Matching function

労働経済学 2

川田恵介

Table of contents

1	雇用の"生産"関数	2
1.1	マッチング関数	2
1.2	マッチング関数への仮定	2
1.3	マッチング関数への仮定	3
2	推定	3
2.1	コブダグラス型の定式化	3
2.2	コブダグラス型の定式化	3
2.3	推定の前提	3
2.4	例: 時系列	4
2.5	例: 時系列	4
2.6	例: 時系列	5
2.7	推定方法: 時系列	5
2.8	例: 時系列	6
2.9	予測值	6
2.10	例: 実際と予測	7
2.11	構造変化	7
2.12	例: 時系列 (構造変化)	7
2.13	例: 実際と予測	8
2.14	推定方法: パネル	8
2.15	例: パネルデータ	9
2.16	例: 都道府県データ	9
2.17	例: パネル	9
2.18	例: 実際と予測	11
2.19	例: 構造変化	12
2.20	まレめ	19

3	Beveridge Curve への含意	12
3.1	Beveridge Curve in Steady-state	12
3.2	含意	13
3.3	例: ハローワーク	13
3.4	例: ハローワーク	14
3.5	まとめ	14
4	Mismatch Unemployment	14
4.1	Mismatch Unemployment	14
4.2	大枠	15
4.3	Jackman and Roper (1987)	15
4.4	"最適な"求職者分配	15
4.5	"最適な"求職者分配	15
4.6	Şahin et al. (2014)	15
4.7	"最適な"求職者分配	16
4.8	最適求職者	16
4.9	実例	16
4.10	例	17
4.11	例	17
4.12	まとめ	18
Refer	rene	18

1 雇用の"生産"関数

- サーチ理論、Beveridge Curve、ミスマッチの推定等の議論において中核的な役割を果たす
- •「ミスマッチによる失業者」を測定するツールとしても使える (Şahin et al. 2014)

1.1 マッチング関数

- ある"市場"における新規雇用 h は、求人 v と 求職 u の関数 m(v,u) として決まる
 - Matching function
- 求人の充足確率 q=m/v
- 求職の入職確率 p=m/u

1.2 マッチング関数への仮定

以下を仮定: m は

- -u,v の増加関数: 探している人が増えれば、マッチングも増える
- 一次同時関数: u,v が 2 倍になれば、新規雇用も 2 倍になる
 - * 議論が残る

1.3 マッチング関数への仮定

- 充足確率はvについての減少関数
- 入職確率は u についての減少関数
 - ライバルが多いとマッチングしにくい

2 推定

2.1 コブダグラス型の定式化

• 実証上、以下の定式化がよく用いられる

$$h = m(v, u) = Av^{\gamma}u^{1-\gamma}$$

- *A* = マッチングの"効率性"
- $-\gamma = 弾性値$
- Shimer (2007): (一応の) 理論的根拠づけ

2.2 コブダグラス型の定式化

- 入職確率 $p = m/u = A\theta^{\gamma}$
- 充足確率 $q = m/v = A\theta^{-(1-\gamma)}$
 - 求人倍率 $\theta = v/u$ の関数
- 入職確率の定義式を対数変換すると

$$\log(p) = \log(A) + \gamma \times \log(\theta)$$

2.3 推定の前提

- 求人倍率が変動していないと推定不可能
- 活用できる変動

Vacancy	Seeker	Hir	Period
3843168	5058225	332898	2013 Q1
3790566	5322947	358880	2013 Q2
4000440	4838003	327120	2013 Q3
4157529	4472553	310951	2013 Q4
4291160	4472745	327732	2014 Q1
4150360	4698270	344026	2014 Q2

- 時系列: 時点に応じて求人倍率は異なる
- クロスセクション: 細分化された労働市場 (地域、職種) によって、求人倍率は異なる
- パネル: 時点 + 労働市場
- 職業安定業務統計から、都道府県や職業別パネルは作れる

2.4 例: 時系列

2.5 例: 時系列

```
Fig = Data_Time |>
 mutate(
   COVID = if_else(year(Period) >= 2020, "After", "Before"),
   Q = quarter(Period) |> factor(),
   Period = Period |> as.numeric()
  ) |>
  ggplot(
   aes(
    x = Vacancy/Seeker,
     y = Hir/Seeker
  ) +
  geom_point() +
  ggrepel::geom_text_repel(
   aes(
     label = Q
   )
  ) +
  theme_minimal() +
  geom_path(
 aes(
```

```
color = Period
)
) +
scale_color_gradient2(
  midpoint=2020,
  low="blue",
  mid="white",
  high="red") +
theme_dark()
```

