10.100. Найти электрохимический эквивалент K водорода.

Решение:

Имеем $K = \frac{1}{F} \frac{A}{Z}$, где $F = 96,48 \cdot 10^3$ Кл/моль — постоянная Фарадея, A = 0,001 — молярная масса водорода, Z = 1 — валентность. Подставляя числовые данные, получим $K = 1,04 \cdot 10^{-8}$ кг/Кл.

10.101. Амперметр, включенный последовательно с электролитической ванной с раствором AgNO₃, показывает ток I=0,90 А. Верен ли амперметр, если за время $\tau=5$ мин прохождения тока выделилась масса m=316 мг серебра?

Решение:

По первому закону Фарадея $m=KI\tau$. Тогда амперметр должен показывать ток $I=\frac{m}{K\tau}$. Найдем электрохимичес-

кий эквивалент серебра. Имеем $K = \frac{1}{F} \frac{A}{Z}$, где A = 0.108,

Z=1. Отсюда $K=1,12\cdot 10^{-6}$ кг/Кл. Подставляя числовые данные, получим I=0,94 А. Следовательно, амперметр показывает ток на 0,04 А меньше, чем нужно.

10.102. Две электролитические ванны с растворами AgNO₃ и CuSO₄ соединены последовательно. Какая масса m_2 меди выделится за время, в течение которого выделилась масса $m_1 = 180$ г серебра?

Решение:

При последовательном соединении через обе ванны проходит одинаковый ток I. За время τ выделилась масса серебра $m_1 = K_1 I \tau$ — (1) и масса меди $m_2 = K_2 I \tau$ — (2).

Выразив из (1) и (2) время τ , получим $\tau = \frac{m_1}{K_1 I} = \frac{m_2}{K_2 I}$, от-

куда $m_2 = \frac{m_1 K_2}{K_1}$. Электрохимический эквивалент серебра

 $K_1 = 1,12 \cdot 10^{-6}$ кг/Кл. Подставляя числовые данные, получим $m_2 = 53,5 \cdot 10^{-6}$ кг.

10.103. При получении алюминия электролизом раствора Al_2O_3 в расплавленном криолите проходил ток I=20 кА при разности потенциалов на электродах U=5 В. За какое время τ выделится масса m=1 т алюминия? Какая электрическая энергия W при этом будет затрачена?

Решенне:

Имеем
$$m=KI\tau$$
, откуда $\tau=\frac{m}{KI}$, где $K=\frac{1}{96,48\cdot 10^3}\times$

 $\times \frac{27 \cdot 10^{-3}}{3} = 9.3 \cdot 10^{-8} \text{ кг/Кл.}$ Подставляя числовые данные,

получим $\tau = 537634$ с = 149,3 ч. Затраченная энергия W будет равна работе электрических сил $A = P\tau$, т. е. $W = P\tau = IU\tau$. Подставляя числовые данные, получим W = 53.8 ГДж.

10.104. Какую электрическую энергию W надо затратить, чтобы при электролизе раствора AgNO, выделилась масса $m = 500 \,\mathrm{Mr}$ серебра? Разность потенциалов на электродах $U = 4 \,\mathrm{B}$.

Решение:

Имеем $W = UI\tau$ (см. задачу 10.103). По первому закону

Фарадея $m = KI\tau$, откуда $I\tau = \frac{m}{K}$. Тогда $W = \frac{Um}{K}$, где

 $K = 1,12 \cdot 10^{-6}$ кг/Кл (см. задачу 10.101). Подставляя числовые данные, получим W = 1.8 кДж.

10.105. Реакция образования воды из водорода и кислорода происходит с выделением тепла: $2H_2 + O_2 = 2H_2O + 5,57 \cdot 10^5 \ \text{Дж.}$ Найти наименьшую разность потенциалов U, при которой будет происходить разложение воды электролизом.

Решение:

Для выделения массы m вещества при электролизе необходима энергия $W = IUt = \frac{mUZF}{A}$, откуда $U = \frac{WA}{mZF}$, где F — постоянная Фарадея, A — молярная масса, Z — валентность. Чтобы разложить v=2 моль воды, т. е. чтобы выделить m=4 г водорода, потребуется энергия $W=5,57\cdot10^5$ Дж. Подставляя числовые данные, получим U=1.5 В.

