Hardy-Littlewood's maximal function

Contents

- 1. The weak type estimate
- 2. An L^2 -inequality
- 3 Harmonic functions and Fatou sectors
- 4. Application to analytic functions
- 5. Conformal maps and the Hardy space $H^1(T)$

Introduction. The results below are due to Hardy, Littlewood and Fatou. More recent work which foremost is due to Feffermann and Stein study the interplay between Hardy spaces and functions with a bounded mean oscillation. So let us first expose some results of this more advanced naure where details of proofs can be studied from the last chapter in the book [Koosis]. Let D be the unit disc. An L^1 -function u(z) in D is radially bounded if there exists a constant C such that

(*)
$$\frac{1}{\pi} \cdot \iint_{S_h} |u(z)| \cdot dx dy \le C \cdot h$$

for each sector

$$S_h = \{z \colon \theta - h/2 < \arg z\theta + h/2\}$$

and every h > 0. The least constant C for which (*) holds is denoted by $|u|^*$. Notice that $|u|^*$ in general is strictly larger than the L^1 -norm over D which occurs when we take $h = \pi$ above. If u satisfies (*) we define a function P_u on the unit circle by

$$P_u(\theta) = \frac{1}{\pi} \cdot \iint_D \frac{1 - |z|^2}{|e^{i\theta} - z|^2} \cdot u(z) \cdot dx dx y$$

With these notations one has

0.1 Theorem There exists an absolute constant C such that

$$|P_u|_{\text{BMO}} \leq C|u|^*$$

Thus, $u \mapsto P_u$ sends radially bounded $L^1(D)$ -functions to BMO(T). The proof of Theorem 0.1 is relatively easy and relies upon the following:

Exercise. Show that when u is radially bounded and H(z) is a harmonic function in D with continuous boundary values on T then

$$\iint_D H(z) \cdot u(z) \cdot dxdy = \int_0^{2\pi} H(e^{i\theta}) \cdot P_u(\theta) \cdot d\theta$$

A result by Fefferman. Using the duality between the Hardy space $H^1(T)$ and BMO(T) the following converse result was proved by Fefferman:

0.2 Theorem. Let $F(\theta) \in BMO(T)$. Then there exists a radially bounded $L^1(D)$ -function u and some $s(\theta) \in H^{\infty}(T)$ such that

$$F(\theta) = s(\theta) + P_u(\theta)$$

Now we turn to classic results where details of proofs are supplied.

1. The weak type estimate

Let f(x) be a non-negative function on the real x-line with support in a finite interval [0, A] for some A > 0. We assume that f is integrable, i.e.

$$\int_0^A f(x) \cdot dx < \infty$$

The forward maximal function of f is defined by

$$f^*(x) = \max_{h>0} \frac{1}{h} \int_x^{x+h} f(t) \cdot dt$$

It is clear that f^* is non-negative and supported by [0, A]. To each $\lambda > 0$ we get the set $\{f^* > \lambda\}$. We shall prove an upper bound for its measure.

1. Theorem For each $\lambda > 0$ one has the inequality

$$\mathbf{m}(\{f^* > \lambda\}) \le \frac{1}{\lambda} \cdot \int_{\{f^* > \lambda\}} f(x) \cdot dx$$

Proof. Introduce the primitive function

$$F(x) = \int_0^x f(t) \cdot dt$$

With $\lambda > 0$ we have the continuous function $F(x) - \lambda$ and define the forward Riesz set by:

$$\mathcal{E}_{\lambda} = \{x : \exists y > x \text{ and } F(y) - \lambda y > F(x) - \lambda y\}$$

Exercise. Show the equality

$$\mathcal{E}_{\lambda} = \{f^* > \lambda\}$$

Now \mathcal{E}_{λ} is an open set and hence a disjoint union of intervals $\{(a_k, b_k)\}$. With these notations one has

Exercise. Show the following for each interval (a_k, b_k) :

$$F(b_k) - \lambda \cdot b_k = \max_{a_k \le x \le b_k} F(x) - \lambda$$

In particular one has

$$\lambda(b_k - a_k) \le F(b_k) - F(a_k)$$

This holds for each k and after a summation over the forward Riesz intervals the requested inequality in Theorem 1 follows.

2. An L^2 -inequality. Using Theorem 1 we shall prove that

(*)
$$\int_{0}^{A} f^{*}(x)^{2} \cdot dx \le \int_{0}^{A} f(x)^{2} \cdot dx$$

We use general formulas for distribution functions which in particular give:

$$\int_0^A f^*(x)^2 \cdot dx = \int_0^\infty \lambda \cdot \mathbf{m}(\{f^* > \lambda\}) \cdot d\lambda$$

By Theorem 1 the last integral is majorised by

$$\int_0^\infty \left[\int_{\mathbf{m}(\{f^* > \lambda\}} f(x) \cdot dx \right] \cdot d\lambda \right] = \iint_{\{f^*(x) > \lambda\}} f(x) \cdot dx d\lambda = \int_0^A \left[\int_0^{f^*(x)} d\lambda \right] \cdot f(x) \cdot dx = \int_0^A f^*(x) \cdot f(x) \cdot dx$$

Finally, by the Cauchy-Schwarts in equality the last integral is majorised by the product of L^2 -norms

$$||f^*||_2 \cdot |f||_2$$

Hence

$$||f^*||_2^2 = \int_0^A f^*(x)^2 \cdot dx \le ||f^*||_2 \cdot |f||_2$$

and after a division with $||f^*||_2$ we get

Theorem 2. One has the inequality

$$||f^*||_2 \le |f||_2$$

Remark. In a similar way we get an L^2 -inequality using the backward maximal function

$$f_*(x) = \max_{h>0} \frac{1}{h} \int_{x-h}^x f(t) \cdot dt$$

In general we define the full maximal function

$$f^{**}(x) = \max_{a,b} \frac{1}{a+b} \int_{x-a}^{x+b} |f(t)| \cdot dt$$

with the maximum taken over pairs a, b > 0. Then we get the L^2 -inequality

$$||f^{**}||_2 \le |f||_2$$

3. A study of harmonic functions.

Let f(t) be complex-valued function on the real t-line such that

$$\int_{-\infty}^{\infty} \frac{|f(t)|}{1+t^2} \cdot dt < \infty$$

We also assume that

$$f^{**}(0) = \max \frac{1}{b+a} |\cdot \int_{-a}^{b} |f(t)| \cdot dt < \infty$$

where the maximum is taken over all pairs a, b > 0. Define the function V(z) = V(x + iy) in the upper half-plane y > 0 by

$$V(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} \cdot f(t) \cdot dt$$

Exercise. Prove the inequality

(1)
$$|V(x+iy)| \le \left(\frac{|x|}{y} + 2\right)\dot{f}^{**}(0)$$

Next, define Fatou's maximal function on the real x-line by

(3)
$$V^*(x) = \max_{y \le |s|} |V(x+s+iy)|$$

Deduce via translations of x that (1) gives the inequality

$$V^*(x) \le 3 \cdot f^*(x)$$

for all x where the maximal function $f^{**}(x)$ is defined for every x by

$$f^{**}(0) = \max \frac{1}{b-a} | \cdot \int_{x-a}^{x+b} |f(t) \cdot dt|$$

Next, apply the Remark after Theorem 2 and conclude that

$$\int_{-\infty}^{\infty} V^*(x)^2 \cdot dx \le 18 \cdot \int_{-\infty}^{\infty} f(x)^2 \cdot dx$$

Finally, by the construction V(x) = f(x) it follows that

(*)
$$||V^*||_2 \le 3\sqrt{2} \cdot \sqrt{\int_{-\infty}^{\infty} V(x)^2 \cdot dx}$$

4. Application to analytic functions.

Let F(z) be analytic in $\mathfrak{Im}(z) > 0$ and assume that there is a constant C such that

$$\int_{-\infty}^{\infty} \frac{|F(x+iy)|}{1+x^2} \cdot dx \le C \quad \text{for all} \quad y > 0$$

It means that F belongs to the Hardy space H^1 in the upper half-plane U_+ . We can divide out the zeros via a Blaschke product and write

$$F = B \cdot G$$

where G again belongs to H^1 and has no zeros in U_+ . Then \sqrt{G} is defined which gives a complex-valued harmonic function

$$V(z) = \sqrt{G(z)}$$

Now (*) from (3) gives the inequality

(**)
$$\int_{-\infty}^{\infty} |F^*(x)| \cdot dx \le 3\sqrt{2} \cdot \int_{-\infty}^{\infty} |F(x)| \cdot dx$$

where $F^*(x)$ is Fatou's maximal function for F defined for each real x by

$$F^*(x) = \max_{y \le |s|} |F(x + is + iy)|$$

Exercise. Use the conformal map from U_+ to the unit disc D defined by

$$w = \frac{z - i}{z + i}$$

Explain how the previous result is translated when we start from an analytic function f in D for which the boundary value function $f(e^{i\theta})$ is in $L^1(T)$.

5. Conformal maps and the Hardy space $H^1(T)$

Let $g(z) = \sum a_n z^n$ be analytic in D and assume that its boundary value function is integrable, i.e. there exists a constant C such that

$$\int_{0}^{2\pi} |g(re^{i\theta})| \cdot d\theta \le C$$

for every r < 1. In D there exists a single-valued brach of $\log(1-z)$ whose imaginary part stays in $(-\pi/2, \pi/2)$ and with $z = re^{i\theta}$ we have

$$\mathfrak{Im}(\log(1-z)) = -\frac{1}{2i} \cdot \sum_{n=1}^{\infty} r^n (e^{in\theta} - e^{-in\theta})$$

Exercise. 1 Deduce from the above that

(E.1)
$$\int_0^{2\pi} \mathfrak{Im}(\log(1 - re^{i\theta})) \cdot g(re^{i\theta}) \cdot d\theta = -\pi i \cdot \sum_{n=1}^{\infty} \frac{b_n}{n} \cdot r^{2n}$$

The case when $\{b_n\}$ are real and ≥ 0 . If this holds then (E.1) and the triangle inequality yield:

$$\pi \sum_{n=1}^{\infty} \frac{b_n}{n} \cdot r^{2n} \le \frac{\pi}{2} \cdot \int_0^{2\pi} |g(re^{i\theta})| \cdot d\theta$$

So if we introduce the $H^1(T)$ -norm

$$||g||_1 = \int_0^{2\pi} |g(e^{i\theta})| \cdot d\theta$$

it follows after a passage to the limit when $r \to 1$ that

$$\sum_{n=1}^{\infty} \frac{b_n}{n} \le \pi \cdot |g||_1$$

Application to conformal mappings. Let $\phi: D \to \Omega$ be a conformal mapping and assume that the complex derivative $\phi'(z)$ belongs to the Hardy space H^1 as above. Since $\phi' \neq 0$ in D there exists a single-valued analytic square-root:

$$\psi(z) = \sqrt{\phi'(z)}$$

Now ψ belongs to the Hardy space H^2 so if

$$\psi(z) = \sum b_n z^n \implies \sum |b_n|^2 < \infty$$

Let us then consider the H^2 -function

$$\Psi(z) = \sum |b_n| z^n$$

We get

$$\Psi^2(z) = \sum A_n z^n$$
 where $A_n = \sum_{k=0}^{k=n} |b_k| \cdot |b_{n-k}|$

and (*) gives:

(1)
$$\sum_{n=1}^{\infty} \frac{A_n}{n} \le \pi \cdot \int_0^{2\pi} |\Psi(e^{i\theta})|^2 \cdot d\theta$$

Next, consider the Taylor series

$$\phi'(z) = \sum a_n z^n \implies a_n = \sum_{k=0}^{k=n} b_k \cdot b_{n-k}$$

The triangle inequality gives $|a_n| \leq A_n$ for each n so (1) entails that

(2)
$$\sum_{n=1}^{\infty} \frac{|a_n|}{n} < \infty$$

Finally, consider the Taylor expansion of $\phi(z)$:

$$\phi(z) = \sum c_n z^n$$

Here

$$nc_n = a_{n-1} : n \ge 1$$

Then it is clear that (2) implies that the series $\sum |c_n| < \infty$. Hence we have proved the following result which is due to Hardy:

5. Theorem. Let $\phi(z)$ be a conformal map such that ϕ' belongs to H^1 . Then the Taylor series of ϕ is absolutely convergent.

Exercise. Let Ω be a Jordan domain whose boundary curve $\Gamma = \partial \Omega$ has a finite arc-length. Let $\phi \colon D \to \Omega$ be the conformal mapping which by results from (xx) extends to a homeomorphism

from the closed disc \bar{D} onto $\bar{\Omega}$.' Let $\ell(\Gamma)$ be the arc-length of Γ . Show that the derivative $\phi'(z)$ belongs to the Hardy space and

$$\int_0^{2\pi} |\phi'(e^{i\theta})| \cdot d\theta \le \ell(\Gamma)$$

From this it follows that the Taylor series of $\phi(z)$ is absolutely convergent.

A hint for the exercise. To each $n \ge 1$ we set $\epsilon = e^{2\pi i/n}$, i.e. the n:th root of the unity. Now ϕ yields a homeomorphism from T onto Γ . The definition of $\ell(\Gamma)$ gives the inequality below where we set $\epsilon^0 = 1$.

(1)
$$\sum_{k=1}^{n} |\phi(\epsilon^k \cdot e^{i\theta}) - \phi(\epsilon^{k-1} \cdot e^{i\theta})| \le \ell(\Gamma) \quad \text{for every} \quad 0 \le \theta \le 2\pi$$

Keeping n fixed we notice that the function

$$s_n(z) = \sum_{k=1}^{n} |\phi(\epsilon^k \cdot z) - \phi(\epsilon^{k-1} \cdot z)|$$

is subharmonic in D. So the maximum principle for subharmonic functions and (1) give

(2)
$$\max_{\theta} s_n(re^{i\theta}) \le \ell(\Gamma)$$

for each r < 1. Next, with r < 1 fixed the reader may verify the limit formula:

(3)
$$\lim_{n \to \infty} s_n(r) = \int_0^{2\pi} |\phi'(re^{i\theta})| \cdot d\theta$$

Hence (2-3) give

$$\int_0^{2\pi} |\phi'(re^{i\theta})| \cdot d\theta \le \ell(\Gamma)$$

Now the Brothers Riesz theorem implies that $\phi'(z)$ belongs to $H^1(T)$, i.e. the boundary value function $\phi'(e^{\theta})$ exists and belongs to $L^1(T)$.