VDM RD baseline: validated methods and QA invariants

Justin K. Lietz

August 26, 2025

Abstract

I present a compact, reproducible RD methods baseline for Void Dynamics (VDM) with strict acceptance gates. Two canonical validations are enforced and passed: (i) Fisher–KPP pulled-front speed $c_{\rm th}=2\sqrt{Dr}$; (ii) Linear dispersion $\sigma(k)=r-Dk^2$ with the discrete counterpart. The local on-site logistic invariant

$$Q(W,t) = \ln \left| \frac{W}{r - uW} \right| - rt$$

is packaged as a quantitative QA diagnostic (per-node drift gate and step-order convergence) rather than as a standalone contribution. I provide CLI recipes, links to figures/logs, and a minimal runtime guard.

Context (VDM). Void Dynamics (VDM) is an event-driven, sparse learning framework in which the RD sector provides a clean, canonical physics slice with reproducible gates. In this packaging, the on-site logarithmic invariant serves as a per-node QA drift diagnostic for runtime/CI, while front-speed and dispersion establish external, physics-grounded acceptance. Extended (second-order/EFT) branches are explicitly out-of-scope here and quarantined to separate notes.

1 Model and acceptance gates

The baseline RD model is the Fisher-KPP equation

$$\partial_t u = D \,\partial_{xx} u + r \,u \,(1 - u), \qquad D > 0, \ r > 0, \ u \in [0, 1].$$
 (1)

Front speed. Theoretical minimal speed:

$$c_{\rm th} = 2\sqrt{Dr}. (2)$$

Gate: robust late-time linear fit with $R^2 \ge 0.9999$ and relative error $\le 5\%$.

Linear dispersion. Linearized about $u \approx 0$ with periodic BCs gives

$$\sigma_c(k) = r - Dk^2, \qquad \sigma_d(m) = r - \frac{4D}{\Delta x^2} \sin^2\left(\frac{\pi m}{N}\right).$$
 (3)

Gate: median relative error across well-fitted modes $\leq 10^{-1}$ and array-level $R^2 \geq 0.98$ (observed much tighter).

Figure 1: Front evolution and $x_{\text{front}}(t)$ fit. Acceptance: $R^2 \ge 0.9999$, rel-err $\le 5\%$ (passed).

QA invariant (on-site). For the logistic on-site law $\dot{W} = rW - uW^2$ one has the first integral Q above on domains avoiding W = 0 and W = r/u. Gates (double precision RK4): $\max_t |Q(t) - Q(0)| \le 10^{-8}$ and observed order $p \approx 4 \pm 0.4$ with fit $R^2 > 0.98$.

2 Experimental setup (mirrors code)

Discretization and boundaries follow the reference scripts: front speed uses explicit Euler in time with a stability-limited step and Neumann boundaries; dispersion uses explicit Euler with periodic boundaries. A robust linear fit (moving-average smoothing + MAD rejection) yields speed/growth-rate estimates with outlier tolerance.

3 Results: Fisher–KPP front speed

Using $(N, L, D, r, T, cfl, seed, level, x_0) = (1024, 200, 1, 0.25, 80, 0.2, 42, 0.1, -60)$ I obtain $c_{\text{meas}} = 0.9529$, $c_{\text{th}} = 1.0000$, $\text{rel_err} = 4.71 \times 10^{-2}$, $R^2 = 0.9999956$, which satisfies the gate. See Fig. 1.

4 Results: Linear dispersion (periodic, linearized)

With (N, L, D, r, T, cfl, seed) = (1024, 200, 1, 0.25, 10, 0.2, 42), a multi-mode fit yields median relative error 1.45×10^{-3} and array-level $R^2 = 0.999946$, well within gates. See Fig. 2.

Figure 2: Measured growth rates vs theory: discrete σ_d (solid) and continuum σ_c (dashed). Acceptance: median rel-err ≤ 0.1 and $R_{\rm array}^2 \geq 0.98$ (passed).

