DATA WAREHOUSING

Hari Sundaram

hs1@illinois.edu

http://sundaram.cs.illinois.edu

adapted from slides by Jiawei Han and Kevin Chang

BASIC CONCEPTS

Data Cube and OLAP Usage Implementation Summary

Supports information processing by providing a solid platform of consolidated, historical data for analysis.

what is a data warehouse?

A decision support database that is maintained separately from the organization's operational database

66

A data warehouse is a subjectoriented, integrated, time-variant, and nonvolatile collection of data in support of management's decisionmaking process.

-JH Inmon

SUBJECT ORIENTED

Subjects: Organized around major subjects, such as customer, product

Decision Making: Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing

Simple and Concise: Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Obs	First, Hase	Last Same	CHURRY	Salary	JOD THE	Dogue
- 1	Allen	Kingdon	All	20,000	Select Rep. 81	190.0
2	Ann	Manualy	All	26.700	Select Rep. 1	2000.0
	Aicki	Piero	AU	35490	Grier Rep. M	3849.0
4	Alex	Roebuck	AU	300076	Selen Rep. 81	2007.0
	Arrondo	Underson	All I	21100	Select Play 8	27 W. 3
	Andrew	Country	All	2000	Select Rep. 1	2020.0
- 2	61	Leydon	All	20000	Selen Rep. I	2500 5
- 6	City	Pleased	AU	90495	Selen Pap. 8	2596.5
	BW	Megraffi	AU	2002	30% Fbp. II	73/3.5
10	Colorina	Hoperar Brane	All	200	Sec. Sep. 81	3000
11	Chirdre	Higgs	All	20:78	Salor, Rep. 8	2000.5
12	Check.	Gegrave	All	27115	Selen Rep. I	2711.5
18	C86	Terrores	AU	84.75	Sees Pep. 81	2770.5
14	Dent	Higher	All	300	Marc Rep. 81	MINE S
16	Dougland	Since	All	5035	Sales Rep. 1	2000 5
16	Edwin	Comber	All	80048	Selen Pep. 81	2504.5
-0	Fed	Hoard	All	30580	Selen Pep. IV	5006.0
10	Persons	Keeser'	All	20000	March Hop. 81	2000
10	Being	William	All	2000	Anni Rep. II	20010
36	Ferg	Holmster	All	20046	Seles Pep. IV	3264.0

INTEGRATED

Data Integration: Constructed by integrating multiple, heterogeneous data sources

relational databases, flat files, on-line transaction records

Data Preprocessing: Data cleaning and data integration techniques are applied.

Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources

E.g., Hotel price: currency, tax, breakfast covered, etc.

When data is moved to the warehouse, it is converted.

TIME HORIZON

Historical Perspective: The time horizon for the data warehouse is significantly longer than that of operational systems

Operational database: current value data

Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)

Time Related: Every key structure in the data warehouse

Contains an element of time, explicitly or implicitly

But the key of operational data may or may not contain "time element"

NON VOLATILE

Independence: A physically separate store of data transformed from the operational environment. Keep in high performance for both systems (OLTP vs. OLAP)

Static Status: Operational update of data does not occur in the data warehouse environment

Does not require transaction processing, recovery, and concurrency control mechanisms

Requires only two operations in data accessing: initial loading of data and access of data

OLAP vs. OLTP

OLAP vs. OLTP

Feature	OLTP	OLAP	
Characteristic	operational processing	informational processing	
Orientation	transaction	analysis	
User	clerk, DBA, database professional	knowledge worker (e.g., manager, executive, analyst)	
Function	day-to-day operations	long-term informational requirements decision support	
DB design	ER-based, application-oriented	star/snowflake, subject-oriented	
Data	current, guaranteed up-to-date	historic, accuracy maintained over time	
Summarization	primitive, highly detailed	summarized, consolidated	
View	detailed, flat relational	summarized, multidimensional	
Unit of work	short, simple transaction	complex query	
Access	read/write	mostly read	
Focus	data in	information out	
Operations	index/hash on primary key	lots of scans	
Number of records accessed	tens	millions	
Number of users	thousands	hundreds	
DB size	GB to high-order GB	\geq TB	
Priority	high performance, high availability	high flexibility, end-user autonomy	
Metric	transaction throughput	query throughput, response time	

WHY THE SEPARATION?

High performance for both systems

DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery

Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation

Different functions and different data:

missing data: Decision support requires historical data which operational DBs do not typically maintain

data consolidation: Decision support requires consolidation (aggregation, summarization) of data from heterogeneous sources

data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled

Note: Increasingly, systems perform OLAP analysis directly on relational databases

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decision-making process.

WAREHOUSE SUMMARY

OLAP vs. OLTP

DAA GUBE AND OLAP

Basic Concepts Usage Implementation Summary

item (types)

FROM SPREADSHEETS TO DATA CUBES

A data warehouse is based on a multidimensional data model which views data in the form of a data cube

A data cube is a multidimensional generalization of data spreadsheet.

A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions

Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables

Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)

data cube

A data cuboid is a subset of data cube.

CONCEPTUAL MODELS

star schema

Star schema: A fact table in the middle connected to a set of dimension tables

Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake

Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

star schema

fact constellation

two fact tables share dimensions

location

concept hierarchy

Exercise!

sum

median

5,6,8,10,3,7,11

average

count(a+b+c) = count(a+b) + count(c)

sum: (3 + 4 + 5) = ((3+4) + 5) = (3+(4+5))

distributive measure

if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning

Exercise!

sum

median

5,6,8,10,3,7,11

average

distributively calculated

distributively calculated

average(x) = sum(x) / count(x)

bounded number of arguments

algebraic

if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function

median, mode

holistic

not distributive, not algebraic

If there is no constant bound on the storage size needed to describe a sub-aggregate.

min

max

standard deviation

5,6,8,10,3,7,11

882 Chicago 1087 968 746 Vancouver (925) 1002 789 Q1 605 825 14 400 ime (quarters) 984 870 Q2 680 952 31 512 Q3 812 1023 30 501 Q4 927 580 1038 computer security home phone entertainment item (types)

TYPICAL OLAP OPERATIONS

Roll up (drill-up): summarize data

by climbing up hierarchy or by dimension reduction

Drill down (roll down): reverse of roll-up

from higher level summary to lower level summary or detailed data, or introducing new dimensions

Slice and dice: selection on one and multiple dimensions, respectively.

Pivot (rotate):

reorient the cube, visualization, 3D to series of 2D planes

Other operations

drill across: involving (across) more than one fact table

drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

browsing a data cube

Visualization

OLAP capabilities

Interactive manipulation

Understanding how incremental updates work in a datacube

Exercise!

Suppose we need to record two measures in a datacube: **min** and **average**.

Design an efficient computation and storage method for each measure given that the cube allows data to be deleted incrementally (i.e., in small portions at a time) from the cube.

Solution

Solution Exercise!

For **min**, keep the **min_val**, **count**> pair for each cuboid to register the smallest value and its count.

For each deleted tuple, if its value is greater than **min_val**, do nothing.

Otherwise, decrement the count of the corresponding node. If a count goes to zero, recalculate the structure.

Solution Exercise!

For **average**, keep a pair **<sum**, **count>** for each cuboid.

For each deleted tuple with value=N, decrement the count and subtract N from the sum, and average = sum/count.

A data warehouse is based on a multidimensional data model which views data in the form of a data cube

SUMMARY

all country Canada ... USA province or_state British Columbia ... Ontario New York ... Illinois city Vancouver ... Victorial Toronto ... Ottawa New York ... Buffalo Chicago ... Urbana

concept hierarchy are essential

Fact and Dimension tables

star, snowflake and galaxy schemas

distributive, algebraic and holistic measures

min, average, median

basic cube operations roll up, drill down, slice, pivot, dice

WAREHOUSE USAGE

Basic Concepts Data Cube and OLAP Implementation Summary

USAGE

Information processing

supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs

Analytical processing

multidimensional analysis of data warehouse data

supports basic OLAP operations, slice-dice, drilling, pivoting

Data mining

knowledge discovery from hidden patterns

supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

Basic Concepts Data Cube and OLAP Usage Summary

how many cuboids?

to see why $T = \prod_{i=1}^{T} (L_i + 1)$

$$T = \prod_{i=1}^{n} (L_i + 1)$$

what is a challenge here?

$$T = \prod_{i=1}^{n} (L_i + 1)$$

CUBE MATERIALIZATION

all location item time supplier item, suppliertime, supplier time, item 🔿 O location, time, location itém, location supplier time, location, supplier time, item, location 🖔 time, item, supplier item, location, supplier time, item, location, supplier

Options:

Full: materialize every cuboid

None: no materialization

Partial: partial materialization

Selection of which cuboids to materialize

Based on size, sharing, access frequency, etc.

(all) (item) (year) (city) (item, year) (city, item) (city, year) (city, item, year)

COMPUTE CUBE OPERATOR

Cube definition and computation in DMQL

```
define cube sales [item, city, year]: sum
(sales_in_dollars)
```

compute cube sales

Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.'96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year

Need compute the following Group-Bys

```
(date, product, customer),
```

(date,product),(date, customer), (product, customer),

(date), (product), (customer)

()

(all) (item) (year) (city) (city, item) (item, year) (city, year) (city, item, year)

EFFICIENT OLAP QUERIES

Determine which operations should be performed on the available cuboids

Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice = selection + projection

Determine which materialized cuboid(s) should be selected for OLAP op.

Let the query to be processed be on {brand, province_or_state} with the condition "year = 2004", and there are 4 materialized cuboids available:

- I) {year, item_name, city}
- 2) {year, brand, country}
- 3) {year, brand, province_or_state}
- 4) {item_name, province_or_state} where year = 2004

Which should be selected to process the query?

Explore indexing structures and compressed vs. dense array structs in MOLAP

Understanding how querying works in a datacube

Exercise!

Starting with the base cuboid [date, spectator, location, game], what specific OLAP operations should one perform in order to list the total charge paid by student spectators at location GM_Place in year 2010?

SOLUTION

Roll-up on **date** from date_id to year

Roll-up on **game** from game_id to all.

Roll-up on **location** from location_id to location_name

Roll-up on **spectator** from spectator_id to status

Dice with **status** = "students", location_name = "GM_Place", and year = 2010.

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decision-making process.

Efficient Data Cube calculations

Full, partial, no materialization

cube operator

(all)

Fact and Dimension tables

star, snowflake and galaxy schemas

distributive, algebraic and holistic measures

