Hilbert Projection Theorem

Let H be a Hilbert space (inner product space that is complete with respect to the norm induced by the inner product) and M be a finite dimensioal subspace of H. Then for any $x \in H$, there exists a unique $y \in M$ such that

$$\min_{m \in M} \|x - m\|$$

has a unique solution y. In other words "we can find a unique point in M that is closest to x". If m^* is the closest point to x in M, then $x - m^* \perp M$.

Proof: See lecture notes.

Remark: The proof stated that $m^* = x_1$ is the closest point to M. It can also be interpreted as the best approximation of x choosen from the vectors in M. The x_2 term is the error in the approximation.

Example: Let $V = \mathbb{R}^2$ and $M = \text{span}\{[1,1]^T\}$. Find the best approximation of $x = [4,7]^T$ in M.

Solution: We need to find m^* such that $m^*=lpha egin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\|x-m^*\|$ is minimum.

$$(x-m^*) \perp M \implies < x-m^*, m> = 0 \quad orall m \in M$$

$$< x - m^*, egin{bmatrix} 1 \ 1 \end{bmatrix} > = 0$$

Replace x and m^* with their values.

$$< egin{bmatrix} 4-lpha \ 7-lpha \end{bmatrix}, egin{bmatrix} 1 \ 1 \end{bmatrix} > = 0$$

Recall that $\langle x, y \rangle = x^T y$.

$$4 - \alpha + 7 - \alpha = 0$$

$$\alpha = \frac{11}{2}$$

$$m^* = rac{11}{2} egin{bmatrix} 1 \ 1 \end{bmatrix}$$

Example: Let $x \in V$ and $M = \text{span}\{v_1, v_2\}$. Find the best approximation of x in M.

Solution: We need to find m^* such that $m^* = \alpha_1 v_1 + \alpha_2 v_2$ that is in the span of M and $\|x - m^*\|$ is minimum.

$$(x-m^*) \perp M \implies (x-m^*) \perp ext{both } v_1 ext{ and } v_2 \ < x-lpha_1 v_1-lpha_2 v_2, v_1>=< x, v_1>-lpha_1 < v_1, v_1>-lpha_2 < v_2, v_1>=0 \ < x-lpha_1 v_1-lpha_2 v_2, v_2>=< x, v_2>-lpha_1 < v_1, v_2>-lpha_2 < v_2, v_2>=0 \ egin{bmatrix} \langle v_1, v_1> & \langle v_2, v_1> \\ \langle v_1, v_2> & \langle v_2, v_2> \end{bmatrix} egin{bmatrix} lpha_1 \\ lpha_2 \end{bmatrix} = egin{bmatrix} \langle x, v_1> \\ \langle x, v_2> \end{bmatrix} \ egin{bmatrix} lpha_1 \\ lpha_2 \end{bmatrix} = egin{bmatrix} \langle v_1, v_1> & \langle v_2, v_1> \\ \langle v_1, v_2> & \langle v_2, v_2> \end{bmatrix}^{-1} egin{bmatrix} \langle x, v_1> \\ \langle x, v_2> \end{bmatrix} \ m^* = lpha_1 v_1 + lpha_2 v_2 \ \end{pmatrix}$$

Example: Let $V = \mathbb{R}^3$ and $M = \text{span}\{[1,1,1]^T, [1,0,1]^T\}$. Find the best approximation of $x = [4,7,2]^T$ in M.

Consider the linear equation as,

$$Ax = B$$

where $A \in \mathbb{C}^{m \times n}, \, B \in \mathbb{C}^{m \times 1}$ and $x \in \mathbb{C}^{n \times 1}$ is unknown.

- a) **solution exists**: when $b \in \mathrm{R}(A)$
- b) solution is unique: when $N(A)=\{0\}$

#EE501 - Linear Systems Theory at METU