Домашняя работа к занятию 17.

- **1.1** Найдите общее решение уравнения $\dot{x} = \frac{x(x-1)}{t}$. Пользуясь определением устойчивости по Ляпунову, выясните, являются ли устойчивыми решения $x \equiv 1$ и $x \equiv 0$.

те на фазовой плоскости траектории системы вблизи точки (0;0). Сделайте вывод об устойчивости или неустойчивости нулевого решения.

- **1.3** Исследуйте на устойчивость $\begin{cases} \dot{x} = -2x + 2y + z + 1, & x(0) = 1 \\ \dot{y} = 2x y z + \sin t, & y(0) = 2 \\ \dot{z} = y 2z + t^2, & z(0) = 0 \end{cases}$
- **2.1** Найдите общий интеграл уравнения $2t\dot{x} = x x^3$ и нарисуйте картину интегральных линий. Пользуясь определением устойчивости по Ляпунову, выясните, являются ли устойчивыми стационарные решения $x \equiv 1, x \equiv -1$ и $x \equiv 0$.
- **2.2** При каких значениях параметра a нулевое решение уравнения $y^{(4)} + 2y^{(3)} + 3y'' + 2y' + ay = 0$ асимптотически устойчиво?

 - **2.4** Исследуйте на устойчивость $\begin{cases} (t^2+1)y''+ty'-y=\sin t\\ y(0)=0;\ y'(0)=1 \end{cases}$

$$\mathbf{A_0} = egin{pmatrix} -1 & 10 & 0 & \dots & \dots & 0 \\ 0 & -1 & 10 & 0 & \dots & 0 \\ & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ & & & & -1 & 10 \\ 0 & & \dots & & 0 & -1 \end{pmatrix}$$

Очевидно, ее следует считать устойчивой, так как все ее собственные числа лежат в левой полуплоскости. Покажите, что матрица

$$\mathbf{A}_{\varepsilon} = \begin{pmatrix} -1 & 10 & 0 & \dots & \dots & 0 \\ 0 & -1 & 10 & 0 & \dots & 0 \\ & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ & & & -1 & 10 \\ \varepsilon & & \dots & 0 & -1 \end{pmatrix} \quad \text{при } \varepsilon = 10^{2-n} \text{ обязательно име-}$$
 ет собственное число, лежащее в правой полуплоскости, то есть является неустойчивой.

Этот пример иллюстрирует тот неочевидный факт, что даже небольшое изменение элементов матрицы может привести к потере ее устойчивости.

Проведите компьютерный эксперимент, вычисляя собственные числа матрицы \mathbf{A}_{ε} для различных значений ε при помощи прикладных математических пакетов программ.

Ответы.

- **1.1** Общее решение $x=\frac{1}{1+Ct}$. Решение $x\equiv 0$ асимптотически устойчиво, решение $x\equiv 1$ неустойчиво.
- **1.2** Первый интеграл $y^4 + 4\ln(1+x^2) = C$. Нулевое решение устойчиво, но не асимптотически.

1.3 Указание: не решайте задачу Коши! Система линейная, поэтому устойчивость *любого* решения связана с устойчивостью *нулевого* решения *однородной* системы.

Характеристический многочлен $P_3(\lambda) = -\lambda^3 - \lambda^2 - 5\lambda - 4$. Все его корни лежат в левой полуплоскости.

Ответ: решение асимптотически устойчиво.

- **2.1** Общий интеграл $t=\frac{Cx^2}{x^2-1}$. Решения $x\equiv \pm 1$ асимптотически устойчивы, решение $x\equiv \pm 0$ неустойчиво.
 - $2.2 \ 0 < a < 2$
- **2.3** Общее решение $x = C_1 e^{-t}$, $y = C_1 + C_2 \exp(e^{-t})$, $z = (C_1 t + C_3) e^{-t}$. Нулевое решение устойчиво, но не асимптотически.
 - 2.4 Указание: попробуйте решить однородное уравнение.

Одно его решение легко найти в виде многочлена: это решение y=t. Этого достаточно, чтобы утверждать, что любое решение неоднородного уравнения неустойчиво.