Detecting Manual Alterations in Biological Image Data Using Contrastive Learning and Pairwise Image Comparison

Georgii Nekhoroshkov

Moscow Institute of Physics and Technology

Course: My first scientific paper

(Strijov's practice)

Expert: A. V. Grabovoy

Consultant: D. D. Dorin

Goal of research

Ensure biological image integrity

Develop a contrastive learning model for pairwise image comparison to:

- Detect alterations (color jittering, crop, rotation, noise)
- Select pairs of images with the same content
- Outperform existing state-of-the-art models (Barlow Twins¹, SimCLR²) on cell datasets

(a) Original

(b) Crop and resize

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

 $^{^1}$ J. Zbontar et al. Barlow Twins: Self-Supervised Learning via Redundancy Reduction // ICML, 2021.

 $^{^2}$ T. Chen et al. A Simple Framework for Contrastive Learning of Visual Representations // ICML, 2021.

One-slide talk

The problem

Detection of similar images despite modifications.

The model should process two images and output a value from [0, 1] – the likelihood that they are identical, up to modifications.

The method must leverage a self-supervised learning approach.

Literature

Key Articles

- ➤ SimCLR: Chen T. et al. "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020
- ▶ Barlow Twins: Zbontar J. et al. "Barlow Twins: Self-Supervised Learning via Redundancy Reduction", ICML 2021
- ► CLIP: Radford A. et al. "Learning Transferable Visual Models From Natural Language Supervision", ICML 2021
- ➤ **Siamese Networks**: Melekhov I. et al. "Siamese Network Features for Image Matching", ICPR 2016

Problem statement

Given biological image dataset

$$\mathcal{D} = \{d_i \in \mathcal{S}, i \in [0, N)\}, \quad \mathcal{S} \subseteq \mathbb{R}^{H \times W \times C}$$

Pairwise similarity classification

For any $(x, y) \in \mathcal{S} \times \mathcal{S}$, learn mapping:

$$\mathcal{M}:(x,y)\mapsto s\in[0,1]$$

where:

- ightharpoonup s = 1: similar pair (same content pre-alteration)
- ightharpoonup s = 0: dissimilar pair (different content)

Problem statement

Model decomposition

$$\mathcal{M}(x,y) = h(f(x),f(y))$$

where:

$$f: \mathcal{S} \to \mathbb{R}^d$$
 (encoder)

$$h: \mathbb{R}^d \times \mathbb{R}^d \to [0,1]$$
 (classifier)

Success criterion

Maximize accuracy over pairwise comparisons:

$$Acc = \frac{1}{|\mathcal{P}|} \sum_{(x,y) \in \mathcal{P}} \mathbb{I}(\mathcal{M}(x,y) = I(x,y))$$

where \mathcal{P} is test pairs, I(x, y) ground truth similarity.

Solution

Barlow Twins Adaptation

Architecture:

- ResNet-50 backbone
- Projector
- Similarity head

Training specific:

- Parallel image augmentation
- AdamW optimizer with decreasing learning rate
- Performed on a specially selected dataset

Key Innovation:

Custom model's head and dataset

Computational experiment

Experimental Setup

- ▶ Dataset: 630 biological scans (animal and plant cells)
- ► Train/Test Split: 80%/20%
- ► **Training**: 100 epochs, AdamW optimizer $(\gamma_{start} = 3 \cdot 10^{-3}, \gamma_{end} = 5 \cdot 10^{-4})$

Evaluation Protocol

- Compare with Barlow Twins baseline
- Metrics:
 - Accuracy
 - ► F1-Score, Precision, Recall
 - AUC-ROC

Computational Experiment

ROC-AUC Comparison

Performance Metrics

Twins	
0.68	
0.48	
0.54	
0.43	
0.69	

- All metrics computed on test set (20% data)
- ► Threshold = 0.5 for binary classification

Conclusion

Key achievements

- Significant accuracy metrics improvement over state-of-the-art model
- Robust to 4 types of manual alterations
- First biological-SSL solution for:
 - Automated fraud detection
 - Image provenance verification