

Bazy Danych

Model Relacyjny

Piotr Macioł WIMIIP, KISIM, http://home.agh.edu.pl/~pmaciol, B5, pok. 606

Relacyjny model danych

- Relacyjny model danych jest obecnie najbardziej popularnym modelem używanym w systemach baz danych. Podstawą tego modelu stała się publikacja E.F. Codda z 1970r.
- Zauważył on, że zastosowanie struktur i procesów matematycznych w zarządzaniu danymi mogłoby rozwiązać wiele problemów trapiących ówczesne modele.
- W swej pracy A relational model for large shared data banks Codd zaprezentował założenia relacyjnego modelu baz danych, model ten oparł na teorii mnogości i rachunku predykatów pierwszego rzędu.

KISIM, WIMIP, AG

Relacyjny model danych

- W roku 1990 Codd opublikował artykuł "Relacyjny model zarządzania bazami danych: wersja 2", rozszerzający poprzednie prace
- RMD oparty jest o algebrę relacji
- Podstawowe elementy modelu to
 - » relacje
 - » więzi

ISIM, WIMIP, AGE

Podstawowe pojęcia w bazach danych:

- encja relacja klasa tabela
 - » zbiór podobnych obiektów opisanych w jednolity sposób
- krotka obiekt (instancja klasy) rekord wiersz
 - » zestaw wartości atrybutów opisujących jeden obiekt identyfikowany przez wyróżnione atrybuty lub nazwę
- związek więź asocjacja
 - » związek pomiędzy dwoma encjami (klasami) pokazujący jakie rekordy (obiekty) z jednej encji odpowiadają rekordom z drugiej i jaki jest charakter tej odpowiedniości
- atrybut kolumna pole
 - » pojedyncza dana wchodząca w skład krotki np. nazwisko studenta, nr ewidencyjny pracownika, wielkość zapasu czy rodzaj filmu.

KISIM, WIMIP, A

Relacyjny model danych

 Podstawową strukturą danych jest relacja będąca podzbiorem iloczynu kartezjańskiego co najmniej dwóch wybranych zbiorów reprezentujących dopuszczalne wartości.

Niech $A_1 = [a,b,c], A_2 = [x,y]$

Wtedy $A_1 \times A_2 = \{(a,x), (a,y), (b,x), (b,y), (c,x), (c,y)\}$

Przykładowe relacje, będące podzbiorami iloczynu kartezjańskiego $A_1 \times A_2$:

- $X = \{(a,x), (b,x), (c,x)\}$
- $Y = \{(a,x), (a,y), (b,y)\}$

elementy relacji są nazywane krotkami

- Relacja jest zbiorem krotek posiadających taką samą strukturę, lecz różne wartości
- Każda krotka posiada co najmniej jeden atrybut.

Relacyjny model danych

- Każda relacja posiada następujące własności
 - » krotki są unikalne
 - » atrybuty są unikalne
 - » kolejność krotek nie ma znaczenia
 - » kolejność atrybutów nie ma znaczenia
 - » wartości atrybutów są atomowe
- Tworzenie modeli relacyjnych nazywane jest modelowaniem związków encji.

Postulaty Codd'a

Postulaty Codd'a (1)

- Postulat informacyjny dane są reprezentowane jedynie poprzez wartości atrybutów w wierszach tabel,
- Postulat (gwarantowanego) dostępu każda wartość w bazie danych jest dostępna poprzez podanie nazwy tabeli, atrybutu oraz wartości klucza podstawowego,
- Postulat dotyczący wartości NULL dostępna jest specjalna wartość NULL dla reprezentacji wartości nieokreślonej jak i nieadekwatnej, inna od wszystkich i podlegająca przetwarzaniu.

KISIM, WIMIP, AG

Postulaty Codd'a (2)

- 4. Postulat dotyczący katalogu informacje o obiektach bazy danych tworzących schemat bazy danych są na poziomie logicznym zgrupowane w tabele i dostępne w taki sam sposób jak każde inne dane.
- Postulat języka danych system musi dostarczać pełnego języka przetwarzania danych, który:
 - » charakteryzuje się liniową składnią,
 - » może być używany zarówno w trybie interaktywnym, jak i w obrębie programów aplikacyjnych,
 - » obsługuje operacje definiowania danych (łącznie z definiowaniem perspektyw), operacje manipulowania danymi (aktualizację, także wyszukiwanie), ograniczenia związane z bezpieczeństwem i integralnością oraz operacje zarządzania transakcjami (rozpoczynanie, zapis zmian i ponowny przebieg)

ISIM, WIMIP, AG

Postulaty Codd'a (3)

- Postulat modyfikowalności perspektyw system musi umożliwiać modyfikowanie perspektyw, o ile jest ono semantycznie realizowane,
- Postulat modyfikowalności danych system musi umożliwiać operacje modyfikacji danych, musi obsługiwać operatory INSERT, UPDATE oraz DELETE,
- Postulat fizycznej niezależności danych zmiany fizycznej reprezentacji danych i organizacji dostępu nie wpływają na aplikacje,

KISIM, WIMIIF

Postulaty Codd'a (4)

- Postulat logicznej niezależności danych zmiany wartości w tabelach nie wpływają na aplikacje,
- Postulat niezależności więzów spójności (niezależność integralnościowa) – więzy spójności są definiowane w bazie i nie zależą od aplikacji,
- Postulat niezależności dystrybucyjnej działanie aplikacji nie zależy od modyfikacji i dystrybucji bazy,

AGH

Postulaty Codd'a (5)

- Postulat bezpieczeństwa względem operacji niskiego poziomu – operacje niskiego poziomu nie mogą naruszać modelu relacyjnego i więzów spójności.
- 12. Reguła nieprowadzenia "działalności wywrotowej": jeśli system jest wyposażony w interfejs niskiego poziomu (operacje na pojedynczych rekordach), nie może być użyty do prowadzenia działalności wywrotowej (np. omijania zabezpieczeń relacyjnych lub ograniczeń integralnościowych)

KISIM, WIMIP, A

Postulaty Codd'a (6)

 Codd określił również 9 cech strukturalnych, 3 cechy integralnościowe oraz 18 cech manipulacyjnych, które także są wymagane. Codd swą listę 12 reguł rozszerzył do 333 w drugiej wersji modelu relacyjnego.

Baza danych - relacja

Rozważmy relację, której atrybutami są nazwisko, imię, wiek. Relację tę można zapisać następująco:

PRAC <nazwisko, imię, wiek>,

gdzie PRAC jest nazwą danej relacji.

A oto trzy krotki relacji PRAC:

- <Kowalski, Jan, 36>
- <Tomaszewski, Wojciech, 40>
- <Wiśniewski, Marek, 50>.

ISIM, WIMIP, AGH

Zasady spełnione dla każdej relacji

- Każda relacja w bazie danych ma jednoznaczną nazwę,
- Każda kolumna (atrybut) w relacji ma jednoznaczną nazwę w ramach jednej relacji,
- Wszystkie wartości w kolumnie muszą być tego samego typu,
- Porządek kolumn w relacji nie jest istotny,
- Każdy wiersz w relacji musi być różny,
- Porządek wierszy nie jest istotny,
- Każde pole leżące na przecięciu kolumny/wiersza w relacji powinno zawierać wartość atomową

Zbiór identyfikujący relacji

$$R = \{A_1, A_2, ..., A_n\}$$

zbiór atrybutów

$$S \subset R$$

który jednoznacznie identyfikuje wszystkie krotki w relacji **R**

w żadnej relacji o schemacie ${\it R}$ nie mogą istnieć dwie krotki ${\it t_1}$ i ${\it t_2}$ takie, że

$$t_1[S]=t_2[S]$$

(nad)Klucz

- Minimalny zbiór identyfikujący
- Taki zbiór atrybutów relacji, których kombinacje wartości jednoznacznie identyfikują każdą krotkę tej relacji a żaden podzbiór tego zbioru nie posiada tej własności
- W kluczu nie może zawierać się wartość NULL

AGH

Klucz

- Klucz jest kluczem prostym, jeżeli powyżej opisany zbiór jest jednoelementowy - w przeciwnym razie mówimy o kluczu złożonym
- W ogólności, w relacji można wyróżnić wiele kluczy, które nazywamy kluczami potencjalnymi (kandydującymi). Wybrany klucz spośród kluczy potencjalnych nazywamy kluczem głównym (Primary Key PK)

