STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 16: Errors and Power in Tests

Outline

- Previous:
 - ightharpoonup Confidence interval for μ
 - Hypothesis test
- Today:
 - ► Explore more of the properties around the hypothesis test
 - ► Type I and Type II errors
 - Power of a test
 - Trade-offs between errors and power

Height of 100-level STAT students

- In previous years there was a questionnaire (optional) for STAT110 students
 - Questions about age, height, sex, ...
- Exploratory study
 - ► Explore the height of females in STAT110 relative to national average
 - Average height for NZ female aged 15-24 is 164.7 cm (figure.nz)¹
 - Restrict ourselves to female STAT110 students aged 15-24

```
STAT110 = read.csv('../data/STAT110_height_f.csv')
head(STAT110$height)
## [1] 167 153 171 177 161 173
```

• Heights from n=451 female students aged 15-24

¹Data from New Zealand Health Survey, 2023

Hypothesis test

· Write down the null and alternate hypothesis

```
► H_0: \mu = 164.7
► H_A: \mu \neq 164.7
```

• Use $\alpha = 0.05$

• We can conduct the test in R

```
h_test = t.test(STAT110$height, mu = 164.7)
h test
##
    One Sample t-test
##
## data: STAT110$height
## t = 8.073, df = 450, p-value = 6.32e-15
## alternative hypothesis: true mean is not equal to 164.7
## 95 percent confidence interval:
## 166.891 168.301
## sample estimates:
## mean of x
     167.596
```

Interpretation

- Exploratory study: interpret *p*-values (no formal test)
- There is evidence that the data are incompatible with null hypothesis
 - ▶ p-value is approximately 1 in a quadrillion²
- Evidence that the (mean) height of female STAT110 students is incompatible with national average
- Do we trust it? It pays to be cautious
 - ▶ Students in STAT110 are not a random selection of 15 24 year olds in NZ
 - ► STAT110 data are voluntary and heights are self-reported
 - There are also very different rates of left-handedness from national averages
- If this question were of interest...
 - ▶ There is 'enough' to look into designing a (confirmatory) study

²The progression is million (10^6) , billion (10^9) , trillion (10^{12}) , quadrillion (10^{15}) , ...

Assumptions

- We have made an assumption that our data are normally distributed
 - Just as we did with confidence intervals
- To check this assumption: looking for serious departures from normality
 - We check visually (histogram)
- As with confidence intervals: if the sample size is large enough
 - p-values are reasonable for non-normal data
 - Discuss more in a few weeks

Histogram

- No obvious departures from normality
- Large sample (~ 450)

Setup

- We want to better understand how hypothesis testing works
- We do this in the context of formal hypothesis test
 - ▶ If p-value $< \alpha$ we reject H_0
 - If p-value $> \alpha$ we fail to reject H_0
- There are four possibilities:

	Decision	
	Do not reject H_0	Reject H_0
H_0 true	✓	Type I error
H_0 not true	Type II error	\checkmark

Setup

- Consider a specific gene: GENE-X
 - ▶ Reference expression value of 5.0 TPM (transcripts per million) in healthy individuals
- Design a confirmatory study to test if GENE-X is expressed differently in a sample of people with a specific disease
 - $ightharpoonup H_0: \mu = 5$ (the mean expression for the diseased group is the same as the reference)
 - ▶ $H_A : \mu \neq 5$
- In this study:
 - ► We want to find evidence against the null
 - ▶ We want to find evidence that gene expression differs in the diseased group
- In the rest of the lecture an effect is defined as:
 - Effect: difference between the mean for the disease group and $\mu_0 = 5$

A tale of two errors

- Type I Error (α): Rejecting H_0 when it is true.
 - ► Concluding the expression of GENE-X is different for the diseased group, when it isn't
- Type II Error (β): Failing to reject H_0 when H_A is true.
 - Concluding that there is no evidence that expression of GENE-X differs for diseased group, when there is a non-zero effect

Type I error

- Type I error rate is given by α , the significance level
 - \blacktriangleright Decreasing α from 0.05 to 0.01 will reduce the number of type I errors we make
 - Recall: α is the threshold for incompatibility with null
 - A lower α is applying a higher threshold for incompatibility

Type II error

- The type II error rate is representated as β
- We often refer to the power = 1β
- Power: the probability of rejecting the null hypothesis, given it is incorrect
 - ▶ i.e. it is the probability of detecting an effect, given there is one
- All else equal, we want a powerful test
 - ► More likely to correctly reject H₀
 - More likely to correctly conclude that gene expression differs in diseased group
- We will look at four factors that change the type II error / power

