You can preview this quiz, but if this were a real attempt, you would be blocked because:

This quiz is currently not available.

Question 1

Not yet answered

Marked out of 10.00

v1 (latest)

Dado el sistema $(S) = \begin{cases} 2x + y + 3z = 0 \\ x - 2y + z = 0 \end{cases}$ ¿cuál de las las siguientes ecuaciones debe añadirse a (S) para que el nuevo sistema tenga infinitas soluciones?

- $\bigcirc \ \text{a.} \ \ 3x y + 2z = 0$
- O b. 3x y + 4z = 4
- \bigcirc c. x+y=0
- O d. No sé
- \bigcirc e. x + 3y + 2z = 0

Not yet answered

Marked out of 1.00

v1 (latest)

Si el complejo representado por la flecha negra es z, señale la gráfica que representa aproximadamente a $\frac{1}{z}$:

Select one:

○ a.

O b.

○ c. No sé

O d.

О е.

∩uactian ≾	

Marked out of 10.00

v1 (latest)

Sean z=2+3i y $w=\sqrt{2}e^{\frac{\pi}{4}i}$. ¿En cuál de las siguientes operaciones el resultado tiene la mayor parte imaginaria?

Select one:

- \bigcirc a. w^6
- \bigcirc b. z+w
- \bigcirc c. zw
- O d. No sé.
- \bigcirc e. $\frac{z}{w}$

Question 4

Not yet answered

Marked out of 10.00

v1 (latest)

Sean z=2+3i y $w=\sqrt{2}e^{\frac{\pi}{4}i}$. ¿En cuál de las siguientes operaciones el resultado tiene la mayor parte real?

- a. No sé.
- \bigcirc b. $\frac{z}{w}$
- \bigcirc c. z+w
- \bigcirc d. w^6
- \bigcirc e. zw

	Е
Ouestion	~

Marked out of 10.00

v1 (latest)

Sean z=2+3i y $w=\sqrt{2}e^{\frac{\pi}{4}i}$. ¿En cuál de las siguientes operaciones el resultado tiene la menor parte imaginaria?

Select one:

- \bigcirc a. zw
- \bigcirc b. z+w
- \bigcirc c. w^6
- O d. No sé.
- \bigcirc e. $\frac{z}{w}$

Question 6

Not yet answered

Marked out of 10.00

v1 (latest)

Sea z=a+bi un número complejo. De las siguientes afirmaciones, ¿cuál es falsa?

- \bigcirc a. $z\overline{z}=\left|z\right|^2$
- \bigcirc b. si a=b, entonces $|z|=|a|\sqrt{2}$.
- \bigcirc c. si b=0, entonces $z^{-1}=-z$.
- O d. No sé.
- \bigcirc e. $z=ar{z}$ si y solo si b=0.

3/10/24, 9:20

Question 7

Not yet answered

Marked out of 10.00

v1 (latest)

Sea z=a+bi un número complejo. De las siguientes afirmaciones, ¿cuál es falsa?

Select one:

- \bigcirc a. si b=0, entonces $z=ar{z}$
- O b. No sé.
- \bigcirc c. |z|=|iz|
- \bigcirc d. si a=b, entonces $|z|=a\sqrt{2}$.
- \bigcirc e. $\bar{z}=-z$ si y solo si a=0.

Question 8

Not yet answered

Marked out of 10.00

v1 (latest)

Sea z=a+bi un número complejo. De las siguientes afirmaciones, ¿cuál es verdadera?

Select one:

- \bigcirc a. $z\overline{z}=|z|^2$
- \bigcirc b. si a=b, entonces $|z|=a\sqrt{2}$.
- O c. No sé.
- \bigcirc d. si b=0, entonces $z^{-1}=-z$.
- \bigcirc e. |z| = |a| + |b|

Question 9

Not yet answered

Marked out of 10.00

v1 (latest)

Sea z=a+bi un número complejo. De las siguientes afirmaciones, ¿cuál es verdadera?

- \bigcirc a. si a=0 entonces $\overline{z\cdot i^{1000}}=-z$.
- \bigcirc b. si a=b, entonces $|z|=a\sqrt{2}$.
- \bigcirc c. si b=0, entonces $z^{-1}=-z$.
- \bigcirc d. |i+z|=1+|z|
- O e. No sé.

3/10/24, 9:20

Question 10

Not yet answered

Marked out of 10.00

v1 (latest)

¿Cuál de las siguientes funciones es una transformación lineal de \mathbb{R}^2 en \mathbb{R}^3 ?

Select one:

- \bigcirc a. f(x,y) = (x, x + y, 0)
- O b. No sé
- \bigcirc c. f(x,y)=(x,y,xy)
- \bigcirc d. $f(x,y)=(x,x^2,y)$
- \bigcirc e. f(x,y,z)=(x,y-z)

Question 11

Not yet answered

Marked out of 10.00

v1 (latest)

¿Cuál de las siguientes funciones es una transformación lineal de \mathbb{R}^2 en \mathbb{R}^3 ?

- \bigcirc a. f(x,y)=(x,xy,0)
- O b. No sé
- \bigcirc c. f(x,y)=(2x,x,0)
- \bigcirc d. $f(x,y)=(x,x^2,y)$
- \bigcirc e. f(x,y,z)=(x,y-z)

Question	1	2
----------	---	---

Marked out of 10.00

v1 (latest)

¿Cuál de las siguientes funciones es una transformación lineal de \mathbb{R}^2 en \mathbb{R}^3 ?

Select one:

- \bigcirc a. $f(x,y)=(x,y^2,y)$
- \bigcirc b. f(x,y)=(y,x-y,x+y)
- \bigcirc c. f(x,y,z)=(x,y-z)
- \bigcirc d. f(x,y)=(x,xy,0)
- O e. No sé

Question 13

Not yet answered

Marked out of 10.00

v1 (latest)

¿Cuál de las siguientes funciones es una transformación lineal de \mathbb{R}^2 en \mathbb{R}^3 ?

