COS324: INTRODUCTION TO MACHINE LEARNING

Prof. Yoram Singer

Topic: Generalization

© 2020 YORAM SINGER

Thus Far

Definitions of learning problems

Linear and non-linear models

Using differentiable loss for learning

Learning algorithms

© 2020 YORAM SINGER 2

Thus Far

Definitions of learning problems

Linear and non-linear models

Using differentiable loss for learning

Learning algorithms

Mentioned in passing through examples test loss & error

Thus Far

Definitions of learning problems

Linear and non-linear models

Using differentiable loss for learning

Learning algorithms

Mentioned in passing through examples test loss & error

Should the loss/error on unseen data resemble training loss/error?

© 2020 YORAM SINGER 2

Learn a function $f: \mathbf{R} \to \mathbf{R}$

Regression loss: $(f(x) - z)^2$

Choose an order **p** for a polynomial:

$$f(x)=a_0+a_1x+a_2x^2+\ldots+a_px^p$$

Learn coefficients $a_0, a_1, a_2, \ldots, a_p$

© 2020 YORAM SINGER 3

© 2020 YORAM SINGER 4

Learning Polynomials

Replace $x \mapsto x = (1, x, x^2, x^3, ..., x^p)$

For example suppose $x_i = 3$ and p = 5 then $x_i \mapsto x_i = (1, 3, 9, 27, 81, 243)$

© 2020 YORAM SINGER 4

Learning Polynomials Replace $x \mapsto x = (1, x, x^2, x^3, ..., x^p)$

Replace
$$x \mapsto x = (1, x, x^2, x^3, ..., x^p)$$

For example suppose
$$\mathbf{x}_i = 3$$
 and $\mathbf{p} = 5$ then $\mathbf{x}_i \mapsto \mathbf{x}_i' = (1, 3, 9, 27, 81, 243)$

Learning Polynomials Replace $x \mapsto x = (1, x, x^2, x^3, ..., x^p)$

Replace
$$x \mapsto x = (1, x, x^2, x^3, ..., x^p)$$

For example suppose $\mathbf{x}_i = 3$ and $\mathbf{p} = 5$ then $\mathbf{x}_i \mapsto \mathbf{x}_i' = (1, 3, 9, 27, 81, 243)$

1	X ₁	(x ₁) ²	 	(x ₁) ⁵
1	X 2	(x ₂) ²		
1	X 3	(x ₃) ²		
1	X 4	(x ₄) ²	 	(x ₄) ⁵

Learning Polynomials

Replace $\mathbf{x} \mapsto \mathbf{x} = (1, \mathbf{x}, \mathbf{x}^2, \mathbf{x}^3, ..., \mathbf{x}^p)$

For example suppose $x_i = 3$ and p = 5 then $x_i \mapsto x_i = (1, 3, 9, 27, 81, 243)$

1	X 1	(x ₁) ²	 	(x ₁) ⁵
1	X 2	(x ₂) ²		
1	X 3	(x ₃) ²		
1	X 4	(x ₄) ²	 	(X ₄) ⁵

a₁
a₂
a₃
a₄

© 2020 YORAM SINGER 4

Learning Polynomials

Replace $\mathbf{x} \mapsto \mathbf{x} = (1, \mathbf{x}, \mathbf{x}^2, \mathbf{x}^3, ..., \mathbf{x}^p)$

For example suppose $x_i = 3$ and p = 5 then $x_i \mapsto x_i = (1, 3, 9, 27, 81, 243)$

1	X ₁	(X ₁) ²	 	(x ₁) ⁵
1	X 2	(x ₂) ²		
1	X 3	(x ₃) ²		
1	X 4	(x ₄) ²	 	(x ₄) ⁵

a ₁		
a ₁		Z1
a ₂		4 1
uz		Z 2
a ₃	\approx	
		Z 3
a ₄		
		Z4
a 5		

© 2020 YORAM SINGER 4

Learning Polynomials

Replace $\mathbf{x} \mapsto \mathbf{x} = (1, \mathbf{x}, \mathbf{x}^2, \mathbf{x}^3, ..., \mathbf{x}^p)$

