	x	y	z	λ	f(x, y, z)
$\pm A$	±1	0	0	0	0
$\pm B$	0	± 1	0	0	0
$\pm C$	0	0	± 1	0	0
D	$\sqrt{3}/3$	$\sqrt{3}/3$	$\sqrt{3}/3$	$\sqrt{3}/6$	$\sqrt{3}/9$
\mathbf{E}	$-\sqrt{3}/3$	$\sqrt{3}/3$	$\sqrt{3}/3$	$-\sqrt{3}/6$	$-\sqrt{3}/9$
F	$\sqrt{3}/3$	$-\sqrt{3}/3$	$\sqrt{3}/3$	$-\sqrt{3}/6$	$-\sqrt{3}/9$
G	$\sqrt{3}/3$	$\sqrt{3}/3$	$-\sqrt{3}/3$	$-\sqrt{3}/6$	$-\sqrt{3}/9$
$_{\mathrm{H}}$	$\sqrt{3}/3$	$-\sqrt{3}/3$	$-\sqrt{3}/3$	$\sqrt{3}/6$	$\sqrt{3}/9$
I	$-\sqrt{3}/3$	$\sqrt{3}/3$	$-\sqrt{3}/3$	$\sqrt{3}/6$	$\sqrt{3}/9$
J	$-\sqrt{3}/3$	$-\sqrt{3}/3$	$\sqrt{3}/3$	$\sqrt{3}/6$	$\sqrt{3}/9$
K	$-\sqrt{3}/3$	$-\sqrt{3}/3$	$-\sqrt{3}/3$	$-\sqrt{3}/6$	$-\sqrt{3}/9$

Tabla 3.1 Los puntos críticos A, B, ..., J, K de h y los valores correspondientes de f.

Ejercicios

1. Sea $f(x,y) = x^2 + 3y^2$. Hallar los valores máximo y mínimo de f sujeta a la restricción dada.

(a)
$$x^2 + y^2 = 1$$

(b)
$$x^2 + y^2 < 1$$

2. Considérense todos los rectángulos con un perímetro fijo p. Utilizando los multiplicadores de Lagrange demostrar que el rectángulo con el área máxima es un cuadrado.

En los Ejercicios 3 a 7, hallar los extremos de f sujeta a las restricciones enunciadas.

3.
$$f(x, y, z) = x - y + z$$
, sujeta a $x^2 + y^2 + z^2 = 2$

4.
$$f(x,y) = x - y$$
, sujeta a $x^2 - y^2 = 2$

5.
$$f(x,y) = x$$
, sujeta a $x^2 + 2y^2 = 3$

6.
$$f(x,y,z) = x + y + z$$
, sujeta a $x^2 - y^2 = 1.2x + z = 1$

7.
$$f(x,y) = 3x + 2y$$
, sujeta a $2x^2 + 3y^2 = 3$

En los Ejercicios 8 a 11, hallar los extremos relativos de f|S.

8.
$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + y^2, S = \{(x,2) \mid x \in \mathbb{R}\}$$

9.
$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 + y^2, S = \{(x, y) \mid y \ge 2\}$$

10.
$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 - y^2, S = \{(x, \cos x) \mid x \in \mathbb{R}\}$$

11.
$$f: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto x^2 + y^2 + z^2, S = \{(x, y, z) \mid z \ge 2 + x^2 + y^2\}$$

12. Utilizar el método de los multiplicadores de Lagrange para hallar los valores máximo y mínimo absolutos de
$$f(x,y) = x^2 + y^2 - x - y + 1$$
 en el

disco unidad (véase el Ejemplo 11 de la Sección 3.3).

13. Considérese la función $f(x,y) = x^2 + xy + y^2$ definida en el disco unidad, a saber, $D = \{(x,y) \mid x^2 + y^2 \le 1\}$. Utilizar el método de los multiplicadores de Lagrange para localizar los puntos de máximo y de mínimo para f en la circunferencia unidad. Usar esto para determinar los valores máximo y mínimo para f en D.

14. Hallar los valores máximo y mínimo absolutos de f(x,y,z)=2x+y, sujeta a la restricción x+y+z=1.