2229879 numer albumu

Michał Gebel imię i nazwisko 229908 numer albumu

Antoni Karwowski imię i nazwisko

kierunek Informatyka Stosowana semestr III rok akademicki 2020/21

czwartek
dzień tygodnia
14:00-15:30
godziny zajęć

4 numer zespołu

Laboratorium elektroniki

Ćwiczenie E-02

Diody

22.10.2020r.

28.10.2020r.

data oddania raportu

data wykonania pomiarów

ocena ____

1. Cel ćwiczenia

Puentą zadania jest pomiar i zbadanie charakterystyk prądowo-napięciowych konkretnych rodzajów diod półprzewodnikowych oraz ulepszenie techniki pomiarowej. W ćwiczeniu zajmujemy się diodą krzemową oraz diodą Zenera.

2. Wstęp teoretyczny i przebieg pomiarów

Charakterystyka prądowo-napięciowa każdej diody wykazuje częściowe podobieństwo do teoretycznej charakterystyki idealnego złącza p-n lub m-s danej zależnością:

$$I = I_s \left[exp\left(\frac{eU}{mkT}\right) - 1 \right] \tag{1}$$

gdzie I – natężenie prądu płynącego przez złącze, I_s – natężenie wstecznego prądu nasycenia, U – napięcie na złączu, T – temperatura złącza wyrażona w Kelvinach, k – stała Boltzmanna, e – ładunek elektronu, m – bezwymiarowy parametr przyjmujący wartości z przedziału <1, 2>.

Pomiary zostały wykonane metodą "punkt po punkcie", która polega na zmianie żądanego napięcia i na odczycie - po każdej zmianie – wartości przyłożonego napięcia U oraz natężenia I płynącego przez diodę prądu.

Schemat układu wyglądał nastęująco:

Rysunek 1. Panel czołowy modułu doświadczalnego do pomiaru charakterystyk prądowonapięciowych czterech diod (D2 – dioda krzemowa; D3 – dioda Zenera). Na schemacie podano wartości napięć zasilających układ oraz sposób podłączenia multimetrów z zaznaczeniem kolorów przewodów pomiarowych.

3. Aparatura pomiarowa i systematyka pomiarów

Korzystano z zasilacza Siglent SPD3303D, nr inw. I3/RPO/010T8/58/2, multimetrów oraz UNI-T UT804, nr inw. I3/RPO/010/T8/66/1. do mierzenia natężenia, Metex M-3800, nr inw. I3/203/2017-11/8 do mierzenia napięcia.

Wartości na zasilaczu oraz zakresy na multimetrach zostały ustawione zgodnie z instrukcją, układ został podłączony zgodnie z powyższym schematem. Pomiary zostały wykonany przez dr. inż. Piotra Górskiego oraz dr. inż. Macieja Dłużniewskiego

Multimetr	Zakres	Wzór
Metex M-3800	200μΑ	$\Delta I = \pm (0.5\% rdg + 1dgs)$
Metex M-3800	200 <i>mA</i>	$\Delta I = \pm (0.5\% rdg + 1dgs)$
UNI-T UT804	40 <i>V</i>	$\Delta U = \pm (0.05\% rdg $
		+ 15dgs)

Tabela 1. Wzory na wyliczanie błędów dla multimetrów

4. Wyniki pomiarów

	Kierunek zaporowy			K	ierunek p	rzewodzenia	a	
Lp.	U	ΔU	I	ΔI	U	ΔU	I	ΔI
_ F	[V]	[V]	[µA]	[µA]	[V]	[V]	[mA]	[mA]
1	-0,0970	0,0100	-0,0100	0,0105	0,7780	0,0100	73,7000	0,2600
2	-0,1330	0,0107	-0,0100	0,0107	0,7650	0,0138	53,2000	0,2298
3	-0,1760	0,0109	-0,0200	0,0109	0,7560	0,0138	41,4000	0,2121
4	-0,2090	0,0110	-0,0200	0,0110	0,7540	0,0138	39,0000	0,2085
5	-0,2770	0,0114	-0,0300	0,0114	0,7460	0,0137	32,1000	0,1982
6	-0,3420	0,0117	-0,0300	0,0117	0,7400	0,0137	28,1000	0,1922
7	-0,3800	0,0119	-0,0300	0,0119	0,7340	0,0137	24,0000	0,1860
8	-0,4050	0,0120	-0,0400	0,0120	0,7270	0,0136	20,0000	0,1800
9	-0,7400	0,0137	-0,0700	0,0137	0,7240	0,0136	18,5000	0,1778
10	-1,1750	0,0159	-0,1100	0,0159	0,7160	0,0136	15,3000	0,1730
11	-1,6640	0,0183	-0,1600	0,0183	0,7090	0,0135	13,0000	0,1695
12	-2,1810	0,0209	-0,2100	0,0209	0,6930	0,0135	8,8000	0,1632
13	-2,6400	0,0232	-0,2600	0,0232	0,6790	0,0134	6,2000	0,1593
14	-3,2030	0,0260	-0,3200	0,0260	0,6540	0,0133	3,4000	0,1551
15	-3,8010	0,0290	-0,3800	0,0290	0,6080	0,0130	1,2000	0,1518
16	-4,4890	0,0324	-0,4500	0,0324	0,5940	0,0130	0,9000	0,1514
17	-5,3270	0,0366	-0,5300	0,0366	0,5690	0,0128	0,5000	0,1508
18	-6,0390	0,0402	-0,6000	0,0402	0,5550	0,0128	0,3000	0,1505
19	-7,1400	0,0457	-0,7100	0,0457	0,5140	0,0126	0,1000	0,1502
20	-8,1480	0,0507	-0,8100	0,0507	0,4330	0,0122	0,0000	0,1500

Tabela 2. Pomiary dla diody krzemowej D2

	Kierunek zaporowy			K	ierunek p	rzewodzenia	1	
Lp.	U	ΔU	I	ΔI	U	ΔU	I	ΔI
	[V]	[V]	[mA]	[mA]	[V]	[V]	[mA]	[mA]
1	-0,0950	0,0100	0,0000	0,1500	0,8280	0,0100	72,9000	0,1500
2	-0,2660	0,0113	0,0000	0,1500	0,8100	0,0141	43,5000	0,1513
3	-0,5180	0,0126	0,0000	0,1500	0,8070	0,0140	39,6000	0,1526
4	-1,3570	0,0168	0,0000	0,1500	0,8010	0,0140	33,4000	0,1568
5	-2,2270	0,0211	-0,1000	0,1505	0,7960	0,0140	28,8000	0,1611
6	-2,4690	0,0223	-0,3000	0,1515	0,7880	0,0139	22,4000	0,1623
7	-2,6960	0,0235	-0,6000	0,1530	0,7770	0,0139	15,8000	0,1635
8	-2,8660	0,0243	-1,1000	0,1555	0,7670	0,0138	11,6000	0,1643
9	-3,2140	0,0261	-2,8000	0,1640	0,7530	0,0138	7,1000	0,1661
10	-3,3800	0,0269	-4,4000	0,1720	0,7510	0,0138	6,3000	0,1669
11	-3,5380	0,0277	-6,7000	0,1835	0,7440	0,0137	5,1000	0,1677
12	-3,7440	0,0287	-11,6000	0,2080	0,7360	0,0137	3,8000	0,1687
13	-3,8120	0,0291	-13,9000	0,2195	0,7100	0,0136	1,5000	0,1691
14	-3,8600	0,0293	-15,8000	0,2290	0,6710	0,0134	0,3000	0,1693
15	-3,9890	0,0299	-22,5000	0,2625	0,6610	0,0133	0,3000	0,1699
16	-4,0410	0,0302	-26,9000	0,2845	0,6570	0,0133	0,2000	0,1702
17	-4,1270	0,0306	-34,3000	0,3215	0,6330	0,0132	0,1000	0,1706
18	-4,1780	0,0309	-40,5000	0,3525	0,5490	0,0127	0,0000	0,1709
19	-4,2370	0,0312	-50,7000	0,4035	0,4210	0,0121	0,0000	0,1712
20	-4,2990	0,0315	-62,9000	0,4645	0,1480	0,0107	0,0000	0,1715
21	-4,3120	0,0316	-66,4000	0,4820				
22	-4,3080	0,0315	-66,6000	0,4830	-			_

Tabela 3. Pomiary dla diody krzemowej D3

5. Wykresy i obliczenia

Na podstawie danych pomiarowych sporządzono poniższe wykresy przedstawiające charakterystykę prądowo-napięciową diody D_2 :

■ Charakterystyka diody D2 w kierunku zaporowym U[V] -9,000 -8,000 -7,000 -6,000 -5,000 -4,000 -3,000 -2,000 -1,000 0,000

Wykres 1. – przedstawia zależność U(I) dla kierunku zaporowego diody D_2

Wykres 2. – przedstawia zależność U(I) dla kierunku przewodzenia diody D_2

Aby wyznaczyć linowość rezystancji korzystamy z zależności:

$$ln(I) = aU + b \tag{2}$$

gdzie I – natężenie prądu płynącego przez opornik, a i b to współczynniki funkcji liniowej.

Dla diody D_2 sporządzono wykres w układzie półalgorytmicznym zależności (2) i za pomocą metody najmniejszych kwadratów wyznaczono wartości:

współczynnika kierunkowego a = 24,33166 parametru b = -14,66981 odpowiadający mu bezwymiarowy parametr m = 1,58984895019053 niepewności pomiarowej współczynnika kierunkowego u(a)= 0,17715

Charakterystyka diody D2 w kierunku przewodzenia w układzie logarytmicznym

Wykres 3. – zależność (1) dla kierunku przewodzenia diody D_2

Niepewność standardową temperatury T złącza wyznaczono z zależności:

$$u(T) = u_b(T) = \frac{\triangle_e T}{\sqrt{3}} \tag{3}$$

gdzie Δ eT = 10K I wynosi ona u(T) = 5,7735

Korzystając ze wzoru na niepewność pomiarową dla współczynnika m, wyznaczono jego wartość:

$$u(m) = \sqrt{\left(\frac{\delta m}{\delta a}\right)^2 u^2(a) + \left(\frac{\delta m}{\delta T}\right) u^2(T)} = m\sqrt{\left[\frac{u(a)}{a}\right]^2 + \left[\frac{u(T)}{T}\right]^2}$$

$$u(m) = 0,2068$$
(4)

Przyjmując współczynnik k = 1,75, rozszerzona niepewność pomiarowa dla współczynnika m wynosi

$$U(m) = u(m) * k = 0.3601$$

Następnie przejdźmy do charakterystyki prądowo-napięciowej diody D_3

Wykres 4. - przedstawia zależność U(I) dla kierunku zaporowego diody D_3

Na wykresie widać miejsce przecięcia z osią napięć (U). Jest to punkt, w którym w diodzie występuje napięcie Zenera. Wynosi ono $U_z=-2,24~{\rm V}$

!WSTAWKA SUPLEMENTOWA!

Tak jak wspomniano w suplemencie **musimy** umieścić zbiorcze wyniki pomiarów multimetrów dla danego opornika.

Typ: amperomierz		Metex M-3800	
Lp.	Zakres $[\Omega]$	$\mathbf{R}\left[\Omega ight]$	$\Delta \mathbf{R} [\Omega]$
1	20M	0	2000
2	2M	0	1000
3	200k	0,1	100
4	20k	0,15	10
5	2k	0,152	2
6	200	152,5	1,1

Tabela 4. – zbiorcze wyniki pomiaru oporu rezystancji na oporniku poprzez multimetr Metex M-3800

Typ: amperomierz		Protek 506	
Lp.	Zakres $[\Omega]$	$\mathbf{R}\left[\Omega\right]$	$\Delta \mathbf{R} [\Omega]$
1	400	153,2	1
2	4k	152	3
3	40k	140	20
4	400k	0	200
5	4M	0	2000
6	40M	0	20000

Tabela 5. – zbiorcze wyniki pomiaru oporu rezystancji na oporniku poprzez multimetr Protek 506

Następnie zebrano zbiorcze dane pomiaru dla tego rezystora ukazujące jego charakterystykę prądowo-napięciową

	Multimetr	y:	U - Metex 4650 o	raz I - Metex 3800
Lp.	U[V]	$\triangle U[V]$	I[mA]	$\triangle I[mA]$
1	-3,935	-0,017	-26,2	-0,2
2	-3,821	-0,016	-25,4	-0,2
3	-3,742	-0,016	-24,9	-0,2
4	-3,644	-0,015	-24,3	-0,2
5	-3,601	-0,015	-24,0	-0,2
6	-3,468	-0,014	-23,1	-0,2
7	-3,403	-0,014	-22,6	-0,2
8	-3,170	-0,013	-21,1	-0,2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
11 $-2,947$ $-0,012$ $-19,6$ $-0,1$ 12 $-2,715$ $-0,011$ $-18,1$ $-0,1$ 13 $-2,631$ $-0,010$ $-17,5$ $-0,1$ 14 $-2,430$ $-0,009$ $-16,1$ $-0,1$ 15 $-2,341$ $-0,009$ $-15,6$ $-0,1$	
12 -2,715 -0,011 -18,1 -0,1 13 -2,631 -0,010 -17,5 -0,1 14 -2,430 -0,009 -16,1 -0,1 15 -2,341 -0,009 -15,6 -0,1	
13 -2,631 -0,010 -17,5 -0,1 14 -2,430 -0,009 -16,1 -0,1 15 -2,341 -0,009 -15,6 -0,1	
14 -2,430 -0,009 -16,1 -0,1 15 -2,341 -0,009 -15,6 -0,1	
15 -2,341 -0,009 -15,6 -0,1	
16 -2,242 -0,008 -14,9 -0,1	
17	
18 −1,956 −0,007 −13,0 −0,1	
19 −1,873 −0,006 −12,4 0,0	
20 -1,782 -0,006 -11,9 0,0	
21 -1,516 -0,005 -10,0 0,0	
22 -1,442 -0,004 -9,6 0,0	
23 -1,365 -0,004 -9,1 0,0	
24 -1,301 -0,004 -8,6 0,0	
25 -1,090 -0,002 -7,2 0,0	
26 -1,014 -0,002 -6,7 0,0	
27 -0,942 -0,002 -6,2 0,0	
28 -0,879 -0,001 -5,8 0,0	
29 -0,800 -0,001 -5,3 0,0	
30 -0,635 0,000 -4,2 0,0	
31 -0,583 0,000 -3,8 0,1	
32 −0,519 0,000 −3,4 0,1	
33 −0,279 0,002 −1,8 0,1	
34 −0,193 0,002 −1,3 0,1	
35 −0,102 0,002 −0,7 0,1	
36 0,076 0,003 0,4 0,1	
37 0,146 0,004 0,9 0,1	
38 0,228 0,004 1,5 0,1	
39 0,296 0,004 1,9 0,1	
40 0,369 0,005 2,4 0,1	
41 0,541 0,006 3,6 0,1	
42 0,599 0,006 4,0 0,1	

43	0,659	0,006	4,3	0,2
44	0,850	0,007	5,6	0,2
45	0,942	0,008	6,2	0,2
46	1,004	0,008	6,7	0,2
47	1,100	0,009	7,3	0,2
48	1,328	0,010	8,8	0,2
49	1,400	0,010	9,3	0,2
50	1,496	0,010	9,9	0,2
51	1,582	0,011	10,5	0,2
52	1,769	0,012	11,8	0,2
53	1,893	0,012	12,6	0,3
54	1,975	0,013	13,1	0,3
55	2,051	0,013	13,6	0,3
56	2,132	0,014	14,1	0,3
57	2,387	0,015	15,8	0,3
58	2,496	0,015	16,5	0,3
59	2,592	0,016	17,2	0,3
60	2,658	0,016	17,7	0,3
61	2,730	0,017	18,1	0,3
62	2,827	0,017	18,8	0,3
63	3,116	0,019	20,7	0,3
64	3,184	0,019	21,2	0,4
65	3,261	0,019	21,7	0,4
66	3,358	0,020	22,3	0,4
67	3,581	0,021	23,8	0,4
68	3,684	0,021	24,5	0,4
69	3,761	0,022	25,0	0,4
70	4,002	0,023	26,6	0,4
_				

Tabela 6. - zbiorcze dane pomiaru dla danego rezystora

Na wykresie otrzymaliśmy zależność:

Wykres 5. – charakterystyka prądowo-napięciowa rezystora

-5,000

Poprzez wykorzystanie regresji liniowej wyznaczono wartość rezystancji opornika

Rodzaj regresji	$R[\Omega]$	$\triangle R[\Omega]$
U = a * I	150,465	$5,234 * 10^{-5}$
U = a * I + b	150,467	$5,174*10^{-5}$

Tabela 7. – obliczone wartości rezystancji danego rezystora

6. Wyniki obliczeń

Dzięki pomiarom przeprowadzonym dla diody D₂ wyznaczono wartość oporu

$$R = 24,33166\Omega \pm 0,17715\Omega$$

Współczynnik m dla diody D2 wraz z uwzględnieniem niepewności pomiarowych ma wartość

$$m = 1,5898 \pm 0,2068$$

Napięcie Zenera dla diody D3 otrzymane z analizy wykresu ma wartość

$$U_z = -2,24V$$

7. Wnioski

Pomiary zostały wykonane prawidłowo, ponieważ w licznych dokumentacjach diod wyniki pokrywają się. Uzyskane wykresy również pokrywają się z tymi ukazanymi w literaturze.

Współczynnik m (1,5898 ± 0,20) zawiera się w oczekiwanym przedziale liczb <1, 2>.

Analiza wykresu charakterystyki prądowo-napięciowej diody D3 pozwoliła wyznaczyć napięcie Zenera, którego wartość (-2,24V) również potwierdza poprawność wykonania eksperymentu.

Wartość oporu dla diody D2 (24,33166 \pm 0,17715 Ω) jest porównywalna do oporu innych urządzeń tego typu . Uwzględnienie niepewności pomiarowych multimetrów również pokrywa się z wartościami tychże niepewności dla innych eksperymentów w których została użyta identyczna aparatura.

8. Bibliografia

- [1] F. Przezdziecki, A. Opolski, Elektrotechnika i elektronika, PWN, Warszawa, 1986.
- [2] A. Rusek, Podstawy elektroniki, część pierwsza, WSiP, Warszawa, 1979.
- [3] K. Bracławski, A. Siennicki, Elementy półprzewodnikowe, WSiP, Warszawa, 1986.