



## SEQUENCE LISTING

### (1) GENERAL INFORMATION

- (i) APPLICANT: Neuhold, Lisa  
Killar, Loran
- (ii) TITLE OF THE INVENTION: TRANSGENIC ANIMAL MODEL FOR  
DEGENERATIVE DISEASES OF CARTILAGE
- (iii) NUMBER OF SEQUENCES: 21
- (iv) CORRESPONDENCE ADDRESS:  
(A) ADDRESSEE: Darby & Darby PC  
(B) STREET: 805 Third Avenue  
(C) CITY: New York  
(D) STATE: NY  
(E) COUNTRY: USA  
(F) ZIP: 10022
- (v) COMPUTER READABLE FORM:  
(A) MEDIUM TYPE: Diskette  
(B) COMPUTER: IBM Compatible  
(C) OPERATING SYSTEM: DOS  
(D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:  
(A) APPLICATION NUMBER: 08/994,689  
(B) FILING DATE: 1997-12-19  
(C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:  
(A) APPLICATION NUMBER:  
(B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:  
(A) NAME: Green, Reza  
(B) REGISTRATION NUMBER: 38,475  
(C) REFERENCE/DOCKET NUMBER: 0630/0D532
- (ix) TELECOMMUNICATION INFORMATION:  
(A) TELEPHONE: 212-527-7700  
(B) TELEFAX: 212-753-6237  
(C) TELEX: 236687

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met His Pro Gly Val Leu Ala Ala Phe Leu Phe Leu Ser Trp Thr His  
1 5 10 15  
Cys Arg Ala Leu Pro Leu Pro Ser Gly Gly Asp Glu Asp Asp Leu Ser  
20 25 30  
Glu Glu Asp Leu Gln Phe Ala Glu Arg Tyr Leu Arg Ser Tyr Tyr His  
35 40 45  
Pro Thr Asn Leu Ala Gly Ile Leu Lys Glu Asn Ala Ala Ser Ser Met  
50 55 60  
Thr Glu Arg Leu Arg Glu Met Gln Ser Phe Phe Gly Leu Glu Val Thr  
65 70 75 80  
Gly Lys Leu Asp Asp Asn Thr Leu Asp Val Met Lys Lys Pro Arg Cys  
85 90 95  
Gly Val Val Asp Val Gly Glu Tyr Asn Val Phe Pro Arg Thr Leu Lys  
100 105 110  
Trp Ser Lys Met Asn Leu Thr Tyr Arg Ile Val Asn Tyr Thr Pro Asp  
115 120 125  
Met Thr His Ser Glu Val Glu Lys Ala Phe Lys Lys Ala Phe Lys Val  
130 135 140  
Trp Ser Asp Val Thr Pro Leu Asn Phe Thr Arg Leu His Asp Gly Ile  
145 150 155 160  
Ala Asp Ile Met Ile Ser Phe Gly Ile Lys Glu His Gly Asp Phe Tyr  
165 170 175  
Pro Phe Asp Gly Pro Ser Gly Leu Leu Ala His Ala Phe Pro Pro Gly  
180 185 190  
Pro Asn Tyr Gly Gly Asp Ala His Phe Asp Asp Asp Glu Thr Trp Thr  
195 200 205  
Ser Ser Ser Lys Gly Tyr Asn Leu Phe Leu Val Ala Ala His Glu Phe  
210 215 220  
Gly His Ser Leu Gly Leu Asp His Ser Lys Asp Pro Gly Ala Leu Met  
225 230 235 240  
Phe Pro Ile Tyr Thr Tyr Thr Gly Lys Ser His Phe Met Leu Pro Asp  
245 250 255  
Asp Asp Val Gln Gly Ile Gln Ser Leu Tyr Gly Pro Gly Asp Glu Asp

| 260 | 265 | 270 |
|-----|-----|-----|
| Pro | Asn | Pro |
| Lys | His | Pro |
| 275 | 280 | 285 |
| Ser | Leu | Asp |
| Ala | Ile | Thr |
| 290 | 295 | 300 |
| Asp | Arg | Phe |
| Phe | Trp | Arg |
| 305 | 310 | 315 |
| 320 | 325 | 330 |
| 335 | 340 | 345 |
| 350 | 355 | 360 |
| 365 | 370 | 375 |
| 380 | 385 | 390 |
| 395 | 400 | 405 |
| 410 | 415 | 420 |
| 425 | 430 | 435 |
| 440 | 445 | 450 |
| 455 | 460 | 465 |
| 470 |     |     |

His Pro Lys Thr Pro Asp Lys Cys Asp Pro Ser Leu  
 Arg Gly Glu Thr Met Ile Phe Lys  
 His Pro Gln Gln Val Asp Ala Glu Leu  
 Pro Asn Arg Ile Asp Ala  
 Asp Leu Thr Lys Ser Phe Trp Pro Glu Leu Pro Asn Arg Ile Asp Ala  
 His Pro Ser His Asp Leu Ile Phe Ile Phe Arg Gly Arg  
 Tyr Glu Leu Asn Gly Tyr Asp Ile Leu Glu Gly Tyr Pro Lys  
 Ala Tyr Glu His Pro Ser His Asp Leu Ile Phe Ile Phe Arg Gly Arg  
 Lys Phe Trp Ala Leu Asn Gly Tyr Asp Ile Leu Glu Gly Tyr Pro Lys  
 Lys Ile Ser Glu Leu Gly Leu Pro Lys Glu Val Lys Lys Ile Ser Ala  
 Ala Val His Phe Glu Asp Thr Gly Lys Thr Leu Leu Phe Ser Gly Asn  
 Gln Val Trp Arg Tyr Asp Asp Thr Asn His Ile Met Asp Lys Asp Tyr  
 Pro Arg Leu Ile Glu Glu Asp Phe Pro Gly Ile Gly Asp Lys Val Asp  
 Ala Val Tyr Glu Lys Asn Gly Tyr Ile Tyr Phe Phe Asn Gly Pro Ile  
 Gln Phe Glu Tyr Ser Ile Trp Ser Asn Arg Ile Val Arg Val Met Pro  
 Ala Asn Ser Ile Leu Trp Cys

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 470 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

|            |             |            |            |            |            |     |
|------------|-------------|------------|------------|------------|------------|-----|
| CTCGAGTTA  | CCACTCCCTA  | TCAGTGATAG | AGAAAAGTGA | AAGTCGAGTT | TACCACTCCC | 60  |
| TATCAGTGAT | AGAGAAAAGT  | GAAAGTCGAG | TTTACCACTC | CCTATCAGTG | ATAGAGAAAA | 120 |
| GTGAAAGTCG | AGTTTACCATC | TCCCTATCAG | TGATAGAGAA | AAGTGAAAGT | CGAGTTTACC | 180 |
| ACTCCCTATC | AGTGATAGAG  | AAAAGTGAAA | GTCGAGTTA  | CCACTCCCTA | TCAGTGATAG | 240 |
| AGAAAAGTGA | AAGTCGAGTT  | TACCACTCCC | TATCAGTGAT | AGAGAAAAGT | GAAAGTCGAG | 300 |
| CTCGGTACCC | GGGTCGAGTA  | GGCGTGTACG | GTGGGAGGCC | TATATAAGCA | GAGCTCGTT  | 360 |
| AGTGAACCGT | CAGATCGCCT  | GGAGACGCCA | TCCACGCTGT | TTTGACCTCC | ATAGAAGACA | 420 |

CCGGGACCGA TCCAGCCTCC GCGGCCCGA ATTAGCTTGA TATCGAATT

470

## (2) INFORMATION FOR SEQ ID NO:3:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3479 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

