σ -加法族

集合 X の集合族 Σ が「 σ -加法族である」とは次を満たすときをいう。

- 1. $X \in \Sigma$
- 2. $A \in \Sigma \Rightarrow A^c \in \Sigma$
- 3. $A_i \in \Sigma \ (i \in \mathbb{N}) \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$

生成される σ -加法族

X の部分集合族 A について、A を含む最小の σ-加法族を $σ_X(A)$ と表す。

$$\sigma_X(\mathcal{A}) = \bigcap_{\substack{\mathcal{M}: \sigma\text{-}m \not \succeq k \\ \mathcal{A} \subset \mathcal{M}}} \mathcal{M} \tag{1}$$

ボレル σ -加法族

 (X,\mathcal{O}) を位相空間とする。 $\sigma_X(\mathcal{O})$ を X 上のボレル σ -加法族といい、 $\mathcal{B}(X)$ と表す。 $\mathcal{B}(X)$ の元のことをボレル集合という。

演習問題 3.4.

 \mathbb{R} には通常の位相を入れるものとし、 $f:\mathbb{R}\to\mathbb{R}$ を連続関数とする。また、 \mathbb{R} の部分集合 A に対し、 $f(A)=\{f(x)\mid x\in A\}$ とする。

- 1. K を $\mathbb R$ のコンパクト集合とするとき、f(K) も $\mathbb R$ のコンパクト集合になることを示せ。
- 2. $f(\mathbb{R})$ は \mathbb{R} のボレル集合であることを示せ。

.....

1. f(K) の任意の開被覆 $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ をとってくる。

関数 f は連続であるので、 $f^{-1}(U_{\lambda})$ は開集合である。よって、 $\{f^{-1}(U_{\lambda})\}$ は K の 開被覆である。

K はコンパクトであるので、この開被覆は有限個 $\{f(U_{\lambda_k})\}$ を選ぶことが出来る。

$$K = \bigcup_{k=1}^{n} f(U_{\lambda_k}) \tag{2}$$

これにより $\{U_{\lambda_k}\}$ が f(K) の有限開被覆となり、f(K) がコンパクトであることになる。

 (X, \mathcal{M}) を可測空間とし、 $f, g: X \to \mathbb{R}$ は \mathcal{M} -可測であるとする。

このとき、 $\{x \in X \mid f(x) < g(x)\} \in \mathcal{M}$ であることを示せ。

.....

区間 $I_{\alpha} \subset \mathbb{R}$ を次のように定義する。

$$I_{\alpha} = \{ \alpha \in \mathbb{R} \mid -\infty \le x \le \alpha \} \tag{3}$$

f,g は \mathcal{M} -可測であるので、任意の $\alpha \in \mathbb{R}$ に対して $f^{-1}(I_{\alpha}), g^{-1}(I_{\alpha}) \in \mathcal{M}$ である。

演習問題 4.6.

 (X,\mathcal{M}) を可測空間とし、 $\{f_n\}_{n=1}^{\infty}$ を X 上の \mathbb{R} -値関数の列とする。 $\forall n \in \mathbb{N}$ に対し、 f_n が \mathcal{M} -可測であることを仮定する。

$$E = \left\{ x \in X \mid \lim_{n \to \infty} f_n \mathfrak{N}(\overline{\mathbb{R}} \cap \mathcal{E}) \right\}$$
 (4)

とおくとき、 $E \in \mathcal{M}$ であることを示せ。

.....