Assignment 1

Ayman Shahriar, UCID: 10180260

September 28, 2019

1) Prove using induction that $|w^n| = n * |w|$ for all $n \ge 0$

Proof.

```
Base case (n = 0): |w^0| = |\epsilon| = 0 = 0 * |w| (since w^0 = \epsilon, and |\epsilon| = 0)

Inductive Step: Suppose |w^k| = k * |w| for all k \ge 0 (Inductive Hypothesis)

We need to prove that |w^{k+1}| = (k+1) * |w|

Now, note that |w^{k+1}| = |w^k| + |w|

Then |w^k| + |w| = (k * |w|) + |w| (by using our inductive hypothesis)

Then (k * |w|) + |w| = (k+1) * |w|, as required
```

2) Prove that $w^i = w$ if and only if $w = \epsilon$

Proof.

Subproof1: Prove that if $w = \epsilon$ then $(w^i) = w$

Suppose $w = \epsilon$

Now,
$$\epsilon^0 = \epsilon$$

$$\epsilon^1 = \epsilon = \epsilon$$

$$\epsilon^2 = \epsilon \epsilon = \epsilon$$

$$\epsilon^3 = \epsilon \epsilon \epsilon = \epsilon$$

.

and so on.

Then $\epsilon^i = \epsilon$ for all $i \geq 0$

So $w^i = \epsilon^i = \epsilon = w$ for all $i \ge 0$

Therefore if $w = \epsilon$, then $w^i = w$ for all $i \geq 0$

Subproof 2: Prove that if $w \neq \epsilon$ then $|w^i| \neq w$

Suppose that $w \neq \epsilon$

Then w is not the empty word, so $|w| \ge 1$

Let |w| = a, where $a \ge 1$

By proving question 1), we know that $|w^n| = n * |w|$

Also note when $i \geq 2$, $ia \neq a$

So $|w^i| = ia \neq a = |w|$ when $i \geq 2$

Then since $|w^i| \neq |w|$, then $w^i \neq w$

Thus, $w^i \neq w$ for some i if $w \neq \epsilon$

Conclusion: Therefore, $w^i = w$ if and only if $w = \epsilon$

3) An example: $L_1, L_2 = \{aa, a\}$

Then $|L_1 * L_2| = |\{aa, a\} * \{aa, a\}| = |\{aaaa, aaa, aaa, aaa\}| = 3$

And $|L_1| * |L_2| = |\{aa, a\}| * |\{aa, a\}| = 2$

So $|L_1 * L_2| < |L_1| * |L_2|$ for this example.

The smallest value of $|L_1| + |L_2|$ such that $|L_1 * L_2| < |L_1|$ is $|L_1| + |L_2| = 4$.

To prove this, we will note the example given above and consider all cases where $|L_1| + |L_2| < 4$.

Proof. There are three main cases when $|L_1| + |L_2| < 4$:

Case 1: $|L_1| + |L_2| = 3$

This case has four subcases:

case 1.1: $|L_1| = 2$ and $|L_2| = 1$

Suppose $L_1 = \{w_1, w_2\}$ and $L_2 = \{w_3\}$, where $w_1, w_2, w_3 \in \{a, b\}^*$ and $w_1 \neq w_2$

Then $|L_1 * L_2| = |\{w_1, w_2\} * \{w_3\}| = |\{w_1w_3, w_2w_3\}| = 2 \not< 2 = 2 * 1 = |\{w_1, w_2\}| * |\{w_3\}| = |L_1| * |L_2|$

case 1.2: $|L_1| = 1$ and $|L_2| = 2$

Suppose $L_2 = \{w_1, w_2\}$ and $L_1 = \{w_3\}$, where $w_1, w_2, w_3 \in \{a, b\}^*$ and $w_1 \neq w_2$

Then $|L_1 * L_2| = |\{w_3\} * \{w_1, w_2\}| = |\{w_3w_1, w_3w_2\}| = 2 \not< 2 = 1 * 2 = |\{w_3\}| * |\{w_1, w_2\}| = |L_1| * |L_2|$

case 1.3 $|L_1| = 3$ and $|L_2| = 0$

Suppose $L_1 = \{w_1, w_2, w_3\}$ and $L_2 = \emptyset$, where $w_1, w_2, w_3 \in \{a, b\}^*$ and $w_1 \neq w_2, w_1 \neq w_3, w_2 \neq w_3$

Then $|L_1 * L_2| = |\{w_1, w_2.w_3\} * \emptyset| = |\emptyset| = 0 \not< 0 = 3 * 0 = |L_1| * |L_2|$

case 1.4: $|L_1| = 0$ and $|L_2| = 3$

Suppose $L_2 = \{w_1, w_2, w_3\}$ and $L_1 = \emptyset$, where $w_1, w_2, w_3 \in \{a, b\}^*$ and $w_1 \neq w_2, w_1 \neq w_3, w_2 \neq w_3$

Then $|L_1 * L_2| = |\emptyset * \{w_1, w_2.w_3\}| = |\emptyset| = 0 \not< 0 = 0 * 3 = |L_1| * |L_2|$

```
Case 2: |L_1| + |L_2| = 2
```

This case has three subcases:

case 2.1:
$$|L_1| = 1$$
 and $|L_2| = 1$

Suppose
$$L_1 = \{w_1\}$$
 and $L_2 = \{w_2\}$ where $w_1, w_2 \in \{a, b\}^*$

Then
$$|L_1*L_2| = |\{w_1\}*\{w_2\}| = |\{w_1w_2\}| = 1 \nleq 1 = |\{w_1\}|*|\{w_2\}| = |L_1|*|L_2|$$

case 2.2:
$$|L_1| = 2$$
 and $|L_2| = 0$

Suppose
$$L_1 = \{w_1, w_2\}$$
 and $L_2 = \emptyset$, where $w_1, w_2 \in \{a, b\}^*$

Then
$$|L_1 * L_2| = |L_1 * \emptyset| = 0 \not< 0 = |L_1| * |\emptyset| = |L_1| * |L_2|$$

case 2.3:
$$|L_1| = 0$$
 and $|L_2| = 2$

Suppose
$$L_2 = \{w_1, w_2\}$$
 and $L_1 = \emptyset$, where $w_1, w_2 \in \{a, b\}^*$

Then
$$|L_1 * L_2| = |\emptyset * L_2| = 0 \neq 0 = |\emptyset| * |L_2| = |L_1| * |L_2|$$

Case 3:
$$|L_1| + |L_2| = 1$$

In this case, either $L_1 = \emptyset$ or $L_2 = \emptyset$

If
$$L_1 = \emptyset$$
, then $|L_1 * L_2| = |\emptyset * L_2| = |\emptyset| = 0 \not< 0 = |\emptyset| * |L_2| = |L_1| * |L_2|$
And if $L_2 = \emptyset$, then $|L_1 * L_2| = |L_1 * \emptyset| = |\emptyset| = 0 \not< 0 = |L_1| * |\emptyset| = |L_1| * |L_2|$

Case 4:
$$|L_1| + |L_2| = 0$$

In this case,
$$L_1=\emptyset$$
 and $L_2=\emptyset$, so $|L_1*L_2|=|\emptyset*\emptyset|=0 \not<0=|\emptyset|*|\emptyset|=|L_1|*|L_2|$

Conclusion: Thus, since $|L_1*L_2| \not < |L_1|*|L_2|$ for all cases where $|L_1|+|L_2| < 4$, it means that the smallest value of $|L_1|+|L_2|$ such that $|L_1*L_2| < |L_1|$ is $|L_1|+|L_2|=4$.