

Self Organizing Map (SOM)

Kazi Shah Nawaz Ripon ksripon@ntnu.com

Motivation

 How to find out semantics relationship among lots of information without manual labor?

Motivation

 Humans can categorize data using less than 1 percent of the original information [1].

[1] Georgia Institute of Technology. "How the brain can handle so much data." ScienceDaily. www.sciencedaily.com/releases/2015/12/151215160649.htm (accessed October 30, 2017).

Motivation

- "How do we make sense of so much data around us, of so many different types, so quickly and robustly?"
- our brain creates neural structures with **up to 11 dimensions** when it processes information (Blue Brain Project [1]).

[1] https://bluebrain.epfl.ch/

Self-organizing Maps

- Unsupervised learning neural network
- Maps multidimensional data onto a 2 dimensional grid
- Use a neighborhood function to preserve the topological properties of the input space.

Background

- Supervised training → Target output for each input pattern.
- Unsupervised training → Networks learn to form their own classifications of the training data without external help.
 - Common features.
 - Follow the neuro-biological organization of the brain.

Unsupervised Competitive Learning

- SOMs are based on unsupervised competitive learning.
 - Winner-takes all neuron.
 - lateral inhibition connections
- The basic idea of competitive learning was introduced in the early 1970s.
- Ideas first introduced by C. von der Malsburg (1973), developed and refined by T. Kohonen (1982)
- Biological basis: 'brain maps'
- Primarily used for organization and visualization of complex data

Topographic Maps

- Different sensory inputs (motor, visual, auditory, etc.) are mapped onto corresponding areas of the cerebral cortex in an orderly fashion.
- This **topographic map**, has two important properties:
 - At each stage of representation, or processing, each piece of incoming information is kept in its proper context/neighbourhood.
 - 2. Neurons dealing with closely related pieces of information are kept close together so that they can interact via short synaptic connections.

SOM: Network Architecture

- Two layers of units
 - Input: *n* units (length of training vectors)
 - Output: *m* units (# of categories)
- Input units fully connected with weights to output units
- Intralayer (lateral) connections
 - Within output layer
 - Defined according to some topology
 - Not weights, but used in algorithm for updating weights

SOM - Architecture

- Input patterns are shown to all neurons simultaneously
- Competitive learning: the neuron with the largest response is chosen
- Selected neuron activated together with 'neighbourhood' neurons
- Adaptive process changes weights to more closely resemble inputs

Common Output-layer Structures

- Each grid point represents a output node
- The grid is initialized with random vectors

One-dimensional

(completely interconnected for determining "winner" unit)

Two-dimensional

(connections omitted, only neighborhood relations shown [green])

Neighborhood of neuron i

SOM – Result Example

'Poverty map' based on 39 indicators from World Bank statistics (1992)

SOM – Result Example

Map representation of 5 initial samples: blue, yellow, red, green, magenta

SOM – Algorithm Overview

- 1. Randomly initialise all weights
- 2. Select input vector $\mathbf{x} = [x_1, x_2, x_3, \dots, x_n]$
- 3. Compare x with weights w_j for each neuron j to determine winner
- 4. Update winner so that it becomes more like x, together with the winner's *neighbours*

$$W_{ij}(n+1) = W_{ij}(n) + \eta(n)[x_i - W_{ij}(n)]$$

- 5. Adjust parameters: *learning rate* & *neighbourhood function*
- 6. Repeat from (2) until the map has converged (no noticeable changes in the weights / pre-defined no. of training cycles)

NB: Learning rate generally decreases with time: $0 < \eta(n) \le \eta(n-1) \le 1$

Initialisation

- Prior to training, each node's weights must be initialized
- Randomly initialise the weight vectors w_j for all nodes j
- Typically these will be set to small standardized random values.

Choose A Random Vector

TEMP	HUMIDITY		
85	85		
80	90		
83	78		
70	96		
68	80		
65	70		
64	65		
72	95		
69	70		
75	80		
75	70		
72	90		
81	75		
	•••		

 A vector is chosen at random from the set of training data and presented to the lattice.

Calculating the Best Matching Unit (BMU)

- Calculating the BMU can be done differently among the node's weights $(W_1, W_2, ..., W_n)$ and the input vector's values $(V_1, V_2, ..., V_n)$:
 - Nearest neighbor
 - Farthest neighbor
 - Distance between means
 - Distance between medians
- Most common method is Euclidean distance.

$$\sqrt{\sum_{i=0}^{n} x_i^2}$$

More than one contestant, choose randomly

Winner - BMU

• Move the weight vector w of the winning neuron towards the input i

Before learning

After learning

Determining BMU Neighborhood

- To calculate which of the other nodes are within the BMU's neighbourhood.
 - All these nodes will have their weight vectors adjusted in the next step.
- The area of the neighbourhood shrinks over time until eventually the neighborhood is just the BMU itself.
- Several Methods.
 - Static
 - Exponential
 - Linear

Exponential Decay Function

Width of neighborhood at time t_0

neighborhood shrinks on each iteration

Linear Decay Function

$$\sigma(t) = \sigma_0 + \lambda t\,, \qquad \lambda \langle 0, \quad t = 1, 2, 3...
ightharpoonup {
m Slope} = -\lambda$$

Linear vs Exponential

how does a capacitor discharge?

