

Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

ADRIAN STANCIU

Leveraging the power of C++ for efficient machine learning on embedded devices

Adrian Stanciu adrian.stanciu.pub@gmail.com

CppCon, 2023

About me

- ▶ I am a software engineer from Romania
- ► I have a bachelor's degree in computer science from Politehnica University of Bucharest
- ▶ I have a master's degree in computer and network security from Politehnica University of Bucharest
- ▶ I have 12 years of professional experience in Linux system programming
- ▶ My main programming languages are C and C++
- I am interested in algorithms, data structures and operating systems
- ▶ I work at Bitdefender, global leader in cybersecurity, where I develop security software solutions which run on routers

Disclaimer

- ► This presentation is based on a personal project I worked on in my spare time and it is not directly related to the work I do at Bitdefender
- ▶ The outcome of this project is just a proof of concept
- ► Any mistakes are mine

Agenda

- Motivation
- ► Image classification
- ► Hand gesture recognition
- Summary
- ► Q&A

Motivation

Machine Learning (ML)

- ► Subfield of Artificial Inteligence (AI)
- ► Enables computers to learn from data and then use that knowledge to make predictions
- Applications:
 - Computer vision
 - Medicine
 - Search engines

Embedded devices

- Computing devices designed to perform specific tasks within larger systems
- Applications:
 - Consumer electronics (e.g. mobile phones, VR headsets)
 - ► Home automation (e.g. thermostats)
 - Medical equipment (e.g. pacemakers)
- Characteristics:
 - Limited hardware resources
 - Low power consumption
 - May have real-time performance constraints

Machine learning on embedded devices

- Alternative to cloud-based machine learning
- Advantages:
 - Real-time processing
 - Low latency
 - Reduced bandwidth usage
 - Offline operation
 - Improved privacy
- Disadvantages:
 - Compatibility with various hardware and software platforms
 - Slower updates

Using C++ for machine learning on embedded devices

C++ is widely used in embedded systems:

- ► Was designed with efficiency in mind
- Provides low-level access to hardware resources
- Provides high-level abstractions

Image classification

Supervised learning

Machine learning paradigm in which an algorithm learns from labeled data to make predictions

Supervised learning

Source: xkcd.com

Neural network (NN)

Convolutional neural network (CNN)

- ▶ Efficient in image classification
- A convolutional layer can apply filters to detect:
 - Edges
 - Shapes
 - Objects

Hardware setup

- Raspberry Pi 4 model B:
 - Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz
 - ► 4GB RAM
- 8GB microSD card
- Raspberry Pi Camera module 3

Software dependencies

- ► TensorFlow Lite
- OpenCV

MobileNet pre-trained model

- ► CNN architecture created by Google
- ► Trained on 1000 classes
- Accepts 224x224-pixel images, with 3 color channels per pixel (RGB)
- Labels are stored separate from the model:
 - ▶ labels_mobilenet_quant_v1_224.txt (11KB)
 - mobilenet_v1_1.0_224_quant.tflite (4.1MB)

Image classification algorithm

- 1. Load model and labels
- 2. Build interpreter
- 3. Allocate input and output tensors
- 4. Read image
- 5. Resize image
- 6. Copy resized image to input tensor
- 7. Run inference
- 8. Extract results from output tensor

Steps 1-3 represent the initialization phase Steps 4-8 can be repeated multiple times

1. Load model and labels

```
1 // defined and properly initialized elsewhere:
2 // const char *model_path;
3 // const char *labels_path;
4
5
   std::unique_ptr<tflite::FlatBufferModel> model{
6
     tflite::FlatBufferModel::BuildFromFile(model_path)
   };
8
   std::ifstream labels_ifs{labels_path};
10
   std::string label;
11
   std::vector<std::string> labels;
12
   while (getline(labels_ifs, label)) {
13
     labels.push_back(std::move(label));
14
```

2. Build interpreter

```
1 // defined and properly initialized elsewhere:
2 // std::unique_ptr<tflite::FlatBufferModel> model;
3 // int num_threads;
4
5 tflite::ops::builtin::BuiltinOpResolver resolver;
6 tflite::InterpreterBuilder builder{*model, resolver};
7
8 builder.SetNumThreads(num_threads);
9
10 std::unique_ptr<tflite::Interpreter> interpreter;
11 builder(&interpreter);
```

3. Allocate input and output tensors

```
1 // defined and properly initialized elsewhere:
2 // std::unique_ptr<tflite::Interpreter> interpreter;
3
4 interpreter->AllocateTensors();
```

4. Read image

```
1 // defined and properly initialized elsewhere:
2 // const char *image_path;
3
4 cv::Mat image{cv::imread(image_path)};
```

5. Resize image

```
1 // defined and properly initialized elsewhere:
2 // cv::Mat image;
3 // int required_image_width;
4 // int required_image_height;
5
6 cv::Mat resized_image;
7 cv::resize(
8 image,
9 resized_image,
10 cv::Size{required_image_width, required_image_height}}
11 );
```

6. Copy resized image to input tensor

```
1 // defined and properly initialized elsewhere:
2 // std::unique_ptr<tflite::Interpreter> interpreter;
3 // cv::Mat resized_image;
4
5 std::memcpy(
6 interpreter->typed_input_tensor<uint8_t>(0),
7 resized_image.data,
8 resized_image.total() * resized_image.elemSize()
9 );
```

7. Run inference

```
1 // defined and properly initialized elsewhere:
2 // std::unique_ptr<tflite::Interpreter> interpreter;
3
4 interpreter->Invoke();
```

8. Extract results from output tensor

```
1 // defined and properly initialized elsewhere:
2 // std::unique_ptr<tflite::Interpreter> interpreter;
3 // std::vector<std::string> labels;
4
5
   std::span<uint8_t> outputs{
6
     interpreter->typed_output_tensor<uint8_t>(0),
     labels.size()
8
   };
9
10
   std::vector<float> probabilities;
11
   probabilities.reserve(labels.size());
12
   for (auto output : outputs) {
    probabilities.push_back(
13
14
       1.0f * output / std::numeric_limits<uint8_t>::max()
15
     );
16 }
```

Demo

\$ libcamera-jpeg --width=640 --height=480 -o out.jpeg

Demo - Good results

0.96 | tennis ball

Demo - Bad results

0.30 | vase
0.25 | bell pepper
ambiguous results

Demo - Bad results explanation

```
$ grep "tomato" labels_mobilenet_quant_v1_224.txt
```

Performance

► Compilation duration (on Raspberry Pi): 35s

▶ Binary size: 67KB

Running duration: 1s

Number of threads	Inference duration (ms)	
1	102	
2	56	
3	41	
4	33	
5	110	

Memory consumption with 4 threads: 93MB

Comparision with Python

Comparision made with TensorFlow Lite's label_image.py

	C++	Python
Running duration (s)	1	7

Number of threads	Inference duration (ms)		
	C++	Python	
1	102	118	
2	56	62	
3	41	42	
4	33	33	
5	110	170	

	C++	Python
Memory consumption with 4 threads (MB)	93	320

Hand gesture recognition

Rock-Paper-Scissors

Source: wikipedia.org

Data

- Google MediaPipe's Rock-Paper-Scissors dataset for hand gesture recognition
 - Contains 125 images for each class
 - Images have various sizes
 - Images have 3 color channels per pixel (RGB)
- Laurence Moroney's Rock-Paper-Scissors dataset (published by Sani Kamal on Kaggle)
 - Contains 964 images for each class split into training data (840) and testing data (124)
 - ► Images are 300x300 pixels
 - Images have 3 color channels per pixel (RGB)

Train a Rock-Paper-Scissors model

- Transfer learning from a ResNet50 model
- ▶ 80/20 split between training and validation data
- ▶ Run in Python, on a laptop

Dataset	Train duration	Model size (MB)
Small	2m15s	23
Big	7m10s	23

Test the Rock-Paper-Scissors model

- Using the testing data of the big dataset (124 images per class)
- Small dataset results:

Gesture	Correct predictions	Accuracy (%)
Rock	108	87.09
Paper	124	100
Scissors	8	6.45
All	240 out of 372	64.51

► Big dataset results:

Gesture	Correct predictions	Accuracy (%)
Rock	124	100
Paper	122	98.38
Scissors	97	78.22
All	343 out of 372	92.20

Performance

► Compilation duration (on Raspberry Pi): 35s

▶ Binary size: 67KB

Running duration: 1s

Number of threads	Inference duration (ms)	
1	151	
2	98	
3	80	
4	71	
5	189	

Memory consumption with 4 threads: 118MB

Capture camera stream

- libcamera backend
- gstreamer middleware
- OpenCV frontend

Capture camera stream

```
static constexpr const char *GstreamerPipeline{R"(
       libcamerasrc!
       video/x-raw,
       width=(int)640,
5
       height=(int)480,
6
       framerate=(fraction)10/1 !
       videoconvert!
8
       appsink
9
   )"}:
10
11
   cv::VideoCapture camera{
12
     GstreamerPipeline,
13
     cv::CAP_GSTREAMER
14 };
15
16
   cv::Mat image;
17
   camera.read(image);
```

Live inference

- 1. Create image classifier
- 2. Open camera
- 3. Do in a loop:
 - 3.1 Read image from camera
 - 3.2 Use classifier to run inference on image
 - 3.3 Show predictions

Rock-Paper-Scissors game

On each round the AI:

- 1. Chooses Rock, Paper or Scissors uniformly at random
- 2. Infers the human's hand gesture
- 3. Computes the outcome

Summary

Recap

Task	Model	Inference
Image classification	pre-trained MobileNet	on-device
Rock-Paper-Scissors	transfer learning	in C++
hand gesture recognition	from ResNet50	

Future work

- Reduce the model size and decrease the inference duration by converting images to grayscale
- Use libcamera's API directly to reduce dependencies
- Run inference on GPU

Future work

Source: wikipedia.org

Conclusions

- ► Code isn't enough... data matters
- ► More diverse data leads to better models
- Building accurate models is an expert job
- Running on-device inference is straightforward
- Running on-device inference is here to stay

Repository

https://github.com/adrian-stanciu/cpp-embedded-ml

Resources

- https://github.com/tensorflow/tensorflow/tree/ master/tensorflow/lite/examples/python
- https://kaggle.com/datasets/sanikamal/ rock-paper-scissors-dataset
- https://storage.googleapis.com/mediapipe-tasks/ gesture_recognizer/rps_data_sample.zip
- ▶ https://tensorflow.org/lite/examples

Thank you!