7. Morley's theorem

This chapter is devoted to the proof of Morley's theorem, which says that in a countable language, if Γ is a theory with only infinite models and Γ is κ -categorical for some uncountable cardinal κ , then it is κ -categorical for every uncountable cardinal κ . In the course of developing the proof we will introduce several new model-theoretic concepts. We follow Marker, **Model theory, an introduction.**

Unless otherwise mentioned, T is a complete theory in a countable language having only infinite models.

Some useful notation is as follows. If \overline{M} is a structure and $\varphi(\overline{v})$ is a formula with parameters in M, with \overline{v} of length m, then by $\varphi(\overline{M})$ we mean the set $\{\overline{a} \in {}^m M : \overline{M} \models \varphi(\overline{a})\}$. Here we make a slight abuse of notation, in that we write $\overline{M} \models \varphi(\overline{a})$ when we should write something like $(\overline{M}, \overline{b}) \models \varphi(\overline{v}, \overline{w})[\overline{a}, \overline{b}]$, where \overline{b} is the sequence of parameters in φ . Similar abuses will take place later without comment.

Let \overline{M} be an \mathscr{L} -structure, and suppose that $A \cup \{b\} \subseteq M$. We say that \underline{b} is algebraic over A iff there is a formula $\varphi(x, \overline{a})$ with $\overline{a} \in A$ such that $\varphi(\overline{M}, \overline{a})$ is finite and $\overline{M} \models \varphi(b, \overline{a})$. Now if $A \subseteq D \subseteq M$ we define

$$\operatorname{acl}_D(A) = \{b \in D : b \text{ is algebraic over } A\}.$$

Lemma 7.1. (i) $A \subseteq \operatorname{acl}_D(A)$.

- (ii) $\operatorname{acl}_D(\operatorname{acl}_D(A)) = \operatorname{acl}_D(A).$
- (iii) If $A \subseteq B$ then $\operatorname{acl}_D(A) \subseteq \operatorname{acl}_D(B)$.
- (iv) If $a \in \operatorname{acl}_D(A)$, then $a \in \operatorname{acl}_D(A_0)$ for some finite $A_0 \subseteq A$.

Proof. (i): For any $a \in A$, let $\varphi(x, a)$ be the formula x = a.

(ii): Suppose that $b \in \operatorname{acl}_D(\operatorname{acl}_D(A))$. Accordingly, choose $\varphi(v, \overline{w})$ and $\overline{a} \in \operatorname{acl}_D(A)$ such that

$$\overline{M} \models \varphi(b, \overline{a})$$
 and $\{y \in M : \overline{M} \models \varphi(y, \overline{a})\}$ is finite.

Say \overline{a} has length n. Then for all i < n we get $\psi_i(v, \overline{u}^i)$ and $\overline{c}^i \in A$ such that

$$\overline{M} \models \psi_i(a_i, \overline{c}^i) \text{ and } \{y \in M : \overline{M} \models \psi_i(y, \overline{c}^i)\} \text{ is finite.}$$

Let $k = |\{y \in M : \overline{M} \models \varphi(y, \overline{a})\}|$. Now let $\chi(v, \overline{u}^0, \dots, \overline{u}^{n-1})$ be the formula

$$\exists v_0 \dots v_{n-1} \left[\bigwedge_{i < n} \psi_i(v_i, \overline{u}^i) \wedge \varphi(v, v_0, \dots, v_{n-1}) \wedge (\exists ! k) v_j \varphi(v_j, v_0, \dots, v_{n-1}) \right].$$

Here $(\exists ! k) v_j \dots$ abbreviates "there are exactly $k \ v_j$ such that ...", which is easy to express in our language.

Now we want to show that $\overline{M} \models \chi(b, \overline{c}^0, \dots, \overline{c}^{n-1})$. For any i < n we have $\overline{M} \models \psi_i(a_i, \overline{c}^i)$, and so

$$\overline{M} \models \bigwedge_{i < n} \psi_i(a_i, \overline{c}^i) \land \varphi(b, \overline{a}) \land (\exists! k) v_j \varphi(v_j, \overline{a}).$$

Hence $\overline{M} \models \chi(b, \overline{c}^0, \dots, \overline{c}^{n-1}).$

Next we want to show that $\{y \in M : \overline{M} \models \chi(y, \overline{c}^0, \dots, \overline{c}^{n-1})\}$ is finite. Let

$$K = \prod_{i < m} \{ y \in M : \overline{M} \models \psi_i(y, \overline{c}^i) \}.$$

Thus K is finite. Suppose that $\overline{M} \models \chi(y, \overline{c}^0, \dots, \overline{c}^{n-1})$. Choose \overline{e} such that

$$\overline{M} \models \bigwedge_{i < n} \psi_i(e_i, \overline{c}^i) \land \varphi(y, \overline{e}) \land (\exists! k) v_j \varphi(v_j, \overline{e}).$$

Then $\overline{e} \in K$. Hence there are at most $|K| \cdot k$ elements y such that $\overline{M} \models \chi(y, \overline{e}^0, \dots, \overline{e}^{n-1})$.

(iii) and (iv) are clear.

If \overline{M} is a structure, m is a positive integer, and $D \subseteq {}^m M$, then we say that D is definable with parameters iff there is a formula $\varphi(\overline{v})$ in \mathscr{L}_M with \overline{v} of length m such that $D = \{a \in {}^m M : \overline{M}_M \models \varphi(a)\}.$

A subset D of M^n is minimal in \overline{M} iff D is infinite, and for any set $Y \subseteq D$ definable with parameters, either Y is finite or $D \setminus Y$ is finite. In case $\varphi(\overline{v}, \overline{a})$ defines D, we also say that φ is minimal.

Lemma 7.2. Suppose that $D \subseteq M$ is definable and minimal in \overline{M} and $A \cup \{a, b\} \subseteq D$. Suppose that $a \in \operatorname{acl}_D(A \cup \{b\}) \setminus \operatorname{acl}_D(A)$. Then $b \in \operatorname{acl}_D(A \cup \{a\})$.

Proof. Assume the hypotheses. Thus there is a formula $\varphi(a,b)$ with additional parameters from A, and a positive integer n, such that $\overline{M} \models \varphi(a,b)$ and $|\{x \in D : \overline{M} \models \varphi(x,b)\}| = n$. Let $\psi(w)$ be the formula with parameters from A asserting that $|\{x \in D : \varphi(x,w)\}| = n$. If $\psi(w)$ defines a finite subset of D, then $b \in \operatorname{acl}_D(A)$. Hence $A \cup \{b\} \subseteq \operatorname{acl}_D(A)$, hence by Lemma 7.1 $a \in \operatorname{acl}_D(A \cup \{b\}) \subseteq \operatorname{acl}_D(\operatorname{acl}_D(A)) = \operatorname{acl}_D(A)$, contradiction. It follows that $\psi(w)$ defines a cofinite subset of D.

If $\{y \in D : \overline{M} \models \varphi(a,y) \land \psi(y)\}$ is finite then since b is in this set we get $b \in \operatorname{acl}_D(A \cup \{a\})$, as desired. Thus we may assume that $\{y \in D : \overline{M} \models \varphi(a,y) \land \psi(y)\}$ is cofinite in D; say that its complement has size l. Let $\chi(x)$ be the formula expressing that

$$|D \setminus \{y \in D : \varphi(x,y) \land \psi(y)\}| = l.$$

since $\overline{M} \models \chi(a)$, our assumption that $a \notin \operatorname{acl}_D(A)$ implies that $\chi(\overline{M})$ is cofinite. Let a_0, \ldots, a_n be distinct members of $\chi(\overline{M})$. Then for each $i \leq n$ the set $B_i \stackrel{\text{def}}{=} \{y \in D : \overline{M} \models \varphi(a_i, y) \land \psi(y)\}$ is cofinite. Let $c \in \bigcap_{i \leq n} B_i$. Thus $\varphi(a_i, c)$ for each $i \leq n$, so $|\{x \in D : \overline{M} \models \varphi(x, c)\}| \geq n + 1$, contradicting the choice of $\psi(c)$.

Suppose that $D \subseteq M^n$. We say that D is strongly minimal in \overline{M} iff D is minimal in any elementary extension of \overline{M} . Similarly for a formula φ .

Given $A \subseteq D$, we call A independent iff $\forall a \in A[a \notin \operatorname{acl}_D(A \setminus \{a\})]$. For $C \subseteq D$ we say that A is independent over C iff $\forall a \in A[a \notin \operatorname{acl}_D(C \cup (A \setminus \{a\}))]$. Note then that $A \cap C = \emptyset$. For \overline{a} a sequence of elements of M and $A \subseteq M$ we define

 $\operatorname{tp}^{\overline{M}}(\overline{a}/A) = \{\varphi(\overline{v}) : \varphi \text{ is a formula with parameters from } A \text{ and } \overline{M} \models \varphi(\overline{a})\}.$

Note that if \overline{a} is the empty sequence, then $\operatorname{tp}(\overline{a}/A)$ is simply the set of all sentences with parameters from A that hold in \overline{M} . If A is empty, we just omit it.

Lemma 7.3. Suppose that $\overline{M}, \overline{N} \models T$ and one of the following conditions holds:

(i)
$$A = \emptyset$$
.

(ii)
$$A \subseteq \overline{M}_0 \prec \overline{M}, \overline{N}$$
.

Assume that $\varphi(v)$ is strongly minimal over \overline{M} and has parameters from A, $n \in \omega$, $a \in {}^{n}\varphi(\overline{M})$, $\operatorname{rng}(\overline{a})$ is independent over A, and $b \in {}^{n}\varphi(\overline{N})$, $\operatorname{rng}(\overline{b})$ is independent over A. Then $\operatorname{tp}^{\overline{M}}(\overline{a}/A) = \operatorname{tp}^{\overline{N}}(\overline{b}/A)$.

Proof. Induction on n. For n=0 the conclusion is clear if (i) holds, since $\overline{M} \equiv \overline{N}$. The conditions in (ii) also clearly give the conclusion.

Now assume the result for n, and suppose that $a \in {}^{n+1}\varphi(\overline{M})$, $\operatorname{rng}(\overline{a})$ is independent over $A, b \in {}^{n+1}\varphi(\overline{N})$, and $\operatorname{rng}(\overline{b})$ is independent over A. So by the inductive hypothesis,

(1)
$$\operatorname{tp}^{\overline{M}}((\overline{a} \upharpoonright n)/A) = \operatorname{tp}^{\overline{N}}((\overline{b} \upharpoonright n)/A).$$

Let $\psi(\overline{v})$ be a formula with parameters from A such that $\overline{M} \models \psi(\overline{a})$. Now $a_n \in \varphi(\overline{M}) \cap \psi(a_0, \ldots, a_{n-1}, \overline{M})$ and $a_n \notin \operatorname{acl}_D(A \cup \{a_0, \ldots, a_{n-1}\})$, so $\varphi(\overline{M}) \cap \psi(a_0, \ldots, a_{n-1}, \overline{M})$ is infinite. Since φ is strongly minimal, this set is actually cofinite in $\varphi(\overline{M})$. So there is an integer m such that

$$\overline{M} \models |\{v : \varphi(v) \land \neg \psi(a_0, \dots, a_{n-1}, v\}| = m.$$

Thus the formula $\chi(\overline{w})$ expressing that

$$|\{v: \varphi(v) \land \neg \psi(w_0, \dots, w_{n-1}, v\}| = m$$

is in $\operatorname{tp}^{\overline{M}}((\overline{a} \upharpoonright n)/A)$, and hence by (1) we get

$$\overline{N} \models |\{v : \varphi(v) \land \neg \psi(b_0, \dots, b_{n-1}, v\}| = m.$$

Since $b_n \notin \operatorname{acl}_D(A \cup \{b_0, \dots, b_{n-1}\})$, it follows that $\overline{N} \models \psi(\overline{b})$, as desired.

If X is an infinite subset of M, then X is an indiscernible set over \overline{M} iff for any formula $\varphi(\overline{v})$ and any two sequences $\overline{x}, \overline{y}$ of distinct elements of X we have $\overline{M} \models \varphi(\overline{x}) \leftrightarrow \varphi(\overline{y})$.

Corollary 7.4. Suppose that $\overline{M}, \overline{N} \models T$ and one of the following conditions holds:

(i)
$$A = \emptyset$$
.

(ii)
$$A \subseteq \overline{M}_0 \prec \overline{M}, \overline{N}$$
.

Assume that $\varphi(v)$ is strongly minimal over \overline{M} and has parameters from A, and B and C are infinite subsets of $\varphi(\overline{M})$ each independent over A. Then B and C are sets of indiscernibles over \overline{M} , and for any $n \in \omega$ and one-one sequences $\overline{b} \in {}^nB$ and $\overline{c} \in {}^nC$ we have $\operatorname{tp}(\overline{b}/A) = \operatorname{tp}(\overline{c}/A)$.

If $Y \subseteq D$, we say that $A \subseteq Y$ is a basis for Y iff A is independent and $\operatorname{acl}_D(A) = \operatorname{acl}_D(Y)$.

Lemma 7.5. Assume that $D \subseteq M$ is minimal in \overline{M} .

- (i) A union of a chain of independent sets over a set $C \subseteq D$ is again independent over C. (Hence we can apply Zorn's lemma in this context.)
 - (ii) For any $Y \subseteq D$, any maximal independent subset subset of Y is a basis for Y.
- **Proof.** (i): Let \mathscr{A} be a chain of independent sets over C. Suppose that $a \in \operatorname{acl}_D(C \cup (\bigcup \mathscr{A} \setminus \{a\}))$. Thus a is algebraic over $C \cup (\bigcup \mathscr{A} \setminus \{a\})$, and so there is a formula $\varphi(x,\overline{c},\overline{b})$ with $\overline{c} \in C$ and $\overline{b} \in \bigcup \mathscr{A} \setminus \{a\}$ such that $\varphi(\overline{M},\overline{c},\overline{b})$ is finite and $\overline{M} \models \varphi(a,\overline{c},\overline{b})$. Then there is an $X \in \mathscr{A}$ such that $\overline{b} \in X$, so that $a \in \operatorname{acl}_D(C \cup (X \setminus \{a\}))$, contradiction.
- (ii): Suppose that A is a maximal independent subset of Y. Obviously $\operatorname{acl}_D(A) \subseteq \operatorname{acl}_D(Y)$. Suppose that $a \in \operatorname{acl}_D(Y) \setminus \operatorname{acl}_D(A)$. Let $\varphi(x, \overline{y})$ be a formula with $\overline{y} \in Y$ such that $\varphi(\overline{M}, \overline{y})$ is finite and $\overline{M} \models \varphi(a, \overline{y})$. If each $y_i \in \operatorname{acl}_D(A)$, then $a \in \operatorname{acl}_D(\operatorname{rng}(\overline{y})) \subseteq \operatorname{acl}_D(\operatorname{acl}_D(A)) = \operatorname{acl}_D(A)$, contradiction. So there is an i such that $y_i \notin \operatorname{acl}_D(A)$. If $b \in A$ and $b \in \operatorname{acl}_D(\{y_i\} \cup (A \setminus \{b\}))$, then $b \notin \operatorname{acl}_D(A) \setminus \{b\}$ by independence, and so $y_i \in \operatorname{acl}_D(A)$ by Lemma 7.2, contradiction. Hence $A \cup \{y_i\}$ is independent, contradiction.

Lemma 7.6. Let D be strongly minimal over M. Then:

- (i) Let $A, B \subseteq D$ be independent with $A \subseteq \operatorname{acl}_D(B)$. Then:
- (a) Suppose that $A_0 \subseteq A$, $B_0 \subseteq B$, $A_0 \cup B_0$ is a basis for $\operatorname{acl}_D(B)$, and $a \in A \setminus A_0$. Then there is a $b \in B_0$ such that $A_0 \cup \{a\} \cup (B_0 \setminus \{b\})$ is a basis for $\operatorname{acl}_D(B)$.
 - (b) $|A| \leq |B|$.
 - (ii) If A and B are bases for $Y \subseteq D$, then |A| = |B|.
- **Proof.** (i): Assume the hypotheses. (a): Assume the hypotheses. Then $a \in A \subseteq \operatorname{acl}_D(B) = \operatorname{acl}_D(A_0 \cup B_0)$, so by Lemma 7.1(iv) there is a finite $X \subseteq A_0 \cup B_0$ such that $a \in \operatorname{acl}_D(X)$. Let $C \subseteq B_0$ be of smallest size such that $a \in \operatorname{acl}_D(A_0 \cup C)$. Thus C is finite, and $A_0 \cap C = \emptyset$ by the minimality of C. Since A is independent and $a \notin A_0$, we have $C \neq \emptyset$. Fix $b \in C$. Now $a \in \operatorname{acl}_D(A_0 \cup (C \setminus \{b\}) \cup \{b\}) \setminus \operatorname{acl}_D(A_0 \cup (C \setminus \{b\}))$, so by Lemma 7.2, $b \in \operatorname{acl}_D(A_0 \cup (C \setminus \{b\}) \cup \{a\})$. Hence $A_0 \cup B_0 \subseteq \operatorname{acl}_D(A_0 \cup \{a\} \cup \{b\})$), and hence

$$\operatorname{acl}_{D}(B) = \operatorname{acl}_{D}(A_{0} \cup B_{0})$$

$$\subseteq \operatorname{acl}_{D}(\operatorname{acl}_{D}(A_{0} \cup \{a\} \cup (B_{0} \setminus \{b\})))$$

$$= \operatorname{acl}_{D}(A_{0} \cup \{a\} \cup (B_{0} \setminus \{b\}))$$

$$\subseteq \operatorname{acl}_{D}(B).$$

Thus $\operatorname{acl}_D(A_0 \cup \{a\} \cup (B_0 \setminus \{b\})) = \operatorname{acl}_D(B)$. We claim that $X \stackrel{\text{def}}{=} A_0 \cup \{a\} \cup (B_0 \setminus \{b\})$ is independent. For, suppose that $x \in X$ and $x \in \operatorname{acl}_D(X \setminus \{x\})$.

- Case 1. x = a. Thus $a \in \operatorname{acl}_D(A_0 \cup (B_0 \setminus \{b\}))$, hence $A_0 \cup \{a\} \cup (B_0 \setminus \{b\}) \subseteq \operatorname{acl}_D(A_0 \cup \{b\})$, hence $b \in \operatorname{acl}_D(B) = \operatorname{acl}_D(A_0 \cup \{a\} \cup (B_0 \setminus \{b\})) \subseteq \operatorname{acl}_D(A_0 \cup (B_0 \setminus \{b\}))$, contradicting the fact that $A_0 \cup B_0$ is independent. (Recall that $A_0 \cap C = \emptyset$, hence $b \notin A_0$.)
- Case 2. $x \neq a$. Now $X \setminus \{x\} = \{a\} \cup (A_0 \cup (B_0 \setminus \{b\})) \setminus \{x\})$ and $x \notin \operatorname{acl}_D((A_0 \cup (B_0 \setminus \{b\})) \setminus \{x\})$ by the independence of $A_0 \cup B_0$. So by Lemma 2 we get $a \in \operatorname{acl}_D(A_0 \cup (B_0 \setminus \{b\}))$, i.e., Case 1, contradiction.
- (b): Case 1. B is finite; say |B| = n. Suppose that a_0, \ldots, a_n are distinct elements of A. We now define distinct elements b_i of B for i < n by recursion. Suppose they have been defined for all j < i, where $0 \le i < n-1$, so that $\{a_j : j < i\} \cup (B \setminus \{b_j : j < i\})$ is

a basis for $\operatorname{acl}_D(B)$. Since $a_i \in A \setminus \{a_j : j < i\}$, we can apply (a) to obtain b_i such that $\{a_j : j \leq i\} \cup (B \setminus \{b_j : j \leq i\})$ is a basis for $\operatorname{acl}_D(B)$.

It follows that $\{a_j : j < n\}$ is a basis for $\operatorname{acl}_D(B)$. Hence $a_n \in \operatorname{acl}_D(\{a_j : j < n\})$, contradicting A independent.

Thus we must have $|A| \leq |B|$.

Case 2. B is infinite. By Case 1, $|A \cap \operatorname{acl}(B_0)| \leq |B_0|$ for each finite subset B_0 of B. Now

$$A \subseteq \bigcup_{\substack{B_0 \subseteq B, \\ B_0 \text{ finite}}} (A \cap \operatorname{acl}(B_0),]$$

so clearly $|A| \leq |B|$.

(ii) follows from (i)(b).
$$\Box$$

For D strongly minimal, the dimension of D, $\dim(D)$, is the cardinality of a basis for D.

Lemma 7.7. If D is strongly minimal and uncountable, then $\dim(D) = |D|$.

Proof. Since the language is countable, also $\operatorname{acl}(B)$ is countable for every finite subset B of D. If $X \subseteq D$ and |X| < |D|, then

$$|\operatorname{acl}(X)| \le \left| \bigcup_{\substack{B \subseteq X, \\ B \text{ finite}}} \operatorname{acl}(B) \right| \le |X| \cdot \omega < |D|.$$

Let \overline{a} be a sequence of elements of M and $A \subseteq M$. We say that $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$ is *isolated* if there is a formula $\varphi(\overline{v}) \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$ such that for every formula $\chi(\overline{v}) \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$ we have $\overline{M} \models \forall \overline{v}[\varphi(\overline{v}) \to \chi(\overline{v})]$.

Lemma 7.8. If $A \cup \{b\} \subseteq M$ and b is algebraic over A, then $\operatorname{tp}^{\overline{M}}(b/A)$ is isolated.

Proof. Let $\overline{a} \in A$ and $\varphi(v, \overline{a})$ be such that $\overline{M} \models \varphi(b, \overline{a})$ and $\{y \in M : \overline{M} \models \varphi(y, \overline{a})\}$ is finite. Let

$$B = \{d \in M : \overline{M} \models \varphi(d, \overline{a}) \text{ and there exist a formula } \psi(v, \overline{c}) \text{ with } \overline{c} \in A \text{ such that } \overline{M} \models \psi(b, \overline{c}) \text{ and } \overline{M} \models \neg \psi(d, \overline{c})\}.$$

Note that B is finite. For each $d \in B$, choose ψ_d and \overline{c}_d as indicated. Let $\varphi'(v, \overline{e})$ be the formula

$$\varphi(v,\overline{a}) \wedge \bigwedge_{d \in B} \psi_d(v,\overline{c}_d).$$

Thus $\overline{M} \models \varphi'(b, \overline{e})$, and so $\varphi'(v, \overline{e}) \in \operatorname{tp}^{\overline{M}}(b/A)$. Now suppose that $\chi(v, \overline{u}) \in \operatorname{tp}^{\overline{M}}(b/A)$, but there is a $d \in M$ such that $\overline{M} \models \varphi'(d, \overline{e}) \land \neg \chi(d, \overline{u})$; we want to get a contradiction. We have $\overline{M} \models \varphi(d, \overline{a})$, so it follows that $d \in B$, hence $\overline{M} \models \neg \psi_d(d, \overline{c})$; but this contradicts $\overline{M} \models \varphi'(d, \overline{e})$.

Lemma 7.9. Suppose that $\overline{M}, \overline{N} \models T, \varphi(v)$ is strongly minimal, and $\dim(\varphi(\overline{M})) = \dim(\varphi(\overline{N}))$. Then there is a bijection $f : \varphi(\overline{M}) \to \varphi(\overline{N})$ such that for every formula $\psi(\overline{w})$ and every $\overline{a} \in \varphi(\overline{M}), \overline{M} \models \psi(\overline{a})$ iff $\overline{N} \models \psi(f \circ \overline{a})$.

Proof. Assume the hypotheses. Let B be a base for $\varphi(\overline{M})$, and let C be a base for $\varphi(\overline{N})$. Thus |B| = |C|, and we let $h: B \to C$ be a bijection. Let

$$I = \{g : g : B' \to C' \text{ is a surjection, } B \subseteq B' \subseteq \varphi(\overline{M}), C \subseteq C' \subseteq \varphi(\overline{N}) \text{ and } \forall \chi \forall \overline{a} \in B'[\overline{M} \models \chi(\overline{a}) \leftrightarrow \overline{N} \models \chi(g \circ \overline{a})] \}.$$

Note that every $g \in I$ is injective; consider the formula $x \neq y$. Now $h \in I$, since for any $\chi(\overline{w})$ and any $\overline{a} \in B$,

$$\overline{M} \models \chi(\overline{a}) \quad \text{iff} \quad \chi(\overline{w}) \in \operatorname{tp}^{\overline{M}}(\overline{a})$$

$$\text{iff} \quad \chi(\overline{w}) \in \operatorname{tp}^{\overline{N}}(h \circ \overline{a}) \quad \text{by Corollary 7.4}$$

$$\text{iff} \quad \overline{N} \models \chi(h \circ \overline{a}).$$

Clearly we can apply Zorn's lemma to I and obtain a maximal member g of it, with associated sets B', C'. We claim that $\operatorname{dmn}(g) = \varphi(\overline{M})$ and $\operatorname{rng}(g) = \varphi(\overline{N})$. By symmetry we prove only that $\operatorname{dmn}(g) = \varphi(\overline{M})$. In fact, suppose that this is not true. Let $b \in \varphi(\overline{M}) \backslash B'$. Since $\operatorname{acl}(B) = \varphi(\overline{M})$, we also have $\operatorname{acl}(B') = \varphi(\overline{M})$, and so $b \in \operatorname{acl}(B')$. Hence by Lemma 7.8 let $\psi(v, \overline{c}) \in \operatorname{tp}^{\overline{M}}(b/B')$ isolate $\operatorname{tp}^{\overline{M}}(b/B')$, where $\overline{c} \in B'$. Now $\overline{M} \models \exists x \psi(x, \overline{c})$, so from $g \in I$ we get $\overline{N} \models \exists x \psi(x, g \circ \overline{c})$. Say $\overline{N} \models \psi(d, g \circ \overline{c})$. Extend g to $g' : B' \cup \{b\} \to C' \cup \{d\}$ by setting g'(b) = d. So g' is a surjection from $B' \cup \{b\}$ to $C' \cup \{d\}$. Now take any formula $\chi(v, \overline{w})$ and any $\overline{c} \in B'$. Then

$$\overline{M} \models \chi(b, \overline{e}) \quad \Rightarrow \quad \chi(v, \overline{e}) \in \operatorname{tp}^{\overline{M}}(b)$$

$$\Rightarrow \quad \overline{M} \models \forall v [\psi(v, \overline{c}) \to \chi(v, \overline{e})$$

$$\Rightarrow \quad \overline{N} \models \forall v [\psi(v, g \circ \overline{c}) \to \chi(v, g \circ \overline{e})$$

$$\Rightarrow \quad \overline{N} \models \chi(d, g \circ \overline{e});$$

this shows that $g' \in I$, contradiction.

