On the *e*-positivity of some claw-free graphs

Arthur L.B. Yang

Center for Combinatorics, Nankai University

July 1st, 2020

- Chromatic symmetric functions
- 2 Generalized pyramids
- 3 $2K_2$ -free unit interval graphs
- 4 Twin vertices
- Jacobi-Trudi immanants

Symmetric function

- Let $x = (x_1, x_2, ...)$ be a set of indeterminates, and let $n \in \mathbb{N}$.
- Let R be a commutative ring with identity.
- A homogeneous symmetric function of degree n over R is a formal power series

$$f(x) = \sum_{\alpha} c_{\alpha} x^{\alpha},$$

where

- α ranges over all weak compositions $\alpha = (\alpha_1, \alpha_2, ...)$ of n of infinite length;
- $c_{\alpha} \in R$;
- x^{α} stands for the monomial $x_1^{\alpha_1}x_2^{\alpha_2}\cdots$; and
- $f(x_{w(1)}, x_{w(2)}, ...) = f(x_1, x_2, ...)$ for every permutation w of the positive integers \mathbb{P} .

Monomial symmetric functions

• λ : a partition of a nonnegative integer n

• Given $\lambda = (\lambda_1, \lambda_2, ...) \vdash n$, define a symmetric function $m_{\lambda}(x)$ by

$$m_{\lambda} = \sum_{\alpha} x^{\alpha},$$

where the sum ranges over all distinct permutations $\alpha = (\alpha_1, \alpha_2, ...)$ of the entries of the vector $\lambda = (\lambda_1, \lambda_2, ...)$.

• The set $\{m_{\lambda}: \lambda \vdash n\}$ is a vector space basis for Λ_R^n , the set of all homogeneous symmetric functions of degree n.

Elementary symmetric functions

• If $\lambda = (1^n)$, then

$$e_n = m_{(1^n)} = \sum_{i_1 < \dots < i_n} x_{i_1} \cdots x_{i_n}, \quad n \ge 1.$$

• For $\lambda = (\lambda_1, \lambda_2, \ldots)$, let

$$e_{\lambda}=e_{\lambda_1}e_{\lambda_2}\cdots$$
.

• The set $\{e_{\lambda} : \lambda \vdash n\}$ is a vector space basis for $\Lambda_{\mathbb{Q}}^{n}$.

Chromatic symmetric functions

- Let G be a graph with vertex set V(G) and edge set E(G).
- Let Z⁺ be the set of positive integers.
- A coloring of V(G) is a function $\kappa: V(g) \mapsto \mathbb{Z}^+$.
- A coloring κ is proper if $\kappa(u) \neq \kappa(v)$ whenever $(u, v) \in E(G)$.

Definition (Stanley, 1995)

Given a graph G = (V, E), the chromatic symmetric function is defined by

$$X_G = \sum_{\kappa} \prod_{v \in V} x_{\kappa(v)},$$

where the sum is over all proper colorings of κ of G.

Stanley's isomorphism conjecture for trees

• The chromatic symmetric function X_G generalizes the chromatic polynomial χ_G of G, since $X_G(1^n) = \chi_G(n)$.

Open problem (Stanley, 1995)

If T and T' are nonisomorphic trees, does $X_T \neq X_{T'}$?

- True for trees with at most 29 vertices by Heil and Ji (arXiv:1801.07363v2).
- Caterpillars can be distinguished by X_T due to Loebl and Sereni (arXiv:1405.4132).

Monomial expansion

- If $\lambda = \langle \cdots, 2^{r_2}, 1^{r_1} \rangle$, then let $\tilde{m}_{\lambda} = r_1! r_2! \cdots m_{\lambda}$.
- A stable partition (or an independent set) π of G is a set partition of V(G) such that each block of π is totally disconnected.
- The type of π is a partition of |V(G)| whose parts are the sizes of the blocks of π .

Theorem (Stanley, 1995)

We have

$$X_G = \sum_{\lambda \vdash |V(G)|} a_\lambda \tilde{m}_\lambda,$$

where a_{λ} is the number of stable partitions of G of type λ .

