Redes de Computadores

Camada Rede (Parte 1)

Algoritmos e protocolos de roteamento

Prof. Renê Pomilio de Oliveira

Slides baseados nas aulas da Profa. Dra. Kalinka Castelo Branco (ICMC/USP) Prof. Dr. Anderson Chaves Carniel (UTFPR)

Entidades da Camada

Revisando...

- Camada Física:
 - Descreve os procedimentos e características mecânicas, elétricas e funcionais. É responsável pela transmissão de bits de um ponto a outro.
- Camada de Enlace:
 - Gerencia a transmissão, detectando e corrigindo erros na camada física, buscando obter um canal confiável. Separa as mensagens em quadros, inserindo aspectos como sincronização, controle de erro e controle de fluxo.

Camada de Rede - Funções

- Camada de Rede:
 - Estabelece, mantém e termina conexões lógicas, é responsável pela tradução de endereços lógicos ou nomes em endereços físicos(roteamento).
 - Provê os meios funcionais para a transmissão de dados orientada ou nãoorientada à conexão

Camada de Rede – Funções (Resumo)

- multiplexação
- endereçamento
- mapeamento entre endereços de rede e endereços de enlace
- Roteamento
- estabelecimento e liberação de conexões de rede
- controle de congestionamento

Camada de Rede – Propriedades

- Antes de enviar os dados, é ajustado uma conexão entre as partes.
- Assim que a conexão é estabelecida, as partes negociam os parâmetros, a qualidade e o custo do serviço oferecido.
- A comunicação flui nas duas direções, e os pacotes são enviados em sequência.
- Controle de fluxo é fornecido automaticamente.

Camada de Rede – Funcionalidades

- Transportar pacotes entre os sistemas finais da rede
- A camada de rede deve ter uma entidade em cada sistema final ou roteador da rede
- 3 funções importantes:
 - ✓ Determinação de caminhos.
 - ✓ Comutação.
 - ✓ Estabelecimento de conexão.

Camada de Rede – Determinação de caminhos

 As rotas escolhidas pelos pacotes entre a origem e o destino. Algoritmos de roteamento

Camada de Rede – Comutação

Ato de mover pacotes entre as portas de entrada e de saída dos roteadores

Camada de Rede – Estabelecimento de conexão

 Algumas arquiteturas de rede exigem o estabelecimento de circuitos virtuais antes da transmissão de dados

Camada de Rede – Circuitos Virtuais (VC)

- "A ligação entre a origem e o destino emula uma ligação telefônica"
 - A rede controla a conexão entre a origem e o destino
- Estabelecimento da conexão deve proceder o envio de dados. Liberação da conexão após os dados recebidos estejam completos.
- Cada roteador na rota mantém informação de estado para conexão que passa por ele.
- A banda e os recursos do roteador podem ser alocado por VC
 - Controle de Qualidade de Serviço por VC

Camada de Rede – Circuitos Virtuais: Sinalização

Usado para estabelecer, manter e encerrar Circuitos Virtuais

Camada de Rede – Datagrama (Modelo da internet)

- Não existem conexões na camada de transporte
- Não há informação de estado de conexão nos roteadores
 - Não existe conexão na camada de rede
- Pacotes tipicamente transportam o endereço de destino
 - Pacotes para o mesmo destino podem seguir diferentes rotas

Camada de Rede – Datagrama vs Circuito Virtual

- Datagrama
 - Dados trocados entre computadores
 - Sistemas finais inteligentes:
 Podem adaptar-se, realizar
 controle e recuperação de erros
 - A rede é simples
 - Muitos tipos de enlaces (cabeada, Wi-fi..

- Circuito Virtual
 - Originário da telefonia
 - Conversação humana
 - Tempos estritos, exigências de confiabilidade
 - Sistemas finais "burros": Telefones e Complexidade dentro da rede

Camada de Rede – Roteamento

- Objetivo principal:
 - ✓ **Determinar "bons" caminhos** (sequência de roteadores) <u>através da rede de origem até o destino.</u>

Camada de Rede – Roteamento

- Algoritmos de roteamento são descritos por grafos:
 - Nós do gráfico são roteadores
 - Arestas do gráfico são enlaces
 - ✓ Custo do enlace: atraso, preço ou nível de congestão
- Bons caminhos:
 - ✓ tipicamente corresponde aos caminhos de menor custo
 - √ caminhos redundantes

Classificação dos Algoritmos de Roteamento

- Informação global ou descentralizada
 - Global
 - ✓ Todos os roteadores tem informações completas da topologia e do custo dos enlaces
 - ✓ algoritmos "Link state"
 - Descentralizada
 - ✓ Roteadores só conhecem informações sobre seus vizinhos e os enlaces para eles
 - ✓ Processo de computação interativo, troca de informações com os vizinhos
 - ✓ algoritmos <u>"Distance vector"</u>Câmpus Dois Vizinhos

Classificação dos Algoritmos de Roteamento

- **Servicio de la Companica de l**
 - Estático
 - ✓ As rotas mudam lentamente ao longo do tempo
 - Dinâmico
 - ✓ As rotas mudam mais rapidamente
 - Atualizações periódicas
 - Podem responder a mudanças no custo dos enlaces

Algoritmo Link-state

❖ Algoritmo de <u>Dijkstra's</u>

- ✓ Topologia de rede e custo dos enlaces são conhecidos por todos os nós.
 - Implementado via "link state broadcast"
 - > Todos os nós têm a mesma informação
- ✓ Computa caminhos de menor custo de um nó (origem/fonte) para todos os outros nós
 - > Fornece uma tabela de roteamento para aquele nó
- ✓ Convergência: após k iterações, conhece o caminho de menor custo para k destinos.

Algoritmo Link-state - Dijkstra's cálculos de rota

❖ Notação:

- C(i,j): custo do enlace do nó i ao nó j. Custo é infinito se não houver ligação entre i e j.
- D(v): valor atual do custo do caminho da fonte ao destino v
- P(v): nó predecessor ao longo do caminho da fonte ao nó v, isto é, antes do v
- N: conjunto de nós cujo caminho de menor custo é definitivamente conhecido

Algoritmo "Distance Vector"

- !terativo:
 - Continua até que os nós não troquem mais informações.
- Assíncrono
 - ✓ Os nós não precisam trocar informações simultaneamente!
- Distribuído
 - ✓ Cada nó se comunica apenas com os seus vizinhos, diretamente conectados

Algoritmo "Distance Vector"

- Estrutura de Dados da Tabela de Distância
 - ✓ Cada nó tem sua própria tabela
 - ✓ Linha para cada possível destino
 - ✓ Coluna para cada roteador vizinho
 - ✓ Exemplo: no nó X, para destino Y via vizinho Z:

Algoritmo "Distance Vector" - Resumo

- Iterativo, assíncrono: cada iteração local é causada por:
 - Mudança de custo dos enlaces locais
 - Mensagem do vizinho: seu caminho de menor custo para o destino mudou
- Distribuído
 - Cada nó notifica seus vizinhos apenas quando seu menor custo para algum destino muda
 - Vizinhos notificam seus vizinhos e assim por diante

espera por mudança no custo dos enlaces locais ou mensagem do vizinho

recalcula tabela de distância

se o caminho de menor custo para algum destino mudou, notifica vizinhos

Câmpus Dois Vizinhos