Storm Data Analysis

Suzannah Herron

2/4/2022

Synopsis

This data comes from the US National Oceanic and Atmospheric Administration's (NOAA) storm database. There was a lot of cleaning that needed to be done, especially regarding the names of the event types. The goal is to look at:

1. Which weather event types are the deadliest (first plot)

\$ COUNTY_END: num 0 0 0 0 0 0 0 0 0 ...

2. Which weather event types have the greatest economic impact (second plot) I also decided to find which states were the safest and most dangerous to live in (third plot).

Data Processing

Checking to see if dataset exists already. If not, then download and unzip.

```
file_name <- "storms.csv.bz2"
if (!file.exists(file_name)) {
   url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
   download.file(url, file_name, method = "curl")
}
if (!file.exists(file_name)) {
   unzip(file_name)
}
storms <- read.csv(file_name)
str(storms)</pre>
```

```
## 'data.frame':
                   902297 obs. of 37 variables:
   $ STATE__
              : num
                      1 1 1 1 1 1 1 1 1 1 ...
   $ BGN_DATE : chr
                      "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00"
                      "0130" "0145" "1600" "0900" ...
   $ BGN_TIME : chr
##
   $ TIME_ZONE : chr
                      "CST" "CST" "CST" "CST" ...
   $ COUNTY
               : num
                      97 3 57 89 43 77 9 123 125 57 ...
                      "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
   $ COUNTYNAME: chr
   $ STATE
               : chr
                      "AL" "AL" "AL" "AL" ...
                      "TORNADO" "TORNADO" "TORNADO" ...
##
   $ EVTYPE
               : chr
  $ BGN_RANGE : num
                      0 0 0 0 0 0 0 0 0 0 ...
   $ BGN_AZI
               : chr
   $ BGN_LOCATI: chr
##
##
  $ END_DATE : chr
                      ...
  $ END_TIME : chr
```

```
$ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END RANGE : num 0 0 0 0 0 0 0 0 0 ...
                    ... ... ... ...
              : chr
## $ END AZI
                    ...
  $ END_LOCATI: chr
##
   $ LENGTH
              : num
                    14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##
   $ WIDTH
              : num 100 150 123 100 150 177 33 33 100 100 ...
##
   $ F
              : int 3 2 2 2 2 2 2 1 3 3 ...
##
   $ MAG
             : num 0000000000...
##
   $ FATALITIES: num 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num
                   15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG
             : num
                    25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
                    "K" "K" "K" "K" ...
## $ PROPDMGEXP: chr
            : num 0000000000...
##
   $ CROPDMG
                    ...
## $ CROPDMGEXP: chr
                    ...
## $ WFO
             : chr
                    ...
##
   $ STATEOFFIC: chr
                    ...
## $ ZONENAMES : chr
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
                    ...
## $ REMARKS
            : chr
##
   $ REFNUM
              : num 1 2 3 4 5 6 7 8 9 10 ...
```

Format BGN_DATE to be a date then add a column with the year to use for factoring later.

```
library(lubridate)
library(dplyr)
library(ggplot2)

storms$BGN_DATE <- mdy_hms(storms$BGN_DATE)
storms$YEAR <- year(storms$BGN_DATE)
# str(storms)</pre>
```

Cutting down the dataset to relevant columns/variables for analysis for bodily, property, and crop damage.

Variables

STATE: State abbreviation (I am keeping this in case I want to try mapping)

EVTYPE: Type of event

FATALITIES: Number of fatalities caused by event **INJURIES**: Number of injuries caused by event **PROPDMG**: USD amount of property damage

PROPDMGEXP: Multiplying factor {exponent} for PROPDMG

CROPDMG: USD amount of crop damage

CROPDMGEXP: Multiplying factor (exponent) for CROPDMG **YEAR**: Starting year of event extracted from storms\$BGN_DATE

```
cols <- c( "STATE", "EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP
storms1 <- storms[ , cols]
# str(storms1)</pre>
```

Since we are looking at the different effects of each event type, a creation of a dataframe grouped by event types is necessary.

Checking the types of events:

```
types <- unique(storms1$EVTYPE)
str(types)</pre>
```

```
## chr [1:985] "TORNADO" "TSTM WIND" "HAIL" "FREEZING RAIN" "SNOW" ...
```

Some of the event types are all upper case and some are a combo of upper and lower case. Changed all to lowercase and the number of events went from 985 to 898

```
storms2 <- storms1
storms2$EVTYPE <- tolower(storms2$EVTYPE)
types <- unique(storms2$EVTYPE)
str(types)</pre>
```

```
## chr [1:898] "tornado" "tstm wind" "hail" "freezing rain" "snow" ...
```

There are several event names with whitespace in the beginning so that was trimmed and the number of events is 890

```
storms2$EVTYPE <- trimws(storms2$EVTYPE, which = "both")
types <- unique(storms2$EVTYPE)
str(types)</pre>
```

```
## chr [1:890] "tornado" "tstm wind" "hail" "freezing rain" "snow" ...
```

The next step would be to group the event types into larger categories to make it easier to analyze. Categories will be:

tornado, wind, hail, rain, flood, hurricane, lightning, cold (snow, ice, blizzards, winter storms), fire Afterwards, I will check the events categorized as "other" and reassess.

```
storms3 <- storms2
storms3$CAT (= "other"
storms3$CAT[grep("tornado", storms3$EVTYPE)] <- "tornado"
storms3$CAT[grep("wind", storms3$EVTYPE)] <- "wind"
storms3$CAT[grep("hail", storms3$EVTYPE)] <- "hail"
storms3$CAT[grep("rain", storms3$EVTYPE)] <- "rain"
storms3$CAT[grep("flood", storms3$EVTYPE)] <- "flood"
storms3$CAT[grep("hurricane", storms3$EVTYPE)] <- "hurricane"
storms3$CAT[grep("lightning", storms3$EVTYPE)] <- "thunderstorm"
storms3$CAT[grep("snow", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("ice", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("blizzard", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("winter", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("fire", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("fire", storms3$EVTYPE)] <- "fire"
sort(table(storms3$CAT))</pre>
```

```
##
##
      hurricane
                                      rain thunderstorm
                         fire
                                                                 other
                                                                                cold
##
            288
                         4240
                                      12168
                                                   15775
                                                                 30167
                                                                               42155
##
        tornado
                        flood
                                      hail
                                                    wind
          60699
                                                  363692
##
                        82713
                                     290400
```

Take a look what is still in the "other" category:

```
other <- storms3
other <- storms3[storms3$CAT == "other", ]
other <- other[ , c(2,10)]
types_other <- unique(other$EVTYPE)
head(types_other)</pre>
```

```
## [1] "record cold" "dense fog" "rip current"
## [4] "thunderstorm wins" "funnel cloud" "heat"
```

Categorize more and changing "fire" to "heat" and changing "lightning" to "thunderstorm". Adding categories "volcano" and "dry". (I changed some of the code in chunk 9.)

```
storms3$CAT[grep("cold", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("record low", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("fire", storms3$EVTYPE)] <- "heat"</pre>
storms3$CAT[grep("heat", storms3$EVTYPE)] <- "heat"</pre>
storms3$CAT[grep("hot", storms3$EVTYPE)] <- "heat"</pre>
storms3$CAT[grep("warm", storms3$EVTYPE)] <- "heat"</pre>
storms3$CAT[grep("record high", storms3$EVTYPE)] <- "cold"
storms3$CAT[grep("icy", storms3$EVTYPE)] <- "cold"</pre>
storms3$CAT[grep("freez", storms3$EVTYPE)] <- "cold"</pre>
storms3$CAT[grep("sleet", storms3$EVTYPE)] <- "cold"</pre>
storms3$CAT[grep("showers", storms3$EVTYPE)] <- "rain"</pre>
storms3$CAT[grep("precipitation", storms3$EVTYPE)] <- "cold"</pre>
storms3$CAT[grep("thunderstorm", storms3$EVTYPE)] <- "thunderstorm"</pre>
storms3$CAT[grep("microburst", storms3$EVTYPE)] <- "thunderstorm"
storms3$CAT[grep("tstm", storms3$EVTYPE)] <- "thunderstorm"</pre>
storms3$CAT[grep("volcan", storms3$EVTYPE)] <- "volcano"
storms3$CAT[grep("dry", storms3$EVTYPE)] <- "dry"
storms3$CAT[grep("driest", storms3$EVTYPE)] <- "dry"
storms3$CAT[grep("drought", storms3$EVTYPE)] <- "dry"
```

```
other <- storms3
other <- storms3[storms3$CAT == "other", ]
other <- other[ , c(2,10)]
types_other <- unique(other$EVTYPE)
length(types_other)</pre>
```

[1] 222

```
length(unique(storms3$CAT))
```

[1] 12

Now I have 12 categories with 222 event types categorized as "other". Just as a side note, looking through the event types, there are a lot of typos in this data.

