Math 521 HW 5

Morgan Gribbins

Exercise 2.3.1. Let $x_n \geq 0$ for all $n \in \mathbb{N}$.

- **2.3.1.a.** If $(x_n) \to 0$, show that $(\sqrt{x_n}) \to 0$.
- **2.3.1.b.** If $(x_n) \to x$, show that $(\sqrt{x_n}) \to \sqrt{x}$.

Exercise 2.3.2. Using only Definition 2.2.3 (no Algebraic Limit Theorem), prove that if $(x_n) \to 2$, then

- **2.3.2.a.** $\left(\frac{2x_n-1}{3}\right) \to 1;$
- **2.3.2.b.** $(1/x_n) \to 1/2$.

Exercise 2.3.3 (Squeeze Theorem). Show that if $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$, and if $\lim x_n = \lim z_n = l$, then $\lim y_n = l$ as well.

- **2.3.7.** Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):
 - **2.3.7.a.** sequences (x_n) and (y_n) , which both diverge, but whose sum (x_n+y_n) converges;
- **2.3.7.b.** sequences (x_n) and (y_n) , where (x_n) converges, (y_n) diverges, and $(x_n + y_n)$ converges;
 - **2.3.7.c.** a convergent sequence (b_n) with $b_n \neq 0$ for all n such that $(1/b_n)$ diverges;
- **2.3.7.d.** an unbounded sequence (a_n) and a convergent sequence (b_n) with $(a_n b_n)$ bounded;
 - **2.3.7.e.** two sequences (a_n) and (b_n) , where (a_nb_n) and (a_n) converge but (b_n) does not.

Exercise 2.3.9.

2.3.9.a. Let (a_n) be a bounded (not necessarily convergent) sequence, and assume $\lim b_n = 0$. Show that $\lim (a_n b_n) = 0$. Why are we not allowed to use the Algebraic Limit

Theorem to prove this?

- **2.3.9.b.** Can we conclude anything about the convergence of (a_nb_n) if we assume that (b_n) converges to some nonzero limit b?
 - **2.3.9.c.** Use (a) to prove Theorem 2.3.3, part (iii), for the case when a = 0.