Sistemas de Inteligencia Artificial

Aprendizaje No Supervisado

Grupo 02 - ITBA 2024

El equipo

Girod, Joaquín

Ijjas, Christian

Magliotti, Gianfranco

Ferrutti, Francisco

01 Red de Kohonen

Primera Agrupación

- Agrupación Clásica :
 - Países Desarrollados
 - Países en Vías de Desarrollo
 - Países No Desarrollados
- Reclusión a Europa
- Muy Simple

```
seed = 42
grid_size = 2
eta = 0.5
eta_fn = expo_decay
initial_radius = 3
radius_fn = expo_decay
sim_fn = euclidean
epochs = 1000
```


Aumentamos Grid Size

- Ganamos Diferenciación
- No estamos realmente agrupando, intuitivamente bajamos el grid size
- Muchas neuronas inutilizadas

```
seed = 42
grid_size = 10
eta = 0.5
eta_fn = expo_decay
initial_radius = 3
radius_fn = expo_decay
sim_fn = euclidean
epochs = 1000
```


Equilibrio

- Agrupación con una cantidad equilibrada de elementos
- Una sola Neurona Muerta
- Atado al Data Set
- Pero no podemos apreciar la distancia entre las neuronas...

```
seed = 42
grid_size = 3
eta = 0.5
eta_fn = expo_decay
initial_radius = 3
radius_fn = expo_decay
sim_fn = euclidean
epochs = 1000
```


Análisis de Distancias

- Usamos grid_size 10 para apreciar mejor la topología
- La acumulacion le otorga mayor precisión a la red

```
seed = 42
grid_size = 10
eta = 0.5
eta_fn = expo_decay
initial_radius = 3
radius_fn = expo_decay
sim_fn = euclidean
epochs = 1000
```


Análisis de Variables


```
SOM 1
seed = 42
grid_size = 10
eta = 0.5
eta_fn = expo_decay
initial_radius = 3
radius_fn = expo_decay
sim_fn = euclidean
epochs = 100
```

Convergencia

- La red derecha no logra estabilizarse
- Efecto de los hiperparámetros
- Muy dependiente del último valor utilizado para fitting

```
SOM 2
seed = 42
grid_size = 10
eta = 0.5
eta_fn = constant
initial_radius = 3
radius_fn = constant
sim_fn = euclidean
epochs = 100
```


Errores

- SOM 2 no logra minimizar el error de cuantización
- La red minimiza el error de cuantización al costo del error topográfico
- Un trade-off que vale la pena?


```
SOM 1
seed = 42
grid_size = 10
eta = 0.5
eta_fn = expo_decay
initial_radius = 3
radius_fn = expo_decay
sim_fn = euclidean
epochs = 100
```

```
SOM 2
seed = 42
grid_size = 10
eta = 0.5
eta_fn = constant
initial_radius = 3
radius_fn = constant
sim_fn = euclidean
epochs = 100
```

O2 Oja y Sanger

PCA vs Oja vs Sanger

- Seed: 42
- Dividing by epoch
- 1000 epochs
- Learning Rate 0.01

PCA vs Oja vs Sanger: Loadings

- Seed: 42
- Dividing by epoch
- 1000 epochs
- Learning Rate 0.01

PCA vs Sanger: Loadings

Repaso:

Biplot: PCA

• Zoom in

Biplot: Sanger

- Seed: 42
- Constant eta
- 1000 epochs
- Learning Rate 0.01
- Zoom in

Biplot: Paths

O3 Hopfield

Nuestras Memorias

Buenas Memorias

- ¿Cómo se eligen buenas memorias?

Mejores Memorias

Mejores

<> medio	grupo	unique_values
1.00	('A', 'K', 'T', 'U')	[1, 1, 1, 1, 1, 1]
1.00	('A', 'K', 'T', 'Z')	[1, 1, 1, 1, 1, 1]
1.00	('A', 'K', 'U', 'Z')	[1, 1, 1, 1, 1, 1]
1.00	('A', 'T', 'U', 'Z')	[1, 1, 1, 1, 1, 1]
1.00	('K', 'T', 'U', 'Z')	[1, 1, 1, 1, 1, 1]
1.33	('A', 'K', 'T', 'Y')	[1, 1, 1, 1, 3, 1]

Peores

```
16.00 ('C', 'D', 'E', 'G') [15, 21, 17, 11, 15, 17]
16.67 ('B', 'C', 'E', 'G') [11, 15, 19, 21, 17, 17]
```

Las memorias muy similares generan recuerdos confusos.

Comparando Memorias

Comparando Memorias

Comparando Memorias

La media **esconde** datos relevantes

Limitaciones

Espuriedad

Clasificación

- Negación
- **CL de N patrones : N impar**

$$E(-\xi^{\mu}) = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} (-\xi_{i}^{\mu}) (-\xi_{j}^{\mu})$$

Al simplificar, tenemos:

$$E(-\xi^{\mu}) = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} \xi_{i}^{\mu} \xi_{j}^{\mu} = E(\xi^{\mu})$$

$$\epsilon_i^{ ext{mix}} = \pm \operatorname{sgn}(\pm \epsilon_i^{\mu_1} \pm \epsilon_i^{\mu_2} \pm \epsilon_i^{\mu_3})$$

¿Espuriedad = malo?

espurio, ria SIN. / ANT.

Del lat. spurius.

1. adj. bastardo (Il que degenera de su origen o naturaleza).

Sin.: bastardo, ilegítimo.

ANT.: puro.

2. adj. falso (Il fingido).

SIN.: falso, refalsado, ficticio, fraudulento, bamba³.

ANT.: verdadero, auténtico.

hijo espurio

O1 Conclusiones

Conclusiones generales

- Cada red vista está especializada para un tipo de problema particular
 - Trabajarlas para poder utilizarlas en problemas de predicción resulta que sean poco óptimas
- Estos modelos nos demuestran la capacidad de poder aprender incluso en contextos donde no hay una respuesta "correcta" conocida
- Buscamos cierta uniformidad para garantizar la estabilidad de los atractores de Hopfield
- Los estados espurios pueden ser útiles, no necesariamente son interferencia.

Conclusiones generales

- No podremos siempre minimizar los errores. La reducción de uno puede llevar al aumento de otro.
- Oja y Sanger permiten aproximar a la reducción de dimensionalidad que ofrece PCA a una fracción del poder de cómputo
- La implementación actual de Hopfield demuestra potencial, pero limitado

A futuro

- Hopfield: Regla de Storkey, Implementaciones continuas¹
- Oja y Sanger: Extension no lineal

Gracias!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

