Inconsistent notation

Some of you think that math is written in such a way that it is unambiguous. I feel an urge to prove you wrong.

I don't include the ambiguity of specific symbols for variables / constants, like the symbol i as an imaginary unit versus the symbol i as a variable (typically used in sums), because we cannot avoid them when using our finite alphabet.

- 9:3(2+1)
 Is it equal to 1?
 Is it equal to 9?
- a(b+c) either function a applied to the sum of values b and c or product $a \cdot (b+c)$
- T^n either $T^{1 \times n}$ or $T^{n \times 1}$
- a_1^2 either $a_1 \cdot a_1$ or $a_{1,2}$
- a_{ij} either $a_{i,j}$ or a_k where $k = i \cdot j$
- $\rho, \hat{\rho}$ either two different functions, each of them to be defined separately or $\hat{\rho}$ is some kind of modification of ρ that does not have to be defined explicitly, thus the "hat" itself is a higher order function
- v, \bar{v} either symbol v and its value assigned by some labeling (e.g. a propositional variable and its value in a chosen model) or a propositional variable (or a boolean vector) v and its negation or two independent variables or a function and its upper bound

- $\left(\sum_{i=1}^{3} a_i + b\right)$ either $a_1 + a_2 + a_3 + b$ or $a_1 + b + a_2 + b + a_3 + b$
- $f^2(x)$ either $(f(x))^2$ or f(f(x))or $\frac{f(x_1)+f(x_2)}{2}$
- f[g, h] either an element of matrix F in the g-th row, h-th column: $f_{g,h}$ or a superposition of functions g, h (unary) and f (binary): $\lambda x. f(g(x), h(x))$