

CS 492: Operating Systems

Memory Management

Instructor: Iraklis Tsekourakis

Email: itsekour@stevens.edu

Memory Holes

- Hole block of available memory; holes of various size are scattered throughout memory
- When a process arrives, it is allocated memory from a hole large enough to accommodate it

External Fragmentation

• External fragmentation: total memory space exists to satisfy request but it is not contiguous

125k Process 9 ? process 3

process 8

100k

process 2

Modern technique: Paging

- Solve the external fragmentation problem by using fixed-size chunks of virtual and physical memory
 - Virtual memory unit called a *page*
 - Physical memory unit called a *frame* (or sometimes page frame)
 - Pages and page frames are of the same size
 - Size is a power of 2
 - Typically 4-64KB
- Virtual address space: a sequence of *pages*
- Physical memory: a sequence of *page frames*

Virtual Addresses V.S. Physical Memory

Question

Using the previous page table, give the physical address corresponding to each of the following virtual addresses:

- (a) 20
- (b) 4100
- (c) 8300

How Do Pages Fix External Fragmentation Problem?

External Fragmentation

Pages of Virtual Memory

Application Perspective

- Application believes it has a single, contiguous address space ranging from 0 to 2^P— 1 bytes
 - Where P is the number of bits in a pointer (e.g., 32 bits)
- In reality, virtual pages are scattered across physical memory
 - This mapping is invisible to the program, and not even under it's control!

Illustration of Application Perspective

Address Translation

- Any page can be translated to any page frame
- Translation is done by MMU
 - Virtual address is broken into: (1) a virtual page number, and (2) an offset
 - Mapping from virtual page to physical frame provided by a page table

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset

Page Table

- MMU translates virtual address to physical address via the page table
- Number of entries in page table = number of virtual pages
- One page table per process
 - Located in memory (either kernel's physical memory or process' virtual memory)

Example of Page Table

Details of Address Translation by Page Table

Example: Address Translation

16 virtual pages: |p|=4

Page size 4 KB: |d|=12

Page Table Entry (PTE)

- Page Frame # physical page frame where virtual page is loaded
- Present/Absent bit Is page loaded in main memory?
- Protection read, write, executable
- "dirty bit" has page been modified?
 - If yes, then need to write back to disk when page is swapped out of physical memory
- Referenced set when page is accessed
 - Helps OS decide whether or not to swap page out
- Disable caching if set, do not use cached copy
 - Cached copy may be invalid if page is mapped to I/O device and will change often (memory-mapped I/O)