

基础绘图 - 网络韦恩图

网址: https://www.xiantao.love

更新时间: 2023.10.15

目录

基本概念		 			3
应用场景		 			3
结果解读		 			4
数据格式		 			5
参数说明		 			6
连线		 			6
节点		 			7
标注		 			8
标题		 			
风格		 			
图片		 			1C
结果说明		 			11
主要结果		 			11
方法学	/	 		A.17	12
如何引用	. .	 	Mr		13
常见问题					

基本概念

网络韦恩图:用<mark>节点</mark>和<mark>连线</mark>构成的网络来展示多组间的交集情况。

▶ 图形构成

示意图

应用场景

通过网络图的形式展示数据间的交集和非交集部分。

结果解读

对角线连接

▶ 以上部分展示了可以选择的连线类型情况。

数据格式

- 4	А	В	С
1	TK-1	TK-2	TK-3
2	dot_1	dot_1	dot_1
3	dot_2	dot_2	dot_2
4	dot_3	dot_3	dot_3
5	dot_4	dot_4	dot_4
6	dot_6	dot_6	dot_6
7	dot_8	dot_8	dot_8
8	dot_261	dot_261	dot_261
9	dot_262	dot_262	dot_262
10	dot_263	dot_263	dot_263
11	dot_264	dot_264	dot_264
12	dot_265	dot_265	dot_265
13	dot_266	dot_266	dot_266
14	dot_267	dot_267	dot_267
15	dot_268	dot_268	dot_268
16	dot_269	dot_269	dot_269
17	dot_9	dot_9	dot_12
10	dot 10 ₃⊞ ⊕	dat 10	dat 16

数据要求:

- ▶ 数据表格带列名。
- ▶ 表中第一行表示分组名,每列是不同分组的组成元素内容。
 - 列名不能为空,不能重复,不能含有 <&> <`> 等字符
 - 列名不可为 x, y, name, .ggraph.orig_index, circular, .ggraph.index, allnode, is_group
- ▶ 上传的数据不可与列名相同
- ➤ 至少2列数据,每列至少1个观测(即至少1行数据),最多支持6列和50 行数据
 - 数据中不能含有其他非法字符
 - 上传数据必须是分类类型或数值类型
 - 数据中不可含有 Inf
- ➤ 若验证数据时返回报错,需要在上传数据内进行相应的调整,然后再上传数据。

参数说明

(说明:标注了颜色的为常用参数。)

连线

▶ 连线样式:不同的连线样式呈现不同的展示效果,默认为对角线连接,还可以选择直线,弧形,圆滑弯曲,直角弯曲,蜂巢

▶ 颜色:连线的颜色,也是分组颜色(每一列为一个分组)

> 线条类型: 默认是实线, 也可以选择虚线类型

▶ 线条粗细:连线的粗细,默认是 0.75pt

▶ 不透明度: 默认是1,1为不透明,0为完全透明

节点

▶ 大小比例:点的大小,默认为1

▶ 不透明度: 节点的不透明度, 默认是 0.8, 1 为不透明, 0 为完全透明

标注

- 类型选择:是否需要标注节点信息。可选择不标注、标注全部节点、标注 下面特定节点,默认为不标注。
- ▶ 特定节点: 当上一个参数选择了"标注下面特定节点"时,将根据此参数输入的节点名称在图上进行标注,一行一个。注意节点名称是否与上传数据的名称保持一致!
- ▶ 标注大小:控制图中需标注的文字大小,默认为 6pt。

标题

▶ 标题: 大标题内容

▶ 底部标题:底部标题内容

》 文字大小:图中的文字部分的大小(包括标题和分组名称),默认是7pt

图片

▶ 宽度: 图片横向长度,单位为 cm

▶ 高度:图片纵向长度,单位为 cm

▶ 字体:可以选择图片中文字的字体

结果说明

主要结果

主要结果格式为图片格式,提供 PDF、TIFF 格式下载。

d	Α	В	С	D	E	F	G	Н
1	Only TK-1	Only TK-2	Only TK-3	TK-1 AND TK	TK-1 AND TK	TK-2 AND TK	TK-1 AND TK-	2 AND TK-3
2	dot_14	dot_97	dot_16	dot_9	dot_12	dot_76	dot_1	
3	dot_20	dot_110	dot_130	dot_10	dot_17	dot_75	dot_2	
4	dot_33	dot_98	dot_154	dot_11	dot_18	dot_91	dot_3	
5	dot_28	dot_99	dot_140	dot_13	dot_19	dot_104	dot_4	
6	dot_25	dot_103	dot_150	dot_15		dot_96	dot_6	
7	dot_22	dot_108	dot_145				dot_8	
8	dot_58	dot_107	dot_157				dot_261	
9	dot_54	dot_116	dot_143				dot_262	
10	dot_56	dot_115	dot_147				dot_263	
11	dot_59	dot_120	dot_151				dot_264	
12	dot_60	dot_124	dot_155				dot_265	
13	dot_61	dot_133	dot_149				dot_266	
14	dot_67	dot_156	dot_158				dot_267	
15	dot_65	dot_132	dot_173				dot_268	
16	dot_63	dot_138	dot_167				dot_269	
17	dot_64	dot_141	dot_182					
18	dot_69		dot_195					
19								

▶ 另外,提供交集情况表格 xlsx 下载。

方法学

统计分析和可视化均在R 4.2.1 版本中进行

涉及的 R 包: igraph, ggraph, ggplot2

处理过程: 清洗整理数据后进行网络韦恩图可视化

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 交集的结果不准确(与其他数据库结果不符)?

答:模块对所有字符以及空格都敏感,需要好好检查自己的数据。

2. 我有超过6组的数据需要分析和可视化,有什么解决方案?

答:

一般网络韦恩图是比较适合展示 2-6 组的数据,如果超过 6 组是不建议用网络韦恩图展示的(每个交集和特有的部分特别多,不好展示),可以考虑用基础绘图中的 UpSet 图模块或者 花瓣图模块来进行可视化。

