Patarin's 'HFE' Public Key Signature

Mukesh Tiwari

Anisha Lamsal Samrajya Raj Acharya

Supervisor: Dr. Gokul K.C.

Kathmandu University

Cryptographic Signature Schemes

Figure 1: Digital Signature Schemes

Multivariate Polynomial System

use Multivariate Quadratic Polynomial system

Given a quadratic polynomial map $P:F_q^n o F_q^m$ over a finite field F_q , find $x \in F_q^n$ that satisfies

$$P(x)=0.$$

Public key: quadratic polynomial map P

Private key: knowledge about inverting the map

let $m \in \mathcal{F}_q^m$ be our message. then the signature s is simply $s \in \mathcal{F}_q^n$ such that

$$P(s) = m$$

December 6, 2023

Pros and Cons

Advantages

- Small Signature Size
- Classical and Quantum Resilient
- Operations of finite field are easier

Disadvantages

- Large Public Key Size
- Difficulty in key generation

Key vs Signature Sizes

Computer Implementation

```
: q = 4
F.<a> = GF(2^2)
F
```

: Finite Field in a of size 2^2

```
\begin{array}{l} R. < x> = F[] \\ R \end{array}
```

: Univariate Polynomial Ring in x over Finite Field in a of size 2^2

```
R.<x1,x2,x3> = PolynomialRing(F)
R
```

Multivariate Polynomial Ring in x1, x2, x3 over Finite Field in a of size 2^2

```
z = vector([0,a,a+1])
S(vector(central_map(phi(T(z))).list()))
(a, a, 0)
```