2. An input matrix X and a labFind1. The intermediate values in	LayerInput dimOutput dimOtherInput6x66x6Class 0 or 12D convolve6x64x4Kernel: 3x3 with stride 1 and no padding. Activation: ReLUMax pool4x42x2Kernel: 2x2 with stride 2 and no padding.Flatten2x24x1FCNN4x11Activation: Sigmoid
2. Post-activation for a forward3. Loss for a forward pass	d pass
	as plt ataclass
<pre>from itertools import pro class Matrix2D(): definit(self, ar</pre>	<pre>ray: np.ndarray): shape) == 2, "Input array must be 2D!" rray = array array.shape[0] array.shape[1] key):</pre>
<pre>defsetitem(self,</pre>	<pre>key, val): val ndim, sigma = 1):</pre>
<pre>return Matrix2D(n @staticmethod def square(ndim_matri matrix = Matrix2D # Select top left top_left_row = np top_left_col = np matrix[top_left_r</pre>	<pre>m_matrix: int, intensity: float = 1.0) -> Matrix2D: p.random.uniform(-intensity, intensity, (ndim_matrix, ndim_matrix))) x: int, ndim_square: int) -> Matrix2D: .uniform_noise(ndim_matrix) corner to draw square from .random.randint(low=0, high = ndim_matrix - ndim_square) .random.randint(low=0, high = ndim_matrix - ndim_square) ow:top_left_row + ndim_square, top_left_col:top_left_col + ndim_square] = 5.0</pre>
<pre>See: https://stac """ fig, ax = plt.sub ax.matshow(self.d if self.nrow == 1 for col in ra</pre>	alization of the matrix values koverflow.com/questions/40887753/display-matrix-values-and-colormap plots() ata, cmap=plt.cm.Blues)
<pre>ax.text(0 else: for col, row ax.text(c ax.set_title(titl) def convolve2D(self, """Convolve the 2 See http://www.so</pre>	nge(self.nrow): , row, f"{self.data[row, 0]:.2f}", va='center', ha='center') in np.ndindex(self.data.shape): ol, row, f"{self.data[row, col]:.2f}", va='center', ha='center')
<pre>output_width: int output_height: in output_image = np for col, row in p output_image[self.data @ kernel. + bias</pre>	<pre>[row:row+kernel.ncol, col:col+kernel.nrow].flatten() \ data.flatten() \</pre>
"""Dimension redu See https://compu and https://datas for the intuition """ assert stride != output_width: int output_height: in	m: int = 1, stride: int = 1): ction using the max of a neighborhood defined by ndim tersciencewiki.org/index.php/Max-pooling_/_Pooling for the math cience.stackexchange.com/questions/11699/backprop-through-max-pooling-layers on why the indices of the maximum values for each pool is needed 0, "Stride cannot be zero!" = (self.nrow - ndim) // stride + 1 t = (self.ncol - ndim) // stride + 1 t = (self.ncol - ndim) // stride + 1
<pre>indices = [] for row, col in p rows = slice(cols = slice(pool = self.d output_image[index = np.ad indices.appen</pre>	<pre>roduct(range(output_height), range(output_width)): row * ndim, (row+1) * ndim) col * ndim, (col+1) * ndim) ata[rows, cols] row, col] = np.max(pool) d(np.unravel_index(np.argmax(pool), pool.shape), (row * col, col * row))</pre>
<pre>def flatten(self): return Matrix2D(s @dataclass class Network(): learning_rate: float kernel: Matrix2D = No conv_bias: float = 0. weights: np.ndarray = fcnn_bias: float = 0. backward: bool = Fals</pre>	ne 0 np.empty(0) 0
<pre>z1: Matrix2D = None a1: Matrix2D = None a2: Matrix2D = None a3: Matrix2D = None z4: float = None a4: float = None def fcnn_forward(self return self.weigh def relu(self, value)</pre>	ded for this solution and will be None until the first forward pass , x): ts @ x + self.fcnn_bias :
<pre>a = 0.01 if self.backward:</pre>	1 value) value): a solution to dying ReLUs"""
