Lab2 Solution

YAO ZHAO

Lab2.A Pay a new year call

Note that XX might stay on the day k?

Input:

current village

Which villages XX may stay on the number of villages

day 0: 2

day 1: 2,1,3,4

day 2: 2,1,3,4 4

Output:

1 4 4

Note: the range of k updated to [0, 100000]

XX can also either go through the road he has passed or stay in her current village

let Num_k is the number of villages on day k

 $Num_{k+1} =$

 Num_k + the number of villages with the distance from village 8 is k+1

BFS to get a table :distance->villages number

 distance:
 0
 1
 2
 3
 4
 5

 villages number:
 1
 1
 4
 2
 1
 1

day: 0 1 2 3 4 5 ... ∞ villages number: 1 2 6 8 9 10 ... 10

Output:

28 10 10 10 10

Lab2.B Simplicity Favors Regularity

- **Ihyyy** has a graph G(V, E), but it's too complex. He wants to remove some vertices and edges to get a simple and regular subgraph.
- ▶ Suppose $V' = \{v_1, v_2, ..., v_k\}$, the graph G'(V', E') is called simple if k is even and $E' = \{(v_1, v_2), (v_3, v_2), (v_3, v_4), ..., (v_{k-1}, v_k), (v_1, v_k)\}$
- ightharpoonup To make the subgraph simple, **lhyyy** wants to minimize |V'|
- However, Ihyyy knows nothing about graph theory, can you help him?

Input:

1

6 8

1 2

3 2

3 6

1 6

2 5

3 5

4 6

4 1

Output:

4

Given a digraph, finds the smallest "circle" so that the directions of the edges on the "circle" are staggered and the number of edges are even.

Original Graph
$$each\ v \in G(V,E) \longrightarrow split\ to\ v-in\ and\ v-out$$

$$each\ e \in G(V,E),\ (v_i,v_j) \longrightarrow (v_{i-out},v_{j-in})$$

The new graph is an undirected graph because the node number already indicates the direction.

Original Graph:

$$\{(v_1, v_2), (v_3, v_2), (v_3, v_4), \dots, (v_{k-1}, v_k), (v_1, v_k)\}$$

$$\{(v_{1-out}, v_{2-in}), (v_{3-out}, v_{2-in}), (v_{3-out}, v_{4-in}), \dots, (v_{k-1-out}, v_{k-in}), (v_{1-out}, v_{k-in})\}$$

The new graph is an undirected graph because the node number already indicates the direction.

$$\{(v_{1-out}, v_{2-in}), (v_{2-in}, v_{3-out}), (v_{3-out}, v_{4-in}), \dots, (v_{k-1-out}, v_{k-in}), (v_{k-in}, v_{1-out})\}$$

The original problem is transformed into finding the minimum circle in the new graph

How to find the minimum circle in the new graph?

Start BFS from each point record the distance of each point if a cross edge is found, a circle is found, which is used to update the answer.

New Graph