Cameron Griego's MEI Binder

References: FAA-H-8083-3, POH/AFM

6 – Demonstrating the Effects of Various Airspeeds and Configurations During Engine Inop Performance

Objectives	 The student should develop the knowledge of the elements related to the effects of speed and configuration on single engine performance at V_{YSE} 				
Key Elements	 Maintain V_{YSE} Feathering reduces large amounts of drag Control the airplane 				
Elements	Entry procedureDemonstrationRecovery				
Schedule	Discuss ObjectivesReview ElementsReview & Conclusion				
Equipment	White Board / MarkersReferences				
CFI Actions	 Present lesson Use teaching aids Ask/ answer questions 				
Student Actions	 Participate in discussion Take notes Ask / answer questions 				
Completion Standards	 The student understands the importance of reducing drag to maximize single engine performance 				

Additional Notes: _	 	 	

References: FAA-H-8083-3, POH/AFM

CE = Common Error

Introduction

Overview

Review objectives / Elements

What

This lesson provides insight to the effects of different aircraft configurations on single engine performance

Why

In order to maintain safety in multiengine ops, it is key to understand the importance of reducing drag and maintaining V_{YSE} during single engine operations

How

Entry Procedures

- Establish an appropriate altitude (remember that the aircraft will climb and descend slightly during the maneuver)
 - Ensure that a safe altitude is selected in case the engine fails to restart
 - Single engine ops below 3000' AGL will be performed with idle thrust rather than mixture shutdown
- Reduce power to idle on critical engine
 - o Do not feather (or simulate feathering) the engine
 - The first portion is to demonstrate the performance with a windmilling prop
- Establish a zero sideslip, trim accordingly
- While maintain altitude, slow to VYSE
- Once Established at Vyse in straight and level flight, the performance demonstration can begin
- <u>CE</u> Improper entry procedures, including pitch attitude, bank angle, and airspeed

Demonstration

Propeller Windmilling

- Apply full power and maintain VYSE in a clean configuration
 - \circ Make note of the climb performance as well as the pitch attitude required to maintain V_{YSE} with the propeller windmilling
 - Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance
- Add the approach flaps
 - Trim the aircraft to maintain a zero sideslip

6 – Demonstrating the Effects of Various Airspeeds and Configurations During Engine Inop Performance

- \circ Make note of the climb performance as well as the pitch attitude required to maintain V_{YSE} with the propeller windmilling
- Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance

• Extend Landing Gear

- o Trim the aircraft to maintain a zero sideslip
- \circ Make note of the climb performance as well as the pitch attitude required to maintain V_{YSE} with the propeller windmilling
- Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance

Extend Landing Flaps

- o Trim the aircraft to maintain a zero sideslip
- \circ Make note of the climb performance as well as the pitch attitude required to maintain V_{YSE} with the propeller windmilling
- Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance

Propeller Feathered

With the aircraft still in a dirty configuration, feather the critical engine

- o Trim the aircraft to maintain a zero sideslip
- \circ Make note of the climb performance as well as the pitch attitude required to maintain V_{YSE} with the propeller windmilling
- o Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance

• Retract the landing flaps

- o Trim the aircraft to maintain a zero sideslip
- \circ Make note of the climb performance as well as the pitch attitude required to maintain V_{YSE} with the propeller windmilling
- Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance

Retract the landing gear

- o Trim the aircraft to maintain a zero sideslip
- \circ Make note of the climb performance as well as the pitch attitude required to maintain V_{YSE} with the propeller windmilling
- Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance

Retract the approach flaps (the plane should be clean now)

- Trim the aircraft to maintain a zero sideslip
- Make note of the climb performance as well as the pitch attitude required to maintain
 V_{YSE} with the propeller windmilling
- Adjust the airspeed about 5 knots above and below V_{YSE} and note the performance
- Make note of the performance improvement due to feathering
- <u>CE</u> Improper airspeed control throughout the demonstration
- <u>CE</u> Inadequate knowledge of the effects of airspeed above or below V_{YSE} and of various configurations on performance
- <u>CE</u> Rough and/or uncoordinated flight controls

Recovery

- Restart the feathered engine
- Increase power on the critical engine, maintain control during the recovery
 - o Reduce power on the operating engine
- Return to straight and level coordinated flight
- <u>CE</u> improper procedures during resumption of cruise flight
 - Ensure proper checklist usage

Conclusion & Review

Conclusion

Briefly review the key points

- Maintain V_{YSE}
- Feathering reduces large amounts of drag
- Control the airplane