This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Simplify the expression below into the form a + bi. Then, choose the intervals that a and b belong to.

$$(-5+8i)(-2+7i)$$

The solution is -46 - 51i, which is option B.

A. $a \in [58, 68]$ and $b \in [19, 21]$

66 + 19i, which corresponds to adding a minus sign in the second term.

B. $a \in [-49, -43]$ and $b \in [-58, -48]$

* -46 - 51i, which is the correct option.

C. $a \in [58, 68]$ and $b \in [-23, -18]$

66-19i, which corresponds to adding a minus sign in the first term.

D. $a \in [-49, -43]$ and $b \in [46, 55]$

-46 + 51i, which corresponds to adding a minus sign in both terms.

E. $a \in [9, 11]$ and $b \in [55, 58]$

10 + 56i, which corresponds to just multiplying the real terms to get the real part of the solution and the coefficients in the complex terms to get the complex part.

General Comment: You can treat i as a variable and distribute. Just remember that $i^2 = -1$, so you can continue to reduce after you distribute.

2. Simplify the expression below into the form a + bi. Then, choose the intervals that a and b belong to.

$$\frac{-72 + 33i}{5 + 4i}$$

The solution is -5.56 + 11.05i, which is option E.

A. $a \in [-228.5, -227]$ and $b \in [10, 12.5]$

-228.00 + 11.05i, which corresponds to forgetting to multiply the conjugate by the numerator and using a plus instead of a minus in the denominator.

B. $a \in [-12.5, -10.5]$ and $b \in [-3.5, -2.5]$

-12.00 - 3.00i, which corresponds to forgetting to multiply the conjugate by the numerator and not computing the conjugate correctly.

C. $a \in [-6, -5]$ and $b \in [452.5, 453.5]$

-5.56 + 453.00i, which corresponds to forgetting to multiply the conjugate by the numerator.

5370-9939 test

- D. $a \in [-15.5, -13]$ and $b \in [8, 9.5]$
 - -14.40 + 8.25i, which corresponds to just dividing the first term by the first term and the second by the second.
- E. $a \in [-6, -5]$ and $b \in [10, 12.5]$
 - * -5.56 + 11.05i, which is the correct option.

General Comment: Multiply the numerator and denominator by the *conjugate* of the denominator, then simplify. For example, if we have 2 + 3i, the conjugate is 2 - 3i.

3. Simplify the expression below into the form a + bi. Then, choose the intervals that a and b belong to.

$$\frac{18 - 88i}{-3 - i}$$

The solution is 3.40 + 28.20i, which is option A.

- A. $a \in [3, 4]$ and $b \in [27.5, 29.5]$
 - * 3.40 + 28.20i, which is the correct option.
- B. $a \in [3, 4]$ and $b \in [281.5, 282.5]$
 - 3.40 + 282.00i, which corresponds to forgetting to multiply the conjugate by the numerator.
- C. $a \in [-6.5, -4.5]$ and $b \in [86.5, 88.5]$
 - -6.00 + 88.00i, which corresponds to just dividing the first term by the first term and the second by the second.
- D. $a \in [-15.5, -14]$ and $b \in [24, 25]$
 - -14.20 + 24.60i, which corresponds to forgetting to multiply the conjugate by the numerator and not computing the conjugate correctly.
- E. $a \in [33.5, 35.5]$ and $b \in [27.5, 29.5]$
 - 34.00 + 28.20i, which corresponds to forgetting to multiply the conjugate by the numerator and using a plus instead of a minus in the denominator.

General Comment: Multiply the numerator and denominator by the *conjugate* of the denominator, then simplify. For example, if we have 2 + 3i, the conjugate is 2 - 3i.

4. Simplify the expression below into the form a + bi. Then, choose the intervals that a and b belong to.

$$(-10+9i)(5-6i)$$

The solution is 4 + 105i, which is option E.

- A. $a \in [-55, -47]$ and $b \in [-61, -52]$
 - -50-54i, which corresponds to just multiplying the real terms to get the real part of the solution and the coefficients in the complex terms to get the complex part.

test

- B. $a \in [-107, -102]$ and $b \in [-16, -14]$
 - -104 15i, which corresponds to adding a minus sign in the second term.
- C. $a \in [0, 7]$ and $b \in [-108, -102]$
 - 4-105i, which corresponds to adding a minus sign in both terms.

5370-9939

- D. $a \in [-107, -102]$ and $b \in [13, 18]$
 - -104 + 15i, which corresponds to adding a minus sign in the first term.
- E. $a \in [0, 7]$ and $b \in [102, 112]$
 - * 4 + 105i, which is the correct option.

General Comment: You can treat i as a variable and distribute. Just remember that $i^2 = -1$, so you can continue to reduce after you distribute.

5370-9939 test