Université A/ Mira de Béjaia Faculté de Technologie Département de Technologie 1^{ère} année ST Youns

Septembre 2019

Examen de rattrapage Maths II

(Durée 2h)

Exercice 1. (6 points)

On considère la matrice suivante :

$$A = \begin{pmatrix} \alpha - 1 & 1 & 1 \\ 1 & 1 & 2\alpha \\ -1 & 2 & 1 \end{pmatrix}$$

où α est un paramètre réel.

- a. Calculer le déterminant de la matrice A.
- b. Pour quelles valeurs de α la matrice A est-elle inversible ?
- c. Si $\alpha = 0$, calculer l'inverse de A.

Exercice 2. (8 points)

I) Soit l'équation différentielle du premier ordre suivante :

$$y' = -y + x \dots (1)$$

- 1. Résoudre l'équation différentielle (1).
- 2. Déterminer la solution générale de (1) vérifiant y(0) = 0.

II) Résoudre l'équation différentielle du second ordre

$$y'' - y' - 6y = (10x + 1)e^{-2x}$$

Exercice 3. (6 points)

Soient f et g deux fonctions définies sur $\mathbb R$ par :

$$f(x) = \frac{x}{x^2 + 1}$$

$$g(x) = \frac{x^3}{x^2 + 1}$$

- a) Calculer $I_1 = \int_1^e f(x) dx$
- b) Soit $I_2 = \int_1^e g(x) dx$. Calculer $I_1 + I_2$ et déduire la valeur de I_2 .

Bon Courage

Université A/ Mira de Béjaia Faculté de Technologie Département de Technologie 1ère année ST Septembre 2019

Corrigé de l'examen de rattrapage de Maths II

Exercice 1. (6 points)

I. Considérons la matrice suivante :

$$A = \begin{pmatrix} \alpha - 1 & 1 & 1 \\ 1 & 1 & 2\alpha \\ -1 & 2 & 1 \end{pmatrix}$$

où α est un paramètre réel.

a. Calculons le déterminant de la matrice A.

$$det(A) = (\alpha - 1) \begin{vmatrix} 1 & 2\alpha \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2\alpha \\ -1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 \\ -1 & 2 \end{vmatrix} = -4\alpha^2 + 3\alpha + 1$$

b. Les valeurs de α pour que la matrice A soit inversible.

La matrice A est inversible si et seulement si son déterminant est différent de 0.

On a

A est inversible
$$\iff$$
 $det(A) \neq 0$.
 $\iff -4(\alpha - 1)(\alpha + \frac{1}{4} \neq 0$.
 $\iff \alpha \in \mathbb{R} \setminus \{1, \frac{-1}{4}\}$.

c. Si $\alpha = 0$, calculons l'inverse de A. on a pour $\alpha = 0$

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

et det(A) = 1

Alors

$$com A = \begin{pmatrix} 1 & -1 & 3 \\ 1 & 0 & 1 \\ -1 & 1 & -2 \end{pmatrix} \qquad donc \qquad {}^{t}(com A) = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

d'où

$$A^{-1} = \frac{1}{1} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

Exercice 2. (8 points)

I) Soit l'équation différentielle du premier ordre suivante :

$$y' = -y + x....(1)$$

- 1. Résoulution de l'équation différentielle (1). On a y' + y = x est une équation différentielle avec second membre.
 - a Résoulution de l'équation homogène associée à (1)

Si
$$y \neq 0$$

 $y' + y = 0 \Longrightarrow \frac{1}{y} dy = -dx$ En intégrant

$$\int \frac{1}{y} dy = -\int dx \Longrightarrow \ln|y| = -x + c, \qquad c \in \mathbb{R}$$

$$\Longrightarrow |y| = e^{-x + c}, \qquad c \in \mathbb{R}$$

$$\Longrightarrow |y| = e^c e^{-x}, \qquad c \in \mathbb{R}$$

$$\Longrightarrow y = k_1 e^{-x}, \qquad k_1 \in \mathbb{R}^*$$

y = 0 st une solution évidente de y'+y=0. Donc la solution générale de l'équation homogène est $y_0 = ke^{-x}$, $k \in \mathbb{R}$.

b Résoulution de l'équation non homogène.

On fait varier la constante k et la solution générale de (1) sera $y(x) = k(x)e^{-x}$.

$$y' = k'(x)e^{-x} - k(x)e^{-x}$$

En remplaçant y' dans (1) on obtient:

$$k'_*(x)e^{-x} - k(x)e^{-x} + k(x)e^{-x} = x \Longrightarrow k'(x)e^{-x} = x$$

$$\Longrightarrow k'(x) = xe^x$$

$$\Longrightarrow k(x) = \int xe^x dx$$

En utilisant une intégration par parties, calculer $\int xe^x dx$.