Monomial expansion

$$X_G = 2\tilde{m}_{(2,2,1)} + 4\tilde{m}_{(2,1,1,1)} + \tilde{m}_{(1,1,1,1,1)}$$
$$\{(a,c), b, d, e\}, \quad \{(a,d), b, c, e\}, \quad \{(b,d), a, c, e\}, \quad \{(b,c), a, d, e\}$$

- Let *P* be a finite poset.
- Let inc(P) denote the incomparability graph of P.
- Let 3+1 denote the disjoint union of a 3-element chain and 1-element chain. Thus inc(3+1) is a claw.

$$X_G = \tilde{m}_{(1,1,1,1)} + 3\tilde{m}_{(2,1,1)} + \tilde{m}_{(3,1)}$$

$$X_G = 4e_{(4)} + 5e_{(3,1)} - 2e_{(2,2)} + e_{(2,1,1)}$$

Figure:
$$(3+1)$$
 – free $inc(P)$ not $(3+1)$ – free

• We say that P is (3+1)-free if it contains no induced 3+1.

Conjecture (Stanley, 1995)

If P is (3+1)-free, then $X_{inc(P)}$ is e-positive.

- If P is **3**-free, then $X_{inc}(P)$ is e-positive.
- If P is (3+1)-free, then $X_{\text{inc}(P)}$ is claw-free.

Theorem (Guay-Paquet, 2013)

Stanley's (3+1)-free conjecture is true if and only if it is true for (3+1)-free and (2+2)-free posets.

Conjecture (Stanley, 1995)

Fix k > 2. Let

$$P_{d,k} = \sum_{i_1,\ldots,i_d} x_{i_1}\cdots x_{i_d},$$

where any k consecutive terms are distinct. Then $P_{d,k}$ is e-positive.

- Stanley (1995) showed that the conjecture is true for k=2.
- Stanley (1995) also showed that cycles are e-positive.
- Dahlberg (2018) showed that $P_{d,3}$ is e-positive.

- Chromatic symmetric functions
- 2 Generalized pyramids
- 3 $2K_2$ -free unit interval graphs
- 4 Twin vertices
- Jacobi-Trudi immanants

H-free graphs

• Hamel, Hoang and Tuero (2017) initialed the study of H-free graphs, where $H = \{claw, F\}$ and $H = \{claw, F, co - F\}$, where F is a four-vertex graph.

Some *e*-positive graphs

Theorem (Tsujie, 2017)

If G is a (claw, P_4)-free graph, then X_G is e-positive.

Theorem (Hamel, Hoang and Tuero, 2017)

If G is (claw, triangle)-free, then each component of G is a path or cycle, and hence X_G is e-positive.

Theorem (Hamel, Hoang and Tuero, 2017)

If G is (claw, paw)-free or (claw, co-paw)-free, then X_G is e-positive.

Not e-positive graphs

Theorem (Hamel, Hoang and Tuero, 2017)

A graph that is H-free for H equal to $\{claw, diamond\}$, $\{claw, K_4\}$, $\{claw, 4K_1\}$, $\{claw, C_4\}$, $\{claw, 2K_2\}$, or $\{claw, co-claw\}$, is not necessarily e-positive.

$$X_G = 6e_{3,2,1} - 6e_{3,3} + 6e_{4,1,1} + 12e_{4,2} + 18e_{5,1} + 12e_6$$

(claw, co-diamond)-free graphs

Open problem (Hamel, Hoang and Tuero, 2017)

Are (claw, co-diamond)-free graphs e-positive?

- The three black vertices are the co-triangle.
- Each oval represents a subgraph, with each vertex in subgraph being joined to the two corresponding vertices of the co-triangle.
- At least two ovals are non-empty.

Open problem (Hamel, Hoang and Tuero, 2017)

Are generalized pyramids e-positive?

- Each oval is a clique.
- There are all edges between any two ovals.
- If a graph G is (claw, co-diamond, $2K_2$)-free, then G is the generalized pyramid.

