OTIS Homework Problems

Samuel de Araújo Brandão

10 de Agosto de 2025

A collection of solutions for Geometry, Inequalities and others, meant to be sent to Evan Chen, in the OTIS Application Homework.

Contents

1	Problems			
	1.1	Geometry	2	
	1.2	Inequalities	2	
	1.3	Additional	2	
2	Geometry Solutions			
	2.1	Problem 1	4	
	2.2	Problem 2	5	
	2.3	Problem 3	6	
3	Inequalities Solutions			
	3.1	Problem 1	7	
	3.2	Problem 2	8	
	3.3	Problem 3	9	
4	Add	itional Solutions	10	
	4.1	Problem 1	10	
	4.2	Problem 2	11	
	4.3	Problem 3	12	
	4.4	Problem 4	13	
5	Rofe	arancos	11	

1 Problems

1.1 Geometry

- 1. (#2.28, JMO 2012) Given a triangle ABC, let P and Q be points on segments AB and AC, respectively, such that AP = AQ. Let S and R be distinct points on segment BC such that S lies between B and R, $\angle BPS = \angle PRS$, and $\angle CQR = \angle QSR$. Prove that P, Q, R, S are concyclic.
- **2.** (#2.35, IMO 2009) Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the sides CA and AB respectively. Let K, L, M be the midpoints of BP, CQ, PQ. Suppose that PQ is tangent to the circumcircle of $\triangle KLM$. Prove that OP = OQ.
- **3.** (#3.25, USAMO 1993) Let ABCD be a quadrilateral whose diagonals are perpendicular and meet at E. Prove that the reflections of E across the sides of ABCD are concyclic.

1.2 Inequalities

1. Suppose that $a^2 + b^2 + c^2 = 1$ for positive real numbers a, b, c. Find the minimum possible value of

$$\frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b}$$
.

2. Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 + (a + b + c)^2 \le 4$. Prove that

$$\frac{ab+1}{(a+b)^2} + \frac{bc+1}{(b+c)^2} + \frac{ca+1}{(c+a)^2} \ge 3.$$

3. Let a, b, c, d be positive reals with (a + c)(b + d) = 1. Prove that

$$\frac{a^3}{b+c+d} + \frac{b^3}{c+d+a} + \frac{c^3}{d+a+b} + \frac{d^3}{a+b+c} \ge \frac{1}{3}.$$

1.3 Additional

1. Write a computer program to find the number of ordered pairs of prime numbers (p,q) such that when

$$N = p^2 + q^3$$

is written in decimal (without leading zeros), each digit from 0 to 9 appears exactly once. For example, (109, 1163) is one such pair because $109^2 + 1163^3 = 1573049628$.

2. Find all functions $f: \mathbb{R} \to \mathbb{R}$ for which

$$f(xf(x) + f(y)) = f(x)^2 + y$$

holds for all real numbers x and y.

3. Let a, b, c, d be real numbers such that $b - d \ge 5$ and all zeros x_1, x_2, x_3, x_4 of the polynomial $P(x) = x^4 + ax^3 + bx^2 + cx + d$ are real. Find the smallest value the product $(x_1^2 + 1)(x_2^2 + 1)(x_3^2 + 1)(x_4^2 + 1)$ can take.

4. Ana and Banana are playing a game. First Ana picks a word, which is defined to be a nonempty sequence of capital English letters. Then Banana picks a nonnegative integer k and challenges Ana to supply a word with exactly k subsequences which are equal to Ana's word. Ana wins if she is able to supply such a word, otherwise she loses. For example, if Ana picks the word "TST", and Banana chooses k=4, then Ana can supply the word "TSTST" which has 4 subsequences equal to Ana's word. Which words can Ana pick so that she can win no matter what value of k Banana chooses?

2 Geometry Solutions

2.1 Problem 1.

Enunciado do problema

Given a triangle ABC, let P and Q be points on segments \overline{AB} and \overline{AC} , respectively, such that AP = AQ. Let S and R be distinct points on segment \overline{BC} such that S lies between B and R, $\angle BPS = \angle PRS$, and $\angle CQR = \angle QSR$. Prove that P, Q, R, S are concyclic.

By the Alternate Segment Theorem, \overline{AC} is tangent to (QRS) and \overline{AB} is tangent to (PRS). Assume for the sake of contradiction that (QRS) and (PRS) are distinct. In that case, $A \in \overline{BC}$ since \overline{BC} is the radical axis and $\operatorname{Pow}_{(QRS)}(A) = \operatorname{Pow}_{(PRS)}(A)$. This leads to a contradiction, as $A \notin \overline{BC}$. Therefore, P, Q, R and S are concyclic.

2.2 Problem 2.

Enunciado do problema

2.3 Problem 3.

Enunciado do problema

3 Inequalities Solutions

3.1 Problem 1.

3.2 Problem 2.

3.3 Problem 3.

4 Additional Solutions

4.1 Problem 1.

4.2 Problem 2.

4.3 Problem 3.

4.4 Problem 4.

5 References

This document was made possible thanks to the help and inspiration of the following resource:

- [1] NOIC Núcleo Olímpico de Iniciação Científica *Potência de Ponto*, 2023. Available in: https://noic.com.br/wp-content/uploads/2023/10/potencia.pdf
- [2] OBM Olimpíada Brasileira de Matemática. Potência de Ponto, Eixo Radical, Centro Radical e Aplicações, 2017. Available in: https://www.obm.org.br/content/uploads/2017/01/eixos-2.pdf
- [3] Evan Chen. JMO 2012 Solution Notes, 2025. Available in: https://web.evanchen.cc/exams/JMO-2012-notes.pdf