Living Data Workshop 1

Link to google slideshow https://goo.gl/9zTF6N

In this workshop...

Video

- Recap of Narrative Structure;
- Pick a **Topic** related to this course;
- Select an **Audience**;
- Select a **Style**;
- Review the **Video Plan Document**.

Processing

- Recap hello.processing.org material;
- Recap worksheet material (for loops, map() and Table);
- Build example described in the prework from scratch.

Video Part 1: Narrative Structure

Situation: Cat is walking down the street on a sunny day.

Complication: Something scares the cat up a tree.

Adventure: Attempts to rescue the cat drive it further and further up the tree.

Solution: When it seems that the cat is going to fall and die, the cat is rescued in a surprising and satisfying way

Situation: Set up the situation or current understanding of the topic of your essay.

Complication: Introduce your topic, which disrupts or complicates this situation.

Adventure: Discuss the complexities of your topic.

Solution: Reach a solution that enlarges your reader's understanding of the topic.

https://youtu.be/gX18QqFX8_k

Situation: Can we ever breathe water?

Complication: No, But we may be able to breathe a different liquid

Adventure: Explore potential of being able to breathe PFCs, etc...

Solution: There are some promising applications!

https://youtu.be/8nHBGFKLHZQ

Situation: What happens if a black hole the size of the coin appears near you?

Complication: It depends - does it have the mass or the size of a coin?

Adventure: Discussion/comparison of the two situations

Solution: ??

Video Part 2: Selecting Topics

Unit Learning Outcomes

After successfully completing this Unit, you will be able to:

- 1. Describe how the structure and function of body systems interrelate for normal human activity;
- 2. Explain how the tight integration of complex cellular and whole-body mechanisms underpin homeostasis;
- 3. Explain the current challenges and emerging solutions facing human biology research;
- 4. Communicate key concepts in biology to diverse audiences through a variety of media;
- 5. Work independently and in groups to analyse and evaluate important questions in human biology;
- 6. Demonstrate competence in core laboratory and related skills;
- 7. Collect and analyse data related to human biology;
- 8. Appreciate the role that the science of human biology plays in contributing to the betterment of society as a whole;
- 9. Develop the skills for self-managing and successful learning at university.

Video Part 3: Audiences

Audience List

Primary school children

Peers/First year university students

General public

Promoting a government agenda

Explaining a concept at different levels of complexity:

https://youtu.be/sweN8d4_MUg
Biologist Explains One Concept in 5 Levels of Difficulty - CRISPR | WIRED

Primary School Children: Example Videos

The Sci Guys: Science at Home: Air Pressure Can Crush

https://www.youtube.com/watch?v=DCLvwk3zhh8

SciShow kids: Salt's Secret Powers

https://www.youtube.com/watch?v=BaBRoGc4gOM

The Spangler Effect: Egg in a Bottle

https://www.youtube.com/watch?v=35cgB5Z3GJs

Primary School Children: Attributes

- Use simple language;
- Show practical examples;
- Relate concepts to things they know (eg: when you have a hot drink you blow on it: a car radiator works the same way...)
- Keep facts bite-sized and recitable;
- High-energy presentation;
- Maybe include a partner or friend that helps the presenter by asking questions that the audience might have, and answers some questions that the presenter asks;
- Use science to explain something that a child may notice and ask about.

NB: Make sure to tell viewers to ask an adult to help if you encourage them to do an experiment involving anything sharp, hot, breakable and so on.

Peers/University Students

Armando Hasudungan

https://www.youtube.com/user/armandohasudungan/videos

Science - Yeast Experiment: measuring respiration in yeast.

https://youtu.be/Cngt2HmJuSo

Numberphile: Squaring the circle:

https://youtu.be/CMP9a2J4Bqw

Peers/University Students: Attributes

- You can assume familiarity with technical terms;
- You can assume the viewer is interested in the topic and will pay attention;
- You don't have to rely on being as entertaining as content for primary school children or the general public;
- You do need to pitch the level of complexity at the right level though.

General Public/Science Communication: Examples

Physics Girl: why do mirrors flip horizontally (but not vertically)? https://youtu.be/vBpxhfBIVLU

VSauce: would headlights work at the speed of light?

https://youtu.be/ACUuFg9Y9dY

Veritasium: Anti-gravity wheel: https://youtu.be/GevDf4ooPdo

The Brain Scoop - Mammoths vs. Mastodons: Can we 'de-extinct' them both? https://youtu.be/2NygtUEvY9k

General Public/Science Communication: Attributes

- Entertaining;
- Topics are relatable;
- Presenters are friendly;
- Concepts are less sophisticated than for university students

Government Agenda: Examples

ScienceCasts: A Supermoon Trilogy

https://youtu.be/A4v5YqC9vkE

CSIRO: Graphene: water filter of the future

https://youtu.be/ViMfiuUG6tA

WHO: What is antimicrobial resistance (AMR)?

https://youtu.be/LHOIPmSJn 8

Facts in 90 Seconds (childhood immunisation)

https://voutu.be/fU6RVxa8abl

Government Agenda: Attributes

- Authoritative;
- Serious;
- Formal;
- Often use graphics on screen;
- Often includes facts and figures;
- Uncontroversial.

Video Part 4: Styles

Styles in Adobe Spark

Promote and Idea Personal Growth

Tell What Happened Teach a Lesson

A Hero's Journey An Invitation

Show and Tell Choose your own

http://spark.adobe.com

Video Part 5: Video Plan Document

Video Plan

Time	Content	Visual	Justification

You can download the blank video plan document here:

https://www.dropbox.com/s/42ee1np6g72k4rj/VideoPlan_blank.docx?dl=0

/ideo – Workshop 2 Processing

Time	Content	Visual	Justification
0:00	Welcome, overview of what we're looking at today	Intro slide and Phil STANP	Orient students to the content being covered
0:15	Describe how we draw with a pen/paper: - Pen on page - Move pen - Lift pen off the page	Drawing on grid paper	Prime viewer for the way that beginShape() endShape() works
1:00	Compare hand drawing to code version of the same drawing	Phil talking, transition to code/screen capture	Explain the way that beginShape() endShape() works
1:30	Use the drawing to draw a line chart of some synthetic data used in workshop 1	Code/screen capture DESK/SCREENCAS	Connect to the activity from last week
1:45	Recap beginShape() endShape()	Phil Talking Instead of	Switch to animation topic
2:00	Introducing frameCount for animation	Phil Talking/transition to code/screen capture (or pseudo code)	Animation relates back to hello.processing.org exercise, also primes students for class activity
2:15	Use frameCount to move a circle across the screen	Screen Capture DE SK/SCREENCAST	Elemental example of animation
2:45	Mechanical motion using frameCount + sin() – also explain why we need radians()	Screen capture – transition to drawing for radians() DESK/ SCREEN	More complex example of animation
3:15	Animation around a circle using sin() + cos()	Screen capture	
4:00	Add data into movement	Screen Capture	Prepare students for in- class challenge
5:00	Outro /what to do before class	Phil talking - Le 200	Recap information

appiphatran Ob Your QUIZ'.

femourse hello... using setup draw ()
Expour ful tood in Processing.
One way 15 to were from Court.

Decision Time!

Think about

- Which audience you want to make a video for
- What style of video will create
- What topic you will be presenting

Next workshop

- Plan document submitted before next workshop (1% yes/no)
- Peer-to-peer feedback (4%)

Processing

Getting Processing

Download app http://processing.org/download (you don't have to donate)

Online with login http://www.openprocessing.org (can save, upload .csv files etc)

Online, no login http://sketchpad.cc

hello.processing.org recap

Variables and Functions

Setup and Draw

If statements

Pre-work recap: map()

Map

http://natureofcode.com/book/

Example:

```
// create a new variable
float value = 0.4;

// print the value when
// mapped from 0-1 to width
println(map(value, 0, 1, 0, width));
```

Pre-work recap: Loop

Loops let us a block of code

- 1. The *init* statement is run.
- 2. The *test* is evaluated to be true or false.
- 3. If the *test* is true, jump to step 4. If the *test* is false, jump to step 6.
- 4. Run the statements within the block.
- 5. Run the *update* statement and jump to step 2.
- 6. Exit the loop.

https://processing.org/reference/for.html

Example:

```
//for(init; test; update)
for(int i = 0; i < 10; i++) {
   println(i);
}</pre>
```

Pre-work recap: Table

Tables are Processing's way of loading a data file such as a .csv

https://processing.org/reference/Table.html

```
Functions used with a table:
loadTable(filename, options);
getRow(rowNumber);
getRowCount();
getInt(columnName);
getFloat(columnName);
for(int i = 0; i < table.getRowCount(); i++) {</pre>
 print(getRow(i).getFloat("column header");
```

Template

Let's build the example we used in the pre-work!

- You will understand how it works well enough to use it as a template
- You will have your own copy, with your own comments and notes
- You can save a copy to experiment and change