Density Ratio Estimation in Variational Bayesian Machine Learning

Alexander Lam

Department of Mathematics and Statistics UNSW

Statistics Honours, 2018

Outline

- Background Information
 - Neural Networks
 - (Amortized) Variational Inference
 - Density Ratio Estimation
- Undertrained Estimator Experiment
- 3 Autoencoder Experiment

Neural Networks

Overall Structure

- Objective is to approximate a function f^* using mapping with parameters Θ : $\mathbf{f}_{\Theta}(\mathbf{x})$.
- Universal Approximation Theorem states a neural network can approximate (almost) any function if it is complex enough.
- Each node output is a transformed, weighted sum of previous node outputs.

Neural Networks

Training

- Weights trained such that (ideally convex) loss function is minimized e.g. Mean Squared Error: $\min_{\Theta} \frac{1}{2} || \mathbf{y} \mathbf{f}_{\Theta}(\mathbf{x}) ||_2^2$.
- Back-propagation finds partial derivatives of loss function with respect to weights.
- Gradient descent uses these partial derivatives to optimize network.

(Amortized) Variational Inference

Bayesian Inference

• Fundamental problem in Bayesian computation is to **estimate posterior densities** p(z|x):

$$p(z|x) \propto \underbrace{p(z)}_{\text{Prior Likelihood}} \underbrace{p(x|z)}_{\text{Likelihood}}.$$

- Typical MCMC methods are slow with large datasets or high dimensional data.
- Variational Inference is a solution.

(Amortized) Variational Inference

Introduction

- Amortized variational inference approximates p(z|x) with a different distribution $q_{\phi}(z|x)$.
- $q_{\phi}(z|x)$ is a **neural network** with parameters ϕ that takes in data x and random noise $\epsilon \sim \mathcal{N}(0, I_{n \times n})$ and outputs samples $z \sim q_{\phi}(z|x)$.

(Amortized) Variational Inference Network Training

 Train network by minimizing the (expected) reverse KL divergence between the two distributions:

$$\mathbb{E}_{q^*(x)}[\mathit{KL}(q(z|x)||p(z|x))] = \mathbb{E}_{q^*(x)q(z|x)}\left[\log\left(\frac{q(z|x)}{p(z|x)}\right)\right]$$

• This is the same as solving the following minimization problem:

$$\min_{\phi} \underbrace{-\mathbb{E}_{q_{\phi}(z|x)q^*(x)}[\log p(x|z)]}_{\text{Likelihood}} + \underbrace{\mathbb{E}_{q^*(x)}[\mathit{KL}(q_{\phi}(z|x)||p(z))]}_{\text{Log Density Ratio}}.$$

• We call this NELBO(q) as it is the **n**egative of **e**vidence **l**ower **bo**und.

(Amortized) Variational Inference

Problems with Implicit Distributions

Consider our log density ratio term

$$\mathit{KL}(q_{\phi}(z|x)||p(z)) = \mathbb{E}_{q_{\phi}(z|x)}\left[\frac{q_{\phi}(z|x)}{p(z)}\right].$$

- $q_{\phi}(z|x)$ is an **implicit** distribution.
- Use density ratio estimation to evaluate $\frac{q_\phi(z|x)}{p(z)}$ in $KL(q_\phi(z|x)||p(z))$.
- Density ratio estimation only requires **samples** from the distributions.

Density Ratio Estimation

Class Probability Estimation

We want to estimate $\frac{q(u)}{p(u)}$.

- Define discriminator network with parameters α that finds probability that a sample u came from q(u).
- ② Train discriminator with Bernoulli loss: $\min_{\alpha} -\mathbb{E}_{q(u)}[\log D_{\alpha}(u)] \mathbb{E}_{p(u)}[\log (1 D_{\alpha}(u))].$
- **3** Optimal discriminator is $D^*_{\alpha}(u) = \frac{q(u)}{q(u) + p(u)}$.

$$\frac{q(u)}{p(u)} = \frac{D_{\alpha}^*(u)}{1 - D_{\alpha}^*(u)}$$

Density Ratio Estimation

Divergence Minimisation

Theorem

If f is a convex function with derivative f' and convex conjugate f^* , and \mathcal{R} is a class of functions with codomains equal to the domain of f', then we have the lower bound for the f-divergence between distributions p(u) and q(u):

$$D_f[p(u)||q(u)] \geq \sup_{r \in \mathcal{R}} \{\mathbb{E}_{q(u)}[f'(r(u))] - \mathbb{E}_{p(u)}[f^*(f'(r(u)))]\},$$

with equality when r(u) = q(u)/p(u).

For the reverse KL divergence, $f(u) = u \log u$ so letting $r_{\alpha}(u) \simeq \frac{q(u)}{p(u)}$ we have:

$$\mathit{KL}[q(u)||p(u)] \geq \sup_{\alpha} \{\mathbb{E}_{q(u)}[1 + \log r_{\alpha}(u)] - \mathbb{E}_{p(u)}[r_{\alpha}(u)]\}$$

Density Ratio Estimation

Algorithm Generalisation

• Actually, upper bound f-divergence of $2JS(p(u)||q(u)) - \log 4$ and GAN Divergence

$$D(u) = \frac{r(u)}{r(u)+1}$$
 leads to class probability estimation loss function.

- Choose either reverse KL or GAN f-divergence bound and estimator parametrisation:
 - Class Probability Estimator $D_{lpha}(u) \simeq rac{q(u)}{q(u) + p(u)}$
 - Direct Ratio Estimator $r_{\alpha}(u) \simeq \frac{q(u)}{p(u)}$
 - Direct Log Ratio Estimator $T_{\alpha}(u) \simeq \log \frac{q(u)}{p(u)}$.

Recap

To train a variational posterior network:

- 1 Train estimator network until convergence.
- Use estimator network to calculate intractable term in NELBO.
- Take one optimisation step of posterior network.
- Repeat until posterior convergence.

Experiment Outline

$$\begin{aligned} p(z_1,z_2) &\sim \mathcal{N}(0,\sigma^2 I_{2\times 2}) \\ p(x|\boldsymbol{z}) &\sim \textit{Exp}(3+\max(0,z_1)^3+\max(0,z_2)^3) \end{aligned}$$

- Posterior is flexible and bimodal.
- Use Gaussian KDE to find 'true' KL divergence for $q_{\phi}(z|x=0,5,8,12,50)$.

Experiment Outline

- In a previous experiment we found that all three estimator parametrisations lead to similar results when optimised effectively.
- What if they are poorly optimised?
- Training parameters:
 - High posterior training rate.
 - Low estimator training rate.
 - Low estimator to posterior iteration ratio (11:1).

Results

Algorithm	Mean KL Divergence	Standard Deviation
Reverse KL - $D_{\alpha}(z,x)$	1.3786	0.0286
Reverse KL - $r_{\alpha}(z,x)$	1.3934	0.0410
Reverse KL - $T_{\alpha}(z,x)$	1.4133	0.0597
GAN - $D_{\alpha}(z,x)$	1.4017	0.0286
$GAN - r_{\alpha}(z,x)$	1.4086	0.0555
GAN - $T_{\alpha}(z,x)$	1.4214	0.0518

True

Reverse KL

GAN

- Reverse KL divergence better than GAN divergence.
- $D_{\alpha}(z,x) < r_{\alpha}(z,x) < T_{\alpha}(z,x)$

- Unclear why direct ratio estimator has unusual NELBO plot: posterior convergence was not affected.
- Reverse KL Divergence has initial instability.

Autoencoder Experiment

Autoencoders

- Likelihood $p_{\theta}(x|z)$ is now a neural network.
- Posterior $q_{\phi}(z|x)$ represents data x as lower dimensional latent z.
- Likelihood $p_{\theta}(x|z)$ reconstructs data \tilde{x} from z.
- Generate new data \tilde{x} using z from p(z).

$$\min_{\theta,\phi} \underbrace{-\mathbb{E}_{q_{\phi}(z|x)q^*(x)}[\log p_{\theta}(x|z)]}_{\text{Likelihood}} + \underbrace{\mathbb{E}_{q^*(x)}[\textit{KL}(q_{\phi}(z|x)||p(z))]}_{\text{Density Ratio}}$$

Autoencoder Experiment

Experiment Outline

- ullet MNIST dataset 28 imes 28 grey-scale images of handwritten digits
- Again use undertrained estimator.
- Use reconstruction error $||x \tilde{x}||^2$ as metric.
- Perform experiment with low dimensional latent space (2 dimensions) and high dimensional latent space (20 dimensions).

Generation Experiment

Results - high dimensional latent space

Algorithm	Mean Reconstruction Error	Standard Deviation
Reverse KL - $D_{\alpha}(z,x)$	0.0647	0.0019
GAN - $D_{\alpha}(z,x)$	0.0444	0.0017

Reverse KL

GAN

- Direct ratio and direct log ratio estimators attempted to store numbers exceeding float64(max).
- Exponential of $T_{\alpha}(z,x)$ taken in loss function.
- $D_{\alpha}(z,x)$ ranges in (0,1).

Autoencoder Experiment

Results - high dimensional latent space

(a) Reconstruction Error

- (b) NELBO
- As before, GAN divergence is more stable.
- Recall reverse KL divergence is initially unstable but stabilizes later.
- In this case it fails to stabilise by the end of the program runtime.

Summary

- The class probability estimator $D_{\alpha}(u) \simeq \frac{q(u)}{q(u)+p(u)}$ is the 'best' parametrisation as it can store the highest density ratios.
- Reverse KL divergence upper bound may be unstable but leads to faster convergence when stable.
- Outlook
 - Still unclear exactly why reverse KL divergence is more unstable but more accurate when stable.
 - Several more *f*-divergences exist which have unknown stability when undertrained.