Spatial Data Analysis, Spring 2021

Lab Exercise 5:

- 1. Let Y be the distance from an arbitrary event in a study area A to its nearest neighbor, and suppose the spatial point process is a homogeneous Poisson process with intensity λ . Recall from lecture that the cdf of Y is $F(y) = 1 \exp(-\lambda \pi y^2)$ for y > 0 if edge effects are ignored.
 - a) Show that, if edge effects are ignored, $E(Y) = 1/(2\sqrt{\lambda})$ and $Var(Y) = (4-\pi)/4\lambda\pi$.
- b) Now suppose that events are not points but are instead circles of equal radius r_0 . Suppose further that the locations of the centers of these circles are generated according to a simple sequential inhibition process with $\delta = r_0$. Let Y be the distance from the center of an arbitrary event in A to the center of its nearest neighbor. Show that the pdf of Y, if edge effects are ignored, is

$$f(y) = 2\lambda \pi y \exp\{-\lambda \pi (y^2 - r_0^2)\}$$
 if $y \ge r_0$
= 0 if $0 < y < r_0$.

c) Under the same assumptions as in part (b), show that, if edge effects are ignored, $E(Y) = r_0 + \{1 - \Phi(\sqrt{2\lambda\pi}r_0)\{1/\sqrt{\lambda})\exp(\lambda\pi r_0^2)\}$ and $Var(Y) = r_0^2 + (1/\lambda\pi) - \{E(Y)\}^2$, where Φ is the cdf of a N(0,1) random variable.

R problems are provided in the moodle.