49. Свойства электромагнитных волн.

Электромагнитные волны (излучение) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля. Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

Вкратце:

Свойства электромагнитных волн:

- 1. Электромагнитные волны могут поглощаться поверхностью.
- Электромагнитные волны могут отражаться (отражение от поверхности).
- 3. Обладают способностью преломляться (менять направление).
- Электромагнитные волны поперечные.

Основные параметры электромагнитных волн:

- Длина волны это кратчайшее расстояние между двумя точками, которые колеблются в одной фазе.
- Период колебаний это время, за которое происходит одно полное колебание.
- Частота число колебаний за 1 секунду.
- 4. Скорость волны это скорость, с которой распространяется волна.

Подробнее:

Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения (в вакууме) постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Название		Длина волны λ	Частота <i>f</i>	Источники
Радиоволны	Сверхдлинные	более 10 км	менее 30 кГц	Атмосферные и магнитосферные явления, радиосвязь.
	Длинные	10 — 1 км	30 кГц – 300 кГц	
	Средние	1 км – 100 м	300 кГц – 3 МГц	
	Короткие	100 м— 10 м	3 МГц – 30 МГц	
	Ультракороткие	10 м — 0,1 мм	30 МГц – 300 ГГц	
Инфракрасное излучение		1 мм – 700 нм	300 ГГц – 429 ТГц	Излучение молекул и атомов при
Видимое излучение		700 нм — 380 нм	429 ТГц – 750 ТГц	тепловых и электрических воздействиях.
Ультрафиолетовое излучение		380 нм — 10 нм	7,5·10 ¹⁴ Гц — 3·10 ¹⁶ Гц	Излучение атомов под воздействием ускоренных электронов.
Рентгеновское излучение		10 нм — 5 пм	3·10 ¹⁶ Гц – 6·10 ¹⁹ Гц	Атомные процессы при воздействии ускоренных заряженных частиц.
Гамма-излучение		менее 5 пм	более 6·10 ¹⁹ Гц	Космические и ядерные процессы, радиоактивный распад.

Волновая оптика (раздел физической оптики) основана на классических электромагнитных уравнениях — уравнениях Максвелла, интересующие её явления принадлежат так называемому оптическому диапазону длин волн. Он включает в себя инфракрасное излучение, видимый свет и ультрафиолетовое излучение.

Электромагнитные волны переносят энергию. Такой перенос осуществляется в направлении волнового вектора \vec{k} перпендикулярно волновым поверхностям.

Энергия электромагнитной волны делится поровну между её электрической и магнитной составляющей. Тогда плотность энергии всего электромагнитного поля, являющаяся суммой плотностей электрического и магнитного полей, будет равна:

$$w_{9/M} = w_{9M} + w_{MA\Gamma} = 2w_{9M} = \varepsilon_0 \cdot E^2.$$

Плотность потока энергии — физическая величина, численно равная потоку энергии через малую площадку единичной площади, перпендикулярную направлению потока.

Энергия электромагнитной волны внутри объёма V может быть выражена двумя способами: или через **объёмную плотность** энергии $W_{\text{э/м}} = w_{\text{э/м}} \cdot V = w_{\text{э/м}} \cdot S \cdot c \cdot \Delta t$, или через **плотность потока** $W_{\text{э/м}} = \Pi \cdot S \cdot \Delta t$.

$$\operatorname{div} \overrightarrow{\Pi} = -\frac{\partial w_{\scriptscriptstyle 3/M}}{\partial t}, \qquad \oint\limits_{S} \overrightarrow{\Pi} \cdot d\overrightarrow{S} = -\frac{dW_{\scriptscriptstyle 3/M}}{dt}$$

- уравнение непрерывности: изменение энергии внутри некоторого объёма происходит за счет притока электромагнитной энергии через поверхность S, ограничивающей его.

Среднее значение проекции плотности потока энергии на направление распространения волны называют интенсивностью волны I.

Интенсивность волны – модуль среднего по времени значения плотности потока энергии равен:

$$I=\frac{\varepsilon_0 c \cdot {E_0}^2}{2}.$$