Inner product space

Zexi Sun

August 2021

1 Inner Product

```
The inner product (x, y) of two vectors x = (x_1, x_2, ..., x_n)^T, y = (y_1, y_2, ...y_n)^T by (x, y) = x_1y_1 + ... + x_ny_n = y^Tx = x^Ty. So ||x|| = \sqrt{(x, x)}.

Standard inner product in \mathbb{C} is given by (z, w) = z_1\overline{w_1} + ... + z_n\overline{w_n} = \sum_{k=1}^n z_k\overline{w_k}
```

2 Hermitian adjoint

Define $A^* = \overline{A}^T$, meaning that we take the transpose of the matrix, then take the complex conjugate of each entry. For a real matrix, $A^* = A^T$.

Using the notion of A^* , one can write the standard inner product in \mathbb{C}^n as $(z,w)=w^*z=z^*w$.

3 Inner product properties

The inner product for \mathbf{R}^n and \mathbb{C}^n satisfies the following:

- 1. (Conjugate) Symmetry: $(x, y) = \overline{(y, x)}$, note that for a real space, (x, y) = (y, x), which is a symmetry.
- 2. **Linearity**: $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ for all vectors x, y, z and all scalars α, β .

```
Adv.Linearity: (x, \alpha y + \beta z) = \overline{\alpha}(x, y) + \overline{\beta}(x, z). (0,x) = (x,0) = 0.
```

- 3. Non-negativity: $(x, x) \ge 0$ for all x.
- 4. Non-degeneracy: (x, x) = 0 iff x = 0.

Note that for a real space V we assume that (x, y) is always real, and for a complex space the inner product (x, y) can be complex.

Given an inner product space IPS, its norm is defined by $||x|| = \sqrt{(x,x)}$.

4 Lem 1.4

Let x be a vector in an IPS V, then x = 0 iff (x, y) = 0, for all $y \in V$.

Applying this lemma to the difference x - y we get the following Corollary:

5 Cor 1.5

Let x, y be vectors in an IPS V. The equality x = y holds iff (x, z) = (y, z), for all $z \in V$.

6 Cor 1.6

Suppose two operators $A, B: X \to Y$ satisfy (Ax, y) = (Bx, y) for all $x \in X, y \in Y$.

Then A = B.

7 Thm 1.7: Cauchy-Schwarz inequality

 $|(x,y)| \le ||x|| \cdot ||y||.$

8 Cor 1.8: Triangle inequality

For any vectors x, y in an IPS, $||x + y|| \le ||x|| + ||y||$.

9 Lem 1.9: Polarization identities

For $x, y \in V$, if V is a real IPS, then $(x, y) = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$ if V is a complex IPS, then $(x, y) = \frac{1}{4} \sum_{\alpha = \pm 1, \pm i} (\alpha ||x + \alpha y||^2).$

10 Lem 1.10: Parallelogram identity

For any vectors u, v, $||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$

11 Norm and Normed spaces properties

- 1. Homogeneity: $||\alpha v|| = |\alpha| \cdot ||v||$ for all vectors v and scalar α .
- 2. Triangle inequality: $||u+v|| \le ||u|| + ||v||$.
- 3. Non-negativity: $||v|| \ge 0$ for all vectors v.
- 4. Non-degeneracy: ||v|| = 0 iff v = 0.

Suppose that in a vectors space V we assign to each vector v a number ||v|| st the above properties are satisfied, then we say that the function $v \mapsto ||v||$ is a norm.

A vector space equipped with a norm is called a normed space.

12 Thm 1.11

A norm in a NS is obtained from some inner product iff it satisfied the parallelogram identity.