

Si4030/31/32 REGISTER DESCRIPTIONS

1. Complete Register Summary

Table 1. Register Descriptions

Add	R/W	Function/Desc				Data					POR
			D7	D6	D5	D4	D3	D2	D1	D0	Default
01	R	Device Version	0	0	0	vc[4]	vc[3]	vc[2]	vc[1]	vc[0]	06h
02	R	Device Status	ffovfl	ffunfl		Reserved	reserved	reserved	cps[1]	cps[0]	_
03	R	Interrupt Status 1	ifferr	itxffafull	itxffaem	Reserved	iext	ipksent	Reserved	Reserved	_
04	R	Interrupt Status 2	Reserved	Reserved	Reserved	Reserved	iwut	ilbd	ichiprdy	ipor	_
05	R/W	Interrupt Enable 1	enfferr	entxffafull	entxffaem	Reserved	enext	enpksent	Reserved	Reserved	00h
06	R/W	Interrupt Enable 2	Reserved	Reserved	Reserved	Reserved	enwut	enlbd	enchiprdy	enpor	03h
07	R/W	Operating & Function Control 1	swres	enlbd	enwt	x32ksel	txon	Reserved	pllon	xton	01h
08	R/W	Operating & Function Control 2	Reserved	Reserved	Reserved	Reserved	autotx	enldm	Reserved	ffclrtx	00h
09	R/W	Crystal Oscillator Load Capacitance	xtalshft	xlc[6]	xlc[5]	xlc[4]	xlc[3]	xlc[2]	xlc[1]	xlc[0]	7Fh
0A	R/W	Microcontroller Output Clock	Reserved	Reserved	clkt[1]	clkt[0]	enlfc	mclk[2]	mclk[1]	mclk[0]	06h
0B	R/W	GPIO0 Configuration	gpio0drv[1]	gpio0drv[0]	pup0	gpio0[4]	gpio0[3]	gpio0[2]	gpio0[1]	gpio0[0]	00h
0C	R/W	GPIO1 Configuration	gpio1drv[1]	gpio1drv[0]	pup1	gpio1[4]	gpio1[3]	gpio1[2]	gpio1[1]	gpio1[0]	00h
0D	R/W	GPIO2 Configuration	gpio2drv[1]	gpio2drv[0]	pup2	gpio2[4]	gpio2[3]	gpio2[2]	gpio2[1]	gpio2[0]	00h
0E	R/W	I/O Port Configuration	Reserved	extitst[2]	extitst[1]	extitst[0]	itsdo	dio2	dio1	dio0	00h
0F	R/W	ADC Configuration	adcstart/adc- done	adcsel[2]	adcsel[1]	adcsel[0]	adcref[1]	adcref[0]	adcgain[1]	adcgain[0]	00h
10	R/W	ADC Sensor Amplifier Offset	Reserved	Reserved	Reserved	Reserved	adcoffs[3]	adcoffs[2]	adcoffs[1]	adcoffs[0]	00h
11	R	ADC Value	adc[7]	adc[6]	adc[5]	adc[4]	adc[3]	adc[2]	adc[1]	adc[0]	_
12	R/W	Temperature Sensor Control	tsrange[1]	tsrange[0]	entsoffs	entstrim	tstrim[3]	tstrim[2]	tstrim[1]	tstrim[0]	20h
13	R/W	Temperature Value Offset	tvoffs[7]	tvoffs[6]	tvoffs[5]	tvoffs[4]	tvoffs[3]	tvoffs[2]	tvoffs[1]	tvoffs[0]	00h
14	R/W	Wake-Up Timer Period 1	Reserved	Reserved	Reserved	wtr[4]	wtr[3]	wtr[2]	wtr[1]	wtr[0]	03h
15	R/W	Wake-Up Timer Period 2	wtm[15]	wtm[14]	wtm[13]	wtm[12]	wtm[11]	wtm[10]	wtm[9]	wtm[8]	00h
16	R/W	Wake-Up Timer Period 3	wtm[7]	wtm[6]	wtm[5]	wtm[4]	wtm[3]	wtm[2]	wtm[1]	wtm[0]	01h
17	R	Wake-Up Timer Value 1	wtv[15]	wtv[14]	wtv[13]	wtv[12]	wtv[11]	wtv[10]	wtv[9]	wtv[8]	_
18	R	Wake-Up Timer Value 2	wtv[7]	wtv[6]	wtv[5]	wtv[4]	wtv[3]	wtv[2]	wtv[1]	wtv[0]	_
19					Reserve	d					
1A	R/W	Low Battery Detector Threshold	Reserved	Reserved	Reserved	lbdt[4]	lbdt[3]	lbdt[2]	lbdt[1]	lbdt[0]	14h
1B	R	Battery Voltage Level	0	0	0	vbat[4]	vbat[3]	vbat[2]	vbat[1]	vbat[0]	_
1C-2F					Reserve	d					
30	R/W	Data Access Control	Reserved	Isbfrst	crcdonly	Reserved	enpactx	encrc	crc[1]	crc[0]	8Dh
31	R	EzMAC status	0	Reserved	Reserved	Reserved	Reserved	Reserved	pktx	pksent	_
32					Reserve	d					
33	R/W	Header Control 2	Reserved	hdlen[2]	hdlen[1]	hdlen[0]	fixpklen	synclen[1]	synclen[0]	prealen[8]	22h
34	R/W	Preamble Length	prealen[7]	prealen[6]	prealen[5]	prealen[4]	prealen[3]	prealen[2]	prealen[1]	prealen[0]	08h
36	R/W	Sync Word 3	sync[31]	sync[30]	sync[29]	sync[28]	sync[27]	sync[26]	sync[25]	sync[24]	2Dh
37	R/W	Sync Word 2	sync[23]	sync[22]	sync[21]	sync[20]	sync[19]	sync[18]	sync[17]	sync[16]	D4h
38	R/W	Sync Word 1	sync[15]	sync[14]	sync[13]	sync[12]	sync[11]	sync[10]	sync[9]	sync[8]	00h
39	R/W	Sync Word 0	sync[7]	sync[6]	sync[5]	sync[4]	sync[3]	sync[2]	sync[1]	sync[0]	00h

Table 1. Register Descriptions (Continued)

