Universidade Federal da Bahia

Escola Politécnica

Departamento de Engenharia Química

ENGD01 – Métodos Computacionais na Engenharia

Prof. Yuri Guerrieri

Unidade I – 2° Trabalho

Data da Limite de Entrega: 17/06/25

Valor: 10 pontos (70% da Nota 1)

Proposta: Implementar programa computacional para cálculos termodinâmicos: massa

específica de substâncias puras.

O programa deve atender **TODOS** os requisitos abaixo.

Atividade INDIVIDUAL.

Requisitos:

• O programa deve estar devidamente comentado.

• O resultado (Saída) deve ser exibido em planilha ou outra base de dados (.txt ou

.doc ou .pdf, etc.)

• Caso qualquer dos cálculos ultrapasse mais de 100 iterações, o programa deve

exibir a mensagem "Não houve convergência na fase líquida" ou "Não houve

convergência na fase vapor" e interromper.

• O estudante pode propor modificações que tornem o programa ainda mais

genérico, como a implementação de base de dados com diferentes compostos.

Forma de Apresentação/Entrega:

• Enviar programa computacional e base de dados (caso haja)

• Informar software recomendado para rodar o programa.

• Enviar via AVA/Moodle

Universidade Federal da Bahia Escola Politécnica

Departamento de Engenharia Química ENGD01 – Métodos Computacionais na Engenharia

Prof. Yuri Guerrieri

Enunciado: O volume molar é uma importante propriedade termodinâmica e por isso mesmo dezenas de modelos termodinâmicos vem sendo desenvolvidos desde 1873, quando o primeiro modelo foi proposto por J. D. van der Waal. A partir deste modelo, diversos outros modelos cúbicos foram desenvolvidos, como os modelos de Peng-Robinson, Soave, Redlich-Kwong, etc. Por se tratarem de modelos cúbicos, matematicamente eles podem gerar até 3 raízes reais, sendo que destes apenas duas delas tem significado físico. Expressa na sua forma iterativa, como apresentado na Eq. 1, a raiz menor representa o volume molar da fase líquida e a raiz maior representa o volume molar da fase vapor.

Eq. 1
$$V_{i+1} = \frac{RT}{P} + b - \frac{a(V_i - b)}{T^{1/2}PV_i(V_i + b)}$$

Figura 1. Isotermas geradas por uma equação de estado cúbica.

Universidade Federal da Bahia

Escola Politécnica

Departamento de Engenharia Química

ENGD01 – Métodos Computacionais na Engenharia Prof. Yuri Guerrieri

A determinação do volume molar se dará a partir de cálculo iterativo Eq. 1, dado uma estimativa inicial para o volume molar V_i de modo que o erro $|V_{i+1} - V_i|$ seja menor que 0,001. Sendo os parâmetros a e b representações das contrições de atração e repulsão intermolecular, respectivamente. Abaixo estão apresentados tais parâmetros para os modelos van de Waals, Redlich-Kwong e Peng-Robinson.

Equação de van der Waals (vdW)

Eq. 2
$$a = \frac{27R^2Tc^2}{64Pc}$$

Eq. 3
$$b = \frac{RTc}{8Pc}$$

Equação de Redlich-Kwong (RK)

Eq. 4
$$a = \frac{0,42748R^2Tc^{2,5}}{Pc}$$

Eq. 5
$$b = \frac{0,08664RTc}{Pc}$$

Equação de Peng-Robinson (PR)

Eq. 6
$$a = \frac{0.45724R^2Tc^2}{Pc}$$

Eq. 7
$$b = \frac{0.07780RTc}{Pc}$$

Como estimativa inicial para os cálculos deve se considerar que $V_i = b$ (líquido) e o $V_i = RT/P$ (vapor).

Universidade Federal da Bahia Escola Politécnica

Departamento de Engenharia Química

ENGD01 – Métodos Computacionais na Engenharia Prof. Yuri Guerrieri

Organização do Programa:

O programa deve ser organizado conforme a Figura 2.

Figura 2. Estrutura do programa.

Programa Principal:

- Informar modelo termodinâmico [texto], Fase [texto], Temperatura Crítica Tc [K],
 Pressão Crítica Pc [bar]., Temperatura T [K], Pressão P [bar].
- Calcular e exibir o volume molar [cm³/mol] de ambas as fases.
- Calcular e exibir a massa específica [g/cm³] de ambas as fases.

Função:

Vmol (Modelo, Fase, CRT, COND)

Onde,

Modelo – Nome da modelo termodinâmico: vdW, RK ou PR

Fase – (entrada) indicação da fase L (líquido) ou V (vapor)

CRT – (entrada) vetor com as propriedades críticas Tc [K] e Pc [bar]

COND – (entrada) vetor com as propriedades críticas T [K] e P [bar]

Vmol – (saída) volume molar (saída) [cm³/mol]

Universidade Federal da Bahia Escola Politécnica

Departamento de Engenharia Química ENGD01 – Métodos Computacionais na Engenharia Prof. Yuri Guerrieri

Sub-rotinas:

NOME (EstIni, CRT, PARAM)

Onde,

NOME – Nome da subrotina: vdW, RK e PR

EstIni – (entrada) estimativa inicial do volume molar

CRT – (entrada) vetor com as propriedades críticas Tc [K] e Pc [bar]

PARAM – (saída) vetor com os parâmetros a e b

Dados para testar o programa:

Composto	Massa molar [g/mol]	Tc [K]	Pc [bar]
Cloreto de Metila	50,488	416,3	66,80

 $R = 83,14 \text{ cm}^3 \cdot \text{bar/(mol} \cdot \text{K)}$

Considere a temperatura de T = 60°C e pressão P = 13,76 bar.