- \bigcirc a. f(x,y)=(x,xy,0)
- \bigcirc b. f(x,y,z)=(x,y-z)
- O c. No sé
- \bigcirc d. f(x,y)=(x,y+2,y)
- \bigcirc e. f(x,y)=(x+2y,0,x-y)

Not yet answered

Marked out of 10.00

v1 (latest)

Sean
$$A=egin{pmatrix}1&0&0\\0&2&0\\0&0&-3\end{pmatrix}$$
 y $B=egin{pmatrix}2&0&10\\0&\sqrt{2}&0\\0&0&-100\end{pmatrix}$, entonces

 $\det(2A^2BA^{-1}B^{-1})$ es :

Select one:

- \bigcirc a. -40
- \bigcirc b. -48
- \bigcirc c. 48
- O d. No sé.
- \bigcirc e. $2\sqrt{2}$

Question 15

Not yet answered

Marked out of 10.00

v1 (latest)

Sean
$$A=egin{pmatrix} rac{9}{2} & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
 y $B=egin{pmatrix} 2 & 0 & 10 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -100 \end{pmatrix}$, entonces

 $\det(\frac{1}{3}A^3BA^{-1}B^{-1})$ es :

- \bigcirc a. $2\sqrt{2}$
- \bigcirc b. 27
- O c. No sé.
- \bigcirc d. $-200\sqrt{2}$
- \bigcirc e. -27

Not yet answered

Marked out of 10.00

v1 (latest)

Dado que
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 6$$
 entonces el valor de $\begin{vmatrix} -3a & -3b & -3c \\ 2g - 3d & 2h - 3e & 2i - 3f \\ d & e & f \end{vmatrix}$ es:

Select one:

- \bigcirc a. 6.
- \bigcirc b. -12
- \bigcirc c. -36.
- \bigcirc d. 36.
- e. No sé.

Question 17

Not yet answered

Marked out of 10.00

v1 (latest)

$$\text{Dado que} \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 6 \text{ entonces el valor de} \begin{vmatrix} -2a-d & -2b-e & -2c-f \\ 3g+4d & 3h+4e & 3i+4f \\ \frac{d}{4} & \frac{e}{4} & \frac{f}{4} \end{vmatrix} \text{ es:}$$

- \bigcirc a. 9.
- \bigcirc b. 6.
- \bigcirc c. -9.
- \bigcirc d. -12.
- O e. No sé.

Not yet answered

Marked out of 10.00

v1 (latest)

Dado que
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 6$$
 entonces el valor de $\begin{vmatrix} a & b & 3a+4c \\ g & h & 3g+4i \\ d & e & 3d+4f \end{vmatrix}$ es:

Select one:

- O a. No sé.
- \bigcirc b. -12.
- O c. 6.
- \bigcirc d. -24.
- \bigcirc e. -9.

Question 19

Not yet answered

Marked out of 10.00

v1 (latest)

De las siguientes, ¿cuál es la ecuación de un plano perpendicular a la recta con ecuaciones simétricas $\frac{x-1}{2} = \frac{y-2}{6} = \frac{-z}{4}$

$$\bigcirc$$
 a. $x+2y-z=0$

$$\bigcirc$$
 b. $x+2y=0$

$$\bigcirc$$
 c. $x+3y-2z=0$

- O d. No sé.
- \bigcirc e. 2x + 6y + 4z = 0

Not yet answered

Marked out of 10.00

v1 (latest)

De las siguientes, ¿cuál es la ecuación de un plano perpendicular a la recta con ecuaciones simétricas $\frac{x-1}{6} = \frac{y-2}{3} = \frac{-z}{9}$

Select one:

- \bigcirc a. 2x+y-3z=0
- b. No sé.
- \bigcirc c. x+2y-z=0
- \bigcirc d. x+2y=0
- \bigcirc e. 6x + 3y + 9z = 0

Question 21

Not yet answered

Marked out of 10.00

v1 (latest)

De las siguientes, ¿cuál es la ecuación de un plano perpendicular a la recta con ecuaciones simétricas $\frac{x-2}{3} = \frac{y-1}{6} = \frac{-z}{9}$

Select one:

- \bigcirc a. 2x+y-z=0
- O b. 2x + y = 0
- \bigcirc c. x + 2y 3z = 0
- \bigcirc d. 3x + 6y + 9z = 0
- O e. No sé.

Question 22

Not yet answered

Marked out of 10.00

(v1 (latest))

De las siguientes, ¿cuál es la ecuación de un plano perpendicular a la recta con ecuaciones simétricas $\frac{x-5}{3} = \frac{y-2}{9} = \frac{-z}{6}$

- \bigcirc a. 3x + 9y + 6z = 0
- O b. No sé.
- \bigcirc c. 5x+2y=0
- \bigcirc d. 5x + 2y z = 0
- \bigcirc e. x+3y-2z=0

Ouestion	23
Question	23

Marked out of 10.00

v1 (latest)

El plano mediatríz del segmento \overline{AB} , es el plano que pasa por el punto medio de \overline{AB} y es perpendicular a \overline{AB} . Considere los puntos A(6,3,0) y B(-2,1,-4)..

Una ecuación del plano mediatríz Π del segmento \overline{AB} es ax+by+cz=6, donde a_ib y c son respectivamente:

Select one:

- O a. No sé.
- O b. 6,4y3
- O c. -6,4y-3
- Od. 5, 2 y 3
- O e. 4,1y2

Question 24

Not yet answered

Marked out of 10.00

v1 (latest)

El plano mediatríz del segmento \overline{AB} , es el plano que pasa por el punto medio de \overline{AB} y es perpendicular a \overline{AB} . Considere los puntos A(6,3,0) y B(-2,1,-4).

Una ecuación de la recta L perpendicular al plano Π que pasa por el origen es $x=4t, y=\alpha t, z=\beta t$, donde α y β son respectivamente

- O a. No sé.
- O b. 1 y -2
- O c. 1 y 2.
- O d. 2 y 1
- O e. -1 y -2

Not yet answered

Marked out of 10.00

v1 (latest)

El plano mediatríz del segmento \overline{AB} , es el plano que pasa por el punto medio de \overline{AB} y es perpendicular a \overline{AB} .

Considere los puntos A(6,3,0) y B(-2,1,-4). El punto S simétrico de P(4,1,2) respecto a la recta L es (s_1,s_2,s_3) donde s_1 , s_2 y s_3 son respectivamente.

Select one:

- a. No sé.
- O b. 7, 3 y -2
- O c. 7, -3 y -2
- O d. -7, -3 y -2
- O e. -7, 3 y -2

Question 26

Not yet answered

Marked out of 10.00

v1 (latest)

Si
$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = 5$$
 y $abc = 1$; entonces el valor de $a^3 + b^3 + c^3 =$

- O a. No sé.
- O b. 7
- O c. 6
- O d. 10
- e. 8

Not yet answered

Marked out of 10.00

v1 (latest)

Un **polígono** es una figura geométrica plana compuesta por una secuencia finita de segmentos rectos consecutivos que encierran una región en el plano. Estos segmentos son llamados **lados**, y los puntos en que se intersectan se llaman **vértices**. Una **diagonal** de un polígono es un segmento que une dos de sus vértices no consecutivos. Para $n \geq 3$, sea d_n el número de diagonales de un polígono convexo de n lados. Se quiere demostrar que

$$d_n=rac{n(n-3)}{2}.$$

El caso base para k=3 es muy fácil, pues un triángulo tiene $0=\frac{3(3-3)}{2}$ diagonales. Suponiendo que la proposición es cierta para $k\geq 3$, para demostrar que la proposición se cumple para k+1 nos basamos en que

Select one:

- \bigcirc a. $d_{k+1}=d_k+3k$
- \bigcirc b. $d_{k+1}=d_k+k-1$
- \bigcirc c. $d_{k+1}=d_k+3$
- \bigcirc d. $d_{k+1}=d_k+k+1$
- e. No sé.

Question 28

Not yet answered

Marked out of 10.00

(v1 (latest))

Para $n \ge 3$, sea d_n el número de regiones en que se divide el plano por medio de n rectas donde no hay dos paralelas, ni hay tres que se corten en el mismo punto. Se quiere demostrar que

$$d_n=\frac{n(n+1)}{2}+1.$$

El caso base para k=1 es muy fácil, pues una recta divide al plano en $2=\frac{1(1+1)}{2}+1$ regiones y suponiendo demostrado que la proposición es verdadera para k>1, para demostrar que la proposición se cumple para k+1 nos basamos en que

- \bigcirc a. $d_{k+1}=d_k+3$
- \bigcirc b. $d_{k+1}=d_k+3k$
- O c. No sé.
- \bigcirc d. $d_{k+1}=d_k+k+1$
- \bigcirc e. $d_{k+1}=d_k+k-1$

Not yet answered

Marked out of 10.00

v1 (latest)

Se quiere demostrar por inducción matemática que el número $d_n=6^n-1$ es divisible entre 5 para todo n en los naturales.

El caso base para k=1 es muy fácil, pues $5=6^1-1$ es divisible entre 5 y suponiendo demostrado que la proposición es verdadera para $k\geq 1$, para demostrar que la proposición se cumple para k+1 nos basamos en que

Select one:

- O a. No sé.
- \bigcirc b. $d_{k+1}=6d_k-5$
- \bigcirc c. $d_{k+1}=6d_k+5$
- \bigcirc d. $d_{k+1}=5d_k-5$
- \bigcirc e. $d_{k+1}=5d_k+5$

Question 30

Not yet answered

Marked out of 10.00

v1 (latest)

Todos los valores de k para los cuales la matriz $A=\begin{pmatrix}k&k&0\\k^2&4&k^2\\0&k&k\end{pmatrix}$ no tiene inversa, son:

- O a. No sé.
- \bigcirc b. $k=0; k=\sqrt{2}$ y $k=-\sqrt{2}$.
- \bigcirc c. k = 0; k = 1 y k = -1.
- \bigcirc d. $k \in \mathbb{R}$.
- \bigcirc e. k=0 y $k=\sqrt{2}$.

Not yet answered

Marked out of 10.00

v1 (latest)

Todos los valores de k para los cuales la matriz $A=\begin{pmatrix}k&k&0\\k^2&4&k^2\\0&k&k\end{pmatrix}$ tiene inversa, son:

Select one:

- \bigcirc a. k=0 y $k=\sqrt{2}$.
- \bigcirc b. $k \notin \{0, \sqrt{2}\}.$
- O c. No sé.
- \bigcirc d. $k \notin \{0, \sqrt{2}, -\sqrt{2}\}.$
- \bigcirc e. $k\in\mathbb{R}$.

Question 32

Not yet answered

Marked out of 10.00

(v1 (latest))

Todos los valores de k para los cuales la matriz $A=egin{pmatrix}k&-k&3\\0&k+1&1\\k&-8&k-1\end{pmatrix}$ tiene inversa, son:

- a. No sé.
- \bigcirc b. k=0 y k=2.
- \bigcirc c. $k \notin \{0, 2\}$.
- \bigcirc d. $k \notin \{0, \sqrt{2}\}.$
- \bigcirc e. $k \notin \{0, 2, -2\}$.

Not yet answered

Marked out of 10.00

v1 (latest)

Todos los valores de k para los cuales la matriz $A=egin{pmatrix}k&-k&3\\0&k+1&1\\k&-8&k-1\end{pmatrix}$ no tiene inversa, son:

Select one:

- O a. No sé.
- \bigcirc b. k=0 y k=2.
- \bigcirc c. $k \notin \{0, \sqrt{2}\}.$
- \bigcirc d. k=0 y k=-2.
- \bigcirc e. k=0.

Question 34

Not yet answered

Marked out of 10.00

v1 (latest)

Todos los valores de k para los cuales la matriz $A=\begin{pmatrix} -k&k-1&k+1\\1&2&3\\2-k&k+3&k+7 \end{pmatrix}$ no tiene inversa, son:

- O a. No sé.
- \bigcirc b. $k\in\mathbb{R}$.
- \bigcirc c. k=0 y k=-2.
- \bigcirc d. $k \notin \{0, \sqrt{2}\}.$
- \bigcirc e. k=0.

Not yet answered

Marked out of 10.00

v1 (latest)

Todos los valores de k para los cuales la matriz $A=\begin{pmatrix} -k&k-1&k+1\\1&2&3\\2-k&k+3&k+7 \end{pmatrix}$ tiene inversa, son:

Select one:

- \bigcirc a. $k \notin \{0, \sqrt{2}\}$.
- O b. No sé.
- \bigcirc c. k=0 y k=-2.
- \bigcirc d. Para cualquier valor de $k \in \mathbb{R}$, A no es invertible
- \bigcirc e. $k\in\mathbb{R}$.