5 QA invariant: drift gate (no figures)

For figures and the full proof, see the companion note logarithmic_constant_of_motion.tex (figs: qfum_solution_overlay.png, qfum_Q_drift.png, qfum_convergence.png). The on-site logistic invariant serves as a per-node QA diagnostic for the reaction step only. In this RD baseline note I omit invariant figures; the validator script reports pass/fail against gates: (i) double precision RK4: $\max_t |Q(t) - Q(0)| \le 10^{-8}$ at $dt \approx 10^{-3}$; (ii) convergence slope $p \approx 4 \pm 0.4$ with fit $R^2 \ge 0.98$ on a dt sweep. Use the standalone validator to regenerate if desired. Numerical caveat: at extremely small step sizes, ΔQ approaches machine precision and the observed slope p from a log-log fit can degrade; gates are evaluated in the truncation-dominated regime (moderate dt). Edge cases: near the simple poles W=0 and W=r/u, evaluate Q on a consistent logarithm branch; in code we clamp magnitudes to 10^{-16} with a signed epsilon and use a difference-of-logs form to avoid overflow.

Proof sketch and domains. For $\dot{W} = F(W) = rW - uW^2$, dt = dW/F(W) and

$$\int \frac{dW}{W(r-uW)} = \frac{1}{r} \Big(\ln|W| - \ln|r - uW| \Big) = t + C,$$

which yields $Q = \ln \frac{W}{r - uW} - rt$ constant on any interval avoiding the simple poles at W = 0 and W = r/u with a consistent log branch. Full details appear in the standalone proof note.

6 Runtime/CI guard (per-node)

The following minimal guard enforces the drift gate (optionally add a step-order spot-check on refinement tests).

```
def Q_invariant_runtime(r, u, W, t):
    import math
    denom = r - u*W
    denom = denom if abs(denom) > 1e-16 else math.copysign(1e-16, denom)
    Ws = W if abs(W) > 1e-16 else math.copysign(1e-16, W)
    return math.log(abs(Ws)) - math.log(abs(denom)) - r*t
class QDriftGuard:
    def __init__(self, r, u, tol=1e-8):
        self.r, self.u, self.tol = float(r), float(u), float(tol)
        self.Q0 = None
    def reset(self, WO, t0=0.0):
        self.Q0 = Q_invariant_runtime(self.r, self.u, float(W0), float(t0))
    def check(self, W, t):
        if self.QO is None:
            self.reset(W, t)
        Q = Q_invariant_runtime(self.r, self.u, float(W), float(t))
        return abs(Q - self.Q0) <= self.tol
```

7 Reproducibility (CLI)

```
Front speed:
```

```
python rd_front_speed_experiment.py \
    --N 1024 --L 200 --D 1.0 --r 0.25 --T 80 --cfl 0.2 --seed 42 \
    --x0 -60 --level 0.1 --fit_start 0.6 --fit_end 0.9

Dispersion:

python rd_dispersion_experiment.py \
    --N 1024 --L 200 --D 1.0 --r 0.25 --T 10 --cfl 0.2 --seed 42 \
    --record 80 --m_max 64 --fit_start 0.1 --fit_end 0.4

Invariant validator:

python qfum_validate.py \
    --r 0.15 --u 0.25 --W0 0.12 0.62 --T 40 \
    --dt 0.002 0.001 0.0005 --solver rk4
```

8 Code availability and provenance

The source code for the reaction—diffusion validations is archived privately at a signed commit/tag. The arXiv bundle intentionally omits source code to protect proprietary implementations; only the figures and machine logs necessary to verify the results are included under figs/. A reference implementation will be released at a stable tag at the author's discretion (e.g., v1.0.0). Provenance (cryptographic): commit/tag = v1.0.0; private archive digest SHA-256 = T0_BE_PROVIDED. Reproducibility is ensured by the CLI recipes provided above, which reference bare script names (no local paths). VDM/void internals (e.g., QA validator and runtime scaffolding) are not included in the arXiv bundle.

9 Conclusion

The RD baseline meets strict quantitative gates on front speed and dispersion. The local invariant is positioned as a high-sensitivity QA diagnostic with concrete runtime value (CI guard), not a headline result. This packaging strengthens the perceived rigor and novelty of VDM while keeping the core contributions focused.

Acknowledgments. I thank Voxtrium for providing his theory to me and giving me confidence when I saw that it mapped to his work and strengthened my own.

References

- S. H. Strogatz, Nonlinear Dynamics and Chaos, 2nd ed., Westview, 2015.
- J. D. Murray, *Mathematical Biology I: An Introduction*, 3rd ed., Springer, 2002.R. A. Fisher, "The wave of advance of advantageous genes," Ann. Eugenics 7 (1937), 355–369. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, "Study of the diffusion equation with growth of the quantity of matter," Bull. Univ. Moscow, Ser. A (Mathematics and Mechanics) 1 (1937), 1–25.