

Tests statistique

M2 Radiophysique médicale, INSTN, 2023

Clément GAUCHY (clement.gauchy@cea.fr)

CEA SACLAY

Sommaire

- 1. Définitions & généralités
- 2. Démarche d'un test et quantification de l'erreur
- 3. Choix du test
- 4. Test du rapport de vraisemblance et boson de Higgs

Objectif

On cherche à prendre des décisions à partir de données

Il va donc s'agir de décider si les différences observées entre un modèle posé a priori et les observations sont *significatives* ou bien sont dus au hasard

Réaliser un test statistique consiste à

- 1 Confronter une hypothèse avec les observations réelles
- 2 Prendre une décision par la suite

Généralités sur les tests statistiques

Un test statistique est une **procédure de décision** entre 2 hypothèses au vu d'un échantillon d'observations.

Généralités sur les tests statistiques

Un test statistique est une **procédure de décision** entre 2 hypothèses au vu d'un échantillon d'observations.

On appelle l'hypothèse nulle notée \mathcal{H}_0 une question Oui/Non que l'on cherche à valider ou refuter à l'aide des données.

Exemples:

- "Le médicament utilisé est il efficace ?"
- "Le processus de fabrication est il conforme ?"
- La variable aléatoire X suit une loi normale ?"

L'hypothèse alternative est notée \mathcal{H}_1 .

 \triangle Les deux hypothèses n'ont pas des rôles symmétrique. Par analogie avec la justice, \mathcal{H}_0 est la présomption d'innocence.

W WWW

Modélisation mathématique

On définit généralement à partir des observations une statistique de test notée S tel que

- S résume l'information de l'échantillon,
- On connaît la loi de S en supposant \mathcal{H}_0 vraie.

Avec un jeu de données $(x_i)_{1 \le i \le n}$, on évalue la statistique $S(x_1, \ldots, x_n)$ et on regarde si elle est "cohérente" avec \mathcal{H}_0 .

On appelle W la région critique du test l'ensemble des valeurs de $S(x_1, \ldots, x_n)$ pour lesquelles \mathcal{H}_0 est rejeté.

On suppose observer un échantillon (X_1, \ldots, X_n) suivant une gaussienne $\mathcal{N}(\mu, \sigma^2)$ avec σ connu.

On suppose observer un échantillon (X_1, \ldots, X_n) suivant une gaussienne $\mathcal{N}(\mu, \sigma^2)$ avec σ connu.

Hypothèse: $\mathcal{H}_0: \ \mu = \mu_0, \ \mathcal{H}_1: \ \mu > \mu_0$ (test unilatéral)

On suppose observer un échantillon (X_1, \ldots, X_n) suivant une gaussienne $\mathcal{N}(\mu, \sigma^2)$ avec σ connu.

Hypothèse: $\mathcal{H}_0: \ \mu = \mu_0, \ \mathcal{H}_1: \ \mu > \mu_0$ (test unilatéral)

Statistique de test: La moyenne empirique $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

On suppose observer un échantillon (X_1, \ldots, X_n) suivant une gaussienne $\mathcal{N}(\mu, \sigma^2)$ avec σ connu.

Hypothèse: $\mathcal{H}_0: \ \mu = \mu_0, \ \mathcal{H}_1: \ \mu > \mu_0$ (test unilatéral)

Statistique de test: La moyenne empirique $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Critère de choix: On rejette \mathcal{H}_0 si $\sqrt{n}(\bar{X}_n - \mu_0)/\sigma > q_\alpha$ où q_α est le quantile de niveau $1 - \alpha$ de la loi normale centrée réduite $\mathcal{N}(0, 1)$.

On suppose observer un échantillon (X_1, \ldots, X_n) suivant une gaussienne $\mathcal{N}(\mu, \sigma^2)$ avec σ connu.

Hypothèse:

 \mathcal{H}_0 : $\mu = \mu_0$, \mathcal{H}_1 : $\mu > \mu_0$ (test unilatéral)

Statistique de test: La moyenne empirique $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Critère de choix: On rejette \mathcal{H}_0 si $\sqrt{n}(\bar{X}_n - \mu_0)/\sigma > q_\alpha$ où q_α est le quantile de niveau $1 - \alpha$ de la loi normale centrée réduite $\mathcal{N}(0,1)$.

