Order Statistics

Order Statistics

- ▶ Given a set of n numbers $\{a_1,...,a_n\}$ and an integer i∈ $\{1,...,n\}$. Find out the i-th smallest number in $\{a_1,...,a_n\}$.
- Input: $\{a_1,...,a_n\}$ and i
- Output: the i-th smallest number
- ▶ Sample Input: {0,3,5,7,1,2,1,2,1}, i=5
- Sample Output: 2

Order Statistics

- ▶ Static version: the set will not change
 - ▶ Special case: $\Theta(n)$ if i=1 or i=n
 - \blacktriangleright Randomized partition: $\Theta(n)$ (Expected)
 - \blacktriangleright Deterministic divide and conquer: $\Theta(n)$
- Dynamic: the set will change
 - Using Augmented BST (see Chap. 14)
 - Insert / Delete / Select in O(logn)

Special Case

- ▶ Finding the minimum (i=1)
 - minIndex=1
 for j = 2 to n do
 if aminIndex>aj then minIndex=j
- ▶ Finding the maximum (i=n)

```
maxIndex=1
for j = 2 to n do
   if a<sub>maxIndex</sub><a<sub>j</sub> then maxIndex=j
```

Order Statistic: Randomized Partition

- Recall the partition method in quick sort
 - ▶ Input: A[1..n]
 - Reorder A and find m such that
 - For $1 \le j < m < k \le m$, $A[j] \le A[m] \le A[k]$.
- If m=i, then we are done.
- ▶ If m<i, then compute the (i−m)-th smallest element in A[m+1..n].
- ▶ If m>i, then compute the i-th smallest element in A[1..m−1].

Randomized Partition

Time Complexity: Worst Case

 $T(n)=\Theta(n)$... i=m► $T(n)=max_{1 \le m \le n}T(m-1)+\Theta(n)$... i < m $T(n)=\max_{1\leq m\leq n}T(n-m)+\Theta(n)...i>m$ • Goal: $T(n) = \Theta(n^2)$ • Lower bound: $\Omega(n^2)$ m=1<i=n $T(n) \ge T(n-1) + \Theta(n)$ $\geq T(n-2)+\Theta(n-1)+\Theta(n)$ ≥... $\geq \Theta(1+2+...+n)=\Theta(n^2)$

Time Complexity: Worst Case

- ▶ Upper bound: O(n²)
 - ▶ Guess: $T(n) \le cn^2$
 - ► $T(n) \le \max(T(n-m), T(m-1)) + \Theta(n)$ $\le c(n-m)^2 + c(m-1)^2 + \Theta(n)$ $\le c(n-1)^2 + \Theta(n)$ $\le cn^2 - 2cn + c + c'n$ $= cn^2 - (2cn - c - c'n)$ $\le cn^2$... picking c≥c' and n≥1

Time Complexity: Average Case

- $T(n)=\Theta(n)$... i=m
- $T(n)=\max_{1\leq m\leq n}T(m-1)+\Theta(n)\ldots i< m$
- $T(n)=\max_{1\leq m\leq n}T(n-m)+\Theta(n)...i>m$
- Goal: $E[T(n)] = \Theta(n)$
- Lower bound: $\Omega(n)$
 - \rightarrow E[T(n)] \geq E[Θ (n)]= Θ (n)

Time Complexity: Average Case

- ▶ Upper bound: O(n²)
- Guess: E[T(n)]≤cn
- $$\begin{split} & \hspace{-0.2cm} \blacktriangleright E[T(n)] \hspace{-0.2cm} \leq \hspace{-0.2cm} E[\max(T(n-m),T(m-1))] + \Theta(n) \\ & \hspace{-0.2cm} \leq \hspace{-0.2cm} c'n + E[T(\max(n-m,m-1))] \\ & \hspace{-0.2cm} = \hspace{-0.2cm} c'n + \Sigma_{1 \leq k \leq n} Pr[m = \hspace{-0.2cm} = \hspace{-0.2cm} k]T(\max(n-k,k-1)) \\ & \hspace{-0.2cm} \leq \hspace{-0.2cm} c'n + (c/n) \Sigma_{1 \leq k \leq n} \max(n-k,k-1) \\ & \hspace{-0.2cm} \leq \hspace{-0.2cm} c'n + (2c/n) \Sigma_{|n/2| \leq k \leq n} k \end{split}$$

Note: T(n) is monotonic!