Theorem (Li and Yang, 2019)

Generalized pyramids GP(r, s, t) are e-positive.

Figure: The generalized pyramid graph GP(r, s, t)

Theorem (Li and Yang, 2019)

For any nonnegative integers r, s, t, we have

$$X_{GP(r,s,t)} = \tilde{m}_{(3,1^{r+s+t})} + (rst)\tilde{m}_{(2,2,2,1^{r+s+t-3})}$$

$$+ (rt + rs + st + r + s + t)\tilde{m}_{(2,2,1^{r+s+t-1})}$$

$$+ (r + s + t + 3)\tilde{m}_{(2,1^{r+s+t+1})} + \tilde{m}_{(1^{r+s+t+3})}.$$

• Any admissible stable partition of GP(r, s, t) is of type $(3, 1^{r+s+t}), (2, 1^{r+s+t+1}), (2, 2, 1^{r+s+t-1}), (2, 2, 2, 1^{r+s+t-3})$ or $(1^{r+s+t+3})$.

• Any admissible stable partition of GP(r, s, t) is of type $(3, 1^{r+s+t}), (2, 1^{r+s+t+1}), (2, 2, 1^{r+s+t-1}), (2, 2, 2, 1^{r+s+t-3})$ or $(1^{r+s+t+3})$.

$$[\tilde{m}_{(2,2,1^{r+s+t-1})}]X_{GP(r,s,t)} = (rt + rs + st + r + s + t)$$

Theorem (Li and Yang, 2019)

For any nonnegative integers r, s, t, we have

$$X_{GP(r,s,t)} = \tilde{m}_{(3,1^{r+s+t})} + (rst)\tilde{m}_{(2,2,2,1^{r+s+t-3})}$$

$$+ (rt + rs + st + r + s + t)\tilde{m}_{(2,2,1^{r+s+t-1})}$$

$$+ (r + s + t + 3)\tilde{m}_{(2,1^{r+s+t+1})} + \tilde{m}_{(1^{r+s+t+3})}.$$
 (1)

Theorem

Let $\lambda \vdash n$. If $\mathbf{e}_{\lambda} = \sum_{\mu \vdash n} M_{\lambda \mu} m_{\mu}$, then $M_{\lambda \mu}$ is equal to the number of (0,1)-matrices $A = (a_{ij})_{i,j \geq 1}$ satisfying $row(A) = \lambda$ and $col(A) = \mu$, where row(A) (resp., col(A)) is the vector of row sums (resp., column sums) of A. Moreover, $M_{\lambda \mu} = 0$ unless $\lambda \leq \mu'$, and $M_{\lambda \lambda'} = 1$.

• Given two partitions $\lambda=(\lambda_1,\lambda_2,\ldots)$ and $\mu=(\mu_1,\mu_2,\ldots)$ of $\operatorname{Par}(n)$, we say that $\mu\leq\lambda$ if

$$\mu_1 + \mu_2 + \dots + \mu_i \le \lambda_1 + \lambda_2 + \dots + \lambda_i$$
 for all $i \ge 1$.

• The conjugate of $\lambda=(\lambda_1,\lambda_2,\ldots)$ is defined as the partition $\lambda'=(\lambda_1',\lambda_2',\ldots)$ where $\lambda_i'=|\{j:\lambda_j\geq i\}|$.

- Suppose that r + s + t = i.
- Let $P = \{(2^3, 1^{i-3}), (3, 1^i), (2^2, 1^{i-1}), (2, 1^{i+1}), (1^{i+3})\}$.
- In order to give the elementary expansion of $X_{GP(r,s,t)}$, it suffices to consider the monomial expansion of those e_{λ} 's such that $\lambda' \leq \mu$ for some $\mu \in P$.
- It is straightforward to verify that the set of such partitions λ is composed of $\{(i,3), (i+1,1,1), (i+1,2), (i+2,1), (i+3)\}$.

