Optimization Methods (UMA-035)

Lab Experiment - 1 (Graphical Method)

Algorithm of Graphical Method to solve LPP

- **Step 1:** Enter the provided data (coefficients of variables in objective function, coefficients of variables in constraints, right hand side elements of the constraints) in array's (namely C, A, B).
- **Step 2:** Select the range of x_1 in which graph to be plotted.
- **Step 3:** Find non-negative value of x_2 from the ith constraint (say x_2^i) in terms of x_1
- **Step 4:** Plot the graph between x_{2i} and x_1
- Step 5: Assume an empty array (say, solution) matrix to store the obtained solution
- **Step 6:** Store the ith row of A in an array (say, A1)
- **Step 7:** Store the ith row of B in an array (say, B1)
- **Step 7:** Store the (i+1)th row of A in an array (say, A2)
- **Step 8:** Store the (i+1)th row of B in an array (say, B2)
- **Step 9:** Combine A1 and A2 (say, A3)
- Step 10: Combine B1 and B2 (say, B3)
- **Step 11:** Find solution of system of equations A3X=B3
- **Step 12:** Store solution in the considered empty array
- **Step 13:** Assume first column of solution as x1
- **Step 14:** Assume second column of solution as x^2
- **Step 15:** Find such rows of solution which does not satisfy the first constraint
- **Step 16:** Delete such rows from Solution
- **Step 17:** Assume first column of solution as x1
- **Step 18:** Assume second column of solution as x^2
- **Step 19:** Find such rows of solution which does not satisfy the first constraint
- **Step 20:** Repeat for all the constraints
- Step 21: Find value of objective function (say, OBJ) corresponding to ith row of solution
- Step 22: Find maximum or minimum value of objective function
- **Step 23:** Find that row corresponding to which OBJ is max or min
- **Step 24:** The row represents an optimal solution

Write a MATLAB code to solve the following LPPs by graphical method:

1. Maximize/Minimize $(3x_1 + 2x_2)$ Subject to $2x_1 + 4x_2 < = 8$, $3x_1 + 5x_2 > = 15$,

$$x_1>=0, x_2>=0.$$

- 2. Maximize/Minimize $(3x_1 + 2x_2)$ Subject to $2x_1 + 4x_2 > = 8$, $3x_1 + 5x_2 > = 15$, $x_1 > = 0$, $x_2 > = 0$.
- 3. Maximize/Minimize $(3x_1 + 2x_2)$ Subject to $2x_1 + 4x_2 < = 8$, $3x_1 + 5x_2 < = 15$, $x_1 > = 0$, $x_2 > = 0$

Optimization Techniques (UMA-035) Lab Experiment- 2 (Basic feasible solutions)

Algorithm to find BFS

Consider the LPP:

Initially define Input parameters:

- 1. Number of constraints as m,
- 2. Number of unknowns n,
- 3. Entries bi of the R.H.S. vector b and entries a_{ij} of matrix A,
- 4. Position of basic variables as p_i where $1 \leq i \leq m$.
- **Step 1:** Construct the basis matrix B from the already defined basic variables p_i 's.
- **Step 2:** If $det(B) \neq 0$, then find $X_B = B^{-1}b$, otherwise display (' Not a Basic solution') and STOP.
- **Step 3:** If $X_{B_i} < 0$ for some i then display (' Not a B.F.S') and STOP.
 - If $X_{B_i} = 0$ for some i then display (' Degenerate B.F.S') and STOP.
 - If $X_{B_i} > 0$ for all i then display ('Non-degenerate B.F.S') and STOP.

Write a MATLAB code to compute the basic feasible solutions of an LPP and test your program on the following set of examples:

1. Convert the following linear programming problem in standard form and find all bfs.

Max.
$$z = x_1 + 2x_2$$
, subject to $-x_1 + x_2 \le 1$, $x_1 + x_2 \le 2$, $x_1, x_2 \ge 0$.

