Convolutional layer

Input
$$C_{in} \times H \times W$$

hyp. Kernel size $K_H \times K_W$

#filters C_{out}

Padding P

| Six | Si

Bias vector Cout

Output size (# output ele)
$$C_{out} \times H' \times W'$$

$$H' = \frac{(H - K + 2P)}{S} + 1$$

$$W' = \frac{(W - K + 2P)}{S} + 1$$

Memory usage For 32-bit floating point, bytes per ele: 4 (unit) weights
$$m = C_{in} \times C_{out} \times K_H \times K_W \times 4$$
 \odot biased $m = C_{out} \times 4$ \odot feature maps m :

$$input m = H_{in} \times W_{in} \times C_{in} \times 4$$
 \odot out $m = H' \times W' \times C_{out} \times 4$ \odot Total mem $= \frac{4}{50}$

Full Form	Units	Bytes
1 Bit	Binary Digit (0/1)	
1 Nibble	4 bits	
1 Byte	8 bits	10 1
1 kilobyte(KB)	1024 byte	10 bytes
1 Megabyte(MB)	1024 KB	2 ²⁰ bytes
1 Gigabyte (GB)	1024 MB	2 bytes
1 Terabyte(TB)	1024 GB	2 ⁴⁰ bytes
1 Petabyte(PB)	1024 TB	2 ⁵⁰ bytes
1 Exabyte(EB)	1024 PB	2 60 bytes
1 Zettabyte(ZB)	1024 EB	2 ⁷⁰ bytes
1 Yottabyte(YB)	1024 ZB	2 ⁸⁰ bytes
1 Brontobyte	1024 YB	2 ⁹⁰ bytes
1 Geopbyte	1024 Brontobyte	2 100 bytes

#Para (#weight) = weight shape + bias shape =
$$C_{in} \times C_{out} \times K_w \times K_H + C_{out}$$

#FLOP = # Output size
$$\times$$
 Oper per out ele
floating pt. oper. = $C_{out} \times H' \times W' \times C_{in} \times K_H \times K_W$

Pooling,

无可省可考数、
$$C_{in} = C_{out}$$
,有 $S. P. H'W'$ 计享同 conv.
FLOP $= C_{out} \times H' \times W' \times \{(K \times K - I) \ max - pooling \ K \times K \ avg - ~$

Flatten

无弓背号和 Output size Cin×H×W FLOP 0 For each class: confidence score the probability that the prediction is correct.

eg. person

10U intersection-to-parallel ratio (Jaccard)

1° 经定性核、→ 回图 → 面积交集除以并集

2° 经定矩阵 → pred 标记 → TP

TP + FP + FN ← 预测 多公FE a

TP, FP, FN 点 重量 海角程

2TP

2TP + FP + FN

Mode 27 k, 为下3

Precision = TP

TP + FP → 预则 6 1 预测精度

Non-Maximum Suppression

removes redundant bounding boxes from a set of detected objects

- 1 Bounding box generation
- Sorting by CS (wonf score)
- 3 Suppression:
 - 1) Select the box with the highest cs
 - 2) Cal lou with all other boxes
 - 3) Suppress overlapping boxes (exceeds a predefined low threshold)
 - 4) Repeat This continues until all boxes have been either selected as a detection or suppressed.

average precision (AP) src:Mean Average Precision (mAP) | Explanation and Implementation for Object Detection

The average of precision at different recall levels. It is calculated as the area under the precision-recinterpolation of precision at different recall points.

Improving one often comes at the cost of reducing the other.

AP for person class:

recall

- a. take all the predicted boxes that have person as the pred class
- b. sort them in the decreasing order of confidence scores
- c. For each, find the best matching ground truth box for matching (based on overlap(Area of this GT box has not been matched before, and its IoU us greater than some predefined thre as a TP. GT as matched.
- d. building TP, FP table

We got the precision and recall values using different confidence threshold. e.g. 0.83. 2 detection below it will be ignored.? ?

For all classes mean average precision link them -> precision recall curce -> Find the area under the curve (AUC-PR). For object detection tasks, AP (Average Precision) is equivalent to the area under the Precision-Recall curve.

In VOC 2007, AP is calculated using the 11-point interpolation method, but modern object detection frameworks often use a finer, continuous approximation to compute AP.

In VOC2012, mAP = meanPrecision * meanRecall

Doing this among all classes and doing the mean of the APs, will get mAP.