# 2024 / 25

**School of Science and Computing** 

**\( +353 (0)51 302037** 

**☑** Eleanor.Reade@setu.ie

www.wit.ie/schools/science\_computing



# **Module Descriptor**

Multimedia Databases (Computing and Mathematics)

# Multimedia Databases (A14028)

Short Title: Multimedia Databases

**Department:** Computing and Mathematics

Credits: 5 Level: Advanced

#### Description of Module / Aims

This module will introduce the student to the principles and practice of designing distributed and object-oriented databases. The student will gain an understanding of multimedia database concepts, the architecture and design of a multimedia database. This module will also examine the procedures involved in the management and mining of multimedia databases.

## **Programmes**

#### **Indicative Content**

- Advanced Database Concepts: Distributed, Object-Oriented
- Multimedia Data & Metadata
- Modeling Multimedia (MM) Databases: Architectures, Information Models
- Managing MM Databases: Query Processing, Storage Management
- Mining MM Databases: Technologies & Techniques, Mining MM Data
- Management of Text, Image, and Video Databases

#### Learning Outcomes

On successful completion of this module, a student will be able to:

- 1. Appraise the concepts, standards, and systems relating to distributed and object-oriented databases.
- 2. Evaluate the semantic nature of multimedia data, classify, generate and extract metadata for multimedia data types.
- 3. Determine the requirements and structures for the design, implementation and management of a multimedia database application.
- 4. Critique technologies and techniques appropriate to mining a multimedia database.
- 5. Evaluate statistical methods for text analysis, appropriate technologies for image processing and moving images.
- 6. Design and implement a MM database for a business scenario.

### Learning and Teaching Methods

- The lectures will introduce the theory content to the student. The student will be encouraged to participate in class discussions and ask questions to support their learning process.
- The practical classes facilitate the student in implementing the theory learned in the lectures which in turn will form the continuous assessment.

#### **Learning Modes**

| Learning Type        | $\mathbf{F}/\mathbf{T}$ Hours | P/T Hours |
|----------------------|-------------------------------|-----------|
| Lecture              | 24                            |           |
| Practical            | 24                            |           |
| Independent Learning | 87                            |           |
|                      |                               |           |

### **Assessment Methods**

|                           | Weighting | Outcomes Assessed |
|---------------------------|-----------|-------------------|
| Final Written Examination | 50%       | 1,2,3,4,5         |
| Continuous Assessment     | 50%       |                   |
| Project                   | 50%       | $^{2,6}$          |

#### **Assessment Criteria**

- <40%: Unable to interpret and describe key concepts of distributed, object-oriented and multimedia databases
- 40%–49%: Be able to interpret and describe key concepts of distributed, object-oriented and multimedia databases.
- 50%-59%: Ability to discuss key concepts of the design, management and mining of multimedia databases and have the ability to discover and integrate related knowledge in other knowledge domains.
- 60%-69%: Be able to solve problems within the design, management and mining of multimedia databases by experimenting with the appropriate skills and tools.
- 70%–100%: All the above to an excellent level. Be able to analyse and design solutions to a high standard for a range of both complex and unforeseen problems through the use and modification of appropriate skills and tools.

#### Supplementary Material(s)

- Connolly, T. and C. Begg. Database Systems: A Practical Approach to Design, Implementation and Management. 6th ed.. NY: Addison-Wesley, 2015.
- Dunkley, L. Multimedia Databases: An Object Relational Approach. UK: Pearson Education, 2003.

#### Requested Resources

 $\bullet$  Room Type: Computer Lab