Machine-Level Programming II: Control

15-213: Introduction to Computer Systems 6th Lecture, Sep. 17, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

Today

- **■** Control: Condition codes
- **■** Conditional branches
- Loops
- **Switch Statements**

Processor State (x86-64, Partial)

- Information about currently executing program
 - Temporary data (%rax,...)
 - Location of runtime stack
 (%rsp)
 - Location of current code control point (%rip, ...)
 - Status of recent tests (CF, ZF, SF, OF)

Current stack top

Registers

%rax	%r8
%rbx	%r9
%rcx	%r10
%rdx	%r11
%rsi	%r12
%rdi	%r13
%rsp	%r14
%rbp	%r15

%rip

Instruction pointer

Condition codes

Condition Codes (Implicit Setting)

Single bit registers

```
CF Carry Flag (for unsigned)SF Sign Flag (for signed)
```

Zero FlagOF Overflow Flag (for signed)

■ Implicitly set (think of it as side effect) by arithmetic operations

Example: addq $Src, Dest \leftrightarrow t = a+b$

CF set if carry out from most significant bit (unsigned overflow)

ZF set if t == 0

SF set if t < 0 (as signed)

OF set if two's-complement (signed) overflow

$$(a>0 \&\& b>0 \&\& t<0) || (a<0 \&\& b<0 \&\& t>=0)$$

Not set by leaq instruction

Condition Codes (Explicit Setting: Compare)

Explicit Setting by Compare Instruction

- mpq Src2, Src1
- ■cmpq b, a like computing a-b without setting destination
- •CF set if carry out from most significant bit (used for unsigned comparisons)
- •ZF set if a == b
- \blacksquare SF set if (a-b) < 0 (as signed)
- OF set if two's-complement (signed) overflow

```
(a>0 \&\& b<0 \&\& (a-b)<0) || (a<0 \&\& b>0 \&\& (a-b)>0)
```

Condition Codes (Explicit Setting: Test)

- Explicit Setting by Test instruction
 - testq Src2, Src1
 - testq b, a like computing a&b without setting destination
 - Sets condition codes based on value of Src1 & Src2
 - Useful to have one of the operands be a mask
 - **ZF set when** a&b == 0
 - ■SF set when a&b < 0

Reading Condition Codes

SetX Instructions

- Set low-order byte of destination to 0 or 1 based on combinations of condition codes
- Does not alter remaining 7 bytes

SetX	Condition	Description
sete	ZF	Equal / Zero
setne	~ZF	Not Equal / Not Zero
sets	SF	Negative
setns	~SF	Nonnegative
setg	~(SF^OF)&~ZF	Greater (Signed)
setge	~(SF^OF)	Greater or Equal (Signed)
setl	(SF^OF)	Less (Signed)
setle	(SF^OF) ZF	Less or Equal (Signed)
seta	~CF&~ZF	Above (unsigned)
setb	CF	Below (unsigned)

x86-64 Integer Registers

%rax %al	%r8	b
%rbx %bl	%r9	b
%rcx %cl	%r10 %r10)b
%rdx %dl	%r11 %r11	Lb
%rsi %sil	%r12 %r12	2b
%rdi %dil	%r13 %r13	3b
%rsp %spl	%r14 %r14	łb
%rbp %bpl	%r15	āb

Can reference low-order byte

Reading Condition Codes (Cont.)

SetX Instructions:

 Set single byte based on combination of condition codes

One of addressable byte registers

- Does not alter remaining bytes
- Typically use movzbl to finish job
 - 32-bit instructions also set upper 32 bits to 0

```
int gt (long x, long y)
{
  return x > y;
}
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

```
cmpq %rsi, %rdi # Compare x:y
setg %al | buller 31-bit of # Set when > set | byto to zero
movzbl %al, %eax # Zero rest of %rax
ret
```

Today

- **■** Control: Condition codes
- Conditional branches
- Loops
- **Switch Statements**

Jumping

■ jX Instructions

Jump to different part of code depending on condition codes

jX	Condition	Description
jmp	1	Unconditional
je	ZF	Equal / Zero
jne	~ZF	Not Equal / Not Zero
js	SF	Negative
jns	~SF	Nonnegative
jg	~(SF^OF)&~ZF	Greater (Signed)
jge	~(SF^OF)	Greater or Equal (Signed)
jl	(SF^OF)	Less (Signed)
jle	(SF^OF) ZF	Less or Equal (Signed)
jа	~CF&~ZF	Above (unsigned)
jb	CF	Below (unsigned)

Conditional Branch Example (Old Style)

Generation

