О редукции параметров в моделях сложных распределений с применением в радиобиологии

Олейник М. В., СПбГУ, Санкт-Петербург st087252@student.spbu.ru, Алексеева Н.П., СПбГУ, Санкт-Петербург nina.alekseeva@spbu.ru

Аннотация

В данной статье рассматривается возможность применения двухпараметрической модели сложного логарифмически-пуассоновского распределения для описания динамики роста числа аномалий на ядрах клеток рабдомиосаркомы в зависимости от облучения. Приведены вероятности распределения с применением чисел Стирлинга второго рода и Эйлера. Приведено обоснование возникновения этих специальных чисел через ряды по упорядоченным разбиениям.

Введение

Для радиобиологических данных числа аномалий в ядрах клеток рабдомиосаркомы у крыс при облучении разной степени интенсивности в экспериментах in vivo и in vitro ранее была исследована модель реинтрантного бинома с двумя парами неизвестных параметров. В поисках адекватных моделей с меньшим числом параметров рассматривались разные варианты, сначала обобщение отрицательного биномиального распределения за счет перехода от пуассоновского распределения числа слагаемых к биномиальному — биномиально-логарифмического, затем его антипод — логарифмическибиномиальное распределение. Предварительная оценка параметров указала на преимущество последнего в предельном случае, соответствующем пуассоновскому распределению случайных компонент. В данной статье изучаются модели пуассон-логарифмического (отрицательно-биномиальное) и логарифмически-пуассоновское (ЛПР). Эти двухпараметрические модели показали удовлетворительное согласование с эмпирическими данными.

Наиболее адекватной для интерпретации оказалась модель ЛПР. Соотношение между оценками параметров логарифмического и пуассоновского распределений свидетельствуют об интенсивном характере образования аномалий в эксперименте in vivo и экстенсивном в эксперименте in vitro.

Логарифмически-пуассоновское распределение

Логарифмически-пуассоновское распределение вводится как распределение случайной суммы независимых случайных величин

$$\zeta_{\tau} = \xi_1 + \dots + \xi_{\tau},$$

где ξ_i имеют распределение Пуассона с параметром λ , и производящей функцией $g(t)=e^{\lambda(t-1)},$ а au — логарифмическое с вероятностями

$$P(au=j)=rac{lpha q^{j}}{j},$$
где $lpha=-(\ln(1-q))^{-1},\quad j=1,2,\dots$

с производящей функцией $f(t) = -\alpha \ln(1-qt)$. Согласно [2], производящая функция случайной величины ζ имеет вид суперпозиции производящих функций логарифмического и пуассоновского распределений,

$$h(t) = -\alpha \ln(1 - qe^{\lambda(t-1)}). \tag{1}$$

Теорема 1. Обозначим через S(k,j) числа Стирлинга второго рода [3], имеющие следующую рекуррентную формулу:

$$S(k,j) = S(k-1,j-1) + j \cdot S(k-1,j), \quad 0 < j \le k,$$

S(0,0)=1, S(k,0)=0 при k>0, S(k,j)=0 при j>k. Пусть $Q(\lambda,q)=\frac{qe^{-\lambda}}{1-qe^{-\lambda}}$, где $\lambda>0$ и $q\in(0,1)$. Тогда вероятности логарифмически-пуассоновского распределения с параметрами λ,q и с производящей функцией (1) имеют вид:

$$P(\zeta_{\tau} = k) = \frac{\alpha}{k!} \lambda^{k} \sum_{j=1}^{k} (j-1)! S(k,j) Q(\lambda, q)^{j} \text{ при } k = 1, 2 \dots,$$
 (2)

$$P(\zeta_{\tau} = 0) = -\alpha \ln \left(1 - qe^{-\lambda} \right) .$$

Вероятности (2) получены через формулу для производящих функций: $P(S_{\tau}=k)=\frac{1}{k!}h^{(k)}(0),\quad k=0,1,2,\ldots$, а доказательство теоремы осуществлено по методу математической индукции. Для чисел Стирлинга второго рода известна явная формула $S(k,j)=\frac{1}{j!}\sum_{i=0}^{j}(-1)^{j+i}C_{j}^{i}i^{k}$, поэтому не видно никаких ограничений для использования (2). Однако вероятности (2) можно получить при помощи специальных чисел другого вида. Также методом математической индукции доказано следующее утверждение.

Теорема 2. Обозначим через E(k,j) числа Эйлера первого рода [3] для которых справедлива рекуррентная формула:

$$E(k,j) = (j+1) \cdot E(k-1,j) + (k-j) \cdot E(k-1,j-1), 0 < j < k-1,$$

$$E(k,0) = 1 \text{ при } k \geqslant 0, E(k,j) = 0 \text{ при } j \geqslant k > 0.$$

Вероятности логарифмически-пуассоновского распределения для k>0 могут быть выражены следующим образом:

$$P(\zeta_{\tau} = k) = \frac{\alpha}{k!} \frac{\lambda^{k} q e^{-\lambda}}{(1 - q e^{-\lambda})^{k}} \sum_{j=0}^{k-2} E(k - 1, j) \left(q e^{-\lambda} \right)^{j}.$$
 (3)

Числа Эйлера (табл.1) представляют собой количество перестановок порядка k с j подъёмами, то есть в перестановке $\pi=(\pi_1,\ldots,\pi_k)$ всего j индексов i таких, что $\pi_i<\pi_{i+1}$.

$k \setminus j$	0	1	2	3	4	5
0	1					
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57	11 66 302	302	57	1

Таблица 1: Числа Эйлера.

Эти числа, явный вид которых $E(k,j)=\sum\limits_{i=0}^{\jmath}C_{k+1}^{i}(-1)^{i}(j+1-i)^{k},$ возникают также в функциональном ряде

$$\sum_{i=1}^{\infty} i^k x^i = \frac{x}{(1-x)^{k+1}} \sum_{j=0}^{k-1} E(k,j) x^j,$$

который в нашем случае возникает при использовании формулы полной вероятности

$$P(\zeta_{\tau} = k) = \sum_{j=1}^{\infty} P(\zeta_{\tau} = k | \tau = j) \cdot P(\tau = j) =$$

$$= \sum_{j=1}^{\infty} -\frac{1}{\ln(1-q)} \frac{q^{j}}{j} \frac{(j\lambda)^{k}}{k!} e^{-j\lambda} = \frac{\alpha}{k!} \lambda^{k} \sum_{j=1}^{\infty} j^{k-1} \left(q e^{-\lambda} \right)^{j}.$$

Оценка параметров и пример из радиобиологии

Рис. 1: Сходимость оценки параметра λ к истинному значению для логарифмически-пуассоновского распределения.

Рис. 2: Сходимость оценки параметра q к истинному значению для логарифмически-пуассоновского распределения.

Оценка параметров λ и q проводилась методом максимального правдоподобия численно на компьютере с использованием функции optim на языке R. Моделируя выборку из n индивидов для известных параметров можно проверить состоятельность такой оценки (рис. 1, 2).

В таблице 2 представлены оценки параметров для радиобиологических данных из статьи [1], а также показано согласие с эмпирическим распределением. При уровне значимости $\alpha=0.05$ получаем согласие для $16/19\cdot100\%=84\%$ случаев.

Наблюдаемое количество аномалий определяется в целом двумя факторами: их исходной распространенностью и интенсивностью их образования в процессе митоза. За увеличение исходной распространенности отвечает параметр q логарифмического распределения, а за интенсивность образования аномалий в процессе митоза параметр λ пуассоновского распределения. Поскольку распределения суммы и самих случайных величин однопараметри-

In vivo					In vitro			
Гр	λ	q	p-v					
0	0.38	5.9e-7	0.13		Гр	λ	q	p-
5	0.67	3.3e-7	0.81		0	0.39	3.7e-6	0.5
10	0.83	6.7e-7	0.21		5	0.14	0.80	0.7
15	1.15	5.3e-7	0.01		10	0.59	1.1e-7	0.0
					15	0.41	0.76	0.3
20	1.71	1e-5	0.03		20	0.37	0.56	0.4
25	1.04	0.07	0.55		25	0.88	0.37	0.2
30	1.48	0.33	0.33		30	0.78	0.53	0.2
35	1.75	0.19	0.11		35	1.10	0.43	0.4
40	2.05	0.22	0.16					
45	2.36	0.18	0.08	_	40	1.46	0.29	0.3

Таблица 2: Оценки параметров и значимости критерия хи-квадрат по данным in vivo и in vitro для логарифмически-пуассоновского распределения.

Рис. 3: Оценка параметра λ в зависимости от дозы облучения

Рис. 4: Среднее лог. распределения в зависимости от дозы облучения

ческие, при интерпретации параметров можно опираться на их средние значения.

Динамика оценок параметра λ , соответственно средних значений, свидетельствует о положительной линейной зависимости их от дозы облучения, что очевидно, и о значимо меньших значениях в эксперименте in vitro (рис. 3), так как выжившие клетки обладают большим иммунитетом.

Что касается исходной распространенности аномалий, то, согласно динамике оценок параметра q в зависимости от дозы облучения (рис. 4), зависимости от дозы облучения нет, а в эксперименте in vivo базовая распространенность практически не выражена и существенно меньше, чем в эксперименте in vitro. Это объясняется тем, что от дозы облучения зависит только количество выживших клеток, а не распространенность их аномалий, которая, судя по графику, очень вариабельна, но существенно выше базовой распространенности до начала эксперимента.

Обобщение на случай произвольных распределений

Рассмотрим модель сложного распределения $\zeta_{\tau}=\xi_1+\ldots+\xi_{\tau}$, в котором случайное число слагаемых τ распределено по (P_0,P_1,P_2,\ldots) , а независимые компоненты по (p_0,p_1,p_2,\ldots) . Вероятности сложного закона распределения можно выразить через конечную суммы

$$P\{\zeta_{ au}=n\}=rac{1}{n!}\sum_{k=1}^{n}\Theta_{k}G_{n}^{k}\,,$$
 где $\Theta_{k}=\sum_{i=k}^{\infty}P_{i}C_{i}^{i-k}p_{0}^{i-k}\,,$ $G_{n}^{k}=n!\sum_{\sum_{i}^{k}n_{i}=n}\prod_{i=1}^{k}p_{n_{k}}$

и $n=(n_1,\ldots,n_k), n_i>0$, упорядоченные разбиения натурального числа n. Сравнивая выражения G_n^k в случае логарифмических и пуассоновских независимых величин, приходим к двум видам суммирования над упорядоченными разбиениями:

$$u_n^k = \sum_{\sum_{i=1}^k n_i = n, n_i > 0} \frac{n!}{n_1 \dots n_k}, \quad v_n^k = \sum_{\sum_{i=1}^k n_i = n, n_i > 0} \frac{n!}{n_1! \dots n_k!}$$

с рекуррентными соотношениями

$$u_n^k = ku_{n-1}^{k-1} + (n-1)u_{n-1}^k$$
, $v_n^k = k(v_{n-1}^{k-1} + v_{n-1}^k)$,

которые приводят к существенным частным случаям в виде чисел Стирлинга первого и второго рода $s(n,k)=\frac{1}{k!}u_n^k$ и $S(n,k)=\frac{1}{k!}v_n^k$. В случае пуассоновского распределения независимых компонент сумма по упорядоченным разбиениям имеет тип v_n^k , а в случае логарифмического тип u_n^k .

При логарифмическом распределении (2) числа компонент τ имеем $\Theta_k = \frac{\alpha}{k} \left(\frac{q}{1-qp_0}\right)^k$, а при пуассоновском $\Theta_k = \frac{\lambda^k}{k!} e^{-\lambda + \lambda p_0}$. Отличие в константах $\frac{1}{k}$ или $\frac{1}{k!}$ приводит к разному виду коэффициентов. Например, пуассоновское τ с внутренним логарифмическим дает сочетание $\frac{1}{k!} u_n^k$, приводящее напрямую к степенному ряду с коэффициентами в виде чисел Стирлинга первого рода, соответственно к убывающему факториалу и к вероятностям отрицательного биномиального распределения. Реинтрантный пуассон приводит к вероятностям с весами в виде чисел Стирлинга второго рода, реинтрантный логарифм или логарифм-пуассон дадут соответственно взвешенные числа Стирлинга первого и второго рода вида (k-1)!s(n,k) и (k-1)!S(n,k).

Заключение

Конечные суммы над упорядоченными разбиениями, связанные с числами Стирлинга, позволяют систематизировать разные виды сложных распределений и тем самым ускорить процесс выбора наиболее адекватной модели.

Список литературы

- [1] Динамика роста числа ядерных аномалий рабдомиосаркомы RA-23 при увеличении дозы острого редкоионизирующего облучения. Исследование на основе модели реинтрантно-биномиального распределения / Алексеева Н. П., Алексеев А. О., Вахтин Ю. Б., Кравцов В. Ю., Кузоватов С. Н. и Скорикова Т. И. // Цитология. 2008. С. 528–534.
- [2] Феллер В. Введение в теорию вероятностей и её приложения. В 2 т. Москва: Мир, 1952. Т. 1.
- [3] Грэхем Р., Кнут Д., Паташник О. Конкретная математика. Основание информатики. Москва: Мир, 1998. ISBN: 5-03-001793-3.