For example suppose $\mathbf{x}_i = 3$ and $\mathbf{p} = 5$ then $\mathbf{x}_i \mapsto \mathbf{x}_i' = (1, 3, 9, 27, 81, 243)$

1	X ₁	(x ₁) ²	 	(x ₁) ⁵
1	X 2	(x ₂) ²		
1	X 3	(x ₃) ²		
1	X 4	(x ₄) ²	 	(x ₄) ⁵

$$\min_{\mathbf{a}} \| X\mathbf{a} - \mathbf{z} \|^2$$

© 2020 YORAM SINGER 4

Degree 2 Fit to Training Data

Reminder: Logistic Regression

- Given \mathbf{x} "probability" of \mathbf{y} to be +1: $\mathbf{P}[+1 \mid \mathbf{x}; \mathbf{w}] = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$
- Probability of y to be -1: $\mathbf{P}[-1 \mid \mathbf{x}; \mathbf{w}] = 1 \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}} = \frac{1}{1 + e^{\mathbf{w} \cdot \mathbf{x}}}$

Overfitting in Logistic Regression

Trained 2 logit models:

$$\mathbf{P}[\mathbf{y} | \mathbf{x}; \mathbf{w}_{\mathbf{j}}] = \frac{1}{1 + e^{-\mathbf{y} \mathbf{w}_{\mathbf{j}} \cdot \mathbf{x}}} \quad \mathbf{j} \in [2]$$

Trained with log-loss: for $(\mathbf{x}_i, \mathbf{y}_i)$ loss is $-\log \Big(\mathbf{P} \big[\mathbf{y}_i \, | \, \mathbf{x}_i; \mathbf{w}_j \big] \Big)$

First model was training while guarding for overfitting (more later)

Second model was trained using SGD without projections

Predictions: red & blue first model; black & yellowish second model

© 2020 YORAM SINGER 18

Legend for Graphs

© 2020 YORAM SINGER 19

17

Overfitting in Logistic Regression

Early Stopping

- Use a validation set which is not used for training
- lacktriangle Check every lacktriangle updates/epochs performance on validation set
- ▶ Once test-train gap is growing stop training
- ▶ Works well in practice when scheme is feasible
- ▶ Requires three sets of examples: Train, Validation, Test
- ▶ Loss of stochastic methods not monotone & gap not easy to monitor

© 2020 YORAM SINGER 32

I.I.D Samples

- I.I.D: Identically Independently Distributed
- Generalization analysis typically assumes 3D:

unknown distribution D(x,y)

- W.L.O.G assume $x \in \{0, 1\}^d$ $y \in \{-1, 1\}$
- Identically [no dependence on i]:

$$\forall i \in S : D((\mathbf{x}_i, \mathbf{y}_i) = (\mathbf{a}, \mathbf{b})) \text{ is } D(\mathbf{a}, \mathbf{b})$$

• Independence:

$$D((x_i, y_i) = (a, b) \land D(x_i, y_i) = (a', b')) = D(a, b) D(a', b')$$

<0	x ₁	У	D(x,y)	
0	0	-1	0.07	
0	0	1	0.01	
0	1	-1	0.03	
1	1	1	0.005	

Generalization Error (deterministic)

Unknown distribution D(x)

© 2020 YORAM SINGER 34

Generalization Error (deterministic)

Unknown distribution D(x)

Deterministic outcome y given **x**: $D(y=-1|\mathbf{x}) = 1$ or $D(y=1|\mathbf{x}) = 1$

$$\Rightarrow h^*(\mathbf{x}) = \operatorname{sign}(\mathsf{D}(\mathsf{y} \,|\, \mathbf{x}) - \frac{1}{2})$$

© 2020 YORAM SINGER 34

Generalization Error (deterministic)

Unknown distribution D(x)

Deterministic outcome y given **x**: $D(y=-1|\mathbf{x})=1$ or $D(y=1|\mathbf{x})=1$

$$\Rightarrow h^{\star}(\mathbf{x}) = \operatorname{sign}(\mathsf{D}(\mathbf{y} \mid \mathbf{x}) - \frac{1}{2})$$

Deterministic predictor $f: \{0,1\}^d \rightarrow \{-1,1\}$

Generalization Error (deterministic)

Unknown distribution D(x)

