Support Vector Machines

Uma breve introdução...

Tópicos da Aula

Introdução

SVM: Características

SVM: Intuição

Caso 1: Classificação de Dados Linearmente Separáveis

- Apresentação do Exemplo
- Dados Linearmente Separáveis
- Hiperplano, Margem e Margem Máxima
- Treinamento do SVM
- Classificação com o SVM

Caso 2: Classificação de Dados Não Lineares

- Método usado pelo SVM
- Funções Kernel
- Comentários Finais
- Bibliografia

Introdução (1/4)

SVM – Características

- Desenvolvido, em grande parte, na AT&T Bell
- Primeiro paper publicado em 1992.
 - Porém, possui raízes na "Teoria do Aprendizado Estatístico" (1960s)
- Grande acurácia em vários domínios.
- Menos sujeito ao problema de overfitting (superajuste)
- Pode ser utilizado para a classificação de dados lineares e não-lineares.
- Tempo de treinamento alto.
- Possui fundamentos teóricos sofisticados.

Introdução (2/4)

- **SVM: Intuição** [Ng, 2012]
 - Tuplas de classe e ○
 - Uma fronteira de decisão gerada por um algoritmo

Introdução(3/4)

- **SVM: Intuição** [Ng, 2012]
 - Confiança da Predição
 - Considere os pontos A e B

$$y \in \{0, \blacksquare\}$$

- A está muito distante da fronteira.
 - Se eu "arriscasse" uma predição para A, eu diria que é ■ com muita confiança.
- B está muito próximo da fronteira.
 - Se essa fronteira se modificar um pouco, talvez B deixe de ser ■.
- Ou seja: intuitivamente, temos muito mais confiança na predição de A do que de B.

Introdução (4/4)

- SVM: Intuição [Ng, 2012]
 - O SVM parte da seguinte ideia básica:
 - A partir de uma base de dados de treinamento, é interessante encontrar uma fronteira de decisão que nos permita fazer todas as predições corretamente e com grande confiança.

Caso 1: Dados Lineares (1/21)

- Base de Dados de Treinamento (D)
 - Premiação de um Campeonato de Futebol

advertências (X1)	gols (X2)	classe (y)
1	5	1
4	5	1
2	8	1
3	6	1
8	3	-1
7	4	-1
10	2	-1
10	5	-1
8	7	-1

- 2 atributos de entrada: X1 e X2
- N = 9
- $y \in \{-1, +1\}$
 - O SVM usa essa notação para y, ao invés de {0,1}

Caso 1: Dados Lineares (2/21)

- Diagrama de Dispersão do BD
 - Os exemplos pertencem a duas classes: (■ = +1, = -1)

Caso 1: Dados Lineares (3/21)

- Hiperplano Separador (1/2)
- Os dados dão linearmente separáveis.
 - Linha reta (hiperplano) pode ser desenhada de modo que todas as tuplas da classe +1 fiquem de um lado e as de classe -1 do outro.

Caso 1: Dados Lineares (4/21)

- Hiperplano Separador (2/2)
- De fato, infinitos
 hiperplanos separadores
 poderiam ser desenhados
 com erro de treinamento = 0
 - Porém, não há
 garantias de que a
 mesma performance
 se repetirá para
 novos exemplos.
 - O SVM deverá
 escolher um deles,
 baseado em quão
 bem funcionará para
 novos exemplos.

Caso 1: Dados Lineares (5/21)

- Margem (1/2)
 - O SVM toma a sua decisão baseado no conceito de margem.

- H1 é obtido movendo um hiperplano paralelo ao hiperplano separador até tocar no ■ mais próximo.
- De maneira análoga, obtém-se H2 para .
- margem = distância d entre H1 e H2.

Caso 1: Dados Lineares (6/21)

Margem (2/2)

- Recorde que existem infinitos hiperplanos separadores (diferentes margens)
- No exemplo abaixo, ambos os hiperplanos classificam corretamente todas as tuplas. Qual escolher?

