CS 6041 Theory of Computation

Context-free language

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Outline

Context-free language

- Context-free language and grammar
- Parse tree
- Definition of CFG

Design CFG

- Example
- Ambiguity
- Leftmost derivation

Context-free language

Context-free language

• Example, G₁

3 substitution rules (productions)

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Example, G₁

• Example, G₁

Start variable:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Example, G₁

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Terminals: 0, 1, #

• Example, G₁

Variable: A, B

Start variable:

A

3 substitution rules (productions)

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Terminals: 0, 1, #

$$A \Rightarrow 0A1$$

$$\Rightarrow$$
 00A11

$$\Rightarrow$$
 000A111

 The sequence of substitutions to obtain a string is called a *derivation*

Abbreviating the CFGs

Grammar G₁:

$$B \rightarrow \#$$

Abbreviation of G₁:

$$G_1: A \rightarrow 0A1 \mid B$$

$$B \rightarrow \#$$

context-free grammar G.

$$R \rightarrow XRX \mid S$$

 $S \rightarrow aTb \mid bTa$
 $T \rightarrow XTX \mid X \mid \epsilon$
 $X \rightarrow a \mid b$

Variable:
A, B

Start variable:
A $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow \#$ Terminals:
0, 1, #

- 1. What are the variables of G?
- 2. What are the terminals of G?
- 3. Which is the start variable of G?

R, X, S, T a,b, ε **R**

context-free grammar G.

$$R \rightarrow XRX \mid S$$

 $S \rightarrow aTb \mid bTa$
 $T \rightarrow XTX \mid X \mid \varepsilon$
 $X \rightarrow a \mid b$

- 1. Give three strings in L(G).
- 2. Give three strings not in L(G).

ab, ba, aab a, b, ε

context-free grammar G.

$$R \rightarrow XRX \mid S$$

S \rightarrow aTb \rightarrow bTa

$$T \rightarrow XTX | X | \epsilon$$

$$X \rightarrow a \mid b$$

$$1.T => aba$$

- CFG: $S \rightarrow SS+ \mid SS* \mid a$
- How to generate string aa+a*

$$S \Rightarrow SS^*$$

$$\Rightarrow$$
 SS+S*

$$\Rightarrow$$
 aS+S*

$$\Rightarrow$$
 aa+S*

$$\Rightarrow$$
 aa+a*

 Describe what language it generates based on CFG: S→0S1 | 01

• {w | w

}

Describe what language it generates based on
 CFG: S→aSbS | bSaS | ε

• {w | w

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A
- Parse tree

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: $A \Rightarrow 0A1$
- Parse tree

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A \Rightarrow 0A1 \Rightarrow 00A11
 - \Rightarrow 000A111
- Parse tree

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A \Rightarrow 0A1 \Rightarrow 00A11
 - \Rightarrow 000A111 \Rightarrow 000B111
- Parse tree

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A \Rightarrow 0A1 \Rightarrow 00A11
 - \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111
- Parse tree

The language of grammar

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

The language of G₁:

$$L(G_1)=\{0^n\#1^n \mid n>0\}$$

- Context-free language
 - Languages generated by contextfree grammars

000#111

Definition of context-free grammar

- Context-free grammar is a 4-tuple $G=(V,\Sigma,R,S)$,
 - 1) V: finite variable set

2) Σ : finite terminal set

3) R: finite rule set $(A \rightarrow w, w \in (V \cup \Sigma)^*)$

4) $S \in V$: start variable

Example

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• $G_1 = ($

$$\{0,1,\#\},\$$

$$\{A \rightarrow 0A1, A \rightarrow B, B \rightarrow \#\},\$$

A

)

Definition of context-free grammar

- Context-free grammar is a 4-tuple G=(V,Σ,R,S),
 - 1) V: finite variable set
 - 2) Σ : finite terminal set
 - 3) R: finite rule set $(A \rightarrow w, w \in (V \cup \Sigma)^*)$
 - 4) S∈V: start variable

Example

Grammar G₁:

•
$$G_1 = ($$

{S},

 $\{a,+,*\},$

 $\{S -> S+S \mid S*S \mid a\},\$

S

)

