МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) КАФЕДРА МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Сети и телекоммуникации»

Тема: ІР адресация

Студент гр. 1303	Коренев Д.А.
Преподаватель	Борисенко К.А.

Санкт-Петербург

Цель работы.

Изучение и практическое освоение основ адресации, разрешения физических адресов и простейшей маршрутизации в IP-сетях.

Задание.

Вариант 11

- 1. Исправить структуру сети (если это необходимо), обеспечив корректную доставку кадров на физическом уровне.
- 2. Задать IP-адреса, маски подсети и шлюзы по умолчанию для всех узлов сети, чтобы обеспечить корректную доставку Echo-запроса от K1 к K2 и Echo-ответа обратно. Обосновать свои установки.
- 3. Выполнить Echo-запрос с K1 на K2. Посмотреть вывод программы.
- 4. Добавить статическую запись ARP для K3 на K1 (или для ближайшего к K1 маршрутизатора, находящегося между K3 и K1). Подождать устаревания ARP-таблиц и выполнить Echo-запрос с K1 на K3. Объяснить результат.
- 5. Выполнить Echo-запрос на IP-адрес 200.100.0.1 с K1. Объяснить вывод программы.
- 6. Выполнить Echo-запросы с K1 и K2 на все узлы сети. Убедиться, что Echo-ответы приходят.

В отчет необходимо включить схему сети, настройки протокола TCP/IP для всех узлов сети и результаты вывода программы, полученные при выполнении Echo-запросов.

Выполнение работы.

1. Исправление структуры не требуется. На рисунке 1 представлена структура сети.

Рисунок 1 - Схема сети

2. Для корректной доставки Echo запросов, применена следующая конфигурация

Устройство	Шлюз по	Интерфейс	IP адрес	Маска
	умолчанию			подсети
Chief (K1)	10.1.0.0	eth0	10.1.0.3	255.255.255.0
Manager 1	10.0.32.0	eth0	10.0.32.11	255.255.255.0
(K2)				
Manager 2	10.0.32.0	eth0	10.0.32.12	255.255.255.0
Manager 3	10.0.32.0	eth0	10.0.32.13	255.255.255.0
Service	10.0.0.128	eth0	10.0.0.135	255.255.255.0
(K3)				
R-C-M	10.0.32.0	eth0	10.1.0.0	255.255.255.0
		eth1	10.0.32.0	255.255.255.0
R-S-C	10.1.0.0	eth0	10.0.0.128	255.255.255.0
		eth1	10.1.0.0	255.255.255.0

R-M-S	10.0.0.128	eth0	10.0.32.0	255.255.255.0
		eth1	10.0.0.128	255.255.255.0

Для компьютеров из сети K2 (Manager 1) присвою IP-адреса K2 (Manager1) -10.0.32.11, Manager2 — 10.0.32.12, Manager3 — 10.0.32.13. Так как сети 10.1.0.3 K1 (Chief) и 10.1.0.0 (R-C-M - R-S-M), сети 10.0.32.11 K2 (Manager1) и 10.0.32.0 (R-C-M - R-M-S), сети 10.0.0.135 K3 (Service) и с 10.0.32.11 (R-M-S - R-S-M) при использовании стандартной маски подсети для класса В (255.255.0.0) были бы эквивалентными, поэтому будем использовать маску подсети 255.255.255.0.

Рассмотрю маршрутизаторы:

- R-C-M на интерфейсе eth0 используется адрес 10.1.0.0, так как находится в этой подсети, и маску подсети 255.255.255.0. На интерфейсе eth1 использую адрес 10.0.32.0, так как находится в этой подсети, и маску подсети 255.255.255.0.
- R-S-C на интерфейсе eth0 используется адрес 10.0.0.128, так как находится в этой подсети, и маску подсети 255.255.255.0. На интерфейсе eth1 использую адрес 10.1.0.0, так как находится в этой подсети, и маску подсети 255.255.255.0.
- R-M-S на интерфейсе eth0 используется адрес 10.0.32.0, так как находится в этой подсети, и маску подсети 255.255.255.0. На интерфейсе eth1 использую адрес 10.0.0.128, так как находится в этой подсети, и маску подсети 255.255.255.0.

Для передачи пакетов из сети 10.0.32.0 в сеть 10.1.0.0 установлю значение шлюза по умолчанию у R-C-M — 10.0.32.0. Аналогично из 10.1.0.0 в 10.0.0.128 и из 10.0.0.128 в 10.0.32.0. Значение шлюзов по умолчанию у R-S-C и R-M-S соответственно 10.1.0 и 10.0.0.128.

3. Выполню Echo-запрос с K1 (Chief) на K2 (Manager1). Вывод в консоли представлен на рисунках 2 и 3, вывод в терминале на рисунке 4.

22:36:34-127	Chief	Echo Request Packet	Network	Created Echo Request packet to 10.0.32.11
22:36:34-127	Chief	ARP Discovery Packet	DataLink	Created ARP discovery packet to source MAC address for IP 10.1.0.0
22:36:34-127	Chief	ARP_packet	Network	Sending broadcast packet from ProtocolStack.
22:36:34-127	Chief	Ethernet Packet	Link	Sending packet from interface 25:48:91:76:45:7D
22:36:34-127	R-S-C	Ethernet Packet	Link	Recieved and accepted packet at interface 5B:21:C1:8D:3C:55
22:36:34-127	R-S-C	ARP_packet	Network	ProtocolStack received packet from local Interface.
22:36:34-127	R-S-C	ARP_packet	Network	Confirmed Packet is for this Network Layer Device.
22:36:34-127	R-S-C	ARP Response Packet	DataLink	Created ARP Response packet to 10.1.0.3
22:36:34-127	R-S-C	ARP_packet	Network	Sending packet from ProtocolStack (to 10.1.0.3).

Рисунок 2 - Echo запрос с K1 (Chief) на K2 (Manager1) начало

22:36:34-128	Chief	ICMP_packet	Network	ProtocolStack received packet from local Interface.
22:36:34-128	Chief	ICMP_packet	Network	Confirmed Packet is for this Network Layer Device.
22:36:34-128	Chief	Echo Reply Packet	Network	Echo reply packet received from 10.0.32.11
22:36:34-128	R-M-S	Ethernet Packet	Link	Recieved and dropped packet at interface C5:7B:4F:49:3D:A6

Рисунок 3 - Echo запрос с K1 (Chief) на K2 (Manager1) завершение

```
Chief# ping 10.0.32.11
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.32.11, timeout is 1 second:
!!!!!
Success rate is 100 percent (5/5)
```

Рисунок 4 - Echo запрос с K1 (Chief) на K2 (Manager1) в терминале

4. Добавлю статистическую запись MAC адреса R-S-C сетевого интерфейса eth0 в ARP таблицу K1 (Chief): IP адрес — 10.1.0.0, MAC адрес 5В:21:C1:8D:3C:55 (представлено на рисунке 6). При выполнении Есhо-запроса к узлу K3 (Service). При отправке Есho- запроса не будет выполнять поиск тас адреса R-S-C так как его адрес уже известен в ARP таблице.

ARP entries for :Chief Internet Address	Physical Address	Туре
10.1.0.0	B2:22:C2:59:C1:C1	Static

Рисунок 6 - Статистическая запись ARP для R-C-M на K1 (Chief)

00:21:18-127	Chief	Echo Request Packet	Network	Created Echo Request packet to 10.0.0.135
00:21:18-127	Chief	ICMP_packet	Network	Sending packet from ProtocolStack (to 10.1.0.0).
00:21:18-127	Chief	Ethernet Packet	Link	Sending packet from interface 25:48:91:76:45:7D
00:21:18-127	R-S-C	Ethernet Packet	Link	Recieved and accepted packet at interface 5B:21:C1:8D:3C:55
00:21:18-127	R-S-C	ICMP_packet	Network	ProtocolStack received packet from local Interface.
00:21:18-127	R-S-C	ICMP_packet	Network	Packet Received: Network Layer Device is Routable forwarding
00:21:18-127	R-S-C	ARP Discovery Packet	DataLink	Created ARP discovery packet to source MAC address for IP 10.
00:21:18-127	R-S-C	ARP_packet	Network	Sending broadcast packet from ProtocolStack.
00:21:18-127	R-S-C	Ethernet Packet	Link	Sending packet from interface 2B:A1:C4:39:72:AC
00:21:18-127	Service	Ethernet Packet	Link	Recieved and accepted packet at interface 3C:BD:46:83:7C:B6

Рисунок 7 - Echo запрос с K1 на K3 (начало)

00:21:18-127	Chief	ICMP_packet	Network	ProtocolStack received packet from local Interface.
00:21:18-127	Chief	ICMP_packet	Network	Confirmed Packet is for this Network Layer Device.
00:21:18-127	Chief	Echo Reply Packet	Network	Echo reply packet received from 10.0.0.135
00:21:18-127	R-M-S	Ethernet Packet	Link	Recieved and dropped packet at interface 51:26:85:31:64:62
00:21:18-127	R-M-S	Ethernet Packet	Link	Recieved and dropped packet at interface 51:26:85:31:64:62
00:21:18-127	R-C-M	Ethernet Packet	Link	Recieved and dropped packet at interface B2:22:C2:59:C1:C1

Рисунок 8 - Echo запрос с K1 на K3 (завершение)

5. Выполню Echo-запрос на IP-адрес 200.100.0.1 с K1 (Chief). Формируется Есно запрос пакет и отправляется на шлюз по умолчанию – R-S-C. Далее, так как у R-S-C нет соответствующих подсетей, запрос отправляется к R-C-M, где происходит аналогичная ситуация. Таким образом происходит зацикливание, которое прекратится тогда, когда закончится время жизни пакета и узлу-источнику этого запроса будет доставлено ICMP-уведомление об этом: Received ICMP Time Exceeded from 10.1.0.3. Данные вывода в консоль и терминал неуспешно выполненного запроса представлены на рисунках 9. 10 11.