2.6 例: 時系列

2.7 推定方法: 時系列

• 最も初歩的な推定方法は、以下を回帰

$$\underbrace{\log(p_t)}_{=Y} = \underbrace{\log(A)}_{=\beta_0} + \underbrace{\gamma}_{=\beta_1} \times \underbrace{\log(\theta_t)}_{=X} + u_t$$

- u_t の解釈: モデルで捉えきれない部分を拾う
 - 効率性へのショック
 - 効率性変化以外のようによる入職率変化

2.8 例: 時系列

Call:

Coefficients:

2.9 予測値

•

予測入職確率
$$_{t}=\tilde{A} imes heta_{t}^{\tilde{\gamma}}$$

- $\tilde{X}=$ 推定された値
 - 予測が外れる理由 $=u_t$

2.10 例: 実際と予測

2.11 構造変化

- A が時系列上で大きく変化した場合、当てはまりが悪くなる
 - 背景知識より、2020年に変化した可能性を許容

 $\log(p_t) = \underbrace{\beta_0 + \beta_1 \mathbb{I}[Year \geq 2020]}_{\log(A_t)} + \gamma \log(\theta_t) + u_t$

• 注: データへの適合度は、必ず上がる

2.12 例: 時系列 (構造変化)

```
lm(log(Hir/Seeker) ~ log(Vacancy/Seeker)
    + if_else(year(Period) >= 2020,1,0)
    + factor(quarter(Period)),
    Data_Time)
```

Call:

Coefficients:

log(Vacancy/Seeker)	(Intercept)
0.04529	-2.60517
<pre>factor(quarter(Period))2</pre>	<pre>if_else(year(Period) >= 2020, 1, 0)</pre>
-0.03213	-0.43976
<pre>factor(quarter(Period))4</pre>	<pre>factor(quarter(Period))3</pre>
-0.07110	-0.08630

2.13 例: 実際と予測

2.14 推定方法: パネル

- 地域や職種などの"労働市場"を近似する単位について、求人/求職/新規雇用の時系列が観察できれば、 各市場ごとのマッチング効率性を推定できる
- 以下を固定効果推定すれば良い

$$\log(p_{it}) = \underbrace{f_i + f_t}_{\log(A_{it})} + \gamma \log(\theta_{it})$$

• $f_i = 労働市場固定効果 (各市場固有の効率性)、<math>f_t = 時点固定効果 (各時点の効率性)$

Vacancy	Seeker	Hir	Period	Pref	Year	$Log_Tightness$	Log_Job_Find
935946	1184824	54743	2013 Q1	南関東	2013	-0.2357917	-3.074700
611392	850722	52576	2013 Q1	近畿	2013	-0.3303471	-2.783826
924163	1270825	56259	2013 Q2	南関東	2013	-0.3185331	-3.117456
593919	916422	58156	2013 Q2	近畿	2013	-0.4337340	-2.757348
964428	1182834	53126	2013 Q3	南関東	2013	-0.2041334	-3.103002
612982	836302	54226	2013 Q3	近畿	2013	-0.3106542	-2.735829

2.15 例: パネルデータ

2.16 例: 都道府県データ

2.17 例: パネル

```
lm(log(Hir/Seeker) ~ log(Vacancy/Seeker) +
    Pref +
    factor(Period),
    Data)
```

Call:

lm(formula = log(Hir/Seeker) ~ log(Vacancy/Seeker) + Pref + factor(Period),

data = Data)

Coefficients:

(Intercept)	log(Vacancy/Seeker)	Pref 九州
-2.383357	0.710394	0.125170
Pref 北海道	Pref 北 関東	Pref 北陸
-0.154298	-0.018216	0.092258
Pref 南関東	Pref 四国	Pref 東北
-0.596397	0.112124	0.201108
Pref 東海	Pref 沖縄	Pref 近畿
-0.331138	0.065632	-0.235140
factor(Period)2013 Q2	factor(Period)2013 Q3	factor(Period)2013 Q4
0.078107	-0.038719	-0.095573
factor(Period)2014 Q1	factor(Period)2014 Q2	factor(Period)2014 Q3
-0.069805	-0.003409	-0.102449
factor(Period)2014 Q4	factor(Period)2015 Q1	factor(Period)2015 Q2
-0.171433	-0.120192	-0.056050
factor(Period)2015 Q3	factor(Period)2015 Q4	factor(Period)2016 Q1
-0.182827	-0.228264	-0.178268
factor(Period)2016 Q2	factor(Period)2016 Q3	factor(Period)2016 Q4
-0.140689	-0.261039	-0.312348
factor(Period)2017 Q1	factor(Period)2017 Q2	factor(Period)2017 Q3
-0.255864	-0.223089	-0.343217
factor(Period)2017 Q4	factor(Period)2018 Q1	factor(Period)2018 Q2
-0.386158	-0.354140	-0.301482
factor(Period)2018 Q3	factor(Period)2018 Q4	factor(Period)2019 Q1
-0.441119	-0.456782	-0.430342
factor(Period)2019 Q2	factor(Period)2019 Q3	factor(Period)2019 Q4
-0.393316	-0.491470	-0.528840
factor(Period)2020 Q1	factor(Period)2020 Q2	factor(Period)2020 Q3
-0.525717	-0.567485	-0.583651
factor(Period)2020 Q4	factor(Period)2021 Q1	factor(Period)2021 Q2
-0.615129	-0.548838	-0.543511
factor(Period)2021 Q3	factor(Period)2021 Q4	factor(Period)2022 Q1
-0.664726	-0.707628	-0.680302
factor(Period)2022 Q2	factor(Period)2022 Q3	factor(Period)2022 Q4
-0.661052	-0.771292	-0.803488
factor(Period)2023 Q1	factor(Period)2023 Q2	factor(Period)2023 Q3
-0.692302	-0.683554	-0.784528
factor(Period)2023 Q4	factor(Period)2024 Q1	factor(Period)2024 Q2

-0.783324 -0.734863 -0.722277 factor(Period)2024 Q3 -0.846889

2.18 例: 実際と予測

2.19 例: 構造変化

2.20 まとめ

- Kano and Ohta (2005): 日本への応用
- Petrongolo and Pissarides (2001): マッチング関数の推定についての古典的なサーベイ
 - 求人倍率の内生性への対処 (Borowczyk-Martins, Jolivet, and Postel-Vinay 2013)
 - Lange and Papageorgiou (2020) 関数系への制約を減らす

3 Beveridge Curve への含意

• Matching function + Flow condition によって、Beveridge Curve が導出できる

3.1 Beveridge Curve in Steady-state

• Flow condition

$$u_{t+1} = u_u - p_t u_t + \lambda_t (n_t - u_t)$$

• 定常状態では、 $x_t = x_{t+1} = x$

$$u = u - pu + \lambda (n - u)$$

$$u = \frac{\lambda}{p + \lambda}$$

3.2 含意

- 求人vが増えると、入職確率pが上がり、(定常状態における) 求職者が減少する
 - 右下がりの Beveridge curve が観察される
- 離職率 λ や マッチング効率性が変化すると、Beveridge curve が変化する
 - 求人 v が一定でも、 λ が上がれば求職者が増え、マッチング効率性が上がれば減少する。

3.3 例: ハローワーク

3.4 例: ハローワーク

3.5 まとめ

- Beveridge Curve そのもの変化は、フロー式とマッチング関数の変化で説明できる(はず)
 - AEA Recent Development Lecture (2025): Recent Developments in Macro Labor
 - * Lecture Slide
- 日本における変化は?

