

10/752342

95

11/01/04

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
1 February 2001 (01.02.2001)

PCT

(10) International Publication Number
WO 01/07050 A1(51) International Patent Classification⁷: A61K 31/445,
31/46, 45/06, A61P 11/14Ana; 1 Howell Drive, West Orange, NJ 07052 (US). CUSS,
Francis, M.; 14 Byrom Drive, Basking Ridge, NJ 07920
(US).

(21) International Application Number: PCT/US00/01853

(74) Agents: MAGATTI, Anita, W. et al.; Schering-Plough
Corporation, Patent Dept. K-6-1 1990, 2000 Galloping Hill
Road, Kenilworth, NJ 07033-0530 (US).

(22) International Filing Date: 26 January 2000 (26.01.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/359,771 26 July 1999 (26.07.1999) US

(81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CZ, DE, DK, DM,
EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG,
KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK,
MN, MX, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.(71) Applicant: SCHERING CORPORATION [US/US];
2000 Galloping Hill Road, Kenilworth, NJ 07033-0530
(US).(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).(72) Inventors: TULSHIAN, Deen; 4 Saddle Ridge Drive,
Lebanon, NJ 08833 (US). HO, Ginny, D.; 42 Chestnut Hill
Drive, Murray Hill, NJ 07974 (US). SILVERMAN, Lisa,
S.; 214 Hana Road, Edison, NJ 08817 (US). MATASI,
Julius, J.; 129 Spruce Mill Lane, Scotch Plains, NJ 07076
(US). McLEOD, Robbie, L.; 13 Creek Trail, Branchburg,
NJ 08876 (US). HEY, John, A.; 122 Hopper Avenue, Nut-
ley, NJ 07110 (US). CHAPMAN, Richard, W.; 30 Dit-
mars Circle, Somerville, NJ 08876 (US). BERCOVICI,

Published:

— With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: NOCICEPTIN RECEPTOR ORL-1 AGONISTS FOR USE IN TREATING COUGH

WO 01/07050 A1

(57) Abstract: The present invention relates to the use of ORL-1 receptor agonists for the treatment of cough, alone or in combination with one or more agents for the treatment of cough, allergy or asthma symptoms, in particular to the use of ORL-1 agonists of formula (I) or a pharmaceutically acceptable salt or solvate thereof, wherein: the dotted line represents and optional double bond; X¹ is optionally substituted alkyl, cycloalkyl, aryl, heteroaryl or heterocycloalkyl; X² is -CHO, -CN, optionally substituted amino, alkyl, or aryl; or X¹ is optionally substituted benzofused heterocycl and X² is hydrogen; or X¹ and X² together form an optionally benzofused spiro heterocycl group R¹, R², R³ and R⁴ are independently H and alkyl, or (R¹ and R⁴) or (R² and R³) or (R¹ and R³) or (R² and R⁴) together can form an alkylene bridge of 1 to 3 carbon atoms; Z¹ is optionally substituted alkyl, aryl, heteroaryl, cycloalkyl or heterocycloalkyl, or -CO₂(alkyl or substituted amino) or CN; Z² is H or Z¹; Z³ is H or alkyl; or Z¹, Z² and Z³, together with the carbon to which they are attached, form bicyclic saturated or unsaturated rings.

**NOCICEPTIN RECEPTOR ORL-1 AGONISTS
FOR USE IN TREATING COUGH**

10 **BACKGROUND**

The nociceptin receptor ORL-1 has been shown to be involved with modulation of pain in animal models. ORL-1 (the nociceptin receptor) was discovered as an "orphan opioid-like receptor" i.e. a receptor whose ligand was unknown. The nociceptin receptor is a G protein coupled receptor. While highly related in structure to the three classical opioid receptors, i.e. the targets for traditional opioid analgesics, it is not activated by endogenous opioids. Similarly, endogenous opioids fail to activate the nociceptin receptor. Like the classical opioid receptors, the nociceptin receptor has a broad distribution in the central nervous system.

In late 1995, nociceptin, also known as Orphanin FQ (OFQ), was discovered and shown to be an endogenous peptide ligand that activates the nociceptin receptor. Data included in the initial publications suggested that nociceptin and its receptor are part of a newly discovered pathway involved in the perception of painful stimuli. Subsequent work from a number of laboratories has shown that nociceptin, when administered intraspinally to rodents, is an analgesic. The efficacy of nociceptin is similar to that of endogenous opioid peptides. Recent data has shown that nociceptin acts as an anxiolytic when administered directly into the brain of rodents. When tested in standard animals models of anxiety, the efficacy of nociceptin is similar to that seen with classical benzodiazapine anxiolytics. These data suggest that a small molecule agonist of the nociceptin receptor could have significant analgesic or anxiolytic activity.

35 Additional recent data (Rizzi, et al, Life Sci., **64**, (1999), p. 157-163) has shown that the activation of nociceptin receptors in isolated

guinea pig bronchus inhibits tachykinergic, non-adrenergic, non-cholinergic contractions, indicating that nociceptin receptor agonists could be useful in the treatment of asthma. Also, it has been reported (Ciccocioppo et al, *Physchopharmacology*, 141 (1999), p. 220-224) nociceptin reduces the 5 rewarding properties of ethanol in msP alcohol preferring rats, suggesting that intervention of nociceptin could be useful in the treatment of alcohol abuse. In EP 856,514, 8-substituted 1,3,8-triazaspiro[4,5]decan-4-on derivatives were disclosed as agonists and/or antagonists of orphanin FQ (i.e., nociceptin) useful in the treatment of various disorders, including 10 depression; 2-oxoimidazole derivatives disclosed in WO98/54168 were described as having similar utility. Earlier, benzimidazolyl piperidines were disclosed in U.S. 3,318,900 as having analgesic activity.

Potent analgesic agents such as traditional opioids, e.g. morphine, carry with them significant side-effects. Clinically relevant side-effects 15 include tolerance, physical dependence, respiratory depression, sedation and a decrease in gastrointestinal motility. For many patients, particularly those subjected to chronic opioid therapy, i.e. cancer patients, these side effects limit the dose of opioid that can be administered. Clinical data suggests that more than one-third of cancer patients have pain which is 20 poorly controlled by present agents. Data obtained with nociceptin suggest the potential for advantages over opioids. When administered chronically to rodents, nociceptin, in contrast to morphine, showed no addiction liability. Additionally, chronic morphine treatment did not lead to a "cross-tolerance" to nociceptin, suggesting that these agents act via 25 distinct pathways.

Unexpectedly, we have found that ORL-1 receptor agonists are useful in the treatment of cough.

SUMMARY OF THE INVENTION

30 The present invention relates to the use of an ORL-1 receptor agonist in the treatment of cough. The use of any compound having ORL-1 agonist activity is claimed, but the following non-limiting list of compounds exemplifies ORL-1 agonists:

- a compound represented by the structural formula:

or a pharmaceutically acceptable salt or solvate thereof, wherein:

the dotted line represents an optional double bond;

- X¹ is R⁵-(C₁-C₁₂)alkyl, R⁶-(C₃-C₁₂)cycloalkyl, R⁷-aryl, R⁸-heteroaryl or R¹⁰-(C₃-C₇)heterocycloalkyl;
- X² is -CHO, -CN, -NHC(=NR²⁶)NHR²⁶, -CH(=NOR²⁶), -NHOR²⁶, R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁷-aryl(C₁-C₆)alkenyl, R⁷-aryl(C₁-C₆)-alkynyl, -(CH₂)_vOR¹³, -(CH₂)_vCOOR²⁷, -(CH₂)_vCONR¹⁴R¹⁵, -(CH₂)_vNR²¹R²² or -(CH₂)_vNHC(O)R²¹, wherein v is zero, 1, 2 or 3 and
- wherein q is 1 to 3 and a is 1 or 2;

or X¹ is

and X² is hydrogen;

- or X¹ and X² together form a spiro group of the formula

m is 1 or 2;

- n is 1, 2 or 3, provided that when n is 1, one of R¹⁶ and R¹⁷ is -C(O)R²⁸;

- p is 0 or 1;
Q is -CH₂- , -O-, -S-, -SO-, -SO₂- or -NR¹⁷;-
R¹, R², R³ and R⁴ are independently selected from the group
consisting of hydrogen and (C₁-C₆)alkyl, or (R¹ and R⁴) or (R² and R³) or
5 (R¹ and R³) or (R² and R⁴) together can form an alkylene bridge of 1 to 3
carbon atoms;
- R⁵ is 1 to 3 substituents independently selected from the group
consisting of H, R⁷-aryl, R⁶-(C₃-C₁₂)cycloalkyl, R⁸-heteroaryl, R¹⁰-(C₃-
C₇)heterocycloalkyl, -NR¹⁹R²⁰, -OR¹³ and -S(O)o₂R¹³;
- 10 R⁶ is 1 to 3 substituents independently selected from the group
consisting of H, (C₁-C₆)alkyl, R⁷-aryl, -NR¹⁹R²⁰, -OR¹³ and -SR¹³;
- R⁷ is 1 to 3 substituents independently selected from the group
consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -
CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-
15 NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -SO₂R¹⁹, -SOR¹⁹, -SR¹⁹, -NO₂, -
CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -COCF₃, -OCOR¹⁹, -OCO₂R¹⁹, -
COOR¹⁹, -(C₁-C₆)alkyl-NHCOOC(CH₃)₃, -(C₁-C₆)alkyl-NHCOCF₃, -(C₁-
C₆)alkyl-NHSO₂-(C₁-C₆)alkyl, -(C₁-C₆)alkyl-NHCONH-(C₁-C₆)-alkyl or
20 -(CH₂)_f-NN-R¹⁹, wherein f is 0 to 6; or R⁷ substituents on adjacent
ring carbon atoms may together form a methylenedioxy or ethylenedioxy
ring;
- 25 R⁸ is 1 to 3 substituents independently selected from the group
consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -
CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-
NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹,
-COR¹⁹, -OCOR¹⁹, -OCO₂R¹⁹ and -COOR¹⁹;
- R⁹ is hydrogen, (C₁-C₆)alkyl, halo, -OR¹⁹, -NR¹⁹R²⁰, -NCN, -
SR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;
- 30 R¹⁰ is H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -
(C₁-C₆)alkyl-NR¹⁹R²⁰;
- R¹¹ is independently selected from the group consisting of H,
R⁵-(C₁-C₆)alkyl, R⁶-(C₃-C₁₂)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl,
-(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ and -(CH₂)_q-N
- wherein q and a are as defined above;

-5-

R¹² is H, (C₁-C₆)alkyl, halo, -NO₂, -CF₃, -OCF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

R¹³ is H, (C₁-C₆)alkyl, R⁷-aryl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰; -(C₁-C₆)alkyl-SR¹⁹; or aryl (C₁-C₆) alkyl;

5 R¹⁴ and R¹⁵ are independently selected from the group consisting

of H, R⁵-(C₁-C₆)alkyl, R⁷-aryl and $-(CH_2)_q-C(=O)-N(\text{cycloalkyl})_a$, wherein q and a are as defined above;

R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, R⁵-(C₁-C₆)alkyl, R⁷-aryl, (C₃-C₁₂)cycloalkyl, R⁸-heteroaryl,

10 R⁸-heteroaryl(C₁-C₆)alkyl, -C(O)R²⁸, -(C₁-C₆)alkyl(C₃-C₇)-heterocycloalkyl, -(C₁-C₆)alkyl-OR¹⁹ and -(C₁-C₆)alkyl-SR¹⁹;

R¹⁹ and R²⁰ are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, aryl and aryl(C₁-C₆)alkyl;

15 R²¹ and R²² are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl, (C₃-C₇)heterocycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)-heterocycloalkyl, R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁸-heteroaryl(C₁-C₁₂)alkyl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -(C₁-C₆)alkyl-SR¹⁹, -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl-O-(C₁-C₆)alkyl and -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl;

20

R¹⁸ is hydrogen or (C₁-C₆)alkyl;

Z¹ is R⁵-(C₁-C₁₂)alkyl, R⁷-aryl, R⁸-heteroaryl, R⁶-(C₃-C₁₂)cycloalkyl, R¹⁰-(C₃-C₇)heterocycloalkyl, -CO₂(C₁-C₆)alkyl, CN or -C(O)NR¹⁹R²⁰; Z² is hydrogen or Z¹; Z³ is hydrogen or (C₁-C₆)alkyl; or

25 Z¹, Z² and Z³, together with the carbon to which they are attached, form the group

-6-

the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring A is a fused R⁷-phenyl or R⁸-heteroaryl ring;

R²³ is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ and -(C₁-C₆)alkyl-NR¹⁹R²⁰;

R²⁴ is 1 to 3 substituents independently selected from the group consisting of R²³, -CF₃, -OCF₃, NO₂ or halo, or R²⁴ substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

10 R²⁵ is 1-3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and halo;

R²⁶ is independently selected from the group consisting of H, (C₁-C₆)alkyl and R²⁵-C₆H₄-CH₂-;

R²⁷ is H, (C₁-C₆)alkyl, R⁷-aryl(C₁-C₆)alkyl, or (C₃-C₁₂)cycloalkyl;

15 and

R²⁸ is (C₁-C₆)alkyl, -(C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, R⁷-aryl, R⁷-aryl-(C₁-C₆)alkyl, R⁸-heteroaryl, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -(C₁-C₆)alkyl-OR¹⁹ or -(C₁-C₆)alkyl-SR¹⁹.

20 Preferred compounds of formula I are those wherein Z¹ and Z² are each R⁷-aryl, particularly R⁷-phenyl. Preferred R⁷ substituents are (C₁-C₆)alkyl and halo, with ortho-substitution being more preferred.

Compounds of formula I wherein R¹, R², R³ and R⁴ are each hydrogen are preferred, as well as compounds wherein R¹ and R³ are each hydrogen and R² and R⁴ are an alkylene bridge of 2 or 3 carbons.

Preferred are compounds of formula I wherein X¹ is R⁷-aryl, for example R⁷-phenyl, and X² is OH (i.e., X² is -(CH₂)_vOR¹³, wherein v is 0

and R¹³ is H) or -NC(O)R²⁸, compounds wherein X¹ is wherein R¹² is hydrogen and R¹¹ is (C₁-C₆)alkyl, -(C₁-C₆) alkyl(C₃-C₁₂)cycloalkyl, -(C₁-C₆)alkyl-OR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰; and compounds wherein X¹ and X² together form the spirocyclic group

Also preferred are compounds of formula I wherein X¹ and X² form a spiro group, Z¹ is R⁷-aryl, preferably R⁷-phenyl, and Z² is C₄₋₁₂-alkyl.

5

- b) a compound disclosed in EP 856,514 represented by the structural formula II:

wherein

10 R^{1a} and R^{2a} are, independently from each other, hydrogen, lower alkyl, lower alkoxy or halogen;

R^{3a} is phenyl, optionally substituted by lower alkyl, CF₃, lower alkoxy or halogen; and

R^{4a} is hydrogen, lower alkyl, lower alkenyl, -C(O)-lower alkyl,

15 -C(O)-phenyl, lower alkyl-C(O)-phenyl, lower alkylen-C(O)-lower alkyl, lower alkantriyl-di-C(O)O-lower alkyl, hydroxy-lower alkyl, lower alkyl-O-lower alkyl, lower alkyl-CH(OH)CF₃, phenyl or benzyl;

R^{5a} and R^{6a} are, independently from each other, hydrogen, phenyl, lower alkyl or di-lower alkyl or may form together a phenyl ring, and

20 R^{5a} and one of R^{1a} or R^{2a} may form together a saturated or unsaturated 6 membered ring,

A^a is a 4-7 membered saturated ring which may contain a heteroatom such as O or S,

or a pharmaceutically acceptable acid addition salt thereof.

25 Preferred compounds of formula II include:

(-)-8-(5,8-dichloro-1,2,3,4-tetrahydro-naphthyl-2)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;

- 8-(8-chloro-1,2,3,4-tetrahydro-naphthyl-2)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
 1-phenyl-8-(1,2,3,4-tetrahydro-naphthyl-1)-1,3,8-triaza-spiro[4.5]decan-4-one;
 5 8-indan-2-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
 (RS)-8-(acenaphthen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
 (RS)-8-(acenaphthen-1-yl)-3-methyl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
 (RS)-8-(2,3-dihydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-
 10 spiro[4.5]decan-4-one;
 (R)-8-(acenaphthen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
 8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one; and
 (RS)-8-(5-methyl-1,2,3,4-tetrahydro-naphthalen-1-yl)-1,3,8-triaza-
 15 spiro[4.5]decan-4-one.

c) a compound disclosed in EP 921,125 represented by the structural formula III

III

wherein

- 20 R¹ᵇ is hydrogen, lower alkyl, halogen, lower alkoxy, CF₃, lower alkyl-phenyl or (C₅₋₇)-cycloalkyl;
 R²ᵇ is hydrogen, lower alkyl, phenyl or lower alkyl-phenyl;
 R³ᵇ is hydrogen, lower alkyl, benzyl, lower alkyl-phenyl, lower alkyl-diphenyl, triazinyl, cyanomethyl, lower alkyl-piperidinyl, lower alkyl-naphthyl, (C₅₋₇)-cycloalkyl, lower alkyl-(C₅₋₇)-cycloalkyl, lower alkyl-pyridyl, lower alkyl-morpholinyl, lower alkyl dioxolanyl, lower alkyl, oxazolyl, or lower alkyl-2-oxo-oxazolidinyl and wherein the ring systems may be substituted by additional lower alkyl, lower alkoxy, CF₃ or phenyl, or -(CH₂)_nC(O)O-lower alkyl, -(CH₂)_nC(O)NH₂, -(CH₂)_nC(O)N(lower alkyl)₂, -(CH₂)_nOH or -(CH₂)_nC(O)NHCH₂C₆H₅; R⁴ᵇ is hydrogen, lower alkyl or nitrilo;

A^b is a ring system, consisting of

(a) (C_{5-15})-cycloalkyl, which may be in addition to R^{4b} optionally substituted by lower alkyl, CF_3 , phenyl, (C_{5-7})-cycloalkyl, spiro-undecan-alkyl or by 2-norbornyl, or is one of the following groups

5

dodecahydro-acenaphthylen-1yl (e), bicyclo[6.2.0]dec-9-yl (f) and bicyclonanon-9-yl (g); and wherein

R^{5b} and R^{6b} are hydrogen, lower alkyl, or taken together and with the carbon atoms to which they are attached form a phenyl ring;

10

R^{7b} is hydrogen or lower alkyl;

the dotted line represents an optional double bond and

n is 1 to 4;

or a pharmaceutically acceptable acid addition salt thereof.

Preferred compounds of formula III include:

- 15 8-(decahydro-naphthalen-2-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
8-(decahydro-naphthalen-2-yl)-3-methyl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
a mixture of (2RS,4aRS,8aSR)- and (2RS,4aRS,8aSR)- 8-(decahydro-naphthalen-2-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
20 (2RS,4aSR,8aRS)-8-(decahydro-naphthalen-2-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
cis-8-(4-methyl-cyclohexyl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
8-cyclodecyl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
25 8-cyclononyl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
cis-8-(4-isopropyl-cyclohexyl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
(R,S)-8-cyclodecyl-1-(3-methyl-phenyl)-2-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
30 8-cyclodecyl-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl)-acetonitrile;
8-(cis-octahydro-inden-2-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one;
and

8-(*cis*-bicyclo[6.2.0]dec-9-yl)l-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one.

d) a compound disclosed in WO 99/36421 represented by the structural formula IV:

5 or a pharmaceutically acceptable salt thereof, wherein

R^{1c} and R^{2c} are independently C₁-C₄ alkyl; or

R^{1c} and R^{2c}, taken together with the carbon to which they are attached, form a mono-, bi-, tri- or spiro-cyclic group having 6 to 13 carbon atoms, wherein the cyclic group is optionally substituted by 1 to 5 substituents independently selected from C₁-C₄ alkyl, C₂-C₄ alkylene, C₁-C₄ alkoxy, hydroxy, oxo, =CH₂ and =CH-C₁-C₄ alkyl;

10 R^{3c} is C₁-C₇ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, phenyl-C₁-C₅ alkyl, phenyl optionally substituted by 1 to 3 substituents independently selected from fluorine, C₁-C₃ alkyl and C₁-C₃ alkoxy, or a heteroaryl group

15 selected from furyl, theinyl, pyrrolyl and pyridyl, wherein said heteroaryl group is optionally substituted by 1 to 3 substituents independently selected from halo, C₁-C₃ alkyl and C₁-C₃ alkoxy, with the proviso that when both R^{1c} and R^{2c} are C₁-C₄ alkyl, then R^{3c} is other than C₁-C₇ alkyl, C₂-C₅ alkenyl and C₂-C₅ alkynyl;

20 R^{4c} is selected from

1) hydrogen;

2) optionally substituted mono- or di-substituted C₁-C₈ alkyl, C₃-C₇ cycloalkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁C₆ alkyl-Z^c-, C₁C₆ alkyl-Z^c-(C₁C₆)alkyl, C₃-C₇ cycloalkyl-Z^c-(C₁C₆)alkyl, C₂-C₆ alkenyl-Z^c-(C₁C₆)alkyl or C₂-C₆ alkynyl-Z^c-(C₁C₆)alkyl, wherein Z^c is selected from O, S, SO, SO₂, CO, CO₂, OCO, NR^c, CONR^c and NR^cCO, wherein R^c is hydrogen or C₁-C₆ alkyl, and the substituents to be attached to the alkyl, alkenyl, alkynyl or cycloalkyl moiety are independently selected from halo, hydroxy, carboxy, amino, mono- or di-(C₁-C₄ alkyl)amino, hydrazino, azido, ureido, amidino and guanidino; or

- 3) optionally mono- or di-substituted aryl, heterocyclic, aryl(C₁-C₅)alkyl, heterocyclic(C₁-C₅)alkyl, heterocyclic-heterocyclic(C₁-C₅)alkyl, aryl-heterocyclic(C₁-C₅)alkyl, heterocyclic-Z^c-(C₁-C₅)alkyl, aryl-Z^c-(C₁-C₅)alkyl, aryl(C₁-C₅)alkyl-Z^c-(C₁-C₅)alkyl, or heterocyclic(C₁-C₅)alkyl-Z^c-(C₁-C₅)alkyl, wherein Z^c is selected from O, S, SO, SO₂, CO, CO₂, OCO, NR^c, CONR^c and NR^cCO, wherein R^c is hydrogen or C₁-C₆ alkyl, and the substituents to be attached to the aryl or heterocyclic moiety are independently selected from halo, hydroxy, carboxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkyl-CO-, amino(C₁-C₄)alkyl-CO-, phenyl, benzyl, amino, mono- or di-(C₁-C₄ alkyl)amino, hydrazino, azido, ureido, amidino and guanidino;
- R^{5c} is independently selected from halo, C₁-C₃ alkyl, C₁-C₃ alkoxy, C₁-C₃ alkylsulfonyl, CF₃, carboxy, hydroxy, amino, alkylamino, acylamino, arylcarbonyl, alkylcarbonyl and hydroxyalkyl; and
- 15 n is 0, 1, 2, 3 or 4.
- Preferred compounds of formula IV include:
- 1-[1-[1-methyl-1-(2-thienyl)ethyl]-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 1-[1-(1-phenylcycloheptyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 1-[4-piperidinyl-1-(1-propylcyclononyl)]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 1-[1-(1-phenylcyclooctyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 25 1-[1-(1-phenylcyclononyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 1-[1-[1-(4-fluorophenyl)cycloheptyl]-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 1-[1-(1-methylcyclononyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 30 1-[1-(1-ethylcyclononyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
- 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;

- 1-[1-(1-phenylcyclohept-4-enyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
 1-(6-aminohexyl)-3-[1-(1-phenylcycloheptyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one;
 5 1-(2-aminoethyl)-3-[1-(1-phenylcyclohept-4-enyl)-4-piperidinyl]-1,3-dihydro-2H-1,3-benzimidazol-2-one; and
 1-[1-(1-phenylcycloheptyl)-4-piperidinyl]-3-(2-piperidinoethyl)-1,3-dihydro-2H-1,3-benzimidazol-2-one.
 e) a compound disclosed in WO 98/54168 represented by the structural
 10 formula V

- or a salt or ester thereof, wherein
 Ar^{1d} is an optionally substituted aromatic carbon ring or heterocycle, wherein the optional substituents are independently selected from halo, alkyl, amino, alkylamino, dialkylamino, hydroxy, alkoxy and carboxyl;

is an optionally substituted mono- or di-cyclic C₃₋₁₄ aliphatic nitrogenous heterocycle;

- Cy^d is an optionally substituted mono-, di- or tri-cyclic C₃₋₂₀ aliphatic carbon ring;

- R^{1d} is hydrogen, lower alkenyl, lower alkynyl, lower cycloalkyl, amino, lower alkylamino, di(lower alkyl)amino, hydroxy, lower alkoxy, carboxy, lower alkoxy carbonyl, carbamoyl, lower alkylcarbamoyl, di(lower alkyl)carbamoyl or optionally substituted lower alkyl; and

- R^{2d} is hydrogen or lower alkyl.

- f) a compound disclosed in WO 99/48492 represented by the structural formula VI

- or a pharmaceutically acceptable salt thereof, wherein
 30 A^e is an aryl or heterocycl ring;

B^e is phenyl, thienyl, furyl, pyrrolyl, pyrrolidinyl, oxazolyl or cyclohexenyl;

R^{1e} and R^{2e} are independently hydrogen, alkyl, hydroxyalkyl, amino, alkylamino or di-alkylamino;

5 R^{3e} and R^{4e} are independently hydrogen, halo or alkyl;

X^e is hydrogen, halo, alkyl, alkoxyalkyl, alkenyl, amino, CN, or -(CH₂)_{me}-E^e-(CH₂)_{ne}-G^e;

E^e is a bond, -CH=CR^{6e}, O, S, NR^{7e}, CO, SO₂ or NHCO;

G^e is aryl, heterocyclyl, cycloalkyl or fused aryl, all optionally

10 substituted by 1-5 R^{5e} groups;

R^{5e} is independently selected from halo, OH, alkyl, alkyl optionally substituted by alkoxy, alkoxyalkoxy, halo, OH or alkanoyloxy, alkoxy, alkoxyalkoxy, amino, alkylamino, di-alkylamino, NO₂, CN, alkanoyl, alkanoyloxy, carboxy, alkoxy carbonyl, alkylsulfonyl and phenyl;

15 R^{6e} is hydrogen or aryl;

R^{7e} is hydrogen, alkyl or alkoxy carbonyl;

m^e is 0-8; and

n^e is 1-4.

A preferred compound of formula VI is:

20 N-(4-amino-2-methyl-6-quinolyl)-2-[(4-ethylphenoxy)methyl]benzamide.

The disclosures of EP 856,514, EP921,125, WO 99/36421, WO 98/54168 and WO 99/48492 are incorporated herein by reference. The compounds of formula I are described in greater detail below.

25 The invention also relates to the use of an ORL-1 agonist for the manufacture of a medicament for use in treating cough. In particular, the invention relates to the use in the manufacture of a medicament for treating cough comprising the use of a compound of any of formulas I to VI.

30 The invention also relates to a method of treating cough comprising administering to a mammal in need of such treatment an effective amount of an ORL-1 agonist. In particular, the invention relates to a method of treating cough comprising administering to a mammal in need of such treatment an effective amount of a compound of any of formulas I to VI.

35

In another aspect, the invention relates to a method of treating cough comprising administering to a mammal in need of such treatment:

(a) an effective amount of a nociceptin receptor ORL-1 agonist; and (b) an effective amount of one or more agents for treating cough, allergy or

5 asthma symptoms selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H₃ inhibitors, β-adrenergic receptor agonists, xanthine derivatives, α-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, decongestants, NK₁, NK₂ and NK₃ tachykinin receptor antagonists, and

10 GABA_B agonists.

In still another aspect, the invention relates to a pharmaceutical composition comprising a nociceptin receptor ORL-1 agonist and one or more agents selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H₃ inhibitors, β-adrenergic receptor agonists, xanthine derivatives, α-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, decongestants, NK₁, NK₂ and NK₃ tachykinin receptor antagonists, and GABA_B agonists.

Preferred ORL-1 agonists for use in the combination and in the combined pharmaceutical composition are those represented in formulas I to VI.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the effect in guinea pigs of Compounds A and B (see Example 12) compared to baclofen on capsaicin-induced cough.

25 Figures 2A and 2B show changes in Tidal Volume after administration of Compound A or baclofen, and Figure 2C shows changes in frequency of breaths after administration of Compound A or baclofen.

30 DETAILED DESCRIPTION OF THE INVENTION

As used herein in formula I, the following terms are as defined below unless otherwise indicated:

35 M⁺ represents the molecular ion of the molecule in the mass spectrum and MH⁺ represents the molecular ion plus hydrogen of the molecule in the mass spectrum;

Bu is butyl; Et is ethyl; Me is methyl; and Ph is phenyl;

- alkyl (including the alkyl portions of alkoxy, alkylamino and dialkylamino) represents straight and branched carbon chains containing from 1 to 12 carbon atoms or 1 to 6 carbon atoms; for example methyl, ethyl, propyl, iso-propyl, n-butyl, t-butyl, n-pentyl, isopentyl, hexyl and the like;
- 5 alkenyl represents an alkyl chain of 2 to 6 carbon atoms comprising one or two double bonds in the chain, e.g., vinyl, propenyl or butenyl;
- 10 alkynyl represents an alkyl chain of 2 to 6 carbon atoms comprising one triple bond in the chain, e.g., ethynyl or propynyl;
- 15 alkoxy represents an alkyl moiety covalently bonded to an adjacent structural element through an oxygen atom, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy and the like;
- 20 aryl (including the aryl portion of arylalkyl) represents a carbocyclic group containing from 6 to 15 carbon atoms and having at least one aromatic ring (e.g., aryl is phenyl), wherein said aryl group optionally can be fused with aryl, (C₃-C₇)cycloalkyl, heteroaryl or hetero(C₃-C₇)cycloalkyl rings; and wherein R⁷-aryl means that any of the available substitutable carbon and nitrogen atoms in said aryl group and/or said fused ring(s) is optionally and independently substituted, and wherein the aryl ring is substituted with 1-3 R⁷ groups. Examples of aryl groups are phenyl, naphthyl and anthryl;
- 25 arylalkyl represents an alkyl group, as defined above, wherein one or more hydrogen atoms of the alkyl moiety have been substituted with one to three aryl groups; wherein aryl is as defined above;
- 30 aryloxy represents an aryl group, as defined above, wherein said aryl group is covalently bonded to an adjacent structural element through an oxygen atom, for example, phenoxy;
- cycloalkyl represents saturated carbocyclic rings of from 3 to 12 carbon atoms, preferably 3 to 7 carbon atoms; wherein R⁶-cycloalkyl means that any of the available substitutable carbon atoms in said cycloalkyl group is optionally and independently substituted, and wherein the cycloalkyl ring is substituted with 1-3 R⁶ groups;
- 35 cycloalkylalkyl represents an alkyl group, as defined above, wherein one or more hydrogen atoms of the alkyl moiety have been

substituted with one to three cycloalkyl groups, wherein cycloalkyl is as defined above;

halo represents fluoro, chloro, bromo and iodo;

heteroaryl represents cyclic groups having one to three

- 5 heteroatoms selected from O, S and N, said heteroatom(s) interrupting a carbocyclic ring structure and having a sufficient number of delocalized pi electrons to provide aromatic character, with the aromatic heterocyclic groups containing from 5 to 14 carbon atoms, wherein said heteroaryl group optionally can be fused with one or more aryl, cycloalkyl, heteroaryl
- 10 or heterocycloalkyl rings; and wherein any of the available substitutable carbon or nitrogen atoms in said heteroaryl group and/or said fused ring(s) may be optionally and independently substituted, and wherein the heteroaryl ring can be substituted with 1-3 R⁸ groups; representative heteroaryl groups can include, for example, furanyl, thienyl, imidazoyl,
- 15 pyrimidinyl, triazolyl, 2-, 3- or 4-pyridyl or 2-, 3- or 4-pyridyl N-oxide wherein pyridyl N-oxide can be represented as:

- heteroarylalkyl represents an alkyl group, as defined above, wherein one or more hydrogen atoms have been replaced by one or
- 20 more heteroaryl groups, as defined above;

- heterocycloalkyl represents a saturated ring containing from 3 to 7 carbon atoms, preferably from 4 to 6 carbon atoms, interrupted by 1 to 3 heteroatoms selected from -O-, -S- and -NR²¹-, wherein R²¹ is as defined above, and wherein optionally, said ring may contain one or two unsaturated bonds which do not impart aromatic character to the ring; and wherein any of the available substitutable carbon atoms in the ring may be substituted, and wherein the heterocycloalkyl ring can be substituted with 1-3 R¹⁰ groups; representative heterocycloalkyl groups include 2- or 3-tetrahydrofuran, 2- or 3-tetrahydrothienyl, 1-, 2-, 3- or 4-piperidinyl, 2- or 3-pyrrolidinyl, 1-, 2- or 3-piperazinyl, 2- or 4-dioxanyl, morpholinyl,
- 30 $\text{---} \text{C}_\text{t}\text{H}_{2t-1} \text{N}^{\text{R}}\text{R}^{17}$ or $\text{---} \text{N}^{\text{R}}\text{R}^{17} \text{---} \text{C}_\text{t}\text{H}_{2t-1} \text{S(O)}_2$ wherein R¹⁷ is as defined above and t is 0, 1 or 2.

When the optional double bond in the piperidinyl ring of formula I is present, one of X¹ and X² forms the bond with the 3-position carbon and the remaining X¹ or X² is not hydrogen.

When X¹ and X² in formula I form a spiro group as defined

- 5 above, the wavy lines in the structures shown in the definition indicate the points of attachment to the 4-position carbon of the piperidinyl ring, e.g., compounds of the following formulas are formed:

- Certain compounds of formula I may exist in different
10 stereoisomeric forms (e.g., enantiomers, diastereoisomers and atropisomers). The invention contemplates all such stereoisomers both in pure form and in mixture, including racemic mixtures.

- Certain compounds used in the invention will be acidic in nature, e.g. those compounds which possess a carboxyl or phenolic hydroxyl
15 group. These compounds may form pharmaceutically acceptable salts. Examples of such salts may include sodium, potassium, calcium, aluminum, gold and silver salts. Also contemplated are salts formed with pharmaceutically acceptable amines such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine and the like.

- 20 Certain basic compounds also form pharmaceutically acceptable salts, e.g., acid addition salts. For example, pyrido-nitrogen atoms may form salts with strong acid, while compounds having basic substituents such as amino groups also form salts with weaker acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, 25 acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be 30 regenerated by treating the salt with a suitable dilute aqueous base

solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise equivalent to 5 their respective free base forms for purposes of the invention.

All such acid and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.

10 Compounds of formula I can be prepared by known methods from starting materials either known in the art or prepared by methods known in the art. Examples of general procedures and specific preparative examples are given below.

Typically, X¹,X²-substituted piperidines are alkylated with Z¹,Z²,Z³-15 substituted halomethanes in the presence of excess bases such as K₂CO₃ and Et₃N, in solvents such as DMF, THF or CH₃CN, at room temperature or at elevated temperatures.

X¹,X²-substituted piperidines are either commercially available or made by known procedures. For example, 4-hydroxy-4-phenyl-piperidine 20 can be converted to a 4-tBoc-amino-4-phenylpiperidine according to the following reaction scheme, wherein Bn is benzyl, Ph is phenyl and tBoc is t-butoxycarbonyl:

Commercially available 4-phenyl-4-piperidinol is protected with a benzyl 25 group and the resulting intermediate is then treated with Me₃SiCN. The resultant amide is hydrolyzed with aqueous HCl in CH₃OH to produce the 4-amino compound. The amino group is protected with tBoc and the N-

benzyl group is removed by hydrogenolysis to produce the desired 4-amino-piperidine derivative.

