

1 BARR (1015) | 1 ESTRO CRIM DIN 17 DE STATION (1015) (1015) (1015) (1015) (1015) (1015) (1015) (1015) (1015)

(43) 国際公開日 2003 年9 月18 日 (18.09.2003)

PCT

(10) 国際公開番号 WO 03/076411 A1

(51) 国際特許分類⁷: **C07D 233/64**, 403/12, A61K 31/4164, 31/55, 31/4178, A61P 43/00

(21) 国際出願番号:

PCT/JP03/02840

(22) 国際出願日:

2003年3月11日(11.03.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-066809 2002年3月12日(12.03.2002) JP 特願2002-229802 2002年8月7日(07.08.2002) JP

- (71) 出願人 (米国を除く全ての指定国について): 武田薬品工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒541-0045 大阪府 大阪市中央区 道修町四丁目 1番 1号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 多和田 紘之

(TAWADA,Hiroyuki) [JP/JP]; 〒569-1032 大阪府 高槻市 宮之川原 1 丁目 1 1番 1号 Osaka (JP). 池本 朋己 (IKEMOTO,Tomomi) [JP/JP]; 〒665-0815 兵庫県宝塚市山本丸橋2 丁目 1 1番地の 5 Hyogo (JP). 西口敦子 (NISHIGUCHI,Atsuko) [JP/JP]; 〒664-0883 兵庫県伊丹市南鈴原 3 丁目 1 5 1番地 Hyogo (JP). 伊藤達也 (ITO,Tatsuya) [JP/JP]; 〒639-0264 奈良県香芝市今泉 1 2 1 4番地旭ヶ丘区画整理地内 1 1 7 . 1-7 Nara (JP). 安達万里 (ADACHI,Mari) [JP/JP]; 〒651-2216 兵庫県神戸市西区美穂が丘 4 丁目 2番地の 3 Hyogo (JP).

- (74) 代理人: 高橋 秀一, 外(TAKAHASHI,Shuichi et al.); 〒532-0024 大阪府 大阪市淀川区 十三本町 2 丁目 17番85号武田薬品工業株式会社大阪工場内 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ,

/続葉有/

- (54) Title: PROCESS FOR PRODUCING OPTICALLY ACTIVE SULFOXIDE DERIVATIVE
- (54) 発明の名称: 光学活性スルホキシド誘導体の製造法

$$H_{2}N \longrightarrow A \qquad \begin{pmatrix} R^{1} & R^{2} & R^{4} & R^{5} \\ S^{*}CH_{2} & N & (R^{2})_{p} \\ (11) & R^{5} & (CH_{2})_{m} \\ R^{3} & (CH_{2})_{m} & (R^{2})_{p} \\ (11) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (12) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (13) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (14) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (15) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (17) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (18) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (18) & R^{5} & (CH_{2})_{m} & (R^{2})_{p} \\ (19) &$$

(57) Abstract: A process for producing an optically active sulfoxide derivative (I) having CCR5 antagonistic activity without causing side reactions such as racemization and Pummerer rearrangement, which comprises reacting a compound (II) with a compound (III) as shown by the following scheme. (II) + (III) (I) In the scheme, R¹ represents hydrogen, an aliphatic hydrocarbon group, or an aromatic group; R² represents halogeno, alkyl, hydroxy, amino, an aromatic group, etc.; R³ represents a 5- or 6-membered ring; R⁴ represents hydrogen, alkyl, alkoxy, or halogeno; R⁵ represents hydrogen, a hydrocarbon group, a heterocyclic group, acyl, etc.; ring A represents an optionally substituted benzene ring; X represents a bond or divalent group comprising a linear part constituted of one to four atoms; m is an integer of 1 to 5; n is an integer of 0 to 3; p is an integer of 0 to 2; and *¹ indicates an asymmetric center.

OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI

特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

本発明は、下記式で示されるとおり、化合物(II)と化合物(III)を反応させてることにより、CCR5拮抗作用を有する光学活性スルホキシド誘導体(I)を、ラセミ化やPummerer転位等の副反応を伴うことなく製造する方法の提供する。

$$H_{2}N \longrightarrow A \qquad \begin{array}{c} R^{1} \\ S^{*} \\ CH_{2} \\ n \end{array} \longrightarrow N \qquad \begin{array}{c} R^{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{4} \\ N \end{array} \longrightarrow \begin{array}{c} R^{5} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{5} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{5} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{1} \\ COOH \end{array} \longrightarrow \begin{array}{c} R^{1} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{2} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{1} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{2} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{1} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{1} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{2} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{1} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{2} \\ CH_{2} \\ N \end{array} \longrightarrow \begin{array}{c} R^{1} \\ CH_{2} \\ N \end{array} \longrightarrow$$

(式中、R¹は水素、脂肪族炭化水素基または芳香族基を、R²はハロゲン、アルキル、水酸基、アミノ、芳香族基などを、R³は5または6員環を、R⁴は水素、アルキル、アルコキシまたはハロゲンを、R⁵は水素、炭化水素基、複素環基、アシルなどを、環Aは置換されていてもよいベンゼン環を、Xは結合手または直鎖部分を構成する原子数が1-4個である2価の基を、mは1-5の整数を、nは0-3の整数を、pは0-2の整数を示し、*1は不斉中心を示す。)で表される光学活性化合物の製造法。

明 細 書

光学活性スルホキシド誘導体の製造法

5

発明の分野

本発明は、CCR5拮抗作用を有する光学活性スルホキシド誘導体またはその塩の工業的に有利な製造法に関する。

発明の背景

10 従来技術

従来、光学活性スルホキド誘導体の製造法としては、特殊な場合を除いて、キラルカラムによる分離が一般的であるが、この方法においてはSMB (Simulated moving bed) などの特殊な装置が必要であり工業的には十分満足さ

れるものではない。

15

25

先行技術の開示

この出願の発明に関連する先行技術文献情報としては次のものがある。

【特許文献1】

国際公開第96/01267号パンフレット

20 【特許文献 2】

国際公開第99/32468号パンフレット

【特許文献3】

国際公開第99/32100号パンフレット

【特許文献4】

国際公開第00/10965号パンフレット

【特許文献5】

国際公開第00/37455号パンフレット

【特許文献6】

国際公開第00/68203号パンフレット

【特許文献7】。

国際公開第00/76993号パンフレット

【特許文献8】

英国特許第1579270号明細書

【特許文献9】

特開平62-265270号公報

【特許文献10】

特表2002-521408号公報

10 【特許文献 1 1】

国際公開第01/46203号パンフレット

【非特許文献1】

Proc. Natl. Acad. Sci. USA, 96巻、5698 -5703頁(1999年5月)

15

5

発明が解決しようとする技術的課題

分子内にアミノ基を有する光学活性スルホキド誘導体を、ラセミ化やPummerer 転位等の副反応を伴わないアシル化による、光学活性スルホキド誘導体またはその塩の工業的に有利な製造法を提供するものである。

20

25

発明の簡単な説明

本発明者らは、CCR 5 拮抗作用を有する光学活性スルホキシド誘導体またはその塩の製造法につき、鋭意検討した結果、ラセミ化やPummerer転位等の副反応を伴うことなく、工業的に有利な製造法を見出した。

すなわち本発明は、

(1) 式:

WO 03/076411 PCT/JP03/02840

$$H_{2}N \longrightarrow A \qquad (11)$$

(式中、 R^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基を表し、 R^2 はハロゲン原子、ハロゲン原子でさらに置換されていてもよいだカー R^2 アルキル基またはハロゲン原子で置換されていてもよい R^2 アルコキシ基で置換されていてもよいベンゼン環を、 R^2 の整数を、 R^2 のないし R^2 の整数を示し、 R^3 が付された個所の R^3 のないし R^3 の整数を示し、 R^3 が付された個所の R^3 のないしるの整数を示し、 R^3 が付された個所の R^3 のないしるの整数を示し、 R^3 が付された個所の R^3 のないしるの整数を示し、 R^3 が付された個所の R^3 のと、 R^3 で表される光学活性化合物またはその塩と式:

$$R^{3} \times X \times COOH$$

5

10

15

20

(式中、R³は置換されていてもよい5または6員環を示し、R⁴は水素原子、置換されていてもよい低級アルキル基、置換されていてもよい低級アルコキシ基またはハロゲン原子を示し、R⁵は水素原子、置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいスルホニル基、エステル化またはアミド化されたカルボキシル基または置換されていてもよいアシル基を、

Xは結合手または直鎖部分を構成する原子数が1ないし4個である2価の基を示し、mは1ないし5の整数を示す。)で表される化合物、その塩またはその反応性誘導体とを反応させることを特徴とする式:

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法、

(2) 式:

5

15

10 (式中、R⁶はメチル基、フェニル基、4-メチルフェニル基またはα-ナルチル基を示し、*²は不斉中心を、他の記号は前記と同意義を示す。)で表される 光学活性化合物または式:

(式中、R'は水素原子、塩素原子または二トロ基を示し、他の記号は前記と同意義である。)で表される光学活性化合物と式(III)で表される化合物、その塩またはその反応性誘導体とを反応させることを特徴とする式(I)で表され

10

15

る光学活性化合物またはその塩の製造法、

- (3) 式(II)で表される光学活性化合物またはその塩、
- (4) R^1 および R^2 が炭素数1-6のアルキル基、nが1または2である上記
- (3) 記載の光学活性化合物またはその塩、
- (5) R^1 が炭素数 1-6のアルキル基、pが 0、nが 1 および

上記(3)記載の光学活性化合物またはその塩、

- (6)式(XIa)または式(XIb)で表される光学活性化合物を複分解反応に付すことを特徴とする式(II)で表される光学活性化合物またはその塩の製造法、
 - (7) 式 (X I a) または式 (X I b) で表される光学活性化合物、
- (8) R^1 および R^2 が炭素数1-6のアルキル基、nが1または2であり、 R^6 が4-メチルフェニル基であるかまたは R^7 がニトロ基である上記(7)記載の光学活性化合物、
- (9) R^1 が炭素数1-6のアルキル基、pが0、nが1および

であり、 R^6 が4-メチルフェニル基であるかまたは R^7 がニトロ基である上記

(7) 記載の光学活性化合物、

(10)式:

WO 03/076411 PCT/JP03/02840

6

$$H_2N \longrightarrow A \qquad (CH_2)_n \qquad (IX)$$

(式中、各記号は前記と同意義を示す。)で表される化合物またはその塩を式:

(式中、各記号はは前記と同意義である。) または式:

5

(式中、各記号は前記と同意義を示す。)で表される光学活性な酸で光学分割することを特徴とする式(XIa)または式(XIb)で表される光学活性化合物の製造法、

(11)式:

$$H_2N + A + A + CCH_2 + CCH_2$$

(式中、各記号は前記と同意義を示す。) で表される化合物またはその塩を式 (XIIa) または式:

で表される軸不斉に関して光学活性な酸の存在下に酸化することを特徴とする式

- (II) で表される光学活性化合物またはその塩の製造法、
- (12)式(IX)で表される化合物またはその塩、
- (13)式:

5

15

$$R^{8} \longrightarrow NH \longrightarrow A \longrightarrow S (CH_{2})_{n} \longrightarrow N \longrightarrow N \longrightarrow N$$
 (VIII)

(式中、R®は水素原子、置換されていてもよい低級アルキル基、置換されてい てもよいアリール基、置換されていてもよいアラルキル基、-OR¹⁰(R¹⁰は 10 置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換 されていてもよいアラルキル基を示す。)を、その他の各記号は前記と同意義を 示す。)で表される化合物またはその塩を脱保護反応に付すことを特徴とする式

- (IX) で表される化合物またはその塩の製造法、
- (14)式(X)で表される化合物またはその塩を酸化することを特徴とする式
- (IX) で表される化合物またはその塩の製造法、
- (15) 式 (V I I I) で表される化合物またはその塩、
- (16) 式:

(式中、各記号は前記と同意義を示す。)で表される化合物またはその塩を酸化することを特徴とする式(VIII)で表される化合物またはその塩の製造法、(17)式:

5

10

15

(式中、R² はハロゲン原子、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を示し、他の記号は前記と同意義を示す。)で表される化合物またはその塩、

(18)式:

$$R^8$$
 NH A (V)

(式中、各記号は前記と同意義を示す。) で表される化合物またはその塩と式:

(式中、Yはハロゲン原子または式: $-OSO_2-R^9$ (式中、 R^9 は低級アルキル基、置換されていてもよいアリール基)で表される基を示し、他の記号は前記と同意義を示す。)で表される化合物またはその塩とを反応させることを特徴とする式(VII)で表される化合物またはその塩の製造法、

(19)式:

(式中、各記号は前記と同意義を示す。)で表される化合物またはその塩、および

10 (20)式:

(式中、環Aは前記と同意義を示す。)で表される化合物またはその塩と式(VI)で表される化合物またはその塩とを反応させることを特徴とする式(X)で表される化合物またはその塩の製造法、

15 に関する。

発明の詳細な説明

以下に本発明の内容を詳細に説明する。

10

15

20

25

環Aの置換基であるNロゲン原子としては、たとえばフッ素、塩素、臭素などが、Nロゲン原子で置換されていてもよい C_{1-4} アルキル基としてはたとえばメチル、エチル、トリフルオロメチル、トリフルオロエチルなどが、およびNロゲン原子で置換されていてもよい C_{1-4} アルコキシ基としては、たとえばメトキシ、エトキシ、プロポキシ、トリフルオロメトキシ、トリフルオロエトキシなどが挙げられる。

R¹で示される置換されていてもよい脂肪族炭化水素基としては、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいシクロアルキル基、置換されていてもよいシクロアルケニル基などが挙げられる。

該置換されていてもよいアルキル基におけるアルキル基としては、直鎖状また は分枝状の炭素数1ないし10のアルキル基、例えばメチル、エチル、プロピル、 イソプロピル、プチル、イソブチル、secーブチル、tertーブチル、ペン チル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、 デシルなどの C_{1-1} 。アルキル基、好ましくは低級(C_{1-6})アルキル基が、 該置換されていてもよいアルケニル基におけるアルケニル基としては、たとえば 直鎖状または分枝状で1ないし5個の二重結合を有する炭素数2ないし10のア ルケニル基、例えばエテニル、プロペニル、プテニル、イソプテニル、ペンテニ ル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニルなどのC₁₋₁ 。アルケニル基、好ましくは低級(C_{1-6})アルケニル基が、該置換されてい てもよいアルキニル基におけるアルキニル基としては、たとえば直鎖状または分 枝状で1ないし5個の二重結合を有する炭素数2ないし10のアルケニル基、例 えばエチニル、プロピニル、ブチニル、イソブチニル、ペンチニル、ヘキシニル、 ヘプチニル、オクチニル、ノニニル、デシニルなどの C_{1-1} 。アルキニル基、 好ましくは低級(C_{1-6})アルキニル基が、それぞれ挙げられる。該置換され ていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていて もよいアルキニル基における置換基としては、ハロゲン原子(例、フッ素、塩素、 臭素、ヨウ素など)、ニトロ基、シアノ基、置換されていてもよい水酸基(例、

10

15

20

25

水酸基、 C_{1-4} アルコキシなど)、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、ピロリジン、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノ基など)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ基(例、メトキシストキシ、エトキシ、オトキシ、メトキシ、メトキシエトキシ、エトキシ、トリフルオロエトキシエトキシ、メトキシエトキシ、トリフルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリフルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリフルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリスルオロメトキシエトキシ、トリスルオコルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

該置換されていてもよいシクロアルキル基におけるシクロアルキル基としては、例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキル基などが挙げられ、該置換されていてもよいシクロアルキニル基におけるシクロアルケニル基としては、例えば、シクロプロペニル、シクロプテニル、シクロペンテニル、シクロヘセニル、シクロヘプテニルなどの C_{3-7} シクロアルケニル基などが挙げられる。該置換されていてもよいシクロアルキル基および置換されていてもよいシクロアルキール基における置換基としては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、デトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化されてい

10

15

20

25

でもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ基(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロエトキシエトキシ、トリフルオロエトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

R¹で示される置換されていてもよい芳香族基における芳香族基としては、フ ェニル、ピリジル、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、 チアゾリル、オキサゾリル、イソチアゾリル、イソキサゾリル、テトラゾリル、 ピラジニル、ピリミジニル、ピリダジニル、トリアゾリル等の5または6員の同 素または複素環芳香族基、ベンゾフラン、インドール、ベンゾチオフェン、ベン ズオキサゾール、ベンズチアゾール、インダゾール、ベンズイミダゾール、キノ リン、イソキノリン、キノキサリン、フタラジン、キナゾリン、シンノリン、イ ミダゾピリジンなどの縮環複素環芳香族基などが挙げられる。これらの芳香族基 の置換基としては、ハロゲン基(例、フッ素、塩素、臭素、ヨウ素など)、ニト ロ基、シアノ基、水酸基、置換されていてもよいチオール基(例、チオール、C 1-4 アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、 ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾー ルなどの5または6員の環状アミノ基など)、エステル化またはアミド化されて いてもよいカルボキシル基(例、カルボキシル、C1-4アルコキシカルボニル、 カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバ モイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル基(例、トリフル オロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アル

10

15

20

25

コキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1 ないし 3 個が好ましい。

R¹で示される「置換されていてもよい芳香環」の「芳香環」が有していても よい「置換基」としては、とりわけ、ハロゲン原子、ハロゲン化または低級(C $1_{1,2}$)アルコキシ化されていてもよい低級($C_{1,2}$)アルキル基(例、メチ ル、エチル、 t ープチル、トリフルオロメチル、メトキシメチル、エトキシメチ ル、プロポキシメチル、プトキシメチル、メトキシエチル、エトキシエチル、プ ロポキシエチル、プトキシエチルなど)、水酸基またはシアノ基で置換されてい てもよい低級(C_{1-4})アルキル基(例、ヒドロキシ C_{1-4} アルキル、シア JC_{1-4} アルキルなど)、エステル化またはアミド化されていてもよいカルボ キシル基で置換されていてもよい低級(C₁₋₄)アルキル基(例、カルボキシ NC_{1-4} $PN+N_{1-4}$ PN-1+2モイルC1-4アルキル、モノC1-4アルキルカルバモイルC1-4アルキル、 ジC, _ 4 アルキルカルバモイルC, _ 4 アルキル、ピロリジノカルボニルC, _ _ アルキル、ピペリジノカルボニルC _{1 - 4} アルキル、モルホリノカルボニル C, _ 4 アルキル、チオモルホリノカルボニルC1 _ 4 アルキルなど)、ハロゲ ン化または低級(C_{1-4})アルコキシ化されていてもよい低級(C_{1-4})アル コキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、t‐ブトキシ、ト リフルオロメトキシ、メトキシメトキシ、エトキシメトキシ、プロポキシメトキ シ、プトキシメトキシ、メトキシエトキシ、エトキシエトキシ、プロポキシエト キシ、プトキシエトキシ、メトキシプロポキシ、エトキシプロポキシ、プロポキ シプロポキシ、ブトキシプロポキシなど)、ハロゲン原子(例、フッ素、塩素な ど)、ニトロ基、シアノ基、1または2個の低級(C₁₋₄)アルキル基などが 好ましく、ハロゲン化されていてもよい低級(C₁₋₄)アルキル基がさらに好 ましい。

10

15

20

25

R²で示される「置換されていてもよいアルキル基」、「置換されていてもよいシクロアルキル基」および「置換されていてもよい芳香族基」はR¹で示されるそれらの定義と同様である。

R²で示される置換されていてもよい水酸基における置換基としては、(1) 置換されていてもよいアルキル基(例えば、メチル、エチル、プロピル、イソプ ロピル、ブチル、イソブチル、sec‐ブチル、tert‐ブチル、ペンチル、 イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル などの C_{1-1} 。アルキル基、好ましくは低級(C_{1-6})アルキル基などが挙 げられる): (2) 置換されていてもよく、ヘテロ原子を含有していてもよいシ クロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シ クロヘキシル、シクロヘプチルなどのC₃₋₇シクロアルキル;テトラヒドロフ ラニル、テトラヒドロチエニル、ピロリジニル、ピラゾリジニル、ピペリジル、 ピペラジニル、モルホリニル、チオモルホリニル、テトラヒドロピラニル、テト ラヒドロチオピラニルなどの1または2個のヘテロ原子を含有する飽和の5また は6員複素環基など(好ましくはテトラヒドロピラニルなど)が挙げられる); (3) 置換されていてもよいアルケニル基(例えば、アリル(allyl)、クロチル、 2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニル基、好ま しくは低級(C₂₋₆)アルケニル基などが挙げられる);(4)置換されてい てもよいシクロアルケニル基(例えば、2-シクロペンテニル、2-シクロヘキ セニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数 3ないし7のシクロアルケニル基などが挙げられる): (5) 置換されていても よいアラルキル基(例えば、フェニルーC, _ 4 アルキル(例、ベンジル、フェ ネチルなど)などが挙げられる);(6)ホルミルまたは置換されていてもよい アシル基(例えば、炭素数2ないし4のアルカノイル基(例、アセチル、プロピ オニル、ブチリル、イソブチリルなど)、炭素数1ないし4のアルキルスルホニ ル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられる); (7) 置換されていてもよいアリール基(例えば、フェニル、ナフチルなどが挙

げられる);などの置換基が挙げられ、上記した(1)置換されていてもよいア

ルキル基、(2)置換されていてもよいシクロアルキル基、(3)置換されていてもよいアルケニル基、(4)置換されていてもよいシクロアルケニル基、

5

10

15

20

25

(5) 置換されていてもよいアラルキル基、(6) 置換されていてもよいアシル 基、および(7)置換されていてもよいアリール基が有していてもよい置換基と しては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シ アノ基、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} ア ルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジ ン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの 5または6員の環状アミノ基など)、エステル化またはアミド化されていてもよ いカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバ モイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイル など)、ハロゲン化されていてもよい C_{1-4} アルキル基(例、トリフルオロメ チル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-6} アルコキシ 基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、 トリフルオロエトキシなど;好ましくはハロゲン化されていてもよい С1-4ア ルコキシ)、ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニ ルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスル ホニルなど)、置換されていてもよい5または6員の芳香族複素環〔例、フラン、 チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、 イソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミ ジン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から 選ばれた1または2種のヘテロ原子1-4個を含有する5または6員の芳香族複 素環など;該複素環が有していてもよい置換基としては、ハロゲン基(例、フッ 素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、チオール基、ア ミノ基、カルポキシル基、ハロゲン化されていてもよい C_{1-4} アルキル基(例、 トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_1 - 4 アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフル

10

15

20

25

オロメトキシ、トリフルオロエトキシなど)、ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。1などが挙げられ、置換基の数としては、1ないし30

R²で示される置換されていてもよいチオール基における置換基としては、上記した「置換されていてもよい水酸基における置換基」と同様なものが挙げられるが、なかでも

(1)置換されていてもよいアルキル基(例えば、メチル、エチル、プロピル、 イソプロピル、ブチル、イソブチル、secーブチル、tertープチル、ペン チル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、 デシルなどの C_{1-1} 。アルキル基、好ましくは低級(C_{1-6})アルキル基な どが挙げられる);(2)置換されていてもよいシクロアルキル基(例えば、シ クロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチ ルなどの C_{3-7} シクロアルキルなどが挙げられる); (3) 置換されていても よいアラルキル基(例えば、フェニルーC₁₋₄アルキル基(例、ベンジル、フ ェネチルなど) などが挙げられる) ; (4) 置換されていてもよいアリール基 (例えば、フェニル、ナフチルなどが挙げられる) などが好ましく、上記した (1) 置換されていてもよいアルキル基、(2) 置換されていてもよいシクロア ルキル基、(3)置換されていてもよいアラルキル基、および(4)置換されて いてもよいアリール基が有していてもよい置換基としては、ハロゲン原子(例、 フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換されて いてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換され ていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、 チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノな

ど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボ

キシル、C₁₋₄ アルコキシカルボニル、カルパモイル、モノC₁₋₄ アルキル

WO 03/076411 PCT/JP03/02840

カルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ基(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1 ないし3 個が好ましい。

5

20

25

 R^2 で示される置換されていてもよいアミノ基の置換基としては、上記した 「置換されていてもよい水酸基」における置換基と同様な置換基を1または2個 有していてもよいアミノ基などが挙げられるが、なかでも(1)置換されていて もよいアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、 イソプチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネ オペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_1-10 アルキル基、好ましくは低級(C_1-6)アルキル基などが挙げられる);

(2) 置換されていてもよいシクロアルキル基(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのC₃₋₇シクロアルキル基などが挙げられる); (3) 置換されていてもよいアルケニル基 (例えば、アリル(allyl)、クロチル、2ーペンテニル、3ーヘキセニルなど炭素数 2 ないし 1 0 のアルケニル基、好ましくは低級(C₂₋₆)アルケニル基などが挙げられる); (4) 置換されていてもよいシクロアルケニル基(例えば、2ーシクロペンテニル、2ーシクロヘキセニルメチルなど炭素数 3 ないし 7 のシクロアルケニルメチル、2ーシクロヘキセニルメチルなど炭素数 3 ないし 7 のシクロアルケニルなどが挙げられる); (5) ホルミルまたは置換されていてもよいアシル基(例えば、炭素数 2 ないし 4 のアルカノイル基(例、アセチル、プロピオニル、プチリル、イソプチリルなど)、炭素数 1 ないし 4 のアルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられる); (6) 置換されていても

10

15

20

25

よいアリール基(例えば、フェニル、ナフチルなどが挙げられる)などが好まし く、 上記した(1)置換されていてもよいアルキル基、(2)置換されていて もよいシクロアルキル基、(3)置換されていてもよいアルケニル基、(4)置 換されていてもよいシクロアルケニル基、(5)置換されていてもよいアシル基、 および(6)置換されていてもよいアリール基が有していてもよい置換基として は、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ 基、水酸基、置換されていてもよいチオール基(例、チオール、C₁₋₄アルキ ルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アル キルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、 ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5ま たは6員の環状アミノなど)、エステル化またはアミド化されていてもよいカル ボキシル基 (例、カルボキシル、C₁₋₄ アルコキシカルボニル、カルバモイル、 モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、 ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エトキシ、 プロポキシ、プトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、 ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ基(例、 メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキ シエトキシ、トリフルオロエトキシエトキシなど)、ホルミル基、 C_{2-4} アル カノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル 基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の 数としては、1ないし3個が好ましい。

R²で示される置換されていてもよいアミノ基は、アミノ基の置換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員環の環構成窒素原子から水素原子1個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換基を有していてもよく、かかる置換基としては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール

10

15

20

25

基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エトキシ、プロボキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ基(例、メトキシエトキシ、メトキシエトキシ、エトキシ、トリフルオロメトキシ、エトキシ、トリフルオロメト・リフルオロメト・カンストキシ、トリフルオロメトキシエトキシ、メトキシエト・カなど)、ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

 R^2 で示される置換されていてもよいアシル基としては、(1)水素;(2) 置換されていてもよいアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、イソプチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-1} 。アルキル基、好ましくは低級(C_{1-6})アルキル基などが挙げられる);(3)置換されていてもよいシクロアルキル基(例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロペンチル、シクロペプチルなどの C_{3-7} シクロアルキル基などが挙げられる);(4)置換されていてもよいアルケニル基(例えば、アリル(allyl)、クロチル、2-ペンテニル、3-ヘキセニルなど炭素数 2 ないし 1 0 のアルケニル基、好ましくは低級(C_{2-6})アルケニル基などが挙げられる);(5)置換されていてもよいシクロアルケニル基(例えば、2-シクロペンテニル、2-シクロペンテニル、2-シクロペンテニル、1 のシクロアルケニル基(例えば、2-シクロペンテニル、2-シクロペンテニル、2-シクロペンテニル、2-シクロペンテニル、1 のシクロアルケニル 基(例えば、2-シクロペナテニル、2-シクロペナテニル、2-シクロペナテニルメチルなど炭素数 3 ないし 7 のシクロアルケニル エル基などが挙げられる);(6)置換されていてもよい5または6 員の単環の・

10

15

20

25

芳香族基 (例えば、フェニル、ピリジルなどが挙げられる) などがカルボニル基 またはスルホニル基と結合したもの (例、アセチル、プロピオニル、プチリル、イソブチリル、バレリル、イソバレリル、ピパロイル、ヘキサノイル、ヘプタノイル、オクタノイル、シクロブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、シクロヘプタンカルボニル、クロトニル、2 - シクロヘキセンカルボニル、ベンゾイル、ニコチノイル、メタンスルホニル、エタンスルホニル等) が挙げられ、上記した (2) 置換されていてもよいアルキル基、

(3) 置換されていてもよいシクロアルキル基、(4) 置換されていてもよいア ルケニル基、(5)置換されていてもよいシクロアルケニル基、および(6)置 換されていてもよい5または6員の単環の芳香族基が有していてもよい置換基と しては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シ アノ基、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} ア ルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジ ン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの 5または6員の環状アミノ基など)、エステル化またはアミド化されていてもよ いカルボキシル基 (例、カルボキシル、C₁₋₄ アルコキシカルボニル、カルバ モイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイル など)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エ トキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシ など)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ 基(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオ ロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル基、C₂ - 4 アルカノイル基(例、アセチル、プロピオニルなど)、C₁₋₄ アルキルス ルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、

 R^2 で示されるエステル化されていてもよいカルボキシル基としては、(1) 水素; (2) 置換されていてもよいアルキル基(例えば、 $^\prime$ メチル、エチル、プロ

置換基の数としては、1ないし3個が好ましい。

10

15

20

25

ピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、 ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニ ル、デシルなどの C_{1-1} 。アルキル基、好ましくは低級(C_{1-6})アルキル 基などが挙げられる);(3)置換されていてもよいシクロアルキル基(例えば、 シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプ チルなどの C_{3-7} シクロアルキル基などが挙げられる);(4)置換されてい てもよいアルケニル基(例えば、アリル(allyl)、クロチル、2-ペンテニル、 3-ヘキセニルなど炭素数2ないし10のアルケニル基、好ましくは低級(C2 - 6) アルケニル基などが挙げられる); (5) 置換されていてもよいシクロア ルケニル基 (例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シク ロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシク ロアルケニル基などが挙げられる);(6)置換されていてもよいアリール基 (例えば、フェニル、ナフチルなど) などがカルボニルオキシ基と結合したもの、 好ましくはカルボキシル基、低級(C₁₋₆)アルコキシカルボニル基、アリー ルオキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル、プロポ キシカルボニル、フェノキシカルボニル、ナフトキシカルボニルなど)などが挙 げられ、上記した(2)置換されていてもよいアルキル基、(3)置換されてい てもよいシクロアルキル基、(4)置換されていてもよいアルケニル基、(5) 置換されていてもよいシクロアルケニル基、および(6)置換されていてもよい アリール基が有していてもよい置換基としては、ハロゲン原子(例、フッ素、塩 素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換されていてもよい チオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよ いアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルア ミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモル ホリン、ピロール、イミダゾールなどの5または6員の環状アミノ基など)、エ ステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモ イル、ジ C_{1-4} アルキルカルパモイルなど)、ハロゲン化されていてもよいC

10

15

20 .

25

 $_{1-4}$ アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい $_{1-4}$ アルコキシー $_{C_{1-4}}$ アルコキシ基(例、メトキシメトキシ、メトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル基、 $_{2-4}$ アルカノイル基(例、アセチル、プロピオニルなど)、 $_{1-4}$ アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

R²としてはとりわけ、ハロゲン原子、シアノ基、水酸基、ニトロ基、エステ ル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、C, _ _ アルコキシカルボニル、カルバモイル、モノC _{1 _ 4} アルキルカルバモイル、 ジC₁₋₄アルキルカルバモイル、ピロリジノカルボニル、ピペリジノカルボニ ル、モルホリノカルボニル、チオモルホリノカルボニルなど)、ハロゲン化また は低級(C_{1-4})アルコキシ化されていてもよい低級(C_{1-4})アルキル基 **(例、メチル、エチル、t-ブチル、トリフルオロメチル、メトキシメチル、エ** トキシメチル、プロポキシメチル、ブトキシメチル、メトキシエチル、エトキシ エチル、プロポキシエチル、ブトキシエチルなど)、水酸基またはシアノ基で置 換されていてもよい低級 $(C_1 - 4)$ アルキル基 (例、ヒドロキシ $C_1 - 4$ アル キル、シアノC1-4アルキルなど)、エステル化またはアミド化されていても よいカルボキシル基で置換されていてもよい低級(C₁₋₄)アルキル基(例、 カルボキシルC₁₋₄ アルキル、C₁₋₄ アルコキシカルボニルC₁₋₄ アルキ ル、カルバモイル C_{1-4} アルキル、モノ C_{1-4} アルキルカルバモイル C_{1-4} ルボニルC1-4アルキル、ピペリジノカルボニルC1-4アルキル、モルホリ ノカルボニルC_{1 - 4} アルキル、チオモルホリノカルボニルC_{1 - 4} アルキルな ど)、ハロゲン化または低級(C_{1-4})アルコキシ化されていてもよい低級(C1-4)アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、t-プトキシ、トリフルオロメトキシ、メトキシメトキシ、エトキシメトキシ、プロ

10

15

20

25

ポキシメトキシ、ブトキシメトキシ、メトキシエトキシ、エトキシエトキシ、プロポキシエトキシ、ブトキシエトキシ、メトキシプロポキシ、エトキシプロポキシ、プロポキシプロポキシ、ブトキシプロポキシなど)、ハロゲン原子(例、フッ素、塩素など)、ニトロ基、シアノ基、1または2個の低級(C_{1-4})アルキル基、ホルミルまたは低級(C_{2-4})アルカノイル基で置換されていてもよいアミノ基(例、アミノ、メチルアミノ、ジメチルアミノ、ホルミルアミノ、アセチルアミノなど)、5または6員の環状アミノ基(例、1ーピロリジニル、1ーピペラジニル、1ーピペリジニル、4ーモルホリノ、4ーチオモルホリノ、1ーイミダゾリル、4ーテトラヒドロピラニルなど)などが挙げられる。 R^2 としてはハロゲン化されていてもよい低級(C_{1-4})アルキル基がさらに特に好ましい。

R²で示される各置換基の定義はR²で示されるそれらの定義と同じである。

R³で示される「置換されていてもよい5または6員環基」の「5または6員 環」としては、ベンゼンなどの6員の芳香族炭化水素、シクロペンタン、シクロ ヘキサン、シクロペンテン、シクロヘキセン、シクロペンタンジエン、シクロヘ キサンジエンなどの5または6員の脂肪族炭化水素、フラン、チオフェン、ピロ ール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、 イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、 トリアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた1または2 種のヘテロ原子1ないし4個を含有する5または6員の芳香族複素環、テトラヒ ドロフラン、テトラヒドロチオフェン、ジチオラン、オキサチオラン、ピロリジ ン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、ピ ペリジン、ピペラジン、オキサジン、オキサジアジン、チアジン、チアジアジン、 モルホリン、チオモルホリン、ピラン、テトラヒドロピラン、テトラヒドロチオ ピランなどの窒素原子、硫黄原子および酸素原子から選ばれた1または2種のへ テロ原子1ないし4個を含有する5または6員の非芳香族複素環などから水素原 子1個を除いて形成される基などが挙げられるが、なかでも、「5または6員 環」としては、ペンゼン、フラン、チオフェン、ピリジン、シクロペンタン、シ

10

15

20

25

クロヘキサン、ピロリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、テトラヒドロピラン (好ましくは、6員環) などが好ましく、とりわけベンゼンが好ましい。

R³で示される「置換されていてもよい5または6員環基」の「5または6員環」が有していてもよい「置換基」としては、例えば、ハロゲン原子、ニトロ、シアノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル、エステル化されていてもよいカルボキシル基、置換されていてもよい芳香族基などが用いられる。

R³ の置換基としてのハロゲンの例としては、フッ素、塩素、臭素、ヨウ素などが挙げられ、とりわけフッ素および塩素が好ましい。

 R^3 の置換基としての置換されていてもよいアルキル基におけるアルキル基としては、直鎖状または分枝状の炭素数 1 ないし 1 0 のアルキル、例えばメチル、エチル、プロピル、イソプロピル、プチル、イソプチル、sec-プチル、tertープチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル基、好ましくは低級(C_{1-6}) アルキル基が挙げられる。該置換されていてもよいアルキルにおける置換基としては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エ

トキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ 基(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1 ないし 3 個が好ましい。

5

10

15

20

25

R³の置換基としての置換されていてもよいシクロアルキル基におけるシクロ アルキル基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、 シクロヘキシル、シクロヘプチルなどのC₃₋₇シクロアルキル基などが挙げら れる。該置換されていてもよいシクロアルキル基における置換基としては、ハロ ゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸 基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオな ど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミ ノ、ジC₁₋₄アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジ ン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員 の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル 基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノC $_{1-4}$ アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲ ン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エトキシ、プロポ キシ、プトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲ ン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ基(例、メトキ シメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエト キシ、トリフルオロエトキシエトキシなど)、ホルミル基、 C_{2-4} アルカノイ ル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、 メタンスルホニル、エタンスルホニルなど) などが挙げられ、置換基の数として は、1ないし3個が好ましい。

R³の置換基としての置換されていてもよい水酸基における置換基としては、

5 .

10

15.

20

25

(1) 置換されていてもよいアルキル基(例えば、メチル、エチル、プロピル、 イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペン チル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、 デシルなどの C_{1-10} アルキル基、好ましくは低級(C_{1-6})アルキル基な どが挙げられる); (2) 置換されていてもよく、ヘテロ原子を含有していても よいシクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチ ル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキル基;テトラ ヒドロフラニル、テトラヒドロチエニル、ピロリジニル、ピラゾリジニル、ピペ リジル、ピペラジニル、モルホリニル、チオモルホリニル、テトラヒドロピラニ ル、テトラヒドロチオピラニルなどの1または2個のヘテロ原子を含有する飽和 の5または6員複素環基など(好ましくはテトラヒドロピラニルなど)が挙げら れる); (3) 置換されていてもよいアルケニル基(例えば、アリル(allyl)、 クロチル、2-ペンテニル、3-ヘキセニルなど炭素数2ないし10のアルケニ ル基、好ましくは低級(C₂₋₆)アルケニル基などが挙げられる);(4)置 換されていてもよいシクロアルケニル基(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメチル など炭素数3ないし7のシクロアルケニル基などが挙げられる);(5)置換さ れていてもよいアラルキル基(例えば、フェニルー C_{1-4} アルキル(例、ベン ジル、フェネチルなど)などが挙げられる);(6)ホルミル基または置換され ていてもよいアシル基(例えば、炭素数2ないし4のアルカノイル(例、アセチ ル、プロピオニル、ブチリル、イソブチリルなど)、炭素数1ないし4のアルキ ルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げら れる); (7) 置換されていてもよいアリール基(例えば、フェニル、ナフチル などが挙げられる)などの置換基が挙げられ、上記した(1)置換されていても よいアルキル基、(2)置換されていてもよいシクロアルキル基、(3)置換さ れていてもよいアルケニル基、(4)置換されていてもよいシクロアルケニル基、 (5) 置換されていてもよいアラルキル基、(6) 置換されていてもよいアシル 基、および(7)置換されていてもよいアリール基が有していてもよい置換基と

10

15

20

25

しては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シ アノ基、水酸基、置換されていてもよいチオール基(例、チオール、C₁₋₄ア ルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジ ゛ン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの 5または6員の環状アミノなど)、エステル化またはアミド化されていてもよい カルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモ イル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルな ど)、ハロゲン化されていてもよい C_{1-4} アルキル基(例、トリフルオロメチ ル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-6} アルコキシ基 (例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、ト リフルオロエトキシなど;好ましくはハロゲン化されていてもよい C_{1-4} アル コキシ基)、ホルミル基、C2-4アルカノイル基(例、アセチル、プロピオニ ルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスル ホニルなど)、置換されていてもよい5または6員の芳香族複素環〔例、フラン、 チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、 イソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミ ジン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から 選ばれた1または2種のヘテロ原子1ないし4個を含有する5または6員の芳香 族複素環など;該複素環が有していてもよい置換基としては、ハロゲン原子 (例、 フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、チオール基、 アミノ基、カルボキシル基、ハロゲン化されていてもよいC1-4アルキル基 (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよ いC₁₋₄ アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ト リフルオロメトキシ、トリフルオロエトキシなど)、ホルミル基、 C_{2-4} アル カノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル 基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の 数としては、1ないし3個が好ましい。〕などが挙げられ、置換基の数としては、

10

15

20

25

1ないし3個が好ましい。

R³ の置換基としての置換されていてもよいチオール基における置換基としては、上記した「R¹ の置換基としての置換されていてもよい水酸基における置換基」と同様なものが挙げられるが、なかでも

(1) 置換されていてもよいアルキル基(例えば、メチル、エチル、プロピル、 イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペン チル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、 デシルなどの C_{1-1} 。アルキル基、好ましくは低級(C_{1-6})アルキル基な どが挙げられる);(2)置換されていてもよいシクロアルキル基(例えば、シ クロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチ ルなどの C_{3-7} シクロアルキルなどが挙げられる);(3)置換されていても よいアラルキル基(例えば、フェニル-C₁₋₄アルキル(例、ベンジル、フェ ネチルなど)などが挙げられる); (4) 置換されていてもよいアリール基(例 えば、フェニル、ナフチルなど)が挙げられるなどが好ましく、上記した(1) 置換されていてもよいアルキル基、(2)置換されていてもよいシクロアルキル 基、(3)置換されていてもよいアラルキル基、および(4)置換されていても よいアリール基が有していてもよい置換基としては、ハロゲン原子(例、フッ素、 塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換されていてもよ いチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていても よいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキル アミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモ ルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、エ ステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモ イル、ジ C_{1-4} アルキルカルパモイルなど)、ハロゲン化されていてもよいC1-4 アルコキシ基(例、メトキシ、エトキシ、プロポキシ、プトキシ、トリフ ルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよいC $_{1-4}$ アルコキシー C_{1-4} アルコキシ基(例、メトキシメトキシ、メトキシエ

10

15

20

25

トキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエト キシエトキシなど)、ホルミル基、C₂₋₄ アルカノイル基(例、アセチル、プ ロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エ タンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好 ましい。

R³の置換基としての置換されていてもよいアミノ基の置換基としては、上記 した「R¹ の置換基としての置換されていてもよい水酸基における置換基」と同 様な置換基を1または2個有していてもよいアミノ基などが挙げられるが、なか でも (1) 置換されていてもよいアルキル基(例えば、メチル、エチル、プロピ ル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、 ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニ ル、デシルなどの C_{1-1} 。アルキル基、好ましくは低級(C_{1-6})アルキル 基などが挙げられる);(2)置換されていてもよいシクロアルキル基(例えば、 シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプ チルなどの C_{3-7} シクロアルキル基などが挙げられる);(3)置換されてい てもよいアルケニル基(例えば、アリル(allyl)、クロチル、2-ペンテニル、 3-ヘキセニルなど炭素数2ないし10のアルケニル基、好ましくは低級(C2 - 6) アルケニル基などが挙げられる); (4) 置換されていてもよいシクロア ルケニル基 (例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シク ロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシク ロアルケニル基などが挙げられる); (5) ホルミルまたは置換されていてもよ いアシル基(例えば、炭素数2ないし4のアルカノイル基(例、アセチル、プロ ピオニル、ブチリル、イソブチリルなど)、炭素数1ないし4のアルキルスルホ ニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられる); (6) 置換されていてもよいアリール基(例えば、フェニル、ナフチルなどが挙 げられる)などが好ましく、上記した(1)置換されていてもよいアルキル基、

- (2) 置換されていてもよいシクロアルキル基、(3) 置換されていてもよいア
- ルケニル基、(4)置換されていてもよいシクロアルケニル基、(5)置換され

WO 03/076411 PCT/JP03/02840

5

10

15

20

25

ていてもよいアシル基、および(6)置換されていてもよいアリール基が有して いてもよい置換基としては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素な ど)、ニトロ基、シアノ基、水酸基基、置換されていてもよいチオール基(例、 チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、 アミノ、モノC₁₋₄アルキルアミノ、ジC₁₋₄アルキルアミノ、テトラヒド ロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、 イミダゾールなどの5または6員の環状アミノなど)、エステル化またはアミド 化されていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アルコキシカ ルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アル キルカルバモイルなど)、ハロゲン化されていてもよいC1-4アルコキシ基 (例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、ト リフルオロエトキシなど)、ハロゲン化されていてもよいC₁₋₄アルコキシー C₁₋₄ アルコキシ基(例、メトキシメトキシ、メトキシエトキシ、エトキシエ トキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、 ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、C1-4 アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど) などが挙げられ、置換基の数としては、1ないし3個が好ましい。

また、 R^3 の置換基としての置換されていてもよいアミノ基は、アミノ基の置換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員環の環構成窒素原子から水素原子1個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換基を有していてもよく、かかる置換基としては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノな

10

15

20

25

ど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよい C_{1-4} アルコキシー C_{1-4} アルコキシ基(例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

R³ の置換基としての置換されていてもよいアシル基としては、(1)水素; (2) 置換されていてもよいアルキル基(例えば、メチル、エチル、プロピル、 イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペン チル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、 デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが , 挙げられる);(3)置換されていてもよいシクロアルキル基(例えば、シクロ プロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルな どのC₃₋₇シクロアルキル基などが挙げられる);(4)置換されていてもよ いアルケニル基(例えば、アリル(allyl)、クロチル、2-ペンテニル、3-へ キセニルなど炭素数 2 ないし 1 0 のアルケニル基、好ましくは低級(C_{2-6}) アルケニル基などが挙げられる): (5) 置換されていてもよいシクロアルケニ ル基(例えば、2-シクロペンテニル、2-シクロヘキセニル、2-シクロペン テニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7のシクロアル ケニルなどが挙げられる); (6)置換されていてもよい5または6員の単環の 芳香族基(例えば、フェニル、ピリジルなどが挙げられる)などがカルボニル基 またはスルホニル基と結合したもの(例、アセチル、プロピオニル、プチリル、 イソプチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、ヘプタノ

イル、オクタノイル、シクロブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、シクロヘプタンカルボニル、クロトニル、2-シクロヘキセンカルボニル、ベンゾイル、ニコチノイル、メタンスルホニル、エタンスルホニル等)が挙げられ、上記した(2)置換されていてもよいアルキル基、

5 (3) ルケン 換さい フノマ 10 アキ ン、

15

20

25

(3) 置換されていてもよいシクロアルキル基、(4) 置換されていてもよいア ルケニル基、(5)置換されていてもよいシクロアルケニル基、および(6)置 換されていてもよい5または6員の単環の芳香族基が有していてもよい置換基と しては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シ アノ基、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} ア ルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジ ン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの 5または6員の環状アミノなど)、エステル化またはアミド化されていてもよい カルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモ イル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルな ど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エト キシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシな ど)、ハロゲン化されていてもよい C_1 - $_4$ アルコキシー C_1 - $_4$ アルコキシ基 (例、メトキシメトキシ、メトキシエトキシ、エトキシエトキシ、トリフルオロ メトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル基、 C_2 – $_4$ アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスル ホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置 換基の数としては、1ないし3個が好ましい。

 R^3 の置換基としてのエステル化されていてもよいカルボキシル基としては、

(1)水素;(2)置換されていてもよいアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、プチル、イソプチル、sec-プチル、tert-プチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル基、好ましくは低級(C_{1-6})アル

15

20

25

キル基などが挙げられる); (3) 置換されていてもよいシクロアルキル基(例 えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シク ロヘプチルなどのC₃₋₇シクロアルキル基などが挙げられる);(4)置換さ れていてもよいアルケニル基(例えば、アリル(allyl)、クロチル、2-ペンテ ニル、3-ヘキセニルなど炭素数2ないし10のアルケニル基、好ましくは低級 (C_{2-6}) アルケニル基などが挙げられる); (5) 置換されていてもよいシ クロアルケニル基(例えば、2-シクロペンテニル、2-シクロヘキセニル、2 ーシクロペンテニルメチル、2-シクロヘキセニルメチルなど炭素数3ないし7 のシクロアルケニル基などが挙げられる);(6)置換されていてもよいアリー ル基(例えば、フェニル、ナフチルなど)などがカルボニルオキシ基と結合した もの、好ましくはカルボキシル基、低級(C₁₋₆)アルコキシカルボニル基、 アリールオキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル、 プロポキシカルボニル、フェノキシカルボニル、ナフトキシカルボニルなど)な どが挙げられ、上記した(2)置換されていてもよいアルキル基、(3)置換さ れていてもよいシクロアルキル基、(4)置換されていてもよいアルケニル基、 (5) 置換されていてもよいシクロアルケニル基、および(6) 置換されていて もよいアリール基が有していてもよい置換基としては、ハロゲン原子(例、フッ 素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換されていて もよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置換されてい てもよいアミノ基(例、アミノ、モノC1-4アルキルアミノ、ジC1-4アル キルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チ オモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノなど)、 エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルポニル、カルバモイル、モノ C_{1-4} アルキルカルバモ イル、ジC₁₋₄アルキルカルバモイルなど)、ハロゲン化されていてもよいC ₁₋₄アルコキシ基(例、メトキシ、エトキシ、プロポキシ、プトキシ、トリフ ルオロメトキシ、トリフルオロエトキシなど)、ハロゲン化されていてもよいC 1-4 アルコキシーC1-4 アルコキシ基(例、メトキシメトキシ、メトキシエ

10

15

20

25

トキシ、エトキシエトキシ、トリフルオロメトキシエトキシ、トリフルオロエトキシエトキシなど)、ホルミル基、 C_{2-4} アルカノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1ないし3個が好ましい。

R³の置換基としての置換されていてもよい芳香族基における芳香族基として は、フェニル、ピリジル、フリル、チエニル、ピロリル、イミダゾリル、ピラゾ リル、チアゾリル、オキサゾリル、イソチアゾリル、イソキサゾリル、テトラゾ リル、ピラジニル、ピリミジニル、ピリダジニル、トリアゾリル等の5または6 員の同素または複素環芳香族基、ベンゾフラン、インドール、ベンゾチオフェン、 ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイミダゾール、 キノリン、イソキノリン、キノキサリン、フタラジン、キナゾリン、シンノリン、 イミダゾピリジンなどの縮環複素環芳香族基などが挙げられる。これらの芳香族 基の置換基としては、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、 ニトロ基、シアノ基、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モ $\int C_{1-4} P$ ルキルアミノ、ジ $C_{1-4} P$ ルキルアミノ、テトラヒドロピロール、 ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾー ルなどの5または6員の環状アミノなど)、エステル化またはアミド化されてい てもよいカルボキシル基(例、カルボキシル、C₁₋₄ アルコキシカルボニル、 カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバ モイルなど)、ハロゲン化されていてもよい C_{1-4} アルキル基(例、トリフル オロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アル コキシ基(例、メトキシ、エトキシ、プロポキシ、プトキシ、トリフルオロメト キシ、トリフルオロエトキシなど)、ホルミル基、 C_{2-4} アルカノイル基(例、 アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基(例、メタンス ルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、1な いし3個が好ましい。

.5

10

15

20

25

かかる R^3 の置換基は、1ないし4個(好ましくは、1または2個)同一また は異なって環のいずれの位置に置換していてもよい。また、R3で示される「置 換されていてもよい5または6員環」の「5または6員環」が2個以上の置換基 を有する場合、これらのうち、2個の置換基が互いに結合して、例えば、低級 (C_{1-6}) アルキレン基(例、トリメチレン、テトラメチレンなど)、低級 (C_{1-6}) アルキレンオキシ基(例、 $-CH_2-O-CH_2-$ 、 $-O-CH_2$ $-CH_{2}$ -, $-O-CH_{2}$ - CH_{2} - CH_{2} -, $-O-CH_{2}$ - CH_{2} - CH_{2} $-CH_2-$ 、 $-O-C(CH_3)(CH_3)-CH_2-CH_2-$ など)、低級(C_1 $_{-6}$) アルキレンチオ基(例、 $-CH_2-S-CH_2-$ 、 $-S-CH_2-CH_2$ -, $-S-CH_2-CH_2-CH_2-$, $-S-CH_2-CH_2-CH_2-$ -、-S-C(CH $_3$)(CH $_3$)-CH $_2$ -CH $_2$ -など)、低級(C $_{1-6}$)ア ルキレンジオキシ基(例、-O-CH2-O-、-O-CH2-CH2-O-、 $-O-CH_2-CH_2-CH_2-O-$ など)、低級(C_{1-6})アルキレンジチ 才基(例、-S-CH₂-S-、-S-CH₂-CH₂-S-、-S-CH₂- $CH_2 - CH_2 - S -$ など)、オキシ低級(C_{1-6})アルキレンアミノ基(例、 $-O-CH_2-NH-$ 、 $-O-CH_2-CH_2-NH-$ など)、オキシ低級(C $_{1-6}$) アルキレンチオ基(例、 $_{1-6}$ O- $_{1-6}$ CH $_{2}$ -S-、 $_{1-6}$ O-CH $_{2}$ -CH $_{2-6}$ S-など)、低級(C_{1-6})アルキレンアミノ基(例、 $-NH-CH_2-CH$ $_2$ -、-NH-CH $_2$ -CH $_2$ -CH $_2$ -など)、低級(C $_1$ - $_6$)アルキレン ジアミノ基(例、 $-NH-CH_2-NH-$ 、 $-NH-CH_2-CH_2-NH-$ な ど)、チア低級(C_{1-6})アルキレンアミノ基(例、 $-S-CH_2-NH-$ 、 $-S-CH_2-CH_2-NH-など)$ 、低級(C_{2-6})アルケニレン基(例、 $-CH_2 - CH = CH - \cdot - CH_2 - CH_2 - CH = CH - \cdot - CH_2 - CH - CH_2 - CH - CH_2 - CH_2 - CH - CH_2 - CH_2$ $CH-CH_2$ -など)、低級 (C_{4-6}) アルカジエニレン基 (例、-CH=CH-CH=CH-など)などを形成していてもよい。

さらに、R3の置換基2個が互いに結合して形成する2価の基は、R3で示される「置換されていてもよい5または6員環」の「5または6員環」が有していてもよい「置換基」と同様な置換基(ハロゲン原子、ニトロ基、シアノ基、置換

10

. 15

20

25

されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化またはアミド化されていてもよいカルボキシル基、置換されていてもよい芳香族基など)を1ないし3個有していてもよい。

R³で示される「置換されていてもよい5または6員環基」の「5または6員 環」が有していてもよい「置換基」としては、とりわけ、ハロゲン化または低級 (C_{1-4}) アルコキシ化されていてもよい低級(C_{1-4})アルキル基(例、メ **チル、エチル、t-プチル、トリフルオロメチル、メトキシメチル、エトキシメ** チル、プロポキシメチル、プトキシメチル、メトキシエチル、エトキシエチル、 プロポキシエチル、ブトキシエチルなど)、ハロゲン化または低級(C_{1-4}) アルコキシ化されていてもよい低級(C_{1-4})アルコキシ基(例、メトキシ、 エトキシ、プロポキシ、プトキシ、t-ブトキシ、トリフルオロメトキシ、メト キシメトキシ、エトキシメトキシ、プロポキシメトキシ、プトキシメトキシ、メ トキシエトキシ、エトキシエトキシ、プロポキシエトキシ、ブトキシエトキシ、 メトキシプロポキシ、エトキシプロポキシ、プロポキシプロポキシ、ブトキシプ ロポキシなど)、ハロゲン原子(例、フッ素、塩素など)、ニトロ基、シアノ基、 1または2個の低級(C_{1-4})アルキル基、ホルミルまたは低級(C_{2-4})ア ルカノイルで置換されていてもよいアミノ基(例、アミノ、メチルアミノ、ジメ チルアミノ、ホルミルアミノ、アセチルアミノなど)、5または6員の環状アミ ノ基(例、1-ピロリジニル、1-ピペラジニル、1-ピペリジニル、4-モル ホリノ、4ーチオモルホリノ、1ーイミダゾリル、4ーテトラヒドロピラニルな ど) などが挙げられる。

Xで示される「直鎖部分を構成する原子数が1ないし4個である2価の基」としては、例えば、-(CH_2)。- [a'は1ないし4の整数(好ましくは1または2の整数)を示す]、-(CH_2)。-X 1 -[b'は0ないし3の整数

10

15

20

25

(好ましくは0または1の整数)を示し、 X^1 は置換されていてもよいイミノ基(例、低級(C_{1-6})アルキル、低級(C_{3-7})シクロアルキル、ホルミル、低級(C_{2-7})アルカノイル、低級(C_{1-6})アルコキシーカルボニルなどで置換されていてもよいイミノ基など)、カルボニル基、酸素原子または酸化されていてもよい硫黄原子(例、 $-S(O)_m-(m$ は0ないし2の整数を示す。)など)を示す。]、 $-CH=CH-、-C\equiv C-、-CO-NH-、-SO_2-NH-などが挙げられる。これらの基が縮合環と結合するのは、左右何れの結合手であってもよいが、右側の結合手を介して縮合環と結合するのが好ましい。$

Xとしては、結合手、-(CH_2)。-O-[b'は0, 1または2の整数 (好ましくは0または1の整数)を示す]、 $-C\equiv C-$ などが好ましく、結合手がさらに好ましい。

上記 R^4 で示される「置換されていてもよい低級アルキル基」の低級アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプロピル、ブチル、イソプチル、ステル、イソペンチル、ネオペンチル、ヘキシルなどの C_{1-6} アルキル基などが挙げられる。

上記R⁴ で示される「置換されていてもよい低級アルコキシ基」の低級アルコキシ基としては、メトキシ、エトキシ、プロポキシ、ブトキシなどのC₁₋₆ アルコキシ基が挙げられる。

該「置換されていてもよい低級アルキル基」および「置換されていてもよい低級アルコキシ基」が有していてもよい置換基としては、例えば、ハロゲン原子 (例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ基、モノ(低級アルキル)アミノ基、ジ(低級アルキル)アミノ基、低級アルカノイル基などが挙げられる。

該モノ(低級アルキル)アミノ基およびジ(低級アルキル)アミノ基が有する 低級アルキルとしては、例えば、上記のR⁴で示される「置換されていてもよい 低級アルキル基」の低級アルキル基と同様のものがあげられる。

該低級アルカノイル基としては、例えば、アセチル、プロピオニル、プチリル、イソプチリルなどの C_{2-6} アルカノイル基が挙げられる。

10

15

20

25

上記R⁴ で示される「ハロゲン原子」のとしては、フッ素、塩素、臭素、ヨウ素などが挙げられる。

なかでも、 R^4 としては、置換されていてもよい低級 C_{1-6} アルキル基、ハロゲン原子が好ましく、とりわけ置換されていてもよいメチル基、ハロゲン原子が好ましい。

 R^5 で示される「置換されていてもよい炭化水素基」の「炭化水素基」としては、例えば、(1)アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル基、好ましくは低級(C_{1-6})アルキル基、さらに好ましくは低級(C_{1-4})アルキル基などが挙げられる);(2)シクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキル基などが挙げられる);

ル基、(2)シクロアルキル基、(3)アルケニル基、(4)シクロアルケニル

10

15

20

25

(5) アルキニル基、(6) アラルキル基、(7) アリール基および(8) シクロアルキルーアルキル基が有していてもよい置換基としては、ハロゲン原子 (例、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、水酸基、置換 されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置 換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジC1-4 アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モル ホリン、チオモルホリン、ピロール、イミダゾールなどの5または6員の環状ア ミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、 カルボキシル、 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} ア ルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン化され ていてもよい С1-4 アルキル基 (例、トリフルオロメチル、メチル、エチルな ど)、ハロゲン化されていてもよい C_{1-4} アルコキシ基(例、メトキシ、エト キシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシな ど)、 C_{1-4} アルキレンジオキシ基(例、 $-O-CH_2-O-$ 、 $-O-CH_2$ -CH2-O-など)、置換されていてもよいスルホンアミド基〔例、置換され ていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、 チオモルホリン、ピロール、イミダゾールなどの5または6員の環状アミノ基な ど) が $-SO_2$ -に結合して形成される基など〕、ホルミル基、 C_{2-4} アルカ ノイル基(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル基 (例、メタンスルホニル、エタンスルホニルなど) 、置換されていてもよい複素 環基などが挙げられ、置換基の数としては、1ないし3個が好ましい。

