Filtrage numérique

K. Boudjelaba

SN - 2

Slide 1/ 18:

Filtre proposé

Équation aux différences

Soit un système (filtre) défini par l'équation aux aux différences :

$$s[n] = 0.5e[n] + 0.5e[n-1]$$

Calcul de la $\mathcal{T}\mathcal{Z}$ du filtre

$$S(z) = 0.5E(z) + 0.5z^{-1}E(z)$$

$$\Rightarrow S(z) = (0.5 + 0.5z^{-1})E(z)$$
On a: $F(z) = \frac{S(z)}{E(z)}$

$$\Rightarrow F(z) = 0.5 + 0.5z^{-1}$$

Slide 2/ 18: Filtre proposé

Signal d'entrée ($f_e = 1 \text{ kHz}$)

Le signal e[n]

e(t) est un signal carré de fréquence f=50 Hz et d'amplitude 1 V. Le signal e(t) est échantillonné avec une fréquence d'échantillonnage $f_e=1$ kHz $\Rightarrow T_e=1$ ms.

Sur une période ($T = \frac{1}{f} = 20$ ms) du signal d'entrée, le signal échantillonné contient 20 valeurs.

$$\left\{ \begin{array}{ccc} 1000 \text{ \'echant.} & \longrightarrow 1 \text{ } s \\ \alpha \text{ \'echant.} & \longrightarrow 20 \text{ } ms \end{array} \right. \Rightarrow \alpha = 20 \text{ \'echantillons par p\'eriode}$$

$nT_e(ms)$	0	1	2	3	4	5	6	7	8	9
n	0	1	2	3	4	5	6	7	8	9
<i>e</i> [<i>n</i>]	1	1	1	1	1	1	1	1	1	1

$nT_e(ms)$										
n	10	11	12	13	14	15	16	17	18	19
e[n]	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Slide 3/18: Signal d'entrée ($f_e = 1 \text{ kHz}$)

Signal d'entrée ($f_e = 1 \text{ kHz}$)

e(t) — Signal analogique

e[n] — Signal numérique

e[n] — Signal numérique avec plot

 $nT_e(ms)$

Slide 4/ 18: Signal d'entrée ($f_e = 1 \text{ kHz}$)

-0.5

-1

Calcul de la sortie s[n] en utilisant l'équation aux différences $(f_e=1\ \mathrm{kHz})$

$$s[n] = 0.5e[n] + 0.5e[n-1]$$
 et

Formule	s[n]
$s[0] = \cdots$	•••
s[1] = ······	•••
s[2] = ······	•••
s[3] = ······	• • • •
$s[4] = \cdots$	• • • •
s[5] = ·····	• • • •
<i>s</i> [6] = ··········	•••
s[7] = ·····	•••
s[8] = ·····	•••
s[9] = ······	•••

n	09	10 …19
<i>e</i> [<i>n</i>]	1	-1

Formule		s[n]
s[10] =	•••••	•••
s[11] =	•••••	•••
s[12] =	•••••	•••
s[13] =	•••••	•••
s[14] =	•••••	•••
s[15] =	•••••	•••
s[16] =	•••••	•••
s[17] =	•••••	•••
s[18] =	•••••	•••
s[19] =	•••••	•••

Slide 5/ 18: Calcul de la sortie s[n] en utilisant l'équation aux différences ($f_e=1~{
m kHz}$)

Calcul de la sortie s[n] en utilisant l'équation aux différences $(f_e=1~\mathrm{kHz})$

$$s[n] = 0.5e[n] + 0.5e[n-1]$$
 et

Formule	s[n]
s[0] = 0.5e[0]	0.5
s[1] = 0.5e[1] + 0.5e[0]	1
s[2] = 0.5e[2] + 0.5e[1]	1
s[3] = 0.5e[3] + 0.5e[2]	1
s[4] = 0.5e[4] + 0.5e[3]	1
s[5] = 0.5e[5] + 0.5e[4]	1
s[6] = 0.5e[6] + 0.5e[5]	1
s[7] = 0.5e[7] + 0.5e[6]	1
s[8] = 0.5e[8] + 0.5e[7]	1
s[9] = 0.5e[9] + 0.5e[8]	1

n	09	10 …19
e[n]	1	-1

Formule	s[n]
s[10] = 0.5e[10] + 0.5e[9]	0
s[11] = 0.5e[11] + 0.5e[10]	-1
s[12] = 0.5e[12] + 0.5e[11]	-1
s[13] = 0.5e[13] + 0.5e[12]	-1
s[14] = 0.5e[14] + 0.5e[13]	-1
s[15] = 0.5e[15] + 0.5e[14]	-1
s[16] = 0.5e[16] + 0.5e[15]	-1
s[17] = 0.5e[17] + 0.5e[16]	-1
s[18] = 0.5e[18] + 0.5e[17]	-1
s[19] = 0.5e[19] + 0.5e[18]	-1

