| 第一章<br>The general role of an operating system is to:d                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. None of the above 🔏                                                                                                                                                                                                                  |
| b. Manage files for application programs 🔏                                                                                                                                                                                              |
| c. Act as an interface between various computers 🏅                                                                                                                                                                                      |
| d. Provide a set of services to system users $\checkmark$                                                                                                                                                                               |
| Information that must be saved prior to the processor transferring control to the interrupt handler routine includes: b                                                                                                                 |
| a. None of the above 🔏                                                                                                                                                                                                                  |
| b. Processor Status Word (PSW) & Location of next instruction                                                                                                                                                                           |
| c. Processor Status Word (PSW) 🔏                                                                                                                                                                                                        |
| d. Processor Status Word (PSW) & Contents of processor registers                                                                                                                                                                        |
| One accepted method of dealing with multiple interrupts is to:                                                                                                                                                                          |
| a. Define priorities for the interrupts $\checkmark$                                                                                                                                                                                    |
| b. None of the above 🔏                                                                                                                                                                                                                  |
| c. Disable all interrupts except those of highest priority                                                                                                                                                                              |
| d. Service them in round-robin fashion 🔏                                                                                                                                                                                                |
| In a uniprocessor system, multiprogramming increases processor efficiency by:                                                                                                                                                           |
| a. Increasing processor speed 🔏                                                                                                                                                                                                         |
| b. Eliminating all idle processor cycles                                                                                                                                                                                                |
| c. All of the above 🔏                                                                                                                                                                                                                   |
| <ul> <li>d. Taking advantage of time wasted by long wait interrupt handling </li> <li>As one proceeds down the memory hierarchy (i.e., from inboard memory to offline storage), the following condition(s) apply:</li> <li>c</li> </ul> |
| a. Decreasing capacity 🔏                                                                                                                                                                                                                |



| d. Control and Status registers 🔏                                                                             |  |
|---------------------------------------------------------------------------------------------------------------|--|
| Address registers may contain c                                                                               |  |
| a. Memory addresses of data 🔏                                                                                 |  |
| b. Memory addresses of instructions                                                                           |  |
| c. All of the above 🇹                                                                                         |  |
| d. Partial memory addresses 🔏                                                                                 |  |
| A Control/Status register that contains the address of the next instruction to be fetched is called the: c    |  |
| a. All of the above 🔏                                                                                         |  |
| b. Program Status Word (PSW)                                                                                  |  |
| c. Program Counter (PC) 🗹                                                                                     |  |
| d. Instruction Register (IR) 🔏                                                                                |  |
| The two basic steps used by the processor in instruction processing are: c  a. Instruction and Execute cycles |  |
| b. Fetch and Instruction cycles 🦹                                                                             |  |
| c. Fetch and Execute cycles 🇹                                                                                 |  |
| d. None of the above 🔏                                                                                        |  |
| A fetched instruction is normally loaded into the: c  a. Program Counter (PC)   **                            |  |
| b. None of the above 🔏                                                                                        |  |
| c. Instruction Register (IR)                                                                                  |  |
| d. Accumulator (AC) 🔏                                                                                         |  |
| A common class of interrupts is: d                                                                            |  |
| a. Program                                                                                                    |  |
| b. I/O 🔏                                                                                                      |  |

| c. Timer 🦹                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------|
| d. All of the above                                                                                                             |
| When an external device becomes ready to be serviced by the processor, the device sends this type of signal to the processor: b |
| a. None of the above                                                                                                            |
| b. Interrupt signal 🧹                                                                                                           |
| c. Halt signal 🧩                                                                                                                |
| d. Handler signal 🔏                                                                                                             |
| 第二章                                                                                                                             |
| A primary objective of an operating system is: a                                                                                |
| a. All of the above                                                                                                             |
| b. Convenience 🔏                                                                                                                |
| c. Ability to evolve                                                                                                            |
| d. Efficiency 🔏                                                                                                                 |
| The paging system in a memory management system provides for dynamic mapping between a virtual address used in a program and:   |
| a. A real address in main memory 🗹                                                                                              |
| b. None of the above 🤾                                                                                                          |
| c. A virtual address in main memory                                                                                             |
| d. A real address in a program 🔏                                                                                                |
| Relative to information protection and security in computer systems, access control typically refers to: d                      |
| <ul> <li>a. Proving that security mechanisms perform according to specification</li> </ul>                                      |
| b. None of the above 🔏                                                                                                          |
| c. The flow of data within the system 🔏                                                                                         |
| d. Regulating user and process access to various aspects of the system $\checkmark$                                             |
|                                                                                                                                 |

A common problem with full-featured operating systems, due to their size and difficulty of the tasks they address,is: d

| a. Latent bugs that show up i                                                                                            | n the field |
|--------------------------------------------------------------------------------------------------------------------------|-------------|
| b. Chronically late in delivery                                                                                          | ×           |
| c. Sub-par performance 🤾                                                                                                 |             |
| d. All of the above 🗹                                                                                                    |             |
| A technique in which a process, executing an application, is divided into threads that can run concurrently is called: d |             |
| a. None of the above 🥻                                                                                                   |             |
| b. Symmetric multiprocessing                                                                                             | (SMP)       |
| c. Multiprocessing 🔏                                                                                                     |             |
| d. Multithreading 🗹                                                                                                      |             |
| WIN2K supports several types of user applications, including: c                                                          |             |
| a. None of the above                                                                                                     |             |
| b. Linux 🤾                                                                                                               |             |
| c. WIN32 🗸                                                                                                               |             |
| d. System 10 🥻                                                                                                           |             |
| Key to the success of Linux has been it's character as a free software package available under the auspices of the: c    |             |
| a. None of the above 🥻                                                                                                   |             |
| b. Berkeley Software Distribu                                                                                            | tion        |

The operating system provides many types of services to end-users, programmers and

c. Free Software Foundation  $\checkmark$ 

d. World Wide Web Consortium 🔏

| system designers, including: b                                                     |                                                                                                                                      |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| a                                                                                  | a. Built-in user applications 🦹                                                                                                      |
| b                                                                                  | b. Error detection and response                                                                                                      |
| C                                                                                  | c. All of the above 🐰                                                                                                                |
|                                                                                    | d. Relational database capabilities with the internal file system                                                                    |
|                                                                                    | stem is unusual in it's role as a control mechanism, in that: cone of the above 🔏                                                    |
|                                                                                    | runs on a special processor, completely separated from the rest of the em $$ $$ $$                                                   |
|                                                                                    | t frequently relinquishes control of the system processor and must end on the processor to regain control of the system $\checkmark$ |
| d. It                                                                              | never relinquishes control of the system processor 🔏                                                                                 |
|                                                                                    |                                                                                                                                      |
| Operating systems must evolve over time because a                                  |                                                                                                                                      |
| а                                                                                  | . New hardware is designed and implemented in the computer system                                                                    |
| b                                                                                  | . Hardware must be replaced when it fails 🥻                                                                                          |
| C                                                                                  | . All of the above 🦹                                                                                                                 |
| d                                                                                  | . Users will only purchase software that has a current copyright date 🔏                                                              |
| A major problem with early serial processing systems was: a a. Setup time   √      |                                                                                                                                      |
| b                                                                                  | o. Inability to get hardcopy output                                                                                                  |
| C                                                                                  | c. All of the above 🔏                                                                                                                |
| C                                                                                  | d. Lack of input devices 🦹                                                                                                           |
| An example of a hardware feature that is desirable in a batch-processing system is |                                                                                                                                      |
| a                                                                                  | a. Privileged instructions $\checkmark$                                                                                              |



|                                                                                                            | d. A single process trace 🔏                                                                 |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| The Process Image element that contains the modifiable part of the user space is called the: a             |                                                                                             |  |
| 进程镜像=PCE                                                                                                   | +程序+STACK+可修改的 DATA                                                                         |  |
|                                                                                                            | a. None of the above   ✓                                                                    |  |
|                                                                                                            | b. Process Control Block                                                                    |  |
|                                                                                                            | c. System Stack 🔏                                                                           |  |
|                                                                                                            | d. User Program 🥻                                                                           |  |
| 分数: 7/7 The processor execution mode that user programs typically execute in is referred to as: a          |                                                                                             |  |
|                                                                                                            | a. User mode   √                                                                            |  |
|                                                                                                            | b. None of the above                                                                        |  |
|                                                                                                            | c. Kernel mode 🔏                                                                            |  |
|                                                                                                            | d. System mode 🐰                                                                            |  |
| One step in the                                                                                            | e procedure for creating a new process involves: b  a. Allocating space for the process   # |  |
|                                                                                                            | b. All of the above 🗹                                                                       |  |
|                                                                                                            | c. Initializing the process control block                                                   |  |
|                                                                                                            | d. Assigning a unique identifier 🔏                                                          |  |
| A process switch may occur when the system encounters an interrupt condition, such as that generated by a: |                                                                                             |  |
| 进程切换: T                                                                                                    | RAP(异常)+系统调用 +INTERRUPT c                                                                   |  |
|                                                                                                            | a. Trap 🤾                                                                                   |  |
|                                                                                                            | b. Supervisor call                                                                          |  |
|                                                                                                            |                                                                                             |  |

c. All of the above 🦹

- c. All of the above
- d. Memory fault 🧣

##操作系统仅仅是一组程序,并被处理器执行,是进程吗?如何控制它?。。。3 种方法:

无进程的内核

在用户进程中执行(有一组进程切换函数) 常用的 PC 就是这样的基于进程的操作系统

In the Process Based O/S: 基于进程的操作系统

Major kernel functions are organized as separate functions c

- a. The User Process Image includes a kernel stack 🦧
- b. O/S code and data are contained in the shared address space  $\boldsymbol{\chi}$
- c. Major kernel functions are organized as separate functions 🗸
- d. None of the above 🔏

UNIX 进程描述:

用户级上下文 进程正文,进程数据

系统级上下文 内核栈

寄存器上下文 程序计数器,处理器状态寄存器

In a typical UNIX system, the element of the process image that contains the processor status information is the:

## 选择一个答案d

- a. All of the above 🔏
- b. System-level context
- c. User-level context 🔏
- d. Register context  $\checkmark$

The behavior of an individual process can be characterized by examining: a

- a. A single process trace 🗸
- b. Multiple process traces 🚜
- c. The interleaving of the process traces

d. All of the above 🔏 The basic Two-State Process Model defines two possible states for a process in relationship to the processor: a a. Running and Not Running b. None of the above 🔏 c. Executing and Waiting 🔏 d. Running and Executing 🔏 There are a number of conditions that can lead to process termination, including: c a. Bounds violation 🔏 b. Parent termination c. All of the above d. Normal completion 🔏 In the Five-State Process Model, the following represents a valid state transition: c a. All of the above 🔏 b. New -> Running 🔏 c. Running -> Blocked d. New -> Blocked 🔏 In a Process Model that implements two suspend states, a valid state transition is represented by: b a. Running -> Ready/Suspend b. All of the above  $\checkmark$ c. Ready -> Ready/Suspend 🚜 d. Ready/Suspend -> Ready 🔏

The scheduling strategy where each process in the queue is given a certain amount of time, in turn, to execute and then returned to the queue, unless blocked is referred to as: a

- a. Round-Robin 🎻
- b. All of the above

| c. Prioritization 🦹                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------|--|
| d. LIFO 🥻 is an O/S control structure that is used by the O/S to: b  a. Manage I/O devices                     |  |
| b. None of the above <b>√</b>                                                                                  |  |
| c. Manage processes 🔏                                                                                          |  |
| d. Provide information about system files                                                                      |  |
| 结构:<br>=表,跟踪主存,辅存<br>表 文件表 进程表                                                                                 |  |
| PCB,进程映像。。                                                                                                     |  |
| process in an operating system embodies two primary characteristics, b                                         |  |
| a. None of the above 🐰                                                                                         |  |
| b. Resource ownership                                                                                          |  |
| c. Multithreading 🤾                                                                                            |  |
| d. Symmetric multiprocessing                                                                                   |  |
| Early operating systems that were designed with little concern about structure are typically referred to as: b |  |
| a. Kernel operating systems 🔏                                                                                  |  |
| b. Monolithic operating systems                                                                                |  |
| c. Layered operating systems 🥻                                                                                 |  |
| d. All of the above 🔏 nicrokernel organization is: c a. Flexibility 🤏                                          |  |
| b. Portability 🚜                                                                                               |  |
| c. All of the above                                                                                            |  |
| d. Extensibility 🦹                                                                                             |  |
|                                                                                                                |  |

In low-level microkernel memory management, an example of an operation that can support external paging and virtual memory management is the: b

低级存储器管理:

提供一组**3**个微内核操作,用于支持内核 外的分页和虚存管理: 授权, 映射, 刷新

- a. Flush operation
- b. All of the above
- c. Grant operation
- d. Map operation 🔏

In a W2K system, the state that a thread enters when it has been unblocked and the resource for which it has been blocked is not yet available is called the: c

- a. Waiting state 🔏
- b. Standby state 🔏
- c. Transition state
- d. None of the above

## 分数: 7/7

In a Solaris system, a User-Level Thread (ULT) that enters the active state is assigned to b

- a. None of the above 🔏
- b. Light-Weight Process (LWP)  $\checkmark$
- c. Heavy-Weight Process (HWP)
- d. Kernel thread 🔏

In a Linux system, when a new process is cloned, the two processes share the same: a

- a. Virtual memory 🎻
- b. Process identifier
- c. All of the above 🔏
- d. task\_struct data structure

An example of a system that implements a single process with multiple threads is: a

a. Java 🎻



| stream to operate on data stored in a single memory is called: a                                                                                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| a. Single Instruction Single Data (SISD) stream 🗹                                                                                                                                                    |  |
| b. Multiple Instruction Single Data (MISD) stream                                                                                                                                                    |  |
| c. Single Instruction Multiple Data (SIMD) stream                                                                                                                                                    |  |
| d. None of the above 🔏                                                                                                                                                                               |  |
| In a SMP system, each processor maintains a local cache and must alert all other processors that a change to cache update has taken place. This is referred to as the a. Cache coherency problem   √ |  |
| b. Synchronization mechanism problem                                                                                                                                                                 |  |
| c. Interconnection mechanism problem 🔏                                                                                                                                                               |  |
| d. None of the above 🔏                                                                                                                                                                               |  |
| Key issues involved in the design of multiprocessor operating systems include: b  a. Scheduling 🚜                                                                                                    |  |
| b. Synchronization 🔏                                                                                                                                                                                 |  |
| c. Reliability and fault tolerance 🔏                                                                                                                                                                 |  |
| d. All of the above <b>√</b><br>第五章                                                                                                                                                                  |  |
| Which of the following major line of computer system development created problems in timing and synchronization that contributed to the development of the concept of the process? b                 |  |
| a. Time sharing systems 🔏                                                                                                                                                                            |  |
| b. All of the above $\checkmark$                                                                                                                                                                     |  |
| c. Real time transaction systems                                                                                                                                                                     |  |
| d. Multiprogramming batch operation systems                                                                                                                                                          |  |
| A primary objective of an operating system is: c  a. Ability to evolve                                                                                                                               |  |
|                                                                                                                                                                                                      |  |
| b. Efficiency 🤾                                                                                                                                                                                      |  |
| c. All of the above                                                                                                                                                                                  |  |
| d. Convenience 🔏                                                                                                                                                                                     |  |
| The paging system in a memory management system provides for dynamic mapping between a virtual address used in a program and: a                                                                      |  |

| b. A vii                                                                      | rtual address in main memory                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c. Non                                                                        | e of the above 🔏                                                                                                                                                                                                                                       |
|                                                                               | al address in a program 🔏 on protection and security in computer systems, access rs to: a                                                                                                                                                              |
| a. Regu                                                                       | ulating user and process access to various aspects of the system                                                                                                                                                                                       |
| b. The                                                                        | flow of data within the system 🤾                                                                                                                                                                                                                       |
| c. Prov                                                                       | ing that security mechanisms perform according to specification                                                                                                                                                                                        |
| d. None                                                                       | e of the above 🧏                                                                                                                                                                                                                                       |
| difficulty of the tasks a. Chro b. Late c. Sub d. All of A technique in which | with full-featured operating systems, due to their size and they address, is: depointed by the in delivery that show up in the field of the above the above approximate a process, executing an application, is divided into concurrently is called: d |
| a. Sym                                                                        | nmetric multiprocessing (SMP)                                                                                                                                                                                                                          |
| b. Non                                                                        | e of the above 🔏                                                                                                                                                                                                                                       |
| c. Mult                                                                       | ciprocessing 🗶                                                                                                                                                                                                                                         |
|                                                                               | tithreading <b>√</b><br>reral types of user applications, including: d                                                                                                                                                                                 |
| a. Non                                                                        | e of the above                                                                                                                                                                                                                                         |
| b. Sys                                                                        | tem 10 🔏                                                                                                                                                                                                                                               |
| c. Linu                                                                       | x <i>X</i>                                                                                                                                                                                                                                             |
|                                                                               | I32 <b>√</b> If Linux has been it's character as a free software package auspices of the: d                                                                                                                                                            |
|                                                                               |                                                                                                                                                                                                                                                        |

a. A real address in main memory  $\checkmark$ 

| b. Berkeley Software Distribution                                                                                                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| c. World Wide Web Consortium 🤾                                                                                                                                                                                     |  |
| d. Free Software Foundation   The operating system provides many types of services to end-users, programmers and system designers, including: c  a. Relational database capabilities with the internal file system |  |
| b. All of the above 🤾                                                                                                                                                                                              |  |
| c. Error detection and response 🗹                                                                                                                                                                                  |  |
| d. Built-in user applications 🔏                                                                                                                                                                                    |  |
| The operating system is unusual in it's role as a control mechanism, in that: b                                                                                                                                    |  |
| a. It runs on a special processor, completely separated from the rest of th system $\mathbb{Z}$                                                                                                                    |  |
| b. It frequently relinquishes control of the system processor and must depend on the processor to regain control of the system $\checkmark$                                                                        |  |
| c. It never relinquishes control of the system processor 🧣                                                                                                                                                         |  |
| d. None of the above 🔏                                                                                                                                                                                             |  |
| Operating systems must evolve over time because a                                                                                                                                                                  |  |
| a. New hardware is designed and implemented in the computer system                                                                                                                                                 |  |
| b. All of the above 🔏                                                                                                                                                                                              |  |
| c. Hardware must be replaced when it fails 🔏                                                                                                                                                                       |  |
| d. Users will only purchase software that has a current copyright date A major problem with early serial processing systems was: b  a. All of the above   #                                                        |  |
| b. Setup time <b>√</b>                                                                                                                                                                                             |  |
| c. Inability to get hardcopy output                                                                                                                                                                                |  |
| d. Lack of input devices 🔏                                                                                                                                                                                         |  |
| An example of a hardware feature that is desirable in a batch-processing system is d                                                                                                                               |  |

