Multiple Linear Regression Part B: Ordinary Least Squares

THOMAS WIEMANN University of Chicago

Econometrics Econ 21020

Updated: May 27, 2022

Summary

In Part A, we introduced BLP(Y|X) as approximation to E[Y|X].

- \triangleright BLP-coefficients are well-defined when $E[XX^{\top}]^{-1}$ exists;
- ▷ Discussed interpretation using a generalized Yitzhaki's Theorem;

The BLP and its coefficients β are theoretical concepts.

In Part B, we bridge the gap between BLP and real data using statistics.

- ▷ Develop the ordinary least squares estimator;
- ▷ Analyze its statistical properties under an iid sample;
- ▶ Propose Yitzhaki-based balance test for selection on observables;
- ▶ Use matrix calculus for implementation.

Outline

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▷ Bias
 - ▷ Consistency
 - ▷ Asymptotic Distribution
- 3. Evaluations Selection on Observables w/ OLS
- 4. Implementation

Outline

1. Ordinary Least Squares

- 2. Estimator Properties
 - ▷ Bias
 - ▷ Consistency
 - ▷ Asymptotic Distribution
- 3. Evaluations Selection on Observables w/ OLS
- 4. Implementation

Ordinary Least Squares

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector. Consider a random sample $(Y^1, X^1), \dots, (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$.

From Lecture 8A, we know that the BLP-coefficients are given by

$$\beta = E[XX^{\top}]^{-1}E[XY],\tag{1}$$

whenever $E[XX^{\top}]^{-1}$ exists.

This suggests the sample analogue estimator

$$\hat{\beta}_{n} = \tag{2}$$

Notation: Superscripts – i.e., $X^1, \ldots X^n$ – are used as sample indices throughout.

Ordinary Least Squares (Contd.)

The estimator $\hat{\beta}_n$ is known as *ordinary least squares* (OLS). This is because it can also be motivated as solutions to the least-squares sample criterion:

$$\hat{\beta}_n = \underset{\beta \in \mathbb{R}^{k+1}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n \left(Y^i - X^{i\top} \beta \right)^2, \tag{3}$$

whenever $E[\sum_{i=1}^{n} X^{i} X^{i\top}]^{-1}$ exists. In particular, we have:

Ordinary Least Squares (Contd.)

For our analysis, it's useful to rewrite $\hat{\beta}_n$ using $\varepsilon^i \equiv Y^i - \text{BLP}(Y^i|X^i)$:

$$\hat{\beta}_n =$$

(4)

Outline

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▶ Bias
 - ▷ Consistency
 - ▷ Asymptotic Distribution
- 3. Evaluations Selection on Observables w/ OLS
- 4. Implementation

Bias

Our analysis of the OLS estimator begins with its bias.

We assume here that X is continuous to ensure existence of $E[\sum_{i=1}^{n} X^{i}X^{i\top}]^{-1}$ (for n > k+1) when $E[XX^{\top}]^{-1}$ exists.

The bias of $\hat{\beta}_n$ when X is continuous and $E[XX^{\top}]^{-1}$ exists is given by

$$\mathsf{Bias}(\hat{\beta}_{n}) = E[\hat{\beta}_{n}] - \beta =$$

(5)

Hence, if $E[\varepsilon^i|X^i]=0$, then $Bias(\hat{\beta}_n)=0$.

- ho Does $E[\varepsilon^i|X^i]=0$ hold generally? No: $E[\varepsilon^iX^i]=0 \not\Rightarrow E[\varepsilon^i|X^i]=0$.
- \triangleright When do we know that $E[\varepsilon^i|X^i]=0$? Special case: Linear E[Y|X].

Many textbooks state that the OLS estimator $\hat{\beta}_n$ is unbiased for β .

- ▷ Importantly: Strong assumption are made along the way!
- \triangleright We only showed Bias $(\hat{\beta}_n) = 0$ if E[Y|X] linear and X is continuous.

Generally, little reason to believe $\operatorname{Bias}(\hat{\beta}_n)=0$ in economic applications:

- \triangleright Economic theory rarely implies linear E[Y|X] with continuous X.
- ▶ Horrible news? No: Most estimators are biased in practice...

1. Ordinary Least Squares

- 2. Estimator Properties
 - ▷ Bias
 - ▶ Consistency
 - ▷ Asymptotic Distribution
- 3. Evaluations Selection on Observables w/ OLS
- 4. Implementation

Consistency

Theorem 1 ensures OLS satisfies the minimum requirement: Consistency.

Theorem 1

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let β denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n$ are the OLS estimators constructed using $(Y^1, X^1), \dots, (Y^n, X^n) \stackrel{id}{\sim} (Y, X)$, then

$$\hat{\beta}_n \stackrel{P}{\to} \beta. \tag{6}$$

Since the OLS estimators are continuous functions of moments of (Y, X), we can prove this straightforwardly using the WLLN and CMT.

Consistency (Contd.)

Proof.

Outline

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▷ Bias
 - ▷ Consistency
 - Asymptotic Distribution
- 3. Evaluations Selection on Observables w/ OLS
- 4. Implementation

Asymptotic Distribution

Theorem 2 shows that OLS is asymptotically normal.

Theorem 2

Let Y be a random variable and $X = (1, X_1, \ldots, X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let β denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n$ are the OLS estimators constructed using $(Y^1, X^1), \ldots, (Y^n, X^n) \stackrel{\text{in}}{\sim} (Y, X)$, then

$$\sqrt{n}\left(\hat{\beta}_n - \beta\right) \stackrel{d}{\to} N\left(0, \Sigma\right),$$
 (7)

where

$$\Sigma = E \left[X X^{\top} \right]^{-1} E \left[X X^{\top} \varepsilon^{2} \right] E \left[X X^{\top} \right]^{-1}, \tag{8}$$

with $\varepsilon \equiv Y - BLP(Y|X)$.

Asymptotic Distribution (Contd.)

Proof.

OLS Covariance Estimation

Theorem 2 is of no practical use unless we can replace the expression for the asymptotic variance by a consistent estimator. Fortunately, we can.

Theorem 3

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let β denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n$ is the OLS estimator constructed using $(Y^1, X^1), \dots, (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\sqrt{n}\widehat{\Sigma}_{n}^{-\frac{1}{2}}\left(\widehat{\beta}_{n}-\beta\right) \stackrel{d}{\to} N\left(0,\mathbf{I}_{k+1}\right),\tag{9}$$

where

$$\widehat{\Sigma}_n = \left(\frac{1}{n} \sum_{i=1}^n X^i X^{i\top}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n X^i X^{i\top} \widehat{\varepsilon}^{i2}\right) \left(\frac{1}{n} \sum_{i=1}^n X^i X^{i\top}\right)^{-1}$$
(10)

and $\hat{\varepsilon}^i = Y^i - X^{i\top} \hat{\beta}_n$.

OLS Covariance Estimation (Contd.)

Proof.

OLS Covariance Estimation (Contd.)

Theorem 2 and 3 give inference for the *vector* $\hat{\beta}_n$.

- ▷ Often interested only in a subvector;
- \triangleright E.g., the estimator $\hat{\beta}_{jn}$ of β_j .

Corollary 1 and 2 give inference for individual components of $\hat{\beta}_n$.

- ▷ Corollary 1 combines Theorem 2 + Slutsky's Theorem;
- ▷ Corollary 3 gives the standard error formula.

Subvector Asymptotic Distribution

Corollary 1

Let Y be a random variable and $X = (1, X_1, \ldots, X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let $\beta = (\beta_0, \beta_1, \ldots, \beta_k)$ denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n = (\hat{\beta}_{0n}, \hat{\beta}_{1n}, \ldots, \hat{\beta}_{kn})$ is the OLS estimator constructed using $(Y^1, X^1), \ldots, (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\sqrt{n}\left(\hat{\beta}_{jn}-\beta_{j}\right)\overset{d}{
ightarrow}N\left(0,\;e_{j}^{\top}\Sigma e_{j}\right),\quad\forall j=0,1,\ldots,k,$$
 (11)

where Σ is defined by Equation (8) and e_j is the jth unit vector.

Proof.