Sommaire

- 1. Définitions & généralités
- 2. Démarche d'un test et quantification de l'erreur
- 3. Choix du test
- 4. Test du rapport de vraisemblance et boson de Higgs

Un test statistique, ça trompe énormément!

Vérité Décision	\mathcal{H}_0 est vrai	\mathcal{H}_0 est fausse
\mathcal{H}_0 acceptée	1-lpha	$1-\beta$
\mathcal{H}_0 rejetée	$lpha = \mathbb{P}(\mathcal{H}_0 ext{ rejetée} \mathcal{H}_0 ext{ vraie})$	$\beta = \mathbb{P}(\mathcal{H}_0 \text{ rejetée} \mathcal{H}_0 \text{ fausse})$

Le seuil α d'un test statistique est la probabilité d'avoir un faux-positif (on rejette \mathcal{H}_0 alors qu'elle est vraie). On l'appelle aussi erreur de première espèce.

La *puissance* β d'un test statistique est la probabilité de rejeter \mathcal{H}_0 à raison.

La probabilité $1 - \beta$ d'accepter \mathcal{H}_0 alors qu'elle est fausse s'appelle *l'erreur de deuxième espèce*.

La probabilité 1 $-\alpha$ d'accepter \mathcal{H}_0 alors qu'elle est vraie est appellée *niveau de confiance*

Un test statistique, ça trompe énormément!

Vérité Décision	\mathcal{H}_0 est vrai	\mathcal{H}_0 est fausse
\mathcal{H}_0 acceptée	1-lpha	$1-\beta$
\mathcal{H}_0 rejetée	$lpha = \mathbb{P}(\mathcal{H}_0 ext{ rejetée} \mathcal{H}_0 ext{ vraie})$	$\beta = \mathbb{P}(\mathcal{H}_0 \text{ rejetée} \mathcal{H}_0 \text{ fausse})$

Le seuil α d'un test statistique est la probabilité d'avoir un faux-positif (on rejette \mathcal{H}_0 alors qu'elle est vraie). On l'appelle aussi erreur de première espèce.

La *puissance* β d'un test statistique est la probabilité de rejeter \mathcal{H}_0 à raison.

La probabilité $1 - \beta$ d'accepter \mathcal{H}_0 alors qu'elle est fausse s'appelle *l'erreur de deuxième espèce*.

La probabilité 1 $-\alpha$ d'accepter \mathcal{H}_0 alors qu'elle est vraie est appellée *niveau de confiance*

Question: Que souhaite t'on maximiser/minimiser entre α ou β ?

Un test statistique, ça trompe énormément!

Vérité Décision	\mathcal{H}_0 est vrai	\mathcal{H}_0 est fausse
\mathcal{H}_0 acceptée	1-lpha	$1-\beta$
\mathcal{H}_0 rejetée	$lpha = \mathbb{P}(\mathcal{H}_0 ext{ rejetée} \mathcal{H}_0 ext{ vraie})$	$\beta = \mathbb{P}(\mathcal{H}_0 \text{ rejetée} \mathcal{H}_0 \text{ fausse})$

Le seuil α d'un test statistique est la probabilité d'avoir un faux-positif (on rejette \mathcal{H}_0 alors qu'elle est vraie). On l'appelle aussi erreur de première espèce.

La *puissance* β d'un test statistique est la probabilité de rejeter \mathcal{H}_0 à raison.

La probabilité $1 - \beta$ d'accepter \mathcal{H}_0 alors qu'elle est fausse s'appelle *l'erreur de deuxième espèce*.

La probabilité 1 $-\alpha$ d'accepter \mathcal{H}_0 alors qu'elle est vraie est appellée *niveau de confiance*

Question: Que souhaite t'on maximiser/minimiser entre α ou β ?

Réponse: Parmis tout les tests de niveau α , on cherche celui maximisant la puissance.

Exemple

Soit μ la moyenne du niveau de radioactivité de l'eau en picocuries par litres. La valeur $\mu_0=5$ est considérée comme une valeur seuil entre eau potable et non potable. On peut tester \mathcal{H}_0 : " $\mu \geq 5$ " contre \mathcal{H}_1 : " $\mu < 5$ ".

L'erreur de première espèce (faux-positif) conduirait de laisser boire de l'eau non potable.

L'erreur de deuxième espèce (faux-négatif) conduirait à déclarer non potable de l'eau saine.