Definition of context-free grammar

- Context-free grammar is a 4-tuple G=(V,Σ,R,S),
 - 1) V: finite variable set
 - 2) Σ : finite terminal set
 - 3) R: finite rule set $(A \rightarrow w, w \in (V \cup \Sigma)^*)$
 - 4) S∈V: start variable

Definition of context-free grammar

- Yield
 - o If A \rightarrow w is a rule of the grammar, we say that uAv *yields* uwv
- Derive
 - u *derives* v (u \Rightarrow v), if u \Rightarrow u₁ \Rightarrow u₂ \Rightarrow ... \Rightarrow u_k \Rightarrow v
- The language of grammar
 - \circ L(G)={ w $\in \Sigma^*$ | S \Rightarrow^* w }
- Context-free language (CFL)
 - The language of CFG

Question: how to derive it?

```
• G_3 = (\{S\}, \{a,b\}, R, S), R is
\{S \rightarrow aSb \mid SS \mid \epsilon\}
```

 $S \Rightarrow abab$?

S

 \Rightarrow SS

 \Rightarrow aSbS

 \Rightarrow abS

 \Rightarrow abaSb

 \Rightarrow abab

Question: how to derive it?

•
$$G_3=(\{S\},\{a,b\},R,S),\ R$$
 is
$$\{S \to aSb \mid SS \mid \epsilon \}$$
 $S \Rightarrow aaabbb$?

S

- \Rightarrow aSb
- \Rightarrow aaSbb
- \Rightarrow aaaSbbb
- \Rightarrow aaabbb

Question: how to derive it?

•
$$G_3=(\{S\},\{a,b\},R,S),\ R$$
 is $S\Rightarrow aababb$? $\{S\rightarrow aSb\mid SS\mid \epsilon\}$

S

 \Rightarrow aSb

.... //follow by $S \Rightarrow abab$

 \Rightarrow aababb

Example of Parse tree

•
$$G_4 = (V, \Sigma, R, E)$$
,
 $V = \{E, T, F\}$,
 $\Sigma = \{a, +, \times, (,)\}$,
 $R = \{$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T \times F \mid F$
 $F \rightarrow (E) \mid a$

Kennesaw State University

Theory of Computation

Parse tree of a+a×a

• $G_4=(V,\Sigma,R,E)$,

 $V=\{E, T, F\},\$

$$\Sigma$$
={ a, +, ×, (,) },

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

}

F

Parse tree

• Grammar G₁:

$$A \rightarrow 0A1$$

$$\mathsf{A} \to \mathsf{B}$$

$$B \rightarrow \#$$

• Derivation: A \Rightarrow 0A1 \Rightarrow 00A11

$$\Rightarrow$$
 000A111 \Rightarrow 000B111

Parse tree

2

Kennesaw State University

Theory of Computation

Parse tree of (a+a)×a

• $G_4=(V,\Sigma,R,E)$,

$$V=\{E, T, F\},\$$

$$\Sigma = \{ a, +, \times, (,) \},$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

}

F

Outline

Context-free language

- Context-free language and grammar
- Parse tree
- Definition of CFG

Design CFG

- Example
- Ambiguity
- Leftmost derivation

Design context-free grammar

Design CFG for {w|w=0}

$$\rightarrow$$
 3

$$\circ$$
 S \rightarrow 0

Design CFG for {w|w=1}

$$\rightarrow$$
 3

 \circ S \rightarrow 1

• Design CFG for $\{w \mid w = \Sigma\}$, $\Sigma = \{0, 1\}$

$$\rightarrow$$
 3

$$\left.\begin{array}{c} \circ \ \mathsf{S} \to \mathsf{0} \\ \circ \ \mathsf{S} \to \mathsf{1} \end{array}\right\} \qquad \text{Simulate the } \Sigma$$

• Design CFG for $\{w \mid w = \Sigma^*\}$, $\Sigma = \{0, 1\}$

$$\rightarrow$$
 3

o R
$$\rightarrow$$
 0R
o R \rightarrow 1R
o R \rightarrow ϵ

Simulate the Σ^*

• Design CFG for $\{w \mid w = (\Sigma \Sigma)^*\}, \Sigma = \{0, 1\}$

$$\rightarrow$$
 5

$$S \rightarrow S00$$

 $S \rightarrow S01$
 $S \rightarrow S10$

Simulate the $(\Sigma\Sigma)^*$

 $S \rightarrow S11$

• Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - Design CFG for $\{w \mid w=1^n0^n, n\geq 0\}$

