

Documentation

Description of the model of the Fortran Based SMA Hybrid Controller for power flow and stability studies in PSS®E

Model Generation G Document Revision 12 Sep 19, 2024

Note

The following PSS®E versions are currently supported:

- version 33 (Intel Visual Fortran Compiler 11.1),
- version 34 (Intel Visual Fortran Compiler 15.0 (x86)).
- version 35 (Intel Visual Fortran Compiler 19.1(x86)).

Please contact SMA if models for other simulation platforms are required.

SMA model support

In case you require support from SMA Solar Technology AG regarding questions of model handling, model parameterization, or interpretation of simulation results, please send all relevant files to SMA including:

- The models you were using, or a reference to the model versions,
- the network in *.raw or *.sav format,
- the dyr file,
- simulation scripts in *.idv or *.py (Python) format that exactly replicate the relevant scenario,
- information on the PSS/E version.

Model history

SMAHYCF_AR_P_Cc.obj is the model object file of SMAHYCF, where A is the model generation, R is model revision, P is the PSS®E version for which the model was built, C is the compiler type, c is the compiler revision. (e.g. SMAHYCF_G10_34_IVF111.obj is model generation G in revision 1.0 for PSS®E version 34, compiled with Intel Visual Fortran Compiler 11.1).

Model version	Description			
G1.0	First release of SMAHYCF for PSS®E			
	Note: This model does not contain the implementation of Hybrid functionality in this			
	version. Also, functionalities of FCAS are not implemented in this model so parameters			
	related to these functions are 'don't care'			
G1.1	1. P, Q Measurement filters using PT1_psse were moved from MW to pu for removing			
	the DSTATE errors			
	2. Introduction of Meas structure to segregate all V, f, P, Q measurements within one			
	structure			
G1.2	Addition of Grid Voltage Control functionality			
	Addition of Hybrid Control Functionality			
	Addition of DC-DC only to Sys Cfg and associated functionality with DC-DC systems			
	BugFix: MIDTRM line of code. Was not working properly. Giving error "Model is not			
	available in MSTRT & MRUN"			
	Removal of "Use Kernel32", "Use INTRINSIC" and "IMPLICIT NONE" to be compila-			
	ble with PSS/E 35			
G1.3	Addition of a separate Bus for voltage measurement			
	Addition of FCAS and HandlePrioFrqResp			
G1.4	BugFix: PF control mode rectified			
G1.5	1. Update to software release v17			
	2. BugFix : Docu() function returns an incorrect number of CONs and VARs.			
	3. Provision of reverse P, Q measurement to take into account the removal of			
	dummy bus line/tie line			
	4. Fixing of active power limits based on reactive power setpoint			
	5. Additional three PVFro – PVTo and BESSFro – BESSTo buses to take into ac-			
	count multiple PV and BESS inverters			
	6. Bug fix in the RampPVBatMaxMin function			
01.4	7. Changed the logic for turning VAR(L+47) high			
G1.6	1. Update to firmware version 18 and 19			
	2. Removed un-used CONS from the structures to remove confusion for the user			
C1.7	3. Q(P) Limitation function - part of firmware 19 in PwrApPrioModeAt			
G1.7	1. BugFix: Initialization issue with SMAGF model			
G1.8	BugFix: Misalignment of VARs for AutoPoicontrolMode_PoCo			
01.0	2. BugFix: Frt Detection Bus filter not added.			
G1.9	1. Change of flag L+47 to 1.0 when there is a setpoint change instead of using			
	KPAUSE			

	Modification of initialization of Hybrid PoCo Logic
G2.0	1. Removal of Pv available power switch when L+47 turns high
	2. Reduction of threshold for detection of frequency change used for turning
	L+47 to 1.0
	3. Removal of filter over voltage at PCC measurement and voltage over FRT bus
	4. Introduction of CON(J+20) as PvSetpoint
G2.1	 Update to firmware version 20
	2. Removal of CONS like PvPwrApMaxTot and BatPwrApMaxTot
G2.2	1. Addition of PwrRtVtgLim parameters
	2. BugFix : TOFF logic
G2.3	Implementation of EnaDynSpntSwitch functionality for reactive power
	Change in the initialization logic of AutoPoiCtrlMode_PoCo

Model validity

For simulation of the SMA Sunny Central solar and storage inverters the model "SMASC" must be used.

Contents

In	ntroduction	on and background	6
D	ynamic	model	7
2.1			
2.2			
		-	
2.4	Mode		
2	.4.1	ICONs	9
2	.4.2	CONs	10
2	.4.3	VARs	25
2	.4.4	STATEs	36
D	isclaime	г	37
	2.1 2.2 2.3 2.4 2 2 2	Dynamic 2.1 Initiali: 2.2 Dyr file 2.3 Refere 2.4 Mode 2.4.1 2.4.2 2.4.3 2.4.4	Dynamic model

1 Introduction and background

This document is intended to provide guidance to the PSS®E user in deploying the SMA Hybrid Controller model for controlling various quantities of battery storage or photovoltaic (PV) solar parks at the point of common coupling (PCC, or point of interconnection, POI). Combination of storage and PV components is possible, too.

2 Dynamic model

The Fortran Based Hybrid Controller model has been implemented as a PSS®E User Bus model ('USRBUS') called "SMAHYCF" (s. Figure 1).

Figure 1: Hybrid Controller block diagram.

The model has three sources of excitation which are: the grid voltage magnitude at the "remote" bus and the active and reactive power flowing from the "from" bus to the "to" bus. The "remote" bus is the bus whose voltage must be controlled by the Hybrid Controller (HC). The "from" bus is the bus from which the active power and the reactive power are flowing to the "to" bus – were the active and reactive power are quantities to be controlled by the HC. The model's outputs are the actuating variables active and reactive power which are sent to the inverter model SMASC using the SMAHYC's VAR(L+56) and VAR(L+57) in case of PV generator and VAR(L+58) and VAR(L+59) in case of Battery generator.

Please note the quantities measured at the POI can be accessed through variables VAR(L+1) ... VAR(L+3).

Please find below the architecture of a PV + BESS plant and its associated configuration in correspondence with the ICONs and CONs.

Figure 2: Hybrid Controller Configuration.

2.1 Initialization

SMAHYC initializes from the steady-state solution and adjusts all internal variables and states accordingly provided the active, reactive, apparent power limits are not exceeded. If that's the case, then a flat run is not possible and the hybrid controller will try to adjust the active power and reactive power in such a way that the associated power is within the limits.

2.2 Dyr file entry

The model's dyr file entry is as follows:

BusNum 'USRBUS' 1 'SMAHYCF23' 504 0 34 271 10 458 FBN TBN -1 1 ICON(M+4) ICON(M+5) ... ICON(M+33) CON(J) CON(J+1) ... CON(J+270)

FBN: "FromBusNumber"

TBN: "ToBusNumber"

2.3 Reference Changes to the Model

Following VARs can be used to change the various references to the Hycon Model

- 1. VAR(L+18) Active power reference change at Poi in case of PV or Hybrid system
- 2. VAR(L+13) Active power reference change at Poi in case of BESS System or for BESS setpoint in case of Hybrid systems
- 3. VAR(L+14) Reactive power reference change at Poi in case of both PV, BESS or Hybrid systems
- 4. VAR(L+16) Voltage reference change at Poi (Used for VtgPwrRtDroop, GridVtgCtrl)
- 5. VAR(L+17) Frequency reference change at Poi (Used for FrgDroop, FCASCont)
- 6. VAR(L+15) Power Factor reference change at Poi (Used for FixCosPhi)
- 7. CON(J+16) Cumulative Active power target for PV inverter in kW. If set to 0.0, then the cumulative PV inverter power from load flow is considered as the target power (PvPwrAtSpt)

2.4 Model parameters

In this section there is given a standard parameterization only. Please consider contacting SMA to obtain the parameter set for the controller that must be simulated in your study.

