Package 'TesiproV'

October 12, 2022

,
Type Package
Title Calculation of Reliability and Failure Probability in Civil Engineering
Version 0.9.2
Maintainer Konstantin Nille-Hauf <konstantin.nillehauf@googlemail.com></konstantin.nillehauf@googlemail.com>
Description Calculate the failure probability of civil engineering problems with Level I up to Level III Methods. Have fun and enjoy. References: Spaethe (1991, ISBN:3-211-82348-4) `Die Sicherheit tragender Baukonstruktionen", AU,BECK (2001) `Estimation of small failure probabilities in high dimensions by subset simulation." <doi:10.1016 s0266-8920(01)00019-4="">, Breitung (1989) `Asymptotic approximations for probability integrals." <doi:10.1016 0266-8920(89)90024-6="">.</doi:10.1016></doi:10.1016>
<pre>URL https://www.hochschule-biberach.de/transfer/forschung/ institut-fuer-konstruktiven-ingenieurbau</pre>
Encoding UTF-8
License MIT + file LICENSE
RoxygenNote 7.1.2
Suggests testthat, knitr, rmarkdown, evd
VignetteBuilder knitr
Imports pracma, nloptr, methods, edfun, ggplot2, gridExtra
NeedsCompilation no
Author Konstantin Nille-Hauf [aut, cre], Tania Feiri [aut], Marcus Ricker [aut]
Repository CRAN
Date/Publication 2022-03-25 15:50:02 UTC
R topics documented:
debug.print

2 debug.print

	FORM	3
	MC_CRUDE	5
	MC_IS	6
	MC_SubSam	7
	MVFOSM	9
	PARAM_BASEVAR-class	10
	PARAM_DETVAR-class	10
	PARAM_LSF-class	10
	plt	11
	PROB_BASEVAR-class	11
	PROB_DETVAR-class	12
	PROB_MACHINE-class	13
	qlt	13
	rlt	14
	SORM	15
	SYS_LSF-class	16
	SYS_PARAM-class	16
	SYS_PROB-class	17
	TesiproV	18
Index		20

debug.print

internal Helper function to debug more easy

Description

internal Helper function to debug more easy

Usage

```
debug.print(infoLevel, flag = "", values, msg = "", type = "INFO")
```

Arguments

infoLevel If 0, no Output (just Errors), if 1 little output, if 2 bigger output

flag Parse additional info

values If you check variables then post this into values

msg here add some extra msg

type Type can be "INFO" or "ERROR"

Author(s)

(C) 2021 - M. Ricker, K. Nille-Hauf, T. Feiri - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

dlt 3

dlt

Density Function for logarithmic student T distribution

Description

Density Function for logarithmic student T distribution

Usage

```
dlt(x, m, s, n, nue)
```

Arguments

Χ	quantiles

m mean (1. parameter)

s standard deviation (2. parameter)

n 3. paramter

nue degrees of freedom

Value

density

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

Examples

```
dlt(0.5,3,6,2,5)
```

FORM

First Order Reliablity Method

Description

Method to calculate failure probability for structural engineering using approximation of limit state function with linear part.

4 FORM

Usage

```
FORM(
  lsf,
  lDistr,
  n_optim = 10,
  loctol = 0.01,
  optim_type = "rackfies",
  debug.level = 0
)
```

Arguments

lsf objective function with limit state function in form of function(R,E) {R-E}.

Supplied by a SYS_ object, do not supply yourself.

1Distr list ob distributions regarding the distribution object of TesiproV. Supplied by a

SYS_ object, do not supply yourself.

n_optim number of opimaziation cycles (not recommended/need for lagrangian algorithms).

loctol Tolerance of the local solver algorithm

optim_type Optimaziationtypes. Available: Augmented Lagrangian Algorithm (use: "auglag"),

Rackwitz-Fissler Algorithm (use: "rackfies").

debug.level If 0 no additional info if 2 high output during calculation

Value

The results will be provided within a list with the following objects.

beta HasoferLind Beta Index

pf probablity of failure

u_points solution points

dy gradients

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

References

HASOFER AM, LIND NC. An exact and invarient first order reliability format. J Eng Mech Div Proc ASCE 1974;100(1):111–21.

Rackwitz-Fiessler: RACKWITZ R., FIESSLER B. Structural reliability under combined random load sequences. Comput Struct 1978;9(5), S. 489–94.

Optimised algorithm: YPMA, J., JOHNSON, S.G., BORCHERS, H.W., EDDELBUETTEL, D., RIPLEY, B., HORNIK K., CHIQUET, J., ADLER, A., nloptr: R Interface to NLopt. R package. 2020. Version 1.2.2.

