Housing Case Study

Problem Statement:

Consider a real estate company that has a dataset containing the prices of properties in the Delhi region. It wishes to use the data to optimise the sale prices of the properties based on important factors such as area, bedrooms, parking, etc.

Essentially, the company wants —

- To identify the variables affecting house prices, e.g. area, number of rooms, bathrooms, etc.
- To create a linear model that quantitatively relates house prices with variables such as number of rooms, area, number of bathrooms, etc.
- To know the accuracy of the model, i.e. how well these variables can predict house prices.

Importing and Understanding Data

```
In [54]: import pandas as pd
import numpy as np

In [55]: # Importing Housing.csv
housing = pd.read_csv('Housing.csv')

In [56]: # Looking at the first five rows
housing.head()
```

Out[56]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hot
0	13300000	7420	4	2	3	yes	no	no	no
1	12250000	8960	4	4	4	yes	no	no	no
2	12250000	9960	3	2	2	yes	no	yes	no
3	12215000	7500	4	2	2	yes	no	yes	no
4	11410000	7420	4	1	2	yes	yes	yes	no

```
In [57]: # What type of values are stored in the columns?
         housing.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 545 entries, 0 to 544
         Data columns (total 13 columns):
         price
                             545 non-null int64
         area
                             545 non-null int64
         bedrooms
                             545 non-null int64
         bathrooms
                             545 non-null int64
         stories
                             545 non-null int64
         mainroad
                             545 non-null object
                             545 non-null object
         guestroom
                             545 non-null object
         basement
                             545 non-null object
         hotwaterheating
         airconditioning
                             545 non-null object
                             545 non-null int64
         parking
                             545 non-null object
         prefarea
         furnishingstatus
                             545 non-null object
         dtypes: int64(6), object(7)
         memory usage: 55.4+ KB
```

Data Preparation

- You can see that your dataset has many columns with values as 'Yes' or 'No'.
- We need to convert them to 1s and 0s, where 1 is a 'Yes' and 0 is a 'No'.

```
In [58]: # Converting Yes to 1 and No to 0
    housing['mainroad'] = housing['mainroad'].map({'yes': 1, 'no': 0})
    housing['guestroom'] = housing['guestroom'].map({'yes': 1, 'no': 0})
    housing['basement'] = housing['basement'].map({'yes': 1, 'no': 0})
    housing['hotwaterheating'] = housing['hotwaterheating'].map({'yes': 1, 'no': 0})
    housing['airconditioning'] = housing['airconditioning'].map({'yes': 1, 'no': 0})
    housing['prefarea'] = housing['prefarea'].map({'yes': 1, 'no': 0})
```

In [59]: # Now Let's see the head
housing.head()

Out[59]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotv
0	13300000	7420	4	2	3	1	0	0	0
1	12250000	8960	4	4	4	1	0	0	0
2	12250000	9960	3	2	2	1	0	1	0
3	12215000	7500	4	2	2	1	0	1	0
4	11410000	7420	4	1	2	1	1	1	0

The variable 'furnishingstatus' had three levels. We need to convert it to integer.

```
In [60]: # Creating a dummy variable for 'furnishingstatus'
status = pd.get_dummies(housing['furnishingstatus'])
```

In [61]: # The result has created three variables that are not needed.
status.head()

Out[61]:

	furnished	semi-furnished	unfurnished
0	1	0	0
1	1	0	0
2	0	1	0
3	1	0	0
4	1	0	0

```
In [62]: # we don't need 3 columns.
# we can use drop_first = True to drop the first column from status df.
status = pd.get_dummies(housing['furnishingstatus'],drop_first=True)
```

In [63]: #Adding the results to the master dataframe
housing = pd.concat([housing,status],axis=1)

In [64]: # Now let's see the head of our dataframe.
housing.head()

