Probability and Statistics

Matthew Scicluna matthew.scicluna@umontreal.ca

Probability Vs Statistics

Probability: Given Model, how likely is Data? \rightarrow Well-formed since these are Mathematical questions.

Statistics: Given Data, how likely is Model? \rightarrow Ill-formed since many Models can create the same data!

Probability Space

Probability Space: a triple (Ω, F, P) consisting of:

- 1. Ω the **Sample Space**
- 2. $F \subseteq 2^{\Omega}$ a σ -algebra on Ω i.e.

(a)
$$\Omega \in F$$

(b)
$$E \in F \Rightarrow E^{\complement} \in F$$

(c)
$$E_1, E_2, \dots \in F \Rightarrow \bigcup_{i=1}^{\infty} E_i \in F$$

3. $P: F \mapsto [0, 1]$ a **Probability Measure** i.e.

(a)
$$P(E) \ge 0$$
 for $E \in F$

(b)
$$P(\Omega) = 1$$

(c)
$$P\left(\bigsqcup_{i=1}^{\infty} E_i\right) \Rightarrow \sum_{i=1}^{\infty} P(E_i)$$
 for $E_i \in F$

Given **Events** E_i , $E \in F$, P also satisfies:

1. **Upward and Downward continuity** of *P*:

(a)
$$E_i \uparrow E \Rightarrow \lim_{n \to \infty} P(E_n) = P(E)$$

(b)
$$E_i \downarrow E \Rightarrow \lim_{n \to \infty} P(E_n) = P(E)$$

2. **Monotonicity** of P:

(a)
$$E_i \subseteq E_j \Rightarrow P(E_i) \leq P(E_j)$$

Conditional Probability

We can compute Probabilities of Events Conditioned on other Events.

Conditional Probability of event A on event B with P(B)>0 is:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$$

A set of events $\{A_i\}$ are **Mutually Independent** if, for any n element subset of $\{A_i\}$:

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i)$$

Law of Total Probability: Given Events A and **Partition** $\{B_i\}$ (i.e. where $\bigsqcup_{i=1}^{\infty} B_i = \Omega$)

$$P(A) = \sum_{i=1}^{\infty} P(A \mid B_i) P(B_i)$$

Random Variables

A Random Variable is a \mathbb{B} -Measurable function X: $(\Omega, F) \mapsto (\mathbb{R}, \mathbb{B})$

- 1. For $A \in \mathbb{B}$ we can compute $P(X \in A)$
- 2. $P(X \in A) := P(X^{-1}(A)) = P(\{\omega \in \Omega : X(\omega) \in A\})$
- 3. $P(X^{-1}(\cdot)) := P_X(\cdot)$ which is called the **Push-Forward** Measure of P by X on $\mathbb R$
- 4. Hence X induces a new Probability Space $(\mathbb{R}, \mathbb{B}, P_X)$ from the original (Ω, F, P)

"world of possibilities"

"measurements"

Continuous Random Variables test

Moments of a Random Variable