Multimelement, The traunition matters element is

$$\langle \Psi_f^{(-)}(\mathbf{k}_{bB})|V(r_{1p})|\Psi_l^{(+)}(k_{aA},\hat{\mathbf{z}})\rangle = \frac{(4\pi)^{3/2}}{k_{aA}k_{bB}}\sum_{l\bar{l}m}((l_f\frac{1}{2})_{j_f}(l_f\frac{1}{2})_{j_f}|(l_fl_f)_0(\frac{1}{2}\frac{1}{2})_0)_0$$

$$\times \left((l_i \tfrac{1}{2})_{j_i} (l_i \tfrac{1}{2})_{j_i} | (l_i l_i)_0 (\tfrac{1}{2} \tfrac{1}{2})_0 \right)_0 \sqrt{2l+1} i^{-l_p} \exp[i(\sigma_l^f + \sigma_l^l)]$$

$$\times 2Y_{m}^{\bar{l}}(\hat{\mathbf{k}}_{bB}) \sum_{\sigma_{1}\sigma_{2}} \int \frac{d\mathbf{r}_{bB}d\mathbf{r}d\eta}{r_{bB}r_{aA}} u_{l_{f}j_{f}}(r_{A1}) u_{l_{f}j_{f}}(r_{A2}) u_{l_{i}j_{i}}(r_{b1}) u_{l_{i}j_{i}}(r_{b2})$$
(7.44)

$$\times \left[Y^{l_f}(\hat{\mathbf{r}}_{A1})Y^{l_f}(\hat{\mathbf{r}}_{A2})\right]_0^{0*} \left[Y^{l_i}(\hat{\mathbf{r}}_{b1})Y^{l_i}(\hat{\mathbf{r}}_{b2})\right]_0^0$$

$$\times f_{\overline{l}}(r_{bB})g_{l}(r_{aA}) \left[\chi(\sigma_{1})\chi(\sigma_{2})\right]_{0}^{0*} Y_{m}^{\overline{l}*}(\hat{\mathbf{r}}_{bB})V(r_{1p})$$

 $\times \left[\chi(\sigma_1)\chi(\sigma_2)\right]_0^0 Y_0^l(\hat{\mathbf{r}}_{aA}),$ Simplifying. Which after a number of simplifying.

$$\langle \Psi_f^{(-)}(\mathbf{k}_{bB})|V(r_{1p})|\Psi_l^{(+)}(k_{aA},\hat{\mathbf{z}})\rangle = \frac{(4\pi)^{3/2}}{k_{aA}k_{bB}}\sum_{llm}\sqrt{\frac{(2j_f+1)(2j_l+1)}{(2l_f+1)(2l_l+1)}}$$

$$\times \sqrt{2l+1}i^{-l} \exp[i(\sigma_{l}^{f} + \sigma_{l}^{i})]$$

$$\times Y_{m}^{l}(\hat{\mathbf{k}}_{bB}) \int \frac{d\mathbf{r}_{bB}d\mathbf{r}d\eta}{r_{bB}r_{cA}} u_{l_{f}j_{f}}(r_{A1}) u_{l_{f}j_{f}}(r_{A2}) u_{l_{l}j_{l}}(r_{b1}) u_{l_{l}j_{l}}(r_{b2})$$
(7.45)

$$\times \left[Y^{l_f}(\hat{\mathbf{r}}_{A1}) Y^{l_f}(\hat{\mathbf{r}}_{A2}) \right]_0^{0*} \left[Y^{l_i}(\hat{\mathbf{r}}_{b1}) Y^{l_i}(\hat{\mathbf{r}}_{b2}) \right]_0^0$$

One last δ set $V_m^I(r_{bB})g_I(r_{aA})Y_m^I(\hat{r}_{bB})V(r_{1p})Y_0^I(\hat{r}_{aA})$. We clearly need I=I and m=0. We also introduce the Legendre polynomials g leads to,

$$\langle \Psi_{f}^{(-)}(\mathbf{k}_{bB})|V(r_{1p})|\Psi_{l}^{(+)}(k_{aA},\hat{\mathbf{z}})\rangle = \frac{(4\pi)^{-1/2}}{k_{aA}k_{bB}} \sum_{l} \sqrt{(2j_{f}+1)(2j_{l}+1)}$$

$$\times \sqrt{2l+1} \Gamma^{l} \exp[i(\sigma_{l}^{f}+\sigma_{l}^{i})]Y_{0}^{l}(\hat{\mathbf{k}}_{bB})$$

$$\times \int \frac{d\mathbf{r}_{bB}d\mathbf{r}d\eta}{r_{bB}r_{aA}} u_{l_{f}j_{f}}(r_{A1})u_{l_{f}j_{f}}(r_{A2})u_{l_{f}l_{i}}(r_{b1})u_{l_{f}l_{i}}(r_{b2})$$

$$\times P_{l_{f}}(\cos\theta_{A})P_{l_{i}}(\cos\theta_{b})$$
(7.46)

$$\times f_l(r_{bB})g_l(r_{aA})Y_0^{l*}(\hat{\mathbf{r}}_{bB})V(r_{1p})Y_0^l(\hat{\mathbf{r}}_{aA}).$$

This injeles

We change the integration variables and proceed as in last section, what involves multiplying by $2\pi \sqrt{\frac{4\pi}{2l+1}}$, resulting in

$$\langle \Psi_{f}^{(-)}(\mathbf{k}_{bB})|V(r_{1p})|\Psi_{l}^{(+)}(k_{aA},\hat{\mathbf{z}})\rangle = \frac{2\pi}{k_{aA}k_{bB}} \sum_{l} \sqrt{(2j_{f}+1)(2j_{l}+1)}$$

$$\times i^{-l} \exp[i(\sigma_{l}^{f}+\sigma_{l}^{i})]Y_{0}^{l}(\hat{\mathbf{k}}_{bB})$$

$$\times \int dr_{aA} d\beta d\gamma dr_{12} dr_{b1} dr_{b2} r_{aA} \sin\beta r_{12}r_{b1}r_{b2}$$

$$\times P_{l_{f}}(\cos\theta_{A})P_{l_{l}}(\cos\theta_{b})u_{l_{f}j_{f}}(r_{A1})u_{l_{f}j_{f}}(r_{A2})u_{l_{l}j_{l}}(r_{b1})u_{l_{l}j_{l}}(r_{b2})$$

$$\times f_{l}(r_{bB})g_{l}(r_{aA})Y_{0}^{l*}(\hat{\mathbf{r}}_{bB})V(r_{1p})/r_{bB}.$$

$$(7.47)$$

(7.48)

an engression which can be see the rewritten as

$$\langle \Psi_f^{(-)}(\mathbf{k}_{bB})|V(r_{1p})|\Psi_i^{(+)}(k_{aA},\hat{\mathbf{z}})\rangle = \frac{1}{2k_{aA}k_{bB}}\sum_i \sqrt{(2j_f+1)(2j_i+1)}$$

$$\times i^{-l} \exp[i(\sigma_l^f + \sigma_l^i)] P_l(\cos\theta) (2l+1)$$

$$\times \int dr_{aA} d\beta d\gamma dr_{12} dr_{b1} dr_{b2} r_{aA} \sin\beta r_{12} r_{b1} r_{b2}$$

 $\times P_{l_f}(\cos\theta_A)P_{l_i}(\cos\theta_b)u_{l_fj_f}(r_{A1})u_{l_fj_f}(r_{A2})V(r_{1p})$

 $\times u_{i,j_i}(r_{b1})u_{i,j_i}(r_{b2})f_i(r_{bB})g_i(r_{aA})P_i(\cos\theta_{if})/r_{bB}.$ calculation t_i 7.1/.3 coordinates for the simultaneous coleulation To start we have

We refer to the notation used in We must find the expression of the variables appearing in the integral as functions of the integration variables r_{1p} , r_{2p} , r_{12} , R, β , γ (remember that $\mathbf{R} = R\hat{\mathbf{z}}$, see last section). R being the center of mass coordinate, we have C_1 and C_2

 $\mathbf{R} = \frac{1}{3} (\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_p) = \frac{1}{3} (\mathbf{R} + \mathbf{d}_1 + \mathbf{R} + \mathbf{d}_2 + \mathbf{R} + \mathbf{d}_p),$ (7.49)

so

$$\mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_p = 0. (7.50)$$

Together with

$$\mathbf{d}_1 + \mathbf{r}_{12} = \mathbf{d}_2 \qquad \mathbf{d}_2 + \mathbf{r}_{2p} = \mathbf{d}_p,$$
 (7.51)

we find

$$\mathbf{d}_{1} = \frac{1}{3} \left(2\mathbf{r}_{12} + \mathbf{r}_{2p} \right), \tag{7.52}$$

$$d_1^2 = \frac{1}{9} \left(4r_{12}^2 + r_{2p}^2 + 4\mathbf{r}_{12}\mathbf{r}_{2p} \right). \tag{7.53}$$

making use of

rating use of
$$r_{12} + r_{2p} = r_{1p}$$

$$r_{1p}^2 = r_{12}^2 + r_{2p}^2 + 2r_{12}r_{2p}$$

$$2r_{12}r_{2p} = r_{1p}^2 - r_{12}^2 - r_{2p}^2.$$

$$d_1 = \frac{1}{2}\sqrt{2r_{12}^2 + 2r_{1p}^2 - r_{2p}^2}.$$
(7.54)

$$d_1 = \frac{1}{3} \sqrt{2r_{12}^2 + 2r_{1p}^2 - r_{2p}^2}. (7.55)$$

Similarly, we

$$d_2 = \frac{1}{3} \sqrt{2r_{12}^2 + 2r_{2p}^2 - r_{1p}^2} \qquad d_p = \frac{1}{3} \sqrt{2r_{2p}^2 + 2r_{1p}^2 - r_{12}^2}.$$
 (7.56)

as the angle α between d_1 and r_{12} . We have

$$-\mathbf{d}_1\mathbf{r}_{12} = r_{12}d_1\cos(\alpha),\tag{7.57}$$

and

$$\cos(\alpha) = \frac{d_1^2 + r_{12}^2 - d_2^2}{2r_{12}d_1}.$$
 (7.59)

The complete determination of \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_{12} can be made by writing their expression in a simple configuration, in which the triangle lies in the xz-plane with \mathbf{d}_1 pointing along the positive z-direction, and $\mathbf{R}=0$. Then, a first rotation $\mathcal{R}_z(\gamma)$ of an angle γ around the z-axis, a second rotation $\mathcal{R}_y(\beta)$ of an angle β around the y-axis, and a translation along \mathbf{R} will bring the vectors to the most general configuration. In other words,

$$\mathbf{r}_{1} = \mathbf{R} + \mathcal{R}_{y}(\beta)\mathcal{R}_{z}(\gamma)\mathbf{r}_{1}^{\prime},$$

$$\mathbf{r}_{12} = \mathcal{R}_{y}(\beta)\mathcal{R}_{z}(\gamma)\mathbf{r}_{12}^{\prime},$$

$$\mathbf{r}_{2} = \mathbf{r}_{1} + \mathbf{r}_{12},$$

$$(7.60)$$

with

$$\mathbf{r}_{1}' = \begin{bmatrix} 0\\0\\d_{1} \end{bmatrix}, \tag{7.61}$$

$$\mathbf{r}'_{12} = r_{12} \begin{bmatrix} \sin(\alpha) \\ 0 \\ -\cos(\alpha) \end{bmatrix},\tag{7.62}$$

and the rotation matrixes are

$$\mathcal{R}_{y}(\beta) = \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix}, \tag{7.63}$$

and

 $\mathcal{R}_{z}(\gamma) = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0\\ \sin(\gamma) & \cos(\gamma) & 0\\ 0 & 0 & 1 \end{bmatrix}. \tag{7.64}$

We øbtain

$$\mathbf{r}_1 = \begin{bmatrix} d_1 \sin(\beta) \\ 0 \\ R + d_1 \cos(\beta) \end{bmatrix}, \tag{7.65}$$

$$\mathbf{r}_{12} = \begin{bmatrix} r_{12}\cos(\beta)\cos(\gamma)\sin(\alpha) - r_{12}\sin(\beta)\cos(\alpha) \\ r_{12}\sin(\gamma)\sin(\alpha) \\ -r_{12}\sin(\beta)\cos(\gamma)\sin(\alpha) - r_{12}\cos(\alpha)\cos(\beta) \end{bmatrix}, \tag{7.66}$$

$$\mathbf{r}_{2} = \begin{bmatrix} d_{1}\sin(\beta) + r_{12}\cos(\beta)\cos(\gamma)\sin(\alpha) - r_{12}\sin(\beta)\cos(\alpha) \\ r_{12}\sin(\gamma)\sin(\alpha) \\ R + d_{1}\cos(\beta) - r_{12}\sin(\beta)\cos(\gamma)\sin(\alpha) - r_{12}\cos(\alpha)\cos(\beta) \end{bmatrix}.$$
(7.67)

We also need $\cos(\theta_{12})$, ζ and $\cos(\theta_{\zeta})$, θ_{12} being the angle between \mathbf{r}_1 and \mathbf{r}_2 , $\zeta = \mathbf{r}_p - \frac{\mathbf{r}_1 + \mathbf{r}_2}{A + 2}$ the position of the proton with respect to the final nucleus, and θ_{ζ} the angle between ζ and the z-axis:

$$\cos(\theta_{12}) = \frac{\mathbf{r}_1 \mathbf{r}_2}{r_1 r_2},\tag{7.68}$$

and

$$\zeta = 3\mathbf{R} - \frac{A+3}{A+2}(\mathbf{r}_1 + \mathbf{r}_2),$$
 (7.69)

Ü

where we have used (7.49).

For heavy ions, we find instead

$$\mathbf{R} = \frac{1}{m_a} (\mathbf{r}_{A1} + \mathbf{r}_{A2} + \eta v_b \mathbf{r}_{Ab}), \tag{7.70}$$

$$\mathbf{d}_1 = \frac{1}{m_a} \left(m_b \mathbf{r}_{b2} - (m_b + 1) \mathbf{r}_{12} \right), \tag{7.71}$$

$$d_1 = \frac{1}{m_a} \sqrt{(m_b + 1)r_{12}^2 + m_b(m_b + 1)r_{b1}^2 - m_b r_{b2}^2},$$
 (7.72)

$$d_2 = \frac{1}{m_b} \sqrt{(m_b + 1)r_{12}^2 + m_b(m_b + 1)r_{b2}^2 - m_b r_{b1}^2},$$
 (7.73)

and

$$\zeta = \frac{m_a}{m_b} \mathbf{R} - \frac{m_B + m_b}{m_b m_B} (\mathbf{r}_{A1} + \mathbf{r}_{A2}). \tag{7.74}$$

The rest of the formulae are identical to (t, p) onesolve list them for reference: Convenional;

$$\mathbf{r}_{A1} = \begin{bmatrix} d_1 \sin(\beta) \\ 0 \\ R + d_1 \cos(\beta) \end{bmatrix}, \tag{7.75}$$

$$\mathbf{r}_{A2} = \begin{bmatrix} d_1 \sin(\beta) + r_{12} \cos(\beta) \cos(\gamma) \sin(\alpha) - r_{12} \sin(\beta) \cos(\alpha) \\ r_{12} \sin(\gamma) \sin(\alpha) \\ R + d_1 \cos(\beta) - r_{12} \sin(\beta) \cos(\gamma) \sin(\alpha) - r_{12} \cos(\alpha) \cos(\beta) \end{bmatrix}. \tag{7.76}$$

We we also find

$$\mathbf{r}_{b1} = \frac{1}{m_b} (\mathbf{r}_{A2} + (m_b + 1)\mathbf{r}_{A1} - m_a \mathbf{R}), \tag{7.77}$$

and

$$\mathbf{r}_{b2} = \frac{1}{m_c} (\mathbf{r}_{A1} + (m_b + 1)\mathbf{r}_{A2} - m_a \mathbf{R}). \tag{7.78}$$

 $\mathbf{r}_{b2} = \frac{1}{m_b} (\mathbf{r}_{A1} + (m_b + 1)\mathbf{r}_{A2} - m_a \mathbf{R}).$ We easily obtain One can readily obtain $\cos \theta_{12} = \frac{r_{A1}^2 + r_{A2}^2 - r_{12}^2}{2r_{A1}r_{A2}},$

$$\cos \theta_{12} = \frac{r_{A1}^2 + r_{A2}^2 - r_{12}^2}{2r_{A1}r_{A2}},\tag{7.79}$$

and

1

$$\cos \theta_i = \frac{r_{b1}^2 + r_{b2}^2 - r_{12}^2}{2r_{b1}r_{b2}}. (7.80)$$

r

7,1.4 matrix element for the transition amplitude (2)

The simultaneous amplitude can be written as (see [?])

$$T_{2NT}^{\underbrace{1step}} = 2 \frac{(4\pi)^{3/2}}{k_{Aa}k_{Bb}} \sum_{l_{p}j_{p}ml_{c}j_{p}} i^{-l_{p}} \exp[i(\sigma_{l_{p}}^{p} + \sigma_{l_{c}}^{t})] \sqrt{2l_{t} + 1}$$

$$\times \langle l_{p} m - m_{p} 1/2 m_{p} | j_{p} m \rangle \langle l_{c} 0 1/2 m_{c} | j_{c} m_{c} \rangle Y_{m-m_{p}}^{l_{p}} (\hat{k}_{Bb})$$

$$\times \sum_{\sigma_{1}\sigma_{2}\sigma_{p}} \int d\mathbf{r}_{Cc} d\mathbf{r}_{b1} d\mathbf{r}_{A2} \left[\psi^{j_{f}} (\mathbf{r}_{A1}, \sigma_{1}) \psi^{j_{f}} (\mathbf{r}_{A2}, \sigma_{2}) \right]_{0}^{0}$$

$$\times v(r_{b1}) \left[\psi^{j_{f}} (\mathbf{r}_{b1}, \sigma_{1}) \psi^{j_{f}} (\mathbf{r}_{b2}, \sigma_{2}) \right]_{0}^{0} \frac{g_{i_{f}}(r_{Aa}) f_{l_{p}j_{p}}(r_{Bb})}{r_{Aa}r_{Bb}}$$

$$\times \left[Y^{l_{1}} (\hat{\mathbf{r}}_{Aa}) \chi(\sigma_{p}) \right]_{m_{e}}^{j_{f}} \left[Y^{l_{p}} (\hat{\mathbf{r}}_{Bb}) \chi(\sigma_{p}) \right]_{m}^{j_{p}^{*}}.$$
(7.81)

7.1. SIMULTANEOUS TRANSFER

above one

As WAAde shown More, se can write

$$\sum_{\sigma_p} \langle l_p \ m - m_p \ 1/2 \ m_p | j_p \ m \rangle \langle l_t \ 0 \ 1/2 \ m_t | j_t \ m_t \rangle \left[Y^{l_t}(\hat{\mathbf{r}}_{Aa}) \chi(\sigma_p) \right]_{m_t}^{l_t} \left[Y^{l_p}(\hat{\mathbf{r}}_{Bb}) \chi(\sigma_p) \right]_{m_t}^{l_p *}$$

$$\delta_{tot} \delta_{tot} \delta_{tot} \delta_{tot}$$

$$0 \left\{ \frac{l}{2l-1} \quad \text{if } m_t = m_p \right\}$$

$$= -\frac{\delta_{l_p,l_i}\delta_{j_p,j_i}\delta_{m,m_i}}{\sqrt{2l+1}} \left[Y^l(\hat{\mathbf{r}}_{Aa})Y^l(\hat{\mathbf{r}}_{Bb}) \right]_0^0 \begin{cases} \frac{l}{2l+1} & \text{if } m_t = m_p \\ -\frac{\sqrt{l(l+1)}}{2l+1} & \text{if } m_t = -m_p \end{cases}$$
(7.82)

when j = l - 1/2 and

$$\sum_{\sigma_p^i} \langle l_p \ m - m_p \ 1/2 \ m_p | j_p \ m \rangle \langle l_t \ 0 \ 1/2 \ m_t | j_t \ m_t \rangle \left[Y^{l_t}(\hat{\mathbf{r}}_{Aa}) \chi(\sigma_p) \right]_{m_t}^{j_t} \left[Y^{l_p}(\hat{\mathbf{r}}_{Bb}) \chi(\sigma_p) \right]_m^{j_p *}$$

$$= -\frac{\delta_{l_p,l_t}\delta_{j_p,l_t}\delta_{m,m_t}}{\sqrt{2l+1}} \left[Y^l(\hat{\mathbf{r}}_{Aa})Y^l(\hat{\mathbf{r}}_{Bb}) \right]_0^0 \begin{cases} \frac{l+1}{2l+1} & \text{if } m_t = m_p \\ \frac{\sqrt{l(l+1)}}{2l+1} & \text{if } m_t = -m_p \end{cases}$$
(7.83)

if j=1+1/2. Ween One then gets

$$T_{2NT}^{1step} = 2\frac{(4\pi)^{3/2}}{k_{Aa}k_{Bb}} \sum_{l} i^{-l} \frac{\exp[i(\sigma_{l}^{p} + \sigma_{l}^{t})]}{2l+1} Y_{m_{l}-m_{p}}^{l}(\hat{\mathbf{k}}_{Bb})$$

$$\times \sum_{\sigma_{1}\sigma_{2}} \int \frac{d\mathbf{r}_{Cc}d\mathbf{r}_{b1}d\mathbf{r}_{A2}}{r_{Aa}r_{Bb}} \left[\psi^{j_{f}}(\mathbf{r}_{A1}, \sigma_{1})\psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2}) \right]_{0}^{0*}$$

$$\times v(r_{b1}) \left[\psi^{j_{l}}(\mathbf{r}_{b1}, \sigma_{1})\psi^{j_{l}}(\mathbf{r}_{b2}, \sigma_{2}) \right]_{0}^{0} \left[Y^{l}(\hat{\mathbf{r}}_{Aa})Y^{l}(\hat{\mathbf{r}}_{Bb}) \right]_{0}^{0}$$

$$\times \left[\left(f_{ll+1/2}(r_{Bb})g_{ll+1/2}(r_{Aa})(l+1) + f_{ll-1/2}(r_{Bb})g_{ll-1/2}(r_{Aa})l \right) \delta_{m_{p},m_{t}} + \left(f_{ll+1/2}(r_{Bb})g_{ll+1/2}(r_{Aa}) \sqrt{l(l+1)} - f_{ll-1/2}(r_{Bb})g_{ll-1/2}(r_{Aa}) \sqrt{l(l+1)} \right) \delta_{m_{p},-m_{t}} \right]. \tag{7.84}$$

Making use of the relations,

$$\begin{aligned}
& \left[\psi^{j_f} \left(\mathbf{r}_{A1}, \sigma_1 \right) \psi^{j_f} (\mathbf{r}_{A2}, \sigma_2) \right]_0^{0*} \\
&= \left(\left(l_f \frac{1}{2} \right)_{j_f} \left(l_f \frac{1}{2} \right)_{j_f} \left| \left(l_f l_f \right)_{0} \left(\frac{1}{2} \frac{1}{2} \right)_{0} \right)_{u_f} (r_{A1}) u_{l_f} (r_{A2}) \\
&\times \left[Y^{l_f} (\hat{\mathbf{r}}_{A1}) Y^{l_f} (\hat{\mathbf{r}}_{A2}) \right]_0^{0*} \left[\chi(\sigma_1) \chi(\sigma_2) \right]_0^{0*} \\
&= \sqrt{\frac{2j_f + 1}{2(2l_f + 1)}} u_{l_f} (r_{A1}) u_{l_f} (r_{A2}) \\
&\times \left[Y^{l_f} (\hat{\mathbf{r}}_{A1}) Y^{l_f} (\hat{\mathbf{r}}_{A2}) \right]_0^{0*} \left[\chi(\sigma_1) \chi(\sigma_2) \right]_0^{0*} \\
&= \sqrt{\frac{2j_f + 1}{2}} \frac{u_{l_f} (r_{A1}) u_{l_f} (r_{A2})}{4\pi} P_{l_f} (\cos \omega_A) \left[\chi(\sigma_1) \chi(\sigma_2) \right]_0^{0*}
\end{aligned} \tag{7.85}$$