Add	R/W	Function/Desc				Data					POR
			D7	D6	D5	D4	D3	D2	D1	D0	Default
ЗА	R/W	Transmit Header 3	txhd[31]	txhd[30]	txhd[29]	txhd[28]	txhd[27]	txhd[26]	txhd[25]	txhd[24]	00h
3B	R/W	Transmit Header 2	txhd[23]	txhd[22]	txhd[21]	txhd[20]	txhd[19]	txhd[18]	txhd[17]	txhd[16]	00h
3C	R/W	Transmit Header 1	txhd[15]	txhd[14]	txhd[13]	txhd[12]	txhd[11]	txhd[10]	txhd[9]	txhd[8]	00h
3D	R/W	Transmit Header 0	txhd[7]	txhd[6]	txhd[5]	txhd[4]	txhd[3]	txhd[2]	txhd[1]	txhd[0]	00h
3E	R/W	Transmit Packet Length	pklen[7]	pklen[6]	pklen[5]	pklen[4]	pklen[3]	pklen[2]	pklen[1]	pklen[0]	00h
4F	R/W	ADC8 Control	Reserved	Reserved	adc8[5]	adc8[4]	adc8[3]	adc8[2]	adc8[1]	adc8[0]	10h
60					Reserve	d	•	•	•	•	
62	R/W	Crystal Oscillator/Control Test	pwst[2]	pwst[1]	pwst[0]	clkhyst	enbias2x	enamp2x	bufovr	enbuf	24h
6D	R/W	TX Power	papeakval	papeaken	papeaklvl[1]	papeaklvl[0]	Ina_sw	txpow[2]	txpow[1]	txpow[0]	18h
6E	R/W	TX Data Rate 1	txdr[15]	txdr[14]	txdr[13]	txdr[12]	txdr[11]	txdr[10]	txdr[9]	txdr[8]	0Ah
6F	R/W	TX Data Rate 0	txdr[7]	txdr[6]	txdr[5]	txdr[4]	txdr[3]	txdr[2]	txdr[1]	txdr[0]	3Dh
70	R/W	Modulation Mode Control 1	Reserved	Reserved	txdtrtscale	enphpwdn	manppol	enmaninv	enmanch	enwhite	0Ch
71	R/W	Modulation Mode Control 2	trclk[1]	trclk[0]	dtmod[1]	dtmod[0]	eninv	fd[8]	modtyp[1]	modtyp[0]	00h
72	R/W	Frequency Deviation	fd[7]	fd[6]	fd[5]	fd[4]	fd[3]	fd[2]	fd[1]	fd[0]	20h
73	R/W	Frequency Offset 1	fo[7]	fo[6]	fo[5]	fo[4]	fo[3]	fo[2]	fo[1]	fo[0]	00h
74	R/W	Frequency Offset 2	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	fo[9]	fo[8]	00h
75	R/W	Frequency Band Select	Reserved	sbsel	hbsel	fb[4]	fb[3]	fb[2]	fb[1]	fb[0]	75h
76	R/W	Nominal Carrier Frequency 1	fc[15]	fc[14]	fc[13]	fc[12]	fc[11]	fc[10]	fc[9]	fc[8]	BBh
77	R/W	Nominal Carrier Frequency 0	fc[7]	fc[6]	fc[5]	fc[4]	fc[3]	fc[2]	fc[1]	fc[0]	80h
79	R/W	Frequency Hopping Channel Select	fhch[7]	fhch[6]	fhch[5]	fhch[4]	fhch[3]	fhch[2]	fhch[1]	fhch[0]	00h
7A	R/W	Frequency Hopping Step Size	fhs[7]	fhs[6]	fhs[5]	fhs[4]	fhs[3]	fhs[2]	fhs[1]	fhs[0]	00h
7C	R/W	TX FIFO Control 1	Reserved	Reserved	txafthr[5]	txafthr[4]	txafthr[3]	txafthr[2]	txafthr[1]	txafthr[0]	37h
7D	R/W	TX FIFO Control 2	Reserved	Reserved	txaethr[5]	txaethr[4]	txaethr[3]	txaethr[2]	txaethr[1]	txaethr[0]	04h
7E					Reserve	d					
7F	R/W	FIFO Access	fifod[7]	fifod[6]	fifod[5]	fifod[4]	fifod[3]	fifod[2]	fifod[1]	fifod[0]	_

2. Detailed Register Descriptions

Register 01h. Version Code (VC)

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		Reserved		vc[4:0]				
Туре		R				R		

Reset value = xxxxxxxx

Bit	Name	Function
7:5	Reserved	Reserved.
4:0	vc[4:0]	Version Code. Code indicating the version of the chip. Rev B1: 00110

Register 02h. Device Status

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ffovfl	ffunfl	Reserved	Reserved	Reserved	Reserved	cps[1:0]	
Туре	R	R	R	R	R	R	R	

Reset value = xxxxxxxx

Bit	Name	Function
7	ffovfl	TX FIFO Overflow Status.
6	ffunfl	TX FIFO Underflow Status.
5:4	Reserved	Reserved.
3:2	Reserved	Reserved.
1:0	cps[1:0]	Chip Power State. 00: Idle State 10: TX State

Register 03h. Interrupt/Status 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ifferr	itxffafull	ixtffaem	Reserved	iext	ipksent	Reserved	Reserved
Туре	R	R	R	R	R	R	R	R

Reset value = xxxxxxxx

Bit	Name	Function
7	ifferr	FIFO Underflow/Overflow Error. When set to 1 the TX FIFO has overflowed or underflowed.
6	itxffafull	TX FIFO Almost Full. When set to 1 the TX FIFO has met its almost full threshold and needs to be transmitted.
5	itxffaem	TX FIFO Almost Empty. When set to 1 the TX FIFO is almost empty and needs to be filled.
4	Reserved	Reserved.
3	iext	External Interrupt. When set to 1 an interrupt occurred on one of the GPIO's if it is programmed so. The status can be checked in register 0Eh. See GPIOx Configuration section for the details.
2	ipksent	Packet Sent Interrupt. When set to1 a valid packet has been transmitted.
1:0	Reserved	Reserved.

When any of the Interrupt/Status 1 bits change state from 0 to 1 the device will notify the microcontroller by setting the nIRQ pin LOW if it is enabled in the Interrupt Enable 1 register. The nIRQ pin will go to HIGH and all the **enabled** interrupt bits will be cleared when the microcontroller reads this address. If any of these bits is not enabled in the Interrupt Enable 1 register then it becomes a status signal that can be read anytime in the same location and will not be cleared by reading the register.