22:54:30-356	Chief	Echo Request Packet	Network	Created Echo Request packet to 200.100.0.1
22:54:30-356	Chief	ARP Discovery Packet	DataLink	Created ARP discovery packet to source MAC address for IP 10
22:54:30-356	Chief	ARP_packet	Network	Sending broadcast packet from ProtocolStack.
22:54:30-356	Chief	Ethernet Packet	Link	Sending packet from interface 25:48:91:76:45:7D
22:54:30-356	R-S-C	Ethernet Packet	Link	Recieved and accepted packet at interface 5B:21:C1:8D:3C:55
22:54:30-356	R-S-C	ARP_packet	Network	ProtocolStack received packet from local Interface.
22:54:30-356	R-S-C	ARP_packet	Network	Confirmed Packet is for this Network Layer Device.
22:54:30-356	R-S-C	ARP Response Packet	DataLink	Created ARP Response packet to 10.1.0.3
22:54:30-356	R-S-C	ARP_packet	Network	Sending packet from ProtocolStack (to 10.1.0.3).
22:54:30-356	R-S-C	Ethernet Packet	Link	Sending packet from interface 5B:21:C1:8D:3C:55
22:54:30-356	R-C-M	Ethernet Packet	Link	Recieved and dropped packet at interface B2:22:C2:59:C1:C1
22:54:30-356	Chief	Ethernet Packet	Link	Recieved and accepted packet at interface 25:48:91:76:45:7D

Рисунок 9 - Echo запрос с K1 (Chief) на IP 200.100.0.1 начало

22:54:30-360	R-S-C	ICMP_packet	Network	ProtocolStack received packet from local Interface.
22:54:30-360	R-S-C	ICMP_packet	Network	Packet Dropped: Hop count exceeded.Host 200.100.0.1 Unread
22:54:30-360	R-S-C	ICMP Time Exceeded	Network	Sending ICMP Time Exceeded to 10.1.0.3
22:54:30-360	R-S-C	ICMP_packet	Network	Sending packet from ProtocolStack (to 10.1.0.3).
22:54:30-360	R-S-C	Ethernet Packet	Link	Sending packet from interface 5B:21:C1:8D:3C:55
22:54:30-360	R-C-M	Ethernet Packet	Link	Recieved and dropped packet at interface B2:22:C2:59:C1:C1
22:54:30-360	Chief	Ethernet Packet	Link	Recieved and accepted packet at interface 25:48:91:76:45:7D
22:54:30-360	Chief	ICMP_packet	Network	ProtocolStack received packet from local Interface.
22:54:30-360	Chief	ICMP_packet	Network	Confirmed Packet is for this Network Layer Device.
22:54:30-360	Chief	ICMP Time Exceeded	Network	Recieved ICMP Time Exceeded from 10.1.0.0

Рисунок 10 - Echo запрос с K1 (Chief) на IP 200.100.0.1 завершение

```
Chief# ping 200.100.0.1
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 200.100.0.1, timeout is 1 second:
TTTTT
Success rate is 0 percent (0/5)
```

Рисунок 11 - Echo запрос с K1 (Chief) на IP 200.100.0.1 терминал

6. Проведу Есно запросы с K1 (Chief) и K2 (Manager1) на все другие узлы сети. Рисунки Есно запросов с K1 (Chief) представлены на рисунке 12. Рисунки Есно запросов с K2 (Manager1) представлены на рисунке 13.

```
Chief# ping 10.0.32.11
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.32.11, timeout is 1 second:
111111
Success rate is 100 percent (5/5)
Chief# ping 10.0.32.12
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.32.12, timeout is 1 second:
!!!!!!
Success rate is 100 percent (5/5)
Chief# ping 10.0.32.13
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.32.13, timeout is 1 second:
!!!!!!
Success rate is 100 percent (5/5)
Chief# ping 10.0.0.135
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.135, timeout is 1 second:
Success rate is 100 percent (5/5)
```

Рисунок 12 - Echo запросы с K1 (Chief)

```
Managerl# ping 10.1.0.0
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.1.0.0, timeout is 1 second:
!!!!!!
Success rate is 100 percent (5/5)
Managerl# ping 10.0.0.135
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.135, timeout is 1 second:
!!!!!!
Success rate is 100 percent (5/5)
Managerl# ping 10.0.32.13
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.32.13, timeout is 1 second:
Success rate is 100 percent (5/5)
Managerl# ping 10.0.32.12
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.32.12, timeout is 1 second:
!!!!!!
Success rate is 100 percent (5/5)
```

Рисунок 13 - Echo запросы с K2 (Manager1)

Вывод.

В ходе выполнения лабораторной работы были изучены теоретические и практические основы адресации, разрешения физических адресов и простейшей маршрутизации в IP-сетях. Были проведены наблюдения отправки Есно запросов на устройства сети и на несуществующие адреса, сделаны комментарии и выводы данных экспериментов.