11. Standardni sekvencijski moduli

Sadržaj predavanja

- registri
 - registri u užem smislu
 - posmačni registri
- brojila
- generatori sekvencije

Sekvencijski moduli

- sekvencijski moduli:
 - ~ cjeline koje sadrže kombinacijski sklop *i* memoriju (niz/skup bistabila ili registara)
- naročito zanimljivi standardni moduli:
 - n-bitni moduli~ n bistabila
 - pohranjivanje podataka~ registri
 - brojanje~ brojila

Registri

- registri
 - ~ pamćenje *višebitnih* podataka (="registriranje"):
 - obično jedna riječ/znak
 ~ standardna jedinica podataka za digitalni sustav
 - mogućnost upisa i ispisa/čitanja:
 - registri u užem smislu
 paralelni upis i ispis
 - posmačni registri
 ~ serijski upis i ispis
 - kombinacije upisa/ispisa
 druge primjene
 - izvedbe:
 - svi tipovi bistabila (osim T)
 - MSI i LSI moduli

- osnovna struktura *registra u užem smislu*:
 ~ *uređeni* skup *nepovezanih* bistabila
 - paralelni upis podatka
 - paralelno čitanje pohranjenog podatka
- način upisa:
 - sinkroni
 - ~ uobičajeni, bolji(→ upravljani!)
 - "asinkroni"
 - ~ registri (upravljanih) osnovnih bistabila: problem transparentnosti

- prikaz (tipično)
 - ~ blok-simbol za cijeli registar:
 - (svi) bistabili
 - grupe bistabila
 rormat pohranjene riječi

- značajni elementi arhitekture i organizacije sustava:
 - protok podataka:
 - ~ registri i *staze* (engl. registers & data paths) *između* procesnih elemenata
 - viša razina razmatranja/opisivanja sustava
 PTL (opal Pogistor Transfor Lovel)
 - ~ RTL (engl. Register Transfer Level)

Primjer: "8-bit bistable latch" 74100

 dvostruki 4-bitni registar (upravljanih osnovnih) D bistabila

ULAZI		IZLAZI		
D	G	Q	\overline{Q}	
L	Н	L	H	
Н	Н	Н	L	
Χ	L	Q^{n-1}	\overline{Q}^{n-1}	

- primjena 74100:
 - privremeno pohranjivanje podataka na UI sustava ("međuspremnik", engl. buffer)
 - ostvarivanje složenijih struktura;
 npr. 4-bitni registar dvostrukih bistabila

- posmačni registar (engl. shift register):
 - funkcijski pogled:
 - registar sa serijskim upisom i ispisom
 - ~ svojstveni mehanizam pomicanja (bitova) podatka od ulaza prema izlazu
 - analogija s tokarskim strojem
 - ~ "posmak" (engl. shift)
 - karakteristična struktura
 - izlaz prethodnog bistabila na ulaz slijedećeg po redu

serijski ulaz

CP

- posmak podataka:
 - *istovremeni* upis:

$$B_{i-1} \to B_i$$

$$B_i \to B_{i+1}$$

- ispravnost upisa
 - ~ osigurati *kašnjenje* između bistabila

- izvedbe *kašnjenja* između bistabila:
 - dvostruki bistabil
 - dva bistabila po bitu
 "simulacija" dvostrukog bistabila
 - bridom okidani bistabil serijski ulaz D serijski izlaz B_0 B₁ B_2 CP CP S_{l} B_0 B_1 B_2

(mogući) paralelni izlazi

- zapažanje: serijski upisani bitovi "putuju" kroz posmačni registar ~ paralelni ispis n-bitnog serijskog podatka: serijsko-paralelna pretvorba (konverzija)
- kombinacije ~ tip pretvorbe:
 - serijski ulaz-paralelni izlaz ~ serijsko-paralelna
 - paralelni ulaz-serijski izlaz ~ paralelno-serijska

serijski i paralelni ulaz i izlaz
 univerzalni posmačni registar

Primjer: posmačni registar 7491

- 8-bitni MSI modul
- dvostruki SR bistabili
- serijski ulaz-serijski izlaz

- "smjer" posmaka:
 - uobičajeno "nadesno" (prema "normalnom" izlazu)

moguće i "nalijevo", prema "normalnom" ulazu

- kombiniranje smjera posmaka
 - ~ dvosmjerni (engl. bidirectional) posmačni registar

