Khan exercises

August 7, 2013

1 x4eabf393

Jimmy will be selling hot dogs at the football game. He bought hot dogs, buns and condiments for \$8 before the game and now he wants to calculate the profit he will make. The graph below shows how Sean's profit P depends on the number of hot dogs he sells at the game.

! [] (https://ka-perseus-graphie.s3.amazonaws.com/2d882eb9739295abe5dc10510ecf8f2564fd633e.png) + (https://ka-perseus-graphie.s4.amazonaws.com/2d882eb9739295abe5dc10510ecf8f2564fd633e.png) + (https://ka-perseus-graphie.s4.amazonaws.com/2d882eb9739295abe5dc10510ecf8f2564fd633e.png) + (https://ka-perseus-graphie.s4.amazonaws.com/2d882eb9739295abe5dc10510ecf8f2564fd633e.png) + (https://ka-perseus-graphie.s4.amazonaws.com/2d882eb9739295abe5dc10510ecf8f2564fd633e.png) + (https://ka-perseus-graphie.s4.amazonaws.com/2d882eb9739295abe5dc10510ecf8f2564fd633e.png) + (https://ka-perseus-graphie.graph

Write the equation which describes Jimmy's profit P as a function of the number n of hot dogs sold.

The equation which describes Jimmy's profit P as a function of the number of hot dogs sold n is [[? expression 1]]

Hint 1 The graph shows how the profit P varies as a function of the number of hot dogs sold n. Let's see how to use the graph of the function to find the equation of the function.

Hint 2 Looking at the graph, we see the initial value of the profit function is -8 dollars. If Jimmy doesn't sell any hot dogs (n = 0), his profit will be -8 dollars. A negative profit is a *loss*. Indeed, if Jimmy doesn't sell any hot dogs he will lose the money he invested to buy the ingredients.

Hint 3 Next, observe the slope of the graph is equal to 1. For each hot dog sold, the profit increases by \$1. This means Jimmy is selling the hot dogs for \$1 each.

Hint 4 Combining these facts about Jimmy's hot dog operation, we can now write his profit P as a function of the number of sales n as follows:

$$P = -8 + 1n$$
.

Hint 5 Note that the profit P is described by a *linear equation* $P = m \cdot n + b$, where b = -8 represents Jimmy's initial investment and m = 1 represents sale price of each hot dog.

The graph of the function P = -8 + 1n is a *line* which passes through the point (0, -8) and has slope equal to 1. We can understand the function which describes Jimmy's profit either through its equation or through its graph.

Hint 6 The equation which describes Jimmy's profit P as a function of the number of hot dogs sold n is $P = -8 + 1 \cdot n$.

2 x4d8feb39

https://www.khanacademy.org/devadmin/content/items/x4d8feb39

Sean works in sales. His monthly salary S depends on his sales performance. The graph below shows his salary as a function of the number of sales he makes during the month.

Find the equation which describes Sean's monthly salary S as a function of the number of sales n.

The equation which describes Sean's salary S as a function of the number of sales n is [[? expression 1]]

Hint 1 Were shown the graph of the function which describes how Sean's monthly salary S depends on the number of sales n. Let's use the information from the graph to figure out the equation which represents S as a function of n.

Hint 2 Looking at the graph we see that the initial value of the function S is \$1000. Even if Sean makes n=0 sales, he will still receive a monthly salary of \$1000.

Hint 3 Next, let's look at the slope of the graph. If Sean makes x = 2 sales, his salary will be S = \$1200. Thus, a change of 2 in the number of sales n produces a change of \$200 in the salary S. The rate of change of the salary

function is: $m = \frac{\text{change in } S}{\text{change in } n} = \frac{1200 - 1000}{2 - 0} = \frac{200}{2} = 100.$

Sean's salary increases by \$100 for each sale he makes.

Hint 4 Combining all the information we have about Sean's monthly salary, we can now write his salary S as a function of the number of sales n as follows:

S = 1000 + 100n.

