Advanced Modern Algebra second edition

Selected Solutions

Chapter 1: Groups I

October 1, 2023

1.1. Classical Formulas

Exercise 1.1. Given $M, N \in \mathbb{C}$, prove that there exists $g, h \in \mathbb{C}$ with g + h = M and gh = N.

Proof. Consider the quadratic equation $x^2 - Mx + N = 0$ and apply the quadratic formula, we have two roots $r_1 = \frac{-M + \sqrt{M^2 - 4N}}{2}$ and $r_2 = \frac{-M - \sqrt{M^2 - 4N}}{2}$. Notice that $r_1 + r_2 = -M$ and $r_1r_2 = N$. Then we see that $-r_1, -r_2 \in \mathbb{C}$ that satisfies the relation.

Exercise 1.3. (i) Find the complex roots of $f(x) = x^3 - 3x + 1$.

(ii) Find the complex roots of $f(x) = x^4 - 2x^2 + 8x - 3$.

Exercise 1.4. Show that the quadratic formula does not hold for $f(x) = ax^2 + bx + c$ if we view the coefficients a, b, c as lying in the integers mod 2.

Proof. Take
$$f(x) = x^2 + x + 1$$
, applying the quadratic formula, we have $r_1 = \frac{-1 + \sqrt{1 - 4}}{2} = \frac{1 + 1}{2} = 1 \neq 0$ and $r_2 = \frac{-1 - \sqrt{1 - 4}}{2} = \frac{1 - 1}{2} = 1 \neq 0$.

1.2. Permutations

Exercise 1.5. Give an example of functions $f: X \to Y$ and $g: Y \to X$ such that $gf = 1_X$ and $fg \neq 1_Y$.

Proof. Consider
$$f: \mathbb{Z} \to \mathbb{Z}, g: \mathbb{Z} \to \mathbb{Z}$$
 where $f(x) = -x, g(x) = |x|$. Then we see that $gf(x) = |-x| = x, \forall x \in \mathbb{Z}$ while $fg(1) = -|1| = -1$.

Exercise 1.6. Prove that the composition of functions is associative: if $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$, then

$$h(gf) = (hg)f.$$

Proof.
$$h(gf)(x) = h(g(f(x)) = (hg)f(x)$$

Exercise 1.7. Prove that the composite of two injections is an injection, and that the composite of two surjections is a surjection. Conclude that the composite of two bijections is a bijection.

Proof. Injection: Suppose we have $f: X \to Y$, $g: Y \to Z$ both injections. Then we see that $\forall a_1, a_2 \in X$, $a_1 = a_2 \implies f(a_1) = f(a_2) \implies g(f(a_1)) = g(f(a_2))$. Hence the composition of two injections is an injection.

Surjection: Suppose we have $f: X \to Y$, $g: Y \to Z$ both surjections. Then we see that $\forall c \in Z, \exists b \in Y \text{ s.t. } g(b) = c$. Also, since f is surjective, there is $a \in X \text{ s.t. } f(a) = b$. Hence there is $a \in X$ with g(f(a)) = c for all $c \in Z$.

Bijection: Since bijections are injective and surjective at the same time, compositions of two bijections must also be both injective and surjective at the same time. \Box

Exercise 1.8 (Pigeonhole Principle). (i) Let $f: X \to X$ be a function, where X is a finite set. Prove equavalence of the following statements.

- (a) f is an injection.
- (b) f is a bijection.
- (c) f is a surjection.
- (ii) Prove that no two of the statements in (i) are equivalent when X is an infinite set.
- (iii) Suppose there are 501 pigeons, each sitting in some pigeonhole. If there are only 500 pifeonholes, prove that there is a hole containing more than one pigeon.
- *Proof.* (i) Since bijective iff surjective and injective, we only need to proof (a) iff (c). Suppose f is injective, then no two elements in X are mapped to the same element, hence |X| = |f(X)| or equavalently, f is surjective.

 $\qquad \qquad \Box$

Exercise 1.9. Let Y be a subset of a finite set X, and let $f: Y \to X$ be an injection. Prove that there is a permutation $\alpha \in S_X$ with $\alpha | Y = f$.

Exercise 1.10. Find $sgn(\alpha)$ and α^{-1} , where

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$

Exercise 1.11. If $\alpha \in S_n$, prove that $sgn(\alpha^{-1}) = sgn(\alpha)$.

Exercise 1.12. If $1 \le r \le n$, show that there are

$$\frac{1}{r}[n(n-1)...(n-r+1)]$$

r-cycles in S_n .

