

# Chemical Engineering 4H03

### Introduction Latent Variables

Jake Nease McMaster University



Portions of this work are copyright of ConnectMV

# Objectives

- Latent variables can be powerful modeling tools
  - What are they?
  - What are they used for?
  - How do we interpret them?
- How are latent variables calculated?
  - Computing a LV score from a known model
  - Geometric interpretation
- How do we train models to identify latent variables?
  - We'll bust out the math in the next section



# Warm-Up

- Turn to your neighbour and try to answer these:
  - What do **you** interpret to be a latent variable?
  - Can you think of any examples from industry/university?





## **Basics of Latent Variables**

The truth is out there





## Definition

- A LATENT VARIABLE (LV) is defined as any variable that is not directly observed
  - Since it is not observed, it must be constructed based on measurements of other (often correlated) variables
- Example: your health is a latent variable
  - Blood pressure
  - Weight
  - Body proportions

Fun fact – women are healthier than men! I have a story about that...

- Temperature
- Bloodwork (cell counts etc.)
- Living habits (drinking, exercise, smoking, sedentary...)
- Can we combine these measurements?
  - We sure can! A doctor does this mentally



# LV Example

Temperature in the room, measured at several points





# LV Example

Temperature in the room, measured at several points







# Principal Component Analysis (PCA)

### Mathematical Objective

- Find the best summary of data X using the fewest number of "summary variables"
- These "summary variables" are known as the scores, T





### What Does PCA Do?

- It finds the directions that best explain variance
  - "Directions of greatest variance"
  - "Loadings → Scores"
  - "Components"
  - 'Latent Variables"
- Component (LV) 1 explains the most variance. Adding further components exhibits diminishing returns but still adds to fidelity



# PCA on Temperature Data



These are the same temperatures after centering and scaling the data (more on this in the next lecture set)



# Calculating Scores

- FAR More on this later...
- Generally, a score (t) is computed as the product of an observation (x) and it's associated loadings (p) in the LV space
  - Effectively, the *loadings* are how much each measurement in x affect the result in t. In our example:

$$t_1 = 0.25x_1 + 0.25x_2 + 0.25x_3 + 0.25x_4$$

$$t_{1} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{bmatrix} \qquad t_{1} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{bmatrix} \begin{bmatrix} p_{1,1} \\ p_{2,1} \\ p_{3,1} \\ p_{4,1} \end{bmatrix}$$

$$|t_1 = \boldsymbol{x}^T \boldsymbol{p}_1|$$

 $p_j$  is the **loading** vector of component j

 $p_{i,j}$  is the loading '(contribution) of  $x_i$  in the  $j^{th}$  component (latent variable)



# Calculating Scores

- Workshop: Given the data and the first latent score, how do you think the **second** latent score will look?
  - Hint: recall that LVM tries to explain the greatest variance





What is the next greatest source of variance in this data?



# Projection of Latent Structures (PLS)

### Mathematical Objective

 Find the best summary of data X AND the best summary of my data Y using a set of summary variables, T, so that T can also be used to predict Y given some values of X







# Applications of Latent Variables

Seeing is Believing

# Learning from Data

### Identifying process drift

 Performance of MANY variables in a chemical (or other) process can be visualized in a score plot, with each observation throughout time encoded to show trends





4H03 Latent Variables

# Learning from Data

#### Which variables are correlated?

Can visualize variability

Figures courtesy of ConnectMV

- Can see variables that behave "together"
- My competitor has higher prices/market share. Why?



# LVM for Troubleshooting

### Why is my process not meeting recovery targets?

- ~ 450 tags measured for 500 days of operation
- After ~ 400 days, recovery fell below targets





# LVM for Troubleshooting

- Trained a LV model with two variables
  - Compressed ~450 variables to two
  - A lot of information was retained



# LVM for Troubleshooting

- The question becomes... What causes LOW t<sub>1</sub> scores?
  - Examine the **loadings** (p) via a contribution plot
  - HIGH loadings might flag variables that are making  $t_1$  drop!
- **207**: temperature on a tray near bottom of column 3
- **158**: another process measurement from column 3
- 33 and 277: related to feed concentration of component A targeted for recovery



- Suggests bad temperature control in column 3 when feed concentration is high
  - Fixed controller (sensor drift), process returned to normal

- Any variable can be monitored (T, P, vibration...)
  - Example for two variables:
  - Called "soft sensors"





Can visualize SCORES and search for deviations





- Wonderful example from Sasha Korp!
  - McMaster ChE student on internship at Suncor
  - Monitoring process variables related to venting incidents





- Wonderful example from Sasha Korp!
  - Process variables monitored in 99% confidence interval
  - Process deviated from confidence interval
  - 3 minutes later, venting incident was experienced!





- ArcelorMittal Dofasco has used LVM process monitoring tools since the 90s
- Most well known is the casting monitoring application
  - Caster SOS (stability operation supervisor)
  - A multivariate monitoring system in disguise!





- Improper cooling times can cause breakouts
  - Outer shell ruptures, splashing liquid metal all over!
  - A huge safety and production concern (\$200,000+)





- Process monitoring software creates timeseries plots of so-called stability indexes
  - But really, these stability indexes are just LVs known to contribute strongly to a higher chance of breakout!



Tell your printer I'm sorry...

Contains ALARM limits! When alarms sound, contributions show to help operator understand what to change to reduce breakout potential



- Implemented in 1997, data available to 2006
  - SIGNIFICANT reduction in breakouts due to better operator preparedness and much simpler monitoring system
  - Over \$1M saved in first year alone





4H03\_Latent\_Variables

# Additional Applications

- Literature is FULL of great LVM applications
  - Personality classifications
  - Snack food coatings
  - Sensors to predict food spoilage
  - Forecasting electricity demand
- Lots of wonderful literature available
  - Review of LVMs for process control



### **Final Words**

- There are many applications of LVMs in engineering
  - Improved understanding
  - Troubleshooting
  - Soft sensors/predictive modeling
  - Process monitoring
  - Reverse engineering