A theory T is strongly minimal iff the formula v = v is strongly minimal for each model \overline{M} of T.

For each infinite cardinal κ , $I(T, \kappa)$ is the number of nonisomorphic models of T of size κ .

Theorem 7.10. Suppose that T is strongly minimal.

- (i) If $\overline{M}, \overline{N} \models T$, then $\overline{M} \cong \overline{N}$ iff $\dim(\overline{M}) = \dim(\overline{N})$.
- (ii) T is κ -categorical for each uncountable cardinal κ .
- (iii) $I(T,\omega) \leq \omega$.

Proof. (i) is immediate from Lemma 7.9. (ii) follows from (i) by Lemma 7.7. (iii) follows from (i) since $\dim(\overline{M}) \leq \omega$ for any countable model \overline{M} of T.

A set Γ of formulas is $\underline{finitely}$ satisfiable in \overline{M} iff for every finite subset Δ of Γ there is an $a \in {}^{\omega}M$ such that $\overline{M} \models \varphi[a]$ for all $\varphi \in \Delta$. For any model \overline{M} of T, any subset A of M, and any positive integer n, an n-type over \overline{M} is a set of formulas with free variables among v_0, \ldots, v_{n-1} and with parameters from A which is finitely satisfiable over \overline{M} . It is a complete n-type iff for any formula φ with free variables among v_0, \ldots, v_{n-1} and parameters from A, either φ or $\neg \varphi$ is a member of it. We let $S_n^{\overline{M}}(A)$ be the set of all complete n-types over A with respect to \overline{M} . Note that $|S_n^{\overline{M}}(A)| \leq 2^{\max(\omega, A)}$. T is κ -stable iff for every $\overline{M} \models T$, every $A \subseteq M$ of size κ , and every positive integer n we have $|S_n^{\overline{M}}(A)| = \kappa$.

Lemma 7.11. If T is ω -stable and $\overline{M} \models T$, then there is a minimal formula for \overline{M} .

Proof. Suppose not. We define formulas φ_f for each $f \in {}^{<\omega}2$ by induction on $\operatorname{dmn}(f)$. Let φ_\emptyset be the formula v = v. Now suppose that φ_f has been defined so that $\varphi_v(\overline{M})$ is infinite. Since φ_f is not minimal, there is a formula ψ with parameters such that $\varphi_f(\overline{M}) \cap \psi(\overline{M})$ and $\varphi_f(\overline{M}) \wedge \neg \psi(\overline{M})$ are infinite. We let $\varphi_{f \cap \langle 0 \rangle}$ be $\varphi_f \wedge \psi$ and $\varphi_{f \cap \langle 1 \rangle}$ be $\varphi_f \wedge \neg \psi$.

Let A be the set of all parameters appearing in any formula φ_f for $f \in {}^{<\omega}2$. So A is countable. For each $f \in {}^{\omega}2$ the set

$$\{\varphi_{f \upharpoonright n} : n \in \omega\}$$

is finitely satisfiable in \overline{M} and hence is contained in a complete type t_f over \overline{M} . This gives 2^{ω} complete types over A, contradicting ω -stability.

Lemma 7.12. If \overline{M} is ω -saturated and $\varphi(\overline{v}, \overline{a})$ is a minimal formula in \overline{M} , then $\varphi(\overline{v}, \overline{a})$ is a strongly minimal.

Proof. Suppose not. Let $\overline{M} \prec \overline{N}$ with $\psi({}^n \overline{N}, \overline{b})$ an infinite and coinfinite subset of $\varphi({}^n \overline{N}, \overline{a})$, where $\overline{b} \in N$. Then $\operatorname{tp}^{\overline{N}}(\overline{b}/\overline{a})$ is a complete type in \overline{N} , hence it is finitely satisfiable in \overline{N} , so it is finitely satisfiable in \overline{M} . Thus it is a complete type in \overline{M} over \overline{a} . So by the ω -saturation of \overline{M} , it is satisfiable in \overline{M} , say by \overline{b}' . Thus $\operatorname{tp}^{\overline{N}}(\overline{b}/\overline{a}) = \operatorname{tp}^{\overline{M}}(\overline{b}'/\overline{a})$. Now for any positive integer p,

$$\overline{N} \models \exists_{\geq p} \overline{v} [\varphi(\overline{v}, \overline{a}) \land \psi(\overline{v}, \overline{b})],$$

hence

$$\exists_{\geq p} \overline{v}[\varphi(\overline{v}, \overline{a}) \wedge \psi(\overline{v}, \overline{w})] \in \operatorname{tp}^{\overline{N}}(\overline{b}/\overline{a}),$$

hence

$$\exists_{\geq p} \overline{v}[\varphi(\overline{v}, \overline{a}) \wedge \psi(\overline{v}, \overline{w})] \in \operatorname{tp}^{\overline{M}}(\overline{b}'/\overline{a}),$$
$$\overline{M} \models \exists_{\geq p} \overline{v}[\varphi(\overline{v}, \overline{a}) \wedge \psi(\overline{v}, \overline{b}')].$$

It follows that $\varphi({}^n\overline{M}) \cap \psi({}^n\overline{M})$ is infinite. Similarly, $\varphi({}^n\overline{M}) \cap \neg \psi({}^n\overline{M})$ is infinite, contradiction.

A Vaughtian pair for T is a pair $(\overline{M}, \overline{N})$ of models of T such that there is a formula $\varphi(\overline{v})$ such that $\overline{M} \prec \overline{N}$, $M \neq N$, $\varphi(\overline{M})$ is infinite, and $\varphi(\overline{M}) = \varphi(\overline{N})$.

Lemma 7.13. Suppose that T does not have any Vaughtian pairs, $\overline{M} \models T$, and $\varphi(\overline{v}, \overline{w})$ is a formula with parameters from M, with \overline{v} of length m and \overline{w} of length k. Then there is a natural number n such that for all $\overline{a} \in M$, if $|\varphi(\overline{M}, \overline{a})| > n$, then $\varphi(\overline{M}, \overline{a})$ is infinite.

Proof. Suppose not. For each $n \in \omega$ let $\overline{a}_n \in M$ be such that $\varphi(\overline{M}, \overline{a}_n)$ is finite, but of size > n.

Adjoin to the language a new one-place relation symbol U. Let Γ be the set of formulas of the following four types:

- (1) $\forall \overline{x} \left[\bigwedge_{i < p} U x_i \to [\psi \leftrightarrow \psi^U] \right]$, for each formula ψ with free variables among \overline{x} , where $\overline{x} = \langle x_i : i , and <math>\psi^U$ indicates relativization of quantifiers to U.
- (2) $\exists x \neg Ux$.
- (3) $\exists \geq_s \overline{v} \varphi(\overline{v}, \overline{w})$ for each $s \in \omega$.
- $(4) \varphi(\overline{v}, \overline{w}) \to \bigwedge_{i < k} Uw_i.$

Now let \overline{N} be a proper elementary extension of \overline{M} . For each $n \in \omega$ we have $\varphi(\overline{M}, \overline{a}_n) = \varphi(\overline{N}, \overline{a}_n)$, since $\varphi(\overline{M}, \overline{a}_n)$ is finite. Each finite subset of Γ is satisfiable in the structure (\overline{N}, M) . Hence by the compactness theorem we get an elementary extension (\overline{N}', M') of (\overline{N}, M) such that Γ is realizable in (\overline{N}', M') , say by \overline{a} . Let \overline{M}' be the structure with universe M'. Then by (1), \overline{N}' is an elementary extension of \overline{M}' , and it is a proper extension by (2). By (3), $\varphi(\overline{N}', \overline{a})$ is infinite, and by (4) we have $\varphi(\overline{N}', \overline{a}) \subseteq M'$, hence $\varphi(\overline{N}', \overline{a}) = \varphi(\overline{M}', \overline{a})$ by elementarity. Thus $(\overline{M}', \overline{N}')$ is a Vaughtian pair, contradiction.

Lemma 7.14. If T has no Vaughtian pairs, then for every $\overline{M} \models T$ and every formula φ with parameters from \overline{M} , if φ is minimal for \overline{M} then it is strongly minimal for \overline{M} .

Proof. Suppose not. Let φ be $\varphi(\overline{v})$, with parameters from M. Then there is an elementary extension \overline{N} of \overline{M} and a formula $\psi(\overline{v}, \overline{b})$ with $\overline{b} \in N$ such that $\varphi(\overline{N}) \cap \psi(\overline{N}, \overline{b})$ and $\varphi(\overline{N}) \cap \neg \psi(\overline{N}, \overline{b})$ are infinite. By Lemma 7.13 applied twice, let $n \in \omega$ be such that for all $\overline{a} \in M$,

$$|\varphi(\overline{M}) \cap \psi(\overline{M}, \overline{a})| > n \to \varphi(\overline{M}) \cap \psi(\overline{M}, \overline{a}) \text{ is infinite, and}$$
$$|\varphi(\overline{M}) \cap \neg \psi(\overline{M}, \overline{a})| > n \to \varphi(\overline{M}) \cap \neg \psi(\overline{M}, \overline{a}) \text{ is infinite.}$$

Thus by the minimality of φ ,

$$\overline{M} \models \forall \overline{w}[|\varphi(\overline{M}) \cap \psi(\overline{M}, \overline{w})| \leq n \vee |\varphi(\overline{M}) \cap \neg \psi(\overline{M}, \overline{w})| \leq n].$$

So this also holds in \overline{N} , and it follows that $\varphi(\overline{N}) \cap \psi(\overline{N}, \overline{b})$ is finite or $\psi(\overline{N}) \cap \neg \psi(\overline{N}, \overline{b})$ is finite, contradiction.

Corollary 7.15. If T is ω -stable and has no Vaughtian pairs, then for every $\overline{M} \models T$ there is a strongly minimal formula over \overline{M} .

Corollary 7.16. If T has no Vaughtian pairs, $\overline{M} \models T$, and $\varphi(\overline{v})$ is a formula with parameters from M, and if $\varphi(\overline{M})$ is infinite, then no proper elementary submodel of \overline{M} contains both $\varphi(\overline{M})$ and the parameters of $\varphi(\overline{v})$.

Proof. Suppose that \overline{N} is a proper elementary submodel of \overline{M} which contains both $\varphi(\overline{M})$ and the parameters of $\varphi(\overline{v})$. Then for any $\overline{a} \in N$, $\overline{N} \models \varphi(\overline{a})$ implies that $\overline{M} \models \varphi(\overline{a})$ by elementarity. Conversely, if $\overline{M} \models \varphi(\overline{a})$ with $\overline{a} \in M$, then $\overline{a} \in N$ by assumption, so $\overline{N} \models \varphi(\overline{a})$ by elementarity. Thus $\varphi(\overline{M}) = \varphi(\overline{N})$. So $(\overline{M}, \overline{N})$ is a Vaughtian pair, contradiction.

Lemma 7.17. Suppose that T is ω -stable, $\overline{M} \models T$, $A \subseteq M$, $\varphi(\overline{v})$ is a formula with parameters from A, and $\overline{M} \models \exists \overline{v} \varphi(\overline{v})$. Then there is an $\overline{a} \in M$ such that $\varphi(\overline{v}) \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$ and $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$ is isolated.

Proof. Suppose that this does not hold. We construct formulas ψ_f for each $f \in {}^{<\omega} 2$. Let $\psi_{\emptyset} = \varphi$. Suppose that we have constructed $\psi_f(\overline{v})$, a formula with parameters from A, so that

(*) $\overline{M} \models \exists \overline{v} \psi_f(\overline{v})$, and for all $\overline{a} \in M$, if $\varphi_f(\overline{v}) \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$, then $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$ is not isolated. This is true for $f = \emptyset$ by assumption. We claim

(**) There is a formula $\chi(\overline{v})$ with parameters from A such that $\overline{M} \models \exists \overline{v} [\psi_f(\overline{v}) \land \chi(\overline{v})]$ and $\overline{M} \models \exists \overline{v} [\psi_f(\overline{v}) \land \neg \chi(\overline{v})].$

Suppose not. Take any \overline{a} such that $\overline{M} \models \psi_f(\overline{a})$. Suppose that $\chi(\overline{v}) \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$. Now by (**) failing we have

$$\overline{M} \models \forall \overline{v}[\psi_f(\overline{v}) \to \chi(\overline{v})] \text{ or } \overline{M} \models \forall \overline{v}[\psi_f(\overline{v}) \to \neg \chi(\overline{v})].$$

But $\overline{M} \models \chi(\overline{a})$ and $\overline{M} \models \psi_f(\overline{a})$, so it follows that $\overline{M} \models \forall \overline{v}[\psi_f(\overline{v}) \to \chi(\overline{v})]$. This proves that $\psi_f(\overline{v})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$, contradiction. Hence (**) holds. We take such a formula $\chi(\overline{v})$ and define $\psi_{f^\frown\langle 0\rangle}$ to be $\psi_f(\overline{v}) \wedge \chi(\overline{v})$ and $\psi_{f^\frown\langle 1\rangle}$ to be $\psi_f(\overline{v}) \wedge \neg \chi(\overline{v})$. This finishes the construction.