Table 2. Interrupt or Status 1 Bit Set/Clear Description

Bit	Status Name	Set/Clear Conditions
7	ifferr	Set if there is a FIFO overflow or underflow. Cleared by applying FIFO reset.
6	itxffafull	Set when the number of bytes written to TX FIFO is greater than the Almost Full threshold. Automatically cleared at the start of transmission when the number of bytes in the FIFO is less than or equal to the threshold.
5	itxffaem	Set when the number of bytes in the TX FIFO is less than or equal to the Almost Empty threshold. Automatically cleared when the number of data bytes in the TX FIFO is above the Almost Empty threshold.
4	Reserved	Reserved.
3	iext	External interrupt source.
2	ipksent	Set once a packet is successfully sent (no TX abort). Cleared upon leaving FIFO mode or at the start of a new transmission.
1:0	Reserved	Reserved.

Table 3. When are Individual Status Bits Set/Cleared if not Enabled as Interrupts?

Bit	Status Name	Set/Clear Conditions
7	ifferr	Set if there is a FIFO Overflow or Underflow. It is cleared only by applying FIFO reset to the specific FIFO that caused the condition.
6	itxffafull	Will be set when the number of bytes written to TX FIFO is greater than the Almost Full threshold set by SPI. It is automatically cleared when we start transmitting and the FIFO data is read out and the number of bytes left in the FIFO is smaller or equal to the threshold).
5	itxffaem	Will be set when the number of bytes (not yet transmitted) in TX FIFO is smaller or equal than the Almost Empty threshold set by SPI. It is automatically cleared when we write enough data to TX FIFO so that the number of data bytes not yet transmitted is above the Almost Empty threshold.
4	Reserved	Reserved.
3	iext	External interrupt source
2	ipksent	Will go high once a packet is sent all the way through (no TX abort). This status will be cleaned if 1) We leave FIFO mode or 2) In FIFO mode we start a new transmission.
1:0	Reserved	Reserved.

Register 04h. Interrupt/Status 2

Bit D7 D6 D5 D4 D3 D2 D1	D0
--------------------------	----

Register 04h. Interrupt/Status 2

Name	Reserved	iwut	ilbd	ichiprdy	ipor
Туре	R	R	R	R	R

Reset value = xxxxxxxx

Bit	Name	Function
7:4	Reserved	Reserved
3	iwut	Wake-Up-Timer. On the expiration of programmed wake-up timer this bit will be set to 1.
2	ilbd	Low Battery Detect. When a low battery event is been detected this bit will be set to 1. This interrupt event is saved even if it is not enabled by the mask register bit and causes an interrupt after it is enabled.
1	ichiprdy	Chip Ready (XTAL). When a chip ready event has been detected this bit will be set to 1.
0	ipor	Power-on-Reset (POR). When the chip detects a Power on Reset above the desired setting this bit will be set to 1.

When any of the Interrupt/Status Register 2 bits change state from 0 to 1 the control block will notify the microcontroller by setting the nIRQ pin LOW if it is enabled in the Interrupt Enable 2 register. The nIRQ pin will go to HIGH and all the **enabled** interrupt bits will be cleared when the microcontroller reads this address. If any of these bits is not enabled in the Interrupt Enable 2 register then it becomes a status signal that can be read anytime in the same location and will not be cleared by reading the register.

Table 4. Interrupt or Status 2 Bit Set/Clear Description

Bit	Status Name	Set/Clear Conditions
7:4	Reserved	Reserved.
3	iwut	Wake time timer interrupt. Use as an interrupt, not as a status.
2	ilbd	Low Battery Detect. When a low battery event is been detected this bit will be set to 1. This interrupt event is saved even if it is not enabled by the mask register bit and causes an interrupt after it is enabled. Probably the status is cleared once the battery is replaced.
1	ichiprdy	Chip ready goes high once we enable the xtal, TX and a settling time for the Xtal clock elapses. The status stay high unless we go back to Idle mode.
0	ipor	Power on status.

Table 5. Detailed Description of Status Registers when not Enabled as Interrupts

Bit	Status Name	Set/Clear Conditions
7:4	Reserved	Reserved.
3	iwut	Wake time timer interrupt. Use as an interrupt, not as a status.
2	ilbd	Low Battery Detect. When a low battery event is been detected this bit will be set to 1. This interrupt event is saved even if it is not enabled by the mask register bit and causes an interrupt after it is enabled. Probably the status is cleared once the battery is replaced.
1	ichiprdy	Chip ready goes high once we enable the xtal, TX, and a settling time for the Xtal clock elapses. The status stay high unless we go back to Idle mode.
0	ipor	Power on status.

Register 05h. Interrupt Enable 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	enfferr	entxffafull	entxffaem	Reserved	enext	enpksent	Reserved	Reserved
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 00000000

Bit	Name	Function
7	enfferr	Enable FIFO Underflow/Overflow. When set to 1 the FIFO Underflow/Overflow interrupt will be enabled.
6	entxffafull	Enable TX FIFO Almost Full. When set to 1 the TX FIFO Almost Full interrupt will be enabled.
5	entxffaem	Enable TX FIFO Almost Empty. When set to 1 the TX FIFO Almost Empty interrupt will be enabled.
4	Reserved	Reserved.
3	enext	Enable External Interrupt. When set to 1 the External Interrupt will be enabled.
2	enpksent	Enable Packet Sent. When ipksent =1 the Packet Sense Interrupt will be enabled.
1:0	Reserved	Reserved.

Register 06h. Interrupt Enable 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved				enwut	enlbd	enchiprdy	enpor
Туре	R				R/W	R/W	R/W	R/W

Reset value = 00000011

Bit	Name	Function
7:4	Reserved	Reserved.
3	enwut	Enable Wake-Up Timer. When set to 1 the Wake-Up Timer interrupt will be enabled.
2	enlbd	Enable Low Battery Detect. When set to 1 the Low Battery Detect interrupt will be enabled.
1	enchiprdy	Enable Chip Ready (XTAL). When set to 1 the Chip Ready interrupt will be enabled.
0	enpor	Enable POR. When set to 1 the POR interrupt will be enabled.

