Universidade da Beira Interior Departamento de Informática

Nº Trabalho Prático: *Human Recognition in Surveillance Settings*

Elaborado por:

João Miguel Baltazar Martins

Orientador:

Professor Doutor Hugo Pedro Proença

10 de junho de 2024

Acrónimos

CNN Convolutional Neural Network

MSE Mean Squared Error

MAE Mean Absolute Error

GAN Generative Adversarial Network

CNN Convolutional Neural Network

MAPE Mean Absolute Percentage Error

ROI Region of Interest

Conteúdo

Co	onteú	do	4
Li	sta de	e Tabelas	5
Li	sta de	e Figuras	6
1	Intr	odução	9
	1.1	Enquadramento	9
	1.2	Objetivo	9
	1.3	Organização do Documento	10
2	Des	envolvimento	11
	2.1	Introdução	11
	2.2	Estrutura do <i>Dataset</i>	11
	2.3	Divisão dos Dados	12
	2.4	Pré-Processamento das <i>Frames</i>	12
	2.5	Modelo <i>Pix2Pix</i> do Zero	15
	2.6	Fine-Tunning de Modelo Pix2Pix Pré-Treinado	18
	2.7	Conclusão	19
3	Exp	osição e Análise de Resultados	21
	3.1	Introdução	21
	3.2	Resultados do Modelo Treinado do Zero	21
	3.3	Comparação e Conclusão	26
4	Con	clusão	27
	4.1	Conclusões Principais	27
	4 2	Próximos Passos	27

Lista de Tabelas

21	Sumário das Camadas do Modelo	16
4.1	Sulliallo das Calliadas do Modelo	 10

Lista de Figuras

2.1	Imagem de boa qualidade quadrada	13
2.2	Imagem de má qualidade quadrada	13
2.3	Imagem de boa qualidade quadrada e segmentada	14
2.4	Imagem de má qualidade quadrada e segmentada	14
3.1	Teste visual do modelo treinado sem segmentação	23
3.2	Evolução da <i>loss</i> durante a época	25
3.3	Teste visual do modelo treinado com segmentação	26

Lista de Excertos de Código

Capítulo 1

Introdução

1.1 Enquadramento

O presente relatório aborda o trabalho prático da unidade curricular de *Computer Vision*, que se concentra em desenvolver uma solução para dada uma imagem da cara de "má qualidade" de uma pessoa obter a correspondente imagem de "boa qualidade".

1.2 Objetivo

O objetivo principal deste trabalho é, dada uma imagem de "má qualidade", obter a correspondente imagem de "boa qualidade". Este objetivo principal pode ser subdividido em várias tarefas específicas, conforme listado abaixo:

- 1. Pré-Processamento das Imagens:
 - a) Desenvolver uma função para padronizar as proporções das imagens, tornando-as quadradas, com uma banda preta de ambos os lados.
 - b) Obter a estimativa da pose da cabeça (Head Pose Estimation.
 - c) Realizar a segmentação facial (Face Segmentation).
- 2. Treinar o modelo *Pix2Pix* no *dataset* deste projeto.
- 3. Utilizar um modelo *Pix2Pix* pré-treinado.
- 4. Análise critica dos resultados provenientes destes.

10 Introdução

1.3 Organização do Documento

O primeiro capítulo – Introdução – apresenta o projeto, o enquadramento para o mesmo, o objetivo do projeto e a respetiva organização do documento.

- 2. O segundo capítulo **Desenvolvimento** será detalhada a constituição do conjunto de dados deste projeto, o modo de divisão do mesmo, a implementação do *Pix2Pix* do zero e a utilização de um modelo *Pix2Pix* pré-treinado.
- 3. O terceiro capítulo **Exposição e Análise dos Resultados** onde são expostos os resultados do modelo *Pix2Pix* treinado sem segmentação e do modelo *Pix2Pix* com segmentação, acompanhada de uma reflexão crítica.
- 4. O quarto capítulo **Conclusão** refere as conclusões principais a tirar deste trabalho e o que poderá ainda ser feito a respeito do mesmo.

Capítulo 2

Desenvolvimento

2.1 Introdução

Neste capítulo, será detalhada a estrutura do *dataset* deste projeto e a implementação do modelo *Pix2Pix*.

2.2 Estrutura do *Dataset*

Este estudo é composto por vídeos no formato .*mp4* de 159 utilizadores. Para cada utilizador, existem quatro vídeos, sendo dois de boa qualidade e dois de má qualidade, gravados em dias diferentes. Cada vídeo tem a duração de trinta segundos, totalizando um minuto de vídeo por utilizador.

Os vídeos têm uma taxa de dez *frames* por segundo, em formato horizontal (*landscape*). Nos vídeos de boa qualidade, o utilizador está a olhar diretamente para a câmara numa pose descontraída. Nos vídeos de má qualidade, foram introduzidas variações em termos de distância, ângulo, perspetiva, ambiente, luminosidade e oclusões.

Cada vídeo encontra-se convertido para *frames* e estas estão armazenadas na respetiva diretoria. As designações para cada diretoria são da seguinte forma:

A pasta de dados deste projeto está armazenada numa pasta chamada face_square. Esta pasta contém múltiplas sub-pastas, cada uma representando um vídeo específico. A convenção de nomenclatura para estas sub-pastas é a seguinte:

<ID SUJEITO> <TIPO VIDEO> <INDICE VIDEO>

Onde:

12 Desenvolvimento

• ID_SUJEITO é o ID ou número de cidadão do voluntário (o sujeito no vídeo).

- TIPO_VIDEO indica o tipo de vídeo. "E"representa enrolamento, o que significa que o vídeo é de boa qualidade. "U"representa não-constrangido, o que significa que o vídeo é de má qualidade.
- INDICE_VIDEO indica a sessão de registos. Pode ser Sessão 1 ou Sessão 2.

Por exemplo, uma pasta chamada 001_E_1 conteria o primeiro vídeo de boa qualidade do voluntário "001", e uma pasta chamada 002_U_2 conteria o segundo vídeo de má qualidade do voluntário "002".

Cada uma destas sub-pastas contém um conjunto de *frames*, representados como imagens *.jpg*, correspondentes ao utilizador, à qualidade e à respetiva sessão.

É importante realçar que foi necessário utilizar o *YOLO* para definir as *Region of Interest* (ROI) tanto da cara quanto do corpo.

2.3 Divisão dos Dados

O conjunto de dados, constituído por 159 utilizadores, foi dividido da seguinte forma:

- Conjunto de Treino: 128 Utilizadores (cerca de 80% dos dados)
- Conjunto de Validação: 16 Utilizadores (cerca de 10% dos dados)
- Conjunto de Validação: 15 Utilizadores (cerca de 10% dos dados)

Sabendo que, um utilizador que pertence já a um conjunto, não poderá pertencer a outro.

2.4 Pré-Processamento das Frames

Colocar Frame Quadrada

A pré-processamento das imagens para serem quadradas com bandas pretas *padding* é importante principalmente para garantir a uniformidade de entrada e preservar o aspecto original da imagem, evitando distorções que podem afetar o desempenho do modelo.

Nas figuras 2.1, 2.2, está ilustrado o resultado deste processo.

Figura 2.1: Imagem de boa qualidade quadrada

Figura 2.2: Imagem de má qualidade quadrada

Face Segmentation

A segmentação facial permite que o modelo se concentre na parte mais relevante da imagem, o rosto, ignorando o restante da imagem que pode conter informações irrelevantes ou enganosas. Além disso, ao segmentar o rosto, reduz-se a quantidade de dados que o modelo precisa processar, tornando o treino do modelo mais rápido e eficiente.

A segmentação facial foi realizada usando um modelo pré-treinado do *PyTorch* chamado *FCN-ResNet50*, que é uma *Convolutional Neural Network* (CNN).

Para cada imagem, são aplicas as transformações, passa a imagem pelo modelo e obtém a saída do modelo, que é uma máscara indicando a localização do rosto na imagem. Esta máscara é então aplicada à imagem original para criar uma nova imagem onde apenas o rosto é visível e o restante da imagem é preenchido com verde.

Nas figuras 2.3, 2.4, está ilustrado o resultado da segmentação à imagem de boa qualidade e de má qualidade, respetivamente.

14 Desenvolvimento

Figura 2.3: Imagem de boa qualidade quadrada e segmentada

Figura 2.4: Imagem de má qualidade quadrada e segmentada

Head Pose Estimation

A estimativa de pose da cabeça é uma técnica de visão computacional que determina a orientação da cabeça de uma pessoa em uma imagem ou vídeo. Ela fornece a rotação da cabeça em torno de três eixos: inclinação (movimento para cima e para baixo), guinada (movimento para a esquerda e para a direita) e rolagem (inclinação da cabeça para a esquerda ou para a direita).

Os valores representam a rotação da cabeça em torno dos eixos x, y e z, respectivamente. Aqui está uma análise dos resultados:

- 1. **Imagem da figura (boa qualidade) 2.1 (2.079658, -7.495624, 1.346217)**: Esses valores sugerem que a cabeça está ligeiramente inclinada para a direita (rotação positiva em torno do eixo *x*), ligeiramente virada para a direita (rotação negativa em torno do eixo *y*) e ligeiramente inclinada para a direita (rotação positiva em torno do eixo *z*).
- 2. **Imagem da figura (má qualidade) 2.2 (65.150192, -11.407316, -4.553188)**: Esses valores sugerem que a cabeça está significativamente inclinada para a direita (rotação positiva em torno do eixo *x*), ligeiramente virada para a direita (rotação negativa em torno do eixo *y*) e ligeiramente inclinada para a esquerda (rotação negativa em torno do eixo *z*).

A diferença significativa na rotação em torno do eixo x entre os dois vídeos pode ser devido à diferença na qualidade dos vídeos. Em um vídeo de má

qualidade, pode ser mais difícil para o algoritmo detectar com precisão os pontos de referência faciais, o que pode levar a uma estimativa de pose menos precisa.

Além disso, a iluminação, a resolução e outros fatores também podem afetar a precisão da estimativa de pose da cabeça.

2.5 Modelo *Pix2Pix* do Zero

O modelo *Pix2Pix* é um tipo de *Generative Adversarial Network* (GAN) cujo objetivo é fazer o mapeamento de uma imagem de entrada para uma imagem de saída.

Este consiste em duas componentes principais: um gerador e um discriminador. O gerador tenta criar imagens que pareçam reais, enquanto o discriminador tenta distinguir entre imagens reais e falsas. O gerador e o discriminador são treinados juntos, com o gerador a tentar enganar o discriminador e o discriminador a tentar classificar corretamente as imagens como reais ou falsas.

No caso deste projeto, as imagens de entrada são as *frames* dos vídeos de má qualidade, e as imagens de saída são as *frames* dos vídeos de de boa qualidade. O objetivo é treinar o modelo para gerar imagens de boa qualidade a partir de imagens de má qualidade.

O modelo é definido na função create_model. Esta função constrói uma *U-Net Architecture* que utiliza uma série de camadas de amostragem *enco-der* para reduzir as dimensões espaciais da imagem de entrada enquanto aumenta a profundidade (número de canais). Isto é seguido por uma série de camadas de amostragem *decoder* que aumentam as dimensões espaciais enquanto reduzem a profundidade. As camadas de amostragem *encoder* e *deco-der* são ligadas por conexões de atalho, que ajudam a preservar a informação espacial.

Este é treinado usando o otimizador *Adam* e a função de *loss* utilizado foi o *Mean Squared Error* (MSE). Esta mede a diferença quadrática média entre os valores previstos e os valores reais, o que a torna adequada para tarefas de regressão como esta.

O modelo é treinado num conjunto de treino de imagens, e o seu desempenho é avaliado num conjunto de validação de imagens durante o treino. O processo de treino continua até que o desempenho no conjunto de validação pare de melhorar, conforme determinado pela *callback* do *early stopping*.

Após o treino, o desempenho do modelo é avaliado num conjunto de teste de imagens. O modelo é então guardado num ficheiro para uso posterior.