Deterministic outcome y given \mathbf{x} : $D(y=-1|\mathbf{x})=1$ or $D(y=1|\mathbf{x})=1$

$$\Rightarrow h^*(x) = sign(D(y | x) - \frac{1}{2})$$

Deterministic predictor $f:\{0,1\}^d \to \{-1,1\}$

Generalization error of **f**:

$$\mathsf{err}_\mathsf{D}(\mathsf{f}) = \sum_{\mathsf{x}} \mathsf{D}(\mathsf{x}) \, \mathbf{1}[\mathsf{f}(\mathsf{x}) \neq \mathsf{h}^{\star}(\mathsf{x})]$$

© 2020 YORAM SINGER 34

Generalization Error (deterministic)

Unknown distribution D(x)

Deterministic outcome y given **x**: $D(y=-1|\mathbf{x})=1$ or $D(y=1|\mathbf{x})=1$

$$\Rightarrow h^{\star}(\mathbf{x}) = \operatorname{sign}(\mathsf{D}(\mathbf{y} \,|\, \mathbf{x}) - \frac{1}{2})$$

Deterministic predictor $\,f:\,\{0,1\}^d\to\{-1,1\}\,$

Generalization error of **f**:

$$\mathsf{err}_{\mathsf{D}}(\mathsf{f}) = \sum_{x} \mathsf{D}(x) \, \mathbf{1}[\mathsf{f}(x) \neq \mathsf{h}^{\star}(x)] \, = \sum_{x} \mathsf{D}(x) \sum_{y \in \{-1,1\}} \mathbf{1}[\mathsf{f}(x) \neq y] \; \mathsf{D}(y \, | \, x)$$

© 2020 YORAM SINGER 34

$$D(x,y) D(x,+1) + D(x,-1) = D(x) D(x,+1) = 1 or D(x,-1) = 1$$

$$\sum_{x,y} D(x,y) = 1 \Rightarrow \sum_{y} \int D(X=x,Y=y) dx$$

$$D(y) = \int D(X=x,Y=y) dx$$

$$D(y|x) = \frac{D(y,x)}{D(x)} = \frac{D(y,x)}{D(x,Y=+) + D(x,Y=-)}$$

Generalization Error (stochastic)

Unknown distribution D(\mathbf{x} , \mathbf{y}) & deterministic predictor $\mathbf{f}:\{0,1\}^d \to \{-1,1\}$

© 2020 YORAM SINGER 38

Generalization Error (stochastic)

Unknown distribution D(x,y) & deterministic predictor $f: \{0,1\}^d \rightarrow \{-1,1\}$

Given \mathbf{x} true label y is 1 w.p. D(y=1|x) and -1 w.p. D(y=-1|x)

Generalization Error (stochastic)

Unknown distribution D(\boldsymbol{x},y) & deterministic predictor $f:\,\{0,1\}^d\to\{-1,1\}$

Given \mathbf{x} true label y is 1 w.p. D(y=1|x) and -1 w.p. D(y=-1|x)

 $f(\mathbf{x})=1 \Rightarrow \text{w.p. } D(y=-1|\mathbf{x}) \text{ prediction error } f(\mathbf{x})=-1 \Rightarrow \text{w.p. } D(y=1|\mathbf{x}) \text{ prediction error}$

© 2020 YORAM SINGER 38

Generalization Error (stochastic)

Unknown distribution D(\textbf{x},y) & deterministic predictor $f:\,\{0,1\}^d\to\{-1,1\}$

Given **x** true label y is 1 w.p. D(y=1|x) and -1 w.p. D(y=-1|x)

 $f(\mathbf{x})=1 \Rightarrow \text{w.p. } D(y=-1|\mathbf{x}) \text{ prediction error } f(\mathbf{x})=-1 \Rightarrow \text{w.p. } D(y=1|\mathbf{x}) \text{ prediction error }$

 $\text{Expected error of } f \text{ on } x: \quad \mathsf{D} \Big(- f(x) \, \big| \, x \Big) \ = \sum_{y \in \{-1,1\}} \mathbf{1} [f(x) \neq y] \ \mathsf{D} (y \, \big| \, x)$

© 2020 YORAM SINGER 38

Generalization Error (stochastic)

