lamp quick start

October 25, 2024

1 Quick Start

In this vignette we will demonstrate how to use LAMP python package. The input data and reference files are located in https://github.com/wanchanglin/lamp/tree/master/examples/data.

1.1 Setup

To use LAMP, the first step is to import some python libraries including LAMP.

```
[1]: import sqlite3
import pandas as pd
from lamp import anno, stats, utils
```

1.2 Data Loading

LAMP supports text files separated by comma (,) or tab (\t). The Microsoft's XLSX is also supported, provided that data set is in the first sheet.

Here we use a small example data set with tsv format. Load it into python and check its format:

```
[2]: d_data = "./data/df_pos_2.tsv"
data = pd.read_table(d_data, header=0, sep="\t")
data
```

```
[2]:
              name
                        namecustom
                                                       mzmin
                                                                                    rt
                                             mz
                                                                    mzmax
     0
           M151T34
                      M150.8867T34
                                     150.886715
                                                  150.886592
                                                              150.886863
                                                                             34.152700
     1
           M151T40
                      M151.0402T40
                                                  151.040092
                                                               151.040350
                                                                             39.838172
                                     151.040235
     2
           M152T40
                      M152.0436T40
                                     152.043607
                                                  152.043451
                                                               152.043737
                                                                             40.303700
     3
           M153T34
                      M152.8838T34
                                     152.883824
                                                  152.883678
                                                               152.883959
                                                                             34.174647
     4
           M153T36
                      M153.0195T36
                                     153.019474
                                                  153.019331
                                                               153.019633
                                                                             35.785847
     395
          M283T339
                     M283.2646T339
                                     283.264583
                                                  283.264341
                                                               283.264809
                                                                            338.763489
                                                  284.194939
     396
                      M284.1953T60
                                     284.195294
                                                              284.195536
                                                                             59.593561
           M284T60
     397
          M284T108
                     M284.2235T108
                                     284.223499
                                                  284.223156
                                                               284.223692
                                                                            108.406389
     398
          M284T339
                      M284.268T339
                                     284.267962
                                                  284.267634
                                                               284.268204
                                                                            338.725056
     399
           M285T34
                       M284.775T34
                                     284.775031
                                                  284.774635
                                                               284.775287
                                                                             34.079641
               rtmin
                            rtmax
                                    npeaks
                                                             X210
                                                                            X209
     0
           33.637595
                        35.465548
                                        97
                                            97
                                                    4.224942e+06
                                                                   3.946599e+06
```

```
1
      37.556072
                   40.532315
                                   95
                                       95
                                               1.419062e+06
                                                              1.251606e+06
2
      38.092678
                   40.909428
                                       81
                                               1.203919e+05
                                                              9.970442e+04
                                   81
3
      33.637595
                   35.465548
                                   98
                                       98
                                               5.592065e+06
                                                              5.761380e+06
4
      34.130244
                   36.287354
                                   98
                                       98
                                               7.284938e+06
                                                              1.083289e+07
     338.398380
                  339.165948
                                               3.509767e+05
                                                              4.117633e+05
395
                                   94
                                       94
396
      58.844217
                   60.107058
                                   59
                                       59
                                                        NaN
                                                                       NaN
397
     107.880510
                  108.971046
                                   72
                                       72
                                              7.477652e+04
                                                              7.482219e+04
398
     338.268300
                                       84
                                               3.697604e+04
                                                              5.398264e+04
                  339.370098
                                   84
399
      33.667172
                   35.198181
                                       97
                                               3.439330e+06
                                                              3.359842e+06
             X208
                            X207
                                                          X205
                                           X206
                                                                         X204
0
     3.668948e+06
                    3.754321e+06
                                   3.853724e+06
                                                  3.787350e+06
                                                                 3.584464e+06
                                   5.331963e+05
1
     1.214826e+06
                    8.143028e+05
                                                  1.930928e+06
                                                                 1.479001e+06
2
     9.384000e+04
                    4.186335e+04
                                                  2.115447e+05
                                                                 1.285713e+05
                                            NaN
3
     5.845419e+06
                    5.576013e+06
                                   5.552878e+06
                                                  6.132789e+06
                                                                 5.891378e+06
4
     1.140072e+07
                    8.220552e+06
                                   9.255154e+06
                                                  7.648211e+06
                                                                 7.723814e+06
. .
     3.948000e+05
                                   5.335221e+05
395
                    4.338804e+05
                                                  6.224684e+05
                                                                 7.009340e+05
396
                                                  2.558004e+04
              NaN
                             NaN
                                            NaN
                                                                 4.020517e+04
397
     3.399667e+04
                    7.233564e+04
                                   1.043879e+05
                                                  2.506785e+04
                                                                 2.753769e+04
     5.340109e+04
398
                    6.557698e+04
                                   7.656575e+04
                                                  1.040606e+05
                                                                 1.063727e+05
399
                    3.789056e+06
                                   3.478506e+06
     3.375577e+06
                                                  3.391588e+06
                                                                 5.067802e+06
                                           X201
             X203
                            X202
0
     3.499711e+06
                    3.623205e+06
                                   4.145770e+06
1
     1.076354e+06
                    9.293218e+05
                                   5.298062e+05
2
     9.389346e+04
                    7.163655e+04
                                   4.916483e+04
3
     5.418082e+06
                    5.036840e+06
                                   5.733794e+06
4
     5.571163e+06
                    5.362560e+06
                                   9.259675e+06
395
     3.005173e+05
                    3.133173e+05
                                   8.204783e+05
396
               NaN
                    3.162670e+04
                                   5.446684e+04
397
               NaN
                             NaN
                                            NaN
398
                    3.059370e+04
              NaN
                                   1.358056e+05
399
     3.497546e+06
                    3.316025e+06
                                   3.906000e+06
```

[400 rows x 110 columns]

This data set includes peak list and intensity data matrix. LAMP requires peak list's name, m/z value and retention time. User needs to indicate the locations of feature name, m/z value, retention time and starting points of data matrix from data. Here they are 1, 3, 6 and 11, respectively.

Load input data with xlsx format for LAMP:

```
[3]: cols = [1, 3, 6, 11]

# d_data = "./data/df_pos_2.tsv"

# df = anno.read_peak(d_data, cols, sep='\t')
```

```
df = anno.read_peak(d_data, cols)
[3]:
              name
                                         rt
                                                      QC9
                                                                     QC5 \
                            mz
     0
           M151T34
                    150.886715
                                  34.152700
                                             3.664879e+06
                                                           3.735147e+06
     1
           M151T40
                    151.040235
                                  39.838172
                                            7.406381e+05
                                                           7.524075e+05
     2
           M152T40
                    152.043607
                                  40.303700
                                             6.105241e+04
                                                           5.335546e+04
     3
           M153T34
                    152.883824
                                  34.174647
                                             5.141479e+06
                                                           5.496344e+06
     4
           M153T36
                    153.019474
                                  35.785847
                                             5.336758e+06
                                                           5.558265e+06
     . .
               •••
                         •••
     395
         M283T339
                    283.264583
                                 338.763489
                                             7.330602e+05
                                                           8.243956e+05
          M284T60
                    284.195294
                                             2.310932e+04
     396
                                  59.593561
                                                                     NaN
     397
          M284T108
                    284.223499
                                 108.406389
                                             3.748444e+04
                                                           2.993283e+04
     398
          M284T339
                    284.267962
                                 338.725056
                                             1.161886e+05
                                                           1.476514e+05
     399
          M285T34
                    284.775031
                                  34.079641
                                             4.063268e+06
                                                           3.807148e+06
                   QC4
                                  QC3
                                               QC26
                                                             QC25
                                                                            QC24
     0
          5.190263e+06
                       2.742966e+06
                                      3.824723e+06
                                                    3.722932e+06 3.804188e+06
     1
                       6.429245e+05
                                      1.167016e+06
                                                     1.175981e+06
                                                                   1.122533e+06
                   NaN
     2
                                  NaN
                                       6.875157e+04
                                                     7.807399e+04
                                                                   8.943068e+04
     3
          8.335846e+06
                        3.860588e+06
                                       5.316874e+06
                                                     5.988232e+06
                                                                   5.844917e+06
     4
          1.118557e+07
                        6.876715e+06
                                       9.967314e+06
                                                     9.073822e+06
                                                                   9.328573e+06
                                       4.294760e+05
                                                                   4.570657e+05
     395
                   NaN
                        1.159506e+06
                                                     4.641813e+05
                                 NaN
                                       1.759336e+04
     396
                   NaN
                                                     2.645392e+04
                                                                    2.727266e+04
     397
                                       3.175596e+04
                                                     3.879604e+04
                                                                   4.299529e+04
                   NaN
                                  NaN
     398
                   NaN
                                  NaN
                                                NaN
                                                     6.753490e+04
                                                                    5.436219e+04
     399
          4.645099e+06 2.232221e+06
                                      4.576754e+06
                                                    4.533339e+06 4.559356e+06
                     X210
                                   X209
                                                  X208
                                                                X207
     0
             4.224942e+06
                          3.946599e+06
                                         3.668948e+06
                                                        3.754321e+06
     1
             1.419062e+06
                           1.251606e+06
                                          1.214826e+06
                                                        8.143028e+05
     2
                           9.970442e+04 9.384000e+04
             1.203919e+05
                                                        4.186335e+04
     3
             5.592065e+06
                           5.761380e+06
                                          5.845419e+06
                                                        5.576013e+06
             7.284938e+06
     4
                           1.083289e+07
                                          1.140072e+07
                                                        8.220552e+06
     . .
     395
             3.509767e+05
                           4.117633e+05
                                          3.948000e+05
                                                        4.338804e+05
     396
                      NaN
                                     NaN
                                                   NaN
                                                                  NaN
                                                        7.233564e+04
     397
             7.477652e+04
                           7.482219e+04
                                          3.399667e+04
     398
             3.697604e+04
                          5.398264e+04
                                          5.340109e+04
                                                        6.557698e+04
     399
             3.439330e+06 3.359842e+06
                                         3.375577e+06
                                                        3.789056e+06
                  X206
                                 X205
                                               X204
                                                             X203
                                                                            X202
     0
          3.853724e+06 3.787350e+06
                                       3.584464e+06
                                                    3.499711e+06 3.623205e+06
     1
          5.331963e+05 1.930928e+06
                                      1.479001e+06
                                                     1.076354e+06 9.293218e+05
     2
                   NaN 2.115447e+05
                                     1.285713e+05 9.389346e+04 7.163655e+04
```

use xlsx file

d_data = "./data/df_pos_2.xlsx"

```
3
     5.552878e+06 6.132789e+06
                                  5.891378e+06
                                                 5.418082e+06
                                                               5.036840e+06
4
     9.255154e+06
                   7.648211e+06
                                  7.723814e+06
                                                 5.571163e+06
                                                               5.362560e+06
. .
395
     5.335221e+05
                   6.224684e+05
                                  7.009340e+05
                                                 3.005173e+05
                                                               3.133173e+05
396
                   2.558004e+04
                                  4.020517e+04
                                                               3.162670e+04
              NaN
                                                          NaN
397
    1.043879e+05
                   2.506785e+04
                                  2.753769e+04
                                                          NaN
                                                                         NaN
398
    7.656575e+04
                   1.040606e+05
                                  1.063727e+05
                                                          {\tt NaN}
                                                               3.059370e+04
399
     3.478506e+06 3.391588e+06
                                  5.067802e+06
                                                3.497546e+06
                                                               3.316025e+06
             X201
0
     4.145770e+06
1
     5.298062e+05
2
     4.916483e+04
3
     5.733794e+06
4
     9.259675e+06
395 8.204783e+05
396
     5.446684e+04
397
              NaN
398 1.358056e+05
    3.906000e+06
399
```

[400 rows x 103 columns]

Data frame df now includes only name, mz, rt and intensity data matrix.

1.3 Metabolite Annotation

To perform metabolite annotation, users should provide their own reference file. Otherwise, LAMP will use its default reference file for annotation.

```
[4]: ref_path = "" # if empty, use default reference file for matching
# load reference library
cal_mass = False
ref = anno.read_ref(ref_path, calc=cal_mass)
ref
```

[4]:	compound_id	molecular_formula	compound_name	\
0	1638	C10Cl100	Chlordecone	
1	38485	C10H10Br202	Dibromothymoquinone	
2	32427	C10H10BrNO2	Brofoxine (USAN/INN)	
3	39834	C10H10Cl2N2O	Fenmetozole (USAN)	
4	10156	C10H10Cl203	4-(2,4-Dichlorophenoxy)butyric acid	
•••	•••	•••		
31639	80256	H5010P3	PPPi	
31640	37374	H6N09P3	(Diphosphono) Aminophosphonic Acid	
31641	32626	H9N2O4P	Ammonium phosphate (NF)	
31642	735	HN03	Nitrate	

31643	40762	HNO3	Peroxynitrite
	exact_mass		
0	485.683441		
1	319.904755		
2	254.989491		
3	244.017018		
4	248.000700		
•••	•••		
31639	257.909557		
31640	256.925542		
31641	132.029994		
31642	62.995643		
31643	62.995643		

[31644 rows x 4 columns]

The reference file must have two columns: molecular_formula and compound_name (or name). The exact_mass is optional. if absent, LAMP will calculate 'exact_mass' based on the NIST Atomic Weights and Isotopic Compositions for All Elements. If your reference file has exact_mass and you want to calculate it using NIST database, set calc as True. The exact_mass is used to match against a range of mz, controlled by ppm, in data frame df.

