## Soutenance – Thèse de master

Règles de réécriture dans le  $\lambda\Pi$ -calcul modulo théorie

Thomas Traversié

Encadrants: Valentin Blot et Gilles Dowek







## Qu'est ce qu'une preuve?

- Preuve écrite à la main
  - En apparence rigoureuse
  - Peut contenir des erreurs
  - Divers niveaux de fiabilité
- Preuve formelle
  - Formalisme mathématique
  - Basée sur des déductions logiques

## Vérification de preuves

#### **■ Vérification formelle**

- Vérifier automatiquement une preuve formelle
- Certification de résultats mathématiques (théorème des quatre couleurs) ou de systèmes critiques (métros automatiques)
- De nombreux systèmes de preuve









# Un système de preuve « universel »

- λΠ-calcul modulo théorie (aussi appelé Dedukti)
  - Cadre logique dans lequel on peut exprimer plusieurs théories
  - En particulier les théories d'autres systèmes
- Lambdapi
  - Assistant de preuve
  - Basé sur le  $\lambda\Pi$ -calcul modulo théorie

### Le $\lambda\Pi$ -calcul modulo théorie

 $\lambda$   $\lambda$ -calcul simplement typé

```
\begin{array}{lll} \text{nat}: \texttt{TYPE} & \texttt{0}: \texttt{nat} & \texttt{succ}: \texttt{nat} \rightarrow \texttt{nat} \\ & + : \texttt{nat} \rightarrow \texttt{nat} \rightarrow \texttt{nat} & \texttt{list}: \texttt{nat} \rightarrow \texttt{TYPE} \end{array}
```

**□** types dépendants

concat : 
$$\Pi x, y$$
 : nat. list  $x \to \text{list } y \to \text{list } (x + y)$ 

 $\mathcal{R}$  règles de réécriture  $\ell \hookrightarrow r$  $x + 0 \hookrightarrow x$ 

### Le $\lambda\Pi$ -calcul modulo théorie

- Théorie  $\mathcal{T} = (\Sigma, \mathcal{R})$ :

   Signature  $\Sigma = \{c_1 : A_1, \ldots, c_n : A_n\}$  Système de réécriture  $\mathcal{R} : \ell \hookrightarrow r$
- Conversion  $\equiv_{\beta \mathcal{R}}$  générée
  - par les règles  ${\cal R}$
  - par  $\beta$ -réduction ( $\lambda x : A. t$ )  $u \hookrightarrow t[x \mapsto u]$

Ex :  $(\lambda x : \text{nat. succ } x + x) = 0 \equiv_{\beta \mathcal{R}} \text{succ } 0 + 0 \equiv_{\beta \mathcal{R}} \text{succ } 0$ 

# Règles de typage

$$\frac{\Gamma \vdash A : \text{TYPE} \qquad \Gamma, x : A \vdash B : s \qquad \Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : \Pi x : A \cdot B} \text{ [ABS]}$$

$$\frac{\Gamma \vdash A : \text{TYPE} \qquad \Gamma, x : A \vdash B : s}{\Gamma \vdash \Pi x : A \cdot B : s} \text{ [PROD]} \qquad \frac{\Gamma \vdash t : \Pi x : A \cdot B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : u : B[x \mapsto u]} \text{ [APP]}$$

$$\frac{\Gamma \vdash t : A \qquad \vdash B : s}{\Gamma \vdash t : B} \text{ [CONV] } A \equiv_{\beta \mathcal{R}} B$$

## **Exemple:** entiers naturels et listes

$$\mathsf{nat}: \mathsf{TYPE} \qquad 0: \mathsf{nat} \qquad \mathsf{succ}: \mathsf{nat} \to \mathsf{nat} \qquad +: \mathsf{nat} \to \mathsf{nat} \qquad x + 0 \hookrightarrow x$$
 
$$x + \mathsf{succ} \ y \hookrightarrow \mathsf{succ} \ (x + y) \qquad \qquad \mathsf{list}: \mathsf{nat} \to \mathsf{TYPE} \qquad \mathsf{nil}: \mathsf{list} \ 0$$
 
$$\mathsf{isRev}: \mathsf{\Pi} x: \mathsf{nat}. \ \mathsf{list} \ x \to \mathsf{list} \ x \to \mathsf{TYPE} \qquad \mathsf{concat}: \mathsf{\Pi} x, y: \mathsf{nat}. \ \mathsf{list} \ x \to \mathsf{list} \ y \to \mathsf{list} \ (x + y)$$

- Si  $\ell$  : list (succ 0), on a concat (succ 0) 0  $\ell$  nil : list (succ 0 + 0)
- On a list (succ 0 + 0)  $\equiv_{\beta \mathcal{R}}$  list (succ 0)

#### **Contributions**

- 1. Implémentation de la théorie des ensembles dans le  $\lambda\Pi$ -calcul modulo théorie et dans LAMBDAPI (1A et 2A)
- 2. Preuve que des résultats prouvables dans le  $\lambda\Pi$ -calcul modulo théorie avec des règles de réécriture sont aussi prouvables avec des axiomes (3A)

# Partie 1:

Implémentation de la théorie des ensembles

### Théorie des ensembles

- Théorie de référence en mathématiques
  - « Paradis pour les mathématiciens » (Hilbert)
  - A la base de plusieurs systèmes de preuve (MIZAR, ISABELLE/ZF et ATELIER B)
- Définie par des axiomes
  - Extensionnalité : deux ensembles sont égaux s'ils ont les mêmes éléments
  - Paire : pour x, y deux ensembles, il existe un ensemble  $\{x, y\}$  qui contient x et y
  - Et d'autres

# Comment l'implémenter dans LAMBDAPI?

- Déclarer chaque axiome
  - → pas de propriété d'élimination des coupures X
- Déclarer une règle de réécriture à la place de chaque axiome
  - $\hookrightarrow$  pas de propriété d'élimination des coupures [Crabbé, 1974] imes
- **Exprimer** les ensembles avec une notion de graphes pointés [Dowek et Miquel, 2007]
  - → propriété d'élimination des coupures 
    ✓

### **Contributions**

- Implémentation de la théorie des ensembles avec graphes pointés dans LAMBDAPI
- Adaptation de la Déduction modulo au  $\lambda\Pi$ -calcul modulo théorie
- Passage de preuves à la main à des preuves formelles

# Théorie des graphes pointés

- Graphe pointé : graphe orienté avec une racine [Aczel, 1988]
- Interprétation dépend de la localisation de la racine



Racine en e ou  $g:\emptyset$ 

Racine en  $f:\{\emptyset\}$ 

Racine en  $d: \{\emptyset, \{\emptyset\}\}$ 

## Théorie des graphes pointés

Quelques graphes pointés :



Un même graphe peut représenter différents ensembles
 Un même ensemble peut être représentés par différents graphes

## Théorie des graphes pointés

#### Définitions

 $x \eta_a y$  arête de  $y \ a x$  dans le graphe pointé a change la racine du graphe pointé a comme étant le nœud x root(a) retourne la racine du graphe pointé a

## Règles de réécriture

$$x \eta_{a/z} y \hookrightarrow x \eta_a y$$
  
 $root(a/x) \hookrightarrow x$   
 $(a/x)/y \hookrightarrow a/y$ 

# Relations entre graphes pointés



Bisimilarité

$$a \simeq b \hookrightarrow \exists r, r \operatorname{root}(a) \operatorname{root}(b)$$

$$\land \forall x \forall x' \forall y (x' \eta_a x \land r x y \Rightarrow \exists y' (y' \eta_b y \land r x' y'))$$

$$\land \forall y \forall y' \forall x (y' \eta_b y \land r x y \Rightarrow \exists x' (x' \eta_a x \land r x' y'))$$

Appartenance

$$a \in b \hookrightarrow \exists x \ (x \ \eta_b \ {\sf root}(b) \ \land \ a \simeq (b/x))$$

### Constructions

- Pour chaque axiome de la théorie des ensembles, on a un constructeur défini par des règles de réécriture
- Paire :  $\forall a \ \forall b \ \exists c \ \forall x \ (x \in c \Leftrightarrow (x \simeq a \lor x \simeq b))$