 \hookrightarrow Asymmétrie entre les deux types d'erreurs ! Rejeter \mathcal{H}_0 à raison (1ere espèce) a beaucoup plus de conséquence que de la conserver à tort ...

Puissance du test

Exemple pour le test sur la moyenne d'une Gaussienne avec écart-type connu.

La puissance $\beta(\mu)$ dépend donc de la moyenne ! Elle se calcul de la façon suivante:

$$\beta(\mu) = \mathbb{P}_{X \sim \mathcal{N}(\frac{\mu}{\mu}, \sigma^2)}(\bar{X}_n > q_{\alpha})$$

La puissance est une fonction de μ car tout les $\mu > \mu_0$ sont dans l'hypothèse alternative \mathcal{H}_1

Puissance d'un test

La puissance d'un test portant sur la valeur d'un paramètre réel θ est la fonction de θ définie par:

$$\begin{array}{cccc} \beta & : & \mathbb{R} & \rightarrow & [0,1] \\ & \theta & \mapsto & \mathbb{P}_{\theta}(S(X_1,\ldots,X_n) \in W) \end{array}$$

Le seuil du test est $\alpha = \sup_{\mathcal{H}_0} \beta(\theta)$. Cela correspond à la probabilité maximale de rejeter \mathcal{H}_0 alors que \mathcal{H}_0 est vraie.

Démarche d'un test statistique

- Choix de \mathcal{H}_0 et \mathcal{H}_1 . Fixer le niveau α
- Détermination de la statistique de test $S(X_1, \ldots, X_n)$
- Allure de la région critique en fonction de \mathcal{H}_1
- Calcul de la région critique en fonction de α et \mathcal{H}_0
- Calcul de la valeur observée de la statistique de test
- Rejet ou acceptation de \mathcal{H}_0 au seuil α
- Si possible, calcul de la puissance du test

w WW

p-valeur

La *p*-valeur est la probabilité d'observer en supposant \mathcal{H}_0 vraie d'être dans la zone de rejet.

La p-valeur permet d'avoir une information quantitative sur le rejet de \mathcal{H}_0 .

On considère le rejet de \mathcal{H}_0 significatif à partir de p < 0.05. \triangle Cela dépend des applications! En physique des particules, on cherche $p < 10^{-7}$

La zone rouge correspond à la p-valeur.

$$p = \mathbb{P}_{\mathcal{H}_0}(\bar{X}_n > q_{\alpha})$$

Sommaire

- 1. Définitions & généralités
- 2. Démarche d'un test et quantification de l'erreur
- 3. Choix du test
- 4. Test du rapport de vraisemblance et boson de Higgs

Zoologie des tests statistique

- Test paramétriques
 - Un échantillon
 - Test sur la moyenne, variance connue (Gaussienne)
 - Test sur la moyenne, variance inconnue et estimée (Student)
 - Test sur une proportion (Binomiale)
 - Deux échantillons indépendants
 - Comparaison des deux moyennes (Student)
 - Comparaison des deux variances (Fisher)
- Test d'adéquation (non paramétrique)
 - Comparaison de deux distributions (χ^2)
 - Normalité d'une distribution (Kolmogorov, Shapiro Wilks)

W WWW

Tests unilatéral ou bilatéral

Exemple avec le test de la moyenne d'une Gaussienne:

Test unilatéral $\mathcal{H}_0: \mu \leq \mu_0$ contre $\mathcal{H}_1: \mu > \mu_0$

Test bilatéral $\mathcal{H}_0: \mu = \mu_0$ contre $\mathcal{H}_1: \mu \neq \mu_0$

Figure 1: Zone de rejet du test bilatéral en rouge

Test de Student

On observe (X_1, \ldots, X_n) i.i.d. tel que $X_1 \sim \mathcal{N}(\mu, \sigma^2)$ avec μ et σ^2 inconnues.

On souhaite tester \mathcal{H}_0 : $\mu = \mu_0$ contre \mathcal{H}_1 : $\mu \neq \mu_0$

Sous \mathcal{H}_0 , on a $T_n = \frac{\bar{X}_n - \mu_0}{S_n / \sqrt{n-1}}$ (avec \bar{X}_n la moyenne empirique et S_n^2 la variance empirique) qui suit la loi de Student \mathcal{T}_{n-1} à n-1 degrés de liberté.

On rejette ainsi \mathcal{H}_0 au seuil α si $T_n > t_{n-1,(1+\alpha)/2}$ ou $T_n < t_{n-1,(1-\alpha)/2}$.

