

POLITECNICO MILANO 1863

Hierarchical Control for Optimal Human-Robot Collaboration

Advisor: Elena De Momi

Supervisor: Arash Ajoudani

Tutor: Dellacà Raffaele

Francesco Tassi

DEPARTMENT OF ELECTRONICS, INFORMATION AND BIOENGINEERING, Politecnico di Milano

Context & Motivations

IMPACTS

Over 44 Million workers suffer from MSD in EU

- Economical losses
- Production halts
- Less specialized workforce

OBJECTIVE

- Prioritise human ergonomics without compromising productivity
- Reduce work-related
 MSDs

Multi-Tasking in Human-Robot Collaboration

OBJECTIVES

Optimize multiple human-related parameters, e.g.: human ergonomics and preference.

Manage their **coexistence**, **prioritizing** some with respect to others.

A.Dietrich, C. Ott, "Hierarchical Impedance-Based Tracking Control of Kinematically Redundant Robots" (2019)

METHODS

Hierarchical Control & multi-tasking

(e.g. reach goal pose avoiding collision and keeping upright posture).

(Escande A. et al., 2014)

Escande, A. et al. "Hierarchical quadratic programming: Fast online humanoid-robot motion generation" (2014)

SoA and Current Limitations

Human-aware SoA & Limitations

- **Human Ergonomics** optimized at planning level only, with cumbersome kinematics models and low **real-time** feasibility (K. Otani et al., 2018; P. Tsarouchi et al., 2016).
- No coexistence of Human and Robot parameters, nor prioritization between each other.

Hierarchical Control Limitations

- Often used for highly redundant robots, but never accounts for HRC.
- Do not include human parameters such as: Ergonomics, Preference or Intention.
- Abstraction layer generated from plan-control separation.

Hierarchical Quadratic Programming: SoA

A **strict hierarchy** allows the definition of multiple **non-conflicting tasks**

Strict VS Non-Strict 2-layered hierarchy comparison. (A): both tasks for EE and base are feasible. (B-C-D): not simultaneously feasible tasks.

Hierarchical Quadratic Programming: SoA

Robot Autonomy for Reduced Human Injuries

Impact-Related Tasks and Human Injuries

The Issue

High **impact forces** generated by the human

Objective

Avoid **human injury** and potential **robot damage**

Requirement

Generate a **specific** and consistent **impact force**

HAMMERING

DEBURRING

ASSEMBLY

P. Huang et al., 2006

J. Y. Choi et al., 2008

Impact-Related Tasks and Human Injuries

State-of-the-art

- Simulation-based
- No optimization
- No hierarchical behavior

DEBURRING

ASSEMBLY

P. Huang et al., 2006

10

J. Y. Choi et al., 2008

Stack of Tasks

PRIORITIES

1

Inverse Kinematics

$$\min_{\dot{m{q}}} ||m{J}\dot{m{q}} - \dot{m{x}}||^2$$

2

Dynamic Impact Measure

(DIM)
$$w_{f_d}(\boldsymbol{q}) \coloneqq \sqrt{\det\left(\boldsymbol{J}^+(\boldsymbol{q})^T\,\boldsymbol{M}(\boldsymbol{q})\,\boldsymbol{M}(\boldsymbol{q})^T\,\boldsymbol{J}^+(\boldsymbol{q})\right)}$$

Added to HQP as:

$$\min_{\boldsymbol{q}} -w_{f_d}(\boldsymbol{q})$$

Related publication:

F. Tassi, S. Gholami, S. Giudice and A. Ajoudani, "Impact Planning and Preconfiguration based on Hierarchical Quadratic Programming," 2022 International Conference on Robotics and Automation (ICRA), 2022.

Deburring Task

(excess material removal)

GOAL

Generate specific impact forces while minimizing internal torques

Deburring Task

Impact Forces

Accurate and consistent

Robot Torques

optimal internal redistribution & peak reduction

End-Effector

accurate position/velocity tracking

Deburring Task

Far-Proximity Human-Robot Interaction

Teleoperation: State-of-the-Art

Leader System

SpaceMouse Compact 3Dconnexion

Motion Capture System & VR Image courtesy of GITAI

Phantom Omni Haptic Device SensAble Tecnologies

Control Pad Device PlayStation 4 controller

Torabi et al., ISMR 2018 Manipulability

Lin et al., ICRA 2020 Shared-Autonomy

Peternel et al., BioRob 2020 Robot Posture Optimisation

Manoeuvrable + Ergonomic Interfaces

Related publication:

F. Tassi, S. Gholami, E. De Momi and A. Ajoudani, "A Reconfigurable Interface for Ergonomic and Dynamic Tele-Locomanipulation," 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 4260-4267.

NASA-TLX (5 participants)

Human-Robot Interaction

OBJECTIVES

- 1. Avoid dependency from fixed motion plan
- 2. Adaptive Compliance thanks to intrinsic input shaping (no switches):
 - Impedance-like behavior under external forces
 - Admittance-like behavior under human forces

Hybrid impedanceadmittance behavior

Augmented HQP (A-HQP)

HQP

Inverse Kinematics problem

$$\min_{oldsymbol{\dot{q}}} ||oldsymbol{J}oldsymbol{\dot{q}} - oldsymbol{\dot{x}}||^2$$
Joint Velocities

Augmented HQP (A-HQP)

State augmentation

- Desired Cartesian trajectory \mathbf{x}_{d} is no longer an input, but becomes part of the optimization variable
- No higher level trajectory generation

Stack of Tasks

Desired trajectory generation

AHQP q^*, \dot{q}^* x_d^*, \dot{x}_d^* CONSTRAINTS

Kinematic & Dynamic Constraints q, \dot{q} x_d, \dot{x}_d

Closed-Loop

Inverse Kinematics
(CLIK)

Closed loop on End-effector Cartesian error

$$\min_{m{\chi}} ||m{J}m{\dot{q}} - (m{\dot{x}}_d + m{K_p}(m{x}_d - m{\hat{x}}_d))||^2$$

- Optimal trajectory x_d generated online based on constraints

pose

Collaborative Box-Filling using AHQP Adaptive Framework

Related publication:

F. Tassi, E. De Momi and A. Ajoudani, "Augmented Hierarchical Quadratic Programming for Adaptive Compliance Robot Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 3568-3574.

Human Ergonomics Cartesian Mapping

Creation of a Cartesian-based Ergonomics Map:

- 1. Acquisitions with OpenPose skeletal tracking for human reaching multiple points **inside the workspace**
- 2. **REBA** score calculation for each point
- 3. Mapping of the scores through Cartesian interpolation

https://github.com/CMU-Perceptual-Computing-Lab/openpose

REBA

score

Ergo Plus: A Step-by-Step Guide to the REBA Assessment Tool https://ergo-plus.com/reba-assessment-tool-guide/

Human Ergonomics Cartesian Mapping

Cartesian map of the REBA ergonomics score $\mathbf{e_s}$ for human's hand position. A higher score indicates a less ergonomic posture (1 being safe, while 9+ highly risky).

Max Ergonomics as HQP function

Can be added to the hierarchical Stack of Tasks.

$$\min_{\dot{\boldsymbol{q}}, \dot{\boldsymbol{x}}_{\boldsymbol{d}}} e_s = \min_{\dot{\boldsymbol{q}}, \dot{\boldsymbol{x}}_{\boldsymbol{d}}} f(\dot{\boldsymbol{x}}_{\boldsymbol{d}})$$

An Adaptive Compliance Hierarchical Quadratic Programming Controller for Ergonomic Human-Robot Collaboration

Francesco Tassi^{1,2}, Elena De Momi², and Arash Ajoudani¹

1: Human-Robot Interfaces and Physical Interaction (HRII), Istituto Italiano di Tecnologia, Genova, Italy 2: NearLab, Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

This work was supported in part by the ERC-StG Erg innovation p

HUMAN ERGONOMICS

by the European Union's Horizon 2020 research and 7 (SOPHIA).

HUMAN PREFERENCE

Related publication:

F. Tassi, E. De Momi, A. Ajoudani, "An adaptive compliance Hierarchical Quadratic Programming controller for ergonomic human—robot collaboration," Robotics and Computer-Integrated Manufacturing, Volume 78, 2022, 102381.