2. Check if the the variables (1) (x_1, x_4) (2) (x_3, x_2) can be in the basis for the following problem

$$Max. \ z = x_1 + 2x_2 - x_3 + x_4,$$

subject to
$$x_1 + x_2 - x_3 + 3x_4 = 15$$
, $5x_1 + x_2 + 4x_3 + 15x_4 = 12$, $x_1, x_2, x_3, x_4 \ge 0$.

3. Solve the following LPP by using finding all its BFS.

Max.
$$z = -x_1 + 2x_2 - x_3$$
, subject to $x_1 \le 4$, $x_2 \le 4$, $-x_1 + x_2 \le 6$, $-1x_1 + 2x_3 \le 4$, $x_1, x_2, x_3 \ge 6$

4. Check if the following LPP has a degenerate BFS, Find all basis corresponding to this solution.

1

Max.
$$z = x_1 + x_2 + x_3$$
, subject to $x_1 + x_2 \le 1$, $-x_2 + x_3 \le 0$, $x_1, x_2, x_3 \ge 0$.

Optimization Techniques (UMA-035) Lab Experiment- 3 (The simplex method)

The Simplex Algorithm (with slack variables only)

Consider an LPP with all constraints of (\leq) type given as

Convert the above problem to standard form by adding slack variables:

Where $X_s = (s_1, s_2, \dots, s_m)$ is a vector of slack variables.

Initially define the following Input parameters:

- 1. Enter the Matrix $A = [A \ I]$, where I is an identity matrix of order m.
- 2. Entries bi of the R.H.S. vector b and entries a_{ij} of matrix A
- 3. Define [m,n]=size (A)
- 4. Input the variables $s_1, s_2, \ldots s_m$ as basic variables.

Step 1: Construct the basis matrix B from the already defined basic variables.

Step 2: Calculate
$$Z_j - c_j = C_B^t(B^{-1}A_j) - c_j$$
 for each $j \in 1, 2 \dots n$
Find $[val, k] = \min\{(Z_j - c_j), j \in 1, 2 \dots n\}$
While $val < 0$ calculate $\theta_k = \min_{i \in 1, 2 \dots m} \left\{ \frac{X_{B_i}}{\alpha_i^k} | \alpha_i^k > 0 \right\} = \frac{x_{B_r}}{\alpha_r^k}$ and go to next step

Step 3 Update the basis by leaving the variable x_k and entering the variable $x_l = (x_{B_r})$ and go to Step 1.

Note: The variables in the basis are named as $(x_{B_1}, x_{B_2}, \dots x_{B_m})$ and in the present case we have initial basic variables as slack variables taken in the order $s_1, s_2, \dots s_m$. So one can understand that initially $x_{B_1} = s_1, x_{B_2} = s_2, \dots x_{B_m} = s_m$. Similarly when the basis is updated by adding a variable x_k to the basis by replacing a variable $x_l = x_{B_r}$, then the new r^{th} basic variable will be $x_{B_r} = x_l$.

Write a MATLAB code for the simplex method and test your program on the following examples:

1 Max.
$$z = x_1 + 2x_2$$
, subject to $-x_1 + x_2 \le 1$, $x_1 + x_2 \le 2$, $x_1, x_2 \ge 0$.
2 Max. $z = 4x_1 + 6x_2 + 3x_3 + x_4$, (Ans: $x_1 = 1/3, x_3 = 4/3s_2 = 3; z = 16/3$ subject to $x_1 + 4x_2 + 8x_3 + 6x_4 \le 11$, $4x_1 + x_2 + 2x_3 + x_4 \le 7$, $2x_1 + 3x_2 + x_3 + 2x_4 \le 2$, $x_1, x_2, x_3 \ge 0$.
3 Min. $z = -3/4x_4 + 20x_5 - 1/2x_6 + 6x_7$, (Ans: $x_1 = 3/4, x_4 = 1, x_6 = 1; z = -5/4$ subject to $x_1 + 1/4x_4 - 8x_5 - x_6 + 9x_7 = 0$, $x_2 + 1/2x_4 - 12x_5 - 1/6x_6 + 3x_7 = 0$, $x_3 + x_6 = 1$, $x_i \ge 0$, $i = 1, 2 \dots 7$

Optimization Techniques (UMA-035) Lab Experiment- 4 (The Big-M method)

The Big M method

Consider an LPP with mixed type of constraints (\leq , \geq , =) and then convert the problem into standard form as given below.

