Conformal inference for cell type prediction leveraging the cell ontology

<u>Daniela Corbetta</u>¹, Ludwig Geistlinger², Livio Finos¹, Davide Risso¹

daniela.corbetta@phd.unipd.it

¹Department of Statistical Sciences, University of Padova ²Center for Computational Biomedicine, Harvard Medical School

EuroBioconductor 2024 - Sept 4, 2024

Motivating Application: cell type annotation

Aim: Starting from a set of already annotated cells (reference set), predict the cell type of a new, unknown cell

How:

- Choose a model
- Fit the model on the reference set
- Obtain predictions for the new cell

	Gene 1		$Gene\; K$	Cell type
Cell 1	1		5	B cell
Cell 2	0		5	B cell
:	:	٠	÷	:
$Cell\ m$	3		0	T (CD4+)

	Gene 1	 $Gene\; K$	Cell type
New cell	4	 0	?

Example

Data: 5163 cells from the mouse ileum sequenced with Merfish (Petukhov et al., 2022)

- 500 cells for the training set
- 4663 cells for the test set
- 15 different cell types

Model: Multinomial model with the 50 HVGs

Results: Accuracy=0.77

Should we rely on point predictions?

- The model does not provide only a label, but also estimated probabilities for each class
- These probabilities encode how sure the model is of the prediction

Should we rely on point predictions?

- The model does not provide only a label, but also estimated probabilities for each class
- These probabilities encode how sure the model is of the prediction

Should we rely on point predictions?

- The model does not provide only a label, but also estimated probabilities for each class
- These probabilities encode how sure the model is of the prediction

How can we translate the level of confidence?

- Instead of a point prediction, return a prediction set: a set of different labels that we think our new cell might be
- Intuitively, the prediction set has to include more labels when we are less sure of the point prediction
- Let Y_{new} be the true label of the new cell and $C(X_{new})$ be the prediction set. We define a level α and we want the set to be valid at a level 1α :

$$P(Y_{new} \in C(X_{new})) \ge 1 - \alpha.$$

→ Conformal inference¹

¹main reference Vovk et al. (2005), very easy and nice tutorial in Angelopoulos & Bates (2021)

Conformal inference

- Provides prediction sets that satisfy $P(Y_{new} \in C(X_{new})) \ge 1 \alpha$, it's distribution-free and works with every model (even terrible ones)
- Based on data splitting:
 - training set: annotated data used to fit the model
 - calibration set: annotated data that we need to calibrate the prediction sets construction
 - test set: possibly non-annotated data on which we want to do predictions. Need to be exchangeable with the calibration data

Conformal inference - algorithm

Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be the data in the calibration set.

- Compute predictions for the data in the calibration set
- ② Obtain the conformal score: $s_i = 1 \hat{p}(X_i)_{Y_i}, \ i = 1, \dots, n$ (i.e. 1 the predicted probabilities for the true class)
- **3** Compute \hat{q} , the $\lceil (n+1)(1-\alpha) \rceil / n$ empirical quantile of the conformal scores
- **4** Obtain predictions for the data in the test set and form prediction sets by including all the classes that have predicted probabilities $\geq 1-\hat{q}$

Cell ontology

Cell types are organized into a graph structure

Cell ontology

Cell types are organized into a graph structure

Cell ontology

Cell types are organized into a graph structure \rightarrow select an ancestor of the prediction

Application and methods' comparison

Random split:

- Training (model fit): 500 cells.
 Model: multinomial logit, 50 genes with the highest biological variance. Accuracy is 0.772.
- Calibration: 1000 cells. Used to compute the parameters for split conformal and graph-structured method.
- Test: 3663 cells.

Method	Coverage	Avg. Size	Avg. Dist.
Standard Conformal	0.901	1.842	1.564
Graph Conformal	0.903	3.577	1.003

scConform R package²

- Try our method with the scConform R package, available on Github but soon to be submitted to Bioconductor
- Check out the vignette for package functionalities

²https://github.com/ccb-hms/scConform

References

- Angelopoulos, A. N. & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.
- Petukhov, V., Xu, R. J., Soldatov, R. A., Cadinu, P., Khodosevich, K., Moffitt, J. R., & Kharchenko, P. V. (2022). Cell segmentation in imaging-based spatial transcriptomics. *Nature biotechnology*, 40(3), 345–354.
- Vovk, V., Gammerman, A., & Shafer, G. (2005). *Algorithmic learning in a random world*, volume 29. Springer.