COMP9101 Homework2 z5239391

Question3

Solution:

Assume the net as an array B with length m. And it's reverse array is B'.

Then we can compute the convolution C = A * B' in time O(nlogn):

First, compute $P_A(x) = A_k + A_{k+1}x + \dots + A_{k+n-1}x^{k+n-1}$ and $P_{B'}(x) = B_0 + B'_1x + \dots + B'_{n-1}x^{n-1}$ in time O(n).

Then compute the DFT in time O(log n) and do multiplication in time O(n)

We can get
$$\{P_A(1)P_{B'}(1), P_A(w_{2n-1}), P_{B'}(w_{2n-1}), \dots, P_A(w_{2n-1}^{2n-1}), P_{B'}(w_{2n-1}^{2n-1})\}.$$

At last do IDFT we can get $C = \langle \sum_{i=0}^{j} A_{k+i} B'_{j-i} \rangle_{j=0}^{j=2n-2}$ in time $O(\log n)$.

After that, check the maximum in C. If \mathcal{C}_t is the maximum, the spot where you should place the left end of your net in order to catch the largest possible number of fish is:

$$\begin{cases} 0; & if \ t - n \le 0 \\ t - n; & if \ t - n > 0 \end{cases}$$

Proof:

$$C_t = A_{t-n}B'_n + A_{t-n+1}B'_{n-1} + \dots + A_tB'_0$$

If there is a hole, $B_i = 0$, then $A_{t-i}B'_i = 0$.

If there is a hole, $B_i = 1$, then $A_{t-i}B'_i = A_{t-i}$.

So, C_t means how may fishes the net can catch if we put it left end in A_{t-n} .