Matlab在图像领域的应用: 分类问题

报告人: 鄂得俊

导师: 李公平(教授)

专业:核技术及其应用

2019年5月6号

大纲

1 Matlab图像处理基础知识

大纲

1 Matlab图像处理基础知识

Matlab中图像基本操作

读、写和查询

Matlab中图像基本操作

读、写和查询

imfinfo('ch1_images\\cameraman.tif')

I1 = imread('ch1_images\\cameraman.tif'); %Read in the TIF format cameraman image imwrite(I1,'figures\\cameraman.jpg','jpg'); %Write the resulting array I1 to disk as a JPEG image

imfinfo('figures\\cameraman.jpg')

FileSize: 10717

Format: 'jpg'

FormatVersion: ''

Width: 256

Height: 256

BitDepth: 8

ColorType: 'grayscale'

FormatSignature: ''

NumberOfSamples: 1

CodingMethod: 'Huffman'

CodingProcess: 'Sequential'

Comment: {}

Matlab中图像基本操作

图像显示

1 Matlab中图像基本操作

图像显示

```
A = imread('ch1_images\\cameraman.tif');
imshow(A);
imagesc(A);
axis image; % Correct aspect ratio of displayed image
axis off; % Turn off the axis labelling
colormap(gray); % Display intensity image in grey scale
```


1

Matlab中图像基本操作

图像显示

```
A = imread('ch1_images\\cameraman.tif');
imshow(A);
imagesc(A);
axis image; % Correct aspect ratio of displayed image
axis off; % Turn off the axis labelling
colormap(gray); % Display intensity image in grey scale
```

```
% subplot

B = imread('ch1_images\\cell.tif');

C = imread('ch1_images\\spine.tif');

D = imread('ch1_images\\onion.png');

subplot(3,1,1);imagesc(B); axis image;

axis off;colormap(gray);

subplot(3,1,2);imagesc(C); axis image;

axis off;colormap(jet);

subplot(3,1,3);imshow(D);
```


图像类型转化

1 Matlab中图像基本操作

图像类型转化

```
% Converting image types
D = imread('ch1_images\\onion.png');
Dgray = rgb2gray(D);
subplot(2,1,1);imshow(D); axis image;
subplot(2,1,2);imshow(Dgray);
```


◆ Matlab中图像基本操作

图像类型转化

% Converting image types
D = imread('ch1_images\\onion.png');
Dgray = rgb2gray(D);
subplot(2,1,1);imshow(D); axis image;
subplot(2,1,2);imshow(Dgray);

- -二进制图
- ●索引图 (伪彩色)
- ●灰度图
- RGB图 (真彩色)

1 Matlab中图像基本操作

图像类型转化

% Converting image types
D = imread('ch1_images\\onion.png');
Dgray = rgb2gray(D);
subplot(2,1,1);imshow(D); axis image;
subplot(2,1,2);imshow(Dgray);

- -二进制图
- ●索引图 (伪彩色)
- ●灰度图
- RGB图 (真彩色)

转化类型	command
灰度图转换为索引图	[X,map] = gray2ind(I,n)
索引图转换为灰度图	I = ind2gray(X,map)
RGB图转换为灰度图	I = rgb2gray(RGB)
RGB图转换为索引图	[X,map] = rgb2ind(RGB)
索引图转换为RGB图	RGB = ind2rgb(X,map)
阈值法从灰度图产生索引图	X = grayslice(I)
将矩阵转换为灰度图像	I = mat2gray(X,[Xmin Xmax])