Neighbourhood Function

Adjusting the Weights

 Every node within the BMU's neighbourhood (including the BMU) has its weight vector adjusted as:

$$w_{ij}(t+1) = w_{ij}(t) + \eta(t)h_{ij(x)}[x_i - w_{ij}(t)]$$
A
B
C
D

Current learning rate (B) × Degree of neighbourhood with respect to winner (C) × Difference between current weights and input vector (D) to the current weights (A)"

Weighting of the Neighborhood ($h_{ij(x)}$)

Weighting decreases exponentially

- -x-axis shows distance from winning node
- -y-axis shows 'degree of neighbourhood' (max. 1)

Adjusting Learning Rate

- The learning rate is also an exponential decay function.
 - This ensures that the SOM will converge.

Time (iteration of the loop) $\eta(t) = \eta_0 \exp\left(-\frac{t}{\lambda}\right) \qquad t = 1,2,3...$ Time constant

Width of neighborhood at time t_0

Adjusting Learning Rate

Linear

$$\alpha(t) = \frac{1}{t}$$

Inverse-of-time

$$\alpha(t,T) = \left(1 - \frac{t}{T}\right)$$

Power Series

$$\alpha(t,T) = (0.005)^{\frac{t}{T}}$$

Visualizing the Self Organization Process [1]

[1] http://www.cs.bham.ac.uk/ \sim jxb/NN/l16.pdf

- 4 data points (x) in continuous 2D input space.
- Goal: to map four points in a discrete 1D output space.
- The output nodes map to points in the input space (o).
- Randomly pick one of the data points for training (⊗).
- The closest output point represents the winning neuron (♦).

Visualizing the Self Organization Process:

Next Steps

Example

- The animals should be ordered by SOM.
- And the animals will be described with their attributes(size, living space).

Size: Living space: small=0 medium=1 big=2 Land=0 Water=1 Air=2 e.g. Mouse = (0/0)

	Mouse	Lion	Horse	Shark	Dove
Size	small	medium	big	big	small
Living space	Land	Land	Land	Water	Air
	(0/0)	(1/0)	(2/0)	(2/1)	(0/2)

Example

Animal names and their attributes

[Teuvo Kohonen 2001] Self-Organizing Maps; Springer;

Example

An SOM network with three inputs and two cluster units is to be trained using the four training vectors:

[0.8 0.7 0.4], [0.6 0.9 0.9], [0.3 0.4 0.1], [0.1 0.1 02] and initial weights

The initial radius is 0 and the learning rate η is 0.5.

Calculate the weight changes during the first cycle through the data, taking the training vectors in the given order.

Solution

The Euclidian distance of the input vector 1 to cluster unit 1 is:

$$d_1 = (0.5 - 0.8)^2 + (0.6 - 0.7)^2 + (0.8 - 0.4)^2 = 0.26$$

The Euclidian distance of the input vector 1 to cluster unit 2 is:

$$d_2 = (0.4 - 0.8)^2 + (0.2 - 0.7)^2 + (0.5 - 0.4)^2 = 0.42$$

Input vector 1 is closest to cluster unit 1 so update weights to cluster unit 1:

out vector 1 is closest to cluster unit 1 so update weights to
$$w_{ij}(n+1) = w_{ij}(n) + 0.5[x_i - w_{ij}(n)]$$

$$0.65 = 0.5 + 0.5(0.8 - 0.5)$$

$$0.65 = 0.6 + 0.5(0.7 - 0.6)$$

$$0.6 = 0.8 + 0.5(0.4 - 0.8)$$

$$0.60 = 0.5$$

Solution

The Euclidian distance of the input vector 2 to cluster unit 1 is:

$$d_1 = (0.65 - 0.6)^2 + (0.65 - 0.9)^2 + (0.6 - 0.9)^2 = 0.155$$

The Euclidian distance of the input vector 2 to cluster unit 2 is:

$$d_2 = (0.4 - 0.6)^2 + (0.2 - 0.9)^2 + (0.5 - 0.9)^2 = 0.69$$

Input vector 2 is closest to cluster unit 1 so update weights to cluster unit 1 again:

$$w_{ij}(n+1) = w_{ij}(n) + 0.5[x_i - w_{ij}(n)]$$

$$0.625 = 0.65 + 0.5(0.6 - 0.65)$$

$$0.775 = 0.65 + 0.5(0.9 - 0.65)$$

$$0.750 = 0.60 + 0.5(0.9 - 0.60)$$

$$0.750 = 0.60 + 0.5(0.9 - 0.60)$$

$$0.750 = 0.60 + 0.5(0.9 - 0.60)$$

Repeat the same update procedure for input vector 3 and 4 also.

