Lecture 16 – Equivalence of Pushdown Automata and Context-Free Grammars COSE215: Theory of Computation

Jihyeok Park

2025 Spring

A **context-free grammar** is a 4-tuple:

$$G = (V, \Sigma, S, R)$$

A pushdown automaton (PDA) is a finite automaton with a stack.

- Acceptance by final states
- Acceptance by empty stacks

Contents

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{ES}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

Contents

 Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{FS} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{FS} to CFGs

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_F(P) = L_E(P')$.

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, $\exists PDA P'$. $L_F(P) = L_E(P')$.

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_F(P) = L_E(P')$.

Define a PDA

$$P' = (Q \cup \{q'_0, q'_1\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q'_0, Z', \varnothing)$$

where

$$\begin{array}{lll} \delta'(q_0',\epsilon,Z') & = & \{(q_0,ZZ')\} \\ \delta'(q\in Q,a\in \Sigma,X\in \Gamma) & = & \delta(q,a,X) \\ \\ \delta'(q\in Q,\epsilon,X\in \Gamma\cup \{Z'\}) & = & \left\{ \begin{array}{ll} \delta(q,\epsilon,X)\cup \{(q_1',\epsilon)\} & \text{if } q\in F \\ \delta(q,\epsilon,X) & \text{otherwise} \end{array} \right. \\ \delta'(q_1',\epsilon,X\in \Gamma\cup \{Z'\}) & = & \{(q_1',\epsilon)\} \end{array}$$

PDA_{FS} to PDA_{ES} – Example

PDA_{FS} to PDA_{ES} – Example

PDA_{ES} to PDA_{FS}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_E(P) = L_F(P')$.

PDA_{ES} to PDA_{FS}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, $\exists PDA P'$. $L_E(P) = L_F(P')$.

PDA_{ES} to PDA_{ES}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_E(P) = L_F(P')$.

Define a PDA

$$P' = (Q \cup \{q_0', q_1'\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q_0', Z', \{q_1'\})$$

where

$$\delta'(q'_0, \epsilon, Z') = \{(q_0, ZZ')\}$$

$$\delta'(q \in Q, a \in \Sigma, X \in \Gamma) = \delta(q, a, X)$$

$$\delta'(q \in Q, \epsilon, X \in \Gamma) = \delta(q, \epsilon, X)$$

$$\delta'(q \in Q, \epsilon, Z') = \{(q'_1, Z')\}$$

PDA_{ES} to PDA_{FS} – Example

$$L_{E}(P) = L_{F}(P') = \{a^{n}b^{n} \mid n \geq 0\}$$

$$P = \bigcap_{\substack{a \mid Z \to XZ \\ a \mid X \to XX \mid b \mid [X \to \epsilon] \\ \epsilon \mid [Z \to Z] \\ \epsilon \mid [X \to X] \\ q_{1}}} \underbrace{\{z \to \epsilon\}}_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \\ q_{2}}} \underbrace{\{z \to \epsilon\}}_{\substack{q_{2} \\ q_{2} \\ q_{2}}}$$

PDA_{ES} to PDA_{FS} – Example

$$L_{E}(P) = L_{F}(P') = \{a^{n}b^{n} \mid n \geq 0\}$$

$$P = \begin{cases} a \mid Z \to XZ \mid & b \mid [X \to \epsilon] \\ a \mid [X \to XX] & b \mid [X \to \epsilon] \end{cases}$$

$$\text{start } [Z] \xrightarrow{q_{0}} \begin{cases} \epsilon \mid [Z \to Z] & \epsilon \mid [Z \to \epsilon] \\ \epsilon \mid [X \to X] & q_{1} \end{cases} \xrightarrow{\epsilon} \begin{cases} [Z \to \epsilon] & q_{2} \end{cases}$$

Contents

1. Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{ES} to CFGs

CFGs to PDA_{ES}

Theorem (CFGs to PDA_{ES})

For a given CFG $G = (V, \Sigma, S, R)$, $\exists PDA P. L(G) = L_E(P)$.

CFGs to PDA_{ES}

Theorem (CFGs to PDA_{ES})

For a given CFG $G = (V, \Sigma, S, R)$, $\exists PDA P. L(G) = L_E(P)$.

Define a PDA

$$P = (\{q\}, \Sigma, V \cup \Sigma, \delta, q, S, \varnothing)$$

where

$$\delta(q, \epsilon, A \in V) = \{(q, \alpha) \mid A \to \alpha \in R\}$$

$$\delta(q, a \in \Sigma, a \in \Sigma) = \{(q, \epsilon)\}$$

CFGs to PDA_{FS} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$\mathcal{S}
ightarrow \epsilon \mid a \mathcal{S} b \mid b \mathcal{S} a \mid \mathcal{S} \mathcal{S}$$

CFGs to PDA_{FS} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$\mathcal{S}
ightarrow \epsilon \mid a \mathcal{S} b \mid b \mathcal{S} a \mid \mathcal{S} \mathcal{S}$$

Then, the equivalent PDA (by empty stacks) is:

$$\begin{array}{c}
\epsilon & [S \to \epsilon] \\
\epsilon & [S \to aSb] \\
\epsilon & [S \to bSa] \\
\epsilon & [S \to SS] \\
a & [a \to \epsilon] \\
b & [b \to \epsilon]
\end{array}$$

CFGs to PDA_{FS} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$\mathcal{S}
ightarrow \epsilon \mid a \mathcal{S}$$
b $\mid b \mathcal{S}$ a $\mid \mathcal{S}\mathcal{S}$

Then, the equivalent PDA (by empty stacks) is:

$$\begin{array}{c} \epsilon \ [S \to \epsilon] \\ \epsilon \ [S \to aSb] \\ \epsilon \ [S \to bSa] \\ \epsilon \ [S \to SS] \\ a \ [a \to \epsilon] \\ b \ [b \to \epsilon] \end{array} \qquad \begin{array}{c} (q, \mathtt{abab}, S) \quad \vdash \quad (q, \mathtt{abab}, \mathtt{a}S\mathtt{b}) \\ \vdash \quad (q, \mathtt{bab}, S\mathtt{b}) \\ \vdash \quad (q, \mathtt{bab}, \mathtt{b}S\mathtt{ab}) \\ \vdash \quad (q, \mathtt{ab}, \mathtt{Sab}) \\ \vdash \quad (q, \mathtt{ab}, \mathtt{abb}) \\ \vdash \quad (q, \mathtt{abb}, \mathtt{abb}, \mathtt{abb}) \\ \vdash \quad (q, \mathtt{abb}, \mathtt{abb}, \mathtt{abb}) \\ \vdash \quad (q, \mathtt{abb}, \mathtt{abb}, \mathtt{abb}) \\ \vdash \quad (q,$$

Theorem (PDA_{ES} to CFGs)

For a given PDA $P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$

Theorem (PDA_{ES} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

The key idea is defining a variable $A_{i,j}^X$ for each $0 \le i,j < n$ and $X \in \Gamma$ that generates all words causing the PDA to move from q_i to q_j by popping X:

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_i, w, X) \vdash^* (q_j, \epsilon, \epsilon)$

Theorem (PDA_{ES} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

The key idea is defining a variable $A_{i,j}^X$ for each $0 \le i,j < n$ and $X \in \Gamma$ that generates all words causing the PDA to move from q_i to q_j by popping X:

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_i, w, X) \vdash^* (q_j, \epsilon, \epsilon)$

With this idea, we can define a CFG that generates all words accepted by the PDA P with empty stacks as follows:

$$S \to A_{0,0}^Z \mid A_{0,1}^Z \mid \cdots \mid A_{0,n-1}^Z$$

Theorem (PDA_{ES} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

The key idea is defining a variable $A_{i,j}^X$ for each $0 \le i,j < n$ and $X \in \Gamma$ that generates all words causing the PDA to move from q_i to q_j by popping X:

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_i, w, X) \vdash^* (q_j, \epsilon, \epsilon)$

With this idea, we can define a CFG that generates all words accepted by the PDA P with empty stacks as follows:

$$S \to A_{0,0}^Z \mid A_{0,1}^Z \mid \cdots \mid A_{0,n-1}^Z$$

Then, how to define production rules for $A_{i,j}^X$?

We can define production rules for $A_{i,j}^X$ as follows.

We can define production rules for $A_{i,j}^X$ as follows.

Consider a transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ for all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, $X \in \Gamma$.

We can define production rules for $A_{i,j}^X$ as follows.

Consider a transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ for all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}, X \in \Gamma$.

It makes PDA move from q_i to q_j by replacing X with $X_1 \cdots X_m$.

We can define production rules for $A_{i,j}^X$ as follows.

Consider a transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ for all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}, X \in \Gamma$.

It makes PDA move from q_i to q_j by replacing X with $X_1 \cdots X_m$.

Then, we need to pop X_1, \dots, X_m from the stack to make the stack empty.

We can define production rules for $A_{i,j}^X$ as follows.

Consider a transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ for all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}, X \in \Gamma$.

It makes PDA move from q_i to q_j by replacing X with $X_1 \cdots X_m$.

Then, we need to pop X_1, \dots, X_m from the stack to make the stack empty.

Let k_1, \dots, k_m be the states that the PDA moves to after popping X_1, \dots, X_m , respectively.

We can define production rules for $A_{i,j}^X$ as follows.

Consider a transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ for all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, $X \in \Gamma$.

It makes PDA move from q_i to q_j by replacing X with $X_1 \cdots X_m$.

Then, we need to pop X_1, \dots, X_m from the stack to make the stack empty.

Let k_1, \dots, k_m be the states that the PDA moves to after popping X_1, \dots, X_m , respectively.

To cover all possible combinations of k_1, \dots, k_m , we need to define a production rule for A_{i,k_m}^X as follows:

$$A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m} \ ext{for all} \ 0 \leq k_1, \cdots, k_m < n$$

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

$$\begin{array}{cccc} a & [Z \to XZ] & \epsilon & [Z \to \epsilon] \\ a & [X \to XX] & b & [X \to \epsilon] \\ & & \epsilon & [Z \to Z] \\ & & \epsilon & [X \to X] \end{array}$$
 start $[Z]$

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

$$\begin{array}{cccc} a & [Z \to XZ] & \epsilon & [Z \to \epsilon] \\ a & [X \to XX] & b & [X \to \epsilon] \\ & & \epsilon & [Z \to Z] & \\ \text{start} & [Z] & & q_0 & \\ \end{array}$$

Then, the equivalent CFG is:

$$\begin{array}{l} S & \rightarrow A_{0,0}^{Z} \mid A_{0,1}^{Z} \\ A_{0,0}^{Z} \rightarrow a \; A_{0,0}^{X} \; A_{0,0}^{Z} \mid a \; A_{0,1}^{X} \; A_{1,0}^{Z} \mid A_{1,0}^{Z} \\ A_{0,1}^{Z} \rightarrow a \; A_{0,0}^{X} \; A_{0,1}^{Z} \mid a \; A_{0,1}^{X} \; A_{1,1}^{Z} \mid A_{1,1}^{Z} \\ A_{0,0}^{X} \rightarrow a \; A_{0,0}^{X} \; A_{0,0}^{X} \mid a \; A_{0,1}^{X} \; A_{1,0}^{X} \mid A_{1,0}^{X} \\ A_{0,1}^{X} \rightarrow a \; A_{0,0}^{X} \; A_{0,1}^{X} \mid a \; A_{0,1}^{X} \; A_{1,1}^{X} \mid A_{1,1}^{X} \\ A_{1,1}^{Z} \rightarrow \epsilon \\ A_{1,1}^{X} \rightarrow b \end{array}$$

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

$$\begin{array}{cccc} a & [Z \to XZ] & \epsilon & [Z \to \epsilon] \\ a & [X \to XX] & b & [X \to \epsilon] \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Then, the equivalent CFG is:

Summary

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

PDAES to CFGS

Next Lecture

• Deterministic Pushdown Automata (DPDA)

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr