Problems Abstract Algebra Second List

Abel Doñate Muñoz

1 Nakayama's lemma. Let M be a finitely generated A-module and I an ideal of A contained in the Jacobson radical. Prove:

$$IM = M \Rightarrow M = 0$$

We suppose $M \neq 0$. Let x_1, x_2, \ldots, x_n be a minimal set of generators of the module M. Because M = IM we can express the element $x_1 = a_1x_1 + a_2x_2 + \cdots + a_nx_n$, where $a_i \in I$. Then

$$(a_1 - 1)x_1 + a_2x_2 + \dots + a_nx_n = 0 \Rightarrow \begin{cases} a_1 - 1 = 0 \\ \vdots \\ a_n = 0 \end{cases}$$

But if $a_1 = 1 \in I$, that means I = (1) = A, which cannot be contained in the Jacobson radical.

(rehacer)

- 2 Under the previous hypothesis, prove:
 - 1. $A/I \otimes_A M = 0 \Rightarrow M = 0$
 - 2. If $N \subseteq M$ is a submodule, $M = IM + N \Rightarrow M = N$
 - 3. If $f: N \to M$ is a homomorphism, $\overline{f}: N/IN \to M/IM$ surjective $\Rightarrow f$ surjective

4 Let (diagram) be a short exact sequence of A - modules. Prove that if M' and M'' are finitely generated, then M is finitely generated.

We start by fixing the set of generators of M' as x_1, \ldots, x_n and of M'' as z_1, \ldots, z_m .

Since g is surjective, we can find elements y_1, \ldots, y_m such that $g(y_i) = z_i$. Now we select an arbitrary element $y \in M$. Then we have

$$g(y) = b_1 z_1 + \dots + b_m z_m = g(b_1 y_1) + \dots + g(b_m y_m) \Rightarrow g(y - \sum b_i y_i) = 0 \Rightarrow y - \sum b_i y_i \in \ker(g)$$

for some $b_i \in A$. By exactness of the sequence we have $y - \sum b_i y_i \in \text{Im}(f)$, so

$$y - \sum b_i y_i = f(\sum a_i x_i) = \sum a_i f(x_i) \Rightarrow y = \sum a_i f(x_i) + \sum b_i y_i$$

for some $a_i \in A$. Thus, a set of generators of M is $f(x_1), \ldots, f(x_n), y_1, \ldots, y_m$

5 Prove that $\mathbb{Z}[\sqrt{d}]$ is a Noetherian ring

This is equivalent to prove that $M = \mathbb{Z}[\sqrt{d}]$ is a Noetherian module. Since every submodule of M is finitely generated (by 1 and \sqrt{d}), then the module is Noetherian.

6 Prove that the ring $\mathbb{Z}[2T, 2T^2, 2T^3, \ldots] \subseteq \mathbb{Z}[T]$ is not Noetherian

We search for an ascending chain of ideals $I_1\subseteq I_2\subseteq\ldots$ in which for every I_i we have $x_i\in I_i$ but $x_i\notin I_{i-1}$. This chain can be $I_i=(2T,2T^2,\ldots,2T^{i-1},2T^i+2T^{i+1}+\ldots)$. Notice that the containments are obvious and $x_i=2T^{i-1}\in I_i$, but not in I_{i-1} .