2021년 해양수산 빅데이터 분석 경진대회

재결서 텍스트 마이닝과 요인분석(FA)을 통한 해양사고 위험성 예측 모델링

NEXT_(I조) 고영진 권유진 정재은 동아름

팀원 소개

고영진 (UNIST / 에너지화학공학과)

- √ 팀장
- √ 응원단장
- √ EDA
- √ 특성공학 및 모델링

권유진 (국민대학교 / 빅데이터 경영통계전공)

- √ 시각화 √ EDA
 - \checkmark Q-GIS

정재은 (공주대학교 / 도시교통공학전공)

- √ 도메인 지식 제공
- √ PPT 제작

√ 텍스트마이닝

√ EDA

√ 특성공학

동아름 (인하대학교 / 아태물류학부)

Contents

- 1 문제 배경
- 2 목적 및 가설 설정

- 3 재결서 텍스트 마이닝
- 4 EDA, 데이터 전처리, 특성공학
- 5 요인분석
- 6 모델링 및 평가

7 결론 및 활용 방안

01. 문제 배경

출처 - 해양수산부 중앙해양안전심판원 2020년 해양사고 통계

해양사고의 심각성

13,687 최근 5년간 사고 발생(건) 15,208 최근 5년간 사고 선박(척) 2,489 최근 5년간 인명 피해(명)

해양사고발생률은 2016년 2.75%에서 2019년 3.35%로 증가 우리나라의 최근 해양사고 추이는 **매년 증가 추세로**, 해양사고 원인 분석 필요

01. 문제 배경

제 결 요 약 서

11 71 74	어선 제71용득호 침몰사건									
사 건 명	(부산해심 제2021-033호)									
해양사고관련자 (직책, 해기면허)	A(제71용득호	· 선장, 6	급항해사)							
판 시 사 항	악화되는 상태를 파도에 2. 관련법규	가. 기선권현망 선단의 주선과 종선이 접현·결합한 상태로 기상이 악화되는 가운데 무리하게 항해하면서 양선을 연결한 계류줄 상태를 제대로 확인하지 아니하여 계류줄이 풀리면서 주선이 파도에 복원력을 상실하여 발생한 사건								
주제어	기선권현망, 주선, 계류줄									
사 건 개 요	(부 □ 사고경위 기선권현망 화되는 가운 제대로 확인	위 35도 1 산 기장군 선단의 데 무리 하지 아니	8분 (5초·동7 · 고리에서 방약 주선과 종선이 하게 항해하면 니하여 계류줄	선적항 B/ 경남 창원시 마산합포구 경 129도 20분 3 위 약 115도, 거: 접현·결합한 서 양선을 연결 이 풀리면서 주						
주 문	기상이 악화되 상태를 제대로 복원력을 상실	는 가운 다 확인하기 하여 발시	례 무리하게 형 지 아니하여 겨 방한 것이다.	· 하하면서 양선	접현·결합한 상태로 난을 연결한 계류줄 단서 주선이 파도에 다.					

출처 - 부산해양안전심판원 제2021-033호 재결서

	재결서 정보 활용
재결요약서	내용
사건명	사건명, 사건번호
해양사고관련자	직책 <i>,</i> 해기면허
판시사항	판시요지, 관련법규
주제어	주요 주제어
사건개요	관련 선박 정보, 일시, 장소, 사고경위
주문	사건경위, 판결내용
교훈	교훈

사고발생 원인

"기상이 악화되는 가운데 무리하게 항해하면서 양선을 연결한 계류줄 상태를 제대로 확인하지 아니하여 계류줄이 풀리면서 주선이 파도에 복원력을 상실하여 발생한 사건"

사고유형에 대한 여러 **복합적인 원인**을 담고 있음 **재결서는 비정형데이터로** 분석을 위해 정형화할 필요가 있음

02. 가설설정 및 목적

요인분석

가설 설정

- 재결서를 이용하면 사고유형에 대한 **복합적인 원인을 식별**할 수 있음
- 요인분석으로 사고 위험성에 대한 **잠재변수 도출**할 수 있음

목적

- 재결서를 정형화하고 사고 원인 변수화
- 데이터들을 **요인 분석**하여 사고를 예측함으로써 사고 예방률 증진

03. 재결서 텍스트 마이닝

03. 재결서 텍스트 마이닝

04. EDA, 데이터 전처리, 특성공학

04. EDA, 데이터 전처리, 특성공학

기존 데이터 (시간, 위치, 선박 연령, 선박 용도 등)

외부데이터 (기상, 파고부이)

