

Graph Mining and Social Network Analysis

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

References

□ Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann Series in Data Management Systems (Second Edition)

► Chapter 9

Graph Mining

Graph Mining Overview

- ☐ Graphs are becoming increasingly important to model many phenomena in a large class of domains (e.g., bioinformatics, computer vision, social analysis)
- □ To deal with these needs, many data mining approaches have been extended also to graphs and trees
- Major approaches
 - Mining frequent subgraphs
 - Indexing
 - Similarity search
 - Classification
 - Clustering

Mining frequent subgraphs

☐ Given a labeled graph data set

$$D = \{G_1, G_2, ..., G_n\}$$

- We define support(g) as the percentage of graphs in D where g is a subgraph
- □ A frequent subgraph in D is a subgraph with a support greater than min_sup
- How to find frequent subgraph?
 - Apriori-based approach
 - Pattern-growth approach

AprioriGraph

- Apply a level-wise iterative algorithm
 - 1. Choose two similar size-k frequent subgraphs in S
 - 2. Merge two similar subgraphs in a size-(k+1) subgraph
 - 3. If the new subgraph is **frequent** add to S
 - 4. Restart from 2. until all similar subgraphs have been considered. Otherwise restart from 1. and move to k+1.
- What is subgraph size?
 - Number of vertex
 - Number of edges
 - Number of edge-disjoint paths
- Two subgraphs of size-k are similar if they have the same size-(k-1) subgraph
- AprioriGraph has a big computational cost (due to the merging step)

PatternGrowthGraph

- Incrementally extend frequent subgraphs
 - 1. Add to S each frequent subgraphs g_E obtained by extending subgraph g
 - 2. Until *S* is not empty, select a new subgraph *g* in *S* to extend and start from 1.
- How to extend a subgraph?
 - Add a vertex
 - Add an edge
- The same graph can be discovered many times!
 - Get rid of duplicates once discovered
 - Reduce the generation of duplicates

Mining closed, unlabeled, and constrained subgraphs

- Closed subgraphs
 - ► G is closed iff there is no proper supergraph G' with the same support of G
 - Reduce the growth of subgraphs discovered
 - ▶ Is a more compact representation of knowledge
- Unlabeled (or partially labeled) graphs
 - Introduce a special label Φ
 - Φ can match any label or only itself
- Constrained subgraphs
 - Containment constraint (edges, vertex, subgraphs)
 - Geometric constraint
 - Value constraint

Graph Indexing

- Indexing is basilar for effective search and query processing
- How to index graphs?
- Path-based approach takes the path as indexing unit
 - All the path up to maxL length are indexed
 - Does not scale very well
- gIndex approach takes frequent and discriminative subgraphs as indexing unit
 - A subgraph is frequent if it has a support greater than a threshold
 - A subgraph is discriminative if its support cannot be well approximated by the intersection of the graph sets that contain one of its subgraphs

Graph Classification and Clustering

- Mining of frequent subgraphs can be effectively used for classification and clustering purposes
- Classification
 - Frequent and discriminative subgraphs are used as features to perform the classification task
 - A subgraph is discriminative if it is frequent only in one class of graphs and infrequent in the others
 - The threshold on frequency and discriminativeness should be tuned to obtain the desired classification results
- Clustering
 - ▶ The mined frequent subgraphs are used to define similarity between graphs
 - ► Two graphs that **share a large set of patterns** should be considered **similar** and grouped in the same cluster
 - ► The threshold on frequency can be tuned to find the desired number of clusters
- As the mining step affects heavily the final outcome, this is an intertwined process rather tan a two-steps process

Social Network Analysis

Social Network

- A social network is an heterogeneous and multirelational dataset represented by a graph
 - Vertexes represent the objects (entities)
 - Edges represent the links (relationships or interaction)
 - Both objects and links may have attributes
 - Social networks are usually very large
- Social network can be used to represents many real-world phenomena (not necessarily social)
 - Electrical power grids
 - Phone calls
 - Spread of computer virus
 - ► WWW

Small World Networks (1)

- Are social networks random graphs?
- □ NO!

Internet Map

Science Coauthorship

High degree of local clustering

Few degrees of separation

Small World Networks (2)

Society:

Six degrees

S. Milgram 1967

F. Karinthy 1929

WWW:

19 degrees

Albert et al. 1999

Small World Networks (3)

Definitions

- ▶ Node's **degree** is the number of incident edges
- Network effective diameter is the max distance within 90% of the network

Properties

Densification power law

$$e(t) = n(t)^{\alpha}$$

n: number of nodes

e: number of eges

1<a<2

- Shrinking diameter
- Heavy-tailed degrees distribution

Mining social networks (1)

- Several Link mining tasks can be identified in the analysis of social networks
- Link based object classification
 - Classification of objects on the basis of its attributes, its links and attributes of objects linked to it
 - E.g., predict topic of a paper on the basis of
 - Keywords occurrence
 - Citations and cocitations
- Link type prediction
 - Prediction of link type on the basis of objects attributes
 - E.g., predict if a link between two Web pages is an advertising link or not
- Predicting link existence
 - Predict the presence of a link between two objects

Mining social networks (2)

- Link cardinality estimation
 - Prediction of the number of links to an object
 - Prediction of the number of objects reachable from a specific object
- Object reconciliation
 - Discover if two objects are the same on the basis of their attributes and links
 - ▶ E.g., predict if two websites are mirrors of each other
- Group detection
 - Clustering of objects on the basis both of their attributes and their links
- Subgraph detection
 - Discover characteristic subgraphs within network

Challenges

- Feature construction
 - Not only the objects attributes need to be considered but also attributes of linked objects
 - ► Feature selection and aggregation techniques must be applied to reduce the size of search space
- Collective classification and consolidation
 - Unlabeled data cannot be classified independently
 - New objects can be correlated and need to be considered collectively to consolidate the current model
- ☐ Link prediction
 - The prior probability of link between two objects may be very low
- Community mining from multirelational networks
 - Many approaches assume an homogenous relationship while social networks usually represent different communities and functionalities

Applications

- Link Prediction
- Viral Marketing

Link prediction

- What edges will be added to the network?
- □ Given a snapshot of a network at time t, link prediction aims to predict the edges that will be added before a given future time t'
- Link prediction is generally solved assigning to each pair of nodes a weight score(X,Y)
- The higher the score the more likely that link will be added in the near future
- \square The score(X,Y) can be computed in several way
 - ▶ Shortest path: the shortest he path between X and Y the highest is their score
 - ▶ Common neighbors: the greater the number of neighbors X and Y have in common, the highest is their score
 - ▶ Ensemble of all paths: weighted sum of paths that connects X and Y (shorter paths have usually larger weights)

Viral Marketing

- Several marketing approaches
 - Mass marketing is targeted on specific segment of customers
 - Direct marketing is target on specific customers solely on the basis of their characteristics
 - Viral marketing tries to exploit the social connections to maximize the output of marketing actions
- Each customer has a specific network value based on
 - ▶ The number of connections
 - ▶ Its role in the network (e.g., opinion leader, listener)
 - Role of its connections
- □ Viral marketing aims to exploit the network value of customers to predict their influence and to maximize the outcome of marketing actions

Viral Marketing: Random Spreading

■ 500 randomly chosen customers are given a product (from 5000).

Viral Marketing: Directed Spreading

☐ The 500 *most connected consumers are given a product*.

