1.1. Variance and covariance - 10 pts. Let X, Y be two independent ran	dom vectors in \mathbb{R}^m .					
(a) Find their covariance.						
(b) For a constant matrix $A \in \mathbb{R}^{m \times m}$, show the following two properties:						
$\mathbb{E}(X + AY) = \mathbb{E}(X) + A\mathbb{E}(Y)$						
$Var(X + AY) = Var(X) + AVar(Y)A^{T}$						
(c) Using part (b), show that if $X \sim \mathcal{N}(\mu, \Sigma)$, then $AX \sim \mathcal{N}(A\mu, A\Sigma A^T)$.						
a) $Cov(X, Y) = E(XY) - / \iota_X / \iota_Y$						
But, since X, Y are independent R.V then	Cov (x, x) = 0					
b) Let AER ^{mum} be a constant matrix						
E(X+AY) = E(X)+E(AY)						
= E(x) + AE(Y) Since A	is constant matrix					
Var(X+AY) = Vor(X) + Vor(AY) + cov(X	, Y)					
= Vor(x) + Var(AY)	Note: $Vor(AY) = E[(A(Y-M_Y))(A(Y-M_Y))^T]$					
= Vor(x) + A Vor(y) A ¹	= E(A(Y-My)(Y-My) ^T AT)					
	= A Vor(Y) AT					
C) Assume $X \sim N(M, \Sigma)$						
Then $E(AX) = AE(X)$ and $Vor(AX)$	= Avadv\A ^T					
	= A \(\frac{1}{2} \)					
-						
Then $A \times \sim N(A \mu, A \sum A^{T})$						

1.2.	Calculus -	10 pts.	Let $x, y \in \mathbb{R}^m$	and $A \in \mathbb{R}^{m \times m}$. In	vector notation,	what is
------	------------	---------	-----------------------------	-------------------------------------	------	------------------	---------

- (a) the gradient with respect to x of x^Ty ?
- (b) the gradient with respect to x of x^Tx ?
- (c) the gradient with respect to x of $\frac{1}{2}x^TAx$?
- (d) the gradient with respect to x of $\exp(x^T A x)$?

Let
$$X^T = [X_1, \dots, X_m]$$
 $Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_m \end{bmatrix}$

a)
$$\chi^{\mathsf{T}} \gamma = \chi_1 \gamma_1 + \chi_2 \gamma_2 + \cdots + \chi_m \gamma_m$$

$$\frac{\partial}{\partial x} x^{T} y = \begin{bmatrix} \frac{\partial}{\partial x_{1}} & x^{T} y \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial x_{m}} & x^{T} y \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_{1}} & (x_{1} y_{1} + \dots + x_{m} y_{m}) \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial x_{m}} & (x_{1} y_{1} + \dots + x_{m} y_{m}) \end{bmatrix} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix}$$

b)
$$x^{\dagger}x = x_1^2 + x_2^2 + \cdots + x_m^2$$

$$\frac{\partial}{\partial x} x^{\mathsf{T}} x = \begin{bmatrix} \frac{x}{\partial x_{1}} & x^{\mathsf{T}} x \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial x_{m}} & x^{\mathsf{T}} x \end{bmatrix} = \begin{bmatrix} \frac{x}{\partial x_{1}} & (x_{1}^{2} + \dots + x_{m}^{2}) \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial x_{m}} & (x_{1}^{2} + \dots + x_{m}^{2}) \end{bmatrix} = \begin{bmatrix} 2x_{1} \\ \vdots \\ 2x_{m} \end{bmatrix}$$

C)
$$\frac{\partial}{\partial x} \frac{1}{2} x^T A x = \frac{1}{2} x^J \frac{\sum_{k=1}^m \sum_{j=1}^m \alpha_{k,j} x_j x_k}{\alpha_k}$$

$$=\frac{1}{2}\sum_{j=1}^{M}\alpha_{ij}\times_{j}+\sum_{k=1}^{M}\alpha_{ki}\times_{k}$$

$$=\frac{1}{2}(Ax + A^{T}x)$$

$$=\frac{1}{2}(A+A^{T})$$

So
$$\frac{2}{2x} \frac{1}{2} x^T A x = A x$$

$$d) \frac{\partial}{\partial x} \exp \left\{ x^{\mathsf{T}} A x \right\} = \frac{\partial}{\partial x} x^{\mathsf{T}} A x \exp \left\{ x^{\mathsf{T}} A x \right\}$$

2.1. Linear regression - 20 pts. Suppose that $\Phi \in \mathbb{R}^{n \times m}$ with $n \geq m$ and $\mathbf{t} \in \mathbb{R}^n$, and that $\mathbf{t}|(\mathbf{\Phi}, \mathbf{w}) \sim \mathcal{N}(\mathbf{\Phi}\mathbf{w}, \sigma^2 \mathbf{I})$. We know that the maximum likelihood estimate $\hat{\mathbf{w}}$ of \mathbf{w} is given by

$$\hat{\mathbf{w}} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^\top \mathbf{t}.$$

- (a) Write the log-likelihood implied by the model above, and compute its gradient w.r.t. \mathbf{w} . By setting it equal to 0, derive the above estimator $\hat{\mathbf{w}}$.
- (b) Find the distribution of $\hat{\mathbf{w}}$, its expectation and covariance matrix.

$$P(t|\underline{b}\omega,\sigma^{2}\underline{I}) = \prod_{i=1}^{N} N(t_{i}|\underline{b}\omega,\sigma^{2}\underline{I})$$

$$= \prod_{i=1}^{N} \frac{1}{(2\pi)^{0/2}} \frac{1}{|\sigma^2 \mathbf{I}|^{1/2}} \exp \left\{ -\frac{1}{2} (t_i - \mathbf{\Sigma} \mathbf{u})^{\mathsf{T}} (\sigma^2 \mathbf{I})^{\mathsf{T}} (t_i - \mathbf{\widetilde{2}} \mathbf{u}) \right\}$$

$$\ln\left(p\left(t\mid\underline{\Phi}_{\omega_{s}},\sigma^{2}\underline{\mathbf{I}}\right)\right)=\sum_{\underline{z}=1}^{N}\ln\left(\frac{1}{(2\pi)^{9/2}}\frac{1}{\mid\sigma^{2}\underline{\mathbf{I}}\mid^{1/2}}\right)+\left(\frac{1}{2}(t_{\underline{z}}-\underline{\Phi}_{\omega})^{\mathsf{T}}(\sigma^{2}\underline{\mathbf{I}})^{\mathsf{T}}(t_{\underline{z}}-\underline{\Phi}_{\omega})\right)$$

$$= -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\sigma^2 I| - \frac{1}{2} \sum_{i=1}^{N} (t_i - \bar{\underline{\mathbf{I}}} \omega)^T (\sigma^2 \bar{\underline{\mathbf{I}}})^T (t_i - \bar{\underline{\underline{\mathbf{J}}}} \omega)$$

$$\alpha = \frac{1}{2\sigma^2 \mathbf{1}} \sum_{i=1}^{N} (t_i - \underline{\mathbf{I}} \omega)^{\mathsf{T}} (t_i - \underline{\mathbf{I}} \omega)$$
 Constant terms removed

Computing the gradient wrt w

$$\frac{\partial}{\partial W}$$
 in $P(t | \frac{1}{2}U, \sigma^2 I) = \frac{1}{2\sigma^2 I} \sum_{i=1}^{N} \frac{2}{2w} (t_i - \frac{1}{2}U)^T (t_i - \frac{1}{2}U)$

$$= \frac{1}{2\sigma^2 1} \times \sum_{i=1}^{N} \frac{\partial}{\partial w} \left(t_i^{\mathsf{T}} t_i - t_i^{\mathsf{T}} \underline{\delta} u - w^{\mathsf{T}} \underline{f} t_i + w^{\mathsf{T}} \underline{f} \underline{u} \right)$$

Setting it to 0 then finding w:

$$\underline{\underline{\Phi}(t-\underline{\Phi}u)}=0$$

$$\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} \hat{\mathbf{w}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}$$

$$\hat{\mathbf{W}} = (\mathbf{T}^{\mathsf{T}}\mathbf{E})^{\mathsf{T}}\mathbf{T}^{\mathsf{T}}t$$

$b) E(\hat{\omega}) = E[(\bar{\Sigma}^{T}\bar{\Phi})^{T}\bar{D}^{T}t] \qquad V$ $= (\bar{\Sigma}^{T}\bar{\Phi})^{T}\bar{D}^{T}E(t)$ $= (\bar{\Sigma}^{T}\bar{\Phi})^{T}\bar{D}^{T}\bar{D}\omega$ $= \omega$	$\begin{aligned} & \langle \sigma(\hat{\omega}) = \langle \sigma[(\bar{z}^{T}\bar{z})^{T}\bar{z}^{T}t] \\ &= [(\bar{z}^{T}\bar{z})^{T}\bar{z}^{T}t] \langle \sigma(t)[(\bar{z}^{T}\bar{z})^{T}\bar{z}^{T}t]^{T} \\ &= [(\bar{z}^{T}\bar{z})^{T}\bar{z}^{T}t] \sigma^{2}I[(\bar{z}^{T}\bar{z})^{T}\bar{z}^{T}t]^{T} \\ &= \sigma^{2}[(\bar{z}^{T}\bar{z})^{T}\bar{z}^{T}t]I[(\bar{z}^{T}\bar{z})^{T}\bar{z}^{T}t]^{T} \end{aligned}$
	= 0-2
	= 0
Then we have $\hat{W} \wedge N(W, \sigma^2)$	
because linear transformation of a G	naussian R.V is Gaussian again.

2.2. Ridge regression and MAP - 20 pts. Suppose that we have $\mathbf{t}|(\mathbf{\Phi}, \mathbf{w}) \sim \mathcal{N}(\mathbf{\Phi}\mathbf{w}, \sigma^2\mathbf{I})$ and we place a normal prior on $\mathbf{w}|\mathbf{\Phi}$, i.e., $\mathbf{w} \sim \mathcal{N}(0, \tau^2\mathbf{I})$. Recall from the first lecture (also in preliminaries.pdf) that MAP estimate of \mathbf{w} is given as the maximum of the posterior density

$$\hat{\mathbf{w}}_{MAP} = \underset{\sim}{\operatorname{argmax}} \{ p(\mathbf{w}|\mathbf{\Phi}, \mathbf{t}) \propto p(\mathbf{t}|\mathbf{\Phi}, \mathbf{w}) p(\mathbf{w}|\mathbf{\Phi}) \}.$$

Here, \propto notation means *proportional to*, and is used since we dropped the term $p(\mathbf{t}|\mathbf{\Phi})$ in the denominator as it doesn't have \mathbf{w} in it, thus it doesn't contribute to the maximization problem. Show that the MAP estimate of \mathbf{w} given $(\mathbf{t},\mathbf{\Phi})$ in this context is

(2.1)
$$\hat{\mathbf{w}}_{MAP} = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^{\top} \mathbf{t}$$

where $\lambda = \sigma^2/\tau^2$.

We know the distribution of P(t| I, w) and P(w| I) then,

$$\log\left(P(t|\mathbf{5},\omega)|P(\omega|\mathbf{3})\right) = \log\left[\frac{1}{(2\pi)^{9/2}\cdot|\boldsymbol{\gamma}^{-2}\mathbf{I}|^{1/2}}e^{\left(-\frac{\omega^{T}\omega}{2\boldsymbol{\gamma}^{-2}}\right)}\times\frac{1}{(2\pi)^{4/2}\cdot|\boldsymbol{\sigma}^{-2}\mathbf{I}|^{1/2}}e^{-\frac{(t-\mathbf{5}\omega)^{T}(t-\mathbf{5}\omega)}{2\boldsymbol{\sigma}^{-2}}}\right]$$

$$= \frac{\sqrt{W}}{2\tau^2} - \frac{(t - \underline{b}u)^T(t - \underline{b}u)}{2\sigma^2} + C$$
all constant forms builded to C

Then taking gradient with respect to w:

$$\frac{d \log \left(P(t \mid \mathbf{\bar{2}}, \omega) P(\omega \mid \mathbf{\bar{2}}) \right)}{d \omega} = \frac{d}{d \omega} \left(- \frac{\omega^T \omega}{2 \Upsilon^2} - \frac{t \vec{t} - t \vec{\bar{2}} \omega - \omega^T \vec{\bar{2}} \vec{t} + \omega^T \vec{\bar{2}} \vec{\bar{2}} \omega}{2 \sigma^2} \right)$$

$$= -\frac{2W}{2T^2} + \frac{2\overline{\Phi}^{\dagger}(t-\overline{\Phi}w)}{2\sigma^2}$$

Setting it to equal to 0:

$$\frac{\omega}{T^2} - \frac{\underline{\delta}^T (t - \underline{\delta} \omega)}{\sigma^2} = 0$$

$$\left(\frac{\sigma^2}{2} + \overline{\Phi}^T \underline{\Phi}\right) w = \overline{\Phi}^T t$$

$$\hat{W}_{map} = (\bar{\mathbf{g}}^{T}\bar{\mathbf{g}} + \lambda \mathbf{I})^{-1}\bar{\mathbf{g}}^{T}t$$
 where $\lambda = \frac{\sigma^{2}}{T^{2}}$