재결서 분석을 통한 사고 종류 원인

- 중복데이터 제거
- 결측치 제거 및 대체
- 사고 위험도 3가지 지표 설정(target)
 - 인명피해여부, 선박피해정도, 해양사고종류

- Categorical 변수 One-Hot Encoding
- Target의 imbalance 해소(oversampling)
- 이후 train set과 test set으로 분리

115가지의 변수 3가지 target

```
15051 non-null_int64
   해양사고발생(월)
                      15051 non-null int64
   해양사고발생시간대
                       15051 non-null object
               15051 non-null object
   해양사고발생지역(중)
                       15051 non-null object
   서박연령
                  15051 non-null float64
   톤수범위(통계용)
                     15051 non-null object
                   15051 non-null object
   선박용도(중)
   latitude
              15051 non-null float64
   Iongitude
               15051 non-null float64
   품속(m/s)
                 15051 non-null float64
11 품향(deg)
                 15051 non-null float64
 12 GUST罢속(m/s) 15051 non-null float64
13 현지기압(hPa)
                    15051 non-null float64
14 습도(%)
                 15051 non-null_float64
15 기온(°C)
                15051 non-null float64
16 수본(°C)
                 15051 non-null float64
17 최대파고(m)
                   15051 non-null float64
18 유의파고(m)
                   15051 non-null float64
   평균파고(m)
                   15051 non-null_float64
20 파주기(sec)
                  15051 non-null float64
   파향(deg)
                 15051 non-null float64
22 인적요인
                  15051 non-null object
   물적요인
                  15051 non-null object
24 위치요인
                  15051 non-null object
25 기상요인
                  15051 non-null object
26 시간요인
                  15051 non-null object
   인명 피해 및 부상 여부 15051 non-null float64
28 선박피해
                  15051 non-null object
29 해양사고종류
                    15051 non-null object
dtypes: float64(16), int64(2), object(12)
memory usage: 3.6+ MB
```

05. 요인분석(Factor Analysis)

One-Hot encoding후 115개의 변수

▲ 핵심 요인 개수 선정을 위한 Scree Plot

공통 성질을 묶어낸 9개의 핵심 요인

1 train_X_human = fa_human,transform(train_X_human)

2 train_X_human,shape

(21704, 9)

1 test_X_human = fa_human,transform(test_X)

2 test_X_human,shape

(3011, 9)

06. 모델링 및 평가

▲ dataset imbalance(인명피해발생여부)

Model	Accuracy	AUC
Extra Trees Classifier	0,9793	0,9986
Random Forest Classifier	0,9718	0,9980
Light Gradient Boosting Machine	0,8565	0,9298

Train Set에 대해 상위 3개 classifier 선정 평가지표를 <mark>정확도</mark>보다는 AUC(Area Under Curve)를 사용

> Blending을 통한 앙상블 모델

06. 모델링 및 평가

	Accuracy	AUC	Recal	l Pr	ec.		F1	Kappa	a	мсс	
0	0,9694	0,9945	0,9987	0,9	9433	0,97	702	0,938	3 C	,9404	
1	0,9641	0,9940	0,9947	0,9	373	0,96	351	0,928	3 C	,9300	
2	0,9710	0,9955	0,9993	0,9	9457	0,97	718	0,942	1 C	,9436	
3	0,9612	0,9947	0,9947	0,9	321	0,96	324	0,922	3 C	,9244	
4	0,9700	0,9971	0,9974	0,9	9456	0,97	708	0,940	1 C	,9415	
Mean	0,9672	0,9952	0,9970	0,9	9408	0,96	81	0,934	3 C	,9360	
SD	0,0038	0,0011	0,0019	0,0	053	0,00	37	0,007	7 C	,0074	
	Model	Accura	су і	AUC	Red	all	Pre	С.	F1	Kappa	a MCC
0 Voti	ng Classifier	0,97	754 0,9	9963	0,99	969	0,95	6 0.9	976	0,950	9 0,9517

▲ 인명 피해 및 부상 여부 예측 모델 CV

	Accuracy	AUC	Recall	Prec		F1	Карра	ı M	ICC	
0	0,6536	0,8970	0,6520	0,6305	5 0,6	393	0,5843	3 0,5	853	
1	0,6603	0,9035	0,6587	0,638	7 0,6	469	0,5923	3 0,5	933	
2	0,6557	0,8974	0,6541	0,632	0,6	410	0,5868	3 0,5	880	
3	0,6556	0,8950	0,6540	0,6344	4 0,6	425	0,586	7 0,5	876	
4	0,6415	0,8952	0,6398	0,6145	5 0,6	248	0,569	7 0,5	709	
Mean	0,6533	0,8976	0,6517	0,6300	0,6	389	0,5840	0,5	850	
SD	0,0063	0,0031	0,0064	0,0082	2 0,0	075	0,0076	0,0	075	
	Model	Accura	ісу А	UC R	ecall	Pre	ec.	F1	Kappa	MC
0 Voti	ng Classifier	0,6	305 0,9	123 0,	6838	0,65	592 0,	6675	0,6165	0,61

