Flash Cacular el Número Guia

Calcular el Número Guía Correcto:

$$GN = \frac{F \times Distancia}{FS}$$

"GN", Número guía

"FS", Factor de Sensibilidad

"Distancia", Distancia entre el flash, y el motivo

"F", Diafragma de trabajo que deseamos

Ejemplo:

Para realizar una fotografía con un diafragma ha "F8"

Y a una distancia de "6_{metros}"

Y con un "ISO = 400"

Para a continuación sustituir la fórmula con los valores respectivos:

$$GN = \frac{F \times Distancia}{FS} \qquad GN = \frac{8 \times 6}{2}$$

Para luego, proceder ha resolver la fórmula:

$$GN = \frac{48}{2}$$
 $GN = 24$

Para que así, podamos determinar que el número guía, del flash, es "24"

De ésta manera, ahora podremos ir al cuadro de números guías y zoom, de flash, y potencias para que así, podamos determinar las características ha utilizar

Donde por ejemplo; para un número guía determinado en el proceso anterior

El cuál, podremos aplicar en la tabla en relación a la potencia del flash, en fracciones de segundo y a su vez, en relación a la posición del cabezal del flash, ha utilizar

Ejemplo:

Número Guía Obtenido "24"

Y con "ISO = 100", en el flash

Y con una distancia del flash, hasta el motivo de "1.2_{metros}"

Y con un diafragma en el objetivo de "F8"

De ésta manera, con éstos valores debemos de determnar que potencia y que zoom, debemos de colocar en flash, respectivo:

Así, para un Número Guía Obtenido de "24"

Podremos colocar el cabezal del flash, en "20 | 35"

Y con unas potencias de entre "1/1 | 1/2", según el cuadro de potencias, cabezal y números guías

Calcular la Ditancia Correcta:

Distancia =
$$\frac{GN \times FS}{F}$$

"GN", Número guía

"FS", Factor de Sensibilidad

"Distancia", Distancia entre el flash, y el motivo

"F", Diafragma de trabajo que deseamos

Ejemplo:

Si utilizamos "ISO = 400"

Y que el flash, tiene un número guía de "45", ha "F8"

Y que por ende el factor de sensibilidad es de "1"

Y el flash, está ha "2.5_{metros}", de distancia del motivo

Para a continuación sustituir la fórmula con los valores respectivos:

Distancia =
$$\frac{GN \times FS}{F}$$
 Distancia = $\frac{45 \times 2}{8}$

Para luego, proceder ha resolver la fórmula:

Distancia =
$$\frac{45 \times 2}{8}$$
 Distancia = $\frac{90}{8}$ Distancia = 11.25

Calcular Exposición Correcta:

$$F = \frac{GN \times FS}{Distancia}$$

"GN", Número guía

"FS", Factor de Sensibilidad "Distancia", Distancia entre el flash, y el motivo

"F", Diafragma ha colocar como la exposición correcta

Ejemplo:

Si utilizamos "ISO = 100"

Y que el flash, tiene un número guía de "45", ha "F8"

Y que por ende el factor de sensibilidad es de "1"

Y el flash, está ha "2_{metros}", de distancia del motivo

Para a continuación sustituir la fórmula con los valores respectivos:

$$F = \frac{GN \times FS}{Distancia} \qquad F = \frac{45 \times 1}{2}$$

Para luego, proceder ha resolver la fórmula:

$$F = \frac{45 \times 1}{2}$$
 $F = \frac{45}{2}$ $F = 22,5$

Para que así, podamos determinar que la exposición correcta es de "F 22.5", de diafragma

Para que así, podamos determinar que la distacia correcta a la que debemos de colocar el flash, en relación al motivo es de "11,25_{metros}"

Ésta tabla nos permitirá determinar la potencia adecuada que debemos colocar en el flash Tabla con Números Guías adecuados para patrón de luz estandar (FX)

				Ро	sición	del Cal	sezal d	Posición del Cabezal de ZOOM, del FLash	M, del F	Lash					
Potencia del Flash	14	17	18	20	24	28	35	20	70	85	105	120	135	180	200
1/1	16	22	23	24	27	30	34	40	44	47	49.5	51	51.5	54	56
1/2	11.3	15.5	16.2	16.9	19	21.2	24	28.2	31.1	33.2	35	36	36.4	38.1	39.5
1/4	8	11	11.5	12	13.5	15	17	20	22	23.5	24.7	25.5	25.7	27	28
1/8	5.6	7.7	8.1	8.4	9.6	10.6	12	14.1	15.5	16.6	17.5	18	18.2	19	19.7
1/16	4	5.5	2.2	9	6.7	2.7	8.5	10	11	11.7	12.6	12.7	12.8	13.5	14
1/32	2.8	3.8	4	4.2	4.7	5.3	9	2	7.7	8.3	8.7	6	9.1	9.6	9.8
1/64	2	2.7	2.8	3	3.3	3.7	4.2	2	5.5	5.8	6.1	6.3	6.4	2.9	7
1/128	1.4	1.9	2	2.1	2.3	2.6	3	3.5	3.8	4.1	4.3	4.5	4.5	4.7	4.9

Cuadro con Factores de Sensibilidad

OSI	25	20	100	200	400	800	1600	3200	6400
FACTORES	0.5	0.71	1	1.4	2	2.8	4	9.6	œ

Tutorial:

https://www.youtube.com/watch?v=K1Ph2027P7g

Suma de luces:

Cuando trabajamos con más de un flash, a la vez en la escena tendremos que contemplar que los flashes

En las áreas donde éstos se crucen ó superpongan sobre una misma superficie, la iluminación emitida por ambos flashes, será sumada

Para lo cuál, dispondremos de los siguientes criterios:

_Dos fuentes de luz, con la misma intensidad, ej: "F8", así, la intersección entre ambas fuentes de luz, equivaldrán ha "F11"

_Si hay un paso de diferencia entre ambas luces, por ej; una luz ha "F8", y otra ha "F5.6", así, la intersección entre ambas luces equivaldrá ha "2/3", dos tercios sumados a la luz mayor, lo que quiere decir que la intercepcción equivaldrá ha "F10"

_Si hay dos paso de diferencia entre ambas luces, por ej; una luz ha "F8", y otra ha "F4", así, la intersección entre ambas luces equivaldrá ha "1/3", un tercio sumado a la luz mayor, lo que quiere decir que la intercepcción equivaldrá ha "F9"

Factor:	1:1 paso	1:0 paso	2:0 paso
	1F	1 2/3F	1 1/3F

#10 La MEJOR EXPLICACIÓN que encontrarás sobre la suma de luces en fotografía

https://www.youtube.com/watch?v=CoZOXagrIF0