Implementation of 2-Bit Magnitude Comparator in FPGA

Bala Priya C EE19MTECH11032

> EE5811 FPGA Lab

Indian Institute of Technology, Hyderabad

Contents

- Introduction
- N-Bit Magnitude Comparator
- Applications of Magnitude Comparator
- Truth Table
- Simplification Using Karnaugh Map
- Code Execution

- 1 Introduction
- N-Bit Magnitude Comparator
- Applications of Magnitude Comparator
- Truth Table
- 5 Simplification Using Karnaugh Map
- Code Execution

Bala Priya C

Introduction

Implementation details of the project for FPGA Lab: 2-Bit Magnitude Comparator

- Hardware Used: Vaman LC
- Programming Language: Verilog

- 1 Introduction
- N-Bit Magnitude Comparator
- Applications of Magnitude Comparator
- Truth Table
- Simplification Using Karnaugh Map
- Code Execution

Magnitude Comparator Circuit

An N-bit magnitude comparator is a logical circuit that takes in two N-bit binary inputs A and B, and outputs one of the following three:

- \bullet A > B
- \bullet A < B
- \bullet A = B

This presentation goes over the implementation details of the 2-bit magnitude comparator.

- Introduction
- N-Bit Magnitude Comparator
- Applications of Magnitude Comparator
- Truth Table
- Simplification Using Karnaugh Map
- Code Execution

Applications of Magnitude Comparator

- Circuits in control applications
- Inputs: binary equivalent of the values of physical quantities like temperature, humidity, pressure, etc.
- Output of the comparator: often triggers a specific sequence of actions
- Analog-to-Digital Converter circuits, ALUs, and more

- Introduction
- N-Bit Magnitude Comparator
- Applications of Magnitude Comparator
- Truth Table
- Simplification Using Karnaugh Map
- Code Execution

2-Bit Magnitude Comparator: Truth Table

The truth table for the 2-bit magnitude comparator is shown in the table below:

A_1	A_0	B_1	B_0	A > B	A < B	A = B
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1_

- Introduction
- N-Bit Magnitude Comparator
- Applications of Magnitude Comparator
- Truth Table
- 5 Simplification Using Karnaugh Map
- 6 Code Execution

Bala Priya C

Boolean Expression for A > B

Fig. 1: K-Map for A > B

$$(A>B)=A_1B_1'+A_0B_1'B_0'+A_1A_0B_0'$$

Boolean Expression for A < B

Fig. 2: K-Map for A < B

$$(A < B) = A_1'B_1 + A_0'B_1B_0 + A_1'A_0'B_0$$

Boolean Expression for A = B

Fig. 3: K-Map for A = B

$$A = B = A_1'A_0'B_1'B_0' + A_1'A_0B_1'B_0 + A_1A_0'B_1B_0' + A_1B_1A_0B_0$$

$$(A = B) = (A_1 \odot B_1).(A_0 \odot B_0)$$

- Introduction
- N-Bit Magnitude Comparator
- Applications of Magnitude Comparator
- Truth Table
- Simplification Using Karnaugh Map
- 6 Code Execution

Implementation

- The file twobitcomparator.v contains the definition of the Verilog module for the 2-bit comparator circuit.
- The file quickfeather.pcf contains the pin configurations
- Provide inputs as needed to the Vaman LC board, compile and run the source code files in the code folder in the above-mentioned GitHub repository.

Thank You!