▲ 발생가능 사고 유형 예측 모델 CV

▲ 선박 피해 구분 예측 모델 CV

▲ 각 모델의 F1, AUC scores

07. 결론 및 활용 방안

및 변수화

07. 결론 및 활용 방안

해양수산 빅데이터 플랫폼

출처 - 해양수산부

✓ 재결서 분석법을 활용하여복합적 원인을 분석하여양질의 데이터를 생성할 수있음.

e-Navigation

출처 - 해양수산부

- ✓ 선박의 위치와 정보를 실시간으로 파악하여 현 상황의 위험 요인을 사용자에게 제공할 수 있음.
- ✓ 해양 사고 발생률을 감소시킬 수 있음.

감사합니다

Appendix A. – Target의 class 지정

```
def loss_of_ship(x):
   if '무손' in x:
      new_loss = '무손'
   elif ('경손' in x) or ('감항능력 뮤지' in x):
      new_loss = '경손'
   elif ('중손' in x) or ('감항능력 상실' in x):
      new_loss = '중손'
   elif ('전손' in x) or ('침몰후인양' in x):
      new_loss = '전손'
   else:
      new_loss = '기타'
   return new_loss
raw_data['선박피해'] = raw_data['선박피해구분'].apply(loss_of_ship)
raw_data,loc[raw_data['선박피해'] == '무손', '선박피해'] = 0.0
raw_data,loc[raw_data['선박피해'] == '경손', '선박피해'] = 1.0
raw_data,loc[raw_data['선박피해'] == '중손', '선박피해'] = 2,0
raw_data,loc[raw_data['선박피해'] == '전손', '선박피해'] = 3.0
raw_data,loc[raw_data['선박피해'] == '기타', '선박피해'] = 4.0
```

선박피해구분 18가지를 5가지 class로 축소

```
def accident_case(x):
   if x == '기관손상':
      new_case = '기관손상'
   elif x == '화재 · 폭발':
      new_case = '화재 · 폭발'
   elif x in ['좌초', '충돌', '전복', '침몰', '접촉']:
      new_case = '충돌 · 전복 · 침몰'
   elif x == '부유물감김':
      new_case = '부유물감김'
   elif x == '안전사고':
      new_case = '안전사고'
   else:
      new_case = '기타'
   return new_case
raw_data['해양사고종류'] = raw_data['해양사고종류(통계용)'].apply(accident_case)
raw_data,loc[raw_data['해양사고종류'] == '기관손상', '해양사고종류'] = 0.0
raw_data,loc[raw_data['해양사고종류'] == '화재 · 폭발', '해양사고종류'] = 1.0
raw_data.loc[raw_data['해양사고종류'] == '충돌 · 전복 · 침몰', '해양사고종류'] = 2.0
raw_data,loc[raw_data['해양사고종류'] == '부유물감감', '해양사고종류'] = 3.0
raw_data.loc[raw_data['해양사고종류'] == '안전사고', '해양사고종류'] = 4.0
raw_data,loc[raw_data['해양사고종류'] == '기타', '해양사고종류'] = 5.0
```

Appendix B. – 재결서 텍스트마이닝에 의한 요인 변수 생성

```
2 def human_factor(x):
      if x in ['기타', '전복']:
          factor = 'X'
 5
      else:
          factor = '인적요인'
      return factor
 9 def material_factor(x):
      if x in ['기관손상', '해양오염', '전복', '화재 · 폭발', '침몰']:
           factor = '물적요인'
11
12
      else:
13
          factor = "X"
14
      return factor
15
16 def location_factor(x):
      if x in ['좌초', '부유물감감', '충동', '접촉']:
18
          factor = '위치요인'
19
      else:
20
           factor = "X"
21
      return factor
23 def weather_factor(x):
      if x in ['접촉', '침몰', '운항저해', '전복', '충돌', '부유물감감']:
           factor = '기상묘인'
25
26
      else:
27
          factor = 'X'
28
      return factor
29
30 def time_factor(x):
31
      if x == '운항저해':
32
           factor = '시간요인'
33
      else:
34
           factor = 'X'
      return factor
```

```
37 raw_data['인적요인'] = raw_data['해양사고종류(통계용)'],apply(human_factor)
38 raw_data['물적요인'] = raw_data['해양사고종류(통계용)'],apply(material_factor)
39 raw_data['위치요인'] = raw_data['해양사고종류(통계용)'],apply(location_factor)
40 raw_data['기상요인'] = raw_data['해양사고종류(통계용)'],apply(weather_factor)
41 raw_data['시간요인'] = raw_data['해양사고종류(통계용)'],apply(time_factor)
43 raw_data,loc[raw_data['인적요인'] == '인적요인', '인적요인'] = 1,0
44 raw_data,loc(raw_data('인적요인') == 'X', '인적요인') = 0,0
45 raw_data,loc[raw_data['물적요인'] == '물적요인', '물적요인'] = 1,0
46 raw_data,loc(raw_data['물적요인'] == 'X', '물적요인'] = 0,0
47 raw_data,loc[raw_data['위치요인'] == '위치요인', '위치요인'] = 1,0
48 raw_data,loc[raw_data['위치요인'] == 'X', '위치요인'] = 0,0
49 raw_data,loc[raw_data['기상요인'] == '기상요인', '기상요인'] = 1,0
50 raw_data,loc[raw_data['기상요인'] == 'X', '기상요인'] = 0,0
51 raw_data,loc[raw_data['시간요인'] == '시간요인', '시간요인'] = 1,0
52 raw_data,loc[raw_data['시간요인'] == 'X', '시간요인'] = 0,0
53 raw_data,info()
```

