STA130 Winter 2022, Tutorial 5

Ente Kang

University of Toronto

2022-02-14

Key vocabulary words for statistical inference

- Population
 - The 'objects' that you are interested in and want to make a conclusion about
 - \circ Canadian census \Longrightarrow interested in all Canadians
- Parameter
 - A trait or characteristic about the population that you wish to study
 - $\circ \ \mu, \sigma^2, p$
- Estimation
 - Methods we will use to answer of question of interest

Sample

- A subset or collection of the population
- May or may not be biased or representative or random
- A **random** sample is as the word suggests random

• Sampling distribution

- A way to explore randomness
- \circ Recall repeated sampling & multiple experiments \implies a distribution \implies reject or fail to reject H_0

Quantile

• The xth quantile means x percent of values are below it

Confidence intervals

Let's suppose we have a $\gamma\%$ confidence level for μ , [0, 100]

What this does not mean

• There is $\gamma\%$ that $\mu\in[0,100]$

What this does mean

• If we kept taking repeated samples, in $\gamma\%$ of those, $\mu\in[0,100]$

What do we choose γ to be?

• By convention: 90%, 95% 97.5%, 99%

Why not a 100% confidence interval for μ ?

- This is like saying, oh yeah $\mu \in \mathbb{R}!$
- Clearly, one can see issues with feasibility

An example

Your supervisor asked you to determine the average price of a cup of Americano $\mu_{americano}$ sold in coffee shops in Canada.

You **do not** want to say:

It is some real number! :(

Hence you do not see uses of 100% confidence intervals

Furthermore, in statistics, we are never 100% sure of anything

Not because we are indecisive!

Thank you, and see you at the next session