We have

$$e_{(i,3)} = m_{(2,2,2,1^{i-3})} + (i-1)m_{(2,2,1^{i-1})} + \binom{i+1}{2}m_{(2,1^{i+1})} + \binom{i+3}{3}m_{(1^{i+3})},$$
(2)

$$e_{(i+1,1,1)} = m_{(3,1^i)} + (2i+3)m_{(2,1^{i+1})} + 2m_{(2,2,1^{i-1})} + 2\binom{i+3}{2}m_{(1^{i+3})},$$
(3)

$$e_{(i+1,2)} = m_{(2,2,1^{i-1})} + (i+1)m_{(2,1^{i+1})} + {i+3 \choose 2}m_{(1^{i+3})}, \tag{4}$$

$$e_{(i+2,1)} = m_{(2,1^{i+1})} + (i+3)m_{(1^{i+3})}, (5)$$

$$e_{i+3} = m_{(1^{i+3})}. (6)$$

Substituting the above m-expansion formulas into (1), we get that

$$X_{GP(r,s,t)} = A \cdot e_{(r+s+t+1,1,1)} + B \cdot e_{(r+s+t,3)} + C \cdot e_{(r+s+t+1,2)} + D \cdot e_{(r+s+t+2,1)} + E \cdot e_{(r+s+t+3)},$$

$$(7)$$

where

$$A = (r + s + t)!,$$

$$B = (r + s + t - 3)! \cdot 6rst,$$

$$C = (r + s + t - 3)! \cdot 2(r + s + t - 1)$$

$$\cdot [(r^{2}s + rs^{2} - 2rs) + (rt^{2} + r^{2}t - 2rt) + (s^{2}t + st^{2} - 2st)],$$

$$D = (r + s + t - 2)! \cdot [(r^{4} + r^{3} - 2r^{2}) + (3r^{2}s - 2rs) + (3rs^{2} - 2s^{2})$$

$$+ (3r^{2}t - 2rt) + (9rst - 2st) + (3rt^{2} - 2t^{2}) + 3s^{2}t + 5rs^{2}t$$

$$+ 2s^{3}t + 5r^{2}st + 2r^{3}t + 2r^{2}t^{2} + 3st^{2} + 5rst^{2} + 2s^{2}t^{2}$$

$$+ t^{3} + 2rt^{3} + 2st^{3} + t^{4} + 2r^{3}s + 2r^{2}s^{2} + s^{3} + 2rs^{3} + s^{4}],$$

Generalization of generalized pyramids

Replacing the co-triangle by three cliques, e-positivity?

G(a, b, c; m, n, p)

Conjecture (Li and Yang, 2019)

The graph G(a, b, c; m, n, p) is e-positive.

- Chromatic symmetric functions
- 2 Generalized pyramids
- 3 $2K_2$ -free unit interval graphs
- 4 Twin vertices
- 5 Jacobi-Trudi immanants

Generalized bull graphs

Theorem (Cho and Huh, 2019)

For any positive integers r, s, t, the generalized bull graph $X_{GB(r,s,t)}$ is e-positive.

Figure: The generalized bull graph GB(r, s, t)

Generalized bull graphs

Using the same method as before, we get that

$$X_{GB(r,s,t)} = t \cdot \tilde{m}_{(3,1^{r+s+t-1})} + (t(t-1) + tr + sr + st) \cdot \tilde{m}_{(2,2,1^{r+s+t-2})} + (1 + 2t + s + r) \cdot \tilde{m}_{(2,1^{r+s+t})} + \tilde{m}_{(1^{r+s+t+2})}.$$
 (8)

• Setting k = r + s + t and i = k - 1 in (3), (4), (5) and (6), and then substituting these four equations into (8), we obtain

$$X_{GB(r,s,t)} = (r+s+t-2)! \cdot [(r+s+t-1)t \cdot e_{(r+s+t,1,1)} + 2rs \cdot e_{(r+s+t,2)}$$

$$+ (r^3 + r^2s + rs^2 + s^3 + 2r^2t + 2rst + 2s^2t + rt^2 + st^2 - r - s)$$

$$\cdot e_{(r+s+t+1,1)} + (r+s+t+2)(r+s+t-1)rs \cdot e_{(r+s+t+2)}].$$

- A {claw, $2K_2$ }-free graph is not necessarily e-positive.
- ullet The incomparability graph of a (3+1)-free is claw-free.
- The incomparability graph of a (3+1)-free and (2+2)-free poset is called a unit interval graph.

