ALGO QCM

- 1. Une composante 2-Connexe est?
 - (a) Un sous-graphe 2-Connexe
 - (b) Une arête
 - (c) Un bloc maximal
 - (d) Un bloc
- 2. Si en retirant une arête $\{s,s'\}$ d'un graphe connexe, le graphe n'est plus connexe, on dit que l'arête $\{s,s'\}$ est?
 - (a) Un isthme
 - (b) Un point d'articulation
 - (c) Inutile
 - (d) Une ile
- 3. Dans l'arborescence couvrante associée au parcours en profondeur d'un graphe non orienté connexe, la racine R est un point d'articulation si?
 - (a) R possède 1 fils
 - (b) R possède au moins 2 fils
 - (c) R possède au moins 3 fils
 - (d) R possède $\log N$ fils avec N la taille de l'arbre
- 4. Un graphe 2-connexe?
 - (a) N'a pas de point d'articulation
 - (b) Est fortement connexe
 - (c) Est complet
 - (d) Possède au moins 3 sommets
- 5. Un circuit absorbant est un circuit?
 - (a) De coût strictement négatif
 - (b) De coût négatif ou nul
 - (c) De coût strictement positif
 - (d) De coût positif ou nul
- 6. Quel(s) algorithme(s) recherche(nt) les plus courts chemins entre tous les sommets pris 2 à 2?
 - (a) Bellman
 - (b) Dijkstra
 - (c) Aucun des deux
 - (d) Les deux

- 7. Quel(s) algorithme(s) de plus court chemin admet(tent) des coûts quelconques?
 - (a) Bellman
 - (b) Dijkstra
 - (c) Floyd
 - (d) Aucun des trois
 - (e) Les trois
- 8. Un plus court chemin ne peut pas contenir?
 - (a) De circuit absorbant
 - (b) De chemin de coût strictement négatif
 - (c) De circuit de coût strictement positif
 - (d) De circuit de coût nul
- 9. Le coût d'un graphe orienté est?
 - (a) La somme des arêtes qui le composent
- (b) La somme des arcs qui le composent
 - (c) La somme des chaînes qui le composent
- (d) La somme des chemins qui le composent
- 10. Un de ces algorithmes utilise un principe analogue à celui de WARSHALL, lequel?
 - (a) Bellman
 - (b) Dijkstra
 - (c) Floyd
 - (d) Aucun des trois
 - (e) Les trois

QCM $N^{\circ}15$

lundi 11 avril 2016

Question 11

Soient $(a, b) \in \mathbb{N}^{*2}$ et p premier tel que $p \mid ab$. Alors

a.
$$p \mid a \text{ et } p \mid b$$

$$b. p \mid a \text{ ou } p \mid b$$

c.
$$p | (a + b)$$

d. rien de ce qui précède

Question 12

Soit $a \in \mathbb{Z}^*$ quelconque. Alors

a.
$$0 | a$$

$$d.a \mid 0$$

e. rien de ce qui précède

Question 13

Soient $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{Z}^2$ tels que $a \equiv b[n]$. Alors

a. il existe
$$k \in \mathbb{Z}$$
 tel que $a = b + kn$

b.
$$n \mid a - b$$

c. a et b ont même reste dans la division euclidienne par n

a=-Axi

O - axk V

d. rien de ce qui précède

Question 14

Soient $p \in \mathbb{N}$ premier et $d \in \mathbb{N}^*$. Alors

- a. $d \mid p$ ou $d \wedge p = 1$
- b. Si d divise p alors d = 1 ou d = p
- c. Si $d \ge 2$ alors $p \mid d$
- d. rien de ce qui précède

Question 15

Soit (E,φ) un espace préhilbertien réel. Alors le théorème de Cauchy-Schwarz dit que

- a. $\forall (x,y) \in E^2 \quad |\varphi(x,y)| \leqslant \varphi(x,x)\varphi(y,y)$
- b. $\forall (x,y) \in E^2 \quad \sqrt{\left| \varphi(x,y) \right|} \leqslant \varphi(x,x) \varphi(y,y)$
- d. $\forall (x,y) \in E^2 \quad \left| \varphi(x,y) \right| \leqslant \left(\varphi(x,x) \right)^2 \left(\varphi(y,y) \right)^2$
- e. rien de ce qui précède

Question 16

Soient P et Q deux polynômes quelconques non nuls de $\mathbb{R}[X]$.