and

$$\begin{aligned} \left[\psi^{j_{l}} \left(\mathbf{r}_{b1}, \sigma_{1}\right)\psi^{j_{l}}(\mathbf{r}_{b2}, \sigma_{2})\right]_{0}^{0} \\ &= \left(\left(l_{1}\frac{1}{2}\right)_{j_{l}}\left(l_{1}\frac{1}{2}\right)_{j_{l}}\left|\left(l_{1}l_{l}\right)_{0}\left(\frac{1}{2}\frac{1}{2}\right)_{0}\right)_{0}u_{l_{l}}(r_{b1})u_{l_{l}}(r_{b2}) \\ &\times \left[Y^{l_{l}}(\hat{\mathbf{r}}_{b1})Y^{l_{l}}(\hat{\mathbf{r}}_{b2})\right]_{0}^{0}\left[\chi(\sigma_{1})\chi(\sigma_{2})\right]_{0}^{0} \\ &= \sqrt{\frac{2j_{l}+1}{2(2l_{l}+1)}}u_{l_{l}}(r_{b1})u_{l_{l}}(r_{b2}) \\ &\times \left[Y^{l_{l}}(\hat{\mathbf{r}}_{b1})Y^{l_{l}}(\hat{\mathbf{r}}_{b2})\right]_{0}^{0}\left[\chi(\sigma_{1})\chi(\sigma_{2})\right]_{0}^{0} \\ &= \sqrt{\frac{2j_{l}+1}{2}}\frac{u_{l_{l}}(r_{b1})u_{l_{l}}(r_{b2})}{4\pi}P_{l_{l}}(\cos\omega_{b})\left[\chi(\sigma_{1})\chi(\sigma_{2})\right]_{0}^{0}, \end{aligned} \tag{7.86}$$

where ω_A is the angle between r_{A1} and r_{A2} , and ω_b is the angle between r_{b1} and r_{b2} (for each can write

$$T_{2NT}^{1step} = (4\pi)^{-3/2} \frac{\sqrt{(2j_l + 1)(2j_f + 1)}}{k_{Aa}k_{Bb}} \sum_{l} i^{-l} \frac{\exp[i(\sigma_l^P + \sigma_l^t)]}{\sqrt{2l + 1}} Y_{m_l - m_p}^l(\hat{k}_{Bb})$$

$$\times \int \frac{d\mathbf{r}_{Cc}d\mathbf{r}_{bl}d\mathbf{r}_{A2}}{r_{Aa}r_{Bb}} P_{l_f}(\cos \omega_A) P_{l_f}(\cos \omega_b) P_l(\cos \omega_{lf})$$

$$\times v(r_{b1})u_{l_f}(r_{b1})u_{l_f}(r_{b2})u_{l_f}(r_{A1})u_{l_f}(r_{A2})$$

$$\times \left[\left(f_{ll+1/2}(r_{Bb})g_{ll+1/2}(r_{Aa})(l+1) + f_{ll-1/2}(r_{Bb})g_{ll-1/2}(r_{Aa})l \right) \delta_{m_p,m_l} + \left(f_{ll+1/2}(r_{Bb})g_{ll+1/2}(r_{Aa}) \sqrt{l(l+1)} - f_{ll-1/2}(r_{Bb})g_{ll-1/2}(r_{Aa}) \sqrt{l(l+1)} \right) \delta_{m_p,-m_l} \right],$$

$$(7.87)$$

where ω_{if} is the angle between \mathbf{r}_{Aa} and \mathbf{r}_{Bb} . For heavy ions, we can consider that the the optical potential does not have a spin-orbit term, and the distorted waves are independent of j. We thus have

$$T_{2NT}^{1step} = (4\pi)^{-3/2} \frac{\sqrt{(2j_l + 1)(2j_f + 1)}}{k_{Aa}k_{Bb}} \sum_{l} i^{-l} \exp[i(\sigma_l^p + \sigma_l^l)] Y_0^l(\hat{k}_{Bb}) \sqrt{2l + 1}$$

$$\times \int \frac{d\mathbf{r}_{Cc}d\mathbf{r}_{b1}d\mathbf{r}_{A2}}{r_{Aa}r_{Bb}} P_{l_f}(\cos\omega_A) P_{l_i}(\cos\omega_b) P_l(\cos\omega_{if})$$

$$\times v(r_{b1}) u_{l_i}(r_{b1}) u_{l_i}(r_{b2}) u_{l_f}(r_{A1}) u_{l_f}(r_{A2}) f_l(r_{Bb}) g_l(r_{Aa}).$$
(7.88)

We change the variables: Changing variables & one obtains,

$$T_{2NT}^{1step} = (4\pi)^{-1} \frac{\sqrt{(2j_i + 1)(2j_f + 1)}}{k_{Aa}k_{Bb}} \sum_{l} \exp[i(\sigma_l^p + \sigma_l^l)] P_l(\cos\theta) (2l + 1)$$

$$\times \int dr_{1A} dr_{2A} dr_{Aa} d(\cos\beta) d(\cos\omega_A) d\gamma r_{1A}^2 r_{2A}^2 r_{Aa}^2$$

$$\times P_{l_f}(\cos\omega_A) P_{l_i}(\cos\omega_b) P_l(\cos\omega_{if}) v(r_{b1})$$

$$\times u_{l_i}(r_{b1}) u_{l_i}(r_{b2}) u_{l_f}(r_{A1}) u_{l_f}(r_{A2}) f_l(r_{Bb}) g_l(r_{Aa}).$$
(7.89)

7,1.5 coordinates

We determine the relation between the integration variables in (7.87) and the coordinates needed to evaluate the quantities in the integrand. Noting that

$$\mathbf{r}_{Aa} = \frac{\mathbf{r}_{A1} + \mathbf{r}_{A2} + m_b \mathbf{r}_{Ab}}{m_b + 2},\tag{7.90}$$

wl

We have

$$\mathbf{r}_{b1} = \mathbf{r}_{bA} + \mathbf{r}_{A1} = \frac{(m_b + 1)\mathbf{r}_{A1} + \mathbf{r}_{A2} - (m_b + 2)\mathbf{r}_{Aa}}{m_b},$$
 (7.91)

$$\mathbf{r}_{b2} = \mathbf{r}_{bA} + \mathbf{r}_{A2} = \frac{(m_b + 1)\mathbf{r}_{A2} + \mathbf{r}_{A1} - (m_b + 2)\mathbf{r}_{Aa}}{m_b},$$
 (7.92)

and

$$\mathbf{r}_{Cc} = \mathbf{r}_{CA} + \mathbf{r}_{A1} + \mathbf{r}_{1c} = -\frac{1}{m_A + 1} \mathbf{r}_{A2} + \mathbf{r}_{A1} - \frac{m_b}{m_b + 1} \mathbf{r}_{b1}$$

$$= \frac{m_b + 2}{m_b + 1} \mathbf{r}_{Aa} - \frac{m_b + 2 + m_A}{(m_b + 1)(m_A + 1)} \mathbf{r}_{A2}$$
(7.93)

$$\mathbf{r}_{AB} = \frac{\mathbf{r}_{A1} + \mathbf{r}_{A2}}{m_1 + 2},\tag{7.94}$$

Now, since
$$\mathbf{r}_{AB} = \frac{\mathbf{r}_{A1} + \mathbf{r}_{A2}}{m_A + 2}, \tag{7.94}$$
one obtains
$$\mathbf{r}_{Bb} = \mathbf{r}_{BA} + \mathbf{r}_{Ab} = \frac{m_b + 2}{m_b} \mathbf{r}_{Aa} - \frac{m_A + m_b + 2}{(m_A + 2)m_b} (\mathbf{r}_{A1} + \mathbf{r}_{A2}). \tag{7.95}$$
We use the same rotations as in section 7.4.3 to get 5.