Theorem (Li and Yang, 2019)

If G is a $2K_2$ -free unit interval graph, then G is e-positive.

- A {claw, $2K_2$ }-free graph is not necessarily e-positive.
- The incomparability graph of a (3+1)-free is claw-free.
- The incomparability graph of a (3+1)-free and (2+2)-free poset is called a unit interval graph.

Theorem (Li and Yang, 2019)

If G is a $2K_2$ -free unit interval graph, then G is e-positive.

Theorem (Stanley and Stembridge, 1993)

If G is a co-triangle free graph, then X_G is e-positive.

Theorem (Cho and Huh, 2018)

If G is a generalized bull graph, then X_G is e-positive.

- Given a graph G with vertex set V and edge set E, let $\alpha(G)$ denote the maximum size of stable sets.
- Given a pair of vertices u and v, let d(u, v) denote the number of edges of the shortest path between u and v.
- For any vertex $w \in V$, let $N_i(w) = \{x \in V \mid d(x, w) = i\}$ and $[N_i(w)]$ denote the induced subgraph on $N_i(w)$.
- In particular, $N_1(w)$ is the neighborhood of w, denoted by N(w).

Theorem (Hempel and Kratsch, 2002)

If G is a $2K_2$ -free unit interval graph, then there exists a vertex w such that $\alpha([N(w)]) \leq 2$, $N_i(w) = \emptyset$ for $i \geq 4$ and $|N_3(w)| \leq 1$. Moreover, G satisfies one of the following:

- (1) [N(w)] is not connected;
- (2) [N(w)] is connected and $|N_3(w)| = 1$;
- (3) [N(w)] is connected, $|N_3(w)| = 0$ and $\alpha([N(w)]) = 1$;
- (4) [N(w)] is connected, $|N_3(w)| = 0$ and $\alpha([N(w)]) = 2$.
 - Cases (1), (2) and (3) are solved by Foley, Hoàng and Merkel.
 - We prove that for the case of (4), the graph G is a generalized bull or co-triangle free.

$2K_2$ -free unit interval graph

- Foley, Hoàng and Merkel pointed out that "The family of $2K_2$ -free unit interval graphs that are not known to be e-positive have $[N_1]$ connected, $[N_1]$ contains an induced P_3 , $\alpha([N_1])=2$, $N_2\neq\emptyset$, and all $N_i=\emptyset$ for $i\geq 3$."
- Claim 1: $|N_2| \le 2$.
 - (1) Suppose that $|N_2| = s$. Then for any $a \in N_1$, there are at least s-1 vertices in N_2 which are adjacent to a. In the contrary case, if there exist $x, y \in N_2$ which are not adjacent to a, then $\{x, y, a, w\}$ induces a $2K_2$ in G since $[N_2]$ is a clique.
 - (2) Since $\alpha([N_1]) = 2$. There exist $a, b \in N_1$ such that a and b are not adjacent. Moreover, a, b can not be adjacent to the same vertex x in N_2 (otherwise, $\{x, a, b, w\}$ induce a C_4). (Unit interval graph must be C_4 -free due to the poset being 2 + 2-free.) Hence

$2K_2$ -free unit interval graph

- Without loss of generality, we may assume that G is connected.
 There are three cases to check:
 - (1) [N(w)] is connected, $|N_3(w)| = 0$, $\alpha([N(w)]) = 2$ and $|N_2(w)| = 2$;
 - (2) [N(w)] is connected, $|N_3(w)| = 0$, $\alpha([N(w)]) = 2$ and $|N_2(w)| = 1$;
 - (3) [N(w)] is connected, $|N_3(w)| = 0$, $\alpha([N(w)]) = 2$ and $|N_2(w)| = 0$;
- For (1) and (3), the graph G is co-triangle free; For (2), G is either a co-triangle free graph or a generalized bull graph.