Out[64]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotv
0	13300000	7420	4	2	3	1	0	0	0
1	12250000	8960	4	4	4	1	0	0	0
2	12250000	9960	3	2	2	1	0	1	0
3	12215000	7500	4	2	2	1	0	1	0
4	11410000	7420	4	1	2	1	1	1	0

In [65]: # Dropping furnishingstatus as we have created the dummies for it
housing.drop(['furnishingstatus'],axis=1,inplace=True)

In [66]: # Now let's see the head of our dataframe.
housing.head()

Out[66]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotv
0	13300000	7420	4	2	3	1	0	0	0
1	12250000	8960	4	4	4	1	0	0	0
2	12250000	9960	3	2	2	1	0	1	0
3	12215000	7500	4	2	2	1	0	1	0
4	11410000	7420	4	1	2	1	1	1	0

Creating a new variable

In [67]: # Let us create the new metric and assign it to "areaperbedroom"
housing['areaperbedroom'] = housing['area']/housing['bedrooms']

In [68]: # Metric:bathrooms per bedroom
housing['bbratio'] = housing['bathrooms']/housing['bedrooms']

```
In [69]: housing.head()
```

Out[69]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hot
0	13300000	7420	4	2	3	1	0	0	0
1	12250000	8960	4	4	4	1	0	0	0
2	12250000	9960	3	2	2	1	0	1	0
3	12215000	7500	4	2	2	1	0	1	0
4	11410000	7420	4	1	2	1	1	1	0

Rescaling the Features

It is extremely important to rescale the variables so that they have a comparable scale. There are twocoon ways of rescaling

- 1. Normalisation (min-max scaling) and
- 2. standardisation (mean-o, sigma-1) Let's try normalisation

```
In [70]: #defining a normalisation function
def normalize (x):
    return ( (x-np.mean(x))/ (max(x) - min(x)))

# applying normalize ( ) to all columns
housing = housing.apply(normalize)
```

Splitting Data into Training and Testing Sets

```
In [73]: #random_state is the seed used by the random number generator, it can be any i
nteger.
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7 ,test
_size = 0.3, random_state=100)
```

Building a linear model

In [75]: #Let's see the summary of our first linear model
 print(lm_1.summary())

=======================================		_	========	=======	-======	
= Dep. Variable:		price	R-squared:		(ð.68
6 Model:		OLS	Adj. R-squa	red:	6	ð.67
3 Method:	Leas	t Squares	F-statistic	:	<u>.</u>	53.1
2 Date:	Thu, 01	Thu, 01 Mar 2018		tistic):	4.56	5e-8
2 Time: 0		14:44:46	Log-Likelih	ood:	38	34.4
No. Observations:		381	AIC:		-7	736.
Df Residuals: 7		365	BIC:		-6	573.
Df Model: Covariance Type:		15 nonrobust				
=======================================	=======	=======	========	=======	-=======	
0.975]	coef	std err	t	P> t	[0.025	
const 0.011	0.0022	0.005	0.474	0.636	-0.007	
area 0.838	0.5745	0.134	4.285	0.000	0.311	
bedrooms 0.124	-0.0587	0.093	-0.632	0.528	-0.241	
bathrooms 0.482	0.2336	0.126	1.849	0.065	-0.015	
stories 0.140	0.1018	0.019	5.265	0.000	0.064	
mainroad 0.079	0.0511	0.014	3.580	0.000	0.023	
guestroom 0.053	0.0260	0.014	1.887	0.060	-0.001	
basement 0.043	0.0208	0.011	1.877	0.061	-0.001	
hotwaterheating 0.130	0.0875	0.022	4.048	0.000	0.045	
airconditioning 0.088	0.0663	0.011	5.868	0.000	0.044	
parking 0.092	0.0562	0.018	3.104	0.002	0.021	
prefarea 0.080	0.0566	0.012	4.772	0.000	0.033	
semi-furnished 0.022	-0.0008	0.012	-0.068	0.946	-0.024	
unfurnished -0.007	-0.0323	0.013	-2.550	0.011	-0.057	
areaperbedroom -0.025	-0.3135	0.147	-2.139	0.033	-0.602	
bbratio 0.249	0.0439	0.104	0.421	0.674	-0.161	

```
______
Omnibus:
                 87.283
                      Durbin-Watson:
                                        2.08
Prob(Omnibus):
                 0.000
                      Jarque-Bera (JB):
                                       276.32
                     Prob(JB):
                                      9.91e-6
Skew:
                 1.023
                 6.636 Cond. No.
Kurtosis:
                                        47.
______
Warnings:
```