R⁵で示される「置換されていてもよい複素環基」としては、芳香族複素環または非芳香族複素環から1個の水素原子を取り除いて形成される基などが挙げられる。該芳香族複素環としては、例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾール、オキサジアゾール、チアジアゾールなどの窒素原子、硫黄原子および酸

10

15

20

25

素原子から選ばれた1または2種のヘテロ原子1ないし4個を含有する5または6員の芳香族複素環などが挙げられ、該非芳香族複素環としては、例えば、テトラヒドロフラン、テトラヒドロチオフェン、ジオキソラン、ジチオラン、オキサチオラン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、ピーリン、オキサジン、オキサジアジン、チアジン、チアジアジン、モルホリン、チオモルホリン、ピラン、テトラヒドロピランなどの窒素原子、硫黄原子および酸素原子から選ばれた1または2種のヘテロ原子1ないし4個を含有する5または6員の非芳香族複素環および前記芳香族複素環の一部または全部の結合が飽和の結合である非芳香族複素環など(好ましくは、ピラゾール、チアゾール、オキサゾール、テトラゾールなどの芳香族複素環)が挙げられる。

R⁵で示される「置換されていてもよいスルホニル基」の置換基としては、R³の置換基として述べた置換されていてもよいチオール基における置換基と同様なものが挙げられる。

R⁵で示される「エステル化されていてもよいカルボキシル基」および「置換されていてもよいアシル基」としては、R³の置換基として述べたそれらと同様なものが挙げられる。

 R^5 の好ましい態様としては、水素原子、置換されていてもよい炭化水素基、置換されていてもよいアシル基などが挙げられ、 C_{1-6} アルキル基、 C_{1-4} アルキルスルホニル基、ホルミル基、 C_{2-5} アルカノイル基などがより好ましく、 C_{1-4} アルキル基、ホルミル基、 C_{2-5} アルカノイル基などがさらに好ましく、とりわけ、プロピル基またはイソブチル基が好ましい。

Yで示されるハロゲン原子としては、たとえば、塩素原子、臭素原子などが挙げられる。Yで示される $-OSO_2-R^9$ において R^9 で示される低級アルキル基としてはメチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、sec. -ブチル、t.-プチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、1,1-ジメチルブチル、2,2-ジメチルブチル、3, 3-ジメチルプチル、2-エチルプチルなど C_{1-6} アルキル基が

10

20

25

挙げられる。 R^9 で示される置換されていてもよいアリール基におけるアリール基としては、たとえばフェニル、ナフチルなどが挙げられ、置換されていてもよいアリール基における置換基としては、たとえば C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec. - ブチル、tert. - ブチル、ペンチルなど)、 C_{1-6} アルコキシ基(例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec. - ブトキシ、tert-ブトキシ等)、ハロゲン原子(例、塩素、臭素、ヨー素、フッ素等)、ニトロ基、シアノ基などが挙げられる。式 $-OSO_2-R^9$ で示される基の好ましい例としては、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基などが挙げられる。

mは1ないし5の整数であるが、2ないし4が好ましい。

nは0ないし3の整数であるが、0または1が好ましい。

* 1 および* 2 はそれぞれ* 1 または* 2 の付された原子が不斉原子であることを意味する。

 R^6 はメチル基、フェニル基、4-メチルフェニル基または $\alpha-$ ナルチル基を示す。 R^7 は塩素原子またはニトロ基を示す。

R®で示される置換されていてもよい低級アルキル基における低級アルキル基としては例えば、メチル、エチル、プロピルなどのC₁₋₄アルキル基などが、置換されていてもよい低級アルキル基における低級アルキル基の置換基としては例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ基、モノ(低級アルキル)アミノ基、ジ(低級アルキル)アミノ基、低級アルカノイル基などが挙げられる。

R®で示される置換されていてもよいアリール基におけるアリール基としては、たとえばフェニル基、ナフチル基など炭素数6ないし10のものが挙げられ、置換されていてもよいアリール基におけるアリール基の置換基としては、たとえばハロゲン原子(例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ基、モノ(低級アルキル)アミノ基、ジ(低級アルキル)アミノ基、低級アルカノイル基などが挙げられる。

10

15

20

25

R®で示される置換されていてもよいアラルキル基におけるアラルキル基としては、たとえばベンジル基、フェネチル基など炭素数7ないし10のものがあげられ、置換されていてもよいアラルキル基におけるアラルキル基の置換基としては、たとえばハロゲン原子(例、フッ素、塩素、臭素、ヨウ素)、水酸基、アミノ基、モノ(低級アルキル)アミノ基、低級アルカノイル基などが挙げられる。

R®で示される-OR¹º中、R¹ºで示される置換されていてもよい低級アルキル基、置換されていてもよいアリール基および置換されていてもよいアラルキル基としては、R®で示される置換されていてもよい低級アルキル基、置換されていてもよいアリール基および置換されていてもよいアラルキル基と同様なものがそれぞれ挙げられる。

発明を実施するための最良の形態

以下に本発明の各反応工程について説明する。

なお、以下において、式(I)、(II)、(II)、(IV)、(V)、(VI)、(VI)、(VII)、(VII)、(VII)、(IX)、(X)、(XIa)および(XIb)で表される化合物は塩を形成することができる。該塩としては、例えば無機塩基との塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性または酸性アミノ酸との塩などが挙げられる。無機塩基との塩の好適な例としては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;ならびにアルミニウム塩、アンモニウム塩などが挙げられる。有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、ドリエタノールアミン、ジシクロヘキシルアミン、バ、N'-ジベンジルエチレンジアミンなどとの塩が挙げられる。無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸などとの塩が挙げられる。有機酸との塩の好適な例としては、例えば半酸、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸などとの塩が挙げられる。塩

10

15

基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチンなどとの塩が挙げられ、酸性アミノ酸との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸などとの塩が挙げられる。

このようにして得られる化合物(I)は、公知の分離精製手段例えば濃縮、減 圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精 製することができる。

これらの化合物は、各工程において反応後、通常の分離生成手段により、単離 することができるが、単離することなくつぎの反応に供してもよい。

工程1

5

10

15

20

25

化合物(IV)とたとえばアシル化剤(例、酸クロリド、酸ブロミド、混合酸無 水物、活性エステルなど)とを反応させることにより化合物(V)を製造するこ とができる。この反応は適宜の溶媒中で行われる。該溶媒としてはたとえば芳香 族炭化水素類(例、ベンゼン、トルエン、キシレンなど)、エーテル類(例、ジ オキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、エステル類 (例、酢酸エチルなど)、ニトリル類(例、アセトニトリルなど)、ケトン類 (例、アセトン、2-プタノン、2-ペンタノン、3-ペンタノン、2-ヘキサ ノン、3-ヘキサノン、メチルイソブチルケトン等)、第三級アミン類(例、ピ リジンなど)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、 N-メチルピロリドン (NMP) 、ハロゲン化炭化水素類(例、クロロホルム、ジク ロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタンなど) など、お よびこれらの混合溶媒があげられる。アシル化剤の使用量は化合物(IV)に対し $1\sim5$ モル当量程度が好ましい。また、本反応は塩基の存在下に反応を行っても よい。このような塩基としては、アルカリ金属塩(例、水酸化カリウム、水酸化 ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナト リウム等)、アミン類(例、トリメチルアミン、トリエチルアミン、ジイソプロ ピルエチルアミン、N-メチルモルホリン、1,8-ジアザビシクロ[5.4. 0]-7-ウンデセン (DBU)、1,4-ジアザビシクロ[2,2,2]オクタン (DABCO) 等)、芳香族アミン類(例、N, N-ジメチルアミノピリジン、N, **N-ジエチルアミノピリジン、ピリジン、4-ジメチルアミノピリジン、ピコリ** ン、キノリン等)等が挙げられる。本反応は通常-20℃~200℃、好ましく は約-10℃~150℃で行われる。

工程2

化合物(V)と化合物(VI)とを反応させることにより化合物(VII)を 製造することができる。反応は適宜の溶媒中で行われる。該溶媒としては例えば 芳香族炭化水素類(例、ベンゼン、トルエン、キシレンなど)、エーテル類(例、 ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、アルコール

10

15

20

25

類(例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノー ル、イソプタノール、sec.-プタノール、tert.-プタノールなど)、エステル類 (例、酢酸エチルなど)、ニトリル類(例、アセトニトリルなど)、ケトン類 (例、アセトン、2-プタノン、2-ペンタノン、3-ペンタノン、2-ヘキサ ノン、3-ヘキサノン、メチルイソプチルケトン等)、ピリジン、N,N-ジメチル ホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、 ハロゲン化炭化水素類(例、クロロホルム、ジクロロメタン、1,2-ジクロロエタ ン、1,1,2,2-テトラクロロエタンなど)、水およびこれらの混合溶媒があげられ る。本反応は塩基の存在下に反応を行ってもよい。このような塩基としては、ア ルカリ金属塩(例、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナ トリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、金属水素化物(例、水 素化カリウム、水素化ナトリウム、水素化カルシウムなど)、アミン類(例、ト リメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、N-メチル モルホリン、1、8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、 1, 4-ジアザビシクロ[2, 2, 2]オクタン (DABCO) 等)、芳香族アミン類 (例、N, N-ジメチルアミノピリジン、N, N-ジエチルアミノピリジン、ピ リジン、4-ジメチルアミノピリジン、ピコリン、キノリン等)等が挙げられる。 化合物 (VI) の使用量は化合物 (V) に対して1~5モル当量、好ましくは1 ~3モル当量である。また、塩基の使用量は化合物 (V) に対して1~5モル当 量程度が好ましい。本反応は通常-20℃~200℃、好ましくは約-10℃~ 150℃で行われる。

工程3

化合物(VII)を酸化することにより化合物(VIII)を製造することができる。反応は適宜の溶媒中で行われる。該溶媒としては例えば炭化水素類(例、ベンゼン、トルエン、キシレンなど)、エーテル類(例、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、アルコール類(例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソプタノール、sec.-ブタノール、tert.-ブタノールなど)、エステル類(例、酢酸エチルな

10

15

20

25

ど)、ニトリル類(例、アセトニトリルなど)、ケトン類(例、アセトン、2-ブタノン、2ーペンタノン、3ーペンタノン、2ーヘキサノン、3ーヘキサノン、 メチルイソブチルケトン等)、ピリジン、N,N-ジメチルホルムアミド(DMF)、ジ メチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、ハロゲン化炭化水素 類(例、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラ クロロエタンなど)、有機カルボン酸類(例、ぎ酸、酢酸など)およびこれらの 混合溶媒があげられる。用いる酸化剤としては、例えば、過酸化水素、過ギ酸、 過酢酸、過トリフルオロ酢酸、過安息香酸、m-クロロ過安息香酸、モノペルオ キシフタル酸等の有機過酸類、クメンハイドロパーオキシド、Nーブロモアセト アミド、Nープロモこはく酸イミド、Nークロロこはく酸イミド等のNーハロカ ルボン酸アミド類、次亜塩素酸tert.-ブチル、二酸化マンガン、オルト過ヨウ素 酸、メタ過ヨウ素酸ナトリウム、メタ過ヨウ素酸カリウム等の過ヨウ酸塩類が用 いられる。また、本反応は酸触媒の存在下に行ってもよい。このような酸触媒と しては、ぎ酸、酢酸、プロピオン酸等の有機酸類、塩酸、硫酸、硝酸、過塩素酸 等の鉱酸類が用いられる。また、金属触媒としては例えば、酸化バナジウム、酸 化バナジウムアセチルアセテート、酸化マンガン、塩化モリブデン、塩化タング ステンなどが用いられる。酸化剤の使用量は反応条件によって異なるが、通常、 化合物 (VII) に対して、1~100モル当量、好ましくは1~20モル当量 である。反応温度は、-50~200℃、好ましくは-30~150℃である。 酸または金属触媒の使用量はVIIに対して1/1000~100モル当量、好 ましくは1/500~50モル当量である。

工程4

化合物(VIII)を脱保護反応に付すことにより化合物(IX)を製造することができる。脱保護の手段としては加水分解、加水素分解などが挙げられる。加水分解は通常溶媒中、酸または塩基の存在下に行われる。該溶媒としては例えばエーテル類(例、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、アルコール類(例、メタノール、エタノール、プロパノール、イソプロパノール、イソプタノール、メタノール、tert.-プタノール

10

15

20

25

など)、ケトン類(例、アセトン、2ーブタノン、2ーペンタノン、3ーペンタノン、2ーヘキサノン、3ーヘキサノン、メチルイソブチルケトン等)、ピリジン、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、およびこれらの混合溶媒があげられる。酸を用いる場合は、例えば、ぎ酸、酢酸、プロピオン酸等の有機酸類、塩酸、硫酸、硝酸、過塩素酸等の鉱酸類が挙げられる。塩基を用いる場合は、アルカリ金属塩(例、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム、炭酸セシウム、炭酸水素カリウム、炭酸水素ナトリウム等)が挙げられる。酸または塩基の使用量は、化合物(VIII)に対して0.01~200モル当量、好ましくは0.1~100℃である。反応温度は-20~200℃、好ましくは-10~100℃である。

加水素分解反応は通常溶媒中、触媒の存在下に行われる。該溶媒としては例え ば、芳香族炭化水素(例、ベンゼン、トルエン、キシレンなど)、エーテル類 (例、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなど)、エス テル類(例、酢酸エチルなど)、ニトリル類(例、アセトニトリルなど)、第三 級アミン類(例、ピリジンなど)、アルコール類(例、メタノール、エタノール、 プロパノール、イソプロパノール、ブタノール、イソブタノール、sec. -ブタノ ール、tert.-ブタノールなど)、ケトン類(例、アセトン、2-ブタノン(ME K)、メチルイソプチルケトン (MIBK) など) N, N-ジメチルホルムアミド (DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、ハロゲン化 炭化水素類 (例、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、 1,1,2,2-テトラクロロエタンなど)など、水およびこれらの混合溶媒などが用い られる。触媒としては、例えば、塩化パラジウム、パラジウム黒、パラジウム炭 素などのパラジウム類、酸化白金、白金黒、白金炭素などの白金類、ロジウム炭 素などのロジウム類、ラネーニッケル、ラネーコバルトなどが用いられる。水素 源としては、水素、ギ酸、ギ酸アンモニウム、イソプロピルアルコールなどが用 いられる。反応温度は-70~200℃、好ましくは0~100℃である。反応 圧力は $0\sim10$ M P a 好ましくは $0\sim5$ M P a である。触媒の使用量は V I I I に 対して1/10000~100モル当量、好ましくは1/1000~50モル当量である。本加水素分解反応は必要により酸または塩基を加えてもよい。該酸としては、ぎ酸、酢酸、プロピオン酸等の有機酸類、塩酸、硫酸、硝酸、過塩素酸等の鉱酸類など、塩基としては、アルカリ金属塩(例、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、アミン類(例、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、1,8ージアザビシクロ[5.4.0]-7ーウンデセン(DBU)、1,4ージアザビシクロ[2,2,2]オクタン(DABCO)等)、芳香族アミン類(例、N,Nージメチルアミノピリジン、N,Nージエチルアミノピリジン、ピリジン、4ージメチルアミノピリジン、ピコリン、キノリン等)などが用いられる。

工程5

5

10

15

20

25

化合物 (IX) と式 (XIIa) または (XIIb) で表される光学活性な酸 を用いて、ジアステレオマー塩として光学分割する。ジアステレオマー塩の製造 工程では、反応は適宜の溶媒中で行われる。該溶媒としては例えばベンゼン、ト ルエン、キシレンなどの芳香族炭化水素、ジオキサン、テトラヒドロフラン (THF)、ジメトキシエタンなどのエーテル類、メタノール、エタノール、プロパ ノール、イソプロパノール、ブタノール、イソブタノール、sec. -ブタノール、 tert.-ブタノール等のアルコール類、酢酸エチル、アセトニトリル、ケトン類 (例、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、2-ヘキサ ノン、3-ヘキサノン、メチルイソブチルケトン等)、ピリジン、N, N-ジメチル ホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、 水、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロ ロエタンおよびこれらの混合溶媒があげられる。用いられる酸性光学分割剤とし ては、例えば、酒石酸およびその誘導体[ジアシル酒石酸(ジアセチル酒石酸、ジ ベンゾイル酒石酸、ジ-p-トルオイル酒石酸、ジ-l-ナフトイル酒石酸等)等]、ア ミノ酸(ピログルタル酸、アスパラギン酸、α-フェニルグリシン等)およびその 誘導体[N-アシルアミノ酸(N-アセチルロイシン、N-アセチルバリン、N-(3,

5-ジニトロ)ベンゾイルフェニルグリシン等)、環状リン酸誘導体(2,2) - (1,1) -ビナフチル)リン酸、4-フェニル-2-ヒドロキシ-5,5-ジメチル-1,3,2-ジオキサホスホリナン-2-オキシド等)等の(+) あるいは(-)-リン酸類が挙げられる。用いる光学分割剤は、好ましくはジベンゾイル酒石酸、ジ-p-トルオイル酒石酸、ジ-1-ナフトイル酒石酸、N-(3,5-ジニトロ)ベンゾイルフェニルグリシンでありその使用量は、化合物(IX)に対して0.10 モル当量、好ましくは $0.5\sim5$ モル当量である。反応温度は $-20\sim200$ で、好ましくは $-10\sim100$ である。

工程6

5

10

15

20

25

化合物 (IV) と化合物 (VI) と反応させることにより化合物 (X) を製造することができる。本反応は工程 2 と同様の反応条件を採用することができる。工程 7

化合物(X)から化合物(II)へ導く反応は、化合物(X)に式(XII a) または式(XIIc)で表される光学活性な酸の存在下に酸化剤を反応させ ることにより行われる。この反応は適宜の溶媒中で行われる。該溶媒としては例 えばベンゼン、トルエン、キシレンなどの芳香族炭化水素、ジオキサン、テトラ ヒドロフラン(THF)、ジメトキシエタンなどのエーテル類、メタノール、エタノ ール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec. -ブタノール、tert.-ブタノール等のアルコール類、酢酸エチル、アセトニトリル、 ケトン類(例、アセトン、2-プタノン、2-ペンタノン、3-ペンタノン、2 - ヘキサノン、3 - ヘキサノン、メチルイソブチルケトン等)、ピリジン、N, N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリド ン (NMP)、水、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、 1.1.2.2-テトラクロロエタン、有機カルポン酸類(例、ぎ酸、酢酸など)および これらの混合溶媒があげられる。用いる酸化剤としては、例えば、過酸化水素、 過半酸、過酢酸、過トリフルオロ酢酸、過安息香酸、m-クロロ過安息香酸、モ ノペルオキシフタル酸等の有機過酸類、クメンハイドロパーオキシド、Nーブロ モアセトアミド、Nープロモこはく酸イミド、Nークロロこはく酸イミド等のN

-ハロカルボン酸アミド類、次亜塩素酸tert.-ブチル、二酸化マンガン、オルト 過ヨウ素酸、メタ過ヨウ素酸ナトリウム、メタ過ヨウ素酸カリウム等の過ヨウ酸 塩類が用いられる。また、本反応は酸触媒の存在下に行ってもよい。該酸触媒としては、酒石酸誘導体[ジアシル酒石酸(ジベンゾイル酒石酸、ジーp-トルオイル 酒石酸、ジー1-ナフトイル酒石酸等)等]、環状リン酸誘導体(2,2'-(1,1'-ビナフチル)リン酸、4-フェニル-2-ヒドロキシ-5,5-ジメチル-1,3,2-ジオキサホスホリナン-2-オキシド等)等の(+)あるいは(-)-リン酸類が挙げられる。好ましくはジベンゾイル酒石酸、ジーp-トルオイル酒石酸、ジー1-ナフトイル酒石酸、2,2'-(1,1'-ビナフチル)リン酸が用いられる。光学活性な酸の使用量は、化合物(X)1モルに対して、0.5~10モル当量、好ましくは0.5~5モル当量である。酸化剤の使用量は、化合物(X)1モルに対して、1~100モル当量、好ましくは1~50モル当量である。また、酸の使用量は化合物(X)1モルに対して、0.1~10モル当量、好ましくは0.5~5モル当量である。反応温度は-50~200℃、好ましくは-30~50℃である。

