Model Building with Variable Selection – Part II

Johns Hopkins Engineering

625.461 Statistical Models and Regression

Module 9 – Lecture 9C

Motivation for Variable Selection

By deleting regressors, we may improve the precision of the parameter estimates of the retained variables, and improve the precision of a predicted response

That is, there is a danger in retaining negligible variables – increase the variances of the parameter estimates and a predicted response

but at a cost of "bias"

Criteria for Evaluating Subset Models

$$R_p^2 = \frac{SS_R(p)}{SS_T} = 1 - \frac{SS_{Res}(p)}{SS_T}$$

There are $\binom{K}{p-1}$ values of R_p^2 for each value of p, one for each possible subset model of size p.

Plot maximum R_p^2 for each p versus p.

Criteria for Evaluating Subset Models: Use of R2

Figure 10.1 Plot of R_p^2 versus p.

Test for Selection based on R²

Aitkin (1974): Provide a test by which all subset regression models that have an R^2 not significantly different from the R^2 (labeled R_{K+1}^2) for the full model can be identified.

$$R_0^2 = 1 - (1 - R_{K+1}^2)(1 + d_{\alpha,n,k})$$

$$d_{\alpha,n,k} = \frac{KF_{\alpha,K,n-K-1}}{n-K-1}$$

Look for
$$R^2 > R_0^2$$

Residual Mean Squares

Figure 10.2 Plot of $MS_{Res}(p)$ versus p.

$$E[\hat{y}_i - E(y_i)]^2 = [E(y_i) - E(\hat{y}_i)]^2 + Var(\hat{y}_i)$$

The total squared bias for a p-term model

$$SS_{B}(p) = \sum_{i=1}^{n} [E(y_{i}) - E(\hat{y}_{i})]^{2}$$

The standardized mean square error of fitted values

$$\Gamma_{p} = \frac{1}{\sigma^{2}} \left\{ \sum_{i=1}^{n} \left[E(y_{i}) - E(\hat{y}_{i}) \right]^{2} + \sum_{i=1}^{n} \operatorname{Var}(\hat{y}_{i}) \right\}$$

$$= \frac{SS_{B}(p)}{\sigma^{2}} + \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \operatorname{Var}(\hat{y}_{i})$$

$$\sum_{i=1}^{n} \operatorname{Var}(\hat{y}_{i}) = p\sigma^{2}$$

$$\Gamma_p = \frac{1}{\sigma^2} \{ E[SS_{Res}(p)] - (n-p)\sigma^2 + p\sigma^2 \} = \frac{E[SS_{Res}(p)]}{\sigma^2} - n + 2p$$

$$C_p = \frac{SS_{Res}(p)}{\hat{\sigma}^2} - n + 2p$$

$$E[C_p|\text{Bias} = 0] = \frac{(n-p)\sigma^2}{\sigma^2} - n + 2p = p$$

Smaller values of C_p are desirable

Akaike Information Criterion (AIC) and Bayesian alike (BIC)

$$AIC = -2\ln(L) + 2p$$

$$AIC = n \ln \left(\frac{SS_{Res}}{n} \right) + 2p$$

Look for small AIC

Some Notes for Variable Selection

Uses of regressions and Model evaluation criteria

1. Obtain a good description of a process or model a complex system

Search a regression equation to minimize residual SS

2. Estimate mean response or predict a future observation

Select a regression model with a small PRESS

Some Notes for Variable Selection

3. Control

Accurate estimates of parameters are important.

The standard errors of the regression coefficients should be small.