Slide 6/18: Calcul de la sortie s[n] en utilisant l'équation aux différences ($f_e=1~{\rm kHz}$)

Calcul de la sortie s[n] en utilisant l'équation aux différences $(f_e=1 \text{ kHz})$

Slide 7/18: Calcul de la sortie s[n] en utilisant l'équation aux différences ($f_e = 1 \text{ kHz}$)

Calcul de la sortie s[n] en utilisant le produit de convolution $(f_e=1 \text{ kHz})$

Produit de convolution discret

Soient g[n] et h[n] deux signaux discrets. Le produit de convolution discret entre ces deux signaux est donné par :

$$f[n] = g[n] \otimes h[n] = \sum_{k=-\infty}^{\infty} g[n] \cdot h[n-k] = \sum_{k=-\infty}^{\infty} g[n-k] \cdot h[n]$$

Calcul de la sortie s[n]

$$s[n] = e[n] \otimes h[n] = \sum_{k=-\infty}^{\infty} e[n-k] \cdot h[n] = \sum_{k=-\infty}^{\infty} e[n] \cdot h[n-k]$$

Avec h[n] représente la réponse impulsionnelle du filtre (dans notre cas, h[n] = [0.5, 0.5] ou h[0] = 0.5 et h[1] = 0.5)

Slide 8/18: Calcul de la sortie s[n] en utilisant le produit de convolution ($f_e = 1 \text{ kHz}$)

Calcul de la sortie s[n] en utilisant le produit de convolution ($f_e = 1 \text{ kHz}$)

n	0 …9	10 …19
e[n]	1	-1

n	0	1
h[n]	0.5	0.5

$$s[n] = e[n] \otimes h[n] = \sum_{k=-\infty}^{\infty} e[n-k] \cdot h[n] = \sum_{k=-\infty}^{\infty} e[n] \cdot h[n-k]$$

Avec h[n] représente la réponse impulsionnelle du filtre (dans notre cas, h[0] = 0.5 et h[1] = 0.5)

n	0	1	2	3	4	5	6	7	8	9	10
e[n]	1	1	1	1	1	1	1	1	1	1	-1
h[n]	0.5	0.5									
h[0]e[n-0]	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	-0.5
h[1]e[n-1]		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
s[n]	0.5	1	1	1	1	1	1	1	1	1	0

n	11	12	13	14	15	16	17	18	19	20
e[n]	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
h[n]										
h[0]e[n-0]	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	0.5
h[1]e[n-1]	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
s[n]	-1	-1	-1	-1	-1	-1	-1	-1	-1	0

Slide 9/18: Calcul de la sortie s[n] en utilisant le produit de convolution ($f_e = 1 \text{ kHz}$)

Signal d'entrée (fe = 200 Hz)

Le signal e[n]

e(t) est un signal carré de fréquence f = 50 Hz et d'amplitude 1 V.

Le signal e(t) est échantillonné avec une fréquence d'échantillonnage $f_e=200~{\rm Hz} \Rightarrow T_e=5~{\rm ms}.$

Sur une période (T = 20 ms) du signal d'entrée, le signal échantillonné contient 4 valeurs.

$$\begin{cases} 200 \text{ échant.} & \longrightarrow 1 \text{ s} \\ \alpha \text{ échant.} & \longrightarrow 20 \text{ ms} \end{cases} \Rightarrow \alpha = 4 \text{ échantillons par période}$$

$nT_e(ms)$	0	5	10	15
n	0	1	2	3
e[n]	1	1	-1	-1

CHARLES CARNUS Signal d'entrée (fe = 200 Hz) e(t) — Signal 0.5 analogique e(t)15 -0.5e[n] — -1 Signal 1 numérique 0.5 10 15 -0.5 $nT_e(ms)$ e[n] — -1Signal 1 numérique 0.5 avec plot 10 15 -0.5 $nT_e(ms)$ -1 Slide 11/18: Signal d'entrée (fe = 200 Hz)

Calcul de la sortie s[n] en utilisant l'équation aux différences (fe = 200 Hz)

$$s[n] = 0.5e[n] + 0.5e[n-1]$$
 et

n	0	1	2	3
<i>e</i> [<i>n</i>]	1	1	-1	-1

Formule		s[n]
s[0] = 0.5 * e[0]	= 0.5 * 1	0.5
s[1] = 0.5 * e[1] + 0.5 * e[0]	= 0.5 * 1 + 0.5 * 1	1
s[2] = 0.5 * e[2] + 0.5 * e[1]	= 0.5 * (-1) + 0.5 * 1	0
s[3] = 0.5 * e[3] + 0.5 * e[2]	= 0.5 * (-1) + 0.5 * (-1)	-1