The 4-(protected)amino-piperidine then can be reacted with a Z¹,Z²,Z³-halomethane and the protecting group removed. The amine (i.e., X² is -NH₂) can undergo various standard conversions to obtain 5 amine derivatives. For example, the amine of formula I can be reacted with a R²²-carboxaldehyde in the presence of a mild reducing agent such as Na(OAc)₃BH or with a compound of the formula R²²-L, wherein L is a leaving group such as Cl or Br, in the presence of a base such as Et₃N.

10 An alternative method for preparing compounds of formula I wherein X¹ is R⁷-aryl and X² is OH involves alkylating a 4-piperidone hydrochloride with a Z¹,Z²,Z³-halomethane, then reacting the ketone with an appropriately substituted R⁷-phenylmagnesium bromide or with a compound of the formula X¹-L¹, wherein L¹ is Br or I, and n-butyl-lithium.

15 X¹,X²-substituted compounds of formula I can be converted into other compounds of formula I by performing reactions well known in the art on the X¹ and/or X² substituents. For example, a carboxaldehyde-substituted piperidine (i.e., X² is -CHO) can be converted to a substituted 20 piperidine wherein X² is R¹³-O-CH₂- , as shown in the following procedure for a compound of formula I wherein X¹ is phenyl, Z¹ and Z² are each phenyl, and R¹, R², R³ and R⁴, and Z³ are H :

A cyano-substituted piperidine (i.e., X² is -CN) can be converted to a substituted piperidine wherein X² is R²¹R²²N-CH₂- or X² is 25 R²⁸C(O)NH-CH₂- , as shown in the following procedure for a compound of formula I wherein X¹ is phenyl, R²¹, R¹, R², R³ and R⁴, and Z³ are H, and L is a leaving group such as Cl or Br:

-20-

Compounds of formula I wherein X¹ is a benzofused nitrogen-containing heterocycle having an R¹¹ substituent other than hydrogen are prepared by reacting the corresponding compounds wherein R¹¹ is
5 hydrogen with a compound of the formula R¹¹L (R¹¹ is not H, and L is as defined above).

Alternatively, X¹,X²-substituted piperidine starting materials can be converted into other X¹,X²-substituted piperidines by similar procedures before reacting with the Z¹,Z²,Z³-substituted halomethane.

10 For compounds of formula I wherein R¹, R², R³ and R⁴ variously form alkylene bridges, commercially available N-protected 4-piperidones are treated with phenyl lithium and resulting intermediate is deprotected to produce the desired compounds, for example:

15 wherein Pr is a N-protecting group, Ph is phenyl and z is 1-2.

The Z¹,Z²,Z³-halomethyl derivatives wherein Z¹ and Z² are R⁷-phenyl are either commercially available or can be prepared using the procedure shown in the following reaction scheme:

Similar procedures, or others known in the art, can be used to prepare compounds wherein the Z substituents are other than phenyl.

Compounds of formula I and preparative starting materials thereof, 5 are exemplified by the following examples, which should not be construed as limiting the scope of the disclosure.

The following solvents and reagents are referred to herein by the abbreviations indicated: tetrahydrofuran (THF); ethanol (EtOH); methanol (MeOH); acetic acid (HOAc or AcOH); ethyl acetate (EtOAc); N,N-dimethylformamide (DMF); and diethyl ether (Et₂O). Room temperature 10 is abbreviated as rt.

Example 1

A mixture of 4-hydroxy-4-phenyl piperidine (1.5 g, 8.47 mmol) and 15 K₂CO₃ (3.0 g, 21.73 mmol) in CH₃CN was stirred at rt. To this was added α-bromo-diphenylmethane (2.5 g, 10.12 mmol) and the reaction was stirred overnight. The reaction mixture was concentrated, redissolved in CH₂Cl₂, washed with water, dried (MgSO₄) and concentrated. Chromatography (SiO₂, 9:1 hexane/EtOAc) gave the title 20 compound (2.6g, 90%). ¹H NMR (CDCl₃): δ 1.80 (m, 2H), 2.25 (m, 2H), 2.42 (m, 2H), 2.90 (m, 2H), 4.40 (s, 1H), 7.2-7.6 (m, 15H).

Example 2

Step 1: A solution of 4-piperidone monohydrate hydrochloride (5 g, 32.6 mmol) in CH₃CN was alkylated using the procedure described in Example

- 5 1. Chromatography of the residue on silica (95:5 hexane/ EtOAc) gave the desired compound.

Step 2: 4-Methylphenylmagnesium bromide (0.5 M in THF, 1.75 ml, 0.87 mmol) was added to a solution of product of Step 1 (191 mg, 0.72 mmol) in THF dropwise at 0C. The solution was stirred at 0 for 2h, quenched 10 with ice-H₂O, extracted with EtOAc, washed with H₂O and brine, dried, and concentrated. Chromatography of the residue on silica (95:5 hexane/EtOAc, 93:7 hexane/EtOAc) gave the title compound (0.091 g, 30%). ¹H NMR (CDCl₃) δ 7.5 (m, 6H, ArH), 7.3 (t, 4H, ArH), 7.2 (t, 4H, ArH), 4.35 (s, 1H), 2.8 (d, 2H), 2.4 (m, 5H), 2.2 (td, 2H), 1.75 (d, 2H); 15 MS (CI) 358 (M+1); Elemental analysis for C₂₅H₂₇NO.1.2 H₂O: calcd: C 79.2, H 7.82, N 3.69; observed: C 78.90, H 8.02, N 3.85.

Example 3

Add n-BuLi (2.5 M, 0.38 ml, 0.95 mmol) to a solution of 3-bromo-thiophene (0.15g, 0.95 mmol) in Et₂O dropwise at -70C and stir for 2h.

20 Add a solution of the product of Step 1 of Example 2 (230 mg, 0.87 mmol) in Et₂O (4 ml) to the reaction mixture, slowly warm to rt over a period of 3 h, quench with ice-cooled NH₄Cl (aq), extract with Et₂O, wash with H₂O and brine, dry, and concentrate. Chromatograph the residue (95:5 hexane/EtOAc) to give the title compound (90 mg).

¹H NMR (CDCl₃) δ 7.5 (d, 2H), 7.35 (bt, 4H), 7.25 (m, 3H), 7.2 (m, 2H), 4.4 (s, 1H), 2.8 (d, 2H), 2.5 (t, 2H), 2.3 (dt, 2H), 2.0 (d, 2H); MS (Cl) 350 (M+1); Elemental analysis for C₂₂H₂₂NOS.1.1 HCl.0.9 H₂O: calcd: C 65.11, H 6.43, N 3.54, S 7.8, Cl 9.61; observed: C 65.27, H 6.54, N 3.45, 5 S 7.30, Cl 9.43.

Example 4

Step 1: 4-Phenyl-4-piperidinecarboxaldehyde (1.0 g, 5.29 mM) was alkylated using the procedure of Example 1, Step 1, to obtain the desired product (1.69g, 90%). ¹H NMR (CDCl₃): δ 2.40 (m, 4H), 2.50 (m, 2H), 2.85 (m, 2H), 4.25 (s, 1H), 7.20-7.50 (m, 15H), 9.42 (s, 1H).

Step 2: A solution of the product from Step 1 (3.0 g, 8.45 mmol) was cooled to 0°C and treated with NaBH₄ (1.0 g, 26.32 mmol). After 0.5 h, reaction mixture was treated with 1N HCl and concentrated. The residue was extracted with CH₂Cl₂, dried (MgSO₄) and evaporated. Column chromatography on the residue (4:1 hexane:EtOAc) produced desired primary alcohol. ¹H NMR (CDCl₃): δ 2.00 (m, 2H), 2.25 (m, 4H), 2.65 (m, 2H), 3.65 (d, 2H), 4.20 (s, 1H), 4.25 (d, 1H), 7.2-7.6 (m, 15H).

Step 3: The product of Step 2 was treated with NaH in DMF at 0°C for 0.5h. CH₃I was added and reaction was warmed up to rt. After stirring overnight, the reaction mixture was poured on ice, extracted with Et₂O, dried (MgSO₄) and evaporated. Column chromatography on the residue produced the title compound. ¹H NMR (CDCl₃): δ 2.10 (m, 4H), 2.40 (m, 2H), 2.78 (m, 2H), 2.90 (m, 2H), 3.00 (s, 3H), 4.38 (s, 1H), 7.21-7.52 (m, 15H).

Example 5

- Step 1: A solution of 4-cyano-4-phenylpiperidine hydrochloride (5.0 g, 22.4 mM) in DMF (30 ml) was treated with Et₃N (7.20 ml, 47 mM) and bromodiphenylmethane (6.38 g, 25.80 mM) and stirred at rt under N₂ for 20h. The reaction mixture was concentrated in vacuo and partitioned
5 between EtOAc and H₂O. The organic layer was washed with twice with water, then brine, and dried (MgSO₄), filtered and concentrated.
Chromatography (SiO₂, 19:1 hexane/EtOAc) gave 6.0 g (76%) of the desired product. ¹H NMR (CDCl₃): δ 2.21 (m, 4H), 2.49 (t, J=12.3Hz, 2H), 3.11 (d, J=12.5 Hz, 2H), 4.46 (s, 1H), 7.45 (m, 15H).
10 Step 2: A solution of the product (6.0 g, 17 mM) of Step 1 in Et₂O (40 ml) was cooled to 0°C and treated with a 1M solution of LAH (34.10 ml, 34 mM), dropwise, under N₂, over 0.5 h. The reaction mixture was allowed to warm to rt and then refluxed for 4h. The reaction mixture was cooled to 0°C and treated with water (8 eq.). The reaction mixture was allowed
15 to warm to rt and was stirred for 1 h. The resultant solid was filtered off and rinsed with Et₂O, and the filtrate was concentrated to yield 5.45 g (90%) of desired product. ¹H NMR (CD₃OD): δ 1.84 (m, 2H), 2.16 (m, 4H), 2.56 (m, 2H), 2.68 (m, 2H), 4.07 (s, 1H), 7.25 (m, 15H).
Step 3: A solution of the product (0.2 g, 0.56 mM) of Step 2 in CH₂Cl₂ (3 ml) was treated with benzoyl chloride (0.078 ml, 0.673 mM) and pyridine (0.045g, 0.568 mM) at rt for 18 h under N₂. The reaction mixture was concentrated, then partitioned between H₂O and CH₂Cl₂. The organic layer was washed with water (2x) and brine, then dried (MgSO₄), filtered and concentrated. Chromatography (SiO₂, 3:1 hexane/EtOAc) gave 0.2
25 g (77%) of the desired product. ¹H NMR (CD₃OD): δ 2.13 (m, 6H), 2.66 (m, 4H), 3.50 (s, 2H), 4.07 (s, 1H), 7.11-7.65 (m, 20H).
Step 4: A solution of the product (0.075 g, 0.16 mM) of Step 3 in THF (3 ml) was cooled to 0°C with stirring. LAH (solid, 0.025 g, 0.65 mM) was added under N₂ and stirring was continued for 0.25h. The reaction
30 mixture was then refluxed for 5 h, then stirred at rt for 18h. The reaction mixture was cooled to 0°C and quenched with water (8 eq). The reaction mixture was allowed to warm to rt and was stirred for 1 h. The resultant solid was filtered off and rinsed with Et₂O, the filtrate was dried (MgSO₄) and concentrated. Chromatography (neutral Al₂O₃, CH₂Cl₂, then 3:1
35 CH₂Cl₂:EtOAc) gave 0.014 g (20%) of the title compound.

¹H NMR (CD₃OD): δ 1.90 (m, 2H), 2.15 (m, 4H), 2.48 (m, 2H), 2.68 (s, 2H), 3.53 (s, 2H), 4.05 (s, 1H), 7.01-7.38 (m, 20H).

Example 6

5 The product of Example 5, Step 2 (0.2 g, 0.561 mM), acetic anhydride (3 ml) and Et₃N (0.096 ml, 0.67 mM) were combined and stirred at rt for 18h. The reaction mixture was concentrated and partitioned between H₂O and CH₂Cl₂. The organic layer was washed with water (2x), brine, then dried (MgSO₄), filtered and concentrated to give 0.214 g (95%) of the title compound. ¹H NMR (CD₃OD): δ 1.87 (m, 5H), 2.16 (m, 4H), 2.61 (m, 2H), 3.31 (s, 2H), 4.07 (s, 1H), 7.12-7.40 (m, 20H).

Example 7

15 Step 1: A solution of 4-phenyl-4-hydroxy piperidine (10.0 g, 56.4 mM) in DMF (60 ml) was treated with Et₃N (8.28 ml, 59.2 mM) and benzyl bromide (7.37 ml, 62.10 mM) and stirred at rt under N₂ for 20 h. The reaction mixture was concentrated in vacuo, basified to pH 8 with saturated NaHCO₃ and partitioned between EtOAc and H₂O. The organic layer was washed twice with water, then brine, and dried (MgSO₄), filtered and concentrated. Chromatography (neutral Al₂O₃, hexane, then 1:1 hexane:EtOAc) gave 11.95 g (80%) of the desired product.

20 Step 2: To a mixture of the product (30.0 g, 0.112 mol) of Step 1 and (CH₃)₃SiCN (59.94 ml, 0.448 mol), cooled to -15°C in an ethylene glycol/CO₂ bath, under N₂, is added glacial AcOH (47 ml) dropwise, while maintaining an internal temperature of -15°C. Concentrated H₂SO₄ (47 ml, 0.34 M) is added dropwise, with vigorous stirring, while maintaining an

internal temperature of -15°C. The cooling bath was then removed and reaction mixture was stirred at rt for 18h. The reaction mixture was poured on ice and adjusted to pH 7 with a 50% NaOH solution while maintaining a temperature of 25°C. The reaction mixture was then extracted with CH₂Cl₂, and the organic layer was washed with water (2x), then brine, and dried (MgSO₄), filtered and concentrated.

Recrystallization with EtOAc/hexane (1:10) gave 22.35 g (68%) of desired compound. ¹H NMR (CD₃OD): δ 2.10 (m, 2H), 2.40 (m, 4H), 2.82 (d, J=11.50 Hz, 2H), 3.57 (s, 2H), 7.20-7.43 (m, 10H), 8.05 (s, 1H).

Step 3: The product of Step 2 (20 g, 67.9 mM) and 5% (w/w) concentrated HCl (aq)/CH₃OH (350 ml) were stirred under N₂ for 48 h. The mixture was concentrated to yield a foam which was suspended in Et₂O and concentrated to remove excess HCl. The resultant solid was resuspended in Et₂O, collected by vacuum filtration, washed with Et₂O and dried under vacuum to give (23 g, 100%) of desired product.

¹H NMR (CD₃OD) of di-HCl salt: δ 2.59 (t, J= 13.3 Hz, 2H), 2.93 (t, J= 13.3 Hz, 2H), 3.07 (d, J=13.50 Hz, 2H), 3.58 (d, J=13 Hz, 2H), 4.26 (s, 2H), 7.56 (m, 10H).

Step 4: The product of Step 3 (24.10 g, 71 mM), CH₂Cl₂ (300 ml), (tBoc)₂O (17.0 g, 78.1 mM) and Et₃N (14.37 g, 0.142 M) were combined and stirred under N₂, at rt, for 18hrs. The reaction mixture was partitioned between CH₂Cl₂ and H₂O, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with water (2x), then brine, and dried (MgSO₄), filtered and concentrated. The resulting solid was suspended in Et₂O and sonicated, filtered and dried to produce the desired compound (21.98 g, 90%). ¹H NMR (CD₃OD): δ 1.09 (bs, 2H), 1.39 (s, 1H), 2.05 (m, 2H), 2.34 (m, 4H), 2.65 (d, J= 11.8 Hz, 2H), 3.56 (s, 2H), 7.18-7.40 (m, 10H).

Step 5: The product of Step 4 (5.22 g, 14.2 mM), CH₃OH (430 ml), Pd(OH)₂/C (3.0 g) and NH₄COOH (18.86 g, 0.298 M) were combined and refluxed under N₂ for 8h. The reaction mixture was filtered using celite, washing with CH₃OH. The combined filtrates were concentrated to produce (3.90 g, 97%) of the desired product. ¹H NMR (CD₃OD): δ 1.10 (bs, 2H), 1.39 (s, 7H), 1.90 (m, 2H), 2.26 (m, 4H), 2.92 (m, 4H), 7.17-7.41 (m, 5H).

-27-

Step 6: The product of Step 5 (2.74 g, 9.91 mM), CH₃CN (85 ml), Et₃N (1.75 ml, 12.40 mM) and bromodiphenylmethane (2.70 g, 10.9 mM) were combined and stirred at rt under N₂ for 18hrs. The mixture was concentrated and the resultant residue was partitioned between H₂O and

- 5 EtOAc. The EtOAc layer was washed with water (2x), brine, then dried (MgSO₄), filtered and concentrated. Chromatography (neutral Al₂O₃, hexane, then 4:1 hexane:EtOAc) gave 2.85 g (65%) of the desired product. ¹H NMR (CD₃OD): δ 1.07 (bs, 2H), 1.37 (s, 7H), 2.23 (m, 2H), 2.24 (m, 4H), 2.74 (d, J= 12.1 Hz, 2H), 4.27 (s, 1H), 7.10-7.47 (m, 15H).
- 10 Step 7: The product of Step 6 (4.6 g, 10 mM), 1,4-dioxane (38 ml) and 4 M HCl in 1,4-dioxane (25 ml, 101 mM) were combined and stirred at rt under N₂ for 4 h. The mixture was concentrated and the residue was suspended in Et₂O and re-concentrated. The resultant solid was resuspended in Et₂O, sonicated and the product was collected by
- 15 vacuum filtration and dried to give 3.27 g (80% of the desired product). ¹H NMR (CD₃OD) of di-HCl salt: δ 2.91(m, 8H), 5.34 (s, 1H), 7.37-7.77 (m, 15H).
- Step 8: To a suspension of the product of Step 7 (0.3 g, 0.722 mM) in CH₂Cl₂ (3 ml), under N₂ at rt, was added 2-thiophenecarboxaldehyde (0.133 ml, 1.44 mM). The pH of the reaction was adjusted to 6 with Et₃N and the mixture was stirred for 0.5 h. Na(OAc)₃BH (0.230 g, 1.08 mM) was then added and the reaction mixture was stirred at rt under N₂ for 3 h. The reaction was quenched with saturated NaHCO₃(aq) and partitioned between Et₂O and H₂O. The organic layer was washed with H₂O (2x), brine, dried (MgSO₄), filtered and concentrated.
- 20 Chromatography (SiO₂, toluene, then 1:19 EtOAc: toluene) gave 0.158 g (50%) of the desired product. ¹H NMR (CD₃OD): δ 1.96 (m, 2H), 2.17 (m, 2H), 2.52 (m, 4H), 3.45 (s, 2H), 4.24 (s, 1H), 6.76 (d, J=3.5 Hz, 1H), 6.85 (dd, J=3.6 Hz, 1H), 7.13-7.50 (m, 16H).
- 25

30

Example 8

Step 1: Alkylate a solution of 4-(2-oxo-1-benzimidazolyl)-piperidine in CH₃CN using the procedure described in Step 1 of Example 1 to produce the desired compound.

