Ejemplo 2

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - 0 \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 1.$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = -3 + 12 - 9 = 0$$

Propiedades de los determinantes

Una propiedad importante de los determinantes es que el intercambio de dos filas o de dos columnas da lugar a un cambio de signo. Para determinantes 2×2 , esto es consecuencia de la definición; en el caso de las filas, tenemos

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12} = -(a_{21}a_{12} - a_{11}a_{22}) = -\begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix}$$

y para las columnas,

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = -(a_{12}a_{21} - a_{11}a_{22}) = -\begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix}.$$

Dejamos que el lector compruebe esta propiedad para el caso 3×3 .

Una segunda propiedad fundamental de los determinantes es que podemos sacar como factor común escalares de cualquier fila o columna. Para determinantes 2×2 , esto significa

$$\begin{vmatrix} \alpha a_{11} & a_{12} \\ \alpha a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & \alpha a_{12} \\ a_{21} & \alpha a_{22} \end{vmatrix} = \alpha \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} \alpha a_{11} & \alpha a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{vmatrix}.$$

De forma similar, para determinantes 3×3 tenemos

$$\begin{vmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \alpha \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & \alpha a_{12} & a_{13} \\ a_{21} & \alpha a_{22} & a_{23} \\ a_{31} & \alpha a_{32} & a_{33} \end{vmatrix}$$

y así sucesivamente. Estos resultados se deducen de las definiciones. En particular, si cualquier fila o columna contiene únicamente ceros, el valor del determinante es cero.

Un tercer hecho fundamental acerca de los determinantes es el siguiente: $si\ cambiamos\ una\ fila\ (o\ columna)\ sumándole\ otra fila\ (o,\ respectivamente,\ otra\ columna)\ el\ valor\ del\ determinante\ no\ cambia.$ Para el caso 2×2 , esto significa que

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 + b_1 & a_2 + b_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 \\ b_1 + a_1 & b_2 + a_2 \end{vmatrix}$$
$$= \begin{vmatrix} a_1 + a_2 & a_2 \\ b_1 + b_2 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_1 + a_2 \\ b_1 & b_1 + b_2 \end{vmatrix}.$$