Standard Error

Corollary 2

Let Y be a random variable and $X = (1, X_1, \ldots, X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let $\beta = (\beta_0, \beta_1, \ldots, \beta_k)$ denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n = (\hat{\beta}_{0n}, \hat{\beta}_{1n}, \ldots, \hat{\beta}_{kn})$ is the OLS estimator constructed using $(Y^1, X^1), \ldots, (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\frac{\hat{\beta}_{jn} - \beta_j}{\operatorname{se}\left(\hat{\beta}_{jn}\right)} \xrightarrow{d} N\left(0, 1\right), \quad \forall j = 0, 1, \dots, k, \tag{12}$$

where

$$se\left(\hat{\beta}_{jn}\right) = \frac{1}{\sqrt{n}} \sqrt{e_j^{\top} \widehat{\Sigma}_n e_j} \tag{13}$$

with $\widehat{\Sigma}_n$ is defined by Equation (3) and e_i is the jth unit vector.

Note: $e_i^{\top} \widehat{\Sigma}_n e_j$ simply selects the jth diagonal entry of $\widehat{\Sigma}_n$

Standard Error (Contd.)

Proof.

Outline

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▷ Bias
 - ▷ Consistency
 - ▷ Asymptotic Distribution
- 3. Evaluations Selection on Observables w/ OLS
- 4. Implementation

Evaluating Selection on Observables w/ OLS

Recall the all causes model

$$Y = g(W, U), \tag{14}$$

where the selection on observables (SO) assumption is expressed as

$$W \perp U|X. \tag{15}$$

▶ Lecture 7: ATE is identified under SO and common support.

SO is a weaker assumption than random assignment, but it remains strong: Conditional on $X,\ W$ is randomly assigned.

▶ Need to convince others that SO is plausible.

Can't verify SO because it is a restriction on (Y, W, X, U)...

- ▷ ... but can potentially check implications.
- ▷ Typically: Balance test.

Evaluating Selection on Observables w/ OLS (Contd.)

Unfortunately, the balance test from Lecture 7 is not applicable w/non-discrete (W, X).

- ▷ Binning estimators cannot be computed;
- ▶ Use OLS instead.

Suppose, that $U=(\tilde{X},\tilde{U})$, where $\tilde{X}\neq X$ is observed.

The Generalized Yitzhaki Theorem is used to derive a balance test:

- ightharpoonup By SO, $W \perp \!\!\! \perp U|X \Rightarrow W \perp \!\!\! \perp \tilde{X}|X$;

$$W \perp \tilde{X}|X \Rightarrow E[\tilde{X}|W,X] = E[\tilde{X}|X] \Rightarrow \frac{\partial}{\partial w}E[\tilde{X}|W=w,X] = 0;$$

ightharpoonup Then, if E[W|X] is linear, the Generalized Yitzhaki Theorem implies $\tilde{\beta}_W=0$, where $\tilde{\beta}_W$ is the $\mathrm{BLP}(\tilde{X}|W,X)$ -coefficient corresponding to W.

Hence, if E[W|X] is linear, then $W \perp U|X \Rightarrow \tilde{\beta}_W = 0$.

Evaluating Selection on Observables w/ OLS (Contd.)

If E[W|X] is linear, we can conduct a balance test via

$$H_0: \tilde{eta}_W = 0$$
 versus $H_1: \tilde{eta}_W
eq 0$,

where $\tilde{\beta}_W$ is the BLP($\tilde{X}|W,X$)-coefficient corresponding to W.

The test statistic is simply

$$T_{n} = \frac{\tilde{\beta}_{Wn}}{\operatorname{se}\left(\hat{\beta}_{Wn}\right)},\tag{16}$$

where $T_n \stackrel{d}{\rightarrow} N(0,1)$ under H_0 by Corollary 2.

Rejecting H_0 would provide evidence that $W \not\perp \tilde{X} | X$.

▶ Potential cause for worry (but of course: Type I errors exist!).

Failure to reject H_0 would *not* provide evidence that $W \not\perp \tilde{X}|X$.

 \triangleright May be because of $W \not\perp \tilde{X} | X$ or low power of the test!

Outline

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▷ Bias
 - ▷ Consistency
 - ▷ Asymptotic Distribution
- 3. Evaluations Selection on Observables w/ OLS
- 4. Implementation

OLS Implementation

Implementing OLS by brute force $(e.g., \sum_{i=1}^{n} X^{i}X^{i\top})$ is difficult.

