To find the following machine learning classification algorithm using accuracy value

Problem statement:

If the customer can or cannot be purchased the advertisement depends on the gender, age and estimated value. The dataset having n number of values, using a classification algorithm to predict whether the customer can be purchased or not.

SVM:

gamma	kernel	C(Hyper	Accuracy
		parameter)	
scale	rbf	0.01	0.63
		0.1	0.76
		1.0	0.78
		10	0.79
		100	0.80
scale	poly	0.01	0.74
		0.1	0.74
		1.0	0.74
		10	0.74
		100	0.74
scale	sigmoid	0.01	0.63
		0.1	0.63
		1.0	0.49
		10	0.66
		100	0.66

In SVM Classification, when C=100, gamma=scale and kernel=rbf, accuracy value is **0.80**.

LOGISTIC CLASSIFICATION:

penalty	solver	C(Hyper parameter)	Accuracy
12	newton-cg	0.01	0.87
		0.1	0.88
		1.0	0.89
		10	0.89
		100	0.89
12	lbfgs	0.01	0.63
		0.1	0.63
		1.0	0.63
		10	0.63
		100	0.63
12	liblinear	0.01	0.63
		0.1	0.63
		1.0	0.63
		10	0.63
		100	0.63

In logistic classification, the accuracy value is **0.89** when penalty=12, solver=newton-cg and C=1.0(or)10(or)100.

DECISION TREE:

criterion	max_features	Accuracy
	auto	0.89
entropy	sqrt	0.89
	log2	0.89
	auto	0.90
gini	sqrt	0.90
	log2	0.90

In decision tree, the accuracy value is **0.90** when criterion=gini and max_features=auto(or) sqrt(or) log2.

RANDOM FOREST:

criterion	n_estimators	max_features	accuracy
entropy	10	auto	0.90
		sqrt	0.87
		log2	0.89
	100	auto	0.92
		sqrt	0.93
		log2	0.91
gini	10	auto	0.89
		sqrt	0.90
		log2	0.89
	100	auto	0.92
		sqrt	0.90
		log2	0.92

In random forest, the accuracy value is **0.93** when criterion= entropy, n_estimators=100 and max_features=sqrt.

FINAL MODEL:

The best model of classification algorithm:

RANDOM FOREST

Accuracy = 0.93