- . cd "C:\Users\rxg230005\Downloads"
 C:\Users\rxg230005\Downloads
- . import delimited "AETsA_Project_dataset.csv", clear (encoding automatically selected: ISO-8859-1) (8 vars, 132 obs)

Define the regression model and diagnostic tests.

Basic OLS Regression

. regress houses_sold interest_rate household_income unemployment_rate housing_supply inflation_rate consumer_confidence

Source	SS	df	MS	Number of obs	=	132
				F(6, 125)	=	64.75
Model	1565341.83	6	260890.305	Prob > F	=	0.0000
Residual	503683.888	125	4029.47111	R-squared	=	0.7566
				Adj R-squared	=	0.7449
Total	2069025.72	131	15794.0895	Root MSE	=	63.478

houses_sold	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
interest_rate	3.701492	11.07831	0.33	0.739	-18.22386	25.62685
household_income	.0069901	.0031841	2.20	0.030	.0006883	.0132918
unemployment_rate	28.77898	5.030282	5.72	0.000	18.82343	38.73453
housing_supply	.4328557	.0767416	5.64	0.000	.2809747	.5847368
inflation_rate	-63.10927	23.03191	-2.74	0.007	-108.6923	-17.52625
consumer_confidence	4.099199	.7411266	5.53	0.000	2.632418	5.565981
_cons	-801.3235	176.9307	-4.53	0.000	-1151.491	-451.1557

Multicollinearity Check

Use the Variance Inflation Factor (VIF) to check for multicollinearity.

. vif

Variable	VIF	1/VIF
household_~e	27.04	0.036982
interest_r~e	13.77	0.072607
housing_su~y	9.48	0.105462
consumer_c~e	3.36	0.298055
unemployme~e	2.40	0.415952
inflation_~e	2.28	0.438385
Mean VIF	9.72	

Autocorrelation Test

The Breusch-Godfrey test can identify autocorrelation in the residuals for time series data

. gen date_var = date(date,"MDY")

. tsset date_var

Time variable: date_var, 19724 to 23711, but with gaps Delta: 1 unit

. estat bgodfrey

Number of gaps in sample = 131

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.000	1	1.0000

H0: no serial correlation

The Durbin-Watson test can identify autocorrelation in the residuals.

. estat dwatson

Number of gaps in sample = 131

Durbin-Watson d-statistic(7, 132) = 0

Heteroskedasticity Test

The Breusch-Pagan test is useful for identifying heteroskedasticity.

. estat hettest

 ${\tt Breusch-Pagan/Cook-Weisberg\ test\ for\ heterosked asticity}$

Assumption: Normal error terms

Variable: Fitted values of houses_sold

H0: Constant variance

chi2(1) = 33.07Prob > chi2 = 0.0000

Adding Interaction Term

- . gen interest_income_interaction = interest_rate * household_income
- $. \ \ regress \ houses_sold \ interest_rate \ household_income \ unemployment_rate \ housing_supply \ inflation_rate \ consumer_confidence \ interest_income$
- > _interaction

	Source	SS	df	MS	Number of obs	=	132
_					F(7, 124)	=	55.06
	Model	1565368.04	7	223624.005	Prob > F	=	0.0000
	Residual	503657.685	124	4061.75552	R-squared	=	0.7566
_					Adj R-squared	=	0.7428
	Total	2069025.72	131	15794.0895	Root MSE	=	63.732

houses_sold	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
interest_rate	8.570014	61.62616	0.14	0.890	-113.4054	130.5454
household_income	.006954	.0032282	2.15	0.033	.0005645	.0133435
unemployment_rate	28.91618	5.331432	5.42	0.000	18.36378	39.46857
housing_supply	.4332339	.0771921	5.61	0.000	.2804492	.5860186
inflation_rate	-62.98594	23.17492	-2.72	0.008	-108.8556	-17.11628
consumer_confidence	4.060783	.8845496	4.59	0.000	2.310012	5.811555
<pre>interest_income_interaction</pre>	0000584	.0007268	-0.08	0.936	0014968	.0013801
_cons	-797.7742	183.052	-4.36	0.000	-1160.085	-435.4631

Time Series Analysis

For time series-specific analysis, start by setting up the dataset as a time series and then perform any necessary transformations or tests for stationarity.

- . gen numeric_date = date(date, "MDY")
- . format numeric_date %td
- . gen year_month = ym(year(numeric_date), month(numeric_date))
- . format year_month %tm
- . tsset year_month, monthly

Time variable: year_month, 2014m1 to 2024m12

Delta: 1 month

. dfuller houses_sold, regress lags(1)

Augmented Dickey-Fuller test for unit root

Number of obs = 130 Number of lags = 1 Variable: houses_sold

H0: Random walk without drift, d = 0

		Dickey-Fuller							
	Test	Test ———— critical							
	statistic	1%	5%	10%					
Z(t)	-2.435	-3.500	-2.888	-2.578					

MacKinnon approximate p-value for Z(t) = 0.1321.

Regression table

D.						
houses_sold	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
houses_sold						
L1.	0907553	.0372722	-2.43	0.016	1645103	0170003
LD.	1190492	.0872424	-1.36	0.175	2916861	.0535877
_cons	60.73966	24.22354	2.51	0.013	12.80566	108.6737

. dfuller interest_rate, regress lags(1)

Augmented Dickey-Fuller test for unit root

Variable: interest_rate Number of obs = 130

Number of lags = 1

H0: Random walk without drift, d = 0

		Dickey-Fuller						
	Test	st ———— critical value ——						
	statistic	1%	5%	10%				
Z(t)	-0.690	-3.500	-2.888	-2.578				

MacKinnon approximate p-value for Z(t) = 0.8492.

Regression table

D. interest_rate	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
interest_rate						
L1.	0044768	.0064834	-0.69	0.491	0173063	.0083527
LD.	.647095	.0687599	9.41	0.000	.5110316	.7831584
_cons	.0201748	.0157534	1.28	0.203	0109983	.0513479

```
. gen D_houses_sold = D.houses_sold
(1 missing value generated)
```

- . gen D_interest_rate = D.interest_rate
 (1 missing value generated)
- . gen D_unemployment_rate = D.unemployment_rate
 (1 missing value generated)
- . regress D_houses_sold D_interest_rate D_unemployment_rate D.household_income D.housing_supply D.inflation_rate D.consumer_confidence

Source	SS	df	MS	Number of obs	=	131
				F(6, 124)	=	1.72
Model	28276.9001	6	4712.81668	Prob > F	=	0.1226
Residual	340571.787	124	2746.54667	R-squared	=	0.0767
				Adj R-squared	=	0.0320
Total	368848.687	130	2837.29759	Root MSE	=	52.408

D_houses_sold	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
D_interest_rate D_unemployment_rate	8.704054 -7.430871	32.54878 5.741127	0.27 -1.29	0.790 0.198	-55.7191 -18.79417	73.1272 3.932428
household_income D1.	0312337	.0331022	-0.94	0.347	0967523	.0342849
housing_supply D1.	021642	.0663343	-0.33	0.745	1529362	.1096523
inflation_rate D1.	35.55543	41.20835	0.86	0.390	-46.00745	117.1183
consumer_confidence D1.	1.965289	1.235161	1.59	0.114	4794412	4.41002
_cons	8.938533	8.263704	1.08	0.282	-7.417652	25.29472

Forecasting

Depending on your preference, you can use regression-based forecasting or apply ARIMA if only the dependent variable needs to be forecasted.

- * Predict future values of D_houses_sold
- * To accumulate the forecast for `houses_sold`, use cumulative summing if differenced

```
. predict D_houses_sold_forecast, xb
(1 missing value generated)
```

. gen forecast_houses_sold = sum(D_houses_sold_forecast)

ARIMA Forecasting

If you want to forecast houses_sold based on past values, ARIMA modeling is a good option

. arima houses_sold, arima(1,1,1)

```
(setting optimization to BHHH)
```

Iteration 0: Log likelihood = -705.35846
Iteration 1: Log likelihood = -704.39013
Iteration 2: Log likelihood = -704.30142
Iteration 3: Log likelihood = -704.04786
Iteration 4: Log likelihood = -702.99359
(switching optimization to BFGS)

Iteration 5: Log likelihood = -702.71412
Iteration 6: Log likelihood = -702.50752
Iteration 7: Log likelihood = -702.50432
Iteration 8: Log likelihood = -702.44322
Iteration 9: Log likelihood = -702.41194
Iteration 10: Log likelihood = -702.40847
Iteration 11: Log likelihood = -702.40822
Iteration 12: Log likelihood = -702.40822

ARIMA regression

D.		OPG				
houses_sold	Coefficient		z	P> z	[95% conf.	interval]
houses_sold _cons	2.117021	1.247306	1.70	0.090	3276534	4.561696
ARMA						
ar						
L1.	.8604672	.0553164	15.56	0.000	.752049	.9688854
ma						
L1.	-1.000002	342.5392	-0.00	0.998	-672.3646	670.3646
/sigma	51.10379	8752.886	0.01	0.498	0	17206.44

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

•

Forecast 12 periods ahead

```
. predict houses_sold_forecast
(option xb assumed; predicted values)
```

. list houses_sold_forecast

	houses_~t
1. 2. 3. 4.	2.117021 2.117021 3.869345 5.027139 5.171371
٠.	3,1,13,1
6.	1.240043
7.	4.272402
8.	5.751759
9.	.8852222
10.	1580938
11.	4241638
12.	3.176394

Forecast Accuracy

Calculate Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for accuracy

```
. gen forecast_error = houses_sold - houses_sold_forecast
. summarize forecast_error, meanonly
. display "MAE: " r(mean)
MAE: 638.64979
. gen squared_error = forecast_error^2
. summarize squared_error, meanonly
. display "RMSE: " sqrt(r(mean))
RMSE: 652.0177
```

Graphs

- . gen time = tm(2020m1) + _n 1
- . format time %tm

. twoway (line houses_sold time, lcolor(blue) lpattern(solid)) (line houses_sold_forecast time if $_n > _N$, lcolor(red) lpattern(dash)), title("Houses Sold Forecast") xtitle("Month") ytitle("Houses Sold") legend(order(1 "Forecast") position(11)) xlabel(, format(%tm)) ylabel(, grid)

Houses Sold Forecast

predict residuals, resid

(1 missing value generated)

. scatter residuals time, mcolor(red) title("Residuals Over Time") yline(0, lcolor(black)) xtitle("Months") ytitle("Residuals")

- . tssmooth ma moving_avg = houses_sold, window(12)
- . tsline houses_sold moving_avg, title("Moving Average of Houses Sold") legend(order(1 "Original" 2 "12-Month Moving Avg"))

histogram residuals, normal title("Histogram of Forecast Errors") xtitle("Residuals") ytitle("Frequency")

twoway (line houses_sold time if time <= tm(2023m12), lcolor(blue) lpattern(solid) yaxis(1)) (line interest_rate time if time <= tm(2023m12), lcolor(red) lpattern(dash) yaxis(2)), title("Houses Sold and Interest Rate Over Time") xtitle("Month") ytitle("Houses Sold", axis(1)) ytitle("Interest Rate (%)", axis(2)) legend(order(1 "Houses Sold" 2 "Interest Rate")) xlabel(, format(%tm))

