statistically valid conclusions about the simulation's results. We concentrated on output analysis for both terminating and steady state simulations.

19-6 EXERCISES

19-1. Extension of Example 19-1.

- (a) Flip a coin 100 times. How many heads to do you observe?
- (b) How many times do you observe two heads in a row? Three in a row? Four? Five?
- (c) Find 10 friends and repeat (a) and (b) based on a total of 1000 flips.
- (d) Now simulate coin flips via a spreadsheet program. Flip the simulated coin 10,000 times and answer (a) and (b).
- 19-2. Extension of Example 19-2. Throw n darts randomly at a unit square containing an inscribed circle. Use the results of your tosses to estimate π . Let $n = 2^k$ for k = 1, 2, ..., 15, and graph your estimates as a function of k.
- 19-3. Extension of Example 19-3. Show that \hat{I}_{n} , defined in equation 19-3, is unbiased for the integral I, defined in equation 19-2.

19-4. Other extensions of Example 19-3.

- (a) Use Monte Carlo integration with n = 10 observations to estimate $\int_0^2 \frac{1}{2\pi} e^{-x^2/2} dx$. Now use n =1000. Compare to the answer that you can obtain via normal tables.
- (b) What would you do if you had to estimate $\int_0^{10} \frac{1}{2\pi} e^{-x^2/2} dx?$
- (c) Use Monte Carlo integration with n = 10 observations to estimate $\int_0^1 \cos(2\pi x) dx$. Now use n =1000. Compare to the actual answer.
- 19-5. Extension of Example 19-4. Suppose that 10 customers arrive at a post office at the following

3 4 6 7 13 14 20 25 28 30

Upon arrival, customers queue up in front of a single clerk and are processed in a first-come-first-served manner. The service times corresponding to the arriving customers are as follows:

6.0 5.5 4.0 1.0 2.5 2.0 2.0 2.5 4.0 2.5

Assume that the post office opens at time 0, and closes its doors at time 30 (just after customer 10 arrives), serving any remaining customers.

- (a) When does the last customer finally leave the system?
- (b) What is the average waiting time for the 10 customers?

- (c) What is the maximum number of customers in the system? When is this maximum achieved?
- (d) What is the average number of customers in line during the first 30 minutes?
- (e) Now repeat parts (a)-(d) assuming that the services are performed last-in-first-out.
- 19-6. Repeat Example 19-5, which deals with an (s, S) inventory policy, except now use order level s = 6.
- 19-7. Consider the pseudorandom number generator $X_i = (5X_{i-1} + 1) \mod (16)$, with seed $X_0 = 0$.
- (a) Calculate X_1 and X_2 , along with the corresponding PRNs U_1 and U_2 .
- (b) Is this a full-period generator?
- (c) What is X_{150} ?
- 19-8. Consider the "recommended" pseudorandom number generator $X_i = 16807 X_{i-1} \mod (2^{31} - 1)$, with seed $X_0 = 1234567$.
- (a) Calculate X_1 and X_2 , along with the corresponding PRNs U_1 and U_2 .
- (b) What is $X_{100,000}$?
- 19-9. Show how to use the inverse transform method to generate an exponential random variable with rate $\lambda = 2$. Demonstrate your technique using the PRN U = 0.75.
- 19-10. Consider the inverse transform method to generate a standard normal (0,1) random variable.
- (a) Demonstrate your technique using the PRN U = 0.25.
- (b) Using your answer in (a), generate an N (1,9) random variable.
- 19-11. Suppose that X has probability density function f(x) = |x/4|, -2 < x < 2.
- (a) Develop an inverse transform technique to generate a realization of X.
- (b) Demonstrate your technique using U = 0.6.
- (c) Sketch out f(x) and see if you can come up with another method to generate X.
- 19-12. Suppose that the discrete random variable X has probability function

$$p(x) = \begin{cases} 0.35 & \text{if } x = -2.5, \\ 0.25 & \text{if } x = 1.0, \\ 0.40 & \text{if } x = 10.5, \\ 0, & \text{otherwise.} \end{cases}$$

As in Example 19-12, set up a table to generate realizations from this distribution. Illustrate your technique with the PRN U = 0.86.

