

Docket No.:1232-5206

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s):

Osamu YAMAMOTO

Group Art Unit

TBA

Serial No.:

10/715,723

Examiner:

**TBA** 

Filed:

November 17, 2003

For:

X-RAY IMAGING APPARATUS

## **CLAIM TO CONVENTION PRIORITY**

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

In the matter of the above-identified application and under the provisions of 35 U.S.C. §119 and 37 C.F.R. §1.55, applicant(s) claim(s) the benefit of the following prior application(s):

Application(s) filed in:

Japan

In the name of:

Canon Kabushiki Kaisha

Serial No(s):

2002-343406

Filing Date(s):

November 27, 2002

Pursuant to the Claim to Priority, applicant(s) submit(s) a duly certified copy of said foreign application.

A duly certified copy of said foreign application is in the file of application Serial No. \_\_\_\_\_, filed \_\_\_\_\_.

Respectfully submitted, MORGAN & FINNEGAN, L.L.P.

Dated: January 26, 2004

By:

Joseph'A. Calvaruso Registration No. 28,287

Correspondence Address:

MORGAN & FINNEGAN, L.L.P.

345 Park Avenue

New York, NY 10154-0053

(212) 758-4800 Telephone

(212) 751-6849 Facsimile





## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s):

Osamu YAMAMOTO

Group Art Unit:

TBA

Serial No.:

10/715,723

Examiner:

TBA

Filed:

November 17, 2003

For:

X-RAY IMAGING APPARATUS

**CERTIFICATE OF MAILING (37 C.F.R. §1.8(a))** 

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

I hereby certify that the attached:

- 1. Claim to Convention Priority w/ document
- 2. Certificate of Mailing
- 3. Return Receipt Postcard

along with any paper(s) referred to as being attached or enclosed and this Certificate of Mailing are being deposited with the United States Postal Service on date shown below with sufficient postage as first-class mail in an envelope addressed to the: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Respectfully submitted, MORGAN & FINNEGAN, L.L.P.

Dated: January 2,2004

By:

Helen Tiger

Correspondence Address:

MORGAN & FINNEGAN, L.L.P. 345 Park Avenue New York, NY 10154-0053 (212) 758-4800 Telephone (212) 751-6849 Facsimile

# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年11月27日

出 願 番 号 Application Number:

特願2002-343406

[ST. 10/C]:

[ J P 2 0 0 2 - 3 4 3 4 0 6 ]

出 願 Applicant(s):

キヤノン株式会社

2003年12月15日

特許庁長官 Commissioner, Japan Patent Office 今井康



ページ: 1/E

【書類名】 特許願

【整理番号】 226321

【提出日】 平成14年11月27日

【あて先】 特許庁長官 殿

【国際特許分類】 G03B 42/02

【発明の名称】 X線撮像装置

【請求項の数】 8

【発明者】

【住所又は居所】 東京都大田区下丸子三丁目30番2号 キヤノン株式会

社内

【氏名】 山本 理

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代表者】 御手洗 冨士夫

【代理人】

【識別番号】 100075948

【弁理士】

【氏名又は名称】 日比谷 征彦

【電話番号】 03-3852-3111

【手数料の表示】

【予納台帳番号】 013365

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9703876

【プルーフの要否】 要



### 【書類名】 明細書

## 【発明の名称】 X線撮像装置

## 【特許請求の範囲】

【請求項1】 放射線が照射された被写体の画像を形成する撮像装置であって、該撮像装置が外部装置と電気的に接続するケーブルを有し、該ケーブル端部には該外部装置と取り外し可能に接続する接続部を有することを特徴とする撮像装置。

【請求項2】 前記撮像装置は、前記ケーブルを前記外部装置に接続する側の前記撮像装置側面から前記接続部端面までの距離をL、前記撮像装置の撮像領域中心から前記ケーブルを前記外部装置に接続する側の前記撮像装置側面までの距離をX、日本工業規格Z8500で定義された人体の肩幅、Yは最大体幅をY0 とするとLは、Y1 とY2 - Y2 の式で表される距離である請求項1に記載の撮像装置。

【請求項3】 前記撮像装置は、前記ケーブルを前記外部装置に接続する側の前記撮像装置側面から前記接続部端面までの距離をL、前記撮像装置の撮像領域中心から前記ケーブルを前記外部装置に接続する側の前記撮像装置側面までの距離をX、前記被写体が載置される載置台の、前記被写体の体軸と鉛直方向の幅をW t とするとLは、L $\geq$ W t Z - X の式で表される距離である請求項1に記載の撮像装置。

【請求項4】 前記ケーブルは、前記撮像装置と前記外部装置との通信を可能にする伝送ケーブルである請求項2又は3に記載の撮像装置。

【請求項5】 前記ケーブルは、前記撮像装置に電源を供給する電源ケーブルを更に有する請求項4に記載の撮像装置。

【請求項6】 前記撮像装置は、前記外部装置との接続状態を検知する検知 手段と、接続状態を表示する表示手段を有する請求項5に記載の撮像装置。

【請求項7】 前記表示手段は前記接続部に設けられている請求項6に記載の撮像装置。

【請求項8】 前記撮像装置は、前記外部装置と通信可能な無線通信モジュ



ールを有し、該無線通信モジュールは前記接続部に取付可能である請求項5に記載の撮像装置。

## 【発明の詳細な説明】

## $[0\ 0\ 0\ 1]$

## 【発明の属する技術分野】

本発明は、医療診断用のX線撮影装置、特にX線の受光媒体として二次元に複数の光電変換素子が同一面上に配列されたエリアセンサを有し、且つ可搬性を備えた撮影装置に関するものである。

### [0002]

## 【従来の技術】

被写体に放射線を照射し、被写体を透過した放射線の強度分布を検出し、被写体の放射線画像を得る方法は、工業用の非破壊検査や医療診断の場で広く一般に利用されている。被写体の放射線画像を得るための一般的方法の具体例は、放射線で蛍光を発するいわゆる蛍光板(もしくは増感紙)と銀塩フィルムを組み合わせ、X線を被写体に照射し、透過した放射線を蛍光板で可視光に変換し、銀塩フィルム上に潜像を形成した後、この銀塩フィルムを化学処理し、可視像を得る方法である。この方法で得られた放射線画像はアナログ写真であり、診断、検査等に使用される。

#### [0003]

一方、最近では受像手段として、微小な光電変換素子、スイッチング素子等からなる画素を格子状に配列した2次元アレーセンサを使用し、デジタル画像を取得する技術が開発されている。これらの撮影装置は取得した画像データを即時に表示することが可能であり、直接型X線デジタル撮影装置と呼べる。X線デジタル撮影装置のアナログ写真技術に対する利点として、フィルムレス化、画像処理による取得情報の拡大、データベース化等が挙げられる。

#### [0004]

X線デジタル撮影装置からのデジタル画像データは、有線あるいは無線による データ伝送によりシステム制御部あるいはストレージサーバ等に転送される。

#### [0005]

ところで、医療静止画用のX線撮影装置は、被写体となる患者の撮影手法に応じて、据置型と可搬型に分別される。据置型の一例としては、患者を載せるテーブル下にフィルム、又は光電変換装置を内包する撮影部を設置し、患者上方より X線を照射して患者の腹部画像等を取得する。可搬型は、カセッテと呼ばれる軽量筐体にフィルムを内包したもので、患者の体の状態が悪く、病棟のベッドから 据置型のある X線撮影室のテーブルへ移動できない場合や、撮影手法が特殊で、据置型で撮影できない場合等に使用される。前者の場合は、操作者が患者の入院している病棟までカセッテと可搬型の X線撮影装置を運んで、病棟で撮影を行う

## [0006]

可搬型は、可搬性や操作性を考慮して、極力小型化、軽量化されたものが望ま しい。しかしX線デジタル撮影装置を可搬型(以下電子カセッテと称す)とした 場合は、構成要素が多く、患者のX線透過像をデジタル画像データとして出力す るまでには、X線画像を受光する2次元アレーセンサ、X線発生装置から発信さ れる制御信号に応じてセンサを駆動するドライブ回路、ドライブ回路によりセン サ内マトリックスを選択し各マトリクスのデータを増幅するアンプ、アンプから の出力をデジタルに変換するAD回路、AD回路とドライブ回路で順次デジタル 化された画像データをシリアライズする回路を必要とする。そのためフィルムカ セッテに比べて電子カセッテは小型化や軽量化が困難である。また無線によるデ ータ伝送を行うと、データを一時保存するためメモリ、電子カセッテへ電源供給 するためのバッテリが必要となり、さらに大型化し、重量増となってしまう。電 子カセッテでの撮影回数が少ない場合には、メモリやバッテリが小型にできるた め重量増の割合は少なくて済むが、撮影途中でのメモリの容量オーバーやバッテ リ切れの危険を避けるため、さらに転送速度が有線に比べて遅いため、一時的な 有線での接続も考慮する必要がある。撮影回数が多い場合には、有線接続に特化 し、電子カセッテ内に有線でデータ伝送する回路構成までを内包して小型化、軽 量化に努めて、撮影時、及びデータ伝送時のみ有線でケーブルを電子カセッテに 接続することが望ましい。

## [0007]

図6はケーブル接続可能な電子カセッテの使用例である。図6の患者Pは、病 棟のベッド48上に横たわっている患者で、体の状態が悪く据置型X線撮影装置 の在るX線撮影室まで移動することができない。そのため図示しない操作者は電 子カセッテ49、可搬型 X 線発生装置 3 4 を患者 P のいる 病棟まで運んで撮影を 行う。電子カセッテ49はデータ伝送、及び電源供給を受けるケーブル5とコネ クタ50によって着脱可能で、さらにケーブル5は電子カセッテ49のシステム 制御部27、電源部28と接続される。システム制御部27は、電子カセッテ4 9への制御指令、デジタル画像データの受け取り、可搬型X線発生装置34との 通信等、システム全体の動作を支配する。電源部28は商用電源のAC電圧を電 子カセッテ49向けに所定のDC電圧に変圧し、電子カセッテ49へ供給する。 図6のシステム制御部27、電源部28は、可搬性を考慮して、キャスター(図 示せず)付きの同一筐体内に収められている。ケーブル5は、電子カセッテ49 ーシステム制御部27間の信号線と、電子カセッテ49-電源部28間の電源線 を集合した複合ケーブルである。同じケーブル内に電源系と信号系の電線を2種 類構成しているが、実際にはシステム制御部27、電源部28側と電子カセッテ 49側のケーブル端部では信号線と電源線に分離している。

#### [0008]

操作者は、撮影手順として先ずケーブル5と接続しない状態の電子カセッテ49を、撮影手法の一例として患者Pとベッド48の間の図7のような位置に挿入する。挿入する方向は、図6のように通常患者Pの側部より行う。接続しない状態で挿入するのは、撮影取得エリアにケーブル5が入らないよう引き回しに注意しながら、電子カセッテ49の配置位置を決める煩わしさを省くためである。患者Pの撮影したい範囲に電子カセッテ49の位置を配置し、配置し終えたらコネクタ50にケーブル5を接続する。次に操作者は、システム制御部27のインターフェース30を介して撮影に必要な撮影条件(X線管電圧、管電流、X線照射時間など)及び撮影タイミング、画像処理条件、被検者ID、取り込み画像の処理方法などの設定を行う。インターフェース30には、タッチパネル、マウス、キーボード、フットスイッチなどがある。そして設定された撮影条件に基づいて、システム制御部27は可搬型X線発生装置34、電子カセッテ49を駆動する



。可搬型X線発生装置34にはX線管球35とX線絞り37とが含まれる。X線 管球35はシステム制御部27に制御された高圧発生電源36によって駆動され 、X線ビームを放射する。X線絞り37は撮像領域の変更に伴い、不必要なX線 照射を行わない様にX線ビームを整形する。X線ビームは、ベッド48の上に横 たわった患者Pに向けられる。X線ビームは、患者Pを透過した後に電子カセッ テ49に照射される。電子カセッテ49では、特開平08-116043で開示 されているような、X線の受光媒体として薄膜トランジスタTFTが配列された 光検出器アレーと、X線を可視光に変換するシンチレータが内包されている。照 射された患者PのX線像は電子カセッテ49内のシンチレータで可視光に変換さ れ、変換された可視光は光検出器アレーで光電変換される。その後増幅処理、A D変換処理が施されてシリアライズされたデジタル画像データとして、電子カセ ッテ49からケーブル5の信号線を介してシステム制御部27へ伝送される。シ ステム制御部27では、モニタ31への表示データを切り替えたり、他にデジタ ル画像データの補正、空間フィルタリング処理などをリアルタイムで行ったり、 階調処理、DR圧縮処理等を行う。処理された画像はモニタ31に表示される。 またリアルタイム画像処理と同時に、処理されたデジタル画像データは、記憶装 置38に保存される。記憶装置38としては、大容量、高速かつ高信頼性を満た すデータ保存装置が好ましく、例えばRAID等のハードディスクアレーなどが 好ましい。保存後はケーブル5をコネクタ50から外して、電子カセッテ49を 患者Pとベッドの間から抜き出して撮影作業を終了する。

### [0009]

システム制御部27は図示しないLANボードを内包しており、LANボードを介してLANに接続することが可能である。LANには、画像データをファイリングするファイルサーバ、画像をフィルムに出力するイメージプリンタ、複雑な画像処理や診断支援を行う画像処理用端末などが接続される。システム制御部27は所定のプロトコル(例えばDICOM)にしたがって、デジタル画像データを出力する。操作者は、患者Pの撮影終了後にLAN接続の可能なポートのある場所に本システムを移動して出力作業を行う。患者Pの居る病棟内にポートを設けて、撮影終了後直ぐに出力しても良い。



参考文献:特開2002-82172号公報

 $\{0010\}$ 

【発明が解決しようとする課題】

しかしながら上記のような電子カセッテでの構成では、以下のような問題がある。

## [0011]

図8は、電子カセッテ49と同様の構成を成す電子カセッテ51に設けられたコネクタ52が、患者Pとベッド48の間に在る場合である。このような状況は、電子カセッテ51の外形が患者Pに対して相対的に小さい場合に起こり得る。例えば患者Pの体格幅が標準幅に比べて広い場合や、電子カセッテの外形がフィルムカセッテの四ツ切や六ツ切に相当する場合である。操作者が電子カセッテ51を配置するときケーブル5はまだ接続されていない。このとき操作者は、患者Pの体を起こしてケーブル5を接続するか、或いは電子カセッテ51を一度抜き出して、ケーブル5が接続できる位置まで電子カセッテ51を移動してから接続しなければならない。いずれにせよ患者Pに対して姿勢を変える動作しなければならず、更に電子カセッテ51の位置がずれてしまい、撮影エリアから所望する部位が外れて再撮影しなければならない危険性がある。また、可搬型のカセッテは、このような撮影手法に限らず、様々な姿勢で動けない患者に対しても使用されるため、操作者は電子カセッテのコネクタの位置を常に注意しながら撮影しなければならないという煩わしさがある。

### [0012]

本発明の目的は、上述の問題点を解消し、X線撮像装置を提供することにある

#### [0013]

### 【課題を解決するための手段】

上記の問題を解決するための本発明の請求項1に係るX線撮像装置は、放射線が照射された被写体の画像を形成する撮像装置であって、撮像装置が外部装置と電気的に接続するケーブルと、ケーブル端部に外部装置と取り外し可能に接続する接続部を有することを特徴とする。

### [0014]

### [0015]

## $[0\ 0\ 1\ 6]$

また、本発明の請求項4に係るX線撮像装置は、請求項2又は3に係るX線撮像装置に対して、ケーブルが撮像装置と外部装置との通信を可能にする伝送ケーブルであることを特徴とする。

#### $[0\ 0\ 1\ 7]$

また、本発明の請求項5に係るX線撮像装置は、請求項4に係るX線撮像装置に対して、ケーブルが伝送ケーブルの他に撮像装置に電源を供給する電源ケーブルを有することを特徴とする。

#### $[0\ 0\ 1\ 8]$

また、本発明の請求項6に係るX線撮像装置は、請求項5に係るX線撮像装置に対して、外部装置との接続状態を検知する検知手段と接続状態を表示する表示手段を有することを特徴とする。

#### $[0\ 0\ 1\ 9\ ]$

また、本発明の請求項7に係るX線撮像装置は、請求項6に係るX線撮像装置に対して、表示手段が接続部に設けられていることを特徴とする。

## [0020]

また、本発明の請求項8に係るX線撮像装置は、請求項5に係るX線撮像装置に対して、外部装置と通信可能な無線通信モジュールを有し、無線通信モジュールが接続部に取付可能であることを特徴とする。

### [0021]

## 【発明の実施の形態】

請求項に係る本発明を、図示の実施例に基づいて以下に説明する。

図1 (a)、(b)は、本発明の請求項1、2に係る構成を表した構成図である。同時に請求項4、5に係る構成も表している。なお、先に説明した図と同一部分には同一符号を付している。

### [0022]

図6の電子カセッテ49と異なる点は、電子カセッテ1の筐体にケーブル2が接続され、ケーブル2の先端にコネクタ3が設けられている点である。図1(b)において、L1はケーブル2を接続する側の電子カセッテ1の側面からコネクタ3端部までの距離を示し、X1は電子カセッテ1の撮像エリア4の中心Cから上述の電子カセッテ1の側面までの距離を示している。電子カセッテ1ではケーブル2の接続口が上述の側面に設けられている。また、図1(a)において、Wpは日本工業規格(JIS)のZ8500(人体寸法測定)で定義された肩幅、又は最大体幅を示し、Oは人体の体軸中心線を示している。

#### [0023]

図1 (a) の場合、電子カセッテ1の撮像エリア4の中心Cが体軸中心線Oと重なって配置されており、またコネクタ3にケーブル5が接続されている。このとき電子カセッテ1は患者Pとベッド48の間にあるため、操作者が電子カセッテ1を目視することは難しい。しかし電子カセッテ1はケーブル2を介してコネクタ3が電子カセッテ1本体から離れた接続側Aにあるため、コネクタ3が患者Pより突出していれば操作者はケーブル5と接続することができる。ケーブル5は図6で説明したように、接続後に電子カセッテ1への電源供給と信号伝送を行う。

#### [0024]

また、ここで距離L1をL1 $\geq$ Wp/2-X1の式で表される距離に指定すると、コネクタ3は少なくとも接続側Aの患者Pの人体側面付近か人体より突出した位置にあり、操作者は容易にコネクタ3と図1(a)のケーブル5を接続することができる。一例として、電子カセッテの大きさが日本工業規格(JIS)の Z4905で規定された型名JL10×12の大きさと仮定し、Wpを日本人成人男性の肩幅の、おおよその平均値である $45\,\mathrm{cm}$ であると仮定する。ケーブルは電子カセッテの長辺に接続面があり、さらに上述の長辺が接続する側の側面に指定すると、X1は281.5/2mmとなり、L1は84.25mm以上であれば接続が容易になる。Wpを最大体幅に指定すれば、ケーブルが更に人体から突出して接続しやすくなる。

### [0025]

距離L1は主にX1の変数となるため、電子カセッテの大きさが増すとL1は相対的に短くなる。また図1(a)では撮像エリア4の中心Cが体軸中心線O上にあるが、中心Cが体軸中心線Oより紙面上方にあるような位置に電子カセッテ1が配置された場合は、操作者は接続側Bへコネクタ3が突出するように電子カセッテ1の接続側の側面を配置前に方向転換しておけば上述と同様に接続可能である。

### [0026]

図2は本発明の請求項1及び2に係る構成を表した第2の構成図である。なお 、先に説明した図と同一部分には同一符号を付している。

## [0027]

図1 (a)、(b)の電子カセッテ1と異なる点は、電子カセッテ6が略長方形の形を成しており、長辺側にケーブル7の接続口が設けられ、ケーブル7の先端にコネクタ8が設けられている点である。撮像エリア9も略長方形の形を成し、図2では患者Pの体軸中心線Oに対して電子カセッテ6の長辺が鉛直方向になるように配置されている。したがってケーブル7の接続口は患者P下にあり目視することは難しい。しかし図1 (a)、(b)の場合と同様に、L2をケーブル7を接続する側の電子カセッテ6の側面からコネクタ8端部までの距離に指定し、X2を電子カセッテ6の撮像エリア9の中心Cから上述の電子カセッテ6の側

面までの距離に指定して、 $L2 \ge Wp/2 - X2$ の式で表される距離 L2であれば、コネクタ8は少なくとも接続側 Aの患者 Pの人体側面付近か人体より突出した位置にあり、操作者は容易にコネクタ8と図1(a)のケーブル5を接続することができる。このように、L1、L2をケーブルの長さに指定せず電子カセッテ側面からコネクタまでの距離に指定しているため、ケーブルの接続口の場所に依存しない。

## [0028]

図3は本発明の請求項3に係る構成を表した構成図である。なお、先に説明した図と同一部分には同一符号を付している。 .

## [0029]

図6の電子カセッテ49と異なる点は、電子カセッテ10の筐体にケーブル11が接続され、ケーブル11の先端にコネクタ12が設けられている点である。 L3はケーブル11を接続する側の電子カセッテ10の側面からコネクタ12端 部までの距離を示し、X3は電子カセッテ10の撮像エリア13の中心Cから上述の電子カセッテ10の側面までの距離を示している。電子カセッテ10ではケーブル11の接続口が上述の側面に設けられている。また、Wtは患者Pが載置されたベッド48の幅を示している。ここでWtは患者Pの体軸に対して鉛直方向のベッド48の幅を表す。

#### [0030]

図3の場合、電子カセッテ10は患者Pとベッド48の間にあるため、操作者が電子カセッテ10を目視することは難しい。

#### [0031]

ここで距離L  $3 \ge \text{W} \text{ t} / 2 - \text{X} 3$  の式で表される距離に指定すると、仮に電子カセッテ10 の撮像エリア13 の中心Cがベッド48 の幅中心線上に配置されても、すなわち電子カセッテ10 がベッド48 の両側面から最も遠い距離に配置されても、コネクタ12 は少なくとも接続側Aのベッド48 の側面付近か側面より突出した位置にあり、操作者は容易にコネクタ12 と図1 (a) のケーブル5 を接続することができる。ケーブル5 は図6 で説明したように、接続後に電子カセッテ10への電源供給と信号伝送を行う。一例として電子カセッテの大き

さが日本工業規格(JIS)のZ4905で規定された型名 $JL10\times12$ の大きさと仮定し、Wt を90c mであると仮定する。ケーブルは電子カセッテの長辺に接続面があり、さらに上述の長辺が接続する側の側面に指定すると、X3は 281.5/2 mmとなりL3は 309.25 mm以上であれば接続が容易になる。

## [0032]

中心Cがベッド48の中心線より接続側Bに近い位置に電子カセッテ10が配置された場合には、図1(a)、(b)の実施例の場合と同様に操作者は接続側Bへコネクタ12が突出するように電子カセッテ10の接続側の側面を配置前に方向転換しておけば良い。また実施例ではベッドの幅で指定しているが、直接X線撮影室で使用される撮影テーブルの天板の幅で指定しても良い。

## [0033]

また図3では電子カセッテ10の接続側の側面にケーブル11の接続口が設けられているが、L3をケーブルの長さに指定せず電子カセッテ側面からコネクタまでの距離に指定しているため、ケーブルの接続口の場所に依存しないことは図2の実施例と同様である。

### [0034]

図4は本発明の請求項6、7に係る構成を表した電子カセッテ14内の構成図である。なお、先に説明した図と同一部分には同一符号を付している。

#### [0035]

電子カセッテ14は、主な構成要素としてシンチレータ15、光検出器アレー16、X線露光量モニタ17、電気基板18、接続制御器19、ケーブル20、コネクタ21、インジケータ22から構成される。さらに電気基板18上には、ドライブ回路23、増幅アンプ24、AD回路25、シリアライズ回路26が実装され、各構成要素間の信号系と電源系の伝送を行うケーブルが配線されている。また、システム制御部27、及び電源部28と電子カセッテ14を繋ぐケーブル5側には、コネクタ21と接続するコネクタ29が設けられている。ケーブル5、20は信号線と電源線の複合ケーブルなので各接続口は信号系と電源系に分かれている。

### [0036]

次に電子カセッテ14とシステム制御部27の各接続状態における動作を説明 する。

### [0037]

先ず電子カセッテ14側のコネクタ21とシステム制御部27、電源部28側のコネクタ29が接続されていない場合は、電子カセッテ14へは通電されないため内部の各構成要素は動作せずコネクタ20に設けられたインジケータ22へも電源供給されず点灯しない。またシステム制御部27では、電子カセッテ14の接続制御部19と通信が途絶えていることから接続されていないことを認識し、インターフェース30からの入力情報や画像データの表示を行うモニタ31に指令を出して、モニタ31は非接続状態である内容を表示する。

### [0038]

次に操作者が電子カセッテ14の配置を終えて電子カセッテ14側のコネクタ21とシステム制御部27、電源部28側のコネクタ29が接続されると、ケーブル20、電源ケーブル32を介して接続制御部19まで電源部28から電源供給される。接続制御部19は供給を受けて接続されたことを認識する。またコネクタ5、20が接続されると、インジケータ22へも電源供給される。このとき接続制御部19は、システム制御部27から撮影の指令信号を受けるまでは、インジケータ22に電子カセッテ14が撮影動作中でなく着脱可能なことを表示する青系色を点灯させる。ただし、このとき電源部28からは接続制御部19、インジケータ22の各構成要素の動作に必要な電源しか供給しない。したがって電源ケーブル32を介してセンサ側の各構成要素へはまだ電源供給されていない。また接続制御部19は、電子カセッテ14が接続されたことを信号ケーブル33を介してシステム制御部27では、モニタ31に指令を出して、モニタ31は電子カセッテ14が着脱可能な状態である内容を表示する。

#### [0039]

次に操作者は、撮影動作のために、インターフェース30より入力してシステム制御部27へ撮影開始指令を出す。システム制御部27は、指令を受けると接

続制御部19へ開始指令を伝送する。接続制御部19は、開始指令を受けてインジケータ22へ指令を伝送し、インジケータ22にコネクタ21と29が着脱不可なことを表示する赤系色を点灯させる。

### [0040]

同時にシステム制御部27は、モニタ31に指令を出して、モニタ31は電子 カセッテ14が着脱不可である内容を表示する。

# [0041]

上記動作の終了後、システム制御部27は電源部28へ指令して、電源ケーブル32を介して電源部28からセンサ側の各構成要素の駆動に必要な電源が供給される。同時にシステム制御部27は撮影指令信号を信号ケーブル33を介して電気基板18へ伝送する。また、システム制御部27は可搬型X線発生装置34のX線管球35を高圧発生電源36によって駆動し、さらにX線絞り37を駆動して照射野を指定してX線ビームを放射する。電気基板18上のドライブ回路23は、X線露光量モニタ17のX線曝射終了信号、あるいは高圧発生電源36からの高圧印可電源、あるいはX線管球電流の信号を検出して、TFTスイッチを駆動して電荷を読み出す事になる。シンチレータ15ではエネルギーの高いX線によって蛍光体の母体物質が励起され、再結合する際の再結合エネルギーにより可視領域の蛍光が得られる。その蛍光はCaWO4やCdWO4などの母体自身によるものやCSI:TIやZnS:Agなどの母体内に付活された発光中心物質によるものがある。

## [0042]

このシンチレータ15に密着して光検出器アレー16が配置されている。この 光検出器アレー16はシンチレータ15で発生した光を電気信号に変換する。 X 線露光量モニタ17はX線露光量を監視するものである。 X線露光量モニタ17 は結晶シリコンの受光素子を用いて直接 X線を検出する。光検出器アレー16を 透過した可視光を光検出器アレー16基板裏面に成膜されたアモルファスシリコ ン受光素子で検出し、システム制御部27にその情報を伝送し、システム制御部 27はその情報に基づいて高圧発生電源36を駆動して X線を遮断あるいは調整 する。ドライブ回路23は、システム制御部27の制御下で、光検出器アレー1 6を駆動し、各画素から信号を読み出す。ドライブ回路23によりセンサ内マトリックスを選択し、各マトリクスのデータを増幅する増幅アンプ24、増幅アンプ24からの出力をデジタルに変換するAD回路25、AD回路25とドライブ回路23で順次デジタル化された画像データをシリアライズするシリアライズ回路26によって、取得したデジタル画像データをシステム制御部27に伝送し、記録装置38に保存される。

## [0043]

電源部28はシステム制御部27へのデジタル画像データの伝送終了後、システム制御部27からの指令によってセンサ側の各構成要素へ電源供給を停止する

### [0044]

システム制御部27はデジタル画像データが記録装置38に保存されたこと、及び電源部28への上記の停止指令を行った後、接続制御部19へ信号ケーブル33を介して撮影終了指令を伝送する。接続制御部19は指令を受けてインジケータ22へ指令を伝送して、電子カセッテ14が着脱可能なことを表示する青系色を点灯させる。このとき操作者はコネクタ21と29を外すことが可能となる。システム制御部27では、モニタ31に指令を出して、モニタ31は電子カセッテ14が着脱可能な状態である内容を表示する。

#### [0045]

操作者はインジケータ22、又はモニタ31の表示を確認した後、コネクタ21と29を外して電子カセッテ14を分離し、患者Pに対する撮影作業を終了する。保存したデジタル画像データのファイリングの方法は従来例で説明した内容と同様の作業を行う。

#### [0046]

以上のように、インジケータを設けることで操作者は電子カセッテの動作状態が把握できる。これにより、例えばセンサ側へ電源供給されているときに不意にコネクタを外して瞬時の供給遮断に伴うセンサ側回路の破損などを防ぐことができる。また接続するコネクタにインジケータが設けられているため、先の実施例で説明したように操作者は容易にインジケータを確認することができる。

### [0047]

図5は本発明の請求項8に係る構成を表した電子カセッテ39内の構成図である。なお、先に説明した図と同一部分には同一符号を付している。

### [0048]

図4の電子カセッテ14と異なる主な構成要素として、電子カセッテ39内に画像メモリ40、バッテリ41が追加され、また無線モジュール42とコネクタ29を接続可能なコネクタ43と、通信形態や電子カセッテ39側の各制御を行う制御部44が構成されている。またシステム制御部27には無線モジュール42と通信を行う無線ターミナル45が新たに設けられている。画像メモリ40、バッテリ41、無線モジュール42が構成されたことにより、操作者は電子カセッテ39をケーブルレスで使用することが可能である。以下に各構成要素の動作を説明する。

## [0049]

図5において、電子カセッテ39のコネクタ43へは何も接続されていない。このとき制御部44はコネクタ43が未接続であることを受けてバッテリ41からセンサ側の各構成要素への電源供給を遮断している。またシステム制御部27では、電子カセッテ14の制御部44と通信が途絶えていることから接続されていないことを認識し、インターフェース30からの入力情報や画像データの表示を行うモニタ31に指令を出して、モニタ31は非接続状態である内容を表示する。

### [0050]

次に操作者が電子カセッテ39をケーブルレスで使用する場合、コネクタ43に無線モジュール42を接続する。すると制御部44は、無線モジュール42が接続されたことを受けてバッテリ41から無線モジュール42へ電源供給の指令を出し、無線モジュール42はバッテリ41に事前に蓄積された容量分から電源供給されて動作可能となる。ただしこのときバッテリ41からは制御部44、無線モジュール42の各構成要素の動作に必要な電源しか供給しない。したがって電源ケーブル46を介してセンサ側の各構成要素へはまだ電源供給されていない。また制御部44は無線モジュール42を介して無線ターミナル45へ電子カセ

ッテ39に無線モジュール42が接続されたことを伝送する。無線ターミナル45から情報を受けたシステム制御部27は、モニタ31に指令を出して、モニタ31は電子カセッテ39がケーブルレスで動作可能な状態である内容を表示する

### [0051]

次に操作者は、撮影動作のために、インターフェース30より入力してシステム制御部27へ撮影開始指令を出す。システム制御部27は、指令を受けると制御部44へ無線ターミナル45、無線モジュール42を介して開始指令を伝送する。指令を受けた制御部44は、バッテリ41へ指令して電源ケーブル46を介してバッテリ41からセンサ側の各構成要素の駆動に必要な電源が供給される。同時に制御部44は撮影指令信号を信号ケーブル47を介して電気基板18へ伝送する。また、システム制御部27は可搬型X線発生装置34のX線管球35を高圧発生電源36によって駆動し、さらにX線絞り37を駆動して照射野を指定してX線ビームを放射する。電気基板18上のドライブ回路23は、図4の実施例と同様にX線露光量モニタ17のX線曝射終了信号、あるいは高圧発生電源36からの高圧印可電源、あるいはX線管球電流の信号を検出して、TFTスイッチを駆動して電荷を読み出す事になる。シンチレータ15ではエネルギーの高いX線によって蛍光体の母体物質が励起され、再結合する際の再結合エネルギーにより可視領域の蛍光が得られる。そして光検出器アレー16はシンチレータ15で発生した光を電気信号に変換する。

## [0052]

X線露光量モニタ17は放射されたX線を検出し、制御部44にその情報を伝送し、さらに制御部44は無線モジュール42、無線ターミナル45を介してシステム制御部27に伝送する。システム制御部27はその情報に基づいて高圧発生電源36を駆動してX線を遮断、あるいは調整する。ドライブ回路23は、制御部44の制御下で、光検出器アレー16を駆動し、各画素から信号を読み出す。そしてドライブ回路23によりセンサ内マトリックスを選択し、増幅アンプ24、AD回路25、シリアライズ回路26を介して取得したデジタル画像データを画像メモリ40に保存する。同時に制御部44は取得したデジタル画像データ

を無線モジュール42、無線ターミナル45を介してシステム制御部27に伝送し、記録装置38に保存する。画像データはデータ量が多いため、短時間通信を行うためには通信周波数は数GHzの帯域で行うことが望ましい。画像メモリ40に保存された画像データは、記録装置38に保存されるまでの一時的なものなので、記録装置38への保存が完了したことをシステム制御部27から制御部44が受けて、制御部44は画像メモリ40に保存された画像データを消去する。また同時に制御部44は、バッテリ41へ指令してセンサ側の各構成要素へ電源供給を停止する。記録装置38に保存したデジタル画像データのファイリングの方法は従来例で説明した内容と同様の作業を行う。

### [0053]

本実施例では無線通信は数GHz相当の周波数帯域を使用しているが、赤外線などの光通信モジュールに置き換えても良い。

### [0054]

上述のように、ケーブルレスで電子カセッテを使用した場合は、有線のようにケーブルを接続する作業が無いためケーブルを引き回す煩わしさを回避できる。しかし電子カセッテの撮影動作に係る消費電力は大きいため、連続した撮影を行うにはバッテリ容量を増やす必要がある。容量を増すと、リチウムイオンなどのバッテリでは容積と重量が増えて、可搬性と軽量化が求められる電子カセッテの操作性を損なう恐れがある。

