Lecture 12: Link-state Routing

CSE 123: Computer Networks
Alex C. Snoeren

Lecture 12 Overview

- Routing overview
- Intra vs. Inter-domain routing
- Link-state routing protocols

Router Tasks

Forwarding

- Move packet from input link to the appropriate output link
- Purely local computation
- Must go be very fast (executed for every packet)

Routing

- Make sure that the next hop actually leads to the destination
- Global decisions; distributed computation and communication
- Can go slower (only important when topology changes)

Forwarding Options

- Source routing
 - Complete path listed in packet
- Virtual circuits
 - Set up path out-of-band and store path identifier in routers
 - Local path identifier in packet
- Destination-based forwarding
 - Router looks up address in forwarding table
 - Forwarding table contains (address, next-hop) tuples

Source Routing

Routing

- Host computes path
 - » Must know global topology and detect failures
- Packet contains complete ordered path information
 - » I.e. node A then D then X then J...
- Requires variable length path header

Forwarding

- Router looks up next hop in packet header, strips it off and forwards remaining packet
 - » Very quick forwarding, no lookup required

In practice

 ad hoc networks (DSR), some HPC networks (Myrinet), and for debugging on the Internet (LSR,SSR)

Virtual Circuits

Routing

- Hosts sets up path out-of-band, requires connection setup
- Write (input id, output id, next hop) into each router on path
- Flexible (one path per flow)

Forwarding

- Send packet with path id
- Router looks up input, swaps for output, forwards on next hop
- Repeat until reach destination
- Table lookup for forwarding (why faster than IP lookup?)

In practice

- ATM: fixed VC identifiers and separate signaling code
- MPLS: ATM meets the IP world (why? traffic engineering)

Destination-based Forwarding

Routing

- All addresses are globally known
 - » No connection setup
- Host sends packet with destination address in header
 - » No path state; only routers need to worry about failure
- Distributed routing protocol used to routing tables

Forwarding

- Router looks up destination in table
 - » Must keep state proportional to destinations rather than connections
- Lookup address, send packet to next-hop link
 - » All packets follow same path to destination
- In Practice: IP routing

Routing Tables

 The routing table at A, lists – at a minimum – the next hops for the different destinations

Dest	Next Hop
В	В
С	С
D	С
Е	Е
F	F
G	F

Routing on a Graph

- Essentially a graph theory problem
 - Network is a directed graph; routers are vertices
- Find "best" path between every pair of vertices
 - In the simplest case, best path is the shortest path

Routing Challenges

- How to choose best path?
 - Defining "best" can be slippery
- How to scale to millions of users?
 - Minimize control messages and routing table size
- How to adapt to failures or changes?
 - Node and link failures, plus message loss

Intra-domain Routing

- Routing within a network/organization
 - A single administrative domain
 - The administrator can set edge costs
- Overall goals
 - Provide intra-network connectivity
 - Adapt quickly to failures or topology changes
 - Optimize use of network resources
- Non-goals
 - Extreme scalability
 - Lying, and/or disagreements about edge costs

S S

Basic Approaches

Static

- Type in the right answers and hope they are always true
- ...So far

Link state

- Tell everyone what you know about your neighbors
- Today's lecture!

Distance vector

- Tell your neighbors when you know about everyone
- Next time...

Link-state Routing

- Two phases
 - Reliable flooding
 - » Tell all routers what you know about your local topology
 - Path calculation (Dijkstra's algorithm)
 - » Each router computes best path over complete network
- Motivation
 - Global information allows optimal route computation
 - Straightforward to implement and verify

Dijkstra's Shortest Path

Graph algorithm for single-source shortest path tree

Example: Conclusion

Broadcasting Link State

Reliable flooding

- Each router transmits a Link State Packet (LSP) on all links
- A neighboring router forwards out all links except incoming
 - » Keep a copy locally; don't forward previously-seen LSPs

Challenges

- Packet loss
- Out-of-order arrival

Solutions

- Acknowledgments and retransmissions
- Sequence numbers
- Time-to-live for each packet

Flooding Example

- LSP generated by X at T=0
- Nodes become orange as they receive it

Making Something Disappear

- Need to remove failed/old links from topology
 - LSPs carry sequence numbers to distinguish new from old
 - Routers only accept (and forward) the "newest" LSP
 - Send a new LSP with cost infinity to signal a link down
- But also need to remove entire routers
 - TTL in every LSP, decremented periodically by each router
 - When TTL = 0, purge the LSP and flood the network with an LSP with TTL 0 to tell everyone else to do the same

When to Flood?

- Triggered by a topology change
 - Link or node failure/recovery or
 - Configuration change like updated link metric
 - Converges quickly, but can cause flood of updates
- Periodically
 - Typically (say) every 30 minutes
 - Corrects for possible corruption of the data
 - Limits the rate of updates, but also failure recovery

Convergence

- Getting consistent routing information to all nodes
 - E.g., all nodes having the same link-state database
 - Until routing protocol converges, strange things happen...
- Consistent forwarding after convergence
 - All nodes have the same link-state database
 - All nodes forward packets on shortest paths
 - The next router on the path forwards to the next hop

Transient Disruptions

- Detection delay
 - A node does not detect a failed link immediately
 - ... and forwards data packets into a black hole
 - Depends on timeout for detecting lost hellos

Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - The shortest paths are no longer consistent
 - Can cause transient forwarding loops

Convergence Delay

- Sources of convergence delay
 - Detection latency
 - Flooding of link-state information
 - Shortest-path computation
 - Creating the forwarding table
- Performance during convergence period
 - Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination
- Very bad for VoIP, online gaming, and video

Reducing Delay

- Faster detection
 - Smaller hello timers
 - Link-layer technologies that can detect failures
- Faster flooding
 - Flooding immediately
 - Sending link-state packets with high-priority
- Faster computation
 - Faster processors on the routers
 - Incremental Dijkstra's algorithm
- Faster forwarding-table update
 - Data structures supporting incremental updates

Real Link-state Protocols

- OSPF (Open Shortest Path First) and IS-IS
 - Most widely used intra-domain routing protocols
 - Run by almost all ISPs and many large organizations
- Basic link state algorithm plus many features:
 - Authentication of routing messages
 - Extra hierarchy: Partition into routing areas
 - "Border" router pretends to be directly connected to all routers in an area (answers for them)
 - Load balancing: Multiple equal cost routes

Summary

- Routing is a distributed algorithm
 - React to changes in the topology
 - Compute the paths through the network
- Shortest-path link state routing
 - Flood link weights throughout the network
 - Compute shortest paths as a sum of link weights
 - Forward packets on next hop in the shortest path
- Convergence process
 - Changing from one topology to another
 - Transient periods of inconsistency across routers

For next time...

- No class Thursday: Happy Veterans' Day!
- Read Ch 4.2.2 in P&D
- Homework 3 due next time