Discrete Mathematics: Lecture 19

Part III. Mathematical Logic

logic equivalence, tautological implication, building arguments

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2025

Interpretation

DEFINITION: an **interpretation**_{##} requires one to (remove all uncertainty)

- assign a concrete proposition to every proposition variable
- assign a concrete predicate to every predicate variable
- restrict the domain of every bound individual variable
- assign a concrete individual to every free individual variable
- choose a concrete function, if there is any

EXAMPLE: $\exists x P(x) \rightarrow q$

- Domain of $x = \{Alice, Bob, Eve\}$
- P(x) = "x gets A+"
- q = "I get A+"
- If at least one of Alice, Bob, and Eve gets A+, then I get A+.

Types of WFFs

DEFINITION: A WFF is **logically valid**_{普遍有效} if it is **T** in every interpretation

• $\forall x (P(x) \lor \neg P(x))$ is logically valid

DEFINITION: A WFF is **unsatisfiable**不可满足 if it is **F** in every interpretation

• $\exists x (P(x) \land \neg P(x))$ is unsatisfiable

DEFINITION: A WFF is **satisfiable**可满足 if it is **T** in **some** interpretation

- $\forall x (x^2 > 0)$
 - true when domain= nonzero real numbers

THEOREM: Let A be any WFF. A is logically valid iff $\neg A$ is unsatisfiable.

Rule of Substitution: Let A be a tautology in propositional logic. If we substitute any propositional variable in A with an arbitrary WFF from predicate logic, then we get a logically valid WFF.

• $p \vee \neg p$ is a tautology; hence, $P(x) \vee \neg P(x)$ is logically valid

Logical Equivalence

DEFINITION: Two WFFs A,B are **logically equivalent**have the same truth value in every interpretation.

- notation: $A \equiv B$;
- example: $\forall x \ P(x) \land \forall x \ Q(x) \equiv \forall x \ (P(x) \land Q(x))$

THEOREM: $A \equiv B$ iff $A \leftrightarrow B$ is logically valid.

- $A \equiv B$
- iff A, B have the same truth value in every interpretation I
- iff $A \leftrightarrow B$ is true in every interpretation I
- iff $A \leftrightarrow B$ is logically valid

THEOREM: $A \equiv B$ iff $A \rightarrow B$ and $B \rightarrow A$ are both logically valid.

• $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$

Rule of Substitution

METHOD: Applying the rule of substitution to the logical equivalences in propositional logic, we get logical equivalences in predicate logic.

$$P \lor Q \equiv Q \lor P \quad A(x) \lor B(y) \equiv B(y) \lor A(x)$$

$$(P \land Q) \land R \equiv P \land (Q \land R) \quad (A(x) \land B(y)) \land c \equiv A(x) \land (B(y) \land c)$$

$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) \quad A(x) \land (B(y) \lor c) \equiv (A(x) \land B(y)) \lor (A(x) \land c)$$

$$P \land (P \lor Q) \equiv P \quad A(x) \land (A(x) \lor B(y)) \equiv A(x)$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q \quad \neg (A(x) \land B(y)) \equiv \neg A(x) \lor \neg B(y)$$

$$P \rightarrow Q \equiv \neg P \lor Q \quad A(x) \rightarrow (\forall y B(y)) \equiv \neg A(x) \lor (\forall y B(y))$$

$$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P) \quad A(x) \leftrightarrow c \equiv (A(x) \rightarrow c) \land (c \rightarrow A(x))$$

De Morgan's Laws for Quantifiers

```
THEOREM: \neg \forall x \ P(x) \equiv \exists x \ \neg P(x)
```

- Show that $\neg \forall x \ P(x) \rightarrow \exists x \ \neg P(x)$ is logically valid
 - Suppose that $\neg \forall x \ P(x)$ is **T** in an interpretation I
 - $\forall x P(x) \text{ is } \mathbf{F} \text{ in } I$
 - There is an x_0 such that $P(x_0)$ is **F** in I
 - There is an x_0 such that $\neg P(x_0)$ is **T** in I
 - $\exists x \neg P(x) \text{ is } \mathbf{T} \text{ in } I$
- Show that $\exists x \neg P(x) \rightarrow \neg \forall x P(x)$ is logically valid
 - Suppose that $\exists x \neg P(x)$ is **T** in an interpretation *I*
 - There is an x_0 such that $\neg P(x_0)$ is **T** in I
 - There is an x_0 such that $P(x_0)$ is **F** in I
 - $\forall x P(x)$ is **F** in *I*
 - $\neg \forall x P(x)$ is **T** in *I*

THEOREM: $\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$.

De Morgan's Laws for Quantifiers

EXAMPLE: R(x): "x is a real number"; Q(x): "x is a rational number"

- $\neg \forall x (R(x) \rightarrow Q(x))$
 - Not all real numbers are rational numbers
- Negation: $\exists x \neg (R(x) \rightarrow Q(x)) \equiv \exists x (R(x) \land \neg Q(x))$
 - There is a real number which is not rational

EXAMPLE: Let the domain be the set of all real numbers. Let Q(x): "x is a rational number" and I(x): "x is an irrational number"

- $\neg \exists x (Q(x) \land I(x))$
 - No real number is both rational and irrational.
- Negation: $\forall x \neg (Q(x) \land I(x)) \equiv \forall x (\neg Q(x) \lor \neg I(x))$
 - Any real number is either not rational or not irrational.

Distributive Laws for Quantifiers

THEOREM: $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$

- Show that $\forall x (P(x) \land Q(x)) \rightarrow \forall x P(x) \land \forall x Q(x)$ is logically valid
 - Suppose that $\forall x (P(x) \land Q(x))$ is **T** in an interpretation *I*
 - $P(x) \wedge Q(x)$ is **T** for every x in I
 - P(x) is **T** for every x in I and Q(x) is **T** for every x in I
 - $\forall x \ P(x)$ is **T** in *I* and $\forall x \ Q(x)$ is **T** in *I*
 - $\forall x P(x) \land \forall x Q(x) \text{ is } \mathbf{T} \text{ in } I$
- Show that $\forall x \ P(x) \land \forall x \ Q(x) \rightarrow \forall x \ \left(P(x) \land Q(x)\right)$ is logically valid.
 - Suppose that $\forall x \ P(x) \land \forall x \ Q(x)$ is **T** in an interpretation *I*
 - $\forall x \ P(x) \text{ is } \mathbf{T} \text{ in } I \text{ and } \forall x \ Q(x) \text{ is } \mathbf{T} \text{ in } I$
 - P(x) is **T** for every x in I and Q(x) is **T** for every x in I
 - $P(x) \wedge Q(x)$ is **T** for every x in I
 - $\forall x (P(x) \land Q(x)) \text{ is } \mathbf{T} \text{ in } I$

THEOREM: $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x).$

Tautological Implication

DEFINITION: Let A and B be WFFs in predicate logic. A tautologically implies ($\mathbb{Z} = \mathbb{Z} = \mathbb{Z}$

• notation: $A \Rightarrow B$, called a **tautological implication**(m)m

THEOREM: $A \Rightarrow B$ iff $A \rightarrow B$ is logically valid.

- $A \Rightarrow B$
- iff every interpretation that causes A to be true causes B to be true
- iff there is no interpretation such that $(A, B) = (\mathbf{T}, \mathbf{F})$
- Iff $A \rightarrow B$ is true in every interpretation
- iff $A \rightarrow B$ is logically valid

THEOREM: $A \Rightarrow B$ iff $A \land \neg B$ is unsatisfiable.

• $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$

Rule of Substitution

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \lor Q$	3
Modus ponens(假言推理)	$P \wedge (P \to Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

EXAMPLE: $P \land (P \rightarrow Q) \Rightarrow Q$ is a TI in propositional logic.

- $A(x) \land (A(x) \rightarrow B(y)) \Rightarrow B(y)$ must be a TI in predicate logic.
 - Rule of substitution: let P = A(x) and Q = B(y)

Tautological Implications

a. $\forall x P(x) \lor \forall x \ Q(x) \Rightarrow \forall x \ (P(x) \lor Q(x))$ b. $\exists x \left(P(x) \land Q(x)\right) \Rightarrow \exists x \ P(x) \land \exists x Q(x)$ c. $\forall x \ \left(P(x) \to Q(x)\right) \Rightarrow \forall x P(x) \to \forall x \ Q(x)$ d. $\forall x \ \left(P(x) \to Q(x)\right) \Rightarrow \exists x \ P(x) \to \exists x \ Q(x)$ e. $\forall x \ \left(P(x) \leftrightarrow Q(x)\right) \Rightarrow \forall x \ P(x) \leftrightarrow \forall x \ Q(x)$ f. $\forall x \ \left(P(x) \leftrightarrow Q(x)\right) \Rightarrow \exists x \ P(x) \leftrightarrow \exists x \ Q(x)$ g. $\forall x \ \left(P(x) \to Q(x)\right) \land \forall x \ \left(Q(x) \to R(x)\right) \Rightarrow \forall x \ \left(P(x) \to R(x)\right)$ h. $\forall x \ \left(P(x) \to Q(x)\right) \land P(a) \Rightarrow Q(a)$

Additional rule: Conclusion Premise (附加前提)

- The following two tautological implications are equivalent
 - $P \Rightarrow A \rightarrow B$
 - $P \wedge A \Rightarrow B$

Examples

EXAMPLE:
$$\forall x (P(x) \rightarrow Q(x)) \land P(a) \Rightarrow Q(a)$$

- Suppose that the left hand side is true in an interpretation I (domain=D)
 - $\forall x (P(x) \rightarrow Q(x))$ is **T** and P(a) is **T**
 - $P(a) \rightarrow Q(a)$ is **T** and P(a) is **T**
 - Q(a) is **T** in I.

EXAMPLE: Tautological implication in the following proof?

- All rational numbers are real numbers $\forall x (P(x) \rightarrow Q(x))$
- 1/3 is a rational number P(1/3)
- 1/3 is a real number Q(1/3)
 - P(x) = "x is a rational number"
 - Q(x) = "x is a real number"
 - rule of inference: $\forall x (P(x) \rightarrow Q(x)) \land P(1/3) \Rightarrow Q(1/3)$

Examples

EXAMPLE:
$$\forall x (P(x) \to Q(x)) \land \forall x (Q(x) \to R(x)) \Rightarrow \forall x (P(x) \to R(x))$$

- Suppose that the left hand side is T in an interpretation I (domain=D)
 - $\forall x (P(x) \to Q(x))$ is **T** and $\forall x (Q(x) \to R(x))$ is **T**
 - $P(x) \to Q(x)$ is **T** for all $x \in D$ and $Q(x) \to R(x)$ is **T** for all $x \in D$
 - $P(x) \to R(x)$ is **T** for all $x \in D$
 - $\forall x (P(x) \rightarrow R(x)) \text{ is } \mathbf{T} \text{ in } I.$

EXAMPLE: Tautological implication in the following proof?

- All integers are rational numbers. $\forall x (P(x) \rightarrow Q(x))$
- All rational numbers are real numbers. $\forall x (Q(x) \rightarrow R(x))$
- All integers are real numbers. $\forall x (P(x) \rightarrow R(x))$
 - P(x) = "x is an integer"
 - Q(x) = "x is a rational number"
 - R(x) = "x is a real number"
 - rule of inference: $\forall x (P(x) \to Q(x)) \land \forall x (Q(x) \to R(x)) \Rightarrow \forall x (P(x) \to R(x))$

Building Arguments

QUESTION: Given the premises P_1, \dots, P_n , show a conclusion Q, that is, show that $P_1 \wedge \dots \wedge P_n \Rightarrow Q$.

Name	Operations
Premise	Introduce the given formulas P_1, \dots, P_n in the
	process of constructing proofs.
Conclusion	Quote the <u>intermediate formula</u> that have
	been deducted.
Rule of replacement	Replace a formula with a <u>logically</u>
	<u>equivalent</u> formula.
Rules of Inference	Deduct a new formula with a <u>tautological</u>
	implication.
Rule of substitution	Deduct a formula from a <u>tautology</u> .

Rules of Inference for \forall , \exists

Name	Rules of Inference	NO.
Universal Instantiation 全称量词消去	$\forall x P(x) \Rightarrow P(a)$	1
	a <u>is any</u> individual in the domain of x	
Universal Generalization 全称量词引入	$P(a) \Rightarrow \forall x P(x)$	2
	a <u>takes any</u> individual in the domain of x	
Existential Instantiation 存在量词消去	$\exists x P(x) \Rightarrow P(a)$	3
	a is a <u>specific</u> individual in the domain of x	
Existential Generalization 存在量词引入	$P(a) \Rightarrow \exists x \ P(x)$	4
	a is a <u>specific</u> individual in the domain of x	

Building Arguments

EXAMPLE: Show that the following premises 1, 2 lead to conclusion 3.

- 1. "A student in this class has not read the book," $\exists x (C(x) \land \neg B(x))$
- 2. "Everyone in this class passed the exam," $\forall x (C(x) \rightarrow P(x))$
- 3. "Someone who passed the exam has not read the book." $\exists x (P(x) \land \neg B(x))$
- Translate the premises and the conclusion into formulas.
 - C(x): "x is in the class"; B(x): "x has read the book"; P(x): "x passed the exam"

•
$$?\exists x (C(x) \land \neg B(x)) \land \forall x (C(x) \rightarrow P(x)) \Rightarrow \exists x (P(x) \land \neg B(x))$$

- (1) $\exists x (C(x) \land \neg B(x))$
- (2) $C(a) \wedge \neg B(a)$
- (3) C(a)
- $(4) \quad \forall x (C(x) \to P(x))$
- (5) $C(a) \rightarrow P(a)$
- (6) P(a)
- (7) $\neg B(a)$
- (8) $P(a) \wedge \neg B(a)$
- (9) $\exists x (P(x) \land \neg B(x))$

Premise

Existential instantiation from (1)

Simplification from (2)

Premise

Universal instantiation from (4)

Modus ponens from (3) and (5)

Simplification from (2)

Conjunction from (6) and (7)

Existential generalization from (8)

Building Arguments

EXAMPLE: Show that the following premises lead to conclusion.

$$\blacksquare \exists x F(x) \to \forall y \big(G(y) \to H(y) \big), \ \exists x M(x) \to \exists y G(y)$$

$$\blacksquare \Rightarrow \exists x (F(x) \land M(x)) \rightarrow \exists y H(y)$$

(1)
$$\exists x F(x) \rightarrow \forall y (G(y) \rightarrow H(y))$$
 Premise

(2)
$$\exists x M(x) \rightarrow \exists y G(y)$$
 Premise

(3)
$$\exists x (F(x) \land M(x))$$
 Conclusion Premise

(4)
$$\exists x F(x) \land \exists x M(x)$$
 Rule b from (3)

(5)
$$\exists x F(x)$$
 Simplification from (4)

(6)
$$\forall y (G(y) \rightarrow H(y))$$
 Modus ponens from (1) and (5)

(7)
$$\exists x M(x)$$
 Simplification from (4)

(8)
$$\exists y G(y)$$
 Modus ponens from (7) and (2)

(9)
$$G(c)$$
 Existential instantiation from (8)

(10)
$$G(c) \rightarrow H(c)$$
 Universal instantiation from (6)

(11)
$$H(c)$$
 Modus ponens from (9) and (10)

(12)
$$\exists y H(y)$$
 Existential generalization from (11)

(13)
$$\exists x (F(x) \land M(x)) \rightarrow \exists y H(y)$$
 Conclusion Premise from (3) (12)