Exercise Sheet 2

Discrete Mathematics by Hongfei Fu, 2023.09.14

Name: 张景煌 Student ID:523030910064 Class: 电院2302

1. Show that each of these conditional statements is a tautology.

- a) $[(\neg p) \land (p \lor q)] \rightarrow q$
- b) $[(p \to q) \land (q \to r)] \to (p \to r)$
- c) $[p \land (p \rightarrow q)] \rightarrow q$
- d) $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$

Answer Area:

a) If q=T, the whole proposition = T

Else q=F, the whole proposition $\equiv ((\neg p) \land p) \rightarrow q \equiv F \rightarrow q = T$.

So the whole proposition is a tautology.

b) The whole proposition = F \Leftrightarrow (p \to q) \land (q \to r)=T and p \to r = F

 $p \rightarrow r = F \Leftrightarrow p=T,r=F$

If $q = T, q \to r = F$, else q = F, $p \to q = F$, both contradict with $(p \to q) \land (q \to r) = T$ So the whole proposition is a tautology.

c) If q=T, the whole proposition = T

Else q=F, $[p \land (p \rightarrow q)] \rightarrow q \equiv [p \land (\neg p)] \rightarrow q \equiv F \rightarrow q = T$

So the whole proposition is a tautology.

d) If r=T, the whole proposition = T

Else r=F, $[(p \lor q) \land (p \to r) \land (q \to r)] \to r \equiv [(p \lor q) \land (\neg p) \land (\neg q)] \to r \equiv F \to r = T$ So the whole proposition is a tautology.

2. Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equivalent.

Answer Area:

 $\begin{array}{cccc} \neg q & \mathbf{p} \leftrightarrow q & \neg (p \leftrightarrow q) & \mathbf{p} \leftrightarrow (\neg q) \\ \mathbf{F} & \mathbf{T} & \mathbf{F} & \mathbf{F} \end{array}$ q р Τ Τ Τ Τ F Τ F F Τ F Τ Τ F F F Т Т

3. Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.

Answer Area:

 $(p \to q) \lor (p \to r) \equiv [(\neg p) \lor q] \lor [(\neg p) \lor r] \equiv (\neg p) \lor (q \lor r) \equiv p \to (q \lor r)$

4. Show that $(p \land q) \to r$ and $(p \to r) \land (q \to r)$ are not logically equivalent.

1

Answer Area:

If p=F, q=T, r=T, $(p \land q) \rightarrow r$ =T but $(p \rightarrow r) \land (q \rightarrow r)$ =F

So the two propositions are not logically equivalent.

5. Show that the negation $\neg \phi$ of an unsatisfiable compound proposition ϕ is a tautology and the negation $\neg \psi$ of a compound proposition ψ that is a tautology is unsatisfiable.

Answer Area:

 ϕ is unsatisfiable so it's always false, so $\neg \phi$ is always true. That means $\neg \phi$ is a tautology. Similarly, ψ is a tautology so it's always true, so $\neg \psi$ is always false. That means $\neg \psi$ is unsatisfiable.