August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

covering Slovak (SVK)

T - pokryvanie

Ak si pamatate hru Tetris, nachadzali sa v nej aj taketo utvary:

Nazvime si tento utvar ako T-tetromino; kde tetromino je oznacuje geometricky tvar ktory tvoria 4 spojene policka. Policko v tomto utvare oznacene ako \times sa nazyva center cell (stredove policko).

Marienka si nakreslila tabulku sm riadkami an stlpcami a napisala do kazdeho policka jedno cislo. Riadky tabulky su ocislovane od 0 po m-1 a stlpce 0 to n-1. Niektore policka oznacila ako special, tym ze ich nafarbila na cerveno. Teraz poprosila kamarata Janka, aby jej umiestnil T-tetrominoes do tabulky tak aby boli splnene nasledovne podmienky:

- pocet T-tetrominoes musi byt rovnaky ako pocet *special*/cervenych policok. pre kazde T-tetromino, jeho *center cell* musi lezat na *special*/cervenom policku.
- ziadne dve T-tetrominoes sa nesmu prekryvat.
- vsetky T-tetrominoes musia lezat v tabulke.

Vsimnite si ze existuju 4 rozlicne orientacie pre T-tetromino (\top , \bot , \vdash , and \dashv).

Ked sa tieto podmienky pokryvania tabulky nedaju spolnit, Janicko musi odpovedat *No*. Ak sa da pokryt tabulka T-tetrominami, Janicko musi najst take pokrytie pri ktorom je sucet cisel na pokrytych polickach najvacsi mozny. V takomto pripade musi Janicko povedat Marienke maximalny sucet.

Napiste program ktory pomoze Janickovy vyriesit tuto ulohu.

Vstup

Kazdy riadok obsahuje niekolko medzerou oddelenych celych cisel.

Prvy riadok obsahuje cisla m and n. Kazdy z nasledujucich m riadkov obsahuje n celych cisel z intervalu [0,1000]. j-te cislo i-teho riadku vstupu predstavuje cislo vpisane do j-teho policka i-teho riadku tabulky. Za tym nasleduje riadok s cislom $k \in \{1,\ldots,mn\}$. Potom nasleduje k riadkov, z ktorych kazdy pozostava z dvoch cisel $r_i \in \{0,\ldots,m-1\}$ a $c_i \in \{0,\ldots,n-1\}$,ktore reprezentuju polohu (riadok resp. stlpec) i-teho special/cerveneho policka. Zoznam special policok neobsahuje ziadne duplicitne policka.

Vystup

Vypiste najvacsiu moznu sumu pokrytych policok tak aby pokrytie s T-tetrominoes splnalo zadanie, inac vypiste No ak ziadne taketo T-tetrominoes pokrytie neexistuje.

Obmedzenia

• $1 < mn < 10^6$.

Podulohy

- 5 points: $k \le 1000$; for each pair of distinct special cells i and j, we have $|r_i r_j| > 2$ or $|c_i c_j| > 2$.
- 10 points: $k \leq 1000$; for each pair of distinct special cells i and j, it holds that if $|r_i-r_j| \leq 2$ and $|c_i-c_j| \leq 2$, then (r_i,c_i) and (r_j,c_j) are adjacent by side, or more formally the following statement is true $(|r_i-r_j|=1)$ and $|c_i-c_j|=0$ or $(|r_i-r_j|=0)$ and $|c_i-c_j|=1$).
- 10 points: $k \leq 1000$; for each pair of distinct special cells i and j, it holds that if $|r_i-r_j| \leq 2$ and $|c_i-c_j| \leq 2$, then $|r_i-r_j| \leq 1$ and $|c_i-c_j| \leq 1$.
- 10 points: $k \le 1000$; all special cells lie in the same row.
- 15 points: k < 10.
- 20 points: $k \le 1000$.
- 30 points: no additional constraints.

Priklad 1

Vstup

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Vystup

67

Poznamka

Na dosiahnutie najvacsej sumy, Janicko musi rozmietnit tetrominoes nasledovne:

- ¬ na policko (1, 1);
- ⊢ na policko (2, 2);
- ⊥ na policko (3, 4).

Priklad 2

Vstup

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Vystup

No