Spaethe, G.: Die Sicherheit tragender Baukonstruktionen, 2. Aufl. Wien: Springer, 1991. – ISBN 3-211-82348-4

MC_CRUDE 5

MC_CRUDE	Crude MonteCarlo Simulation

Description

Method to calculate failure probability for structural engineering

Usage

```
MC_CRUDE(
  lsf,
  lDistr,
  cov_user = 0.05,
  n_batch = 400,
  n_max = 1e+07,
  use_threads = 6,
  dataRecord = TRUE,
  debug.level = 0
)
```

Arguments

lsf	objective function with limit state function in form of function(x) $x[1]+x[2]$
lDistr	list ob distribiutions regarding the distribution object of TesiproV
cov_user	The Coefficent of variation the simulation should reach
n_batch	Size per batch for parallel computing
n_max	maximum of iteration the MC should do - its like a stop criterion
use_threads	Number of threads for parallel computing, use_threds=1 for single core. Doesnt work on windows!
dataRecord	If True all single steps are recorded and available in the results file after on
debug.level	If 0 no additional info, if 2 high output during calculation

Value

```
The results will be provided within a list with the following objects. Acess them with "$"-accessor pf probablity of failure pf_FORM probablity of failure of the FORM Algorithm var variation cov_mc coefficent of the monteCarlo n_mc number of iterations done
```

Author(s)

(C) 2021 - M. Ricker, K. Nille-Hauf, T. Feiri - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

6 MC_IS

References

Spaethe, G.: Die Sicherheit tragender Baukonstruktionen, 2. Aufl. Wien: Springer, 1991. – ISBN 3-211-82348-4

MC_IS

MonteCarlo Simulation with importance sampling

Description

Method to calculate failure probability for structural engineering using a simulation method with importance sampling (a method to reduce the amount of needed samples)

Usage

```
MC_IS(
   lsf,
   lDistr,
   cov_user = 0.05,
   n_batch = 16,
   n_max = 1e+06,
   use_threads = 6,
   sys_type = "parallel",
   dataRecord = TRUE,
   beta_l = 100,
   densityType = "norm",
   dps = NULL,
   debug.level = 0
)
```

Arguments

lsf	objective function with limit state function in form of function(x) $x[1]+x[2]$
lDistr	Distributions in input space
cov_user	The Coefficent of variation the simulation should reach
n_batch	Size per batch for parallel computing
n_max	maximum of iteration the MC should do - its like a stop criterion
use_threads	determine how many threads to split the work (1=singlecore, 2^n = multicore)
sys_type	Determine if parallel or serial system (in case MCIS calculates a system)
dataRecord	If True all single steps are recorded and available in the results file afteron
beta_l	In Systemcalculation: LSF's with beta higher than beta_1 wont be considered
densityType	determines what distributiontype should be taken for the h() density
dps	Vector of design points that sould be taken instead of the result of a FORM analysis
debug.level	If 0 no additional info if 2 high output during calculation

MC_SubSam 7

Value

The results will be provided within a list with the following objects. Acess them with "\$"-accessor pf probablity of failure pf_FORM probablity of failure of the FORM Algorithm var variation cov_mc coefficent of the monteCarlo n_mc number of iterations done

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

References

DITLEVSEN O, MADSEN H. Structural reliability methods, vol. 178. New York: Wiley; 1996.

Spaethe, G.: Die Sicherheit tragender Baukonstruktionen, 2. Aufl. Wien: Springer, 1991. – ISBN 3-211-82348-4

MC_SubSam

MonteCarlo with Subset-Sampling

Description

MonteCarlo with Subset-Sampling

Usage

```
MC_SubSam(
    lsf,
    lDistr,
    Nsubset = 1e+05,
    p0 = 0.1,
    MaxSubsets = 10,
    Alpha = 0.05,
    variance = "uniform",
    debug.level = 0
)
```

8 MC_SubSam

Arguments

1sf limit-state function

1Distr list of basevariables in input space

Nsubset number of samples in each simulation level

p0 level probability or conditional probability

MaxSubsets maximum number of simulation levels that are used to terminate the simulation

procedure to avoid infinite loop when the target domain cannot be reached

Alpha confidence level

variance gaussian, uniform

debug.level If 0 no additional info if 2 high output during calculation

Value

The results are provided within a list() of the following elements:

beta

pf

betaCI and pfCI are the corresponding confidence intervals

CoV COV of the result

NumOfSubsets Amount of Markov-Chains

NumOfEvalLSF_nom Markov-Chains times Iterations

NumOfEvalLSF_eff Internal counter that shows the real evaluations of the 1sf

runtime Duration since start to finish of the function

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

References

AU, S. K. & BECK, J. L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 2001, 16.4: 263-277.

MVFOSM 9

Description

MVFOSM

Usage

```
MVFOSM(lsf, lDistr, h = 1e-04, isExpression = FALSE, debug.level)
```

Arguments

lsf	LSF Definition, can be Expression or Function. Defined by the FLAG is Expression (see below)
lDistr	List of Distributions
h	If isExpression is False, than Finite Difference Method is used for partial deviation. h is the Windowsize
isExpression	Boolean, If TRUE lsf has to be typeof expression, otherwise lsf has to be type of function()
debug.level	If 0 no additional info if 2 high output during calculation

Value

beta, pf, design.point in x space, alphas, runtime

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau#'

References

FREUDENTHAL, A.M. Safety and the probability of structural failure. Am Soc Civil Eng Trans 1956; 121(2843):1337–97.

10 PARAM_LSF-class

PARAM_BASEVAR-class

Object for parametric variable

Description

Object to create parametric basic variables

Fields

ParamValues A vector of values of the parametric studie (e.g. c(1,3,5,7) or seq(1,10,2))

ParamType A field to determine what should be parametric. Possible is: "Mean", "Sd", "DistributionType"

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

PARAM DETVAR-class

Object for parametric deterministic variable

Description

Object to create parametric deterministic variables

Fields

ParamValues A vector of values. The first element goes with the first run, second element with second run and so on.

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

PARAM_LSF-class

System Limit State Functions

Description

Interface for LSF through PROB_LSF. No changes.

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

plt 11

plt

Probablity Function for logarithmic student T distribution

Description

Probablity Function for logarithmic student T distribution

Usage

```
plt(q, m, s, n, nue)
```

Arguments

~	quantilas
q	quantiles

m mean (1. parameter)

s standard deviation (2. parameter)

n 3. paramter

nue degrees of freedom

Value

density

Author(s)

(C) 2021 - M. Ricker, K. Nille-Hauf, T. Feiri - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

PROB_BASEVAR-class

Object to store the distribution model for base vars

Description

Object to store the distribution model for base vars...

Fields

 $\label{eq:local_problem} \mbox{Id Place in vector of objective functional expression function} (x) x [\mbox{id}]$

Name name like f_ck, used in the limit state function as input name

Description Used for better understanding of vars

DistributionType Distributiontypes like "norm", "lnorm", "weibull", "t", "gamma", etc...

Package The name of the package the Distribution should be taken from (e.g. "evd")

Mean The Mean Value of this Basisvariable

Sd The SD Value of this Basisvariable

Cov The Cov fitting to Mean and Sd.

x0 Shiftingparameter

DistributionParameters Inputparameters of the distribution, may be calculated internally

Methods

prepare() Runs the transformations (from mean, sd -> parameters or the other way round) and checks COV, MEAN and SD fitting together. If distribution is not available an error ll be thrown.

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

Examples

```
var1 <- PROB_BASEVAR(Name="var1", Description="yield strength",
DistributionType="norm", Mean=500, Sd=60)
var1$prepare()

var2 <- PROB_BASEVAR(Name="var2", Description="Load",
DistributionType="gumbel",Package="evd",Mean=40, Sd=3)
var2$prepare()</pre>
```

PROB_DETVAR-class

Object to store a deterministic model for base vars

Description

Object to store a deterministic model for base vars

Fields

Id Place in vector of objective functional expression function(x)x[id]

Name readable name like f_ck, used for transform expression to objective function

Description - Used for better understanding of vars

Value - The deterministic value that sould be used (as mean for the normal distribution with infinite small sd)

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

Examples

```
form_rf<-PROB_MACHINE(name="FORM RF",fCall="FORM",options=list("n_optim"=20,
   "loctol"=0.001, "optim_type"="rackfies"))
sorm <- PROB_MACHINE(name="SORM",fCall="SORM")
mcis<-PROB_MACHINE(name="MC IS",fCall="MC_IS",options=list("cov_user" = 0.05, "n_max"=300000))
mcsus<-PROB_MACHINE(name="MC SuS",fCall="MC_SubSam")</pre>
```

PROB_MACHINE-class

Object to store prob machines

Description

Object to store prob machines

Fields

```
name individual name
```

```
fCall Function Call of the method. Possible is: "MVFOSM", "FORM", "SORM", "MC_Crude", "MC_IS", "MC_SubSam"
```

options additional options for the method provided as a list. For form e.g. options=list("optim_type"="rackfies"). To get insight of all available settings of each method open the help with ?FORM, ?SORM, ?MC_IS etc.

