(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年7 月15 日 (15.07.2004)

PCT

(10) 国際公開番号 WO 2004/058833 A1

(51) 国際特許分類7:

C08F 214/18

(21) 国際出願番号:

PCT/JP2003/016524

(22) 国際出願日:

2003年12月24日(24.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-375098

2002年12月25日(25.12.2002) JE

- (71) 出願人(米国を除く全ての指定国について): ダイキン 工業株式会社 (DAIKIN INDUSTRIES, LTD.) [JP/JP]; 〒530-8323 大阪府 大阪市 北区中崎西2丁目4番 12号梅田センタービル Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 北原 隆宏 (KI-TAHARA, Takahiro) [JP/JP]; 〒566-8585 大阪府 摂津市 西一津屋 1番1号 ダイキン工業株式会社淀川製作 所内 Osaka (JP). 紀野 智裕 (KINO, Tomohiro) [JP/JP]; 〒566-8585 大阪府 摂津市 西一津屋 1番1号 ダイキ ン工業株式会社淀川製作所内 Osaka (JP). 佐藤 恵美 (SATO, Megumi) [JP/JP]; 〒566-8585 大阪府 摂津市西 一津屋 1番1号 ダイキン工業株式会社淀川製作所内 Osaka (JP). 藤田 英二 (FUJITA, Eiji) [JP/JP]; 〒566-8585

大阪府 摂津市 西一津屋 1番 1号 ダイキン工業株式 会社淀川製作所内 Osaka (JP).

- (74) 代理人: 安富康男, 外(YASUTOMI,Yasuo et al.); 〒 532-0011 大阪府 大阪市 淀川区西中島 5 丁目 4 番 2 0号 中央ビル Osaka (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: FLUOROPOLYMER AND COMPOSITION THEREOF

(54) 発明の名称: フルオロポリマー及びその組成物

(57) Abstract: Disclosed is a fluoropolymer which enables to form a fluorine-containing formed body and a laminate which are excellent in formability, productivity, interlayer adhesiveness, and stress crack resistance, especially the stress crack resistance when in contact with various chemicals without deteriorating original characteristics of fluoroplastics such as chemical resistance, solvent resistance, weather resistance, antifouling property, low permeability to chemicals, non-adhesiveness and the like. The fluoropolymer containing or not containing an oligomer is characterized in that the oligomer has a molecular weight of 10,000 or less and is not more than 0.05 mass% of the mass of the fluoropolymer.

▼ (57) 要約: 本発明の目的は、上記現状に鑑み、耐薬品性、耐溶剤性、耐候性、防汚性、薬液低透過性、非粘着性等のフッ素樹脂本来の特性を損なうことなく、成形性、生産性、層間接着性と耐ストレスクラック性、特に各種薬で、液と接触する場合における耐ストレスクラック性に優れた含フッ素成形体及び積層体を与えることができるフルオロポリマーを提供することにある。 本発明は、オリゴマーを含有するか又はオリゴマーを含有していないフルオロポリマーであって、上記オリゴマーは、分子量が10000以下であり、上記フルオロポリマーの質量の0人の 5 質量%以下であることを特徴とするフルオロポリマーである。

7 2004/058833

明細書

フルオロポリマー及びその組成物

技術分野

5 本発明は、フルオロポリマー、並びに、上記フルオロポリマーからなる含フッ 素成形体、積層体及び含フッ素成形加工品に関する。

背景技術

フッ素樹脂は、優れた耐熱性、耐油性、耐薬品性、離型性、潤滑性、薬液低透 10 過性等の特性を有している。しかしながら、フッ素樹脂は、高価であり、成形性、 加工性、機械特性、クリープ特性等に劣るという問題があるので、フッ素樹脂を フッ素樹脂以外のその他の材料と積層してなる樹脂積層体が提案されている。

例えば、特開平5-8353号公報には、ポリアミド系樹脂からなる層を外層とし、フッ素樹脂からなる層を内層とする積層チュープが開示されている。この公報では、ポリアミド系樹脂からなる層とフッ素樹脂からなる層との層間接着力を確保するために放射線を照射して両層をなす高分子間に架橋構造を導入する技術が開示されている。

しかしながら、この技術は、フッ素樹脂の成形を行った後に、得られた成形体 の表面に放射線を照射し、次いでポリアミド系樹脂を積層するものであるので、

20 工程が煩雑であり、また、放射線照射装置が必要であるという点で経済性に劣る という問題があった。

これらの問題を解決するために、フッ素樹脂とフッ素樹脂以外の樹脂材料とを 共押出し法により積層して、多層チュープ等の樹脂積層体を製造する方法が提案 されている。

25 例えば、特開平7-53823号公報に、ポリアミド樹脂からなる層を外層とし、フッ素樹脂からなる層を内層とする多層チューブにおいて、特定のポリアミド樹脂とフッ素樹脂とを含有する樹脂組成物からなる層を接着剤層として中間層に用い、多層チューブ共押出し機を用いて3層の多層チューブを製造する方法が開示されている。

しかしながら、相溶性に劣るポリアミド樹脂及びフッ素樹脂を接着剤層に用いていることに起因して、成形条件、使用温度等の環境によって接着剤層のモルホロジーが変化するので、これにより、接着剤層内の凝集力や接着剤層と他の層との接着力が変化し、安定した品質が得られないという問題があった。

5 この問題を解決するために、フッ素樹脂そのものを改良することが考えられ、接着性を有する各種のフッ素樹脂が提案されている。例えば、国際出願第99/4 5044号パンフレットには、ポリアミド樹脂と接着可能なフッ素樹脂として、特定量のカーボネート基及び/又はハロゲノホルミル基を有する含フッ素エチレン性重合体が開示されている。しかしながら、この含フッ素エチレン性重合体を使用しても、接着強度が充分でないという問題があった。

ところで、フッ素樹脂は、半導体分野で使用するチュープやウエハーキャリアー、高純度薬液用容器や貯蔵タンクのライニング材等に用いられている。近年、 半導体分野では、洗浄性を高める目的で薬液に界面活性剤を添加したものやオゾン水等の表面エネルギーが小さい液体が使用されるようになっており、これらの 薬液はフッ素樹脂への浸透性が高いため、クラックを起こす原因となっている。

フッ素樹脂は、また、ストレス(応力)がかかった状態で溶剤、無機酸類、アルカリ性水溶液、ガソリン、オプン水等の薬液が接触するとクラックを生じやすく、自動車等の配管チュープ、薬液輸送チューブ等に用いる場合に特に問題があった。

- 20 フッ素樹脂のこのストレスクラックに対する耐性(耐ストレスクラック性)を 向上する方法として、例えば、半導体分野で使用するウエハーキャリアー、継手、 ナット等の射出成形品に用いられるテトラフルオロエチレン/パーフルオロ(ア ルキルピニルエーテル)共重合体[PFA]を高分子量体とすることにより、強 度を向上させることが行われている。
- 25 しかしながら、フッ素樹脂は、高分子量体にしても耐ストレスクラック性が充分に向上しないばかりでなく、非常に高粘度になり臨界せん断速度が小さくなるので生産性が低下し、また、射出成形等により得られる成形品にメルトフラクチャーと呼ばれる外観不良が発生するという問題が生じていた。

このように、従来、耐薬品性、耐油性、薬液低透過性、耐熱性等の特性を損な

うことなく、成形性、生産性、層間接着力及び耐ストレスクラック性に優れた成 形品や積層体を与え得るフッ素樹脂は得られていなかった。

発明の要約

20

- 5 本発明の目的は、上記現状に鑑み、耐薬品性、耐溶剤性、耐候性、防汚性、薬 液低透過性、非粘着性等のフッ素樹脂本来の特性を損なうことなく、成形性、生 産性、層間接着性と耐ストレスクラック性、特に各種薬液と接触する場合におけ る耐ストレスクラック性に優れた含フッ素成形体及び積層体を与えることができ るフルオロポリマーを提供することにある。
- 10 本発明は、オリゴマーを含有するか又はオリゴマーを含有していないフルオロポリマーであって、上記オリゴマーは、分子量が10000以下であり、上記フルオロポリマーの質量の0.05質量%以下であることを特徴とするフルオロポリマーである。

本発明は、オリゴマーを含有するか又はオリゴマーを含有していないフルオロ ポリマーであって、上記オリゴマーは、分子量が35000以下であり、上記フ ルオロポリマーの質量の0.7質量%以下であることを特徴とするフルオロポリ マーである。

本発明は、上記フルオロポリマーと導電性フィラーとからなるフルオロポリマー組成物であって、メルトインデクサーに投入して得られる押出しストランドの表面抵抗値が10°Q・cm/cm以下であることを特徴とするフルオロポリマー組成物である。

本発明は、上記フルオロポリマー又は上記フルオロポリマー組成物からなることを特徴とする含フッ素成形体である。

本発明は、上記含フッ素成形体を液体と接させて使用することを特徴とする含 25 フッ素成形体使用方法である。

本発明は、上記含フッ素成形体と、その他の層とからなる積層体であって、上記その他の層は、有機材料、金属材料及び/又はガラス材料からなるものであることを特徴とする積層体である。

本発明は、上記含フッ素成形体又は上記積層体からなる含フッ素成形加工品で

あって、上記含フッ素成形加工品は、フィルム、シート、ホース又はチュープで あることを特徴とする含フッ素成形加工品である。

以下に本発明を詳細に説明する。

5 発明の詳細な開示

15

20

本発明のフルオロポリマーは、オリゴマーを含有するか又はオリゴマーを含有していないものである。本明細書において、「オリゴマー」とは、フルオロポリマー分子をなす単量体と同じ単量体からなるものである。本発明のフルオロポリマーは、分子量が1000以下であるオリゴマーを含有するか又は含有していないものである。本発明のフルオロポリマーは、また、分子量が35000以下であるオリゴマーを含有するか又は含有していないものである。上記オリゴマーは、フルオロポリマーを得るための重合反応において生成する低分子量物である。本発明において、上記「フルオロポリマーは、オリゴマーを含有する」とは、フルオロポリマーがフルオロポリマー分子の集合体として、フルオロポリマー分子とともに、上記オリゴマーの分子を有していることを意味する。本発明において、以下、「フルオロポリマー」は、特に別の記載をしない限り、分子の集合体として、上記フルオロポリマー分子の集合体であり、上記オリゴマーの分子を含有していてもよいものである。

本発明のフルオロポリマーは、接着性含フッ素エチレン性重合体であることが 好ましい。以下、本発明のフルオロポリマーについて、上記「接着性含フッ素エ チレン性重合体」を挙げて説明する場合があるが、本発明のフルオロポリマーに ついての特徴は、以下の接着性含フッ素エチレン性重合体についての説明内容を 含むものである。

本明細書において、上記「接着性含フッ素エチレン性重合体」とは、上記接着 25 性含フッ素エチレン性重合体と上記接着性含フッ素エチレン性重合体とは異なる 有機材料との親和性及び/又は反応性を有し、フッ素原子を有するエチレン性重 合体分子の集合体を意味する。上記「親和性及び/又は反応性」は、上記接着性 含フッ素エチレン性重合体分子と上記接着性含フッ素エチレン性重合体とは異な る有機材料を構成する分子との間に有するものであってよい。本明細書において、

上記「接着性含フッ素エチレン性重合体とは異なる有機材料」を、以下、単に「有機材料」ということがある。上記接着性含フッ素エチレン性重合体は、上記有機材料との接着に特に適したものである。上記接着性含フッ素エチレン性重合体は、後述のように含フッ素成形体として層を形成することができ、この層と、上記有機材料からなるその他の層との間の層間接着性に寄与することができる。上記接着性含フッ素エチレン性重合体からなる層と上記有機材料からなるその他の層との間の接着は、実質的には上記接着性含フッ素エチレン性重合体と上記有機材料とが接着することによるものであり、本明細書において、便宜上、接着性含フッ素エチレン性重合体と上記有機材料との接着ということがある。上記接着性含フッ素エチレン性重合体と上記有機材料との接着ということがある。上記接着性含フッ素エチレン性重合体は、上述のように有機材料との接着に特に適したものであるが、上記有機材料以外のその他の材料、例えば、金属材料、ガラス材料等と接させて用いることを排除するものではない。

上記接着性含フッ素エチレン性重合体等の本発明のフルオロポリマーは、分子量が10000以下であるオリゴマーが、上記フルオロポリマーの質量の0.05質量%以下であるものが好ましい。0.05質量%を超えると、溶融成形する際にフルオロポリマーからなる層の表面にオリゴマーが多く析出するので上記有機材料からなる層との間の凝集エネルギーが小さくなり、層間接着力が不充分となる。上記質量は、上記フルオロポリマーの質量の0.03質量%以下が好ましく、0.02質量%以下がより好ましい。

上記本発明のフルオロポリマーの質量は、上述のように、本明細書において、本発明の「フルオロポリマー」を原則として分子の集合体を表すものとしていることから明らかなように、分子の集合体の質量である。例えば、本発明のフルオロポリマーが、フルオロポリマー分子からなる粒子が分散媒中に分散している分散液である場合、上記本発明のフルオロポリマーの質量は、通常、上記本発明のフルオロポリマーの質量は、通常、上記本発明のフルオロポリマー分子からなる粒子の合計質量に該当し、一般に、上記分散液の固形分質量に該当しうる。

本発明のフルオロポリマー、例えば、接着性含フッ素エチレン性重合体は、分子量が35000以下であるオリゴマーの含有率が、上記接着性含フッ素エチレン性重合体の固形分質量の0.7質量%以下であるものが好ましい。0.7質量

20

%を超えると、溶融成形する際に接着性含フッ素エチレン性重合体からなる層の表面にオリゴマーが多く析出するので上記有機材料からなる層との間の凝集エネルギーが小さくなり、層間接着力が不充分となる。上記接着性含フッ素エチレン性重合体の固形分質量の0.5質量%以下が好ましく、0.3質量%以下がより好ましい。上記接着性含フッ素エチレン性重合体は、上記オリゴマーを含有していないことが層間接着力と耐ストレスクラック性の向上の点で好ましいが、上記範囲内であれば、例えば0.001質量%以上であっても、層間接着力と耐ストレスクラック性を維持することができる。本明細書において、上記オリゴマーの含有率及び分子量は、後述するように、1,1ージクロロー1ーフルオロエタン(以下、「HCFC-141b」ということがある。)を抽出溶媒として用いて得られる抽出物をゲルパーメーションクロマトグラフィー(GPC)測定することにより得られる値である。

従来、含フッ素エチレン性重合体と上記有機材料とを接着させる場合、含フッ素エチレン性重合体分子に上記有機材料分子との親和性及び/又は反応性を示す官能基を導入するとともに、上記有機材料分子に含フッ素エチレン性重合体分子との親和性及び/又は反応性を示す官能基を導入し、上記含フッ素エチレン性重合体と上記有機材料とを加熱溶融接着させる手段のみでは、常に安定して優れた接着強度は発現しなかった。しかしながら、本発明においては、上記接着性含フッ素エチレン性重合体等の本発明のフルオロポリマー中の分子量が35000以下であるオリゴマーの含有率(以下、「オリゴマー(A)含有率」と称することもある)を上記範囲内とすることにより、上記接着性含フッ素エチレン性重合体からなる層と上記有機材料からなる層との層間接着力を安定したものとすることができる。上記接着性含フッ素エチレン性重合体等の本発明のフルオロポリマーは、分子量が10000以下であるオリゴマーの含有率を上記範囲内とすることにより、上記層間接着力を更に安定したものとすることができる。

本明細書において、「含フッ素エチレン性重合体」とは、フッ素原子を有する エチレン性重合体であって、オリゴマー(A)含有率及びオリゴマー(B)含有 率(以下、各含有率を総称して「オリゴマー含有率」と称することもある)がそ れぞれ上述の範囲を超えるものを意味する。本明細書において、上記含フッ素エ チレン性重合体は、従って、上記接着性含フッ素エチレン性重合体を含まない概 念である。

本発明における接着性含フッ素エチレン性重合体において、オリゴマー含有率を上述した範囲内とする方法としては特に限定されず、例えば、以下の方法の1つ又は2つ以上を組み合わせる方法等が挙げられる。(1)後述する接着性含フッ素エチレン性重合体の製造方法において、連鎖移動剤の種類や添加量、重合開始剤の種類や添加量、重合温度、重合圧力等の重合条件を適宜調整して、オリゴマー含有率を調節する方法、(2)重合により得られた含フッ素エチレン性重合体を、減圧装置を供えたベント機構を有する押出し機を用いて押出してオリゴマーを除去する方法、(3)押出し機を用いて得られたペレットを接着性含フッ素エチレン性重合体の融点以下の温度で加熱してオリゴマーを除去する方法、(4)重合により得られた含フッ素エチレン性重合体をオートクレープ等の中で加熱しながら、オリゴマーと親和性を有する溶剤を用いてオリゴマーを抽出し除去する方法。

上記オリゴマーと親和性を有する溶剤としては特に限定されず、例えばハイドロクロロフルオロアルカン類、炭素数 $4\sim15$ のパーフルオロアルカン類、炭素数 $4\sim15$ のパーフルオロシクロアルカン類、パーフルオロエーテル類、パーフルオロアミン類、ハイドロフルオロエーテル類、フルオロアルコール類、 R^{1} -OC(=O) - (CH₂) $_{k}$ -C(=O) OR¹(R^{1} は、同一又は異なって、炭素数 $1\sim10$ のアルキル基を表し、kは、 $2\sim6$ の整数を表す。)、塩化メチレン等が挙げられる。

上記ハイドロクロロフルオロアルカン類としては、例えば $CHC1_2CF_3$ 、 CH_3CC1_2F 、 $CF_3CF_2CC1_2H$ 、 CF_2C1CF_2CFHC1 、 CF_2H $CF_2CF_2CF_2C1$ 等が挙げられ、上記炭素数 $4\sim15$ のパーフルオロアルカン類としては、例えば $CF_3CF_2CF_2CF_3$ 、 $CF_3CF_2CF_2CF_2CF_3$ 、 $CF_3CF_2CF_2CF_3$ 、 $CF_3CF_2CF_2CF_3$ 、 $CF_3CF_2CF_3$ 0パーフルオロシクロアルカン類としては、例えばパーフルオロシクロプタン等が挙げられる。上記パーフルオロアミン類としては、例えば $(C_4F_9)_3N$ 、 $(C_5F_{11})_3N$ 等が挙げられる。上記ハイドロフルオロエーテル類としては、例えば C_4

; **5**

15

25

F。OCH。、C4F。OCH2CH3等が挙げられ、上記フルオロアルコール類と しては、例えばCF₃CH₂OH、CF₃CF₂CH₂OH、H (CF₂CF₂) _mC H2OH(mは、1~3の整数を表す。)等が挙げられる。

接着性含フッ素エチレン性重合体の種類にもよるが、オリゴマー含有率を上述 した範囲内とする方法としては、また、(5)重合に使用する特定の単量体の共 重合量を減少させる方法を用いることもできる。そのような方法としては特に限 定されないが、接着性含フッ素エチレン性重合体が、例えばテトラフルオロエチ レン、エチレン、ヘキサフルオロプロピレン及びこれらと共重合可能な単量体を 重合してなる後述の共重合体 (I) である場合、重合する際に上記共重合可能な 単量体の共重合量を減少させてオリゴマー含有率を上述した範囲内とする方法等 が挙げられる。

上記接着性含フッ素エチレン性重合体は、接着性部位を有するものであること が好ましい。本明細書において、「接着性部位」とは、接着性含フッ素エチレン 性重合体の分子構造の一部分であって、接着性含フッ素エチレン性重合体と上記 接着性含フッ素エチレン性重合体とは異なる有機材料との接着に関与し得るもの を意味する。本明細書において、上記接着性部位は、上記接着性含フッ素エチレ ン性重合体が上記有機材料との親和性及び/又は反応性を有することを可能にす るものであり、実際には、上記有機材料分子が有する官能基等と親和性及び/又 は反応性を有する基である。上記接着性部位は、このような親和性及び/又は反 20 応性を有する部位であれば、官能基と通常称される部位のみならず、エステル結 合等の結合と通常称される基をも含む概念である。上記結合と通常称される基は、 上記接着性含フッ素エチレン性重合体分子の側鎖に存在しているものであっても よいし、主鎖中に存在しているものであってもよい。

上記接着性部位は、上記接着性含フッ素エチレン性重合体の主鎖炭素数1×1 06個あたり3~800個であることが好ましい。上記接着性含フッ素エチレン 性重合体の主鎖炭素数1×10⁶個あたり3個未満であると、接着性に劣る場合 があり、800個を超えると、溶融成形時に発泡する場合があり、好ましくない。 上記接着性含フッ素エチレン性重合体の主鎖炭素数1×10⁶個あたり、より好 ましい下限は10個、更に好ましい下限は30個であり、より好ましい上限は5

15

20

25

00個、更に好ましい上限は400個である。

なお、本明細書において、接着性部位の数とは、赤外吸収スペクトル分析により測定して算出される値であり、特に別の記載をしない限り、上記有機材料と接着させる前、即ち、後述の積層をする前の接着性含フッ素エチレン性重合体が有する接着性部位の数を意味する。積層する前の接着性含フッ素エチレン性重合体が有する接着性部位の数のうち、有機材料との接着に消費される接着性部位の数は、通常、接着性含フッ素エチレン性重合体からなる層における接着性部位の全体数のうちごく微量である。

上記接着性部位としては、接着性含フッ素エチレン性重合体と有機材料との接着に関与し得る部位であれば特に限定されないが、カルボニル基、水酸基及び/又はアミノ基を有するものであることが好ましい。本明細書において、上記「カルボニル基、水酸基及び/又はアミノ基を有する」とは、上記接着性部位がカルボニル基である場合を含み、上記接着性部位が水酸基である場合を含み、上記接着性部位がアミノ基である場合を含む概念である。即ち、上記接着性部位は、カルボニル基であってもよいし、水酸基であってもよいし、アミノ基であってもよい。

本明細書において、上記「カルボニル基」は、炭素-酸素二重結合から構成される炭素 2 価の基であり、-C (=O) で表されるものに代表される。上記カルボニル基としては特に限定されず、例えば、カーボネート基、ハロゲノホルミル基、ホルミル基、カルボキシル基、エステル結合 [-C (=O) O-]、酸無水物結合 [-C (=O) O-C (=O) -]、イソシアネート基、アミド基、イミド基 [-C (=O) -]、カルバモイル基 [NH_2-C (=O) -]、カルバモイルオキシ基 [NH_2-C (=O) -]、カルバモイルオトシ基 [NH_2-C (=O) -]、ウレイド基 [NH_2-C (=O) -0 -1 等の化学構造上の一部分であるもの等が挙げられる。

上記カーボネート基は、一〇C (=O) O-R³ (式中、R³は、有機基を表す。)で表されるものである。上記式中のR³である有機基としては、例えば炭素数1~20のアルキル基、エーテル結合を有する炭素数2~20のアルキル基

等が挙げられ、炭素数 $1 \sim 8$ のアルキル基、エーテル結合を有する炭素数 $2 \sim 4$ のアルキル基等であることが好ましい。上記カーボネート基としては、例えば OC (=O) OCH₃、-OC (=O) OC₃H₇ 、-OC (=O) OC₈H₁₇、-OC (=O) OCH₂CH₂CH₂OCH₂CH₃等が好ましく挙げられる。

5 上記ハロゲノホルミル基は、一COY(Yは、ハロゲン原子を表す。)で表されるものであり、一COF、一COC1等が挙げられる。

上記アミド基は、下記一般式

15

(式中、R⁴は、水素原子又は有機基を表し、R⁵は、有機基を表す。)で表される基である。

10 上記アミノ基、アミド基、イミド基、ウレタン結合、カルバモイル基、カルバ モイルオキシ基、ウレイド基、オキサモイル基等の窒素原子に結合する水素原子 は、例えばアルキル基等の炭化水素基により置換されていてもよい。

上記カルボニル基は、なかでも、接着性の点で、ホルミル基、カルボキシル基、ハロゲノホルミル基、エステル結合、酸無水物結合、カーボネート基、イソシアネート基、アミド基、イミド基、ウレタン結合及びウレイド基からなる群より選択される少なくとも1つに由来するものであることが好ましい。本明細書において、上記「群より選択される少なくとも1つに由来する」とは、上記群を構成する官能基又は結合のうち選択される少なくとも1つのものの化学構造上の一部分であることを意味する。

20 上記接着性含フッ素エチレン性重合体は、上記接着性部位を主鎖末端又は側鎖のいずれかに有していてもよいし、主鎖末端及び側鎖の両方に有していてもよい。主鎖末端に接着性部位を有する場合は、主鎖の両方の末端に有していてもよいし、いずれか一方の末端にのみ有していてもよい。上記接着性含フッ素エチレン性重合体は、主鎖末端に接着性部位を有するものが、耐熱性、機械特性、耐薬品性を著しく低下させない理由で、又は、生産性、コスト面で有利である理由で好ましい。

本発明における接着性含フッ素エチレン性重合体は、接着性部位を有さない含フッ素エチレン性重合体分子が存在していても、接着性含フッ素エチレン性重合体分子の集合体として主鎖炭素数1×10⁶個あたり合計で上述の範囲の接着性部位を有していればよい。

5 上記接着性含フッ素エチレン性重合体は、融点が120℃~320℃であることが好ましく、ガラス転移温度が50~200℃であることが好ましい。上記接着性含フッ素エチレン性重合体の融点及びガラス転移温度が上記範囲内であると、後述する有機材料のうち、特に耐熱性に劣るものとの接着性が優れたものとなる。

上記接着性含フッ素エチレン性重合体は、少なくともフッ素含有エチレン性単 量体を重合してなるものであり、フッ素含有エチレン性単量体とフッ素非含有エ チレン性単量体とを重合してなるものであってもよい。上記フッ素含有エチレン 性単量体及びフッ素非含有エチレン性単量体は、それぞれ1種又は2種以上を使 用してもよい。

上記フッ素含有エチレン性単量体は、フッ素原子を有し、接着性部位を有さな いエチレン性単量体であり、例えば、テトラフルオロエチレン、フッ化ビニリデン、トリクロロフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、 ヘキサフルオロイソプチレン、下記一般式 (i i i)

$$CX_{2}^{1} = CX^{2} (CF_{2})_{n}X^{3}$$
 (i i i)

(式中、X¹及びX²は、同一又は異なって、水素原子若しくはフッ素原子を表
 し、X³は、水素原子、フッ素原子又は塩素原子を表し、nは、1~10の整数を表す。)で表されるフルオロオレフィン、下記一般式 (i i)

$$CF_2 = CF - ORf^2 \qquad (i i)$$

(式中、Rf²は、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロビニルエーテル等が挙げられる。上記一般式(i i i)で表されるフルオロオレフィンとしては、例えばヘキサフルオロプロピレン等が挙げられる。

上記フッ素非含有エチレン性単量体は、フッ素原子を有さず、接着性部位を有さないエチレン性単量体であり、得られる接着性含フッ素エチレン性重合体の耐熱性や耐薬品性等を低下させない点から、炭素数5以下のエチレン性単量体であ

ることが好ましく、例えばエチレン、プロピレン、1-プテン、2-プテン、塩 化ビニル、塩化ビニリデン等が挙げられる。

本発明における接着性含フッ素エチレン性重合体の好ましい例としては、接着性含フッ素エチレン性重合体の主鎖が下記の単量体単位からなる重合体 (I) ~ (III) 等を挙げることができる。

- (I) 少なくとも、テトラフルオロエチレン単位及びエチレン単位からなる共重 合体。
- (II) 少なくとも、テトラフルオロエチレン単位、及び、下記一般式 (i) $CF_2 = CF Rf^1$ (i)
- 10 (式中、Rf¹は、CF₃又はORf²を表し、Rf²は、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ単量体に由来するパーフルオロ単量体単位からなる共重合体。上記パーフルオロ単量体単位は、1種であってもよいし、2種以上であってもよい。
 - (III) 少なくとも、フッ化ビニリデン単位からなる共重合体。
- 15 なお、上記共重合体(I)は、少なくとも、テトラフルオロエチレン単位及びエチレン単位からなる共重合体であれば、上記一般式(i)で表されるパーフルオロ単量体に由来するパーフルオロ単量体単位若しくはフッ化ビニリデン単位を有するものであってもよく、従って、上記共重合体(II)及び/又は共重合体(III)を含み得る概念である。同様に、上記共重合体(II)は共重合体(I
- 20) 及び/又は共重合体 (I I I) を含み得る概念であり、上記共重合体 (I I I) は共重合体 (I) 及び/又は共重合体 (I I) を含み得る概念である。

上記共重合体(I)としては、例えばテトラフルオロエチレン単位20モル%以上からなる重合体が挙げられ、このようなものとしては、例えば、テトラフルオロエチレン単位20~80モル%及びこれらと共重合可能な単量体に由来する単位0~60モル%からなる共重合体等が挙げられる。なお、本明細書において、ある単量体についての「単位」とは、重合体の分子構造の一部分であって、その単量体に由来する部分を意味する。例えば、テトラフルオロエチレン単位は、一CF2-CF2-で表される。本明細書において、各単量体単位についてのモル%は、共重合体の分子鎖を構成する単量体単

15

位の合計モル数のうち、後述する接着性部位含有エチレン性単量体に由来する単量体単位のモル数を除いたモル数を100モル%とし、この100モル%中に占める各単量体単位の割合である。

上記共重合可能な単量体としては、例えばトリクロロフルオロエチレン、上記一般式(i i i)で表されるフルオロオレフィン、上記一般式(i i)で表されるパーフルオロビニルエーテル、プロピレン等が挙げられ、これらの1種又は2種以上を用いてもよい。

上記共重合体(I)は、耐熱性、耐薬品性、耐候性、電気絶縁性、薬液低透過性、非粘着性に優れており、また、融点を下げることが容易であるので、後述する有機材料のうち比較的融点が低く耐熱性に劣るものとの共押出しが可能となり、上記有機材料との積層体を容易に得ることができるので好ましい。

上記共重合体(I)としては、なかでも、上記一般式(ii)で表されるパーフルオロビニルエーテルに由来するパーフルオロビニルエーテル単位及び/又は上記一般式(iii)で表されるフルオロオレフィンに由来するフルオロオレフィン単位の合計0~60モル%、テトラフルオロエチレン単位20~80モル%、並びに、エチレン単位20~80モル%からなる共重合体が好ましい。

このような共重合体としては、例えば

(I-I)テトラフルオロエチレン単位30~70モル%、エチレン単位20~55モル%及び上記一般式(i i i)で表されるフルオロオレフィンに由来するフルオロオレフィン単位0~10モル%からなる共重合体、

(I-II) テトラフルオロエチレン単位30~70モル%、エチレン単位20~55モル%、ヘキサフルオロプロピレン単位1~30モル%及びこれらと共重合可能な単量体に由来する単位0~10モル%からなる共重合体、

(I-III) テトラフルオロエチレン単位30~70モル%、エチレン単位2 0~55モル%及び上記一般式(ii)で表されるパーフルオロピニルエーテルに由来するパーフルオロピニルエーテル単位0~10モル%からなる共重合体等が挙げられる。上記共重合体(I-II)における共重合可能な単量体は、ヘキサフルオロプロピレンを含まない。

上記共重合体(Ⅰ)を構成する上記共重合可能な単量体に由来する単位は、上

記一般式(ii)で表されるパーフルオロビニルエーテルに由来するパーフルオロビニルエーテル単位及び/又は上記一般式(iii)で表されるフルオロオレフィンに由来するフルオロオレフィン単位である場合を含め、上記共重合体(I)に含まれていてもよいし、含まれていなくてもよい。

- 上記共重合体(II)は、テトラフルオロエチレン単位、及び、上記一般式(i)で表されるパーフルオロ単量体に由来するパーフルオロ単量体単位からなる共重合体であることが好ましい。なお、上記一般式(i)で表されるパーフルオロ単量体は、上述の一般式(i)の定義から明らかなように、ヘキサフルオロプロピレン又は上記一般式(ii)で表されるパーフルオロビニルエーテルを含む。
 上記共重合体(II)としては、例えば
 - (II-I) テトラフルオロエチレン単位65~95モル%、及び、ヘキサフル オロプロピレン単位5~35モル%からなる共重合体、
- (II-II) テトラフルオロエチレン単位70~97モル%、及び、上記一般式(ii) で表されるパーフルオロビニルエーテルに由来するパーフルオロビニルエーテル単位の1種又は2種以上の合計3~30モル%からなる共重合体、(II-III) テトラフルオロエチレン単位70~95モル%、並びに、ヘキサフルオロプロピレン単位及び上記一般式(ii) で表されるパーフルオロビニルエーテルに由来するパーフルオロビニルエーテル単位の1種又は2種以上の合
- 20 等が好ましく挙げられる。上記共重合体 (II-I) において、上記テトラフル オロエチレン単位の好ましい下限は75モル%であり、上記へキサフルオロプロ ピレン単位の好ましい上限は25モル%である。

計5~30モル%からなる共重合体

上記共重合体(II)はパーフルオロ系共重合体であり、フッ素樹脂の中でも耐熱性、耐薬品性、撥水性、撥油性、非粘着性、電気絶縁性、薬液低透過性が特に優れているので、好適に用いられる。本明細書において、上記「パーフルオロ系共重合体」は、テトラフルオロエチレン単位及び/又は上記一般式(i)で表されるパーフルオロ単量体に由来するパーフルオロ単量体単位と、所望により後述の接着性部位含有エチレン性単量体に由来する単量体単位とのみからなる重合体である。

上記共重合体 (III) としては、例えば、フッ化ビニリデン単位10モル% 以上からなる重合体が挙げられ、そのようなものとしては、例えば、

フッ化ビニリデン単位15~100モル%、テトラフルオロエチレン単位0~80モル%、並びに、ヘキサフルオロプロピレン単位及び/又はトリクロロフルオロエチレン単位の合計0~30モル%からなる共重合体等が好ましい。

上記共重合体(III)としては、例えば

(III-I) フッ化ビニリデン単独重合体

(III-II) フッ化ビニリデン単位30~99モル%、及び、テトラフルオロチレン単位1~70モル%からなる共重合体

10 (III-III) フッ化ピニリデン単位10~90モル%、テトラフルオロチレン単位0~90モル%、及び、トリクロロフルオロエチレン単位1~30モル%からなる共重合体

(III-IV) フッ化ピニリデン単位10~90モル%、テトラフルオロエチレン単位0~90モル%、及び、ヘキサフルオロプロピレン単位0~30モル%からなる共重合体

等が挙げられる。

15

上記 (III-IV) の共重合体としては、フッ化ビニリデン単位 15~84 モル%、テトラフルオロエチレン単位 15~84モル%、及び、ヘキサフルオロ プロピレン単位 0~30モル%からなる共重合体が好ましい。

20 なお、上記共重合体(III)を構成するテトラフルオロエチレン単位、ヘキサフルオロプロピレン単位及びトリクロロフルオロエチレン単位のうち、上記共重合体(III)の各種共重合体において0モル%であり得るものは、いずれも上記共重合体(III)に含まれていてもよいし、含まれていなくてもよい。

上記共重合体 (III) は、比較的融点が低い共重合体であり、極性が高くフッ素を有さない熱可塑性樹脂との親和性が高いので、上記共重合体 (III) が有する接着性部位が少量であっても、上記極性が高くフッ素を有さない熱可塑性樹脂との接着性が優れている。なお、本明細書において、上記「フッ素を有さない熱可塑性樹脂」とは、熱可塑性樹脂をなす高分子がフッ素原子を有さないことを意味する。

10

上記接着性含フッ素エチレン性重合体は、上述したように、接着性部位を主鎖末端に有していてもよいし、側鎖に有していてもよい。側鎖に接着性部位を有する接着性含フッ素エチレン性重合体は、接着性部位含有エチレン性単量体を、目的の接着性含フッ素エチレン性重合体に応じた種類並びに配合のフッ素含有エチレン性単量体及び/又はフッ素非含有エチレン性単量体と共重合させることにより得ることができる。上記側鎖に接着性部位を有する接着性含フッ素エチレン性重合体は、また、グラフト共重合により得ることもできる。なお、上記「接着性部位含有エチレン性単量体」とは、接着性部位を有するエチレン性単量体を意味し、フッ素原子を有していてもよいし、有していなくてもよいが、上述した「フッ素含有エチレン性単量体」及び「フッ素原子非含有エチレン性単量体」を含まない概念である。

接着性部位含有エチレン性単量体としては、下記一般式 (i v) $CX^4_2 = CX^5 - (Rf^3)_n - Z$ (i v)

(式中、Zは、ヒドロキシル基、カルボニル基、エポキシ基、又は、スルホン酸 基を有する官能基を表し、X⁴及びX⁵は、同一又は異なって、水素原子若しく はフッ素原子を表し、Rf³は、エーテル結合を有していてもよい炭素数1~4 0の含フッ素アルキレン基、又は、エーテル結合を有していてもよい炭素数1~4 0のアルキレン基を表し、nは、0又は1を表す。)で表されるエチレン性単 量体であって少なくとも1種の接着性部位を有するものが好ましい。

20 上記接着性部位含有エチレン性単量体は、不飽和二塩基酸のモノエステル、ビニレンカーボネート、無水マレイン、マレイン酸等であってもよい。

主鎖末端に接着性部位を有する接着性含フッ素エチレン性重合体を得るためには種々の方法を用いることができるが、例えば接着性部位がカルボニル基及び/又は水酸基を有するものである場合、パーオキシカーボネート、パーオキシエステル、パーオキシアルコール等のカルボニル基若しくは水酸基を有するか、又は、カルボニル基若しくは水酸基に変換し得る官能基を有する重合開始剤を使用して主鎖末端にパーオキサイドに由来するカルボニル基及び/又は水酸基を導入する方法が、カルボニル基及び/又は水酸基の導入並びに導入の制御が非常に容易であることや、経済性の面、耐熱性、耐薬品性等の品質面等から好ましく用いるこ

とができる。上記方法を用いると、パーオキサイドに由来するカルボニル基及び /又は水酸基、例えば、パーオキシカーボネートに由来するカーボネート基、パ ーオキシエステルに由来するエステル結合、パーオキシアルコールに由来する水 酸基等を接着性含フッ素エチレン性重合体の主鎖末端に導入することができる。

5 上記方法を用いると、また、上記パーオキシカーボネートに由来するカーボネート基、パーオキシエステルに由来するエステル結合等を変換して、カルボキシル基やハロゲノホルミル基等を接着性含フッ素エチレン性重合体の主鎖末端に導入することもできる。これらの重合開始剤のうち、パーオキシカーボネートを用いた場合には、重合温度を低くすることができ、開始反応に副反応を伴わないことから、上記重合開始剤は、パーオキシカーボネートが特に好ましい。なお、「パーオキサイドに由来する」とは、パーオキサイドに含まれる官能基から直接導入されるか、又は、パーオキサイドに含まれる官能基から直接導入されるか、又は、パーオキサイドに含まれる官能基から直接導入された官能基を変換することにより間接的に導入されることを意味する。

上記重合開始剤の添加量は、目的とする接着性含フッ素エチレン性重合体の種類や組成、分子量、重合条件、使用する重合開始剤の種類によって適宜設定されるが、重合により得られる接着性含フッ素エチレン性重合体100質量部に対して0.05~20質量部が好ましく、特に好ましい下限は0.1質量部であり、特に好ましい上限は5質量部である。

本発明における接着性含フッ素エチレン性重合体を重合する方法としては特に 20 限定されず、例えば溶液重合、乳化重合、塊状重合等が挙げられるが、工業的に は、フッ素系溶媒を用い、重合開始剤としてパーオキシカーボネート等を使用した水性媒体中での懸濁重合が好ましい。懸濁重合においては、フッ素系溶媒を水 に添加して使用することができる。

懸濁重合に用いる上記フッ素系溶媒としては、例えばハイドロクロロフルオロ 25 アルカン類、パーフルオロアルカン類、パーフルオロシクロアルカン類等が挙げられる。上記ハイドロクロロフルオロアルカン類としては、例えば CH_3CC1F_2 、 CH_3CC1_2F 、 $CF_3CF_2CC1_2H$ 、 CF_2C1CF_2CFHC1 が挙 げられる。上記パーフルオロアルカン類としては、例えば、 $CF_3CF_2CF_2CF_2CF_3$ 、 $CF_3CF_2CF_2CF_2CF_3$ が挙げ

10

られる。上記パーフルオロシクロアルカン類としては、例えばパーフルオロシクロプタンが挙げられる。なかでも、パーフルオロアルカン類が好ましい。

重合温度は特に限定されず、0~100℃でよい。重合圧力は、用いる溶媒の種類、量及び蒸気圧、重合温度等の重合圧力以外のその他の重合条件に応じて適宜定められるが、通常0~9.8MPaGであってよい。

上記接着性含フッ素エチレン性重合体の重合において、分子量調整のために、 通常の連鎖移動剤、例えば、イソペンタン、nーペンタン、nーヘキサン、シクロヘキサン等の炭化水素;メタノール、エタノール等のアルコール;四塩化炭素、 クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素を用いることができる。

上記重合開始剤の添加量、連鎖移動剤の添加量、重合温度等の重合条件を調整することにより、末端の接着性部位の含有量を容易に制御することができ、また、上述したように、接着性含フッ素エチレン性重合体中のオリゴマー含有率を上述した範囲内に調節することができる。

15 上記接着性含フッ素エチレン性重合体は、メルトフローレート [MFR] が特に限定されるものではないが、200~400℃の任意の温度において0.1~100(g/10分)であることが好ましい。0.1(g/10分)未満であると、接着性含フッ素エチレン性重合体の溶融粘度が高くなり、成形性に劣る場合があり、100(g/10分)を超えると、上記接着性含フッ素エチレン性重合をのないではないで耐ストレスクラック性、特に薬液と接触する場合の耐ストレスクラック性を維持することが困難になる場合がある。より好ましい下限は1(g/10分)であり、より好ましい上限は50(g/10分)、更に好ましい上限は30(g/10分)である。MFRは、一般に、高すぎると得られる成形品の耐ストレスクラック性が低下しやすいが、上記接着性含フッ素エチレン性重合体は、オリゴマー含有率を上述した範囲内とすることにより、MFRを上述のように比較的高くしても、得られる含フッ素成形体等の耐ストレスクラック性を充分に向上することができる。

本明細書において、上記MFRは、200~400℃の任意の温度において、 メルトインデクサー(東洋精機社製)を用いて測定して得られる値である。

上記接着性含フッ素エチレン性重合体は、オリゴマー含有率を上述した範囲内に低減したものであるので優れた接着性を有しており、耐ストレスクラック性、特に薬液と接触する場合の耐ストレスクラック性、及び、耐薬品性、耐油性、薬液低透過性、耐熱性等の特性に優れた含フッ素成形体、積層体等を与えることができる。

本発明のフルオロポリマー組成物は、上記フルオロポリマーからなる組成物である。本発明のフルオロポリマー組成物としては、上述のように本発明のフルオロポリマーとして接着性含フッ素エチレン性重合体が好ましいので、接着性含フッ素エチレン性重合体組成物が好ましい。以下、本発明のフルオロポリマー組成物について、上記「接着性含フッ素エチレン性重合体組成物」を挙げて説明する場合があるが、本発明のフルオロポリマー組成物についての特徴は、以下の接着性含フッ素エチレン性重合体組成物についての説明内容を含むものである。

上記接着性含フッ素エチレン性重合体組成物は、本発明の目的を損なわない範囲で、後述の導電性フィラー、上記導電性フィラー以外のその他のフィラー、着色剤、各種添加剤等を上記接着性含フッ素エチレン性重合体とともに用いてなるものであってよい。上記添加剤としては、例えば有機系帯電防止剤、難燃剤、熱安定剤、紫外線吸収剤、滑剤、離型剤、結晶核剤等が挙げられる。上記その他のフィラーとしては、例えば、ガラス繊維、ガラスピーズ、炭素繊維、タルク、マイカ、膨潤性ケイ酸塩、ウォラストナイト、クレイ、炭酸カルシウム、硫酸バリウム、チタン酸カリウム、酸化アルミ等が挙げられる。上記その他のフィラーを配合すると、上記接着性含フッ素エチレン性重合体組成物からなる後述の含フッ素成形体の機械特性や耐熱性、耐候性等をより向上することができるので好ましい。

25 上記接着性含フッ素エチレン性重合体組成物としては、上記接着性含フッ素エチレン性重合体と導電性フィラーとからなるもの(以下、「接着性含フッ素エチレン性重合体導電性組成物」ということがある。)が好ましい。上記接着性含フッ素エチレン性重合体導電性組成物は、メルトインデクサーに投入して得られる押出しストランドの表面抵抗値が10°Q・cm/cm以下であるものが好まし

15

20

25

い。 $10^9 \Omega \cdot cm/cm$ 以下であると、上記接着性含フッ素エチレン性重合体 導電性組成物からなる後述の含フッ素成形体が静電荷を蓄積しない程度の導電性 を有するものとすることができ、例えばガソリン等の引火性の液体が連続的に接 しても引火する可能性がないので好ましい。上記表面抵抗値は、好ましい下限が $1 \times 10^9 \Omega \cdot cm/cm$ であり、より好ましい下限は $1 \times 10^9 \Omega \cdot cm/cm$ であり、より好ましい上限は $1 \times 10^8 \Omega \cdot cm/cm$ である。

本明細書において、上記表面抵抗値は、後述するように、上記接着性含フッ素 エチレン性重合体導電性組成物をメルトインデクサー(東洋精機社製)に投入し、 上記メルトインデクサー中で200~400℃の任意の温度で加熱して、押し出 して得られた押出しストランドの表面抵抗値を、電池式絶縁抵抗計(定格500 V/100MQ、横河電機社製)を用いて測定して得られる値である。

上記導電性フィラーとしては、例えば、銅、ニッケル、銀等の金属の粉末;鉄、ステンレス等の金属の繊維;酸化亜鉛、ガラスピーズ、酸化チタン等の表面を金属スパッタリング、無電解メッキ等でコーティングした金属化無機化合物;カーボンブラック等が好ましいものとして挙げられる。なかでも、カーボンブラックは、経済性の点、及び、静電荷の蓄積を防止する効果が高い点で好ましい。

上記導電性フィラーの添加量は、接着性含フッ素エチレン性重合体の種類、上記接着性含フッ素エチレン性重合体導電性組成物からなる後述の含フッ素成形体に要求される導電性、成形条件等に応じて適宜設定されるが、好ましくは、接着性含フッ素エチレン性重合体100質量部に対して1~30質量部である。1質量部未満であると、導電性が不充分であり、30質量部を超えると、メルトフローレートが低下して成形性が悪化したり、また、上記含フッ素成形体における接着性含フッ素エチレン性重合体の含有率が少なくなりすぎて上記含フッ素成形体の機械的強度が著しく低下したりする場合があるので好ましくない。接着性含フッ素エチレン性重合体100質量部に対して、より好ましい下限は5質量部であり、より好ましい上限は20質量部である。

上記接着性含フッ素エチレン性重合体組成物を得るための方法としては特に限定されず、例えば上記導電性フィラーと上記接着性含フッ素エチレン性重合体とを溶融混合してペレットにする方法等が挙げられる。上記溶融混合は、少なくと

25

も上記接着性含フッ素エチレン性重合体が溶融する温度において、機械的に混練することにより行われる。上記溶融混合は、例えば高温ニーダ、スクリュー式押出し機等を用いて行うことができる。なかでも、接着性含フッ素エチレン性重合体及び導電性フィラーを均一に混合することができるので、二軸押出し機を用いることが好ましい。

本発明の含フッ素成形体は、上述の本発明のフルオロポリマー又は上述のフルオロポリマー組成物からなるものである。本発明の含フッ素成形体としては、上述のように本発明のフルオロポリマーとして接着性含フッ素エチレン性重合体が好ましいので、上記接着性含フッ素エチレン性重合体又は上記接着性含フッ素エチレン性重合体組成物からなるものが好ましい。

本発明の含フッ素成形体は、樹脂成分が主に上記接着性含フッ素エチレン性重合体であるものがより好ましく、樹脂成分が上記接着性含フッ素エチレン性重合体のみであるものであってもよい。

上記含フッ素成形体は、用途に応じ、上記接着性含フッ素エチレン性重合体導電性組成物からなるものが好ましい。フッ素樹脂は、本来、絶縁性が高い非導電性材料であり、フッ素樹脂からなる成形品の表面に例えばガソリン等の引火性の液体が連続的に接触した場合、静電荷が蓄積して引火する可能性がある。本発明の含フッ素成形体は、上記接着性含フッ素エチレン性重合体導電性組成物からなるものである場合、このような静電荷が蓄積しない程度の導電性を有することができる。

本発明の含フッ素成形体を成形する方法としては特に限定されず、従来公知の成形方法を用いることができ、例えば、射出成形、押出し成形、インフレーション成形、プロー成形、粉体焼付け塗装成形、金型等を用いるインサート成形等が挙げられる。上記含フッ素成形体は、後述の積層体に用いるものである場合、上記接着性含フッ素エチレン性重合体と、後述のその他の層をなす有機材料とを溶融共押出し成形等の同時多層成形により積層するものであることが接着性の面から好ましい。

本発明の含フッ素成形体使用方法は、上記含フッ素成形体を液体と接させて使用する方法である。本明細書において、上記「液体と接させて使用する」とは、

15

20

使用する期間の少なくともある時点において液体と接させることを意味する。上記「液体と接させて使用する」は、使用する期間のうちある時点において液体と接させ、その他の時点では液体と接しないことであってもよいが、耐ストレスクラック性に優れた上記含フッ素成形体を用いるので使用する期間の全てにおいて液体と接する場合にも好適である。上記液体としては特に限定されず、例えば、後述の塗装用塗料、飲料、液体状食品、薬液、燃料、原油・原油精製品のうち液状であるもの等が挙げられる。

上記含フッ素成形体使用方法は、特に薬液と接する場合の耐ストレスクラック性に優れた上記含フッ素成形体を用いるので、上記含フッ素成形体を薬液等の液体と接させてもストレスクラックの発生を抑えることができる。上記含フッ素成形体使用方法は、例えば、後述のホース又はチュープ類;ダイヤフラムポンプのダイヤフラムや各種パッキン等の高度の耐薬品性が要求される部材、薬液貯槽ライニング材、ローリー車等のタンク内面ライニング材等のフィルム、シート類;後述のボトル、容器、タンク類等に適用することができる。

本発明の含フッ素成形体は、使用時に液体と接させるものとして好適に用いることができるが、使用時とともに使用時以外にも液体と接し得るものであってもよい。上記使用時以外に液体と接し得るものとしては、上記含フッ素成形体とそれ以外の他の部材とからなるもの、例えば、半導体装置等の装置類、自動車等において、上記他の部材から薬液等の液体が漏れて上記含フッ素成形体と接触する可能性があるもの等が挙げられる。上記含フッ素成形体は、上記接着性含フッ素エチレン性重合体導電性組成物からなるものである場合、例えばガソリン等の引火性の液体が連続的に接しても静電荷が蓄積することがなく、引火する可能性が低い。

本発明の積層体は、上記含フッ素成形体と、その他の層とからなるものである。

25 上記含フッ素成形体は、上記積層体において、層として、上記その他の層と積層されている。本明細書において、上記積層体における層としての含フッ素成形体を、上記「含フッ素成形体からなる層」又は「含フッ素成形体層」ということがある。上記含フッ素成形体は、上述したように、本発明のフルオロポリマーからなるものであるので、上記含フッ素成形体層は、本発明のフルオロポリマーから

