Classification Model

Nonlinear classification

Decision Boundary is complex hyperplane

Neural network: history

Origins: Algorithms that try to mimic the brain.

Was very widely used in 80s and early 90s; popularity diminished in late 90s.

Recent resurgence: State-of-the-art technique for many applications

https://www.coursera.org/learn/machine-learning/lecture/IPmzw/neurons-and-the-brain

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

- Multi-Layer Perceptron (MLP)
 - Layer Types:
 - Input / hidden / output
 - Fully mesh connection
 - fully connected
 - All outputs of previous nodes are connected to each current node
 - Number of weights (zeta) for layer j
 - N(j-1) x N(j)

Neuron: Processing Unit

$$a_i^{(j)} =$$
 "activation" of unit i in layer j

 $\Theta^{(j)} = \text{matrix of weights controlling}$ function mapping from layer j to layer j+1

$$x = egin{bmatrix} x_0 \ x_1 \ x_2 \ x_3 \end{bmatrix} \quad heta = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ heta_3 \end{bmatrix} \qquad \qquad ext{net}_{i} = heta^T x = w^T x \ f(net_i) = a_i^j \end{cases}$$

Which activation function can we use?

Activation functions

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

 $f(net_i) = a_i^j$

- A function used to determine output of each neuron (node)
- Types of activation functions
 - Linear Activation
 - Non linear activation
 - Sigmoid (logistic) function
 - Hyperbolic Tangent function (Tanh)
 - Rectified Linear Unit (Relu)
 - Leaky ReLU

Activation functions

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

 $f(net_i) = a_i^j$

Equation : f(x) = x

Range: (-infinity to infinity)

It doesn't help with the complexity or various parameters of usual data that is fed to the neural networks.

Linear Activation functions

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$net_i = \theta^T x = w^T x$$

$$f(net_i) = a_i^j$$

Equation : f(x) = x

Range: (-infinity to infinity)

It doesn't help with the complexity or various parameters of usual data that is fed to the neural networks.

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$f(net_i) = a_i^j$$

Equation :
$$f(x) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-\theta T_x}}$$

zRange: (-infinity to infinity)

f(x) Range: [0,1]

- Sigmoid Function curve looks like a S-shape.
- It is used for models where we have to predict the probability
- Negative of z gets mapping to positive f(z) <0.5

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$\mathsf{net_i} = \theta^T x = w^T x$$

$$f(net_i) = a_i^j$$

Equation : f(x) = tanh(x)

x Range: (-infinity to infinity)

f(*x*) Range: [-1,1]

- tanh is also like logistic sigmoid but better.
- Negative of x gets mapping to negative f(x)

All the negative values become zero immediately

- Decreases the ability of the model to fit or train from the data properly.
- Any negative input given to the ReLU activation function turns the value into zero, which results in not mapping the negative values appropriately.

$$x = egin{bmatrix} x_0 \ x_1 \ x_2 \ x_3 \end{bmatrix} \quad heta = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ heta_3 \end{bmatrix} \qquad ext{net}_i = heta^T x = w^T x$$

Equation : f(z) = max(0, z)

z Range: (-infinity to infinity)

f(z) Range: [0,infinity)

- ReLU is most used activation function in the world right now.
- f(z >=0) = z (positive z)
- Eliminate negative input z -> f(z<0) = 0</p>
 - To reduce computational time

$$x = egin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = egin{bmatrix} heta_0 \\ heta_1 \\ heta_2 \\ heta_3 \end{bmatrix} \qquad ext{net}_i = heta^T x = w^T x$$

Equation:
$$f(y) = \begin{cases} ay & y < 0 \\ y & y \ge 0 \end{cases}$$

y Range: (-infinity to infinity)

a: small value (typically 0.01)

- Leaky ReLU
 - Approximate negative input y = ay
 - Allow a very small leak f(y<0)

Activation function and its derivative

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$

Logistic regression for Classification

Rectified Linear Unit (ReLU)	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]	$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Logistic regression for Classification

Why do we need to know activation derivative function?

- Derivative form of activation function
 - Used in optimization process of gradient descent search
- Optimizer looks for directions of weights to move for next search iteration

The gradient descent algorithm is:

repeat until convergence:

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

	x_1	x_2	$h_{\Theta}(x)$
	0	0	
	0	1	
	1	0	
•	1	1	

Neural model generate complex hyperplane decision

Multi-class classification

Binary vs multi-classification

Neural Network (Classification)

Binary classification

$$y = 0 \text{ or } 1 \leftarrow$$

1 output unit 👄

$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$

 \rightarrow L= total no. of layers in network

 $\Rightarrow s_l =$ no. of units (not counting bias unit) in layer l $\leq 1 = 3$, $s_2 = 5$, $s_4 = 5$, $s_4 = 4$

Multi-class classification (K classes)

$$y \in \mathbb{R}^K$$
 E.g. $\left[\begin{smallmatrix} 1 \\ 0 \\ 0 \\ 0 \end{smallmatrix} \right]$, $\left[\begin{smallmatrix} 0 \\ 1 \\ 0 \\ 0 \end{smallmatrix} \right]$, $\left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix} \right]$, $\left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix} \right]$ pedestrian car motorcycle truck

K output units

ONE-vs-ALL

output Activation functions

Bias Activation Function

$$x_1 \longrightarrow w_{k1} \longrightarrow b_k \longrightarrow p_{k} \longrightarrow p_{k}$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} \qquad \text{net}_i = \theta^T x = w^T x$$

$$f(net_i) = a_i^j$$

Equation :
$$f(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-\theta T_x}}$$

z Range: (-infinity to infinity)

y: small value (typically 0.01)

Sigmoid is generally used for output activation function for Binary Classification

output Activation functions

$$x = egin{bmatrix} x_0 \ x_1 \ x_2 \ x_3 \end{bmatrix} \quad heta = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ heta_3 \end{bmatrix} \qquad ext{net}_i = heta^T x = w^T x \ f(net_i) = a_i^j \ \end{cases}$$

Equation :
$$f(z) = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}}$$

z Range: (-infinity to infinity)

y: small value (typically 0.01)

- Generalized Logistic Regression to handle multiple classes
- Calculate the probabilities of each target class over all possible target classes.
 - Turns numbers into probabilities that sum to one.

output

Activation functions

$$\begin{bmatrix} 1.2 \\ 0.9 \\ 0.4 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.46 \\ 0.34 \\ 0.20 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 \\ 2.3 \\ 0.8 \end{bmatrix} = \begin{bmatrix} 0.5 + 2.3 + 0.4 \\ 3.6 \\ 2.3 \\ 3.6 \end{bmatrix} = 0.14$$

$$x = egin{bmatrix} x_0 \ x_1 \ x_2 \ x_3 \end{bmatrix} \quad heta = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ heta_3 \end{bmatrix} \qquad ext{net}_i = heta^T x = w^T x \ f(net_i) = a_i^j \end{cases}$$

Equation :
$$f(z) = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}}$$

y Range: (-infinity to infinity)

a: small value (typically 0.01)

- Generalized Logistic Regression to handle multiple classes
- Calculate the probabilities of each target class over all possible target classes.
 - Turns numbers into probabilities that sum to one.

Neural network terminology

Neural network terminology

- Neuron
 - Neural network node (perceptron)
 - Types: Input / hidden / output
- Activation function
 - Neuron transfer function of weighted input from input / hidden layers
- Feed forward vs Backpropagation

Feed forward vs backpropagation

Feed Forward NN

 information flows in only one direction i.e. from input layer to output layer.

Backpropagation

- algorithm to train (adjust weight) of neural network.
- Error in result is then communicated back to previous layers now.
- Nodes get to know how much they contributed in the answer being wrong. Weights are re-adjusted.

Neural network training process

Neural network training process

Pick a network architecture (connectivity pattern between neurons)

- Initial NN model (architecture)
 - n input nodes
 - h hidden layers
 - hj hidden nodes in jth layer

Neural network training process

- 1. Initial NN weights (θ_i^j) in all layers
 - ith node / jth layer
- 2. Perform feed forward to get final output $(h_{\theta}(x))$
 - Calculate for all training input dataset (x)
- 3. Compute cost function and backpropagation
 - Error derivative of cost function
- 4. Gradient Descent optimization with learning factor (α)

$$\theta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$

Iterative control parameters

- hidden_layer_sizes
- Solver (Parameter Optimizer):
 - Adam (default: family of quasi-Newton methods)
 - SGD: Stochastic Gradient Descent
 - L-BFGS: Limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno)
- Activation (default 'relu', 'logistic', 'tanh')
- Learning rate factor
- Max. iteration (max_iter)

Iterative control parameters

- from sklearn.neural_network import MLPClassifier
 - clf = MLPClassifier(hidden_layer_sizes=(13,13,13),max_iter=500)

กำหนด Model Architecture (#hidden layer, #node in each hidden layer)

Optimizer (solver): Adam (default)

กำหนด Optimizer (solver) โดย default -> Adam

mlp.fit(X_train,y_train)

Training

- Training results
 - MLPClassifier(activation='relu', alpha=0.0001, batch size='auto', beta 1=0.9,
 - beta_2=0.999, early_stopping=False, epsilon=1e-08,
 - hidden_layer_sizes=(13, 13, 13), learning_rate='constant',
 - learning_rate_init=0.001, max_iter=500, momentum=0.9,
 - nesterovs_momentum=True, power_t=0.5, random_state=None,
 - shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1,
 - verbose=False, warm_start=False)

All parameters