Angular Momentum

We review how to obtain eigenvalues of the angular momentum operator By starting from the classical expression for angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, we get

$$L_{x} = (\mathbf{r} \times \mathbf{p})_{x} = YP_{z} - ZP_{y}$$

$$L_{y} = (\mathbf{r} \times \mathbf{p})_{y} = ZP_{x} - XP_{z}$$

$$L_{z} = (\mathbf{r} \times \mathbf{p})_{z} = XP_{y} - YP_{x}$$

The various commutators involving these operators are

$$[L_{x}, X] = [YP_{z} - ZP_{y}, X] = 0$$

$$[L_{y}, X] = [ZP_{x} - XP_{z}, X] = Z[P_{x}, X] = -i\hbar Z$$

$$[L_{z}, X] = [XP_{y} - YP_{x}, X] = -Y[P_{x}, X] = i\hbar Y$$

And similarly commutators with $P_{x,y,z}$ can be calculated

We can now calculate the commutators of the components of the angular momentum operator

$$\begin{split} \left[L_{x},L_{y}\right] &= \left[YP_{z}-ZP_{y},ZP_{x}-XP_{z}\right] \\ &= \left[YP_{z},ZP_{x}\right]-\left[YP_{z},XP_{z}\right]-\left[ZP_{y},ZP_{x}\right]+\left[ZP_{y},XP_{z}\right] \\ &= YP_{x}[P_{z},Z]+P_{y}X\left[Z,P_{z}\right] \\ &= i\hbar(XP_{y}-YP_{x}) \\ &= i\hbar L_{z} \end{split}$$

Very similarly one can show that

$$\begin{bmatrix} L_y, L_z \end{bmatrix} = i\hbar L_x$$
$$[L_z, L_x] = i\hbar L_y$$

Because the three components of **L** do not commute with one another, we cannot measure/determine them simultaneously

In the next step, we calculate the commutator of any one component of \mathbf{L} , say L_x , with $\mathbf{L}^2 = \mathbf{L} \cdot \mathbf{L} = L_x^2 + L_y^2 + L_z^2$. Consider, $\begin{bmatrix} L_x, L_x^2 + L_y^2 + L_z^2 \end{bmatrix} = \begin{bmatrix} L_x, L_y^2 + L_z^2 \end{bmatrix}$ (Since obviously $[L_x, L_x^2] = 0$) $\text{Now } [L_x, L_y^2] = [L_x, L_y] L_y + L_y [L_x, L_y]$

$$= i\hbar(L_zL_y + L_yL_z)$$
And similarly $[L_x, L_z^2] = [L_x, L_z]L_z + L_z[L_x, L_z]$

$$= -i\hbar(L_zL_y + L_yL_z)$$

Adding the two parts we get $[L_x, \mathbf{L}^2] = 0$ Very similarly, we can show that $[L_y, \mathbf{L}^2] = [L_z, \mathbf{L}^2] = 0$

Hence, only the magnitude of $\bf L$ and any one component of $\bf L$ can be determined simultaneously

We introduce the compact and useful index notation to simplify calculations Denote

$$X = X_1, Y = X_2, Z = X_3;$$

 $P_x = P_1, P_y = P_2, P_z = P_3$
 $L_x = L_1, L_y = L_2, L_z = L_3$

Then in this compact notation $L_i = \epsilon_{ijk} X_j P_k$, $X_i P_j - X_j P_i = \epsilon_{ijk} L_k$, i, j, k = 1,2,3 and of course $[X_i, P_j] = i\hbar \delta_{ij}$, $[X_i, X_j] = [P_i, P_j] = 0$, with repeated indices summed over all values

The 3 commutators $[L_i, X_j]$ calculated in the previous slide can now be compactly written and generalized as

$$[L_i, X_j] = [\epsilon_{ilm} X_l P_m, X_j] = \epsilon_{ilm} X_l [P_m, X_j]$$

= $\epsilon_{ilm} X_l (-i\hbar \delta_{mj}) = -i\hbar \epsilon_{ilj} X_l = i\hbar \epsilon_{ijl} X_l$

Here ϵ_{ijk} is the totally antisymmetric Levi-Civita tensor with $\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = +1$; and $\epsilon_{132} = \epsilon_{321} = \epsilon_{213} = -1$ (Odd permutation of ijk = 123) Similarly $[L_i, P_j] = [\epsilon_{ilm} X_l P_m, P_j] = i\hbar \epsilon_{ijm} P_m$ In fact, we can *define* a vector operator to be any set of 3 operators V_i which obey $[L_i, V_j] = i\hbar \epsilon_{ijk} V_k$

In index notation how do we calculate the commutator $[L_i, L_j]$?

$$[L_{i}, L_{j}] = [L_{i}, \epsilon_{jmn} X_{m} P_{n}]$$

$$= \epsilon_{jmn} ([L_{i}, X_{m}] P_{n} + X_{m} [L_{i}, P_{n}])$$

$$= \epsilon_{jmn} (i\hbar \epsilon_{imk} X_{k} P_{n} + i\hbar \epsilon_{ink} X_{m} P_{k})$$

$$= i\hbar [(\delta_{ji} \delta_{nk} - \delta_{jk} \delta_{ni}) X_{k} P_{n} - (\delta_{ji} \delta_{mk} - \delta_{jk} \delta_{mi}) X_{m} P_{k}]$$

$$= i\hbar [(\delta_{ij} X_{k} P_{k} - X_{j} P_{i} - \delta_{ji} X_{k} P_{k} + X_{i} P_{j}]$$

$$= i\hbar [X_{i} P_{j} - X_{j} P_{k}] = i\hbar \epsilon_{ijk} L_{k}$$

So finally we get the familiar relation $[L_i, L_j] = i\hbar\epsilon_{ijk}L_k$

Here we have used a very useful property involving the contraction of two ϵ tensors:

$$\epsilon_{ijk}\epsilon_{klm} = \begin{vmatrix} \delta_{il} & \delta_{im} \\ \delta_{jl} & \delta_{jm} \end{vmatrix} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

which can be verified by 'brute force'

The square of the angular momentum vector is a scalar operator $\mathbf{L}^2 = \mathbf{L} \cdot$

$$\mathbf{L} = L_i L_i = \sum_{i=1}^3 L_i L_i$$

This operator commutes with all the components of the angular momentum:

$$[L_i, \mathbf{L}^2] = [L_i, L_j L_j] = L_j [L_i, L_j] + [L_i, L_j] L_j$$

$$= L_j (i\hbar \epsilon_{ijk} L_k) + (i\hbar \epsilon_{ijk} L_k) L_j$$

$$= i\hbar \epsilon_{ijk} (L_j L_k + L_k L_j) = 0$$

In group, theory an operator which commutes with all the generators of the group is called a Casimir operator

A theory is invariant under rotations if the generators commute with the

Hamiltonian; i.e, for all i = 1,2,3, i.e., $[L_i, H] = 0$

For such rotationally invariant systems it also follows that

$$[\mathbf{L}^2, H] = [L_i L_i, H] = L_i [L_i, H] + [L_i, H] L_i = 0$$

Since the different components of **L** do <u>not</u> commute with one another, we can simultaneously diagonalize H, L^2 and <u>only one component</u> of **L** (conventionally chosen to be $L_3 = L_z$)

An example of a rotationally invariant theory is $H = \frac{\mathbf{P}^2}{2m} + V(R) = \frac{\mathbf{P}^2}{2m} + V(R)$

 $V(\mathbf{X}^2)$, so that the potential depends only on the radial coordinate and independent of direction.

Exs. are Coulomb and gravitation potential, 3 dimensional isotropic harmonic oscillator with potential $V(x,y,z) = \frac{1}{2}m\omega^2(x^2+y^2+z^2) = V(R^2)$ etc.

How do we find the simultaneous eigenstates of H, L^2 and L_3 ? It turns out we can solve for the eigenvalue spectrum only using the underlying commutation relations $[L_i, L_j] = i\hbar\epsilon_{ijk}L_k$ and without appealing to any properties of the orbital angular momentum operator $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ Define two new operators

$$L_{+} = L_{1} + iL_{2}$$
$$L_{-} = L_{1} - iL_{2}$$

with $L_{-} = L_{+}^{\dagger}$. Since \mathbf{L}^{2} commutes with all components L_{i} , it follows that $[L_{+}, \mathbf{L}^{2}] = [L_{-}, \mathbf{L}^{2}] = 0$

On the other hand, L_{\pm} do not commute with L_3 :

$$[L_{+}, L_{3}] = [L_{1} + iL_{2}, L_{3}] = -i\hbar L_{2} + i(i\hbar L_{1})$$
$$= -\hbar (L_{1} + iL_{2}) = -\hbar L_{+}$$

$$[L_{-}, L_{3}] = [L_{1} - iL_{2}, L_{3}] = -i\hbar L_{2} - i(i\hbar L_{1})$$
$$= \hbar (L_{1} - iL_{2}) = \hbar L_{-}$$

Furthermore

$$[L_{+}, L_{-}] = [L_{1} + iL_{2}, L_{1} - iL_{2}]$$

$$= [L_{1}, -iL_{2}] + [iL_{2}, L_{1}]$$

$$= (-i)(i\hbar L_{3}) + i(-i\hbar L_{3})$$

$$= 2\hbar L_{3}$$

Since in a rotationally invariant theory $[H, L_i] = 0$, it also follows that $[L_+, H] = [L_-, H] = 0$

Let $|j,m\rangle$ represent the simultaneous eigenstates of the operators L^2 and L_3 such that

$$L_3|j,m\rangle = \hbar m|j,m\rangle$$

$$\mathbf{L}^2|j,m\rangle = \hbar^2 j|j,m\rangle$$

Next to check the effect of L_+ on a given eigenstate $|j,m\rangle$ consider:

$$L_3L_+|j,m\rangle = ([L_3,L_+] + L_+L_3)|j,m\rangle$$

= $(\hbar L_+ + L_+L_3)|j,m\rangle$
= $(\hbar + \hbar m)L_+|j,m\rangle$
= $\hbar (m+1)L_+|j,m\rangle$

Similarly for L^2 ,

$$\mathbf{L}^{2}L_{+}|j,m\rangle = ([\mathbf{L}^{2},L_{+}] + L_{+}L^{2})|j,m\rangle$$

$$= L_{+}\mathbf{L}^{2}|j,m\rangle$$

$$= \hbar^{2}jL_{+}|j,m\rangle$$

This shows that the effect of L_+ acting on $|j,m\rangle$ is to increase it's m value by 1, to take it to a state where the eigenvalue of L_3 is raised by one unit of \hbar The eigenvalue of L^2 is unchanged when acting on $L_+|j,m\rangle$

Since $L_+|j,m\rangle \propto |j,m+1\rangle$, we can write $L_+|j,m\rangle = C_+|j,m+1\rangle$, where C_+ is a normalization constant depending on j and mSimilarly we can easily show that

$$L_3L_-|j,m\rangle = \hbar(m-1)L_-|j,m\rangle$$

$$\mathbf{L}^2L_-|j,m\rangle = L_-\mathbf{L}^2|j,m\rangle = \hbar^2jL_-|j,m\rangle$$

This shows that the operator L_{-} acting on $|j,m\rangle$ lowers the eigenvalue of L_{3} by one unit of \hbar , while not effecting the eigenvalue of \mathbf{L}^{2} .

Since $L_{-}|j,m\rangle \propto |j,m-1\rangle$, we can write $L_{-}|j,m\rangle = C_{-}|j,m-1\rangle$

Since L_+ and L_- raise and lower the eigenvalue of L_3 (i.e., $m\hbar$) they are called raising and lowering operators

Further, by repeatedly applying L_+ and L_- respectively on $|j,m\rangle$ we can generate a sequence of states $|j,m+1\rangle$, $|j,m+2\rangle$, \cdots and $|j,m-1\rangle$, $|j,m-1\rangle$

However this sequence of states generated by repeated application of L_{\pm} cannot go on infinitely. It has to terminate at some state. Since

$$\mathbf{L}^2 = L_1^2 + L_2^2 + L_3^2, \qquad \mathbf{L}^2 - L_3^2 = L_1^2 + L_2^2 \ge 0$$

The operator $\mathbf{L}^2 - L_3^2$ is a positive semi-definite operator, hence it's eigenvalues are ≥ 0 and so $\hbar^2 j - \hbar^2 m^2 \geq 0$, or $j \geq m^2$

This implies that there must exist states with a minimum and maximum value of m such that

$$L_{+}|j,m_{\max}\rangle=0$$

Taking the inner product of the above ket with itself and noting that $L_{+}^{\dagger}=L_{-}$

i.e,
$$\langle j, m_{\max} | L_- L_+ | j, m_{\max} \rangle = 0$$

i.e, $\langle j, m_{\max} | (\mathbf{L}^2 - L_3^2 - \hbar L_3) | j, m_{\max} \rangle = 0$
i.e, $(\hbar^2 j - \hbar^2 m_{\max}^2 - \hbar^2 m_{\max}) \langle j, m_{\max} | j, m_{\max} \rangle = 0$
Hence $j - m_{\max}(m_{\max} + 1) = 0$

Similarly there must exist a state with a minimum value of m such that

$$L_{-}|j,m_{\min}\rangle = 0$$
 i.e, $\langle j,m_{\min}|L_{+}L_{-}|j,m_{\min}\rangle = 0$ i.e, $\langle j,m_{\min}|(\mathbf{L}^{2}-L_{3}^{2}+\hbar L_{3})|j,m_{\min}\rangle = 0$ i.e, $(\hbar^{2}j-\hbar^{2}m_{\min}^{2}+\hbar^{2}m_{\min})\langle j,m_{\min}|j,m_{\min}\rangle = 0$

Hence
$$j - m_{\min}(m_{\min} - 1) = 0$$

Comparing the two equations involving j, $m_{\rm max}$ and $m_{\rm min}$ we get $m_{\rm min} = -m_{\rm max}$

(The other solution $m_{\text{max}} = m_{\text{min}} - 1$ violates our assumption that $m_{\text{max}} > m_{\text{min}}$ and that m_{min} denotes the minimum value of m)

Let us say one can go from the state $|j, m_{\min}\rangle$ to $|j, m_{\max}\rangle$ by applying the raising operator k number of times. So $k = 0,1,2,\cdots$ must be an integer Since every time L_+ is applied to increases the m value by one $(m \to m+1)$, it follows that

$$m_{
m max}-m_{
m min}=k$$
 i. e, $2m_{
m max}=k$ i. e, $m_{
m max}=-m_{
m min}=rac{k}{2}$

where k is an integer. In terms of k then,

$$j = m_{\text{max}}(m_{\text{max}} + 1) = \frac{k}{2} \left(\frac{k}{2} + 1\right)$$

Define $\ell = \frac{k}{2}$ so that ℓ takes only multiples of half integral values, i.e., $0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$

So finally, the eigenvalues of
$$L^2$$
 and L_3 are of the form

$$\mathbf{L}^{2}|\ell,m\rangle = \ell(\ell+1)\hbar^{2}|\ell,m\rangle$$
$$L_{3}|\ell,m\rangle = m\hbar|\ell,m\rangle$$

Where $\ell = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$ and m takes values $-\ell \le m \le \ell$

Since m can go from $-\ell$ to ℓ in steps of one, there are $2\ell + 1$ states Since $|\ell, m\rangle$ are constructed as eigenstates of L^2 and L_3 , these operators, viewed as matrices in the $|\ell, m\rangle$ basis, are already diagonal:

$$\langle \ell', m' | \mathbf{L}^2 | \ell, m \rangle = \ell (\ell + 1) \hbar^2 \, \delta_{\ell' \ell} \delta_{m' m}$$

i.e., more simply L^2 is simply proportional to the identity matrix:

$$\mathbf{L}^2 = \ell(\ell+1)\hbar^2 \mathbf{1}$$

Where **1** is the identity matrix of dimension $(2\ell + 1) \times (2\ell + 1)$

Similarly, in the $|\ell,m\rangle$ basis L_3 is also diagonal with eigenvalues $-\ell\hbar, (-\ell+1)\hbar, \cdots (\ell-1)\hbar, \ \ell\hbar$

$$L_3 = \hbar \begin{pmatrix} \ell & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & -\ell \end{pmatrix}$$

So for a spin half particle, $\ell = \frac{1}{2}$, the eigenvalue of \mathbf{L}^2 is $\frac{1}{2} \left(\frac{1}{2} + 1 \right) \hbar^2 = \frac{3}{4} \hbar^2$

The L_3 eigenvalues are $-\frac{1}{2}\hbar$ and $\frac{1}{2}\hbar$. Hence the L^2 and L_3 matrices are

$$\mathbf{L}^{2} = \frac{3}{4} \hbar^{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$L_{3} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

How do we determine the matrices for L_x and L_y in the $|\ell, m\rangle$ eigenbasis?

Note that $|\ell,m\rangle$ are not eigenstates of L_x and L_y , since they do not commute with L_z

We can do this by going back to the definitions of L_{\pm} :

$$L_{+} = L_{1} + iL_{2}$$

$$L_{-} = L_{1} - iL_{2}$$

Adding and subtracting them we get

$$L_1 = L_x = \frac{1}{2}(L_+ + L_-)$$

$$L_2 = L_y = \frac{1}{2i}(L_+ - L_-)$$

Here if we determine the matrix representations of L_{\pm} we can figure out the L_x and L_y matrices

Now we know that

$$L_{+}|\ell,m\rangle = C_{+}|\ell,m+1\rangle$$

Taking the inner product of this ket with itself,

$$\langle \ell, m | L_- L_+ | \ell, m \rangle = |C_+|^2 \text{ since } L_+^{\dagger} = L_-$$

Now

$$L_{-}L_{+} = (L_{1} - iL_{2})(L_{1} + iL_{2}) = L_{1}^{2} + L_{2}^{2} + i[L_{1}, L_{2}] = \mathbf{L}^{2} - L_{3}^{2} - \hbar L_{3}$$

Hence the above inner product becomes

or
$$\langle \ell, m | (\mathbf{L}^2 - L_3^2 - \hbar L_3) | \ell, m \rangle = |C_+|^2$$

or $\hbar^2 [\ell(\ell+1) - m(m+1)] = |C_+|^2$

This determines C_+ upto a phase. Taking the phase factor to be one:

$$C_{+} = C_{+}^{*} = \hbar \sqrt{\ell(\ell+1) - m(m+1)}$$

This determines the action of L_+ on $|\ell, m\rangle$:

$$L_{+}|\ell,m\rangle = \hbar\sqrt{\ell(\ell+1) - m(m+1)} |\ell,m+1\rangle$$

Very similarly, considering $L_{-}|j,m\rangle = C_{-}|j,m-1\rangle$, we can show

$$L_{-}|\ell,m\rangle = \hbar\sqrt{\ell(\ell+1) - m(m-1)} |\ell,m-1\rangle$$

So the only non-zero matrix elements of L_+ are

$$\langle \ell, m + 1 | L_+ | \ell, m \rangle = C_+$$

 $\langle \ell, m - 1 | L_- | \ell, m \rangle = C_-$

for each m which takes values from $-\ell$ to $+\ell$ in steps of one

Note that the L_{\pm} matrices cannot connect states with different ℓ , they only change the value of m for a given ℓ

All this can be easily calculated for the case $\ell = \frac{1}{2}$ and $m = \pm \frac{1}{2}$

In his case the only non-zero matrix element of L_{\pm} is

$$\langle \frac{1}{2}, \frac{1}{2} | L_{+} | \frac{1}{2}, -\frac{1}{2} \rangle = \hbar \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1 \right) - \left(-\frac{1}{2} \right) \left(-\frac{1}{2} + 1 \right)}$$

$$= \hbar$$

Similarly the only non-zero matrix element of L_{\perp} is

$$\langle \frac{1}{2}, -\frac{1}{2} | L_{-} | \frac{1}{2}, \frac{1}{2} \rangle = \hbar \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1 \right) - \left(\frac{1}{2} \right) \left(\frac{1}{2} - 1 \right)}$$

$$= \hbar$$

Hence the matrices L_{\pm} in the $|\ell, m\rangle$ basis are

$$L_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$L_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\therefore L_{1} = L_{x} = \frac{1}{2}(L_{+} + L_{-}) = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and
$$L_2 = L_y = \frac{1}{2i}(L_+ - L_-) = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Thus the 3 angular momentum matrices for the case $\ell = \frac{1}{2}$ in the $|\ell, m\rangle$ are

$$L_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, L_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, L_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Apart from the factor of $\frac{\hbar}{2}$, these are the famous Pauli matrices

And of course

$$\mathbf{L}^2 = \frac{1}{2} \begin{pmatrix} \frac{1}{2} + 1 \end{pmatrix} \hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$=\frac{3}{4}\hbar^2\begin{pmatrix}1&0\\0&1\end{pmatrix}$$

The $2\ell+1$ orthonormal states $|\ell,m\rangle$ (with $m=-\ell,-\ell+1,\cdots,\ell-1,\ell$) constitute the simultaneous eigenkets of the Hermitian operators \mathbf{L}^2 and L_3 . They define a subspace $\mathcal{E}^{(\ell)}$ of the complete Hilbert space consisting of eigenkets $|j,m\rangle$ of all possible (allowed) angular momentum values $j=0,\frac{1}{2},1,\frac{3}{2},\cdots$

The operators \mathbf{L}^2 , L_3 , L_{\pm} take any eigenvector in $\mathcal{E}^{(\ell)}$ to another vector in the same space, i.e., the action of these operators on $\mathcal{E}^{(\ell)}$ leaves this space invariant, since the magnitude of the angular momentum (characterised by ℓ) does not change under \mathbf{L}^2 , L_3 , L_{\pm}

Exercise: Construct the matrices $\langle \ell, m' | L_+ | \ell, m \rangle$ and $\langle \ell, m' | L_- | \ell, m \rangle$

What is the dimensionality of the matrices? Construct the matrices for L_x and L_y for $\ell = \frac{1}{2}$ and $\ell = 1$. (The matrices for \mathbf{L}^2 and L_z are of course diagonal in the $|\ell, m\rangle$ basis)

We have shown how to construct the 2×2 matrices for $\ell = 1/2$ Construct the 3×3 matrices for $\ell = 1$. Show that we get

And
$$L_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $L_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & i \\ 0 & i & 0 \end{pmatrix}$, $L_z = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ for $\ell = 1$

Verify that for the matrices for spin ½ and spin 1 obey the fundamental commutation relations $[L_i, L_j] = i\hbar\epsilon_{ijk}L_k$

In general for an arbitrary ℓ , in the angular momentum basis $|\ell, m\rangle$, the matrix elements of the various relevant operators are

$$\langle \ell',m'|\mathbf{L}^2|\ell,m\rangle=\hbar^2\ell(\ell+1)\,\delta_{\ell',\ell}\,\delta_{m',m}$$

$$\langle \ell',m'|L_3|\ell,m\rangle=\hbar m\,\delta_{\ell',\ell}\,\delta_{m',m}$$

$$\langle \ell',m'|L_+|\ell,m\rangle=\hbar\sqrt{\ell(\ell+1)-m(m+1)}\,\delta_{\ell',\ell}\,\delta_{m',m+1}$$

$$\langle \ell',m'|L_-|\ell,m\rangle=\hbar\sqrt{\ell(\ell+1)-m(m-1)}\,\delta_{\ell',\ell}\,\delta_{m',m-1}$$
 where $\ell=0,\frac{1}{2},1,\frac{3}{2},\cdots$ and $m=-\ell,-\ell+1,\cdots,\ell-1,\ell$