Assume that the matrix A does not have an identity submtrix in it. Now, add artificial variables R_i for $i \in \{1, 2, ..., m\}$ so that the new problem has a identity submatrix in it, and the matrix A is now updated as [AI]. Assign a value $M > 10^5 max(c_i)$, for convenience, the value of M can be taken as $M = 10^6$.

Now the new problem is of the following form:

(P_s)
$$\max z = C^t X + 10^6 . e^t R$$
 subject to
$$AX + IR_i = b, X, R \ge 0$$

Where $R = (R_1, R_2, ..., R_m)$ is a vector of artificial variables and $e = (1, 1, ..., 1)^t$ is a vector of one's.

Initially define the following Input parameters:

- 1. Enter the Matrix $A = \begin{bmatrix} A & I \end{bmatrix}$, where I is an identity matrix of order m.
- 2. Enter the R.H.S. vector b and the cost matrix $C = [C \ 10^6 e]$.
- 3. Define [m,n]=size (A)
- 4. Input the variables $R_1, R_2, \dots R_m$ as basic variables.

Now apply simplex method to solve the problem (P_s) . Suppose an optimal basic feasible solution of the problem (P_s) so obtained is X_B .

If $(X_{B_i} = R_j > 0$, for some $i, j \in \{1, 2, ..., m\}$ %i.e. artificial variable appear in basis display (The problem (P) is infeasible)
Else $(X_{B_i} \neq R_j$, for all $i, j \in \{1, 2, ..., m\}$)

display $(X_B \text{ is an optimal basic feasible solution of problem } (P))$

Note: The variables in the basis are named as $(x_{B_1}, x_{B_2}, \dots x_{B_m})$ and in the present case we have initial basic variables as artificial variables taken in the order $R_1, R_2, \dots R_m$. So one can understand that initially $x_{B_1} = R_1, x_{B_2} = R_2, \dots x_{B_m} = R_m$. The idea behind Big M method is to remove artifical variables from the basis

Similarly when the basis is updated by adding a variable x_k to the basis by replacing a variable $x_l = x_{B_r}$, then the new r^{th} basic variable will be $x_{B_r} = x_l$.

Write a MATLAB code for the simplex method and test your program on the following examples:

- 1. Min. $z = 3x_1 + 5x_2$, S.T. $x_1 + 3x_2 \ge 3$, $x_1 + x_2 \ge 2$, $x_1, x_2 \ge 0$.
- 2. $Min. \ z = 12x_1 + 10x_2, \ S.T. \ 5x_1 + x_2 \ge 10, \ 6x_1 + 5x_2 \ge 30, \ x_1 + 4x_2 \ge 8, \ x_1, x_2 \ge 0.$
- 3. $Max. \ z = 3x_1 + 2x_2, \ S.T. \ x_1 + x_2 \le 2, \ x_1 + 3x_2 \le 3, \ x_1 x_2 = 1 \ x_1, x_2 \ge 0.$

Optimization Techniques (UMA-035) Lab Experiment- 5 (The Two phase method)

The Two phase method

Consider an LPP with mixed type of constraints (\leq , \geq , =) and then convert the problem into standard form as given below.

(P)
$$\text{Max } z = C^t X$$
 subject to
$$AX = b, X \ge 0$$

Assume that the matrix A does not have an identity submatrix in it. Now, add artificial variables R_i for $i \in \{1, 2, ..., m\}$ so that the new problem has a identity submatrix in it, and the matrix A is now updated as $[A \ I]$. Now construct the Phase-I problem as

(PH₁)
$$\min z = O^t X + e^t R$$

subject to $AX + IR_i = b, X, R \ge 0$

Where $R = (R_1, R_2, \dots, R_m)^t$ is a vector of artificial variables and $e = (1, 1, \dots, 1)_{m \times 1}$ is a vector of one's and $O = (0, 0, \dots, 0)_{n \times 1}$ is a vector of zeros.

Initially define the following Input parameters:

- 1. Enter the Matrix $A = [A \ I]$, where I is an identity matrix of order m.
- 2. Entet the R.H.S. vector b and the cost matrix $C = [O \ e]_{(n+m)\times 1}$.
- 3. Define [m,n]=size (A)
- 4. Input the variables $R_1, R_2, \dots R_m$ as initial basic variables.

Now apply simplex method to solve the problem (PH_1) . Suppose an optimal basic feasible solution of the problem (P_s) so obtained is X_B .

If $(X_{B_i} = R_j > 0$, for some $i, j \in \{1, 2, ..., m\}$) %i.e. artificial variable appear in basis display (The problem (P) is infeasible)

Else $(X_{B_i} \neq R_j, \text{ for all } i, j \in \{1, 2, \dots, m\})$

display $(X_B \text{ is an optimal basic feasible solution of problem } (PH_1) \text{ and goto Phase II})$

Phase-II

Treat the optimal basic feasible solution of Phase-I as initial basic feasible solution of Phase-II, while incorporating the following:

- 1. Update the cost matrix $C = (c_1, c_2 \dots c_n)^t$ from original variables.
- 2. Update the matrix Alpha =Alpha(1:n,:) (where Alpha=inv(B)*A) (means ignore the columns of artifial variables and update Alpha matrix by considering only first n columns of original variables)
- 3. Calculate $Z_j c_j$ and follow the simplex procedure to obtain an optimal basic feasible solution of the problem (P).

Note: The variables in the basis are named as $(x_{B_1}, x_{B_2}, \dots x_{B_m})$ and in the present case we have initial basic variables as artificial variables taken in the order $R_1, R_2, \dots R_m$. So one can understand that initially $x_{B_1} = R_1, x_{B_2} = R_2, \dots x_{B_m} = R_m$. The idea behind Phase-I method is to remove artifical variables from the basis and obtain an initial basic feasible solution of the problem (P). Then Phase-II uses the BFS obtained in Phase-I to get an optimal BFS of problem (P).

Write a MATLAB code for the two phase method and test your program on the following examples:

- 1. Min. $z = 3x_1 + 5x_2$, S.T. $x_1 + 3x_2 \ge 3$, $x_1 + x_2 \ge 2$, $x_1, x_2 \ge 0$.
- 2. $Min. \ z = 12x_1 + 10x_2, \ S.T. \ 5x_1 + x_2 \ge 10, \ 6x_1 + 5x_2 \ge 30, \ x_1 + 4x_2 \ge 8, \ x_1, x_2 \ge 0.$
- $3.\ Max.\ z=3x_1+2x_2,\ S.T.\ x_1+x_2\leq 2,\ x_1+3x_2\leq 3,\ x_1-x_2=1\ x_1,x_2\geq 0.$

Optimization Techniques (UMA-035) Lab Experiment- 6 (The dual simplex method)

The dual simplex method

Convert the given linear programming problem in the following form:

(P)
$$\min / \max z = C^t X + O^t s$$

subject to $AX + Is = b, X, s > 0$

Where $s = (s_1, s_2, \dots, s_m)^t$ is a vector of slack variables and $O = (0, 0, \dots, 0)_{n \times 1}$ is a vector of zeros. Also Assume that at least one of the component b_i of the RHS vector $b = (b_1, b_2, \dots, b_m)$ is negative Initially define the following Input parameters:

- 1. Enter the Matrix $A = [A \ I]$, where I is an identity matrix of order m.
- 2. Enter the R.H.S. vector b and the cost matrix $C = [c \ O]_{(n+m)\times 1}$.
- 3. Define [m,n]=size (A)
- 4. Input the variables $s_1, s_2, \ldots s_m$ as initial basic variables.