Appendix C. – Oversampling에 의한 data 변화

Appendix D. – 기상 데이터 매칭 방법

print(end - start)

```
def nearest_point(data):
  start = data['해양사고장소(위도)'], data['해양사고장소(경도)']
  a = data['해양사고발생일시'][:13]
  b = int(a[:4] + a[5:7] + a[8:10] + a[11:13])
  if b < standard1:</pre>
     distances = []
     for i, x in enumerate(until_20191029):
        idx = list(longi_lati['지점 번호']),index(x)
        goal = longi_lati['위도'][idx], longi_lati['경도'][idx]
        distance = haversine(start, goal)
     distances,append(distance)
     nearest = np,argmin(distances)
     nearest_point = until_20191029[nearest]
  elif (b >= standard1) and (b < standard2):
     distances = []
     for i, x in enumerate(after_2019102916):
        idx = list(longi_lati['지점 번호']).index(x)
        goal = longi_lati['위도'][idx], longi_lati['경도'][idx]
        distance = haversine(start, goal)
     distances.append(distance)
     nearest = np.argmin(distances)
     nearest_point = after_2019102916[nearest]
  elif (b >= standard2) and (b < standard3):
     distances = []
     for i, \times in enumerate(after_2019103015):
        idx = list(longi_lati['지점 번호']),index(x)
        goal = longi_lati['위도'][idx], longi_lati['경도'][idx]
        distance = haversine(start, goal)
     distances.append(distance)
     nearest = np.argmin(distances)
     nearest_point = after_2019103015[nearest]
  elif (b >= standard3) and (b < standard4):
     distances = 11
     for i, x in enumerate(after_2019110117):
        idx = list(longi_lati['지점 번호']),index(x)
        goal = longi_lati['위도'][idx], longi_lati['경도'][idx]
        distance = haversine(start, goal)
     distances.append(distance)
     nearest = np,argmin(distances)
     nearest_point = after_2019110117[nearest]
```

```
elif (b >= standard4) and (b < standard5):
      distances = \Pi
 clssifier = setup(data = train_set_human,
                   |target = '인명 피해 및 부상 여부',
                   |numeric_imputation = 'mean',
                   Inormalize = True.
                   |silent = True)|
1#좀 오래걸림 데이터 2만개, 2분 소요
3 best_3_human = compare_models(sort = 'AUC', n_select=3)
1#좀 오래걸림 데이터 2만개, 2분 소요
3 blended_human = blend_models(estimator_list= best_3_human, fold = 5, optimize='AUC')
4 pred_holdout = predict_model(blended_human)
5 final_model_human = finalize_model(blended_human)
6 pred_esb_human = predict_model(final_model_human, test_set_human)
 start = time.time()
 data['\Lambda \Delta'] = data_apply(nearest_point, axis = 1)
 end = time.time()
```

Appendix E. – pycaret.clasffication을 통한 학습 및 평가

```
1 clssifier = setup(data = train_set_human,
                  |target = '인명 피해 및 부상 여부',
2
                  |numeric_imputation = 'mean',
                  normalize = True,
                  |silent = True)|
1#좀 오래걸림 데이터 2만개, 2분 소요
3 best_3_human = compare_models(sort = 'AUC', n_select=3)
1#좀 오래걸림 데이터 2만개, 2분 소요
3 blended_human = blend_models(estimator_list= best_3_human, fold = 5, optimize='AUC')
4 pred_holdout = predict_model(blended_human)
5 final_model_human = finalize_model(blended_human)
6 pred_esb_human = predict_model(final_model_human, test_set_human)
```