15 工程8

5

10

20

25

化合物 (X) を酸化することにより化合物 (IX) を製造する。本反応は工程 3と同様の反応条件を採用することができる。

工程9

化合物(X I)の複分解反応は適宜の溶媒中、酸または塩基と接触させることにより行われる。該溶媒としては例えばベンゼン、トルエン、キシレンなどの芳香族炭化水素、ジオキサン、テトラヒドロフラン(THF)、ジメトキシエタンなどのエーテル類、メタノール、エタノール、プロパノール、イソプロパノール、プタノール、イソプタノール、sec. - プタノール、tert. - ブタノール等のアルコール類、酢酸エチル、アセトニトリル、ピリジン、ケトン類(例、アセトン、2ープタノン、2ーペンタノン、3ーペンタノン、2ーペキサノン、3ーペキサノン、メチルイソプチルケトン等)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、水、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタンおよびこれらの混合溶

10

15

20

25

媒があげられる。該酸としては、ぎ酸、酢酸、プロピオン酸等の有機酸類、塩酸、硫酸、硝酸、過塩素酸等の鉱酸類など、塩基としては、アルカリ金属塩(例、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、アミン類(例、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、1,8ージアザビシクロ[5.4.0]-7ーウンデセン(DBU)、1,4ージアザビシクロ[2,2]オクタン(DABCO)等)、芳香族アミン類(例、N,Nージメチルアミノピリジン、N,Nージエチルアミノピリジン、ピリジン、4ージメチルアミノピリジン、ピコリン、キノリン等)などが用いられる。反応温度は-30~150℃好ましくは-10~100℃である。酸または塩基の使用量は(XI)1モルに対して、1~200モル当量、好ましくは1~100当量である。

工程10

化合物(II)と化合物(III)またはその反応性誘導体とを反応させることに より化合物(I)を製造することができる。本反応は通常、溶媒中で行われるが 反応を阻害しない限りいかなる溶媒を用いてもよく、例えばベンゼン、トルエン、 キシレンなどの芳香族炭化水素、ジオキサン、テトラヒドロフラン(THF)、ジメ トキシエタンなどのエーテル類、酢酸エチル、アセトニトリル、ケトン類(例、 アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、 3-ヘキサノン、メチルイソブチルケトン等)、ピリジン、N, N-ジメチルホルム アミド(DMF)、N,N-ジメチルアセトアミド (DMA) 、ジメチルスルホキシド(DMSO)、 N-メチルピロリドン (NMP) 、クロロホルム、ジクロロメタン、1,2-ジクロロエ タン、1.1.2.2-テトラクロロエタンおよびこれらの混合溶媒があげられる。該反 応性誘導体は、式(III)で表される化合物のカルボキシル基における反応性 誘導体を意味する。該反応性誘導体としては例えば酸クロリド、酸プロミド、混 合酸無水物、活性エステル等ペプチドの分野でよく知られているものがそのまま 当てはめられる。また、これら反応性誘導体を使用する場合には、塩基の存在下 に反応を行ってもよい。このような塩基としては、アルカリ金属塩(例、水酸化 カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウ

10

20

25

ム、炭酸水素ナトリウム等)、アミン類(例、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、1,8ージアザビシクロ[5.4.0]-7ーウンデセン(DBU)、1,4ージアザビシクロ[2,2,2]オクタン(DABCO)等)、芳香族アミン類(例、N,Nージメチルアミノピリジン、N,Nージエチルアミノピリジン、ピリジン、4ージメチルアミノピリジン、ピコリン、キノリン等)等が挙げられる。これら塩基の使用量は化合物(III)またはその反応性誘導体に対して1~5モル当量程度が好ましい。

また、化合物(III)またはその反応性誘導体の使用量は化合物(II)に対し $1\sim5$ モル当量程度が好ましい。本反応は通常-20 $\mathbb{C}\sim150$ \mathbb{C} 、好ましくは約-10 $\mathbb{C}\sim100$ \mathbb{C} で行われる。反応時間は $1\sim100$ 時間程度である。

なお、この反応において原料として用いる化合物(I I I)はWO 0 1 - 1 7 9 4 7 (特願 2 0 0 1 - 1 5 1 7 4 1 対応) に記載の方法に準じて製造することができる。

15 実施例および参考例

以下に実施例および参考例を挙げて本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。

参考例1

1-イソプチルピペリジン-2-オン

水酸化カリウム(482g)のトルエン(700m1)懸濁液に、50℃以下で2-ピペリドン(181g)のトルエン(100m1)溶液を滴下した。ついでテトラプチルアンモニウムプロマイド(5.88g)を添加し、イソプチルブロミド(500g)のトルエン(100m1)溶液を滴下した。 $50\sim60$ ℃で3時間撹拌後、室温まで放冷した。水(500m1)を加え、氷冷下濃塩酸(460m1)で中和し(pH8)、分液した。水層をトルエン(450m1)で再抽出し、有機層を合わせ飽和食塩水で洗浄後、溶媒を留去した。残留物を減圧蒸留し bp_{8mmHg} 98℃の留分を集め無色油状物として標題化合物を得た(235g、収率83.1%)。

 $^{1}H-NMR$ (300MHz, CDCl₃, δ): 0.86 (6H, d, J=6.7Hz), 1.73-1.78 (4H, m), 1.85-2.05 (1H, m), 2.34-2.38 (2H, m), 3.16 (2H, d, J=7.7Hz), 3.20-3.25 (2H, m).

5 参考例 2

10

15

20

25

8 ープロモー1 ーイソプチルー1, 2, 3, 4 ーテトラヒドロー1 ーベンゾアゾ シンー5 ーカルボン酸

1-イソプチルピペリジン-2-オン(10g)にメタンスルホン酸(16. 7m1) 及び水(35m1) を加え、還流下24時間撹拌し、5-イソプチルア ミノペンタン酸を生成させた。反応液を50℃に冷却し、炭酸ナトリウム(13. 7g) を加えて中和した溶液を、2-フルオロ-5-ブロモベンズアルデヒド (8. 2g)、炭酸ナトリウム(11. 1g)、DMSO(65ml)の混合物 中に110~115℃でゆっくり滴下し、加熱還流下4時間撹拌した。50℃に 冷却後、水(30m1) およびトルエン(40m1) を加え、6N塩酸でpH3. 5に調整した。トルエン層を分取し、水層はトルエン(40m1)で再抽出した。 有機層を合わせて10%食塩水、水で洗浄した。溶媒を留去し、茶色油状物とし て5-[(4-ブロモ-2-ホルミルフェニル)(イソブチル)アミノ]ペンタ ン酸を得た。これをジメチルホルムアミド(24.6m1)に溶解後、炭酸カリ ウム (56.7g) を加え、ヨウ化メチル (3m1) を滴下した。室温下4時間 撹拌後炭酸ジメチル(49.2m1)を加え、28%ナトリウムメトキシドのメ タノール溶液(15.6g)を滴下後60℃で1.5時間撹拌した。水を加え、 トルエンで抽出した。有機層は10%食塩水ついで水で洗浄した。溶媒を留去し、 茶色油状物として8-プロモー1-イソプチル-1,2,3,4-テトラヒドロ -1-ベンゾアゾシン-5-カルボン酸メチルを得た。

8-プロモ-1-イソプチル-1, 2, 3, 4-テトラヒドロ-1-ベンプア ゾシン-5-カルボン酸メチルのテトラヒドロフラン-メタノール(2:1、45m1)溶液に 2N水酸化ナトリウム水溶液(40m1)を加え、60℃で 2.5時間撹拌した。室温まで放冷後濃塩酸でpH3. 5に調整し、トルエンで抽出

10

15

20

25

した。有機層を水で洗浄後、活性炭 0.8g を加え 10 分撹拌した。活性炭をろ去した後溶媒を留去した。残留物を60 ででメタノール(24m1)に溶解し、水(6m1)を滴下後室温下 1 時間撹拌して結晶化させた。結晶をろ取し、メタノールー水(5:2)で洗浄した。ついでメタノール(24m1)に加熱還流下溶解後、同温度で水(4.8m1)を滴下した。室温下 1 時間撹拌して結晶化させた。結晶をろ取し、メタノールー水(5:1)で洗浄した。40 でで減圧乾燥して黄色粉末として標題化合物を得た(6.2g、収率 45%)。

 $^{1}\text{H-NMR}$ (300MHz, CDC1₃, δ): 0.97 (6H, d, J=6.7Hz), 1.43-1.47 (2H, m), 2.05-2.25 (1H, m), 2.45-2.55 (2H, m), 3.00 (2H, d, J=7.3Hz), 3.40-3.50 (2H, m), 6.63 (1H, d, J=8.9Hz), 7.15-7.30 (2H, m), 7.83 (1H, s).

元素分析値: C16H20NO2Brとして

計算值:C, 56.82;H, 5.96;N, 4.14;Br, 23.62

実測値: C, 56.63; H, 5.88; N, 3.92; Br, 23.41 IR(KBr、cm⁻¹):1664,1604,1494

mp153. 3~154. 0℃

参考例3

8-[4-(2-ブトキシエトキシ)フェニル]-1-イソブチル-1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボン酸
アルゴン雰囲気下、マグネシウム(1.3g)のテトラヒドロフラン(100m
1)溶液に、加熱還流下4-(2-プトキシエトキシ)プロムベンゼン(14.2g)のTHF(30m1)溶液の1/3量をゆっくり滴下した。反応が開始したことを確認後、残りの2/3量をゆっくり滴下し還流下1時間撹拌した。ついで-10℃以下を保ちながらホウ酸トリメチル(5.7m1)のテトラヒドロフラン(30m1)溶液を滴下し、1時間撹拌した。室温まで昇温後酢酸パラジウム(20mg)およびトリフェニルホスフィン(93mg)を加え、30分撹拌した。8-プロモ-1-イソプチル-1, 2, 3, 4-テトラヒドロー1-ベン

10

ゾアゾシン-5-カルボン酸(10g)、リン酸三カリウム(39.3g)および蒸留水(80m1)を加え、加熱還流下3時間撹拌した。放冷後水(100m1)を加え、氷冷下6N塩酸でpH3に調整し分液した。水層はさらに酢酸エチルで抽出した。有機層を合わせて飽和食塩水で洗浄後、活性炭(1g)およびトリブチルホスフィン(1m1)を加え室温下20分撹拌した。活性炭をろ去した後溶媒を留去した。残留物にイソプロピルエーテル(50m1)を加えて60℃で溶解し室温下2時間、氷冷下1時間撹拌後結晶をろ取した(12.6g)。これをイソプロパノール(55m1)に60℃で溶解後、活性炭1gを加えて20分撹拌した。活性炭を熱時ろ過して除去後、60℃で30分、室温下1時間、氷冷下1時間撹拌後結晶をろ取した。冷イソプロパノール(10m1)で洗浄後40℃で減圧乾燥し、黄色粉末として標題化合物を得た(5.30g、収率89%)を得た。

¹H-NMR (300MHz, CDCl₃, δ): 0.94 (3H, t, J=7.3Hz), 1.00 (6H, d, J=6.6Hz), 1.35-1.65 (6H, m), 2.10-2.30 (1H, m), 2.55-2.60 (2H, m), 3.08 (2H, d, J=7.2Hz), 3.45-3.75 (4H, m), 3.8 0-3.85 (2H, m), 4.15-4.20 (2H, m), 6.83 (1H, d, J=8.8Hz), 6.96 (2H, d, J=8.7Hz), 7.30-7.40 (2H, m), 7.43 (2H, d, J=8.7Hz), 8.01 (1H, s).

元素分析値: C28H37NO4として

計算值: C、74.47; H, 8.26; N, 3.10

実測値: C, 74.53; H, 8.51; N, 3.03

IR (KBr, cm^{-1}): 1666, 1604, 1494

25 mp119. $6\sim120.1^{\circ}$

参考例4

8 - [4-(2-プトキシエトキシ) フェニル]-1-イソプチル-1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボン酸

10

15

20

アルゴン雰囲気下、マグネシウム(650mg)のテトラヒドロフラン(50 m1) 溶液にトリメチルシリルクロリド(0.07m1) を加えて室温で10分 撹拌した。ついで4-(2-ブトキシエトキシ) プロムベンゼン(7.08g) のテトラヒドロフラン(15ml)溶液の1/3量を滴下した。徐々に昇温し (23℃→32℃)、約30分で着色が見られ反応が開始したことを確認後、残 りの2/3量をゆっくり滴下し、滴下後45℃ ~ 50 ℃で0.5時間撹拌した。 室温まで放冷後、-10℃以下を保ちながらホウ酸トリメチル(2.9m1)の テトラヒドロフラン(15m1)溶液を滴下し、1時間撹拌した。室温まで昇温 後酢酸パラジウム(10mg)およびトリフェニルホスフィン(47mg)を加 え、30分撹拌した。8-プロモ-1-イソブチル-1,2,3,4-テトラヒ ドロ-1-ベンゾアゾシン-5-カルボン酸(5g)、リン酸三カリウム(19. 63g) および蒸留水(40m1) を加え、加熱還流下2時間撹拌した。放冷後、 水 (50m1) を加え6N塩酸でpH3とし、分液した。水層は酢酸エチル50 m l で抽出した。有機層を合わせて飽和食塩水で洗浄後、活性炭(0.5g)お よびトリブチルホスフィン(0.5m1)を加え室温下20分撹拌した。活性炭 をろ去した後溶媒を留去した。残留物にイソプロピルエーテル(25ml)を加 えて60℃に加熱し徐々に室温にもどし室温で2時間、氷冷下1時間撹拌後、結 晶をろ取した。冷イソプロピルエーテル(10m1)で洗浄した(6.0g)。 これをイソプロパノール(60m1)に60℃で溶解後、活性炭0.5gを加え て20分撹拌した。活性炭をろ去した後溶媒を留去した。残留物にイソプロパノ ール(30m1)を加えて60℃で溶解後、室温下3時間、氷冷下1時間撹拌後 結晶をろ取した。冷イソプロパノール(10m1)で洗浄後40℃で減圧乾燥し、 黄色粉末として標題化合物を得た(5.38g、収率80.5%)。

参考例5

25 1-イソプチルピロリジンー2ーオン

2-ピロリドン (60g) のテトラヒドロフラン (300m1) 溶液に、水酸 化カリウム (59.3g) およびテトラブチルアンモニウムプロマイド (2.5g) を添加し、イソプチルプロマイド (144.9g) を50 ℃以下で滴下した。

 $50\sim60$ ℃で3時間撹拌後、室温まで放冷後、不溶物をろ去しトルエン(300m1)で洗浄した。ろ液を飽和食塩水(150m1)で洗浄後、溶媒を留去した。残留物を減圧蒸留し $bp_{3mmHg}97\sim102$ ℃の留分を集めて無色油状物として標題化合物(73g、収率73%)を得た。

5 参考例 6 '

10

15

20

25

7 ープロモー1ーイソプチルー2, 3 ージヒドロー1*H*ー1ーベンゾアゼピンー4 ーカルボン酸

1ーイソブチルピロリジン-2ーオン(28g)に水(66m1) およびメタンスルホン酸(26m1)を加え、還流下24時間撹拌した。放冷後水(30m1) および炭酸ナトリウム(84.8g)加え(激しく発泡する)、1時間撹拌した。反応溶液にジメチルスルホキシド(30m1)を加え、5ープロモー2ーフルオロベンズアルデヒド(12.2g)のジメチルスルホキシド(66m1)溶液を滴下した。滴下終了後9時間加熱還流した。放冷後、6N塩酸でpH3に調整し、酢酸エチルで抽出した。有機層は20%食塩水で洗浄後、1N水酸化ナトリウム水溶液(100m1)で逆抽出した。水層を6N塩酸でpH3に調整し、酢酸エチルで抽出した。溶媒を留去し茶色油状物として4ー[(4ープロモー2ーホルミルフェニル)(イソプチル)アミノ]ブタン酸を得た。これのジメチルホルムアミド(50m1)溶液に、炭酸カリウム(9.12g)を加え、ヨウ化メチル(10.22g)のジメチルホルムアミド(10m1)溶液を滴下した。室温下1時間撹拌後、炭酸ジメチル(120m1)を加え、28%ナトリウムメ

室温下1時間撹拌後、炭酸ジメチル(120ml)を加え、28%ナトリウムメトキシド(27.8g)を滴下後60℃で1時間撹拌した。氷冷下2N塩酸(10ml)でpH3とした。次いで6N水酸化ナトリウム水溶液で(pH6.

5) とし、溶媒を留去した。残渣をトルエンで抽出した。トルエン層を1N水酸化ナトリウム水溶液、2%食塩水、水で順次洗浄し、溶媒を留去して7ープロモー1ーイソプチルー2,3ージヒドロー1*H*-1ーベンゾアゼピン-4ーカルポン酸メチルを茶色油状物として得た。

本油状物のテトラヒドロフランーメタノール(1:1、190m1)溶液に1 N水酸化ナトリウム水溶液(120m1)を加え、50 \mathbb{C} で 1.5 時間撹拌した。

10

20

25

溶媒を約半量まで留去後、トルエンで洗浄した。水層を6 N塩酸でpH3に調整後、酢酸エチルで抽出した。酢酸エチル層は2%食塩水で洗浄後溶媒を留去し、茶色油状物を得た。油状物をメタノール(120m1)に溶解し、活性炭(1.2g)を加え、60℃で20分撹拌した。活性炭をろ去した後溶媒を留去した。残留物を60℃でメタノール(45m1)に溶解し、水(9m1)を加えて結晶を晶出させた。室温下8時間、氷冷下1時間撹拌した。結晶をろ取し、冷メタノールー水(1:1、30m1)で洗浄した。40℃で減圧乾燥し、標題化合物を得た(10.13g、収率、52.1%)。

 $^{1}\text{H-NMR}$ (300MHz, CDCl₃, δ): 0. 91 (6H, d, J=6. 6Hz), 1. 90-2. 25 (1H, m), 2. 75-2. 85 (2H, m), 3. 12 (2H, d, J=7. 4Hz), 3. 20-3. 30 (2H, m), 6. 72 (1H, d, J=9. 0Hz), 7. 20-7. 30 (1H, m), 7. 4 4 (1H, s), 7. 70 (1H, s).

