

Relatório 7 – Grupo G2

OBJETIVO:

• Estudar a 2ª lei de Newton através do movimento do carrinho no trilho de ar.

MATERIAL UTILIZADO:

•Kit do trilho de ar

PROCEDIMENTO EXPERIMENTAL

Com uma balança, medir as massas, em kg, pedidas na tabela 1.

Tabela 1: Massa que compõem o sistema

Carrinho	Suporte de massa	Massal de 10g	Massa1 de 20g	Massa2 de 10g	Massa2 de 20g
(0.20430±0.00001) kg	(0.00797±0.00001) kg	(0.00904±0.00001) kg	(0.01901±0.00001) kg	(0.00896±0.00001) kg	(0.01802±0.00001) kg

Massa total do sistema = (0.26730 ± 0.00006) kg

Tabela 2: Erros associados ao tempo e posição

Erro Tempo	Erro Posição
± 5ms	± 0,5cm

Tabela 3: Condições de Impulso utilizadas

#	Condição de impulso
1	S + M1_10g
2	S + M1_10g + M2_10g
3	S+ M1_20g+ M2_10g
4	S+ M1_20g+ M2_20g
5	S+ M1_20g+ M2_20g+ M1_10g
6	S+ M1_20g+ M2_20g+ M1_10g+ M2_10g

Tabela 4: Tempo medido entre os deslocamentos demarcados, para a condição de impulso 1)

X _F (m)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média Δt (s)
0	0	0	0	0	0	0
0.100 ± 0.005	0.663 ± 0.005	0.641 ± 0.005	0.671 ± 0.005	0.623 ± 0.005	0.637 ± 0.005	0.647 ± 0.005
0.200 ± 0.005	0.906 ± 0.005	0.909 ± 0.005	0.903 ± 0.005	0.910 ± 0.005	0.909 ± 0.005	0.907 ± 0.005
0.300 ± 0.005	0.996 ± 0.005	0.988 ± 0.005	0.996 ± 0.005	0.997 ± 0.005	0.992 ± 0.005	0.993 ± 0.005
0.400 ± 0.005	1.148 ± 0.005	1.145 ± 0.005	1.147 ± 0.005	1.150 ± 0.005	1.145 ± 0.005	1.147 ± 0.005
0.500 ± 0.005	1.282 ± 0.005	1.291 ± 0.005	1.282 ± 0.005	1.285 ± 0.005	1.284 ± 0.005	1.284 ± 0.005

Tabela 5: Tempo medido entre os deslocamentos demarcados, para a condição de impulso 2)

X_{F} (m)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média ∆t (s)
0	0	0	0	0	0	0
0.100 ± 0.005	0.462 ± 0.005	0.463 ± 0.005	0.458 ± 0.005	0.461 ± 0.005	0.457 ± 0.005	0.460 ± 0.005
0.200 ± 0.005	0.652 ± 0.005	0.669 ± 0.005	0.661 ± 0.005	0.652 ± 0.005	0.652 ± 0.005	0.657 ± 0.005
0.300 ± 0.005	0.802 ± 0.005	0.803 ± 0.005	0.809 ± 0.005	0.808 ± 0.005	0.809 ± 0.005	0.806 ± 0.005
0.400 ± 0.005	0.932 ± 0.005	0.927 ± 0.005	0.927 ± 0.005	0.926 ± 0.005	0.93 ± 0.005	0.928 ± 0.005
0.500 ± 0.005	1.035 ± 0.005	1.042 ± 0.005	1.040 ± 0.005	1.049 ± 0.005	1.042 ± 0.005	1.042 ± 0.005

Tabela 6: Tempo medido entre os deslocamentos demarcados, para a condição de impulso 3)

X _F (m)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média Δt (s)
0	0	0	0	0	0	0
0.100 ± 0.005	0.412 ± 0.005	0.417 ± 0.005	0.412 ± 0.005	0.412 ± 0.005	0.420 ± 0.005	0.415 ± 0.005
0.200 ± 0.005	0.554 ± 0.005	0.552 ± 0.005	0.551 ± 0.005	0.552 ± 0.005	0.554 ± 0.005	0.553 ± 0.005
0.300 ± 0.005	0.682 ± 0.005	0.680 ± 0.005	0.679 ± 0.005	0.679 ± 0.005	0.679 ± 0.005	0.680 ± 0.005
0.400 ± 0.005	0.784 ± 0.005	0.787 ± 0.005	0.784 ± 0.005	0.788 ± 0.005	0.785 ± 0.005	0.786 ± 0.005
0.500 ± 0.005	0.882 ± 0.005	0.885 ± 0.005	0.882 ± 0.005	0.882 ± 0.005	0.881 ± 0.005	0.882 ± 0.005

Tabela 7: Tempo medido entre os deslocamentos demarcados, para a condição de impulso 4)

X_{F} (m)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média Δt (s)
0	0	0	0	0	0	0
0.100 ± 0.005	0.343 ± 0.005	0.345 ± 0.005	0.343 ± 0.005	0.344 ± 0.005	0.343 ± 0.005	0.344 ± 0.005
0.200 ± 0.005	0.495 ± 0.005	0.500 ± 0.005	0.494 ± 0.005	0.493 ± 0.005	0.502 ± 0.005	0.497 ± 0.005
0.300 ± 0.005	0.607 ± 0.005	0.610 ± 0.005	0.609 ± 0.005	0.607 ± 0.005	0.609 ± 0.005	0.608 ± 0.005
0.400 ± 0.005	0.702 ± 0.005	0.702 ± 0.005	0.703 ± 0.005	0.700 ± 0.005	0.703 ± 0.005	0.702 ± 0.005
0.500 ± 0.005	0.785 ± 0.005	0.790 ± 0.005	0.785 ± 0.005	0.786 ± 0.005	0.789 ± 0.005	0.787 ± 0.005

Tabela 8: Tempo medido entre os deslocamentos demarcados, para a condição de impulso 5)

X _F (m)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média ∆t (s)
0	0	0	0	0	0	0
0.100 ± 0.005	0.317 ± 0.005	0.316 ± 0.005	0.316 ± 0.005	0.316 ± 0.005	0.314 ± 0.005	0.316 ± 0.005
0.200 ± 0.005	0.456 ± 0.005	0.450 ± 0.005	0.448 ± 0.005	0.450 ± 0.005	0.449 ± 0.005	0.451 ± 0.005
0.300 ± 0.005	0.554 ± 0.005	0.552 ± 0.005	0.554 ± 0.005	0.551 ± 0.005	0.553 ± 0.005	0.553 ± 0.005
0.400 ± 0.005	0.642 ± 0.005	0.643 ± 0.005	0.643 ± 0.005	0.645 ± 0.005	0.643 ± 0.005	0.643 ± 0.005
0.500 ± 0.005	0.716 ± 0.005	0.718 ± 0.005	0.717 ± 0.005	0.718 ± 0.005	0.718 ± 0.005	0.717 ± 0.005

Tabela 9: Tempo medido entre os deslocamentos demarcados, para a condição de impulso 6)

impuiso o _j						
X_{F} (m)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média Δt (s)
0	0	0	0	0	0	0
0.100 ± 0.005	0.289 ± 0.005	0.287 ± 0.005	0.287 ± 0.005	0.286 ± 0.005	0.287 ± 0.005	0.287 ± 0.005
0.200 ± 0.005	0.416 ± 0.005	0.416 ± 0.005	0.416 ± 0.005	0.416 ± 0.005	0.418 ± 0.005	0.416 ± 0.005
0.300 ± 0.005	0.511 ± 0.005	0.512 ± 0.005	0.512 ± 0.005	0.514 ± 0.005	0.512 ± 0.005	0.512 ± 0.005
0.400 ± 0.005	0.592 ± 0.005	0.594 ± 0.005	0.593 ± 0.005	0.594 ± 0.005	0.593 ± 0.005	0.593 ± 0.005
0.500 ± 0.005	0.706 ± 0.005	0.707 ± 0.005	0.707 ± 0.005	0.707 ± 0.005	0.705 ± 0.005	0.706 ± 0.005

Tabela 10: Dados calculados para o relatório (1)

Condição de impulso	Massa aceleradora	Peso	a	Razão P/a	V_{F}	Q_{F}
1	$(0.01701 \pm 0.00002) \text{ kg}$	$(0.1667 \pm 0.0002) \mathrm{N}$	$(0.73 \pm 0.02) \text{ m/s}^2$	(0.228 ± 0.007)	(0.283 ± 0.007) m/s	(0.0708 ± 0.0001) kg * m/s
2	(0.02597 ± 0.00003) kg	$(0.2545 \pm 0.0003) \text{ N}$	$(0.91 \pm 0.02) \text{ m/s}^2$	(0.280 ± 0.006)	(0.361±0.009) m/s	(0.0871 ± 0.0002) kg * m/s
3	$(0.03594 \pm 0.00003) \text{ kg}$	$(0.3522 \pm 0.0003) \mathrm{N}$	$(1.32 \pm 0.02) \text{ m/s}^2$	(0.267 ± 0.004)	$(0.42 \pm 0.01) \text{ m/s}$	(0.0971 ± 0.0004) kg * m/s
4	$(0.02878 \pm 0.00003) \text{ kg}$	$(0.2821 \pm 0.0003) \text{ N}$	$(1.58 \pm 0.02) \text{ m/s}^2$	(0.179 ± 0.002)	$(0.48 \pm 0.01) \text{ m/s}$	(0.1145 ± 0.0003) kg * m/s
5	$(0.03782 \pm 0.00004) \text{ kg}$	$(0.3707 \pm 0.0004) \text{ N}$	$(1.89 \pm 0.02) \text{ m/s}^2$	(0.196 ± 0.002)	$(0.52 \pm 0.02) \text{ m/s}$	$(0.1193 \pm 0.0008) \text{ kg * m/s}$
6	$(0.04678 \pm 0.00005) \text{ kg}$	$(0.4585 \pm 0.0005) \mathrm{N}$	$(1.59 \pm 0.02) \text{ m/s}^2$	(0.288 ± 0.004)	$(0.56 \pm 0.02) \text{ m/s}$	$(0.123 \pm 0.001) \text{ kg * m/s}$