Unknown distribution D(\mathbf{x} , \mathbf{y}) & deterministic predictor $f:\{0,1\}^d \to \{-1,1\}$

Given **x** true label y is 1 w.p. D(y=1|x) and -1 w.p. D(y=-1|x)

 $f(\mathbf{x})=1 \Rightarrow \text{w.p. } D(y=-1|\mathbf{x}) \text{ prediction error } ; f(\mathbf{x})=-1 \Rightarrow \text{w.p. } D(y=1|\mathbf{x}) \text{ prediction error}$

Expected error of **f** on **x** : $\mathsf{D} \Big(-\mathsf{f}(x) \, | \, x \Big) \, = \sum_{y \in \{-1,1\}} \mathbf{1} [\mathsf{f}(x) \neq y] \; \mathsf{D}(y \, | \, x)$

© 2020 YORAM SINGER 38

Generalization Error (stochastic)

Unknown distribution D(x,y) & deterministic predictor $f:\{0,1\}^d \to \{-1,1\}$

Given \mathbf{x} true label y is 1 w.p. D(y=1|x) and -1 w.p. D(y=-1|x)

 $f(\mathbf{x})=1 \Rightarrow \text{w.p. } D(y=-1|\mathbf{x}) \text{ prediction error } ; f(\mathbf{x})=-1 \Rightarrow \text{w.p. } D(y=1|\mathbf{x}) \text{ prediction error }$

 $\text{Expected error of } f \text{ on } x: \quad \mathsf{D} \Big(- f(x) \, \big| \, x \Big) \ = \sum_{y \in \{-1,1\}} \mathbf{1} [f(x) \neq y] \ \mathsf{D} (y \, \big| \, x)$

© 2020 YORAM SINGER 38

Generalization Error (stochastic)

Unknown distribution D(\mathbf{x} ,y) & deterministic predictor $f:\{0,1\}^d \to \{-1,1\}$

Given \mathbf{x} true label y is 1 w.p. D(y=1|x) and -1 w.p. D(y=-1|x)

 $f(\mathbf{x})=1 \Rightarrow \text{w.p. } D(y=-1|\mathbf{x}) \text{ prediction error } f(\mathbf{x})=-1 \Rightarrow \text{w.p. } D(y=1|\mathbf{x}) \text{ prediction error}$

Expected error of f on x : $D(-f(x)|x) = \sum_{y \in \{-1,1\}} \mathbf{1}[f(x) \neq y] \ D(y|x)$

Generalization error of f:

$$\mathsf{err}_{\mathsf{D}}(\mathsf{f}) = \sum_{\mathsf{x}} \mathsf{D}(\mathsf{x}) \sum_{\mathsf{y} \in \{-1,1\}} \mathbf{1} [\mathsf{f}(\mathsf{x}) \neq \mathsf{y}] \; \mathsf{D}(\mathsf{y} \,|\, \mathsf{x})$$

Finite Set of Predictors

Suppose we have only **k** predictors — no weight learning: $f_1, ..., f_k$

© 2020 YORAM SINGER 39

Finite Set of Predictors

Suppose we have only \mathbf{k} predictors — no weight learning: $f_1, ..., f_k$

One **f** has zero generalization error, rest have generalization error $\geq \epsilon$:

$$\exists j : \forall (x, y) : f_i(x) = h^*(x) = y ; \forall i \neq j : err_D[f_i(x) \neq y] \geq \epsilon$$

© 2020 YORAM SINGER 39

Finite Set of Predictors

Suppose we have only \mathbf{k} predictors — no weight learning: $\mathbf{f}_1, ..., \mathbf{f}_k$

One ${\bf f}$ has zero generalization error, rest have generalization error $\geq \epsilon$:

$$\exists j: \forall (x,y): \ f_i(x) = h^\star(x) = y \ ; \ \forall i \neq j: \mathsf{err}_D[f_i(x) \neq y] \geq \varepsilon$$

Received training set S with only **n** examples sampled independently

Finite Set of Predictors

Suppose we have only ${\bf k}$ predictors — no weight learning: ${\bf f}_1, ..., {\bf f}_k$

