Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrifl
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Das Postsche Korrespondenzproblem
- 10. Komplexität Einführung
- 11. NP-Vollständigkei
- 12. PSPACE

Kodierung von Turing-Maschinen als Wort über $\{0,1,\#\}$:

Sei
$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, \{\underline{z_e}\})$$
 mit $Z = \{z_0, z_1, \dots, \underline{z_n = z_e}\}$ $\Sigma = \{0, 1\}$ $\Gamma = \{a_0 = \square, a_1, \dots, a_k\}$

Kodierung von Turing-Maschinen als Wort über $\{0,1,\#\}$:

Sei
$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, \{z_e\})$$
 mit $Z = \{z_0, z_1, \dots, z_n = z_e\}$ $\Sigma = \{0, 1\}$ $\Gamma = \{a_0 = \square, a_1, \dots, a_k\}$ beschreibe jede Transition $\underline{\delta(z_i, a_i)} = (\underline{z_{i'}, a_{i'}, y})$ als Wort über $\{0, 1, \#\}$:

$$w_{i,j,i',j',y} := \# \# BIN(i) \# BIN(j) \# BIN(i') \# BIN(j') \# BIN(m) \text{ mit } m := \begin{cases} 0, \ y = L \\ 1, \ y = R \\ 2, \ y = N. \end{cases}$$

Kodierung von Turing-Maschinen als Wort über $\{0,1,\#\}$:

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, \{z_e\})$ mit $\mathbf{Z} = \{z_0, z_1, \dots, z_n = z_e\}$ $\Sigma = \{0, 1\}$ $\Gamma = \{a_0 = \square, a_1, \dots, a_k\}$ beschreibe jede Transition $\delta(z_i, a_i) = (z_{i'}, a_{i'}, y)$ als Wort über $\{0, 1, \#\}$:

$$w_{i,j,i',j',y} := \# \#BIN(i) \#BIN(j) \#BIN(i') \#BIN(j') \#BIN(m) \text{ mit } m := \begin{cases} 0, \ y = L \\ 1, \ y = R \\ 2, \ y = N. \end{cases}$$

 \rightarrow beschreibe M als beliebige Konkatenation aller ihrer "Übergangswörter" $w_{i,i,i',i',v}$.

Kodierung von Turing-Maschinen als Wort über $\{0,1,\#\}$:

Sei
$$M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,\{z_e\})$$
 mit $Z=\{z_0,z_1,\ldots,z_n=z_e\}$ $\Sigma=\{0,1\}$ $\Gamma=\{a_0=\Box,a_1,\ldots,a_k\}$ beschreibe jede Transition $\delta(z_i,a_i)=(z_{i'},a_{j'},y)$ als Wort über $\{0,1,\#\}$:

$$w_{i,j,i',j',y} := \# \text{BIN}(i) \# \text{BIN}(j) \# \text{BIN}(i') \# \text{BIN}(j') \# \text{BIN}(m) \text{ mit } m := \begin{cases} 0, \ y = L \\ 1, \ y = R \\ 2, \ y = N. \end{cases}$$

 \rightarrow beschreibe M als beliebige Konkatenation aller ihrer "Übergangswörter" $w_{i,j,i',j',y}$.

Kodierung von $\{0,1,\#\}$ mit $\{0,1\}$ (zum Beispiel durch $\underline{0} \to 00,\ 1 \to 01,\ \# \to 11$).

Kodierung von Turing-Maschinen als Wort über $\{0,1,\#\}$:

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,\{z_e\})$ mit $Z=\{z_0,z_1,\ldots,z_n=z_e\}$ $\Sigma=\{0,1\}$ $\Gamma=\{a_0=\Box,a_1,\ldots,a_k\}$ beschreibe jede Transition $\delta(z_i,a_i)=(z_{i'},a_{j'},y)$ als Wort über $\{0,1,\#\}$:

$$w_{i,j,i',j',y} := \# \#BIN(i) \#BIN(j) \#BIN(i') \#BIN(j') \#BIN(m) \text{ mit } m := \begin{cases} 0, \ y = L \\ 1, \ y = R \\ 2, \ y = N. \end{cases}$$

- \rightarrow beschreibe M als beliebige Konkatenation aller ihrer "Übergangswörter" $w_{i,j,i',j',y}$.
- Kodierung von $\{0,1,\#\}$ mit $\{0,1\}$ (zum Beispiel durch $0 \to 00, 1 \to 01, \# \to 11$).
- \sim Kodierung von M ist $\langle M \rangle \in \{0,1\}^*$.

