

III. országos magyar matematikaolimpia XXX. EMMV

Déva, 2020. február 11–16.

VII. osztály

1. feladat.

- a) Határozd meg az $n \in \mathbb{N}^*$ értékét úgy, hogy $A = \frac{2020}{1 \cdot 3} + \frac{2020}{3 \cdot 5} + \dots + \frac{2020}{(2n-1)(2n+1)}$ természetes szám legyen!
- b) Igazold, hogy $\sqrt{(2^{2020} + 3^{2019} + 4^{2020})^{2020} + 2021}$ irracionális szám!
- c) Mutasd ki, hogy $\sqrt{2019 \cdot 2020 + \sqrt{2019 \cdot 2020 + \sqrt{2019 \cdot 2020}}} < 2020.$

2. feladat.

a) Az $x \neq -5$, $y \neq -7$ és $z \neq -9$ racionális számokra fennáll a következő aránysor:

$$\frac{x-5}{x+5} = \frac{y-3}{y+7} = \frac{z-1}{z+9}.$$

Számítsd ki az x, y és z értékét, ha x + y + z = 69.

b) Az $x \neq -5$, $y \neq -7$ és $z \neq -9$ racionális számokra fennáll a következő egyenlőség:

$$\frac{2020}{x+5} + \frac{2020}{y+7} + \frac{2020}{z+9} = 202.$$

Számítsd ki az $S = \frac{x-5}{x+5} + \frac{y-3}{y+7} + \frac{z-1}{z+9}$ összeg értékét!

- 3. feladat. Az ABCD konvex négyszögben legyen M és P az AB, illetve CD oldal felezőpontja. Igazold, hogy $AB \parallel CD$ akkor és csak akkor, ha $T_{AMPD} \cdot T_{MPCB} = \frac{T_{ABCD}^2}{4}$.
- **4. feladat.** Adott az ABCD négyzet. Legyen C_1 a B középpontú BA sugarú kör, valamint C_2 a D középpontú DA sugarú kör. Egy az A ponton átmenő tetszőleges egyenes a C_1 és C_2 köröket az E és F pontokban metszi. A C pontból az EF egyenesre húzott merőleges egyenes az EF-et M-ben, a C_1 kört másodszor P-ben metszi. A PA egyenes a CF egyenest N-ben, a C_2 kört másodszor R-ben metszi. Igazold, hogy:
 - a) az EFC egyenlő szárú derékszögű háromszög;
 - b) a *CPR* egyenlő szárú derékszögű háromszög;
 - c) az *AECR* négyszög paralelogramma;
 - d) EP = FR.