

数字电子技术基础

第六章 存储器与大规模集成电路

存储器

- 存储器:系统大量存储二进制信息的器件。
- 存储器与寄存器的不同之处
- ✓ 用途(相同)——存储电路的历史状态。
- ✓ 器件结构

	寄存器	存储器	
存储单元	触发器	存储单元	
存储密度	低	高	
访问方式	连线	地址译码结合读/写脉冲	
访问操作	并发	每次只能读/写部分存储数据	

■ 存储器应用: 计算机系统、数字电路系统

基本半导体存储阵列

- 存储单元:存储器中每个存储元件都可以保存一个"1"或"0"。
- 存储器组成:存储单元阵列。

存储器的基本操作

- ■写操作
- ■读操作

存储器性能指标

■存储容量

每个存储芯片所能存储的二进制的位数。 存储器的容量=字数×位数(字长)

■ 存储速度

存储器从获得有效地址到给出有效数据所需的时间。

半导体存储器

- ■半导体存储器的分类
 - ✓ 只读 ROM: Read-Only Memory 掩模ROM、PROM EPROM、E²PROM、FLASH
 - ✓ 随机存取 RAM: Random-Access Memory SRAM

 DRAM

只读存储器

- ROM的电路结构
 - 存储矩阵、地址译码器、输出缓冲器
 - > 数据线、地址线、选通控制线

只读存储器工作原理

 $D_3D_2D_1D_0$

片读存储器

- > ROM存储矩阵的"字"线和"位"线
 - ✓ 字线和位线的每个交叉点都是一个存储单元。(简化画法)
 - * 二极管
 - **❖ TTL工艺**
 - ◆ MOS工艺

数字电子技术基础——第六章 存储器与大规模集成电路

<mark>片</mark>读存储器

liu

- 固定ROM (掩膜ROM)
 - ▶ 厂家把数据写入存储器中,用户无法进行修改
- 一次性可编程ROM(PROM)
 - ✓ 出厂时存储矩阵交叉点用熔丝连接,存储内容全为1(或全为0),用 户可根据需要编程一次(编程脉冲:大电流"写",将"0"的位熔断。)
- 光可擦除可编程ROM(EPROM)
 - 用浮栅技术生产的可编程存储器,其内容可通过紫外线照射而被擦除
- 电可擦除可编程ROM(E²PROM)
 - 采用浮栅技术,其存储单元的是隧道MOS管,可用电擦除,擦除速度毫秒量级
- 快闪存储器(Flash Memory)
 - 采用浮栅型MOS管,电擦除方式,数据写入方式与EPROM类似,擦除/写入速度快,集成度高。

随机存取存储器

- ■特点
 - ✓ 可以随时从任何一个指定的地址读出数据,也可以随时将数据写入任何一个指定的存储单元中去
 - ✓ 掉电后存储的数据丢失

■静态随机存储器 SRAM

- 动态随机存储器 DRAM
 - ✓ 比静态的集成度高、功耗低

随机存取存储器

- RAM的基本结构
- RAM的存储单元
- RAM的容量扩展

RAM的基本结构

静态RAM的存储单元

- 六管NMOS静态RAM存储单元
 - ✓ SR锁存器(latch)的基础上附加门控管而构成的,是靠锁存器的自保功能存储数据的。
 - ✓ 由4只管子组成的锁存器(门闩,基本RS触发器)

静态RAM的存储单元

- 六MOS-SRAM存储单元
- ✓ SR锁存器基础上附加门控管而构成的,是靠锁存器的自保功能存储数据的。

liu il,

动态RAM

- ■利用MOS管栅极电容可以存储电荷的原理 制成
- 为了及时补充漏掉的电荷以避免存储的数据丢失,必须定时地给栅极电容补充电荷, 称为刷新或再生。
 - > 刷新控制电路(外接或内部集成)
- ■大容量,高集成度
 - ▶ 存储单元:四管、三管,单管
 - 单管虽然外围控制电路比较复杂,但有利于提高集成度

单管DRAM

■ 写操作

- 读操作
- 刷新操作

三管DRAM

- 电路结构 信息存储在Cg上。
- 工作过程
- ✓ 读操作
 C_D预充到 V_{DD},
 读字线为'1',位线上的电平数据 经读出放大器输出。
- ✓ 写操作
- ✓ 刷新操作 周期性读出C_g上信息到读位线上, 再对存储单元进行写操作。

存储器容量的扩展

- ■位扩展方式
- ■字扩展方式

存储器容量的位扩展

8位、16位、64位、32位、64位...

- ▶ 位扩展方式:字数(存储单元的个数)够用,而位数(字的宽度)不够
- > 扩展连线方法:
 - ✓ 地址线并联
 - ✓ 控制线并联 $(R/W, \overline{CS})$
 - ✓ 每一片的双向数据线(I/O)按位的高低排列好

存储器容量的位扩展

例:将1024*1的RAM扩展成1024*8

存储器容量的字扩展

- ■字扩展
 - > 将RAM(ROM)接成字数更多的存储器
- ■字扩展的连线方法
 - > 地址线
 - ✓ 原有的地址线并联;
 - ✓ 用译码器对增加的外部地址线进行译码,译码输出线分别连接RAM的片选,实现选片功能
 - > 数据线并联
 - > 控制线

存储器容量的字扩展

例: 用256X8的存储器扩展成1024X8.

数字电子技术基础——第六章 存储器与大规模集成电路

存储器实现组合逻辑函数

- 回顾: ROM的电路特点
 - POM的地址译码器由许多"与门"组成,这些与门网络称为"与阵列",若将地址变量看成输入逻辑变量,则地址译码器的输出(各条字线)便可代表输入变量的全部各个最小项。
 - 存储网络是位线和字线在交叉点上的耦合(连接、不连接) 形成,位线的输出为这些耦合元件的逻辑"或",这些或 门网络实现了最小项的或的逻辑运算。

数字电子技术基础——第六章 存储器与大规模集成电路

存储器实现组合逻辑函数

liu

第六章 存储器与大规模集成电路 数字电子技术基础

存储器实现组合逻辑函数

 $W_0 = \overline{A}_1 \overline{A}_0$

 m_0

 m_1

 m_2

 m_3

存储器实现组合逻辑函数

■ 例:用ROM设计一个八段字符显示的译码器

输 入	输 出	显示
рсва	abcdefg h	
0 0 0 0	11111101	
0 0 0 1	0 1 1 0 0 0 0 1	
0 0 1 0	11011011	
0 0 1 1	11110011	
0 1 0 0	01100111	
0 1 0 1	10110111	(1 <u>a</u>),
0 1 1 0	10111111	$f \mid b$ $e \mid g \mid c$
0 1 1 1	11100001	e g c
1 0 0 0	11111111	d
1 0 0 1	11110111	
1 0 1 0	11111010	
1011	00111110	
1 1 0 0	00011010	
1 1 0 1	01111010	
1 1 1 0	11011110	
1111	10001110	

