

BÀI 4 DANH SÁCH TUYẾN TÍNH

4.5. NGĂN XÉP

4.5.1. Khái niệm ngăn xếp

- Là một danh sách tuyến tính.
- · Việc bổ sung một phần tử vào ngăn xếp hoặc lấy một phần tử ra khỏi ngăn xếp chỉ thực hiện ở một đầu gọi là đỉnh ngăn xếp.
- Ngăn xếp được gọi là danh sách kiểu LIFO – Last In First Out.

4.5.2. Cài đặt ngăn xếp bằng danh dách kế tiếp

- · Cài đặt cấu trúc dữ liệu
- · Cài đặt các phép toán cơ bản
 - Khởi tạo ngăn xếp rỗng
 - Kiểm tra ngăn xếp rỗng
 - Kiểm tra ngăn xếp đầy
 - · Bổ sung một phần tử vào đỉnh ngăn xếp
 - · Lấy một phần tử ở đỉnh ngăn xếp

4.5.2.1. Cài đặt cấu trúc dữ liệu

Mảng e lưu trữ các phần tử của ngăn xếp

Cài đặt cấu trúc dữ liệu (tt)

- · Giả sử N nguyên dương là số phần tử lớn nhất mà ngăn xếp có thể phát triển đến.
- Item là kiểu dữ liệu của các phần tử.
- Khi đó ngăn xếp là một cấu trúc gồm 2 thành phần
 - Biến top lưu chỉ số phần tử mảng lưu phần tử đỉnh ngăn xếp.
 - Mảng e lưu các phần tử của ngăn xếp.

CẤU TRÚC DỮ LIỆU VÀ GIẢI THUẬT

Cài đặt cấu trúc dữ liệu (tt)

Định nghĩa kiểu Item Khai báo kiểu phần tử

Khai báo kiểu ngăn xếp

```
struct Stack
  Item e[MAX] ;
   int top ;
```

Khai báo biến ngăn xếp Stack S;

Cài đặt cấu trúc dữ liệu (tt) - Ví dụ

- Cài đặt cấu trúc dữ liệu của ngăn xếp lưu trữ danh sách 100 học sinh gồm các thông tin:
 - Mã học sinh.
 - Họ tên học sinh.
 - Tuổi.
 - Điểm trung bình.
- Cấu trúc dữ liệu
 - Số học sinh nhiều nhất có thể có N = 100.
 - Kiểu dữ liệu học sinh: Cấu trúc gồm 4 thành phần.
 - Ngăn xếp.

Cài đặt cấu trúc dữ liệu (tt) - Ví dụ

```
#define MAX 100
struct HocSinh {
  int maHs;
  char hoTen[30];
  int tuoi;
  float diemTb;
struct Stack {
  HocSinh e[MAX];
  int top;
Stack S;
```


4.5.2.2. Các phép toán cơ bản

Khởi tạo ngăn xếp rỗng

```
void initStack (Stack &S)
  S.top = -1;
```

Kiểm tra ngăn xếp rỗng

```
int empty (Stack S)
  return (S.top == -1);
```


Ngăn xếp rỗng

CẤU TRÚC DỮ LIỆU VÀ GIẢI THUẬT

Các phép toán cơ bản (tt)

Kiểm tra ngăn xếp đầy

```
int full (Stack S)
  return (S.top == MAX-1);
```

```
top
          G
6
          E
          D
```

Ngăn xếp đầy

· Bổ sung một phần tử X vào đỉnh ngăn xếp S

- Bổ sung một phần tử X vào đỉnh ngăn xếp S
 - Kiểm tra ngăn xếp đầy
 - Đúng -> Bổ sung không thành công
 - Sai ->
 - ✓ Tăng biến top lên 1 đơn vị.
 - ✓ Gán giá trị X vào vị trí top mới.
 - ✓ Bổ sung thành công.

Các phép toán cơ bản (tt)

Bổ sung một phần tử X vào đỉnh ngăn xếp S

```
int push(Stack &S, Item X)
  if (full(S)) return 0;
  else
     S.top = S.top + 1;
     S.e[S.top] = X;
     return 1;
```


· Lấy phần tử ở đỉnh ngăn xếp S

- Lấy phần tử ở đỉnh ngăn xếp S
 - Kiểm tra ngăn xếp rỗng
 - Đúng -> Lấy không thành công
 - Sai ->
 - ✓ Gán giá trị ở đỉnh cho biến Y.
 - ✓ Giảm giá trị biến top đi 1 đơn vị.
 - ✓ Lấy thành công.

Lấy phần tử ở đỉnh ngăn xếp S

```
int pop (Stack &S, Item &Y)
      (empty(S))
     return 0;
  else
     Y = S.e[S.top];
     S.top = S.top - 1;
     return 1;
```


4.5.2.3. Ứng dụng ngăn xếp

- Chuyển đổi số thập phân sang dạng nhị phân tương ứng.
- Bài toán gồm các yêu cầu như sau:
 - Nhập số nguyên dương N.
 - Đổi số N sang dạng mã nhị phân tương ứng của nó.
 - In kết quả ra màn hình.

Ứng dụng ngăn xếp (tt)

- Phương pháp chuyển đổi số thập phân sang dạng số nhị phân tương ứng.
 - Chia liên tiếp số nguyên N cho 2 cho đến khi N = 0.
 - Lưu trữ các số dư trong mỗi lần chia.
 - Lấy các số dư theo thứ tự ngược lại của thứ tự chia ta được số nhị phân tương ứng.

Các số dư được lưu như thế nào ?

CẤU TRÚC DỮ LIỆU VÀ GIẢI THUẬT

- · Chia số N liên tiếp cho 2 và lưu phần dư trong mỗi lần chia vào ngăn xếp S.
- Với N = 20 ta có:

Ứng dụng ngăn xếp (tt)

· Đọc mã nhị phân từ ngăn xếp S và hiển thị ra màn hình.

CẤU TRÚC DỮ LIỆU VÀ GIẢI THUẬT

- Cài đặt cấu trúc dữ liệu của bài toán.
 - Số nguyên được lưu với kích thước 4 byte = 32 bit, nên N = 32 là kích thước của ngăn xếp.
 - Mã nhị phân là các giá trị 0, 1 -> dữ liệu trong ngăn xếp là số nguyên.

```
#define MAX 32
typedef unsigned int MaNhiPhan;
struct Stack
  int top;
  MaNhiPhan e[MAX];
};
```


Ứng dụng ngăn xếp (tt)

 Cài đặt hàm chuyển đổi số thập phân sang dạng nhị phân, kết quả lưu trong ngăn xếp S.

```
void change(unsigned long N, Stack &S)
{
    initStack(S);
    while (N > 0 && push(S, N % 2))
    {
        N = N / 2;
    }
}
```


Ứng dụng ngăn xếp (tt)

· Cài đặt hàm đọc mã nhị phân lưu trong ngăn xếp S và hiển thị kết quả ra màn hình.

```
void display(Stack S)
  MaNhiPhan Y;
  while (pop(S, Y))
     cout<<Y<<" ";
```


Bài tập

- Cài đặt chương trình thực hiện các yêu cầu sau:
 - Cài đặt ngăn xếp lưu trữ danh sách các số nguyên
 - Tạo ngăn xếp chứa n số nguyên (dữ liệu nhập từ bàn phím).
 - Đưa danh sách lên màn hình.
 - Thêm một số nguyên vào đáy ngăn xếp, hiển thị lại ngăn xếp.
 - Xóa số nguyên thứ 2 tính từ đáy ngăn xếp, hiển thị lại ngăn xếp.

TRÂN TRỌNG CẢM ƠN...!