10.106. Найти эквивалентную проводимость Λ_{∞} для очень слабого раствора азотной кислоты.

Решение:

В слабых растворах все молекулы диссоциированы, т. е. степень диссоциации $\alpha \approx 1$. Тогда эквивалентная проводимость $\Lambda_{\infty} = F(u_+ + u_-)$. Имеем $u_+ = 3.26 \cdot 10^{-7} \,\mathrm{m}^2/(\mathrm{B \cdot c})$ и $u_- = 0.64 \cdot 10^{-7} \,\mathrm{m}^2/(\mathrm{B \cdot c})$. Подставляя числовые данные, получим $\Lambda_{\infty} = 37.6 \cdot 10^{-3} \,\mathrm{m}^2/(\mathrm{OM \cdot Monb})$.

10.107. Через раствор азотной кислоты пропускается ток I = 2 A. Какое количество электричества q переносится за время $\tau = 1$ мин иопами каждого знака?

Решение:

Запишем уравнение диссоциации для азотной кислоты ${\rm HNO_3} \rightarrow {\rm H^-} + {\rm NO_3^-}$. По определению силы тока $I = \frac{q}{\tau}$, откуда $q = I\tau$ — (1) — полное количество электричества. переносимое всеми ионами за время τ . Плотность тока 158

положительных и отрицательных ионов соответственно равна $j^+ = q^+ n^+ u^+ - (2)$ и $j^- = q^- n^- u^- - (3)$, где q^- количество электричества, переносимое ионами каждого знака, n^- концентрация ионов, u^- подвижность ионов. Из уравнения диссоциации видно, что концентрации положительных и отрицательных ионов равны, следовательно, и плотности тока по модулю равны, тогда из уравнений (2) и (3) имеем $q^-u^- = q^+ u^+$ или $\frac{q^-}{q^+} = \frac{u^+}{u^-}$ — (4). Кроме того, с учетом (1), $q^+ + q^- = I\tau$ — (5). Решая совместно уравнения (4) и (5), находим $q^+ = \frac{I\pi u^+}{u^- + u^+} = 100.3$ Кл и $q^- = \frac{I\pi u^-}{u^- + u^+} = 19.7$ Кл.

10.108. Эквивалентная проводимость раствора КСІ при некоторой концентрации $\Lambda = 12.2 \cdot 10^{-3} \, \mathrm{m}^2/(\mathrm{OM \cdot Moль})$, удельная проводимость при той же концентрации $\sigma = 0.122 \, \mathrm{Cm/m}$, эквивалентная проводимость при бесконечном разведении $\Lambda_{\infty} = 13 \cdot 10^{-3} \, \mathrm{m}^2/(\mathrm{OM \cdot Moль})$. Найти: а) степень диссоциации α раствора КСІ при данной концентрации; б) эквивалентную концентрацию η раствора; в) сумму подвижностей $u_{+} + u_{-}$ ионов \mathbf{K}^{+} и СГ.

Решение:

В слабых растворах степень диссоциации $\alpha \approx 1$, т. е. все молекулы диссоциированы. Следовательно, эквивалентная проводимость $\Lambda_{\infty} = F\left(u^+ + u^-\right)$, откуда сумма подвижностей $u^+ + u^- = \frac{\Lambda_{\infty}}{F} = 13.5 \cdot 10^{-7} \, \mathrm{m}^2/(\mathrm{B\cdot c})$. По определению

эквивалентной проводимости $\Lambda = \frac{\sigma}{\eta}$, откуда экви-

валентная концентрация $\eta = \frac{\sigma}{\Lambda} = 0.1$ моль/л. Удельная проводимость электролита определяется формулой $\sigma = \alpha \eta F \left(u^+ + u^- \right) = \alpha \eta \Lambda_\infty$, откуда степень диссоциации электролита $\alpha = \frac{\sigma}{\eta \Lambda_\infty} \cdot 100\% = 0.938 \cdot 100\% = 93.8\%$.

10.109. Найти сопротивление R раствора $AgNO_3$, запелняющего трубку длиной $l=84\,\mathrm{cm}$ и площадью поперечного сечения $S=5\,\mathrm{mm}^2$. Эквивалентная концентрация раствора $\eta=0,1\,\mathrm{моль/л}$, степень диссоциации $\alpha=81\%$.

