

STM32F103x6 STM32F103x8 STM32F103xB

Performance line, ARM-based 32-bit MCU with Flash, USB, CAN, seven 16-bit timers, two ADCs and nine communication interfaces

Preliminary Data

Features

- Core: ARM 32-bit CortexTM-M3 CPU
 - 72 MHz, 90 DMIPS with 1.25 DMIPS/MHz
 - Single-cycle multiplication and hardware division
 - Nested interrupt controller with 43 maskable interrupt channels
 - Interrupt processing (down to 6 CPU cycles) with tail chaining

Memories

- 32-to-128 Kbytes of Flash memory
- 6-to-20 Kbytes of SRAM
- Clock, reset and supply management
 - 2.0 to 3.6 V application supply and I/Os
 - POR, PDR, and programmable voltage detector (PVD)
 - 4-to-16 MHz quartz oscillator
 - Internal 8 MHz factory-trimmed RC
 - Internal 32 kHz RC
 - PLL for CPU clock
 - Dedicated 32 kHz oscillator for RTC with calibration

■ Low power

- Sleep, Stop and Standby modes
- V_{BAT} supply for RTC and backup registers
- 2 x 12-bit, 1 µs A/D converters (16-channel)
 - Conversion range: 0 to 3.6 V
 - Dual-sample and hold capability
 - Synchronizable with advanced control timer
 - Temperature sensor

DMA

- 7-channel DMA controller
- Peripherals supported: timers, ADC, SPIs, I²Cs and USARTs

- Debug mode
 - Serial wire debug (SWD) & JTAG interfaces
- Up to 80 fast I/O ports
 - 32/49/80 5 V-tolerant I/Os
 - All mappable on 16 external interrupt vectors
 - Atomic read/modify/write operations
- Up to 7 timers
 - Up to three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter
 - 16-bit, 6-channel advanced control timer:
 up to 6 channels for PWM output
 Dead time generation and emergency stop
 - 2 x 16-bit watchdog timers (Independent and Window)
 - SysTick timer: a 24-bit downcounter
- Up to 9 communication interfaces
 - Up to 2 x I²C interfaces (SMBus/PMBus)
 - Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control)
 - Up to 2 SPIs (18 Mbit/s)
 - CAN interface (2.0B Active)
 - USB 2.0 full speed interface

Table 1. Device summary

Reference	Root part number
STM32F103x6	STM32F103C6, STM32F103R6
STM32F103x8	STM32F103C8, STM32F103R8 STM32F103V8
STM32F103xB	STM32F103RB STM32F103VB

STM32F103xx Description

2.1 Device overview

Table 2. Device features and peripheral counts (STM32F103xx performance line)

	Peripheral	STM32	F103Cx	ST	M32F103	Rx	STM32	F103Vx
Flash	- Kbytes	32	64	32	64	128	64	128
SRAM	- Kbytes	10	20	10	2	0	2	0
Timers	General purpose	2	3	2	;	3	;	3
Ë	Advanced Control		1		1			1
	SPI	1	2	1		2	2	2
Communication	I ² C	1	2	1	:	2	2	2
Junic	USART	2	3	2	;	3	3	
nmo	USB	1	1	1	1		1	
0	CAN	1	1	1	1		1	
GPIOs	3	3	2	49 80				0
12-bit	synchronized ADC	2	2			2		
Numb	er of channels	10 ch	annels		1	6 channe	ls	
CPU f	requency				72 MHz			
Opera	ting voltage			2.	0 to 3.6 V	,		
Opera	ting temperature		-4	0 to +85	°C / -40 to	+105 °C		
Packa	ges	LQF	P48		LQFP64		LQFP100, BGA100	

Description STM32F103xx

Figure 1. STM32F103xx performance line block diagram

- 1. $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C).
- 2. AF = alternate function on I/O port pin.

STM32F103xx Pin descriptions

3 Pin descriptions

Figure 2. STM32F103xx performance line LQFP100 pinout

577

Pin descriptions STM32F103xx

Figure 3. STM32F103xx performance line LQFP64 pinout

Figure 4. STM32F103xx performance line LQFP48 pinout

STM32F103xx Pin descriptions

Figure 5. STM32F103xx performance line BGA100 ballout

	1	2	3	4	5	6	7	8	9	10
Α	PC14-1 OSC32_IN	PC13-1 ANTI_TAMP	(PE2)	(PB9)	(PB7)	(PB4)	(PB3)	(PA15)	(PA14)	APA13
В	PC15-, OSC32_OUT	(V _{BAT})	(PE3)	PB8	(PB6)	(PD5)	PD2	(PC11)	(PC10)	(PA12)
С	osc_in	Vss_5	(PE4)	(PE1)	(PB5)	(PD6)	(PD3)	(PC12)	(PA9)	(PA11)
D	OSC_OUT	V _{DD_5} '	(PE5)	(PEO)	воото	(PD7)	(PD4)	(PDO)	(PA8)	(PA10)
E	(NRST)	(PCD)	(PE6)	VSS_4	'Vss_3'	Vss_2	VSS_1	(PD1)	(PC9)	(PC7)
F	(PCO)	(PC1)	(PC3)	V _{DD_4}	V _{DD_3}	V_{DD_2}	V _{DD_1} ,	(NC)	(PC8)	(PC6)
G	V _{SSA} ,	PAO-WKUP	(PA4)	PC4	(PB2)	(PE10)	(PE14)	(PB15)	(PD11)	(PD15)
Н	V _{REF} -	(PA1)	(PA5)	(PC5)	(PE7)	(PE11)	(PE15)	(PB14)	(PD10)	(PD14)
J	V _{REF+}	(PA2)	(PA6)	(PB0)	(PE8)	(PE12)	(PB10)	(PB13)	(PD9)	(PD13)
K	(V _{DDA} ,	(PA3)	(PA7)	(PB1)	PE9	(PE13)	(PB11)	(PB12)	(PD8)	(PD12)