Register 07h. Operating Mode and Function Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	swres	enlbd	enwt	x32ksel	txon	Reserved	pllon	xton
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7	swres	Software Register Reset Bit. This bit may be used to reset all registers simultaneously to a DEFAULT state, without the need for sequentially writing to each individual register. The RESET is accomplished by setting swres = 1. This bit will be automatically cleared.
6	enlbd	Enable Low Battery Detect. When this bit is set to 1 the Low Battery Detector circuit and threshold comparison will be enabled.
5	enwt	Enable Wake-Up-Timer. Enabled when enwt = 1. If the Wake-up-Timer function is enabled it will operate in any mode and notify the microcontroller through the GPIO interrupt when the timer expires.
4	x32ksel	32,768 kHz Crystal Oscillator Select. 0: RC oscillator 1: 32 kHz crystal
3	txon	TX on in Manual Transmit Mode. Automatically cleared in FIFO mode once the packet is sent. Transmission can be aborted during packet transmission, however, when no data has been sent yet, transmission can only be aborted after the device is programmed to "unmodulated carrier" ("Register 71h. Modulation Mode Control 2").
2	Reserved	Reserved.
1	pllon	TUNE Mode (PLL is ON). When pllon = 1 the PLL will remain enabled in Idle State. This will for faster turn-around time at the cost of increased current consumption in Idle State.
0	xton	READY Mode (Xtal is ON).

Register 08h. Operating Mode and Function Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		Rese	erved		autotx	Rese	erved	ffclrtx
Туре		R/	W		R/W	R/	W	R/W

Reset value = 00000000

Bit	Name	Function
7:4	Reserved	Reserved.
3	autotx	Automatic Transmission. When autotx = 1 the transceiver will enter automatically TX State when the FIFO is almost full. When the FIFO is empty it will automatically return to the Idle State.
2:1	Reserved	Reserved.
0	ffcIrtx	TX FIFO Reset/Clear. This has to be a two writes operation: Setting ffclrtx =1 followed by ffclrtx = 0 will clear the contents of the TX FIFO.

Register 09h. 30 MHz Crystal Oscillator Load Capacitance

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	xtalshft	xlc[6:0]							
Туре	R/W		R/W						

Reset value = 01111111

Bit	Name	Function
7	xtalshft	Additional capacitance to course shift the frequency if xlc[6:0] is not sufficient. Not binary with xlc[6:0].
6:0	xlc[6:0]	Tuning Capacitance for the 30 MHz XTAL.

CHICAN LARG

Register 0Ah. Microcontroller Output Clock

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved		clkt[1:0]		enlfc	mclk[2:0]		
Туре	R		R/W		R/W	R/W		

Reset value = xx000110

Bit	Name	Function
7:6	Reserved	Reserved.
5:4	clkt[1:0]	Clock Tail. If enlfc = 0 then it can be useful to provide a few extra cycles for the microcontroller to complete its operation. Setting the clkt[1:0] register will provide the addition cycles of the clock before it shuts off. 00: 0 cycle 01: 128 cycles 10: 256 cycles 11: 512 cycles
3	enlfc	Enable Low Frequency Clock. When enlfc = 1 and the chip is in Sleep mode then the 32.768 kHz clock will be provided to the microcontroller no matter what the selection of mclk[2:0] is. For example if mclk[2:0] = '000', 30 MHz will be available through the GPIO to output to the microcontroller in all Idle or TX states. When the chip is commanded to Sleep mode the 30 MHz clock will become 32.768 kHz.
2:0	mclk[2:0]	Microcontroller Clock. Different clock frequencies may be selected for configurable GPIO clock output. All clock frequencies are created by dividing the XTAL except for the 32 kHz clock which comes directly from the 32 kHz RC Oscillator. The mclk[2:0] setting is only valid when xton = 1 except the 111. 000: 30 MHz 001: 15 MHz 010: 10 MHz 101: 4 MHz 100: 3 MHz 101: 2 MHz 110: 1 MHz 111: 32.768 kHz

Register 0Bh. GPIO Configuration 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ne gpiodrv0[1:0]		pup0		gpio0[4:0]			
Туре	R/W		R/W			R/W		

Reset value = 00000000

Bit	Name	Function							
7:6	gpiodrv0[1:0]	GPIO Driving Capability Setting.							
5	pup0	Illup Resistor Enable on GPIO0. hen set to 1 the a 200 k Ω resistor is connected internally between VDD and the pin if the PIO is configured as a digital input.							
4:0	gpio0[4:0]	GPIO0 pin Function Select. 00000: Power-On-Reset (output) 0001: Low Battery Detect: 1 when battery is below threshold setting (output) 00010: Direct Digital Input 00100: External Interrupt, falling edge (input) 00101: External Interrupt, rising edge (input) 00110: External Interrupt, state change (input) 00111: ADC Analog Input 01000: Reserved (Analog Test N Input) 010101: Direct Digital Output 01011: Reserved (Digital Test Output) 01102: Reserved (Analog Test N Output) 01103: Reserved (Analog Test N Output) 01104: Reserved (Analog Test P Output) 01105: Reserved (Analog Test P Output) 01106: Reserved (Analog Test P Output) 01107: Reserved (Analog Test P Output) 01108: Reserved (Analog Test P Output) 01109: TX Data CLK output to be used in conjunction with TX Data pin (output) 10000: TX Data input for direct modulation (input) 10001: External Retransmission Request (input) 10010: TX State (output) 10011: TX State (output) 10011: TX FIFO Almost Full (output) 10111: Reserved 10110: Reserved 10110: Reserved 11001: Reserved 11001: Reserved 11001: Reserved 11001: Reserved 11001: Reserved 11011: Reserved							

Register 0Ch. GPIO Configuration 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	ne gpiodrv1[1:0]		pup1		gpio1[4:0]				
Туре	R/W		R/W	R/W					

Bit	Name	Function							
7:6	gpiodrv1[1:0]	GPIO Driving Capability Setting.							
5	pup1	Illup Resistor Enable on GPIO1. nen set to 1 the a 200 k Ω resistor is connected internally between VDD and the pin if the PIO is configured as a digital input.							
4:0	gpio1[4:0]	GPIO1 pin Function Select. 00000: Inverted Power-On-Reset (output) 00010: Low Battery Detect: 1 when buttery is below threshold setting (output) 00010: Direct Digital Input 00100: External Interrupt, falling edge (input) 00101: External Interrupt, rising edge (input) 00110: External Interrupt, rising edge (input) 00111: ADC Analog Input 00100: Reserved (Analog Test N Input) 01001: Reserved (Analog Test P Input) 01010: Direct Digital Output 01011: Reserved (Digital Test Output) 01102: Reserved (Analog Test N Output) 01103: Reserved (Analog Test N Output) 01104: Reserved (Analog Test P Output) 01105: Reserved (Analog Test P Output) 01106: Reserved (Analog Test P Output) 11107: TX Data CLK output to be used in conjunction with TX Data pin (output) 11108: External Retransmission Request (input) 10001: TX State (output) 10010: TX State (output) 10011: TX FIFO Almost Full (output) 10110: Reserved 10111: Reserved 10111: Reserved 11011: Reserved 11001: Reserved 11011: Reserved 11011: Reserved 11011: Reserved 11011: Reserved 11011: Reserved 11011: Reserved							

