# Examen de INTRODUCCIÓN A LA INVESTIGACIÓN OPERATIVA

## 13 de julo de 2015

- 1. Una empresa produce dos tipos de minimotocicletas: A y B. Para la próxima semana la empresa quiere asegurarse de que el número de minimotocicletas tipo A no supera al de tipo B en más de 300 unidades. Las minimotocicletas de tipo A tienen un beneficio de 70 euros unidad y las de tipo B de 40 euros unidad. Las minimotocicletas son idénticas mecánicamente, sólo difieren en su apariencia. Para su producción semanal las de tipo A requieren 1 Kg de polímero y tres horas de producción, mientras que las de tipo B requieren 1/2 Kg de polímero y cuatro horas de producción. La empresa dispone de 450 Kg de polímero y de 2400 horas de trabajo. (total 2 puntos)
  - a. Plantead el modelo de programación lineal entera (PLE) que permita a la empresa determinar la producción que maximiza el beneficio, teniendo en cuenta las limitaciones de recurso y los requisitos de producción. (0,25 puntos)
  - b. Determinad cual es el conjunto de soluciones factibles y la solución óptima. (0,5 puntos)
  - c. La empresa está interesada en incorporar una exigencia de demanda del tipo:

$$X1 + X2 \ge m$$

- siendo X1 y X2 el número de motocicletas tipo A y B, respectivamente. Analizad los valores de *m* en función de si la región factible es convexa o no. (0.5 puntos)
- d. Escribid el programa en SAS/OR que permita obtener la solución del modelo de PLE que habéis planteado en el apartado a. (SE VALORARÁ EL HECHO DE QUE AL EJECUTARLO EN SAS NO DE ERRORES; CON MÁS DE DOS ERRORES LA PUNTUACIÓN DE ESTA PREGUNTA SERÁ 0) (0,75 puntos)
- 2. Replantead el modelo de PLE que habéis planteado en el apartado a. del ejercicio 1 de modo que ahora el objetivo sea alcanzar las siguientes metas: (total 1 punto, se restará 0,5 por error)
  - I. Alcanzar un beneficio de 35000 euros.
  - II. Que la producción total sea de al menos 700 minimotocicletas.
  - III. Que se cumpla el requisito de producción de la empresa (el tipo A no supera al de tipo B en más de 300 unidades)
  - IV. Que se agoten ambos recursos semanalmente, dando el doble de importancia a la subutilización de las horas de mano de obra.
  - V. Que no se realicen más de 10 horas extras semanales.
- 3. La Figura 1 representa un problema de transporte, en el lado izquierdo se representan los dos almacenes de origen A<sub>1</sub> y A<sub>2</sub> con una disponibilidad de 2300 y 2500 unidades de producto respectivamente. En el lado derecho de la Figura 1 se representan los supermercados de destino P<sub>1</sub>, P<sub>2</sub> y P<sub>3</sub> cuyas demandas son de 1500, 2000 y 1000, respectivamente. Junto a cada una de las flechas que unen cada origen con cada destino se apunta el coste de transporte unitario. Se denomina X<sub>ij</sub> al número de unidades que se decide transportar desde el origen i (i=1,2) al destino j (j=1,2,3). En el Cuadro 1 se muestra el modelo de programación lineal (PL) que se utiliza para determinar los valores de las variables de decisión X<sub>ij</sub> que minimizan los costes totales de transporte. (total 3,5 puntos)

Figura 1.



Cuadro 1.

| Sujeto a:                                              |
|--------------------------------------------------------|
| $X_{11}+X_{12}+X_{13} \le 2300$                        |
| $X_{21}+X_{22}+X_{23} \le 2500$                        |
| $X_{11}+X_{21}=1500$                                   |
| $X_{12}+X_{22}=2000$                                   |
| $X_{13}+X_{23}=1000$                                   |
| $X_{11}, X_{12}, X_{13}, X_{21}, X_{22}, X_{23} \ge 0$ |

- a. Describid de forma detallada que representa cada una de las restricciones del modelo de PL del Cuadro 1 (unas 2 líneas por restricción). (0,25 puntos)
- b. A continuación, en los cuadros del 2 al 6 se muestran algunos resultados de la resolución del modelo obtenidos con SAS/OR:

Cuadro 2.

|     | Variable Summary |        |         |       |          |                     |  |  |  |  |  |
|-----|------------------|--------|---------|-------|----------|---------------------|--|--|--|--|--|
| Col | Variable Name    | Status | Type    | Price | Activity | <b>Reduced Cost</b> |  |  |  |  |  |
| 1   | x11              | BASIC  | NON-NEG | 8     | 1500     | 0                   |  |  |  |  |  |
| 2   | x12              |        | NON-NEG | 6     | 0        | 1                   |  |  |  |  |  |
| 3   | x13              | BASIC  | NON-NEG | 10    | 500      | 0                   |  |  |  |  |  |
| 4   | x21              |        | NON-NEG | 10    | 0        | 3                   |  |  |  |  |  |
| 5   | x22              | BASIC  | NON-NEG | 4     | 2000     | 0                   |  |  |  |  |  |
| 6   | x23              | BASIC  | NON-NEG | 9     | 500      | 0                   |  |  |  |  |  |
| 7   | A1               | BASIC  | SLACK   | 0     | 300      | 0                   |  |  |  |  |  |
| 8   | A2               |        | SLACK   | 0     | 0        | 1                   |  |  |  |  |  |

Cuadro 3.

| Constraint Summary |                    |          |         |      |          |                      |  |  |  |  |  |
|--------------------|--------------------|----------|---------|------|----------|----------------------|--|--|--|--|--|
| Row                | Constraint<br>Name | Type     | S/S Col | Rhs  | Activity | <b>Dual Activity</b> |  |  |  |  |  |
| 1                  | Coste              | OBJECTVE |         | 0    | 29500    |                      |  |  |  |  |  |
| 2                  | A1                 | LE       | 7       | 2300 | 2000     | 0                    |  |  |  |  |  |
| 3                  | A2                 | LE       | 8       | 2500 | 2500     | -1                   |  |  |  |  |  |
| 4                  | P1                 | EQ       | •       | 1500 | 1500     | 8                    |  |  |  |  |  |
| 5                  | P2                 | EQ       | •       | 2000 | 2000     | 5                    |  |  |  |  |  |
| 6                  | P3                 | EQ       | ·       | 1000 | 1000     | 10                   |  |  |  |  |  |

Cuadro 4.

|           | RHS Range Analysis |         |           |             |         |           |  |  |  |  |  |
|-----------|--------------------|---------|-----------|-------------|---------|-----------|--|--|--|--|--|
| Row       |                    | Minimun | n Phi     | Maximum Phi |         |           |  |  |  |  |  |
|           | Rhs                | Leaving | Objective | Rhs         | Leaving | Objective |  |  |  |  |  |
| A1        | 2000               | A1      | 29500     | INFINITY    | •       | •         |  |  |  |  |  |
| A2        | 2200               | A1      | 29800     | 3000        | x13     | 29000     |  |  |  |  |  |
| <b>P1</b> | 0                  | x11     | 17500     | 1800        | A1      | 31900     |  |  |  |  |  |
| P2        | 1500               | x13     | 27000     | 2300        | A1      | 31000     |  |  |  |  |  |
| P3        | 500                | x13     | 24500     | 1300        | A1      | 32500     |  |  |  |  |  |
|           |                    |         |           |             |         |           |  |  |  |  |  |

Cuadro 5.

|     | Price Range Analysis |           |                           |           |             |          |           |  |  |  |
|-----|----------------------|-----------|---------------------------|-----------|-------------|----------|-----------|--|--|--|
| Col | Variable Name        | M         | linimum P                 | hi        | Maximum Phi |          |           |  |  |  |
|     |                      | Price     | <b>Entering</b> Objective |           | Price       | Entering | Objective |  |  |  |
| 1   | x11                  | -INFINITY | •                         | -INFINITY | 11          | x21      | 34000     |  |  |  |
| 2   | x12                  | 5         | x12                       | 29500     | INFINITY    | •        | 29500     |  |  |  |
| 3   | x13                  | 9         | A2                        | 29000     | 11          | x12      | 30000     |  |  |  |
| 4   | x21                  | 7         | x21                       | 29500     | INFINITY    | •        | 29500     |  |  |  |
| 5   | x22                  | -INFINITY | •                         | -INFINITY | 5           | x12      | 31500     |  |  |  |
| 6   | x23                  | 8         | x12                       | 29000     | 10          | A2       | 30000     |  |  |  |
| 7   | A1                   | -INFINITY | •                         | -INFINITY | 1           | A2       | 29800     |  |  |  |
| 8   | A2                   | -1        | A2                        | 29500     | INFINITY    | •        | 29500     |  |  |  |

