e) Partícula cargada en un campo magnético

La trayectoria de una partícula cargada en un campo magnético uniforme viene dada por las ecuaciones paramétricas:

$$x(t) = -\frac{A}{\omega_c}\cos(\omega_c t) + \frac{cE_y}{B}$$
, $y(t) = \frac{A}{\omega_c}\sin(\omega_c t)$,

donde

$$\omega_c = \frac{eB}{mc}$$

es la pulsación ciclotrónica, A es una constante, $c=3\times 10^8$ m/s es la velocidad de la luz, E_y es la magnitud del campo eléctrico en la dirección y, B es la magnitud del campo magnético, e es la carga eléctrica de la partícula y m su masa.

Suponiendo que la partícula es un electrón, i.e. $e=-1.67\times 10^{-19}~{\rm C}$ y $m=9.1\times 10^{-31}~{\rm kg}$, graficamos las ecuaciones paramétricas para tres casos distintos —usamos como referencia $E_y=1\times 10^{-2}~{\rm N/C}$ y $B=1\times 10^{-10}~{\rm N/m/A}$:

•
$$A > \left| \frac{cE_y}{B} \right|$$

•
$$A < \left| \frac{cE_y}{B} \right|$$

•
$$A = \left| \frac{cE_y}{B} \right|$$

Nota: Las cicloides se encuentran invertidas debido a que la carga de la partícula es negativa.