But this clearly gives 2^{ω} types over A, contradicting ω -stability.

If \overline{M} , \overline{N} are structures, $A \subseteq M$, and $f: A \to N$, we say that f is partial elementary iff for every formula $\varphi(\overline{v})$ without parameters and every $\overline{a} \in A$, $\overline{M} \models \varphi(\overline{a})$ iff $\overline{N} \models \varphi(f \circ \overline{a})$.

 \overline{M} is a *prime* model of T iff \overline{M} can be elementarily embedded in every model of T. If $\overline{M} \models T$ and $A \subseteq M$, we say that \overline{M} is *prime over* A *for* T iff for every model \overline{N} of T, every partial elementary $f: A \to N$ can be extended to an elementary $f^+: \overline{M} \to \overline{N}$.

Lemma 7.18. If $\overline{a} \in {}^mM$, $\overline{b} \in {}^nM$, $A \subseteq M$, and $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$ is isolated, then $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$ is isolated.

Proof. Let $\varphi(\overline{v}, \overline{w})$, a formula with parameters in A, isolate $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$. We claim that $\exists \overline{w} \varphi(\overline{v}, \overline{w})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$. First, $\overline{M} \models \varphi(\overline{a}, \overline{b})$, so $\overline{M} \models \exists \overline{w} \varphi(\overline{a}, \overline{w})$. Second, suppose that $\overline{M} \models \chi(\overline{a})$, where χ has parameters in A. Then $\chi(\overline{v}) \in \operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$, so $\overline{M} \models \forall \overline{v} \forall \overline{w} [\varphi(\overline{v}, \overline{w}) \to \chi(\overline{v})]$. Hence $\overline{M} \models \forall \overline{v} [\exists \overline{w} \varphi(\overline{v}, \overline{w}) \to \chi(\overline{v})]$ by elementary logic. \square

Lemma 7.19. Suppose that $A \subseteq B \subseteq M$, and $\overline{M} \models T$. Suppose that every $\overline{b} \in B$ realizes an isolated type over A, and suppose that $\operatorname{tp}^{\overline{M}}(\overline{a}/B)$ is isolated. Then $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$ is isolated.

Proof. Suppose that $\varphi(\overline{v}, \overline{b})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a}/B)$, where $\overline{b} \in B$ are the parameters of φ . By hypothesis, let $\theta(\overline{w})$ isolate $\operatorname{tp}^{\overline{M}}(\overline{b}/A)$. We claim that $\varphi(\overline{v}, \overline{w}) \wedge \theta(\overline{w})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$. For, $\overline{M} \models \varphi(\overline{a}, \overline{b})$ and $\overline{M} \models \theta(\overline{b})$, so $\overline{M} \models \varphi(\overline{a}, \overline{b}) \wedge \theta(\overline{b})$. Now suppose that $\overline{M} \models \chi(\overline{a}, \overline{b})$. Hence $\overline{M} \models \forall \overline{v}[\varphi(\overline{v}, \overline{b}) \to \chi(\overline{v}, \overline{b})$. Hence the formula

$$\forall \overline{v}[\varphi(\overline{v}, \overline{b}) \to \chi(\overline{v}, \overline{b})$$

is in $\operatorname{tp}^{\overline{M}}(\overline{b}/A)$, and it follows that

$$\overline{M} \models \forall \overline{w} [\theta(\overline{w}) \to \forall \overline{v} [\varphi(\overline{v}, \overline{b}) \to \chi(\overline{v}, \overline{b})].$$

Hence by elementary logic,

$$\overline{M} \models \forall \overline{w} \forall \overline{v} [\theta(\overline{w}) \land \varphi(\overline{v}, \overline{b}) \rightarrow \chi(\overline{v}, \overline{b})].$$

So we have shown that $\varphi(\overline{v}, \overline{w}) \wedge \theta(\overline{w})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$. Now by Lemma 7.18 it follows that $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$ is isolated.

Theorem 7.20. Let T be ω -stable. Suppose that $\overline{M} \models T$ and $A \subseteq M$. Then there is an $\overline{M}_0 \preceq \overline{M}$ which is prime over A for T, and is such that every element of M_0 realizes an isolated type over A with respect to \overline{M}_0 .

Proof. We define a sequence $\langle A_{\alpha} : \alpha \leq \delta \rangle$ by recursion, where δ is also defined in the construction. Let $A_0 = A$. If α is a limit ordinal and A_{β} has been defined for all $\beta < \alpha$, then we let $A_{\alpha} = \bigcup_{\beta < \alpha} A_{\beta}$. Now suppose that A_{α} has been defined. If no element of $M \backslash A_{\alpha}$ realizes an isolated type over A_{α} (in particular, if $M = A_{\alpha}$), we stop and let $\delta = \alpha$. Otherwise we pick an element $a_{\alpha} \in M \backslash A_{\alpha}$ realizing an isolated type over A_{α} and let $A_{\alpha+1} = A_{\alpha} \cup \{a_{\alpha}\}$.

(1) A_{δ} is closed under the fundamental functions of \overline{M} .

In fact, suppose that \mathbf{F} is an m-ary function symbol and $\overline{a} \in {}^{m}A_{\delta}$. Now $\operatorname{tp}^{\overline{M}}(\mathbf{F}^{\overline{M}}(\overline{a})/A_{\delta})$ is isolated over A_{δ} . For, suppose that $\varphi(v) \in \operatorname{tp}^{\overline{M}}(\mathbf{F}^{\overline{M}}(\overline{a})/A_{\delta})$. Thus $\overline{M} \models \varphi(\mathbf{F}^{\overline{M}}(\overline{a}))$, and so $\overline{M} \models \forall v[\mathbf{F}^{\overline{M}}(\overline{a}) = v \to \psi(v)]$, so that $\mathbf{F}^{\overline{M}}(\overline{a}) = v$ isolates $\mathbf{F}^{\overline{M}}(\overline{a})/A_{\delta}$. It follows that $\mathbf{F}^{\overline{M}}(\overline{a}) \in A_{\delta}$.

Let \overline{M}_0 be the substructure of \overline{M} with universe A_{δ} .

(2)
$$\overline{M}_0 \preceq \overline{M}$$
.

We apply Tarski's lemma. Suppose that $\varphi(v, \overline{a})$ is a formula with parameters $\overline{a} \in A_{\delta}$, and $\overline{M} \models \exists v \varphi(v, \overline{a})$. By Lemma 7.17, choose $b \in M$ such that $\varphi(v, \overline{a}) \in \operatorname{tp}^{\overline{M}}(b/\overline{a})$ and $\operatorname{tp}^{\overline{M}}(b/\overline{a})$ is isolated. By construction we have $b \in A_{\delta}$, as desired.

Now suppose that $\overline{N} \models T$ and $f: A \to \overline{N}$ is partial elementary. We now define $f_0 \subseteq \cdots \subseteq f_\delta$ by recursion so that $f_\alpha: A_\alpha \to \overline{N}$ is partial elementary. Let $f_0 = f$. If $\alpha \le \delta$ is a limit ordinal and f_β has been defined for all $\beta < \alpha$, let $f_\alpha = \bigcup_{\beta < \alpha} f_\beta$. Clearly f_α is partial elementary. Now suppose that f_α has been defined, where $\alpha < \delta$, with $f_\alpha: A_\alpha \to \overline{N}$ partial elementary. Then by construction, $A_{\alpha+1} = A_\alpha \cup \{a_\alpha\}$, where $a_\alpha \in M \setminus A_\alpha$ and $\operatorname{tp}^{\overline{M}}(a_\alpha/A_\alpha)$ is isolated. Let $\varphi(v, \overline{b})$ be a formula with parameters $\overline{b} \in A_\alpha$ which isolates $\operatorname{tp}^{\overline{M}}(a_\alpha/A_\alpha)$. Thus the following conditions hold:

- (3) $\overline{M} \models \varphi(a_{\alpha}, \overline{b}).$
- (4) For every formula $\chi(v, \overline{c})$ with parameters $\overline{c} \in A_{\alpha}$, if $\overline{M} \models \chi(a_{\alpha}, \overline{c})$ then $\overline{M} \models \forall v [\varphi(v, \overline{b}) \to \chi(v, \overline{c})]$.

Now by (3) we have $\overline{M} \models \exists v \varphi(v, \overline{b})$, so by the assumption that f_{α} is partial elementary we have $\mathbb{N} \models \exists v \varphi(v, f_{\alpha} \circ \overline{b})$. Choose $d \in \mathbb{N}$ so that $\overline{N} \models \varphi(d, f_{\alpha} \circ \overline{b})$. Let $f_{\alpha+1} = f_{\alpha} \cup \{(a_{\alpha}, d)\}$. To show that $f_{\alpha+1}$ is partial elementary, suppose that $\chi(v, \overline{c})$ is a formula with parameters $\overline{c} \in A_{\alpha}$, and $\overline{M} \models \chi(a_{\alpha}, \overline{c})$. So by (4) we have $\overline{M} \models \forall v[\varphi(v, \overline{b}) \to \chi(v, \overline{c})]$, hence $\overline{N} \models \forall v[\varphi(v, f \circ \overline{b}) \to \chi(v, f_{\alpha} \circ \overline{c})]$. Now $\overline{N} \models \varphi(d, f_{\alpha} \circ \overline{b})$, so $\overline{N} \models \chi(d, f_{\alpha} \circ \overline{c})$. Hence $f_{\alpha+1}$ is partial elementary.

This finishes the construction of the f_{α} 's. In particular, f_{δ} is an elementary mapping of \overline{M}_0 into \overline{N} , as desired.

It remains to show that every element of M_0 realizes an isolated type over A with respect to \overline{M}_0 . We prove by induction on α that every element of A_{α} realizes an isolated type over A with respect to \overline{M} , for each $\alpha \leq \delta$. This is true for $\alpha = 0$, since any element $a \in A$ is isolated over A by the formula v = a. The inductive step to a limit ordinal α is obvious. Now suppose that $b \in A_{\alpha+1}$. Then b is isolated over A_{α} by construction, so b is isolated over A by the inductive hypothesis and Lemma 7.19.

Clearly being isolated over A with respect to \overline{M} implies isolated over A with respect to \overline{M}_0 .

Corollary 7.21. If T is ω -stable, then it has a prime model.

Proof. Take $A = \emptyset$ in Theorem 7.20.

Corollary 7.22. If T is ω -stable and has no Vaughtian pairs, and if $\varphi(\overline{v})$ is a formula with parameters in M such that $\varphi(\overline{M})$ is infinite, then \overline{M} is prime over $\varphi(\overline{M})$.

Proof. By Theorem 7.20 there is an $\overline{N} \preceq \overline{M}$ which is prime over $\varphi(\overline{M})$. Since $\varphi(\overline{M}) \subseteq N$, we have $\varphi(\overline{N}) = \varphi(\overline{M})$. Since T has no Vaughtian pairs, it follows that $\overline{N} = \overline{M}$.

Theorem 7.23. If T is ω -stable and has no Vaughtian pairs, then T is κ -categorical for every uncountable cardinal κ .

Proof. Assume the hypotheses, with κ uncountable. Suppose that $\overline{M}, \overline{N} \models T$ with $|M| = |N| = \kappa$. Let \overline{M}_0 be a prime model of T by Corollary 7.21. Wlog $\overline{M}_0 \preceq \overline{M}, \overline{N}$. By Corollary 7.15 let $\varphi(\overline{v})$ be strongly minimal over \overline{M}_0 .

 $(1) |\varphi(\overline{M})| = |\varphi(\overline{N})| = \kappa.$

For, suppose that $|\varphi(\overline{M})| < \kappa$. By the downward Löwenheim-Skolem theorem, let \overline{P} be an elementary substructure of \overline{M} containing both $\varphi(\overline{M})$ and the parameters of φ , with $|P| < \kappa$. This contradicts Corollary 7.16. Hence $|\varphi(\overline{M})| = \kappa$. By symmetry, $|\varphi(\overline{N})| = \kappa$.

By Lemma 7.7, $\dim(\varphi(\overline{M})) = \dim(\varphi(\overline{N}))$, an hence there is a bijection $f : \varphi(\overline{M}) \to \varphi(\overline{N})$ which is a partial elementary embedding of $\varphi(\overline{M})$ into \overline{N} , by Lemma 7.9. By Corollary 7.22, \overline{M} is prime over $\varphi(\overline{M})$, and hence f can be extended to an elementary embedding of \overline{M} into \overline{N} . By Corollary 7.16, f maps onto \overline{N} .

We now give some results of a general nature before turning to the converse of Theorem 7.23. We will use Ramsey's theorem from set theory, and we begin with a proof of it.

Ramsey's Theorem. Suppose that M is an infinite set, n and r are positive integers, and $f:[M]^n \to r$. (r is considered as equal to $\{0,\ldots,r-1\}$.) Then there exist an i < r and an infinite $N \subseteq M$ such that f(a) = i for all $a \in [N]^n$.

Proof. We may assume that $M=\omega$. We proceed by induction on n. First suppose that n=1. Thus $f:[\omega]^1\to r$, so $\omega=\bigcup_{i\in r}\{j\in\omega:f(\{j\})=i\}$. It follows that there is an $i\in r$ such that $N\stackrel{\mathrm{def}}{=}\{j\in\omega:f(\{j\})=i\}$ is infinite, as desired.

Now assume that the theorem holds for $n \geq 1$, and suppose that $f : [\omega]^{n+1} \to r$. For each $m \in \omega$ define $g_m : [\omega \setminus \{m\}]^n \to r$ by:

$$g_m(X) = f(X \cup \{m\}).$$

Then by the inductive hypothesis, for each $m \in \omega$ and each infinite $S \subseteq \omega$ there is an infinite $H_m^S \subseteq S \setminus \{m\}$ such that g_m is constant on $[H_m^S]^n$. We now construct by recursion two sequences $\langle S_i : i \in \omega \rangle$ and $\langle m_i : i \in \omega \rangle$. Each m_i will be in ω , and we will have $S_0 \supseteq S_1 \supseteq \cdots$. Let $S_0 = \omega$ and $m_0 = 0$. Suppose that S_i and m_i have been defined, with S_i an infinite subset of ω . We define

$$S_{i+1} = H_{m_i}^{S_i}$$
 and $m_{i+1} =$ the least element of S_{i+1} greater than m_i .

Clearly $S_0 \supseteq S_1 \supseteq \cdots$ and $m_0 < m_1 < \cdots$. Moreover, $m_i \in S_i$ for all $i \in \omega$.

(1) For each $i \in \omega$, the function g_{m_i} is constant on $[\{m_j : j > i\}]^n$.

In fact, $\{m_j : j > i\} \subseteq S_{i+1}$ by the above, and so (1) is clear by the definition. Let $p_i < r$ be the constant value of $g_{m_i} \upharpoonright [\{m_j : j > i\}]^n$, for each $i \in \omega$. Hence

$$\omega = \bigcup_{j < r} \{ i \in \omega : p_i = j \};$$

so there is a j < r such that $K \stackrel{\text{def}}{=} \{i \in \omega : p_i = j\}$ is infinite. Let $L = \{m_i : i \in K\}$. We claim that $f[[L]^{n+1}] \subseteq \{j\}$, completing the inductive proof. For, take any $X \in [L]^{n+1}$; say $X = \{m_{i_0}, \ldots, m_{i_n}\}$ with $i_0 < \cdots < i_n$. Then

$$f(X) = g_{m_{i_0}}(\{m_{i_1}, \dots, m_{i_n}\}) = p_{i_0} = j.$$

Now we return to model theory. Let (I, <) be a linear order, \overline{M} a structure, and $\langle a_i : i \in I \rangle$ a system of distinct elements of M. We say that $\langle a_i : i \in I \rangle$ is a system of order indiscernibles for \overline{M} iff for every formula $\varphi(w_1, \ldots, w_m)$ with free variables among the distinct variables w_1, \ldots, w_m and all sequences $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$ of elements of I we have

$$\overline{M} \models \varphi(a_{i_1}, \dots, a_{i_m}) \leftrightarrow \varphi(a_{j_1}, \dots, a_{j_m}).$$

Theorem 7.24. Let T be a theory with infinite models, and let $(I, <_I)$ be an infinite linear order. Then T has a model with a system $\langle a_i : i \in I \rangle$ of order indiscernibles.

Proof. We will work with the standard sequence v_1, v_2, \ldots of variables; all variables are assumed to be among these. Adjoin to the language a system $\langle c_i : i \in I \rangle$ of distinct new individual constants. Let Γ be the union of the following set of sentences:

- (1) T;
- (2) $c_i \neq c_j$ for $i \neq j$.
- (3) $\varphi(c_{i_1}, \ldots, c_{i_p}) \leftrightarrow \varphi(c_{j_1}, \ldots, c_{j_p})$ for every formula $\varphi(v_1, \ldots, v_p)$ with free variables exactly the variables v_1, \ldots, v_p and all sequences $i_1 <_I \cdots <_I i_p$ and $j_1 <_I \cdots <_I j_p$ of elements of I.

We claim that every finite subset of Γ has a model. So, suppose that $\Delta \subseteq \Gamma$ is finite. Let I_0 be the set of all $i \in I$ such that c_i occurs in one of the formulas in Δ . Let $\varphi_1, \ldots, \varphi_m$ be all of the formulas occuring in the third part of Δ as above, and for each $k \in [1, m]$ let p_k be the "p" involved. Let $n = \max\{p_k : 1 \le k \le n\}$. Let \overline{M} be an infinite model of T, and fix any linear order $<_M$ of M. We now define $F : [M]^n \to \mathscr{P}(m)$ as follows. Given $A \in [M]^n$ with $A = \{a_1, \ldots, a_n\}, a_1 <_M \cdots <_M a_n$, let

$$F(A) = \{k : \overline{M} \models \varphi_k[a_1, \dots, a_n]\}.$$

By Ramsey's theorem let $X \in [M]^{\omega}$ and $\eta \in \mathscr{P}(m)$ be such that $F(A) = \eta$ for all $A \in [X]^n$. Let $I_0 = \{s_0, \ldots, s_{m-1}\}$ with $s_0 <_I \cdots <_I s_{m-1}$. Let $x_0 <_M \cdots <_M x_{m+n-1}$ be elements of X. Define $a_{s_k} = x_k$ for all k < m. Thus for any $i, j \in I_0$ we have $i <_I j$ iff $a_i <_M a_j$. Now $(\overline{M}, a_i)_{i \in I_0}$ is a model of Δ . In fact, this is clear for the first two kinds of sentences above. Now take one of the third sort:

 $\varphi_k(c_{i_1},\ldots,c_{i_{p_k}}) \leftrightarrow \varphi_k(c_{j_1},\ldots,c_{j_{p_k}})$ where $\varphi_k(v_1,\ldots,v_{p_k})$ is a formula with free variables exactly the variables v_1,\ldots,v_{p_k} and with sequences $i_1 <_I \cdots <_I i_{p_k}$ and $j_1 <_I \cdots <_I j_{p_k}$ of elements of I_0 . Using the additional n elements of X mentioned above, extend $a_{i_1},\ldots,a_{i_{p_k}}$ to a sequence $\overline{b} \in {}^n X$ strictly increasing in the sense of $<_M$, and extend $a_{j_1},\ldots,a_{j_{p_k}}$ to a sequence $\overline{c} \in {}^n X$ strictly increasing in the sense of $<_M$. Then

$$(\overline{M}, a_i)_{i \in I_0} \models \varphi_k(c_{i_1}, \dots, c_{i_{p_k}}) \quad \text{iff} \quad \overline{M} \models \varphi_k[\overline{b}]$$

$$\text{iff} \quad k \in F(\text{rng}(\overline{b}))$$

$$\text{iff} \quad k \in \eta$$

$$\text{iff} \quad k \in F(\text{rng}(\overline{c}))$$

$$\text{iff} \quad \overline{M} \models \varphi_k[\overline{c}]$$

$$\text{iff} \quad (\overline{M}, a_i)_{i \in I_0} \models \varphi_k(c_{j_1}, \dots, c_{j_{p_k}}).$$

This finishes the proof that $(\overline{M}, a_i)_{i \in I_0}$ is a model of Δ .

Hence by the compactness theorem, let $(\overline{N}, d_i)_{i \in I}$ be a model of Γ . We claim that \overline{N} is as desired. For, suppose that $\varphi(\overline{w})$ is a formula with every free variable occurring in the sequence \overline{w} of distinct variables, $\overline{w} = \langle w_1, \ldots, w_q \rangle$, and $i_1 <_I \cdots <_I i_q, j_1 <_I \cdots <_I j_q$. Let the variables actually occurring free in φ be $w_{s(1)}, \ldots, w_{s(r)}$, with $1 \leq s(1) < \cdots < s(r) \leq q$. Let φ' be obtained from φ by replacing $w_{s(1)}, \ldots, w_{s(r)}$ by v_1, \ldots, v_r respectively, after changing bound variables to avoid clashes. Then φ' is a formula with exactly the free variables v_1, \ldots, v_r . Moreover, $i_{s(1)} <_I \cdots <_I i_{s(r)}$ and $j_{s(1)} <_I \cdots <_I j_{s(r)}$. Hence

$$(\overline{N}, d_i)_{i \in I} \models \varphi'(c_{i_{s(1)}}, \dots, c_{i_{s(r)}}) \leftrightarrow \varphi'(c_{j_{s(1)}}, \dots, c_{j_{s(r)}}).$$

It follows that

$$\overline{N} \models \varphi'(d_{i_{s(1)}}, \dots, d_{i_{s(r)}}) \leftrightarrow \varphi'(d_{j_{s(1)}}, \dots, d_{j_{s(r)}});$$

$$\overline{N} \models \varphi(d_{i_{s(1)}}, \dots, d_{i_{s(r)}}) \leftrightarrow \varphi(d_{j_{s(1)}}, \dots, d_{j_{s(r)}});$$

$$\overline{N} \models \varphi(d_{i_1}, \dots, d_{i_q}) \leftrightarrow \varphi(d_{j_1}, \dots, d_{j_q}).$$

A theory T in a language \mathcal{L} has built-in Skolem functions iff for every positive integer n, every system v, w_1, \ldots, w_n of distinct variables, and every formula $\varphi(v, w_1, \ldots, w_n)$ without parameters whose free variables are among v, w_1, \ldots, w_n , there is an m-ary function symbol f such that

$$T \models \forall \overline{w} [\exists v \varphi(v, \overline{w}) \to \varphi(f(\overline{w}), \overline{w})].$$

Theorem 7.25. Let T be a theory in a language \mathcal{L} . Then there exist a language $\mathcal{L}^* \supseteq \mathcal{L}$ and a theory $T^* \supseteq T$ in \mathcal{L}^* such that:

- (i) T^* has built-in Skolem functions.
- (ii) Each model of T can be expanded to a model of T^* .
- (iii) $|\mathcal{L}^*| = |\mathcal{L}| + \omega$.

Proof. Fix $c \in M$ We define $\mathcal{L}_0, \mathcal{L}_1, \ldots$ and T_0, T_1, \ldots by recursion. Let $\mathcal{L}_0 = \mathcal{L}$ and $T_0 = T$. Having defined \mathcal{L}_m and T_m , for each formula $\varphi(v, w_1, \ldots, w_n)$ as in the above definition, introduce an n-ary function symbol f_{φ} , and add the following sentence to T_m :

$$\forall \overline{w}[\exists v \varphi(v, \overline{w}) \to \varphi(f_{\varphi}(\overline{w}), \overline{w})].$$

This finishes the construction. Let $\mathscr{L}^* = \bigcup_{m \in \omega} \mathscr{L}_m$ and $T^* = \bigcup_{m \in \omega} T_m$. The desired conditions are easy to check.

Theorem 7.26. Let \mathscr{L} be countable and let T be an \mathscr{L} -theory with an infinite model. Suppose that κ is an infinite cardinal. Then there is a model \overline{M} of T of size κ such that for every $A \subseteq M$ and every positive integer n, \overline{M} realizes at most $|A| + \omega$ n-types over A.

Proof. By Theorem 7.24, let \overline{N} be a model of T with a system $\langle a_{\alpha} : \alpha < \kappa \rangle$ of order indiscernibles with respect to $(\kappa, <)$. Let $I = \{a_{\alpha} : \alpha < \kappa\}$. Let \mathscr{L}^* and T^* be as in Theorem 7.25. Let M be the closure under all of the functions of \overline{N}^* of I. Then M is the universe of some substructure \overline{M}^* of \overline{N}^* . Let \overline{M} be the reduct of \overline{M}^* to the language \mathscr{L} .

So $\overline{M} \models T$, and $|M| = \kappa$. Suppose that $A \subseteq M$. For each $b \in M$ we can write $b = t_b(x_b)$, where t_b is a term and x_b is a strictly increasing sequence $\langle x_b(0), \ldots, x_b(m_b-1) \rangle$ of elements of I. Let $X = \{ y \in I : y = x_b(u) \text{ for some } b \in A \text{ and } u < m_b \}$. Now for any $c \in {}^n M$ we define (with $c = \langle c(i) : i < n \rangle$)

$$L_{c} = \langle \tau_{c(i)} : i < n \rangle;$$

$$N_{c} = \{(i, j, u, v) : i < j < n, u < m_{c(i)}, v < m_{c(j)}\};$$

$$\text{for } (i, j, u, v) \in N_{c}, \ F_{c}(i, j, u, v) = \begin{cases} 0 & \text{if } x_{c(i)}(u) < x_{c(j)}(v), \\ 1 & \text{if } x_{c(i)}(u) = x_{c(j)}(v), \\ 2 & \text{if } x_{c(i)}(u) > x_{c(j)}(v); \end{cases}$$

$$P_{c} = \{(i, u, y) : i < n, u < m_{i}, y \in X\};$$

$$\text{for } (i, u, y) \in P_{c}, \ G_{c}(i, u, y) = \begin{cases} 0 & \text{if } x_{c(i)}(u) = y, \\ 1 & \text{if } x_{c(i)}(u) < y, \\ 2 & \text{if } x_{c(i)}(u) > y; \end{cases}$$

$$T(c) = \langle L_{c}, F_{c}, G_{c} \rangle.$$

Now we claim that if $c, d \in {}^{n}M$ and T(c) = T(d), then $\operatorname{tp}^{\overline{M}}(c/A) = \operatorname{tp}^{\overline{M}}(d/A)$. For, assume that T(c) = T(d), and let $\varphi(\overline{v}, a)$ be given, with $a \in {}^{l}A$. Let

$$Y_c = \{x_{c(i)}(u) : i < n, u < m_i\} \cup \{x_{a(i)}(u) : i < l, u < m_i\};$$

$$Y_d = \{x_{d(i)}(u) : i < n, u < m_i\} \cup \{x_{a(i)}(u) : i < l, u < m_i\}.$$

Clearly $|Y_c| = |Y_d|$. Let $\langle z_i^c : i < e \rangle$ and $\langle z_i^d : i < e \rangle$ enumerate Y_c and Y_d respectively, in the order $\langle I \rangle$. Let $\langle w_i : i < e \rangle$ be a sequence of new variables. Say $x_{c(i)}(u) = z_{k(i,u)}^c$ and $x_{a(i)}(u) = z_{l(i,u)}^c$. Then by T(c) = T(d) we have $x_{d(i)}(u) = z_{k(i,u)}^d$ and $x_{a(i)}(u) = z_{l(i,u)}^d$. Let φ' be the formula

$$\varphi(\langle t_{c(i)}(w_{k(i,0)}, \dots, w_{k(i,m_i-1)}) : i < n \rangle, \langle t_{a(i)}(w_{l(i,0)}, \dots, w_{l(i,m_i-1)}) : i < l \rangle).$$

Then

$$\overline{M} \models \varphi(c, a) \quad \text{iff} \quad \overline{M} \models \varphi'(z^c)$$

$$\quad \text{iff} \quad \overline{M} \models \varphi'(z^d)$$

$$\quad \text{iff} \quad \overline{M} \models \varphi(d, a).$$

This proves our claim. Now clearly there are at most $|A| + \omega$ choices for T(c), so the conclusion of the theorem follows.

Now we again make the standing assumption that T is a complete theory in a countable language with only infinite models.

Theorem 7.27. If T is κ -categorical for some uncountable κ , then T is ω -stable.

Proof. Suppose that T is not ω -stable. Then there is a model \overline{M} of T, a countable subset A of M, and a positive integer n, such that $|S_n^{\overline{M}}(A)| > \omega$. Let \overline{M}' be a countable

elementary submodel of \overline{M} containing A. Then $\overline{M}' \models T$ and $|S_n^{\overline{M}'}(A)| > \omega$. Hence \overline{M}' has an elementary extension \overline{N}_0 of size κ which realises uncountably many n-types over A. By Theorem 7.26 there is a model \overline{N}_1 of T such that for every countable $B \subseteq N_1$, \overline{N}_1 realizes only countably many n types over B. Hence \overline{N}_0 and \overline{N}_1 are not isomorphic. \square

If \overline{M} is an infinite structure and κ is an infinite cardinal, we say that \overline{M} is κ -homogeneous iff for every $A \in [M]^{<\kappa}$, every partial elementary map $f: A \to \overline{M}$, and every $a \in M$, there is a partial elementary map $f^+: A \cup \{a\} \to \overline{M}$ which extends f. We say that \overline{M} is homogeneous iff it is |M|-homogeneous.

Lemma 7.28. Suppose that \overline{M} and \overline{N} are \mathcal{L} structures, n is a positive integer, $a \in {}^{n}M$, and $b \in {}^{n}N$. Then the following conditions are equivalent:

- (i) $\operatorname{tp}^{\overline{M}}(a) = \operatorname{tp}^{\overline{N}}(b)$.
- (ii) There is a partial elementary map $f: rng(a) \to N$ such that $b = f \circ a$.

Proof. (i) \Rightarrow (ii): Assume (i). Define $f(a_i) = b_i$ for all i < n. f is well defined, since $a_i = a_j$ implies that $v_i = v_j \in \operatorname{tp}^{\overline{M}}(a) = \operatorname{tp}^{\overline{N}}(b)$, hence $b_i = b_j$. Clearly f is partial elementary.

$$(ii)\Rightarrow (i)$$
: clear.

Lemma 7.29. Suppose that κ is an infinite cardinal, \overline{M} is κ -homogeneous, n is a positive integer, $\overline{a}, b \in {}^{n}M$, $\operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(b)$, and $c \in M$. Then there is a $d \in M$ such that $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{M}}(b \cap \langle d \rangle)$.

Proof. This is immediate from Lemma 7.28.

Lemma 7.30. The following are equivalent:

- (i) \overline{M} is ω -homogeneous.
- (ii) For every positive integer n, all $\overline{a}, b \in {}^{n}M$, and all $c \in M$, if $\operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(b)$, then there is a $d \in M$ such that $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{M}}(b \cap \langle d \rangle)$.
- **Proof.** (i) \Rightarrow (ii): Assume (i) and the hypothesis of (ii). So by Lemma 7.28 there is an elementary map $f: \operatorname{rng}(\overline{a}) \to M$ such that $b = f \circ \overline{a}$. By (i), extend f to an elementary map $f^+: \operatorname{rng}(\overline{a}) \cup \{c\} \to M$. Let d = f(c). Then by Lemma 7.28 again, $\operatorname{tp}^{\overline{M}}(\overline{a}^{\frown}\langle c \rangle) = \operatorname{tp}^{\overline{M}}(b^{\frown}\langle d \rangle)$.
- (ii) \Rightarrow (i): Assume (ii) and suppose that $f:A\to M$ is partial elementary, where A is a finite subset of M, and suppose that $c\in M$. Say $\operatorname{rng}(\overline{a})=A$. By Lemma 7.28 we have $\operatorname{tp}^{\overline{M}}(\overline{a})=\operatorname{tp}^{\overline{M}}(f\circ\overline{a})$. Hence by (ii) choose $d\in M$ such that $\operatorname{tp}^{\overline{M}}(\overline{a}^{\frown}\langle c\rangle)=\operatorname{tp}^{\overline{M}}((f\circ\overline{a})^{\frown}\langle d\rangle)$. By Lemma 28 we get a partial elementary map g such that $(f\circ\overline{a})^{\frown}\langle d\rangle=g\circ(\overline{a}^{\frown}\langle c\rangle)$. Thus g extends f and g(c)=d, as desired.

Theorem 7.31. If \overline{M} and \overline{N} are countable homogeneous models of T and for each positive integer n they realize the same n-types, then they are isomorphic.

Proof. Let a_0, a_1, \ldots enumerate M and b_0, b_1, \ldots enumerate N. We now define by recursion partial elementary maps f_0, f_1, \ldots from subsets of M into \overline{N} . Let $f = \emptyset$; so it is partial elementary into \overline{N} because T is complete. Now suppose that a partial elementary

map f_s has been defined from a finite subset of M into \overline{N} . Let \overline{c} be a sequence enumerating the domain of f.

Case 1. s is even, say s=2i. By hypothesis, let $d, e \in N$ such that $\operatorname{tp}^{\overline{M}}(\overline{c} \cap \langle a_i \rangle) = \operatorname{tp}^{\overline{N}}(d \cap \langle e \rangle)$. Hence $\operatorname{tp}^{\overline{M}}(\overline{c}) = \operatorname{tp}^{\overline{N}}(d)$. Also, by Lemma 7.28, $\operatorname{tp}^{\overline{M}}(\overline{c}) = \operatorname{tp}^{\overline{N}}(f_s \circ \overline{c})$. So $\operatorname{tp}^{\overline{N}}(d) = \operatorname{tp}^{\overline{N}}(f_s \circ \overline{c})$. Since \overline{N} is homogeneous, by Lemma 7.29 there is a $u \in N$ such that $\operatorname{tp}^{\overline{N}}(d \cap \langle e \rangle) = \operatorname{tp}^{\overline{N}}((f_s \circ \overline{c}) \circ \langle u \rangle)$. Let $f_{s+1} = f_s \cup \{(a_i, u)\}$. Then

$$\operatorname{tp}^{\overline{M}}(\overline{c}^{\widehat{}}\langle a_i \rangle) = \operatorname{tp}^{\overline{N}}(d^{\widehat{}}\langle e \rangle) = \operatorname{tp}^{\overline{N}}((f_s \circ \overline{c}) \circ \rangle u \rangle) = \operatorname{tp}^{\overline{N}}(f_{s+1} \circ (\overline{c}^{\widehat{}}\langle a_i \rangle)),$$

so by Lemma 7.28 f_{s+1} is partial elementary.

Case 2. s is odd, say s=2i+1. This is treated similarly. Choose $d, e \in M$ such that $\operatorname{tp}^{\overline{M}}(d \cap \langle e \rangle) = \operatorname{tp}^{\overline{N}}((f \circ \overline{c}) \cap \langle b_i \rangle)$. Hence $\operatorname{tp}^{\overline{M}}(d) = \operatorname{tp}^{\overline{N}}(f \circ \overline{c})$. Also, by Lemma 7.28 $\operatorname{tp}^{\overline{M}})(\overline{c}) = \operatorname{tp}^{\overline{N}}(f \circ \overline{c})$. So $\operatorname{tp}^{\overline{M}}(\overline{c}) = \operatorname{tp}^{\overline{M}}(d)$. Since \overline{M} is homogeneous, by Lemma 7.27 there is a $u \in M$ such that $\operatorname{tp}^{\overline{M}}(\overline{c} \cap \langle u \rangle) = \operatorname{tp}^{\overline{M}}(d \cap \langle e \rangle)$. Now if there is an i such that $c_i = u$, then $d_i = e$, hence $f(c_i) = b_i$. Hence $f_{\sigma+1} \stackrel{\text{def}}{=} f_s \cup \{(u, b_i)\}$ is a function. Also,

$$\operatorname{tp}^{\overline{M}}(\overline{c}^{\widehat{}}\langle u\rangle) = \operatorname{tp}^{\overline{M}}(d^{\widehat{}}\langle e\rangle) = \operatorname{tp}^{\overline{N}}((f \circ \overline{c})^{\widehat{}}\langle b_i\rangle) = \operatorname{tp}^{\overline{N}}(f_{s+1} \circ (\overline{c}^{\widehat{}}\langle u\rangle),$$

so by Lemma 7.28 f_{s+1} is partial elementary.

Clearly
$$\bigcup_{s \in \omega} f_s$$
 is as desired.

We consider an expansion \overline{L}_U of our language \overline{L} obtained by adjoining a one-place relation symbol U. For each formula $\varphi(v_0, \ldots, v_{n-1})$ of \mathscr{L} we associate a formula $\varphi^U(v_0, \ldots, v_{n-1})$ of \mathscr{L}_U , as follows:

If φ is atomic, then φ^U is $Uv_0 \wedge \ldots \wedge Uv_{n-1} \wedge \varphi$. $(\neg \psi)^U = \neg \psi^U$. $(\psi \wedge \chi)^U = \psi^U \wedge \chi^U$. $(\exists w \psi)^U = \exists w [Uw \wedge \psi^U]$.

Proposition 7.32. If \overline{M} is a substructure of \overline{N} , $\varphi(v_0, \ldots, v_{n-1})$ is a formula of \mathscr{L} , and $a \in {}^n M$, then $\overline{M} \models \varphi(\overline{a})$ iff $(\overline{N}, U) \models \varphi^U(\overline{a})$.

Proof. An easy induction on
$$\varphi$$
.

Theorem 7.33. If there is a Vaughtian pair $(\overline{M}, \overline{N})$, then there is one in which N is countable.

Proof. Let φ be a formula such that $\varphi(\overline{M})$ is infinite and $\varphi(\overline{M}) = \varphi(\overline{N})$. Let \overline{a} be the parameters from M occurring in φ . We consider the structure (\overline{N}, M) in the language \mathscr{L}_U . Let (\overline{N}_0, M_0) be a countable elementary substructure of (\overline{N}, M) such that $\overline{a} \in M_0$. Among the sentences holding in (\overline{N}, M) are those asserting that M is closed under the fundamental function of \overline{N} . Hence M_0 is closed under the fundamental functions of \overline{N}_0 , and hence M_0 is the universe of a substructure \overline{M}_0 of \overline{N}_0 . For any formula $\psi(b)$ with

 $b \in M_0$ we have, using Proposition 7.32,

$$\overline{M}_0 \models \psi(b) \quad \text{iff} \quad (\overline{N}_0, M_0) \models \psi^U(b)$$

$$\quad \text{iff} \quad (\overline{N}, M) \models \psi^U(b)$$

$$\quad \text{iff} \quad \overline{M} \models \psi(b)$$

$$\quad \text{iff} \quad \overline{N} \models \psi(b)$$

$$\quad \text{iff} \quad \overline{N}_0 \models \psi(b).$$

Thus $\overline{M}_0 \leq \overline{N}_0$. Moreover, the sentence $\exists x \neg Ux$ holds in (\overline{N}, M) , hence also in (\overline{N}_0, M_0) , so that $\overline{M}_0 \neq \overline{N}_0$.

Clearly
$$\varphi(\overline{M}_0)$$
 is infinite and $\varphi(\overline{M}_0) = \varphi(\overline{N}_0)$.

Lemma 7.34. Suppose that $\overline{M} \preceq \overline{N}$ and in the language \mathscr{L}_U we have $(\overline{N}, M) \preceq (\overline{N}', M')$. Then M' is the universe of a structure \overline{M}' , and $\overline{M} \preceq \overline{M}' \preceq \overline{N}'$.

Proof. Clearly $M \subseteq M'$, and M' is closed under the fundamental functions of \overline{N}' , and hence is the universe of a structure \overline{M}' . If φ is a formula and $\overline{a} \in M$, then by Proposition 7.32,

$$\overline{M} \models \varphi(\overline{a}) \quad \text{iff} \quad (\overline{N}, M) \models \varphi^U(\overline{a}) \quad \text{iff} \quad (\overline{N}', M') \models \varphi^U(\overline{a}) \quad \text{iff} \quad \overline{M}' \models \varphi(\overline{a}).$$

Thus $\overline{M} \preceq \overline{M}'$.

Next we claim that

(1)
$$(\overline{N}, M) \models \forall \overline{v}[Uv_0 \wedge \ldots \wedge Uv_{n-1} \to (\varphi(\overline{v}) \leftrightarrow \varphi^U(\overline{v}))].$$

In fact, suppose that $\overline{a} \in M$ is given. Then

$$(\overline{N}, M) \models \varphi(\overline{a}) \text{ iff } \overline{N} \models \varphi(\overline{a}) \text{ iff } \overline{M} \models \varphi(\overline{a}) \text{ iff } (\overline{N}, M) \models \varphi^U(\overline{a}).$$

This proves (1). Hence we also get

(2)
$$(\overline{N}', M') \models \forall \overline{v}[Uv_0 \wedge \ldots \wedge Uv_{n-1} \to (\varphi(\overline{v}) \leftrightarrow \varphi^U(\overline{v}))].$$

Now let $b \in M'$. Then using (2),

$$\overline{M}' \models \varphi(b) \quad \text{iff} \quad (\overline{N}', M') \models \varphi^U(b) \quad \text{iff} \quad (\overline{N}', M') \models \varphi(b) \quad \text{iff} \quad \overline{N}' \models \varphi(b). \quad \Box$$

Lemma 7.35. Suppose that $\overline{M} \preceq \overline{N}$, \overline{N} countable, $\overline{a} \in M$, $\overline{b} \in N$.

Then there exist countable M', \overline{N}' and \overline{c} such that $(\overline{N}, M) \prec (\overline{N}', M')$ and $\operatorname{tp}^{\overline{N}}(\overline{b}/\overline{a}) = \operatorname{tp}^{\overline{M}'}(\overline{c}/\overline{a})$.

Proof. Say \overline{b} is of length n. In \mathcal{L}_U let $\Gamma(\overline{v})$ be the following set of formulas:

Eldiag(
$$\overline{N}, M$$
) $\{ \bigwedge_{i < n} U v_i \wedge \varphi^U(\overline{v}, \overline{a}) : \overline{N} \models \varphi(\overline{b}, \overline{a}) \}.$

If $\varphi_0, \ldots, \varphi_{m-1}$ are such that $\overline{N} \models \varphi_i(\overline{b}, \overline{a})$ for all i < m, then $\overline{N} \models \exists \overline{v} \bigwedge_{i < m} \varphi_i(\overline{v}, \overline{a})$, hence $\overline{M} \models \exists \overline{v} \bigwedge_{i < m} \varphi_i(\overline{v}, \overline{a})$, hence by Proposition 7.32,

$$(\overline{N}, M) \models \exists \overline{v} \left(\bigwedge_{i < n} U v_i \wedge \bigwedge_{i < m} \varphi_i^U(\overline{v}, \overline{a}) \right).$$

This shows that every finite subset of $\Gamma(\overline{v})$ is satisfiable. Hence there exist a countable (\overline{N}', M') and $\overline{c} \in M'$ such that $(\overline{N}, M) \preceq (\overline{N}', M')$ and $(\overline{N}', M') \models \varphi^U(\overline{c}, \overline{a})$ whenever $\overline{N} \models \varphi(\overline{b}, \overline{a})$. If $\overline{N} \models \varphi(\overline{b}, \overline{a})$, then $\overline{M}' \models \varphi(\overline{c}, \overline{a})$.

Corollary 7.36. Suppose that $\overline{M} \leq \overline{N}$ and \overline{N} is countable. Then there exist countable $\overline{M}^*, \overline{N}^*$ such that $(\overline{N}, M) \leq (\overline{N}^*, M^*)$, and for every $\overline{a} \in M$ and every $\overline{b} \in N$ there is a $\overline{c} \in M^*$ such that $\operatorname{tp}^{\overline{N}}(\overline{b}/\overline{a}) = \operatorname{tp}^{\overline{M}^*}(\overline{c}/\overline{a})$.

Proof. Iterate Lemma 7.35. □

Lemma 7.37. Suppose that $\overline{M} \preceq \overline{N}$, \overline{N} is countable, $\overline{a}, \overline{b}, c \in N$, $\operatorname{tp}^{\overline{N}}(\overline{a}) = \operatorname{tp}^{\overline{N}}(\overline{b})$. Then there exist countable $\overline{M}^{\star}, \overline{N}^{\star}$ and d such that $(\overline{N}, M) \preceq (\overline{N}^{\star}, M^{\star})$, $d \in N^{\star}$ and $\operatorname{tp}^{\overline{N}^{\star}}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{N}^{\star}}(\overline{b} \cap \langle d \rangle)$.

Proof. Apply the compactness theorem to the set

Eldiag (\overline{N}, M) $\{\varphi(\overline{b}, u) : \overline{N} \models \varphi(\overline{a}, c)\}\ (u \text{ a new constant})$

Corollary 7.38. Suppose that $\overline{M} \leq \overline{N}$ and \overline{N} is countable. Then there exist countable $\overline{M}^*, \overline{N}^*$ and d such that $(\overline{N}, M) \leq (\overline{N}^*, M^*)$, and for all $\overline{a}, \overline{b}, c \in N$, if $\operatorname{tp}^{\overline{N}}(\overline{a}) = \operatorname{tp}^{\overline{N}}(\overline{b})$, then there is a $d \in N^*$ such that $\operatorname{tp}^{\overline{N}^*}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{N}^*}(\overline{b} \cap \langle d \rangle)$.

Proof. Iterate Lemma 7.37.

Lemma 7.37a. Suppose that $\overline{M} \leq \overline{N}$, \overline{N} is countable, $\overline{a}, \overline{b}, c \in M$, $\operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(\overline{b})$. Then there exist countable \overline{M}^{\star} , \overline{N}^{\star} and d such that $(\overline{N}, M) \leq (\overline{N}^{\star}, M^{\star})$, $d \in M^{\star}$ and $\operatorname{tp}^{\overline{M}^{\star}}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{M}^{\star}}(\overline{b} \cap \langle d \rangle)$.

Proof. Apply the compactness theorem to the set

Eldiag (\overline{N}, M) $\{Uu \land \varphi^U(\overline{b}, u) : \overline{M} \models \varphi(\overline{a}, c)\}\ (u \text{ a new constant})$

Corollary 7.38a. Suppose that $\overline{M} \leq \overline{N}$ and \overline{N} is countable. Then there exist countable $\overline{M}^{\star}, \overline{N}^{\star}$ and d such that $(\overline{N}, M) \leq (\overline{N}^{\star}, M^{\star})$, and for all $\overline{a}, \overline{b}, c \in M$, if $\operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{N}}(\overline{b})$, then there is a $d \in M^{\star}$ such that $\operatorname{tp}^{\overline{M}^{\star}}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{M}^{\star}}(\overline{b} \cap \langle d \rangle)$.

Proof. Iterate Lemma 7.37a. □

Lemma 7.39. Suppose that $\overline{M} \prec \overline{N}$ (so $M \neq N$), and \overline{N} is countable. Then there exist countable $\overline{M}', \overline{N}'$ such that $(\overline{N}, M) \preceq (\overline{N}', M')$, \overline{N}' and \overline{M}' are homogeneous and they realize the same n-types for all positive integers n. Moreover, they are isomorphic.

Proof. We define an elementary chain $\langle (\overline{P}_i, Q_i) : i \in \omega \rangle$ by recursion. Let $\overline{P}_0 = \overline{N}$ and $Q_0 = M$. Suppose that $(\overline{P}_{3i}, Q_{3i})$ has been defined. Apply Corollary 7.36 to get an elementary extension $(\overline{P}_{3i+1}, Q_{3i+1})$ of $(\overline{P}_{3i}, Q_{3i})$ such that every type realized in \overline{P}_{3i} is realized in \overline{Q}_{3i+1} . Note that these types are realized in \overline{P}_{3i+1} . Next, apply Corollary 7.38a to obtain an elementary extension $(\overline{P}_{3i+2}, Q_{3i+2})$ of $(\overline{P}_{3i+1}, Q_{3i+1})$ such that for all $\overline{a}, b, c \in Q_{3i+1}$, if $\operatorname{tp}^{\overline{Q}_{3i+1}}(\overline{a}) = \operatorname{tp}^{\overline{Q}_{3i+1}}(b)$, then there is a $d \in Q_{3i+2}$ such that $\operatorname{tp}^{\overline{Q}_{3i+1}}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{Q}_{3i+2}}(b \cap \langle d \rangle)$. Finally, apply Corollary 7.38 to obtain an elementary extension $(\overline{P}_{3i+3}, Q_{3i+3})$ of $(\overline{P}_{3i+2}, Q_{3i+2})$ such that for all $\overline{a}, b, c \in P_{3i+2}$, $\operatorname{tp}^{\overline{P}_{3i+2}}(\overline{a}) = \operatorname{tp}^{\overline{P}_{3i+2}}(b)$ implies that $\operatorname{tp}^{\overline{P}_{3i+3}}(\overline{a} \cap \langle c \rangle) = \operatorname{tp}^{\overline{P}_{3i+3}}(b \cap \langle d \rangle)$ for some $d \in P_{3i+3}$.

This finishes the construction. Let $\overline{N}' = \bigcup_{i \in \omega} \overline{P}_i$ and $M' = \bigcup_{i \in \omega} Q_i$. The desired conclusion is clear, using Theorem 7.31 for the last statement.

Suppose that $\omega \leq \lambda < \kappa$. We say that T has $a(\kappa, \lambda)$ -model iff there exist an $\overline{M} \models T$ and a formula $\varphi(\overline{v})$ such that $|M| = \kappa$ and $|\varphi(\overline{M})| = \lambda$.

Lemma 7.40. If $\omega \leq \lambda < \kappa$ and T has a (κ, λ) -model, then T has a Vaughtian pair.

Proof. Let \overline{N} be a (κ, λ) -model, with associated formula $\varphi(\overline{v})$. By the downward Löwenheim-Skolem theorem, let \overline{M} be an elementary substructure of \overline{N} of size λ such that $\varphi(\overline{N}) \subseteq M$. Clearly then $\varphi(\overline{N}) = \varphi(\overline{M})$, so that $(\overline{M}, \overline{N})$ is a Vaughtian pair. \square

Theorem 7.41. If T has a Vaughtian pair, then T has an (\aleph_1, \aleph_0) -model.

Proof. Assume that T has a Vaughtian pair. By Lemma 7.33 we may assume that $(\overline{M}, \overline{N})$ is a Vaughtian pair with N countable. Say $\varphi(\overline{M}) = \varphi(\overline{N})$ is infinite. Also, $M \neq N$. By Lemma 7.39 there are countable $\overline{M}', \overline{N}'$ such that $(\overline{N}, M) \leq (\overline{N}', M'), \overline{N}'$ and \overline{M}' are homogeneous, the realize the same n-types for every positive integer n, and they are isomorphic. Still $M' \neq N'$. Now $(\overline{N}, M) \models \forall \overline{v}[\varphi(\overline{v}) \leftrightarrow \bigwedge_{i < n} Uv_i \wedge \varphi^U(\overline{v})]$, so also $(\overline{N}', M') \models \forall \overline{v}[\varphi(\overline{v}) \leftrightarrow \bigwedge_{i < n} Uv_i \wedge \varphi^U(\overline{v})]$, and this implies that $\varphi(\overline{M}') = \varphi(\overline{N}')$.

We now define by recursion a sequence $\langle \overline{P}_{\alpha} : \alpha < \omega_1 \rangle$ of models. Let $\overline{P}_0 = \overline{N}'$. Now suppose that \overline{P}_{α} has been defined so that $\overline{P}_{\alpha} \cong \overline{N}'$. Then also $\overline{P}_{\alpha} \cong \overline{M}'$, so P_{α} has an elementary extension $\overline{P}_{\alpha+1}$ such that $(\overline{N}', M') \cong (\overline{P}_{\alpha+1}, P_{\alpha})$. To see this, let g be an isomorphism from \overline{P}_{α} onto \overline{M}' , and let Q be a set such that $Q \cap (N' \setminus M') = Q \cap P_{\alpha} = \emptyset$ and $|Q| = |N' \setminus M'$. Let $P_{\alpha+1} = P_{\alpha} \cup Q$, and let $f : P_{\alpha+1} \to N'$ be a bijection such that $f \upharpoonright P_{\alpha} = g$ while $f \upharpoonright Q$ is a bijection from Q onto $N' \setminus M'$. We can make $P_{\alpha+1}$ into a structure so that f is an isomorphism from $\overline{P}_{\alpha+1}$ onto \overline{N}' . Then \overline{P}_{α} is an elementary substructure of $\overline{P}_{\alpha+1}$, since for $a \in {}^{\omega}P_{\alpha}$ we have

$$\overline{P}_{\alpha} \models \varphi[a]$$
 iff $\overline{M}' \models \varphi[g \circ a]$ iff $\overline{N}' \models \varphi[g \circ a]$ iff $\overline{P}_{a+1} \models \varphi[a]$.

For α limit, let $\overline{P}_{\alpha} = \bigcup_{\beta < \alpha} \overline{P}_{\beta}$. Since then \overline{P}_{α} is the union of models isomorphic to \overline{N}' , it is clearly homogeneous and realizes the same types as \overline{N}' . Hence it is isomorphic to \overline{N}' . This finishes the construction.

Let $\overline{P}_{\omega_1} = \bigcup_{\alpha < \omega_1} \overline{P}_{\alpha}$. Then $|P_{\omega_1}| = \omega_1$. Now by induction we have $\varphi(\overline{P}_{\alpha}) = \varphi(\overline{M}')$ for all $\alpha \leq \omega_1$. Hence $|\varphi(\overline{P}_{\omega_1})| = \omega$.

Lemma 7.42. Suppose that T is ω -stable, $\overline{M} \models T$, and $|M| \geq \aleph_1$. Then \overline{M} has a proper elementary extension \overline{N} such that for every finite sequence \overline{w} of variables and every $\Gamma(\overline{w})$ of formulas with free variables among \overline{w} and with parameters from M and with $\Gamma(\overline{w})$ countable, if $\Gamma(\overline{w})$ is realized in \overline{N} , then it is also realized in \overline{M} .

Proof. First we claim

(1) There is a formula $\varphi(v)$ with parameters from M such that $|\varphi(\overline{M})| \geq \aleph_1$, and for every formula $\psi(v)$ with parameters from M, either $|\varphi(\overline{M}) \cap \psi(\overline{M})| < \aleph_1$ or $|\varphi(\overline{M}) \cap \neg \psi(\overline{M})| < \aleph_1$.

Suppose not. Then it is easy to define formulas φ_f for $f \in {}^{<\omega}2$ such that the following conditions hold for each f:

- (2) φ_{\emptyset} is the formula v = v.
- $(3) |\varphi_f(\overline{M})| \ge \aleph_1.$

$$(4) \varphi_{f \cap \langle 0 \rangle}(\overline{M}) \cap \varphi_{f \cap \langle 1 \rangle}(\overline{M}) = \emptyset.$$

This gives 2^{ω} types over M, contradicting the ω -stability of T. So (1) holds. Choose $\varphi(v)$ as in (1), and let

$$p = \{\psi(v) : \psi(v) \text{ is a formula with parameters from } M,$$

and $|\varphi(\overline{M}) \cap \psi(\overline{M})| \geq \aleph_1 \}.$

Note that $\varphi(\overline{M}) \cap \psi(\overline{M})$ is a co-countable subset of $\varphi(\overline{M})$, and an intersection of countably many co-countable subset of a set is still co-countable. Hence

(5) p is finitely satisfiable.

From (1) it also follows that p is a complete type.

Let \overline{M}' be a proper elementary extension of \overline{M} containing an element c which realizes p, and choose $d \in M' \backslash M$. Now we apply Theorem 20 to get an elementary substructure \overline{N} of \overline{M}' which is prime over $M \cup \{c,d\}$ for T and is such that every finite sequence of elements of N realizes an isolated type over $M \cup \{c,d\}$. Thus $M \cup \{c,d\} \subseteq N$, so clearly $\overline{M} \prec \overline{N}$. Now suppose that $\Gamma(\overline{w})$ is a set of formulas with free variables among \overline{w} , with parameters from M and $\Gamma(\overline{w})$ is countable, and such that it is realized in \overline{N} , say by b. Let $\theta(\overline{w},v)$ be a formula which isolates $\operatorname{tp}^{\overline{N}}(b/M \cup \{c\})$.

 $(6) \ \exists \overline{w} \theta(\overline{w}, v) \in p.$

In fact, otherwise $\neg \exists \overline{w}\theta(\overline{w}, v) \in p$, hence $\overline{M}' \models \neg \exists \overline{w}\theta(\overline{w}, c)$, hence $\overline{N} \models \neg \exists \overline{w}\theta(\overline{w}, c)$. This contradicts $\overline{N} \models \theta(b, c)$.

(7) $\forall \overline{w}[\theta(\overline{w}, v) \to \gamma(\overline{w})] \in p \text{ for every } \gamma(\overline{w}) \in \Gamma(\overline{w}).$

For, otherwise $\exists \overline{w}[\theta(\overline{w}, v) \land \neg \gamma(\overline{w}] \in p$, hence $\overline{M}' \models \exists \overline{w}[\theta(\overline{w}, c) \land \neg \gamma(\overline{w}], \text{ hence } \overline{N} \models \exists \overline{w}[\theta(\overline{w}, c) \land \neg \gamma(\overline{w}], \text{ contradicting } \overline{N} \models \varphi(b, c) \land \gamma(b).$

$$\Delta = \{\exists \overline{w}\theta(\overline{w}, v)\} \cup \{\forall \overline{w}[\theta(\overline{w}, v) \to \gamma(\overline{w})] : \gamma(\overline{w}) \in \Gamma(\overline{w})\}.$$

If $\delta(v) \in \Delta$, then $\delta(v) \in p$, and so $|\varphi(\overline{M}) \setminus \delta(\overline{M})| < \aleph_1$. It follows that $\bigcap_{\delta(v) \in \Delta} \delta(\overline{M}) \neq \emptyset$, i.e. there is a $c' \in M$ such that $\overline{M} \models \delta(c)$ for every $\delta(v) \in \Gamma(v)$. In particular, $\overline{M} \models \exists \overline{w} \theta(\overline{w}, c')$, so we can choose $b' \in M$ such that $\overline{M} \models \theta(b', \underline{c})$. Now for each $\gamma(\overline{w}) \in \Gamma(\overline{w})$ the formula $\forall \overline{w} [\theta(\overline{w}, v) \to \gamma(\overline{w})]$ is in Δ , so it follows that $\overline{M} \models \gamma(b')$.

Theorem 7.43. Suppose that T is ω -stable and has an (\aleph_1, \aleph_0) -model. Then for any $\kappa > \aleph_1$ it has a (κ, \aleph_0) -model.

Proof. Let $\overline{M} \models T$ with $|M| = \aleph_1$, and let $\varphi(\overline{v})$ be a formula with $|\varphi(\overline{M})| = A_0$. We now construct an elementary chain $\langle \overline{N}_{\alpha} : \alpha < \kappa \rangle$ by recursion. Let $\overline{N}_0 = \overline{M}$. Now suppose that \overline{N}_{α} has been defined so that $\varphi(\overline{M}) = \varphi(\overline{N}_{\alpha})$. We apply Lemma 7.42 to obtain a proper elementary extension $\overline{N}_{\alpha+1}$ of \overline{N}_{α} such that if $G(\overline{w})$ is a countable type over M realized in $N_{\alpha+1}$, then it is realized in \overline{N}_{α} . Let

$$\Gamma_{\alpha}(\overline{v}) = \{\varphi(\overline{v})\} \cup \{\overline{v} \neq \overline{a} : \overline{a} \in M \text{ and } \overline{M} \models \varphi(\overline{a})\}\$$

Thus Γ_{α} is a countable type over \overline{M} , but it is not realized in \overline{N}_{α} . Hence it is not realized in $\overline{N}_{\alpha+1}$. It follows that $\varphi(\overline{N}_{\alpha+1}) = \varphi(\overline{M})$.

For
$$\alpha$$
 limit we let $\overline{N}_{\alpha} = \bigcup_{\beta < \alpha} \overline{N}_{\beta}$. Clearly still $\varphi(\overline{N}_{\alpha}) = \varphi(\overline{M})$.
Finally, $\bigcup_{\alpha < \kappa} \overline{N}_{\alpha}$ is as desired.

Theorem 7.44. If \overline{M} is an infinite structure and κ is a cardinal $\geq |M|$, then \overline{M} has an elementary extension \overline{N} of cardinality κ such that for every formula $\varphi(\overline{v})$ with parameters from N, if $\varphi(\overline{N})$ is infinite then $|\varphi(\overline{N})| = \kappa$.

Proof. For each formula $\varphi(\overline{v})$ adjoin κ many tuples of new constants of the length of \overline{v} , and apply the compactness theorem to the set consisting of $\operatorname{Eldiag}(\overline{M})$ together with sentences saying, for each $\varphi(\overline{v})$ such that $\varphi(\overline{M})$ is infinite, that the κ many tuples for this formula are all distinct and statisfy φ .

Theorem 7.45. Suppose that κ is uncountable and T is κ -categorical. Then T has no Vaughtian pairs.

Proof. Assume the hypothesis. By Theorem 7.27, T is ω -stable. Suppose that there is a Vaughtian pair. Then by Theorem 7.41 T has an (\aleph_1, \aleph_0) -model, and then by Theorem 7.43 it has a (κ, \aleph_0) -model \overline{M} . So $|M| = \kappa$ and $|\varphi(\overline{M})| = \aleph_0$ for some formula $\varphi(\overline{v})$. By Theorem 7.44, there is a model \overline{N} of T in which $|\varphi(\overline{N})| = |N| = \kappa$. This contradicts κ -categoricity.

Theorem 7.46. (Baldwin, Lachlan) Let κ be uncountable. Then the following conditions are equivalent:

- (i) T is κ -categorical
- (ii) T is ω -stable and has no Vaughtian pairs.

Proof. (i) \Rightarrow (ii): Theorems 7.27 and 7.45.

 $(ii) \Rightarrow (i)$: Theorem 7.23.

Theorem 7.47. (Morley) T is κ categorical for some uncountable κ iff it is κ -categorical for every uncountable κ .

EXERCISES

Exc. 7.1. Let \overline{M} be a field, A a subfield, and $a \in M$. Suppose that a is algebraic over A in the usual sense of field theory. Show that a is algebraic over A in the model-theoretic sense.

Exc. 7.2. Let $\overline{M} = (\omega, <)$. Show that every element of ω is algebraic over \emptyset .

Exc. 7.3. Let $\overline{A} = ([\omega]^2, R)$, where

$$R = \{(a, b) : a, b \in [\omega]^2, a \neq b \text{ and } a \cap b \neq \emptyset\}.$$

- (i) Show that $\{a \in [\omega]^2 : (a, \{0, 1\}) \in R\}$ is neither finite nor cofinite.
- (ii) Infer from (i) that $[\omega]^2$ is not minimal.
- (iii) If f is a permutation of ω , define $f^+: [\omega]^2 \to [\omega]^2$ by setting $f^+(a) = f[a]$ for any $a \in [\omega]^2$. Show that f^+ is an automorphism of \overline{A} .
- (iv) Let $X = \{a \in [\omega]^2 : 0 \in a \text{ and } a \cap \{1,2\} = \emptyset\}$. Show that X is definable in \overline{A} with parameters.
 - (v) Show that X is minimal.

Exc. 7.4. Let V be an infinite vector space over a finite field F. We consider V as a structure $(V, +, f_a)_{a \in F}$, where $f_a(v) = av$ for any $v \in V$ and $a \in F$. Show that V is minimal.

Exc. 7.5. (continuing exc. 7.4) Prove that for any subset A of V, acl(A) = span(A).

Exc. 7.6. (continuing excs. 7.4, 7.5) By exercise 7.4 and Lemma 7.2, the following holds in \overline{V} : if $a \in \text{span}(A \cup \{b\}) \setminus \text{span}(A)$, then $b \in \text{span}(A \cup \{a\})$. Prove this statement using ordinary linear algebra.

Exc. 7.7. Give an example of a set Γ of sentences and two sentences φ and ψ , such that $\Gamma \models \varphi$ iff $\Gamma \models \psi$, but $\Gamma \not\models (\varphi \leftrightarrow \psi)$.

Exc. 7.8. Show that for Γ a set of sentences and for sentences φ, ψ , if $\Gamma \models \varphi \leftrightarrow \psi$ then $\Gamma \models \varphi$ iff $\Gamma \models \psi$.

Exc. 7.9. Prove that the following two conditions are equivalent:

- (i) $\overline{M} \models \varphi[a]$ iff $\overline{M} \models \psi[a]$.
- (ii) $\overline{M} \models (\varphi \leftrightarrow \psi)[a]$.

Exc. 7.10. Prove that the following two conditions are equivalent, for any sentences φ, ψ :

- (i) $\overline{M} \models \varphi$ iff $\overline{M} \models \psi$.
- (ii) $\overline{M} \models (\varphi \leftrightarrow \psi)$.

Exc. 7.11. In the language with no non-logical symbols, show that ω is an indiscernible set in ω .

Exc. 7.12. (Continuing exercises 7.4, 7.5, 7.6) Let $A = \{w_1, w_2\}$, two members of V, and let $b = w_1$. Thus $b \in \text{span}(A)$. According to Lemma 7.8, $\text{tp}^{\overline{V}}(b/A)$ is isolated. Give a formula $\varphi(v_0, \overline{a})$ with $\overline{a} \in A$ which isolates $\text{tp}^{\overline{V}}(b/A)$.

Exc. 7.13. Suppose that \overline{M} is an infinite structure, $\varphi(v_0)$ is a formula with at most v_0 free, and $\varphi(\overline{M})$ is infinite. Show that \overline{M} has a proper elementary extension \overline{N} such that $(\overline{M}, \overline{N})$ is not a Vaughtian pair.