WSPOMAGANIE DECYZJI – ĆWICZENIA V – ZBIORY PRZYBLIŻONE

I. Tabela decyzyjna. Atrybut decyzyjny K. Atrybuty warunkowe P={X1,X2}.

Obiekt	X1	X2	K
A1	8	4	Р
A2	5	7	Р
A3	2	3	Р
A4	5	7	R
A5	2	5	S
A6	8	5	S

$$\underline{P}(P) = \{A1, A3\}, \overline{P}(P) = \{A1, A2, A3, A4\}
\underline{P}(R) = \varnothing, \overline{P}(R) = \{A2, A4\}
\underline{P}(S) = \{A5, A6\}, \overline{P}(S) = \{A5, A6\}
Bn_P(P) = \{A2, A4\}
\alpha_P(P) = \frac{|\underline{P}(P)|}{|\overline{P}(P)|} = 2/4
\gamma_P(P) = \frac{|\underline{P}(P)|}{|P|} = 2/3
\gamma_P(Cl) = \frac{|\underline{P}(P)| + |\underline{P}(R)| + |\underline{P}(S)|}{|U|} = 4/6$$

jeżeli X1=5 to P
$$\sup = 1, \sigma = 1/6, cer = 1/2, \text{cov} = 1/3$$
 jeżeli X2=5 to S
$$\sup = 2, \sigma = 2/6, cer = 2/2, \text{cov} = 2/2$$
 jeżeli X1=2 i X2=5 to S
$$\sup = 1, \sigma = 1/6, cer = 1/1, \text{cov} = 1/2$$
 Redukty: {X1} – NIE (bo A3-A5), {X2} – TAK {X1,X2} – NIE (bo X2 jest reduktem)

II. Dana jest tablica decyzyjna - P={C1,C2,C3} to zbiór atrybutów warunkowych; D to atrybut decyzyjny. Wyznacz dolne i górne przybliżenia oraz brzegi klas A i B. Podaj dokładność i jakość przybliżenia klas. Oblicz jakość klasyfikacji. Wskaż redukty i rdzeń.

Obiekt C1 C2 C3 D O1 a 1 + B O2 a 3 - A O3 a 2 + A O4 b 1 - B O5 a 2 + A O6 b 3 + B					
O2 a 3 - A O3 a 2 + A O4 b 1 - B O5 a 2 + A O6 b 3 + B	Obiekt	C1	C2	C3	D
O3 a 2 + A O4 b 1 - B O5 a 2 + A O6 b 3 + B	01	а	1	+	В
O4 b 1 - B O5 a 2 + A O6 b 3 + B	O2	а	3	-	Α
O5 a 2 + A O6 b 3 + B	О3	а	2	+	Α
O6 b 3 + B	O4	b	1	-	В
	O5	а	2	+	Α
$\bigcirc 7$ 2 1 \pm \land	O6	b	3	+	В
	07	а	1	+	Α

$$\frac{P(A)}{\overline{P}(A)} = \overline{P(A)} = Bn_P(A) = \alpha_P(A) = \frac{|\underline{P}(A)|}{|\overline{P}(A)|} = \gamma_P(A) = \frac{|\underline{P}(A)|}{|A|} = \overline{P(A)} =$$

$$\begin{array}{c|c} P(A) = & P(B) = \\ \hline P(A) = & \overline{P}(B) = \\ \hline P(B) = & \overline{P}(B)$$

$$\gamma_P(Cl) = \frac{|P(A) + P(B)|}{|U|} =$$
Redukty:

Core (rdzeń):

III. Wyznacz dolne i górne przybliżenia klas \otimes , \oplus , \varnothing . Oblicz jakość klasyfikacji. Wyindukuj minimalne reguły indukcyjne dla dolnych przybliżeń (reguły pewne) i dla brzegów klas (reguły przybliżone). Dla otrzymanych reguł pewnych podaj wsparcie, siłę, współczynnik pewności i pokrycia.

Obiekt	X1	X2	Х3	Klasa
I	С	В	В	\otimes
II	Α	Α	В	\otimes
III	Α	Α	Α	\oplus
IV	Α	Α	Α	\oplus
V	Α	Α	В	\oplus
VI	С	С	В	Ø
VII	C	Α	Α	Ø

$$\frac{P(\emptyset) = \{VI, V\}}{\text{Regula pewr}}$$

$$\overline{P}(\otimes) = \{I, II, V\}$$
 $\overline{P}(\oplus) = \gamma_P(Cl) = \overline{P}(\emptyset) = 0$

Reguła pewna dla ⊗:

$$\sup = , \sigma = , cer = , cov =$$

Reguła pewna dla ⊕:

$$\sup = , \sigma = , cer = , cov =$$

Reguly pewne dla \emptyset :

$$\sup = ,\sigma = ,cer = ,cov =$$

$$\sup = ,\sigma = ,cer = ,cov =$$

Reguła przybliżona dla ⊗ oraz ⊕: