PS2 Solutions

Jingle Fu

Solution (a).

- The dataset (GMdata.dta) contains firm-level panel data for the years 1973, 1978, 1983, and 1988.
- Key variables include ldsal, lemp, and ldnpt among others.
- After loading the data, initial inspection confirms there are 2,971 firm-year observations.

```
use GMdata.dta, clear
tabstat ldsal lemp ldnpt, statistics(mean median sd min max p5 p95) by(
    yr)

graph box ldsal, over(yr) title("Boxplot of ldsal by Year")
graph export "boxplot_ldsal.png", replace

graph box lemp, over(yr) title("Boxplot of lemp by Year")
graph export "boxplot_lemp.png", replace

graph box ldnpt, over(yr) title("Boxplot of ldnpt by Year")
graph export "boxplot_lemp.png", replace
```

• Summary Statistics by Year: For each year, detailed summaries (mean, median, standard deviation, minimum, maximum, 5th percentile, and 95th percentile) are computed for ldsal, lemp, and ldnpt.

• Findings:

- 1973: Average log-sales around 6.00, with a median of 5.91; labor and capital show relatively high values.
- 1978: A slight dip is observed in log-sales, and both labor and capital statistics indicate a reduction.
- 1983: Similar levels to 1978 with very low values at the 5th percentile for capital.

- 1988: A modest rebound in log-sales is observed along with a continuation of the decline in typical labor and capital values, although high outliers emerge.

- Box Plots: Side-by-side box plots for each variable across the years reveal:
 - For ldsal: Median sales dip in the late 1970s and early 1980s then rise by 1988, with an increasing number of high-value outliers.
 - For lemp: A downward trend in median employment, indicating that the typical firm employs fewer workers in later years.
 - For ldnpt: A similar downward drift in capital, with consistent high-capital outliers.
- Conclusion: There is no clear monotonic trend in output; however, the distributions of labor and capital suggest a shift towards smaller firms in later years, while a few firms experienced very high sales by 1988.

Solution (b).

1,186 firms are dropped when constructing a balanced panel.

```
egen tag = tag(index)
count if tag == 1

local total_firms = r(N)
display "Total number of firms in the unbalanced panel: " `total_firms'

bysort index: egen n_obs = count(yr)

list index n_obs if n_obs < 4, sepby(index)

keep if n_obs == 4

legen tag_bal = tag(index)
count if tag_bal == 1
local balanced_firms = r(N)
display "Number of firms in the balanced panel: " `balanced_firms'

local lost_firms = `total_firms' - `balanced_firms'

display "Number of firms dropped when creating a balanced panel: " `
lost_firms'</pre>
```

Solution (c).

Consider the panel data model

$$ldsal_{it} = \alpha_i + \beta_1 lemp_{it} + \beta_2 ldnpt_{it} + u_{it}, \quad i = 1, \dots, N, \ t = 1, \dots, T,$$

where α_i is an unobserved firm-specific effect and u_{it} is an idiosyncratic error term. In the random effects (RE) framework, α_i is treated as a random variable that is uncorrelated with the regressors lemp_{it} and ldnpt_{it}.

1. Model Reformulation

Define the composite error term as

$$\varepsilon_{it} = \alpha_i + u_{it} - \beta_0.$$

Thus, the model can be rewritten as

$$dsal_{it} = \beta_0 + \beta_1 lemp_{it} + \beta_2 dnpt_{it} + \varepsilon_{it}$$

with β_0 being an overall intercept (if included).

2. Error Structure

Under RE, the variance of the composite error is:

$$Var(\varepsilon_{it}) = \sigma_{\alpha}^2 + \sigma_{u}^2,$$

and for two different time periods $t \neq s$ for the same firm, the covariance is:

$$Cov(\varepsilon_{it}, \varepsilon_{is}) = \sigma_{\alpha}^2$$
.

This intra-firm correlation suggests the use of Generalized Least Squares (GLS).