|            |            |            |             |            |             |      |
|------------|------------|------------|-------------|------------|-------------|------|
| GGTACCACTA | GTAAGCTTAG | ATCCACTGTC | TGGGATTATA  | TCAGGACAAC | CGAACGCCTGG | 60   |
| AAAGTGTATT | AGGTAGAGCA | TTTCTTCCA  | CGTGTGGG    | CACGTTCCG  | ACAGCTAGGA  | 120  |
| TTCCAGCTCT | GTCTTGTAT  | GTTACAGACT | GTAAATCAAT  | CGCAGGTGAA | ACTGTTGGA   | 180  |
| CAGTAGGTGG | GGATCAAAGA | CCCTCCGCC  | GTGAGACTCT  | AGGCCTTTC  | CCCTGCCACC  | 240  |
| AGCCTGTCTC | CAGAGATGCT | CTGGAAGGAG | GCAGGGCCCGG | GCAGGTCTTC | TGCTCTTAG   | 300  |
| CGTGGCGGAC | GCGCGGGCGG | GGCAGGGCT  | GGAGCAGAGA  | GCGCTGCAGT | GATAGAACTT  | 360  |
| TCTGACCCCC | CTGCGCAGGG | CGGCAGGGTG | GCAGGGTGGC  | AGGGTGGCGA | GCTAAGCCAG  | 420  |
| AGCCGAACGC | TGGAGCTCTG | GGAGGAACAT | CGAAGGTTTG  | TATGTGGTCT | GAGATCGGCC  | 480  |
| TGACTATATT | TTTTTGTCTT | AAATTTGCAA | GCACACACCC  | ACAAAGCTGC | GGTCTTGACC  | 540  |
| GGTATTCTTT | ATAGAGCGCA | ATGGAGTGAG | CTGAGTGTCT  | AAACGATTTC | CCTAATTCTAT | 600  |
| CTGATAGCAG | AGGCGCTCTC | CTAATTGGCG | AAGAGCTGCC  | TCATGTCCGC | AACTTTTGG   | 660  |
| CAGAGTGAAT | TCCACAGCTT | TGTGTGTGTG | TGTGGGGGGG  | GGTGTAAAGG | GTGTCTAAAA  | 720  |
| CTTCGGTCT  | CCTACTATTC | TGTATCTCGA | CCGGTTGGTT  | TTACACCCCG | GCTCATCTCA  | 780  |
| TCAACGCAA  | CACCCCCACT | CTCCTATGGA | CCCAAGGACC  | TGACGTGGGG | GAAGGGGAC   | 840  |
| ATTAGGAATG | TCAGAAACCT | AGAGTCCACG | CTCCTCCTCT  | CCATCTTCC  | ACGAGTTGG   | 900  |
| GAAACTCTT  | GGCTGCGAAG | ACTTGACCC  | ACATCTGCAT  | TTCTCAGCCC | CAGCTCCAA   | 960  |
| AAGTGCTGCA | GGTCGGGAG  | GGGAGACCTC | AGTCCTCCTT  | TGTGAGGCTT | GTTCGCGTTG  | 1020 |
| AGGGATTGGC | AGCGATGGCT | TCCAGATGGG | CTGAAACCCCT | GCCCGTATT  | ATTTAAACTG  | 1080 |
| GTTCCTCGTG | GAGAGCTGTG | AATCGGGCTC | TGTATGCGCT  | CGAGAAAAGC | CCCATTCTATG | 1140 |
| AGAGGCAAGG | CCCAGTGGGT | CCCCCGACT  | CCCCGACCC   | CCTCTCCCAC | AATATATCCC  | 1200 |
| CCCTCCCTGT | GCCCCCCTGC | CGCCACCTCC | CGGGCTCCGG  | CCCCCGCGCG | AGCGGCGACG  | 1260 |
| AAGCAACACA | GTTCCCCGAA | AGAGGTAGCT | TTTAATTGG   | CCAGCCACAA | AGAATCACTT  | 1320 |
| ATGCCGCACG | GCGGTAACGA | GGGAAACCGG | ATCGGGCGGC  | CAGGATGCTA | TCTGTGTAGC  | 1380 |
| CCTTTCTGT  | CCACAATTAG | GGTGGTGCTG | GCTTCCTCCG  | ACCGCACCTA | GGCGATCTGG  | 1440 |
| TTACACTGTT | GGCTCCTTC  | TTGGGCAGTC | ATTTAACCT   | ACTTTTACT  | CTACGAATGT  | 1500 |
| CTGTCTGATG | GAGGGCTGTG | TCCGGAGCCC | CATCCACAAA  | GAGTCAGCCA | GCAGCTCTCA  | 1560 |
| CACCCGGCTG | GATCTCATAT | GGTGCACTCT | CAGTACAATC  | TGCTCTGATG | CCGCATAGTT  | 1620 |
| AAGCCAGCCA | AGCTAGCTT  | CGCAAGCTAG | CTTGCAGATCC | GTAAAAATGT | GTGAGAGTTA  | 1680 |
| CAAAATGTCT | TCCGGGCTAA | GATCCGACAG | CCATGGTCCA  | AAGAAGACTT | CGGCACTGCA  | 1740 |
| GACTTAAAC  | CAGCTTCTA  | GCAGAGGCAG | AAGGATCTAG  | AGCCAAAGGC | AAAGACTTGA  | 1800 |
| ATAGGCTGGG | AAGATGCAAG | AATGGCATTT | TACATAAAGA  | ACACTCTCTC | CTTTTCCAGC  | 1860 |
| CAGCACACCT | GCATAGAAAT | TAAGTTTAC  | ACTTGAAGTT  | CTTGTGTTCC | ATCCTGAGAA  | 1920 |
| GCTCCAAAGT | CTGAGGTGGT | GTGGTATGCT | GGGTAAATTCT | CCCCACCCCC | CAACATTCCC  | 1980 |

|            |            |             |             |             |             |      |
|------------|------------|-------------|-------------|-------------|-------------|------|
| TGGGGGTTCC | ATGGGGTAG  | CTTCTCCAA   | GGACTTCAG   | CGGCAACACA  | GAAATCCCAC  | 2040 |
| TTCGAGACAA | AGGAGTTACT | GCTTAAATCA  | GGCCCTAATT  | TCCAAGGTTC  | CCTTGCTTA   | 2100 |
| AAGTTCCCTA | GAGGACCATC | TCACTTCTAA  | AGAAAAGGTG  | TATTCGGGGA  | CCCATCCTCA  | 2160 |
| ACCTCCTTGT | TATGGAAGGA | GACTTCGGGA  | ACAGAGCAAG  | GGCTGAGCCT  | CGGGCAGTTT  | 2220 |
| GGGGTAAGGT | TGGGGTTGGG | GGGAGCAAGG  | AAGGCAAGTG  | AGGCTGGAGG  | CCCAGGGATA  | 2280 |
| GGGGAAGATG | TGTGTGTGTG | TGTGTGTGTG  | TGTGTGTGTG  | TGTGTGTGTC  | TCGGGGATGG  | 2340 |
| TGGTGGTGGA | CAACTAGGAA | ACTCTGGCGC  | TTTCTCCTCC  | CCTCACAAAA  | CTGAGTCCAG  | 2400 |
| CTGGAGCCGC | CTCCAGACTC | TCTGGCCAGG  | GCCTCAGAGT  | GGTCAACAGT  | CCCTGGCCAG  | 2460 |
| CGTTGCTCTC | TCCAGGCTAA | GGGCACCCAC  | TCCCCCTGGAG | ATTCTGAAC   | CTGGGCCAGG  | 2520 |
| AAGAGCCGAA | TTAGACAAGT | GTCTCCAATC  | CGGCTGCGTG  | CGGATTTGT   | TGCGGTGTCC  | 2580 |
| CTCGGTTGTC | TGCAGTTCT  | TTAGTCCCTT  | CCCTGGCCTG  | CCCCTTACAC  | CTCCACACAG  | 2640 |
| GTCCCCCTCT | GTGTAGGAAT | ACACCAAGACC | CTCTCTTAGC  | CACACACACC  | TCCAGTCCCC  | 2700 |
| CGTCTACCTA | GATTTTTTC  | ATAGCTAGTT  | GGATGGGGGA  | TGGGTTAGGG  | AGGCTGGGTT  | 2760 |
| TGCGAGCCTC | CAGGTGGGAG | TTCACCGACA  | GGTACTCCGC  | AAAGGAGCTG  | GAAGGCAGGT  | 2820 |
| CTGGAAAAC  | GTCCCCCAGA | TTTAGGATT   | TGGGCAGCTT  | CCATCAGCTT  | ATACTTTGGC  | 2880 |
| TCCCCCGCCC | CCTAAACTCC | CCATCCCCAC  | CTTCCTTCT   | CCC GTTACTT | CGTCCTCCCT  | 2940 |
| CGCCTTTCCA | GCCTTGAGTC | TAAAGCTCCA  | TGCTTATGCC  | TCTGCAAACA  | ACCCCCCTCCC | 3000 |
| TTCTAACCCC | AGCAGAACTC | CGAGGAAAGG  | GGCCGGAGGC  | CCCCCTTCTC  | GCCTGTGGTT  | 3060 |
| AGAGGGGGCA | GTGTGGCAGT | CCCAAGTGGG  | GGCGACCGGA  | GGCCGTCTCG  | GTGCCCGGCC  | 3120 |
| CGATCAGGCC | ACTGGGCACA | TCGGGGCGG   | GAAGCTGGGC  | TCACCAAAGG  | GGCGACTGGC  | 3180 |
| CTTGGCAGGT | GTGGGCTCTG | GTCCGGCCTG  | GGCAGGCTCC  | GGGGCGGGGG  | TCTCAGGTTA  | 3240 |
| CAGCCCCGCG | GGGGGCTGGG | GGCGGGCCCG  | CGGTTTGGGC  | TGGTTTGCCA  | GCCTTGAGG   | 3300 |
| CGACCGGGAG | CATATAACCG | GAGCCTCTGC  | TGGGAGAAGA  | CGCAGAGCGC  | CGCTGGGCTG  | 3360 |
| CCGGGTCTCC | TGCCTCCTCC | TCCTGCTCCT  | AGAGCCTCCT  | GCATGAGGGC  | GCGGTAGAGA  | 3420 |
| CCCGGACCCG | CTCCGTGCTC | TGCCGCCTCG  | CCGAGCTTCG  | CCCGCAAGCT  | GGGAAATT    | 3479 |

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Pro Arg Cys Gly Val Pro Asp Val  
1 5

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAGCCAAGAT GCGGGGTTGT CGATGTGGGT GAATACAAT

39

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAAAAAAGCCA AGATGCGGGG GTCCTGATGT GGGTGAATAC

40

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 98 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGTACCACTA GTAAGCTTAG ATCTCATATG GTCGACCCCG GGGATTCCCT GCAGGGATCC  
TCTAGAAGTA CTCCATGGGT ATACATCGAT GCGGCCGC

60

98

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2792 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

|             |             |             |            |            |            |      |
|-------------|-------------|-------------|------------|------------|------------|------|
| CTCGAGTTA   | CCACTCCCTA  | TCAGTGATAG  | AGAAAAGTGA | AAGTCGAGTT | TACCACTCCC | 60   |
| TATCAGTGAT  | AGAGAAAAGT  | GAAAGTCGAG  | TTTACCACTC | CCTATCAGTG | ATAGAGAAAA | 120  |
| GTGAAAGTCG  | AGTTTACCCAC | TCCCTATCAG  | TGATAGAGAA | AAGTGAAGT  | CGAGTTTACC | 180  |
| ACTCCCTATC  | AGTGATAGAG  | AAAAGTGAAGA | GTCGAGTTA  | CCACTCCCTA | TCAGTGATAG | 240  |
| AGAAAAGTGA  | AAGTCGAGTT  | TACCACTCCC  | TATCAGTGAT | AGAGAAAAGT | GAAAGTCGAG | 300  |
| CTCGGTACCC  | GGGTCGAGTA  | GGCGTGTACG  | GTGGGAGGCC | TATATAAGCA | GAGCTCGTT  | 360  |
| AGTGAACCGT  | CAGATCGCCT  | GGAGACGCCA  | TCCACGCTGT | TTTGACCTCC | ATAGAAGACA | 420  |
| CCGGGACCGA  | TCCAGCCTCC  | CGGGCCCCGA  | ATTAGCTTGA | TATCGAATT  | GAGCTCGGTA | 480  |
| CCCGGGGATC  | CTCTAGACAA  | GATGCATCCA  | GGGGTCCTGG | CTGCCTTCCT | CTTCTTGAGC | 540  |
| TGGACTCATT  | GTCGGGCCT   | GCCCCTTCCC  | AGTGGTGGTG | ATGAAGATGA | TTTGTCTGAG | 600  |
| GAAGACCTCC  | AGTTTGAGA   | GCGCTACCTG  | AGATCATACT | ACCATCCTAC | AAATCTCGCG | 660  |
| GGAATCCTGA  | AGGAGAATGC  | AGCAAGCTCC  | ATGACTGAGA | GGCTCCGAGA | AATGCAGTCT | 720  |
| TTCTTCGGCT  | TAGAGGTGAC  | TGGCAAACCTT | GACGATAACA | CCTTAGATGT | CATGAAAAG  | 780  |
| CCAAGATGCG  | GGGTTGTCGA  | TGTGGGTGAA  | TACAATGTTT | TCCCTCGAAC | TCTTAAATGG | 840  |
| TCCAAAATGA  | ATTTAACCTA  | CAGAATTGTG  | AATTACACCC | CTGATATGAC | TCATTCTGAA | 900  |
| GTCGAAAAGG  | CATTCAAAAA  | AGCCTTCAAA  | GTTTGGTCCG | ATGTAACTCC | TCTGAATT   | 960  |
| ACCAAGACTTC | ACGATGGCAT  | TGCTGACATC  | ATGATCTCTT | TTGGAATTAA | GGAGCATGGC | 1020 |
| GACTTCTACC  | CATTGATGG   | GCCCTCTGGC  | CTGCTGGCTC | ATGCTTTCC  | TCCTGGGCCA | 1080 |
| AATTATGGAG  | GAGATGCCA   | TTTGATGAT   | GATGAAACCT | GGACAAGTAG | TTCCAAAGGC | 1140 |
| TACAACTTGT  | TTCTTGTTC   | TGCGCATGAG  | TTCGGCCACT | CCTTAGGTCT | TGACCACTCC | 1200 |
| AAGGACCCCTG | GAGCACTCAT  | GTTTCCTATC  | TACACCTACA | CCGGCAAAAG | CCACTTTATG | 1260 |
| CTTCCTGATG  | ACGATGTACA  | AGGGATCCAG  | TCTCTCTATG | GTCCAGGAGA | TGAAGACCCC | 1320 |
| AACCCTAAAC  | ATCCAAAAAC  | GCCAGACAAA  | TGTGACCCTT | CCTTATCCCT | TGATGCCATT | 1380 |
| ACCAAGTCTCC | GAGGAGAAC   | AATGATCTT   | AAAGACAGAT | TCTTCTGGCG | CCTGCATCCT | 1440 |
| CAGCAGGTTG  | ATGCGGAGCT  | GTTTTAACG   | AAATCATT   | GGCCAGAACT | TCCCAACCCT | 1500 |
| ATTGATGCTG  | CATATGAGCA  | CCCTTCTCAT  | GACCTCATCT | TCATCTTCAG | AGGTAGAAA  | 1560 |
| TTTTGGGCTC  | TTAATGGTTA  | TGACATTCTG  | GAAGGTTATC | CCAAAAAAAT | ATCTGAAC   | 1620 |
| GGTCTTCCAA  | AAGAAGTTAA  | GAAGATAAGT  | GCAGCTGTT  | ACTTGAGGA  | TACAGGCAAG | 1680 |
| ACTCTCCTGT  | TCTCAGGAAA  | CCAGGTCTGG  | AGATATGATG | ATACTAACCA | TATTATGGAT | 1740 |
| AAAGACTATC  | CGAGACTAAT  | AGAAGAAGAC  | TTCCCAGGAA | TTGGTATAA  | AGTAGATGCT | 1800 |
| GTCTATGAGA  | AAAATGGTTA  | TATCTATT    | TTCAACGGAC | CCATACAGT  | TGAATACAGC | 1860 |
| ATCTGGAGTA  | ACCGTATTGT  | TCGCGTCATG  | CCAGCAAATT | CCATTGTTG  | GTGTTAAGTG | 1920 |
| TCTTTTAAA   | AATTGTTATT  | TAAATCCTGA  | AGAGCATTG  | GGGTAATACT | TCCAGAAGTG | 1980 |
| CGGGGTAGGG  | GAAGAAGAGC  | TATCAGGAGA  | AAGCTCTAGT | TCTAGAGGGC | CCTATTCTAT | 2040 |
| AGTGTCACCT  | AAATGCTAGA  | GGATCTTGT   | GAAGGAACCT | TACTTCTGTG | GTGTGACATA | 2100 |
| ATTGGACAAA  | CTACCTACAG  | AGATTTAAAG  | CTCTAAGGTA | AATATAAAAT | TTTTAAGTGT | 2160 |
| ATAATGTGTT  | AAACTACTGA  | TTCTAATTGT  | TTGTTGATT  | TGATTCCAA  | CCTATGGAAC | 2220 |
| TGATGAATGG  | GAGCAGTGGT  | GGAATGCCCT  | TAATGAGGAA | AACCTGTTT  | GCTCAGAAGA | 2280 |
| AATGCCATCT  | AGTGATGATG  | AGGCTACTGC  | TGACTCTCAA | CATTCTACTC | CTCCAAAAAA | 2340 |
| GAAGAGAAAG  | GTAGAAGAGCC | CCAAGGACTT  | TCCTTCAGAA | TTGCTAAGTT | TTTGAGTCA  | 2400 |
| TGCTGTGTTT  | AGTAATAGAA  | CTCTTGCTTG  | CTTGCTATT  | TACACCACAA | AGGAAAAAGC | 2460 |
| TGCACTGCTA  | TACAAGAAAA  | TTATGGAAA   | ATATTGATG  | TATAGTGCCT | TGACTAGAGA | 2520 |
| TCATAATCAG  | CCATACCACA  | TTTGTAGAGG  | TTTACTTGC  | TTTAAAAAAC | CTCCCACACC | 2580 |
| TCCCCCTGAA  | CCTGAAACAT  | AAAATGAATG  | CAATTGTTGT | TGTTAACTTG | TTTATTGCAG | 2640 |
| CTTATAATGG  | TTACAAATAA  | AGCAATAGCA  | TCACAAATT  | CACAAATAAA | GCATTTTTT  | 2700 |
| CACTGCATTC  | TAGTTGTGGT  | TTGTCCAAAC  | TCATCAATGT | ATCTTATCAT | GTCTGGATCA | 2760 |

