Rebuttal for ICML'25 Submission #3922

Table 1: Corresponding to Q4,Q6 of Reviewer HcSt, Q3 of Reviewer Wxrf. The RMSE result on correlation prediction of $|\psi_{\rm HB}\rangle$ with varied system size N and finetuning training size. M is fixed to 64. MLP(CNN)-x layers represents neural network MLP (CNN) that composed of x layers with residual connection. The best results are highlighted in **boldface** while the second-best results are distinguished in <u>underlined</u>. As networks go deeper, performance on predicting \bar{C} of $|\psi_{\rm HB}\rangle$ improves then declines, yet still is inferior to classical ML models.

Methods		N = 48			N = 63			N = 100			N = 127	
Methods	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{ m sft}=100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$
CS		0.21113		0.21257				0.21399			0.21447	
MLP-2 layers	0.08282	0.07752	0.06616	0.12055	0.08776	0.07086	0.10848	0.08158	0.07405	0.10091	0.10083	0.08245
MLP-3 layers	0.06214	0.04853	0.04494	0.07256	0.05506	0.04467	0.07740	0.06496	0.07098	0.08535	0.08280	0.08691
MLP-4 layers	0.05428	0.03825	0.03524	0.06463	0.04435	0.03833	0.07532	0.05952	0.06010	0.07971	0.09173	0.08608
MLP-5 layers	0.07228	0.04721	0.03764	0.07308	0.05957	0.05091	0.08046	0.07146	0.07174	0.08408	0.08650	0.08458
CNN-2 layers	0.07160	0.04723	0.03795	0.07176	0.04066	0.03042	0.06549	0.04566	0.03464	0.06468	0.03189	0.07404
CNN-3 layers	0.08089	0.03422	0.03435	0.09003	0.03401	0.03159	0.07603	0.03245	0.03295	0.08420	0.03179	0.03025
CNN-4 layers	0.06484	0.04899	0.03456	0.06621	0.03608	0.03100	0.06436	0.03425	0.02808	0.07441	0.03196	0.05221
CNN-10 layers	0.06388	0.08577	0.03856	0.13669	0.06697	0.09836	0.05456	0.03361	0.03555	0.05273	0.08775	0.03523
CNN-20 layers	0.15740	0.11951	0.07480	0.13665	0.10532	0.07100	0.11759	0.09031	0.07029	0.10187	0.08780	0.07183
CNN-50 layers	0.16392	0.12271	0.07735	0.16071	0.14676	0.09655	0.14741	0.11789	0.09367	0.13320	0.12921	0.10086
CNN-100 layers	0.20797	0.20659	0.20394	0.18382	0.17980	0.17323	0.14762	0.14402	0.13628	0.13455	0.13356	0.13150
LLM4QPE-T	0.05189	0.03368	0.03197	0.06111	0.03364	0.02863	0.05050	0.03227	0.02726	0.05079	0.03184	0.02634
RBFK	0.05452	0.04176	0.04101	0.04726	0.03829	0.03922	0.04096	0.03299	0.03282	0.03850	0.03115	0.03086
Lasso	0.04221	0.02636	0.02489	0.04856	0.02791	0.02326	0.04219	0.02602	0.02646	0.04137	0.03292	0.02083
Ridge	0.04247	0.02884	0.02475	0.04216	0.02816	0.02402	0.04191	0.02711	0.02251	0.04110	0.02620	0.02161

Table 2: Corresponding to Q4,Q6 of Reviewer HcSt, Q3 of Reviewer Wxrf. The RMSE result on correlation prediction of $|\psi_{\text{TFIM}}\rangle$ with varied system size N and finetuning training size n_{sft} . M is fixed to 64. MLP(CNN)-x layers represents neural network MLP (CNN) that composed of x layers with residual connection. The best results are highlighted in **boldface** while the second-best results are distinguished in <u>underlined</u>. As networks go deeper, performance on predicting \bar{C} of $|\psi_{\text{TFIM}}\rangle$ improves then declines, yet still is inferior to classical ML models.

Methods		N = 48			N = 63			N = 100			N = 127			
Methods	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{ m sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$		
CS		0.20924		0.20990			0.21092				0.21180			
MLP-2 layers	0.07899	0.06371	0.05524	0.07986	0.05279	0.04283	0.08293	0.05303	0.04630	0.07908	0.05006	0.04333		
MLP-3 layers	0.06080	0.05664	0.06074	0.06514	0.06928	0.06914	0.06301	0.06358	0.07317	0.06324	0.06510	0.07327		
MLP-4 layers	0.05912	0.05794	0.05980	0.05899	0.05705	0.06163	0.05678	0.05628	0.06977	0.05535	0.06496	0.07197		
MLP-5 layers	0.07422	0.06545	0.05739	0.07341	0.06921	0.069215	0.06648	0.06556	0.07044	0.06941	0.07222	0.06867		
CNN-2 layers	0.12845	0.15039	0.08935	0.12227	0.16686	0.10315	0.10084	0.08879	0.05177	0.10495	0.08535	0.04647		
CNN-3 layers	0.13545	0.17135	0.12004	0.12545	0.17026	0.11778	0.11433	0.11267	0.05027	0.13312	0.03562	0.05347		
CNN-4 layers	0.13624	0.17178	0.12015	0.12608	0.17103	0.13809	0.12221	0.11046	0.06586	0.13757	0.10498	0.05556		
CNN-10 layers	0.10861	0.14012	0.13969	0.10894	0.14113	0.13640	0.08386	0.10294	0.06330	0.07107	0.06095	0.04910		
CNN-20 layers	0.06796	0.07030	0.09552	0.05565	0.03468	0.03917	0.17534	0.10762	0.04129	0.05152	0.03588	0.04086		
CNN-50 layers	0.05984	0.03783	0.20409	0.29550	0.27408	0.23003	0.27766	0.03706	0.04305	0.28359	0.26455	0.22790		
CNN-100 layers	0.31863	0.31729	0.31449	0.31156	0.31115	0.30988	0.30174	0.30136	0.30013	0.29768	0.29570	0.29139		
LLM4QPE-T	0.05088	0.03493	0.03006	0.05252	0.03566	0.03082	0.05217	0.03476	0.03012	0.05259	0.03641	0.03084		
Lasso	0.04624	0.03219	0.02812	0.04633	0.03930	0.02859	0.04073	0.03256	0.02899	0.04583	0.03283	0.02932		
Ridge	0.04473	0.03173	0.02807	0.04561	0.03226	0.02839	0.04598	0.03277	0.02883	0.04570	0.03285	0.02911		

Table 3: Corresponding to Q2,Q5 of Reviewer HcSt, Q3 of Reviewer 3fBm. The RMSE results on correlation prediction of $|\psi_{\rm HB}\rangle$ with varied N. Training set and testing set are both have 10^4 samples, with noise-free labels $(M \to \infty)$. The best results are highlighted in **boldface**. As training data amounts expands (at most $\times 100$) and considering infinite measurement shots, performance of Ridge on predicting \bar{C} of $|\psi_{\rm HB}\rangle$ is superior to that of other advance DL models, varied system size from 8 to 31.

$M \to \infty$	N=8	N = 10	N = 12	N = 16	N = 25	N = 31
Ridge	0.00367	0.00444	0.00566	0.00636	0.00599	0.00579
MLP-4 layers	0.03961	0.03677	0.03460	0.03129	0.02769	0.02625
CNN-4 layers	0.02056	0.03710	0.03432	0.03050	0.02582	0.02381
LLM4QPE-F	0.04666	0.04385	0.03969	0.03728	0.03083	0.02951

Table 4: Corresponding to Q2,Q5 of Reviewer HcSt, Q3 of Reviewer 3fBm. The RMSE results on predicting correlation of $|\psi_{\rm HB}\rangle$ with varied training size n. System size N=8. The number of testing set is fix to 2×10^4 . Labels are noise-free $(M\to\infty)$. The best results are highlighted in **boldface**. As training data amounts expands (at most $\times 1000$) and considering infinite measurement shots, performance of Ridge on predicting \bar{C} of 8-qubit $|\psi_{\rm HB}\rangle$ is superior to that of other advance DL models.

$M \to \infty$	# Params.	$n = 10^2$	$n = 10^3$	$n = 10^4$	$n = 10^5$
Ridge	< 0.01M	0.00780	0.00528	0.00367	0.00660
MLP-4 layers	0.09M	0.04219	0.04172	0.03961	0.03956
CNN-4 layers	1.14M	0.01987	0.02078	0.02056	0.02054
LLM4QPE-F	9.89M	0.03966	0.04304	0.04916	0.04659

Table 5: Corresponding to Q2,Q5 of Reviewer HcSt, Q3 of Reviewer 3fBm. The RMSE results on predicting entanglement entropy of $|\psi_{\rm HB}\rangle$ with varied training size n. System size N=8. The number of testing set is fix to 2×10^4 . Labels are noise-free $(M\to\infty)$. The best results are highlighted in **boldface**. As training data amounts expands (at most $\times 1000$) and considering infinite measurement shots, performance of Ridge on predicting \bar{S}_2 of 8-qubit $|\psi_{\rm HB}\rangle$ is superior to that of other advance DL models.

$M \to \infty$	# Params.	$n = 10^2$	$n = 10^3$	$n = 10^4$	$n = 10^5$
Ridge	< 0.01M	0.01563	0.00947	0.00753	0.00851
ResMLP-2 layers	0.09M	0.10817	0.09142	0.05398	0.05302
ResCNN-4 layers	1.14M	0.04334	0.02410	0.03520	0.02073
LLM4QPE-F	9.89M	0.10648	0.11171	0.10895	0.10826

Table 6: Corresponding to Q1 of Reviewer m6FX. The RMSE results of LLM4QPE-F on correlation prediction of N-qubit $|\psi_{\rm HB}\rangle$, with embedding $M_{\rm emb}$ random measurement outcomes. Training set and testing set are both have 10^4 samples, with noise-free labels $(M \to \infty)$. $M_{\rm emb}$ is the actual number of embedded measurement outcomes. As the number of embedded random outcomes increases, performance of LLM4QPE decreases.

	N=8	N = 10	N = 12	N = 16	N = 25	N = 31
$M_{\rm emb} = 1$	0.04666	0.04385	0.04126	0.03728	0.03083	0.03125
$M_{\rm emb} = 8$	0.04746	0.04926	0.03969	0.03984	0.03408	0.02951
$M_{\rm emb} = 64$	0.04795	0.04791	0.04785	0.04043	0.03637	0.03524
$M_{\rm emb} = 512$	0.04913	0.04521	0.04506	0.03905	0.03406	0.03268

Table 7: Corresponding to Q1 of Reviewer m6FX, Q1 of Reviewer 3fBm. The RMSE results of LLM4QPE-F on correlation prediction of N-qubit $|\psi_{\rm HB}\rangle$, with embedding $M_{\rm emb}$ real measurement outcomes over the finetuning phase. testing size is set to 200. M is fixed to 512. $M_{\rm emb} \leq M$ is the actual number of embedded measurement outcomes. $n_{\rm sft}$ is the training size over the finetuning phase. As increasing the actual number of real outcomes embedded to model, the performance of LLm4QPE keeps the same, which reinforces that the LLM-like embedding approach makes the outcomes redundant features.

		N = 63			N = 100		N = 127			
	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	
$M_{\rm emb} = 1$	0.02555	0.02104	0.02019	0.02307	0.01872	0.01760	0.02239	0.01739	0.01635	
$M_{\rm emb} = 8$	0.02556	0.02106	0.02019	0.02309	0.01873	0.01760	0.02242	0.01739	0.01635	
$M_{\rm emb} = 64$	0.02556	0.02104	0.02019	0.02309	0.01872	0.01759	0.02239	0.01739	0.01636	
$M_{\rm emb} = 512$	0.02560	0.02104	0.02019	0.02309	0.01872	0.01759	0.02240	0.01740	0.01635	

Table 8: Corresponding to Q1 of Reviewer 3fBm. The RMSE results of predicting correlation of N-qubit $|\psi_{\rm HB}\rangle$, with MLP, Lasso and Ridge as learning models. Measurement outcomes are embedded as input features of MLP by two ways: raw tensor directly characterizing, or averaging (Avg.) with M for each qubit $(M \times N \to 1 \times N)$. $N \in \{63, 100, 127\}$. Training size $n \in \{20, 80, 100\}$. Measurement shots $M \in \{64, 128, 256, 512\}$. Simply averaging over outcomes for each qubit could significantly increase performance of MLP, yet is still inferior to Lasso and Ridge.

			N = 63			N = 100			N = 127	
		n=20	n = 60	n = 100	n=20	n = 60	n = 100	n=20	n = 60	n = 100
	Raw	0.08964	0.05522	0.04872	0.08666	0.04949	0.04055	0.08878	0.05068	0.04076
M = 64	Avg.	0.05572	0.03522	0.02984	0.05525	0.03972	0.02801	0.05505	0.03951	0.03242
M-04	Lasso	0.04856	0.02791	0.02326	0.04219	0.02602	0.02646	0.04137	0.03292	0.02083
	Ridge	0.04216	0.02816	0.02402	0.04191	0.02711	0.02251	0.04110	0.02620	0.02161
M=128	Raw	0.10921	0.05905	0.04835	0.10966	0.06137	0.04485	0.10408	0.06359	0.04554
	Avg.	0.04403	0.03034	0.02552	0.04699	0.03561	0.02603	0.04435	0.03421	0.03007
WI-120	Lasso	0.03168	0.02171	0.01905	0.03127	0.02045	0.01735	0.03041	0.01980	0.01647
	Ridge	0.03169	0.02178	0.01921	0.03069	0.02067	0.01786	0.03053	0.02087	0.01726
	Raw	0.14085	0.08316	0.06045	0.12558	0.08648	0.05983	0.11720	0.08232	0.06089
M = 256	Avg.	0.03581	0.02673	0.02272	0.04022	0.02966	0.02168	0.03883	0.03188	0.02893
M-250	Lasso	0.02556	0.01749	0.12125	0.02406	0.01747	0.01467	0.02283	0.01542	0.01324
	Ridge	0.02556	0.01751	0.01572	0.02408	0.01697	0.01494	0.02286	0.01576	0.01377
	Raw	0.15943	0.11187	0.08246	0.13586	0.10826	0.08329	0.12608	0.10324	0.08330
M=512	Avg.	0.03020	0.02475	0.02211	0.03713	0.02864	0.02272	0.03644	0.02962	0.02618
W1-01Z	Lasso	0.02037	0.01586	0.11038	0.01892	0.01403	0.01263	0.01702	0.01257	0.01117
	Ridge	0.02036	0.01583	0.01436	0.01891	0.01404	0.01271	0.01798	0.01285	0.01186

Table 9: Corresponding to Q4 of Reviewer 3fBm. The RMSE results of Ridge on predicting correlation of N-qubit $|\psi_{\rm HB}\rangle$ and $|\psi_{\rm TFIM}\rangle$. The input dimension d is both fixed to 20. Regularization of Ridge is set to $\lambda=1$. The performance Ridge on predicting \bar{C} of $|\psi_{\rm HB}\>$ and $|\psi_{\rm TFIM}\>$ exhibits comparable results, if fix the model input the same.

Dataset	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				N = 100 n = 20 $n = 40$ $n = 60$ $n = 80$ $n = 100$				N = 127 n = 20 $n = 40$ $n = 60$ $n = 80$ $n = 100$						
HB	0.09998	0.10555	0.09941	0.09322	0.08782	0.10015	0.10395	0.09867	0.09278	0.08692	0.09964	0.10491	0.09898	0.09241	0.08680
TFIM	0.10185	0.10333	0.09845	0.09189	0.08565	0.10093	0.10436	0.09847	0.09193	0.08824	0.10148	0.10372	0.10106	0.09426	0.08716