Least Squares Classification

Masashi Sugiyama, Takashi Ishida, Yivan Zhang {sugi, ishi, yivan.zhang}@k.u-tokyo.ac.jp http://www.ms.k.u-tokyo.ac.jp

Review of regression

Aim to find a function from the training sample that is close to the true function.

Linear-in-parameter model

Linear model:
$$f_{m{ heta}}(m{x}) = \sum_{j=1}^{o} \theta_{j} \phi_{j}(m{x})$$

 $\{\phi_i(x)\}_{i=1}^b$: basis functions

Kernel model:

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_{j} K(\boldsymbol{x}, \boldsymbol{x}_{j})$$

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_j K(\boldsymbol{x}, \boldsymbol{x}_j) \ K(\boldsymbol{x}, \boldsymbol{c}) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{c}\|^2}{2h^2}\right)$$

Least squares regression

Minimize the squared error between model output and label:

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

ℓ_2 -constrained least squares regression

 Restrict the model to be within a hyper-cube in order to alleviate overfitting.

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \text{ subject to } \|\boldsymbol{\theta}\|^2 \le R$$

R > 0

Combining different losses and constraints

Learning methods for linear and kernel models:

Constraint		None	l 2	l 1	
Loss function			Regularization	Regularization & sparse	
<pre></pre>	ent	Analytical solution	Analytical solution	Quadratic programming	
Huber loss		Quadratic programming	Quadratic programming	Quadratic programming	
loss Robu	st	Linear programming	Quadratic programming	Linear programming	

Choose the model and regularization parameters with cross-validation.

Components of a regression model

- Model $f: X \to \mathbb{R}$: linear model, kernel model, neural network, ...
- Training examples: how data is collected
- Evaluation criteria: how good a model is (mean absolute error (MAE), mean squared error (MSE), maximum error, ...)
- Learning objective: how to learn a good model
- Optimization: exact solution, heuristics, gradient-based optimization, derivative-free/black-box optimization

Contents

- 1. Classification by least squares regression
- 2. Multi-class classification problems
- 3. Fisher discriminant analysis
- 4. 0/1-loss and the margin

Pattern recognition

- The problem of constructing a discriminant function that assigns input patterns to categories
- Humans can design discriminant functions for each problem
- Alternatively: automatically learn discriminant functions from data

Components of a classification model

- Number of classes c
- Model $f: X \to \{1,2,...,c\}$: linear model, kernel model, decision tree, neural network, ...
- Training examples: how data is collected
- Evaluation criteria: how good a model is (accuracy, precision, recall, ...)
- Learning objective: how to learn a good model
- Optimization: exact solution, heuristics, gradient-based optimization, derivative-free/black-box optimization

Classification with 2 classes

- Labeled training data: $\{(x_i, y_i)\}_{i=1}^n$
 - d-dimensional input:

$$x \in \mathbb{R}^d$$

Binary output class label:

$$y \in \{+1, -1\}$$

 We want to derive the decision boundary between the two classes.

Classification with 2 classes

 The two-class classification problem can be expressed as an approximation for a binary function.

We can use the methods we learned in regression!

Classification by regression

Learn parameters with regularized least squares:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|^2 \right]$$

 $\lambda (\geq 0)$: regularization hyper-parameter

Classifying test patterns (samples):

$$\widehat{y} = \operatorname{sign} \left(f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) \right) = \begin{cases} +1 & (f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) > 0) \\ 0 & (f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) = 0) \\ -1 & (f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) < 0) \end{cases}$$

Example of implementation

 For the Gaussian kernel model, let's try implementing a classification algorithm based on regularized least squares regression.

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=1}^{n} \theta_{j} K(\boldsymbol{x}, \boldsymbol{x}_{j})$$

$$K(oldsymbol{x},oldsymbol{c}) = \exp\left(-rac{\|oldsymbol{x}-oldsymbol{c}\|^2}{2h^2}
ight)$$

MATLAB code

```
clear all; rand('state',0); randn('state',0);
n=200; a=linspace(0,4*pi,n/2);
u=[a.*cos(a) (a+pi).*cos(a)]'+1*rand(n,1);
v=[a.*sin(a) (a+pi).*sin(a)]'+1*rand(n,1);
x=[u \ v]; y=[ones(1,n/2) -ones(1,n/2)]';
x2=sum(x.^2,2); hh=2*1^2; l=0.01;
k=\exp(-(repmat(x2,1,n)+repmat(x2',n,1)-2*x*x')/hh);
t=(k^2+l*eye(n))(k*y);
m=100; X=linspace(-15,15,m)'; X2=X.^2;
U=exp(-(repmat(u.^2,1,m)+repmat(X2',n,1)-2*u*X')/hh);
V = \exp(-(repmat(v_{1}) - 2, 1, m) + repmat(X2', n, 1) - 2*v*X')/hh);
figure(1); clf; hold on; axis([-15 15 -15 15]);
contourf(X,X,sign(V'*(U.*repmat(t,1,m))));
plot(x(y==1,1),x(y==1,2),'bo');
plot(x(y==-1,1),x(y==-1,2),'rx');
colormap([1 0.7 1; 0.7 1 1]);
```


Python code

```
import numpy as np; import matplotlib; matplotlib.use('TkAgg'); import matplotlib.pyplot as plt; np.random.seed(1)
def generate_data(sample_size):
    a = np_linspace(0, 4 * np_pi, num=sample_size // 2)
    x = np.concatenate(
        [np.stack([a * np.cos(a), a * np.sin(a)], axis=1),
         np.stack([(a + np.pi) * np.cos(a), (a + np.pi) * np.sin(a)], axis=1)])
    x += np.random.random(size=x.shape)
    y = np.concatenate([np.ones(sample_size // 2), -np.ones(sample_size // 2)])
                                                                                                    10
    return x, y
def build_design_mat(x1, x2, bandwidth):
    return np.exp(
        -np.sum((x1[:, None] - x2[None]) ** 2, axis=-1) / (2 * bandwidth ** 2))
def optimize_param(design_mat, y, regularizer):
    return np.linalg.solve(
        design_mat.T.dot(design_mat) + regularizer * np.identity(len(y)),
        design_mat.T.dot(y))
def visualize(theta, x, y, grid_size=100, x_min=-16, x_max=16):
                                                                                                   -10
    grid = np.linspace(x_min, x_max, grid_size)
    X, Y = np.meshgrid(grid, grid)
    mesh_grid = np.stack([np.ravel(X), np.ravel(Y)], axis=1)
                                                                                                   -15
    design_mat = build_design_mat(x, mesh_grid, bandwidth=1.)
                                                                                                                                     10
                                                                                                                                            15
                                                                                                      -15
                                                                                                             -10
    plt.clf()
    plt_figure(figsize=(6, 6))
    plt.xlim(x_min, x_max)
    plt.ylim(x_min, x_max)
    plt.contourf(X, Y, np.reshape(np.sign(design_mat.T.dot(theta)), (grid_size, grid_size)), alpha=.4, cmap=plt.cm.coolwarm)
    plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], marker='$0$', c='blue')
    plt.scatter(x[y == -1][:, 0], x[y == -1][:, 1], marker='x', c='red')
    plt.savefig('l5-p15.png')
x, y = generate_data(sample_size=200)
design_mat = build_design_mat(x, x, bandwidth=1.)
theta = optimize_param(design_mat, y, regularizer=0.01)
visualize(theta, x, y)
```

Handwritten digit recognition by Gaussian kernel least-squares classification

- 16 x 16 pixels, density of each pixel from 0 to 255
- Training sample: 1,000 characters, 500 for each of 1 and 2
- Test sample: 400 characters, 200 each of 1 and 2

Importing Handwritten Digits

- Download the file from:
 - http://www.ms.k.u-tokyo.ac.jp/sugi/software/SML.zip
- Load the handwritten digits by:

```
load digit.mat
```

- Then, we will have X (training) and T (test).
- Use the `whos` command:

>	whos			
	Name	Size	Bytes	Class
	T	256x200x10	4096000	double
	X	256x500x10	10240000	double

Details of the handwritten digits

- X and T are 3-dimensional arrays
- A single handwritten digit is a 256dimensional vector.
- It is a vector of 16x16 pixel image data, each element of which is a real number between -1 and 1.

Details of the handwritten digits

- When the value is -1: pixel is black
- When the value is 1: pixel is white
- X: 500 characters for each number from 0 to 9
- T: 200 characters for each number from 0 to 9
- For example, to extract the data of the 23rd training handwritten digit 5 into the variable x, use x=X(:,23,5);.
- Note that the data for handwritten digit 0 corresponds to the case where the third argument is 10.