Type I error rate α

- Trade off between type I error rate and power
 - If we decrease α (lower type I error rate)
 - Increase type II error rate β
 - Decrease power
- If we increase α (higher type I error rate)
 - ▶ Decrease type II error rate β
 - Increase power

Effect size

- Recall: $\mu_0 = 5$ TPM (transcripts per million)
- Consider two scenarios:
 - 1. The true mean of the diseased population is $\mu_A=5.1$ TPM
 - 2. The true mean of the diseased population is $\mu_A = 12$ TPM
- In which scenario will power be higher (all else equal)?

 $^{3}|x|$ is the absolute value of x

Slide 14 Lecture 16

Effect size

- Recall: $\mu_0 = 5$ TPM (transcripts per million)
- Consider two scenarios:
 - 1. The true mean of the diseased population is $\mu_A = 5.1$ TPM
 - 2. The true mean of the diseased population is $\mu_A=12$ TPM
- In which scenario will power be higher (all else equal)?
- The larger³ the effect $|\mu_A \mu_0|$
 - ► The more powerful the test, all else equal
- The size of the effect is not something we can typically control

 $|x|^3$ is the absolute value of x

Sample size

- For a fixed α and effect size, consider these two scenarios:
 - 1. The sample size (of diseased participants) is n=20
 - 2. The sample size (of diseased participants) is n = 200
- In which scenario will power be higher?

Sample size

- For a fixed α and effect size, consider these two scenarios:
 - 1. The sample size (of diseased participants) is n=20
 - 2. The sample size (of diseased participants) is n = 200
- In which scenario will power be higher?
- The larger the sample size
 - ► The more powerful the test, all else equal
- · Scientific research (grant) funding in ecology, food science, global health, etc
 - Typically have to justify your research design
 - ▶ Power calculation: determining sample size needed to achieve a certain power

Population standard deviation

- For a fixed n, α , and effect size, consider these two scenarios:
 - 1. The population standard deviation (of gene expression in the disease group) is $\sigma = 0.1$
 - 2. The population standard deviation (of gene expression in the disease group) is $\sigma=1$
- In which scenario will power be higher?

Population standard deviation

- For a fixed n, α , and effect size, consider these two scenarios:
 - 1. The population standard deviation (of gene expression in the disease group) is $\sigma=0.1$
 - 2. The population standard deviation (of gene expression in the disease group) is $\sigma=1$
- In which scenario will power be higher?
- The smaller the population standard deviation
 - ► The smaller the standard error
 - ▶ The more precise \bar{y} is
 - ► The more powerful the test, all else equal
- The value of σ is not something we can typically control

p-value

- ASA principle: "A p-value, or statistical significance, does not measure the size of an effect or the importance of a result"
- Suppose we have p = 0.0000001. This could be because:
 - ▶ This could be because the effect size is large
 - ▶ It could occur when the effect size is small (but non-zero) and sample size is large
- Care is needed that we don't confuse a small p-value, with an important result

Relationship with confidence intervals

- If we are testing the hypothesis:
 - \vdash $H_0: \mu = \mu_0$
 - \vdash $\mathsf{H}_A: \mu \neq \mu_0$
- There is an equivalence between *p*-value and confidence interval
 - p-value $<\alpha$ is equivalent to μ_0 outside the $(1-\alpha)100\%$ confidence interval
 - e.g. if p-value < 0.05, then μ_0 is outside 95% confidence interval
 - e.g. if p-value > 0.01, then μ_0 is inside 99% confidence interval

Quiz

- It's quiz time!
- Three possible answers for the questions below:
 - ▶ (1) increase; (2) decrease; (3) can't tell
- What is the effect on (i) type I error rate, and (ii) power if we:
 - ► Increase the sample size?
 - \triangleright Decrease α ?
 - ▶ Decrease the sample size and increased α ?
 - ▶ Changed the research design so that the type II error rate β decreased?
 - ▶ Collected a sample twice the size for a different gene (GENE-Y) that has a smaller effect and larger σ ?

Summary

- Checking assumptions
- Looked more at the properties of hypothesis testing
 - ► Type I error
 - ► Type II error
 - Power
- Looked at the effect of
 - ► Sample size
 - ► Effect size
 - $\triangleright \alpha$
 - \triangleright σ