ITI1500

Professeur: Ahmed Karmouch Solutions Devoir # 2

Question 2.3:

(a)
$$xyz + x'y + xyz' = xy + x'y = y$$

(b)
$$x'yz + xz = (x'y + x)z = z(x + x')(x + y) = z(x + y)$$

(c)
$$(x + y)'(x' + y') = x'y'(x' + y') = x'y'$$

(d)
$$xy + x(wz + wz') = x(y + wz + wz') = x(w + y)$$

(e)
$$(yz' + x'w)(xy' + zw') = yz'xy' + yz'zw' + x'wxy' + x'wzw' = 0$$

(f)
$$(x + y' + z')(x' + z') = xx' + xz' + x'y' + y'z' + x'z' + z'z' = z' + y'(x' + z') = z' + x'y'$$

Question 2.4:

(a)
$$x'z' + xyz + xz' = z' + xyz = (z + z')(z' + xy) = xy + z'$$

(b)
$$(x'y' + z)' + z + xy + wz = (x'y')'z' + z + xy + wz$$

 $= [(x + y)z' + z] + xy + wz$
 $= (z + z')(z + x + y) + xy + wz$
 $= z + wz + x + xy + y$
 $= z(1 + w) + x(1 + y) + y$
 $= x + y + z$

(c)
$$w'x(z' + y'z) + x(w + w'yz) = w'x(z' + y') + x(w + yz)$$
 (A noter que: $x + x'y = x + y$)
 $= w'xz' + w'xy' + xw + xyz$
 $= x(w'z' + w'y' + w + yz)$
 $= x(y'z' + y'z' + w + yz)$
 $= x(y'z' + z' + w + yz)$
 $= x(y'z' + z' + w'z' + w'z') = x(y'z' + z' + w'z') = x(z'' + z' + w'z') = x(z$

$$(d) (w' + y)(w' + y')(w + x + y'z) = (w' + w'y' + w'y)(w + x + y'z)$$

$$= (w' + w')(w + x + y'z)$$

$$= w'(w + x + y'z)$$

$$= w'x + w'y'z$$

$$= w'(x + y'z)$$

(e)
$$wxy'z + w'xz + wxyz = wxz(y' + y) + w'xz$$

= $wxz + w'xz$
= $xz(w + w') = xz$

Question 2.6:

Circuit pour l'équation de l'exercice 2.3-a :

Circuit pour l'équation de l'exercice 2.3-c:

Circuit pour l'équation de l'exercice 2.3-f :

Question 2.7:

Circuit pour l'équation de l'exercice 2.4-c :

Circuit pour l'équation de l'exercice 2.4-d :

Pour la fonction originale :

Pour la fonction simplifiée :

Circuit pour l'équation de l'exercice 2.4-e :

Pour la fonction originale :

Pour la fonction simplifiée :

Question 2.11:

(a)
$$F = xy + xy' + y'z$$

x	y	Z	y'	xy	xy'	y'z	F = xy + xy' + y'z
0	0	0	1	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	1	0	1	0	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	1
1	1	1	0	1	0	0	1

(b)
$$F = ac + b'c'$$

a	b	С	ac	b'c'	F
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	0	1

Question 2.13:

a)
$$F = (u + x')(y' + z)$$

b)
$$F = (u \oplus y)' + x$$

c)
$$F = (u' + x')(y + z')$$

e) F = u + yz + uxy

٠

Question 2.14:

$$a) F = xy + x'y' + y'z$$

b)
$$F = (x' + y')' + (x + y)' + (y + z')'$$

c) F = ((xy), (x,y), (y,z),

d) F = ((xy), (x,y), (y,z),)

e)
$$F = [((x' + y')' + (x+y)' + (y+z')')']'$$

Question 2.18:

a)

w	x	y	z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

b)

$$F = xy'z + x'y'z + w'xy + wx'y + wxy$$

$$= y'z(x+x') + xy(w+w') + wx'y$$

$$= y'z + xy + wx'y$$

$$= y'z + y(x+wx')$$

$$= y'z + y(x+w)(x+x')$$

$$= y'z + y(x+w)$$

$$F = y'z + xy + wy$$

Donc F = y'z + y(w + x)

d)

$$F = \Sigma(1, 5, 6, 7, 9, 10, 11, 13, 14, 15).$$

w	x	y	z	F
О	О	О	О	О
0	o	o	1	1
0	0	1	О	О
0	0	1	1	О
0	1	0	О	О
0	1	0	1	1
0	1	1	О	1
0	1	1	1	1
1	0	0	О	О
1	o	o	1	1
1	0	1	О	1
1	0	1	1	1
1	1	o	О	О
1	1	О	1	1
1	1	1	О	1
1	1	1	1	1

Le circuit de l'expression simplifiée a 3 portes 'ET' de moins que le circuit de la fonction originale.