(7.96)

and

$$\mathbf{r}_{A2} = r_{A2} \begin{bmatrix} -\cos\alpha\cos\gamma\sin\omega_A + \sin\alpha\cos\omega_A \\ -\sin\gamma\sin\omega_A \\ \sin\alpha\cos\gamma\sin\omega_A + \cos\alpha\cos\omega_A \end{bmatrix}, \tag{7.97}$$

with

$$\cos \alpha = \frac{r_{A1}^2 - d_1^2 + r_{Aa}^2}{2r_{A1}r_{Aa}},\tag{7.98}$$

and

$$d_1 = \sqrt{r_{A1}^2 - r_{Aa}^2 \sin^2 \beta} - r_{Aa} \cos \beta. \tag{7.99}$$

H.89)

Note that though β , r_{1A} , r_{Aa} are independent integration variables, they have to fulfill the condition

$$r_{Aa}\sin\beta \le r_{A1}$$
, for $0 \le \beta \le \pi$. (7.100)

The expression of the other quantities appearing in the integral is now straightforward

 $r_{b1} = m_b^{-1} |(m_b + 1)\mathbf{r}_{A1} + \mathbf{r}_{A2} - (m_b + 2)\mathbf{r}_{Aa}|$ $= m_b^{-1} \Big((m_b + 2)^2 r_{Aa}^2 + (m_b + 1)^2 r_{A1}^2 + r_{A2}^2 \Big)$ (7.101) $-2(m_b+2)(m_b+1)\mathbf{r}_{Aa}\mathbf{r}_{A1}-2(m_b+2)\mathbf{r}_{Aa}\mathbf{r}_{A2}+2(m_b+1)\mathbf{r}_{A1}\mathbf{r}_{A2}\Big)^{1/2},$

$$r_{b2} = m_b^{-1} |(m_b + 1)\mathbf{r}_{A2} + \mathbf{r}_{A1} - (m_b + 2)\mathbf{r}_{Aa}|$$

$$= m_b^{-1} ((m_b + 2)^2 r_{Aa}^2 + (m_b + 1)^2 r_{A2}^2 + r_{A1}^2$$

$$- 2(m_b + 2)(m_b + 1)\mathbf{r}_{Aa}\mathbf{r}_{A2} - 2(m_b + 2)\mathbf{r}_{Aa}\mathbf{r}_{A1} + 2(m_b + 1)\mathbf{r}_{A2}\mathbf{r}_{A1})^{1/2},$$
(7.102)

$$r_{Bb} = \left| \frac{m_b + 2}{m_b} \mathbf{r}_{Aa} - \frac{m_A + m_b + 2}{(m_A + 2)m_b} (\mathbf{r}_{A1} + \mathbf{r}_{A2}) \right|$$

$$= \left[\left(\frac{m_b + 2}{m_b} \right)^2 r_{Aa}^2 + \left(\frac{m_A + m_b + 2}{(m_A + 2)m_b} \right)^2 (r_{A1}^2 + r_{A2}^2 + 2\mathbf{r}_{A1}\mathbf{r}_{A2}) - 2 \frac{(m_b + 2)(m_A + m_b + 2)}{(m_A + 2)m_b^2} \mathbf{r}_{Aa} (\mathbf{r}_{A1} + \mathbf{r}_{A2}) \right]^{1/2},$$
(7.103)

$$r_{Cc} = \left| \frac{m_b + 2}{m_b + 1} \mathbf{r}_{Aa} - \frac{m_b + 2 + m_A}{(m_b + 1)(m_A + 1)} \mathbf{r}_{A2} \right|$$

$$= \left[\left(\frac{m_a}{(m_a - 1)} \right)^2 r_{Aa}^2 + \left(\frac{m_A + m_a}{(m_A + 1)(m_a - 1)} \right)^2 r_{A2}^2 - \frac{m_A m_a + m_a^2}{(m_A + 1)(m_a - 1)^2} \mathbf{r}_{Aa} \mathbf{r}_{A2} \right]^{1/2},$$
(7.104)

$$\cos \omega_b = \frac{\mathbf{r}_{b1} \mathbf{r}_{b2}}{r_{b1} r_{b2}},\tag{7.105}$$

$$\cos \omega_{if} = \frac{\mathbf{r}_{Aa}\mathbf{r}_{Bb}}{\mathbf{r}_{Aa}\mathbf{r}_{Bb}},\tag{7.106}$$

with

$$\mathbf{r}_{Aa}\mathbf{r}_{A1} = r_{Aa}r_{A1}\cos\alpha,\tag{7.107}$$

$$\mathbf{r}_{Aa}\mathbf{r}_{A2} = r_{Aa}r_{A2}(\sin\alpha\cos\gamma\sin\omega_A + \cos\alpha\cos\omega_A), \tag{7.108}$$

$$\mathbf{r}_{A1}\mathbf{r}_{A2} = r_{A1}r_{A2}\cos\omega_{A}.\tag{7.109}$$

った 7,2′ successive transfer (contany two potentials V,

Note that we use time-reversed phases for the spherical harmonics (see (??)) throughout. We write the successive transition amplitude (see [?]):

$$\overrightarrow{T_{2NT}^{(VV)}} = \frac{^{4}\mu_{Cc}}{\hbar^{2}} \sum_{\substack{\sigma_{1}\sigma_{2} \\ \sigma_{1}'\sigma_{2}' \\ KM}} \int d^{3}r_{Cc}d^{3}r_{b1}d^{3}r_{A2}d^{3}r'_{Cc}d^{3}r'_{b1}d^{3}r'_{A2}\chi^{(-)*}(\mathbf{k}_{Bb}, \mathbf{r}_{Bb})
\times \left[\psi^{j_{f}}(\mathbf{r}_{A1}, \sigma_{1})\psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})\right]_{0}^{0*} v(r_{b1}) \left[\psi^{j_{f}}(\mathbf{r}_{A2}, \sigma_{2})\psi^{j_{f}}(\mathbf{r}_{b1}, \sigma_{1})\right]_{M}^{K}
\times G(\mathbf{r}_{Cc}, \mathbf{r}'_{Cc}) \left[\psi^{j_{f}}(\mathbf{r}'_{A2}, \sigma'_{2})\psi^{j_{f}}(\mathbf{r}'_{b1}, \sigma'_{1})\right]_{M}^{K*} v(r'_{c2})
\times \left[\psi^{j_{f}}(\mathbf{r}'_{b1}, \sigma'_{1})\psi^{j_{f}}(\mathbf{r}'_{b2}, \sigma'_{2})\right]_{0}^{0} \chi^{(+)}(\mathbf{r}'_{Aa})$$
(7.110)

Expansion of the Green function and distorted waves in a basis of angular momentum eigenstates, one can write,

$$\chi^{(-)*}(\mathbf{k}_{Bb}, \mathbf{r}_{Bb}) = \sum_{\vec{l}} \frac{4\pi}{k_{Bb} r_{Bb}} \vec{i}^{-\vec{l}} e^{i\sigma_f^{\vec{l}}} F_{\vec{l}} \sum_{m} Y_m^{\vec{l}}(\hat{r}_{Bb}) Y_m^{\vec{l}*}(\hat{k}_{Bb})$$
(7.111)

Aft the sum over mile beny

$$\sum_{m} (-1)^{\tilde{l}-m} Y_{m}^{\tilde{l}}(\hat{r}_{Bb}) Y_{-m}^{\tilde{l}}(\hat{k}_{Bb}) = \sqrt{2\tilde{l}+1} \left[Y^{\tilde{l}}(\hat{r}_{Bb}) Y^{\tilde{l}}(\hat{k}_{Bb}) \right]_{0}^{0}, \tag{7.112}$$

where we have used (??) and (??), so that

$$\chi^{(-)}(\mathbf{k}_{Bb}, \mathbf{r}_{Bb}) = \sum_{\tilde{l}} \sqrt{2\tilde{l} + 1} \frac{4\pi}{k_{Bb}r_{Bb}} i^{-\tilde{l}} e^{i\sigma_{\tilde{l}}^{\tilde{l}}} F_{\tilde{l}}(r_{Bb}) \left[Y^{\tilde{l}}(\hat{r}_{Bb}) Y^{\tilde{l}}(\hat{k}_{Bb}) \right]_{0}^{0} , \qquad (7.113)$$
Similarly:

$$\chi^{(+)}(\mathbf{r}_{Aa}') = \sum_{l} i^{l} \sqrt{2l+1} \frac{4\pi}{k_{Aa} r_{Aa}'} e^{i\sigma_{l}^{l}} F_{l}(\mathbf{r}_{Aa}') \left[Y^{l}(\hat{\mathbf{r}}_{Aa}') Y^{l}(\hat{k}_{Aa}) \right]_{0}^{0} \tag{7.114}$$
 where we have taken into account that $\hat{k}_{Aa} \equiv \hat{\mathbf{z}}$. And The Green function is:

$$G(\mathbf{r}_{Cc}, \mathbf{r}'_{Cc}) = i \sum_{l_c} \sqrt{2l_c + 1} \frac{f_{l_c}(k_{Cc}, r_<) P_{l_c}(k_{Cc}, r_>)}{k_{Cc} r_{Cc} r'_{Cc}} \left[Y^{l_c}(\hat{r}_{Cc}) Y^{l_c}(\hat{r}'_{Cc}) \right]_0^0.$$
 (7.115)

