第一册

大青花鱼

目录

第一章	数列初步	5
1.1	数列的基本概念	5
1.2	等差数列	10
1.3	等比数列	12
1.4	数列的极限	14
第二章	从有理数到实数	23
第三章	实变函数初步	25
第四章	二项式	27

4 目录

第一章 数列初步

1.1 数列的基本概念

例子 1.1.1.

1. 把自然数的倒数排成一列:

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots$$

2. 把圆周率按个位,十分位、百分位、千分位截断,得到一列数:

$$3, 3.1, 3.14, 3.141, 3.1415, \cdots$$

3. 把班上同学的身高(厘米)按学号排列:

$$165, 173, 169, 178, 171.5, 176, \cdots$$

把数按照一定顺序排列起来,叫做**数列**。数列中的每一个数叫做数列的一**项**。按照顺序,各项分别称为数列的第 1 项、第 2 项,等等。比如,例 1 中的数列第 2 项是 $\frac{1}{2}$,例 2 中的数列第 3 项是 3.14。

数列的项和序数有一一对应的关系,这告诉我们,数列的本质是正整数集或其子集 [1...N] 到数域的函数。定义域是 [1...N] 的数列,项数有

限,称为**有穷数列**;定义域是正整数集的数列,项数无限,叫做**无穷数列**。 我们一般把数列记作:

$$a_1, a_2, \cdots, a_n, \cdots$$

其中 a_n 是数列的第 n 项。项数 n 也叫做**下标**。为了方便,我们在行文中会把以上数列记作 $\{a_n\}_{n\in\mathbb{Z}^+}$ (无穷数列) 或 $\{a_n\}_{n\in[1...N]}$ (有穷数列),或简单记作 $\{a_n\}$ 。比如,例 1 中的数列可以记为 $\{\frac{1}{n}\}_{n\in\mathbb{Z}^+}$ 。作为函数,如果某数列的序数和项之间的对应关系可以用一个公式来表示,我们就把这个公式称为该数列的**通项公式**。比如,例 1 中的数列,通项公式是 $a_n=\frac{1}{n}$;而例 3 中的数列,我们不知道通项公式。有通项公式的数列,只要把序数代入公式,就能得到该项的值。比如,例 1 中的数列,第 100 项是 $\frac{1}{100}$ 。

我们把各项不断增大(减小)的数列称为**单调递增(递减)数列**。"单调"一词,表示数列各项增减方向保持一致。换句话说,如果数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 从第二项起,总有 $a_{n+1} \ge a_n$,就说它是**单调递增数列**;如果总有总有 $a_{n+1} \le a_n$,就说它是**单调递减数列**。如果要求不能有相等的项,就称为**严格单调递增**(**递减**)数列。

研究数列的一个基本目的,是对数列进行求和。比如,一垛炮弹有 8 层,顶层有 1 个炮弹,第 2 层有 4 个,第 3 层有 9 个,……,第 8 层有 64 个,我们希望知道一共有几个炮弹。把各层炮弹个数记为数列: $a_1 = 1$

$$a_1 = 1, a_2 = 4, \cdots, a_8 = 64$$

我们把数列的和记为 $S_8 = a_1 + a_2 + \cdots + a_8$ 。为了方便,我们也用求和符号表示数列的和: $S_8 = \sum_{i=1}^8 a_i$ 。对于无穷数列,我们还无法定义数列的和,只能定义它的部分和: $S_N = \sum_{i=1}^N a_i$ 。我们把 S_N 称为数列 $\{a_n\}$ 的前 N 项和。比如,例 1 中的数列的前 4 项和为:

$$S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}.$$

习题 1.1.1.

1. 根据以下数列的通项公式,写出数列的前5项:

1.1.
$$a_n = n^2$$

1.2.
$$a_n = (-1)^n \cdot n$$

1.3.
$$a_n = \frac{n}{n+3}$$

1.4.
$$a_n = 2^n - 1$$

1.5.
$$a_n = \frac{(-2)^n + n - 1}{n^2 + 1}$$

2. 根据以下数列的通项公式, 计算数列的前 5 项和与前 7 项和:

2.1.
$$a_n = n^2$$

2.2.
$$a_n = (-1)^{n+1} \cdot n$$

2.3.
$$a_n = \frac{2}{n(n+1)}$$

2.4.
$$a_n = 2^n$$

2.5.
$$a_n = (n+1)2^n$$

3. 已知数列 $\{a_n\}_{n\in\mathbb{Z}^+}$,如何构造一个数列 $\{b_n\}_{n\in\mathbb{Z}^+}$,使得它的前 n 项和是 a_n ?

无穷数列(或项数相同的有穷数列)作为函数,可以进行函数之间的四则运算。比如,设无穷数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式分别是 $a_n = n - 1$ 、 $b_n = 2n$,那么对任意正整数 n, $a_n + b_n = 3n - 1$ 。我们定义通项公式为 $c_n = 3n - 1$ 的数列 $\{c_n\}$ 为 $\{a_n\}$ 与 $\{b_n\}$ 的和,也就是说,我们定义数列的加法: $\{a_n\} + \{b_n\} = \{a_n + b_n\}$ 。

可以验证,数列的加法满足交换律和结合律。我们称每项都等于同一个数的数列为**常数列**,任何数列加上常数列 {0} 都等于自己。

同理,我们可以定义数列的减法和乘法。它们满足的运算律和有理数的运算律一致。任何数列乘以 $\{1\}$ 都得到自己。如果我们把所有取值为实数的数列的集合记为 $\mathbb{R}^{\mathbb{N}}$,那么 $\mathbb{R}^{\mathbb{N}}$ 和 \mathbb{Z} 一样,可以"装载"加法、减法和乘法。其中的常数列 $\{0\}$ 、 $\{1\}$ 就相当于整数0和1。

此外,给定数列 $\{a_n\}$ 和实数 t,我们可以把 $\{a_n\}$ 的每一项乘以 t 得到一个新数列: $t \cdot \{a_n\} = \{t \cdot a_n\}$,这个运算称为**数乘运算**。数乘运算和数、

数列的四则运算相容。

$$\forall s, t \in \mathbb{R}, \ \forall \{a_n\}, \ s \cdot (t \cdot \{a_n\}) = (s \cdot t) \cdot \{a_n\},$$
$$(s+t) \cdot \{a_n\} = (s \cdot \{a_n\}) + (t \cdot \{a_n\}).$$
$$\forall t \in \mathbb{R}, \ \forall \{a_n\}, \ \{b_n\}, \ t \cdot (\{a_n\} + \{b_n\}) = (t \cdot \{a_n\}) + (t \cdot \{b_n\}).$$

无穷数列还可以进行函数操作,与函数复合。比如,我们定义函数 $f: x \mapsto x^2 - 3$,数列 $\{a_n\}$ 的每一项经过 f 映射到 $f(a_n) = f(n-1) = (n-1)^2 - 3 = n^2 - 2n - 2$ 。那么数列 $\{n^2 - 2n - 2\}$ 就可以称为 $\{a_n\}$ 经过 f 的**像数列**。换句话说,我们用实值函数 f 定义了一个 $\mathbb{R}^{\mathbb{N}}$ 到 $\mathbb{R}^{\mathbb{N}}$ 的映射。

另一种对数列的操作方法是通过下标。设 g 是从正整数集映射到正整数集的函数,比如 $g: n \mapsto 3n-2$ 。从 $\{a_n\}$ 出发,考虑数列 $\{u_n\}$: $u_n = a_{g(n)} = a_{3n-2}$ 。这样定义的 $\{u_n\}$ 称为用 g 从 $\{a_n\}$ 中提取的数列。要注意的是,g 不一定把 $\{a_n\}$ 中每项恰好提取一次,比如

$$a_1, a_1, a_2, a_2, a_3, a_3, a_4, a_4, \cdots$$

这样的数列也是从 $\{a_n\}$ 中提取的。如果对任何正整数 n,函数 g 满足 g(n+1) > g(n),用 g 从 $\{a_n\}$ 中提取的数列就可以看作是从前到后挑出一部分项得到的。这样的数列称为 $\{a_n\}$ 的**子列**。

思考 1.1.1.

- 1. 给定数列 $\{a_n\}$,它的前 n 项和可以构成一个数列 $\{S_n\}$,如何用 $\{S_n\}$ 中的项表示 a_n ? 记 v_n 为 $\{a_n\}$ 前 n 项乘积,能否用数列 $\{v_n\}$ 中的项表示 a_n ?
- 2. 记平面向量的集合为 \mathbb{V} , 所有从 $\mathbb{R}^{\mathbb{N}}$ 到 $\mathbb{R}^{\mathbb{N}}$ 的映射的集合为 $\mathfrak{F}(\mathbb{R}^{\mathbb{N}})$ 。 $\mathfrak{F}(\mathbb{R}^{\mathbb{N}})$ 和 \mathbb{V} 、 \mathbb{Z} 有什么共同点? 有什么不同点?
- 3. 记所有从正整数集到正整数集的函数的集合为 $\mathfrak{F}(\mathbb{Z}^+)$,数列 $\{a_n\}$ 经过 $\mathfrak{F}(\mathbb{Z}^+)$ 中某个函数 g 可以提取出数列 $\{b_n\}$ 。g 满足什么条件时,可以找到另一个 $\mathfrak{F}(\mathbb{Z}^+)$ 中的函数 h,用 h 可以从 $\{b_n\}$ 中提取出 $\{a_n\}$?

习题 1.1.2.

- 1. 计算: $\{6n-1\} \{3k^2 k + 2\} \cdot \{2^m + 1\}$ 。
- 2. 已知定义在全体实数上的函数 $f: x \mapsto 2x^2 x 4$, 数列 $\{a_n\}$ 的 通项公式为 $a_n = n + \frac{1}{n}$, 计算 $\{f(a_n)\}$ 。
 - 3. 另有定义在全体实数上的函数 $g: x \mapsto 1 \frac{1}{x}$, 计算 $\{(f-g)(a_n)\}$ 。

研究实际问题的时候,我们可能不会直接得到数列的通项公式,而是 各项之间的关系。来看以下的例子:

例题 1.1.1. 培养一种乳酸菌,初始从 3 个单位起培养。每过一定时间,等 乳酸菌数量翻倍后,取出 1 个单位的样本做化验观察,其余继续培养。问 每次取出化验后,乳酸菌的数量是几个单位?

解答. 设初始数量为 a_0 ,第 n 次取出化验后乳酸菌数量为 a_n 个单位。则数列 $\{a_n\}$ 中的项满足以下的关系:

$$\forall n \in \mathbb{N}, \quad a_{n+1} = 2a_n - 1.$$

这样的关系称为数列的**递推关**系,相关公式称为**递推公式**。以上公式中,已知 a_0 的值,就能推出 a_1 ,继而次第推出 a_2 、 a_3 ,等等。 $a_0 = 3$,所以 $a_1 = 2 \cdot 3 - 1 = 5$, $a_2 = 2 \cdot 5 - 1 = 9$, $a_3 = 2 \cdot 9 - 1 = 17 \cdot \cdots$

根据递推关系,已知 a_1 ,想要算出 a_{100} ,就必须依次算出 a_2, a_3, \cdots, a_{99} 。 很多时候,我们希望从各项之间的关系,推出通项公式,以更方便地了解数 列的性质。

如何从递推关系得出通项公式呢?并没有简便的统一方法。常见的做 法是将递推关系转化为一些已知通项公式的数列的递推关系,再反推出原 数列的通项公式。我们在后面会详细介绍。

习题 1.1.3.

已知数列的递推公式如下,求数列的前7项:

1.
$$a_1 = 1$$
, $\forall n \ge 1$, $a_{n+1} = 1 - 2a_n$.

2.
$$a_1 = 1$$
, $\forall n \ge 1$, $a_{n+1} = 1 + \frac{1}{a_n - 1}$.

3.
$$a_1 = 1$$
, $a_2 = 3$, $\forall n \ge 1$, $a_{n+2} = 4 + a_n - a_n^2$.

4.
$$a_1 = 1$$
, $a_2 = 1$, $\forall n \ge 1$, $a_{n+2} = a_n + a_{n+1}$.

5.
$$a_1 = 1$$
, $a_2 = 3$, $\forall n \ge 1$, $a_{n+2} = a_n(4 - a_{n+1})$.

1.2 等差数列

来看这样一个数列:

这个数列有一个特点:从第二项起,每一项减去前一项的差总是 2。

一般地,如果某个数列从第二项起,每一项减去前一项的差是同一个常数,就说这个数列是**等差数列**。这个常数叫做等差数列的**公差**,通常用字母 d 表示。比如,数列 2,5,8,11,14 的公差是 3,19,15,11,7,3,-1 的公差是 -4。

如果数列 $\{a_n\}$ 的公差是 d, 那么:

$$a_2 = a_1 + d$$

 $a_3 = a_2 + d = a_1 + 2d$
 $a_4 = a_3 + d = a_1 + 3d$
 \vdots
 $a_n = a_1 + (n-1)d$

等差数列的通项公式是: $a_n = a_1 + (n-1)d$ 。

例题 1.2.1. 已知无穷等差数列 1, 8, 15,…, 求它的第 30 项。

解答. 等差数列第一项是 1, 公差是 8-1=7, 所以通项公式是 $a_n=1+(n-1)\cdot 7=7n-6$ 。第 30 项 $a_{30}=7\cdot 30-6=204$ 。

1.2 等差数列 11

例题 1.2.2. 已知 $\{a_n\}_{n\in\mathbb{N}}$ 是等差数列, $a_1=4$, $a_3=9$,问 94 是否在数列中? 如果是的话,是第几项?