3. Quasi-Demeaning Transformation

To account for the correlation in the error structure, a quasi-demeaning transformation is applied. For each firm i, define the time averages:

$$\bar{y}_i = \frac{1}{T} \sum_{t=1}^{T} \text{ldsal}_{it}, \quad \bar{x}_i = \frac{1}{T} \sum_{t=1}^{T} x_{it},$$

where x_{it} represents each regressor (i.e., lemp_{it} and ldnpt_{it}).

The transformed variables are:

$$y_{it}^* = \mathrm{ldsal}_{it} - \theta \, \bar{y}_i, \quad x_{it}^* = x_{it} - \theta \, \bar{x}_i,$$

with the transformation parameter θ defined as:

$$\theta = 1 - \sqrt{\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_\alpha^2}}.$$

After this transformation, the model becomes:

$$y_{it}^* = \beta_0(1 - \theta) + \beta_1 \operatorname{lemp}_{it}^* + \beta_2 \operatorname{ldnpt}_{it}^* + \varepsilon_{it}^*.$$

Applying ordinary least squares (OLS) to the transformed model yields the RE estimator:

$$\hat{\beta}_{RE} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}^* x_{it}^{*\prime}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}^* y_{it}^*\right).$$

4. Assumptions for Consistency

For the RE estimator to be consistent, the following assumptions must hold:

1. Exogeneity:

$$E[u_{it} \mid \text{lemp}_{i1}, \text{ldnpt}_{i1}, \dots, \text{lemp}_{iT}, \text{ldnpt}_{iT}, \alpha_i] = 0.$$

Equivalently, the regressors are uncorrelated with both the idiosyncratic error u_{it} and the individual effect α_i .

2. Independence of Individual Effects and Regressors:

$$E\left[\alpha_i \mid \text{lemp}_{it}, \text{ldnpt}_{it}\right] = 0$$
 for all t .

- 3. Homoskedasticity and No Serial Correlation: The idiosyncratic errors u_{it} are assumed to be homoskedastic and serially uncorrelated (conditional on α_i).
- 4. **Correct Specification:** The model is correctly specified with no omitted variables that are correlated with the regressors.

5. Discussion

In many empirical applications such as in production function estimation (e.g., Griliches and Mairesse, 1995), the assumption that α_i is uncorrelated with the inputs might be unrealistic. If there exists correlation between α_i and the regressors, the RE estimator will be inconsistent, and alternative methods like the Fixed Effects estimator should be considered.

- The RE estimator is obtained by running a pooled OLS regression where the firm-specific effect α_i is absorbed into the error term.
- Results (balanced panel):
 - $-\beta_1$ (Labor elasticity): about 0.509.
 - $-\beta_2$ (Capital elasticity): about 0.484.
- Interpretation: A 1% increase in labor is associated with a 0.5087% increase in sales, and a 1% increase in capital with a 0.4839% increase in sales. The sum (approximately 0.989) is close to constant returns.

Table 1: Question (c)	: Rando	om Effec	ets Estii	mator
	(-	1)	(2	2)
	RE		RE Robust	
	b	se	b	se
log of employment	0.509	0.037	0.509	0.041
log of deflated capital	0.484	0.029	0.484	0.035
Observations	856		856	

• Assumptions: Consistency requires that the unobserved firm effect α_i is uncorrelated with both lemp and ldnpt. This is likely violated since more productive firms may choose different input levels.

```
1 xtset index yr
3 xtreg ldsal lemp ldnpt, re
4 xtreg ldsal lemp ldnpt, re vce(robust)
```

Solution (d).

