Question Number	Answer		Mark
4(a)	• Re-arranges equation $V_a = \frac{hc}{e} \frac{1}{\lambda} + \frac{W}{e}$ and compares to $y = mx + c$	(1)	
	• Identifies $gradient = \frac{hc}{e}$	(1)	
	• States that <i>h</i> , <i>c</i> and <i>e</i> are all constants	(1)	3
4(b)(i)	Correct values calculated	(1)	
. , , ,	• Values correctly rounded to 3 sig. fig.	(1)	2
	Example		
	$\lambda / \times 10^{-7} \mathrm{m}$ $1/\lambda / \times 10^6 \mathrm{m}^{-1}$		
	6.60 1.52		
	6.12 1.63		
	5.92 1.69		
	5.85 1.71		
	5.30 1.89		
	4.70 2.13		
4(b)(ii)	Labels axes with quantities and units	(1)	
	Sensible scales	(1)	
	• Plotting – 2 points furthest from their line	(1)	
	• Plotting – 2 points at the ends	(1) (1)	5
	Line of best fit	(1)	
	checking accuracy of plots. An example of the graph can be seen on page 11.		
4(b)(iii)	Calculates gradient using large triangle - at least half their line of best fit	(1)	
	• Use of gradient = hc/e	(1)	,
	• $h = 6.65 \times 10^{-34} \text{ to } 6.85 \times 10^{-34} \text{ J s}$ Example calculation Gradient = $(2.55 - 1.80) \text{ V / } (2.10 - 1.60) \times 10^6 \text{ m}^{-1} = 1.25 \times 10^{-6} \text{ V m}$ $h = 1.25 \times 10^{-6} \text{ V m} \times 1.60 \times 10^{-19} \text{ C / } 3.00 \times 10^8 \text{ m s}^{-1} = 6.67 \times 10^{-34} \text{ J s}$	(1)	3
4(b)(iv)	• Mathematical comparison between their value from (b)(iii) and 6.63×10 ⁻³⁴ J s	(1)	
	Comparative statement consistent with MP1	(1)	2
	MP2 is for a statement that is justified by their value for h .		
	E.g. Difference between the values is 0.04×10^{-34}) is very small compared to 6.63×10^{-34}), so method is accurate. Or		
	Percentage difference is 0.6%, which is small, so method is accurate.		

	Total for question 5		19
	 OR Points for longer λ would shift 1/λ values less, decreasing the gradient Decreasing the value of h obtained. 	(1) (1)	4
	 EITHER Difference in wavelength would be small, so negligible shift in points (Accept shift would be the same for all points, so same gradient) No change in the value of h obtained. 	(1) (1)	
4(c)	 Manufacturer's wavelength would be shorter (than the wavelength of photons with least energy) Or Manufacturer's wavelength would be shorter (than the wavelength of photons emitted at V_a) A lower λ would give a higher 1/λ Or the line would shift to the right, 	(1) (1)	