Register 0Dh. GPIO Configuration 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	gpiodrv2[1:0]		pup2		gpio2[4:0]				
Туре	R/W		R/W	R/W					

Reset value = 00000000

Bit	Name	Function						
7:6	gpiodrv2[1:0]	GPIO Driving Capability Setting.						
5	pup2	ullup Resistor Enable on GPIO2. /hen set to 1 the a 200 $k\Omega$ resistor is connected internally between VDD and the pin if the PIO is configured as a digital input.						
4:0	gpio2[4:0]	GPIO2 pin Function Select. 00001: Microcontroller Clock 00001: Wake-Up Timer: 1 when WUT has expired (output) 00010: Low Battery Detect: 1 when battery is below threshold setting (output) 00101: Direct Digital Input 00100: External Interrupt, falling edge (input) 00101: External Interrupt, rising edge (input) 00110: External Interrupt, state change (input) 00111: ADC Analog Input 01000: Reserved (Analog Test N Input) 01001: Direct Digital Output 01010: Direct Digital Test Output) 01101: Reserved (Analog Test N Output) 01101: TX Data CLK output to be used in conjunction with TX Data pin (output) 10000: TX Data input for direct modulation (input) 10010: TX State (output) 10011: TX State (output) 10010: TX State (output) 10111: Reserved 10101: Reserved 10101: Reserved 10101: Reserved 10101: Reserved 11001: Reserved 11001: Reserved 11001: Reserved 11001: Reserved 11001: Reserved 11001: Reserved 11011: Reserved 11011: Reserved 11011: Reserved 11011: Reserved 11011: Reserved 11011: Reserved						
		else : GND						

Register 0Eh. I/O Port Configuration

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved	extitst[2]	extitst[1]	extitst[0]	itsdo	dio2	dio1	dio0
Туре	R	R	R	R	R/W	R/W	R/W	R/W

Bit	Name	Function
7	Reserved	Reserved.
6	extitst[2]	External Interrupt Status. If the GPIO2 is programmed to be external interrupt sources then the status can be read here.
5	extitst[1]	External Interrupt Status. If the GPIO1 is programmed to be external interrupt sources then the status can be read here.
4	extitst[0]	External Interrupt Status. If the GPIO0 is programmed to be external interrupt sources then the status can be read here.
3	itsdo	Interrupt Request Output on the SDO Pin. nIRQ output is present on the SDO pin if this bit is set and the nSEL input is inactive (high).
2	dio2	Direct I/O for GPIO2. If the GPIO2 is configured to be a direct output then the value on the GPIO pin can be set here. If the GPIO2 is configured to be a direct input then the value of the pin can be read here.
1	dio1	Direct I/O for GPIO1. If the GPIO1 is configured to be a direct output then the value on the GPIO pin can be set here. If the GPIO1 is configured to be a direct input then the value of the pin can be read here.
0	dio0	Direct I/O for GPIO0. If the GPIO0 is configured to be a direct output then the value on the GPIO pin can be set here. If the GPIO0 is configured to be a direct input then the value of the pin can be read here.

Register 0Fh. ADC Configuration

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	adcstart/ adcdone	adcsel[2:0]			adcref[1:0]		adcgain[1:0]	
Туре	R/W		R/W		R/W		R/	W

Reset value = 00000000

Bit	Name	Function
7	adcstart/adc- done	ADC Measurement Start Bit. Reading this bit gives 1 if the ADC measurement cycle has been finished.
6:4	adcsel[2:0]	ADC Input Source Selection. The internal 8-bit ADC input source can be selected as follows: 000: Internal Temperature Sensor 001: GPIO0, single-ended 010: GPIO1, single-ended 011: GPIO2, single-ended 100: GPIO0(+) – GPIO1(-), differential 101: GPIO1(+) – GPIO2(-), differential 110: GPIO0(+) – GPIO2(-), differential 111: GND
3:2	adcref[1:0]	ADC Reference Voltage Selection. The reference voltage of the internal 8-bit ADC can be selected as follows: 0X: bandgap voltage (1.2 V) 10: VDD/3 11: VDD/2
1:0	adcgain[1:0]	ADC Sensor Amplifier Gain Selection. The full scale range of the internal 8-bit ADC in differential mode (see adcsel) can be set as follows: adcref[0] = 0: adcref[0] = 1: FS = 0.014 x (adcgain[1:0] + 1) x VDD FS = 0.021 x (adcgain[1:0] + 1) x VDD

Register 10h. ADC Sensor Amplifier Offset

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		Rese	erved		adcoffs[3:0]				
Туре		F	₹			R	W		

Reset value = xxxx0000

Bit	Name	Function
7:4	Reserved	Reserved.
3:0	adcoffs[3:0]	ADC Sensor Amplifier Offset*.
*Note:	The offset can be	calculated as Offset = adcoffs[2:0] x VDD/1000; MSB = adcoffs[3] = Sign bit.

Register 11h. ADC Value

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name	adc[7:0]									
Туре				F	₹					

Reset value = xxxxxxxx

Bit	Name	Function
7:0	adc[7:0]	Internal 8 bit ADC Output Value.

Register 12h. Temperature Sensor Calibration

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	tsrange[1:0]		entsoffs	entstrim		tstrim	n[3:0]	
Туре	R/	R/W		R/W	R/W			

Reset value = 00100000

Bit	Name	Function
7:6	tsrange[1:0]	Temperature Sensor Range Selection. (FS range is 01024 mV) 00: -40 °C 64 °C (full operating range), with 0.5 °C resolution (1 LSB in the 8-bit ADC) 01: -40 °C 85 °C, with 1 °C resolution (1 LSB in the 8-bit ADC) 11: 0 °C 85 °C, with 0.5 °C resolution (1 LSB in the 8-bit ADC) 10: -40 °F 216 °F, with 1 °F resolution (1 LSB in the 8-bit ADC)
5	entsoffs	Temperature Sensor Offset to Convert from K to °C.
4	entstrim	Temperature Sensor Trim Enable.
3:0	tstrim[3:0]	Temperature Sensor Trim Value.