One ${\bf f}$ has zero generalization error, rest have generalization error $\geq \epsilon$:

$$\exists j: \forall (x,y): \, f_j(x) = h^\star(x) = y \ ; \ \forall i \neq j: \mathsf{err}_D[f_i(x) \neq y] \geq \varepsilon$$

Received training set S with only \mathbf{n} examples sampled independently

Evaluate errors on S:
$$\operatorname{err}_{S}(f_{i}) = \epsilon_{i} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \big[f_{i}(x) \neq y_{i} \big]$$

© 2020 YORAM SINGER 39

Finite Set of Predictors

Suppose we have only \mathbf{k} predictors — no weight learning: $f_1, ..., f_k$

One **f** has zero generalization error, rest have generalization error $\geq \epsilon$:

$$\exists j: \forall (x,y): \ \mathsf{f}_i(x) = \mathsf{h}^{\star}(x) = \mathsf{y} \ ; \ \forall i \neq j: \mathsf{err}_{\mathbf{D}}[\mathsf{f}_i(x) \neq \mathsf{y}] \geq \epsilon$$

Received training set S with only \mathbf{n} examples sampled independently

Evaluate errors on S:
$$\operatorname{err}_{S}(f_{i}) = \epsilon_{i} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [f_{i}(\mathbf{x}) \neq \mathbf{y}_{i}]$$

Choose any f_i for which $\epsilon_i = 0$

© 2020 YORAM SINGER 39

Generalization: Finite Case I

Probability that $\epsilon_i = 0$ is at most $(1 - \epsilon)^n \le e^{-\epsilon n}$ [independence of sample]

© 2020 YORAM SINGER 40

Generalization: Finite Case I

Probability that $\epsilon_i = 0$ is at most $(1 - \epsilon)^n \le e^{-\epsilon n}$ [independence of sample]

Probability α that $\exists i \neq j \text{ s.t. } \epsilon_i = 0$ is at most $\alpha = (k-1) e^{-\epsilon n}$

Generalization: Finite Case I

Probability that $\epsilon_i = 0$ is at most $(1 - \epsilon)^n \le e^{-\epsilon n}$ [independence of sample]

Probability α that $\exists i \neq j \text{ s.t. } \epsilon_i = 0$ is at most $\alpha = (k-1) e^{-\epsilon n}$

If $\alpha \leq \frac{1}{k}$ it is unlikely we do not find correct predictor: $(k-1)e^{-\epsilon n} \geq \frac{1}{k}$

© 2020 YORAM SINGER 40

Generalization: Finite Case I

Probability that $\epsilon_i = 0$ is at most $(1 - \epsilon)^n \le e^{-\epsilon n}$ [independence of sample]

Probability α that $\exists i \neq j \text{ s.t. } \epsilon_i = 0$ is at most $\alpha = (k-1) e^{-\epsilon n}$

If $\alpha \leq \frac{1}{k}$ it is unlikely we do not find correct predictor: $(k-1) e^{-\epsilon n} \geq \frac{1}{k}$

This means that we need about $O\Big(\frac{\log(k)}{\epsilon}\Big)$ samples

© 2020 YORAM SINGER 40

Generalization: Finite Case II

© 2020 YORAM SINGER 41

Generalization: Finite Case II

Almost always, prefect predictor does not exist: $e^{\star} = \min_{i} err_{D}(f_{i}(x)) > 0$

Generalization: Finite Case II

Almost always, prefect predictor does not exist: $e^{\star} = \min_{i} err_{D}(f_{i}(x)) > 0$

Evaluate errors on S:
$$\operatorname{err}_{S}(f_{i}) = \epsilon_{i} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [f_{i}(\mathbf{x}) \neq \mathbf{y}_{i}]$$

© 2020 YORAM SINGER 41

Generalization: Finite Case II

Almost always, prefect predictor does not exist: $e^{\star} = \min_{i} err_{D}(f_{i}(x)) > 0$

Evaluate errors on S: $err_S(f_i) = \epsilon_i = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [f_i(\mathbf{x}) \neq \mathbf{y}_i]$

Choose f_i with the smallest empirical error: $err_S(f_i)$

© 2020 YORAM SINGER 41

Generalization: Finite Case II

Almost always, prefect predictor does not exist: $e^{\star} = \min err_{D}(f_{i}(x)) > 0$