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

Checking VIF

```
In [76]: # UDF for calculating vif value
         def vif_cal(input_data, dependent_col):
             vif_df = pd.DataFrame( columns = ['Var', 'Vif'])
             x_vars=input_data.drop([dependent_col], axis=1)
             xvar_names=x_vars.columns
             for i in range(0,xvar names.shape[0]):
                 y=x_vars[xvar_names[i]]
                 x=x_vars[xvar_names.drop(xvar_names[i])]
                 rsq=sm.OLS(y,x).fit().rsquared
                 vif=round(1/(1-rsq),2)
                 vif_df.loc[i] = [xvar_names[i], vif]
             return vif df.sort values(by = 'Vif', axis=0, ascending=False, inplace=Fal
         se)
```

In [77]: # Calculating Vif value
 vif_cal(input_data=housing, dependent_col="price")

Out[77]:

	Var	Vif
2	bathrooms	20.21
14	bbratio	19.04
13	areaperbedroom	17.59
0	area	16.00
1	bedrooms	9.11
12	unfurnished	1.68
11	semi-furnished	1.59
3	stories	1.51
6	basement	1.33
5	guestroom	1.23
9	parking	1.22
8	airconditioning	1.21
4	mainroad	1.17
10	prefarea	1.16
7	hotwaterheating	1.05

Correlation matrix

In [78]: # Importing matplotlib and seaborn
import matplotlib.pyplot as plt

import seaborn as sns
%matplotlib inline

```
In [79]: # Let's see the correlation matrix
plt.figure(figsize = (16,10)) # Size of the figure
sns.heatmap(housing.corr(),annot = True)
```

Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x12903489be0>

Dropping the Variable and Updating the Model

```
In [80]: # Dropping highly correlated variables and insignificant variables
X_train = X_train.drop('bbratio', 1)
```

```
In [81]: # Create a second fitted model
lm_2 = sm.OLS(y_train,X_train).fit()
```

In [82]: #Let's see the summary of our second linear model
 print(lm_2.summary())

=						
Dep. Variable: 6		price	R-squared:			0.68
Model: 4		OLS	Adj. R-squa	red:		0.67
Method: 3	Leas	st Squares	F-statistic	:		57.0
Date: 3	Thu, 01 Mar 2018		Prob (F-sta	tistic):	6.4	6e-8
Time: 1		14:44:48		ood:	3	84.3
No. Observations: 6		381	AIC:		-	738.
Df Residuals: 5		366	BIC:		-	679.
Df Model:		14				
Covariance Type:		nonrobust				
======	=======	:======:	========	=======	=======	====
_	coef	std err	t	P> t	[0.025	
0.975]						
const 0.011	0.0022	0.005	0.482	0.630	-0.007	
area 0.782	0.5483	0.119	4.622	0.000	0.315	
bedrooms 0.053	-0.0845	0.070	-1.209	0.227	-0.222	
bathrooms 0.350	0.2850	0.033	8.686	0.000	0.220	
stories 0.140	0.1022	0.019	5.301	0.000	0.064	
mainroad 0.079	0.0509	0.014	3.568	0.000	0.023	
guestroom 0.053	0.0265	0.014	1.941	0.053	-0.000	
basement 0.043	0.0210	0.011	1.898	0.058	-0.001	
hotwaterheating 0.129	0.0866	0.021	4.031	0.000	0.044	
airconditioning 0.088	0.0662	0.011	5.871	0.000	0.044	
parking 0.092	0.0563	0.018	3.119	0.002	0.021	
prefarea 0.079	0.0563	0.012	4.760	0.000	0.033	
semi-furnished 0.022	-0.0009	0.012	-0.077	0.939	-0.024	
unfurnished -0.007	-0.0323	0.013	-2.554	0.011	-0.057	
areaperbedroom -0.031	-0.2840	0.129	-2.208	0.028	-0.537	

=

Omnibus: 88.466 Durbin-Watson: 2.08 Prob(Omnibus): 0.000 Jarque-Bera (JB): 282.79 Skew: 1.034 Prob(JB): 3.91e-6 2 6.679 Cond. No. 39. Kurtosis:

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dropping the Variable and Updating the Model

In [83]: # Calculating Vif value
 vif_cal(input_data=housing.drop(["bbratio"], axis=1), dependent_col="price")

Out[83]:

	Var	Vif
13	areaperbedroom	14.14
0	area	12.84
1	bedrooms	4.99
12	unfurnished	1.68
11	semi-furnished	1.59
3	stories	1.50
6	basement	1.32
2	bathrooms	1.29
5	guestroom	1.22
9	parking	1.22
8	airconditioning	1.21
4	mainroad	1.17
10	prefarea	1.16
7	hotwaterheating	1.04

```
In [84]: # Dropping highly correlated variables and insignificant variables
X_train = X_train.drop('bedrooms', 1)
```

In [85]: # Create a third fitted model
lm_3 = sm.OLS(y_train,X_train).fit()

In [86]: #Let's see the summary of our third linear model
print(lm_3.summary())

==========	=======	=======	========		=======	====
= Dep. Variable:		price	R-squared:			0.68
4 Model:		OLS	Adj. R-squa	ared:		0.67
3 Method:	Lea	st Squares	F-statistic	::	61.2	
3 Date:	Thu, 0	1 Mar 2018	Prob (F-sta	atistic):	1.0	66e-8
3 Time:		14:44:49	Log-Likelih	nood:	:	383.5
5 No. Observations	:	381	AIC:			-739.
1 Df Residuals:		367	BIC:			-683.
9 Df Model:		13				
Covariance Type:		nonrobust 				
=====						
0.975]	coef	std err	t	P> t	[0.025	
const	0.0021	0.005	0.459	0.647	-0.007	
0.011 area	0.4326	0.070	6.164	0.000	0.295	
0.571 bathrooms	0.2814	0.033	8.606	0.000	0.217	
0.346 stories	0.1005	0.019	5.224	0.000	0.063	
0.138 mainroad	0.0515	0.014	3.611	0.000	0.023	
0.080 guestroom	0.0285	0.014	2.101	0.036	0.002	
0.055 basement 0.042	0.0201	0.011	1.822	0.069	-0.002	
hotwaterheating 0.127	0.0850	0.021	3.963	0.000	0.043	
airconditioning 0.089	0.0667	0.011	5.909	0.000	0.044	
parking 0.093	0.0573	0.018	3.175	0.002	0.022	
prefarea 0.081	0.0576	0.012	4.895	0.000	0.034	
semi-furnished 0.023	9.202e-06	0.012	0.001	0.999	-0.023	
unfurnished	-0.0313	0.013	-2.478	0.014	-0.056	
-0.006 areaperbedroom -0.019	-0.1516	0.068	-2.242	0.026	-0.285	
===========	========	=======			========	====
= Omnibus: 5		88.924	Durbin-Wats	son:		2.08

```
Prob(Omnibus):
                                         Jarque-Bera (JB):
                                 0.000
                                                                          283.14
```

Skew: Prob(JB): 1.041 3.29e-6

6.674

Cond. No.

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [87]: # Calculating Vif value
         vif_cal(input_data=housing.drop(["bedrooms","bbratio"], axis=1), dependent_col
         ="price")
```

Out[87]:

	Var	Vif
0	area	4.21
12	12 areaperbedroom	
11	unfurnished	1.67
10	semi-furnished	1.58
2	stories	1.49
5	basement	1.32
1	bathrooms	1.29
8	parking	1.22
4	guestroom	1.21
7	airconditioning	1.21
3	mainroad	1.17
9	prefarea	1.15
6	hotwaterheating	1.04

Dropping the Variable and Updating the Model

```
In [88]: # # Dropping highly correlated variables and insignificant variables
         X train = X train.drop('areaperbedroom', 1)
```

```
In [89]: # Create a fourth fitted model
         lm_4 = sm.OLS(y_train,X_train).fit()
```

20.

In [90]: #Let's see the summary of our fourth linear model
 print(lm_4.summary())

		J	======================================		:======:	===
= Dep. Variable:		price	R-squared:		0	.68
<pre>0 Model:</pre>	OLS		Adj. R-squared:		0	.67
0 Method:					65.2	
0	Leas	t Squares	F-statistic	. .	0:	J. Z
Date:	Thu, 01	. Mar 2018	Prob (F-statistic):		2.35	e-8
Time: 6	14:44:49		Log-Likelih	nood:	380	0.9
No. Observations: 9		381	AIC:		-73	35.
Df Residuals: 7		368	BIC:		-68	84.
Df Model:		12				
Covariance Type:		nonrobust				
=======================================	=======	=======	========			===
0.975]	coef	std err	t	P> t	[0.025	
const	0.0013	0.005	0.287	0.775	-0.008	
0.010 area	0.3008	0.039	7.799	0.000	0.225	
0.377bathrooms0.358	0.2947	0.032	9.114	0.000	0.231	
stories 0.153	0.1178	0.018	6.643	0.000	0.083	
mainroad 0.077	0.0488	0.014	3.419	0.001	0.021	
guestroom 0.057	0.0301	0.014	2.207	0.028	0.003	
basement 0.045	0.0239	0.011	2.179	0.030	0.002	
hotwaterheating 0.129	0.0864	0.022	4.007	0.000	0.044	
airconditioning 0.089	0.0666	0.011	5.870	0.000	0.044	
parking 0.098	0.0629	0.018	3.495	0.001	0.027	
prefarea 0.083	0.0597	0.012	5.055	0.000	0.036	
semi-furnished 0.024	0.0008	0.012	0.067	0.947	-0.022	
unfurnished -0.007	-0.0318	0.013	-2.504	0.013	-0.057	
=======================================	=======	=======			:======:	===
Omnibus:		97.809	Durbin-Wats	son:	2	.09
Prob(Omnibus):		0.000	Jarque-Bera	а (ЈВ):	326	.48

Skew: 1.131 Prob(JB): 1.27e-7

1

Kurtosis: 6.930 Cond. No. 8.5

2

=

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [91]: # Calculating Vif value
    vif_cal(input_data=housing.drop(["bedrooms","bbratio","areaperbedroom"], axis=
        1), dependent_col="price")
```

Out[91]:

	Var	Vif
11	unfurnished	1.67
10	semi-furnished	1.58
0	area	1.32
2	stories	1.30
5	basement	1.30
1	bathrooms	1.22
4	guestroom	1.21
7	airconditioning	1.21
8	parking	1.21
3	mainroad	1.16
9	prefarea	1.15
6	hotwaterheating	1.04

Dropping the Variable and Updating the Model

```
In [92]: # # Dropping highly correlated variables and insignificant variables
X_train = X_train.drop('semi-furnished', 1)
```

```
In [93]: # Create a fifth fitted model
lm_5 = sm.OLS(y_train,X_train).fit()
```

In [94]: #Let's see the summary of our fifth linear model
print(lm_5.summary())

