

pandas

Data Slicing using pandas

Data Slicing using pandas

Data Merging using pandas

Data Merging using pandas

Data Joining using pandas

Data Joining using pandas

Data Concatenation using pandas

Data Correlation using pandas

```
import pandas as pd
data = {
'Name': ['Hiren', 'Sanjay', 'Pradip', 'Vijay', 'Parimal'],
'Age': [46, 43, 36, 39, 28],
'Qualification': [10, 5, 9, 4, 6],
'Income': [1000, 200, 600, 100, 300],
                                                Name Age
                                                          Qualification Income Height
                                                                                   Weight
                                                    Hiren
                                                          46
                                                                       10
                                                                            1000
                                                                                   5.9
                                                                                           83
'Height': [5.9, 5.6, 5.8, 5.5, 5.4],
                                                   Sanjay
                                                          43
                                                                             200
                                                                                   5.6
                                                                                           56
'Weight': [83, 56, 62, 50, 60]}
                                                          36
                                                                                   5.8
                                                   Pradip
                                                                             600
                                                                                           62
                                                          39
                                                                                   5.5
                                                   Vijay
                                                                             100
                                                                                           50
df = pd.DataFrame(data)
                                                4 Parimal
                                                                             300
                                                                                   5.4
                                                                                           60
print(df)
                                                ========
                                                                Age Oualification
                                                                                           Height
                                                                                                   Weight
                                                                                   Income
print('='*10)
                                                            1.000000
                                                                         0.241812 0.396521 0.662667
                                                                                                 0.419071
                                                Aae
correlation matrix = df.corr()
                                                Oualification 0.241812
                                                                        1.000000 0.964003 0.857011
                                                                                                 0.874799
                                                Income
                                                            0.396521
                                                                         0.964003 1.000000 0.866126
                                                                                                 0.963159
print(correlation matrix)
                                                Height
                                                            0.662667
                                                                        0.857011 0.866126
                                                                                        1.000000
                                                                                                 0.758207
print('='*10)
                                                Weight
                                                            0.419071
                                                                        0.874799 0.963159 0.758207 1.000000
                                                ========
correlation matrix['Income']
                                                              0.396521
                                                Aae
                                                Oualification
                                                              0.964003
                                                Income
                                                              1.000000
                                                Height
                                                              0.866126
```

Weight

0.963159

Name: Income, dtype: float64

Principal Component Analysis (PCA) using pandas www.hbpatel.in

PCA is a process of figuring out most important features or principal components that has the most impact on the target variable. (Following program is incomplete)

```
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
property = {
'Town': ['Ahmedabad', 'Ahmedabad', 'Ahmedabad', 'Ahmedabad', 'Baroda', 'Baroda', 'Baroda', 'Baroda', 'Baroda',
'ConstructionalArea': [2600, 3000, 3200, 3600, 4000, 2600, 2800, 3300, 3600],
'Bedroom': [2, 3, 3, 4, 4, 2, 3, 4, 4],
'PlotArea': [7500, 9200, 9700, 10500, 11900, 8000, 8500, 10000, 10800],
'TreesNearby': [2, 2, 1, 2, 2, 1, 1, 2, 2],
'Price': [18000000, 22500000, 24000000, 26500000, 31000000, 15000000, 15500000, 18000000, 19800000]
```


Principal Component Analysis (PCA) using pandas www.hbpatel.in

PCA is a process of figuring out most important features or principal components that has the most impact on the target variable. (Following program is incomplete)

```
df = pd.DataFrame(property)
print(df)
print('-'*20)
print(df.Town)
print('+'*20)
print(df.ConstructionalArea)
print('='*20)
print(df.keys())
print('@'*20)
print(np.unique(df.Town))
print('#'*20)
df.describe()
```

Town ConstructionalArea	Bedroom	PlotArea	TreesNearby	Price
0 Ahmedabad	2600	2	7500	2 18000000
1 Ahmedabad	3000	3	9200	2 22500000
2 Ahmedabad	3200	3	9700	1 2400000
3 Ahmedabad	3600	4	10500	2 26500000
4 Ahmedabad	4000	4	11900	2 31000000
5 Baroda	2600	2	8000	1 1500000
6 Baroda	2800	3	8500	1 15500000
7 Baroda	3300	4	10000	2 18000000
8 Baroda	3600	4	10800	2 19800000
0 Ahmedabad				
1 Ahmedabad				
2 Ahmedabad				
3 Ahmedabad				
4 Ahmedabad				
5 Baroda				
6 Baroda				
7 Baroda				
8 Baroda				
Name: Town, dtype: object				
++++++++++++++				

Principal Component Analysis (PCA) using pandas

www.hbpatel.in

PCA is a process of figuring out most important features or principal components that has the most impact on the target variable. (Following program is incomplete)

```
df = pd.DataFrame(property)
print(df)
print('-'*20)
print(df.Town)
print('+'*20)
print(df.ConstructionalArea)
print('='*20)
print(df.keys())
print('@'*20)
print(np.unique(df.Town))
print('#'*20)
df.describe()
```

```
+++++++++++++++++
0
     2600
     3000
     3200
     3600
     4000
     2600
     2800
     3300
     3600
Name: ConstructionalArea, dtype: int64
Index(['Town', 'ConstructionalArea', 'Bedroom', 'PlotArea', 'TreesNearby',
       'Price'],
      dtype='object')
['Ahmedabad' 'Baroda']
#####################
           ConstructionalArea
                                              PlotArea
                                                                                 Price
                                   Bedroom
                                                          TreesNearby
           9.000000
                                   9.000000
                                              9.000000
                                                          9.000000
                                                                                 9.000000e+00
count
mean
           3188.888889
                                   3.222222
                                              9566.666667 1.666667
                                                                                 2.114444e+07
           485.912658
                                   0.833333
                                              1415.9802260.500000
                                                                                 5.326845e+06
std
min
           2600.000000
                                   2.000000
                                              7500.000000 1.000000
                                                                                 1.500000e+07
           2800.000000
                                   3.000000
                                              8500.000000 1.000000
                                                                                 1.800000e+07
50%
           3200.000000
                                   3.000000
                                              9700.000000 2.000000
                                                                                 1.980000e+07
75%
           3600.000000
                                   4.000000
                                              10500.0000002.000000
                                                                                 2.400000e+07
                                   4.000000
                                                                                 3.100000e+07
           4000.000000
                                              11900.0000002.000000
max
```


Convert CSV to HTML using pandas

Convert CSV to HTML using pandas

	Year	Sensex	Gold Price
0	2011	15300	26400
1	2012	19150	31050
2	2013	20450	29600
3	2014	28200	28006
4	2015	25300	26343
5	2016	26750	28623
6	2017	34200	29667
7	2018	36000	31438
8	2019	41500	35220
9	2020	46800	48651
10	2021	59100	48720

Plotting the Graphs using pandas

```
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
import io
from google.colab import files

uploaded = files.upload()
readData = pd.read_csv(io.BytesIO(uploaded['testData.csv']))
print(readData)

readData = readData.set_index(["Year"])

readData.plot(kind='bar')
plt.show()
```

