МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯСІКОРСЬКОГО»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Практикум №6

з курсу «Аналіз даних в інформаційнних системах» на тему:

«Кластеризація та класифікація»

Викладач: Ліхоузова Т.А. Виконав: студент 2 курсу групи ІП-15 ФІОТ Мєшков Андрій Ігорович

Практикум №6

Кластеризація та класифікація

Мета роботи: ознайомитись з

- методами класифікації та кластеризації;
- моделями, що використовують дерева прийняття рішень;
- інструментами факторного аналізу методом головних компонент та методом найбільшої подібності.

Завдання:

Скачати потрібні дані.

Основне завдання

Для даних по титаніку titanic.csv побудувати модель, в якій можна визначити, чи виживе пасажир, заповнивши решту параметрів. Використати декілька методів. Порівняти результати.

Додаткове завдання

Використовуючи файл Data2.csv

- 1. визначити, який регіон домінує в кластерах по ВВП на душу населення та шільності населення
- 2. вивести частотні гістограми всіх показників файла Data2.csv, використовуючи цикл
- 3. створити функцію, яка на вхід отримує два набори даних, перевіряє чи є лінійна залежність та виводить True чи False (будемо розуміти під «є лінійна залежність», якщо коефіцієнт кореляції по модулю більше 0,8)

Хід роботи:

Основне завдання:

```
Імпортуємо потрібні бібліотеки.
```

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import seaborn as sns
```

Зчитаємо файл.

df = pd.read_csv('titanic.csv', sep=',', decimal=',', encoding='windows-1251')

Проаналізуємо структуру. df.info()

df.head()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
 # Column
       PassengerId 891 non-null int64

        PassengerId
        891 non-null

        Survived
        891 non-null

        Pclass
        891 non-null

        Name
        891 non-null

        Sex
        891 non-null

        Age
        714 non-null

        SibSp
        891 non-null

        Parch
        891 non-null

        Ticket
        891 non-null

        Fare
        891 non-null

                                                            obiect
                               204 non-null
 11 Embarked 889 non-null
dtypes: int64(5), object(7)
        PassengerId Survived Pclass
                                                                                                                                             Sex Age SibSp Parch

        SibSp
        Parch
        Ticket
        Fare

        1
        0
        A/5 21171
        7.25

        1
        0
        PC 17599
        71.2833

                                                                                                                                                                                                                               Fare Cabin Embarked
                                                                                 Braund, Mr. Owen Harris
                                                                                                   Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.925 NaN
                                                                                                  Allen, Mr. William Henry male 35 0 0 373450 8.05 No. 11.00
                                                                      Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0
```

```
Підготовка та дослідження даних df = df.drop(columns=['PassengerId', 'Name']) df['Pclass'] = df['Pclass'].astype(str)
```

```
Poзділіть дані на навчальну та тестову вибірки. df_train, df_test = train_test_split( df, test_size=0.2, random_state=1
```

df_train.head()

	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
301	1	3	male	NaN	2	0	367226	23.25	NaN	Q
309	1	1	female	30	0	0	PC 17485	56.9292	E36	С
516	1	2	female	34	0	0	C.A. 34260	10.5	F33	S
120	0	2	male	21	2	0	S.O.C. 14879	73.5	NaN	S
570	1	2	male	62	0	0	S.W./PP 752	10.5	NaN	S

df_train.shape, df_test.shape

```
((712, 10), (179, 10))
```

```
Кількість виживших та загиблих відповідно в навчальному сеті df_train['Survived'].sum() df_train['Survived'].sum()

Дослідимо пропущені значення plt.figure(figsize=(10, 10))

value_is = mpatches.Patch(color='purple', label='Value') value_not = mpatches.Patch(color='aqua', label='No value')

plt.title('Heatmap missing values') plt.legend(handles=[value_is, value_not], bbox_to_anchor=(1, 1), loc='upper left') colours = ['purple', 'aqua'] sns.heatmap( df_train.isna(), cbar=False, cmap=sns.color_palette(colours), )

plt.show()
```


total = df.isnull().sum().sort_values(ascending=False)
percent = (df.isna().mean() * 100).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
missing_data.head()

Total	Percent
687	77.104377
177	19.865320
2	0.224467
0	0.000000
0	0.000000
	687 177 2 0