Kodierung von Turing-Maschinen als Wort über $\{0,1,\#\}$:

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,\{z_e\})$ mit $Z=\{z_0,z_1,\ldots,z_n=z_e\}$ $\Sigma=\{0,1\}$ $\Gamma=\{a_0=\Box,a_1,\ldots,a_k\}$ beschreibe jede Transition $\delta(z_i,a_i)=(z_{i'},a_{i'},y)$ als Wort über $\{0,1,\#\}$:

$$w_{i,j,i',j',y} := \# \#BIN(i) \#BIN(j) \#BIN(i') \#BIN(j') \#BIN(m) \text{ mit } m := \begin{cases} 0, \ y = L \\ 1, \ y = R \\ 2, \ y = N. \end{cases}$$

- \sim beschreibe M als beliebige Konkatenation aller ihrer "Übergangswörter" $w_{i,j,i',j',y}$.
- Kodierung von $\{0, 1, \#\}$ mit $\{0, 1\}$ (zum Beispiel durch $0 \to 00, 1 \to 01, \# \to 11$).
- \sim Kodierung von M ist $\langle M \rangle \in \{0,1\}^*$.
- \sim Kodierung umkehrbar aber nicht alle Wörter über $\{0,1\}^*$ kodieren eine Turing-Maschine.

Kodierung von Turing-Maschinen als Wort über $\{0, 1, \#\}$:

Sei
$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, \{z_e\})$$
 mit

$$\Sigma = \{0,1\}$$

$$Z = \{z_0, z_1, \dots, z_n = z_e\} \qquad \Sigma = \{0, 1\} \qquad \Gamma = \{a_0 = \square, a_1, \dots, a_k\}$$

beschreibe jede Transition $\delta(z_i, a_i) = (z_{i'}, a_{i'}, y)$ als Wort über $\{0, 1, \#\}$:

$$w_{i,j,i',j',y} := \# \#BIN(i) \#BIN(j) \#BIN(i') \#BIN(j') \#BIN(m) \text{ mit } m := \begin{cases} 0, \ y = L \\ 1, \ y = R \\ 2, \ y = N. \end{cases}$$

 \sim beschreibe M als beliebige Konkatenation aller ihrer "Übergangswörter" $w_{i,i,i',i',v}$.

Kodierung von $\{0, 1, \#\}$ mit $\{0, 1\}$ (zum Beispiel durch $0 \to 00, 1 \to 01, \# \to 11$).

- \sim Kodierung von *M* ist $\langle M \rangle \in \{0,1\}^*$.
- \sim Kodierung umkehrbar aber nicht alle Wörter über $\{0,1\}^*$ kodieren eine Turing-Maschine.

$$\underline{M_w} := \begin{cases} M & \text{falls } \underline{w = \langle M \rangle} \\ \underline{M_\Omega} & \text{sonst} \end{cases}$$

 $w \in \{0,1\}^*$ keine valide Kodierung \sim feste Maschine M_{Ω} , die die nigends definierte Funktion berechnet

(Un-)Entscheidbarkeit, Halteproblem

Definition

Das **spezielle Halteproblem** ist die Sprache

$$\underline{K} := \{ w \in \underline{\{0,1\}}^* \mid \underline{M_w} \text{ hält auf Eingabe } \underline{w} \},$$

Marono Sei Eingake 110110? halt -> & K

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM \underline{M} .

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M.

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M.

Sei
$$w' := \langle M' \rangle$$
, d.h. $M' = M_{w'}$.

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M.

Erweitere M zu M', sodass M' genau dann hält, wenn M eine 0 ausgibt.

Sei $w' := \langle M' \rangle$, d.h. $M' = M_{w'}$.

 \sim M' hält bei Eingabe w'

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M.

Sei
$$w' := \langle M' \rangle$$
, d.h. $M' = M_{w'}$.

$$\sim$$
 M' hält bei Eingabe w'

$$\Leftrightarrow M$$
 gibt bei Eingabe w' eine 0 aus

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M.

Sei
$$w' := \langle M' \rangle$$
, d.h. $M' = M_{w'}$.

$$\sim$$
 M' hält bei Eingabe w'

$$\Leftrightarrow M$$
 gibt bei Eingabe w' eine 0 aus

$$\Leftrightarrow \chi_K(w') = 0$$

Definition

Das spezielle Halteproblem ist die Sprache

$$\underline{\mathcal{K}} := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: K entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M.

Sei
$$w' := \langle M' \rangle$$
, d.h. $M' = M_{w'}$.

$$\sim$$
 M' hält bei Eingabe w'

$$\Leftrightarrow M$$
 gibt bei Eingabe w' eine 0 aus

$$\Leftrightarrow \chi_K(w') = 0$$

$$\Leftrightarrow w' \notin K$$

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w \},$$

Theorem

Das spezielle Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ ist unentscheidbar.

Beweis (durch Widerspruch)

Annahme: \underline{K} entscheidbar \sim charakteristische Funktion χ_K berechenbar durch TM M. Erweitere \underline{M} zu \underline{M}' , sodass \underline{M}' genau dann hält, wenn \underline{M} eine 0 ausgibt.

Sei $w' := \langle M' \rangle$, d.h. $M' = M_{w'}$.

 $\Leftrightarrow w' \notin K$

Mathias Weller (TU Berlin)

$$\Leftrightarrow$$
 M' hält nicht bei Eingabe $\langle M' \rangle = w'$. 4

Berechenbarkeit und Komplexität

ABER: halle characteristististe

Function 2/2 hand durchaus

berechenbar sein

frage: Do zerbricht der Beweis venn wir Un-)Entscheidbarkeit, Halteproblem 52/62