Mastering Imperfect State Games through Deep Recurrent Reinforcement Learning

DAI, Zhiwen SEEM, CUHK 18 April 2019

Intro: Problem Setting

- We often face imperfect state control problems.
- MDP → Partial Observable MDP (POMDP)
- In control, we can use the **historical information** I_k to predict the current state S_k .
- However, sometimes we even don't know what S_k is, so we can't do the prediction.
- We may even don't know the transition probabilities of the POMDP.
- In a word, we can only know what is **observable** (observations, actions, rewards).

Intro: Reinforcement Learning

- RL can deal with
 - MDPs not knowing the transition probabilities (since it's model-free).
 - huge MDP models (video games, Go...) using deep learning (DQN, A2C, PPO...)
- How about POMDP?
- I will introduce some new algorithms in RL to deal with POMDPs.
 - Deep Recurrent Q-Network (literature review)
 - Deep Recurrent Q-Network with Actions (I proposed)
- I will introduce them using a game MazeWorld.

MazeWorld: Level 1

- Start from (0, 0).
- End at (2, 5).
- State: (row, column)
- Reward: -5 each step before End; 100 at End.
- Goal: maximize total rewards.
- It's a perfect state
 MDP.

Max total rewards: 60

Start	-5				
	-5				
	-5				<i>End</i> +100
	-5	-5	-5	-5	-5

wall

Algorithm 1: Q-learning

Q-table

	UP	DOWN	LEFT	RIGHT
(0,0)	-5	-3	-10	10
(0,1)	-5	5	-3	-4
•••	•••	•••	•••	•••
(5,5)	•••		•••	•••

Algorithm 2: Deep Q-Network

- What if the Q-table is too large?
- Use a neural network to substitute the Q-table.
- Q-network

Q(S, "UP")
Q(S, "DOWN")
Q(S, "LEFT")
Q(S, "RIGHT")

- Train the Q-network
 - Build a "target network"
 - Sample from memory
 - Do the updates

Details are in this famous paper by DeepMind

Results of Level 1

- DQN
 - input: 2 \rightarrow hidden1: 20 \rightarrow hidden2: 50 \rightarrow output: 4.


```
['R', 'D', '-', 'D', 'D', 'L']
['-', 'D', '-', 'D', '-', '-']
['-', 'D', '-', 'D', '-', 'X']
['R', 'R', 'R', 'R', 'R', 'U']
['-', '-', 'R', 'R', 'R', 'R']
['-', '-', 'R', 'R', 'R', 'U']
```

Strategy of DQN

MazeWorld: Level 2

- Bonus 100 at (3, 4), go "UP" twice to get it.
- Goal: maximize total rewards.
- It's an POMDP.
- True state is:

(row, column, #doing "UP" at (3, 4))

- Observation: (r, c)
- DQN? Not working well!

Start	-5				
	-5				
	-5			+100	<i>End</i> +100
	-5	-5	-5	-5×2 (3,4) -5	-5

Algorithm 3: Deep Recurrent Q-Network

My notes of RNN:

https://github.com/Daizhiwen/Intro-to-Recurrent-Neural-Networks

- Recurrent Neural Networks
 - RNN cells: Basic RNN, GRU, LSTM...
 - Gated Recurrent Unit can learn to memory and forget things (like LSTM, but simpler).

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine ₉ translation." *arXiv preprint arXiv:1406.1078* (2014).

Algorithm 3: Deep Recurrent Q-Network, cont'd

- DRQN
- $h_0 = \vec{0}$
- Some changes in the training from DQN.

 h_0

Results of Level 2

- DQN
 - input: 2 \rightarrow hidden1: 20 \rightarrow hidden2: 50 \rightarrow output: 4.
- DRQN
 - GRU size: 10, DQN: $10 \rightarrow 50 \rightarrow 50 \rightarrow 4$.

DQN: Converges, but not optimal

DRQN: Converges to optimum

MazeWorld: Level 3

- Same maze as in Level 2.
- But we can only observe the row information!
- It's reasonable that knowing only the history of row information is not very helpful.
- What if we know the history of actions?
- Knowing row and action, we may guess the column better!

Algorithm 4: DRQN + Actions

- Add actions into the inputs of GRUs.
- $A_0 = \vec{0}$ $h_0 = \vec{0}$

Results of Level 3

- DQN
 - input: 2 \rightarrow hidden1: 20 \rightarrow hidden2: 50 \rightarrow output: 4.
- DRQN
 - GRU size: 10, 1 layer. DQN: $10 \rightarrow 50 \rightarrow 50 \rightarrow 4$.
- DRQN+A
 - GRU size: 15, 2 layers. DQN: $15 \rightarrow 50 \rightarrow 50 \rightarrow 4$.

Results of Level 3, cont'd

DQN Not converges

DRQN: Not converges

DRQN+A: Converges to optimum

Summary

- Game: MazeWorld, level 1: MDP, level 2&3: POMDP
- Algorithms: DQN, DRQN, DRQN+A
- Performance:
 DQN:
 level 1 V
 level 2 ×
 level 3 ×
 DRQN:
 level 1 V
 level 2 V
 level 3 ×
 level 3 V
- View my codes (PyTorch) on GitHub: https://github.com/dull-bird/drqn_mazeworld
- DQN & DRQN codes references: https://github.com/metalbubble/DeepRL-Tutorials

Thank You!