Minimum Spanny Trees
"Greedy algorithm" Given 6=(V,E) underected Def: a tree T = E without a cycle
that is connected
Four
A forest $F \subseteq E$ 15 a subject of edges with a cycle that may or may not be connected
(A forest is a collection of trees) Del A spanning tree 15 a tree that connects
Claim? A spanning tea: Claim? A spanning tea: acyclic implies the third! Spans (all vertices included) Think about this has n-1 edges
Given weights on edges, the weight of a spanning tree T = 57 w(e)

Guarantee > Want to melade 2 nor this Hope to not include other. Some MSTS myll repur 14 Every MST Build a ST incrementally I edge a time Invariant so that (X SE) X is always part of some MST. Def: If Xet 15 part of some MST, we Say an edge e=(u,v) is safe if XUe is also part of some MST. Approach: Star empty Add safe edges Stop when you get a ST = MST & sansfies invariant Find CEE a safe edjer => e, satisfies invaniant

Find e a safe eage =) Je, e'il sabsties manant (Fe, e,..., en.) sansfier invariat spanning tree, so it is a MST. Lemma: (cur lemma) Let 6= (V, F) be a connected, underected graph with weights won E. Let ASE be a set that is part of some MST. her (S, VIS) be any cut that "respects A" Cro edges of A cross cur from 5 to VLS) + let (u,v) be any lightest edge connecting StoVis. Then (u,v) is a safe edge.

cut Proof of cut lemma Let ASE be part of a MST By assumption 3 MST T Sil, her 5 contain 1 or mor conposeds of A her e be the lightest edge connecting a vertex in 5 to a vertex in VIS · If e ∈ T then we're done T must include some edge coossiny out A ST and e ET Invarior ther A Usel & T is sansfied of e ft, there V Se 3 contains a vycle. 1. V . 1. Har well JJ. 1 11 1-2

Nes o de The myrtas eage or mor you e'=e Claim TUSel \ Je'S is the same wh or tighter = TISAMST We know w(e) = w(e') because e is the lightest edge crossing the cut So Tu Jes / le's is lighter (not possible) of the same wt. Kruskal's algorithm (6, w) iDea: Sort edges by wt. Mainter Wanet A = Ø add Ity I wo makey for eak ve V(6) cycles Makeset (V) < Stop when it spane Sort edges for each edge (u,v) EE (n orde) do If Find (u) = Find (u) = then A = add ((u,v)] union (u,v) € they can us tell if return A be make a cycle! Runny fine depends on data structures (Thursday)

Prim

abegfhi dabegfhi de.