$$\dot{x} = P(t)x, \ P(t) = G(t)e^{Jt}, \ \det G(t) \neq ||G|| < M, \ \lambda_k = 1/\omega \ln \mu$$

Теорема. $\dot{x} = P(t)x$, $P(t + \omega) = P(t)$

1. Устойчиво по Ляпунову $\iff \forall |\mu_j| \leq 1$, причём фак не понимаю что написано. фото крч

⊳ см предыдущ теорему ⊲

$$|\mu_j| \le 1 \implies \mu \lambda_j \le 0$$
 (или дельта непон)

Устойчивость по первому приближению:

$$\dot{x} = F(t, \lambda), \ y = x = \bar{x} \implies$$

1.
$$\dot{y} = A(t)y + q(t, y)$$

2.
$$A(t) = \frac{\partial F}{\partial x}(t, \bar{x}(t))$$

$$3. \frac{\|g(t,y)\|}{\|y\|} \Longrightarrow 0, \|y\| \to 0$$

4.
$$A(t) \equiv A$$
 и $\mathbb{R}\lambda_i < 0 | \implies y \equiv 0$ асимптотически устойчиво

⊳ см т об устойчивости в малом ⊲

Если $A(t) = \text{const}, \ \frac{\|g(t,y)\|}{\|y\|} \Rightarrow 0.$ Следует ли устойчивость по Ляпунову??

Задача. Покажите, что если существует $\mu_k, |\mu_k| > 1 \implies$ система неустойчива.

Другой подход к устойчивости (Функция Ляпунова)

 $\dot{x} = f(t, \vec{x}), \ f: G \to \mathbb{R}^n, \ G = \{(t, \vec{x}) \mid \|x\| < a, \ t \in (t, \infty)\}$ — область однозначной разрешимости.

$$f(t,0) = 0, \ \forall t \in (\tau,\infty)$$

$$V: G \to \mathbb{R}: 1. V(t,0) = 0 \ \forall t \in (\tau, \infty), 2. V \in C^1(G)$$

Определим некий линейный оператор на $V:DV=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial x}F(t,x)$ – енто производная в силу уравнения

$$DV = \frac{d}{dt}V(t, x(t, x_0))$$

Функция Ляпунова V(x) (не зависящая от t явно) называется **определённо-положительной**, если в области G, при $x \neq 0$ V(x) > 0

Если V=V(t,x) определённо-положительна $\iff\exists W(x)$ - определённо-положительная, $V(t,x)\geq W(x)>0 \; \forall t,\; (x\neq 0)$

Функция Ляпунова **определённо-отрицательна** \iff -V(t,x) – определённо-положительна.

Функция Ляпунова V(t,x) положительна $\iff V(t,x) \ge 0$ в G.

Функция Ляпунова отрицательна, если она не положительна.

Теорема. Пусть существует функция Ляпунова $V(x) \in C^1(G), V$ - определённоположительна и $DV \leq 0$. Тогда решение x = 0 устойчиво по Ляпунову.

 $\triangleright \forall \varepsilon > 0 \ (\varepsilon < a)$. Рассмотрим $l = \min_{\|x\|=\varepsilon} V(x)$, по найденному l выберем $\delta > 0 \ (\delta < a)$ ε): $||x|| < \delta \implies V(x) < l$

 $\forall ||x_0|| < \delta \implies ||x(t, x_0)|| < \varepsilon$?:

От противного $\exists T > t_0 : \|x(T, x_0)\| = \varepsilon$ (при $t \in [t_0, T)$) $\|x(t, x_0)\| < \varepsilon$

 $DV = \frac{d}{dt}V(x(t,x_0)) \leq 0 \implies V(x(t,x_0))$ должна быть вот такой $\uparrow \implies$ not

 $V(x(T,x_0)) \leq V(x_0) < l \implies ||x(T,x_0)| < \varepsilon$ ПРОТИВОРЕЧИЕ!!! (там чета равенство где-то было) ⊲

Следствие. Если уравнение $\dot{x} = F(t,x)$ имеет в G определённо-положительный первый интрегал, не зависящий от $t \implies$ решение x = 0 устойчиво по Ляпунову.

Теорема. $\exists V(x) \in C^1(G)$ определённо-положительна и DV определённо-отрицательна.

Тогда решение x=0 асимтотически устойчиво. $-DV \ge W(x) > 0$

⊳ я устал я не смог это записать извинити ⊲

Теорема о неустойчивости $M^t = \{x : V(x) > 0, \ \|x\| < a\}, \ 0 \in \delta M^t$

 $\exists V(x)$ функция Ляпунова: 1. M^t для $VM^t \neq 0$ 2. $\forall x \in M^t$, $t \geq t_0$.

Лемма L(V(x)) = U(x) однозначно разрешимо $\iff \lambda^{(L)} \neq 0$

 $\lambda_j^{(L)} = \lambda_j + \lambda_k, \ j, k = 1, \dots, n$ собственные значения L.

 λ_i - соственные A с учётом ктм?

хихи я всё пропустил

$$\left(\widetilde{L}V(y)\right) = f(y)$$

$$\begin{pmatrix} \widetilde{L}V(y) \end{pmatrix} = f(y)
\left(f(y) \right)_{i} = \sum_{k_{1} + \dots + k_{n} = 2, k_{j} \ge 0} b_{i}^{(k_{1}, \dots, k_{n})} y_{1}^{k_{1}} y_{2}^{k_{2}} \dots y_{n}^{k_{n}}
K(x) \sum_{i} (k_{1}, \dots, k_{n}) k_{1} k_{n} k_{n}$$

$$V(y) = \sum_{k_1 + \dots + k_n = 2} c^{(k_1, \dots, k_n)} y_1^{k_1} \dots y_n^{k_n}$$

$$V(y) = \sum_{k_1 + \dots + k_n = 2} c^{(k_1, \dots, k_n)} y_1^{k_1} \dots y_n^{k_n}$$

$$b_i^{(k_1, \dots, k_n)} = (k_1 \lambda_1 + \dots + k_n \lambda_n) c_i^{(k_1, \dots, k_n)} \implies \lambda_{jk}^{(L)} = \lambda_j + \lambda_k$$

Лемма.
$$\frac{\partial V}{\partial x}Ax = V(x) = \sum c_{ij}x_ix_j \implies \exists !$$
 решения $V(x)$ $\varepsilon = \lambda_j + \lambda_k \neq 0$