- značajne primjene:
 - efikasno obavljanje aritmetičkih operacija;
 npr. množenje/dijeljenje s 2ⁿ posmakom za n bitova
 - sklop za posmak (engl. shifter) na izlazu ALU

Primjer: MSI dvosmjerni univerzalni posmačni registar s asinkronim brisanjem (4-bitni: 74194, 8-bitni: 74198)

- primjene (1):
 - memoriranje podataka za serijsko izvršavanje (aritmetičkih) operacija; npr. serijsko binarno zbrajalo

- pretvorba oblika podataka:
 - serijsko-paralelna (∃ paralelni izlazi)
 - paralelno-serijska (∃ paralelni ulazi)

- primjene (2):
 - ostvarivanje (aritmetičkih) operacija:
 - množenje s 2: posmak nalijevo
 - dijeljenje s 2: posmak nadesno

brojanje (→ posmačni registar u funkciji brojila)

- primjene (3):
 - sinkronizacija brzina prijenosa
 ~ "glađenje" prometa (f₁≠ f₂)
 - upis podataka s f₁
 - ispis podataka s f₂
 - generiranje "pseudo-slučajnog" slijeda ~ generatori sekvencije: linijski kodovi, kriptiranje
 - izvedbe cirkulirajućih memorija
 ~ npr. generatori znakova

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - sinkrona brojila
 - brojila na osnovi posmačnog registra
- generatori sekvencije

- brojilo:
 - ~ pod utjecajem ulaznih impulsa (obično CP) prolazi kroz *utvrđeni niz* stanja i *vraća se u početno* stanje
 - sklop "broji" ulazne impulse
 - impulsi ne moraju biti periodički (f ≠ const.)
 - "autonomni" sekvencijski sklop
 ~ samo jedan ulaz, i to obično za CP
 - definicije:
 - ciklus brojanja
 niz stanja kroz koja brojilo prolazi
 - baza brojanja
 - baza brojevnog sustava u kojem brojilo broji: broj stanja u ciklusu brojanja

- baza brojanja
 - ~ brojanje u "modulu":
 - stanje brojila = ostatak cjelobrojnog dijeljenja bazom (modulom)
 - brojilo modulo m (m = B)

```
l = k \cdot m + j, j: sadržaj brojila ~ stanje n bistabila \rightarrow N = 2^n: max broj stanja W = 2^n - 1: max broj (binarni kod!) 2^{n-1} = N/2 < m \le 2^n = N
```

- osnovna funkcijska podjela:
 - brojila u užem smislu (engl. counters)
 ~ važan je redoslijed izmjene stanja u ciklusu
 i mogućnost ispravnog očitanja (→ dekodiranja!)
 svakog stanja
 - djelitelji frekvencije (engl. scalers)
 važan samo broj stanja,
 ne i redoslijed njihove izmjene

- brojila u užem smislu:
 - prikladno projektiranje brojila
 ~ jednostavniji dekoder
 - važna primjena
 - ~ generator upravljačkih impulsa digitalnog sustava

- djelitelji frekvencije:
 - sklop samo broji ulazne impulse
 - očitati samo ono stanje koje definira željeni izlazni impuls
 nakon svakih n impulsa, od nekog početnog
 - pojednostavljivanje dekodera
 ~ nepotpuno dekodiranje
 - ubrzanje rada: f_{max}
 npr. naročito za asinkrona brojila

- vremenski odnosi prilikom promjene stanja:
 - sinkrona brojila:
 - (svi) bistabili mijenjaju stanja sinkrono s nailaskom ulaznih impulsa (takta)
 - složenija, skuplja, brža
 - asinkrona (engl. ripple) brojila:
 - promjena stanja prvog bistabila uzrokuje serijsku promjenu stanja slijedećih u nizu
 - prostiranje promjene stanja
 ~ izlaz prethodnog pobuđuje slijedeći bistabil (engl. ripple: mreškanje, talasanje)
 - jednostavnija, jeftinija, sporija