- Chromatic symmetric functions
- Question of the second of t
- 3 2 K_2 -free unit interval graphs
- 4 Twin vertices
- Jacobi-Trudi immanants

Twin vertices

Two vertices x and y are twins if they are adjacent and any vertex
 z is adjacent to both x and y or non adjacent to both x and y.

Reduction conjecture

• Given a finite simple graph G and a vertex v of G, define G'_v to be the graph obtained from G by replacing v by an edge v_1v_2 and joining the two endpoints v_1, v_2 to all vertices adjacent to v in G.

Conjecture (Foley, Hoang and Merkel, 2019)

If G is e-positive, then G'_v is e-positive.

 If the above conjecture is not valid, Ethan Li further considered the following.

Conjecture

If G is an e-positive unit interval graph, then G'_v is e-positive.

Positive results

- Both generalized pyramids and bull graphs are e-positive.
- Grace Li studied the twining operation on generalized pyramids and bull graphs, and showed that the following graphs are *e*-positive.

Counterexample

- Ethan Li found a simple counterexample to Foley, Hoang and Merkel's conjecture.
- Define CL_n $(n \ge 2)$ to be the graph obtained from a claw $K_{1,3}$ and a complete graph K_n by identifying one vertex of degree one of the claw and one vertex of the complete graph.

Figure: CL₃ and CL₄

Counterexample

• It is easy to see that *CL*₂ is *e*-positive.

Figure: *CL*₂

• While neither of the following graphs is *e*-positive.

 W_1

Counterexample

Theorem

For any $n \ge 3$, the graph CL_n is not e-positive.

$$\begin{split} X_{CL_n} = & \tilde{m}_{1^{n+3}} + 3n \cdot \tilde{m}_{2,1^{n+1}} + (n-1)(3n-1) \, \tilde{m}_{2^2,1^{n-1}} \\ & + (n-1)^2 (n-2) \, \tilde{m}_{2^3,1^{n-3}} + n \cdot \tilde{m}_{3,1^n} + (n-1)^2 \, \tilde{m}_{3,2,1^{n-2}} \\ = & (n+3)! \, m_{1^{n+3}} + 3n(n+1)! \, m_{2,1^{n+1}} \\ & + 2(n-1)(3n-1)(n-1)! \, m_{2^2,1^{n-1}} + 6(n-1)(n-1)! \, m_{2^3,1^{n-3}} \\ & + n \cdot n! \, m_{3,1^n} + (n-1)(n-1)! \, m_{3,2,1^{n-2}} \end{split}$$

It turns out that

$$[e_{n+1,2}]X_{CL_n} = -2(n-1)! < 0.$$

A conjecture on trees

Conjecture (Dahlberg, She and van Willigenburg)

For every $n \ge 2$ there is a tree T on n vertices, one of which has degree $\lfloor \frac{n}{2} \rfloor$, such that X_T is Schur positive.

- They confirmed the conjecture for $n \le 19$.
- Rambeloson and Shareshian (arXiv 2006.14415) disproved the conjecture for n = 20.
- Can we do more?

- Chromatic symmetric functions
- Question of the second of t
- 3 $2K_2$ -free unit interval graphs
- 4 Twin vertices
- 5 Jacobi-Trudi immanants

Immanants

• Let $\mu=(\mu_1,\ldots,\mu_n), \nu=(\nu_1,\ldots,\nu_n)$ be two partitions such that $\nu\subseteq\mu$, namely $0\leq\nu_i\leq\mu_i$ for $1\leq i\leq n$. Define the *Jacobi-Trudi matrix* as

$$H_{\mu/\nu} = H_{\mu/\nu}(x) = [h_{\mu_i - \nu_j + j - i}]_{1 \le i, j \le n},$$

where h_k denotes the k th complete homogeneous symmetric function.

