is not bounded is closed (has no boundary)

Example: Does $f(x,y) = 2x^3 + 6xy + 3y^2$ have a maximum on \mathbb{R}^2 ? (You found on ex. sheet #18 Q1 that (1,-1) is a local minimum and (0,0) is a saddle point, and there are no other critical points.)

Answer 1: There is no local maximum, so there is no absolute maximum (You need to be careful with this argument if the domain has a boundary (Using less information: only the critical points, not the classification)

Answer 2: If f has a maximum, it must be a critical point (because there are no singular points or boundary points) i.e. (1,-1) or (0,0). f(1,-1)=-1, f(0,0)=0 but f(1,1)=11>f(1,-1) so f cannot

$$f(1,-1) = -1$$
, $f(0,0) = 0$

$$f(1,1) = 11 > f(1,-1)$$

 $f(0,0)$
 $f(0,0)$
 $f(0,0)$

> f(0,0) have a maximum at (1,-1) or (0,0), so I has no maximum

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 11, Page 21 of 22

Use even less information $f(x,y)=2x^2+6xy+3y^2$ Answer 3: want to show that $f\to\infty$ as $x,y\to\infty$:

casier to look at just 1 direction (many choices)

along x=0, $f(x,y)=0+0+3y^2\to\infty$ as $y\to\infty$, so f has no maximum. Be careful: a function that does not "go to infinity" might still not have a maximum or minimum.

Example: Does $f(x,y) = \frac{1}{1+x^2+y^2}$ have a maximum and a minimum on \mathbb{R}^2 ?

f does not have a minimum
$$\frac{1}{1+x^2+y^2} > 0$$

(as $x, y \rightarrow \infty$, $f(x,y) \rightarrow 0$, but $f(x,y)$ is never actually 0)
but along $x = 0$, $f'(x,y) = \frac{1}{1+y^2} \rightarrow 0$ as $y \rightarrow \infty$

f does have a maximum:
$$1+x^2+y^2 \ge 1$$
 with equality if and only if $(x,y)=(0,0)$

so I+x2+y2 <= 1 so f has a maximum value of 1, achieved at (0,0)