Splitting Data

Create two different dataframes with injuries/fatalities and financial impact.

```
fatal_inj <- storms3[ , c(1:4, 9, 10)]</pre>
head(fatal_inj)
     STATE EVTYPE FATALITIES INJURIES YEAR
                                                  CAT
## 1
        AL tornado
                             0
                                     15 1950 tornado
## 2
        AL tornado
                             0
                                      0 1950 tornado
## 3
                             0
        AL tornado
                                      2 1951 tornado
## 4
                             0
                                       2 1951 tornado
        AL tornado
## 5
        AL tornado
                             0
                                       2 1951 tornado
## 6
                                       6 1951 tornado
        AL tornado
prop_crop <- storms3[ , c(1, 2, 5:10)]</pre>
head(prop_crop)
##
     STATE EVTYPE PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP YEAR
                                                                     CAT
## 1
        AL tornado
                       25.0
                                                            1950 tornado
## 2
        AL tornado
                       2.5
                                     K
                                              0
                                                            1950 tornado
## 3
        AL tornado
                       25.0
                                     K
                                              0
                                                            1951 tornado
## 4
                        2.5
                                     K
                                              0
        AL tornado
                                                            1951 tornado
## 5
        AL tornado
                        2.5
                                     K
                                              0
                                                            1951 tornado
```

1951 tornado

Analysis

AL tornado

6

Which types of events are most harmful to population health?

2.5

The first step is to find the totals for injuries and fatalities for each event type per year.

K

```
sum_fatal <- aggregate(FATALITIES ~ CAT + YEAR, fatal_inj, sum)
sum_inj <- aggregate(INJURIES ~ CAT + YEAR, fatal_inj, sum)
sum_fi <- cbind(sum_fatal, sum_inj$INJURIES)
colnames(sum_fi) <- c("cat", "year", "fatalities", "injuries")
head(sum_fi)</pre>
```

```
cat year fatalities injuries
                           70
                                   659
## 1 tornado 1950
## 2 tornado 1951
                           34
                                   524
## 3 tornado 1952
                          230
                                  1915
## 4 tornado 1953
                          519
                                  5131
                                   715
## 5 tornado 1954
                           36
## 6
        hail 1955
                            0
                                     0
```

Add a row with the sum of total health impact (fatalities + injuries)

```
total_fi <- sum_fi
total_fi$total <- total_fi$fatalities + total_fi$injuries
head(total_fi)</pre>
```

```
##
         cat year fatalities injuries total
                                    659
## 1 tornado 1950
                           70
                                          729
                           34
## 2 tornado 1951
                                    524
                                          558
## 3 tornado 1952
                          230
                                   1915
                                         2145
## 4 tornado 1953
                          519
                                   5131
                                         5650
## 5 tornado 1954
                           36
                                    715
                                          751
        hail 1955
## 6
                            0
                                      0
                                            0
```

Then create a plot of total human impact per event each year.

Total Fatalities and Injuries Per Weather Event


```
# dev.off()
```

You can clearly see that tornados are the most harmful to humans and you can confirm it by ordering the totals:

```
events_fi <- aggregate(total ~ cat, total_fi, sum)
events_fi <- events_fi[order(-events_fi$total), ]
events_fi</pre>
```

```
##
              cat total
## 10
          tornado 97043
## 9 thunderstorm 16346
## 5
             heat 14069
## 3
            flood 10127
             cold 7504
## 1
## 7
            other 4905
## 12
             wind 2363
## 6
        hurricane 1463
             hail 1386
## 4
                     381
## 8
             rain
                     86
## 2
              dry
## 11
          volcano
```

It is also interesting to see when certain categories were starting to be recorded.

