REDES DE FILAS DE ESPERA (POISSONIANAS)

Sumário

Definição de redes de Jackson (filas Poissonianas)

 Equações de cálculo das taxas de chegada (internas)

Exemplos

Sistema c/ fila de espera simples

- 1. Os clientes podem ser pessoas, produtos, veículos, máquinas, tarefas, etc...
- 2. A fila de espera pode ser algo diferente de uma "linha" observável: ex, sistema semi-automático de senhas para atendimento, documentos à espera de serem impressos, aviões a circular em redor do aeroporto, etc...

Sistema c/ filas em rede

Em variadíssimas situações, um cliente tem de passar por um conjunto de filas organizadas de acordo com uma estrutura em rede.

Rede de filas de Jackson

- 1. Todas as chegadas do exterior, a qualquer um dos serviços da rede, são processos Poissonianos.
- 2. Todos os tempos de serviço são exponenciais.
- 3. Todas as filas têm capacidade ilimitada.
- 4. Quando um cliente sai de um serviço, a probabilidade de o mesmo se dirigir a outro serviço é independente da sua trajectória histórica e é independente da presença/localização de qualquer outro cliente.

Essencialmente, uma rede de Jackson consiste num conjunto de filas interligadas do tipo M/M/S, com parâmetros conhecidos

Teorema de Jackson

- 1. Cada nodo constitui uma fila de espera independente, Poissoniana, com uma taxa de chegadas determinada pelas saídas possíveis das filas que nele desembocam.
- 2. Cada nodo pode ser analisado isoladamente por um modelo de um dos tipos: M/M/1 ou M/M/S.
- 3. As médias dos tempos de espera (atrasos) nos diversos nodos pode ser somada para determinar a **média global do tempo de espera na rede**.

Determinação das taxas de chegadas

Notação:

 γ_i = taxa de chegada externa ao serviço i = 1, . . . , m ϕ_{ki} = probabilidade de ir do serviço k para i, na rede λ_i = taxa de chegada total (líquida) ao serviço i

No "estado" ou fase estacionária do processo, deve prevalecer o seguinte balanço de fluxos em cada um dos serviços:

$$\lambda_i = \gamma_i + \sum_{k=1}^m \phi_{ki} \lambda_k \qquad (i = 1, \dots, m)$$

Exemplos típicos

Partição de fluxos

Série de fluxos uniformes

Exemplo: rede com 2 estágios

A cada serviço corresponde uma fila *M/M/*S

Matriz de transição

Propriedade 1:

Seja Φ a matriz de probabilidades $(m \times m)$ que descreve as transições internas possíveis na rede de Jackson, e seja γ_i a taxa média de chegadas ao serviço i diretamente provenientes do exterior da rede. Então:

$$\lambda = \gamma (\mathbf{I} - \mathbf{\Phi})^{-1}$$

onde $\gamma = (\gamma_1, ..., \gamma_m)$; isto é, λ_i representa a taxa líquida de entradas no serviço i.

Obs: Ao contrário da matriz de transição de equilíbrio dos processos Markovianos, aqui as linhas da matriz Φ não têm necessariamente que somar 1, i.e. $\Sigma_i \phi_{ij} \leq 1$

Simplificação da rede de Jackson

Após saber-se a taxa líquida de entradas em cada nodo, a rede pode ser fragmentada: cada nodo será tratado como uma fila de espera simples, Poissoniana e independente.

Propriedade 2:

Considere uma rede de Jackson com m nodos. Seja N_i uma variável aleatória representativa do número de tarefas no nodo i (i.e. número na fila + serviço). Então:

$$\Pr\{N_1 = n_1, ..., N_m = n_m\} = \Pr\{N_1 = n_1\} \times \cdots \times \Pr\{N_m = n_m\}$$

e

 $\Pr\{N_i = n_i\}$ para $(n_i = 0, 1, ...)$ pode ser calculada através das equações do modelo M/M/S.

