4. Крайни детерминирани автомати

<u>Def.</u> Краен детерминиран автомат (КДА) се нарича петорката $M = < K, \Sigma, \delta, s, F >$, където K – крайна азбука(множество) от състояния,

 Σ – основна азбука,

 δ : $K \times \Sigma \to K$, δ - функция на преходите,

 $s \in K$, s - начално състояния,

 $F \subseteq K, F$ - множество на заключителните състояния.

<u>Def.</u> Конфигурация за $M=<K,\Sigma,\delta,s,F>$ се нарича всеки елемент на $K\times\Sigma^*$. $(q,w)\in K\times\Sigma^*$.

<u>Def.</u> Нека $M = < K, \Sigma, \delta, s, F >$ е КДА. Казваме, че конфигурацията (q, w) се преработва за една стъпка в (q', w')

$$((q,w) \vdash_M (q',w'))$$

т.т.к. съществува $a \in \Sigma$: w = aw'и $\delta(q,a) = q'$.

 \vdash_{M} – бинарна релация в множеството на конфигурациите.

 \vdash_M *- рефлексивно и транзитивно затваряне на \vdash_M .

В частност $(q, w) \vdash_{M}^{*} (q, w)$.

$$(q_0, w_0) \vdash_M (q_1, w_1) \vdash_M \dots \vdash_M (q_n, w_n) \Leftrightarrow (q_0, w_0) \vdash_M^* (q_n, w_n)$$

- w е начало на u, ако \exists дума u', такава, че wu' = u.
- w е край на u, ако \exists дума u', такава, че u'w = u.
- w е поддума на u, ако $\exists u', u''$, такива, че u'wu'' = u.

<u>Def.</u> Нека $M=<K,\Sigma,\delta,s,F>$ е КДА. Казваме, че $w\in\Sigma^*$ се приема(разпознава) от M, ако $(s,w)\vdash_M^* (f,\varepsilon)$ и $f\in F$.

Def. Нека $M = < K, \Sigma, \delta, s, F > e$ КДА.

С L(M) означаваме множеството на всички думи $w \in \Sigma^*$, такива, че w се разпознава от M.

или $L(M) = \{w | w \in \Sigma^* \text{ и } w \text{ се разпознава от } M\}$

или $L(M) = \{w | w \in \Sigma^* \text{ и } (s, w) \vdash_M^* (f, \varepsilon) \text{ и } f \in F\}.$