Tropical algebra

From shortest path algorithms to Hamilton-Jacobi-Bellman Equation

Nicolas Delanoue

LARIS - Universite d'Angers - France http://perso-laris.univ-angers.fr/~delanoue/

Medellin - EAFIT http://www.eafit.edu.co/

November 2019

Outline

- Graph theory
 - Bellman Ford Algorithm
 - An example
- Tropical linear algebra
 - Semi ring
 - Bellman-Ford algorithm with tropical algebra
- Optimal control Hamilton Jacobi Bellman

Definition - Graph

A directed graph is an ordered pair G = (V, E) where

- V is a set whose elements are called vertices,
- E is a set of ordered pairs of vertices, called directed edges.

Example

Here,
$$V = \{v_1, v_2, v_3, v_4\}$$
 and $E = \{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_3), (v_3, v_4)\}$

Weighted graph

A weighted directed graph is a directed graph with weights assigned to their edges, i.e. one has function $h: E \to \mathbb{R}$.

Example

Here, $h(v_1, v_2) = 2$, $h(v_1, v_3) = 5$, ...

Shortest path problem

The *shortest path problem* is the problem of finding a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized.

Algorithms

- Dijkstra's algorithm solves the single-source shortest path problem with non-negative edge weight.
- Bellman Ford algorithm solves the single-source problem if edge weights may be negative.
- . . .

Input: A weighted directed graph (V, E, h), a source vertex s

Input: A weighted directed graph (V, E, h), a source vertex s **Output**: The cost of the shortest path from s to all other nodes :

$$V \ni c \mapsto J(c) \in \mathbb{R}$$

Input: A weighted directed graph (V, E, h), a source vertex s **Output**: The cost of the shortest path from s to all other nodes :

$$V \ni c \mapsto J(c) \in \mathbb{R}$$

$$\begin{array}{ll} \text{for } c \in V - \{s\} \text{ do} \\ \mid & J(c,0) \leftarrow +\infty \text{ ;} \\ \text{end} \\ J(s,0) \leftarrow 0; \end{array}$$

Input: A weighted directed graph (V, E, h), a source vertex s **Output**: The cost of the shortest path from s to all other nodes:

$$V \ni c \mapsto J(c) \in \mathbb{R}$$

```
\begin{array}{l} \text{for } c \in V - \{s\} \text{ do} \\ & J(c,0) \leftarrow +\infty \ ; \\ \text{end} \\ J(s,0) \leftarrow 0; \\ \text{for } k \leftarrow 1 \text{ to } \#V - 1 \text{ do} \\ & \text{for } c \in V \text{ do} \\ & & J' \leftarrow +\infty; \\ & \text{for } (u,c) \in E \text{ do} \\ & & & J' \leftarrow \min(J',J(u,k-1)+h(u,c)) \ ; \\ & \text{end} \\ & & J(c,k) \leftarrow J'; \\ & \text{end} \\ & J(\cdot) = \min_k J(\cdot,k) \end{array}
```


Initialisation steps :

• $J(v_1) = (0, ...)$ since v_1 is the source,

Initialisation steps :

- $J(v_1) = (0, ...)$ since v_1 is the source,
- $J(v_i) = (\infty, ...)$ for all other vertices.

Initialisation steps :

- $J(v_1) = (0, ...)$ since v_1 is the source,
- $J(v_i) = (\infty, ...)$ for all other vertices.

• v_1 has only v_1 as predecessors, therefore $J(v_1)=(0,0,\dots)$

• v_1 has only v_1 as predecessors, therefore $J(v_1)=(0,0,\dots)$

Graph theory 0000000000000000 An example

Iteration k = 1:

• v_2 has two predecessors : v_1 and v_2 , therefore

• v_2 has two predecessors : v_1 and v_2 , therefore $J(v_2, k) = \min\{J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2)\}\$

• v_2 has two predecessors : v_1 and v_2 , therefore $J(v_2, k) = \min\{J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2)\}\$ $= \min \{ 0 + 2, \infty + 0 \}$

• v_2 has two predecessors : v_1 and v_2 , therefore $J(v_2, k) = \min\{J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2)\}$ = $\min\{0 + 2, \infty + 0\}$ = 2

• v_2 has two predecessors : v_1 and v_2 , therefore $J(v_2, k) = \min\{J(v_1, 0) + h(v_1, v_2), J(v_2, 0) + h(v_2, v_2)\}$ = $\min\{0 + 2, \infty + 0\}$ = 2

•
$$J(v_3, k) = 5$$

•
$$J(v_3, k) = 5$$

•
$$J(v_4, k) = 9$$

•
$$J(v_4, k) = 9$$

Initialisation				
	0			
$\overline{v_1}$				
<i>V</i> ₂				
<i>V</i> 3				
<i>V</i> 4				

Initialisation			
	0		
$\overline{v_1}$	0		
V ₁ V ₂ V ₃ V ₄	∞		
<i>V</i> 3	∞		
<i>V</i> 4	∞		

k = 1				
	0	1		
$\overline{v_1}$	0	0		
<i>V</i> ₂	∞	2		
<i>V</i> 3	∞	5		
V4	$ \infty $	9		

k=2					
		0	1	2	
	v_1	0	0	0	
	<i>V</i> ₂	∞	2	2	
		∞	5	3	
	V ₃ V ₄	∞	9	7	

k=3				
	0	1	2	3
$\overline{v_1}$	0	0	0	0
<i>V</i> ₂	∞	2	2	2
<i>V</i> 3	∞	5	3	3
<i>V</i> 4	∞	9	7	5

$$J_0 = egin{pmatrix} 0 \ \infty \ \infty \ \infty \end{pmatrix}, ext{ and } J_{k+1} = f(J_k).$$

Definition

Let (V, E, h) be a weighted directed graph with $V = \{v_1, \dots, v_n\}$, we define the square matrix $A = (a_{ij})_{i,j \in 1,\dots,n}$ with

$$a_{ij}=h(v_i,v_j).$$

I call the matrix A the HJB matrix.

Remark

The coefficient i, j of A is the cost from node v_i to v_j using one edge.

Recall - Matrix multiplication

Let $A = (a_{ij})_{i,j \in 1,...,n}$ be a square matrix then the i,j coefficient of A^2 , c_{ij} is given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj}$$

Example

$$c_{23} = a_{21}a_{13} + a_{22}a_{23} + a_{23}a_{33} + a_{24}a_{43}$$

$$c_{23} =$$

$$c_{23} = a_{21}$$

$$c_{23} = a_{21}a_{13}$$

$$c_{23} = a_{21}a_{13} + a_{22}a_{23}$$

$$c_{23} = a_{21}a_{13} + a_{22}a_{23} + a_{23}a_{33}$$

$$c_{23} = a_{21}a_{13} + a_{22}a_{23} + a_{23}a_{33} + a_{24}a_{43}$$

Definition

The min tropical semiring is the semiring ($\mathbb{R} \cup \{\infty\}, \oplus, \otimes$), with the operations :

- $\bullet \ x \oplus y = \min\{x,y\},\$
- $\bullet \ \ x \otimes y = x + y.$

Sellii Illig

Definition

The min tropical semiring is the semiring ($\mathbb{R} \cup \{\infty\}, \oplus, \otimes$), with the operations :

- $\bullet \ x \oplus y = \min\{x,y\},\$
- $\bullet \ \ x \otimes y = x + y.$

Example

•
$$2 \oplus 3 = 2$$
,

The min tropical semiring is the semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \otimes)$, with the operations:

- $\bullet x \oplus y = \min\{x, y\},\$
- $\bullet x \otimes y = x + y.$

Example

- $2 \oplus 3 = 2$.
- $2 \otimes 3 = 5$.

Remarks

- lacktriangle The operations \oplus and \otimes are referred to as tropical addition and tropical multiplication respectively,
- The unit for \oplus is ∞ ,
- the unit for \otimes is 0

Linear tropical algebra

Let $A = (a_{ij})_{i,j \in 1,...,n}$ be a square matrix then the i,j coefficient of A^2 , c_{ij} is given by

$$c_{ij} = \bigoplus_{k=1}^{n} a_{ik} \otimes a_{kj}$$

Example with HJB matrix

$$c_{2,3} = (a_{2,1} \otimes a_{1,3}) \oplus (a_{2,2} \otimes a_{2,3}) \oplus (a_{2,3} \otimes a_{3,3}) \oplus (a_{2,4} \otimes a_{4,3})$$

Lemma

The real value c_{ij} is the smallest cost of paths from v_i to v_j following by two edges.

Bellman-Ford algorithm with tropical algebra

Proposition

Let $k \in \mathbb{N}$, with the min tropical semi ring, coefficient i, j of the matrix A^k contains the smallest cost of all paths from v_i to v_j using k edges.

Proposition

Let $k \in \mathbb{N}$, with the min tropical semi ring, coefficient i, j of the matrix A^k contains the smallest cost of all paths from v_i to v_j using k edges.

Bellman-Ford algorithm from the tropical point of view :

$$\begin{cases}
J_0 = H, \\
J_{n+1} = AJ_n,
\end{cases}$$
(1)

with
$$H = (\infty, ..., \infty, 0, \infty, ..., \infty)^T$$
.

Proposition

Let $k \in \mathbb{N}$, with the min tropical semi ring, coefficient i, j of the matrix A^k contains the smallest cost of all paths from v_i to v_j using k edges.

Bellman-Ford algorithm from the tropical point of view :

$$\begin{cases}
J_0 = H, \\
J_{n+1} = AJ_n,
\end{cases}$$
(1)

with $H = (\infty, \dots, \infty, 0, \infty, \dots, \infty)^T$.

Solution :

$$J_n = A^n J_0$$

Remarks

Due to tropical linearity, i.e. superposition property :

$$A^k(H_1 \oplus H_2) = A^k H_1 \oplus A^k H_2.$$

- $A^k(0,0,\infty,\ldots,\infty)^T$ is the smallest cost to reach any nodes from one of the two sources v_1 and v_2 .
- $(0, \infty, ..., \infty)A^k$ is the cost from any nodes to the target v_1 .

Controlled dynamical system

$$\begin{cases} x(0) = x_0 \\ \dot{x}(\tau) = f(x(\tau), u(\tau)), \forall \tau \in [0, T], \end{cases}$$

where

- τ is the time.
- x is the state,
- f is a vector field (the dynamics),
- μ is the control.

Optimal control problem

$$J^* = \min_{u:[0,T] \to U} \quad \int_0^T h(\tau,x(\tau),u(\tau))d\tau + H(x(T))$$
 subject to
$$x(0) = x_0$$

$$\dot{x}(\tau) = f(x(\tau),u(\tau)), \forall \tau \in [0,T],$$

$$x(\tau) \in X, \forall \tau \in [0,T],$$

$$x(T) \in K.$$

where

- *U* is the set of admissible control,
- h and H are real valued functions.

Definition - Optimal cost

$$J^*(x,t) = \min_{u:[t,T]\to U} \int_t^T h(x(\tau),u(\tau))d\tau + H(x(T))$$

such that $x: t \mapsto X$ satisfies

$$\begin{cases} \dot{x}(\tau) = f(x(\tau), u(\tau)) \\ x(t) = x \end{cases}$$

Hamilton Jacobi Bellman Theorem

The value function $(t,x)\mapsto J^*(t,x)$ satisfies the partial differential equation :

$$\frac{\partial J^*}{\partial t} = -\min_{u(t) \in U} \left\{ h(x, u(t)) + \frac{\partial J^*}{\partial x} f(x, u(t)) \right\}$$
 (2)

with final condition $J^*(T,x) = H(x)$.

Hamilton Jacobi Bellman Theorem

The value function $(t,x)\mapsto J^*(t,x)$ satisfies the partial differential equation :

$$\frac{\partial J^*}{\partial t} = -\min_{u(t) \in U} \left\{ h(x, u(t)) + \frac{\partial J^*}{\partial x} f(x, u(t)) \right\}$$
 (2)

with final condition $J^*(T,x) = H(x)$.

Remark

• Equation (2) is a infinite dimensional dynamical system, indeed, the state space is the set of real value fonction $\varphi: X \to \mathbb{R}$.

Proposition

Let us denote by $S^{T}(H)$ the solution of optimal control problem with final cost H. One has:

- $S^0 = Id$.
- $S^{t_1+t_2} = S^{t_1}S^{t_2}$.
- $S^t(\alpha \otimes H) = \alpha \otimes S^t H_1$.
- $S^t(H_1 \oplus H_2) = S^t H_1 \oplus S^t H_2$.

To finish

Suppose the function J is solution of the following Hamilton-Jacobi equation

$$\frac{\partial J}{\partial t} = H(x, \frac{\partial J}{\partial x})$$
 and $J(0, \cdot) = \varphi(\cdot)$

with

$$H(x,p) = \min_{u} (h(u,x) + p \cdot u)$$

Hopf formula gives :

$$J(t,x) = \min_{y} t \cdot h(\frac{x-y}{t}) + \varphi(y)$$

To finish

Suppose the function J is solution of the following Hamilton-Jacobi equation

$$\frac{\partial J}{\partial t} = H(x, \frac{\partial J}{\partial x})$$
 and $J(0, \cdot) = \varphi(\cdot)$

with

$$H(x,p) = \min_{u} (h(u,x) + p \cdot u)$$

Hopf formula gives :

$$J(t,x) = \min_{y} t \cdot h(\frac{x-y}{t}) + \varphi(y) = \bigoplus_{y} t \cdot h_{t}(x-y)\varphi(y)dy$$

To finish

Suppose the function J is solution of the following Hamilton-Jacobi equation

$$\frac{\partial J}{\partial t} = H(x, \frac{\partial J}{\partial x})$$
 and $J(0, \cdot) = \varphi(\cdot)$

with

$$H(x,p) = \min_{u} (h(u,x) + p \cdot u)$$

Hopf formula gives :

$$J(t,x) = \min_{y} t \cdot h(\frac{x-y}{t}) + \varphi(y) = \bigoplus_{y} t \cdot h_{t}(x-y)\varphi(y)dy$$

Note that in this case h is the Legendre transform of H.

- Graphs, Dioids and Semirings: New Models and Algorithms, Gondran, M. and Minoux, M., Springer Science, 2008
- Max-plus approximations : from optimal control to template methods, Gaubert 2014
- Oower, P.M. and McEneaney, W.M. A max-plus based fundamental solution for a class of infinite dimensional Riccati equations.

- Graphs, Dioids and Semirings: New Models and Algorithms, Gondran, M. and Minoux, M., Springer Science, 2008
- Max-plus approximations: from optimal control to template methods. Gaubert 2014
- Ower, P.M. and McEneaney, W.M. A max-plus based fundamental solution for a class of infinite dimensional Riccati equations.

Gracias por su atención.