MATH 335 lecture 7

Chris Camano: ccamano@sfsu.edu

September 13, 2022

equivilance relation

An equivilance relation \sim on a set X is a relation where three properties are held:

- 1. $x \sim x \quad \forall x \in X$ Reflexive
- 2. $s \sim y \iff y \sim x \quad \forall x \in X$ Symmetric
- 3. $x \sim y \wedge y \sim z$ implies $x \sim z$ Transitivity.

equivilance realations are used to collect elements in a set for some intended purpose. It partitions the set by creating classifiers for the elements of the set.

Fundemental example:

We first start by fixing some $m \in \mathbb{Z}^+$ (this works for any positive integer). We define a realtion on all integers \mathbb{Z} such that:

Given two integers a,b $a \sim b \iff n|a-b$ in other words: $a \equiv b \mod n$.

1. $x \sim x \quad \forall x \in X$ Reflexive

Proof.
$$a \equiv b mod n \text{ since } n | a - a$$

2. $s \sim y \iff y \sim x \quad \forall x \in X$ Symmetric

Proof.
$$n|(x-y)$$
 so $n|-(x-y)$ so $n|y-x$

3. $x \sim y \wedge y \sim z$ implies $x \sim z$ Transitivity.

Proof.
$$n|a-b$$
 and $n|b-c$ so $n|a-b+b=n|a-c$ so $a \sim c$

Equivilance classes

Let X be a set, and \sim be an equivilance realtion on X. Let $x \in X$ Then:

$$[x] = \{ y \in X : y \sim x \}$$

This set is called the equivilance class of x. The equivilance class of x always contains x.

The union of all equivilance classed mod n paritions the interges. :

$$\bigcup_{i=1}^{\infty} [x_i] = \mathbb{Z}$$

Also

$$x_i \cap x_i = i \neq j$$