

- Inventado por el profesor Barry Boehm
- Acrónimo de: Constructive Cost Model
- Se basa en el estudio de 63 proyectos software que cubren varios leguajes y áreas de programación
- Método público: se le pueden proponer mejoras.
- ▶ Libro: Software Engineering Economics

- ▶ Entrada al método:
 - Tamaño del software a realizar (líneas:KLSI=KLOC)
- Salidas del método:
 - Esfuerzo del equipo de desarrollo (personas.mes MM)
 - Duración del proyecto: Unidad de tiempo (meses del calendario)

3

Método COCOMO 81

- La estimación puede hacerse:
 - sobre el proyecto completo (MM total)
 - por fases
 - Diseño del producto
 - ▶ Codificación y pruebas unitarias
 - Integración y pruebas

- Esfuerzo total (MM)= A * (tamaño^B)
 - Tamaño en KLOC
- Duración (meses) = C * (Esfuerzo ^D)
- Cada categoría de proyecto posee sus propios parámetros A, B, C y D.

- Esfuerzo total (MM)= A * (tamaño^B)
 - Tamaño en KLOC es un dato de entrada
 - El esfuerzo es lo primero que se debe calcular
 - Se selecciona el modelo de estimación (básico, intermedio o detallado)
 - Se selecciona el modo de desarrollo (orgánico, semilibre o rígido)

7

Método COCOMO 81

- ▶ COCOMO distingue:
 - tres modelos de estimación
 - básico
 - ▶ intermedio
 - ▶ detallado
 - tres modos de desarrollo
 - Orgánico
 - ▶ Semilibre
 - ▶ Rígido

Modelo básico:

- Productos pequeños medios
- Personal de la empresa
- ▶ Generalmente modo orgánico

11

Método COCOMO 81

Modelo intermedio

- Multiplicadores de esfuerzo
- Modelo detallado
 - Grandes proyectos
 - Multiplicadores de esfuerzo por fases
 - Jerarquización:
 - Nivel de sistema
 - Nivel de subsistema
 - Nivel de módulos

▶ COCOMO distingue:

- > tres modelos de estimación
 - básico
 - ▶ intermedio
 - ▶ detallado
- tres modos de desarrollo
 - Orgánico
 - ▶ Semilibre
 - ▶ Rígido

En segundo lugar elegimos el modo

13

Método COCOMO 81

- Modo orgánico (organic):
 - Desarrollado por la propia empresa
 - Amplia experiencia del personal en dicho tipo de proyectos
 - ▶ Entorno de desarrollo estable
 - ▶ Buen entendimiento
 - No hay restricciones de tiempo para acabar antes
 - Trabajos pequeños, 50 KLOC máximo

- Modo semilibre (semidetached)
 - ▶ Personal con experiencia intermedia
 - Algunos tienen experiencia y otros no
 - Algunas interfaces muy rigurosas otras flexibles
 - ▶ Tamaño máximo 300 KLSI

15

Método COCOMO 81

- Modo rígido (embedded):
 - ▶ Limitaciones estrictas
 - ▶ Entorno hardware y software muy restringido
 - ▶ Alto coste para modificaciones
 - Proyecto sobre áreas poco conocidas
 - No hay limitación en el tamaño

Modelo Básico

- Mantenimiento de un producto :
 - \rightarrow MM _{total} = 1,0 * ACT * (2,4(KLSI) ^{1,05)}
 - ACT es la fracción de instrucciones modificadas por año: (N-instrucciones añadidas +N-instrucciones cambiadas)/N-instrucciones totales
- ▶ Cálculo de número de personas y coste:
 - ▶ n personas = MM/TDEV
 - coste = n-personas * n-meses* coste-mes-persona

▶ Modelo INTERMEDIO

- Mantenimiento de un producto
 - MM mantenimiento = V' * ACT * MM total
 - $V' = \pi f_i$ (teniendo en cuenta que algún multiplicador puede haber variado)
 - → ACT es la fracción de instrucciones modificadas por año: (Ninstrucciones añadidas +N-instrucciones cambiadas)/N-instrucciones totales

- ▶ Factores de corrección
 - ▶ Entorno empresarial se consideran:
 - ▶ 152 horas de trabajo/mes
 - ▶ 19 días al mes de trabajo
 - Características del trabajo
 - > Atributos del producto
 - > Atributos del ordenador
 - > Atributos del personal
 - Atributos del proyecto

21

Método COCOMO 81: Factor de Ajuste

- Atributos del producto
 - ▶ Requisitos de fiabilidad (RELY)
 - Volumen de datos manipulados (DATA)
 - ▶ Complejidad del producto (CPLX)
- Atributos del ordenador
 - Restricciones de tiempo de ejecución (TIME)
 - Restricciones de tamaño de memoria (STOR)
 - Inestabilidad de la máquina virtual (VIRT)
 - > Tiempo de respuesta experimentado por el equipo que desarrolla (TURN)

Método COCOMO 81: Factor de Ajuste

- Atributos del personal
 - ► Capacidad de los analistas (ACAP)
 - Experiencia en Aplicaciones (AEXP)
 - ► Capacidad de los programadores (PCAP)
 - Experiencia en la máquina virtual (VEXP)
 - Experiencia en el lenguaje de programación (LEXP)
- Atributos del proyecto
 - Prácticas modernas en programación (MODP)
 - ▶ Uso de herramientas para el desarrollo de software (TOOL)
 - Limitaciones en la planificación (SCED)
- Descripción de los atributos

23

Método COCOMO 81

Modelo DETALLADO

 Se calcula exactamente igual que para el caso del modelo intermedio