Question 36

Not yet answered

Marked out of 10.00

v1 (latest)

La matriz A de tama $ilde{n}$ o 3 imes 3 invertible, tal que $4A=A^2+AB$, donde $B=\begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 3 & 2 \end{pmatrix}$ es:

Select one:

$$\bigcirc$$
 a. $A=egin{pmatrix} 1 & 3 & 2 \ 2 & 2 & rac{5}{2} \ -1 & 4 & 2 \end{pmatrix}.$

$$\bigcirc \ \, \text{b.} \\ A = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 3 & 1 \\ -2 & 2 & 1 \end{pmatrix}.$$

O c. No sé .

$$\bigcirc \ \, \text{d.} \\ A = \begin{pmatrix} 3 & -2 & -3 \\ 1 & 2 & -4 \\ 0 & -3 & 2 \end{pmatrix}.$$

$$\bigcirc$$
 e. $A = \left(egin{array}{ccc} 1 & 2 & 3 \ 2 & 2 & 5/2 \ -1 & -2 & 0 \end{array}
ight).$

Not yet answered

Marked out of 10.00

v1 (latest)

La matriz
$$A$$
 de tama $ilde{n}$ o $3 imes 3$ invertible, tal que $3A=A^2+BA$, donde $B=\begin{pmatrix}1&2&3\\-1&2&4\\0&3&2\end{pmatrix}$ es:

Select one:

$$\bigcirc \ \, \text{a.} \qquad A = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 3 & 1 \\ -2 & 2 & 1 \end{pmatrix}.$$

$$\bigcirc$$
 b. $A = egin{pmatrix} 2 & -2 & -3 \ 1 & 1 & -4 \ 0 & -3 & 2 \end{pmatrix}.$

O c. No sé.

$$\bigcirc \ \, \mathrm{d.} \\ A = \begin{pmatrix} 2 & -2 & -3 \\ 1 & 1 & -4 \\ 0 & -3 & 1 \end{pmatrix}.$$

$$\bigcirc$$
 e. $A = \left(egin{array}{ccc} 1 & 3 & 2 \ 2 & 2 & rac{5}{2} \ -1 & 4 & 2 \end{array}
ight).$

Not yet answered

Marked out of 10.00

v1 (latest)

La matriz
$$A$$
 de tama $ilde{n}$ o $3 imes 3$ invertible, tal que $A^3 = A^2B - 5A^2$, donde $B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 3 & 2 \end{pmatrix}$ es:

Select one:

$$\bigcirc \text{ a. } A = \begin{pmatrix} -4 & 2 & 3 \\ 1 & 1 & -4 \\ 0 & -3 & 2 \end{pmatrix}.$$

$$\bigcirc$$
 b. $A = egin{pmatrix} 1 & 3 & 2 \ 0 & 2 & rac{5}{2} \ 1 & 4 & 2 \end{pmatrix}.$

$$\bigcirc$$
 c. $A = egin{pmatrix} -4 & 2 & 3 \ -1 & -3 & 4 \ 0 & 3 & -3 \end{pmatrix}.$

$$\bigcirc$$
 d. $A = \left(egin{array}{ccc} 1 & 0 & 2 \ 6 & 3 & 1 \ -2 & 2 & 0 \end{array}
ight).$

○ e. No sé

Not yet answered

Marked out of 10.00

v1 (latest)

La matriz
$$A$$
 de tama $ilde{n}$ o $3 imes 3$ invertible, tal que $5A^2=A^3-2BA^2$, donde $B=\begin{pmatrix}1&2&3\\-1&2&4\\0&3&2\end{pmatrix}$ es:

Select one:

$$\bigcirc \ \ \text{a.} \qquad A = \begin{pmatrix} 7 & 4 & 6 \\ -2 & 9 & 8 \\ 0 & 6 & 9 \end{pmatrix}.$$

○ b. No sé.

$$\bigcirc$$
 c. $A = \left(egin{array}{ccc} 1 & 0 & 2 \ 6 & 4 & 1 \ -2 & 2 & 0 \end{array}
ight).$

$$\bigcirc$$
 d. $A = egin{pmatrix} 3 & 3 & 2 \ 0 & 1 & rac{5}{2} \ 1 & 4 & 2 \end{pmatrix}.$

$$\bigcirc$$
 e. $A = \left(egin{array}{ccc} 7 & 2 & 3 \ -2 & 9 & -4 \ 0 & 6 & 2 \end{array}
ight).$

Not yet answered

Marked out of 10.00

v1 (latest)

Si $a^2 + b^2 = 1$ entonces la matriz

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

tiene como inversa:

Select one:

- \bigcirc a. $\begin{pmatrix} -a & -b \\ b & a \end{pmatrix}$
- \bigcirc b. $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$
- c. No sé
- \bigcirc d. $\begin{pmatrix} -a & b \\ b & -a \end{pmatrix}$
- \bigcirc e. $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

Question 41

Not yet answered

Marked out of 10.00

v1 (latest)

Si $b^2-a^2=1$ entonces la matriz $\left(egin{array}{cc} b & -a \ -a & b \end{array}
ight)$ tiene como inversa:

- \bigcirc a. $\begin{pmatrix} -b & -a \ a & b \end{pmatrix}$
- \bigcirc b. $\begin{pmatrix} b & a \\ a & -b \end{pmatrix}$
- \bigcirc c. $\begin{pmatrix} -b & a \ a & -b \end{pmatrix}$
- \bigcirc d. $\begin{pmatrix} b & a \\ a & b \end{pmatrix}$
- O e. No sé

Not yet answered

Marked out of 10.00

v1 (latest)

Si A es una matriz 4×4 y B la matriz:

$$B = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

El producto BA se obtiene haciendo únicamente lo siguiente:

Select one:

- \bigcirc a. A la fila 1 de A se le suma el doble de la fila 4.
- \circ b. A la columna 4 de A se le suma el doble de la columna 1.
- \circ c. A la columna 1 de A se le suma el doble de la columna 4.
- \bigcirc d. A la fila 4 de A se le suma el doble de la fila 1.
- e. No sé.

Question 43

Not yet answered

Marked out of 10.00

v1 (latest)

Si A es una matriz 4×4 y B la matriz:

$$B = egin{pmatrix} 1 & 0 & 0 & 2 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

El producto AB se obtiene haciendo únicamente lo siguiente:

- a. No sé.
- \circ b. A la columna 4 de A se le suma el doble de la columna 1.
- \circ c. A la columna 1 de A se le suma el doble de la columna 4.
- \bigcirc d. A la fila 1 de A se le suma el doble de la fila 4.
- \bigcirc e. A la fila 4 de A se le suma el doble de la fila 1.

Not yet answered

Marked out of 10.00

v1 (latest)

Si A es una matriz 4×4 y B la matriz:

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

El producto BA se obtiene haciendo únicamente lo siguiente:

Select one:

- \bigcirc a. A la columna 1 de A se le suma el doble de la columna 3.
- O b. No sé.
- \circ c. A la columna 3 de A se le suma el doble de la columna 1.
- \bigcirc d. A la fila 1 de A se le suma el doble de la fila 3.
- \bigcirc e. A la fila 3 de A se le suma el doble de la fila 1.

