Vector Spaces

VECTOR SPACES AND SUBSPACES

- **Definition:** A **vector space** is a **nonempty set** *V* of **objects**, called *vectors*, on which are defined two operations, called *addition and multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors **u**, **v**, and **w** in *V* and for all scalars *c* and *d*.
 - 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
 - 2. u + v = v + u.
 - 3. (u + v) + w = u + (v + w).
 - 4. There is a zero vector 0 in V such that

$$u + 0 = u \quad .$$

- 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. The scalar multiple of **u** by c, denoted by c**u**, is in V.
- 7. c(u + v) = cu + cv.
- 8. (c+d)u = cu + du.
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u.
- Using these axioms, we can show that the zero vector in Axiom 4 is unique, and the vector—u, called the **negative** of **u**, in Axiom 5 is unique for each **u** in *V*.

• For each **u** in V and scalar c,

$$0u = 0$$
 (1)
 $c0 = 0$ (2)
 $-u = (-1)u$ (3)

Example 2: Let V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction. Define addition by the parallelogram rule, and for each \mathbf{v} in V, define $c\mathbf{v}$ to be the arrow whose length is |c| times the length of \mathbf{v} , pointing in the same direction as \mathbf{v} if $c \ge 0$ and otherwise pointing in the opposite direction.

See the following figure below. Show that V is a vector space.

• **Solution:** The definition of *V* is geometric, using concepts of length and direction.

- No *x y z*-coordinate system is involved.
- An arrow of zero length is a single point and represents the zero vector.
- The negative of \mathbf{v} is $(-1)\mathbf{v}$.
- So Axioms 1, 4, 5, 6, and 10 are evident. See the figures on the next slide.

SUBSPACES

- **Definition:** A **subspace** of a vector space V is a subset H of V that has three properties:
 - a. The zero vector of V is in H.
 - b. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.

SUBSPACES

- c. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.
- Properties (a), (b), and (c) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V.
- Every subspace is a vector space.
- Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).

- The set consisting of only the zero vector in a vector space V is a subspace of V, called the **zero subspace** and written as $\{0\}$.
- As the term **linear combination** refers to any sum of scalar multiples of vectors, and Span $\{v_1,...,v_p\}$ denotes the set of all vectors that can be written as linear combinations of $v_1,...,v_p$.

- Example 10: Given \mathbf{v}_1 and \mathbf{v}_2 in a vector space V, let $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Show that H is a subspace of V.
- Solution: The zero vector is in H, since $0 = 0v_1 + 0v_2$.
- To show that *H* is closed under vector addition, take two arbitrary vectors in *H*, say,

$$u = s_1 v_1 + s_2 v_2$$
 and $w = t_1 v_1 + t_2 v_2$.

• By Axioms 2, 3, and 8 for the vector space V,

$$u + w = (s_1 v_1 + s_2 v_2) + (t_1 v_1 + t_2 v_2)$$
$$= (s_1 + t_1) v_1 + (s_2 + t_2) v_2$$

• So u + w is in H.

Furthermore, if c is any scalar, then by Axioms 7 and 9, $c\mathbf{u} = c(s_1\mathbf{v}_1 + s_2\mathbf{v}_2) = (cs_1)\mathbf{v}_1 + (cs_2)\mathbf{v}_2$

which shows that $c\mathbf{u}$ is in H and H is closed under scalar multiplication.

Thus H is a subspace of V.

- Theorem 1: If $\mathbf{v}_1, ..., \mathbf{v}_p$ are in a vector space V, then Span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ is a subspace of V.
- We call Span $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ the subspace spanned (or generated) by $\{\mathbf{v}_1,...,\mathbf{v}_p\}$.
- Give any subspace H of V, a **spanning** (or **generating**) set for H is a set $\{v_1,...,v_p\}$ in H such that

$$H = \operatorname{Span}\{\mathbf{v}_1, ... \mathbf{v}_p\}.$$