7. COMPUTATIONAL COMPLEXITY THEORY

Theory of computation

Er. Shiva Ram Dam Assistant Professor, Pokhara University

Syllabus:

- 7.1 Computable Languages and functions
- 7.2 Class P and class NP problems
- 7.3 NP-complete problems

7.1 Computational complexity theory

- Branch of TOC, focuses on classifying computational problems according to their inherent difficulty.
- Deals with resources required during the computation to solve a given problem.
- Common resources dealt are: time and space
- Also deal with decision problem.
- A decision problem is a problem where the answer is always YES/NO.

7.2 Computability Theory

- Deals with only with whether a problem can be solved at all, regardless of the resource required.
- Does not deal with the space and time factor of a machine.
- Is a problem solvable at all on the computer?
- Addresses four main questions:
 - 1. What problems can TM solve?
 - 2. What other systems are equivalent to TMs?
 - 3. What problems require more powerful machines?
 - 4. What problems can be solved by less powerful machines?

7.3 Space and Time complexity

- **Two** most common measures of complexity.
 - 1. Time (how many steps it takes to solve a problem)
 - 2. Space(how much memory it takes)
- Sometimes, there are more than one way to solve a problem.
- We need to learn how to compare the performance different algorithms and choose the best one to solve a particular problem.
- While analyzing an algorithm, we mostly consider time complexity and space complexity.
- Time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the input.
- Similarly, Space complexity of an algorithm quantifies the **amount of space or memory** taken by an algorithm to run as a function of the length of the input.
- Other resources may be: how many parallel processors are needed to solve a problem in parallel

Space Complexity

- The space complexity of an algorithm is the amount of space (or **memory** taken by the algorithm to run as a function of its input length, n.
- Space complexity includes both auxiliary space and space used by the input.
- Auxiliary space is the temporary or extra space used by the algorithm while it is being executed.
- Space complexity of an algorithm is commonly expressed using O(O(n)) notation.
- Space Complexity is defined as the process of determining a formula for prediction of how much memory space will be required for the successful execution of the algorithm.
- The memory space we generally consider is the space of primary memory.
- Space complexity specifies the amount of temporary storage for running the algorithm.

Time complexity

- The time complexity of an algorithm is the **amount of time taken by the algorithm** to complete its process as a function of its input length, *n*.
- The time complexity of an algorithm is commonly expressed using asymptotic notations:
 - Big O O(n),
 - Big Theta Θ(n)
 - Big Omega Ω(n)
- Time complexity is defined as the process of determining a formula for total time required towards execution of that algorithm
- This calculation will be independent of implementation details and programming language.

7.4 Polynomial-time and Exponential Algorithm

- The basic idea for problem classification.
- Classification basis:
 - Algorithm based on polynomial time
 - 2. Algorithm based on exponential time

Big-O Complexity Chart

Polynomial-time Algorithms

- Algorithms run in polynomial-time if for a problem size is n, the number of steps needed to find the solution is polynomial function of n.
- The order-of-magnitude time performance is bounded by a polynomial function of n, where n is the size of its input.
- Polynomial functions are like O(1), O(log n), O(n), O(n x log n), O(n²), O(n³) and so on.
- Polynomial algorithms are considered to be efficient because time grows less rapidly as the problem size increases.

Exponential Algorithms

- Exponential algorithms are not bounded by polynomial-time.
- Exponentials functions are like:
 O(kⁿ), O(n!), O(nⁿ).
- Exponential functions are considered to be inefficient because the execution time of the latter grow much rapidly as the problem size increases.

7.5 Tractable and Intractable Problems

Tractable Problems:

- Which can be solved in polynomial time or less.
- Class P

Intractable problems:

- Which cannot be solved in polynomial time
- Class NP, NP-hard and NPcomplete

7.5.1 Tractable problems

- A decision problem is tractable if:
 - There exists an algorithm to solve the given problem, and
 - time required is expressed in polynomial P(n), n being the length of the input string.
- Tractable problems have algorithms of polynomial complexity to solve problems.
- The P class of problems are tractable problems.
- Examples of tractable problem:
 - 1. Searching an unordered list
 - 2. Searching an ordered list
 - 3. Sorting a list
 - 4. Multiplication of integers
 - 5. Finding a minimum spanning tree

7.5.2. Intractable problems

- Are computationally hard or complex to solve.
- A problem is said to be computationally intractable if the optimal algorithm for solving the problem cannot solve all of its instances in polynomial time.
- Time required for any algorithm to solve is at least f(n) where f is an exponential function of n.
- Problems that are solvable in theory, but cannot be solved in practice are intractable.
- The NP, NP-hard and NP-complete problems fall in this category.
- Some examples of intractable problems:
 - 1. Towers of Hanoi
 - 2. Travelling Salesman problem

7.6 Tractable problems Class P

P Class Problem:

A Problem which can be solved on polynomial time is known as P-Class Problem.

Ex: All sorting and searching algorithms.

- A problem which can be solved on Polynomial time
- E.g.: All sorting and searching algorithms
- P is a class of problems that can be solved deterministically in polynomial time.
- These problems can be solved in time O(n^k) in worst-case, where k is constant.
- The class P is important because: It is invariant over all models of computations
- Practical problems in P-class have efficient (low-degree polynomial) algorithms
- Class P is also a sub-set of NP class, but not P=NP
- The P-class problems are easy to solve and also easy to verify in polynomial time.

Examples of P-class

1. Kruskal's Algorithm: Minimum Weight-Spanning Tree

• A minimum weight spanning tree is a sub-graph that connects all the nodes (or vertices) together with least possible weight of the edges, yet there are no cycles.

• E.g. :

XYZ company is providing cable services to 5 new housing developments. The goal is to determine the most economical cable network. Find the minimal spanning tree for below:

The solution is:

• This problem is class P problem because it is possible to implement Kruskal's algorithm (using computer) on a graph with m nodes and x edges in time O(m + x log x).

2. Problem of Finding the Maximum number

- Let us consider there are 5 numbers (n1,n2,n3,n4,n5)
- The problem is to find the largest among them.
- This can be solved as:

```
int max:
    max=n1;
if(n2>max)
    max=n2;
if(n3>max)
    max=n3;
if(n4>max)
    max=n4;
if(n5>max)
    max=n5;
```

- If there are N numbers in the list, this takes roughly N steps
- N is a polynomial function of N
- So this problem is the example of P-class

7.7 Intractable Problem: Class NP

NP Class Problem:

A Problem which cannot be solved on polynomial time but is verified in polynomial time is known as Non Deterministic Polynomial or NP-Class Problem.

Ex: Su-Do-Ku, Prime Factor, Scheduling, Travelling Salesman

- NP is the set of problems that can be solved in non-deterministic polynomial time.
- A problem which cannot be solved on polynomial time (but in exponential time), but can be verified in polynomial time is known as Non-deterministic polynomial or NP class problem.
- For e.g.: Su-Do-Ku, prime factor, scheduling, Travelling Salesman problem
- For class NP problems, solving the problem is difficult, but verifying it is easy
- The class NP is also invariant over all reasonable models of computation.

Example: The Su-Do-Ku problem

 Goal: Find the 9x9 grid with numbers so that each row, column and 3x3 section contains all of the digits between 1 and without repetition.

Ì	5 6	3			7				
	6			1	9	5			
	ß	9	8					6	
•	8				6				3
	8 4 7			8		3			1 6
	7				2				6
		6					2	8	
				4	1	9			5
					1 8			7	9

- It is very difficult to solve the problem.
- It to solve this problem takes an exponential time .
- However, it takes very less time to verify if the problem is solved or not.
- Hence, it is a class NP problem.

P-class VS NP-class

The NP Class Problems, it is verified in polynomial time.

The P Class Problems, not only it is solved on polynomial time but it is verified also in polynomial time.

Reference Video:

https://www.youtube.com/watch?v=DumOqL85Ryc

P-class	NP-Class
 P-class problems are solved in polynomial time by using deterministic algorithm. 	 NP-class are verified in polynomial time by using non-deterministic algorithms.
 All the P-class problems are basically deterministic. 	 All the NP-class problems are basically non-deterministic.
 Every problem which is a P-class is also in NP-class. 	 Every problems in NP-class is not in P-class.
 P-class problems are easy to solve. 	 NP-class problems are difficult to solve.
 Eg: Linear search Binary search Bubble sort Matrix addition 	• Eg: > TSP > HCP

Is P=NP?

Is P = NP?

If you can prove P = NP Then

Information security or online security is vulnerable to attack,

Everything become more efficient such as

Transportation, Scheduling, understanding DNA etc.

If you can prove $P \neq NP$ Then

You can prove that there are some problems that can never be solved.

- An unsolved problem
- If solved, \$ 1 million reward !!!
- Simply asks whether computationally hard problems actually contain hidden and computationally easy solutions.
- If P≠NP then we could prove that there are some problems that can never be solved.
- If P=NP then all cryptography would have been easier.
- All transportation, scheduling, etc. would have been very easy to be solved.

7.8 Intractable Problems: NP-Hard and NP-complete

- Which cannot be solved in polynomial time
- Class NP further classified as: NP-hard and NP-complete

Polynomial Time Reduction

Let A and B are two problems then problem A reduces to problem B iff there is a way to solve A by deterministic algorithm that solve B in polynomial time.

