CSC 320 - Tutorial 1

- 1. Set Theory
- 2. Terminology
- 3. Proof Strategies

Set Theory

- A **set** is group of unique objects
- Objects in a set are called **elements** or **members**

 $x \in S$ x is an element of set S $x \notin S$ x is not an element of S

- The **empty set** (∅) is a set containing zero elements
- Sets can be **finite** or **infinite**
- Sets can be **countable** or **uncountable**.

 $S_1 = \{1, 13, 49\}$ finite set countable $S_3 = \{x \mid x \text{ is a real number}\}$ infinite set uncountable

- For sets A and B, we say A is a **subset** of B (A \subseteq B) if every member of A is also a member of B
- For sets A and B, we say A is a **proper subset** of B (A \subseteq B) if every member of A is also a member of B and A \neq B
- The **Power Set** (P(A)) the set containing all possible subsets of A

$$S = \{a, b, c\} \rightarrow P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

• Union (A \cup B)

$$S = \{x \mid x \in A \text{ or } x \in B\}$$

• Intersection (A \cap B)

$$S = \{x \mid x \in A \text{ and } x \in B\}$$

• Complement (Ā)

$$S = \{x \mid x \in A\}$$

• Set difference (A - B)

$$S = \{x \mid x \in A \text{ and } x \notin B\}$$

• Cartesian/Cross product (A x B)

$$S = \{ (x, y) \mid x \in A \text{ and } y \in B \}$$

Terminology

• An **alphabet** (Σ) is a finite set of symbols

$$\Sigma_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $\Sigma_2 = \{a, b, c, ..., x, y, z\}$
 $\Sigma_3 = \{0, 1\}$

- A **string** is a made up of zero or more symbols
- The **empty string** denoted as ε (epsilon) contains zero symbols
- The length of a string w is denoted as |w|

$$|hello| = 5$$
 $|1010| = 4$ $|\epsilon| = 0$

• Strings can be concatenated

Given
$$w_1 = 1001 w_2 = 1100$$
 then $w = w_1 w_2 = 10011100$

 A superscript denotes the number of occurrences of the string that precedes

$$0^4 = 0000$$
 $\#^2 = \#\#$ $(101)^2 = 101101$

- Σ^* is the set of all possible strings over the alphabet Σ Σ^* is **infinite** and **countable** (you can try the proof using $\Sigma = \{0, 1\}$)
- The set of all languages is the set containing all subsets of Σ^* a.ka. $P(\Sigma^*)$ $P(\Sigma^*)$ is **infinite** and **uncountable**
- A **language** is a set of strings over some alphabet

The set of binary numbers is a language over {0, 1}

• Languages can be **concatenated**

$$L = L_1L_2 = \{ w_1w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2 \}$$

- Given language L, **L*** (Kleene star) is the set of all strings obtained by concatenating zero or more strings in L
- Given language L, L⁺(closure) = LL*

Language Practice

1. What are some elements in Σ^* if $\Sigma = \{a, b\}$

- a. Is Σ^* finite or infinite?
- b. Is Σ^* countable or uncountable?
- 2. Given $L = \{0, 1, 00, 11\}$
 - a. What is the Kleene star of L, L^* ?

b. What is the Kleene plus of L, L^+ ?

3.	Describe the following sets:	
	a. $S_1 = \{x \mid x = 2m \text{ where } m > 5\}$	
	b. $S_2 = \{0^i 1^j \mid i = j \text{ and } i, j \in N\}$	

Proof Strategies

Proof by Contradiction

- 1. Assume the the opposite of what you want to prove
- 2. Proceed with proof with your assumption from step 1
- 3. Find a contradiction

Proof by Construction

1. Create / construct the object to prove it exists

Proof by induction

- 1. Prove that some property holds for a base case
- 2. Assume the property holds for some case x
- 3. Show that if the property holds for case x then it must hold for case x+1
- 4. Show that the property holds for all cases $i \ge x$

Contrapositive proof

Given $p \rightarrow q$, instead prove $\sim q \rightarrow \sim p$ *this proof might be easier

Proof Examples

1. Prove that $\sqrt{2}$ is an irrational number by contradiction.

۷.	Prove that there exists a program that can be used to calculate the sum of two numbers (proof by construction).		
	1		
3.	Assume that numbers are coloured either red or blue. Assume that 1 is colored blue. Also assume that if x is blue then $x+1$ is blue.		
	a. What can we deduce about the set of natural numbers? What color are they?		
	are they?		

4. [Bonus] Prove that for all natural numbers n, $1+2+3++n=(n(n+1))/2$ (proof by induction)