7 Page 51

- **3.1** Fix some $n \in N$, We prove the claim $P(m)="n < m \to f_n \prec f_m"$ for all $k \le m$ such that k = n+1, P(k) holds since $n < n+1 \to f_n \prec f_{n+1}$ holds by assumption (has a true consequence). Now assume that for an $m, k \le m$, P(m) holds, thus $k \le m$ and $n < m \to f_n \prec f_m$. assume that n < m+1 then either n < m or n = m, if n < m then by induction hypothesis $f_n \prec f_m$, since $f_m \prec f_{m+1}$ is true by assumption, we get $f_n \prec f_{m+1}$ by transitivity of \prec . if m = n then trivially $f_n \prec f_{n+1} = f_{m+1}$ holds, so we proved if P(m) then $n < m+1 \to f_n \prec f_{m+1}$ which is P(m+1), thus P(m) holds for all $k = n+1 \le m$, since n was arbitrary it holds for all $m, n \in N$.
- **3.2** Let $g: A \times N \to A$ be the function that g(x,n) is the successor of x. Let u be the \prec -least element of A, by recursion theorem there is a function $f: N \to A$ such that $f_0 = u$ and $f_{n+1} = g(f_n, n) = \text{successor}$ of f_n , the function is total since by (a) every element of A has a successor. if p is successor of q then $q \prec p$, thus we have $f_n \prec f_{n+1}$. by previus exercise for every m < n we have $f_n \prec f_m$ thus f is one-to-one. To prove it is onto, assume that there is some $a \in A$ such for no $n \in N$, f(n) = a (not in ranf), let a be the least of them, clearly $a \neq u$ since $f_0 = u$, thus by (c) a is successor of some $q \in A$, because a was the least element that is not in range of f, and because $q \prec a$, q must be in range of f, thus for some $k \in N$, $f_k = q$, but then $f_{k+1} = g(f_k, k) = \text{successor}$ of $f_k = q$ which is a, thus $a \in ranf$, a contradiction.