1. BUDOWA I DZIAŁANIE SYSTEMU KOMPUTEROWEGO

1.1. Termin informatyka

Informatyka - ang. computer science, computing science, information technology, informatics

<u>Uwaga:</u> Angielska nazwa *computer science* - co można dosłownie tłumaczyć jako ".... nauka. o. komputerze......." - jest myląca i krytykowana w środowiskach akademickich i informatycznych.

W języku polskim termin *informatyka* zaproponował w październiku . 1968 . r. R. Marczyński w Zakopanem na ogólnopolskiej konferencji poświęconej "maszynom matematycznym" na wzór francuskiego *informatique* i niemieckiego *Informatik*.

Romuald Marczyński (1921 - 2000) profesor, matematyk, pionier polskiej informatyki. Twórca pierwszego, polskiego komputera elektronicznego EMAL.

Czym nie jest informatyka?

Computer science is no more about computers than astronomy is about telescopes [E. Dijkstra].

Edsger Dijkstra (1930 – 2002), jeden z najbardziej znanych informatyków, Holender, zajmował się głównie zagadnieniami programowania.

Czym jest informatyka?

Informatyka – nauka zajmująca się <u>teoretycznymi</u>, <u>technologicznymi</u> oraz <u>aplikacyjnymi</u> aspektami zagadnień związanych z <u>...pozyskiwaniem</u>...,

<u>przechowywaniem</u>	<mark></mark> p <mark>rzetwarzaniem</mark>	<mark>p</mark> rzesy <mark>łaniem.</mark>	
informacji			

1.2. Problematyka rozpatrywana na gruncie informatyki

Klasyfikacja problemów rozpatrywanych na gruncie informatyki zaproponowana została przez ACM (*Association for Computing Machinery*, http://www.acm.org/):

- Matematyczne podstawy informatyki
- Teoria obliczeń
- Algorytmy i struktury ...danych...
- Języki programowania i kompilatory ...
- Systemy współbieżne, równoległe i ...rozproszone......
- Inżynieria ... oprogramowania ...
- Architekturakomputerów...
- Komunikacja i bezpieczeństwo
- Bazy ...danych ...
- Sztuczna inteligencja.....
- Grafika komputerowa
- Obliczenia naukowe

1.3. Przykładowe systemy komputerowe

System komputerowy to układ współdziałaniasprzętu.komputerowego......
oraz ...oprogramowania......

1.4. Definicja architektury komputera

Termin "architektura komputera" występuje w literaturze w różnych kontekstach i określany jest z różnym poziomem szczegółowości.

- Najogólniej:
 - architektura komputera tosposób organizacji elementów, z których zbudowany jest komputer.
- Bardziej szczegółowo:

lub

rodzaj procesora wraz z zestawem jego instrukcji (ang. ISA – Instruction Set Architecture) – czyli ...atrybuty.... komputera .widoczne
 dla programisty piszącego program w języku ... masowym
 (m.in. rejestry procesora, lista rozkazów, tryby adresowania).

1.5. Podstawowe fakty dotyczące komputerów

- Program komputerowy jest zrozumiałą dla komputera formą zapisu
 _algorytmu
- Algorytm jest zaprojektowanym przez człowieka sposobem postępowania ..
 mającym na celu rozwiązanie pewnego problemu (zawsze

człowiek jest autorem algorytmu, komputer może co najwyżej realizować opracowany przez człowieka sposób postępowania).

- Program komputerowy składa się z ciągu realizowanych kolejno instrukcji.
 (opisujących kolejne kroki algorytmu).
- W trakcie realizacji programu instrukcje składające się na program oraz przetwarzane dane muszą znajdować się w systemie komputerowym.

1.6. Klasyfikacja systemów komputerowych

Michael J. Flynn w 1972 roku zaproponował klasyfikację systemów komputerowych uwzględniającą:

- liczbę przetwarzanych w tym samym czasie zestawów . danych....

Michael J. Flynn (1934) - amerykański profesor Stanford University.

1.6.1. Systemy ... skalarne ...

• "Jeden zestaw instrukcji - jeden zestaw danych" (SISD - *Single Instruction Single Data*).

- Jeden zestaw instrukcji (program) przetwarza jeden zestaw danych, czyli
 klasyczny... system komputerowy.
- Taki sposób pracy komputera zaproponowany został przez von Neumanna w latach czterdziestych XX wieku

1.6.2. Systemy ... strumieniowe

• "Wiele zestawów instrukcji - jeden zestaw danych" (MISD - *Multiple Instruction Single Data*).

• Wiele programów przetwarza te same dane.

Rozwiązanie takie jest . rzadko. . . . stosowane – głównie w systemach o wysokim stopniu niezawodności. , w których kilka programów lub kilka kopii jednego programu przetwarza te same dane w celu zapewnienia możliwości pracy systemu w przypadku awarii jednego z programów lub w przypadku konieczności porównania otrzymanych wyników.

1.6.3. Systemy ... wektorowe... (macierzowe)

• "Jeden zestaw instrukcji - wiele zestawów danych" (SIMD - *Single Instruction Multiple Data*).

- W tym samym czasie te same instrukcje programu są wykonywane w celu przetworzenia różnych zestawów danych.
- Przykładem może być komputerowa, w trakcie której w identyczny sposób przeliczane są w tym samym czasie współrzędne wielu punktów.

1.6.4. Systemyrównaległe.....

• "Wiele zestawów instrukcji - wiele zestawów danych" (MIMD - *Multiple Instruction Multiple Data*).

- W tym samym czasie różne programy przetwarzają różne zestawy danych.
- Do tego typu rozwiązań zaliczane są systemy ... wieloprocesorowe oraz klastery komputerów połączone za pomocą .. sieci ... komputerowych.

1.7. Klasyczny model systemu komputerowego (maszyna von Neumanna)

Klasyczny model opisujący sposób funkcjonowania komputera zaproponowany został przez Johna von Neumanna w . .1945 . roku. Model ten nosi obecnie nazwę . .architektury. (maszyny. . . .) von Neumanna.

John von Neumann (1903 - 1957), inżynier chemik, fizyk, matematyk i informatyk. Wniósł znaczący wkład do wielu dziedzin matematyki, szczególnie teorii gier i uporządkował formalizm matematyczny mechaniki kwantowej. Uczestniczył w projekcie ...Manhattan Przyczynił się do rozwoju numerycznych prognoz pogody.

Architektura von Neumanna zakłada istnienie i funkcjonowanie w systemie komputerowym elementów takich jak:

- pamięć główna przechowuje w postaci ... binarnej.... program.... oraz ...dane,
- *jednostka arytmetyczno logiczna* wykonuje ... działania na danych binarnych oraz pośredniczy wprzesyłaniu danych pomiędzy pamięcią główną a urządzeniami wejścia wyjścia,
- *jednostka sterująca* ...pobiera ... rozkazy z pamięci, ...interpretuje je, powoduje ich ...wykonanie oraz synchronizuje działanie innych elementów systemu komputerowego,
- urządzenia wejścia wyjścia umożliwiają ... wprowadzanie danych do systemu oraz ich ... wyprowadzanie z systemu,
- urządzenia pamięci zewnętrznej umożliwiają ...mobilne . przechowywanie danych.

1.8. System komputerowy na przykładzie komputera osobistego

Składowe komputera osobistego:

- jednostka centralna (procesor, pamięć operacyjna, magistrale) elementy, które są bezpośrednio zaangażowane w realizację programu komputerowego,
-urządzenia zewtnętrzne........ (urządzenia wejścia-wyjścia, pamięć masowa, urządzenia zapewniające komunikację) nie uczestniczą bezpośrednio w realizacji programu, ale są niezbędnym elementem systemu komputerowego.

Płyty główne oraz porty i gniazda

1.9. Pamięć operacyjna

Pamięć operacyjna (wewnętrzna) - służy do przechowywania realizowanego programu oraz przetwarzanych przez program danych.

Powyżej kości pamięci: DIP, SIPP, SIMM, DIMM (SDRAM), RIMM, DIMM (DDR).

1.9.1. Cechy pamięci operacyjnej

- Pamięć operacyjna podzielona jest na ...komórki......
- Każda komórka posiada jednoznacznie przyporządkowany . adres. ...
 (numer).
- Podstawowa wielkość komórki to 8 bitów (1 ...bajt ...),
- <u>bit</u> miejsce, gdzie pojawić się może wartość 0 lub 1.
- Każda komórka zawiera pewną wartość binarną ciąg zer i jedynek.

• Zawartość komórki pamięci może być interpretowana m.in. jako: liczba, tekst, kod instrukcji (rozkaz), adres miejsca w pamięci operacyjnej.

1.9.2. Jednostki służące do wyrażania pojemności pamięci operacyjnej

- 1 bajt (B),
- 1 kilobajt (1 KB = 2^10 B = 1024 bajtów, ok. tysiąca bajtów),
- 1 megabajt (1 MB = 2^2 0 B = 1048576 bajtów, ok. miliona bajtów),
- 1 ... gigabajt (1 GB = 2^30 B = 1,073,741,824 bajtów, ok. miliarda bajtów)
- 1 ... terabajt (1 TB = 2^40 B = 1,099,511,627,776 bajtów, ok. biliona bajtów).

Uwaga: Do oznaczania bajtów służy **duża** litera "B". **Mala** litera "b" wykorzystywana jest do oznacza bitów.

Przedrostek "kilo" i jego skrót literowy (litera "k") służy zarówno do oznaczania różnych krotności (1000 i 1024) jak i różnych jednostek miar (bit, bajt, gram). W rezultacie często prowadzi to do nieporozumień i braku jednoznaczności w określeniu o jaką krotność chodzi. W celu uniknięcia niejednoznaczności, w wielu krajach (również w Polsce) używa się dużą literę "K" dla oznaczania krotności 1024, zaś małą literę "k" - dla krotności 1000. Podobnie jest w przypadku pozostałych przedrostków – mega, giga itd.

1.9.3. Rodzaje pamięci operacyjnej

W tradycyjnym ujęciu pamięć podzielona jest na:

• Pamięć o dostępie swobodnym (RAM - Random Access Memory)

- możliwe operacje odczytu i zapisu
- pamięć ...ulotna
- Pamięć stałą (ROM Read Only Memory)
 - możliwe tylko operacje odczytu (zapis np. na etapie produkcji)
 - pamięć nieulotna.

1.10. Procesor

1.10.1. Charakterystyka procesora

Procesor (ang. processor, CPU - ang. Central Processing Unit):

- to cyfroweurządzenie sekwencyjnepotrafiące pobierać dane z pamięci, interpretować je i wykonywać jakorozkazy
- jest odpowiedzialny za realizację programów zapisanych w pamięci operacyjnej komputera.

- Komputer oprócz procesora głównego (CPU) posiada procesory pomocnicze: Obrazu ... (GPU), dźwięku, koprocesory arytmetyczne.
- Jedną z podstawowych cech procesora jest długość (liczba bitów) <u>słowa ...</u>, na którym wykonywane są podstawowe operacje obliczeniowe. Jeśli słowo ma np. 32 bity, mówimy że procesor jest 32-bitowy.
- Częstotliwość ta podawana jest w ...hercach ... i mówi o tym, ile ...cykli. obliczeniowych procesor wykonuje w jednej ...sekundzie (np. jeżeli szybkość procesora wynosi 2,5GHz to w jednej sekundzie wykonuje on 2,5 ... miliarda..... cykli).

Uwaga: Wbrew obiegowym opiniom, liczba cykli ...nie.jest równoważna z liczbą wykonywanych rozkazów. Na ogół na wykonanie jednego rozkazu potrzeba ...kilku... cykli procesora.

1.10.2. Budowa procesora

W funkcjonalnej strukturze procesora można wyróżnić:

- <u>rejestry</u> ... y do przechowywania danych i wyników, rejestry mogą być ogólnego przeznaczenia, lub mają specjalne przeznaczenie,
- jednostkę ____arytmetyczno logiczną ____ (__arytmometr ____)
 do wykonywania operacji obliczeniowych na danych,
- jednostkę ... sterującą przebiegiem wykonywania programu.

1.10.2.1. Rejestry

Rejestry to komórki pamięciwewnatrz..... procesora o bardzo krótkim czasie dostępu. Najważniejsze rejestry to:

- ... wskąźnik. ... rozkazów (... licznik rozkazów) przechowuje adres komórki pamięci operacyjnej zawierającej kod bieżącego rozkazu,
- rejestr ...rozkazów.... zawiera kod aktualnie wykonywanego rozkazu,

- ... akumulator rejestr wykorzystywany w trakcie obliczeń przez jednostkę arytmetyczno logiczną,
- rejestr ... flag. . (rejestr znaczników) przechowuje informacje o stanie wykonywanego programu.

1.10.2.2. Jednostka sterująca

- <u>synchronizuje</u> pracę wszystkich elementów komputera (zegar),
- jest odpowiedzialna za wykonywanie kolejnych rozkazów składających się
 na program (określenie adresu, pobranie rozkazu, dekodowanie, pobranie
 danych, realizacja, przesłanie wyniku, obsłużenie ewentualnego
 przerwania).

1.10.2.3. Jednostka arytmetyczno-logiczna (arytmometr)

Jednostka arytmetyczno - logiczna (arytmometr) odpowiedzialna jest za wykonywanie operacji ... arytmetycznych....... oraz ...logicznych.......

1.10.3. Rozkazy (instrukcje) procesora

Do typowych rozkazów wykonywanych przez procesor należą:

-kopiowanie.danych....... (z pamięci do rejestru, z rejestru do pamięci, z pamięci do pamięci tylko niektóre procesory),
-działania arytmetyczne (dodawanie, odejmowanie, porównywanie dwóch liczb, dodawanie i odejmowanie jedności, zmiana znaku liczby),

- działania na bitach (iloczyn logiczny AND, suma logiczna OR, różnica symetryczna XOR, negacja NOT, przesunięcie bitów w lewo lub prawo),
- skoki... (bezwarunkowe, warunkowe).

1.10.4. Cykl rozkazowy procesora

Cykl rozkazowy procesora składa się z fazy pobrania.... i fazy .wykonania

Faza pobrania to:

- 1. adresowanie czyli przekazanie zawartości wskaźnika rozkazów na "magistralę ""adresowa". "". (wskaźnik rozkazów przechowuje adres instrukcji, która ma być wykonana),
- 2. znalezienie w pamięci operacyjnej instrukcji o adresie zapisanym we wskaźniku rozkazów,
- 3. przesłanie instrukcji (ciągu bitów) magistralą . danych do rejestru rozkazów,
- 4. wczytanie instrukcji do rejestru rozkazów,
- 5. zwiększenie wskaźnika rozkazów, tak żeby wskazywał na następną instrukcję,

Faza wykonania to:

 zdekodowanie instrukcji i wygenerowanie sygnałów sterujących, które mają ją wykonać.

- Magistrala droga zapewniająca komunikację pomiędzy elementami systemu komputerowego. Magistrala składa się ze zbioru linii służących do wymiany.... informacji (zakodowanej w postaci binarnej).
- Rodzaje magistral:
 - wewnętrzne (w obrębie jednostki centralnej),
 - zewnętrzne (pozwalają na przyłączenie urządzeń zewnętrznych).

1.10.5. Producenci procesorów

Producenci procesorów: ... Intel ..., .AMD., IBM, Fujitsu, Freescale (dawniej jako Motorola), Texas Instruments.

Procesory produkowane przez firmę Intel

• **8086** i **8088** (wersje do 20MHz, pierwotnie 4,77MHz w PC XT, obecnie do 300MHz)

- 80186 i 80188 (wersje do 25MHz, wykorzystywany głównie w urządzeniach automatyki ze względu na zintegrowane: kontroler przerwań, kontroler DMA, liczniki (redukcja liczby układów na płycie głównej), rzadko stosowane w komputerach osobistych, kilka nowych instrukcji, generalnie brak większych różnic programowych w stosunku do 8086)
- 80286 (wersje do 25MHz, pierwotnie 8MHz w PC AT)
- **80386** (później nazwany 80386DX) i **80386SX** (Intel 33MHz, konkurenci do 40MHz), obecnie także wersje przemysłowe 80386ZX (do 300MHz jako kontrolery jednoukładowe)
- **i486** (później nazywany i486DX) i **i486SX** oraz układy **i486DX2** i **iDX4** (Intel i486DX 50MHz, i486DX2 33/66MHz, iDX4 33/100, konkurenci do 160MHz)
- i586: Pentium OverDrive (do płyt 486), Pentium (układy S5 60, 66 i 60/90 MHz, układy S7 do 200MHz), Pentium MMX (do 233MHz i 266MHz w wersji Mobile)
- **i686**: Pentium Pro (200MHz, wersje z 256, 512 i 1024 L2 cache), Pentium II, Celeron, Xeon, Pentium III
- Pentium 4: Pentium 4 EE Extreme Edition (wersje z L3 cache, zwiększonym L2 cache lub innymi usprawnieniami, dla najbardziej wymagających użytkowników), Układy Pentium 4 D, Pentium 4 EE i Xeon wyposażone w x86-64, Xeon
- **Pentium D 4 Dual Core** wyposażone w x86-64, Itanium i Itanium 2 (procesory IA-64, posiadają tryb zgodności z x86)
- Intel Core 2: Intel Core 2 Duo (procesory dwurdzeniowe), Intel Core 2 Quad (procesory czterordzeniowe), Intel Core 2 Extreme (czterordzeniowe, za wyjątkiem jednego modelu)
- Intel Core i7: generacja procesorów firmy Intel oparta na architekturze x86-64. Wykorzystuje ona mikroarchitekturę procesora o nazwie Nehalem (technologia 45nm). Jest to następca układów Intel Core 2 Duo i Intel Core 2 Quad z rdzeniem Penryn
- Intel Core i3: oparty na architekturze x86-64, z wbudowanym układem graficznym (choć został on umieszczony jedynie na tej samej podstawce fizycznie jest on oddzielnym układem)

- Intel Core i5: wariant serii Intel Core i7, posiadają zintegrowany kontroler pamięci DDR3 dual-channel, zintegrowany kontroler karty graficznej PCI Express oraz kontroler Direct Media Interface do komunikacji z chipsetem Intel P55
- Intel Core i7, i3, i5 w technologii Sandy Bridge (32nm) i Ivy Bridge (22nm); Haswell (22nm) i Broadwell (14nm); Skylake (14nm).

Procesory produkowane przez firmę AMD

- Idealnie wierne kopie układów x86, aż do i486 włącznie: AMD 80386 SX/DX (w tym wersje 40MHz), AMD 80486 SX/DX/DX2/DX4 (w tym wersje pracujące do 50/150MHz i 40/160MHz)
- AMD Am5x86
- AMD K5
- **K6**: AMD K6, AMD K6-2, AMD K6-2+, AMD K6-III
- **K7**: Athlon, Duron, Athlon XP, Sempron
- K8: Athlon 64, Athlon 64 FX, Athlon 64 X2, Athlon X2, Opteron, Sempron
- K8L: Athlon 64 X2, Opteron
- **Seria K10**: Phenom FX, Phenom X4, Phenom X3, Athlon X2, Sempron (Spica), Opteron
- **Seria K10.5**: Sempron, Athlon II X2, Athlon II X3, Athlon II X4, Phenom II X2, Phenom II X3, Phenom II X4, Opteron
- FX architektura Bulldozer (technologia 32nm),
- Akcelerowane Procesory APU (Accelerated Processing Unit): Seria A zintegrowane z kartą graficzną procesory A4, A6, A8, A10.