16 Desenvolvimento

Arquitetura do Modelo

Camada (tipo)	Forma de Saída	Param #
input_1 (InputLayer)	(None, 256, 256, 3)	0
sequential (Sequential)	(None, 128, 128, 64)	3072
sequential_1 (Sequential)	(None, 64, 64, 128)	131584
sequential_2 (Sequential)	(None, 32, 32, 256)	525312
sequential_3 (Sequential)	(None, 16, 16, 512)	2099200
sequential_4 (Sequential)	(None, 8, 8, 512)	4196352
sequential_5 (Sequential)	(None, 4, 4, 512)	4196352
sequential_6 (Sequential)	(None, 2, 2, 512)	4196352
sequential_7 (Sequential)	(None, 1, 1, 512)	4196352
sequential_8 (Sequential)	(None, 2, 2, 512)	4196352
concatenate (Concatenate)	(None, 2, 2, 1024)	0
sequential_9 (Sequential)	(None, 4, 4, 512)	8390656
concatenate_1 (Concatenate)	(None, 4, 4, 1024)	0
sequential_10 (Sequential)	(None, 8, 8, 512)	8390656
concatenate_2 (Concatenate)	(None, 8, 8, 1024)	0
sequential_11 (Sequential)	(None, 16, 16, 512)	8390656
concatenate_3 (Concatenate)	(None, 16, 16, 1024)	0
sequential_12 (Sequential)	(None, 32, 32, 256)	4195328
concatenate_4 (Concatenate)	(None, 32, 32, 512)	0
sequential_13 (Sequential)	(None, 64, 64, 128)	1049088
concatenate_5 (Concatenate)	(None, 64, 64, 256)	0
sequential_14 (Sequential)	(None, 128, 128, 64)	262400
concatenate_6 (Concatenate)	(None, 128, 128, 128)	0
conv2d_transpose_7 (Conv2DTranspose)	(None, 256, 256, 3)	6147

Tabela 2.1: Sumário das Camadas do Modelo

• **Parâmetros totais:** 54,425,859 (207.62 MB)

• **Parâmetros treináveis:** 54,414,979 (207.58 MB)

• Parâmetros não treináveis: 10,880 (42.50 KB)

Hiperparâmetros no Treino do Modelo Pix2Pix

1. **BATCH_SIZE**: Este valor está definido para 32. O tamanho do lote é o número de exemplos de treino usados numa iteração. A escolha do tamanho do lote pode afetar a velocidade e a estabilidade do processo de aprendizagem. Um tamanho de lote menor significa que o modelo

será atualizado mais frequentemente, o que pode tornar o processo de aprendizagem mais rápido, mas também mais instável. Um tamanho de lote maior significa que o modelo será atualizado com menos frequência, o que pode tornar o processo de aprendizagem mais lento, mas também mais estável. A escolha de 32 é uma escolha comum para o tamanho do lote e é muitas vezes um bom equilíbrio entre velocidade e estabilidade.

- 2. **Paciência no** *EarlyStopping*: Este valor está definido para 2. Este é o número de épocas sem melhoria após o qual o treino será interrompido. A escolha da paciência pode afetar a duração do treino do modelo. Uma paciência menor significa que o modelo irá parar o treino mais cedo, o que pode prevenir o *overfitting*, mas também pode resultar em *underfitting*. Uma paciência maior significa que o modelo continuará a treinar por mais tempo, o que pode levar a um melhor desempenho, mas também pode aumentar o risco de *overfitting*. A escolha de 2 é uma escolha comum para a paciência e é muitas vezes um bom equilíbrio entre prevenir o *overfitting* e o risco de *underfitting*.
- 3. **Número de Épocas**: Foi escolhido um valor de 4 épocas. No entanto, foi implementada uma paragem precoce com uma paciência de 2. Isto significa que, se o desempenho do modelo no conjunto de validação não melhorar durante 2 épocas consecutivas, o treino será interrompido, mesmo que não tenha atingido as 5 épocas. Estava previsto 4 mas teve que ser reduzido (custo computacional).
- 4. O número de filtros e o tamanho dos filtros nas funções downsample e upsample: Estes valores estão definidos para 64, 128, 256 e 512 para o número de filtros e 4 para o tamanho dos filtros. O número de filtros é o número de mapas de características na camada convolucional, e o tamanho dos filtros é a altura e a largura dos filtros convolucionais. A escolha destes hiperparâmetros afeta a complexidade do modelo e a quantidade de informação que o modelo pode aprender. Um maior número de filtros ou um maior tamanho de filtros significa que o modelo pode aprender características mais complexas, mas também aumenta o risco de *overfitting* e o custo computacional. A escolha destes valores baseia-se na arquitetura do modelo *Pix2Pix*.
- 5. **O otimizador**: Este valor está definido para adam. O otimizador é o algoritmo usado para atualizar os pesos do modelo. A escolha do otimizador pode afetar a velocidade e a estabilidade do processo de aprendizagem.

18 Desenvolvimento

Adam é uma escolha popular de otimizador porque combina as vantagens de dois outros métodos, *AdaGrad* e *RMSProp*, e funciona bem na prática numa ampla gama de problemas.

6. **A função de** *loss*: Este valor está definido para mean_square_error. A função de perda é a função que o modelo tenta minimizar durante o treino. A escolha da função de perda depende do problema. Para problemas de regressão como este, o erro quadrático médio é uma escolha comum porque penaliza erros grandes mais do que erros pequenos.

2.6 Fine-Tunning de Modelo Pix2Pix Pré-Treinado

O modelo pré-treinado encontrado, foi treinado num conjunto de dados de rostos de celebridades. O gerador foi treinado por 150 épocas, após as quais foi capaz de gerar rostos a partir de puro ruído.

Pretende-se afinar este modelo pré-treinado no próprio conjunto de dados deste projeto. Afinar é um processo que pega num modelo já treinado num conjunto de dados e o treina (ou "ajusta") num conjunto de dados diferente. Isto pode ser benéfico quando o novo conjunto de dados é mais pequeno e se deseja aproveitar as características aprendidas pelo modelo prétreinado, em vez de treinar um novo modelo do zero. Isto trás também a vantagem de computacionalmente ser menos moroso.

Aqui está como foi irá ser implementa a afinação:

- 1. Carrega o modelo *Pix2Pix* pré-treinado.
- 2. Compila o modelo com um otimizador, função de perda e métricas.
- 3. Define uma *callback* de *checkpoint* para guardar os pesos do modelo a cada 150 *batches*.
- 4. Afina o modelo nos dados de treino, validando nos dados de validação e usando os *callbacks* de *early stopping* e *checkpoint*. O *callback* de *early stopping* interromperá o processo de treino se a perda de validação não melhorar por um certo número de épocas (neste caso, 3), para evitar *overfitting*.
- 5. Finalmente, guarda o modelo afinado.

2.7 Conclusão

2.7 Conclusão

Nesta secção foram apresentadas as técnicas associados ao pré-processamento das *frames* de forma a potenciar o desempenho do modelo, foi também apresentado o modelo que irá fazer cumprir o nosso objetivo, na componente em que este é treinado pelo *dataset* deste projeto e na componente já prétreinado num *dataset* de expressões faciais de famosos. Na próxima secção serão apresentados os resultados do modelo *Pix2Pix* treinado do zero em imagens sem segmentação e do modelo *Pix2Pix* treinado do zero em imagens com segmentação junto com a respetiva reflexão critica.

Capítulo 3

Exposição e Análise de Resultados

3.1 Introdução

O foco principal deste capitulo é fornecer *insights* claros sobre o desempenho do modelo *Pix2Pix* treinado do zero em imagens sem segmentação e do modelo *Pix2Pix* treinado do zero em imagens com segmentação, assim como fazer uma comparação e uma análise critica do desempenho de cada um.

