In [1]:

```
# import python libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # visualizing data
%matplotlib inline
import seaborn as sns
```

In [29]:

```
# import csv file
Data = pd.read_csv('Diwali Sales Data.csv', encoding= 'unicode_escape')
```

In [30]:

Data.shape

Out[30]:

(11251, 15)

In [31]:

Data.head()

Out[31]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	٧
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Sc
2	1001990	Bindu	P00118542	F	26 - 35	35	1	Uttar Pradesh	(
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Sc
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	٧
4									•

In [32]:

```
Data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11251 entries, 0 to 11250
Data columns (total 15 columns):
     Column
                       Non-Null Count
                                       Dtype
                       -----
     _____
_ _ _
                                       ----
    User_ID
 0
                       11251 non-null int64
 1
    Cust_name
                       11251 non-null object
 2
    Product ID
                       11251 non-null object
 3
    Gender
                       11251 non-null object
 4
    Age Group
                       11251 non-null object
 5
    Age
                       11251 non-null int64
 6
    Marital_Status
                       11251 non-null int64
 7
    State
                       11251 non-null object
 8
    Zone
                       11251 non-null object
 9
    Occupation
                       11251 non-null object
 10
    Product Category 11251 non-null object
 11
    Orders
                       11251 non-null int64
                       11239 non-null float64
 12
    Amount
 13
    Status
                       0 non-null
                                       float64
 14 unnamed1
                       0 non-null
                                       float64
dtypes: float64(3), int64(4), object(8)
memory usage: 1.3+ MB
In [33]:
#drop unrelated/blank columns
Data.drop(['Status', 'unnamed1'], axis=1, inplace=True)
In [34]:
Out[34]:
```

```
#check for null values
pd.isnull(Data).sum()
```

User_ID 0 0 Cust_name Product ID 0 Gender 0 Age Group 0 0 Marital_Status 0 State 0 Zone 0 Occupation 0 Product_Category 0 Orders 0 Amount 12 dtype: int64

dtype='object')

```
In [35]:
# drop null values
Data.dropna(inplace=True)
In [36]:
# change data type
Data['Amount'] = Data['Amount'].astype('int')
In [37]:
Data['Amount'].dtypes
Out[37]:
dtype('int32')
In [38]:
Data.columns
Out[38]:
у',
     'Orders', 'Amount'],
```

In [39]:

```
#rename column
Data.rename(columns= {'Marital_Status':'Shaadi'})
```

Out[39]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	;
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	We
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Sout
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Сє
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Sout
4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	We
		•••	•••				•••		
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	We
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Nor
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Сє
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Sout
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	We
11239 rows × 13 columns									
4									•

In [40]:

describe() method returns description of the data in the DataFrame (i.e. count, mean,
Data.describe()

Out[40]:

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

In [41]:

```
# use describe() for specific columns
Data[['Age', 'Orders', 'Amount']].describe()
```

Out[41]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender

In [42]:

```
# plotting a bar chart for Gender and it's count
ax = sns.countplot(x = 'Gender',data = Data)
for bars in ax.containers:
    ax.bar_label(bars)
```


In [51]:

```
# plotting a bar chart for gender vs total amount
sales_gen = Data.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount')
sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen)
plt.show()
```


From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

Age

In [44]:

```
ax = sns.countplot(data = Data, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


In [50]:

```
# Total Amount vs Age Group
sales_age = Data.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='
sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)
plt.show()
```


From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

In [49]:

```
# total number of orders from top 10 states
sales_state = Data.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Or
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')
plt.show()
```


In [48]:

```
# total amount/sales from top 10 states
sales_state = Data.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Am
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')
plt.show()
```


From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

In [52]:

```
ax = sns.countplot(data = Data, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```


In [53]:

```
sales_state = Data.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum()
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')
```

Out[53]:

<AxesSubplot:xlabel='Marital_Status', ylabel='Amount'>

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

In [54]:

```
sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = Data, x = 'Occupation')

for bars in ax.containers:
    ax.bar_label(bars)
```


In [55]:

```
sales_state = Data.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(b
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
```

Out[55]:

<AxesSubplot:xlabel='Occupation', ylabel='Amount'>

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

In [56]:

```
sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = Data, x = 'Product_Category')

for bars in ax.containers:
    ax.bar_label(bars)
```


In [58]:

```
sales_state = Data.groupby(['Product_Category'], as_index=False)['Amount'].sum().sort_va
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount')
plt.show()
```

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

In [59]:

```
sales_state = Data.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(b
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')
```

Out[59]:

<AxesSubplot:xlabel='Product_ID', ylabel='Orders'>

In [60]:

```
# top 10 most sold products (same thing as above)
fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(
plt.show()
```


Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category