In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as pyplot
 %matplotlib inline

 df=pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-wrangling/m
 aster/data/chp3/data-text.csv')
 df1=pd.read_csv('https://raw.githubusercontent.com/kjam/data-wrangling-pycon/m
 aster/data/berlin_weather_oldest.csv')
 df.head(2)

Out[1]:

	Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	(
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	

In [2]: df1.head(2)

Out[2]:

		STATION	STATION_NAME	DATE	PRCP	SNWD	SNOW	TMAX	TMIN	WDFG
_	0	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310101	46	-9999	-9999	-9999	-11	-9999
	1	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310102	107	-9999	-9999	50	11	-9999

2 rows × 21 columns

```
In [17]: #1. Get the Metadata from the above files.
    print("Metadata for df")
    print("-----")
    df.info()
```

```
Metadata for df
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4656 entries, 0 to 4655
Data columns (total 12 columns):

Indicator_1 4656 non-null object Publication status 4656 non-null object Year 4656 non-null int64 WHO Region 4656 non-null object World Bank income group 4656 non-null object 4656 non-null object Country Sex 4656 non-null object Display Value 4656 non-null int64 4656 non-null float64 Numeric 0 non-null float64 Low High 0 non-null float64 0 non-null float64 Comments

dtypes: float64(4), int64(2), object(6)

memory usage: 327.4+ KB

```
In [18]: print("Metadata for df1")
         print("----")
         df1.info()
         Metadata for df1
         ______
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 117208 entries, 0 to 117207
         Data columns (total 21 columns):
         STATION
                        117208 non-null object
         STATION NAME
                        117208 non-null object
                        117208 non-null int64
         DATE
         PRCP
                        117208 non-null int64
         SNWD
                        117208 non-null int64
                        117208 non-null int64
         SNOW
         TMAX
                        117208 non-null int64
         TMIN
                        117208 non-null int64
         WDFG
                        117208 non-null int64
         PGTM
                        117208 non-null int64
         WSFG
                        117208 non-null int64
                        117208 non-null int64
         WT09
                        117208 non-null int64
         WT07
         WT01
                        117208 non-null int64
         WT06
                        117208 non-null int64
                        117208 non-null int64
         WT05
         WT04
                        117208 non-null int64
         WT16
                        117208 non-null int64
         WT08
                        117208 non-null int64
         WT18
                        117208 non-null int64
                         117208 non-null int64
         WT03
         dtypes: int64(19), object(2)
         memory usage: 17.9+ MB
In [20]: # 2. Get the row names from the above files.
         print("All the rows for df are :")
         df.index.values
         All the rows for df are :
Out[20]: array([
                              2, ..., 4653, 4654, 4655], dtype=int64)
                   0,
                        1,
In [21]: print("All the rows for df1 are :")
         df1.index.values
         All the rows for df1 are :
Out[21]: array([
                    0, 1, 2, ..., 117205, 117206, 117207], dtype=int64)
```

In [22]: # 3. Change the column name from any of the above file.
df.rename(columns={"Indicator":"Indicator_1"}).head(2)

Out[22]:

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN

In [23]: # 4. Change the column name from any of the above file and store the changes m
 ade permanently.
 df.rename(columns={"Indicator":"Indicator_1"},inplace=True)
 df.head(2)

Out[23]:

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN
4											•

Out[24]:

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN
4											•

In [25]: # 6. Arrange values of a particular column in ascending order.
df.sort_values('Year').head(5)

Out[25]:

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN
1270	Life expectancy at birth (years)	Published	1990	Europe	High- income	Germany	Male	72	72.0	NaN
3193	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	65	65.0	NaN
3194	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Both sexes	68	68.0	NaN
3197	Life expectancy at age 60 (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	15	15.0	NaN
4										•