Register 13h. Temperature Value Offset

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name	tvoffs[7:0]									
Туре				R/	W					

Reset value = 00000000

18

Bit	Name	Function
7:0	tvoffs[7:0]	Temperature Value Offset. This value is added to the measured temperature value. (MSB, tvoffs[8]: sign bit)

Note: If a new configuration is needed (e.g., for the WUT or the LDC), proper functionality is required. The function must first be disabled, then the settings changed, then enabled back on.

Register 14h. Wake-Up Timer Period 1

Bit	D7	D6 D5		D4 D3 D2 D1 D0					
Name		Reserved		wtr[4:0]					
Туре		R/W				R/W			

Reset value = xxx00011

Bit	Name	Function
7:5	Reserved	Reserved.
4:0	wtr[4:0]	Wake Up Timer Exponent (R) Value*. Maximum value for R is decimal 20. A value greater than 20 will yield a result as if 20 were written. R Value = 0 can be written here.

*Note: The period of the wake-up timer can be calculated as $T_{WUT} = (4 \times M \times 2^R)/32.768 \text{ ms. R} = 0 \text{ is allowed, and the maximum value for R is decimal 20. A value greater than 20 will result in the same as if 20 was written.$

Register 15h. Wake-Up Timer Period 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name	wtm[15:8]									
Туре				R/	W					

Reset value = 00000000

Bit	Name	Function
7:0	wtm[15:8]	Wake Up Timer Mantissa (M) Value*.
*Note:	The period of the	wake-up timer can be calculated as $T_{WUT} = (4 \times M \times 2^R)/32.768 \text{ ms.}$

Register 16h. Wake-Up Timer Period 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		wtm[7:0]									
Туре				R/	W						

Reset value = 00000001

Bit	Name	Function
7:0	wtm[7:0]	Wake Up Timer Mantissa (M) Value*. M[7:0] = 0 is not valid here. Write at least decimal 1.
*Note:	The period of the	wake-up timer can be calculated as $T_{WUT} = (4 \times M \times 2^R)/32.768 \text{ ms.}$

Register 17h. Wake-Up Timer Value 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name	wtm[15:8]									
Туре				F	₹					

Reset value = xxxxxxxx

Bit	Name	Function
7:0	wtm[15:8]	Wake Up Timer Current Mantissa (M) Value*.
*Note:	The period of the	wake-up timer can be calculated as $T_{WUT} = (4 \times M \times 2^R)/32.768 \text{ ms.}$

Register 18h. Wake-Up Timer Value 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		wtm[7:0]									
Туре				F	२						

Reset value = xxxxxxxx

Bit	Name	Function
7:0	wtm[7:0]	Wake Up Timer Current Mantissa (M) Value*.
*Note:	The period of the	wake-up timer can be calculated as T _{WUT} = (4 x M x 2 ^R)/32.768 ms.

Register 1Ah. Low Battery Detector Threshold

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		Reserved		lbdt[4:0]					
Туре		R				R/W			

Reset value = xxx10100

Bit	Name	Function
7:5	Reserved	Reserved.
4:0	lbdt[4:0]	Low Battery Detector Threshold. This threshold is compared to Battery Voltage Level. If the Battery Voltage is less than the threshold the Low Battery Interrupt is set. Default = 2.7 V.*
*Note:	The threshold can	be calculated as V _{threshold} = 1.7 + lbdt x 50 mV.

Register 1Bh. Battery Voltage Level

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		Reserved		vbat[4:0]					
Туре	R					R			

Reset value = xxxxxxxx

Bit	Name	Function
7:5	Reserved	Reserved.
4:0	vbat[4:0]	Battery Voltage Level. The battery voltage is converted by a 5 bit ADC. In Sleep Mode the register is updated in every 1 s. In other states it measures continuously.

Register 30h. Data Access Control

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved	Isbfrst	crcdonly	Reserved	enpactx	encrc	crc[1:0]	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Name	Function
7	Reserved	Reserved.
6	Isbfrst	LSB First Enable. The LSB of the data will be transmitted first if this bit is set.
5	crcdonly	CRC Data Only Enable. When this bit is set to 1 the CRC is calculated on the packet data fields only.
4	Reserved	Reserved.
3	enpactx	Enable Packet TX Handling. If FIFO Mode (dtmod = 10) is being used automatic packet handling may be enabled. Setting enpactx = 1 will enable automatic packet handling in the TX path. Register 30–4D allow for various configurations of the packet structure. Setting enpactx = 0 will not do any packet handling in the TX path. It will only transmit what is loaded to the FIFO.
2	encrc	CRC Enable. Cyclic Redundancy Check generation is enabled if this bit is set.
1:0	crc[1:0]	CRC Polynomial Selection. 00: CCITT 01: CRC-16 (IBM) 10: IEC-16 11: Biacheva

Register 31h. EZMAC® Status

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name		Reserved								
Туре		R								

Bit	Name	Function
7:2	Reserved	Reserved.
1	pktx	Packet Transmitting. When pktx = 1 the radio is currently transmitting a packet.
0	pksent	Packet Sent. A pksent = 1 a packet has been sent by the radio. (Same bit as in register 03, but reading it does not reset the IRQ)

Register 33h. Header Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved		hdlen[2:0]			syncle	en[1:0]	prealen[8]
Туре	R		R/W			R	/W	R/W

Bit	Name	Function
7	Reserved	Reserved.
6:4	hdlen[2:0]	Header Length. Length of header used if packet handler is enabled for TX (enpactx). Headers are transmitted in descending order. O00: No TX header O01: Header 3 O10: Header 3 and 2 O11: Header 3 and 2 and 1 100: Header 3 and 2 and 1
3	fixpklen	Fix Packet Length. When fixpklen = 1 the packet length (pklen[7:0]) is not included in the header. When fixpklen = 0 the packet length is included in the header.
2:1	synclen[1:0]	Synchronization Word Length. The value in this register corresponds to the number of bytes used in the Synchronization Word. The synchronization word bytes are transmitted/received in descending order. O0: Synchronization Word 3 O1: Synchronization Word 3 followed by 2 10: Synchronization Word 3 followed by 2 followed by 1 11: Synchronization Word 3 followed by 2 followed by 1 followed by 0
0	prealen[8]	MSB of Preamble Length. See register Preamble Length.

