Gradient Policy Theory

MUKESH KUMAR

Goal of Reinforcement Learning

• In Reinforcement Learning (RL), we want an agent (like a robot or game player) to **learn the best way to act** in an environment to **maximize rewards** over time.

What is Policy Gradient?

• **Policy** = The strategy the agent uses to choose actions.

• Instead of learning values (like in Q-learning), **Policy Gradient methods** directly learn the policy — meaning, they learn the actual function that maps a state to the best action **probability**.

Key idea:

- We represent the policy with a **neural network** that outputs **probabilities** of actions.
- Example:
 - In a given state, the policy might say:
 - Move left: 20%
 - Move right: 80%

How does it learn?

- Policy Gradient methods adjust the policy so that:
- Actions that led to high rewards become more likely in the future.
- Actions that led to poor rewards become less likely.
- This is done using gradient ascent on the expected reward.

Core formula:

The main update rule is:

$$heta \leftarrow heta + lpha \cdot
abla_{ heta} \log \pi_{ heta}(a|s) \cdot R$$

Where:

- θ = parameters of the policy (neural network weights)
- $\pi\theta(a|s)$ = probability of taking action a in state s
- R = reward received
- α = learning rate

Intuition:

- Imagine playing a game:
- Every time you win after doing a certain move, you make that move more likely next time.
- Over time, you reinforce good behaviors.

Advantages:

- Works well for continuous action spaces
- Can learn **stochastic policies** (not just deterministic ones)

Explain Gradient Policy using examples

- MouseMaze Example: refer 1Policy_Gradient_Mouse_Maze_Example.ipynb
- SelfDrivingCar Example: refer 2.Example_Policy_Gradient_Self_Driving.ipynb

Role of Gamma

• Refer notebook: 3. Gamma_Gradient_Policy.ipynb

Policy Gradient Theorem

• Please refer: 4.Policy Gradient Theorem.ipynb

Cart-Pole Problem

https://gymnasium.farama.org/environments/classic_control/cart_pole/