Now construct the simplex table using s_1, s_2, \ldots, s_m as initial basic variables. If the simplex table depicts **an optimal but Infeasible solution**, then dual simplex method is applicable. So apply the following procedure.

- 1. Select the leaving variable as $X_{B_r} = \min_i \{X_{B_i} \mid X_{B_i} < 0\}$
- 2. Select the entering variable x_k using the formula $\frac{z_k c_k}{y_{rk}} = \min_j \left\{ \frac{|z_j c_j|}{|y_{rj}|} : y_{rj} < 0 \right\}$
- 3. Now update the basis as by removing r^{th} basic variable with k^{th} nonbasic variable. Again construct the simplex table and repeat the above procedure until an optimal basic feasible solution is not obtained.

Write a MATLAB code for the dual simplex method and test your program on the following examples:

1. Min.
$$z = 3x_1 + 5x_2$$
, S.T. $x_1 + 3x_2 \ge 3$, $x_1 + x_2 \ge 2$, $x_1, x_2 \ge 0$.

2. Min.
$$z = 12x_1 + 10x_2$$
, S.T. $5x_1 + x_2 \ge 10$, $6x_1 + 5x_2 \ge 30$, $x_1 + 4x_2 \ge 8$, $x_1, x_2 \ge 0$.

6

3.
$$min. \ z = 3x_1 + 2x_2, \ S.T. \ x_1 + x_2 \le 1, \ x_1 + 2x_2 \ge 3, \ x_1, x_2 \ge 0.$$

Optimization Techniques (UMA-035) Lab Experiment- 7 (Least cost method)

Least cost method of Transportation problem

Consider a cost matrix representation of a Transportation problem:

			$u_i \downarrow$
c_{11}	c_{12}	 c_{1n}	
x_{11}	x_{12}	x_{1m}	a_1
c_{21}	c_{22}	 c_{2n}	
x_{21}	x_{22}	x_{2m}	a_2
•			
•			_
c_{m1}	c_{m2}	 c_{mn}	
x_{m1}	x_{m2}	x_{mn}	
b_1	b_2	 b_n	

Here a_i is the availability of the product at source S_i and b_j is the requirement of the same at destination D_j , c_{ij} represents the cost of trasporting a unit product from source S_i to destination D_j . The variable x_{ij} is the quantity to be transported from the source i to destination j.

Initially define Input parameters:

- 1. Enter the number of sources as m, and destinations as n.
- 2. Enter the cost coefficients c_{ij} , the availabilty at i^{th} source as a_i and demand at j^{th} destination as b_j for each $i=1,2\ldots m$, $j=1,2,\ldots n$.

Intially take k = 1

- **Step 1:** Define $c_{pq} = \min(c_{ij})$, and assign $x_{pq} = \min(a_p, b_q)$, go to Step 2.
- Step 2: If $\min(a_p, b_q) = a_p$, then update $b_q = b_q a_p$, $a_p = a_p x_{pq}$ else $\min(a_i, b_j) = b_q$, then update $a_p = a_p b_q$, $b_q = b_q x_{pq}$.
- **Step 3** Assigne $c_{pq}=10^5$ (a very large no.), $\mathrm{Set} k=k+1$, if k=m+n-1 go to Step 4 else go to Step 1.
- **Step 4:** Stop and note the BFS and calculate the objective function value $z = \sum_{i,j} c_{ij} x_{ij}$

Write a MATLAB code to compute the basic feasible solutions of a Transportation problem using Northwest corner rule and test your program on the following set of examples:

1. Consider the cost matrix of the following transportation roblem

	D_1	D_2	D_3	D_4	a_i
$\overline{S_1}$	2	10	4	5	12
S_2 1	6	12	8	11	25
S_3	3	9	5	7	20
$\overline{b_j}$	25	10	15	5	

2. Consider the cost matrix of the following transportation roblem

	D_1	D_2	D_3	D_4	D_5	$ a_i $
$\overline{S_1}$	3	11	4	14	15	15
S_2	6	16	18	2	28	25
S_3	10	13	15	19	17	10
S_4	7	12	4 18 15 5	8	9	15
$\overline{b_j}$	20	10	15	15	5	

Optimization Methods (UMA-035)

Lab Experiment - 8 (Multi-objective LPP)

Algorithm of Weighted Sum Method to multi-objective LPP

Step 1:Transform the multi-objective linear programming problem (P1) into its equivalent single objective linear programming problem (P2).

(P1)

Maximize/Minimize (C_iX), i=1,2,...,m

Subject to

 $AX \le or = or >= b$

X > = 0.

(P1)

Maximize/Minimize $(C_1X + C_2X + ... + C_mX)/m$

Subject to

 $AX \le or = or >= b$

X > = 0.

Step 2: Find an optimal solution of the problem i.e., an efficient solution of the problem (P1) by an appropriate method (Simplex method or Big-M method or Two-Phase method).

Write a MATLAB code to solve the following multi-objective LPPs by weighted sum method:

1. Maximize $(3x_1 + 2x_2 + 4x_3)$

Maximize $(x_1 + 5x_2 + 3x_3)$

Subject to

 $2x_1 + 4x_2 + x_3 < = 8$,

 $3x_1 + 5x_2 + 4x_3 > = 15$,

 $x_1>=0, x_2>=0, x_3>=0$

2. Maximize $(x_1 + 4x_2 + x_3)$

Maximize $(2x_1 + 7x_2 + 5x_3)$

Subject to

 $x_1+x_2+x_3 < = 8$,

 $x_1 + 5x_2 + 4x_3 > = 15$,

 $x_1>=0, x_2>=0, x_3>=0$

Optimization Methods (UMA-035)

Lab Experiment - 9 (Fibonacci Search Technique)

Algorithm of Fibonacci Search Technique

Fibonacci numbers

F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8
1	1	2	3	5	8	13	21	34

$$F_0 = 1, F_1 = 1, F_n = F_{n-1} + F_{n-2}, n > 1.$$

Step 1: Using the relation, Measure of effectiveness = $\frac{Interval \ of \ uncertainty}{L_0}$, find the value of Measure of effectiveness.

Step 2: Using the relation $\frac{1}{F_n} \le$ Obtained value of measure of effectiveness, find the smallest natural number n.

Step 3:Store the given interval [a, b]

Step 3: Find $L_0 = b - a$

Step 4: for i = n, find

$$x_1 = a + \frac{F_{i-2}}{F_i} L_0$$
, and $x_2 = a + \frac{F_{i-1}}{F_i} L_0$,

Step 5:If $f(x_1) > f(x_2)$ and the problem is of minimum. Then, repeat Step 3 with $n = n - 1a = x_1$ and b = b.

If $f(x_1) < f(x_2)$ and the problem is of minimum. Then, repeat Step 3 with n = n - 1a = a and a = a.

If $f(x_1) > f(x_2)$ and the problem is of maximum. Then, repeat Step 3 with n = n - 1a = a and $b = x_2$.

If $f(x_1) < f(x_2)$ and the problem is of maximum. Then, Then, repeat Step 3 with $n = n - 1a = x_1$ and b = b.

Step 6:Repeat Step 3 to upto i = 2.

Write a MATLAB code to solve the following problem

Example:

Minimize the function x(x-2), $0 \le x \le 1.5$ within the interval of uncertainty $0.25L_0$.