<pre>def sigmoid(self, val """Sigmoid activa act = np.exp(valu if self.backward: return act * return act def binary_cross_entr</pre>	tion""" e) / (1 + np.exp(value))
<pre>if self.backward: return (1 - y return - (y * np) def forward_pass(self """A full single self.backward = F self.z1 = X.convo</pre>) / (1 - p) - (y / p) .log10(p) + (1 - y) * np.log10(1 - p)) , X, y): forward pass, given an input image X and the class y it belongs to"""
<pre>self.a3 = self.a2 self.z4 = self.fc self.a4 = self.si return None if y def backward_pass(sel """A full single self.backward = T delta = self.bina</pre>	nn_forward(self.a3.data)[0, 0] gmoid(self.z4) is None else self.binary_cross_entropy(y, self.a4) f, X, y): forward pass, given an input image X and the class y it belongs to"""
<pre>delta = delta * s self.weights -= s delta_temp = np.z for max_indices,</pre>	elf.a3.data elf.learning_rate * delta.T # Update weights for the FCNN eros_like(self.a1.data) gradient in zip(self.maxpool_indices, delta): x_indices] = gradient (self.z1.data) * delta_temp delta.sum() onvolve2D(Matrix2D(delta)) and bias for convolution
<pre>self.kernel.data self.conv_bias -= def predict(self, X): """A full single self.forward_pass print(f"prob. for print(f"prob. for</pre>	-= self.learning_rate * grad_kernel.data self.learning_rate * grad_conv_bias forward pass, without needing the class y"""
<pre># Create Matrix2D for cla ndim = 6 X0 = Matrix2D.uniform_noi X1 = Matrix2D.square(ndim X0.draw("Class 0: Uniform X1.draw("Class 1: Uniform Class 0: Uniform Class 0: U 0 1 2</pre>	se(ndim) , 3) noise") noise with square") Uniform noise 3 4 5
1 - 0.89 -0.61 0.71 20.00 -0.97 0.37 3 - 0.66 0.80 -0.81 40.11 -0.84 -0.63	-0.39
Class 1: Uniform 0 1 2 0 - 0.41 -0.18 0.03	n noise with square 5 -0.64 0.47 0.76
20.36	5.00 0.77 0.64 5.00 0.26 -0.58
Forward pass - The cells below provide an annowal we start off by initializing the new start of the cells below provided and annowal and the cells below provided and annowal	annotated cotated view of the contents of the forward() function of the Network class etwork parameters. This includes: with i.i.d. ~ Uniform(-1, 1) elements
4. The FCNN bias, initialized at These are all learnable parametrical A class 1 example image is also with the second of the sec	ters in the network. o generated for use in the forward and backward pass example. om.uniform(low=-1, high=1, size=(3, 3))) form() uniform(low=-1, high=1, size=(1, 4))
<pre>nn = Network(learning_rat # Use class 1 as an examply y = 1 X = Matrix2D.square(ndim,</pre> Convolution	e=0.01, kernel=kernel, conv_bias=conv_bias, weights=fcnn_weights, fcnn_bias=fcnn_bias) le
z1.draw("Class 1 image co	bias=conv_bias, stride=1) nvolved with a 3x3 kernel, stride=1") ed with a 3x3 kernel, stride=1 7.97 -0.29
1 - 0.86 3.73 2 - 6.32 1.36 3 - 0.37 0.60	1.78 1.16
extra step to discuss and perfor a1 = Matrix2D(nn.relu(z1. a1.draw("a1 = ReLU(z1)")	
0 - 0.00 0.00 1 - 0.86 3.73 2 - 6.32 1.36	7.97 0.00 4.83 0.00 1.78 1.16
	lly-connected neural network between the augmented input matrix and the output. However, due to the sparsity introduced by the ReLU operation, and for scalability concerns, it is reasonable to decimate the augmented image to a lower dimension mematically, it is similar to convolution in that a sliding window (kernel) is applied to the image. However, instead of weighing the image elements with the kernel data, the maximum image value inside a given window is extracted to the output of the image in that visualizes this.