```
# 7. Arrange multiple column values in ascending order.
           df[0:3].sort_values(['Indicator_1','Country','Year','WHO Region','Publication
            status'])
           df[['Indicator 1','Country','Year','WHO Region','Publication status']].head(3)
Out[26]:
                                           Country Year WHO Region Publication status
                                Indicator_1
            0
                 Life expectancy at birth (years)
                                                     1990
                                                                                Published
                                            Andorra
                                                                Europe
            1
                 Life expectancy at birth (years)
                                                    2000
                                                                                Published
                                            Andorra
                                                                Europe
            2 Life expectancy at age 60 (years)
                                            Andorra 2012
                                                                Europe
                                                                                Published
In [28]:
           #8. Make country as the first column of the dataframe.
           df[['Country','Indicator 1', 'Publication status', 'Year', 'WHO Region',
                    'World Bank income group', 'Sex', 'Display Value', 'Numeric',
                   'Low', 'High', 'Comments']].head()
Out[28]:
                                                                     World
                                    Publication
                                                                      Bank
                                                                                    Display
               Country Indicator 1
                                                                                             Numeric Lo
                                                Year
                                                      WHO Region
                                                                               Sex
                                                                                      Value
                                        status
                                                                    income
                                                                     group
                               Life
                        expectancy
                                                                      High-
                                                                              Both
               Andorra
                                     Published 1990
                                                           Europe
                                                                                         77
                                                                                                77.0 Na
                            at birth
                                                                    income
                                                                             sexes
                            (years)
                               Life
                        expectancy
                                                                      High-
                                                                              Both
               Andorra
                                      Published
                                               2000
                                                                                         80
                                                                                                80.0 Na
                                                           Europe
                            at birth
                                                                    income
                                                                             sexes
                            (years)
                               Life
                        expectancy
                                                                      High-
            2
                                      Published 2012
                                                                                        28
                                                                                                28.0 Na
               Andorra
                                                           Europe
                                                                            Female
                          at age 60
                                                                    income
                            (years)
                               Life
                        expectancy
                                                                      High-
                                                                              Both
               Andorra
                                      Published 2000
                                                                                         23
                                                                                                23.0 Na
            3
                                                           Europe
                          at age 60
                                                                    income
                                                                             sexes
                            (years)
                               Life
                 United
                        expectancy
                                                           Eastern
                                                                      High-
                  Arab
                                     Published 2012
                                                                            Female
                                                                                         78
                                                                                                78.0 Na
                            at birth
                                                      Mediterranean
                                                                    income
               Emirates
                            (years)
In [29]:
           #9. Get the column array using a variable
           np.array(df[['WHO Region']])
Out[29]: array([['Europe'],
                   ['Europe'],
                   ['Europe'],
                   ['Africa'],
```

['Africa'],

['Africa']], dtype=object)

Out[30]:

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low
11	Life expectancy at birth (years)	Published	2012	Europe	High- income	Austria	Female	83	83.0	NaN
24	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High- income	Brunei Darussalam	Female	21	21.0	NaN
37	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Cyprus	Female	26	26.0	NaN
4										•

In [31]: # 11.Get the subset rows excluding 5, 12, 23, and 56
df.drop([5,12,23,56])[0:54]

Out[31]:

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0
2	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Andorra	Female	28	28.0
3	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Andorra	Both sexes	23	23.0
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	United Arab Emirates	Female	78	78.0
6	Life expectancy at age 60 (years)	Published	1990	Americas	High- income	Antigua and Barbuda	Male	17	17.0
7	Life expectancy at age 60 (years)	Published	2012	Americas	High- income	Antigua and Barbuda	Both sexes	22	22.0
8	Life expectancy at birth (years)	Published	2012	Western Pacific	High- income	Australia	Male	81	81.0
9	Life expectancy at birth (years)	Published	2000	Western Pacific	High- income	Australia	Both sexes	80	80.0
10	Life expectancy at birth (years)	Published	2012	Western Pacific	High- income	Australia	Both sexes	83	83.0
11	Life expectancy at birth (years)	Published	2012	Europe	High- income	Austria	Female	83	83.0
13	Life expectancy at birth (years)	Published	2012	Europe	High- income	Belgium	Female	83	83.0
14	Life expectancy at birth (years)	Published	2000	Eastern Mediterranean	High- income	Bahrain	Male	73	73.0

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric
15	Life expectancy at birth (years)	Published	1990	Eastern Mediterranean	High- income	Bahrain	Female	74	74.0
16	Life expectancy at age 60 (years)	Published	1990	Eastern Mediterranean	High- income	Bahrain	Male	17	17.0
17	Life expectancy at birth (years)	Published	2012	Americas	High- income	Bahamas	Male	72	72.0
18	Life expectancy at age 60 (years)	Published	2000	Americas	High- income	Bahamas	Both sexes	21	21.0
19	Life expectancy at birth (years)	Published	1990	Americas	High- income	Barbados	Male	71	71.0
20	Life expectancy at age 60 (years)	Published	2012	Americas	High- income	Barbados	Female	25	25.0
21	Life expectancy at age 60 (years)	Published	2012	Americas	High- income	Barbados	Both sexes	23	23.0
22	Life expectancy at age 60 (years)	Published	1990	Western Pacific	High- income	Brunei Darussalam	Female	20	20.0
24	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High- income	Brunei Darussalam	Female	21	21.0
25	Life expectancy at birth (years)	Published	2000	Americas	High- income	Canada	Female	82	82.0
26	Life expectancy at age 60 (years)	Published	2000	Americas	High- income	Canada	Male	21	21.0
27	Life expectancy at age 60 (years)	Published	1990	Americas	High- income	Canada	Female	24	24.0