### [0055]

そこで連続した撮影が多数行う場合に対応して、図5では電子カセッテ39側のコネクタ43にシステム制御部27側のコネクタ29が接続可能となっている。システム制御部27、及び制御部44は、コネクタ29とコネクタ43が接続された場合には、上述の電子カセッテ39の動作に係る通信、及び電源供給はケーブル5,20、コネクタ29、43を介して行う。コネクタ29、43が接続されると、制御部44は接続されたことを受けて通信経路と電源供給経路を有線に切り換える。このとき電源部28からはセンサ側への電源供給は行われていないが、バッテリ41が最大容量に達していない場合はバッテリ41へ充電することが可能である。また制御部44はケーブル5,20、コネクタ29、43を介

してシステム制御部27へ電子カセッテ39が有線で接続されたことを伝送する。その情報を受けたシステム制御部27は、モニタ31に指令を出して、モニタ31は電子カセッテ39が有線で動作可能な状態である内容を表示する。次に撮影動作のために、インターフェース30より入力してシステム制御部27へ撮影開始指令を出す。システム制御部27は、指令を受けると制御部44へ開始指令を伝送する。同時にシステム制御部27は、電源部28から電子カセッテ39のセンサ側の各構成要素の駆動に必要な電源を供給する。そして制御部44側は撮影指令信号を信号ケーブル47を介して電気基板18へ伝送する。また、システム制御部27は可搬型X線発生装置34に対して上述と同様の指令を出し、X線ビームを放射する。そしてセンサ側の各構成要素に対してシステム制御部27、制御部44が上述と同様の一連の通信を有線で行い、取得した画像データが記録装置38へ保存される。そしてシステム制御部27は、電源部28へ指令してセンサ側の各構成要素へ電源供給を停止する。

### [0056]

このようにして、連続する撮影が多数ある場合には、有線で撮影を行うことで電子カセッテの可搬性を損なうことなく撮影できる。実施例では無線モジュールが取り外し可能となっているが、撮影回数が少なくケーブルレスことが多いカセッテの場合には予め電子カセッテ内に無線モジュールを内包していても良い。

#### [0057]

#### 【発明の効果】

以上説明したように、本発明に係るX線撮影装置は、電子カセッテ本体から範囲指定された距離の位置に外部装置との接続部を設けることにより、電子カセッテの大きさや患者の体格に依存せずに容易に接続することができる。また、接続部に接続状態を表示することにより、着脱の可否を容易に認識できる。また、接続部に無線モジュールを設けることにより、電子カセッテの使用状況に合わせて通信手段を選択できる。

#### 【図面の簡単な説明】

#### 【図1】

本発明の請求項1、2に係る構成を表した構成図である。

## 【図2】

本発明の請求項1、2に係る構成を表した第2の構成図である。

## 【図3】

本発明の請求項3に係る構成を表した構成図である。

## 図4】

本発明の請求項6、7に係る構成を表した構成図である。

## 【図5】

本発明の請求項8に係る構成を表した構成図である。

### 【図6】

従来の電子カセッテの構成を表した構成図である。

### 【図7】

従来の電子カセッテの構成を表した構成図である。

### [図8]

従来の電子カセッテの構成を表した構成図である。

## 【符号の説明】

- 1 電子カセッテ
- 2 ケーブル
- 3 コネクタ
- 5 ケーブル
- 6 電子カセッテ
- 7 ケーブル
- 8 コネクタ
- 10 電子カセッテ
- 11 ケーブル
- 12 コネクタ
- 14 電子カセッテ
- 19 接続制御部
- 20 ケーブル
- 21 コネクタ

- 22 インジケータ
- 27 システム制御部
- 28 電源部
- 29 コネクタ
- 39 電子カセッテ
- 40 画像メモリ
- 41 バッテリ
- 42 無線モジュール
- 43 コネクタ
- 4 4 制御部
- 45 無線ターミナル
- 48 ベッド

【書類名】

図面

【図1】



【図2】



【図3】



【図4】



【図5】





【図7】



[図8]



【書類名】 要約書

【要約】

【課題】 電子カセッテにおいて、外部装置と有線接続される場合の接続作業の 操作性を向上する。

【解決手段】 (1)電子カセッテ1が外部装置と接続可能なケーブル5とコネクタ3を有する

- (2)カセッテ端面からコネクタ3までの距離をL、センサ中心からカセッテ端面までの距離をX、人体の肩幅、最大体幅をWpとすると $L \ge Wp/2-X$ の距離にある
- (3) カセッテ端面からコネクタ3までの距離をL、センサ中心からカセッテ端面までの距離をX、ベッドの幅をWt とすると $L \ge W$ t  $\angle 2 X$ の距離にある
  - (4) 無線モジュールを有する。

【選択図】 図1

# 特願2002-343406

# 出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由]

1990年 8月30日

L 変 更 埋 田 」 住 所 新規登録

任 所 名

東京都大田区下丸子3丁目30番2号

キヤノン株式会社