On peut calculer la puissance $\beta(\mu)$ par simulation Monte-Carlo. (Exercice)

Test d'ajustement (ou d'adéquation)

Durant tout le cours, on a construit des tests portant sur le paramètre θ d'un modèle statistique

Désormais, on cherche à tester si la fonction de répartition $F(x) = \mathbb{P}(X \le x)$ d'un échantillon (X_1, \dots, X_i) est égale à une fonction de répartition connue F_0 .

On peut par exemple tester si les données suivent la loi normale $\mathcal{N}(0,1)$.

 $\mathcal{M} = \{ p_{\theta/\theta \in \Theta} \}.$

Test du χ^2

Le test du χ^2 est un test d'adéquation pour les lois dites discrètes.

 (X_1,\ldots,X_k) est un échantillon de variables aléatoires i.i.d. tel que X_1 prend ses valeurs dans $\{1,\ldots,k\}$. On se donne alors le vecteur $(p_i)_{1\leq i\leq k}$ tel que $p_i\geq 0$ et $\sum_i p_i=1$. On souhaite tester

 \mathcal{H}_0 : Pour tout i de 1 à k, $\mathbb{P}(X_1 = i) = p_i$

contre

 \mathcal{H}_1 : Il existe i de 1 à k tel que $\mathbb{P}(X_1 = i) \neq p_i$.

Exemple: On cherche à déterminer si un dé est biaisé au risque de 1%. Soit X la variable aléatoire qui donne le chiffre obtenu à chaque lancer de dé. On va donc tester $\mathbb{P}(X = i) = 1/6$ pour i de 1 à 6.

Test du χ^2 , statistique de test

On note N_i l'effectif observé de la valeur i tandis que np_i correspond à l'effectif espéré de cette valeur sous \mathcal{H}_0 . On définit la statistique de test par

$$D^2 = \sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i} .$$

On admet que D^2 suit asymptotiquement selon n une loi du χ^2 à k-1 degrés de liberté (d'où le nom du test).

On peut alors définir la région critique pour le test du χ^2 de seuil α par $D^2 > q_{\chi^2_{k-1},1-\alpha}$ tel que $\mathbb{P}(D^2 < q_{\chi^2_{k-1},1-\alpha}|\mathcal{H}_0 \text{ vraie}) = 1-\alpha$

Test de Kolmogorov

Le test de Kolmogorov est employé pour tester si la loi de probabilité de X à valeurs réelles à pour fonction de répartition F_0 .

On va tester \mathcal{H}_0 : $F = F_0$ contre \mathcal{H}_1 : $F \neq F_0$. On va pour cela utiliser l'estimateur empirique de $F(x) = \mathbb{P}(X \leq x)$:

$$F(x) = \mathbb{P}(X \le x)$$

 $F(x) = \mathbb{E}[1_{X \le x}]$

$$F(x) \approx \frac{1}{n} \sum_{i=1}^{n} 1_{X_i \leq x}$$

On a donc un estimateur empirique de la fonction de répartition $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{X_i \le x}$.

Test de Kolmogorov, statistique de test

La statistique de test est la variable aléatoire

$$D_n = \sup_{x \in \mathbb{R}} |\widehat{F}_n(x) - F_0(x)|,$$

en effet, D_n converge en loi vers la distribution de probabilité de Kolmogorov-Smirnov

On définit la région critique pour le test de Kolmogorov-Smirnov au seuil α par $D_n > q_{\text{KS},1-\alpha}$ tel que $\mathbb{P}(D_n < q_{\text{KS},1-\alpha}|\mathcal{H}_0 \text{ vraie}) = 1-\alpha$.

Question: Comment calculer la puissance de ce test ?

Toujours plus de tests

- Test de Shapiro-Wilk, de Lilliefors, d'Agostino: L'hypothèse nulle est le caractère gaussien des données
- Test d'Anderson-Darling: Même objectif que le test de Kolmogorov
- Test de Mann-Whitney, de Wilcoxon, de Kruskal-Wallis: L'hypothèse nulle est l'égalité des lois de deux variables aléatoire X et Y.

Sommaire

- 1. Définitions & généralités
- 2. Démarche d'un test et quantification de l'erreur
- 3. Choix du test
- 4. Test du rapport de vraisemblance et boson de Higgs

Test du rapport de vraisemblance

On va considérer un modèle statistique $\mathcal{M} = \{f_{\theta}, \ \theta \in \Theta\}$ où f_{θ} désigne la densité de probabilité de X.