Margem pequena

Margem grande

Caso 1: Dados Lineares (7/21)

- Hiperplano de Margem Máxima (Maximum Margin Hyperplane MMH)
 - O SVM procura o hiperplano de margem máxima.

Margem máxima (MMH)

- Da intuição apresentada no início da aula:
 - Confiança da predição é maior se a margem é maior.
 - Se margem é pequena, qualquer perturbação na fronteira de decisão pode ter impacto significante na classificação.
 - Fronteiras com margem pequena são mais suscetíveis ao superajuste.

Caso 1: Dados Lineares (8/21)

Porque MMH?

- Intuição.
- Resultados Empíricos
- Mais formalmente: Teoria do Aprendizado Estatístico
 - Structural Risk Minimization
 - Referências: [Burges 1998], [Smola & Scholkopf 1998]

Caso 1: Dados Lineares (9/21)

Classificador SVM Linear

Busca pelo hiperplano de margem máxima.

Equação do Hiperplano

 Um hiperplano separador pode ser escrito como:

$$WX + b = 0$$

- Onde:
 - **W** = {w1, w2, ..., wn} é um vetor de pesos
 - **b** é um escalar

(qualquer exemplo que satisfaça a equação cairá aqui)

Caso 1: Dados Lineares (10/21)

Equação do Hiperplano

 Em nosso caso temos dois atributos:

$$w1x1 + w2x2 + b = 0$$

 Qualquer ponto acima da fronteira satisfaz:

$$w1x1 + w2x2 + b > k$$
, $k > 0$

 Qualquer ponto à abaixo da fronteira satisfaz:

$$w1x1 + w2x2 + b < k', k' < 0$$

Caso 1: Dados Lineares (11/21)

Equação do Hiperplano

- Como:
- \blacksquare = label + 1; e
- \bigcirc = label -1.
- Podemos prever a classe y de qualquer exemplo de teste z fazendo:
- y = 1, se $wz + b \ge 0$
- y = -1, se wz + b < 0

Caso 1: Dados Lineares (12/21)

- Support Vectors (1/2)
 - Considere o e a destacados
 - Eles são os pontos mais próximos da fronteira de decisão.
 - Eles são chamados de support vectors (SV's).

• satisfaz:

$$w1x1 + w2x2 + b = k$$
, $k > 0$

• o satisfaz:

$$w1x1 + w2x2 + b = k'$$
, $k' < 0$

Caso 1: Dados Lineares (13/21)

Support Vectors (2/2)

• Podemos reescalar os parâmetros w e b de forma que 2 hiperplanos paralelos H1 e H2 sejam expressos na forma:

H1:
$$w1x1 + w2x2 + b \ge 1$$

H2:
$$w1x1 + w2x2 + b \le -1$$

- Qualquer tupla sobre ou acima de H1 pertence à classe +1
- Qualquer tupla sobre ou abaixo de H2 pertence à classe -1.

Caso 1: Dados Lineares (14/21)

- Margem Definida pelos SV's
- A margem (d) é dada pela distância entre H1 e H2 (cálculo vetorial)
 - A distância da fronteira para qualquer ponto em H1 é 1/||W||.
 - Idem para H2.
- Portanto o **tamanho** margem máxima é:

•
$$d = 2 / ||W||$$

||W|| = norma do vetor W.

$$||W|| = \sqrt{W \times W} = \sqrt{w1^2 + w2^2 + ... + wn^2}$$

Caso 1: Dados Lineares (15/21)

- Support Vector Machines
- Qual o objetivo do SVM?
 - Encontrar os SV's. Por consequência, encontrar o MMH

Caso 1: Dados Lineares (16/21)

- SVM: treinando o modelo (1/3)
 - Treinar o SVM, na verdade, envolve estimar os parâmetros w e b do modelo.
 - Eles devem ser escolhidos de modo que as seguintes duas condições sejam satisfeitas:

```
wxi + b \ge 1 se yi = 1

wxi + b \le -1 se yi = -1
```

- Relembrando que estamos no caso "linear":
 - As condições acima impõem como requisito que todas as instâncias de treino da classe y=+1 estejam acima do hiperplano wx + b = 1.
 - De maneira equivalente, para y=-1, abaixo do hiperplano wx+b=-1.

Caso 1: Dados Lineares (17/21)

- SVM: treinando o modelo (2/3)
 - As inequações:

$$wxi + b \ge 1$$
 se $yi = 1$
 $wxi + b \le -1$ se $yi = -1$

Podem ser reescritas como:

$$yi(wxi + b) \ge 1$$

- Seria fácil resolver, mas o SVM impõe um requisito adicional:
 - A margem deve ser máxima!
 - Maximizar a margem equivale a minimizar a função objetivo:

$$f(w) = ||w||^2 / 2$$

Caso 1: Dados Lineares (18/21)

- SVM: treinando o modelo (3/3)
 - Então, temos o problema definido:

```
Minimizar w ||\mathbf{w}||^2 / 2
s.a. \mathbf{yi}(\mathbf{wxi} + \mathbf{b}) \ge \mathbf{1}
```

- A função objetivo é quadrática e as restrições lineares em w e b:
 - PROBLEMA DE OTIMIZAÇÃO CONVEXO
 - Resolvido pelo método padrão: "multiplicador de Lagrange" (consulte [Ng, 2012], [Tan et al. 2006])

Caso 1: Dados Lineares (19/21)

- Classificando Novas Tuplas (1/2)
- Baseado na formulação Lagrangiana, a MMH pode ser reescrita como a fronteira de decisão:

$$d(z) = \sum_{i=1}^{l} yi \times \alpha i \times xi \times z + bo$$

- A partir desta fórmula podemos classificar novos objetos.
 - I: número de SV's
 - Para dados linearmente separáveis, os SV's são um subconjunto das tuplas de treino.
 - Observe que, no somatório, os SV's são as únicas tuplas da base de treinamento que são levadas em consideração.
 - yi: rótulo de classe do support SV xi
 - z: tupla de teste
 - ullet lphai e bo: parâmetros numéricos determinados pelo algoritmo SVM
 - αi são multiplicadores Lagrangianos

Caso 1: Dados Lineares (20/21)

- Classificando Novas Tuplas (2/2)
- Dada uma tupla de teste z , basta "pluga-la" na equação e observar o sinal do resultado.
 - Ele nos diz em que lado do hiperplano a tupla de teste "cai".
 - Se positivo, classe é +1
 - Se negativo, classe é -1

$$d(z) = \sum_{i=1}^{l} yi \times \alpha i \times xi \times z + bo$$

Caso 1: Dados Lineares (21/21)

Observações Finais

- SV's são as tuplas de treinamento essenciais
 - Se todas as outras tuplas fossem removidas e o treinamento repetido, o mesmo hiperplano separador seria encontrado.
 - Com isso, o SVM consegue definir um modelo de classificação baseado em pouquíssimos elementos do BD original.
- SVM realiza a classificação binária.
 - Para estendê-lo para a classificação multiclassse é possível utilizar algumas abordagens (consulte [Han et al., 2012], [Tan et al. 2006])

• Exemplo:

- Dadas m classes, treinar m classificadores binários (um para cada rótulo classe)
- Uma tupla de teste será associada ao maior valor positivo entre as previsões de todos os classificadores.

Caso 2: Dados Não-Lineares (1/8)

 O SVM pode ser estendido para o caso em que os dados possuem fronteira de decisão não linear.

Caso 2: Dados Não-Lineares (2/8)

- Resumidamente, utilizam-se os seguintes passos:
 - Passo 1: transformamos os dados de entrada originais para uma dimensão maior utilizando um mapeamento não linear.
 - Passo 2: procuramos por uma hiperplano separador linear no novo espaço.
- Novamente terminamos com um problema de otimização quadrático que pode ser resolvido usando a formulação linear do SVM.
- A MMH encontrada no novo espaço corresponde a uma hipersuperfície separadora não linear no espaço original.

Caso 2: Dados Não-Lineares (3/8)

- Transformação Não-Linear
 - Exemplo [Tan et al. 2006]
 - Equação da fronteira: $x^2 x^1 + x^{12} x^2 = -0.46$

- Uma transformação não linear ϕ é necessária para mapear os dados do espaço original para o novo espaço.
- Um exemplo seria:
 - $(x1,x2) \rightarrow (x1^2,x^2, 2x1^{1/2}, 2X2^{1/2}, 1)$

Caso 2: Dados Não-Lineares (4/8)

- Transformação Não-Linear
 - Potenciais Problemas
 - Problema 1: Como escolher o mapeamento? Como assegurar que, no novo espaço, haverá uma separação linear?
 - Problema 2: A transformação tem um custo caro! Tenho que aplicá-la para todas as instâncias de treino e de teste.
 - Observe que na fórmula para classificar um novo exemplo, existe um produto escalar entre 2 vetores no espaço transformado.

$$d(z) = \sum_{i=1}^{l} yi \times \alpha i \times \Phi(xi) \times \Phi(z) + bo$$

Caso 2: Dados Não-Lineares (5/8)

Função Kernel (1/3)

- A solução é usar o chamado kernel trick. A ideia é a seguinte:
 - Um produto escalar representa a medida de similaridade entre dois vetores.
 - O produto escalar no espaço transformado pode ser expresso como uma função de similaridade no espaço original:

$$K(x, z) = \Phi(x) \times \Phi(z) = (x \times z + 1)$$

Caso 2: Dados Não-Lineares (6/8)

- Função Kernel (2/3)
 - K é uma função kernel
 - Ela é computada no espaço original.
 - Deve ser uma função que satisfaça o Teorema de Mercer [Ng 2012]
 - Toda função que satisfaz esse teorema, garante que haverá uma separação linear no espaço de maior dimensão

$$K(x,z) = \Phi(x) \times \Phi(z) = (x \times z + 1)$$

Caso 2: Dados Não-Lineares (7/8)

- Função Kernel (3/3)
 - Alguns exemplos de função Kernel
 - Kernel polinomial de grau p

$$K(x, y) = (x \times y + 1)^p$$

Gaussian Radial Basis Function Kernel (RBF)

$$K(x,y) = e^{\frac{-\|x-y\|^2}{2\sigma^2}}$$

Sigmoid Kernel.

$$K(x, y) = \tanh(kx \times y - \delta)$$

Caso 2: Dados Não-Lineares (8/8)

Observações

- Cada função kernel resulta em um classificador não linear diferente no espaço de entrada original.
- Segundo [Han et al. 2012] n\u00e3o existem regras de ouro para determinar o melhor kernel (para SVM mais acurado).
 - Na prática, a diferença na acurácia costuma ser pequena.

Comentários Finais

Tópicos importantes para quem for trabalhar com o SVM

- Resolução do problema de otimização (para achar margem máxima)
- Teoria do Aprendizado Estatístico

Tópicos importantes não mostrados na apresentação

- Soft-Margin SVM [Tan et al. 2006]
- Algoritmo SMO [Ng 2012]

Temas de Pesquisa

- Melhorar a eficiência das fases de treinamento e teste.
- Determinar o melhor kernel para um dado dataset
- Encontrar métodos mais eficientes para o caso multiclasse.

Referências

Livros de Mineração de Dados:

- J. Han, M. Kamber, J. Pei (2012). "Data Mining: Concepts and Techniques", 3rd Ed.
- P. N. Tan, M. Stenbach e V. Kumar (2006). "An Introduction to Data Mining"
- I. W. Witten, E. Frank, M. A. Hall (2011). "Data Mining Practical Machine Learning Tools and Techniques", 3rd Ed.

Material Didático:

 Andrew Ng (2012), "CS229 Machine Learning Course Materials", disponível em http://cs229.stanford.edu/

Artigos:

- C. J. C. Burges (1998), "A Tutorial on Support Vector Machines for Pattern Recognition". Knowledge Discovery and Data Mining 2(2): 1-43.
- A. Smola e B. Scholkopf (1998). "A Tutorial on Support Vector Regression".
 Technical Report NC2-TR-1998-030, NeuroCOLT2.