

http://al9ahira.com/

PREMIER PROBLÈME

Première Partie

- 1 Soit *x* un réel.
 - **1.a.** On sait que la fonction $t \mapsto t^{x-1}$ est intégrable sur l'intervalle]0,1] si et seulement si x > 0; par ailleurs on a l'équivalence

$$t^{x-1} \sim t^{x-1} e^{-t}$$
.

Les fonctions considérées étant continues et positives sur l'intervalle]0,1], on en déduit que la fonction $t \mapsto t^{x-1}e^{-t}$ est intégrable sur cet intervalle si et seulement si x > 0.

- **1.b.** La fonction $t \mapsto t^{x-1}e^{-t}$ est négligeable au voisinage de $+\infty$ devant la fonction $t \mapsto e^{-t/2}$; cette dernière fonction étant intégrable sur l'intervalle $[1,+\infty[$, on en déduit que la fonction continue et positive, $t \mapsto t^{x-1}e^{-t}$ est elle aussi intégrable sur cet intervalle.
- Soit z un complexe. D'après les questions précédentes, x étant un réel donné, La fonction $t \mapsto t^{x-1}e^{-t}$ est intégrable sur l'intervalle $]0,+\infty[$ si et seulement si x>0. Ainsi, puisque

$$|t^{z-1}e^{-t}| = |e^{(z-1)\ln t}e^{-t}| = t^{\operatorname{Re}(z)-1}e^{-t},$$

pour tout t > 0, alors la fonction continue $t \mapsto t^{z-1}e^{-t}$ est intégrable sur l'intervalle $]0,+\infty[$ si et seulement si Re(z) > 0.

3 3.a. On sait que $\Gamma(z)$ n'est rien d'autre que la limite en $+\infty$ de la fonction

$$x \longmapsto \int_0^x t^{z-1} e^{-t} dt$$

À l'aide d'une intégration par partie on obtient, pour x > 0, l'identité

$$\int_{0}^{x} t^{z} e^{-t} dt = -x^{z} e^{-x} + z \int_{0}^{x} t^{z-1} e^{-t} dt$$

Compte tenu du fait que $|x^z e^{-x}| = x^{\text{Re}(z)} e^{-x} \xrightarrow[x \to +\infty]{} 0$, le résultat demandé découle de l'identité précédente par passage à la limite en $+\infty$.

3.*b***.** Si $\alpha > 0$ alors $\alpha + k > 0$ pour tout entier $k \ge 0$. La question précédente permet alors de voir que, pour tout $p \in \mathbb{N}^*$,

$$\Gamma(\alpha+p+1) = (\alpha+p)\Gamma(\alpha+p) = (\alpha+p)(\alpha+p-1)\Gamma(\alpha+p-1).$$

Une récurrence immédiate sur p permet de voir que

$$\Gamma(\alpha + p + 1) = (\alpha + p) \cdots (\alpha + 1)\Gamma(\alpha + 1).$$

- 3.c. Soit x > 0; la fonction $t \mapsto t^{x-1}e^{-t}$ est positive, continue et non nulle sur l'intervalle $]0, +\infty[$. $\Gamma(x)$ qui est la valeur de son intégrale sur cet intervalle est donc strictement positive.
- **3.d.** Il est clair que $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{x \to +\infty} \int_0^x e^{-t} dt = 1 \lim_{x \to +\infty} e^{-x} = 1.$
- Soit z un complexe dont la partie réelle est strictement positive ; pour tout réelt > 0, on pose

$$u_n(t) = \frac{(-1)^n}{n!} t^{z+n-1}.$$

Le développement en série entière de la fonction exponentielle, permet d'écrire

$$t^{z-1}e^{-t} = \sum_{n=0}^{+\infty} u_n(t), \ \forall \ t > 0.$$

Pour $n \geqslant 1$, le module du terme général u_n de cette série de fonctions est majoré, indépendamment de $t \in]0,1]$, par $\frac{1}{n!}$ qui est le terme général d'une série convergente. Ceci prouve la convergence normale donc uniforme sur l'intervalle]0,1] de la série de fonctions $\sum_{n \ge 1} u_n$, ce qui justifie l'écriture

$$\int_0^1 \left(\sum_{n=1}^{+\infty} u_n(t) \right) dt = \sum_{n=1}^{+\infty} \int_0^1 u_n(t) dt = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{n+z}.$$

