# **ST2334 Summary Notes**

AY23/24 Sem 1, github.com/gerteck

## 1. Basic Probability Concepts

- Sample Space: S All possible outcomes of stat. expt.
- Null Event: Event that contains no element, empty set,  $\varnothing$
- Axioms of Probability:

For any event X,  $0 \le P(X) \le 1$ . P(S) = 1. If  $A \cap B = \emptyset$  (Mut Excl.),  $P(A \cup B) = P(A) + P(B)$ .

• Finite sample space with equally likely outcomes:  $P(A) = (\frac{\#samplepointsA}{\#totalsamplepointsS})$ . (e.g. birthday problem)

#### **Event Operation & Relationships**

- Event Operations: Union, Intersection, Complement.
- Event Relationships: Contained:  $A \subset B$ Equivalence:  $A \subset B$  with  $A \supset B \to A = B$

Mutually Exclusive:  $A \cap B = \emptyset$ .

• De Morgan's Law:  $(A \cup B)' = A' \cap B'$  and  $(A \cap B)' = A' \cup B'$ 

#### **Counting Methods**

- Multiplication Principle: (Sequential Events)
- Addition Principle: (Pairwise Disjoin sets)
- **Permutation**:  ${}_{n}P_{r} = \frac{n!}{(n-r)!}$
- Combination:  $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

#### **Conditional Probability**

• Understand conditional as reduced sample space.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

#### Independence

$$A \perp B \leftrightarrow P(A \cap B) = P(A)P(B)$$
  
$$A \perp B \leftrightarrow P(A|B) = P(A)$$

#### Law of Total Probability

- **Partition:** If  $A_1, \dots, A_n$  mutually exclusive,  $\bigcup_{i=1}^n A_i = S$ , then  $A_1, \dots, A_n$  are partitions.
- If  $A_1, \dots, A_n$  are partitions of S, then for any event B:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

#### **Bayes' Theorem**

Let  $A_1, \dots, A_n$  be partitions of S. For any event B:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_k)P(A_i)}$$

For when n = 2,  $\{A, A'\}$  becomes a partition of S.

$$P(A|B) = \frac{P(A)P(B|A))}{P(A)P(B|A) + P(A')P(B|A')}$$

#### 2. Random Variables

A function X, which assigns a real number to every  $s \in S$  is called a random variable.

- Range space:  $Rx = \{x | x = X(s), s \in S\}$
- Likewise, the set  $X \in A$ , for A being a subset of R, is also a subset of  $S: s \in S: X(s) \in A$ .

#### **Probability Distribution**

Two main types of RV used in practice: discrete and continuous.

- ullet Probability assigned to each possible X
- Given RV X with range of  $R_x$ :

**Discrete:** Numbers in  $R_x$  are finite or countable **Continuous:**  $R_x$  is interval

#### (Discrete) Probability Mass Function f(x):

$$f(x) \begin{cases} P(X=x), & \text{for } x \in R_X \\ 0, & \text{for } x \notin R_X \end{cases}$$

- 1.  $f(x_i) = P(X = x_i) \ge 0$  for  $x_i \in R_x$
- 2.  $f(x_i) = 0$  for  $x_i \notin R_x$
- 3.  $\sum_{i=1}^{\infty} f(x_i) = 1$  (PSum = 1)
- 4.  $\forall B \subseteq \mathbb{R}, P(X \in B) = \sum_{x_i \in B \cap R_x} f(x_i)$

#### (Continuous) Probability Density Function f(x):

- Given  $R_x$  is interval. Quantifies probability that X is in some range.
- p.f. must satisfy:
  - 1.  $f(x) \ge 0$ , f(x) = 0 for  $x \notin R_x$
  - 2. No need  $f(x) \leq 1$  (Concerned with area)
  - 3.  $\int_{R_x} f(x)dx = 1$  (Integration over  $R_X = 1$ )
  - 4.  $\forall a, b \text{ s.t. } a \leq b, P(a \leq X \leq b) = \int_a^b f(x) dx$
- Note:  $P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$
- Hence, to check if a function is a pdf,
- 1.  $f(x) \ge 0$  for  $x \in R_x$ , f(x) = 0 for  $x \notin R_x$
- 2.  $\int_{R_x} f(x) dx = 1$ .

#### **Cumulative Distribution Function**

Describes distribution of a RV *X*: cumulative distribution function (cdf), applicable for discrete or continuous RV.

$$F(x) = P(X \le x)$$

F(x) is non-decreasing and  $0 \le F(x) \le 1$ 

 Probability fn & cumulative distribution fn have one-to-one correspondence. For any probability fn given, the cdf is uniquely determined, vice versa.

#### CDF Discrete RV: Step Function F(x)

$$F(x) = \sum_{t \in R_x; t \le x} f(t)$$



- $P(a \le X \le b) = P(X \le b) P(X < a)$
- $P(a \le X \le b) = F(b) F(a-)$
- $P(a \le X \le b) = F(b) \lim_{x \to a^-} F(x)$
- $0 \le f(x) \le 1$
- c.d.f has to be **right continuous** (• —)

#### **CDF Continuous RV:** F(x)

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$impt: f(x) = \frac{d(F(x))}{dx}$$



- $P(a \le X \le b) = P(a < X < b) = F(b) F(a)$
- $0 \le f(x)$ .
- e.g.  $f(x) = 3x^2$  is a valid p.f. since  $\int_{R_x} f(x) dx = 1$

## **Expectation** $\mu$ & Variance $\sigma$

#### **Expectation of Random Variable:** $\mu$

• Mean of discrete RV:

$$\mu = E(X) = \sum_{x \in R_x} x_i f(x_i)$$

- E.g.: X discrete RV with p.m.f. f(x) and range  $R_X$   $\mu = E(g(x)) = \sum_{x \in R_x} g(x) f(x)$
- Mean of continuous RV:

$$\mu = E(X) = \int_{x \in R_x} x f(x) dx$$

- E.g.: X continuous RV with p.d.f. f(x) and range  $R_X$   $\mu = E(g(x)) = \int_{x \in R_n} g(x) f(x) dx$
- Properties of Expectation:
- E(aX + b) = aE(X) + b
- Linearity of expectation: E(X + Y) = E(X) + E(Y)

#### Variance of Random Variable: $\sigma$

$$\sigma_X^2 = V(X) = E[(X - \mu_X)^2]$$

• Variance of discrete RV:

$$V(X) = \sum_{x \in R_x} (x - \mu_X)^2 f(x)$$

• Variance of continuous RV:

$$V(X) = \int_{x \in R_x} (x - \mu_X)^2 f(x) dx$$

- $V(X) \ge 0$  and V(X) = 0 when X is a constant
- $V(aX + b) = a^2V(X)$
- alt. form:  $V(X) = E(X^2) (E(X))^2$
- Standard Deviation:  $\sigma_X = \sqrt{V(X)}$

## 3. Joint Distributions

- Consider more than 1 RV simultaneously,
- Given sample space S. Let X and Y be functions mapping  $s \in S \to \mathbb{R}$ : (X,Y) is 2D random vector.

**Range spc:** 
$$R_{X,Y} = \{(x,y)|x = X(s), y = Y(s), s \in S\}$$

• Discrete 2D RV:

# of possible values of (X(s),Y(s)) finite / countable

- Continuous 2D RV:
  - # of possible values of (X(s),Y(s)) assume any value in some region of the Euclidean space  $\mathbb{R}^2$
- If both X and Y are discrete/continuous, then (X, Y) is discrete/continuous respectively.

#### **Joint Probability Function**

• Joint Probability (mass) function, 2D discrete RV:

$$f_{X,Y}(x,y) = P(X = x, Y = y)$$

- $f_{X,Y}(x,y) \ge 0$  for any  $(x,y) \in R_{X,Y}$
- $-f_{X,Y}(x,y) = 0$  for any  $(x,y) \notin R_{X,Y}$
- $-\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_i) = 1$
- **-** Let  $A \subseteq R_{X,Y}$ .

$$P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y)$$

• Joint Probability (density) function, 2D cont. RV:

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$$

- $-f_{X,Y}(x,y) \ge 0$  for any  $(x,y) \in R_{X,Y}$
- $-f_{X,Y}(x,y)=0$  for any  $(x,y)\notin R_{X,Y}$
- $-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$  or equivalently:
- $-\int \int_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y) dx dy = 1$

## **Marginal Probability Function**

Marginal distribution of X is individual distribution of X, ignoring the value of Y. "Projection" of 2D function  $f_{X,Y}(x,y)$  to 1D function.

Let (X, Y) be 2D RV with joint probability function  $f_{X,Y}(x,y)$ :

If Y is discrete, 
$$f_X(x) = \sum_y f_{X,Y}(x,y)$$

If Y is **continuous**, 
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

- $f_Y(y)$  defined similarly
- $f_X(x)$  is a p.f., satisfies all properties of prob. fn.

#### **Conditional Distribution**

Let (X,Y) be 2D RV with joint probability function  $f_{X,Y}(x,y)$ . Then  $\forall x$  s.t.  $f_X(x) > 0$ : (X marg prob fn.) Conditional probability function of Y given X = x:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

- Intuition: Distribution of Y given X = x
- Only defined for x s.t.  $f_X(x) > 0$
- $f_{Y|X}(y|x)$  is a p.f. if we fix x, satisfies prop. of prob.fn.
- But,  $f_{Y|X}(y|x)$  is not a p.f. for x: No need for sum / integral over x = 1. Hence,

If 
$$f_X(x) > 0$$
:  $f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$   
If  $f_Y(y) > 0$ :  $f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$ 

- Probability  $Y \le y$ , Average Y given X = x
- $P(Y \le y|X = x) = \int_{-\infty}^{y} f_{Y|X}(y|x)dy$
- $E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$

#### **Independent Random Variables**

$$X \perp Y : \forall x, y, f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

• Necessary condition:  $R_{X,Y}$  must be a product space. i.e.  $R_{X,Y}=\{(x,y)|x\in R_X;y\in R_y\}=R_X\times R_Y$  Else, dependent.

#### **Properties of Independent RV**

#### For X, Y independent RV:

• If  $A, B \subseteq \mathbb{R}$ , then events  $X \in A$  and  $Y \in B$  are independent:

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y)$$

- Then,  $g_1(X)$  and  $g_2(Y)$  are **independent**, for arbitrary g.
- Conditional distribution given Independence:

$$f_X(x) > 0 \to f_{Y|X}(y|x) = f_Y(y)$$

$$f_Y(y) > 0 \to f_{X|Y}(x|y) = f_X(x)$$

#### To check independence

- 1.  $R_{X,Y}$  is a product space. i.e.  $R_X$  does not depend on Y, vice versa. (e.g. 0 < y < x is NOT a product space)
- 2. Additionally,  $f_{X,Y}(x,y) =$ some  $C * g_1(x)g_2(y)$  where  $g_1$  depends on x only and  $g_2$  depends on y only.

#### **Marginal Distribution under Independence**

- Since,  $f_{X,Y}(x,y) = f_X(x)f_Y(y)$  for independent RV, we derive marginal distribution by standardising  $g_1(x)$  and  $g_2(y)$ .
- For discrete:  $f_X(x) = \frac{g_1(x)}{\sum_{t \in R_X} g_1(t)}$
- For continuous:  $f_X(x) = \frac{g_1(x)}{\int_{t \in R_X} g_1(t)dt}$

#### **Expectation of a Random Vector**

Given 2 variable function g(x, y):

• If (X, Y) is discrete:

$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y)$$

• If (X, Y) is continuous:

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$$

• If  $X \perp Y$ :

$$E(XY) = E(X)E(Y)$$

• (If  $X \perp Y$ , follows that cov(X, Y) = 0). However, converse not always true.

#### Covariance

• For random variables X, Y:

$$cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

• If (X, Y) both **discrete**:

$$cov(X,Y) = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y)$$

• If (X, Y) both **continuous**:

$$cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) dx dy$$

- Alt: cov(X, Y) = E(XY) E(X)E(Y)
- Hence, for  $X \perp Y \rightarrow cov(X, Y) = 0$ . (However, converse not always true).
- Properties of covariance:
- cov(aX + b, cY + d) = (ac)cov(X, Y)
- $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab * cov(X, Y)$
- $X \perp Y \rightarrow V(X \pm Y) = V(X) + V(Y)$

## **4.1 Special Probability Distributions**

• **Discrete Distributions**: Study whole classes of discrete RVs that arise frequently in applications.

#### **Discrete Uniform Distribution**

• If X has values  $x_1, x_2, \dots, x_k$  with equal probability

$$f(x) \begin{cases} \frac{1}{k}, & \text{for } x = x_1, x_2, ..., x_k \\ 0, & \text{otherwise} \end{cases}$$

• Expectation:

$$\mu_X = E(X) = \sum_{i=1}^{k} x_i f_X(x_i) = \frac{1}{k} \sum_{i=1}^{k} x_i$$

• Variance:

$$\sigma_X^2 = V(X) = E(X^2) - (E(X))^2 = \frac{1}{k} \sum x_i^2 - \mu_X^2$$

#### Bernoulli, Ber(p)

- **Bernoulli Trial**: Random experiment has 2 possible outcomes (success and failure).
- **Bernoulli Random Variable**: *X* represents number of success in a single Bernoulli Trial. X has only two possible values: 1, or 0.
- Probability mass function: Let  $0 \le p \le 1$  be the probability of success in Bernoulli trial

$$f_X(x) = P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & otherwise \end{cases}$$

- $f_X(x) = p^x (1-p)^{1-x}$  for x = 0 or 1
- Bernoulli distr. is case of binomial distr. where n=1.
- Notation:  $X \sim Ber(p)$  and q = 1 p

$$f_x(1) = p, f_x(0) = q$$

- Expectation:  $\mu_X = E(X) = p$
- Variance:  $\sigma_X^2 = V(X) = p(1-p)$
- **Bernoulli Process**: Sequence of repeatedly performed independent and identical Ber. trials.
- Generates sequence of independent and identically distributed (i.i.d.) Ber. RVs:  $X_1, X_2, \cdots$

#### **Binomial Distribution,** B(n, p)

- **Binomial RV:** counts **number of successes** in *n* trials in a Ber. process.
- Given n independent trials with each trial having same probability p of success:

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

- Notation:  $X \sim B(n, p)$
- E(X) = np, V(X) = np(1-p)

The probability distribution of a Binomial random variable



# Negative Binomial Distribution, NB(k, p) ( $k^{th}$ success)

- Let X = no. of independent identical distributed Bernoulli(p) trials until  $k^{th}$  success occurs.
- Probability mass function of X:

$$P(X = x) = {x - 1 \choose k - 1} p^k (1 - p)^{x - k}$$

- Notation:  $X \sim NB(k, p)$
- $E(X) = \frac{k}{p}$  and  $V(X) = \frac{(1-p)k}{p^2}$

#### Geometric Distribution, G(p) (till $1^{st}$ success)

• Let X = no. of i.i.d. Bernoulli(p) trials until 1st success occurs.

$$P(X = x) = p(1 - p)^{x-1}$$

- Notation:  $X \sim G(p)$
- $E(X) = \frac{1}{p}$  and  $V(X) = \frac{1-p}{p^2}$

#### **Poisson Distribution**

• Poisson RV: Denotes number of events occurring in fixed period of time or fixed region, k = no. of occurrences.

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- Notation:  $X \sim Poisson(\lambda)$  where  $\lambda > 0$  is expected number of occurrences during given period/region
- $E(X) = \lambda$  and  $V(X) = \lambda$

The probability distribution of a Poisson random variable



The number of infections *X* in a hospital each week has been shown to follow a Poisson distribution with a mean of 3 infections per week. What is the probability that

- (a) there is no infection for a week?
- (b) there are *less than* 4 infections for a week?

We are given than  $X \sim \text{Poisson}(3)$ . Then required probabilities are

- (a)  $P(X=0)=e^{-3}$ .
- (b)  $P(X \le 3) = e^{-3} \left( 1 + 3 + \frac{3^2}{2!} + \frac{3^3}{3!} \right)$

#### **Poisson Process**

- Continuous time process, count number of occurrences within some interval of time. (given **rate**  $\alpha$ )
- Properties of **Poisson process with rate parameter**  $\alpha$ :
  - Expected no. of occurrences in interval length T:  $\alpha T$
  - No simultaneous occurrences, and no. of occurrences in disjoint intervals independent.
- Number of occurrences in any interval T of Poisson process follows  $Poisson(\alpha T)$  distribution. (Apply  $X \ Poisson(\alpha T)$  directly)

#### **Poisson Approximation of Binomial Distribution**

- Let  $X \sim B(n,p)$ . Suppose  $n \to \infty$  and  $p \to 0$  s.t.  $\lambda = np$  remains constant.
- Then, approximately,  $X \sim Poisson(\lambda)$ .

$$\lim_{p \to 0; n \to \infty} P(X = x) = \frac{e^{-np}(np)^x}{x!}$$

• Approximation is good when  $(n \ge 20 \text{ and } p \le 0.05)$ , or  $(n \ge 100 \text{ and } np \le 10)$ 

## 4.2 Special Probability Distributions

• **Continuous Distributions**: Many "natural" RVs whose set of possible values **uncountable**. Model with classes of continuous random variables.

## Continuous Uniform Distribution, U(a, b)

RV X follows uniform distribution over interval (a,b) if p.d.f. given by:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & otherwise \end{cases}$$

- Notation:  $X \sim U(a,b)$
- $E(X) = \frac{a+b}{2}$  and  $V(X) = \frac{(b-a)^2}{12}$  (derive by integration).
- Cumulative distr. func. c.d.f. is given by:

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$



## **Exponential Distribution,** $Exp(\lambda)$

• Continuous counterpart to **geometric distribution**. X follows exponential distribution, with parameter  $\lambda>0$  if p.f. is given by:

$$f_x(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- Notation:  $X \sim Exp(\lambda)$
- $\bullet$   $E(X)=\frac{1}{\lambda}$  and  $V(X)=\frac{1}{\lambda^2}$



- We can derive  $\lambda$  from mean / expectation of X, since  $E(X) = \frac{1}{\lambda}$ .
- c.d.f. is given by:

$$F_X(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

- Additionally,  $P(X > x) = e^{-\lambda x}$ , for x > 0.
- Exponential distribution "Memoryless": Suppose X has exponential distribution with  $\lambda > 0$ . Then for any positive numbers s and t, we have:

$$P(X > s + t | X > s) = P(X > t)$$

## Normal Distribution, $N(\mu, \sigma^2)$

X said to follow normal distribution with mean  $\mu$  and variance  $\sigma^2$  if p.f. given by:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Notation:  $X \sim N(\mu, \sigma^2)$
- $E(X) = \mu$  and  $V(X) = \sigma^2$
- p.f. is **bell-shaped curve and symmetric** about  $x = \mu$
- Total area under curve is 1
- 2 normal curves are identical in shape if they have same  $\sigma^2$ . They differ in location by  $\mu_1 \mu_2$ .
- As  $\sigma$  increases, curve becomes more spread out
- If  $X \sigma N(\mu, \sigma^2)$  and let  $Z = \frac{X \mu}{\sigma}$



#### Standardized Normal Distribution, Z = N(0, 1)

If  $X \sim N(\mu, \sigma^2)$ , then  $Z \sim N(0, 1)$ :

$$Z = \frac{X - \mu}{\sigma}$$

• E(Z) = 0 and V(Z) = 1

• p.f of Z is given by:

$$\phi(z) = f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$

- **Standardizing normal distribution** allows us to use tables to find probabilities:
- For  $X \sim N(\mu, \sigma^2)$ , compute  $P(x_1 < X < x_2)$  by standardization:

$$x_1 < X < x_2 \leftrightarrow \frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{x_2 - \mu}{\sigma}$$

- Then,  $P(z_1 < Z < z_2)$ , use  $f_Z(z)$  table to calculate.
- Cumulative d.f. of standard Normal:

$$\Phi(z) = F_Z(z) = \int_{-\infty}^z f_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} dt$$

- $P(Z \ge 0) = P(Z \le 0) = \phi(0) = 0.5$
- For any z,

$$\Phi(z) = P(Z \le z) = P(Z \ge -z) = 1 - \phi(-z)$$

- $-Z \sim N(0,1)$
- If  $Z \sim N(0,1)$ , then  $\sigma Z + \mu \sim N(\mu, \sigma^2)$

#### **Ouantile**

• Upper Quantile:  $x_{\alpha}$  that satisfies:

$$P(X \ge x_{\alpha}) = \alpha$$

• where  $0 \leq \alpha \leq 1$ .



- e.g. The 0.05th (upper) quantile of  $Z \sim N(0,1)$  is 1.645, i.e.  $z_{0.05} = 1.645$ .
- $P(Z > z_{\alpha}) = P(Z < -z_{\alpha}) = \alpha$
- Upper  $z_{\alpha} = \text{Lower } z_{1-\alpha}$

#### Normal Approximation to Binomial Distribution

Let  $X \sim B(n, p)$ , then as  $n \to \infty$ :

$$Z = \frac{X - E(X)}{\sqrt{V(X)}} = \frac{X - np}{\sqrt{np(1 - p)}} \sim N(0, 1)$$

• Approximation is good when np > 5 and n(1-p) > 5

# **5. Sampling, Sampling Distributions Population and Sample**

- Statistical Inference: Infer about population w. sample.
- Population: Totality of all possible obsv / outcomes.
- Sample: Subset of population
- Observation can be numerical or categorical
- Population can be Finite or Infinite.

#### **Random Sampling**

• Motivation: Often know what distribution population belongs to, but we not the parameters of distribution. Hence, use sample to estimate the parameters.

#### **Single Random Sample**

• Simple Random Sample (SRS): Sample of size n. Every subset of n observations (total  $\binom{N}{n}$ ) equal chance of selection.

#### **SRS for Infinite Population**

- For X be RV with certain p.f.  $f_X(x)$ :
- Let  $X_1, X_2, \dots, X_n$  be n independent RV with same distribution as X. Then  $X_1, \dots, X_n$  is a **simple random sample** of size n.
- Joint probability function of  $X_1, \cdots, X_n$ : (product)

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = f_X(x_1)f_X(x_2)\dots f_X(x_n)$$

#### **Sampling with Replacement (as Infinite)**

- **Sampling with replacement** from finite population is considered as sampling from **infinite population**.
- Sample is random if:
  - Every element in population has same probability
  - Successive draws are independent

#### Sample Distribution of Sample Mean

- Statistic: Suppose random sample of n observations is  $X_1, \dots, X_n$ . A statistic is a function of  $X_1, \dots, X_n$
- Sample Mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Sample Variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• Statistics are random variables. If values in random sample observed, calculate **realization** of the statistic. Meaningful to consider distribution of statistics.

#### **Sampling Distribution**

#### Distribution of a statistic

• Mean and variance of  $\bar{X}$ :

$$E(\bar{X}) = \mu$$
 and  $V(\bar{X}) = \frac{\sigma_X^2}{n}$ 

 $\mu_X$  is unknown constant.  $\bar{X}$  serves as valid estimator for  $\mu_X$ . As n increases, accuracy of  $\bar{X}$  increases.

- Standard Error: Standard deviation of sampling distribution (e.g.  $\sigma_{\bar{X}}$ ), describes how much  $\bar{X}$  tends to vary from sample to sample of size n.
- Law of Large Numbers: As n increases,  $\bar{X}$  converges to  $\mu_X$ . i.e. For any  $\epsilon \in \mathbb{R}$ :

$$P(|\bar{X} - \mu| > \epsilon) \to 0 \text{ as } n \to \infty$$

As n increases, probability that sample mean differs from population mean goes to zero.

#### **Central Limit Theorem**

 $\bar{X}$ , mean of random sample of size n from population with mean  $\mu$  and variance  $\sigma^2$ , then as  $n \to \infty$ :

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 approximately

- For large  $n, \bar{X}$  is approximately normally distributed.
- ullet If random sample is from normal population,  $\bar{X}$  is normally distributed no matter value of n
- If very skewed, CLT may not hold even with large n.

#### **Other Sampling Distributions**

## $\chi^2(n)$ (Chi) Distribution

- Let  $Z_1, \dots, Z_n$  be n independent and identically distributed standard normal RVs.
- A  $\chi^2$  RV with n degrees of freedom is defined as a RV with same distribution as  $Z_1^2+\cdots+Z_n^2$
- Notation:  $\chi^2(n)$  with n degrees of freedom
- If  $Y \sim \chi^2(n)$ , then E(Y) = n and V(Y) = 2n
- For large  $n, \chi^2(n)$  is approximately N(n, 2n)
- If  $Y_1$  and  $Y_2$  are independent  $\chi^2$  RVs with m and n degrees of freedom respectively, then  $Y_1 + Y_2$  is  $\chi^2(m+n)$
- $\chi^2$  distribution is a family of curves. All density functions have long right tail.

## Sampling Distribution of $S^2$

• 
$$E(S^2) = \sigma^2$$

## Sampling Distribution of $\frac{(n-1)S^2}{\sigma^2}$

If  $S^2$  is variance of random sample of size n from normal population of variance  $\sigma^2$ , then:

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2}$$

has 
$$\chi^2(n-1)$$
 distribution

Suppose 6 random samples are drawn from a normal population  $N(\mu, 4)$ . Define the sample variance

$$S^{2} = \frac{1}{5} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Find c such that  $P(S^2 > c) = 0.05$ .

Solution

We know that  $\frac{5S^2}{4} \sim \chi^2(5)$ . Hence,

$$P(S^2 > c) = 0.05$$
  
 $\Leftrightarrow P(5S^2/4 > 5c/4) = 0.05$   
 $\Leftrightarrow 5c/4 = \chi^2(5; 0.05) = 11.07$   
 $\Leftrightarrow c = 8.86.$ 

#### **t-Distribution** t(n)

Suppose  $Z \sim N(0,1), U \sim \chi^2(n)$ . If Z, U independent:

$$T = \frac{Z}{\sqrt{U/n}} \sim t(n)$$

where t(n) is t-distribution with n degrees of freedom

- t-Distribution approaches N(0,1) as  $n \to \infty$ . When  $n \ge 30$ , t-dist approx normal, replace by N(0,1).
- Expectation, Variance: If  $T \sim t(n)$ , then E(T) = 0 and  $V(T) = \frac{n}{n-2}$  for n > 2
- Symmetric about vertical axis and resembles standard normal distribution
- Critical value for t-distribution  $t_{n;\alpha}$ : number with right hand tail probability of  $\alpha$ .



• If  $X_1, \dots, X_n$  are independent and identically distributed normal RVs with mean  $\mu$  and variance  $\sigma^2$ , then:

$$t.value = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

#### i.e. follows t distribution with n-1 degrees of freedom.

#### L-EXAMPLE 5.12

A manufacturer of light bulbs claims that his light bulbs will burn on the average  $\mu=500$  hours. To maintain this average, he tests 25 bulbs each month.

If the computed t value,  $\frac{x-\mu}{s/\sqrt{n}}$ , falls between  $-t_{24;0.05}$  and  $t_{24;0.05}$ , he is satisfied with his claim.

What conclusion should be drawn from a sample that has a mean  $\equiv$ 518 hours and a standard deviation s = 40 hours? Assume that the distribution of burning times in hours is approximately normal.

#### Solution

From the *t*-table or software,  $t_{24:0.05} = 1.711$ .

Therefore, the manufacturer is satisfied with his claim if a sample of 25 bulbs yields a t-value between -1.711 and 1.711.

If 
$$\mu = 500$$
, then

$$t = \frac{518 - 500}{40/5} = 2.25 > 1.711.$$

Note that if  $\mu > 500$ , then the value of t computed from the sample would be more reasonable. Hence the manufacturer is likely to conclude that his bulbs are a better product than he thought.

#### **F-Distribution** F(m, n)

Suppose  $U \sim \chi^2(m)$  and  $V \sim \chi^2(n)$  independent:

$$F = \frac{U/m}{V/m} \sim F(m, n)$$

#### i.e. F-distribution with (m,n) degrees of freedom

• If  $X \sim F(m, n)$ , then **mean**:

$$E(X) = \frac{n}{n-2} \text{ for } n > 2$$

and variance:

$$V(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \text{ for } n > 4$$

Values of the *F*-distribution can be found in the statistical tables or software.
 The values of interests are *F*(*m*, *n*; α) such that

$$P(F > F(m, n; \alpha)) = \alpha$$

where  $F \sim F(m, n)$ .

· It can be shown that

$$F(m,n;1-\alpha)=1/F(n,m;\alpha).$$

• If  $F \sim F(m, n)$ , then  $1/F \sim F(n, m)$ 

#### L-EXAMPLE 5.15

Let  $S_1^2$  and  $S_2^2$  be the sample variances of independent random samples of sizes  $n_1 = 25$  and  $n_2 = 31$ , taken from normal populations with variances  $\sigma_1^2 = 10$  and  $\sigma_2^2 = 15$  respectively. Find  $P(S_1^2/S_2^2 > 1.26)$ .

#### Solution:

Note that

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1),$$

which gives

$$\frac{S_1^2/10}{S_2^2/15} \sim F(24,30).$$

Thus

$$P\left(\frac{S_1^2}{S_2^2} > 1.26\right) = P\left(\frac{S_1^2/10}{S_2^2/15} > 1.26 \times \frac{15}{10}\right)$$
$$= P(F > 1.89) = 0.05.$$

Note that here  $F \sim F(24,30)$ .

#### 06. Estimation

#### **Point Estimation for Mean**

- Single number to estimate population parameter
- Point EstimatorFormula that describes this calculation
- Point EstimateResult of point estimator
- Notation:  $\theta$  represents parameter of interest.  $\theta$  can be p,  $\mu$ ,  $\sigma$ , etc.

#### **Unbiased Estimator**

Let  $\hat{\theta}$  be an estimator of  $\theta$ . Then  $\hat{\theta}$  is unbiased if:

$$E(\hat{\theta}) = \theta$$

#### **Maximum Error of Estimate**

- Motivation: Usually  $\bar{X} \neq \mu$ . So  $\bar{X} \mu$  measures difference between estimator and parameter
- Let  $z_{\alpha}$  be  $\alpha$ th upper quantile of standard normal distribution Z. i.e.  $P(Z>z_{\alpha})=\alpha$

$$P(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}) = P(|\bar{X} - \mu| \le z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

• Maximum Error of EstimateGiven probability  $1 - \alpha$ :

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

#### **Determination of Sample Size**

Given probability  $1 - \alpha$  and maximum error E, what is the minimum sample size n?

$$n \ge (\frac{z_{\alpha/2}\sigma}{E})^2$$

#### **Different Cases**

|     | Population | σ       | n       | Statistic                                          | E                                            | n for desired                                          | l |
|-----|------------|---------|---------|----------------------------------------------------|----------------------------------------------|--------------------------------------------------------|---|
|     | _          |         |         |                                                    |                                              | $E_0$ and $\alpha$                                     | ľ |
|     |            |         |         |                                                    |                                              | ( 2)                                                   | - |
| I   | Normal     | known   | anv     | $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ | $z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$ | $\left(\frac{z_{\alpha/2} \cdot \sigma}{F_0}\right)^2$ | I |
| -   |            |         |         | $-\sigma/\sqrt{n}$                                 | $\sqrt{n}$                                   | $\setminus E_0$                                        | Γ |
|     |            |         |         |                                                    |                                              |                                                        | L |
|     |            |         | _       | _ <u>\overline{X}_u</u>                            | σ                                            | $(z_{\alpha/2} \cdot \sigma)^2$                        | Ī |
| II  | any        | known   | large   | $Z = \frac{\Lambda}{\sigma/\sqrt{n}}$              | $z_{\alpha/2} \cdot \frac{1}{\sqrt{n}}$      | $\left(\frac{z_{\alpha/2}\cdot\sigma}{E_0}\right)^2$   | L |
|     |            |         |         |                                                    | V.,                                          | 20 /                                                   | ľ |
|     |            |         |         |                                                    |                                              |                                                        | - |
| III | Normal     | unknown | small   | $T = \overline{X} - \mu$                           | t                                            | $\left(\frac{t_{n-1;\alpha/2}\cdot s}{E_0}\right)^2$   |   |
|     | 1401111111 | ununomi | Dirican | $I = S/\sqrt{n}$                                   | $\sqrt{n-1};\alpha/2$ $\sqrt{n}$             | $\mid \setminus E_0 \mid$                              | L |
|     |            |         |         |                                                    |                                              |                                                        | I |
|     |            |         |         | <u>v</u> ,,                                        | S                                            | $(z_{\alpha/2} \cdot s)^2$                             | 1 |
| IV  | any        | unknown | large   | $Z = \frac{\lambda - \mu}{S/\sqrt{n}}$             | $z_{\alpha/2} \cdot {\sqrt{n}}$              | $\left(\frac{z_{\alpha/2} \cdot s}{E_0}\right)^2$      | 1 |
|     |            |         |         | _, v                                               | $\sqrt{n}$                                   | LO /                                                   |   |
|     |            |         |         |                                                    |                                              |                                                        | 1 |

#### **Confidence Interval for Mean**

- Interval Estimator Rule for calculating an interval (a,b) in which we are fairly certain the parameter lies
- Confidence LevelProbability that interval contains parameter. i.e.  $1-\alpha$

$$P(a < \mu < b) = 1 - \alpha$$

• Confidence IntervalInterval calculated by interval estimator. i.e. (a, b)

