Analyzing Sequential Circuits

Overview

Our of the control of the control

Stored values inside flip flops

° Clocked sequential circuits:

Contain flip flops

° Representations of state:

- State equations
- State table
- State diagram

Finite state machines

- Mealy machine
- Moore machine

Flip Flop State

 Behavior of clocked sequential circuit can be determined from inputs, outputs and FF state

$$y(t) = x(t)Q_1(t)Q_0(t)$$

 $Q_0(t+1) = D_0(t) = x(t)Q_1(t)$
 $Q_1(t+1) = D_1(t) = x(t) + Q_0(t)$

Output and State Equations

Next state dependent on previous state.

State Table

- Sequence of outputs, inputs, and flip flop states enumerated in state table
- Present state indicates current value of flip flops
- Next state indicates state after next rising clock edge
- Output is output value on current clock edge

State Table

- All possible input combinations enumerated
- All possible state combinations enumerated
- Separate columns for each output value.
- Sometimes easier to designate a symbol for each state.

	Present	Next State		Output	
Let:	State	x=0	x=1	x=0	x=1
$s_0 = 00$	s_0	s_0	s_2	0	0
$s_1 = 01$	s_1	s_2	s_2	0	0
$s_2 = 10$	s_2	s_0	s_3	0	0
$s_3 = 11$	s_3	s_2	s_3	0	1

State Diagram

- Circles indicate current state
- Arrows point to next state
- For x/y, x is input and y is output

Present	Next State		Outp	Output	
State	x=0	x=1	x=0	x=1	
0 0	00	10	0	0	
0 1	10	10	0	0	
10	00	11	0	0	
11	10	11	0	1	

State Diagram

- Each state has two arrows leaving
 - $^{\circ}$ One for x = 0 and one for x = 1
- Unlimited arrows can enter a state
- Note use of state names in this example
 - Easier to identify

Flip Flop Input Equations

 Boolean expressions which indicate the input to the flip flops.

$$D_{Q0} = xQ_1$$

$$D_{O1} = x + Q_0$$

Format implies type of flop used

Analysis with D Flip-Flops

- Identify flip flop input equations
- Identify output equation

Present state	Inputs	Next	
state	Inputs	state	
A	x y	A	
0	0 0	0	
0	0 1	1	
0	1 0	1	
0	1 1	0	
1	0 0	1	
1	0 1	0	
1	1 0	0	
1	1 1	1	

(b) State table

Fig. 5-17 Sequential Circuit with D Flip-Flop

Mealy Machine

Output based on state and present input

Moore Machine

Output based on state only

Mealy versus Moore

Mealy Model

Moore Model

State Diagram with One Input & One Mealy Output

- Mano text focuses on Mealy machines
- State transitions are shown as a function of inputs and current outputs.

State Diagram with One Input & a *Moore* Output

- Moore machine: outputs only depend on the current state
- Outputs cannot change during a clock pulse if the input variables change
- Moore Machines usually have more states.
- No direct path from inputs to outputs
- Can be more reliable

Clocked Synchronous State-machine Analysis – next class

Given the circuit diagram of a state machine:

- Analyze the combinational logic to determine flip-flop input (excitation) equations: $D_i = F_i$ (Q, inputs)
 - The input to each flip-flop is based upon current state and circuit inputs.
- 2 Substitute excitation equations into flip-flop characteristic equations, giving transition equations: $Q_i(t+1) = H_i(D_i)$
- 3 From the circuit, find output equations: Z = G (Q, inputs)
 - The outputs are based upon the current state and possibly the inputs.
- 4 Construct a state transition/output table from the transition and output equations:
 - Similar to truth table.
 - Present state on the left side.
 - Outputs and next state for each input value on the right side.
 - Provide meaningful names for the states in state table, if possible.
- 5 Draw the state diagram which is the graphical representation of state table.

Summary

- ° Flip flops contain state information
- ° State can be represented in several forms:
 - State equations
 - State table
 - State diagram
- Possible to convert between these forms
- ° Circuits with state can take on a finite set of values
 - Finite state machine
- ° Two types of "machines"
 - Mealy machine
 - Moore machine