<pre>a2, maxpool_indices = a1. a2.draw("z2 = a1.maxpool(</pre>	
1- 6.32	1.78
The pre-activation value is calculated Since the purpose of the network	ghts, one for each cell of the maxpool output. In addition, a bias term is introduced to avoid being restricted to only being able to model functions where f(0) = 0 culated by the dot-product between the weights and the input vector, plus bias. The is to discriminate between two classes, a sigmoid activation is applied to the input. This ensures that the output of the network is in the range (0, 1), where values closer to 0 corresponds to the network modelling a given input as class 0, and value network for a given (known) input, the binary cross-entropy / log-loss function is used, since the output of the sigmoid function may be interpreted as a probability. Log-loss in the binary case is a sum of two parts, each corresponding the the parts.
misclassifying that class. Thus, a3: Matrix2D = a2.flatten #a3.draw("a3: a2.flatten(z4: float = nn.fcnn_forwa print(f"FCNN output, pre- a4 = nn.sigmoid(z4) print(f"FCNN output, post l = nn.binary_cross_entro print(f"cross-entropy / l	rd(a3.data)[0, 0] activation: {z4}") -activation: {a4}") py(y, a4)
	ion: 0.01271146819779307
the loss function, then we would NOTE: The notation in the math	is to compute the derivative (gradient) of the loss function with respect to the trainable parameters in the network. The intuition for this comes from the fact that, if we are able to tune the network parameters in such a way as to decrease numerical obtain network parameters that yield "better performance" (as modelled by the loss function). In equations match the naming of the intermediate values of the forward pass. Scroll back and forth if you lose track! It o ensure that the numerical derivatives of the k are used In equations are used that the numerical derivative of the loss function w.r.t the weights and the bias of the FCNN, which boils down to smart (or straight-forward) applications of the chain rule.
FCNN	$rac{\partial L}{\partial w} = rac{\partial L}{\partial z_4} rac{\partial z_4}{\partial w}$ $rac{\partial L}{\partial b} = rac{\partial L}{\partial z_4} rac{\partial z_4}{\partial b}$
FCNN	
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that $\frac{\partial L}{\partial a_4} \text{ is the derivative of the We get}$ NOTE: The "delta" defined in the	$\frac{\partial L}{\partial z_4} = \frac{\partial L}{\partial a_4} \frac{\partial a_4}{\partial z_4} = \frac{\partial L}{\partial a_4} \sigma'(z_4) := \delta$ he loss function w.r.t. the input, and that $\frac{\partial z_4}{\partial b} = 1$ $\frac{\partial L}{\partial w} = \delta \cdot a_3, \qquad \frac{\partial L}{\partial b} = \delta$ e code from this point on is the delta as defined here, but propagated through the layers of the network, starting at the end.
