Vaje pri predmetu Programiranje 2

Teden 2: Krmilni stavki

Pitagorejske trojice

Naloga

Napišite program, ki prebere pozitivni celi števili m in n in izpiše, koliko celih števil $c \in [m, n]$ lahko zapišemo v obliki $a^2 + b^2 = c^2$, kjer sta a in b pozitivni celi števili. (Trojico (a, b, c) s takšno lastnostjo imenujemo $pitagorejska\ trojica$.)

Vhod

Na vhodu sta zapisani celi števili $m \in [1, 10^4]$ in $n \in [m, 10^4]$, ločeni s presledkom.

Izhod

Izpišite število iskanih števil.

Testni primer 1

Vhod:

10 20

Izhod:

5

V tem primeru imamo 5 števil z iskano lastnostjo: 10 $(10^2 = 6^2 + 8^2)$, 13 $(13^2 = 5^2 + 12^2)$, 15 $(15^2 = 9^2 + 12^2)$, 17 $(17^2 = 8^2 + 15^2)$ in 20 $(20^2 = 12^2 + 16^2)$.

Optimalno ugibanje

Naloga

Mirko si zamisli celo število na intervalu [a, b], računalnik pa ga uganjuje po optimalnem postopku, torej tako, da vsakokrat poskuša z navzdol zaokroženim povprečjem med spodnjo in zgornjo mejo trenutnega intervala. Na vsak računalnikov poskus se Mirko odzove tako, da vtipka 1 (če je računalnikov poskus manjši od izbranega števila) ali -1 (če je računalnikov poskus prevelik). Mirko se lahko igre predčasno naveliča, lahko pa se tudi zgodi, da računalniku postreže s protislovnimi odgovori.

Napišite program, ki prebere števili a in b ter zaporedje Mirkovih odgovorov računalniku (to se vedno zaključi s številom 0) in izpiše eno od sledečega:

- izbrano število, če ga je na podlagi Mirkovih odgovorov mogoče nedvoumno določiti;
- spodnjo in zgornjo mejo najožjega intervala, na katerem se glede na Mirkove odgovore nahaja izbrano število;
- niz PROTISLOVJE, če so Mirkovi odgovori v medsebojnem protislovju.

Vhod

V prvi vrstici vhoda sta podani celi števili $a \in [0, 10^9]$ in $b \in [a, 10^9]$, ločeni s presledkom. Sledi zaporedje vrstic s številom 1 ali -1. Zadnja vrstica vsebuje število 0.

Izhod

Izpišite izbrano število (prvi scenarij), spodnjo in zgornjo mejo najožjega intervala, ki vsebuje izbrano število (drugi scenarij), oziroma niz PROTISLOVJE (tretji scenarij). Meji intervala naj bosta ločeni s presledkom.

Testni primer 1

Vhod:

10 30 1 -1 -1 0

Izhod:

21

Računalnik najprej poskuša s številom $20 = \lfloor (10+30)/2 \rfloor$, nato s $25 = \lfloor (21+30)/2 \rfloor$, nato z $22 = \lfloor (21+24)/2 \rfloor$, po tretjem odgovoru pa ve, da si je Mirko izbral število 21.

Testni primer 2

Vhod:

10 30 1 -1 0

Izhod:

21 24

Testni primer 3

Vhod:

10 30
-1
-1
-1
-1
1
1
0

Izhod:

PROTISLOVJE