Author(s)

(C) 2021 - M. Ricker, K. Nille-Hauf, T. Feiri - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

qlt

Quantil Function for logarithmic student T distritbution

Description

Quantil Function for logarithmic student T distribution

Usage

```
qlt(p, m, s, n, nue)
```

Arguments

р	probablity
m	mean (1. parameter)
S	standard deviation (2. parameter)
n	3. paramter
nue	degrees of freedom

14 rlt

Value

quantile

Author(s)

(C) 2021 - M. Ricker, K. Nille-Hauf, T. Feiri - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

rlt

Random Realisation-Function for logarithmic student T distritbution

Description

Random Realisation-Function for logarithmic student T distribution

Usage

```
rlt(n_vals, m, s, n, nue)
```

Arguments

n_vals	number of realisations
m	mean (1. parameter)
S	standard deviation (2. parameter)
n	3. paramter
nue	degrees of freedom

Value

random number

Author(s)

(C) 2021 - M. Ricker, K. Nille-Hauf, T. Feiri - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

SORM 15

SORM

Reliability Analysis at Biberach University of applied sciences

Description

S. Marelli, and B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool (United Kingdom), 2014, 2554-2563. S. Lacaze and S. Missoum, CODES: A Toolbox For Computational Design, Version 1.0, 2015, URL: www.codes.arizona.edu/toolbox. X. Z. Wu, Implementing statistical fitting and reliability analysis for geotechnical engineering problems in R. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2017, 11.2: 173-188.

Usage

```
SORM(lsf, lDistr, debug.level = 0)
```

Arguments

1sf objective function with limit state function in form of function(x) x[1]+x[2]...

1Distr list ob distributions regarding the distribution object of TesiproV

debug.level If 0 no additional info if 2 high output during calculation

Value

The results will be provided within a list with the following objects. Acess them with "\$"-accessor beta ... HasoferLind Beta Index

pf ... probablity of failure

u_points ... solution points

dy ... gradients

Author(s)

(C) 2021 - T. Feiri, K. Nille-Hauf, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

References

Breitung, K. (1989). Asymptotic approximations for probability integrals. Probabilistic Engineering Mechanics 4(4), 187–190. 9, 10

Cai, G. Q. and I. Elishakoff (1994). Refined second-order reliability analysis. Structural Safety 14(4), 267–276. 9, 10

Hohenbichler, M., S. Gollwitzer, W. Kruse, and R. Rackwitz (1987). New light on first- and second order reliability methods. Structural Safety 4, 267–284. 10

Tvedt, L. (1990). Distribution of quadratic forms in normal space – Applications to structural reliability. Journal of Engineering Mechanics 116(6), 1183–1197. 10

16 SYS_PARAM-class

SYS_LSF-class

System Limit State Functions

Description

Object that represents a limit state function

Fields

```
expr prepared for expression like SYS_LSF$expr <- expression(f_ck - d_nom)...

func prepared for objective functions like SYS_LSF$func <- function(x)return(x[1] + x[2])

vars needs list of PROB_BASEVAR-Object

name Can be added for better recognition. Otherwise the problem will be called "Unkown Problem"
```

Methods

ExpressionToFunction() Transforms a valid expression into a objective function. Need the set of Variables with correct spelled names and IDs

check() Checks all variables. You dont need to execute this, since the system object will do anyway.

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

Examples

```
list_of_vars <- list(PROB_BASEVAR(), PROB_BASEVAR())
lsf1 <- SYS_LSF(name="my first lsf", vars=list_of_vars)
lsf1$func <- function(var1,var2){var1-var2}</pre>
```

SYS_PARAM-class

Object for parametric Studies

Description

Object to create probabilistic problems in parametric studies context. There are no changes how to use compared with SYS_PROB

Fields

```
beta_params Outputfield: See the beta values of the studie
res_params Outputfield: See the the full result output of each run
```

SYS_PROB-class 17

Methods

printResults(path = "") TesiproV can create a report file with all the necessary data for you. If you provide a path (or filename, without ending) it will store the data there, otherwise it will report to the console. Set the path via setwd() or check it via getwd().

