命题: 称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设 A 为一命题公式,p,p,···,p 为出现在 A 中的所有命题变项。给 p,p,···,p 指 定一组真值,称为对 A 的一个**赋值或解释**。若指定的一组值使 A 的值为真,则称**成真赋值**。**真值表**:含 n $(n \ge 1)$ 个命题变项的命题公式,共有 2^n 组赋值。将命题公式 A 在所有赋值下的取值情况列成表,称为 A 的真值表。

命题公式的类型: (1) 若 A 在它的各种赋值下均取值为真,则称 A 为重言式或永真式。

- (2) 若 A 在它的赋值下取值均为假,则称 A 为矛盾式或**永假式**。
- (3) 若 A 至少存在一组赋值是成真赋值,则 A 是**可满足式**。

<u>主析取范式</u>:设命题公式 A 中含 n 个命题变项,如果 A 得析取范式中的简单合取式全是极小项,则称该析取范式为 A 的主析取范式。

主合取范式: 设命题公式 A 中含 n 个命题变项,如果 A 得析取范式中的简单合析式全是极大项,则称该析取范式为 A 的主析取范式。

命题的等值式: 设 $A \times B$ 为两命题公式,若等价式 $A \leftrightarrow B$ 是重言式,则称 A 与 B 是**等值的**,记作 A <=> B。

<u>约束变元和自由变元</u>:在合式公式 $\forall x$ A 和 $\exists x$ A 中,称 x 为**指导变项**,称 A 为相应量词的**辖域**,x 称为**约束变元**,x 的出现称为**约束出现**,A 中其他出现称为**自由出现**(**自由变元**)。 <u>一阶逻辑等值式</u>:设 A,B 是一阶逻辑中任意的两公式,若 A \leftrightarrow B 为逻辑有效式,则称 A 与 B 是等值的,记作 A<=>B,称 A<=>B 为等值式。

<u>前束范式</u>:设 A 为一谓词公式,若 A 具有如下形式 $Q1xIQ2x2Qk\cdots xkB$,称 A 为前束范式。 **集合的基本运算**:并、 交、差、相对补和对称差运算。

笛卡尔积:设 A 和 B 为集合,用 A 中元素为第一元素,用 B 中元素为第二元素构成有序对组成的集合称为 A 和 B 的笛卡尔积,记为 $A \times B$ 。

<u>二元关系</u>:如果一个集合 R 为空集或者它的元素都是有序对,则称集合 R 是一个二元关系。 特殊关系: (1)、空关系: Φ (2) 全域关系: $EA=\{<x,y>|x\in A \land y\in A\}=A\times A$

- (3) **恒等关系:** IA={<x, x> | x ∈ A}
- (4) 小于等于关系: LA= $\{\langle x, y \rangle | x, y \in A \land x \leq y \in A \}, A \subseteq R$
- (5) **整除关系:** $R \subseteq = \{\langle x, y \rangle | x, y \in \psi \land x \subseteq y\}, \psi$ 是集合族

二元关系的运算: 设 R 是二元关系,

- (1) R 中所有有序对的第一元素构成的集合称为 R 的定义域 $domR = \{x \mid \exists y (\langle x, y \rangle \in R)\}$
- (2) R 中所有有序对的第二元素构成的集合称为 R 的**值域 ranR** = $\{y \mid \exists x (\langle x, y \rangle \in R) \}$
- (3) R 的定义域和值域的并集称为 R 的**域 fldR**= domR ∪ ranR
- 二元关系的性质: 自反性, 反自反性, 对称性, 反对称性, 传递性。

等价关系: 如果集合 A 上的二元关系 R 是自反的,对称的和传递的,那么称 R 是等价关系。设 R 是 A 上的等价关系,x , y 是 A 的任意元素,记作 $x \sim y$ 。

等价类: 设 $R \not\in A$ 上的等价关系,对任意的 $\forall x \in A$,令 $[x]R=\{y \mid y \in A \land x R y\}$,称[x]R 为 x 关于 R 的等价类。

偏序关系: 设 R 是集合 A 上的二元关系,如果 R 是自反的,反对称的和传递的,那么称 R 为 A 上的**偏序**,记作 \leq ; 称序偶< A, R > 为**偏序集合**。

