Thesis/Project Title

A Thesis/Project Submitted in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

by

Student Name

Student ID

&

Student Name

Student ID

Supervised by: Supervisor Name
Supervisor Designation

Department of Computer Science and Engineering STAMFORD UNIVERSITY BANGLADESH

March 2017

Abstract

Abstract text here...

Approval

The project report "Thesis/Project Report name" submitted by STUDENTNAME ID: STUDENT_ID, STUDENTNAME ID: STUDENT_ID, to the Department of Computer Science & Engineering, has been accepted as satisfactory for the partial fulfillment of the requirements for the degree of Bachelor of Science (B.Sc.) in Computer Science & Engineering and as to its style and contents.

Board of Examiner's Name, S	Signature and Date:	
(Board Member 1)	(Board Member 2)	(Board Member 3)
Date:	Date:	Date:
Supervisor's Signature and Da	ate:	
Supervisor Name		
Date:		

Declaration

We, hereby, declare that the work presented in this Thesis / Project is the outcome of the investigation performed by us under the supervision of Supervisor Name, Supervisor Designation, Department of Computer Science & Engineering, Stamford University Bangladesh. We also declare that no part of this Project and thereof has been or is being submitted elsewhere for the award of any degree or Diploma.

Signature and Date:
Student Name:
Date:
Student Name:
Date:

Acknowledgements

Acknowledgement text here...

Table of Contents

References

List of	st of Figures	
List of	Tables	2
1: In	ntroduction	3
1.1	Motivation	3
1.2	Sensors	3
	1.2.1 Thermostats and HVAC controls	3
	1.2.2 Example Figure:	4
	1.2.3 Example Referencing	4
1.3	Chapter Summary	4
2: Li	iterature Review	5
2.1	Background Study	5
	2.1.1 Android Based Home Automation	5
2.2	Chapter Summary	5
3: Sy	ystem Design	6
	3.1.1 Pin Definition	6
3.1	Parameter	6
3.2	Chapter Summary	8
4: In	nplementation	9
4.1	Implementation	9
	4.1.1 Configuration Code	9
4.2	Chapter Summary	10
5: C	onclusion	11
5.1	Limitations	11
5.2	Future Work	11

12

List of Figures

1.1 NodeMCU Microcontroller	4
2.1: Android based Home Automation System	5
3.1: Pin Definition of NodeMCU	6

List of Tables

3.1: Pin Description of NodeMCU	7
3.2: Parameters of NodeMCU	7

1 Introduction

1.1 Motivation

Motivation text here...

1.2 Sensors

- 1. ESP8266 12E wi-fi/Node MCU
- 2. 4/8/16 channel Relay Board
- 3. USB TTL Serial Adapter
- 4. PIR Motion sensors

1.2.1 Thermostats and HVAC controls

Common thermostats and HVAC controls are:

- Humidity sensing and control
- Temperature sensors and controllers
- Weather stations and sensors

1.2.2 Example Figure:

An example figure insertion is presented in Figure 1.1.

Figure 1.1 NodeMCU Microcontroller

1.2.3 Example Referencing

An example of inserting references in word [1][2].

1.3 Chapter Summary

In this chapter,

2 Literature Review

Chapter introductory text here ...

2.1 Background Study

Refer all background study like here [3]. Few more references inserted here [4][5]. Web sites can also be put as reference like here [6].

2.1.1 Android Based Home Automation

An example of Android-based home automation system [7] is presented in Figure 2.1.

Figure 2.1: Android based Home Automation System

2.2 Chapter Summary

In this chapter, ...

3 System Design

Chapter introductory text here ...

3.1.1 Pin Definition

In the Figure 3.1, the pin definition of NodeMCU [8] is shown and in the Table 3.1 a detailed pin description is given.

Figure 3.1: Pin Definition of NodeMCU

3.1 Parameter

The NodeMCU parameters are listed in Table 3.2.

Table 3.1: Pin Description of NodeMCU

Pin	Name	Type	Function
1	VDDA	P	RF Antenna Interface. Chip Output
			Impedance= 50Ω No matching required but we
			recommend that the π -type matching network is
			retained.
2	LNA	I/O	Analog Power 3.02 ~ 3.6 V
3	VDD3P3	P	Analog Power 3.02 ~ 3.6 V
4	VDD3P3	P	Analog Power 3.02 ~ 3.6 V
5	VDD3P3	P	Analog Power 3.02 ~ 3.6 V
6		•••	

Table 3.2: Parameters of NodeMCU

Categories	Items	Values
Wi-Fi Parameters	certificates	FCC/CE/TELEC/SRRC
	WiFi Protocols	802.11 b/g/n
	Frequency Range	2.4G-2.5G (2400M-2483.5M)
	TX Power	802.11 b: +20 dBm
		802.11 g: +17 dBm
		802.11 n: +14 dBm
	RX Sensitivity	802.11 b: -91 dbm
		802.11 g: -75 dbm (54 Mbps)
		802.11 n: -72 dbm (MCS7)
	Types of Antenna	PCB Trace, External, IPEX
		Connector, Ceramic Chip
Hardware Parameters	TX Power	UART/SDIO/SPI/I2C/
		I2S/IR Remote Control
		GPIO/PWM
	Operating Voltage	3.0~3.6V
	Operating Current	Average value: 80mA
	Operating Temperature	-40°~125°
	Range	
	Ambient Temperature	Normal temperature
	Range	
	Package Size	5x5mm
	External Interface	N/A

3.2 Chapter Summary

In this chapter, ...

4 Implementation

Chapter introductory text here ...

4.1 Implementation

. . .

4.1.1 Configuration Code

Sample configuration code is presented in

Listing 4.1: NodeMCU Configuration Code

```
#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>

char auth[] = "YourAuthToken";

char ssid[] = "YourNetworkName";
char pass[] = "YourPassword";

void setup()
{
Serial.begin(115200);
Blynk.begin(auth, ssid, pass);
}
void loop()
{ Blynk.run(); }
```

4.2 Chapter Summary

In this chapter, ...

5 Conclusion

Conclusion text here ...

5.1 Limitations

...

5.2 Future Work

•••

References

- [1] D. Pishva, "Internet of Things: Security and privacy issues and possible solution" in 2017 19th International Conference on Advanced Communication Technology (ICACT), Feb 2017 pp. 797-808.
- [2] S. Tale, A. Kakad, N. Bhawarkar, D. Patil, and P. Nimat, "Control System for Home Automation based on IoT", *Proceedings of the National Conference on Innovative Trends in Science and Engineering*, ser. NC-ITSE'16, vol. 4, num. 7, 2016, pp. 324-326.
- [3] A. ElShafee and K.A. Hamed, "Design and implementation of a WIFI based home automation system", *World academy of science, engineering and technology*, vol. 68, pp. 2177--2180, 2012.
- [4] R. Harper, *Inside the smart home*, Springer and Business Media, 2006.
- [5] G. Mois, S. Folea and T. Sanislav, "Analysis of Three IoT-Based Wireless Sensors for Environmental Monitoring", *IEEE Transactions on Instrumentation and Measurement*, vol. PP, no. 99, pp. 1-9, 2017.
- [6] Arduino, "Arduino IDE", [Online]. Available: https://www.arduino.cc/.
- [7] Tarun Agarwal, "Android Based Home Automation Systems and its Applications", [Online]. Available: https://www.elprocus.com/understanding-android-based-home-automation-systems/, Accessed: 2017-01-01.
- [8] T. NodeMCU, "Nodemcu-an open-source firmware based on esp8266 wifi-soc", [Online]. Available: http://nodemcu.com/indexen.html, Accessed: 2017-01-01.