解答. 设公差为 d,则 $a_3 = a_1 + 2d$ 。代入 a_1 、 a_3 的值,解得 d = 2.5。于是通项公式为 $a_n = 4 + (n-1) \cdot 2.5 = 2.5n + 1.5$ 。如果有 $a_n = 94$,即 2.5n + 1.5 = 94,解得 n = 37。因此 94 在数列中,是第 37 项。

设等差数列 $\{a_n\}$ 的前 n 项和为 S_n 。能否方便地表示 S_n 呢? 我们可以这样思考:

$$a_1 + a_n = a_1 + a_1 + (n-1)d = 2a_1 + (n-1)d$$

$$a_2 + a_{n-1} = a_1 + d + a_n - d = a_1 + a_n = 2a_1 + (n-1)d$$

$$\vdots$$

$$a_{n-1} + a_2 = a_1 + (n-2)d + a_n - (n-2)d = a_1 + a_n = 2a_1 + (n-1)d$$

$$a_n + a_1 = a_1 + a_n = 2a_1 + (n-1)d$$

把以上n个等式分边相加,就得到:

$$S_n + S_n = n(a_1 + a_n) = 2na_1 + n(n-1)d.$$

也就是说, 前 n 项和 S_n 可以写成

$$S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d.$$

这样我们可以方便地计算等差数列的前 n 项和。比如,求前 n 个自然数的和: $a_n = n - 1 = 0 + (n - 1) \cdot 1$,所以 $S_n = 0 + \frac{n(n - 1)}{2} \cdot 1 = \frac{n(n - 1)}{2}$ 。

习题 1.2.1.

- 1. 在8和36之间插入6个数,使得这8个数成等差数列。
- 2. 设数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 为等差数列,证明 $a_{n+2}+a_n=2a_{n+1}$ 。
- 3. 等差数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 中, $a_1=0.3$, $a_n=85.5$, d=0.6, 求 n 和 S_n 。
- 4. 求前 n 个奇数 $1, 3, 5, \dots, 2n-1$ 的和。
- 5. 直角三角形的三边成等差数列, 求三边比例。
- 6. 等差数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 满足 $a_1=1$, $a_{10}=43.3$, 求 S_{20} 。

1.3 等比数列

来看这样一个数列:

这个数列有一个特点:从第二项起,每一项除以前一项的商总是 2。

一般地,如果某个数列从第二项起,每一项与前一项的比值是同一个常数,就说这个数列是**等比数列**。这个常数叫做等比数列的**公比**,通常用字母 q 表示。比如,数列 2,6,18,54,162 的公比是 3,192,-48,12,-3,0.75 的公比是 -0.25。

如果数列 $\{a_n\}$ 的公比是 q, 那么:

$$a_2 = a_1 q$$

$$a_3 = a_2 q = a_1 q^2$$

$$a_4 = a_3 q = a_1 q^3$$

$$\vdots$$

$$a_n = a_1 q^{n-1}$$

等比数列的通项公式是: $a_n = a_1 q^{n-1}$ 。

例题 1.3.1. 已知无穷等比数列 1.2, 1.8, 2.7,…, 求它的第 30 项。

解答. 等比数列第一项是 1, 公比是 $1.8 \div 1.2 = 1.5$, 所以通项公式是

$$a_n = 1.2 \cdot 1.5^{n-1} = \frac{6 \cdot 3^{n-1}}{5 \cdot 2^{n-1}} = \frac{3^n}{5 \cdot 2^{n-2}}.$$

第 30 项 $a_{30} = \frac{3^{30}}{5 \cdot 2^{28}}$ 。

例题 1.3.2. 已知 $\{a_n\}_{n\in\mathbb{N}}$ 是等比数列, $a_1=3$, $a_3=12$,问 1536 是否在数列中? 如果是的话,是第几项?

