STEVENS INSTITUTE OF TECHNOLOGY

SYS-601 Homework #5

Due Feb. 26 2017

Submit the following using the online submission system: 1) Completed assignment cover sheet, 2) Written responses in PDF format, 3) All saved models (e.g. .xlsx or .py files).

5.1 Trapezoidal Distribution [10 points]

Consider a trapezoidal PDF with parameters $0 \le a \le c_1 \le c_2 \le b$ for the minimum value a, maximum value b, and transition points c_1 and c_2 between linear and constant segments:

- (a) 2 PTS Using the property $\int_a^b f(y)dy = 1$, solve for h in terms of a, b, c_1 , and c_2 . (*Hint:* write an equation for the area under the PDF, set equal to 1, and solve for h.)
- (b) 3 PTS Write an equation for the PDF f(y) in terms of a, b, c_1 and c_2 for the ranges:
 - (i) $a < y \le c_1$ (Hint: verify f(a) = 0 and $f(c_1) = h$.)
 - (ii) $c_1 < y \le c_2$
 - (iii) $c_2 < y \le b$ (Hint: verify $f(c_2) = h$ and f(b) = 0.)
- (c) 3 PTS Write an equation for the CDF F(y) in terms of a, b, c_1 and c_2 for the ranges:
 - (i) $a < y \le c_1$ (*Hint*: the area of the triangular region between a and y.)
 - (ii) $c_1 < y \le c_2$ (*Hint:* $F(c_1)$ plus the area of rectangular region between c_1 and y.)
 - (iii) $c_2 < y \le b$ (Hint: $F(c_2)$ plus the area of triangular region between c_2 and y.)
- (d) 2 PTS Draw a sketch of the CDF F(y) for parameters $a=0.5, c_1=1.5, c_2=2.5, b=3.5$.

5.2 Café Java: Customer Inter-arrival [10 points]

Mathematically inclined customers arrive at Café Java following a Poisson process:

- There is a long-term average rate of $\lambda = 2$ customer arrivals per minute.
- The arrival rate is constant throughout the day.
- Customer arrivals are independent of each other.

Under these assumptions, the inter-arrival time between customers is an exponentially-distributed random variable X with rate parameter λ^1 :

$$X \sim \text{exponential}(\lambda)$$

- (a) 1 PT Write an equation for the PDF f(x).
- (b) 2 PTS Draw a sketch of the PDF f(x) for $0 \le x \le 5$.
- (c) 1 PT Find the population mean $\mu = E[X]$ and mark on the PDF plot.
- (d) 1 PT Write an equation for the CDF F(x).
- (e) 2 PTS Draw a sketch of the CDF F(x) for $0 \le x \le 5$.
- (f) 3 PTS Evaluate or estimate the following quantities and mark on the CDF plot:
 - (i) 10th percentile inter-arrival time P_{10} (Hint: $F(P_{10}) = 0.10$)
 - (ii) Median inter-arrival time P_{50} (Hint: $F(P_{50}) = 0.50$)
 - (iii) 90th percentile inter-arrival time P_{90} (Hint: $F(P_{90}) = 0.90$)

¹Rate parameter λ is equivalent to scale parameter $1/\lambda$.