

8.1 Linear Regression

Machine Learning 1: Foundations

Marius Kloft (TUK)

Recap

In all lectures up to now, we considered binary classification

meaning, the labels are binary:

$$y_1, \ldots, y_n \in \{-1, +1\}$$

Recap

In the upcoming lectures, consider different assumptions on the labels:

- real labels ("regression") [today]
- no labels ("clustering") [next week]

Contents of this Class

Regression

- Motivating Example
- 2 Linear Regression
- 3 LOOCV
- Mon-linear Regression
 - Kernel Ridge Regression
 - Deep Regression
- 5 Unifying Loss View of Regression and Classification

- Motivating Example
- 2 Linear Regression
- 3 LOOCV
- 4 Non-linear Regression
 - Kernel Ridge Regression
 - Deep Regression
- 5 Unifying Loss View of Regression and Classification

Example: Rent index

Boston Housing Data Set

- ► Labels: median value of building (in \$1000)
- Inputs: 13 features
 - ► AGE: proportion of owner-occupied units built prior to 1940
 - B: proportion of blacks by town
 - CRIM: per capita crime rate by town
 - DIS: weighted distances to five Boston employment centres
 - NOX: nitric oxides concentration (parts per 10 million)
 - PTRATIO: pupil-teacher ratio by town
 - RM: average number of rooms per dwelling
 - etc.

Boston Housing Data Set

- Labels: median value of building (in \$1000)
- ► Inputs: 13 features
 - ► AGE: proportion of owner-occupied units built prior to 1940
 - B: proportion of blacks by town
 - CRIM: per capita crime rate by town
 - DIS: weighted distances to five Boston employment centres
 - NOX: nitric oxides concentration (parts per 10 million)
 - PTRATIO: pupil-teacher ratio by town
 - RM: average number of rooms per dwelling
 - etc.

The More Crime The Cheaper the House

Task

Say we own a building, how can we predict its value y from its features **x** (CRIM, AGE, etc.)?

The area of machine learning dealing with this problem is called **regression**.

Today: Regression

Problem setting

Given

- ▶ training inputs $X = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{d \times n}$ and
- ▶ labels $y_1, ..., y_n \in \mathbb{R}$,

find a function $f: \mathbb{R}^d \to \mathbb{R}$ with

► $f(\mathbf{x}) \approx y$ for new data \mathbf{x}, y .

Key difference to *classification*:

▶ y is real-valued, rather than $y \in \{-1, +1\}$

- Motivating Example
- 2 Linear Regression
- 3 LOOCY
- 4 Non-linear Regression
 - Kernel Ridge Regression
 - Deep Regression
- Unifying Loss View of Regression and Classification

How to Predict y Given a New x?

Linear regression: predict using a linear model $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x}$ But which line to take?

The Line With Minimal Distance to the Training Data

Want:
$$y_i \approx \mathbf{w}^{\top} \mathbf{x}_i \quad \forall i = 1, \dots, n$$

▶ I.e.: $\sum_{i=1}^{n} (y_i - w^{\top} \mathbf{x}_i)^2 = \text{small}$ (the hyperplane with minimal average squared distance to the training data)

The Oldest Machine Learning Method in History

Least-squares regression (Legendre, 1805)

$$\mathbf{w}_{\mathsf{LS}} := \underset{\mathbf{w} \in \mathbb{R}^d}{\mathsf{arg\,min}} \ \sum_{i=1}^n (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2 = \underset{\mathbf{w} \in \mathbb{R}^d}{\mathsf{arg\,min}} \ \|\mathbf{y} - X^{\top} \mathbf{w}\|^2$$

Definition

The function $\ell(t,y) := (t-y)^2$ is called **least-squares loss**.

Quiz: what could be a disadvantage of this method?

The Following Method is Much Better!

Idea: use a regularizer

Ridge regression (RR)

$$\mathbf{w}_{\mathsf{RR}} := \underset{\mathbf{w} \in \mathbb{R}^d}{\mathsf{arg\,min}} \ \ \frac{1}{2} \left\| \mathbf{w} \right\|^2 + C \left\| \mathbf{y} - X^{\mathsf{T}} \mathbf{w} \right\|^2$$

How to compute w_{RR}?

Theorem

$$\mathbf{w}_{\mathsf{RR}} = \left(XX^{\top} + \frac{1}{2C}I\right)^{-1}Xy$$

Quiz: what could be a problem in practice?

▶ Need to compute the matrix inverse (is $O(d^3)$)

Proof

The RR problem,

$$\mathbf{w}_{\mathsf{RR}} := \underset{\mathbf{w} \in \mathbb{R}^d}{\mathsf{arg \, min}} \quad \underbrace{\frac{1}{2} \|\mathbf{w}\|^2 + C \|\mathbf{y} - \mathbf{X}^\top \mathbf{w}\|^2}_{=:\mathcal{L}(\mathbf{w})}$$

is an unconstrained optimization problem.

Thus optimal solution \mathbf{w}_{RR} satisfies $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_{RR}) = 0$.

We compute (see next slide for additional details):

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_{\mathsf{RR}}) = \mathbf{w}_{\mathsf{RR}} - 2CX\mathbf{y} + 2CXX^{\mathsf{T}}\mathbf{w}_{\mathsf{RR}}$$

Thus
$$\mathbf{w}_{RR} = \left(XX^{\top} + \frac{1}{2C}I\right)^{-1}Xy$$

Derivation of $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})$$

$$= \nabla_{\mathbf{w}} \left(\frac{1}{2} \|\mathbf{w}\|^{2} + C \|\mathbf{y} - X^{\top} \mathbf{w}\|^{2}\right)$$

$$= \nabla_{\mathbf{w}} \left(\frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C (\mathbf{y} - X^{\top} \mathbf{w})^{\top} (\mathbf{y} - X^{\top} \mathbf{w})\right)$$

$$= \nabla_{\mathbf{w}} \left(\frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C (\mathbf{y}^{\top} - \mathbf{w}^{\top} X) (\mathbf{y} - X^{\top} \mathbf{w})\right)$$

$$= \nabla_{\mathbf{w}} \left(\frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C (\mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} X^{\top} \mathbf{w} - \mathbf{w}^{\top} X \mathbf{y} + \mathbf{w}^{\top} X X^{\top} \mathbf{w})\right)$$

$$= \nabla_{\mathbf{w}} \left(\frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \mathbf{y}^{\top} \mathbf{y} - 2C \mathbf{w}^{\top} X \mathbf{y} + C \mathbf{w}^{\top} X X^{\top} \mathbf{w}\right)$$

$$= w - 2C X \mathbf{y} + 2C X X^{\top} \mathbf{w}$$

What About the Bias b?

We have considered a linear model without bias:

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$$

However, we can easily incorporate a bias into any linear learning machine (regression, SVM, etc.) by the following trick:

augment the feature space by a dimension of all ones:

$$\forall i: \tilde{\mathbf{x}}_i := \begin{pmatrix} \mathbf{x}_i \\ 1 \end{pmatrix}, \quad \tilde{X} := (\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n) = \begin{pmatrix} X \\ \mathbf{1}^\top \end{pmatrix}$$

• use $\tilde{\mathbf{w}} := \begin{pmatrix} \mathbf{w} \\ b \end{pmatrix}$ as parameter

Example: ridge regression

w*:=
$$\underset{\tilde{\mathbf{w}} \in \mathbb{R}^{d}, b \in \mathbb{R}}{\min} \frac{1}{2} \|\tilde{\mathbf{w}}\|^{2} + C\|\mathbf{y} - \tilde{X}^{\top}\tilde{\mathbf{w}}\|^{2}$$

$$\underset{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}}{\arg \min} \frac{1}{2} \left(\|\mathbf{w}\|^{2} + b^{2} \right) + C\|\mathbf{y} - X^{\top}\mathbf{w} - b\mathbf{1}\|^{2}$$

Usually no drawback in that the bias is regularized