17/67

Pin descriptions STM32F103xx

Table 3. Pin definitions

Таріс	Pi		n ae			(2)		
BGA100	LQFP48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default alternate functions
А3	-	-	1	PE2/TRACECK	I/O	FT	PE2	TRACECK
В3	-	-	2	PE3/TRACED0	I/O	FT	PE3	TRACED0
СЗ	-	-	3	PE4/TRACED1	I/O	FT	PE4	TRACED1
D3	-	-	4	PE5/TRACED2	I/O	FT	PE5	TRACED2
E3	-	-	5	PE6/TRACED3	I/O	FT	PE6	TRACED3
B2	1	1	6	V_{BAT}	S		V_{BAT}	
A2	2	2	7	PC13-ANTI_TAMP ⁽⁴⁾	I/O		PC13	ANTI_TAMP
A1	3	3	8	PC14-OSC32_IN ⁽⁴⁾	I/O		PC14-OSC32_IN	
B1	4	4	9	PC15-OSC32_OUT ⁽⁴⁾	I/O		PC15-OSC32_OUT	
C2	-	-	10	V _{SS_5}	S		V _{SS_5}	
D2	-	-	11	$V_{\mathrm{DD_5}}$	S		$V_{DD_{-5}}$	
C1	5	5	12	OSC_IN	I		OSC_IN	
D1	6	6	13	OSC_OUT	0		OSC_OUT	
E1	7	7	14	NRST	I/O		NRST	
F1	-	8	15	PC0/ADC_IN10	I/O		PC0	ADC_IN10
F2	-	9	16	PC1/ADC_IN11	I/O		PC1	ADC_IN11
E2	-	10	17	PC2/ADC_IN12	I/O		PC2	ADC_IN12
F3	-	11	18	PC3/ADC_IN13	I/O		PC3	ADC_IN13
G1	8	12	19	V _{SSA}	S		V _{SSA}	
H1	-	-	20	V _{REF-}	S		V _{REF-}	
J1	-	-	21	V _{REF+}	S		V _{REF+}	
K1	9	13	22	V_{DDA}	S		V_{DDA}	
G2	10	14	23	PA0-WKUP/ USART2_CTS/ ADC_IN0/TIM2_CH1_ETR	I/O		PA0	WKUP/USART2_CTS ⁽⁶⁾ /AD C_IN0/ TIM2_CH1_ETR ⁽⁶⁾
H2	11	15	24	PA1/USART2_RTS/ ADC_IN1/TIM2_CH2	I/O		PA1	USART2_RTS ⁽⁶⁾ / ADC_IN1/ TIM2_CH2 ⁽⁶⁾
J2	12	16	25	PA2/USART2_TX/ ADC_IN2/ TIM2_CH3	I/O		PA2	USART2_TX ⁽⁶⁾ / ADC_IN2/ TIM2_CH3 ⁽⁶⁾
K2	13	17	26	PA3/USART2_RX/ ADC_IN3/TIM2_CH4	I/O		PA3	USART2_RX ⁽⁶⁾ / ADC_IN3/TIM2_CH4 ⁽⁶⁾
E4	-	18	27	V _{SS_4}	S		V _{SS_4}	
F4	-	19	28	V_{DD_4}	S		V_{DD_4}	

STM32F103xx Pin descriptions

Table 3. Pin definitions (continued)

labit	Pi			initions (continueu)		(z)		
BGA100	LQFP48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default alternate functions
G3	14	20	29	PA4/SPI1_NSS/ USART2_CK/ADC_IN4	I/O		PA4	SPI1_NSS ⁽⁶⁾ / USART2_CK ⁽⁶⁾ / ADC_IN4
НЗ	15	21	30	PA5/SPI1_SCK/ ADC_IN5	I/O		PA5	SPI1_SCK ⁽⁶⁾ / ADC_IN5
J3	16	22	31	PA6/SPI1_MISO/ ADC_IN6/TIM3_CH1	I/O		PA6	SPI1_MISO ⁽⁶⁾ / ADC_IN6/TIM3_CH1 ⁽⁶⁾
K3	17	23	32	PA7/SPI1_MOSI/ ADC_IN7/TIM3_CH2	I/O		PA7	SPI1_MOSI ⁽⁶⁾ / ADC_IN7/TIM3_CH2 ⁽⁶⁾
G4	-	24	33	PC4/ADC_IN14	I/O		PC4	ADC_IN14
H4	-	25	34	PC5/ADC_IN15	I/O		PC5	ADC_IN15
J4	18	26	35	PB0/ADC_IN8/ TIM3_CH3	I/O		PB0	ADC_IN8/TIM3_CH3 ⁽⁶⁾
K4	19	27	36	PB1/ADC_IN9/ TIM3_CH4	I/O		PB1	ADC_IN9/TIM3_CH4 ⁽⁶⁾
G5	20	28	37	PB2 / BOOT1	I/O	FT	PB2/BOOT1	
H5	-	-	38	PE7	I/O	FT	PE7	
J5	-	-	39	PE8	I/O	FT	PE8	
K5	-	-	40	PE9	I/O	FT	PE9	
G6	-	-	41	PE10	I/O	FT	PE10	
Н6	-	-	42	PE11	I/O	FT	PE11	
J6	-	-	43	PE12	I/O	FT	PE12	
K6	-	-	44	PE13	I/O	FT	PE13	
G7	-	-	45	PE14	I/O	FT	PE14	
H7	-	-	46	PE15	I/O	FT	PE15	
J7	21	29	47	PB10/I2C2_SCL/ USART3_TX	I/O	FT	PB10	I2C2_SCL/USART3_TX ⁽⁵⁾⁽⁶⁾
K7	22	30	48	PB11/I2C2_SDA / USART3_RX	I/O	FT	PB11	I2C2_SDA/ USART3_RX ⁽⁵⁾⁽⁶⁾
E7	23	31	49	V _{SS_1}	S		V_{SS_1}	
F7	24	32	50	V_{DD_1}	S		V_{DD_1}	
K8	25	33	51	PB12/SPI2_NSS / I2C2_SMBAI/ USART3_CK / TIM1_BKIN	I/O	FT	PB12	SPI2_NSS ⁽⁵⁾ /I2C2_SMBAI ⁽⁵⁾ / USART3_CK ⁽⁵⁾⁽⁶⁾ / TIM1_BKIN ⁽⁶⁾
J8	26	34	52	PB13/SPI2_SCK / USART3_CTS / TIM1_CH1N	I/O	FT	PB13	SPI2_SCK ⁽⁵⁾ / USART3_CTS ⁽⁵⁾⁽⁶⁾ / TIM1_CH1N ⁽⁶⁾
H8	27	35	53	PB14/SPI2_MISO / USART3_RTS / TIM1_CH2N	I/O	FT	PB14	SPI2_MISO ⁽⁵⁾ /USART3_RTS ⁽⁵⁾⁽⁶⁾ TIM1_CH2N ⁽⁶⁾

577

Pin descriptions STM32F103xx

Table 3. Pin definitions (continued)

Table			in de	finitions (continued)			T	
	Pi	ns			_	el ⁽²⁾	(0)	
BGA100	LQFP48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default alternate functions
G8	28	36	54	PB15/SPI2_MOSI TIM1_CH3N	I/O	FT	PB15	SPI2_MOSI ⁽⁵⁾ / TIM1_CH3N ⁽⁶⁾
K9	-	-	55	PD8	I/O	FT	PD8	
J9	-	-	56	PD9	I/O	FT	PD9	
H9	-	-	57	PD10	I/O	FT	PD10	
G9	-	-	58	PD11	I/O	FT	PD11	
K10	-	-	59	PD12	I/O	FT	PD12	
J10	-	-	60	PD13	I/O	FT	PD13	
H10	-	-	61	PD14	I/O	FT	PD14	
G10	-	-	62	PD15	I/O	FT	PD15	
F10	•	37	63	PC6	I/O	FT	PC6	
E10		38	64	PC7	I/O	FT	PC7	
F9		39	65	PC8	I/O	FT	PC8	
E9	•	40	66	PC9	I/O	FT	PC9	
D9	29	41	67	PA8/USART1_CK/ TIM1_CH1/MCO	I/O	FT	PA8	USART1_CK/ TIM1_CH1 ⁽⁶⁾ /MCO
C9	30	42	68	PA9/USART1_TX/ TIM1_CH2	I/O	FT	PA9	USART1_TX ⁽⁶⁾ / TIM1_CH2 ⁽⁶⁾
D10	31	43	69	PA10/USART1_RX/ TIM1_CH3	I/O	FT	PA10	USART1_RX ⁽⁶⁾ / TIM1_CH3 ⁽⁶⁾
C10	32	44	70	PA11 / USART1_CTS/ CANRX / USBDM/ TIM1_CH4	I/O	FT	PA11	USART1_CTS/ CANRX ⁽⁶⁾ / TIM1_CH4 ⁽⁶⁾ / USBDM
B10	33	45	71	PA12 / USART1_RTS/ CANTX / USBDP/ TIM1_ETR	I/O	FT	PA12	USART1_RTS/ CANTX ⁽⁶⁾ / TIM1_ETR ⁽⁶⁾ / USBDP
A10	34	46	72	PA13/JTMS/SWDIO	I/O	FT	JTMS/SWDIO	PA13
F8	-	-	73			Not	connected	
E6	35	47	74	V _{SS_2}	S		V _{SS_2}	
F6	36	48	75	V_{DD_2}	S		V _{DD_2}	
A9	37	49	76	PA14/JTCK/SWCLK	I/O	FT	JTCK/SWCLK	PA14
A8	38	50	77	PA15/JTDI	I/O	FT	JTDI	PA15
В9	-	51	78	PC10	I/O	FT	PC10	
В8	-	52	79	PC11	I/O	FT	PC11	
C8	-	53	80	PC12	I/O	FT	PC12	