| a. A completely accessible memory area                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. Large clock cycles 🥻                                                                                                                                |
| c. None of the above 🙎                                                                                                                                 |
| d. Privileged instructions $\checkmark$                                                                                                                |
| A computer hardware feature that is vital to the effective operation of a multiprogramming operating system is: b                                      |
| a. All of the above 🔏                                                                                                                                  |
| b. I/O interrupts and DMA                                                                                                                              |
| c. Multiple processors 🦹                                                                                                                               |
| d. Very large memory 🤾                                                                                                                                 |
| The principle objective of a time sharing, multiprogramming system is to b                                                                             |
| a. Maximize response time                                                                                                                              |
| b. None of the above $\checkmark$                                                                                                                      |
| c. Maximize processor use                                                                                                                              |
| d. Provide exclusive access to hardware                                                                                                                |
| 第六章<br>The permanent blocking of a set of processes that either compete for system resources or                                                        |
| communicate with each other is called: c                                                                                                               |
| a. All of the above                                                                                                                                    |
| b. Prioritization 🔏                                                                                                                                    |
| c. Deadlock 🇹                                                                                                                                          |
| d. Starvation 🔏                                                                                                                                        |
| In deadlocked process recovery, selection criteria for choosing a particular process to abort or rollback includes designating the process with the: b |
| a. Least total resources allocated so far                                                                                                              |
| b. All of the above 🗸                                                                                                                                  |
| c. Most estimated time remaining 🚜                                                                                                                     |
| d. Lowest priority 🔏                                                                                                                                   |
| One approach to an integrated strategy for dealing with deadlocks involves the                                                                         |

| implementation of: d                                                                                        |                                                                        |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
|                                                                                                             | a. Virtual memory 🔏                                                    |  |
|                                                                                                             | b. Process rollbacks                                                   |  |
|                                                                                                             | c. None of the above                                                   |  |
|                                                                                                             | d. Resource classes <b>√</b>                                           |  |
| The Dining Philo implementing: d                                                                            | osopher's Problem is a standard test case for evaluating approaches to |  |
|                                                                                                             | a. Starvation 🔏                                                        |  |
|                                                                                                             | b. Deadlock 🔏                                                          |  |
|                                                                                                             | c. All of the above                                                    |  |
|                                                                                                             | d. Synchronization                                                     |  |
| A software mechanism that informs a process of the occurrences of asynchronous events in UNIX are called: a |                                                                        |  |
|                                                                                                             | a. Signals                                                             |  |
|                                                                                                             | b. Messages                                                            |  |
|                                                                                                             | c. Pipes 🔏                                                             |  |
|                                                                                                             | d. All of the above                                                    |  |
| Thread synchronization primitives supported by Solaris include:b                                            |                                                                        |  |
|                                                                                                             | a. Semaphores 🔏                                                        |  |
|                                                                                                             | b. All of the above $\checkmark$                                       |  |
|                                                                                                             | c. Mutual exclusion (mutex) locks                                      |  |
|                                                                                                             | d. Condition variables 🔏                                               |  |
| The family of synchronization objects implemented by W2K include: b                                         |                                                                        |  |
|                                                                                                             | a. Mutex objects 🔏                                                     |  |

|                                                                                | c. Event objects 🔏                                        |
|--------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                                | d. Semaphore objects                                      |
| All deadlocks in                                                               | volve conflicting needs for resources by: a               |
|                                                                                | a. Two or more processes $\checkmark$                     |
|                                                                                | b. Three or more processes                                |
|                                                                                | c. One or more processes 🔏                                |
|                                                                                | d. None of the above 🐰                                    |
| A resource that                                                                | can be created and destroyed is called a: d               |
|                                                                                | a. Reusable resource 🔏                                    |
|                                                                                | b. Producible resource                                    |
|                                                                                | c. All of the above 🥻                                     |
|                                                                                | d. Consumable resource   ✓                                |
| An example of a                                                                | consumable resource is the following: b                   |
|                                                                                | a. Printers 🔏                                             |
|                                                                                | b. Messages 🗸                                             |
|                                                                                | c. All of the above                                       |
|                                                                                | d. Main Memory 🔏                                          |
| A condition of policy that must be present for a deadlock to be possible is: c |                                                           |
|                                                                                | a. Hold and wait 🐰                                        |
|                                                                                | b. Mutual exclusion                                       |
|                                                                                | c. All of the above $\checkmark$                          |
|                                                                                | d. No preemption 🔏                                        |
| A direct method                                                                | of deadlock prevention is to prevent the occurrence of: b |

b. All of the above

| a. Hold and wait 🦹                                                                                                                                                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| b. Circular wait 🗹                                                                                                                                                                                                     |  |
| c. All of the above                                                                                                                                                                                                    |  |
| d. Mutual exclusion 🔏                                                                                                                                                                                                  |  |
| In the Resource Allocation Denial approach to Deadlock Avoidance, a safe state is defined as one in which: b                                                                                                           |  |
| a. All potential process sequences do not result in a deadlock: 🤾                                                                                                                                                      |  |
| b. At least one potential process sequence does not result in a deadlock                                                                                                                                               |  |
| c. None of the above 🔏                                                                                                                                                                                                 |  |
| d. Several potential process sequences do not result in a deadlock:  A conservative strategy for dealing with deadlocks that involves limiting access to resources and imposing restrictions on processes is called: a |  |
| a. Deadlock Prevention                                                                                                                                                                                                 |  |
| b. None of the above 🔏                                                                                                                                                                                                 |  |
| c. Deadlock Avoidance                                                                                                                                                                                                  |  |
| d. Deadlock Detection 🔏                                                                                                                                                                                                |  |
| 第七章<br>The task of subdividing memory between the O/S and processes is performed<br>automatically by the O/S and is called: a                                                                                          |  |
| a. Memory Management                                                                                                                                                                                                   |  |
| b. Relocation 🔏                                                                                                                                                                                                        |  |
| c. All of the above 🦹                                                                                                                                                                                                  |  |
| d. Protection 🔏                                                                                                                                                                                                        |  |
| A reference to a memory location independent of the current assignment of data to memory is called a :: c                                                                                                              |  |
| a. Relative address 🔏                                                                                                                                                                                                  |  |
| b. None of the above                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                        |  |

|                                                                                              | c. Logical address                                                                                                                 |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                              | d. Absolute address 🔏                                                                                                              |  |
| An actual location                                                                           | on in main memory is called a ि: b                                                                                                 |  |
|                                                                                              | a. Logical address 🔏                                                                                                               |  |
|                                                                                              | b. Absolute address                                                                                                                |  |
|                                                                                              | c. Relative address 🔏                                                                                                              |  |
| The page table                                                                               | d. None of the above 🔏 for each process maintains: d                                                                               |  |
|                                                                                              | a. The physical memory location of the process 🔏                                                                                   |  |
|                                                                                              | b. The page location for each frame of the process                                                                                 |  |
|                                                                                              | c. None of the above 🔏                                                                                                             |  |
| In a system emp<br>to: d                                                                     | d. The frame location for each page of the process $\checkmark$ bloying a paging scheme for memory management, wasted space is due |  |
|                                                                                              | a. None of the above 🤾                                                                                                             |  |
|                                                                                              | b. Pages and frames of different specified sizes                                                                                   |  |
|                                                                                              | c. External fragmentation 🥻                                                                                                        |  |
|                                                                                              | d. Internal fragmentation                                                                                                          |  |
| In a system employing a segmentation scheme for memory management, wasted space is due to: d |                                                                                                                                    |  |
|                                                                                              | a. Segments of different sizes                                                                                                     |  |
|                                                                                              | b. None of the above 🔏                                                                                                             |  |
|                                                                                              | c. Internal fragmentation 🔏                                                                                                        |  |
| In a system emp                                                                              | d. External fragmentation   √  bloying a segmentation scheme for memory management, a process is                                   |  |
|                                                                                              |                                                                                                                                    |  |



| C. /               | All of the above <b>√</b>                                                                                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d.                 | Inefficient use of memory 🔏                                                                                                                                                       |
| ·                  | rnal fragmentation can be lessened in systems employing a ory management scheme by using: a                                                                                       |
| a.                 | Unequal size partitions                                                                                                                                                           |
| b.                 | Equal size partitions 🤾                                                                                                                                                           |
| <b>c.</b>          | Random size partitions                                                                                                                                                            |
| d.                 | None of the above 🔏                                                                                                                                                               |
| -                  | titioning technique of memory management, the phenomenon that ocks of memory outside of existing partitions is called: b                                                          |
| a.                 | None of the above 🐰                                                                                                                                                               |
| b.                 | External fragmentation                                                                                                                                                            |
| C. (               | Compaction 🔏                                                                                                                                                                      |
| d.                 | Internal fragmentation 🐰                                                                                                                                                          |
| -                  | titioning technique of memory management, the placement algorithm ock that is closest in size to the request is called: a                                                         |
| a.                 | Best-fit <b>√</b>                                                                                                                                                                 |
| b. <i>i</i>        | All of the above                                                                                                                                                                  |
| с.                 | Next-fit 🔏                                                                                                                                                                        |
| d.                 | First-fit 🔏                                                                                                                                                                       |
| that scans memory  | titioning technique of memory management, the placement algorithm from the location of the last placement and chooses the next available bugh to satisfy the request is called: a |
| a.                 | Next-fit <b>√</b>                                                                                                                                                                 |
| b. <i>i</i>        | All of the above                                                                                                                                                                  |
| с.                 | Best-fit 🗶                                                                                                                                                                        |
| d.                 | First-fit 🗶                                                                                                                                                                       |
| 第八章                |                                                                                                                                                                                   |
| The type of memory | y that allows for very effective multiprogramming and relieves the user                                                                                                           |

of memory size constraints is referred to as: b

- a. Real memory
- b. Virtual memory
- c. Main memory
- d. All of the above

The replacement policy that is impossible to implement because it would require the O/S to have perfect knowledge of future events is called the: a

- a. Optimal policy
- b. None of the above
- c. Least recently used (LRU) policy
- d. Clock policy

The replacement policy that chooses only among the resident pages of the process that generated the page fault in selecting a page to replace is referred to as a: c

- a. None of the above 🔏
- b. Variable replacement policy
- c. Local replacement policy  $\checkmark$
- d. Global replacement policy 🔏

The concept associated with determining the number of processes that will be resident in main memory is referred to as: c

- a. Load Control 🚜
- b. A cleaning policy 🔏
- c. The page fault frequency
- d. None of the above 🔏

In SVR4 and Solaris systems, the memory management scheme that manages user processes and disk I/O is called the: c

a. Virtual memory manager

| b.                                        | None of the above 🔏                                                                                                                   |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| C.                                        | Paging system   √                                                                                                                     |
| d.                                        | Kernel memory allocator 🔏                                                                                                             |
|                                           | mory management scheme implemented in Linux was designed to ge tables and directories in which of the following line of processors: c |
| a.                                        | None of the above 🔏                                                                                                                   |
| b.                                        | 32-bit Pentium/X86 architecture                                                                                                       |
| C.                                        | 64-bit Alpha architecture                                                                                                             |
| d.                                        | 16-bit X86 architecture 🔏                                                                                                             |
| The Windows 2000                          | O virtual memory manager can use page sizes ranging from: d                                                                           |
| a.                                        | 4 GB to 4 TB 🔏                                                                                                                        |
| b.                                        | 64 KB to 4 GB 🔏                                                                                                                       |
| C.                                        | None of the above                                                                                                                     |
| d.                                        | 4 KB to 64 KB <b>√</b>                                                                                                                |
|                                           | e the processor spends most of its time swapping process pieces rather tructions is called: a                                         |
| a.                                        | Thrashing                                                                                                                             |
| b.                                        | Paging X                                                                                                                              |
| C.                                        | The Principle of Locality                                                                                                             |
| d.                                        | None of the above 🔏                                                                                                                   |
| The situation that of Lookaside Buffer (* | occurs when the desired page table entry is not found in the Translation TLB) is called a: a                                          |
| a.                                        | TLB miss                                                                                                                              |
| b.                                        | Page fault 🤾                                                                                                                          |
| C.                                        | None of the above                                                                                                                     |
| d.                                        | TLB hit 🗶                                                                                                                             |
| The real addrest                          | ss of a word in memory is translated from the following portions of a                                                                 |

| virtual address:                        |                                                                                                          |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                         | a. Frame number and offset 🔏                                                                             |
|                                         | b. None of the above 🔏                                                                                   |
|                                         | c. Page number and frame number                                                                          |
|                                         | d. Page number and offset $\checkmark$                                                                   |
| Segmentation ha<br>address space, i     | as a number of advantages to the programmer over a non-segmented ncluding: c                             |
|                                         | a. Sharing among processes 🔏                                                                             |
|                                         | b. Simplifying the handling of growing data structures                                                   |
|                                         | c. All of the above $\checkmark$                                                                         |
|                                         | d. Protection 🔏                                                                                          |
| In a combined pumber of: a              | paging/segmentation system, a user's address space is broken up into a                                   |
| a. Variable-                            | sized Segments, which are in turn broken down into fixed-size pages 🗸                                    |
| b. Segment                              | ts or pages, at the discretion of the programmer 🧣                                                       |
| c. All of the                           | above 🔏                                                                                                  |
|                                         | e pages, which are in turn broken down into variable-sized segments 🗶 ved in a segmentation system by: b |
| a. Each process                         | segment table having a reference to the dispatcher main memory area 🧩                                    |
| b. Referencing a                        | segment in the segment tables of more than one process                                                   |
| c. Having a comr                        | non data area that all processes can share 🦹                                                             |
| d. All of the above<br>A fundamental cl | e 🥻 hoice in the design of the memory-management portion of an O/S is:                                   |
| 选择一个答案 a                                |                                                                                                          |
| 6                                       | a. All of the above                                                                                      |
| ŀ                                       | b. The algorithms employed for various aspects of memory management                                      |
|                                         |                                                                                                          |

| c. Whether or not to use virtual memory techniques 🔏                                                                                                                                     |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| d. Whether to use paging, segmentation of a combination of the two 🔏                                                                                                                     |  |  |
| 选择一个答案 d                                                                                                                                                                                 |  |  |
| a. None of the above                                                                                                                                                                     |  |  |
| b. Swapping 🔏                                                                                                                                                                            |  |  |
| c. Demand paging 🤾                                                                                                                                                                       |  |  |
| d. Prepaging 🧹                                                                                                                                                                           |  |  |
|                                                                                                                                                                                          |  |  |
| 第九章<br>The type of scheduling that involves the decision to add a process to those that are at least partially in main memory and therefore available for execution is referred to as: d |  |  |
| a. I/O scheduling 🔏                                                                                                                                                                      |  |  |
| b. None of the above 🔏                                                                                                                                                                   |  |  |
| c. Long-term scheduling                                                                                                                                                                  |  |  |
| d. Medium-term scheduling                                                                                                                                                                |  |  |
| One difficulty with the Shortest Process Next (SPN) scheduling technique is:                                                                                                             |  |  |
| a. The lack of preemption 🔏                                                                                                                                                              |  |  |
| b. The need to know or estimate required processing times for each process                                                                                                               |  |  |
| c. The starvation of longer processes 🚜                                                                                                                                                  |  |  |
| d. All of the above   ✓  One difficulty with the Shortest Remaining Time (SRT) scheduling technique is: c                                                                                |  |  |
| a. The lack of preemption 🔏                                                                                                                                                              |  |  |
| b. The starvation of shorter processes 🔏                                                                                                                                                 |  |  |
| c. The need to know or estimate required processing times for each process $\checkmark$                                                                                                  |  |  |
| d. All of the above 🚜 Which of the following scheduling policies require prior knowledge or estimation of                                                                                |  |  |

| process length:                                                                                                                                         | С                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                         | a. Highest Response Ratio Next (HRRN)                                                                                                           |
|                                                                                                                                                         | b. Shortest Remaining Time (SRT) 🔏                                                                                                              |
|                                                                                                                                                         | c. All of the above $\checkmark$                                                                                                                |
| It is impossible to dependence on                                                                                                                       | d. Shortest Process Next (SPN) <a> I</a><br>o make definitive comparisons of various scheduling policies due to factors such as:<br>b           |
|                                                                                                                                                         | a. The nature of the I/O demand and performance of the I/O subsystem                                                                            |
|                                                                                                                                                         | b. All of the above                                                                                                                             |
|                                                                                                                                                         | c. The efficiency of the scheduling and context switching mechanisms                                                                            |
|                                                                                                                                                         | d. The probability distribution of service times of the various processes 🕺 t schedules processes based on their group affiliation is generally |
| referred to as:                                                                                                                                         |                                                                                                                                                 |
|                                                                                                                                                         | a. All of the above 🔏                                                                                                                           |
|                                                                                                                                                         | b. Fair share scheduling                                                                                                                        |
|                                                                                                                                                         | c. Simulation modeling 🔏                                                                                                                        |
| d. Queuing analysis 🔏 The traditional UNIX scheduler divides processes into fixed bands of priority levels, with the highest priority band being the: a |                                                                                                                                                 |
|                                                                                                                                                         | a. Swapper band ◀                                                                                                                               |
|                                                                                                                                                         | b. File manipulation band                                                                                                                       |
|                                                                                                                                                         | c. User process band 🥻                                                                                                                          |
| The decision as following criteria                                                                                                                      | d. None of the above 🔏 to which job to admit to the system next can be based on which of the : c                                                |
|                                                                                                                                                         | a. Simple FIFO 🔏                                                                                                                                |
|                                                                                                                                                         | b. I/O requirements                                                                                                                             |

|                                                                                                                 | c. All of the above 🇹                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                 | d. Priority 🚜                                                                                                                                          |  |
| Typically, the sw                                                                                               | vapping-in function for processes is based on the need to manage: c                                                                                    |  |
|                                                                                                                 | a. Process priorities 🐰                                                                                                                                |  |
|                                                                                                                 | b. Virtual memory 🔏                                                                                                                                    |  |
|                                                                                                                 | c. The degree of multiprogramming                                                                                                                      |  |
|                                                                                                                 | d. None of the above 🔏                                                                                                                                 |  |
| In terms of frequexecutes: a                                                                                    | uency of execution, the short-term scheduler is usually the one that                                                                                   |  |
|                                                                                                                 | a. Most frequently                                                                                                                                     |  |
|                                                                                                                 | b. None of the above                                                                                                                                   |  |
|                                                                                                                 | c. Least frequently 🔏                                                                                                                                  |  |
| Response time                                                                                                   | d. About the same as the other schedulers in an interactive system is an example of: a                                                                 |  |
|                                                                                                                 | a. User-oriented criteria for short-term scheduling policies                                                                                           |  |
|                                                                                                                 | b. System-oriented criteria for long-term scheduling policies 🔏                                                                                        |  |
|                                                                                                                 | c. System-oriented criteria for short-term scheduling policies                                                                                         |  |
|                                                                                                                 | d. None of the above 🔏                                                                                                                                 |  |
| A typical way to overcome starvation of lower-priority processes in a priority-based scheduling system is to: d |                                                                                                                                                        |  |
|                                                                                                                 | a. Change a process priority randomly 🤾                                                                                                                |  |
|                                                                                                                 | b. Round-robin cycling of processes in a priority queue                                                                                                |  |
|                                                                                                                 | c. All of the above 🔏                                                                                                                                  |  |
|                                                                                                                 | d. Change a process priority with its age   √ lowing scheduling policies allow the O/S to interrupt the currently running ove it to the Ready state? c |  |
|                                                                                                                 |                                                                                                                                                        |  |

|                                                        | b. Non-Preemptive 🚜                                                                                                                  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | c. Preemptive                                                                                                                        |
|                                                        | d. None of the above 🤾 queuing model, the total time that a process spends in a system (waiting e time) is called: a                 |
|                                                        | a. Turnaround or residence time (TAT)                                                                                                |
|                                                        | b. Normalized turnaround time (TAT) 🔏                                                                                                |
|                                                        | c. Finish time (FT) 🔏                                                                                                                |
| In the Round Ro                                        | d. None of the above 🔏                                                                                                               |
|                                                        | a. Determining the length of the time quantum $\checkmark$                                                                           |
|                                                        | b. Determining the method of cycling through a given set of processes                                                                |
|                                                        | c. None of the above 🔏                                                                                                               |
|                                                        | d. Determining the fair distribution of time quanta to individual processes                                                          |
| 第十章<br>An example of t<br>devices is: b                | he key differences that can exist across (and even in) classes of I/O                                                                |
| a. Data rate 🥻                                         | b. All of the above   ✓ c. Data representation d. Error conditions 🗶                                                                 |
| _                                                      | sk scheduling policy is useful as a benchmark against which to evaluate duling policies because it provides a worst-case scenario: c |
| a. FIFO schedul                                        | ing b. None of the above c. Random scheduling 🧹 d. Priority scheduling 🦼                                                             |
|                                                        | uling algorithm that implements two subqueues in a measure to avoid the stickiness" is the: c                                        |
| a. All of the abo<br>Which of the fol<br>redundancy: c | lowing RAID levels implement some form of parity calculation to introduce                                                            |
| a. RAID Level 6                                        |                                                                                                                                      |

a. First-come-first-served

The disk cache replacement strategy that replaces the block that has experienced the fewest references is called: d

| a. Least Recently Used (LRU) |  |
|------------------------------|--|
| b. All of the above 🗶        |  |
| c. Least Referenced (LR) 🔏   |  |

d. Least Frequently Used (LFU) 🗸

In a UNIX system, which of the following types of I/O devices make use of character queues: c

- a. Tape drive 🧣
- b. All of the above 🔏
- c. Communications lines
- d. Disk drive 🦹

In a W2K system, the I/O manager module that includes lazy write and lazy commit services to improve overall performance is the: c

- a. Hardware device drivers
- b. None of the above 🔏
- c. Cache manager 🎻
- d. File system drivers 🔏

p>The I/O technique where the processor busy waits for an I/O operation to complete is called: c

- a. Interrupt-driven I/O 🔏
- b. Direct memory access (DMA)
- c. Programmed I/O  $\checkmark$
- d. None of the above 🔏

The system configuration that includes an I/O module which is a separate processor with a specialized instruction set can be referred to using the following terminology: c

| a. I/O Processor                                                                                                                                            | b. I/O Channel 🤾 c. All of the above 🗸 d. Direct Memory Access (DMA)                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| The bus configuration for DMA that provides no path other than the system bus between the DMA module(s) and I/O devices is: d                               |                                                                                                                                            |  |
|                                                                                                                                                             | a. None of the above 🙎                                                                                                                     |  |
|                                                                                                                                                             | b. I/O bus 🗶                                                                                                                               |  |
|                                                                                                                                                             | c. Single bus, integrated DMA-I/O                                                                                                          |  |
|                                                                                                                                                             | d. Single bus, detached DMA 🇹                                                                                                              |  |
|                                                                                                                                                             | objective in designing the I/O facility of a computer system that deals with ndle all I/O devices in a uniform manner is referred to as: c |  |
|                                                                                                                                                             | a. Directory management                                                                                                                    |  |
|                                                                                                                                                             | b. Efficiency 🔏                                                                                                                            |  |
|                                                                                                                                                             | c. Generality                                                                                                                              |  |
|                                                                                                                                                             | d. None of the above 🐰                                                                                                                     |  |
| In a hierarchical structure for managing I/O on a secondary storage device that supports a file system, the layer that is closest to the hardware is the: a |                                                                                                                                            |  |
|                                                                                                                                                             | a. None of the above $\checkmark$                                                                                                          |  |
|                                                                                                                                                             | b. Physical organization layer 🦹                                                                                                           |  |
|                                                                                                                                                             | c. Directory management layer                                                                                                              |  |
|                                                                                                                                                             | d. Device I/O layer 🔏                                                                                                                      |  |
| An example of a                                                                                                                                             | a block-oriented I/O device is: c                                                                                                          |  |
|                                                                                                                                                             | a. Printer 🚜                                                                                                                               |  |
|                                                                                                                                                             | b. Modem 🚜                                                                                                                                 |  |
|                                                                                                                                                             | c.CD-ROM                                                                                                                                   |  |
|                                                                                                                                                             | d. All of the above                                                                                                                        |  |
| The scenario where multiple buffers are used in an attempt to alleviate the problem of absorbing rapid bursts of I/O is typically referred to as: a         |                                                                                                                                            |  |
|                                                                                                                                                             | a. Circular buffering                                                                                                                      |  |

|                                   | b. Double buffering 🔏                                                               |
|-----------------------------------|-------------------------------------------------------------------------------------|
|                                   | c. Single buffering 🔏                                                               |
|                                   | d. None of the above 🔏                                                              |
| 第十一章                              |                                                                                     |
| A file is generally               | y defined to be: b                                                                  |
|                                   | a. A basic element of data 🥻                                                        |
|                                   | b. A collection of similar records                                                  |
|                                   | c. A collection of related fields 🔏                                                 |
|                                   | d. All of the above 🔏                                                               |
| Fixed file blockir                | ng experiences the following potential problem: a                                   |
|                                   | a. Internal fragmentation                                                           |
|                                   | b. Gaps due to hardware design                                                      |
|                                   | c. None of the above 🔏                                                              |
|                                   | d. External fragmentation 🔏                                                         |
| In which of the fo                | ollowing file allocation methods is preallocation required: a                       |
|                                   | a. Contiguous                                                                       |
|                                   | b. Indexed 🔏                                                                        |
|                                   | c. Chained 🔏                                                                        |
|                                   | d. None of the above                                                                |
| The technique o each free portion | f free disk space management that employs a pointer and length value of n is the: d |
|                                   | a. Free block list                                                                  |
|                                   | b. Indexing 🔏                                                                       |
|                                   | c. Bit tables 🚜                                                                     |
|                                   | d. None of the above                                                                |
| The data structu                  | re that maintains information on available disk space is called the: b              |

| a. Bit Table 🦹                                                                                                                                                                       |                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| b. Disk Allocation Table                                                                                                                                                             | <b>/</b>                               |  |
| c. None of the above 🧣                                                                                                                                                               |                                        |  |
| d. File Allocation Table (F                                                                                                                                                          | AT) 🔏                                  |  |
| File allocation in a UNIX system has the following characteristics: a                                                                                                                |                                        |  |
| a. Dynamic allocation usi                                                                                                                                                            | ng non-contiguous blocks with indexing |  |
| b. None of the above 🥻                                                                                                                                                               |                                        |  |
| c. Preallocation using no                                                                                                                                                            | n-contiguous blocks without indexing 🥻 |  |
| d. Dynamic allocation using contiguous blocks without indexing<br>In a W2K NTFS file system, the smallest physical storage unit on the disk (almost always 512 bytes) is called a: a |                                        |  |
| a. Sector 🗹                                                                                                                                                                          |                                        |  |
| b. None of the above                                                                                                                                                                 |                                        |  |
| c. Volume 🤾                                                                                                                                                                          |                                        |  |
| d. Cluster 🤾                                                                                                                                                                         |                                        |  |
| The level of the file system architecture that enables users and applications to access file records is called the: d                                                                |                                        |  |
| a. Basic file system level                                                                                                                                                           | X                                      |  |
| b. Basic I/O supervisor le                                                                                                                                                           | vel                                    |  |
| c. All of the above 🥻                                                                                                                                                                |                                        |  |
| d. Logical I/O level 🎻                                                                                                                                                               |                                        |  |
| Record access in a pile file can be conducted by: d                                                                                                                                  |                                        |  |
| a.Key field 🦹                                                                                                                                                                        |                                        |  |
| b. Partial index 🥻                                                                                                                                                                   |                                        |  |
| c. All of the above                                                                                                                                                                  |                                        |  |

|                                        | d. Exhaustive search                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------|
| Sequential files                       | are optimal in scenarios involving: c                                                |
|                                        | a. Applications that require infrequent updates 🔏                                    |
|                                        | b. All of the above 🔏                                                                |
|                                        | c. Applications that require the processing of all records in the file               |
| Indexed sequent                        | d. Applications that require frequent queries <a></a>                                |
|                                        | a. All of the above 🔏                                                                |
|                                        | b. File index and overflow file $\checkmark$                                         |
|                                        | c. Hash function and file index                                                      |
| Direct or backed                       | d. Hash function and an overflow file I files are often used where: d                |
| Direct of Hashed                       | r mes are orien used where.     d                                                    |
|                                        | a. Very rapid access is required 🔏                                                   |
|                                        | b. Fixed length records are used 🔏                                                   |
|                                        | c. Records are always accessed one at a time                                         |
|                                        | d. All of the above $\checkmark$                                                     |
| The file directory creator of the file | v information element that holds information such as the identity of the e is the: d |
|                                        | a. Access control information element                                                |
|                                        | b. Address information element 🔏                                                     |
|                                        | c. All of the above 🔏                                                                |
|                                        | d. Usage information element $\checkmark$                                            |
| In a tree-structur                     | red directory, the series of directory names that culminates in a file name the: a   |
|                                        | a. Pathname <b>√</b>                                                                 |
|                                        | b. None of the above                                                                 |

- c. Symbolic name 🥻
- d. Working directory 🔏

Access rights on a file typically are considered to constitute a hierarchy, with each right implying those that: d

- a. Succeed it 🔏
- b. None of the above
- c. Supercede it 🚜
- d. Precede it 🗸