No ani 2 CS3000: Algorithms & Data *Tag Pages on the Drew van der Poel

Lecture 14

- Graphs
- Graph Traversals: BFS

June 3, 2021

Outline

Last class: greedy: Huffman codes

Next class: Graphs: DFS, 2-Colorability & Topological Ordering

Graphs

Graphs Are Everywhere

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occurring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

Graphs Are Everywhere

- Transportation networks
- On the internet
- Biological networks
- Citation networks
- Social networks

• ...

On the horizon...

Graph Algorithms:

- Graphs: Key Definitions, Properties, Representations
 Exploring Graphs: Breadth/Depth First Search
 - - Applications: Connectivity, Bipartiteness, Topological Sorting, SCCs
 - Shortest Paths:
 - Dijkstra
 - Bellman-Ford (Dynamic Programming)
 - Minimum Spanning Trees:
 - Borůvka, Prim, Kruskal
 - Network Flow:
 - Max Flow/Min Cut
 - Ford-Fulkerson

Graphs: Key Definitions

rude s

- Definition: An undirected graph G = (V, E)
 - V is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges
 - Edges are unordered e = (u, v) "between u and v" (u and v are neighbors)

e dae

• Degree(v) = # of neighbors v has

n= 13 M= 14

P=uV

- Simple Graph:
 - No duplicate edges
 - No self-loops e = (u, u)

Graphs: Key Definitions

- **Definition:** A directed graph G = (V, E)
 - *V* is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges

- An edge is an ordered e = (u, v) "from u to v" (u is an in-neighbor of v, v is an out-neighbor of u)
- In/out-degree(v) = # of in/out neighbors of v

$$(\alpha, \overline{\nu}) \neq (V, \alpha)$$

•
$$|V| = n, |E| = m$$

n = 4

M: 4

- No duplicate edges
- No self-loops e = (u, u)

- Problems: counting students, stable matching, sorting, ndigit mulitiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding
- Alg. techniques: divide & conquer, dynamic programming, greedy

Analysis: asymptotic analysis, recursion trees, Master Thm.,
 Graph Terminology

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

Ask the Audience

 How many edges can there be in a simple directed/undirected graph?

Directed:
$$O(h^{\lambda})$$
 = $\frac{(h)(h-1)}{2}$
 $U(h)(h-1)$
 $U(h)(h-1)$

Ask the Audience

• What is the **total degree** $(\Sigma_{v \in V} \deg(v))$ in an undirected graph with m edges?

2 m

• What is the **total in-degree** ($\Sigma_{v \in V}$ in-deg(v)) in a directed graph with m edges?

Paths/Connectivity

- A path is a sequence of consecutive edges in E
 - $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{k-1}, v)\}$
 - $P = u w_1 w_2 w_3 \cdots w_{k-1} v$ len(ρ): k
 - The length of the path is the # of edges
 - A path is *simple* if all vertices on the path are unique
- An <u>undirected</u> graph is <u>connected</u> if for every two vertices $u, v \in V$, there is a path from u to v
- A <u>directed</u> graph is <u>strongly connected</u> if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Paths/Connectivity

• An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v

• A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Strongly connected?

Connected?

Cycles

- An undirected cycle is a path $v_1-v_2-\cdots-v_k-v_1$ where $k\geq 3$ and v_1,\ldots,v_k are distinct
- Directed cycles can have $k \ge 2$

Ask the Audience

- Suppose an undirected graph G is connected
 - True False? G has at least n-1 edges

- Suppose an undirected graph G has n-1 edges
 - True/False? G is connected

Trees

- A simple undirected graph G is a tree if:
 - G is connected
 - G contains no cycles (acyclic)
- Theorem: any two of the following implies the third
 - *G* is connected
 - *G* contains no cycles
 - G has = n 1 edges

Trees

- Rooted tree: choose a root node r and orient edges away from r
 - Models hierarchical structure

Phylogeny

Phylogenetic Tree of Life

Problem: Is there a path from s to t?

From 6 to 7? 1 to 4? 9 to 10? 8 to 11?

Yes Yes No -> G is not connected

- Problem: Is there a path from s to t?
- Idea: Explore all nodes reachable from s.

- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - Depth-First Search: follow a path until you get stuck, then go back

- Problems: counting students, stable matching, sorting, ndigit mulitiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration
- Alg. techniques: divide & conquer, dynamic programming, greedy

 Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

- BFS/DFS are general templates for graph algorithms
 - Extensions of Breadth-First Search:
 - 2-Coloring (Bipartiteness)
 - Shortest Paths
 - Minimum Spanning Tree (Prim's Algorithm)
 - Extensions of Depth-First Search:
 - Fast Topological Sorting

Breadth-First Search (BFS)

 Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...

- BFS Tree:
 - $L_0 = \{s\}$
 - L_1 = all neighbors of L_0
 - L_2 = all neighbors of L_1 that are not in L_0 , L_1
 - L_3 = all neighbors of L_2 that are not in L_0 , L_1 , L_2
 - ...
 - L_d = all neighbors of L_{d-1} that are not in L_0 , ..., L_{d-1}
 - Stop when L_{d+1} is empty

Ask the Audience

• Run a BFS from s=1

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to all other nodes
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from s

(Sidebar) Graphs: Representations/Storage

Adjacency Matrices

• The adjacency matrix of a graph G=(V,E) with n nodes is the matrix A[1:n,1:n] where

$$A[i,j] = \begin{cases} \frac{1}{0} & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Cost	. \	$n \times n = n^{1}$
Space:	$O(h') \in$	10 × 11 = 11

Check if edge (u,v) exists:

List(out/in)-Neighbors of v: O(n)

Adjacency Lists (Undirected)

• The adjacency list of a vertex $v \in V$ is the list A[v] of all u s.t. $(v, u) \in E$

$$A[1] = \{2,3\}$$

$$A[2] = \{1,3\}$$
Space:
$$A[3] = \{1,2,4\}$$

$$A[4] = \{3\}$$

Check if edge (u,v) exists: O(des(u))

List Neighbors of v: O(Jeg(v))

Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
 - $A_{out}[v]$ of all u s.t. $(v, u) \in E$
 - $\overline{A_{in}[v]}$ of all u s.t. $(u, v) \in E$

$$A_{out}[1] = \{2,3\} \qquad A_{in}[1] = \{\}$$

$$A_{out}[2] = \{3\} \qquad A_{in}[2] = \{1\}$$

$$A_{out}[3] = \{\} \qquad A_{in}[3] = \{1,2,4\}$$

$$A_{out}[4] = \{3\} \qquad A_{in}[4] = \{\}$$

$$Cost \qquad Cost \qquad Check if edge (u,v) exists: \qquad Check if edge ($$

- Problems: counting students, stable matching, sorting, ndigit mulitiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration
- Alg. techniques: divide & conquer, dynamic programming, greedy

 Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology/representations

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

BFS Running Time (Adjacency List)

```
BFS(G = (V,E), s):
 Let found[v] \leftarrow false \forall v, found[s] \leftarrow true

Let layer[v] \leftarrow \infty \ \forall v, layer[s] \leftarrow 0

Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
           While (L<sub>i</sub> is not empty):
        O(1) Initialize new layer L<sub>i+1</sub>
((n) For (u) in Li) Ads, list of node in
For (v \text{ in } A[u]):

If (found[v] = false):

found[v] \leftarrow true, layer[v] \leftarrow i+1

Add (u,v) to T and add v to L_{i+1}
        ((i)) i \leftarrow i+1
                                                               < 1 equ) = ()(h)
     (()) Return T, layer
                            Total: O(n+m)
```

Ask the Audience

- A directed graph is strongly connected if for every pair $u, v \in V$, u is reachable from v and vice versa
- How can you (naively) use BFS to determine if a graph is strongly connected? What is the runtime of your approach?