amazon

개인화추천시스템

Final Project

13

DA 2022311934 장서호

DA 2022311907 이종우

DA 2022311930 김영채

DA 2022311916 조규원

INDEX

- 1. Intro
- 2. EDA & IDEA
- 3. Metapath2vec with LSTM
- 4. Base Model
- 5. Lessons learned

INTRO

Goal RMSE값과 f1값을 기준으로 rating을 가장 잘 예측하는 최적 모델 찾기

Try1 : 해당 Dataset에 가장 높은 성능을 보이는 기존 모델& 새로운 모델 조합(Hybrid) 탐색 및 적용 Try2 : Metapath2vec을 이용하여 embedding 후 LSTM으로 rating을 예측하는 알고리즘 개발

EDA & IDEA

[rating]

[Rating]

5점이 약 69.50%로 가장 많음, 평균은 4.46

[Timestamp]

연도, 월, 계절에 따른 구분

count	99742.000000
mean	4.463305
std	0.994834
min	1.000000
25%	4.000000
50%	5.000000
75%	5.000000
max	5.000000
Name:	rating, dtype: float64

[year]

[month]

[season]

Metapath2vec with LSTM

Heterogeneous Graph

Homogeneous Graph와 달리 여러 종류의 node와 edge를 가진 Graph로 우리가 현실에서 쉽게 접하는대부분의 Graph

Metapath2vec

Metapath를 베이스로 Heterogeneous Graph 구조를 저차원의 벡터로 임베딩하는 방법

Metapath

$$n_0\stackrel{e_1}{\longrightarrow} n_1\stackrel{e_2}{\longrightarrow}\cdots\stackrel{e_{m-1}}{\longrightarrow} n_{m-1}\stackrel{e_m}{\longrightarrow} n_m$$

$$o_0\stackrel{l_1}{
ightarrow}o_1\stackrel{l_2}{
ightarrow}\cdots\stackrel{l_{m-1}}{\longrightarrow}o_{m-1}\stackrel{l_m}{
ightarrow}o_m$$

[Heterogeneous Graph]

[Metapaths]

[Metapath-based Graph]

Metapath2vec with LSTM

1. Metapath2vec을 이용하여 item들을 embedding

2. 각 item embedding 뒤에 rating score를 one-hot encoding으로 붙여 user를 특정할 수 있게 만들고, item embedding을 시간 순으로 정렬하여 user의 구매 내역 생성

```
res_dict[group_name].append(cur_embedding+rate_embedding)
```

3. 몇 개 이상의 sequence를 가진 user만 사용할건지 정하기

```
for idx in range(len(set(res_dict.keys()) & set(user_list))):
    _id = user_list[idx]
    if len(res_dict[_id]) > 3: # 몇개 sequence 이상만 남길거냐 (중요)

def __init__(self, dim_in, dim_h, dim_out, lstm_layer=4, seq_length=4):
```

Metapath2vec with LSTM

- 4. LSTM에 넣을 때 몇 개의 sequence를 기준으로 학습시킬 것인지 정하기
- 5. 동일 user의 embedding인지 아닌지 구분할 수 있게 학습

```
if len(pos_idx_list) != 0:

pos_h = h[pos_idx_list]
pos_loss = -1 * torch.log(pos_h + 1e-7).mean()

if len(neg_idx_list) != 0:

neg_h = h[neg_idx_list]
neg_loss = -1 * torch.log(1-neg_h + 1e-7).mean()

1) 동일 user이면 pos_loss
2) 다른 user이면 neg_loss
```

- 6. 학습시킨 LSTM을 이용해 만들어진 user embedding을 이용 / cf_knn으로 user의 rating 예측
- 7. 아이디어로 embedding된 거리에 반비례하게 기록을 반영하도록 모델 생성

```
dist_f = 1 / (euc_dist_matrix1 + 1e-7)
residual = np.dot(item_ratings, dist_f) / dist_f.sum()
mean_rating = user_mean + residual
```


BaseModel

모델	특이사항	RMSE
CF	(4.0)	1.0819
CF_KNN	K:30, mean_rating=4.0	1.0766
IBCF	mean_rating=4.0	1.1255
IBCF_KNN	K=30, mean_rating=4.0	1.1283
UBCF	prediction = 3.0	1.0578
UBCF	prediction = 4.0	1.0578
UBCF	prediction = 5.0	1.0460
UBCF_KNN	prediction = 3.0, neighbor = 30	1.0472
UBCF_KNN	prediction = 4.0, neighbor = 30	1.0557
FM		0.9229
FM	파생변수	0.9261
MF		0.9232
DL		1.009
AutoEncoder		0.9650
SVD		0.9350
MF + IBCF		F1:0.0135
MF + DL		0.9204
CF+MF+DL		0.9206
metapath2vec	with LSTM	0.9654

이론 상 Hybrid(CF+MF+DL)는 → Hybrid(MF+DL)를 포함하는 Model이므로 성능이 무조건 더 잘나와야함. (search condition 0.00~1.00)

동일 조건에서 재실험 random_state = 12로 Fixed 시키고 재확인

```
최고의 황금비율
MF : '0.90'
ubcf_bias_knn : '0.08'
DL : '0.02'
RMSE = 0.9352549
```

Weights - 0.91 : 0.09 ; RMSE = 0.9380283 Weights - 0.92 : 0.08 ; RMSE = 0.9375574 Weights - 0.93 : 0.07 ; RMSE = 0.9371587 Weights - 0.94 : 0.06 ; RMSE = 0.9368324 Weights - 0.95 : 0.05 ; RMSE = 0.9365785 Weights - 0.96 : 0.04 ; RMSE = 0.9363970 Weights - 0.97 : 0.03 ; RMSE = 0.9362881 Weights - 0.98 : 0.02 ; RMSE = 0.9362880 Weights - 0.99 : 0.01 ; RMSE = 0.9362880

CF+MF+DL 0.9352

MF + DL 0.9363

→ 동일 조건에서 더 나은 성능 확인

Model

Hybrid(CF+MF+DL)

DistilHybrid(CF+MF+DL)

탐색 범위

CF: min 0.00, max 1.00 MF: min 0.00, max 1.00 DL: min 0.00, max 1.00

하이퍼 파라미터 튜닝

[MF]: tolerance = 1e-7로 줄여서 적용

[ubcf_bias_knn]: 15~45, 3step으로 최적 k값 탐색

[DL]: 기본 코드 사용

탐색 범위

CF: min 0.00, max 0.15 → Search Range 85% 감소 MF: min 0.75, max 1.00 → Search Range 75% 감소 DL: min 0.00, max 0.12 → Search Range 88% 감소

하이퍼 파라미터 튜닝

[MF]: tolerance = 1e-7로 줄여서 적용

[ubcf_bias_knn]: 15~45, 3step으로 최적 k값 탐색

[DL]: 기본 코드 사용

1회차	2회차	3회차
Best Ratio	Best Ratio	Best Ratio
MF 0.88	MF 0.88	MF 0.87
CF 0.10	CF 0.09	CF 0.11
DL 0.02	DL 0.03	DL 0.02
RMSE 0.9145	RMSE 0.9233	RMSE 0.9303

1회차	2회차	3회차
Best Ratio	Best Ratio	Best Ratio
MF 0.91	MF 0.91	MF 0.91
CF 0.07	CF 0.07	CF 0.08
DL 0.02	DL 0.02	DL 0.01
RMSE 0.9252	RMSE 0.9206	RMSE 0.9160

Model

DistilHybrid(CF+MF+DL)

```
## 3 for E
box w = [0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]
box x = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15]
box y = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12]
best RMSE = 10 #그냥 큰 수치 임의로 지정
for x in box w: \# x \stackrel{\leftharpoonup}{=} MF
   for y in box x: # v = CF
        for z in box y: # z = DL
            if x+y+z == 1:
                try:
                    weight = [x,y,z]
                    predictions = []
                    for i, number in enumerate(result0):
                            predictions.append(result0[i] * weight[0] + result1[i] * weight[1] + result2[i] * weight[2])
                    \#print("Weights - %.2f : %.2f : %.2f ; RMSE = %.7f" % (weight[0], weight[1], weight[2], RMSE2(ratings test['rating'], predictions)))
                    rmse2 = RMSE2(ratings test['rating'], predictions)
                    if best RMSE > rmse2:
                                                                # New best record
                        best RMSE = rmse2
                        best ratio = " 최고의 황금비율 \n MF : '%.2f' \n ubcf bias knn : '%.2f' \n DL : '%.2f' \n RMSE = %.7f" % (weight[0], weight[1], weight[2],
RMSE2(ratings_test['rating'], predictions))
                except:
                    pass
print(best ratio)
```

Lessons Learned

①Ratings데이터만 사용

주어진 review 데이터를 활용하지 못함

Review의 text를 활용하여 감성분석을 활용한 파생변수 등 다양한 방법이 존재views 데이터를 활용하지 못함

②새로운 추천시스템 모델을 적용해 보지 못한 것

Embedding한 것을 cf_Knn에만 적용

AFM,MAML 등 여러 추천시스템 모델 적용

③User embedding을 시도했을 때, LSTM sequence의 최적값을 찾지 못한 것

count	3706.000000
mean	18.839450
std	23.478186
min	3.000000
25%	9.000000
50%	12.000000
75%	19.000000
max	301.000000

Thank You