Видалимо непотрібні дані та скорегуємо потрібні df_train = df_train.drop(columns=['Cabin', 'Ticket']) df_test = df_test.drop(columns=['Cabin', 'Ticket']) df_train = df_train.fillna(df_train.mean()) df_test = df_test.fillna(df_test.mean())

 $df_train['Embarked'] = df_train['Embarked'].fillna(df_train['Embarked'].mode()[0])$

```
df_test['Embarked'] = df_test['Embarked'].fillna(df_train['Embarked'].mode()[0])
```

df_train['Age'] = df_train['Age'].fillna(df_train['Age'].mode()[0]) df_test['Age'] = df_test['Age'].fillna(df_train['Age'].mode()[0])

		, ,				
	Total	Percent			Total	Percent
Survived	0	0.0	Su	rvived	0	0.0
Pclass	0	0.0	ı	Pclass	0	0.0
Sex	0	0.0		Sex	0	0.0
Age	0	0.0		Age	0	0.0
SibSp	0	0.0		SibSp	0	0.0

```
Кодуємо категоріальні значення
```

```
all_features = pd.concat([df_train, df_test]).reset_index(drop=True)
```

all_features = pd.get_dummies(all_features)

df_train = all_features.iloc[:df_train.shape[0], :]

df_test = all_features.iloc[df_train.shape[0]:, :]

Розділіть дані на навчальні та тестові набори

X_train = df_train.drop(columns='Survived')

y_train = df_train['Survived']

X_test = df_test.drop(columns='Survived')

y test = df test['Survived']

X_train


```
Models = [
   ('Logistic Regression', LogisticRegression()),
   ('Decision Tree', DecisionTreeClassifier(max_depth=3, random_state=1)),
   ('Random Forest', RandomForestClassifier(max_depth=5)),
   ('AdaBoost Classifier', AdaBoostClassifier(learning_rate=0.3))
]
i = 0
best = "
for name, model in models:
   # Train model
   model.fit(X_train, y_train)

scores = cross_val_score(model, X_train, y_train, cv=5)
```

```
if accuracy>i:
   i = accuracy
   best = name
print(f'Best model is {best}')
 Logistic Regression:
 Scores - [0.75524476 0.7972028 0.82394366 0.83802817 0.79577465]
 Scores mean - 0.8020388062641584
 Accuracy - 0.7932960893854749
 Decision Tree:
 Scores - [0.7972028 0.8041958 0.83098592 0.85211268 0.80985915]
 Scores mean - 0.8188712695754947
 Accuracy - 0.770949720670391
 Random Forest:
 Scores - [0.7972028 0.79020979 0.8028169 0.80985915 0.78873239]
 Scores mean - 0.7977642076233626
 Accuracy - 0.7486033519553073
 AdaBoost Classifier:
 Scores - [0.72727273 0.79020979 0.78873239 0.83802817 0.78873239]
 Scores mean - 0.7865950950457992
 Accuracy - 0.7821229050279329
 Best model is Logistic Regression
```

print(f'{name}: \nScores - {scores} \nScores mean - {scores.mean()} \nAccuracy - {accuracy:}\n')

Додаткове завдання:

Predict on test data

y pred = model.predict(X test)

Evaluate model performance

accuracy = accuracy_score(y_test, y_pred)

Імпортуємо потрібні бібліотеки.

import pandas as pdimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeansimport plotly.express as px

```
Завантажемо файл. df = pd.read_csv('Data2.csv', sep=';', encoding='cp1252')
```

Дослідимо дані df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217 entries, 0 to 216
Data columns (total 6 columns):
     Column
                     Non-Null Count
                                     Dtype
 0
    Country Name
                     217 non-null
                                     object
 1
                     217 non-null
                                     object
    Region
 2
    GDP per capita
                    190 non-null
                                     object
 3
    Populatiion
                     216 non-null
                                     float64
    CO2 emission
 4
                     205 non-null
                                     object
 5
    Area
                     217 non-null
                                     object
dtypes: float64(1), object(5)
memory usage: 10.3+ KB
```

