Spis treści

1	\mathbf{Wstep}	1
2	Model matematyczny	1
	2.1 Opis problemu:	1
	2.1.1 Stałe:	2
	2.1.2 Zmienne:	2
	2.1.3 Postać rozwiązania:	2
	2.1.4 Postać funkcji celu:	2
	2.1.5 Ograniczenia:	2
3	Implementacja	3
	3.1 Implementacja klasy jako modelu rozwiązania	3
	3.2 symulowane wyżarzanie	3
	3.2.1 metody algorytmu	
	3.3 algorytm genetyczny	4
	3.4 wyniki	4
4	Problemy	4

1 Wstęp

W ramach projektu każdy z naszej trójki miał wymysleć pomysł optymalizacji który można by zaimplementować w ramach zajęć oraz rozwiązać implementując jeden z algorytmów optymalizacyjnych.

- Pomysł Dawida zakładał optymalizacje wydatków związanych z zakupem opału w sezonie grzewczym
- Pomysł Piotrka opierał się na optymalizacji zysków z hodowli roślinnej w średnim gospodarstwie rolnym.
- Pomysł Bartka bazował na maxymalizacji jakości komponentów w składanym komputerze przy minimalizacji kosztów

Wspólną decyzją był pomysł Piotrka optymalizacji gospodarstwa rolnego.

2 Model matematyczny

2.1 Opis problemu:

Problem polega na stworzeniu kilkuletniego planu upraw dla niewielkiego gospodarstwa rolnego w zależności od zmiennej kategorii) jakości gleby (w postaci cyfry w zakresie od 0 - 100) i odległości uprawy od gospodarstwa. Celem będzie maksymalizacja zysków . Zakładamy przy tym że co roku nabywamy nowy materiał siewny.

2.1.1 Stale:

- N Liczba dostępnych pól uprawnych.
- Y liczba lat planowania upraw.
- T stały koszt dojazdu na kilometr
- P powierzchnia pola uprawnego w hektarach (każde pole ma identyczną powierzchnię)
- D_i Odległość i-tego pola od gospodarstwa, gdzie i = 1,...,N
- C_x koszt produkcji danej rośliny na jeden hektar (koszt materiału siewnego, koszt pracy ludzkiej, itp.), gdzie x nazwa rośliny
- W_x wpływ uprawy na glebę (zależne od uprawianej rośliny)
- \bullet S_x zsumowana ilość dopłat i wszelkich dodatków (w zależności od uprawianej rośliny)
- $G = [g_{qx}]$ macierz zysków z pola gdzie komórka g_{qx} zawiera zysk z danej rośliny w zależnie od jakości gleby q i uprawianej rośliny x.

2.1.2 Zmienne:

- y Obecny rok, y = 1,...,Y
- $Q = [q_{yi}]_{Y \times N}$ Macierz klas jakości gleby gdzie komórka q_{yi} zawiera jakość ziemi którą na i-tym polu w roku y.

2.1.3 Postać rozwiązania:

• $X = [x_{yi}]_{Y \times N}$ - macierz decyzyjna o wymiarach $Y \times N$, gdzie komórka x_{yi} zawiera indeks rośliny którą siejemy na i-tym polu w roku y.

2.1.4 Postać funkcji celu:

$$f(X) = \sum_{y=1}^{Y} \sum_{i=1}^{N} G_{q_{yi}x_{yi}} + S_{x_{yi}} - (C_{x_{yi}} * P + D_i * T)$$
(1)

$$q_{yi} = q_{(y-1)i} + W_{x_{(y-1)i}} (2)$$

2.1.5 Ograniczenia:

- $0 \le q_{vi} \le 100$ Jakość gleby może zmieniać się w zakresie od 0 do 100
- $x_{i-1} \neq x_i$, gdzie x_k nie jest stanem pustym pola

3 Implementacja

Naszą implementację zaczeliśmy od zaimplementowania modelu matematycznego w formie funkcji pythonowej.

Postać rozwiązania jest przedstawiana w postaci macierzowej (listy list w pythonie), gdzie wiersze przedstawiają lata symulacji zaś numery kolumn odpowiadają odpowiedniemu polu.

Funkcja celu matematycznie jest zapisana w formie podwójnej sumy, zaś zaprogramowana jako podwójna pętla for. W programie nie jest to oczywiste ponieważ pętla po latach uprawy wywołuje w sobie funkcję pomocniczą w której jest kolejna pętla już idąca po polach.

3.1 Implementacja klasy jako modelu rozwiązania

Początkowo zakładaliśmy że cały nasz projekt będzie w postaci jednej klasy Pythona jednakże w trakcie rozwiązywania problemu doszliśmy do wniosków że chcielibyśmy porównać dwa sposoby rozwiązania problemu dlatego też w pierwotnej klasie ... !TODO

3.2 symulowane wyżarzanie

Nasz problem, na podstawie sugestii pani Profesor postanowiliśmy rozwiązać algorytmem symulowanego wyżarzania (z ang. simulated anealling). Jest to nasz pierwszy pomysł na rozwiązanie problemu, w dalszej części opisujemy drugi, który jest zaimplementowany na podstawie metaheurystyki algorytmu genetycznego (z ang. genetic alg.).

3.2.1 metody algorytmu

Aby zaimplementować nasze rozwiązanie metaheurystyką symulowanego wyżarzania potrzebowaliśmy zdefiniować następujące funkcje:

- simulated_annealing
- __annealing_temp
- __annealing_neig
- __annealing_P

annealing temperature Funkcja wspomagająca algorytm symulowanego wyżarzania, zwraca temperaturę według wzoru 1 - (k+1)/kmax (jeśli wyrażenie jest pozytywne) lub 1/kmax jezęli wzór zwraca wrtości negatywne. Ten sposób wyliczania temperatury wydawał się najprostszy i najpraktyczniejszy do zaimplementowania.

annealing Probability Funkcja pomocnicza akceptująca następujące parametry: wartość f. celu dla obecnego rozwiązania, wartość f. celu dla nowego rozwiązania, obecną temperaturę. Funkcja wylicza prawdopodobieństwo przejścia do wybranego, nowego rozwiązania. Jako że maksymalizujemy to funkcja zwraca 1 jeżeli nowe rozwiązanie ma wyższą wartość niż obecne, zaś w przeciwnym wypadku jest wyliczane według wzoru: $exp((-1)*(f-f_{new})/temp)$.

annealing neighbour Funkcja pomocnicza wybierająca kandydata na nowe rozwiązanie. Kandydat jest macierzą (wyjaśnienie tutaj)

simulated annealing Główna funkcja zaimplementowanego algorytmu na podstawie pseudokodu:

- Let $s = s_0$
- For k = 0 through k_{max} (exclusive):
 - $T \leftarrow \text{temperature}(1 (k+1)/k_{\text{max}})$
 - Pick a random neighbour, $s_{\text{new}} \leftarrow \text{neighbour}(s)$
 - If $P(E(s), E(s_{\text{new}}), T) \ge \text{random}(0, 1)$:
 - $s \leftarrow s_{\text{new}}$
- Output: the final state s

Rysunek 1: Pseudo-kod głównej części algorytmu sa

Algorytm działa k_{max} razy w pętli for, w pierwszym kroku każdej iteracji jest przypisywana nowa temperatura zwracana z funkcji annealling temp

- 3.3 algorytm genetyczny
- 3.4 wyniki
- 4 Problemy

Indeksacja

wybór następnego kandydata na rozwiązanie