Construction de  $c = \{a, b\}$ 



Nœuds  $a \neq$ nœuds de  $b \neq \alpha$ 

#### Constructions

■ Injections disjointes i, j telles que  $\alpha$  n'est pas dans leurs images



■ Paire :  $root({a,b}) \hookrightarrow \alpha$ 

$$x \eta_{\{a,b\}} x' \hookrightarrow (\exists y \exists y' \ (x = i(y) \land x' = i(y') \land y \ \eta_a \ y'))$$

$$\lor (\exists y \exists y' \ (x = j(y) \land x' = j(y') \land y \ \eta_b \ y'))$$

$$\lor (x = i(\mathsf{root}(a)) \land x' = \alpha)$$

$$\lor (x = j(\mathsf{root}(b)) \land x' = \alpha)$$

Constructions similaires pour les autres axiomes

# Graphes pointés et théorie des ensembles

- La théorie des graphes pointés valide les axiomes de la théorie des ensembles [Dowek et Miquel, 2007, preuves informelles]
- Chaque axiome est un théorème dans la théorie des graphes pointés
  - + Lemmes intermédiaires sur le structure des graphes pointés
  - = 53 lemmes nécessaires

```
Paire (lemma 43) : \forall x \ (x \in \{a,b\} \Leftrightarrow (x \simeq a \lor x \simeq b))
\hookrightarrow Lemme 36 : (\{a,b\}/i(\text{root}(a))) \simeq a
\hookrightarrow Lemme 37 : (\{a,b\}/j(\text{root}(b))) \simeq b
```

## Formalisation des preuves

- Compréhension :  $\forall b \exists c \ \forall a \ [a \in c \Leftrightarrow (a \in b \land P(x \leftarrow a))] \ (*)$
- Domaine des propositions restreint : (\*) P formule dans le langage  $\{\simeq, \in\}$  et avec des quantifications uniquement sur des graphes pointés
- $lue{}$  Classe de formules  $\xrightarrow{\text{interprétation}}$  classe des propositions
  - Formules : par induction
  - Interprétation : par des règles de réécriture

## **Implémentation**

- Implémentation dans LAMBDAPI : preuves formelles des 53 lemmes
- Plusieurs simplifications par rapport à la Déduction modulo
- Pour un utilisateur : importer les fichiers et utiliser les « axiomes » normalement
- Conjecture : propriété d'élimination des coupures

# Partie 2:

Remplacement des règles de réécriture par des axiomes

## Axiome ou réécriture?

■ Deux types de systèmes de preuve

#### **Avec axiomes**

$$x + succ y = succ (x + y)$$
  
 $x + 0 = x$   
On prouve  $2 + 2 = 4$ 

## Avec règles de réécriture

$$x + succ \ y \hookrightarrow succ \ (x + y)$$
  
 $x + 0 \hookrightarrow x$   
On calcule  $(2 + 2 = 4) \equiv (4 = 4)$ 

■ Un résultat démontrable avec règles de réécriture l'est-il aussi avec des axiomes ? Ex : Si on a  $\ell$  : list (2+2), on n'a (ou pas)  $\ell$  : list 4

## Méthode

- Remplacer chaque règle de réécriture  $\ell \hookrightarrow r$  par un axiome  $\ell = r$
- Remplacer chaque utilisation de la règle [Conv] pour passer de

$$t: A \ a \ t: B \ avec \ A \equiv_{\beta \mathcal{R}} B$$

par un transport pour passer de

$$t: A \text{ à transp } p \text{ } t: B \text{ avec } p: A = B$$

[Oury, 2005, Winterhalter et al., 2019]

### **Contributions**

- Formalisation d'une traduction d'un système avec règles de réécriture vers un système sans règles
- Définition de deux égalités
  - pour comparer des termes
  - pour comparer des types
- Construction d'une égalité p: A = B pour chaque conversion  $A \equiv_{\beta \mathcal{R}} B$

# **Encodage prélude**

- Encodage des notions de proposition et preuve [Blanqui et al., 2023]
- Univers des types Set : TYPE, injection El : Set → TYPE Ex : nat : Set, 0 : El nat
- Univers des propositions El o, injection Prf : El  $o \rightarrow TYPE$ Ex : isRev :  $\Pi x : El$  nat. El list  $x \rightarrow El$  list  $x \rightarrow El$  o
- **Proposition** *P* : *El o*, **preuve** de *P* de type *Prf P*

