National Institute of Technology Calicut

Department of Electronics and Communication Engineering EC 3093D DIGITAL SIGNAL PROCESSING LAB

Sixth Semester B Tech Electronics & Communication Engineering

Experiment 1: Generation of basic sequences and random signals, convolution of signals (Matlab and Python Implementation).

Note: All the experiments must be implemented in both Matlab and Python.

Generation of Basic Sequences

- 1. Generate unit impulse, unit step and unit ramp sequences
- 2. Generate the first few samples of the following real exponential sequences:
 - (a) $20(0.9)^n$
 - (b) $0.2(1.2)^n$
 - (c) $(-0.8)^{n^4}$
 - (d) $-4(0.8)^n$
- 3. Generate the complex exponential sequence, $\mathbf{x} = e^{(-\frac{1}{12} + j\frac{\pi}{6})n}$
- 4. Generate the following discrete time sequences and display each of them:
 - (a) $\mathbf{x}_1(n) = \cos(0.2\pi n)$, $\mathbf{x}_2(n) = \cos(1.8\pi n)$ and $\mathbf{x}_3(n) = \cos(2.2\pi n)$. Compare the plots generated for three cases and comment on your result.
 - (b) Let, $\mathbf{x}_4(n) = cos(\frac{4\pi n}{17})$ $\mathbf{x}_5(n) = 3cos(1.3\pi n) - 4sin(0.5\pi n + 0.5\pi)$ $\mathbf{x}_6(n) = 5cos(1.5\pi n + 0.75\pi) + 4cos(0.6\pi n) - sin(.5\pi n)$.

In each case, determine the period of the sequence theoretically and verify the results.

- (c) $\mathbf{x}(n) = 2[n(0.9)^n]$ for n = 0:50
- (d) $\mathbf{x}(n) = (0.95)^n \sin(0.1\pi n)$ for n = 0:50
- (e) Generate 10 periods of $\mathbf{x}(n) = (-4 3 2 1 \ 0 \ 1 \ 2 \ 3 \ 4 4 3 \dots)$

Generation of Random Signals

- 5. Generate and display a random signal of length 100 whose elements are uniformly distributed in the interval [-2 2].
- 6. Generate and display a Gaussian random signal of length 75 whose elements are normally distributed with a zero mean and a variance of 3.

Convolution

- 7. Perform the convolution of $\mathbf{x}(n) = 0.5(u[n-5] u[n-10])$ and $\mathbf{h}(n) = u[n] u[n-2]$. Plot $\mathbf{x}(n)$, $\mathbf{h}(n)$ and $\mathbf{y}(n)$ with correct time index.
- 8. Find the step response of the system $\mathbf{h}(n) = (0.9)^n u[n]$.
- 9. Compute the convolution of $\mathbf{x}(n) = (u[n] u[n-10])$ and $\mathbf{h}(n) = (0.9)^n u[n]$. Show the first 50 values.
- 10. Compute the convolution of \mathbf{x} =[-1 0.5] and \mathbf{h} =[2 4 -2] using functions and display the results.