Fundamental Concepts in Computational and Applied Mathematics

Juan Meza School of Natural Sciences University of California, Merced

Fall 2014

Short History of Monte Carlo

- Original Metropolis algorithm dates back to 1953 paper (J. Chem Phys) for integrals in \mathbb{R}^{2N} , where N denoted the number of particles in a problem of interest
- Hastings proposed a solution to the "curse of dimensionality" in 1970 paper[1].
- Gelfand and Smith [2] (1990) brought more attention to the subject
- Advent of more computational power, especially parallel processing makes MC methods more popular
- Combination of computing power and algorithms drives new interest in Bayesian statistics

Motivating applications

Example 1: Generate samples from a given probability distribution function (pdf), f(x)

$$X_1, X_2, \ldots, X_t$$

Example 2: Computation of certain integrals:

$$I = \int f(x) \, \mathrm{d}x$$

Example 3: Given $f: \mathbb{R}^n \to \mathbb{R}$

find $x_* \in \mathbb{R}^n$ such that $f(x_*) \leq f(x), \ \forall x \in \mathbb{R}^n$

Some important assumptions & facts

- ullet We will usually assume that we can compute the pdf f(x) only up to a multiplicative constant
- Don't always know the normalizing constant
- Sampling from a given distribution can be quite difficult, especially in the high-dimensional case
- We should pick more samples from regions where f(x) is "big", but how do we know that without knowing where f is "big"

Acceptance/Rejection Method

```
Given f(x) \leq Mg(x) repeat  | \text{ Generate } X \sim g \text{ and } u \sim U(0,1)  if u \leq f(X)/Mg(X) then  | Y = X  end
```

Algorithm 1: Acceptance-Rejection (AR)

Remark

until (done);

Algorithm (AR) produces a variable Y distributed according to f(x).

Integration Example

Suppose we want to compute the following integral (expectation):

$$E[f(X)] = \frac{\int f(x)\pi(x) dx}{\int \pi(x) dx},$$

and the distribution of X is in k-dimensional Euclidian space.

First we compute samples $(X_t, t = 1, ..., N)$ with the given distribution f(x) and then approximate

$$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} f(X_t).$$

Remark

Accuracy will depend on distribution, number of samples we generate, and dimension of the problem. The last is known as the "curse of dimensionality"

Metropolis-Hastings (1970)

Let

$$\alpha(X,Y) = \min\left(1, \frac{\pi(Y)q(X|Y)}{\pi(X)q(Y|X)}\right).$$

```
Initialize X_0; set t=0

while (not done) do

Generate Y \sim q(\cdot|X_t); u \sim U(0,1)

if u \leq \alpha(X_t,Y) then

\mid X_{t+1} = Y

else

\mid X_{t+1} = X_t

end

Increment t
```

Algorithm 2: Metropolis-Hastings (MH)

Terminology

end

 $q(\cdot|X)$ is called the proposal distribution.

Ising Model Part 1

Suppose we have a 2D array of spins $\sigma_i \in [-1,1]$ and an energy function defined for a configuration of a system

$$E(\sigma) = -\sum_{ij} \mathcal{J}_{ij}\sigma_i\sigma_j - B\sum_k \sigma_k$$

and we want to take the mean of some function $f(\sigma)$:

$$\mathcal{F} = \frac{1}{Z(T)} \sum_{\sigma} f(\sigma) \exp(-E(\sigma)/\kappa T),$$

where $Z(T) = \sum_{\sigma} \exp(-E(\sigma)/\kappa T)$ is the partition function

Ising Model Part 2

Ideally would like to select configurations from the distribution

$$g(\sigma) = \frac{\exp(-E(\sigma)/\kappa T)}{Z(T)},$$

and we could approximate the mean by:

$$F = \frac{\sum_{k} f(\sigma_k)}{M}$$

Remark

Original Metropolis algorithm observed that if only one spin is changed, sampling g is easy. Showed that if a move lowers the energy accept it. If it raises the energy accept it with probability p. Use AR algorithm to choose site for move.

Simulated Annealing Method

```
Initialize X_0; set t=0

while (not converged) do

Generate new state Y and u \sim U(0,1)

if E(Y) < E(X_t) then
| X_{t+1} = Y
else
| if \ u < e^{-[(E(Y) - E(X_n))/T]} \text{ then}
| X_{t+1} = Y
end
end
```

Algorithm 3: Simulated Annealing (AR)

Remark

Simulated Annealing always takes a point where function is lower. But it will also accept a higher function value with a certain probability depending on the "temperature" T.

Basic Markov Chain Facts

- A Markov Chain is a sequence of random variables
- Constructed from a transition kernel K, which is a conditional probability density s.t. $X_{n+1} \sim K(X_n, X_{n+1})$
- Has stability property in that a stationary probability distribution exists by construction, i.e. if $X_n \sim \pi$ then $X_{n+1} \sim \pi$
- Homogeneous is when transition probability is independent of state hence if the initial distribution or initial state is known, then the construction of MC is entirely dependent on transition

Basic Idea for Markov Chain Monte Carlo

- Use properties of Markov Chains to construct a transition kernel that has a stationary probability distribution that matches the one we want
- Assume stationarity, irreducibility, and aperiodic, we can prove Ergodic Theorem.
- Needs to also satisfy reversibility condition $\pi_i p(i \to j) = \pi_j p(j \to i)$

Practicalities

- Need to have a "burn-in" period
- How long do you run the Markov Chain
- Can use multiple chains to accelerate convergence

Summary

- Metropolis algorithm defines a Markov Chain whose limit is the desired probability distribution
- Many variations on the proposal distribution
- Growing number of applications

References I

W.K. Hastings,

Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, Vol. 57, No. 1., pp. 97-109, 1970

A.E. Gelfand and A.F.M. Smith,

Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, Vol. 85, No. 410. (Jun., 1990), pp. 398-409

I. Beichi, F. Sullivan

The Metropolis Algorithm, Computing in Science and Engineering, January/February 2000.