Book Name: Selina Concise

EXERCISE- 4 (A)

Solution 1:

(i) $x < -y \Rightarrow -x > y$

The given statement is true.

 $(ii) - 5x \ge 15 \Rightarrow \frac{-5x}{5} \ge \frac{15}{5} x \le -3$

The given statement is false

(iii) $2x \le -7 \Rightarrow \frac{2x}{-4} \ge \frac{-7}{-4}$

The given statement is true

(iv) $7 > 5 \Rightarrow \frac{1}{7} < \frac{1}{5}$

The given statement is true.

Solution 2:

(i) $a < b \Rightarrow a - c < b - c$

The given statement is true.

(ii) If $a > b \Rightarrow a + c > b + c$

The given statement is true.

(iii) If $a < b \Rightarrow ac < bc$

The given statement is false.

(iv) If $a > b \Rightarrow \frac{a}{c} > \frac{b}{c}$

The given statement is false.

(v) If $a - c > b - d \Rightarrow a + d > b + c$

The given statement is true.

(vi) If $a < b \Rightarrow a - c < b - c$ (Since, c > O)

The given statement is false.

Solution 3:

(i) $5x + 3 \le 2x + 18$

$$5x - 2x \le 18 - 3$$

$$3x \le 15$$

$$X \le 5$$

Since, $x \in \mathbb{N}$, therefore solution set is $\{1,2,3,4,5\}$

(ii)
$$3x-2 < 19-4x$$

 $3x + 4x < 19 + 2$
 $7x < 21$
 $X < 3$

Since, $x \in \mathbb{N}$, therefore solution set is $\{1,2\}$.

Solution 4:

(i)
$$x + 7 \le 11$$

$$X \le 11 - 7$$

$$X \le 4$$

Since, the replacement set = W (set of whole numbers)

 \Rightarrow Solution set = $\{0,1,2,3,4\}$

(ii)
$$3x - 1 > 8$$

$$3x > 8 + 1$$

Since, the replacement set = W (Set of whole numbers)

 \Rightarrow Solution set = $\{4, 5, 6, \dots\}$

(iii)
$$8 - x > 5$$

$$-X > 5 - 8$$

$$-X > -3$$

Since, the replacement set = W (Set of whole numbers)

 \Rightarrow Solution set = $\{0, 1, 2, \dots\}$

(iv)
$$7 - 3x \ge -\frac{1}{2}$$

$$-3x \ge -\frac{1}{2} - 7$$
$$-3x \ge -\frac{15}{2}$$

$$-3x \ge -\frac{15}{2}$$

$$X \leq \frac{5}{2}$$

Since, the replacement set = W (set of whole numbers)

 \therefore Solution set = $\{0, 1, 2\}$

(v)
$$x - \frac{3}{2} < \frac{3}{2} - x$$

 $x + x < \frac{3}{2} + \frac{3}{2}$
 $2x < 3$

$$x + x < \frac{3}{2} + \frac{3}{2}$$

$$X < \frac{3}{2}$$

Since, the replacement set = W (set of whole numbers)

 \therefore Solution set = $\{0, 1\}$

(vi)
$$18 \le 3x - 2$$

 $18 + 2 \le 3x$
 $20 \le 3x$
 $X \ge \frac{20}{3}$

Since, the replacement set = W (set of whole numbers)

 \therefore Solution set = $\{7, 8, 9, \ldots\}$

Solution 5:

$$3 - 2x \ge x - 12$$

$$-2x-x \ge -12-3$$

$$-3x \ge -15$$

$$X \le 5$$

Since, $x \in N$, therefore,

Solution set = $\{1, 2, 3, 4, 5\}$

Solution 6:

$$25 - 4x \le 16$$

$$-4x \le 16 - 25$$

$$-4x \le -9$$

$$X \ge \frac{9}{4}$$

(i) The smallest value of x, when x is a real number, is 2.25.

(ii) The smallest value of x, when x is an integer, is 3.

Solution 7:

(i)
$$-4x \ge -16$$

Since, the replacement set of real numbers.

 \therefore solution set = $\{x:x \in R \text{ and } x \leq 4\}$

(ii)
$$8 - 3x \le 20$$

$$-3x \le 20-8$$

$$-3x \le 12$$

$$X \ge -4$$

Since the replacement set of real numbers.

 \therefore solution set = $\{x:x \in R \text{ and } x \le -4\}$

(iii)
$$5 + \frac{x}{4} > \frac{x}{5} + 9$$

$$\frac{x}{4} - \frac{x}{5} > 9 - 5$$

$$\frac{x}{20} > 4$$

$$X > 80$$

Since the replacement set of real numbers.

 \therefore solution set = { x:x \in R and x > 80}

(iv)
$$\frac{x+3}{8} < \frac{x-3}{5}$$

 $5x + 15 < 8x - 24$
 $5x - 8x < -24 - 15$
 $-3x < -39$
 $X > 13$
Since the replacement set of real numbers.
 \therefore solution set = $\{x:x \in \mathbb{R} \text{ and } x > 13\}$

Solution 8:

$$5 - 2x < 5\frac{1}{2} - \frac{5}{3}x$$

$$-2x + \frac{5}{3}x < \frac{11}{2} - 5$$

$$\frac{-x}{3} < \frac{1}{2}$$

$$-x < \frac{3}{2}$$

$$X > \frac{-3}{2}$$

$$X > -1.5$$

Thus, the required smallest value of x is -1.

Solution 9:

$$2(x-1) \le 9 - x$$

$$2x - 2 \le 9 - x$$

$$2x + x \le 9 + 2$$

$$3x \le 11$$

$$x \le \frac{11}{3}$$

$$X \le 3.67$$

Since, $x \in W$, thus the required largest value of x is 3.

Solution 10:

$$12 + 1 \frac{5}{6} \times \le 5 + 3x$$

$$\frac{11}{6} X - 3X \le 5 - 12$$

$$\frac{-7}{6} X \le -7$$

Printed from Vedantu.com. Register now to book a Free LIVE Online trial session with a Top tutor.

 $X \ge 6$

 \therefore solution set = $\{x : x \in R \text{ and } x \ge 6\}$

Solution 11:

$$-5 \le 2x - 3 < x + 2$$

$$\Rightarrow -5 \le 2x - 3$$

$$\Rightarrow -5 + 3 \le 2x$$

$$\Rightarrow -2 \le 2x$$

$$\Rightarrow X \ge -1$$
and $2x - 3 < x + 2$
and $2x - x < 2 + 3$
and $x < 5$

Since, $x \in \{\text{integers}\}\$ \therefore Solution set = $\{-1, 0, 1, 2, 3, 4\}$

Solution 12:

$$-1 \le 3 + 4x < 23$$

$$\Rightarrow -1 \le 3 + 4x$$

$$\Rightarrow -4 \le 4x$$
and $3 + 4x < 23$
and $4x < 20$
and $x < 5$

Since, $x \in \{ \text{ Whole numbers} \}$ \therefore solution set = $\{ 0, 1, 2, 3, 4 \}$

EXERCISE 4(B)

Solution 1:

(i)
$$2x - 1 < 5$$

 $2x < 6$
 $X < 3$

Solution on number line is:

(ii) $3x + 1 \ge -5$

$$3x \ge -6$$

$$X \ge -2$$

Solution on number line is:

(iii)
$$2(2x-3) \le 6$$

$$2x - 3 \le 3$$

$$2x \le 6$$

$$X \le 3$$

Solution on number line is:

(iv) - 4 < x < 4

Solution on number line is:

 $(v) -2 \le x < 5$

Solution on number line is:

(vi) $8 \ge x > -3$

Solution on number line is:

(vii) $-5 < x \le -1$

Solution on number line is:

Solution 2:

- (i) $x \le -1, x \in R$
- (ii) $x \ge 2$, $x \in R$
- (iii) $-4 \le x < 3, x \in R$
- $(iv) 1 \le x \le 5, x \in R$

Solution 3:

(i)
$$-4 \le 3x - 1 \le 8$$

$$-4 \le 3x - 1$$

and
$$3x - 1 < 8$$

$$-1 \le x$$

and
$$x < 3$$

The solution set on the real number line is:

(ii)
$$x - 1 < 3 - x \le 5$$

$$X - 1 < 3 - x$$

and
$$3 - x \le 5$$

and
$$-x \le 2$$

and
$$x > -2$$

The solution set on the real number line is:

Solution 4:

(i)
$$4x-1 > x+11$$

The solution on number line is:

$$(ii) 7 - x \le 2 - 6x$$

$$5x \le -5$$

$$X \le -1$$

The solution on number line is:

(iii)
$$x + 3 \le 2x + 9$$

$$-6 \le x$$

The solution on number line is:

(iv)
$$2-3x > 7-5x$$

Vedantu LIVE ONLINE TUTORING

$$X > \frac{5}{2}$$

The solution on number line is:

(v)
$$1 + x \ge 5x - 11$$

$$12 \ge 4x$$

$$3 \ge x$$

The solution on number line is:

(vi)
$$\frac{2x+5}{3} > 3x-3$$

$$2x + 5 > 9x - 9$$

$$-7x > -14$$

The solution on number line is:

Solution 5:

$$-1 < 3 - 2x \le 7$$

$$-1 < 3 - 2x$$
 and $3 - 2x \le 7$

$$2x < 4$$
 and $-2x \le 4$

$$X < 2$$
 and $x \ge -2$

Solution set =
$$\{-2 \le x < 2, x \in R\}$$

Thus, the solution can be represented on a number line as: $-2 \le x < 2$

Solution 6:

$$-3 < x - 2 \le 9 - 2x$$

$$-3 < x - 2$$
 and $x - 2 \le 9 - 2x$

$$-1 < x \text{ and } 3x \le 11$$

$$-1 < x \le \frac{11}{3}$$

Since, $x \in N$

 \therefore Solution set = $\{1, 2, 3\}$

Solution 7:

$$-2\frac{2}{3} \le x + \frac{1}{3} \text{ and } x + \frac{1}{3} < 3\frac{1}{3}$$

$$\Rightarrow -\frac{8}{3} \le x + \frac{1}{3} \text{ and } x + \frac{1}{3} < \frac{10}{3}$$

$$\Rightarrow -\frac{8}{3} - \frac{1}{3} \le x \text{ and } x < \frac{10}{3} - \frac{1}{3}$$

$$\Rightarrow -\frac{9}{3} \le x \text{ and } x < \frac{9}{3}$$

$$\Rightarrow -3 \le x \text{ and } x < 3$$

$$\therefore$$
 -3 \le x and x \le 3

The required graph of the solution set is:

Solution 8:

Solution 8:

$$-2 \le \frac{1}{2} - \frac{2x}{3} < 1 \frac{5}{6}$$

$$-2 \le \frac{1}{2} - \frac{2x}{3} \text{ and } \frac{1}{2} - \frac{2x}{3} < 1 \frac{5}{6}$$

$$\frac{-5}{2} \le -\frac{2x}{3} \text{ and } \frac{-2x}{3} < \frac{8}{6}$$

$$\frac{15}{4} \ge x \text{ and } x > -2$$

$$3.75 \ge x \text{ and } x > -2$$

$$3.75 \ge x \text{ and } x > -2$$

Since, $x \in N$

 \therefore Solution set = $\{1, 2, 3\}$

The required graph of the solution set is:

Solution 9:

$$-5 \le 2x - 3 < x + 2$$

$$-5 \le 2x - 3$$
 and $2x - 3 < x + 2$

- $-2 \le 2x$ and x < 5
- $-1 \le x \text{ and } x < 5$
- \therefore Required range is $-1 \le x < 5$

The required graph is:

Solution 10:

$$5x - 3 \le 5 + 3x \le 4x + 2$$

$$5x - 3 \le 5 + 3x$$
 and $5 + 3x \le 4x + 2$

$$2x \le 8$$
 and $-x \le -3$

$$X \le 4$$
 and $x \ge 3$

Thus,
$$3 \le x \le 4$$

Hence, a = 3 and b = 4

Solution 11:

$$2x - 3 < x + 2 \le 3x + 5$$

$$2x - 3 < x + 2$$
 and $x + 2 \le 3x + 5$

$$X < 5$$
 and $-3 \le 2x$

$$X < 5 \text{ and } -1.5 \le x$$

Solution set = $\{-1.5 \le x < 5\}$

The solution set can be graphed on the number line as:

Solution 12:

(i) 2x - 9 < 7 and $3x + 9 \le 25$

$$2x < 16$$
 and $3x \le 16$

$$X < 8 \text{ and } x \le 5 \frac{1}{2}$$

$$\therefore \text{ Solution set} = \{ x \le 5 \frac{1}{3}, x \in R \}$$

The required graph on number line is:

(ii) $2x - 9 \le 7$ and 3x + 3x + 9 > 25

$$2x \le 16 \text{ and } 3x > 16$$

$$X \le 8$$
 and $x > 5 \frac{1}{3}$

: Solution set =
$$\{5\frac{1}{3} < x \le 8, x \in I\} = \{6, 7, 8\}$$

The required graph on number line is:

(iii)
$$x + 5 \ge 4(x - 1)$$
 and $3 - 2x < -7$

$$9 \ge 3x \text{ and } -2x < -10$$

$$3 \ge x$$
 and $x > 5$

$$\therefore$$
 solution set = Empty set

Solution 13:

(i) 3x - 2 > 19 or $3 - 2x \ge -7$

$$3x > 21 \text{ or } -2x \ge -10$$

$$X > 7$$
 or $x \le 5$

Graph of solution set of x > 7 or $x \le 5$ = Graph of points which belong to x > 7 or $x \le 5$ or both.

Thus, the graph of the solution set is:

(ii) 5 > p - 1 > 2 or $7 \le 2p - 1 \le 17$

$$6 > p > 3 \text{ or } 8 \le 2p \le 18$$

$$6 > p > 3 \text{ or } 4 \le p \le 9$$

Graph of solution set of 6 > p > 3 or $4 \le p \le 9$

- = Graph of points which belong to 6 > p > 3 or $4 \le p \le 9$ or both
- = Graph of points which belong to 3

Thus, the graph of the solution set is:

Solution 14:

(i)
$$A = \{ x \in \mathbb{R}: -2 \le x < 5 \}$$

$$B = \{x \in R: -4 \le x < 3\}$$

(ii)
$$A \cap B = \{ x \in \mathbb{R}: -2 \le x < 5 \}$$

It can be represented on number line as:

$$B' = \{ x \in \mathbb{R} : 3 < x - 4 \}$$

$$A \cap B' = \{ x \in \mathbb{R} : 3 \le x < 5 \}$$

It can be represented on number line as:

Solution 15:

(i) x > 3 and 0 < X < 6

Both the given in equations are true in the range where their graphs on the real number lines overlap.

The graphs of the given in equations can be drawn as:

0 < x < 6

From both graphs, it is clear that their common range is 3 < x < 6

(ii) x < 0 and $-3 \le x < 1$

Both the given in equations are true in the range where their graphs on the real number lines overlap.

The graphs of the given in equations can be drawn as:

-3 < x < 1

From both graphs, it is clear that their common range is $-3 \le x < 0$

(iii) $-1 < x \le 6$ and $-2 \le x \le 3$

Both the given in equations are true in the range where their graphs on the real number lines overlap.

The graphs of the given in equations can be drawn as:

$$-1 < x \le 6$$

 $-2 \le x \le 3$

From both graphs, it is clear that their common range is $1 < x \le 3$

Solution 16:

Graph of solution set of $-3 \le x < 0$ or x > 2

= Graph of points which belong to $-3 \le x < 0$ or x > 2 or both Thus, the required graph is:

Solution 17:

(i) $A \cap B = \{x: -1 < x < 3, x \in R\}$

It can be represented on a number line as:

(ii) Numbers which belong to B but do not belong to A = B - A

$$A' \cap B = \{x: -4 \le x \le -1, x \in R\}$$

It can be represented on a number line as:

(iii) A - B = $\{x: 3 \le x \le 5, x \in R\}$

It can be represented on a number line as:

Printed from Vedantu.com. Register now to book a Free LIVE Online trial session with a Top tutor.

Solution 18:

 $P = \{ X : 7X - 2 > 4X + 1, X \in R \}$

$$7x - 2 > 4x + 1$$

$$7x - 4x > 1 + 2$$

and

$$Q = \{x: 9x - 45 \ge 5 (x - 5), x \in R\}$$

$$9x - 45 \ge 5x - 25$$

$$9x - 5x \ge -25 + 45$$

$$4x \ge 20$$

$$X \ge 5$$

(i) $P \cap Q = \{x : x \ge 5, x \in R\}$

(ii) $P - Q = \{X : 1 < X < 5, X \in R\}$

(iii) $P \cap Q' = \{x : 1 < x < 5, x \in R\}$

Solution 19:

$$P = \{X : 7X - 4 > 5X + 2, X \in R\}$$

$$7X - 4 > 5X + 2$$

$$7X - 5X > 2 + 4$$

$$Q = \{ X: X - 19 \ge 1 - 3X, X \in R \}$$

$$X - 19 \ge 1 - 3X$$

$$X + 3X \ge 1 + 19$$

$$4X \ge 20$$

$$X \ge 5$$

$$P \cap Q = \{ X: X \ge 5, X \in R \}$$

Solution 20:

$$-\frac{1}{3} \le \frac{X}{2} + 1\frac{2}{3} < 5\frac{1}{6}$$

$$-\frac{1}{3} - \frac{5}{3} \le \frac{X}{2} < \frac{31}{6} - \frac{5}{3}$$

$$-\frac{6}{3} \le \frac{X}{2} < \frac{21}{6}$$

$$-4 \le X < 7$$

(i) If $x \in W$, range of value of x is $\{0, 1, 2, 3, 4, 5, 6\}$

(ii) If $x \in \mathbb{Z}$, range of values of x is $\{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$.

(iii) If $x \in \mathbb{R}$, range of values of x is $-4 \le x < 7$.

Solution 21:

$$A = \{x: -8 < 5x + 2 \le 17, x \in I\}$$

$$= \{x: -10 < 5x \le 15, x \in I\}$$

$$= \{x: -2 < x \le 3, x \in I\}$$

It can be represented on number line as:

$$B = \{x: -2 \le 7 + 3x < 17, x \in R\}$$

$$= \{x: -9 \le 3x < 10, x \in R\}$$

$$= \{x: -3 \le x < 3.33, x \in R\}$$

It can be represented on number line as:

Printed from Vedantu.com. Register now to book a Free LIVE Online trial session with a Top tutor.

$$A \cap B = \{-1, 0, 1, 2, 3\}$$

Solution 22:

$$2x - 5 \le 5x + 4$$
 and $5x + 4 < 11$
 $2x - 5x \le 4 - 5$ and $5x < 11 - 4$
 $3x \le -1$ and $5x < 7$
 $x \ge -1$ and $x < \frac{7}{5}$
 $x \ge -1$ and $x < 1.4$
Since $x \in I$, the solution set is $\{-3, -2 - 1, 0, 1\}$
And the number line representation is

Solution 23:

Solution 24:

Solution 25:

$$7X + 3 \ge 3X - 5$$

$$4X \ge -8$$

$$X \ge -2$$

$$\frac{X}{4} - 5 \le \frac{5}{4} - X$$

$$\frac{X}{4} - X \le \frac{5}{4} + 5$$

$$\frac{5X}{4} \le \frac{25}{4}$$

$$\frac{X}{4} - X \leq \frac{5}{4} + 5$$

$$\frac{5X}{4} \leq \frac{25}{4}$$

$$\dot{X} < 5$$

Since, $x \in N$

 \therefore Solution set = {1, 2, 3, 4, 5}

Solution 26:

$$(i)\frac{x}{2}+5\leq \frac{x}{3}+6$$

(i)
$$\frac{x}{2} + 5 \le \frac{x}{3} + 6$$

 $\frac{x}{2} - \frac{x}{3} \le 6 - 5$
 $\frac{x}{6} \le 1$

$$x \leq 6$$

Since, x is a positive odd integer

 \therefore Solution set = $\{1, 3, 5\}$

$$(ii)\frac{2x+3}{3} \ge \frac{3x-1}{4}$$

$$8x + 12 \ge 9x - 3$$

$$-X \ge -15$$

Since, x is a positive even integer

 \therefore Solution set = {2, 4, 6, 8, 10, 12, 14}

Solution 27:

$$-2\frac{1}{2} + 2x \le \frac{4x}{5} \le \frac{4}{3} + 2x$$

$$-2\frac{1}{2} \le \frac{4x}{5} - 2x \le \frac{4}{3}$$

$$-\frac{5}{2} \le -\frac{6x}{5} \le \frac{4}{3}$$

$$\frac{25}{12} \ge x \ge -\frac{10}{9}$$

$$-2\frac{1}{2} \le \frac{4x}{5} - 2x \le \frac{4}{3}$$

$$-\frac{5}{2} \le -\frac{6x}{5} \le \frac{4}{3}$$

$$\frac{2}{25} > r > -\frac{10}{25}$$

$$2.083 \ge x \ge -1.111$$

Since,
$$x \in W$$

$$\therefore$$
 Solution set = $\{0, 1, 2\}$

The solution set can be represented on number line as:

Solution 28:

Let the required integers be x, x + 1 and x + 2.

According to the given statement,

$$\frac{1}{3}x + \frac{1}{4}(x+1) + \frac{1}{5}(x+2) \le 20$$

$$\frac{20x + 15x + 15 + 12x + 24}{60} \le 20$$

$$47x + 39 \le 1200$$

$$47x \le 1161$$

Thus, the largest value of the positive integer x is 24.

Hence, the required integers are 24, 25 and 26.

Solution 29:

$$2y - 3 < y + 1 \le 4y + 7, y \in R$$

$$\Rightarrow$$
 2y - 3 - y < y + 1 - y \leq 4y + 7 - y

$$\implies$$
 y - 3 < 1 \le 3y + 7

$$\implies$$
 y - 3 < 1 and 1 \le 3y + 7

$$\implies$$
 y < 4 and 3y \ge -6 \implies y \ge -2

$$\implies$$
 -2 \leq y \leq 4

The graph of the given equation can be represented on a number line as:

Solution 30:

$$3z - 5 \le z + 3 < 5z - 9$$

$$3z - 5 \le z + 3$$
 and $z + 3 < 5z - 9$

$$2z < 8$$
 and $12 < 4z$

$$Z \le 4$$
 and $3 \le z$

Since,
$$z \in R$$

 \therefore Solution set = $\{3 < z \le 4, x \in R\}$

It can be represented on a number line as:

$$- 3 < -\frac{1}{2} - \frac{2X}{3} \le \frac{5}{6}$$

Multiply by 6, we get

$$\Rightarrow$$
 -18 < -3 -4x \leq 5

$$\Rightarrow$$
 -15 < -4x < 8

Dividing by -4, We get

$$\Rightarrow \frac{-15}{-4} > \chi \ge \frac{8}{-4}$$

$$\Rightarrow -2 \le x < \frac{15}{4}$$

$$\Rightarrow x \in \left(-2, \frac{15}{4}\right)$$

The solution set can be represented on a number line as:

Solution 32:

$$4x - 19 < \frac{3x}{5} - 2 \le \frac{-2}{5} + x, x \in R$$

$$\Rightarrow 4X - 19 + 2 < \frac{3X}{5} - 2 + 2 \le \frac{-2}{5} + X + 2, X \in \mathbb{R}$$

$$\Rightarrow 4X - 17 < \frac{3X}{5} \le X + \frac{8}{5}, X \in \mathbb{R}$$

$$\Rightarrow$$
 4X $-\frac{3X}{5}$ < 17 and $\frac{-8}{5} \le x - \frac{3x}{5}$, $x \in R$

$$\Rightarrow \frac{20X - 3X}{5} < 17 \text{ and } \frac{-8}{5} \le \frac{5X - 3X}{5}, X \in \mathbb{R}$$

$$\Rightarrow \frac{17x}{5} < 17 \text{ and } \frac{-8}{5} \le \frac{2x}{5}, x \in R$$

$$\Rightarrow \frac{x}{5} < 1 \text{ and } -4 \le x, x \in R$$

$$\Rightarrow$$
 x < 5 and $-4 < x, x \in R$

The solution set can be represented on a number line as:

