Лекция №1

Часть 2. Принципы криптографии

Елена Киршанова **Курс "Основы криптографии"**

Определения I.

Принятая модель вычислений – машина Тьюринга

Полиномиальное время

Алгоритм ${\cal A}$ работает за *полиномиальное время*, если, получая на вход данные размера n бит, ${\cal A}$ терминирует за время ${\cal O}(n^k)$ для константы k.

Примеры:

- умножение двух n-битных чисел: $\mathcal{O}(n\log n)$ полиномиальное время
- факторизация n-битного числа: $\exp(\mathcal{O}(n^{1/3} \cdot (\log n)^{2/3})$ субэкспоненциальное время

Алгоритм \mathcal{A} называется *вероятностным полиномиальным* (ppt), если он работает за полиномиальное время и использует случайные биты.

Определения II.

Пренебрежимо малая функция

Функция $f:\mathbb{N}\to\mathbb{R}$ пренебрежимо мала (negl), если для всех многочленов p существует $N\in\mathbb{N}$, такое что для любого $n\geq N$

$$f(n) < \frac{1}{p(n)}.$$

Примеры:

negl:

non-negl:

$$\frac{1}{2^n}, \ \frac{1}{2^{\sqrt{n}}}, \ \frac{1}{2^{\log^2(n)}}$$

$$\frac{1}{\log n}, \ \frac{1}{n^2}, \ \frac{1}{2^{\mathcal{O}(\log n)}}$$

Формальное описание шифра

Шифр-схема $\Pi = (KeyGen, Enc, Dec)$

включает в себя ppt алгоритмы KeyGen, Enc, Dec и множества

 \mathcal{K} — множество ключей

 $\mathcal{M}-$ множество открытых текстов

 $\mathcal{C}-$ множество шифр-текстов

такими, что для

$$k \leftarrow \mathsf{KeyGen}(1^{\lambda})$$
 $c \leftarrow \mathsf{Enc}(k, m)$
 $m' = \mathsf{Dec}(k, c)$

схема корректна: $\mathrm{Dec}(k,\mathrm{Enc}(k,m)) == m \quad \forall k \in \mathcal{K}, m \in \mathcal{M}$

Шифр-схема (свойства)

Формально: множества $\mathcal{K}, \mathcal{M}, \mathcal{C}$ зависят от пар-ра безопасности λ .

Параметризация шифр-схемы $\mathsf{Param}(\lambda)$ – ppt алгоритм, принимающий на вход пар-р безопасности λ , и выдающий битовую строку $\Lambda = \mathrm{poly}(\lambda)$, задающую параметры шифр-схемы.

Пример: Для криптографической хэш-функции SHA-256 с $\lambda=128$, Param (λ) выдаст

$$\mathcal{K}_{128} = \{0, 1\}^{512}$$
 $\mathcal{M}_{128} = \mathcal{C}_{128} = \{0, 1\}^{256}$

Основные принципы современной криптографии

Принцип Керкгоффса (Kerckhoffs' principle) 1 :

Криптосистема должна оставаться безопасной, если злоумышленнику известно всё, кроме секретного ключа

Алгоритмы Enc, Dec, Param являются открытыми и подлежат открытым научным исследованиям

¹Auguste Kerckhoffs, «La Cryptographie Militaire», 1883