Abstract	

i

Sammendrag	
1	
1Volt	

	Preface	

Table of Con	ntents
List of Figures	ix
List of Tables	xi
Notation	xiii
1 Introduction	1
2 Theory	3
3 Method	5
4 Results	7
5 Discussion	9
6 Conclusions	11
References	13
A Appendix A	15

List of Figures	

	List of Ta	ıbles		

Notation	

Introduction			

2 Theory

In three dimensions, the matrix L is defined as

$$\boldsymbol{L} = \begin{pmatrix} \nabla^{2}\boldsymbol{C}^{-1} \left[\boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3}, \boldsymbol{\xi}_{3} \right] & 2\frac{\lambda_{3} - \lambda_{1}}{\lambda_{1}\lambda_{3}} \left\langle \boldsymbol{\xi}_{1}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle & 2\frac{\lambda_{3} - \lambda_{2}}{\lambda_{2}\lambda_{3}} \left\langle \boldsymbol{\xi}_{2}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle \\ 2\frac{\lambda_{3} - \lambda_{1}}{\lambda_{1}\lambda_{3}} \left\langle \boldsymbol{\xi}_{1}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle & 2\frac{\lambda_{3} - \lambda_{1}}{\lambda_{1}\lambda_{3}} & 0 \\ 2\frac{\lambda_{3} - \lambda_{2}}{\lambda_{2}\lambda_{3}} \left\langle \boldsymbol{\xi}_{2}, (\nabla \boldsymbol{\xi}_{3}) \boldsymbol{\xi}_{3} \right\rangle & 0 & 2\frac{\lambda_{3} - \lambda_{2}}{\lambda_{2}\lambda_{3}} \end{pmatrix}, \quad (2.1)$$

where the dependence of \boldsymbol{L} and its constituent parts on t, t_0 and \mathbf{x}_0 has been omitted for brevity. The distinction between so-called strong and weak hyperbolic LCSs is based upon whether or not \boldsymbol{L} is positive definite (Haller 2010; Farazmand and Haller 2011). By Sylvester's theorem, a square matrix is positive definite if and only if all of the leading principal minors of \boldsymbol{L} are positive. The term *leading principal minors* is defined as follows (Gilbert 1991):

Definition 1 (Principals of square matrices). Let A be an $n \times n$ matrix. For $1 \le k \le n$, the k^{th} principal submatrix of A is the $k \times k$ submatrix formed from the first k rows and first k columns of A. Its determinant is the k^{th} principal minor.

Thus, in three dimensions, this amounts to the simultaneous fulfillment of the three requirements

$$\nabla^2 C[\xi_3, \xi_3, \xi_3, \xi_3] > 0$$
 (2.2a)

$$2\frac{\lambda_3 - \lambda_1}{\lambda_1 \lambda_3} \nabla^2 C \left[\xi_3, \xi_3, \xi_3, \xi_3 \right] - 4 \left(\frac{\lambda_3 - \lambda_1}{\lambda_1 \lambda_3} \right)^2 \left\langle \xi_1, (\nabla \xi_3) \xi_3 \right\rangle^2 > 0 \tag{2.2b}$$

$$\det(\boldsymbol{L}) > 0 \tag{2.2c}$$

3	Method

Results			

5	Discussion

6	Conclusions	

References
Farazmand, M. and Haller, G. (2011). "Erratum and addendum to 'A variational theory of hyperbolic Lagrangian coherent structures' [Physica D 240 (2011) 547–598]". In: <i>Physica D: Nonlinear Phenomena</i> 241.4, pp. 439–441. ISSN: 0167-2789. Gilbert, G. T. (1991). "Positive Definite Matrices and Sylvester's Criterion". In: <i>The American Mathematical Monthly</i> 98.1, pp. 44–46.
Haller, G. (2010). "A variational theory of hyperbolic Lagrangian Coherent Structures". In:
Physica D: Nonlinear Phenomena 240.7, pp. 547-598. ISSN: 0167-2789.

Appendix A	A		