Tutorial Sheet 7 – Nyquist & Bode Plots

Q1 By converting to polar format, simplify the following expressions. Write your answer in both polar and cartesian form.

(i)
$$\frac{1+2j}{2-i}$$

(i)
$$\frac{1+2j}{2-j}$$
 (ii) $\frac{j(1-3j)}{(3-2j)(5+4j)}$

Q2 Sketch the Nyquist diagram for each of the following systems:

(i)
$$G(s) = \frac{k}{(s+1)(s+2)}$$

(i)
$$G(s) = \frac{k}{(s+1)(s+2)}$$
 (ii) $G(s) = \frac{k(s+3)}{(s+1)(s+2)}$

Q3 Sketch the Nyquist diagram for a system with the following OLTF:

$$G(s) = \frac{27k}{(s+3)^3}$$

Q4 (i) Sketch the Nyquist diagram for the following system when k = 10, 40 and 100:

G(s) =
$$\frac{k}{(s+1)(s+2)(s+3)}$$

- (ii) Show that the Nyquist plot crosses the negative real axis at a frequency of $\omega = \sqrt{11}$
- (iii) Show that $|G(j\omega)| = 1$ when $\omega = 1$, ≈ 2.73 and ≈ 4.14 for k = 10, 40 and 100 respectively.
- Q5 Repeat Q2 using Bode Plots instead of the Nyquist Diagram.
- Q6 Repeat Q3 using Bode Plots instead of the Nyquist Diagram.
- Q7 (i) Sketch the Bode diagram for the following system when k = 10, 40 and 100:

G(s) =
$$\frac{k}{(s+1)(s+2)(s+3)}$$