Preliminari matematici

Preliminari matematici

- · Insiemi
- Funzioni
- · Relazioni
- · Grafi
- · Tecniche di dimostrazioni

SETS

A insieme è una collezione di elementi

$$A = \{1, 2, 3\}$$

$$B = \{train, bus, bicycle, airplane\}$$

Scriveremo:

$$1 \in A$$

$$ship \notin B$$

Rappresentazione degli insiemi

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow Insieme finito$$

$$S = \{j: j > 0, e j = 2k per qualchek>0\}$$

$$S = \{ j : j \in \text{non negativo e pari} \}$$

$$A = \{1, 2, 3, 4, 5\}$$

Insieme universale: tutti gli elementi possibili

$$U = \{ 1, ..., 10 \}$$

Operazione sugli insiemi

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

· Unione

· Intersezione

$$A \cap B = \{2, 3\}$$

· Differenza

$$A - B = \{ 1 \}$$

$$B - A = \{4, 5\}$$

Venn diagrams

Complemento

Insieme universale= {1, ..., 7}

$$A = \{1, 2, 3\}$$
 $\overline{A} = \{4, 5, 6, 7\}$

{ interi pari} = { interi dispari}

interi

Leggi di DeMorgan

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

Vuoto, insieme nullo: Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

$$\emptyset - S = \emptyset$$

$$\overline{\emptyset}$$
 = Universal Set

Sottoinsieme

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $A \subseteq B$

Sottoinsieme proprio: $A \subseteq B$

Insieme disgiunti

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Cardinalità

· per gli insiemi finiti

$$A = \{ 2, 5, 7 \}$$

$$|A| = 3$$

(dimensione dell'insieme)

Insieme potenza

Un insieme potenza è un insieme di insiemi

$$S = \{ a, b, c \}$$

Potenza di S = l'insieme di tutti I sottoinsiemi di S

$$2^{5} = { \emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }$$

Osservazione:
$$|2^{5}| = 2^{|5|}$$
 (8 = 2³)

Prodotto Cartesiano

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Possiamo generalizzarlo a più insiemi

AXBX...XZ

Funzioni

 $f:A \rightarrow B$

Se A = dominio

allora f è una funzione totale

altrimenti f è una funzione parziale

Relazioni

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

per esempio. se R = '>': 2 > 1, 3 > 2, 3 > 1

Relazioni di equivalenza

- Riflessiva: x R x
- Simmetrica: $x R y \longrightarrow y R x$
- Transitiva: x R y and $y R z \longrightarrow x R z$

Esempio: R = '='

- x = x
- $\cdot x = y$ y = x
- $\cdot x = y e y = z$ x = z

Classi di equivalenza

Data la relazione di equivalenza R

la classe di equivalenza per $x = \{y : x R y\}$

Esempio:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

classe di equivalenza per 1 = {1, 2} classe di equivalenza per 3 = {3, 4}

Grafi

Grafo diretto

Nodi (Vertici)

$$V = \{ a, b, c, d, e \}$$

Archi

 $E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$

Grafo con etichette

Cammino

Un cammino è una sequenza di archi adiacenti (e, d), (d, c), (c, a)

Path

Path è un cammino in cui nessun arco è ripetuto

Simple path : nessun nodo è ripetuto

Ciclo

Ciclo: un cammino da un nodo(base) a se stesso

Ciclo semplice: solo la base è ripetuta

Euler Tour

Un ciclo che contiene ogni arco una sola volta

Ciclo Hamiltonian

Un ciclo semplice che contiene tutti i nodi

Trovare tutti I path semplici

(c, a) (c, e)

(c, a)

(c, a), (a, b)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

(c, a)

(c, a), (a, b)

(c, a), (a, b), (b, e)

(c, e)

(c, e), (e, b)

(c,e), (e, d) 10/04/2021

30

Alberi binari

Tecniche di dimostrazione

· dimostrazione per induzione

· dimostrazione per assurdo

Induzione

Abbiamo una serie di affermazioni ordinate

Se sappiamo

- per qualche b that P₁, P₂, ..., P_b sono vere
- per ogni k >= b che

$$P_1, P_2, ..., P_k$$
 implica P_{k+1}

Then

allora P_i è vera

Dimostrazione per induzione

· Base induttiva

trovare P₁, P₂, ..., P_b che sono vere

Ipotesi induttiva

Asssumiamo che P_1 , P_2 , ..., P_k sono vere, Per ogni $k \ge b$

Passo induttivo

Dimostrare che P_{k+1} è vera

Esempio

Theorem: Un albero binario di altezza n ha al massimo 2ⁿ foglie.

Proof by induction:

Sia L(i) il massimo numero di foglie

di ogni sottoalbero di altezza i

Vogliamo dimostrare che: L(i) <= 2i

· Base induttiva

$$\cdot$$
L(0) = 1 (nodo radice)

- Ipotesi induttiva
- •Assumiamo che L(i) \leftarrow 2ⁱ for all i = 0, 1, ..., k

- Step induttivo
- ·Dobbiamo dimostrare che L(k + 1) <= 2k+1

Step induttivo

Per ipotesi induttiva: $L(k) \leftarrow 2^k$

Step induttivo

$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

(possiamo addizionare al massimo due nodi per ogni

Foglia di livello k)

Remark

La ricorsione è un altra cosa

Esempio di funzione ricorsiva:

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 1, f(1) = 1$$

Dimostrazione per assurdo

Vogliamo provare che Pè vero

- · Assumiamo che P è falso
- arriviamo ad una conclusione sbagliata
- · quindi, P deve essere vero.

Esempio

Teorema:

$$\sqrt{2}$$

 $\sqrt{2}$ non è razionale

Dimostrazione:

Assumiamo per assurdo che sia razionale

$$\sqrt{2} = n/m$$

n e m non devono avere fattori comuni

Proviamo che questa affermazione è impossibile

$$\sqrt{2} = n/m$$
 $2 m^2 = n^2$

quindi, n² è pari quindi n è pari (quadrato di dispari è dispari)

$$2 m^2 = 4k^2 \qquad m^2 = 2k^2 \qquad m = 2 p$$

Allora, m e n hanno come fattore comune 2

Contradizione!