#### Case 1: $\sigma$ known, data normal

Previously:

$$P(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{a/2}) = 1 - \alpha$$

By rearranging, the  $1 - \alpha$  confidence interval is:

$$(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$$

#### **Other Cases**

| Case | Population | σ       | n     | Confidence Interval                               |
|------|------------|---------|-------|---------------------------------------------------|
| I    | Normal     | known   | any   | $\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$  |
| II   | any        | known   | large | $\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$  |
| III  | Normal     | unknown | small | $\bar{x} \pm t_{n-1;\alpha/2} \cdot s / \sqrt{n}$ |
| IV   | any        | unknown | large | $\bar{x} \pm z_{\alpha/2} \cdot s/\sqrt{n}$       |

• n is considered large when  $n \ge 30$ 

#### **Comparing 2 Populations**

Goal: Make inference on  $\mu_1 - \mu_2$ 

#### Experimental Design

Independent SamplesCompletely randomized

Matched Pairs SamplesRandomization between

matched Pairs Samples Randomization betwee matches pairs

# Independent Samples: Known and Unequal Variance

Assumptions:

- 1. Given: Random sample of size  $n_1$  from population 1 with  $\mu_1$  and  $\sigma^2$  and random sample of size  $n_2$  from population 2 with  $\mu_2$  and  $\sigma^2$
- 2. 2 samples are independent
- 3. Population variances are known and  $\sigma_1^2 \neq \sigma_2^2$
- 4. Both populations are normal OR  $n_1 \ge 30$  and  $n_2 \ge 30$  Let  $X_1, \dots, X_{n_1}$  and  $Y_1, \dots, Y_{n_2}$  be random samples:

$$E(\bar{X})=\mu_1$$
 ,  $V(\bar{X})=\frac{\sigma_1^2}{n_1}$  ,  $E(\bar{Y})=\mu_2$  ,  $V(\bar{Y})=\frac{\sigma_2^2}{n_2}$ 

$$E(\bar{X} - \bar{Y}) = \mu_1 - \mu_2, V(\bar{X} - \bar{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

Thus, by normalizing RV  $\bar{X} - \bar{Y}$  and using assumption 4:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Thus, the  $100(1-\alpha)\%$  confidence interval for  $\mu_1 - \mu_2$  is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

# **Independent Samples: Unknown and Unequal Variance**

Assumptions:

- 1. Given: Random sample of size  $n_1$  from population 1 with  $\mu_1$  and  $\sigma^2$  and random sample of size  $n_2$  from population 2 with  $\mu_2$  and  $\sigma^2$
- 2. 2 samples are independent
- 3. Population variances are unknown and  $\sigma_1^2 \neq \sigma_2^2$
- 4.  $n_1 \ge 30$  and  $n_2 \ge 30$

Since  $\sigma_1$  and  $\sigma_2$  are unknown, we use the standard error instead:

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$
,  $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$ 

Thus, by normalizing RV  $\bar{X} - \bar{Y}$  and using assumption 4:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

Thus, the  $100(1-\alpha)\%$  confidence interval for  $\mu_1 - \mu_2$  is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

#### **Independent Samples: Small** *n***, Unknown and Equal Variance**

#### Assumptions:

- 1. Given: Random sample of size  $n_1$  from population 1 with  $\mu_1$  and  $\sigma^2$  and random sample of size  $n_2$  from population 2 with  $\mu_2$  and  $\sigma^2$
- 2. 2 samples are independent
- 3. Population variances are unknown and  $\sigma_1^2 = \sigma_2^2$
- 4.  $n_1 < 30$  and  $n_2 < 30$
- 5. Both populations are normally distributed

Thus, by normalizing RV  $\bar{X} - \bar{Y}$  and using assumptions 3 and 4:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

where  $S_p$  is the pooled sample variance, which estimates

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Thus, the  $100(1-\alpha)\%$  confidence interval for  $\mu_1 - \mu_2$  is:

$$(\bar{X} - \bar{Y}) \pm t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

#### **Independent Samples:** Large n, Unknown and **Equal Variance**

#### Assumptions:

- 1. Given: Random sample of size  $n_1$  from population 1 with  $\mu_1$  and  $\sigma^2$  and random sample of size  $n_2$  from population 2 with  $\mu_2$  and  $\sigma^2$
- 2. 2 samples are independent
- 3. Population variances are unknown and  $\sigma_1^2 = \sigma_2^2$
- 4.  $n_1 \ge 30$  and  $n_2 \ge 30$

By applying CLT on assumption 4, we can replace  $t_{n_1+n_2-2:\alpha/2}$  with  $z_{\alpha/2}$ . Thus, the  $100(1-\alpha)\%$ confidence interval for  $\mu_1 - \mu_2$  is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

#### **Paired Data**

#### Assumptions:

- 1. Given:  $(X_1, Y_1), \dots, (X_n, Y_n)$  are matched pairs, where  $X_1, \dots, X_n$  is random sample from population 1 and  $Y_1, \dots, Y_n$  is random sample from population 2
- 2.  $X_i$  and  $Y_i$  are dependent
- 3.  $(X_i, Y_i)$  and  $(X_i, Y_i)$  are independent for any  $i \neq j$ Define  $D_i = X_i - Y_i$ ,  $\mu_D = \mu_1 - \mu_2$ . We can treat  $D_1, \cdots, D_n$  as random sample from single population with  $\mu_D$  and  $\sigma_D^2$ . Consider the statistic:

$$T = \frac{\bar{D} - \mu_D}{S_D/\sqrt{n}}, \text{ where } \bar{D} = \frac{\sum_{i=1}^n D_i}{n} \text{ and } S_D^2 = \frac{\sum_{i=1}^n (D_i - \bar{D})^2}{n - 1} \text{ Step 3: Test Statistic, Distribution, and Rejection}$$

If n < 30 and population is normally distributed:

$$T \sim t_{n-1}$$

Thus, if n < 30 and the population is normally distributed, the  $100(1-\alpha)\%$  confidence interval for  $\mu_D$  is:

$$\bar{d} \pm t_{n-1;\alpha/2} \frac{S_D}{\sqrt{n}}$$

If n > 30:

$$T \sim N(0, 1)$$

Thus, if  $n \ge 30$ , the  $100(1 - \alpha)\%$  confidence interval for  $\mu_D$  is:

$$\bar{d} \pm z_{\alpha/2} \frac{S_D}{\sqrt{n}}$$

## 07. Hypothesis Testing

#### **Steps for Hypothesis Testing**

#### **Step 1: Null Hypothesis and Alternative Hypothesis**

- Null Hypothesis $H_0$  Statement that parameter takes some value
- Alternative Hypothesis $H_1$  Statement that parameter falls in alt. range
- 2-Sided TestIf  $H_1$  is "Parameter is  $\neq$  to value under  $H_0$ "
- **Right-Sided Test**If  $H_1$  is "Parameter is > to value under  $H_0$ "
- Left-Sided TestIf  $H_1$  is "Parameter is < to value under  $H_0$ "

#### **Step 2: Level of Significance**

|                | Do not reject $H_0$ | Reject H <sub>0</sub> |
|----------------|---------------------|-----------------------|
| $H_0$ is true  | Correct Decision    | Type I error          |
| $H_0$ is false | Type II error       | Correct Decision      |

• Level of Significance  $\alpha$  Probability of rejecting  $H_0$  when it is true. i.e.

$$\alpha = P(\text{Type I error})$$

• Power of the Test  $1 - \beta = P(\text{Reject } H_0 | H_0 \text{ is false})$ where

• **Test Statistic**Statistic used to see how far away from  $H_0$ the data is

#### **Step 4: Conclusion**

Given test statistic, determine if it is in the rejection region:

- If it is, reject  $H_0$  and fail to reject  $H_1$
- Otherwise, fail to reject  $H_0$

## **Hypotheses for Mean**

#### Case 1: Known Variance

Assumptions:

- 1. Population variance is known
- 2. Underlying distribution is normal OR  $n \ge 30$ Steps:
- 1. Set null and alternative hypotheses. e.g.

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$$

- 2. Set level of significance
- 3. With  $\sigma^2$  known and population normal (or  $n \ge 30$ ), the test statistic is:

$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Rejection region, where we let observed value of Z be

- $H_1: \mu \neq \mu_0: z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2}$
- $H_1: \mu < \mu_0: z < -z_{\alpha}$
- $H_1: \mu > \mu_0: z > z_0$



- **p-Value**Conditional probability that test statistic is as extreme as observed value, given  $H_0$  is true
- $H_1: \mu \neq \mu_0: p = 2P(Z < -|z|)$
- $H_1: \mu < \mu_0: p = P(Z < -|z|)$
- $H_1: \mu > \mu_0: p = P(Z > |z|)$



- 4. Rejection region: If z is inside rejection region, reject  $H_0$ . Otherwise do not reject.
  - p-Value: If p is less than  $\alpha$ , reject  $H_0$ . Otherwise do not reject.

#### Case 2: Unknown Variance

#### Assumptions:

- 1. Population variance is unknown
- 2. Underlying distribution is normal
- Test statistic:

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$

- Rejection region:
  - $-H_1: \mu \neq \mu_0: t < -t_{n-1;\alpha/2} \text{ or } t > t_{n-1;\alpha/2}$
  - $-H_1: \mu < \mu_0: t < -t_{n-1:\alpha}$
  - $-H_1: \mu > \mu_0: t > t_{n-1;\alpha}$
- When  $n \ge 30$ , we can replace  $t_{n-1}$  by Z

#### **Comparing Means: Independent Samples**

• Motivation: Given 2 independent samples from 2 populations, interested in testing  $H_0: \mu_1 - \mu_2 = \delta_0$ 

#### Rejection Regions and p-Values

| $H_1$                         | Rejection Region                          | <i>p</i> -value |
|-------------------------------|-------------------------------------------|-----------------|
| $\mu_1 - \mu_2 > \delta_0$    | $z > z_{\alpha}$                          | P(Z> z )        |
| $\mu_1 - \mu_2 < \delta_0$    | $z < -z_{\alpha}$                         | P(Z<- z )       |
| $\mu_1 - \mu_2 \neq \delta_0$ | $z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$ | 2P(Z> z )       |

#### Case 1: Known Variance

#### Assumptions:

- 1. Population variances are known
- 2. Underlying distributions are normal OR  $n_1 \ge 30$  and  $n_2 \ge 30$
- Test statistic:

$$Z = \frac{(\bar{X} - \bar{Y}) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

#### Case 2: Unknown Variance

#### Assumptions:

- 1. Population variances are unknown
- 2.  $n_1 \ge 30 \text{ and } n_2 \ge 30$
- Test statistic:

$$Z = \frac{(\bar{X} - \bar{Y}) - \delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

#### Case 3: Unknown, Equal Variance

#### Assumptions:

- 1. Population variances are unknown but equal
- 2. Underlying distributions are normal
- 3.  $n_1 < 30$  and  $n_2 < 30$
- Test statistic:

$$Z = \frac{(\bar{X} - \bar{Y}) - \delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

#### **Comparing Means: Paired Data**

- Intuition: Get difference, then use methods from single samples
- Define  $D_i = X_i Y_i$ . For  $H_0: \mu_D = \mu_{D_0}$ , test statistic:

$$T = \frac{\bar{D} - \mu_{D_0}}{S_D / \sqrt{n}}$$

- If n < 30 and population is normally distributed,  $T \sim t_{n-1}$
- If  $n > 30, T \sim N(0, 1)$

#### 08. Miscellaneous

#### **Integration by Parts**

$$\int u dv = uv - \int v du$$

• How to choose u? LIPET