1.3 等比数列 13

解答. 设公比为 q,则 $a_3 = a_1 q^2$ 。代入 a_1 、 a_3 的值,解得 q = 2。于是通项公式为 $a_n = 3 \cdot 2^{n-1}$ 。如果有 $a_n = 1536$,即 $3 \cdot 2^{n-1} = 1536$,解得 n = 10。因此 1536 在数列中,是第 10 项。

设等比数列 $\{a_n\}$ 的前 n 项和为 S_n 。能否方便地表示 S_n 呢? 已知:

$$S_n = \sum_{i=1}^n a_i = \sum_{i=1}^n a_i q^{i-1} = a_1 \sum_{i=1}^n q^{i-1}$$

如果公比 q=1,那么 $S_n=na_1$ 。

如果公比 $q \neq 1$, 两边乘以 q, 得到

$$qS_n = q \cdot a_1 \sum_{i=1}^n q^{i-1} = a_1 \sum_{i=1}^n q^i.$$

也就是说,

$$qS_n = a_1 \sum_{i=2}^{n+1} q^{i-1} = a_1 q^n + a_1 \sum_{i=1}^{n} q^{i-1} - a_1 = a_1 q^n + S_n - a_1$$

把右边的 S_n 移到左边,解得:

$$S_n = a_1 \frac{q^n - 1}{q - 1}.$$

由于 $a_n = a_1 q^{n-1}$, 所以上式也可以写成:

$$S_n = \frac{qa_n - a_1}{q - 1}.$$

这样我们可以方便地计算等比数列的前 n 项和。比如,求 2 的前 n 个乘方的和: $a_n = 2^n = 2 \cdot 2^{n-1}$,所以 $S_n = 2^{\frac{2^n-1}{2-1}} = 2^{n+1} - 2$ 。

习题 1.3.1.

- 1. 在 16 和 36 之间插入 3 个数, 使得这 5 个数成等比数列。
- 2. 设数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 为等比数列,证明 $a_{n+2}\cdot a_n=a_{n+1}^2$ 。
- 3. 等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 中, $a_1=1$, 公比 q=0.5, 求前 n 项和 S_n 。
- 4. 等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 中, $a_1=6$, $a_n=393216$, q=2, 求 n 和 S_n 。
- 5. 请用 a_1 、 a_n 和 q 表示等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 的前 n 项和 S_n 。
- 6. 等比数列 $\{a_n\}_{n\in\mathbb{Z}^+}$ 满足 $a_6=4$, $a_8=9$, 求 S_{10} 。

我们来考察以下数列:

$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \cdots$$

它的通项公式是 $a_n = \frac{n-1}{n}$ 。把数列的前几项在数轴上标出来,我们发现: 随着 n 不断增大, a_n 不断变大,不断向着 1 靠拢。

数列 $\{a_n\}$ 各项随着 n 增大,不断接近 1。虽然数列任一项都不等于 1,但我们不难产生这样的想法:随着 n 增大, a_n 的值任意接近于 1。

怎样严谨地表达这个想法呢?我们使用"有求必应"和"一路全真"的结构,把上面的想法用更具体的方式来描述。直观来看,我们考察以 1 为中心的区间 [1-r,1+r],无论这个区间多么小,到了一定的 n 以后,所有的 a_n 都会落在这个区间里。

用二元命题 Q(r,n) 表示 " a_n 落在区间 [1-r,1+r] 里"。用类似 "有求必应"的结构,以上的想法可以写成:

$$\forall r > 0$$
, $\exists n$, 使得 $\forall m \ge n$, $Q(r,n)$ 成立。

这个结构比"有求必允"结构要求更高。它不仅要求"必允",而且一旦"允" 了,就要求之后"一路全真"。用表格来表示这个结论:

每格颜色对应 Q(r,n) 的真假。每一行对应一个正数 r,每一列对应数列的一个下标 n。我们的想法是: 不论 r>0 是多少,它对应的行中,Q(r,n) 必然从某一列起全为真。

我们把 1 称为数列 $\{a_n\}$ 的**极限**。对一般数列来说,我们定义:

定义 1.4.1. 数列的极限

设有无穷数列 $\{a_n\}$ 。如果有某个数 x,使得

$$\forall r > 0, \exists n, \notin \emptyset \forall m \ge n, -r \le a_m - x \le r.$$

就说 $\{a_n\}$ 有极限 x, 或 x 是 $\{a_n\}$ 的极限, 或 $\{a_n\}$ 趋于 x, 记作

$$\lim_{n\to\infty} a_n = x.$$

从某一项开始,数列的值总落在区间 [x-r,x+r] 中

例题 1.4.1. 数列 $\{a_n\}$ 的通项是 $a_n = \frac{1}{n^2}$,它是否有极限? 如果有极限,极限是多少?