2.4.1 ICONs

ICON	Parameter	Description	Default
М	RBus	Bus number of the remotely voltage	
		regulated bus	
		(The voltage measurement at this bus	
		is used for functions like FrtDetection,	
		VoltageDroop, GridVtgControl, etc)	
M+1	FroBus	Bus number of the PCC from bus	n/a
		(P, Q are measured between FroBus	
		and ToBus and used as measurement	
		value for various functions)	
M+2	ToBus	Bus number of the PCC to bus	n/a
		(P, Q are measured between FroBus	
		and ToBus and used as measurement	
		value for various functions)	
M+3	CID	Circuit id for power measurement rou-	-1
		tine FLOW	
M+4	FrtBusNumber	Bus number of the Frt detection bus.	0
		Set this to the bus number whose volt-	
		age you want to use for Frt detection.	
		Else set it O. In that case RBus will be	
		used for Frt detection	
M+5	PowerFlowReverse	Reverse the power flow measured us-	0
		ing PCC From and To Bus	
		(Set this to 1 if you would like to re-	
		verse the power flow measured. This	
		is provided in case you don't want to	
		have a dummy tie line at PCC or have	
		a T-connection at the PCC	
M+6	Reserved	Reserved	0
M+7	OUTPUT_LOG_EN	Enable output write to LPDEV	1
M+8	Reserved	Reserved	0
M+9	SysCfg	1: PV only	
		2: BESS only	
		3: PV/BESS Hybrid configuration	
		4: DC-DC configuration	
M+10	PV1_Fro	Bus number of the PV1 from bus	

M+11	PV1_To	Bus number of the PV1 to bus	
M+12	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+13	PV2_Fro	Bus number of the PV2 from bus	
M+14	PV2_To	Bus number of the PV2 to bus	
M+15	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+16	PV3_Fro	Bus number of the PV3 from bus	
M+17	PV3_To	Bus number of the PV3 to bus	
M+18	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+19	PV4_Fro	Bus number of the PV4 from bus	
M+20	PV4_To	Bus number of the PV4 to bus	
M+21	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+22	BESS1_Fro	Bus number of the BESS1 from bus	
M+23	BESS1_To	Bus number of the BESS1 to bus	
M+24	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+25	BESS2_Fro	Bus number of the BESS2 from bus	
M+26	BESS2_To	Bus number of the BESS2 to bus	
M+27	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+28	BESS3_Fro	Bus number of the BESS3 from bus	
M+29	BESS3_To	Bus number of the BESS3 to bus	
M+30	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+31	BESS4_Fro	Bus number of the BESS4 from bus	
M+32	BESS4_To	Bus number of the BESS4 to bus	
M+33	CID	Circuit id for power measurement rou-	_
		tine FLOW	

2.4.2 CONs

CON	Parameter	Description	Default
J+0	CycleTime	Hybrid Controller cycle time in s	40
J+1	Poi_freq_flt_tm	Frequency measurement filter time constant in s	0.02
		Power and Voltage measurement filter time con-	
J+2	Poi_power_flt_tm	stant in s	0.02
		HYC to inverter comm time delay in s (Active	
J+3	HyconToInv_AtPwr_TmDelay	Power) implemented as PT1 filter	0.02

		HYC to inverter comm time delay in s (Reactive	
J+4	HyconToInv_RtPwr_TmDelay	Power) implemented as PT1 filter	0.02
J+5	PvPwrAtMaxTot	Cumulative PV active power rating in kW	-
		Cumulative PV reactive power rating in kVAr	
J+6	PvPwrRtMaxTot	(0.6 times the PvPwrAtMaxTot)	-
J+7	BESSPwrAtMaxTot	Cumulative BESS active power rating in kW	-
		Cumulative BESS reactive power rating in kVAr	
J+8	BESSPwrRtMaxTot	(0.6 times the BESSPwrAtMaxTot)	-
J+9	ExtPwrApLim	Apparent power limitation at PCC in kVA	-
J+10	ExtPwrAtLimHi	Maximum active power limitation at PCC in kW	-
J+11	ExtPwrAtLimLo	Minimum active power limitation at PCC in kW	-
		Maximum active power limitation (Sales) at PCC	
J+12	PwrAtLimSale	in kW	_
		Maximum reactive power limitation at PCC in	
J+13	ExtPwrRtLimHi	kVAr	-
		Minimum reactive power limitation at PCC in	
J+14	ExtPwrRtLimLo	kVAr	_
J+15	QVARScale	Please set this to 0.6	0.6
		If this CON is set to 0.0, then PvTarget is equal	
		to cumulative load flow PV power else it is equal	
		to 'PvPwrAtSpt in kW. This CON is only relevant	
		in case of Hybrid systems. The Hycon will try to	
		increase the Pv active power to its PvTarget in	
		case the PV has a higher priority compared to	
		Battery. You can set this equal to CON(J+8) if	
		you don't want to restrict the PV power to its	
J+16	PvPwrAtSpt	load flow value.	0.0
J+1 <i>7</i>	Reserved		-
J+18	Reserved		-
J+19	Reserved		-
		Control parameter integral gain for the power PI	
J+20	BatPwrAtCtrl.CtrlKi	controller	0.4
		Control parameter proportional gain for the	
J+21	BatPwrAtCtrl.CtrlKp	power PI controller	0
	BatPwrAtCtrl.DynSpntSwitchHys	Hysteresis for switching to the limit if measure-	
J+22	Pc	ment exceeds the limit, in % of PwrAtNomPoi	0
		Enables the PI controller for active power control	
J+23	BatPwrAtCtrl.Ena	(Enable this for Bat only systems)	0
		Enables adaptive control (Yes: related to the	
		connected nominal device power / No: related	
J+24	BatPwrAtCtrl.EnaAdapCtrl	to PwrAtRtNomPoi	1

[Enables dynamic setpoint switching if limits are	
J+25	BatPwrAtCtrl.EnaDynSpntSwitch	exceeded	0
	, ,	Enables resetting of the integrator if step change	
J+26	BatPwrAtCtrl.EnaStepReset	is detected	0
	BatPwrAtCtrl.FeedForwardOff-	A constant offset which will be added to the set-	
J+27	set	point	0
J+28	BatPwrAtCtrl.MeasFilterTm	Filter time for actual measurement in s	0
		Offset for detecting a overshoot, in % of	
J+29	BatPwrAtCtrl.OvershootResetPc	PwrAtNomPoi	100
		The upper and lower limit of the output of the PI	
J+30	BatPwrAtCtrl.PiCtrlLimPc	controller for active power control	5
J+31	BatPwrAtCtrl.PilotControlGain	The gain factor for the pilot control	1
J+32	BatPwrAtCtrl.SpntDelaySamples	To delay the active power setpoint	3
		Threshold for detecting a step change, in % of	
J+33	BatPwrAtCtrl.StepResetThrsldPc	PwrAtNomPoi	20
		Enables reduction of pv setpoint by the maxi-	
J+34	Dispatch.EnaPrioBatPwrAt	mum P(f) battery response	1
		To split the reactive power setpoint between the	
		PV and battery system. (80% -> PV = 80%, Bat-	
J+35	Dispatch.PvBatSpntSplitPc	tery = 20%)	80
		Defines the reactive power dispatching to PV	
		and Battery inverters	
		1:PWR_RT_DISPATCH_MODE_NOM	
J+36	Dispatch.PwrRtDispatchMode	0:PWR_RT_DISPATCH_MODE_SPLIT	0
		Charging from PV is limited to this value. (in %	
		based on the maximum charge power of the	
J+37	EgyShift.ChrFromPvSpntLimPc	battery system)	50
		The battery provides this amount of power if the	
		EnergyShifting function wants to discharge the	
		battery system (in % based on the maximum dis-	
J+38	EgyShift.DisBatSpntLimPc	charge power of the battery system)	10
		Activation time for the Delayed Raise (Lower)	
J+39	FCASCont.DelayedActTm	Service after a Frequency Disturbance in s	60
		Maximum time to deliver the Delayed Raise	
		(Lower) Service after a Frequency Disturbance in	,
J+40	FCASCont.DelayedDelTm	S	600
J+41	FCASCont.Ena	Enables function	0
J+42	FCASCont.EnaDelayedLower	Enables the Delayed Lower Service	1
J+43	FCASCont.EnaDelayedRaise	Enables the Delayed Raise Service	1
J+44	FCASCont.EnaFastLower	Enables the Fast Lower Service	1
J+45	FCASCont.EnaFastRaise	Enables the Fast Raise Service	1
J+46	FCASCont.EnaSlowLower	Enables the Slow Lower Service	1

J+47	FCASCont.EnaSlowRaise	Enables the Slow Raise Service	1
		Maximum time to deliver the Fast Raise (Lower)	
J+48	FCASCont.FastDelTm	Service after a Frequency Disturbance in s	60
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+49	FCASCont.FrqOffsets[1]	creasing)	1.6
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+50	FCASCont.FrqOffsets[2]	creasing)	-1
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+51	FCASCont.FrqOffsets[3]	creasing)	-0.15
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+52	FCASCont.FrqOffsets[4]	creasing)	0.15
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+53	FCASCont.FrqOffsets[5]	creasing)	1
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+54	FCASCont.FrqOffsets[6]	creasing)	1.1
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+55	FCASCont.FrqOffsets[7]	creasing)	1.2
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+56	FCASCont.FrqOffsets[8]	creasing)	1.3
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+57	FCASCont.FrqOffsets[9]	creasing)	1.4
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+58	FCASCont.FrqOffsets[10]	creasing)	1.5
		Frequency Offsets to the nominal frequency to	
J+59	FCASCont.FrqRecoverOffsets[1]	define the recovery thresholds	-0.1
		Frequency Offsets to the nominal frequency to	
J+60	FCASCont.FrqRecoverOffsets[2]	define the recovery thresholds	0.1
		The active power data corresponding to the fre-	
J+61	FCASCont.PwrAtDataPc[1]	quency offsets in % relative to PwrAtNomPoi	-100
		The active power data corresponding to the fre-	
J+62	FCASCont.PwrAtDataPc[2]	quency offsets in % relative to PwrAtNomPoi	100

		The active power data corresponding to the fre-	
J+63	FCASCont.PwrAtDataPc[3]	quency offsets in % relative to PwrAtNomPoi	0
		The active power data corresponding to the fre-	
J+64	FCASCont.PwrAtDataPc[4]	quency offsets in % relative to PwrAtNomPoi	0
		The active power data corresponding to the fre-	
J+65	FCASCont.PwrAtDataPc[5]	quency offsets in % relative to PwrAtNomPoi	-100
		The active power data corresponding to the fre-	
J+66	FCASCont.PwrAtDataPc[6]	quency offsets in % relative to PwrAtNomPoi	-100
		The active power data corresponding to the fre-	
J+67	FCASCont.PwrAtDataPc[7]	quency offsets in % relative to PwrAtNomPoi	-100
		The active power data corresponding to the fre-	
J+68	FCASCont.PwrAtDataPc[8]	quency offsets in % relative to PwrAtNomPoi	-100
		The active power data corresponding to the fre-	
J+69	FCASCont.PwrAtDataPc[9]	quency offsets in % relative to PwrAtNomPoi	-100
		The active power data corresponding to the fre-	
J+70	FCASCont.PwrAtDataPc[10]	quency offsets in % relative to PwrAtNomPoi	-100
		Activation time for the Slow Raise (Lower) Ser-	
J+71	FCASCont.SlowActTm	vice after a Frequency Disturbance in s	6
		Maximum time to deliver the Slow Raise (Lower)	
J+72	FCASCont.SlowDelTm	Service after a Frequency Disturbance in s	300
		Defines the excitation of the external CosPhi sep-	
		toint for active power export /	
J+73	FixCosPhi.CosPhiExtModExp	1041:FIXCOSPHI_SIGN_MODE_OVER_EX	1041
		Defines the excitation of the external CosPhi sep-	
		toint for active power import /	
J+74	FixCosPhi.CosPhiExtModImp	1041:FIXCOSPHI_SIGN_MODE_OVER_EX	1041
J+75	FixCosPhi.CosPhiLimLo	External CosPhi setpoint is limited to this value	8.0
		Defines if the external setpoint CosPhiSpntExp	
		should be used as well for active power import	
J+76	FixCosPhi.ExtSpntMode	1:FIXCOSPHI_SPNT_MODE_IMP_EXP	1
		First order filter time constant for the active+reac-	
J+ <i>77</i>	FixCosPhi.PwrAtFilterTm	tive power of the genset system	1
		Defines the characteristic of the droop curve	
		2:FRQDROOP_MODE_HOLD	
		3:FRQDROOP_MODE_HOLDNOM	
J+78	FrqDroop.DroopMode	1:FRQDROOP_MODE_NOM	3
J+79	FrqDroop.Ena	Enables function	0
		Enables prioritization of frequency response set-	
J+80	FrqDroop.EnaPrioFrqResp	points (PRL,DS3,FCAS,FFR or EFR)	0
		Enables ramp after frequency event. The ramp	
		refers to PwrAtRateMax (PwrAtMode)	
J+81	FrqDroop.EnaRamp	0:ENA_NO / 1:ENA_YES	1

		Enables the shifting of the pre-fault value with	
		the external setpoint PwrAtLimSale	
J+82	FrqDroop.EnaShiftPreFaultVal	0: ENA_NO / 1: ENA_YES	0
		Frequency Offsets to define the droop curve in	
J+83	FrqDroop.FrqOffsets[1]	Hz (need to be increasing)	1.3
		Frequency Offsets to define the droop curve in	
J+84	FrqDroop.FrqOffsets[2]	Hz (need to be increasing)	-0.8
		Frequency Offsets to define the droop curve in	
J+85	FrqDroop.FrqOffsets[3]	Hz (need to be increasing)	-0.5
		Frequency Offsets to define the droop curve in	
J+86	FrqDroop.FrqOffsets[4]	Hz (need to be increasing)	0
		Frequency Offsets to define the droop curve in	
J+87	FrqDroop.FrqOffsets[5]	Hz (need to be increasing)	0.5
		Frequency Offsets to define the droop curve in	
J+88	FrqDroop.FrqOffsets[6]	Hz (need to be increasing)	0.8
		Frequency Offsets to define the droop curve in	
J+89	FrqDroop.FrqOffsets[7]	Hz (need to be increasing)	0.9
		Frequency Offsets to define the droop curve in	
J+90	FrqDroop.FrqOffsets[8]	Hz (need to be increasing)	1
		Frequency Offsets to define the droop curve in	
J+91	FrqDroop.FrqOffsets[9]	Hz (need to be increasing)	1.1
		Frequency Offsets to define the droop curve in	
J+92	FrqDroop.FrqOffsets[10]	Hz (need to be increasing)	1.2
		Maximum absolute power decrease at over fre-	
J+93	FrqDroop.MaxPwrDecrease	quency events in %PwrAtNomPoi	200
		Maximum relative power increase in % of differ-	
		ence between PwrAtNomPoi and pre-fault	100000
J+94	FrqDroop.MaxRelPwrIncrease	power	0
		Minimum hold time if function becomes active	
J+95	FrqDroop.MinHoldTm	and ResetMode = ERCOT, in s	0.5
		Absolute minimum power setpoint generated by	
J+96	FrqDroop.MinPwrSpnt	P(f)-characteristic in %PwrAtNomPoi	-100
		Mode of power decrease during over frequency	
		event	
		2: FRQDROOP_LIMIT_EXTERNAL_LIMIT	
		1: FRQDROOP_LIMIT_LIMITED	
J+97	FrqDroop.OverFrqMode	0: FRQDROOP_LIMIT_UNLIMITED	0
		The active power data corresponding to the fre-	
J+98	FrqDroop.PwrAtDataPc[1]	quency offsets in % relative to PwrAtNomPoi	0
		The active power data corresponding to the fre-	
J+99	FrqDroop.PwrAtDataPc[2]	quency offsets in % relative to PwrAtNomPoi	200

		The active power data corresponding to the fre-	
J+100	FrqDroop.PwrAtDataPc[3]	quency offsets in % relative to PwrAtNomPoi	100
		The active power data corresponding to the fre-	
J+101	FrqDroop.PwrAtDataPc[4]	quency offsets in % relative to PwrAtNomPoi	100
		The active power data corresponding to the fre-	
J+102	FrqDroop.PwrAtDataPc[5]	quency offsets in % relative to PwrAtNomPoi	100
		The active power data corresponding to the fre-	
J+103	FrqDroop.PwrAtDataPc[6]	quency offsets in % relative to PwrAtNomPoi	0
		The active power data corresponding to the fre-	
J+104	FrqDroop.PwrAtDataPc[7]	quency offsets in % relative to PwrAtNomPoi	0
		The active power data corresponding to the fre-	
J+105	FrqDroop.PwrAtDataPc[8]	quency offsets in % relative to PwrAtNomPoi	0
		The active power data corresponding to the fre-	
J+106	FrqDroop.PwrAtDataPc[9]	quency offsets in % relative to PwrAtNomPoi	0
		The active power data corresponding to the fre-	
J+107	FrqDroop.PwrAtDataPc[10]	quency offsets in % relative to PwrAtNomPoi	0
		Maximum rate of active power setpoint after a	
		frequency disturbance in MW/min. Is active for	
J+108	FrqDroop.PwrAtRateMax	the time ResetTm if Reset Mode is Ramp	10
J+109	FrqDroop.ResetFrqOffset[1]	Reset frequency offsets	-0.2
J+110	FrqDroop.ResetFrqOffset[2]	Reset frequency offsets	0.2
		Defines where to use the reset mode	
		4: FRQDROOP_RESET_BOTH	
		6: FRQDROOP_RESET_ERCOT	
		1: FRQDROOP_RESET_OFF	
		2: FRQDROOP_RESET_OVERFRQ	
		5: FRQDROOP_RESET_RAMP	
J+111	FrqDroop.ResetMode	3: FRQDROOP_RESET_UNDERFRQ	1
J+112	FrqDroop.ResetTm	Switch off delay for reset frequency	0
		Mode of power increase during under fre-	
		quency event	
		2: FRQDROOP_LIMIT_EXTERNAL_LIMIT	
		1: FRQDROOP_LIMIT_LIMITED	
J+113	FrqDroop.UnderFrqMode	0: FRQDROOP_LIMIT_UNLIMITED	0
J+114	FrtDetection.Ena	Enables function	0
J+115	FrtDetection.FilterTm	Filter time for upper and lower limits in sec	300
J+116	FrtDetection.PreFrtSamples	Re-initializes pi controllers to the pre frt output	5
		Defines the reference point for FRT detection	
		1: FRTDETECT_REF_MODE_DEDICATED	
J+117	FrtDetection.RefMode	0: FRTDETECT_REF_MODE_POI	0
J+118	FrtDetection.StopDelay	Stop delay for leaving state FRT in sec	2

I		Selects the source for the calculation of upper	Ī
		and lower thresholds	
		0: FRTDETECT_MODE_MEAS	
J+119	FrtDetection.ThrsldMode	1: FRTDETECT_MODE_NOM	1
		Lower voltage threshold for FRT detection in per-	
J+120	FrtDetection.VtgLoLimPc	centage of VtgNom	50
		Upper voltage threshold for FRT detection in per-	
J+121	FrtDetection.VtgUpLimPc	centage of VtgNom	150
		Enables frequency response (FFR, EFR, PRL,	
J+122	GridService.EnaFrqRespForPv	DS3, FCAS) for pv systems.	0
		Enables the prioritization of the activated battery	
J+123	GridService.EnaPrioBatFrqResp	P(f) function (FFR, EFR, FCR, FCAS)	0
J+124	GridService.FrqActDelay	Activation delay for P(f)-characteristics	0.1
		Enables activation of P(f)-characteristics during	
J+125	GridService.FrqEnaActFrt	FRT	1
		Compensation factor for measured frequency if	
		fast active power changes is causing phase an-	
J+126	GridService.FrqPoiCompFactor	gle jumps	0
		This mode determines if the POI frequency	
		should be directly used, filtered or ramped.	
		1: FRQ_POI_DYNMODE_FILTERTM	
		0: FRQ_POI_DYNMODE_OFF	
J+127	GridService.FrqPoiDynMod	2: FRQ_POI_DYNMODE_RAMP	1
J+128	GridService.FrqPoiFilterTm	Filter time for actual frequency in s	0
		Maximum allowed rate for actual frequency at	
J+129	GridService.FrqPoiRateMax	POI in Hz/s. \$18443\$	0.04
	GridService.FrqPreFault-		
J+130	ValHoldTm	Holds the pre-fault value for the specified time	1
		Uses the battery power to fulfill P(f)-characteris-	
J+131	GridService.FrqUseBatPwr	tics	0
		Defines the reference for over frequency event /	
		0: FRQDROOP_REFMODE_MEAS / 1:	
J+132	GridService.OverFrqRefMode	frqdroop_refmode_spnt	0
		Defines which device class is controlling the	
		active power of the POI	
		3:POI_CTRL_MODE_AUTO	
		2: POI_CTRL_MODE_BAT	
		1: POI_CTRL_MODE_PV	
		Please set this parameter to 3 in case of	
	GridService.PoiPwrAtCtrl-	PV+BESS, 1 in case of PV and 2 in case of	
J+133	Mode	Battery system	0

J+134	GridService.PwrApNomPoi	Nominal apparent power at POI in kVA	2000
		Defines the prioritization to limit the apparent	
		power	
		1: PWR_AP_PRIO_MODE_ACTIVE	
		0: PWR_AP_PRIO_MODE_OFF	
		2: PWR_AP_PRIO_MODE_REACTIVE	
		3:PWR_AP_PRIO_MODE_REACTIVE_FRQDRO	
J+135	GridService.PwrApPrioMode	OP	1
J+136	GridService.PwrAtNomPoi	Nominal active power at point of interest in kW	1000
		Filter time for actual active power at POI in s	
J+13 <i>7</i>	GridService.PwrAtPoiFilterTm	which is used for apparent power limitation	0
J+138	GridService.PwrRtNomPoi	Nominal reactive power at POI in kVar	1000
		Filter time for actual reactive power at POI in s	
J+139	GridService.PwrRtPoiFilterTm	which is used for apparent power limitation	0
		Defines the reference for under frequency events	
		/ 0: FRQDROOP_REFMODE_MEAS / 1:	
J+140	GridService.UnderFrqRefMode	FRQDROOP_REFMODE_SPNT	0
J+141	GridVtgCtrl.Ena	Enables function	0
J+142	GridVtgCtrl.IntGain	Integral gain for voltage control (ki)	5
J+143	GridVtgCtrl.IntLimAwu	Integral limit for voltage control (anti windup)	0.5
J+144	GridVtgCtrl.PropGain	Proportional gain for voltage control (kp)	0
J+145	GridVtgCtrl.VtgFilterTm Filter time of actual voltage in s		0
		Enables compensation of open-loop setpoint	
J+146	PoCo.EnaOpenLoopSptDiff	changes (Relevant for PV+BESS system only)	1
		Integral gain (Relevant for PV+BESS system	
J+147	PoCo.K_I	only)	1
		Proportional gain (Relevant for PV+BESS system	
J+148	PoCo.K_P	only)	0
		Maximum control value, in pu (Relevant for	
J+149	PoCo.OutMax	PV+BESS system only)	1
		Minimum control value, in pu (Relevant for	
J+150	PoCo.OutMin	PV+BESS system only)	-1
		Number of time steps that the PI controller must	
		be at the limit before initialization due to an	
		overshoot is allowed (Relevant for PV+BESS sys-	
J+151	PoCo.OvershootReInitHystTicks	tem only)	10
		Hysteresis for initialization as a result of an over-	
		shoot, in % of sum of nominal power of all de-	
	PoCo.OvershootRel-	vices in operation (Relevant for PV+BESS system	
J+152	nitHystWNom	only)	1
		Rate of change for dynamic target powers (Rele-	
J+153	PoCo.WGraMeasTarget	vant for PV+BESS system only)	0.2

		Rate of change when changing from closed-loop	
		to open-loop control, in pu/s (Relevant for	
J+154	PoCo.WGraOpenLoop	PV+BESS system only)	0.2
	1 1	Rate of change for target powers, in pu/s (Rele-	
J+155	PoCo.WGraTarget	vant for PV+BESS system only)	0.02
	, , ,	Time for detecting a device is not following its	
		control value, in s (Relevant for PV+BESS system	
J+156	PoCo.WaitTmsDevAtLimit	only)	3
		Control parameter integral gain for the power	
J+1 <i>57</i>	PvPwrAtCtrl.CtrlKi	PID controller	0.4
		Control parameter proportional gain for the	
J+158	PvPwrAtCtrl.CtrlKp	power PI controller	0
	PvPwrAtCtrl.DynSpntSwitchHysP	Hysteresis for switching to the limit if measure-	
J+159	c	ment exceeds the limit, in % of PwrAtNomPoi	0
		Enables the PI controller (Enable this for PV only	
J+160	PvPwrAtCtrl.Ena	systems)	0
		Enables adaptive control (Yes: related to the	
		connected nominal device power / No: related	
J+161	PvPwrAtCtrl.EnaAdapCtrl	to PwrAt(Rt)NomPoi)	1
		Enables dynamic setpoint switching if limits are	
J+162	PvPwrAtCtrl.EnaDynSpntSwitch	exceeded	0
	, ,	Enables resetting of the integrator if step change	
J+163	PvPwrAtCtrl.EnaStepReset	is detected (PV)	0
		A constant offset which will be added to the set-	
J+164	PvPwrAtCtrl.FeedForwardOffset	point in kW	0
J+165	PvPwrAtCtrl.MeasFilterTm	Filter time for actual measurement in s	0
		Offset for detecting a overshoot, in % of	
J+166	PvPwrAtCtrl.OvershootResetPc	PwrAtNomPoi	1
		The upper and lower limit of the output of the PI	
J+167	PvPwrAtCtrl.PiCtrlLimPc	controller	5
J+168	PvPwrAtCtrl.PilotControlGain	The gain factor for the pilot control	1
J+169	PvPwrAtCtrl.SpntDelaySamples	To delay the active power setpoint	2
		Threshold for detecting a step change, in % of	
J+170	PvPwrAtCtrl.StepResetThrsldPc	PwrAtNomPoi	1
		Defines which reactive power function is used	
		1074: PWR_RT_MODE_FIX_COSPHI	
		1984: PWR_RT_MODE_GRID_VTG_CTRL	
		303: PWR_RT_MODE_OFF	
		1069: PWR_RT_MODE_VTG_DROOP	
		1070:PWR_RT_MODE_VTG_DROOP_EXT_SP	
J+171	PwrRt.PwrRtCtrlMode	NT	303

1		Control parameter intregral gain for the power	I
J+172	PwrRtCtrl.CtrlKi	PI controller	0.4
		Control parameter proportional gain for the	
J+173	PwrRtCtrl.CtrlKp	power PI controller	0
	'	Hysteresis for switching to the limit if measure-	
J+1 <i>74</i>	PwrRtCtrl.DynSpntSwitchHysPc	ment exceeds the limit, in % of PwrRtNomPoi	0
	7 1 7	Enables the PI controller for reactive power con-	
J+1 <i>75</i>	PwrRtCtrl.Ena	trol	0
		Enables adaptive control (Yes: related to the	
		connected nominal device power / No: related	
J+176	PwrRtCtrl.EnaAdapCtrl	to PwrAtRtNomPoi)	1
	·	Enables dynamic setpoint switching if limits are	
J+1 <i>77</i>	PwrRtCtrl.EnaDynSpntSwitch	exceeded	0
	, 1	Enables reseting of the integrator if step change	
J+178	PwrRtCtrl.EnaStepReset	is detected	0
	'	A constant offset which will be added to the set-	
J+1 <i>7</i> 9	PwrRtCtrl.FeedForwardOffset	point	0
J+180	PwrRtCtrl.MeasFilterTm	Filter time for actual measurement in s	0
		Offset for detecting a overshoot, in % of	
J+181	PwrRtCtrl.OvershootResetPc	PwrRtNomPoi	100
		The upper and lower limit of the output of the PI	
J+182	PwrRtCtrl.PiCtrlLimPc	controller for reactive power control	5
J+183	PwrRtCtrl.PilotControlGain	The gain factor for the pilot control	1
J+184	PwrRtCtrl.SpntDelaySamples	To delay the active power setpoint	3
	, , ,	Threshold for detecting a step change, in % of	
J+185	PwrRtCtrl.StepResetThrsldPc	PwrRtNomPoi	20
J+186	PwrRtPwrAtLim.Ena	Enables function / 0: ENA_NO / 1: ENA_YES	0
J+187	PwrRtPwrAtLim.PwrAtFilterTm	Filter time for active power measurement in s	0
		The active power breakpoints for the upper re-	
J+188	PwrRtPwrAtLim.PwrAtLimHiPc[1]	active power limits in % relative to PwrAtNomPoi	0
		The active power breakpoints for the upper re-	
J+189	PwrRtPwrAtLim.PwrAtLimHiPc[2]	active power limits in % relative to PwrAtNomPoi	50
		The active power breakpoints for the upper re-	
J+190	PwrRtPwrAtLim.PwrAtLimHiPc[3]	active power limits in % relative to PwrAtNomPoi	70
		The active power breakpoints for the upper re-	
J+191	PwrRtPwrAtLim.PwrAtLimHiPc[4]	active power limits in % relative to PwrAtNomPoi	100
		The active power breakpoints for the upper re-	
J+192	PwrRtPwrAtLim.PwrAtLimHiPc[5]	active power limits in % relative to PwrAtNomPoi	101
	1.1	The active power breakpoints for the upper re-	
J+193	PwrRtPwrAtLim.PwrAtLimHiPc[6]	active power limits in % relative to PwrAtNomPoi	102
		- F	

		The active power breakpoints for the upper re-	
J+194	PwrRtPwrAtLim.PwrAtLimHiPc[7]	active power limits in % relative to PwrAtNomPoi	103
		The active power breakpoints for the upper re-	
J+195	PwrRtPwrAtLim.PwrAtLimHiPc[8]	active power limits in % relative to PwrAtNomPoi	104
		The active power breakpoints for the upper re-	
J+196	PwrRtPwrAtLim.PwrAtLimHiPc[9]	active power limits in % relative to PwrAtNomPoi	105
	PwrRtPwrAtLim.PwrAtLim-	The active power breakpoints for the upper re-	
J+197	HiPc[10]	active power limits in % relative to PwrAtNomPoi	106
		The active power breakpoints for the lower reac-	
J+198	PwrRtPwrAtLim.PwrAtLimLoPc[1]	tive power limits in % relative to PwrAtNomPoi	0
		The active power breakpoints for the lower reac-	
J+199	PwrRtPwrAtLim.PwrAtLimLoPc[2]	tive power limits in % relative to PwrAtNomPoi	50
		The active power breakpoints for the lower reac-	
J+200	PwrRtPwrAtLim.PwrAtLimLoPc[3]	tive power limits in % relative to PwrAtNomPoi	70
		The active power breakpoints for the lower reac-	
J+201	PwrRtPwrAtLim.PwrAtLimLoPc[4]	tive power limits in % relative to PwrAtNomPoi	100
		The active power breakpoints for the lower reac-	
J+202	PwrRtPwrAtLim.PwrAtLimLoPc[5]	tive power limits in % relative to PwrAtNomPoi	101
		The active power breakpoints for the lower reac-	
J+203	PwrRtPwrAtLim.PwrAtLimLoPc[6]	tive power limits in % relative to PwrAtNomPoi	102
		The active power breakpoints for the lower reac-	
J+204	PwrRtPwrAtLim.PwrAtLimLoPc[7]	tive power limits in % relative to PwrAtNomPoi	103
		The active power breakpoints for the lower reac-	
J+205	PwrRtPwrAtLim.PwrAtLimLoPc[8]	tive power limits in % relative to PwrAtNomPoi	104
		The active power breakpoints for the lower reac-	
J+206	PwrRtPwrAtLim.PwrAtLimLoPc[9]	tive power limits in % relative to PwrAtNomPoi	105
	PwrRtPwrAtLim.PwrAtLim-	The active power breakpoints for the lower reac-	
J+207	LoPc[10]	tive power limits in % relative to PwrAtNomPoi	106
		The reactive power breakpoints for the upper re-	
J+208	PwrRtPwrAtLim.PwrRtLimHiPc[1]	active power limits in % relative to PwrRtNomPoi	60
		The reactive power breakpoints for the upper re-	
J+209	PwrRtPwrAtLim.PwrRtLimHiPc[2]	active power limits in % relative to PwrRtNomPoi	60
		The reactive power breakpoints for the upper re-	
J+210	PwrRtPwrAtLim.PwrRtLimHiPc[3]	active power limits in % relative to PwrRtNomPoi	40
		The reactive power breakpoints for the upper re-	
J+211	PwrRtPwrAtLim.PwrRtLimHiPc[4]	active power limits in % relative to PwrRtNomPoi	40
		The reactive power breakpoints for the upper re-	
J+212	PwrRtPwrAtLim.PwrRtLimHiPc[5]	active power limits in % relative to PwrRtNomPoi	40
		The reactive power breakpoints for the upper re-	
J+213	PwrRtPwrAtLim.PwrRtLimHiPc[6]	active power limits in % relative to PwrRtNomPoi	40
		The reactive power breakpoints for the upper re-	
J+214	PwrRtPwrAtLim.PwrRtLimHiPc[7]	active power limits in % relative to PwrRtNomPoi	40

		The reactive power breakpoints for the upper re-	
J+215	PwrRtPwrAtLim.PwrRtLimHiPc[8]	active power limits in % relative to PwrRtNomPoi	40
		The reactive power breakpoints for the upper re-	
J+216	PwrRtPwrAtLim.PwrRtLimHiPc[9]	active power limits in % relative to PwrRtNomPoi	40
	PwrRtPwrAtLim.PwrRtLim-	The reactive power breakpoints for the upper re-	
J+21 <i>7</i>	HiPc[10]	active power limits in % relative to PwrRtNomPoi	40
		The reactive power breakpoints for the lower re-	
J+218	PwrRtPwrAtLim.PwrRtLimLoPc[1]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+219	PwrRtPwrAtLim.PwrRtLimLoPc[2]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+220	PwrRtPwrAtLim.PwrRtLimLoPc[3]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+221	PwrRtPwrAtLim.PwrRtLimLoPc[4]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+222	PwrRtPwrAtLim.PwrRtLimLoPc[5]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+223	PwrRtPwrAtLim.PwrRtLimLoPc[6]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+224	PwrRtPwrAtLim.PwrRtLimLoPc[7]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+225	PwrRtPwrAtLim.PwrRtLimLoPc[8]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power breakpoints for the lower re-	
J+226	PwrRtPwrAtLim.PwrRtLimLoPc[9]	active power limits in % relative to PwrRtNomPoi	-60
	PwrRtPwrAtLim.PwrRtLim-	The reactive power breakpoints for the lower re-	
J+227	LoPc[10]	active power limits in % relative to PwrRtNomPoi	-60
		The reactive power data for the lower limit cor-	
	PwrRtVtgLim. PwrRt-	responding to the voltage offsets in % relative to	
J+228	DataPcLoLim1	PwrRtNomPoi	0
		The reactive power data for the lower limit cor-	
	PwrRtVtgLim. PwrRt-	responding to the voltage offsets in % relative to	
J+229	DataPcLoLim2	PwrRtNomPoi	33
		The reactive power data for the upper limit cor-	
	PwrRtVtgLim. PwrRt-	responding to the voltage offsets in % relative to	
J+230	DataPcUpLim1	PwrRtNomPoi	-33
		The reactive power data for the upper limit cor-	
	PwrRtVtgLim. PwrRt-	responding to the voltage offsets in % relative to	
J+231	DataPcUpLim2	PwrRtNomPoi	0
J+232	PwrRtVtgLim.VtgFilterTm	Filter time for voltage measurement	0
		The voltage offsets for the lower limit in % rela-	-
J+233	PwrRtVtgLim.VtgOffsetsLoLim1	tive to VtgNom	-4
, 200	1		•

		The voltage offsets for the lower limit in % rela-	
J+234	PwrRtVtgLim.VtgOffsetsLoLim2	tive to VtgNom	-6
	0 0	The voltage offsets for the upper limit in % rela-	
J+235	PwrRtVtgLim.VtgOffsetsUpLim1	tive to VtgNom	6
		The voltage offsets for the upper limit in % rela-	
J+236	PwrRtVtgLim.VtgOffsetsUpLim2	tive to VtgNom	4
		Enables time ramp with PwrAtRampTm	
J+237	SpntRamp.EnaPwrAtRampTm	0: ENA_NO / 1: ENA_YES	0
		maximum positive rate of active power setpoint	
	SpntRamp.BatPwrAtRiseRate-	for battery system in %/s (of related actual	
J+238	Max	power)	20
		maximum positive rate of active power setpoint	
J+239	SpntRamp.PvPwrAtRiseRateMax	for pv system in %/s (of related actual power)	5
J+240	SpntRamp.PwrAtRampTm	Time to ramp a setpoint change	300
_		maximum rate of active power setpoint for hole	
J+241	SpntRamp.PwrAtRateMax	system in MW/min	100
		Threshold for reseting the active power setpoint	
J+242	SpntRamp.PwrAtResetThrsldPc	to the actual measurement in % of PwrAtNomPoi	5
		Active power setpoint filter time, if greater than	
J+243	SpntRamp.PwrAtSpntFilterTm	O ramps are disabled	0
		maximum rate of reactive power setpoint for	
J+244	SpntRamp.PwrRtRateMax	hole system in MVar/min	100
		Reactive power setpoint filter time, if greater	
J+245	SpntRamp.PwrRtSpntFilterTm	than 0 ramps are disabled.	0
	VtgPwrRtDroop.PwrRtDataPcDb	Higher deadband reactive power limit in per-	
J+246	Hi	centage of PwrRtNomPoi	0
	VtgPwrRtDroop.PwrRtDataPcD-	Lower deadband reactive power limit in % of	
J+247	blo	PwrRtNomPoi	0
		The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+248	VtgPwrRtDroop.PwrRtDataPc[1]	PwrRtNomPoi	-5
		The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+249	VtgPwrRtDroop.PwrRtDataPc[2]	PwrRtNomPoi	5
		The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+250	VtgPwrRtDroop.PwrRtDataPc[3]	PwrRtNomPoi	4
		The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+251	VtgPwrRtDroop.PwrRtDataPc[4]	PwrRtNomPoi	3

		The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+252 VtgP	PwrRtDroop.PwrRtDataPc[5]	PwrRtNomPoi	2
		The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+253 VtgP	PwrRtDroop.PwrRtDataPc[6]	PwrRtNomPoi	1
	·	The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+254 VtgF	PwrRtDroop.PwrRtDataPc[7]	PwrRtNomPoi	-1
	·	The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+255 VtgF	PwrRtDroop.PwrRtDataPc[8]	PwrRtNomPoi	-2
		The reactive power data corresponding to the	
		voltage breakpoints in % relative to	
J+256 VtgF	PwrRtDroop.PwrRtDataPc[9]	PwrRtNomPoi	-3
	·	The reactive power data corresponding to the	
VtgF	PwrRtDroop.PwrRtDataPc[10	voltage breakpoints in % relative to	
J+257]		PwrRtNomPoi	-4
		Selects the setpoint source for the voltage set-	
		point	
		2: VTG_SPNTSRC_MODE_EXTSPNT	
		3: VTG_SPNTSRC_MODE_MEAS	
J+258 VtgF	wrRtDroop.SpntSrc	1: VTG_SPNTSRC_MODE_PARAM	1
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+259 poin	ıts[1]	inal voltage	5
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+260 poin	ıts[2]	inal voltage	-5
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+261 poin	ıts[3]	inal voltage	-4
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+262 poin	ıts[4]	inal voltage	-3
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+263 poin	ıts[5]	inal voltage	-2
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+264 poin	its[6]	inal voltage	-1
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+265 poin	ıts[7]	inal voltage	1
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+266 poin	its[8]	inal voltage	2
VtgF	PwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
•			

	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the nom-	
J+268	points[10]	inal voltage	4
J+269	VtgPwrRtDroop.VtgFilterTm	Filter time for voltage measurement	0
J+270	VtgPwrRtDroop.VtgSpntFilterTm	Filter time for the voltage setpoint in s	3

2.4.3 VARs

VAR(L+O)	Reserved	
VAR(L+O)	Reserved	
VAR(L+1)	Volt_RB	
VAR(L+2)	P_pcc	
VAR(L+3)	Q_pcc	
VAR(L+4)	S_pcc	
VAR(L+5)	Volt_RB_Frt	
VAR(L+6)	Volt_RB_Init	
VAR(L+7)	P_pcc_Init	
VAR(L+8)	Q_pcc_Init	
VAR(L+9)	STEPCOUNTER	
VAR(L+10)	Reserved	
VAR(L+11)	Reserved	
VAR(L+12)	Reserved	
VAR(L+13)	BESS_W_Spt	
VAR(L+14)	POI_Var_Spt	
VAR(L+15)	POI_PF_Spt	
VAR(L+16)	POI_Vol_Spt	
VAR(L+17)	POI_Hz_Spt	
VAR(L+18)	PwrAtLimSales	
VAR(L+19)	ExtPwrAtLimLo	
VAR(L+20)	ExtPwrAtLimHi	
VAR(L+21)	Frq_pcc	
VAR(L+22)	PV_P_pu_add	
VAR(L+23)	PV_Q_pu_add	
VAR(L+24)	PV_S_pu_add	
VAR(L+25)	BESS_P_pu_add	
VAR(L+26)	BESS_Q_pu_add	
VAR(L+27)	BESS_S_pu_add	
VAR(L+28)	PvPwrAtAvail	
VAR(L+29)	BatPwrAtAvail	
VAR(L+30)	BESS_W_Spt_init	
VAR(L+31)	POI_Var_Spt_init	
VAR(L+32)	POI_PF_Spt_init	

VAR(L+33)	POI_Vol_Spt_init
VAR(L+34)	POI_Hz_Spt_init
VAR(L+35)	PwrAtLimSales_init
VAR(L+36)	ExtPwrAtLimLo_init
VAR(L+37)	ExtPwrAtLimHi_init
VAR(L+38)	Reserved
VAR(L+39)	Reserved
VAR(L+40)	HybridPwrAtMaxTot
VAR(L+41)	Plant_Base
VAR(L+42)	HybridPwrAtTot
VAR(L+43)	Ppv_com
VAR(L+44)	Qpv_com
VAR(L+45)	Pbess_com
VAR(L+46)	Qbess_com
VAR(L+47)	Inv_read_Flg
VAR(L+48)	Ppv_inv_init
VAR(L+49)	Qpv_inv_init
VAR(L+50)	Pbess_inv_init
VAR(L+51)	Qbess_inv_init
VAR(L+52)	DCDC_PBase
VAR(L+53)	PInitTotDCDC
VAR(L+54)	PvPwrAtAvail
VAR(L+55)	BatPwrAtAvail
VAR(L+56)	Ppv_cmd_inv_filt
VAR(L+57)	Qpv_cmd_inv_filt
VAR(L+58)	Pbess_cmd_inv_filt
VAR(L+59)	Qbess_cmd_inv_filt
VAR(L+60)	BatWSptMax
VAR(L+61)	BatWSptMin
VAR(L+62)	Ppv_cmd_inv
VAR(L+63)	Qpv_cmd_inv
VAR(L+64)	Pbess_cmd_inv
VAR(L+65)	Qbess_cmd_inv
VAR(L+66)	Reserved
VAR(L+67)	Reserved
VAR(L+68)	Reserved
VAR(L+69)	Reserved
VAR(L+70)	Reserved
VAR(L+71)	Reserved
VAR(L+72)	Reserved
VAR(L+73)	Reserved

VAR(L+74)	Reserved
VAR(L+75)	FrtActive
VAR(L+76)	FRT_ExitTm
VAR(L+77)	VoltPoiFilt
VAR(L+78)	PwrAtPoi_pu_hist
VAR(L+79)	PoiFrqComp
VAR(L+80)	FrqPoi_processed
VAR(L+81)	Pfrq_Poi_Filtered
VAR(L+82)	PvBatMaxOut
VAR(L+83)	PvBatMinOut
VAR(L+84)	PwrAtLimPrioRt
VAR(L+85)	PwrRtPoi_Filt
VAR(L+86)	PwrAtSpnt_FCAS
VAR(L+87)	Active_State
VAR(L+88)	FrequencyOutsideDB
VAR(L+89)	State_Fast
VAR(L+90)	FastState_timer
VAR(L+91)	FastDone
VAR(L+92)	State_Slow
VAR(L+93)	SlowState_timer
VAR(L+94)	SlowDone
VAR(L+95)	State_Delayed
VAR(L+96)	DelayedState_timer
VAR(L+97)	DelayedDone
VAR(L+98)	FrqRespPwrAtMaxNom
VAR(L+99)	FrqRespPwrAtMinNom
VAR(L+100)	FrqRespPwrAtSpnt
VAR(L+101)	PreFaultMeasOut
VAR(L+102)	PreFaultSpntOut
VAR(L+103)	FrqRespActDelay_state
VAR(L+104)	FrqRespActDelay_timer
VAR(L+105)	Flag_FrqOutsideDb
VAR(L+106)	TimeDelay for FrqDroop
VAR(L+107)	Frq_After_Delay
VAR(L+108)	Reset
VAR(L+109)	Reset_delay
VAR(L+110)	EnaRamp
VAR(L+111)	EnaRamp_delay
VAR(L+112)	State_ResetTm
VAR(L+113)	ResetTm_Time
VAR(L+114)	Reset_OR_FrqOutside

VAR(L+115)	PwrSpntPu_hold
VAR(L+116)	PwrSpntPu_hold
VAR(L+117)	InPrefaultVal
VAR(L+118)	ShiftPreFaultVal
VAR(L+119)	PreFaultVal
VAR(L+120)	RateLimiter_Input
VAR(L+121)	HoldValue_delay
VAR(L+122)	Unused
VAR(L+123)	HoldValue_delay2
VAR(L+124)	HoldValue_delay3
VAR(L+125)	HoldValue_delay4
VAR(L+126)	EnaShiftPreFaultVal
VAR(L+127)	PvBatMaxOut
VAR(L+128)	PvBatMinOut
VAR(L+129)	FrqDroopActive
VAR(L+130)	PwrAtLimSales
VAR(L+131)	PwrAtSpntFilterTm
VAR(L+132)	PvBatMax_Hold
VAR(L+133)	PvBatMin_Hold
VAR(L+134)	IsFrqLo
VAR(L+135)	IsFrqLo_delay
VAR(L+136)	PreFaultMeasOut
VAR(L+137)	PreFaultSpntOut
VAR(L+138)	Hold_PreFaultVal_process
VAR(L+139)	Timer 1
VAR(L+140)	Timer2
VAR(L+141)	PreFaultSpt_hold
VAR(L+142)	PreFaultMeas_hold
VAR(L+143)	FrqDroopActive_delay1
VAR(L+144)	FrqDroopActive_delay2
VAR(L+145)	FrqDroopActive_delay3
VAR(L+146)	FrqDroopActive_delay4
VAR(L+147)	HoldSpnt_Flag
VAR(L+148)	ExtBatPwrAtSpnt
VAR(L+149)	EnaCritGridRamp_delay1
VAR(L+150)	EnaCritGridRamp_delay2
VAR(L+151)	EnaCritGridRamp_Out
VAR(L+152)	FrqDroopActive_Out
VAR(L+153)	BatPwrAtSpnt_Out
VAR(L+154)	FrtActive_delay
VAR(L+155)	ResetSpntMax

VAR(L+156)	ResetSpntMin
VAR(L+157)	ResetMax_delay
VAR(L+158)	PvBatMax_delay
VAR(L+159)	ResetMin_delay
VAR(L+160)	PvBatMin_delay
VAR(L+161)	FrqDroop_delay
VAR(L+162)	FrqDroop_delay2
VAR(L+163)	PvBatMaxOut
VAR(L+164)	PvBatMinOut
VAR(L+165)	PvBatMaxOut_delay
VAR(L+166)	PvBatMaxOut_delay2
VAR(L+167)	PvBatMinOut_delay
VAR(L+168)	PvBatMinOut_delay2
VAR(L+169)	EnaCritGridRamp_dly
VAR(L+170)	EnaCritGridRamp_dly2
VAR(L+171)	EnaCritGridRamp_local
VAR(L+172)	FrqDroopActive_local
VAR(L+173)	PvBatMaxOut_filter
VAR(L+174)	PvBatMinOut_filter
VAR(L+175)	FrqDroopActive_Dly1
VAR(L+176)	FrqDroopActive_Dly2
VAR(L+177)	FrqDroop_SR
VAR(L+178)	PvBatMaxAddRstThshld_Delay
VAR(L+179)	PvBatMinSubRstThshld_Delay
VAR(L+180)	InitCond
VAR(L+181)	FrtActive_delay
VAR(L+182)	Setpoint_delay1
VAR(L+183)	Setpoint_delay2
VAR(L+184)	Setpoint_delay3
VAR(L+185)	Setpoint_delay4
VAR(L+186)	Setpoint_delay5
VAR(L+187)	Setpoint_delay6
VAR(L+188)	PvBatMaxOut
VAR(L+189)	PvBatMinOut
VAR(L+190)	PrioFrqResp_state
VAR(L+191)	PvBatMaxOut_old
VAR(L+192)	Unused
VAR(L+193)	Hold
VAR(L+194)	timer 1
VAR(L+195)	timer2
VAR(L+196)	PvBatMaxOut

VAR(L+197)	PvBatMinOut
VAR(L+198)	FreqRespPwrAtMax
VAR(L+199)	FreqRespPwrAtMin
VAR(L+200)	ExtPwrRtSpntOut
VAR(L+201)	PwrRtSpnt
VAR(L+202)	InitVtgSpnt
VAR(L+203)	VtgSpnt_Filt
VAR(L+204)	VtgPoi_Filt
VAR(L+205)	PwrAtPoi_filter
VAR(L+206)	CosPhiSpnt
VAR(L+207)	PwrRtOut
VAR(L+208)	InitCosPhi
VAR(L+209)	Unused
VAR(L+210)	Unused
VAR(L+211)	PwrRtRateMax_Out
VAR(L+212)	PwrRtSpntTot
VAR(L+213)	LimitRtHi
VAR(L+214)	LimitRtLo
VAR(L+215)	PwrAtPoiFilterTm
VAR(L+216)	PwrRtSpntFilterTm
VAR(L+217)	InitCond
VAR(L+218)	FrtActive_delay
VAR(L+219)	Setpoint_delay 1
VAR(L+220)	Setpoint_delay2
VAR(L+221)	Setpoint_delay3
VAR(L+222)	Setpoint_delay4
VAR(L+223)	Setpoint_delay5
VAR(L+224)	Setpoint_delay6
VAR(L+225)	PwrRtPwrAtLimHi
VAR(L+226)	PwrRtPwrAtLimLo
VAR(L+227)	PwrAtPoi_filt
VAR(L+228)	PwrRtVtgLimHi
VAR(L+229)	PwrRtVtgLimLo
VAR(L+230)	VtgPoi_filt
VAR(L+231)	PvPwrAtLim
VAR(L+232)	BatPwrAtSpntOut
VAR(L+233)	PwrCtlOut
VAR(L+234)	PwrSpnt_delay
VAR(L+235)	Reset_Timer
VAR(L+236)	Reset_Signal
VAR(L+237)	ResetOut_delay

VAR(L+238)	HoldInt_Out_delay
VAR(L+239)	HoldInt_Active
VAR(L+240)	PwrMsTot_Filt
VAR(L+241)	FrtActive_delay
VAR(L+242)	PiCtrlWithLimit_out
VAR(L+243)	PwrCtl_Integrator
VAR(L+244)	PiCtrl_int_delay1
VAR(L+245)	PiCtrl_int_delay2
VAR(L+246)	PiCtrl_int_delay3
VAR(L+247)	PiCtrl_int_delay4
VAR(L+248)	PiCtrl_int_delay5
VAR(L+249)	PiCtrl_int_delay6
VAR(L+250)	PiCtrl_SetIC_Freeze
VAR(L+251)	PwrCtlOut
VAR(L+252)	PwrSpnt_delay
VAR(L+253)	Reset_Timer
VAR(L+254)	Reset_Signal
VAR(L+255)	ResetOut_delay
VAR(L+256)	HoldInt_out_dly
VAR(L+257)	HoldInt_Active
VAR(L+258)	PwrMsTot_Filt
VAR(L+259)	FrtActive_delay
VAR(L+260)	PiCtrlWithLimit
VAR(L+261)	PwrCtl_Integrator
VAR(L+262)	PiCtrl_int_delay1
VAR(L+263)	PiCtrl_int_delay2
VAR(L+264)	PiCtrl_int_delay3
VAR(L+265)	PiCtrl_int_delay4
VAR(L+266)	PiCtrl_int_delay5
VAR(L+267)	PiCtrl_int_delay6
VAR(L+268)	PiCtrl_SetIC_Freeze
VAR(L+269)	PvPwrAtSpnt
VAR(L+270)	AutoMode
VAR(L+271)	BatPwrAtSpnt
VAR(L+272)	DisablePvRrc
VAR(L+273)	DevAtUpLimitPv
VAR(L+274)	TimeOutTimerPVup
VAR(L+275)	DevAtLoLimitPv
VAR(L+276)	TimeOutTimerPVDown
VAR(L+277)	DevAtUpLimitBat
VAR(L+278)	TimeOutTimerBatup

VAR(L+279)	DevAtLoLimitBat
VAR(L+280)	TimeOutTimerBatDown
VAR(L+281)	TargetPVOut
VAR(L+282)	TargetBatOut
VAR(L+283)	PvPwrAtLimTotOut_delay1
VAR(L+284)	PvPwrAtLimTotOut_delay2
VAR(L+285)	PvPwrAtLimTotOut_delay3
VAR(L+286)	BatPwrAtLimTOotOut_delay1
VAR(L+287)	BatPwrAtLimTotOut_delay2
VAR(L+288)	BatPwrAtLimTotOut_delay3
VAR(L+289)	TimeOutReachedCtrlPrioChange
VAR(L+290)	TimeOutTimerCtrlPrioChange
VAR(L+291)	WsptOldSumHold
VAR(L+292)	PwrAtPoiHold
VAR(L+293)	Hold_delay
VAR(L+294)	Hold_delay2
VAR(L+295)	LimHiFlag_hold
VAR(L+296)	PwrAtPoiHoldMax
VAR(L+297)	PwrAtPoiHoldMin
VAR(L+298)	PwrAtPoiDelay
VAR(L+299)	PwrAtPoiDelayHold
VAR(L+300)	TimeOutReachedHoldChange
VAR(L+301)	TimeOutTimerHoldChange
VAR(L+302)	ForcePrioUp5Delay
VAR(L+303)	ForcePrioUp
VAR(L+304)	POICtrlState
VAR(L+305)	WSpt_Delay1
VAR(L+306)	WSpt_Delay2
VAR(L+307)	SetCtrlPrio_entry
VAR(L+308)	Trigger_state
VAR(L+309)	Trigger_state_timer1
VAR(L+310)	Trigger_state_timer2
VAR(L+311)	CtrlPrio
VAR(L+312)	CtrlPrio_delayed
VAR(L+313)	PrioUp
VAR(L+314)	UseWMax
VAR(L+315)	UpLim2Target
VAR(L+316)	LoLim2Target
VAR(L+317)	Relnit
VAR(L+318)	IC
VAR(L+319)	Holds(1)_delay

VAR(L+320)	Holds(2)_delay
VAR(L+321)	Holds(3)_delay
VAR(L+322)	Holds(4)_delay
VAR(L+323)	Holds(5)_delay
VAR(L+324)	WSpt_pu(1)_delay
VAR(L+324) VAR(L+325)	
VAR(L+326)	WSpt_pu(2)_delay WSpt_pu(3)_delay
, ,	
VAR(L+327)	WSpt_pu(4)_delay
VAR(L+328)	WSpt_pu(5)_delay
VAR(L+329)	IsClosedLoop_delay
VAR(L+330)	NumWSptPrio_send(1)_delay
VAR(L+331)	NumWSptPrio_send(2)_delay
VAR(L+332)	NumWSptPrio_send(3)_delay
VAR(L+333)	NumWSptPrio_send(4)_delay
VAR(L+334)	NumWSptPrio_send(5)_delay
VAR(L+335)	Trigg(1)_delay
VAR(L+336)	Trigg(2)_delay
VAR(L+337)	Trigg(3)_delay
VAR(L+338)	Trigg(4)_delay
VAR(L+339)	Trigg(5)_delay
VAR(L+340)	EnaRateLimit(1)_delay
VAR(L+341)	EnaRateLimit(2)_delay
VAR(L+342)	EnaRateLimit(3)_delay
VAR(L+343)	EnaRateLimit(4)_delay
VAR(L+344)	EnaRateLimit(5)_delay
VAR(L+345)	OpenLoop_WSpt(1)
VAR(L+346)	OpenLoop_WSpt(2)
VAR(L+347)	OpenLoop_WSpt(3)
VAR(L+348)	OpenLoop_WSpt(4)
VAR(L+349)	OpenLoop_WSpt(5)
VAR(L+350)	OpenLoop_WSpt(1)_delay
VAR(L+351)	OpenLoop_WSpt(2)_delay
VAR(L+352)	OpenLoop_WSpt(3)_delay
VAR(L+353)	OpenLoop_WSpt(4)_delay
VAR(L+354)	OpenLoop_WSpt(5)_delay
VAR(L+355)	OpenLoop_WSpt_lim(1)
VAR(L+356)	OpenLoop_WSpt_lim(2)
VAR(L+357)	OpenLoop_WSpt_lim(3)
VAR(L+358)	OpenLoop_WSpt_lim(4)
VAR(L+359)	OpenLoop_WSpt_lim(5)
VAR(L+360)	CtrlPrio_ne5_delay

VAR(L+361)	NumWSptPrio_send_delay
VAR(L+362)	QFRT
VAR(L+363)	NotFRT_delay
VAR(L+364)	Ctl_Spt_delay1
VAR(L+365)	Ctl_Spt_delay2
VAR(L+366)	Ctl_Spt_delay3
VAR(L+367)	Ctl_Spt_delay4
VAR(L+368)	Ctl_Spt_delay5
VAR(L+369)	Ctl_Spt_delay6
VAR(L+370)	Ctrl_Spt_SetIC_Freeze
VAR(L+371)	Ctrl_Spt (Output)
VAR(L+372)	u-y_delay
VAR(L+373)	Ctrl_Spt_int
VAR(L+374)	Ena_delay
VAR(L+375)	Ctrl_Spt_delay
VAR(L+376)	PvPwrAtAvailTot
VAR(L+377)	FrtActive_delay
VAR(L+378)	PvPwrAtAvailTot_delay1
VAR(L+379)	PvPwrAtAvailTot_delay2
VAR(L+380)	PvPwrAtAvailTot_delay3
VAR(L+381)	PvPwrAtAvailTot_delay4
VAR(L+382)	PvPwrAtAvailTot_delay5
VAR(L+383)	PvPwrAtAvailTot_delay6
VAR(L+384)	BatWMaxOutAval
VAR(L+385)	FrtActive_delay
VAR(L+386)	BatWMaxOutAval_delay1
VAR(L+387)	BatWMaxOutAval_delay2
VAR(L+388)	BatWMaxOutAval_delay3
VAR(L+389)	BatWMaxOutAval_delay4
VAR(L+390)	BatWMaxOutAval_delay5
VAR(L+391)	BatWMaxOutAval_delay6
VAR(L+392)	PvPwrAtSpntOld
VAR(L+393)	FrtActive_delay
VAR(L+394)	PvPwrAtSpntOld_delay1
VAR(L+395)	PvPwrAtSpntOld_delay2
VAR(L+396)	PvPwrAtSpntOld_delay3
VAR(L+397)	PvPwrAtSpntOld_delay4
VAR(L+398)	PvPwrAtSpntOld_delay5
VAR(L+399)	PvPwrAtSpntOld_delay6
VAR(L+400)	BatPwrAtSpntOld
VAR(L+401)	FrtActive_delay

VAR(L+402)	BatPwrAtSpntOld_delay1
VAR(L+403)	BatPwrAtSpntOld_delay2
VAR(L+404)	BatPwrAtSpntOld_delay3
VAR(L+405)	BatPwrAtSpntOld_delay4
VAR(L+406)	BatPwrAtSpntOld_delay5
VAR(L+407)	BatPwrAtSpntOld_delay6
VAR(L+408)	PvTarget_delay
VAR(L+409)	BatTarget_delay
VAR(L+410)	PvPwrAtLimTotOut
VAR(L+411)	BatPwrAtLimTotOut
VAR(L+412)	RtPwrNomTot
VAR(L+413)	PwrRtSpntOut
VAR(L+414)	DynSpntSwitch_state
VAR(L+415)	PwrCtlOut
VAR(L+416)	PwrSpnt_delay
VAR(L+417)	Reset_Timer
VAR(L+418)	Reset_Signal
VAR(L+419)	ResetOut_delay
VAR(L+420)	HoldInt_Out_dly
VAR(L+421)	HoldInt_Active
VAR(L+422)	PwrMsTot_Filt
VAR(L+423)	FrtActive_delay
VAR(L+424)	PiCtrlWithLimit_out
VAR(L+425)	PwrCtl_Integrator
VAR(L+426)	PiCtrl_int_delay1
VAR(L+427)	PiCtrl_int_delay2
VAR(L+428)	PiCtrl_int_delay3
VAR(L+429)	PiCtrl_int_delay4
VAR(L+430)	PiCtrl_int_delay5
VAR(L+431)	PiCtrl_int_delay6
VAR(L+432)	PiCtrl_SetIC_Freeze
VAR(L+433)	PwrRtSpntOut
VAR(L+434)	RtPwrNomTot
VAR(L+435)	Vtg_Poi_Flt
VAR(L+436)	HiLimit_Flag
VAR(L+437)	LoLimit_Flag
VAR(L+438)	PwrCtlOut
VAR(L+439)	PwrSpnt_delay
VAR(L+440)	Reset_Timer
VAR(L+441)	Reset_Signal
VAR(L+442)	ResetOut_delay

VAR(L+443)	HoldIntegrator_Out_delay
VAR(L+444)	HoldIntegrator_Active
VAR(L+445)	PwrMsTot_Filt
VAR(L+446)	FrtActive_delay
VAR(L+447)	PiCtrlWithLimit_output
VAR(L+448)	PwrCtl_Integrator
VAR(L+449)	PiCtrl_int_delay1
VAR(L+450)	PiCtrl_int_delay2
VAR(L+451)	PiCtrl_int_delay3
VAR(L+452)	PiCtrl_int_delay4
VAR(L+453)	PiCtrl_int_delay5
VAR(L+454)	PiCtrl_int_delay6
VAR(L+455)	PiCtrl_SetIC_Freeze
VAR(L+456)	PvPwrRtSpnt
VAR(L+457)	BatPwrRtSpnt

2.4.4 STATEs

STATE	Description
K	Reserved
K+1	Filtered remote bus frequency
K+2	Filtered remote bus voltage
K+3	Filtered POI active power
K+4	Filtered POI reactive power
K+5	Filtered PV active power
K+6	Filtered PV reactive power
K+7	Filtered BESS active power
K+8	Filtered BESS reactive power
K+9	Frt Detection Voltage Filter

3 Disclaimer

This document and the associated models have been prepared to facilitate the behavioral simulation of the response of SMA Hybrid Controller operating together with SMA Sunny Central storage and/or solar inverters to grid and parameter disturbances. The modeling data presented herein are intended to produce simulation results that closely approximate the response of the Hybrid Controller and the inverters to these disturbances.