- Let A and B are two problems.
- Then A reduces to B iff there is a way to solve A by deterministic algorithm that solve B in polynomial time.

NP-hard and NP-Complete

- A problem is NP-hard problem if every problem in NP can be polynomially reduced to it.
- A problem is **NP-complete** if it is NP and it is NP-hard.

7.8.1 NP-hard

- A problem is NP-hard problem if every problem in NP can be polynomially reduced to it.
- The NP-hard problem may or may not fall within NP
- NP-hard problems are basically optimization problems.
- NP-hard means "at least as hard as many NPproblems"
- Some common examples or NP-hard problems are:
 - The Halting Problem
 - Hamilton Cycle problem (HCP)
 - Travelling salesman Problem (TSP)
 - Vertex Cover Problem (VCP)
 - Partition problem

7.8.2 NP-complete

- A problem is NP-complete if it is NP and it is NP-hard.
- It is a subset of NP-hard.
- So every NP-complete problems are NPhard but not vice-versa.
- NP-complete problems are decision problems.
- Some common examples of NP-complete problems are:
 - Hamilton Cycle problem (HCP)
 - Travelling salesman Problem (TSP)
 - Vertex Cover Problem (VCP)
 - Partition problem

1. Travelling Salesman Problem (TSP)

- Given n cities c₁,c₂,...c_n and distance d_{ci,}
 between any two cities c_i and c_j
- TSP asks for the total distance of the shortest tour of the cities.
- A travelling salesman wants to visit each of n cities exactly once and return to its starting point with minimum distance/mileage.
- It is a minimization problem, i.e. to find the minimum distance tour.

Reference: https://www.youtube.com/watch?v=3QiSyc7KyC4

2. Hamilton Cycle problem (HCP)

- Hamiltonian Path in a directed graph G is a directed path that goes through each node exactly once.
- Hamiltonian cycle or circuit is a
 Hamiltonian path, that there is an edge
 from the last vertex to the first vertex.
- In this problem, we will try to determine whether a graph contains a Hamiltonian cycle or not.
- Unlike TSP, it is to find all possible tours.
- The first and second graphs do not contain the Hamiltonian cycle, but the last one does.

- In the first, starting from 1, we move 1-2-3-7-6-4-1. So 5 is missing.
- In the second, starting from 1, we move 1-2-4-3-6-5-?. We cannot revisit 3.

Reference: https://www.youtube.com/watch?v=dQr4wZCiJJ4

3. Vertex Cover Problem

- A Vertex Cover of a graph is a subset of vertices which covers every edge.
- An edge is covered if one of its endpoint is chosen.
- The vertex cover problem: What is the minimum size of vertex covered in graph G?
- Idea: Keep finding a vertex which covers the maximum number of edges.
- E.g: Given a undirected graph, find a vertex cover with minimum size.

Reference: https://www.youtube.com/watch?v=ZZxj9hqldng

4. Partition Problem

- The task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S₁ and S₂ such that:
 - Sum of numbers in S₁ = sum of numbers in S₂
 - The subsets S₁ and S₂ must form a partition in the sense that they are disjoint and they cover S.
- A variation of the partition problem is the 3-partition problem, in which the set S must be partitioned into |S|/3 triples each with the same sum.

Example:

- Given $S = \{3,1,1,2,2,1\},$
- a valid solution to the partition problem is the two sets :
- $S_1 = \{1,1,1,2\}$ and $S_2 = \{2,3\}$.
- Both sets sum to 5, and they partition S.
- Note that this solution is not unique.
- $S_1 = \{3,1,1\}$ and $S_2 = \{2,2,1\}$ is another solution.

References:

- https://www.youtube.com/watch?v=ZSyZozw6JMQ
- https://www.youtube.com/watch?v=2cyryXRmN5Q&list=PLPmNdapE AffgvtjCJLG558pQNweui0Mos
- https://www.youtube.com/watch?v=DumOqL85Ryc&list=PLPmNdapE AffgvtjCJLG558pQNweui0Mos&index=7
- https://www.youtube.com/watch?v=RiDzt22KUd8&list=PLPmNdapEA ffgvtjCJLG558pQNweui0Mos&index=2
- https://www.youtube.com/watch?v=EkmjDoiKZ8Q
- https://www.geeksforgeeks.org/np-completeness-set-1/

Reference videos for Complete TOC tutorial: (from Neso Academy)

 https://www.youtube.com/watch?v=58N2N7zJGrQ&list=PLBlnK6fEyq Rgp46KUv4ZY69yXmpwKOlev

End of chapter