Prediction of processing defect of CNC machine

Advance quality control project proposal

Objective

Previously, manufacturers could not detect the defection of products before the whole production process is over.

- ⇒ We intended to **predict** processing defect of computerized numerical control(CNC) machine* using various machine data.
- ⇒ Early detection of defect, save time and costs.

*CNC machine: automated control of machining tools by means of a computer

[CNC machine]

Dataset description & Baseline method

[Dataset]

- Processing production data of CNC machine from automotive parts production.
- Contains 48 attributes and 2 (binary) labels that indicate the quality of the products.
- label distribution(pass/fail) : 0.7/0.3 (22654/9403)
- ⇒I chose this dataset because it has abundant attributes compared to other datasets provided.

[Baseline method]

 Conduct binary classification by training a fully connected layer(FCN) after preprocessing the raw data.

Baseline method detail

[Preprocessing]

- (1) Convert cvc files to dataframes
- (2) Convert attribute value that has string type to integer values
- (3) Use a partial number of samples among positive labels to alleviate the class imbalance
- (4) Scale the attribute values into the 0-1 range: to avoid bias when using attribute values that are measured at different scales.

[FCN model]

Architecture

Input: 48x128 (activation: relu, dropout*: 0.3) *to prevent overfitting

Hidden: 128x256, 256x512, 512x512, 512x256, 256x128 (activation: relu, dropout:

0.3)

Output: 128x2 (activation: sigmoid)

Baseline method detail & Results

[FCN model]

Optimizer: Adam, Batch size: 1024, Epoch: 300, Ir: 1e-4

[Results]

[Accuracy and loss plot]

[Accuracy]

	Accuracy
Training	97.18
Validation	99.60
Test	91.51

Result analysis & discussion

- Model converges quite early
- ⇒Utilizing an early stopping mechanism will prevent overfitting
- There's room for improvements
- ⇒Test accuracy is considerably low compared to training accuracy given that this is a simple binary classification problem
- ⇒To improve the model's generalizability: various metric learning methods like margin loss and contrastive learning can help
- Needs extensive experiments in architecture design