TCCCGCCATG GGTATAACATC GATGCGGCCG CC

2792

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5276 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

|             |            |            |             |            |             |      |
|-------------|------------|------------|-------------|------------|-------------|------|
| GGTACCACTA  | GTAAGCTTAG | ATCCACTGTC | TGGGATTATA  | TCAGGACAAC | CGAACGCCTGG | 60   |
| AAAGTGTATT  | AGGTAGAGCA | TTTCTTCCA  | CGTGTGGGG   | CACGTTCCG  | ACAGCTAGGA  | 120  |
| TTCCAGCTCT  | GTCTTGAT   | GTACAGACT  | GTAAATCAAT  | CGCAGGTGAA | ACTGTTGGA   | 180  |
| CAGTAGGTGG  | GGATCAAAGA | CCCTCCGCC  | GTGAGACTCT  | AGGCCTTTC  | CCCTGCCACC  | 240  |
| AGCCTGTCTC  | CAGAGATGCT | CTGGAAGGAG | GCGGGCCCGG  | GCGGTCTTTC | TGCTCTTAG   | 300  |
| CGTGGCGGAC  | GGGGCGGCGG | GGCAGGGCT  | GGAGCAGAGA  | GCGCTGCAGT | GATAGAACTT  | 360  |
| TCTGACCCCCG | CTGCGCAGGG | CGGCAGGGTG | GCAGGGTGGC  | AGGGTGGCGA | GCTAAGCCAG  | 420  |
| AGCCGAACGC  | TGGAGCTCTG | GGAGGAACAT | CGAAGTGT    | GTATGTGGTC | TGAGATCGGC  | 480  |
| CTGACTATAT  | TTTTTGTC   | TAAATTGCA  | AGCACACACC  | CACAAAGCTG | CGGTCTTGAC  | 540  |
| CGGTATTCTT  | TATAGAGCGC | AATGGAGTGA | GCTGAGTGT   | TAAACGATT  | CCCTAATTCA  | 600  |
| TCTGATAGCA  | GAGGCCTCT  | CCTAATTGGC | GAAGAGCTGC  | CTCATGTCCG | CAACTTTTG   | 660  |
| GCAGAGTGAA  | TTCCACAGCT | TTGTGTGT   | GTGTGGGGGG  | GGGTGTAAGG | GGTGTCTAAA  | 720  |
| ACTTTCGGTC  | TCCTACTATT | CTGTATCTCG | ACCGGTTGGT  | TTTACACCCC | GGCTCATCTC  | 780  |
| ATCAACGCAA  | ACACCCCCAC | TCTCCTATGG | ACCCAAGGAC  | CTGACGTGGG | GGAAGGTGGA  | 840  |
| CATTAGGAAT  | GTCAGAAACC | TAGAGTCCAC | GCTCCCTCTC  | TCCATCTTTC | CACGAGTTTG  | 900  |
| GGAAACTTCT  | TGGCTGCCAA | GACTTGACC  | CACATCTGCA  | TTTCTCAGCC | CCAGCTTCCA  | 960  |
| AAAGTGTGC   | AGGTTCGGGA | GGGGAGACCT | CAGTCCTCCT  | TTGTGAGGCT | TGTTTGCCTT  | 1020 |
| GAGGGATTGG  | CAGCGATGGC | TTCCAGATGG | GCTGAAACCC  | TGCCCCTATT | TATTAAACT   | 1080 |
| GGTCCTCGT   | GGAGAGCTGT | GAATCGGGCT | CTGTATGCGC  | TCGAGAAAAG | CCCCATTCTAT | 1140 |
| GAGAGGCAAG  | GCCCAGTGGG | TCCCCCGAC  | TCCCCGACCC  | CCCTCTCCCA | CAATATATCC  | 1200 |
| CCCCCTCCCTG | TGCCCGCCTG | CCGCCACCTC | CCGGGCTCCG  | GCCCCGCGCG | CAGCGGCGAC  | 1260 |
| GAAGCAACAC  | AGTTCCCCGA | AAGAGGTAGC | TTTTAATTG   | GCCAGCCACA | AAGAATCACT  | 1320 |
| TATGCCGCAC  | GGCGGTAACG | AGGGGAACCG | GATCGGGCGG  | CCAGGATGCT | ATCTGTGTAG  | 1380 |
| CCCTTTCTGT  | GCCACAATTA | GGGTGGTGCT | GGCTTCCCTC  | GACCGCACCT | AGGCGATCTG  | 1440 |
| GTTACACTGT  | TGGCTCCTT  | CTTGGGCAGT | CATTTAATCC  | TACTTTTAC  | TCTACGAATG  | 1500 |
| TCTGTCTGAT  | GGAGGGCTGT | GTCCGGAGCC | CCATCCACAA  | AGAGTCAGCC | AGCAGCTCTC  | 1560 |
| ACACCCGGCT  | GGATCTCATA | TGGTGCACTC | TCAGTACAAT  | CTGCTCTGAT | GCCGCATAGT  | 1620 |
| TAAGCCAGCC  | AAGCTAGCTT | GCGCAAGCTA | GCTTGCATC   | CGTAAAAATG | TGTGAGAGTT  | 1680 |
| ACAAAATGTC  | TTCCGGGCTA | AGATCCGACA | GCCATGGTCC  | AAAGAAGACT | TCGGCACTGC  | 1740 |
| AGACTTAAAA  | CCAGCTTCT  | AGCAGAGGCA | GAAGGATCTA  | GAGCCAAAGG | CAAAGACTTG  | 1800 |
| AATAGGCTGG  | GAAGATGCAA | GAATGGCATT | TTACATAAAAG | AACACTCTCT | CCTTTCCAG   | 1860 |
| CCAGCACACT  | TGCATAGAAA | TTAAGTTTA  | CACTTGAAGT  | TCTTGTTC   | CATCCTGAGA  | 1920 |

|            |            |             |            |              |            |      |
|------------|------------|-------------|------------|--------------|------------|------|
| AGCTCCAAAG | TCTGAGGTGG | TGTGGTATGC  | TGGGTAATT  | TCCCCACCCC   | CCAACATTCC | 1980 |
| CTGGGGGTT  | CATGGGGTA  | GCTTCTCCC   | AGGACTTCCA | CGGGCAACAC   | AGAAATCCC  | 2040 |
| CTTCGAGACA | AAGGAGTTAC | TGCTTAAATC  | AGGCCCTAAT | TTCCAAGGTT   | CCCTTGCTT  | 2100 |
| AAAGTTCCCT | AGAGGACCAC | CTCACTTCTA  | AAGAAAAGGT | GTATTGGGG    | ACCCATCCTC | 2160 |
| AACCTCCTT  | TTATGGAAGG | AGACTTCGGG  | AACAGAGCAA | GGGCTGAGCC   | TCCGGCAGTT | 2220 |
| TGGGGTAAGG | TTGGGGTTGG | GGGGAGCAAG  | GAAGGCAAGT | GAGGCTGGAG   | GCCCAGGGAT | 2280 |
| AGGGGAAGAT | GTGTGTGTGT | GTGTGTGTGT  | GTGTGTGTGT | GTGTGTGTGT   | CTCGGGGATG | 2340 |
| GTGGTGGTGG | ACAACTAGGA | AACTCTGGCG  | CTTCTCCTC  | CCCTCACAAA   | ACTGAGTCCA | 2400 |
| GCTGGAGCCG | CCTCCAGACT | CTCTGGCCAG  | GGCCTCAGAG | TGGTCAACAG   | TCCCTGGCCA | 2460 |
| GCGTTGCTCT | CTCCAGGCTA | AGGGCACCCA  | CTCCCCTGGA | GATTCTGAA    | CCTGGGCCAG | 2520 |
| GAAGAGCCGA | ATTAGACAAG | TGTCTCCAAT  | CCGGCTGCGT | GC GGATT TTG | TTGCGGTGTC | 2580 |
| CCTCGGTTGT | CTGCAGTCC  | TTTAGTCCCT  | TCCCTGGCCT | GCCCCTTACA   | CCTCCACACA | 2640 |
| GGTCCCCCTC | TGTGTAGGAA | TACACCAGAC  | CCTCTCTTAG | CCACACACAC   | CTCCAGTCCC | 2700 |
| CCGTCTACCT | AGATTTTTT  | CATAGCTAGT  | TGGATGGGGG | ATGGGTTAGG   | GAGGCTGGGT | 2760 |
| TTGCGAGCCT | CCAGGTGGGA | GTTCACCGAC  | AGGTACTCCG | CAAAGGAGCT   | GGAAGGCAGG | 2820 |
| TCTGGAAAAC | TGTCCCCCAG | ATTAGGATT   | CTGGGCAGCT | TCCATCAGCT   | TATACTTTGG | 2880 |
| CTTCTAACCC | CAGCAGAACT | CCGAGGAAAG  | GGGCCGGAGG | CCCCCCTTCT   | CGCCTGTGGT | 3060 |
| TAGAGGGGGC | AGTGTGGCAG | TCCCAAGTGG  | GGGCGACCGG | AGGCCGTCTC   | GGTCCCCCGC | 3120 |
| CCGATCAGGC | CACTGGGCAC | ATCGGGGGCG  | GGAAGCTGGG | CTCACCAAAG   | GGGCGACTGG | 3180 |
| CCTTGGCAGG | TGTGGGCTCT | GGTCCGGCCT  | GGGCAGGCTC | CGGGGGCGGG   | GTCTCAGGTT | 3240 |
| ACAGCCCCGC | GGGGGGCTGG | GGGGCGGCC   | GCGGTTGGG  | CTGGTTTGCC   | AGCCTTTGGA | 3300 |
| GCGACCGGGA | GCATATAACC | GGAGCCTCTG  | CTGGGAGAAG | ACGCAGAGCG   | CCGCTGGGCT | 3360 |
| GCCGGGTCTC | CTGCCTCCTC | CTCCTGCTCC  | TAGAGCCTCC | TGCATGAGGG   | CGCGGTAGAG | 3420 |
| ACCCGGACCC | GCTCCGTGCT | CTGCCGCCTC  | GCCGAGCTTC | GCCCAGCAAGC  | TGGGAATT   | 3480 |
| ATATGTCTAG | ATTAGATAAA | AGTAAAGTGA  | TTAACAGCGC | ATTAGAGCTG   | CTTAATGAGG | 3540 |
| TCGGAATCGA | AGGTTAACCA | ACCCGTAAAC  | TCGCCAGAA  | GCTAGGTGTA   | GAGCAGCCTA | 3600 |
| CATTGTATTG | GCATGTAAAA | AATAAGCGGG  | CTTGCTCGA  | CGCCTTAGCC   | ATTGAGATGT | 3660 |
| TAGATAGGCA | CCATACTCAC | TTTGCCCTT   | TAGAAGGGGA | AAGCTGGCAA   | GATTTTTAC  | 3720 |
| GTAATAACGC | TAAGGTTTT  | AGATGTGCTT  | TACTAAGTCA | TCGCGATGGA   | GCAAAAGTAC | 3780 |
| ATTTAGGTAC | ACGGCCTACA | GAAAAAACAGT | ATGAAACTCT | CGAAAATCAA   | TTAGCCTTTT | 3840 |
| TATGCCAAC  | AGGTTTTCA  | CTAGAGAATG  | CATTATATGC | ACTCAGCGCT   | GTGGGCATT  | 3900 |
| TTACTTTAGG | TTGCGTATTG | GAAGATCAAG  | AGCATCAAGT | CGCTAAAGAA   | GAAAGGGAAA | 3960 |
| CACCTACTAC | TGATAGTATG | CCGCCATTAT  | TACGACAAGC | TATCGAATT    | TTTGATCACC | 4020 |
| AAGGTGCAGA | GCCAGCCTC  | TTATTCGGCC  | TTGAATTGAT | CATATCGGGA   | TTAGAAAAAC | 4080 |
| AACTTAAATG | TGAAAGTGGG | TCCCGTACA   | GCCGCGCGCG | TACGAAAAAC   | AATTACGGGT | 4140 |
| CTACCATCGA | GGGCCTGCTC | GATCTCCCGG  | ACGACGACGC | CCCCGAAGAG   | GCGGGGCTGG | 4200 |
| CGGCTCCCGC | CCTGTCTTT  | CTCCCCGCGG  | GACACACGCG | CAGACTGTCG   | ACGGCCCCCC | 4260 |
| CGACCGATGT | CAGCCTGGGG | GACGAGCTCC  | ACTTAGACGG | CGAGGACGTG   | GCGATGGCGC | 4320 |
| ATGCCGACGC | GCTAGACGAT | TTCGATCTGG  | ACATGTTGGG | GGACGGGGAT   | TCCCCGGGTC | 4380 |
| CGGGATTTAC | CCCCCACGAC | TCCGCCCCCT  | ACGGCGCTCT | GGATATGGCC   | GACTTCGAGT | 4440 |
| TTGAGCAGAT | GTTCACCGAT | GCCCTTGGAA  | TTGACGAGTA | CGGTGGGTAG   | GGGGCGCGAG | 4500 |
| GATCCTCTAG | AGGGCCCTAT | TCTATAGTGT  | CACCTAAATG | CTAGAGGATC   | TTTGTGAAGG | 4560 |
| AACCTTACTT | CTGTGGTGTG | ACATAATTGG  | ACAAACTACC | TACAGAGATT   | TAAAGCTCTA | 4620 |
| AGGTAAATAT | AAAATTTTA  | AGTGTATAAT  | GTGTTAAACT | ACTGATTCTA   | ATTGTTGTG  | 4680 |

|            |             |             |            |            |            |      |
|------------|-------------|-------------|------------|------------|------------|------|
| TATTTAGAT  | TCCAACCTAT  | GGAACGTGATG | AATGGGAGCA | GTGGTGAAT  | GCCTTAATG  | 4740 |
| AGGAAACCT  | GTTCCTGCTCA | GAAGAAATGC  | CATCTAGTGA | TGATGAGGCT | ACTGCTGACT | 4800 |
| CTCAACATTC | TACTCCTCCA  | AAAAAGAAGA  | GAAAGGTAGA | AGACCCCAAG | GACTTCCCTT | 4860 |
| CAGAATTGCT | AAGTTTTTG   | AGTCATGCTG  | TGTTTAGTAA | TAGAACTCTT | GCTTGCTTTG | 4920 |
| CTATTTACAC | CACAAAGGAA  | AAAGCTGCAC  | TGCTATACAA | GAAAATTATG | GAAAATATT  | 4980 |
| TGATGTATAG | TGCCTTGACT  | AGAGATCATA  | ATCAGCCATA | CCACATTGT  | AGAGGTTTA  | 5040 |
| CTTGCTTTAA | AAAACCTCCC  | ACACCTCCCC  | CTGAACCTGA | AACATAAAAT | GAATGCAATT | 5100 |
| GTTGTTGTTA | ACTTGTATAT  | TGAGCTTACA  | AATAAAGCAA | TAGCATCACA | 5160       |      |
| AATTCACAA  | ATAAACGATT  | TTTTCACTG   | CATTCTAGTT | GTGGTTTGTC | CAAACTCATC | 5220 |
| AATGTATCTT | ATCATGTCTG  | GATCATCCCG  | CCATGGGTAT | ACATCGATGC | GGCCGC     | 5276 |

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7664 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

|            |             |            |             |            |            |      |
|------------|-------------|------------|-------------|------------|------------|------|
| GGTACCACTA | GTAAGCTTAG  | ATCCACTGTC | TGGGATTATA  | TCAGGACAAC | CGAACCTGG  | 60   |
| AAAGTGTATT | AGGTAGAGCA  | TTTCTTCCA  | CGTGTGTTGGG | CACGTTCCG  | ACAGCTAGGA | 120  |
| TTCCAGCTCT | GTCTTGAT    | GTACAGACT  | GTAAATCAAT  | CGCAGGTGAA | ACTGTTGGA  | 180  |
| CAGTAGGTGG | GGATCAAAGA  | CCCTCCGCC  | GTGAGACTCT  | AGGCCTTTC  | CCCTGCCACC | 240  |
| AGCCTGTCTC | CAGAGATGCT  | CTGGAAGGAG | GCAGGCCCCGG | GCGGTCTTTC | TGCTCTTAG  | 300  |
| CGTGGCGGAC | GCGGCGGCCG  | GGCAGGGCT  | GGAGCAGAGA  | GCGCTGCAGT | GATAGAACTT | 360  |
| TCTGACCCCG | CTGCGCAGGG  | CGGCAGGGTG | GCAGGGTGGC  | AGGGTGGCGA | GCTAAGCCAG | 420  |
| AGCCGAAACG | TGGAGCTCTG  | GGAGGAACAT | CGAAGTGT    | GTATGTGGTC | TGAGATCGGC | 480  |
| CTGACTATAT | TTTTTGTC    | TAAATTGCA  | AGCACACACC  | CACAAAGCTG | CGGTCTTGAC | 540  |
| CGGTATTCTT | TATAGAGCGC  | AATGGAGTGA | GCTGAGTGT   | TAAACGATT  | CCCTAATTCA | 600  |
| TCTGATAGCA | GAGGCCTCT   | CCTAATTGGC | GAAGAGCTGC  | CTCATGTCCG | CAACTTTTG  | 660  |
| GCAGAGTGAA | TTCCACAGCT  | TTGTGTGT   | GTGTGGGGGG  | GGGTGTAAGG | GGTGTCTAAA | 720  |
| ACTTTCGGTC | TCCTACTATT  | CTGTATCTCG | ACCGGTTGGT  | TTTACACCCC | GGCTCATCTC | 780  |
| ATCAACGCAA | ACACCCCCAC  | TCTCCTATGG | ACCCAAGGAC  | CTGACGTGGG | GGAAGGTGGA | 840  |
| CATTAGGAAT | GTCAGAAACC  | TAGAGTCCAC | GCTCCTCCCTC | TCCATTTTC  | CACGAGTTG  | 900  |
| GGAAACTTCT | TGGCTGCGAA  | GACTTGACC  | CACATCTGCA  | TTTCTCAGCC | CCAGCTTCCA | 960  |
| AAAGTGTGTC | AGGTTCGGGA  | GGGGAGACCT | CAGTCCTCCT  | TTGTGAGGCT | TGTTTGCCTT | 1020 |
| GAGGGATTGG | CAGCGATGGC  | TTCCAGATGG | GCTGAAACCC  | TGCCCGTATT | TATTTAAACT | 1080 |
| GGTTCCTCGT | GGAGAGCTGT  | GAATCGGGCT | CTGTATGCGC  | TCGAGAAAAG | CCCCATTAT  | 1140 |
| GAGAGGCAAG | GCCCCAGTGGG | TCCCCCCGAC | TCCCCGACCC  | CCCTCTCCCA | CAATATATCC | 1200 |
| CCCCTCCCTG | TGCCCGCTG   | CCGCCACCTC | CCGGGCTCCG  | GCCCCGCGCG | CAGCGGCGAC | 1260 |
| GAAGCAACAC | AGTTCCCCGA  | AAGAGGTAGC | TTTTAATTG   | GCCAGCCACA | AAGAATCACT | 1320 |
| TATGCCGCAC | GGCGGTAACG  | AGGGGAACCG | GATCGGGCGG  | CCAGGATGCT | ATCTGTGTAG | 1380 |

|            |             |            |            |             |            |      |
|------------|-------------|------------|------------|-------------|------------|------|
| CCCTTTCGT  | GCCACAATTA  | GGGTGGTGCT | GGCTTCCTCC | GACCGCACCT  | AGGCGATCTG | 1440 |
| GTTACACTGT | TGGCTCCTT   | CTTGGGCAGT | CATTTAATCC | TACTTTTAC   | TCTACGAATG | 1500 |
| TCTGTCTGAT | GGAGGGCTGT  | GTCGGAGCC  | CCATCCACAA | AGAGTCAGCC  | AGCAGCTCTC | 1560 |
| ACACCCGGCT | GGATCTCATA  | TGGTGCACTC | TCAGTACAAT | CTGCTCTGAT  | GCCGCATAGT | 1620 |
| TAAGCCAGCC | AAGCTAGCTT  | GCGCAAGCTA | GCTTGCATC  | CGTAAAATG   | TGTGAGAGTT | 1680 |
| ACAAAATGTC | TTCCGGGCTA  | AGATCCGACA | GCCATGGTCC | AAAGAAGACT  | TCGGCACTGC | 1740 |
| AGACTTAAAA | CCAGCTTCT   | AGCAGAGGCA | GAAGGATCTA | GAGCCAAAGG  | CAAAGACTTG | 1800 |
| AATAGGCTGG | GAAGATGCAA  | GAATGGCATT | TTACATAAAG | AACACTCTCT  | CCTTTCCAG  | 1860 |
| CCAGCACACT | TGCATAGAAA  | TTAAGTTTA  | CACTTGAAGT | TCTTTGTTTC  | CATCCTGAGA | 1920 |
| AGCTCCAAAG | TCTGAGGTGG  | TGTGGTATGC | TGGGTAATT  | TCCCCACCCC  | CCAACATTCC | 1980 |
| CTGGGGGTTC | CATGGGGTA   | GCTTCTCCA  | AGGACTTCCA | GCGGCAACAC  | AGAAATCCCA | 2040 |
| CTTCGAGACA | AAGGAGTTAC  | TGCTTAAATC | AGGCCCTAAT | TTCCAAGGTT  | CCCTTGCTT  | 2100 |
| AAAGTTCCCT | AGAGGACCAT  | CTCACTTCTA | AAGAAAAGGT | GTATTGGGG   | ACCCATCCTC | 2160 |
| AACCTCCTTG | TTATGGAAGG  | AGACTTCGGG | AACAGAGCAA | GGGCTGAGCC  | TCCGGCAGTT | 2220 |
| TGGGGTAAGG | TTGGGGTTGG  | GGGGAGCAAG | GAAGGCAAGT | GAGGCTGGAG  | GCCCAGGGAT | 2280 |
| AGGGGAAGAT | GTGTGTGTGT  | GTGTGTGTGT | GTGTGTGTGT | GTGTGTGTGT  | CTCGGGGATG | 2340 |
| GTGGTGGTGG | ACAACCTAGGA | AACTCTGGCG | CTTCTCCTC  | CCCTCACAAA  | ACTGAGTCCA | 2400 |
| GCTGGAGCCG | CCTCCAGACT  | CTCTGGCCAG | GGCCTCAGAG | TGGTCAACAG  | TCCCTGGCCA | 2460 |
| GCGTTGCTCT | CTCCAGGCTA  | AGGGCACCCA | CTCCCCTGGA | GATTCTGAA   | CCTGGGCCAG | 2520 |
| GAAGAGCCGA | ATTAGACAAG  | TGTCTCCAAT | CCGGCTGCCT | GC GGATTTTG | TTGCGGTGTC | 2580 |
| CCTCGGTTGT | CTGCAGTTCC  | TTTAGTCCCT | TCCCTGGCCT | GCCCCTTACA  | CCTCCACACA | 2640 |
| GGTCCCCCTC | TGTGTAGGAA  | TACACCAGAC | CCTCTCTTAG | CCACACACAC  | CTCCAGTCCC | 2700 |
| CCGTCTACCT | AGATTTTTT   | CATAGCTAGT | TGGATGGGGG | ATGGGTTAGG  | GAGGCTGGGT | 2760 |
| TTGCAGCCT  | CCAGGTGGGA  | GTTCACCGAC | AGGTACTCCG | CAAAGGAGCT  | GGAAGGCAGG | 2820 |
| TCTGGAAAAC | TGTCCCCCAG  | ATTAGGATT  | CTGGGCAGCT | TCCATCAGCT  | TATACTTTGG | 2880 |
| CTTCCCCGCC | CCCTAAACTC  | CCCATCCCCA | CCTTCCTTTC | TCCCCTACT   | TCGTCTCCCC | 2940 |
| TCGCCTTCC  | AGCCTTGAGT  | CTAAAGCTCC | ATGCTTATGC | CTCTGCAAAC  | AACCCCTCC  | 3000 |
| CTTCTAACCC | CAGCAGAACT  | CCGAGGAAAG | GGGCCGGAGG | CCCCCCTCT   | CGCCTGTGGT | 3060 |
| TAGAGGGGGC | AGTGTGGCAG  | TCCCAAGTGG | GGGCGACCGG | AGGCCGTCTC  | GGTCCCCCGC | 3120 |
| CCGATCAGGC | CACTGGGCAC  | ATCGGGGGCG | GGAAGCTGGG | CTCACCAAAG  | GGGCGACTGG | 3180 |
| CCTTGGCAGG | TGTGGGCTCT  | GGTCCGGCCT | GGGCAGGCTC | CGGGGGCGGG  | GTCTCAGGTT | 3240 |
| ACAGCCCCGC | GGGGGGCTGG  | GGGGCGGCC  | GCGGTTGGG  | CTGGTTGCC   | AGCCTTGGGA | 3300 |
| GCGACCGGGA | GCATATAACC  | GGAGCCTCTG | CTGGGAGAAG | ACGCAGAGCG  | CCGCTGGGCT | 3360 |
| GCCGGGTCTC | CTGCCTCCTC  | CTCCTGCTCC | TAGAGCCTCC | TGCATGAGGG  | CGCGGTAGAG | 3420 |
| ACCCGGACCC | GCTCCGTGCT  | CTGCCGCCTC | GCCGAGCTTC | GCCCGCAAGC  | TGGGAATT   | 3480 |
| GGATCCCCGG | GATCGAAAGA  | GCCTGCTAA  | GCAAAAAGA  | AGTCACCATG  | TCGTTACTT  | 3540 |
| TGACCAACAA | GAACGTGATT  | TTCGTTGCCG | GTCTGGGAGG | CATTGGTCTG  | GACACCAGCA | 3600 |
| AGGAGCTGCT | CAAGCGCGAT  | CCCGTCGTT  | TACAACGTG  | TGACTGGAA   | AACCTGGCG  | 3660 |
| TTACCCAAC  | TAATCGCCTT  | GCAGCACATC | CCCCTTCGC  | CAGCTGGCTT  | TATAGCGAAG | 3720 |
| AGGCCCGCAC | CGATGCCCT   | TCCCAACAGT | TGCGCAGCCT | GAATGGCGAA  | TGGCGCTTTG | 3780 |
| CCTGGTTTCC | GGCACCAAGAA | GGGGTGCCTG | AAAGCTGGCT | GGAGTGCAT   | CTTCCTGAGG | 3840 |
| CCGATACTGT | CGTCGTCCCC  | TCAAACTGGC | AGATGCACGG | TTACGATGCG  | CCCATCTACA | 3900 |
| CCAACGTAAC | CTATTCCATT  | ACGGTCAATC | CGCCGTTTGT | TCCCACGGAG  | AATCCGACGG | 3960 |
| GTTGTTACTC | GCTCACATT   | AATGTTGATG | AAAGCTGGCT | ACAGGAAGGC  | CAGACGCGAA | 4020 |
| TTATTTTGA  | TGGCGTTAAC  | TTGGCGTTTC | ATCTGTGGTG | CAACGTGCGC  | TGGGTCGGTT | 4080 |
| ACGGCCAGGA | CAGTCGTTTG  | CCGTCTGAAT | TTGACCTGAG | CGCATTTTA   | CGCGCCGGAG | 4140 |

|             |             |            |             |             |            |      |
|-------------|-------------|------------|-------------|-------------|------------|------|
| AAAACCGCCT  | CGCGGTGATG  | GTGCTGCCTT | GGAGTGACGG  | CAGTTATCTG  | GAAGATCAGG | 4200 |
| ATATGTGGCG  | GATGAGCGGC  | ATTTCCTCGT | ACGTCTCGTT  | GCTGCATAAA  | CCGACTACAC | 4260 |
| AAATCAGCGA  | TTTCCATGTT  | GCCACTCGCT | TTAATGATGA  | TTTCAGCCGC  | GCTGAACTGG | 4320 |
| AGGCTGAAGT  | TCAGATGTGC  | GGCGAGTTGC | GTGACTACCT  | ACGGGTAACA  | GTTTCTTTAT | 4380 |
| GGCAGGGTGA  | AACGCAGGTC  | GCCAGCGGC  | CCCGCGCTT   | CGGCGGTGAA  | ATTATCGATG | 4440 |
| AGCGTGGTGG  | TTATGCCGAT  | CGCGTCACAC | TACGTCTGAA  | CGTCGAAAAC  | CCGAAACTGT | 4500 |
| GGAGCGCCGA  | AATCCCAGAAT | CTCTATCGTG | CGGTGGTTGA  | ACTGCACACC  | GCCGACGGCA | 4560 |
| CGCTGATTGA  | AGCAGAACCC  | TGCGATGTG  | GTTCCGCGA   | GGTGCAGGATT | GAAAATGGTC | 4620 |
| TGCTGCTGCT  | GAACGGCAAG  | CCGTTGCTGA | TTCGAGGCGT  | TAACCGTCAC  | GAGCATCATC | 4680 |
| CTCTGCATGG  | TCAGGTCATG  | GATGAGCAGA | CGATGGTGCA  | GGATATCCTG  | CTGATGAAGC | 4740 |
| AGAACAACTT  | TAACGCCGTG  | CGCTGTTCGC | ATTATCCGAA  | CCATCCGCTG  | TGGTACACGC | 4800 |
| TGTGCGACCG  | CTACGGCTG   | TATGTGGTGG | ATGAAGCCAA  | TATTGAAACC  | CACGGCATGG | 4860 |
| TGCCAATGAA  | TCTGCTGACC  | GATGATCCGC | GCTGGCTACC  | GGCGATGAGC  | GAACCGTAA  | 4920 |
| CGCGAATGGT  | GCAGCGCGAT  | CGTAATCACC | CGAGTGTGAT  | CATCTGGTCG  | CTGGGAATG  | 4980 |
| AATCAGGCCA  | CGGCGCTAAT  | CACGACGCGC | TGTATCGCTG  | GATCAAATCT  | GTCGATCCTT | 5040 |
| CCCGCCCCGT  | GCAGTATGAA  | GGCGGCGGAG | CCGACACCAC  | GGCCACCGAT  | ATTATTTGCC | 5100 |
| CGATGTACGC  | GGCGGTGGAT  | GAAGACCAGC | CCTTCCCGGC  | TGTGCCGAAA  | TGGTCCATCA | 5160 |
| AAAAATGGCT  | TTCGCTACCT  | GGAGAGACGC | GCCCCGTGAT  | CCTTTGCGAA  | TACGCCACG  | 5220 |
| CGATGGTAA   | CAGTCTTGGC  | GGTTTCGCTA | AATACTGGCA  | GGCGTTTCGT  | CAGTATCCCC | 5280 |
| GTTTACAGGG  | CGGCTTCGTC  | TGGGACTGGG | TGGATCAGTC  | GCTGATTAAA  | TATGATGAAA | 5340 |
| ACGGCAACCC  | GTGGTCGGCT  | TACGGCGGTG | ATTTCGGCGA  | TACGCCAAC   | CATGCCAGT  | 5400 |
| TCTGTATGAA  | CGGTCTGGTC  | TTTGGCGACC | GCACGCCGCA  | TCCAGCGCTG  | ACGGAAGCAA | 5460 |
| AACACCAGCA  | GCAGTTTTTC  | CAGTTCCGTT | TATCCGGGCA  | AACCATCGAA  | GTGACCAGCG | 5520 |
| AATAACCTGTT | CCGTCATAGC  | GATAACGAGC | TCCTGCACTG  | GATGGTGGCG  | CTGGATGGTA | 5580 |
| AGCCGCTGGC  | AAGCGGTGAA  | GTGCCTCTGG | ATGTCGCTCC  | ACAAGGTAAA  | CAGTTGATTG | 5640 |
| AACTGCCTGA  | ACTACCGCAG  | CCGGAGAGCG | CCGGGCAACT  | CTGGCTCACA  | GTACCGTAG  | 5700 |
| TGCAACCGAA  | CGCGACCGGA  | TGGTCAGAAG | CCGGGCACAT  | CAGCGCTGG   | CAGCAGTGGC | 5760 |
| GTCTGGCGGA  | AAACCTCAGT  | GTGACGCTCC | CCGCCGCGTC  | CCACGCCATC  | CCGCATCTGA | 5820 |
| CCACCAGCGA  | AATGGATTAA  | TGCATCGAGC | TGGGTAATAA  | GCGTTGGCAA  | TTTAACCGCC | 5880 |
| AGTCAGGCTT  | TCTTCACAG   | CTGTGGATTG | GCGATAAAAAA | ACAACGTG    | ACGCCGCTGC | 5940 |
| GCGATCAGTT  | CACCCGTGCA  | CCGCTGGATA | ACGACATTGG  | CGTAAGTGAA  | GCGACCCGCA | 6000 |
| TTGACCTAA   | CGCCTGGGTC  | GAACGCTGGA | AGGCAGCGGG  | CCATTACCAAG | GCCGAAGCAG | 6060 |
| CGTTGTTGCA  | GTGCACGGCA  | GATACACTTG | CTGATCGGGT  | GCTGATTACG  | ACCGCTCACG | 6120 |
| CGTGGCAGCA  | TCAGGGGAAA  | ACCTTATTAA | TCAGCCGGAA  | AACCTACCGG  | ATTGATGGTA | 6180 |
| GTGGTCAAAT  | GGCGATTACC  | GTTGATGTG  | AAGTGGCGAG  | CGATACACCG  | CATCCGGCGC | 6240 |
| GGATTGGCCT  | GAACGTCCAG  | CTGGCGCAGG | TAGCAGAGCG  | GGTAAACTGG  | CTCGGATTAG | 6300 |
| GGCCGCAAGA  | AAACTATCCC  | GACCGCCTTA | CTGCCGCTG   | TTTGACCGC   | TGGGATCTGC | 6360 |
| CATTGTCAGA  | CATGTATACC  | CCGTACGCT  | TCCCGAGCGA  | AAACGGTCTG  | CGCTGCGGG  | 6420 |
| CGCGCGAATT  | GAATTATGGC  | CCACACCAGT | GGCGCGGCCG  | CTTCCAGTT   | AACATCAGCC | 6480 |
| GCTACAGTCA  | ACAGCAACTG  | ATGGAAACCA | GCCATCGCCA  | TCTGCTGCAC  | GCGGAAGAAG | 6540 |
| GCACATGGCT  | GAATATCGAC  | GGTTTCATA  | TGGGGATTGG  | TGGCGACGAC  | TCCTGGAGCC | 6600 |
| CGTCAGTATC  | GGCGGAATTA  | CAGCTGAGCG | CCGGTCGCTA  | CCATTACCAAG | TTGGTCTGGT | 6660 |
| GTCAAAAATA  | ATAATAACCG  | GCAGGCCATG | TCTGAAAGTA  | TTCGCGTAAG  | GAAATCCATT | 6720 |
| ATGTACTATT  | AAAAAAACAC  | AAACTTTGG  | ATGTTCGGTT  | TATTCTTTT   | CTTTTACTTT | 6780 |
| TTTATCATGG  | GAGCCTACTT  | CCCGTTTTTC | CCGATTTGGC  | TACATGACAT  | CAACCATATG | 6840 |
| AGCAAAAGTG  | ATACGGGTAT  | TATTTTGCC  | GCTATTCTC   | TGTTGTCGCT  | ATTATTCCAA | 6900 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| CCGCTGTTGG TCTGCTTCT GACAAACTCG GCCTCGACTC TAGACTGAGA ACTTCAGGGT  | 6960 |
| GAGTTGGGG ACCCTTGATT GTTCTTCTT TTTCGCTATT GAAAAATTCA TGTTATATGG   | 7020 |
| AGGGGGCAA GTTTCAAGGG TGTTGTTAG AATGGGAAGA TGTCCTGT ATCACCATGG     | 7080 |
| ACCCTCATGA TAATTTGTT TCTTCACCT TCTACTCTGT TGACAACCAT TGTCTCCTCT   | 7140 |
| TATTTCTT TCATTTCTG TAACTTTTT CGTTAAACTT TAGCTTGCAT TTGTAACGAA     | 7200 |
| TTTTAAATT CACTTCGTT TATTGTCAG ATTGTAAGTA CTTTCTCTAA TCACCTTTTT    | 7260 |
| TTCAAGGCAA TCAGGGTAAT TATATTGTAC TTCAGCACAG TTTAGAGAA CAATTGTTAT  | 7320 |
| AATTAAATGA TAAGGTAGAA TATTCTGCA TATAAATTCT GGCTGGCGTG GAAATATTCT  | 7380 |
| TATTGGTAGA AACAACTACA TCCTGGTAAT CATCCTGCCT TTCTCTTAT GGTTACAATG  | 7440 |
| ATATACACTG TTTGAGATGA GGATAAAATA CTCTGAGTCC AAACCGGGCC CCTCTGCTAA | 7500 |
| CCATGTTCAT GCCTTCTTCT TTTCCCTACA GCTCCTGGC AACGTGCTGG TTGTTGTGCT  | 7560 |
| GTCTCATCAT TTTGGCAAAG AATTCACTCC TCAGGTGCAG GCTGCCTATC AGAAGGTGGT | 7620 |
| GGCTGGTGTG GCCAATGCC C TGGCTCACAA ATACCACTGA GATC                 | 7664 |