- bistabil u brojilima:
 - ~ konceptualno T, ali izveden od JK ili RS
 - T = 1 → promjena stanja
 dijeli frekvenciju ulaznih impulsa s 2

- direktna implementacija asinkronih brojila ~ niz bistabila od kojih svaki prethodni pobuđuje naredni u nizu
- brojanje u binarnom brojevnom sustavu
 2ⁿ stanja za n bistabila: binarno brojilo (bistabili ~ 2ⁱ: težine potencije od 2)

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - binarno brojilo
 - reverzno i brojilo naprijed-natrag
 - brojilo modulo m
 - sinkrona brojila
 - brojila na osnovi posmačnog registra
- generatori sekvencije

- asinkrona brojila
 - ~ bistabili *ne* mijenjaju stanje u *sinkronizmu* sa zajedničkom pobudom: sporiji rad!

- binarno brojilo:
 - brojilo broji u binarnom brojevnom sustavu
 - 2^n stanja za n bistabila; npr. $n = 3 \rightarrow m = 2^n = 8$

- očitanje (dekodiranje) stanja ~ tipični problem:
 - B۵ B_1 B_2 ULAZ - CP serijsko okidanje bistabila: BRISANJE

~ tranzijentna pogreška dekodiranja

 $(\rightarrow hazard)$

 dekodiranje svih 2ⁿ stanja ~ potpuno dekodiranje; npr. dekodiranje D₀

$$D_0 = \overline{B}_2 \overline{B}_1 \overline{B}_0$$

$$D_1 = \overline{B}_2 \overline{B}_1 B_0$$

$$\vdots$$

$$D_7 = B_2 B_1 B_0$$

- tranzijentna pogreška dekodiranja:
 - → pojava hazarda
 - moguće rješenje
 ~ zakasniti očitanje tako da prijelazna pojava ne djeluje
 - praktična implementacija
 - ~ *kombinirati* očitanje s ulaznim impulsima

- vremenski odnosi:
 - *vrijeme kašnjenja* (cijelog) brojila \sim najduže vrijeme odziva: promjena stanja *svih* n bistabila $T_d = n \cdot t_{db}$
 - *vrijeme razlučivanja* (*rezolucije*) ulaznih impulsa \sim svojstvo prvog bistabila $T_{\min} = t_{db}$
 - maksimalna frekvencija
 ~ različita za brojila u užem smislu i za djelitelja

- maksimalna frekvencija brojila u užem smislu:
 - očitanje (= dekodiranje) svih stanja!
 - najlošiji slučaj
 - \sim B₀ *ne smije* promijeniti stanje sve dok B_{n-1} ne dođe u stanje uzrokovano *prethodnim* impulsom

$$f_{\text{max}} = \frac{1}{n \cdot t_{db} + t_{o\check{c}}}$$

- maksimalna frekvencija djelitelja:
 - odabrati "prikladno" stanje koje će se očitati
 ~ min broj bistabila mijenja stanje
 - f_{max} slijedi iz analize prijelaza u to stanje

- reverzno (binarno) brojilobrojilo unatrag:
 - "smanjivanje" sadržaja brojila
 odbijanje impulsa
 - pobuda s \overline{Q}_{i-1} prethodnog bistabila $\sim Q_i \colon 0 \to 1$

ULAZ	B_2	B_1	B_0
0	0	0	0
1	1	1	1
2	1	1	0
3	1	0	
4	1.	0	0
5	0	1	
6	0	1	0
7	0	0	
8	0	0	0

brojilo naprijed-natrag (engl. up-down counter)

~ kombiniranje brojanja naprijed i natrag:

veća fleksibilnost

konceptualna implementacija:

- primjena:
 - digitalno upravljanje
 - obavljanje jednostavnih aritmetičkih operacija nad impulsima

$$SMJER = \begin{cases} 0: brojanje & natrag \\ 1: brojanje & naprijed \end{cases}$$

- brojilo modulo m, m ≠ 2ⁿ
 - ~ prekid ciklusa binarnog brojanja korištenjem *asinkronih* ulaza bistabila
 - prekid aktiviran zadnjim stanjem u ciklusu, m-1
 S_d prebacuje brojilo u stanje 2ⁿ-1 = Wⁿ: slijedeći ga impuls prebacuje u 0 mod 2ⁿ

$$0 \rightarrow 1 \rightarrow ... \rightarrow m-2 \rightarrow m-1$$

$$\downarrow \overline{S}_d$$

$$2^{n}-1$$

prekid aktiviran prvim stanjem izvan ciklusa, m
 C_d prebacuje brojilo u stanje 0:

$$0 \rightarrow 1 \rightarrow ... \rightarrow \text{m-2} \rightarrow \text{m-1} \rightarrow \text{m}$$

$$\overline{C_d}$$

Primjer: dekadsko brojilo

- detektirati karakterističnu pojavu B₃B₁ = 1
 (→ brojilo broji *naprijed*: jednostavno dekodiranje)
- problem kod brisanja bistabila
 ~ rasipanje t_{db}:
 nestanak impulsa brisanja prije brisanja svih bistabila!

СР	B_3	B_2	B_1	B_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
2 3 4	0	0	1	1
4	0	1	0	0
5 6	0	1	0	1
6	0	1	1	0
7 8 9	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10≡0	(1)	0	(1)	0
	0	0	0	0

rješenje problema brisanja:
 ~ osnovni bistabil u "petlju povratne veze"

 sigurno generiranje impulsa brisanja
 traje do slijedećeg CP = 1

- računanje f_{max} za očitanje stanja 0
- uzeti min(f_{max})

$$f_{\max} = \begin{cases} \frac{1}{4 \cdot t_{db} + t_{o\check{c}}} & \text{CP} \\ \frac{1}{2 \cdot t_{db} + t_{db} + t_{dNI} \cdot (+2 \cdot t_{dNI}) + t_{o\check{c}}} & \text{CP} \\ \frac{1}{8_0 \text{ B}_1 \text{ osnovni}_{\bar{C}_d}} & \text{bistabil} \end{cases}$$

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - sinkrona brojila
 - binarno brojilo
 - brojilo naprijed-natrag
 - brojilo modulo m
 - brojila na osnovi posmačnog registra
- generatori sekvencije

- binarno sinkrono brojilo:
 - ~ struktura brojila iz *rekurzivne* definicije mehanizma promjene stanja
 - prvi bistabil B₀
 mijenja stanje uvijek: T₀ = 1
 - i-ti bistabil B_i mijenja stanje kad su svi prethodni bistabili u 1: T_i = B₀·B₁·...·B_{i-1}

СР	B ₂	B ₁	B ₀
0	0	0	0
1	0	0,	
2	0	1	0
3	0	(1) ,	
4	1	0	0
5	1	0,	
6	1	1	0
7	1		

izvođenje strukture
 n-bitnog binarnog sinkronog brojila:

СР	B ₂	B ₁	B ₀
0	0	0	0
1	0	0,	1
2	0	1	0
3	0,	(1) ,	\bigcirc
4	1	0	0
5	1	0,	
6	1	1	0
7	1,	O ,,	

 struktura n-bitnog binarnog sinkronog brojila:

Q

 B_0

Q

 B_1

CP

 B_2

serijski

prijenos

- binarno sinkrono brojilo s paralelnim prijenosom:
 - posebni I-sklop za svaki T_i
 - brže rješenje
 ~ samo jedan I-sklop:

$$f_{\text{max}} = \frac{1}{t_{setup} + t_{db} + t_{dI}}$$

za n
 ¬ izvedba je kontraproduktivna
 ~ teškoće pri ostvarivanju I-sklopa, C_{rasipno} ¬, itd.

binarno sinkrono brojilo sa serijskim prijenosom:

sporije rješenje:

$$f_{\text{max}} = \frac{1}{t_{setup} + t_{db} + (n-2) \cdot t_{dI}}$$

- brojilo naprijed-natrag:
 - mreža za izbor "smjera brojanja"
 ~ MUX za prenošenje Q_i ili Q_i
 - tipična izvedba: EX-ILI (uzeti u obzir kod računanja f_{max})

- brojilo modulo m, m ≠ 2ⁿ:
 - projektiranje kao proizvoljni sekvencijski sklop ~ mogućnost izbora koda:
 - jednostavniji dekoder
 - ugradnja "sigurnog starta"
 - posebno za sekvencijske module
 ~ integrirana brojila:
 broje u binarnom sustavu
 - prethodno postavljanje (engl. presetting):
 - početno stanje: 2-komplement baze m
 - m-ti impuls: $(2^n 1) \rightarrow \overline{m}^2$
 - detekcija maksimalnog broja: W = m -1
 - m-ti impuls: $(m-1) \rightarrow 0$

- integrirana brojila:
 - uglavnom 4-bitni MSI moduli: npr. serija 74
 - asinkrono: 7493
 - sinkrono binarno: 74163
 - sinkrono naprijed-natrag: 74191
 - proširivanje broja bitova
 - veći broj bitova:kaskadiranje

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - sinkrona brojila
 - brojila na osnovi posmačnog registra
 - prstenasto brojilo
 - Johnsonovo brojilo
- generatori sekvencije

- brojila na osnovi posmačnog registra:
 - struktura:
 - povratna veza s izlaza posmačnog registra na njegov ulaz
 - dvije mogućnosti:
 - prstenasto brojilo
 - ~ povratna veza ($D_0 = Q_{n-1}$)
 - + početno samo jedna 1 u posmačnom registru
 - Johnsonovo brojilo:

$$D_0 = \overline{Q}_{n-1}$$

- prstenasto brojilo (engl. ring counter)
 - brojanje impulsa na "ulazu" CP posmakom 1: brojilo modulo broj bistabila

CP	B_0	B_1	B_2
0	1	0	0
1	0	1	0
2	0	0	1
3	1	0	0

- brojilo u užem smislu
 u posmačnom registru cirkulira samo jedna 1
- djelitelj frekvencije:
 ~ početno upisati uzorak *različit* od "sve 0" = 0, i "sve 1" = (2ⁿ-1)

- prstenasto brojilo:
 - baza (modul) = broj bistabila
 neefikasno, ali brže od binarnog brojila!

- direktno očitanje stanja
 ~ stanje ~ (B_i = 1):
 vrlo povoljno → *ne treba* dekoder!
- osigurati *sigurni start*!

- popularne izvedbe upravljačkih jedinica računala:
 - prstenasto brojilo
 - proizvoljni valni oblik
 kombiniranje (funkcija ILI) izlaza pojedinih bistabila

Primjer:

$$S_0 = B_0 + B_1 + B_3 + ...$$
 $S_1 = B_1 + B_2 + B_3 + ...$
 S_0
 S_1
 S_0
 S_1
 S_1
 S_1
 S_1
 S_1
 S_1
 S_2
 S_3
 S_1
 S_1
 S_1
 S_2
 S_3
 S_1
 S_1
 S_1
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_3
 S_1
 S_2
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_2
 S_3
 S_1
 S_2
 S_2
 S_3
 S_4
 S_1
 S_2
 S_2
 S_3
 S_4
 S_1
 S_2
 S_2
 S_3
 S_4
 S_4

- Johnsonovo brojilo, brojilo s ukrštenim prstenom (engl. twisted ring counter):
 - povećanje broja stanja za dani broj bistabila: 2.n
 - ukrstiti povratnu vezubistabili SR i JK
 - na ulaz dovesti Q_{n-1}
 bistabil D
 - broje u kodu s $d_{min} = 1$
 - i dalje brže od binarnog brojila!