On a un échantillon (X_1, \ldots, X_n) i.i.d. distribué selon f_{θ_*} . On veut tester si $\theta_* \in \Theta_0$ où $\Theta_0 \subset \Theta$. On a donc $\mathcal{H}_0: \theta_* \in \Theta_0$ contre $\mathcal{H}_1: \theta_* \notin \Theta_0$.

On note $L(\theta) = \prod_{i=1}^n f_{\theta}(X_i)$ la vraisemblance, on définit la statistique du rapport du vraisemblance de la façon suivante

$$\Lambda = \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \notin \Theta_0} L(\theta)}$$

Test du rapport de vraisemblance

Le statisticien Abraham Wald a démontré le théorème suivant dans les années 40:

Théorème (Loi asymptotique du rapport de vraisemblance)

Soit un échantillon (X_1, \ldots, X_n) i.i.d. distribué selon f_{θ_*} et $\mathcal{M} = \{f_{\theta}, \ \theta \in \Theta\}$. On a $\Theta_0 = \{\theta_*\}$ (i.e. on cherche à tester $\theta = \theta_0$) alors on a la convergence en loi suivante:

$$-2\log(\Lambda) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_1^2$$

On peut donc construire un test asymptotique à partir du rapport de vraisemblance. Question (rhétorique): Quel est l'intérêt de ce test ?

On rejette \mathcal{H}_0 au seuil α si $-2\log(\Lambda) > q_{\alpha,\chi_1^2}$ avec q_{α,χ_1^2} quantile de niveau α de la loi du χ_1^2 .

as the state of

Lemme de Neyman-Pearson

Un test statistique est dit uniformément le plus puissant s'il admet la plus grand puissance parmis tout les tests de seuil α .

<u>Définition formelle</u>: Pour tout test de seuil $\alpha' \leq \alpha$, on a $\forall \theta \notin \Theta_0, \ \beta'(\theta) \leq \beta(\theta)$.

<u>Lemme de Neyman-Pearson</u>: Le test du rapport de vraisemblance est uniformément le plus puissant.

w WW

Test de détection du boson de Higgs

Les physiciens des particules se basent sur une théorie que l'on appelle le Modèle Standard.

Le challenge est de déterminer à partir de quantités massives de données (issues du LHC par exemple) de l'existence de nouvelles particules ou non

Problème statistique: Déterminer, avec la plus grande puissance, si les données suggèrent l'existence de nouvelles particules.

Problème statistique

Les données observés sont généralement des comptages. On fait une hypothèse Poissonienne.

$$\mathcal{D} = (X_i)_{1 \leq i \leq n}$$
 i.i.d., $X_1 \sim \mathcal{P}(\lambda)$

On va effectuer un test d'hypothèses avec \mathcal{H}_0 : $\lambda = b$ et \mathcal{H}_1 : $\lambda = \mu_H + b$, où b est l'intensité du "bruit de fond" et μ_H l'intensité du signal attribué au boson de Higgs.

Statistique de test

Motivé par le lemme de Neyman-Pearson, on effectue un test du rapport de vraisemblance:

$$S = -2\log\left(rac{L(\mathcal{H}_0)}{L(\mathcal{H}_1)}
ight) \; ,$$

où $L(\mathcal{H}_0)$ et $L(\mathcal{H}_1)$ correspondent respectivement à la vraisemblance sous \mathcal{H}_0 et \mathcal{H}_1 .

Exercice: Écrire S en utilisant le modèle de Poisson de la planche précédente.

p-valeur du test

La communauté des physiciens des particules s'accordent pour rejeter l'hypothèse nulle avec une p-valeur très faible (de l'ordre de 10^{-7}).

Dans un cadre Gaussien, cela correspondrait à un écart de 5 fois l'écart type à la moyenne ! D'où le terme de 5σ que l'on entend parfois

W WWW

Références

- Site web wikistat.fr, http://wikistat.fr/pdf/st-l-inf-tests.pdf
- Site web wikistat.fr, http://wikistat.fr/pdf/st-m-inf-test.pdf
- E. Gross, Praticle statistics for high energy physics, https://indico.cern.ch/event/614672/contributions/2605123/attachments/1519560/2375162/StatESHEP.pdf