KSIM, WINIIP, AGH

Zależność funkcjonalna

 Atrybut B relacji R jest funkcjonalnie zależny od atrybutu A jeżeli dowolnej wartości a atrybutu A odpowiada nie więcej niż jedna wartość b atrybutu B

$$A \rightarrow B$$

Zależność funkcjonalna

- Niech X i Y będą podzbiorami zbioru atrybutów relacji R

$$X \subset \{A_1 ... A_N\}, Y \subset \{A_1 ... A_N\}$$

– podzbiór atrybutów Y zależy funkcyjnie od podzbioru atrybutów X, jeżeli nie jest możliwe, by relacja R zawierała dwie krotki mające składowe zgodne tzn. identyczne dla wszystkich atrybutów ze zbioru X i jednocześnie co najmniej jedną niezgodną składową dla atrybutów ze zbioru Y

AGH

Zależność funkcjonalna

 Zbiór atrybutów Y jest w pełni funkcjonalnie zależny od zbioru atrybutów X w schemacie R, jeżeli:

$$X \rightarrow Y$$

i nie istnieje

$$X^{'} \subset X$$
 takie, że $X^{'} \rightarrow Y$

Zależność funkcjonalna

 Zbiór atrybutów Y jest częściowo funkcjonalnie zależny od zbioru atrybutów X w schemacie R, jeżeli:

$$X \rightarrow Y$$

i istnieje

$$X^{'} \subset X$$
 takie, że $X^{'} \rightarrow Y$

OSIM, WIMIP, A

AGH

Zależność funkcjonalna

- Niech X, Y i Z będą trzema rozłącznymi podzbiorami atrybutów danej relacji
- Z jest przechodnio funkcjonalnie zależny od X, jeśli Z jest funkcjonalnie zależny od Y i Y jest funkcjonalnie zależny od X natomiast X nie jest zależny od Y i Y nie jest zależny od Z

AGH

Zależność funkcjonalna

– Podzbiór atrybutów Y jest wielowartościowo funkcjonalnie zależny od podzbioru X w schemacie R, (x→→ Y) jeżeli dla dowolnej relacji r w schemacie R i dla dowolnej pary krotek t₁ i t₂ z relacji r istnieje taka para krotek że:

 $s_1[X]=s_2[X]=t_1[X]=t_2[X]i$

 $s_1[Y] = t_1[Y] \ i \ s_1[R-X-Y] = t_2[R-X-Y] \ i$

 $s_2[Y] = t_2[Y] i s_2[R-X-Y] = t_1[R-X-Y]$

Z symetrii powyższej definicji wynika, że jeżeli w relacji r(R) zachodzi $X \to Y$, to zachodzi również: $X \to [R-X-Y]$. Ponieważ R-X-Y=Z, Powyższy fakt zapisujemy czasami w postaci: $X \to Y \mid Z$.

KISIM, WIMIP, A

AGH

Zależność wielowartościowa

	Х	Υ	R-X-Y (Z)
krotka	Lot	dzień	typ samolotu
t ₁	106	poniedziałek	134
t ₂	106	czwartek	154
s ₁	106	poniedzałek	154
s ₂	106	czwartek	134
	207	środa	747
	207	piątek	767

 $typ \rightarrow \rightarrow lot$ $typ \rightarrow \rightarrow dzień$

typ→→ lot | dzień

KISIM, WIMIP, AG

Zależność wielowartościowa

$$\begin{split} &t_1[X] = t_2[X] = s_1[X] = s_2[X] = (106) \\ &s_1[Y] = t_1[Y] = (\text{poniedziałek}) \text{ i} \\ &s_1[R-X-Y] = t_2[R-X-Y] = (154) \text{ i} \\ &s_2[Y] = t_2[Y] = (\text{czwartek}) \text{ i} \\ &s_2[R-X-Y] = t_1[R-X-Y] = (134) \end{split}$$

KISIM, WIMIP, AGH

Trywialna zależność wielowartościowa

- Zależność wielowartościowa X → Y w relacji r(R) nazywamy zależnością trywialną, jeżeli zbiór Y jest podzbiorem X, lub X ∪ Y = R.
- Zależność nazywamy trywialną, gdyż jest ona spełniona dla dowolnej instancji r schematu R.

