Thinking in Frequency

Slides adapted from James Hays, Derek Hoiem, Alyosha Efros, and Steven Lehar

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Slide: Hoiem

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

RGB image:

1 byte / sub-pixel

3 sub-pixels / pixel

* 4M pixels

12M bytes

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can rewritten as a weighted sum sines and cosines of different frequencies.

• Don't believe it?

- Neither did Lagrange,
 Laplace, Poisson and
 other big wigs
- Not translated into English until 1878!
- But it's (mostly) true!
 - called Fourier Series
 - there are some subtle restrictions

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

• example : $g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t)$

Our building block:

$$A\sin(\omega x + \phi)$$

Add enough of them to get any signal f(x) you want!

Slides: Efros

$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt)$$

Fourier analysis in images

 We can also think of all kinds of other signals the same way

Frequency <-> Spatial

Frequency <-> Spatial

Brightness Image Fourier Transform Inverse Transformed

Low-Pass Filtered Inverse Transformed

Frequency <-> Spatial

High-Pass Filtered Inverse Transformed

Band-Pass Filtered Inverse Transformed

Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

The Convolution Theorem

 The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$F[g * h] = F[g]F[h]$$

 The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

 Convolution in spatial domain is equivalent to multiplication in frequency domain!

Properties of Fourier Transforms

• Linearity $\mathcal{F}[ax(t) + by(t)] = a\mathcal{F}[x(t)] + b\mathcal{F}[y(t)]$

 Fourier transform of a real signal is symmetric about the origin

- Can be computed efficiently
 - Fast Fourier Transform (FFT): O (N log N)

Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

Filtering in frequency domain **FFT** log fft magnitude **FFT** Inverse FFT Slide: Hoiem

FFT in Matlab

Filtering with fft

```
im = double(imread('...'))/255;
im = rgb2gray(im); % "im" should be a gray-scale floating point image
[imh, imw] = size(im);
hs = 50; % filter half-size
fil = fspecial('qaussian', hs*2+1, 10);
fftsize = 1024; % should be order of 2 (for speed) and include padding
im_fft = fft2(im, fftsize, fftsize);
                                                           % 1) fft im with padding
fil fft = fft2(fil, fftsize, fftsize);
                                                           % 2) fft fil, pad to same size as
image
                                                           % 3) multiply fft images
im fil fft = im fft .* fil fft;
im fil = ifft2(im fil fft);
                                                           % 4) inverse fft2
im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding
```

Displaying with fft

```
figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap jet
```

Slide: Hoiem

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian

Box Filter

Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image

Aliasing problem

1D example (sinewave):

Aliasing problem

• 1D example (sinewave):

Aliasing problem

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
 - "Wagon wheels rolling the wrong way in movies"
 - "Checkerboards disintegrate in ray tracing"

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing in graphics

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{max}$
- f_{max} = max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

Anti-aliasing

Solutions:

Sample more often

- Get rid of all frequencies that are greater than half the new sampling frequency
 - Will lose information
 - But it's better than aliasing
 - Apply a smoothing filter

Algorithm for downsampling by factor of 2

- 1. Start with image(h, w)
- 2. Apply low-pass filter
 im_blur = imfilter(image, fspecial('gaussian', 7, 1))
- 3. Sample every other pixel
 im_small = im_blur(1:2:end, 1:2:end);

Subsampling without pre-filtering

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain
 - Fourier analysis
- Can be faster to filter using FFT for large images (N logN vs. N² for autocorrelation)
- Images are mostly smooth
 - Basis for compression
- Remember to low-pass before sampling

Practice question

1. Match the spatial domain image to the Fourier magnitude image

Next class

Template matching

Image Pyramids

Filter banks and texture

Denoising, Compression