DDA5001 Machine Learning

Training versus Testing (Part II)

Xiao Li

School of Data Science The Chinese University of Hong Kong, Shenzhen

Recap: In-sample Error versus Out-of-sample Error

▶ In-sample Error: Given a set of training samples $\{x_1, \cdots, x_n\}$,

$$\operatorname{Er}_{\operatorname{in}} = \frac{1}{n} \sum_{i=1}^{n} e(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), g(\boldsymbol{x}_i))$$

ightharpoonup Out-of-sample Error: Suppose data x follows a certain distribution $\mathcal D$ in an i.i.d. manner,

$$\operatorname{Er_{out}} = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e(f_{\boldsymbol{\theta}}(\boldsymbol{x}), g(\boldsymbol{x})) \right]$$

Remarks:

- ightharpoonup The In-sample error $\mathrm{Er_{in}}$ is also known as the training error.
- ▶ The out-of-sample error Er_{out} is more general than the test error. Fortunately, we can use the test error to approximate Er_{out} very well when the test dataset is large enough.

Recap: Concept of Training versus Testing / Generalization

Recall that learning is all about to infer g outside of the seen training dataset, i.e.,

Make the out-of-sample error small

▶ But Er_{out} is not computable at all.

Here is a simple decomposition:

$$\operatorname{Er}_{\operatorname{out}} = \underbrace{\operatorname{Er}_{\operatorname{out}} - \operatorname{Er}_{\operatorname{in}}}_{\operatorname{generalization\ error}} + \underbrace{\operatorname{Er}_{\operatorname{in}}}_{\operatorname{traning\ error}}$$

 \blacktriangleright We need to simultaneously make generalization error and training error small, in order to make Er_{out} small.

The goal of generalization is to

explore how out-of-sample error is related to in-sample error, i.e., bound the generalization error

▶ The reason to explore this relationship is that $Er_{\rm in}$ is computable, checkable, and even amenable.

Recap: The Starting Point

Given training samples $S = \{x_1, \dots, x_n\}$.

In expectation for any $f \in \mathcal{H}$: (we omit θ in f_{θ} for simplicity)

$$\mathbb{E}_{\mathcal{S} \sim_{i.i.d.} \mathcal{D}} \left[\operatorname{Er}_{\operatorname{in}}(f) \right] = \operatorname{Er}_{\operatorname{out}}(f).$$

- ▶ Law of large numbers: When $n \to \infty$, we have in-sample error estimates the out-of-sample error accurately.
- ▶ However, this is true only when $n \to \infty$.

 \leadsto We will derive a non-asymptotic (finite n) result for $f \approx g$, which is analogous to the one derived for $\nu \approx \mu$.

Finite Hypothesis Space Generalization

VC Dimension

Additional Assumption: Finite Hypothesis Space

Assumption: Finite hypothesis space

The cardinality
$$|\mathcal{H}| < +\infty$$

where $|\cdot|$ denotes the cardinality (number of elements) of a set. Namely, $|\mathcal{H}|$ measures the number of all possible $f_{\theta} \in \mathcal{H}$.

- It means that the number of possible f_{θ} in \mathcal{H} is finite. Is it a practical assumption?
- We will omit θ in f_{θ} in the sequel to ease notation. Remind yourself f is almost always parameterized by some parameter θ .

Generalization for Fixed f: A Lemma

Lemma: High probability bounds for fixed f

Fix any model $f: \mathcal{X} \mapsto \{-1,1\}$ $(f \in \mathcal{H} \text{ is fixed})$. The following inequalities hold for any t > 0:

$$\Pr\left[\operatorname{Er}_{\operatorname{in}}(f) - \operatorname{Er}_{\operatorname{out}}(f) \ge t\right] \le e^{-2nt^2},$$

and

$$\Pr\left[\operatorname{Er}_{\operatorname{in}}(f) - \operatorname{Er}_{\operatorname{out}}(f) \le -t\right] \le e^{-2nt^2}.$$

Thus, we have the two side tail probability bound

$$\Pr\left[\left|\operatorname{Er}_{\operatorname{in}}(f) - \operatorname{Er}_{\operatorname{out}}(f)\right| \ge t\right] \le 2e^{-2nt^2}.$$

- ightharpoonup Non-asymptotic bounds valid for any n.
- ▶ Equivalently, $\Pr\left[|\mathrm{Er_{in}}(f) \mathrm{Er_{out}}(f)| \le t\right] \ge 1 2e^{-2nt^2}$, which is a high probability bound.

Proof

Recall the Hoeffding's inequality:

Hoeffding's inequality for bounded random variables

Suppose X_i are independent random variables with mean μ_i and bounded on $[a_i,b_i]$ for $i=1,\cdots,n$, then for any t>0, we have

$$\Pr\left[\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right] \le e^{-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}$$

Note that $e(f(x_i), g(x_i))$ equals to either 0 or 1, we have

$$\Pr\left[\operatorname{Er}_{\operatorname{in}}(f) - \operatorname{Er}_{\operatorname{out}}(f) \ge t\right]$$

$$= \Pr\left[\frac{1}{n} \sum_{i=1}^{n} (e(f(\boldsymbol{x}_i), g(\boldsymbol{x}_i)) - \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} e(f(\boldsymbol{x}_i), g(\boldsymbol{x}_i))\right] \ge t\right]$$

$$= \Pr\left[\sum_{i=1}^{n} (e(f(\boldsymbol{x}_i), g(\boldsymbol{x}_i)) - \mathbb{E}[e(f(\boldsymbol{x}_i), g(\boldsymbol{x}_i))]) \ge nt\right]$$

$$\le e^{-2nt^2}.$$

Generalization for Fixed Model f

Proposition: Generalization for fixed f

Fix a model $f: \mathcal{X} \mapsto \{-1,1\}$. For any $\delta > 0$, the following generalization bound holds with probability at least $1 - \delta$

$$\operatorname{Er}_{\operatorname{out}}(f) \le \operatorname{Er}_{\operatorname{in}}(f) + \sqrt{\frac{\log\left(\frac{2}{\delta}\right)}{2n}}$$

Proof: Letting $\delta = 2e^{-2nt^2}$ and solving for t yields the desired result.

Are we done?

What We Need is Uniform Bound for All Possible $f \in \mathcal{H}$

Generalization for Finite Hypothesis Space

Theorem: Generalization for finite hypothesis space

Let \mathcal{H} be a finite hypothesis space, i.e., $|\mathcal{H}| < \infty$. For any $\delta > 0$, the following generalization bound holds with probability at least $1 - \delta$

$$\forall f \in \mathcal{H}$$
 $\operatorname{Er}_{\operatorname{out}}(f) \leq \operatorname{Er}_{\operatorname{in}}(f) + \sqrt{\frac{\log\left(\frac{2|\mathcal{H}|}{\delta}\right)}{2n}}$ (1)

- ▶ The dependence on δ is only logarithmically.
- ▶ The generalization error increase when $|\mathcal{H}|$ grows, but only logarithmically.
- ightharpoonup More samples (larger n) lead to better generalization (always true in practice).

Trade-off

$$\forall f \in \mathcal{H}$$
 $\operatorname{Er}_{\mathrm{out}}(f) \leq \operatorname{Er}_{\mathrm{in}}(f) + \sqrt{\frac{\log\left(\frac{2|\mathcal{H}|}{\delta}\right)}{2n}}$

On the training side, we need

more complex hypothesis \mathcal{H} (larger $|\mathcal{H}|$)

On the generalization side, we need

less complex hypothesis ${\mathcal H}$ (smaller $|{\mathcal H}|)$

Proof

The proof is done by applying union bound. Let $f_1, \dots, f_{|\mathcal{H}|}$ be the elements of \mathcal{H} . We have

$$\begin{split} \Pr\left[\exists f \in \mathcal{H} \ s.t. \ |\mathrm{Er_{in}}(f) - \mathrm{Er_{out}}(f)| \geq t\right] \\ &= \Pr\left[|\left.\mathrm{Er_{in}}(f_1) - \mathrm{Er_{out}}(f_1)\right| \geq t, \text{or} \cdots \right. \\ & \text{or} \ |\left.\mathrm{Er_{in}}(f_{|\mathcal{H}|}) - \mathrm{Er_{out}}(f_{|\mathcal{H}|})\right| \geq t\right] \\ & \stackrel{\mathsf{union bound}}{\leq} \sum_{i=1}^{|\mathcal{H}|} \Pr\left[|\left.\mathrm{Er_{in}}(f_i) - \mathrm{Er_{out}}(f_i)\right| \geq t\right] \\ & \leq 2|\mathcal{H}|e^{-2nt^2} \end{split}$$

Setting the RHS probability to δ yields the desired result.

Issue with Finite Hypothesis Space

However, $|\mathcal{H}|$ is usually infinite in practice

- ► Think about the the simplest (one-dimensional) linear model $f_{\theta}(x) = \theta x$, $\theta \in \mathbb{R}$. We have infinitely many choices for θ .
- ▶ If we let $|\mathcal{H}|$ tends to ∞ , we will have a trivial bound: Some finite thing $< \infty$.

Issue: Union bound can be very coarse.

In this case, $\Pr[A_1 \text{ or } A_2 \text{ or } A_3]$ is much less than $\sum_{i=1}^{3} \Pr[A_i]$. Solution: Find a way to measure the complexity of \mathcal{H} more smartly.

Finite Hypothesis Space Generalization

VC Dimension

Road Map

- ▶ Instead of using $|\mathcal{H}|$ directly to count the complexity of \mathcal{H} , we have to properly account for the overlaps of different hypotheses.
- ▶ In this way, our goal is to replace the number of hypotheses $|\mathcal{H}|$ with an effective number which is finite even when $|\mathcal{H}|$ is infinite.
- → This quantity will be the so-called VC dimension, which is of combinatorial nature.
 - ► The VC dimension captures how different the hypotheses in \mathcal{H} are, and hence how much overlap the different hypotheses have.
 - ▶ Using this new notion, we will show that we can replace $|\mathcal{H}|$ in the obtained generalization bound with VC dimension.

Before that, let us introduce the related notion called dichotomy and growth function.

Dichotomy

- ▶ If $f \in \mathcal{H}$ is applied to a finite sample set $\{x_1, \dots, x_n\}$, we get n-tuple $\{f(x_1), \dots, f(x_n)\}$ of ± 1 's.
- Such a n tuple is called a dichotomy since it splits $\{x_1, \ldots, x_n\}$ into two groups: The points for which f is +1 and those for which f is -1.
- ▶ Each $f \in \mathcal{H}$ generates a dichotomy on $\{x_1, \dots, x_n\}$, but two different f's may generate the same dichotomy.

We can now define the dichotomies of the whole hypothesis space \mathcal{H} .

Dichotomies of \mathcal{H}

Given $\{x_1,\ldots,x_n\}$, the dichotomies generated by $\mathcal H$ on these points are defined by

$$\mathcal{H}(x_1,...,x_n) = \{(f(x_1),...,f(x_n)) : f \in \mathcal{H}\}.$$

- ▶ One can think of the dichotomies $\mathcal{H}(x_1, \dots, x_n)$ as a set of hypothesis just like \mathcal{H} is, except that the hypotheses are only seen through the n data points.
- ▶ Larger $\mathcal{H}(x_1,\ldots,x_n)$ means that \mathcal{H} is more diverse / rich.

Example of Dichotomies

We have five points. There are four different $f \in \mathcal{H}$ on the points.

Growth Function

Growth function is a number, which is defined based on the number of dichotomies.

Growth function

The growth function for the hypothesis set ${\cal H}$ is defined as:

$$\mathcal{G}_{\mathcal{H}}(n) = \max_{\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n\} \subseteq \mathcal{X}} |\mathcal{H}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)|,$$

where $|\cdot|$ denotes the cardinality (number of elements) of a set.

Instead of counting the size of \mathcal{H} by $|\mathcal{H}|$, the idea of growth function is: Using \mathcal{H} , what is the maximum number of ways we can label a n-points dataset?

Properties of Growth Function

- ▶ $G_{\mathcal{H}}(n)$ counts the most dichotomies that can possibly be generated on any n points in \mathcal{X} .
- ▶ To compute $\mathcal{G}_{\mathcal{H}}(n)$, we consider all possible choice of n points, and pick the one that gives us the most dichotomies, which is of combinatorial nature.
- ▶ Similar to $|\mathcal{H}|$, $\mathcal{G}_{\mathcal{H}}(n)$ is a measure of the richness of the hypothesis set \mathcal{H} . The difference is that it is now considered on n points rather than the entire input space \mathcal{X} .
- ▶ Since $\mathcal{H}(x_1,\ldots,x_n)\subset\{-1,+1\}^n$ (the set of all possible dichotomies on any n points). Clearly, we have

$$\mathcal{G}_{\mathcal{H}}(n) \leq 2^n$$
.

▶ If \mathcal{H} is capable of generating all possible dichotomies on $\{x_1,\ldots,x_n\}$, then $\mathcal{H}(x_1,\ldots,x_n)=\{-1,+1\}^n$, i.e., $\mathcal{G}_{\mathcal{H}}(n)=2^n$, and we say that \mathcal{H} can shatter the data points $\{x_1,\ldots,x_n\}$.

Vapnik-Chervonenkis (VC) Dimension

We now introduce a well known notion — Vapnik-Chervonenkis (VC) dimension.

VC dimension

The VC dimension of a hypothesis space \mathcal{H} , denoted by $d_{VC}(\mathcal{H})$ or simply d_{VC} , is the largest n so that it can be shattered by \mathcal{H} , i.e.,

$$d_{VC}(\mathcal{H}) := \max\{n : \mathcal{G}_{\mathcal{H}}(n) = 2^n\}.$$

If $\mathcal{G}_{\mathcal{H}}(n) = 2^n$ for all n, then $d_{VC}(\mathcal{H}) = \infty$.

- \triangleright By definition, VC dimension indicates the representation power of \mathcal{H} .
- $ightharpoonup d_{VC} + 1$ counts the number of data points n that \mathcal{H} starts to not shatter.

Fact:

Bounding Growth Function using VC Dimension

$$\mathcal{G}_{\mathcal{H}}(n) \leq n^{d_{\mathsf{VC}}} + 1.$$

→ Next lecture: VC dimension generalization. CLIHK-Shenzhen . SDS Xiao Li

21 / 21