

FOTOVOLTAICA, BIOMASA Y COGENERACIÓN

BLOQUE II: Principios de generación y diseño de instalaciones de biomasa. Clase X

Conceptos previos necesarios para el diseño de hornos

1. Aislamiento de tuberías

Material	diffusivity [m^2/s]	
Building materials		
Aluminum	97.5 x 10^-6	
Iron	22.8 x 10^-6	
Marble	1.2 x 10^-6	
Ice	1.2 x 10^-6	
Concrete	0.75 x 10^-6	
Brick	0.52 x 10^-6	
Heavy soil (dry)	0.52 x 10^-6	
Glass	0.34 x 10^-6	
Wood (oak)	0.13 x 10^-6	
Thermal insulators		
Cork	0.038 x 10^-6	
Glass wool	0.023 x 10^-6	
Rock wool	0.022 x 10^-6	
Expanded polystyrene	0.035 x 10^-6	
Extruded polystyrene	0.026 x 10^-6	
Polyuretane foam	0.023 x 10^-6	
Phenolic foam	0.018 x 10^-6	

1.1 Cálculo del calor disipado a través de la pared (calor transmitido por conducción-convección)

$$\dot{Q}_C = (L/R_c) \cdot (T_{in} - T_{ex}) \tag{1}$$

donde

 \dot{Q}_C calor disipado por unidad de tiempo en W

L longitud de la tubería en m,

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C y

 T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C

(b) Cavity receiver

1.1 Cálculo del calor disipado a través de la pared (resistencia térmica total por unidad de longitud de tubería)

$$R_C = \frac{1}{2 \cdot \pi \cdot r_{in} \cdot h_{in}} + \frac{1}{2 \cdot \pi} \sum \frac{\ln(r_{i+1}/r_i)}{\lambda_i} + \frac{1}{2 \cdot \pi \cdot r_{ex} \cdot h_{ex}}$$
(2)

donde

 R_C resistencia térmica total por unidad de longitud de tubería en (m·K)/W

 r_{in} radio de la superficie interior en m

 h_{in} coeficiente de convección interior en W/(m² K)

 r_{i+1}/r_i relación entre los radios interior y exterior de una capa,

 λ_i conductividad térmica de la capa en W/(m K),

 r_{ex} radio de la superficie exterior en m, y

 h_{ex} coeficiente de convección exterior en W/(m² K)

1.1 Cálculo del calor disipado a través de la pared (calor disipado por radiación)

$$\dot{Q}_{rad} = 56.7 \cdot \varepsilon_{ex} \cdot A_{ex} \cdot \left[\left(\frac{T_{sex}}{1000} \right)^4 - \left(\frac{T_{en}}{1000} \right)^4 \right] \tag{3}$$

donde

 \dot{Q}_{rad} calor radiado por unidad de tiempo en kW

 ε_{ex} emisividad de la superficie exterior,

 A_{ex} superficie exterior en m²

 T_{sex} temperatura de la superficie exterior en K, y

 T_{en} temperatura del entorno en K

1.1 Cálculo del calor disipado a través de la pared (temperatura de la superficie exterior)

$$T_{sex} = T_{ex} + (T_{in} - T_{ex}) \cdot R_{sex}/R_c$$
 (4) donde

 T_{sex}

 T_{ex}

 T_{in}

$$R_{sex} = \frac{1}{2\pi \cdot r_{ex} \cdot h_{ex}}$$

 r_{ex}

 h_{ex}

 $R_{\mathcal{C}}$

temperatura de la superficie exterior en K, temperatura del aire ambiente en K o ºC temperatura del fluido interior en K o ºC resistencia superficial exterior en (m² K)/W radio de la superficie exterior en m coeficiente de convección exterior en W/(m² K)

resistencia térmica por unidad de longitud en (m·K)/W

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo)

- Una tubería de acero de 2 pulgadas, tiene una longitud de 80 m, está situada en el interior de un recinto que está a la temperatura de 15 ºC y transporta vapor a 120 ºC.
- Datos: diámetro exterior de la tubería 60.3 mm, espesor de la tubería 3.9 mm, espesor del aislante 40 mm, conductividad del acero 58 W/(m K), conductividad del aislante 0.04 W/(m K), coeficiente de convección exterior 15 W/(m^2 K) y emisividad de la superficie exterior 0.84.
- Se acepta que la superficie interior de la tubería es igual a la del vapor, que la temperatura del entorno coincide con la del aire ambiente y que la temperatura del vapor permanece constante.

