Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e G

Complexidades do Insertion-Sort

Aula 4 Crescimento de Funções e Notação Assintótica

Projeto e Análise de Algoritmos

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Crescimento de Funções

Notação Assintótica

Notação O, Ω e ∈ Abusos de notaçã

Complexidades do Insertion-Sort

Aulas Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ Abusos de notação

Aulas Passadas

PAA - Aula 4

Prof. Eurinardo

Aulas Passadas

Crescimento o Funções

Notação Assintótica

Notação O, Ω e ∈ Abusos de notaçã

Correção de Algoritmos Iterativos

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e € Abusos de notaçã

Complexidades do Insertion-Sort

4□ > 4ⓓ > 4ಠ > 4ಠ > । । 900

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e e Abusos de notaç

- Correção de Algoritmos Iterativos
 - Invariante de laço

Notação O, Ω e 6 Abusos de notaçã

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - Exemplo: Insertion-Sort

Notação O, Ω e Θ Abusos de notação

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - Exemplo: Insertion-Sort
 - Complexidade de Tempo/Espaço

Notação O, Ω e 6 Abusos de notaçã

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - Exemplo: Insertion-Sort
- ► Complexidade de Tempo/Espaço
 - Pior caso,

Notação O, Ω e 6 Abusos de notaçã

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - Exemplo: Insertion-Sort
- ► Complexidade de Tempo/Espaço
 - Pior caso,
 - Melhor caso e

Aulas Passadas

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - ► Exemplo: Insertion-Sort
- ► Complexidade de Tempo/Espaço
 - Pior caso,
 - Melhor caso e
 - Caso médio.

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Crescimento de Funções

Notação Assintótica

Notação O, Ω e 6 Abusos de notaçã

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - Exemplo: Insertion-Sort
- ► Complexidade de Tempo/Espaço
 - Pior caso.
 - Melhor caso e
 - Caso médio.
 - Exemplo: Insertion-Sort

Notação O, Ω e 6 Abusos de notação

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - Exemplo: Insertion-Sort
- ► Complexidade de Tempo/Espaço
 - Pior caso.
 - ► Melhor caso e
 - Caso médio.
 - Exemplo: Insertion-Sort
 - ▶ Melhor caso = an b.

Notação O, Ω e 6 Abusos de notaçã

- Correção de Algoritmos Iterativos
 - Invariante de laço
 - Exemplo: Insertion-Sort
- ► Complexidade de Tempo/Espaço
 - Pior caso.
 - Melhor caso e
 - Caso médio.
 - Exemplo: Insertion-Sort
 - ▶ Melhor caso = an b.
 - Pior caso = $an^2 + bn c$.

Crescimento de Funções

PAA - Aula 4

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e 6 Abusos de notaç

Sejam os algoritmos A e B que resolvem um determinado problema. No pior caso, temos as funções $T_A(n)$ e $T_B(n)$ para A e B, respectivamente, pelo gráfico abaixo. Sabemos que a partir de n_0 temos que sempre $T_B(n) \ge T_A(n)$. Qual o melhor algoritmo para resolver o problema? A ou B?

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Crescimento de Funções

Sejam os algoritmos A e B que resolvem um determinado problema. No pior caso, temos as funções $T_A(n)$ e $T_B(n)$ para A e B, respectivamente, pelo gráfico abaixo. Sabemos que a partir de n_0 temos que sempre $T_B(n) \ge T_A(n)$. Qual o melhor algoritmo para resolver o problema? A ou B?

Resposta: Assintoticamente A

Prof Furinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e o Abusos de notaç

PAA - Aula 4

Prof. Eurinardo

Aulas Passadas

Crescimento de

Notação Assintótica

Notação *O*, Ω e Θ Abusos de notação

Crescimento de

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

> Complexidades do Insertion-Sort

Notação Ω

 $\Omega(g(n)) = \{f(n) \mid \exists c_1, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq c_1 g(n) \leq f(n)$$

para todo $n \ge n_0$

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ

Complexidades do

Abusos de notação

Complexidades do Insertion-Sort

Notação Ω

 $\Omega(g(n)) = \{f(n) \mid \exists c_1, n_0 \text{ constantes positivas tais que}$ $0 \le c_1 g(n) \le f(n)$

para todo $n \ge n_0$

Notação O

Complexidades do Insertion-Sort

Notação Ω

 $\Omega(g(n)) = \{f(n) \mid \exists c_1, n_0 \text{ constantes positivas tais que}$ $0 < c_1 g(n) < f(n)$

para todo $n \ge n_0$

Notação O

 $O(g(n)) = \{f(n) \mid \exists c_2, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq f(n) \leq c_2 g(n)$$

para todo $n \ge n_0$

PAA - Aula 4

Prof. Eurinardo

Aulas Passadas

Crescimento d

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Notação *O*, Ω e Θ Abusos de notação

Notação ⊖			

Notação ⊖

$$\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \text{ constantes positivas tais que } \}$$

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

para todo
$$n \ge n_0$$

Prof. Eurinardo

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

ASSIΠΤΟΤΙCA Notação O. Ω e Θ

Complexidades do Insertion-Sort

Notação ⊖

 $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

para todo $n \ge n_0$

Teorema

Complexidades do Insertion-Sort

Notação ⊖

 $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \text{ constantes positivas tais que } \}$

 $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$

para todo $n \ge n_0$

Teorema

Sejam as funções f(n) e g(n). Temos que

$$f(n) \in \Theta(g(n)) \Longleftrightarrow f(n) \in O(g(n)) \text{ e } f(n) \in \Omega(g(n))$$

PAA - Aula 4

Prof. Eurinardo

Aulas Passadas

Crescimento de

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Notação O, Ω e ⊖ Abusos de notação

Notação O, Ω e ⊖ Abusos de notação

Complexidades do Insertion-Sort

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$,

Abusos

Prof. Eurinardo

Aulas Passadas Crescimento de

Funções Notação Assintótica

Notação *O*, Ω e Θ Abusos de notação

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

Abusos

▶ $n = O(n^2)$, significado $n \in O(n^2)$.

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Abusos

- ▶ $n = O(n^2)$, significado $n \in O(n^2)$.
- $ightharpoonup 2n^2 + 3n + 1 = 2n^2 + \Theta(n),$

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

 $f(n) \in O(g(n)).$

Abusos

- ▶ $n = O(n^2)$, significado $n \in O(n^2)$.
- ► $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado

Prof Furinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

Abusos

- ▶ $n = O(n^2)$, significado $n \in O(n^2)$.
- ► $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.

Prof Furinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

Abusos

- ▶ $n = O(n^2)$, significado $n \in O(n^2)$.
- ▶ $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- $\triangleright 2n^2 + \Theta(n) = \Theta(n^2),$

Prof Furinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ

Abusos de notação

Abusos

- ▶ $n = O(n^2)$, significado $n \in O(n^2)$.
- ▶ $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- ► $2n^2 + \Theta(n) = \Theta(n^2)$, significado

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ

Abusos de notação

Notação O, Ω e Θ Abusos de notação

Complexidades do Insertion-Sort

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

Abusos

- ▶ $n = O(n^2)$, significado $n \in O(n^2)$.
- ▶ $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- ▶ $2n^2 + \Theta(n) = \Theta(n^2)$, significado para qualquer função $f(n) = \Theta(n)$,

Abusos

- ▶ $n = O(n^2)$, significado $n \in O(n^2)$.
- ▶ $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- ≥ $2n^2 + \Theta(n) = \Theta(n^2)$, significado para qualquer função $f(n) = \Theta(n)$, temos que $2n^2 + g(n) = \Theta(n^2)$.

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e ⊖ Abusos de notação

$$ightharpoonup$$
 () $2n^2 + \Theta(n) = 2n^2 + 7n$

▶ ()
$$\Theta(n^2) + 2n = \Omega(n)$$

$$ightharpoonup$$
 () $\Omega(n^2) + 3n = 10n^3$)

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e ⊖ Abusos de notação

Marque V ou F

- ightharpoonup (F) $2n^2 + \Theta(n) = 2n^2 + 7n$
- ▶ () $\Theta(n^2) + 2n = \Omega(n)$
- ightharpoonup () $\Omega(n^2) + 3n = 10n^3$)

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e ⊖ Abusos de notação

- ightharpoonup (F) $2n^2 + \Theta(n) = 2n^2 + 7n$
- $() \Theta(n^2) + 2n = \Omega(n)$
- (F) $\Omega(n^2) + 3n = 10n^3$)

- ightharpoonup (F) $2n^2 + \Theta(n) = 2n^2 + 7n$
- $(V) \Theta(n^2) + 2n = \Omega(n)$
- (F) $\Omega(n^2) + 3n = 10n^3$)

- ightharpoonup (F) $2n^2 + \Theta(n) = 2n^2 + 7n$
- $(V) \Theta(n^2) + 2n = \Omega(n)$
- ightharpoonup (F) $\Omega(n^2) + 3n = 10n^3$)
- $(F) 5n^2 + 2n + 10 = \Omega(n^3)$

- ightharpoonup (F) $2n^2 + \Theta(n) = 2n^2 + 7n$
- $(V) \Theta(n^2) + 2n = \Omega(n)$
- ightharpoonup (F) $\Omega(n^2) + 3n = 10n^3$)
- $(F) 5n^2 + 2n + 10 = \Omega(n^3)$
- ightharpoonup (V) $n^2 + 2n + 10 = O(\frac{n^2}{10})$

PAA - Aula 4

Prof. Eurinardo

Aulas Passadas

Crescimento de

Notação Assintótica

Notação O, Ω e 6 Abusos de notação

PAA - Aula 4

Prof. Eurinardo

Aulas Passadas

Crescimento de

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Mostre que:

 $7n^3 - 15n^2 + 20n - 300 = \Theta(n^3)$

Notação

Mostre que:

- $ightharpoonup 7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$

- $ightharpoonup 7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ightharpoonup o Insertion-Sort no pior caso é $\Theta(n^2)$

Prof. Eurinardo

Aulas Passadas

Crescimento de **Funções**

Notação Assintótica

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ▶ o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Mostre que:

- $ightharpoonup 7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ▶ o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ▶ o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ▶ o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

▶ Insertion-Sort, no pior caso, é $\Omega(n^2)$?

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ▶ o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

▶ Insertion-Sort, no pior caso, é $\Omega(n^2)$? Sim

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ▶ o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

- ▶ Insertion-Sort, no pior caso, é $\Omega(n^2)$? Sim
- ▶ Insertion-Sort, no melhor caso, é *O*(*n*)?

Mostre que:

- $ightharpoonup 7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- ▶ o Insertion-Sort no melhor caso é $\Theta(n)$
- ▶ o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

- ▶ Insertion-Sort, no pior caso, é $\Omega(n^2)$? Sim
- ▶ Insertion-Sort, no melhor caso, é *O*(*n*)? Sim

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e 6 Abusos de notaçã

> Complexidades do Insertion-Sort

LEISERSON, C.E., STEIN, C., RIVEST, R.L., CORMEN T.H.

Algoritmos: teoria e prática, 3ed. Editora Campus, ano 2012.

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Complexidades do Insertion-Sort

Obrigado!