```
shark> gcc -Og -S -fno-if-conversion control.c
```

```
long absdiff
  (long x, long y)
{
  long result;
  if (x > y)
    result = x-y;
  else
    result = y-x;
  return result;
}
```

```
absdiff:
         %rsi, %rdi # x:y
  cmpq
  jle
         . L4 ♯ ५५⊀
         %rdi, %rax 🗡
  movq
  subq
         %rsi, %rax √-√
  ret
.L4: \# x \le y
  movq
         %rsi, %rax
  subq
         %rdi, %rax
  ret
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

Expressing with Goto Code

- C allows goto statement
- Jump to position designated by label

```
long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}
```

```
long absdiff_j
  (long x, long y)
{
    long result;
    int ntest = x <= y;
    if (ntest) goto Else;
    result = x-y;
    goto Done;
Else:
    result = y-x;
Done:
    return result;
}</pre>
```

General Conditional Expression Translation (Using Branches)

C Code

```
val = Test ? Then_Expr : Else_Expr;
```

```
val = x>y ? x-y : y-x;
```

Goto Version

```
ntest = !Test;
if (ntest) goto Else;
val = Then_Expr;
goto Done;
Else:
  val = Else_Expr;
Done:
    . . .
```

- Create separate code regions for then & else expressions
- Execute appropriate one

Using Conditional Moves

Conditional Move Instructions

- Instruction supports:if (Test) Dest ← Src
- Supported in post-1995 x86 processors
- GCC tries to use them
 - But, only when known to be safe

■ Why?

- Branches are very disruptive to instruction flow through pipelines
- Conditional moves do not require control transfer

C Code

```
val = Test
? Then_Expr
: Else_Expr;
```

Goto Version

```
result = Then_Expr;
eval = Else_Expr;
nt = !Test;
if (nt) result = eval;
return result;
```

Conditional Move Example

```
long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

```
absdiff:
  movq %rdi, %rax # x
  subq %rsi, %rax # result = x-y
  movq %rsi, %rdx
  subq %rdi, %rdx # eval = y-x
  cmpq %rsi, %rdi # x:y
  cmovle %rdx, %rax # if <=, result = eval
  ret</pre>
```

Bad Cases for Conditional Move

Expensive Computations

```
val = Test(x) ? Hard1(x) : Hard2(x);
```

- Both values get computed
- Only makes sense when computations are very simple

Risky Computations

```
val = p ? *p : 0;
```

- Both values get computed
- May have undesirable effects

Computations with side effects

```
val = x > 0 ? x*=7 : x+=3;
```

- Both values get computed
- Must be side-effect free
 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today

- **■** Control: Condition codes
- **■** Conditional branches
- Loops
- **Switch Statements**

"Do-While" Loop Example

C Code

```
long pcount_do
  (unsigned long x) {
  long result = 0;
  do {
    result += x & 0x1;
    x >>= 1;
  } while (x);
  return result;
}
```

Goto Version

```
long pcount_goto
  (unsigned long x) {
  long result = 0;
  loop:
    result += x & 0x1;
    x >>= 1;
    if(x) goto loop;
    return result;
}
```

- Count number of 1's in argument x ("popcount")
- Use conditional branch to either continue looping or to exit loop

"Do-While" Loop Compilation

Goto Version

```
long pcount_goto
  (unsigned long x) {
  long result = 0;
  loop:
    result += x & 0x1;
    x >>= 1;
    if(x) goto loop;
    return result;
}
```

Register	Use(s)
%rdi	Argument x
%rax	result

General "Do-While" Translation

```
C Code

do

Body

while (Test);

Body: {
    Statement;
    Statement;
```

```
Goto Version
```

```
loop:
Body
if (Test)
goto loop
```

Statement,;

General "While" Translation #1

"Jump-to-middle" translation

Used with -Og

Goto Version

goto test;
loop:
Body

test:
if (Test)
goto loop;
done:

While Loop Example #1

C Code

```
long pcount_while
  (unsigned long x) {
  long result = 0;
  while (x) {
    result += x & 0x1;
    x >>= 1;
  }
  return result;
}
```

Jump to Middle

```
long pcount_goto_jtm
  (unsigned long x) {
  long result = 0;
  goto test;
  loop:
    result += x & 0x1;
    x >>= 1;
  test:
    if(x) goto loop;
    return result;
}
```

- Compare to do-while version of function
- Initial goto starts loop at test

General "While" Translation #2

While version

```
while (Test)
Body
```

- "Do-while" conversion
- Used with -01

Do-While Version

```
if (!Test)
    goto done;
    do
    Body
    while(Test);
done:
```

Goto Version

```
if (!Test)
    goto done;
loop:
    Body
    if (Test)
       goto loop;
done:
```

While Loop Example #2

C Code

```
long pcount_while
  (unsigned long x) {
  long result = 0;
  while (x) {
    result += x & 0x1;
    x >>= 1;
  }
  return result;
}
```

Do-While Version

```
long pcount_goto_dw
  (unsigned long x) {
  long result = 0;
  if (!x) goto done;
  loop:
    result += x & 0x1;
    x >>= 1;
    if(x) goto loop;
  done:
    return result;
}
```

- Compare to do-while version of function
- Initial conditional guards entrance to loop

"For" Loop Form

General Form

```
for (Init; Test; Update)

Body
```

```
#define WSIZE 8*sizeof(int)
long pcount for
  (unsigned long x)
  size t i;
  long result = 0;
  for (i = 0; i < WSIZE; i++)
    unsigned bit =
     (x >> i) & 0x1;
    result += bit;
  return result;
```

```
Init
```

```
i = 0
```

Test

```
i < WSIZE
```

Update

```
i++
```

Body

```
{
  unsigned bit =
    (x >> i) & 0x1;
  result += bit;
}
```

"For" Loop → While Loop

For Version

```
for (Init; Test; Update)

Body
```

While Version

```
Init;
while (Test) {
    Body
    Update;
}
```

For-While Conversion

```
Init

i = 0

Test

i < WSIZE

Update

i++
```

```
Body
{
  unsigned bit =
    (x >> i) & 0x1;
  result += bit;
}
```

```
long pcount for while
  (unsigned long x)
  size t i;
  long result = 0;
  i = 0;
 while (i < WSIZE)
    unsigned bit =
      (x >> i) & 0x1;
    result += bit;
    i++;
  return result;
```

"For" Loop Do-While Conversion

C Code

Goto Version

```
long pcount_for
  (unsigned long x)
{
  size_t i;
  long result = 0;
  for (i = 0; i < WSIZE; i++)
  {
    unsigned bit =
      (x >> i) & 0x1;
    result += bit;
  }
  return result;
}
```

Initial test can be optimized away

```
long prount for goto dw
  (unsigned long x) {
  size t i;
  long result = 0;
  i = 0:
                    Init
  if (L(i < WSFZE))
                     ! Test
   geto done,
 loop:
    unsigned bit =
      (x \gg i) & 0x1; Body
    result += bit;
  i++; Update
  if (i < WSIZE)
                  Test
    goto loop;
done:
  return result;
```

Today

- **■** Control: Condition codes
- Conditional branches
- Loops
- Switch Statements

```
long switch eg
   (long x, long y, long z)
    long w = 1;
    switch(x) {
    case 1:
        w = y*z;
        break;
    case 2:
        w = y/z;
        /* Fall Through */
    case 3:
        w += z;
        break;
    case 5:
    case 6:
        w = z;
        break:
    default:
        w = 2;
    return w;
```

Switch Statement Example

- Multiple case labels
 - Here: 5 & 6
- Fall through cases
 - Here: 2
- Missing cases
 - Here: 4

Jump Table Structure

Switch Form

Jump Table

Jump Targets

Targ0: Code Block 0

Targ1: Code Block
1

Targ2: Code Block 2

Translation (Extended C)

```
goto *JTab[x];
```

Targn-1: Code Block n-1

Switch Statement Example

```
long switch_eg(long x, long y, long z)
{
    long w = 1;
    switch(x) {
        . . .
    }
    return w;
}
```

Setup:

```
switch_eg:
    movq %rdx, %rcx
    cmpq $6, %rdi # x:6
    .L8 x 76 or x < 0
    jmp *.L4(,%rdi,8)</pre>
```

What range of values takes default?

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z
%rax	Return value

Note that **w** not initialized here

Switch Statement Example