函数的性质: 设 $f: A \rightarrow B$,

- (1) 若 ran f = B,则称 f 是**满射**(**到上**)的。
- (2) 若 $\forall y \in \text{ran} f$ 都存在唯一的 $x \in A$ 使得 f(x)=y,则称 f 是**单射** (— —) 的。
- (3) 若 f 既是满射又是单射的,则称 f 是**双射**(一**到上**)的。

无向图: 是一个有序的二元组 $\langle V, E \rangle$, 记作 G, 其中:

- (1) V≠ Φ称为顶点集,其元素称为**顶点**或结点。
- (2) E 为边集,它是无序积 V&V 的多重子集,其元素称为**无向边**,简称**边**。

有向图: 是一个有序的二元组<V,E>,记作 D,其中

(1) V 同无向图。 (2) E 为边集,它是笛卡尔积 $V \times V$ 的多重子集,其元素称为**有向边**。

设 G=<V,E>是一个无向图或有向图。

有限图: 若V, E是有限集,则称G为有限图。

n 阶图: 若|V|=n, 称 G 为 n 阶图。

零图: $\overline{A} \mid E \mid = 0$, 称 G 为零图, $\underline{A} \mid V \mid = 1$ 时, 称 G 为平凡图。

基图:将有向图变为无向图得到的新图,称为有向图的基图。

图的同构:在用图形表示图时,由于顶点的位置不同,边的形状不同,同一个事物之间的关系可以用不同的图表示,这样的图称为图同构。

带权图: 在处理有关图的实际问题时,往往有值的存在,一般这个值成为权值,带权值的图称为带权图或赋权图。

连通图:若无向图是平凡图,或图中任意两个顶点都是连通的,则称 G 是**连通图**。否则称 为**非连通图**。设 D 是一个有向图,如果 D 的基图是连通图,则称 D 是**弱连通图**,若 D 中任 意两个顶点至少一个可达另一个,则称 D 是**单向连通图**。若 D 中任意两个顶点是相互可达的,则称 D 是**强连通图**。

<u>**欧拉图**</u>:通过图中所有边一次且仅一次并且通过所有定点的通路(回路),称为**欧拉通路**(回路)。存在欧拉回路的图称为欧拉图。

哈密顿图: 经过图中每个顶点一次且仅一次的通路(回路), 称为哈密顿通路(回路), 存在哈密顿回路的图称为哈密顿图。

<u>平面图</u>:一个图 G 如果能以这样的方式画在平面上:出定点处外没有变交叉出现,则称 G 为平面图。画出的没有边交叉出现的图称为 G 的一个**平面嵌入**。

二部图: 若无向图 $G=\langle V,E\rangle$ 的顶点集合 V可以划分成两个子集 V1 和 V2 ($V1\cap V2=\phi$),使 G 中的任何一条边的两个端点分别属于 V1 和 V2,则称 G 为二部图(**偶图**)。二部图可记为 $G=\langle V1,V2,E\rangle$,V1 和 V2 称为互补顶点子集。

树的定义:连通无回路的无向图称为无向树,简称**树**,常用 T 表示树。平凡图称为**平凡树**。若无向图 G 至少有两个连通分支,每个连通都是树,则称 G 为**森林**。在无向图中,悬挂顶点称为**树叶**,度数大于或等于 2 的顶点称为**分支点**。

树的性质: 性质 1、设 G=<V,E>是 n 阶 m 条边的无向图,则下面各命题是等价的:

- (1) G 是树 (2) G 中任意两个顶点之间存在唯一的路径 (3) G 中无回路且 m=n-1.
- (4) G 是连通的且 m=n-1. (5) G 是连通的且 G 中任何边均为桥。 (6) G 中没有回路,但在任何两个不同的顶点之间加一条新边,在所得图中得到唯一的一个含新边的圈。

性质 2、设 T 是 n 阶非平凡的无向树,则 T 中至少有两片树叶。

证:设 T 有 x 片树叶,由握手定理及性质 1 可知,2(n-1)= \sum d(vi) \ge x+2(n-x)由上式解出 x \ge 2. **最小生成树**:设 T是无向图 G 的子图并且为树,则称 T为 G 的树。若 T是 G 的树且为生成子图,则称 T是 G 的生成树。设 T是 G 的生成树。e0 \in E(G),若 e0 \in E(T),则称 E0 为 E1 的树枝,否则称 E2 为 E3 的结。并称导出子图 E4 E5 的余树,记作 E5 。

最优二元树: 设 2 叉树 T 有 t 片树叶 v1,v2,...,vt, 权分别为 w1,w2,...,wt, 称 W(t)=wil(vi)为 T 的权,其中 l(vi)是 vi 的层数。在所有有 t 片树叶,带权 w1,w2,...,wt 的 2 叉树中,权最小的 2 叉树称为**最优 2 叉树**。

最佳前缀码: 利用 Huffman 算法求最优 2 叉树, 由最优 2 叉树产生的前缀码称为最佳前缀码, 用最佳前缀码传输对应的各符号能使传输的二进制数位最省。

蕴含式推理

E ₁	¬¬p<=>P	E ₁₂	$R \lor (P \land \neg P) <=> R$
E ₂	$P \land Q <=>Q \land P$	E ₁₃	$R \wedge (P \vee_{\neg} P) <=> R$
E ₃	$P \lor Q <=> Q \lor P$	E ₁₄	$R \lor (P \lor \neg P) <=>T$
E ₄	$(P \land Q) \land R <=> P \land (Q \land R)$	E ₁₅	$R \land (P \land \neg P) <=> F$
E ₅	$(P \lor Q) \lor R <=> P \lor (Q \lor R)$	E ₁₆	P→Q<=>¬ P∨Q
E ₆	$P \land (Q \lor R) <=> (P \land Q) \lor (P \land R)$	E ₁₇	¬ (P→Q)<=> P∧¬ Q
E ₇	$P \lor (Q \land R) <=> (P \lor Q) \land (P \lor R)$	E ₁₈	$P \rightarrow Q <=> Q \rightarrow P$
E ₈	$\neg (P \land Q) <=> \neg P \lor \neg Q$	E ₁₉	$P \rightarrow (Q \rightarrow R) <=> (P \land Q) \rightarrow R$
E ₉	$\neg (P \lor Q) <=> \neg P \land \neg Q$	E ₂₀	$P \rightrightarrows Q <=> (P \rightarrow Q) \land (Q \rightarrow P)$
E ₁₀	P∨P<=>P	E ₂₁	$P = Q < = > (P \land Q) \lor (\neg P \land \neg Q)$
E ₁₁	P	E ₂₂	¬ (P≒Q) <=> P≒¬ Q

~~~	-	7.\			
等/	18	<i>'</i> / . `	• 🖚	.7	
17	ш	$\rightarrow$		$\sim$	

等值公式表						
$P \land Q => P$	化简式					
$P \land Q => Q$	化简式					
$P=>P\lor Q$	附加式					
¬ P=>P→Q	变形附加式					
Q=>P→Q	变形附加式	变形附加式				
¬ (P→Q)=>P	变形简化式					
¬ (P→Q)=>¬ Q	变形简化式					
$p \land (P \rightarrow Q) = > Q$	假言推论	假言推论				
¬ Q∧(P→Q)=>¬ P						
¬ p∧(P∨Q)=>Q 析取三段式						
(P→Q) ∧(Q→R)=>P→R						
(P≒Q) ∧(Q≒R)=>P≒R	双条件三段式	<del>t</del>				
(P→Q) ∧ (R→S) ∧ (P∧R)=>Q→S 合取构造						
$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R) = > Q \lor S$	析取构造二难					
$P \rightarrow Q = > (P \lor R) \rightarrow (Q \lor R)$	前后附加式					
$P \rightarrow Q = > (P \land R) \rightarrow (Q \land R)$ 前后附加式						
$ E_{23}                                    $	$(\exists x)((Ax)\lor(Bx))<=>(\exists x)(Ax)\lor(\exists x)(Bx)$		$(\forall x)(Ax) \rightarrow B <=>(\exists x) ((Ax) \rightarrow B)$			
$E_{24} \mid (\forall x)((Ax) \land (Bx)) <=>(\forall x)(Ax)$	$( \forall x)((Ax) \land (Bx)) <=> ( \forall x)(Ax) \land ( \forall x)(Bx)$		$(\exists x)(Ax) \rightarrow B <=> (\forall x) ((Ax) \rightarrow B)$			
