RoHS-compliant Product

P-CHANNEL ENHANCEMENT MODE

POWER MOSFET

- **▼** Simple Drive Requirement
- **▼** 2.5V Gate Drive Capability
- **▼** Fast Switching Characteristic

BV _{DSS}	-20V
$R_{DS(ON)}$	150m Ω
I_{D}	-10A

Description

Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, low on-resistance and costeffectiveness.

This device is suited for low voltage and battery power applications.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	- 20	V
V_{GS}	Gate-Source Voltage	<u>+</u> 12	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V	-10	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V	-6.2	Α
I _{DM}	Pulsed Drain Current ¹	-24	Α
P _D @T _C =25°C	Total Power Dissipation	25	W
	Linear Derating Factor	0.01	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Units
Rthj-c	Maximum Thermal Resistance, Junction-case	5.0	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient	110	°C/W

AP3310GH/J

Electrical Characteristics@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =-250uA	-20	-	-	V
$\DeltaBV_{DSS}\!/\DeltaT_{j}$	Breakdown Voltage Temperature Coefficient	Reference to 25℃, I _D =-1mA	-	-0.1	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-4.5V, I_{D} =-2.8A	-	-	150	mΩ
et4U.com		V_{GS} =-2.5V, I_{D} =-2.0A	-	-	250	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-0.5	-	-	V
g _{fs}	Forward Transconductance	V_{DS} =-5V, I_{D} =-2.8A	-	4.4	-	S
I _{DSS}	Drain-Source Leakage Current	V_{DS} =-20V, V_{GS} =0V	-	-	-1	uA
	Drain-Source Leakage Current (T _j =150°C)	V _{DS} =-16V, V _{GS} =0V	-	-	-25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 12V	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge ²	I _D =-2.8A	-	6	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =-6V	-	1.5	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =-5V	-	0.6	-	nC
$t_{d(on)}$	Turn-on Delay Time ²	V _{DS} =-6V	-	25	-	ns
t _r	Rise Time	I _D =-1A	-	60	-	ns
$t_{\text{d(off)}}$	Turn-off Delay Time	$R_G=6\Omega, V_{GS}=-5V$	-	70	-	ns
t _f	Fall Time	$R_D=6\Omega$	-	60	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	300	-	pF
C _{oss}	Output Capacitance	V _{DS} =-6V	_	180	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	60	_	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I _S	Continuous Source Current (Body Diode)	$V_D = V_G = 0V$, $V_S = -1.2V$	-	ı	-10	Α
I _{SM}	Pulsed Source Current (Body Diode) ¹		-	-	-24	Α
V_{SD}	Forward On Voltage ²	T _i =25°C, I _S =-10A, V _{GS} =0V	-	-	-1.2	V

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 5. Maximum Drain Current v.s. Case Temperature

Fig 6. Typical Power Dissipation

Fig 7. Maximum Safe Operating Area

Fig 8. Effective Transient Thermal Impedance

Fig 9. Gate Charge Characteristics

Fig 10. Typical Capacitance Characteristics

Fig 11. Forward Characteristic of Reverse Diode

Fig 12. Gate Threshold Voltage v.s.

Junction Temperature

Fig 13. Switching Time Circuit

Fig 14. Switching Time Waveform

Fig 15. Gate Charge Circuit

Fig 16. Gate Charge Waveform

ADVANCED POWER ELECTRONICS CORP.

Package Outline: TO-252

SYMBOLS	Millimeters			
	MIN	NOM	MAX	
A2	1.80	2.30	2.80	
A3	0.40	0.50	0.60	
B1	0.40	0.70	1.00	
D	6.00	6.50	7.00	
D1	4.80	5.35	5.90	
E3	3.50	4.00	4.50	
F	2.20	2.63	3.05	
F1	0.5	0.85	1.20	
E1	5.10	5.70	6.30	
E2	0.50	1.10	1.80	
e		2.30		
С	0.35	0.50	0.65	

- 1.All Dimensions Are in Millimeters.
- 2. Dimension Does Not Include Mold Protrusions.

Part Marking Information & Packing: TO-252

ADVANCED POWER ELECTRONICS CORP.

Package Outline: TO-251

SYMBOLS	Millimeters			
STMBOLS	MIN	NOM	MAX	
A	2.20	2.30	2.40	
A1	0.90	1.20	1.50	
B1	0.50	0.69	0.88	
B2	0.60	0.87	1.14	
С	0.40	0.50	0.60	
c1	0.40	0.50	0.60	
D	6.40	6.60	6.80	
D1	5.20	5.35	5.50	
Е	6.70	7.00	7.30	
E1	5.40	5.80	6.20	
e		2.30		
F	5.88	6.84	7.80	

- 1.All Dimensions Are in Millimeters.
- 2.Dimension Does Not Include Mold Protrusions.

Part Marking Information & Packing: TO-251

