Цифровая обработка изображений

2. Извлечение признаков и поиск

План занятия

- Задача поиска по шаблону
- Представление свойств изображения с помощью гистограмм
 - о Гистограммы цветов
 - Гистограммы градиентов

План занятия

- Характерные точки
 - Поиск характерных областей на изображении
 - Выделение признаков (дескрипторов) характерных областей на изображении
 - Матчинг характерных точек на изображениях
 - о Пример

План занятия

- Поиск изображений по контенту CBIR
 - о выделение признаков и индексация
 - обзор архитектуры
 - о поиск по индексу

Примеры задач компьютерного зрения

Пример. Поиск по шаблону

template

Пример. Склейка (stitching)

Пример. Optical Flow

Пример. Поиск похожих изображений (CBIR)

Query Image

Retrieved Results

- итеративно сканируем изображение
- на каждой итерации сравниваем шаблон с изображением
- определяем то место на изображении, которое наиболее похоже на шаблон

• квадратичное отклонение

$$R(x,y) = \sum_{x',y'} (T(x',y') - I(x + x', y + y'))^2$$

• коэффициент корреляции

$$R(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x + x',y + y'))$$

Т - шаблон I - изображение

Оцениваем корреляцию

OpenCV: Template Matching

Python: cv2.matchTemplate(image, templ, method[, result]) → result

```
    image - изображение на котором необходимо найти шаблон
    templ - шаблон для поиска
    method - метод сравнения (квадратичное отклонение, корреляция)
    result - результат сравнения
```

Python: cv2.minMaxLoc(src[, mask]) → minVal, maxVal, minLoc, maxLoc

```
    src – массив для поиска минимального и максимального элемента
    mask - маска для ограничения региона поиска
    minVal/maxVal - минимальное/максимальное значение
    minLoc/maxLoc - точка, соответствующая минимальному/максимальному значению
```

- простой в реализации метод
- не устойчив к изменениям изображения
 - масштабирование
 - о поворот
 - о изменение освещенности
 - о перспективные искажения

Выделение признаков изображения

Гистограммы признаков изображения

- представляют собой обобщенное описание изображения
- позволяют сравнивать и находить похожие изображения

- разбиваем диапазон значений цвета (0..255) на фиксированное число ячеек
- для каждой ячейки считаем число соответствующих пикселей на изображении
- можно вычислять как в пространстве RGB, так и в других цветовых пространствах, например, HSV

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) → hist

images – набор входных изображений для оценки гистограммы channels – каналы по которым оцениваются гистограммы mask – маска ограничивает область оценки гистограммы histSize – массив размеров гистограмм по каждому измерению ranges – пороги разбиения диапазонов значений каждого измерения hist – результат оценки гистограммы (опционально) accumulate – если значение True, то результат суммируется с hist

- не зависят от изменения масштаба изображения
- устойчивы к повороту и перспективным искажениям
- в цветовых пространствах HSV и HSL менее чувствительны к изменению яркости

- в каждой точке оцениваем составляющие градиента по осям х и у
- определяем направление и длину вектора градиента
- оцениваем гистограмму градиентов
- циклически сдвигаем гистограмму таким образом, чтобы максимальное значение было в нулевой ячейки гистограммы
- полученные гистограммы нормализуют, таким образом, чтобы вектор признаков был единичной длины

Оператор Собеля

-1	0	+1
-2	0	+2
-1	0	+1

x filter

+1	+2	+1
0	0	0
-1	-2	-1

y filter

Оператор Собеля

$$g = \sqrt{g_x^2 + g_y^2}$$
$$\theta = \arctan \frac{g_y}{g_x}$$

g, g_x, g_y - длина вектора градиента и его составляющих theta - угол наклона градиента в полярной системе координат

- как правило гистограмму градиентов строят для диапазона углов 0..180
- при оценке гистограммы градиентов учитывается как угол, так и длина вектора
- чем больше длина вектора, тем больший вклад вносится в соответствующую ячейку гистограммы

Input image

Histogram of Oriented Gradients


```
cv2. Sobel(src, ddepth, dx, dy[, dst[, ksize]]) → dst

src — входное изображение

ddepth - тип данных для вычисления производной, например, cv2.CV_64F

dx/dy - порядок производной по осям, как правило 0 или 1

dst - выходное изображение

ksize — размер ядра фильтра 1, 3, 5, или 7

cv2.cartToPolar(x, y) → magnitude, angle

x,y — вектора с координатами х и у

magnitude - длины векторов
```

angle - соответствующие углы

- не чувствительны к изменению цвета
- устойчивы к изменению яркости
- не зависят от поворота

- позволяют находить одинаковые области на изображениях
- используются для склейки панорам и составления карт по спутниковым снимкам

- точка, обладающая уникальными свойствами
- положение точки на изображении однозначно определяется по ее свойствам (дескриптору)
- дескриптор точки вычисляется на основе ее окружения
- дескриптор характерной точки инвариантен к изменениям изображения (освещенность, поворот, масштабирование)

Этапы поиска и матчинга характерных точек

- 1. Определяем области на изображении, которые наиболее вероятно содержат характерную точку
- 2. Вычисляем дескрипторы точки по каждой из областей
- Находим точки с одинаковыми дескрипторами для матчинга изображений

