

贝叶斯 VAR 模型

王群勇 (南开大学数量经济研究所, QunyongWang@outlook.com)

Contents

引言

贝叶斯 VAR 模型简介 贝叶斯 VAR 模型的分析 贝叶斯 VAR 模型的预测

贝叶斯方法

基于模拟的方法和贝叶斯分层模型是 50 年以来最重要的统计思想之一(Gelman & Vehtari,2021)

Stata 15 引入 bayes, bayesmh

贝叶斯方法

对于计量模型,数据为 ν ,参数为 θ 。贝叶斯定理表示为

$$\pi(\theta|y) = \frac{f(y|\theta)\pi(\theta)}{f(y)} \propto f(y|\theta)\pi(\theta).$$

其中, $f(y|\theta)$ 为似然函数(概率密度函数), $\pi(\theta)$ 为先验分布, $\pi(\theta|y)$ 为后验分布。 $f(y|\theta)\pi(\theta)$ 叫做贝叶斯核(kernel)。 f(y)叫做边际似然函数。

后验分布 ∝ 似然函数 × 先验分布

贝叶斯方法

频数方法中,参数是确定的,参数估计量是随机的。贝叶斯方法中,参数是随机的。

频数方法中原假设是否成立是一个确定性事件,无法判断原假设成立的概率。贝叶斯方法 是原假设为随机事件。

贝叶斯方法将先验分布与似然函数得到后验分布(适于参数个数较多的模型)。

极大似然估计是数值计算,贝叶斯估计是抽取随机数(适于复杂模型)。

贝叶斯的抽样分布属于精确分布(适于小样本量)。

贝叶斯推断将多种不确定性,包括数据、模型和参数,融合到统一的框架内(适于模型的比较与平均)。

贝叶斯方法

共轭先验: 后验分布与先验分布属于同一分布族

非共轭先验: 后验分布没有明确的表达式 -> MCMC 抽样

- Metropolis-Hastings 抽样
- Gibbs 抽样

MH 抽样

数值例子: $y_i \sim binomial(10,4,\theta)$, prior: $\theta \sim Beta(1,1)$

设初始值 $\theta_1 = 0.517$, $令 \theta_{new} = 0.380$?

$$\rho = \frac{\text{posterior}(\theta_{new})}{\text{posterior}_{\theta_1}} = \frac{Beta(1,1,0.380) \times Binomial(10,4,0.380)}{Beta(1,1,0.517) \times Binomial(10,4,0.517)} = 1.307$$

$$\theta_2 = 0.380$$
, $\diamondsuit \theta_{new} = 0.286$?

$$\rho = \frac{\text{posterior}(\theta_{new})}{\text{posterior}_{\theta_1}} = \frac{Beta(1,1,0.286) \times Binomial(10,4,0.286)}{Beta(1,1,0.380) \times Binomial(10,4,0.380)} = 0.747$$

 θ_3 以 0.747 的概率取 0.747, 以 0.253 的概率取 θ_2 .

.....

问题:如何生成 θ_{new} ?

MCMC

MH 抽样: 设后验分布为f(x),

- (1) 给定 x_t , 定义工具分布 $q(y|x_t)$ (proposed distribution), 从 $q(y|x_t)$ 抽取随机数 x_{new} 。 其中,工具分布是更容易抽样的分布。
- (2) 定义接受概率(acceptance probability): $\rho(x_t, x_{new}) = \min\left[\frac{f(x_{new})}{f(x_t)} \frac{q(x_t|x_{new})}{q(x_{new}|x_t)}, 1\right]$

$$x_{t+1} = \begin{cases} x_{new} & \rho(x_t, x_{new}) \\ x_t & 1 - \rho(x_t, x_{new}) \end{cases}$$

对称情形: $q(x_t|x_{new}) = q(x_{new}|x_t), \rho(x_t, x_{new}) = \min\left[\frac{f(x_{new})}{f(x_t)}, 1\right],$

独立情形: $q(x_t|x_{new}) = q(x_t), q(x_{new}|x_t) = q(x_{new}), \rho(x_t, x_{new}) = \min \left[\frac{f(x_{new})}{f(x_t)} \frac{q(x_t)}{q(x_{new})}, 1\right]$ 。

计算接受概率时, 只有分布的核起作用, 其它常数都被略掉。

MH 抽样

```
. use bintrial, clear
(Federal Reserve Economic Data - St. Louis Fed)
```

. bayesmh y, likelihood(dbernoulli({p})) prior({p},beta(1,1))

Burn-in ...
Simulation ...

