Primera y única clase del profesor Valverde

Profesor: Mg. Johnny Valverde.

Oficina: R1-344 Miércoles: 16:00 jmvmfox@gmail.com

993734342

Delegado: Álvaro Plasencia

alvaroplasencia@outlook.com

926116842

Las clases duran 50' y 50'. ¡Hasta las 7:40 p.m.!

Revisar el Hasser, Venero, Stewart, Edwards, Cálculo aplicada a la economía.

Introducción

Cálculo diferencial: La función derivada.

Cálculo integral: Estudiar una operación inversa a la derivada \longrightarrow Integral.

¿Cómo determinar la recta tangente a una curva?

$$f: \mathcal{I} \subset \mathbb{R} \to \mathbb{R}$$
.

f: posición de una partícula en el instante t.

Figura 1: Derivada de una función

f'(t): velocidad de la partícula en el instante t.

Capítulo 1

Antiderivadas

Sean las funciones F, G dadas por

$$F(x) = x^3$$
, $G(x) = x^3 + 7$

se observa que

$$F'(x) = 3x^2 = G'(x), \forall x \in \mathcal{I}$$

Sea $f(x) = 3x^2$ e \mathcal{I} un intervalo en \mathbb{R} .

Definición 1. Una función $F: \mathcal{I} \to \mathbb{R}$ ($\mathcal{I} \subset \mathbb{R}$ intervalo) donde $f: \mathcal{I} \to \mathbb{R}$ la función F(x) es denominada Antiderivada de una función $f: \mathcal{I} \to \mathbb{R}$. Si $F'(x) = f(x) \ \forall x \in \mathcal{I}$.

Ejemplo 1. Sean $F(x) = \sin(x)$, $G(x) = \sin(x) + \frac{1}{3}$. $F \ y \ G \ son \ .$ antiderivadas" de la función $f \ dada \ por \ f(x) = \cos(x) \ porque \ F'(x) = G'(x) = f(x), \forall x \in \mathcal{I} \subset \mathbb{R}.$

Ejemplo 2. La función F dada por $F(x) = x^4 + 7$ es antiderivada de la función f dada por $f(x) = 4x^3$ porque $F'(x) = f(x), \forall x \in \mathcal{I} \subset \mathbb{R}$.

Definición 2. Sea la función $F: \mathcal{I} \to \mathbb{R}$ una antiderivada de la función $f: \mathcal{I} \to \mathbb{R}$. La función $G: \mathcal{I} \to \mathbb{R}$ dada por

$$G(x) = F(x) + C, C \ constante \ \forall x \in \mathbb{R}$$