

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN

PLAN DE ESTUDIOS DE LA LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN

PROGRAMA DE ASIGNATURA

SEMESTRE:3 (TERCERO)

Matemáticas Discretas

CLAVE:		
CLAVE:		

MODALIDAD	CARÁCTER	TIPO	HORAS AL SEMESTRE	HORAS SEMANA	HORAS TEÓRICAS	HORAS PRÁCTICAS	CRÉDITOS
Curso	Obligatoria	Teórica	64	4	4	0	8

ETAPA DE FORMACIÓN	Básico
CAMPO DE CONOCIMIENTO	Matemáticas Computacionales

SERIACIÓN	Indicativa
ASIGNATURA(S) ANTECEDENTE	Lógica Matemática
ASIGNATURA(S) SUBSECUENTE(S)	Ninguna

Objetivo general: El alumno analizará los conceptos de matemáticas que se utilizan en ciencias de la computación.

	Índice Temático	Horas	
Unidad	Tema	Teóricas	Prácticas
1	Relaciones	4	0
2	Látices o retículas	12	0
3	Álgebra de Boole	20	0
4	Semigrupos	14	0
5	Grupos	14	0
	Total de horas:	64	0
	Suma total de horas:		64

НО	RAS		CONTENIDO
T	P	UNIDAD	CONTENIDO
4	0	1	RELACIONES
			Objetivo particular: El alumno identificará los tipos de relaciones y el orden de las mismas definidas sobre un conjunto dado.
			Temas: 1.1 Relaciones de equivalencia 1.2 Relaciones de orden: Orden parcial y orden total

li i			14001 : 4 / 1 / 0
			1.3 Relaciones y teoría de gráficas
40	8		1.4 Orden en relaciones de equivalencia
16	0	2	Chipetivo particular: El alumno identificará el concepto de estructura algebraica de látices como conjunto parcialmente ordenado y como estructura con operaciones binarias de conjunta y reunión y aplicará los conceptos anteriores con diagramas de Hasse. Temas: 2.1 Definición de látices. 2.2 Látices normales. 2.3 Látices distributivas
20	0	3	ÁLGEBRA DE BOOLE
	•		Objetivo Particular: El alumno aplicará los conceptos de estructuras de Álgebra de Boole para circuitos lógicos. Temas: 3.1 Forma canónica de un polinomio Booleano 3.2 Simplificación de polinomios Boléanos: algebraica, tablas de verdad, mapas de Karnaugh, método del tabulado de Quinc-Mc Cluskey, diagrama de Venn-Euler 3.4 Compuertas: AND, OR, NOT 3.5 Circuitos o redes eléctricas 3.6 Funciones de conmutación: mintérminos y maxtérminos 3.7 Circuitos Secuenciales: sumador y restador completos 3.8 Lógica Combinatoria
14	0	4	Objetivo Particular: El alumno identificará las estructuras básicas de semigrupos con aplicaciones a máquinas de estados finitos y lenguajes, considerando semigrupos libres y semigrupos de transformación. Temas: 4.1 Definición de semigrupos, monoide e ideales 4.2 Congruencia de semigrupos 4.2.1 Semigrupos sobre las relaciones binarias 4.2.2 Relaciones de equivalencia 4.3 Semigrupos de transformación. 4.4 Semigrupos libres

14	0	4	GRUPOS
			Objetivo Particular: El alumno aplicará los conceptos básicos de teoría de grupos a la codificación de la información y detección de errores.
			Temas: 5.1 Definición de grupos y subgrupos 5.2 Grupo diedral y grupos de transformación 5.3 Teorema de Lagrange

Referencias básicas:

- Berlekamp, E. (1968). *Algebraic coding theory*. E.U.A.: McGraw Hill.
- Fraleigh, J. (1987). Álgebra abstracta. México: Addison Wesley.
- Grimaldi, R. (1998). *Matemáticas discretas y combinatoria*. México: Addison Wesley.
- Halmos, P. (1966). Teoría intuitiva de los conjuntos. México: Continental.
- Harrison, M. (1965). Introduction to switching theory and automata theory. E.U.A.: McGraw Hill.
- Jonhsonbaugh, R. (1999). *Matemáticas discretas*. México: Prentice Hall.
- Kolman y Busby. (1986). Estructuras de matemáticas discretas para la computación. México: Prentice Hall
- Ross, Kenneth A y Wright, Charles R. B. (1997). Matemáticas Discretas (5 ª ed.). México: Prentice Hall.

Referencias complementarias:

- Mendelson, E. (1964). *Introduction to mathematical logic*. E.U.A.: Princeton.
- Suppes, P. (1960). Axiomatic set theory. E.U.A.: Van Nostrand

Sugerencias didácticas:	Sugerencias de evaluación del aprendizaje:
Analizar y producir textos.	Examen final oral o escrito
Utilizar tecnologías multimedia.	Exámenes parciales
Resolver ejercicios dentro y fuera de clase.	Informes de prácticas
Estudiar casos prácticos.	Informes de investigación
Instrumentar técnicas didácticas como exposiciónoral,	Participación en clase
Interrogatorio, técnicas grupales de trabajo	Rúbricas
colaborativo, entre otros.	Solución de ejercicios
Realizar visitas de observación.	Trabajos y tareas
Usar recursos didácticos en línea.	Proyecto práctico

Perfil Profesiográfico: El profesor que imparta la asignatura deberá tener el título de licenciado en Matemáticas Aplicadas y Computación o carrera afín, con experiencia profesional y docente en la materia, contar con actualización en el área y preferentemente tener estudios de posgrado.