Input Augmentation with SAM: Boosting Medical Image Segmentation with Segmentation Foundation Model

Yizhe Zhang(1), Tao Zhou(1), Shuo Wang(2,3), Peixian Liang(4), YeJia Zhang(4), Danny Z. Chen(4)

- (1) Nanjing University of Science and Technology, Nanjing, China;
- (2) Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, China;
- (3) Shanghai Key Laboratory of MICCAI, Shanghai, China; (4) University of Notre Dame, USA.

Background:

Overview:

- The large language and vision models, such as GPT-3/GPT-4 and SAM (Segment Anything Model), are trained on massive amounts of data, primarily consisting of natural language and natural images.
- Large models can be considered as a form of general knowledge/information. How to efficiently and
 effectively utilize these general large models in medical image computing presents new opportunities and
 challenges in the field of medical image computing.

Code Snippet:

Please visit:

https://github.com/yizhezhang2000/SAMAug/ for the full training and testing codes.

Experimental Results:

Table 1. Cell segmentation results on the MoNuSeg dataset.

Model	SAMAug	AJI	F-score
Swin-UNet [2]	Х	61.66	80.57
U-Net [16]	Х	58.36	75.70
	✓	64.30	82.36
P-Net [23]	Х	59.46	77.09
	/	63.98	82.56
Attention UNet [14]	Х	58.76	75.43
	/	63.15	81.49

Fig. 3. Polyp segmentation results of the vanilla HSNet and SAMAug-enhanced HSNet

Contact: yizhe.zhang.cs@gmail.com