Another reference file is HMDB database for urine:

```
[5]: ref_path = "./data/hmdb_urine_v4_0_20200910_v1.tsv"
cal_mass = True # there is no exact mass in reference file, so calculate them
ref = anno.read_ref(ref_path, calc=cal_mass)
ref
```

[5]:		id	molecular_formula	molecular_name	\
	0	HMDB000001	C7H11N3O2	1-Methylhistidine	
	1	HMDB0000002	C3H10N2	1,3-Diaminopropane	
	2	HMDB0000005	C4H6O3	2-Ketobutyric acid	
	3	HMDB0000008	C4H8O3	2-Hydroxybutyric acid	
	4	HMDB0000010	C19H24O3	2-Methoxyestrone	
	•••	•••	•••	•••	
	1606	HMDB0012308	C8H8O3	Vanillin	
	1607	HMDB0012322	C10H80	2-Naphthol	
	1608	HMDB0012325	C5H10O5	Arabinofuranose	
	1609	HMDB0012451	C20H28O3	all-trans-5,6-Epoxyretinoic acid	
	1610	HMDB0012467	C15H13O9S	(-)-Epicatechin sulfate	
				inchi \	
	0	InChI=1S/C7	H11N3O2/c1-10-3-5(9	-4-10)2-6(8)7(11	
	1		InChI=1S/C3H10N	2/c4-2-1-3-5/h1-5H2	
	2	InChI=1S/	C4H6O3/c1-2-3(5)4(6)7/h2H2,1H3,(H,6,7)	
	3	InChI=1S/C4	H8O3/c1-2-3(5)4(6)7	/h3,5H,2H2,1H3,(

```
4
      InChI=1S/C19H24O3/c1-19-8-7-12-13(15(19)5-6-18...
1606
     InChI=1S/C8H8O3/c1-11-8-4-6(5-9)2-3-7(8)10/h2-...
     InChI=1S/C10H80/c11-10-6-5-8-3-1-2-4-9(8)7-10/...
1607
1608 InChI=1S/C5H1005/c6-1-2-3(7)4(8)5(9)10-2/h2-9H...
1609
     InChI=1S/C20H2803/c1-15(8-6-9-16(2)14-17(21)22...
1610 InChI=1S/C15H14O9S/c16-9-3-8-5-13(24-25(20,21)...
                        inchi key
                                    exact mass
0
      BRMWTNUJHUMWMS-LURJTMIESA-N
                                    169.085127
1
      XFNJVJPLKCPIBV-UHFFFAOYSA-N
                                     74.084398
2
      TYEYBOSBBBHJIV-UHFFFAOYSA-N
                                    102.031694
3
      AFENDNXGAFYKQO-VKHMYHEASA-N
                                    104.047344
4
      WHEUWNKSCXYKBU-QPWUGHHJSA-N
                                    300.172545
1606
     MWOOGOJBHIARFG-UHFFFAOYSA-N
                                    152.047344
1607
      JWAZRIHNYRIHIV-UHFFFAOYSA-N
                                    144.057515
1608
     HMFHBZSHGGEWLO-HWQSCIPKSA-N
                                    150.052823
1609 KEEHJLBAOLGBJZ-WEDZBJJJSA-N
                                    316.203845
1610
     WTXWEAXATVSZQX-AFYYWNPRSA-M
                                    369.028028
```

[1611 rows x 6 columns]

Next we use HMDB reference file for compounds match. Here function argument ppm is used to control the m/z matching tolerance(range).

```
[6]: ppm = 5.0
match = anno.comp_match_mass(df, ppm, ref)
match
```

```
[6]:
                             mz molecular_formula
                                                                molecular_name
                id
     0
           M154T37
                                           C8H1003
                                                                Hydroxytyrosol
                     154.062402
     1
          M164T119
                     164.046774
                                            C9H8O3
                                                            Phenylpyruvic acid
     2
          M164T119
                     164.046774
                                                               m-Coumaric acid
                                            C9H8O3
     3
          M164T119
                     164.046774
                                            C9H8O3
                                                        4-Hydroxycinnamic acid
     4
                                                        2-Hydroxycinnamic acid
          M164T119
                     164.046774
                                            C9H8O3
     5
          M164T233
                     164.046832
                                            C9H8O3
                                                            Phenylpyruvic acid
     6
          M164T233
                     164.046832
                                            C9H8O3
                                                               m-Coumaric acid
     7
                                                        4-Hydroxycinnamic acid
          M164T233
                     164.046832
                                            C9H8O3
     8
          M164T233
                     164.046832
                                            C9H8O3
                                                        2-Hydroxycinnamic acid
     9
           M164T53
                     164.046825
                                            C9H8O3
                                                            Phenylpyruvic acid
     10
                                                               m-Coumaric acid
           M164T53
                     164.046825
                                            C9H8O3
     11
                                                        4-Hydroxycinnamic acid
           M164T53
                     164.046825
                                            C9H8O3
     12
                                                        2-Hydroxycinnamic acid
           M164T53
                     164.046825
                                            C9H8O3
     13
           M167T35
                     167.021095
                                           C7H5N04
                                                               Quinolinic acid
     14
         M173T36 3
                                                               Hexanoylglycine
                     173.104423
                                          C8H15N03
                                                                  Suberic acid
     15
           M174T35
                     174.088395
                                           C8H14O4
     16
           M181T36
                     181.060407
                                          C6H7N5O2
                                                     8-Hydroxy-7-methylguanine
```

```
17
      M212T39
               212.067866
                                    C10H12O5
                                                        Vanillactic acid
18
               276.077397
                                 C10H16N2O5S
                                                           Biotin sulfone
      M276T36
                                                  inchi \
0
    InChI=1S/C8H1003/c9-4-3-6-1-2-7(10)8(11)5-6/h1...
1
    InChI=1S/C9H8O3/c10-8(9(11)12)6-7-4-2-1-3-5-7/...
2
    InChI=1S/C9H8O3/c10-8-3-1-2-7(6-8)4-5-9(11)12/...
3
    InChI=1S/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/...
4
    InChI=1S/C9H8O3/c10-8-4-2-1-3-7(8)5-6-9(11)12/...
5
    InChI=1S/C9H8O3/c10-8(9(11)12)6-7-4-2-1-3-5-7/...
6
    InChI=1S/C9H8O3/c10-8-3-1-2-7(6-8)4-5-9(11)12/...
7
    InChI=1S/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/...
8
    InChI=1S/C9H8O3/c10-8-4-2-1-3-7(8)5-6-9(11)12/...
9
    InChI=1S/C9H8O3/c10-8(9(11)12)6-7-4-2-1-3-5-7/...
10
    InChI=1S/C9H8O3/c10-8-3-1-2-7(6-8)4-5-9(11)12/...
11
    InChI=1S/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/...
12
    InChI=1S/C9H8O3/c10-8-4-2-1-3-7(8)5-6-9(11)12/...
    InChI=1S/C7H5N04/c9-6(10)4-2-1-3-8-5(4)7(11)12...
13
    InChI=1S/C8H15N03/c1-2-3-4-5-7(10)9-6-8(11)12/...
    InChI=1S/C8H14O4/c9-7(10)5-3-1-2-4-6-8(11)12/h...
15
16
    InChI=1S/C6H7N5O2/c1-11-2-3(9-6(11)13)8-5(7)10...
    InChI=1S/C10H12O5/c1-15-9-5-6(2-3-7(9)11)4-8(1...
17
    InChI=1S/C10H16N2O5S/c13-8(14)4-2-1-3-7-9-6(5-...
18
                       inchi_key
                                  {\tt exact\_mass}
                                               ppm_error
0
    JUUBCHWRXWPFFH-UHFFFAOYSA-N
                                       154.06
                                                   -3.84
1
    BTNMPGBKDVTSJY-UHFFFAOYSA-N
                                       164.05
                                                   -3.47
2
    KKSDGJDHHZEWEP-SNAWJCMRSA-N
                                       164.05
                                                   -3.47
3
    NGSWKAQJJWESNS-ZZXKWVIFSA-N
                                       164.05
                                                   -3.47
4
    PMOWTIHVNWZYFI-AATRIKPKSA-N
                                       164.05
                                                   -3.47
5
    BTNMPGBKDVTSJY-UHFFFAOYSA-N
                                       164.05
                                                   -3.12
6
    KKSDGJDHHZEWEP-SNAWJCMRSA-N
                                       164.05
                                                   -3.12
7
                                                   -3.12
    NGSWKAQJJWESNS-ZZXKWVIFSA-N
                                       164.05
8
    PMOWTIHVNWZYFI-AATRIKPKSA-N
                                       164.05
                                                   -3.12
9
    BTNMPGBKDVTSJY-UHFFFAOYSA-N
                                                   -3.16
                                       164.05
10
    KKSDGJDHHZEWEP-SNAWJCMRSA-N
                                       164.05
                                                   -3.16
    NGSWKAQJJWESNS-ZZXKWVIFSA-N
                                                   -3.16
11
                                       164.05
12
   PMOWTIHVNWZYFI-AATRIKPKSA-N
                                                   -3.16
                                       164.05
13
    GJAWHXHKYYXBSV-UHFFFAOYSA-N
                                       167.02
                                                   -4.57
14
   UPCKIPHSXMXJOX-UHFFFAOYSA-N
                                       173.11
                                                   -4.45
    TYFQFVWCELRYAO-UHFFFAOYSA-N
                                       174.09
                                                   -4.67
16
    VHPXSVXJBWZORQ-UHFFFAOYSA-N
                                       181.06
                                                    2.39
17
    SVYIZYRTOYHQRE-UHFFFAOYSA-N
                                       212.07
                                                   -2.86
18
    QPFQYMONYBAUCY-ZKWXMUAHSA-N
                                       276.08
                                                   -2.16
```

match gives the compound matching results. LAMP also provides a mass adjust option by adduct library. You can provide your own adducts library otherwise LAMP uses its default adducts library.

The adducts library's format looks like:

```
[7]: add_path = './data/adducts_short.tsv'
lib_df = pd.read_csv(add_path, sep="\t")
lib_df
```

```
[7]:
                         exact mass
                                       charge ion_mode
                  label
     0
                 [M+H]+
                            1.007276
                                             1
                                                     pos
     1
               [M+NH4]+
                           18.033826
                                             1
                                                     pos
     2
                [M+Na]+
                           22.989221
                                             1
                                                     pos
     3
                           23.984493
                [M+Mg]+
                                             1
                                                     pos
     4
                 [M+K]+
                           38.963158
                                             1
                                                     pos
     5
                [M+Fe]+
                           55.934388
                                             1
                                                     pos
     6
                [M+Cu]+
                           62.929049
                                             1
                                                     pos
     7
                [M+2H] +
                            2.015101
                                             1
                                                     pos
     8
                [M+3H]+
                            3.022926
                                             1
                                                     pos
     9
                 [M-H]-
                           -1.007276
                                             1
                                                     neg
     10
             [M+35C1] -
                           34.969401
                                             1
                                                     neg
     11
          [M+Formate] -
                           44.998203
                                             1
                                                     neg
     12
          [M+Acetate]-
                           59.013853
                                             1
                                                     neg
```

The adducts library must have columns of label, exact_mass, charge and ion_mode.

We use this adducts file to adjust mass:

```
[8]: ion_mode = "pos"
# if empty, use default adducts library
add_path = "./data/adducts_short.tsv"
lib_add = anno.read_lib(add_path, ion_mode)
lib_add
```

```
[8]:
            label
                    exact_mass
                                  charge
     0
           [M+H]+
                      1.007276
                                       1
     1
         [M+NH4]+
                     18.033826
                                       1
          [M+Na]+
     2
                     22.989221
                                       1
     3
          [M+Mg]+
                     23.984493
                                       1
     4
           [M+K]+
                     38.963158
                                       1
     5
          [M+Fe]+
                     55.934388
                                       1
     6
          [M+Cu]+
                     62.929049
                                       1
     7
          [M+2H] +
                      2.015101
                                       1
          [M+3H] +
                      3.022926
                                       1
```

Now use function comp_match_mass_add to match compounds:

```
[9]: match_1 = anno.comp_match_mass_add(df, ppm, ref, lib_add)
match_1
```

```
[9]: id mz molecular_formula molecular_name \ 0 M152T40 152.043607 C5H8N2O2 Dihydrothymine
```

4	MALATOT	154 000400	dollous	II-d
1	M154T37	154.062402	C8H8O3	p-Hydroxyphenylacetic acid
2	M154T37	154.062402	C8H8O3	3-Hydroxyphenylacetic acid
3	M154T37	154.062402	C8H8O3	ortho-Hydroxyphenylacetic acid
4	M154T37	154.062402	C8H8O3	Mandelic acid
5	M154T37	154.062402	C8H8O3	3-Cresotinic acid
6	M154T37	154.062402	C8H8O3	4-Hydroxy-3-methylbenzoic acid
7	M154T37	154.062402	C8H8O3	Vanillin
8	M157T35	157.036819	C4H10N2O2	2,4-Diaminobutyric acid
9	M157T35	157.036819	C4H10N2O2	L-2,4-diaminobutyric acid
10	M167T35	167.021095	C5H8N2O2	Dihydrothymine
11	M174T35	174.088395	C9H13NO	Phenylpropanolamine
12	M174T35	174.088395	C10H14O	Thymol
13	M174T35	174.088395	C10H14O	(S)-Carvone
14	M174T35	174.088395	C8H12O4	2-Octenedioic acid
15	M174T35	174.088395	C8H12O4	cis-4-Octenedioic acid
16	M181T36	181.060407	C8H8N2O3	Nicotinuric acid
17	M184T38	184.097942	C10H13N2	Nicotine imine
18	M185T39_2	185.082034	C5H15NO4P	Phosphorylcholine
19	M186T36	186.045606	C6H14N2O	N-Acetylputrescine
20	M187T38	187.097642	C5H15NO4P	Phosphorylcholine
21	M193T40	193.050761	C5H14N4	Agmatine
22	M200T36	200.061328	C7H16N2O	N-Acetylcadaverine
23	M201T39_1	201.051849	C10H10O3	4-Methoxycinnamic acid
24	M201139_1 M203T36_1	201.031049	C9H9NO	Indole-3-carbinol
2 4 25	M212T39	212.067866	C8H15NO3	
				Hexanoylglycine
26	M212T39	212.067866	C10H1005	Vanilpyruvic acid
27	M217T37_1	217.018279	C10H11N0	Tryptophol
28	M221T37	221.012328	C9H11NO2	L-Phenylalanine
29	M223T38	223.008162	C4H10N06P	0-Phosphothreonine
30	M223T40	223.096863	C12H14O4	Monoisobutyl phthalic acid
31	M226T44	226.128007	C8H18N4O2	Asymmetric dimethylarginine
32	M226T44	226.128007	C8H18N4O2	Symmetric dimethylarginine
33	M227T36	227.066175	C9H10N2O5	3-Nitrotyrosine
34	M229T38	229.069418	C4H10N3O5P	Phosphocreatine
35	M233T38	233.043479	C8H10N4O2	Caffeine
36	M245T44	245.045772	C7H15N3O3	Homocitrulline
37	M245T37_2	245.093315	C13H18O2	Ibuprofen
38	M249T38	249.038309	C8H10N4O3	1,3,7-Trimethyluric acid
39	M261T43	260.972975	C10H7NO4	Xanthurenic acid
40	M269T37_2	269.088048	C10H12N4O5	Inosine
41	M275T168	275.201932	C18H24O2	Estradiol
42	M275T168	275.201932	C18H24O2	17a-Estradiol
43	M277T181	277.217564	C18H28O2	19-Norandrosterone
44	M277T181	277.217564	C18H28O2	19-Noretiocholanolone
45	M278T71	278.148195	C11H20N2O6	Saccharopine
46	M279T233	279.233232	C18H30O2	alpha-Linolenic acid
47	M279T233	279.233232	C18H28O2	19-Norandrosterone
			010112002	20 1.02 41141 00 001 0110

```
48
     M279T233
               279.233232
                                    C18H28O2
49
               281.248903
     M281T287
                                    C18H32O2
50
     M281T287
               281.248903
                                    C18H3002
51
      M282T61
               282.070271
                                  C10H14N2O6
52
      M282T61
               282.070271
                                  C10H14N2O6
53
      M283T37
               283.103695
                                  C11H14N4O5
                                                  inchi \
0
    InChI=1S/C5H8N2O2/c1-3-2-6-5(9)7-4(3)8/h3H,2H2...
1
    InChI=1S/C8H8O3/c9-7-3-1-6(2-4-7)5-8(10)11/h1-...
2
    InChI=1S/C8H8O3/c9-7-3-1-2-6(4-7)5-8(10)11/h1-...
3
    InChI=1S/C8H8O3/c9-7-4-2-1-3-6(7)5-8(10)11/h1-...
4
    InChI=1S/C8H8O3/c9-7(8(10)11)6-4-2-1-3-5-6/h1-...
5
    InChI=1S/C8H8O3/c1-5-3-2-4-6(7(5)9)8(10)11/h2-...
6
    InChI=1S/C8H8O3/c1-5-4-6(8(10)11)2-3-7(5)9/h2-...
7
    InChI=1S/C8H8O3/c1-11-8-4-6(5-9)2-3-7(8)10/h2-...
    InChI=1S/C4H10N2O2/c5-2-1-3(6)4(7)8/h3H,1-2,5-...
8
9
    InChI=1S/C4H10N2O2/c5-2-1-3(6)4(7)8/h3H,1-2,5-...
10
    InChI=1S/C5H8N2O2/c1-3-2-6-5(9)7-4(3)8/h3H,2H2...
11
    InChI=1S/C9H13NO/c1-7(10)9(11)8-5-3-2-4-6-8/h2...
12
    InChI=1S/C10H14O/c1-7(2)9-5-4-8(3)6-10(9)11/h4...
13
    InChI=1S/C10H140/c1-7(2)9-5-4-8(3)10(11)6-9/h4...
14
   InChI=1S/C8H12O4/c9-7(10)5-3-1-2-4-6-8(11)12/h...
15
    InChI=1S/C8H12O4/c9-7(10)5-3-1-2-4-6-8(11)12/h...
16
   InChI=1S/C8H8N2O3/c11-7(12)5-10-8(13)6-2-1-3-9...
17
    InChI=1S/C10H13N2/c1-12-7-3-5-10(12)9-4-2-6-11...
18
    InChI=1S/C5H14N04P/c1-6(2,3)4-5-10-11(7,8)9/h4...
19
    InChI=1S/C6H14N2O/c1-6(9)8-5-3-2-4-7/h2-5,7H2,...
20
    InChI=1S/C5H14N04P/c1-6(2,3)4-5-10-11(7,8)9/h4...
    InChI=1S/C5H14N4/c6-3-1-2-4-9-5(7)8/h1-4,6H2,(...
21
22
    InChI=1S/C7H16N2O/c1-7(10)9-6-4-2-3-5-8/h2-6,8...
23
    InChI=1S/C10H1003/c1-13-9-5-2-8(3-6-9)4-7-10(1...
    InChI=1S/C9H9NO/c11-6-7-5-10-9-4-2-1-3-8(7)9/h...
24
    InChI=1S/C8H15N03/c1-2-3-4-5-7(10)9-6-8(11)12/...
25
26
    InChI=1S/C10H1005/c1-15-9-5-6(2-3-7(9)11)4-8(1...
27
    InChI=1S/C10H11NO/c12-6-5-8-7-11-10-4-2-1-3-9(...
28
    InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-...
29
    InChI=1S/C4H10N06P/c1-2(3(5)4(6)7)11-12(8,9)10...
30
    InChI=1S/C12H14O4/c1-8(2)7-16-12(15)10-6-4-3-5...
31
    InChI=1S/C8H18N4O2/c1-12(2)8(10)11-5-3-4-6(9)7...
32
    InChI=1S/C8H18N4O2/c1-10-8(11-2)12-5-3-4-6(9)7...
33
    InChI=1S/C9H10N2O5/c10-6(9(13)14)3-5-1-2-8(12)...
34
    InChI=1S/C4H10N3O5P/c1-7(2-3(8)9)4(5)6-13(10,1...
35
    InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)...
    InChI=1S/C7H15N3O3/c8-5(6(11)12)3-1-2-4-10-7(9...
36
    InChI=1S/C13H1802/c1-9(2)8-11-4-6-12(7-5-11)10...
37
    InChI=1S/C8H10N4O3/c1-10-4-5(9-7(10)14)11(2)8(...
38
```

19-Noretiocholanolone

alpha-Linolenic acid

Linoleic acid

Ribothymidine

3-Methyluridine

1-Methylinosine

- 39 InChI=1S/C10H7N04/c12-7-3-1-2-5-8(13)4-6(10(14... 40 InChI=1S/C10H12N405/c15-1-4-6(16)7(17)10(19-4)...
- 41 InChI=1S/C18H24O2/c1-18-9-8-14-13-5-3-12(19)10...
- 42 InChI=1S/C18H24O2/c1-18-9-8-14-13-5-3-12(19)10...
- 43 InChI=1S/C18H28O2/c1-18-9-8-14-13-5-3-12(19)10...
- 44 InChI=1S/C18H2802/c1-18-9-8-14-13-5-3-12(19)10...
- 45 InChI=1S/C11H20N2O6/c12-7(10(16)17)3-1-2-6-13-...
- 46 InChI=1S/C18H3002/c1-2-3-4-5-6-7-8-9-10-11-12-...
- 47 InChI=1S/C18H2802/c1-18-9-8-14-13-5-3-12(19)10...
- 48 InChI=1S/C18H28O2/c1-18-9-8-14-13-5-3-12(19)10...
- 49 InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-...
- 50 InChI=1S/C18H3002/c1-2-3-4-5-6-7-8-9-10-11-12-... 51 InChI=1S/C10H14N206/c1-4-2-12(10(17)11-8(4)16)...
- 52 InChI=1S/C10H14N2O6/c1-11-6(14)2-3-12(10(11)17...
- 53 InChI=1S/C11H14N4O5/c1-14-3-13-9-6(10(14)19)12...

_	inchi_key	exact_mass	adduct	ppm_error
0	NBAKTGXDIBVZOO-VKHMYHEASA-N	152.04	[M+Mg]+	3.52
1	XQXPVVBIMDBYFF-UHFFFAOYSA-N	154.06	[M+2H]+	-0.28
2	FVMDYYGIDFPZAX-UHFFFAOYSA-N	154.06	[M+2H]+	-0.28
3	CCVYRRGZDBSHFU-UHFFFAOYSA-N	154.06	[M+2H]+	-0.28
4	IWYDHOAUDWTVEP-ZETCQYMHSA-N	154.06	[M+2H] +	-0.28
5	WHSXTWFYRGOBGO-UHFFFAOYSA-N	154.06	[M+2H]+	-0.28
6	LTFHNKUKQYVHDX-UHFFFAOYSA-N	154.06	[M+2H] +	-0.28
7	MWOOGOJBHIARFG-UHFFFAOYSA-N	154.06	[M+2H] +	-0.28
8	OGNSCSPNOLGXSM-UHFFFAOYSA-N	157.04	[M+K] +	-3.61
9	OGNSCSPNOLGXSM-VKHMYHEASA-N	157.04	[M+K] +	-3.61
10	NBAKTGXDIBVZOO-VKHMYHEASA-N	167.02	[M+K] +	-3.83
11	DLNKOYKMWOXYQA-VXNVDRBHSA-N	174.09	[M+Na]+	-3.10
12	MGSRCZKZVOBKFT-UHFFFAOYSA-N	174.09	[M+Mg]+	-3.23
13	ULDHMXUKGWMISQ-VIFPVBQESA-N	174.09	[M+Mg]+	-3.23
14	BNTPVRGYUHJFHN-HWKANZROSA-N	174.09	[M+2H] +	-1.52
15	LQVYKEXVMZXOAH-UPHRSURJSA-N	174.09	[M+2H] +	-1.52
16	ZBSGKPYXQINNGF-UHFFFAOYSA-N	181.06	[M+H]+	-1.99
17	GTQXYYYOJZZJHL-UHFFFAOYSA-N	184.10	[M+Na]+	4.61
18	YHHSONZFOIEMCP-UHFFFAOYSA-O	185.08	[M+H]+	4.80
19	KLZGKIDSEJWEDW-UHFFFAOYSA-N	186.05	[M+Fe]+	3.25
20	YHHSONZFOIEMCP-UHFFFAOYSA-O	187.10	[M+3H]+	4.52
21	QYPPJABKJHAVHS-UHFFFAOYSA-N	193.05	[M+Cu]+	-0.69
22	RMOIHHAKNOFHOE-UHFFFAOYSA-N	200.06	[M+Fe]+	3.39
23	AFDXODALSZRGIH-QPJJXVBHSA-N	201.05	[M+Na]+	-1.82
24	IVYPNXXAYMYVSP-UHFFFAOYSA-N	203.00	[M+Fe]+	-3.42
25	UPCKIPHSXMXJOX-UHFFFAOYSA-N	212.07	[M+K]+	-2.29
26	YGQHQTMRZPHIBB-UHFFFAOYSA-N	212.07	[M+2H]+	-0.28
27	MBBOMCVGYCRMEA-UHFFFAOYSA-N	217.02	[M+Fe]+	-0.79
28	COLNVLDHVKWLRT-QMMMGPOBSA-N	221.01	[M+Fe]+	-4.70
29	USRGIUJOYOXOQJ-GBXIJSLDSA-N	223.01	[M+Mg]+	-4.06
			_	

```
30
    RZJSUWQGFCHNFS-UHFFFAOYSA-N
                                       223.10
                                                 [M+H]+
                                                               1.69
                                                 [M+Mg]+
                                                               2.38
31
    YDGMGEXADBMOMJ-LURJTMIESA-N
                                       226.13
32
   HVPFXCBJHIIJGS-LURJTMIESA-N
                                       226.13
                                                 [M+Mg]+
                                                               2.38
33
    FBTSQILOGYXGMD-LURJTMIESA-N
                                       227.07
                                                  [M+H]+
                                                              -0.32
34
    DRBBFCLWYRJSJZ-UHFFFAOYSA-N
                                                [M+NH4]+
                                                              -0.94
                                       229.07
35
   RYYVLZVUVIJVGH-UHFFFAOYSA-N
                                       233.04
                                                  [M+K]+
                                                              -0.23
                                                               0.17
36
   XIGSAGMEBXLVJJ-YFKPBYRVSA-N
                                       245.05
                                                 [M+Fe]+
37
    HEFNNWSXXWATRW-UHFFFAOYSA-N
                                       245.09
                                                 [M+K]+
                                                              -2.13
                                                              -0.56
38
   BYXCFUMGEBZDDI-UHFFFAOYSA-N
                                       249.04
                                                 [M+K]+
                                                 [M+Fe]+
                                                               4.13
39
   FBZONXHGGPHHIY-UHFFFAOYSA-N
                                       260.97
                                                               0.01
40
    UGQMRVRMYYASKQ-KQYNXXCUSA-N
                                       269.09
                                                 [M+H]+
41
    VOXZDWNPVJITMN-ZBRFXRBCSA-N
                                       275.20
                                                 [M+3H] +
                                                               5.00
42
    VOXZDWNPVJITMN-SFFUCWETSA-N
                                       275.20
                                                 [M+3H] +
                                                               5.00
                                       277.22
43
   UOUIARGWRPHDBX-CQZDKXCPSA-N
                                                 [M+H]+
                                                               4.90
44
    UOUIARGWRPHDBX-DHMVHTBWSA-N
                                                               4.90
                                       277.22
                                                 [M+H]+
    ZDGJAHTZVHVLOT-YUMQZZPRSA-N
45
                                       278.15
                                                 [M+2H] +
                                                               3.44
46
    DTOSIQBPPRVQHS-PDBXOOCHSA-N
                                       279.23
                                                               4.93
                                                 [M+H]+
47
    UOUIARGWRPHDBX-CQZDKXCPSA-N
                                                               4.93
                                       279.23
                                                 [M+3H] +
48
    UOUIARGWRPHDBX-DHMVHTBWSA-N
                                       279.23
                                                 [M+3H] +
                                                               4.93
49
    OYHQOLUKZRVURQ-HZJYTTRNSA-N
                                                 [M+H]+
                                                               4.97
                                       281.25
50
   DTOSIQBPPRVQHS-PDBXOOCHSA-N
                                       281.25
                                                 [M+3H] +
                                                               4.97
   DWRXFEITVBNRMK-JXOAFFINSA-N
                                                 [M+Mg]+
                                                               2.10
51
                                       282.07
52
   UTQUILVPBZEHTK-UHFFFAOYSA-N
                                                 [M+Mg]+
                                                               2.10
                                       282.07
    WJNGQIYEQLPJMN-IOSLPCCCSA-N
                                                 [M+H]+
53
                                       283.10
                                                              -0.01
```

1.4 Correlation Analysis

Next step is correlation analysis, based on intensity data matrix along all peaks. All results are filtered by the correlation coefficient, p-values and retention time difference. That is: keep correlation results in an retention time differences/window (such as 1 second) with correlation coefficient larger than a threshold (such as 0.5) and their correlation p-values less than a threshold (such as 0.05).

LAMP supports two correlation methods, pearson and spearman. Also parameter positive allows user to select only positive correlation results, otherwise positive and negative correlations will be used.

Two functions, _tic and _toc, record the correlation computation time in seconds.

```
[10]: thres_rt = 1.0
    thres_corr = 0.5
    thres_pval = 0.05
    method = "spearman" # "pearson"
    positive = True
```

```
utils._toc()
corr
```

Elapsed time: 0.8097867965698242 seconds.

[11]:		name_a	name_b	r_{value}	p_value	rt_diff
	0	M151T34	M153T34	0.80	1.267076e-23	0.02
	1	M151T34	M155T34	0.71	1.752854e-16	0.20
	2	M151T34	M161T34	0.78	1.869949e-21	0.14
	3	M151T34	M163T34	0.69	3.239594e-15	0.20
	4	M151T34	M167T35	0.51	5.776482e-08	0.73
	•••	•••				
	1783	M283T34_1	M283T34_2	0.62	4.214876e-12	0.29
	1784	M283T34_1	M285T34	0.82	5.937139e-26	0.08
	1785	M283T34_2	M285T34	0.66	7.898957e-14	0.37
	1786	M283T60	M284T60	0.86	1.033010e-29	0.15
	1787	M283T339	M284T339	0.91	4.031333e-39	0.04

[1788 rows x 5 columns]

corr gives results of correlation coefficient(r_value), correlation p-values(p_value) and retention time difference(rt_diff).

Based on the correlation analysis, we can extract the groups and their sizes by:

```
[12]: # get correlation group and size
    corr_df = stats.corr_grp_size(corr)
    corr_df
```

[12]:	name	cor_grp_size	cor_grp
0	M217T35	52	M218T35::M219T34::M219T35::M221T34::M223T34::M
1	M215T35	52	M216T35::M217T35::M218T35::M219T34::M219T35::M
2	M216T35	52	M217T35::M218T35::M219T34::M219T35::M221T34::M
3	M219T35	52	M221T34::M223T34::M225T35::M226T35::M229T34::M
4	M218T35	51	M219T34::M219T35::M221T34::M223T34::M225T35::M
		•••	
335	M266T66	1	M265T66
336	M193T40	1	M211T41
337	M191T233	1	M259T233
338	M278T181	1	M277T181
339	M277T71	1	M278T71

[340 rows x 3 columns]

1.5 Summarize Results

The final step gets the summary table in different format and save for the further analysis.

```
[13]: # get summary of metabolite annotation
sr, mr = anno.comp_summ(df, match)
```

This function combines peak table with compound matching results and returns two results in different formats. sr is single row results for each peak id in peak table df:

:	sr							
:		name	mz	rt	exact	t_mass	ppm_error	\
	0	M151T34	150.886715	34.152700		NaN	NaN	
	1	M151T40	151.040235	39.838172		NaN	NaN	
	2	M152T40	152.043607	40.303700		NaN	NaN	
	3	M153T34	152.883824	34.174647		NaN	NaN	
	4	M153T36	153.019474	35.785847		NaN	NaN	
		•••	•••	•••				
	395	M283T61	283.068474	60.739869		NaN	NaN	
	396	M284T108	284.223499	108.406389		NaN	NaN	
	397	M284T339	284.267962	338.725056		NaN	NaN	
	398	M284T60	284.195294	59.593561		NaN	NaN	
	399	M285T34	284.775031	34.079641		NaN	NaN	
		molecular_		cular_name i		_	•	
	0		NaN	NaN	NaN		aN 	
	1		NaN	NaN	NaN		aN	
	2		NaN	NaN	NaN		aN	
	3		NaN	NaN	NaN		aN	
	4		NaN	NaN	NaN	N	aN	
	395		NaN	NaN	NaN		aN	
	396		NaN	NaN	NaN		aN	
	397		NaN	NaN	NaN		aN	
	398		NaN	NaN	NaN		aN	
	399		NaN	NaN	${\tt NaN}$	N	aN	

[400 rows x 9 columns]

mr is multiple rows format if the match more than once from the reference file:

[15]:	mr							
[15]:		name	mz	rt	molecular_formula	molecular_name	inchi	\
	0	M151T34	150.886715	34.152700	NaN	NaN	NaN	
	1	M151T40	151.040235	39.838172	NaN	NaN	NaN	
	2	M152T40	152.043607	40.303700	NaN	NaN	NaN	
	3	M153T34	152.883824	34.174647	NaN	NaN	NaN	
	4	M153T36	153.019474	35.785847	NaN	NaN	NaN	
		•••	•••	•••	•••	•••		
	404	M283T61	283.068474	60.739869	NaN	NaN	NaN	