STM32F103xx Pin descriptions

Table 3. Pin definitions (continued)

	Pi	ns				(z)		
BGA100	LQFP48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾		Main function ⁽³⁾ (after reset)	Default alternate functions
D8	5	5	81	PD0	I/O	FT	OSC_IN ⁽⁷⁾	
E8	6	6	82	PD1	I/O	FT	OSC_OUT ⁽⁷⁾	
В7		54	83	PD2/TIM3_ETR	I/O	FT	PD2	TIM3_ETR
C7	-	-	84	PD3	I/O	FT	PD3	
D7	-	-	85	PD4	I/O	FT	PD4	
В6	-	-	86	PD5	I/O	FT	PD5	
C6	-	-	87	PD6	I/O	FT	PD6	
D6	-	-	88	PD7	I/O	FT	PD7	
A7	39	55	89	PB3/JTDO/TRACESWO	I/O	FT	JTDO	PB3/TRACESWO
A6	40	56	90	PB4/JNTRST	I/O	FT	JNTRST	PB4
C5	41	57	91	PB5/I2C1_SMBAI	I/O		PB5	I2C1_SMBAI
B5	42	58	92	PB6/I2C1_SCL/ TIM4_CH1	I/O	FT	PB6	I2C1_SCL ⁽⁶⁾ / TIM4_CH1 ⁽⁵⁾⁽⁶⁾
A5	43	59	93	PB7/I2C1_SDA/ TIM4_CH2	I/O	FT	PB7	I2C1_SDA ⁽⁶⁾ / TIM4_CH2 ⁽⁵⁾ (6)
D5	44	60	94	BOOT0	I		BOOT0	
B4	45	61	95	PB8/TIM4_CH3	I/O	FT	PB8	TIM4_CH3 ⁽⁵⁾ (6)
A4	46	62	96	PB9/TIM4_CH4	I/O	FT	PB9	TIM4_CH4 ^{(5) (6)}
D4	-	-	97	PE0/TIM4_ETR	I/O	FT	PE0	TIM4_ETR ⁽⁵⁾
C4	-	-	98	PE1	I/O	FT	PE1	
E5	47	63	99	V_{SS_3}	S		V _{SS_3}	
F5	48	64	100	V_{DD_3}	S		V _{DD_3}	

- 1. I = input, O = output, S = supply, HiZ = high impedance.
- 2. FT= 5 V tolerant.
- 3. Function availability depends on the chosen device. Refer to *Table 2 on page 7*.
- 4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.
- 5. Available only on devices with a Flash memory density equal or higher than 64 Kbytes.
- 6. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, UM0306, available from the STMicroelectronics website: www.st.com.
- 7. For the LQFP48 and LQFP64 packages, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins.

Memory mapping STM32F103xx

4 Memory mapping

The memory map is shown in Figure 6.

Figure 6. Memory map

Figure 7. Pin loading conditions

Figure 8. Pin input voltage

STM32F103xx pin

C = 50 pF

ai14141

5.1.6 Power supply scheme

Figure 9. Power supply scheme

5.1.7 Current consumption measurement

Figure 10. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 4: Voltage characteristics*, *Table 5: Current characteristics*, and *Table 6: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 4. Voltage characteristics

Symbol	Ratings	Min	Max	Unit	
V _{DD} -V _{SS}	V_{DD} - V_{SS} External 3.3 V supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾		4.0		
V	Input voltage on five volt tolerant pin ⁽²⁾	V _{SS} -0.3	+5.5	V	
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} -0.3	V _{DD} +0.3		
$ \Delta V_{DDx} $	Variations between different power pins	50	50	mV	
V _{SSX} -V _{SS}	Variations between all the different ground pins	50	50 50 50 50		
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	Absolute max	on 5.3.11: ximum ratings sensitivity)		

All 3.3 V power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external 3.3 V supply.

Table 5. Current characteristics

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽¹⁾		
I _{VSS}	I _{VSS} Total current out of V _{SS} ground lines (sink) ⁽¹⁾		
	Output current sunk by any I/O and control pin	25	
I _{IO}	Output current source by any I/Os and control pin	-25	∞ Λ
	Injected current on NRST pin	± 5	mA
I _{INJ(PIN)} (2)(3)	Injected current on HSE OSC_IN and LSE OSC_IN pins	± 5	
	Injected current on any other pin ⁽⁴⁾	± 5	
ΣΙ _{ΙΝJ(PIN)} ⁽²⁾	Total injected current (sum of all I/O and control pins) ⁽⁴⁾	± 25	

All 3.3 V power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external 3.3 V supply.

I_{INJ(PIN)} must never be exceeded (see *Table 5: Current characteristics*). This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN} < V_{SS}.

^{2.} $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$.

^{3.} Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC characteristics.

^{4.} When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Table 6. Thermal characteristics

Symbol	Ratings	Value	Unit				
T _{STG}	Storage temperature range	-65 to +150	°C				
T _J	Maximum junction temperature (see Thermal characteristics)						

5.3 Operating conditions

5.3.1 General operating conditions

Table 7. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency		0	72	
f _{PCLK1}	Internal APB1 clock frequency		0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency		0	72	
V_{DD}	Standard operating voltage		2	3.6	V
V _{BAT}	Backup operating voltage		1.8	3.6	V
T _A	Ambient temperature range		-40	105	°C

5.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 8* are derived from tests performed under the ambient temperature condition summarized in *Table 7*.