• Moreover, for any partition λ of n, let χ^{λ} denote the associated irreducible character of the symmetric group S_n . Then the *immanant* of an $n \times n$ matrix $A = [a_{ij}]$ with respect to λ is defined as

$$\operatorname{Imm}_{\lambda}(A) = \sum_{w \in S_n} \chi^{\lambda}(w) \prod_{i=1}^n a_{i,w(i)}.$$

The Stanley-Stembridge conjecture

• The following expression

$$F_{\mu/
u}(x,y) = \sum_{\lambda \vdash n} s_{\lambda}(y) \operatorname{Imm}_{\lambda} H_{\mu/
u}(x)$$

can be transformed into

$$F_{\mu/
u}(x,y) = \sum_{\theta \vdash n} E^{\theta}_{\mu/
u}(y) s_{\theta}(x).$$

Conjecture (Stanley and Stembridge, 1993)

 $\mathsf{E}_{\mu/
u}^{ heta}$ is a nonnegative linear expansion of h_{lpha} 's.

Non-attacking rooks

- Given $B \subseteq [n]^2$, every placement of n non-attacking rooks on B corresponds to a permutation $w \in S_n$, i.e., w(i) = j is a rook occupies (i,j). We then call $w \in S_n$ and $w \in S_n$ are invariant.
- Define the *cycle indicator* Z[B] of B to be

$$Z[B] = \sum_{w} p_{\rho(w)} = \sum_{w} p_1^{m_1(\rho(w))} p_2^{m_2(\rho(w))} \cdots,$$

where w ranges over all B-compatible permutations.

 Let S be a placement of (at most n) non-attacking rooks, we can consider it as a directed graph. Then S must be a union of disjoint directed paths and cycles.

Cycle indicator

- Define the *type* of S to be the pair of partitions $(\alpha; \beta)$ such that the parts of α (resp. β) represents the sizes of of the directed paths (resp. cycles). Note that $|\alpha| + |\beta| = n$ and the number of isolated vertices in S is $m_1(\alpha)$.
- Let ω be the involution sending e_{λ} to h_{λ} . Then the "forgotten" symmetric functions f_{λ} are defined by $f_{\lambda} = \omega(m_{\lambda})$.

Theorem (Stanley and Stembridge, 1993)

For any $B \subseteq [n]^2$, we have

$$Z[B] = \sum_{\alpha,\beta} (-1)^{|\beta|} m_1(\alpha)! m_2(\alpha)! \cdots r_{\alpha,\beta}(\bar{B}) f_{\alpha} p_{\beta},$$

where $r_{\alpha,\beta}(\bar{B})$ denotes the number of subgraphs of type $(\alpha;\beta)$ in the complement \bar{B} .

Combinatorial interpretation

• Note that in a Jacobi-Trudi matrix $H_{\mu/\nu}$, the zero entries form a partition $\sigma \subseteq \delta = (n-1, n-2, \ldots, 1)$ (reading from bottom to top) in the southwest corner. Let B_{σ} be the complement of the diagram of σ , i.e.,

$$B_{\sigma} = \{(i,j) \in [n]^2 : j > \sigma_{n-i+1}\}.$$

The diagram of $\,\sigma\,$ is therefore denoted by $\,ar{\it B}_{\!\sigma}\,$.

Theorem (Stanley and Stembridge, 1993)

If
$$\theta = (N)$$
 and $\sigma = \sigma(\mu/\nu)$, then $E^{\theta}_{\mu/\nu} = Z[B_{\sigma}]$.

Combinatorial interpretation

- Let $\sigma \subseteq \delta$. Then the positions of $[n]^2$ indexed by \bar{B}_{σ} can be used to define a partial order P_{σ} of [n] in which i>j if and only if $(i,j)\in \bar{B}_{\sigma}$ ($i\geq j+1$).
- For any partition α of n, define $c_{\alpha}(P)$ to be the number of ways to partition an n-element poset P into (unordered) chains of cadinality $\alpha_1, \alpha_2, \ldots$, and let $\bar{c}_{\alpha}(P) := m_1(\alpha)! m_2(\alpha)! \cdots c_{\alpha}(P)$ denote the number of partitions of P into ordered chains of cardinality $\alpha_1, \alpha_2, \ldots$
- When $B=B_{\sigma}$, the quantity $m_1(\alpha)!m_2(\alpha)!\cdots r_{\alpha,\varnothing}(\bar{B})$ can be identified as $\bar{c}_{\alpha}(P_{\sigma})$.

Combinatorial interpretation

Using the two theorems above,

$$E_{\mu/\nu}^{(N)} = Z[B_{\sigma}] = \sum_{\alpha} m_1(\alpha)! m_2(\alpha)! \cdots r_{\alpha,\varnothing}(\bar{B}_{\sigma}) f_{\alpha} = \sum_{\alpha \vdash n} \bar{c}_{\alpha}(P_{\sigma}) f_{\alpha}.$$

Thus, the case $\theta = (N)$ of the initial conjecture is equivalent to the assertion that $\sum_{\alpha \vdash n} \bar{c}_{\alpha}(P_{\sigma}) m_{\alpha}$ is e-positive.

Poset-Chain property

- Naturally, we can generalize the above problem to finding all posets P of [n] such that $\sum_{\alpha \vdash n} \bar{c}_{\alpha}(P_{\sigma}) m_{\alpha}$ is a nonnegative linear combination of the e_{λ} 's. This property is called the *Poset-Chain* property.
- By a theorem of Dean and Keller [DK1968], the posets P_{σ} are characterized by the fact that they are both (3+1)-free and (2+2)-free (unit interval order \Leftrightarrow Dyck path \Leftrightarrow complement of area). However, there exist some posets satisfying the Poset-Chain property which are not (2+2)-free.

Conjecture (Stanley and Stembridge, 1993)

Any (3+1)-free poset satisfies the Poset-Chain property.

The corresponding conjecture for CSF

- Recall that the *chromatic symmetric function* of a graph G is defined as $X_G = \sum_{\kappa} \prod_{v \in V(G)} x_{\kappa(v)}$, where κ ranges over all proper colorings of G.
- A poset P is said to be (a + b)-free if it does not contain an induced subposet which is a disjoint union of an a-element chain and a b-element chain. The incomparability graph of P, denoted by inc(P), is defined as follows: the vertices of inc(P) are elements of P, and two vertices u and v are adjacent if and only if they are incomparable in P.

Conjecture (Stanley, 1995)

If P is (3+1)-free, then inc(P) is e-positive.

The equivalence of these two conjectures

• Recall that a *stable partition* of a graph G is a set partition of V(G) such that every block is a stable set, i.e., the vertices in the same block are non-adjacent to each other.

Theorem (Stanley, 1995)

Let d_{α} be the number of stable partitions of G of type α . Then

$$X_G = \sum_{\alpha \vdash n} d_{\alpha} m_1(\alpha)! m_2(\alpha)! \cdots m_{\alpha}.$$

• Note that finding partitions of a poset P into (unordered) chains of cardinality $\alpha_1, \alpha_2, \ldots$ is equivalent to finding stable partitions of type α in $\operatorname{inc}(P)$. Hence we have $c_{\alpha}(P) = d_{\alpha}$ and $\bar{c}_{\alpha}(P) = d_{\alpha} m_1(\alpha)! m_2(\alpha)! \cdots$.

Related references

- A.M. Foley, C.T. Hoàng and O.D. Merkel, Chromatic symmetric functions and *H*-free graphs. Graphs Combin. 35 (2019), no. 4, 815–825.
- M. Guay-Paquet, A modular law for the chromatic symmetric functions of (3+1)-free posets, arXiv:1306.2400.
- H. Hempel, D. Kratsch, On claw-free asteroidal triple-free graphs, Discrete Appl. Math. 121 (2002), no. 1-3, 155–180.
- R.P. Stanley, A Symmetric Function Generalization of the Chromatic Polynomial of a Graph, Adv. Math. 111 (1995), 166–194.

Thanks for your attention!