Решение:

Сопротивление раствора в трубке выражается формулой $R=\rho\frac{l}{S}$ — (1), где ρ — удельное сопротивление раствора. Удельная проводимость электролита определяется формулой $\sigma=\frac{1}{\rho}=\alpha\eta F\left(u^{+}+u^{-}\right)$, где u^{+} и u^{-} — соответственно подвижности ионов Ag^{+} и NO_{3}^{-} , тогда удельное сопротивление $\rho=\frac{1}{\alpha\eta F\left(u^{+}+u^{-}\right)}$ — (2). Подставляя (2) в (1), окончательно получаем $R=\frac{l}{S\alpha\eta F\left(u^{+}+u^{-}\right)}$ = 179,1 кОм.

10.110. Найти сопротивление R раствора, заполняющего трубку длиной l=2 см и площадью поперечного сечения S=7 см². Эквивалентная концентрация раствора $\eta=0.05$ моль π , эквивалентная проводимость $\Lambda=1.1\cdot 10^{-6}$ м²/(Ом·моль).

Решение:

160

Сопротивление раствора в трубке выражается формулой $R = \rho \frac{l}{S}$ — (1), где ρ — удельное сопротивление

раствора. По определению эквивалентной проводимости $\Lambda = \frac{\sigma}{\eta}$, откуда удельная проводимость электролита $\sigma = \Lambda \eta$ — (2). С другой стороны, $\sigma = \frac{1}{\rho}$, тогда, с учетом (2), удельное сопротивление раствора $\rho = \frac{1}{\Lambda \eta}$ — (3).

. Подставляя (3) в (1), окончательно получаем $R = \frac{l}{S\Lambda \eta} = 519,5 \text{ кОм}.$

10.111. Трубка длиной l=3 см и площадью поперечного сечения S=10 см 2 заполнена раствором $CuSO_4$. Эквивалентная концентрация раствора $\eta=0,1$ моль/л, сопротивление R=38 Ом. Найти эквивалентную проводимость Λ раствора.

Решение:

Сопротивление трубки $R = \rho \frac{l}{S}$. Отсюда удельное сопротивление электролита $\rho = \frac{RS}{l}$. Удельная электропроводность $\sigma = \frac{1}{\rho} = \frac{l}{RS}$. Эквивалентная проводимость $\Lambda = \frac{\sigma}{n} = \frac{l}{RSn}$; $\Lambda = 7.89 \cdot 10^{-3} \, \text{м}^2/(\text{Ом·моль})$.

10.112. Удельная проводимость децинормального раствора соляной кислоты $\sigma = 3.5$ См/м. Найти степень диссоциации α .

Решение:

Удельная электропроводность $\sigma = \alpha CZF(u_+ + u_-)$, где $C = 0.1 \cdot 10^3 \, \text{м}^3 / \text{моль}$ — молярная концентрация, Z = 1 — валентность, $u_+ = 32.6 \cdot 10^{-8} \, \text{м}^2 / (\text{B·c})$ и $u_- = 6.8 \cdot 10^{-8} \, \text{м}^2 / (\text{B·c})$ — 6–3269

подвижности ионов. Отсюда степень диссоциации
$$\alpha = \frac{\sigma}{CZF(u_+ + u_-)} = 0.92 = 92\% \ .$$

10.113. Найти число нонов n каждого знака, находящихся в единице объема раствора предыдущей задачи.

Решение:

При небольших плотностях тока, текущего в газе, имест место закон Ома $j = qn(u_+ + u_-)E = \sigma E$, откуда

$$n = \frac{\sigma}{q(u_+ + u_-)} = 5.6 \cdot 10^{25} \text{ m}^{-3}.$$

10.114. При освещении сосуда с газом рентгеновскими лучами в единице объема в единицу времени ионизуется число молекул $N = 10^{16} \, \mathrm{m}^{-3} \cdot \mathrm{c}^{-1}$. В результате рекомбинации в сосуде установилось равновесие, причем в единице объема газа находится число ионов каждого знака $n = 10^{14} \, \mathrm{m}^{-3}$. Найти коэффициент рекомбинации γ .

Решение:

Количество рекомбинирующих за единицу времени в единице объема пар ионов пропорционально квадрату числа имеющихся в единице объема пар ионов $N=\gamma\,n^2$. Отсюда

коэффициент рекомбинации
$$\gamma = \frac{N}{n^2} = 10^{-12} \text{ м}^3/\text{c}.$$

10.115. К электродам разрядной трубки приложена разность потенциалов $U=5\,\mathrm{B}$, расстояние между ними $d=10\,\mathrm{cm}$. Газлиаходящийся в трубке, однократно ионизирован. Число ионов каждого знака в единице объема газа $n=10^8\,\mathrm{m}^{-3}$; подвижности ионов $u_+=3\cdot10^{-2}\,\mathrm{m}^2/(\mathrm{B\cdot c})$ и $u_-=3\cdot10^2\,\mathrm{m}^2/(\mathrm{B\cdot c})$. Найти плотность тока j в трубке. Какая часть полного тока переносится положительными ионами?

Решенне:

При небольших плотностях тока, текущего в газе, имеет место закон Ома $j = qn(u^+ + u^-)E$ — (1), где E напряженность поля между электродами, которая равна $E = \frac{U}{d}$ — (2). Т. к. по условию газ однократно ионизирован, то заряд ионов $q=e=1,6\cdot 10^{-19}$ Кл. Подставляя (2) в (1), окончательно получаем $j = \frac{en(u^+ + u^-)U}{d} = 0.24 \text{ мкA/м}^2$. Плотность тока положительных ионов $j^+ = \frac{enu^+U}{d}$, тогда

$$\frac{j^+}{j} = \frac{u^+}{u^+ + u^-} = 10^{-4} \cdot 100\% = 0.01\%.$$

10.116. Площадь каждого электрода ионизационной камеры $S = 0.01 \,\text{m}^2$, расстояние между ними $d = 6.2 \,\text{см}$. Найти ток насыщения I_{μ} в такой камере, если в единице объема в единицу времени образуется число однозарядных понов каждого знака $N = 10^{15} \text{ m}^{-3} \cdot \text{c}^{-1}$

Решение:

Плотность тока насыщения в газе определяется формулой $j_{\rm H} = Nqd$ — (1), где N — число пар нонов, созданных ионизирующим агентом в единице объема в единицу времени, d — расстояние между электродами. Сила и **ш**ютность тока связаны соотношением $j = \frac{I}{c}$, тогда

$$J_{\rm H} = \frac{I_{\rm H}}{S}$$
 — (2). Приравнивая правые части уравнений (1) и

(2) и считая
$$q=e=1.6\cdot 10^{-19}$$
 Кл, получим $\frac{I_{\rm H}}{S}=Ned$, откуда ток насыщения $I_{\rm H}=NedS=0.1$ мкА.

10.117. Найти наибольшее возможное число ионов n каждого знака, находящихся в единице объема камеры предыдущей задачи, если коэффициент рекомбинации $\gamma = 10^{-12}$ м³/с.

Решение:

Наибольшее возможное число ионов n каждого знака в единице объема камеры получится, если убывание ионов происходит только за счет рекомбинации. Тогда имеем

$$N = \gamma n^2$$
, откуда $n = \sqrt{\frac{N}{\gamma}} = 3.2 \cdot 10^{13} \,\mathrm{M}^{-3}$.

10.118. Найти сопротивление R трубки длиной l=84 см и площадью поперечного сечения S=5 мм², если она заполнена воздухом, ионизированным так, что в единице объема при равновесии находится $n=10^{13}$ м⁻³ однозарядных ионов каждого знака. Подвижности ионов $u_+=1.3\cdot 10^{-4}$ м²/(B·c) и $u_-=1.8\cdot 10^{-4}$ м²/(B·c).

Решение:

Сопротивление трубки $R=\rho\frac{l}{S}$. Отсюда удельное сопротивление $\rho=\frac{RS}{l}$. Удельная электропроводность $\sigma=\frac{1}{\rho}=\frac{l}{RS}$. С другой стороны, $\sigma=qn(u_++u_-)$. Т. к. левые части равны, то можно приравнять и правые: $\frac{l}{RS}=qn(u_++u_-)$, отсюда $R=\frac{l}{qSn(u_++u_-)}$. Т. к. ноны однозарядные, то q=e и окончательно $R=\frac{l}{eSn(u_++u_-)}$:

$$R = 3.4 \cdot 10^{14} \text{ OM}.$$

10.119. Какой ток I пройдет между электродами ионизационной камеры задачи 10.116, если к электродам приложена разность потенциалов $U=20\,\mathrm{B}$? Подвижности ионов $u_+=u_-=10^{-4}\,\mathrm{m}^2/(\mathrm{B\cdot c})$, коэффициент рекомбинации $\gamma=10^{-12}\,\mathrm{m}^3/\mathrm{c}$. Какую долю тока насыщения составляет найденный ток?

Решение:

При небольших плотностях тока, текущего в газе, имеет место закон Ома $j = qn(u_+ + u_-)E - (1)$, где $E = \frac{U}{d}$ — (2) напряженность однородного поля, U — разность потен- μ иалов на электродах, d — расстояние между электродами, $n = \sqrt{\frac{N}{\chi}}$ — (3) — число пар ионов, γ — коэффициент рекомбинации, $q = e = 1.6 \cdot 10^{-19} \, \text{Kл}$ — заряд нона, u_{\perp} и u_{\perp} — подвижности ионов. Подставляя (2) и (3) в (1), получаем $j = e_1 \sqrt{\frac{N}{\nu}(u_+ + u_-)\frac{U}{d}}$ — (4). С другой стороны, плотность тока $j = \frac{I}{S}$ — (5), где I — сила тока, S — площадь электронов. Приравнивая правые части уравнений (4) и (5), получаем $\frac{I}{S} = e \sqrt{\frac{N}{\nu}(u_+ + u_-)\frac{US}{d}} = 3.3 \text{ нA}$. Ток насыщения в камере (см. задачу 10.116) $I_{II} = NedS = 0,1$ мкА, тогда $\frac{I}{I} = 3.3\%$.

10.120. Какой наименьшей скоростыю v должен обладать электрон для того, чтобы нонизировать атом водорода? Потенциал ионизации атома водорода $U = 13.5 \, \mathrm{B}$.

т ешение:

Потенциалом ионизации атома называется разность потенциалов, которую должен пройти электрон, чтобы при соударении с атомом его ионизировать. Поэтому скорость электрона найдем из равенства $\frac{mv^2}{2} = eU$, откуда $v = \sqrt{\frac{2eU}{m}} = 2.2 \cdot 10^6 \, \text{m/c}$.

10.121. При какой температуре T атомы ртути имеют кинетическую энергию поступательного движения, достаточную для ионизации? Потенциал понизации атома ртути U = 10.4 В.

Решение:

Средняя кинетическая энергия поступательного движения атомов ртути $W_{\kappa} = \frac{3}{2}kT$, где $k=1,38\cdot 10^{-23}$ Дж/К — постоянная Больцмана. Потенциальная энергия атомов в металле $W_{\rm n} = eU$. По закону сохранения энергии $W_{\kappa} = W_{\rm n}$ или $\frac{3}{2}kT = eU$, откуда температура $T = \frac{2eU}{3k} = 8036$ К.

10.122. Потенциал ионизации атома гелия U = 24,5 В. Найти работу ионизации A.

Решение:

Потенциальная энергия атомов гелия W=eU. По закону сохранения энергии работа ионизации идет на разрыв связи молекул, т. е. равна потенциальной энергии $A=W=eU=39.2\cdot 10^{-19}$ Дж.

10.123. Какой наименьшей скоростью *v* должны обладать свободные электроны в цезин и платине для того, чтобы оне смогли покинуть металл?

Решение:

По закону сохранения энергии кинетическая энергия свободных электронов $W_{\rm K}=\frac{mv^2}{2}$ идет на работу выхода электронов из металла, следовательно, $\frac{mv^2}{2}=A$, откуда наименьшая скорость $v_{min}=\sqrt{\frac{2A}{m}}$. а) Для цезия A=1,9 эВ, тогда $v_{min}=8,3\cdot10^5\,{\rm m/c}$. б) Для платины A=5,3 эВ, тогда $v_{min}=1,4\cdot10^6\,{\rm m/c}$.

10.124. Во сколько раз изменится удельная термоэлектронная эмиссия вольфрама, находящегося при температуре $T_1 = 2400 \,\mathrm{K}$, если повысить температуру вольфрама на $\Delta T = 100 \,\mathrm{K}$?

Решение:

Удельная термоэлектронная эмиссия вольфрама при тем-

-пературах
$$T_1$$
 и T_2 : $j_1 = BT_1^2 e^{-\frac{A}{kT_1}}$ и $j_2 = BT_2^2 e^{-\frac{A}{kT_2}}$. Разделив

второе уравнение на псрвое, получим
$$\frac{j_2}{j_1} = \left(\frac{T_2}{T_1}\right)^2 \times$$

$$\times e^{-\frac{A}{k}\left(\frac{1}{T_2}-\frac{1}{T_1}\right)} = 2.6.$$

10.125. Во сколько раз катод из торированного вольфрама при температуре $T=1800~\rm K$ дает большую удельную эмиссию, чем катод из чистого вольфрама при той же температуре? Эмиссионная постоянная для чистого вольфрама $B_1=0.6\cdot 10^6~\rm A/(m^2\cdot K^2)$, для торированного вольфрама $B_2=0.3\cdot 10^7~\rm A/(m^2\cdot K^2)$.

Решение:

Удельная эмиссия чистого вольфрама равна $j_1 = B_1 T^2 e^{-\frac{A_1}{kT}}$. Удельная эмиссия торированного вольфрама равна $j_2 = B_2 T^2 e^{-\frac{A_2}{kT}}$. По таблице 17 найдем $A_1 = 4.5$ эВ = $= 7.2 \cdot 10^{-19}$ Дж; $A_2 = 2.63$ эВ = $4.2 \cdot 10^{-19}$ Дж. Отсюда отношение $\frac{j_2}{j_1} = \frac{B_2}{B_1} e^{\frac{1}{kT}(A_1 - A_2)}$. Подставляя числовые данные, получим $\frac{j_2}{j_1} = 11 \cdot 10^3$.

10.126. При какой температуре T_2 торированный вольфрам будет давать такую же удельную эмиссию, какую дает чистый вольфрам при $T_1 = 2500 \, \mathrm{K?}$ Необходимые данные взять из предыдущей задачи.

Решение:

Удельная эмиссия чистого вольфрама при температуре $T_1=2500\,\mathrm{K}$ и торированного вольфрама при температуре ре $T_2:$ $j_1=B_1T_1^2\exp\left(-\frac{A_1}{kT_1}\right)=2,84\cdot10^3\,\mathrm{A/m^2},$ $j_2=B_2T_2^2\times \exp\left(-\frac{A_2}{kT_2}\right)$. По условию $j_1=j_2$, т. е. $B_2T_2^2\exp\left(-\frac{A_2}{kT_2}\right)=2,84\cdot10^3\,\mathrm{A/m^2}$ — (1). Т. к. в основном зависимость удельной эмиссии от температуры определяется экспоненциальным множителем $\exp\left(-\frac{A}{kT}\right)$, а не множителем T^2 , то в

первом приближении можно положить $B_2 T_1^2 \exp\left(-\frac{A_2}{kT_1}\right) =$

$$= B_2(2500)^2 exp\left(-\frac{A_2}{kT_2}\right) 2.84 \cdot 10^3 \text{ A/M}^2; \text{ отсюда } exp\left(-\frac{A_2}{kT_2}\right) =$$

$$=\frac{2.84\cdot10^3}{B_2T_1^2}=1.86\cdot10^{-8}$$
 и $T_2=1690\,\mathrm{K}$ — первое прибли-

жение. Во втором приближении $B_2 \cdot (1690)^2 \times (1690)$

$$\times exp\left(-\frac{A_2}{kT_2}\right) = 2.84 \cdot 10^3 \text{ A/m}^2$$
; отсюда $T_2 = 1770 \text{ K}$ — второе

приближение. Далее $B_2 \cdot (1770)^2 \exp\left(-\frac{A_2}{kT_2}\right) = 2.84 \cdot 10^3 \,\text{A/m}^2$; отсюда $T_2 = 1750 \,\text{K}$ — третье приближение. Аналогично

$$B_2 \cdot (1750)^2 exp\left(-\frac{A_2}{kT_2}\right) = 2.84 \cdot 10^3 \text{ A/m}^2$$
; отсюда $T_2 = 1760 \text{ K} - 100 \text{ K}$

четвертое приближение. Легко убедиться, что пятое приближение с точностью до третьей значащей цифры совпадает с четвертым приближением. Таким образом, искомое решение $T_2 = 1760 \,\mathrm{K}$.