Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: $L_1 *$

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Regular languages are closed under these operations

Union

NFA for $L_1 \cup L_2$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$A \qquad L_{2} = \{ba\}$$

$$A \qquad b \qquad \lambda \qquad b \qquad \lambda$$

Star Operation

NFA for L_1*

Reverse

- 1. Reverse all transitions
- 2. Make initial state final state and vice versa

Complement

- 1. Take the ${\sf DFA}$ that accepts L_1
- 2. Make final states non-final, and vice-versa

Intersection

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular}$$
 regular

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}* = {\lambda,a,bc,aa,abc,bca,...}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

Example

$$L((a+b\cdot c)*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a+b)\cdot a*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression r = (0+1)*00(0+1)*

$$L(r)$$
 = { all strings with at least two consecutive 0 }

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r)$$
 = { all strings without two consecutive 0 }

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if
$$L(r_1) = L(r_2)$$

Regular Expressions and Regular Languages

Theorem

See proof in the text book

Finding the regular expression of FA

Reducing the states: \boldsymbol{a} bb*abb*(a+b)

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

Removing states: q_{j} q_i qaae*dce*bce*d q_i q_j ae*b

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

Grammars

Grammars

Grammars express languages

Example: the English language

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$$

$$\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

$$\langle predicate \rangle \rightarrow \langle verb \rangle$$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$

 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$

 $\langle verb \rangle \rightarrow walks$

Language of the grammar:

```
L = \{ \text{"a cat runs"}, 
      "a cat walks".
      "the cat runs",
      "the cat walks",
     "a dog runs",
     "a dog walks",
      "the dog runs",
      "the dog walks" }
```

Notation

Production Rules

Variable (Nonterminal symbol)

Terminal symbol

Another Example

Grammar:
$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Derivation of sentence ab:

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$L = \{a^n b^n : n \ge 0\}$$

More Notation

Grammar
$$G = (V, T, S, P)$$

V: Set of variables

T: Set of terminal symbols

S: Start variable

P: Set of Production rules

Grammar
$$G: S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$G = (V, T, S, P)$$

$$V = \{S\} \qquad T = \{a, b\}$$

$$P = \{S \rightarrow aSb, S \rightarrow \lambda\}$$

More Notation

Sentential Form:

A sentence that contains variables and terminals

Example:

*

We write:

 $S \Rightarrow aaabbb$

Instead of:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

Language of a Grammar

For a grammar G with start variable S:

$$L(G) = \{w \colon S \Longrightarrow w\}$$

$$\uparrow$$
String of terminals

Example

For grammar
$$G: S \to Ab$$

$$A \to aAb$$

$$A \to \lambda$$

$$L(G) = \{a^n b^n b: n \ge 0\}$$

Since:
$$S \Rightarrow a^n b^n b$$

A Convenient Notation

$$\begin{array}{ccc}
A \to aAb \\
A \to \lambda
\end{array}$$

$$A \to aAb \mid \lambda$$

$$\langle article \rangle \rightarrow a$$
 $\langle article \rangle \rightarrow a \mid the$ $\langle article \rangle \rightarrow the$

Linear Grammars

Grammars with at most one variable at the right side of a production

$$S \rightarrow aSb$$

$$S \to Ab$$

$$S \rightarrow \lambda$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

Another Linear Grammar

Grammar
$$G: S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

A Non-Linear Grammar

Grammar
$$G: S \to SS$$

$$S \to \lambda$$

$$S \to aSb$$

$$S \to bSa$$

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Number of a in string w

Right-Linear Grammars

All productions have form:

$$A \rightarrow xB$$

or

$$A \rightarrow x$$

Example: $S \rightarrow abS$

$$S \rightarrow abS$$

$$S \rightarrow a$$

string of terminals

Left-Linear Grammars

All productions have form:

$$A \rightarrow Bx$$

or

$$A \rightarrow x$$

Example:
$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

string of terminals

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples:

$$G_1$$

$$S \rightarrow abS$$

$$S \rightarrow a$$

$$L(G_1) = (ab) * a$$

$$G_2$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

$$L(G_2) = aab(ab) *$$

Theorem

Languages
Generated by
Regular Grammars
Regular Grammars

"Regular grammars generate Regular Languages"

See proof in the text book

Standard Representations of Regular Languages

Regular Language can be represented in a standard representation.

Non-regular languages

$$\{a^nb^n: n\geq 0\}$$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

$$\{vv^R: v \in \{a,b\}^*\}$$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts $\,L\,$

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

n pigeons

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: a

aa

aab

no state is repeated

In walks of strings: aabb

bbaa

abbabb

abbabbabbabb...

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

 \xrightarrow{a} transitions are pigeons

(q) states are pigeonholes

The Pumping Lemma

Take an infinite regular language L

There exists a DFA that accepts L

If string w has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

Write w = x y z

Observations:

 $| length \ | \ x \ y \ | \le m \ number \\ of \ states \\ | length \ | \ y \ | \ \ge 1 \qquad of \ DFA$

Observation:

The string xz, xyz, xyyz, xyyz, ... are accepted.

In General:

The string $x y^{l} z$ is accepted i = 0, 1, 2, ...

The Pumping Lemma:

- \cdot Given a infinite regular language L
- \cdot there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^l z \in L$ i = 0, 1, 2, ...

Applications

of

the Pumping Lemma

Theorem: The language
$$L = \{a^nb^n : n \ge 0\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^m b^m$$

Write:
$$a^m b^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma:
$$x y^i z \in L$$

$$i = 0, 1, 2, ...$$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

The Pumping Lemma: Reminder

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \leq m$ and $|y| \geq 1$
- such that: $x y^i z \in L$ $i = 0, 1, 2, \dots$

Theorem: The language

$$L = \{ vv^R : v \in \Sigma^* \} \qquad \Sigma = \{a,b\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Let m be the integer in the Pumping Lemma

Pick a string
$$w$$
 such that: $w \in L$ and
$$|w| \ge m$$

We pick
$$w = a^m b^m b^m a^m$$

Write
$$a^m b^m b^m a^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a...aa...a...ab...bb...ba...a$$

$$x y z = a...aa...a...ab...bb...ba...a$$

Thus:
$$y = a^k, k \ge 1$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...bb...ba...a}^{m+k} \in L$$

Thus:
$$a^{m+k}b^mb^ma^m \in L$$

$$a^{m+k}b^mb^ma^m \in L$$

$$BUT: L = \{vv^R : v \in \Sigma^*\}$$

$$a^{m+k}b^mb^ma^m \notin L$$

CONTRADICTION!!!

 $k \ge 1$

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Theorem: The language

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string
$$w$$
 such that: $w \in L$ and
$$|w| \ge m$$

We pick
$$w = a^m b^m c^{2m}$$

Write
$$a^m b^m c^{2m} = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a...aa...aa...ab...bc...cc...c$$

$$x y z = a...aa...ab...bc...cc...c$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma:
$$x y^{l} z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^0 z = xz \in L$$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $xz \in L$

$$xz = a...aa...ab...bc...cc...c \in L$$

Thus:
$$a^{m-k}b^mc^{2m} \in L$$

$$a^{m-k}b^mc^{2m} \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

$$a^{m-k}b^mc^{2m} \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language