Homework 5

Ben Larson

Octt 5, 2016

1 6.4 Sherman-Morrison formula

We want to show that eqn 6.24 is the inverse of 6.25. Starting with the secant equations we can speculate that B^{-1} is related to H.

$$H_{k+1}y_k = s_k$$

$$y_k = B_{k+1} s_k$$

The sherman-morrison formula stats that when doing a rank update to a matrix the inverse of the new matrix is related to the old inverted matrix with some modification.

$$\hat{A} = A + UV^T$$

$$\hat{A}^{-1} = A^{-1} - A^{-1}U(I + V^T A^{-1}U)^{-1}V^T A^{-1}$$

This is great as it allows you to find the inverse without having to actually solve for the inverse. To show that H_{k+1} is the inverse of B_{k+1}^{-1} we first plug in A, U, and V.

$$H_{k+1} = H_k - H_k U (I_k + V^T H_k U)^{-1} V^T H_K$$

We say that U and V are the same vector $v = y_k - B_k s_k$ that was used to derive the SR1 update.

$$H_{k+1} = H_k - H_k(y_k - B_k s_k)(I_k + (y_k - B_k s_k)^T H_k(y_k - B_k s_k))^{-1}(y_k - B_k s_k)^T H_K$$

Assuming that $A^{-1}B = I$ we get:

$$H_{k+1} = H(k) + (s_k - H_k y_k)(I_k + (s_k - H_k y_k)^T (s_k - H_k y_k))^{-1} (s_k - H_k y_k)^T$$

2 Optimization for the Rosenbrock function

Note that I didn't get any of the functions to optimize correctly, therefore it would be meaningless to compare the results. There were a lot of parameters that I wasn't sure how to set that would give vastly different answers even with small changes in parameter settings. Most notably was the initial guess for $H_0 and \alpha_k$.

$$H_0 = \lambda I$$

I tried many different λ for SR1, BFGS and got very different results even with small changes in λ . I thought the algorithms would correct even bad guesses, but they did not.

2.1 Conjugate Gradient

To solve the Rosenbrock function we need to use nonlinear conjugate gradient methods as the function is not a convex quadratic function. I used the Fletcher Reeves method. I used the algorithm as written out in the book. We iterate until the $\nabla f = 0$. We find a step size for our directional derivative: $x_{k+1} = x_k + \alpha_k p_k$. The goal here is to find a good α and directional derivative p_k . Rather than using residuals: r = Ax - b we use the gradient $\frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k}$.

2.2 BFGS

For BFGS we are using a optimization that avoids finding the Hessian of the function. We have to initially guess what the Hessian approximation H_0 . I used the identity matrix. We compute a search direction $p_k = -H_k \nabla f_k$. Then we do an update $x_{k+1} = x_k + \alpha_k p_k$. Then we use the secant equation. We are trying to avoid recomputing the Hessian matrix, so we use information about the previous iteration and update a reasonable value.

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k s_k y_k^T) + \rho_k s_k y_k^T$$

2.3 SR1

This algorithm works by a rank 1 update: $B_{k+1} = B_k + \sigma V V^T$. Where v are usually new vectors that the algorithm is optimizing. Using the secant equation we end up with the formula:

$$B_{k+1} = B_k + \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{(s_k - H_k y_k)^T s_k}$$

For the steps in the algorithm we use the formula used in the book. A region trust method is employed that solves for the best vector within a trust region: δ_k . Then based on this value the algorithm employs a series of logical steps to update x_k, δ_k, B_k .

Figure 1: In this method $H_0 = I + 10^3$ with alpha set constant rather than using a line search. Possible problems with the algorithm is search direction. It should not be moving up the gradient.

Figure 2: In this conjugate gradient I used a line search to find the step size. Very wrong search direction. The search direction changed directions with initial $H_0 = 100$, $H_0 = 1000$. I saw both initial settings moving the up the gradient rather than down.

Figure 3: BFGS looked promising for a few iterations, then fails miserably, making a huge jump into the gradient. This is due to an error somewhere in the search direction because the H seems to be well behaved.

Figure 4: BFGS this clearly shows a problem with the search direction. I haven't been able to find why this jump is happening. The algorithm uses $x_{k+1} = x_k + \alpha p$ to update x then even with forced small alpha the p jumps into enormous steps ruining any chance of optimal behavior. p is updated by H and gradient.

Figure 5: This algorithm has so many parameters I'm not sure what to say is causing a failure.

Figure 6: With this starting point, maybe it is marching towards a minimum, but it should do so quickly as this uses a trust region, and the step size should be updated to become larger.