平成29年度日本留学試験(第1回)

試験問題

The Examination

平成29年度(2017年度)日本留学試験

理科

(80分)

【物理・化学・生物】

- ※ 3科目の中から、2科目を選んで解答してください。
- ※ <u>1科目を解答用紙の表面に</u>解答し、<u>もう1科目を裏面に</u>解答してください。
- I 試験全体に関する注意
 - 1. 係員の許可なしに、部屋の外に出ることはできません。
 - 2. この問題冊子を持ち帰ることはできません。
- Ⅱ 問題冊子に関する注意
 - 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
 - 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
 - 3. 各科目の問題は、以下のページにあります。

科目	^	<u>٠</u> — :	· i
物理	1	~	21
化学	23	~	37
生物	39	~	53

- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。
- Ⅲ 解答用紙に関する注意
 - 1. 解答は、解答用紙に鉛筆 (HB) で記入してください。
 - 2. 各問題には、その解答を記入する行の番号 **1**. **2**. **3**. …がついています。解答は、解答用紙(マークシート)の対応する解答欄にマークしてください。
 - 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*		*			
名 前						

化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「化学」を解答する場合は、右のように、解答用紙にある「解答科目」の「化学」を〇で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、採点されません。

計算には次の数値を用いること。また、体積の単位リットル(liter)はLで表す。

標準状態(standard state): 0℃, 1.01×10⁵ Pa(= 1.00 atm)

標準状態における理想気体 (ideal gas) のモル体積 (molar volume): 22.4 L/mol

気体定数 (gas constant) : $R = 8.31 \times 10^3 \text{ Pa·L/(K·mol)}$

アボガドロ定数(Avogadro constant): $N_A = 6.02 \times 10^{23}$ /mol

ファラデー定数 (Faraday constant): $F = 9.65 \times 10^4$ C/mol

原子量 (atomic weight): H:1.0 C:12 N:14 O:16

Na: 23 S: 32 Ca: 40 Br: 80

この試験における元素 (element) の族 (group) と周期 (period) の関係は下の周期表 (periodic table) の通りである。ただし、**H**以外の元素記号は省略してある。

問 1	次の分子①~⑤のうち,	共有電子対	(shared	electron pair)	の数と非共有電子	·対
	(unshared electron pair) O	数が等しいも	らのを,	一つ選びなさ	٧١°	1

① N_2 ② Cl_2 ③ CH_4 ④ NH_3 ⑤ H_2O

間2 周期表の第3周期 (third period) までの元素やそのイオン (ion) に関する次の記述 (a)~(e)のうち、正しいものが二つある。それらの組み合わせを、下の①~⑥の中から一つ選びなさい。

- (a) 炭素 C とケイ素 Si は L 殼 (L shell) の電子数 (number of electrons) が等しい。
- (b) フッ化物イオン F^- とアルミニウムイオン Al^{3+} の電子数は互いに等しい。
- (c) リチウム Li はヘリウム He よりもイオン化エネルギー (第一イオン化エネルギー: first ionization energy) が大きい。
- (d) フッ素 F は酸素 O よりも電子親和力 (electron affinity) が大きい。
- (e) マグネシウムイオン Mg^{2+} は酸化物イオン O^{2-} よりイオン半径 (ionic radius) が大きい。
- ① a, b ② a, c ③ a, e ④ b, d ⑤ c, d ⑥ d, e

問 3	り ある元素 X と酸素 C) は化合物 XO₂を	∵形成する。元素 Χ として	,この条件を満たす
	ものが次の(a)~(e)のう	うち,二つある。	それらの組み合わせとし	して正しいものを,
	下の①~⑥の中から一	つ選びなさい。		3