- a. $d^{\circ}(P+Q) = d^{\circ}(P) + d^{\circ}(Q)$
- $\boxed{\text{b.}} d^{\circ}(P+Q) \leqslant \text{Max}\big(d^{\circ}(P), d^{\circ}(Q)\big)$
- $c. d^{\circ}(PQ) = d^{\circ}(P) + d^{\circ}(Q)$
- d. Si $d^{\circ}(P) \neq d^{\circ}(Q)$ alors $d^{\circ}(P+Q) = d^{\circ}(P) + d^{\circ}(Q)$
- e. rien de ce qui précède

Question 17

Soit $(a, b, d) \in \mathbb{N}^{*3}$. Alors

- a. Si $d \mid a$ et $d \mid b$ alors $d \mid a \wedge b$
- b. il existe $(u, v) \in \mathbb{Z}^2$ tel que $au + bv = a \wedge b$
- c. S'il existe $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1 alors $a \wedge b = 1$
 - d. rien de ce qui précède

Question 18

Soit f continue et positive sur $[1, +\infty[$ quelconque telle que $t^2f(t) \to +\infty$ quand $t \to +\infty$. Alors

a.
$$\int_{1}^{+\infty} f(t) dt$$
 converge

b.
$$\int_{1}^{+\infty} f(t) dt$$
 diverge

c. on ne peut rien dire sur la nature de
$$\int_1^{+\infty} f(t) dt$$

Question 19

Soient (E,<,>) un espace euclidien, F un sev de E et p_F le projecteur orthogonal sur F. Alors

a.
$$Ker(p_F) = F$$

b.
$$\operatorname{Im}(p_F) = F^{\perp}$$

c. Pour tout
$$x \in E$$
, $x - p_F(x) \in F$

d.
$$\operatorname{Ker}(p_F) = F^{\perp}$$

e. rien de ce qui précède

Question 20

Soient E l'ensemble des fonctions continues sur [-1,1] à valeurs réelles et $\varphi: E \times E \longrightarrow \mathbb{R}$ définie pour $(f,g) \in E^2$ par $\varphi(f,g) = \int_{-1}^1 f(t)g(t)\mathrm{d}t$. Alors

b. φ n'est pas un produit scalaire sur E

c. (E, φ) est un espace euclidien

QCM API (Azar adv pp. 388 – 391 Apr 16) Choose the appropriate responses.	
	Read the sentence and decide whether any of the four choices have the same meaning in a correct sentence: fore I came to class, I had a cup of coffee." a. Before coming to class, I had a cup of coffee. b. Before I came to class; I had a cup of coffee. c. Before having come to class, I had a cup of coffee. d. Before there was class, I had a cup of coffee.
22.	Read the sentence and decide whether any of the four choices have the same meaning in a correct sentence: "Since I came to EPITA, I have learned a lot of English." a. Since I am at EPITA, I have learned a lot of English. b. Since I have come at EPITA, I have learned a lot of English. C. Since coming to EPITA, I have learned a lot of English. d. Since I was at EPITA, I have learned a lot of English.
23.	Read the sentence and decide whether any of the four choices have the same meaning in a correct sentence: "While Bill was sleeping, a burglar robbed his house." a. While sleeping, a burglar robbed his house. b. While Bill has slept, a burglar robbed his house. c. While having slept, a burglar robbed his house. d. No change possible.
24.	 baseball in the major leagues, Billy Beane had played three years in the minors. a. Before playing b. Playing c. Before he played d. A and C.
25.	Before to you, I had never been able to read a contract. a. I talked b. To talk c. I had talking d. A and B.
26.	After the lyrics, I finally understood the meaning of the song. a. I read b. reading c. to read d. A and B.
27.	Since his degree from EPITA, Joanne has had three jobs, each one better than the other. a. to complete b. completing c. completed d. she completes
28.	a presentation in English before, Jean-Pierre got nervous and dropped his cue cards. a. Had never given b. Having never given c. Because he had never gave d. To have never gave
29	across India I was improssed by how many languages needle speak there

a. Travelling

b. While I was travellingc. While travellingd. All of the above.

b. Because
c. Because of
d. While

Q.C.M n°15 de Physique

- 31- Lors d'une émission, la hauteur d'une raie spectrale dépend
 - a) de la longueur d'onde de la transition
 - b) de la fréquence de transition
 - c) du nombre de photons émis
- 32- Le proton est un ensemble de trois quarks
 - a) uud
 - b) uud
 - c) udd
- 33- Le neutron est un ensemble de trois quarks
 - a) uud
 - b) uud
 - c) udd
- 34- Dans l'expérience de Rutherford, on interprète le passage des particules α à travers la feuille d'or sans être déviées par :
 - a) La charge positive du noyau
 - b) La charge négative des électrons
 - c) La grande masse du noyau
 - d) Le grand vide entre le nuage électronique et le noyau
- 35- Dans l'exprérience de Franck-Hertz la chute de courant est interprétée par :
 - a) la perte d'énergie des atomes de mercure
 - b) la perte d'énergie des électrons suite à leur collision avec les atomes de mercure
 - c) la désexcitation des atomes de mercure
 - d) l'ionisation des atomes de mercure
- 36- La durée de vie d'un état excité τ représente
 - a) la probabilité de désexcitation par unité de temps
 - b) le carré de la probabilité de désexcitation par unité de temps
 - c) l'inverse de la probabilité de désexcitation par unité de temps
- 37- La diminution de la population N d'un état excité : $dN = -\lambda . N. dt$, permet d'écrire le nombre d'atomes N(t) sous la forme : (λ est une constante)
- a) $N(t) = N_0 \cdot \lambda \cdot t$; b) $N(t) = N_0 \cdot \ln(\lambda \cdot t)$; c) $N(t) = N_0 \cdot e^{-\lambda \cdot t}$

- 38- Quelle est l'énergie d'un niveau de l'atome d'hydrogène, donnée par le modèle de Bohr?
 - a) $E_n = -\frac{13.6}{n^2}$ (eV) (n est le nombre quantique principal)
 - b) $E_n = \frac{13.6}{n}$ (eV)
 - c) $E_n = \frac{13.6}{n^2}$ (eV)
 - 39- Dans le modèle de Bohr, on trouve que l'énergie de l'atome d'hydrogène est quantifiée à partir du postulat :
 - a) quantification de la charge de l'électron
 - b) quantification du moment cinétique de l'électron L = m.r.v
 - c) quantification de la force électrique que subit l'électron
 - 40- La durée de vie τ de l'état fondamental est :
 - $a) \tau \rightarrow \infty$
 - b) $\tau = 0$
 - c) $\tau = 1ns$

Ouverture Culturelle QCM 11 avril 2016

- 41. Increasing the number of 'moves' in a prisoner's dilemma even to 100 won't work because...
 - a. 100 can be divided evenly in 2.
 - b. 100 is a finite number.
 - c. 100 is very small considering the number of people in the world.
 - d. none of the above.
- 42. This is because...
 - a. each player has an equal chance to betray the other.
 - b. a finite number can be a fraction (1/4, 3/5, etc.)
 - c. the number of interactions each person has with everyone else is the world is very large.
 - d. none of the above.
- 43. The difference between a threat and a warning is that...
 - a. a warning is something you would do regardless.
 - b. a warning is more difficult to uderstand.
 - c. a threat is more difficult to understand.
 - d. a threat is something you would do regardless.
- 44. Telling children that the family vacation will be cancelled if they don't behave isn't credible because...
 - a. children cannot understand negotiation until the ages of 14-16.
 - b. parents want to go on vacation, too.
 - c. teachers play an important role in children's behaviour and cannot benefit.
 - d. a child's friends have no incentive to help them.
- 45. Robert Axelrod's winning program was 'nice' because it...
 - a. would forgive a program that betrayed it.
 - b. would never push the button.
 - c. would never push the button in response to another player.
 - d. would never push the button on the first move.
- 46. It was 'forthright' because it...
 - a. always made the correct decision.
 - b. was easy to understand and predict.
 - c. could be copied by other players.
 - d. all of the above.
- 47. This strategy was most effective because...
 - a. it adapted to the strategies of the other programs.
 - b. it encouraged other programs to co-operate.
 - c. it appeared unpredictable so other programs couldn't exploit its strategy.
 - d. none of the above.
- 48. In a well-designed system, incentives must...
 - a. reward good behaviour.
 - b. punish those who do not do what you expect them to do.
 - c. encourage people to act against their own interests.
 - d. take advantage of people's greed.
- 49. Incentives need to change over time because individuals will...
 - a. no longer value the rewards that are given.
 - b. adapt to the punishments and ignore them.
 - c. focus too much on the group and ignore themselves.
 - d. someone will find a way to exploit the system and its rules.
- 50. In order to get self-interested individuals to work together, they must...
 - a. be told the advantages of working together.
 - b. be shown the advantages of working together.
 - c. be removed from the society.
 - d. none of the above.