http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Intro to Probability

Instructor: Alexandre Bouchard Fall 2014

Clicker tally:

- Do you have your clicker?
 - A. Yes
 - B. No

Plan for today:

- Conditioning
- Review problems

http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Logistics

- What's new/recent on the website:
 - Due next Wed (5pm): Webwork, sets #1 and #2.
 - Bug identified for set #2, question #2.
 - Does not affect everyone (# changes across students)
 - Everyone who attempts it will get credit for this question.
 - Will go over solution on Wed.
 - Assignment #1 released.
 - Tomorrow: last day of drop/add period.

Independent vs. disjoint events

A, B are disjoint
$$\Rightarrow$$
 $P(A \cup B) = P(A) + P(B)$
($\Leftrightarrow A \cap B = \emptyset$)

A, B are indep.

$$\Leftrightarrow$$

$$P(A \cap B) = P(A) * P(B)$$

Ex. 16b

Independence: an equally weighted setup

• Events:

• R = shape is red

• C = shape is circular

Are these events: independent? disjoint?

<u>A.</u>	no	no
В.	yes	no
C.	no	yes
D.	yes	yes

Conditional probability

Belief update

 A couple have 2 children. 	A	В	C	<u>D</u>
Probability of two girls?	1/4	1/4	1/4	1/4
 Probability of two girls given that the elder is girl? 	1/2	1/3	1/2	1/2
 Probability of two girls given that one of the children is a girl? 	1/4	1/3	1/2	1/3
 Probability of two girls given that one of the children is a boy? 	0	0	0	0

Conditional probability: overview

Conditional probability: overview

New information (observation): a fixed event E

Conditional probability: overview

New information (observation): a fixed event *E* Interpretation: 'the true outcome is somewhere in the event *E*'

Conditional probability: overview

New information (observation): a fixed event *E* Interpretation: 'the true outcome is somewhere in the event *E*'

Conditional probability: overview

New information (observation): a fixed event *E* Interpretation: 'the true outcome is somewhere in the event *E*'

 For a query A, what should be the updated probability?

- For a query A, what should be the updated probability?
 - We want to remove from A all the outcomes that are not compatible with the new information E. How?

- For a query A, what should be the updated probability?
 - We want to remove from A all the outcomes that are not compatible with the new information E. How?
 - Intersection (\cap): $A \cap E$

- For a query A, what should be the updated probability?
 - We want to remove from A all the outcomes that are not compatible with the new information E. How?
 - Intersection (\cap): $A \cap E$
 - We also want: $P(S \mid E) = I$ Why? How?

- For a query A, what should be the updated probability?
 - We want to remove from A all the outcomes that are not compatible with the new information E. How?
 - Intersection (\cap): $A \cap E$
 - We also want: $P(S \mid E) = I$ Why? How?
 - Renormalize:

- For a query A, what should be the updated probability?
 - We want to remove from A all the outcomes that are not compatible with the new information E. How?
 - Intersection (\cap): $A \cap E$
 - We also want: $P(S \mid E) = I$ Why? How?

Renormalize:
$$P(E \cap A) = \frac{P(E \cap A)}{P(E)}$$

Belief update

 A couple have 2 children. 	A	В	С	<u>D</u>
Probability of two girls?	1/4	1/4	1/4	1/4
 Probability of two girls given that the elder is girl? 	1/2	1/3	1/2	1/2
 Probability of two girls given that one of the children is a girl? 	1/4	1/3	1/2	1/3
 Probability of two girls given that one of the children is a boy? 	0	0	0	0

Properties

- Check these:
 - $0 \le P(A \mid E) \le I$
 - \bullet P(S | E) = I
 - If $A_1, A_2, ...$ are disjoint: $P(A_1 \cup A_2 \cup ... \mid E) = P(A_1 \mid E) + P(A_2 \mid E) + ...$
- In other words…?

Bonus: A more intuitive view of independent events

- Recall: Events A and B are independent if: $P(A \cap B) = P(A) * P(B)$
- Equivalent definition (when P(B) > 0): Events A and B are independent if:
 P(A | B) = P(A)

Review problems

Review problems

A die is thrown twice and the number on each throw is recorded. Assuming the dice is fair, what is the probability of obtaining at least one 6?

```
A. 1/3
B. 11/36
C. 1/6
D. 5/12
```

Example (*Pb. 25*): The game of bridge is played by 4 players, each of who is dealt 13 cards. How many bridge deals are possible?

- A. 13⁴
- B. 13! * 4!
- C. 13*4
- D. 52!/(13! 13! 13! 13!)

Birthday problem

- What is the probability that at least 2 people have the same birthday in this class?
 - 80 people
 - # birthdays = 365 (ignore leap years)
 - Hint: compute the probability that everybody have different birthdays

```
A. 80! / 365!
B. 1 - 365! / 285! / 365<sup>80</sup>
C. 80 / 365
D. 1 - 80! / 365!
```

Review problems

A die is thrown twice and the number on each throw is recorded. Assuming the dice is fair, what is the probability of obtaining at least one 6?

- A. 1/3
- B. 11/36
- C. 1/6
- D. 5/12

Ex. 20

Example (Pb. 25): The game of bridge is played by 4 players, each of who is dealt 13 cards. How many bridge deals are possible?

- A. 13⁴
- B. 13! * 4!
- C. 13*4
- D. 52!/(13! 13! 13! 13!)

Ex. 21

Birthday problem

- What is the probability that at least 2 people have the same birthday in this class?
 - 80 people
 - # birthdays = 365 (ignore leap years)
 - Hint: compute the probability that everybody have different birthdays
 - A. 80! / 365!
 - B. $1 365! / 285! / 365^80$
 - C. 80 / 365
 - D. 1 80! / 365!

A die is thrown twice and the number on each throw is recorded. Assuming the dice is fair, what is the probability of obtaining at least one 6?

Proposition: We have
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$
.

There are clearly 6 possible outcomes for the first throw and 6 for the second throw. By the counting principle, there are 36 possible outcomes for the two throws. Let A_i the event "I have obtained a 6 for throw i". The probability we are interested in is

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

$$= \frac{1}{6} + \frac{1}{6} - \frac{1}{36}$$

$$= \frac{11}{36}.$$

Example (*Pb. 25*): The game of bridge is played by 4 players, each of who is dealt 13 cards. How many bridge deals are possible?

```
A. 13<sup>4</sup>
B. 13! * 4!
C. 13*4
D. 52!/(13! 13! 13! 13!)
```

Answer: There are $4 \times 13 = 52$ cards so 52! possible permutations. However, like all card games, any permutation of the cards received by a given player are irrelevant (order does not matter). So there are

different possible deals.