3.2 Resultados do Modelo Treinado do Zero

Resultados Sem Face Segmentation

Os resultados obtidos para esta sub-secção foram através da utilização de cerca de vinte cinco por cento do *dataset* disponível. Foram utilizados os utilizadores desde o trinta e seis ao setenta devido custo computacional que acarretava treinar este modelo no *dataset* completo

Foi treinado e testado o modelo nos dados em que as caras não estavam segmentadas e os resultados, para **uma época**, com um **batch size de 32** foram os seguintes:

- **Detected User IDs:** 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
- Train Users: 40, 56, 48, 57, 58, 47, 51, 37, 50, 66, 45, 54, 64, 70, 67, 63, 59, 68, 49, 38, 46, 39, 52, 43, 36, 60, 62, 44
- **Validation Users:** 42, 53, 61
- **Test Users:** 65, 69, 41, 55

Análise aos Resultados

Treino

- 1. **Perda (Loss)**: A perda de treino é 0.0457. Isto é um bom sinal, pois indica que o modelo está a aprender e a melhorar a sua capacidade de prever as variáveis alvo.
- 2. *Mean Absolute Error* (MAE): O MAE é 0.1576. Isto significa que, em média, as previsões do seu modelo estão aproximadamente 0.1576 unidades afastadas dos valores reais.
- 3. *Mean Absolute Percentage Error* (MAPE): O MAPE é 20707698.0. Este é um valor muito elevado, o que sugere que as previsões do modelo estão muito distantes dos valores reais. No entanto, o MAPE pode ser distorcido por denominadores pequenos, portanto, se o seu conjunto de dados contiver valores reais próximos de zero, isso pode explicar o MAPE elevado.

No geral, o modelo parece estar a aprender, mas o MAPE elevado é uma preocupação.

Teste

- 1. **Perda (Loss)**: A perda de teste é 0.0492. Isto é ligeiramente superior à perda de treino de 0.0457. Isto pode indicar que o modelo está a sobreajustar aos dados de treino, o que significa que não está a generalizar bem para dados não vistos. No entanto, a diferença não é muito grande, por isso pode não ser um problema significativo.
- 2. **Erro Absoluto Médio (MAE)**: O MAE é 0.1604. Isto significa que, em média, as previsões do modelo estão aproximadamente 0.1604 unidades

afastadas dos valores reais no conjunto de teste. Isto é ligeiramente superior ao MAE de treino de 0.1576, o que novamente sugere um pouco de sobreajuste.

3. Erro Absoluto Percentual Médio (MAPE): O MAPE é 12222765.0. Este é um valor muito elevado, o que sugere que as previsões do modelo estão muito afastadas dos valores reais. No entanto, como no caso do MAPE de treino, isto pode ser distorcido por denominadores pequenos se o seu conjunto de dados contiver valores reais próximos de zero.

Em resumo, o seu modelo parece estar ligeiramente a sobreajustar aos dados de treino, como indicado pela perda e MAE mais alto no conjunto de teste em comparação com o conjunto de treino. O MAE elevado é uma preocupação e leva a considerar que as previsões do modelo não são muito precisas.

Demonstração Visual

Para efeitos visuais, deu-se como *input* ao modelo uma *frame* de má qualidade de um utilizador contido no conjunto de teste, aquando o treino do modelo e o resultado pode ser observado na figura 3.1.

Figura 3.1: Teste visual do modelo treinado sem segmentação

Resultados Com Face Segmentation

Os resultados obtidos para esta sub-secção foram através da utilização de cerca de trinta e dois por cento do *dataset* disponível. Foram utilizados 50 utilizadores

Foi treinado e testado o modelo nos dados em que as caras estavam segmentadas e os resultados, para **uma época**, com um **batch size de 32** foram os seguintes:

- **Detected User IDs:** 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 64, 65, 66, 67, 68, 69
- Train Users: 45, 14, 18, 13, 36, 33, 19, 68, 43, 40, 39, 9, 17, 8, 25, 23, 24, 35, 3, 42, 30, 4, 67, 65, 21, 69, 11, 5, 38, 6, 1, 10, 29, 16, 44, 64, 31, 7, 66, 12
- **Validation Users:** 2, 27, 37, 32, 22
- **Test Users:** 41, 28, 34, 20, 26, 15

