Student Website Threat Model

Owner: Teacher

Reviewer: Sohaib Saeed

Contributors:

Date Generated: Sept 15 2024

Executive Summary

High-Level System Description:

The system is a containerized website hosted on a cloud node, designed for a student portfolio. The website is built using HTML5 and CSS and is managed using Docker with Nginx as the web server. The student rents the server and develops the website locally, connecting to the cloud server via SSH.

Summary

Description	Count
Total Threats	10
Total Mitigated	5
Not Mitigated	5
Open / High Priority	2
Open / Medium Priority	3
Open / Low Priority	5
Open / Unknown Priority	0

Identified Threats

- 1. Spoofing (S) Web Server:
 - ➤ **Description:** An attacker could create a fake server to intercept HTTP/HTTPS requests.
 - ➤ **Mitigation:** Enforce HTTPS with SSL/TLS certificates to authenticate the server and encrypt communications.
- 2. Tampering (T) Configuration Files:
 - **Description:** Unauthorized users could alter the website configuration files.
 - ➤ **Mitigation:** Implement access controls and file integrity monitoring.
- 3. Repudiation (R) User Actions:
 - ➤ **Description:** Users might deny deploying Docker images or modifying configurations.
 - ➤ **Mitigation:** Enable detailed logging and auditing of user actions.
- 4. Information Disclosure (I) Sensitive Data in Logs:
 - ➤ **Description:** Sensitive information such as SSH credentials might be exposed if logs are not secured.
 - ➤ **Mitigation:** Encrypt sensitive data and restrict access to logs.
- 5. Denial of Service (D) Web Server Overload:

- ➤ **Description:** An attacker could overwhelm the web server, leading to service disruptions.
- ➤ **Mitigation:** Implement rate limiting and use load balancers to distribute traffic.

6. Elevation of Privilege (E) - Root Access via SSH:

- **Description:** Exploiting SSH vulnerabilities could grant an attacker root access.
- ➤ **Mitigation:** Regular software updates and least privilege principles.

7. Tampering (T) - Docker Image from Student PC:

- ➤ **Description:** Malicious code could be introduced into the Docker image during development.
- ➤ **Mitigation:** Use security scanning tools and enforce code reviews.

8. Spoofing (S) - SSH Credential Theft:

- ➤ **Description:** An attacker could impersonate the student user by stealing SSH credentials.
- ➤ Mitigation: Multi-factor authentication (MFA) and secure SSH key management.

9. Information Disclosure (I) - Falco Logs:

- ➤ **Description:** Unauthorized access to Falco logs could reveal sensitive information.
- ➤ **Mitigation:** Encrypt logs and restrict access to authorized personnel.

10. Repudiation (R) - Denying Faulty Docker Deployment:

- ➤ **Description:** A student might deny deploying a faulty Docker image that caused a service disruption.
- **Mitigation:** Detailed logging and secure audit trails for deployment actions.

System STRIDE

Componen	Type	Numb	Title	Priori	Stat	Sco	Descriptio	Mitigation
t		er		ty	us	re	n	S
Browser	Spoofing	1	Spoofing	High	Ope	8	An attacker	Use
(Actor)	(S)		Browser		n		could send	HTTPS,
			Requests				spoofed	CSRF
							requests to	tokens, and
							the server	strong

							pretending to be the browser.	server-side validation.
Web Server (Process)	Tamperi ng (T)	2	Tampering with Web Server Config	High	Ope n	7	Unauthoriz ed user modificatio n of web server configurati ons.	Enforce access controls and use file integrity monitoring .
Website Config (Store)	Info Disclosu re (I)	3	Informatio n Disclosure in Config	Mediu m	Ope n	6	Sensitive data could be exposed in configurati on files.	Encrypt sensitive data and restrict access.
Read Configurat ion (Data Flow)	Elevatio n of Privilege (E)	4	Unauthori zed Access to Config	Mediu m	Ope n	5	Unauthoriz ed access during the read process.	Encrypt data, enforce access control policies.
HTTP/HT TPS Response (Data Flow)	Tamperi ng (T)	5	Response Manipulat ion	High	Ope n	8	An attacker might intercept and modify server responses.	Use HTTPS, implement CSP, validate data integrity on the client side.
Use (Data Flow)	Tamperi ng (T)	6	Misuse of Docker Image	Mediu m	Ope n	7	An attacker could tamper with the Docker image during its use.	Implement image signing and verification .

Utilize Config (Data Flow)	Tamperi ng (T)	7	Configurat ion Data Misuse	Mediu m	Ope n	6	Misuse of configurati on data.	Use version control, restrict access based on roles.
SFTP (Data Flow)	Info Disclosu re (I)	8	Data Interceptio n during SFTP Transfer	High	Ope n	7	Interception of sensitive data during transfer.	Use encryption for SFTP transfers, enforce strong authenticat ion.
Docker Image (Store)	Tamperi ng (T)	9	Deployme nt of Malicious Docker Image	High	Ope n	9	A malicious Docker image could be deployed.	Implement image scanning, enforce code reviews.
Containers Logs (Store)	Repudiat ion (R)	10	Log Tampering	Low	Ope n	5	An attacker could tamper with container logs to hide activities.	Use immutable logs, secure backups.
Falco (Process)	Denial of Service (D)	11	Overloadi ng Falco Monitorin g	Mediu m	Ope n	6	Excessive logging could overwhelm Falco, missing critical events.	Implement rate limiting, prioritize critical alerts.

Compone nt	Type	Numbe r	Title	Priorit y	Statu s	Scor e	Descriptio n	Mitigatio ns
Dockerfil e (Store)	N/A	12	-	N/A	N/A	N/A	Dockerfile used to build Docker images.	N/A
SSH Credentia ls (Store)	Info Disclosu re (I)	13	SSH Credenti al Theft	High	Open	8	Theft of SSH credentials leading to unauthorize d access.	Use MFA, secure SSH keys with passphrase s.
Credentia ls (Store)	N/A	14	-	N/A	N/A	N/A	Credentials stored securely for access control.	N/A
Student User (Actor)	N/A	15	-	N/A	N/A	N/A	Actor responsible for local developme nt.	N/A
Root (Actor)	N/A	16	-	N/A	N/A	N/A	Root user with elevated privileges.	N/A
User (Actor)	N/A	17	-	N/A	N/A	N/A	Regular user with standard privileges.	N/A