Learning Machine Learning with Kaggle Challenges

(4) Deep Learning (cont'd)

Qiyang Hu IDRE

Quick Recap

- Dogs-vs-Cats challenges
 - o 25,000 training images
 - 15,000 testing images
- Construct our own CNNs
 - 4 Conv layer blocks
 - Flatten layer
 - Dense layer
- Overfitting
 - Memorizing training set too much
 - Missing essence
- How to improve?
 - Need more training data
 - Need regularization

Dataset: the bigger the better, but why?

		VGGNet	DeepVideo	GNMT	
	Used For	Identifying Image Category	ldentifying Video Category	Translation	
	Input	Image	Video	English Text	
	Output	1000 Categories	47 Categories	French Text	
	Parameters	140M	~100M	380M	
	Data Size	1.2M Images with assigned Category	1.1M Videos with assigned Category	6M Sentence Pairs, 340M Words	
	Dataset	ILSVRC-2012	Sports-1M	WMT'14	

Source

How to get more data with "no more"?

- Use data augmentation
 - Various transformations to the available dataset
 - Prevent the irrelevant data
- Types of data augmentation
 - Offline augmentation
 - Performing all the transformations beforehand
 - Good for smaller dataset
 - In-place augmentation
 - Performing transformations in mini-batches
 - Preferred for larger dataset
- Data augmentation in Keras
 - ImageDataGenerator

Augmentation Techniques

- Flip
- Rotation
- Zoom & Crop
- Translation
- Gaussian Noise
- Histogram Equalization
- Feature-wise standardization
- ZCA whitening
- Neural Style Transfer (cGANs)

Input Image

Augmented Images

Regularization techniques in deep learning

- Regularizer
 - I1(Lasso), I2(Ridge), I1_I2(ElasticNet) in each layer
 - tf.keras.layer.Dense(..., tf.keras.kernel_regularizer=regularizers.l2(0.01))
 - But not generally used in CNNs
- Early Stopping
 - Keras use Callback function
 - model.compile(...)
 cb = [EarlyStopping(monitor='val_loss', patience=2), ModelCheckpoint(...)]
 model.fit(..., callback=cb, ...)
- Batch Normalization (mutually excludes drop-out, see <u>paper</u>)
 - Define layer without bias
 - Add batch normalization before activation function
- Drop-out

Drop-out technique

- A common problem during DNN training:
 - Imbalanced weights in network:
 some keep very large, others very small
 - Larger weights => well trained
 Smaller weights => not trained that much!
- Dropout: randomly turns off some neurons
 - Forcing networks to train weak neurons
 - Dropout rate: usually 50%
 - Roughly double the iterations to converge
 Training time in epoch is less
 - From Srivastava 2014 paper:
 - 1~2% accuracy boost (40% error rate drop for 95% accuracy)

(a) Standard Neural Net

(b) After applying dropout.

Save and Load the model

- Need to save the trained model
 - Colab's active session time is limited.
 - Models can be re-used at user's end (e.g. browser with tf.js or phone with tf.lite)
- Tensorflow provides 3 ways to save/load the model (doc)
 - Through checkpoint callback (tf.keras.callbacks.ModelCheckpoint)
 - i. Saving weights with tf checkpoints format with a .ckpt extension
 - ii. Extra work is needed to continue training
 - Serialize the model in HDF5 format
 - i. Saving the entire model into a .h5 file
 - ii. Not saving Tensorflow optimizers *yet*, need to re-compile
 - Serialize the model via SovedModel method
 - i. Saving the entire model into assets folder, saved_model.pb, and variables folder
 - ii. Keras's load_model is compatible with tf serving

Transfer Learning

- Reusing the developed neural networks
 - Greatly speed up our training
 - Make it mobile
- Image classification
 - Advanced models from ImageNet competition
- Simple steps
 - Match the input size of images from the pre-trained model.
 - Define our new classifiers
 - ImageNet classes: 1280
 - Our classes: 2
 - Freeze the pre-trained layer

MobileNet v2

- Very efficient CNNs (paper)
 - Especially good for mobile vision apps
- From Tensorflow Hub
 - o Inception v3 is another choice
- Simple steps:
 - Get the URL from tfhub.dev
 - Define the mobilenet as hub.KerasLayer
 - Set the mobilenet layer is not trainable
 - Stack the mobilenet layer and a dense layer as our binary classifier
- For save/reload the model:
 - Need the 'custom_objects' parameter

Figure from paper

Are Deep Neural Networks easily overfitted?

- Are Deep Neural Networks easily overfitted?
 - A Blog post
 - From Belkin's 2018 paper:

Classical ML U-shape bias-variance curve

Deep NN Double-U-shape risk curve

Additional Learning Resources

Within UCLA:

- I will run similar IDRE workshop series every quarter (<u>IDRE events</u>)
- 3-day Workshop from QCB: <u>Machine learning with Python</u>
- M146 Introduction to Machine Learning (Winter 2020)
- CS161 Fundamentals of Artificial Intelligence (Winter 2020)
- CS260 Machine Learning (Spring 2020)

Free online books for solid theories.

- Pattern Recognition and Machine Learning by Christopher Bishop
- <u>Deep Learning</u> by Ian Goodfellow, Yoshua Bengio and Aaron Courville
- The Elements of Statistical Learning by Jerome Friedman, Robert Tibshirani and Trevor Hastie

Don't forget to

- Sign in your info to the class
 - To get the email notifications
- Contact me for questions & discussions
 - huqy@idre.ucla.edu
 - Office: Math Sci #3330
 - o Phone: 310-825-2011

- Fill out the survey for comments:
 - https://forms.gle/t3f8CztFQpeFFksy6

