School of Mathematics and Statistics MAST30030

Applied Mathematical Modelling

Problem Sheet 2. Some answers

Question 1

- (a) Fixed point: (0,0) saddle node. Nullclines: y=x (vertical), x=0 (horizontal).
- (b) Fixed point: (0,0) saddle node, (-1,0) stable node, (1,0) stable node. Nullclines: $x=0,\pm 1$ (vertical), y=0 (horizontal).
- (c) Fixed point: (0,0) linear stability analysis gives zero eigenvalue. Nullclines: y=x and x=0 (vertical), y=0 and y=2x (horizontal).
 - (d) Fixed point: (1,0) saddle node. Nullclines: y=0 (vertical), y=-1+1/x (horizontal).
- (e) Fixed points: (0,0) saddle node, (1,1) stable spiral (counter clockwise). Nullclines: x=0 and y=2-x (vertical), y=x (horizontal).
- (f) Fixed points: (0,0) stable spiral (counter clockwise), (1,1) saddle node. Nullclines: $y=x^2$ (vertical), y=x (horizontal).

Question 2

- (a) $\dot{x} = y, \, \dot{y} = x^3 x$
- (b) (0,0) centre (clockwise), $(\pm 1,0)$ saddle node.
- (c) $E = \frac{1}{2}(x^2 + y^2) \frac{1}{4}x^4$

Question 3

- (a) $\dot{x} = y, \, \dot{y} = x x^2$
- (b) (0,0) saddle node, $(\pm 1,0)$ centre (clockwise).
- (c) $E = \frac{1}{2}(y^2 x^2) + \frac{1}{3}x^3$
- (e) $3(y^2 x^2) + 2x^3 = 0$

Question 4

- (a) $\dot{x} = y, \, \dot{y} = -x \epsilon x^3$
- (b) Fixed point: (0,0).

- (c) Fixed points: (0,0) nonlinear centre, $\pm 1/\sqrt{\epsilon}$ saddle node. Trajectories not closed far from origin.
- (d) $\frac{1}{2}(x^2 + y^2) + \frac{1}{4}\epsilon x^4 + \epsilon^{-1} = 0$