Multivariate Data Analysis

(MGT513, BAT531, TIM711)

Lecture 11

Structural Equation Models 3

- 1. SEM in R (Example 2 and 3)
- 2. Latent Growth Curve Model in AMOS and R

"Lavaan" Package in R

Python alternatives

Lavaan is a popular package for structural equation modeling (SEM) in R programming language. It provides a comprehensive set of functions for estimating, analyzing, and visualizing SEM models. However, if you're specifically looking for a Python alternative to lavaan, there are a few options available.

- 'semopy': semopy is a Python package that offers similar functionality to lavaan. It allows
 you to specify and estimate structural equation models using maximum likelihood
 estimation. It supports various SEM techniques such as confirmatory factor analysis
 (CFA), path analysis, and latent growth modeling. You can find more information and
 examples in the official documentation: https://semopy.com/
- 2. *statsmodels*: statsmodels is a comprehensive statistical modeling package in Python that includes some functionality for SEM. It provides classes for fitting linear models, including multivariate regression models, which can be used to perform some basic SEM analyses. While statsmodels may not have all the advanced features of lavaan, it can be a good starting point for simpler SEM tasks. You can find more information and examples in the official documentation: https://www.statsmodels.org/stable/index.html
- 3. 'PySEM': PySEM is another Python package specifically designed for structural equation modeling. It provides a user-friendly interface for specifying and estimating SEM models using the maximum likelihood estimation method. PySEM supports various types of models, including path models, factor models, and latent growth curve models. You can find more information and examples in the official documentation:

https://pypi.org/project/pypath/

It's worth noting that these Python alternatives may not offer the exact same functionality and syntax as lavaan. However, they provide similar capabilities for performing SEM analyses within the Python programming environment.

1. SEM in R (Example 2 and 3)

Model fit indices

Fit statistic	Cut off point
Chi-square	Non-significant
RMSEA	.08 or below
CFI	.95 or above
SRMR	.08 or below
GFI	0.95 or above

Example 2

• Influence of industrialization ('60) on political democracy ('60 and '65)

Source: Structural Equation Modeling by Bowen and Guo

(https://global.oup.com/us/companion.websites/9780195367621/examples/)

BM1: CFA 1 of Bollen Mode(1989) p.324

BM1: CFA 1 of Bollen Mode(1989) p.324

Chi-square = 70.575 (41 df), p=.003 RMSEA=.099 GFI=.856, CFI=.955

BM2: CFA 2 of Bollen Mode(1989) p.324 - Respedification

BM2: CFA 2 of Bollen Mode(1989) p.324 - Respedification

Chi-square = 38.767 (38 df), p=.435 RMSEA=.017 GFI=.921, CFI=.999

Example 2: Structural model

BM3: Structural Regression Model (A Panel Model) Bollen (1989) p.324

Example 2: Structural model

BM3: Structural Regression Model (A Panel Model) Bollen (1989) p.324

Chi-square = 38.767 (38 df), p=.435 RMSEA=.017 GFI=.921, CFI=.999

Example 3

Research questions:

- 1. Controlling for exogenous factors (i.e., achievement motivation, task-specific self esteem, and verbal intelligence), is the relationship between performance and job satisfaction myth or reality?
- 2. Controlling for exogenous factors (i.e., achievement motivation, task-specific self esteem, and verbal intelligence), does performance influence satisfaction, or does satisfaction influence performance?

Source: Structural Equation Modeling by Bowen and Guo

(https://global.oup.com/us/companion.websites/9780195367621/examples/)

Example 3

Four hypotheses:

- 1. H1: the correlation is spurious; the two latent variables are correlated, because they are both determined by common causes of k1 (Achievement Motivation), k2 (Task-specific Self Esteem), and k3 (Verbal Intelligence).
- 2. H2: n2 (job satisfaction) influences n1 (performance).
- 3. H3: n1 (performance) influences n2 (job satisfaction).
- 4. H4: n1 (performance) and n2 (job satisfaction) influence each other reciprocally.

Source: Structural Equation Modeling by Bowen and Guo

(https://global.oup.com/us/companion.websites/9780195367621/examples/)

Job1: CFA Measurement model about job satisfaction and performance (Bagozzi, 1980)

Chi-square = 10.309 (12 df), p=.589 RMSEA=.000 GFI=.978, CFI=1.000

Job1: CFA Measurement model about job satisfaction and performance (Bagozzi, 1980)

Example 3: Job 2(H1)

• H1: Spurious correlation of job satisfaction and performance

Job 2: (Bagozzi, 1980) Test "H1: Spurious correlation of job satisfaction & performance"

- They have the three exogenous factors as common causes

Example 3: Job 2(H1)

Chi-square = 10.309 (12 df), p=.589 RMSEA=.000 GFI=.978, CFI=1.000

Job 2: (Bagozzi, 1980) Test "H1: Spurious correlation of job satisfaction & performance" - They have the three exogenous factors as common causes

Example 3: Job 3(H2)

• H2: Job satisfaction influences performance

Job 3: (Bagozzi, 1980) Test "H2: job satisfaction influences performance"

Example 3: Job 4(H3)

H3: Performance influences Job satisfaction

Job 4: (Bagozzi, 1980) Test "H3 performance influences job satisfaction"

Example 3: Job 5(H4)

• H4: Non-recursive relation

Job 5: (Bagozzi, 1980) Test "H4: nonrecursive relation"

Example 3: Job 5(H4)

AMOS output: Model unidentified!

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments: 36 Number of distinct parameters to be estimated: 25 Degrees of freedom (36 - 25): 11

Result (Default model)

The model is probably unidentified. In order to achieve identifiability, it will probably be necessary to impose 1 additional constraint.

Example 3: Job 6 (H4)

Delete two non-significant paths to make the model identified

Job 6: (Bagozzi, 1980) Test "H4: nonrecursive relation",
Delete two nonsignificant paths to make
the model identified

Example 3: Job 6 (H4)

Chi-square = 10.474 (13 df), p=.655 RMSEA=.000 GFI=.978, CFI=1.000

Job 6: (Bagozzi, 1980) Test "H4: nonrecursive relation",
Delete two nonsignificant paths to make
the model identified

Example 3: Job 7 (Final Model)

Delete non-significant paths of the previous model: Recursive model

Job 7: (Bagozzi, 1980) Final Model: Delete nonsignificant paths of JOB6 Recursive Model

Example 3: Job 7 (Final Model)

Chi-square = 13.508 (15 df), p=.563 RMSEA=.000 GFI=.971, CFI=1.000

Job 7: (Bagozzi, 1980) Final Model: Delete nonsignificant paths of JOB6 Recursive Model

2. Latent Growth Curve Model in AMOS and R

- Longitudinal analysis technique to estimate growth over a period of time
- Considers change over time in terms of an underlying, latent, unobserved process
- Very flexible
- Incorporates time-specific measurement error
- Allows for covariance among the variance for slope and the variance for the intercept
- Allows researchers to model and test longitudinal associations among several outcome variables measured repeatedly over time

- Customers' satisfaction data over four time periods
- No covariate

- Customers' satisfaction data over four time periods
- No covariate

- Customers' satisfaction data over four time periods
- Gender (Male: 0, Female: 1)

- Customers' satisfaction data over four time periods
- Gender (Male: 0, Female: 1)

- Customers' satisfaction data over four time periods
- Gender (Male: 0, Female: 1)

Graph

Source: Mike Crowson