Reporte de Desempeño del Modelo

Modelo: Regresión Lineal con Gradiente Descendente (GD)

Dataset: toy_data.csv

1. Introducción

En este proyecto se implementó desde cero un modelo de **Regresión Lineal multivariable** utilizando **Gradiente Descendente**. El objetivo fue predecir el precio de viviendas en función de sus características: superficie, número de recámaras, baños, edad, garage y distancia al centro.

El análisis busca evaluar el desempeño del modelo en términos de ajuste, sesgo, varianza y capacidad de generalización.

2. Metodología

1. Introducción

Este proyecto implementa desde cero un modelo de **Regresión Lineal multivariable** usando **Gradiente Descendente** en Python puro.

El objetivo es predecir el precio de viviendas a partir de variables: superficie (sqft), número de recámaras (beds), baños (baths), edad (age), garage (garage) y distancia al centro (distance_center).

2. Metodología

- Partición de datos: 60% Train, 20% Validation, 20% Test.
- Parámetros de entrenamiento:
 - Tasa de aprendizaje: alpha = 0.01
 - Iteraciones: iters = 4000

• Regularización Ridge: $\lambda = 0$ (normal) y $\lambda = 5.0$ (con regularización).

• Métricas usadas:

- MSE (Error Cuadrático Medio)
- MAE (Error Absoluto Medio)
- R² (Coeficiente de determinación)

3. Resultados iniciales (modelo sin regularización)

Conjunto	MSE	MAE	R ²
Train	8659.84	51.52	0.832
Validation	8155.29	50.63	0.859
Test	8586.31	51.36	0.831

Gráficas

Observaciones

- Bias:
 - Como el R² es relativamente alto (~0.83) en todos los conjuntos, el modelo sí explica la mayor parte de la variabilidad → el sesgo es bajo.
 - Si fuera alto, veríamos R² < 0.5 y residuos con una forma claramente sesgada.
- Varianza:

- La diferencia entre Train (0.832) y Validation/Test (0.859 y 0.831) es mínima.
- Eso indica varianza baja, el modelo generaliza bien y no depende demasiado del conjunto de entrenamiento.
- Nivel de ajuste: underfit / fit / overfit
 - No es underfitting (porque R² no es bajo).
 - No es overfitting (porque no hay caída dramática de Train a Test).
 - Está en la categoría de **fit adecuado**: explica bien sin perder generalización.

4. Resultados con regularización Ridge ($\lambda = 5.0$)

Conjunto	MSE (Normal)	MSE (Ridge)	R ² (Normal)	R² (Ridge)
Train	8671.74	51.72	0.832	0.832
Validation	8184.46	51.40	0.859	0.859
Test	8623.08	51.25	0.830	0.831

Gráficas comparativas

Observaciones

- Con Ridge, el R² en test pasó de 0.831 a 0.830
- La diferencia entre Train y Test se redujo, indicando menor varianza.
- El sesgo aumentó un poco, pero el ajuste global empeoró un poco.

5. Diagnóstico

- Sesgo (Bias): bajo / medio / alto → explicación con base en los errores.
- Varianza: baja / media / alta \rightarrow explicación según diferencias Train vs Test.
- Nivel de ajuste: underfit / fit / overfit → justificación.

6. Conclusiones

- El modelo básico mostró un modelos bastante regulado sin overfitting ni underfitting.
- La regularización Ridge mantuvo los inidcadores muy parecidos, sin hacer un cambio tan grande
- Nivel final de ajuste: fit adecuado.
- Futuro trabajo: probar regresión polinómica, validación cruzada, datasets reales.