Data Science 2

Prof. Dr. Mark Trede

Institut für Ökonometrie und Wirtschaftsstatistik

September 2023

Definition

Zufallsvektoren:

Für viele interessante Anwendungen braucht man mehrere Zufallsvariablen (Vereinfachung: n=2)

Beispiele:

- lacktriangle X: Haushaltsgröße, Y: Anzahl Autos
- X: Aktienrendite Siemens, Y: Aktienrendite Zalando
- lacksquare X: kleinere Augenzahl, Y: größere Augenzahl von zwei Würfeln

Verteilungsfunktion

Gemeinsame Verteilungsfunktion

Seien $X:\Omega\longrightarrow\mathbb{R}$ und $Y:\Omega\longrightarrow\mathbb{R}$ zwei Zufallsvariablen. Dann ist

$$F_{X,Y}(x,y) = P(X \leq x, Y \leq y)$$

die gemeinsame Verteilungsfunktion von X und Y

Verteilungsfunktion

Eigenschaften der gemeinsamen Verteilungsfunktion:

- $\ \ \, F_{X,Y}(x,y) = P(X \leq x,Y \leq y)$ ist monoton steigend in x und y
- \blacksquare Es gilt $F_{X,Y}(-\infty,y)=F_{XY}(x,-\infty)=0$
- $\blacksquare \text{ Es gilt } F_{X,Y}(+\infty,+\infty) = 1$

Gemeinsam diskrete Zufallsvariablen

Gemeinsam diskrete Zufallsvariablen

X und Y heißen gemeinsam diskret, wenn es endlich viele oder abzählbar unendlich viele Werte x_1,x_2,\dots und y_1,y_2,\dots gibt, so dass

$$\sum_{j} \sum_{k} p_{jk} = 1$$

 $\mathrm{mit}\ p_{jk} = P(X = x_j, Y = y_k)$

Gemeinsam diskrete Zufallsvariablen

■ Gemeinsame Wahrscheinlichkeitsfunktion

$$f_{X,Y}(x,y) = \left\{ \begin{array}{ll} p_{jk} & \quad \text{für } x = x_j \text{ und } y = y_k \\ 0 & \quad \text{sonst} \end{array} \right.$$

Darstellung als Wahrscheinlichkeitstabelle

$X \backslash Y$	y_1	 y_K
x_1	p_{11}	 p_{1K}
:	:	:
x_J	p_{J1}	 p_{JK}

Gemeinsam diskrete Zufallsvariablen

Beispiel: Haushalte

Sei X: Haushaltsgröße; Y: Anzahl Autos

$X \backslash Y$	0	1	2	
1	0.10	0.14	0.01	
2	0.05	0.15	0.10	
3	0.02	0.10	0.08	
4	0.02	0.06	0.07	
5	0.01	0.05	0.04	

Wie groß ist $F_{X,Y}(3,1)$?

Gemeinsam diskrete Zufallsvariablen

Beispiel: Haushalte

Sei X: Haushaltsgröße; Y: Anzahl Autos

$X \backslash Y$	0	1	2
1	0.10	0.14	0.01
2	0.05	0.15	0.10
3	0.02	0.10	0.08
4	0.02	0.06	0.07
5	0.01	0.05	0.04

Wie groß ist $F_{X,Y}(3,1)$? $P(X \leq 3, Y \leq 1) = 0.56$

Gemeinsam diskrete Zufallsvariablen

Beispiel: Haushalte

Sei X: Haushaltsgröße; Y: Anzahl Autos

$X \backslash Y$	0	1	2	
1	0.10	0.14	0.01	
2	0.05	0.15	0.10	
3	0.02	0.10	0.08	
4	0.02	0.06	0.07	
5	0.01	0.05	0.04	

Wie groß ist $F_{XY}(1.5, 3.2)$?

Gemeinsam diskrete Zufallsvariablen

Beispiel: Haushalte

Sei X: Haushaltsgröße; Y: Anzahl Autos

$X \backslash Y$	0	1	2	
1	0.10	0.14	0.01	
2	0.05	0.15	0.10	
3	0.02	0.10	0.08	
4	0.02	0.06	0.07	
5	0.01	0.05	0.04	

Wie groß ist $F_{XY}(1.5, 3.2)$? $P(X \le 1.5, Y \le 3.2) = 0.25$

Gemeinsam stetige Zufallsvariablen

Gemeinsam stetige Zufallsvariablen

X und Y heißen gemeinsam stetig, falls es eine Funktion $f_{X,Y}$ gibt mit

$$F_{X,Y}(x,y) = \int_{-\infty}^y \int_{-\infty}^x f_{X,Y}(u,v) du dv$$

Die Funktion $f_{X,Y}$ heißt gemeinsame Dichte (Dichtefunktion)

■ Bei partieller Differenzierbarkeit gilt

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$$

- Für $x,y \in \mathbb{R}$ gilt $f_{X,Y}(x,y) \geq 0$
- Das Volumen unter der Dichte ist

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

 Durch Doppel-Integrale der Dichte erhält man Wahrscheinlichkeiten, so ist beispielsweise

$$\begin{split} &P(a_1 \leq X \leq b_1, a_2 \leq Y \leq b_2) \\ &= \int_{a_2}^{b_2} \int_{a_1}^{b_1} f_{XY}(x,y) dx dy \end{split}$$

 Wegen der Stetigkeit spielt es keine Rolle, ob die Ungleichungen strikt sind oder nicht

Visualisierung einer gemeinsamen Dichte:

- Plot als 3D-"Gebirge"
- Höhenlinien (Contour-Plot)
- Farben als dritte Dimension (Image-Plot)
- Beispiel:

$$f_{X,Y}(x,y) = \frac{2e^{-x-y}}{(1+e^{-x}+e^{-y})^3}$$

Randverteilungen

Randverteilungen

- Wie ist die eine Zufallsvariable verteilt, wenn man die andere ignoriert?
- \blacksquare Randverteilungsfunktionen F_X und F_Y

$$\begin{split} F_X(x) &= F_{X,Y}(x,\infty) = \lim_{y \to \infty} F_{X,Y}(x,y) \\ F_Y(y) &= F_{X,Y}(\infty,y) = \lim_{x \to \infty} F_{X,Y}(x,y) \end{split}$$

Randverteilungen

Randverteilungen gemeinsam diskreter Zufallsvariablen

$$\begin{array}{lcl} p_{j\cdot} & = & P(X=x_j) = \sum_k p_{jk} \\ \\ p_{\cdot k} & = & P(Y=y_k) = \sum_j p_{jk} \end{array}$$

Randverteilungen

Randdichten gemeinsam stetiger Zufallsvariablen

$$\begin{split} f_X(x) &= \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy \\ f_Y(y) &= \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx \end{split}$$

(die jeweils andere Variable wird "rausintegriert")

Unabhängigkeit

Unabhängigkeit

Zwei Zufallsvariablen X und Y heißen (stochastisch) unabhängig, falls für alle $x,y\in\mathbb{R}$

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$$

Randverteilungen F_X und F_Y ergeben sich aus der gemeinsamen Verteilung $F_{X,Y}$, aber $F_{X,Y}$ ist im Allgemeinen nicht eindeutig durch F_X und F_Y bestimmt

Unabhängigkeit

 \blacksquare Gemeinsam diskrete X und Y sind unabhängig, wenn für alle j=1,2,... und k=1,2,...

$$P(X=x_j,Y=y_k) = P(X=x_j) \cdot P(Y=y_k)$$

 \blacksquare Gemeinsam stetige X und Y sind unabhängig, wenn für alle $x,y\in\mathbb{R}$

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

Unabhängigkeit

Beispiel: Gemeinsam diskrete Verteilung

Zwei Würfel werden geworfen, X: kleinere Augenzahl, Y: größere Augenzahl

$X \backslash Y$	1	2	3	4	5	6	f_X
1	$\begin{array}{c} \frac{1}{36} \\ 0 \end{array}$	$\frac{\frac{2}{36}}{\frac{1}{36}}$	$\frac{\frac{2}{36}}{\frac{2}{36}}$ $\frac{1}{36}$ 0	$\begin{array}{c} \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{1}{36} \\ 0 \end{array}$	$\begin{array}{r} \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{1}{36} \\ 0 \end{array}$	$\frac{2}{36}$	$ \begin{array}{r} \frac{11}{36} \\ \frac{9}{36} \\ \hline \frac{7}{36} \\ \hline \frac{5}{36} \\ \hline \frac{3}{36} \\ \hline \frac{1}{36} \\ \hline \frac{1}{36} \\ \hline 1 $
$\frac{2}{3}$	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{9}{36}$
3	0	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{7}{36}$
4	0	0	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{5}{36}$
5	0	0	0	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$
6	0	0	0	0		$\frac{1}{36}$	$\frac{1}{36}$
f_Y	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\begin{array}{c} \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{1}{36} \\ \frac{11}{36} \\ \end{array}$	1

Unabhängigkeit

Beispiel: Gemeinsam stetige Verteilung

Sei (X,Y) gemeinsam stetig verteilt

$$f_{X,Y}(x,y) = \left\{ \begin{array}{ll} x+y & \quad \text{für } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \quad \text{sonst} \end{array} \right.$$

Randdichte von X:

Unabhängigkeit

Beispiel: Gemeinsam stetige Verteilung

Sei (X,Y) gemeinsam stetig verteilt

$$f_{X,Y}(x,y) = \left\{ \begin{array}{ll} x+y & \quad \text{für } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \quad \text{sonst} \end{array} \right.$$

Randdichte von X:

$$f_X(x) = \int_0^1 f_{X,Y}(x,y)dy = \int_0^1 (x+y)dy$$
$$= x + \int_0^1 ydy = x + [0.5y^2]_0^1 = x + \frac{1}{2}$$

Unabhängigkeit

Beispiel: Gemeinsam stetige Verteilung

Sei (X,Y) gemeinsam stetig verteilt

$$f_{X,Y}(x,y) = \left\{ \begin{array}{ll} x+y & \quad \text{für } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \quad \text{sonst} \end{array} \right.$$

X und Y sind abhängig, weil:

Unabhängigkeit

Beispiel: Gemeinsam stetige Verteilung

Sei (X,Y) gemeinsam stetig verteilt

$$f_{X,Y}(x,y) = \left\{ \begin{array}{ll} x+y & \quad \text{für } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \quad \text{sonst} \end{array} \right.$$

X und Y sind abhängig, weil:

$$f_X(0.2) \cdot f_Y(0.2) = (0.2 + 0.5)(0.2 + 0.5) = 0.49$$
$$f_{XY}(0.2, 0.2) = 0.2 + 0.2 = 0.4$$