COVID-19 Data Analytics

Lutfi Nur Hakim

լի իստրի իրվումի վիրակակինում Միքսիակինում - իսիվիան Միքսիակինում - ուսիվիան Միքսիակին - ուսիվիանին

01. EXPLORATORY DATA ANALYSIS

 \triangle

Answering some questions on the COVID-19 situation

MOST/LEAST CASES?

		Confirmed	Deaths	Recovered	Active
Date	Country/Region				
2021-05-29	US	33251939	594306	0	32657633
	India	27894800	325972	25454320	2114508
	Brazil	16471600	461057	14496224	1514319
	France	5719877	109518	390878	5219481
	Turkey	5235978	47271	5094279	94428

		Confirm	ed	Deaths	Recovered	Active
Date	Country/Region					
2021-05-29	Micronesia		1	0	1	0
	Kiribati	1	2	0	0	2
	Samoa		3	0	3	0
	Vanuatu	į.	4	1	3	0
	Marshall Islands		4	0	4	0

Most

- US
- India
- 3. Brazil
- 4. France
- 5. Turkey

Least

- Micronesia
- 2. Kiribati
- 3. Samoa
- 4. Vanuatu
- 5. Marshall Islands

MOST/LEAST DEATHS?

Date	Country/Region	Confirmed	Deaths	Recovered	Active
2021-05-29	US	33251939	594306	0	32657633
	Brazil	16471600	461057	14496224	1514319
	India	27894800	325972	25454320	2114508
	Mexico	2411503	223455	1924865	263183
	UK	4496823	128037	15481	4353305
ombined_2	29_5.sort_valu	es(by = "	Deaths").iloc[[0	, 1,2, 3
ombined_2 Date	29_5.sort_valu Country/Re	Confir).iloc[[0 aths Recov	
Date		Confir			
	Country/Re	Confir gion ands	med De	aths Recov	ered Activ
Date	Country/Re	Confir gion ands esia	med De	aths Recov	ered Activ
Date	Country/Res Solomon Isla Micron Saint Kitts and N	Confir gion ands esia	20 1	aths Recov	ered Activ

Most

- 1. US
- 2. Brazil
- 3. India
- 4. Mexico
- 5. UK

Least

- 1. Solomon Islands
- 2. Micronesia
- 3. Saint Kitts & Nevis
- 4. Macau
- 5. Samoa

արկիս արկիսութի Մարկիսութի Մարսակին

O2. ANALYSIS 1

Investigating success of lockdowns on infection rate

INSPIRATION

- Lockdowns commonly adopted by governments around the world
- Were these lockdowns worth the trouble?

HYPOTHESIS

Lockdowns would be effective in reversing upward trend on new cases as forecasted from pre-lockdown phase

THE PLAN

 \triangle

Δ

that went through

lockdowns

phase with upward trend

on new cases

ւիկորդիրոր ըդիրոր արկիր մոկիրորհի սենսոներ

actual new cases

during lockdown

during lockdown

period

DATA PREPARATION

- 1. Subset country data by conditioning on "Country/Region" column
- 2. Group by "Date" column (if necessary) and sum case counts
- 3. Create "New" case column based on current and previous day
- 4. Subset lockdown and pre-lockdown data by conditioning on "Date" column
- 5. Create forecasting dataframe to export and manipulate in Excel
- 6. Utilize obtained equation to forecast "New" cases during lockdown period
- 7. Create visualizations to identify success/failure of lockdown

RESEARCH

	Lockdown 1 Start	Lockdown 1 End	Lockdown 2 Start	Lockdown 2 End
Singapore	07/04/2020	01/06/2020	16/05/2021	13/06/2021
Austria	16/03/2020	13/04/2020	03/11/2020	30/11/2020

Source: https://en.wikipedia.org/wiki/COVID-19_lockdowns#Table_of_pandemic_lockdowns

 \triangle

.

RESEARCH

	Lockdown 1 Start	Lockdown 1 End	Lockdown 2 Start	Lockdown 2 End
Singapore	07/04/2020	01/06/2020	16/05/2021	13/06/2021
Austria	16/03/2020	13/04/2020	03/11/2020	30/11/2020

Source: https://en.wikipedia.org/wiki/COVID-19_lockdowns#Table_of_pandemic_lockdowns

 \triangle

02.1 SINGAPORE

07/04/2020 - 01/06/2020

PRE-LOCKDOWN DATA

Δ

Trend

Increasing at an increasing rate

Formulation

Exponential function

EXPONENTIAL EQUATION

Δ

Days

Days after "07/03/2020" (first day used in forecast calculations)

Formula

 $N = 8.7717e^{0.0982t}$

N = number of new cases

t = days after "07/03/2020"

EVALUATE LOCKDOWN

 \triangle

 \triangle

ւրինարինը ակինը արդագին անկինու

02.2 AUSTRIA

03/11/2020 - 30/11/2020

EVALUATE LOCKDOWN

 \triangle

miller i maliler

Lockdown Success

Lockdowns appear to be effective in combating a rise in COVID-19 cases

Rationale

Limit social interaction

Limit virus spreading opportunities

Prevent actual spread within community

Δ

THANKS!

Do you have any questions?

addyouremail@freepik.com +91 620 421 838 yourcompany.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution