Tras realizar la encuesta en la Universidad de las Fuerzas Armadas-ESPE, se recopilaron los siguientes datos de 150 personas, en base a la pregunta: En su opinión, ¿qué porcentaje del tiempo libre considera que emplea de forma productiva?

15,2	40,2	50,5	60,3	66,5	70,7
15,5	40,5	50,5	60,4	67,4	70,8
15,5	40,6	50,5	60,5	67,5	70,8
15,6	40,6	50,5	60,5	67,5	70,8
20,2	40,7	50,5	60,5	68,2	70,9
20,3	40,8	50,5	60,5	68,9	71,4
20,5	40,8	50,6	60,5	69,5	72,4
20,9	40,8	50,7	60,5	69,5	73,5
25,4	40,9	50,7	60,6	69,6	75,5
25,5	45,5	50,8	60,6	69,7	75,5
25,6	45,5	50,9	60,7	70,1	75,6
25,8	45,5	50,9	60,8	70,2	75,6
30,3	45,5	50,9	60,9	70,2	78,5
30,4	45,5	50,9	60,9	70,3	79,6
30,4	45,8	55,5	60,9	70,3	80,1
30,5	45,8	55,5	60,9	70,4	80,3
30,6	47,3	55,5	60,9	70,4	80,4
30,9	49,9	56,1	64,1	70,5	80,5
33,3	50,1	56,5	65,1	70,5	80,5
35,4	50,2	56,7	65,2	70,5	80,5
35,5	50,3	57,3	65,4	70,5	85,1
35,8	50,3	58,4	65,5	70,5	85,6
35,8	50,3	58,5	65,8	70,6	85,6
37,5	50,4	59,2	65,8	70,6	87,4
39,5	50,4	59,2	66,5	70,7	88,6

Medidas de tendencia central para datos no agrupados:

1. Media:

$$\bar{x} = \frac{\sum x}{n}$$

$$\bar{x} = \frac{8395,1}{150} = 55,97$$

2. Mediana:

$$Me = \frac{n+1}{2}$$

$$Me = \frac{150 + 1}{2} = 75,5$$

3. Moda:

$$Mo = 50.5$$

4. Amplitud:

$$Am = Vmayor - Vmenor$$

$$Am = 88,6 - 15,2 = 73,4$$

5. Desviación absoluta media:

$$DAM = \frac{\sum (x - \bar{x})}{n}$$

$$DAM = \frac{2115,58}{150} = 14,1$$

6. Varianza:

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

$$s^2 = \frac{44142,551}{150 - 1} = 296,23$$

7. Desviación estándar:

$$s = \sqrt{s^2}$$

$$s = \sqrt{296,23} = 17,21$$

8. Diagrama de bigote:

$$Q_i = \frac{(n+1)*i}{4}$$

$$Q_1 = \frac{(150+1)*1}{4} = 37,75 \ (posición) = 45,5$$

$$Q_2 = \frac{(150+1)*2}{4} = 75,5 \ (media) = 59,9$$

$$Q_3 = \frac{(150+1)*3}{4} = 113,25 \; (posición) = 70,2$$

Simetría negativa

9. Coeficiente de Asimetría:

$$CA = \frac{3(\bar{x} - Me)}{s}$$

$$CA = \frac{3 * (55,97 - 75,5)}{17,21} = -3,4$$

10. Coeficiente de variación:

$$CV = \frac{s}{x} * 100$$

$$CV = \frac{17,21}{150} * 100 = 11,47\%$$

Medidas de tendencia central para datos agrupados:

-Número de intervalos:

$$2^k \ge n$$
$$2^8 \ge 150$$
$$k = 8$$

-Ancho de intervalo:

$$A_i = \frac{Vmayor - Vmenor}{k}$$

$$A_i = \frac{88,6-15,2}{8} = 9,175 \approx 9,2 \; (por\; la\; naturaleza\; de\; los\; datos)$$

-Límite inferior:

$$15,2 - 0,1 = 15,1$$

1. Media:

$$\bar{x} = \frac{\sum f * x}{n}$$

$$\bar{x} = \frac{8181,6}{150} = 54,54$$

2. Mediana:

$$Me = \frac{n+1}{2}$$

$$Me = \frac{150+1}{2} = 75,5(posición)$$

$$Me = L_i + \left[\frac{\frac{n}{2} - FA(anterior)}{f} * i\right]$$

$$Me = 70,9 + \left[\frac{\frac{150}{2} - 37}{11} * 9,2\right] = 102,68$$

3. Moda:

$$Mo = L_I + \left[\frac{d_1}{d_1 + d_2} * i\right]$$

$$d_1 = 37 - 28 = 9$$

$$d_2 = 37 - 11 = 26$$

$$Mo = 70.9 + \left[\frac{9}{9 + 26} * 9.2\right] = 73.27$$

4. Varianza:

$$s^{2} = \frac{\sum x^{2} - \frac{(\sum x)^{2}}{n}}{n - 1}$$

$$s^{2} = \frac{513993,91 - \frac{(8395,1)^{2}}{150 - 1}}{150 - 1} = 296,26$$

5. Desviación estándar:

$$s = \sqrt{s^2}$$

$$s = \sqrt{296,26} = 17,21$$

Probabilidad

- -Reglas de la probabilidad
- 1. Regla de la suma:

Se toma una muestra de 150 personas, de las que se sabe que 25 no ocupan su tiempo libre de forma productiva, 84 ocupan su tiempo de forma productiva parcialmente y 41 si ocupan su tiempo libre de forma productiva. Se toma una persona al azar, determine la probabilidad de a) ocupe su tiempo libre de forma parcial o que no acupe su tiempo libre productivamente. b) ocupe su tiempo libre de forma productiva y que no ocupe.

Datos:

$$n = 150$$

- A) No ocupan su tiempo libre productivamente parcialmente $\frac{25}{150}$
 - B) Ocupan su tiempo libre productivamente parcialmente $\frac{84}{150}$
- C) Ocupan su tiempo libre productivamente parcialmente $\frac{41}{150}$

a)
$$P(BoA) = P(B) + P(A)$$

$$P(BoA) = \frac{84}{150} + \frac{25}{150} = 0,7267 \approx 72,67\%$$

La probabilidad de que se elija una persona al azar y que ocupe su tiempo libre parcialmente o no ocupe su tiempo libre de forma productiva es de 72,67%.

b))
$$P(CoA) = P(C) + P(A)$$

$$P(CoA) = \frac{41}{150} + \frac{25}{150} = 0.44 \approx 44\%$$

La probabilidad de que se elija un persona al azar y que ocupe su tiempo libre productivamente y que no lo haga es del 44%.

2. Regla de la multiplicación

De la encuesta realizada se toma solo una muestra de 25 personas de las cuales 11 son de ingeniería geoespacial, 5 son de ingeniería en biotecnología y 9 de electrónica. Determine la probabilidad de que a)se elija al azar 4 personas, la primera de electrónica, la segunda de biotecnología, la tercera de geoespacial, sin reelección. b) se elija 1 de electrónica, 1 de biotecnología y 1 de geoespacial, con reelección.

Datos:

$$n=25$$
 A)Ingeniería geoespacial $\frac{11}{25}$ B)Ingeniería electrónica $\frac{9}{25}$

C)Ingeniería en biotecnología $\frac{5}{25}$

a)
$$P(ByCyA) = P(A) * P(B \setminus A) * P(C \setminus AyB)$$

$$P(ByCyA) = \frac{9}{25} * \frac{5}{24} * \frac{11}{23} = 0.036 \approx 3.6\%$$

La probabilidad de que se elija al azar 3 personas, de las cuales la primera sea de electrónica, la segunda de biotecnología y la tercera de geoespacial, sin reelección es de 3,6%.

b)
$$P(ByCyA) = P(A) * P(B) * P(C)$$

$$P(ByCyA) = \frac{9}{25} * \frac{5}{25} * \frac{11}{25} = 0.032 \approx 3.2\%$$

La probabilidad de que se elija al azar 3 personas, de las cuales la primera sea de electrónica, la segunda de biotecnología y la tercera de geoespacial, con reelección es de 3,2%.

3. Teorema de Bayes:

-Tabla de contingencia:

Género/T.L	Productivo	Parcialmente productivo	No productivo	Total
Hombre	10	30	27	67
Mujer	15	54	14	83
Total	25	84	41	150

-Árbol-grama:

Teorema de Bayes: $P(Ai \backslash Bi) = \frac{P(Ai)P(Bi \backslash Ai)}{P(Ai)P(Bi \backslash Ai) + P(Ai)P(Bi \backslash Ai) + \cdots}$

Determinar las siguientes probabilidades:

a) H-Productivo?

La probabilidad de que sea hombre y utilice su tiempo de forma productiva es de 6,7%.

b) No productivo-M?

$$P(A2 \backslash B2) = \frac{P(A2)P(B2 \backslash A2)}{P(A2)P(B2 \backslash A2) + P(A1)P(B2 \backslash A1)}$$
$$P(A2 \backslash B2) = \frac{0.36}{0.36 + 0.2} = 0.64 \approx 64\%$$

La probabilidad de que se elija una persona que use su tiempo productivo de forma parcial y sea mujer es de 64%.

Principios de conteo

1. Multiplicación:

De los resultados de la encuesta a 150 personas se sabe que 64 con de ingeniería en biotecnología, 44 son de geoespacial y 42 de electrónica. Determine el número de acomodos posibles.

$$Na = Grupo1 * Grupo2 * Grupo3$$

 $Na = 64 * 44 * 42 = 118272$

El número total de acomodos de las personas de la encuesta por carreras es de 118272.

2. Permutación:

De los resultados de la encuesta a 150 personas se sabe que son de tres carreras, biotecnología, geoespacial y electrónica, cuántos arreglos se puede hacer.

$$P_r = \frac{n!}{(n-r)!}$$

$$P_3 = \frac{3!}{(150-3)!} = 3307800$$

El número total de arreglos para las 3 carreras en la muestra de 150 personas es de 3307800.

3. Combinación:

De los resultados de la encuesta a 150 personas se sabe que son de tres carreras, biotecnología, geoespacial y cuáles son los posibles arreglos.

Los posibles arreglos para las 3 carreras en la muestra de 150 personas es de 551300.

Distribución de probabilidad discreta

1. Distribución Binomial:

Se toma una muestra de 15 personas del total de personas encuestadas de las cuales se sabe que el 30% ocupa su tiempo libre de manera productiva. Determinar:

a) La probabilidad de que al menos 3 personas ocupen su tiempo libre de forma productiva.

Solución
$$P(x) = nCx \ p^x \ q^{(n-x)}$$

$$P(0) = 15C0 \ (0,3)^0 \ (1-0,3)^{(15-0)} = 4,7 \times 10^{-3}$$

$$P(1) = 15C1 \ (0,3)^1 \ (1-0,3)^{(15-1)} = 0,0305$$

$$P(2) = 15C2 \ (0,3)^2 \ (1-0,3)^{(15-2)} = 0,0915$$

$$P(3) = 15C3 \ (0,3)^3 \ (1-0,3)^{(15-3)} = 0,17$$

$$P(x \le 3) = \sum [P(0) + P(1) + P(2) + P(3)]$$

$$P(x \le 3) = 4,7 \times 10^{-3} + 0,0915 + 0.17$$

$$P(x \le 3) = 0,2662 \approx 26,62\%$$

$$11$$
 La probabilidad de que al menos 3 personas ocupen su tiempo libre de forma productiva es del 26,62%

b) La probabilidad de que 10 no ocupen su tiempo libre de forma productiva.

$$P(10) = 15C10 (0.7)^{10} (1 - 0.7)^{(15-10)} = 0.2061 \approx 20.61\%$$

La probabilidad de que 10 personas no ocupen su tiempo libre de forma productiva es de 20,61%.

2. Distribución Hipergeométrica:

Se tiene una población de 150 personas encuestadas y se sabe que 25 ocupan su tiempo libre de manera productiva, se toma una muestra de 20 personas. Determine la probabilidad e que exactamente 9 personas ocupen su tiempo libre de forma productiva.

$$P(x) = \frac{sCx * (N-s)C(n-x)}{NCn}$$

Datos: N=150 n=6 s=25 x=20

$$P(9) = \frac{25C9 * (150 - 25)C(20 - 9)}{150C20}$$
$$P(9) = 1,04 \times 10^{-3} \approx 0,104\%$$

La probabilidad de que 9 personas ocupen su tiempo libre de manera productiva es de 0,104%.

3. Distribución de Poisson:

El promedio de tiempo libre productivo de la muestra de la encuesta es de 12,5 en 3 horas.

a) Hallar la probabilidad de que el tiempo productivo sea exactamente 20 en 3 horas.

$$P(x) = \frac{\mu^x * e^{-\mu}}{x!}$$

$$P(20) = \frac{12,5^{20} * e^{-12,5}}{20!} = 0,0132 \approx 1,32\%$$

La probabilidad de que el promedio de tiempo libre productivo sea de 20 en 3 horas es de 1,32%. Distribución de probabilidad continua

1. Distribución Uniforme

Para emplear su tiempo productivo un estudiante tiene de 2 a 3 horas. Determinar

a) La probabilidad de que emplee de 2,5 a 2,8 horas

La probabilidad de que empleen su tiempo libre en 2,5 a 2,8 horas es de 30%.

2. Distribución Normal

El promedio de tiempo para emplear su tiempo libre de forma productiva de estudiantes es de 56,15. Determinar:

a) Empleen su tiempo libre de forma productiva en 40 a 60 minutos

La probabilidad de que los estudiantes empleen de forma productiva su tiempo libre en 40 a 60 minutos es de 40,57%

b) Empleen su tiempo libre en más de 60 minutos

La probabilidad de que los estudiantes empleen de forma productiva su tiempo libre en más de 60 minutos es de 41,29%.

3. Distribución Exponencial

De acuerdo a los datos de la encuesta realizada, se tiene que en un grupo, la utilización del tiempo libre de forma no productiva de estudiantes, scon una distribución exponencial a una media 120 minutos. Determinar:

a) La probabilidad de que el siguiente grupo de la misma población emplee de forma no productiva su tiempo libre en menos de 40 minutos.

$$P(x) = 1 - e^{-\lambda x}$$
$$\lambda = \frac{1}{media}$$
$$\lambda = \frac{1}{120} = 8.3 \times 10^{-3}$$

$$P(40) = 1 - e^{-0.0083*40}$$

$$P(40) = 0.2825 \approx 28.25\%$$

La probabilidad de que empleen de forma no productiva en menos de 40 minutos es de 28,25%.