iSDF: Real-Time Neural Signed Distance Fields for Robot Perception

Joseph Ortiz (Imperial College London), Alexander Clegg (Facebook AI Research), Jing Dong (Facebook), Edgar A Sucar (Imperial College London), David Novotny (Facebook AI Research), Michael Zollhöfer (Facebook Reality Labs), Mustafa Mukadam (Facebook AI Research)

presented by Yancheng Liang 07/19/2022

Background: SDF

- Signed Distance Fields (SDFs)
- f(x): $R^3 \to R$ projects a 3D points to a scalar
 - which is the distance to the nearest surface point
 - positive for points in the free space, zero for surface points and negative for points inside objects

(Vision Information) -> (Safety) Depth Image Stream -> Neural SDF

Vision Information as Input: Depth + RGB

SDF as Output

SDF is represented by a neural network that takes coordinates $x \in \mathbb{R}^3$ as input and a scalar $y \in \mathbb{R}$ as output

On online learning framework

0. Randomly initialize a NN to represent SDF

Then in each iteration:

- 1. Collect a new frame of depth image
- 2. Sample training data from current and past frames
 - 3. Update NN

Prior Works

New frame comes

Update Occupancy Map

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 1
 0
 0
 0

Both are voxel-based, and thus time and space-consuming

 ?
 ?
 ?
 ?
 ?
 2
 2
 2
 2
 ?

 ?
 ?
 ?
 ?
 2
 1
 1
 1
 1
 2

 ?
 ?
 ?
 2
 1
 ?
 3
 0
 0
 1

 ?
 ?
 2
 1
 0
 0
 -1
 -1
 -1
 0

 ?
 ?
 2
 1
 0
 -1
 ?
 ?
 -1
 0

 ?
 ?
 2
 1
 0
 -1
 ?
 ?
 -1
 0

 ?
 ?
 ?
 2
 1
 0
 -1
 ?
 ?
 -1
 0

 ?
 ?
 ?
 2
 1
 0
 -1
 -1
 -1
 0

 ?
 ?
 ?
 2
 1
 0
 -1
 -1
 -1
 -1
 0

 ?
 ?
 ?
 2
 1
 0
 0
 0
 0
 1

Update TSDF

Update SDF with online BFS (still voxel-based)

How To Learn SDF f? Four Parts.

• Loss = $E_x[L_{distance}(b(x), f(x)) + L_{orientation}(g(x), \nabla f(x)) + L_{property}(f, x)]$

How to sample training points?

Fact: $|\nabla f(x)| = 1$ almost everywhere

How to estimate the true distance b(x)?

How to estimate the orientation g(x)?

Training Points Batch Sampling

$$Loss = \underbrace{E_{x}}[L_{distance}(b(x), f(x)) + L_{orientation}(g(x), \nabla f(x)) + L_{property}(f, x)]$$

- Frame Selection:
 - Latest frames
 - Select some history keyframes
- In each frame:
 - Randomly sample some pixels
 - Select some points on the ray between the camera and the pixel: Stratified sampling + Gaussian sampling + Surface point

Distance Loss

$$Loss = E_x[L_{distance}(b(x), f(x)) + L_{orientation}(g(x), \nabla f(x)) + L_{property}(f, x)]$$

b(x) = |x - p|, p is the estimated closet surface point

- 1. Use the surface point of the same ray
- 2. If x is near to the surface point, apply normal correction
- 3. Choose *p* among all surface points in this training batch

Distance Loss

$$Loss = E_x[L_{distance}(b(x), f(x)) + L_{orientation}(g(x), \nabla f(x)) + L_{property}(f, x)]$$

b(x) upper bounds f(x), and it should be tight near the surface.

$$\mathcal{L}_{\text{sdf}}(f(\mathbf{x};\theta),b) = \begin{cases} \lambda_{\text{surf}} \mathcal{L}_{\text{near_surf}} & \text{if } |D[u,v]-d| \leq t \\ \mathcal{L}_{\text{free_space}} & \text{otherwise.} \end{cases}$$
(8)
$$\mathcal{L}_{\text{near_surf}}(f(\mathbf{x};\theta),b) = |f(\mathbf{x}_i;\theta)-b| .$$

$$\mathcal{L}_{\text{free_space}}(f(\mathbf{x}; \theta), b) = \max \left(0, e^{-\beta f(\mathbf{x}_i; \theta)} - 1, f(\mathbf{x}_i; \theta) - b\right). \tag{6}$$

Orientation Loss

$$Loss = E_x[L_{distance}(b(x), f(x)) + L_{orientation}(g(x), \nabla f(x)) + L_{property}(f, x)]$$

$$\mathbf{g}(\mathbf{x}, \mathcal{P}) = \operatorname{sgn}(D[u, v] - d) \cdot (\mathbf{x} - \arg\min_{\mathbf{p} \in \mathcal{P}} |\mathbf{x} - \mathbf{p}|)$$

p is the same point chosen previously to estimate b(x)When x is near to a surface, g is replaced by the surface normal

$$\mathcal{L}_{grad}(\nabla_{\mathbf{x}} f(\mathbf{x}; \theta), \mathbf{g}) = 1 - \frac{\nabla_{\mathbf{x}} f(\mathbf{x}; \theta) \cdot \mathbf{g}}{\|\nabla_{\mathbf{x}} f(\mathbf{x}; \theta)\| \|\mathbf{g}\|}$$

Orientation Loss

$$Loss = E_x[L_{distance}(b(x), f(x)) + L_{orientation}(g(x), \nabla f(x)) + L_{property}(f, x)]$$

$$\mathcal{L}_{eik}(f(\mathbf{x}; \theta)) = \begin{cases} |\|\nabla_{\mathbf{x}} f(\mathbf{x}; \theta)\| - 1| & \text{if } |D[u, v] - d| \ge a \\ 0 & \text{otherwise.} \end{cases}$$
(10)

For points that are far from the surface, we regularize $\nabla f(x)$. This can be seen as a BFS propagation.

Numerical Results: Lower Error

Generalization

• Because iSDF uses NN, it can generalize to unseen regions.

Mesh

Ground truth

iSDF

Voxblox

KinectFusion+

Smoothness

Flexible Resolution

 Voxel-based methods have fixed resolution, while neural representation can attend to both detailed salt shaker and coarse fridge Ground truth

iSDF

Voxblox

KinectFusion+

Level-set mesh z = 1.03m, 1.1m