runMachines() Starts solving all given problems (sys_input) with all given algorithms (probMachines). After that one can access via \$res...1

Author(s)

(C) 2021 - M. Ricker, K. Nille-Hauf, T. Feiri - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

SYS PROB-class

System Probabliation Solution Object

Description

Object to create probabilistic problems. Including Equation, List of Basisvariable, and Solutionmachines

Fields

```
sys_input List of SYS_LSFs
sys_type determining serial or parallel system, not implemented yet
probMachines list of PROB_MACHINES
res_single grab results after .runMachines()
```

Methods

calculateSystemProbability(calcType = "simpleBounds", params = list()) Calculates the system probability if more than one lsf is given and a system_type (serial or parallel) is set. If calcType is empty (or simpleBounds), only simpleBounds are applied to further calculation of single soultions. If calcType is MCIS, than a Monte Carlo Importance Sampling Method is used (only for parallel systems available). If calcType is MCC, than a Crude Monte Carlo Simulation is used. If calcType is MCSUS, than the Subset Sampling Algorithm II be used. You can pass arguments to methods via the params field, while the argument has to be a named list (for example check the vignette).

plotGraph(plotType = "sim.performance") not finally implemented. Do not use.

printResults(path = "") TesiproV can create a report file with all the necessary data for you. If you provide a path (or filename, without ending) it will store the data there, otherwise it will report to the console. Set the path via setwd() or check it via getwd().

runMachines() Starts solving all given problems (sys_input) with all given algorithms (probMachines). After that one can access via \$res...1

18 TesiproV

saveProject(level, filename = "tesiprov_project") You can save your calculation project
with saveProject(). There are four different levels of detail to save 1st Level: Only the beta
values 2nd Level: The result Objects of single or systemcalculation 3th Level: All The Probablity System Object, including limit state functions, machines and solutions 4th Level: An
image of your entire workspace

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

Examples

```
ps <- SYS_PROB(
sys_input=list(SYS_LSF(),SYS_LSF()),
probMachines=list(PROB_MACHINE()),
sys_type="serial")
## Not run:
ps$runMachines()
ps$beta_sys
ps$res_sys
ps$printResults("example_1")
ps$saveProject(4,"example_1")</pre>
```

TesiproV

TesiproV: A package for the calculation of reliability and failure probability in civil engineering

Description

The Package provides three main types of objects:

- 1. Objects for modeling base variables
- 2. Objects for modeling limit state functions and systems of them
- 3. Objects for modeling solving algorithms

Details

By creating and combining those objects, one is able to model quite complex problems in terms of structural reliablity calculation. For normally distributed variables there might be an workflow to calculate correlated problems (but no systems then). There is also implemented a new distribution (logStudentT, often used for conrete compression strength) to show how one can implement your very own or maybe combined multi modal distribution and use it with TesiproV.

TesiproV 19

Objects for base variables

 ${\tt PROB_BASEVAR, PROB_DETVAR, PARAM_BASEVAR, PARAM_DETVAR}$

Limit state functions

 ${\sf SYS_LSF}, {\sf PROB_SYS}, {\sf PARAM_SYS}$

Solving algorithms

PROB_MACHINE

Author(s)

(C) 2021 - K. Nille-Hauf, T. Feiri, M. Ricker - Hochschule Biberach, Institut fuer Konstruktiven Ingenieurbau

Index

```
{\tt debug.print, 2}
dlt, 3
FORM, 3
MC_CRUDE, 5
MC_IS, 6
MC_SubSam, 7
MVFOSM, 9
PARAM_BASEVAR (PARAM_BASEVAR-class), 10
PARAM_BASEVAR-class, 10
PARAM_DETVAR (PARAM_DETVAR-class), 10
PARAM_DETVAR-class, 10
PARAM_LSF (PARAM_LSF-class), 10
PARAM_LSF-class, 10
plt, 11
PROB_BASEVAR (PROB_BASEVAR-class), 11
PROB_BASEVAR-class, 11
PROB_DETVAR (PROB_DETVAR-class), 12
PROB_DETVAR-class, 12
PROB_MACHINE (PROB_MACHINE-class), 13
PROB_MACHINE-class, 13
qlt, 13
rlt, 14
SORM, 15
SYS_LSF (SYS_LSF-class), 16
SYS_LSF-class, 16
{\tt SYS\_PARAM}\,({\tt SYS\_PARAM-class}),\, {\color{red}16}
SYS_PARAM-class, 16
SYS_PROB (SYS_PROB-class), 17
SYS_PROB-class, 17
TesiproV, 18
```