

การคำนวณดัชนีความเชื่อถือได้ ของระบบไฟฟ้า

หัวข้อ

- มาตรฐานอ้างอิง
- หลักการคำนวณดัชนีความเชื่อถือได้ของระบบไฟฟ้าของ กฟน.

มาตรฐานอ้างอิง

มาตรฐานอ้างอิง

• การคำนวณดัชนีความเชื่อถือได้ของระบบไฟฟ้าของ กฟน. อ้างอิง ตามมาตรฐาน IEEE1366 – 2012 : IEEE Guide for Electric Power Distribution Reliability Indices

Interruption

- The total loss of electric power on one or more normally energized conductors to one or more customers connected to the distribution portion of the system.
- This does not include any of the power quality issues such as: sags, swells, impulses, or harmonics.

Momentary interruption

- The brief loss of power delivery to one or more customers caused by the opening and closing operation of an interrupting device.
- NOTE—Two circuit breaker or recloser operations (each operation being an open followed by a close) that briefly interrupt service to one or more customers are defined as two momentary interruptions.

Momentary interruption event

- An interruption of duration limited to the period required to restore service by an interrupting device.
- NOTE 1— Such switching operations must be completed
 within a specified time of five minutes or less. This definition
 includes all reclosing operations that occur within five
 minutes of the first interruption.
- NOTE 2— If a recloser or circuit breaker operates two, three, or four times and then holds (within five minutes of the first operation), those momentary interruptions shall be considered one momentary interruption event.

Sustained interruption

 Any interruption not classified as a part of a momentary event. That is, any interruption that lasts more than five minutes.

Sustained interruption indices

- SAIFI: System Average Interruption Frequency Index
 - ดัชนีที่แสดงค่าเฉลี่ยจำนวนครั้งการเกิดไฟฟ้าดับนานของผู้ใช้ไฟฟ้าแต่ละรายใน
 ระบบไฟฟ้า ไฟฟ้าดับนานหมายถึงระยะเวลาที่ไฟฟ้าดับนานกว่า 1 นาที (กฟน.)
 - สูตร :

SAIFI = ผลรวมของจำนวนผู้ใช้ไฟฟ้าที่ดับนานในแต่ละครั้ง จำนวนผู้ใช้ไฟฟ้าทั้งหมด

— หน่วย : ครั้ง/ผู้ใช้ไฟฟ้า 1 ราย/เวลา (ปี)

Sustained interruption indices

- SAIDI: System Average Interruption Duration Index
 - ดัชนีที่แสดงค่าเฉลี่ยระยะเวลาการเกิดไฟฟ้าดับนานของผู้ใช้ไฟฟ้าแต่ละรายใน
 ระบบ ไฟฟ้าดับนานหมายถึงระยะเวลาที่ไฟฟ้าดับนานกว่า 1 นาที (กฟน.)
 - สูตร :

SAIDI = ผลรวมของ (จำนวนผู้ใช้ไฟฟ้าที่ดับในแต่ละครั้ง x ระยะเวลาที่ไฟฟ้าดับในแต่ละครั้ง)

จำนวนผู้ใช้ไฟฟ้าทั้งหมด

หน่วย : นาที/ผู้ใช้ไฟฟ้า 1 ราย/เวลา (ปี)

เหตุการณ์ไฟฟ้าดับนาน (Sustained interruption)

เหตุการณ์ที่มีระยะเวลาไฟฟ้า ดับนานมากกว่า 1 นาที

> พิจารณาคำนวณดัชนี (customer based) SAIFI, SAIDI

หลักการคำนวณดัชนีความเชื่อถือได้ของ ระบบไฟฟ้าของ กฟน.

กระบวนการจัดเก็บข้อมูลสถิติไฟฟ้าขัดข้อง

1. พิจารณาดัชนีในภาพรวมของ กฟน. จาก 4 กลุ่มสาเหตุที่ทำให้เกิดลูกค้า ไฟฟ้าดับนาน คือ กฟผ. (E), สายป้อน (F), สายส่ง (L) และสถานีฯ (S) โดยเป็นการคำนวณแบบ customer based คือ พิจารณาจำนวนลูกค้า ไฟฟ้าดับจากจำนวนลูกค้าจริง (จาก GIS) ในแต่ละสายป้อน

2. เมื่อเกิดไฟฟ้าดับนานโดยมีสาเหตุจาก กฟผ.

