

Statistics

Introduction to Machine Learning

Luca Pennella September 17th, 2024

What is machine learning?

Machine learning is part of artificial intelligence that deals with building methods that '**learn**', that is, methods that use data to improve performance on some set of tasks (e.g. image recognition). It is seen as a part of artificial intelligence.

Intelligence "Intelligent machines" which can solve problems, make/suggest decisions and perform tasks that have traditionally required humans to solve

Machine Learning

A subset of Artificial Intelligence
Algorithms which learn without
being explicitly programmed with
rules. Use data to *learn and match*patterns

Deep Learning/Neural Nets

A subset of machine learning
Uses a *Deep Neural Network (DNN)*effective at a variety of tasks (e.g., image classification, speech recognition)

What is machine learning?

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn from data without being explicitly programmed.

Main difference with traditional Computer Science: learn a program that deals with data (ML) vs have a coded program that run the data (CS). *Optimization not logic*.

What made possible the ML success?

Algorithmic development

Data abundance

Better computers

Data abundance: images

14,197,122 images, 21841 synsets indexed

Home Download Challenges About

Not logged in. Login | Signup

An Update to the ImageNet Website and Dataset

Data abundance: genetics

Easier and simpler sequencing techniques

Data abundance: chemistry

Many many applications

Why study machine learning?

+ APPLICATIONS

Market size Europe

Europe machine learning market size, by component, 2014 - 2025 (USD Million)

APPLICATIONS: some examples

Image processing: face recognition...

From automatic friend tag...

... to surveillance

Image processing: style changing

Medicine

Detection of Alzheimer disease through brain imaging

Mathematics

nature > articles > article

Article Open Access Published: 01 December 2021

Advancing mathematics by guiding human intuition with AI

Alex Davies $\[egin{align*} Alex Davies \[egin{align*} Alex Davies \[$

Nature 600, 70–74 (2021) | Cite this article

181k Accesses | 34 Citations | 1634 Altmetric | Metrics

Self driving cars

Also...

Popular Employer Salaries for Machine Learning Engineer

Amazon.com Inc	\$130k	
Apple Computer, Inc	\$126k	
Autodesk, Inc.	\$130k	
Nike, Inc.	\$102k	
Pitchbook	\$100k	

ML learning modes

Learning modes in ML: keep simple

Learning modes in ML

Learning modes in ML: Supervised

Supervised and unsupervised methods

Supervised learning: regression.

Predicting House pricing

Supervised learning: regression

+ For example: we want to find a relation between Sqft and price

Sr. No.	Details	Price	Bedrooms	Bathrooms	Living Room Sqft	Floors	View	Waterfront	Grade	Basement sqft
1	23534368	221456	3	2	1008	1.00	0	0	6	410
2	89756456	321234	4	3	1342	2.00	0	0	7	700
3	45767857	134000	2	2	2001	1.00	0	0	6	0
4	25756756	214679	3	1	1200	1.00	0	0	6	0
5	23445466	213245	3	1	980	1.00	0	0	8	0

Supervised learning: regression

+ Which type of correlation between input and output?

Supervised learning: classification

Unsupervised learning: clustering

+ Do you have an intuition of the principle to cluster data?

What is the difference between clustering and classification?

What is the difference between clustering and classification?

Classification: models the relation between labels and features

Clustering: assigns labels based on the geometry of the points

Summarizing

Predicts Continuous quantity

Predict class based on Geometry of points

Reinforcement Learning

Reinforcement Learning: example

1. Observe

2. Select action using policy

3. Action

4. Get reward or penalty

5. Update policy (learning step)

6. Iterate until an optimal policy is found

Reinforcement Learning: AlphaGo (DeepMind)

Notation: data space

Let us formalize the supervised machine learning setup. Our training data comes in pairs of inputs (\mathbf{x},y) , where $\mathbf{x}\in\mathcal{R}^d$ is the input instance and y its label. The entire training data is denoted as

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \subseteq \mathcal{R}^d \times \mathcal{C}$$

where:

- \mathcal{R}^d is the d-dimensional feature space
- \mathbf{x}_i is the input vector of the i^{th} sample
- y_i is the label of the i^{th} sample
- ${\cal C}$ is the label space

The data points (\mathbf{x}_i,y_i) are drawn from some (unknown) distribution $\mathcal{P}(X,Y)$. Ultimately we would like to learn a function h such that for a new pair $(\mathbf{x},y)\sim\mathcal{P}$, we have $h(\mathbf{x})=y$ with high probability (or $h(\mathbf{x})\approx y$). We will get to this later. For now let us go through some examples of X and Y.

Some examples of x_i

Datasets: images

Datasets: sounds

Datasets: numbers and categories

Notation: label space (what about y_i ?)

- + What about unsupervised learning?
- + How do you transform many classes labels into vectors?

Examples of Label Spaces

There are multiple scenarios for the label space \mathcal{C} :

11 '	$egin{aligned} \mathcal{C} &= \{0,1\} ext{ or } \ \mathcal{C} &= \{-1,+1\}. \end{aligned}$	Eg. spam filtering. An email is either spam $(+1)$, or not (-1) .	
II .	_ /	Eg. face classification. A person can be exactly one of K identities (e.g., 1="Barack Obama", 2="George W. Bush", etc.).	
Regression	$\mathcal{C}=\mathbb{R}.$	Eg. predict future temperature or the height of a person.	

One hot encoding

Color		
Red		
Red		
Yellow		
Green		
Yellow		

Red	Yellow	Green
1	0	0
1	0	0
0	1	0
0	0	1

How do we extract meaningful information from data?

We need to choose a model of the data

JAKE-CLARK. TUMBLA

Task and model

- + My task would be to discriminate between orange and blue points.
- + My model would be the function that encodes the line at the border

Hypothesis space and model complexity

- + Hypothesis: The border is a straight line (small hypothesis space).
- +What do you think about its complexity?

Hypothesis space and model complexity

- +Hypothesis: The border is a general line (big space).
- +Complexity: High.