解答. $\{a_n\}$ 每项都是正数。

$$a_n \div a_{n+1} = \frac{1}{n^2} \div \frac{1}{(n+1)^2} = \frac{(n+1)^2}{n^2} = 1 + \frac{2n+1}{n^2} > 1,$$

所以 $\{a_n\}$ 是单调递减数列。从数轴上看, $\{a_n\}$ 不断趋近于 0。猜测它有极限 0。

设 r > 0,考察区间 [-r, r]。设 n_r 是大于等于 $\frac{1}{\sqrt{r}}$ 的最小正整数,那么,只要 $n \ge n_r$,就有 $n^2 \ge n_r^2 \ge \frac{1}{r}$,于是 $0 \le \frac{1}{n^2} \le r$ 。因此, $\forall r > 0$, $\exists n_r$,使得 $\forall m \ge n_r$, $-r \le a_m - 0 \le r$ 。这说明 $\{a_n\}$ 有极限 0。

不难看出,极限是构造出来的。因此,从定义出发,我们可以说某个数是某数列的极限。反过来,一个数列有极限,它的极限是否只能有一个呢?答案是肯定的。我们可以用反证法来证明。

反设某数列 $\{a_n\}$ 有两个极限 x_1, x_2 。不妨设 $x_1 < x_2$ 。直觉上,n 足够大的时候, a_n 在数轴上离 x_1, x_2 都很近,到两点的距离比 $x_2 - x_1$ 的一半都小,加起来就小于 $x_2 - x_1$,于是就产生矛盾了。

具体来说,记 $\delta = \frac{x_2-x_1}{2}$ 为两点距离的一半。选一个小于 δ 的正数 r。按照极限的定义,有正整数 n_1, n_2 使得:

$$\forall m \geqslant n_1, -r \leqslant a_m - x_1 \leqslant r,$$

 $\forall m \geqslant n_2, -r \leqslant a_m - x_2 \leqslant r.$

于是,选一个比 n_1, n_2 都大的 m,比如 $m = n_1 + n_2$,这时 $a_m - x_1 \leq r$, $x_2 - a_m \leq r$ 。加起来就得到:

$$x_2 - x_1 \leqslant 2r < 2\delta = x_2 - x_1.$$

矛盾! 因此,数列如果有极限,只能有一个。

设数列 $\{a_n\}$ 有极限 x。我们把它每一项减去 x(或者说让数列减去常数列 $\{x\}$),得到的数列 $\{a_n-x\}$ 趋于 0。所以,任何有极限的数列,都可以看做一个趋于 0 的数列加上它的极限。我们把趋于 0 的数列称为**无穷小**。任何有极限的数列,都是它的极限加上无穷小。

极限描述了数列的项在"远处"的特征。我们把数列下标超过一定限度 后的特征称为数列的**大体行为**。有极限的数列,我们可以用极限来刻画数 列的大体行为(落在极限"附近")。没有极限的数列,大体行为有什么特征 呢?

我们来看另一个数列:

$$1, 2, 3, 4, 5, \cdots$$

它是正整数数列,通项为 $a_n = n$ 。不难看出,它没有极限。因为对任何实数 x 来说,令 n_x 为大于 x 的最小正整数,那么从 $n_x + 1$ 开始的项都比 x 大至少 1,无法落到 x 附近的小区间里面。可以说,随着 n 增大, a_n 会比任何数都大。

如何严谨描述这个想法呢?我们仍然可以用"有求必应"的结构,把以上想法写成:

$$\forall x, \exists n, \notin \forall m \geqslant n, a_m \geqslant x.$$

直观来看,随着 n 增大,从某一项开始, a_n 会落到数轴任何给定点 x 的右边。我们把这个性质称为数列**趋于正无穷大**。同理,可以定义数列**趋于负无穷大**:

$$\forall x, \exists n, \notin \forall m \geqslant n, a_m \leqslant x.$$

直观来看,随着 n 增大,从某一项开始, a_n 会落到数轴任何给定点 x 的左边。

我们也把有这两个性质的数列简称为**正无穷大**和**负无穷大**。

例题 1.4.2. 设数列 $\{\frac{1}{n}\}$ 的部分和数列为 $\{a_n\}$,证明: $\{a_n\}$ 趋于正无穷大。

证明: 按照定义, $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ 。 $a_{n+1} - a_n = \frac{1}{n+1} > 0$,所以 $\{a_n\}$ 单调递增。 对任意实数 x,我们需要找到相应的 n,使得 $\forall m \geq n, \ a_m \geq x$ 。由于 $\{a_n\}$ 单调递增,只要某一项 $a_n \geq x$,它之后的项都大于等于 x。因此,只需要找到 n 使得 $a_n \geq x$ 即可。