การเกิดไฟฟ้าดับนานจะส่งผลกระทบต่อลูกค้าเป็นวงกว้าง โดย

- จำนวนลูกค้า จะพิจารณาจากจำนวนลูกค้าในแต่ละรายสายป้อนที่ ได้รับผลกระทบจากเหตุการณ์นั้นๆ
- ระยะเวลาไฟฟ้าดับ จะพิจารณาจากเวลาที่ใช้ในการจ่ายไฟกลับ ของแต่ละสายป้อน ทั้งนี้อาจขึ้นอยู่กับรูปแบบการจ่ายไฟคืน เช่น ถ่าย โหลดจากสายส่ง, สถานีฯ หรือสายป้อน

- 3. เมื่อเกิดไฟฟ้าดับนานโดยมี**สาเหตุจาก สายส่ง**การเกิดไฟฟ้าดับนานจะส่งผลกระทบต่อลูกค้าจำนวนมาก โดย
 - จำนวนลูกค้า จะพิจารณาจากจำนวนลูกค้าในแต่ละรายสายป้อนที่ ได้รับผลกระทบจากเหตุการณ์นั้นๆ ซึ่งอาจจะเป็นสายป้อนในสถานีฯ ที่ไม่ สามารถถ่ายโหลดด้วย automatic function ได้ หรือสถานีฯ ที่รับไฟ เพียงสายส่งเดียว
 - ระยะเวลาไฟฟ้าดับ จะพิจารณาจากเวลาที่ใช้ในการจ่ายไฟกลับ ของแต่ละสายป้อน ทั้งนี้อาจขึ้นอยู่กับรูปแบบการจ่ายไฟคืน เช่น ถ่าย โหลดจากสายส่ง, สถานีฯ หรือสายป้อน

- 4. เมื่อเกิดไฟฟ้าดับนานโดยมีสาเหตุจาก สถานีฯ
 - การเกิดไฟฟ้าดับนานจะส่งผลกระทบต่อลูกค้าจำนวนมาก โดย
 - จำนวนลูกค้า จะพิจารณาจากจำนวนลูกค้าในแต่ละรายสายป้อนที่ ได้รับผลกระทบจากเหตุการณ์นั้นๆ ซึ่งอาจะเป็นสายป้อนบางเบย์หรือทุก เบย์ภายในสถานีๆ
 - ระยะเวลาไฟฟ้าดับ จะพิจารณาจากเวลาที่ใช้ในการจ่ายไฟกลับ ของแต่ละสายป้อน ทั้งนี้อาจขึ้นอยู่กับรูปแบบการจ่ายไฟคืน เช่น ถ่าย โหลดระหว่างเบย์ภายในสถานีฯ หรือถ่ายโหลดในระบบสายป้อน

- 5. เมื่อเกิดไฟฟ้าดับนานโดยมี**สาเหตุจาก สายป้อน** การเกิดไฟฟ้าดับนานจะส่งผลกระทบต่อลูกค้า โดย
 - จำนวนลูกค้า จะพิจารณาจากจำนวนลูกค้าในแต่ละรายสายป้อนที่ ได้รับผลกระทบจากเหตุการณ์นั้นๆ
 - ระยะเวลาไฟฟ้าดับ จะพิจารณาจากเวลาที่ใช้ในการจ่ายไฟกลับ ของแต่ละสายป้อน ทั้งนี้อาจมีการจ่ายไฟกลับเป็นส่วนๆ (step restoration)

ทั้งนี้การพิจารณาเหตุการณ์ไฟฟ้าดับในสายป้อนมีรายละเอียดเพิ่มเติม ดังนี้

- พิจารณาการเกิดไฟฟ้าดับจากเหตุการณ์ที่สายป้อนเกิดไฟฟ้าดับทั้ง สายป้อน (สายป้อนสวิตช์ตกสับไม่ติด หรือสายป้อนฝากโหลดทั้งสายป้อน ไว้กับสายป้อนที่สวิตช์ตกสับไม่ติด)
- แต่ถ้าเกิดไฟฟ้าดับเฉพาะบางส่วนภายในสายป้อน จะไม่นำ เหตุการณ์นั้นมาคำนวณค่าดัชนีฯ เช่น กรณี fuse link ขาด โดยที่สวิตช์ไม่ ตก ซึ่งเหตุการณ์ดังกล่าวจะมีลูกค้าไฟฟ้าดับบางส่วน เป็นต้น
- 6. จำนวนลูกค้าใช้ข้อมูลจาก GIS ซึ่งจะเป็นข้อมูลจำนวนลูกค้าในราย สายป้อน

- 7. ระยะเวลาไฟฟ้าดับของแต่ละสายป้อนในแต่ละเหตุการณ์ พิจารณาจาก รายงานศูนย์ควบคุมระบบไฟฟ้า
- 8. เนื่องจากระบบการคำนวณดัชนี SAIDI ไม่สามารถคำนวณจำนวนลูกค้า และระยะเวลาไฟฟ้าดับเป็นส่วนๆ ได้ ดังนั้นการคำนวณดัชนี SAIDI กรณีมีการจ่ายไฟกลับเป็นส่วนๆ (step restoration) จะพิจารณาด้วย ระยะเวลาไฟฟ้าดับเฉลี่ย (time_eq)
- 9. กฟน. มีการพิจารณาเหตุการณ์ Major Event Day (MED) คือ วันที่มี เหตุการณ์ไฟฟ้าดับมากเกินกว่าระบบไฟฟ้าจะรองรับได้ โดยพิจารณา MED จากค่า SAIDI/day สูงเกินกว่า T_{med} ตามมาตรฐาน IEEE1366

ระยะเวลาไฟฟ้าดับเฉลี่ย (time_eq)

Major Event Day (MED)

IEEE1366-2012; Major Event Day: MED

วันที่เกิดเหตุการณ์ไฟฟ้าดับครั้งใหญ่ เป็น**เหตุการณ์ที่มีผลกระทบ กับระบบไฟฟ้า ซึ่งเกินข้อจำกัดที่ออกแบบ** และ/หรือเกินข้อจำกัดในการ ควบคุมการจ่ายไฟฟ้า

เนื่องจากเมื่อเกิดเหตุการณ์ผิดปกติที่**ทำให้**ไฟฟ้าดับเป็นบริเวณกว้าง จะทำให้การรายงานสถิติไฟฟ้าดับและ<mark>ดัชนี</mark>ความเชื่อถือได้ของระบบไฟฟ้า นั้นบิดเบือนจากสภาพความเป็นจริง

วิธีการจำแนก Major Event Day

ใช้วิธีการ Beta Method ในการจำแนก Major Event Day เป็น การนำหลักทางสถิติมาใช้เพื่อเป็นมาตรฐานการจำแนก

- เข้าใจและใช้งานได้ง่าย
- วิธีการคำนวณสามารถใช้ได้กับทุกการไฟฟ้า
- เป็นธรรมกับทุกการไฟฟ้า แม้ว่าจะมีความแตกต่างในเรื่อง ขนาด, ภูมิประเทศ และ การออกแบบ
- SAIDI เป็นดัชนีๆที่สามารถแสดงความเสียหายของระบบไฟฟ้า เมื่อเกิดเหตุการณ์ไฟฟ้าดับได้ดีที่สุด IEEE1366-2012 จึงเลือก SAIDI ในการจำแนก MED

เหตุผลที่เลือก SAIDI

- ค่าดัชนี SAIDI มีลักษณะที่ค่อนข้างคงตัว มีทิศทางที่แน่นอน ไม่ขึ้นกับ ขนาดของการไฟฟ้า ทำให้การพิจารณามีความคงเส้นคงวา
- ค่าดัชนี SAIDI สะท้อนภาพความจำกัดต่างๆ ในทางปฏิบัติของการไฟฟ้า และสะท้อนถึงการออกแบบระบบไฟฟ้า

ค่าขอบเขตจำกัด T_{MFD} (Major Event Day Threshold)

- คำนวณค่า SAIDI รายวันจากข้อมูลย้อนหลัง 5 ปี
- เฉพาะวันที่มีค่า SAIDI รายวันเท่านั้นที่จะถูกใช้คิดค่า T_{MED}
- ใส่ฟังก์ชัน natural log ให้กับค่า SAIDI แต่ละวัน, ln(SAIDI/day)
- ullet หาค่า $oldsymbol{lpha}$ (Alpha), ค่าเฉลี่ยของ ln(SAIDI/day)
- ullet หาค่า $oldsymbol{eta}$ (Beta), ค่าเบี่ยงเบนมาตรฐานของ ln(SAIDI/day)

$$T_{MED} = e^{(\alpha+2.5\beta)}$$

Probability Density Function: pdf(SAIDI)

Thank you