B.) AMENDMENTS TO THE CLAIMS

Please amend the claims as set forth below. This listing of claims will replace all prior versions and listings of claims in the Application:

- 1. 18. (Cancelled)
- 19. (Previously Presented) A control circuit including:

at least two input terminals for electrically connecting with at least two conductors of a power source;

at least two output terminals for electrically connecting with a load;

a sensor having a sensor relay that is energized in response to a reference signal being within a predetermined range, the reference signal being derived from a voltage differential between one or more of the conductors and a floating reference point that is electrically isolated from the conductors when in use, wherein the sensor provides a sensor signal in response to the sensor relay being energized; and

a switching device having a switching relay that is responsive to the sensor signal for progressing between a first mode and a second mode wherein: in the first mode the input and output terminals are respectively electrically connected for allowing the load to receive power from the source via the switching relay; and in the second mode, the input and output terminals are electrically disconnected for preventing the source from supplying power to the load via the switching relay.

- 20. (Previously Presented) A circuit according to claim 19 wherein the sensor relay is a low voltage DC relay.
- 21. (Previously Presented) A circuit according to claim 20 wherein the switching relay is a mains voltage relay.
- 22. (Previously Presented) A circuit according to claim 20 wherein the switching relay is a DC voltage relay.
- 23. (Previously Presented) A circuit according to claim 19 wherein the sensor signal is:

an AC signal; or

derived from an AC signal.

- 24. (Cancelled)
- 25. (Previously Presented) A control circuit including:

at least two input terminals for electrically connecting with a power source;

at least two output terminals for electrically connecting with a load;

a switching relay having a switching coil that is selectively de-energised and energised to respectively progress the switching relay to a first mode and a second mode wherein: in the first mode the input and output terminals are respectively electrically connected for allowing the load to receive power from the source via the switching relay; and in the second mode, the input and output terminals are electrically disconnected for preventing the source from supplying power to the load via the switching relay; and

- a sensor relay having only one sensor coil, the sensor coil being progressed to an energized state in response to a fault condition for energizing the switching coil.
- 26. (Previously Presented) A circuit according to claim 25 wherein the sensor coil is a low voltage coil that is energised in response to the fault condition.
- 27. (Previously Presented) A circuit according to claim 26 wherein the low voltage coil is energised by a DC voltage.
- 28. (Previously Presented) A circuit according to claim 27 wherein the low voltage coil is energised by a DC voltage of greater than one Volt.
- 29. (Previously Presented) A circuit according to claim 25 wherein the switching relay has only one switching coil.
- 30. (Previously Presented) A circuit according to claims 25 wherein by progressing to the energized state, the switching relay de-energizes the sensor coil.
- 31. -38 (Cancelled)