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CGAGGGCCTG CTCGATCTCC

20

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGCATTCCAC CACTGCTCCC

20

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCACCCCTT CTCATGACCT C

21

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GTTGGTGTAG ATGGGCGCAT CG

22

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GCGGGGTCTC AGGTTACAGC C

21

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GCCCTCTGGC CTGCTGGCTC ATG

23

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CAGGAGAGTC TTGCCTGTAT CCTC

24

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1521 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

|                                                                     |      |
|---------------------------------------------------------------------|------|
| CAAGATGCAT CCAGGGTCC TGGCTGCCTT CCTCTTCTTG AGCTGGACTC ATTGTCGGGC    | 60   |
| CCTGCCCTT CCCAGTGGTG GTGATGAAGA TGATTTGTCT GAGGAAGACC TCCAGTTG      | 120  |
| AGAGCGCTAC CTGAGATCAT ACTACCATCC TACAAATCTC GCAGGAATCC TGAAGGAGAA   | 180  |
| TGCAGCAAGC TCCATGACTG AGAGGCTCG AGAAATGCAG TCTTCTTCG GCTTAGAGGT     | 240  |
| GACTGGAAA CTTGACGATA ACACCTTAGA TGTCACTGAAA AAGCCAAGAT GCGGGGTTGT   | 300  |
| CGATGTGGG TGAATACAATG TTTCCCTCG AACTCTAAA TGGTCCAAAA TGAATTAAAC     | 360  |
| CTACAGAATT GTGAATTACA CCCCTGATAT GACTCATTCT GAAGTCGAAA AGGCATTCAA   | 420  |
| AAAAGCCTTC AAAGTTGGT CCGATGTAAC TCCTCTGAAT TTTACCAAGAC TTCACGATGG   | 480  |
| CATTGCTGAC ATCATGATCT CTTTGGAAAT TAAGGAGCAT GGCGACTTCT ACCCATTG     | 540  |
| TGGGCCCTCT GGCCTGCTGG CTCATGCTTT TCCTCCTGGG CCAAATTATG GAGGAGATGC   | 600  |
| CCATTTGAT GATGATGAAA CCTGGACAAG TAGTTCCAAA GGCTACAAC TGTGTTCTTGT    | 660  |
| TGCTGCGCAT GAGTCGGCC ACTCCTTAGG TCTTGACCAAC TCCAAGGACC CTGGAGCACT   | 720  |
| CATGTTTCCT ATCTACACCT ACACCGGCAA AAGCCACTT ATGCTTCTG ATGACGATGT     | 780  |
| ACAAGGGATC CAGTCTCTCT ATGGTCCAGG AGATGAAGAC CCCAACCTA AACATCCAAA    | 840  |
| AACGCCAGAC AAATGTGACC CTTCCCTTATC CCTTGATGCC ATTACCAAGTC TCCGAGGAGA | 900  |
| AACAATGATC TTTAAAGACA GATTCTTCTG GCGCCTGCAT CCTCAGCAGG TTGATGCGGA   | 960  |
| GCTGTTTTA ACGAAATCAT TTTGGCCAGA ACTTCCCAAC CGTATTGATG CTGCATATGA    | 1020 |

|            |            |            |            |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| GCACCCTTCT | CATGACCTCA | TCTTCATCTT | CAGAGGTAGA | AAATTTGGG  | CTCTTAATGG | 1080 |
| TTATGACATT | CTGGAAGGTT | ATCCCAAAAA | AATATCTGAA | CTGGGTCTTC | CAAAGAAAGT | 1140 |
| TAAGAAGATA | AGTGCAGCTG | TTCACTTGAA | GGATACAGGC | AAGACTCTCC | TGTTCTCAGG | 1200 |
| AAACCAGGTC | TGGAGATATG | ATGATACTAA | CCATATTATG | GATAAAGACT | ATCCGAGACT | 1260 |
| AATAGAAGAA | GACTTCCCAG | GAATTGGTGA | TAAAGTAGAT | GCTGTCTATG | AGAAAAATGG | 1320 |
| TTATATCTAT | TTTTTCAACG | GACCCATACA | GTTGAATAC  | AGCATCTGGA | GTAACCGTAT | 1380 |
| TGTCGCGTC  | ATGCCAGCAA | ATTCCATTAA | GTGGTGTAA  | GTGTCTTTT  | AAAAATTGTT | 1440 |
| ATTTAAATCC | TGAAGAGCAT | TTGGGGTAAT | ACTTCCAGAA | GTGCGGGGTA | GGGAAAGAAG | 1500 |
| AGCTATCAGG | AGAAAGCTTG | G          |            |            |            | 1521 |

(2) INFORMATION FOR SEQ ID NO:19

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Pro Arg Cys Gly Xaa Pro Asp

1 5

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

His Glu Xaa Gly His Xaa Xaa Xaa Xaa His Ser

1 5 10

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 amino acids
- (B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met His Pro Gly Val Leu Ala Ala Phe Leu Phe Leu Ser Trp Thr His  
1 5 10 15  
Cys Arg Ala Leu Pro Leu Pro Ser Gly Gly Asp Glu Asp Asp Leu Ser  
20 25 30  
Glu Glu Asp Leu Gln Phe Ala Glu Arg Tyr Leu Arg Ser Tyr Tyr His  
35 40 45  
Pro Thr Asn Leu Ala Gly Ile Leu Lys Glu Asn Ala Ala Ser Ser Met  
50 55 60  
Thr Glu Arg Leu Arg Glu Met Gln Ser Phe Phe Gly Leu Glu Val Thr  
65 70 75 80  
Gly Lys Leu Asp Asp Asn Thr Leu Asp Val Met Lys Lys Pro Arg Cys  
85 90 95  
Gly Gly Val Asp Val Gly Glu Tyr Asn Val Phe Pro Arg Thr Leu Lys  
100 105 110  
Trp Ser Lys Met Asn Leu Thr Tyr Arg Ile Val Asn Tyr Thr Pro Asp  
115 120 125  
Met Thr His Ser Glu Val Glu Lys Ala Phe Lys Lys Ala Phe Lys Val  
130 135 140  
Trp Ser Asp Val Thr Pro Leu Asn Phe Thr Arg Leu His Asp Gly Ile  
145 150 155 160  
Ala Asp Ile Met Ile Ser Phe Gly Ile Lys Glu His Gly Asp Phe Tyr  
165 170 175  
Pro Phe Asp Gly Pro Ser Gly Leu Leu Ala His Ala Phe Pro Pro Gly  
180 185 190  
Pro Asn Tyr Gly Gly Asp Ala His Phe Asp Asp Asp Glu Thr Trp Thr  
195 200 205  
Ser Ser Ser Lys Gly Tyr Asn Leu Phe Leu Val Ala Ala His Glu Phe  
210 215 220  
Gly His Ser Leu Gly Leu Asp His Ser Lys Asp Pro Gly Ala Leu Met  
225 230 235 240  
Phe Pro Ile Tyr Thr Tyr Thr Gly Lys Ser His Phe Met Leu Pro Asp  
245 250 255  
Asp Asp Val Gln Gly Ile Gln Ser Leu Tyr Gly Pro Gly Asp Glu Asp  
260 265 270  
Pro Asn Pro Lys His Pro Lys Thr Pro Asp Lys Cys Asp Pro Ser Leu  
275 280 285  
Ser Leu Asp Ala Ile Thr Ser Leu Arg Gly Glu Thr Met Ile Phe Lys  
290 295 300  
Asp Arg Phe Phe Trp Arg Leu His Pro Gln Gln Val Asp Ala Glu Leu

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 305 | 310 | 315 | 320 |     |     |     |     |     |     |     |     |     |     |     |     |
| Phe | Leu | Thr | Lys | Ser | Phe | Trp | Pro | Glu | Leu | Pro | Asn | Arg | Ile | Asp | Ala |
| 325 | 330 | 335 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ala | Tyr | Glu | His | Pro | Ser | His | Asp | Leu | Ile | Phe | Ile | Phe | Arg | Gly | Arg |
| 340 | 345 | 350 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Lys | Phe | Trp | Ala | Leu | Asn | Gly | Tyr | Asp | Ile | Leu | Glu | Gly | Tyr | Pro | Lys |
| 355 | 360 | 365 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Lys | Ile | Ser | Glu | Leu | Gly | Leu | Pro | Lys | Glu | Val | Lys | Lys | Ile | Ser | Ala |
| 370 | 375 | 380 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ala | Val | His | Phe | Glu | Asp | Thr | Gly | Lys | Thr | Leu | Leu | Phe | Ser | Gly | Asn |
| 385 | 390 | 395 | 400 |     |     |     |     |     |     |     |     |     |     |     |     |
| Gln | Val | Trp | Arg | Tyr | Asp | Asp | Thr | Asn | His | Ile | Met | Asp | Lys | Asp | Tyr |
| 405 | 410 | 415 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Pro | Arg | Leu | Ile | Glu | Glu | Asp | Phe | Pro | Gly | Ile | Gly | Asp | Lys | Val | Asp |
| 420 | 425 | 430 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ala | Val | Tyr | Glu | Lys | Asn | Gly | Tyr | Ile | Tyr | Phe | Phe | Asn | Gly | Pro | Ile |
| 435 | 440 | 445 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Gln | Phe | Glu | Tyr | Ser | Ile | Trp | Ser | Asn | Arg | Ile | Val | Arg | Val | Met | Pro |
| 450 | 455 | 460 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ala | Asn | Ser | Ile | Leu | Trp | Cys |     |     |     |     |     |     |     |     |     |
| 465 | 470 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |