AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Continuous random variables & their probability distributions – Part 1 of 3 (WMS Ch. 4.1-4.3)

September 26, 2017
Nicole Mason
Michigan State University
Fall 2017

MICHIGAN STATE

GAME PLAN

- · Collect Ch. 3 HW
- Reminder: Integration/C&W Ch. 14 HW due Thursday
- Review
- Graded in-class exercise
- · Probability distributions for continuous RVs
 - 1. Cumulative distribution functions (CDFs)
 - 2. Probability density functions (PDFs)
 - 3. Expected values & variances
- Next class: specific, common continuous probability distributions

Review

MICHIGAN STATE

Tchebysheff's Inequality

For any RV, Y, with with mean μ & variance σ^2 :

$$P[(\mu - k\sigma) < Y < (\mu + k\sigma)] \ge 1 - \frac{1}{k^2}$$

or

$$P[Y \le (\mu - k\sigma) \text{ OR } Y \ge (\mu + k\sigma)] \le \frac{1}{k^2}$$

for any constant k > 0

The probability of being less than k standard deviations from the mean is at least 1-1/k²

The probability of being k or more standard deviations from the mean is no more than $1/k^2$

Review

$$\frac{dF(x)}{dx} = f(x) \qquad \Rightarrow \qquad \int f(x) \, dx = F(x) + c$$

MICHIGAN STATE

Integration: the reverse of differentiation

- · Definite vs. indefinite integrals
- Definite integrals as the area under f(x)
- · Main rules:

1. Power rule:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad (n \neq -1)$$

- 2. Exponential rule: $\int e^x dx = e^x + c$ and $\int f'(x)e^{f(x)} dx = e^{f(x)} + c$
- 3. Logarithmic rule: $\int \frac{1}{x} dx = \ln x + c \quad (x > 0) \quad \text{and} \quad \int \frac{f'(x)}{f(x)} dx = \ln f(x) + c \quad (f(x) > 0)$
- 4. Integral is a linear operator: $\int \left[af(x) + bg(x) \right] dx = a \int f(x) dx + b \int g(x) dx$
- 5. Substition rule: $\int f(u) \frac{du}{dx} dx = \int f(u) du = F(u) + c$
- 6. Integration by parts: $\int f'(x)g(x) dx = f(x)g(x) \int f(x)g'(x) dx$
- See lecture notes from last class for properties of definite integrals
- Questions from last class?

Continuous RV & their probability distributions

Discrete vs. continuous RVs

- Discrete: an RV that takes on a finite or countably infinite # of distinct values
- Continuous: definition (# of outcomes & probability of each outcome)?
 - An RV that takes on an uncountably infinite # of values (in its range)
 - Examples?
 - P(Y=y)=0, i.e., the probability of an individual value of y is zero (infinite # of possible values so can't count or assign a positive probability to them)

MICHIGAN STATE

The probability distribution of a continuous RV

- How did we specify the probability distribution for discrete RVs?
 - Assign a probability to each distinct value that the discrete RV could take on; probabilities in [0,1] and sum to 1
- This approach isn't possible w/ continuous RVs b/c we have an infinite # of values
- Instead, we'll specify a distribution by its:
 - · Cumulative distribution function (CDF), and
 - Probability density function (PDF)

Cumulative distribution function (CDF)

$$F(y) = P(Y \le y)$$
 for $-\infty \le y \le \infty$

Properties

1.
$$F(-\infty) \equiv \lim_{y \to -\infty} F(y) = 0$$

3. F(y) is a nondecreasing function of y.

[so if
$$y_1 < y_2$$
, $F(y_1) \le F(y_2)$]

Examples of CDFs for discrete vs. continuous RVs

Discrete RV Continuous RV

- Check that both satisfy the 3 properties of CDFs
- Why is the discrete CDF a "step function", whereas the continuous CDF is smooth?
- An RV, Y, is said to be continuous if its CDF,
 F(y), is continuous for -∞ < y < ∞

Probability density function (PDF)

= an equation to describe the probability distribution of a continuous RV

$$f(y) = \frac{dF(y)}{dy} = F'(y)$$

Properties of PDFs for continuous RVs:

$$1. f(y) \ge 0$$
 for all $y, -\infty < y < \infty$

$$2. \int_{-\infty}^{\infty} f(y) \, dy = 1$$

Look familiar? Analogues for discrete RVs?

MICHIGAN STATE

Relationships b/w CDFs & PDFs

$$f(y) = \frac{dF(y)}{dy} = F'(y)$$

$$F(y) = \int_{-\infty}^{y} f(t) dt$$

© Cengage Learning

$$F(y) = \int_{-\infty}^{y} f(t) dt$$

PDFs & CDFs – example #1

Suppose the PDF for continuous RV, *Y*, is:

$$f(y) = \begin{cases} 3y^2, & 0 \le y \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find F(y), then graph both f(y) and F(y).

Properties of PDFs for continuous RVs:

PDFs & CDFs – example #2

1.
$$f(y) \ge 0$$
 for all $y, -\infty < y < \infty$
2. $\int_{-\infty}^{\infty} f(y) dy = I$

Suppose $f(y)=cy^2$ for $0 \le y \le 2$, and f(y)=0 elsewhere. Find the value of c for which f(y) is a valid density function.

Recall that P(Y=y)=0 for a continuous RV

What does this imply about the probabilities below?

$$P(a \le Y \le b)$$

$$P(a \le Y < b)$$

$$P(a < Y \le b)$$

All are equal!

$$P(a \le Y \le b) = \int_{a}^{b} f(y) dy = F(b) - F(a)$$

PDFs & CDFs – example #3

Find $P(1 \le Y \le 2)$ and P(1 < Y < 2) for the RV in example #2. Recall that the PDF was $f(y)=(3/8)y^2$ for $0 \le y \le 2$, and f(y)=0 elsewhere.

The expected value of a continuous RV

Recall the formula for E(Y) for discrete Y:

$$E(Y) = \sum_{i} y_{i} p(y_{i})$$

· What is the formula for the expected value of a continuous RV (i.e., what is the continuous analogue of the expression above)?

$$E(Y) = \int_{-\infty}^{\infty} y f(y) \, dy$$

Expected value of a continuous RV

The expected value of a function of a continuous RV

• Recall the formula for *E[g(Y)]* for **discrete** *Y*:

$$E[g(Y)] = \sum_{i} g(y_i) p(y_i)$$

· What is the formula for the expected value of a function of a continuous RV (i.e., what is the continuous analogue of the expression above)?

$$E[g(Y)] = \int_{-\infty}^{\infty} g(y)f(y)dy$$
 Expected value function of a continuous R

Expected value of a continuous RV

All of the same **expected value rules** that applied to discrete RVs apply to continuous RVs

For any constants b and c:

(i)
$$E(c) = c$$

(ii)
$$E(bX) = bE(X)$$

(iii)
$$E(bX+c) = bE(X)+c$$

$$(iv) \ E \Big[g_1(X) + g_2(X) + \dots + g_k(X) \Big] = \\ E \Big[g_1(X) \Big] + E \Big[g_2(X) \Big] + \dots + E \Big[g_k(X) \Big]$$

MICHIGAN STATE

Likewise for variance of a continuous RV

$$V(Y) = E[(Y - \mu)^2] = E(Y^2) - \mu^2 = E(Y^2) - [E(Y)]^2$$

Variance of an RV (discrete or cont.)

$$V(Y) = \sum_{i} (y_{i} - \mu)^{2} p(y_{i}) = \left[\sum_{i} y_{i}^{2} p(y_{i}) \right] - \left[\sum_{i} y_{i} p(y_{i}) \right]^{2}$$

Variance of a discrete RV

• How would you express V(Y) for a continuous variable in terms of its PDF, f(y), and integrals?

$$V(Y) = \int_{-\infty}^{\infty} (y - \mu)^2 f(y) dy = \int_{-\infty}^{\infty} y^2 f(y) dy - \left[\int_{-\infty}^{\infty} y f(y) dy \right]^2$$

Variance of a continuous

For any constants b and c:

(*i*)
$$V(c) = 0$$

(ii)
$$V(bX) = b^2V(X)$$

(iii)
$$V(bX+c) = b^2V(X)$$

E(Y) and V(Y) for continuous RV - example

In example #2 earlier, we found $f(y)=(3/8)y^2$ for $0 \le y \le 2$, and f(y)=0 elsewhere. If random variable Y has this continuous PDF, find E(Y) and V(Y).

$$E(Y) = \int_{-\infty}^{\infty} y f(y) \, dy$$

$$V(Y) = E(Y^{2}) - [E(Y)]^{2}$$
$$E(Y^{2}) = \int_{0}^{\infty} y^{2} f(y) dy$$

MICHIGAN STATE

Homework:

- WMS Ch. 4 (part 1 of 3)
 - •PDFs & CDFs: 4.8, 4.11
 - Expected values & variances of continuous RVs: 4.20, 4.25, 4.33 (parts a & c only)
- Reminder: C&W Ch. 14 HW (integration) due on Thursday

Next class:

 Continuous random variables (Part 2 of 3) – specific distributions (uniform, normal)

Reading for next class:

• WMS Ch. 4 (sections 4.4-4.5)

Application for next class:

Look up application in your field of uniform or normal distribution

In-class exercises #1 – CDF & probabilities for a continuous RV

1.13 A supplier of kerosene has a 150-gallon tank that is filled at the beginning of each week. His weekly demand shows a relative frequency behavior that increases steadily up to 100 gallons and then levels off between 100 and 150 gallons. If *Y* denotes weekly demand in hundreds of gallons, the relative frequency of demand can be modeled by

$$f(y) = \begin{cases} y, & 0 \le y \le 1, \\ 1, & 1 < y \le 1.5, \\ 0, & \text{elsewhere.} \end{cases}$$

- **a** Find F(y).
- **b** Find $P(0 \le Y \le .5)$.
- **c** Find $P(.5 \le Y \le 1.2)$.

MICHIGAN STATI

In-class exercises #2 - E(Y) & V(Y) for continuous RV

4.21 If, as in Exercise 4.17, *Y* has density function

$$f(y) = \begin{cases} (3/2)y^2 + y, & 0 \le y \le 1, \\ 0, & \text{elsewhere,} \end{cases}$$

find the mean and variance of Y.

In-class exercises #3 - E(Y) & V(Y) for continuous RV

4.32 Weekly CPU time used by an accounting firm has probability density function (measured in hours) given by

$$f(y) = \begin{cases} (3/64)y^2(4-y), & 0 \le y \le 4, \\ 0, & \text{elsewhere.} \end{cases}$$

- a Find the expected value and variance of weekly CPU time.
- b The CPU time costs the firm \$200 per hour. Find the expected value and variance of the weekly cost for CPU time.
- c Would you expect the weekly cost to exceed \$600 very often? Why?