Another Example

- From Fausett (1994)
- n = 4, m = 2
 - More typical of SOM application
 - Smaller number of units in output than in input; dimensionality reduction
- Training samples

i1: (1, 1, 0, 0)

i2: (0, 0, 0, 1)

i3: (1, 0, 0, 0)

i4: (0, 0, 1, 1)

Network Architecture

What should we expect as outputs?

Example Details

Training samples

- With only 2 outputs, neighborhood = 0
 - Only update weights associated with winning output unit (cluster) at each iteration
- Learning rate

$$\begin{split} &\eta(t)=0.6;\ 1 <= t <= 4\\ &\eta(t)=0.5\ \eta(1);\ 5 <= t <= 8\\ &\eta(t)=0.5\ \eta(5);\ 9 <= t <= 12\\ &etc. \end{split}$$

 Initial weight matrix (random values between 0 and 1)

$$\begin{cases} \text{Unit 1:} & \begin{bmatrix} .2 & .6 & .5 & .9 \\ .8 & .4 & .7 & .3 \end{bmatrix} \end{cases}$$

Weight update:
$$w_j(t+1) = w_j(t) + \eta(t)(i_l - w_j(t))$$

First Weight Update

i1: (1, 1, 0, 0)

i2: (0, 0, 0, 1)

i3: (1, 0, 0, 0)

i4: (0, 0, 1, 1)

- Training sample: i1
 - Unit 1 weights

•
$$d^2 = (.2-1)^2 + (.6-1)^2 + (.5-0)^2 + (.9-0)^2 = 1.86$$

- Unit 2 weights

•
$$d^2 = (.8-1)^2 + (.4-1)^2 + (.7-0)^2 + (.3-0)^2 = .98$$

- Unit 2 wins
- Weights on winning unit are updated

$$[.8 .4 .7 .3] + 0.6([1 1 0 0] - [.8 .4 .7 .3]) = [.92 .76 .28 .12]$$

Unit 1: [.2 .6 .5 .9] Unit 2: [.8 .4 .7 .3]

Giving an updated weight matrix:

Second Weight Update

i1: (1, 1, 0, 0) i2: (0, 0, 0, 1) i3: (1, 0, 0, 0) i4: (0, 0, 1, 1)

Training sample: i2

Unit 1 weights

•
$$d^2 = (.2-0)^2 + (.6-0)^2 + (.5-0)^2 + (.9-1)^2 = .66$$

- Unit 2 weights

•
$$d^2 = (.92-0)^2 + (.76-0)^2 + (.28-0)^2 + (.12-1)^2 = 2.28$$

- Unit 1 wins
- Weights on winning unit are updated = [.2 .6 .5 .9] + 0.6([0 0 0 1] [.2 .6 .5 .9]) = [.08 .24 .20 .96]
- Giving an updated weight matrix:

Third Weight Update

i1: (1, 1, 0, 0) i2: (0, 0, 0, 1) i3: (1, 0, 0, 0) i4: (0, 0, 1, 1)

• Training sample: i3

Unit 1: [.08 .24 .20 .96] Unit 2: [.92 .76 .28 .12]

Unit 1 weights

•
$$d^2 = (.08-1)^2 + (.24-0)^2 + (.2-0)^2 + (.96-0)^2 = 1.87$$

- Unit 2 weights

•
$$d^2 = (.92-1)^2 + (.76-0)^2 + (.28-0)^2 + (.12-0)^2 = 0.68$$

- Unit 2 wins
- Weights on winning unit are updated

$$= [.92 \quad .76 \quad .28 \quad .12] + 0.6([1 \quad 0 \quad 0] - [.92 \quad .76 \quad .28 \quad .12]) = [.97 \quad .30 \quad .11 \quad .05]$$

Giving an updated weight matrix:

Fourth Weight Update

i1: (1, 1, 0, 0) i2: (0, 0, 0, 1) i3: (1, 0, 0, 0) i4: (0, 0, 1, 1)

• Training sample: i4

Unit 1: [.08 .24 .20 .96] Unit 2: [.97 .30 .11 .05]