=======================================		_	========	=======		====
= Dep. Variable:	price		R-squared:			0.68
<pre>0 Model:</pre>	OLS		Adj. R-squared:			0.67
1 Method:	Leas	Least Squares		F-statistic:		71.3
1 Date:	Thu, 01	Thu, 01 Mar 2018		Prob (F-statistic):		3e-8
4 Time:		14:44:50	Log-Likelihood:		3	80.9
<pre>6 No. Observations: 9</pre>		381	AIC:		-737.	
9 Df Residuals: 6		369	BIC:		-	690.
Df Model: Covariance Type:		11 nonrobust				
=======================================		=======	========		=======	====
0.975]	coef	std err	t	P> t	[0.025	
const 0.010	0.0013	0.005	0.286	0.775	-0.008	
area 0.376	0.3006	0.038	7.851	0.000	0.225	
bathrooms 0.358	0.2947	0.032	9.132	0.000	0.231	
stories 0.153	0.1178	0.018	6.654	0.000	0.083	
mainroad 0.077	0.0488	0.014	3.423	0.001	0.021	
guestroom 0.057	0.0301	0.014	2.211	0.028	0.003	
basement 0.045	0.0239	0.011	2.183	0.030	0.002	
hotwaterheating 0.129	0.0864	0.022	4.014	0.000	0.044	
airconditioning 0.089	0.0665	0.011	5.895	0.000	0.044	
parking 0.098	0.0629	0.018	3.501	0.001	0.028	
prefarea 0.083	0.0596	0.012	5.061	0.000	0.036	
unfurnished -0.012	-0.0323	0.010	-3.169	0.002	-0.052	
======================================	=======	97.661	 Durbin-Wats	on:		2.09
7 Prob(Omnibus):		0.000	Jarque-Bera (JB):		32	5.38
8 Skew:		1.130	Prob(JB):	` '		.0e-7

Kurtosis: 6.923 Cond. No. 8.4

6

=

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [95]: # Calculating Vif value
 vif_cal(input_data=housing.drop(["bedrooms","bbratio","areaperbedroom","semi-f
 urnished"], axis=1), dependent_col="price")

Out[95]:

	Var	Vif
0	area	1.32
2	stories	1.30
5	basement	1.30
1	bathrooms	1.22
4	guestroom	1.21
8	parking	1.21
7	airconditioning	1.20
3	mainroad	1.15
9	prefarea	1.15
10	unfurnished	1.07
6	hotwaterheating	1.04

Dropping the Variable and Updating the Model

In [96]: # # Dropping highly correlated variables and insignificant variables
X_train = X_train.drop('basement', 1)

In [97]: # Create a sixth fitted model
lm_6 = sm.OLS(y_train,X_train).fit()

In [98]: #Let's see the summary of our sixth linear model
print(lm_6.summary())

=======================================	.======	_	========	=======		===
= Dep. Variable:	price		R-squared:		6	67
6 Model:	OLS		Adj. R-squared:		6	0.66
7 Method:	Leas	t Squares	F-statistic:		7	77.1
8 Date: 4	Thu, 01	Mar 2018	Prob (F-statistic):		3.13	8e-8
Time:		14:44:50	Log-Likelihood:		37	78.5
No. Observations:		381	AIC:		-7	735.
Df Residuals: 7		370	BIC:		-6	591.
Df Model: Covariance Type:		10 nonrobust				
======			========		_	===
0.975]	coef	std err	t	P> t	[0.025	
const 0.011	0.0015	0.005	0.320	0.749	-0.008	
area 0.375	0.2990	0.038	7.772	0.000	0.223	
bathrooms 0.366	0.3028	0.032	9.397	0.000	0.239	
stories 0.142	0.1081	0.017	6.277	0.000	0.074	
mainroad 0.078	0.0497	0.014	3.468	0.001	0.022	
guestroom 0.065	0.0402	0.013	3.124	0.002	0.015	
hotwaterheating 0.130	0.0876	0.022	4.051	0.000	0.045	
airconditioning 0.090	0.0682	0.011	6.028	0.000	0.046	
parking 0.098	0.0629	0.018	3.482	0.001	0.027	
prefarea 0.087	0.0637	0.012	5.452	0.000	0.041	
unfurnished -0.014	-0.0337	0.010	-3.295	0.001	-0.054	
=======================================	:=======	=======	========	=======	-=======	===
Omnibus: 9		97.054	Durbin-Wats	on:	2	2.09
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	322	2.03
Skew:		1.124	Prob(JB):		1.18	8e-7
Kurtosis: 5		6.902	Cond. No.			8.4

=

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [99]: # Calculating Vif value
 vif_cal(input_data=housing.drop(["bedrooms","bbratio","areaperbedroom","semi-f
 urnished","basement"], axis=1), dependent_col="price")

Out[99]:

	Var	Vif
0	area	1.31
2	stories	1.22
7	parking	1.21
1	bathrooms	1.20
6	airconditioning	1.20
3	mainroad	1.15
8	prefarea	1.10
4	guestroom	1.07
9	unfurnished	1.06
5	hotwaterheating	1.04

Assessment question

Design four models by dropping all the variables one by one with high vif (>5). Then, compare the results.

Making Predictions Using the Final Model

Prediction with Model 6

```
In [100]: # Adding constant variable to test dataframe
X_test_m6 = sm.add_constant(X_test)
```

```
In [101]: # Creating X_test_m6 dataframe by dropping variables from X_test_m6
X_test_m6 = X_test_m6.drop(["bedrooms","bbratio","areaperbedroom","semi-furnis
hed","basement"], axis=1)
```

```
In [102]: # Making predictions
y_pred_m6 = lm_6.predict(X_test_m6)
```

Model Evaluation

```
In [103]: # Actual vs Predicted
    c = [i for i in range(1,165,1)]
    fig = plt.figure()
    plt.plot(c,y_test, color="blue", linewidth=2.5, linestyle="-") #Plotting A
    ctual
    plt.plot(c,y_pred_m6, color="red", linewidth=2.5, linestyle="-") #Plotting p
    redicted
    fig.suptitle('Actual and Predicted', fontsize=20) # Plot heading
    plt.xlabel('Index', fontsize=18) # X-Label
    plt.ylabel('Housing Price', fontsize=16) # Y-Label
```

Out[103]: Text(0,0.5, 'Housing Price')

Actual and Predicted


```
In [104]: # Plotting y_test and y_pred to understand the spread.
    fig = plt.figure()
    plt.scatter(y_test,y_pred_m6)
    fig.suptitle('y_test vs y_pred', fontsize=20)  # Plot heading
    plt.xlabel('y_test', fontsize=18)  # X-label
    plt.ylabel('y_pred', fontsize=16)  # Y-label
```

Out[104]: Text(0,0.5,'y_pred')


```
In [105]: # Error terms
    fig = plt.figure()
    c = [i for i in range(1,165,1)]
    plt.plot(c,y_test-y_pred_m6, color="blue", linewidth=2.5, linestyle="-")
    fig.suptitle('Error Terms', fontsize=20)  # Plot heading
    plt.xlabel('Index', fontsize=18)  # X-label
    plt.ylabel('ytest-ypred', fontsize=16)  # Y-label
```

Out[105]: Text(0,0.5,'ytest-ypred')


```
In [106]: # Plotting the error terms to understand the distribution.
    fig = plt.figure()
    sns.distplot((y_test-y_pred_m6),bins=50)
    fig.suptitle('Error Terms', fontsize=20)  # Plot heading
    plt.xlabel('y_test-y_pred', fontsize=18)  # X-label
    plt.ylabel('Index', fontsize=16)  # Y-label
```

Out[106]: Text(0,0.5,'Index')

Error Terms

In [107]: import numpy as np from sklearn import metrics print('RMSE :', np.sqrt(metrics.mean_squared_error(y_test, y_pred_m6)))

RMSE: 0.100010923368