405	M284T108	284.223499	108.406389	NaN	NaN	Na
406	M284T339	284.267962	338.725056	NaN	NaN	Na
407	M284T60	284.195294	59.593561	NaN	NaN	Na
408	M285T34	284.775031	34.079641	NaN	NaN	Na
	inchi_key	exact_mass	ppm_error			
0	NaN	NaN	NaN			
1	NaN	NaN	NaN			
2	NaN	NaN	NaN			
3	NaN	NaN	NaN			
4	NaN	NaN	NaN			
	•••	•••	•••			
404	NaN	NaN	NaN			
405	NaN	NaN	NaN			
406	NaN	NaN	NaN			
407	NaN	NaN	NaN			
408	NaN	NaN	NaN			

[409 rows x 9 columns]

Now we merges single format results with correlation results:

```
[16]: # merge summery table with correlation analysis
res = anno.comp_summ_corr(sr, corr_df)
res
```

	res res	= anno.com	np_summ_corr((sr, corr_df)			
:		name	mz	rt	exact_mass	ppm_error	\
	0	M167T35	167.021095	34.882147	167.02	-4.57	
	1	M276T36	276.077397	36.385373	276.08	-2.16	
	2	M154T37	154.062402	37.183625	154.06	-3.84	
	3	M181T36	181.060407	35.734801	181.06	2.39	
	4	M174T35	174.088395	35.001130	174.09	-4.67	
			•••	•••			
,	395	M279T50	279.159930	50.055451	NaN	NaN	
	396	M279T79	279.163910	78.758079	NaN	NaN	
	397	M282T85	282.207859	84.719202	NaN	NaN	
	398	M283T47	283.110871	46.822069	NaN	NaN	
,	399	M284T108	284.223499	108.406389	NaN	NaN	
		molecular_	formula	mole	cular_name	\	
	0		C7H5NO4	Quino	linic acid		
	1	C10H	116N2O5S	Biot	in sulfone		
	2		C8H10O3	Hydr	oxytyrosol		
	3	C	6H7N5O2 8-H	Iydroxy-7-met	hylguanine		
	4		C8H14O4	Su	beric acid		
			•••		•••		
	395		NaN		NaN		
	396		NaN		NaN		

```
397
                   NaN
                                                NaN
398
                                                NaN
                   NaN
399
                   NaN
                                                NaN
                                                     inchi
0
     InChI=1S/C7H5NO4/c9-6(10)4-2-1-3-8-5(4)7(11)12...
1
     InChI=1S/C10H16N2O5S/c13-8(14)4-2-1-3-7-9-6(5-...
2
     InChI=1S/C8H1003/c9-4-3-6-1-2-7(10)8(11)5-6/h1...
3
     InChI=1S/C6H7N5O2/c1-11-2-3(9-6(11)13)8-5(7)10...
     InChI=1S/C8H14O4/c9-7(10)5-3-1-2-4-6-8(11)12/h...
4
. .
395
                                                       NaN
396
                                                       NaN
397
                                                       NaN
398
                                                       NaN
399
                                                       NaN
                                    cor_grp_size
                         inchi_key
0
     GJAWHXHKYYXBSV-UHFFFAOYSA-N
                                             25.0
                                             13.0
1
     QPFQYMONYBAUCY-ZKWXMUAHSA-N
2
     JUUBCHWRXWPFFH-UHFFFAOYSA-N
                                             12.0
3
                                              9.0
     VHPXSVXJBWZORQ-UHFFFAOYSA-N
4
     TYFQFVWCELRYAO-UHFFFAOYSA-N
                                              9.0
. .
395
                               NaN
                                              NaN
396
                               NaN
                                              NaN
397
                               NaN
                                              NaN
398
                               NaN
                                              NaN
399
                               NaN
                                              NaN
                                                   cor_grp
0
     M171T34::M197T36::M209T34::M211T34::M213T34::M...
1
     M277T36_2::M278T36::M173T36_2::M186T36::M187T3...
2
     M155T38::M158T37_2::M164T36::M171T37_2::M173T3...
3
     M224T36::M225T35::M226T35::M227T36::M269T37_2:...
4
     M211T34::M213T34::M219T34::M221T34::M229T35::M...
395
                                                       NaN
396
                                                       NaN
397
                                                       NaN
398
                                                       NaN
399
                                                       NaN
```

[400 rows x 11 columns]

The result data frame **res** is re-arranged as four parts from top to bottom:

• 1st part: identified metabolites, satisfied with correlation analysis

- 2nd part: identified metabolites, not satisfied with correlation
- 3rd part: no identified metabolites, satisfied with correlation
- 4th part: no identified metabolites, not satisfied with correlation

The users should focus on the first part and perform their further analysis.

You can save all results in different forms, such as text format TSV or CSV. You can also save all results into a sqlite3 database and use DB Browser for SQLite to view:

```
[17]: f_save = False  # here we do NOT save results
db_out = "test.db"
sr_out = "test_s.tsv"
```

```
[18]: if f_save:
          # save all results into a sqlite3 database
          conn = sqlite3.connect(db_out)
          df[["name", "mz", "rt"]].to_sql("peaklist",
                                           conn,
                                          if_exists="replace",
                                          index=False)
          corr_df.to_sql("corr_grp", conn, if_exists="replace", index=False)
          corr.to_sql("corr_pval_rt", conn, if_exists="replace", index=False)
          match.to_sql("match", conn, if_exists="replace", index=False)
          mr.to_sql("anno_mr", conn, if_exists="replace", index=False)
          res.to_sql("anno_sr", conn, if_exists="replace", index=False)
          conn.commit()
          conn.close()
          # save final results
          res.to_csv(sr_out, sep="\t", index=False)
```

1.6 End User Usages

For end users, LAMP provides two computation options: command line interface (CLI) and graphical user interface (GUI).

To use GUI, you need to open a terminal and type in:

\$ lamp gui

To use CLI, open a terminal and type in command with required arguments, something like:

```
$ lamp cli \
    --sep "tab" \
    --input-data "./data/df_pos_3.tsv" \
    --col-idx "1, 2, 3, 4" \
    --add-path "" \
    --ref-path "" \
    --ion-mode "pos" \
    --cal-mass \
```

```
--thres-rt "1.0" \
--thres-corr "0.5" \
--thres-pval "0.05" \
--method "pearson" \
--positive \
--ppm "5.0" \
--save-db \
--save-mr \
--db-out "./res/test.db" \
--sr-out "./res/test_s.tsv" \
--mr-out "./res/test_m.tsv"
```

For the best practice, you can create a bash script <code>.sh</code> (Linux and MacOS) or Windows script <code>.bat</code> to contain these CLI arguments. Change parameters in these files each time when processing new data set.

For example, there are lamp_cli.sh and lamp_cli.bat in https://github.com/wanchanglin/lamp/tree/master/examples. You can run them and check the results in directory examples/res:

• For Linux and MacOS terminal:

```
$ chmod +x lamp_cli.sh
$ ./lamp_cli.sh
```

• For Windows terminal:

```
$ lamp_cli.bat
```