# **Espacios Vectoriales**

## Espacio vectorial real

Un espacio vectorial real V es un conjunto de objetos, llamados vectores con las operaciones adición y multiplicación por un escalar que satisface los axiomas siguientes:



## Axiomas de un espacio vectorial

- I. Si  $x \in V$   $y \in V$ , entonces  $x + y \in V$  (ley de cierre)
- 2.  $\forall x, y, z \text{ en } V, (x+y) + z = x + (y+z)$ , ley asociativa.
- 3. Existe un vector  $0 \in V / \forall x \in V, x+0=0+x=x$  elemento neutro de la adición de vectores. (vector nulo)
- 4. Si  $x \in V$ ,  $\exists -x/x + (-x) = (-x) + x = 0$  elemento opuesto.
- 5. Si  $x \in V$   $y \in V$ , entonces x + y = y + x, ley conmutativa.
- 6. Si,  $\forall x \in V$ ,  $\forall \alpha \in R$ ,  $\alpha \cdot x \in V$  ley de cierre.
- 7. Si,  $x \in V$  y  $y \in V$  y  $\alpha \in R$ ,  $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$
- 8. Si,  $x \in V$ ,  $\alpha \in R$ ,  $\beta \in R$ , entonces  $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$
- 9. Si  $x \in V$ ,  $\alpha \in R$ ,  $\beta \in R$ , entonces  $(\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$
- 10. Para cada vector  $x \in V$ ,  $1 \cdot x = x$

## Ejemplo

Sea,  $V = R^3 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\}$ 

el primer axioma se verifica por definición de suma de

vectores, haciendo

$$0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{y} - \mathbf{x} = \begin{pmatrix} -x_1 \\ -x_2 \\ -x_3 \end{pmatrix}$$

los axiomas 2 a 10, se obtienen de la definición de suma de vectores y de las propiedades que rigen las operaciones con números reales.

▶ Si V verifica los axiomas, entonces es un espacio vectorial.



## Propiedades

Sea V un espacio vectorial.

#### **Entonces:**

- 1.  $\alpha \cdot \overrightarrow{\theta} = \overrightarrow{\theta}$  para todo escalar  $\alpha$ .
- 2.  $0.\overrightarrow{v} = \overrightarrow{\theta}$ , para todo  $\overrightarrow{v} \in V$
- 3. Si  $\alpha \cdot \overrightarrow{v} = \overrightarrow{\theta} \Rightarrow \alpha = 0 \lor \overrightarrow{v} = \overrightarrow{\theta}$
- 4  $(-1) \cdot \overrightarrow{v} = -\overrightarrow{v}$ , para todo  $\overrightarrow{v} \in V$

## Subespacio

- Sea H un subconjunto no vacío de un espacio vectorial V si H es en sí un espacio vectorial bajo las operaciones de adición y multiplicación por un escalar, entonces se dice que H es un subespacio de V.
- Teorema: Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las reglas de cerradura:

Si 
$$x \in H$$
 y  $y \in H \Rightarrow x + y \in H$ 

Si 
$$x \in H \Rightarrow \alpha x \in H \quad \forall \alpha \in R$$



### Combinación lineal

Sean,  $v_1, v_2, v_3, ..., v_n$  vectores en un espacio vectorial V. Entonces cualquier vector de la forma

$$\overrightarrow{a_1.v_1} + a_2.v_2 + a_3.v_3 + \cdots + a_n.v_n$$

donde  $a_1, a_2, a_3, ..., a_n$  son escalares,

se llama combinación lineal de  $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \dots, \overrightarrow{v_n}$ 



## Conjunto generador

Se dice que los vectores  $v_1, v_2, v_3, \dots, v_n$  en un espacio vectorial V generan a V si todo vector en V se puede escribir como una combinación lineal de ellos. Es decir, para todo  $v \in V$ , existen escalares  $a_1, a_2, a_3, \dots, a_n$ , tales que

$$\overrightarrow{a_1.v_1} + \overrightarrow{a_2.v_2} + \overrightarrow{a_3.v_3} + \dots + \overrightarrow{a_n.v_n} = \overrightarrow{v}$$



# Espacio generado por un conjunto de vectores

- Sean  $v_1, v_2, ..., v_k$ , k vectores de un espacio vectorial V. El espacio generado por  $\{v_1, v_2, ..., v_k\}$  es el conjunto de combinaciones lineales de  $v_1, v_2, ..., v_k$
- Es decir:

$$gen\{v_1, v_2, ..., v_k\} = \{v / v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_k v_k\}$$

Donde  $\alpha_1, \alpha_2, ..., \alpha_k$  son escalares arbitrarios.



# Dependencia e independencia lineal

Sean  $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, ..., \overrightarrow{v_n}$ , n vectores en un espacio vectorial V, diremos que ellos son linealmente independientes si la única combinación lineal

$$\overrightarrow{a_1.v_1} + \overrightarrow{a_2.v_2} + \overrightarrow{a_3.v_3} + \dots + \overrightarrow{a_n.v_n} = \theta$$

cuando los  $a_i \, {\rm con} \, i = 1, 2, 3, ..., n$  son simultáneamente nulos, en caso contrario los vectores son linealmente dependientes.



# Ejemplos

Determinar si los vectores que siguen son linealmente independientes, en caso contrario, expresar uno de ellos como combinación lineal de los demás:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}; \vec{b} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} \quad \vec{y} \quad \vec{c} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$$

$$\overrightarrow{v}_1 = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}; \overrightarrow{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \overrightarrow{y} \overrightarrow{v}_3 = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$$



## Dependencia lineal

Teorema I: Dos vectores en un espacio vectorial son linealmente dependientes si y sólo si uno de ellos es un múltiplo escalar del otro.

▶ Teorema 2: Un conjunto de n vectores en **R**<sup>m</sup> es siempre linealmente dependiente si n>m.



### Dependencia Lineal

#### ▶ Teorema 3:

Sea 
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Entonces las columnas de A consideradas como vectores, son linealmente dependientes si y sólo si el sistema

$$A \cdot \mathbf{c} = \mathbf{0}$$
 , tiene soluciones no triviales. Donde

$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix}$$



## Dependencia lineal

▶ Teorema 4: Sean  $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, ..., \overrightarrow{v_n}$ , n vectores en

 $R^n$  y sea A una matriz nxn cuyas columnas son  $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, ..., \overrightarrow{v_n}$ 

Entonces  $v_1, v_2, v_3, ..., v_n$  son linealmente independientes si y sólo si la única solución al sistema homogéneo  $A \cdot \mathbf{c} = \mathbf{0}$  es la solución trivial  $\mathbf{c} = \mathbf{0}$ 

► Teorema 5: Sea A una matriz de nxn. Entonces det(A) es distinto de cero si y sólo si las columnas de A son linealmente independientes.



### Dependencia Lineal

▶ Teorema de resumen:

Sea A una matriz de n x n. Entonces las afirmaciones siguientes son equivalentes, es decir que si una es cierta, todas son ciertas.

- I. A es invertible
- 2. La única solución al sistema homogéneo  $A \mathbf{x} = 0$  es la trivial.
- 3. El sistema A x = b tiene solución única para cada n-vector b
- 4. A es equivalente por renglones a la matriz identidad de n x n
- 5. La forma escalonada por renglones de A tiene n pivotes
- 6. El determinante de A es distinto de cero
- Las columnas (y renglones) de A son linealmente independientes.



## Dependencia Lineal

▶ Teorema 7: Cualquier conjunto de n vectores linealmente independientes en R<sup>n</sup> genera a R<sup>n</sup>



### Base

- Un conjunto finito de vectores  $\{v_1, v_2, ..., v_n\}$  es una base para un espacio vectorial V si:
- I. El conjunto  $\{v_1, v_2, ..., v_n\}$  es linealmente independiente.
- 2. El conjunto  $\{v_1, v_2, ..., v_n\}$  genera a V.

### **Teoremas**

▶ **Teorema I**: Si  $\{v_1, v_2, ..., v_n\}$  es una base para V y si  $v \in V$  entonces existe un conjunto único de escalares  $c_1, c_2, ..., c_n$  tales que  $v = c_1v_1 + c_2v_2 + ... + c_nv_n$ 

Demostración: ...

▶ **Teorema 2**: Si  $\{v_1, v_2, ..., v_n\}$  **y**  $\{u_1, u_2, ..., u_m\}$  son bases de un espacio vectorial V, entonces n = m, es decir cualesquiera dos bases en un espacio vectorial tienen el mismo número de vectores.

# Rango de una matriz A: $\rho(A)$

- ▶ En forma primitiva, podemos decir que:
  - El rango de una matriz es igual al número de pivotes en su forma escalonada por renglones.
  - El rango de una matriz es el número de columnas linealmente independientes que tiene la matriz ( o el número de renglones linealmente independientes)



### Teorema resumen

Sea A una matriz de n  $\times$  n. Entonces las afirmaciones siguientes son equivalentes, es decir que si una es cierta, todas son ciertas.

- A es invertible
- 2. La única solución al sistema homogéneo A x = 0 es la trivial.
- 3. El sistema  $A \mathbf{x} = b$  tiene solución única para cada n-vector b
- 4. A es equivalente por renglones a la matriz identidad de n x n
- 5. La forma escalonada por renglones de A tiene n pivotes
- 6. El determinante de A es distinto de cero
- 7. Las columnas (y renglones) de A son linealmente independientes.
- 8. Rango de A:  $\rho(A) = n$

Más aún, si una de ellas no se cumple, entonces para cada vector  $\mathbf{b} \in \mathbb{R}^n$ 

El sistema  $A \mathbf{x} = \mathbf{b}$  no tiene solución o tiene un número infinito de soluciones. Tiene número infinito de soluciones si y sólo si:

$$\rho(A) = \rho(A, \mathbf{b})$$

# Volviendo a los sistemas de ecuaciones lineales...

#### Teorema de Rouché - Frobenius

La condición necesaria y suficiente para que un sistema de ecuaciones lineales tenga solución, es que la matriz de los coeficientes y la matriz ampliada tengan igual rango.

Es decir que si  $\rho(A) = \rho(A, \mathbf{b})$ , el sistema es compatible.

Por lo tanto, si  $\rho(A) \neq \rho(A, \mathbf{b})$ , el sistema es incompatible.

- Si el rango de la matriz de los coeficientes es igual al rango de la matriz ampliada e igual al número n de incógnitas, el sistema es compatible determinado.
  - En símbolos: si  $\rho(A) = \rho(A, \mathbf{b}) = n$  el sistema es compatible determinado.
- Si el rango de la matriz de los coeficientes es igual al rango de la matriz ampliada y menor que el número n de incógnitas, el sistema es compatible indeterminado, admite infinitas soluciones.  $\rho(A) = \rho(A, \mathbf{b}) < n$



### Cambio de Base

▶ **Definición:** La matriz A de n x n cuyas columnas son los vectores de la base  $B_1$  expresados en la base  $B_2$ , es la matriz de transición de la base  $B_1$  a la base  $B_2$ .

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(u_1)_{B_2} (u_2)_{B_2} (u_3)_{B_2} (u_n)_{B_2}$$



### **Teoremas**

▶ **Teorema I**: Sean  $B_1$  y  $B_2$  bases de un espacio vectorial V. Sea A la matriz de transición de  $B_1$  a  $B_2$  . Entonces para todo  $\mathbf{X} \in V$ 

$$(\mathbf{x})_{B_2} = A \cdot (\mathbf{x})_{B_1}$$

▶ **Teorema 2**: Si A es la matriz de transición de  $B_1$  a  $B_2$  , entonces  $A^{-1}$  es la matriz de transición de  $B_2$  a  $B_1$ 

Demostración: ....