Nitric Acid

Properties of Nitric Acid

Nitric Acid displays the properties of a strong acid and it is a powerful oxidising agent.

Reactions of Nitric Acid

Cuprous Oxide, Cu_2O reacts with dilute Nitric Acid, HNO_3 , in the cold to form a solution of Cupric Nitrate, $Cu(NO_3)_2$, and Copper, Cu.

$$Cu_2O + 2HNO_3 ==> Cu(NO_3)_2 + Cu + H_2O$$

Cuprous Oxide, Cu2O reacts with concentrated Nitric Acid, HNO3, or with dilute Nitric Acid, HNO3, on heating, when the Cuprous Oxide, Cu2O dissolves with evolution of Nitric Oxide, NO.

$$3Cu_2O + 14HNO_3 ==> 6Cu(NO_3)_2 + 2NO + 7H_2O$$

Dinitrogen Pentoxide, N_2O_5 , is best prepared by dehydrating concentrated Nitric Acid, HNO3, by Phosphorus Pentoxide, P_2O_5 .

$$2 \text{ HNO}_3 + P_2O_5 ==> N_2O_5 + 2 \text{ HPO}_3$$

Nitric Oxide, NO is prepared by the action of Copper, Cu, or Mercury, Hg, on dilute Nitric Acid, HNO3, and was called Nitrous Air.

$$3Cu + 8HNO_3 ==> 3Cu(NO_3)_2 + 2NO + 4H_2O$$

Nitrogen Dioxide, NO2, is a mixed acid anhydride and reacts with water to give a mixture of nitrous and nitric acids.

$$2NO_2 + H_2 ==> HNO_2 + HNO_3$$

If the solution is heated the nitrous acid decomposes to give nitric acid and nitric oxide.

$$3HNO_2 ==> HNO_3 + 2NO + H_2O$$

Sulphur Dioxide, SO_2 , and Nitrogen Oxides, NOx, are toxic acidic gases, which readily react with the Water, H_2O in the atmosphere to form a mixture of Sulphuric Acid, H_2SO_4 , Nitric Acid, HNO3, and Nitrous Acid, HNO2, . The dilute solutions of these acids which result give rain water a far greater acidity than normal, and is known as <u>Acid Rain</u>.

Nitrates are the salts of nitric acid, and are strong oxidising agents.

The <u>Oswald Process</u> is the tree stage process by which Nitric Acid, HNO3, is manufactured. Firstly, Ammonia, NH₃, is oxidised, at high temperature (900 deg.C.) over a platinum-rhodium catalyst, to form Nitrogen Monoxide, NO.

$$4NH_3$$
 (g) + 50_2 (g) ==> $4NO$ (g) + $6H_2O$

The Nitrogen Monoxide, NO, cools and reacts with oxygen, O₂, to produce Nitrogen Dioxide, NO₂.

$$2NO(g) + O_2 ==> 2NO_2(g)$$

Finally, the Nitrogen Dioxide, NO_2 reacts with Water, , and Oxygen, O_2 , oxygen to produce Nitric Acid, .

$$4NO_2$$
 (g) + $2H_2O$ (l) + O_2 ==> $4HNO_3$ (l)