

Nalaiya Thiran

executed by

Industry-specific intelligent fire management system

Project ID: PNT2022TMID50097

Team Lead: Sneha K

Team Members: Thanalakshmi M

Ramya R

Santhiya V

CONTENTS

Title	Page Number
1. INTRODUCTION	

a. Project Overview	4
b. Purpose	4
2. LITERATURE SURVEY	
a. Existing problem	5
b. References	5
c. Problem Statement Definition	6
3. IDEATION & PROPOSED SOLUTION	
a. Empathy Map Canvas	7
b. Ideation & Brainstorming	8
c. Proposed Solution	9
d. Problem Solution fit	10
4. REQUIREMENT ANALYSIS	
a. Functional requirement	11
b. Non-Functional requirements	11
5. PROJECT DESIGN	
a. Data Flow Diagrams	13
b. Solution & Technical Architecture	14
c. User Stories	15
6. PROJECT PLANNING & SCHEDULING	

a. Sprint Planning & Estimation	15
b. Sprint Delivery Schedule	16
c. Reports from JIRA	17
7. CODING & SOLUTIONING	
a. Feature 1	18
b. Feature 2	20
8. TESTING	

a. Test Cases	21
b. User Acceptance Testing	22
9. RESULTS	
a. Performance Metrics	23
10.ADVANTAGES & DISADVANTAGES	24
11.CONCLUSION	24
12.FUTURE SCOPE	24
13.APPENDIX	
Source Code	25
GitHub & Project Demo Link	25

1.INTRODUCTION

1.1 Project Overview

- The smart fire management system includes a Gas sensor, Flame sensor and temperature sensors to detect any changes in the environment.
- Based on the temperature readings and if any Gases are present the exhaust fans are powered ON.
- If any flame is detected the sprinklers will be switched on automatically. Emergency alerts are notified to the authorities and Fire station.

1.2 Purpose

The purpose of the system is:

To prevent life losses, assests damage and uncontrollable spread of fire. ● To
ensure the safety of workers and alert the manager and fire department. ● To not to
recklessly endanger the life of the fire workers. This can be done by taking the
control measures automatically.

2.LITERATURE SURVEY

2.1 Existing problem

The existing problems of the system are:

• Cost of ownership: The fire management system should be cost effective. In

- average, the fire management is expected to last 10 years. The biggest problem is when the system cannont be maintained any longer due to component non-avaliability or due to being unsupported by the manufacturer.
- <u>Structural changes</u>: The structure of the hospital changes over time. The fire
 management system should be easily able to upgrade and adaptable to the
 changing structure.
- Evaculation and fire stratergy: The alert and the control measures are taken immediately, so that the building can be completely evaculated.
- System performance changes within specific environments: The industry will
 have unique or specified condition at some time. The major problem caused is
 the false fire alarm.

2.2 References

- [1] Gazi weldesyase, Bahta G/meskel, Mekonen Abreha, Solomon Baynes, "GSM Based Fire and Smoke Detection and Prevention System", on 08/10/2010, Adigrat, Tigray, Ethiopia. [2] May Zaw Tun, Htay Myint, "Arduino based Fire Detection and Alarm System Using Smoke Sensor", Volume 6, Issue 4, on April 2020, Myanmar.
- [3] Nitin Galugade, Mahesh Jakka, Devika Nair, Madhur Gawas, "Fire Monitoring and Controlling System based on Iot", 2020, Mumbai, India.

2.3 Problem Statement Definition

Background: Fire is the rapid oxidation of a material in the exothermic chemical process of combustion, releasing heat, light and various reaction products. Although it's a natural process, it can lead to great destruction. On average, everyday 35 people killed due to Fire-related accidents in the five years between 2016 and 2020, according to a report by Accidental Deaths and Suicides in India (ADSI), maintained by the National Crime Records Bureau. Fire is one of the major concerns when analyzing the potential risks on the building. Industrial Fires and Explosions cost companies and governments billions of Rupees every year apart from the loss of life, which can't be described in monetary terms. These Fires not only results only in huge loss of Lives and Property but also disrupt production in the Industry. The Nilflisk says that the five major causes of industrial fires and explosions are Combustible dust, hot works, Flammable liquids and gasses, equipment and machinery and Electrical hazards.