Więzi

- Więź (relationship) to powiązanie pomiędzy parą tabel (relacji).
- Istnieje ona wtedy, gdy dwie tabele są połączone przez klucz podstawowy i klucz obcy. Każda więź jest opisywana przez typ więzi istniejący między dwoma tabelami, typ uczestnictwa oraz stopień uczestnictwa tych tabel.

KISIM, WIMIP, A

Typy więzi

 – jeden-do-jednego (jeżeli pojedynczemu rekordowi z pierwszej tabeli przyporządkowany jest najwyżej jeden rekord z drugiej tabeli i na odwrót)

AGH

Więź jeden-do-jednego

5

Typy więzi

 – jeden-do-wielu (jeżeli pojedynczemu rekordowi z pierwszej tabeli może odpowiadać jeden lub więcej rekordów z drugiej, ale pojedynczemu rekordowi z drugiej tabeli odpowiada najwyżej jeden rekord z tabeli pierwszej)

Więzi identyfikujące

 Klucz obcy, który jest składnikiem złożonego klucza głównego w relacji zależnej określany jest mianem klucza obcego głównego (Primary Foreign Key) a tak zbudowana więź jest więzią identyfikującą

Obcy klucz główny (IdPracownika)

Rok	Miesiac	IdPracownika	LiczbaGodzin
2005	01	1	160
2005	01	2	150
2005	02	1	140
2005	02	2	160
Taki wiersz nie może się pojawić			
2005	01	1	140

Więź wiele-do-wielu (dane)

IdAgregatu	Maszyna	Data	IdPracownika	Nazwisko	Godziny
1	Piła	10.03.05	1	Kowalski	4
1	Piła	10.03.05	2	Lis	4
2	Tokarka	10.03.05	1	Kowalski	4
2	Tokarka	10.03.05	3	Kot	8
1	Piła	11.03.05	1	Kowalski	8
2	Tokarka	11.03.05	3	Kot	2
2	Tokarka	11.03.05	2	Lis	6

KISIM, WIMIP, A

Więź wiele-do-wielu

- Na jednej maszynie mogą pracować różni pracownicy, np. na maszynie *Piła* 10. marca pracowało dwóch pracowników
- Jeden pracownik może pracować na wielu maszynach, np. Kowalski pracował 10. marca na Pile i Tokarce)

AGH

Więź wiele-do-wielu

KISIM, WIMIP, AGH

Więź wiele-do-wielu (po rekonstrukcji)

IdAgregatu	Data	IdPracownika	Godziny
1	10.03.05	1	4
1	10.03.05	2	4
2	10.03.05	1	4
2	10.03.05	3	8
1	11.03.05	1	8
2	11.03.05	3	2
2	11.03.05	2	6

Podstawowe zagadnienia algebry relacji

Model relacyjny:

- Baza danych przedstawiona jest w postaci tablic dla encji, związków i ich atrybutów.
- Tablice, a tym samym cała baza danych, mogą być interpretowane jako relacje w sensie matematycznym. Również operacje w bazie danych – jako operacje na relaciach.
- Podstawą modelu jest algebra relacji opisująca te operacje i ich własności.
- Algebra relacji stanowi również podstawę języków DDL i DML w tym SQL.

Relacja (przypomnienie):

- Dane są zbiory $A_1,A_2,....A_n$, relacją r nazywamy dowolny podzbiór A_1 x A_2 x ... x A_n
- Relacja jest zbiorem krotek ($a_1,\,a_2,\,...,\,a_n$), gdzie każde $a_i\in A_i$
 - » Np.

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

r = {(Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield)}

jest relacją określoną na customer-name x customer-street x customer-city

KISIM, WIMIP, A

Model relacyjny danych:

- $-A_1, A_2, ..., A_n$ oznaczają atrybuty.
- $-R = (A_1, A_2, ..., A_n)$ jest schematem relacji R.
 - » Np.

Customer-schema = (customer-name, customer-street, customer-city)

- -r(R) oznacza instancję r relacji o schemacie R.
 - » Np.

customer (Customer-schema)

 $-t=(a_1,a_2,...,a_n),\,t\in r\,$ oznacza krotkę relacji r(R).