Hint 5 Note that the salary S is described by a *linear equation* $S = m \cdot n + b$, where b = 1000 represents the initial value of the function and m = 100 represents the rate of change of the function.

The graph of the function S = 1000 + 100n is a *line* which passes through the point (0, 1000) and has slope equal to 100. We can understand the function which describes Sean's salary either through its equation or through its graph.

Hint 6 The equation which describes Sean's salary S as a function of the number of sales n is S = 1000 + 100n.

$3 \times 464f53e1$

https://www.khanacademy.org/devadmin/content/items/x464f53e1

Jessica works in sales. Her monthly salary is calculated as a base amount of 2000 plus a commission of 100 for each sale she closes. Assume n represents the number of sales Jessica closes and S represents her monthly salary.

Find the equation which represents Jessica's monthly salary S as a function of the number of sales n.

The equation which describes S as a function of n is [[? expression 1]]

Hint 1 We are told Jessica's salary S increases by \$100 for each sale she makes. Also, we know that she receives a base amount of \$2000. Let's see how we can use the information provided to figure out the function which describes Jessica's monthly salary.

Hint 2 The initial value of the salary function is \$2000. This is the base amount Jessica earns even when she makes n = 0 sales.

The rate of change of the salary function is \$100 per sale because this is how much she makes per sale. If n increases by one, her salary S will increase by \$100.

We can combine these two facts to find Jessica's monthly salary S as a function of the number of sales n:

$$S = 100n + 2000$$
.

Hint 3 Note that the salary S is described by a *linear equation* $S = m \cdot n + b$, where b = 2000 represents the initial value of the function and m = 100 represents the rate of change of the function.

Hint 4 The equation which describes S as a function of n is S = 2000 + 100n.

4 xd3aa970e

https://www.khanacademy.org/devadmin/content/items/xd3aa970e

Ron borrowed \$200 from his friend and promised to return the money by paying back \$20 each week. Assume x represents the time in weeks, and y represents the amount of money left to pay.

Find the equation which describes the loan remaining L as a function of time t.

Drag the two points to move the line into the correct position.

Hint 1 Were looking for the graph of the function which describes the amount of money y remaining for Ron to pay back to his friend as a function of the time x measured in weeks.

Hint 2 The initial value of Ron's debt is \$200. This is the amount Ron has to pay back. Ron's debt y decreases by \$20 each week. Ron's debt is described by the following linear equation:

$$y = m \cdot x + b$$
$$= -20 \cdot x + 200.$$

The initial value of the loan is b = 200. This is the amount Ron owes to his friend when x = 0. The rate of change of the function is m = -20 because each week Ron pays back \$20 to his friend.

Hint 3 The graph of the function $y = m \cdot x + b$ is a line with y-intercept equal to b and slope equal to m.

Therefore, the graph of Ron's debt y = 200-20x is a line which passes through the point (0,200) and has slope equal to -20:

$5 \quad xe3e0bf01$

https://www.khanacademy.org/devadmin/content/items/xe3e0bf01

The cost of your annual visit to the dentist is calculated as a base price of \$50 dollars for the checkup and cleaning plus an additional \$100 per cavity the dentist has to fix.

What is the equation which describes the cost C of the visit if the dentist finds n cavities?

The cost of the visit C as a function of the number of cavities n is described by [[? expression 1]]

Hint 1 (draft)

Don't worry, you are not at the dentistthis is just a math question!

The cost of the visit, in dollars, is described by the math expression 50+100n, where \$50 is the base price for the visit and \$100 is the price for repairing one cavity.

We have to evaluate this expression in the case of n=2 cavities.

Hint 2 Plugging in the value n = 2 into the formula 50 + 100n we obtain the following expression:

$$50 + 100n = 50 + 100 \cdot 2$$
$$= 50 + 200$$
$$= 250$$

Note the order in which we performed the operations when evaluating the expression. We computed the product before carrying out the addition.

Hint 3 The cost of the visit to the dentist will be \$250.

6 x66af7067

https://www.khanacademy.org/devadmin/content/items/x66af7067

Covi is driving from Montreal to New York City. The graph below shows his position x, measured in kilometers from the Canada-US border, as a function of time t, measured in hours.