On pose
$$U'(x) = e^x \implies U$$

$$U'(x) = e^x \Rightarrow U(x) = e^{+x}$$

 $V(x) = x \Rightarrow V'(x) = 1$

$$\int xe^x dx = xe^x - \int e^x dx$$

$$= xe^x - e^x + c \qquad c \in \mathbb{R}$$

$$= e^x(x-1) + c \qquad c \in \mathbb{R}$$

Donc
$$k(x) = e^x(x-1) + c$$
 $c \in \mathbb{R}$

Donc
$$k(x) = e^x(x-1) + c$$
 $c \in \mathbb{R}$

$$y_p = -x - 1$$
 d'ou

$$y_G(x) = y_0 + y_p = ke^{-x} + x - 1$$
 $k \in \mathbb{R}$

2. Déterminer la solution générale de (1) vérifiant *****

$$y(0) = 0 \Longrightarrow ke^0 + 0 - 1 = 0$$
$$\Longrightarrow k = 1$$

$$y_G = e^{-x} + x - 1$$

II) Résoulution de l'équation différentielle du second ordre

$$y'' - y' - 6y = (10x + 1)e^{-2x}....(E)$$

* Résoudre l'équation homogène associée a (E). Résolution de l'équation homogène

$$y'' - y' - 6y == 0 (E_0) - O(1)$$

L'équation caractéristique associée à (E_0) .

$$r^2 - r - 6 = 0$$

admet deux racines réelles distinctes $r_1=-2$ et $r_2=3$. Ainsi, la solution générale de (E) est

$$y_0 = C_1 e^{-2x} + C_2 e^{3x},$$

où $C_1, C_2 \in \mathbb{R}$.

** Trouvons la solution particulière de (E).

on a
$$y_p = (ax^2 + bx)e^{-2x}$$

$$y'_p = (-2ax^2 - 2bx + 2ax + b)e^{-2x},$$
et
$$y''_p = (-4ax - 2b + 2a + 4ax^2 + 4bx - 4ax - 2b)e^{-2x},$$

$$= (4ax^2 - 8ax + 4bx - 4b + 2a)e^{-2x}$$
En remplaçant y'_p et y''_p dans (E) on obtient :
$$(-10ax - 4b + 2a - b)e^{-2x} = (10x + 1)e^{-2x}$$

qui donne
$$-10ax - 4b + 2a - b = 10x + 1$$

En identifiant, on trouve a=-1 et $b=-\frac{3}{5}$. D'où

$$y_p = (-x^2 - \frac{3}{5}x)e^{-2x}.$$

La solution génerale de (E).

On a
$$y_G = y_0 + y_p$$

C₁
$$e^{-2x} + C_2 e^{3x}$$
, où $C_1, C_2 \in \mathbb{R}$. $y_G = C_1 e^{-2x} + C_2 e^{3x} + (-x^2 - \frac{3}{5}x)e^{-2x}$, où $C_1, C_2 \in \mathbb{R}$.

.
$$y_G = (C_1 + -x^2 - \frac{3}{5}x)e^{-2x} + C_2e^{3x}$$
, où $C_1, C_2 \in \mathbb{R}$.

Exercice 3. (6 points)

Soient f et g deux fonctions définies sur \mathbb{R} par :

$$f(x) = \frac{x}{x^2 + 1}.$$

$$g(x) = \frac{x^3}{x^2 + 1}.$$

a) Calculons $I_1 = \int_1^c f(x) dx$ $\int_{1}^{c} f(x)dx = \int_{1}^{c} \frac{x}{x^{2} + 1} dx$ $= \frac{1}{2} \ln(x^{2} + 1)|_{1}^{c}$ $= \frac{1}{2} (\ln(e^{2} + 1) - \ln 2)$ $= \frac{1}{2} (\ln(\frac{e^{2} + 1}{2})$

en déduire la valeur de
$$I_2$$
.
On a
$$I_1 + I_2 = \frac{e^2 - 1}{2}$$

$$\operatorname{donc} I_2 = \frac{e^2 - 1}{2} - I_1$$

$$= \frac{e^2 - 1}{2} - \frac{1}{2} \ln \frac{e^2 + 1}{2}$$

$$= \frac{1}{2} (e^2 - 1 - \ln \frac{e^2 + 1}{2})$$