Decision Tree Induction: Algorithm

- Basic algorithm → อัลกอริทัมพัพฐาน
 มหลวดาว
 - Tree is constructed in a top-down, recursive, divide-and-conquer manner
 - At start, all the training examples are at the root ทั้งนาดงนุ่ที่รุก
 - Examples are partitioned recursively based on selected attributes จะถุกเปราสร์ตัดแบบช่องรักามแบกสริมาก์ก็ลังก
 - On each node, attributes are selected based on the training examples on that node, and a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning เรื่อนไขโนกรสจุกแข่ง
 - All samples for a given node belong to the same class เก็บชาวทั้งและเก็บเรีย rode ที่ตำแดงผู้ในคารเดียวกัน
 - There are no remaining attributes for further partitioning The attributes who all him no
 - ☐ There are no samples left ไม่ฆีตั้งต่างแล้ง
- Prediction
 - Majority voting is employed for classifying the leaf

How to Handle Continuous-Valued Attributes?

- Method 1: Discretize continuous values and treat them as categorical values
 - E.g., age: < 20, 20..30, 30..40, 40..50, > 50
- Method 2: Determine the best split point for continuous-valued attribute A
 - Sort the value A in increasing order:, e.g. 15, 18, 21, 22, 24, 25, 29, 31, ...
 - Possible split point: the midpoint between each pair of adjacent values
 - \Box (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - \Box e.g., (15+18/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, ...
 - The point with the maximum information gain for A is selected as the split-point for A
- Split: Based on split point P
 - The set of tuples in D satisfying $A \le P$ vs. those with A > P

Method 1 Categorical

15, 18, 21, 22, 24, 25, 29, 31,

ănnaja < 18, 19-22, 22-30, ≥ 31

Method 2 best split point

 $age_{21.5} = \frac{3}{8}I(8,1) + \frac{5}{8}I(1,4)$

Method 3 Random

1 2 3 4 5 6 7 8 15, 18, 21, 22, 24, 25, 29, 31,

สุ่มเลขมาถ้าได้ 1 ถึงเบ่า พรว 15

Gain Ratio: A Refined Measure for Attribute Selection

- □ Information gain measure is biased towards attributes with a large number of values
- ☐ Gain ratio: Overcomes the problem (as a normalization to information gain)

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- □ The attribute with the maximum gain ratio is selected as the splitting attribute
- ☐ Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan
- Example
 - □ SplitInfo_{income}(D) = $-\frac{4}{14}\log_2\frac{4}{14} \frac{6}{14}\log_2\frac{6}{14} \frac{4}{14}\log_2\frac{4}{14} = 1.557$
 - \Box GainRatio(income) = 0.029/1.557 = 0.019

Another Measure: Gini Index

- ☐ Gini index: Used in CART, and also in IBM IntelligentMiner
- \Box If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$\square gini(D) = 1 - \sum_{j=1}^{n} p_j^2 \rightarrow (\frac{5}{8})^2 + (\frac{5}{8})^2 + (\frac{5}{8})^2$$

- \square p_j is the relative frequency of class j in D
- If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is defined as

- Reduction in Impurity:
- □ The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

Example: D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

- \square Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

$$= \frac{10}{14} \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 \right) = 0.443$$

- $= Gini_{income \in \{high\}}(D)$
- ☐ Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450
- ☐ Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index
- All attributes are assumed continuous-valued
- ☐ May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Three Attribute Selection Measures

- ☐ The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - ☐ Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Other Attribute Selection Measures

- Minimal Description Length (MDL) principle
 - Philosophy: The simplest solution is preferred
 - ☐ The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- CHAID: a popular decision tree algorithm, measure based on χ² test for independence
- Multivariate splits (partition based on multiple variable combinations)
 - CART: finds multivariate splits based on a linear combination of attributes
- There are many other measures proposed in research and applications
 - E.g., G-statistics, C-SEP
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

พัดแพ่วก้อ เ

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

