Contents

1	Var	iables aleatorias continuas	1
	1.1	Variable aleatoria continua	1
	1.2	Función de distribución acumulada	2

Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

Probabilidad y Estadística

Unidad 5

Autor del resumen:

DEMAGISTRIS, Santiago Ignacio

1 Variables aleatorias continuas

1.1 Variable aleatoria continua

Supongamos que el recorrido de Xestá formado por un gran número finito de valores, por ejemplo, todos los valores x en el intervalo $0 \le 1$, de la forma 0,0.01,0.02,...,0.98,0.99,1. Con cada uno de estos valores asociados a un número no negativo $p(x_i) = P(X=x_i)$, i = 1,2,..., cuya suma es igual a 1.

Matemáticamente podría ser más sencillo idealizar la anterior descripción probabilística de X al suponer que X puede tomar todos los valores posibles, $0 \le 1$. Si hacemos esto, ¿Qué le sucede a las probabilidades puntuales $p(x_i)$? Puesto que los valores posibles de X no son contables, en realidad no se puede hablar de un i-ésimo valor de X, y por tanto, $p(x_i)$ pierde significado.

Lo que haremos es sustituir la función p, definida sólo para $X_1, X_2, ...$, por una función f definida (en el contexto presente) para todos los valores de x, $0 \le x \le 1$. Procederemos formalmente como sigue.

Definición. Se dice que X es una variable aleatoria continua si existe una función f, llamada función de densidad de probabilidad (fdp) de X, que satisfaga:

- a) $\forall_x f(x) > 0$
- b) $\int_{-\infty}^{+\infty} f(x) \ dx = 1$
- c) $\forall_{a,b}, -\infty < a < b < \infty, P(a \le X \le b) = \int_a^b f(x) \ dx$

Observaciones

- a) La existencia estipulada de una fdp es un método matemático que tiene una base intuitiva considerable y hace más sencillos nuestros cálculos. En relación con esto, de nuevo se debe señalar que cuando suponemos que X es una variable aleatoria continua, estamos considerando la descripción idealizada de S.
- b) P(c < X < d) representa el área bajo la gráfica de la fdp f entre x = c y x = d.
- c) Una consecuencia de la descripción probabilística de X para cualquier valor específico de X, por ejemplo x_0 , es que tenemos $P(X = x_0) = 0$, puesto que $P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$. Si permitimos que X tome todos los valores en un intervalo, entonces la probabilidad 0 no es equivalente con la imposibilidad. Cuando indicamos esto en un lenguaje matemático preciso, decimos que el evento tiene "probabilidad 0". Por tanto, si X es una variable aleatoria continua tenemos

$$P(c \le X \le d), P(c \le X < d), P(c < X \le d) y P(c < X < d)$$

d Si una función f^* satisface que $\forall_x \ f^* \geq 0, \ y \int_{-\infty}^{+\infty} f(x) dx = K, \ f^*$ no es una fdp pero

$$f(x) = \frac{f^*}{K},$$

si lo es.

- f) Si X sólo toma valores en un intervalo [a,b], simplemente podemos establecer f(x) = 0 para todo $x \notin [a,b]$. Por tanto, la fdp está definida para todos los valores reales de x, y debemos exigir que $_{-\infty}^{+\infty} f(x) dx = 1$. Cuando quiera que la fdp se especifique sólo para ciertos valores de x, supondremos que es cero para cualquier otro.
- g) f(x) no representa la probabilidad de nada. Sólo cuando la función se integra entre dos límites produce una probabilidad. Si Δx es pequeña, $f(x)\Delta x$ es aproximadamente igual a $P(x \le X \le x + \Delta x)$
- h) En este caso la fdp es inducida en R_x por las probabilidades asociadas con eventos en S. Por esto, cuando escribimos P(c < X < d), queremos decir P(c < X(s) < d), que a su vez es equivalente a P[s|c < X(s) < d]. Por lo tanto existe una fdp definida en R_x tal que:

$$P[s \in S | c < X(s) < d] = \int_{c}^{d} f(x) dx$$

Se eliminará la naturaleza funcional de X y por lo tanto estaremos interesados sólo en R_x y la fdp f.

Ejemplos págs. 88-90

1.2 Función de distribución acumulada

Definición. Sea X una variable aleatoria, discreta o continua. Definimos que F es la función de distribución acumulativa de la variable aleatoria X (abreviada fda) como $F(x) = P(X \le x)$

Teorema.

a) Si X es una variable aleatoria discreta

$$F(x) = \sum_{j} p(x_j)$$

donde cada indice j corresponde a un $x_j \leq x$

b) Si X es una variable aleatoria continua con fdp f

$$F(x) = \int_{-\infty}^{x} f(s)ds, \quad s \in R_x$$

Ejemplos págs 91-92

Teorema.

- a) La función F es no decreciente. Esto es si $x_1 < x_2 \Rightarrow F(x_1) < F(x_2)$
- b) $\lim_{x\to-\infty} F(x) = 0$ y $\lim_{x\to\infty} F(x) = 1$ (también denotados como $F(-\infty)$ y $F(\infty)$)
- Demostración pág 92

La función de distribución acumulativa es importante por varias razones. Esto es particularmente cierto cuando tratamos con una variable aleatoria continua, porque en este caso no podemos estudiar la conducta probabilística de X al calcular P(X=x). Esa probabilidad siempre es igual a cero en el caso continuo. Sin embargo, podemos inquirir acerca de $P(X\mid z)$ y, corno lo demostramos en el próximo teorema, obtener la fdp de X.

Teorema

a) Sea F la fda de una variable aleatoria continua con fdp f. Luego,

$$f(x) = \frac{d}{dx}F(X),$$

para toda x en la cual F es diferenciable.

b) Sea X una variable aleatoria discreta con valores posibles $x_1, x_2, ..., y$ supongamos que es posible rotular esos valores de modo que $x_1 < x_2 < ...,$ Sea F la fda de X. Entonces,

$$p(x_j) = P(X = x_j) = F(x_j) - F(x_{j-1})$$

Demostración pág 93-94 (recomendado leer)

Ejemplo pág 94

Características de la fda

- a) Si X es una variable aleatoria discreta con un número finito de valores posibles, la gráfica de la fda F será la de una función escalonada
- b) Si X es una variable aleatoria continua, F será una función continua para toda x.
- c) La fda F está definida para todos los valores de x, lo cual es una razón importante para considerarla.