Wykład 8

Całka oznaczona

Twierdzenie 1. (WK R –całkowalności) Jeżeli funkcja f jest R –całkowalna na przedziale $\langle a;b\rangle$, to jest ograniczona na tym przedziale.

Twierdzenie 2. (WW R – całkowalności) Jeżeli funkcja f jest ograniczona w $\langle a; b \rangle$ i ma w tym przedziale skończoną liczbę punktów nieciągłości, to jest R – całkowalna w $\langle a; b \rangle$.

W szczególności funkcja ciągła na $\langle a;b\rangle$ jest R – całkowalna w tym przedziale.

Własności całki Riemanna (R – całki)

- 1. Jeżeli f jest R –całkowalna na $\langle a;b\rangle$ i $A\in\mathbb{R}$, to funkcje |f| i $A\cdot f$ są R całkowalne i $\int\limits_a^b A\cdot f(x)dx=A\cdot\int\limits_a^b f(x)dx$
- 2. Jeżeli funkcje f i g są R całkowalne na $\langle a;b\rangle$, to funkcja f+g jest R całkowalna na $\langle a;b\rangle$ i $\int\limits_a^b (f(x)+g(x))dx=\int\limits_a^b f(x)dx+\int\limits_a^b g(x)dx$
- 3. Jeżeli funkcje f i g są R całkowalne na $\langle a;b\rangle$, to funkcja $f\cdot g$ jest R całkowalna na $\langle a;b\rangle$; w szczególności funkcja f^2 jest R całkowalna.
- 4. Jeżeli f jest R –całkowalna na $\langle a; b \rangle$, to dla każdego $c \in (a; b)$ funkcja f jest R całkowalna w przedziałach $\langle a; c \rangle$ i $\langle c; b \rangle$ i prawdziwa jest równość

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

- 5. Jeżeli f jest R –całkowalna na $\langle a;b\rangle$ i funkcja g różni się od f w przedziale $\langle a;b\rangle$ tylko w skończonej liczbie punktów, to $\int\limits_a^b f(x)dx=\int\limits_a^b g(x)dx.$
- 6. Jeżeli funkcje f i g są R całkowalne na $\langle a;b\rangle$ oraz $f(x)\leqslant g(x)$ na tym przedziale, to

$$\int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx$$

Wnioski z własności 6

Wniosek 1. Jeżeli f jest R –całkowalna na $\langle a; b \rangle$ i $f \geqslant 0$ na tym przedziale, to $\int_a^b f(x) dx \geqslant 0$.

Wniosek 2. Jeżeli f jest R –całkowalna na $\langle a; b \rangle$, to

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx$$

Wniosek 3. Jeżeli $m \leq f(x) \leq M$ na przedziale $\langle a;b \rangle$ i f jest R –całkowalna na tym przedziale, to

$$m(b-a) \leqslant \int_{a}^{b} f(x)dx \leqslant M(b-a)$$

Rozszerzenie pojęcia R – całki

Jeśli a=b, to

$$\int_{a}^{b} f(x)dx \stackrel{df}{=} 0$$

Jeśli a > b, to

$$\int_{a}^{b} f(x)dx \stackrel{df}{=} - \int_{b}^{a} f(x)dx$$

Własności 1-5 pozostają prawdziwe, pozostałe **nie**.

Funkcja górnej granicy całkowania

Zał. Funkcja fjest R – całkowalna na przedziale $\langle a;b\rangle$ ia < b.

Niech α – dowolnie ustalona liczba z tego przedziału. Wówczas dla każdego $x \in \langle a;b \rangle$ funkcja f jest R – całkowalna na przedziale o końcach α i x, zatem wartość $\int\limits_{\alpha}^{x} f(t)dt$ jest wyznaczona jednoznacznie przez x. Można więc określić funkcję F w przedziale $\langle a;b \rangle$

$$F(x) \stackrel{df}{=} \int_{0}^{x} f(t)dt$$

nazywamy ją funkcją górnej granicy całkowania.

Tw. 1 (I twierdzenie główne rachunku całkowego) Jeżeli funkcja f jest R – całkowalna na przedziale i liczba $\alpha \in \langle a; b \rangle$ jest dowolnie ustalona, to funkcja $F(x) \stackrel{df}{=} \int_{\alpha}^{x} f(t) dt$ jest ciągła w przedziale $\langle a; b \rangle$.

Ponadto, w każdym punkcie $x \in \langle a; b \rangle$, w którym f jest ciągła, funkcja F ma pochodną i F'(x) = f(x).

Wniosek Jeżeli funkcja f jest ciągła w przedziale $\langle a;b\rangle$, to funkcja F posiada pochodną w tym przedziale i F'(x)=f(x) dla każdego $x\in\langle a;b\rangle$, tzn. F jest funkcją pierwotną funkcji f w tym przedziale.

Tw. 2 (II twierdzenie główne rachunku podstawowego) Jeżeli funkcja f jest ciągła w przedziale o końcach a i b i ϕ jest dowolną funkcją pierwotną funkcji f w tym przedziale, to

$$\int_{a}^{b} f(x)dx = \phi(b) - \phi(a) = [\phi(x)]_{a}^{b}$$

Tw. 3 (całkowe o wartości średniej) Jeżeli funkcja f jest ciągła w przedziale $\langle a; b \rangle$, to istnieje taki punkt $c \in \langle a; b \rangle$, że

$$\int_{a}^{b} f(x)dx = f(c) \cdot (b - a).$$

Tw. 4 (o całkowaniu przez części) Jeżeli funkcje f i g są klasy C^1 na przedziale o końcach a i b, to

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Tw. 5 (o całkowaniu przez podstawienie $x = \phi(t)$) Jeżeli

- 1. funkcja ϕ jest klasy C^1 na przedziale domkniętym T o końcach α i β ;
- 2. funkcja f jest ciągła na przedziale $\phi(T)$
- 3. $a = \phi(\alpha)$, $b = \phi(\beta)$

to
$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t)) \cdot \phi'(t)dt$$

Wniosek (tw. o całkowaniu przez podstawienie t = h(x)) Jeżeli

- 1. funkcja hjest klasy C^1 na przedziale domkniętym Xo końcach a i b;
- 2. funkcja fjest ciągła na zbiorze $h(\boldsymbol{X})$
- 3. $\alpha = h(a)$, $\beta = h(b)$

to
$$\int_{a}^{b} f(h(x))h'(x)dx = \int_{\alpha}^{\beta} f(t)dt$$

Uwaga Jeżeli funkcja f jest ciągła w przedziale $\langle -a;a\rangle$, a>0, to

- 1. Jeżeli f jest funkcją parzystą, to $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$.
- 2. Jeżeli f jest funkcją nieparzystą, to $\int_{-a}^{a} f(x)dx = 0$.