Proof of Rice's theorem

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

```
Design of N
Let M_1 be the TM s.t. L(M_1) has Property P.
Let L(M_2) be the TM s.t. L(M_2) = \emptyset.

we assume that \emptyset does not have property P
on input \times
{
Claim: w \in L(M) if and only if \langle N \rangle \in \mathcal{L}_P
if M accepts w
then if M_1 accepts \times
then accept

if w \notin L(M) then L(N) = \emptyset.
```

Getting rid of the assumption on P

We now show how to get around the assumption.

Suppose \emptyset has property P.

Consider \overline{P} .

Now \varnothing does not have property \overline{P} .

Use Rice's theorem on $\mathcal{L}_{\overline{P}}$ to prove undecidibility.

Conclude undecidibility of \mathcal{L}_P .

Universality of CFLs

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Formally,

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

if
$$w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$$

Filling in the details

The following two details need to be addressed.

 Q_1 How should we design $N_{M,w}$?

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Details for Q_2

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Input (M, w) \longrightarrow $N_{M,w}$ if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*$, s.t. $x \notin L(N_{M,w})$ if $w \notin L(M)$ \longrightarrow $L(N_{M,w}) = \Sigma^*$

Design A as follows:

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

If *C* accepts then reject;

else accept.

Details for Q_1 : reduction via computation history

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is a rejecting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Details for Q_1 : reduction via computation history

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds: x does not have the pattern of a computational history of x OR

x is a computational history, but C_1 is not a start configuration OR

x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR

x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell-1$ and C_i does not yield C_{i+1} .

- If M accepts w, let \tilde{x} be a accepting computation history of M on w. $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.
- If M does not accept w, then no matter what x is, $N_{M,w}$ will accept x, i.e. $L(N_{M,w}) = \Sigma^*$.