元素分析値:C₁₅H₁₈NO₂Brとして

計算値: C, 55. 57; H, 5. 60; N, 4. 32; Br, 24. 65 実測値: C, 55. 52; H, 5. 59; N, 4. 13; Br, 24. 39 IR (KBr、cm⁻¹): 1677, 1614, 1490 mp144. 8~145. 5℃ 参考例7

7- [4-(2-ブトキジエトキシ)フェニル]-1-イソプチル-2,3-ジ ヒドロ-1H-1-ベンゾアゼピン-4-カルボン酸

アルゴン雰囲気下、マグネシウム(2.25g)のテトラヒドロフラン(140ml)溶液を加熱還流し、4-(2-プトキシエトキシ)プロモベンゼン(24.6g)のTHF(40ml)溶液の1/3量をゆっくり滴下した。反応が開始したことを確認後(反応溶液が濁る)、残りの2/3量をゆっくり滴下し還流下1時間撹拌した。室温まで放冷した後、-10 C以下を保ちながらホウ酸トリメチル(10ml)のテトラヒドロフラン(40ml)溶液を滴下し、1時間撹拌した。室温まで昇温後酢酸パラジウム(27mg)およびトリフェニルホスフ

10

15

20

イン (126mg) を加え、30分撹拌した。7-ブロモ-1-イソプチル-2、3-ジヒドロ-1*H*-1-ベンゾアゼピン-4-カルボン酸(19.45g)、リン酸三カリウム(79.6g)および蒸留水(100m1)を加え、加熱還流下2時間撹拌した。放冷後、水(150m1)を加え6N塩酸(150m1)でpH3とし、分液した。水層をトルエン140mlで抽出した。有機層を1N水酸化ナトリウム水溶液、1N塩酸、20%食塩水で順次洗浄した。有機層に活性炭(2g)およびトリブチルホスフィン(2m1)を加え、室温下20分撹拌した。活性炭をろ去した後溶媒を留去した。残留物にイソプロピルエーテル(80m1)を加えて加熱した。室温下1時間、氷冷下1時間撹拌後、結晶をろ取した。イソプロピルエーテル(30m1)で洗浄した後、40℃で減圧乾燥し、黄色結晶を得た(23.72g、90.3%)。この結晶2gを加熱還流下イソプロパノール(10m1)に溶解し、トリブチルホスフィン(0.2m1)を加え、室温下2時間、氷冷下1時間撹拌した。結晶をろ取して冷イソプロパノール(5m1)で洗浄後、40℃で減圧乾燥し、黄色結晶として純粋な標題化合物を得た(1.92g、収率.96.0%)。

¹H-NMR(300MHz,CDC1₃,δ):0.90-1.10(9H,m),1.35-1.50(2H,m),1.55-1.70(2H,m),2.00-2.15(1H,m),2.85-2.90(2H,m),3.20(2H,d,J=7.3Hz),3.30-3.35(2H,m),3.58(2H,d,J=6.7Hz),3.80-3.85(2H,m),4.15-4.20(2H,m),6.92(1H,d,J=8.8Hz),7.01(2H,d,J=8.8Hz),7.40-7.55(4H,m),7.91(1H,s).元素分析値:C₂₇H₃₅NO₄として

計算値: C, 74. 11; H, 8. 06; N, 3. 20 実測値: C, 74. 18; H, 8. 33; N, 2. 95 IR (KBr、cm⁻¹): 1668, 1608, 1500 mp126. 4~127. 0℃ 参考例8

10

15

20

25

1-プロピルピペリジン-2-オン

¹H-NMR (CDCl₃, δ, 300MHz) 0. 88 (3H, t, *J*=7. 4Hz), 1. 48-1. 61 (2H, m), 1. 74-2. 00 (4H, m), 2. 33-2. 38 (2H, m), 3. 22-3. 33 (4H, m)。 参考例 9

8-プロモ-1-プロピル-1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシ ン-5-カルボン酸

1ープロピルピペリジン-2ーオン(55.6g)を4N水酸化ナトリウム(197m1)に加え、4時間還流した。室温に冷却し濃塩酸加えpH6.1に調整した。炭酸ナトリウム(83.5g)、水(255m1)、ジメチルスルホキシド(520m1)、5ープロモ-2ーフルオロベンズアルデヒド(40g)を加えた。5時間還流した後、50℃に冷却し6N塩酸でpH3.1に調整した。室温に冷却後酢酸エチルで抽出した。有機層を合わせ5%食塩水で洗浄した。5%炭酸ナトリウム水溶液(440m1)で逆抽出した。水層を6N塩酸でpH3.3にした後、トルエン(400m1)とテトラヒドロフラン(150m1)混液で抽出した。有機層を5%食塩水、水で順次洗浄後溶媒を留去し、褐色油状物として5-[(4ープロモ-2ーホルミルフェニル)(プロピル)アミノ]吉草酸を得た。得られた5-[(4ープロモ-2ーホルミルフェニル)(プロピル)アミノ]吉草酸をジメチルホルムアミド(120m1)に溶解させ、炭酸カ

10

15

20

リウム (30g) 加え、さらによう化メチル (33.6g) を加えた。室温で2時間攪拌した。炭酸ジメチル (240ml) 加え、ついで28%ナトリウムメトキシドメタノール溶液 (91.2g) を滴下し、60℃で1時間攪拌した。室温に冷却し水 (400ml) を滴下し、トルエンで抽出した。抽出液は5%食塩水で洗浄後減圧濃縮し、油状物として8-プロモー1-プロピルー1,2,3,4ーテトラヒドロー1-ベンゾアゾシンー5-カルボン酸メチルを得た。得られた8-ブロモー1-プロピルー1,2,3,4ーテトラヒドロー1ーベンゾアゾシンー5-カルボン酸メチルをテトラヒドロフラン (100ml)、メタノール(100ml) 混液に溶解させた。2N水酸化ナトリウム(197ml)加え1時間還流した。室温に冷却後、6N塩酸を加えpH3.2に調整した。酢酸エチルで抽出し、抽出液は5%食塩水で洗浄した。活性炭2gを加え30分攪拌後ろ過し、酢酸エチル80mlで洗浄した。ろ液を合わせて減圧濃縮し、得られた結晶にメタノール(90ml)加えた。30分間還流後室温で1時間ついで氷冷2時間攪拌した。得られた結晶をろ取し標題化合物を得た(29.76g、収率47%)。

¹H-NMR (CDC1₃, δ , 300MHz) 0. 96 (3H, t, J=7. 4Hz), 1. 40-1. 49 (2H, m), 1. 59-1. 71 (2H, m), 2. 53 (2H, t, J=6. 0Hz), 3. 12 (2H, t, J=7. 9H z), 3. 44 (2H, t, J=5. 3Hz), 6. 56-6. 60 (1H,

m), 7. 19-7. 23 (2H, m), 7. 81 (1H, s)。 参考例10

8- [4-(2-プトキシエトキシ) フェニル]-1-プロピル-1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボン酸

アルゴン気流下、マグネシウム(675mg)をテトラヒドロフラン(50m 1)に加えた。還流下1-プロモー4-(2-プトキシエトキシ)ペンゼン(7. 37g)のテトラヒドロフラン(15m1)溶液をゆっくり滴下し、1時間還流 した。-15~-10℃でホウ酸トリメチル(2.79g)のテトラヒドロフラン(15m1)溶液を滴下した後、同温度で30分攪拌した。室温に昇温し酢酸

10

15

20

25

参考例11

パラジウム(13mg)ついでトリフェニルホスフィン(63mg)を加えた。室温30分攪拌後、8-プロモー1-プロピルー1,2,3,4-テトラヒドロー1ーベンゾアゾシンー5-カルボン酸(5.0g)、リン酸カリウム(20.5g)、蒸留水(40ml)を順次加えた。2時間30分環流、攪拌した。酢酸パラジウム(13mg),トリフェニルホスフィン(63mg)を反応液に加え、引き続き50分間還流した。室温に冷却し水(40ml)を加えた。氷冷下、6N塩酸を滴下しpH3.3に調整した。有機層を分液し、水層はトルエンで抽出した。有機層を合わせ水、1規定水酸化ナトリウムで洗浄した。有機層に0.3N塩酸(120ml)を加え、さらに酢酸エチル追加後不溶物をろ過し、ろ液を分液した。有機層を水で洗浄した後、トリプチルホスフィン(0.5ml)ついで活性炭(250mg)加え室温で30分攪拌した。ろ過し酢酸エチルで洗浄し減圧濃縮した。得られた結晶に酢酸エチル(25ml)加え還流しながら撹拌した。ついで氷冷下に1時間撹拌し得られた結晶をろ過し氷冷した酢酸エチル(10ml)で洗浄し、標題化合物を帯赤黄色結晶として得た(5.63g、収率83%)。

 $^{1}H-NMR$ (CDC1₃, δ , 300MHz) 0. 90-1. 01 (6H,

- m), 1. 35-1. 72 (8H, m), 2. 57 (2H, t, J=5. 3H
- z), 3. 19 (2H, t, J=7. 7Hz), 3. 48-3. 57 (4H,
- m), 3.80 (2H, t, J=4.9Hz), 4.15 (2H, t, J=4.
- 9 Hz), 6. 76 (1H, d, J=8. 9 Hz), 6. 95 (2H, d, J=8. 7 Hz), 7. 32-7. 45 (4H, m), 8. 00 (1H, s).

5- (クロロメチル) -1-プロピル-1H-イミダゾール 1塩酸塩

1-ブタノール (900 ml)と酢酸 (120 ml)混合液に30℃以下でn-プロピルアミン (103 ml)を滴下し、さらにメタンスルホン酸 (8 ml)を30℃以下で滴下した。室温もどして1,3-ジヒドロキシアセトン二量体 (90.1 g) およびチオシアン酸カリウム (145.8 g)を加え、同温度で24時間撹拌した。水 (250 ml)を加え、室温で2時間撹拌

10

15

20

後、析出した結晶をろ取した。得られた結晶を水(100 m1)で洗浄し、 (2-メルカプト-1-プロピル-1H-イミダゾール-5-イル)メタノール を得た。

亜硝酸ナトリウム (1.7 g) を水 (5 m1) に溶解し20℃以下で5 M 硝酸 (600m1) に滴下した。先に得られた (2-メルカプト-1-プロピルー1H-イミダゾールー5-イル) メタノール全量の3.5 N水酸化ナトリウム水 (215 m1) 溶液を20℃以下で滴下し、次いで室温下2時間撹拌した。さらに6 N水酸化ナトリウム水溶液 (370 m1)を20℃以下で滴下後 (p H=約6.5)、2 M炭酸ナトリウム水溶液 (370 m1)を20℃以下で滴下した (p H=約9)。酢酸エチル:イソプロパノール (2:1、450m1)で抽出した。再度、酢酸エチル:イソプロパノール (3:1、400m1)で2回抽出した。有機層をあわせて10%食塩水 (200 m1)で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留去し、 (1-プロピルー1H-イミダゾールー5-イル)メタノールを油状物として得た。

上記(1-プロピルー1Hーイミダゾールー5ーイル)メタノールの全量にDMF(375 m1)を加え、残留している酢酸エチルを減圧下に留去した。ついでトルエン(100 m1)を加え、減圧下に留去した。本操作を2回行った後、塩化チオニル(40.1 m1)を30℃以下で滴下した。室温にもどして2時間撹拌した。トルエン(700 m1)を加え、室温で1時間撹拌した。析出した結晶をろ取し、トルエン(100 m1)で洗浄後40℃で減圧乾燥し、標題化合物(63.7 g)を白色結晶として得た。

 $^{1}H-NMR$ (300MHz, CDCl₃, δ): 0.88 (3H, t, J=7.35Hz), 1.80-2.00 (2H, m), 4.21 (2H, t, J=7.35Hz), 5.05 (2H, s), 7.83 (1H,

25 s), 9.33(1H, s).

元素分析値: C₇H₁₁ClN₂・HClとして

計算值: C, 43.10; H, 6.20; N, 14.36

実測値: C, 43.12; H, 5.95; N, 14.28

WO 03/076411 PCT/JP03/02840

65

IR (KBr, cm^{-1}): 1600

mp 164.8~166.4℃

実施例1

5

10

15

20

25

2, 2, 2ートリフルオローN- (4- { [(1-プロピルー1H-イミダゾー ルー5-イル) メチル] チオ} フェニル) アセトアミド

トリエチルアミン (27.9m1) を、0~10℃で4-アミノベンゼンチオール (12.5g) のTHF (180m1) 溶液に滴下した。続いて、トリフルオロ酢酸無水物 (28.2m1) を、0~10℃で滴下し、同温度で0.5時間撹拌した。反応液に市水 (30m1) を加え、室温で0.5時間撹拌した。20w/w%食塩水 (30m1) を加えて、分液した。水層を酢酸エチル (180m1) で抽出し、有機層をあわせ、市水 (30m1) を加えた。これに炭酸水素ナトリウムを加え、約pH9に調製した。分液後、有機層を市水 (30m1) で洗浄後、有機層を濃縮した。析出した結晶にn-ヘキサン (120m1) を加え、室温で17時間撹拌後、結晶をろ取し、結晶をn-ヘキサン (20m1) で洗浄した。結晶を減圧乾燥して、白色結晶の2,2,2-トリフルオローN-(4-メルカプトフェニル) アセトアミド (26.1g) を得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 3. 45 (1H, s), 7. 1 8 (2H, d, J=9. 4Hz), 7. 51 (2H, d, J=9. 4Hz), 9. 97 (1H, brs)

窒素雰囲気下、トリエチルアミン(29.0ml)を、氷冷しながら0~1 0℃で上記で得られた2,2,2ートリフルオローNー(4ーメルカプトフェニル)アセトアミド(24.8g)のメタノール(99ml)溶液に滴下した。続いて、5ー(クロロメチル)ー1ープロピルー1Hーイミダゾール塩酸塩(20.4g)の蒸留水(21ml)溶液を0~20℃で滴下し、20~30℃で0.5時間撹拌した。反応液に酢酸エチル(200ml)を加え分液し、続いて7w/w%炭酸水素ナトリウム水(50ml)、市水(50ml)で洗浄た後、有機層を濃縮した。析出した結晶にIPE(250ml)を加え加熱還流下で0.5時間撹拌後、室温に放冷して3時間撹拌した。析出した結晶を3取し、結晶をIP

E (20m1) で洗浄した。結晶を減圧乾燥して、白色結晶の標題化合物 (23.8g, 4-7ミノベンゼンチオール量より計算して収率 (23.8g, 4-7) を得た。

融点82-84℃

元素分析C₁₅H₁₆N₃OSF₃・0.5H₂Oとして

計算値:C, 51.13;H, 4.86;N, 11.92

実測値: C, 51. 41; H, 4. 55; N, 11. 75

 $^{1}H-NMR$ (CDC1₃, 300MHz) $\delta:0.99$ (3H, t, J=7.

4Hz), 1. 67 (1H, brs), 1. 82-1. 94 (2H, m), 3.

77 (2H, t, J=6.6Hz), 3.99 (2H, s), 6.67 (1H,

10 s), 6. 96-7. 31 (2H, m), 7. 47 (1H, m), 7. 51-7.

59 (2H, m)

IR (KBr, cm⁻¹): 1704, 1504, 1247, 1195, 116 0, 1145, 1108

実施例2

2, 2, 2ートリフルオローNー(4ー { [(1-プロピルー1Hーイミダゾー 15 ルー5-イル) メチル] チオ} フェニル) アセトアミド (one-pot反応) 窒素雰囲気下、トリエチルアミン(27.9m1)を、0~10℃で4-アミ ノベンゼンチオール (12.5g) のTHF (180ml) 溶液に滴下した。続 いて、トリフルオロ酢酸無水物(28.2ml)を、0~10℃で滴下し、同温 度で1時間撹拌した。反応液に市水(30ml)を加え、室温で1時間撹拌した。 20 0~10℃で、トリエチルアミン(41.8ml)を滴下した。続いて、5-(クロロメチル) -1-プロピル-1H-イミダゾール塩酸塩(19.5g)の 蒸留水(19m1)溶液を0~20℃で滴下し、同条件で1時間撹拌した。反応 液に酢酸エチル(120m1)を加え分液し、続いて7w/w%炭酸水素ナトリ ウム水(60m1)、市水(60m1)で洗浄した後、有機層を濃縮した。濃縮 25 物にIPE (150m1) を加え20~30℃で2時間撹拌した。析出した結晶 を濾取し、結晶を IPE (20ml) で洗浄した。結晶を減圧乾燥して、白色結 晶の標題化合物(33.1g、4-アミノベンゼンチオール量より計算して収率

96%)を得た。

実施例3

5

10

15

20

25

 $4 - \{ [(1 - \mathcal{I} - \mathcal$

20~30℃で、30w/w%過酸化水素水(16.4g)を2,2,2ートリフルオローNー(4ー{[(1ープロピルー1Hーイミダゾールー5ーイル)メチル]チオ}フェニル)アセトアミド(33.1g)の酢酸(49.7ml)溶液に加え、同温度で3時間撹拌した。反応液に酢酸エチル(330ml)を加えた後、これに0~10℃でチオ硫酸ナトリウム5水和物(35.9g)、6N水酸化ナトリウム水(144.6ml)を滴下し、同温度で、0.5時間撹拌した。THF(330ml)を加え分液し、再度水層より酢酸エチル/THF(160ml/160ml)で抽出した。有機層をあわせて、10w/w%食塩水(80ml×2)で洗浄後、有機層を濃縮した。メタノール(330ml)を加え溶解し、再度濃縮した。

濃縮物をメタノール(198.6ml)に溶解し、室温で炭酸カリウム(40.0g)の水(99.3ml)溶液を加えた。50℃に加温し、2.5時間撹拌した。20~30℃に冷却後分液し、水層より酢酸エチル(330ml)で抽出した。有機層をあわせて、20w/w%食塩水(100ml)で洗浄後、有機層に無水硫酸マグネシウム(5g)と活性炭(3g)を加え、20~30℃で0.5時間撹拌した。固形分を濾去し、酢酸エチル(64ml)で洗浄し、有機層を濃縮した。濃縮物に酢酸エチル(160ml)を加え再度濃縮した。濃縮物に酢酸エチル(132ml)を加え、50℃で1時間撹拌後、20~30℃に放冷し同温度で1時間撹拌した。析出した結晶を濾取し、酢酸エチル(33ml)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物(18.5g、収率73%)を得た。

融点143℃(分解)

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 0. 90 (3H, t, J=7. 4Hz), 1. 68-1. 78 (2H, m), 3. 74 (2H, t, J=6. 5

 H_z), 3. 95-4. 08 (4H, m), 6. 60 (1H, s), 6. 69 (2H, d, J=6. 8Hz), 7. 17 (2H, d, J=6. 8Hz), 7. 43 (1H, s)

IR (KBr, cm⁻¹): 3397, 3334, 3216, 1650, 159 6, 1419, 1018

実施例4

5

10

15

20

 $4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル] スルフィニル} フェニルアミン (one-pot反応)$

20~30℃で、30w/w%過酸化水素水 (35.4g)を2,2,2ートリフルオローNー (4ー { [(1ープロピルー1 Hーイミダゾールー5ーイル)メチル]チオ}フェニル)アセトアミド (71.5g)の酢酸 (107.3m1)溶液に加え、同温度で3時間撹拌した。メタノール (429m1)を加え、これに0~10℃でチオ硫酸ナトリウム5水和物 (77.4g)、6N水酸化ナトリウム水 (312.2m1)を滴下し、同温度で、1時間撹拌した。続いて炭酸カリウム (86.2g)を加え、50℃に加温し、3時間撹拌した。20~30℃に冷却後分液し、水層より酢酸エチル (710m1)で抽出した。有機層を、20w/w%食塩水 (200m1)で洗浄後、有機層に無水硫酸マグネシウム (10g)と活性炭 (7.1g)を加え、20~30℃で0.5時間撹拌した。 固形分を濾去し、酢酸エチル (200m1)で洗浄し、有機層を濃縮した。濃縮物に酢酸エチル (358m1)を加え、50℃で2時間撹拌後、20~30℃に放冷し同温度で1時間撹拌した。析出した結晶をろ取し、酢酸エチル (72m1)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物 (36.3g、収率66%)を得た。

実施例5

25 $4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル] スルフィニル} フェニルアミン$

5-(クロロメチル) -1-プロピルー1H-イミダゾール塩酸塩(<math>10.7g) の蒸留水(6m1)溶液を、10~30で4-アミノベンゼンチオール

10

15

20

25

(6.3g) とトリエチルアミン(15.3m1)のIPA(25.2m1)混合液に滴下し、同条件で1時間撹拌した。市水(20m1)を加え、酢酸エチル(50m1×2)で抽出した。有機層を20w/w%食塩水(20m1)で洗浄後、濃縮した。

濃縮物を酢酸 (12.6m1) に溶解し、30w/w%過酸化水素水 (8.5g)を20~30℃で加え、同温度で2時間撹拌した。これに0~10℃でチオ硫酸ナトリウム5水和物 (9.3g)、6N水酸化ナトリウム水 (36m1)を滴下し、同温度で、1時間撹拌した。酢酸エチル/IPA (4/1、180m1)で抽出し、有機層を20w/w%食塩水 (30m1)で洗浄後、有機層に無水硫酸ナトリウムと活性炭 (0.6g)を加え、20~30℃で1時間撹拌した。固形分を濾去し、酢酸エチル (10m1)で洗浄し、有機層を濃縮した。濃縮物にIPA (18m1)を加え溶解し20~30℃で0.5時間撹拌した。続いて、n-ヘプタン (36m1)を加え溶解し20~30℃で1時間撹拌した。析出した結晶を濾取し、IPA/n-ヘプタン (4m1/2m1)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物 (10.2g、収率73%)を得た。実施例6

 $4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル] スルフィニル} フェニルアミン(one-pot反応)$

 $5-(クロロメチル)-1-プロピルー1H-イミダゾール塩酸塩(0.78g)の蒸留水(0.5ml)溶液を、<math>10\sim30$ ℃で4-アミノベンゼンチオール(0.46g)とトリエチルアミン(1.1ml)のメタノール(<math>2ml)混合液に滴下し、同条件で1時間撹拌した。続いて酢酸(1ml)と30w/w% 過酸化水素水(0.62g)を $20\sim30$ ℃で加え、同温度で17時間撹拌した。これに $0\sim10$ ℃で亜硫酸ナトリウム(0.69g)、6N水酸化ナトリウム水(3ml)を滴下し、同温度で、1時間撹拌した。酢酸エチル/IPAで抽出し、有機層を20w/w%食塩水で洗浄後、有機層に無水硫酸ナトリウムと活性炭(40mg)を加え、 $20\sim30$ ℃で1時間撹拌した。固形分を濾去し、酢酸エチル(10ml)で洗浄し、有機層を濃縮した。濃縮物に酢酸エチル(4ml)

