Paper Review

Implicit Lidar Network Resolution

via Interpolation Weight Prediction

ECCV, 2022

Range Image

- If 64 vertically stacked laser modules rotate at 0.2 degree intervals to store (distance, angle, strength)
- H = 64
- W = 1800(= 360/0.2)
- Pros
- Dense: H x W resolution
- Therefore, it can be calculated more **efficiently** than the point cloud expression
- Cons
- **Scale variation**: When the same object is at different distances, point cloud represent the same size, whereas in a range image, the object appears small when it is at a distance
- **Occlusion**: If there are multiple points corresponding to a pixel, the nearest value is filled, so the occluded points cannot be processed

Local Implicit Image Function

To enrich the information contained in each latent code in M

Continuous image $I^{(i)}$ \longrightarrow 2D feature map $M^{(i)} \in \mathbb{R}^{H \times W \times D}$ \longrightarrow $\hat{M}^{(i)}_{jk} = \operatorname{Concat}(\{M^{(i)}_{j+l,k+m}\}_{l,m \in \{-1,0,1\}})$

: H x W latent codes evenly spread in the 2D domain

• **Decoding function fo**: maps coordinates to RGB value

$$s = I^{(i)}(x_q) = \sum_{t \in \{00,01,10,11\}} \frac{S_t}{S} \cdot f_{\theta}(z_t^*, x_q - v_t^*),$$

- Shared by all the images
- Parameterized as a MLP
- xq: 2D coordinate in the continuous image domain
- z*: Nearest latent code in top-left, top-right, bottom-left, bottom-right
- v* : Coordinate of latent code z*
- St : Area of the rectangle between xq and v*

Figure 2: LIIF representation with local ensemble. A continuous image is represented as a 2D feature map with a decoding function f_{θ} shared by all the images. The signal is predicted by ensemble of the local predictions, which guarantees smooth transition between different areas.

• Cell decoding

- **Problem** of no cell decoding: predicted RGB value of a query pixel is independent of its size, the information in its pixel area is all discarded except the center value.
- Cell decoding: Render a pixel centered at coordinate x with shape c

Architecture

: Predict the depths of input image pixels

- Learn how to make a new image

Weights = Attention : How to fill the unmeasured

region with the neighbor pixels

non-linear learned weights

weights
$$\hat{r} = \sum_{t}^{4} g(\cdot| heta) h(\cdot) = \sum_{t}^{4} g(\mathbf{z}_t'| heta) \cdot r_t.$$

LIN

Ours

: Predict weights for interpolation

Learn how to blend the pixel values

Position Embedding

 $\Delta \mathbf{q}_t$: t-th neighbor's relative position to query laser \mathbf{q}

 \mathbf{z}_t : feature vector extracted from feature map

 \mathbf{z}_t' : local feature embedding query information $\Delta \mathbf{q}_t$

Mapping the inputs in a low dimension to a higher dimensional space using high frequency functions before passing them to the network enables better fitting of data that contains high frequency variation.

$$\gamma(p) = \left(\sin(2^0\pi p), \cos(2^0\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p)\right)$$

Using Nerf Position Embedding

 $\gamma \colon \mathbb{R} \to \mathbb{R}^{2L}$ $\stackrel{\checkmark}{=}$ A mapping from simple coordinate to higher dimensional space.

$$L = 10$$
 for $\gamma(\mathbf{x})$ and $L = 4$ for $\gamma(\mathbf{d})$

$$F_{\Theta} = \underline{F'_{\Theta}} \circ \gamma$$

Still simply a regular MLP

Self-attention

Fig. 7. Performances of ours depending on the number of attentions, D.

- Weights as attentions from each query to its neighbor pixels
- Thus leverage an attention mechanism
- Attention map represent correlation among the local features
- Result
- Remarkable performance gains when comparing the model with and without attention module
- Applying more self-attentions showed slight performance improvement

Result

• in-distribution test environment

2	D result		— 3D result —		
Method	MAE	IoU	Precision	Recall	F1
	Test res	solution:	64×1024		
LiDAR-SR [4]*	1.560	0.233	0.370	0.377	0.373
Bilinear	2.372	0.202	0.322	0.328	0.325
LIIF [10]	1.558	0.258	0.403	0.409	0.406
Ours	1.536	0.329	0.483	0.486	0.484
	Test res	olution: 1	28×2048		
LiDAR-SR [4]*	1.746	0.161	0.262	0.288	0.274
Bilinear	2.591	0.165	0.268	0.287	0.277
LIIF [10]	1.714	0.236	0.372	0.388	0.379
Ours	1.690	0.331	0.483	0.498	0.491

• out-distribution test environment

Test resolution: 256×4096								
LiDAR-SR [4]*	1.735	0.127	0.207	0.245	0.224			
Bilinear	2.646	0.163	0.256	0.303	0.277			
LIIF [10]	1.923	0.158	0.221	0.356	0.272			
Ours	1.763	0.232	0.353	0.396	0.373			

