

05 - Optimisation

Infrastructure de données 1

Indexation

- Structure de données qui accélère les recherches dans une table.
- Utilisé pour optimiser les requêtes avec WHERE, JOIN, ORDER BY, etc.

Avantage : améliore la vitesse de lecture

Inconvénient : ralentit les écritures (INSERT/UPDATE) et consomme de l'espace

Un index en base de données, c'est comme l'index à la fin d'un livre : au lieu de lire toutes les pages une par une, on va directement à l'endroit où se trouve l'information.

Types d'index

Туре	Description	Syntaxe
btree (défaut)	Ordonné, efficace pour la plupart des requêtes	<pre>CREATE INDEX idx_name ON table(col);</pre>
hash	Utilisé pour les égalités (=)	<pre>CREATE INDEX idx_hash ON table USING hash(col);</pre>
GIN (Generalized Inverted Index)	Index sur tableaux, JSONB, texte plein	CREATE INDEX idx_gin ON table USING gin(col);
GiST	Index spatial, texte approximatif, etc.	<pre>CREATE INDEX idx_gist ON table USING gist(col);</pre>

B-Tree index

- Type d'index par défaut dans PostgreSQL.
- Fonctionne très bien pour les comparaisons classiques : =, <, >,
 BETWEEN, ORDER BY, etc.
- Structure sous forme d'arbre équilibré → accès rapide à la donnée triée.
- Très efficace pour des recherches sur des colonnes de type INT, TEXT, DATE, etc.
- Utilisé automatiquement pour les clés primaires et uniques

B-Tree (Source: Dhanushka Madushan)

Hash index

- Optimisé uniquement pour les recherches par égalité (=)
- Ne peut pas être utilisé pour des tris ou intervalles (<, >, etc.)
- Moins d'espace que B-tree, mais aussi moins polyvalent
- Cas d'usage : recherche exacte sur une clé alternative très utilisée

Source: B+ Tree vs Hash Index (and when to use them), SQL Pipe

GIN index

Generalized Inverted Index (GIN)

- Très performant pour faire des recherches dans :
 - Du texte (avec to_tsvector, full-text search)
 - Des colonnes de type ARRAY
 - Des champs JSONB avec opérateurs
 @>, ?, etc.
- Permet de savoir dans quelles lignes un mot ou une valeur apparaît.
- Plus lent à écrire et plus lourd, mais indispensable pour les recherches complexes.

(SP-)GiST index

(Space Partioned) Generalized Search Tree

Très flexible, peut indexer :

- Des données géospatiales (PostGIS)
- Des recherches approximatives (recherche floue, distances, etc.)
- Structure adaptable à plusieurs types de logique (proximité, similarité...).
- Un peu comme le "couteau suisse" des index PostgreSQL.

<u>Source: Indexes in PostgreSQL - 6 (SP-GiST), Habr</u>

Impact

- Avantages:
 - Accélèrent les requêtes avec WHERE, JOIN, ORDER BY, etc.
 - Améliorent les performances sur les grandes tables
 - Réduisent le temps de traitement côté serveur
- X Inconvénients:
 - Ralentissent les écritures (INSERT, UPDATE, DELETE)
 - Peuvent devenir inutiles si mal choisis
 - Consomment de l'espace disque supplémentaire

Créer un index si...

- Tu fais des jointures fréquentes sur une
 Colonne

 B-Tree / Hash
- Tu travailles sur des plages de dates ou des intervalles

 B-Tree
- Tu cherches dans du texte ou des tableaux
- Tu manipules des données spatiales ou ______ GIST géographiques

Bonnes pratiques générales

- Évite de créer trop d'index → chaque écriture les met à jour !
- Utilise EXPLAIN (ANALYZE) pour mesurer les performances
- Supprime les index inutilisés ou redondants
- Adapte le type d'index à la nature des données et des requêtes

Révisions