![[(https://ka-perseus-graphie.s3.amazonaws.com/e8fa2c2d06cffc6ef871bbc124814ca2d111357d.png) **What is the equation that describes x as a function of t?**

The equation which describes x as a function of t is [[? expression 1]]

Hint 1 We are shown the graph of Covi's position function, and we want to find the equation that corresponds to this graph. The graph we see is a line. Observe that the slope of this line is equal to 100 and its y-intercept is -200.

Hint 2 If the graph of a function looks like line, then the function is described by a linear equation y = mx + b, where m is the *rate of change* of the function and b is the *initial value* of the function. To find the equation of the function, we must figure out the values of m and b.

Hint 3 The graph of this line passes through the point (0, -200). We say the y-intercept of the graph is equal to -200 because this is where the graph crosses the y-axis.

Lets now think in terms of the equation x = mt + b. When the input is t = 0 the output is x = -200:

$$y = mx + b$$
$$4 = m(0) + b$$
$$4 = b$$

So b = 4. The initial value of the function corresponds to the y-intercept of its graph.

Hint 4 If we can find the value of the rate of change m of the function we will be done. Observe that the graph passes through the point (1,6). When x = 1, y = 6. Lets plug these values into the equation:

$$y = mx + b$$

$$6 = m(1) + 4$$

$$6 = m + 4$$

$$2 = m$$

So m=2.

Now we can write the equation of the function whose graph we see in the figure:

```
y = 2x + 4
```

The rate of change m=2 corresponds to the slope of the graph, and the initial value b=4 corresponds to the the y-intercept of the graph.

Hint 5 The equation which describes y as a function of x is y = 2x + 4.

$7 ext{ } ext{x} 288363ab$

https://www.khanacademy.org/devadmin/content/items/x288363ab

Jane runs a company which manufactures bicycles. The operating costs of Janes company are of two types. Each month, the company must cover the fixed costs of \$3000 for rent and utilities. The production costs are \$100 per bicycle.

What is the equation which describes the costs C as a function of the number of bicycles produced x?

The equation that describes C as a function of x is [[? expression 1]]

Hint 1 Were trying to find the equation which corresponds to the operating costs C of Janes company as a function of the number of bicycles produced x. We know the fixed costs are \$3000 per month. Additionally, there is a production cost of \$100 per bicycle.

- Hint 2 The *fixed costs* of a company is the part of the costs that are present even when Janes company does not produce any items x = 0. We know that each month Jane has to pay 3000 dollars for rent and utilities and that this number does not depend on the number of bicycles produced.
- **Hint 3** Now let's look at the variable costs. The *variable* costs of a company depend on the number of bicycles produced.

If Jane produces x bicycles this month, her variable costs will be 100x dollars, since each bicycle costs \$100 to produce.

Hint 4 The total of the costs of Janes company is the sum of the fixed costs and the variable costs:

C = 100x + 3000 dollars.

Hint 5 Note that the total costs of the company are described by a linear equation of the form C = mx + b, where the number m corresponds to the *unit cost of production* the function as x increases and b is the *initial value* of the function.

Hint 6 The equation that describes C as a function of x is C = 100x + 3000.

8 x0b401d79

https://www.khanacademy.org/devadmin/content/items/x0b401d79

David is visiting a new city. He wants to rent a bicycle for a couple of hours to be able to better explore the city. The price he has to pay is \$4 per hour plus a base charge of \$10.

Write the function which represents the price P he will have to pay for h hours?

P = [?] expression 1] dollars

- **Hint 1** The price function corresponds the equation of a line $P = m\mathbf{h} + b$, where the m is the *slope* of the function and b is the *initial value*.
- **Hint 2** The number b corresponds to the fixed price of the bike rental, which is \$10.
- **Hint 3** The number m corresponds to the cost of the bike rental per hour. If David rents the bicycle for h hours, then the price will be 4h dollars plus the base charge.
- **Hint 4** The price function is P = 4h + 10 dollars.