Table 8. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VDD}	V riso/fall time rate		20		20	µs/V
	V _{DD} rise/fall time rate				20	ms/V

27/67

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 9* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 9. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26	V
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PLS[2:0]=001 (rising edge) 2.1	2.19	2.28	2.37	V
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27	V
V		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48	V
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38	V
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58	V
	Programmable voltage	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
V_{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.47	2.58	2.69	V
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
		PLS[2:0]=101 (rising edge)	2.57	2.68	2.79	V
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	V
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9	V
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8	V
		PLS[2:0]=111 (rising edge)	2.76	2.88	3	V
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst}	PVD hysteresis			100		mV
V	Power on/power down reset	Falling edge	1.8	1.88	1.96	V
$V_{POR/PDR}$	threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst}	PDR hysteresis			40		mV
T _{RSTTEMPO}	Reset temporization		1	2.5	4.5	mS

5.3.4 Embedded reference voltage

The parameters given in *Table 10* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 10. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	-45°C < T _A < +105°C	1.16	1.20	1.26	V
V _{REFINT}	internal reference voltage	-45°C < T _A < +85°C	1.16	1.20	1.24	V

5.3.5 Supply current characteristics

The current consumption is measured as described in *Figure 10: Current consumption measurement scheme*.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)

The parameters given in *Table 11* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 11. Maximum current consumption in Run and Sleep modes⁽¹⁾

					Max ⁽³⁾		
Symbol	Parameter	arameter Conditions F		Typ ⁽²⁾	T _A = 85 °C	T _A = 105 °C	Unit
		External clock with PLL, code running from	72 MHz	36	TBD	TBD	
current	Flash, all peripherals enabled (see RCC	Flash, all peripherals enabled (see RCC	48 MHz	30	TBD	TBD	
		register description):	36 MHz	22	TBD	TBD	
	External clock, PLL stopped, code running from Flash, all peripherals enabled (see RCC register description): Supply From K1= from K2, from K2 = from K2	24 MHz	21	TBD	TBD		
		8 MHz	10	TBD	TBD	A	
	Run mode	External clock with PLL, code running from	72 MHz	32	32 45 47	mA	
		RAM, all peripherals enabled (see RCC	48 MHz	22	31	33	
	register description): $f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK}$ External clock, PLL stopped, code running from RAM, all peripherals enabled (see RC register description):	register description):	36 MHz	13	18	20	
I_{DD}		PCLK1= HCLK/2, PCLK2 = HCLK	24 MHz	11	15		
		from RAM, all peripherals enabled (see RCC	8 MHz	4.5	TBD	TBD	
		External clock with PLL, code running from	72 MHz	22	35	37	
		RAM or Flash, all peripherals enabled (see	48 MHz	14	23	25	
	Supply	RCC register description):	36 MHz	13	22	24	
	current in	f _{PCLK1} = f _{HCLK} /2, f _{PCLK2} = f _{HCLK}	24 MHz	10	17	19	mA
	from RAM or Flash, all periphe (see RCC register description)	External clock, PLL stopped, code running from RAM or Flash, all peripherals enabled (see RCC register description): $f_{PCLK1} = f_{HCLK}/2$, $f_{PCLK2} = f_{HCLK}$	8 MHz	3.5	TBD	TBD	

- 1. TBD stands for to be determined.
- 2. Typical values are measured at T_A = 25 °C, and V_{DD} = 3.3 V
- 3. Data based on characterization results, tested in production at V_{Dmax} , f_{HCLK} max. T_{Amax} , and code executed from RAM.

477

Table 12. Maximum current consumption in Stop and Standby modes⁽¹⁾

			Тур	o ⁽²⁾	Max ⁽³⁾		
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD}	Low-speed and hig RC oscillators and	Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	TBD	24	TBD	TBD	
	in Stop mode	Regulator in Low Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	TBD ⁽⁴⁾	14 ⁽⁴⁾	TBD ⁽⁴⁾	TBD ⁽⁴⁾	μА
	Supply current in Standby mode ⁽⁵⁾	Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	TBD ⁽⁴⁾	2 ⁽⁴⁾	TBD ⁽⁴⁾	TBD ⁽⁴⁾	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	1 ⁽⁴⁾	1.4 ⁽⁴⁾	TBD ⁽⁴⁾	TBD ⁽⁴⁾	

^{1.} TBD stands for to be determined.

^{2.} Typical values are measured at T_A = 25 °C, V_{DD} = 3.3 V, unless otherwise specified.

^{3.} Data based on characterization results, tested in production at $V_{DD\ max}$, f_{HCLK} max. and T_A max (for other temperature.

^{4.} Values expected for next silicon revision.

To have the Standby consumption with RTC ON, add I_{DD_VBAT} (Low-speed oscillator and RTC ON) to I_{DD} Standby (when V_{DD} is present the Backup Domain is powered by V_{DD} supply).

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHZ and 2 wait states above).
- Ambient temperature and V_{DD} supply voltage conditions summarized in Table 7.

Table 13. Typical current consumption in Run and Sleep modes⁽¹⁾

Symbol	Parameter	Conditions	f _{HCLK}	Typ ⁽²⁾	Unit	
			72 MHz	21		
		Oscillator running at 8 MHz with PLL, code	48 MHz	18		
		running from Flash, all peripheral disabled (see RCC register description): f _{PCLK1} =	36 MHz	TBD	mA	
		f _{HCLK} /2, f _{PCLK2} =f _{HCLK}	24 MHz	13		
			16 MHz	TBD		
		Running on HSI clock, code running from	8 MHz	7.8		
			4 MHz	7		
	Supply	Flash, all peripheral disabled (see RCC	2 MHz	6.3	m Λ	
	current in	register description): f _{PCLK1} = f _{HCLK} /2, f _{PCLK2} =f _{HCLK.} AHB pre-scaler used to	1 MHz	6.2	mA	
	Run mode	reduce the frequency	500 kHz	6.1		
			125 kHz	5.95		
			8 MHz	2.3		
		Running on HSI clock, code running from RAM, all peripheral disabled (see RCC register description): f _{PCLK1} = f _{HCLK} /2, f _{PCLK2} =f _{HCLK} . AHB pre-scaler used to reduce the frequency	4 MHz	1.6	- mA	
I _{DD}			2 MHz	1.2		
			1 MHz	1		
			500 kHz	0.88		
			125 kHz	0.82		
			72 MHz	6	Л	
		Oscillator running at 8MHz with PLL, code	48 MHz	TBD	mA	
		running from Flash, all peripheral disabled (see RCC register description): f _{PCI K1} =	36 MHz	TBD		
		f _{HCLK} /2, f _{PCLK2} =f _{HCLK}	24 MHz	TBD		
	Supply current in		16 MHz	1		
	Sleep mode		8 MHz	TBD		
		Running on HSI clock, code running from Flash, all peripheral disabled (see RCC	4 MHz	TBD		
		register description): f _{PCLK1} = f _{HCLK} /2,	2 MHz	TBD	mA	
		f _{PCLK2} =f _{HCLK.} AHB pre-scaler used to reduce the frequency	1 MHz	TBD		
			500 kHz	TBD		

^{1.} TBD stands for to be determined.

