- 1. Banque CCINP 2023: 18 (classique)
- 2. Banque CCINP 2023: 19 (cours, Cauchy, dérivées)
- 3. Banque CCINP 2023 : 24 (révisions)
- **4.** [CCINP] formule intégrale de Cauchy, théorème de Liouville Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence infini et de somme f.
 - (a) Montrer que pour $p \in \mathbb{N}$ et $r \in \mathbb{R}_+$, on a $\int_0^{2\pi} f(re^{it})e^{-ipt}dt = 2\pi a_p r^p$.
 - (b) On suppose f bornée sur \mathbb{C} . Montrer qu'il existe M > 0 tel que $\forall r \in \mathbb{R}_+^*$, $|a_p| \leqslant \frac{M}{r^p}$. En déduire que f est une fonction constante.
 - (c) On suppose qu'il existe des réels a>0 et b>0, et un entier naturel non nul q tels que : $\forall z\in\mathbb{C},\ |f(z)|\leqslant a|z|^q+b$. Montrer que f est une fonction polynomiale.
 - (d) On suppose que $\forall z \in \mathbb{C}$, $|f(z)| \leq \exp(Re z)$. Montrer qu'il existe $K \in \mathbb{C}$ tel qu $\forall z \in \mathbb{C}$, $f(z) = K \exp(z)$.

5. [Centrale]

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=\frac{1}{2}$ et $\forall n\in\mathbb{N},\ u_{n+1}=1+\frac{2u_n-1}{n+1}$.

- (a) Montrer que : $\forall n \in \mathbb{N}^*$, $1 \leq u_n \leq 2$. Trouver trois réels a, b, c tels que $u_n = a + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{1}{n^2}\right)$.
- **(b)** Déterminer le rayon R de $\sum_{n\geqslant 0}u_nx^n$. Montrer que sa somme $S:]-R;R[\to\mathbb{R}$ vérifie $(E):y'=2y+\frac{x}{(1-x)^2}$.
- (c) Donner un développement asymptotique à deux termes de S(x) quand x tend vers 1^- .

6. [MINES PONTS]

Soit
$$f: x \mapsto \sum_{n=2}^{+\infty} (\ln n) x^n$$
.

- (a) Déterminer le domaine de définition de f.
- (b) Montrer que la suite de terme général $\ln n \sum_{k=1}^{n} \frac{1}{k}$ a une limite dans \mathbb{R} .
- (c) Déterminer la limite de f en 1^- .
- (d) Déterminer un équivalent de f(x) quand $x \to 1^-$.

7. Officiel de la Taupe 2019 : 72 I

On pose $u_0 = 1$ et , pour $n \in \mathbb{N}^*$, on note u_n le nombre de partitions de [1, n].

- (a) Montrer que $u_{n+1} = \sum_{k=0}^{n} {n \choose k} u_k$ et que $\forall n \in \mathbb{N}, u_n \leq n!$
- (b) Montrer que le rayon de convergence R de $\sum_{n=0}^{+\infty} \frac{u_n}{n!} x^n$ est strictement positif.
- (c) On définit $f(x) = \sum_{n=0}^{+\infty} \frac{u_n}{n!} x^n$ quand elle est existe.

Déterminer une équation différentielle dont f est solution. (on pourra faire apparaître un produit de Cauchy).

Exprimer f. En déduire une formule pour u_n .

8. [X,ENS]

On note N(n,p) le nombre de permutations de [1,n] qui ont exactement p points fixes.

On pose en particulier D(n) = N(n,0) (sans point fixe, appelé dérangement), puis $f(x) = \sum_{n=0}^{+\infty} \frac{D(n)}{n!} x^n$.

- (a) Relier N(n, p) et D(n p).
- (b) Justifier que f est bien définie sur]-1;1[.
- (c) Puis calculer f (on pourra utiliser un produit de Cauchy avec la fonction $x \mapsto e^x$). En déduire N(n, p).
- (d) Étudier la limite de la suite $\left(\frac{1}{n!}N(n,p)\right)_{n\in\mathbb{N}}$.