Contrôle TD 3

Nom:

Prénom:

Classe:

Questions de cours

1. Soit f continue sur]a,b[(où $-\infty \le a < b \le +\infty$) et non définie en a et b. Soit $c \in]a,b[$ tel que $\int_a^c f(t) \, \mathrm{d}t$ diverge. Que peut-on en déduire quant à la nature de $\int_a^b f(t) \, \mathrm{d}t$? Justifiez rigoureusement votre réponse.

2. Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$. Rappelez les définitions précises avec les quantificateurs de φ positive et φ définie.

of Positive: A u EE, y (u,u) 7,0 y définie: YUEE, Ylu, u/20 -> u= 0 E

Exercice 1

xercice 1

1. Déterminer la nature de $\int_{1}^{+\infty} \frac{1}{\sqrt{t(1+t^2)}} dt$ et de $\int_{0}^{+\infty} \frac{1}{\sqrt{t(1+t^2)}} dt$.

Soit f: + > VF (1+f2) - f est continue sur]0,+0[Done I, a la rature de l'édit qui converge (5/2>1) IIZ: Bornes impropres o et to. Et I, convers.

En 0, lith ~ It >0 done) (Ithdt a la reluce de 0) tied (CV) DONE IZ GAVESE.

2. Déterminer la nature de $\int_{1}^{+\infty} \left(1 - \cos\left(\frac{1}{t}\right)\right) dt$ et de $\int_{0}^{1} \sin\left(\frac{1}{t^{2}}\right) dt$.

III La Poschion + pes 1 - cos() est costinue sur [1, += [. En +00, los (+ 1=1- 1 +0(-12) => 1- los (+ 1 = 1/2 +0 (+2) N - 12 >) Danc Iz a la reture de 1/2 /18 de qui converge Iz: La fonction + +> sin (\frac{1}{42}) est continue sur]0,1). 4 + (]0,1], | Sn(+2) | & 1 2 + 5 / 1 dt converse. Donc of sin(12) dt waverge et Iz Lonverge absolument donc converge.

Exercice 2

Soit $I = \int_1^{+\infty} \frac{\mathrm{d}t}{\sqrt{t}(1+t)}$. Via le changement de variable $u = \sqrt{t}$, calculer I.

Bornes pour u:
$$\sqrt{1=1}$$
 et la $\sqrt{1}=+\infty$

$\sqrt{1}=\sqrt{2}$ $\sqrt{1}=2$ $\sqrt{1}=2$

Exercice 3

Déterminer, via une intégration par parties, la nature de l'intégrale $\int_0^1 \ln(x) dx$.

Posons
$$|u = ln|_{T}$$
 = $|u' = \frac{1}{2}u$

On obtain $I = [2 ln|_{T}]_{0}^{t} - \int_{0}^{t} \Delta dx$

Avec $[2 ln|_{T}]_{0}^{t} = \int_{0}^{t} ln|_{T} \int_{0}^{t} - \int_{0}^{t} \Delta dx$

D'où $I = -\int_{0}^{t} \Delta dx = -[v]_{0}^{t} = -1$.

Contrôle TD 3 (S4)	lundi 11 février 2019