- Step 2: Add NaH to a solution of 3-[1-(diphenylmethyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazo-1-one (2.5 g, 6.6 mmol) in DMF (25 ml) and stir at rt for 1 h. Add n-butyl iodide to the mixture at rt and stir overnight. Quench with ice-H₂O, extract with EtOAc, wash with H₂O and brine, dry (MgSO₄) and concentrate. Chromatograph the residue on silica (1:9 EtOAc/hexane) to give the title compound (2.35 g). Dissolve the title compound in Et₂O, add HCl in Et₂O (8 ml, 1 M), stir for 1 h and filter to give the HCl salt. ¹H NMR (CDCl₃) δ 7.55 (m, 4H, ArH), 7.35 (m, 5H, ArH), 7.25 (m, 2H, ArH), 7.15 (m, 2H, ArH), 7.1 (m, 1H, ArH), 4.4 (m, 2H), 3.95 (t, 2H), 3.15 (d, 2H), 2.6 (dq, 2H), 2.1 (t, 2H, 1.8, m, 4H), 1.5 (m, 2H), 1.0 (t, 3H); ESI-MS 440 (M+1); Elemental analysis for C₂₉H₃₃N₃O.HCl.H₂O: calcd: C 70.5, H 7.3, N 8.5, Cl 7.18; observed: C 70.48, H 7.28, N 8.49, Cl 7.49).

Example 9

- Add SOCl₂ (247 mg, 2.07 mmol) to a solution of 2-(chlorophenyl)phenylmethanol (300 mg, 1.38 mmol) in CH₂Cl₂ at rt, stir at rt for 5 h and concentrate. Dissolve the residue in CH₃CN, add K₂CO₃, 4-hydroxy-4-phenylpiperidine and NaI. Stir the solution at reflux overnight, filter and concentrate. Chromatograph the residue on silica (9:1 hexane/EtOAc) to give the title compound. ¹H NMR (CDCl₃) δ 7.91 (d, 1H), 7.58 (d, 2H), 7.54 (d, 2H), 7.42 (t, 2H), 7.32 (m, 5H), 7.26 (t, 3H), 7.16 (t, 3H), 5.0 (s, 1H), 2.8 (dd, 2H), 2.5 (dq, 2H), 2.2 (dt, 2H), 1.75 (d, 2H). Dissolve the title compound in ether, add HCl/Et₂O (1 M) to give the HCl salt. MS Cl (378 (M+1); Elemental analysis for C₂₄H₂₄NOCl.HCl.0.2H₂O: calcd: C 68.97, H 6.13, N 3.35, Cl 16.96; observed: C 68.87, H 6.04, N 3.35, Cl 17.00.

Example 10

- Step 1: Alkylate a solution of 4-piperidone monohydrate hydrochloride (880 mg, 5 mmol) in CH₃CN with mandelonitrile (1 g, 7.51 mmol) using the procedure described in Example 9. Chromatography of the residue on silica followed by recrystallization (EtOAc) gives the desired compound (630 mg).
- Step 2: Add a solution of 2-methoxyphenylmagnesium bromide in THF (24 ml, 0.5 M, 11.85 mmol) to a solution of the product of Step 1 (330 mg, 1.185 mmol) in THF at 0C. Remove the ice-bath and stir the reaction mixture at reflux for 6 h. Quench the reaction with NH₄Cl (aq), extract with EtOAc, wash with brine, dry and concentrate. Chromatograph the residue (95:5, 9:1 hexane/EtOAc) to give the title compound (330 mg).
¹H NMR (CDCl₃) δ 7.76 (d, 1H), 7.62 (d, 1H), 7.55 (d, 1H), 7.45 (t, 1H), 7.34 (m, 3H), 7.24 (m, 2H), 7.03 (t, 1H), 6.90 (d, 2H), 4.88 (s, 1H), 3.89 (s, 3H), 2.94 (d, 1H), 2.82 (d, 1H), 2.45 (td, 2H), 2.26 (t, 2H), 1.78 (d, 2H). Dissolve the title compound in Et₂O, add HCl in Et₂O, stir for 1 h and filter to give the HCl salt. MS FAB 374.1 (M+1); elemental analysis for C₂₅H₂₇NO₂.HCl.0.15H₂O: calcd: C 72.77, H 6.91, N 3.39, Cl 8.59; observed: C 72.76, H 7.02, N 3.59, Cl 8.83.

Example 11

- Step 1 Alkylate a solution of 1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (0.5g) in CH₃CN using the procedure described in Step 1 of Example 1 to produce desired compound.
- Step 2 Alkylate the product from Step 1, 1-phenyl-8-(diphenylmethyl)-1,3,8-triazaspiro[4.5]decan-4-one (0.4 g) with CH₃I using the procedure described in Step 2 of Example 1 to produce the title compound (0.25 g).

¹H NMR (CDCl₃) δ 1.70 (d, 2H), 2.85 (m, 6H), 3.05(s, 3H), 4.50 (s, 1H), 4.72 (s, 2H), 6.95 (t, 1H), 7.05(d 2H), 7.20-7.60 (m, 12H).

- Using the procedures of Examples 1 to 11, employing the appropriate starting material, compounds shown in the following tables are prepared.
- 5

Table 1

wherein X² is as defined below:

X ²	Physical Data
H	C ₂₄ H ₂₅ N FAB 283.3 (100), 167.2 (52)
OMe	C ₂₅ H ₂₇ NO FAB 358 (80), 167 (70)
OEt	C ₂₆ N ₂₉ NO:HCl FAB 342 (67) 167 (100)
	C ₂₇ H ₃₁ NO ESI 386.1 (79), 167 (100)
	C ₃₁ H ₃₁ NO:HCl ESI 434.2 (62), 167 (100)
CN	C ₂₅ H ₂₄ N ₂ FAB 353.2 (53), 275.10 (24).
CHO	C ₂₅ H ₂₅ NO CI 356 (28), 167 (100)
CH ₂ OH	C ₂₅ H ₂₇ NO CI 358.1 (37), 167 (100)
	C ₃₂ H ₃₃ NO:HCl FAB 448.1 (46), 167.2 (100)
CH ₂ OMe	C ₂₅ H ₂₇ NO FAB 357.10 (10), 167 (100)
CH ₂ OEt	C ₂₆ H ₂₉ NO CI 373.3 (12), 372(42), 167 (100)

	C ₃₀ H ₃₄ NO Cl 440.25 (33), 439.2 (100), 167.2 (89)
CH ₂ NH ₂	C ₂₅ H ₂₈ N ₂ :2HCl ESI 357.10 (37), 167 (100)
CH ₂ NHCOCH ₃	C ₂₇ H ₃₀ N ₂ O ESI 399.1 (53), 167.0 (100)
	C ₃₂ H ₃₂ N ₂ O FAB 462.1(15), 461.1(41), 393 (8)
	C ₃₂ H ₃₄ N ₂ :HCl ESI 447.1 (100), 281.1 (29)
	C ₃₃ H ₃₂ N ₂ F ₃ :HCl ESI 515(100), 349.10 (33), 167 (49)
CH ₂ NHCH ₂ CH ₃	C ₂₇ H ₃₂ N ₂ :HCl ESI 385.1(100), 219.10 (26), 167 (76)
	C ₂₉ H ₃₆ N ₂ O:HCl Cl 429 (53), 351 (100) 327 (13), 167 (34)
	C ₂₈ H ₃₂ N ₂ O ₂ Cl 429 (100), 351 (9), 261 (11), 167 (81)
	C ₂₈ H ₃₄ N ₂ O:HCl Cl 415(100), 327 (33), 167 (65)
	C ₃₁ H ₃₉ N ₃ O:HCl ESI 470 (100), 304 (51), 259 (16), 167 (46)
	C ₃₁ H ₄₁ N ₃ :HCl ESI 456 (100), 290 (11), 167 (11)
	C ₃₀ H ₃₀ N ₂ O ₂ ESI 451(100), 283 (8), 167 (94)
	C ₃₄ H ₄₃ N ₃ O:HCl ESI 510 (88), 344 (73), 167 (100)
	C ₃₂ H ₄₁ N ₃ :HCl ESI 468 (98), 302 (22), 167 (100)

	C ₃₁ H ₃₁ N ₃ O:HCl CI 462(100), 384 (4), 167 (45)
	C ₃₀ H ₃₂ N ₂ O:Cl ESI 437 (100), 271 (11), 167 (41)
	C ₃₀ H ₃₂ N ₂ O:HCl ESI 437 (87), 271 (7), 167 (100)
	C ₃₀ H ₃₂ N ₂ S:HCl ESI 453 (92), 167 (100)
	C ₃₀ H ₃₂ N ₂ S:HCl ESI 453 (100), 287 (6), 167 (78)
	C ₃₂ H ₃₆ N ₂ S:HCl ESI 481 (69), 340 (5), 167 (100)
	C ₂₉ H ₃₆ N ₂ S:HCl ESI 445 (100), 399 (3), 279 (11), 167 (84)
	C ₂₉ H ₃₃ N ₂ F ₃ :HCl ESI 467 (69), 167 (100)
CH ₂ NMe ₂	C ₂₇ H ₃₂ N ₂ :HCl FAB 385.3 (100), 219.2 (6), 162.2 (77)
NH ₂	C ₂₄ H ₂₆ N ₂ :HCl ESI 343 (48), 326 (70), 167 (100)
NH(CH ₂) ₃ NEt ₂	C ₃₁ H ₄₁ N ₃ :HCl ESI 456 (72), 326 (74), 167 (100)
	C ₂₉ H ₃₀ N ₂ O:HCl CI 423 (60), 326 (100), 167 (74)
	C ₃₁ H ₃₉ N ₃ :HCl ESI 454(76), 326 (60), 167 (100)
	C ₂₉ H ₃₀ N ₂ S:HCl FAB 439 (90), 326 (25), 167 (100)
NHMe	C ₂₅ H ₂₈ N ₂ :HCl ESI 357 (20), 326 (87), 167 (100)
NMe ₂	C ₂₆ H ₃₀ N ₂ :HCl ESI 371 (11), 326 (81), 167 (100)

Table 2

wherein X^1 is as defined below

X^1	Physical Data
	$C_{24}H_{25}NO$ FAB 343.1 (13), 342.1 (26)
	$C_{24}H_{24}BrNO$ ESI 424 (20) 422 (18) 167-2 (92)
	$C_{24}H_{24}NOCl$ CI 363 (43), 362 (22), 167.20 (100)
	$C_{24}H_{24}FNO$ 361 (22), 167.2 (75)
Benzyl	$C_{25}H_{27}NO$ CI 358.1 (62), 167 (78)
n-Propyl-phenyl	$C_{27}H_{31}NO:HCl$ FAB 386.1 (46), 167 (100)
	$C_{25}H_{23}NOF_3Cl$ EI 369 (3), 368 (14), 167 (100)
	$C_{25}H_{24}F_3NO$ FAB 413(31), 412 (57), 167 (100)
	$C_{25}H_{27}NO_2$ CI 374.45(M+1), 266.30 (39%), 167.25 (100%)
	$C_{26}H_{30}N_2O$ FAB 387 (86%), 369 (22%)
	$C_{25}H_{26}NOF$ FAB 376.2 (68%), 375.2 (32%). 358.20 (6)
	$C_{25}H_{27}NO_2$ CI 374.45 (58%), 375.45 (27), 356.35 (29)
	$C_{24}H_{24}CINO$ CI 378.35 (31%), 377.35 (18%), 360.30 (22)

	C ₂₅ H ₂₇ NO CI 358.35 (68), 357.35 (38), 340.35 (47), 167.25 (100)
	C ₂₄ H ₂₃ F ₂ NO CI 380.35(28%), 379.35 (22), 362.35 (23), 167.25 (100)
	C ₂₅ H ₂₇ NO CI 358.35 (63), 357.35 (43), 340.35 (53), 167.25 (100)
	C ₂₅ H ₂₇ NO CI 358.35 (49), 357.35 (41), 340.35 (35), 167.25 (100)
	C ₂₄ H ₂₄ FNO CI 362.35 (41), 361.35 (218), 344.35 (39), 167.25 (100)
	C ₂₆ H ₂₅ NO FAB 368(37), 367 (38), 366(100), 290 (41)
	C ₂₅ H ₂₇ NSO FAB 375 (10), 374.20 (40), 306.7 (13)
	C ₂₅ H ₂₇ NSO FAB 390 (22), 389(27), 388 (100), 312 (48)
	C ₂₄ H ₂₃ NOF ₂ 380.2 (11), 379.2 (16), 378.2 (31)
	C ₂₆ H ₂₉ NO CI 373.45 (22), 372.40 (82), 354.35 (60), 167.25 (100)
	C ₂₄ H ₃₁ NO FAB 350.3 (4), 349.3 (7), 348.917)
n Hexyl	C ₂₄ H ₃₃ NO FAB 352 (85), 274 (189)
n propyl	C ₂₇ H ₃₁ NO ESI 386 (70), 167 (100)
n butyl	C ₂₈ H ₃₃ NO ESI 400.1 (68), 167 (100)
	C ₂₁ H ₂₅ NO:HCl ESI 308.1 (32), 167.0 (100)

	C ₂₂ H ₂₃ NO ₂ :HCl CI 334.25 (34), 333.25 (26), 316.25 (41), 167.25 (100)
	C ₂₂ H ₂₃ NOS:HCl CI 350.25 (32), 349.35 (24), 332.25 (41), 167.25 (100)
	C ₂₂ H ₂₃ NOS:HCl CI 350.25 (27), 349.35 (18), 332.25 (20), 167.25 (100)
	C ₂₃ H ₂₄ N ₂ O:HCl ESI 345.1(68), 167 (100)
	C ₂₂ H ₂₃ NO ₂ CI 334.25(37), 333.25 (24), 316.25 (31), 167.25 (100)
	C ₂₅ H ₂₄ N ₂ O:HCl FAB 369.3 (3), 368.3 (6), 367.3 (13)
	C ₂₁ H ₂₇ NO:HCl CI 310.40 (38), 309.40 (25), 292.40 (33), 167.25 (100)
	C ₂₄ H ₂₄ NOF:HCl FAB 362.1 (100), 232.1 (11)
	C ₂₂ H ₂₉ NO:HCl FAB 324.30(100)
	C ₂₁ H ₂₅ NO:HCl CI 308.2 (64), 307.2 (30), 290.2 (57), 167.25 (100)
	C ₂₃ H ₂₅ NOS:HCl CI 364.15 (69), 346.15 (71), 167.25 (100)
	C ₂₁ H ₂₂ N ₂ SO:HCl CI 351.1 (52), 350.1 (8), 266.15 (12), 167.2 (100)
	C ₂₇ H ₂₈ N ₂ O:HCl FAB 397.2 (80), 167.2 (100)
	C ₂₅ H ₂₈ N ₂ O:HCl ESI 373.1 (28), 167 (100)
	C ₂₅ H ₂₇ NO ₂ :HCl ESI 374.1 (43), 167 (100)

Table 3

wherein Z¹ and Z² are as defined below:

Z ¹	Z ²	Physical Data
		C ₂₄ H ₂₄ NOCl CI 380 (30), 378.1 (100), 201 (100)
		C ₂₄ H ₂₃ NOF ₂ CI 380.15 (79), 379.15 (47), 362.05 (100)
		C ₂₃ H ₂₄ N ₂ O:HCl ESI 345.1(69), 327.1 (49), 168 (100)
		C ₂₃ H ₂₄ N ₂ O:HCl ESI 345.1 (58), 168 (100)
		C ₂₅ H ₂₇ NO:HCl CI 358.20 (60), 340.20 (51), 181.25 (100)
		C ₂₄ H ₂₄ NOBr:HCl ESI 424.1 (17), 422 (17), 247.1 (100), 245.1 (99)
		C ₂₅ H ₂₇ NO:HCl ESI 358.1(32.70), 181 (100)
		C ₂₄ H ₂₄ NOCl:HCl CI 380.10 (30), 378.15 (100)
		C ₂₆ H ₂₉ NO:HCl ESI 372.1 (24), 195.1 (100)
		C ₂₅ H ₂₇ NO:HCl ESI 358.1 (48%), 181.1 (100)
		C ₂₅ H ₂₄ ONF ₃ :HCl ESI 412.1 (56), 235 (100)
		C ₂₅ H ₂₄ ONF ₃ :HCl ESI 412.1 (73), 235.1 (100)

		C ₂₆ H ₂₉ NO:HCl ESI 372.1 (39), 195.1 (100)
		C ₂₄ H ₂₄ NOBr:HCl ESI 424.10 (48), 422.1(47), 245.1 (100)
		C ₂₂ H ₂₃ NOS:HCl ESI 350.1 (31), 173 (100)
		C ₂₅ H ₂₄ ONF ₃ :HCl ESI 412.1 (54), 235.10 (100)
		C ₂₄ H ₂₄ NOF:HCl ESI 362.1 (23), 185.1 (100)
		C ₂₄ H ₂₃ NOF ₂ :HCl CI 380.15 (100), 362.15 (89), 203.25 (99)
		C ₂₄ H ₂₃ NOCl ₂ :HCl ESI 416.1 (7), 414 (32), 412 (45), 235.1 (100)
		C ₂₅ H ₂₄ N ₂ O ₂ F ₂ :HCl FAB 423.2 (100), 218.0 (18)
		C ₂₄ H ₂₃ NOF ₂ :HCl CI 380.15 (79), 379.15 (45), 362.05 (100)
		C ₂₆ H ₂₉ NO ₂ :HCl FAB 388.3 (100), 266.1 (15)
		C ₂₅ H ₂₇ NO ₂ :HCl FAB 374.1 (100), 197 (73)
		C ₂₄ H ₂₄ NOCl:HCl FAB 380.1(27), 378.2 (80), 201.0 (100)
		C ₂₅ H ₂₇ NO:HCl ESI 358.1 (15), 181.1 (100)
Methyl		C ₁₉ H ₂₃ NO:HCl ESI 282.1 (100), 160.0 (84.5)

Ethyl		C ₂₀ H ₂₅ NO:HCl ESI 296.1 (100), 160.0 (84)
		C ₂₁ H ₂₇ NO:HCl ESI 310.1 (100), 160.1 (52)
		C ₂₂ H ₂₉ NO:HCl ESI 324.1 (100), 160.1 (52)
		C ₂₃ H ₃₁ NO:HCl CI 338.3 (100), 266.20 (77), 160.35 (17)
		C ₂₄ H ₃₃ NO:HCl ESI 352.1 (100), 160.0 (41.83)
		C ₂₃ H ₂₉ NO:HCl ESI 336.1 (66.39), 160.0 (63), 159 (100)
		C ₂₃ H ₃₀ N ₂ O ₂ :HCl ESI 367.1 (35), 190 (100)
		C ₂₃ H ₃₁ NO:HCl ESI 338.1 (100), 161.0 (36), 160 (70)

Table 4

wherein X¹, X², Z¹ and Z² are as defined below

X ¹	X ²	Z ¹	Z ²	Physical Data
	NH ₂			C ₂₂ H ₃₀ N ₂ :HCl ESI 323(71), 306 (100), 160(31)
				C ₂₇ H ₃₄ N ₂ S:HCl ESI 419 (23), 306 (100)
	CH ₂ NH ₂			C ₂₃ H ₃₂ N ₂ :HCl ESI 337 (96), 174 (100), 160 (19)
				C ₂₈ H ₃₆ N ₂ S:HCl ESI 433 (100), 320 (65), 174 (58)

	NH ₂			C ₂₅ H ₂₈ N ₂ :HCl CI 357 (47), 340 (24), 279 (8), 181(100)
				C ₂₈ H ₃₆ N ₂ S:HCl ESI 433 (100), 320 (42), 174 (77)
				C ₃₀ H ₃₂ N ₂ S:HCl ESI 453 (24), 340(27), 181 (100)
	NH ₂			C ₂₆ H ₃₀ N ₂ :HCl ESI 371 (16) 195 (100)
				C ₃₁ H ₃₄ N ₂ S:HCl ESI 467 (25), 354 (30), 195 (100)
	NH ₂			C ₂₄ H ₂₄ N ₂ Cl ₂ :HCl ESI 413 (18), 411 (26), 396 (39), 394 (51), 237 (69), 235 (100)
	OH			C ₂₆ H ₂₈ BrNO:HCl 450 (12), 195.1 (100)
	OH			C ₂₆ H ₂₈ FNO:HCl ESI 390.1 (9.6), 195.1 (100)
	OH			C ₂₆ H ₂₈ ClNO:HCl 407.1 (5), 195.1 (100) 406.1 (16)
				C ₃₁ H ₃₂ N ₂ OS ESI 481 (25), 195 (100)
				C ₂₈ H ₃₂ N ₂ O CI 413(31), 354 (8), 195 (100)
				C ₂₉ H ₂₈ Cl ₂ N ₂ S:HCl ESI 509 (10), 507 (14), 396 (56), 394 (77), 237 (68), 235 (100)

	OH			C ₂₅ H ₂₆ N ₂ OCl ₂ :HCl ESI 443(42), 441 (56), 425 (31), 235 (100)
				C ₃₀ H ₃₆ N ₂ OS ESI 473 (39), 195 (100)
				C ₃₃ H ₃₄ N ₂ O ESI 475 (41), 195 (100)
				C ₂₉ H ₃₄ N ₂ O ₂ ESI 443(31), 195 (100)
				C ₃₀ H ₃₄ N ₂ O:HCl ESI 439 (17), 195 (100)
				C ₃₄ H ₄₂ N ₂ O:HCl ESI 495 (30), 195 (100)
				C ₃₃ H ₃₆ N ₂ :HCl ESI 461 (17), 354 (28), 195 (100)
				C ₂₆ H ₂₆ N ₂ OCl ₂ ESI 455 (57), 453 (75), 396 (7), 394 (10), 237 (73), 235 (100)
	OH			C ₂₉ H ₃₁ N ₂ O ₃ F ₃ :HCl FAB 497.2 (507), 195.1 (100)
				C ₂₄ H ₃₂ N ₂ O:HCl ESI 365 (100), 219 (31), 160 (23)
				C ₂₇ H ₃₀ N ₂ O:HCl ESI 399 (60), 181 (100)
				C ₂₉ H ₃₄ N ₂ O:HCl ESI 427 (41), 195 (100)

				C ₃₀ H ₃₆ N ₂ O·HCl ESI 441 (47), 195 (100)
				C ₂₈ H ₃₂ N ₃ O·HCl ESI 428 (41), 195 (100)
	OH			C ₂₇ H ₃₀ Cl ₂ N ₂ O FAB 469.2 (30), 235.1 (100)
	OH			C ₂₈ H ₃₂ Cl ₂ N ₂ O ₃ S CI 549.15 (69), 548.15 (37), 547.15 (100)
	OH			C ₂₈ H ₃₂ Cl ₂ N ₂ O ₃ S FAB 549 (60), 547.1 (87)
	OH			C ₂₇ H ₃₀ Cl ₂ N ₂ O ₃ S FAB FAB 535 (78), 533 (100)
	OH			C ₂₆ H ₂₈ Cl ₂ N ₂ O ₃ S FAB 523 (25)
	OH			C ₃₀ H ₃₅ Cl ₂ N ₃ O FAB 524.40(20), 330.3 (100)
	OH			C ₃₆ H ₃₉ Cl ₂ N ₃ O FAB 600.5 (50), 330.4 (70)
	OH			C ₂₅ H ₂₇ BrN ₂ O FAB 453.2 (100), 245 (100)
	OH			C ₂₅ H ₂₆ N ₂ F ₂ O FAB 410.2 (25), 409.2 (100), 203.2 (50)
	OH			C ₂₇ H ₃₂ N ₂ O FAB 401.2 (95), 195 (100)

	OH			C ₂₅ H ₂₆ Cl ₂ N ₂ O 441.1 (40), 235 (42), 157 (100)
	OH			C ₂₅ H ₂₇ NO ₂ CI 374.25 (52), 356.2 (100), 178.25 (40), 160.25 (57)
	OH			C ₂₅ H ₂₅ NO ₃ FAB 388.23 (100), 210.8 (21), 168.28 (20)
	OH			C ₂₄ H ₃₄ N ₂ O FAB 368.3 (30), 367.3 (100)
	OH			C ₂₃ H ₃₂ N ₂ O GAB 353.3 (100)
	OH			C ₂₅ H ₂₆ N ₂ F ₂ O FAB 410.6 (35), 409.4 (98), 203.1 (65)
	OH			C ₂₆ H ₂₈ Cl ₂ N ₂ O FAB 457.3 (70), 455.3 (100), 237 (30), 235.1 (52)
	OH	H		C ₁₉ H ₂₃ N ₂ OCl FAB 331.2 (100),
	OH			C ₂₇ H ₃₂ N ₂ O FAB 402.1 (20.46), 401.1 (44.89), 195.1 (100)
	OH			C ₂₅ H ₂₇ ClN ₂ O ES 409.2 (55), 408.2 (45), 407.2 (95)
	OH			C ₂₆ H ₃₀ N ₂ O ES 387 (100)
	OH			C ₂₅ H ₂₅ NO ₂ CI 372.15 (100), 354.15 (38), 195.15 (37)

	OH			C ₂₆ H ₂₉ NO ₃ FAB 404.3 (100), 227.1 (70)
	OH	H		C ₂₁ H ₃₄ N ₂ O FAB 331.4 (100), 266.2 (20)
	OH	CH ₃ (CH ₂) ₃ -		C ₂₄ H ₃₄ N ₂ O FAB 367.2 (100)
	OH			C ₂₇ H ₃₂ N ₂ O ESI 401.1 (46), 195.1 (100)
	OH			C ₃₁ H ₃₈ N ₂ O ₃ ESI 487 (100)
				C ₂₇ H ₂₉ Cl ₂ N ₃ O ESI 484.2 (72), 482.2 (100), 237 (60), 235.0 (65)
				C ₂₆ H ₂₇ Cl ₂ N ₃ O ESI 470.1 (80), 468.1 (100), 235 (78)
				C ₂₆ H ₂₇ Cl ₂ N ₃ O ESI 470.2 (78), 468.2 (90), 237.0 (65), 235 (100)
				C ₂₉ H ₃₅ N ₃ O ESI 442.3 (100)
	OH			C ₂₅ H ₂₆ N ₂ OBr ₂ ESI 533 (55), 531 (100), 324.8 (30)

Table 5

wherein R¹¹, Z¹ and Z² are as defined in the following table, wherein Ac
5 is acetyl, Me is methyl and Et is ethyl::

R^{11}	$CH(Z^1)(Z^2)$	Physical Data
H	Benzhydryl	
	Benzhydryl	$C_{32}H_{37}N_3O:HCl$ CI 480 (100), 167.25 (22)
	Benzhydryl	$C_{29}H_{31}N_3O_3:HCl$ CI 470.15 (100), 167.25 (25)
	Benzhydryl	$C_{29}H_{31}N_3O:HCl$ CI 438.20 (100), 167.25 (29)
	Benzhydryl	$C_{30}H_{33}N_3O:HCl$ FAB 452.3 (100), 167.0 (92)
	Benzhydryl	$C_{29}H_{33}N_3O:HCl$ CI 440.20 (100), 167.25 (22)
Me	Benzhydryl	$C_{26}H_{27}N_3O:HCl$ CI 398.15 (100), 167.25 (39)
Ethyl	Benzhydryl	$C_{27}H_{29}N_3O:HCl$ CI 412.15 (100), 167.25 (32)
n propyl	Benzhydryl	$C_{28}H_{31}N_3O:HCl$ ESI 426.1(14), 167 (100)
n butyl	Benzhydryl	$C_{29}H_{33}N_3O:HCl$ ESI 440.10 (100), 167.10 (33)
isopropyl	Benzhydryl	$C_{28}H_{31}N_3O:HCl$ ESI 446.10 (28), 167. (100)
	Benzhydryl	$C_{28}H_{31}N_3O_2:HCl$ ESI 442.10 (15), 167. (100)
	Benzhydryl	$C_{27}H_{29}N_3O_2:HCl$ FAB 428.3 (65), 232.1 (57)
H		$C_{23}H_{29}N_3O:HCl$ ESI 364.1 (58), 218.1 (100)
		$C_{25}H_{33}N_3O_2:HCl$ ESI 408.1 (93), 262.1 (100)
n pentyl	Benzhydryl	$C_{30}H_{35}N_3O :Hcl$ ESI 454.1 (46), 167.1 (100)
n-hexyl	Benzhydryl	$C_{31}H_{37}N_3O:HCl$ ESI 468.1 (26), 167 (100)

	Benzhydryl	C ₂₈ H ₃₁ N ₃ O ₂ :HCl ESI 442.10 (15), 167 (100)
		C ₃₁ H ₃₅ N ₃ O:HCl ESI 466.1 (44), 181.1 (100)
		C ₂₉ H ₃₃ N ₃ O ₂ :HCl ESI 456.1 (48), 181.10(100)
H		C ₂₄ H ₃₁ N ₃ O:HCl CI 378.25 (100), 306.20 (22), 218.20 (24)
H		C ₂₆ H ₂₇ N ₃ O:HCl ESI 398.10 (44), 181.1 (100)
		C ₂₇ H ₃₃ N ₃ O:HCl ESI 416.10(36), 286.1 (39)
		C ₃₀ H ₃₁ N ₃ OCl ₂ :HCl ESI 522.1 (79), 521.1 (48), 520 (100)
	Benzhydryl	C ₃₀ H ₃₄ N ₂ O:HCl CI 439.25 (100), 168.30 (20)
H		C ₂₇ H ₂₉ N ₃ O:HCl CI 412.20(32), 218.20 (42), 195.35 (100)
	Benzhydryl	C ₂₉ H ₃₁ N ₃ O ₃ :HCl ESI 470.1 (100), 167.1 (77.40)
H		C ₂₅ H ₂₃ N ₃ Cl ₂ O:HCl ESI 452.1 (100), 235 (85)
		C ₃₀ H ₃₃ N ₃ O ₂ Cl ₂ :HCl ESI 525.1 (39), 524.1 (82), 522 (100)
		C ₂₈ H ₂₉ N ₃ OCl ₂ :HCl ESI 511.1 (46), 510 (100), 514 (20), 513.1 (33.50)
		C ₃₂ H ₃₉ N ₃ O:HCl ESI 482.1 (48), 195.1 (100)

		C ₃₀ H ₃₅ N ₃ O ₂ :HCl ESI 471.1 (13), 470.1 (30), 195.1 (100)
H		C ₂₅ H ₂₄ N ₃ OCl:HCl FAB 420.2 (35), 418.2 (100), 201.0 (75)
H		C ₂₅ H ₂₄ N ₃ OF:HCl Elemental Analysis C: 68.12; H: 5.83; N: 9.48; Cl: 8.21; F: 4.59
	Benzhydryl	C ₂₈ H ₃₂ N ₄ O:HCl ESI 442.1 (39), 441.1 (92), 167 (100)
	Benzhydryl	C ₂₉ H ₃₄ N ₄ O:HCl ESI 455.1 (100), 290.1 (14), 289.1 (57.88), 167 (94)
	Benzhydryl	C ₂₇ H ₃₀ N ₄ O:HCl ESI 428.1 (42), 427.1(97), 167 (100)
	Benzhydryl	C ₃₀ H ₃₆ N ₄ O.HCl ESI 470.1 (48), 469 (100), 303 (93), 167 (82.75)
	Benzhydryl	C ₂₉ H ₃₄ N ₄ O:HCl ESI 457.1(13), 456 (57), 455.1 (100), 167 (72)
	Benzhydryl	C ₂₈ H ₂₉ N ₃ O ₃ FAB 456.2 (78), 167.0 (100)
		C ₂₂ H ₂₃ Cl ₂ N ₃ O ₃ FAB 450.1 (27), 448.0 (100)
H		C ₂₄ H ₃₁ N ₃ O FAB 378.4 (100), 218.2 (30)
	Benzhydryl	C ₃₁ H ₃₅ N ₃ O ₃ 498.2 (100), 167.1 (90)
	Benzhydryl	C ₂₉ H ₃₁ N ₃ O ₃ ESI 470.1 (100), 167.1 (55)

		C ₂₃ H ₂₇ Cl ₂ N ₃ O ESI 434.1 (80), 432.1 (100)
		C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂ ESI 436.1 (58), 434.1 (100)
		C ₂₃ H ₂₇ Cl ₂ N ₃ O ESI 434.1 (35), 432.1 (100)
		C ₂₄ H ₂₇ Cl ₂ N ₃ O ESI 446.1 (77), 444.1 (100)
		C ₂₁ H ₂₂ Cl ₂ N ₄ O ₂ FAB 435.1 (78), 433.1 (100)

Table 6

wherein R₁₁, Z¹ and Z² are as defined in the following table:

R ₁₁	CH(Z ¹)(Z ²)	Physical Data
H	Benzhydryl	
	Benzhydryl	C ₂₉ H ₃₃ N ₃ O ESI: 440 (100) 167 (80)
	Benzhydryl	C ₂₉ H ₃₁ N ₃ O ESI: 438 (100) 167 (99)
	Benzhydryl	C ₃₀ H ₃₅ N ₃ O ESI: 454 (100) 167 (94)
	Benzhydryl	C ₂₉ H ₂₉ N ₃ O ESI: 436 (99) 167 (100)
CH ₃	Benzhydryl	C ₂₇ H ₂₉ N ₃ O FAB: 412 (100)
	Benzhydryl	C ₂₈ H ₃₁ N ₃ O FAB: 426 (100)

	Benzhydryl	C ₃₀ H ₃₃ N ₃ O ₃ FAB: 484 (7) 261 (14) 167 (100)
	Benzhydryl	C ₃₀ H ₃₃ N ₃ O ESI: 452 (100) 167 (60)
	Benzhydryl	C ₃₃ H ₃₉ N ₃ O ESI: 494 (100) 167 (30)
	Benzhydryl	C ₃₁ H ₃₅ N ₃ O . HCl FAB: 466 (100)
	Benzhydryl	C ₃₀ H ₃₃ N ₃ O ₃ . HCl FAB: 484 (100) 167 (41)
	Benzhydryl	C ₃₃ H ₃₈ N ₄ O ₂ . HCl FAB: 523 (100)
H		C ₂₆ H ₂₅ N ₃ F ₂ O . HCl ESI: 434 (29) 203 (100)
H		C ₂₆ H ₂₅ N ₃ F ₂ O . HCl ESI: 434 (100)
H		C ₂₆ H ₂₆ N ₃ ClO . HCl ESI: 432 (60) 201 (100)
	Benzhydryl	C ₂₉ H ₃₃ N ₃ O . HCl ESI: 440 (100) 167 (89)
	Benzhydryl	C ₃₃ H ₃₇ N ₃ O ₂ . HCl ESI: 508 (100) 167 (35)
H		C ₂₄ H ₃₀ N ₃ ClO . HCl ESI: 412 (100) 232 (92)
H		C ₂₄ H ₃₁ N ₃ O . HCl ESI: 378 (100) 232 (82)
H		C ₂₁ H ₂₄ N ₃ ClO . HCl ESI: 370 (86) 265 (100)

-49-

H		C ₂₄ H ₃₀ N ₃ FO . HCl ESI: 396 (31) 232 (100)
H		C ₂₄ H ₃₀ N ₃ BrO . HCl ESI: 456 (39) 232 (100)
H		C ₂₅ H ₃₃ N ₃ O . HCl ESI: 392 (73) 232 (100)
H		C ₂₅ H ₃₁ N ₃ O . HCl FAB: 390 (100)
		C ₂₈ H ₃₉ N ₃ O . HCl ESI: 434 (68) 288 (100)
		C ₃₁ H ₄₃ N ₃ O . HCl ESI: 474 (90) 328 (100)
		C ₂₇ H ₃₇ N ₃ O . HCl ESI: 420 (81) 274 (100)
H		C ₂₇ H ₂₉ N ₃ O . HCl FAB: 412 (25) 181 (100)
		C ₂₉ H ₄₁ N ₃ O . HCl ESI: 448 (97) 288 (100)
		C ₂₇ H ₃₇ N ₃ O . HCl ESI: 420 (62) 274 (100)
		C ₂₈ H ₃₉ N ₃ O . HCl ESI: 434 (66) 274 (100)
H		C ₂₅ H ₃₃ N ₃ O . HCl ESI: 392 (59) 232 (100)
		C ₃₁ H ₃₇ N ₃ O . HCl ESI: 468 (100) 322 (92)
		C ₂₈ H ₃₉ N ₃ O . HCl ESI: 434 (100) 274 (86)

H		C ₂₂ H ₂₅ N ₃ O ₃ . HCl Cl: 380 (100)
		C ₃₂ H ₃₉ N ₃ O . HCl ESI: 482 (100) 322 (78)
H		C ₂₁ H ₂₅ N ₃ O ₂ . HCl FAB: 352 (100)
		C ₃₃ H ₄₁ N ₃ O . HCl FAB: 496 (100)
H		C ₂₈ H ₃₁ N ₃ O . HCl ESI: 426 (19) 195 (100)
H		C ₂₆ H ₂₆ N ₃ Cl ₂ O . HCl ESI: 466 (79) 235 (100)
H		C ₂₅ H ₃₂ N ₄ O ₂ . HCl ESI: 421 (40) 190 (100)
H		C ₂₆ H ₂₆ N ₃ FO . HCl FAB: 416 (100)
H		C ₂₆ H ₂₅ N ₃ Cl ₂ O . HCl ESI: 466 (100) 235 (60)
H		C ₂₆ H ₂₆ N ₃ ClO . HCl ESI: 432 (48) 201 (100)
H		C ₂₆ H ₂₆ N ₃ F ₂ O . HCl ESI: 434 (69) 203 (100)
		C ₂₉ H ₃₇ N ₃ O . HCl ESI: 444 (52) 326 (100)
		C ₂₇ H ₃₃ N ₃ O . HCl ESI: 416 (33) 300 (100)

<chem>CCCO</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{28}H_{29}N_3Cl_2O_2 \cdot HCl$ ESI: 510 (100)
<chem>CC1=CC=C1</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{31}H_{33}N_3Cl_2O_2 \cdot HCl$ ESI: 550 (100)
<chem>CCCCC</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{30}H_{33}N_3Cl_2O \cdot HCl$ ESI: 522 (100)
<chem>CCCC(C)C</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{31}H_{35}N_3Cl_2O \cdot HCl$ ESI: 536 (100)
<chem>CCC(=O)OC</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{29}H_{29}N_3Cl_2O_3 \cdot HCl$ FAB: 538 (100)
<chem>CCCO</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{29}H_{31}N_3Cl_2O_2 \cdot HCl$ ESI: 524 (100)
<chem>CN1CCCC1</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{32}H_{36}N_4Cl_2O \cdot HCl$ FAB: 563 (100) 235 (55)
<chem>CCCCC</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{27}H_{37}N_3O_2 \cdot HCl$ FAB: 436 (100)
<chem>CCCO</chem>	<chem>CC(O)c1ccccc1</chem>	$C_{24}H_{31}N_3O_3 \cdot HCl$ FAB: 410 (100)
<chem>CCCC(C)C</chem>	<chem>CC(O)c1ccccc1</chem>	$C_{25}H_{33}N_3O_2 \cdot HCl$ FAB: 408 (100)
<chem>CCCC(C)C</chem>	<chem>CC(O)c1ccccc1</chem>	$C_{26}H_{35}N_3O_2 \cdot HCl$ FAB: 422 (100)
<chem>CCCNMe</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{29}H_{32}N_4Cl_2O \cdot 2HCl$ FAB: 523 (100)
<chem>CCN(C)C</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{31}H_{36}N_4Cl_2O \cdot 2HCl$ FAB: 551 (100)
<chem>CCN(CC)C</chem>	<chem>Clc1ccccc1Cc2ccccc2Cl</chem>	$C_{30}H_{34}N_4Cl_2O \cdot 2HCl$ FAB: 537 (100)

		C ₃₀ H ₃₄ N ₄ Cl ₂ O . 2HCl FAB: 537 (100)
		C ₂₉ H ₃₈ N ₄ O . 2HCl FAB: 459 (100)
		C ₃₃ H ₃₈ N ₄ Cl ₂ O . 2HCl ESI: 577 (56) 343 (100)
		C ₃₃ H ₃₈ Cl ₂ N ₄ O ESI 577 (100), 343 (45)
		C ₃₃ H ₃₈ Cl ₂ N ₄ O ESI 577 (100), 343 (45)
		C ₃₄ H ₄₀ Cl ₂ N ₄ O ESI 591 (100), 357 (81)
		C ₃₁ H ₄₄ N ₄ O ESI 487 (100), 327 (51)
		C ₃₃ H ₃₉ Cl ₂ N ₅ O ESI 592 (100), 358 (71), 235 (64)
		C ₃₁ H ₃₄ Cl ₂ N ₄ O ESI 549 (100), 315 (52)
		C ₃₁ H ₄₂ N ₄ O ESI 487 (100), 329 (85)
		C ₃₁ H ₄₄ N ₄ O ESI 489 (100), 331 (99)
		C ₃₃ H ₃₈ Cl ₂ N ₄ O ₂ ESI 593 (100), 359 (45), 297 (45)
		C ₃₄ H ₄₀ Cl ₂ N ₄ O ESI 591 (100), 357 (82), 235 (99)

		C ₃₄ H ₃₉ Cl ₂ N ₅ O ₂ ESI 620 (100), 386 (12), 235 (28)
		C ₃₂ H ₃₈ Cl ₂ N ₄ O ESI 565 (100), 331 (56), 235 (52)
		C ₃₂ H ₃₆ Cl ₂ N ₄ O ₂ ESI 579 (100), 345 (51), 235 (76)
		C ₃₃ H ₃₈ Cl ₂ N ₄ O ₂ ESI 593 (100), 359 (63), 235 (90)
		C ₃₅ H ₄₂ Cl ₂ N ₄ O ESI 605 (100), 371 (83)
		C ₃₇ H ₄₄ Cl ₂ N ₄ O ₃ FAB 663 (100), 234 (42)
		C ₂₅ H ₃₂ Cl ₂ N ₄ O ₂ ESI 491 (100), 333 (29)
		C ₂₆ H ₃₂ Cl ₂ N ₄ O ESI 487 (100), 319 (31)
		C ₂₆ H ₃₄ Cl ₂ N ₄ O ESI 489 (100), 331 (18)
		C ₃₂ H ₄₆ N ₄ O ₂ ESI 519 (91), 361 (100)
		C ₂₅ H ₃₂ N ₄ Cl ₂ O ESI 475 (100), 317 (24), 159 (69)
		C ₂₈ H ₃₈ N ₄ O FAB 447.3 (100), 289.2 (25), 242.2 (36)

		C ₂₉ H ₄₀ N ₄ O FAB 461.2 (100), 303.2 (20)
		C ₃₁ H ₄₂ N ₄ O ₂ ESI 503.1 (100), 345.1 (95)
		C ₃₀ H ₄₂ N ₄ O ESI 475.1 (99), 317.1 (100)
		C ₃₀ H ₄₂ N ₄ O ESI 475.1 (89), 317.1 (100)
		C ₃₃ H ₄₈ N ₄ O ₂ ESI 519.1 (95), 361.1 (100) 256.1 (12)
		C ₂₉ H ₄₀ N ₄ O ₂ ESI 477.1 (100), 319.1 (100)
		C ₃₁ H ₄₂ N ₄ O ESI 487.10 (100), 329.1 (88)
		C ₂₈ H ₃₈ N ₄ O FAB 447 (100), 391 (30), 317 (20)
		C ₂₉ H ₄₁ N ₅ O FAB 476 (100), 346 (40)
		C ₂₉ H ₄₀ N ₄ O FAB 461 (100), 391 (40), 167 (22)
		C ₂₈ H ₃₈ N ₄ O FAB 447 (100), 391 (60)
		C ₃₁ H ₄₂ N ₄ O ESI 487.1 (100), 329.1 (86)

		C ₃₀ H ₄₂ N ₄ O ₂ ESI 491.1 (63), 333.10 (100)
		C ₃₄ H ₄₈ N ₄ O ESI 529.1 (79), 371.1 (100)
		C ₃₁ H ₄₅ N ₅ O ESI 504.1 (99), 358.1 (100)
		C ₃₂ H ₄₅ N ₅ O ESI 516.1 (92), 358.1 (100), 251.1 (28)
		C ₂₅ H ₃₂ Cl ₂ N ₄ O ESI 475 (100), 317 (16)
		C ₂₄ H ₃₀ Cl ₂ N ₄ O ESI 461 (100), 303 (25)
		C ₂₃ H ₂₈ Cl ₂ N ₄ O ESI 447 (100), 224 (64)
		C ₂₆ H ₃₄ Cl ₂ N ₄ O ESI 489 (100), 331 (33)
		C ₂₇ H ₂₅ F ₄ N ₃ O ESI 484 (100)
		C ₂₆ H ₃₂ Cl ₂ N ₄ O ESI 487 (100), 433 (39)
		C ₂₆ H ₃₂ Cl ₂ N ₄ O ESI 487 (100), 433 (46)
		C ₃₁ H ₄₄ N ₄ O ESI 489.1 (100), 331.1 (68)

		C ₃₀ H ₄₀ N ₄ O ESI 473.1 (100), 315.1 (55)
		C ₃₂ H ₄₆ N ₄ O ESI 503.1 (100), 345.1 (834)
		C ₃₃ H ₄₆ N ₄ O ESI 515.1 (73), 357.1 (100), 258.1 (9)
		C ₃₂ H ₄₀ N ₄ OS ESI 433.1 (22), 371.1 (83)
		C ₃₂ H ₄₄ N ₄ O ESI 501.1 (80), 343.1 (100), 251.1 (7), 159.1 (69)
		C ₃₂ H ₄₀ N ₄ O ₂ ESI 513.1 (87), 433.1 (32), 355.1 (100), 275.1 (12)
		C ₃₄ H ₄₄ N ₄ O ESI 523.1 (91), 365.1 (100)
		C ₃₂ H ₃₈ Cl ₂ N ₄ O ESI 565 (100), 331 (56), 235 (52)
H		C ₂₆ H ₂₇ N ₃ O ESI 398 (100), 397 (4)
		C ₂₆ H ₃₄ FN ₄ O ESI 457 (92), 229 (100)
		C ₂₉ H ₄₀ N ₄ O ESI 461 (99), 231 (100)
		C ₃₀ H ₄₂ N ₄ O ₂ ESI 491.1 (90), 331.1 (65), 61 (100)

		C ₃₁ H ₄₃ ClN ₄ O ESI 525.1 (42), 524.1 (53), 523.1 (65), 331.1 (60), 193.1 (100)
		C ₂₈ H ₃₈ N ₄ O ₂ ESI 463 (100), 331 (38)
		C ₂₉ H ₄₀ N ₄ O ₃ ESI 494 (100), 247 (95)
		C ₂₆ H ₃₄ Cl ₂ N ₄ O ESI 491(86) 489 (100), 245 (72)
		C ₂₈ H ₃₈ N ₄ O ESI 447 (88), 224 (100)
		C ₂₆ H ₃₅ ClN ₄ O ESI 455 (100), 228 (85)
		C ₂₆ H ₃₅ ClN ₄ O ESI 455 (100), 228 (60)
		C ₂₄ H ₃₁ ClN ₄ O ESI 427 (100), 303 (10), 214 (48)
		C ₂₃ H ₂₉ BrN ₄ O ESI 459 (99), 457 (100), 230 (45)
		C ₂₆ H ₃₅ BrN ₄ O FAB 501 (99), 499 (100), 235 (40)
		C ₂₆ H ₃₅ BrN ₄ O FAB 501 (99), 499 (100), 171 (28)
		C ₂₆ H ₃₅ BrN ₄ O FAB 499(99), 497 (100), 171 (20)

		C ₂₆ H ₃₃ FN ₄ O FAB 439 (100), 220 (7)
		C ₂₆ H ₃₅ FN ₄ O FAB 439 (100), 220 (40)
H		C ₂₁ H ₂₅ N ₃ O FAB 336 (100), 171 (100)
		C ₂₃ H ₂₉ FN ₄ O FAB 397 (100), 242 (100)
		C ₂₄ H ₃₁ FN ₄ O FAB 411 (100), 242 (90)
H		C ₁₉ H ₂₇ N ₃ O FAB 314 (100), 247 (7)
		C ₂₉ H ₃₉ FN ₄ O ESI 479.1(100), 424.1 (31), 331.1 (43), 203.1 (61)
		C ₂₉ H ₃₉ FN ₄ O ESI 479.1(100), 424.1 (11), 331.1 (39), 203.1 (38)
		C ₂₉ H ₃₉ ClN ₄ O ESI 495.1 (70), 345.1 (37), 65.0 (100)
H		C ₂₄ H ₂₅ N ₃ O ESI 372.1 (100), 200.1 (4)
		C ₃₀ H ₃₈ N ₄ O ESI 471.1 (100), 331.1 (36)
H		C ₂₀ H ₂₉ N ₃ O ESI 328 (100)
H		C ₂₁ H ₃₁ N ₃ O ESI 342 (100)

H		C ₂₂ H ₃₃ N ₃ O ESI 356.1 (100), 171.1 (5)
		C ₂₄ H ₃₇ N ₃ O ESI 370.1 (100), 247.1 (20)

Table 7
compounds of the formulas shown, wherein Ph is phenyl

Compound	Physical Data
	C ₂₅ H ₂₇ NO.HCl ESI 358.1 (44.50), 167.0 (100)
	C ₂₅ H ₂₇ NO.HCl FAB 358.2 (100), 232.1 (23.70)
	C ₂₇ H ₂₉ NO.HCl CI 348.20 (58), 366.25 (48)
	C ₂₆ H ₂₇ NO.HCl FAB 370.1 (100), 167.0 (100)
	C ₂₈ H ₃₁ NO.HCl FAB 398.1 (100), 195.1 (98)
	C ₂₆ H ₂₅ NOCl ₂ .HCl FAB 440.1 (65), 438.0 (100), 236.9 (38), 234.9 (60)
	C ₂₅ H ₂₃ NO ₂ .HCl FAB 370.2 (100), 292.2 (18)

-60-

	C ₂₅ H ₂₅ NO.HCl ESI 356.1 (14.77), 168 (20.98), 167 (100)
	C ₂₆ H ₂₇ N.HCl ESI 354.1 (55.06), 167.1 (100),
	C ₂₆ H ₂₅ N.HCl ESI 352.1 (41.94), 167.1 (100)
	C ₂₅ H ₂₅ NO ₂ .HCl ESI 372.1 (15.42), 167 (100)
	C ₂₆ H ₂₇ NO ₂ .HCl CI 386.10 (73), 354.05 (88), 167.25 (100),
	C ₂₅ H ₂₄ N ₃ Cl.HCl CI 402 (55), 366.20 (77), 250.15 (34), 167.25 (100),
	C ₂₄ H ₂₇ N ₃ O.HCl CI 398.05 (100), 232.10 (19), 167.25 (74),
	C ₂₅ H ₂₆ N ₂ CI 356.2 (26) 355.2 (100), 167(28)
	C ₂₆ H ₂₅ N ₃ O ₂ :HCl ESI 412 (20), 167.1 (100)
	C ₂₆ H ₂₅ F ₂ NO ESI 406.1 (100), 203.1 (89.11)

	C ₂₆ H ₂₆ CINO ESI 406.1 (34.35), 404.10 (81.42), 201.10 (100)
	C ₂₇ H ₂₉ NO ESI 384.1 (54.52), 181 (100)
	C ₂₇ H ₂₈ Cl ₂ N ₂ O ESI 399.1 (13.87), 398.1 (56.98), 397.1 (100)
	C ₂₆ H ₂₆ FNO ESI 388.2 (90), 185.0 (100)
	C ₂₉ H ₃₄ N ₂ O ESI 429.1 (8.33), 428.10 (36.55), 427.1 (74.28)
	C ₂₄ H ₃₁ NO FAB 350.4 (100), 204.3 (18)
	C ₂₅ H ₃₃ NO FAB 364.40 (100), 204.3 (20)

	$C_{27}H_{28}F_2N_2O$ FAB 435.2 (100), 203.1 (55)
	$C_{26}H_{26}BrNO$ FAB 448.1 (100), 247.0 (58), 166.1 (38)
	$C_{26}H_{25}Br_2NO$ ESI 528 (100), 325.1 (54.35)
	$C_{27}H_{28}Br_2N_2O$ FAB 560 (20), 557 (100), 324.8 (60)
	$C_{27}H_{27}NO_3$ CI 414.20 (100), 396.20 (34), 211.15 (47), 186.15 (30)
	$C_{19}H_{19}N_3O$ ESI 306.1 (100)
	$C_{21}H_{29}N_3O$ ESI 341.1 (30.27), 340.1 (100)
	$C_{23}H_{33}N_3O$ ESI 369.1 (39.66), 368.1 (100)

	C ₂₈ H ₃₁ NO ₃ ESI 430.1 (100), 204.1 (52.46)
	C ₂₈ H ₂₇ NO ₃ FAB 426.3 (100), 225.0 (18), 195 (18)
	C ₃₀ H ₃₅ NO ESI 426.1 (100), 408 (11), 223.0 (43)
	C ₂₈ H ₃₁ NO ₃ ESI 430.1 (100), 412.1 (11.0), 227.0 (24.2)
	C ₂₅ H ₃₃ NO ESI 364.10 (100), 346 (7)
	C ₂₁ H ₂₃ NO ₃ FAB 338.1 (100)
	C ₂₁ H ₂₁ F ₄ NO ₂ ESI 396.1 (100)
	C ₂₂ H ₂₇ NO ₃ CI 354 (100), 336 (78)
	C ₂₁ H ₂₁ F ₄ NO ESI 380.1 (100)

Table 8

wherein Z¹ and Z² are as defined in the following table:

Z ¹	Z ²	Physical Data
		C ₂₅ H ₂₄ N ₂ O.HCl FAB 369.2 (75), 167.1 (100)
		C ₂₇ H ₂₈ N ₂ O.HCl FAB 397.2 (40), 195.1 (100)
		C ₂₆ H ₂₆ N ₂ O.HCl ESI 383.1 (11.64), 181.1 (100)
		C ₂₅ H ₂₄ N ₂ Cl ₂ O.HCl ESI 441.1 (11.05), 440.1 (15.61), 439.1 (48.02), 438.1 (23.94), 437.1 (64.05), 235.1 (100)
		C ₂₅ H ₂₂ N ₂ OF ₂ .HCl FAB 405.2 (100), 203.1 (76)
		C ₂₅ H ₂₃ ClN ₂ O:HCl FAB 403.1 (100) 201(70)

- 5 Compounds of formulas II to VI can be prepared according to the procedures disclosed in the cited patent specifications.

ASSAYS

Nociceptin binding assay

- 10 CHO cell membrane preparation expressing the ORL-1 receptor (2 mg) was incubated with varying concentrations of [¹²⁵I][Tyr¹⁴]nociceptin (3-500 pM) in a buffer containing 50 mM HEPES (pH7.4), 10 mM NaCl, 1mM MgCl₂, 2.5 mM CaCl₂, 1 mg/ml bovine serum albumin and 0.025% bacitracin. In a number of studies, assays were carried out in buffer 50 mM tris-HCl (pH 7.4), 1 mg/ml bovine serum alumbin and 0.025%
- 15

bacitracin. Samples were incubated for 1h at room temperature (22°C). Radiolabelled ligand bound to the membrane was harvested over GF/B filters presoaked in 0.1% polyethyleneimine using a Brandell cell harvester and washed five times with 5 ml cold distilled water.

- 5 Nonspecific binding was determined in parallel by similar assays performed in the presence of 1 μ M nociceptin. All assay points were performed in duplicates of total and non-specific binding.

Calculations of Ki were made using methods well known in the art.

- For compounds of this invention, Ki values were determined to be
 10 in the range of 0.6 to 3000 nM, with compounds having a Ki value less than 10 nM being preferred. Ki values for representative compounds of the invention are as follows:

Compounds	Ki (nM)
	13
	200
	60
	0.6
	2.3
	77
	18

	3,000
--	-------

Using the procedures described in the European Journal of Pharmacology, 336 (1997), p. 233-242, the agonist activity of compounds of the invention was determined:

Compound	% Stimulation of [³⁵ S]-GTPγS binding to human ORL-1 receptor @ 100 nM
	77
	43
	59
	102
	71

	43
	15
	95
	107
	120
	70
	101

EXAMPLE 12Cough Studies

The effects of nociceptin agonist Compound A (0.3 - 10 mg/kg, p.o.) and Compound B (10 mg/kg, p.o.)

COMPOUND A

COMPOUND B

- 5 were evaluated in capsaicin-induced cough in the guinea pig according to
 the methods of Bolser et al. *British Journal of Pharmacology* (1995) 114,
 735-738. This model is a widely used method to evaluate the activity of
 potential antitussive drugs. Overnight fasted male Hartley guinea pigs
 10 (350-450 g, Charles River, Bloomington, MA, USA) were placed in a 12"
 x 14" transparent chamber. The animals were exposed to aerosolized
 capsaicin (300 µM, for 4 min) produced by a jet nebulizer (Puritan
 Bennett, Lenexa, KS, USA) to elicit the cough reflex. Each guinea pig
 was exposed only once to capsaicin. The number of coughs were
 15 detected by a microphone placed in the chamber and verified by a trained
 observer. The signal from the microphone was relayed to a polygraph
 which provided a record of the number of coughs. Either vehicle
 (methylcellulose 1 ml/kg, p.o.) or Compound A or Compound B were
 given 2 hours before aerosolized capsaicin. The antitussive activity of
 20 baclofen (3 mg/kg, p.o.) was also tested as a positive control. The results
 are summarized in the bar graph in Fig. 1.

EXAMPLE 13Respiratory Measurements

- Studies were performed on male Hartley guinea pigs ranging in
 25 weight from 450 to 550 g. The animals were fasted overnight but given
 water and libitum. The guinea pigs were placed in a whole-body, head-out
 plethysmograph and a rubber collar was placed over the animal's
 head to provide an airtight seal between the guinea pig and the
 plethysmograph. Airflow was measured as a differential pressure across

a wire mesh screen which covered a 1-in hole in the wall of the plethysmograph. The airflow signal was integrated to a signal proportional to volume using a preamplifier circuit and a pulmonary function computer (Buxco Electronics, Sharon, CT., model XA). A head 5 chamber was attached to the plethysmograph and air from a compressed gas source (21%O₂, balance N₂) was circulated through the head chamber for the duration of study. All respiratory measurements were made while the guinea pigs breathed this circulating air.

The volume signal from each animal was fed into a data 10 acquisition/analysis system (Buxco Electronics, model XA) that calculated tidal volume and respiratory rate on a breath-by-breath basis. These signals were visually displayed on a monitor. Tidal volume and respiratory rate were recorded as an average value every minute.

The guinea pigs were allowed to equilibrate in the plethysmograph 15 for 30 min. Baseline measurements were obtained at the end of this 30 min period. The guinea pigs were then removed from the plethysmograph and orally dosed with Compound A from Example 12 (10 mg/kg, p.o.), baclofen (3 mg/kg, p.o.) or a methylcellulose vehicle placebo (2 ml/kg, p.o.). Immediately after dosing, the guinea pigs were placed 20 into the plethysmograph, the head chamber and circulating air were reconnected and respiratory variables were measured at 30, 60, 90 and 120 min post treatment. This study was performed under ACUC protocol #960103.

25 Data Analysis

The data for tidal volume (V_T), respiratory rate (f) and minute 30 volume (MV = V_T X f) were made for the baseline condition and at each time point after the drug or vehicle. The results are expressed as the mean ± SEM. The results are shown in Figures 2A, 2B and 2C. Fig. 2A shows the change in Tidal Volume, Fig. 2B shows the change in Tidal Volume and Fig. 2C shows the change in frequency of breaths.

We have surprisingly discovered that nociceptin receptor ORL-1 35 agonists exhibit anti-tussive activity, making them useful for suppressing coughing in mammals. The ORL-1 agonists decrease the severity and

frequency of coughing. The coughing can be chronic, intractable or caused by a transient medical or environmental condition. Non-limiting examples of the causes for coughing are irritants, inflammatory diseases, influenza, asthma and upper respiratory diseases.

- 5 For mammals treated for coughing, the nociceptin receptor ORL-1 agonists may be administered along with one or more additional agents for treating cough, allergy or asthma symptoms selected from antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H₃ inhibitors, β-adrenergic receptor agonists, xanthine derivatives,
- 10 α-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, decongestants, NK₁, NK₂ and NK₃ tachykinin receptor antagonists, and GABA_B agonists. For example, the ORL-1 agonist can be administered in combination with an expectorant or an antihistamine, or with both an expectorant and an antihistamine. The combination
- 15 preferably comprises 2 to 4 active agents.

Non limitative examples of antihistamines include: astemizole, azatadine, azelastine, acrivastine, brompheniramine, certirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carbinoxamine, descarboethoxyloratadine (also known as SCH-34117), doxylamine, dimethindene, ebastine, epinastine, eflterizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, mizolastine, equitazine, mianserin, noberastine, meclizine, norastemizole, picumast, pyrilamine, promethazine, terfenadine, tripeleannamine, temelastine, trimeprazine and tripolidine.

- 25 Non-limitative examples of histamine H₃ receptor antagonists include: thioperamide, impropidine, burimamide, clobenpropit, impentamine, mifetidine, S-sopromidine, R-sopromidine, SKF-91486, GR-175737, GT-2016, UCL-1199 and clozapine. Other compounds can readily be evaluated to determine activity at H₃ receptors by known methods, including the guinea pig brain membrane assay and the guinea pig neuronal ileum contraction assay, both of which are described in U.S. Patent 5,352,707. Another useful assay utilizes rat brain membranes and is described by West et al., "Identification of Two-H₃-Histamine Receptor Subtypes," *Molecular Pharmacology*, Vol. 38, pages
- 30 610-613 (1990).
- 35

- The term "leukotriene inhibitor" includes any agent or compound that inhibits, restrains, retards or otherwise interacts with the action or activity of leukotrienes. Non-limitative examples of leukotriene inhibitors include montelukast [R-(E)]-1[[[1-[3-[2-(7-chloro-2-quinolinyl)-ethenyl]phenyl]-3[2-(1-hydroxy-1-methylethyl)phenyl]propyl]thio]methyl]cyclopropaneacetic acid and its sodium salt, described in EP 0 480 717; 1-(((R)-(3-(2-(6,7-difluoro-2-quinolinyl)ethenyl)phenyl)-3-(2-(2-hydroxy-2-propyl)phenyl)thio) methylcyclopropaneacetic acid, and its sodium salt, described in WO 97/28797 and U.S. Patent 5,270,324; 1-(((1(R)-3(3-(2-(2,3-dichlorothieno[3,2-b]pyridin-5-yl)-(E)-ethenyl)phenyl)-3-(2-(1-hydroxy-1-methylethyl)phenyl) propyl)thio) methyl)cyclopropaneacetic acid, and its sodium salt, described in WO 97/28797 and U.S. Patent 5,472,964; pranlukast, N-[4-oxo-2-(1H-tetrazol-5-yl)-4H-1-benzopyran-8-yl]-p-(4-phenylbutoxy) benzamide) described in WO 97/28797 and EP 173,516; zafirlukast, (cyclopentyl-3-[2-methoxy-4-[(o-tolylsulfonyl)carbamoyl]benzyl]-1-methylindole-5-carbamate) described in WO 97/28797 and EP 199,543; and [2-[[2(4-*tert*-butyl-2-thiazolyl)-5-benzofuranyl] oxymethyl]phenyl]acetic acid, described in U.S. Patent 5,296,495 and Japanese patent JP08325265 Å.
- The term "5-lipoxygenase inhibitor" or "5-LO inhibitor" includes any agent or compound that inhibits, restrains, retards or otherwise interacts with the enzymatic action of 5-lipoxygenase. Non-limitative examples of 5-lipoxygenase inhibitors include zileuton, docebenone, piripost, ICI-D2318, and ABT 761.
- Non-limitative examples of β-adrenergic receptor agonists include: albuterol, bitolterol, isoetharine, mataproterenol, perbuterol, salmeterol, terbutaline, isoproterenol, ephedrine and epinephrine. A non-limitative example of a xanthine derivative is theophylline. Non-limitative examples of α-adrenergic receptor agonists include arylalkylamines, (e.g., phenylpropanolamine and pseudoephedrine), imidazoles (e.g., naphazoline, oxymetazoline, tetrahydrozoline, and xylometazoline), and cycloalkylamines (e.g., propylhexedrine). A non-limitative example of a mast cell stabilizer is nedocromil sodium.

Non-limitative examples of anti-tussive agents include codeine, dextromethorphan, benzonatate, chlorphedianol, and noscapine.

A non-limitative example of an expectorant is guaifenesin.

- Non-limitative examples of decongestants are pseudoephedrine, 5 phenylpropanolamine and phenylephrine.

Non-limitative examples of NK₁, NK₂ and NK₃ tachykinin receptor antagonists include CP-99,994 and SR 48968.

Non-limitative examples of GABA_B agonists include baclofen and 3-aminopropyl-phosphinic acid.

- 10 For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 70 percent active ingredient. Suitable solid carriers are known in the art, e.g. 15 magnesium carbonate, magnesium stearate, talc, sugar, lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration.

For preparing suppositories, a low melting wax such as a mixture 20 of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.

Liquid form preparations include solutions, suspensions and 25 emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection.

Liquid form preparations may also include solutions for intranasal administration.

Aerosol preparations suitable for inhalation may include solutions 30 and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions,

35 suspensions and emulsions.

The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in
5 the art for this purpose.

Preferably the compound is administered orally.

Preferably, the pharmaceutical preparation is in unit dosage form.
In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount
10 to achieve the desired purpose.

The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller
15 dosages which are less than the optimum dose of the compound.

Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.

20 The amount and frequency of administration of the compounds of the invention and the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated.

25 For treating cough, the amount of nociceptin receptor ORL-1 agonist in a unit dose is preferably from about 0.1 mg to 1000 mg, more preferably, from about 1 mg to 300 mg. A typical recommended dosage regimen is oral administration of from 1 mg to 2000 mg/day, preferably 1 to 1000 mg/day, in two to four divided doses. The compounds are non-
30 toxic when administered within this dosage range.

When the nociceptin receptor ORL-1 agonist and one or more additional agents are administered together, they are preferably administered in a combined dosage form (e.g., a single tablet), although they can be administered separately. The additional agents are
35 administered in amounts effective to provide relief from cough, allergy or

asthma symptoms, preferably from about 0.1 mg to 1000 mg, more preferably from about 1 mg to 300 mg per unit dose. A typical recommended dosage regimen of the additional agent is from 1 mg to 2000 mg/day, preferably 1 to 1000 mg/day, in two to four divided doses.

- 5 The following are examples of pharmaceutical dosage forms which contain a compound of the invention. The scope of the invention in its pharmaceutical composition aspect is not to be limited by the examples provided.

Pharmaceutical Dosage Form Examples

EXAMPLE A-Tablets

No.	Ingredients	mg/tablet	mg/tablet
1.	Active compound	100	500
2.	Lactose USP	122	113
3.	Corn Starch, Food Grade, as a 10% paste in Purified Water	30	40
4.	Corn Starch, Food Grade	45	40
5.	Magnesium Stearate	<u>3</u>	<u>7</u>
Total		300	700

Method of Manufacture

- 10 Mix Item Nos. 1 and 2 in a suitable mixer for 10–15 minutes. Granulate the mixture with Item No. 3. Mill the damp granules through a coarse screen (e.g., 1/4", 0.63 cm) if necessary. Dry the damp granules. Screen the dried granules if necessary and mix with Item No. 4 and mix for 10–15 minutes. Add Item No. 5 and mix for 1–3 minutes. Compress the mixture to appropriate size and weigh on a suitable tablet machine.

EXAMPLE B-Capsules

No.	Ingredient	mg/capsule	mg/capsule
1.	Active compound	100	500
2.	Lactose USP	106	123
3.	Corn Starch, Food Grade	40	70
4.	Magnesium Stearate NF	<u>7</u>	<u>7</u>
Total		253	700

Method of Manufacture

-75-

Mix Item Nos. 1, 2 and 3 in a suitable blender for 10-15 minutes.
Add Item No. 4 and mix for 1-3 minutes. Fill the mixture into suitable two-piece hard gelatin capsules on a suitable encapsulating machine.

While the present invention has been described in conjunction with
5 the specific embodiments set forth above, many alternatives,
modifications and variations thereof will be apparent to those of ordinary
skill in the art. All such alternatives, modifications and variations are
intended to fall within the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

1. The use of an ORL-1 receptor agonist, alone or in combination with one or more agents for treating cough, allergy or asthma symptoms, to treat
5 cough.

