6720 Problem Set 1

Nikko Cleri and Megan Sturm

Resources: Carroll & Ostlie

Time: \sim 6 hours February 1, 2021

Question I.

(a)

1 radian =
$$\frac{360^{\circ}}{2\pi}$$

1° = $3600''$
1 radian = $\frac{(360 * 3600)''}{2\pi}$
= $206265''$

This gives our beloved 1 radian = 206265''

(b) HST observes 30,000 galaxies in 100 \arcsin^2 (300 per square arcmin). The area of the sky is $4\pi \ \mathrm{radian}^2$, which is $4\pi \left(\frac{360}{2\pi}60\right)^2 \ \mathrm{arcmin}^2 \approx 1.49 \times 10^8 \ \mathrm{arcmin}^2$.

If we assume uniform density of galaxies over all sky, we find that HST can observe an incredible 4.5×10^{10} galaxies.

Question II.

The event horizon is realized as the Schwarzchild radius, which (assuming a well-behaved, nonspinning BH) is

$$R_S = \frac{2GM}{c^2}$$

For a Pop III seed of mass $M \sim 10^9~M_{\odot}$, we have a Schwarzschild radius of $R_S \sim 2.9 \times 10^{12}$ m, or $\sim 20~{\rm AU}$ (about half the semimajor axis of Pluto's orbit).

For a direct collapse black hole of mass $M \sim 10^5 M_{\odot}$, we have a Schwarzschild radius of $R_S \sim 2.9 \times 10^8$ m, or $\sim .42 R_{\odot}$.

Question III.

(a) We can solve van Maanen's rotation speed as

$$\begin{split} v &= r\omega \\ r &= 50 \text{ kpc} \\ \omega &= .02 \text{ arcsec/year} \end{split}$$

where v is the (linear) rotation speed, ω is the angular speed, and r is the radius of M101 Converting to desired units gives a rotation speed of 4740 km/s, an order of magnitude greater than the rotation speed of the Milky Way.

(b) In a similar fashion we can calculate the angular rotation ω of M101 with $v = r\omega$, where r = 22.7 kpc and v = 220 km/s.

$$v = r\omega$$

$$\omega = \frac{v}{r}$$

$$= 2.0 \times 10^{-3} \text{ arcsec/year}$$

This is a much more reasonable angular speed. M101 will rotate through 1 arcsecond in ~ 500 years. Astronomers in the 1920s would not have been able to resolve this rotation, as it would take 250 years for a measurable rotation to be resolved in M101 with modern ground-based instruments.

Question IV.

Magnitudes do not add, but luminosities (and fluxes) do. We can start with our definition of apparent magnitude in some band as

$$m = -2.5 \log_{10} \left(\frac{F}{F_0} \right)$$

and the flux ratio of two objects is defined as

$$\frac{F_2}{F_1} = -2.5 \log_{10} \left(\frac{F_1}{F_2} \right)$$

If we add two objects together we have the resultant magnitude

$$m_f = -2.5 \log_{10} \left(10^{-0.4m_1} + 10^{-0.4m_2} \right)$$

= -2.5 \log_{10} \left(10^{-0.4m_{gal}} + 10^{-0.4m_{gal}} \right)
= 11.25

Which is brighter, as expected.

Question V.

If the sun has an absolute magnitude of $M_{sun} = 4.74$, we can find the apparent magnitude of a sun-like star at a distance of 0.9 Mpc using the distance modulus

$$m - M = 5 \log_{10} \left(\frac{d}{10 \text{ pc}}\right)$$
$$m = 5 \log_{10} \left(\frac{d}{10 \text{ pc}}\right) + M$$
$$= 29.51$$

so a sun-like star in Andromeda would have an apparent magnitude of 29.51.

Using a similar methodology to question 4, we can say

$$m_{gal} = -2.5 \log_{10} \left(N_* 10^{-0.4*29.51} \right)$$

where N_* is the number of stars in Andromeda and m_{gal} is the apparent magnitude of Andromeda. Solving for N_* we have

$$-\frac{m_{gal}}{2.5} = \log_{10} N_* - 0.4 * 29.51$$
$$\log_{10} N_* = 11.8 - \frac{m_{gal}}{2.5}$$
$$= 11.8 - 1.4$$
$$\log_{10} N_* = 10.4$$

so there are $10^{10.4}$ stars in a sun-like star dominated Andromeda. This is reasonable if we assume Andromeda is vaguely Milky Way-like in mass.

Question VI.

The potential energy of a sphere is given as

$$U = -\int_0^R \frac{GM(r)}{r} \rho(r) 4\pi r^2 dr$$
$$\rho(r) = \frac{M}{\frac{4}{3}\pi R^3}$$
$$M(r) = \rho(r)V(r)$$

where V is the volume of the sphere and ρ is it's density. We can now continue with the potential energy as

$$U = -\int_0^R \frac{GM(r)}{r} \rho(r) 4\pi r^2 dr$$
$$= -\int_0^R \frac{G\rho V}{r} \rho 4\pi r^2 dr$$
$$V(r) = \frac{4}{3}\pi r^3$$

This simplifies to

$$U = -\frac{16}{3}\pi^2 \rho^2 G \int_0^R r^4 dr$$
$$= -\frac{16}{15}\pi^2 \rho^2 G R^5$$

Substituting in ρ gives the desired

$$U = -\frac{3}{5} \frac{GM^2}{R}$$

Question VII.

- (a) The total mass of the cluster is simply N_*M_* where $N_*=20000$ stars and $M_*=0.5~M_{\odot}$. This yields a mass of $10^5~M_{\odot}$
- (b) The average kinetic energy is simply

$$\langle K \rangle = \frac{1}{2} M \langle v \rangle^2$$

 $\approx 5 \times 10^{44} \text{ ergs}$

so the total kinetic energy is $K=N_*\langle K\rangle\approx 10^{49}$ ergs. The virial theorem states that $\langle K\rangle=-\frac{1}{2}\langle U\rangle\implies \langle U\rangle\approx -10^{45}$ ergs. We then have the total potential energy as $U=N_*\langle U\rangle\approx -2\times 10^{49}$ ergs.

(c) The physical size can be found assuming the cluster is a uniform density sphere where

$$U = -\frac{3}{5} \frac{GM^2}{R}$$
$$R = -\frac{3}{5} \frac{GM^2}{U}$$
$$\approx 0.25 \text{ pc}$$

(d) Using the classic $S=R\theta$ where S=0.5 pc is the diameter of the cluster, $\theta=3'$. Solving for R, the distance to the cluster is $R=S/\theta\approx .25$ kpc