Unit 1 weights

•
$$d^2 = (.08-0)^2 + (.24-0)^2 + (.2-1)^2 + (.96-1)^2 = .71$$

- Unit 2 weights

•
$$d^2 = (.97-0)^2 + (.30-0)^2 + (.11-1)^2 + (.05-1)^2 = 2.74$$

- Unit 1 wins
- Weights on winning unit are updated

$$= [.08 \quad .24 \quad .20 \quad .96] + 0.6([0 \quad 0 \quad 1 \quad 1] - [.08 \quad .24 \quad .20 \quad .96]) = [.03 \quad .10 \quad .68 \quad .98]$$

Giving an updated weight matrix:

Applying the SOM Algorithm

Data sample utilized

time (t)	1	2	3	4	D(t)	η(t)
1	Unit 2				0	0.6
2		Unit 1			0	0.6
3			Unit 2		0	0.6
4				Unit 1	0	0.6
4				Unit 1	0	0.6

'winning' output unit

After many iterations (epochs) through the data set:

Unit 1: $\begin{bmatrix} 0 & 0 & .5 & 1.0 \\ 1.0 & .5 & 0 & 0 \end{bmatrix}$

Did we get the clustering that we expected?

Training samples

i1: (1, 1, 0, 0)

i2: (0, 0, 0, 1)

i3: (1, 0, 0, 0)

i4: (0, 0, 1, 1)

Input units:

Weights

Unit 1: $\begin{bmatrix} 0 & 0 & .5 & 1.0 \\ 1.0 & .5 & 0 & 0 \end{bmatrix}$

What clusters do the data samples fall into?

Training samples

i1: (1, 1, 0, 0) i2: (0, 0, 0, 1)

i3: (1, 0, 0, 0)

i4: (0, 0, 1, 1)

Solution

Input units:

Weights

Unit 1: $\begin{bmatrix} 0 & 0 & .5 & 1.0 \end{bmatrix}$ Unit 2: 1.0 .5 0 0

Sample: i1

Distance from unit1 weights

•
$$(1-0)^2 + (1-0)^2 + (0-.5)^2 + (0-1.0)^2 = 1+1+.25+1=3.25$$

Distance from unit2 weights

•
$$(1-1)^2 + (1-.5)^2 + (0-0)^2 + (0-0)^2 = 0 + .25 + 0 + 0 = .25$$
 (winner)

Sample: i2

Distance from unit1 weights

•
$$(0-0)^2 + (0-0)^2 + (0-.5)^2 + (1-1.0)^2 = 0+0+.25+0$$
 (winner)

Distance from unit2 weights

•
$$(0-1)^2 + (0-.5)^2 + (0-0)^2 + (1-0)^2 = 1 + .25 + 0 + 1 = 2.25$$

Training samples

i1: (1, 1, 0, 0) i2: (0, 0, 0, 1) i3: (1, 0, 0, 0) i4: (0, 0, 1, 1) Solution

Input units:

Weights

Unit 1: $\begin{bmatrix} 0 & 0 & .5 & 1.0 \\ 1.0 & .5 & 0 & 0 \end{bmatrix}$

Sample: i3

Distance from unit1 weights

•
$$(1-0)^2 + (0-0)^2 + (0-.5)^2 + (0-1.0)^2 = 1+0+.25+1=2.25$$

Distance from unit2 weights

•
$$(1-1)^2 + (0-.5)^2 + (0-0)^2 + (0-0)^2 = 0 + .25 + 0 + 0 = .25$$
 (winner)

Sample: i4

Distance from unit1 weights

•
$$(0-0)^2 + (0-0)^2 + (1-.5)^2 + (1-1.0)^2 = 0+0+.25+0$$
 (winner)

Distance from unit2 weights

•
$$(0-1)^2 + (0-.5)^2 + (1-0)^2 + (1-0)^2 = 1 + .25 + 1 + 1 = 3.25$$

Parameter Setup

- Number of iterations T
 - Convergence of SOM is rather slow ⇒ Should be set as high as possible
 - Roughly 100-1000 iterations at minimum.
- Size of the initial neighborhood σ_0
 - Small enough to allow local adaption.
 - $-\sigma_0 = 0$ indicates no neighbor structure
- Maximum learning rate $\eta(t_0)$
 - Higher values have mostly random effect.
 - Most critical are the final stages

Optimal choices of σ_0 and $\eta(t_0)$ highly correlated.

SOM in TSP

SOM in TSP

Input layer:

- A two-dimensional input.
- defines the coordinates of the cities in the two dimensional Euclidian space.
- Output layer:
 - m (# of cities) output neurons.
- Topology:
 - One dimensional/Ring

SOM in TSP

SOM in TSP [1]