2. The use of claim 1 wherein the ORL-1 agonist is selected from:

a) a compound represented by the formula

10 or a pharmaceutically acceptable salt or solvate thereof, wherein:
the dotted line represents an optional double bond;

X¹ is R⁵-(C₁-C₁₂)alkyl, R⁶-(C₃-C₁₂)cycloalkyl, R⁷-aryl, R⁸-heteroaryl or R¹⁰-(C₃-C₇)heterocycloalkyl;

15 X² is -CHO, -CN, -NHC(=NR²⁶)NHR²⁶, -CH(=NOR²⁶), -NHOR²⁶, R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁷-aryl(C₁-C₆)alkenyl, R⁷-aryl(C₁-C₆)-alkynyl, -(CH₂)_vOR¹³, -(CH₂)_vCOOR²⁷, -(CH₂)_vCONR¹⁴R¹⁵, -(CH₂)_vNR²¹R²² or -(CH₂)_vNHC(O)R²¹, wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2;

20 or X¹ is

and X² is hydrogen;

or X¹ and X² together form a spiro group of the formula

m is 1 or 2;

n is 1, 2 or 3, provided that when n is 1, one of R¹⁶ and R¹⁷ is -

C(O)R²⁸;

5 p is 0 or 1;

Q is -CH₂- , -O- , -S- , -SO- , -SO₂- or -NR¹⁷-;

R¹, R², R³ and R⁴ are independently selected from the group consisting of hydrogen and (C₁-C₆)alkyl, or (R¹ and R⁴) or (R² and R³) or (R¹ and R³) or (R² and R⁴) together can form an alkylene bridge of 1 to 3 carbon atoms;

10 R⁵ is 1 to 3 substituents independently selected from the group consisting of H, R⁷-aryl, R⁶-(C₃-C₁₂)cycloalkyl, R⁸-heteroaryl, R¹⁰-(C₃-C₇)heterocycloalkyl, -NR¹⁹R²⁰, -OR¹³ and -S(O)₀₋₂R¹³;

15 R⁶ is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, R⁷-aryl, -NR¹⁹R²⁰, -OR¹³ and -SR¹³;

R⁷ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -SO₂R¹⁹, -SOR¹⁹, -SR¹⁹, -NO₂, -

20 CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -COCF₃, -OCOR¹⁹, -OCO₂R¹⁹, -COOR¹⁹, -(C₁-C₆)alkyl-NHCOOC(CH₃)₃, -(C₁-C₆)alkyl-NHCOCF₃, -(C₁-C₆)alkyl-NHSO₂-(C₁-C₆)alkyl, -(C₁-C₆)alkyl-NHCONH-(C₁-C₆)-alkyl or -(CH₂)_f-N(R¹⁹)₂, wherein f is 0 to 6; or R⁷ substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

25 R⁸ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-

- NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -OCOR¹⁹, -OCO₂R¹⁹ and -COOR¹⁹;
- R⁹ is hydrogen, (C₁-C₆)alkyl, halo, -OR¹⁹, -NR¹⁹R²⁰, -NHCN, -SR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;
- 5 R¹⁰ is H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;
- R¹¹ is independently selected from the group consisting of H, R⁵-(C₁-C₆)alkyl, R⁶-(C₃-C₁₂)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ and
- 10 wherein q and a are as defined above;
- R¹² is H, (C₁-C₆)alkyl, halo, -NO₂, -CF₃, -OCF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;
- R¹³ is H, (C₁-C₆)alkyl, R⁷-aryl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ or -(C₁-C₆)alkyl-SR¹⁹;
- 15 R¹⁴ and R¹⁵ are independently selected from the group consisting of H, R⁵-(C₁-C₆)alkyl, R⁷-aryl and
- , wherein q and a are as defined above;
- R¹⁶ and R¹⁷ are independently selected from the group consisting of hydrogen, R⁵-(C₁-C₆)alkyl, R⁷-aryl, (C₃-C₁₂)cycloalkyl, R⁸-heteroaryl, R⁸-heteroaryl(C₁-C₆)alkyl, -C(O)R²⁸, -(C₁-C₆)alkyl(C₃-C₇)-heterocycloalkyl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ and -(C₁-C₆)alkyl-SR¹⁹;
- R¹⁹ and R²⁰ are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, aryl and aryl(C₁-C₆)alkyl;
- R²¹ and R²² are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl, (C₃-C₇)heterocycloalkyl, -(C₁-C₆)alkyl(C₃-C₇)-heterocycloalkyl, R⁷-aryl, R⁷-aryl(C₁-C₆)alkyl, R⁸-heteroaryl(C₁-C₁₂)alkyl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -(C₁-C₆)alkyl-SR¹⁹, -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl-O-(C₁-C₆)alkyl and -(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl-NR¹⁸-(C₁-C₆)alkyl;
- 25 R¹⁸ is hydrogen or (C₁-C₆)alkyl;
- Z¹ is R⁵-(C₁-C₁₂)alkyl, R⁷-aryl, R⁸-heteroaryl, R⁶-(C₃-C₁₂)cycloalkyl, R¹⁰-(C₃-C₇)heterocycloalkyl, -CO₂(C₁-C₆)alkyl, CN or -

$C(O)NR^{19}R^{20}$; Z^2 is hydrogen or Z^1 ; Z^3 is hydrogen or (C_1-C_6)alkyl; or Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, form the group

wherein r is 0 to 3; w and u are each 0-3, provided that the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring A is a fused R^7 -phenyl or R^8 -heteroaryl ring;

10 R^{23} is 1 to 3 substituents independently selected from the group consisting of H, (C_1-C_6)alkyl, - OR^{19} , -(C_1-C_6)alkyl- OR^{19} , - $NR^{19}R^{20}$ and -(C_1-C_6)alkyl- $NR^{19}R^{20}$;

15 R^{24} is 1 to 3 substituents independently selected from the group consisting of R^{23} , - CF_3 , - OCF_3 , NO_2 or halo, or R^{24} substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

15 R^{25} is 1-3 substituents independently selected from the group consisting of H, (C_1-C_6)alkyl, (C_1-C_6)alkoxy and halo;

15 R^{26} is independently selected from the group consisting of H, (C_1-C_6)alkyl and $R^{25}-C_6H_4-CH_2-$;

20 R^{27} is H, (C_1-C_6)alkyl, R^7 -aryl(C_1-C_6)alkyl, or (C_3-C_{12})cycloalkyl; and

20 R^{28} is (C_1-C_6)alkyl, -(C_1-C_6)alkyl(C_3-C_{12})cycloalkyl, R^7 -aryl, R^7 -aryl-(C_1-C_6)alkyl, R^8 -heteroaryl, -(C_1-C_6)alkyl- $NR^{19}R^{20}$, -(C_1-C_6)alkyl- OR^{19} or -(C_1-C_6)alkyl- SR^{19} ;

b) a compound represented by the formula II

25

II

wherein

R^{1a} and R^{2a} are, independently from each other, hydrogen, lower alkyl, lower alkoxy or halogen;

R^{3a} is phenyl, optionally substituted by lower alkyl, CF_3 , lower alkoxy or halogen; and

5 R^{4a} is hydrogen, lower alkyl, lower alkenyl, -C(O)-lower alkyl, -C(O)-phenyl, lower alkyl-C(O)-phenyl, lower alkylene-C(O)-lower alkyl, lower alkantriyl-di-C(O)O-lower alkyl, hydroxy-lower alkyl, lower alkyl-O-lower alkyl, lower alkyl-CH(OH)CF₃, phenyl or benzyl;

10 R^{5a} and R^{6a} are, independently from each other, hydrogen, phenyl, lower alkyl or di-lower alkyl or may form together a phenyl ring, and
10 R^{5a} and one of R^{1a} or R^{2a} may form together a saturated or unsaturated 6 membered ring,

15 A^a is a 4-7 membered saturated ring which may contain a heteroatom such as O or S,
15 or a pharmaceutically acceptable acid addition salt thereof;

c) a compound represented by the structural formula III

wherein

20 R^{1b} is hydrogen, lower alkyl, halogen, lower alkoxy, CF_3 , lower alkyl-phenyl or (C_{5-7})-cycloalkyl;

20 R^{2b} is hydrogen, lower alkyl, phenyl or lower alkyl-phenyl;

20 R^{3b} is hydrogen, lower alkyl, benzyl, lower alkyl-phenyl, lower alkyl-diphenyl, triazinyl, cyanomethyl, lower alkyl-piperidinyl, lower alkyl-naphthyl, (C_{5-7})-cycloalkyl, lower alkyl-(C_{5-7})-cycloalkyl, lower alkyl-pyridyl, lower alkyl-morpholinyl, lower alkyl dioxolanyl, lower alkyl, oxazolyl, or lower alkyl-2-oxo-oxazolidinyl and wherein the ring systems may be substituted by additional lower alkyl, lower alkoxy, CF_3 or phenyl, or -(CH_2)_nC(O)O-lower alkyl, -(CH_2)_nC(O)NH₂, -(CH_2)_nC(O)N(lower alkyl)₂, -(CH_2)_nOH or -(CH_2)_nC(O)NHCH₂C₆H₅;

30 R^{4b} is hydrogen, lower alkyl or nitrilo;

30 A^b is a ring system, consisting of

(a) (C_{5-15})-cycloalkyl, which may be in addition to R^{4b} optionally substituted by lower alkyl, CF_3 , phenyl, (C_{5-7})-cycloalkyl, spiro-undecan-alkyl or by 2-norbornyl, or is one of the following groups

(b) (c) (d)

- 5 dodecahydro-acenaphthylen-1yl (e), bicyclo[6.2.0]dec-9-yl (f) and bicyclonanon-9-yl (g); and wherein

R^{5b} and R^{6b} are hydrogen, lower alkyl, or taken together and with the carbon atoms to which they are attached form a phenyl ring;

R^{7b} is hydrogen or lower alkyl;

- 10 the dotted line represents an optional double bond and

n is 1 to 4;

or a pharmaceutically acceptable acid addition salt thereof;

- d) a compound represented by the structural formula IV:

IV

- 15 or a pharmaceutically acceptable salt thereof, wherein

R^{1c} and R^{2c} are independently C_1-C_4 alkyl; or

R^{1c} and R^{2c} , taken together with the carbon to which they are attached, form a mono-, bi-, tri- or spiro-cyclic group having 6 to 13 carbon atoms, wherein the cyclic group is optionally substituted by 1 to 5

- 20 substituents independently selected from C_1-C_4 alkyl, C_2-C_4 alkylene, C_1-C_4 alkoxy, hydroxy, oxo, $=CH_2$ and $=CH-C_1-C_4$ alkyl;

R^{3c} is C_1-C_7 alkyl, C_2-C_5 alkenyl, C_2-C_5 alkynyl, phenyl- C_1-C_5 alkyl, phenyl optionally substituted by 1 to 3 substituents independently selected from fluorine, C_1-C_3 alkyl and C_1-C_3 alkoxy, or a heteroaryl group

- 25 selected from furyl, theinyl, pyrrolyl and pyridyl, wherein said heteroaryl group is optionally substituted by 1 to 3 substituents independently selected from halo, C_1-C_3 alkyl and C_1-C_3 alkoxy, with the proviso that

-82-

when both R^{1c} and R^{2c} are C_1 - C_4 alkyl, then R^{3c} is other than C_1 - C_7 alkyl,
 C_2 - C_5 alkenyl and C_2 - C_5 alkynyl;

R^{4c} is selected from

- 1) hydrogen;
- 5 2) optionally substituted mono- or di-substituted C_1 - C_8 alkyl,
 C_3 - C_7 cycloalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_1C_6 alkyl- Z^c -, C_1C_6 alkyl- Z^c -
 (C_1C_6) alkyl, C_3 - C_7 cycloalkyl- Z^c - (C_1C_6) alkyl, C_2 - C_6 alkenyl- Z^c - (C_1C_6) alkyl or
 C_2 - C_6 alkynyl- Z^c - (C_1C_6) alkyl, wherein Z^c is selected from O, S, SO, SO₂,
CO, CO₂, OCO, NR^c, CONR^c and NR^cCO, wherein R^c is hydrogen or C_1 - C_6 alkyl, and the substituents to be attached to the alkyl, alkenyl, alkynyl or cycloalkyl moiety are independently selected from halo, hydroxy, carboxy, amino, mono- or di-(C_1 - C_4 alkyl)amino, hydrazino, azido, ureido, amidino and guanidino; or
- 10 3) optionally mono- or di-substituted aryl, heterocyclic, aryl(C_1 - C_5)alkyl, heterocyclic(C_1 - C_5)alkyl, heterocyclic-heterocyclic(C_1 - C_5)alkyl, aryl-heterocyclic(C_1 - C_5)alkyl, heterocyclic- Z^c - $(C_1$ - $C_5)$ alkyl, aryl- Z^c - $(C_1$ - $C_5)$ alkyl, aryl(C_1 - C_5)alkyl- Z^c - $(C_1$ - $C_5)$ alkyl, or heterocyclic(C_1 - C_5)alkyl- Z^c - $(C_1$ - $C_5)$ alkyl, wherein Z^c is selected from O, S, SO, SO₂, CO, CO₂, OCO, NR^c, CONR^c and NR^cCO, wherein R^c is hydrogen or C_1 - C_6 alkyl, and the substituents to be attached to the aryl or heterocyclic moiety are independently selected from halo, hydroxy, carboxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkyl-CO-, amino(C_1 - C_4)alkyl-CO-, phenyl, benzyl, amino, mono- or di-(C_1 - C_4 alkyl)amino, hydrazino, azido, ureido, amidino and guanidino;
- 20 25 25 R^{5c} is independently selected from halo, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfonyl, CF₃, carboxy, hydroxy, amino, alkylamino, acylamino, arylcarbonyl, alkylcarbonyl and hydroxyalkyl; and

n is 0, 1, 2, 3 or 4;

e) a compound represented by the structural formula V

30 or a salt or ester thereof, wherein

Ar^{1d} is an optionally substituted aromatic carbon ring or heterocycle, wherein the optional substituents are independently selected from halo, alkyl, amino, alkylamino, dialkylamino, hydroxy, alkoxy and carboxyl;

- 5 is an optionally substituted mono- or di-cyclic C_{3-14} aliphatic nitrogenous heterocycle;
 Cy^d is an optionally substituted mono-, di- or tri-cyclic C_{3-20} aliphatic carbon ring;

- 10 R^{1d} is hydrogen, lower alkenyl, lower alkynyl, lower cycloalkyl, amino, lower alkylamino, di(lower alkyl)amino, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di(lower alkyl)carbamoyl or optionally substituted lower alkyl; and

- 15 R^{2d} is hydrogen or lower alkyl; and
 f) a compound represented by the structural formula VI

- or a pharmaceutically acceptable salt thereof, wherein

- A^e is an aryl or heterocyclyl ring;
 B^e is phenyl, thienyl, furyl, pyrrolyl, pyrrolidinyl, oxazolyl or cyclohexenyl;
 R^{1e} and R^{2e} are independently hydrogen, alkyl, hydroxyalkyl, amino, alkylamino or di-alkylamino;
 R^{3e} and R^{4e} are independently hydrogen, halo or alkyl;
 X^e is hydrogen, halo, alkyl, alkoxyalkyl, alkenyl, amino, CN, or $-(\text{CH}_2)_{m_e}-\text{E}^e-(\text{CH}_2)_{n_e}-\text{G}^e$;
 E^e is a bond, $-\text{CH}=\text{CR}^{6e}$, O, S, NR^{7e}, CO, SO₂ or NHCO;
 G^e is aryl, heterocyclyl, cycloalkyl or fused aryl, all optionally substituted by 1-5 R^{5e} groups;
 R^{5e} is independently selected from halo, OH, alkyl, alkyl optionally substituted by alkoxy, alkoxyalkoxy, halo, OH or alkanoyloxy, alkoxy, alkoxyalkoxy, amino, alkylamino, di-alkylamino, NO₂, CN, alkanoyl, alkanoyloxy, carboxy, alkoxycarbonyl, alkylsulfonyl and phenyl;
 R^{6e} is hydrogen or aryl;
 R^{7e} is hydrogen, alkyl or alkoxycarbonyl;

-84-

m^e is 0-8; and

n^e is 1-4.

3. The use of claim 2 wherein the compound is represented by
 5 structural formula I.

4. The use of claim 3 wherein, in the compound of formula I, Z^1 and
 Z^2 are each R^7 -aryl.

- 10 5. The use of claim 4, wherein R^7 is selected from the group
 consisting of (C_1-C_6) alkyl and halo.

6. The use of claim 3 wherein, in the compound of formula I, X^1 is
 R^7 -aryl and and X^2 is OH; or X^2 is hydrogen and X^1 is

- 15 ; or X^1 and X^2 together form the spirocyclic group

7. The use of claim 6 wherein X^1 is

- , R^{12} is hydrogen and R^{11} is (C_1-C_6) alkyl, $-(C_1-C_6)$ alkyl(C_3-C_{12})cycloalkyl, $-(C_1-C_6)$ alkyl-OR¹⁹ or $-(C_1-C_6)$ alkyl-NR¹⁹R²⁰.

8. The use of claim 6 wherein X^1 and X^2 together form

- , m is 1, R^{17} is phenyl and R^{11} is $-(C_1-C_6)$ alkyl-OR¹⁹ or $-(C_1-C_6)$ alkyl-NR¹⁹R²⁰.

9. The use of claim 2 wherein the ORL-1 agonist is selected from

10. The use of claim 1 wherein the agents for treating cough, allergy or
5 asthma symptoms are selected from the group consisting of: antihistamines,
5-lipoxygenase inhibitors, leukotriene inhibitors, H₃ inhibitors, β-adrenergic
receptor agonists, xanthine derivatives, α-adrenergic receptor agonists,
mast cell stabilizers, anti-tussives, expectorants, decongestants, NK₁, NK₂
and NK₃ tachykinin receptor antagonists, and GABA_B agonists.
- 10 11. The use of an ORL-1 receptor agonist, alone or in combination with
one or more agents for treating cough, allergy or asthma symptoms, for the
manufacture of a medicament for treating cough.
- 15 12. A pharmaceutical composition comprising: a therapeutically
effective amount of a nociceptin receptor ORL-1 agonist; a therapeutically
effective amount of one or more agents selected from the group
consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene

inhibitors, H₃ inhibitors, β-adrenergic receptor agonists, xanthine derivatives, α-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, decongestants, NK₁, NK₂ and NK₃ tachykinin receptor antagonists, and GABA_B agonists; and a pharmaceutically

- 5 acceptable carrier.

1/4

FIG. 1

* $P \leq 0.05$ COMPARED TO CONTROLS USING AN ANOVA IN CONJUNCTION WITH A DUNETT'S T-TEST

FIG. 2A

FIG. 2B

4/4

FIG. 2C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/01853

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K31/445 A61K31/46 A61K45/06 A61P11/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 195 19 245 A (BOEHRINGER INGELHEIM KG) 17 October 1996 (1996-10-17) page 4, line 66; claims 1,10 claims 10,11 ---	1-3,11
Y		10,12
X	GB 1 052 302 A (NOT APPLICABLE) 21 December 1966 (1966-12-21) page 1, line 8 - line 10 page 2, line 15 claims 1,56 claims 56,61,62 ---	1-3,11
Y		10,12
Y	WO 98 52545 A (BARRETT DAVID MICHAEL ; JONES HUW LYN (GB); JONES IDWAL (GB); BOOTS) 26 November 1998 (1998-11-26) page 13; claim 1 ---	10,12
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

29 May 2000

Date of mailing of the international search report

06/06/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Brunnauer, H

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/01853

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 00 06545 A (SCHERING CORPORATION US) 10 February 2000 (2000-02-10) claims 1-15 -----	1-12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 00/01853

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
DE 19519245 A	17-10-1996	AU	706209 B	10-06-1999
		AU	5687496 A	30-10-1996
		BG	62138 B	31-03-1999
		BG	101947 A	29-05-1998
		BR	9604821 A	09-06-1998
		CA	2218096 A	17-10-1996
		CZ	9703257 A	17-06-1998
		WO	9632386 A	17-10-1996
		EP	0824530 A	25-02-1998
		HR	960168 A	31-08-1997
		HU	9802270 A	28-09-1999
		JP	11503441 T	26-03-1999
		NO	974734 A	13-10-1997
		PL	322768 A	16-02-1998
		SK	138797 A	04-03-1998
		US	5710155 A	20-01-1998
		US	5861509 A	19-01-1999
		ZA	9602916 A	14-10-1996
GB 1052302 A		CH	436290 A	
		CH	436293 A	
		FR	3846 M	
		FR	1555457 A	31-01-1969
		US	3311624 A	28-03-1967
WO 9852545 A	26-11-1998	AU	7916798 A	11-12-1998
WO 0006545 A	10-02-2000	NONE		