Model summary

Likelihood:

y ~ bernoulli({p})

Prior:

{**p**} ~ beta(1,1)

Bayesian Bernoulli model	MCMC iterations	=	12,500
Random-walk Metropolis-Hastings sampling	Burn- in	=	2,500
	MCMC sample size	=	10,000
	Number of obs	=	10
	Acceptance rate	=	.4823
Log marginal-likelihood = -7.8194591	Efficiency	=	.2291

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	
р	.4187117	.1342192	.002804	.4152274	.1746616	.6876875

MH 抽样

. bayesgraph diag {p}

Gibbs 抽样

. bayesmh y, likelihood(dbernoulli($\{p\}$)) prior($\{p\}$,beta(1,1)) block($\{p\}$, gibbs)

Burn-in ... Simulation ...

Model summary

Likelihood:

y ~ bernoulli({p})

Prior:

 $\{p\} \sim beta(1,1)$

Bayesian Bernoulli model	MCMC iterations	=	12,500
Gibbs sampling	Burn- in	=	2,500
	MCMC sample size	=	10,000
	Number of obs	=	10
	Acceptance rate	=	1
Log marginal-likelihood = -7.8006434	Efficiency	=	.9783

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	
р	.4157295	.1367685	.001383	.4123873	.164642	.6885919

Contents

贝叶斯 VAR 模型

贝叶斯 VAR 模型的分析

贝叶斯 VAR 模型的预测

VAR

 $\diamondsuit y_t = (y_{1t}, y_{2t}, \dots, y_{mt})', \text{VAR(p) model: } y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + C x_t + u_t, u_t \sim N(0, \Sigma).$

例: 3 个变量构成的 VAR(1)模型

$$\begin{array}{rcl} y_{1t} & = & c_1 + a_{11}y_{1t-1} + a_{12}y_{2t-1} + a_{13}y_{3t-1} + u_{1t}, \\ y_{2t} & = & c_2 + a_{21}y_{1t-1} + a_{22}y_{2t-1} + a_{23}y_{3t-1} + u_{2t}, \\ y_{3t} & = & c_3 + a_{31}y_{1t-1} + a_{32}y_{2t-1} + a_{33}y_{3t-1} + u_{3t}, \\ & & \left(1 - a_1L - \dots - a_pL^p\right)y_t = C + u_t. \end{array}$$

其中, $E(u_{it}u_{js}) = 0 (i \neq j, t \neq s)$ 。 $Var(u_t) = \Sigma$.

参数个数为(包括常数项和协方差矩阵): m(mp+1) + m(m+1)/2。

VAR

VAR 模型: $y_t = C + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + u_t$, y_t 为 $(m \times 1)$ 。 A_j 为 $m \times m$ 矩阵,所有参数 $A = (\text{vech}(A_1) \setminus \text{vech}(A_2) \dots \setminus \text{vech}(A_p) \setminus C)$.

把(1,...,T)期观测值叠加起来,Y = XB + U, $Y = (y_1' \setminus y_2' \setminus ... \setminus y_m')$,为($T \times m$),每一列为一个变量。矩阵;X为Y的滞后项和常数项构成的矩阵,为 $T \times (mp + 1)$ 矩阵。B为 $(mp + 1) \times m$ 矩阵。U为 $(T \times m)$ 。

逐列叠加起来, vech(Y) = y, A = vech(B), 其中

$$y = \begin{bmatrix} y_{11} \\ y_{12} \\ \vdots \\ y_{1T} \\ y_{21} \\ y_{22} \\ \vdots \\ y_{2T} \end{bmatrix} \rightarrow \begin{bmatrix} y_{11} & y_{21} & \dots & y_{m1} \\ y_{12} & y_{22} & \dots & y_{m2} \\ \vdots \\ y_{1T} & y_{2T} & \dots & y_{mT} \end{bmatrix}$$

VAR

$$\begin{bmatrix} y_{11} \\ y_{12} \\ \dots \\ y_{1T} \\ y_{21} \\ y_{22} \\ \dots \\ y_{2T} \end{bmatrix} \rightarrow Var(u) = \Sigma \otimes I_{mp+1}. \begin{bmatrix} y_{11} \\ y_{21} \\ \dots \\ y_{m1} \\ y_{21} \\ y_{22} \\ \dots \\ y_{m2} \\ \dots \end{bmatrix} \rightarrow Var(u_t) = E(u_t u_t') = \Sigma, Var(u) = I_{mp+1} \otimes \Sigma.$$

贝叶斯 VAR (BVAR)

BVAR 模型是用贝叶斯方法来估计 VAR 模型参数。

贝叶斯 VAR 由 Doan, Litterman, and Sims (1984)提出,Kadiyala and Karlsson (1997), Ba'nbura, Giannone, and Reichlin (2008), and Dieppe, Legrand, and van Roye (2016)详细介绍了贝叶斯 VAR 的优势。

- 1. 避免参数过多的问题。通过对参数的先验约束降低参数维度,达到收缩 (shrinkage)。
- 2. 通过分层先验(hierarchical prior)更方便地处理异质性问题,不论是截面、面板还是时间序列数据。
- 3. 贝叶斯因子给出了选择滞后阶数和变量的统一框架。

BVAR 模型在参数较多、样本量较少时表现出较好的拟合效果。

Minniesota 先验

Litterman Minnesota (original): A为正态先验,Σ固定

Normal-flat: A为正态先验,独立于 Σ 的先验

conjugate Minnesota: $A|\Sigma$ 为正态先验, Σ 为 Inverse-Wishart 先验

normal-iwishart 先验: $A|\Sigma$ 为正态先验, Σ 为 Inverse-Wishart 先验

independent normal-iwishart 先验: $A|\Sigma$ 为正态先验, Σ 为 Inverse-Wishart 先验,不同方程的系数的先验是相互独立的。

Jeffreys 先验: A为正态先验, Σ 非信息先验

Sims-Zha normal-flat: 结构 VAR 模型的 Normal-flat 先验

Sims-Zha normal-flat: 结构 VAR 模型的 Normal-iwishart 先验

Giannone, Lenza, and Primiceri: 超参数通过优化程序自动选择。

Stata

option	suboption	note
minnfixedcovprior[(subopts)]	mean(<i>vector</i>) mean(<i>numlist</i>)	$eta_0 eq eta_{ii}^1(m)$
minnconjprior[(subopts)]	<pre>mean(vector) mean(numlist)</pre>	β_0 中 β_{ii}^1 (<i>m</i>); 默认值为 b_{ii}^1 =1,其它为 0
	phi(<i>matrix</i>)	$\Phi_0\left((mp+1)\times(mp+1)\right)$
	df(#)	α_0 (default: $m+2$)
	scale(<i>matrix</i>)	$S_0 (m \times m)$
minniwishprior[(subopts)]	mean(<i>vector</i>) mean(<i>numlist</i>)	$eta_0 eq eta_{ii}^1(m)$
	cov(matrix)	Σ_0
	df(#)	$lpha_0$
	scale(<i>matrix</i>)	S_0
minnjeffprior[(subopts)]	<pre>mean(vector) mean(numlist)</pre>	$eta_0 eq eta_{ii}^1(m)$
	cov(matrix)	$\Sigma_0 (m \times m)$

m个变量构成的 VAR(p),那么 vector 应该为 m 维向量

Stata

option	note	默认值
selftight(#)	因变量自身滞后的紧度	$\lambda_1 = 1$
<pre>crosstight(#)</pre>	其它因变量滞后的紧度	$\lambda_2 = 0.5$
lagdecay(#)	衰减速度	$\lambda_3 = 1$
exogtight(#)	外生变量的紧度	$\lambda_4 = 100$
arcov	对每个方程单独估计 AR 模型估计协方差矩阵	
varcov	对所有方程估计 VAR 模型估计协方差矩阵	

Stata

bayes , [bayesopts] : var varlist, [varoptions]

Gibbs 抽样, 100%接受率, 避免了 MH 抽样的有效性不足问题。

默认先验为: minnconjprior

例: Minnesota prior

Link: original minnesoto prior

Link: original minnesoto prior(user-defined tightness)

Link: original minnesoto prior(var lags)

例: Conjugate Minnesota prior

Link: conjugate minnesoto prior

Link: conjugate minnesoto prior (user-defined prior)

例: Minnesota iwishart prior

Link: minnesoto inv-wishart prior

Link: minnesoto inv-wishart prior (user-defined prior)

例: Minnesota Jeffreys prior

Link: minnesoto Jeffreys prior

Link: minnesoto Jeffreys prior (user-defined prior)

Contents

贝叶斯 VAR 模型

贝叶斯 VAR 模型的分析

贝叶斯 VAR 模型的预测

Number of obs = 210

确定滞后阶数

```
. use bvus, clear
(Federal Reserve Economic Data - St. Louis Fed)
```

. varsoc inflation ogap fedfunds, maxlag(12)

