Print Slides 7/20/19, 1:44 AM

Omitted Variables: Multiple Regression

- True model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + u$, but we omit x_k .
- Write the regression of x_k on the other independent variables:

$$x_k = \delta_0 + \delta_1 x_1 + \dots + \delta_{k-1} x_{k-1} + v.$$

• Substitute:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_2 (\delta_0 + \delta_1 x_1 + \dots + \delta_{k-1} x_{k-1} + \nu) + u$$

= $(\beta_0 + \beta_k \delta_0) + (\beta_1 + \beta_k \delta_1) x_1 + \dots + (\beta_{k-1} + \beta_k \delta_{k-1}) x_{k-1} + (\beta_k \nu + u)$

- Determine the signs of β_k and δ_1 to estimate the direction of bias on x_1 .
 - It's easy to guess sign of β_k .
 - It's trickier for δ_1 because it comes from a multiple regression.
 - It depends on how x₁ is correlated with other x values.

Example

- wage = β_0 + β_1 educ + β_2 exper + β_3 abil + u
- We omit abil because it can't be measured.
- Woolridge suggests that *exper* is approximately uncorrelated with *educ* and *abil*.
- This assumption makes it easier to reason about the regression of abil on educ and exper.
 - All variation in educ is unique.
 - Coefficient on educ should be same as from simple regression.
 - Assume it is positive.
- If we further assume that abil is positively correlated with wage, we know that the omitted variable bias is positive on educ.

about:blank Page 1 of 1