To eliminate the unobserved firm-specific effect α_i , we apply the within (time-demeaning) transformation. Define the time averages for each firm i as:

$$\bar{y}_i = \frac{1}{T} \sum_{t=1}^{T} \text{ldsal}_{it}, \quad \bar{x}_{i1} = \frac{1}{T} \sum_{t=1}^{T} \text{lemp}_{it}, \quad \bar{x}_{i2} = \frac{1}{T} \sum_{t=1}^{T} \text{ldnpt}_{it},$$

and

$$\bar{u}_i = \frac{1}{T} \sum_{t=1}^T u_{it}.$$

Subtracting these averages from the original model gives:

$$\operatorname{ldsal}_{it} - \bar{y}_i = \beta_1 \left(\operatorname{lemp}_{it} - \bar{x}_{i1} \right) + \beta_2 \left(\operatorname{ldnpt}_{it} - \bar{x}_{i2} \right) + \left(u_{it} - \bar{u}_i \right).$$

Let the demeaned variables be:

$$\tilde{y}_{it} = \text{ldsal}_{it} - \bar{y}_i$$
, $\tilde{\text{lemp}}_{it} = \text{lemp}_{it} - \bar{x}_{i1}$, $\tilde{\text{ldnpt}}_{it} = \text{ldnpt}_{it} - \bar{x}_{i2}$,

and

$$\tilde{u}_{it} = u_{it} - \bar{u}_i.$$

Thus, the transformed model is:

$$\tilde{y}_{it} = \tilde{\beta}_1 \tilde{\text{lemp}}_{it} + \tilde{\beta}_2 \tilde{\text{ldnpt}}_{it} + \tilde{u}_{it}.$$

The FE within estimator is obtained by applying Ordinary Least Squares (OLS) to the

demeaned model:

$$\hat{\beta}_{FE} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{y}_{it}\right),$$

where
$$\tilde{x}_{it} = \begin{pmatrix} \tilde{\text{lemp}}_{it} \\ \tilde{\text{ldnpt}}_{it} \end{pmatrix}$$
.

Assumptions for Consistency

For the FE estimator to be consistent, the following assumptions must hold:

1. Strict Exogeneity:

$$E(u_{it} \mid \text{lemp}_{i1}, \text{ldnpt}_{i1}, \dots, \text{lemp}_{iT}, \text{ldnpt}_{iT}, \alpha_i) = 0$$
 for all t .

- 2. No Perfect Collinearity: The demeaned regressors $lemp_{it}$ and $ldnpt_{it}$ are not perfectly collinear.
- 3. Large Number of Cross-Sections: Consistency is achieved as $N \to \infty$ while T remains fixed.

Under these conditions, the FE estimator is consistent even if the individual effects α_i are correlated with the regressors in the original model.

- The FE-W estimator is computed by demeaning the data to remove the firm-specific effect α_i .
- Results (balanced panel):

Table 2: Question (d): Fixed Effects (Within) Estimator

(1)		(2)	
$\overline{\mathrm{FE}}$		FE Robust	
b	se	b	se
.765	0.062	0.765	0.079
.408	0.047	0.408	0.060
856		856	
	Fl b .765 .408	FE se .765 0.062 .408 0.047	FÉ FE R b se b .765 0.062 0.765 .408 0.047 0.408

- $-\beta_1$: approximately 0.765.
- $-\beta_2$: approximately 0.408.
- Interpretation: Within a firm, a 1% increase in labor results in about a 0.765% increase in sales, and a 1% increase in capital results in about a 0.408% increase in sales. The sum (approximately 1.17) suggests increasing returns to scale in the within-firm variation.

• Assumptions: Requires strict exogeneity of the error term (i.e., no feedback from shocks to future inputs) after controlling for α_i . Although more realistic than RE, this condition may still be violated in practice.

```
xtreg ldsal lemp ldnpt, fe
xtreg ldsal lemp ldnpt, fe vce(robust)
```

Solution (e).