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos I/IV)

1) Cálculo de la resistencia global conducción-convección (2)

$$R_C = \frac{1}{2 \cdot \pi \cdot r_{in} \cdot h_{in}} + \frac{1}{2 \cdot \pi} \sum \frac{\ln(r_{i+1}/r_i)}{\lambda_i} + \frac{1}{2 \cdot \pi \cdot r_{ex} \cdot h_{ex}}$$
(2)

donde

 R_C resistencia térmica total por unidad de longitud de tubería en (m·K)/W

 r_{in} radio de la superficie interior en m

 h_{in} coeficiente de convección interior en W/(m 2 K)

 r_{i+1}/r_i relación entre los radios interior y exterior de una capa,

 λ_i conductividad térmica de la capa en W/(m K),

 r_{ex} radio de la superficie exterior en m, y

 h_{ex} coeficiente de convección exterior en W/(m² K)

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos II/IV)

$$\dot{Q}_C = (L/R_c) \cdot (T_{in} - T_{ex}) \tag{1}$$

donde

 \dot{Q}_C calor disipado por unidad de tiempo en W

L longitud de la tubería en m,

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C y

 T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos III/IV)

3) Cálculo de la temperatura de la superficie exterior

$$T_{sex} = T_{ex} + (T_{in} - T_{ex}) \cdot \frac{R_{sex}}{R_c} \tag{4}$$

4) Cálculo de la superficie exterior $A_{ex} = 2 \cdot \pi \cdot r_{ex} \cdot L$

donde

 T_{sex} temperatura de la superficie exterior en K,

 T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C

 $R_{sex} = \frac{1}{2\pi \cdot r_{ax} \cdot h_{ax}}$ resistencia superficial exterior en (m² K)/W

 r_{ex} radio de la superficie exterior en m

 h_{ex} coeficiente de convección exterior en W/(m² K)

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 A_{ex} superficie exterior en m²

 r_{ex} radio de la superficie exterior en m

L longitud de la tubería en m

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos IV/IV)

5) Cálculo del calor disipado por radiación

$$\dot{Q}_{rad} = 56.7 \cdot \varepsilon_{ex} \cdot A_{ex} \cdot \left[\left(\frac{T_{sex}}{1000} \right)^4 - \left(\frac{T_{en}}{1000} \right)^4 \right] \tag{3}$$

6) Calor total perdido por disipación al entorno $\dot{Q}_p = \dot{Q}_C + \dot{Q}_{rad}$

donde

 \dot{Q}_{rad} calor radiado por unidad de tiempo en kW

 $arepsilon_{ex}$ emisividad de la superficie exterior,

 A_{ex} superficie exterior en m²

 T_{sex} temperatura de la superficie exterior en K, y

 T_{en} temperatura del entorno en K

 \dot{Q}_p calor total perdido por disipación al entorno en kW

 \dot{Q}_C calor disipado por unidad de tiempo en kW

 \dot{Q}_{rad} calor radiado por unidad de tiempo en kW

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos I/IV)

1) Cálculo de la resistencia global conducción-convección (2)

$$R_C = \frac{1}{2 \cdot \pi \cdot r_{in} \cdot h_{in}} + \frac{1}{2 \cdot \pi} \sum \frac{\ln(r_{i+1}/r_i)}{\lambda_i} + \frac{1}{2 \cdot \pi \cdot r_{ex} \cdot h_{ex}}$$
(2)

donde

 R_C resistencia térmica total por unidad de longitud de tubería en (m·K)/W

 r_{in} radio de la superficie interior en m

 h_{in} coeficiente de convección interior en W/(m 2 K)

 r_{i+1}/r_i relación entre los radios interior y exterior de una capa,

 λ_i conductividad térmica de la capa en W/(m K),

 r_{ex} radio de la superficie exterior en m, y

 h_{ex} coeficiente de convección exterior en W/(m² K)

1.1 Cálculo del calor disipado a través de la pared (Solución; I/V)

Cálculo de la resistencia global conducción-convección (2)

$$R_C = \frac{1}{2 \cdot \pi \cdot r_{in} \cdot h_{in}} + \frac{1}{2 \cdot \pi} \sum \frac{\ln(r_{i+1}/r_i)}{\lambda_i} + \frac{1}{2 \cdot \pi \cdot r_{ex} \cdot h_{ex}}$$
 (2)

Resistencia superficial interior

Resistencia de la pared de acero

Resistencia de la capa de aislante

Resistencia superficial exterior

Resistencia global

0 (m K)/W

$$\frac{1}{2 \cdot \pi} \cdot \frac{\ln \left[(30.15/(30.15 - 3.9) \right]}{58} = 3.80 \cdot 10^{-4} \ (m \ K) / W$$

$$\frac{1}{2 \cdot \pi} \cdot \frac{\ln \left[(30.15 + 40)/30.15 \right]}{0.04} = 3.360 \ (m \ K) / W$$

$$\frac{1}{2 \cdot \pi \cdot 0.07015 \cdot 15} = 0.151 \ (m \ K) / W$$

$$R_C = 0 + 3.80 \cdot 10^{-4} + 3.360 + 0.151 = 3.511 \ (m \ K) / W$$

- R_C resistencia térmica total por unidad de longitud de tubería en (m·K)/W
- r_{in} radio de la superficie interior en m
- h_{in} coeficiente de convección interior en W/(m² K),
- r_{i+1}/r_i relación entre los radios interior y exterior de una capa,
- λ_i conductividad térmica de la capa en W/(m·K)
- r_{ex} radio de la superficie exterior en m,
- h_{ex} coeficiente de convección exterior en W/(m² K)

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos II/IV)

2) Calor disipado por conducción convección (1)
$$\dot{Q}_C = (L/R_c) \cdot (T_{in} - T_{ex})$$

donde

 \dot{Q}_C calor disipado por unidad de tiempo en W

L longitud de la tubería en m,

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C y

 T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C

1.1 Cálculo del calor disipado a través de la pared (Solución; II/V)

Calor disipado por conducción convección (1)

$$\bullet \ \dot{Q}_C = (L/R_c) \cdot (T_{in} - T_{ex}) \tag{1}$$

$$\dot{Q}_C = \left(\frac{80}{3.511}\right) \cdot (120 - 15) = 2392 \text{ W}$$

donde

 \dot{Q}_C calor disipado por unidad de tiempo en W

L longitud de la tubería en m,

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C y

 T_{ex} temperatura del aire ambiente en K o °C

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos III/IV)

3) Cálculo de la temperatura de la superficie exterior

$$T_{sex} = T_{ex} + (T_{in} - T_{ex}) \cdot \frac{R_{sex}}{R_c} \tag{4}$$

4) Cálculo de la superficie exterior $A_{ex} = 2 \cdot \pi \cdot r_{ex} \cdot L$

donde

 T_{sex} temperatura de la superficie exterior en K,

 T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C

 $R_{sex} = \frac{1}{2\pi \cdot r_{ex} \cdot h_{ex}}$ resistencia superficial exterior en (m² K)/W

 r_{ex} radio de la superficie exterior en m

 h_{ex} coeficiente de convección exterior en W/(m² K)

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 A_{ex} superficie exterior en m²

 r_{ex} radio de la superficie exterior en m

L longitud de la tubería en m

1.1 Cálculo del calor disipado a través de la pared (Solución; III/V)

Cálculo de la temperatura de la superficie exterior

$$T_{sex} = T_{ex} + (T_{in} - T_{ex}) \cdot \frac{R_{sex}}{R_c}$$

$$T_{sex} = 15 + (120 - 15) \cdot \frac{0.151}{3.511} = 15 + 4.5 = 19.5 \, {}^{\circ}C$$
(4)

$$T_{sex} = 15 + (120 - 15) \cdot \frac{0.151}{3.511} = 15 + 4.5 = 19.5 \, {}^{\circ}C$$
 (4)

donde

•
$$T_{sex}$$

•
$$T_{ex}$$

•
$$T_{in}$$

$$R_{sex} = \frac{1}{2\pi \cdot r_{ex} \cdot h_{ex}}$$

- *r*_{ex}
- h_{ex}
- \bullet R_C

temperatura de la superficie exterior en K, temperatura del aire ambiente en K o ºC temperatura del fluido interior en K o ºC resistencia superficial exterior en (m² K)/W radio de la superficie exterior en m coeficiente de convección exterior en W/(m² K) resistencia térmica por unidad de longitud en (m·K)/W

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos III/IV)

3) Cálculo de la temperatura de la superficie exterior

$$T_{sex} = T_{ex} + (T_{in} - T_{ex}) \cdot \frac{R_{sex}}{R_c} \tag{4}$$

4) Cálculo de la superficie exterior $A_{ex} = 2 \cdot \pi \cdot r_{ex} \cdot L$

donde

 T_{sex} temperatura de la superficie exterior en K,

 T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C

 $R_{sex} = \frac{1}{2\pi \cdot r \cdot h}$ resistencia superficial exterior en (m² K)/W

 r_{ex} radio de la superficie exterior en m

 h_{ex} coeficiente de convección exterior en W/(m² K)

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 A_{ex} superficie exterior en m²

 r_{ex} radio de la superficie exterior en m

L longitud de la tubería en m

1.1 Cálculo del calor disipado a través de la pared (Solución; IV/V)

Cálculo de la superficie exterior

$$A_{ex} = 2 \cdot \pi \cdot r_{ex} \cdot L = 2 \cdot \pi \cdot 0.07015 \cdot 80 = 35.26 \, m^2$$

- A_{ex} superficie exterior en m²
- r_{ex} radio de la superficie exterior en m
- L longitud de la tubería en m

1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo; Pasos IV/IV)

5) Cálculo del calor disipado por radiación

$$\dot{Q}_{rad} = 56.7 \cdot \varepsilon_{ex} \cdot A_{ex} \cdot \left[\left(\frac{T_{sex}}{1000} \right)^4 - \left(\frac{T_{en}}{1000} \right)^4 \right] \tag{3}$$

6) Calor total perdido por disipación al entorno $\,\dot{Q}_p = \dot{Q}_C + \dot{Q}_{rad}\,$

donde

 \dot{Q}_{rad} calor radiado por unidad de tiempo en kW

 ε_{ex} emisividad de la superficie exterior,

 A_{ex} superficie exterior en m²

 T_{sex} temperatura de la superficie exterior en K, y

 T_{en} temperatura del entorno en K

 \dot{Q}_p calor total perdido por disipación al entorno en kW

 $\dot{Q}_{\mathcal{C}}$ calor disipado por unidad de tiempo en kW

 \dot{Q}_{rad} calor radiado por unidad de tiempo en kW

universidad ©león

1.1 Cálculo del calor disipado a través de la pared (Solución; V/V)

Cálculo del calor disipado por radiación

$$\dot{Q}_{rad} = 56.7 \cdot \varepsilon_{ex} \cdot A_{ex} \cdot \left[\left(\frac{T_{sex}}{1000} \right)^4 - \left(\frac{T_{en}}{1000} \right)^4 \right]$$

donde

- $arepsilon_{ex}$ emisividad de la superficie exterior,
- A_{ex} superficie exterior en m²,
- T_{sex} temperatura de la superficie exterior en K, y
- T_{en} temperatura del entorno en K

$$\dot{Q}_{rad} = 56.7 \cdot 0.84 \cdot 35.26 \cdot \left[\left(\frac{19.5 + 273.2}{1000} \right)^4 - \left(\frac{15 + 273.2}{1000} \right)^4 \right] = 0.741 \, kW$$

Calor total perdido por disipación al entorno

•
$$\dot{Q}_p = \dot{Q}_C + \dot{Q}_{rad} = 2.392 + 0.741 = 3.133 \, kW$$

Donde

- \dot{Q}_p calor total perdido por disipación al entorno en kW
- \dot{Q}_C calor disipado por unidad de tiempo en kW
- \dot{Q}_{rad} calor radiado por unidad de tiempo en kW

1.2 Cálculo del ahorro energético y económico. Espesor mínimo

• 1.2.1 Ahorro energético

$$\dot{Q}_g = \dot{Q}_{con}/\eta_g$$

Donde

• \dot{Q}_a calor generado por unidad de tiempo en W,

• \dot{Q}_{con} calor consumido en forma de combustible, electricidad, etc. en W y

• η_g rendimiento del generador de calor

El ahorro energético debido a la mejora del aislamiento térmico, vendrá dado por

$$\bullet \ \dot{Q}_a = \left(\dot{Q}_{po} - \dot{Q}_{p1}\right)/\eta_g \tag{5}$$

- ullet \dot{Q}_a ahorro energético debido a la mejora del aislamiento térmico en W
- \dot{Q}_{po} pérdidas con el aislamiento de referencia en W y
- \dot{Q}_{p1} pérdidas del aislamiento propuesto en W

universidad ^æleón

1.2 Cálculo del ahorro energético y económico. Espesor mínimo

1.2.2 Ahorro económico bruto

$$\dot{A} = v_q \cdot \left(\dot{Q}_{po} - \dot{Q}_{p1} \right) \tag{6}$$

donde

- A
 ahorro neto por unidad de tiempo en €/unidad de tiempo
- v_a coste unitario del calor generado en €/kJ (ó €/kWh)
- \dot{Q}_{po} pérdidas con el aislamiento de referencia en W y
- \dot{Q}_{p1} pérdidas del aislamiento propuesto en W

