MA283: Linear Algebra

 $\begin{array}{c} 70\% \ {\rm Exam} \\ 30\% \ {\rm Continuous \ Assessment \ (Homework)} \\ 10\% \ {\rm Optional \ Project \ (Bonus)} \end{array}$

Robert Davidson

${\bf Contents}$

1	Rev	view of Matrix Algebra	3
2	Systems of linear equations		
	-	Linear equations and Solution Sets	6
		2.1.1 Interpreting Linear Systems as Matrix Equations	6
	2.2	Elementary Row Operations	6
		2.2.1 REF and Strategy	6
		2.2.2 Row Reduced Echelon Form	7
	2.3	Leading variables and free variables	7
	2.4	Consistent and Inconsistent Systems	7
	2.5	Possible Outcomes when solving a system of equations	7
	2.6	Elementary Row Operations as Matrix Transformations	8
		2.6.1 Multiplying a Row by a Non-Zero Scalar	8
		2.6.2 Switching Two Rows	8
		2.6.3 Adding a Multiple of One Row to Another	8
	2.7	EROs and Inverses	10
3	Vector Spaces and Subspace Structure		
	3.1	The Image and Kernel of a Linear Transformation	11
	3.2	Subspaces	11
	3.3	How to make subspaces	12
	3.4	Spanning sets	12
	$3.4 \\ 3.5$		12
	0.0	Linear independence	
	3.6	Linear independent and the replacement theorem	12
4	Ras	ses Dimensions and Coordinate Systems	12

1 Review of Matrix Algebra

Matrix Addition

If a matrix has m rows and n columns, we say it is $m \times n$. Two matrices can only be added if they have the same size. In this case, we just add the entries in each position.

The $m \times n$ zero matrix is a matrix with all entries equal to 0. It is the **Identity element** for matrix addition (adding it to any matrix does not change the matrix)

Matrix Multiplication by a Scalar

This simply means multiplying each entry of the matrix by the scalar. For example:

$$\alpha \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} \alpha & 2\alpha \\ 3\alpha & 4\alpha \end{bmatrix}$$

Remark: Now that we have addition and scalar multiplication, we can subtract matrices (A - B = A + (-1)B), provided they are the same size.

Vector Space

With these operations of addition and scalar multiplication, the set of $m \times n$ matrices is a vector space. A **vector** space algebraic structure whose elements can be added, subtracted and multiplied by scalars.

Linear Combinations

Definition 1.1: Linear Combinations

Suppose v_1, v_2, \ldots, v_k are elements that can be added together and multiplied by scalars.

A Linear Combination of v_1, v_2, \ldots, v_k is an expression of the form:

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k$$

where $a_i \in \mathbb{R}$ are scalars, called **coefficients**.

Matrix-Vector Multiplication

Definition 1.2

Let A be a $m \times n$ matrix, and **v** be a column vector with n entries $(n \times 1 \text{ matrix})$.

Then the matrix vector product Av is the column vector, with m entries, obtained by taking the linear combination of the columns of A with the entries of \mathbf{v} as coefficients.

$$\begin{bmatrix} -1 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 6 \\ 9 \end{bmatrix} = 7 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 9 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 41 \\ 33 \end{bmatrix}.$$

Remark: Av, if defined, has the same number of rows as A and the same number of columns as v.

Matrix-Matrix Multiplication

Definition 1.3

Let A and B be matrices of size $m \times p$ and $p \times n$, respectively. Write $v_1, \ldots v_n$ for the columns of B. Then the product AB is the $m \times n$ matrices whose columns are Av_1, \ldots, Av_n .

The entry at row i and column j of the matrix A is given by A_{ij} . The entry in the i, j position of the product AB is the ith entry of the vector Av_j , where the vector v_j is the jth column of B. In other words, the entry in the i, j position of the product AB is given by:

$$(AB)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \ldots + A_{ip}B_{pj} = \sum_{k=1}^{p} A_{ik}B_{kj}$$

Definition 1.4

If A is $m \times p$ with rows u_1, \ldots, u_m and B is $p \times n$ with columns v_1, \ldots, v_n , then the product AB is:

$$AB = \begin{bmatrix} u_1 \cdot v_1 & u_1 \cdot v_2 & \dots & u_1 \cdot v_n \\ u_2 \cdot v_1 & u_2 \cdot v_2 & \dots & u_2 \cdot v_n \\ \vdots & \vdots & \ddots & \vdots \\ u_m \cdot v_1 & u_m \cdot v_2 & \dots & u_m \cdot v_n \end{bmatrix}$$

Example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} \quad AB = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 9 + 3 \cdot 11 & 1 \cdot 8 + 2 \cdot 10 + 3 \cdot 12 \\ 4 \cdot 7 + 5 \cdot 9 + 6 \cdot 11 & 4 \cdot 8 + 5 \cdot 10 + 6 \cdot 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}$$

For matrices A and B, the products AB and BA are generally not equal, even if they are both defined and even if both have the same size.

Linear Transformations

Definition 1.5

Let m and n be positive integers.

A linear transformation T from \mathbb{R}^n to \mathbb{R}^m is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ that satisfies:

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- $T(\lambda \mathbf{u}) = \lambda T(\mathbf{u})$ for all $\mathbf{u} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$

Matrix of a Linear Transformation

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is the linear transformation:

$$T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \quad T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -6 \\ 7 \end{bmatrix}$$

Then for the vector in \mathbb{R}^3 with entries a, b, c:

$$T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = aT \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + bT \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + cT \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -6 \\ -3 & 4 & 7 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Where the 2×3 matrix M_T is called the **standard matrix** of A. A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ can be completely represented by an $m \times n$ matrix M_T .

Understanding the Matrix Representation

- The columns of matrix M_T are the images of the standard basis vectors e_1, e_2, \ldots, e_n under T.
- For any vector $v \in \mathbb{R}^n$, we calculate T(v) by multiplying: $M_T \cdot v$.
- Therefore, matrix-vector multiplication is simply evaluating a linear transformation.

Correspondence: Any $m \times n$ matrix A defines a linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ by: $T_A(v) = Av$. Linear transformations include rotations, reflections and scaling

Efficiency of Representation: A remarkable property of linear transformations is their information efficiency:

- To completely define $T: \mathbb{R}^n \to \mathbb{R}^m$, we need only mn values.
- These values are the coordinates of the n transformed basis vectors in \mathbb{R}^m .
- This differs fundamentally from general continuous functions $f : \mathbb{R} \to \mathbb{R}$, which cannot be fully determined by their values at finitely many points.

Matrix multiplication is composition

Suppose that $T: \mathbb{R}^n \to \mathbb{R}^p$ and $S: \mathbb{R}^p \to \mathbb{R}^m$ are linear transformations. Then the composition $S \circ T: \mathbb{R}^n \to \mathbb{R}^m$ is also a linear transformation from \mathbb{R}^n to \mathbb{R}^m defined for $\mathbf{v} \in \mathbb{R}^n$ by:

$$S \circ T(\mathbf{v}) = S(T(\mathbf{v}))$$

To see how that the $m \times n$ matrix $M_{S \circ T}$ depends on the matrix $M_S(m \times p)$ and $M_T(p \times n)$ we look at the definition of $M_{S \circ T}$:

- The first column has coordinates $S \circ T(e_1) = S(T(e_1))$
- $T(e_1)$ is first column of M_T
- Then $S(T(e_1))$ is the matrix-vector product $M_S \cdot M_T(e_1)$
- Same for all other columns $\Longrightarrow M_{S \circ T} = M_S \cdot M_T$

Thus, we conclude matrix multiplication is composition of linear transformations.

2 Systems of linear equations

2.1 Linear equations and Solution Sets

A linear equation in the variables x and y is an equation of the form

$$2x + y = 3$$

If we replace x and y with some numbers, the statement becomes true or false.

Definition 2.1: Solution to a linear equation

A pair, $(x_0, y_0) \in \mathbb{R}$, is a solution to an linear equation if setting $x = x_0$ and $y = y_0$ makes the equation true.

Definition 2.2: Solution set

The solution set is the set of all solutions to a linear equation.

$$a_1X_1 + a_2X_2 + \ldots + a_nX_n = b$$
 where $a_i, b \in \mathbb{R}$

is an **affine hyperplane** in \mathbb{R}^n ; geometrically resembles a copy of \mathbb{R}^{n-1} inside \mathbb{R}^n .

2.1.1 Interpreting Linear Systems as Matrix Equations

2.2 Elementary Row Operations

To solve a system of linear equations we associate an **augmented matrix** to the system of equations. For example:

To solve, we can perform the following Elementary Row Operations (EROs):

- 1. Multiply a row by a non-zero constant.
- 2. Add a multiple of one row to another row.
- 3. Swap two rows.

The goal of these operations is to transform the augmented matrix into row echelon form (REF) or reduced row echelon form (RREF).

2.2.1 REF and Strategy

We say a matrix is in row echelon form (REF) if:

- The first non zero entry in each row is a 1 (called the **leading 1**).
- If a column has a leading 1, then all entries below it are 0.
- The leading 1 in each row is to the right of the leading 1 in the previous row.
- All rows of 0s are at the bottom of the matrix.

 $\begin{bmatrix} 1 & 2 & -1 & | & 3 \\ 0 & 1 & 2 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$

Example of REF

We have produced a new system of equations. This is easily solved by back substitution.

Concept 2.1: Stategy for Obtaining REF

- Get a 1 as the top left entry
- $\bullet~$ Use this 1 to clear the entries below it
- Move to the next column and repeat
- Continue until all leading 1s are in place
- Use back substitution to solve the system

2.2.2 Row Reduced Echelon Form

A matrix is in reduced row echelon form (RREF) if:

- It is in REF
- The leading 1 in each row is the only non-zero entry in its column.

$$\begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

Example of RREF

2.3 Leading variables and free variables

We'll start by an example:

Solving this system of equations, we get:

RREF:
$$\begin{bmatrix} 1 & 0 & 0 & 2 & | & 4 \\ 0 & 1 & 0 & -1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \end{bmatrix} \Rightarrow \begin{array}{c} x_1 & + & 2x_4 & = & 4 \\ x_2 & - & x_4 & = & 2 \\ x_3 & + & x_4 & = & 2 \end{array} \Rightarrow \begin{array}{c} x_1 & = & 4 - 2x_4 \\ x_2 & = & 2 + x_4 \\ x_3 & = & 2 - x_4 \end{array}$$

This RREF tells us how the **leading variables** (x_1, x_2, x_3) depend on the **free variable** (x_4) . The free variable can take any value in \mathbb{R} . We write the solution set as:

$$x_1 = 4 - 2t$$
, $x_2 = 2 + t$, $x_3 = 2 - t$, $x_4 = t$ where $t \in \mathbb{R}$
 $(x_1, x_2, x_3, x_4) = (4 - 2t, 2 + t, 2 - t, t); t \in \mathbb{R}$

Definition 2.3: Leading and Free Variables

- Leading variable: A variable whose columns in the RREF contain a leading 1
- Free variable : A variable whose columns in the RREF do not contain a leading 1

2.4 Consistent and Inconsistent Systems

Consider the following system of equations:

We can see the last row of the REF is:

$$0x + 0y + 0z = 1$$

This equation clearly has no solution, and hence the system has no solutions. We say the system is **inconsistent**. Alternatively, we say the system is **consistent** if it has at least one solution.

2.5 Possible Outcomes when solving a system of equations

• The system may be **inconsistent** (no solutions) - i.e:

$$[0\ 0\ \dots\ 0\ |\ a] \quad a \neq 0$$

- The system may be **consistent** which occurs if:
 - Unique Solutions each column (aside from the rightmost) contains a single leading 1. i.e:

$$\begin{bmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & -2 \end{bmatrix}$$

Infinitely many solutions at least one variable does not appear as a leading 1 in any row, making it a
free variable - i.e:

$$\begin{bmatrix} 1 & 2 & -1 & | & 3 \\ 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

2.6 Elementary Row Operations as Matrix Transformations

Elementary row operations may be interpreted as **matrix multiplication**. To see this, first we introduce the **Identity matrix:**[1, 0, 0]

 $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

The I_m Identity matrix is an $m \times m$ matrix with 1s on the diagonal and 0s elsewhere. We also introduce the $E_{i,j}$ matrix which has 1 in the (i,j) position and 0s elsewhere. For example:

$$E_{1,2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then:

$$I_3 + 4E_{1,2} = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Performing a row operation on A is the same as multiplying A by an appropriate matrix E on the left. These matrices are called **elementary matrices**. They are **always invertible**, and **their inverses are also elementary matrices**. The statement:

"every matrix can be reduced to RREF through EROs"

is equivalent to saying that

"for every matrix A with m rows, there exists a $m \times m$ matrix B which is a product of elementary matrices such that BA is in RREF."

2.6.1 Multiplying a Row by a Non-Zero Scalar

When multiplying row i of matrix A by a scalar $\alpha \neq 0$, we can use the matrix:

$$I_m + (\alpha - 1)E_{i,i}$$

This works because it modifies only the (i, i) entry of the identity matrix to be α while keeping all other entries unchanged. When multiplied with A, it scales row i by α and leaves all other rows intact.

Example: If $\alpha = 5$ and i = 2, then:

$$I_3 + 4E_{2,2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad (I_3 + 4E_{2,2})A = \begin{bmatrix} 1 & 2 & 3 \\ 20 & 25 & 30 \\ 7 & 8 & 9 \end{bmatrix}$$

2.6.2 Switching Two Rows

To swap rows i and k, we use:

$$S = I_m + E_{ik} + E_{ki} - E_{ii} - E_{kk}$$

This works by:

- Removing the 1's at positions (i, i) and (k, k) from the identity matrix
- Adding 1's at positions (i, k) and (k, i)

Example: Swapping rows 1 and 3:

$$S = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad SA = \begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

2.6.3 Adding a Multiple of One Row to Another

To replace row k with row $k + \alpha \times$ row i, use:

$$I_m + \alpha E_{k,i}$$

This adds α times row i to row k while leaving all other rows unchanged because:

- For any row $j \neq k$, the corresponding row in this matrix is just the standard basis row
- Row k becomes the sum of the standard basis row k plus α times the standard basis row i

Example: Adding 3 times row 1 to row 2:

$$I_3 + 3E_{2,1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad (I_3 + 3E_{2,1})A = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 11 & 15 \\ 7 & 8 & 9 \end{bmatrix}$$

Example 2.1

Write the inverse of an elementary matrix and show it is an elementary matrix.

Multiplying a row by a nonzero scalar:

- Operation: Multiply row i by $\alpha \neq 0$.
- Elementary Matrix: $E = I_m + (\alpha 1)E_{i,i}$
- Inverse: To reverse the operation, multiply row i by $1 \setminus \alpha$. Hence, the inverse is

$$E^{-1} = I_m + \left(\frac{1}{\alpha} - 1\right) E_{i,i} = I_m + \frac{1 - \alpha}{\alpha} E_{i,i}.$$

Swapping two rows:

- Operation: Swap rows i and k.
- Elementary Matrix: $S = I_m E_{i,i} E_{k,k} + E_{i,k} + E_{k,i}$
- Inverse: Since swapping the same two rows twice returns them to their original positions,

$$S^{-1} = S.$$

Adding a multiple of one row to another:

- Operation: Add α times row i to row k.
- Elementary Matrix: $E = I_m + \alpha E_{k,i}$
- Inverse: To undo the operation, subtract α times row i from row k. Therefore,

$$E^{-1} = I_m - \alpha E_{k,i}.$$

Example 2.2

Prove that every invertible matrix in $M_n(\mathbb{R})$ is a product of elementary matrices.

Let A be an invertible matrix in $M_n(\mathbb{R})$. Since A is invertible, we can use Gaussian elimination to transform A into the identity matrix I_n .

Let $E_1, E_2, ..., E_k$ be the elementary matrices corresponding to the row operations used in the elimination process. Then, we have:

Multiplying a row by a scalar: $I_n + (\alpha - 1)E_{i,i}$

Swapping two rows: $I_n + E_{i,k} + E_{k,i} - E_{i,i} - E_{k,k}$

Adding a multiple of one row to another: $I_n + \alpha E_{k,i}$

Applying these in sequence to A gives:

$$E_k \cdots E_2 E_1 A = I_n$$

Since $E_k \cdots E_2 E_1 = I_n$, we can multiply both sides by $(E_k \cdots E_2 E_1)^{-1}$ on the left to obtain:

$$A = (E_k \cdots E_2 E_1)^{-1} I_n = (E_k \cdots E_2 E_1)^{-1}$$

Using the property:

$$(E_k \cdots E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} \cdots E_k^{-1},$$

we can express A as a product of elementary matrices:

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$$

Since each E_i is an elementary matrix, its inverse is also an elementary matrix. Therefore, A can be expressed as a product of elementary matrices.

2.7 EROs and Inverses

Elementary Row Operations can be used to find the inverse of a square matrix. Consider a square matrix $A \in M_n(\mathbb{F})$ (that is, an $n \times n$ matrix over a field \mathbb{F}). If A is invertible, let

$$A^{-1} = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & | \end{bmatrix}$$

be its inverse, where each \mathbf{v}_i is the ith column of A^{-1} . By definition of the matrix inverse, we have

$$AA^{-1} = A\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 & \cdots & A\mathbf{v}_n \end{bmatrix} = I_n,$$

the $n \times n$ identity matrix. This implies that

$$A\mathbf{v}_i = \mathbf{e}_i$$
, for each $i = 1, 2, \dots, n$,

where \mathbf{e}_i is the *i*th column of I_n (which has a 1 in the *i*th row and 0 everywhere else). In other words, each column \mathbf{v}_i of A^{-1} is the unique solution to the linear system

$$A\mathbf{v}_i = \mathbf{e}_i$$
.

To find A^{-1} effectively, we form the augmented matrix $[A \mid I_n]$ and apply EROs to transform A into I_n . When this is achieved, the augmented portion becomes A^{-1} . Thus, we have

$$RREF([A \mid I_n]) = [I_n \mid A^{-1}].$$

Example 2.3

Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4 \end{bmatrix}$.

We form a 3×6 matrix $A' = [A \mid I_3]$:

$$A' = \begin{bmatrix} 3 & 4 & -1 & | & 1 & 0 & 0 \\ 1 & 0 & 3 & | & 0 & 1 & 0 \\ 2 & 5 & -4 & | & 0 & 0 & 1 \end{bmatrix}$$

We apply the following EROs to A':

- $R_1 \leftrightarrow R_2$
- $R_2 \to R_2 3R_1$
- $R_3 \to R_3 2R_1$
- $R_3 \to R_3 + R 2$
- $R_3 \leftrightarrow R_2$
- $R_3 \to R_3 4R_2$
- $R_3 \times (-\frac{1}{10})$
- $R_1 \to R_1 3R_3$

To obtain:

$$\begin{bmatrix} 1 & 0 & 0 & | & \frac{3}{2} & -\frac{11}{10} & -\frac{6}{5} \\ 0 & 1 & 0 & | & -1 & 1 & 1 \\ 0 & 0 & 1 & | & -\frac{1}{2} & \frac{7}{10} & \frac{2}{5} \end{bmatrix}$$

That is:

$$A^{-1} = \begin{bmatrix} \frac{3}{2} & -\frac{11}{10} & -\frac{6}{5} \\ -1 & 1 & 1 \\ -\frac{1}{2} & \frac{7}{10} & \frac{2}{5} \end{bmatrix}$$

It is easily checked that $AA^{-1} = I_3$.

3 Vector Spaces and Subspace Structure

3.1 The Image and Kernel of a Linear Transformation

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation defined with:

$$M_T = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix}$$

The **image** of T is the subset of \mathbb{R}^3 consisting of all elements $T(\mathbf{v}), \mathbf{v} \in \mathbb{R}^3$. This is the set of all vectors of the form:

$$a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 5 \\ 1 \end{bmatrix}$$

In matrix terms, this is the **column space** of M_T .

The **kernel** of T is the set of all vectors $\mathbf{v} \in \mathbb{R}^3$ such that $T(\mathbf{v}) = \mathbf{0}$. This is the set of all column vectors, whose entries, a, b, c satisfies:

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The kernel is a line and the image is a plane

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 0 & -5 & 5 & | & 0 \\ 1 & 1 & 1 & | & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The kernel (or nullspace) is $(2,1,1)t, t \in \mathbb{R}$, which is a line in \mathbb{R}^3 . The fact that (-2,1,1) is in the kernel of T, means that column 3 of M_T is a linear combination of columns 1 and 2.

$$-2\begin{bmatrix}1\\2\\1\end{bmatrix}+1\begin{bmatrix}2\\-1\\1\end{bmatrix}+1\begin{bmatrix}0\\5\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix} \implies \begin{bmatrix}0\\5\\1\end{bmatrix}=2\begin{bmatrix}1\\2\\1\end{bmatrix}-\begin{bmatrix}2\\-1\\1\end{bmatrix}$$

It follows that every linear combination of all three columns of M_T is just a linear combination of columns 1 and 2.

The column space of M_T is:

$$\left\{ a \begin{bmatrix} 1\\2\\1 \end{bmatrix} + b \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \ : \ a,b \in \mathbb{R} \right\}$$

3.2 Subspaces

Definition 3.1

A non empty subset **V** of \mathbb{R}^n is a **subspace** if:

- Closed under addition: $u + v \in \mathbb{V}$, $u, v \in \mathbf{V}$
- Closed under scalar multiplication: $\alpha u \in \mathbf{V}, u \in \mathbf{V}, \alpha \in \mathbb{R}$

Examples of subspaces

• $\{(x,y,z)\in\mathbb{R}^3: x+y+z=1\}$ is not a subspace of \mathbb{R}^3 . the [1,0,0] and (0,1,0) vectors are in the set, but their sum (1,1,0) is not in the set.

- $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 3) = 0\}$ is a subspace of \mathbb{R}^3 .
- $\{(x,y,z)\in\mathbb{R}^3:(x,y,z)\cdot(1,2,3)\neq0\}$ is not a subspace of \mathbb{R}^3 .
- The kernel of any linear transformation is a subspace of \mathbb{R}^n .
- The image of any linear transformation is a subspace of \mathbb{R}^n .

3.3 How to make subspaces

Definition 3.2

Let $S = \{v_1, \dots, v_k\}$ be any finite subset of \mathbb{R}^n

The subset of \mathbb{R}^n consisting of all linear combinations of the elements of S is a subspace of \mathbb{R}^n and is called the **span** of S and is denoted by $\langle (S) \rangle$.

Proof that $\langle S \rangle$ is a subspace of \mathbb{R}^n

- Closed under addition
- 3.4 Spanning sets
- 3.5 Linear independence
- 3.6 Linear independent and the replacement theorem
- 4 Bases, Dimensions and Coordinate Systems