Dualita LP m A Vranne LP born max ctx; Ax & b; x 7,0. Necht A: maci radele metice A. Vræsme neråpornon linearni kombinaci y = (71,..., 7m) rådlan malice A, 1. j. [TA]. Necht of A 7, ct. Necht AX = b, x > 0. Volom (JA) =>, CX. Ale Make (yA) x < yb. Závěr: Necht y ∈ R, y 7,0, y A 7, c.

Potom y t je harní odhad pro max c x; Ax≤b, x>í. Toto je slaba veta o dualité

D Véta o dualité LP

- (P) marcx; AxEb, x>0
- (D) min by; Ay7,C, 37,0

Nastane prisne jedna z následujících mozností.

(1) (P) ani (D) nemají prípustné resem

(2) (P) je neomezená a (D) nemá pripustné resené

(3) (D) je neomerená a (P) nemá propostné risení

(B) (P); (D) mají přípustné řesení. Pakobě mají optimální řesení. Necht * je optimální řešení (P) a z* je optimální řešení (D). Yolom CTX* = bTy.

Úloha Mitaliandos relinhoje # Maltini Distolek 1. × 70 splninjili A x = b je skejne tizké jako-LP.

Dukaz. DIAXEL ATy >, C ct > 7/6'8 Må resem påre kolyr max cTX $A \times \leq b$

må optimilms resem

10/6/01x Navic hardé resem @ má Avar (x, y) kde it je ophimální řesemí (P) a z je ophimální řesení (D).

47,0

Mecht M je nælice. Me maci l-hyradele M. Dúsledek 2. [Podminky Komplementarity] Necht x je pripustné résení pro (t) a z je pripustné resení pro (D). Polom x, z optimální prove kolys plaki: 1. $x_i = 0$ nebo $(A^{\dagger})_i \gamma = c_i \quad \forall i = 1,..., m$ 2. $\gamma_i = 0$ nebo $A_i \times = b_j \quad \forall j = 1,..., m$ $\frac{1}{c^{T}x} = \sum_{i=1}^{m} c_{i}x_{i} \leq \sum_{i=1}^{m} (y^{T}A)_{i}x_{i} = (y^{T}A)_{x} = y^{T}(Ax)$ $\sum_{j=1}^{m} y_{j}(A_{j}x) \leq \sum_{j=1}^{m} y_{j}y_{j} = y^{T}y_{j}$ $\sum_{j=1}^{m} y_{j}(A_{j}x) \leq \sum_{j=1}^{m} y_{j}y_{j} = y^{T}y_{j}$ $\sum_{j=1}^{m} y_{j}(A_{j}x) \leq \sum_{j=1}^{m} y_{j}y_{j} = y^{T}y_{j}$ $\sum_{j=1}^{m} y_{j}(A_{j}x) \leq \sum_{j=1}^{m} y_{j}y_{j} = y^{T}y_{j}$ Dukaz.

Veta o oddilování. C.D. C.R. neprárdné, uzaviené, konseení a disjunktní. Necht C je omezená. Potom existuje nadrovina (x; ax=b} silné oddilující Ca D, A.j. C = (x; ax < b } a D= (x; ax > b).

[4]
Dualita LP úze souvisé s V. o oddělování
Véla (Farkasovo lemma) m A
Næstane presné jedna z nasledujseh moznosti:
1 Existuje x 70, Ax= b
2 Existuje y, 7A 20, 7th 40.
beometricky: an, b ER.
beometrickz: $a_1,, a_n, b \in \mathbb{R}^m$. Konverné kurel generovanz $a_1,, a_n$ redefinije:
cone (a,,,an) = {t,a, ++t,an; t,t2,,tn7,0}.
Farkasovo lemme geometrickz Nessene jedina
moznost 200.
1) b & cone (a,,,an)
② Existuje nedrovina h obsahující O € R, 1. j.,
h= {x < R"; z x = 0} pro nijahé z & Rm
Existry nedrovina h obsahrjící $O \in \mathbb{R}^m$, $A.j.$, $h = \{ \times \in \mathbb{R}^m : $
a: slaupec malice A
h souper marice 1
v. o oddilování => kistuje motrovina h striktní
oddilujer cone (a,an), Ebl
h" pruneme " do O & R.m.
[1

Varianty F.L.

Existuje ×7,0, Ax & b (=> (+77,0) (7A7,0 => 7b 7,0)

Existuje x: Ax & b (=> (+77,0) (7A=0=> 7b 7,0).

Viechy 3 varianty F.L. pour jednoduse

Viechez 3 variantz F.L. pou jednoduse Assiralentní elementárními prevody, stejné jako formulace LP.

Shejne na sebe prevoditelné variantz rétz o dralité po runné formulace LP.

	(P)	(⊅)
pomenné	x, ×m	71 ··· 7 m
malice	A	AT
pará strana	b	C
Cilora funkce	max c ^T x	min by
podruínky	i- Lá podmínka 4	7:70
	\\ =	7: € R
	x.7,0 x3 40	j- La podminka 7/
	43 6 R	

max { 0 x; Ax ≤ b } = min { by; Az = 0, 27,0}.

Dralifu také tre dokázas z F. L.

Dato útola je hin pripustná a omenená =>
Simplexora metoda (Blandoro traviollo) najde
optimální resemí * odporídající bári B.
Provídi no souradnic * označne *. Plahí, ne *

je optimální resemí (P).
Platí: ve výslodné tabulce je vektor [r < 0].
Platí: ve výslodné tabulce je vektor [r < 0].

Kole r označíme vektor v poslodní n-rádce tabulky.

Implikace => plyne z lemma:

Cemma. Necht y = (EBAB). Potom yt je prépastné résené véloky (D) a flaté c^Tx*= lty*. Dukaz. Plahi XB = ABba XN = 0 [N=(1,...,tal) B] $\overline{c^{\mathsf{T}}\chi^{*}} = \overline{c^{\mathsf{T}}\chi^{*}} = \overline{c^{\mathsf{T}}\chi^{*}} = \overline{c^{\mathsf{T}}_{\mathsf{B}}\chi^{*}} = \overline{c^{\mathsf{T}}_{\mathsf{B}}(\overline{A}_{\mathsf{B}}^{-1}L)} = (\overline{c^{\mathsf{T}}_{\mathsf{B}}A_{\mathsf{B}}^{-1}})L^{=}(\underline{\gamma^{*}})^{\mathsf{T}}L$ Ebývá ukázal A 5*7, c, 5*7, O. Tylo podminky lze rapsal jako A 5*7, c. Dosarením za 7 dostaneme A 7 = $\bar{A}^{T}(\bar{c}_{B}^{T}\bar{A}_{R}^{-1})^{T}=(\bar{c}_{B}^{T}\bar{A}_{B}^{-1}\bar{A})^{T}$. Ornaème Lenho vellor $W=(W_1, ..., W_{m+m})$. 1. $W_B = (\overline{C}_B^T \overline{A}_B^{-1} \overline{A}_B)^T = (\overline{C}_B^T \overline{I}_m)^T = \overline{C}_B$. 2. WN = (EB ABAN) = CN-17 CN prolese $r = \overline{c_N} - (\overline{c_B} \overline{A_B} \overline{A_N})^T$, a mavie $r \leq 0$ de jodninky optimalitym labulky.