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - Design CFG for $\{w \mid w=0^n1^n, n\geq 0\}$

Generating same number of 0 and 1 Generating 0 before 1

01 0011 000111 00..011..1

$$5 \rightarrow 5$$

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - Design CFG for $\{w \mid w=0^n1^n, n\geq 0\}$

Generating same number of 0 and 1 Generating 0 before 1

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - Design CFG for $\{w \mid w=0^n1^n, n\geq 0\}$

Generating same number of 0 and 1 Generating 0 before 1

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - Design CFG for $\{w \mid w=0^n1^n, n\geq 0\}$

Generating same number of 0 and 1 Generating 0 before 1

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - ► $G_1 = (\{S\}, \{0,1\}, \{S \to 0S1, S \to \varepsilon\}, S)$
 - Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - G₂=({S},{0,1}, {S→1S0, S→ε}, S)

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - $G_1 = (\{S_1\}, \{0,1\}, \{S_1 \to 0S_11, S_1 \to \epsilon\}, S_1)$
 - Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - ► $G_2 = (\{S_2\}, \{0,1\}, \{S_2 \rightarrow 1S_2 0, S_2 \rightarrow \epsilon\}, S_2)$

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - \rightarrow $G_1 = (\{S_1\}, \{0,1\}, \{S_1 \rightarrow 0S_11, S_1 \rightarrow \epsilon\}, S_1)$
 - o Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - ► $G_2 = (\{S_2\}, \{0,1\}, \{S_2 \rightarrow 1S_20, S_2 \rightarrow \epsilon\}, S_2)$

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - $G_1 = (\{S_1\}, \{0,1\}, \{S_1 \to 0S_11, S_1 \to \epsilon\}, S_1)$
 - Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - ► $G_2 = (\{S_2\}, \{0,1\}, \{S_2 \rightarrow 1S_2 0, S_2 \rightarrow \epsilon\}, S_2)$

• G=({S,S₁,S₂},{0,1}, {S \rightarrow S₁, S \rightarrow S₂, S₁ \rightarrow 0S₁1, S₁ \rightarrow ϵ , S₂ \rightarrow 1S₂0, S₂ \rightarrow ϵ }, S)

Combine CFG into one

General case:

Add
$$S \rightarrow S_1 \mid S_2 \mid ... \mid S_k$$

- S is the new start variable
- \circ S₁, S₂, ..., S_k are original start variables

CFL is closure on the Union operation

Operation on languages

	RL: DFA/NFA/RE	CFL: CFG/PDA	TM
Union	close	close	?
Concatenation	close	?	?
Star	close	?	?
Complement	close	?	?
Boolean operation	close	?	?

Design CFG is much difficult than designing an automata for language

Basic idea:

- 1. divide CFL into small parts
- 2. design CFG for each small part
- 3. combine them together

Design CFG is much difficult than designing an automata for language

Other ideas:

- 1. Simulate the regular expressions
- 2. Look for a pattern from example strings
- 3. ...

• L={w| w has at least three 1s}, $\Sigma = \{0,1\}$

$$\Sigma^* 1 \Sigma^* 1 \Sigma^* 1 \Sigma^*$$

• L={w| w has at least three 1s}, $\Sigma = \{0,1\}$

$$\Sigma^* 1 \Sigma^* 1 \Sigma^* 1 \Sigma^*$$

$$S \rightarrow R1R1R1R$$

• L={w | w has at least three 1s}, $\Sigma = \{0,1\}$

$$\Sigma^* 1 \Sigma^* 1 \Sigma^* 1 \Sigma^*$$

$$S \rightarrow R1R1R1R$$

$$R \rightarrow OR$$

$$R \rightarrow 1R$$

$$R \rightarrow \epsilon$$

Simulate the Σ^*

• L={w | w has odd length}, $\Sigma = \{0,1\}$

$$\Sigma(\Sigma \Sigma)^*$$

$$\rightarrow$$
 5

• L={w| w has odd length}, $\Sigma = \{0,1\}$

$$\Sigma(\Sigma \Sigma)^*$$

$$\left.\begin{array}{c} S \rightarrow 0 \\ S \rightarrow 1 \end{array}\right\}$$