4 Mismatch Unemployment

- Şahin et al. (2014)
 - マッチング関数を Deep Structure と見なして、労働市場間のミスマッチによって生じている失業 を測定する

4.1 Mismatch Unemployment

- 地域や職種で細分化した労働市場を想定
- ある市場では過大な求人、別の市場では過大な求職が生じている

- 職業訓練など、労働者が市場間を移動しやすくするような政策によって
 - "総労働需要"が一定でも、失業者数を低下させられるかもしれない
 - 労働市場の機能が改善し、人手が不足しているサービスや産業への労働供給が増加

4.2 大枠

- ミスマッチがない状況の求職者数 = 以下の解
- 目的関数: 求職者数
- 操作: 各労働市場についての、求職者数の分配
- 操作に対して、反応しない構造: 求人数、総求職者数、マッチング関数

4.3 Jackman and Roper (1987)

- 全ての労働市場 j について、マッチング関数 $m_j = v_j^{1/2} u_j^{1/2}$ を仮定
 - 古典的な枠組みであり、かなり制約が強いが計算が簡単

4.4 "最適な" 求職者分配

• 新規就職件数を最大にする分配は

$$\max_{u_j} \sum m_j$$

- 制約は $\sum u_i = U$

4.5 "最適な" 求職者分配

• 一階条件は、

$$\frac{1}{2}\theta_j^{1/2} = \lambda$$

- 全ての市場で求人倍率が一定になるように分配する
- 求人が多い市場に多くの求職者を投入する
- 一次同時のマッチング関数であれば、"収穫低減"の法則が成り立つため

4.6 Şahin et al. (2014)

• マッチング関数をコブダグラス型に一般化し、データから推定

• 新規就職件数を最大にする分配は

$$\max_{u_j} \sum A_j v_j^{\gamma} u_j^{1-\gamma}$$

$$-$$
 制約は $\sum u_j = U$

4.7 "最適な" 求職者分配

• 一階条件は、

$$\gamma A_j \theta_j^{\gamma} = \lambda$$

- マッチング効率性 A_j に依存
 - 効率性の高い/求人の多い市場により多くの求職を投入する

4.8 最適求職者

$$A_j\theta_j^\gamma=A_i\theta_i^\gamma$$

$$A_j^{1/\gamma} v_j u_i = A_i^{1/\gamma} v_i u_j$$

$$u_i \sum_j A_j^{1/\gamma} v_j = A_i^{1/\gamma} v_i \times \underbrace{\psi}_{=\sum_i u_j}$$

$$u_i = \underbrace{\frac{A_i^{1/\gamma} v_i}{\sum_j A_j^{1/\gamma} v_j}}_{Weight} \times u$$

4.9 実例

- 都道府県パネルデータを用いて、都道府県間ミスマッチを測定する
- 1. 以下を推定することで、 γ と A_{jt} を推定する

$$\log(p_{it}) = \underbrace{f_i + f_t}_{\log(A_{it})} + \gamma \log(\theta_{it})$$

2. 実際の新規就職件数をシミュレートする

$$h_{it} = \hat{A}_{it} \times v_{it}^{\hat{\gamma}} \times u_{it}^{1-\hat{\gamma}}$$

4.10 例

4.11 例

4.12 まとめ

- Beveridgen Unemployment は異なる枠組みで最適なベンチマークを得られる
- 実務においても活用されている
 - 経済財政白書
- 日本語の紹介論文: 川田恵介 (2019)

Referene

- Borowczyk-Martins, Daniel, Grégory Jolivet, and Fabien Postel-Vinay. 2013. "Accounting for Endogeneity in Matching Function Estimation." *Review of Economic Dynamics* 16 (3): 440–51.
- Jackman, Richard, and Stephen Roper. 1987. "Structural Unemployment." Oxford Bulletin of Economics & Statistics 49 (1).
- Kano, Shigeki, and Makoto Ohta. 2005. "Estimating a Matching Function and Regional Matching Efficiencies: Japanese Panel Data for 1973–1999." *Japan and the World Economy* 17 (1): 25–41.
- Lange, Fabian, and Theodore Papageorgiou. 2020. "Beyond Cobb-Douglas: Flexibly Estimating Matching Functions with Unobserved Matching Efficiency." National Bureau of Economic Research.
- Petrongolo, Barbara, and Christopher A Pissarides. 2001. "Looking into the Black Box: A Survey of the Matching Function." *Journal of Economic Literature* 39 (2): 390–431.
- Şahin, Ayşegül, Joseph Song, Giorgio Topa, and Giovanni L Violante. 2014. "Mismatch Unemployment." American Economic Review 104 (11): 3529–64.
- Shimer, Robert. 2007. "Mismatch." American Economic Review 97 (4): 1074-1101.
- 川田恵介. 2019. "日本の労働市場におけるミスマッチの測定." **経済分析/内閣府経済社会総合研究所 編**, no. 199: 122-51.