9 Months Progress Report

Louis Onrust CLS, Radboud University ESAT-PSI, KU Leuven

September 29, 2014

Overview

- ► Scope of the project
- Bayesian language models
- Results
- ► Research plan
- Side projects
- Reflections
- Formalities

Scope of the project

Scope

- Language models
- Latent variable models
- ► Domain-dependence of LVLM
- ► Intrinsic & extrinsic evaluation

Goal

Bring back language modelling in Bayesian language modelling

Bayesian Language Model

- ► The goal is to derive the partition underlying the data
- But we only have the word counts

Clustering

- ▶ Each *n*-gram is a cluster
- ► Each *n* is a layer
- **Each** history is in a cluster at the (n-1)th layer

Hierarchical Pitman-Yor Chinese Restaurant Process

- ▶ CRP and DPCRP give logarithmic growth
- Language manifests typically in power law growth
- PYCRP as generalisation of CRP and DPCRP
 - **CRP** No parameters
 - DPCRP Concentration parameter α
 - PYCRP Concentration parameter α and discount parameter γ

Bayesian Language Model: The Implementation

Implementation

We use the following software:

cpyp an existing C++ framework on BNP with PYP priors colibri an existing C++ pattern model framework

Advantages

- ▶ We can now handle many patterns such as *n*-grams, skipgrams and flexgrams
- Tresholding patterns on many levels
- Efficient storage of patterns

Results

Data sets

- JRC English
- ► Google 1 billion words
- EMEA English

Backoff methods

- ▶ n-gram backoff
- Limited recursive backoff
- ► Full recursive backoff

Evaluation measure Intrinsic evaluation with perplexity

Summary

- Within domain evaluation yields best performance
- Adding skipgrams increases performance on cross domain evaluation
- ▶ For generic corpora, limited recursive backoff performs best
- Seems to outperform Generalised Language Model
- ▶ If significant, perhaps not enough for extrinsic evaluation

Results: Within domain versus cross domain

Training with only *n*-grams

	jrc	1bw	emea
jrc	13	1195	961
1bw	768	158	945
emea	600	1143	4

Training with both *n*-grams and skipgrams

	jrc	1bw	emea
jrc	13	1162	939
1bw	751	162	921
emea	581	1155	4

Relative differences

	jrc	1bw	emea
jrc	2.0	-2.8	-2.3
1bw	-2.2	2.4	-2.6
emea	-3.2	1.1	0.7

Results: Effects of different backoff methods

	<i>n</i> -grams			Skipgrams			
		jrc	1bw	emea	jro	1bw	emea
jrc	ngram	13	1510	1081	13	3 1843	1295
	limited	14	1477	1122	13	3 1542	1149
	full	69	1195	961	65	1195	939
1bws	ngram	768	158	946	879	163	1105
	limited	815	185	1025	751	162	921
	full	801	264	1039	768	3 252	988
emea	ngram	769	1552	4	969	2089	4
	limited	779	1385	4	838	3 1655	4
	full	600	1143	32	581	l 1155	32

Research Plan

Focus

Cross domain language modelling with skipgrams

Experiments

- Validate significance by testing multiple languages
- Investigate influence skipgrams with qualitative analysis
- When we find a more substantial drop in perplexity:
 - Machine translation experiments
 - Automated speech recognition experiments
- Investigate multi-domain language models

Writing in progress

- TACL journal paper on our findings
 - ► ACL, EMNLP, ICASSP, ...
- Background/Methodology section of PhD thesis

Side Projects

Parsimonious Language Models

The goal is to model the differences between corpora

- Only store salient differences:
 - document-specific terms and patterns
 - domain-specific terms and patterns

Realistic Motif Detection

The goal is to find motifs in folk tales at a sentential level

- ► Take order of motifs in consideration
- Sentences can take any number of motifs
- Un-, semi-, and supervised learning
- Incorporation of domain and genre knowledge

Reflections

Struggling with reproducing results

- No data or code provisional
- Instructions unclear and fuzzy
- Fast pacing and non-dedicated research lines

Missed the boat

- ► Good ideas, but obviated by other publications
 - ▶ HPYLM with $n \to \infty$: Stochastic Memoiser
 - Bayesian PLM

Little help from outside, but learned anyway

- A lot of literature, but confusing or contradicting
- Still a relative small research community
- Good foundation for further work

Formalities

Teaching and Supervision

- Supervision of master students in a competition on sentiment analysis
- Supervision of a master student for a task to predict reduction in speech

Training and Education

Participated

- Academic writing
- Research methods and methodology
- Applied Bayesian statistics school on Bayesian non-parametrics

To participate in

- Mathematical methods
- Presentation skills
- Any relevant event