9 x3d0ab2da

https://www.khanacademy.org/devadmin/content/items/x3d0ab2da

The graph below shows how the quantity y is related to the quantity x.

![(https://ka-perseus-graphie.s3.amazonaws.com/c55256c02b190a7aba6f2a02fb7d6bf49a8652da.png)

What is the equation that describes y as a function of x?

The equation which describes y as a function of x is [[? expression 1]]

Hint 1 We are shown the graph of a function, and we want to find the equation of the function which corresponds to this graph. The graph we see is a line. Observe that the slope of this line is equal to 2 and its y-intercept is -4.

Hint 2 If the graph of a function looks like line, then the function is described by a linear equation y = mx + b, where m is the *rate of change* of the function and b is the *initial value* of the function. To find the equation of the function, we must figure out the values of m and b.

Hint 3 The graph of this line passes through the point (0,4). We say the y-intercept of the graph is equal to 4 because this is where the graph crosses the y-axis.

Lets now think in terms of the equation y = mx + b. When the input is x = 0 the output is y = 4:

$$y = mx + b$$
$$4 = m(0) + b$$
$$4 = b$$

So b = 4. The initial value of the function corresponds to the y-intercept of its graph.

Hint 4 If we can find the value of the rate of change m of the function we will be done. Observe that the graph passes through the point (1,6). When x = 1, y = 6. Lets plug these values into the equation:

$$y = mx + b$$

 $6 = m(1) + 4$
 $6 = m + 4$
 $2 = m$

So m=2.

Now we can write the equation of the function whose graph we see in the figure:

```
y = 2x + 4
```

The rate of change m=2 corresponds to the slope of the graph, and the initial value b=4 corresponds to the the y-intercept of the graph.

Hint 5 The equation which describes y as a function of x is y = 2x + 4.

10 xfb15c7a4

https://www.khanacademy.org/devadmin/content/items/xfb15c7a4

Norm works in marketing. The table below shows the monthly price Norm pays for sending out emails to potential clients.

$$n$$
 of emails — price $P-$ — :-: — :-: — 0 — $\$10$ — 100 — $\$11$ — 200 — $\$12$ — 300 — $\$13$ — 500 — $\$15$ — 1000 — $\$20$ — 3000 — $\$30$ —

The equation that describes P as a function of n is [[? expression 1]]

Hint 1 We want to find the equation which corresponds to the monthly price P as a function of the number of emails sent n. We can look at the values if the table to figure out the equation of the function.

Hint 2 The more emails Observe that the *change* in P is proportional to the *change* in n. Going from n = 100 emails to n = 200, a change of 100 in n, corresponds to a price increase of \$1 dollar. If Paul wants to send n = 300, then the monthly price will increase by an additional \$1 dollar.

The rate of change of the price P as the number of emails n increases is equal to:

 $m = \frac{\$1}{100} = \frac{1}{100}$ dollars per email sent.

Lets make sure that the *price per email sent* remains the same when Norm sends more emails. Who knows, maybe there is a discount for large volumes of emails. When n changes from n = 1000 to n = 2000, the price increases from \$20 to \$30. This change in the price is consistent with the rate of $m = \frac{1}{100}$ dollars per email:

```
m \cdot 1000 = 1100 \cdot 1000 = 10 = 30 - 20 = change in price.
The price P increases at a rate of m = \frac{1}{100} dollars per email sent.
```

Hint 3 So can we figure out what the price function is now? Since the change in the price P is proportional to the change in the input n we know the price is described by a linear equation P = mn + b. The constant m corresponds to the *rate of change* of the price and b is the *initial value* of the function.

We already figured out that $m = \frac{1}{100}$ dollars per email, so what remains to do is find b, the initial value of the function.

Hint 4 The number b corresponds to price Norm has to pay even when he sends n = 0 emails. When x = 0 the price is P = 10 = m(0) + b, so b = 3000.

Hint 5 The price (in dollars) of sending n emails is therefore described the following linear equation: $P=\frac{1}{100}n+10.$

$$P = \frac{1}{100} n + 10.$$