Chapitre 11 - Plus Grand Diviseur Commun

I Définition et premières propriétés 1. Propriété et définition Soient a et b deux entiers relatifs non nuls. Il existe un plus grand diviseur commun à a et b . On appelle ce diviseur PGCD et on note $PGCD(a;b)$.
Exemple: Déterminer $PGCD(-9; 12)$ $D(-9) = \{-9, -3, -4, 4, 3, 9\}$ $D(-2) = \{-2, -3, -4, 4, 3, 9\}$ $D(-2) = \{-2, -3, -4, 4, 3, 9\}$ $D(-2) = \{-2, -3, -4, 4, 3, 9\}$
Remarque: Cas où l'un des deux nombres est nul :Si, par exemple, $a=0$ alors $PGCD(0;b)=b$ Propriétés: • $PGCD(a;b)$ est un entier strictement positif.
• $PGCD(1;b)=\hbar$ 1
• Si a divise b alors $PGCD(a;b)= a $
• PGCD(a;b)= $PGCD(a ; b)$. Par conséquent, on se ramène en général à a et b des entiers naturels.
2. <u>Déterminer le PGCD</u>
a) Détermination du PGCD de deux entiers non nuls par décomposition en produit de facteurs premiers
Exemple: Décomposez 2022 et 3200 en produit de facteurs premiers. Déduisez-en $PGCD(2022;3200)$ $2022:2\times3\times337$ $3200=32\times100:2^7\times5^1$ $PGCD(2022:3200)$
b) Liste de diviseurs On fait la liste des diviseurs positifs de l'un. Et on teste ces diviseurs pour l'autre entiers

c) Détermination du PGCD de deux entiers non nuls par l'algorithme d'Euclide (methode2 p 122)

Propriété (lemme d'Euclide)

Soient a et b deux entiers non nuls tels que a=bq+r, avec r entier. Alors, l'ensemble des diviseurs communs à a et b est le même que l'ensemble des diviseurs communs à b et r et on a : PGCD(a;b)=PGCD(b;r)

Dé	mo	ons	tr	ati	011	

Soit $D(a) \cap D(b)$ l'ensemble des diviseurs communs à a et b et soit $D(b) \cap D(r)$ l'ensemble des diviseurs communs à b et r Montrons par double inclusion que $D(a) \cap D(b) = D(b) \cap D(r)$

Montron au	L DIO DOLL	= 1) (+1) ()(m)	for soulle indusion
The state of the s	ALCO ALCO ALCO ALCO ALCO ALCO ALCO ALCO	The state of the s	e me DILLA DIN
1	on d'inste T		

done que n divire n n = a - bg

J(h, h-) EZ', {2=1= | Done n = kn-king = m(h-kig)

***************************************	************	 	 	

Cas particulier

Si a=bq+r est l'écriture de la division euclidienne de a par b ($0 \le r < b$), le lemme s'applique et on a PGCD(a;b)=PGCD(b;r).

Algorithme d'Euclide

Exemple

Déterminons le PGCD de 240 et 36 en utilisant plusieurs fois de suite l'égalité PGCD(a;b) = PGCD(b;r) où r est le reste dans la division euclidienne de a par b

Dividende	Diviseur	Quotient	Reste
240	36	6	24
36	24	1	12
24	12	2	0

PGCD[240, 36] = PGCD(36,24) - PGCD[24,12] = PGCD[12,0) = 12

Cas général

Soient deux entiers a et b tels que $0 \le b \le a$. Le but est de déterminer le PGCD de a et b par la méthode d'Euclide.

 1^{er} cas: b divise a Alors PGCD(a;b)=b

 $2^{\text{ème}}$ cas: b ne divise pas a

Division euclidienne de a par b : $a = bq_1 + r_1$ avec $0 \le r_1 < b$.

Or b ne divise pas a donc $r_1 \neq 0$

 $PGCD(a;b) = PGCD(b;r_1)$

 1^{er} cas: r_{\perp} divise b Alors $PGCD(b; r_{\perp}) = r_{\perp}$

 $\mathbf{2}^{\text{eme}} \mathbf{cas}$: r_1 ne divise pas b donc il existe deux entiers $b = r_1 q_2 + r_2$ et $0 \le r_2 < r_1$ On construit une suite strictement décroissante d'entiers naturels positifs Par conséquent, il existe un entier naturel n tel que $r_n = 0$ $PGCD(a;b) = PGCD(b;r_1) = PGCD(r_1;r_2) = = PGCD(r_{n-1};r_n) = PGCD(r_{n-1};0) = r_{n-1}$

Propriété

Soient deux entiers a et b tels que $0 \le b \le a$

- Si: b divise a alors PGCD(a;b)=b
- S b ne divise pas a alors, le PGCD de a et b est le dernier reste non nul de la suite des divisions de l'algorithme d'Euclide.

Propriétés

Soient a et b deux entiers non nuls.

- a) L'ensemble des diviseurs communs à a et b est l'ensemble des diviseurs de leur PGCD.
- b) Si k est un entier naturel non nul, $PGCD(ka;kb)=k\ PGCD(a;b)$

II Nombres premiers entre eux

1) Définition

Deux entiers relatifs non nuls a et b sont premiers entre eux si et seulement si PGCD(a;b)=1 autrement dit, si et seulement si les seuls diviseurs communs de a et b sont 1 et -1.

distribution and selection of the section divided by community de the section of
Exemple: montrer que 2022 et 55 sont premiers entre eux $SS = S \times 11$
2) Propriété
Soient a et b deux entiers non nuls.
$d = PGCD(a; b)$ si et seulement si il existe deux entiers a' , b' tels que $a = d \times a'$ et $b = d \times b'$ avec a' et b' premiers entre eux.
Exemple: Déterminer les couples d'entiers naturels (a,b) tel que $\begin{cases} a < b \\ a+b=24 \end{cases}$
PGCD(a, b) = 4
PGCD(a,b)=4 PGCD(a,b)=4 PGCD(a,b)=4 PGCD(a,b)=4
Sach ach
Sach (40:+41:-24 Sath:-6
Baliell, a= 4a et l= 4- la=4a et l=41 auc a1
onec a 1/:1
(a) (l
1 01:1 et l=s
Lo=4 l=20

III Théorème de Bézout (ou identité de Bézout)
1) <u>Énoncé</u>
Soient a et b deux entiers non nuls.
a et b sont premiers entre eux si et seulement si il existe deux entiers relatifs u et v tels que
au+bv=1.
$aa \cdot bv = 1$.
2) Exemples
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout.
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout.
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x 1 + 2x(-4) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x/-7) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x/-7) = 1 Done 9 et -4 sont premiers entre eux eux
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 \times 1 \times 2 \times -4
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x 1 + 2x(-4) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x/-7) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x/-7) = 1 Done 9 et -4 sont premiers entre eux eux
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 \times 1 \times 2 \times -4
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x 1 x 2x(-4) = 1 Done 9 d - 4 sont premiers entre eux (-3) x 9 + (-4) x 1 = 1 Done 9 d - 4 sont premiers entre eux Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux.
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x1 + 2x(-4) = 1 Done 9 et -4 sont premiers entre eux grâce au théorème de Bézout. (-3/x 9 + (-4/x) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x) = 1 Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux. Soit ne l
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x1 + 2x(-4) = 1 Done 9 et -4 sont premiers entre eux grâce au théorème de Bézout. (-3/x 9 + (-4/x) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x) = 1 Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux. Soit ne l
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x 1 x 2x(-4) = 1 Done 9 d - 4 sont premiers entre eux (-3) x 9 + (-4) x 1 = 1 Done 9 d - 4 sont premiers entre eux Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux.
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x1 + 2x(-4) = 1 Done 9 et -4 sont premiers entre eux grâce au théorème de Bézout. (-3/x 9 + (-4/x) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x) = 1 Done 9 et -4 sont premiers entre eux (-3/x 9 + (-4/x) = 1 Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux. Soit ne l
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x 1 + 2x(-4) = 1 Donc 9 d - 4 sont premiers entre eux (-3)x 9 + (-4)x(-7) = 1 Donc 9 d - 4 sont premiers entre eux Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux. Soit n & U x (-1) + (n+1) x 1 = 1 Donc 9 d - 4 sont premiers entre eux Lonc 2 de Sont premiers entre eux. Soit n & U x (-1) + (n+1) x 1 = 1 Donc 9 d - 4 sont premiers entre eux Lonc 2 de Sont premiers entre eux.
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x1 + 2x(-4) = 1 Donc 9 x1 - 4 Sont premiers entre eux (-3(x 9 + (-4)x/-7) = 1 Donc 9 x1 - 4 Sont premiers entre eux Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux. Soit n e N x (-1) + (n+1) x 1 = 1 Donc 2 Intierre Consequents Lond premiers entre eux. 3) Comment déterminer des entiers u et v?
a) Montrez que 9 et -4 sont premiers entre eux grâce au théorème de Bézout. 9 x 1 + 2x(-4) = 1 Donc 9 d - 4 sont premiers entre eux (-3)x 9 + (-4)x(-7) = 1 Donc 9 d - 4 sont premiers entre eux Remarque: lorsque a et b sont premiers entre eux, il n'y a pas unicité du couple (u, v) tel que au+bv=1 b) Montrez que deux entiers consécutifs sont premiers entre eux. Soit n & U x (-1) + (n+1) x 1 = 1 Donc 9 d - 4 sont premiers entre eux Lonc 2 de Sont premiers entre eux. Soit n & U x (-1) + (n+1) x 1 = 1 Donc 9 d - 4 sont premiers entre eux Lonc 2 de Sont premiers entre eux.

2 - Les déterminer

a) avec intuition

h	à	10	calculatrice
UI	и	ιu	caiculairice

pour nous 51u+19v=1 équivaut à u=(1-19v)/51

calculatrice Y = (1-19X)/51, on régle X entier et on fait défier le tableau de valeurs

c) avec l'algorithme d'Euclide

étape1 : algorithme d'Euclide

étape2 : on exprime les reste à chaque ligne

etape3 : en partant de la dernière ligne, on remplace les restes par l'expression de la ligne précédente

S1: 19 x 1 + 13 19 = 13 x 1 + 6 13 = 8x2 + 17 6 = 6x1 + 0 Done 1 = 13 - 6x2 1 = 13 - (19 - 13x1) x 2 1 = 13x3 - 19x2 1 = (S1 - 19x2) x 3 - 19x 2 1 = S1x3 - 19x8 On a 1 = S1 u + 19v once u = 3 et v = 8	
13= 8×2 + 7 6= 6×1+0 Done 1= 13-6×2 1= 13-(19-13×1)×2 1= 13×3-19×2 1= (S1-19×2)×3-19×2 1= S1×3-19×8	51 = 19 x 2 + 13
6=6x1+0 Done 1=13-6x2 1=13-(19-13x1)x2 1=13x3-19x2 1=(ST-19x2)x3-10x2 1=S1x3-10x8 Ono 1=S1 4 49v	19=13×1+6
Aone 1=13-6x2 1=13-(19-13×1)×2 1=13×3-19×2 1=(ST-19×2)×3-19×2 1=S1×3-19×8	13= Bx2 + 1
	6= 6×1+0
1=13x3-19x2 1=(ST-19x2)x3-19x2 1=S1x3-19x8 Ona 1=Stu + 49v	Done 1-13-6x2
1: (ST-19x2) x3 - 19x2 1: S1x3-19x8 On a 1= S1 4 49v	1=13-(19-13×1)×2
1= S1×3-19×8 Ona 1= S1 + 49v	
1= S1×3-19×8 Ona 1= S1 + 49v	1= (ST-19x2) x3-19x2
	Ona 1= Sty + 49v

4) Identité de Bézout

Soient a et b deux entiers relatifs non nuls.

Si d = PGCD(a; b) alors il existe deux entiers relatifs u et v tels que au+bv=d

On response PGCD (a, b)=d Flat; bile N2 to a = da' et l=db' over a'11=1
donc Zuetv EV² to outlv=1 dont dfv=0 (2) autlv=1
Exemple: $PGCD(6;15)=3$ Déterminer un couple d'entiers (u,v) $6u+15v=3$ PG-CD(6;15)=3 Déterminer un couple d'entiers (u,v) $6u+15v=3O_{10} = 2 \times -2 + 5 \times 1 = 1 O_{20} = 6 \times -2 + 15 = 3$
Remarques
• La réciproque de cette propriété est fausse !
Contre-exemple:
2×1+3×1=5 &2 PGCD(2,3)#5
• Si $PGCD(a;b)=d$, il n'y a pas unicité du couple (u,v) tel que $au+bv=d$
<u>Exemple</u> : PGCD(6;15)=3
Exemple: $PGCD(6;15)=3$
5) Existence d'un inverse modulo n
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v)
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9).
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). 4 u + 9v = 1
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). 4
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). 4 u + 9v = 1
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). Cu +9v =1 Cu = 1(y) Cu = 1x(x + y)
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). 4
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). 4
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). 4
 5) Existence d'un inverse modulo n 1) Montrer qu'il existence des entiers u et v tels que 4u+9v=1 puis déterminer un couple (u; v) solution de 4u+9v=1. 2) En déduire une solution de l'équation 4x≡1(9). 4