Lag-order selection criteria

Sample: 1958q3 thru 2010q4

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1488.6				296.509	14.2057	14.225	14.2535
1	-723.715	1529.8	9	0.000	.221616	7.00681	7.08413	7.19807
2	-689.089	69.252	9	0.000	.173634	6.76275	6.89806	7.09746*
3	-673.171	31.836	9	0.000	.162585	6.69686	6.89017	7.17502
4	-661.806	22.729	9	0.007	.159006	6.67434	6.92564	7.29595
5	-639.015	45.583	9	0.000	.139492	6.543	6.85228	7.30805
6	-619.85	38.329	9	0.000	.126698	6.44619	6.81346*	7.35469
7	-615.967	7.7663	9	0.558	.133135	6.49492	6.92019	7.54687
8	-610.886	10.161	9	0.338	.138349	6.53225	7.0155	7.72765
9	-587.182	47.409	9	0.000	.120437	6.39221	6.93345	7.73105
10	-581.902	10.559	9	0.307	.124996	6.42764	7.02688	7.90993
11	-567.442	28.921*	9	0.001	.118912*	6.37564*	7.03286	8.00137
12	-565.064	4.7562	9	0.855	.126973	6.4387	7.15392	8.20789

* optimal lag

Endogenous: inflation ogap fedfunds

Exogenous: _cons

确定滞后阶数

VAR 模型根据信息准则容易出现过度拟合或者选择过高的滞后阶数。

```
forvalues i=1/6 {
    qui bayes, rseed(17) saving(bvarsim`i', replace): var inflation ogap fedfunds
if date < tq(2004q1), lags(1/`i')
    est store bvar`i'
    local mods "`mods' bvar`i'"
}
bayestest model `mods'
注: 在 est store 之前,必须在 bayes 指令中通过 saving()选项保存模拟结果。
codes for lag selection
```


VAR 模型的平稳性

根据每次模拟系数计算特征根,得到特征根的分布。

. qui bayes, rseed(17) saving(bvarsim, replace): var inflation ogap fedfunds if d ate < tq(2004q1), lags(1/4)

- . estimates store bvar
- . bayesvarstable

Eigenvalue stability condition

Companion matrix size = 12 MCMC sample size = 10000

Eigenvalue					Equal-	tailed
modulus	Mean	Std. dev.	MCSE	Median	[95% cred.	
1	.9473457	.0199198	.000199	.9481282	.9057116	.9838371
2	.9417123	.0257058	.000257	.9453142	.877582	.9811621
3	.8184194	.0716288	.000716	.8274233	.6763741	.9322606
4	.5930213	.0930861	.000931	.5836551	.4256008	.7733104
5	.4859573	.0896516	.000897	.4866775	.330644	.6554575
6	.3659255	.0417669	.000418	.3635287	.291461	.459251
7	.3499339	.0365851	.000366	.3496959	.2767796	.4214287
8	.3155561	.0383687	.000384	.3173136	.2348504	.3856269
9	.3014183	.0396995	.000397	.3038818	.2177103	.3736035
10	.2670156	.0479518	.00048	.2717858	.1582521	.3475958
11	.2361436	.0556598	.000557	.2414199	.1135724	.329785
12	.1887299	.0805818	.000806	.2036124	.0151749	.3102756

Pr(eigenvalues lie inside the unit circle) = 0.9977

贝叶斯脉冲响应

```
. . bayesirf create birf1, step(60) set(birfex, replace)
(file birfex.irf created)
(file birfex.irf now active)
(file birfex.irf updated)
```

. . bayesirf graph irf, impulse(fedfunds)

贝叶斯脉冲响应: 表格

. bayesirf table irf, response(ogap) impulse(fedfunds) step(12)
Results from birf1

(1) irf	(1) Lower	(1) Upper
0	0	0
008015	089753	.072662
072428	205354	.059264
128667	296316	.039592
174391	361456	.009988
208873	409928	009742
232076	444489	021792
245563	466458	028681
251	475859	026581
249854	474231	025333
243505	468124	021195
233139	456024	014813
219759	444103	008206
	0008015072428128667174391208873232076245563251249854243505233139	0 0008015089753072428205354128667296316174391361456208873409928232076444489245563466458251475859249854474231243505468124233139456024

Posterior means reported.

95% equal-tailed credible lower and upper bounds reported.

(1) irfname = birf1, impulse = fedfunds, and response = ogap.

贝叶斯脉冲响应: 更改变量顺序

. bayesirf create birf2, step(60) set(birfex2, replace) order(inflation fedfunds
ogap)

(file birfex2.irf created)
(file birfex2.irf now active)
(file birfex2.irf updated)

. bayesirf table oirf, irf(birf2) response(ogap) impulse(fedfunds) step(10)

Results from birf2

Step	(1) oirf	(1) Lower	(1) Upper
0	.257325	.148406	.370283
1	.258308	.128963	.395361
2	.195725	.041816	.35614
3	.123306	047116	.30244
4	.050238	130222	.241047
5	014137	201699	.186256
6	067159	261451	.13775
7	109004	309117	.103761
8	140558	341167	.074475
9	163085	364218	.05027
10	177966	377733	.030365

Posterior means reported.

95% equal-tailed credible lower and upper bounds reported.

(1) irfname = birf2, impulse = fedfunds, and response = ogap.

贝叶斯脉冲响应:(累积)正交脉冲响应

. bayesirf graph oirf, impulse(fedfunds)

. bayesirf graph coirf, impulse(fedfunds)

贝叶斯方差分解

. bayesirf table fevd, irf(birf2) response(fedfunds) step(7)
Results from birf2

Step	(1) fevd	(1) Lower	(1) Upper	(2) fevd	(2) Lower	(2) Upper
0	0	0	0	0	0	0
1	.095083	.027875	.180163	.904917	.819837	.972125
2	.102093	.029869	.192633	.885277	.794215	.957829
3	.114495	.034531	.216095	.852453	.751346	.936377
4	.128495	.038329	.242878	.818721	.702946	.917391
5	.142093	.041094	.268065	.789353	.659076	.902321
6	.155334	.043475	.293326	.763024	.619474	.890185
7	.16808	.045986	.318506	.739026	.582641	.879954

Step	(3) fevd	(3) Lower	(3) Upper
0	0	0	0
1	0	0	0
2	.01263	.002624	.027988
3	.033052	.00823	.069683
4	.052784	.013287	.111021
5	.068554	.016546	.144177
6	.081642	.018741	.174098
7	.092895	.020159	.199897

Posterior means reported.

95% equal-tailed credible lower and upper bounds reported.

- (1) irfname = birf2, impulse = inflation, and response = fedfunds.
- (2) irfname = birf2, impulse = fedfunds, and response = fedfunds.
- (3) irfname = birf2, impulse = ogap, and response = fedfunds.
- . bayesirf graph fevd, irf(birf2) response(fedfunds)

Contents

贝叶斯 VAR 模型

贝叶斯 VAR 模型的分析

贝叶斯 VAR 模型的预测

贝叶斯预测

贝叶斯预测利用后验分布对 y_{t+h} 进行预测:

$$f(y_{T+1:T+h}|y_{1:T}) = \int f(y_{T+1:T+h}|y_{1:T},\theta) f(\theta|D) d\theta.$$

其中, D表示数据信息。

$$f(y_{T+1:T+h}|y_{1:T},\theta) = f(y_{T+1}|y_{1:T},\theta)f(y_{T+2:T+h}|y_{1:T+1},\theta)\cdots f(y_{T+h}|y_{1:T+h-1},\theta)$$

贝叶斯预测

设 θ 的 MCMC 序列为(θ^1 ,..., θ^s),

- 1. for each θ^s ,
- 根据 $f(y_{T+1}|y_{1:T},\theta^s)$,计算 y_{T+1}^s
- 根据 $f(y_{T+2}|y_{1:T},y_{T+1}^s,\theta^s)$, 计算 y_{T+2}^s
-
- $\mathsf{kE} f(y_{T+h}|y_{1:T},y_{T+1}^s,\cdots,y_{T+h-1}^s,\theta^s),\ \mathsf{hf} y_{T+h}^s$
- 2. 对每个 y_{T+h} 可以得到S个预测值,进而得到其预测的均值、中位数或置信区间。

贝叶斯预测

 $bayes f cast \ compute \ \textit{prefix}, \ \textbf{dynamic}() \ \textit{stat hpd}$

预测指标包括:后验均值($b1_*$)、后验标准差($b1_*_sd$)、置信区间下界($b1_*_1b$)、置信区间上界($b1_*_ub$)。

bayesfcast graph varlist, observed nocri

贝叶斯预测

- . bayesfcast compute b_, step(28)
- . qui var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)
- . fcast compute f_, step(28) dynamic(tq(2004q1))
- . bayesfcast graph f_inflation b_inflation f_ogap b_ogap f_fedfunds b_fedfunds, o bserved byopts(rows(3) title("Freq
- > uentist (left) vs. Bayesian (right)"))

