

M74HC245

OCTAL BUS TRANSCEIVER WITH 3 STATE OUTPUTS (NON INVERTED)

- HIGH SPEED:
 - t_{PD} = 10ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 6mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 245

The M74HC245 is an advanced high-speed CMOS OCTAL BUS TRANSCEIVER (3-STATE) fabricated with silicon gate C^2 MOS technology. This IC is intended for two-way asynchronous communication between data buses, and the direction of data transmission is determined by DIR input. The enable input \overline{G} can be used to

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC245B1R	
SOP	M74HC245M1R	M74HC245RM13TR
TSSOP		M74HC245TTR

disable the device so that the buses are effectively isolated.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

All floating bus terminals during High Z State must be held HIGH or LOW.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/10

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	DIR	Directional Control
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs/Outputs
18, 17, 16, 15, 14, 13, 12, 11	B1 to B8	Data Inputs/Outputs
19	G	Output Enable Input
10	GND	Ground (0V)
20	V_{CC}	Positive Supply Voltage

TRUTH TABLE

INP	UTS	FUNC	OUTPUT	
G	DIR	A BUS B BUS		Yn
L	L	OUTPUT	INPUT	A = B
L	Н	INPUT	OUTPUT	B = A
Н	X	Z	Z	Z

X : Don't Care Z : High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 35	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P _D	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r, t_f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		٦	Test Condition	Value									
Symbol	Parameter	v _{cc}		Т	A = 25°	C	-40 to	85°C	-55 to	125°C	Unit		
				(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5				
	Voltage	4.5		3.15			3.15		3.15		V		
		6.0		4.2			4.2		4.2				
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5			
	Voltage	4.5				1.35		1.35		1.35	V		
		6.0				1.8		1.8		1.8			
V _{OH} High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9					
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		V		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9				
		4.5	I _O =-6.0 mA	4.18	4.31		4.13		4.10				
		6.0	I _O =-7.8 mA	5.68	5.8		5.63		5.60				
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1			
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1			
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V		
		4.5	I _O =6.0 mA		0.17	0.26		0.33		0.40			
		6.0	I _O =7.8 mA		0.18	0.26		0.33		0.40			
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ		
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μΑ		
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ		

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		Test Condition			Value							
Symbol	Parameter	v _{cc}	CL		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0				25	60		75		90	
	Time	4.5	50			7	12		19		18	ns
		6.0				6	10		13		15	
t _{PLH} t _{PHL}	Propagation Delay	2.0				33	90		115		135	
	Time	4.5	50			12	18		23		27	ns
	6.0				10	15		20		23		
		2.0				48	120		150		180	
		4.5	150			16	24		30		36	ns
		6.0				14	20		26		31	
t _{PZL} t _{PZH}	High Impedance	2.0				48	150		190		225	
	Output Enable	4.5	50	$R_L = 1 \text{ K}\Omega$		16	30		38		45	ns
	Time	6.0				14	26		32		38	
		2.0				63	180		225		270	
		4.5	150	$R_L = 1 \text{ K}\Omega$		21	36		45		54	ns
	6.0				18	31		38		46		
t _{PLZ} t _{PHZ}	Output Disable	2.0				37	150		190		225	
		4.5	50	$R_L = 1 \text{ K}\Omega$		17	30		38		45	ns
	Time	6.0				15	26		32		38	

CAPACITIVE CHARACTERISTICS

			Test Condition			Value						
Symbol Parameter		V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit	
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			DIR, G		5	10		10		10	pF
C _{I/OUT}	Output Capacitance			An, Bn		13						pF
C _{PD}	Power Dissipation Capacitance (note 1)					39						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per circuit)

TEST CIRCUIT

t _{PLH} , t _{PHL}		Open		
t _{PZL} , t _{PLZ}		V _{CC}		
t _{PZH} , t _{PHZ}		GND		

 $C_L = 50\text{P}/150\text{pF}$ or equivalent (includes jig and probe capacitance) $R_1 = 1K\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

Plastic DIP-20 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.254			0.010				
В	1.39		1.65	0.055		0.065		
b		0.45			0.018			
b1		0.25			0.010			
D			25.4			1.000		
E		8.5			0.335			
е		2.54			0.100			
e3		22.86			0.900			
F			7.1			0.280		
I			3.93			0.155		
L		3.3			0.130			
Z			1.34			0.053		

SO-20 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			2.65			0.104	
a1	0.1		0.2	0.004		0.008	
a2			2.45			0.096	
b	0.35		0.49	0.014		0.019	
b1	0.23		0.32	0.009		0.012	
С		0.5			0.020		
c1			45°	(typ.)		l	
D	12.60		13.00	0.496		0.512	
Е	10.00		10.65	0.393		0.419	
е		1.27			0.050		
e3		11.43			0.450		
F	7.40		7.60	0.291		0.300	
L	0.50		1.27	0.020		0.050	
М			0.75			0.029	
S		1	8° (r	max.)		1	

TSSOP20 MECHANICAL DATA

DIM.		mm.		inch			
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	6.4	6.5	6.6	0.252	0.256	0.260	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

477