SI231B: Matrix Computations, 2024 Fall

Homework Set #2

Acknowledgements:

- 1) Deadline: 2024-11-14 23:59:59
- 2) Please submit the PDF file to gradescope. Course entry code: 8KJ345.
- 3) You have 5 "free days" in total for all late homework submissions.
- 4) If your homework is handwritten, please make it clear and legible.
- 5) All your answers are required to be in English.
- 6) Please include the main steps in your answer; otherwise, you may not get the points.

Problem 1. (Pivoting in LU decomposition, 12 points)

Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 & 8 \\ 3 & 1 & 7 & 2 \\ 5 & 9 & 2 & 6 \\ 8 & 3 & 5 & 7 \end{bmatrix}$$

- 1) Use partial pivoting to find a permutation matrix \mathbf{P} , a unit lower triangular matrix \mathbf{L} and an upper triangular matrix \mathbf{U} such that \mathbf{PA} = \mathbf{LU} . Also, please represent the permutation matrix \mathbf{P} as a product of interchange permutations.(e.g. \mathbf{P} = $\Pi_3\Pi_2\Pi_1$). (5 points)
- 2) Use complete pivoting to find permutation matrices P and Q, a unit lower triangular matrix L and an upper triangular matrix U such that $PAQ^T = LU$. (7 points)

Problem 2. (Cholesky decomposition, 13 points)

Let **A** be a $n \times n$ symmetric positive definite matrix:

- 1) Assume **A** is a banded matrix with bandwidth *b*. Write a pseudo code for A's Cholesky decomposition, and then analyze its complexity (flops). (5 points)
- 2) Assume **A** is a 8 \times 8 positive definite symmetric matrix, and its Cholesky decomposition is $\mathbf{A} = \mathbf{G}\mathbf{G}^T$. Denote a_{ij} and g_{ij} as the (i,j)-th element of **A** and **G**. Suppose $a_{11}=25$, $a_{21}=-20$, $a_{31}=15$, $a_{15}=-10$, $a_{22}=17$, $a_{32}=-8$, $a_{25}=5$, $a_{33}=26$, $a_{35}=-11$. Find the g_{53} . (8 points)

Problem 3. (Applications of banded matrix, 25 points)

Banded matrix can be used in solving differential equations. For example, we use finite difference method to solve 1-D heat conduction equation in range $x \in [0,1]$ with Dirichlet boundary condition at x=0 and Neumann boundary condition at x=1:

$$\begin{cases} \frac{\partial}{\partial t}u = k\frac{\partial^2}{\partial x^2}u + f(t,x) \\ u(t,0) = T_0 \\ \frac{\partial}{\partial x}u(t,1) = 0 \end{cases}$$
 (1)

The equations above are the heat conduction equation and its boundary conditions, where $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a function to describe the temperature, u(t,x) is the temperature at time t and at spatial coordinate x, f(t,x) is a function to describe time and spatial distribution of the heat source, k is the thermal diffusivity and T_0 is the temperature at point x=0. We can use Taylor expansion to discretize the system:

$$\begin{cases} \frac{u(t+\Delta t, x) - u(t, x)}{\Delta t} = k \frac{u(t, x - \Delta x) - 2u(t, x) + u(t, x + \Delta x)}{\Delta x^2} + f(t, x) \\ u(t, 0) = T_0 \\ \frac{u(t, 1) - u(t, 1 - \Delta x)}{\Delta x} = 0 \end{cases}$$
 (2)

By discretizing the space with n+1 points (i.e. $\Delta x = \frac{1}{n}$, $x_i = i\Delta x$, $i = 0, \dots, n$), we can represent temperature distribution u at time $t_k = k\Delta t$ by $\mathbf{u}^{(k)}$, where $u_i^{(k)} = [\mathbf{u}^{(k)}]_i = u(k\Delta t, i\Delta x)$. As a result, we may solve the difference equation (2) through an iterative formula: $\mathbf{u}^{(k+1)} = \mathbf{A}\mathbf{u}^{(k)} + \mathbf{f}$

- 1) Give the expression of the $(n+1) \times (n+1)$ matrix **A** and the vector **f**. Please organize matrix **A** such that $\mathbf{A}[2:n,2:n]$ is a banded matrix. (10 points)
- 2) Given n=8, $k=\frac{1}{640}$, $T_0=5$, and $f(t,x)=\begin{cases} 1 & x=0.5\\ 0 & \text{otherwise} \end{cases}$, find the stable solution of \mathbf{u} numerically using LU decomposition. (Note: when the solution \mathbf{u} is stable, $u(t+\Delta t,x)=u(t,x)$, so you need to derive another (but similar) linear equations) (15 points)

Problem 4. (Least-squares, 15 points)

- 1) Prove that if $\epsilon = \mathbf{A}\hat{\mathbf{x}} \mathbf{b}$, where $\hat{\mathbf{x}}$ is a least-squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, then $\|\epsilon\|_2^2 = \|\mathbf{b}\|_2^2 \|\Pi_{\mathcal{R}_{(\mathbf{A})}}\mathbf{b}\|_2^2$. (**Hint**: A least-squares solution $\hat{\mathbf{x}}$ satisfies $\mathbf{A}\hat{\mathbf{x}} = \Pi_{\mathcal{R}_{(\mathbf{A})}}\mathbf{b}$) (5 points)
- 2) For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, prove that \mathbf{x}_2 is a least-squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if and only if \mathbf{x}_2 is part of a solution to the following augmented system

$$\begin{bmatrix} \mathbf{I}_{m \times m} & \mathbf{A} \\ \mathbf{A}^T & \mathbf{0}_{n \times n} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix}. \tag{3}$$

(5 points)

3) Researchers have studied a certain type of cancer and raised hypothesizes that in the short run the number y of malignant cells in a particular tissue grows exponentially with time t, i.e., $y = \alpha_0 e^{\alpha_1 t}$ for some $\alpha_0, \alpha_1 > 0$. Formulate the problem of estimating the parameters α_0 and α_1 into a least-squares problem and solve it using the researchers' observed data given below.

(Hint: Transform the exponential function into a linear function) (5 points)

Problem 5. (QR decomposition, 20 points)

Consider the following matrices:

$$\mathbf{A}_{1} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & -4 \\ 1 & 4 & -2 \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} 1 & -7 & 15 \\ 2 & -14 & -3 \\ -2 & 14 & 0 \\ 4 & -3 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ -15 \\ 0 \\ 30 \end{bmatrix}. \tag{4}$$

- 1) Apply the Gram-Schmidt procedure to find the QR decomposition of the matrix A_1 . (7 points)
- 2) Use Householder reflection to find an orthonormal basis for $\mathcal{R}(\mathbf{A}_2)$. Note that the sign in the expression of $\mathbf{v} = \mathbf{x} \mp \|\mathbf{x}\|_2 \mathbf{e}_1$ is determined to be the one that maximizes $\|\mathbf{v}\|_2$. (8 points)
- 3) Determine the least-squares solution for $A_2x = b$ using Householder QR. (5 points)

Problem 6. (Givens Rotation, 15 points)

1) Perform the following sequence of rotations in \mathbb{R}^3 beginning with

$$\mathbf{v}_0 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$

Rotate \mathbf{v}_0 clockwise by 90° around the y-axis to produce \mathbf{v}_1 . Then, rotate \mathbf{v}_1 counterclockwise by 30° around the z-axis to produce \mathbf{v}_2 . Determine the coordinates of \mathbf{v}_1 , \mathbf{v}_2 and the orthogonal matrix \mathbf{Q} such that $\mathbf{Q}\mathbf{v}_0 = \mathbf{v}_2$. Note that a vector $\mathbf{v} \in \mathbb{R}^3$ can be rotated clockwise by an angle θ around the x-axis by means of a multiplication $J(2,3,\theta)\mathbf{v}$ in which $J(2,3,\theta)$ is an appropriate orthogonal matrix as described below. (5 points)

$$J(2,3,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}$$

- 2) Does it matter in which order the rotations in \mathbb{R}^3 are performed? For example, we introduce the following operations:
 - (a) Rotate clockwise around the x-axis by an angle θ .
 - (b) Rotate clockwise around the y-axis by an angle ϕ .

Suppose that a vector $\mathbf{v} \in \mathbb{R}^3$ conducts the above two operations in the following ways:

•
$$\mathbf{v} \stackrel{(a)}{\Longrightarrow} \mathbf{v}' \stackrel{(b)}{\Longrightarrow} \mathbf{v}''$$

•
$$\mathbf{v} \stackrel{(b)}{\Longrightarrow} \mathbf{v}^* \stackrel{(a)}{\Longrightarrow} \mathbf{v}^{**}$$

Is the result v'' the same as v^{**} ? (5 points)

3) Extend the vector

$$\mathbf{x} = \frac{1}{3} \begin{bmatrix} -1\\2\\0\\-2 \end{bmatrix}$$

to an orthonormal basis for \mathbb{R}^4 using Givens rotations. (**Hint**: Sequentially annihilate the second and fourth elements of \mathbf{x} to construct a QR decomposition) (5 points)