<u>Objective</u>: The objective of this Industry-Specific Intelligent Fire Management System is to detect any changes in environment like detecting hazardous gas, flame detection and temperature that can lead to fire and exploitation incident. Based on the temperature readings and if any Gasses are present the exhaust fans should be

powered ON automatically to replace contaminated and stale air with fresh, healthy air. If any flame is detected the sprinklers will be switched on automatically. Emergency alerts are notified to the authorities and Fire station. So that the authorities and Fire Fighters can control the situation.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.No. Parameter		er Description	
1.	Problem Statement (Problem to be solved)	this system can perform different parameter measurements early detection of building fires	

2.	Idea / Solution description	This fire alarm system incorporates the heat and flame detector that are connected in parallel. The microcontroller is used as the heart of this fire alarm system that controls the entire operation involved. The fire alarm system is capable to locate and identified the place that is in fire where by its monitored using the monitoring system.
3.	Novelty / Uniqueness	In this paper, the installed Arduino device which was programmed with Android Studio receives gas smoke ,the temperature and humidity signal from the sensors . The sensor is connected to the input of the arduino with the help of connecting the cables or jumper cables . Further the circuit goes toward output where the buzzer is connected. If we differ the value of the buzzer then we get a variation in the buzzer sound.
4.	Social Impact / Customer Satisfaction	This product has huge social impact as presentation of the industry workers from fire related accidents.Prevention of the industry fire accident can also increases the industrial financial status
5.	Business Model (Revenue Model)	This product can be utilized by a industries .This can be thought of as a productive and helpful item as industries great many current rescuing people and machine from the fire accident
6.	Scalability of the Solution	It is trying to execute this technique as we need to introduce an arduino gadget which was modified with an arduino studio that takes received signals from sensors. This recognizes the fire from each area in turn assuming there is fire in other area the framework can not distinguish. So this item will be introduced in each required area independently.

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

binding contracts.

efficiently. Running any production is difficult and fire can result in you losing customers as they will go elsowhere and may never come back, as well as creating a reputation for not being able to deliver against legally

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User visibility	Emergency alerts via Fast SMS.

FR-2	User reception	The data like amount of gas levels, smoke content and temperature are received via SMS.
FR-3	User Understanding	Based on the data, the user understands that if any of the data is above the threshold value, then there is a fire burst.
FR-4	User action	In case of fire bursts, the user needs to take actions like find the best escape route, evacuate the workers and take necessary actions to control the fire.

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description	
NFR-1	Usability	It ought to have the option to caution inhabitants of the structure the utilization of every perceptible and apparent alert.	
NFR-2	Security	It ought to be utilized to guarantee the insurance of both important properties, as well as human existence.	
NFR-3	Reliability	It might have a capacity to recognize the smoke accurately and doesn't give a false caution or signal.	

NFR-4 **Performance** It ought to have Programmed fire sprinklers combined with identification which distinguishes the flames, yet in addition smother the flames in the

underlying stage itself.		
NFR-5	Availability	It could be accessible for day in and day out hours so it tends to be useful for individuals.

NFR-6	Scalability	The sensors and boards utilized in this framework ought to have the option to effortlessly change overhaul concurring to change and need in requirements
-------	-------------	--

5 PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.

 Provide specifications according to which the solution is defined, managed, and delivered

Fig. Solution Architecture of Industry-Specific Intelligent Fire Management System

5.3 User Stories

User Type	Functional Requiremen: (Epic)	User Story Number	Jser Story / Task	Acceptance criteria	Priority	Release
Cusiomor (Mobile user)	Registratio-	USA-1	As a user, I can download the application	I ran view the data sent by the hardware.	High	Sprint-3
Customer (Web user)	Registration	USN-1	As a user, I can view the application web page	I can view the data sent by the hardware.	High	Sprint-3
Customer (: \ata t ₂ pes)	Data viewing	USN-1	As a user, I can view Temperature readings	Data by the hardware	High	Sprint-1
		USN-2	As a user, I can view level of gas content	Data by the hardware	High	Sprint-1
		USN-3	As a user, I can view if any flame is detected.	Data by the hardware	High	Sprint-1
Customer	Actions	USN-1	As a user, I will have exhaust fan on and off button	Based on temperature and level of gas content data, actions are taken by the user	Medium	Sprint-2
		USN-2	As a user, I will have sprinkler on and off button	Based on the fla-ne detected data, actions are taken by the user.	Medium	Sprint-2
Administrator	Storage	USN-1	As an administrator, I will store the data in Cloud database	All the data are stored in cloud database.	High	Sprint-4