Finally

$$\hat{T}_{2NT}^{(VV)} = \frac{4\mu_{Cc}(4\pi)^{2}i}{\hbar^{2}k_{Aa}k_{Bb}k_{Cc}} \sum_{l,l_{e},l} e^{i(\sigma_{l}^{l}+\sigma_{l}^{l})}i^{l-l} \sqrt{(2l+1)(2l_{c}+1)(2\tilde{l}+1)}$$

$$\times \sum_{\substack{\sigma_{1}\sigma_{2}\\ \sigma_{1}^{*}\sigma_{2}^{*}}} \int d^{3}r_{Cc}d^{3}r_{b1}d^{3}r_{A2}d^{3}r'_{Cc}d^{3}r'_{b1}\bar{d}^{3}r'_{A2}v(r_{b1})v(r'_{c2}) \left[Y^{l}(\hat{r}_{Bb})Y^{l}(\hat{k}_{Bb})\right]_{0}^{0}$$

$$\times \left[Y^{l}(\hat{r}'_{Aa})Y^{l}(\hat{k}'_{Aa})\right]_{0}^{0} \left[Y^{l_{c}}(\hat{r}_{Cc})Y^{l_{c}}(\hat{r}'_{Cc})\right]_{0}^{0} \frac{F_{l}(r_{Bb})}{r_{Bb}} \frac{F_{l}(r'_{Aa})}{r'_{Aa}}$$

$$\times \frac{f_{l_{c}}(k_{Cc}, r_{c})P_{l_{c}}(k_{Cc}, r_{c})}{r_{Cc}r'_{Cc}} \left[\psi^{lj}(\mathbf{r}_{A1}, \sigma_{1})\psi^{lj}(\mathbf{r}_{A2}, \sigma_{2})\right]_{0}^{0}$$

$$\times \left[\psi^{lj}(\mathbf{r}'_{b1}, \sigma'_{1})\psi^{l}(\mathbf{r}'_{b2}, \sigma'_{2})\right]_{0}^{0} \sum_{KM} \left[\psi^{lj}(\mathbf{r}_{A2}, \sigma_{2})\psi^{l}(\mathbf{r}_{b1}, \sigma_{1})\right]_{M}^{K}$$

$$\times \left[\psi^{lj}(\mathbf{r}'_{A2}, \sigma'_{2})\psi^{l}(\mathbf{r}'_{b1}, \sigma'_{1})\right]_{M}^{K^{*}}$$

$$(7.116)$$

Let us now perform the integration over r_{A2}

$$\begin{split} &\sum_{\sigma_{1},\sigma_{2}} \int d\mathbf{r}_{A2} \left[\psi^{lf}(\mathbf{r}_{A1},\sigma_{1}) \psi^{lf}(\mathbf{r}_{A2},\sigma_{2}) \right]_{0}^{0*} \left[\psi^{lf}(\mathbf{r}_{A2},\sigma_{2}) \psi^{li}(\mathbf{r}_{b1},\sigma_{1}) \right]_{M}^{K} \\ &= \sum_{\sigma_{1},\sigma_{2}} (-1)^{1/2-\sigma_{1}+1/2-\sigma_{2}} \int d\mathbf{r}_{A2} \left[\psi^{lf}(\mathbf{r}_{A1},-\sigma_{1}) \psi^{lf}(\mathbf{r}_{A2},-\sigma_{2}) \right]_{0}^{0} \left[\psi^{lf}(\mathbf{r}_{A2},\sigma_{2}) \psi^{li}(\mathbf{r}_{b1},\sigma_{1}) \right]_{M}^{K} \\ &= -\sum_{\sigma_{1},\sigma_{2}} (-1)^{1/2-\sigma_{1}+1/2-\sigma_{2}} \int d\mathbf{r}_{A2} \left[\psi^{lf}(\mathbf{r}_{A2},-\sigma_{2}) \psi^{lf}(\mathbf{r}_{A1},-\sigma_{1}) \right]_{0}^{0} \left[\psi^{lf}(\mathbf{r}_{A2},\sigma_{2}) \psi^{li}(\mathbf{r}_{b1},\sigma_{1}) \right]_{M}^{K} \\ &= -((j_{f}j_{f})_{0}(j_{f}j_{l})_{K}|(j_{f}j_{f})_{0}(j_{f}j_{l})_{K}|_{K} \sum_{\sigma_{1},\sigma_{2}} (-1)^{1/2-\sigma_{1}+1/2-\sigma_{2}} \\ &\times \int d\mathbf{r}_{A2} \left[\psi^{lf}(\mathbf{r}_{A2},-\sigma_{2}) \psi^{lf}(\mathbf{r}_{A2},\sigma_{2}) \right]_{0}^{0} \left[\psi^{lf}(\mathbf{r}_{A1},-\sigma_{1}) \psi^{li}(\mathbf{r}_{b1},\sigma_{1}) \right]_{M}^{K} \\ &= \frac{1}{2j_{f}+1} \sqrt{2j_{f}+1} ((l_{f}\frac{1}{2})_{j_{f}}(l_{i}\frac{1}{2})_{j_{l}}|(l_{f}l_{i})_{K}(\frac{1}{2}\frac{1}{2})_{0})_{K} \\ &\times u_{lf}(\mathbf{r}_{A1}) u_{l_{l}}(\mathbf{r}_{b1}) \left[Y^{lf}(\hat{\mathbf{r}}_{A1}) Y^{l_{l}}(\hat{\mathbf{r}}_{b1}) \right]_{M}^{K} \sum_{\sigma_{1}} (-1)^{1/2-\sigma_{1}} \left[\chi^{1/2}(-\sigma_{1}) \chi^{1/2}(\sigma_{1}) \right]_{0}^{0} \\ &= -\sqrt{\frac{2}{2j_{f}+1}} ((l_{f}\frac{1}{2})_{j_{f}}(l_{i}\frac{1}{2})_{j_{l}}|(l_{f}l_{i})_{K}(\frac{1}{2}\frac{1}{2})_{0})_{K} \left[Y^{l_{f}}(\hat{\mathbf{r}}_{A1}) Y^{l_{l}}(\hat{\mathbf{r}}_{b1}) \right]_{M}^{K} u_{lf}(\mathbf{r}_{A1}) u_{l_{l}}(\mathbf{r}_{b1}), \end{split}$$

$$(7.117)$$

where we have evaluated the 9j symbol

$$((j_f j_f)_0 (j_f j_i)_K | (j_f j_f)_0 (j_f j_i)_K)_K = \frac{1}{2j_f + 1},$$
(7.118)

aswell as ()

and have also used (22). We proceed in a similar way to evaluate the integral over \mathbf{r}'_{b1}

$$\begin{split} \sum_{\sigma'_{1},\sigma'_{2}} & \int d\mathbf{r}'_{b1} \left[\psi^{j_{1}}(\mathbf{r}'_{b1},\sigma'_{1}) \psi^{j_{1}}(\mathbf{r}'_{b2},\sigma'_{2}) \right]_{0}^{0} \left[\psi^{j_{1}}(\mathbf{r}'_{A2},\sigma'_{2}) \psi^{j_{1}}(\mathbf{r}'_{b1},\sigma'_{1}) \right]_{M}^{K*} \\ & = - (-1)^{K-M} \sum_{\sigma'_{1},\sigma'_{2}} \int d\mathbf{r}'_{b1} \left[\psi^{j_{1}}(\mathbf{r}'_{A2},-\sigma'_{2}) \psi^{j_{1}}(\mathbf{r}'_{b1},-\sigma'_{1}) \right]_{-M}^{K} \\ & \times \left[\psi^{j_{1}}(\mathbf{r}'_{b2},\sigma'_{2}) \psi^{j_{1}}(\mathbf{r}'_{b1},\sigma'_{1}) \right]_{0}^{0} (-1)^{1/2-\sigma'_{1}+1/2-\sigma'_{2}} \\ & = - (-1)^{K-M} ((j_{f}j_{l})_{K}(j_{l}j_{l})_{0}|(j_{f}j_{l})_{K}(j_{l}j_{l})_{0})_{K} (-\sqrt{2}j_{l}+1) \\ & \times ((l_{f}\frac{1}{2})_{j_{f}}(l_{l}\frac{1}{2})_{j_{l}}|(l_{f}l_{l})_{K}(\frac{1}{2}\frac{1}{2})_{0})_{K} (-\sqrt{2})u_{l_{f}}(r'_{A2})u_{l_{f}}(r'_{b2}) \left[Y^{l_{f}}(\hat{r}'_{A2})Y^{l_{1}}(\hat{r}'_{b2}) \right]_{-M}^{K} \\ & = -\sqrt{\frac{2}{2j_{l}+1}} ((l_{f}\frac{1}{2})_{j_{f}}(l_{l}\frac{1}{2})_{j_{l}}|(l_{f}l_{l})_{K}(\frac{1}{2}\frac{1}{2})_{0})_{K} \left[Y^{l_{f}}(\hat{r}'_{A2})Y^{l_{1}}(\hat{r}'_{b2}) \right]_{M}^{K*} u_{l_{f}}(r'_{A2})u_{l_{l}}(r'_{b2}). \end{split}$$

