Кушнир А., Соколов А.

[2019-2020] группа: геом-10 31 марта 2020 г.

Серия 21. Вокруг описанного четырехугольника.

Рассмотрим описанный четырехугольник ABCD, вписанная окружность с центром в точке I радиуса R которого касается сторон AB, BC, CD и DA в точках X, Y, Z и T соответственно.

Обозначим через a, b, c, d отрезки касательных из точек A, B, C, D соответственно.

- Предположим, что прямые AC и XZ пересекаются в точке P. Докажите, что $\frac{AP}{PC}=rac{a}{c}.$ Выведите из этого соотношения теорему Брианшона для четырёхyгольника: прямые $AC,\,BD,\,XZ,\,YT$ пересекаются в одной точке.
- 2. Перпендикуляры в точке A к прямым AB и AD пересекаются прямые BI и DIв точках M и N соответственно. Докажите, что $MN \perp AC$.
- Докажите, что $AB = \frac{YT}{2} \cdot \frac{IA \cdot IB}{R^2}$.
- Докажите, что $\frac{AB}{CD} = \frac{IA \cdot IB}{IC \cdot ID}$, и $\frac{BC}{DA} = \frac{IB \cdot IC}{ID \cdot IA}$.
- Докажите, что $IA \cdot IC + IB \cdot ID = \sqrt{AB \cdot BC \cdot CD \cdot DA}$. ¹
- Докажите, что $IA \cdot IC = \frac{(a+c) \cdot R}{\sin \frac{\angle A + \angle C}{A}}$.
- Докажите, что $S_{ABCD} = \sqrt{AB \cdot BC \cdot CD \cdot DA} \cdot \sin \frac{\angle A + \angle C}{2}$. 7.
- 8. Докажите, что

$$\frac{S_{APB}}{ab} = \frac{S_{BPC}}{bc} = \frac{S_{CPD}}{cd} = \frac{S_{DPA}}{da}.$$

Докажите, что 9.

$$\frac{1}{\operatorname{dist}(P,AB)} + \frac{1}{\operatorname{dist}(P,CD)} = \frac{1}{\operatorname{dist}(P,BC)} + \frac{1}{\operatorname{dist}(P,DA)}.$$

Let H_X , H_Y , H_Z , H_T be the orthocenters of triangles AIB, BIC, CID, DIA. Prove that points P, H_X , H_Y , H_Z , H_T are collinear.

вписанной окружности, и запишите теорему Птолемея для четырёхугольника $X^{\mathrm{TT}}Z^{\mathrm{TY}}$. Подсказка: рассмотрите точки X' и Z', диаметрально противоположные точкам X и Z на