| Ob | _OBJ_ID | _RHS_ID | _BASIC | INVB_ | <b>x1</b> | <b>x1</b> | <b>x1</b> | <b>x2</b> | <b>x2</b> | <b>x2</b> | A | A  | PHASE | Cost |
|----|---------|---------|--------|-------|-----------|-----------|-----------|-----------|-----------|-----------|---|----|-------|------|
| S  | _       | _       | _      | R     | 1         | 2         | 3         | 1         | 2         | 3         | 1 | 2  | _     | e    |
| 1  | Coste   | _rhs_   | R_COST |       | 0         | 1         | 0         | 3         | 0         | 0         | 0 | 1  | 0     | 0    |
| 2  | Coste   | _rhs_   | x13    | 500   | 0         | 1         | 1         | -1        | 0         | 0         | 0 | -1 | 0     | 0    |
| 3  | Coste   | _rhs_   | x23    | 500   | 0         | -1        | 0         | 1         | 0         | 1         | 0 | 1  | 0     | 0    |
| 4  | Coste   | _rhs_   | x22    | 2000  | 0         | 1         | 0         | 0         | 1         | 0         | 0 | 0  | 0     | 0    |
| 5  | Coste   | _rhs_   | A1     | 300   | 0         | 0         | 0         | 0         | 0         | 0         | 1 | 1  | 0     | 0    |
| 6  | Coste   | _rhs_   | x11    | 1500  | 1         | 0         | 0         | 1         | 0         | 0         | 0 | 0  | 0     | 0    |
| 7  | Coste   | _rhs_   | PHASE_ | 0     | 0         | 0         | 0         | 0         | 0         | 0         | 0 | 0  | 1     | 0    |
| 8  | Coste   | _rhs_   | Coste  | 29500 | 0         | -1        | 0         | -3        | 0         | 0         | 0 | -1 | 0     | 1    |

- b.1. Describid detalladamente la solución óptima del problema de transporte (función objetivo, variables de decisión y restricciones). (0,25 puntos)
- b.2. Considerando que los costes de trasladar unidades de producto entre los dos orígenes son cero, determinad si la empresa estaría dispuesta a trasladar unidades del origen  $A_1$  al  $A_2$  y en cuanto se reducirían los costes totales de transporte por cada unidad trasladada. Justificad la respuesta a partir de los resultados de los cuadros 2 y 3. (0,5 puntos)
- b.3. Como máximo, ¿cuántas unidades estaría dispuesta a traspasar del origen  $A_1$  al  $A_2$ ? Justificad la respuesta. (0,5 puntos)
- b.4. Calculad la nueva solución óptima si la empresa decidiera realizar el traspaso que ha determinado en el apartado b.3. (0,5 puntos)
- b.5. Cómo sería la solución obtenida si el número de unidades en  $A_2$  ascendiera a 3100 unidades y se mantuviera el vector básico del Cuadro 2. Justificad la respuesta. (0,75 puntos)
- b.6. Describid el algoritmo que utilizaría para corregir (en caso de ser necesario) la solución descrita en b5 sin tener que volver a solucionar el problema desde el inicio. En el caso de que consideréis que la solución no debe corregirse justificad la respuesta. (0,75 puntos)
- 4. Incorporad al modelo del Cuadro 1 el hecho de que existan costes fijos de transporte. Para ello suponed que  $CF_{ij}$  es el coste fijo que supone el transporte de unidades del origen i al destino j. Recordad que el  $CF_{ij}$  se añade al coste total únicamente cuando  $X_{ij} > 0$ . (total 1 punto, se restarán 0,5 puntos por error)
- 5. Una empresa manufactura tres tipos de chips para ordenadores. Cada tipo de chip requiere diferente cantidad de tiempo en tres departamentos distintos que se resumen en la Cuadro 7. (total 2,5 puntos)

|         | Cuadro 7. |        |        |                               |  |  |  |  |
|---------|-----------|--------|--------|-------------------------------|--|--|--|--|
|         | Chip A    | Chip B | Chip C | Total de horas<br>disponibles |  |  |  |  |
| Dept. 1 | 3         | 2      | 4      | 80                            |  |  |  |  |
| Dept. 2 | 2         | 4      | 3      | 90                            |  |  |  |  |
| Dept. 3 | 3         | 4      | 2      | 90                            |  |  |  |  |

Siendo  $X_1$ ,  $X_2$  y  $X_3$  el número de unidades de *chips* A, B y C, respectivamente, el beneficio total asociado a cada tipo de *chip* es:

- ✓ para el *chip* A el beneficio es  $-0.35X_1^2 + 8.3X_1 + 540$
- ✓ para el *chip* B el beneficio es -0,60  $X_2^2$ +9,45 $X_2$ +1.108
- ✓ para el *chip* C el beneficio es -0,47  $X_3^2$ +11,0 $X_3$ +850
- a. A continuación, en los cuadros del 8 al 11 se muestran los resultados de la resolución del modelo de programación no lineal (PNL) que permite obtener cuál es la producción que maximiza el beneficio teniendo en cuenta la disponibilidad de horas de trabajo efectivo. Determine cuál es dicha producción, el beneficio que se obtiene y el número de horas de trabajo que se utilizan en cada departamento para obtener la producción óptima. (0,5 puntos)

### Cuadro 8.

| Cuauro 6.                        |                   |                                 |              |  |  |  |  |  |  |
|----------------------------------|-------------------|---------------------------------|--------------|--|--|--|--|--|--|
| <b>Optimization Results</b>      |                   |                                 |              |  |  |  |  |  |  |
| Iterations                       | 53                | <b>Function Calls</b>           | 108          |  |  |  |  |  |  |
| <b>Gradient Calls</b>            | 108               | <b>Active Constraints</b>       | 1            |  |  |  |  |  |  |
| <b>Objective Function</b>        | 145.82975042      | <b>Max Abs Gradient Element</b> | 7.9226732E-6 |  |  |  |  |  |  |
| <b>Slope of Search Direction</b> | -1.96682E-10      |                                 |              |  |  |  |  |  |  |
| ABSGCONV converg                 | gence criterion s | satisfied.                      |              |  |  |  |  |  |  |

**Cuadro 9.**PROC NLP: Nonlinear Maximization

| T NOO IVEL : NOTHINGAL WAXIITIIZALION |                             |                  |                  |  |  |  |  |  |  |  |  |
|---------------------------------------|-----------------------------|------------------|------------------|--|--|--|--|--|--|--|--|
|                                       | <b>Optimization Results</b> |                  |                  |  |  |  |  |  |  |  |  |
|                                       | Parameter Estimates         |                  |                  |  |  |  |  |  |  |  |  |
| N                                     | Parameter                   | rameter Estimate |                  |  |  |  |  |  |  |  |  |
|                                       |                             |                  | <b>Objective</b> |  |  |  |  |  |  |  |  |
|                                       |                             |                  | Function         |  |  |  |  |  |  |  |  |
| 1                                     | <b>x1</b>                   | 9.517626         | 1.637662         |  |  |  |  |  |  |  |  |
| 2                                     | <b>x2</b>                   | 6.965180         | 1.091784         |  |  |  |  |  |  |  |  |
| 3                                     | <b>x3</b>                   | 9.379191         | 2.183561         |  |  |  |  |  |  |  |  |

Value of Objective Function = 145.82975042

## Cuadro 10.

|      | <b>Linear Constraints Evaluated at Solution</b>                      |  |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1 AC | CT - 8.882E - 15 = 80.0000 - 3.0000 * x1 - 2.0000 * x2 - 4.0000 * x3 |  |  |  |  |  |  |  |  |  |
| 2    | 14.96646 = 90.0000 - 2.0000 * x1 - 4.0000 * x2 - 3.0000 * x3         |  |  |  |  |  |  |  |  |  |
| 3    | 14.82802 = 90.0000 - 3.0000 * x1 - 4.0000 * x2 - 2.0000 * x3         |  |  |  |  |  |  |  |  |  |

#### Cuadro 11.

| Obs | _TECH_ | _TYPE_   | _NAME_  | <b>x1</b> | <b>x</b> 2 | <b>x</b> 3 | _RHS_   | _ITER_ |
|-----|--------|----------|---------|-----------|------------|------------|---------|--------|
| 1   | CONGRA | INITIAL  |         | 0.00000   | 0.00000    | 0.0000     | 0.000   | 0      |
| 2   | CONGRA | GRAD     |         | 8.30000   | 9.45000    | 11.0000    |         | 0      |
| 3   | CONGRA | TERMINAT | ABSGTOL |           |            |            | 3.000   | •      |
| 4   | CONGRA | PARMS    |         | 9.51763   | 6.96518    | 9.3792     | 145.830 | •      |
| 5   | CONGRA | GRAD     |         | 1.63766   | 1.09178    | 2.1836     |         | •      |
| 6   | CONGRA | LOWERBD  |         | 0.00000   | 0.00000    | 0.0000     |         | •      |
| 7   | CONGRA | NACTBC   |         | 0.00000   | 0.00000    | 0.0000     |         | •      |
| 8   | CONGRA | NACTLC   |         | 1.00000   | 1.00000    | 1.0000     |         | •      |
| 9   | CONGRA | LE       | LC_ACT  | 3.00000   | 2.00000    | 4.0000     | 80.000  | •      |
| 10  | CONGRA | LE       | LC      | 2.00000   | 4.00000    | 3.0000     | 90.000  | •      |
| 11  | CONGRA | LE       | LC      | 3.00000   | 4.00000    | 2.0000     | 90.000  | •      |
| 12  | CONGRA | PROJGRAD |         | -0.00001  | -0.00000   |            |         | •      |
| 13  | CONGRA | LAGM LC  | LIC_NUM | 1.00000   |            |            |         |        |
| 14  | CONGRA | LAGM LC  | LIC_VAL | -0.54589  |            |            |         | •      |

- b. Determinad cuáles son los valores de los multiplicadores de Lagrange asociados a cada restricción e interpretad dichos valores. (1 punto)
- c. A continuación se muestra el programa en SAS/OR con el que se intentan obtener los resultados que se muestran en el apartado a. de este ejercicio. ¿Creéis que hay algún error en la programación que se muestra en el Cuadro 12? Si es así, decid cuál y justificad la respuesta. (0,5 puntos)

#### Cuadro 12.

```
proc nlp tech=CONGRA OUTEST=exa.pp2;
max z;
parms x1=0, x2=0, x3=0;
bounds x1>=0, x2>=0, x3>=0;
nlincon 3*x1+2*x2+4*x3<=80, 2*x1+4*x2+3*x3<=90, 3*x1+4*x2+2*x3<=90;
z=8.3*x1+9.45*x2+11*x3-(0.35*x1**2+0.60*x2**2+0.47*x3**2);
run;
proc print data=exa.pp2;
run;</pre>
```

d. En el Cuadro 12 se proponen unos valores iniciales para las variables en el modelo de PNL. Determinad cuáles son y decid si creéis que son los más adecuados. Si no es así, proponed unos valores iniciales alternativos. (0,5 puntos)

**NOTA:** LAS CUESTIONES EN LAS QUE NO SE INDICA NADA SE VALORARÁN COMO CORRECTA O INCORRECTA. ES DECIR, SI LA RESPUESTA ES CORRECTA SE SUMARÁ LA PUNTUACIÓN CORREPONDIENTE Y EN CASO CONTRARIO SE PONDRÁ 0. **ES DECIR, NO SE SUMARAN PARTES DE PUNTUACIONES (0,25 SOBRE 0,5...)**.