Informaciona bezbednost Uvod u kriptografiju

dr Milan Stojkov

Katedra za informatiku

2022

Informaciona bezbednost 1/8

Terminologija

- pošiljalac / sender
- primalac / receiver
- poruka / message
 - otvoreni tekst / plaintext
 - šifrovani tekst / ciphertext
- šifrovanje / encryption
- dešifrovanje / decryption

Informaciona bezbednost 2 / 81

Terminologija

- kriptografija / cryptography
 - obezbeđivanje tajnosti poruka
- kriptoanaliza / cryptanalysis
 - čitanje tajnih poruka
- kriptologija / cryptology
 - kriptografija + kriptoanaliza

Informaciona bezbednost 3 / 81

Osnovni zadaci kriptografije

- poverljivost poruka
 - očuvanje tajnosti poruka u komunikaciji između pošiljaoca i primaoca
- autentifikacija
 - potvrđivanje porekla poruke
- integritet
 - čuvanje sadržaja poruke od (zlonamernih/slučajnih) izmena
- neporecivost
 - nemogućnost pošiljaoca da negira slanje svoje poruke

Informaciona bezbednost 4 / 8

Šifre i ključevi

- kriptografski algoritam (šifra) je skup dve matematičke funkcije
 - za šifrovanje
 - za dešifrovanje
- algoritam može biti
 - tajni
 - nema kontrole kvaliteta → slaba sigurnost
 - javni
- tajnost se postiže ključevima
- sigurnost komunikacije leži u tajnosti ključeva

Informaciona bezbednost 5 / 81

Simetrični algoritmi

- ključ za dešifrovanje se može izračunati na osnovu ključa za šifrovanje i obrnuto
- najčešće su ova dva ključa jednaka
- pošiljalac i primalac se moraju dogovoriti o korišćenom ključu pre šifrovane komunikacije

Informaciona bezbednost 6 / 81

Asimetrični algoritmi

- algoritmi sa javnim ključem (public-key algorithms)
- ključ za šifrovanje se razlikuje od ključa za dešifrovanje
- ključ za dešifrovanje se ne može (u razumnom vremenu!) izračunati na osnovu ključa za šifrovanje
- ključ za šifrovanje može biti javni
 - bilo ko može uputiti šifrovanu poruku primaocu
 - samo je primalac može dešifrovati
- ključ za šifrovanje = "javni ključ"
- ključ za dešifrovanje = "tajni ključ"

Informaciona bezbednost 7/8

Kriptoanaliza

- svrha kriptografije
 - čuvanje tajnosti otvorenog teksta i ključeva
- svrha kriptoanalize
 - pristup otvorenom tekstu bez prethodnog poznavanja ključa
- kriptoanaliza podrazumeva da napadač poznaje
 - korišćeni algoritam i
 - detalje implementacije
- oslanjanje na tajnost algoritma nije osnova za sigurnost komunikacije

Informaciona bezbednost 8 / 81

Tipovi napada

- o cyphertext-only (known-ciphertext)
 - napadač poseduje sadržaj šifriranih poruka
 - pokušava da dođe do otvorenog sadržaja poruka ili da izračuna ključ za dešifrovanje
- known-plaintext
 - napadač poseduje sadržaj otvorenih poruka i odgovarajućih šifriranih poruka
 - pokušava da dođe do ključa ili da razvije algoritam koji bi mu omogućio da dešifruje sve dalje poruke
- chosen-plaintext
 - slično prethodnom, ali napadač može i da bira koji tekst će biti šifrovan
- adaptive-chosen-plaintext
 - slično prethodnom, ali napadač može i da bira tekst za šifrovanje na osnovu rezultata svojih prethodnih pokušaja

Informaciona bezbednost 9 / 81

Tipovi napada

- chosen-ciphertext
 - napadač može da analizira bilo koju odabranu šifriranu poruku zajedno sa njenim odgovarajućim otvorenim porukama
 - pokušava da dođe do ključa ili da dobije što više informacija o sistemu koji napada
- chosen-key
 - napadač poseduje informacije o odnosima između različitih ključeva
 - napadač ima za cilj da sruši sistem koji se oslanja na te ključeve
- rubber-hose
 - napadač pokušava da dođe do ključa pretnjama, ucenom, podmićivanjem, mučeniem

Informaciona bezbednost 10 / 81

Kriptografija pre i posle pojave računara

- pre pojave računara
 - algoritmi zasnovani na karakterima (slovima)
 - šifre zamene: zamena karaktera drugim
 - šifre premeštanja: premeštanje karaktera u tekstu
- posle pojave računara
 - algoritmi rade nad nizovima bitova
 - alfabet nema 26 nego 2 znaka
 - mnogi današnii algoritmi kombinuju zamenu i premeštanje

