MATH 516 Theorem 3.18 (Extended)

Yikun Zhang

May 7, 2020

Theorem 1 (Affine envelope representation). A proper function $f : \mathbf{E} \to \bar{\mathbf{R}}$ admits an affine minorant if and only if $(\bar{c}o f)$ is proper. Under these two equivalent conditions, the equality holds:

$$(\bar{c}of)(x) = \sup\{g(x) : g : \mathbf{E} \to \bar{\mathbf{R}} \text{ is an affine minorant of } f\}.$$
 (1)

Proof. Define the set $Q := \operatorname{cl}(\operatorname{conv}(\operatorname{epi} f))$. Clearly if f admits an affine minorant, then $\operatorname{co} f$ never takes the value $-\infty$ and is therefore proper. (Note that an affine minorant, which is finite at any given point in \mathbf{E} , serves as an lower bound for f.) Henceforth, we assume that $(\operatorname{co} f)$ is proper. We will show that f admits at least one affine minorant and that (1) holds, thereby completing the proof. Applying Theorem 2.21 in the Lecture Note, we deduce that Q can be written as an intersection of halfspaces in $\mathbf{E} \times \mathbf{R}$. (That is,

$$Q = \bigcap_{(a,\eta,b)\in\mathcal{F}} \{(x,r) \in \mathbf{E} \times \mathbf{R} : \langle (a,\eta), (x,r) \rangle \le b\},\$$

where $\mathcal{F} = \{(a, \eta, b) \in \mathbf{E} \times \mathbf{R} \times \mathbf{R} : \langle (a, \eta), (x, r) \rangle \leq b \text{ for all } (x, r) \in \text{epi } f\}$.) Observe that one of the halfspaces in this representation must be nonvertical ("Nonvertical" here means that the last coordinate of (a, η) in the intersecting representation of Q, which is exactly η in this case, is nonzero. The terminology "vertical" comes from the fact that when $\eta = 0$, the last coordinate of (x, r), which is exactly r in this case, can take any value in $(-\infty, \infty)$. The hyperplane that defines the halfspace, $\{(x, r) \in \mathbf{E} \times \mathbf{R} : \langle (a, 0), (x, r) \rangle = b\}$, is parallel to the last coordinate axis and vertical to the spaces $\{(x, r) : r = \text{constant}\}$.); otherwise, Q would be a union of vertical lines (or an intersection of vertical halfspaces), thereby contradicting that $\bar{co} f$ is proper.

Let us write this nonvertical halfspace as the epigraph of an affine minorant g_1 of f; we will use this function shortly.

Let $h(\cdot)$ be the function defined on the right-hand side of (1). We will show that $(\bar{co} f)$ and h have the same epigraphs. Since h is a pointwise supremum, we may write epi h as an intersection of halfspaces:

$$epi h = \bigcap \{epi g : g : \mathbf{E} \to \bar{\mathbf{R}} \text{ is an affine minorant of } f\}.$$
 (2)

In particular, the inclusion $Q \subset \text{epi } h$ clearly holds. (This is because Q can be written as an intersection of halfspaces that contain Q itself, as mentioned earlier.) Suppose now for the sake of contradiction that there exists a point $(\bar{x}, \bar{r}) \in \text{epi } h$ that is not in Q. The separation

theorem (Theorem 2.19 in the Lecture Notes) yields $(a, \mu) \in \mathbf{E} \times \mathbf{R}$ and $b \in \mathbf{R}$ such that the halfspace

$$H = \{(x, r) : \langle (a, \mu), (x, r) \rangle \le b\}$$

contains Q and does not contain (\bar{x}, \bar{r}) . By the nature of epigraphs, the inequality $\mu \leq 0$ holds. (Note that $(x, +\infty) \in \text{epi } f$. If $\mu > 0$, then halfspace representation implies that $\langle (a, \mu), (x, +\infty) \rangle = \langle a, x \rangle + \infty \leq b$, i.e., $\langle a, x \rangle \leq -\infty$ for this specific x. This contradicts the fact that we can take x to be a point in \mathbf{E} with a finite value.) If $\mu < 0$, then H is nonvertical, thereby contradicting the definition of h. (The contradiction lies in the fact that when H is a nonvertical halfspace that contains Q, it naturally defines an affine minorant of f. Hence, by (2), epi $h \subset H$ and thus $(\bar{x}, \bar{r}) \in \text{epi } h \subset H$, contradicting to the separation property of H.) Thus, we may assume $\mu = 0$. The strategy now is to perturb H by using g_1 in order to make it nonvertical. To this end, define the function $g_2(x) := \langle a, x \rangle - b$ and observe $H = \{(x, r) : g_2(x) \leq 0\}$. In particular, every point $x \in \text{dom } f$ satisfies $g_2(x) \leq 0$. We therefore deduce

$$\lambda g_2(x) + g_1(x) \le f(x)$$

for all points $x \in \mathbf{E}$ and any $\lambda > 0$. (Recall that g_1 is an affine minorant of f.) Thus the function $g_3(x) := \lambda g_2(x) + g_1(x)$ is another affine minorant of f. Taking into account $g_2(\bar{x}) > 0$ (Separation property of H: $(\bar{x}, \bar{r}) \notin H$.), we arrive at the contradiction

$$h(\bar{x}) \ge g_3(\bar{x}) = \lambda g_2(\bar{x}) + g_1(\bar{x}),$$

when $\lambda > 0$ is sufficiently large. (Notice that as long as $f(\bar{x})$ is finite, $h(\bar{x}) \leq f(\bar{x})$ is also finite. We may take λ to be sufficiently large to induce the contradiction here.)