Corrigé type de l'Epreuve Finale de Compilation

Exercice N° 1 (5 points)

1-Spécification d'un analyseur lexical permettant de reconnaître une déclaration du langage C:

Exercice N° 2 (8 points)

Soit la grammaire $G=(\{a, b, c\}, \{S, E, F\}, S, \{S \rightarrow aEa / bEb / aFb / bFa , E \rightarrow c , F \rightarrow c \})$

1- G n'est pas LL(1) car il suffit de trouver une seule intersection de First non vide.

$$S \rightarrow aEa / bEb / aFb / bFa$$

First(bFa) = {b}

G n'est pas LL(2) car il suffit de trouver une seule intersection de First non vide.
 S → aEa / bEb / aFb / bFa

```
First<sub>2</sub>(aEa) = {ac}

First<sub>2</sub>(aFb) = {ac}

First<sub>2</sub>(bEb) = {bc}

First<sub>2</sub>(bFa) = {bc}
```

- Puisque G n'est pas LL(2) alors G n'est pas LL(2) forte

G est LL(3) car toutes les intersections deux à deux de tous les First sont vides.
 S → aEa / bEb / aFb / bFa

```
First<sub>3</sub>(aEa) = {aca}

First<sub>3</sub>(bEb) = {bcb}

First<sub>3</sub>(aFb) = {acb}

First<sub>3</sub>(bFa) = {bca}
```

G est LL(3) forte car toutes les intersections deux à deux de tous les First sont vides.
 S → aEa / bEb / aFb / bFa

	С	aca	bcb	acb	Bca
S		1	2	3	4
E	5				
F	6				

(2 points

	Pile	Entrée	Sortie	
	S#	acb#		0.5 poin
	aFb#	acb#	3	0.5 point
	Fb#	cb#		
1	cb#	cb#	6	á F B
1	b#	b#		
	#	#	succès	C

(1 point

Exercice N° 3 (7 points)

On considère la grammaire: $G=(\{a,b\}; \{S,A,B\}; S; \{S \rightarrow AaAb/BbBa; A \rightarrow \varepsilon; B \rightarrow \varepsilon \})$

1. Construction de la collection d'articles LR de G.

$$I_0 = \text{Fermeture } (\{[S' \rightarrow \bullet S, \#]\})$$

$$= \{[S' \rightarrow \bullet S, \#], [S \rightarrow \bullet AaAb, \#], [S \rightarrow \bullet BbBa, \#], [A \rightarrow \bullet, a], [B \rightarrow \bullet, b]\}$$

$$I_1 = \text{goto}(I_0, S) = \text{Fermeture } (\{[S' \rightarrow S \bullet, \#]\}) = \{[S' \rightarrow S \bullet, \#]\}$$

```
\begin{split} &I_2 = goto(I_0, A) = Fermeture \left( \{ [S \to A \bullet aAb, \#] \} \right) = \{ [S \to A \bullet aAb, \#] \} \\ &I_3 = goto(I_0, B) = Fermeture \left( \{ [S \to B \bullet bBa, \#] \} \right) = \{ [S \to B \bullet bBa, \#] \} \\ &I_4 = goto(I_2, a) = Fermeture \left( \{ [S \to Aa \bullet Ab, \#] \} \right) = \{ [S \to Aa \bullet Ab, \#], [A \to \bullet, b] \} \\ &I_5 = goto(I_3, b) = Fermeture \left( \{ [S \to Bb \bullet Ba, \#] \} \right) = \{ [S \to Bb \bullet Ba, \#], [B \to \bullet, a] \} \\ &I_6 = goto(I_4, A) = Fermeture \left( \{ [S \to AaA \bullet b, \#] \} \right) = \{ [S \to AaA \bullet b, \#] \} \\ &I_7 = goto(I_5, B) = Fermeture \left( \{ [S \to BbB \bullet a, \#] \} \right) = \{ [S \to BbB \bullet a, \#] \} \\ &I_8 = goto(I_6, b) = Fermeture \left( \{ [S \to AaAb \bullet, \#] \} \right) = \{ [S \to BbBa \bullet, \#] \} \\ &I_9 = goto(I_7, a) = Fermeture \left( \{ [S \to BbBa \bullet, \#] \} \right) = \{ [S \to BbBa \bullet, \#] \} \end{split}
```

- Construction de la TA LR de G.

	Action			Goto		
	a	b	#	S	A	В
0	r ₃	r ₄		1	2	3
1			Accept			
2	S 4					
3		S 5				
4		r ₃			6	
5	r ₄					7
6		S 8				
7	S 9					
8			r ₁			
9			r ₂			

2 points

2 points

- 2. Puisque, la TA LR de G est mono-definie alors G est LR. La difference entre les TA LR et SLR reside dans les reduction. En effet, les réductions dans TA LR sont associées aux entêtes, par contre elles sont associées à les tous les follows dans TA SLR. Examinons les articles [A→•, a] et [B→•, b] dans I₀, ils correspondent aux actions de réductions suivantes: Action(0,a)=r₃ et Action(0,b)=r₄ dans TA LR. Par contre, elles correspondent aux actions de conflits: Action(0,a)=r₃/r₄ et Action(0,b)=r₃/r₄ dans TA SLR, avec Follows(A) = Follows(B) = {a, b}. D'où G n'est pas SLR car sa TA presente un conflit.
- 3. Analyse du mot ab.

Pile	Entrée	Sortie
0	ab#	
2A0	ab#	3
4a2A0	b#	
6A4a 2A0	b#	3
8b 6A4a 2A0	#	
1S0	#	1
1S0	#	Accept

1 point