を加え溶解し20~30℃で1時間撹拌した。析出した結晶を濾取し、酢酸エチル(2m1)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物 (0.73g、収率71%)を得た。

実施例7

(-) -4-[[(1-プロピル-1*H*-イミダゾール-5-イル)メチル]ス5 ルフィニル]フェニルアミン(2S, 3S)-ジ(1-ナフトイル)酒石酸塩 4 - [[(1 - プロピル - 1 - H - イミダゾール - 5 - イル) メチル] スルフィニル]フェニルアミンのラセミ体50mgと(2S, 3S)-ジ(1-ナフト イル) 酒石酸1水和物45.2mgをメタノール(1.0ml) に溶解し、室温 下で一晩撹拌した。析出物をろ過し、56.2mgの結晶を得た。HPLC分析 10 の結果、ジアステレオマー過剰率は88%deであった。この結晶55mgを工 タノール(1.5ml)中で0.5時間加熱還流後、室温で一晩撹拌した。析出 物をろ過し、48.1mgの結晶を得た。HPLC分析の結果、ジアステレオマ 一過剰率は95%deであった。この結晶47mgをメタノール(2m1)、水 (1ml)中で0.5時間加熱還流後、室温で一晩撹拌した。析出物をろ過し、 15 41.8mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は9 9%deであった。

比旋光度; $[\alpha]^{27}_{D} = -45.5$ (c=0.2MeOH)

融点;178℃(分解)

20 元素分析値C₁₃H₁₇N₃OS・C₂₆H₁₈O₈として

計算值:C, 64.90;H, 4.89;N, 5.84;S, 4.44

測定值: C, 64.65; H, 4.63; N, 5.65; S, 4.31

実施例8

25

- (-) $-4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル]$ スルフィニル $\}$ フェニルアミンのラセミ体200mgと(2S, 3S)-ジ(1-ナフトイル)酒石酸1水和物180.8mgを酢酸エチル(1.5m1)、メ

20

25

タノール(4ml)中で約0.5時間加熱還流し、そのまま室温下で静置した。 析出物をろ過し、223.6mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は92%deであった。この結晶223mgをメタノール(13ml)中で0.5時間加熱還流後、室温で一晩撹拌した。析出物をろ過し、188.1mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は99%deであった。この結晶187mgを飽和重曹水5ml、水5ml中で複分解し、クロロホルム約15mlで3回抽出した。クロロホルム層を無水硫酸マグネシウムで乾燥後、濃縮乾固して62.4mgの結晶を得た。(収率31%)HPLC分析の結果、鏡像異性体過剰率は99%eeであった。

10 $H^{1}-NMR$ (DMSO-d₆) δ ; 0. 78-0. 82 (3H, t, J=7. 3Hz), 1. 58-1. 67 (2H, m), 3. 72-3. 76 (2H, t, J=7. 0Hz), 4. 05-4. 14 (2H, m), 5. 71 (2H, s), 6. 54 (1H, s), 6. 61-6. 63 (2H, d, J=7. 6Hz), 7. 14-7. 16 (2H, d, J=7. 6Hz), 7. 59 (1H, s)

15 融点;137-138℃

実施例9

(一) -4-{ [(1-プロピル-1 H-イミダゾール-5-イル)メチル]スルフィニル} フェニルアミン・ジー pートルオイルーDー酒石酸塩・1水和物 (2S, 3S) -2, 3ーピス [(4ーメチルベンゾイル)オキシ]ブタンジカルボン酸(15.1g)と4ー{ [(1-プロピルー1 H-イミダゾールー5-イル)メチル] スルフィニル} フェニルアミン(10.3g)の1, 2ージメトキシエタン(90m1)混合液に水(90m1)を滴下し、室温で一晩撹拌した。析出した結晶を濾取し、50 v / v %含水1, 2ージメトキシエタン(30m1)で洗浄し、減圧乾燥した。結晶を50 v / v %含水アセトニトリル(84m1)に70℃で加熱溶解し、同温度を保持しながら水(42m1)を加えた。室温に放冷後、室温で一晩、続いて0℃で1時間撹拌した。析出した結晶を濾取し、0℃に冷却した75%含水アセトニトリル(30m1)で洗浄した。得られた結晶を減圧乾燥し、白色結晶の標題化合物(10.9g、収率41.6%、9

9.6%de)を得た。

融点134-136℃

元素分析(C33H35N3O9S・1H2Oとして)

理論値: C, 59.36; H, 5.59; N, 6.29; S, 4.80

分析值:C, 59. 26;H, 5. 67;N, 6. 18;S, 4. 77

実施例10

5

- (-) $-4-\{[(1-プロピル-1H-イミダゾール-5-イル)メチル]$ スルフィニル $\}$ フェニルアミン・ジーp-トルオイルーD-酒石酸塩・1水和物 $(5\,g)$ に3 N塩酸 $(1\,0\,m\,1)$ および酢酸エチル $(2\,0\,m\,1)$ を加えて抽出した。水層に6 N水酸化ナトリウム水溶液 $(5\,m\,1)$ を加えてp H約9 とし、種晶を加えて結晶化させた。室温下撹拌後結晶をろ取し、白色粉末として標題化合物を得た $(1.\,8\,8\,g\,,\,9\,5.\,4\,\%)$ 。
- 15 実施例11
 - (一) -4- [[(1-プロピルー1-H-イミダゾールー5-イル)メチル] スルフィニル] フェニルアミンと (R) -N- (3, 5-ジニトロベンゾイル)フェニルグリシン塩
- 4-[[(1-プロピル-1-*H*-イミダゾール-5-イル)メチル]スルフィニル]フェニルアミンのラセミ体50mgと(*R*)-*N*-(3,5-ジニトロベンゾイル)フェニルグリシン65.6mgをメタノール1.0mlに溶解し、室温下で一晩静置した。析出物をろ過し、57.9mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は51%deであった。この結晶57mgをエタノール1.5mlに溶解し、室温で一晩静置した。析出物をろ過し、27.9mgの結晶を得た。HPLC分析の結果、ジアステレオマー過剰率は80%deであった。

実施例12

(一) $-4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル] ス$

20

ルフェニル $}$ フェニルアミン・ジーpートルオイルーDー酒石酸塩・1水和物 4-アミノチオフェノール(2. 5 g)を水(2. 5 m 1)、イソプロパノール(1 0 m 1)に解し、トリエチルアミン(5. 5 m 1)を加えた後、-1 5 ~ -1 0 \mathbb{C} に冷却した。

- 5- (クロロメチル) -1-プロピル-1H-イミダゾール塩酸塩(3.9g) の水(2.5ml)溶液を-15~-10℃で滴下し、同温度で1時間撹拌した。イソプロパノールを減圧留去した後、メチルイソブチルケトン(25ml)を加え、有機層を水で洗浄した。有機層に活性炭(0.1g)を加え室温で10分撹拌した。有機層を濃縮しメチルイソブチルケトン(30ml)に溶解した。
- 10 別にジーpートルオイルー (D) ー酒石酸 (7.7g)をトルエン (90m1)、メチルイソブチルケトン (60m1) 混液に溶解し、水 (3.6m1)を加えた。ついで上述のメチルイソブチルケトン溶液を2時間かけてゆっくり滴下した。1時間撹拌した後、30%過酸化水素水 (6.8g)を加え、室温で24時間撹拌した。メタノール (30m1)を加え、50℃で8時間撹拌した。水 (30m1)で洗1)を加え室温で5時間撹拌した。析出した結晶をろ取し、水 (30m1)で洗

浄して、標題化合物を得た(7.1g、53%)。

実施例13

- (-) -7-[4-(2-プトキシエトキシ) 7x=n] -1-TYプチル-N $-(4-{[(1-プロピル-1<math>H-T$) H-T) H-T H-T
- (一) -4-{[(1-プロピル-1 H-イミダゾール-5-イル) メチル]スルフィニル}フェニルアミン・ジーpートルオイルーDー酒石酸塩・1水和物(5g)5gに1N塩酸(25m1)および酢酸エチル(15m1)を加えて逆抽出した。水層に25%炭酸カリウム水溶液(25m1)を加え(pH9)、酢酸エチルーIPA(4:1)25m1で3回抽出した。有機層を飽和食塩水(25m1)で洗浄後硫酸マグネシムで乾燥後溶媒を留去し、(一)-4-{[(1-プロピル-1 H-イミダゾール-5-イル)メチル]スルフィニル}フェニル

10

15

20

. 25

アミンを得た。

別に7-[4-(2-プトキシエトキシ) フェニル] -1-イソプチル-2, 3 -ジヒドロ-1 H-1-ベンプアゼピン-4-カルボン酸(2.56g) のTH F(7.5ml) 溶液にDMF1 滴加え、室温下オキザリルクロリド(0.56ml) を滴下し、1時間撹拌し酸クロリドを調製した。

(一) ー4ー { [(1ープロピルー1 Hーイミダゾールー5ーイル) メチル] スルフィニル} フェニルアミンのTHF (17.5ml) 溶液にトリエチルアミン(2.85ml) を加え(溶液はほぼ澄明)、酸クロリド溶液を室温で滴下し、1時間撹拌した。水(15ml)を加え、酢酸エチルで抽出した。抽出液を10%酢酸水溶液、飽和重曹水、10%食塩水で順次洗浄後、塩基性シリカゲル(4g)、活性炭(0.4g)、硫酸ナトリウム(2g)を加え10分撹拌後ろ過し溶媒を留去した。残留物にtertーブチルメチルエーテル(20ml)を加え水(4ml)を添加して、室温下1時間撹拌した。析出した結晶をろ取し、標題化合物のtertーブチルメチルエーテル溶媒和物(3.62g、80.

3%) を得た。本品にエタノール(3.5ml)を加え、40℃で溶解後 tert t-ブチルメチルエーテル(31.5ml)を加えて室温下14時間、氷冷下1時間撹拌した。結晶をろ取して、黄色粉末として標題化合物の tert-ブチルメチルエーテル溶媒和物(3.52g、78%、99% ee)を得た。

¹H-NMR (CDCl₃, 300MHz) δ;標題化合物: tert-ブチル メチルエーテル=1:0.94;標題化合物:0.84-0.97 (12H, m),1.28-1.42 (2H, m),1.53-1.75 (4H, m)2. 02-2.11 (1H, m),2.88-2.94 (2H, m),3.17-3. 21 (2H, m),3.33-3.37 (2H, m),3.53 (2H, t, J =6.6Hz),3.71-3.81 (4H, m),3.95-4.10 (2H, m),4.13-4.16 (2H, m),6.55 (1H, s),6.90-6. 98 (3H, m),7.32 (2H, d, J=8.7Hz),7.43-7.4

s), NHは未検出. tert-プチルメチルエーテル: 1. 19 (9H, s),

7 (5H, m), 7. 75 (2H, d, J=8. 7Hz), 8. 32 (1H,

3. 21 (3H, s).

実施例14

5

10

15

20

25

(-) -7-[4-(2-プトキシエトキシ) 7x=n] -1-7yプチル-N $-(4-{[(1-プロピル-1H-イミダゾール-5-イル) メチル] スルフィニル} フェニル) <math>-2$, 3-ジヒドロ-1H-1-ベンゾアゼピン-4-カルボキシアミド

7-[4-(2-プトキシエトキシ) フェニル] -1-イソプチル-2, 3-ジヒドロ-1<math>H-1-ベンゾアゼピン-4-カルボン酸(2. 56g)のTHF(8m 1)溶液にDMF 1滴加え、氷冷下オキザリルクロリド(0. 56 m 1)を滴下し、1時間撹拌して酸クロリドを調製した。

(一) ー4ー { [(1ープロピルー1 Hーイミダゾールー5ーイル) メチル] スルフィニル} フェニルアミンのTHF (18m1) 溶液にジイソプロピルエチルアミン (3.5m1) を加え、上記酸クロリド溶液を10℃以下で滴下し、2時間撹拌した。水 (15m1) を加え、酢酸エチルで抽出した。有機層を10%酢酸水溶液、飽和重曹水、10%食塩水で順次洗浄後、塩基性シリカゲル(4g)、活性炭(0.4g)、硫酸ナトリウム(2g)を加え10分撹拌後ろ過し、溶媒を留去した。残渣に酢酸イソプロピル(15m1)を加えて40℃で撹拌溶解し室温下14時間撹拌した。ヘプタン15m1を加えて室温下1時間撹拌後氷冷した。結晶をろ取し、標題化合物の酢酸イソプロピル溶媒和物(2.93g)を得た。ついで酢酸イソプロピル(10m1)を加え、40℃で溶解後室温下4時間、氷冷下1時間撹拌した。結晶をろ取し、酢酸イソプロピル(15m1)で洗浄後減圧乾燥し、黄色粉末として標題化合物の酢酸イソプロピル溶媒和物(2.8g、77.1%)を得た。

 1 H-NMR(CDC1₃,300MHz) 3 ;標題化合物:酢酸イソプロピル = 1:0.80;標題化合物:0.84-0.97(12H,m),1.28-1.42(2H,m),1.53-1.75(4H,m)2.02-2.11(1H,m),2.88-2.94(2H,m),3.17-3.21(2H,m),3.33-3.37(2H,m),3.53(2H,t,J=6.6H

z), 3. 71-3. 81 (4H, m), 3. 95-4. 10 (2H, m), 4. 13-4. 16 (2H, m), 6. 55 (1H, s), 6. 90-6. 98 (3 H, m), 7. 32 (2H, d, J=8. 7Hz), 7. 43-7. 47 (5H, m), 7. 75 (2H, d, J=8. 7Hz), 8. 32 (1H, s), 酢酸イソプロピル: 1. 27 (6H, d, J=6. 3Hz), 2. 06 (3H, s), 4. 99-5. 08 (1H, m).

実施例 1 5

5

10

15

20

25

(一) -8-[4-(2-プトキシエトキシ) フェニル] -1-イソプチルー<math>N $-(4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル] スルフィニル} フェニル) -1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボキシアミド・メタンスルホン酸塩$

8-[4-(2-プトキシエトキシ) フェニル] -1-イソプチル-1, 2, 3, 4-テトラヒドロ-1-ベングアグシン-5-カルボン酸(<math>986mg)をテトラヒドロフラン(3m1)に溶解しジメチルホルムアミドを1滴加えた。ついで氷冷下にオキサリルクロリド(0.2m1, 2.29mmo1)滴下し氷冷下80分攪拌した。

別に (-) $-4-\{[(1-プロピル-1H-イミダゾール-5-イル) メチル]$ スルフィニル $\}$ フェニルアミン(689mg)をテトラヒドロフラン(7m1)に加え5℃に冷却した。ピリジン(0.62m1)を滴下し、 $3\sim5$ ℃で上述の酸クロリド溶液を滴下した。氷冷下2時間攪拌した。10℃以下で水20m1を滴下し酢酸エチルで抽出した。有機層を水、飽和重曹水、水で順次洗浄した後、減圧濃縮した。トルエンを加え減圧濃縮した。アセトニトリルを加え減圧濃縮した。残留物をアセトニトリル(7m1)とアセトン(7m1)に溶解しメタンスルホン酸(209mg)滴下して、種晶を加え室温で100分間攪拌した。ついでアセトンーアセトニトリル(1:1、5m1)追加した。室温で一晩攪拌後、氷冷下に2.5mm1)で洗浄した。40℃で減圧乾燥して標題化合物を黄色結晶として得た(1.5mm1)で洗浄した。40℃で減圧乾燥して標題化合物を黄色結晶として得た(1.5mm1)で洗浄した。40℃で減圧乾燥して標題化合物を黄色結晶として得た(1.5mm1)で洗浄した。2mm1)で加えているのはかかたかかりまた。2mm1)で洗浄したのかりになるのかり

10

25

¹H-NMR (300MHz, DMSO-d₆, δ): 0. 78-0. 96 (1 2H, m), 1. 25-1. 40 (2H, m), 1. 41-1. 51 (4H, m), 1. 65-1. 85 (2H, m), 2. 05-2. 15 (1H, m), 2. 30 (3H, s), 2. 35-2. 50 (2H, m), 3. 05-3. 15 (2H, m), 3. 30-3. 55 (4H, m), 3. 65-3. 70 (2H, m), 3. 90-4. 05 (2H, m), 4. 05-4. 10 (2H, m), 4. 30 (1H, d, J=14. 73Hz), 4. 65 (1H, d, J=14. 73Hz), 6. 85 (1H, d, J=8. 97Hz), 6. 97 (1H, d, J=8. 79Hz), 7. 17 (1H, s), 7. 35-7. 75 (6H, m), 7. 92 (2H, d, J=8. 79Hz), 9. 08 (1H, s), 10. 15 (1H, s).

元素分析値C41H52N4O4S・CH4SO3として

計算値: C, 63.61; H, 7.12; N, 7.06; S, 8.09

実測値: C, 63.65; H, 7.23; N, 7.05; S, 8.08

15 実施例16

(-) -8-[4-(2-プトキシエトキシ) フェニル] -1-イソプチル-N $-(4-{[(1-プロピル-1<math>H$ -イミダゾール-5-イル) メチル] スルフィニル $\}$ フェニル) -1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボキシアミド・メタンスルホン酸塩

8-[4-(2-プトキシエトキシ) フェニル] -1-イソプチルー1, 2, 3, 4-テトラヒドロー<math>1-ベンゾアゾシン-5-カルボン酸(5g)のテトラヒドロフラン (15m1) 溶液にジメチルホルムアミド1滴を加え、氷冷下オキザリルクロリド (1.1m1) を滴下し、1時間撹拌した。

別に (-) $-4-\{[(1-プロピル-1H-イミダゾール-5-イル) メチル]$ スルフィニル $\}$ フェニルアミン (3.22g) のテトラヒドロフラン (3.5m1) 溶液にジイソプロピルエチルアミン (6.7m1) を加え、上述の酸クロリド溶液を10 \mathbb{C} 以下で滴下し、1 時間撹拌した。水(50m1)およびトルエン (50m1) を加え、酢酸約 (8m1) を加えてp H4 付近に調整し分液した。

10

15

20

有機層を飽和重曹水で洗浄して $pH7\sim8$ に調整した。10%食塩水で洗浄後、塩基性シリカゲル(4g)、活性炭(0.5g)、硫酸ナトリウム(2g)を加え10% 持機を3過し、トルエン(20m1)で洗浄した。溶媒を留去してメチルイソブチルケトン(15m1)に溶解し、メタンスルホン酸(0.65m1)を加え、種晶(80mg)を加えて16 時間撹拌した。メチルイソブチルケトンー酢酸エチル(1:1.50m1)を加え、氷冷下2 時間撹拌した。結晶をろ取し40%で減圧乾燥し、黄色粉末を得た(6.62g)。本結晶をメチルイソブチルケトン(40m1)に懸濁し、16 時間撹拌後酢酸エチル(40m1)を加え、室温で1 時間、氷冷下2 時間撹拌後、結晶をろ取し、黄色粉末として標題化合物を得た(6.05g、68.7%)。

実施例17

(一) $-4-\{[(1-プロピルー1 H-イミダゾールー5-イル) メチル]$ スルフィニル $\}$ フェニルアミン・ジーp-トルオイルーD-酒石酸塩・1 水和物 ジーp-トルオイルーD-酒石酸(1.9g)のトルエン(1.5m1)とメチルイソプチルケトン(3.0m1)溶液に $4-\{[(1-プロピルー1 H-イミダゾールー5-イル) メチル]$ チオ $\}$ フェニルアミン(1.2g)のメチルイソブチルケトン(1.5m1)溶液を加えた。次いで30%過酸化水素水(1.7g)を加え、室温で3週間撹拌した。析出した結晶を濾取した。得られた結晶を恒量になるまで乾燥し標題化合物を2.9g(収率87%, 82.7% de)を得た。結晶をアセトニトリル/水 (9m1/9m1) に加え、60 $\mathbb C$ $\mathbb C$

25 実施例 1 8

- - $4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル] チオ<math>\}$ フ

ェニルアミン (0.99 g)と (R) -(-) -リン酸水素 1, 1 $^{\prime}$ -ビナフ チルー 2, 2 $^{\prime}$ -ジイル (0.14 g)の塩化メチレン (5 m 1)混合液に30%過酸 化水素水 (0.14 g)を加え、室温で6時間撹拌した。反応液を一部サンプリングし て高速液体クロマトグラフィー (HPLC) にて分析を行った。変換率52%、光学純度 35.0% e e e