Register 34h. Preamble Length

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		prealen[7:0]										
Туре				R/	W							

Reset value = 00001000

Bit	Name	Function
7:0	prealen[7:0]	Preamble Length. The value in the prealen[8:0] register corresponds to the number of nibbles (4 bits) in the packet. For example prealen[8:0] = '000001000' corresponds to a preamble length of 32 bits (8 x 4bits) or 4 bytes. The maximum preamble length is prealen[8:0] = 111111111 which corresponds to a 255 bytes Preamble. Writing 0 will have the same result as if writing 1, which corresponds to one single nibble of preamble.

Register 36h. Synchronization Word 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name	sync[31:24]										
Туре		R/W									

Reset value = 00101101

	Bit	Name	Function
Ē	7:0	sync[31:24]	Synchronization Word 3. 4 th byte of the synchronization word.

Register 37h. Synchronization Word 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		sync[23:16]										
Туре		R/W										

Reset value = 11010100

Bit	Name	Function
7:0	,	Synchronization Word 2. 3 rd byte of the synchronization word.

Register 38h. Synchronization Word 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name	me sync[15:8]										
Туре		R/W									

Reset value = 00000000

Bit	Name	Function
7:0	sync[15:8]	Synchronization Word 1. 2 nd byte of the synchronization word.

CHICAN LARG

Register 39h. Synchronization Word 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		sync[7:0]										
Туре				R/	W							

Reset value = 00000000

Bit	Name	Function
7:0	sync[7:0]	Synchronization Word 0. 1 st byte of the synchronization word.

Register 3Ah. Transmit Header 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0									
Name		txhd[31:24]															
Туре				R/	W			R/W									

Reset value = 00000000

Bit	Name	Function
7:0		Transmit Header 3. 4 th byte of the header to be transmitted.

Register 3Bh. Transmit Header 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name	txhd[23:16]										
Туре		R/W									

Reset value = 00000000

Bit	Name	Function
7:0	txhd[23:16]	Transmit Header 2. 3 rd byte of the header to be transmitted.

Register 3Ch. Transmit Header 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		txhd[15:8]										
Туре				R/	W							

Reset value = 00000000

	Bit	Name	Function
-	7:0	txhd[15:8]	Transmit Header 1. 2 nd byte of the header to be transmitted.

Register 3Dh. Transmit Header 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		txhd[7:0]									
Туре				R/	W						

Reset value = 00000000

Bit	Name	Function
7:0	txhd[7:0]	Transmit Header 0. 1 st byte of the header to be transmitted.

Register 3Eh. Packet Length

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		pklen[7:0]										
Туре		R/W										

Reset value = 00000000

Bit	Name	Function
7:0	pklen[7:0]	Packet Length. The value in the pklen[7:0] register corresponds directly to the number of bytes in the Packet. For example pklen[7:0] = '00001000' corresponds to a packet length of 8 bytes. The maximum packet length is pklen[7:0] = '111111111', a 255 byte packet. Writing 0 is possible, in this case we do not send any data in the packet.

Register 62h. Crystal Oscillator/Power-on-Reset Control

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	pwst[2:0]			clkhyst	enbias2x	enamp2x	bufovr	enbuf
Туре	R			R/W	R/W	R/W	R/W	R/W

Reset value = xxx00100

Bit	Name	Function
7:5	pwst[2:0]	Internal Power States of the Chip. LP: 000 RDY: 001 Tune: 011 TX: 010
4	clkhyst	Clock Hysteresis Setting.
3	enbias2x	2 Times Higher Bias Current Enable.
2	enamp2x	2 Times Higher Amplification Enable.
1	bufovr	Output Buffer Enable Override. If set to 1 then the enbuf bit controls the output buffer. 0: output buffer is controlled by the state machine. 1: output buffer is controlled by the enbuf bit.
0	enbuf	Output Buffer Enable. This bit is active only if the bufovr bit is set to 1.

29

Register 6Dh. TX Power

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	papeakval	papeaken	papeaklvl[1	papeaklvl[0]	Reserved		txpow[2:0]	
Туре	R	R/W	R/W	R/W	R/W		R/W	

Reset value = x0011000

Bit	Name	Function
7	papeakval	Reserved.
6	papeaken	PA Peak Detector Value Read Register. Reading a 1 in this register when the papeaken=1 then the PA drain voltage is too high and the match network needs adjusting for optimal efficiency.
5	papeaklvl[1]	PA Peak Detector Enable.
4	papeaklvl[0]	PA Peak Detect Level (direct from register). 00 = 6.5 01 = 7 10 = 7.5 11 = 8 00 = default
3	Reserved	Reserved.
2:0	txpow[2:0]	TX Output Power. The output power is configurable from –8 dBm to +13 dBm in ~3 dBm steps. txpow[2:0] = 111 corresponds to +13 dBm and 000 to –8 dBm.

Register 6Eh. TX Data Rate 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name	txdr[15:8]									
Туре				R/	W					

Reset value = 00001010

Bit	Name	Function
7:0		Data Rate Upper Byte. See formula above.

The data rate can be calculated as: $TX_DR = 10^3 \text{ x txdr}[15:0]/2^{16}$ [kbps] (if address 70[5] = 0) **or** The data rate can be calculated as: $TX_DR = 10^3 \text{ x txdr}[15:0]/2^{21}$ [kbps] (if address 70[5] = 1)

Register 6Fh. TX Data Rate 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		txdr[7:0]									
Туре				R/	W						

Reset value = 00111101

Bit	Name	Function
7:0	txdr[7:0]	Data Rate Lower Byte.
		See formula above. Defaults = 40 kbps.

Register 70h. Modulation Mode Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved		txdtrtscale	enphpwdn	manppol	enmaninv	enmanch	enwhite
Туре	R		R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 00001100

Bit	Name	Function
7:6	Reserved	Reserved.
5	txdtrtscale	This bit should be set for Data Rates below 30 kbps.
4	enphpwdn	If set, the Packet Handler will be powered down when chip is in low power mode.
3	manppol	Manchester Preamble Polarity (will transmit a series of 1 if set, or series of 0 if reset). This bit affects only the transmitter side, not the receiver. This is valid only if Manchester Mode is enabled.
2	enmaninv	Manchester Data Inversion is Enabled if this bit is set. When this bit is low, a 10 pair is considered a Manchester 0, and a 01 pair as a Manchester 1. By setting this bit, do the opposite: every 10 will be considered as a 1, and every 01 will be considered as a 0. This function is relevant only if the Manchester mode is enabled.
1	enmanch	Manchester Coding is Enabled if this bit is set. What Manchester coding does is to replace a single high bit (1) with two bits starting with low followed by high (01) and a low bit (0) with a high bit followed by a low bit (10). When Manchester is enabled, please configure as well the enmaninv at 70h bit [2] since it influences the Manchester encoding/decoding process.
0	enwhite	Data Whitening is Enabled if this bit is set.

