Checklist

- Important: Read Each Question Carefully dont rush into doing things you are not asked to do
- Picking Pivot Column (most negative value in indicator row a.k.a. the top row)
- Picking Pivot Row
 - Divide the "Barrier" column by pivot column for each corresponding entry
 - (focus on positive values entries only.)
 - * Choose the smallest positive result
- Picking Pivot Point (Intersection of Pivot Row and Pivot Column)

Checklist - Continued

- Performing Elementary Row Operations
 - * Turn Pivot Point into a value of 1
 - * Make other values in Pivot Column 0
- ▶ Important: Recognize when iteration process is complete
- ▶ **Important:** Recognize when iteration process isn't complete particularly important when new constraints are added .

Checklist - Continued

- Recognize when optimal feasible solution has been found
- Recognize infeasibility
- State the solution of Tableau(i.e. for LP relaxation)
- ▶ (Recognize which variables necessarily have a value of zero).
- LP Relaxation.
- Recognize that LP optimality does not equate to IP optimality.
- ► Adding bounds (based on LP optimal solution) . Be able to state what these new constraints are.

Addition of Constraints to Simplex Tableau

- Important: Construction of New Constraints further to branch and bound.
- ▶ This will involve adding new rows and columns to the tableau.
- ► Remark: Exam 2012 Q1 Part D is very useful to practice with in this regard.
- ▶ See slides for **exceedance constraints** (i.e. $x_i \ge k$)

Dual Simplex Method (In General : Tranpose/Reverse of Simplex Method)

- ▶ Pick most negative value from LHS column (i.e. the barrier column)
- We pick the associated row
- ▶ In the example below we'd pick the last row, the row for -3.

25	 	 	
15	 	 	
4	 	 	
-3	 	 	

Dual Simplex Method

► We are mainly interested in negative values on this row. Concentrate only on them.

25	 	 	
15	 	 	
4	 	 	
-3	 -5	 -2	

Dual Simplex Method

Compare this values to the values in the top row. Compute the ratios.

25	 10	 8	
15	 	 	
4	 	 	
-3	 -5	 -2	

- * Ratio: 10 /-5 = -2
- * Ratio: 8 /-2 = -4
- ▶ Dont Expect any positive values here.
- ► Choose highest value (i.e closest to 0)