Classification automatique

EL MAZZOUJI Wahel

GILLET Louison

2024/2025

Table des matières

1	Partie 1				
2	Classification hiérarchique de parcelles forestières tropicales				
	2.1 Données				
	2.2 CAH des parcelles sur les densités de peuplement				
	2.2.1 Indice de Ward				
	2.2.2 Indice du saut maximum				
	2.2.3 Indice du saut moyen				
	2.2.4 Indice du saut minimum				
	2.3 \mathbb{R}^2 des différentes partitions				
	2.4 Optimisation d'une partition avec les K-means				

1 Partie 1

2 Classification hiérarchique de parcelles forestières tropicales

2.1 Données

Nous voulons proposer plusieurs classifications des parcelles décrites par leur peuplement arboré. Pour cela nous disposons des données etc Prépa des données : standardisation

2.2 CAH des parcelles sur les densités de peuplement

Dans cette partie, nous allons traiter différentes méthodes de classification hiérarchique ascendante. Ces classifications se feront à partir de plusieurs indices. Il existe essentiellement deux familles d'indice à savoir les indices d'inertie et les indices de saut.

2.2.1 Indice de Ward

Nous nous intéressons tout d'abord à la méthode de classification par l'indice d'inertie externe, autrement appelé indice de Ward. Rappelons que pour deux centres de gravité A et B, l'indice de Ward est donné par :

$$\mu(A, B) = \text{In}\left(\{(\bar{x}_A, w_A), (\bar{x}_B, w_B)\}\right) = \frac{w_A w_B}{w_A + w_B} \|\bar{x}_A - \bar{x}_B\|_2^2$$

Pour mettre en place cette classification, on crée une matrice des distances euclidiennes par la fonction dist de R. Ensuite, nous utilisons la fonction hclust:

```
dp <- dist(datapeuple, method = "euclidean")
CAHWard <- hclust(d = dp, method = "ward.D")</pre>
```

Ces deux fonctions nous permettent de tracer le dendogramme de la hiérarchie indicée par la méthode de Ward representé par la figure ci-dessous.

Figure 1: Dendrogramme - Méthode de Ward

Figure 2: Histogramme - Ward

${\bf 2.2.2}\quad {\bf Indice\ du\ saut\ maximum}$

Pour deux classes A et B, l'indice de saut maximum est donné par

$$\mu(A,B) = \max_{a \in A, b \in B} \left(d(a,b)\right)$$

Figure 3: Dendrogramme - Méthode du saut maximum

2.2.3 Indice du saut moyen

Pour deux classes A et B, l'indice de saut moyen est donné par

$$\mu(A,B) = \frac{1}{w_A w_B} \sum_{a \in A, b \in B} w_a w_b d(a,b)$$

Figure 4: Dendrogramme - Méthode du saut moyen

2.2.4 Indice du saut minimum

Pas traité car : justification

2.3 R² des différentes partitions

2.4 Optimisation d'une partition avec les K-means

Nous cherchons désormais à optimiser chacune de nos partitions jugées prometteuses issues de la CAH grâce à la méthodes des K-means.