Due at the beginning of class on 11 February 2024

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: Read §2.2 in [Rie14] and §1.5 in [Mal23].

(1) Let $\mathcal C$ be a homotopical category, and let $\mathcal I$ be any category. The category Fun($\mathcal I$, $\mathcal C$) of functors from $\mathcal I$ to $\mathcal C$ becomes a homotopical category with weak equivalences defined object-wise. By choosing a homotopical category $\mathcal C$ and a category $\mathcal I$, show that the limit functor

lim:
$$\operatorname{Fun}(\mathfrak{I},\mathfrak{C}) \to \mathfrak{C}$$
, $\operatorname{\mathsf{F}} \mapsto \lim \operatorname{\mathsf{F}}$

is *not* a homotopical functor.

- (2) Let \mathcal{C} be a homotopical category. Prove that for any discrete (the only morphisms are identities) category \mathcal{I} with finitely many morphisms, $ho(\mathcal{C})^{\mathcal{I}}$ is equivalent to $ho(\mathcal{C}^{\mathcal{I}})$, where $\mathcal{C}^{\mathcal{I}}$ has weak equivalences defined pointwise. Prove that finite products in $ho(\mathcal{C})$ are homotopy products and finite coproducts in $ho(\mathcal{C})$ are homotopy coproducts.
- (3) A *coequalizer* is the colimit of a diagram of shape $\bullet \Rightarrow \bullet$ in a category.
 - (a) Prove that the data of the coequalizer of two parallel morphisms $A \xrightarrow{f \ g} B$ is equivalent to the data of the pushout of the diagram

$$A \stackrel{\nabla}{\longleftarrow} A \coprod A \stackrel{(f,g)}{\longrightarrow} B$$
,

where $\nabla \colon A \coprod A \to A$ is the fold map.

(b) Use part (a) to describe the homotopy coequalizer of two maps in the category Top of (unpointed) topological spaces¹.

REFERENCES

- [Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.
- [Rie14] Emily Riehl. *Categorical homotopy theory*, volume 24 of *New Mathematical Monographs*. Cambridge University Press, Cambridge, 2014.

¹To be precise, we assume all spaces are compactly generated and weakly Hausdorff.