19-13. The Weibull (α, β) distribution, popular in reliability theory and other applied statistics disciplines,

$$F(x) = \begin{cases} 1 - e^{-(x/\alpha)^{\beta}} & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Show how to use the inverse transform method to generate a realization from the Weibull distribution.
- (b) Demonstrate your technique for a Weibull (1.5,2.0) random variable using the PRN
- **19-14.** Suppose that $U_1 = 0.45$ and $U_2 = 0.12$ are two IID PRNs. Use the Box-Müller method to generate two N (0,1) variates.
- 19-15. Consider the following PRNs:

Use the Central Limit Theorem method to generate a realization that is approximately standard normal.

- 19-16. Prove equation 19-4 from the text. This shows that the sum of n IID exponential random variables is Erlang. Hint: Find the moment-generating function of Y, and compare it to that of the gamma distribution.
- **19-17.** Using two PRNs, $U_1 = 0.73$ and $U_2 = 0.11$, generate a realization from an Erlang distribution with n=2 and $\lambda=3$.
- **19-18.** Suppose that $U_1, U_2, ..., U_n$ are PRNs.
- (a) Suggest an easy inverse transform method to generate a sequence of IID Bernoulli random variables, each with success parameter p.
- Show how to use your answer to (a) to generate a binomial random variate with parameters n and p.
- 19-19. Use the acceptance-rejection technique to generate a geometric random variable with success probability 0.25. Use as many of the PRNs from Exercise 19-15 as necessary.
- **19-20.** Suppose that $Z_1 = 3$, $Z_2 = 5$, and $Z_3 = 4$ are hree batch means resulting from a long simulation Un. Find a 90% two-sided confidence interval for the
- **9-21.** Suppose that $\mu \in [-2.5, 3.5]$ is a 90% confience interval for the mean cost incurred by a certain hventory policy. Further suppose that this interval 'as based on five independent replications of the aderlying inventory system. Unfortunately, the boss s decided that she wants a 95% confidence interval. in you supply it?

19-22. The yearly unemployment rates for Andorra during the past 15 years are as follows:

Use the method of batch means on the above data to obtain a two-sided 95% confidence interval for the mean unemployment. Use five batches, each consisting of three years' data.

19-23. Suppose that we are interested in steady state confidence intervals for the mean of simulation output $X_1, X_2, ..., X_{10000}$. (You can pretend that these are waiting times.) We have conveniently divided the run up into five batches, each of size 2000; suppose that the resulting batch means are as follows:

Use the method of batch means on the above data to obtain a two-sided 95% confidence interval for the

19-24. The yearly total snowfall figures for Siberacuse, NY, during the past 15 years are as

- (a) Use the method of batch means on the above data to obtain a two-sided 95% confidence interval for the mean yearly snowfall. Use five batches, each consisting of three years' data.
- (b) The corresponding yearly total snowfall figures for Buffoonalo, NY (which is down the road from Siberacuse), are as follows:

How does Buffoonalo's snowfall compare to Siberacuse's? Just give an eyeball answer.

- (c) Now find a 95% confidence interval for the difference in means between the two cities. Hint: Think common random numbers.
- **19-25.** Antithetic variates. Suppose that $X_1, X_2, ...,$ X_n are IID with mean μ and variance σ^2 . Further suppose that $Y_1, Y_2, ..., Y_n$ are also IID with mean μ and variance σ^2 . The interesting trick here is that we will also assume that $Cov(X_i, Y_i) < 0$ for all i. So, in other words, the observations within one of the two sequences are IID, but they are negatively correlated between sequences.
- (a) Here is an example showing how can we end up with the above scenario using simulations. Let $X_i = -\ln(U_i)$ and $Y_i = -\ln(1 - U_i)$, where the U_i are the usual IID uniform (0,1) random variables
- What is the distribution of X_i ? Of Y_i ?
- ii What is Cou(II 1 II)?