In-Movement Human-Robot Interaction

SoA controllers (left)

Human adapts to robot trajectory dictated by motion planning

Proposed AHQP controller (right)

- Human-Robot Shared Workspace (HRSW), at time instant t_i enables interaction during movement
- Inside HRSW, the robot identifies the optimal pose based on the hierarchy of tasks.
- Robot adapts to the human and not vice versa.

Human-Robot Shared Workspace (HRSW)

$$\min_{m{\chi}, m{s}} \ \frac{1}{2} \| m{s} \|^2$$
 Slack variable $s.t. \ m{x_{d_{min}}} - m{s} \leq m{x_d} \leq m{x_{d_{max}}} + m{s}$ Cartesian constraint on EE pose to define the shared workspace

Stack of Tasks (SoT)

Human-Robot
Shared Workspace
(HRSW)

2 Optimal Ergonomics

Closed-Loop
Inverse Kinematics
(CLIK)

$$\min_{oldsymbol{\chi},oldsymbol{s}} \frac{1}{2} \|oldsymbol{s}\|^2$$

 $s.t. \ x_{d_{min}} - s \le x_d \le x_{d_{max}} + s$

$$\min_{\dot{\boldsymbol{q}}, \dot{\boldsymbol{x}}_{\boldsymbol{d}}} e_s = \min_{\dot{\boldsymbol{q}}, \dot{\boldsymbol{x}}_{\boldsymbol{d}}} f(\dot{\boldsymbol{x}}_{\boldsymbol{d}}) \qquad \longrightarrow$$

 $\min_{\dot{m{q}}} ||m{J}\!\!\left(\!\dot{m{q}}\!\!\right) \!\!- (\dot{m{x}}_d + m{K_p}\!\!\left(\!\!m{x}_d - m{x}_a\!\!\right)\!\!)||^2 \longrightarrow$ Robot joints

Slack variable

Cartesian constraint on EE pose to define the shared workspace

Ergonomics Score (REBA) minimization

Trajectory tracking: desired x_d vs actual x_a EE pose

Stack of Tasks (SoT)

Human-Robot
Shared Workspace
(HRSW)

2

Optimal Ergonomics $\min_{oldsymbol{\chi},oldsymbol{s}} \ rac{1}{2} \|oldsymbol{s}\|^2$

s.t. $oldsymbol{x_{d_{min}}} - s \leq x_{oldsymbol{d}} \leq x_{oldsymbol{d}_{max}} + s$ _

$$\min_{\dot{\boldsymbol{q}}, \dot{\boldsymbol{x}}_{\boldsymbol{d}}} e_s = \min_{\dot{\boldsymbol{q}}, \dot{\boldsymbol{x}}_{\boldsymbol{d}}} f(\dot{\boldsymbol{x}}_{\boldsymbol{d}}) \qquad \longrightarrow$$

Slack variable

Cartesian constraint on EE pose to define the shared workspace

Ergonomics Score (REBA) minimization

3

Closed-Loop Inverse Kinematics (CLIK)

Trajectory tracking: desired x_d vs actual x_a EE pose

Perception-Aware HQP

Objective

Obtain a Perception-Aware Ergonomic Controller, to include Human Actions recognition

How to

Addition of 3 new modules:

3D Human Tracking:

 Online update of the ergonomic map based on human's position.

Image Classification:

 Identification of the workpiece orientation for human's intention estimation.

Action Recognition:

Online human action recognition for the AHQP constraints definition phase.

Sociable and Ergonomic Human-Robot Collaboration through Action Recognition and Augmented Hierarchical Quadratic Programming

Francesco Tassi^{1,2}, Francesco Iodice^{1,2}, Elena De Momi², and Arash Ajoudani¹

1: Human-Robot Interfaces and Physical Interaction (HRII), Istituto Italiano di Tecnologia, Genova, Italy 2: NearLab, Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

This work was supported in part by the ERC-StG Ergo-Lean (Grant Agreement No. 850932), in part by the European Union's Horizon 2020 research and innovation programme, Grant Agreement No. 871237 (SOPHIA)

Optimal Ergonomics

ON vs OFF

- ullet Ergonomics score $\,e_s\,$ is minimized during HRI
- Large postural improvement as task progresses

Subjective Results

Subjective questionnaires

10 subjects

(~30% females based on [1])

[1] "The Industry Gender Gap Women and Work in the Fourth Industrial Revolution", 2016, World Economic Forum, Geneva, Switzerland.