Visualizing the chosen data

Images of the retrieved handwritten text data can be displayed as follows:

```
imagesc(reshape(x,[16 16])')
colormap(gray)
```


Example

```
clear all; rand('state',0); randn('state',0);
load digit.mat
x=[X(:,:,1) \ X(:,:,2)]; \ y=[ones(500,1); -ones(500,1)];
n=length(y); x2=sum(x.^2,1); hh=2*10^2; l=1;
k=exp(-(repmat(x2,n,1)+repmat(x2',1,n)-2*x'*x)/hh);
t=(k^2+1*eye(n))(k*y);
u=T(:,:,1); % Test patterns 1
v=exp(-
(repmat(x2,200,1)+repmat(sum(u.^2,1)',1,n)-2*u'*x)/hh)*t;
C(1,1)=sum(sign(v)>=0); C(1,2)=sum(sign(v)<0);
u=T(:,:,2); % Test patterns 2
v=exp(-
(repmat(x2,200,1)+repmat(sum(u.^2,1)',1,n)-2*u'*x)/hh)*t;
C(2,1)=sum(sign(v)>=0); C(2,2)=sum(sign(v)<0);
```

Results

Accuracy is: 3 9 9 / 4 0 0 = 9 9 . 7 5 %

Predicted category

True		1	2
teo	1	199	
egor	2	0	200

Contents

- 1. Classification by least squares regression
- 2. Multi-class classification problems
- 3. Fisher discriminant analysis
- 4. 0/1-loss and the margin

Multiclass classification

- Classification with 3 or more classes
 - Digit classification: 10 classes
 - Alphabet classification: 26 classes
 - Kanji classification: around 3k classes
- Least squares classification was designed for binary classification cannot be used for multiclass classification directly.
- Idea: decompose multiclass classification into several binary classification problems.
 - One-versus-all(other), one-versus-one

One-versus-other (all)

- Consider binary classification:
 - one particular class vs. all other class
- Classify into the class that gives the highest score

One-versus-one

- Decompose into binary problems of one class and another class
- Classify samples into the class with the most votes

$$\operatorname{sign}\left(\widehat{f}_{y,y'}(\boldsymbol{x})\right) = \begin{cases} +1 & \text{vote for class } y \\ 0 & \text{no vote} \\ -1 & \text{vote for class } y' \end{cases}$$

	Class 1	Class 2	Class 3	• • •	Class c
Class 1		$\widehat{f}_{1,2}$	$\widehat{f}_{1,3}$	• • •	$\widehat{f}_{1,c}$
Class 2			$\widehat{f}_{2.3}$	• • •	$\widehat{f}_{2,c}$
Class 3			5 – 9 5	• • •	\widehat{f}_{3}
•					•
Class c					•

Summary of multiclass classification

- Solving multi-class classification problems directly
 - May not be possible depending on the method used

One-vs-all method:

- We can break down a multi-class problem with "c" classes into "c" binary classification problems.
- Each binary problem involves a single class against all other classes. All training samples are included in one of the binary problems, which may result in imbalanced training sample sizes for the two classes.

One-vs-one method:

- We break down the multi-class problem into c(c+1)/2 binary classification problems, where each problem involves a pair of classes. This results in fewer training samples per binary problem compared to the one-vs-all method. However, there may be subjectivity in the voting mechanism to determine the final class.
- Which method is better depends on the specific situation and dataset being used.

Contents

- 1. Classification by least squares regression
- 2. Multi-class classification problems
- 3. Fisher discriminant analysis
- 4. 0/1-loss and the margin

Statistical pattern recognition

■ Training samples: the patterns with category information $\{(x_i, y_i)\}_{i=1}^n$

- inputs are $x_i \in \mathbb{R}^d$, outputs are $y_i \in \{1, 2, ..., c\}$.
- Statistical pattern recognition: learn discriminative function by using the statistical properties of the training samples
- Assumption:

$$(x_i, y_i) \stackrel{\text{iid}}{\sim} p(x, y)$$

i.i.d.: independent and identically distributed

An ideal case of pattern recognition

- $lacksup Class-posterior probability <math>p(y \mid x)$:
 - The probability that x belongs to class y.
- Classifying patterns into categories that maximize the posterior probability minimizes the rate of pattern misidentification:

$$f(x) = \arg \max p(y \mid x)$$

 In practice, the posterior probabilities are unknown and must be estimated from the training sample.

Classification based on generative models

- Classify to maximize class posterior probability: $\operatorname{argmax}_y \, p(y \mid x)$
- With the Bayes theorem, discriminative models to be expressed in terms of generative models:

$$p(y|x) = \frac{p(x,y)}{p(x)} \propto p(x,y) = p(x|y)p(y)$$
 discriminative model generative model class prior probability

Taking the log:

$$\log p(y \mid x) = \log p(x \mid y) + \log p(y) + C$$

$$C = -\log p(x) : constant$$

Estimation of prior and conditional probabilities 33

- Class prior p(y): estimate with the proportion of training samples that belong to class y.
 - $\hat{p}(y) = \frac{n_y}{n}$, where n_y is the number of samples that belong to class y.
- Conditional probability $p(x \mid y)$:
 - Assume a Gaussian model
 - Maximum likelihood of the expectation and variance-covariance matrix.

$$q(x; \mu_y, \Sigma_y) = \frac{1}{(2\pi)^{d/2} \det(\Sigma_y)^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_y)^T \Sigma_y^{-1}(x - \mu_y)\right)$$

Maximum likelihood estimation

- Maximum likelihood estimation: determine parameter values so that the training sample at hand is most likely to occur
- The probability that training samples $\{x_i\}_{i=1}^n$ is sampled from $q(x;\theta)$:

$$p(x_1, x_2, ..., x_n) = \prod_{i=1}^{n} q(x_i; \theta)$$

ullet Likelihood: the function when we see this as a function of heta

$$L(\theta) = \prod_{i=1}^{m} q(x_i; \theta)$$

Determine parameter values to maximize likelihood

$$\hat{\theta}_{ML} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} L(\theta)$$

$$L(\theta) = \prod_{i=1}^{n} q(x_i; \theta)$$

It is often convenient to use log-likelihood:

$$\hat{\theta}_{ML} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log L(\theta)$$

$$\log L(\theta) = \sum_{i=1}^{n} \log q(x_i; \theta)$$

Math exercise

Gaussian model:

$$q(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

Prove that the maximum likelihood estimators with training samples $\{x_i\}_{i=1}^n$ are:

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\Sigma}_{ML} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}_{ML})(x_i - \hat{\mu}_{ML})^T$$

Helpful info: you may use the below.

$$\frac{\partial}{\partial \mu} \mu^T \Sigma \mu = 2 \Sigma \mu$$

$$\frac{\partial}{\partial \mu} \mu^T \Sigma x = \Sigma x$$

$$\frac{\partial}{\partial \Sigma} x^T \Sigma^{-1} x = -\Sigma^{-1} x x^T \Sigma^{-1} \qquad \frac{\partial}{\partial \Sigma} \log \det(\Sigma) = \Sigma^{-1}$$

$$\frac{\partial}{\partial \Sigma} \log \det(\Sigma) = \Sigma^{-}$$

Solution

Log-likelihood:

$$\log L(\mu, \Sigma) = \sum_{i=1}^{n} \left(-\frac{d}{2} \log 2\pi - \frac{1}{2} \log \det(\Sigma) - \frac{1}{2} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \right)$$
$$= -\frac{nd}{2} \log 2\pi - \frac{n}{2} \log \det(\Sigma) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)$$

Likelihood equation:

$$\frac{\partial}{\partial \mu} \log L(\mu, \Sigma) = -n\Sigma^{-1}\mu + \Sigma^{-1} \sum_{i=1}^{n} x_i = 0$$

$$\frac{\partial}{\partial \Sigma} \log L(\mu, \Sigma) = -\frac{n}{2} \Sigma^{-1} + \frac{1}{2} \sum_{i=1}^{n} \Sigma^{-1} (x_i - \mu)(x_i - \mu)^T \Sigma^{-1} = 0$$

Solve the above and we are done.

- So far, we only considered $\{x_i\}_{i=1}^n$ without class labels. However, we are interested in applying maximum likelihood for each class because we are interested in $p(x \mid y)$ and we assume it is Gaussian.
- \blacksquare Maximum likelihood estimator of the expected value vector of the class y:

$$\hat{\mu}_y = \frac{1}{n_y} \sum_{i:y_i = y} x_i \qquad \sum_{i:y_i = y} \text{is the sum for } i \text{s that satisfies } y_i = y.$$

Assuming that the covariance matrices of each class are equal, the maximum likelihood estimator of the common covariance matrix Σ is:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{y=-1,+1} \sum_{i:y_i=y} \left(x_i - \widehat{\mu}_y \right) \left(x_i - \widehat{\mu}_y \right)^{\mathsf{T}}$$

$$= \frac{1}{n} \left(n_+ \widehat{\Sigma}_+ + n_- \widehat{\Sigma}_- \right)$$

Fisher discriminant analysis

$$\log p(y | x) = \log p(x | y) + \log p(y) + C$$

Log posterior probability: $\log p(x|y) = \left[-\frac{1}{2} x^T \hat{\Sigma}^{-1} x + \hat{\mu}_y^T \hat{\Sigma}^{-1} x - \frac{1}{2} \hat{\mu}_y^T \hat{\Sigma}^{-1} \hat{\mu}_y - \frac{1}{2} \log \det(\hat{\Sigma}) \right] + \left[\log n_y \right] + C'$ $= \hat{\mu}_y^T \hat{\Sigma}^{-1} x - \frac{1}{2} \hat{\mu}_y^T \hat{\Sigma}^{-1} \hat{\mu}_y + \log n_y + C''$

The decision boundary $\hat{p}(y = +1 \mid x) = \hat{p}(y = -1 \mid x)$ is linear form: $a^Tx + b = 0$

$$a = \hat{\Sigma}^{-1}(\hat{\mu}_{+1} - \hat{\mu}_{-1})$$

$$b = -\frac{1}{2} (\hat{\mu}_{+1}^T \hat{\Sigma}^{-1} \hat{\mu}_{+1} - \hat{\mu}_{-1}^T \hat{\Sigma}^{-1} \hat{\mu}_{-1}) + \log(n_{+1}/n_{-1})$$

Relationship between least squares classification and Fisher discriminant analysis

- Setup
 - The average of training samples is zero: $\frac{1}{n}\sum_{i=1}^{n}x_i=0$

$$\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i = \mathbf{0}$$

• Use linear-in-input (x) model: $f_{m{ heta}}(x) = m{ heta}^{ ext{ heta}} x$

Relationship between least squares classification and Fisher discriminant analysis

Based on the setup on the previous slide, least squares classification is:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

- The direction of the decision boundary: $\widehat{m \Sigma}^{-1}(\widehat{m \mu}_+ \widehat{m \mu}_-)$
- This is the same as Fisher discriminant analysis!
 - Normal vector of FDA is: $a = \hat{\Sigma}^{-1}(\hat{\mu}_{+1} \hat{\mu}_{-1})$

Proving this is homework.

Contents

- 1. Classification by least squares regression
- 2. Multi-class classification problems
- 3. Fisher discriminant analysis
- 4. 0/1-loss and the margin

0/1 loss function and the margin

In classification, we only need the sign of the learned function: $\widehat{y} = \operatorname{sign} \left(f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) \right)$

Instead of the least squares, more natural to use 0/1 loss:

$$l_{0/1}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i) = \begin{cases} 0 & \text{if sign} (f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases}$$

$$= \frac{1 - \text{sign} (m_i)}{2}$$

$$= f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) y_i$$

 $J_{0/1}(\theta) = \sum_{i=1}^n l_{0/1}(f_{\theta}(x_i), y_i)$ is the number of misclassified samples.

0/1 loss function and the margin

- The 0/1-loss corresponds to the number of misclassified samples.
 - If the margin is positive, the error is 0
 - If the margin is negative, the error is 1
- As a classification loss, the 0/1-loss is ideal!
 - It directly evaluates misclassification
 - However, the 0/1-loss is a discrete function without gradients, which makes it difficult to optimize
- Minimizing the O/1-loss is an NP-hard problem
 - It cannot be solved in a realistic time frame using conventional algorithms

$$J_{0/1}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (1 - \text{sign}(m_i))$$

Math exercise

Express the \mathcal{C}_2 loss function with the margin.

$$\frac{1}{2} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \qquad m_i = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) y_i$$

• Useful info: $y_i = \pm 1$

Solution

$$\frac{1}{2} \left(f_{\theta}(\mathbf{x}_{i}) - y_{i} \right)^{2} = \frac{1}{2} \left(\frac{m_{i}}{y_{i}} - y_{i} \right)^{2} m_{i} = f_{\theta}(\mathbf{x}_{i}) y_{i}$$

$$= \frac{1}{2} \left(\frac{m_{i}^{2}}{y_{i}^{2}} - 2m_{i} + y_{i}^{2} \right)$$

$$= \frac{1}{2} \left(m_{i}^{2} - 2m_{i} + 1 \right) \qquad y_{i}^{2} = 1$$

$$= \frac{1}{2} \left(m_{i} - 1 \right)^{2}$$

ℓ_2 -loss and the margin

- The ℓ_2 -loss function is a continuous function and easy to handle.
- It tries to turn a negative margin into a positive value.
- It also aims to reduce a large positive margin to +1.

Issue of ℓ_2 -loss

By trying to reduce a large positive margin to +1, the following data might not be correctly separated:

Figure from p186 of "Pattern Recognition and Machine Learning". https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Surrogate loss

- A good loss function to use as a surrogate for the 0/1-loss should be monotonically non-increasing, with a negative slope at m=0.
- This kind of loss function attempts to turn a negative margin into a positive one, while not reducing the positive margin.

Various surrogate losses

In machine learning, various surrogate losses are used.

- Do they lead to the same classifier?
- Can they recover the posterior probability?

Contents

- 1. Classification by least squares regression
- 2. Multi-class classification problems
- 3. Fisher discriminant analysis
- 4. 0/1-loss and the margin

Summary

- Reduce classification to regression: Classification problems can be solved using least squares regression.
- Reduce multi-class classification to binary classification:
 Multi-class problems can be decomposed into multiple binary problems using either one-vs-all or one-vs-one strategies.
- Probabilistic model: Least squares classification is equivalent to Fisher discriminant analysis for linear-in-input models.
- Margin-based surrogate loss: The \mathcal{C}_2 -loss is not a very good surrogate for the 0/1-loss.

Next lecture

Support vector classification

Homework 1

- Show that $\hat{m{ heta}}$ (or the normal vector of the decision boundary) of the least squares classification is the same direction as

 $\widehat{\Sigma}^{-1}\left(\widehat{\mu}_{+}-\widehat{\mu}_{-}\right)$ (or the normal vector of the decision boundary) obtained by Fisher discriminant analysis.

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

- Mean zero inputs: $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i = \mathbf{0}$
- Linear-in-input model: $f_{m{ heta}}(m{x}) = m{ heta}^{ op} m{x}$

Useful info for Homework 1

$$oldsymbol{(X}^ op oldsymbol{X})\widehat{oldsymbol{ heta}} = oldsymbol{X}^ op oldsymbol{y} \quad oldsymbol{X} = (oldsymbol{x}_1, \dots, oldsymbol{x}_n)^ op \quad oldsymbol{y} = (y_1, \dots, y_n)^ op$$

- Consider the following steps:
 - 1. Use the relation $\frac{1}{n}\sum_{i=1}^n x_i = 0$ to express μ and $X^{\mathsf{T}}y$ in terms of μ_+, n_-, n_+ .
 - 2. Express $X^{\mathsf{T}}X$ in terms of $\widehat{\Sigma}$, μ + , n , n_+ .
 - Use the following fact: For any vectors $\mathbf{v}, \boldsymbol{\theta}$, there exists a constant $c = c_{\mathbf{v}, \boldsymbol{\theta}}$ such that $\mathbf{v} \mathbf{v}^{\mathsf{T}} \boldsymbol{\theta} = c \cdot \mathbf{v}$.

Homework 2

- Training samples: 5000 samples (500 for each digit)
- Test samples: 2000 samples (200 for each digit)
- Perform classification based on least squares regression with a Gaussian kernel.

Homework 2: Importing Handwritten Digits

- Download the file from:
 - http://www.ms.k.u-tokyo.ac.jp/sugi/software/SML.zip
- Load the handwritten digits by:

```
load digit.mat
```

- Then, we will have X (training) and T (test).
- Use the `whos` command:

>	whos			
	Name	Size	Bytes	Class
	T	256x200x10	4096000	double
	X	256x500x10	10240000	double

Homework 2: Importing Handwritten Digits

See the below for loading the data in Python:

```
from scipy.io import loadmat
data = loadmat('digit.mat')
train = data['X']
test = data['T']
```

Homework 2 (Continued)

Example: accuracy is 1908/2000=95.4%

One-vs-All

Predicted category

		1	2	3	4	5	6	7	8	9	0
True category	1	199	1	0	0	0	0	0	0	0	0
	2	0	191	0	6	0	0	2	1	0	0
	3	0	0	189	0	5	0	2	4	0	0
	4	1	0	0	185	0	4	0	1	9	0
	5	0	1	4	2	187	0	0	0	4	2
	6	0	2	0	1	1	195	0	0	0	1
	7	1	1	0	4	0	0	188	0	6	0
	8	1	1	6	1	3	0	0	185	2	1
	9	1	0	0	1	0	0	3	2	193	0
	0	0	1	0	0	0	3	0	0	0	196