47/

^{2.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

Table 14. Typical current consumption in Stop and Standby modes⁽¹⁾

Symbol	Parameter	Conditions	V _{DD}	Typ ⁽²⁾	Unit
I _{DD}	Supply current in	Regulator in Run mode,	3.3 V	24	
		Low-speed and high-speed internal RC oscillators OFF High-speed oscillator OFF (no independent watchdog)	2.4 V	TBD	
	Stop mode	Regulator in Low Power mode,	3.3 V	14 ⁽³⁾	μΑ
		Low-speed and high-speed internal RC oscillators OFF, High-speed oscillator OFF (no independent watchdog)	2.4 V	TBD ⁽³⁾	
	Supply current in	Low-speed internal RC oscillator and independent watchdog OFF	3.3 V	2 ⁽³⁾	μΑ
			2.4 V	TBD ⁽³⁾	
		Low-speed internal RC oscillator and independent watchdog ON	3.3 V	3.1 ⁽³⁾	
	Standby mode ⁽⁴⁾		2.4 V	TBD ⁽³⁾	
		Low-speed internal RC oscillator ON,	3.3 V	2.9 ⁽³⁾	
		independent watchdog OFF	2.4 V	TBD ⁽³⁾	
		Low apped oscillator and PTC ON	3.3 V	1.4 ⁽³⁾	
	Backup domain	Low-speed oscillator and RTC ON	2.4 V	1 ⁽³⁾	
IDD_VBAT	supply current	Low-speed oscillator OFF, RTC ON	3.3 V	0.5 ⁽³⁾	μA
		Low-speed oscillator OFF, KTC ON	2.4 V	TBD ⁽³⁾	

^{1.} TBD stands for to be determined.

^{2.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

^{3.} Values expected for next silicon revision.

^{4.} To obtain Standby consumption with RTC ON, add $I_{DD}V_{BAT}$ (Low-speed oscillator and RTC ON) to I_{DD} Standby.

5.3.6 External clock source characteristics

High-speed external user clock

The characteristics given in *Table 15* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 7*.

Table 15. High-speed external (HSE) user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾			8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}		0.3V _{DD}	V
t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		16			ns
t _{r(HSE)}	OSC_IN rise or fall time ⁽¹⁾				5	115
IL	OSC_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}			±1	μΑ

^{1.} Value based on design simulation and/or technology characteristics. It is not tested in production.

Low-speed external user clock

The characteristics given in *Table 16* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 7*.

Table 16. Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾			32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}		0.3V _{DD}	V
t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450			ns
t _{r(LSE)}	OSC32_IN rise or fall time ⁽¹⁾				5	115
ΙL	OSC32_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}			±1	μA

^{1.} Value based on design simulation and/or technology characteristics. It is not tested in production.

577

Figure 11. High-speed external clock source AC timing diagram

High-speed external clock

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 17*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		4	8	16	MHz
R _F	Feedback resistor			200		kΩ
C _{L1} C _{L2} ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽³⁾	R _S = 30 Ω		30		pF
i ₂	HSE driving current	V _{DD} = 3.3 V V _{IN} =V _{SS} with 30 pF load			1	mA

Startup

V_{SS} is stabilized

25

2

Table 17. HSE 4-16 MHz oscillator characteristics⁽¹⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

Oscillator Transconductance

startup time

 g_{m} $t_{\text{SU(HSE)}}^{(4)}$

- 2. For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 25pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2}, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included when sizing C_{L1} and C_{L2} (10 pF can be used as a rough estimate of the combined pin and board capacitance).
- 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- 4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Figure 13. Typical application with a 8-MHz crystal

1. R_{EXT} value depends on the crystal characteristics. Typical value is in the range of 5 to 6Rs.

47/

mA/V

ms

Low-speed external clock

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 18*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 18.	LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)
-----------	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor			5		MΩ
C _{L1} C _{L2}	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽¹⁾	$R_S = 30 \text{ k}\Omega$			15	pF
I ₂	LSE driving current	$V_{DD} = 3.3 \text{ V}$ $V_{IN} = V_{SS}$			1.4	μΑ
9 _m	Oscillator Transconductance		5			μA/V
t _{SU(LSE)} ⁽²⁾	startup time	V _{SS} is stabilized		3		s

^{1.} The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details

Figure 14. Typical application with a 32.768 kHz crystal

t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

5.3.7 Internal clock source characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

High-speed internal (HSI) RC oscillator

Table 19. HSI oscillator characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max ⁽³⁾	Unit
f _{HSI}	Frequency			8		MHz
۸۵۵	ACC _{HSI} Accuracy of HSI oscillator	$T_A = -40 \text{ to } 105 ^{\circ}\text{C}$	TBD	±3	TBD	%
ACC _{HSI}	Accuracy of Fior Oscillator	at T _A = 25°C	TBD	±1	TBD	%
t _{su(HSI)}	HSI oscillator start up time		1		2	μs
I _{DD(HSI)}	HSI oscillator power consumption			80	100	μΑ

^{1.} V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

LSI Low Speed Internal RC Oscillator

Table 20. LSI oscillator characteristics (1)

Symbol	Parameter	Conditions	Min	Тур	Max ⁽²⁾	Unit
f _{LSI}	Frequency		30		60	kHz
t _{su(LSI)}	LSI oscillator start up time				85	μs
I _{DD(LSI)}	LSI oscillator power consumption			0.65	1.2	μΑ

^{1.} $V_{DD} = 3 \text{ V}$, $T_A = -40 \text{ to } 105 \text{ °C}$ unless otherwise specified.

47/

^{2.} TBD stands for to be determined.

^{3.} Values based on device characterization, not tested in production.

^{2.} Value based on device characterization, not tested in production.

Wakeup time from low power mode

The wakeup times given in *Table 21* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 21. Low-power mode wakeup timings⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WUSLEEP} (2)	Wakeup from Sleep mode	Wakeup on HSI RC clock	0.75	TBD	μs
	Wakeup from Stop mode (regulator in run mode)	HSI RC wakeup time = 2 µs	4	TBD	
t _{WUSTOP} ⁽²⁾	Wakeup from Stop mode (regulator in low power mode)	HSI RC wakeup time = 2 μs, Regulator wakeup from LP mode time = 5 μs	7	TBD	μs
t _{WUSTDBY} (3)	Wakeup from Standby mode	HSI RC wakeup time = 2 µs, Regulator wakeup from power down time = 38 µs	40	TBD	μs

^{1.} TBD stands for to be determined.

5.3.8 PLL characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 22. PLL characteristics⁽¹⁾

Symbol	Parameter	Test Conditions		Unit		
Symbol	Farameter	rest Conditions	Min	Тур	Max ⁽²⁾	Oill
f	PLL input clock			8.0		MHz
f _{PLL_IN}	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock		16		72	MHz
f _{VCO}	VCO frequency range	When PLL operates (locked)	32		144	MHz
t _{LOCK}	PLL lock time				200	μs
t _{JITTER}	Cycle to cycle jitter (+/-3 Σ peak to peak)	V _{DD} is stable	TBD		TBD	%

^{1.} TBD stands for to be determined.

^{2.} The wakeup time from Sleep and Stop mode are measured from the wakeup event to the point in which the user application code reads the first instruction.

The wakeup time from Standby mode is measured from the wakeup event to the point in which the device exits from reset.

^{2.} Data based on device characterization, not tested in production.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

Table 23. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	$T_A = -40 \text{ to } +105 \text{ °C}$	20		40	μs
t _{ERASE}	Page (1kB) erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20		40	ms
t _{ME}	Mass erase time	$T_A = -40 \text{ to } +105 \text{ °C}$	20		40	ms
		Read mode f _{HCLK} = 72 MHz with 2 wait states, V _{DD} = 3.3 V			20	mA
I _{DD}	Supply current	Write / Erase modes $f_{HCLK} = 72 \text{ MHz},$ $V_{DD} = 3.3 \text{ V}$			5	mA
		Power-down mode / HALT, V _{DD} = 3.0 to 3.6 V			50	μΑ

^{1.} Values based on characterization and not tested in production.

