Notes on Basic Mathematics

Brandon Koepke

February 10, 2015

1 Numbers

1.1 The Integers

Definition 1.1. Positive Integers \mathbb{Z}^+ : 1,2,3,4,...

Definition 1.2. Origin: 0

Definition 1.3. Natural Numbers \mathbb{N}^+ : 0,1,2,3,...

Definition 1.4. Negative Integers \mathbb{Z}^- : -1,-2,-3,...

Theorem 1.1. 0+a=a+0=a

Theorem 1.2. a+(-a)=-a+a=0

Definition 1.5. Additive Inverse of a: -a

Addition (1.1). Commutativity: $\forall a,b \in \mathbb{Z}, a+b=b+a$

Addition (1.2). Associativity: $\forall a,b,c \in \mathbb{Z}, (a+b)+c=a+(b+c)$

Theorem 1.3. $\forall a,b \in \mathbb{Z}, a+b=0 \Longrightarrow (b=-a) \land (a=-b)$

Theorem 1.4. $\forall a \in \mathbb{Z}, a = -(-a)$

Theorem 1.5. $\forall a,b \in \mathbb{Z}, -(a+b) = -a-b$

Addition (1.3). $\forall a,b \in \mathbb{Z}^+ \Longrightarrow a+b \in \mathbb{Z}^+$

Addition (1.4). $\forall a,b \in \mathbb{Z}^- \Longrightarrow a+b \in \mathbb{Z}^-$

1.2 Rules for Multiplication

Multiplication 1.1. Commutativity: $\forall a,b \in \mathbb{Z},ab=ba$

Multiplication 1.2. Associativity: $\forall a,b,c \in \mathbb{Z}, (ab)c = a(bc)$

Theorem 1.6. $\forall a \in \mathbb{Z}, 1a = a \text{ and } \forall a \in \mathbb{Z}, 0a = 0$

Multiplication 1.3. Distributivity

$$\forall a,b,c \in \mathbb{Z}, a(b+c) = ab+ac$$

and

 $\forall a,b,c \in \mathbb{Z}, (b+c)a = ba+bc$

Theorem 1.7. $\forall a \in \mathbb{Z}, (-1)a = -a$

Theorem 1.8. $\forall a,b \in \mathbb{Z}, -(ab) = (-a)b$

Theorem 1.9. $\forall a,b \in \mathbb{Z}, -(ab) = a(-b)$

Theorem 1.10. $\forall a,b \in \mathbb{Z}, (-a)(-b) = ab$

Definition 1.6. *n*-th power of a is $a^n = aaa...a$ (n times)

Theorem 1.11. $\forall m, n \in \mathbb{Z}^+, a^{m+n} = a^m a^n$

Theorem 1.12. $\forall m, n \in \mathbb{Z}^+, (a^m)^n = a^{mn}$

Example 1.1.

$$(ab)^n = a^n b^n$$

$$(ab)^n = abab...ab$$

$$= aa...abb...b$$

$$= a^n b^n$$

Multiplication 1.4.

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$
 $(a+b)(a-b) = a^2 - b^2$

1.3 Even and Odd Integers; Divisibility

Definition 1.7. $\forall n \in \mathbb{Z}^+, \exists m \in \mathbb{Z}^+, n = 2m \implies n \text{ is even}$

Definition 1.8. $\forall n \in \mathbb{Z}, \exists m \in \mathbb{N}^+ \text{ (including 0)}, n = 2m+1 \Longrightarrow n \text{ is odd}$

Theorem 1.13. Let E(x) be the predicate for x is even and let O(x) be the predicate for x is odd.

$$\forall a,b \in \mathbb{Z}^+, E(a) \land E(b) \Longrightarrow E(a+b)$$

$$\forall a,b \in \mathbb{Z}^+, E(a) \land O(b) \Longrightarrow O(a+b)$$

$$\forall a,b \in \mathbb{Z}^+, O(a) \land E(b) \Longrightarrow O(a+b)$$

$$\forall a,b \in \mathbb{Z}^+, O(a) \land O(b) \Longrightarrow E(a+b)$$

Theorem 1.14.

$$\forall a \in \mathbb{Z}^+, E(a) \Longrightarrow E(a^2)$$

 $\forall a \in \mathbb{Z}^+, O(a) \Longrightarrow O(a^2)$

Corallary 1.1.

$$\forall a \in \mathbb{Z}^+, E(a^2) \Longrightarrow E(a)$$

 $\forall a \in \mathbb{Z}^+, O(a^2) \Longrightarrow O(a)$

Definition 1.9. d divides n or n is divisible by d if n = dk for some integer k

1.4 Rational Numbers

Definition 1.10. Rational Number \mathbb{Q} : can be written in the form $\frac{m}{n}$, where $m,n\in\mathbb{Z}$ and $n\neq 0$

Rational (1.1). Rule for cross-multiplying.

$$\forall m, n, r, s \in \mathbb{Z} \land m, s \neq 0 \Longrightarrow \frac{m}{n} = \frac{r}{s} \Longleftrightarrow ms = rn$$