On en déduit alors que

$$\int_{0}^{1} t^{z-1} e^{-t} dt = \int_{0}^{1} \left(\sum_{n=0}^{+\infty} u_{n}(t) \right) dt = \int_{0}^{1} t^{z-1} dt + \int_{0}^{1} \left(\sum_{n=1}^{+\infty} u_{n}(t) \right) dt$$
$$= \frac{1}{z} + \sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n!} \frac{1}{n+z}$$

On obtient finalement,

$$\Gamma(z) = \int_0^1 t^{z-1} e^{-t} dt + \int_1^{+\infty} t^{z-1} e^{-t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{n+z} + \int_1^{+\infty} t^{z-1} e^{-t} dt$$

On pose $\mathcal{U} = \mathbb{R} \setminus \{0, -1, -2, ...\}$; on remarque que \mathcal{U} est un ouvert de \mathbb{R} .

Si $x \in \mathcal{U}$ et $n \in \mathbb{N}$, la quantité $\frac{1}{n+x}$ est bien définie et on a $\frac{(-1)^n}{n!} \frac{1}{n+x} = \mathcal{O}(\frac{1}{n!})$.

la série $\sum_{n>0} \frac{(-1)^n}{n!} \frac{1}{n+x}$ est donc convergente ; on note $\varphi(x)$ sa somme et on pose

$$v_n(x) = \frac{(-1)^n}{n!} \frac{1}{n+x}, x \in \mathcal{U}, n \in \mathbb{N}.$$

Considérons $x_0 \in \mathcal{U}$ et montrons que φ est continue en x_0 .

- Si $x_0 > 0$, $]x_0/2, +\infty[$ est un intervalle ouvert contenant x_0 et contenu dans \mathcal{U} et on a

$$|v_n(x)| \le \frac{1}{n!} \frac{2}{x_0}, \ x \in [x_0/2, +\infty[.$$

Ceci prouve la convergence normale donc uniforme sur $]x_0/2, +\infty[$ de la série de fonctions $\sum_{n\geq 0} v_n$; les fonctions v_n étant continues en x_0 , il en est de même de la

fonction φ .

- Si $x_0 < 0$, notons $-n_0$ la partie entière de x_0 ; alors $n_0 \in \mathbb{N}^*$ et le segment $[x_0 - \eta, x_0 + \eta]$, où $\eta = \min(n_0 + x_0, 1 - (n_0 + x_0))$, est contenu dans \mathcal{U} et on a

$$|v_n(x)| \le \frac{1}{n!(n-n_0)} \le \frac{1}{n!}, x \in [x_0 - \eta, x_0 + \eta], n > n_0.$$

Ceci prouve la convergence normale donc uniforme sur $[x_0 - \eta, x_0 + \eta]$ de la série de fonctions $\sum_{n \ge n_0 + 1} v_n$; comme les fonctions v_n sont continues en x_0 , il en est de

même de la fonction $x \longmapsto \sum_{n=n_0+1}^{+\infty} v_n(x)$. Comme $\varphi(x) = \sum_{n=0}^{n_0} v_n(x) + \sum_{n=n_0+1}^{+\infty} v_n(x)$,

est somme de $n_0 + 2$ fonctions continues en x_0 , elle est aussi continue en x_0 .

- Soient a et b deux réel avec 0 < a < b, et soit t > 0.
 - **6.***a*. On sait que $t^{a-1} = e^{(a-1)\ln(t)}$, on en déduit que
 - si $t \in]0,1]$ alors $\ln(t) \le 0$, et par suite $(a-1)\ln t \ge (b-1)\ln t$ et comme la fonction $x \mapsto e^x$ est croissante, on obtient $t^{a-1} \ge t^{b-1}$ et donc $\max(t^{a-1}, t^{b-1}) = t^{a-1}$.
 - si t > 1 alors $\ln t > 0$, donc $t^{a-1} \le t^{b-1}$ et par suite $\max(t^{a-1}, t^{b-1}) = t^{b-1}$.
 - **6.b.** Soit $x \in [a, b]$. D'après ce qu précède, pour $t \in]0,1]$, on a

$$0 < t^{x-1} \le \max(t^{x-1}, t^{a-1}) = t^{a-1} = \max(t^{a-1}, t^{b-1}),$$

de même si t > 1, alors

$$0 < t^{x-1} \le \max(t^{x-1}, t^{b-1}) = t^{b-1} = \max(t^{a-1}, t^{b-1}).$$

On en déduit que $0 < t^{x-1} \le \max(t^{a-1}, t^{b-1})$ pour tout $t \in]0, +\infty[$.

6.c. La fonction $f:(x,t)\mapsto t^{x-1}e^{-t}$ est de classe C^1 sur $\mathbb{R}_+^*\times\mathbb{R}_+^*$ et, pour tout $(x,t)\in\mathbb{R}_+^*\times\mathbb{R}_+^*$,

$$\frac{\partial f}{\partial x}(x,t) = f(x,t) \ln t.$$

De plus, pour tout segment $[c,d] \subset \mathbb{R}_+^*$ et tout couple (x,t) d'éléments de $[c,d] \times \mathbb{R}_+^*$,

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| \ln t \right| e^{-t} t^{x-1} \leqslant \left| \ln(t) \right| e^{-t} \max(t^{c-1}, t^{d-1}) \leqslant \left| \ln(t) \right| e^{-t} (t^{c-1} + t^{d-1}) = \varphi(t)$$

La fonction dominante φ est bien évidement intégrable sur $]0,+\infty[$ puisque, si l'on prend $\varepsilon > 0$ dans l'intervalle]1-c,1[, on obtient $t^{\varepsilon}\varphi(t) = t^{\varepsilon}(t^{c-1}+t^{d-1})e^{-t} |\ln t| \underset{t\to 0^+}{\longrightarrow} 0$, ce qui justifie l'intégrabilité de φ sur]0,1], et l'inégalité $\varphi(t) \leqslant (t^{c-1}+t^{d-1})te^{-t} = (t^c+t^d)e^{-t}$, valable pour $t\geqslant 1$, montre que φ est intégrable sur $[1,+\infty[$.

Comme le segment [c,d] est arbitraire, le théorème de dérivation sous le signe intégral, permet alors de conclure que la fonction Γ est de classe C^1 sur \mathbb{R}^*_{\perp} et que

$$\Gamma'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t) dt = \int_0^{+\infty} t^{x-1} e^{-t} \ln t dt, \quad x > 0.$$

II Deuxième partie

L'application $x \mapsto \sum_{n=0}^{\infty} a_n x^n$ est la somme d'une série entière de rayon de rayon de convergence R > 0, elle est donc de classe C^{∞} sur]0,R[et ses dérivées successives s'obtiennent par dérivation terme à terme ; la fonction $x \mapsto x^{\alpha}$ est aussi de classe C^{∞} sur R^* . On en déduit que la fonction y_{α} , qui est le produit de ces deux fonctions, est également de classe C^{∞} sur]0,R[et on a

$$y_{\alpha}'(x) = \alpha x^{\alpha - 1} \sum_{n=0}^{+\infty} a_n x^n + x^{\alpha} \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (\alpha + n) a_n x^{\alpha + n - 1},$$

de même

$$y_{\alpha}''(x) = \sum_{n=1}^{+\infty} (\alpha + n)(\alpha + n - 1)a_n x^{\alpha + n - 2}.$$

Ainsi, y_{α} est solution sur]0, R[de l'équation différentielle (F_{λ}) si et seulement si

$$\forall x \in]0, \mathbb{R}[, -(x^2 + \lambda^2) \sum_{n=0}^{+\infty} a_n x^{\alpha+n} + \sum_{n=0}^{\infty} (\alpha + n) a_n x^{\alpha+n} + \sum_{n=1}^{\infty} (\alpha + n) (\alpha + n - 1) a_n x^{\alpha+n} = 0$$

ce qui est équivaut à

$$\forall x \in]0,R[, \sum_{n=0}^{\infty} ((n+\alpha)^2 - \lambda^2) a_n x^{\alpha+n} - \sum_{n=2}^{\infty} a_{n-2} x^{\alpha+n} = 0,$$

et puisque $x^{\alpha} \neq 0$, pour tout $x \in]0,R[$, cela est équivaut à

$$\forall x \in]0, R[, \quad \sum_{n=0}^{\infty} ((n+\alpha)^2 - \lambda^2) a_n x^n = \sum_{n=2}^{\infty} a_{n-2} x^n.$$
 (1)

Or dans (1), il s'agit d'une égalité, sur l'intervalle]0,R[, entre les sommes de deux séries entières de même rayon de convergence R; par continuité, ces deux fonctions coïncident donc en 0 ainsi que leurs dérivées successives ; on en déduit alors que

$$(\alpha^2 - \lambda^2)a_0 = 0$$
, $((\alpha + 1)^2 - \lambda^2)a_1 = 0$ et $\forall n \ge 2$, $((\alpha + n)^2 - \lambda^2)a_n = a_{n-2}$. (2) D'où le résultat demandé puisque $a_0 \ne 0$.

- On suppose que $\alpha = \lambda$, $a_0 \neq 0$ et y_{α} est solution sur]0, R[de l'équation différentielle (F_{λ}) .
 - 2.a. D'après la question précédente on obtient

$$a_1 = 0$$
 et $\forall n \ge 2$ $((\lambda + n)^2 - \lambda^2)a_n = a_{n-2}$. (3)

Les relations (3) donnent alors

$$\begin{cases} \forall \ p \in \mathbb{N}, \ a_{2p+1} = 0 \\ \forall \ p \in \mathbb{N}^*, \quad a_{2p} = \frac{1}{(\lambda + 2p)^2 - \lambda^2} a_{2(p-1)} = \frac{1}{4p(\lambda + p)} a_{2(p-1)} \end{cases}$$

et compte tenu de la question 3.(b) de la première partie, on en déduit, par récurrence immédiate, que

$$\begin{cases} \forall \ p \in \mathbb{N}, \quad a_{2p+1} = 0 \\ \forall \ p \in \mathbb{N}^*, \ a_{2p} = a_0 \prod_{k=1}^p \frac{1}{4k(\lambda + k)} = \frac{a_0 \Gamma(\lambda + 1)}{2^{2p} p! \Gamma(\lambda + p + 1)} \end{cases}$$

- 2.b. Avec les notation précédentes, la règle de D'alembert permet de voir que, pour tout réel x, la série numérique $\sum_{p\geqslant 0}a_{2p}x^{2p}$ est convergente ; on en déduit alors que le rayon de convergence de la série entière $\sum_{n\geqslant 0}a_nz^n$ est infini.
- **2.c.** Si $a_0 2^{\lambda} \Gamma(\lambda + 1) = 1$ alors

$$\forall p \in \mathbb{N}, \quad a_{2p+1} = 0 \quad \text{et} \quad a_{2p} = \frac{a_0 \Gamma(\lambda + 1)}{2^{2p} p! \Gamma(\lambda + p + 1)} = \frac{1}{2^{2p + \lambda} p! \Gamma(\lambda + p + 1)},$$

et par suite

$$\forall x > 0, \quad y_{\lambda}(x) = \sum_{p=0}^{+\infty} \frac{1}{p! \Gamma(\lambda + p + 1)} \left(\frac{x}{2}\right)^{2p + \lambda}.$$

Par ailleurs, il est bien évident que
$$\frac{y_{\lambda}(x)}{x^{\lambda}} \xrightarrow[x \to 0^{+}]{1} \frac{1}{2^{\lambda}\Gamma(\lambda+1)}, \text{ c'est à dire}$$

$$y_{\lambda}(x) \underset{x \to 0^{+}}{\sim} \frac{x^{\lambda}}{2^{\lambda}\Gamma(\lambda+1)}.$$

- On suppose ici que λ n'est pas un demi-entier ; en particulier $\lambda > 0$.
 - **3.***a***.** Les équivalences établies à la question 1. de cette partie et l'expression de la fonction $y_{-\lambda}$ permettent de voir facilement que cette fonction est aussi solution sur R_{+}^{*} de l'équation différentielle (F_{λ}) .
 - 3.b. Soient β et δ sont des réels tels que $\beta y_{\lambda} + \delta y_{-\lambda} = 0$. (*)

 Comme $y_{\lambda}(x) \sim \frac{x^{\lambda}}{2^{\lambda}\Gamma(\lambda+1)}$ et $y_{-\lambda} \sim \frac{x^{-\lambda}}{2^{-\lambda}\Gamma(-\lambda+1)}$, les fonctions y_{λ} et $y_{-\lambda}$ tendent respectivement vers 0 et $+\infty$ en 0 ; en faisant tendre x vers 0 dans (*), on obtient $\delta = 0$ et par suite $\beta = 0$. Les solutions y_{λ} et $y_{-\lambda}$ sont donc linéairement indépendantes.

Par ailleurs, (F_{λ}) étant une équation différentielle linéaire du second ordre à coefficients continus et homogène, son ensemble de solutions à valeurs réelles sur \mathbb{R}_+^* est donc un espace vectoriel réel de dimension deux, dont $(y_{\lambda}, y_{-\lambda})$ est une base.

DEUXIÈME PROBLÈME

III Première partie

- 1 1.a. Le domaine de définition de la fonction ρ est égal à \mathbb{R} et cette fonction est 2π -périodique.
 - 1.b. La fonction ρ est paire comme la fonction cosinus ; on en déduit que, pour tout $\theta \in \mathbb{R}$, le point $\varphi(-\theta)$ du support de l'arc γ_1 se déduit du point $\varphi(\theta)$ par symétrie par rapport à l'axe polaire $O + \mathbb{R}\vec{i}$. Ainsi, la droite affine $O + \mathbb{R}\vec{i}$ est un axe de symétrie du support de l'arc γ_1 .
 - 1.c. Puisque la fonction ρ est 2π -périodique, le support de l'arc γ_1 est complètement décrit lorsque θ décrit l'intervalle $]-\pi,\pi]$. Ainsi, grâce à la parité de la fonction ρ , le support de l'arc γ_1 peut être obtenu à partir de celui de l'arc γ_2 par symétrie par rapport à l'axe polaire.
- On a $\rho(\pi) = 0$ donc $\varphi(\pi) = 0$, puis $\rho'(\pi) = -\sin \pi = 0$ et $\rho''(\pi) = -\cos \pi = 1 \neq 0$; on en déduit que le point $O = \varphi(\pi)$ du support de l'arc γ_1 est un point de rebroussement de première espèce.

Pour tout réel θ , on a

$$\varphi'(\theta) = \rho'(\theta)\vec{u}(\theta) + \rho(\theta)\vec{v}(\theta) \quad \text{et} \quad \varphi''(\theta) = \left(\rho''(\theta) - \rho(\theta)\right)\vec{u}(\theta) + 2\rho'^2(\theta)\vec{v}(\theta).$$

Le déterminant des vecteurs $\varphi'(\theta)$ et $\varphi''(\theta)$ dans une base orthonormée de \vec{E} vaut alors det $(\varphi'(\theta), \varphi''(\theta)) = 2\varphi'^2(\theta) + \rho^2(\theta) - \rho(\theta)\rho''(\theta) = 3(1 + \cos\theta)$.

On en déduit qu'en tout point $\varphi(\theta)$ de l'arc γ_1 distinct du pôle, c'est à dire que $(1 + \cos \theta) \neq 0$, ce déterminant est strictement positif puisque $1 + \cos \theta > 0$; ainsi, ces point sont biréguliers et la concavité de la courbe est tournée vers le pôle O.

La fonction ρ est de classes C^{∞} et décroissante sur le segment $[0, \pi]$ puisque $\forall \theta \in [0, \pi], \quad \rho'(\theta) = -\sin \theta \leq 0.$

on en déduit le tableau de variations suivant

x	0		π
$\rho'(x)$	0	_	0
$\rho(x)$	2	/	0

5

À l'aide de la définition, on obtient l'expression de la longueur de l'arc γ_2 , notée $\ell(\gamma_2)$, et donnée par

$$\ell(\gamma_2) = \int_0^{\pi} ||\varphi'(\theta)|| d\theta = \int_0^{\pi} \sqrt{\rho^2(\theta) + \rho'^2(\theta)} d\theta = 2 \int_0^{\pi} \cos(\theta/2) d\theta = 4$$

La portion du plan délimitée par le support de l'arc γ_1 est définie par $\{O + r\vec{u}(\theta) : -\pi \le \theta \le \pi \text{ et } 0 \le r \le \rho(\theta)\}$;

elle a la même aire que l'ensemble

$$\mathcal{D} = \{ (r\cos\theta, r\sin\theta) \in \mathbb{R}^2 ; -\pi \leqslant \theta \leqslant \pi \quad \text{et} \quad 0 \leqslant r \leqslant \rho(\theta) \}$$

L'aire $\mathcal{A}(\mathcal{D})$ de \mathcal{D} est donnée par $\mathcal{A}(\mathcal{D}) = \iint_{\mathcal{D}} dx \ dy$; cette intégrale double se calcule facilement par passage en coordonnées polaire, on obtient alors

$$\mathcal{A}(\mathcal{D}) = \iint_{\mathcal{D}} dx dy = \int_{-\pi}^{\pi} \int_{0}^{\rho(\theta)} r dr d\theta = \frac{1}{2} \int_{-\pi}^{\pi} \rho^{2}(\theta) d\theta = \int_{0}^{\pi} (1 + \cos \theta)^{2} d\theta = \frac{3\pi}{2}$$

IV Deuxième partie

IV.A. Question de cours

Par définition, l'abscisse curviligne s sur l'arc γ orienté dans le sens des θ croissants et correspondant au choix de θ_0 comme origine est la fonction définie par

$$s(\theta) = \int_{\theta_0}^{\theta} \sqrt{f^2(t) + f'^2(t)} \ dt.$$

 $s(\theta_1)$ représente la longueur de la portion de l'arc γ décrite lorsque θ varie de θ_0 à θ_1 si $\theta_1 \geqslant \theta_0$ et son opposé sinon.

Il découle de cette définition que $\frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{f^2 + f'^2}.$

On sait que $\tan V = f/f'$ et par dérivation on obtient $(1 + \tan^2 V) \frac{dV}{d\theta} = \frac{f'^2 - ff''}{f'^2}$,

ďoù

$$\frac{\mathrm{dV}}{\mathrm{d}\theta} = \frac{f'^2 - ff''}{f^2 + f'^2}.$$

Puis R = $\frac{\mathrm{d}s}{\mathrm{d}\alpha} = \frac{\mathrm{d}s}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}\alpha}$, et comme $\alpha = \theta + \mathrm{V}$ alors $\frac{\mathrm{d}\alpha}{\mathrm{d}\theta} = 1 + \frac{\mathrm{d}\mathrm{V}}{\mathrm{d}\theta} = \frac{f^2 + 2f'^2 - ff''}{f^2 + f'^2}$.

On en déduit alors que

$$R = \frac{(f^2 + f'^2)^{3/2}}{f^2 + 2f'^2 - ff''}.$$

Le fait que l'on puisse diviser par la quantité $f^2+2f'^2-ff''$ est justifié par la birégularité de l'arc γ en question.

On sait que $I = M + R\vec{N}$, puis $\vec{N} = -R\sin V\vec{u} + R\cos V\vec{v}$; ainsi I a pour coordonnées $(-R\sin V, R\cos V)$ dans le repère $(M, \vec{u}(\theta), \vec{v}(\theta))$. Par ailleurs on a

$$\cos V = \frac{f'}{\sqrt{f^2 + f'^2}}$$
 et $\sin V = \frac{f}{\sqrt{f^2 + f'^2}}$,

donc le point I a pour coordonnées $\left(-\frac{(f^2+f'^2)f}{f^2+2f'^2-ff''}, \frac{(f^2+f'^2)f'}{f^2+2f'^2-ff''}\right)$ dans le repère $(M, \vec{u}(\theta), \vec{v}(\theta))$.

IV.B. Retour à l'arc γ_1

On vient de voir que les coordonnées de $I(\theta)$, centre de courbure en $M((\theta)) = \varphi(\theta)$, dans le repère $(M(\theta), \vec{u}(\theta), \vec{v}(\theta))$, sont

$$\Big(-\frac{(\rho^2+\rho'^2)\rho}{\rho^2+2\rho'^2-\rho\rho''},\frac{(\rho^2+\rho'^2)\rho'}{\rho^2+2\rho'^2-\rho\rho''}\Big)=\frac{2}{3}(-\rho,\rho')\,;$$

on en déduit que les coordonnées de $I(\theta)$ dans le repère $(O, \vec{u}(\theta), \vec{v}(\theta))$ sont

$$\frac{1}{3}(\rho, 2\rho') = \frac{1}{3}(1 + \cos\theta, -2\sin\theta).$$

c'est à dire que $\overrightarrow{OI(\theta)} = \frac{1}{3}(1 + \cos \theta) \cdot \vec{u}(\theta) - \frac{2}{3}\sin \theta \cdot \vec{v}$.

Alors que dans le repère (O, \vec{i}, \vec{j}) , ses coordonnées sont

$$\left(\frac{1}{3}(1-\cos\theta)\cos\theta + \frac{2}{3}, \frac{1}{3}(1-\cos\theta)\sin\theta\right)$$

c'est à dire que

$$\overrightarrow{\mathrm{OI}(\theta)} = (\frac{1}{3}(1-\cos\theta)\cos\theta + \frac{2}{3}).\overrightarrow{i} + \frac{1}{3}(1-\cos\theta)\sin\theta.\overrightarrow{j}.$$

- Soit Ω le point tel que $\overrightarrow{O\Omega} = \frac{1}{2}\vec{i}$, alors $\overrightarrow{\Omega I(\theta)} = (\frac{1}{3}(1-\cos\theta)\cos\theta + \frac{1}{6}).\vec{i} + \frac{1}{3}(1-\cos\theta)\sin\theta.\vec{j} = \frac{1}{3}(1-\cos\theta).\vec{u}(\theta) + \frac{1}{6}.\vec{i}.$ Par ailleurs $\overrightarrow{OM(\theta+\pi)} = -(1-\cos\theta)\vec{u}(\theta)$ donc $\overrightarrow{\Omega M(\theta+\pi)} = -(1-\cos\theta)\vec{u}(\theta) \frac{1}{2}\vec{i}$ et par suite $\overrightarrow{\Omega I(\theta)} = -\frac{1}{3}\overrightarrow{\Omega M(\theta+\pi)}$, c'est à dire que le point $I(\theta)$ est bien l'image du point $M(\theta+\pi)$ par l'homothétie de centre Ω et de rapport $-\frac{1}{3}$.
- On a $\overline{M(\theta)H(\theta)} = \operatorname{pr}(\overline{M(\theta)I(\theta)})$, où pr désigne la projection orthogonale de \overline{E} sur la droite vectorielle $\mathbb{R}\vec{u}(\theta)$. Or, d'après ce qui précède, $\overline{M(\theta)I(\theta)} = \frac{2}{3}(\rho(\theta)\vec{u}(\theta) + \rho'(\theta)\vec{v}(\theta))$ donc $\overline{M(\theta)H(\theta)} = -\frac{2}{3}\rho(\theta)\vec{u}(\theta)$. On en déduit alors que

$$\overrightarrow{\mathrm{OH}(\theta)} = \overrightarrow{\mathrm{OM}(\theta)} + \overrightarrow{\mathrm{M}(\theta)} \overrightarrow{\mathrm{H}(\theta)} = \frac{1}{3} \rho(\theta) \overrightarrow{u}(\theta) = \frac{1}{3} \overrightarrow{\mathrm{OM}(\theta)}.$$

Ainsi, le point $H(\theta)$ est l'image du point $M(\theta)$ par l'homothétie de centre O et de rapport $\frac{1}{3}$.

4

1 s'agit bien entendu de la longueur de la courbe décrite une seule fois, ce qui donne le

tiers de celle de l'arc $\left(\left] - \pi, \pi \left[, \varphi_{/\left] - \pi, \pi \right[} \right) \right)$; elle vaut donc $\frac{8}{3}$. L'aire de la portion du plan que cette courbe délimite vaut quant à elle $\frac{\pi}{6}$.

FIN DU CORRIGÉ

Rien ne saurait remplacer un livre en papier

Des livres de prépas très joliment imprimés à des prix très accessibles

La qualité est notre point fort.

Vos commentaires sont importants pour nous Pour toute information, n'hésitez pas à nous contacter

> mailto:al9ahira@gmail.com http://al9ahira.com/

> > 7, rue Égypte. Tanger