Topic V08

Storing Arrays in Memory

Reading: (Section 2.13)

1 byte

$$|x = A[i];$$

RISC-V code:

Assumption

$$x \leftrightarrow s3$$

 $i \leftrightarrow t0$
base of A[] \leftrightarrow s6
A is an array of 32-bit
integers

Assumption

 $x \leftrightarrow s3$ $i \leftrightarrow t0$ base of A[] \leftrightarrow s6 A is an array of 32-bit integers

Where is A[0]?

At the address in s6

Where is A[1]?

At the address in s6 + 4

Where is A[2]?

At the address in s6 + 8

Where is A[i]?

At the address in s6 + 4 * i

How do we get the value of A[i] into s3?

$$tA \leftarrow 4 * i$$
 $tB \leftarrow s6 + tA$
 $s3 \leftarrow Mem[tB]$

$$|x = A[i];$$

$$tA \leftarrow 4 * i$$

 $tB \leftarrow s6 + tA$
 $x \leftarrow Mem[tB]$

Assumption

$$x \leftrightarrow s3$$

 $i \leftrightarrow t0$
base of A[] \leftrightarrow s6
A is an array of 32-bit
integers

RISC-V code:

slli t1, t0, 2 # t1
$$\leftarrow$$
 4 * i
add t2, s6, t1 # t2 \leftarrow A + 4 * i
lw s3, θ (t2) # x \leftarrow A[i]

$$|A[i] = x;$$

Assumption

$$tA \leftarrow 4 * i$$
 $x \leftrightarrow s3$
 $tB \leftarrow s6 + tA$ $i \leftrightarrow t0$
 $Mem[tB] \leftarrow x$ base of A[] \leftrightarrow s6
A is an array of 32-bit integers

RISC-V code:

slli t1, t0, 2 # t1
$$\leftarrow$$
 4 * i
add t2, s6, t1 # t2 \leftarrow A + 4 * i
sw s3, 0 (t2) # A[i] \leftarrow x

c = name[k];

Assumption

 $c \leftrightarrow s0$ $k \leftrightarrow t0$ $base of name[] \leftrightarrow s4$ name is an array of 8-bit characters 8 bits = 1 byte

RISC-V code:

add t1, s4, t0 # t1
$$\leftarrow$$
 name + k
lbu s0, 0(t1) # x \leftarrow name[k]

Load byte unsigned zero-extends the byte loaded from memory before writing into s0

Each character is one byte

C code:
char *name;

c = name[k];

No need to multiply by four to find element name [k]