- (a) Al (b) Fe (c) Mg (d) Mn (e) Si
- ① a, b ② a, d ③ b, c ④ b, d ⑤ c, e ⑥ d, e
- 問4 次の気体①~⑤を、それぞれ同じ容積の容器に入れて同じ温度に保ったとき、 最も圧力が高くなるものを一つ選びなさい。ただし、いずれも理想気体(ideal gas) であるとする。
 - ① 2.8 g Ø C₂H₄
 - 2 3.4 g O H₂S
 - ③ 4.5 g の NO
 - ④ 1.4 g の CO
 - ⑤ 3.4 g Ø NH₃

問 5 メタノール (methanol) が完全燃焼 (complete combustion) するとき,反応する酸素 O_2 と生成する二酸化炭素 CO_2 との物質量 (amount of substance; mol) の比 $(O_2:CO_2)$ として正しいものを,次の①~⑥の中から一つ選びなさい。

① 4:1 ② 3:1 ③ 2:1 ④ 3:2 ⑤ 4:3 ⑥ 1:1

問6 20 ℃の水 100 g に対する硝酸カリウム KNO3 の溶解度(solubility)は 32 g である。20 ℃での硝酸カリウム飽和溶液(saturated solution)の質量パーセント濃度(mass percent concentration)は何%か。最も近い値を,次の①~⑤の中から一つ選びなさい。

① 3.1 ② 4.1 ③ 24 ④ 32 ⑤ 47

問7 炭酸水素ナトリウム NaHCO3 4.2gを,窒素 N2(27°C,1.0×10⁵ Pa)で満たされ た 1.0 L の容器に入れて密閉し、327 ℃ に加熱したところ、次の熱分解 (pyrolysis) が起こった。

 $2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$

反応が完結したとき、容器内の圧力は 327 °C で何 Pa か。最も近い値を次の①~ ⑥の中から一つ選びなさい。ただし、固体の NaHCO3 の体積は無視でき、また生成 | **7** | Pa する CO₂, H₂O は理想気体 (ideal gas) であるとする。

- (1) 1.2×10^5
- ② 2.5×10^5
- 3.2×10^5
- (4) 4.5×10^5 (5) 5.0×10^5
- $60 7.0 \times 10^{5}$

問8 酢酸 CH₃COOH の水溶液中では、次の電離平衡 (electrolytic dissociation equilibrium) が成立している。

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

この水溶液に次の操作(a)~(d)をおこなったとき、平衡 (equilibrium) が右に移動 するものが二つある。それらの組み合わせとして正しいものを、下の①~⑥の中から 8 一つ選びなさい。

- (a) 水を加える。
- (b) 酢酸ナトリウム CH3COONa を加える。
- (c) 水酸化ナトリウム NaOH を加える。
- (d) 塩化水素 HCI を通じる。
- ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d ① a, b

問9 次の操作 A, B により、それぞれ下の滴定曲線 (titration curve) a, b を得た。

操作 A: 0.1 mol/L の X の水溶液 10 mL に, 0.1 mol/L の Z の水溶液を加えた。 操作 B: 0.1 mol/L の Y の水溶液 10 mL に, 0.1 mol/L の Z の水溶液を加えた。

X, Y, Zの組み合わせとして正しいものを, 次表の①~⑥の中から一つ選びなさい。

	х	Υ	Z
①	HCI	H ₂ SO ₄	NH ₃
2	HCI	H ₂ SO ₄	NaOH
3	СН₃СООН	HCI	NH ₃
4	СН₃СООН	HCI	NaOH
6	СН₃СООН	H ₂ SO ₄	NH ₃
6	СН₃СООН	H₂SO₄	NaOH

9

問 10 次図で示される鉛蓄電池 (lead storage battery) に関する下の記述①~④のうち、正しいものを一つ選びなさい。

- ① 放電 (discharge) するとき、電流 (electric current) は Pb 電極から PbO₂ 電極へ流れる。
- ② 充電 (charge) するときは、外部電源の正極 (cathode) を Pb 電極に接続する。
- ③ Pb 電極の質量 (mass) は、放電により増える。
- ④ 希硫酸 dil. H₂SO₄ の密度 (density) は, 充電により小さくなる。

