Discrete Structures Spring 2022 IIITH: Midterm Exam

Discrete Structures Instructors

20th December 2022 10:30pm-12noon

1	Total Duration: 90min	Total Marks: 90	0
т.	Iotai Duranon, Jonini	iotai wans. A	U

- 2. Please submit question paper with answer sheet. Please only write your roll number and seat number on it. Nothing else. Failing to do so will cost you 10 points.
- 3. This is a closed book exam. You are not permitted to seek assistance from any individual or refer to any reading material during the exam.
- 4. Proofs should be clear and concise, with each step (judgement) enumerated on a separate line. Points will be deducted for proofs not adhering to this format. Unless asked explicitly, you do not need to write your proofs in fitch style.

Roll Number:	 Seat Number:	
iton i tuniber.	 ocat i vallibei.	

- 1. (30 points) 1. Using the generating function, prove that the number of distinct binary trees with n nodes is $\frac{1}{n+1} {}^{2n}C_n$, for all $n \ge 0$.
 - 2. Consider the following recurrence relation for the numeric function

$$b=(b_0,b_1,b_2,\cdots,b_r,\cdots)$$

:

$$b_0 = 1$$

 $b_1 = 2$
 $b_2 = 3$
 $b_r = b_{r-1} + b_{r-2} - b_{r-3} + 4$, for all $r \ge 3$

Using the generating function, derive b_r .

- 3. State the *Comparison Tests of Convergence* of an infinite series. Using this, test for convergence or divergence of the series $\sum_{n=1}^{\infty} u_n$, where $u_n = \sqrt{n^4 + 1} \sqrt{n^4 1}$. [10 + 12 + (2 + 6) = 30]
- 2. (30 points) Consider the set of propositional formulas built using propositional variables V and propositional constructors NOT, AND, OR and IMPLIES. Let p, q, r be variables. Examples of propositional formulas are:
 - 1. AND(p,q)
 - 2. NOT(OR(IMPLIES(p,q),r))

Consider the ordering \prec between propositional formulas. $A \prec B$ iff formula A is an immediate subformula of formula B.

(a) (6 points) Give three examples of members of the \prec relation.

Solution:

1.
$$p \prec p \land q$$

2.
$$\neg p \prec (\neg p \rightarrow q)$$

3.
$$p \lor q \prec (p \lor q) \land r$$

Obviously, other examples possible.

(b) (10 points) Define the \prec relation as a first order logic formula with equality.

Solution:
$$x \prec y \stackrel{\text{def}}{=}$$

$$y = NOT(x) \lor$$

$$\exists z \ y = AND(x,z) \lor y = AND(z,x) \lor$$

$$y = OR(x,z) \lor y = OR(z,x) \lor$$

$$y = IMPLIES(x,z) \lor y = IMPLIES(z,x)$$

(c) (14 points) Argue that \prec is well-founded (i.e., it admits no infinite descending sequences). Be brief.

Solution:

- 1. Assume \prec is not well-founded.
- 2. Then there is an infinite sequence $s = \dots x_3 \prec x_2 \prec x_1 \prec x_0$.
- 3. Now, note that if $x \prec y$, x has fewer symbols than y.
- 4. Consider now the sequence c derived from s obtained by taking the number of symbols in each x_i
- 5. If *s* is infinite then *c* is infinite as well.
- 6. But *c* can not be an infinite descending sequence, it can not go below 0.
- 7. Hence *s* can not be infinitely long.
- 8. Hence \prec is well-founded.
- 3. (30 points) Consider the set $X = \mathbf{B}^n$ where $\mathbf{B} = \{0,1\}$ is the set of booleans and n is a natural number greater than 0. A subset S of X is called a *box* if $S = X_1 \times ... \times X_n$ and $X_i \subseteq \mathbf{B}$, $1 \le i \le n$.

In each of the questions below, either give a justification (via a proof) or provide a counter-example.

(a) (4 points) Express the proposition $x \in S$ in terms of the components x_i and X_i .

Solution: x = S iff $x_i \in X_i$ for each i : [1..n]

(b) (6 points) Let $x \in \mathbf{B}^n$. Is $\{x\}$ a box? Justify your answer.

Solution: Let $x = x_1 ... x_n$. Then $\{x\}$ is a box because x may be written as $x = \{x_1\} \times ... \times \{x_n\}$.

(c) (10 points) Is the union of two boxes a box? Justify your answer.

Solution: Let $S' = S \cup \{x\}$, where S is a box. Clearly $\{x\}$ is a box. We claim that S' is not a box.

Counter-example: take n = 2 Let $S = \{01\} = \{0\} \times \{1\}$. Let x = 10. Then $S' = \{01, 10\}$. S' is not a box because it can not be written as a product $S' = X_1 \times X_2$.

- 1. X_i is nonempty for each $i \in \{0, 1\}$
- 2. X_i can not both be singletons: If so, S' would have only one element.
- 3. X_i can not both be B: If so, S' would have four elements.
- 4. X_1 is either $\{0\}$ or $\{1\}$ and $X_2 = \mathbf{B}$. In the first case, this forces every element of S' start with 0, which is clearly not the case with S'. The second case is similar.
- 5. A similar argument works for X_2 being either $\{0\}$ or $\{1\}$.
- (d) (10 points) Is the intersection of two boxes a box? Justify your answer.

Solution: Let $S = P \cap Q$ where P and Q are boxes. Let $P = P_1 \times ... \times P_n$ and $Q = Q_1 \times ... \times Q_n$. Let $S' = P_1 \cap Q_1 \times ... \times P_n \cap Q_n$. We claim S = S' Proof:

- 1. First we prove that $S' \subseteq S$
- 2. Let $x \in S'$. Then $x_i \in P_i \cap Q_i$, for each i : [1..n].
- 3. Then $x_i \in P_i$ and $x_i \in Q_i$ for each i : [1..n].
- 4. This implies that $x \in P$ and $x \in Q$
- 5. Hence $x \in P \cap Q$.
- 6. This proves that $S' \subseteq S$.
- 7. Now we prove that $S \subseteq S'$.
- 8. Now assume, $x \in S$, i.e., $x \in P \cap Q$
- 9. Hence $x \in P$ and $x \in Q$
- 10. Hence $x_i \in P_i$ for each i : [1..n] and $x_i \in Q_i$ for each i : [1..n].
- 11. Hence $x_i \in P_i \cap Q_i$ for each i : [1..n].
- 12. Hence $x \in S'$.
- 13. This proves that $S \subseteq S'$
- 14. Hence we conclude that $P \cap Q = S$
- 15. Hence the intersection of two boxes is a box.