- Reduced mental and physical workloads
- **High** execution **responsiveness**
- Lower effort and stress levels
- Ease of use when controlling the robot

NASA-TLX questionnaire outcomes on HRC task for 10 subjects

Average and peak ergonomic scores for each subject for each experiment

		S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
Exp 1	e_{ava} reduction $ \% $	73	75	70	68	70	72	75	71	77	76
Exp 2	e_{avg} reduction [%]	64	58	68	70	74	63	68	72	67	70

~70% Ergonomics score improvement

Related publication:

F. Tassi, F. Iodice, E. De Momi and A. Ajoudani, "Sociable and Ergonomic Human-Robot Collaboration through Action Recognition and Augmented Hierarchical Quadratic Programming," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.

Conclusions

Conclusions

Perception-Aware AHQP

A-HQP

A-HQP

Ergo-Aware A-HQP

Ergo-Aware A-HQP

A-HQP

Ferception-Aware A-HQP

A-HQP

OBJECTIVES

CONTRIBUTIONS

Human actions and intention recognition

In-Movement Interaction with optimal ergonomics

Limitations & Future Developments

Further studies on **human behaviour** for understanding **human intentions**, to anticipate human and autonomously adapt Stack of Tasks.

Autonomous adaptation to real-word scenarios

Ergonomic Teleoperation on both leader and follower robots

Exploitable in surgical teleoperation and rehabilitation

EU Projects

Thank you for your attention.

Scientific Activity

Publications

Journals

- **F. Tassi**, E. De Momi, A. Ajoudani, "An adaptive compliance Hierarchical Quadratic Programming controller for ergonomic human-robot collaboration," Robotics and Computer-Integrated Manufacturing, Volume 78, 2022, 102381.
- **F. Tassi**, and A. Ajoudani, "Multi-Modal and Adaptive Control of Human-Robot Interaction through Hierarchical Quadratic Programming," 2023. (Under review)
- F. Tassi, J. Zhao, G. J. Lahr, L. Gava, M. Monforte, A. Glover, C. Bartolozzi, and A. Ajoudani, "IMA-Catcher: An IMpact-Aware Flying Objects Catching Framework based on Hybrid Optimization and Learning," 2023 IEEE Transactions on Robotics, 2023. (Under review)

Conferences

- F. Tassi, F. Iodice. E. De Momi, and A. Ajoudani "Sociable and Ergonomic Human-Robot Collaboration through Action Recognition and Augmented Hierarchical Quadratic Programming," 2022 International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.
- **F. Tassi**, E. De Momi, and A. Ajoudani "Augmented Hierarchical Quadratic Programming for Adaptive Compliance Robot Control," 2021 International Conference on Robotics and Automation (ICRA). IEEE, 2021.
- **F. Tassi**, S. Gholami, E. De Momi, and A. Ajoudani, "A reconfigurable interface for ergonomic and dynamic tele-locomanipulation," in 2021 IEEE International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021.
- **F. Tassi**, S. Gholami, S. Giudice, and A. Ajoudani, "Impact Planning and Pre-configuration based on Hierarchical Quadratic Programming", *2022 International Conference on Robotics and Automation (ICRA)*. IEEE, 2022.
- Z. Liao, F. Tassi, C. Gong, M. Leonori, F.Zhao, G. Jiang, and A. Ajoudani, "Simultaneously Learning of Motion, Stiffness, and Force from Human Demonstration based on Riemannian DMP and QP Optimization," 2023 IEEE Transactions on Automation Science and Engineering. (Under review)
- J. Zhao, G.J. Lahr, **F. Tassi**, A. Santopaolo, E. De Momi, and A. Ajoudani "Impact-Friendly Object Catching at Non-Zero Velocity based on Hybrid Optimization and Learning," 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022 (Submitted)