問 11 次の物質(a) \sim (c)のうち、硫酸 H_2SO_4 との反応で二酸化硫黄 SO_2 を発生するものはどれか。また発生する SO_2 を集める方法は下の(i) \sim (iii)のうちのどれか。それらの組み合わせとして正しいものを、下表の① \sim ⑥の中から一つ選びなさい。

- (a) Zn
- (b) FeS
- (c) Na_2SO_3
- (i) 上方置換

(upward delivery)

(downward delivery)

	Α	В
1	a	i
2	а	ii
3	b	i
4	b	iii
(5)	С	ii
6	С	iii

問	12	炭酸カルシウム	、CaCO₃ を強	熱したところ、白色の	固体が 14g生じた	こ。この反応に
	ょ	って発生した気	気体の体積は,	標準状態で何Lか。	最も近い値を,	次の①~⑥の
	中	から一つ選びな	さい。			12 L

① 1.4 ② 2.7 ③ 3.8 ④ 4.5 ⑤ 5.6 ⑥ 8.4

問 13 ハロゲン (halogen) X (X = F, Cl, Br, I) に関する次の記述(a)~(f)のうち、下線部が<u>誤っているもの</u>が二つある。それらの組み合わせを、下の①~⑥の中から一つ選びなさい。

- (a) Xは、すべて周期表の<u>17族</u>に属する。
- (b) X₂は、すべて<u>有色の物質</u>である。
- (c) X₂は、分子量(molecular weight)が大きいものほど、<u>沸点(boiling point)が</u> 高い。
- (d) X₂は、分子量が小さいものほど、酸化力 (oxidizing power) が強い。
- (e) X₂は、すべて常温·常圧 (normal temperature and pressure) で気体である。
- (f) X₂は、すべて水と反応しやすい。
- ① a, b ② a, c ③ b, d ④ c, e ⑤ d, f ⑥ e, f

- 問 14 金属とそのイオン (ion) に関する次の記述(a) \sim (e)のうち、正しいものが二つ ある。それらの組み合わせを、下の \mathbb{D} \sim \mathbb{G} の中から一つ選びなさい。
 - (a) 亜鉛イオン Zn²⁺ を含む酸性 (acidic) の水溶液に硫化水素 H₂S を通じると, 硫化亜鉛 ZnS の沈殿 (precipitate) が生じる。
 - (b) 水銀 Hg の合金 (alloy) は、アマルガム (amalgam) とよばれる。
 - (c) アルミニウム Al は,酸化アルミニウム水溶液 Al₂O₃ aq の電気分解 (electrolysis) で得られる。
 - (d) 黄銅 (brass) は、銅 Cu とスズ Sn との合金である。
 - (e) 鉛(Ⅱ)イオン Pb²⁺ を含む水溶液に硫酸ナトリウム Na₂SO₄ を加えると、硫酸 鉛(Ⅱ) PbSO₄ の沈殿が生じる。
 - ① a, b ② a, e ③ b, c ④ b, e ⑤ c, d ⑥ d, e

問 15 Ag⁺, Cu²⁺, Fe³⁺ の 3 種類の金属イオン (metal ion) を含む水溶液がある。この水溶液に次の操作 A, B をおこなった。A, B のそれぞれで生じた沈殿 (precipitate) X, Y に含まれる金属イオンは何か。それらの組み合わせとして正しいものを, 下表の①~⑥の中から一つ選びなさい。

操作A:希塩酸 dil. HCI を加えて、沈殿 X を得た。

操作**B**: 希塩酸を加えて生じた沈殿**X**をろ過 (filtration) して得たろ液 (filtrate) に, 硫化水素 H₂S を通じて沈殿**Y**を得た。

	Xに含まれる金属イオン	Yに含まれる金属イオン
1	$Ag^{\scriptscriptstyle{+}}$	Cu ²⁺
2	$Ag^{\scriptscriptstyle{+}}$	Fe ³⁺
3	Cu ²⁺	Ag⁺
4	Cu ²⁺	Fe ³⁺
(5)	Fe ³⁺	Ag⁺
6	Fe ³⁺	Cu ²⁺

問 16 ブタン CH₃CH₂CH₂CH₃ の 2個の水素原子 H を 2個の塩素原子 CI で置換 (substitution) した化合物の構造異性体 (structural isomer) はいくつあるか。正しいものを次の①~⑥の中から一つ選びなさい。なお、鏡像異性体 (enantiomer) は、構造異性体に含まれない。

① 3 ② 4 ③ 5 ④ 6 ⑤ 7 ⑥ 8

- 問 17 ベンゼン (benzene) に関する次の記述(\mathbf{a}) \sim (\mathbf{d})について、その正誤の組み合わせ として正しいものを、下表の① \sim ⑤の中から一つ選びなさい。
 - (a) ベンゼン分子では、すべての原子が同じ平面 (plane) の上にある。
 - (b) ベンゼンの分子式 (molecular formula) は、C₆H₆である。
 - (c) ベンゼンに常温 (normal temperature) で塩素 Cl₂ を含む水と反応させると, 塩素が付加 (addition) する。
 - (d) ベンゼンは、空気中で燃やすと、多量のすす (soot) を出して燃える。

	а	b	С	d
①	Œ	H	压	正
2	E	Œ	誤	正
3	正	誤	誤	正
4	誤	正	正	正
5	誤	正	正	誤

問 18 次表の $(a)\sim(d)$ の A 欄には反応に関わる操作を、B 欄にはそれによって得られる主な生成物(product)を示している。このうち、B 欄の生成物が誤っているものがこつある。それらの組み合わせを、下の \mathbb{O} へ \mathbb{O} の中から一つ選びなさい。

	Α	В
а	ベンゼン (benzene) に濃硝酸 conc. HNO3 と 濃硫酸 conc. H ₂ SO ₄ の混合物を作用させる。	SO₃H
b	触媒 (catalyst) を用いてトルエン (toluene) を 空気酸化 (air oxidation) する。	СООН
С	フェノール(phenol)の水溶液に臭素水 (bromine water)を加える。	OH Br Br
d	ベンゼンに鉄粉 (iron powder) を触媒として, 塩素 Cl ₂ を作用させる。	CI CI CI CI CI CI CI CI CI

① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d

問 19 あるアルケン (alkene) 1.4 g に臭素 Br_2 をじゅうぶんに付加 (addition) させたところ,不斉炭素原子 (asymmetric carbon atom) を 2 個含む生成物 (product) が 5.4 g 得られた。このアルケンとして正しいものを、次の①~⑥の中から一つ選びなさい。

19

- ① $H_2C=CHCH_2CH_3$
- ② $(CH_3)_2C=CH_2$
- ③ CH₃CH=CHCH₃

- ④ H₂C=CHCH₂CH₂CH₃
- ⑤ (CH₃)₂C=CHCH₃
- ⑥ CH₃CH=CHCH₂CH₃

問 20 次表の高分子(polymer)とそれに含まれる官能基(functional group)の組み合わせとして正しいものを、①~⑤の中から一つ選びなさい。 **20**

	高分子	官能基
①	ナイロン 66 (6,6-ナイロン) (nylon 6,6)	アミド結合 (amide bond)
2	フェノール樹脂 (phenol resin)	カルボニル基 (carbonyl group)
3	ポリアクリロニトリル (polyacrylonitrile)	エステル結合 (ester bond)
4	ポリエチレンテレフタラート (poly(ethylene terephthalate))	ヒドロキシ基 (hydroxy group)
(5)	ポリプロピレン (polypropylene)	エーテル結合 (ether bond)

化学の問題はこれで終わりです。解答欄の **21** ~ **75** はマークしないでください。 解答用紙の科目欄に「化学」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。