

ADAPTATION D'UN DISPOSITIF OCULAIRE DESTINÉ A LA COMMUNICATION ALTERNATIVE ET AUGMENTÉE SUR UNE RASPBERRY PI

Enora Daniel

Soutenance de stage de 4^e année

Informatique et Electronique des Systèmes Embarqués (IESE)

SOMMAIRE

- Introduction
- Environnement de travail
- Présentation du sujet de stage
- Missions du stage
- Conclusion

INTRODUCTION

Enseignant référant : Nathalie Guyader

Tuteur de stage : Didier Schwab

Environnement de travail

* Equipe projet commune INRIA

118/95217 - Www. lights.ly - Hewiter 2021

Environnement de travail

PRÉSENTATION DU SUJET DE STAGE

Contexte du stage

La Communication Alternative et Augmentée (CAA)

Les eye-trackers dans la CAA

Contexte du stage

GazePlay

Jeu du labyrinthe

Problématique

À quel point peut-on adapter un dispositif oculaire destiné à la Communication Alternative et Augmentée sur une Raspberry Pi?

Objectifs du stage

- 1) Inventorier les différents eye-trackers/caméras déjà existants sur le marché pouvant être utiles au projet GazePlay.
- Rechercher si une solution existe pour faire fonctionner un appareil dédié sur la carte Raspberry Pi.
- 3) Tester un programme de suivi oculaire en Python sur la carte Raspberry Pi.

Organisation du travail

Outils à ma disposition

MISSIONS DU STAGE

Les oculomètres (Eye-trackers)

le reflet cornéen

OpenCV

électrodes

Les oculomètres (Eye-trackers)

Étude des moyens pour adapter un appareil dédié à une Raspberry Pi

Adaptation à la Raspberry Pi de programmes (en python) de capture du regard par caméra

Adaptation à la Raspberry Pi de programmes (en python) de capture du regard par caméra

•

MULTITHREADING

Programme python final

Fonctionnement:

- Multithreading
- Calibration
- 11 classes
- Environ 50 % du programme initiale

<u>Limites du programme :</u>

- Lent
- Peu de précision
- Bora

Conclusion

- Limite de la carte Raspberry Pi en CAA
- GazePlay
- Approfondissement connaissances en OpenCv / Python
- Eye trackers
- Gestion du temps de travail / Autonomie
- IESE

+

0

MERCI

Enora Daniel