HPLC条件

5

15

20

25

カラム: Chiralcel (Daicel) OD

移動相:ヘキサン-エタノール(85:15)

流速:1m1/min

10 温度:35℃

(+) -体: 2 1 min, (-) -体: 2 7 min

実施例19

8- [4-(2-プトキシエトキシ) フェニル]-1-イソプチル-1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボン酸(90g)のTH F (7.5 m 1) 溶液にDMF (460 m g) 加え、塩化チオニル(24.9 g) を10~15℃で滴下し、同温度で40分間撹拌した。

別に (-) -4- { [(1-プロピル-1H-イミダゾール-5-イル) メチル] スルフィニル} フェニルアミンのTHF (540m1) 溶液にピリジン (55.18g) を加え5℃以下にした後、上記酸クロリド溶液を5℃以下で滴下し、同温度で2.8時間撹拌した。水 (540m1) 及び20%クエン酸水溶液 (360m1) を加え、減圧下にTHFを留去した後、酢酸エチルで抽出した。抽出液を水、飽和重曹水、水で順次洗浄後溶媒を留去した。残留物にアセトニトリル (720m1) 及び酢酸エチル (720m1) を加え、メタンスルホン酸 (18.2g) を滴下し、室温下1時間撹拌した。析出した結晶をろ取し、標題化合物を

黄色結晶として得た(141.8g,94.4%)。

実施例20

5

10

15

20

(一) -8-[4-(2-プトキシエトキシ) フェニル] -1-プロピル-N-(4-[(1-プロピル-1*H* $-イミダゾール-5-イル) メチル] スルフィニル} フェニル) <math>-1$, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボキシアミド メタンスルホン酸塩

8-[4-(2-プトキシエトキシ) フェニル] -1-プロピル-1, 2, 3, $4-テトラヒドロ-1-ベンゾアゾシン-5-カルボン酸と <math>(-)-4-\{[(1-プロピル-1 H-イミダゾール-5-イル) メチル]$ スルフィニル} フェニルアミンから実施例15と同様にして標題化合物を製造した。 ^1H-NMR (CDC13, δ , 300MHz) 0.88-1.01 (9H, m), 1.37-1.42 (2H, m), 1.57-1.80 (8H, m), 2.63 (2H, br), 2.77 (3H, s), 3.27 (2H, br), 3.5

05 (1H, m), 4. 14 (2H, t, J=4.6Hz), 4. 25 (1H, d, J=14.6Hz), 6. 73 (1H, s), 6. 84 (1H, d, J=8.7Hz), 6. 93 (2H, d, J=8.8Hz), 7. 21 (2H, d, J=8.7Hz), 7. 40-7. 48 (4H, m), 7. 61 (1H, s), 7. 89 (2H, d, J=8.7Hz), 8. 65 (1H, s), 9. 27 (1H, br)

1-3.57 (4H, m), 3.77-3.86 (4H, m), 3.90-4.

元素分析値: C41H54N4O7S2として

計算値: C, 63. 21; H, 6. 99; N, 7. 19; S, 8. 23 分析値: C, 63. 00; H, 7. 09; N, 7. 41; S, 8. 25 実施例21

10

15

8-[4-(2-プトキシエトキシ) フェニル] -1-イソプチル-1, 2, 3, 4-テトラヒドロ-1-ベンゾアゾシン-5-カルボン酸(<math>45g)のテトラヒドロフラン(135m1)溶液にジメチルホルムアミド(230mg)加え、塩化チオニル(12.45g)を10~15℃で滴下し、同温度で40分間撹拌した。

別に (-) $-4-\{[(1-プロピル-1H-イミダゾール-5-イル) メチル]$ スルフィニル $\}$ フェニルアミンのテトラヒドロフラン(270m1)溶液にピリジン(27.59g)を加え5℃以下にした後、上記酸クロリド溶液を5℃以下で滴下し、同温度で2時間撹拌した。水(270m1)及び20%クエン酸水溶液(180m1)を加え、減圧下にテトラヒドロフランを留去した後、酢酸エチルで抽出した。抽出液を水、飽和重曹水、水で順次洗浄後溶媒を留去した。残留物に酢酸エチル(360m1)を加え、40℃でヘプタン(360m1)加え、(-) $-8-[4-(2-プトキシエトキシ)フェニル] -1-イソプチル-N-(4-{[(1-プロピル-1H-イミダゾール-5-イル)メチル] スルフィニル<math>\}$ フェニル) -1, 2, 3, 4-テトラヒドロー1-ベンゾアゾシン-5-カルボキシアミドの種晶を加え(10mg)、25℃で2時間、5℃で1時間撹拌して析出した結晶をろ取し標題化合物を得た(63.97g,92.1%)。融点 120~122℃。

元素分析値: C₄₁H₅₂N₄O₄Sとして

20 計算値C; C, 70.66; H, 7.52; N, 8.04

分析值C; C, 70. 42; H, 7. 52; N, 8. 01

産業上の利用の可能性

本発明によれば、CCR5拮抗作用を有する光学活性スルホキシド誘導体また は中間体を、ラセミ化やPummerer転位等の副反応を伴うことなく製造することが でき、特に、工程7は光学活性な酸の存在下に不斉酸化することによって、光学 活性な(II)の製造が可能であり工業的に有利である。

請求の範囲

1.式:

$$H_{2}N \longrightarrow A \qquad \qquad \begin{pmatrix} 0 & & & & \\$$

(式中、 R^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよいだ1-4 アルコキシ基で置換されていてもよいベンゼン環を、 R^2 は、 R^3 は、 R^4 は、 $R^$

$$R^4$$
 R^5
 $COOH$
 R^5
 $COOH$

(式中、R³は置換されていてもよい5または6員環を示し、R⁴ は水素原子、 置換されていてもよい低級アルキル基、置換されていてもよい低級アルコキシ基 またはハロゲン原子を示し、R⁵は水素原子、置換されていてもよい炭化水素基、 置換されていてもよい複素環基、置換されていてもよいスルホニル基、エステル

5

10

15

化またはアミド化されたカルボキシル基または置換されていてもよいアシル基を、 Xは結合手または直鎖部分を構成する原子数が1ないし4個である2価の基を示 し、mは1ないし5の整数を示す。)で表される化合物、その塩またはその反応 性誘導体とを反応させることを特徴とする式:

$$\begin{array}{c|c}
R^{4} & R^{5} \\
\hline
R^{3} & CH_{2})_{m} & CO-NH & A
\end{array}$$

$$\begin{array}{c|c}
R^{1} & R^{1} \\
\hline
CO-NH & A
\end{array}$$

$$\begin{array}{c|c}
R^{1} & R^{2} \\
\hline
CO-NH & A
\end{array}$$

$$\begin{array}{c|c}
R^{1} & R^{2} \\
\hline
CO-NH & A
\end{array}$$

$$\begin{array}{c|c}
R^{2} & R^{2} \\
\hline
CO-NH & A
\end{array}$$

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法。

2. 式:

5

10

15

20

(式中、 R^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、 R^6 はメチル基、フェニル基、4-メチルフェニル基または $\alpha-$ ナルチル基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルキル基まで置換されていてもよいベンゼン環を、 R^6 0ないし

3の整数を、pは0ないし2の整数を示し、* 1 およ $\overset{1}{U}$ * 2 はそれぞれ不斉中心を示す。)で表される光学活性化合物または式:

$$H_{2}N = A \xrightarrow{Q} (CH_{2})_{n} = N \xrightarrow{R^{1}} (R^{2})_{p} \xrightarrow{*^{2}} COOH \xrightarrow{R^{7}} (X \mid b)$$

(式中、R⁷は水素原子、塩素原子または二トロ基を示し、他の記号は前記と同意義である。)で表される光学活性化合物と式:

$$R^3$$
 χ
 $(CH_2)_m$
 $COOH$

(式中、R³は置換されていてもよい5または6員環を示し、R⁴は水素原子、置換されていてもよい低級アルキル基、置換されていてもよい低級アルコキシ基またはハロゲン原子を示し、R⁵は水素原子、置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいスルホニル基、エステル化またはアミド化されたカルボキシル基または置換されていてもよいアシル基を、Xは結合手または直鎖部分を構成する原子数が1ないし4個である2価の基を示し、mは1ないし5の整数を示す。)で表される化合物、その塩またはその反応性誘導体とを反応させることを特徴とする式:

$$\begin{array}{c|c}
R^{4} & R^{5} \\
\hline
R^{3} & X
\end{array}$$

$$\begin{array}{c|c}
CCH_{2})_{m} & O_{1} & R^{1} \\
\hline
CONH & A
\end{array}$$

$$\begin{array}{c|c}
S^{*} & CH_{2} & N \\
\hline
CONH & A
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CONH & A
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CONH & A
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CH_{2} & N
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CH_{2} & N
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CH_{2} & N
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CH_{2} & N
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CH_{2} & N
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & N \\
\hline
CH_{2} & N
\end{array}$$

10

5

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法。

3. 式:

5

10

15

20

$$H_2N \longrightarrow A \qquad (CH_2) \qquad (R^2)_p \qquad (11)$$

4. R^1 および R^2 が炭素数1-6のアルキル基、nが1または2である請求項 3記載の光学活性化合物またはその塩。

5. R¹が炭素数1-6のアルキル基、pが0、nが1および

$$H_2N$$
 M M_2N M

請求項3記載の光学活性化合物またはその塩。

6. 式:

5

10

15

(式中、 R^1 は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、 R^2 はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい、酸基、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい方香族基を、 R^6 はメチル基、フェニル基、4-メチルフェニル基または $\alpha-$ ナルチル基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、 R^6 によい R^6 によい R^6 にない R^6 にな

(式中、R'は水素原子、塩素原子または二トロ基を示し、他の記号は前記と同意義である。)で表される光学活性化合物を複分解反応に付すことを特徴とする

式:

$$H_{2}N \longrightarrow A \qquad (R^{2})_{p} \qquad (II)$$

(式中、各記号は前記と同意義である。)で表される光学活性化合物またはその 塩の製造法。

7. 式:

5

10

15

$$H_{2}N \xrightarrow{R} A \xrightarrow{S^{*}(CH_{2})_{n}} N \xrightarrow{R^{1}} (R^{2})_{p} \xrightarrow{*^{2}C00H} R^{7}$$

$$NHCO \xrightarrow{R^{7}} (X \mid b)$$

(式中、R⁷は水素原子、塩素原子または二トロ基を示し、他の記号は前記と同意義である。)で表される光学活性化合物。

8. R^1 および R^2 が炭素数1-6のアルキル基、nが1または2であり、 R^6 が 4-メチルフェニル基であるかまたは R^7 がニトロ基である請求項7記載の光学 活性化合物。

9. R¹が炭素数1-6のアルキル基、pが0、nが1および

$$H_2N$$

であり、 R^6 が4-メチルフェニル基であるかまたは R^7 がニトロ基である請求項7記載の光学活性化合物。

10. 式:

5

10

15

$$H_2N \longrightarrow A \qquad (CH_2) \qquad (R^2)_p \qquad (IX)$$

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよい

10

15

スルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩を式:

(式中、 R^6 はメチル基、フェニル基、4-メチルフェニル基または $\alpha-$ ナルチル基を、 $*^2$ は不斉中心を示す。)で表される光学活性化合物または式:

(式中、R'は水素原子、塩素原子または二トロ基を、他の記号は前記と同意義を示す。)で表される光学活性な酸で光学分割することを特徴とする式:

$$H_{2}N \longrightarrow A \longrightarrow COOH (X1a)$$

(式中、*1は不斉中心を示し、他の記号は前記と同意義である。) または式:

PCT/JP03/02840

5

10

15

$$H_{2}N + A = \begin{pmatrix} Q_{1} & P_{1} & P_{1} & P_{2} & P_{1} & P_{2} & P_{1} & P_{2} & P_{2} & P_{2} & P_{1} & P_{2} & P_{2}$$

(式中、各記号は前記と同意義である。)で表される光学活性化合物の製造法。 11. 式:

$$H_2N \longrightarrow A \qquad (R^2)_p \qquad (X)$$

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよいC1-4アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩を式:

$$R_0^6 \longrightarrow 0$$
 *COOH (XIIa)

(式中、 R^6 はメチル基、フェニル基、4-メチルフェニル基または $\alpha-$ ナルチル基を、 $*^2$ は不斉中心を示す。)で表される光学活性化合物または式:

5 で表される軸不斉に関して光学活性な酸の存在下に酸化することを特徴とする 式:

$$H_2N \longrightarrow A \qquad (R^2)_p \qquad (11)$$

(式中、*¹は不斉中心を示し、他の記号は前記と同意義である。)で表される 光学活性化合物またはその塩の製造法。

10 12. 式:

$$H_2N = A$$

$$(CH_2)_n = N$$

$$(R^2)_p = (IX')$$

(式中、R¹ は置換されていてもよい脂肪族炭化水素基または置換されていて

10

15

20

もよい芳香族基を、 R^2 はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩。

13. 式:

$$R^{8} \xrightarrow{NH} A \xrightarrow{S} (CH_{2})_{n} \xrightarrow{R^{1}} (R^{2})_{p} \quad (VIII)$$

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシルを表にである。と、R⁸は水素原子、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基、一〇R¹⁰(R¹⁰は置換されていてもよい低級アルキル基、置換されていてもよいアラルキル基、一〇R¹⁰(R¹⁰は置換されていてもよいアラルキル基を示す。)を、環Aはハ

ロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩を脱保護することを特徴とする式:

$$H_2N \longrightarrow A \qquad CH_2 \longrightarrow N \qquad (R^2)_p \qquad (IX)$$

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造法。

14. 式:

5

10

15

20

酸化することを特徴とする式:

$$H_2N \longrightarrow A \longrightarrow CH_2 \longrightarrow N \longrightarrow (R^2)_p \qquad (IX)$$

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造法。

5 15. 式:

10

15

20

$$R^{8} \longrightarrow NH \longrightarrow A \longrightarrow S (CH_{2})_{n} \longrightarrow N \longrightarrow N \longrightarrow N$$
 (VIII)

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、R³は水素原子、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基、一〇R¹0(R¹0は置換されていてもよいアラルキル基を示す。)を、環Aはハロゲン原子、ハロゲン原子できらに置換されていてもよいて、1-4アルキル基またはハロゲン原子で置換されていてもよいて、1-4アルキル基またはハロゲン原子で置換されていてもよいに、1-4アルキル基またはハロゲン原子で置換されていてもよいて、1-4アルコキシ基で置換されていてもよいベンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩。

10

15

16. 式:

$$R^{8} \longrightarrow NH \longrightarrow A \longrightarrow S (CH_{2})_{n} \longrightarrow N \longrightarrow N \longrightarrow N$$
 (VII)

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、R®は水素原子、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基、一〇R¹0(R¹0は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基を示す。)を、環Aはハロゲン原子、ハロゲン原子で含らに置換されていてもよいC1-4アルキル基またはハロゲン原子で置換されていてもよいC1-4アルコキシ基で置換されていてもよいペンゼン環を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩を酸化することを特徴とする式:

$$\begin{array}{c|c}
R^{8} & \text{NH} & A \\
\hline
 & CH_{2} & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
\hline
 & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N$$

(式中、各記号は前記と同意義である。) で表される化合物またはその塩の製造

法。

5

. 10

15

20

17. 式:

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R² はハロゲン原子、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアラルキル基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリール基、置換されていてもよいアリールをで置換されていてもよいアラルキル基を示す。)を、環Aはハロゲン原子で置換されていてもよいアラルキル基をで置換されていてもよいベンプラで置換されていてもよいてもよいの整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩。

18. 式:

10

15

20

(式中、 R^8 は水素原子、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基、 $-OR^{10}$ (R^{10} は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基を示す。)を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_{1-4} アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を示す。)で表される化合物またはその塩と式:

$$Y \leftarrow CH_2 \rightarrow N \qquad (R^2)_p \qquad (VI)$$

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい水酸基、置換されていてもよいチオール基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基をは置換されていてもよいアリール)で表される基を、nは0ないし3の整数を、pは0ないし2の整数を示す。)で表される化合物またはその塩とを反応させることを特徴とする式:

$$R^{8} \longrightarrow NH \longrightarrow A \longrightarrow S (CH_{2})_{n} \longrightarrow N \longrightarrow N \longrightarrow N$$
 (VII)

(式中、各記号は前記と同意義である。) で表される化合物またはその塩の製造

法。

5

10

20

19. 式:

$$H_2N$$
 A
 S
 CH_2
 N
 N
 N
 $(R^2')_p(X')$

(式中、 $R^{1'}$ は置換されていてもよい脂肪族炭化水素基または置換されていてもよいア もよい芳香族基を、 $R^{2'}$ はハロゲン原子、シアノ基、置換されていてもよいア ルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸 基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよく、置換されていてもよいスルフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよい芳香族基を、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい サン ストルー・4 アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を、R には R のないし R の整数を示す。)で表される化合物またはその塩。

15 20. 式:

$$H_2N$$
 (1V)

(式中、環Aはハロゲン原子、ハロゲン原子でさらに置換されていてもよい C_1 - $_4$ アルキル基またはハロゲン原子で置換されていてもよい C_{1-4} アルコキシ基で置換されていてもよいベンゼン環を示す。)で表される化合物またはその塩と式:

10

15

(式中、R¹は水素原子、置換されていてもよい脂肪族炭化水素基または置換されていてもよい芳香族基を、R²はハロゲン原子、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換されていてもよいシクロアルキル基、置換されていてもよい水酸基、置換されていてもよいチオール基(硫黄原子は酸化されていてもよい水酸基、置換されていてもよいフィニル基または置換されていてもよいスルホニル基を形成していてもよい)、置換されていてもよいアミノ基、置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアシル基、エステル化されていてもよいカルボキシル基または置換されていてもよいアリール)で表される基を、n は 0 ないし 3 の整数を、p は 0 ないし 2 の整数を示す。)で表される化合物またはその塩とを反応させることを特徴とする式:

(式中、各記号は前記と同意義である。)で表される化合物またはその塩の製造法。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/02840

A CLASS Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ C07D233/64, 403/12, A61K31	./4164, 31/55, 31/4178,	A61P43/00	
According to International Patent Classification (IPC) or to both national classification and IPC				
	S SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D233/64, 403/12, A61K31/4164, 31/55, 31/4178				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA (STN)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
A	US 5716944 A (TAKEDA CHEMICA 20 February, 1998 (20.02.98), & WO 96/01267 A & EP & JP 8-73476 A	,	1-20	
A	US 6166006 A (TAKEDA CHEMICA 26 December, 2000 (26.12.00), & WO 99/32468 A & EP & JP 11-263764 A		1-20	
A	US 6096780 A (TAKEDA CHEMICA 01 August, 2000 (01.08.00), & WO 99/32100 A & EP & JP 2000-128782 A	L INDUSTRIES, LTD.),	1–20	
Further documents are listed in the continuation of Box C. See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered novel or				
Date of the actual completion of the international search 12 May, 2003 (12.05.03) Date of mailing of the international search 27 May, 2003 (27.05.03)				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No.		Telephone No.		

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ C07D233/64, 403/12, A61K31/4164, 31/55, 31/4178, A61P43/00				
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ C07D233/64, 403/12, A61K31/4164, 31/55, 31/4178				
最小限資料以外の資料で調査を行った分野に含まれるもの				
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN)				
C. 関連すると認められる文献 引用文献の		District S		
カテゴリー* 引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示 ・	関連する 請求の範囲の番号		
A US 5716944 A (TAKEDA CHEMICAL INDU WO 96/01267 A & EP 769015 A & JP	USTRIES, LTD.), 1998. 02. 20 &	1–20		
A US 6166006 A(TAKEDA CHEMICAL INDU WO 99/32468 A & EP 1040103 A & JF	USTRIES, LTD.), 2000. 12. 26 &	1–20		
A US 6096780 A(TAKEDA CHEMICAL INDU WO 99/32100 A & EP 1039899 A & JF		1–20		
□ C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献			
国際調査を完了した日 12.05.03	国際調査報告の発送日 27.05.03			
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 弘實 謙二 電話番号 03-3581-1101	4P 7433 内線 3492		