Simulate the Σ

• L={w| w has odd length}, $\Sigma = \{0,1\}$

```
\Sigma(\Sigma \Sigma)^*
```

```
S \rightarrow 0
```

$$S \rightarrow 1$$

$$S \rightarrow S00$$

$$S \rightarrow S01$$

$$S \rightarrow S10$$

$$S \rightarrow S11$$

Simulate the $(\Sigma \Sigma)^*$

• L={w | w has odd length}, $\Sigma = \{0,1\}$

$$\Sigma(\Sigma \Sigma)^*$$

 $S \rightarrow 0$

 $S \rightarrow 1$

 $S \rightarrow S00$

 $S \rightarrow S01$

 $S \rightarrow S10$

 $S \rightarrow S11$

• L={w| w has odd length and the middle symbol is 0}, $\Sigma = \{0,1\}$

0

000

001

100

101

00011

• • •

• L={w| w has odd length and the middle symbol is 0}, $\Sigma = \{0,1\}$

 $S \to 0$ 000 $S \to 0S0$ $S \to 0S1$ $S \to 1S0$

 $S \rightarrow 1S1$

• L =
$$\{0^n1^n \mid n \ge 0\}$$
. $\Sigma = \{0,1\}$

$$S \rightarrow 0S1 \mid \epsilon$$

$$\rightarrow$$
 ?

• L =
$$\{0^n 1^{2n} \mid n \ge 0\}$$
. $\Sigma = \{0,1\}$

$$S \rightarrow 0S11 \mid \epsilon$$

$$\rightarrow$$
 ?

• L =
$$\{00^*11^*\}$$
. $\Sigma = \{0,1\}$

How to design 00*

How to design 11*

$$\rightarrow$$
 ?

• L =
$$\{00^*11^*\}$$
. $\Sigma = \{0,1\}$

How to design 00*

$$C \rightarrow 0$$

$$C \rightarrow 0C$$

• L =
$$\{00^*11^*\}$$
. $\Sigma = \{0,1\}$

How to design 11*

$$D \rightarrow 1$$

$$D \rightarrow 1D$$

• L =
$$\{00^*11^*\}$$
. $\Sigma = \{0,1\}$

How to design 00*

 $C \rightarrow 0$

 $C \rightarrow 0C$

How to design 00*11*

$$S \rightarrow CD$$

$$C \rightarrow 0C \mid 0$$

$$D \rightarrow 1D \mid 1$$

How to design 11*

$$D \rightarrow 1$$

$$D \rightarrow 1D$$

$$S \rightarrow S$$

Design CFG for regular languages

Design CFG for regular languages

Transfer DFA into equivalent CFG

- Transfer DFA into equivalent CFG
- Let DFA M=(Q, Σ , δ ,q₀,F) then CFG G=(V, Σ ,R,R₀)

- Transfer DFA into equivalent CFG
- Let DFA M=(Q, Σ , δ ,q₀,F)
 - $Q = \{q_0, q_1, ..., q_k\},$

then CFG G=(V,Σ,R,R_0)

 \circ V={R₀,R₁,...,R_k},

- Transfer DFA into equivalent CFG
- Let DFA M=(Q, Σ , δ ,q₀,F)
 - $Q = \{q_0, q_1, ..., q_k\},$
 - $\delta(q_i,a)=q_i$

then CFG G=(V,Σ,R,R_0)

- $V=\{R_0,R_1,...,R_k\},$
- \circ R_i \rightarrow aR_j,

- Transfer DFA into equivalent CFG
- Let DFA M= $(Q, \Sigma, \delta, q_0, F)$

• Q={
$$q_0, q_1, ..., q_k$$
},
• $\delta(q_i, a) = q_j$,

$$\delta(q_i,a)=q_i$$

$$\circ$$
 $q_i \in F$

then CFG G=(V,Σ,R,R_{\circ})

$$\circ$$
 V={R₀,R₁,...,R_k},

$$\circ$$
 R_i \rightarrow aR_j,

$$\circ R_i \rightarrow \varepsilon$$

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \varepsilon$$

• True/False?