Register 71h. Modulation Mode Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	trclk[1:0]		dtmod[1:0]		eninv	fd[8]	modty	/p[1:0]
Туре	R/W		R/W		R/W	R/W	R/	W

Reset value = 00000000

Bit	Name	Function
7:6	trclk[1:0]	 TX Data Clock Configuration. 00: No TX Data CLK is available (asynchronous mode – Can only work with modulations FSK or OOK). 01: TX Data CLK is available via the GPIO (one of the GPIO's should be programmed as well). 10: TX Data CLK is available via the SDO pin. 11: TX Data CLK is available via the nIRQ pin.
5:4	dtmod[1:0]	 Modulation Source. 00: Direct Mode using TX_Data function via the GPIO pin (one of the GPIO's should be programmed accordingly as well) 01: Direct Mode using TX_Data function via the SDI pin (only when nSEL is high) 10: FIFO Mode 11: PN9 (internally generated)
3	eninv	TX Data.
2	fd[8]	MSB of Frequency Deviation Setting, see "Register 72h. Frequency Deviation".
1:0	modtyp[1:0]	Modulation Type. 00: Unmodulated carrier 01: OOK 10: FSK 11: GFSK (enable TX Data CLK (trclk[1:0]) when direct mode is used)

The frequency deviation can be calculated: Fd = 625 Hz x fd[8:0].

Register 72h. Frequency Deviation

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		fd[7:0]						
Туре		R/W						

Reset value = 00100000

Bit	Name	Function			
7:0	fd[7:0]	requency Deviation Setting.			
		See formula above.			

Note: It's recommended to use modulation index of 1 or higher (maximum allowable modulation index is 32). The modulation index is defined by $2F_N/F_R$ were F_D is the deviation and R_B is the data rate. When Manchester coding is enabled the modulation index is defined by F_D/R_B .

Register 73h. Frequency Offset 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	fo[7:0]							
Туре	R/W							

Reset value = 00000000

Bit	Name	Function
7:0	fo[7:0]	Frequency Offset Setting. The frequency offset can be calculated as Offset = 156.25 Hz x (hbsel + 1) x fo[7:0]. fo[9:0] is a twos complement value.

Register 74h. Frequency Offset 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		Reserved						fo[9:8]	
Туре		R						W	

Reset value = 00000000

Bit	Name	Function
7:2	Reserved	Reserved.
1:0	fo[9:8]	Upper Bits of the Frequency Offset Setting. fo[9] is the sign bit. The frequency offset can be calculated as Offset = 156.25 Hz x (hbsel + 1) x fo[7:0]. fo[9:0] is a twos complement value.

Register 75h. Frequency Band Select

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved	sbsel	hbsel	fb[4:0]				
Туре	R	R/W	R/W			R/W		

Reset value = 01110101

Bit	Name	Function
7	Reserved	Reserved.
6	sbsel	Side Band Select.
5	hbsel	High Band Select. Setting hbsel = 1 will choose the frequency range from 480–960 MHz (high bands). Setting hbsel = 0 will choose the frequency range from 240–479.9 MHz (low bands).
4:0	fb[4:0]	Frequency Band Select. Every increment corresponds to a 10 MHz Band for the Low Bands and a 20 MHz Band for the High Bands. Setting fb[4:0] = 00000 corresponds to the 240–250 MHz Band for hbsel = 0 and the 480–500 MHz Band for hbsel = 1. Setting fb[4:0] = 00001 corresponds to the 250–260 MHz Band for hbsel = 0 and the 500–520 MHz Band for hbsel = 1.

The RF carrier frequency can be calculated as follows:

 $f_{carrier} = (f_b + 24 + (f_c + f_o)/64000) \times 10000 \times (hbsel + 1) + (f_{hch} \times f_{hs} \times 10) \text{ [kHz]},$

where parameters f_c , f_o , f_b and hb_sel come from registers 73h–77h. Parameters f_{hch} and f_{hs} come from register 79h and 7Ah.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	fc[15:8]							
Туре		R/W						

Reset value = 10111011

Bit	Name	Function
7:0	fc[15:8]	Nominal Carrier Frequency Setting. See formula above.
		Socialitata abovo.

Register 77h. Nominal Carrier Frequency

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			•	fc[7	7:0]	•	•	
Туре				R/	W			

Reset value = 10000000

Bit	Name	Function
7:0		Nominal Carrier Frequency Setting. See formula above.
		See formula above.

Register 79h. Frequency Hopping Channel Select

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				fhch	[7:0]			
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	fhch[7:0]	Frequency Hopping Channel Number.

Register 7Ah. Frequency Hopping Step Size

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				fhs[7:0]			
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	fhs[7:0]	Frequency Hopping Step Size in 10 kHz Increments. See formula for the nominal carrier frequency at "Register 76h. Nominal Carrier Frequency".

Register 7Ch. TX FIFO Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved				txafth	r[5:0]	•	
Туре	R/W				R/	W		

Reset value = 00110111

Bit	Name	Function
7:6	Reserved	Reserved.
5:0	txafthr[5:0]	TX FIFO Almost Full Threshold.

Register 7Dh. TX FIFO Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved				txfaeth	nr[5:0]		
Туре	R/W				R/	W		

Reset value = 00000100

Bit	Name	Function
7:6	Reserved	Reserved.
5:0	txfaethr[5:0]	TX FIFO Almost Empty Threshold.

Register 7Fh. FIFO Access

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				fifod	[7:0]			
Туре				R/	W			

Reset value = NA

Bit	Name	Function
7:0	fifod[7:0]	FIFO Data. A Write (R/W = 1) to this Address will begin a Burst Write to the TX FIFO. The FIFO will be loaded in the same manner as a Burst SPI Write but the SPI address will not be incremented. To conclude the TX FIFO Write the SEL pin should be brought HIGH, in the same manner.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA