Aprendizaje Automatica

Primer Semestre 2025

Análisis de Serie de tiempo

Introducción

- ? ¿Qué es aprendizaje automático?
- Diferencias entre:
 - Datos tabulares (filas independientes)
 - Datos secuenciales (orden importa: texto, señales, series de tiempo)
- Ejemplos comunes: precios bursátiles, clima, sensores IoT, consumo eléctrico.

Utilidad principal

Modelamiento de (y predicción en base a) series de tiempo es útil para, en base a datos históricos:

- Identificar patrones temporales existentes en los datos
- Utilizar esos patrones para predecir lo que ocurrirá a futuro.

Componentes

¿Qué es una Serie de Tiempo? (10-25 min)

- Definición: colección de observaciones ordenadas en el tiempo.
- Componentes:
 - Tendencia: cambio a largo plazo
 - **Estacionalidad**: patrones repetitivos
 - o **Ruido**: variaciones aleatorias
- Ejemplo: ventas mensuales de un producto

Actividad Corta

Actividad corta: identifiquen la tendencia o estacionalidad visualmente.

- o **Tendencia**: cambio a largo plazo
- **Estacionalidad**: patrones repetitivos
- o **Ruido**: variaciones aleatorias

Actividad Corta

Actividad corta: identifiquen la tendencia o estacionalidad visualmente.

- o **Tendencia**: cambio a largo plazo
- o **Estacionalidad**: patrones repetitivos
- Ruido: variaciones aleatorias

Análisis

Análisis Exploratorio

- Visualización de datos secuenciales
- Técnicas:
 - Gráficos de línea
 - Promedios móviles:
 - El promedio móvil en series de tiempo es un método que calcula medias aritméticas a partir de valores sucesivos en un intervalo de tiempo. Se utiliza para analizar tendencias y patrones en los mercados.
 - o Boxplots por período (mes, año, etc.)
- Identificar patrones visuales

MEDIA MOVIL

Análisis

Autocorrelación y Descomposición

- ¿Una observación depende de las anteriores?
- Función de autocorrelación (ACF) y función parcial (PACF)
- Descomposición de series:
 - Adición vs multiplicación
 - Usar seasonal_decompose de statsmodels

📌 ¿Qué es la autocorrelación?

Autocorrelación significa que los valores pasados influyen en los valores futuros. Por ejemplo:

"Si vendiste mucho este mes, probablemente también venderás bastante el próximo mes".

Esto rompe el supuesto clásico de independencia entre observaciones (como en regresión lineal).

Cómo se representa:

- Se calcula el coeficiente de correlación entre una serie y una versión desplazada (lag).
- Por ejemplo, correlación entre Ventas(t) y Ventas(t-1), Ventas(t-2)...

Autocorrelación

Funciones útiles:

- plot_acf: Autocorrelación (ACF)
 - Mide la correlación entre la serie y sus versiones desplazadas.
 - Si ves barras significativamente altas (fuera de la banda azul), hay dependencia temporal.
- plot_pacf: Autocorrelación Parcial (PACF)
 - Muestra la correlación de cada *lag*, **eliminando la influencia de los lags anteriores**.
 - Útil para identificar el número de retardos para un modelo autorregresivo (AR).

¿Qué es la descomposición?

La descomposición de una serie de tiempo separa sus componentes:

- **Tendencia**: Componente a largo plazo (¿sube o baja la serie?)
- 2. **Estacionalidad**: Patrones repetitivos (mensuales, anuales, etc.)
- 3. Ruido o residual: Parte aleatoria que no se puede explicar

Tipos de descomposición:

- **Aditiva**: Cuando los componentes se suman: Y(t) = Tendencia + Estacionalidad + Ruido
- **Multiplicativa**: Cuando los efectos se multiplican: Y(t) = Tendencia × Estacionalidad × Ruido

Usamos seasonal_decompose de statsmodels para esto.

Código

Análisis serie de tiempo:
 <u>https://drive.google.com/file/d/1Uty5Vt_g-celEWkqgcUzkA3gaEaToNgw/view?usp=sharing</u>

Modelo Arima

Un modelo **ARIMA** es útil para hacer predicciones sobre series temporales **no estacionarias**.

- AR (Autorregresivo): usa valores pasados
- I (Integrado): aplica diferenciación para eliminar tendencia
- MA (Media móvil): usa errores pasados para corregir predicciones

La notación ARIMA(p, d, q) significa:

- p: número de lags autorregresivos
- d: número de diferencias para lograr estacionariedad
- q: número de lags de los errores (residuos)

En el ejemplo usamos: ARIMA(1, 1, 1)

Toman en cuenta la autocorrelación de la variable a predecir,

consigo misma.

- Para su utilización, es muy conveniente que la serie de tiempo

sea estacionaria.

Estacionalidad de una TS

Una serie de tiempo estacionaria es una cuyas propiedades no dependen del tiempo en el cual se observa la serie.

- Las series con tendencia o estacionalidad no son estacionarias → estas propiedades afectan los valores de la serie de tiempo a diferentes tiempos.
- Por otro lado, el "ruido blanco" es estacionario → no importa cuándo se le observe, se debería ver relativamente igual.

Estacionalidad de una TS

¿Cuáles son las condiciones para que una serie de tiempo sea estacionaria?

- La media es constante, la autocovarianza también es constante
- No hay estacionalidad (comportamiento periódico en el tiempo que es predecible)

- ¿Cómo chequear que una serie de tiempo es estacionaria?
- Visualmente
- Test global vs local (media y desviación estándar)
- Usar el ADF test (Augmented Dickey-Fuller test)

- ¿Cómo hacer una serie de tiempo estacionaria?
- Diferencia: nueva serie de tiempo donde cada valor zt = yt yt-1

Estacionalidad de una TS

- (d), (h) e (i) tienen estacionalidades
- (a), (c), (f) e (i) tienen tendencia y cambio de nivel
- (i) también tiene un aumento en la varianza

Nos quedan (b) y (g) como series estacionarias

Código

- Arima:

https://drive.google.com/file/d/1Jvv1vG6HiGn8aEV0lC-xy_rZvLfHibLB/view?usp=sharing