趋于无穷大的数列

如果 $x \le 1$, 那么 n = 1 即满足要求。

如果 x > 1, 设 M 是大于 x 的最小整数, 考虑 $n = 2^{2M}$ 。下面证明 $a_{2^{2M}} > x$ 。

$$a_{2^{2M}} = a_{2^0} + \sum_{i=1}^{2M} a_{2^i} - a_{2^{i-1}}.$$

$$\forall i \in [1 \dots 2M], \ a_{2^{i}} - a_{2^{i-1}} = \frac{1}{2^{i-1} + 1} + \frac{1}{2^{i-1} + 2} + \dots + \frac{1}{2^{i}}$$

$$\geqslant \frac{1}{2^{i}} + \frac{1}{2^{i}} + \dots + \frac{1}{2^{i}}$$

$$= \frac{2^{i-1}}{2^{i}} = \frac{1}{2}.$$

所以
$$a_{2^{2M}} \geqslant a_1 + \frac{1}{2} \cdot (2M - 1) = M + \frac{1}{2} > x.$$

这就证明 $\{a_n\}$ 趋于正无穷大。

思考 1.4.1.

1. 张三在判定数列 $\{a_n\}$ 的极限时写到:数 x 满足:

$$\forall r > 0, \exists n, \notin \forall m > n \text{ and } x - r < a_m < x + r.$$

因此 $\{a_n\}$ 有极限 x。他的说法对吗?

2. 李四在判定数列 $\{a_n\}$ 的极限时写到:数 x 满足:

$$\forall r > 0, \ \exists n, \ \text{\'eff} \ \forall \ m > n \ \text{\'anf} \ x - 2r \leqslant a_m \leqslant x + 2r.$$

因此 $\{a_n\}$ 有极限 x。他的说法对吗?

- 3. 一般数列除了有极限和趋于正负无穷大,还可能有什么大体行为?
- 4. 单调数列除了有极限和趋于正负无穷大,还可能有什么大体行为?

习题 1.4.1.

1. 以下数列是否有极限? 如果有极限, 是多少?

1.1.
$$\{2^{1-n}\}\$$

1.2. $\{(-1)^{n-1}\frac{n+1}{3n+1}\}$

1.3.
$$\left\{1 - \frac{1}{n^3 + 1}\right\}$$

2. 以下数列是否趋于无穷大?

 $2.1. \{2^n\}$

2.2. $\{n^2\}$

2.3. $\{\frac{2^n}{n^2}\}$

3. 如果数列 $\{a_n\}$ 趋于 x, 证明: $\{a_n\}$ 的任何子列趋于 x。

我们已经介绍了数列的运算。数列之间可以做加法、减法、乘法。如果数列 $\{a_n\}$ 、 $\{b_n\}$ 有极限,它们的和、差、乘积是否有极限?答案是肯定的,并且符合我们的直觉:

定理 1.4.1. 若数列 $\{a_n\}$ 趋于 a, $\{b_n\}$ 趋于 b, 则

$$\lim_{n \to \infty} a_n \pm b_n = a \pm b,$$
$$\lim_{n \to \infty} a_n \cdot b_n = a \cdot b.$$

特别地,令 $\{b_n\}$ 是常数列,就得到数乘对极限的影响: 若数列 $\{a_n\}$ 趋于 a,则

$$\forall \ t \in \mathbb{R}, \ \lim_{n \to \infty} t \cdot a_n = ta.$$

证明:

首先证明极限的加法: 设数列 $\{a_n\}$ 趋于 a, $\{b_n\}$ 趋于 b。按照定义, $\forall r > 0$,由于 $\frac{r}{2} > 0$,总有正整数 n_a, n_b ,使得

$$\forall m \geqslant n_a, -\frac{r}{2} \leqslant a_m - a \leqslant \frac{r}{2},$$

$$\forall m \geqslant n_b, -\frac{r}{2} \leqslant b_m - b \leqslant \frac{r}{2},$$

因此,

$$\forall m \geqslant n_a + n_b, -r = -\frac{r}{2} - \frac{r}{2} \leqslant a_m + b_m - a - b \leqslant \frac{r}{2} + \frac{r}{2} = r$$