Table 24. Flash memory endurance and data retention

Symbol	Parameter	Conditions		Unit		
	raiametei	Conditions	Min ⁽¹⁾	Тур	Max	o i i
N _{END}	Endurance		1	10		kcycles
t _{RET}	Data retention	T _A = 85 °C	30			Years

^{1.} Values based on characterization not tested in production.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 25*. They are based on the EMS levels and classes defined in application note AN1709.

Table 25. EMS characteristics⁽¹⁾

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3$ V, $T_A = +25$ °C, f_{HCLK} =48 MHz conforms to IEC 1000-4-2	TBD
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V _{DD} and V _{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 ^{\circ}\text{C},$ $f_{HCLK} = 48 \text{ MHz}$ conforms to IEC 1000-4-4	4A

^{1.} TBD stands for to be determined.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading.

Table 26. EMI characteristics

Symbol	Parameter	Conditions	Monitored	Max vs. [f	HSE/fHCLK]	Unit
	rarameter	Conditions	Frequency Band	8/48 MHz	8/72 MHz	Oiiii
		V 22VT 25°C	0.1 to 30 MHz	12	12	
c	Peak level	$V_{DD} = 3.3 \text{ V}, T_A = 2.5 \text{ °C},$ LQFP100 package	30 to 130 MHz	22	19	dΒμV
com	compliant with SAE J 1752/3	130 MHz to 1GHz	23	29		
		1132/3	SAE EMI Level	4	4	-

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size is either 3 parts (cumulative mode) or 3 parts \times (n + 1) supply pins (non-cumulative mode). The human body model (HBM) can be simulated. The tests are compliant with JESD22-A114A standard.

For more details, refer to the application note AN1181.

Table 27. ESD absolute maximum ratings⁽¹⁾

Symbol	Ratings	Conditions	Maximum value ⁽²⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _Δ = +25 °C	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	1A = +25 C	TBD	V

^{1.} TBD stands for to be determined.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 28. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105 °C	II level A

^{2.} Values based on characterization results, not tested in production.

5.3.12 I/O port pin characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 29* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

All unused pins must be held at a fixed voltage, by using the I/O output mode, an external pull-up or pull-down resistor (see *Figure 15*).

Table 29. I/O static characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IL}	Input low level voltage ⁽²⁾		-0.5		0.8	
V _{IH}	IO TC input high level voltage ⁽²⁾	TTL ports	2		V _{DD} +0.5	V
	IO FT high level voltage ⁽²⁾		2		5.5V	
V _{IL}	Input low level voltage ⁽²⁾	CMOS norto	-0.5		0.35 V _{DD}	V
V _{IH}	Input high level voltage ⁽²⁾	- CMOS ports	0.65 V _{DD}		V _{DD} +0.5	V
V	IO TC Schmitt trigger voltage hysteresis ⁽³⁾			200		mV
V_{hys}	IO TC Schmitt trigger voltage hysteresis ⁽³⁾			5% V _{DD} ⁽⁴⁾		mV
ı	Input leakage current (5)	V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os			±1	
l _{lkg}	Imput leakage current V	V _{IN} = 5 V 5 V tolerant I/Os			3	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁶⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ
C _{IO}	I/O pin capacitance			5		pF

^{1.} $V_{DD} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified.

43/67

^{2.} Values based on characterization results, and not tested in production.

^{3.} Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

^{4.} With a minimum of 100 mV.

^{5.} Leakage could be higher than max. if negative current is injected on adjacent pins.

Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

Figure 15. Unused I/O pin connection

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to \pm 0 mA, and sink \pm 20 mA (with a relaxed V_{OI}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 5*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 5*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 30* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 30. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port		0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	I_{IO} = +8 mA 2.7 V < V_{DD} < 3.6 V	V _{DD} -0.4		V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port		0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	I _{IO} =+ 8mA 2.7 V < V _{DD} < 3.6 V	2.4		V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA		1.3	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3		V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA		0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4		V

^{1.} The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 5* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .

5/

^{2.} The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 5 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} .

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 16* and *Table 31*, respectively.

Unless otherwise specified, the parameters given in *Table 31* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 31. I/O AC characteristics⁽¹⁾

I/O mode ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		2	MHz
10	t _{f(IO)out}	Output high to low level fall time ⁽³⁾	C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V		125	ns
	t _{r(IO)out}	Output low to high level rise time ⁽³⁾	-C _L = 50 pr, v _{DD} = 2 v to 3.6 v -		125	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		10	MHz
01	t _{f(IO)out}	Output high to low level fall time ⁽³⁾	$-C_1 = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		25	ns
	t _{r(IO)out}	Output low to high level rise time ⁽³⁾	C _L = 30 μr, ν _{DD} = 2 ν to 3.0 ν -		25	_
		$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		50	MHz	
		F _{max(IO)out} Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		30	MHz
			$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		20	MHz
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5	
11	t _{f(IO)out}	Output high to low level fall time ⁽³⁾	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V		12	ns
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5	113
	t _{r(IO)out}	Output low to high level rise time ⁽³⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V		8	
		noo amo	$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10		ns

^{1.} Refer to the Reference user manual UM0306 for a description of GPIO Port configuration register.

^{2.} The maximum frequency is defined in *Figure 16*.

^{3.} Values based on design simulation and validated on silicon, not tested in production.

STM32F103xx Electrical characteristics

Figure 16. I/O AC characteristics definition

5.3.13 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 29*).

Unless otherwise specified, the parameters given in *Table 32* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 7*.

Table 32.	NRST	niq	characteristics ⁽¹⁾
Iabie 32.	INUSI	PIII	characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST Input low level voltage		-0.5		0.8	V
V _{IH(NRST)}	NRST Input high level voltage		2		V _{DD} +0.5	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis			200		
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)}	NRST Input filtered pulse ⁽³⁾				100	ns
V _{NF(NRST)}	NRST Input not filtered pulse ⁽³⁾		300			μs

^{1.} TBD stands for to be determined.

3. Values guaranteed by design, not tested in production.

47/67

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

Figure 17. Recommended NRST pin protection

- The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 32. Otherwise the reset will not be taken into account by the device.

5.3.14 TIM timer characteristics

Unless otherwise specified, the parameters given in *Table 33* are derived from tests performed under ambient temperature, f_{PCLKX} frequency and V_{DD} supply voltage conditions summarized in *Table 7*.

Refer to Section 5.3.12: I/O port pin characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 33. TIMx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t _{res(TIM)}	Timer resolution time		1		t _{TIMxCLK}
	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9		ns
f _{EXT}	Timer external clock frequency on CH1 to CH4		0	f _{TIMxCLK} /2	MHz
		f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution			16	bit
t _{COUNTER} when	16-bit counter clock period		1	65536	t _{TIMxCLK}
	when internal clock is selected	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
t _{MAX_} COUNT	Maximum possible count			65536 × 65536	t _{TIMxCLK}
	iviaximum possible count	f _{TIMxCLK} = 72 MHz		59.6	S

^{1.} TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

5.3.15 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 34* are derived from tests performed under ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 7*.