Informaciona bezbednost 11 / 81

Šifre zamene

- svaki karakter otvorenog teksta se zamenjuje nekim drugim znakom u šifrovanom tekstu
- monoalfabetske šifre
 - svaki karakter otvorenog teksta se zamenjuje jednim znakom u šifrovanom tekstu
- homofonske šifre
 - jednom karakteru otvorenog teksta odgovara više karaktera u šifrovanom tekstu
- poligramske šifre
 - zamena se vrši nad grupama karaktera
- polialfabetske šifre
 - koristi se više monoalfabetskih šifara koje se smenjuju sa svakim šifriranim znakom

Informaciona bezbednost 12 / 81

Šifre zamene

- Cezarova šifra: svaki znak se zamenjuje znakom udaljenim za 3 u desno u alfabetu A \rightarrow D, B \rightarrow E, ...
- ROT13: svaki znak se rotira za 13 mesta text = ROT13(ROT13(text))
- napadi na jednostavne šifre zamene zasnivaju se na statističkim karakteristikama jezika

Informaciona bezbednost 13 / 81

Šifre premeštanja

- znakovi u otvorenom tekstu se premeštaju
- primer: kolonska zamena

COMPUTER GRAPHICS MAY BE SLOW BUT AT LEAST IT'S EXPENSIVE

COMPUTERGR APHICSMAYB ESLOWBUTAT

LEASTITSEX PENSIVE

Γ

CAELPOPSEEMHLANPIOSSUCWTITSBIVEMUTERATSGYAERBTX

Informaciona bezbednost 14 / 81

Rotorske mašine

- rotorska mašina ima tastaturu i niz rotora
 - rotor predstavlja permutaciju alfabeta
 - rotori su međusobno povezani
 - rotori se okreću u različitim koracima
 - period ponavljanja za n-rotorsku mašinu je 26ⁿ
- Enigma
 - radi sa tri rotora iz skupa od pet
 - svaki rotor se primeni dva puta za iedan znak
 - permutaciia alfabeta pre rotora

Informaciona bezbednost 15 / 81

Jednokratna sveska - savršena šifra

- one-time pad: veliki neponavljajući niz slučajnih slova
 - beskonačna traka za teleprintere
- šifrovanje znaka: sabiranje znaka iz otvorenog teksta sa znakom iz niza po modulu 26
- kada se znak iz niza upotrebi, ne može se više koristiti
- pošiljalac i primalac moraju posedovati istu beskonačnu traku
- sigurnost ove šifre zavisi od beskonačne trake
 - ona mora da sadrži zaista slučajan niz, a ne rezultat rada generatora pseudo-slučajnih brojeva
- svaki niz znakova je podjednako verovatan kandidat za ključ
 - svaki dešifrovani tekst je podjednako verovatan
- problemi:
 - generisanje zaista slučajnog niza
 - distribuciia niza
 - sinhronizacija učesnika u komunikaciji
 - konačna veličina trake u praksi

Informaciona bezbednost 16 / 81

Protokoli

- serija postupaka, sa najmanje dva učesnika, namenjena obavljanju nekog zadatka
- svi učesnici moraju poznavati protokol i znati potrebne korake unapred
- svi učesnici u protokolu se moraju dogovoriti da ga koriste
- protokol mora biti nedvosmislen
 - koraci moraju biti dobro definisani
 - ne sme biti prilike za nesporazum
- protokol mora biti kompletan
 - mora imati definisanu akciju za svaku moguću situaciju
- ne bi trebalo da je moguće učiniti više ili saznati više nego što je predviđeno protokolom

Informaciona bezbednost 17/8

Protokoli

primer: kupoprodaja automobila

uloge

Alice: prodavac

Bob: kupac

Trent: advokat

- scenario
 - Alice daje potpisan ugovor Trentu
 - Bob daje ček Alice
 - Alice podiže novac
 - Trent čeka određeni period vremena da Alice javi da li je ček prošao
- ako jeste, daje ugovor Bobu
- ako nije, vraća ugovor Alice
- ako se Alice ne javi na vreme, daje ugovor Bobu

Informaciona bezbednost 18 / 81

Protokoli

• standardne uloge u literaturi

Alice	First participant in all the protocols
Bob	Second participant in all the protocols
Carol	Participant in the three- and four-party protocols
Dave	Participant in the four-party protocols
Eve	Eavesdropper
Mallory	Malicious active attacker
Trent	Trusted arbitrator
Walter	Warden; guards Alice and Bob in some protocols
Victor	Verifier

Informaciona bezbednost 19 / 81

Tipovi protokola

- arbitrated
- adjudicated
- self-enforcing

Informaciona bezbednost 20 / 81

Tipovi protokola - Arbitrated

- arbitrator je treća osoba kojoj svi veruju i koja nije zainteresovana za ishod protokola
- u realnom svetu, advokati, banke i notari se koriste kao arbitratori
- Trent će igrati ulogu arbitratora

Informaciona bezbednost 21 / 81

Tipovi protokola - Arbitrated problemi

- lakše je naći treću osobu u realnom svetu nego na mreži
- uvek postoji dodatno kašnjenje
- arbitrator mora da učestvuje u svakoj transakciji i tako postaje usko grlo u komunikaciji
- pošto svi veruju arbitratoru, on postaje ranjiva tačka

Informaciona bezbednost 22 / 81

Tipovi protokola - Adjudicated

- može se podeliti na dva potprotokola nižeg nivoa
 - jedan nearbitrirani protokol će se pokrenuti svaku put kada učesnici žele da kompletiraju protokol
 - drugi je arbitrirani protokol koji se pokreće samo kada postoji spor između učesnika
- adjucitator takođe nije zainteresovana strana za ishod protokola
 - poziva se samo je potrebno utvrditi da li je protokol izvršen pravično
- sudije su profesionalni adjudicatori

Informaciona bezbednost 23 / 81

Tipovi protokola - Self-enforcing

- sam protokol garantuje pravičnost
 - nije potreban arbitrator da se kompletira protokol
 - nije potreban adjudicator da se reši spor
- protokol je dizajniran tako da ne može biti sporova
- varanje se može otkriti a protokol prekinuti
- protokoli koji se samosprovode ne postoje za svaku situaciju

Informaciona bezbednost 24 / 81

Napadi na protokole

pasivni napadi

- neko ko nije uključen u protokol pokušava da prisluškuje neki deo ili ceo protokol
- teško je otkriti, pa pokušavamo da sprečimo prisluškivanje

aktivni napadi

- napadač može da pokuša da izmeni protokol u svoju korist
- napadač se pretvara da je neko drugi
- napadač menja poruke, uvodi nove poruke, briše postojeće poruke, reprodukuje stare poruke

varalice

- učesnici koji su uključeni u protokol
- pasivne varalice prate protokol ali pokušavaju da dobiju više informacija o njemu
- aktivne varalice ometaju protokol koji je u toku da bi varali

Informaciona bezbednost 25 / 81

Komunikacija pomoću simetričnih algoritama

- Alice i Bob dogovore algoritam
- Alice i Bob dogovore ključ
- Alice svoju poruku šifruje dogovorenim algoritmom i ključem
- Alice šalje šifrirani tekst Bobu
- Bob dešifruje poruku istim algoritmom i ključem

Informaciona bezbednost 26 / 81

Komunikacija pomoću simetričnih algoritama

- mogućnosti napada Eve
 - prisluškuje komunikaciju u koraku 4
 - known-ciphertext napad
 - prisluškuje komunikaciju u koraku 1
 - dopustivo, postoje javni simetrični algoritmi koji su dovolino dobri

- nije dopustivo! Alice i Bob moraju dogovoriti kliuč u tainosti
- ključ mora ostati tajan sve dok poruke koje su niime šifrovane moraju ostati taine

Informaciona bezbednost 27 / 81

Komunikacija pomoću simetričnih algoritama

- mogućnosti napada Mallory
 - pokušava da presretne komunikaciju između Alice i Boba
 - ako je presretne u koraku 2, može da šalje lažne poruke

Informaciona bezbednost 28 / 81

Komunikacija pomoću simetričnih algoritama

- ključevi se moraju distribuirati sigurnim komunikacionim kanalom
- ako je ključ kompromitovan
 - sve poruke šifrovane njime su kompromitovane
 - napadač može da se lažno predstavlja kao učesnik u komunikaciji
- ako se koristi poseban ključ za komunikaciju svakog para učesnika u mreži
 - za mrežu od n učesnika potrebno je n(n-1)/2 ključeva
 - 10 korisnika → 45 ključeva
 - 100 korisnika → 4950 ključeva

Informaciona bezbednost 29 / 81

Jednosmerne funkcije

- funkcije čiji rezultat je lako izračunati, ali rezultat inverzne funkcije nije, odnosno
 - za dato x lako je izračunati f(x),
 - za dato f(x) nije lako izračunati x
- lako/teško: računska složenost algoritma
- ne postoji matematički dokaz da jednosmerne funkcije postoje, ali za neke funkcije možemo reći da su jednosmerne jer ne znamo lak način da izračunamo inverznu funkciju
- primer: x^2 u konačnom polju je lako izračunati, ali $x^{1/2}$ nije
- trapdoor one-way functions
 - vrednost funkcije može se lako izračunati
 - inverzna vrednost može se lako izračunati ako se zna neka tajna

Informaciona bezbednost 30 / 81

Jednosmerne hash funkcije

- jednosmerne funkcije koje imaju
 - ulaz promenljive dužine
 - izlaz fiksne dužine
- primer: java.lang.String.hashCode()

$$h = s[0] * 31^{n-1} + s[1] * 31^{n-2} + \dots + s[n-1]$$

Informaciona bezbednost 31/81

Jednosmerne hash funkcije

- collision-free funkcije
 - teško je generisati dva ulaza koji daju isti izlaz
- funkcije su javne
- tajnost je sadržana u jednosmernosti
 - promena jednog bita u ulazu menja u proseku polovinu bitova na izlazu
- message authentication codes (MAC)
 - jednosmerna hash funkcija + ključ za šifrovanje
 - hash vrednost može da proveri samo onaj ko ima i ključ

Informaciona bezbednost 32 / 81

Komunikacija pomoću asimetričnih algoritama

- Alice i Bob dogovore algoritam
- Bob šalje Alice svoj javni ključ
- Alice šifruje svoju poruku Bobovim javnim ključem
- Alice šalje šifrovanu poruku Bobu
- Bob dešifruje poruku svojim tajnim ključem

Informaciona bezbednost 33 / 81

Komunikacija pomoću asimetričnih algoritama

- nema problema sa razmenom tajnih ključeva tajni ključevi se ne razmenjuju
- grupa učesnika u komunikaciji može da
 - usvoji jedinstveni asimetrični algoritam i
 - formira bazu podataka sa ključevima
- Alice uzima Bobov javni ključ iz baze podataka
- Alice šifruje svoju poruku Bobovim javnim ključem
- Alice šalje šifrovanu poruku Bobu
- Bob dešifruje poruku svojim tajnim ključem

Informaciona bezbednost 34 / 81

Komunikacija pomoću asimetričnih algoritama

- osnova asimetričnih algoritama: trapdoor one-way funkcije
 - enkripcija: "lak" smer
 - dekripcija (bez tajnog ključa): "težak" smer

Informaciona bezbednost 35 / 81

Komunikacija pomoću asimetričnih algoritama

- asimetrični algoritmi ne predstavljaju univerzalnu zamenu za simetrične
 - spori su
- najmanje 1000 puta sporiji od simetričnih
 - ranjivi su na chosen-plaintext napade
- ako je tajna poruka jedna iz konačnog skupa od n poruka, potrebno je šifrovati (javnim ključem!) svih n poruka i rezultat uporediti sa tajnom porukom

Informaciona bezbednost 36 / 81

Hibridni kriptosistemi

- asimetrični algoritmi se koriste za razmenu ključeva za simetrične algoritme
- ključ za simetričan algoritam se koristi samo u jednoj sesiji (session key)
- potencijalni (ali mnogo manji) problem kompromitovanje tajnog ključa
- Bob šalje Alice svoj javni ključ
- Alice generiše slučajni ključ za sesiju, šifruje ga Bobovim javnim ključem i šalie Bobu
- Bob dešifruje poruku i dobija ključ za sesiju
- Alice i Bob nastavljaju komunikaciju koristeći ključ za sesiju

Informaciona bezbednost 37 / 81

Digitalni potpisi

- osobine klasičnih potpisa
 - autentičnost potvrđuje da je baš potpisnik potpisao dokument
 - nije ponovo iskoristiv potpis se ne može preneti na drugi dokument
 - potpisani dokument je nepromenljiv nakon što se dokument potpiše, ne može se više menjati
 - neporeciv potpisnik ne može kasnije poricati da je potpisao dokument

Informaciona bezbednost 38 / 81

Digitalni potpisi

- pomoću simetričnog algoritma i arbitratora
 - treći učesnik je arbitrator kome obe strane veruju
 - ključevi za simetrični algoritam su definisani između svih učesnika i arbitratora
 - postupak:
 - Alice šifruje svoju poruku za Boba ključem K_A i šalje je Trentu
 - Trent dešifruje poruku pomoću K_A
 - Trent šifruje poruku i izjavu da ju je primio od Alice ključem K_B
 - Trent šalje šifrovanu poruku Bobu
 - Bob dešifruje poruku ključem K_B i može da pristupi i originalnoj poruci i Trentovoj potvrdi da je poruka stigla od Alice

Informaciona bezbednost 39 / 81

Digitalni potpisi

- pomoću simetričnog algoritma i arbitratora
 - autentičnost
 - nije ponovo iskoristiv
 - nepromenljivost potpisanog dokumenta
 - neporecivost
- obavezan uslov
 - svi veruju Trentu
 - Trent ne pravi greške
 - ALI Trent može biti preopterećen u uslovima velikog broja učesnika i/ili intenzivne komunikacije

Informaciona bezbednost 40 / 81

Digitalni potpisi

- pomoću asimetričnog algoritma
 - Alice šifruje poruku svojim tajnim ključem time je i potpisuje
 - Alice šalje poruku Bobu
 - Bob dešifruje poruku Alicinim javnim ključem time potvrđuje i potpis

Informaciona bezbednost 41 / 8'

