Práctico 1: Alfabetos, Cadenas, Lenguajes y sus Operadores

Año 2024

Ejercicio 1. Sea $\Sigma_1 = \{0,1\}$ y $\Sigma_2 = \{a,b,c\}$ alfabetos. Listar 5 cadenas para cada uno de los alfabetos.

Ejercicio 2. Sea $\Sigma = \{a, b\}$ un alfabeto y $\alpha = aa, \beta = bb$, obtener: $|\alpha\beta|$, $\alpha\epsilon$, $\alpha\alpha$, $\alpha\beta$, β^0 , β^1 , β^2 , β^3 , $\alpha^2\beta^2$, $(\alpha\beta)^2$, $(\alpha\beta)^R$ y el conjunto Σ^* .

Ejercicio 3. Dar una definición recursiva del operador de concatenación de cadenas y probar que es asociativa.

Ejercicio 4. Dar una definición recursiva del operador de longitud de una cadena y probar que $|\alpha\beta| = |\alpha| + |\beta|$.

Ejercicio 5. Dar una definición recursiva del operador de potencia de una cadena y probar que $\alpha^n \alpha^m = \alpha^{n+m}$.

Ejercicio 6. Dar una definición recursiva del operador de reversa de una cadena y probar que $(\alpha\beta)^R = \beta^R \alpha^R$.

Ejercicio 7. Sea $\Sigma = \{a, b\}$ un alfabeto, definir formalmente (mediante comprensión de conjuntos) los siguientes lenguajes:

- L_1 es el lenguaje de todas las cadenas de longitud 2.
- L_2 es el lenguaje de todas las cadenas que comienzan con dos a's.
- L_3 es el lenguaje de todas las cadenas que tienen exactamente una sola b.
- L_4 es el lenguaje de todas las cadenas que comienzan y terminan con a.
- L_5 es el lenguaje de todas las cadenas que contienen solamente b's.
- L_6 es el lenguaje de todas las cadenas que tienen una cantidad par de a's.
- L_7 es el lenguaje de todas las cadenas tal que la cantidad de a's es multiplo de la cantidad de b's.
- L_8 es el lenguaje de todas las cadenas capicuas de longitud par.

Ejercicio 8. Sea $\Sigma = \{a, b, c\}$ un alfabeto, $L_1 = \{b, ab, ac\}$, $L_2 = \{b, b^2\}$, $L_3 = \{ba, bc\}$ y $L_4 = \{b^n : n \ge 0\}$ lenguajes, obtener los lenguajes $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 - L_2$, $L_1 L_2$, L_3 , $L_3 L_4$, L_1^R y L_3^R .

Ejercicio 9. Sean L_1, L_2, L_3 lenguajes cualesquiera, probar:

- 1. Asociatividad de la concatenación: $L_1(L_2L_3) = (L_1L_2)L_3$.
- 2. Distributividad de la concatenación por izquierda con respecto a la unión: $L_1(L_2 \cup L_3) = L_1(L_2 \cup L_1L_3)$.
- 3. La concatenación no es distributiva por izquierda con respecto a la intersección.

Ejercicio 10. Sea L un lenguaje cualquiera, probar:

1.
$$L^* = \bigcup_{i=0}^{\infty} L^i$$
 y $L^+ = \bigcup_{i=1}^{\infty} L^i$

- 2. $L^+ = LL^*$
- 3. $L^*L^* = L^*$
- 4. $(L^*)^* = L^*$