Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 14

Teoria della dualità:

- Teorema forte della dualità
- Teorema degli scarti complementari
- Relazioni tra il primale e il duale

R. Cerulli – F. Carrabs

2. Teorema forte della dualità

Data una coppia di problemi primale duale, (P) e (D), se uno dei due problemi ammette una soluzione ottima finita, allora anche l'altro problema ammette una soluzione ottima finita ed i valori ottimi delle funzioni obiettivo coincidono, i.e.

$$\underline{c}^T \underline{x}^* = \underline{b}^T \underline{w}^*$$

(P)
$$\min \underline{c}^T \underline{x}$$
 (D) $\max \underline{b}^T \underline{w}$

$$A\underline{x} = \underline{b}$$

$$\underline{x} \ge 0$$

$$\underline{w} \quad n. v.$$

Dim.: Sia \underline{x}^* la soluzione ottima del primale e sia B la base ad esso associata.

$$\underline{x}^* = \begin{bmatrix} \underline{x}_B^* \\ \underline{x}_N^* \end{bmatrix} = \begin{bmatrix} A_B^{-1} \underline{b} \\ \underline{0} \end{bmatrix} \quad \text{quindi} \quad \underline{c}^T \underline{x}^* = \underline{c}_B^T \underline{x}_B^* = \underline{c}_B^T A_B^{-1} \underline{b}$$

Sia $\underline{w}^{*T} = \underline{c}_B^T A_B^{-1}$. Vogliamo dimostrare che questo vettore è una soluzione ammissibile ed ottima per (D).

$$(P) \quad \min \ \underline{c}^T \underline{x}$$

$$\underline{A}\underline{x} = \underline{b}$$

$$\underline{x} \ge 0$$

$$(D) \quad max \ \underline{b}^T \underline{w}$$

$$A^T \underline{w} \leq \underline{c}$$

$$\underline{w} \quad n. v.$$

• Ammissibilità $(\underline{w}^{*T} = \underline{c}_B^T A_B^{-1})$:

$$A^T \underline{w}^* \leq \underline{c} \implies \underline{w}^{*T} A \leq \underline{c}^T \implies \underline{c}_B^T A_B^{-1} A \leq \underline{c}^T \implies \underline{c}_B^T A_B^{-1} A - \underline{c}^T \leq 0$$

$$\underline{c}_{B}^{T}A_{B}^{-1}\left[A_{B}\mid A_{N}\right]-\left[\underline{c}_{B}^{T}\mid \underline{c}_{N}^{T}\right]=\left[\underline{c}_{B}^{T}A_{B}^{-1}A_{B}\mid \underline{c}_{B}^{T}A_{B}^{-1}A_{N}\right]-\left[\underline{c}_{B}^{T}\mid \underline{c}_{N}^{T}\right]=$$

$$= \left[\underline{c}_B^T - \underline{c}_B^T \mid \underline{c}_B^T A_B^{-1} A_N - \underline{c}_N^T\right] = \left[\underline{0} \mid \underline{c}_B^T A_B^{-1} A_N - \underline{c}_N^T\right] \leq \underline{0}^T$$

Poichè $\underline{c}_B^T A_B^{-1} A_N - \underline{c}_N^T \le \underline{0}^T$ è la condizione di ottimalità per (P) (problema di minimizzazione), l'ammissibilità è verificata.

• Ottimalità:

Il valore della funzione obiettivo duale in \underline{w}^{*T} è:

$$\underline{w}^{*T}\underline{b} = \underline{c}_B^T A_B^{-1}\underline{b} = \underline{c}_B^T \underline{x}_B^* = \underline{c}^T \underline{x}^*$$

Dal Corollario 1 del teorema debole della dualità, poichè $\underline{w}^{*T}\underline{b} = \underline{c}^T\underline{x}^*$ allora \underline{w}^{*T} è ottima per (D).

Dal teorema della dualità forte ricaviamo che, data la base ottima B del primale, <u>è possibile calcolare velocemente</u> la soluzione ottima del duale (D) tramite l'equazione:

$$\underline{w}^{*T} = \underline{c}_B^T A_B^{-1}$$

Riassumendo

Se (P) è illimitato

(D) non è ammissibile

(P) ha soluzione ottima finita \Leftrightarrow (D) ha soluzione ottima finita

(ed i valori delle loro f.o. coincidono)

Se (P) inammissibile

(D) illimitato o inammissibile

Il Teorema dello "scarto complementare" (Complementary Slackness Theorem)

Consideriamo la coppia di problemi (P) e (D) in forma canonica e trasformiamo i vincoli dei due problemi in vincoli di uguaglianza

$$(P) \quad \min \ \underline{c}^T \underline{x} \qquad \qquad \min \ \underline{c}^T \underline{x}$$

$$A\underline{x} \ge \underline{b} \qquad \longrightarrow \qquad A\underline{x} - I\underline{s} = \underline{b}$$

$$\underline{x} \ge \underline{0} \qquad \qquad \underline{x} \ge \underline{0} \qquad n \text{ var. di surplus}$$

$$(D) \quad \max \ \underline{b}^T \underline{w} \qquad \longrightarrow \qquad A^T \underline{w} \le \underline{c} \qquad \qquad \underline{w} \ge \underline{0} \qquad m \text{ var.}$$

$$\underline{w} \ge \underline{0} \qquad \qquad \underline{w} \ge \underline{0} \qquad m \text{ var. di slack}$$

Ad ogni variabile di (P) è associato un vincolo di (D) e quindi la corrispondente variabile di slack/surplus e viceversa.

3. Teorema della slackness complementare

Data la coppia di soluzioni \underline{x} e \underline{w} rispettivamente ammissibili per (P) e (D), \underline{x} e \underline{w} sono ottime per (P) e (D) se e solo se

$$s_j w_j = (\underline{a}^j \underline{x} - b_j) w_j = 0$$
 $j = 1, ..., m$

condizioni di ortogonalità

$$v_i x_i = (c_i - \underline{a}_i^T \underline{w}) x_i = 0 \qquad i = 1, \dots n$$

dove $\underline{\mathbf{a}}^{\mathbf{j}}$ è la \mathbf{j} -esima riga di A

<u>a</u>_i è la *i*-esima colonna di A

Conseguenze dell condizioni di ortogonalità

$$s_j w_j = (\underline{a}^j \underline{x} - b_j) w_j = 0$$
 $j = 1, ..., m$ condizioni di $v_i x_i = (c_i - a_i^T w) x_i = 0$ $i = 1, ... n$ ortogonalità

- Per ogni vincolo non soddisfatto all'uguaglianza dalla soluzione ottima di (P) $(\underline{a}^j \underline{x} > b_j)$, la variabile duale w_j associata a questo vincolo DEVE essere uguale a zero nella soluzione ottima di (D).
- Per ogni variabile x_i non nulla nella soluzione ottima di (P), il corrispondente vincolo in (D) DEVE essere soddisfatto all'uguaglianza ($c_i = \underline{a}_i^T \underline{w}$) dalla soluzione ottima di (D).

Relazioni analoga si ricava partendo dalla soluzione ottima del duale.

Queste relazioni saranno utili per l'interpretazione economica delle variabili duali.

Calcolo della soluzione ottima duale

Sia (P) un problema di PL in forma standard e sia x^* una soluzione di base ammissibile ottima (non degenere) di (P). A partire da x^* , le condizioni degli scarti complementari individuano un'unica soluzione ottima del duale.

Esempio

(P)
$$min - x_1 - 2x_2$$

 $x_1 + x_2 - x_3 = 1$
 $x_1 + 2x_2 + x_4 = 4$
 $\underline{x} \ge \underline{0}$

Base ottima $B=\{2,3\}$.

$$x_{B}^{*} = \begin{bmatrix} x_{2}^{*} \\ x_{3}^{*} \end{bmatrix} = A_{B}^{-1} \underline{b} = \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(D)
$$\max w_1 + 4w_2$$

 $w_1 + w_2 \le -1$
 $w_1 + 2w_2 \le -2$
 $-w_1 \le 0$
 $w_2 \le 0$
 $w \le 0$

Calcolo della soluzione ottima duale

(P)
$$min - x_1 - 2x_2$$

 $x_1 + x_2 - x_3 = 1$
 $x_1 + 2x_2 + x_4 = 4$
 $\underline{x} \ge \underline{0}$

Scarti complementari

$$(-1 - w_1 - w_2)x_1 = 0$$

$$(-2 - w_1 - 2w_2)x_2 = 0$$

$$x_3(w_1) = 0$$

$$x_4(-w_2) = 0$$

$$x^* = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

(D)
$$\max w_1 + 4w_2$$

 $w_1 + w_2 \le -1$
 $w_1 + 2w_2 \le -2$
 $-w_1 \le 0$
 $w_2 \le 0$
 $w \in [m, v]$

Calcolo della soluzione ottima duale

Sia (P) un problema di PL in forma standard e sia x^* una soluzione di base ammissibile ottima (non degenere) di (P). A partire da x^* , le condizioni degli scarti complementari individuano un'unica soluzione ottima del duale.

$$s_j w_j = \left(\underline{a}^j \underline{x} - b_j\right) w_j = 0 \quad j = 1, \dots, m \tag{1}$$

$$v_i x_i = \left(c_i - \underline{a}_i^T \underline{w}\right) x_i = 0 \qquad i = 1, \dots n \tag{2}$$

Se (P) è in forma standard il sistema (1) è sempre soddisfatto. Perche?

Poiché x^* è una soluzione di base ammissibile ottima (non degenere) il sistema (2) si riduce a:

$$(c_i - \underline{a}_i^T \underline{w}) = 0$$
 $i \in B$ $\Longrightarrow \underline{c}_B - A_B^T \underline{w} = \underline{0} \Longrightarrow A_B^T \underline{w} = \underline{c}_B$

Data la non singolarità della matrice A_B il precedente sistema ammette un'unica soluzione ossia: $\underline{w}^T = c_B^T A_B^{-1}$

$$max - x_1 + \frac{3}{2}x_2$$
$$-x_1 + x_2 \le 4$$
$$-\frac{1}{2}x_1 + x_2 \le 5$$

$$x_1 \ge 0, x_2 \ge 0$$

- 1. Scrivere il duale del problema e determinare una coppia di soluzioni primale-duale ammissibile.
- 2. Verificare se le soluzioni trovate soddisfano il teorema debole della dualità.
- 3. Verificare se le soluzioni trovate sono ottime per i rispettivi problemi.
- 4. Risolvere graficamente il primale ed individuare il punto di ottimo e la base B.
- 5. Calcolare la soluzione ottima del duale a partire dalla base ottima B.
- 6. Verificare utilizzando gli scarti complementari che le soluzioni trovate nei due punti precedenti siano effettivamente ottime.

(P)
$$max \ z = -x_1 + \frac{3}{2}x_2$$

 $-x_1 + x_2 \le 4$
 $-\frac{1}{2}x_1 + x_2 \le 5$
 $x_1 \ge 0, x_2 \ge 0$

(D)
$$\min g = 4w_1 + 5w_2$$

 $-w_1 - \frac{1}{2}w_2 \ge -1$
 $w_1 + w_2 \ge \frac{3}{2}$
 $w_1 \ge 0, w_2 \ge 0$

Sol. Ammissibile per (P)

$$x_1 = 1, x_2 = 4 \implies z = 5$$

Sol. Ammissibile per (D)

$$w_1 = 0, w_2 = 2 \implies g = 10$$

$$z = 5 \le 10 = g$$
 Il Teorema debole è verificato?

Sol. Ammissibile per (P)

$$x_1 = 2, x_2 = 6 \implies z = 7$$

Sol. Ammissibile per (D)

$$w_1 = \frac{1}{2}, w_2 = 1 \implies g = 7$$

$$\max \ z = -x_1 + \frac{3}{2}x_2$$

$$-x_1 + x_2 \le 4$$

$$-\frac{1}{2}x_1 + x_2 \le 5$$

$$x_1 \ge 0, x_2 \ge 0$$

Punto di ottimo $\underline{x} = (2,6)$

Base ottima $B = \{1,2\}$

$$w^* = c_B A_B^{-1} = \begin{bmatrix} -1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} -2 & 2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 1 \end{bmatrix}$$

(P)
$$\max z = -x_1 + \frac{3}{2}x_2$$

 $-x_1 + x_2 \le 4$

$$-\frac{1}{2}x_1 + x_2 \le 5$$
$$x_1 \ge 0, x_2 \ge 0$$

(P)
$$max \ z = -x_1 + \frac{3}{2}x_2$$

 $-x_1 + x_2 + s_1 = 4$
 $-\frac{1}{2}x_1 + x_2 + s_2 = 5$
 $\underline{x} \ge \underline{0}, \underline{s} \ge \underline{0}$

$$(D) \quad min \ g = 4w_1 + 5w_2$$

$$-w_1 - \frac{1}{2}w_2 \ge -1$$

$$w_1 + w_2 \ge \frac{3}{2}$$

$$w_1 \ge 0, w_2 \ge 0$$

$$(D) \quad min \ g = 4w_1 + 5w_2$$

$$-w_1 - \frac{1}{2}w_2 - v_1 \ge -1$$

$$w_1 + w_2 - v_2 \ge \frac{3}{2}$$

$$\underline{w} \ge \underline{0}, \underline{v} \ge \underline{0}$$

(P)
$$\max z = -x_1 + \frac{3}{2}x_2$$

 $-x_1 + x_2 + s_1 = 4$
 $-\frac{1}{2}x_1 + x_2 + s_2 = 5$
 $\underline{x} \ge \underline{0}, \underline{s} \ge \underline{0}$

Condizioni degli scarti complementari: $\begin{aligned}
s_j w_j &= 0 \\
v_i x_i &= 0
\end{aligned}$

$$\underbrace{(4+x_1-x_2)w_1}_{S_1} = (4+2-6)\frac{1}{2} = 0 * \frac{1}{2} = 0$$

$$(5 + \frac{1}{2}x_1 - x_2)w_2 = (5 + 1 - 6) * 1 = 0 * 1 = 0$$

$$\underbrace{(-w_1 - \frac{1}{2}w_2 + 1)x_1}_{p_1} = \left(-\frac{1}{2} - \frac{1}{2} + 1\right) * 2 = 0 * 2 = 0$$

$$\underbrace{(w_1 + w_2 - \frac{3}{2})x_2}_{v_2} = \left(\frac{1}{2} + 1 - \frac{3}{2}\right) * 6 = 0 * 6 = 0$$

(D)
$$\min g = 4w_1 + 5w_2$$

 $-w_1 - \frac{1}{2}w_2 - v_1 \ge -1$
 $w_1 + w_2 - v_2 \ge \frac{3}{2}$
 $\underline{w} \ge 0, \underline{v} \ge 0$

Sol. Ammissibile per (P)

$$x_1 = 2, x_2 = 6$$

Sol. Ammissibile per (D)

$$w_1 = \frac{1}{2}, w_2 = 1$$