The STM32F103xx performance line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. In addition, there is a protection diode between the I/O pin and V_{DD} . As a consequence, when multiple master devices are connected to the I^2C bus, it is not possible to power off the STM32F103xx while another I^2C master node remains powered on. Otherwise, the STM32F103xx would be powered by the protection diode.

The I²C characteristics are described in *Table 34*. Refer also to *Section 5.3.12: I/O port pin characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Table	3/	120	characteristic	_
iane	-54		characteristic	•

Symbol	Parameter	Standard	mode I ² C ⁽¹⁾	Fast mode	e I ² C ⁽¹⁾⁽²⁾	Unit
Symbol	raiailletei	Min	Max	Min	Max	Oille
t _{w(SCLL)}	SCL clock low time	4.7		1.3		0
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0(3)		0 ⁽⁴⁾	900 ⁽³⁾	
$t_{r(SDA)} \ t_{r(SCL)}$	SDA and SCL rise time		1000	20 + 0.1C _b	300	ns
$t_{f(SDA)} \ t_{f(SCL)}$	SDA and SCL fall time		300	20 + 0.1C _b	300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		μs
C _b	Capacitive load for each bus line		400		400	pF

^{1.} Values based on standard I²C protocol requirement, not tested in production.

f_{PCLK1} must be higher than 2 MHz to achieve the maximum standard mode I²C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I²C frequency.

The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

^{4.} The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 18. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Table 35. SCL frequency $(f_{PCLK1} = 36 \text{ MHz.}, V_{DD} = 3.3 \text{ V})^{(1)(2)(3)}$

f (IVII-)	I2C_CCR value
f _{SCL} (kHz)	$R_P = 4.7 \text{ k}\Omega$
400	TBD
300	TBD
200	TBD
100	TBD
50	TBD
20	TBD

^{1.} TBD = to be determined.

^{2.} R_P = External pull-up resistance, f_{SCL} = I^2C speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 7*.

Refer to Section 5.3.12: I/O port pin characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Table 36. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPI clock frequency	Master mode	TBD	TBD	MHz
1/t _{c(SCK)}	SFI Clock frequency	Slave mode	0	TBD	IVII IZ
$t_{r(SCK)}$ $t_{f(SCK)}$	SPI clock rise and fall time Capacitive load: C=50 pF			TBD	
$t_{su(NSS)}^{(2)}$	NSS setup time	Slave mode	0		
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	0		
$t_{\text{w(SCKL)}}^{(2)} \\ t_{\text{w(SCKL)}}^{(2)}$	SCK high and low time	Master mode, f _{PCLK} = TBD, presc = TBD	TBD		
t _{su(MI)} (2)	Data input setup time	Master mode	TBD		
$t_{su(MI)}^{(2)}_{(2)}$	Data input setup time	Slave mode	TBD		
		Master mode	TBD		
t _{h(MI)} (2)	Data input hold time	Slave mode	TBD		
$t_{h(MI)}^{(2)}_{t_{h(SI)}}^{(2)}$		Master mode, f _{PCLK} = TBD	TBD ⁽³⁾		
		Slave mode, f _{PCLK} = TBD	TBD ⁽³⁾		ns
t _{a(SO)} (2)(4)	Data output access	Slave mode	TBD	TBD	
'a(SO)` ´`	time	Slave mode, f _{PCLK} = TBD	TBD	TBD	
t _{dis(SO)} (2)(5)	Data output disable time	Slave mode	TBD	TBD	
. (2)(1)	Data autnut valid tima	Slave mode (after enable edge)		TBD	
t _{v(SO)} (2)(1)	Data output valid time	f _{PCLK} = TBD		TBD	
t _{v(MO)} ⁽²⁾⁽¹⁾	Data output valid time	Master mode (after enable edge)		TBD	
,		f _{PCLK} = TBD	TBD	TBD	
$t_{h(SO)}^{(2)}$		Slave mode (after enable edge)	TBD		
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	TBD		

- 1. TBD = to be determined.
- 2. Values based on design simulation and/or characterization results, and not tested in production.
- 3. Depends on f_{PCLK} . For example, if $f_{PCLK} = 8MHz$, then $t_{PCLK} = 1/f_{PLCLK} = 125$ ns and $t_{v(MO)} = 255$ ns.
- 4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
- Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

577

Figure 19. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\rm DD}$ and $0.7V_{\rm DD}$.

Figure 20. SPI timing diagram - slave mode and CPHA = 11)

Figure 21. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: $0.3V_{\rm DD}$ and $0.7V_{\rm DD}$.

USB characteristics

The USB interface is USB-IF certified (Full Speed).

Table 37. USB DC electrical characteristics

Symbol	Parameter Conditions		Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	s				
V _{DI}	Differential input sensitivity	I(USBDP, USBDM)	0.2		
V _{CM}	Differential common mode range	I Includes V _D range		2.5	V
V _{SE}	Single ended receiver threshold		1.3	2.0	
Output lev	els		•		•
V _{OL}	Static output level low	R _L of 1.5 k Ω to 3.6 V ⁽²⁾		0.3	V
V _{OH}	Static output level high	R_L of 15 k Ω to $V_{SS}^{(2)}$	2.8	3.6	1 v

^{1.} All the voltages are measured from the local ground potential.

577

^{2.} R_L is the load connected on the USB drivers

Figure 22. USB timings: definition of data signal rise and fall time

Table 38. USB: Full speed electrical characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
Driver char	racteristics				
t _r	Rise time ⁽¹⁾	C _L = 50 pF	4	20	ns
t _f	Fall Time ⁽¹⁾	C _L = 50 pF	4	20	ns
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal crossover voltage		1.3	2.0	V

Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

5.3.16 CAN (controller area network) interface

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 7*.

Note: It is recommended to perform a calibration after each power-up.

Table 39. ADC characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	ADC power supply		2.4V		3.6V	V
V _{REF+}	Positive reference voltage		2.0		V_{DDA}	٧
f _{ADC}	ADC clock frequency		0.6		14	MHz
f _S	Sampling rate	TBD	0.05		1	MHz
f-nio	External trigger frequency	f _{ADC} = 14 MHz			823	kHz
f _{TRIG}	Liternal ingger frequency	1ADC = 14 MHZ			17	1/f _{ADC}
V_{AIN}	Conversion voltage range ⁽²⁾		V_{SSA}		V_{DDA}	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{AIN}	External input impedance					kΩ
C _{AIN}	External capacitor on analog input		7	ГВD ⁽²⁾⁽³	3)	pF
I _{lkg}	Negative input leakage current on analog pins	V _{IN} < V _{SS,} I _{IN} < 400 μA on adjacent analog pin		5	6	μА
R _{ADC}	Sampling switch resistance				1	kΩ
C _{ADC}	Internal sample and hold capacitor					pF
tou	Calibration time	f _{ADC} = 14MHz		5.9 83		μs
t _{CAL}	Calibration time	1ADC = 141VII 12				1/f _{ADC}
t	Injection conversion latency	f _ 14 MHz			0.214	μs
t _{lat}	Injection conversion laterity	f _{ADC} = 14 MHz			3	1/f _{ADC}
t _S	Sampling time	f _{ADC} = 14 MHz	0.107		17.1	μs
t _{STAB}	Power-up time		0 0 1		1	μs
			1		18	μs
t _{CONV}	Total conversion time (including sampling time)	f _{ADC} = 14 MHz	14 (1.5 for sampli			1 /f

ADC characteristics⁽¹⁾ (continued) Table 39.

sampling time)

ADC accuracy (f_{PCLK2} = 14 MHz, f_{ADC} = 14 MHz, R_{AIN} <10 k Ω , V_{DDA} = 3.3 V)⁽¹⁾ Table 40.