$E_{25} \mid \neg (\exists x)(Ax) <=> (\forall x) \neg (Ax)$	$\neg (\exists x)(Ax) <=> (\forall x) \neg (Ax)$		$A \rightarrow (\forall x)(Bx) <=>(\forall x)(A \rightarrow (Bx))$			
$E_{26} \mid \neg (\forall x)(Ax) <=>(\exists x) \neg (Ax)$		E ₃₃	$A \rightarrow (\exists x)(Bx) <=>(\exists x) (A \rightarrow (Bx))$			
$E_{27}$ $(\forall x)(A \lor (Bx)) <=> A \lor (\forall x)(Bx)$	x)	I ₁₇	$(\forall x)(Ax) \lor (\forall x)(Bx) = > (\forall x)((Ax) \lor (Bx))$			
		I ₁₈	$(\exists x)((Ax) \land (Bx)) = > (\forall x)(Ax) \land (\forall x)(Bx)$			
$E_{29} \mid (\exists x)((Ax)\rightarrow (Bx)) <=> (\forall x)(Ax)$	$\exists x)((Ax)\rightarrow(Bx))<=>(\forall x)(Ax)\rightarrow(\exists x)(Bx)$		$(\forall x)(Ax)\rightarrow(\forall x)(Bx)=>(\forall x)((Ax)\rightarrow(Bx))$			

#### 集合恒等式: P61

幂等律: A∪A=A: A∩A=A

结合律:  $(A \cup B) \cup C = A \cup (B \cup C)$ ;  $(A \cap B) \cap C = A \cap (B \cap C)$ 

交换律: A∪B=B∪A; A∩B=B∩A

分配律:  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ ;  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 

同一律:  $A \cup \phi = A$ ;  $A \cap E = A$ 

零 律:  $A \cup E = A$ ;  $A \cap \phi = \phi$ 

排中律: A∪~A=E

矛盾律: A ∩ ~A = ∅

吸收律:  $A \cap (A \cup B) = A$ ;  $A \cup (A \cap B) = A$ 

德摩根定律: A-(B∪C)=(A-B)∩(A-C); A-(B∩C)=(A-B)∪(A-C)

 $\sim$ (B  $\cup$  C)=  $\sim$ B  $\cap$   $\sim$ C;  $\sim$ (B  $\cap$  C)=  $\sim$ B  $\cup$   $\sim$ C;  $\sim$  $\phi$ =E;  $\sim$ E= $\phi$ 

双重否定律: ~ (~A)=A

#### 二元关系的运算:

## 设 F,G,H 是任意的关系,

 $(1) (F^{-1})^{-1} = F$ 

- (2)  $dom(F^{-1}) = ran F : ran (F^{-1}) = dom F$
- (3) (  $F \circ G$ )  $\circ H = F \circ (G \circ H)$  (4) (  $F \circ G$ )  $^{-1} = G \cdot ^{1} \circ F \cdot ^{1}$

#### 设 R 是 A 上的关系 (幂运算)

(1)  $R^o = \{ \langle x, x \rangle | x \in A \}$  (2)  $R^n = R^n(n-1) \circ R$ ,  $n \ge 1$  (3)  $R^o = R^o \circ R = R$ 

### 图的矩阵表示:

- (1) 无向图的关联矩阵: 设无向图  $G=\langle V,E\rangle$ ,  $V=\{v1,v2,...,vn\}$ ,  $E=\{e1,e2,...,em\}$ , 令 mij 为 顶点 vi 与边的关联次数,则称(mij)  $n \times m$  为 G 的关联矩阵。记为 M(G)。
- (2) 有向图的关联矩阵: 设无向图  $D=\langle V,E\rangle$ ,  $V=\{v1,v2,...,vn\}$ ,  $E=\{e1,e2,...,em\}$ ,
  - 1, vi 是 ej 的始点

mij =0, vi 与 ej 不关联

-1, vi 是 ej 的终点

则称 (mij)  $n \times m$  为 D 的关联矩阵。记为 M(D)。