于是数列 $\{a_n\} + \{b_n\}$ 趋于 a + b。

接下来证明极限的数乘: 设 t 为实数,数列 $\{a_n\}$ 趋于 a,则数列 $\{t \cdot a_n\}$ 趋于 ta。这样,数列 $\{a_n\} - \{b_n\}$ 可以看作 $\{a_n\} + \{-b_n\}$,因而趋于 a - b。分两种情况讨论。如果 t = 0,那么 $\{t \cdot a_n\} = \{0\}$,显然趋于 0,也就是 ta。如果 $t \neq 0$,按照定义,对 $\forall r > 0$,由于 $\frac{r}{t} > 0$,总有正整数 n 使得

$$\forall m \geqslant n, \ a - \frac{r}{t} \leqslant a_m \leqslant a + \frac{r}{t}.$$

因此

$$\forall m \geqslant n, \ ta - r \leqslant t \cdot a_m \leqslant ta + r.$$

这就说明数列 $\{t \cdot a_n\}$ 趋于 ta。

最后证明极限的乘法: 设数列 $\{a_n\}$ 趋于 a, $\{b_n\}$ 趋于 b。按照定义, $\forall r > 0$,由于 $\sqrt{r} > 0$,总有正整数 n_a, n_b ,使得

$$\forall m \geqslant n_a, -\sqrt{r} \leqslant a_m - a \leqslant \sqrt{r},$$
$$\forall m \geqslant n_b, -\sqrt{r} \leqslant b_m - b \leqslant \sqrt{r},$$

因此

$$\forall m \geqslant n_a + n_b, \ (a_m - a)(b_m - b) \leqslant \left(\sqrt{r}\right)^2 = r$$
$$- (a_m - a)(b_m - b) \leqslant \left(\sqrt{r}\right)^2 = r,$$
$$\exists \mathbb{I} \quad -r \leqslant (a_m - a)(b_m - b) \leqslant r.$$

这说明数列 $\{(a_n-a)(b_n-b)\}$ 趋于 0。而 $\{b\cdot a_n\}$ 和 $\{a\cdot b_n\}$ 都趋于 ab,常数列 $\{ab\}$ 也趋于 ab,所以根据前面证明的极限加减法,数列

$$\{a_nb_n\} = \{(a_n - a)(b_n - b)\} + \{b \cdot a_n\} + \{a \cdot b_n\} - \{ab\}$$

趋于
$$0 + ab + ab - ab = ab$$
。

四则运算中,加法、减法、乘法都可以对数列的极限做运算。那么除法是否可以呢? 具体来说,若数列 $\{a_n\}$ 趋于 a, $\{b_n\}$ 趋于 b, 是否有 $\{\frac{a_n}{b_n}\}$ 趋于 $\frac{a}{b_n}$?

显然,b=0 的时候, $\frac{a}{b}$ 无定义,所以排除 $\{b_n\}$ 趋于 0 的情况。如果 b 不等于 0,答案大致是肯定的。 $\{\frac{a_n}{b_n}\}$ 趋于 $\frac{a}{b}$ 。当然,我们要先"剪掉" $\{b_n\}$ 最开始一些离 b 比较远的项,确保剩下的项都不等于 0,这样才好定义 $\frac{a_n}{b_n}$ 。然后可以用类似证明极限乘法的方法,证明 $\{\frac{1}{b_n}\}$ 趋于 $\frac{1}{b}$,这样, $\{\frac{a_n}{b_n}\}$ 可以看作 $\{a_n \cdot \frac{1}{b_n}\}$,因而趋于 $\frac{a}{b}$ 。

思考 1.4.2.

- 1. 如果数列 $\{a_n\}$ 有极限 a, $\{b_n\}$ 趋于无穷大,它们的和、差、乘积、 商数列是否有极限? 是否趋于无穷大?
- 2. 如果数列 $\{a_n\}$ 、 $\{b_n\}$ 都趋于无穷大,它们的和、差、乘积、商数列有什么特性?

习题 1.4.2.

- 1. 如果数列 $\{a_n\}$ 有极限 a, $\{b_n\}$ 趋于无穷大,它们的和、差、乘积、商数列是否有极限? 是否趋于无穷大?
- 2. 如果数列 $\{a_n\}$ 、 $\{b_n\}$ 都趋于无穷大,它们的和、差、乘积、商数列有什么特性?

第二章 从有理数到实数

第三章 实变函数初步

第四章 二项式