大纲

1 Matlab图像处理基础知识

Industrial Inspection—soft drink bottles

Datasets: http://www.fundipbook.com/

Industrial Inspection—soft drink bottles

Datasets:http://www.fundipbook.com/

Solution

Datasets

图像处理应用:分类问题

Datasets (141) :http://www.fundipbook.com/

Normal

Bottle Overfilled

Bottle Underfilled

Bottle label not printed

Bottle deformed

Bottle cap missing

Bottle label not straight

Bottle label missing

Data View

图像处理应用:分类问题

Preprocessing

Features Analysis

Preprocessing


```
image = imread('image001.jpg');
[m,n,z]=size(image);
figure(1)
% image = rgb2gray(image);
imshow(image)

h = imrect;
pos = getPosition(h);
imCp = imcrop(image,pos);
figure(2)
imshow(imCp);
```



```
image = imread('image001.jpg');
[m,n,z]=size(image);
figure(1)
% image = rgb2gray(image);
imshow(image)

h = imrect;
pos = getPosition(h);
imCp = imcrop(image,pos);
figure(2)
imshow(imCp);
```


pos	xmin	ymin	width	height
value	120	1	130	285

pos	x1	y1	x2	y2
Bottle missing	135	1	225	250
Bottle cap missing	150	5	200	45
Bottle Overfilled	140	110	220	140
Bottle Underfilled	140	130	220	170
Bottle label not printed	110	180	240	280
Bottle label missing	110	180	240	280
Bottle label not straight	110	170	250	195
Bottle deformed	100	190	260	280

pos	x1	y1	x2	y2
Bottle missing	135	1	225	250
Bottle cap missing	150	5	200	45
Bottle Overfilled	140	110	220	140
Bottle Underfilled	140	130	220	170
Bottle label not printed	110	180	240	280
Bottle label missing	110	180	240	280
Bottle label not straight	110	170	250	195
Bottle deformed	100	190	260	280

```
y1 = 1;
x1 = 135;
y2 = 250;
x2225;
imageOut_origin = image_origin(y1:y2, x1:x2, :);
imshow(imageOut_origin);
```

Preprocessing

Pixel distributions: histograms

Pixel distributions: histograms


```
%% histogram
image_origin = rgb2gray(imread('image005.jpg'));
image_new = rgb2gray(imread('image018.jpg'));
y1 = 3;
x1 = 119:
y2 = 287;
x2 = 252;
imageOut_origin = image_origin(y1:y2, x1:x2, :);
imageOut_new = image_new(y1:y2, x1:x2, :);
%blackPercentage = 100 * (sum(imageOut_origin(:) == 0) /
numel(imageOut origin(:)))
roiBinary_origin = imbinarize(imageOut_origin,
double(150/256));
roiBinary new = imbinarize(imageOut new,
double(150/256));
blackPercentage = 100 * (sum(imageOut_new(:) == 0) /
numel(imageOut_new(:)))
subplot(2,3,1),imshow(image_origin);
subplot(2,3,2),imshow(imageOut_origin);
subplot(2,3,3),imhist(imageOut_origin);
subplot(2,3,4),imshow(image_new);
subplot(2,3,5),imshow(imageOut_new);
subplot(2,3,6),imhist(imageOut_new);
```

Histogram based thresholding method

图像处理应用:分类问题

Histogram based thresholding method


```
%% Intensity thresholding
image_origin = rgb2gray(imread('image005.jpg'));
image_new = rgb2gray(imread('image018.jpg'));
y1 = 3;
x1 = 119;
y2 = 287;
x2= 252;
imageOut_origin = image_origin(y1:y2, x1:x2, :);
imageOut_new = image_new(y1:y2, x1:x2, :);
[counts_old,X_old]=imhist(image_origin);
[counts_new,X_new]=imhist(image_new);
P = polyfit(X_old,counts_old,6); Y = polyval(P,X_old);
figure;
plot(X_old,counts_old);
hold on,plot(X_old,Y,'r');
```

Histogram based thresholding method


```
%% Intensity thresholding
image_origin = rgb2gray(imread('image005.jpg'));
image_new = rgb2gray(imread('image018.jpg'));
y1 = 3;
x1 = 119;
y2 = 287;
x2= 252;
imageOut_origin = image_origin(y1:y2, x1:x2, :);
imageOut_new = image_new(y1:y2, x1:x2, :);
[counts_old,X_old]=imhist(image_origin);
[counts_new,X_new]=imhist(image_new);
P = polyfit(X_old,counts_old,6); Y = polyval(P,X_old);
figure;
plot(X_old,counts_old);
hold on,plot(X_old,Y,'r');
```

- 1 Balanced histogram thresholding
- 2 Ostu's method
- 3 Iterative Selection Threshold Method

图像处理应用: 分类问题

Ostu's method

Algorithm

- 1.Compute histogram and probabilities of each intensity level
- 2. Set up initial $\omega_i(0)$ and $\mu_i(0)$
- 3. Set through all possible thresholds t = 1..... maximum intensity
 - 1. Update ω_i and μ_i
 - 2. Compute $\sigma_b^2(t)$
- 4.Desired threshold corresponds to the maximum $\sigma_b^2(t)$

Ostu's method

Algorithm

- 1.Compute histogram and probabilities of each intensity level
- 2. Set up initial $\omega_i(0)$ and $\mu_i(0)$
- 3.Set through all possible thresholds t = 1..... maximum intensity
 - 1. Update ω_i and μ_i
 - 2. Compute $\sigma_b^2(t)$
- 4.Desired threshold corresponds to the maximum $\sigma_b^2(t)$

```
function level = otsu_new(histogramCounts)
total = sum(histogramCounts); % "'total" is the number
of pixels in the given image.
 %% OTSU automatic thresholding
top = 256;
sumB = 0;
wB = 0;
maximum = 0.0;
sum1 = dot(0:top-1, histogramCounts);
for ii = 1:top
           wF = total - wB;
           if wB > 0 & wF > 0
                      mF = (sum1 - sumB) / wF;
                      val = wB * wF * ((sumB / wB) - mF) * ((sumB / wB)
mF):
                      if (val >= maximum)
                                 level = ii;
                                 maximum = val;
                      end
          end
           wB = wB + histogramCounts(ii);
           sumB = sumB + (ii-1) * histogramCounts(ii);
end
end
```

Ostu's method

Algorithm

- 1.Compute histogram and probabilities of each intensity level
- 2. Set up initial $\omega_i(0)$ and $\mu_i(0)$
- 3.Set through all possible thresholds t = 1..... maximum intensity
 - 1. Update ω_i and μ_i
 - 2. Compute $\sigma_{\rm b}^2(t)$
- 4. Desired threshold corresponds to the maximum $\sigma_b^2(t)$

```
[counts_old,X_old]=imhist(image_origin);
level = ostu_new(counts_old);
```



```
function level = otsu_new(histogramCounts)
total = sum(histogramCounts); % "'total" is the number
of pixels in the given image.
 %% OTSU automatic thresholding
top = 256;
sumB = 0;
wB = 0;
maximum = 0.0;
sum1 = dot(0:top-1, histogramCounts);
for ii = 1:top
           wF = total - wB;
           if wB > 0 \&\& wF > 0
                      mF = (sum1 - sumB) / wF;
                      val = wB * wF * ((sumB / wB) - mF) * ((sumB / wB)
mF):
                      if (val >= maximum)
                                 level = ii;
                                 maximum = val;
                      end
          end
           wB = wB + histogramCounts(ii);
           sumB = sumB + (ii-1) * histogramCounts(ii);
end
end
```

Preprocessing

图像处理应用:分类问题

Bottle deformed

图像处理应用:分类问题

Bottle deformed

图像分割

```
image origin = imread('image005.jpg');
image_new = imread('image040.jpg');
image_origin = image_origin(:, :, 1);
image_origin = imadjust(image_origin);
image new = image new(:, :, 1);
image new = imadjust(image new);
y1 = 190;
x1 = 100;
v2 = 280;
x2 = 260;
imageOut_origin = image_origin(y1:y2, x1:x2, :);
imageOut_new = image_new(y1:y2, x1:x2, :);
maskR = imbinarize(imageOut_origin, double(200/256));
subplot(1,2,1),imshow(imageOut_origin);
subplot(1,2,2),imshow(imageOut new);
cc = bwconncomp(maskR, 4);
measurements = regionprops(cc, 'area', 'BoundingBox');
areas = [measurements.Area];
rects = cat(1,measurements.BoundingBox);
% ÏÔʾËùÓĐÁ¬Í"ÇøÓò
figure(2)
imshow(imageOut_new);
size(rects,1)
for i=1:size(rects,1)
   rectangle('position',rects(i,:),'EdgeColor','r')
end
% ÏÔʾ×ĩ óÁ¬Í"ÇøÓò
[\sim, \max_i d] = \max(areas);
max rect = rects(max id,:);
figure(3)
imshow(imageOut_new);
rectangle('position',max rect,'EdgeColor','b');
%measurements(3).BoundingBox
length(measurements)
```

图像处理应用:分类问题

Bottle deformed

Origin image

Deformed image

图像处理应用:分类问题

Bottle label not straight

图像处理应用:分类问题

边缘检测图像分割

```
%% Edge detections of objects
% Carry out edge detection on the ROI
image origin = imread('image005.jpg');
image new = imread('image006.jpg');
image_origin = rgb2gray(image_origin);
image origin = imadjust(image origin);
image new = rgb2gray(image new);
image new = imadjust(image new);
y1 = 170;
x1 = 110;
y2 = 195;
x2 = 250;
imageOut origin = image origin(y1:y2, x1:x2, :);
imageOut new = image new(y1:y2, x1:x2, :);
[bw, t] = edge(imageOut origin, 'Sobel');
roiEdge = edge(imageOut origin, t*0.75);
% Find connected components and get info 'measurements' about each one
cc = bwconncomp(roiEdge);
measurements = regionprops(cc, 'area', 'BoundingBox');
areas = [measurements.Area];
maxWidth = 0; maxHeight = 0;
subplot(1,2,1),imshow(imageOut_origin);
subplot(1,2,2),imshow(imageOut new);
length(measurements)
rects = cat(1,measurements.BoundingBox);
% ÏÔʾËùÓĐÁ¬Í"ÇøÓò
figure(2)
imshow(imageOut origin);
size(rects,1)
for i=1:size(rects,1)
   rectangle('position',rects(i,:),'EdgeColor','r')
end
[\sim, \max id] = \max(areas);
max rect = rects(max id,:);
figure(3)
```

图像处理应用:分类问题

Bottle label not straight

Not straight Line

Matlab Code

图像处理应用:分类问题

CheckIfBottleUnderfilled.m

🔁 CheckIfBottleOverfilled.m

CheckIfBottleMissing.m

陷 CheckIfBottleDeformed.m

CheckIfBottleCapMissing.m

GetFileDataFromDirectory.m

ExtractROI.m

CheckIfLabelNotStraight.m

CheckIfLabelNotPrinted.m

CheckIfLabelMissing.m

CheckIfBottleUnderfilled.m

CheckIfBottleOverfilled.m

CheckIfBottleMissing.m

CheckIfBottleDeformed.m

CheckIfBottleCapMissing.m

伪代码

load Datasets

```
for i=1:length(Datasets)

do CheckBottleMissing

if BottleMissing

record
else

do bottleCapMissing

if bottleCapMissing

record
end
```

Results

Fault Type	Images	Faults Detected	Classification%
Bottle Cap Missing	10	10	100%
Bottle Deformed	10	9	90%
Bottle missing	11	11	100%
Bottle Overfilled	10	10	100%
Bottle Underfilled	10	10	100%
Label Missing	10	10	100%
Label Not Printed	10	10	100%
Label Not Straight	10	10	100%
Multiple Faults	10	9	90%

Fault Type	Images	Faults Detected	Classification%
All	141	139	98.58%

Thank You!