Lecture 8 Recursion

The Mirrors

Lecture Outline

- Recursion: Basic Idea, Factorial
- Iteration versus Recursion
- How Recursion Works
- Recursion: How to
- More Examples on Recursion
 - Printing a Linked List (in Reverse)
 - Choosing k out of n Items
 - Tower of Hanoi
 - Fibonacci Numbers
 - Binary Search
 - Permute Strings

Recursion: Basic Idea

- The process of solving a problem with a function that calls itself directly or indirectly
 - The solution can be derived from solution of smaller problem of the same type
- Example: Factorial
 - Factorial(4) = 4 * Factorial(3)
- This process can be repeated
 - e.g. Factorial(3) can be solved in term of Factorial(2)
- Eventually, the problem is so simple that it can solve immediately
 - e.g. Factorial(0) = 1
- The solution to the larger problem can then be derived from this ...

Recursion: The Main Ingredients

- To formulate a recursive solution:
 - Identify the "simplest" instance
 - The base case(s) that can be solved without recursion
 - Identify "simpler" instances of the <u>same</u> problem
 - The **recursive case(s)** that requires **recursive** calls to solve them
 - Identify how the solution from the simpler problem can help to construct the final result
 - Be sure we are able to reach the "simplest" instance
 - So that we will not get an infinite recursion

Example: Factorial

Let's write a recursive function factorial(k) that finds k!

Base Case:

- Returns 1 when k = 0
- Corresponding C/C++ code:

```
if (k == 0)
  return 1;
```

Recursive Case:

Returns k * (k-1)!
return k * factorial(k-1);

Example: Factorial (code)

Full code for factorial:

Max k is 20 before it overflows

```
long factorial(int k) {
  if (k == 0)
    return 1;
  else
    return k * factorial(k-1);
}
```

Base Case:

factorial(0) = 1

Recursive Case:

factorial(k) = k * factorial(k-1)

Understanding Recursion

A recursion always goes through two phases:

A wind-up phase:

- When the base case is not satisfied, i.e. function calls itself
- This phase carries on until we reach the base case

An unwind phase:

- The recursively called functions return their values to previous "instances" of the function call
 - i.e. the last function returns to its parent (the 2nd last function), then the 2nd last function returns to the 3rd last function, and so on
- Eventually reaches the very first function, which computes the final value

Factorial: Wind-up Phase

Let's trace the execution of factorial (3) (factorial abbreviated as fact)

```
k is not zero
 fact(3)
                       returns 3 * fact(2)
    k = 3
                                    k is not zero
                fact(2)
                                       returns 2 * fact(1)
                   k = 2
                                                 k is not zero
                                 fact(1)
                                                    ...returns 1 * fact( 0 )
long factorial(int k){
                                   k = 1
  if (k == 0)
   return 1;
 else
    return k *
                                                    fact( 0 )
           factorial(k-1);
```

Factorial: Unwind Phase

```
long factorial(int k){
                                                  if (k == 0)
                                                    return 1;
                                                  else
                                                    return k *
                                                            factorial(k-1);
                          k is not zero
       fact(3)
                             ∵return 3 * fact(2)
         k = 3
return
3 * 2
= 6
                                           k is not zero
                      fact(2
                                               return 2 * fact(1)
                         k = 2
        return 2 * 1
               = 2
                                                        k is not zero
                                        fact(1
                                                            return 1 * fact(0)
                      return 1
                                          k = 1
                                                            fact( 0 )
                                         k is zero
                                                               k = 0
                                             return 1
```

```
factorial(3) 6
```

```
long factorial(int k) {
                                   \boldsymbol{k}
  if (k == 0)
                                   3
    return 1;
  else
    return k * factorial(k-1)
                   long factorial (int k) {
                                                  \boldsymbol{k}
                      if (k == 0)
                        return 1;
   factorial(2)
                      else
                        return k * factorial(k-1)
                                                          1
                          long factorial (int k) {
                             if (k == 0)
                                                         1
                               return 1;
                             else
          factorial(1)
                               return k * factorial(k-1)
                                                                1
                                            long factorial(int k) {
                                              if (k == 0)
                                                                    \boldsymbol{k}
                                                return 1:
                                                                    0
                                             else
                            factorial(0)
                                                  .....
```

Recursions vs. Loops

- Many (simple), but not all, recursions essentially accomplish a loop (iterations)
- Recursions are usually much more elegant than its iterative equivalent
 - It is conceptually simple
 - Hence easier to implement
- However iterative version using loops for such recursions is usually faster
- Common practice
 - If we convert our recursion to iterative version, we will generally do so

Recursive vs. Iterative Versions

```
long factorial(int k) {
   int j, term;

term = 1;
   for (j = 2; j <= k; j++)
       term *= j;

return term;
}</pre>

Iterative
Version
```

```
long factorial(int k) {
  if (k == 0)
    return 1;
  else
    return k * factorial(k-1);
}

Recursive
Version
```

Example: Linked List Printing

Print out the whole list given the pointer to a ListNode

```
void printLL(ListNode *n) {
  if (n != NULL) {
    cout << n->item;
    printLL(n->next);
  }
}
```


Example: Linked List Printing

How to print out the whole list in reverse order?

```
void printLL(ListNode *n){
  if (n != NULL) {
    printLL(n->next);
    cout << n->item;
  }
}
```


Example: Tower of Hanoi

- How do we move all the disks from pole "A" to pole "B", using pole "C" as temporary storage
 - Move one disk at a time
 - Each disk must not rest on top of a smaller disk

Tower of Hanoi: Recursive Solution

Tower of Hanoi: Solution

```
void tower(int N, char A, char B, char C) {
  if (N == 1)
    move(A, B);
  else {
    tower(N-1, A, C, B);
    move(A, B);
    tower(N-1, C, B, A);
                                   Perform the "move".
                                    Many implementations.
                                    Below is one possibility.
void move(char s, char d) {
  cout << "move from " << s << " to " << d << endl;
```

Number of Moves Needed

Num of discs, n	Num of moves, f(n)		Time (1 sec per move)
1		1	1 sec
2		3	3 sec
3	3+1+3 =	7	7 sec
4	7+1+7 =	15	15 sec
5	15+1+15 =	31	31 sec
6	31+1+31 =	63	1 min
16	65,536		18 hours
32	4.295 billion		136 years
64	1.8 * 10^10 billion		584 billion years

Note the pattern

$$f(n)=2^n-1$$

Example: Combinatorial

How many ways can we choose k items out of n items?

Execution Trace: choose(2, 4)

The final answer is the sum of the base cases

Example: Fibonacci Numbers

Rabbits give birth monthly once they are 3 months old and they always conceive a single male-female pair.

Given a pair of male-female rabbits, assuming rabbits never die, how many pairs of rabbits are there after *n* months?

The Fibonacci Series

- Rabbit(N) = # pairs of rabbit at Nth month
 - All rabbit pairs in the previous month (N-1)th month stay
 - Rabbits never die
 - Additionally, new rabbit pairs = the total rabbit pairs two months ago (N-2)th month
 - Rabbits give birth at the 3rd month

Hence:

```
□ Rabbit(N) = Rabbit(N-1) + Rabbit(N-2)
```

Special cases:

- Rabbit(1) = 1 One pair in the 1st month
- □ Rabbit(2) = 1 Still one pair in the 2nd month
- Rabbit(N) is the famous Fibonacci(N)

Fibonacci Number: Implementation

```
long fibo(int n) {
  if (n <= 2)
    return 1;
  else
    return fibo(n-1) + fibo(n-2);
}</pre>
```

Base Cases:

Recursive Case:

fibo(n) = fibo(n-1) + fibo(n-2)

Execution Trace: Fibonacci

- Many duplicate calls
 - The same computations are done over and over again!

Fibonacci Number: Iterative Solution

```
long fibo(int n) {
  long cur, prev1 = 1, prev2 = 1, j;
  if (n <= 2)
    return 1;
  else
    for (j = 3; j <= n; j++) {
      cur = prev1 + prev2;
      prev2 = prev1;
      prev1 = cur;
                                                 Iterative
  return cur;
                                                 Version
```

How much time do we need to calculate a particular fibonacci number?

Example: Searching in Sorted Array

 Given a sorted array a of n elements and x, determine if x is in a

- How do you reduce the number of checking?
 - Idea: Narrow the search space by half at every iteration until a single element is reached

Binary Search

```
int binarySearch(int a[], int x, int low, int high) {
  if (low > high) // Base Case 1: item not found
    return -1;
  int mid = (low+high) / 2;
  if (x > a[mid])
    return binarySearch(a, x, mid+1, high);
 else if (x < a[mid])</pre>
    return binarySearch(a, x, low, mid-1);
 else
    return mid; // Base Case 2: item found
```

Example: Find all Permutations of a String

- Given a word, say east, the program should print all 24 permutations (anagrams), including eats, etas, teas, and nonwords like tsae
- One idea to generate all permutations (other ways exist)
 - Given east, we place the first character, i.e. e, in front of all 6 permutations of the other 3 characters ast ast, ats, sat, sta, tas, and tsa to arrive at east, eats, esat, esta, etas, and etsa, then
 - We place the second character, i.e. a, in front of all 6 permutations of est, then
 - We do the same for characters s and t
 - Thus, there will be 4 (the size of the word) recursive calls to display all permutations of a four-letter word
- Of course, when we're going through the permutations of 3character string, e.g. ast, we would follow the same procedure

Example: Find all Permutations of a String

```
void permuteString(string beginningString,
                    string endingString) {
  if (endingString.length() <= 1)</pre>
    cout << beginningString << endingString << endl;</pre>
  else
    for (int i = 0; i < endingString.length(); i++) {</pre>
      string newString = endingString.substr(0, i) +
                          endingString.substr(i+1);
      permuteString(beginningString + endingString[i],
                     newString);
```

Start by calling permutateString("", "east");

Summary

 Recursion is not just a way of programming, it is also a powerful approach to problem solving and formulating a solution

 A recursive function has base cases and recursive cases

- Relationship between recursion and stack
- Watch out for duplicate computations!

VisuAlgo Recursion Tree Visualization

- http://visualgo.net/recursion
- Accepts any valid (JavaScript) recursive function with starting input parameter
- Green vertices: base cases
- Blue vertices:Repeated cases
- Red text:
 Return values

