$$\begin{bmatrix} k_1 + k_2 + k_3 + k_5 & -k_3 & -k_5 \\ -k_3 & k_3 + k_4 & -k_4 \\ -k_5 & -k_4 & k_4 + k_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} v_{12} \\ w_{2} \\ w_{3} \end{bmatrix}$$

where k_i are the spring stiffnesses, W_i represent the weights of the masses, and x_i are the displacements of the masses from the undeformed configuration of the system. Write a program that solves these equations for given k and W. Use the program to find the displacements if

$$k_1 \stackrel{<}{=} k_3 = k_4 = k$$
 $k_2 = k_5 = 2k$
 $W_1 = W_3 = 2W$ $W_2 = W$

:7. ■

4

The electrical network shown can be viewed as consisting of three loops. Applying Kirchoff's law (\sum voltage drops = \sum voltage sources) to each loop yields the following equations for the loop currents i_1 , i_2 and i_3 :

$$(50 + R)i_1 - Ri_2 - 30i_3 = 0$$

$$-Ri_1 + (65 + R)i_2 - 15i_3 = 0$$

$$-30i_2 - 15i_2 + 45i_3 = 120$$

$$-30i_3$$

Compute the three loop currents for $R=5~\Omega$, $10~\Omega$, and $20~\Omega$.

Determine the loop currents i_1 to i_4 in the electrical network shown.