Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 12. Oktober 2020

AND

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1
	1	1

NAND

AND aus NOR

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR

OR aus NAND

NOT

NOT aus NOR

NOT aus NAND

Weitere Gates

NAND	NOR			XNO	XNOR		XOR
$C = \overline{A \wedge B}$	D	$D = \overline{A \vee B}$			$E = \overline{A \oplus B}$		$F=A\oplus B$
A & C	А -	- D		A 7 B J	=1	- E	$\begin{bmatrix} A & & & \\ & & & \\ B & & & \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ \end{bmatrix} $
			NAND	NOR	XNOR	XOR	
	A	В	С	D	E	F	
	0	0	1	1	1	0	1
	0	1	1	0	0	1	
	1	0	1	0	0	1	
	1	1	0	0	1	0	

CMOS

NMOS

G	Schalter	Y
0	offen	1
1	zu	0

	エ	
G	Schalter	Y
0	zu	1
1	offen	0

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Pull-up: Pfade NMOS Pull-down: sind komplementär (Serie ⇔ Parallel)

Umwandlung Pull-up zu Pull-down

1. Teilbereiche (Blöcke) identifizieren.

- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block beginnen.
 - PMOS \rightarrow NMOS
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS → PMOS.

Funktionsgleichung

 $PMOS \quad Parallel \rightarrow NAND$ $\mathrm{Serie} \to \mathrm{NOR}$ $Parallel \rightarrow NOR$ $\mathrm{Serie} \, \to \, \mathrm{NAND}$

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = A \wedge (B \wedge C)$$
$$A \vee (B \vee C) = A \vee (B \vee C)$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$		
Null-Th.	$A \lor 0 = A$	$A \wedge 0 = 0$	
Eins-Th.	$A \lor 1 = 1$	$A \wedge 1 = A$	
Idempotenz	$A \lor A = A$	$A \wedge A = A$	
V. Komp.	$A \vee \overline{A} = 1$	$A \wedge \overline{A} = 0$	
Adsorp.	$A \vee (\overline{A} \wedge B) = A \vee B$		
	$A \wedge (\overline{A} \vee B) = A \wedge B$		
Adsorp.	$A \vee (A \wedge B) = A$		
	$A \wedge (A \vee B) = A$		
Nachbar.G.	$(A \wedge B) \vee (\overline{A} \wedge B) = B$		
	$(A \vee B) \wedge (\overline{A})$	$\overline{A} \vee B) = B$	

De Morgan

1. Regel
$$\overline{A \wedge B} = \overline{A} \vee \overline{B}$$

2. Regel
$$\overline{A \vee B} = \overline{A} \wedge \overline{B}$$

Regeln gelten auch für n verknüpfte Terme.

Normalformen

Minterm	Maxterm
AND-Ausdruck	OR-Ausdruck
Output: 1	Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. Minterme.	n Schaltvar. $\rightarrow 2^n$ mögl. Maxterme.
nicht-invertierte Var: 1	nicht-invertierte Var: 0
invertierte Var: 0	invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit OR verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit OR verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

DNF
$$Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$$
 1 Mint. erf. \rightarrow 1

KNF $Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$ 1 Maxt. erf. \rightarrow 0