applied to projecting a vector onto- and rejecting it from a plane, since every plane in \mathbb{R}^3 has a single normal vector up to a sign (Figure 1.3).

The projection of a vector onto another vector gives rise to an important operation between two vectors: the **dot product**: given a vector **a**, its projection on the vector **b** is

$$\operatorname{proj}_{\mathbf{h}} \mathbf{a} = |\mathbf{a}| \cos(\theta), \tag{1.21}$$

where θ is the angle between the vectors. See Figure 1.4 for a visual representation. We then define the dot product between the two vectors as

$$\langle \mathbf{a}, \mathbf{b} \rangle = |\mathbf{b}| \operatorname{proj}_{\mathbf{b}} \mathbf{a} = |\mathbf{b}| |\mathbf{a}| \cos(\theta).$$
 (1.22)

It is of course convenient to have a way to calculate the dot product component-wise. To find such form, we use the same two vectors \mathbf{a} and \mathbf{b} from before, and their difference $\mathbf{c} = \mathbf{a} - \mathbf{b}$ (Figure 1.5).

Thanks to trigonometry we know that the following relation holds ("the law of cosines"):

$$|\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}| |\mathbf{b}| \cos(\theta)$$

= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2\langle \mathbf{a}, \mathbf{b} \rangle$. (1.23)

which we can rearrange into

$$\langle \mathbf{a}, \mathbf{b} \rangle = \frac{1}{2} \left(|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{c}|^2 \right).$$
 (1.24)

In \mathbb{R}^2 the component version of the vectors are

$$\mathbf{a} = \begin{bmatrix} a_x \\ a_y \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_x \\ c_y \end{bmatrix} = \begin{bmatrix} a_x - b_x \\ a_y - b_y \end{bmatrix},$$
 (1.25)

Figure 1.3: Decomposing the vector \mathbf{a} into two components in respect to a plane: one parallel to the plane (\mathbf{a}_{\parallel}) and one orthogonal to it (\mathbf{a}_{\perp}) . These are also called the projection and rejection of \mathbf{a} on the plane, respectively.

Figure 1.4: Projection of **a** onto **b**: no matter how many dimensions we use, we can always rotate our view such that we look at the plane spanned by both vectors, and **b** lies horizontally. In this way it's easy to see why the projection of **a** onto **b** is $|\mathbf{a}|\cos(\theta)$: it's simply the last flat that the cosine function ("side next to the angle divided by the hypotenuse").