Guía 1: Relaciones de equivalencia y particiones

Relaciones de equivalencia

- Relación binaria: sea A un conjunto, R es una relación binaria sobre A si es un subconjunto de A^2
 - Si R es una relación binaria sobre A y $A\subseteq B$, entonces R es una relación binaria sobre B
 - Propiedades que puede tener (a destacar):
 - Reflexividad: $xRx \ \forall x \in A$
 - Transitividad: $xRy \wedge yRz \Rightarrow xRz \ \forall x,y,z \in A$
 - Simetría: $xRy \Rightarrow yRx \ \forall x,y \in A$
 - Asimetría: $xRy \wedge yRx \Rightarrow x = y \ \forall x,y \in A$
- Relación de equivalencia: sea A un conjunto, R es una relación de equivalencia sobre A si es una relación binaria sobre A, la cual es reflexiva, transitiva y simétrica (con respecto a A).
- Clases de equivalencia: sea R una relación de equivalencia sobre A y $a \in A$, definimos la clase de equivalencia de a con respecto a R como $a/R = \{b \in A : aRb\}$
 - Cociente de A por R: $A/R = \{a/R : a \in A\}$
 - Proyección canónica (respecto de R): $\pi_R:A\to A/R$ con $\pi_R(a)=a/R\ orall a\in A.$
 - Propiedades:
 - Sea R una relación de equivalencia sobre A, y $a, b \in A$, entonces:
 - $\bullet \ \ a \in a/R$
 - $aRb \Leftrightarrow a/R = b/R$
 - $a/R \cap b/R = \emptyset \wedge a/R = b/R$
 - Sea R una relación de equivalencia sobre $A \neq \emptyset$, entonces $|A/R| = 1 \iff R = A^2$

Correspondencia entre relaciones de equivalencia y particiones

- **Partición**: dado un conjunto A, una partición de A es un conjunto \mathcal{P} tal que:
 - 1. Cada elemento de \mathcal{P} es un subconjunto no vacío de A
 - 2. Si $S_1, S_2 \in \mathcal{P}$, entonces $S_1 \cap S_2 = \emptyset$
 - 3. $A = \{a : a \in S \text{ para algún } S \in \mathcal{P}\}$
 - Podemos definir una relación binaria asociada a $\mathcal P$ como $R_{\mathcal P}=\{(a,b)\in A^2: a,b\in S ext{ para algún } S\in \mathcal P\}$
- Correspondencia:

- *Propiedades*: sea *A* un conjunto, entonces:
 - Sea ${\mathcal P}$ una partición de A, entonces $R_{\mathcal P}$ es una relación de equivalencia sobre A
 - Sea R una relación de equivalencia sobre A, entonces A/R es una partición de A
- **Teorema**: sea A un conjunto cualquiera, y sean $Part = \{ \text{particiones de } A \}, ReEq = \{ \text{relaciones de equivalencia de } A \}, \text{ entonces las funciones:}$

$$egin{aligned} Part
ightarrow ReEq & ReEq
ightarrow Part \ \mathcal{P}
ightarrow R_{\mathcal{P}} & R
ightarrow A/R \end{aligned}$$

son biyecciones una inversa de la otra.

• Es decir, a nivel de información es lo mismo tener una relación de equivalencia sobre *A* que una partición de *A*.

Funciones con dominio A/R

- Sea R una relación de equivalencia sobre A, entonces la definición de una función de tipo $f:A/R\to B$ puede no ser una función, porque el valor que toma para una clase de equivalencia, puede ser cualquiera de los representantes.
- Ejemplos:
 - Caso ambiguo: si tenemos R relación de equivalencia sobre $\mathbb R$ y definimos $f:\mathbb R/R\to\mathbb R$ como $f(r/R)=r^2$, entonces no es una función dado que si se cumple, por ejemplo, 2R6, entonces $2^2=f(2/R)=f(6/R)=6^2$, lo cual es absurdo.
 - Caso inambiguo: sea $F:A\to B$, entonces f(a/ker(F))=F(a) define en forma inambigua una función f de tipo $A/ker(F)\to B$, la cual es biyectiva.
 - Recordemos que $ker(F) = \{(a,b) \in A^2 : f(a) = f(b)\}$