El coste unitario del calor generado viene dado por

$$v_q = c \cdot (1+x)/\eta_g$$

- v_q coste del calor generado en €/kJ (ó €/kWh),
- c precio del combustible en €/kJ (ó €/kWh),
- x extracoste del combustible consumido y
- η_g rendimiento del generador de calor

1.2 Cálculo del ahorro energético y económico (Ejemplo de cálculo)

- En base a los datos del ejemplo de cálculo de la diapositiva "1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo)", calcular el ahorro económico bruto anual, que aportaría una disminución del espesor del aislante de 40 a 30 mm, sabiendo que el sistema funciona 6000 horas/año a carga nominal.
- Datos: precio del combustible 0.045 €/kWh, extracoste del combustible 0.05 y rendimiento de la caldera 0.90.

1.2 Cálculo del ahorro energético y económico (Solución; I/VI)

• Del ejercicio anterior, para un espesor de 40 mm se obtuvo una pérdida de calor de 3.133 kW.

Repitiendo el cálculo para un espesor de 30 mm y, a partir de (2), se obtiene :

$$R_c = \frac{1}{2 \cdot \pi \cdot r_{in} \cdot h_{in}} + \frac{1}{2 \cdot \pi} \sum \frac{\ln(r_{i+1}/r_i)}{\lambda_i} + \frac{1}{2 \cdot \pi \cdot r_{ex} \cdot h_{ex}} = 0 + 3.80 \cdot 10^{-4} + 2.748 + 0.176$$
$$= 2.924 \ (m \ K)/W$$

• Resistencia global (R_C) = Resistencia superficial interior + Resistencia de la pared de acero + Resistencia de la capa de aislante + Resistencia superficial exterior

donde

• r_{in} radio de la superficie interior en m

• h_{in} coeficiente de convección interior en W/(m² K),

• r_{i+1}/r_i relación entre los radios interior y exterior de una capa,

• λ_i conductividad térmica de la capa en W/(m·K),

• r_{ex} radio de la superficie exterior en m, y

• h_{ex} coeficiente de convección exterior en W/(m² K)

1.2 Cálculo del ahorro energético y económico (Solución; II/VI)

Calor disipado por conducción/convección

•
$$\dot{Q}_c = (L/R_c) \cdot (T_{in} - T_{ex}) = \left(\frac{80}{2.924}\right) \cdot (120 - 15) = 2.873 \, kW$$

(1)

donde

 \dot{Q}_C calor disipado por unidad de tiempo en W

L longitud de la tubería en m

 R_C resistencia térmica por unidad de longitud en (m·K)/W

 T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C y

 T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C.

1.2 Cálculo del ahorro energético y económico (Solución; III/ VI)

Cálculo de la temperatura de la superficie exterior

$$T_{sex} = T_{ex} + (T_{in} - T_{ex}) \cdot \frac{R_{sex}}{R_c} = 15 + (120 - 15) \cdot \frac{0.176}{2.924} = 15 + 6.3 = 21.3 \, {}^{\circ}C$$
 (4)

donde

• T_{ex}

• T_{in}

$$R_{sex} = \frac{1}{2\pi \cdot r_{ex} \cdot h_{ex}}$$

r_{ex}

• h_{ex}

• R_C

temperatura del aire ambiente en K o ºC

temperatura del fluido interior en K o ºC y

resistencia superficial exterior en (m² K)/W

radio de la superficie exterior en m

coeficiente de convección exterior en W/(m² K)

resistencia térmica por unidad de longitud en (m·K)/W

universidad ^Æleón

1.2 Cálculo del ahorro energético y económico (Solución; IV/VI)

Cálculo del calor disipado por radiación

•
$$\dot{Q}_{rad} = 56.7 \cdot \varepsilon_{ex} \cdot A_{ex} \cdot \left[\left(\frac{T_{sex}}{1000} \right)^4 - \left(\frac{T_{en}}{1000} \right)^4 \right] = 56.7 \cdot 0.84 \cdot 30.23 \cdot \left[\left(\frac{21.3 + 273.2}{1000} \right)^4 - \left(\frac{15 + 273.2}{1000} \right)^4 \right] = 0.897$$

•			
• 0	calar radiada	nar unidad d	a tiampa an WA
• Q_{rad}	Calor radiado	bor umuau u	e tiempo en kW
2.100			

•
$$arepsilon_{ex}$$
 emisividad de la superficie exterior,

•
$$A_{ex}$$
 superficie exterior en m²

•
$$r_{ex}$$
 radio de la superficie exterior en m

•
$$T_{sex}$$
 temperatura de la superficie exterior en K

•
$$T_{en}$$
 temperatura del entorno en K

1.2 Cálculo del ahorro energético y económico (Solución; V/VI)

Calor total perdido por disipación al entorno = \vec{Q}_p

•
$$\dot{Q}_p = \dot{Q}_C + \dot{Q}_{rad} = 2.873 + 0.897 = 3.770 \, kW$$

Donde

- \dot{Q}_p calor total perdido por disipación al entorno en kW
- \dot{Q}_C calor disipado por unidad de tiempo en kW
- \dot{Q}_{rad} calor radiado por unidad de tiempo en kW

El coste del calor generado sería

•
$$v_q = c \cdot \frac{(1+x)}{\eta_g} = 0.045 \frac{\epsilon}{kWh} \cdot \frac{1+0.05}{0.90} = 0.0525 \frac{\epsilon}{kWh}$$

- v_q coste del calor generado en €/kJ,
- *c* precio del combustible en €/kJ,
- x extracoste del combustible consumido y
- η_g rendimiento del generador de calor

1.2 Cálculo del ahorro energético y económico (Solución; VI/VI)

El ahorro vendrá dado por

$$A = (\dot{Q}_{po} - \dot{Q}_{p1}) \cdot n \cdot v_q = (3.133 - 3.770) \cdot 6000 \cdot 0.0525 = -200.6 \, \text{\&}/a\tilde{n}o$$

- A ahorro neto para un periodo determinado en €/año
- \dot{Q}_{po} pérdidas con el aislamiento de referencia en kW
- \dot{Q}_{p1} pérdidas del aislamiento propuesto en kW
- n tiempo en funcionamiento en horas
- v_q coste unitario del calor generado en €/kWh

1.3 Aislamiento de tuberías calientes. Espesor mínimo

Tabla 1.2.4.2.1 del RITE

Tabla 1.2.4.2.1. Espesores mínimos de aislamiento (mm) de tuberías y accesorios que transportan fluidos calientes que discurren por el interior de edificios

Diámetro exterior (mm)	Temperatura máxima del fluido (°C)		
	4060	> 60100	>100180
D ≤ 35	25	25	30
$35 < D \le 60$	30	30	40
$60 < D \le 90$	30	30	40
90 < D ≤ 140	30	40	50
140 < D	35	40	50

- Para un aislante de conductividad 0.04 W/(mK)
- Si las tuberías discurren por el exterior, el espesor se incrementará en 10 mm

1.3 Aislamiento de tuberías calientes. Espesor mínimo

$$e = \frac{D}{2} \cdot \left[exp\left(\frac{\lambda}{0.04} \cdot ln \frac{D + 2e_{ref}}{D}\right) - 1 \right]$$
 donde (9)

- e espesor del aislante en mm,
- D diámetro del aislante, coincidente con el exterior de la tubería en mm,
- λ conductividad del aislante en W/(m·K), y
- e_{ref} espesor de referencia (el que aparece en la tabla del RITE) en mm

1.3 Aislamiento de tuberías calientes. Espesor mínimo (Ejemplo de cálculo)

- La tubería del ejemplo de cálculo de la diapositiva "1.1 Cálculo del calor disipado a través de la pared (Ejemplo de cálculo)" circula por el exterior de una nave industrial no calefactada y se plantean dos preguntas:
- a) El aislamiento proyectado, ¿cumple con lo exigido por el RITE?
- b) Si la conductividad del aislante fuera 0.032 W/(mK), ¿cumpliría con el RITE?
- Averiguar si cumple con lo exigido por el RITE

1.3 Aislamiento de tuberías calientes. Espesor mínimo (Solución I/II)

- a) Verificación del cumplimiento del RITE para la conductividad de 0,040 W/(m K).
- La temperatura del vapor es 120 °C, 100 < 120 < 180
- El diámetro exterior es 60.3 mm, 60 < 60.3 < 90

Tabla 1.2.4.2.1. Espesores mínimos de aislamiento (mm) de tuberías y accesorios que transportan fluidos calientes que discurren por el interior de edificios

Diámetro exterior (mm)	Temperatura máxima del fluido (°C)		
	4060	> 60100	>100180
D ≤ 35	25	25	30
$35 < D \le 60$	30	30	40
60 < D ≤ 90	30	30	40
$90 < D \le 140$	30	40	50
140 < D	35	40	50

