Algebraic geometry 1 Exercise sheet 8

Solutions by: Eric Rudolph and David Čadež

7. Dezember 2023

Exercise 1.

1. Let $I\subseteq A$ be an ideal, which is finite locally free. Take some $f=up_1^{a_1}\dots p_r^{a_r}\in I.$

Pick some $D(g_i)$ such that $(p_i) \in D(g_i)$ and $(p_j) \notin D(g_i)$ (for all $j \neq i$) and I_{g_i} finitely generated A_{g_i} -module (not sure if free-ness is preserved by making neighborhoods smaller). We can do that by taking g_i' to be such that $I_{g_i'}$ is a finite free module and then letting $g_i = g_i' \prod_{j \neq i} p_j$.

That means I_{g_i} is finitely generated. Note that we can also assume, that $D(g_i)$ is small enough that I_{g_i} is generated by a single element, while still $(p_i) \in D(g_i)$. We could do this for example by taking generators of I_{g_i} , writing prime decomposition of each one and then $g_i := pg_i$ for each prime $p \neq p_i$ that appears in some decomposition. So $I_{g_i} = (h_i)$ for some $h_i \in A_{g_i}$. Since $f = u'p_i^{a_i} \in I_{g_i}$, we must have $h_i = p_i^{c_i}$ (up to multiplication with a unit) for some c_i .

This way we obtain open subsets $D(g_i)$ each of which contains only their respective $(p_i) \in \operatorname{Spec}(A)$. To get an open cover, we need to add principal opens D(g'), which can be chosen to not contain any (p_i) . Therefore localizations $I_{g'}$ will be equal to $A_{g'}$, because they invert $f \in I$. So on D(g') any element $\in A$ will satisfy the condition.

Now we show that it is enough to check whether $a \in I$ (for element $a \in A$) on a cover with principal opens.

We use the following result: Let $(g_1, \ldots, g_n) = A$ be an open cover. If for an A-module M, the localizations $M_{g_i} = 0$ for every i, then M = 0.

We apply it to this case: If we have an element $a \in A$ and we want to check if $a \in I$, we can set $M = A_a/I_a$ an A_a -module and $(g_1, \ldots, g_n) = A$ an open cover. If we know $a \in I_{g_i}$ for every i, then $A_{ag_i}/I_{ag_i} = 0$ for every i, and thus $A_a/I_a = 0$, so $a \in I$.

This demonstrates that $I \supseteq (p_1^{c_1} \dots p_r^{c_r})$, and the other inclusion is obvious.

Now it is clear that $a \in I$ if and only if $p_i^{c_i} \mid a$ for every $i = 1, \ldots, r$. This proves that $I = (p_1^{c_1} \ldots p_r^{c_r})$.

2. Pick any invertible A-module M.

Then M is finite locally free.

Pick any non-zero homomorphism $\varphi \in \operatorname{Hom}_A(M,A)$. We first show that it is injective (using stackexchange): Let $K = \operatorname{Quot}(A)$. Then $K \otimes M \cong K$, since M is locally free of rank 1 by assumption. Then $\varphi \colon M \to A$ induces $\varphi \otimes \operatorname{id} \colon M \otimes K \to A \otimes K$. Since M is torsion free, we have an embedding $M \to M \otimes K$. Since φ is non-zero, so is $\varphi \otimes \operatorname{id}$. Since $M \otimes K$ and $A \otimes K$ are 1-dimensional vector spaces and $\varphi \otimes \operatorname{id}$ a bijection, φ is injective.

The image $\varphi(M)$ is an ideal in A. Since M is finite locally free and φ injective, the image $\varphi(M)$ is also finite locally free. By the previous part, we get that $\varphi(M)$ is principal and thus isomorphic to A (since A is a domain). So $M \cong \varphi(M) \cong A$. Since every invertible ideal is isomorphic to A, we have that $\operatorname{Pic}(A) = 0$.

Exercise 2. Note that for a unique factorization domain A we get by Gauss that also $A[x_1, \ldots, x_n]$ is a unique factorization domain. This means that by construction of \mathbb{P}_A^n its local rings are UFD's. Using stacks project, we infer that $\operatorname{Pic}(\mathbb{P}_A^n) \cong \operatorname{CL}(\mathbb{P}_A^n) = \mathbb{Z}$.

We now want to give a concrete argument using the given map.

Note that by definion $\mathcal{O}_A^n(0)$ is just the structure sheaf and since maps of groups send 1 to 1, we found the neutral element of this group. One can also check locally that

$$O_{\mathbb{P}^n_A}(m) \otimes_{O_{\mathbb{P}^n_A}} O_{\mathbb{P}^n_A}(n) = O_{\mathbb{P}^n_A}(m+n).$$

This also proves that the given map maps to $Pic(\mathbb{P}_A^n)$.

It is also quite clear by definition that for $m \neq n$ we have

$$O_{\mathbb{P}^n_A}(m) \not\cong O_{\mathbb{P}^n_A}(n).$$
 (1)

which gives us injectivity. It remains to show surjectivity of this map.

We have to show that any invertible $\mathcal{O}_{\mathbb{P}^n_k}$ -module is $\mathcal{O}_{\mathbb{P}^n_k}(d)$ for some $d \in \mathbb{Z}$. By the previous exercise, for every invertible sheaf \mathcal{M} we have $\mathcal{M}(U_i) \cong \mathcal{O}_{U_i}$, where \mathcal{O}_{U_i} is the structure sheaf on affine U_i . This mean that \mathcal{M} will be defined by gluing rules. We need to define ring maps $\mathcal{M}(U_{i,j}) \to \alpha_{i,j}^* \mathcal{M}(U_{j,i})$. Since they are both rings and the map has to be $\mathcal{O}_{U_i}(U_i)$ -linear, they are uniquely defined by where they map the unit. Since only invertible elements in $\mathcal{O}_{U_i}(U_{j/i})$ are $X_{j/i}$, element 1 has to be mapped to some power of it. Lastly we show that gluing U_i and U_j already defines all other gluing rules, because they need to satisfy the cocycle condition. So we get that \mathcal{M} is isomorphic to the twisting sheaf $\mathcal{O}_{\mathbb{P}^n_k}(m)$, where m is the power of $X_{j/i}$ that we chose above.

Exercise 3.

1. In exercise 2 we showed that all invertible quasicoherent sheaves on \mathbb{P}^n_k are isomorphic to $\mathcal{O}_{\mathbb{P}^n_k}(d)$ for some $d \geq 0$. So we have to show $f^*\mathcal{O}_{\mathbb{P}^m_k}(1)$ is an invertible sheaf.

Since invertible $\mathcal{O}_{\mathbb{P}^n_k}$ -modules are same as line bundles, we have to show that locally $f^*\mathcal{O}_{\mathbb{P}^n_k}(1)$ is isomorphic to the structure sheaf $\mathcal{O}_{\mathbb{P}^n_k}$.

By definition $f^*\mathcal{O}_{\mathbb{P}^m_k}(1) = f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1) \otimes_{f^{-1}\mathcal{O}_{\mathbb{P}^m_k}} \mathcal{O}_{\mathbb{P}^n_k}$. Pick some $x \in \mathbb{P}^n_k$. Pick small enough affine neighborhood $f(x) \in U \subseteq \mathbb{P}^m_k$ such that $\mathcal{O}_{\mathbb{P}^m_k}(1)$ is isomorphic to the structure sheaf $\mathcal{O}_{\mathbb{P}^m_k}$ on U. Now pick neighborhood $x \in W \subseteq \mathbb{P}^m_k$ such that $f(W) \subseteq U$.

Then

$$f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1)(W) = \operatorname{colim}_{f(W) \subseteq V} \mathcal{O}_{\mathbb{P}^m_k}(1)(V)$$

$$= \operatorname{colim}_{f(W) \subseteq V \subseteq U} \mathcal{O}_{\mathbb{P}^m_k}(1)(V)$$

$$\cong \operatorname{colim}_{f(W) \subseteq V \subseteq U} \mathcal{O}_{\mathbb{P}^m_k}(V)$$

$$\cong f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(W).$$

So locally $f^{-1}\mathcal{O}_{\mathbb{P}_k^m}(1)$ is isomorphic to $f^{-1}\mathcal{O}_{\mathbb{P}_k^m}$, so $f^{-1}\mathcal{O}_{\mathbb{P}_k^m}(1) \otimes_{f^{-1}\mathcal{O}_{\mathbb{P}_k^m}}$. $\mathcal{O}_{\mathbb{P}_k^n}$ is locally isomorphic to $\mathcal{O}_{\mathbb{P}_k^n}$, which proves that $f^*\mathcal{O}_{\mathbb{P}_k^m}(1)$ is an invertible $\mathcal{O}_{\mathbb{P}_k^n}$ -module and thus isomorphic to $\mathcal{O}_{\mathbb{P}_k^n}(d)$ for some $d \geq 0$.

2. At first it was not completely clear to us what the map $f^* : \Gamma(\mathbb{P}^m_k, \mathcal{O}_{\mathbb{P}^m_k}(1)) \to \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$ is. So we assumed it is the following:

For a global section $s \in \Gamma(\mathbb{P}_k^m, \mathcal{O}_{\mathbb{P}_k^m}(1))$ we first map it with the restriction

$$\Gamma(\mathbb{P}^m_k,\mathcal{O}_{\mathbb{P}^m_k}(1)) \to \Gamma(\mathbb{P}^n_k,f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1)).$$

Denote its image with s'. By definition we have

$$\Gamma(\mathbb{P}^n_k, f^*\mathcal{O}_{\mathbb{P}^m_k}(1)) = \Gamma(\mathbb{P}^n_k, f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1)) \otimes_{\Gamma(\mathbb{P}^n_k, f^{-1}\mathcal{O}_{\mathbb{P}^m_k})} \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k})$$

So include s' into $\Gamma(\mathbb{P}^n_k, f^*\mathcal{O}_{\mathbb{P}^m_k}(1))$ as $s' \otimes 1$. By part 1 we have an isomorphism $\Gamma(\mathbb{P}^n_k, f^*\mathcal{O}_{\mathbb{P}^m_k}(1)) \cong \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$. We map $s' \otimes 1$ with this isomorphism to obtain $f^*(s)$.

The polynomials y_0, \ldots, y_n generate $\Gamma(\mathbb{P}_k^m, \mathcal{O}_{\mathbb{P}_k^m}(1))$, which is isomorphic to the module of homogenous polynomials of degree 1. So their restrictions generate $\Gamma(\mathbb{P}_k^n, f^{-1}\mathcal{O}_{\mathbb{P}_k^m}(1))$. Their images in the tensor product

$$\Gamma(\mathbb{P}^n_k,f^{-1}\mathcal{O}_{\mathbb{P}^n_k}(1))\otimes_{\Gamma(\mathbb{P}^n_k,f^{-1}\mathcal{O}_{\mathbb{P}^m_k})}\Gamma(\mathbb{P}^n_k,\mathcal{O}_{\mathbb{P}^n_k})$$

then also stay generators. And finally isomorphism $\Gamma(\mathbb{P}^n_k, f^*\mathcal{O}_{\mathbb{P}^m_k}(1)) \cong \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$ also preserves generating set.

So
$$g_i = f^*(y_i) \in \Gamma(\mathbb{P}_k^n, \mathcal{O}_{\mathbb{P}_k^n}(d))$$
 are generators.

If $d \ge 1$, then g_i always vanish at $0 \in \mathbb{A}_k^{n+1}$.

Take some $(a_0, \ldots, a_n) \in V(g_0, \ldots, g_m) \subseteq \mathbb{A}_k^{n+1}$. If $a_i \neq 0$ for some i, then the line going through (a_0, \ldots, a_n) and 0 would lie in $V(g_0, \ldots, g_m)$. Then (g_0, \ldots, g_m) would be contained in the set of equations parametrizing this line. Therefore it wouldn't be generating the whole module.

3. If m < n, then $\Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$, which can be identified as a k-module of homogenous polynomials of degree d, cannot be generated by m elements. It is a vector space of dimension $\binom{n+d}{n}$ and $\binom{n+d}{n} > m$ for d > 0. Therefore d = 0.

Now we show that f must be constant. Suppose $f(\mathbb{P}^n_k)$ has two points. Then we can separate these two point with two independent polynomials $s, t \in k[y_0, \ldots, y_m]_1$. Then $s \otimes 1$ and $t \otimes 1$ are independent elements of $\Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k})$ -module

$$\Gamma(\mathbb{P}^n_k,f^{-1}\mathcal{O}_{\mathbb{P}^m_k}(1))\otimes_{\Gamma(\mathbb{P}^n_k,f^{-1}\mathcal{O}_{\mathbb{P}^m_k})}\Gamma(\mathbb{P}^n_k,\mathcal{O}_{\mathbb{P}^n_k}).$$

But $\Gamma(\mathbb{P}_k^n, \mathcal{O}_{\mathbb{P}_k^n}(0))$ is the trivial line bundle, so it cannot contain two elements which are independent over global sections of line bundle itself.

Exercise 4.

1. Let $U_i = \operatorname{Spec}(A_i)$.

Take a point $x \in U_1 \cap U_2$.

Take a principal open $x \in D(f) \subseteq U_1$ $(f \in U_1)$. Then find a smaller principal open $x \in D(g) \subseteq D(f) \subseteq U_2$ $(g \in U_2)$.

Now we show that D(g) is also a principal open in U_1 .

Since $D(f) \subseteq U_2$ open, we have a map $\mathcal{O}(U_2) \to \mathcal{O}(D(f))$, which induces $A_2 \to (A_1)_f$. Denote by $g' = g|_{\operatorname{Spec}((A_1)_f)}$ the image of g under this map. Since $g' \in (A_1)_f$, we can write it as $g' = \frac{h}{f^n}$. Then $D(g) = D(g) \cap D(f) = D(g') \cap D(f) = D(h) \cap D(f) = D(hf)$, where $h, f \in A_1$. This shows that D(g) is also principal open in U_1 .

2. We have to show that the property of being of finite presentation is a local property and that f as defined above is locally of finite presentation.

Let $\operatorname{Spec}(B) \subseteq X$ and $\operatorname{Spec}(A) \subseteq S$ open affines. Pick a point $x \in \operatorname{Spec}(B)$. Then $x \in \operatorname{Spec}(B) \cap \operatorname{Spec}(B_i)$ for some i. Pick some neighborhood $x \in U \subseteq \operatorname{Spec}(B) \cap \operatorname{Spec}(B_i)$ such that U is principal open in $\operatorname{Spec}(B)$ and in $\operatorname{Spec}(B_i)$.

Now take a neighborhood $f(x) \in V \subseteq f(U)$ so that V is principal open in $\operatorname{Spec}(A)$ and in $\operatorname{Spec}(A_i)$. Now take another smaller neighborhood $x \in U' \subseteq f^{-1}(V)$ such that U' is principal open in $\operatorname{Spec}(B)$ and in $\operatorname{Spec}(B_i)$.

So we have $U' \to V$, where both U' and V are principal opens of $\operatorname{Spec}(B_i)$ and $\operatorname{Spec}(A_i)$ respectively. Since $A_i \to B_i$ is of finite presentation, then localizations $(A_i)_f \to (B_i)_g$ (for some $f \in A_i$ and $g \in B_i$) are as well.

So for every point $x \in \operatorname{Spec}(B)$ we can find a principal open neighborhood in $x \in D(f_x)$ and a principal open neighborhood $f(x) \in D(g_x)$ such that $A_{g_x} \to B_{f_x}$.

Since Spec(B) is quasi-compact, we have Spec(B) = $D(f_1) \cup \cdots \cup D(f_n)$. Denote $g_1, \ldots, g_n \in A$ be the respective elements in A.

We have composition $\operatorname{Spec}(B_{f_i}) \to \operatorname{Spec}(A_{g_i}) \hookrightarrow \operatorname{Spec}(A)$, which induces a map of rings $A \to A_{g_i} \to B_{f_i}$. Since $A_{g_i} \cong A[X]/(Xg_i-1)$ and $A_{g_i} \to B_{f_i}$ are of finite presentation by assumption, and being of finite presentation is stable under compositions, we have that $A \to B_{f_i}$ are of finite presentation for every i.

Now its just commutative algebra to show that $A \to B$ is of finite presentation as well, so I hope its okay to assume this part. Otherwise we could just rewrite something like Lemma 00EP.