Análise aos Resultados

Treino

- **Perda** (*Loss*): 0.0375: A perda do modelo é bastante baixa, o que sugere que está desempenhar-se dados de treino.
- MAE: 0.1327: O erro absoluto médio do modelo é relativamente baixo, o que sugere que está a fazer previsões bastante precisas.
- MAPE: 7208888.0000: este valor é bastante alto, o que sugere que as previsões do modelo podem estar erradas por uma grande percentagem. Isto pode ser devido a *outliers* nos dados ou a erros no modelo.
- Perda Validação (val_loss): 0.0601: Este é o valor da função de perda do seu modelo no conjunto de validação. O fato de ser mais alto do que a perda de treino sugere que o seu modelo pode estar a dar *overfitting* aos dados de treino.
- Erro Absoluto Médio de Validação (val_mean_absolute_error): 0.1777: É mais alto do que o erro absoluto médio de treino, o que novamente sugere que o seu modelo pode estar a *overfitting* aos dados de treino.

• Erro Percentual Absoluto Médio de Validação (val_mean_absolute_percentage_error): 7284660.5000: Este é o erro percentual absoluto médio para o conjunto de validação. Tal como o erro percentual absoluto médio de treino, este valor é bastante alto, o que sugere que as previsões do seu modelo podem estar erradas por uma grande percentagem no conjunto de validação.

No geral, o modelo parece estar a aprender, mas o MAPE elevado é uma preocupação.

Na figura 3.2 está ilustrada a evolução da *loss* durante a época 1, que é a única.

Figura 3.2: Evolução da loss durante a época

Teste

• Perda (loss): 0.0601

• MAE: 0.1777

• MAPE: 7284660.5

Podemos ver que o desempenho do modelo nos dados de teste é ligeiramente pior do que nos dados de treino. A perda, MAE e MAPE são todos mais altos nos dados de teste, o que sugere que o modelo pode estar a sobreajustarse aos dados de treino.

Isto pode ser do facto de o modelo aprender os detalhes e o ruído nos dados de treino ao ponto de impactar negativamente o desempenho do modelo

em novos dados. Isto significa que o ruído ou as flutuações aleatórias nos dados de treino são captados e aprendidos como conceitos pelo modelo.

Pode-se considerar estratégias para melhorar a generalização do modelo, como regularização, *dropout*, ou treinar com maior percentagem do *dataset* de forma a diversificar o modelo.

Demonstração Visual

Para efeitos visuais, deu-se como *input* ao modelo uma *frame* de má qualidade de um utilizador contido no **conjunto de teste**, aquando o treino do modelo e o resultado pode ser observado na figura 3.3.

Figura 3.3: Teste visual do modelo treinado com segmentação

3.3 Comparação e Conclusão

Analisando os resultados do modelo treinado com segmentação e do modelo treinado sem segmentação, não é possível dizer com clareza qual se desempenhou melhor porque o com segmentação foi treinado num maior conjunto de dados, mas mesmo assim é de notar que os resultados são idênticos. Isto porque, o modelo só foi treinado numa época, nos dois casos, e num subcojunto do *dataset*.

É de assinalar que mesmo com estas condições, o modelo, nos dois casos, já começa a ter algumas noções.

Capítulo 4

Conclusão

4.1 Conclusões Principais

Neste documento foi então, apresentadas as técnicas de pré-processamento das *frame*s para otimizar o desempenho do modelo. Além disso, é introduzido o modelo que visa atingir o objetivo do projeto, sendo treinado com o *dataset* específico do projeto e também, um exemplo de modelo pré-treinado com um *dataset* de expressões faciais de famosos. De seguida foram apresentados os resultados do modelo *Pix2Pix* treinado do zero em imagens sem segmentação e do modelo *Pix2Pix* treinado do zero em imagens com segmentação, com uma análise crítica dos mesmos.

4.2 Próximos Passos

Os próximos passos deste projeto poderão ser:

- Evoluir o plano do *Google Colab* de forma a obter-se mais poder de processamento para que seja possível treinar o modelo com o *dataset* completo, por várias épocas, por várias vezes afinando os hiperpârametros.
- Incluir o *Head Pose Estimation* de forma a potenciar o desempenho do modelo.
- Afinar um modelo pré-treinado para o nosso dataset.