Tabela 11: Dados calculados para o relatório (2)

Condição de impulso	$t_{final}(x)$	Fr(x)	$I_{m\acute{e}dio}(x)$
1	(0.830 ± 0.005) s	$(0.1827 \pm 0.0004) \text{ N}$	$(0.1517 \pm 0.0004) \text{ N}\cdot\text{s}$
2	(0.649 ± 0.005) s	(0.2196 ± 0.0005) N	(0.1425 ± 0.0005) N·s
3	(0.553 ± 0.005) s	$(0.3054 \pm 0.0008) \mathrm{N}$	$(0.1689 \pm 0.0007) \text{ N}\cdot\text{s}$
4	(0.490 ± 0.005) s	$(0.3769 \pm 0.0006) \mathrm{N}$	$(0.1847 \pm 0.0005) \mathrm{N\cdot s}$
5	(0.447 ± 0.005) s	$(0.4337 \pm 0.0008) \mathrm{N}$	$(0.1939 \pm 0.0007) \text{ N}\cdot\text{s}$
6	(0.419 ± 0.005) s	$(0.035 \pm 0.001) \mathrm{N}$	$(0.1469 \pm 0.0008) \text{ N}\cdot\text{s}$

Tabela 12: Gráfico Força x Aceleração

Tabela 13: Desvios Percentuais

Condição de	Desvios
impulso	Percentuais
1	53,33%
2	38,89%
3	42,51%
4	38%
5	38,47%
6	15,93%

O coeficiente angular do gráfico Força x Aceleração seria a razão P/a, ou seja, seria a massa total do sistema (0.26730±0.00006) Kg

Já o coeficiente linear será igual a 0, já que a fórmula da Força é $F = m \times a$, e quando a aceleração for 0 m/s^2 a força é nula.

Tendo em vista que a lei de formação da função afim é expressa na seguinte fórmula: x = y = f(x) = a.x + b. O coeficiente angular é aquele que nos informa a inclinação da reta relativa a uma função do primeiro grau. Este corresponde na função, ao a. No gráfico, é a tangente do ângulo α (alfa), formado pela intersecção entre a reta da função e o eixo x. Enquanto isso, o coeficiente linear corresponde, na função, ao b. No gráfico, é o ponto de interseção entre a reta da função e o eixo y.

Segundo a 2° lei de Newton, ou princípio fundamental da dinâmica, ao aplicarmos uma força a qualquer objeto ele produzirá um movimento resultante do produto de sua massa com a aceleração. Já o desvio relativo é uma medida para quando uma grandeza difere de seu valor padrão, sendo muito utilizado em medidas experimentais.

No contexto da física, o impulso é definido como a quantidade de movimento transferida a um objeto, ou seja, a força aplicada durante um certo intervalo de tempo, já a variação de quantidade de movimento é a variação quando essa força é aplicada no objeto. Ambos têm as suas comparações dadas pelo desvio relativo.

Nesse contexto podemos dizer que, comparar o impulso médio com a variação da quantidade de movimento é uma forma de verificar se a segunda lei de Newton está sendo respeitada em um determinado sistema físico. Se o impulso e a variação forem praticamente iguais, a 2° lei de Newton está sendo aplicada. Todavia se elas se diferem muito, pode-se indicar outra força sendo aplicada

Em suma, o desvio relativo pode ser usado para comparar o impulso médio com a variação da quantidade de movimento, permitindo verificar se a segunda lei de Newton está sendo respeitada ou não dentro do sistema físico proposto.

Sobre condições ideais, o cálculo das comparações não deveria ter variação ou uma grande disparidade de seus resultados. Todavia não é sempre que isso acontece. Em alguns casos há outra força que pode atuar em um objeto e isso faz com que os resultados apresentem alterações.

Isto acabou ocorrendo em nossos testes. Exemplo seria a condição de impulso 1:

 $Qf(x) = 0.0708 \pm 0.0001$ I médio = 0.1517 ± 0.0004 Desvio percentual: 53,33%

O alto desvio percentual indica que outras forças atuam sobre o corpo, além da força resultante considerada inicialmente.