Лабораторная работа 1.2.5 Исследование вынужденной регулярной прецессии гироскопа

Автор: Касьянов Семен

5 декабря 2022 г.

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

В работе используются: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

Теоретические сведения

Уравнения движения тела можно записать в виде:

$$\frac{d\overrightarrow{P}}{dt} = \overrightarrow{F} \quad (1)$$

$$\frac{d\overrightarrow{L}}{dt} = \overrightarrow{M} \quad (2)$$

Если сила \overrightarrow{F} не зависит от угловой скорости, а момент \overrightarrow{M} - от скорости поступательного движения, то уравнения (1) и (2) можно рассматривать независимо друг от друга. Уравнение (2) соответствует задаче рассмотрения вращения твердого тела вокруг неподвижной точки, которая рассмаривается в данной работе.

Момент импульса твердого тела в его главных осях х, у, z равен

$$\overrightarrow{L} = \overrightarrow{i} I_x \omega_x + \overrightarrow{k} I_y \omega_y + \overrightarrow{k} I_z \omega_z \quad (3)$$

где I_x, I_y, I_z - главные моменты инерции, $\omega_x, \omega_y, \omega_z$ - компоненты вектора угловой скорости $\overrightarrow{\omega}$.

В силу (2) приращение момента импульса определяется интегралом

$$\triangle \overrightarrow{L} = \int \overrightarrow{M} dt \quad (4)$$

Если сила действует в течение короткого периода времени, то изменение L мало.

Рассмотрим для примера маховик, вращающийся вокруг оси z, перпендикулярной к плоскости маховика (рис.1). Будем считать $\omega_z = \omega_0, \omega_x = 0, \omega_y = 0$

Рис. 1. Маховик

Рис. 2. Гироскоп в кардановом подвесе

Пусть ось вращения повернулась в плоскости zx по направлению k оси x на бесконечно малый угол $d\phi$, то есть

$$d\phi = \Omega dt$$

где Ω - угловая скорость такого вращения. По нашему предположению $L_{\Omega} \ll L_{\omega_0}(5)$, это значит, что момент импульса маховика, равный $I_z\omega_0$ только повернётся в плоскости zx по направлению к оси x не изменяя величины. Таким образом,

$$|d\overrightarrow{L}| = Ld\phi = L\Omega dt.$$

Вектор $d\overrightarrow{L}$ можно представить в следующем виде:

$$\frac{d\overrightarrow{L}}{dt} = \overrightarrow{\Omega} \times \overrightarrow{L} \quad (6)$$

Вектор \overrightarrow{L} вращается с постоянной угловой скоростью $\overrightarrow{\Omega}$ и не меняется по модулю. Таким образом, имеем:

 $\overrightarrow{M}=\overrightarrow{\Omega}\times\overrightarrow{L}$ (7) од действием момента внешних сил ось гироскопа медлен

Под действием момента внешних сил ось гироскопа медленно вращается вокруг оси у с угловой скоростью Ω . Такое движение называется прецессией гироскопа. Для гироскопа массой $m_{\rm r}$, у которого ось собственного вращения наклонена на угол α от вертикали, скорость прецессии, происходящей вокруг вертикальной оси под действием силы тяжести, равна

$$\Omega = \frac{M}{I_z \omega_0 \sin \alpha} = \frac{m_r g l_{\pi} \sin \alpha}{I_z \omega_0 \sin \alpha} = \frac{m_r g l_{\pi}}{I_z \omega_0} \quad (8)$$

где $l_{\rm q}$ - расстояние от точки подвеса до центра масс гироскопа, т.е. скорость прецессии не зависит от угла α . Для изучения регулярной прецессии гироскопа к его оси подвешивают дополнительные грузы. Это смещает общий центр масс и создаёт момент сил тяжести, вызывающий прецессию, которая находится по формуле (8).

Установка

Уравновешенный гироскоп, закреплённый в кольцах корданова подвеса, показан на рис. 2. Центр масс гироскопа находится на пересечении всех трёх осей аа, бб, вв. Эксперименталь-

Рис. 3. Схема экспериментальной установки

ная установка показана на рис.3.Ротором гироскопа является ротор электромотора M. Мотор с кольцом F может вращаться в кольце F. На рычаг F, направленный по оси симметрии ротора, подвешивают грузы F, меняя момент силы F.

Момент инерции I_0 можно определить по крутильным колебаниям точной копии, подвешиваемой вдоль оси симметрии к жесткой проволоке с модулем кручения f:

$$T = 2\pi \sqrt{\frac{I_0}{f}} \quad (9)$$

Чтобы исключить f подвешивают цилиндр правильной формы c моментом инерции $I_{\rm ц}$, таким образом имеем:

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2} \quad (10)$$

Также скорость вращения ротора можно определить при использовании фигур Лиссажу.

Ход работы

В преставленной таблице m - масса груза (кг), N -количество оборотов гироскопа вокруг вертикальной оси за время t (c), а1 и а2 или α_1 и α_2 - начальный и конечный углы отклонения от горизонтали, M (H · м) - момент силы тяжести груза, sigmaM или σ_M (H · м) - погрешность измерений M, T (c) - период вращения, bigomega или Ω (c⁻¹) - скорость регулярной прецессии гироскопа, lever или ω_l (c⁻¹) - скорость опускания рычага, sigmabigomega или σ_Ω (c⁻¹).

Период обращения вокруг вертикальной оси гироскопа найдём по формуле $T=\frac{t}{N}$, скорость регулярной прецессии находится следующим образом $\Omega=\frac{2\pi}{T}, M=mgl, \omega_l=\frac{(\alpha_1-\alpha_2)\pi}{180 \cdot T}. \ l=121$ мм.

	m	N	t	a1	a2	М	sigmaM	Т	bigomega	lever	Mtr	sigmaMtr	sigmabigomega
0	0.0567	1	180.13	6	-3	0.067303	0.000596	180.130000	0.034881	0.000872	0.001656	0.000497	0.000002
1	0.0567	1	180.00	6	-3	0.067303	0.000596	180.000000	0.034907	0.000873	0.001657	0.000497	0.000002
2	0.0567	1	180.25	6	-3	0.067303	0.000596	180.250000	0.034858	0.000871	0.001655	0.000497	0.000002
3	0.1152	2	175.53	6	-3	0.136744	0.000604	87.765000	0.071591	0.000895	0.001700	0.000510	0.000004
4	0.1152	2	175.62	6	-3	0.136744	0.000604	87.810000	0.071554	0.000894	0.001699	0.000510	0.000004
5	0.1152	2	175.72	6	-3	0.136744	0.000604	87.860000	0.071514	0.000894	0.001698	0.000509	0.000004
6	0.1419	2	142.56	6	-3	0.168437	0.000610	71.280000	0.088148	0.001102	0.002093	0.000628	0.000006
7	0.1419	2	142.49	6	-3	0.168437	0.000610	71.245000	0.088191	0.001102	0.002094	0.000628	0.000006
8	0.1419	2	142.40	6	-3	0.168437	0.000610	71.200000	0.088247	0.001103	0.002095	0.000628	0.000006
9	0.1739	2	115.97	6	0	0.206421	0.000618	57.985000	0.108359	0.000903	0.001715	0.000514	0.000009
10	0.1739	2	115.38	6	0	0.206421	0.000618	57.690000	0.108913	0.000908	0.001724	0.000517	0.000009
11	0.1739	2	115.80	6	0	0.206421	0.000618	57.900000	0.108518	0.000904	0.001717	0.000515	0.000009
12	0.2174	2	92.87	6	0	0.258056	0.000631	46.435000	0.135311	0.001128	0.002141	0.000642	0.000015
13	0.2174	2	92.82	6	0	0.258056	0.000631	46.410000	0.135384	0.001128	0.002143	0.000643	0.000015
14	0.2174	2	92.86	6	0	0.258056	0.000631	46.430000	0.135326	0.001128	0.002142	0.000643	0.000015
15	0.2705	2	74.46	6	3	0.321086	0.000650	37.230000	0.168767	0.000703	0.001335	0.000401	0.000023
16	0.2705	2	74.66	6	3	0.321086	0.000650	37.330000	0.168315	0.000701	0.001332	0.000400	0.000023
17	0.2705	2	74.40	6	3	0.321086	0.000650	37.200000	0.168903	0.000704	0.001337	0.000401	0.000023
18	0.3285	2	61.37	6	3	0.389933	0.000675	30.685000	0.204764	0.000853	0.001620	0.000486	0.000033
19	0.3285	2	61.41	6	3	0.389933	0.000675	30.705000	0.204631	0.000853	0.001619	0.000486	0.000033
20	0.3285	3	91.97	6	0	0.389933	0.000675	30.656667	0.204953	0.001139	0.002162	0.000649	0.000022
21	0.3285	4	122.50	6	-3	0.389933	0.000675	30.625000	0.205165	0.001282	0.002435	0.000731	0.000017

Зависимость скорости прецессии Ω от момента силы тяжести M

m, г	T, c	Ω , $10^{-3} c^{-1}$
56,7	180,13	$34,88 \pm 0,02$
115,2	87,81	$71,55 \pm 0,02$
141,9	71,24	$88,19 \pm 0,03$
173,9	57,85	$108,5 \pm 0,1$
217,4	46,42	$135,34 \pm 0,03$
270,5	37,25	$168,7 \pm 0,2$
0,3285	30,68	$204,7 \pm 0,2$

t_0 , c	$t_{\rm ц}$, с	T_0 , c	$T_{\rm u}$, c
64,06	80,8	3,20	4,04
64,13	80,66	3,21	4,03
64,00	80,90	3,20	4,05

Построим график зависимости Ω от M. Определим с помощью МНК угловой коэффициент k. $k=0,5249~\frac{1}{H\cdot m\cdot c},~\sigma_k=0,0004~\frac{1}{H\cdot m\cdot c}$. Из формулы (8) можно сделать вывод, что $k=\frac{1}{I_{\mathfrak{q}}\omega_0},$ следовательно $\omega_0=\frac{1}{I_0k}$. Чтобы найти I_0 , найдём периоды T_0 и $T_{\mathfrak{q}}$: $T_0=(3,203\pm0,002)$ с, $T_{\mathfrak{q}}=(4,039\pm0,004)$ с.

Параметры цилиндра для расчёта момента инерции гироскопа: $D=(78,2\pm0,1)$ мм, $m=(1616,8\pm0,1)$ г. $I_{\rm II}=\frac{mD^2}{8}=(1,23\pm0,02)\cdot10^{-3}~{\rm kr\cdot m^2};\ I_0=(7,7\pm0,1)\cdot10^{-4}~{\rm kr\cdot m^2};\$ Получаем, что $f_0=391\pm6c^{-1}$. Данное значение совпадает с величиной, полученной благодрая работе с фигурами Лиссажу, которая составляет $\approx385c^{-1}$ Для определения момента силы трения, возникающей при вращении гироскопа, воспользуемся формулой $M=L\omega_l$, где $L=I_0\omega_0$.

 $L=0,30\pm0,01\frac{{
m Kr\cdot M}^2}{{
m c}}.$ Полученные значения момента силы трения и их погрешность представлены в таблице.

m, г	$M_{\mathrm{TP}}, 10^{-4}\mathrm{H}\cdot\mathrm{M}$
56,7	$2,6\pm 0,2$
115,2	$2,7 \pm 0,2$
141,9	$3,3\pm 0,3$
217,4	$3,4\pm 0,3$

Построим график зависимости момента силы трения, возникающей в вертикальной оси при вращении гироскопа, от скорости прецессии.

Вывод

Нам удалось исследовать вынужденную прецессию гироскопа и установить её зависимость величины момента сил, действующих на ось гироскопа. Также была определена скорость вращения ротора гироскопа

