1-8 Homework: Pretest problems

1. Points that are all located on the same line are ______.

2. Use symbols to write the name of each geometric figure.

3. A flat surface is a(n) _____

4. Find the value of |2.5-3|.

5. Two line segments or angles of equal measure are ______.

6. Given \overline{ABC} , $AB = 3\frac{1}{3}$, and BC = 1.

(a) Find AC.

(b) The postulate used in this problem is the ______.

7. Identify two rays in the given plane.

K

- 8. Use symbols to write the name of the given figure.
- 9. Draw and label a line segment $\overline{A}B$ such that the distance between points A and B is 6 cm.
- 10. Given T(3,2) and U(4,8). What is the slope of \overrightarrow{TU} ? Use the formula $m = \frac{y_U y_T}{x_U x_T}$.

11. A(n) _____ is a portion of a line that includes two points and all of the collinear points between the two points.

- 12. Given \overline{ABC} , AB = 2x 10, BC = x + 2, AC = 10. Find BC.
 - (a) Sketch and label the situation

- (b) Write a geometric equation:
- (c) Substitute algebraic values: _____
- (d) Solve for x

$$x = \underline{\hspace{1cm}}$$

(e) Answer the question: Find BC by substituting for x.

$$BC = () + 2 = ____$$

- (b) Write a geometric equation:
- (c) Substitute algebraic values: _____
- (d) Solve for x

$$x = \underline{\hspace{1cm}}$$

(e) Answer the question: Find $m \angle MKN$ by substituting for x.

$$m \angle MKN = 3($$
 $) + 5 = \underline{\qquad}$

Exam: Tools of Geometry

- 1. Points that are all located on the same plane are _____
- 2. Draw and label a line segment \overline{AB} such that the distance between points A and B is 4 cm.
- 3. Identify three points in the given plane.

- 4. A flat surface is a(n) _____
- 5. Find the value of |5 3| + |4 5|.
- 6. Two line segments or angles of equal measure are ______.
- 7. Given \overline{DEF} , $DE = 5\frac{1}{2}$, and $EF = 2\frac{1}{2}$.
 - (a) Find DF.

(b) The postulate used in this problem is the ______.

8. Given the points V and W, draw \overrightarrow{WV} .

9. Use symbols to write the name of each geometric figure.

10. Given P(6,5) and Q(4,7). What is the slope of \overrightarrow{PQ} ? Use the formula $m = \frac{y_Q - y_P}{x_Q - x_P}$.

11. Using a straightedge, draw a pair of opposite rays. Label any points in the drawing and name the two rays to the right of the drawing, using proper notation.

12. Given $\triangle JKL$ with $\overline{JK}\cong\overline{KL}$. On the diagram mark the congruent line segments with tick marks.

- 13. Find the measure of the angle in degrees and the given segment's length in centimeters.
 - (a) $m \angle UST =$
 - (b) SU =_____
 - (c) Name a pair of opposite rays:

14. Given
$$\overline{ABC}$$
, $AB = 3x - 4$, $BC = x + 5$, $AC = 13$. Find BC .

(a) Sketch and label the situation

- (b) Write a geometric equation:
- (c) Substitute algebraic values: _____
- (d) Solve for x

$$x = \underline{\hspace{1cm}}$$

(e) Answer the question: Find BC by substituting for x.

$$BC = () + 5 = ____$$

- 15. Given $\angle ADB$ with angle bisector \overrightarrow{DC} . $m\angle ADC = 4x + 2$, $m\angle BDC = 3x + 14$. Find $m\angle ADC$.
 - (a) Sketch and label the situation

- (b) Write a geometric equation: _____
- (c) Substitute algebraic values:
- (d) Solve for x

 $x = \underline{\hspace{1cm}}$

(e) Answer the question: Find $m \angle ADC$ by substituting for x.

 $m\angle ADC = \underline{\hspace{1cm}}$

16. Complete the construction of an equilateral triangle including the six steps.

- (a) Given the line segment \overline{MN} .
- (b) Construct circle M with radius $_$ ____.
- (c) Construct circle _____ with radius _____.
- (d) Label the intersection P of the two circles.
- (e) Draw line segments _____ and ____
- (f) $\triangle MNP$ is equilateral.

15b. Given $\angle ADB$ with angle bisector \overrightarrow{DC} and $m\angle ADC = 4x + 2$, $m\angle ADB = 7x + 16$. Find $m\angle BDC$.

1. Sketch and label the situation

- 2. Write a geometric equation:
- 3. Substitute algebraic values: _____
- 4. Solve for x

$$x = \underline{\hspace{1cm}}$$

5. Answer the question: Find $m \angle BDC$

$$m \angle BDC = \underline{\hspace{1cm}}$$

6. Check your answer

16b. Complete the construction of an equilateral triangle including the six steps.

1. Given the line segment \overline{MN} .

2.

3.

4.

5.

6. $\triangle MNP$ is equilateral.

1

Name:

Exam Corrections: Tools of Geometry

Study your errors. For each, write a note to yourself: what you need to do differently. Do all problems in this handout.

1. Points that are all located on the same line are _____

2. Draw and label a line segment \overline{AB} such that the distance between points A and B is 4 cm.

3. Identify three line segments in the given plane.

4. A flat surface is a(n) _____

5. Find the value of |15 - 3| + |4 - 15|.

6. Two line segments or angles of equal measure are ______.

7. Given \overline{DEF} , $DE = 4\frac{1}{5}$, and $EF = 1\frac{3}{5}$.

(a) Find DF.

(b) The postulate used in this problem is the ______

8. Given the points V and W, draw \overline{VW} .

9. Use symbols to write the name of each geometric figure.

10. Given P(-2,5) and Q(4,-7). What is the slope of \overrightarrow{PQ} ? Use the formula $m=\frac{y_Q-y_P}{x_Q-x_P}$.

11. Using a straightedge, draw a pair of opposite rays. Label any points in the drawing and name the two rays to the right of the drawing, using proper notation.

12. Given $\triangle JKL$ with $\overline{JK}\cong \overline{JL}$. On the diagram mark the congruent line segments with tick marks.

- 13. Find the measure of the angle in degrees and the given segment's length in centimeters.
 - (a) $m \angle UST = \underline{\hspace{1cm}}$
 - (b) SU =_____
 - (c) Name a pair of opposite rays:

- 14. Given \overline{ABC} , AB = 3x 4, BC = x + 5, AC = 21. Find BC.
 - (a) Sketch and label the situation

- (b) Write a geometric equation:
- (c) Substitute algebraic values: _____
- (d) Solve for x

$$x = \underline{\hspace{1cm}}$$

(e) Answer the question: Find BC by substituting for x.

$$BC = () + 5 = ____$$

- 15. Given $\angle ADB$ with angle bisector \overrightarrow{DC} . $m\angle ADC = 5x 5$, $m\angle BDC = 3x + 19$. Find $m\angle ADC$.
 - (a) Sketch and label the situation

- (b) Write a geometric equation:
- (c) Substitute algebraic values: _____
- (d) Solve for x

$$x = \underline{\hspace{1cm}}$$

(e) Answer the question: Find $m \angle ADC$ by substituting for x.

$$m\angle ADC = \underline{\hspace{1cm}}$$

16. Complete the construction of an equilateral triangle including the six steps.

- (a) Given the line segment \overline{MN} .
- (b) Construct circle M with radius $_$ ____.
- (c) Construct circle _____ with radius _____.
- (d) Label the intersection P of the two circles.
- (e) Draw line segments _____ and ____
- (f) $\triangle MNP$ is equilateral.

15b. Given $\angle ADB$ with angle bisector \overrightarrow{DC} and $m\angle ADC = 5x - 5$, $m\angle ADB = 8x + 14$. Find $m\angle BDC$.

1. Sketch and label the situation

- 2. Write a geometric equation:
- 3. Substitute algebraic values: _____
- 4. Solve for x

$$x = \underline{\hspace{1cm}}$$

5. Answer the question: Find $m \angle BDC$

$$m \angle BDC = \underline{\hspace{1cm}}$$

6. Check your answer

16b. Complete the construction of an equilateral triangle including the six steps.

1. Given the line segment \overline{MN} .

2.

3.

4.

5.

6. $\triangle MNP$ is equilateral.