```
Зкорегуємо дані
```

```
df.rename(columns={"Populatiion": "Population"}, inplace=True)

df['Area'] = df['Area'].str.replace(',', '.').astype(float)

df["GDP per capita"] = df["GDP per capita"].str.replace(',', '.').astype(float)

df["CO2 emission"] = df["CO2 emission"].str.replace(',', '.').astype(float)

fix_gdp = df[df['GDP per capita'] < 0]

area_gdp = df[df['Area'] < 0]

fix_gdp['GDP per capita'] *= -1

area_gdp['Area'] *= -1

df[df['GDP per capita'] < 0] = fix_gdp

df[df['Area'] < 0] = area_gdp

df = df.fillna(df.mean())
```

	Country Name	Region	GDP per capita	Population	CO2 emission	Area
0	Afghanistan	South Asia	561.778746	34656032.0	9809.225000	652860.0
1	Albania	Europe & Central Asia	4124.982390	2876101.0	5716.853000	28750.0
2	Algeria	Middle East & North Africa	3916.881571	40606052.0	145400.217000	2381740.0
3	American Samoa	East Asia & Pacific	11834.745230	55599.0	165114.116337	200.0
4	Andorra	Europe & Central Asia	36988.622030	77281.0	462.042000	470.0

Створимо щільність населення

df['Population density'] = df['Population'] / df['Area']

Визначимо, який регіон домінує в кластерах по $BB\Pi$ на душу населення та щільності населення # Selecting the features for clustering

X = df[['GDP per capita', 'Population density']]

```
km_kwargs = {
  'init': 'random',
  'n_clusters': 4,
```

```
'n init': 10,
  'max iter': 300,
  'random state': 42.
# Using KMeans clustering algorithm to cluster the data
km = KMeans(**km kwargs)
km.fit(X)
# Adding the predicted cluster labels to the original data
df['Cluster'] = km.labels
# Grouping the data by region and cluster and calculating the mean for each group
region cluster means = df.groupby(['Region', 'Cluster']).mean()
# Sorting the data by GDP per capita and population density
sorted_data = region_cluster_means.sort_values(['GDP per capita', 'Population density'], ascending=False)
# Displaying the dominant region for GDP per capita and population density clusters
print('\n\n')
print("Dominant region for GDP per capita cluster: ", sorted data.loc[sorted data['GDP per
capita'].idxmax()].name[0])
print("Dominant region for population density cluster: ", sorted_data.loc[sorted_data['Population
density'].idxmax()].name[0])
print('\n\n')
  Dominant region for GDP per capita cluster:
                                                            Europe & Central Asia
  Dominant region for population density cluster:
                                                                 East Asia & Pacific
fig = px.scatter(
  df, x='GDP per capita', y='Population density', color=km.labels_,
  hover data=['Country Name', 'Region'],
  width=800, height=600
)
fig.update(layout_coloraxis_showscale=False)
fig.show()
```


Виведемо частотні гістограми всіх показників файла Data2.csv, використовуючи цикл

```
fig, axes = plt.subplots(2, 3, figsize=(15, 10))

labels = df.columns[2:]

for i in range(len(labels)):
    ax_i = (i // 3, i % 3)
    axes[ax_i].set_title(labels[i])
    axes[ax_i].grid('-')
    axes[ax_i].hist(df[labels[i]])
```

fig.delaxes(axes[1][2])

Створимо функцію.

```
import numpy as np
from scipy.stats import pearsonr
```

```
def linear_relationship(x, y):

# Calculating the correlation coefficient and p-value
corr, p_value = pearsonr(x, y)
print(f'Correlation coefficient: {corr}')

# Checking if the absolute value of the correlation coefficient is greater than 0.8
if abs(corr) > 0.8:
    return True
else:
    return False

# 1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)

# Negative Correlation with some noise
y = -x + np.random.normal(0, 10, 1000)
```

 $\underline{linear_relationship}(x, y)$

```
Correlation coefficient: -0.8223789298733445
```

Висновок

За отриманими даними можна зробити висновок, що

- В основному завданні найкращою моделлю виявилась LogisticRegression. Проте ефективність моделей можна покращити, краще обробивши дані та підібравши кращі гіперпараметри моделей.
- В додатковому завданні домінуючий регіон за ВВП Europe & Central Asia, а за Щільністю населення East Asia & Pacific.