PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE18CS302

OCTOBER 2020: IN SEMESTER ASSESSMENT B. Tech. (SEMESTER TEST – 1) UE18CS302 - Operating System

		Time: 2 Hrs Answer All Questions Max Marks: 60									
.]	a)) Clearly explain different states of the process drawing state diagram									
ĺ	b)	Precisely explain fork(), exe	c(), and wait() sys	tem calls including ;	parameters and return value	3					
Ì	c)										
	a)	process will run for the amount of time listed as Burst Time. In answering the questions, use non-preemptive scheduling, and base all decisions on the information you have at the time the decision must be made.									
		P1 0.0 P2 0.4		8							
İ		P2 0.4 P3 1.0		4 1							
		1.0		ı	•						
		 What is the average turnaround time for these processes with the First Com Serve (FCFS) scheduling algorithm? What is the average turnaround time for these processes with the Shortest Jo 									
		(SJF) scheduling algorithm?									
		3. The SJF algorithm is supposed to improve performance, but notice that we chose to									
-		run process P1 at time 0 because we did not know that two shorter processes would									
		arrive soon. Compute what the average turnaround time will be if the CPU is left idle for the first 1 unit and then SJF scheduling is used. Remember that processes P1 and									
		nay increase. This algorithm									
		could be known as	future-knowledge	scheduling.							
ļ											
	p)										
]	algorithm. Each process is assigned a numerical priority, with a higher number indicating a higher relative priority. In addition to the processes listed below, the system also has an idle task (which									
		consumes no CPU resources and is identified as P_{idle}). This task has priority 0 and is scheduled									
		whenever the system has no other available processes to run. The length of a time quantum is 10									
		units. If a process is pre-empted by a higher-priority process, the pre-empted process is placed at									
		the end of the queue									
		Thread	Priority	Burst	Arrival						
		P ₁	40	20	0						
		P_2	30	25	25						
		P_3	30	25	30						
		P ₄	35	15	60						
		P _S	5	10	100						
			10	10	105						
		1. What is the turnaround tir	ne for each thread	?							
		2. What is the waiting time for each thread?									
		3. What is the CPU utilization rate?									

3.	a)	Precisely a	ind clearly expla	ain four conditions to occur simultaneously for deadlock	4		
	b)	Precisely and clearly explain primary benefits of multithreading an applications					
	c)						
4.	a)	Give the correct and concise structure of reader and writer processes using semaphores for the <i>first reader writer problem</i> where no reader be kept waiting unless a writer has already obtained permission to use the shared object. Obviously, readers can access the shared object simultaneously.					
	b)	Give a clear, correct and complete algorithm for deadlock detection among n processes and m resources type with multiple instances and mention the complexity of the algorithm.					
5.	a)	Clearly Explain all the Steps to Service a Page Fault in a demand paging based system					
	b)						
	c)						
6	а)	Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), 1. How would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order) 2. Which algorithm makes the most efficient use of memory?					
	b)	Segment 0 1 2 3	Base 219 2300 90 1327 1352	Length 600 14 100 580 96 esses for the following logical address?	5 (1*5)		