Глава 7.

Задача 1. Последовательность (0,1,0,0,1,1,0,0,0,1,1,1) над полем GF(2).

Таблица построена программно (Task1).

r	S	Δ	B(x)	$\Lambda(x)$	L
0	-	0	1	1	0
1	0	0	x^1	x^0	0
2	1	1	x^0	$x^0 + x^2$	2
3	0	0	x^1	$x^0 + x^2$	2
4	0	1	x^2	x^0	2
5	1	1	x^0	$x^0 + x^3$	3
6	1	1	x^1	$x^0 + x^1 + x^3$	3
7	0	1	$x^0 + x^1 + x^3$	$x^0 + x^1 + x^2 + x^3$	4
8	0	0	$x^1 + x^2 + x^4$	$x^0 + x^1 + x^2 + x^3$	4
9	0	1	$x^0 + x^1 + x^2 + x^3$	$x^0 + x^1 + x^5$	5
10	1	0	$x^1 + x^2 + x^3 + x^4$	$x^0 + x^1 + x^5$	5
11	1	1	$x^0 + x^1 + x^5$	$x^0 + x^1 + x^2 + x^3 + x^4$	6
12	1	1	$x^1 + x^2 + x^6$	$x^0 + x^3 + x^4 + x^6$	6

Схема генератора:

Продлим последовательность еще на 10 символов (последовательность построена программно (Task1)):

(0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0)

Задача 6.

Все вычисления произведены программно (Task6).

Двоичный БЧХ-код длины n=31, исправляющий 3 ошибки должен иметь расстояние не меньше d=7. Пусть полином $p(x)=x^5+x^3+1$.

$C_0 = \{0\}$
$C_1 = \{1, 2, 4, 8, 16\}$
$C_3 = \{3, 6, 12, 24, 17\}$
$C_5 = \{5, 10, 20, 9, 18\}$
$C_7 = \{7, 14, 28, 25, 19\}$
$C_{11} = \{11, 22, 13, 26, 21\}$
$C_{15} = \{15, 30, 29, 27, 23\}$

$-\infty$	0	00000
0	1	00001
1	x	00010
2	χ^2	00100
3	χ^3	01000
4	χ^4	10000
5	$1 + x^2$	00101
6	$x + x^3$	01010
7	$x^2 + x^4$ $1 + x^2 + x^3$	10100
8	$1 + x^2 + x^3$	01101
9	$x + x^3 + x^4$ $1 + x^4$	11010
10	$1 + x^4$	10001
11	$ \begin{array}{r} 1 + x + x^2 \\ x + x^2 + x^3 \\ x^2 + x^3 + x^4 \\ 1 + x^2 + x^3 + x^4 \end{array} $	00111
12	$x + x^2 + x^3$	01110
13	$x^2 + x^3 + x^4$	11100
14	$1 + x^2 + x^3 + x^4$	11101
15	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	11111
16		11011
17	$1 \perp v \perp v^4$	10011
18	1 + x	00011
19	$x + x^2$	00110
20	$ \begin{array}{c} 1 + x \\ x + x^2 \\ x^2 + x^3 \\ x^3 + x^4 \\ 1 + x^2 + x^4 \end{array} $	01100
21	$x^3 + x^4$	11000
22	$1 + x^2 + x^4$	10101
23	$1 + x + x^{2} + x^{3}$	01111
24	$x + x^2 + x^3 + x^4$	11110
25	$ \begin{array}{c} x + x^2 + x^3 + x^4 \\ 1 + x^3 + x^4 \end{array} $	11001
26	$1 + x + x^2 + x^4$	10111
27	$1 + x + x^3$	01011
28	$x + x^2 + x^4$	10110
29	$\frac{1+x^3}{1+x^3}$	01001
30	$x + x^4$	10010

Порождающий полином $g(x)=M_1(x)M_3(x)M_5(x)=\prod_{j\in C_1}(x-a^j)\prod_{j\in C_3}(x-a^j)\prod_{j\in C_5}(x-a^j)=1+x^4+x^5+x^6+x^7+x^8+x^{10}+x^{12}+x^{13}+x^{14}+x^{15}$ Кодовое слово $c(x)=1+x^4+x^5+x^6+x^7+x^8+x^{10}+x^{12}+x^{13}+x^{14}+x^{15}$

Выход канала $v(x)=1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^{10}+x^{12}+x^{13}+x^{14}+x^{15}$

Синдромный многочлен $S(x) = a^{23} + a^{15}x + a^{22}x^2 + a^{30}x^3 + a^{24}x^4 + a^{13}x^5$

Система уравнений для коэффициентов многочлена локаторов ошибок

$$\begin{pmatrix} a^{23} & a^{15} & a^{22} \\ a^{15} & a^{22} & a^{30} \\ a^{22} & a^{30} & a^{24} \end{pmatrix} \begin{pmatrix} \Lambda_3 \\ \Lambda_2 \\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} a^{30} \\ a^{24} \\ a^{13} \end{pmatrix}$$

Многочлен локаторов ошибок $\Lambda(x) = 1 + a^{23}x + a^{25}x^2 + a^6x^3$

Локаторы ошибок a^3 , a^2 , a

Система уравнений для значений ошибок

$$\begin{pmatrix} a^3 & a^2 & a \\ a^6 & a^4 & a^2 \\ a^9 & a^6 & a^3 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} = \begin{pmatrix} a^{23} \\ a^{15} \\ a^{22} \end{pmatrix}$$

Значения ошибок a^0 , a^0 , a^0

Вектор ошибок $e(x) = x + x^2 + x^3$

$$v(x) = c(x) + e(x)$$

Декодирование с помощью алгоритма БМ:

r	S	Δ	B(x)	$\Lambda(x)$	L
0	_	0	1	1	0
1	a^{23}	a^{23}	a^8	$1 + a^{23}x$	1
2	a^{15}	0	a^8x	$1 + a^{23}x$	1
3	a^{22}	a^{29}	$a^2 + a^{25}x$	$1 + a^{23}x + a^6x^2$	2
4	a^{30}	0	$a^2x + a^{25}x^2$	$1 + a^{23}x + a^6x^2$	2
5	a^{24}	a^{12}	$a^{19} + a^{11}x + a^{25}x^2$	$1 + a^{23}x + a^{25}x^2 + a^6x^3$	3

Многочлен локатора ошибок полученный алгоритмом БМ совпадает с многочленом, полученным с помощью ПГЦ. Оставшейся часть алгоритма совпадает с ПГЦ, то есть получим v(x) = c(x) + e(x).