Encrypted Search: Enabling Standard Information Retrieval Techniques for Several New Secure Index Types While Preserving Confidentiality Against an Adversary With Access to Query Histories and Secure Index Contents

By Alexander R. Towell, Bachelor of Science

A Thesis Submitted in Partial
Fulfillment of the Requirements
for the Degree of
Master of Science
in the field of Computer Science

Advisory Committee:
Hiroshi Fujinoki, Chair
Gunes Ercal
Tim Jacks

Graduate School Southern Illinois University Edwardsville September, 2015

ABSTRACT

ENCRYPTED SEARCH: ENABLING STANDARD INFORMATION RETRIEVAL TECHNIQUES FOR SEVERAL NEW SECURE INDEX TYPES WHILE PRESERVING CONFIDENTIALITY AGAINST AN ADVERSARY WITH ACCESS TO QUERY HISTORIES AND SECURE INDEX CONTENTS

by

ALEXANDER R. TOWELL

Chairperson: Professor Hiroshi Fujinoki

Encrypted Search is a way for a client to store searchable documents on untrusted systems such that the untrusted system can obliviously search the documents on the client's behalf, i.e., the untrusted system does not know what the client is searching for nor what the documents contain. Several new secure index types are designed, analyzed, and implemented. We analyze them with respect to several performance measures: confidentiality, time complexity, space complexity, and search retrieval accuracy. In order to support rank-ordered search, the secure indexes store frequency and proximity information. We investigate the risk this additional information poses to confidentiality and explore ways to mitigate said risk. Separately, we also simulate an adversary who has access to a history of encrypted queries and design techniques that mitigate the risk posed by this adversary. KEYWORDS: (Encrypted Search, Information Leaks, Perfect Hash Filter, Query Obfuscation, Secure Indexes)

ii

ACKNOWLEDGEMENTS

I would like to recognize my better half, Kimberly Wirts, for her patience and encouragement.

I would like to thank my parents, Bill and Sharon Towell, for their constant support throughout the entire process.

I would like to express my gratitude to my thesis advisor, Prof. Hiroshi Fujinoki, for introducing me to my thesis topic and lending me his time and support.

I would like to thank the rest of my thesis committee, Prof. Gunes Ercal and Prof. Tim Jacks, for their insights and challenging questions.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS LIST OF FIGURES LIST OF TABLES Chapter I. INTRODUCTION	vi133
LIST OF TABLESChapter	ix33
Chapter	3 6 7
	3 6 7
I. INTRODUCTION	3 6 7
	3 6
II. REVIEW OF LITERATURE	6 7
Confidentiality	6 7
Information Leaks	7
Online and Offline Searching	
Mapping Queries to Documents	
III. RESEARCH OBJECTIVES	15
Secure Indexes	15
Relevancy Metrics	
Information Leaks	
IV. EXPERIMENTS	41
Inputs	41
Outputs	
Platforms	
Global Parameters	
Adversary Simulation Results	
Secure Index Results	
V. EXTENSIONS	84
Set-Theoretic Queries	84
Fuzzy Set-Theoretic Search	
Boolean Proximity Searching	
Caching Results	
VI. FUTURE WORK	88
Simulating an Adversary with Secure Index Access	88
Mitigating Access Pattern Leaks	

	Semantic Search	89
	Topic Search (Classification)	90
	Letter N-Grams and Word N-Grams	91
	Learning Optimal Parameters	91
VII.	CONCLUSIONS	92
REFE	ERENCES	94

LIST OF FIGURES

Figure		Page
1.	Overview of Encrypted Search on a Secure Index Database	16
2.	Overview of Secure Index Construction	17
3.	Perfect Hash Filter (Using A Minimal Perfect Hash)	20
4.	The Perfect Hash Filter Secure Index (PSI)	22
5.	The PSI Block-Based Secure Index (PSIB)	24
6.	The PSI Frequency Secure Index (PSIF)	25
7.	The PSI Postings List Secure Index (PSIP)	26
8.	The PSI Minimum-Pairwise Distance Secure Index (PSIM)	28
9.	Experiment #1	44
10.	Unique Obfuscations vs Accuracy of Adversary Using MLE Attack	45
11.	Obfuscation Rate vs Accuracy of Adversary Using MLE Attack	46
12.	Experiment #2	46
13.	Secrets vs Accuracy of Adversary Using MLE Attack	47
14.	Experiment #3	47
15.	History with Secrets vs Accuracy of Adversary Using MLE Attack	48
16.	History vs Accuracy of Adversary Using MLE Attack	48
17.	Number of Secrets vs Accuracy of Adversary Using MLE Attack	49
18.	Experiment #4	49
19.	Vocabulary Size vs Accuracy of Adversary Using MLE Attack	50
20.	Experiment #5	50
21.	Location Uncertainty vs Accuracy of Top 10 BM25 MAP Search Results .	51
22.	Mean Average Precision of Random Results	52
23.	Experiment #6	52
24.	Location Uncertainty vs Accuracy of Top 10 Mindist* Search Results	53
25.	Experiment #7	53
26.	Number of Secrets vs Compression Ratio	54

27.	Number of Secrets vs Secure Index Build Time	54
28.	Number of Secrets vs Secure Index Load Time	55
29.	Experiment #8	55
30.	False Positive Rate vs BM25 MAP	56
31.	False Positive Rate vs Precision	56
32.	Experiment #9	57
33.	Obfuscations/Query vs BM25 MAP with 6 Terms/Query, 6 Words/Term.	57
34.	Obfuscations/Query vs BM25 Lag Time with 6 Terms/Query, 6 Words/Term	58
35.	Obfuscations/Query vs BM25 MAP with 1 Term/Query, 2 Words/Term	58
36.	Experiment #10	59
37.	Obfuscations/Query vs Mindist* Mean Average Precision	59
38.	Obfuscations/Query vs Mindist* Lag Time	60
39.	Experiment #11	60
40.	Page Count vs Secure Index Size	61
41.	PSIB and BSIB Intersection for Pages/Document vs Secure Index Size	61
42.	Experiment #12	61
43.	Blocks per PSIB/PSIB vs Secure Index Size	62
44.	Blocks per PSIB/PSIB vs Compression Ratio	63
45.	Experiment #13	63
46.	Documents per Corpus vs Corpus Size	64
47.	Experiment #14	64
48.	Pages per Document vs Build Time	65
49.	A Closer Look a Pages per Document vs Build Time	65
50.	Experiment #15	65
51.	Documents per Corpus vs Total Build Time per Corpus	66
52.	Experiment #16	66
53.	Pages per Secure Index vs Secure Index Load Time	67
54.	Experiment #17	67

55.	Documents per Corpus vs Corpus Load Time	68
56.	Experiment #18	68
57.	Pages per Secure Index vs Mindist* Lag Time	70
58.	Experiment #19	70
59.	Location Uncertainty vs Absolute Location Error	71
60.	Experiment #20	72
61.	Location Uncertainty vs Mindist* MAP	72
62.	A Closer Look at Location Uncertainty vs Mindist* MAP	73
63.	Experiment #21	73
64.	Pages per Secure Index vs BM25 Lag Time	74
65.	A Closer Look at Pages per Secure Index vs BM25 Lag Time	74
66.	Experiment #22	75
67.	Location Uncertainty vs BM25 MAP with 2 Words/Term, 3 Terms/Query	75
68.	Location Uncertainty vs BM25 MAP with 2 Words/Term, 2 Terms/Query	76
69.	Experiment #23	76
70.	Pages per Secure Index vs Boolean Search Lag Time	77
71.	A Closer Look at Pages per Secure Index vs Boolean Search Lag Time	77
72.	Experiment #24	78
73.	Percentage of Junk Terms vs Secure Index Compression Ratio	78
74.	Percentage of Junk Terms vs BM25 MAP	79
75.	Experiment #25	79
76.	Relative Frequency Error vs BM25 MAP with 2 Terms/Query	80
77.	Relative Frequency Error vs BM25 MAP with 1 Term/Query	80
78.	Experiment #26	81
79.	Compression Ratio vs Mindist* MAP	81
80.	Experiment #27	82
81.	Words per Term vs Precision and Recall	83

LIST OF TABLES

Table		Page
1.	Comparison of Confidentiality Techniques	3
2.	Online Searching vs Offline Searching	7
3.	Boolean Search vs Rank-ordered Search	9
4.	BNF Query Grammar	9
5.	BNF Hidden Query Grammar	16
6.	Testbed System for Experiments	43
7.	BNF Set-Theoretic Query Grammar	84
8.	BNF Fuzzy Set-Theoretic Grammar	86