▶ Instead: Use matrix operations for straightforward computation.

Define the stacked sample matrices \mathbb{X}_n and \mathbb{Y}_n :

$$\mathbb{X}_{n} \equiv \begin{bmatrix} X^{1\top} \\ X^{2\top} \\ \vdots \\ X^{n\top} \end{bmatrix}, \qquad \mathbb{Y}_{n} \equiv \begin{bmatrix} Y^{1} \\ Y^{2} \\ \vdots \\ Y^{n} \end{bmatrix}. \tag{17}$$

Then, matrix calculus shows that we have

$$\mathbb{X}_n^{\top} \mathbb{X}_n = \sum_{i=1}^n X^i X^{i \top}, \qquad \mathbb{X}_n^{\top} \mathbb{Y}_n = \sum_{i=1}^n X^i Y^i.$$
 (18)

The OLS estimator can then equivalently be stated as

$$\hat{\beta}_n = \left(\mathbb{X}_n^{\top} \mathbb{X}_n \right)^{-1} \left(\mathbb{X}_n^{\top} \mathbb{Y}_n \right). \tag{19}$$

OLS Implementation (Contd.)

For the OLS covariance estimator $\widehat{\Sigma}_n$, we define stacked residual vector:

$$\epsilon_{n} \equiv \mathbb{Y}_{n} - \mathbb{X}_{n} \hat{\beta}_{n} = \begin{bmatrix} Y^{1} \\ Y^{2} \\ \vdots \\ Y^{n} \end{bmatrix} - \begin{bmatrix} X^{1\top} \hat{\beta}_{n} \\ X^{2\top} \hat{\beta}_{n} \\ \vdots \\ X^{n\top} \hat{\beta}_{n} \end{bmatrix} = \begin{bmatrix} \hat{\varepsilon}_{1} \\ \hat{\varepsilon}_{2} \\ \vdots \\ \hat{\varepsilon}_{n} \end{bmatrix}. \tag{20}$$

By the same matrix calculus as before, we have

$$(\mathbb{X}_n \odot \epsilon_n)^{\top} (\mathbb{X}_n \odot \epsilon_n) = \sum_{i=1}^n X^i X^{i \top} \hat{\varepsilon}^{i 2}, \tag{21}$$

where \odot denotes element-wise multiplication (Hadamard product). Then

$$\widehat{\Sigma}_{n} = \frac{1}{n} \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n} \right)^{-1} \left[\left(\mathbb{X}_{n} \odot \epsilon_{n} \right)^{\top} \left(\mathbb{X}_{n} \odot \epsilon_{n} \right) \right] \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n} \right)^{-1}. \tag{22}$$

Notation: Strictly speaking, \odot is defined only for matrices of equal dimension. We abuse the notation here to denote multiplication between each row of the matrix \mathbb{X}_n with the corresponding component of the vector ϵ_n .

OLS Estimation in R

```
# Compute OLS estimates
XX_inv <- solve(t(X) %*% X)</pre>
XY < - t(X) %*% Y
beta <- XX inv %*% XY
# Compute BLP estimates
blp_yx <- X %*% beta
# Compute standard error for beta
epsilon <- c(Y - blp_yx)
XX_{eps2} \leftarrow t(X * epsilon) %*% (X * epsilon)
Sigma <- XX_inv %*% XX_eps2 %*% XX_inv
se <- sqrt(diag(Sigma))</pre>
```

Note: There exists an OLS implementation in R – the 1m-command. But importantly: Base-R does not implement the standard error of Corollary 2! So have some faith in your abilities and implement OLS yourself. See Problem 7 of Problem Set 4.

Summary

Today, we introduced OLS as an estimator for the BLP(Y|X).

- Showed that it is consistent and asymptotically normal;
- Derived standard errors for subvector inference;
- ▶ Proposed Yitzhaki-based balance test for selection on observables.

We're now well-equipped for causal analysis under selection on observables & common support:

- ▷ Defined interesting causal parameters using the all causes model;
- ▷ Showed identification of the CATE, ATT, ATU, and ATE;
- \triangleright Concluded that if (W, X) is discrete, may use the binning estimator;
- \triangleright If (W, X) is continuous/mixed, we can leverage OLS to obtain approximate results.