# **Encodage prélude**

- Signature  $\Sigma_{pre}$  contient Set, EI, o, Prf,  $\leadsto_d$ ,  $\Rightarrow_d$ ,  $\pi$ ,  $\forall$
- lacktriangle Règles de réécriture  $\mathcal{R}_{pre}$

$$El (x \leadsto_d y) \hookrightarrow \Pi z : El \ x. \ El \ (y \ z)$$

$$El (\pi \times y) \hookrightarrow \Pi z : Prf \ x. \ El \ (y \ z)$$

$$Prf (x \Rightarrow_d y) \hookrightarrow \Pi z : Prf \ x. \ Prf \ (y \ z)$$

$$Prf (\forall \times y) \hookrightarrow \Pi z : El \ x. \ Prf \ (y \ z)$$

# **Petits types**

■ Petits types : convertibles par  $\mathcal{R}_{pre}$  à des types de la forme

$$\mathcal{S} ::= \mathsf{Set} \mid \mathcal{S} \to \mathcal{S}$$
 
$$\mathcal{P} ::= \mathsf{Prf} \ \mathsf{a} \mid \mathcal{P} \to \mathcal{S} \mid \mathsf{\Pi} \mathsf{z} : \mathcal{S}. \ \mathcal{P}$$
 
$$\mathcal{E} ::= \mathsf{El} \ \mathsf{b} \mid \mathcal{E} \to \mathcal{S} \mid \mathsf{\Pi} \mathsf{z} : \mathcal{S}. \ \mathcal{E}$$

■  $Set \rightarrow (Set \rightarrow Set)$  ✓  $Prf \ a \rightarrow Prf \ b$  convertible à  $Prf \ (a \Rightarrow_d (\lambda z : Prf \ a. \ b))$  ✓  $Prf \ a \rightarrow Set \rightarrow Prf \ b$  X

# Théorie avec encodage prélude

- Théorie  $\mathcal{T} = (\Sigma, \mathcal{R})$  avec encodage prélude lorsque :
  - $-\; \Sigma = \Sigma_{\textit{pre}} \cup \Sigma_{\mathcal{T}}$
  - $\ \mathcal{R} = \mathcal{R}_{\textit{pre}} \cup \mathcal{R}_{\mathcal{T}}$
  - pour chaque  $c: A \in \Sigma_T$ , A est un petit type
  - pour chaque  $\ell \hookrightarrow r \in \mathcal{R}_{\mathcal{T}}$ , on a  $\ell : A$  et r : A avec A un petit type
- Contrainte en général respectée : théorie des ensembles, logique des prédicats, etc

# Égalité(s)

- lacktriangle Dans le  $\lambda\Pi$ -calcul modulo théorie, on a une hiérarchie entre
  - les termes u:A
  - − les types *A* : TYPE
- Deux égalités : une pour les termes, une pour les types

# Égalité entre termes

- Hétérogène : pour comparer des termes de types différents [McBride, 1999]
- Notation :  $u \mathrel{A} \approx_B v$  avec u : A, v : B, A : TYPE et B : TYPE
- Réflexive, symétrique, transitive
- Si les deux termes ont le même type, on a une égalité de Leibniz

$$\mathsf{leib}_{A}^{\mathsf{Prf}}: \Pi u, v : A. \ \Pi p : u \ _{A} \approx_{A} v. \ \Pi P : A \to \mathsf{El} \ o. \ \mathsf{Prf} \ (P \ u) \to \mathsf{Prf} \ (P \ v)$$

# Égalité entre petits types

- On ne peut pas définir d'égalité entre types dans le  $\lambda\Pi$ -calcul modulo théorie car TYPE  $\to$  TYPE n'est pas bien typé
- Égalité  $\kappa(A, B)$  entre **petits types** A et B

Prf 
$$a \approx Prf \ b \ X$$
 mais  $a \approx b \ \checkmark$   
El  $a \approx El \ b \ X$  mais  $a \approx b \ \checkmark$ 

# Égalité entre petits types

■ Extensionnalité fonctionnelle avec domaines différents

fun<sub>A<sub>1</sub>,A<sub>2</sub>,B<sub>1</sub>,B<sub>2</sub></sub> : 
$$\Pi f_1 : (\Pi x : A_1. B_1). \Pi f_2 : (\Pi y : A_2. B_2). \kappa(A_1, A_2)$$
  
  $\rightarrow (\Pi x : A_1. \Pi y : A_2. x \approx y \rightarrow f_1 x \approx f_2 y)$   
  $\rightarrow f_1 \approx f_2$ 

# Remplacement des règles par des axiomes

■ Pour toute règle  $\ell \hookrightarrow r \in \mathcal{R}_{\mathcal{T}}$  (avec  $\ell, r : A$  et les variables libres  $x_1 : B_1, \ldots, x_n : B_n$ ), on prend l'axiome

$$\operatorname{eq}_{\ell r}: \Pi x_1: B_1. \ldots \Pi x_n: B_n. \ \ell_A \approx_A r$$

■ Pour chaque conversion  $A \equiv_{\beta \mathcal{R}} B$ , on doit construire une égalité  $p : \kappa(A, B)$ 

## Typage de la conversion

- On explicite  $A \equiv_{\beta \mathcal{R}} B$  en introduisant son typage
  - Règles de base :  $\mathcal{R}$  et  $\beta$ -réduction
  - Règles pour la réflexivité, symétrie, transitivité
  - Règles de clôture (application, abstraction, produit)
- $p : \kappa(A, B)$  est construite grâce au typage de  $A \equiv_{\beta \mathcal{R}} B$

## **Transports**

■ Soit t : A et  $p : \kappa(A, B)$  avec A et B des petits types.

Il existe transp tel que :

- transp p t : B
- transp  $p t _{B} \approx_{A} t$

■ Idée : au lieu de convertir un terme, on lui applique un transport

#### **Traduction des termes**

■ Relation  $\bar{t} \triangleleft t$  («  $\bar{t}$  est une traduction de t ») définie par

$$\frac{\bar{t} \triangleleft t}{c \triangleleft c} \qquad \frac{\bar{t} \triangleleft t}{(\lambda x : \bar{t}. \ \bar{u}) \triangleleft (\lambda x : t. \ u)} \qquad \frac{\bar{t} \triangleleft t}{(\Pi x : \bar{t}. \ \bar{u}) \triangleleft (\Pi x : t. \ u)}$$

$$\frac{\bar{t} \triangleleft t}{(\bar{t} \ \bar{u}) \triangleleft (t \ u)} \qquad \frac{\bar{t} \triangleleft t}{(\text{transp} \ p \ \bar{t}) \triangleleft t}$$

**Lemme** : si on a deux traductions  $\bar{t}$  et  $\bar{t}'$  de t, alors  $\bar{t} \approx \bar{t}'$ 

### Résultat

- Soit une théorie  $\mathcal{T} = (\Sigma, \mathcal{R})$  du  $\lambda\Pi$ -calcul modulo théorie telle que
  - $-\mathcal{T}$  est une théorie avec encodage prélude
  - avec des petits types
- lacktriangle Alors il existe une théorie  $\mathcal{T}^{ax}$  sans règles de réécriture  $\mathcal{R}_{\mathcal{T}}$  et avec axiomes d'égalité
- Telle que pour tout t: A dans  $\mathcal{T}$ , il existe  $\bar{t}: \bar{A}$  dans  $\mathcal{T}^{ax}$ , avec A et  $\bar{A}$  qui expriment la même idée

# **Conclusion**

#### **Conclusion**

- Deux contributions, un thème commun : le pouvoir des règles de réécriture
- Des travaux de recherches pratiques et théoriques
  - Formalisation de preuves faites à la main
  - Des questionnements sur le fondement des systèmes de preuve
- Deux articles

## **Perspectives**

- Implémentation du remplacement des règles de réécriture par des axiomes
   → Interopérabilité entre systèmes de preuves
- Interprétation d'une théorie dans une autre pour montrer des résultats de terminaison relative

#### Références

Aczel, P. (1988). *Non well-founded sets.* Center for the Study of Language and Information, Stanford.

BLANQUI, F., DOWEK, G., GRIENENBERGER, É., HONDET, G. et THIRÉ, F. (2023). A modular construction of type theories. *Logical Methods in Computer Science*, Volume 19, Issue 1.

CRABBÉ, M. (1974). Non-normalisation de la théorie de zermelo. Manuscript.

DOWEK, G. et MIQUEL, A. (2007). Cut elimination for zermelo set theory. Manuscript.

McBride, C. (1999). *Dependently Typed Functional Programs and their Proofs.* Thèse de doctorat, University of Edinburgh.

Oury, N. (2005). Extensionality in the Calculus of Constructions. *In* Hurd, J. et Melham, T., éditeurs: *Theorem Proving in Higher Order Logics*, pages 278–293, Berlin, Heidelberg. Springer Berlin Heidelberg.

WINTERHALTER, T., SOZEAU, M. et TABAREAU, N. (2019). Eliminating Reflection from Type Theory. *In CPP 2019 - 8th ACM SIGPLAN International Conference on Certified Programs and Proofs*, pages 91–103, Lisbonne, Portugal. ACM.