AGH

Model relacyjny danych (c.d.):

- Aktualna wartość relacji (instancja relacji) może być przedstawiona w formie tabeli, której:
 - » kolumny odpowiadają atrybutom,
 - » nagłówek odpowiada schematowi relacji.
- Elementy relacji krotki są reprezentowane przez wiersze tabeli.

customer-name	customer-street	customer-city	
Jones Smith Curry Lindsay	Main North North Park	Harrison Rye Rye Pittsfield	
customer			

KISIM, WIMIP, AGH

Kategorie w algebrze relacji:

- Zwyczajne działania algebry zbiorów: suma, przecięcie i różnica
- Operacje zawężenia: selekcja eliminuje pewne wiersze, a rzutowanie pewne kolumny
- Operacje komponowania krotek z różnych relacji: np. iloczyn kartezjański
- Operacje przemianowania nie zmieniające krotek ale schemat ich relacji

AGH

Działania teoriomnogościowe:

- RUS suma zbiorów R i S jest zbiorem krotek, z których każda należy do R lub S lub do obu razem; jeżeli krotka występuje w obu relacjach to w ich sumie pojawia się tylko raz
- R∕S przecięcie zbiorów R i S jest zbiorem krotek, które należą zarówno do R jak i S
- R-S różnica zbiorów R i S zawiera krotki należące do R i nie należące do S
- Relacje **R** i **S** muszą mieć identyczne schematy

Przykłady:

R:	Marka samochodu	Model samochodu	Rok produkcji
	Fiat	Uno	1990
	Ford	Fiesta	2000
_			

S:	Marka samochodu	Model samochodu	Rok produkcji
	Fiat	Uno	1990
	Ford	Mondeo	2000
	Fiat	Panda	1004
	Ford	Mondeo	1998

Marka samoch R∪S: Fiat Uno 1990 Ford Fiesta 2000 Ford Mondeo 2000 Fiat 1998 Rok produkcji R-S: Ford

ISIM, WIMIP, AGI

AGH

Rzutowanie:

 Tworzy nową relację z relacji R przez usunięcie z niej pewnych kolumn

$$\pi_{A1,A2,...,An}(R)$$

KISIM, WIMIP, A

AGH

Selekcja:

 nie zmieniając schematu relacji R tworzy nową relację zawierającej podzbiór krotek R spełniających pewien logiczny warunek

$$\sigma_{\rm C}(R)$$

- gdzie $\emph{\textbf{C}}$ to wyrażenie warunkowe na jednym lub więcej atrybutach

AGH

Iloczyn kartezjański:

- (inaczej produkt) relacji R i S to relacja wszystkich uporządkowanych par krotek, z których pierwszy element pary należy do relacji R a drugi do S
- Schemat relacji RxS jest sumą schematów relacji R i S, w której powtarzające się atrybuty (kolumny) traktowane są jako odrębne elementy schematu, np. R.A i S.A

	Student	Język	
	Adam Kot	angielski	
R:	Adam Kot	niemiecki	S:

Student	Język
Adam Kot	matematyka
Adam Kot	fizyka

R×S:

R.Student	Język	S.Student	Przedmiot
Adam Kot	angielski	Adam Kot	matematyka
Adam Kot	angielski	Adam Kot	fizyka
Adam Kot	niemiecki	Adam Kot	matematyka
Adam Kot	niemiecki	Adam Kot	fizyka

KISIM, WIMIP, AGH

8

AGH

Złączenie naturalne:

- polega na połączeniu w pary tych krotek z relacji R i S, które mają identyczne wartości dla wszystkich wspólnych atrybutów i jest oznaczane R ⋈ S
- w rezultacie powstaje relacja, której schemat zawiera atrybuty relacji R i relacji S, przy czym wspólna część uwzględniana jest tylko raz

Przedmiot	Semestr	Ocena
Matematyka	1	3,0
Fizyka	II	4,0
Matematyka	- 1	2,0
	Matematyka Fizyka	Matematyka I

Przedmiot	Semestr	Prowadzący
Matematyka	1	Prof. Wilk
Fizyka	II	Prof. Zając
Matematyka	II	Prof. Kos

Student	Przedmiot	Semestr	Ocena	Prowadzący
Adam Kot	Matematyka	- 1	3,0	Prof. Wilk
Adam Kot	Fizyka	П	4,0	Prof. Zając
Jan Pies	Matematyka	- 1	2,0	Prof. Wilk

KISIM, WIMIP, AG

Typy złączeń:

- złączenie wewnętrzne (inner join) w relacji wynikowej występują wyłącznie te krotki, które spełniają warunek złączenia
- złączenie lewostronne zewnętrzne (left outer join) zawiera wszystkie krotki **R** uzupełnione krotkami **S** spełniającymi warunek
- złączenie prawostronne zewnętrzne (right outer join) zawiera wszystkie krotki S uzupełnione krotkami R spełniającymi warunek
- złączenie zewnętrzne pełne (full outer join) zawiera wszystkie krotki R oraz S uzupełnione wartościami typu NULL gdy do danej krotki nie pasuje żadna krotka z drugiej relacji
- złączenie zewnętrzne typu union zawiera wszystkie krotki R nie pasujące do żadnej krotki S uzupełnione krotkami S nie pasującymi do żadnej krotki R

KISIM, WIMIP, AGH

Złączenie teta

– polega na złączeniu dwóch relacji **R** i **S** w iloczyn kartezjański i wyborze z niego tych krotek, które spełniają wyrażenie warunkowe na parze lub zbiorze par atrybutów z **R** i **S** i jest oznaczane symbolem **R**⋈**R** lub **R**⋈**S**, gdzie **O** lub **C** to wyrażenia logiczne

SIM, WIMIP, AG

Złączenie teta

K			
Towar	Data_Od	Data_do	Cena
mąka	1.01.2004	31.01.2004	2,00
mąka	1.02.2004	31.03.2004	2,10
mąka	1.04.2004		2,05

 Towar
 Data
 Ilość

 mąka
 15.03.2004
 10

$R\bowtie_C S$	
----------------	--

R.Towar	Data_Od	Data_do	Cena	S.Towar	Data	Ilość
mąka	1.02.2004	31.03.2004	2,10	mąka	15.03.2004	10

C= (R.Towar=S.Towar AND Data>=Data_Od AND Data<=Data_Do)

AGH

Równozłączenie

- to szczególny przypadek złączenia teta, w którym warunek ma charakter równości wybranych atrybutów obu relacji
- powtarzające się kolumny opisujące atrybuty z warunku złączenia są pomijane

AGH

Równozłączenie

R
Towar Klient
stal Exbud
cegla PBS

\boldsymbol{S}	
Kontrahent	Miasto
Exbud	Kielce
PBS	Kraków
PHS	Tarnów

$R\bowtie_{R.Klient=S.Kontrahent} S$

Towar	Klient	Miasto
stal	Exbud	Kielce
cegła	PBS	Kraków

KISIM, WIMIP,

Złączenie lewostronne zewnętrzne

AGH

Złączenie prawostronne zewnętrzne

 $R\bowtie_{R.Klient=S.Kontrahent} S$ Klient

> Exbud PBS

PHS

Kielce

Kraków

Tarnów

S	
Kontrahent	Miasto
Exbud	Kielce
PBS	Kraków
PHS	Tarnów

S	
Kontrahent	Miasto
Exbud	Kielce
PBS	Kraków
PHS	Tarnów

$R\bowtie_{R.Klient=S.Kontrahent} S$

Towar	Klient	Miasto
stal	Exbud	Kielce
cegta	PBS	Kraków
złom		

stal

cegła

Złączenie zewnętrzne pełne

Złączenie zewnętrzne typu union

R Towar Klient stal Exbud cegła PBS złom

S	
Kontrahent	Miasto
Exbud	Kielce
PBS	Kraków
PHS	Tarnów

Towar

stal

cegła

złom

R

Klient

Exbud

PBS

 $R\bowtie_{R.Klient=S.Kontrahent} S$

Klient

PHS

Towar

Miasto

Tarnów

S	
Kontrahent	Miasto
Exbud	Kielce
PBS	Kraków
PHS	Tarnów

$R\bowtie_{R.Klient=S.Kontrahent} S$

İ	Towar	Klient	Miasto
	stal	Exbud	Kielce
	cegła	PBS	Kraków
	złom		
		PHS	Tarnów

Przemianowanie:

- zmienia nazwę relacji i ewentualnie nazwy atrybutów (kolumn) w relacji i jest oznaczane

$$\rho_{\scriptscriptstyle S(A_1,A_2,\dots A_n)}(R)$$

» w tym przypadku relacja ${\it R}$ zostanie przemianowana na ${\it S}$ a atrybuty otrzymają nazwy $A_1, A_2, ... A_n$