СР	B_0	B ₁	B ₂
0	0	0	0
1	1	0	0
2	1	1	0
3	1	1	1
4	0	1	1
5	0	0	1
6	0	0	0

- dekodiranje stanja Johnsonovog brojila:
 - nije tako povoljno kao kod prstenastog brojila
 - ipak relativno jednostavno
 ~ konjunkcija dva susjedna izlaza B_i i B_i

Sadržaj predavanja

- registri
- brojila
- generatori sekvencije

- generator sekvencije (engl. sequence generator):
 - generiranje propisane sekvenc(ij)e bitova
 ponavlja se!
 - duljina sekvencije
 - broj uzastopnih bitova koji se ponavljaju
 - sekvencija
 ~ izlaz posmačnog registra

Primjer:

...0111001011110010111...

- izvedba generatora sekvencije:
 - poopćenje povratne veze posmačnog registra:

$$D_0 = f(B_{n-1}, ..., B_1, B_0)$$

- specijalni slučaj:
 - prstenasto brojilo: $D_0 = B_{n-1}$
 - Johnsonovo brojilo: $D_0 = \overline{B}_{n-1}$

naročito jednostavna izvedba povratne veze
 ~ linearna funkcija:

$$f(x_{n-1},...,x_1,x_0) = c_{n-1}x_{n-1} \oplus ... \oplus c_1x_1 \oplus c_0x_0, c_0 \in \{0,1\}$$

- posmačni registar s linearnom povratnom vezom (engl. Linear Feedback Shift Register, LFSR):
 - jednostavna struktura sklopa
 ~ samo sklopovi EX-ILI
 - najveća moguća duljina sekvencije (za n bistabila)
 ~ 2ⁿ-1
 - zabranjeno stanje 00..00
 izbjeći to stanje:
 sklop za sigurni start

Primjer: $D_0 = f(B_2, B_1, B_0) = B_2 \oplus B_0$

B_0	B_1	B_2	D_0	
1	0	0	1	<u></u>
1	1	0	1	
1	1	1	0	ija
0	1	1	1	sekvencija
1	0	1	0	sek
0	1	0	0	
0	0	1	1	\downarrow
1	0	0	1	

- primjena generatora sekvencije:
 - - "randomizacija" bitovnih nizova (engl. scrambling)
 - zaštitni bitovi prilikom prijenosa
 - tajni ključevi za kriptiranje
 - ispitni vektori za ispitivanje digitalnih sklopova
 - očitanje stanja posmačnog registra
 ~ generator pseudoslučajnih brojeva
 (engl. Pseudo-Random Number Generator, PRNG)

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 11: Sekvencijski moduli: registri i brojila.
- registri: str. 414-422
- asinkrona brojila: str. 435-440
- sinkrona brojila: str. 426-434
- brojila na osnovi posmačnog registra: str. 422-425
- generatori sekvencije: str. 441-451

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 11: Sekvencijski moduli: registri i brojila.
- registri: 11.1, 11.2, 11.10, 11.11, 11.22, 11.24, 11.26, 11.27, 11.35
- modeliranje u VHDL: 11.23, 11.28, 11.32, 11.33
- asinkrona brojila: 11.36—11.41
- sinkrona brojila: 11.3-11.8, 11.13-11.17, 11.19-11.21, 11.29
- brojila na osnovi posmačnog registra: 11.9, 11.12, 11.26, 11.31;
- modeliranje u VHDL: 11.30
- generatori sekvencije: 11.18, 11.34

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 9: Registri; Cjelina 10: Brojila. Cjelina 11: Strojevi s konačnim brojem stanja.
- registri:
 - riješeni zadaci: 9.1-9.3, 9.5-9.15
 - zadaci za vježbu: 1, 2
- asinkrona brojila:
 - riješeni zadaci: 10.1, 10.7
 - zadaci za vježbu: 1, 4
- sinkrona brojila:
 - riješeni zadaci: 10.3-10.6, 10.9, 10.10; 11.10, 11.11, 11.16
 - zadaci za vježbu: 2, 3
- brojila na osnovi posmačnog registra:
 - riješeni zadaci: 9.4
 - zadaci za vježbu: 3, 4
- generatori sekvencije:
 - riješeni zadaci: 11.17