Data Warehousing Overview CS245 Notes 11

Hector Garcia-Molina Stanford University

CS 245

Notes11

Outline

- What is a data warehouse?
- Why a warehouse?
- Models & operations
- Implementing a warehouse

CS 245

Notes1

What is a Warehouse?

- Collection of diverse data
 - subject oriented
 - ◆aimed at executive, decision maker
 - often a copy of operational data
 - with value-added data (e.g., summaries, history)
 - integrated
 - ◆time-varying
 - ◆ non-volatile

CS 245

Notes11

more

What is a Warehouse?

- Collection of tools
 - gathering data
 - ◆ cleansing, integrating, ...
 - querying, reporting, analysis
 - data mining
 - monitoring, administering warehouse

CS 245

Notes11

Warehouse Architecture Client Query & Analysis Metadata Warehouse Source Source Source Source Source

Motivating Examples

- Forecasting
- Comparing performance of units
- Monitoring, detecting fraud
- Visualization

45 N

Advantages of Warehousing

- High query performance
- Queries not visible outside warehouse
- Local processing at sources unaffected
- Can operate when sources unavailable
- Can query data not stored in a DBMS
- Extra information at warehouse
 - Modify, summarize (store aggregates)
 - ◆ Add historical information

CS 245

Advantages of Query-Driven

- No need to copy data
 - ◆less storage
 - ◆no need to purchase data
- More up-to-date data
- · Query needs can be unknown
- Only query interface needed at sources
- May be less draining on sources

CS 245 Notes11 10

Warehouse Models & Operators

- Data Models
 - ◆ relational
 - ◆cubes
- Operators

CS 245 Notes11

Data Analysis Decision Trees Clustering Association Rules

Decision tree cannot be "too deep" would not have statistically significant amounts of data for lower decisions Need to select tree that most reliably predicts outcomes

Association Rule

- Rule: {p₁, p₃, p₈}
- <u>Support</u>: number of baskets where these products appear
- High-support set: support ≥ threshold s
- Problem: find all high support sets

CS 245 Notes11

Implementation Issues

- ETL (Extraction, transformation, loading)
 - Getting data to the warehouse
 - ◆ Entity Resolution
- What to materialize?
- Efficient Analysis
 - ◆Association rule mining
 - **♦**...

245 Notes11

ETL: Monitoring Techniques

- Periodic snapshots
- Database triggers
- Log shipping
- Data shipping (replication service)
- Transaction shipping
- Polling (queries to source)
- Screen scraping
- Application level monitoring

CS 245

Notes1

Advantages & Disadvantages!!

ETL: Data Cleaning

- Migration (e.g., yen ⇒ dollars)
- Scrubbing: use domain-specific knowledge (e.g., social security numbers)
- Fusion (e.g., mail list, customer merging)

billing DB — customer1(Joe) ~

merged_customer(Joe)

service DB ---- customer2(Joe) -

 Auditing: discover rules & relationships (like data mining)

CS 245 Notes11

otes11

More details: Entity Resolution

41

Applications

- comparison shopping
- mailing lists
- classified ads
- customer files
- counter-terrorism

e1

42

Why is ER Challenging? • Huge data sets • No unique identifiers • Lots of uncertainty • Many ways to skin the cat

Implementation Issues • ETL (Extraction, transformation, loading) • Getting data to the warehouse • Entity Resolution • What to materialize? • Efficient Analysis • Association rule mining • ...

Finding High-Support Pairs

- Baskets(basket, item)
- SELECT I.item, J.item, COUNT(I.basket)
 FROM Baskets I, Baskets J
 WHERE I.basket = J.basket AND
 I.item < J.item
 GROUP BY I.item, J.item
 HAVING COUNT(I.basket) >= s;

CS 245 Notes11

Association Rules

- How do we perform rule mining efficiently?
- Observation: If set X has support t, then each X subset must have at least support t

CS 245 Notes11 69

Association Rules

- How do we perform rule mining efficiently?
- Observation: If set X has support t, then each X subset must have at least support t
- For 2-sets:
 - ◆if we need support s for {i, j}
 - ◆then each i, j must appear in at least s baskets

CS 245 Notes11 70

Algorithm for 2-Sets

- (1) Find OK products
 - ◆ those appearing in s or more baskets
- (2) Find high-support pairs using only OK products

CS 245 Notes11

Algorithm for 2-Sets

INSERT INTO okBaskets(basket, item)
 SELECT basket, item
 FROM Baskets
 GROUP BY item
 HAVING COUNT(basket) >= s;

CS 245 Notes11

• Given a set of transcripts, use Pr[x|a] to predict if x is a good recommendation given user has taken a. • Two issues...