Which types of events have the greatest economic consequences?

First, let's take a look at prop_crop\$CROPDMGEXP and prop_crop\$PROPDMGEXP to see what's in them and if they need formatting:

```
unique(prop_crop$CROPDMGEXP)
## [1] "" "M" "K" "m" "B" "?" "0" "k" "2"
```

```
unique(prop_crop$PROPDMGEXP)
```

```
## [1] "K" "M" "" "B" "m" "+" "O" "5" "6" "?" "4" "2" "3" "h" "7" "H" "-" "1" "8"
```

As expected, they need some help.

```
prop_crop2 <- prop_crop
prop_crop2$pexp <- prop_crop2$PROPDMGEXP
prop_crop2$pexp[grep("[Kk]|3", prop_crop2$PROPDMGEXP)] <- 10^3
prop_crop2$pexp[grep("[Mm]|6", prop_crop2$PROPDMGEXP)] <- 10^6
prop_crop2$pexp[grep("[Bb]|9", prop_crop2$PROPDMGEXP)] <- 10^9
prop_crop2$pexp[grep("[Hh]|2", prop_crop2$PROPDMGEXP)] <- 10^2
prop_crop2$pexp[grep("8", prop_crop2$PROPDMGEXP)] <- 10^8
prop_crop2$pexp[grep("5", prop_crop2$PROPDMGEXP)] <- 10^5
prop_crop2$pexp[grep("4", prop_crop2$PROPDMGEXP)] <- 10^4
prop_crop2$pexp[grep("7", prop_crop2$PROPDMGEXP)] <- 10^7
prop_crop2$pexp[grep("0", prop_crop2$PROPDMGEXP)] <- 10
prop_crop2$pexp[grep("1", prop_crop2$PROPDMGEXP)] <- 1
prop_crop2$pexp[grep("1", prop_crop2$PROPDMGEXP)] <- 1</pre>
```

```
prop_crop2$pexp[grep("-", fixed = TRUE, prop_crop2$PROPDMGEXP)] <- 1
prop_crop2$pexp[grep("?", fixed = TRUE, prop_crop2$PROPDMGEXP)] <- 1
prop_crop2$pexp[grep("+", fixed = TRUE, prop_crop2$PROPDMGEXP)] <- 1
prop_crop2$pexp <- as.numeric(prop_crop2$pexp)</pre>
```

```
prop_crop2$cexp <- prop_crop2$CROPDMGEXP
prop_crop2$cexp[grep("[Kk]", prop_crop2$CROPDMGEXP)] <- 10^3
prop_crop2$cexp[grep("[Mm]", prop_crop2$CROPDMGEXP)] <- 10^6
prop_crop2$cexp[grep("[Bb]", prop_crop2$CROPDMGEXP)] <- 10^9
prop_crop2$cexp[grep("0", prop_crop2$CROPDMGEXP)] <- 1
prop_crop2$cexp[grep("?", fixed = TRUE, prop_crop2$CROPDMGEXP)] <- 1
prop_crop2$cexp[grep("2", prop_crop2$CROPDMGEXP)] <- 10^2
unique(prop_crop2$cexp)</pre>
```

```
## [1] "" "1e+06" "1000" "1e+09" "1" "100"

prop_crop2$cexp <- as.numeric(prop_crop2$cexp)
```

Take out the rows that have NAs for both of the created exponential columns

```
dmg <- prop_crop2[(!(is.na(prop_crop2$pexp) & is.na(prop_crop2$cexp))), ]</pre>
```

Next it's time to calculate the totals of crop and property damage by multiplying the DMG columns by the DMGEXP columns. Then change the NAs to 0 so they columns can be added.

```
pc4 <- dmg
pc4$prop_total <- pc4$PROPDMG * pc4$pexp
pc4$crop_total <- pc4$CROPDMG * pc4$cexp
pc4$crop_total[is.na(pc4$crop_total)] <- 0
pc4$prop_total[is.na(pc4$prop_total)] <- 0
pc4$total <- pc4$prop_total + pc4$crop_total
pc4 <- pc4[ , c(1,2,7,8,13)]
str(pc4)</pre>
```

