

软件开发环境国家重点实验室

State Key Laboratory of Software Development Environment

基于Event-B的分区操作系统内核 模型及正确性保障

赵永望

zhaoyw@buaa.edu.cn

北京航空航天大学 计算机学院

软件开发环境国家重点实验室 State Kev Laboratory of Software Development Environment

报告提纲

- 1. 什么是分区内核
- 2. 分区内核验证的研究现状
- ・ 3. 总体方案
- ・ 4. 分区内核模型
- 5. 隔离内核正确性保障方法
- ・ 6. 小结

机载软件的地位和作用

以航电系统为例

	飞机	型号	航电系统功能	
			硬件(%)	软件(%)
	第二代	F-111	80	20
	60年代末			
Nument	第三代	F-16	60	40
点实验室 ment Environmen	70年代末			
开发环境国家重点实验室 Laboratory of Software Development Environment	第四代	F-22	20	80
件开发环境国 e Key Laboratory of Software	90年代末	F-35	15	85
F 发 되 aboratory	/21世纪			
文件 3				
航	空电子系统	逐渐成为"车	次件密集型	"系统
	200% 的納	这由子功能	山粉供今 T	ग्रा

80%的航空电子功能由软件实现

飞机型号	代码行数(万行)
飞豹战斗机	150
F22	180 (Ada)
波音	400
F35	1000

综合化航电和机载软件

SWaP: Size, Weight, and Power

独立的专用计算机

独立的管理软件

任务总线为通信与控 制方式

高度综合化的计算机硬 件

综合化环境下的任务处 理软件

安全关键的嵌入式实时 操作系统成为核心

软件开发环境国家重点实验室 State Key Laboratory of Software Development Environment

分区实时操作系统内核

• 在综合化航电的架构下,实时操作系统支持分区

- 空间隔离
- 时态隔离
- 故障隔离
- 信息流安全性

ARINC653内核功能

核心服务:

- 1. Partition Management
- 2. Process Management
- 3. Time Management
- 4. Memory Management
- 5. Interpartition Communication
- 6. Intrapartition Communication
- 7. Health Monitoring

形式验证需求

- 机载软件适航认证DO-178C要求采用形式化方法
- CC对安全关键软件的要求

国际信息技术安 全评估通用标准 Common Criteria ISO/IEC 15408

CC级别	需求	功能规约	高层设计	低层设计	代码实现
EAL1	非形式化	非形式化	非形式化	非形式化	非形式化
EAL2	非形式化	非形式化	非形式化	非形式化	非形式化
EAL3	非形式化	非形式化	非形式化	非形式化	非形式化
EAL4	非形式化	非形式化	非形式化	非形式化	非形式化
EAL5	形式化	部分形式化	部分形式化	非形式化	非形式化
EAL6	形式化	部分形式化	部分形式化	部分形式化	非形式化
EAL7	形式化	形式化	形式化	部分形式化	非形式化
完全验证和复合	形式化	形式化	形式化	形式化	形式化

EAL1—功能测试

EAL2—结构测试

EAL3—系统地测试和检查

EAL4—系统地设计、测试和复

EAL5—部分形式化设计和测试

EAL6—部分形式化验证的设计和测试

EAL7—形式化验证的设计和测试

形式验证需求

- 提高可靠性、降低安全认证成本
 - "Crash-Proof Code"
 - one of the 10 breakthrough technologies in 2011 by "MIT Technology Review"

- 对L4内核进行形式验证
 - L4内核: 构造OS的基本机制,包括线程、消息传递、中断、虚拟内存、 访问控制等
 - 内核包含8700行C代码(其中1200行为内核启动代码),600多行ARM汇编 代码
- 20万行手写Isabelle/HOL证明代码,形式验证工作量25人年
- 共发现460多个Bug(C代码中160多个,设计中150个,规约中150个), 而在测试中只发现16个Bug
- 完全形式化验证成本: 600万美元
 - 走CC EAL6级认证,10000美元/行代码成本计算,需8700万美元
 - 而且CC EAL6认证比完全形式化验证的软件可靠性确保度低

分区内核验证的现状

- 1. Partitioning Kernel Protection Profile (PKPP)
 - 2003年,洛克希德马丁,空军研究实验室,OpenGroup草案
- 2. Separation Kernel Protection Profile (PKPP)
 - 2007年,美国国家安全局正式颁布
- 3. 美国国防部: a Mathematically Analyzed Separation Kernel (MASK) 项目
- Rockwell Collins公司的GWV安全策略及信息流安全验证
- 美国海军研究中心ED separation kernel形式验证
- 英国约克大学Grand Challenge Verified Software项目下 Separation Kernel形式模型与验证
- 7. 美国Critical Software公司Partitioning Kernel的B模型及验证
- 德国Verisoft XT项目对PikeOS的Separation Kernel验证
- 澳大利亚NICTA: seL4作为Separation Kernel,验证安全性

总体方案

Refinement及证明

B方法: refinement及proof obligation

Proof obligation的正确性: 定理证明器Coq

分区内核的Event-B模型

分区与进程

Figure 4: Partition modes and transitions

软件开发 State Key Labor

两级调度

Figure 6: Two-level scheduling

分区通信

- 分区间: 队列端口和采样端口通信
- · 分区内: buffer、blackboard、semaphore、event

Figure 7: Interpartition communication (queuing mode)

Figure 8: Intrapartition communication (buffer)

内核建模的完成情况

Table 3: Statistics of Event-B machines

Machine	LOC	Events	Invariants
Machine_0	168	8	11
Machine_1	108	8	5
Machine_2	619	36	31
Machine_3	776	76	25
Machine_4	421	86	5
Total	2092	214	77

Table 4: Statistics of ARINC 653 services and models

ARINC 653 services	Amount of services	Modeled	Events
Partition Management	2	2	8
Process Management	14	14	20
Time Management	4	4	4
Memory Management	0	0	0
Interpartition Communication	10	8	14
Intrapartition Communication	22	18	27
Health Monitoring	4	4	10
Total	56	50	83

软件开发环境国家重点实验室 State Key Laboratory of Software Development Environment

正确性保障

Simulation in Rodin/ProB plugin

软件开发环境国家重点实验室 State Key Laboratory of Software Development Environmen

正确性保障

Theorem Proving

正确性保障

Theorem Proving

- Rodin内置证明器不能自动证明的定理中,40%-50%可通过第三方证明器自动完成

Table 5: Generated proof obligations and proving results

Context/Machine	Proof obligation generated	Auto-proved	manual proved
Context_0	2	0	2
Context_1	0	0	0
Context_2	0	0	0
Context_3	2	0	2
Context_4	0	0	0
Machine_0	84	62	22
Machine_1	48	39	9
Machine_2	350	202	148
Machine_3	415	86	329
Machine_4	487	103	384
Total	1388	492	896

结论

- · 本文的模型是公开资料中最完整的符合ARINC 653的分区 内核模型
- · 模型实现了ARINC653的完整功能和接口
- · 采用Event-B进行分区内核建模,开发效率高、证明义务自 动生成、证明的自动化程度高
- 一种分区内核实现的参考模型
 - 结合硬件模型后,可自动生成代码
 - 提供规约和性质,可用于验证已有的分区内核
 - 可提供分区内核认证的证据材料

谢谢!

请批评指正!