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where $\frac{\partial L}{\partial a_4}$ is the derivative of the We get NOTE: The "delta" defined in the delta_fcnn_bias = nn.bina delta_fcnn_weights = delt print(f" FCNN bias: {delt print(f"FCNN weights: {de FCNN bias: -0.9872885318 FCNN weights: [-3.6826022 Flattening and maxpool The flattening operation can be delta = Matrix2D(delta_fc	$\frac{\partial L}{\partial z_4} = \frac{\partial L}{\partial a_4} \frac{\partial a_4}{\partial z_4} = \frac{\partial L}{\partial a_4} \sigma'(z_4) := \delta$ The loss function w.r.t. the input, and that $\frac{\partial z_4}{\partial b} = 1$ $\frac{\partial L}{\partial w} = \delta \cdot a_3, \qquad \frac{\partial L}{\partial b} = \delta$ The code from this point on is the delta as defined here, but propagated through the layers of the network, starting at the end. The consequence of the input value of the input value. The consequence of the input value of th
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where $\frac{\partial L}{\partial a_4}$ is the derivative of the We get NOTE: The "delta" defined in the delta_fcnn_bias = nn.bina delta_fcnn_weights = delt print(f" FCNN bias: {delt print(f"FCNN weights: {de FCNN bias: -0.9872885318 FCNN weights: [-3.6826022 Flattening and maxpool The flattening operation can be delta = Matrix2D(delta_fc delta.draw("Pre-flattened)	$\frac{\partial L}{\partial z_4} = \frac{\partial L}{\partial a_4} \frac{\partial a_4}{\partial z_4} = \frac{\partial L}{\partial a_4} \sigma'(z_4) := \delta$ The loss function w.r.t. the input, and that $\frac{\partial a_1}{\partial b} = 1$ $\frac{\partial L}{\partial w} = \delta \cdot a_3, \frac{\partial L}{\partial b} = \delta$ and one code from this point on is the delta as defined here, but propagated through the layers of the network, starting at the end. Ty_cross_entropy(y, a4) * nn.sigmoid(z4) a_from_bias * a_3 data a_grom_bias * a_3 data a_grom
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where $\frac{\partial L}{\partial a_4}$ is the derivative of the We get NOTE: The "delta" defined in the delta_fcnn_bias = nn.bina delta_fcnn_weights = delt print(f" FCNN bias: {delt print(f"FCNN weights: {delt print(f"FCNN weights: $[-3.6826022]$ Flattening and maxpool The flattening operation can be delta = Matrix2D(delta_fcdelta.draw("Pre-flattened) Pre-flattened/post 0 03.68	$\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial u_1} \frac{\partial u_1}{\partial z_i} = \frac{\partial L}{\partial u_2} \sigma'(z_4) := \delta$ we loss function w.r.t. the input, and that $\frac{\partial u_2}{\partial u_3} = 1$ $\frac{\partial L}{\partial u} = \delta \cdot u_3; \qquad \frac{\partial L}{\partial u} = \delta$ a code from this point on is the delta as defined here, but propagated through the layers of the network, starting at the end. Fy_cross_entropy(y, s4) * nn.signoid(z4) a. Fron. List * s3. data a fron. hiss)* Ita_ron.weights.T[0]}** Ita_ron.weights.T[0]**) reversed without any calculations, as it is a simple reshape of the input vector to the FCNN. The output below shows the reshaped 2x2 derivative. In_weights.reshape(a2. data. shape) Frost_emappooled_gradient* From the property of the input vector to the FCNN. The output below shows the reshaped 2x2 derivative.
FCNN For the FCNN layer, we need to For the FCNN layer, we need to For the weights: and the bias Noting that where $\frac{\partial L}{\partial a_4}$ is the derivative of the We get NOTE: The "delta" defined in the delta_fcnn_bias = nn.binatelta_fcnn_weights = deltthe print(f" FCNN bias: {deltprint(f"FCNN weights: {deltprint(f"FCNN weights: $[-3.6826022]$)} FCNN bias: -0.9872885318 FCNN weights: $[-3.6826022]$ Flattening and maxpool The flattening operation can be delta = Matrix2D(delta_fcdelta_draw("Pre-flattened") Pre-flattened/post 0 -3.68 1 -6.24	and the constraint out. the input, and that $\frac{\partial L}{\partial x} = 1$ $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x}$ and the constraint out. the input, and that $\frac{\partial L}{\partial x} = 1$ $\frac{\partial L}{\partial x} = \delta \cdot \partial x, \frac{\partial L}{\partial x} = \delta$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and that $\frac{\partial L}{\partial x} = 1$ and the constraint out. The input and the constraint of the constraint out. The constraint of
FCNN For the FCNN layer, we need to For the Weights: and the bias Noting that Where \$\frac{\partial L}{\partial a_4}\$ is the derivative of the Weight of	### ACC AND THE PROPERTY OF TH
FCNN For the FCNN layer, we need to For the Weights: and the bias Noting that Where \$\frac{\partial L}{\partial \text{Qu}}\$ is the derivative of the Weight of the Weig	St. = \(\frac{\text{int}}{\text{int}} \) \(\frac{\text{int}} \) \(\frac{\text{int}}{\text{int}} \)
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where \$\frac{\partial L}{\partial a_{\partial	Size of Size o
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where \(\frac{\partial L}{\partial \partial L}\) is the derivative of the We get NOTE: The "delta" defined in the delta_fcnn_bias = nn.bina delta_fcnn_weights = delt print(f" FCNN bias: {delt print(f" FCNN weights: {delt print(f" FCNN weights: [-3.6826022 Flattening and maxpool The flattening operation can be delta = Matrix2D(delta_fc delta_draw("Pre-flattened/post 0 Pre-flattened/post 0 O3.68 Maxpool Calculating the gradients through borrowed from the published ex gradients do not affect the loss. delta_temp_max_indice delta_temp[max_indice delta_temp max_indice	Process Proc
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where \(\frac{\partial L}{\partial D_{\partial d_{\partia	All
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where \$\frac{\partial L}{\partial \text{Der}}\$ is the derivative of the We get NOTE: The "delta" defined in the delta_fcnn_bias = nn_binal delta_fcnn_bias = nn_binal delta_fcnn_weights = (delta_fcnn_weights = (delta_fcnn_weights = (delta_fcnn_weights = (delta_fcnn_weights = (3.6826022)) Flattening and maxpool The flattening operation can be delta = Matrix2D(delta_fcdelta_draw("Pre-flattened/post of the delta_famma_indicedelta_famm	The second state of the se
FCNN For the FCNN layer, we need to For the Weights: and the bias Noting that where \$\frac{\textit{\textit{\textit{\textit{MEL}}}}{\textit{\textit{\textit{Amu}}}}\$ is the derivative of the We get NOTE: The "delta" defined in the delta_form_bias = nn. bina delta_form_weights = delt print(f" FCNN bias: {delt print(f" FCNN bias: {delt print(f" FCNN bias: {delt print(f" FCNN weights: {rd. seg2ee22} Flattening and maxpool} The flattening operation can be delta = Matrix2D(delta_form v"Pre-flattened/post 0 Pre-flattened/post 0 - 3.68 1 - 6.24 Maxpool Calculating the gradients through borrowed from the published ex gradients do not apfect the loss. It is a segment of the delta_temp ("Post-convolve/pr 0 1 1	AND THE PROPERTY OF THE PROPER
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that Where \$\frac{\partial L}{\partial \text{sit}}\$ is the derivative of the We get NOTE: The "delta" defined in the delta_fcnn_bias = nn. bina delta_fcnn_weights = {delta_fcnn_weights} = {delta_fcnn_meights} = {delta_fcn	
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where \$\frac{\textit{\textit{M}}}{\textit{\textit{M}}}\$ is the derivative of the delta form bias = nn. bina delta form bias = nn. bina delta form bias: (delt print(f" FCNN bias: (delta fCnd delta draw("Pre-flattened delta draw("Pre-flattened delta draw("Pre-flattened delta draw("Pre-flattened delta delta draw("Pre-flattened delta d	
FCNN For the FCNN layer, we need to For the weights: and the bias Noting that where \$\frac{AL}{AN}\$, is the derivative of the Weights and the bias Noting that where \$\frac{AL}{AN}\$, is the derivative of the Weights and the side of th	
FCNN I layer, we need to For the Kenshiss: And the bias Noting that where Object is the derivative of the We get We get NOTE: The "delta" defined in the delta_fonn_bias = nn.bina delta_fonn_bias = nn.bina delta_fonn_bias = idelt print(f"FCNN weights: (delt print(f"FCNN weights: (delt print(f"FCNN weights: (e.g. of Maze)) FCNN with the sights: (e.g. of Maze) FCNN the print(f"FCNN weights: (e.g. of Maze) Gelta_draw("Pre-flattened/post of Maze) Gelta_draw("Pre	
FCNN For the FCNN layer, we need to For the weights: and the blas Noting that Where (6.) Noting that	