Faculté des Sciences

Travaux dirigés de MTH 104

Exercice I

Soient [a, b] un intervalle de \mathbb{R} , (a < b), $\mathcal{S}_{a,b}$ l'ensemble des subdivisions de [a, b] et f une fonction définie sur [a, b]. Pour la subdivision $X = \{x_0, \dots, x_n\} \in \mathcal{S}_{a,b}$ on pose s(f, X) = $\sum_{i=1}^{n} h_i \inf_{I_i} f, S(f, X) = \sum_{i=1}^{n} h_i \sup_{I_i} f, I_i = [x_{i-1}, x_i], h_i = x_i - x_{i-1}, i = 1, \dots, n, \inf_{I_i} f$ et $sup_{I_i}f$ étant respectivement le minimum et le maximum de f sur l'intervalle I_i . Le réel S(f,X) (resp s(f,X)) est la somme de Darboux supérieure (resp inférieure) de la fonction f relativement à la subdivision X. Montrer que :

1- Si $Y=X\cup\{y_i\}$ avec $y_i\in]x_{i-1},x_i[$ alors $s(f,X)\leq s(f,Y).$ En déduire que $\forall X,Y\in\mathcal{S}_{a,b}$ si $X \subset Y$ alors $s(f, X) \leq s(f, Y)$ et $S(f, Y) \leq S(f, X)$.

2-
$$\forall X, Y \in \mathcal{S}_{a,b}, s(f,X) \leq S(f,Y).$$

3- Une fonction f définie sur l'intervalle [a, b] est Riemann-intégrable sur [a, b] si les deux réels $s(f)=sup_{X\in\mathcal{S}_{a,b}}s(f,X)$ et $S(f)=inf_{X\in\mathcal{S}_{a,b}}S(f,X)$ sont égaux. Montrer que f est Riemman-intégrable si et seulement si $\forall \epsilon > 0, \exists X \in \mathcal{S}_{a,b}, S(f,X) - s(f,X) < \epsilon$

Exercice II

Soit f et g deux fonctions continues sur l'intervalle $I = [-\frac{1}{2}, \frac{1}{2}]$ telles que g soit strictement positive sur I, montrer qu'il existe $c \in I$ tel que $\int_{-1}^{\frac{1}{2}} f(t)g(t)dt = f(c) \int_{-1}^{\frac{1}{2}} g(t)dt$

Exercice III

Soit C l'ensemble des fonctions à valeurs réelles, définies et continues sur l'intervalle $\left[-\frac{1}{2},\frac{1}{2}\right]$, à tout élément f de \mathcal{C} on associe la suite des nombres $C_k(f) = \int_{-\frac{1}{2}}^{\frac{\pi}{2}} f(x) x^k dx$, $k \in \mathbb{N}$

- 1) Soient f une fonction de \mathcal{C} et F la primitive de f qui s'annule pour la valeur $-\frac{1}{2}$. Calculer les nombres $C_k(F)$ en fonction des nombres $C_k(f)$.
- 2) Montrer que si P est un polynôme à coefficients réels et f une fonction de C, l'intégrale $\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)P(x)dx$ s'exprime simplement en fonction des nombres $C_k(f)$.
- 3) Soit g une fonction positive et intégrable sur $[-\frac{1}{2},\frac{1}{2}]$. On désigne par m (resp M) le minimum(resp maximum) de f sur $[-\frac{1}{2},\frac{1}{2}]$. Démontrer que pour $f\in\mathcal{C}$ la fonction F définie sur

$$\left[-\frac{1}{2},\frac{1}{2}\right]$$
 par $F(x)=f(x)\int_{-\frac{1}{2}}^{\frac{1}{2}}g(t)dt$ est continue et trouver ses extréma en fonction de m

et M. En déduire qu'il existe c élément de $\left[-\frac{1}{2},\frac{1}{2}\right]$ tel que $\int_{-1}^{\frac{1}{2}}f(t)g(t)dt=f(c)\int_{-1}^{\frac{1}{2}}g(t)dt$

Exercice IV

a- Pour chaque entier naturel n on pose $I_n = \int_0^{\frac{\pi}{2}} sin^n t dt$

Trouver une relation entre I_n et I_{n+2}

Calculer
$$I_n$$
 en fonction de n pour n pair et n impair.
b- Calculer $I = \int \frac{3(x^4 + 2x^2 + 2)dx}{(x^3 - 1)(x^2 + 2x + 2)}$ et $J = \int_0^1 \frac{tdt}{(1 + t^2)\sqrt{1 - t^4}}$ (on pourra poser $u = t^2$)

c- Déterminer les primitives des fonctions définies par $f(x) = \frac{1 - \cos(\frac{x}{3})}{\sin(\frac{x}{3})}, g(x) = \frac{1}{x^8 + x^4 + 1}$

$$h(x) = \frac{\cos x + 2\sin x}{\sin x - \cos x}, \ l(x) = \frac{1}{(x-1)^3(x^2 + x + 1)}$$

d-Calculer $K=\int_{-1}^{1}\frac{x^3}{\sqrt{1-x^2}}Log\frac{1+x}{1-x}dx$. On pourra remarquer que la fonction à intégrer