Decision Trees

Логическая закономерность (Rule)

$$R_y: X \to \{0, 1\}$$

Виды закономерностей

Пороговые условия:

$$R(\mathbf{x}) = [a \le x_i \le b]$$

Синдром пороговых условий:

$$R(\mathbf{x}) = \left[\sum_{j \in J} \left[a_j \le x_j \le b_j \right] \ge d \right]$$

При d = |J| - конъюнкция условий.

Оценки правил (классификаторов)

	${\bf y_i}$		y_i	
		= y	≠ y	
$R_y(x_i)$	1	True positive (TP)	False positive (FP)	Positive predictive value, Precision $\frac{TP}{TP + FP}$
	0	False negative (FN)	True negative (TN)	
		True positive rate, Recall $\frac{TP}{TP + FN}$		Accuracy $\frac{TP + TN}{TP + FP + TN + FN}$

$$\textbf{\textit{F}}_{\textbf{1}} \textbf{\textit{score}} = \frac{2}{\frac{1}{recall} + \frac{1}{precision}} = 2 \frac{precision * recall}{precision + recall} = \frac{2TP}{2TP + FP + FN}$$

Пример

		y_i		
		= y	<i>≠ y</i>	
				Positive predictive value, Precision
	1	0 (TP)	0 (FP)	
$R_{y}(x_{i})$				0
	0	50 (FN)	950 (TN)	
		True positive rate, Recall		Accuracy
		0		95%

		y_i		
		= y	<i>≠ y</i>	
	1	50 (TP)	950 (FP)	Positive predictive value, Precision
$R_{y}(x_{i})$	•	30 (11)	330 (11)	5%
	0	0 (FN)	0 (TN)	
		True positive rate, Recall		Accuracy
		100%		5%

		y_i		
		= y	$\neq y$	
	1	25 (TP)	475 (FP)	Positive predictive value, Precision
$R_y(x_i)$	_	25 ()	., 5 ()	5%
	0	25 (FN)	475 (TN)	
		True positive rate, Recall		Accuracy
		50%		50%

Эффективность по Парето

🛑 - Парето фронт, 1-я линия

N – тоже 1-я линия, K – 2-я

Эффективное по Парето правило — такое, что нет другого правила, у которого одновременно выше и precision и recall.

Оценки правил (классификаторов)

	${\bf y}_i$			
		= y	<i>≠ y</i>	
				Positive predictive value, Precision
$R_y(x_i)$	1	True positive (TP)	False positive (FP)	$\frac{TP}{TP + FP}$
	0	False negative (FN)	True negative (TN)	
		True positive rate, Recall	False positive rate	Accuracy
		$\frac{TP}{TP + FN}$	$\frac{FP}{FP+TN}$	$\frac{TP + TN}{TP + FP + TN + FN}$

$$\textbf{\textit{F}}_{\textbf{1}} \textbf{\textit{score}} = \frac{2}{\frac{1}{recall} + \frac{1}{precision}} = 2 \frac{precision * recall}{precision + recall} = \frac{2TP}{2TP + FP + FN}$$

		y_i		
		= y	<i>≠ y</i>	
	4	O (TD)	0 (50)	Positive predictive value, Precision
$R_y(x_i)$	1	O (TP)	O (FP)	0%
	0	50 (FN)	950 (TN)	
		True positive rate, Recall	False positive rate	Accuracy
		0%	0%	95%

		y_i		
		= y	$\neq y$	
				Positive predictive value, Precision
	1	50 (TP)	950 (FP)	
$R_y(x_i)$				5%
	0	0 (FN)	0 (TN)	
		True positive rate, Recall	False positive rate	Accuracy
		100%	100%	5%

		y_i		
		= y	<i>≠ y</i>	
				Positive predictive value, Precision
	1	25 (TP)	475 (FP)	
$R_y(x_i)$				5%
	0	25 (FN)	475 (TN)	
		True positive rate, Recall	False positive rate	Accuracy
		50%	50%	50%

ROC (Receiver Operating Characteristic)

ROC (Receiver Operating Characteristic)

AUC – Area Under the ROC Curve

Отбор и генерация правил Генетический алгоритм

Деревья решений

Оценки логических закономерностей

Information Gain (критерий информационного выигрыша):

$$IG(R) = H(X) - \frac{|R^1|}{|X|}H(R^1) - \frac{|R^0|}{|X|}H(R^0)$$

$$H(X) = -\sum_{y \in Y} \frac{|x_i: y_i = y|}{|X|} \times \log_2 \frac{|x_i: y_i = y|}{|X|}$$
 — энтропия

Gini impurity (критерий Джини)

$$I_g(X) = \sum_{y \in Y: \frac{|x_i:y_i=y|}{X}} \frac{|x_i:y_i=y|}{X}$$

Вероятность того, что мы ошибемся, если будем элементам из множества приписывать класс согласно распределению классов в множестве.

Алгоритмы ID3 и C4.5 (Iterative Dichotomizer 3 и C4.5)

Автор: John Ross Quinlan

- 1. Если все объекты лежат в одном классе —> вернуть лист с этим классом.
- 2. Найти правило с лучшим нормализованным информационным выигрышем или по Джини.
- 3. Правила с информационным выигрышем нет —> вернуть лист с мажоритарным классом.
- 4. Разделить по этому правилу объекты.
- 5. Вызвать 1. для каждого листа, на который разделены объекты.

Алгоритм CART (Classification and Regression Trees)

Дисперсия:

$$V(X) = \frac{1}{|X|^2} \sum_{x_i \in X} \sum_{x_j \in X} \frac{1}{2} (y_i - y_j)^2$$

Пример работы

Decision surface of a decision tree using paired features

Regularization and Train\Test

Выделим долю точек ($\approx 10-20\%$) в отдельную выборку - Test.

Обучать будем на оставшихся – Train.

По метрике на Test можно оптимизировать параметры модели (дерева), например – максимальную глубину.

Oblivious Decision Trees (Небрежные решающие деревья)

На одном уровне – одинаковые признаки.

(G)lucose level(A)ge(H)ypertension

(P)regnancy

Oblivious Decision Trees (Небрежные решающие деревья)

На одном уровне – одинаковые признаки.

(G)lucose level

(A)ge

(H)ypertension

(P)regnancy

MatrixNet (Yandex) – Oblivious Decision Trees, где правило для разделения тоже одинаковое на каждом уровне. В этом случае порядок правил не важен и оценку и удаление признаков легко организовать.

Random Forests (Случайные леса)

Обучим много деревьев на «случайных данных»

Случайные данные:

1) Датасеты с помощью bagging (bootstrap aggregating) — вытаскиваем из исходного датасета столько же данных, но с повторениями.

2) Берем случайное подмножество признаков.

Результат – голосование, вероятность, логарифм вероятностей.

Параметры – количество используемых примеров и признаков для построения каждого дерева.

Немножко истории статистики

Sampling Случайная выборка

Jackknife resampling (John Tukey, 1958)

Выкидываем поочередно по одному примеру

«like a Boy Scout's jackknife, it is a "rough and ready" tool that can solve a variety of problems even though specific problems may be more efficiently solved with a purpose-designed tool»

Bootstrapping (Bootstrap resampling) (Bradley Efron, 1979) «to pull oneself up by one's bootstraps»

Набираем выборку того же размера с повторениями из исходной

Bagging (**B**ootstrap **AGG**regat**ING**) (Leo Breiman, 1994)

Используем разные bootstrap* выборки для обучения