrix case, the answer can also be $\frac{dy}{dx} = 2Ax$, depending on which format is necessary

5. Let a vector $\boldsymbol{y} \in \mathbb{R}^m$ be defined as a product between a $n \times d$ matrix \boldsymbol{A} and vector $\boldsymbol{x} \in \mathbb{R}^d$, and \boldsymbol{A} does not depend on \boldsymbol{x} ,

$$y = Ax$$

then,

$$\frac{d\boldsymbol{y}}{d\boldsymbol{x}} = \boldsymbol{A}.$$

Materials referenced from:

- 1. https://ccrma.stanford.edu/~dattorro/matrixcalc.pdf
- 2. http://www.atmos.washington.edu/~dennis/MatrixCalculus.pdf
- 3. http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf