

- 1. Sun's shortwave radiation and Earth's longwave radiation can be treated separately;
- 2. The atmosphere is more transparent for the sun's shortwave radiation and is more opaque for the Earth's long wave radiation.

- 1. Sun's shortwave radiation and Earth's longwave radiation can be treated separately;
- 2. The atmosphere is more transparent for the sun's shortwave radiation and is more opaque for the Earth's long wave radiation.
- 3. Kirchhoff's law: absorptivity=emissivity $(a = \epsilon)$
- 4. 3 + Stefan-Boltzman's law: if emissivity is ϵ and temperature is T, the radiative flux is $F = \epsilon \sigma T^4$ (W/m²)

Assumptions:

- 1. Atmosphere is transparent to solar radiation, and the emissivity (=absorptivity) for the Earth's radiation is ϵ
- 2. The surface is emitting longwave radiation as blackbody, and has an albedo of α for the shortwave radiation.

One-Layer Model

$$\frac{S\pi R^2}{\text{W/m}^2 \text{ m}^2} = [\text{W}]$$

Area: $4\pi R^2$

energy hitting Earth's surface per unit time per unit area (averaged over globe):

$$\frac{S\pi R^2}{4\pi R^2} = \frac{1}{4}S$$

ONE-LAYER MODEL

1. Shortwave Radiation

2. Longwave Radiation $\sim \varepsilon \sigma T_s^4$ Some of it gets absorbed by greenhouse gases! (Only a fraction makes it to space) **Absorptivity Earth Emission** Surface

ONE-LAYER MODEL