Find the sum per category and divide the total by 1M so it will be more readable in the graph.

```
event_dmg <- aggregate(total ~ CAT + YEAR, pc4, sum)
event_dmg$total <- event_dmg$total/10^6
str(event_dmg)</pre>
```

Let's graph it

Economic Impact Per Weather Event

dev.off()

```
total_dmg <- aggregate(total ~ CAT, event_dmg, sum)
total_dmg <- total_dmg[order(-total_dmg$total), ]
total_dmg</pre>
```

```
##
               CAT
                        total
## 3
             flood 180574.433
## 6
         hurricane 90271.473
## 7
             other
                    57955.736
## 10
           tornado 57418.279
## 1
              cold
                    21341.398
## 4
              hail 19024.452
## 2
               dry
                    15025.675
                    15007.062
## 9
     thunderstorm
```

```
## 5
              heat
                      9829.459
                      6841.532
## 12
              wind
## 8
              rain
                      4039.060
                         0.500
## 11
           volcano
```

Here you can see that flooding has been the most costly weather event

Where should you live?

I thought it would be interesting to see which states are the best and worst to live in regarding weather events. Since tornadoes and floods are the most dangerous, I have split the data to contain only those

```
categories.
states <- prop_crop
states <- states[states$CAT == "tornado" | states$CAT == "flood", c(1, 7, 8)]
head(states)
##
     STATE YEAR
                    CAT
## 1
        AL 1950 tornado
## 2
        AL 1950 tornado
## 3
        AL 1951 tornado
## 4
        AL 1951 tornado
## 5
        AL 1951 tornado
## 6
        AL 1951 tornado
states[ , 1] <- as.factor(states$STATE)</pre>
states[ , 3] <- as.factor(states$CAT)</pre>
summary(states)
                                         CAT
##
        STATE
                          YEAR
                                    flood :82707
##
   TX
                            :1950
           :17789
                    Min.
   MO
           : 7391
                    1st Qu.:1993
                                    tornado:60698
           : 6443
##
   KS
                    Median:2001
##
   OK
           : 6002
                    Mean
                            :1996
  ΙA
                    3rd Qu.:2007
##
           : 5728
##
           : 5268
                    Max.
                            :2011
    (Other):94784
##
ggplot(data = states) +
  geom_histogram(mapping = aes(x = STATE, fill = CAT), stat = "count") +
  labs(title = "Total of Flood and Tornado Events Per State",
       x = "State",
       y = "Total Number of Events",
       fill = "Event") +
  theme(axis.text.x = element_text(angle = 45, size = 4.5))
```


It looks like Texas is the most dangerous state to live in. We can confirm that by ordering the number of events for each event type.

```
flood <- states[states$CAT == "flood", ]</pre>
tornado <- states[states$CAT == "tornado", ]</pre>
t <- tornado %>%
  count(STATE)
t <- t[order(t$n), ]
head(t, 3)
##
      STATE
             n
## 8
         DC
              1
## 1
         AK 3
## 41
         RI 10
tail(t, 3)
##
      STATE
                n
## 37
         OK 3709
## 17
         KS 3973
## 45
         TX 8292
```

```
f <- flood %>%
    count(STATE)
f <- f[order(f$n), ]
head(f, 3)

## STATE n
## 13    GU 16
## 4    AS 45
## 50    VI 45

tail(f, 3)</pre>
```

```
## STATE n
## 20 KY 3705
## 27 MO 5109
## 47 TX 9497
```

Results

Tornadoes result in the most fatalities and injuries while flooding has the greatest economic impact. Ergo, stay away from areas with tornadoes and floods.

The safest states/districts/territories from tornadoes are:

- 1. Washington DC
- 2. Alaska
- 3. Rhode Island

The most dangerous states/districts/territories for tornadoes are:

- 1. Texas
- 2. Kansas
- 3. Oklahoma

The safest states/districts/territories from floods are:

- 1. Guam
- 2. American Samoa
- 3. Virgin Islands

The most dangerous states/districts/territories for tornadoes are:

- 1. Texas
- 2. Missouri
- 3. Kentucky

We learned that Texas is a very dangerous state to live in and Rhode Island is a nice and safe little state.