

Metodi AF e Mash

Strumenti Formali per la Bioinformatica - A.A. 2023/24

Alessandro Ricchetti Marco Cappiello

Overview

Limiti metodi basati su allineamento

3

Classificazione metodi

5

Mash (sketch, dist, screen)

2

Confronto tra metodi basati su allineamento e metodi AF

4

Benchmark

6

Esecuzione

Limiti metodi basati su allineamento

Complessità computazionale

Il calcolo di un allineamento accurato di sequenze multiple è un problema NP-hard. Dimensioni delle sequenze

Allineare due sequenze di DNA lunghe milioni di nucleotidi non è pratico.

02

Regioni non sequenziate

Alcune parti del genoma potrebbero non essere sequenziate specialmente se il coverage è basso. 04

Riordinamenti di sequenza

Gli algoritmi di allineamento presuppongono un ordine lineare dell'omologia conservato all'interno delle sequenze.

Alignment-based vs Alignment-free

- Questi metodi presuppongono che le regioni omologhe siano contigue (gap)
- Calcola tutti i possibili confronti a coppie di sequenze
- Richiede modelli di sostituzione/evoluzione
- Utilizza algoritmi di inferenza concomplessità di almeno O(n²); meno efficienti in termini di tempo

- Non presuppone la contiguità delle regioni omologhe
- Basato su occorrenze di sottosequenze
- Non è necessario l'utilizzo di modelli evolutivi
- Algoritmi di inferenza tipicamente O(n²) o meno

Classificazione metodi - 1/3

Classificazione metodi - 2/3

Classificazione metodi - 3/3

Benchmark - 1/3

Protein classification					
High sequence Low sequence					
AKFS	0.798	AKFS	0.742		
alfpy	0.778	alfpy	0.739		
Izw-ncd	0.760	EP-sim	0.705		

Gene Trees			
jD2Star	0.3296		
AFKS	0.3414		
alfpy	0.3426		

Regulatory Sequences				
alfpy 0.736				
rtd-phylogeny	0.614			
cafè	0.601			

Benchmark - 2/3

Genome-based phylogeny						
	Assembled					
Mitochondria E.o		coli	Plants			
mash	0.05	0.05 phylonium		mash	0.09	
FSWM	0.05	andi	0.08	co-phylog	0.09	
spaced	0.05	co-phylog	0.12	Multi-SpaM	0.09	
	Unassembled					
E.coli				Plants		
andi	0.21		mash	0.	.14	
co-phylog	0.21		Skmer	0.	25	
mash	mash 0.27		co-phylog	0.	.27	

Benchmark - 3/3

Horizontal Gene Transfer						
Simulated	Simulated genomes E.coli/Shigella Yersinia					
mash	0.05	andi	0.08	Skmer	0.00	
AFKS	0.05	mash	0.12	AFKS	0.00	
cafe	0.05	FSWM	0.17	alfpy	0.00	

genoma di dimensioni n.

Mash dist

File FASTA #1

File FASTA #2

$$D = -\frac{1}{k} \ln \frac{2j}{1+j}$$

output

- Reference-ID
- Query-ID
- Mash distance
 - P-value

Mash screen - 1/2

Dataset msh

Dataset #2

Mash screen

 $M_c(a,b)=i_{a,b}pprox c_k(a,b)^{rac{1}{k}}$

output

- Identity
- Shared-hashes
- median-multiplicity
 - P-value
 - Query-ID
- Query-comment

Mash screen - 2/2

- (A) sequenza di riferimento
- (B) hash più piccoli
- (C) hash degli sketch usati come chiavi per una map contenente conteggio per ciascun hash
- (D) hashing dei k-mer
- (E) conteggi della mappa vengono interrogati per ogni sketch
- (F) stima del contenimento per ogni costituente

Esecuzione - 1/3

Si confrontano due genomi di Escherichia coli con mash dist:

- > gi|49175990|ref |NC000913.2|Escherichiacolistr.K-12substr.M G1655
 - > gi|47118301|dbj|BA000007.2|EscherichiacoliO157:H7str.SakaiDNA

./mash dist genome1.fna genome2.fna

Reference-ID	Query-ID	Mash distance	P-value	Hash corrispondenti
genome1.fna	genome2.fna	0.0222766	0	456/1000

Esecuzione - 2/3

Si utilizza un altro genoma di E.coli: > gi|682117612|gb|CP009273.1|EscherichiacoliBW25113 Si effettua prima lo sketch dei due genomi in modo tale da creare uno sketch combinato:

./mash sketch -o reference genome1.fna genome2.fna

Poi si stima la distanza da ciascuna query con il terzo genoma:

./mash dist reference.msh genome3.fna

Reference-ID	Query-ID	Mash distance	P-value	Hash corrispondenti
genome1.fna	genome3.fna	0	0	1000/1000
genome2.fna	genome3.fna	0.0222766	0	456/1000

Esecuzione - 3/3

Si può analizzare il dataset scelto andando a rimuovere la ridondanza con -w con i genomi RefSeq:

./mash screen -w -p 12 refseq.genomes.k21s1000.msh ERR024951.fastq

identity	shared-hashes	median-multiplicity	P-value	query-ID
0.99957	991/1000	24	0	GCF 002054545.1 ASM205454v1 genomic.fna.gz
0.99899	979/1000	26	0	GCF 000841985.1 ViralProj14228 genomic.fna.gz
0.998844	976/1000	101	0	GCF 900086185.1 12082 4 85 genomic.fna.gz
0.923964	190/1000	49	0	GCF 000900935.1 ViralProj181984 genomic.fna.gz
0.900615	111/1000	100	0	GCF 001876675.1 ASM187667v1 genomic.fna.gz
0.887722	82/1000	31	3.16322e-233	GCF 001470135.1 ViralProj306294 genomic.fna.gz
0.873204	58/1000	22	1.8212e-156	GCF 000913735.1 ViralProj227000 genomic.fna.gz
0.868675	52/1000	57	6.26251e-138	GCF 001744215.1 ViralProj344312 genomic.fna.gz
0.862715	45/1000	1	1.05185e-116	GCF 001882095.1 ViralProj353688 genomic.fna.gz
0.856856	39/1000	21	6.70643e-99	GCF 000841165.1 ViralProj14230 genomic.fna.gz

