ساختمان داده و الگوريتم ها (CE203)

جلسه دوازدهم: درخت

سجاد شیرعلی شهرضا پاییز 1401 *دوشنبه، 23 آبان 1401*

اطلاع رساني

• بخش مرتبط كتاب براى اين جلسه: 10.4

Data Structures

- Data structure
 - Organization or format for storing or managing data
 - Concrete realization of an abstract data type
- Operations
 - Always a tradeoff: some operations more efficient, some less, for any data structure
 - Choose efficient data structure for operations of concern

Data Structure	add(val v)	get(int i)
Array 2 1 3 0		
Linked List 2 — 1 — 3 — 0		

```
add(v): append v
```

Data Structure	add(val v)	get(int i)
Array 2 1 3 0	O(n)	
Linked List 2 — 1 — 3 — 0		

```
add(v): append v
```

Data Structure	add(val v)	get(int i)
Array 2 1 3 0	O(n)	
Linked List 2 — 1 — 3 — 0	0(1)	

```
add(v): append v
```

Data Structure	add(val v)	get(int i)
Array 2 1 3 0	O(n)	0(1)
Linked List 2 — 1 — 3 — 0	0(1)	

```
add(v): append v
```

Data Structure	add(val v)	get(int i)
Array 2 1 3 0	O(n)	0(1)
Linked List 2 — 1 — 3 — 0	0(1)	O(n)

```
add(v): append v
```

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	
Linked List 2 — 1 — 3 — 0	0(1)	O(n)	

```
add(v): append v
get(i): return element at position i
contains(v): return true if contains v
```

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List 2 — 1 — 3 — 0	0(1)	O(n)	

```
add(v): append v
get(i): return element at position i
contains(v): return true if contains v
```

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List 2 — 1 — 3 — 0	0(1)	O(n)	O(n)

```
add(v): append v
get(i): return element at position i
contains(v): return true if contains v
```

Linked List

Singly linked list:

Generalized Linked List (i.e., Tree)

Singly linked list:

Tree

• In CS, we draw trees "upside down"

- Tree:
 - Data structure with nodes
 - Similar to linked list
- Nodes:
 - Zero or more successors (children)
 - Exactly one predecessor (parent)
 - Except the root, which has none
- All nodes are reachable from root.

- Tree:
 - Data structure with nodes
 - Similar to linked list
- Nodes:
 - Zero or more successors (children)
 - Exactly one predecessor (parent)
 - Except the root, which has none
- All nodes are reachable from root

- Tree:
 - Data structure with nodes
 - Similar to linked list
- Nodes:
 - Zero or more successors (children)
 - Exactly one predecessor (parent)
 - Except the root, which has none
- All nodes are reachable from root

- Tree:
 - Data structure with nodes
 - Similar to linked list
- Nodes:
 - Zero or more successors (children)
 - Exactly one predecessor (parent)
 - Except the root, which has none
- All nodes are reachable from root

- Tree:
 - Data structure with nodes
 - Similar to linked list
- Nodes:
 - Zero or more successors (children)
 - Exactly one predecessor (parent)
 - Except the root, which has none
- All nodes are reachable from root

- Tree:
 - Data structure with nodes
 - Similar to linked list
- Nodes:
 - Zero or more successors (children)
 - Exactly one predecessor (parent)
 - Except the root, which has none
- All nodes are reachable from root

اصطلاحات درخت

Parent, Child, Leaves, Root

Ancestors and Descendants

Subtree

Depth & Height

• **Node depth**: the length of the path to the root

Depth & Height

- **Node depth**: the length of the path to the root
- Tree (or subtree) height: the length of the longest path from the root to a leaf

height 2

Forest

• Multiple trees!

General vs. Binary Trees

- **General tree**: every node can have an arbitrary number of children
- **Binary tree**: at most two children, called left and right

...often "tree" means binary tree

Nodes at each level

- Maximum # of nodes at depth d: 2^d
- If height of tree is h:
 - Minimum # of nodes: h + 1

Nodes at each level

- Maximum # of nodes at depth d: 2^d
- If height of tree is h:
 - Minimum # of nodes: h + 1
 - Maximum # of nodes:

$$2^0 + \dots + 2^h = 2^{h+1} - 1$$

■ Known as **Perfect tree**

Height 2, minimum number of nodes

Height 2, maximum number of nodes

Complete binary tree

- Every level, except last, is completely filled
- Nodes on bottom level as far left as possible
 - I.e., no holes
- We saw it before in priority queue (heap)!

پردازش درخت

انجام عملیات بر روی درخت

Recursive Definition

Recursive Definition

Recursive Definition

- A binary tree is either
 - o Null
 - An object consisting of a value, a left binary tree, and a right binary tree

Recipe for Recursive Functions

- Base case:
 - o If the input is "easy," just solve the problem directly.

- Recursive case:
 - Get a smaller part of the input (or several parts).
 - Call the function on the smaller value(s).
 - Use the recursive result to build a solution for the full input.

Recipe for Recursive Functions on Binary Trees

- Base case:
 - If the input is "easy," just solve the problem directly.

- Recursive case:
 - Get a smaller part of the input (or several parts).
 - Call the function on the smaller value(s).
 - Use the recursive result to build a solution for the full input.

Recipe for Recursive Functions on Binary Trees

- Base case:
 - o If the input is "esy," just solve the problem directly.
 an empty tree (null), or a leaf
- Recursive case:
 - Get a smaller part of the input (or several parts).
 - Call the function on the smaller value(s).
 - Use the recursive result to build a solution for the full input.

Recipe for Recursive Functions on Binary Trees

- Base case:
 - o If the input is "esy," just solve the problem directly.
 an empty tree (null), or a leaf
- Recursive case:
 - o Get a smaller part of the input (or several parts).
 - Call the function on the smaller value(s). each subtree.
 - Use the recursive result to build a solution for the full input.

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List 2 - 1 - 3 - 0	0(1)	O(n)	O(n)
Binary Tree 1			
2 3			

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List 2 - 1 - 3 - 0	0(1)	O(n)	O(n)
Binary Tree 1			O(n)

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List 2 - 1 - 3 - 0	0(1)	O(n)	O(n)
Binary Tree 1)		O(n)

Node could be anywhere in tree

50

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List 2 1 3 0	0(1)	O(n)	O(n)
Binary Tree 1)		O(n)

Node could be anywhere in tree

Binary search on arrays: O(log n) Requires invariant: array sorted ...analogue for trees? TO BE CONTINUED! (in a future lecture)

پیمایش درخت

پیمایش و ذخیره یک درخت

Iterate through data structure

- Iterate: process elements of data structure
 - o Sum all elements
 - Print each element

• ...

Data Structure	Order to iterate
Array 2 1 3 0	Forwards: 2, 1, 3, 0 Backwards: 0, 3, 1, 2
Linked List 2 1 3 0	Forwards: 2, 1, 3, 0
Binary Tree 1 (3)	???

Iterate through a tree

• What would a reasonable order be?

Tree traversals

- Iterating through tree is also known as tree traversal
- Well-known recursive tree traversal algorithms:
 - Preorder
 - Inorder
 - Postorder
- Another, non-recursive: level order (BFS!)

پیمایش پیش ترتیب

پیمایش میان ترتیب

پیمایش پس ترتیب

درخت عبارت

غونه ای از کاربرد درخت و پیمایش آن

Syntax Trees

- Trees can represent (Java, math, ...) expressions
- Expression: 2 * 1 (1 + 0)
- Tree:

پیمایش پیش ترتیب عبارت

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder:

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder: -

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder: - *

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder: - * 2

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder: - * 2 1

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder: - * 2 1 +

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder: - * 2 1 + 1

- 1- Visit the root
- 2- Visit the left subtree
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

پیمایش پس ترتیب عبارت

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder:

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder: 2

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder: 2 1

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder: 2 1 *

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 +

- 1- Visit the left subtree
- 2- Visit the right subtree
- 3- Visit the root

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

پیمایش میان ترتیب عبارت

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder:

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder: 2

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder: 2 *

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder: 2 * 1

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder: 2 * 1 -

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder: 2 * 1 - 1

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder: 2 * 1 - 1 +

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Preorder: - * 2 1 + 1 0

Postorder: 2 1 * 1 0 + -

Inorder: 2 * 1 - 1 + 0

- 1- Visit the left subtree
- 2- Visit the root
- 3- Visit the right subtree

Original expression, except for parenthesis

Preorder: - * 2 1 + 1

Postorder: 2 1 * 1 0 +

Inorder: 2 3

2 * 1 - 1 +

Prefix Notation

- Function calls in most programming languages use prefix notation:
 - E.g., add(37, 5)
- Aka **Polish notation** (PN)
 - o In honor of inventor, Polish logician Jan Łukasiewicz
- Some languages (Lisp, Scheme, Racket) use prefix notation for everything
 - Makes the syntax uniform

Postfix Notation

- Some languages (Forth, PostScript, HP calculators) use postfix notation
- Aka reverse Polish notation (RPN)

Implementing Syntax Tree in Code

```
public interface Expr {
  int eval();
  String inorder();
}
```

Implementing Syntax Tree in Code

```
public interface Expr {
  int eval();
  String inorder();
}

public class Int implements Expr {
  private int v;
  public int eval() { return v; }
  public String inorder() { return " " + v + " "; }
}
```

Implementing Syntax Tree in Code

```
public interface Expr {
 int eval();
 String inorder();
public class Int implements Expr {
 private int v;
 public int eval() { return v; }
 public String inorder() { return " " + v + " "; }
public class Add implements Expr {
 private Expr left, right;
 public int eval() { return left.eval() + right.eval(); }
 public String inorder() {
  return "(" + left.infix() + "+" + right.infix() + ")";
```


بازسازی درخت

ساخت درخت از روی یک پیمایش آن

- Suppose inorder is B C A E D
- Can we recover the tree uniquely?

- Suppose inorder is B C A E D
- Can we recover the tree uniquely? NO!

- Suppose inorder is B C A E D
- preorder is ABCDE
- Can we determine the tree uniquely?

- Suppose inorder is B C A E D
- preorder is ABCDE
- Can we determine the tree uniquely? Yes!

- Suppose inorder is B C A E D
- preorder is ABCDE
- Can we determine the tree uniquely? Yes!
- What is root?

- Suppose inorder is B C A E D
- preorder is ABCDE
- Can we determine the tree uniquely? Yes!
- What is root? Preorder tells us: A

- Suppose inorder is B C A E D
- preorder is ABCDE
- Can we determine the tree uniquely? Yes!
- What is root? Preorder tells us: A
- What comes before/after root A?

- Suppose inorder is B C A E D
- preorder is A B C D E
- Can we determine the tree uniquely? Yes!
- What is root? Preorder tells us: A
- What comes before/after root A?
 - Inorder tells us:
 - Before: B C
 - After: E D

- Suppose inorder is B C A E D
- preorder is A B C D E
- Can we determine the tree uniquely? Yes!
- What is root? Preorder tells us: A
- What comes before/after root A?
 - Inorder tells us:
 - Before: B C
 - After: E D
- Now recurse! Figure out left/right subtrees using same technique.

- Suppose inorder is B C A E D
- preorder is ABCDE
- Root is A; left subtree contains B C; right contains E D

- Suppose inorder is B C A E D
- preorder is A B C D E
- Root is A; left subtree contains B C; right contains E D

```
Left:
Inorder is B C
Preorder is B C

• What is root? Preorder: B

• What is before/after B?
Inorder:

• Before: nothing

• After: C
```

- Suppose inorder is B C A E D
- preorder is A B C D E
- Root is A; left subtree contains B C; right contains E D

Left:

Inorder is B C
Preorder is B C

- What is root? Preorder: B
- What is before/after B?
 Inorder:
 - Before: nothing
 - After: C

Right:

Inorder is E D
Preorder is D E

- What is root? Preorder: D
- What is before/after D?
 Inorder:
 - Before: E
 - After: nothing

- Suppose inorder is B C A E D
- preorder is ABCDE
- Root is A; left subtree contains B C; right contains E D
- Tree:

