การทดลองที่ 8

เรื่อง โพลาไรเซชันของแสง

วัตถุประสงค์

- 1. ศึกษากฎของมาลูส์ (the law of malus)
- 2. ศึกษาความสัมพันธ์ระหว่างความเข้มของแสงโพลาไรซ์ (polarized light) ที่ผ่านแผ่นโพลารอยค์ (Polaroid) กับมุมที่หมุนแผ่นโพลารอยค์ไป

ทฤษฎี

ปรากฏการณ์โพลาไรเซชัน เป็นปรากฏการณ์ที่เกิดขึ้นกับคลื่นตามขวางเท่านั้น โดยคลื่นแสงซึ่งเป็น คลื่นแม่เหล็กไฟฟ้า ประกอบไปด้วยสนามแม่เหล็กและสนามไฟฟ้า ซึ่งที่เวลาใดๆ สนามทั้งสองมีทิศทางตั้งฉาก ซึ่งกันและกันและมีทิศทางตั้งฉากกับแนวทางการเคลื่อนที่ของคลื่นอีกด้วย ดังนั้นแสงจึงมีลักษณะเป็นคลื่น ตามขวาง และสามารถแสดงปรากฏการณ์โพลาไรเซชันได้

ในการศึกษาเกี่ยวกับปรากฏการณ์โพลาไรเซชันในที่นี้จะศึกษากรณีที่มีลักษณะเชิงเส้น คลื่นแสงเป็น คลื่นระนาบ สนามไฟฟ้าจะมีการสั่นที่ขนานกันเสมอไม่ว่าจะอยู่ที่ตำแหน่งใดๆ

แสงในธรรมชาติ, แสงจากหลอดไฟจะเป็นแสงที่ไม่โพลาไรซ์(Unpolarized light) คือ จะมีทิศทางของ สนามไฟฟ้าสั่นในทุกทิศทาง แต่ในกรณีของแสงโพลาไรซ์(Polarized light)จะมีทิศทางการสั่นของสนามไฟฟ้า ในทิศทางเดียวเท่านั้น ดังแสดงในรูป 1.2

รูปที่ 1.1 การเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้า ซึ่งมีทิศทางของสนามแม่เหล็กตั้งฉากกับสนามไฟฟ้า

ถ้าเปรียบเทียบแล้วก็คล้ายกับให้คลื่นในเส้นเชือกผ่านช่องเปิดขนาดเล็ก ถ้าแนวการสั่นของคลื่นอยู่ใน แนวเดียวกับช่องเปิด คลื่นที่ผ่านช่องเปิดออกมาจะมีลักษณะเหมือนเดิมแต่ถ้าทิศทางการสั่นอยู่ในแนวตั้งฉาก ก็ จะทำให้แอมปลิจูดของคลื่นนั้นเป็นศูนย์

เราสามารถทำให้แสงธรรมดากลายเป็นแสงโพลาไรซ์ได้โดยใช้แผ่นกรองที่มีชื่อทางการค้าว่า โพลา รอยด์ (Polaroid) แผ่นโพลารอยด์จะยอมให้สนามไฟฟ้าของแสงผ่านได้ในแนวเดียวคือในแนวที่ขนานกับแกน โพลาไรด์ของแผ่นโพลารอยด์ ซึ่งแสดงด้วยเส้นขนานในรูปที่ 1.3 สำหรับสนามไฟฟ้าในแนวอื่นที่ไม่ขนานกับ แนวแกนของโพลารอยด์จะถูกดูดกลืนไป ในรูปที่ 1.4 แผ่นโพลารอยด์หรือบางที่เรียกว่า โพลาไรเซอร์ (polarizer) วางในระนาบเดียวกับหน้ากระดาษ และสมมติว่ามีแสงพุ่งผ่านในแนวตั้งฉากกับระนาบลูกสรEแสดง แนวการสั่นของสนามไฟฟ้าที่เราสุ่มตัวอย่างออกมา เราสามารถแยกสนามไฟฟ้า \overrightarrow{E} ออกมาเป็นสนามไฟฟ้าใน แนวแกน x และ y ได้ ซึ่งจะได้ว่า $\overrightarrow{E_x} = \overrightarrow{E_0} \sin\theta$ และ $\overrightarrow{E_y} = \overrightarrow{E_0} \cos\theta$ จากรูปเราจะพบว่า E_y เท่านั้นที่สามารถ ผ่านแผ่นโพลาไรเซอร์ไปได้

รูปที่ 1.2 a. แสดงลักษณะของแสง polarized

b. แสงธรรมชาติ(Unpolarized light)ประกอบด้วยแสงโพลาไรซ์ในหลายทิศทาง

การนำแผ่นโพลารอยด์อีกแผ่นหนึ่ง (P_2) มาวางไว้หลังแผ่นแรก โพลารอยด์แผ่นหลังนี้เรานิยมเรียกว่าแอ นาไลเซอร์ (analyzer) ดังแสดงในรูปที่ 1.3 ถ้าเราหมุนแผ่นแอนาไลเซอร์ไปรอบแนวทิสทางการเคลื่อนที่ของ แสง เราจะพบว่าเมื่อแนวแกนโพลาไรซ์ของแผ่นโพลารอยด์ทั้งสองตั้งฉากกัน ความเข้มของแสงที่ผ่านออกมาจะ มีค่าเกือบเป็นศูนย์ ถ้าแอมปลิจูดของแสงโพลาไรซ์ที่ตกลงบน P_2 มีค่าเป็น \overrightarrow{E}_m แอมปลิจูดของแสงที่ทะลุออกมา จาก P_2 จะมีค่าเป็น $\overrightarrow{E}_m \cos \theta$ โดยที่ θ เป็นมุมระหว่างแนวแกนโพลาไรซ์ของ P_1 และ P_2

ร**ูปที่ 1.3** แสงธรรมคาเมื่อส่องบนแผ่นโพลารอยค์สองแผ่นที่วางในแนวแกนโพลาไรซ์ตั้งฉากกัน แสงจะไม่สามารถผ่านไปได้

รูปที่ 1.4 สนามไฟฟ้า \overrightarrow{E} ของแสงอาจแตกเป็นสนามในแกน x และแกน y แต่สนามไฟฟ้า ในแกน y (\overrightarrow{E}_y)เท่านั้นที่สามารถผ่านแผ่นโพลารอยค์ออกมาได้

แต่ความเข้ม I ของลำแสงใดๆ จะเป็นสัดส่วนโดยตรงกับกำลังสองของแอมปลิจูดของแสงนั้น ดังนั้นเราจะได้ ความสัมพันธ์ว่า

$$I = I_{m} \cos^{2} \theta \tag{1.1}$$

โดยที่ I_m เป็นความเข้มสูงสุดของลำแสง ซึ่งจะเกิดขึ้นเมื่อแนวแกนโพลาไรซ์ของ P_1 และ P_2 ขนานกัน หรือ $\theta=0$ หรือ 180 องศา สมการ (1.1) นี้เรียกว่า กฎของมาลูส์ (the law of Malus) ซึ่งถูกค้นพบโดย Etienne

Louis Malus (พ.ศ. 2318-2355) จากการทดลองเมื่อปี พ.ศ. 2352 เป็นสมการที่ใช้ในการคำนวณหาความเข้มแสง ที่ผ่านไปได้ ซึ่งปริมาณความเข้มแสงจะแปรผันตรงกับกำลังสองของโคไซน์ของมุมระหว่างแผ่นโพลารอยด์ทั้ง สอง(polarizer และ Analyzer)

ในการทดลองนี้เราให้แสงเลเซอร์ซึ่งเป็นแสงโพราไรซ์ ที่มีความเข้มคงที่ ผ่านแผ่นแอนาไลเซอร์ ไปตก ลงบนตัวรับแสงแล้วทำการวัดค่าความเข้มของแสงในรูปแบบของค่ากระแส i_A โดยขณะที่ $\theta=90$ หรือ 270 องสา ความเข้มของแสงในสมการที่ 1.1 นั้นควรมีค่าเป็นศูนย์ แต่เนื่องจากการดูดกลืนแสงของแผ่นโพลารอยด์ เป็นไปอย่างไม่สมบูรณ์ ดังนั้นจึงยังคงมีแสงผ่านแอนาไลเซอร์ได้ อย่างไรก็ดีถ้าให้ความเข้มของแสงผ่านตัวรับ แสงในกรณีดังกล่าวเป็น i_a แล้วเราสามารถใช้ค่า i_A-i_A เป็นตัวแทนของความเข้มแสง I ที่ผ่านแอนาไลเซอร์ได้ อย่างสมบูรณ์

รูปที่ 1.5 แสดงรูปเครื่องมือการทดลองกฎของมาลูส์

อุปกรณ์

1.	เลเซอร์	1	เครื่อง
2.	แผ่นโพลารอยค์	1	แผ่น
3.	ตัวรับแสง	1	ตัว
4.	มัลติมิเตอร์	1	ตัว

วิธีทำการทดลอง

- 1. หมุนแผ่น โพลารอยค์หาค่า i_{max} (ตำแหน่งที่มีค่ามากที่สุค)
- 2. กำหนดให้ตำแหน่งที่เจอค่า i_{max} เป็นตำแหน่งเริ่มต้น 0 องศา
- 3. หมุนแผ่นโพลารอยค์ ครั้งละ 10 องศา พร้อมกับบันทึกค่า i_A ที่อ่านได้บนมัลติมิเตอร์
- 4. ทำการทดลองซ้ำอีก 2 ครั้ง เพื่อหาค่าเฉลี่ย
- 5. ค่า i_A ที่มุม Θ = 90(หรือ 270 องศา) คือค่า i_d (ใช้ค่าที่น้อยที่สุด) นำค่า i_d ไปลบค่า i_A ที่ได้จากการทดลองใน ตอนต้น ที่มุม Θ = 0 จะได้ i_A i_d = i_{max} , ที่มุม Θ = 90 จะได้ i_A i_d = 0
- 6. นำค่าที่ได้จากข้อที่ s มาพิจารณาว่าเป็นไปตามกฎของมาลูส์ในสมการที่ (7.1) หรือไม่ โดย ใช้ i_{max} จากข้อ ที่ s

เอกสารอ้างอิง

- 1. Richards, J.A., Sears, F.W., Wehr, M.R., and Zemansky, M.W., Modern University Physics, Addison-Wesley
- 2. Halliday, D. and Resnick, R., Physics, combined 3 rd., John Wiley and Sons, 1978, pp. 1069-1075.
- 3. สถาพร อุคมสิน "ทำโฟโตทรานซิสเตอร์ขึ้นใช้เอง"เซมิคอนคักเตอร์ อิเล็กทรอนิกส์, ปีที่ 2 ฉบับที่ 12 (ตุลาคม 2520), หน้า 42-45.
- 4. จันทร์ชัย หญิงประยูร "รังสีจากวัตถุคำ"วารสารวิทยาศาสตร์, ปีที่ 30 ฉบับที่ 1 (มกราคม 2519) , หน้า23-26.

บันทึกผลการทดลองที่ 8 โพลาไรเซชันของแสง

กฎของมาลูส์ คือ เรา (สมการ)

θ	i _A (mA)					20	
(องศา)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย	$\mathbf{i} = \mathbf{i}_{A} - \mathbf{i}_{d}$	$i = i_{max} cos^2 \theta$	
0	119.9	98.0	105.4	107.467	i _{max} =1.07.200	107.200	
10	112.8	82.6	104.2	99.867	99.600	103.968	
20	108.8	76.7	91.0	92.167	91.900	94.659	
30	90.9	65.3	73.6	76.600	76.333	80.400	
40	75.6	50.9	61.7	62.733	62.466	62.908	
50	47.6	33.7	40.6	40.633	40.366	44.292	
60	30.2	23.8	25.7	26.567	26.300	26.800	
70	15.0	10.5	13.6	13.033	12.766	12.540	
80	3.9	3.0	4.3	3.733	3.466	3.232	
90	0.1	0.1	0.6	$I_d = 0.267$	0	0	
100	2.6	2.2	1.0	1.933	1.666	3.232	
110	11.4	8.9	8.5	9.600	9.333	12.540	
120	26.5	21.2	21.5	23.067	22.800	26.800	
130	46.9	38.2	36.6	40.567	40.300	44.292	
140	65.7	53.9	52.9	57.500	57.233	62.908	
150	79.2	73.6	67.4	73.400	73.133	80.400	
160	99.2	81.9	88.6	89.900	89.633	94.659	
170	100.3	81.4	105.5	95.733	95.460	103.968	
180	110.5	87.2	101.0	99.567	99.300	107.200	
190	109.3	94.6	93.9	99.267	99.000	103.968	
200	94.2	67.6	91.8	84.533	84.266	94.659	

משוח כמבמו

θ		i _A (2 Ω			
(องศา)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย	$\mathbf{i} = \mathbf{i}_{\mathbf{A}} - \mathbf{i}_{\mathbf{d}}$	$i = i_{max} cos^2 \theta$	
210	80.4	56.0	74.5	70.300	70.033	80.400	
220	68.1	40.1	58.0	55.400	55.133	62.908	
230	47.9	31.1	38.8	39.267	39.000	44.292	
240	25.8	20.0	22.5	22.767	22.500	26.800	
250	11.8	7.4	12.5	10.567	10.300	12.540	
260	2.9	2.5	3.6	3.000	2.733	3.232	
270	0.1	0.1	0.3	0.167	0	0	
280	4.7	3.4	3.3	3.800	3.533	3.232	
290	14.1	10.3	11.7	12.033	11.766	12.540	
300	31.5	22.9	26.0	26.800	26.533	26.800	
310	42.1	33.6	40.8	38.833	38.566	44.292	
320	68.3	58.7	58.9	61.967	61.700	62.907	
330	81.3	74.5	75.5	77.100	76.833	80.400	
340	94.4	90.7	86.1	90.400	90.133	94.659	
350	105.7	100.7	89.4	98.600	98.333	103.968	
360	119.1	102.8	90.9	104.267	106.933	107.200	

เขียนกราฟ ระหว่าง i กับ θ ถงบนกระดาษกราฟ POLAR GRAPH ทั้งสองกา มีในแผ่นเดียวกัน

POLAR GRAPH

อัตราส่วน 1 ช่อง เท่ากับ......5....(......)

สรุปและวิจารณ์ผลการทดลอง