Hint . There are exactly r cycle notations for any r-cycle.

Exercise 1.13. (i) If α is an r-cycle, show that $\alpha^r = (1)$.

Hint . If $\alpha = (i_0...i_{r-1})$, show that $\alpha^k(i_0) = i_j$, where k = qr + j and $0 \le j < r$.

(ii) If α is an r-cycle, show taht r is the smallerst positive integer k such that $\alpha^k = (1)$.

Exercise 1.14. Show that an r-cycle is an even permutation if and only if r is odd.

Exercise 1.15. (i) Let $\alpha = \beta \delta$ be a factorization of a permutation α into disjoint permutations. If β moves i, prove that $\alpha^k(i) = \beta^k(i)$ for all $k \geq 1$.

(ii) Let β and γ be cucles both of which move i. If $\beta^k(i) = \gamma^k(i)$ for all $k \ge 1$, prove that $\beta = \gamma$.

Exercise 1.16. Given X = 1, 2, ..., n, let us call a permutation τ of X an **adjacency** if it is a transposition of the form $(i \ i + 1)$ for i < n.

- (i) Prove that every permutation in S_n , for $n \geq 2$, is a product of adjacencies.
- (ii) If i < j, prove that $(i \ j)$ is a product of an odd number of adjacencies.

Hint . Use induction on j - i.

Exercise 1.17. (i) Prove, for $n \geq 2$, that every $\alpha \in S_n$ is a product of transpositions each of whose factors moves n.

Hint. If i < j < n, then (j n)(i j)(j n) = (i n), by Lemma 1.7, so that (i j) = (j n)(i n)(j n).

(ii) Why doesn't part (i) prove that a 15-puzzle with even starting position α which fixes \Box can be solved?

Exercise 1.18. Define $f: 0, 1, 2, ..., 10 \rightarrow 0, 1, 2, ..., 10$ by

f(n) =the remainder after dividing $4n^2 - 3n^7$ by 11.

- (i) Show that f is a permutation.
- (ii) Compute the parity of f.
- (iii) Compute the inverse of f.

Exercise 1.19. If α is an r-cucle and 1 < k < r, is α^k an r-cycle?

Exercise 1.20. (i) Prove that if α and β are (not necessarily disjoint) permutations that commute, then $(\alpha\beta)^k = \alpha^k\beta^k$ for all $k \ge 1$.

Hint . First show that $\beta \alpha^k = \alpha^k \beta$ by induction on k.

(ii) Given an example of two permutations α and β for which $(\alpha\beta)^2 \neq \alpha^2\beta^2$.

Exercise 1.21. (i) Prove, for all i, that $\alpha \in S_n$ moves i if and only if α^{-1} moves i.

(ii) Prove that if $\alpha, \beta \in S_n$ are disjoint and if $\alpha\beta = (1)$, then $\alpha = (1)$ and $\beta = (1)$.

Exercise 1.22. Prove that the number of even permutations in S_n is $\frac{1}{2}n!$.

Hint . Let $\tau = (1\ 2)$, and define $f: A_n \to O_n$, where A_n is the set of all even permutations in S_n and O_n is the set of all odd permutations, by $f: \alpha \to \tau \alpha$. Show that f is a bijection, so that $|A_n| = |O_n|$ and, hence, $|A_n| = \frac{1}{2}n!$.

Exercise 1.23. (i) How many permutations in S_5 commute with $\alpha = (1\ 2\ 3)$, and how many textifeven permutations in S_5 commute with α ?

Hint . Of the six permutations in S_5 commuting with α , only three are even.

(ii) Same question for (12)(34).

Hint . Of the eight permutations in S_4 commuting with $(1\,2)(3\,4)$, only four are even.

Exercise 1.24. Given an example of $\alpha, \beta, \gamma \in S_5$, with $\alpha \neq (1)$, such that $\alpha\beta = \beta\alpha, \alpha\gamma = \gamma\alpha$, and $\beta\gamma \neq \gamma\beta$.

Exercise 1.25. If $n \geq 3$, prove that if $\alpha \in S_n$ commutes with every $\beta \in S_n$, then $\alpha = (1)$.

Exercise 1.26. If $\alpha = \beta_1...\beta_m$ is a product of disjoint cycles and δ is disjoint from α , show that $\beta_1^{e_1}...\beta_m^{e_m}\delta$ commutes with α , where $e_j \geq 0$ for all j.