Every Regular Language is Context-Free

o **T**

 For each regular language L there exists a context-free grammar G, such that L = L(G)

 T

More languages

- 0ⁿ1ⁿ
 - is not regular language, proved by pumping lemma
 - is a context-free language built by CFG

$$R\rightarrow 0R1, R\rightarrow \epsilon$$

- is not regular language
- Is not context-free language

Ambiguity

- If a grammar generates the same string in several different ways, we say that the string is derived ambiguously in that grammar.
- If a grammar generates some string ambiguously, we say that the grammar is ambiguous.

```
• G_5: E \rightarrow
E+E \mid
E \times E \mid
(E) \mid a
```

Ambiguity

•
$$G_5$$
: $E \rightarrow$

$$E+E \mid$$

$$E\times E \mid$$

$$(E) \mid a$$

Ambiguity in real life

- G₂:
- the_girl_touches_the_boy_with_flower

Leftmost derivation

A derivation of a string w in a grammar G is a
 leftmost derivation if at every step the *leftmost* remaining variable is the one replaced

•
$$E \Rightarrow E + E$$

$$\Rightarrow$$
 a+E

$$\Rightarrow$$
 a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

•
$$G_5$$
: $E \rightarrow$

Two different leftmost derivation

- E
 - \Rightarrow E+E
 - \Rightarrow a+E
 - \Rightarrow a+E×E
 - \Rightarrow a+a×E
 - ⇒ a+a×a
- E
 - $\Rightarrow \mathsf{E} \times \mathsf{E}$
 - \Rightarrow E+E \times E
 - \Rightarrow a+E×E
 - \Rightarrow a+a \times E
 - \Rightarrow a+a \times a

- $G_5: E \rightarrow$
 - E+E |
 - $E \times E$
 - (E) | a

Ambiguity

 A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations.

 Grammar G is ambiguous if it generates some string ambiguously.

 Some context-free languages can be generated only by ambiguous grammars. (inherently ambiguous)

Inherently ambiguous example

- { 0ⁱ1^j2^k | i=j or j=k }
 - { 0ⁿ1ⁿ2^m | n,m≥0 } ∪
 { 0^m1ⁿ2ⁿ | n,m≥0 }

 0ⁿ1ⁿ2ⁿ can only be generated by ambiguous grammars (due to the language definition)

 Human languages like English/French/Spanish/Chinese/Japanese/Hindi ... are inherently ambiguous

• G = $\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \varepsilon\}$

 G produces all strings with equal number of a's and b's. True or false? Why?

• G =
$$\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \varepsilon\}$$

 G produces all strings with equal number of a's and b's. True or false? Why?

It can't generate aabb string. So the statement is incorrect.

• G = $\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \varepsilon\}$

Is G ambiguous? Why?

Ambiguity

- A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations.
- Grammar G is ambiguous if it generates some string ambiguously.
- Some context-free languages can be generated only by ambiguous grammars. (inherently ambiguous)

CS 6041

ennesaw State Universit

Theory of Computation

• G =
$$\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \varepsilon\}$$

Is G ambiguous? Why?

There are different LMD's for string abab which can be

$$S \Rightarrow \underline{S}S \Rightarrow \underline{S}S \Rightarrow ab\underline{S}S \Rightarrow abab\underline{S} \Rightarrow abab$$

$$S \Rightarrow \underline{S}S \Rightarrow ab\underline{S} \Rightarrow abab$$

So the grammar is ambiguous.

True or false?

 There exist CFLs such that all the CFGs generating them are ambiguous.

True. Inherently ambiguous.

True or false?

 An unambiguous CFG always has a unique parse tree for each string of the language generated by it.

 True. As unambiguous CFG has a unique parse tree for each string of the language generated by it.

Kennesaw State University

Conclusion

Context-free language

- Context-free language and grammar
- Parse tree
- Definition of CFG
- Design CFG
 - Example
 - Ambiguity
 - Leftmost derivation