なる層である。上記含フッ素成形体としては、上記接着性含フッ素エチレン性重合体からなるものが好ましく、上記含フッ素成形体層は、上記接着性含フッ素エチレン性重合体からなる層である。

上記その他の層は、有機材料、金属材料及び/又はガラス材料からなるものである。本明細書において、上記「有機材料、金属材料及び/又はガラス材料からなるもの」とは、下記(1)~(7)の何れであってもよいことを意味する。

- (1)上記有機材料を用いたものであって、上記金属材料又はガラス材料の何れ も用いないもの、
- (2) 上記金属材料を用いたものであって、上記有機材料又はガラス材料の何れ 10 も用いないもの、
 - (3)上記ガラス材料を用いたものであって、上記有機材料又は金属材料の何れ も用いないもの、
 - (4) 上記有機材料及び金属材料を用いたものであって、上記ガラス材料を用いないもの、
- 15 (5)上記有機材料及びガラス材料を用いたものであって、上記金属材料を用いないもの、
 - (6) 上記金属材料及びガラス材料を用いたものであって、上記有機材料を用いないもの、
 - (7) 上記有機材料と、上記金属材料と、上記ガラス材料とを用いたもの。
- 20 上記有機材料、上記金属材料及び上記ガラス材料は、それぞれ、1種又は2種以上を用いてもよい。上記その他の層は、接着性の点で、有機材料を用いたものである上記(1)、(4)、(5)又は(7)が好ましい。

上記有機材料としては、例えば合成樹脂;天然繊維、木材、紙類、皮革類等の 天然の有機物、これらのうち2種以上からなる複合物等が挙げられる。

25 上記合成樹脂としては、例えばポリエステル樹脂、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、アクリル系樹脂、酢酸ピニル系樹脂、ポリオレフィン樹脂、塩化ピニル系樹脂、ポリカーボネート樹脂、スチレン系樹脂、ウレタン樹脂、アクリロニトリル/プタジエン/スチレン樹脂 [ABS]、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂 [PEEK]、ポリエーテ

15

ルサルホン樹脂 [PES]、ポリスルホン樹脂、ポリフェニレンオキサイド樹脂 [PPO]、ポリアラミド樹脂、ポリアセタール樹脂、ポリエーテルイミド樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、セルロース誘導体樹脂、ポリビニルアルコール樹脂、エチレン/ビニルアルコール樹脂、変性ポリオレフィン樹脂等が挙げられる。

上記合成樹脂は上記含フッ素成形体層との溶融接着成形が可能である点で、なかでも、熱可塑性樹脂であることが好ましく、上記熱可塑性樹脂としては、例えばポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリエーテルサルホン樹脂 [PES]、ポリスルホン樹脂、ウレタン樹脂、ポリフェニレンオキサイド樹脂 [PPO]、ポリエーテルイミド樹脂、ポリアセタール樹脂、ポリビニルアルコール樹脂、エチレン/ビニルアルコール樹脂、変性ポリオレフィン樹脂等が挙げられる。

本明細書において、上記「ポリアミド樹脂」は、(1)ポリアミド樹脂、(2)ポリアミド系エラストマー、又は、(3)ポリアミド樹脂とポリアミド樹脂以外のその他の樹脂との樹脂アロイを含む概念である。

上記(1)ポリアミド樹脂としては、例えば環状脂肪族ラクタムの開環重合反応、脂肪族及び/又は脂環族ジアミンと脂肪族及び/又は脂環族ジカルボン酸との縮重合反応、アミノカルボン酸の縮重合反応、不飽和脂肪酸の二量化により得られる炭素数36のジカルボン酸を主成分とするいわゆるダイマー酸と短鎖二塩 基酸とジアミン類との共重合反応等により合成されるポリアミド樹脂が挙げられる。このようなポリアミド樹脂としては、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66、ナイロン66/12、ナイロン46、メタキシレンジアミン/アジピン酸重合体、これらを構成する単量体の1種又は2種以上とダイマー酸との共重合体、これらのうち2つ以上からなるプレンド物等を挙げることができる。なかでも、ナイロン6、ナイロン11、ナイロン12、ナイロン610、ナイロン612が好ましい。

上記(1)ポリアミド樹脂の平均分子量は、通常5000~50000である。

- 上記(2)ポリアミド系エラストマーとしては、例えば、ポリアミドを結晶性のハードセグメントとし、ポリエーテル及び/又はポリエステルをソフトセグメントとするABA型プロックタイプのポリエーテルエステルアミドエラストマー、ポリエーテルアミドエラストマー、ポリエステルアミドエラストマー等が挙げられる。このようなポリアミド系エラストマーは、例えば、ラウリルラクタムとジカルボン酸とポリテトラメチレングリコールとの縮合反応により得られる。ハードセグメントのポリアミド中の繰り返し単位の炭素数、ソフトセグメントの繰り返し単位の炭素数、ソフトセグメントの繰り返し単位の化学構造及び割合、それぞれのブロックの分子量等は、得られるポリアミド系エラストマーの柔軟性、弾性回復性等に応じて適宜設計し得る。
- 10 上記(3)ポリアミド樹脂とポリアミド樹脂以外のその他の樹脂との樹脂アロイとしては、例えば以下に示すもの等が挙げられる。
 - (3-1) ポリアミド/ポリオレフィン系アロイ、
 - (3-2) ポリアミド/ABS系アロイ、
 - (3-3) ポリアミド/ポリフェニレンエーテル系アロイ、
- 15 (3-4) ポリアミド/ポリアリレート系アロイ。

上述のエチレン/ピニルアルコール樹脂 [E-VAL] は、エチレン/酢酸ビニル共重合体 [E-VA] が有するアセチル基をけん化反応によりヒドロキシル基に変換する方法等により得られるものである。エチレン/ピニルアルコール樹脂を構成する高分子が有するヒドロキシル基の量は、酢酸ピニルの共重合量及びけん化度によって、適宜、選択し得る。

上述のポリビニルアルコール樹脂は、ポリ酢酸ビニル樹脂を構成する高分子が有するアセチル基をけん化反応によりヒドロキシル基に変換する方法等により得られるものである。ポリビニルアルコール樹脂の性質は、重合度とけん化度とに依存することが多いが、本発明の積層体に使用し得るポリビニルアルコール樹脂は、上記重合度及びけん化度について特に限定されない。

上述の変性ポリオレフィン樹脂は、オレフィンと極性官能基含有共単量体との 重合体からなるものである。上記変性ポリオレフィン樹脂としては、例えば、高 圧重合法により得られるエチレン共重合体からなる樹脂、グラフト共重合により 得られるエチレン共重合体からなる樹脂等が挙げられる。上記高圧重合法により

得られるエチレン共重合体としては、例えば、エチレンと極性基含有共単量体とをラジカル共重合することにより得られるものが挙げられ、そのようなものとしては、例えば、エチレン/酢酸ビニル共重合体、エチレン/酢酸ビニル/不飽和カルボン酸共重合体、エチレン/エチルアクリレート共重合体、エチレン/メチルメタクリレート共重合体、エチレン/アクリル酸共重合体、エチレン/メタクリル酸共重合体、エチレン/アミノアルキルメタクリレート共重合体、エチレン/ピニルシラン共重合体、エチレン/グリシジルメタクリレート共重合体、エチレン/ピニルシラン共重合体、エチレン/グリシジルメタクリレート共重合体、エチレン/ヒドロキシエチルメタクリレート共重合体等が挙げられる。

10 上記グラフト共重合により得られるエチレン共重合体としては、ラジカル開始 剤存在下でポリエチレン又はエチレン共重合体と極性基含有共重合体とを反応さ せて得られるものが挙げられ、そのようなものとしては、例えば、エチレン/ビ ニルシラングラフト共重合体、エチレン/不飽和カルボン酸グラフト共重合体等 が挙げられる。

15 上記変性ポリオレフィン樹脂としては、エチレン/メタクリル酸共重合体を金属イオンにより架橋して得られるポリマー等の酸基を有する共重合体を金属イオンにより架橋して得られるポリマーからなるものであってもよい。

上記変性ポリオレフィン樹脂は、なかでも、接着性に優れる点で、エチレン/ 無水マレイン酸共重合体及び/又はエチレン/グリシジルメタクリレート共重合 体からなるものが好ましい。

上述のウレタン樹脂としては、熱可塑性ウレタンエラストマーからなるものが好ましく、上記熱可塑性ウレタンエラストマーとしては、ポリウレタンをハードセグメントとし、ポリオール及び/又はポリエステルをソフトセグメントとしたものが好ましく用いられる。上記ソフトセグメント成分のポリオールは、ポリカーボネート系ポリオールであってもよいし、エーテル系ポリオールであってもよい。上記ソフトセグメント成分のポリエステルとしては、例えばカプロラクトン系ポリエステル、アジペート系ポリエステル等が挙げられる。

なかでも、上記有機材料は、上記含フッ素成形体と溶融共押出し成形等の同時 多層成形による成形が比較的容易である点、並びに、接着性含フッ素エチレン性

20

25

重合体との親和性及び/又は接着性含フッ素エチレン性重合体との反応性がある 後述の部位を有する高分子からなるものである点で、ポリアミド樹脂、ポリエス テル樹脂、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリエーテルサルホ ン樹脂 [PES]、ポリスルホン樹脂、ウレタン樹脂、ポリフェニレンオキサイ ド樹脂 [PPO]、ポリエーテルイミド樹脂、ポリアセタール樹脂、ポリビニル アルコール樹脂、エチレン/ビニルアルコール樹脂及び/又は変性ポリオレフィ ン樹脂からなるものであることが好ましい。上記好ましい有機材料は、これらの うち1つ又は2つ以上からなるものであってよい。

上記有機材料は、接着性含フッ素エチレン性重合体等の本発明のフルオロポリマーとの親和性及び/又は上記フルオロポリマーとの反応性がある部位を有する高分子からなるものであることが好ましい。本明細書において、以下、上記「フルオロポリマーとの親和性及び/又は上記フルオロポリマーとの反応性がある部位」について、上記フルオロポリマーとして「接着性含フッ素エチレン性重合体」を挙げて説明するが、上記「フルオロポリマー」に関わる特徴は、以下の「接着性含フッ素エチレン性重合体」に関わる説明内容を含むものである。

本明細書において、上記「接着性含フッ素エチレン性重合体との親和性及び/ 又は接着性含フッ素エチレン性重合体との反応性がある部位」は、上述した接着 性部位の概念と同様に、上記接着性含フッ素エチレン性重合体との親和性及び/ 又は上記接着性含フッ素エチレン性重合体との反応性を有する基であれば、官能 基と通常称される基のみならず、エステル結合等の結合と通常称される基をも含 む概念である。上記接着性含フッ素エチレン性重合体との親和性及び/又は接着 性含フッ素エチレン性重合体との反応性がある部位としては特に限定されないが、 例えば、ヒドロキシル基、カーボネート基、アミノ基、アミド基、イミド基、メ ルカプト基、スルホン酸基、エポキシ基、エステル結合、カルボキシル基及び/ 又はイソシアネート基であることが好ましく、上記メルカプト基、スルホン酸基 及び/又はカルボキシル基は、塩を形成していてもよい。

上記カーボネート基及びアミド基としては、接着性部位について上述したものと同様のものが挙げられる。上記アミノ基、イミノ基等の窒素原子に結合する水 素原子は、例えばアルキル基等の炭化水素基により置換されていてもよい。 本発明の積層体のその他の層をなす金属材料としては、例えば、アルミニウム、 鉄、ニッケル、チタン、モリプデン、マグネシウム、マンガン、銅、銀、鉛、ク ロム、ベリリウム、タングステン、コバルト等の金属、これら金属の化合物、こ れら金属のうち2種以上からなる合金類等が挙げられる。

- 5 上記金属材料からなる層は、腐蝕防止等を目的として、金属表面への電気メッキ、溶融メッキ、クロマイジング、シリコナイジング、カロライジング、シェラダイジング、溶射等によるその他の金属による被覆、リン酸塩処理によるリン酸塩被膜の形成、陽極酸化や加熱酸化による金属酸化物の形成、電気化学的防食処理等を行ったものであってもよい。
- 10 上記金属材料からなる層は、上記含フッ素成形体層との接着性を向上させることを目的として、リン酸塩、硫酸、クロム酸、シュウ酸等による表面化成処理;サンドプラスト、ショットプラスト、グリッドプラスト、ホーニング、ペーパースクラッチ、ワイヤースクラッチ、ヘアーライン処理等の表面粗面化処理を行ったものであってもよい。
- 15 本発明の積層体のその他の層をなすガラス材料としては特に限定されず、例えば結晶化ガラス、発泡ガラス、熱線反射ガラス、熱線吸収ガラス、複層ガラス;タイル、セラミック、レンガ等の窯業系基材;天然石;コンクリート系基材又はセメント系基材;単結晶シリコン、多結晶シリコン、アモルファスシリコン等が挙げられる。
- 20 本発明の積層体を得る方法は、例えば、以下の方法であってもよい。
 - (A) 上記接着性含フッ素エチレン性重合体からなる粉体やペレット等を加熱して溶融させたものを用いて、上記その他の層をなす材料を予め成形して得られた成形体を被覆することより上記含フッ素成形体層と上記その他の層とを積層させる方法。
- 25 上記接着性含フッ素エチレン性重合体からなる粉体やペレット等の加熱は、上 記接着性含フッ素エチレン性重合体の融点以上の温度で行うものが好ましい。
 - (B) 上記その他の層をなす材料を予め成形して得られた成形体の外面及び/又は内面に、上記接着性含フッ素エチレン性重合体からなる粉体を粉体コーティングして、所定の温度と圧力で熱圧着することにより上記含フッ素成形体層と上記

10

20

25

その他の層とを積層させる方法。

- (C) 上記その他の層をなす材料を予め成形して得られた成形体と、上記接着性 含フッ素エチレン性重合体からなる粉体やペレット等を用いて予め成形して得られた含フッ素成形体とをプレス、ラミネート等の方法により接着して積層する方法。
- (D)接着性含フッ素エチレン性重合体を分散してなる分散体を上記その他の層をなす材料を予め成形して得られた成形体に塗布するか、又は、接着性含フッ素エチレン性重合体を分散してなる分散体に上記その他の層をなす材料を予め成形して得られた成形体を含浸することより、上記含フッ素成形体層と上記その他の層とを積層させる方法。上記分散体は、水性分散体であってもよいし、有機分散体であってもよい。

上記積層体を得る方法は、また、上記その他の層が上記有機材料からなるものである場合、上記方法(A)~(D)に加えて以下の方法であってもよい。

- (a) 上記接着性含フッ素エチレン性重合体からなる粉体やペレット等と上記有 15 機材料とを接触させ、加熱、加圧状態に保って共押出しする、いわゆる溶融共押 出し成形により積層させる方法。
 - (b) 上記接着性含フッ素エチレン性重合体からなる粉体やペレット等を用いて 予め成形して含フッ素成形体を得、上記有機材料を加熱して溶融させたものを用 いて上記含フッ素成形体を被覆することより上記含フッ素成形体層と上記その他 の層とを積層させる方法。
 - (c) 上記接着性含フッ素エチレン性重合体からなる粉体やペレット等を用いて 予め成形して得られた含フッ素成形体の外面及び/又は内面に、上記有機材料か らなる粉体を粉体コーティングして、所定の温度と圧力で熱圧着することより上 記含フッ素成形体層と上記その他の層とを積層させる方法。上記有機材料の加熱 は、上記有機材料の融点以上の温度で行うものが好ましい。

上記積層体は、接着性の点で、上記方法 (a) で説明した溶融共押出し成形により積層させたものであることが好ましい。

上記積層体を得る方法としては、上記その他の層が金属材料からなるものである場合、上記方法(A)~(D)に加えて、上記接着性含フッ素エチレン性重合

25

体からなる粉体やペレットを用いて予め成形して得られた含フッ素成形体上に、例えば化学蒸着法、物理蒸着法等の蒸着法を用いて上記その他の層を積層する方法が挙げられる。上記蒸着法としては特に限定されず、従来公知の方法を用いることができる。

5 本発明の積層体は、上述の各方法を用いて得られた層を、それぞれ、ライニングとして用いるものであってもよい。

上記積層体は、例えば接着性含フッ素エチレン性重合体からなる層であって上述の導電性フィラーを配合していてもよいものを内層とし、上記その他の層を外層とする少なくとも2層からなるもの(以下、積層体(P)ということがある。

10)であってよい。上記積層体(P)は、接着性含フッ素エチレン性重合体からなる層であって上記導電性フィラーを配合したものを内層とし、上記その他の層を外層とし、上記導電性フィラーを配合していない接着性含フッ素エチレン性重合体からなる層を中間層とする少なくとも3層からなるものであってもよいし、接着性含フッ素エチレン性重合体からなる層であって上記導電性フィラーを配合していてもよいものを内層及び外層とし、上記その他の層を中間層とする少なくとも3層からなるものであってもよい。

本発明の積層体は、上記含フッ素成形体からなるものであるので、上記含フッ 素成形体層と上記その他の層とが接している場合、これら両層間の層間接着性が 良好であり、耐ストレスクラック性、耐薬品性、薬液低透過性等にも優れたもの である。

本発明の含フッ素成形加工品は、上記含フッ素成形体又は上記積層体からなるものである。上記含フッ素成形加工品は、上記含フッ素成形体又は上記積層体を用いて加工して得られるものであれば特に限定されず、上記含フッ素成形体又は上記積層体を用いて得られるフィルム、シート、ホース又はチューブ等であってもよいし、上記含フッ素成形体又は上記積層体を用いて得られるライニング体等であってもよい。

上記含フッ素成形加工品としては特に限定されず、例えば以下に示すもの等が 挙げられる。

①ホース又はチューブ類;自動車燃料輸送チュープ若しくは自動車燃料輸送ホー

25

ス等の燃料輸送チュープ又は燃料輸送ホース、自動車のラジエータホース、エア コンホース、プレーキホース、電線被覆材、光ファイバー被覆材、飲料輸送チュ ープ、液体状食品輸送チュープ、薬液輸送チュープ、塗装用塗料配管チュープ、 原油・原油精製品輸送ホース

- 5 ②フィルム、シート類;ダイヤフラムポンプのダイヤフラムや各種パッキン等の高度の耐薬品性が要求される部材、農業用フィルム、薬液貯槽ライニング材、ローリー車等のタンク内面ライニング材、太陽電池カバー材等の耐候性カバー材、防火安全ガラスの難燃性飛散防止フィルム材、建築や家電分野で使用されるラミネート鋼板、屋根用として使用される透明性及び耐候性を有する部材
- 10 ③ボトル、容器、タンク類;薬液容器、特に耐薬品性と低コンタミネーション性を必要とする半導体用薬液容器、リターナブル性が要求される塗料容器、上記薬液貯槽ライニング材、タンク内面ライニング材等を用いて得られた薬液貯槽やタンク類

上記含フッ素成形加工品は、上記①、②及び③に例示の成形品に特に限定され ず、上記①、②又は③に例示の成形品の何れでもない複雑な形状を有するもので あってもよい。上記複雑な形状を有するものは、例えば上述の射出成形、金型等 を用いたインサート成形等の方法を用いることにより得ることができる。

本発明の含フッ素成形加工品は、上記オリゴマー含有率が上述した範囲内に低減されたフルオロポリマーからなるので、層間接着性及び耐ストレスクラック性に優れるものであり、上記フィルム、シート、ホース又はチューブに特に好適に用いることができる。

上記ホース又はチューブは、その一部又は全部が蛇腹状(corrugate d)又は渦巻き状(convoluted)であってもよい。このような形状のホース又はチューブを、以下、コルゲート状ホース又はコルゲート状チュープということがある。上記コルゲート状ホース又はコルゲート状チューブにおいて、

上記蛇腹状又は渦巻き状の形状は、通常、配管レイアウト設計の自由度や配管の取付け作業性及び使用時の衝撃吸収性を向上するため、ホース又はチューブに可とう性を与える目的で設けられる形状である。

本発明の積層体を含む含フッ素成形加工品は、層間接着性及び耐ストレスクラ

ック性に優れるものであるので、コルゲート状ホース又はコルゲート状チューブ であっても好適に用いることができる。

上記含フッ素成形加工品は、上記含フッ素成形体又は上記積層体からなるものであるので、上述したように、層間接着力、耐ストレスクラック性等に優れるものであり、塗装用塗料配管チューブ、飲料輸送チューブ、液体状食品輸送チューブ、薬液輸送チューブ、燃料輸送チューブ又は原油・原油精製品輸送ホースとして好適に用いることができる。

上記含フッ素成形加工品は、飲料輸送チュープと液体状食品輸送チュープとの両方の用途に用いるものであってよい。上記含フッ素成形加工品は、燃料輸送チューブと原油・原油精製品輸送ホースとの両方の用途に用いるものであってよい。

上記含フッ素成形加工品は、上記接着性含フッ素エチレン性重合体導電性組成物からなる層を内層とする場合、燃料輸送チューブとして特に好適に用いることができる。上記燃料輸送チュープとしては特に限定されず、例えば、自動車燃料輸送チューブ等が挙げられる。

15 上記含フッ素成形加工品は、多層プロー成形によりボトル、容器、タンク等とすることができる。上記含フッ素成形加工品は、また、多層射出成形することにより多層射出成形品とすることもできる。

本明細書において、上記薬液としては特に限定されず、例えば、酢酸、蟻酸、クレゾール、フェノール等の有機酸類;塩酸、硝酸、硫酸等の無機酸類;水酸化20 ナトリウム、水酸化カリウム等のアルカリ溶液;メタノール、エタノール等のアルコール類;エチレンジアミン、ジエチレントリアミン、エタノールアミン等のアミン類;ジメチルアセトアミド等のアミド類;酢酸エチル、酢酸プチル等のエステル類;これらのうち1種又は2種以上の混合物等の有機又は無機の液体が挙げられる。

25 本明細書において、上記燃料としては特に限定されず、例えば、ガソリン、石油、軽油、重油等の燃料油; Fuel C等の擬似燃料; これらとパーオキサイドやメタノール、エタノール等との混合燃料等が挙げられる。

本明細書において、上記原油・原油精製品は、原油及び/又は原油の精製により得られる原油精製品である。上記「原油の精製」は、単なる浄化であってもよ

いが、脱塩、蒸留、分解、改質、乾化等の一般に原油や石油の精製工程として認識される各種工程の全部又は一部をも含み得る概念である。上記原油・原油精製品としては特に限定されず、例えば、原油、ガソリン、石油、軽油、重油、灯油、ナフサ等が挙げられる。上記原油・原油精製品は、また、原油から得られるガスであってもよく、上記ガスとしては、例えばメタン等の炭化水素;上記炭化水素からなる天然ガス等が挙げられる。

発明を実施するための最良の形態

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例 10 のみに限定されるものではない。

なお、各項目の測定は、以下のように行った。

(1)接着性含フッ素エチレン性重合体中の抽出物の含有率

容積300m1の耐圧製オートクレーブに、一辺が2~3mmの接着性含フッ素エチレン性重合体の直方体ペレットを25.5g±0.1gで少数点以下4桁まで精秤して、170m1の1,1ージクロロフルオロエタン(以下、「HCFCー141b」ということがある。)とともに投入し、密栓して窒素置換を行った後、120℃の電気炉中で60時間静置した。その後、オートクレーブを取り出し、充分に冷却した後に蓋を開け、予め少数点以下4桁まで精秤した300m1の茄型フラスコに接着性含フッ素エチレン性重合体を分別して、抽出物を含むHCFC-141bを濃縮し、ほぼ全てのHCFC-141bを除去した後に、茄型フラスコを80℃の電気炉で更に24時間乾燥させ、抽出物質量(g)を測定し、下記式に従って、接着性含フッ素エチレン性重合体中の抽出物の含有率B1(質量%)を算出した。

25 B1 (質量%) = (C/D) × 100

C:抽出物質量(g)

15

20

D:初期投入接着性含フッ素エチレン性重合体質量 (g)

(2)接着性含フッ素エチレン性重合体中のオリゴマーの含有率

上記(1)で得られた抽出物をセンシュー科学社製超高温ゲルパーメーション クロマトグラフィー (GPC) 型式SSC-7100を用い、以下に示す条件で 測定した。

使用装置

カラム

: JORDI No. 15025

検出器

: R I

測定条件

カラム恒温槽温度 :180℃

検出器温度

:180℃

10 送液量 :0.8ml/分

標準検量線は数平均分子量が200万~1450までの標準ポリスチレンを同 じ条件で測定することにより作成した。

得られたピークを基に、ポリスチレン換算で分子量35000以下又は100 00以下のフラクションの面積を求め、接着性含フッ素エチレン性重合体中の分 子量35000以下又は10000以下のオリゴマーの含有率B。(質量%)を 下記式に従って算出した。

 B_{s} (質量%) $=B_{1} \times E$

E:上記高温GPC測定により得られたピーク面積に対するポリスチレン換算分 子量が35000以下又は10000以下の部分の面積の割合

20

15

(3) 耐ストレスクラック性

接着性含フッ素エチレン性重合体を、Tダイを装着したゅ30mmの単軸押出 し装置を用いて押出し成形により成形し、得られた200 µmの厚さのフィルム からJIS K6301 1号ダンベルを打ち抜いて試験サンプルとした。得ら れた試験サンプルをチャック間距離70mmとなるように延伸治具に挟み、10 ℃のトルエン:イソオクタン:メタノール=42.5:42.5:15容量%混 合液(以下、「CM15」という。)中で20mm/分の速度で延伸させた時に 目視によりクラックの発生が確認されたときの伸度(%)を記録し、これを耐ス トレスクラック性の指標とした。従って、上記伸度が大きい方が耐ストレスクラ

ック性が良好である。

(4) カーポネート基の個数の測定

接着性含フッ素エチレン性重合体の白色粉末又は接着性含フッ素エチレン性重合体の溶融押出しペレットの切断片を室温で圧縮成形し、厚さ $50\sim200\mu$ m のフィルムを作成した。このフィルムの赤外吸収スペクトル分析によってカーボネート基 $[-OC(=O)\ O-]$ のカルボニル基由来のピークが $1790\sim18$ $20\ cm^{-1}$ ($v_{c=o}$) の吸収波長に現れるので、その $v_{c=o}$ ピークの吸光度を測定し、下記式(1) により接着性含フッ素エチレン性重合体の主鎖炭素数106 個あたりのカーボネート基の個数Nを算出した。

 $N = 500 AW / \epsilon df \qquad (1)$

A:カーボネート基 (-OC (=O) O-) 由来の $\nu_{c=o}$ ピークの吸光度 ϵ :カーボネート基 (-OC (=O) O-) 由来の $\nu_{c=o}$ ピークのモル吸光度係 数。モデル化合物から $\epsilon=1$ 7 0 ($1\cdot c$ m $^{-1}\cdot m$ o 1^{-1}) とした。

15 W:接着性含フッ素エチレン性重合体の組成から計算される単量体単位の平均分 子量

d:フィルムの密度 (g/cm³)

f:フィルムの厚さ(mm)

なお、赤外吸収スペクトル分析は、Perkin-Elmer FTIRスペ20 クトロメーター1760X (パーキンエルマー社製)を用いて40回スキャンした。得られたIRスペクトルをPerkin-Elmer Spectrum for windows Ver. 1.4Cにて自動でベースラインを判定させ、1790~1820cm⁻¹のピークの吸光度を測定した。なお、フィルムの厚さはマイクロメーターにて測定した。

25

10

(5) カルボキシル基の個数の測定

上記(4)と同様にして得られたフィルムの赤外スペクトル分析により、カルボキシル基 [-C (=O) OH] のカルボニル基由来のピークが $1760 \sim 180$ $0~c~m^{-1}$ $(\nu_{c=o})$ の吸収波長に現れるので、その $\nu_{c=o}$ ピークの吸光度を測定

した。カルボキシル基の $\nu_{c=o}$ ピークのモル吸光度係数をモデル化合物により ϵ = 5 3 0 (1 · c m⁻¹ · m o 1 ⁻¹) とした以外は、上記式 (1) を用いて上述 の (4) カーボネート基の個数の測定と同様の方法でカルボキシル基の個数を算出した。

5

(6) アミド基の個数の測定

上記(4)と同様にして得られたフィルムの赤外スペクトル分析により、アミド 基 $[-C\ (=O)\ NH_2]$ のカルボニル基由来のピークが $1\,7\,4\,0\sim1\,8\,0\,0\,c$ $m-1\ (\nu_{c=o})$ の吸収波長に現れるので、その $\nu_{c=o}$ ピークの吸光度を測定した。アミド基の $\nu_{c=o}$ ピークのモル吸光度係数をモデル化合物により $\epsilon=9\,4\,0$ $(1\cdot c\,m^{-1}\cdot m\,o\,1^{-1})$ とした以外は、上記式(1)を用いて上述の(4)カーボネート基の個数の測定と同様の方法でアミド基の個数を測定した。

(7) - C (= O) F基の個数の測定

上記(4)と同様にして得られたフィルムの赤外スペクトル分析により、-C(=O) F基のカルボニル基由来のピークが $1875\sim1890$ c m^{-1} ($\nu_{c=o}$)の吸収波長に現れるので、その $\nu_{c=o}$ ピークの吸光度を測定した。-C (=O) F基の $\nu_{c=o}$ ピークのモル吸光度係数をモデル化合物により $\varepsilon=600$ ($1\cdot c$ $m^{-1}\cdot mo\ 1^{-1}$) とした以外は、上記式 (1)を用いて上述の (4)カーボネ -ト基の個数の測定と同様にして-C (=O) F基の個数を測定した。

(8) その他のカルボニル基の個数の測定

上記(4)と同様にして得られたフィルムの赤外スペクトル分析により、ホルミル基、エステル結合、酸無水物結合、イソシアネート結合、イミド基、ウレタン結合、カルパモイル基、カルパモイルオキシ基、ウレイド基、オキサモイル基等の上記(4)~(7)の方法で測定し得る基以外のその他のカルボニル基の個数を測定した。上記その他のカルボニル基に由来する $\nu_{c=o}$ ピークのモル吸光度係数をモデル化合物により $\epsilon=600$ ($1\cdot cm^{-1}\cdot mo1^{-1}$)とした以外は、上記式(1)を用いて上述の(4)カーボネート基の個数の測定と同様にして上

記その他のカルボニル基の個数を測定した。

(9) 水酸基の個数の測定

上記(4)と同様にして得られたフィルムの赤外スペクトル分析により、水酸基 [-OH] 由来のピークが $3630\sim3660\,\mathrm{cm}^{-1}$ ($\nu_{c=o}$) の吸収波長に現れるので、その ν_{OH} ピークの吸光度を測定した。水酸基の ν_{OH} ピークのモル吸光度係数をモデル化合物により $\epsilon=104$ ($1\cdot\mathrm{cm}^{-1}\cdot\mathrm{mo}$) とした以外は、上記式(1)を用いて上述の(4)カーボネート基の個数の測定と同様にして水酸基の個数を測定した。

10

(10) 融点 (Tm) の測定

セイコー型示差走査熱量計 [DSC] を用い、10℃/分の速度で昇温したと きの融解ピークを記録し、極大値に対応する温度を融点 (Tm) とした。

- 15 (11)接着性含フッ素エチレン性重合体の組成の測定19F-NMR分析により測定した。
 - (12) メルトフローレート (MFR) の測定

メルトインデクサー(東洋精機製作所社製)を用い、各温度、5kg荷重下で 20 直径2mm、長さ8mmのノズルから単位時間(10分間)あたりに流出するポ リマーの質量(g)を測定した。

(13) 多層チュープ層間接着強度

チューブから1cm幅のテストピースを切り取り、テンシロン万能試験機にて、 25 25mm/分の速度で180°剥離試験を行い、伸び量-引張強度グラフにおけ る極大5点平均を層間接着強度 (N/cm) として求めた。

(14) 表面抵抗値の測定

接着性含フッ素エチレン性重合体をメルトインデクサー(東洋精機社製)を用

いて、200 $^{\circ}$ $^{\circ$

多層チュープの表面抵抗値は、SAE J2260に準拠して測定した。

ポリアミド樹脂についての分析は、以下のようにして行った。

10 (15) アミン価の測定

ポリアミド樹脂1gをm-クレゾール50mlに加熱溶解し、これを1/10規定p-トルエンスルホン酸水溶液を用いて、チモールブルーを指示薬とし滴定し、ポリアミド106gに存在するアミノ基量を求めた。

15 (16)酸価の測定

ポリアミド樹脂1gをベンジルアルコール50m1に加熱溶解し、これを1/30規定水酸化ナトリウム/ベンジルアルコール溶液を用いて、フェノールフタレインを指示薬として滴定し、ポリアミド106gに存在するカルボキシル基の量を求めた。

20

(17) 相対粘度の測定

JIS K 6810に準じて98%硫酸100mlにポリアミド樹脂1gを 溶解し、ウベローデ粘度管を用いて25℃で測定した。

25 合成例 1 カーボネート基を有する接着性含フッ素エチレン性重合体 (F-A)の合成

1280L容積のオートクレープに蒸留水380Lを投入し、充分に窒素置換を行った後に、パーフルオロシクロプタン84kg、ヘキサフルオロプロピレン166kg及びパーフルオロ(1, 1, 5-トリハイドロ-1-ペンテン)0.

10

15

20

5 k gを仕込み、系内を26℃、攪拌速度200rpmに保った。その後、テトラフルオロエチレンを0.86MPaまで圧入し、更にエチレンを0.92MPaまで圧入し、系内を35℃にした後、ジーnープロピルパーオキシジカーボネートの50%メタノール溶液8.5 k gを投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン:エチレン:ヘキサフルオロプロピレン=41.0:44.0:15.0モル%の混合ガスを連続して供給し、系内圧力を1.15MPaに保った。次いで、合計で2.5 k gのパーフルオロ(1,1,5ートリハイドロー1ーペンテン)を連続して仕込み、攪拌を20時間継続した。放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、200 k g の粉末を得た。

次に、得られた粉末を100部、及び、1,1ージクロロー1ーフルオロエタン [HCFC-141b] 700部をオートクレープに投入し、120℃で40時間攪拌した。その後、攪拌を停止し、オートクレープの下部より、HCFC-141bを抜き出した。オートクレープの上部より新たにHCFC-141bを700部圧入し、再度攪拌して上記粉末をHCFC-141bで洗浄し、下部よりHCFC-141bを抜き出して粉体を回収した。回収した粉体を乾燥することにより接着性含フッ素エチレン性重合体の粉末を得た。

次に、得られた接着性含フッ素エチレン性重合体の粉末を、減圧装置を備えたベント機構を有する φ 4 0 mm同方向 2 軸押出し機(池貝鉄工所社製、 P C M − 4 5)を用い、表 1 に示す条件で溶融混練りを行い、更に、得られたペレットを 1 3 0 ℃のオープンで 4 8 時間加熱して接着性含フッ素エチレン性重合体 (F − A) のペレットを得た。上述した各項目について、分析結果を表 2 に示す。

合成例 2 カーボネート基を有する接着性含フッ素エチレン性重合体 (F-B) 25 の合成

合成例1で用いたものと同様のオートクレープに蒸留水380Lを投入し、充分に窒素置換を行った後、パーフルオロシクロプタン166kg、ヘキサフルオロプロピレン84kg及びパーフルオロ(1,1,5ートリハイドロー1ーペンテン)0.3kgを仕込み、系内を35℃、攪拌速度200rpmに保った。そ

WO 2004/058833

の後、テトラフルオロエチレンを 0.88MP a まで圧入し、更にエチレンを 0.94MP a まで圧入し、ジーnープロピルパーオキシジカーボネートの 50%メタノール溶液 9.0 k g を投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン:エチレン:ヘキサフルオロプロピレン=46.0:44.0:10.0モル%の混合ガスを連続して供給し、系内圧力を 0.94MP a に保った。次いで、合計で 2.7 k g のパーフルオロ(1,1,5ートリハイドロー1ーペンテン)を連続して仕込み、合成例1と同様にHCFCー141bを用いて抽出処理を行って 200k g の接着性含フッ素エチレン性重合体の粉末を得た。

10 得られた接着性含フッ素エチレン性重合体の粉末を用いて、表1に表した溶融 混練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いる ことにより、接着性含フッ素エチレン性重合体 (F-B) のペレットを得た。上 述した各項目について、分析結果を表2に示す。

15 合成例 3 カーボネート基を有する接着性含フッ素エチレン性重合体 (F-C) の合成

合成例1で用いたものと同様のオートクレープに蒸留水380Lを投入し、充分に窒素置換を行った後、パーフルオロシクロプタン230kg及びパーフルオロ(1,1,5ートリハイドロー1ーペンテン)0.9kgを仕込み、系内を20℃、攪拌速度200rpmに保った。その後、テトラフルオロエチレンを0.78MPaまで圧入し、更にエチレンを0.89MPaまで圧入し、系内を35℃にした後、シクロヘキサンを1.1kgを仕込み、ジーnープロピルパーオキシジカーボネートの50%メタノール溶液1.6kgを投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン:エチレン25=57:43モル%の混合ガスを連続して供給し、系内圧力を1.20MPaに保った。次いで、合計で6.2kgのパーフルオロ(1,1,5ートリハイドロー1ーペンテン)を連続して仕込み、合成例1と同様の方法で200kgの接着性含フッ素エチレン性重合体の粉末を得た。

得られた接着性含フッ素エチレン性重合体の粉末を用いて、表1に示す溶融混

15

20

練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いることにより、接着性含フッ素エチレン性重合体 (F-C) のペレットを得た。上述した各項目について、分析結果を表2に示す。

5 合成例4 カーボネート基を有する接着性含フッ素エチレン性重合体 (F-D) の合成

合成例1で用いたものと同様のオートクレーブに蒸留水380Lを投入し、充分に窒素置換を行った後、パーフルオロシクロブタン304kg及びパーフルオロメチルピニルエーテル [CF₂=CFOCF₃] 42.8kgを仕込み、系内を35℃、攪拌速度200rpmに保った。その後、テトラフルオロエチレンを0.70MPaまで圧入し、ジーnープロピルパーオキシジカーボネートの50%メタノール溶液3.0kgを投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン:パーフルオロメチルピニルエーテル=90.7:9.3モル%の混合ガスを連続して供給し、系内圧力を0.70MPaに保ち、合成例1と同様の方法で180kgの含フッ素エチレン性重合体の粉末を得た。

得られた含フッ素エチレン性重合体の粉末を用いて、表1に示す溶融混練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いることにより、接着性含フッ素エチレン性重合体 (F-D) のペレットを得た。上述した各項目について、分析結果を表2に示す。

合成例 5 カーボネート基を有する接着性含フッ素エチレン性重合体 (F-E) の合成

合成例3で得られた粉末100部、及び、1,1-ジクロロ-1-フルオロエ25 タン [HCFC-141b] 700部をオートクレープに投入し、120℃で40時間攪拌した。その後、攪拌を停止し、オートクレープの下部より、HCFC-141b溶液のみを抜き出した。オートクレープの上部より新たにHCFC-141bを700部圧入し、再度攪拌して粉末をHCFC-141bで洗浄し、下部よりHCFC-141bを抜き出して粉末を回収して乾燥させた。

乾燥後の接着性含フッ素エチレン性重合体の粉末を用いて、表1に示す溶融混練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いることにより、接着性含フッ素エチレン性重合体 (F-E) のペレットを得た。上述した各項目について、分析結果を表2に示す。

5

合成例 6 カーボネート基を有する接着性含フッ素エチレン性重合体 (F-F) の合成

合成例4で得られた含フッ素エチレン性重合体の粉末に、導電性フィラーとしてアセチレンプラックを、含フッ素エチレン性重合体の粉末:アセチレンプラック=90:10(質量比)の割合でドライブレンドし、表1に示す溶融混練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いて、接着性含フッ素エチレン性重合体(F-F)のペレットを得た。上述した各項目について、分析結果を表2に示す。得られた接着性含フッ素エチレン性重合体(F-F)のペレットを用いて、上述の表面抵抗値の測定方法に従って測定した表面抵抗値は10⁵Q・cm/cmであった。

合成例7 カルボキシル基を有する接着性含フッ素エチレン性重合体 (F-G) の合成

合成例3で得られた含フッ素エチレン性重合体の粉末を用いて、表1に示す溶20 融混練り条件とペレット加熱条件で合成例1と同様の押出し機を用いることにより接着性含フッ素エチレン性重合体のペレットを得た。得られた接着性含フッ素エチレン性重合体のペレットに対して、スチームを導入することができる加湿オープンを用いて230℃で3時間熱処理を行い、接着性含フッ素エチレン性重合体(F-G)を得た。上述した各項目について、分析結果を表2に示す。

25

15

合成例8 アミド基を有する接着性含フッ素エチレン性重合体 (F-H) の合成合成例1で用いたものと同様のオートクレーブに蒸留水380Lを投入し、充分に窒素置換を行った後、パーフルオロシクロプタン210kg、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)0.5kgを仕込み、系内を35

℃、攪拌速度200rpmに保った。その後に、テトラフルオロエチレンで0.71MPaまで圧入し、更に引き続いてエチレンで0.79MPaまで圧入し、その後、ジーnープロピルパーオキシジカーボネートの50%メタノール溶液5kgを投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン:エチレン=57:43モル%の混合ガスを連続して供給し、系内圧力を0.79MPaに保った。重合反応中にテトラフルオロエチレン:エチレンの混合ガスを40kg追加した時点でシクロへキサンを300g仕込み、また、パーフルオロ(1,1,5ートリハイドロー1ーペンテン)についても合計量6.2kgを連続して仕込み、攪拌を18時間継続した。放圧して大気10圧に戻した後、28%アンモニア水10kgを投入し系内を80℃に保ち5時間反応させた。生成物を水洗、乾燥して200kgの接着性含フッ素エチレン性重合体の粉末を得た。

得られた接着性含フッ素エチレン性重合体の粉末を用いて、表1に示す溶融混練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いることにより、接着性含フッ素エチレン性重合体(F-H)のペレットを得た。上述した各項目について、分析結果を表2に示す。

合成例 9 ハロゲノホルミル基を有する接着性含フッ素エチレン性重合体 (F-I) の合成

20 合成例8において、28%アンモニア水を投入しない以外は同様の操作を行って、200kgの粉末を得た。

得られた粉末を用いて、表1に示す溶融混練り条件とペレット加熱条件にした 以外は合成例1と同様の押出し機を用いることにより、接着性含フッ素エチレン 性重合体のペレット200kgを得た。

25 次に、得られた接着性含フッ素エチレン性重合体のペレットに対して減圧乾燥機中で230℃、3時間熱処理を行い、接着性含フッ素エチレン性重合体(F-I)を得た。上述した各項目について、分析を行った。分析結果を表2に示す。

合成例10 水酸基を有する接着性含フッ素エチレン性重合体 (F-J) の合成

20

25

1280 L 容積のオートクレープに蒸留水365 Lを投入し、充分に窒素置換 を行った後に、パーフルオロシクロブタン300kg、パーフルオロプロピルビ ニルエーテル [CF₂=CFOCF₂CF₂CF₃] 29.6kg、及び、0.5 2kgのCH₂=CFCF₂OCF (CF₃) CF₂OCF (CF₃) CH₂OHを 仕込み、更に、メタノールを35kg仕込んだ後、系内を36℃、攪拌速度20 0 r p m に保った。その後、テトラフルオロエチレンを 0. 8 3 M P a まで圧入 した後、ジーnープロピルパーオキシジカーボネートの50%メタノール溶液0. 7 k gを投入して重合を開始した。重合の進行と共に系内圧力が低下するので、 テトラフルオロエチレンガスを連続して供給し、系内圧力を0.83MPaに保 った。そして、テトラフルオロエチレンガスを15kg追加する毎にパーフルオ 10 ロプロピルビニルエーテル 0.81 kg 及び 0.52 kg の $\text{CH}_2 = \text{CFCF}_2$ OCF (CF₃) CF₂OCF (CF₃) CH₂OHを仕込み27時間、攪拌を継 続した。放圧して大気圧に戻した後、28%アンモニア水20kgを投入し系内 を80℃に保ち5時間反応させた。生成物を水洗、乾燥して300kgの含フッ 素エチレン性重合体の粉末を得た。 15

次に、得られた含フッ素エチレン性重合体の粉末を100部、及び、1,1ージクロロー1ーフルオロエタン [HCFC-141b] 700部をオートクレープに投入し、120℃で40時間攪拌した。その後、攪拌を停止し、オートクレープの下部より、HCFC-141b溶液のみを抜き出した。オートクレープの上部より新たにHCFC-141bを700部圧入し、再度攪拌して粉末をHCFC-141bで洗浄し、下部よりHCFC-141bを抜き出して粉末を回収し、乾燥して接着性含フッ素エチレン性重合体の粉末を得た。

得られた接着性含フッ素エチレン性重合体の粉末を用いて、表1に示す溶融混練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いることにより、接着性含フッ素エチレン性重合体 (F-J) のペレットを得た。上述した各項目について、分析結果を表2に示す。

合成例11 水酸基を有する接着性含フッ素エチレン性重合体 (F-K) の合成 1280L容積のオートクレープに蒸留水340Lを投入し、充分に窒素置換 WO 2004/058833

を行った後に、パーフルオロシクロブタン280kg、ヘキサフルオロプロピレン43kg、及び、0.6kgのCH₂=CFCF₂OCF(CF₃)CF₂OCF(CF₃)CF₂OCF(CF₃)CF₂OCF(CF₃)CH₂OHを仕込み、系内を37℃、攪拌速度200rpmに保った。その後、テトラフルオロエチレンを0.61MPaまで圧入し、次いでフッ化ビニリデンを1.18まで圧入した後、イソプチルパーオキサイドを25質量%含有するジクロロペンタフルオロプロパン(HCFC-225)溶液2.0kgを投入して重合反応を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン:フッ化ビニリデン:ヘキサフルオロプロピレン=42.0:52.5:5.5モル%の混合ガスを連続して供給し、系内圧力を1.18MPaに保った。そして、混合ガスを15kg追加する毎に0.5kgのCH₂=CFCF₂OCF(CF₃)CF₂OCF(CF₃)CH₂OHを仕込み、また5時間毎にイソプチルパーオキサイド0.5kgを追加し、攪拌を38時間継続した。放圧して系内を大気圧に戻した後、生成物を水洗し200kgの含フッ素エチレン性重合体の粉末を得た。

15 次に、得られた含フッ素エチレン性重合体の粉末100部、及び、1,1-ジクロロー1-フルオロエタン [HCFC-141b] 700部をオートクレープに投入し、80℃で40時間攪拌した。その後、攪拌を停止し、オートクレープの下部より、HCFC-141bを抜き出した。オートクレープの上部より新たにHCFC-141bを700部圧入し、再度攪拌して粉末をHCFC-141bで洗浄し、下部よりHCFC-141bを抜き出して粉末を回収し、乾燥して接着性含フッ素エチレン性重合体の粉末を得た。

得られた接着性含フッ素エチレン性重合体の粉末を用いて、表1に示す溶融混練り条件とペレット加熱条件にした以外は合成例1と同様の押出し機を用いることにより、接着性含フッ素エチレン性重合体 (F-K) のペレットを得た。上述した各項目について、分析結果を表2に示す。

比較合成例1

25

合成例2において、放圧して大気圧に戻し、反応生成物を水洗、乾燥した後に HCFC-141bによる抽出処理を行わない以外は合成例2と同様の方法で含 フッ素エチレン性重合体の粉末を得た。

得られた粉末を減圧装置およびベント機構を有さない φ 5 0 mm 単軸押出し機 (池貝鉄工所社製)を用い、表 1 に示した溶融混練り条件とペレット加熱条件で含フッ素エチレン性重合体のペレットを得た。上述した各項目について、分析結果を表 2 に示す。

比較合成例 2

5

比較合成例1において、放圧して大気圧に戻した後、28%アンモニア水10 kgを投入し系内を80℃に保ち5時間反応を行った。得られた生成物を水洗、 10 乾燥して200kgの含フッ素エチレン性重合体の粉末を得た。得られた含フッ 素エチレン性重合体の粉末を比較合成例1と同様の押出し機を用い、表1に示し た溶融混練り条件とペレット加熱条件で含フッ素エチレン性重合体のペレットを 得た。上述した各項目について、分析結果を表2に示す。

15 比較合成例 3

合成例3で用いたものと同様のオートクレープに蒸留水380Lを投入し、充分に窒素置換を行った後、パーフルオロシクロプタン230kg、パーフルオロ(1,1,5ートリハイドロー1ーペンテン)0.9kgを仕込み、系内を20℃、攪拌速度200rpmに保った。その後、テトラフルオロエチレンを0.7 20 8MPaになるまで圧入し、更にエチレンを0.89MPaになるまで圧入した。系内を35℃にし、その後、シクロヘキサンを2.5kgを仕込み、ジーnープロピルパーオキシジカーボネートの50%メタノール溶液2.1kgを投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン:エチレン=57:43モル%の混合ガスを連続して供給し、系内圧力を25 1.28MPaに保った。そして、パーフルオロ(1,1,5ートリハイドロー1ーペンテン)についても合計で7.8kgを連続して仕込み、合成例3と同様にして250kgの含フッ素エチレン性重合体の粉末を得た。

得られた含フッ素エチレン性重合体の粉末を比較合成例1と同様の押出し機を 用い、表1に示した溶融混練り条件とペレット加熱条件で含フッ素エチレン性重 合体のペレットを得た。上述した各項目について、分析結果を表 2 に示す。

比較合成例 4

合成例11において、放圧して大気圧に戻し、反応生成物を水洗、乾燥した後 5 にHCFC-141bによる抽出処理を行わない以外は合成例11と同様にして 含フッ素エチレン性重合体の粉末を得た。

得られた含フッ素エチレン性重合体の粉末を比較合成例1と同様の押出し機を用い、表1に示した溶融混練り条件とペレット加熱条件で含フッ素エチレン性重合体のペレットを得た。上述した各項目について、分析結果を表2に示す。

10

比較合成例 5

合成例1において、放圧して大気圧に戻し、反応生成物を水洗、乾燥した後に HCFC-141bによる抽出処理を行わない以外は合成例1と同様にして含フ ツ素エチレン性重合体の粉末を得た。

15 得られた含フッ素エチレン性重合体の粉末を比較合成例1と同様の押出し機を 用い、表1に示した溶融混練り条件とペレット加熱条件で含フッ素エチレン性重 合体のペレットを得た。上述した各項目について、分析結果を表2に示す。 表 1

	表 1	<u>. </u>																			
		1熱条件	1	建 (25)		48	24	15	15	15	15	15	15	24	24	48	8	8	8	8	00
5		よつシア 哲総条件) 	道。 関(C)	,	130	170	200	200	200	200	200	200	200	260	100	80	80	80	80	80
			1	人とで滅行形している。)	66.5	66.5	66.5	66.5	66.5	68.5	66.5	66.5	66.5	66.5	66.5					
10			77113-	回電数	(rpm)	100	100	100	100	100	70	100	100	100	100	100	30	30	30	30	30
				a	ပ္စ	230.	255	290	290	290	290	320	320	290	360	230	255	255	290	230	230
15		<u> </u>		Q.	ပ	230	255	285	285	285	285	320	320	282	360	230	250	250	285	230	230
		溶融混練り条件		92	ပူ	230	255	285	285	285	285	320	320	285	098	230		/			
		湿 換	ツランダー 追 展	90	ပ္	220	240	285	285	285	285	310	310	285	360	220					
20			シンジン	2	ပ	220	240	280	280	280	280	310	310	280	360	220	250	250	280	230	230
				ន	ပ္စ	220	230	280	280	280	280	310	310	280	360	220	250	250	280	220	230
25				22	ပွ	210	210	265	285	265	265	280	280	265	330	210	230	230	270	210	210
				ၓ	ပ္စ	150	170	230	230	230	230	230	230	230	280	130	170	170	230	130	150
						合成例1	合成例2	合成例3	合成例4	合成例5	合成例6	合成例7	合成例8	合成例9	合成例10	合成例11	北較合成例1	北較合成例2	北較合成例3	北較合成例4	北較合成例5

なお、表 2 において、TFE は、テトラフルオロエチレンを表し、E t は、エチレンを表し、V d F は、フッ化ビニリデンを表し、HF P は、ヘキサフルオロプロピレンを表し、HF -P e は、パーフルオロ(1, 1, 5 - トリハイドロー1 - ペンテン)を表し、PMVE は、パーフルオロメチルビニルエーテルを表し、PVE は、パーフルオロプロピルビニルエーテルを表し、AH は、 $CH_2 = CFCF_2OCF(CF_3)CF_2OCF(CF_3)CH_2OH$ を表す。

==	റ
-AF	-/
~~	

	<i>3</i> C 2																		
	-0(=0)₽∰		2	2	3	3	3	2	2	QN	41	QN	QN	2	9	2	8	89	
	推定	盤使業	Q	QN	QN	B	ND	QN	QN	65	QN	12	ND	QN	62	S	9	2	
5	木融等	四人1×10 ⁶ 倍主敛歧来	Q	QN	QN	Q	QN	QN	QN	QN	Q	202	212	Q.	9	9	207	£	
	社がキッル番		QN	QN	QN	QN	QN	QN	23	QN	3	QN	Q	Q	2	9	9	2	
	10 to		180	230	75	230	99	192	. 10	8	12	9	Q.	350	9	88	9	190	
10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	分子量10000 以下	0.013	0.010	0.008	0.015	0.004	0.009	0.005	0.002	0.006	0.012	0.013	0.09	90.0	0.07	0.10	0.11	
•	4517~	分子量35000 分子量10000 以下 以下	0.14	0,13	0.09	0.15	0.05	0.12	70'0	0.04	0.08	0.14	0.21	1.31	1.23	0.98	1.53	1.62	
	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	新	0.62	0.51	0.23	2.2	0.09	1.9	0.18	0.17	0.22	0.21	0.82	2.32	2.18	1.26	3.46	2.82	
15	\$#\70-\-\ (MFR)	g/10分 (現)定温度)	12 (230°C)	17 (285°C)	18 (297°C)	29 (297°C)	18 (297°C)	15 (297°C)	18 (297°C)	16 (297°C)	14 (297°C)	21 (330°C)	18 (230°C)	17 (266°C)	15 (265°C)	26 (297°C)	22 (230°C)	16 (230°C)	
	# # # # # # # # # # # # # # # # # # #	ဍ	165	198	254	248	254	248	254	258	258	290	135	198	198	254	135	165	
		₹	_	-)	1	1	-	1	-	_	0.7	0.7	_	-	-	0.7	1	
		PPVE	-	-	1	-	-,	-	1	ı	1	1.8	-	1	1	ı	1	1	
	ş	PMVE	-	ı	1	8.3	-	9.3	1	1	1	1	1	1	1	3	ı	j	†##
20	体組成(モル%)	# 라	0.5	0.5	1.2	,	1.2	1	1.2	1.2	1.2	_	_	0.5	0.5	1.2	-	0.5	京大田 大田子
	単条	Ę.	14.0	9.5	~	,	•	,	1	1	1	1	5.5	9.5	9.5	1	5.5	14.0	
	-	νογ	,)	J	-	1	ı	1	1	1	-	51.9	1	-	•	51.9	1	展J+LN
	.	ži	44.5	43.0	41.8	1	41.8	ı	41.8	42.0	42.0	1	1	43.0	43.0	41.7	1	44.5	
		Ħ	41.0	47.0	57.0	90.7	57.0	90.7	57.0	56.8	56.8	97.5	41.9	47.0	47.0	57.1	41.9	41.0	1. T
25	放着体のフルボ	Hヤフンル 画金谷	F-A	F-8	F-0	Q-3	3-4	1 -4	Ð-3	F-H	F-I	F-J	F-K						数中、NDI生「格法など」。(少後)
			合成例1	合成例2	各成例3	会成例4	会成例8	合成例8	合成例7	会成例8	合成例9	क्रस्टिमा व	合成例11	比較 合成例1	比較 合成例2	比較 合成例3	比較 合成例4	比較 合成例5	CN THE

發中、NDIは「検出されず」を表し、NTIは「測定不可」を表す。

減圧装置を備えたベント機構を有する押出し機を用いて押し出すことより得られた合成例1~10の接着性含フッ素エチレン性重合体は、上記ベント機構を有さない押出し機を用いて押し出すことより得られた比較合成例の含フッ素エチレン性重合体に比べて、何れもオリゴマーの含有率が低下していた。上記減圧装置を備えたベント機構を有する押出機を用いる以外に、更に、加熱しながらオリゴマーと親和性を有する溶剤を用いてオリゴマーを抽出することより得られた合成例5の接着性含フッ素エチレン性重合体は、上記溶剤を用いた抽出を行わなかった合成例3の接着性含フッ素エチレン性重合体に比べて、オリゴマー含有率がより低下していた。

10

合成例12 ポリアミドPA-A(ナイロン12)の合成

オートクレーブにωーラウロラクタム20kg、蒸留水1kgを仕込み、窒素置換後に昇温し、280℃に到達した後にこの温度で系内を3.2MPaに5時間保ち、その後に徐々に放圧した。この間、ωーラウロラクタムの水への溶解、溶融を待って攪拌を行った。そして、系が常圧に戻った後に、ステアリン酸100gを添加し、窒素気流下、260℃で更に5時間攪拌を続け、その後に払出し、水冷後、ペレタイザーにて白色のペレット(ポリアミドPAーA)を得た。分析の結果、このペレットの融点は178℃、酸価は28当量/106g、アミン価は6.8当量/106g、相対粘度は3.0であった。

20

合成例13 ポリアミドPA-B (ナイロン11) の合成

オートクレーブに粉末状の11-アミノウンデカン酸20kg、蒸留水5kg、30%リン酸水溶液100gを仕込み、窒素置換後に密閉状態で昇温し、120℃で2時間保ち、その後更に昇温して系内を220℃、0.4MPaに2時間保25 ち、その後に徐々に放圧した。この間、11-アミノウンデカン酸の水への溶解、溶融を待って攪拌を行った。そして、系が常圧に戻った後に、ステアリン酸110gを添加し、窒素気流下、265℃で更に4時間攪拌を続け、その後に払出し、水冷後、ペレタイザーにて白色のペレット(ポリアミドPA-B)を得た。分析の結果を表3に示す。

合成例14 ポリアミドPA-C (ナイロン6) の合成

オートクレープに ε ーカプロラクタム20 kg、蒸留水2 kgを仕込み、窒素置換後に昇温し、120 Cで保持して ε ーカプロラクタムの水への溶解及び融解を待って攪拌を開始し、更に220 Cまで昇温し、この温度で系内を0.4 MPaに5 時間保った。その後、系を徐々に放圧しながら250 Cまで昇温した。そして、系が常圧に戻った後に安息臭酸75 gを仕込み、窒素気流下、この温度で更に3 時間攪拌を続け、払出し、水冷後、ペレタイザーにて白色のペレットを得た。次に、このペレットを80 Cの蒸留水に12 時間浸漬してモノマー等の低分子量物を抽出した。そして、ペレットを充分に乾燥し、ポリアミドPA-Cを得た。乾燥後のペレット(ポリアミドPA-C)の分析結果を表3 に示す。

合成例15 ポリアミドPA-D (ナイロン6) の合成

オートクレープに ε ーカプロラクタム 2 0 kg、蒸留水 2 kgを仕込み、窒素 置換後に昇温し、1 2 0 ℃で保持して ε ーカプロラクタムの水への溶解及び融解 を待って攪拌を開始し、更に 2 2 0 ℃まで昇温し、この温度で系内を 0.3 MP a に 5 時間保った。その後、系を徐々に放圧しながら 2 6 0 ℃まで昇温した。そ して、系が常圧に戻った後に安息香酸 4 8gを仕込み、窒素気流下、この温度で 更に 5 時間攪拌を続け、払出し、水冷後、ペレタイザーにて白色のペレットを得 た。次に、このペレットを 8 0 ℃の蒸留水に 1 2 時間浸漬してモノマー等の低分 子量物を抽出した。そして、ペレットを充分に乾燥し、ポリアミドPAーDを得 た。乾燥後のペレット(ポリアミドPAーD)の分析結果を表 3 に示す。

表 3

25

	ポリアミド	アミン価	酸価	融点	404161
	11.77.21	(当盘)	/10 ⁶ g)	(°C)	相対粘度
合成例12	PA-A	6. 8	28	178	3. 0
合成例13	PA-B	8. 4	33	186	2. 9
合成例14	PA-C	7. 2	62	224	2. 6
合成例15	PA-D	7. 1	40	224	3. 4

実施例1

Tダイを装着したφ30mmの単軸押出し装置を用いて、接着性含フッ素エチレン性重合体 (F-A) をフィルム成形し、幅15cm、厚さ200μmのフィルムを得た。このフィルムを用いて、上述した方法でCM15液中での耐ストレスクラック性を測定した。成形条件及び評価結果を表4に示す。

実施例2~11及び比較例1~3

接着性含フッ素エチレン性重合体 (F-A) の代わりに、接着性含フッ素エチレン性重合体 (F-B) ~接着性含フッ素エチレン性重合体 (F-K)、及び、比較合成例1~比較合成例3で得られた含フッ素エチレン性重合体をそれぞれ用い、表4に示す成形条件を用いたこと以外は実施例1と同様の方法で、フィルムをそれぞれ成形し、耐ストレスクラック性を測定した。成形条件及び評価結果を表4に示す。

15 表 4

20

25

	接着性					フ・	イルム成形条件			
	合フッ素エチレン性	CI	シリ: C2	ンダー C3	温度		ロール温度	引取速度	フィルム厚さ	耐ストレス クラック性
	重合体	တို	°C	°C3	% C	ಹಿ	°C	m/min	μm	96
実施例1	F-A	155	220	230	240	240	100	1	200	18
実施例2	F-B	190	230	250	260	260	120	1	200	16
実施例3	F-C	250	295	290	300	295	150	1	200	20
実施例4	F-D	250	295	295	300	295	150	1	200	26
実施例5	F-E	250	295	295	300	295	150	1	200	20
実施例6	F-F	250	295	295	300	295	150	1	200	18
実施例7	F-G	250	295	295	300	295	150	1	200	20
実施例8	F-H	250	295	295	300	295	150	1	200	20
実施例9	F-I	250	295	295	300	295	150	1	200	20
実施例10	F-J	280	330	340	340	340	150	1	200	24
実施例11	F-K	155	220	230	240	240	100	· 1	200	23
比較例1		190	230	250	260	260	150	1	200	6
比較例2		190	230	250	260	260	150	1	200	6
比較例3		250	295	295	300	295	150	1	200	8

接着性含フッ素エチレン性重合体からなる層を有する実施例 $1\sim11$ のフィルムは、オリゴマー含有率が高い含フッ素エチレン性重合体からなる層を有する比較例 $1\sim3$ のフィルムに比べて、何れも優れた耐ストレスクラック性を有していた。

実施例12

マルチマニホールドダイを装着した2種2層チュープの押出し装置 (プラ技研社製)を用いて、チュープの外層がポリアミドPAーA層、内層が接着性含フッ素エチレン性重合体 (F-A) 層となるように、外層及び内層の押出し機にそれぞれポリアミドPAーA及び接着性含フッ素エチレン性重合体 (F-A) を供給して、外径8.2mm、内径6mmのチュープを連続して成形した。このチュープを用いて、上述した方法で層間接着強度を測定した。成形条件及び評価結果を表5に示す。

15

20

10

5

実施例13~22及び比較例4~6

表5に示す接着性含フッ素エチレン性重合体又は含フッ素エチレン性重合体、及び、ポリアミドを用い、表5に示す成形条件を用いたこと以外は実施例12と同様の方法で2種2層チューブをそれぞれ成形し、層間接着強度を測定した。成形条件及び評価結果を表5に示す。なお、実施例17の2種2層チューブを用い、上述の表面抵抗値の測定方法に従って測定した表面抵抗値は10⁵Q・cm/cmであった。

表 5

. 2

10

15

20

	内層		2層チューブ成形条件										
	77階	" "	ンリンタ	一温度	度	ダイ温度	引取	層の厚さ	層間				
	外層	C1	C2	СЗ	AD	D	速度	内層/外層	接着強度				
		ဗင	ొ	တ	တ	တိ	m/分	μm	N/cm				
実施例12	F-A	180	230	260	260	280	8	250/850	40				
JC850312	PA-A	210	230	240	245	260	0	200/800	49				
実施例13	F-B	230	260	260	270	280	8	250/850	F4				
×86910	PA-A	210	230	240	245	280		230/030	51				
実施例14	F-C	280	280	285	290	900		050/050	42				
尖爬例 14	PA-A	210	230	240	245	290	8	250/850	47				
実施例15	F-D	285	285	285	290	000	•	050/050	40				
关戚別10	PA-A	210	230	240	245	290	8	250/850	46				
実施例16	F-E ,	280	280	285	290	000	•	050/050					
关心例10	PA-A	210	230	240	245	290	8	250/850	52				
実施例17	F-F	280	280	285	290	000		050/050	4.5				
关胞例(7	PA-A	210	230	240	245	290	8	250/850	45				
実施例18	F-G	280	280	300	310	200		050 /050					
尖腿例10	PA-A	210	230	240	245	300	8	250/850	51				
実施例19	F-H	280	280	300	310	200		050 /050					
矢腿例は	PA-A	210	230	240	245	300	8	250/850	52				
実施例20	H	280	280	285	290	000		050 /050					
关心的20	PA-A	210	230	240	245	290	8	250/850	39				
実施例21	F-C	280	280	285	290	000	,	050 (050					
天肥例21	PA~B	210	230	240	245	290	8	250/850	48				
実施例22	F-C	280	280	285	290	290		050 /050					
关腿例22	PA-C	210	260	260	265	290	8	250/850	44				
比較例4	比較合成例1	230	260	260.	270	200		950 /050					
ルキスプリ4	PA-A	210	230	240	245	280	8	250/850	16				
比較例5	比較合成例2	230	260	260	270	000		050 /050	A 80 3				
TC-19(1)20	PA-A	210	230	240	245	280	8	250/850	自然剥離				
比較例6	比較合成例3	280	280	285	290	000		050 (050					
TC#XXA40	PA-A	210	230	240	245	290	8	250/850	14				

25

上記接着性含フッ素エチレン性重合体からなる層を有する実施例12~22の チュープは、オリゴマー含有率が高い含フッ素エチレン性重合体からなる層を有 する比較例4~6のチュープに比べて、何れも優れた層間接着強度を有していた。

5 実施例23

10

15

マルチマニホールドTダイを装着した2種2層フィルムの押出し装置(プラスチック工学研究所製)を用いて、ポリアミドPAーA及び接着性含フッ素エチレン性重合体 (F-A) を2台の押出し機にそれぞれ供給して、総厚み1.5 mm、幅200mmの2種2層の多層フィルムを成形した。このフィルムを用いて、上述した方法で層間接着強度を測定した。成形条件及び評価結果を表6に示す。

実施例24~25及び比較例7~8

実施例23において、表6に示す接着性含フッ素エチレン性重合体又は含フッ 素エチレン性重合体、及び、ポリアミドを用いた以外は実施例23と同様の操作 で2種2層の多層フィルムを成形した。成形条件及び評価結果を表6に示す。

実施例26

マルチマニホールドTダイを装着した3種3層フィルムの押出し装置(プラスチック工学研究所製)を用いて、中間層が無水マレイン酸変性ポリオレフィン(20 商品名アドマーNF528、融点120℃、メルトフローレート [MFR] 2.2g/10min、三井化学社製)となるように、接着性含フッ素エチレン性重合体 (F-K) と、上記無水マレイン酸変性ポリオレフィンと、高密度ポリエチレン (商品名ハイゼックス3300F、融点131℃、MFR1.1g/10min、三井住友ポリオレフィン社製)とを3台の押出し機にそれぞれ供給して、25 総厚み1.5mm、幅200mmの3種3層の多層フィルムを成形した。このフィルムを用いて、上述した方法で接着性含フッ素エチレン性重合体からなる層と、無水マレイン酸変性ポリオレフィンからなる層との層間接着強度を測定した。成形条件及び評価結果を表6に示す。

比較例9

実施例26において、接着性含フッ素エチレン性重合体 (F-K) の代わりに、 比較合成例4で得られた含フッ素エチレン性重合体を用いた以外は実施例26と 同様の操作で3種3層の多層フィルムを成形した。このフィルムを用いて、上述 した方法で含フッ素エチレン性重合体からなる層と、無水マレイン酸変性ポリオ レフィンからなる層との層間接着強度を測定した。成形条件及び評価結果を表 6 に示す。

3	表 6 						·,				
10						フイ	ルム成形条	件			
		内層 (中間層)		シリンダ	一温度		ダイ温度	ロール	11-JL	見の官士	層間 接着強度
		外層	C1	C2	СЗ	AD	. D	温度	速度	層の厚さ	19/10 1944
			ဗင	တ	ೡ	တ	°C	တ	m/分	μm	N/cm
	実施例23	F-C	280	280	285	290	290	100	10	550	4F
	大型医内に	PA-A	210	230	240	245	290	100	1.2	950	45
	実施例24	F-G	280	280	300	310	300	100	10	550	43
15	大地的社工	PA-B	210	230	240	245	300	100	1.2	950	47
	実施例25	F-H	280	280	300	310	300	100		550	44
	关心的20	PA-C	210	260	260	265	300	100	1,2	950	44
	比較例7	比較合成例1	230	260	260	270	280	100	10	550	10
	104文7977	PA-A	210	230	240	245	280	100	1.2	950	12
	比較例8	比較合成例2	230	260	260	270	280	100	1.2	550	おいこれ合
	しまえがり	PA-A	210	230	240	245	200	100	1.2	950	自然剥離
20		F-K	170	220	240	240				550	
•	実施例26	7ト*マーNF528	200	210	200	220	240	80	1.5	50	38
		ハイセ"ックス3300F	190	225	225	230				900	
		比較合成例4	170	220	240	240				550	
	比較例9	アト*マーNF528	200	210	200	220	240	80	1.5	50	14
	ì			$\overline{}$	$\overline{}$		1 7	. 1	, ,		ı 1

ハイセックス3300F 190 225 225 230

25

実施例27

マルチマニホールドダイを装着した4種4層チューブの押出し装置 (プラ技研 社製)を用いて、合成例1で得られた接着性含フッ素エチレン性重合体 (F-A)、エチレン/ピニルアルコール樹脂(商品名エバールF101A、融点183

で、MFR1.3g/10min、クラレ社製)、マレイン酸変性ポリエチレン樹脂(商品名アドマーNF528、融点120で、MFR2.2g/10min、三井化学社製)、及び、高密度ポリエチレン(商品名ノバッテクHD HJ340、融点131で、MFR5.0g/10min、日本ポリケム社製)が、この順に得られるチューブの最内層から最外層となるように、4台の押出し機にそれぞれ供給して、外径8.2mm、内径6mmの4種4層のチュープを連続して成形した。得られたチュープを用いて、上述した方法で接着性含フッ素エチレン性重合体からなる層とエチレン/ビニルアルコール樹脂からなる層との層間接着強度を測定した。成形条件及び評価結果を表7に示す。

10

比較例10

実施例27において、最内層として、合成例1で得られた接着性含フッ素エチレン性重合体(F-A)の代わりに、比較合成例5で得られた含フッ素エチレン性重合体を用いた以外は実施例27と同様に操作を行い、4種4層のチュープを 成形した。得られたチューブを用いて、上述した方法で含フッ素エチレン性重合体からなる層とエチレン/ビニルアルコール樹脂からなる層との層間接着強度を 測定した。成形条件及び評価結果を表7に示す。

表 7

_~	

25

	最内層				4層	チューブ成	形条件		
	内層	シ	リンダ	一温	隻	ダイ温度	引取速度	層の厚さ	層間 接着強度
1	外層	C1	C2	C3	AD	D	り以迷皮	間の序さ	文章 (1) 文
	最外層	သိ	ပ	ပွ	ပ္	တ	m/分	μm	N/cm
	F−A	180	230	260	260			280	
 実施例27	IパールF101A	145	200	200	200	240	8	80	42
关心的2/	アト・マーNF528	200	210	200	220	240	0	80	42
	ノバッテクHDHJ340	195	225	225	230			660	
	比較合成例5	180	230	260	260			280	
】 比較例10	IハールF101A	145	200	200	200	240	8	80	40
IL-EX DI I U	アト*マーNF528	200	210	200	220	0 240	0	80	16
	/パ ッ テクHDHJ340	195	225	225	230			660	

実施例28

2種2層の多層ダイを装着したプロー成形機(日本製鋼所社製)においてコルゲート状ホースの金型を用い、コルゲート状ホースの外層及び内層が、それぞれ、合成例15で得られたポリアミドPA-D、並びに、合成例2で得られた接着性含フッ素エチレン性重合体(F-B)となるように、外層及び内層の押出し機にポリアミドPA-D及び接着性含フッ素エチレン性重合体(F-B)をそれぞれ供給して、外径30mm、内径28mmの2種2層のコルゲート状ホースを成形した。成形条件及び層間接着強度の評価結果を表8に示す。

10 比較例11

実施例28において、合成例2で得られた接着性含フッ素エチレン性重合体 (F-B) の代わりに、比較合成例1で得られた含フッ素エチレン性重合体を用いた以外は実施例28と同様に操作を行い、2種2層のコルゲートホースを成形した。成形条件及び評価結果を表8に示す。

15

表 8

	内層		2層	コルケー	ト状ま	一入成形多	 } 件	
	P7/百	- i	シリンダ	一温度	Ę	ダイ温度	異の厚土	層間 接着強度
	外層	C1	C2	C3	AD	D	層の厚さ	
	717月	℃	°C	သိ	သ	°C	μm	N/cm
実施例28	F-B	230	260	270	270	075	250	
X 105 17 12 0	PA-D	210	250	260	265	275	750	43
 比較例11	比較合成例1	230	260	270	270	075	250	,
10+27/11	PA-D	210	250	260	265	275	750	14

20

25 表 5 ~ 8 から明らかなように、上記接着性含フッ素エチレン性重合体からなる 層を有するフィルム、チューブ、及び、コルゲート状ホースは、それぞれ、接着 性含フッ素エチレン性重合体からなる層と上記接着性含フッ素エチレン性重合体 からなる層に接するその他の層との層間接着力が優れていた。これに比べて、オリゴマー含有率が高い含フッ素エチレン性重合体からなる層を有する比較例のフ

ィルム、4種4層チューブ、及び、2種2層コルゲート状ホースは、含フッ素エチレン性重合体からなる層と上記含フッ素エチレン性重合体からなる層に接するその他の層との層間接着力に劣っていた。

5 産業上の利用可能性

本発明は、上述の構成よりなるので、耐薬品性、耐油性、薬液低透過性、耐熱性等に優れ、更に、耐ストレスクラック性及び層間接着力に優れた含フッ素成形体、積層体及び含フッ素成形加工品を与え得るフルオロポリマーを得ることができる。

25

請求の範囲

- 1. オリゴマーを含有するか又はオリゴマーを含有していないフルオロポリマーであって、
- 5 前記オリゴマーは、分子量が10000以下であり、前記フルオロポリマーの 質量の0.05質量%以下である ことを特徴とするフルオロポリマー。
- 2. オリゴマーを含有するか又はオリゴマーを含有していないフルオロポ 10 リマーであって、 '

前記オリゴマーは、分子量が35000以下であり、前記フルオロポリマーの質量の0.7質量%以下であることを特徴とするフルオロポリマー。

- 15 3. フルオロポリマーは、接着性部位を有するものであり、前記接着性部位は、前記フルオロポリマーの主鎖炭素数1×10⁶個あたり3~800個である請求の範囲1又は2記載のフルオロポリマー。
- 4. 接着性部位は、カルボニル基、水酸基及び/又はアミノ基を有するも20 のである請求の範囲3記載のフルオロポリマー。
 - 5. カルボニル基は、ホルミル基、カルボキシル基、ハロゲノホルミル基、 エステル結合、酸無水物結合、カーボネート基、イソシアネート基、アミド基、 イミド基、ウレタン結合及びウレイド基からなる群より選択される少なくとも1 つに由来するものである請求の範囲4記載のフルオロポリマー。
 - 6. フルオロポリマーは、テトラフルオロエチレン単位20モル%以上からなるものである請求の範囲1、2、3、4又は5記載のフルオロポリマー。

7. フルオロポリマーは、テトラフルオロエチレン単位、及び、下記一般 式(i)

$$CF_2 = CF - Rf^1$$
 (i)

(式中、 Rf^1 は、 $-CF_3$ 又は $-ORf^2$ を表し、 Rf^2 は、炭素数 $1\sim5$ のパ ・フルオロアルキル基を表す。)で表されるパーフルオロ単量体に由来するパー フルオロ単量体単位からなる共重合体である請求の範囲1、2、3、4、5又は 6 記載のフルオロポリマー。

- 8. フルオロポリマーは、下記一般式(ii)で表されるパーフルオロビ 10 ニルエーテルに由来するパーフルオロビニルエーテル単位及び/又は下記一般式 (iii)で表されるフルオロオレフィンに由来するフルオロオレフィン単位の合計0~60モル%、テトラフルオロエチレン単位20~80モル%、並びに、エチレン単位20~80モル%からなる共重合体である請求の範囲1、2、3、4、5又は6記載のフルオロポリマー。
- 15 $CF_2 = CF ORf^2$ (i i)

(式中、R f ²は、炭素数 $1 \sim 5$ のパーフルオロアルキル基を表す。) C X $^{1}_{2}$ = C X 2 (C F $_{2}$) $_{n}$ X 3 (i i i)

(式中、 X^1 及び X^2 は、同一又は異なって、水素原子若しくはフッ素原子を表し、 X^3 は、水素原子、フッ素原子又は塩素原子を表し、nは、 $1\sim10$ の整数 20 を表す。)

- 9. フルオロポリマーは、フッ化ビニリデン単位10モル%以上からなる 重合体である請求の範囲1、2、3、4又は5記載のフルオロポリマー。
- 25 10. フルオロポリマーは、フッ化ビニリデン単位15~84モル%、テトラフルオロエチレン単位15~84モル%及びヘキサフルオロプロピレン単位0~30モル%からなる共重合体である請求の範囲1、2、3、4又は5記載のフルオロポリマー。

- 11. 接着性含フッ素エチレン性重合体である請求の範囲1、2、3、4、 5、6、7、8、9又は10記載のフルオロポリマー。
- 12. 請求の範囲1、2、3、4、5、6、7、8、9、10又は11記 5 載のフルオロポリマーと導電性フィラーとからなるフルオロポリマー組成物であって、

メルトインデクサーに投入して得られる押出しストランドの表面抵抗値が10 *Q・cm/cm以下である

ことを特徴とするフルオロポリマー組成物。

10

13. 請求の範囲1、2、3、4、5、6、7、8、9、10若しくは1 1記載のフルオロポリマー又は請求の範囲12記載のフルオロポリマー組成物か らなる

ことを特徴とする含フッ素成形体。

15

- 14. 請求の範囲13記載の含フッ素成形体を液体と接させて使用することを特徴とする含フッ素成形体使用方法。
- 15. 請求の範囲13記載の含フッ素成形体と、その他の層とからなる積 20 層体であって、

前記その他の層は、有機材料、金属材料及び/又はガラス材料からなるものである

ことを特徴とする積層体。

- 25 16. 有機材料は、フルオロポリマーとの親和性及び/又はフルオロポリ マーとの反応性がある部位を有するものである請求の範囲15記載の積層体。
 - 17. フルオロポリマーとの親和性及び/又はフルオロポリマーとの反応性がある部位は、ヒドロキシル基、カーボネート基、アミノ基、アミド基、イミ

ド基、メルカプト基、スルホン酸基、エポキシ基、エステル結合、カルボキシル 基及び/又はイソシアネート基であり、

前記メルカプト基、スルホン酸基及び/又はカルボキシル基は、塩を形成していてもよい請求の範囲16記載の積層体。

5

- 18. 有機材料は、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリエーテルサルホン樹脂、ポリスルホン樹脂、
 ウレタン樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルイミド樹脂、ポリアセタール樹脂、ポリピニルアルコール樹脂、エチレン/ビニルアルコール樹脂
 及び/又は変性ポリオレフィン樹脂からなるものである請求の範囲15、16又は17記載の積層体。
- 19. 溶融共押出し成形により積層させたものである請求の範囲15、16、17又は18記載の積層体。

15

10

20.請求の範囲13記載の含フッ素成形体又は請求の範囲15、16、 17、18若しくは19記載の積層体からなる含フッ素成形加工品であって、 フィルム、シート、ホース又はチューブである ことを特徴とする含フッ素成形加工品。

20

- 21. ホースは、コルゲート状ホースであり、チュープは、コルゲート状 チュープである請求の範囲 20 記載の含フッ素成形加工品。
- 22. チュープは、塗装用塗料配管チューブ、飲料輸送チューブ、液体状 25 食品輸送チュープ、薬液輸送チュープ、燃料輸送チューブ又は原油・原油精製品 輸送ホースである請求の範囲 20 又は 21 記載の含フッ素成形加工品。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/16524

							
A. CLASS Int.	SIFICATION OF SUBJECT MATTER .C1 ⁷ C08F214/18						
According t	to International Patent Classification (IPC) or to both n	national classification and IPC	·				
	OS SEARCHED						
Int.	documentation searched (classification system followed Cl ⁷ C08F14/18-14/28, C08F114/2	18-114/28, C08F214/18-21					
Jitsı	tion searched other than minimum documentation to the nuyo Shinari Koho 1926–1996 ii Jitsuyo Shinan Koho 1971–2004	Toroku Jitsuyo Shinan Koho	o 1994–2004				
	data base consulted during the international search (nam	<u>-</u>					
	ian one communication and and and and and and and and and an	IS OI Gain Guo and many many parties of	illi tuttus urray				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap		Relevant to claim No.				
X Y	JP 6-80733 A (Tokuyama Soda 22 March, 1994 (22.03.94), Claims; Par. Nos. [0001] to (Family: none)		1-2,6-8, 13-14,20-22 3-5,9-12				
X Y	JP 4-85305 A (Daikin Industr 18 March, 1992 (18.03.92), Claims; page 1, lower right of left column & EP 472908 A2		1-2,6-8, 13-14,20-22 3-5,9-12				
Y A	WO 01/60606 A1 (Daikin Indus 23 August, 2001 (23.08.01), Claims & EP 1270209 A1 & US	stries, Ltd.),	3-5,9-12 15-19				
	er documents are listed in the continuation of Box C.	See patent family annex.					
"A" docume consider date docume cited to special docume means docume than the	de categories of cited documents: sent defining the general state of the art which is not cred to be of particular relevance document but published on or after the international filing sent which may throw doubts on priority claim(s) or which is constablish the publication date of another citation or other dereson (as specified) sent referring to an oral disclosure, use, exhibition or other sent published prior to the international filing date but later se priority date claimed actual completion of the international search april, 2004 (06.04.04)	"I" later document published after the interpriority date and not in conflict with the understand the principle or theory under document of particular relevance; the close step when the document is taken alone document of particular relevance; the close document of particular relevance; the close document of particular relevance; the close document with one or more other such combined with one or more other such combination being obvious to a person document member of the same patent fit. Date of mailing of the international search 20 April, 2004 (20.5)	the application but cited to carlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be to when the document is documents, such skilled in the art family				
	nailing address of the ISA/ nnese Patent Office	Authorized officer					
Facsimile No	o. 1	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/16524

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	JP 11-160552 A (Asahi Chemical Industry Co., Ltd.), 18 June, 1999 (18.06.99), Claims; Par. No. [0012]; examples (Family: none)	1-22
i	• •	
	·	
}		

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

A. 発明の属する分野の分類(国際特許分類 (IPC))・ Int. Cl' C08F214/18 В. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' C08F14/18-14/28, C08F114/18-114/28, C08F214/18-214/28 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 1971-2004年 日本国公開実用新案公報 日本国登録実用新案公報 1994-2004年 日本国実用新案登録公報 1996-2004年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X JP 6-80733 A (徳山曹達株式会社) 1994.0 1-2, 6-8, 3. 22, 特許請求の範囲、【0001】~【0002】段落 13-14, 20-22 Y (ファミリーなし) 3-5, 9-12 IP 4-85305 A (ダイキン工業株式会社) 1992. X 1-2, 6-8, 03.18, 特許請求の範囲、第1頁右下欄から左上欄 13-14, 20-22 Y & EP 472908 A2 3-5, 9-12 |X| C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」ロ頭による開示、使用、展示等に官及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 20.4.2004 国際調査を完了した日 国際調査報告の発送日 06.04.2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) .4 J 3041 日本国特許庁(ISA/JP) 宮本 純 郵便番号100-8915 東京都千代田区嚴が関三丁目4番3号 電話番号 03-3581-1101 内線 3455

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	WO 01/60606 A1 (ダイキン工業株式会社) 200	3-5, 9-12
A	1.08.23,特許請求の範囲 & EP 1270209 A1 & US 2003/148125 A1	15-19
A	JP 11-160552 A (旭化成工業株式会社) 199 9.06.18,特許請求の範囲、【0012】段落、実施例 (ファミリーなし)	1-22
,		
		·
		•
	·	
	·	
	·	
		·