2020年11月版 Ethereum 2.0 概要

Daniel Tehrani - Blockchain engineer@ICOVO

流れ

- 自己紹介
- Ehtereumとは?
- Ethereum2.0とは?
- Ethereum2.0、変更点・導入される技術
 - Proof of stake
 - Sharding
- Beacon Chain
- Phases
- Ethereum2.0 tech deep dive
- 株式会社ICOVOによるEthereum2.0の取り組み

自己紹介

Daniel Tehrani(ダニエル・テヘラニ)

元舞鶴高専生。高専を1年半で中退し、株式会社Gene.A.Idolsでチーフ・エンジニア。スマート・コントラクト(ERC721)の開発等。2020年7月にフリーランスに。ICOVOメンバー(Ethereum2.0ノード関連のリサーチなど)。日本育ち。

What is Ethereum?

- パブリックブロックチェーン
- 分散型アプリケーション (DApps) やスマート・コントラ クトを構築するためのプラットフォーム

What is Ethereum2.0?

- Ethereumの大型アップグレード
- Ethereumが抱えている問題(スケーラビリティ、環境負荷、etc)を解決するために新しい技術を導入

Why?

以下の問題を解決するため・耐性を強化するため

- スケーラビリティ
- セキュリティ
- サステナビリティ

Ethereum2.0、変更点・導入される技術

- Proof of work(マイニング) → Proof of stake
- Sharding

Proof of stake

Proof of work から Proof of stake へ

Proof of work

- マイニングの能力を基にコンセンサスを得る
- 悪意のある行動をしたら消費した電力が無駄に → 正しい行動をするインセンティブ

Proof of stake

- コインの保有量を基にコンセンサスを得る
- 悪意のある行動をしたらコインを失う → 正しい行動をするインセンティブ

Proof of stake: Stakingとは?

- 最小32ETHを預ける
- チェーンのバリデートをし、報酬を得る(約1%~25%)
- プロトコル通りの行動をしなければ、ステークを没収される

Staking エコノミクス

- ステークされているETHが少なければ少ないほど、バリデータあたりのリターンは大きくなる
- ステークされているETHが多ければ多いほど全体の発行量は増え、バリデータあたりのリターンは少なくなる

Total Network Stake	Validator Interest	Network Issuance
1,000,000	8.02%	0.08%
2,000,000	5.67%	0.11%
3,000,000	4.63%	0.13%
5,000,000	3.59%	0.17%
10,000,000	2.54%	0.24%

Eth2 Launch Pad

https://launchpad.ethereum.org/

Staking pool

- 技術面を抽象化
- 32ETH以下からステークできる
- 参入コストが低い

Sharding

Sharding

- Shardingとは? → チェーンを分割すること
- 処理能力向上

The Beacon Chain Ethereum 2.0 explainer you need to read first より

Beacon Chain

Proof of stakeシステムとShardingの統制

The Beacon Chain Ethereum 2.0 explainer you need to read first より

Beacon Chain Explorer

https://beaconscan.com/

Phases

Phase 0: Beacon Chainがスタート(2020年12月1日の予定)

Phase 1: Shardingの実装(2021年中の予定)

Phase 1.5: EthereumとEthereum2.0のドッキング(~21/22年)

Phase 2:未定(Shardingをさらにパワーアップ?)

ETH2 technical deep dive

Sharding

Ethereumの課題

全てのノードが全てのトランザクションを実行しなければならない

スケールさせるには

- 1. ノードの処理能力を上げるなど、垂直なスケーリング
- 2. 並行処理など、水平なスケーリング ← 中央集権化しない

Sharding

• Beacon chainにて、バリデータが64のサブセットに分けられ、各shardに割り当てられる \rightarrow セキュリティも分散してしまうのでは?

1% Attack

"

In 100 shards system, it takes only 1% of network hash rate to dominate the shard.

"

Credits Hsiao-Wei Wang

Sharding: RANDAO

- 擬似乱数を生成する
- 定期的にバリデータセットをシャッフルし、shardへの再割り当てを行う

Slots and Epochs

Slots

- 12秒毎にSlotにブロックが追加される
- Beacon chainとShard chains、両方に適用される概念

SlotとBlock高の違い

Epochs

- 32slotsで1epoch
- 1slot = 12秒
- 1epoch = 6.4分

The Ethereum 2.0 Beacon Chain Explained より

Validators

バリデータ

• バリデータは、ProposerかAttesterとして仕事をする

Proposer

- ブロック生成
- ランダム(擬似的)に選ばれる

Attester

- Proposerが生成したブロックに投票をする
- ランダム(擬似的)に選ばれる

Committees

- バリデータの集合
- 最小128のバリデータで1つの committeeが作られる
- epochの初めにslot毎にcommitteeが割り当てられる
- バリデータは、1epoch内で1つの committeeにしか属せない
- committee内のバリデータは、チェーンの先端であると"信じる" ブロックに投票する

Validators in the committees are supposed to attest to what they believe the head of the blockchain is

*Note there can be more than one committee per slot.

The Ethereum 2.0 Beacon Chain Explained より

4096のバリデータがいる場合

● 各epochの初めに、4096のバリデータが32のスロットに分けられる。スロットに割り当てられたバリデータで128バリデータのcommitteeが作れられる。

12288のバリデータがいる場合

- 各epochの初めに、12288のバリデータが32のスロットに分けられる。各スロット、128バリデータのcommitteeが3つ作れられる。
- slot3のcommittee Bはshard30を担当する、slot 12のcommittee Aはshard 5を 担当する。

投票(LMD GHOST)

- Attesterは、先端であるブロックに投票する
- slot2担当のAttesterはslot1のブロックを無効にしたい/ブロックの存在を知らない
 → 「slot 0が先端」という票を入れる
 - このチェーン先端の決め方を LMD GHOSTという

株式会社ICOVOによるEthereum2.0への取り組み

Ethereum2.0で安全に・簡単にStakingができる環境の提供

