Math 355/655: Introduction to Numerical Methods Homework #1

Due: September 5, 2012

This homework covers the section on the bisection method. It covers Section 2.1 in the textbook. There is no MATLAB homework this week.

- 1. Can the bisection method be used to find a root of the following functions using the following intervals? Why or why not?
 - (a) $f(x) = \cos(x) + e^x$ with $[0, \pi/2]$
 - (b) $f(x) = x^3 + x + 1$ with [-1, 0]
 - (c) f(x) = 1/x with [-1, 1]
- 2. Consider f(x) = x(x-1)(x+2), which has roots at x = 0, 1, -2. Determine which root the bisection method approximates when using the starting interval [-3, 2].
- 3. Suppose f(x) is a given continuous function in [-1, 4] such that f(-1) and f(4) have different signs.
 - (a) Bound the absolute error for the approximation c_{30} generated after 30 iterations of the bisection method.
 - (b) Use the bound on the absolute error to determine how many iterations of the bisection method need to be taken to achieve an absolute error less than 10^{-11} for a root of f(x) in [-1, 4].
- 4. (a) Use the bisection method to generate the first 4 approximations c_1, \ldots, c_4 of $2\sqrt{2}$ by finding a positive root of $x^2 8$ using the starting interval [2, 3].
 - (b) Find the bound of the absolute error for the final approximation and verify that the actual absolute error satisfies this bound.
- 5. Suppose we modify the bisection method as follows:
 - Approximations are chosen at the midpoint of the interval. The interval is cut into two at the location (2a + b)/3.

Answer the following questions about this modified bisection method:

- (a) Calculate the first 3 approximations c_1 , c_2 , and c_3 when $f(x) = \cos(x) x$ with starting interval $[0, \pi/2]$.
- (b) Bound the absolute errors of the nth iteration when the starting interval is [a, b].