```
long switch_eg(long x, long y, long z)
  {
       long w = 1;
       switch(x) {
                                                        Jump table
                                                         .section
                                                                    .rodata
                                                           .align 8
       return w;
                                                         .L4:
                                                                    .L8 \# x = 0
                                                           . quad
                                                           .quad .L3 # x = 1
.quad .L5 # x = 2
.quad .L9 # x = 3
.quad .L8 # x = 4
 Setup:
         switch eg:
                                                                    .L7 \# x = 5
                                                           . quad
              movq %rdx, %rcx
                                                                    .L7 \# x = 6
                                                           . quad
                       $6, %rdi # x:6
              cmpq
                        .L8
                                     # Use default
              jа
Indirect
                        *.L4(,%rdi,8) # goto *JTab[x]
              jmp
jump
```

Assembly Setup Explanation

- Table Structure
 - Each target requires 8 bytes
 - Base address at . L4
- Jumping
 - Direct: jmp .L8
 - Jump target is denoted by label . L8
 - Indirect: jmp *.L4(,%rdi,8)
 - Start of jump table: . L4
 - Must scale by factor of 8 (addresses are 8 bytes)
 - Fetch target from effective Address . L4 + x*8
 - Only for $0 \le x \le 6$

Jump table

```
.section
           .rodata
  .align 8
.L4:
           .L8 \# x = 0
  . quad
 .quad
          .L3 \# x = 1
 .quad
           .L5 \# x = 2
 .quad
           .L9 \# x = 3
 .quad
           .L8 \# x = 4
  .quad
           .L7 # x = 5
  . quad
           .L7 # x = 6
```

Jump Table

Jump table

```
.section .rodata
  .align 8
.L4:
  .quad    .L8 # x = 0
  .quad    .L3 # x = 1
  .quad    .L5 # x = 2
  .quad    .L9 # x = 3
  .quad    .L8 # x = 4
  .quad    .L7 # x = 5
  .quad    .L7 # x = 6
```

```
switch(x) {
case 1: // .L3
   w = y*z;
   break;
case 2: // .L5
   w = y/z;
   /* Fall Through */
case 3: // .L9
   w += z;
   break;
case 5:
case 6: // .L7
   w -= z;
   break;
default: // .L8
   w = 2;
```

Code Blocks (x == 1)

```
.L3:

movq %rsi, %rax # y

imulq %rdx, %rax # y*z

ret
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z
%rax	Return value

Handling Fall-Through

```
long w = 1;
switch(x) {
                               case 2:
                                  w = y/z;
case 2:
                                   goto merge;
   w = y/z;
    /* Fall Through */
case 3:
    w += z;
   break;
                                          case 3:
                                                  w = 1;
                                          merge:
                                                  w += z;
```

Code Blocks (x == 2, x == 3)

```
long w = 1;
    . . .
switch(x) {
    . . .
case 2:
    w = y/z;
    /* Fall Through */
case 3:
    w += z;
    break;
    . . .
}
```

```
.L5:
                    # Case 2
         %rsi, %rax
  movq
  cqto
  idivq
                # y/z
         %rcx
         .L6
                # goto merge
  jmp
.L9:
                    # Case 3
         $1, %eax
  movl
                    \# w = 1
.L6:
                    # merge:
        %rcx, %rax # w += z
  addq
  ret
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z
%rax	Return value

Code Blocks (x == 5, x == 6, default)

```
switch(x) {
    . . .
    case 5: // .L7
    case 6: // .L7
    w -= z;
    break;
    default: // .L8
    w = 2;
}
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z
%rax	Return value

Summarizing

- C Control
 - if-then-else
 - do-while
 - while, for
 - switch
- Assembler Control
 - Conditional jump
 - Conditional move
 - Indirect jump (via jump tables)
 - Compiler generates code sequence to implement more complex control
- Standard Techniques
 - Loops converted to do-while or jump-to-middle form
 - Large switch statements use jump tables
 - Sparse switch statements may use decision trees (if-elseif-else)

Summary

Today

- Control: Condition codes
- Conditional branches & conditional moves
- Loops
- Switch statements

Next Time

- Stack
- Call / return
- Procedure call discipline