Поиск характерной точки на изображении

- Как понять что выбранная область содержит характерную точку?
- Область вокруг характерной точки должна сильно варьироваться
- В области характерной небольшой сдвиг изображения должен приводить к существенному различию по сравнению с исходным изображением

Автокорреляция

$$E_{\mathrm{AC}}(\Delta \boldsymbol{u}) = \sum_{i} w(\boldsymbol{x}_i) [I_0(\boldsymbol{x}_i + \Delta \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2$$

du - вектор смещения по осям *x* и *y* x_i - вектор координат пикселя изображения w - окно или фильтр I_o - исходное изображение

Матрица автокорреляции

Матрица автокорреляции

Матрица автокорреляции

Поиск характерной области на изображении

- необходима количественная мера для поиска области с характерной точкой
- большая часть мер основана на собственных чисел матрицы автокорреляции в анализируемой области
- тк область вокруг точки должна сильно варьироваться, то нас интересуют области с большими значениями собственных чисел матрицы автокорреляции

Собственные числа матрицы

Собственные числа матрицы

cv2.eigen(src[, eigenvalues[, eigenvectors]]) → eigenvalues, eigenvectors

```
src – исходное изображениеeigenvalues - выходной массив собственных значенийeigenvectors – выходной массив собственных векторов
```

Поиск характерной точки на изображении

- 1. Строим автокорреляционную матрицу изображения
- 2. Определяем количественную меру качества области на основе собственных чисел матрицы автокорреляции
- 3. Оставляем области с локальным максимумом меры (Non-Maximum Suppression)
- 4. Полученные области содержат характерные точки

Вычисление дескрипторов характерных точек

SIFT - Scale Invariant Feature Transform

- дескриптор основан на построении гистограммы градиентов (НОG)
- в окрестности характерной точки выделяется область размером 16х16 пикселей
- для каждого пикселя оценивается вектор градиента
- длина вектора градиента взвешивается гуассовским фильтром, таким образом, чтобы пиксели удаленные от характерной точки имели меньший вес

SIFT - Scale Invariant Feature Transform

- исходная область 16х16 разбивается на части размера 4х4
- для каждой части строится гистограмма градиентов с 8 ячейками
- в результате получается вектор из 128 признаков
- полученный вектор нормируется до единичной длины

SIFT - Scale Invariant Feature Transform

Матчинг характерных точек

Матчинг характерных точек

- выбрать меру расстояния для дескрипторов <u>евклидова мера (L2)</u>, <u>L1</u>,
 <u>Hamming</u>
- попарное сравнение всех точек полный перебор, долго
- индексация перед поиском и поиск по индексу
 - поиск точек в окрестности kdtree
 - хеширование точек таким образом, чтобы точки с похожими дескрипторами оказывались рядом - <u>locality sensitive hashing</u>

Матчинг характерных точек

Поиск похожих изображений

Content Based Image Retrieval (CBIR)

Постановка задачи

- картинки могут быть похожи по-разному
 - о мета теги
 - о время создания
 - цвет
 - о изображения с похожими предметами

Постановка задачи

Постановка задачи

- необходимо определиться с критерием поиска
- от критерия поиска зависит способ выделения признаков изображения

- нас интересуют признаки, которые описывают изображение в целом
 - гистограммы цветов в пространстве HSV
 - гистограммы градиентов

- Признаки можно считать как по всему изображению
- Альтернативный способ: разбить изображение на области и посчитать признаки для каждой области отдельно, и затем объединить результат

Архитектура

Индексация и поиск

- FLANN Fast Library for Approximate Nearest Neighbors http://www.cs.ubc.ca/research/flann/
- Faiss: A library for efficient similarity search
 https://github.com/facebookresearch/faiss/wiki/Getting-started-tutorial
- FAst Lookups of Cosine and Other Nearest Neighbors
 https://pypi.python.org/pypi/FALCONN

Резюме

- попарное сравнение пикселей не устойчиво к изменению цвета / освещенности и масштабу
- гистограммы цветов и градиентов более устойчивы к изменению цвета и поворотам и хорошо подходят для поиска визуально похожих изображений

Резюме

- для матчинга изображений используют характерные точки
- характерные точки выделяются большими значениями автокорреляционной матрицы
- в качестве дескриптора характерной точки можно использовать гистограмму градиентов
- для ускорения поиска одинаковых точек на изображениях используется
 <u>K-d tree</u>

Резюме

- дескрипторы для поиска изображения зависят от задачи
- одним из вариантов дескрипторов могут быть гистограммы цвета или градиента
- для ускорения поиска необходима индексация базы
- наиболее распространенный способ индексации <u>Locality Sensitive</u>
 <u>Hashing</u>

Полезные материалы

- Computer Vision: Algorithms and Applications (Chapter 4)
- OpenCV: Feature Detection and Description
- OpenCV-Python Tutorials
- Repository for OpenCV's extra modules
- Histogram of oriented gradients
- CBIR: Content-based image retrieval
- <u>List of CBIR engines</u>