Topology

1. Introduction

양현서

July 20, 2024

Manifolds란 무엇인가?

• 공간에서의 면을 일반화한 개념

• 예시: S2 (구면)

• 여기서의 함수의 최댓값, 최솟값 구하기는 평범한 평면에서 하던 것과는 다르다.

• A manifold is a topological space locally homeomorphic to \mathbb{R}^n .

Metric

- A non empty set X
- For $\forall x, y \in X$
 - $d(x,y) > 0 \Leftrightarrow x \neq y$
 - d(x,y) = d(y,x)
 - $d(x,y) \ge d(x,z) + d(z,y)$

Example of metrics

- Eucledian metric: $d(x,y) = \sqrt{\left(x_1 y_1\right)^2 + \left(x_2 y\right)^2}$
- Square metric: $d(x, y) = \max(|x_1 y_1|, |x_2 y_2|)$
- Taxi-cab metric: $d(x,y) = |x_1 y_1| + |x_2 y_2|$
- Discrete metric: d(x,y) = 1 if $x \neq y$, 0 if x = y

Metric Space

Set X

• Metric function $d:X^2 \to \mathbb{R}$

Open epsilon ball in metric space

•
$$B(x,\varepsilon) = \{ y \in X \mid d(x,y) < \varepsilon \}$$

It is an open set

Examples of balls in metric spaces

- inside of a circle with radius r where $X = \mathbb{R}^2, d =$ Eucledian metric
- inside of a square where $X = \mathbb{R}^2, d = \text{Square metric}$
- Discrete metric space
 - $B_{\text{Discrete}}(p, 0.1) = \{p\}$
 - $B_{\text{Discrete}}(p,1) = \{p\}$
 - $B_{\text{Discrete}}(p, 1.000001) = X$

Open sets in metric space

• if $U\in X$, U is an open set if $\forall x\in U, \exists \varepsilon>0$ such that $B(x,\varepsilon)\subset U$

- Example (Eucledian space)
 - $U = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$
 - $ightharpoonup \forall (x,y) \in U, B((x,y),x) \subset U$

Topology

- Metric is not needed
- Set X, $T \subseteq \mathcal{P}(X)$
- T is a topology on X if
 - $\bullet \ \emptyset, X \in T$
 - V, $V \in T \Rightarrow U \cap V \in T$
 - For any fixed index set I, $U_i \in T \Rightarrow \bigcup_{i \in I} U_i \in T$

Open sets

Elements of T are called open sets

Examples of topology

- Discrete Topology: $T = \mathcal{P}(X)$ is a topology on X
- Indiscrete Topology: $T = {\emptyset, X}$ is a topology on X

Open epsilon ball is an open set

- In a metric space (X,d), for any $x \in X$ and $\varepsilon > 0$, the set $B(x,\varepsilon) = \{y \in X \mid d(x,y) < \varepsilon\}$ is called an ε -ball around x.
- Proposition: Every ε -ball is an open set in the metric space (X,d).

Open epsilon ball is an open set: Proof

- Let $B(x,\varepsilon)$ be an ε -ball and let $p\in B(x,\varepsilon)$
- Then $d(x,p) < \varepsilon$
- Choose $\delta = \varepsilon d(x, p)$, then $\delta > 0$.
- For any $q \in B(p, \delta)$, we have $d(p, q) < \delta$.
- By triangle ineq, $d(x,q) \le d(x,p) + d(p,q) < d(x,p) + \delta = \varepsilon$
- Hence, $q \in B(x, \varepsilon)$
- Thus, $B(p,\delta) \subset B(x,\varepsilon)$, implying p is an interior point of $B(x,\varepsilon)$
- Since p was arbitrary, $B(x, \varepsilon)$ is an open set.

• Therefore, every ε -ball is an open set in the metric space (X,d).

Teaser: Closed set, continuous function