學號:R05522621 系級:機械碩二 姓名:李哲銘

1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何? (Collaborators:施宣安、劉紹增)

答:

下圖為模型架構(左)及 訓練過程(右),有使用兩層 GRU 及 EarlyStopping。

Layer (type)	Output	Shape	Param #
gru_1 (GRU)	(None,	30, 256)	427776
gru_2 (GRU)	(None,	128)	147840
dense_1 (Dense)	(None,	16)	2064
batch_normalization_1 (Batch	(None,	16)	64
dropout_1 (Dropout)	(None,	16)	0
dense_2 (Dense)	(None,	1)	17
Total params: 577,761 Trainable params: 577,729 Non-trainable params: 32			

下表為準確率:

Training accuracy	Validation accuracy	Testing (Public)	Testing (Private)
83.32%	82.33%	82.38%	82.25%

2. (1%) 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何? (Collaborators: 施宣安、劉紹增)

炫:

下圖為模型架構(左)及 訓練過程(右),有使用 Dense 64、128、256 及 EarlyStopping。

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	64)	320064
dropout_1 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	128)	8320
dropout_2 (Dropout)	(None,	128)	0
dense_3 (Dense)	(None,	256)	33024
dropout_3 (Dropout)	(None,	256)	0
batch_normalization_1 (Batch	(None,	256)	1024
dropout_4 (Dropout)	(None,	256)	0
dense_4 (Dense)	(None,	1)	257
Total params: 362,689 Trainable params: 362,177			
Non-trainable params: 512			

下表為準確率:

Training accuracy	Validation accuracy	Testing (Public)	Testing (Private)
80.18%	79.04%	79.10%	79.06%

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators: 施宣安、劉紹增)

答:

設定第一句為"today is a good day, but it is hot", 第二句為"today is hot, but it is a good day", 下表為兩種不同 model 的比較:

Model	第一句	第二句
RNN	0.8406	0.9767
bag of word	0.7598	0.7598

由上表可以發現對 bag of word 來說這兩句是一模一樣的,我認為是 bag of word 並無考慮單字出現順序所致。而 RNN 可以看出兩句的結果有所不同,且第二句較第一句更為正面,可以得知 RNN 是有考慮順序的。

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

(Collaborators: 施宣安、劉紹增)

答:

下表之結果皆使用 LSTM 模型得出。發現有標點符號時可以比較準確。

Way of tokenize	Testing (Public)	Testing (Private)
有標點	80.52%	80.49%
無標點	79.97%	79.89%

我認為標點符號確實會影響此模型的預測結果,對它來說同一句話有無標點符號是兩 句不同的句子,有標點符號能讓此句話的情緒表現更明顯,讓預測機率趨於中間的數量降低。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label, 並比較有無 semi-surpervised training 對準確率的影響。

(Collaborators: 施宣安、劉紹增)

答:

我在 semi-supervised 方法中是將 nolabel 資料取後半部的 20% 出來 predict,將 predict 結果高於 0.9 的資料其 label 標記為 1,小於 0.1 則標記為 0,介於中間的則都捨棄掉,模型架構皆與第一題相同,下表為兩者的比較:

Semi-Surpervised Training	Testing (Public)	Testing (Private)
無	82.38%	82.25%
有	81.54%	81.25%

在我的情況是有 semi-surpervised training 的結果其準確率稍微下降一些,有些同學的結果稍有提升,我認為是標記的方法不同及 nolabel 資料取不同部分所致,可能我取的部分 predict 結果較為不準確,進而影響我的準確率。