Session 1: Vector spaces

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Recap of the videos
- 2. More about the dimension
- 3. Coordinates
- 4. Why do we care about all these things?

 Application to data science: image compression

Logistics

Logistics

The teaching team

Lecturer: Léo Miolane - lm4271nyu.edu leomiolane.github.io/linalg-for-ds.html

Logistics 2/3

The teaching team

Lecturer: Léo Miolane - lm4271nyu.edu leomiolane.github.io/linalg-for-ds.html

Sections leaders:

In person

Irina

Remote

Carles

Remote

Logistics 2/3

Course components

Three main components:

Videos

2-3 short videos to watch **before** each lecture

2. Lectures

Deepens the concepts introduced in the videos

3. Recitations

Practice!

Logistics 3/31

Course components

Three main components:

Videos

2-3 short videos to watch **before** each lecture

2. Lectures

Deepens the concepts introduced in the videos

3. Recitations

Practice!

Grades:

- 1. Weekly quizzes (5%)
- 2. Weekly homeworks (40%)
- 3. Exams: Midterm (20%) + Final (35%)

Logistics 3/3

Weekly timeline

Mon	Tue	Wed	Thu	Fri	Sat	Sun
14	15	16	17	18	19	20
21	22	23	24	25	26	27

Logistics 4/31

Grading

- Quizzes have to be answered on **Gradescope**.
- Homeworks questions are available on the **course's webpage** and have to be submitted on **Gradescope**.

Logistics 5/31

Grading

- Quizzes have to be answered on Gradescope.
- Homeworks questions are available on the **course's webpage** and have to be submitted on **Gradescope**.
- I encourage you to type your homeworks using LaTeX.
 Some instructions and template available on the course's webpage.
- Otherwise, you can scan (using dedicated app) your handwritten work. It has to be legible!!!

Logistics 5/3

Grading

- Quizzes have to be answered on Gradescope.
- Homeworks questions are available on the course's webpage and have to be submitted on Gradescope.
- I encourage you to type your homeworks using LaTeX.
 Some instructions and template available on the course's webpage.
- Otherwise, you can scan (using dedicated app) your handwritten work. It has to be legible!!!
- Midterm (∼ mid-October) and Final will be «take-home exams».
- Limited time: after downloading the Midterm/Final questions, you will have to upload your work within few hours.

Check out the syllabus on the course webpage!

Logistics 5/

Questions on logistics?

Logistics 6/31

Vector spaces and subspaces

Quick recap of video 1.2

A **vector space** is a set V endowed with two 'nice and compatible' operations + and \cdot that verify:

- For all $u, v \in V$, $u + v \in V$.
- For all $u \in V$ and all $\lambda \in \mathbb{R}$, $\lambda \cdot u \in V$.

Example: $V = \mathbb{R}^n$, with the usual vector addition + and scalar multiplication \cdot is a vector space.

Quick recap of video 1.2

A subset S of a vector space V is called a **subspace** if it is closed under addition and multiplication by a scalar.

Example: For all $v \in \mathbb{R}^n$,

$$\mathrm{Span}(v) = \{ \lambda v \mid \lambda \in \mathbb{R} \}$$

is a subspace of \mathbb{R}^n .

Question?

Vector spaces and subspaces

10/31

Review of Span and linear dependency

Span

The *linear span* of vectors x_1, \ldots, x_k as the set of all linear combinations of these vectors.

Linear dependency

- Vectors $x_1, \ldots x_k$ are *linearly dependent* if one of them can be expressed as a linear combination of the others.
- They are said to be linearly independent otherwise.

Abuse of language: Instead of saying (x_1, \ldots, x_k) are linearly dependent, we should say (x_1, \ldots, x_k) is linearly dependent.

Basis

A family (x_1, \ldots, x_n) of vectors of V is a basis of V if

- 1. x_1, \ldots, x_n are linearly independent,
- 2. Span $(x_1, ..., x_n) = V$.

The dimension

The dimension 15/31

A useful lemma

Lemma

Let $v_1, \ldots, v_n \in V$ and let $x_1, \ldots, x_k \in \operatorname{Span}(v_1, \ldots, v_n)$. Then, if k > n, x_1, \ldots, x_k are linearly dependent.

The dimension 16/31

Definition of the dimension

Definition

We say that a vector space V has dimension n if it admits a basis (v_1,\ldots,v_n) with n vectors.

The dimension 17/31

The dimension is well defined!

Theorem

If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V) = n$.

Proof.

The dimension 18/31

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

Any family of vectors of V that are linearly independent contains at most n vectors.

```
i.e. if x_1, \ldots, x_k \in V are linearly independent, then k \leq n.
```

Any family of vectors of V that spans V contains at least n vectors.

i.e. if
$$x_1, \ldots, x_k \in V$$
 are such that $\mathrm{Span}(x_1, \ldots, x_k) = V$, then $k \geq n$.

Proof.

The dimension 19/31

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

Any family of vectors of V that are linearly independent contains at most n vectors.

```
i.e. if x_1, \ldots, x_k \in V are linearly independent, then k \leq n.
```

Any family of vectors of V that spans V contains at least n vectors.

i.e. if
$$x_1, \ldots, x_k \in V$$
 are such that $\mathrm{Span}(x_1, \ldots, x_k) = V$, then $k \geq n$.

Proof.

The dimension 19/31

Properties of the dimension

Proposition

Let V be a vector space of dimension n and let $x_1, \ldots, x_n \in V$.

- 1. If x_1, \ldots, x_n are linearly independent, then (x_1, \ldots, x_n) is a basis of V.
- 2. If $\operatorname{Span}(x_1,\ldots,x_n)=V$, then (x_1,\ldots,x_n) is a basis of V.

Very useful to show that a family of vector forms a basis:

Example:
$$x_1 = (12, 37)$$
 and $x_2 = (-9, 17)$ form a basis of \mathbb{R}^2 .

Proof of the Proposition.

An inequality

Proposition

Let U and V be two subspaces of \mathbb{R}^n . Assume that $U \subset V$. Then

$$\dim(U) \le \dim(V) \le n.$$

If **moreover** $\dim(U) = \dim(V)$, then U = V.

The dimension 21/31

An inequality

Proposition

Let U and V be two subspaces of \mathbb{R}^n . Assume that $U \subset V$. Then

$$\dim(U) \le \dim(V) \le n.$$

If **moreover** $\dim(U) = \dim(V)$, then U = V.

Proof.

The dimension 21/31

A bit of vocabulary

Definition

Let S be a subspace of \mathbb{R}^n .

- We call S a *line* if $\dim(S) = 1$.
- We call S an hyperplane if $\dim(S) = n 1$.

The dimension 22/31

Coordinates

Coordinates 23/31

Coordinates of a vector in a basis

Definition

If (v_1, \ldots, v_n) is a basis of V, then for every $x \in V$ there exists a unique vector $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Coordinates 24/31

Coordinates of a vector in a basis

Definition

If (v_1,\ldots,v_n) is a basis of V, then for every $x\in V$ there exists a unique vector $(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Proof.

Coordinates 24/31

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

Coordinates 25/31

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

Coordinates 25/31

Application to image compression

- Image = Grid of pixels
- Represented as a vector $v \in \mathbb{R}^n$, for some large n.
- One need to store *n* numbers.

$$n = 44 \times 55 = 2420$$

Can we do better?

If we want to store an arbitrary image, NO!

«Random» image

Can we do better?

- If we want to store an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some structure.

«Random» image

Can we do better?

- If we want to store an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some structure.

«Real» image

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

- There exists a basis (w_1, \ldots, w_n) of \mathbb{R}^n in which «real» images $v \in \mathbb{R}^n$ are (approximately) **sparse**.
- This means that the coordinates $(\alpha_1, \ldots, \alpha_n)$ of v in the basis (w_1, \ldots, w_n) contains a lot of zeros.

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

- There exists a basis (w_1, \dots, w_n) of \mathbb{R}^n in which «real» images $v \in \mathbb{R}^n$ are (approximately) **sparse**.
- This means that the coordinates $(\alpha_1, \ldots, \alpha_n)$ of v in the basis (w_1, \ldots, w_n) contains a lot of zeros.

Store only the $k \ll n$ non-zero coordinates of v (in the w_i 's basis')!

A toy example

Consider n=2, that is images $v\in\mathbb{R}^2$ with only 2 pixels.

Examples of good bases

Fourier bases (used in .jpeg, .mp3)

- JPEG2000 uses wavelet bases, and achieves better performance than JPEG.
- In **Homework 4**, you will use wavelets to compress/denoise images.

The course DS-GA 1013 deepens these concepts!

Questions?