

P5 : Segmentez des clients d'un site ecommerce

Defense

Formation : Data Scientist Etudiante : Rocio Isorna

Evaluatrice : Souhail Toumdi

Client segmentation

ALL CUSTOMERS

SEGMENTED CUSTOMERS

laptrinhx

Client segmentation

ALL CUSTOMERS

SEGMENTED CUSTOMERS

Comprendre les différents types des clients

Fournir à l'équipe marketing une description actionnable Proposition de contrat de maintenance

Segmentation des clients

Data set: (99441 obs → achat)

- Clients : id et zip-code
- Localisation: villes
- *Items commandé* : id, item, vendeurs, prix (article et livraison)
- Commandes : id, statuts, date, livraison
- **Paiements**: type de paiement et montant
- Reviews : retour des clients
- Vendeurs : information des vendeurs

Segmentation des clients

Data set: (99441 obs → achat)

- Clients : id et zip-code
- Localisation: villes
- *Items commandé* : id, item, vendeurs, prix (article et livraison)
- **Commandes**: id, statuts, date, livraison
- **Paiements**: type de paiement et montant
- Reviews : retour des clients
- Vendeurs : information des vendeurs

Customer_id vs Customer_unique_id

Sélection des features à partir du Data-set

Sélection des features à partir du Data-set

Analyse exploratoire

Sells per day

Localisation des acheteurs

4069 villes 50 % < 3 commandes

50 principales villes

Sao Paulo \rightarrow 15k Rio de Janeiro \rightarrow 7k

Évaluation des différentes méthodes de clustering

Méthode analytique

```
RFMScore
ero
cen
eqe
nut
cea
ynr
cy
y
```


Méthode analytique

R F M Score c e n nut c e a n r СУ

- K-Mean
- DBSCAN
- Agglomerative approach

Variables de classification

Méthode analytique

- K-Mean
- DBSCAN
- Agglomerative approach

Variables de classification

Fenêtre temporelle : Septembre 2016 à Septembre 2018 (100 % du data-set)

RFM score

95419 clients

RFM variables descriptions

Note: Frequency > 1 → score = 4 32 types de clients différents

- Need attention: [min, Q1);

- Potential: [Q1, Q3);

- Best customers: [Q3, max]

06/01/2022 Soutenance P5

RFM score

Apprentissage non-supervisé

K-Mean

DBSCAN et Agglomerative clustering

95419 clients

Features : RFM

StandardScaler()

10 000 clients random

Paramètre K : Méthode du coude

Elbow Method showing the optimal number of clusters

Paramètre K : Méthode du coude

Elbow Method showing the optimal number of clusters 300k 250k 200k 150k 100k 50k 2 4 6 8

Paramètre K : Méthode du score

Score method for each K

K-Mean clusters

DBSCAN: min_sample et epsilon

- min_samples = 2 * n_features
- Calcul de distance euclidien entre un point et les min_samples les plus proches

DBSCAN: min_sample et epsilon

- min_samples = 2 * n_features

- eps = [0.4, 0.8, 1, 1.5]

DBSCAN: clusters

<u>Agglomerative clustering : dendrogramme</u>

Agglomerative clustering: clusters

Conclusions

- La méthode K-Mean donnée des clusters plus équilibrés avec des définition métier plus marquées.
- En terme de mémoire et temps de calcule, la méthode K-Mean est plus performante
- La méthode Agglomerative n'as pas de fonction predict

Modèle final, fonction utilisateur et maintenance

K-Mean final

95419 clients

Features: RFM + Mean review score

Features: correlation

K-Mean final

Silhouette Plot of KMeans Clustering for 95420 Samples in 5 Centers

K-Mean final

Clusters et « Persona »

Jean:

- Achète fréquemment

Marie:

- 1 achat il y + 1 an

Pierre:

- Client récent (1 an) pas dépensier

Anne:

- Ce qu'on aime \$\$\$

Benji:

- Pas content

Clusters et « Persona »

Jean:

- Achète fréquemment

Marie:

- 1 achat il y + 1 an

Pierre:

- Client récent (1 an) pas dépensier

Anne:

- Ce qu'on aime \$\$\$

Benji:

- Pas content

Maintenance:

ARI variation with number of days not considered

La maintenance est conseillé tout les 2 mois

Fonction pour rajouter nouveaux clients: Example

Données d'entrée : base de données de la dernier mise à jours et base des données à jour

Conclusion:

- Cinq clusters ont été établie pour identifier le comportement des clients
- Il a été établie qu'il est pertinent de faire une maintenance de l'algorithme de clustering tout les 2 mois
- Un fonction est développe pour voir l'évolution des clients dans le temps et identifier à quel cluster appartiens les nouveaux clients

Merci de votre attention