Slide 12/18: Calcul de la sortie s[n] en utilisant l'équation aux différences (fe = 200 Hz)

Calcul de la sortie s[n] en utilisant l'équation aux différences (fe = 200 Hz)

Slide 13/18: Calcul de la sortie s[n] en utilisant l'équation aux différences (fe = 200 Hz)

Calcul de la sortie s[n] en utilisant le produit de convolution (fe = 200 Hz)

Produit de convolution discret

Soient g[n] et h[n] deux signaux discrets. Le produit de convolution discret entre ces deux signaux est donné par :

$$f[n] = g[n] \otimes h[n] = \sum_{k=-\infty}^{\infty} g[n] \cdot h[n-k] = \sum_{k=-\infty}^{\infty} g[n-k] \cdot h[n]$$

Calcul de la sortie s[n]

$$s[n] = e[n] \otimes h[n] = \sum_{k=-\infty}^{\infty} e[n-k] \cdot h[n]$$

Avec h[n] représente la réponse impulsionnelle du filtre (dans notre cas, h[n] = [0.5, 0.5] ou h[0] = 0.5 et h[1] = 0.5)

Calcul de la sortie s[n] en utilisant le produit de convolution (fe = 200 Hz)

n	0	1	2	3
e[n]	1	1	-1	-1

n	0	1
h[n]	0.5	0.5

$$s[n] = e[n] \otimes h[n] = \sum_{k=-\infty}^{\infty} e[n-k] \cdot h[n]$$

Avec h[n] représente la réponse impulsionnelle du filtre (dans notre cas, h[0] = 0.5 et h[1] = 0.5)

n	0	1	2	3	4
e[n]	1	1	-1	-1	1
h[n]	0.5	0.5			
h[0] * e[n-0]	0.5	0.5	-0.5	-0.5	0.5
h[1] * e[n-1]		0.5	0.5	-0.5	-0.5
s[n]	0.5	1	0	-1	0

Slide 15/18: Calcul de la sortie s[n] en utilisant le produit de convolution (fe = 200 Hz)

Calcul de la sortie s[n] en utilisant la $\mathscr{T}\mathscr{Z}$ (fe = 200 Hz)

$$H(z) = 0.5 + 0.5z^{-1}$$

$$E(z) = 1 + 1z^{-1} - 1z^{-2} - 1z^{-3} + 1z^{-4} \cdots$$

$$S(z) = H(z)E(z) = (0.5 + 0.5z^{-1})(1 + 1z^{-1} - 1z^{-2} - 1z^{-3} + 1z^{-4} \cdots)$$

$$S(z) = 0.5 + 0.5z^{-1} - 0.5z^{-2} - 0.5z^{-3} + 0.5z^{-1} + 0.5z^{-4} + 0.5z^{-2} - 0.5z^{-3} - 0.5z^{-4} + 0.5z^{-5} \cdots$$

$$S(z) = 0.5 + 1z^{-1} + 0z^{-2} - 1z^{-3} + 0z^{-4} + 0.5z^{-5} \cdots$$

$$s[n] = \begin{bmatrix} 0.5, & 1, & 0, & -1, & 0, & \cdots \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \cdots \\ 0 & 1 & 2 & 3 & 4 & 5 \cdots \end{bmatrix}$$

Slide 16/18: Calcul de la sortie s[n] en utilisant la $\mathcal{T}\mathcal{Z}$, (fe = 200 Hz)

Exercice:

Calculer S(z) = H(z).E(z) et en déduire s[n].

$$H(z) = 1 + 2z^{-1} + 2z^{-2} + 3z^{-3}$$

$$E(z) = 2 - 1z^{-1} + 3z^{-2}$$

$$S(z) = H(z)E(z) = (1 + 2z^{-1} + 2z^{-2} + 3z^{-3})(2 - 1z^{-1} + 3z^{-2})$$

$$S(z) = 2 - 1z^{-1} + 3z^{-2} + 4z^{-1} - 2z^{-2} + 6z^{-3} + 4z^{-2} - 2z^{-3} + 6z^{-4} + 6z^{-3} - 3z^{-4} + 9z^{-5}$$

$$S(z) = 2 + 3z^{-1} + 5z^{-2} + 10z^{-3} + 3z^{-4} + 9z^{-5}$$

$$s[n] = [2, 3, 5, 10, 3, 9]$$

Slide 17/ 18: Exercice :

Exemple de produit de convolution

Slide 18/ 18: Exemple de produit de convolution