AIRS Deconvolution *** DRAFT ***

H. Motteler, L. Strow, S. Hannon January 14, 2014

1 AIRS spectral response functions

The AIRS spectral response functions model instrument channel response as a function of frequency and associate channels with nominal center frequencies[1]. Each AIRS channel i has an associated spectral response function or SRF $\sigma_i(v)$ such that the channel radiance $c_i = \int \sigma_i(v) r(v) dv$. The center or peak of this function is the nominal channel frequency.

Suppose we have n channels and a frequency grid v of k points spanning the domains of the functions σ_i . The grid step size for our applications is often $0.0025~{\rm cm}^{-1}$, the kcarta[2] resolution. Let S_k be an $n\times k$ array such that $s_{i,j}=\sigma_i(v_j)/w_i$, where $w_i=\sum_j\sigma_i(v_j)$, that is where row i is $\sigma_i(v)$ tabulated at the grid v and normalized so the row sum is 1. If the channel centers are in increasing order S_k is banded, and if they are not too close the rows are linearly independent. S_k is a linear transform whose domain is radiance at the grid v, and whose range is channel radiances. If r is radiance at the grid v, then $c=S_k r$ gives a good approximation of the channel radiances $c_i=\int \sigma_i(v)r(v)\,dv$.

In practice this is how we convolve k carta or other simulated radiances to get AIRS channel radiances, and transmittances for our fast transmittance models [3]. We construct S_k either explicitly or implicitly from AIRS SRF tabulations. The matrix S_k in the former case is large but managable with a banded representation or as a Matlab sparse array.

Suppose we have S_k and channel radiances c and want to find r, that is, to deconvolve c. Consider the linear system $S_k x = c$. Since n < k for the kcarta grid mentioned above, it is underdetermined, with infinitely many solutions. We could add constraints, take a pseudo-inverse, consider a new matrix S_b with columns tabulated at some coarser grid, or some combination of the above. We begin with two cases, S_a with SRFs tabulated at the AIRS

channel grid, and S_b with SRFs at an intermediate grid, typically 0.1 cm⁻¹, the approximate resolution of the original measurements. We then consider the effect of choice of basis set for the intermdiate representation.

2 Deconvolution to the AIRS channel grid

Let $v_a = v_1, v_2, \ldots, v_n$ be channel center frequencies associated with a set of SRFs. Similar to S_k , let S_a be an $n \times n$ array where row i is $\sigma_i(v)$ tabulated at the v_a grid, with rows normalized to 1. If the channel centers are in increasing order S_a is banded, and if they are not too close the rows are linearly independent. S_a is a linear transform whose domain is radiance at the grid v_a and whose range is channel radiances. If r is radiance at the grid v_a , then $c = S_a r$ is still an approximation of $\int \sigma_i(v) r(v) dv$, though not as good an approximation as for the high-resolution case.

Consider the linear system $S_a x = c$, similar to the case $S_k x = c$ above, where we are given S_a and channel signals c and want to find radiances x. Since S_a is an $n \times n$ matrix and may have linearly independent rows, we might hope to solve for r. However in practice there are problems. If we take v_a as the standard AIRS L1b channel set, we find S_a is poorly conditioned, without a usable inverse. This is due to the L1b channel spacing, which because of module overlaps is quite variable, with the closest channels only 0.0036 cm^{-1} apart.

If we use the the linear function $g(v) = 4 \cdot 10^{-4} \cdot v - 0.04$, where v is frequency, as a lower bound on the acceptable channel spacing, we drop about 64 out of the 2378 L1b channels and the condition number of S_a is much improved, to around 30. With the partly synthetic L1c channel set, g(v) drops only 4 channels and $\operatorname{cond}(S_a)$ is about 250, still low enough for a useful inverse.

- show figures for channel trimming
- compare this approach with more recent results
- the main point of this section is probably the channel trimming and discussion of condition number

3 Deconvolution to the SRF tabulation grid

We now consider deconvolution to an intermediate grid. Typically this will be at 0.1 cm^{-1} , the resolution of the tabulated SRFs. Let $v_b = v_1, v_2, \ldots, v_m$

be channel center frequencies associated with a set of SRFs. Similar to S_k , let S_b be an $n \times m$ array where row i is $\sigma_i(v)$ tabulated at the v_m grid, with rows normalized to 1. If the channel centers are in increasing order S_m is banded, and if they are not too close the rows are linearly independent. S_m is a linear transform whose domain is radiance at the grid v_m and whose range is channel radiances. If r is radiance at the grid v_b , then $c = S_b r$ is a good approximation of $\int \sigma_i(v) r(v) dv$.

Consider the linear system $S_b x = c$, similar to the case $S_k x = c$ above, where we are given S_b and channel signals c and want to find radiances x. Since n < m < k, as with S_k , the system will be underdetermined, but more manageable because for the default resolutions m is approximately 40 times less than k, so finding the pseudo-inverse of S_b becomes tractible.

- needs figures from
- add recent blog reports and results from cris_test4
- there is some redundant detail in the descriptions of $S_{a,b,k}$ but that can stay until the final form is clear.

4 A sinc basis for the intermediate representation

5 Applications