TD 1: Structures inductives

Dans ce TD, on peut faire les Exercices I à IV. On ajoute les exercices suivants.

1. Récurrences simples

1.1 Montrez par récurrence simple que pour tout $n \in \mathbb{N}$, on a l'inégalité suivante pour tout $x \in \mathbb{R}_+$:

$$e^x \ge 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

2. Démonstration du théorème de point fixe

- **2.1** Montrer le théorème de point fixe. *Indication : on considérera Y l'intersection des ensembles vérifiant les propriétés (1) et (2).*
- 2.2 En déduire le principe d'induction :

Théorème 1 – Principe d'induction

Soit $X\subseteq E$ un ensemble défini inductivement par (B,R). Soit $\mathcal P$ un prédicat sur E. Si :

- 1. $\mathcal{P}(x)$ est vrai pour tout $x \in B$,
- 2. \mathcal{P} est stable par les règles de R: pour tout $r \in R$, pour tout $x_1, \ldots, x_{n_r} \in X$ tels que $\mathcal{P}(x_1), \ldots, \mathcal{P}(x_{n_r})$ sont vrais, on a $\mathcal{P}(r(x_1, \ldots, x_{n_r}))$ vrai.

Alors $\mathcal{P}(x)$ est vrai pour tout $x \in X$.

3. Langages de Dyck

Définition 2 – Langage de Dyck

Pour E un ensemble fini de couples de caractères (tous distincts), le langage de Dyck associé \mathcal{D}_E est l'ensemble des mots bien parenthésés. Formellement, on le définit par induction :

- $-\varepsilon$ (le mot vide) est un mot bien parenthésé,
- pour tout $u, v \in \mathcal{D}_E$ et pour tout $(\ell, \ell') \in \mathcal{D}_E$, $\ell u \ell' v \in \mathcal{D}_E$

Pour cet exercice, on notera $\mathcal{D} = \mathcal{D}_{(,)}$ le langage de Dyck avec un seul type de parenthèses.

3.1 Montrez que $()(()) \in \mathcal{D}$.

On note $|u|_{(}$ (resp. $|u|_{)}$) le nombre de "(" (resp. ")") dans u. On dit que v est préfixe u quand il existe un mot w tel que u = vw.

- **3.2** Montrez que \mathcal{D} est exactement l'ensemble des mots $u \in \{(,)\}^*$ tels que $|u|_{(} = |u|_{)}$ et pour tout préfixe v de u, $|v|_{(} \geq |v|_{)}$.
- **3.3** Déduisez un algorithme vérifiant qu'un mot $u \in \{(,)\}^*$ est bien un mot de Dyck.
- **3.4** Pour $k \in \mathbb{N}$, notons $\mathcal{D}^{(k)}$ l'ensemble des éléments de \mathcal{D} de longueur 2k. Déterminez une relation de récurrence vérifiée par $|\mathcal{D}^{(k)}|$.

4. Le principe d'induction bien fondée

Définition 3 - Relation binaire, relation d'ordre

Une relation binaire \leq sur un ensemble X est un sous ensemble de X^2 , et $(x,y) \in \leq$ est noté $x \leq y$. La relation \leq est une relation d'ordre si pour tous $x,y,z \in X$:

- $-x \le x$ (réflexivité)
- $x \le y$ et $y \le x$ implique x = y (antisymétrique)
- $-x \le y$ et $y \le z$ implique $x \le z$ (transitivité)

Définition 4 - Ordre bien fondé

On dit que la relation d'ordre \leq sur X est bien fondée si tout sous-ensemble non vide Y de X possède un élément minimal, c.-à-d. un élément de Y tel qu'il n'existe pas d'élément de Y strictement plus petit.

4.1 Montrer le principe d'induction bien fondée :

Théorème 5 - Principe d'induction bien fondée

Soit \mathcal{P} un prédicat sur X, et \leq une relation d'ordre bien fondée sur X. Supposons que pour tout $x \in X$, si tout élément y < x vérifie \mathcal{P} , alors x vérifie \mathcal{P} . Alors, $\mathcal{P}(x)$ est vrai pour tout $x \in X$.