28	Life expectancy at birth (years)	Published	1990	Europe	High- income	Switzerland	Male	74	74.0

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric
29	Life expectancy at birth (years)	Published	2012	Europe	High- income	Switzerland	Both sexes	83	83.0
30	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Switzerland	Both sexes	23	23.0
31	Life expectancy at birth (years)	Published	2012	Western Pacific	High- income	Cook Islands	Both sexes	76	76.0
32	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High- income	Cook Islands	Female	22	22.0
33	Life expectancy at age 60 (years)	Published	2000	Western Pacific	High- income	Cook Islands	Both sexes	18	18.0
34	Life expectancy at birth (years)	Published	2000	Europe	High- income	Cyprus	Female	79	79.0
35	Life expectancy at birth (years)	Published	2000	Europe	High- income	Cyprus	Both sexes	77	77.0
36	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Cyprus	Female	22	22.0
37	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Cyprus	Female	26	26.0
38	Life expectancy at birth (years)	Published	2012	Europe	High- income	Czech Republic	Male	75	75.0
39	Life expectancy at birth (years)	Published	1990	Europe	High- income	Czech Republic	Female	75	75.0
40	Life expectancy at birth (years)	Published	1990	Europe	High- income	Germany	Female	79	79.0
41	Life expectancy at age 60 (years)	Published	1990	Europe	High- income	Germany	Male	18	18.0

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric
42	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Germany	Male	20	20.0
43	Life expectancy at birth (years)	Published	2012	Europe	High- income	Denmark	Both sexes	80	80.0
44	Life expectancy at age 60 (years)	Published	1990	Europe	High- income	Denmark	Male	18	18.0
45	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Denmark	Male	19	19.0
46	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Denmark	Both sexes	21	21.0
47	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Denmark	Both sexes	23	23.0
48	Life expectancy at birth (years)	Published	2012	Europe	High- income	Spain	Both sexes	82	82.0
49	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Spain	Female	25	25.0
50	Life expectancy at age 60 (years)	Published	1990	Europe	High- income	Spain	Both sexes	22	22.0
51	Life expectancy at birth (years)	Published	1990	Europe	High- income	Estonia	Female	75	75.0
52	Life expectancy at birth (years)	Published	2012	Europe	High- income	Estonia	Female	81	81.0
53	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Estonia	Male	18	18.0
54	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Estonia	Female	21	21.0

	Indicator_1	Publication status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric
55	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Estonia	Female	24	24.0
57	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Finland	Male	22	22.0

In [32]: users=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/mast er/Data/users.csv') sessions=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/m aster/Data/sessions.csv') products=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/m aster/Data/products.csv') transactions=pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangli ng/master/Data/transactions.csv') users.head()

Out[32]:

		UserID	User	Gender	Registered	Cancelled
-	0	1	Charles	male	2012-12-21	NaN
	1	2	Pedro	male	2010-08-01	2010-08-08
	2	3	Caroline	female	2012-10-23	2016-06-07
	3	4	Brielle	female	2013-07-17	NaN
	4	5	Benjamin	male	2010-11-25	NaN

sessions.head() In [33]:

Out[33]:

	SessionID	SessionDate	UserID
0	1	2010-01-05	2
1	2	2010-08-01	2
2	3	2010-11-25	2
3	4	2011-09-21	5
4	5	2011-10-19	4

In [34]: products.head()

Out[34]:

	ProductID	Product	Price
0	1	А	14.16
1	2	В	33.04
2	3	С	10.65
3	4	D	10.02
4	5	Е	29.66

In [35]: transactions.head()

Out[35]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
3	4	2012-08-26	1.0	2	3
4	5	2013-06-06	2.0	4	1

Out[36]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Ca
0	1	2010-08-21	7.0	2	1	NaN	NaN	NaN	
1	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	2
2	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	2
3	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
4	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	2
5	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	2
6	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	2
7	8	2014-04-24	NaN	2	3	NaN	NaN	NaN	
8	9	2015-04-24	7.0	4	3	NaN	NaN	NaN	
9	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	2
4									•

In [40]: # 13. Which transactions have a UserID not in users?
transactions[~transactions['UserID'].isin(users['UserID'])]

Out[40]:

		TransactionID	TransactionDate	UserID	ProductID	Quantity
_	0	1	2010-08-21	7.0	2	1
	7	8	2014-04-24	NaN	2	3
	8	9	2015-04-24	7.0	4	3

Out[38]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Ca
0	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	2
1	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	2
2	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	2
3	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	2
4	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	
5	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	2
6	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	2
4									

Out[41]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered
0	1.0	2010-08-21	7.0	2.0	1.0	NaN	NaN	NaN
1	9.0	2015-04-24	7.0	4.0	3.0	NaN	NaN	NaN
2	2.0	2011-05-26	3.0	4.0	1.0	Caroline	female	2012-10-23
3	3.0	2011-06-16	3.0	3.0	1.0	Caroline	female	2012-10-23
4	7.0	2013-12-30	3.0	4.0	1.0	Caroline	female	2012-10-23
5	10.0	2016-05-08	3.0	4.0	4.0	Caroline	female	2012-10-23
6	4.0	2012-08-26	1.0	2.0	3.0	Charles	male	2012-12-21
7	5.0	2013-06-06	2.0	4.0	1.0	Pedro	male	2010-08-01
8	6.0	2013-12-23	2.0	5.0	6.0	Pedro	male	2010-08-01
9	8.0	2014-04-24	NaN	2.0	3.0	NaN	NaN	NaN
10	NaN	NaN	4.0	NaN	NaN	Brielle	female	2013-07-17
11	NaN	NaN	5.0	NaN	NaN	Benjamin	male	2010-11-25
4								

In [42]: # 16. Determine which sessions occurred on the same day each user registered

pd.merge(left=users,right=sessions,how="inner",left_on=['UserID','Registered'
],right_on=['UserID','SessionDate'])

Out[42]:

	UserID	User	Gender	Registered	Cancelled	SessionID	SessionDate
0	2	Pedro	male	2010-08-01	2010-08-08	2	2010-08-01
1	4	Brielle	female	2013-07-17	NaN	9	2013-07-17

Out[43]:

	UserID	ProductID
0	1	1
1	1	2
2	1	3
3	1	4
4	1	5
5	2	1
6	2	2
7	2	3
8	2	4
9	2	5
10	3	1
11	3	2
12	3	3
13	3	4
14	3	5
15	4	1
16	4	2
17	4	3
18	4	4
19	4	5
20	5	1
21	5	2
22	5	3
23	5	4
24	5	5

In [44]: # 18. Determine how much quantity of each product was purchased by each user

#do a left join on the output table df_out from previous step with transaction
s table on the keys ['UserID', 'ProductID]

df_user_prod_quant = pd.merge(dataset,transactions,how='left',on=['UserID','Pr
oductID'])

#Groupby the table on ['UserID', 'ProductID] and calculate the sum of Qunatity
entity for each group

df_user_quantity = df_user_prod_quant.groupby(['UserID','ProductID'])['Quantit
y'].sum()

#reset index so that the index column will have consecutive default numbers an
d fill NAN values with 0
df_user_quantity.reset_index().fillna(0)

Out[44]:

	UserID	ProductID	Quantity
0	1	1	0.0
1	1	2	3.0
2	1	3	0.0
3	1	4	0.0
4	1	5	0.0
5	2	1	0.0
6	2	2	0.0
7	2	3	0.0
8	2	4	1.0
9	2	5	6.0
10	3	1	0.0
11	3	2	0.0
12	3	3	1.0
13	3	4	6.0
14	3	5	0.0
15	4	1	0.0
16	4	2	0.0
17	4	3	0.0
18	4	4	0.0
19	4	5	0.0
20	5	1	0.0
21	5	2	0.0
22	5	3	0.0
23	5	4	0.0
24	5	5	0.0

In [46]: # 19. For each user, get each possible pair of pair transactions (TransactionI
D1,TransacationID2)
pd.merge(transactions,transactions,how='outer',on='UserID')

Out[46]:

	TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	Transa
0	1	2010-08-21	7.0	2	1	1	
1	1	2010-08-21	7.0	2	1	9	
2	9	2015-04-24	7.0	4	3	1	
3	9	2015-04-24	7.0	4	3	9	
4	2	2011-05-26	3.0	4	1	2	
5	2	2011-05-26	3.0	4	1	3	
6	2	2011-05-26	3.0	4	1	7	
7	2	2011-05-26	3.0	4	1	10	
8	3	2011-06-16	3.0	3	1	2	
9	3	2011-06-16	3.0	3	1	3	
10	3	2011-06-16	3.0	3	1	7	
11	3	2011-06-16	3.0	3	1	10	
12	7	2013-12-30	3.0	4	1	2	
13	7	2013-12-30	3.0	4	1	3	
14	7	2013-12-30	3.0	4	1	7	
15	7	2013-12-30	3.0	4	1	10	
16	10	2016-05-08	3.0	4	4	2	
17	10	2016-05-08	3.0	4	4	3	
18	10	2016-05-08	3.0	4	4	7	
19	10	2016-05-08	3.0	4	4	10	
20	4	2012-08-26	1.0	2	3	4	
21	5	2013-06-06	2.0	4	1	5	
22	5	2013-06-06	2.0	4	1	6	
23	6	2013-12-23	2.0	5	6	5	
24	6	2013-12-23	2.0	5	6	6	
25	8	2014-04-24	NaN	2	3	8	
4							+

Out[47]:

	UserID	User	Gender	Registered	Cancelled	TransactionID	TransactionDate	ProductID
0	1	Charles	male	2012-12-21	NaN	4.0	2012-08-26	2.0
1	2	Pedro	male	2010-08-01	2010-08- 08	5.0	2013-06-06	4.0
2	3	Caroline	female	2012-10-23	2016-06- 07	2.0	2011-05-26	4.0
3	4	Brielle	female	2013-07-17	NaN	NaN	NaN	NaN
4	5	Benjamin	male	2010-11-25	NaN	NaN	NaN	NaN
4								

In [48]: # 21. Test to see if we can drop columns
#Retieve the column list for the dataframe df_ created in problem statement 20
my_columns = list(df_.columns)
print(my_columns)

['UserID', 'User', 'Gender', 'Registered', 'Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']

- Out[54]: ['UserID', 'User', 'Gender', 'Registered']
- In [55]: missing_info = list(df_.columns[df_.isnull().any()])
 missing_info
- Out[55]: ['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']

number missing for column Cancelled: 3
number missing for column TransactionID: 2
number missing for column TransactionDate: 2
number missing for column ProductID: 2
number missing for column Quantity: 2

```
In [56]: #count of missing df_
for col in missing_info:
    percent_missing = df_[df_[col].isnull() == True].shape[0] / df_.shape[0]
    print('percent missing for column {}: {}'.format(col, percent_missing))

percent missing for column Cancelled: 0.6
    percent missing for column TransactionID: 0.4
    percent missing for column ProductID: 0.4
    percent missing for column Quantity: 0.4
```