$$(7.119)$$

```
7.2. SUCCESSIVE TRANSFER
Setting the different contributions
Putting all together one or tans
     T_{2NT}^{VV} = \frac{4\mu_{Cc}(4\pi)^2i}{\hbar^2k_{Aa}k_{Bb}k_{Cc}} \frac{2}{\sqrt{(2j_i+1)(2j_f+1)}} \sum_{K,M} ((l_f\frac{1}{2})_{j_f}(l_i\frac{1}{2})_{j_i}|(l_fl_i)_K (\frac{1}{2}\frac{1}{2})_0)_K^2
                         \times \sum_{i=1}^{l} e^{i(\sigma_{i}^{l} + \sigma_{f}^{l})} \sqrt{(2l_{c} + 1)(2l + 1)(2\tilde{l} + 1)} \, i^{l - \tilde{l}}
                         \times \int d^3r_{Cc} d^3r_{b1} d^3r'_{Cc} d^3r'_{A2} v(r_{b1}) v(r'_{c2}) u_{l_f}(r_{A1}) u_{l_i}(r_{b1}) u_{l_f}(r'_{A2}) u_{l_i}(r'_{b2}) \\
                         \times \left[ Y^{l_{J}}(\hat{r}_{A2}')Y^{l_{i}}(\hat{r}_{b2}') \right]_{M}^{K*} \left[ Y^{l_{J}}(\hat{r}_{A1})Y^{l_{i}}(\hat{r}_{b1}) \right]_{M}^{K} \frac{F_{l}(r_{Aa}')F_{\bar{l}}(r_{Bb}')f_{l_{c}}(k_{Cc},r_{<})P_{l_{c}}(k_{Cc},r_{>})}{r_{Aa}'r_{Bb}r_{Cc}r_{Cc}'}
                        \times \left[Y^{\bar{l}}(\hat{r}_{Bb})Y^{\bar{l}}(\hat{k}_{Bb})\right]_0^0 \left[Y^{l}(\hat{r}'_{Aa})Y^{l}(\hat{k}_{Aa})\right]_0^0 \left[Y^{l_c}(\hat{r}_{Cc})Y^{l_c}(\hat{r}'_{Cc})\right]_0^0
                                                       To be used in obtaining (7.128) we note that
           [Y^{\bar{l}}(\hat{r}_{Bb})Y^{\bar{l}}(\hat{k}_{Bb})]_{0}^{0}[Y^{\bar{l}}(\hat{r}'_{Aa})Y^{\bar{l}}(\hat{k}_{Aa})]_{0}^{0} =
                                                      ((I \bar{D}_0(\bar{I}\bar{D}_0)|(I\bar{D}_0(I\bar{D}_0)_0 [Y^{\bar{I}}(\hat{r}_{Bb})Y^{\bar{I}}(\hat{r}'_{Aa})]_0^0 [Y^{\bar{I}}(\hat{k}_{Bb})Y^{\bar{I}}(\hat{k}_{Aa})]_0^0 \qquad (7.\underline{12}1)
                                                        = \frac{\delta_{II}}{2l+1} \left[ Y^{l}(\hat{r}_{Bb}) Y^{l}(\hat{r}'_{Aa}) \right]_{0}^{0} \left[ Y^{l}(\hat{k}_{Bb}) Y^{l}(\hat{k}_{Aa}) \right]_{0}^{0}.
                                                              \left[Y^{l}(\hat{k}_{Bb})Y^{l}(\hat{k}_{Aa})\right]_{0}^{0} = \frac{(-1)^{l}}{\sqrt{4\pi}}Y^{l}_{0}(\hat{k}_{Bb})i^{l}, \qquad ) -
                                                                                                                                                                                                              (7.122)
       \left[Y^l(\hat{r}_{Bb})Y^l(\hat{r}'_{Aa})\right]^0_0\left[Y^{l_e}(\hat{r}_{Ce})Y^{l_e}(\hat{r}'_{Ce})\right]^0_0=
                                                   ((l\,l)_0(l_c\,l_c)_0)(l\,l_c)_K(l\,l_c)_K)_0\left\{\left[Y^l(\hat{r}_{Bb})Y^{l_c}(\hat{r}_{Cc})\right]^K\left[Y^l(\hat{r}_{Aa}')Y^{l_c}(\hat{r}_{Cc}')\right]^K\right\}_0^0
                                                    \times \sum_{M'} \frac{(-1)^{K+M'}}{\sqrt{2K+1}} \left[ Y^l(\hat{r}_{Bb}) Y^{l_e}(\hat{r}_{Cc}) \right]_{-M'}^K \left[ Y^l(\hat{r}_{Aa}') Y^{l_e}(\hat{r}_{Cc}') \right]_{M'}^K
                                                     = \sqrt{\frac{1}{(2l+1)(2l_c+1)}}
                                                     \times \sum_{l} \left[ Y^l(\hat{r}_{llb}) Y^{l_c}(\hat{r}_{Cc}) \right]_{M'}^{K_{\bullet}} \left[ Y^l(\hat{r}'_{Aa}) Y^{l_c}(\hat{r}'_{Cc}) \right]_{M'}^{K}.
              of notice
                                                                                                                                                                                                              (7.123)
                                                 \int d\hat{r}_{Cc}d\hat{r}_{b1} \left[ Y^l(\hat{r}_{Bb})Y^{l_c}(\hat{r}_{Cc}) \right]_M^{K*} \left[ Y^{l_f}(\hat{r}_{A1})Y^{l_i}(\hat{r}_{b1}) \right]_M^K,
                                                                                                                                                                                                              (7.124)
  and
                                                  \int d\hat{r}'_{Cc} d\hat{r}'_{A2} \left[ Y^l(\hat{r}'_{Aa}) Y^{l_c}(\hat{r}'_{Cc}) \right]^K_M \left[ Y^{l_f}(\hat{r}'_{A2}) Y^{l_l}(\hat{r}'_{b2}) \right]^{K*}_M,
```

over the angular variables do not depend on M. Let us see why with (7.124),

$$\begin{split} \left[Y^{l}(\hat{r}_{Bb}) Y^{l_{c}}(\hat{r}_{Cc}) \right]_{M}^{K*} \left[Y^{l_{f}}(\hat{r}_{A1}) Y^{l_{i}}(\hat{r}_{b1}) \right]_{M}^{K} &= (-1)^{K-M} \left[Y^{l}(\hat{r}_{Bb}) Y^{l_{c}}(\hat{r}_{Cc}) \right]_{-M}^{K} \\ &\times \left[Y^{l_{f}}(\hat{r}_{A1}) Y^{l_{i}}(\hat{r}_{b1}) \right]_{M}^{K} &= (-1)^{K-M} \sum_{J} \langle K | K | M | - M | J | 0 \rangle \\ &\times \left\{ \left[Y^{l}(\hat{r}_{Bb}) Y^{l_{c}}(\hat{r}_{Cc}) \right]^{K} \left[Y^{l_{f}}(\hat{r}_{A1}) Y^{l_{i}}(\hat{r}_{b1}) \right]^{K} \right\}_{0}^{J}. \end{split}$$
(7.126)

After integration, only the term

$$(-1)^{K-M} \langle K | K | M - M | 0 | 0 \rangle \left\{ \left[Y^l(\hat{r}_{Bb}) Y^{l_c}(\hat{r}_{Cc}) \right]^K \left[Y^{l_f}(\hat{r}_{A1}) Y^{l_l}(\hat{r}_{b1}) \right]^K \right\}_0^0 = .$$

$$\frac{1}{\sqrt{2K+1}} \left\{ \left[Y^l(\hat{r}_{Bb}) Y^{l_c}(\hat{r}_{Cc}) \right]^K \left[Y^{l_f}(\hat{r}_{A1}) Y^{l_l}(\hat{r}_{b1}) \right]^K \right\}_0^0$$

$$- \text{the corresponding to } J = 0 \text{ survives, which is indeed independent of } M. \text{ We can thus omit}$$

the sum over M and multiply (2K + 1), obtaining

$$T_{2NT}^{VV} = \frac{64\mu_{Cc}(\pi)^{3/2}i}{\hbar^2 k_{Aa}k_{Bb}k_{Cc}} \frac{i^{-l}}{\sqrt{(2j_l+1)(2j_f+1)}} \times \sum_{K} (2K+1)((l_f\frac{1}{2})_{j_f}(l_i\frac{1}{2})_{j_l}|(l_fl_i)_K(\frac{1}{2}\frac{1}{2})_0)_K^2$$

$$\times \sum_{l_c,l} \frac{e^{i(\sigma_l^l+\sigma_f^l)}}{\sqrt{(2l+1)}} Y_0^l(\hat{k}_{Bb}) S_{K,l,l_c},$$

$$(7.128)$$

$$S_{K,l,l_c} = \int d^3 r_{Cc} d^3 r_{b1} v(r_{b1}) u_{l_f}(r_{A1}) u_{l_i}(r_{b1}) \frac{s_{K,l,l_c}(r_{Cc})}{r_{Cc}} \frac{F_l(r_{Bb})}{r_{Bb}} \times \left[Y^{l_f}(\hat{r}_{A1}) Y^{l_i}(\hat{r}_{b1}) \right]_M^K \left[Y^{l_c}(\hat{r}_{Cc}) Y^l(\hat{r}_{Bb}) \right]_M^{K*},$$
(7.129)

and

$$\begin{split} s_{K,l,l_c}(r_{Cc}) &= \int_{r_{Cc}fixed} d^3r'_{Cc}d^3r'_{A2}v(r'_{c2})u_{l_f}(r'_{A2})u_{l_l}(r'_{b2}) \frac{F_l(r'_{Aa})}{r'_{Aa}} \frac{f_{l_c}(k_{Cc},r_<)P_{l_c}(k_{Cc},r_>)}{r'_{Cc}} \\ &\times \left[Y^{l_f}(\hat{r}'_{A2})Y^{l_l}(\hat{r}'_{b2})\right]_M^{K*} \left[Y^{l_c}(\hat{r}'_{Cc})Y^l(\hat{r}'_{Aa})\right]_M^K. \end{split}$$

24 can be shown that the integrand in (7.129) can easily seen to be independent of M. and M and divide by (2K + 1), to get the integrand

$$\frac{1}{2K+1}v(r_{b1})u_{l_{f}}(r_{A1})u_{l_{i}}(r_{b1})\frac{s_{K,l,l_{c}}(r_{Cc})}{r_{Cc}}\frac{F_{l}(r_{Bb})}{r_{Bb}} \times \sum_{M} \left[Y^{l_{f}}(\hat{r}_{A1})Y^{l_{i}}(\hat{r}_{b1})\right]_{M}^{K} \left[Y^{l_{c}}(\hat{r}_{Cc})Y^{l}(\hat{r}_{Bb})\right]_{M}^{K*}.$$
(7.131)

This integrand is rotationally invariant (it is proportional to a T_M^L spherical tensor with L = 0, M = 0), so we can just evaluate it in the "standard" configuration in which \mathbf{r}_{Cc} is directed along the z-axis and multiply by $8\pi^2$ (see [?]), obtaining the final expression for $S_{K,l,l}$:

$$S_{K,l,l_c} = \frac{4\pi^{3/2} \sqrt{2l_c + 1}}{2K + 1} i^{-l_c} \times \int r_{Cc}^2 dr_{Cc} r_{b1}^2 dr_{b1} \sin \theta d\theta v(r_{b1}) u_{l_f}(r_{A1}) u_{l_i}(r_{b1}) \times \frac{s_{K,l,l_c}(r_{Cc})}{r_{Cc}} \frac{F_l(r_{Bb})}{r_{Bb}} \times \sum_{k} \langle l_c \ 0 \ l \ M | K \ M \rangle \left[Y^{l_f}(\hat{r}_{A1}) Y^{l_i}(\theta + \pi, 0) \right]_M^K Y_M^{l_*}(\hat{r}_{Bb}).$$

$$(7.132)$$

Similarly, we have

$$\begin{split} s_{K,l,l_c}(r_{Cc}) &= \frac{4\pi^{3/2} \sqrt{2l_c + 1}}{2K + 1} i^{l_c} \\ &\times \int r_{Cc}^{\prime 2} dr_{Cc}^{\prime} r_{A2}^{\prime 2} dr_{A2}^{\prime} \sin \theta^{\prime} d\theta^{\prime} v(r_{c2}^{\prime}) u_{l_f}(r_{A2}^{\prime}) u_{l_l}(r_{b2}^{\prime}) \\ &\times \frac{F_l(r_{Aa}^{\prime})}{r_{Aa}^{\prime}} \frac{f_{l_c}(k_{Cc}, r_c) P_{l_c}(k_{Cc}, r_c)}{r_{Cc}^{\prime}} \\ &\times \sum_{M} \langle l_c \ 0 \ l \ M | K \ M \rangle \left[Y^{l_f}(\hat{r}_{A2}^{\prime}) Y^{l_l}(\hat{r}_{b2}^{\prime}) \right]_{M}^{K*} Y^{l}_{M}(\hat{r}_{Aa}^{\prime}). \end{split}$$
(7.133)

If we do the further approximations $\mathbf{r}_{A1} \approx \mathbf{r}_{C1}$ and $\mathbf{r}_{b2} \approx \mathbf{r}_{c2}$, we obtain the final expression

$$T_{2NT}^{VV} = \frac{1024\mu_{Cc}\pi^{9/2}i}{\hbar^{2}k_{Aa}k_{Bb}k_{Cc}} \frac{1}{\sqrt{(2j_{l}+1)(2j_{f}+1)}}$$

$$\times \sum_{K} \frac{1}{2K+1} ((l_{f}\frac{1}{2})_{j_{f}}(l_{l}\frac{1}{2})_{j_{l}}|(l_{f}l_{i})_{K}(\frac{1}{2}\frac{1}{2})_{0})_{K}^{2}$$

$$\times \sum_{l_{c}l} e^{i(\sigma_{l}^{l}+\sigma_{f}^{l})} \frac{(2l_{c}+1)}{\sqrt{2l_{l}+1}} Y_{0}^{l}(\hat{k}_{Bb}) S_{K,l,l_{c}},$$
(7.134)

with

$$S_{K,l,l_c} = \int r_{Cc}^2 dr_{Cc} r_{b1}^2 dr_{b1} \sin \theta d\theta v(r_{b1}) u_{l_f}(r_{C1}) u_{l_i}(r_{b1})$$

$$\times \frac{s_{K,l,l_c}(r_{Cc})}{r_{Cc}} \frac{F_l(r_{Bb})}{r_{Bb}}$$

$$\times \sum_{M} \langle l_c \ 0 \ l \ M | K \ M \rangle \left[Y^{l_f}(\hat{r}_{C1}) Y^{l_i}(\theta + \pi, 0) \right]_M^K Y_M^{l_o}(\hat{r}_{Bb}),$$
(7.135)

and

$$s_{K,l,l_c}(r_{Cc}) = \int r_{Cc}^{\prime 2} dr_{Cc}^{\prime} r_{A2}^{\prime 2} dr_{A2}^{\prime} \sin \theta^{\prime} d\theta^{\prime} v(r_{c2}^{\prime}) u_{l_f}(r_{A2}^{\prime}) u_{l_i}(r_{c2}^{\prime})$$

$$\times \frac{F_l(r_{Aa}^{\prime})}{r_{Aa}^{\prime}} \frac{f_{l_c}(k_{Cc}, r_{<}) P_{l_c}(k_{Cc}, r_{>})}{r_{Cc}^{\prime}}$$

$$\times \sum_{l_c} \langle l_c \ 0 \ l \ M | K \ M \rangle \left[Y^{l_f}(\hat{r}_{A2}^{\prime}) Y^{l_i}(\hat{r}_{c2}^{\prime}) \right]_{M}^{K*} Y_{M}^{l}(\hat{r}_{Aa}^{\prime}).$$
(7.136)