Лабораторная работа №14

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

	писок литературы	25
5	Выводы	24
4	Выполнение лабораторной работы	8
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Построение модели	 •	•	 •	•		•	•	 	•			 9
4.2	Результат моделирования								 				 10
4.3	Построение модели								 				 12
4.4	Результат моделирования								 				 13
4.5	Построение модели								 				 14
4.6	Результат моделирования								 				 15
4.7	Построение модели								 				 16
4.8	Результат моделирования								 				 17
4.9	Построение модели								 				 18
4.10	Результат моделирования	 •							 				 19
4.11	Построение модели								 				 20
4.12	Результат моделирования	 •							 				 21
4.13	Построение модели								 				 22
4.14	Результат моделирования								 				 23

Список таблиц

1 Цель работы

Научиться работать с моделью обработки заказов.

2 Задание

В интернет-магазине заказы принимает один оператор. Интервалы поступления заказов распределены равномерно с интервалом 15 ± 4 мин. Время оформления заказа также распределено равномерно на интервале 10 ± 2 мин. Обработка по- ступивших заказов происходит в порядке очереди (FIFO). Требуется разработать модель обработки заказов в течение 8 часов.

3 Теоретическое введение

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе: 1) клиент оставляет заявку на заказ в интернет-магазине; 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа; 3) заявка от клиента принимается оператором для оформления заказа; 4) оператор оформляет заказ; 5) клиент получает подтверждение об оформлении заказа (покидает систему). Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) — ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегатог_q Для моделирования поступления заявок для оформления заказов к оператору ис- пользуем блоки SEIZE и RELEASE с параметром орегатог — имени «устройства обслуживания».

4 Выполнение лабораторной работы

Построение модели(рис.4.1), (рис.4.2).

Untitled Model 1

```
GENERATE 15,4
      operator
       operator
ADVANCE 10,2
RELEASE
        operator
TERMINATE 0
:timer
GENERATE 480
TERMINATE 1
```

Рис. 4.1: Построение модели

	среда	, мая 07, 2025	18:28:46			
	START TIME	END TIN	ME BLOCKS	FACILITIES	STORAGES	
	0.000	480.00	00 9	1	0	
			Ī			
	NAME		VALUE			
	OPERATOR		10001.000			
	OPERATOR_Q	1	10000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COU	NT CURRENT O	COUNT RETRY	
		GENERATE	32		0	
	2	QUEUE	32	(0	
	3	SEIZE	32	(0	
	4	DEPART	32		0	
	5	ADVANCE	32		. 0	
	6	RELEASE	31		0	
	7	TERMINATE	31	(0	
		GENERATE	1	(0	
	9	TERMINATE	1		0	
PACTITEV	ENTRIES	UTIL. AVF.	TIME AVAIL	. OWNER PENI	INTER RETR	Y DELAY
EMULLILL						

Рис. 4.2: Результат моделирования

После запуска симуляции получаем отчёт (рис. 14.1). Результаты работы модели: – модельное время в начале моделирования: START TIME=0.0; – абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; – количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; – количество одноканальных устройств, использованных в модели к моменту за- вершения моделирования: FACILITIES=1; – количество многоканальных устройств, использованных в текущей модели к мо- менту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q. Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT — количество транзактов,

вошедших в блок с начала процедуры моделирования. Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин. Далее информация об очереди: – QUEUE=operator_q — имя объекта типа «очередь»; – MAX=1-в очереди находилось не более одной ожидающей заявки от клиента; – CONT=0 — на момент завершения моделирования очередь была пуста; – ENTRIES=32 — общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; – ENTRIES(O)=31 — число заявок от клиентов. попавших к оператору без ожидания в очереди; - AVE.CONT=0, 001 заявок от клиентов в среднем были в очереди; – AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); – AVE.(-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь). В конце отчёта идёт информация о будущих событиях: -XN=33 — порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; – PRI=0 — все клиенты (из заявки) равноправны; - BDT=489, 786 — время назначенного события, связанного с данным транзактом; – ASSEM=33 — номер семейства транзактов; – CURRENT=5 — номер блока, в котором находится транзакт; – NEXT=6 — номер блока, в который должен войти транзакт.

Скорректируйте модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин. Проанализируйте отчёт, сравнив результаты с результатами предыдущего моделирования(рис.4.3), (рис.4.4).

Untitled Model 1

```
GENERATE 3.14, 1.7
QUEUE operator_q
SEIZE operator
DEPART operator_ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.3: Построение модели

Untitled	Mode	el 1.5.1	- REP	ORT						
4	DEPA	RT			70		0		0	-
5	ADVA	NCE			70		1		0	
6	RELE	ASE			69		0		0	
7	TERM	INATE			69		0		0	
8	GENE	RATE			1		0		0	
9	TERM	INATE			1		0		0	
INTRIES	UTI	L.	AVE.	TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
70	0.	991		6.796	5 1	71	0	0	0	82
MAX CO	ONT.	ENTRY	ENT	RY(0)	AVE.CO	NT. AV	E.TIME	E AV	E.(-0)	RETRY
82	82	152		1	39.09	6 1	23.46	1 1:	24.279	0
BDT		ASSE	M C	URRENI	NEXT	PARA	METER	VA	LUE	
480.4	105	71		5	6					
483.3	330	154		0	1					
960.0	000	155		0	8					
.1										- () (

Рис. 4.4: Результат моделирования

Построение гистограммы(рис.4.5), (рис.4.6).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 4.5: Построение модели

Рис. 4.6: Результат моделирования

В интернет-магазин к одному оператору поступают два типа заявок от клиентов — обычный заказ и заказ с оформление дополнительного пакета услуг. Заявки первого типа поступают каждые 15 ± 4 мин. Заявки второго типа — каждые 30 ± 8 мин. Оператор обрабатывает заявки по принципу FIFO («первым пришел — первым обслужился»). Время, затраченное на оформление обычного заказа, составляет 10 ± 2 мин, а на оформление дополнительного пакета услуг — 5 ± 2 мин. Требуется разработать модель обработки заказов в течение 8 часов, обеспечив сбор данных об очереди заявок от клиентов(рис.4.7), (рис.4.8).

Untitled Model 1

```
: order
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
```

Рис. 4.7: Построение модели

Рис. 4.8: Результат моделирования

Скорректируйте модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов. Используйте оператор TRANSFER. Проанализируйте отчёт(рис.4.9), (рис.4.10).

🏰 Untitled Model 1

```
: order
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3, noextra, rxtra
extra ADVANCE 5,2
noextra RELEASE operator
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.9: Построение модели

Рис. 4.10: Результат моделирования

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления зака- зов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. Об- работка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня(рис.4.11), (рис.4.12).

Operator STORAGE 4 GENERATE 5,2 QUEUE operator_q ENTER operator_q ENTER operator_q ADVANCE 10,2 LEAVE operator,1 TERMINATE 0 Cerment modenupobanus tammepa: ;timer GENERATE 480 TERMINATE 1 START 1

Рис. 4.11: Построение модели

Рис. 4.12: Результат моделирования

Измените модель: требуется учесть в ней возможные отказы клиентов от заказа — когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используйте блок TEST и стандартный числовой атрибут Qj текущей длины очереди j)(рис.4.13), (рис.4.14).

77E

Untitled Model 1

```
operator STORAGE 4
GENERATE 5,2

[est LE Q$operator_q,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.13: Построение модели

Рис. 4.14: Результат моделирования

5 Выводы

Научилась работать с моделью обработки заказов.

Список литературы