NAME: PRERNA SUNIL JADHAV

SAP 1D: 60004220127

BATCH: C2-2

BRANCH : COMPUTER ENGINEERING

COURSE: INFORMATION SECURITY LABORATORY

COURSE CODE: DJ19CEL603

EXPERIMENT 06

AIM: Study and implement Diffie Hellman Key Exchange Algorithm.

THEORY: Diffie Hellman key Exchange Algorithm was the first published public-key algorithm to appear in the seminal paper by Diffie-Hellman that defined public key cryptography and is generally referred to as Diffie-DHellman Algorithm.

The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for subsequent encryption of messages.

The Algorithm itself is limited to the exchange

on the difficulty of computing discrete

Sundaram

Algorithm: Global Public Elements 9 -> Prime number -> x<q & x is primitive noot of q user A Key Generation Select private XA -> XA < 9 Calculate public YA -> YA = XXA mod q user B Key Generation select private XB -> XB < 9 Calculate public YB -> YB = XXB mod q calculation of sever key by A.

K = (YB) XA mod q Calculation of Senet key by B

K = (YA) × B mod q Example: If p=23, g=5, A=4, B=3. Solve using Diffiettellun $\rightarrow X_A = ga \mod p$ $-5^4 \mod 23$ $= 5^3 \mod 23$ $= 5^3 \mod 23$ =125 mod 23 = 625 mod 23 $Ak = (XB)^a \mod p = 10^4 \mod 23$ [... Bk = 18] $Bk = (XA)^b \mod p = 4^3 \mod 23$ [... Bk = 18] .. AK = BK = 18 > Now they a parties can communicate CONCLUSION: The security of the algo lies in the fact that, while it is relatively easy to calculate , exponentials modulo a prime, it is very difficult to calculate discuete logarithms. For large primes, the latter task is considered inteasible.

(Sundaram)

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

Name:	Prerna Sunil Jadhav
Sap Id:	60004220127
Class:	T. Y. B. Tech (Computer Engineering)
Course:	Information Security Laboratory
Course Code:	DJ19CEL603
Experiment No.:	06

AIM: Study and Implement Diffie Hellman Key Exchange Algorithm.

CODE:

```
from random import randint
P = 17
Q = 3
print('The Value of P is :%d'%(P))
print('The Value of Q is :%d'%(Q))
# Alice will choose the private key a
a = 4
print('The Private Key a for Alice is :%d'%(a))
# gets the generated key
x = int(pow(Q,a,P))
# Bob will choose the private key b
print('The Private Key b for Bob is :%d'%(b))
# gets the generated key
y = int(pow(Q,b,P))
Alice_key = int(pow(y,a,P))
Bob_key = int(pow(x,b,P))
print('Secret key for the Alice is : %d'%(Alice_key))
print('Secret Key for the Bob is : %d'%(Bob key))
```


Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Academic Year: 2022-2023

OUTPUT:

```
PS C:\Users\Jadhav\Documents\BTech\Docs\6th Sem\IS\Code> & C:\msys64\mingw64\bin\python.exe "c:\Users\Jadhav\Doc
uments\BTech\Docs\6th Sem\IS\Code\Exp6\Diffie-Hellman.py"
The Value of P is :17
The Value of Q is :3
The Private Key a for Alice is :4
The Private Key b for Bob is :3
Secret key for the Alice is : 4
Secret Key for the Bob is : 4
PS C:\Users\Jadhav\Documents\BTech\Docs\6th Sem\IS\Code>
```