Question 45

Not yet answered

Marked out of 10.00

v1 (latest)

Si A es una matriz 4×4 y B la matriz:

$$B = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 2 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

El producto AB se obtiene haciendo únicamente lo siguiente:

- \bigcirc a. A la fila 3 de A se le suma el doble de la fila 1.
- O b. No sé.
- \circ c. A la fila 1 de A se le suma el doble de la fila 3.
- \bigcirc d. A la columna 1 de A se le suma el doble de la columna 3.
- \circ e. A la columna 3 de A se le suma el doble de la columna 1.

Not yet answered

Marked out of 10.00

v1 (latest)

Sea
$$A=egin{pmatrix} 1 & 2 \ 0 & 2 \end{pmatrix}$$
 , entonces $A^n=egin{pmatrix} a_n & b_n \ 0 & c_n \end{pmatrix}$ donde:

Select one:

- O a. No sé
- \bigcirc b. $a_n=1$; $b_n=2^{n+1}-2$; $c_n=2^n$
- \bigcirc c. $a_n=1$; $b_n=2^{n+1}$; $c_n=2^{n+1}$
- \bigcirc d. $a_n=2^{n-1}$; $b_n=2^{n+1}$; $c_n=2^n$
- \bigcirc e. $a_n=2^{n+1}$; $b_n=2^{n+1}-2$; $c_n=2^{n+1}$

Question 47

Not yet answered

Marked out of 10.00

v1 (latest)

Se puede asegurar que
$$\, \left(egin{array}{cc} 1 & 1 \ 1 & 0 \end{array}
ight)^n = \left(egin{array}{cc} a_n & b_n \ c_n & d_n \end{array}
ight)$$
 donde:

- \bigcirc a. $b_n=a_n$; $a_n=b_n$
- \bigcirc b. $b_n=c_n=(a_n+1)$
- \bigcirc c. $b_n=c_n$; $a_n=2d_n$
- \bigcirc d. $b_n=c_n$; $d_n+c_n=a_n$
- O e. No sé

Not yet answered

Marked out of 10.00

v1 (latest)

Si

$$\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)^n = \left(egin{array}{cc} a_n & b_n \ c_n & d_n \end{array}
ight)$$

Select one:

$$\bigcirc$$
 a. $a_n=n$; $b_n=0$; $c_n=n$; $d_n=n$

$$\bigcirc$$
 b. $a_n=1$; $b_n=0$; $c_n=n$; $d_n=n$

$$\bigcirc$$
 c. $a_n=1$; $b_n=n$; $c_n=0$; $d_n=1$

O d. No sé

$$\bigcirc$$
 e. $a_n=n$; $b_n=n-1$; $c_n=n-1$; $d_n=n$

Question 49

Not yet answered

Marked out of 10.00

v1 (latest)

Sea
$$A=egin{pmatrix} 2 & 1 \ 0 & 2 \end{pmatrix}$$
 , entonces $A^n=egin{pmatrix} 2^n & c_n \ 0 & 2^n \end{pmatrix}$ donde:

$$\bigcirc$$
 b. $c_1=1$; $c_{n+1}=2^n+2c_n$

$$\bigcirc$$
 c. $c_1=1$; $c_{n+1}=2c_n$

$$\bigcirc$$
 d. $c_1=1$; $c_{n+1}=2^{n+1}+2c_n$

$$\bigcirc$$
 e. $c_1=1$; $c_{n+1}=2^n+c_n$

Not yet answered

Marked out of 10.00

v1 (latest)

Se puede asegurar que $\, \left(egin{array}{cc} 1 & 1 \ 0 & 2 \end{array}
ight)^n = \left(egin{array}{cc} a_n & b_n \ 0 & c_n \end{array}
ight)$ donde:

Select one:

$$\bigcirc$$
 a. $a_n=1$; $b_n=2^n$; $c_n=2^{n+1}$

$$\bigcirc$$
 b. $a_n=1$; $b_n=1$; $c_n=2^n$

$$\bigcirc$$
 c. $a_n=1$; $b_n=2^n-1$; $c_n=2^n$

O d. No sé

$$\bigcirc$$
 e. $a_n=1$; $b_n=2^n-2$; $c_n=2^n$

Question 51

Not yet answered

Marked out of 10.00

v1 (latest)

Si

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$

Select one:

$$\bigcirc$$
 a. $a_n=1$; $b_n=0$; $c_n=n$; $d_n=1$

O b. No sé

$$\bigcirc$$
 c. $a_n=n$; $b_n=n-1$; $c_n=n-1$; $d_n=n$

$$\bigcirc$$
 d. $a_n=1$; $b_n=0$; $c_n=n$; $d_n=n$

$$\bigcirc$$
 e. $a_n=n$; $b_n=0$; $c_n=n$; $d_n=n$

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A=(3,-1,5) y B=(1,3,7); el lugar geométrico de los puntos que equidistan de A y B corresponde exactamente a los (x_1,x_2,x_3) que cumplen:

Select one:

- O a. No sé.
- \bigcirc b. $x_1-2x_2-x_3=-6$
- \bigcirc c. $x_1 + x_2 = 0$.
- \bigcirc d. $3x_1-x_2+5x_3=0$ y $x_1+3x_2+7x_3=0$
- \bigcirc e. $3x_1 x_2 + 5x_3 = x_1 + 3x_2 + 7x_3$ y $b_4 = 0$.

Question 53

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A=(-1,-1,5) y B=(1,3,7); el lugar geométrico de los puntos que equidistan de A y B corresponde exactamente a los (x_1,x_2,x_3) que cumplen:

- \bigcirc a. $-x_1-x_2+5x_3=x_1+3x_2+7x_3$ y $b_4=0$.
- \bigcirc b. $-x_1 x_2 = 0$.
- \bigcirc c. $-x_1-x_2+5x_3=0$ y $x_1+3x_2+7x_3=0$
- O d. No sé.
- \bigcirc e. $x_1 + 2x_2 + x_3 = 8$

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A y B matrices cuadradas $n \times n$ invertibles, k un número natural, es verdadero que:

Select one:

$$\bigcirc$$
 a. $(AB)^k = A^k B^k$.

$$\bigcirc$$
 b. $(ABA^{-1})^k=BA^kB^{-1}$.

O c. No sé.

$$\bigcirc$$
 d. $(ABA^{-1})^k = AB^kA^{-1}$.

$$\bigcirc$$
 e. $(AB)^{-k} = A^{-k}B^{-k}$.

Question 55

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A=(3,-1,5) y B=(1,3,7); el lugar geométrico de los puntos que equidistan de A y B corresponde exactamente a los (x_1,x_2,x_3) que cumplen:

Select one:

$$\bigcirc$$
 a. $3x_1+x_2+5x_3=x_1+3x_2+7x_3$ y $b_4=0$.

$$\bigcirc$$
 b. $x_1+x_2=0$.

$$\bigcirc$$
 c. $x_1-x_2-x_3=-6$

$$\bigcirc$$
 d. $3x_1+x_2+5x_3=0$ y $x_1+3x_2+7x_3=0$

O e. No sé.

Question 56

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A y B matrices cuadradas n imes n invertibles, I_n la idéntica, es verdadero que:

Select one:

$$\bigcirc$$
 a. $A^2 - B^2 = (A + B)(A - B)$.

$$\bigcirc$$
 b. $(AB)^{-1} = A^{-1}B^{-1}$.

$$\bigcirc$$
 c. $(A^{-1} + B^{-1})(A + B) = 2I_n(A^{-1}A + B^{-1}B)$.

$$\bigcirc$$
 d. $(A^{-1} + B^{-1})(A + B) = (A + B)(A^{-1} + B^{-1}).$

O e. No sé.

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A=(3,3,5) y B=(1,3,7); el lugar geométrico de los puntos que equidistan de A y B corresponde exactamente a los (x_1,x_2,x_3) que cumplen:

Select one:

$$\bigcirc$$
 a. $3x_1-x_2+5x_3=0$ y $x_1+3x_2+7x_3=0$

- O b. No sé.
- \bigcirc c. $3x_1 x_2 + 5x_3 = x_1 + 3x_2 + 7x_3$ y $b_4 = 0$.
- \bigcirc d. $x_1 x_3 = -4$.
- \bigcirc e. $x_1-2x_2-x_3=-6$

Question 58

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A y B matrices cuadradas n imes n invertibles, I_n la idéntica, es verdadero que:

- \bigcirc a. $(AB)^{-1}BA=I_n$.
- O b. No sé.
- \bigcirc c. $(A+B)(A^{-1}+B^{-1})=2I_n+(BA^{-1}+AB^{-1}).$
- \bigcirc d. $(A+B)(A^{-1}+B^{-1})=I_n+(BA^{-1}+AB^{-1}).$
- \bigcirc e. $(A^{-1} + B^{-1})(A + B) = (A + B)(A^{-1} + B^{-1})$.

Not yet answered

Marked out of 10.00

v1 (latest)

Sean A=(3,-1,3) y B=(1,3,7); el lugar geométrico de los puntos que equidistan de A y B corresponde exactamente a los (x_1,x_2,x_3) que cumplen:

Select one:

- \bigcirc a. $x_1-2x_2-2x_3=-10$
- O b. No sé.
- \bigcirc c. $3x_1 x_2 + 3x_3 = 0$ y $x_1 + 3x_2 + 7x_3 = 0$
- \bigcirc d. $x_1 + x_2 = 0$.
- \bigcirc e. $3x_1 x_2 + 3x_3 = x_1 + 3x_2 + 7x_3$ y $b_4 = 0$.

Question 60

Not yet answered

Marked out of 10.00

v1 (latest)

Si X, Y, Z son vectores de \mathbb{R}^3 , ¿cuál de las siguientes igualdades es falsa?

Select one:

- \bigcirc a. $(X \times Y) \cdot Y = \mathbf{0}$
- \bigcirc b. $(X \times Y) \times Z = X \times (Y \times Z)$
- \bigcirc c. $X \times Y = -Y \times X$.
- O d. No sé.
- \bigcirc e. $(X+Y)\cdot Z=X\cdot Z+Y\cdot Z$

Question 61

Not yet answered

Marked out of 10.00

v1 (latest)

Si X, Y, Z son vectores de \mathbb{R}^3 , ¿cuál de las siguientes igualdades es falsa?

$$\bigcirc$$
 a. $(X-Y)\times (X+Y)=2(Y\times X)$

$$\bigcirc$$
 b. $(X+Y)\cdot Z=X\cdot Z+Y\cdot Z$

- \bigcirc c. $X \times Y = -Y \times X$.
- O d. No sé.
- \bigcirc e. $(X \times Y) \cdot Y = \mathbf{0}$

Not yet answered

Marked out of 10.00

v1 (latest)

Si X, Y, Z son vectores de \mathbb{R}^3 , ¿cuál de las siguientes proposiciones es verdadera?

Select one:

- \bigcirc a. Si $X \times Y = \mathbf{0}$, entonces $X = \mathbf{0}$ o $Y = \mathbf{0}$
- \bigcirc b. $(X \times Y) \cdot Y = \mathbf{0}$
- \bigcirc c. $(X \times Y) \times Z = X \times (Y \times Z)$
- \bigcirc d. (X-Y) imes (X+Y) = 2(Y imes X)
- O e. No sé.

Question 63

Not yet answered

Marked out of 10.00

v1 (latest)

Si X, Y, Z son vectores de \mathbb{R}^3 , ¿cuál de las siguientes proposiciones es verdadera?

Select one:

- \bigcirc a. $X \times Y = -Y \times X$.
- \bigcirc b. (X-Y) imes (X+Y) = 2(Y imes X)
- \bigcirc c. $(X \times Y) \times Z = X \times (Y \times Z)$
- \bigcirc d. Si $X \times Y = \mathbf{0}$, entonces $X = \mathbf{0}$ o $Y = \mathbf{0}$
- e. No sé.

Question 64

Not yet answered

Marked out of 10.00

v1 (latest)

Si A y B son vectores de \mathbb{R}^3 y ||A||=||B|| se puede deducir:

- O a. Ninguna de las anteriores.
- \bigcirc b. ||A + B|| = ||A B||.
- \bigcirc c. (A+B)(A-B)=0.
- \bigcirc d. $A \cdot B = 0$.
- O e. No sé

3/10/24, 9:20

Question **65**Not yet answered

Marked out of 10.00

v1 (latest)

Si A y B son vectores de \mathbb{R}^n es correcto afirmar que:

Select one:

- \bigcirc a. ||A + B|| = ||A|| + ||B||.
- \bigcirc b. Si cada componente del vector A se duplica, entonces ||A|| se cuadruplica.
- \bigcirc c. Si k es un escalar, entonces A y kA son paralelos si y solo si $k\geq 0$.
- O d. No sé
- \bigcirc e. Si ||A||=2 y ||B||=1 y $A\cdot B=1$ entonces el ángulo entre A y B es $\frac{\pi}{3}$ radianes.

Question 66

Not yet answered

Marked out of 10.00

v1 (latest)

La intersección de los planos 2x + y + 3z = 5, 4x + 3y - z = 2 y x + y + z = 0 es:

Select one:

- O a. El conjunto vacío.
- \bigcirc b. El punto $\left(4, \frac{-9}{2}, \frac{1}{2}\right)$
- \bigcirc c. El punto (5, -2, 3).
- O d. No sé.
- \bigcirc e. El plano $4x+rac{-9}{2}y+rac{1}{2}=0$.

Question 67

Not yet answered

Marked out of 10.00

v1 (latest)

La intersección de los planos 2x+y+3z=0, 4x+2y+6z=2 y -2x-y-3z=0 es:

- \bigcirc a. El plano 2x + y + 3z = 0.
- O b. El conjunto vacío.
- \bigcirc c. La recta generada por (1,2,0).
- O d. No sé.
- O e. El origen.

	~
Ougetion	

Marked out of 10.00

v1 (latest)

La intersección de los planos 2x+y+3z=5, 4x-6y-2z=0 y -2x+3y+z=0 es:

Select one:

- O a. El origen.
- \bigcirc b. El punto $(\frac{15}{8}, \frac{5}{4}, 0)$.
- \bigcirc c. La recta dada por los vectores de la forma $(rac{15}{8}-z,rac{5}{4}-z,z)$
- \bigcirc d. El plano 2x-3y-z=0.
- O e. No sé.

Question 69

Not yet answered

Marked out of 10.00

v1 (latest)

La intersección de los planos x-y+z=0, 2x-2z=0 y 3x-2y+z=0 es:

- \bigcirc a. La recta dada por x=2z y y=z.
- \bigcirc b. La recta dada por x=z y y=2z
- O c. El origen.
- \bigcirc d. La recta generada por el vector (2,1,2) .
- O e. No sé.

Not yet answered

Marked out of 10.00

v1 (latest)

¿Qué condiciones debe satisfacer (b_1,b_2,b_3,b_4) para que el sistema

$$x + y + 2z = b_1$$

$$y+2z=b_2$$

$$x + 4y - 3z = b_3$$

$$3x - 3y + 3z = b_4$$

tenga solución?

Select one:

$$\bigcirc$$
 a. $b_2=0$ u $b_4=0$.

$$\bigcirc$$
 b. $b_1 + b_2 - b_3 = 0$.

$$\bigcirc$$
 c. $b_1 + b_3 = 0$.

$$\bigcirc$$
 d. $-b_1+b_2-b_3+b_4=0$

O e. No sé.

Question 71

Not yet answered

Marked out of 10.00

v1 (latest)

¿Qué condiciones debe satisfacer (b_1,b_2,b_3,b_4) para que el sistema

$$x - y + z = b_1$$

$$3x + 2y - z = b_2$$

$$x+y+z=b_3$$

$$2x + y + 2z = b_4$$

tenga solución?

Select one:

$$\bigcirc$$
 a. $-3b_1 + b_4 = 0$.

O b. No sé.

$$\bigcirc$$
 c. $2b_1 - b_2 + b_3 = 0$ y $b_3 - 3b_4 = 0$.

$$\bigcirc$$
 d. $2b_1-b_2+b_3=0$ y $-3b_1+b_4=0$

$$\bigcirc$$
 e. $b_1 + b_2 - b_3 = 0$.

	72
Question	12

Marked out of 10.00

v1 (latest)

¿Qué condiciones debe satisfacer (b_1,b_2,b_3) para que el sistema

$$x + y + z = b_1$$

$$-x + y + 2z = b_2$$

$$x + 3y + 4z = b_3$$

tenga solución?

Select one:

O a. No sé.

$$\bigcirc$$
 b. $-b_1 - b_2 + b_3 = 0$.

$$\bigcirc$$
 c. $2b_1 - b_2 + b_3 = 0$ y $b_3 = 0$.

$$\bigcirc$$
 d. $b_1 + b_2 - b_3 = 0$.

$$\bigcirc$$
 e. $-3b_1 + 2b_2 = 0$.

Question 73

Not yet answered

Marked out of 10.00

v1 (latest)

¿Qué condiciones debe satisfacer (b_1,b_2,b_3) para que el sistema

$$x + y + 2z = b_1$$

$$2x - y + 2z = b_2$$

$$x-2y+z=b_3$$

tenga solución?

- O a. No sé.
- \bigcirc b. $2b_1 b_2 + b_3 = 0$ y $b_3 = 0$.
- O c. Ninguna condición (siempre tiene solución).
- $\bigcirc \ \, \text{d.} \ \, b_1+b_2-b_3=0.$
- \bigcirc e. $-b_1 b_2 + b_3 = 0$.

Question	74
Question	, –

Marked out of 10.00

v1 (latest)

El valor de

$$\sum_{k=0}^{2} \sum_{i=1}^{3} j^{k}$$

es:

Select one:

- O a. No sé.
- \bigcirc b. 23
- \bigcirc c. 120
- O d. 18
- \bigcirc e. 36

Question 75

Not yet answered

Marked out of 10.00

v1 (latest)

El valor de

$$\sum_{k=0}^{3} \sum_{j=0}^{3} kj$$

es:

- O a. 120
- O b. No sé.
- c. 36
- \bigcirc d. 54
- e. 18

3/10/24, 9:20

Question 76

Not yet answered

Marked out of 10.00

v1 (latest)

El valor de

$$\sum_{k=1}^{2} \sum_{j=0}^{2} (k+1)^{j}$$

es:

Select one:

- \bigcirc a. 20
- \bigcirc b. 23
- \bigcirc c. 10
- O d. 17
- e. No sé.

Question 77

Not yet answered

Marked out of 10.00

v1 (latest)

Considere el siguiente arreglo, donde $a_{kj} \in \mathbb{R}$, para cada $k,j \in \{1,2,3\}$.

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

Cuál de las siguientes expresiones representa la suma de los elementos sombreados en el arreglo?

Select one:

$$\bigcirc$$
 a. $\sum_{k=1}^3 \sum_{j=k}^3 a_{kj}$

$$\bigcirc$$
 b. $\sum_{k=1}^3 \sum_{j=k}^3 a_{jk}$

$$\bigcirc$$
 c. $\sum_{k=1}^3 \sum_{j=4-k}^3 a_{jk}$

$$\bigcirc$$
 d. $\sum_{k=1}^3 \sum_{j=1}^{4-k} a_{kj}$

O e. No sé.

Not yet answered

Marked out of 10.00

v1 (latest)

Considere el siguiente arreglo, donde $a_{kj} \in \mathbb{R}$, para cada $k,j \in \{1,2,3\}$.

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

Cuál de las siguientes expresiones representa la suma de los elementos sombreados en el arreglo?

$$\bigcirc$$
 a. $\sum\limits_{k=1}^{3}\sum\limits_{j=k}^{3}a_{kj}$

$$\bigcirc$$
 b. $\sum_{k=1}^3 \sum_{j=k}^3 a_{jk}$

$$\bigcirc$$
 c. $\sum_{k=1}^3 \sum_{j=1}^{4-k} a_{kj}$

$$\bigcirc$$
 e. $\sum_{k=1}^3 \sum_{j=4-k}^3 a_{jk}$

Not yet answered

Marked out of 10.00

v1 (latest)

Considere el siguiente arreglo, donde $a_{kj} \in \mathbb{R},$ para cada $k,j \in \{1,2,3\}$.

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

Cuál de las siguientes expresiones representa la suma de los elementos sombreados en el arreglo?

$$\bigcirc$$
 a. $\sum_{k=1}^3 \sum_{j=1}^{4-k} a_{kj}$

$$\bigcirc$$
 b. $\sum_{k=1}^3 \sum_{j=k}^3 a_{kj}$

$$\bigcirc \ \mathsf{d.} \ \sum_{k=1}^3 \sum_{j=k}^3 a_{jk}$$

$$\bigcirc$$
 e. $\sum_{k=1}^3 \sum_{j=4-k}^3 a_{jk}$

3/10/24, 9:20

Question 80

Not yet answered

Marked out of 10.00

v1 (latest)

Considere el siguiente arreglo, donde $a_{kj} \in \mathbb{R},$ para cada $k,j \in \{1,2,3\}$.

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

Cuál de las siguientes expresiones representa la suma de los elementos sombreados en el arreglo?

Select one:

- O a. No sé.
- $\bigcirc \ \text{b.} \ \sum_{k=1}^3 \sum_{j=4-k}^3 a_{jk}$
- $^{\bigcirc}$ c. $\sum\limits_{k=1}^{3}\sum\limits_{j=k}^{3}a_{jk}$
- \bigcirc d. $\sum_{k=1}^3 \sum_{j=1}^{4-k} a_{kj}$
- \bigcirc e. $\sum_{k=1}^3 \sum_{j=k}^3 a_{kj}$

Question 81

Not yet answered

Marked out of 10.00

v1 (latest)

Respecto al triángulo con vértices en A(3,0,-4), B(-1,-3,2) y C(-4,-1,1) es correcto afirmar que

- \bigcirc a. Tiene area $\sqrt{800}$
- \bigcirc b. Tiene área $\sqrt{286}$
- O c. Es rectángulo
- O d. No sé
- \bigcirc e. Tiene área $\sqrt{306}$

O	22
Question	04

Marked out of 10.00

v1 (latest)

Respecto al triángulo con vértices en A(3,0,-4), B(-1,-3,2) y C(-4,-1,1) es correcto afirmar que

Select one:

- \bigcirc a. Tiene perímetro $2+\sqrt{61}+\sqrt{14}$
- O b. Es isósceles
- \bigcirc c. Tiene perímetro $5\sqrt{3}+\sqrt{61}+\sqrt{14}$
- O d. No sé
- \bigcirc e. Tiene perímetro $5\sqrt{4}+\sqrt{62}+\sqrt{17}$

Question 83

Not yet answered

Marked out of 10.00

v1 (latest)

Respecto al triángulo con vértices en A(3,0,-4), B(-1,-3,2) y C(-4,-1,1) es correcto afirmar que

- \bigcirc a. Tiene área $\sqrt{854}/2$
- O b. No sé
- O c. Es isósceles
- \bigcirc d. Tiene área $\sqrt{214}/2$
- \bigcirc e. Tiene área $\sqrt{640}/2$

Question	OA
Ougstion	74

Marked out of 10.00

v1 (latest)

Respecto al triángulo con vértices en A(3,0,-4), B(-1,-3,2) y C(-4,-1,1) es correcto afirmar que

Select one:

- O a. Es isósceles
- \bigcirc b. Tiene área $\sqrt{rac{255}{4}}$
- \bigcirc c. Tiene área $sqrtrac{353}{2}$
- d. No sé
- \bigcirc e. Tiene área $\sqrt{rac{427}{2}}$

Question 85

Not yet answered

Marked out of 10.00

v1 (latest)

Respecto al triángulo con vértices en $A(2,6,0),\,B(2,8,0)$ y C(0,8,0) es correcto afirmar que

- \bigcirc a. Su área es $\sqrt{2}$
- O b. No es rectángulo
- \bigcirc c. Su área es 2
- O d. No sé.
- \bigcirc e. Su área es $\sqrt{5/4}$

10/04 0 00	Durch - 2000 4 (com 4 - 500) Arto Victor 1440
10/24, 9:20	Prueba 2022-1 (page 1 of 20) Aula Virtual LMS
Question 8	6
Not yet ans	wered
Marked out	
v1 (latest)	
Respect	to al triángulo con vértices en $A(2,6,0), B(2,8,0)$ y $C(0,8,0)$ es correcto afirmar que
Select c	ne:
○ a.	No sé.
○ b.	Su perímetro es $2+2\sqrt{2}$
○ c.	No es isósceles
○ d.	Su perímetro es $5+3\sqrt{2}$
О е.	Su perímetro es $4+2\sqrt{2}$
Question 8	
Not yet ans	
Marked out	
v1 (latest)	
Respect	to al triángulo con vértices en $A(2,6,0),B(2,8,0)$ y $C(0,8,0)$ es correcto afirmar que
Select c	one:
○ a.	Es equilátero.

- \bigcirc b. Su perímetro es $4+4\sqrt{2}$
- O c. Es rectángulo
- O d. No es isóseles
- e. No sé.