Digitalni potpisi

- pomoću asimetričnog algoritma
 - Bob može da pokuša da više puta iskoristi isti Alicin dokument (npr. ček)
- u potpisani dokument se ugrađuje i timestamp
- praktična ograničenja
 - asimetrični algoritmi su previše spori za potpisivanje velikih dokumenata

Informaciona bezbednost 42 / 81

Digitalni potpisi

- pomoću jednosmernih hash funkcija
 - umesto da se potpisuje ceo dokument, potpisuje se njegov hash
 - postupak
 - Alice izračunava hash svog dokumenta
 - Alice šifrira hash svog dokumenta pomoću svog tajnog ključa time potpisuje hash
 - Alice šalje dokument i potpisani hash Bobu
 - Bob izračunava hash primljenog dokumenta; dešifruje primljeni hash; ako su dve hash vrednosti jednake, potpis je ispravan

Informaciona bezbednost 43 / 81

Digitalni potpisi

- pomoću jednosmernih hash funkcija
 - višestruki potpisi istog dokumenta
 - postupak
 - Alice potpisuje hash dokumenta
 - Bob potpisuje hash dokumenta
 - Bob šalje svoj potpis Alice
 - Alice šalje dokument i oba potpisa Carol
 - 6 Carol proverava i Alicin i Bobov potpis

Informaciona bezbednost 44 / 81

Digitalni potpisi

- digitalni potpisi sa šifrovanjem dokumenata
 - Alice potpisuje poruku svojim privatnim ključem
 - Alice šifruje poruku Bobovim javnim ključem
 - Alice šalje poruku Bobu
 - Bob dešifruje poruku svojim tainim ključem
 - Bob proverava potpis Alicinim javnim ključem i dobija otvorenu poruku

Informaciona bezbednost 45 / 81

Sertifikati

šta je sertifikat

We certify that the domain **www.somefirm.com** is the owner of the following public key:

This key is valid from: 01/01/2004 This key expires on: 01/01/2006

Signed, VeriSign, Inc. Certificate Authority

Informaciona bezbednost 46 / 81

Sertifikati

- Certificate Authority (CA)
 - (pravno) lice od poverenja
 - njegov javni ključ je poznat
 - potpisuje sertifikate

Informaciona bezbednost 47 / 81

Sertifikati

- ulančavanje sertifikata (certificate chaining)
 - CA može da izda sertifikat sa naznakom da je primalac ovlašćen da izdaje dalje sertifikate
 - CA hijerarhija

lanac sertifikata – putanja od neposrednog CA do korenskog CA

Informaciona bezbednost 48 / 81

Sertifikati

- "root CA" je self-signed
- browseri sadrže "root CA" sertifikate
- svaki sertifikat sadrži "CA flag"
 - da li vlasnik ima pravo da izdaje nove sertifikate, tj. da li je vlasnik takođe CA

Informaciona bezbednost 49 / 81

Sertifikati

X.509 standard

Informaciona bezbednost 50 / 81

Sertifikati

X.509 standard

primer sertifikata

```
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=CS, L=Novi Sad, O=FTN, OU=Odelienie za sertifikate, CN=FTN CA, Email=ca@uns.ac.rs
Validity:
  Not Before: Jun 8 10:00:00 2004 GMT
  Not After: Jun 7 10:00:00 2005 GMT
Subject: C=CS, L=Novi Sad, O=FTN, OU=Katedra za informatiku, CN=Milan Stoikov, Email=stoikovm@uns.ac.rs
Subject Public Key Info:
  Public Key Algorithm: rsaEncryption
  RSA Public Kev: (1024 bit)
    Modulus (1024 bit): 00:b3:4e:75:76:fc:4c:c3:bd:61:6c:14:41:8f:47:...
    Exponent: 65537 (0x10001)
X 509v3 Extensions:
  X 509v3 Basic Constraints
    CA: false
  Netscape Comment:
    OpenSSL Generated Certificate
  X.509v3 Subject Key Identifier:
     a6:db:b8:78:19:7a:c4:67:23:de:03:a3:ee:d4:26:5e:78:14:71:61
Signature:
  9f:15:a8:cb:6c:a9:0d:d4:61:24:b9:7a:bc:29:e4:29:8b:4c:...
```

Informaciona bezbednost 51 / 81

Sertifikati

- X.509 standard
 - hijerarhijska organizacija imena (C=CS, L=Novi Sad, O=FTN, ...) potiče od X.500 standarda, sveobuhvatnog direktorijumskog servisa

svaki čvor stabla ima svoj CA

Informaciona bezbednost 52 / 81

Sertifikati

- X.509 standard
 - problem distribucije ključeva pretvoren je u problem distribucije imena
- ljudi sa istim imenom i prezimenom u istoj organizaciji
- kreiranje jedinstvenih naziva pretraživanje po imenu više nema smisla
 - John Smith 1 vs John Smith 2 vs John Smith 3

Informaciona bezbednost 53 / 81

Razmena ključeva

- ullet šifrovanje svake pojedine konverzacije posebnim ključem \sim session key
- distribucija ključeva za sesije je poseban problem

Informaciona bezbednost 54 / 81

Razmena ključeva

- pomoću simetričnog algoritma
 - Alice traži od Trenta novi session key
 - Trent generiše session key i šifruje ga dva puta: pomoću Alicinog i Bobovog ključa i obe poruke šalje Alice
 - Alice dešifruje svoju session key kopiju
 - Alice šalje Bobu njegovu session key kopiju
 - Bob dešifruje svoju kopiju
 - Alice i Bob koriste session key za dalju komunikaciju
- Trent mora biti apsolutno siguran
- Trent je potencijalno usko grlo

Informaciona bezbednost 55 / 81

Razmena ključeva

- pomoću asimetričnog algoritma
 - javna baza podataka sa svim potpisanim javnim ključevima = KDC (Key Distribution Center)
 - Alice uzima Bobov javni ključ iz KDC
 - Alice generiše slučajni session key, šifruje ga Bobovim javnim ključem i šalje ga Bobu
 - Bob dešifruje Alicinu poruku svojim tajnim ključem
 - dalja komunikacija koristi session kev

Informaciona bezbednost 56 / 81

Razmena ključeva

- šta može Eve?
 - ciphertext-only napad

Informaciona bezbednost 57 / 81

Razmena ključeva

- šta može Mallory?
 - man-in-the-middle napad
 - Alice šalje Bobu svoj javni ključ; Mallory presreće ovaj ključ i šalje Bobu svoj javni ključ
 - Bob šalje Alice svoj javni ključ; Mallory presreće i ovaj ključ i šalje Alice svoj javni ključ
 - kada Bob šalje Alice poruku, Mallory je presreće i otvara (svojim ključem), šifruje ponovo Alicinim i šalie nioi
 - isto i kada Alice šalje poruku Bobu
 - Alice i Bob nemaju način da provere da li zaista komuniciraju

Informaciona bezbednost 58 / 81

Razmena ključeva

- interlock protokol
 - Alice šalje Bobu svoj javni ključ
 - Bob šalje Alice svoj javni ključ
 - Alice šifruje poruku Bobovim javnim ključem, i šalje polovinu poruke Bobu
 - Bob šifruje svoju poruku Alicinim javnim ključem, i šalje polovinu poruke Alice
 - Alice šalje drugu polovinu poruke Bobu
 - Bob rekonstruiše celu poruku iz dve njene polovine, potom šalje svoju drugu polovinu
 - Alice rekonstruiše celu poruku iz dve polovine
- "polovina poruke"
 - svaki drugi bit
 - prva polovina hash, druga polovina sama poruka

Informaciona bezbednost 59 / 81

Razmena ključeva

- šta može Mallory?
 - može da presretne ključeve iz koraka 1. i 2.
 - presretanjem polovine poruke iz koraka 3, ne može je dešifrovati svojim tajnim ključem pa šifrovati Bobovim javnim ključem – to više neće biti ta polovina
 - isto i u drugom smeru

Informaciona bezbednost 60 / 81

Razmena ključeva

- razmena ključeva sa digitalnim potpisima
 - potreban je KDC (Trent) koji potpisuje sve javne ključeve
 - kada Alice i Bob prime javne ključeve, proveravaju ih pomoću Trentovog potpisa
 - Mallory ne može da zameni javne ključeve prilikom presretanja komunikacije, jer je njegov javni ključ potpisan od strane Trenta da je njegov
- kompromitacija KDC
 - ako Mallory upadne u KDC, dobija Trentov privatni ključ
 - ovaj ključ mu omogućava da podmeće lažne javne ključeve, ali
 - da bi mogao da dešifruje session ključeve, mora biti u stanju da presreće i menja poruke između Alice i Boba

Informaciona bezbednost 61 / 81

Razmena ključeva

- komunikacija bez prethodne razmene ključeva
 - Alice generiše session ključ, i njime šifruje poruku
 - Alice uzima Bobov javni ključ iz KDC
 - Alice šifruje session ključ Bobovim javnim ključem
 - Alice šalje šifrovanu poruku i šifrovani ključ Bobu (ceo paket se može potpisati)
 - Bob dešifruje session ključ svojim tajnim ključem
 - Bob dešifruje poruku session ključem

Informaciona bezbednost 62 / 81

Ostali protokoli

- autentifikacija
 - jednosmerne hash funkcije
 - međusobna autentifikacija pomoću interlock protokola
 - Kerberos
- podela tajne
- timestamping
- zero-knowledge proofs
- blind signatures
- elektronske glasačke mašine
- digitalni keš

Informaciona bezbednost 63 / 81

Dužina ključeva

- sigurnost kriptosistema zavisi od
 - sigurnosti algoritma
 - dužine ključa
- siguran algoritam:
 - nema boljeg načina za razbijanje od brute-force napada
 - teško dostižno u praksi
- brute-force napad je known-plaintext napad
 - realna mogućnost ovakvog napada

Informaciona bezbednost 64 / 81

Dužina ključeva

- simetrični algoritmi
 - ključ dužine n bita \rightarrow postoji 2^n mogućih ključeva / pokušaja
 - verovatnoća je 50% da će traženi ključ biti u prvoj polovini pokušaja
 - problem idealan za paralelno procesiranje
- mogućnost pronalaženja ključa: procena troškova i vremena
 - Murov zakon: procesna moć se duplira svakih 18 meseci
 - troškovi se smanjuju 10 puta svakih 5 godina
 - oprema koja je 2012. koštala 1.000.000 € u 2020. košta 100.000 €
- brzina otkrivanja ključa ~ količina novca
- procena "vrednosti ključa", tj. vrednosti informacija koje ključ čuva
- vrednost informacija može da opada vremenom
- ključ vredan 100 € nema smisla razbijati opremom od 10.000.000 €
- dužina ključa se projektuje prema potrebnoj dužini trajanja tajnosti ključa

Informaciona bezbednost 65 / 81

Dužina ključeva

- simetrični algoritmi
 - hardverski i softverski sistemi za razbijanje
- softver je oko 1000 puta sporiji od hardvera
- veliki broj besposlenih servera na Internetu koji se može angažovati (sa ili bez volje administratora)
- dužina ključa klasičnih algoritama: 56-256 bita
- preporuka da od 2016. ključevi budu veći od 112 bita

Procena potrebnog vremena/novca za hardverski brute-force napad

,							
Cena	56 bita	64 bita	80 bita	112 bita	128 bita		
\$100K	35 sati	1 godina	70.000 god	10 ¹⁴ godina	10 ¹⁹ godina		
\$1M	3.5 sata	37 dana	7000 godina	10 ¹³ godina	10 ¹⁸ godina		
\$10M	21 minut	4 dana	700 godina	10 ¹² godina	10 ¹⁷ godina		
\$100M	2 minuta	9 sati	70 godina	10 ¹¹ godina	10 ¹⁶ godina		
\$1G	13 sekundi	1 sat	7 godina	10 ¹⁰ godina	10 ¹⁵ godina		
\$10G	1 sekunda	5.4 minuta	245 dana	109 godina	10 ¹⁴ godina		
\$100G	0.1 sekunda	32 sekunde	24 dana	108 godina	10 ¹³ godina		
\$1T	0.01 sekunda	3 sekunde	2.4 dana	10 ⁷ godina	10 ¹² godina		

Informaciona bezbednost 66 / 81

Dužina ključeva

- simetrični algoritmi
 - granice dužine
- drugi zakon termodinamike
 - čuvanje jednog bita promenom stanja sistema troši energije minimalno kt
 - računar koji radi na temperaturi pozadinskog zračenja (3,2°K) bi potrošio energiju koju Sunce emituje tokom 32 godine da napaja 192-bitni brojač koji će da obrne ceo krug
 - napajanje pomoću supernove → 219-bitni brojač
 - 256-bitni kliučevi će trajati koliko i Vasiona

Informaciona bezbednost 67 / 81

Dužina ključeva

asimetrični algoritmi

- brute-force napad ne predstavlja testiranje svih mogućih ključeva, nego izračunavanje tajnog ključa na osnovu javnog
- ullet tajni o javni o množenje dva velika prosta broja računski jednostavno
- ullet javni o taini o faktorisanie količnika (za sada) računski složeno
- period tajnosti ključeva može se odabrati proizvoljno dugo (sa današnjim znanjem matematike)

Informaciona bezbednost 68 / 81

Dužina ključeva

NIST preporučena dužina ključeva

Date	Minimum of Strength	Symmetric Algorithms	Factoring Modulus		crete arithm Group	Elliptic Curve	Hash (A)	Hash (B)
(Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1**	
2016 - 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-512/224 SHA3-224	
2016 - 2030 & beyond	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/256 SHA3-256	SHA-1
2016 - 2030 & beyond	192	AES-192	7680	384	7680	384	SHA-384 SHA3-384	SHA-224 SHA-512/224
2016 - 2030 & beyond	256	AES-256	15360	512	15360	512	SHA-512 SHA3-512	SHA-256 SHA-512/256 SHA-384 SHA-512 SHA3-512

