Conceptual Database Design

- Goal of conceptual database design is to create a high-level overview of the data requirements and how they relate to each other, without worrying about how the data will be implemented.
- Entity-Relationship (ER) data model is primarily used for conceptual database design. It helps in representing the high-level structure of a database by defining entities, relationships, attributes, and constraints without focusing on implementation details.
- It is mainly for **business users** and **stakeholders**, as it is intended to be understandable by people who may not have technical expertise.
- Independent of any specific database management system (DBMS).

Conceptual is an adjective that describes something at a high level of abstraction, focusing on ideas rather than implementation.

- E/R Modelling key concepts includes:
 - Entities objects or items of interest
 - Attributes facts about, or properties of, an entity
 - Relationships links between entities

- Example
 - In a University database we might have entities for Students, Courses and Lecturers. Students might have attributes such as their ID, Name, and Degree, and could have relationships with
 - Courses (enrolment)

Entity/Relationship Diagrams

 E/R Models are often represented as E/R diagrams

Entities

- Entities represent objects or things of interest
 - Physical (tangible) things like students, lecturers, employees, products
 - Nontangible things like courses, orders, degrees, registrations

- Entities have
 - A general type or class, such as Lecturer or Module
 - Instances of that particular type, such as Asad, Shoaib are instances of Lecturer
 - Attributes (such as name, email address)

Diagramming Entities

- In an E/R Diagram, an entity is usually drawn as a box with rounded corners
- The box is labelled with the name of the class of objects represented by that entity

Attributes

- Attributes are facts, properties, or details about an entity
 - Students have IDs, names, degrees, addresses, ...
 - Courses have codes, titles, credit weights, levels, ...

- Attributes have
 - A name
 - An associated entity
 - Domains of possible values
 - Values from the domain for each instance of the entity they are belong to

Diagramming Attributes

- In an E/R Diagram attributes may be drawn as ovals
- Each attribute is linked to its entity by a line
- The name of the attribute is written in the oval

Relationships

- Relationships are an association between two or more entities
 - Each Student takes several Courses
 - Each Course is taught by a Lecturer
 - Each Employee works for a single Department

- Relationships have
 - A name
 - A set of entities that participate in them
 - A degree the number of entities that participate (most have degree 2)
 - A cardinality ratio

Cardinality Ratios

- Cardinality ratios define the number of instances of one entity that can be associated with instances of another entity in a relationship.
- This leads to 3 types of relationship...

- One to one (1:1)
 - Each lecturer has a unique office
- One to many (1:M)
 - A lecturer may tutor many students, but each student has just one tutor
- Many to many (M:M)
 - Each student takes several courses, and each course is taken by several students

Diagramming Relationships

- Relationships are links between two entities
- The name is given in a diamond box
- The ends of the link show cardinality

Making E/R Models

- To make an E/R model you need to identify
 - Enitities
 - Attributes
 - Relationships
 - Cardinality ratios
- from a description

- General guidelines
 - Since entities are things or objects they are often nouns in the description
 - Attributes are facts or properties, and so are often nouns also
 - Verbs often describe relationships between entities

Example

A university consists of a number of departments. Each department offers several degrees. A number of courses make up each degree. Students enrol in a particular degree and take courses towards the completion of that degree. Each course is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Example - Entities

A university consists of a number of departments. Each department offers several degrees. A number of courses make up each degree. Students enrol in a particular degree and take courses towards the completion of that degree. Each course is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Example - Relationships

 A university consists of a number of departments. Each department offers several degrees. A number of courses make up each degree. Students enrol in a particular degree and take courses towards the completion of that degree. Each course is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Entities: Department, Degree, Course, Lecturer, Student

Department

Degree

Course

Lecturer

Student

Each department offers several courses

Lecturer

Student

A number of modules make up each courses

Lecturer

Student

Students enrol in a particular course

Lecturer

Students ... take modules

Lecturer

Each module is taught by a lecturer

a lecturer from the appropriate department

each lecturer tutors a group of students