1.3 Aislamiento de tuberías calientes. Espesor mínimo (Solución II/II)

b) Mediante (9) se calcula el espesor requerido, según el RITE; para la conductividad de 0.032 W/(m K).

$$e = \frac{D}{2} \cdot \left[exp\left(\frac{\lambda}{0.04} \cdot ln \frac{D + 2e_{ref}}{D}\right) - 1 \right] = \frac{60.3}{2} \cdot \left[exp\left(\frac{0.032}{0.04} \cdot ln \frac{60.3 + 2 \cdot 50}{60.3}\right) - 1 \right] = 35.8 \ mm < 40 \ mm$$
(9)

- e espesor del aislante en mm,
- D diámetro del aislante, coincidente con el exterior de la tubería en mm,
- λ conductividad del aislante en W/(m·K), y
- e_{ref} espesor de referencia (el que aparece en la tabla del RITE) en mm

• 1.4.1 Espesor mínimo

«Tabla 1.2.4.2.4 Espesores mínimos de aislamiento (mm) de tuberías y accesorios que transportan fluidos fríos que discurren por el exterior de edificios.

Diámetro exterior (mm)	Temperatura mínima del fluido (°C)		
	> -100	> 010	> 10
D ≤ 35	50	45	40
35 < D ≤ 60	60	50	40
60 < D ≤ 90	60	50	50
90 < D ≤ 140	70	60	50
140 < D	70	60	50

- a) Debe ser mayor o igual que el requerido por la tabla de la diapositiva.
- b) Debe asegurar la no formación de condensados en la superficie exterior del aislante.

• 1.4.2 Condensación superficial (I/III)

• 1.4.2 Condensación superficial (II/III)

- Grado de sequedad
- Cuando el agua llega a la superficie metálica se encharca en los huecos que quedan entre el aislante y la tubería

• 1.4.2 Condensación superficial (III/III)

- Calcular el espesor de aislante
- Pintar tubería metálica
- Evitar huecos entre tubería y aislante
- Evitar discontinuidades entre las distintas piezas del aislante.

• 1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (I/II)

$$R_c = R_a + R_{ex}$$

- R_C resistencia térmica por unidad de longitud en (m·K)/W
- R_a resistencia del aislante en (m² K)/W y
- R_{ex} resistencia superficial exterior en (m² K)/W

1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (II/II)

$$\frac{R_{ex}}{R} = \frac{T_{ex} - T_e}{T_{ex} - T_{in}}$$

Donde

- R_{ex} resistencia superficial exterior en (m² K)/W
- R resistencia térmica por unidad de longitud en (m·K)/W
- T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C
- ullet T_e temperatura de la superficie exterior en K
- T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C

$$T_e = T_{ex} - \frac{T_{ex} - T_{in}}{1 + \frac{h_{ex} \cdot r_e}{\lambda_a} \cdot ln \frac{r_e}{r_i}}$$
 (10)

- h_{ex} coeficiente de convección exterior en W/(m² K)
- r_e radio de la superficie exterior en m
- λ_a conductividad térmica del aire ambiente en W/(m·K)
- r_i radio de la superficie interior en m
- T_r temperatura de rocío en las condiciones ambientales en K o ${}^{\circ}\mathrm{C}$

$$r_e \cdot ln \frac{r_e}{r_i} > \frac{\lambda_a}{h_{ex}} \cdot \frac{T_r - T_{in}}{T_{ex} - T_r} \tag{11}$$

- 1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (Ejemplo de cálculo)
- Una tubería de diámetro exterior 48 mm, que conduce una salmuera a +10 °C, se aísla con una cubierta de conductividad 0.034 W/(m K) y un espesor de 36 mm. En las condiciones de cálculo, el aire exterior está a 28 °C y tiene una humedad relativa del 90% y el coeficiente de transmisión de calor exterior es de 10 W/m^2 K.
- Averiguar si cumple con el reglamento RITE y, en caso contrario, calcular el espesor mínimo necesario si la tubería discurre por el exterior de un recinto.

1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (Pistas)

$$r_e \cdot ln \frac{r_e}{r_i} > \frac{\lambda_a}{h_{ex}} \cdot \frac{T_r - T_{in}}{T_{ex} - T_r} \tag{11}$$

$$T_r = \sqrt[8]{\frac{H}{100}} \cdot (112 + 0.9 \cdot T_{ex}) + (0.1 \cdot T_{ex}) - 112$$

- T_r temperatura de rocío en las condiciones ambientales en K o ${}^{\circ}$ C
- T_e temperatura de la superficie exterior en K o ${}^{\circ}$ C
- r_e radio de la superficie exterior en m
- r_i radio de la superficie interior en m
- λ_a conductividad térmica del aire ambiente en W/(m·K)
- h_{ex} coeficiente de convección exterior en W/(m² K)
- T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C

• 1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (Solución I/ IV)

«Tabla 1.2.4.2.4 Espesores mínimos de aislamiento (mm) de tuberías y accesorios que transportan fluidos fríos que discurren por el exterior de edificios.

Diámetro exterior (mm)	Temperatura mínima del fluido (°C)		
	> -100	> 010	> 10
D ≤ 35	50	45	40
35 < D ≤ 60	60	50	40
60 < D ≤ 90	60	50	50
90 < D ≤ 140	70	60	50
140 < D	70	60	50

- Tubería de diámetro exterior 48 mm
- Temperatura del fluido de +10 ºC
- Aislamiento con conductividad de conductividad 0.034 W/(m K)
- Espesor del aislamiento de 36 mm

• 1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (Solución II/ IV)

$$e = \frac{D}{2} \cdot \left[exp\left(\frac{\lambda}{0.04} \cdot ln \frac{D + 2e_{ref}}{D}\right) - 1 \right]$$
 (9) donde

- *e* espesor del aislante en mm
- D diámetro del aislante, coincidente con el exterior de la tubería en mm,
- λ conductividad del aislante en W/(m·K)
- e_{ref} espesor de referencia (el que aparece en la tabla del RITE) en mm

$$e = \frac{48}{2} \cdot \left[exp\left(\frac{0.034}{0.04} \cdot ln\frac{48 + 2 \cdot 40}{48}\right) - 1 \right] = 318 \ mm < 36 \ mm$$

• 1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (Solución III/ IV)

$$T_{e} = T_{ex} - \frac{T_{ex} - T_{in}}{1 + \frac{h_{ex} \cdot r_{e}}{\lambda_{a}} \cdot ln \frac{r_{e}}{r_{i}}}$$

$$T_{e} = T_{ex} - \frac{T_{ex} - T_{e}}{1 + \frac{h_{ex} \cdot r_{e}}{\lambda_{a}} \cdot ln \frac{r_{e}}{r_{i}}} = 28 - \frac{28 - (+10)}{1 + \frac{10 \cdot (0.024 + 0.036)}{0.034} \cdot ln \frac{0.024 + 0.036}{0.024}} = 26.9 \, {}^{\circ}C$$

- T_e temperatura de la superficie exterior en K o ${}^{\circ}$ C
- T_{ex} temperatura del aire ambiente en K o ${}^{\circ}$ C
- T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C
- h_{ex} coeficiente de convección exterior en W/(m² K)
- r_e radio de la superficie exterior en m
- λ_a conductividad térmica del aire ambiente en W/(m·K)
- r_i radio de la superficie interior en m

• 1.4.3 Cálculo del espesor de aislante para evitar la condensación superficial (Solución IV/ IV)

$$r_e \cdot ln \frac{r_e}{r_i} > \frac{\lambda_a}{h_{ex}} \cdot \frac{T_r - T_{in}}{T_{ex} - T_r} \tag{11}$$

Despejando, para las condiciones ambiente (28 °C y 90% de humedad)

$$T_r = \sqrt[8]{\frac{H}{100} \cdot (112 + 0.9 \cdot T_{ex}) + (0.1 \cdot T_{ex}) - 112}$$
$$T_r = 26.2 \, {}^{\circ}C$$

 $T_e = 26.9 \, {}^{\circ}C > T_r \rightarrow$ no habrá condensación

- T_r temperatura de rocío en las condiciones ambientales en K o ${}^{\circ}$ C
- T_e temperatura de la superficie exterior en K o ${}^{\circ}$ C
- r_e radio de la superficie exterior en m
- r_i radio de la superficie interior en m
- λ_a conductividad térmica del aire ambiente en W/(m·K)
- h_{ex} coeficiente de convección exterior en W/(m² K)
- T_{in} temperatura del fluido interior en K o ${}^{\circ}$ C

1.4 (b) TechCalc (Thermal Calculation Software for Technical Insulation; Ejemplos de cálculo 1.1 a 1.5)

http://techcalc.zub-systems.de/

universidad ^{de}león

1.4(b) Informe completo TechCalc Ejemplos de cálculo 1.1 a 1.5)

FOTOVOLTAICA, BIOMASA Y COGENERACIÓN

FIN ¿¿¿¿PREGUNTAS???? GRACIAS POR SU ATENCIÓN