To eliminate the unobserved firm-specific effect α_i , we take first differences. For $t \geq 2$, define the first-differenced variables as:

$$\Delta ldsal_{it} = ldsal_{it} - ldsal_{i,t-1},$$

$$\Delta lemp_{it} = lemp_{it} - lemp_{i,t-1}, \quad \Delta ldnpt_{it} = ldnpt_{it} - ldnpt_{i,t-1},$$

$$\Delta u_{it} = u_{it} - u_{i,t-1}.$$

Then, the differenced model is given by:

$$\Delta ldsal_{it} = \beta_1 \Delta lemp_{it} + \beta_2 \Delta ldnpt_{it} + \Delta u_{it}.$$

Denote $\Delta y_{it} = \Delta \mathrm{ldsal}_{it}$ and

$$\Delta x_{it} = \begin{pmatrix} \Delta \text{lemp}_{it} \\ \Delta \text{ldnpt}_{it} \end{pmatrix}.$$

The FE First Difference estimator is then:

$$\hat{\beta}_{FD} = \left(\sum_{i=1}^{N} \sum_{t=2}^{T} \Delta x_{it} \, \Delta x'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=2}^{T} \Delta x_{it} \, \Delta y_{it}\right).$$

For $\hat{\beta}_{FD}$ to be consistent, the following assumptions are required:

1. Strict Exogeneity in Differences:

$$E\left(\Delta u_{it} \mid \Delta x_{i1}, \Delta x_{i2}, \dots, \Delta x_{iT}\right) = 0$$
 for all t .

- 2. No Perfect Collinearity: The differenced regressors must not be perfectly collinear.
- 3. Large Number of Cross-Sections: The estimator is consistent as $N \to \infty$ while T remains fixed.
- The FE-FD estimator is obtained by differencing consecutive observations, eliminating α_i .
- Results (balanced panel):

	(1)		(2)		
	D_ldsal		D_ldsal		
	b	se	b	se	
D_lemp	0.928	0.056	0.928	0.066	
D_ldnpt	0.003	0.040	0.003	0.046	
Observations	642		642		

Table 3: Question (e): Fixed Effects (FD) Estimator

- $-\beta_1$: approximately 0.928.
- β_2 : approximately 0.003.
- Interpretation: Year-to-year changes indicate that a 1% increase in labor is associated with about a 0.928% increase in sales, while a 1% increase in capital is associated with only a 0.003% increase. The large difference in capital elasticity compared to the FE-W estimator may suggest that capital adjustments have a slower or more complex dynamic in the short-run.
- Assumptions: Consistency depends on the absence of serial correlation in the errors and that changes in inputs are not influenced by past shocks.

```
use "GMdata_balanced.dta", clear
sort index yr

by index: gen D_ldsal = ldsal - ldsal[_n-1]
by index: gen D_lemp = lemp - lemp[_n-1]
by index: gen D_ldnpt = ldnpt - ldnpt[_n-1]

by index: drop if _n==1

reg D_ldsal D_lemp D_ldnpt, robust
eststo fd_robust

reg D_ldsal D_lemp D_ldnpt, vce(cluster index)
eststo fd_robust_cluster

esttab fd_robust fd_robust_cluster using question_e.tex, replace label
    booktabs title("Question (e): Fixed Effects (FD) Estimator") ///
    cells("b(fmt(3)) se(fmt(3))") keep(D_lemp D_ldnpt)
```

Solution (f).

Define the time-demeaned variables as:

$$\tilde{y}_{it} = y_{it} - \bar{y}_i, \quad \tilde{x}_{it} = x_{it} - \bar{x}_i,$$

with

$$\bar{y}_i = \frac{1}{T} \sum_{t=1}^{T} y_{it}, \quad \bar{x}_i = \frac{1}{T} \sum_{t=1}^{T} x_{it}.$$

Then the transformed model becomes:

$$\tilde{y}_{it} = \tilde{x}'_{it}\beta + \tilde{u}_{it}$$
, where $\tilde{u}_{it} = u_{it} - \bar{u}_{i}$.

The Fixed Effects (FE) estimator is given by:

$$\hat{\beta}_{FE} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{y}_{it}\right).$$

Since $\tilde{y}_{it} = \tilde{x}'_{it}\beta + \tilde{u}_{it}$, we have:

$$\hat{\beta}_{FE} - \beta = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{u}_{it}\right).$$

Under standard regularity conditions, and with T fixed and $N \to \infty$, it holds that:

$$\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it} \stackrel{p}{\to} Q,$$

and

$$\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{u}_{it} \stackrel{d}{\to} N(0, \Sigma),$$

where

$$Q = E\left[\frac{1}{T} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right],$$

and

$$\Sigma = \operatorname{Var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{u}_{it}\right).$$

Hence, by Slutsky's theorem,

$$\sqrt{N}(\hat{\beta}_{FE} - \beta) = \left(\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{u}_{it}\right)$$

converges in distribution to:

$$\sqrt{N}(\hat{\beta}_{FE} - \beta) \stackrel{d}{\to} N(0, Q^{-1}\Sigma Q^{-1}).$$

Solution (g).

Recall from the asymptotic distribution of the FE estimator that

$$\sqrt{N}(\hat{\beta}_{FE} - \beta) \xrightarrow{d} N(0, Q^{-1}\Sigma Q^{-1}),$$

where

$$Q = \lim_{N \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}, \quad \Sigma = \lim_{N \to \infty} \operatorname{Var} \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{u}_{it} \right).$$

An estimator for the asymptotic variance of $\hat{\beta}_{FE}$ is given by:

$$\widehat{\text{Var}}(\hat{\beta}_{FE}) = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it} \hat{u}_{it}^{2}\right) \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1},$$

where \hat{u}_{it} are the residuals from the FE regression. Consequently, the standard error for the jth coefficient is given by:

$$\operatorname{se}(\hat{\beta}_j) = \sqrt{\left[\widehat{\operatorname{Var}}(\hat{\beta}_{FE})\right]_{jj}}.$$

This robust variance estimator is used in empirical software to report standard errors that are consistent even under heteroscedasticity and autocorrelation of the error term.

• The robust (clustered) standard errors are computed using the formula

$$\hat{V} = \widehat{Q}^{-1}\widehat{\Sigma}\,\widehat{Q}^{-1},$$

where
$$\widehat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} X_i^{*'} \widehat{u}_i \widehat{u}_i' X_i^*$$
.

- With the balanced panel, the estimated standard errors are approximately:
 - $-\operatorname{SE}(\hat{\beta}_1) \approx 0.079,$
 - $-\operatorname{SE}(\hat{\beta}_2) \approx 0.060.$

Table 4: Question (g): FE Regression with Robust SE

	(1)		
	log of deflated sales		
	b	se	
log of employment	0.765	0.079	
log of deflated capital	0.408	0.060	
Observations	856		

• These values indicate high statistical significance of the estimated coefficients.

xtreg ldsal lemp ldnpt, fe robust

Solution (h).

Consider a balanced panel with N firms and T time periods per firm. The Fixed Effects (FE) estimator is obtained by first demeaning the data:

$$\tilde{y}_{it} = y_{it} - \bar{y}_i, \quad \tilde{x}_{it} = x_{it} - \bar{x}_i,$$

where

$$\bar{y}_i = \frac{1}{T} \sum_{t=1}^{T} y_{it}, \quad \bar{x}_i = \frac{1}{T} \sum_{t=1}^{T} x_{it}.$$

The FE estimator is then given by

$$\hat{\beta} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{y}_{it}\right).$$

To account for within-firm correlation and obtain robust standard error estimates, we employ a clustered bootstrap procedure as follows:

- 1. **Resampling:** For b = 1, ..., B (with B = 1000), draw a bootstrap sample by resampling N firms with replacement from the original sample. For each selected firm, include all T observations.
- 2. **Estimation:** Compute the FE estimator on the bootstrap sample to obtain $\hat{\beta}^{*(b)}$.
- 3. Variance Estimation: The bootstrap estimator for the variance of $\hat{\beta}$ is

$$\widehat{\mathrm{Var}}_{\mathrm{boot}}(\hat{\beta}) = \frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\beta}^{*(b)} - \bar{\hat{\beta}}^{*} \right) \left(\hat{\beta}^{*(b)} - \bar{\hat{\beta}}^{*} \right)',$$

where

$$\bar{\hat{\beta}}^* = \frac{1}{B} \sum_{b=1}^{B} \hat{\beta}^{*(b)}.$$

4. **Standard Errors:** The standard error for the jth coefficient is

$$\operatorname{se}(\hat{\beta}_j) = \sqrt{\left[\widehat{\operatorname{Var}}_{\operatorname{boot}}(\hat{\beta})\right]_{jj}}.$$

This clustered bootstrap procedure yields standard error estimates that are robust to within-cluster (firm) correlation.

- The clustered bootstrap resamples firms (clusters) with replacement, preserving the panel structure.
- With B=1000 bootstrap replications, the bootstrap standard errors are found to be:

Table 5: Question (h): FE Bootstrap Estimates (Manual)

(1)

	b	se
_bs_1	0.765	0.080
_bs_2	0.408	0.060
Observations	856	

- $-\operatorname{SE}(\hat{\beta}_1) \approx 0.080,$
- $-\operatorname{SE}(\hat{\beta}_2) \approx 0.060.$
- The bootstrap results confirm the accuracy of the analytical cluster-robust standard errors.

```
use "GMdata_balanced.dta", clear
  program define fe_est, rclass
      preserve
      bysort index: egen ymean = mean(ldsal)
      bysort index: egen x1mean = mean(lemp)
      bysort index: egen x2mean = mean(ldnpt)
      gen yd = ldsal - ymean
      gen x1d = lemp - x1mean
      gen x2d = ldnpt - x2mean
11
      quietly regress yd x1d x2d, noconstant
      return scalar b1 = _b[x1d]
      return scalar b2 = _b[x2d]
      restore
17 end
19 bootstrap r(b1) r(b2), reps(1000) cluster(index) nodots: fe_est
```

Solution (i).

Consider the panel data model:

$$y_{it} = \alpha_i + x'_{it}\beta + u_{it}, \quad i = 1, \dots, N, \ t \in \mathcal{T}_i,$$

where \mathcal{T}_i denotes the set of time periods for which firm i is observed and $T_i = |\mathcal{T}_i|$. For each firm i, define the time averages based on the available observations:

$$\bar{y}_i = \frac{1}{T_i} \sum_{t \in \mathcal{T}_i} y_{it}, \quad \bar{x}_i = \frac{1}{T_i} \sum_{t \in \mathcal{T}_i} x_{it}.$$

The within (demeaning) transformation yields:

$$\tilde{y}_{it} = y_{it} - \bar{y}_i, \quad \tilde{x}_{it} = x_{it} - \bar{x}_i, \quad t \in \mathcal{T}_i.$$

The transformed model is:

$$\tilde{y}_{it} = \tilde{x}'_{it}\beta + \tilde{u}_{it}$$
, with $\tilde{u}_{it} = u_{it} - \bar{u}_i$,

and

$$\bar{u}_i = \frac{1}{T_i} \sum_{t \in \mathcal{T}_i} u_{it}.$$

The Fixed Effects (FE) estimator is then given by:

$$\hat{\beta}_{FE} = \left(\sum_{i=1}^{N} \sum_{t \in \mathcal{T}_i} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t \in \mathcal{T}_i} \tilde{x}_{it} \tilde{y}_{it}\right).$$

Under standard assumptions (strict exogeneity, no perfect collinearity, etc.), $\hat{\beta}_{FE}$ is consistent for β even when the panel is unbalanced.

- The full dataset (unbalanced panel) is used to re-estimate the FE model.
- Results (unbalanced panel):

Table 6: Question (i): FE Estimator on Unbalanced Panel

	(.	1)	(4	2)
	FE		FE Robust	
	b	se	b	se
log of employment	0.753	0.035	0.753	0.061
log of deflated capital	0.311	0.026	0.311	0.037
Observations	2971		2971	

- $-\beta_1 \approx 0.753$ with a clustered standard error of about 0.061.
- $-\beta_2 \approx 0.311$ with a clustered standard error of about 0.037.
- Interpretation: Compared to the balanced panel, the labor coefficient is similar, but the capital coefficient is lower. This may reflect sample selection effects; firms with incomplete data (often newer or smaller firms) exhibit lower capital productivity.

```
use "GMdata.dta", clear

xtset index yr
```

```
4 xtreg ldsal lemp ldnpt, fe
5
6 xtreg ldsal lemp ldnpt, fe vce(robust)
```

Solution (j).

Let $\hat{\beta}_{FE}$ be the Fixed Effects (FE) estimator obtained from the original panel data model:

$$y_{it} = \alpha_i + x'_{it}\beta + u_{it}, \quad i = 1, \dots, N, \ t \in \mathcal{T}_i.$$

For each firm i, define the time-demeaned variables as:

$$\tilde{y}_{it} = y_{it} - \bar{y}_i, \quad \tilde{x}_{it} = x_{it} - \bar{x}_i,$$

with

$$\bar{y}_i = \frac{1}{T_i} \sum_{t \in \mathcal{T}_i} y_{it}, \quad \bar{x}_i = \frac{1}{T_i} \sum_{t \in \mathcal{T}_i} x_{it}.$$

The FE estimator is then given by:

$$\hat{\beta}_{FE} = \left(\sum_{i=1}^{N} \sum_{t \in \mathcal{T}_i} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t \in \mathcal{T}_i} \tilde{x}_{it} \tilde{y}_{it}\right).$$

To account for within-firm correlation, we use a clustered bootstrap procedure:

- 1. **Resampling:** For b = 1, ..., B (with B = 1000), draw a bootstrap sample by sampling N firms with replacement from the original data. For each selected firm, include all T_i observations.
- 2. **Estimation:** Compute the FE estimator on the *b*th bootstrap sample to obtain $\hat{\beta}_{FE}^{*(b)}$.
- 3. Bootstrap Variance: The variance of $\hat{\beta}_{FE}$ is estimated by

$$\widehat{\mathrm{Var}}_{\mathrm{boot}}(\hat{\beta}_{FE}) = \frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{\beta}_{FE}^{*(b)} - \bar{\hat{\beta}}^* \right) \left(\hat{\beta}_{FE}^{*(b)} - \bar{\hat{\beta}}^* \right)',$$

where

$$\bar{\hat{\beta}}^* = \frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{FE}^{*(b)}.$$

4. Standard Errors: The standard error for the jth coefficient is given by

$$\operatorname{se}(\hat{\beta}_j) = \sqrt{\left[\widehat{\operatorname{Var}}_{\operatorname{boot}}(\hat{\beta}_{FE})\right]_{jj}}.$$

This clustered bootstrap method provides standard error estimates that are robust to intra-cluster (firm-level) correlation.

Table 7: Question (j): FE Bootstrap on Unbalanced Panel (Manual)
(1)

h

	b	se
_bs_1	0.753	0.058
_bs_2	0.311	0.037
Observations	2971	

- The clustered bootstrap is also applied to the unbalanced panel.
- With B = 1000 replications, the bootstrapped standard errors are approximately:
 - $-\operatorname{SE}(\hat{\beta}_1) \approx 0.058,$
 - $-\operatorname{SE}(\hat{\beta}_2) \approx 0.037.$
- These values closely match the analytical robust standard errors, reinforcing the robustness of our estimates.

```
use "GMdata.dta", clear
2 xtset index yr
4 program define fe_est2, rclass
      preserve
      bysort index: egen ymean2 = mean(ldsal)
      bysort index: egen x1mean2 = mean(lemp)
      bysort index: egen x2mean2 = mean(ldnpt)
      gen yd2 = ldsal - ymean2
      gen x1d2 = lemp - x1mean2
11
      gen x2d2 = 1dnpt - x2mean2
12
13
      quietly regress yd2 x1d2 x2d2, noconstant
14
      return scalar b1 = _b[x1d2]
15
      return scalar b2 = _b[x2d2]
      restore
17
18 end
20 bootstrap r(b1) r(b2), reps(1000) cluster(index) nodots: fe_est2
```