Time Complexity: Average Case

$$E[T(n)]
≤c'n+(2c/n)Σ[n/2]≤k≤nk
≤c'n+(3/4)cn+c
≤cn-(cn/4-c-c'n) pick c,n, s.t. c≥4c/n+4c'
≤cn$$

$$\sum_{k=\lfloor \frac{n}{2} \rfloor}^{n} k = \lceil \frac{n}{2} \rceil \frac{\lfloor \frac{n}{2} \rfloor + n}{2} \le \frac{3n(n+1)}{8} \le \frac{3n^2}{8} + \frac{n}{2}$$

Divide and Conquer

- Termination: sort the input and output the i-th smallest element if n≤60
- Divide Phase 1:
 - ▶ Divide A into $B_1,...,B_{\lceil n/5 \rceil}$
 - ► $B_j = \{A[k]: 5j-4 \le k \le min(5j,n)\}$ Θ(n)
 - ▶ Compute C[j]: median of B_j $\Theta(n)$???
- Conquer Phase 1:
 - Compute p: median of C[1..[n/5]] T([n/5])

Divide and Conquer

- Divide Phase 2:
 - Compute m by partition with pivot p $\Theta(n)$
- Conquer Phase 2:
 - If m=i, then we are done. $\Theta(1)$
 - ▶ If m<i, then compute the (i-m)-th smallest element in A[m+1..n]. T(7n/10+2)?
 - ▶ If m>i, then compute the i-th smallest element in A[1..m−1]. T(7n/10)?
- ▶ Combine: The result of previous step

Divide: Phase 1

Divide: Phase 1

B_1 $A[1]$	B_2 $A[6]$	B ₃ (A[11])	B ₄ (A[16])	B ₅ (A[21])	B ₆ (A[26])	B ₇ (A[31])	B ₈ (A[36])
(A[2])	(A[7])	(A[12])	(A[17])	(A[22])	(A[27])	(A[32])	(A[37])
(A[3])	(A[8])	(A[13])	(A[18])	(A[23])	(A[28])	(A[33])	(A[38])
(A[4])	(A[9])	(A[14])	(A[19])	(A[24])	(A[29])	(A[34])	(A[39])
(A[5])	(A[10])	(A[15])	(A[20])	(A[25])	(A[30])	(A[35])	

Divide: Phase 1

Conquer: Phase 1

Numbers ≤ p

$$m \ge 3 \left\lceil \frac{\left\lceil \frac{n}{5} \right\rceil}{2} \right\rceil \ge \frac{3n}{10}$$

$$n - m \le n - \frac{3n}{10} \le \frac{7n}{10}$$

Numbers ≥ p

$$n - m + 1 \ge 3 \left\lceil \frac{\left\lceil \frac{n}{5} \right\rceil}{2} \right\rceil - 2 \ge \frac{3n}{10} - 2$$
$$m - 1 \le n - \frac{3n}{10} + 2 \le \frac{7n}{10} + 2$$

The analysis is different from the one in the textbook! Time Complexity

- Goal: $T(n)=T(\lceil n/5 \rceil)+T(k)+\Theta(n)=\Theta(n)$ where k is the size of subproblem 2.
- ▶ Lower bound: trivial
- ▶ Upper bound: Assume T(n)≤cn

```
T(n)≤c[n/5]+c(7n/10+2)+c'n

≤c(9n/10)+3c+c'n

=cn-(cn/10-3c-c'n)

≤cn ... c≥30c/n+10c'≥c/2+10c' (n≥60)
```

Note: T(n) is monotonic!

Example

$\frac{B_1}{22}$	$\frac{B_2}{33}$	B ₃ (66)	$ \begin{array}{c} B_4 \\ \hline 21 \end{array} $	B ₅ (10)	B ₆ (77)	B ₇
(12)	55	62	52	40	44	
(13)	18	26)	77	13	90	30
46	19	71	73	96	68	
41	39	42	38	99	(12)	

Note: Iteratively in $\Theta(n)$

Compute C[j]

$\begin{pmatrix} B_1 \\ 22 \end{pmatrix}$	$\frac{B_2}{33}$	$\binom{B_3}{66}$	$ \begin{array}{c} B_4 \\ \hline 21 \end{array} $	B_5 10	$ \begin{array}{c} B_6 \\ \hline 77 \end{array} $	B ₇
	55					
(13)	18	26	77	13	90	30
46	19	71	73	96	68	
41	39	42	38	99	12	

Note: Recursively in $T(\lceil n/5 \rceil)$

Find Median of C[j]'s

$\frac{B_1}{22}$	$ \begin{array}{c} B_2 \\ \hline 33 \end{array} $	B ₃ (66)	$ \begin{array}{c} B_4 \\ \hline 21 \end{array} $	B ₅ (10)	B ₆ (77)	B ₇
12	55	62	52	40	44	
(13)	18	26	77	(13)	90	30
46	19	71	73	96	68	
41	39	42	38	99	(12)	

Partition with p

Conquer Subproblem 2

Recursively in T(7n/10) if i<m

Done if i=m

Recursively in T(7n/10+2) if i>m