Informaciona bezbednost 69 / 81

Dužina ključeva

NIST preporučeno trajanje ključeva

Key Type	Cryptoperiod				
Move the cursor over a type for description	Originator Usage Period (OUP)	Recipient Usage Period			
Private Signature Key	1-3 years	-			
Public Signature Key	Several years (depends on key size)				
Symmetric Authentication Key	<= 2 years	<= OUP + 3 years			
Private Authentication Key	1-2 years				
Public Authentication Key	1-2 years				
Symmetric Data Encryption Key	<= 2 years	<= OUP + 3 years			
Symmetric Key Wrapping Key	<= 2 years	<= OUP + 3 years			
Symmetric RBG keys	Determined by design	-			
Symmetric Master Key	About 1 year				
Private Key Transport Key	<= 2 years (1)				
Public Key Transport Key	1-2 years				
Symmetric Key Agreement Key	1-2 years (2)				
Private Static Key Agreement Key	1-2 years (3)				
Public Static Key Agreement Key	Public Static Key Agreement Key 1-2 years				
Private Ephemeral Key Agreement Key					
Public Ephemeral Key Agreement Key	One key agreement transaction				
Symmetric Authorization Key					
Private Authorization Key	<= 2 years				
Public Authorization Key	<= 2 ye	ears			

Informaciona bezbednost 70 / 81

Upravljanje ključevima

- u praksi najranjiviji deo sistema login:root password:root
- \$100M za brute-force napad ili \$100K za podmićivanje?
- loša implementacija
 - DiskLock for Mac DES algoritam za šifrovanje fajlova, ali se ključ smešta u fajl

Informaciona bezbednost 71 / 8

Upravljanje ključevima

- generisanje ključeva
 - redukovan prostor ključeva
 - upotreba samo ASCII karaktera za ključeve
- loš izbor ključeva
 - ime drage osobe, kućnog ljubimca, broj lične karte
 - dictionary attack
- bolji izbor ključeva
 - duže fraze kao lozinke
 - izračunavanje hash vrednosti za duži string koji sadrži neku lako pamtivu frazu
 - izbegavati suviše poznate fraze

Informaciona bezbednost 72 / 81

Upravljanje ključevima - o čemu još treba razmišljati?

- distribucija ključeva
- skladištenje ključeva
- backup
- "rok trajanja" ključa

Informaciona bezbednost 73 / 81

Tipovi algoritama

- block cipher
 - operišu nad blokovima otvorenog i šifriranog teksta
 - blok je tipično 64 bita
- stream cipher
 - operišu nad tokom otvorenog/šifriranog teksta po 1 bit/bajt/reč istovremeno
 - keystream generator

Informaciona bezbednost 74 / 81

Tipovi algoritama

- stream cipher
 - self-synchronizing stream cipher
- next-state function = ciphertext

Informaciona bezbednost 75 / 81

Tipovi algoritama

block vs stream

- block algoritmi se mogu implementirati kao stream i obrnuto
- "block šifre operišu nad podacima sa fiksnom transformacijom nad blokovima otvorenog teksta; stream šifre operišu sa transformacijama nad pojedinim ciframa otvorenog teksta koje se menjaju tokom vremena"

Informaciona bezbednost 76 / 81

Režimi rada

- electronic codebook (ECB)
 - jedan blok otvorenog teksta se uvek šifruje nezavisno istim ključem
 - moguće je napraviti rečnik (codebook) sa svim kombinacijama otvorenih i šifriranih blokova
 - podložno aktivnim napadima (Mallory)
- cipher block chaining (CBC)
 - otvoreni tekst narednog bloka se XORuje sa šifriranim tekstom prethodnog bloka
 - prvi blok se XORuje sa slučajnim inicijalizacionim blokom ("vektorom")
 - dešifrovanje analogno šifrovanju nakon dešifrovanja bloka on se XORuje sa prethodno dešifrovanim blokom

Informaciona bezbednost 77 / 8'

Režimi rada

- cipher feedback (CFB)
 - blok šifra implementirana kao samosinhronizujuća stream šifra
 - blok se tretira kao red (shift registar), inicijalno popunjen slučajnim sadržajem
 - blok se šifrira, i početak reda (n bita) se XORuje sa ulaznim podatkom iz otvorenog teksta (n bita) – tako se dobija izlazni podatak, koji se upisuje na kraj blok registra

Informaciona bezbednost 78 / 81

Režimi rada

- output feedback (OFB)
 - slično kao CFB, s tim što se u blok registar dodaje element iz rezultata šifrovanja (pre XORovanja)

Informaciona bezbednost 79 / 81

Režimi rada

- counter (CTR)
 - svaki blok otvorenog teksta se XORuje sa brojačem koji mora biti različit za svaki blok koji se šifrira
 - brojač se inkrementira za svaki naredni blok
 - vrednost brojača se šifrira i tako XORuje

Informaciona bezbednost 80 / 81

Režimi rada

• rezultat šifrovanja različitim režimom rada

Informaciona bezbednost 81 / 81