DATA SCIENCE INTERNSHIP

MONTH 2

MENTOR: BELMA IBRAHIMOVIĆ

INTERN: MEHMED KADRIĆ

TABLE OF CONTENTS

- Anomaly detection system
- Object detection for self-driving car
- Research
- Example
- What next?

REAL WORLD PRODUCTION PROCESS

- The process of manufacturing semiconductors consists of more than a hundred steps
- Each step require few measurements
- Preventive action
- Nuclear Power Plant anomaly detection system

ANOMALY DETECTION SYSTEM

- Poor performance of previous system
- One-class SVM algorithm

	Precision	Recall	F1-score	Support
Outlier	0.07	0.51	0.13	104
Not outlier	0.94	0.54	0.69	1463
Avg/total	0.88	0.54	0.65	1567

DBSCAN

ANOMALY DETECTION SYSTEM

- Poor performance of previous system
- One-class SVM algorithm

	Precision	Recall	F1-score	Support
Outlier	0.07	0.51	0.13	104
Not outlier	0.94	0.54	0.69	1463
Avg/total	0.88	0.54	0.65	1567

DBSCAN

	Precision	Recall	F1-score	Support
Outlier	0.58	1.00	0.74	104
Not outlier	1.00	0.95	0.97	1463
Avg/total	1.00	0.95	0.96	1567

OneClassSVM

OBJECT DETECTION FOR SELF-DRIVING CAR

- YOLO object detection for self-driving car using Tensorflow
- Objects are: car, truck, pedestrian and street lights
- YOLO deep learning state of the art approach
- Projects consists two major tasks:
 - Research
 - Develop POC

COMPUTER VISION AND DEEP LEARNING

- We try to teach computers how to see
- DL added a huge boost to the already rapidly developing field of CV
- Artificial Neural Networks
- Convolutional Neural Networks

ARTIFICIAL NEURAL NETWORKS

- Inputs, weights, activation function, output
- Backpropagation

Biological Neuron versus Artificial Neural Network

ARTIFICIAL NEURAL NETWORKS - TRAINING

Step 1: Randomly initialise the wights to small numbers

Step 2: Input the first obesrvation of your dataset

Step 3: Forward-Propagation

Step 4: Measure generated error

Step 5: Back-Propagation

Step 6: Repeat Steps 1 to 5 and update weights

Step 7: Epochs

CONVOLUTIONAL NEURAL NETWORK

- Depending on the features that you process you categorize things in certain ways
- CNN automatically extracts features

ARCHITECTURE OF CNN

- Input image
- Convolution
- Convolutional layer
- Pooling Layer
- Flattening
- Fully connection

Example – Car recognition with CNN

- Probably the most well-known problem in computer vision
- Convolutional NN for car recognition
- Small dataset

What next?

- More research on YOLO approach
- Build an Al system for object detection

THANK YOU!