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / ras 2	Story Points	Priority	Team Members
Sp.int-1		US-1	Create t is IBt. Cloud services which are being used in this project.	6	High	Indhumathi K,Hariharan C,Athira V R
Sprint-1		US-2	Configure the IBM Cloud scrylory which are being used in completing this project.	4	Medium	Indhumathi K,Hariharan S,Athira V R
Sprint-1		US-3	IBM Watson lo" platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	5	Medium	K,Hariharan S,Athira V R
Sprint-1		US-4	In order to connect the IoT device to the IBM cloud, create a device in the IBM Watson IoT planorm and get the device credentials	5	High	Indhumathi K,Hariharan S,Athira V R
Sprint-2		US-1	Configure the connection security and create API keys that are used in the Node-RED service for accessing the IBM JoT Platform.	10	High	Indhumathi K,Hariharan S
Sprint-2		US-2	Create a -lode-RED service.	10	High	Afrira ' / R, ArunRaj G
Sprint-3		US-1	Develop a python script to publish random sensor data such as temperature, Flame level and Gas level to the IBM IoT platform	7	High	Indhumathi K,Hariharan S,Athira V R,Arun Raj G

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3		US-2	After developing python code, commands are received just print the statements which represent the control of the devices.	5	Medium	Indhumathi K,Hariharan S,Athira V R,Arun Raj G
Sprint-3		US-3	Publish Data To The IBM Cloud	8	High	Indhumathi K,Hariharan S,Athira V R
Sprint-4		US-1	Create Web UI in Node- Red	10	High	Indhumathi K,Hariharan S,Athira V R
Sprint-4		US-2	Configure the Node-RED flow to receive data from the IBM loT platform and also use Cloudant DB nodes to store the received sensor data in the cloudant DB	10	High	Indhumathi K,Hariharan S,Athira V R,Arun Raj G

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart: (4 Marks;

Sprint	Total Story Poli 6s	Dur_tion	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (2s on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

6.3 Reports from JIRA

https://pnt2022tmid47460.atlassian.net/jira/software/projects/ISIFMS2/boards/2/roadmap

7. CODING & SOLUTIONING

7.1 Feature 1

7.2 Feature 2

8.2 User Acceptance Testing

Purpose of Document: The purpose of this document is to briefly explain the test coverage and open issues of the Industry-specific intelligent fire management system project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

	_
Section	Pass 7
Print the Sensor values	_51
Client Mobile Application	2
Security	_

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Severity 1	Severity 2	Severity 3	Severity 4
10	4	2	3
1	0	3	0
2	3	0	1
11	2	4	20
0	0	1	0
0	0	1	1
0	0	0	1

Totals 24 14 13 26 70 **Test Case Analysis**

This report shows the number of test cases that have passed, failed, and untested

3	0	0
9	0	0
4	0	0

Outsource Shipping 3 Exception Reporting 9 Final Report Output 4

Version Control 2 0 0 2

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

The Advantages of this Industry-Specific Intelligent Fire Managment system are as follows

- The user need not require expertise knowlege to control this system. This system is simple. The user can easily view the sensor values and take control actions. The control actions are taken automatically.
- If it is implemented in hardware, then the cost of implemention will be affordable.
 As we are sensing the sensor values continously, any slight change in the environment is detected
- This system is in User-Friendly format.

The Disadvantage of this Industry-Specific Intelligent Fire Managment system are as follows • This system will not be able to detect the orgin of fire.

• This system will not provide the escape route if there is fire outbreak. • If the industry has specific changes in the environment, then this system will gives false alarm.

11.CONCLUSION

An understanding and having Fire Managment system in the industry is of utmost importance. This project is a fire management system that can be user in the industry based on IOT. This system creates a simulation device cedentials in IBM WATSON IOT PLATFORM. In node red, necessary nodes are installed and used. These nodes are installed and used. These nodes are deployed and the data is collected. In the event of fire, this system can issue sprinkler on, exhaust fan on. This remote user monitoring system can monitor the system status of each node in real time. This system monitors the data continuously so that the any slight change in the environment can be easily detected. This ensures good control accracy. This Industry-Specific Intelligent Fire Managment ensures the protection of property, asset and the processes are cost effective and the automatic measures are in control.

12.FUTURE SCOPE

The future scope of this project is to add additional featureslike triggering the extinguisher automatically, predict the escape route if the fire outbreaks and to implement this system in real time using hardware.

13.APPENDIX

Source Code

https://github.com/IBM-EPBL/IBM-Project-5300-

1658756270/tree/main/Develop%20a%20Python%20

Script

GitHub & Project Demo Link

https://github.com/IBM-EPBL/IBM-Project-5300-1658756270