Symbol	Parameter	Conditions	Тур	Max	Unit
E _T	Total unadjusted error ⁽²⁾		3	TBD	
E _O	Offset error ⁽²⁾		1	TBD	
E _G	Gain Error ⁽²⁾		2	TBD	LSB
E _D	Differential linearity error ⁽²⁾		3	TBD	
E _L	Integral linearity error ⁽²⁾		2	TBD	

^{1.} TBD = to be determined.

 $1/f_{ADC}$

+12.5 for successive approximation)

^{1.} TBD = to be determined.

Depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and reduced to allow the use of a larger serial resistor (R_{AIN}). It is valid for all f_{ADC} frequencies \leq 14 MHz.

During the sample time the input capacitance C_{AIN} (5 max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S After the end of the sample time t_S , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.
 Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.12 does not affect the ADC accuracy.
 affect the ADC accuracy.

Figure 23. ADC accuracy characteristics

Figure 24. Typical connection diagram using the ADC

- Refer to Table 39 for the values of R_{ADC} and C_{ADC}.
- C_{PARASITIC} must be added to C_{AIN}. It represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 25* or *Figure 26*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 25. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

Figure 26. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

57/67

5.3.18 Temperature sensor characteristics

Table 41. TS characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TL	V _{SENSE} linearity with temperature			±1.5		°C
Avg_Slope	Average slope			4.478		mV/°C
V ₂₅	Voltage at 25 °C			1.4		V
t _{START}	Startup time		4		10	μs

Package characteristics 6

△ ddd C В D1 (see note 5) >♦ Bottom view

Figure 27. LFBGA100 - low profile fine pitch ball grid array package outline

Table 42. LFBGA100 - low profile fine pitch ball grid array package mechanical data

Dim.		mm			inches			
Dim.	Min	Тур	Max	Min	Тур	Max		
A			1.700			0.067		
A1	0.270			0.011				
A2		1.085			0.043			
A3		0.30			0.012			
A4			0.80			0.031		
b	0.45	0.50	0.55	0.018	0.020	0.022		
D	9.85	10.00	10.15	0.388	0.394	0.40		
D1		7.20			0.283			
E	9.85	10.00	10.15	0.388	0.394	0.40		
E1		7.20			0.283			
е		0.80			0.031			
F		1.40			0.055			
ddd			0.12			0.005		
eee			0.15			0.006		
fff			0.08			0.003		
N (number of balls)		100						

577

Figure 28. Recommended PCB design rules (0.80/0.75 mm pitch BGA)

Figure 29. LQFP100 - 100-pin low-profile quad flat package outline

Table 43. LQFP100 – 100-pin low-profile quad flat package mechanical data

Di		mm			inches		
Dim.	Min	Тур	Max	Min	Тур	Max	
Α			1.60			0.063	
A1	0.05		0.15	0.002		0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.09		0.20	0.004		0.008	
D		16.00			0.630		
D1		14.00			0.551		
E		16.00			0.630		
E1		14.00			0.551		
е		0.50			0.020		
θ	0°	3.5°	7°	0°	3.5°	7°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
			Numbe	r of pins			
N	100						

61/67

Figure 30. LQFP64 – 64 pin low-profile quad flat package outline

Table 44. LQFP64 – 64 pin low-profile quad flat package mechanical data

abic TT.	<u> </u>	· p ion pio	ino quad na	it package in	oonamoar ac	itu .
Dim.	mm			inches		
	Min	Тур	Max	Min	Тур	Max
А			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.09		0.20	0.004		0.008
D		12.00			0.472	
D1		10.00			0.394	
E		12.00			0.472	
E1		10.00			0.394	
е		0.50			0.020	
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
	Number of pins					
N	64					

Figure 31. LQFP48 – 48 pin low-profile quad flat package outline

Table 45. LQFP48 – 48 pin low-profile quad flat package mechanical data

Dim.	mm			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
Α			1.60			0.063	
A1	0.05		0.15	0.002		0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.09		0.20	0.004		0.008	
D		9.00			0.354		
D1		7.00			0.276		
Е		9.00			0.354		
E1		7.00			0.276		
е		0.50			0.020		
θ	0°	3.5°	7°	0°	3.5°	7°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
	Number of pins						
N	48						

^{1.} Values in inches are converted from mm and rounded to 3 decimal digits.

6.1 Thermal characteristics

The average chip-junction temperature, T_J, in degrees Celsius, may be calculated using the following equation:

$$T_{.I} = T_{\Delta} + (P_{D} \times \Theta_{I\Delta}) \tag{1}$$

Where:

- T_A is the Ambient Temperature in °C,
- Θ_{JA} is the Package Junction-to-Ambient Thermal Resistance, in ° C/W,
- P_D is the sum of P_{INT} and $P_{I/O}$ ($P_D = P_{INT} + P_{I/O}$),
- P_{INT} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the Chip Internal Power.

P_{I/O} represents the Power Dissipation on Input and Output Pins;

Most of the time for the application $P_{I/O} < P_{INT}$ and can be neglected. On the other hand, $P_{I/O}$ may be significant if the device is configured to drive continuously external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_D = K / (T_J + 273 \,^{\circ}C)$$
 (2)

Therefore (solving equations 1 and 2):

$$K = P_D x (T_A + 273^{\circ}C) + \Theta_{JA} x P_D^2$$
 (3)

where:

K is a constant for the particular part, which may be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and P_D may be obtained by solving equations (1) and (2) iteratively for any value of P_D .

Table 46. Thermal characteristics

Symbol	Parameter	Value	Unit
-	Thermal resistance junction-ambient LFBGA100 - 10 x 10 mm / 0.5 mm pitch	41	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	46	
$\Theta_{\sf JA}$	Thermal Resistance Junction-Ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45	- °C/W
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	

STM32F103xx Order codes

7 Order codes

Table 47. Order codes

Part number	Flash program memory Kbytes	SRAM memory Kbytes	Package	
STM32F103C6T6	32	10	LQFP48	
STM32F103C8T6	64	20	LQFF40	
STM32F103R6T6	32	10		
STM32F103R8T6	64	20	LQFP64	
STM32F103RBT6	128	20		
STM32F103V8T6	64	20	LQFP100	
STM32F103VBT6	128	20	EQIT 100	
STM32F103V8H6	64	20	LFBGA100	
STM32F103VBH6	128	20	Li bgA100	

7.1 Future family enhancements

Further developments of the STM32F103xx performance line will see an expansion of the current options. Larger packages will soon be available with up to 512KB Flash, 64KB SRAM and with extended features such as EMI support, SDIO, I2S, DAC and additional timers and USARTS.