

Signals and Sampling

Itthi Chatnuntawech

Signals

EGG

MNE's overview of MEG/EEG analysis with MNE-Python

Neural Spiking

Dayan P and Abbott LF. MIT Press (2005) Chestek CA et al. JNeurosci (2007)

MRI

Chatnuntawech et al. MRI (2016)

MRSI

Chatnuntawech et al. MRM (2015)

Signals

Signal - A function of one or more independent variables real-valued signal

ชาสร้างคน ชามพรมแดน

Speaker: Itthi Chatnuntawech

Complex-valued Signals

$$z = a + jb$$
 where $j = \sqrt{-1}$

Electrical and control system engineers use j instead of i

Complex-valued Signals

$$x(t) = e^{j2\pi \times 20t} = \cos(2\pi \times 20t) + j\sin(2\pi \times 20t)$$

Continuous- and Discrete-Time Signals

continuous-time signal

continuous independent variable, t

discrete-time signal

integer variable, n

 $[0, 0.4540, 0.8090, \dots, 0.8090, 0.4540]$ a sequence of 20 numbers in this case

Discrete-Time Signal Processing

Many applications make use of discrete-time technology to process signals that started out as continuous-time signals.

In many contexts, discrete-time signal processing is

- More flexible
- Less expensive
- Programmable
- Easily reproducible

Oppenheim, Alan V. Discrete-time signal processing. Pearson Education India, 1999. Oppenheim, Alan V., et al. Signals and systems. Vol. 2. Upper Saddle River, NJ: Prentice hall, 1997.

สร้างคน ข้ามพรมแดน

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Speaker: Itthi Chatnuntawech

Sampling of Continuous-Time Signals

ชาสร้างคน ชามพรมแคน

Speaker: Itthi Chatnuntawech

 $f_s = 128 \ Hz$ $T = 0.008 \ s$ 64 samples

Speaker: Itthi Chatnuntawech

ชาสร้างคน ชามพรมแดน

 $f_s = 16 \ Hz$ $T = 0.00625 \ s$ 8 samples

Speaker: Itthi Chatnuntawech

 $f_s = 16 \ Hz$ $T = 0.00625 \ s$ 8 samples

Speaker: Itthi Chatnuntawech

The Sampling Theorem

Communication in the Presence of Noise*

CLAUDE E. SHANNON†, MEMBER, IRE

THEOREM 1: If a function f(t) contains no frequencies higher than W cps, it is completely determined by giving its ordinates at a series of points spaced 1/2W seconds apart.

If a function $x_c(t)$ contains no frequencies higher than W Hz, then it can be completely determined from $x[n] = x_c(nT)$ if $T < \frac{1}{2W}$.

$$f_s = \frac{1}{T} > 2W$$
 The Nyquist rate - $2W$
The Nyquist frequency - W

Speaker: Itthi Chatnuntawech