

EdgeDroid

An Experimental Approach to Benchmarking Human-in-the-Loop Applications

M. Olguín Muñoz $^{\dagger},$ J. Wang $^{\ddagger},$ M. Satyanarayanan ‡ and J. $Gross^{\dagger}$

† KTH Royal Institute of Technology

[‡] Carnegie Mellon University

Need to understand and optimize these applications:

- How do they interact with each other?
- How do they interact with infrastructure?
- How do they scale?

With which methodology can we study these behaviors?

Need to understand and optimize these applications:

- How do they interact with each other?
- How do they interact with infrastructure?
- How do they scale?

With which methodology can we study these behaviors?

Need to understand and optimize these applications:

- ► How do they interact with each other?
- ► How do they interact with infrastructure?
- How do they scale?

With which methodology can we study these behaviors?

Need to understand and optimize these applications:

- ► How do they interact with each other?
- ► How do they interact with infrastructure?
- How do they scale?

With which methodology can we study these behaviors?

Costly, poor repeatability

Prototypes
Our Contributions

Latencies

Modeling

Prototypes

Latencies

Modeling

Our Contributions

► A methodology for benchmarking human-in-the-loop applications.

Prototypes

Latencies

Modeling

Our Contributions

- ► A methodology for benchmarking human-in-the-loop applications.
- ► EdgeDroid: A benchmarking tool-suite.

Prototypes

Latencies

Modeling

Our Contributions

- ► A methodology for benchmarking human-in-the-loop applications.
- EdgeDroid: A benchmarking tool-suite.
- Experiments and measurements which show the effectiveness of the approach.

Approach

Benchmarking human-in-the-loop applications is HARD

Approach

What if we could do away with the human users?

Approach

What if we could do away with the human users?

Repeatable, scalable!

Task-guidance Cognitive Assistance

Some image of task guidance: "put the blue lego on top of the red one"

User Model

User Model

Currently working on a more thorough characterization of human behavior.

Implementation

Evaluation

Insert pictures of LEGO Assistant

Results

Figure labels

I haven't explained the task model, maybe skip this graph?

Results

Figure labels

Results

Figure labels

Future Work

- ► More accurate user model.
- **Expand to other types of Applications.**

Summary

- ► There's a need to study the scaling of Human-in-the-Loop applications.
 - This is difficult due to human users.
- ► We present a methodology + tool suite for benchmarking:
 - EdgeDroid
 - Trace based.
 - Model of human behavior.
- ▶ We present results which show the utility of EdgeDroid.

Requirements

- Generate realistic, high-dimensional, real-time inputs.
- Correctly and realistically react to feedback.
- KPI: Delays.

Trace of pre-recorded inputs & a model of user behavior

Tracing

Trace Replay

Timestamping

Clocks are synchronized previous to the experiment.

Timestamps at key points to obtain:

$$\Delta T_{\rm up} = t_r' - t_s \tag{1}$$

$$\Delta T_{\rm proc} = t_s' - t_r' \tag{2}$$

$$\Delta T_{\text{down}} = t_r - t_s' \tag{3}$$

$$\Delta T_{\text{total}} = \Delta T_{\text{up}} + \Delta T_{\text{proc}} + \Delta T_{\text{down}} = t_r - t_s \tag{4}$$