Evaluate errors on S: $err_S(f_i) = \epsilon_i = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [f_i(\mathbf{x}) \neq \mathbf{y}_i]$

Choose \boldsymbol{f}_i with the smallest empirical error: $\boldsymbol{err}_{\boldsymbol{S}}(\boldsymbol{f}_i)$

Generalization error of f_j is: $err_D(f_j(x)) = \Delta \varepsilon + \varepsilon^* = \Delta \varepsilon + \min err_S(f_i(x))$

© 2020 YORAM SINGER 41

Generalization: Finite Case II

Almost always, prefect predictor does not exist: $e^* = \min_i err_D(f_i(x)) > 0$

Evaluate errors on S: $err_S(f_i) = \epsilon_i = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [f_i(\mathbf{x}) \neq \mathbf{y}_i]$

Choose f_i with the smallest empirical error: $err_S(f_i)$

 $\text{Generalization error of } f_j \text{ is: } \operatorname{err}_{\mathsf{D}} \big(f_j(\mathbf{x}) \big) = \Delta \varepsilon + \varepsilon^{\, \star} = \Delta \varepsilon + \min_i \operatorname{err}_{\mathsf{S}} \big(f_i(\mathbf{x}) \big)$

It takes $O\Big(\frac{\log(k)}{(\Delta\varepsilon)^2}\Big)$ sample to get $\Delta\varepsilon$ -close to f of $\varepsilon^\star = \min_i \text{err}_D\Big(f_i(x)\Big) > 0$

"Continuous Case"

"Continuous Case"

Find best model with weights $w \in R^d$

© 2020 YORAM SINGER 43

© 2020 YORAM SINGER 43

"Continuous Case"

Find best model with weights $w \in R^d$

For bfloat16: each entry of \mathbf{w} can take 2^{16} different values

"Continuous Case"

Find best model with weights $w \in R^{\mathsf{d}}$

For bfloat16: each entry of $\ w$ can take 2^{16} different values

Each weight vector corresponds to bit vector of length16d

© 2020 YORAM SINGER 43

"Continuous Case"

Find best model with weights $w \in R^d$

For bfloat16: each entry of \mathbf{W} can take 2^{16} different values

Each weight vector corresponds to bit vector of length16d

We have "only" 2^{16d} predictors $\Rightarrow f_1, ..., f_{2^{16d}}$

© 2020 YORAM SINGER 43

"Continuous Case"

Find best model with weights $w \in R^d$

For bfloat16: each entry of \mathbf{w} can take 2^{16} different values

Each weight vector corresponds to bit vector of length16d

We have "only" 2^{16d} predictors $\Rightarrow f_1, ..., f_{2^{16d}}$

If $\exists w^*$ where $f_{w^*}(x) = y$ for all x, y with D(x, y) > 0 (0 generalization error):

it would take only $\tilde{O}(d)$ examples to find it!

© 2020 YORAM SINGER 43

"Continuous Case"

Find best model with weights $w \in R^{\text{d}}$

For bfloat16: each entry of **w** can take 2¹⁶ different values

Each weight vector corresponds to bit vector of length16d

We have "only" 2^{16d} predictors $\Rightarrow f_1, \dots, f_{2^{16d}}$

If $\exists w^*$ where $f_{w^*}(x) = y$ for all x, y with D(x, y) > 0 (0 generalization error):

it would take only $\tilde{O}(d)$ examples to find it!

© 2020 YORAM SINGER 43

Caveats

Caveats

 $\tilde{O}(d)$ hides pretty large constants

Caveats

 $\tilde{O}(d)$ hides pretty large constants

Time of finding \mathbf{w}^{\star} is **exponential** in \mathbf{d}

© 2020 YORAM SINGER 44

© 2020 YORAM SINGER 44

Caveats

 $\tilde{O}(d)$ hides pretty large constants

Time of finding \mathbf{w}^{\star} is exponential in \mathbf{d}

Not really learning — exhaustive search

Caveats

 $\tilde{O}(d)$ hides pretty large constants

Time of finding \boldsymbol{w}^{\star} is exponential in \boldsymbol{d}

Not really learning — exhaustive search

Next step:

Incorporate mechanism called regularization into SGD

© 2020 YORAM SINGER 44