Exemplo: Centro de Computação (1)

- Um centro de computação possui 3 workstations com: (1) processadores de entrada, (2) central de computadores, e
 (3) um centro de impressão.
- Todas as tarefas submetidas passam primeiro por um dos processadores de entrada ("error checking"), antes de poderem prosseguir para um processador central → 80% prosseguem e 20% são rejeitadas.
- Das tarefas que prosseguem, 40% são enviadas para uma impressora.
- As tarefas chegam aleatoriamente, segundo uma distribuição de Poisson, com uma taxa média de 10/min.
 Para dar resposta aos pedidos, cada serviço deverá ter vários processadores em paralelo.

Exemplo: Centro de Computação (2)

Mediram-se os diversos tempos de serviço, tendo-se chegado à conclusão de que todos eles podem ser estatisticamente representados por distribuições exponenciais com as seguintes médias:

- 10 segundos nos processadores de entrada
- 3 segundos nos processadores centrais
- 70 segundos nos processadores gráficos

Assume-se que as filas têm capacidades ilimitadas.

Pretende-se:

Especificar o sistema como uma rede de Jackson. Determinar o número mínimo de processadores para cada um dos 3 tipos de serviços e estimar o tempo médio requerido para atender cada tarefa.

Cálculo das taxa de chegadas...

Usar a equação geral:

$$\lambda_i = \gamma_i + \sum_{k=1}^m \phi_{ki} \, \lambda_k$$

com
$$m = 3$$
, $\gamma_1 = 10$, $\phi_{12} = 0.8$, $\phi_{23} = 0.4$

Obtêm-se assim:

$$\lambda_1 = 10$$

$$\lambda_2 = 0.8\lambda_1 = 8$$

$$\lambda_3 = 0.4\lambda_2 = 3.2$$

Dados Input/Output

	Input	Central	Output
Taxa chegadas externa, γ_i	10/min	0	0
Taxa chegadas total, λ_i	10/min	8/min	3.2/min
Taxa de serviço, μ_i	6/min	20/min	0.857/min
N^{o} mínino canais, S_{i}	2	1	4
Intensidade de tráfego, ρ_i	0.833	0.400	0.933

Resultados

Medida	Input	Central	Output	Total
Modelo	<i>M/M/</i> 2	<i>M/M/</i> 1	<i>M/M/</i> 4	
L_q	3.788	0.267	12.023	16.077
W_q	0.379	0.033	3.757	4.169
L	5.455	0.667	15.757	21.879
W	0.546	0.083	4.924	5.554

Exemplo de Job Shop

- 3 produtos
- 6 máquinas: A, B, C, D, E e F
- Cada produto requer uma rota diferente
- Dados:

Produto	Taxa	Rota	
1	30/h	ABDF	
2	10/h	ABEF	
3	20/h	ACEF	

Rede de Jackson...

Resultados para o Job Shop

Medida	A	В	С	D	Е	F
γ	60	0	0	0	0	0
μ	25	22	29	11	23	20
S	3	2	1	3	2	4
Modelo	<i>M/M/</i> 3	M/M/2	M/M/1	M/M/3	M/M/2	M/M/4
λ	60	40	20	30	30	60
ρ	0.800	0.909	0.690	0.909	0.652	0.750
L	4.989	10.476	2.222	11.059	2.270	4.528
W	0.083	0.262	0.111	0.369	0.076	0.075
L_q	2.589	8.658	1.533	8.332	0.965	1.528
W_q	0.043	0.216	0.077	0.278	0.032	0.025

Medidas de desempenho do sistema

- Prazo de entrega (lead time) da produção:
 - =Tempo (médio) de permanência no sistema
 - =Soma do tempo gasto em cada sub-sistema M/M/S
- Inventário (stock) work-in-process (WIP):
 - Estimar pela lei de Little, i.e.
 - $-WIP = (prazo de entrega) \times (taxa de pedidos)$
- Questão: poder-se-á obter o WIP através da soma dos valores de L das filas M/M/S?

Desempenho do sistema Job Shop

	Taxa		Lead time	Tempo na fila	WIP
Produto	(/h)	Rota	(h)	(h)	(pedidos)
1	30	ABDF	0.789	0.563	23.67
2	10	ABEF	0.496	0.317	4.96
3	20	ACEF	0.345	0.177	6.91

Os resultados mostram que existe uma acentuada diferença entre os produtos (1 vs. 2 & 3) em termos do prazo de entrega e do WIP. Porquê? (Obs. o produto 1 passa por B e D!).

Outro exemplo: transações HTTP

