

Enrico Ribiani 4AUB

Esperienza laboratoriale bipolo ohmico-capacitivo

esperienza n°1

Indice

1	Scopo: Verificare il comportamento di un bipolo ohmico-capacitivo sperimental- mente.							
	1.1	Materiale	1					
2	2.1 2.2	Generalità bipolo RC	2 2 3					
3	3.1	Tabelle	3 3					
4	Con 4.1		4					
1.		copo:Verificare il comportamento di un bipolo ohmico apacitivo sperimentalmente.	-					
1.	C	•	_					
	ca 1 M	apacitivo sperimentalmente.	_					
	• B1	apacitivo sperimentalmente. Iateriale	_					
	• B1 • C0	apacitivo sperimentalmente. Iateriale readboard	_					
	• B1 • C0 • R6	apacitivo sperimentalmente. Iateriale readboard ondensatore da 10nF						
1.	• Re S	apacitivo sperimentalmente. Materiale readboard ondensatore da $10nF$ resistenza da $10k\Omega$	-					

1.2.1 Schema

Il primo circuito verrà utilizzato per effettuare le misure su R mentre il secondo che è l'equivalente del primo solo con R e C invertiti per effettuare le misurazioni su C.

2. Cenni teorici

2.1 Generalità bipolo RC

Il bipolo ohmico-capacitivo è formato da una sorgente di alimentazione, un resistore (R) e un condensatore (C) con resistenza e capacità costante, mentre la tensione di alimentazione varia in modo sinusoidale. Questo circuito può esere in serie o in parallelo, in questa esperienza laboratoriale prendiamo in considerazione quello in serie.

Nel bipolo sono presenti 3 tensioni, la tensione ai capi del resistore $\vec{V_R}$ quella ai capi del condensatore $\vec{V_C}$ e quella totale \vec{V} , mentre consideriamo solamente la corrente totale \vec{I} .

Come nel caso dei bipoli puramente resistivi \vec{V}_R sarà in fase con la corrente, analogamente come nel bipolo puramente capacitivo \vec{V}_C sarà sfasato di 90° $(\frac{\pi}{2})$ in ritardo rispetto alla corrente.

In base alla frequenza e alla capacità del condensatore la tensione V sarà più o meno sfasata.

2.2 Previsione comportamento

Una volta collegato il circuito all'oscilloscopio e regolato il generatore di funzione con i parametri desiderati ci aspetteremo di vedere due onde sinusoidali una sfasata all'altra di un tempo t in ritardo, quella in ritardo deve essere quella ai capi del condensatore.

3. Procedimento/Analisi

3.1 Tabelle

	С		R		
Vpp	t±	φ	Vpp	t±	φ
6V	-90μs	-32,4°	3,56V	170μs	61,2°

3.2 Calcoli

Incognite: \vec{Z} , V, V_R , V_C , I.

$$Vp = \frac{Vpp}{2} = \frac{7V}{2} = 3,5V$$

 $V = \frac{Vp}{\sqrt{2}} = \frac{3,50V}{\sqrt{2}} = 2,47V$

$$Vp_R = \frac{Vpp_R}{2} = \frac{3,56V}{2} = 1,78V$$

 $V_R = \frac{Vp_R}{\sqrt{2}} = \frac{1,78V}{\sqrt{2}} = 1,26V$

$$Vp_C = \frac{Vpp_C}{2} = \frac{6V}{2} = 3V$$

 $V_C = \frac{Vp_C}{\sqrt{2}} = \frac{3V}{\sqrt{2}} = 2,12V$

$$X_c = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi \cdot 1000 \cdot 10^{-9}} = 159,15k\Omega$$

$$\varphi_R : 2\pi = t : T
\varphi_R = \frac{2\pi \cdot t}{T}
\varphi_R = \frac{360 \cdot (-90 \cdot 10^{-6})}{0,001} = -32,4^{\circ}$$

$$\varphi_C : 2\pi = t : T
\varphi_C = \frac{2\pi \cdot t}{T}
\varphi_C = \frac{360 \cdot (170 \cdot 10^{-6})}{0,001} = 61.2^{\circ}$$

$$\varphi = \frac{-X_C}{R} = \frac{15.9}{10}k\Omega = -57.8^{\circ} \vec{Z} = (R - jX_C) = (10 - 15.915)k\Omega$$

$$Z = \sqrt{10000^2 + 15,9^2} = 18,8k\Omega$$

$$I = \frac{V}{Z} = \frac{2,47V}{18,8k\Omega} = 13mA$$

4. Conclusioni

L'esperienza ha verificato correttamente il comportamento di un bipolo ohmico-capacitivo soddisfacendo lo scopo.

Abbiamo osservato che gli sfasamenti sono corretti V_C è in ritardo rispetto alla corrente mentre V_R ha uno sfasamento nullo ossia è in fase la tensione totale appunto risulta avere uno sfasamento φ negativo.

Gli angoli φ_R e φ_C non risultano rappresentati dal diagramma vettoriale perché hanno uno sfasamento iniziale.

4.1 Diagramma vettoriale

