Definizione 1.11 Per ogni $x, y \in W$ valgono

$$\neg(x \lor y) = \neg x \land \neg y$$

e l'asserto duale

$$\neg(x \land y) = \neg x \lor \neg y.$$

Esercizio 1.12 Provare le Leggi di De Morgan usando il formalismo polinomiale.

Notate che la somma corrisponde alla **differenza simmetrica** Δ di insiemi, $A\Delta B = (A \vee B) \wedge \neg (A \wedge B)$ e la negazione al complementare di un insieme.

Esercizio 1.13 Provare la precedente affermazione con il formalismo polinomiale.

Esercizio 1.14 Rappresentare i connettivi logici binari (a due argomenti) che avete visto nel corso di Fondamenti in termini polinomiali.

In direzione opposta:

Esercizio 1.15 Mostrare che ogni elemento di B_2 si può esprimere con formule in due variabili, x, y utilizzando solo $\neg, \lor e \land$.

Puntualizzo che, come già mostrano le Leggi di De Morgan, possono esistere più formule associate ad un fissato polinomio. Inoltre $\neg, \lor e \land$ sono **ridondanti** poiché, ad esempio \lor si può esprimere usando \neg e \lor .

In WIMS propongo un esercizio in cui chiedo di convertire un polinomio booleano in formula coinvolgente solo \neg e \land . WIMS lavora con stringhe per cui ignora che la congiunzione gode della proprietà commutativa e affermerà che $x \land y$ non è uguale a $y \land x$. Per ripristinare unicità nella risposta si introduce un ordine lessicografico sui monomi nelle variabili x, y imponendo ad esempio che

$$x \prec \neg x \prec y \prec \neg y$$
.

Per cui $x \wedge y$ precede $y \wedge x$.

Probabilmente vi hanno accennato nel corso di Fondamenti che ogni formula ammette due forme normali.

Teorema 1.16 (CNF e DNF) Ogni funzione booleana in n variabili si può esprimere come:

CNF: congiunzione di disgiunzioni inclusive nelle variabili o nelle loro negazioni;

DNF: disgiunzione inclusiva di congiunzioni nelle variabili o nelle loro negazioni.

La dimostrazione non è molto complicata ma preferirei farvi giungere a questo teorema con un approccio sperimentale al fine di sfatare la convinzione che la Matematica è - per citare Kant - una scienza analitica a priori.

Esempio 1.17 Per n = 1, ogni elemento di $B_1 = \{0, 1, x, 1 + x\}$ si esprime sia in CNF che DNF.

Si indichino con x_1, \ldots, x_n le variabili in B_n . Si ponga

$$V = \{(v_1, \dots, v_n) : v_i = 0, 1\}.$$

Definiamo $d=d_o=\bigvee_{i=1}^n x_i$ il polinomio ottenuto disgiungendo le variabili. Preso $v\in V$ poniamo

$$d_v = \bigvee_{i=1}^n v_i^*(x_i),$$

dove $v_i^* = \text{id sse } v_i = 0$, \neg altrimenti. Quindi queste sono esattamente le funzioni booleane che compaiono come fattori in CNF. Si definisca per $W \subseteq V$,

$$p_W = \prod_W d_w = \bigwedge_W d_w.$$

In particolare $p_{\{v\}} = d_v$ per $v \in V$.

Teorema 1.18 Sia f una formula ben formata della Logica Proposizionale. Allora f è sia disgiunzione inclusiva di congiunzioni che, dualmente, congiunzione di disgiunzioni inclusive.

Dim. Sia n il numero di proposizioni coinvolte in f e si indichino con x_1,\ldots,x_n le variabili che assumono i valori di verità attribuiti a queste proposizioni. Sia $W=\{v\in V: f(v)=0\}\subseteq V$. Allora f ammette una CFN

$$f = \bigwedge_{w \in W} d_w.$$

Poniamo $g = \bigwedge_{w \in W} d_w$. Siccome $d_u(u) = 0$, $u \in W$ implica g(u) = 0. Viceversa g(u) = 0 solo se esiste $w \in W$ tale che $d_w(u) = 0$ ossia per ogni $i \ w_i^*(x_i)(u_i)$, da cui $u_i = w_i$ e $u = w \in W$.

Ne segue che

$$\neg f = \bigwedge_{u \in W^c} d_u,$$

dove W^c denota il complementare di W in $V. \ \, \mbox{Le Leggi di De Morgan implicano che }$

$$f = \bigvee_{u \in W^c} \neg d_u,$$

ossia esiste DNF per f

Siccome ogni polinomio è somma di monomi si ottiene immediatamente

Teorema 1.19 Sia f una formula ben formata della Logica Proposizionale. Allora f è sia disgiunzione esclusiva di congiunzioni.

Al variare di $0 \le j \le 2^n$ sia $P_j = \{p_W : |W| = j\}.$

Esercizio 1.20 • Elencare tali funzioni per n = 2 sotto forma di polinomi booleani.

- Determinare magari con l'ausilio di Magma P_j per $0 \le j \le 4$.
- Calcolare $|P_j|$. Cosa notate?
- Dal punto precedente P_j e P_{4-j} hanno la stessa cardinalità, quindi esiste una biezione tra loro. Individuarne una facilmente descrivibile e valida per ogni j.
- Calcolare $|\{v \in V : f(v) = 0\}|$ al variare di $f \in P_j$, $0 \le j \le 4$.

Il precedente esperimento sembra mostrare molte regolarità. Magari è un caso dovuto al fatto che n=2 è un valore piccolo.

Esercizio 1.21 Ripetere il precedente esperimento con l'ausilio di MAGMA per n = 3, 4 ed enunciare delle congetture sui risultati.