Лабораторная работа № 3 по курсу «Численные методы» «Решение нелинейных уравнений» 1

Рассматривается нелинейное уравнение вида f(x) = 0.

Известно, что $x \in R$, f(x) — определена и непрерывна на некотором отрезке [a,b].

Отрезок [a, b], содержащий корень нелинейного уравнения, называется *отрезком изоляции кор*ня. Будем считать, что уравнение имеет только *изолированные корни* (для каждого корня существует некоторая окрестность, не содержащая других корней).

Значение $x^* \in [a, b]$ называется корнем нелинейного уравнения или нулем функции f(x), если $f(x^*) = 0$.

Алгоритмы решения нелинейного уравнения

Метод дихотомии

- 1. Определить отрезок изоляции корня [a, b];
- 2. Задать величину допустимой погрешности ε ;
- 3. Пока длина отрезка изоляции |b-a| не станет меньше, чем 2ε :
 - 3.1 Вычислить середину отрезка [a, b] по формуле: $c = \frac{a+b}{2}$;
 - 3.2 Если $f(a) \cdot f(c) < 0$, то b = c; если $f(a) \cdot f(c) > 0$, то a = c; иначе a = b (решение найдено, когда отрезок «схлопнулся»).
- 4. Приближенное значение корня $x^* = c$.

Метод хорд

- 1. Определить отрезок изоляции корня [a, b];
- 2. Задать начальные значения $x_0 = a, x_1 = b;$
- 3. Задать величину допустимой погрешности ε ;
- 4. Вычислить $x_2 = x_1 \frac{f(x_1) \cdot (x_1 x_0)}{f(x_1) f(x_0)};$
- 5. Пока величина $|f(x_2)|$ не станет меньше, чем ε :
 - 5.1 Пересчитать x_0, x_1 по формулам: если $f(x_0) \cdot f(x_2) < 0$, то $x_1 = x_2$, иначе $x_0 = x_2$;
 - 5.2 Пересчитать x_2 по формуле из п. 4;
- 6. Приближенное значение корня $x^* = x_2$.

 $^{^{1}}$ Разработано А. М. Филимоновой, каф. ВМиМФ ИММиКН ЮФУ

Метод секущих

- 1. Определить отрезок изоляции корня [a, b];
- 2. Задать начальные значения $x_0, x_1 \in [a, b]$
- 3. Задать величину допустимой погрешности ε ;
- 4. Вычислить $x_2 = x_1 \frac{f(x_1) \cdot (x_1 x_0)}{f(x_1) f(x_0)};$
- 5. Пока величина $|x_2-x_1|$ не станет меньше, чем ε :
 - 5.1 Пересчитать x_0, x_1 по формулам: $x_0 = x_1, x_1 = x_2$;
 - 5.2 Пересчитать x_2 по формуле из п. 4;
- 6. Приближенное значение корня $x^* = x_2$.

Метод Ньютона

- 1. Определить отрезок изоляции корня [a, b];
- 2. Задать начальное значение $x_0 \in [a, b]$
- 3. Задать величину допустимой погрешности ε ;
- 4. Вычислить начальное приближение x_0 : если $f'(a) \cdot f(x_0) > 0$, то $x_0 = a$, иначе $x_0 = b$;

2

- 5. Вычислить $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$;
- 6. Пока величина $|x_1-x_0|$ не станет меньше, чем ε :
 - 6.1 Пересчитать x_0 по формуле: $x_0 = x_1$;
 - 6.2 Пересчитать x_1 по формуле из п. 5;
- 7. Приближенное значение корня $x^* = x_1$.

Метод простой итерации

- 1. Определить отрезок изоляции корня [a, b];
- 2. Задать начальные значения $x_0 \in [a, b]$
- 3. Определить итерационную форму $\varphi(x)$;
- 4. Проверить условие $|\varphi'(x)| \le q < 1$ и задать константу q;
- 5. Вычислить первое приближение по формуле: $x_1 = \varphi(x_0)$;
- 6. Пока величина $|x_1 x_0|$ не станет меньше, чем $\frac{1-q}{q} \cdot \varepsilon$:

- 6.1 Пересчитать x_0 по формуле: $x_0 = x_1$;
- 6.2 Пересчитать x_1 по формуле из п. 5.
- 7. Приближенное значение корня $x^* = x_1$.

Метод Ньютона решения системы нелинейных уравнений

Рассматривается система двух нелинейных уравнений вида:

$$\begin{cases}
f(x,y) = 0, \\
g(x,y) = 0.
\end{cases}$$
(1)

Перепишем левую и правую части системы (1) в матричном виде:

$$F = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Итерационная формула метода Ньютона для такой система может быть записана как:

$$X^{n+1} = X^n - J^{-1}(X^n) \cdot F(X^n),$$

где n — номер итерации, J — матрица Якоби системы (1):

$$J = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}, \qquad J_{ij} = \left\{ \frac{\partial F_i}{\partial X_j} \right\}_{i,j=1,2}, \qquad J^{-1} = \frac{1}{|J|} J^*.$$

 J^* — присоединённая матрица, каждый элемент которой равен $J^*_{ij} = (-1)^{i+j} \cdot M_{ij}$, где M_{ij} — алгебраическое дополнение элемента J_{ij} .

Будем считать, что решение найдено, когда выполнится условие:

$$||X^{n+1} - X^n|| \leqslant \varepsilon,$$

 ε — некоторая заданная точность вычислений; $\|a-b\| = \sqrt{\sum\limits_{i=1}^n (a_i-b_i)^2}.$

Порядок выполнения лабораторной работы

Лабораторная работа 3 состоит из пяти заданий. Задания 1, 2 и 3 выполняются на компьютере. Задания 4 и 5 выполняются письменно как самостоятельная работа.

Индивидуальные задания для выполнения лабораторной работы (уравнение, метод решения и величина допустимой погрешности) находятся в файле Варианты к лабораторной работе 3.

Лабораторная работа

Задание 1.

Решить нелинейное уравнение указанным методом с указанной точностью ε . Вычислить количество итераций. Полученный результат сравнить с точным решением, полученным с использованием встроенных функций (вычислить абсолютную погрешность).

<u>Указания:</u> Нарисовать график функции f(x). Оформить метод решения в виде функции, принимающей на вход a, b, f(x) и возвращающей в качестве ответа значение x^* . Оформить вычисление точного решения в виде функции.

Задание 2.

Решить нелинейное уравнение указанным методом с указанной точностью ε . Вычислить количество итераций. Полученный результат сравнить с точным решением, полученным с использованием встроенных функций (вычислить абсолютную погрешность).

<u>Указания:</u> Нарисовать график функции f(x). Оформить метод решения в виде функции, принимающей на вход a, b, f(x) и возвращающей в качестве ответа значение x^* . Оформить вычисление точного решения в виде функции.

Задание 3.

Решить нелинейное уравнение **методом простой итерации** с указанной точностью ε . Вычислить количество итераций. Полученный результат сравнить с точным решением, полученным с использованием встроенных функций (вычислить абсолютную погрешность).

<u>Указания:</u> Нарисовать график функции f(x). Оформить метод решения в виде функции, принимающей на вход $a, b, \varphi(x)$ и возвращающей в качестве ответа значение x^* . Оформить вычисление точного решения в виде функции.

Самостоятельная работа

Задание 4.

Решить нелинейное уравнение указанным методом с указанной точностью ε .

Задание 5.

Решить систему нелинейных уравнений методом Ньютона с указанной точностью ε для указанного начального приближения (x_0, y_0) .