Fully abstract categorical semantics for digital circuits

George Kaye, David Sprunger and Dan Ghica University of Birmingham 20 July 2022

ACT 2022

Joint work with...

David Sprunger

Dan Ghica

1

Introduction

Digital circuits are everywhere!

How do we reason with them?

Introduction

Generally by simulation

Reasoning in software is more reduction-based:

$$((\lambda x.\lambda y.x + y) 2) 5 =_{\beta} (\lambda y.2 + y) 5 =_{\beta} 2 + 5 =_{\eta} 7$$

We want an equational theory for digital circuits

Syntax

Combinational circuit components

Light circuits $\stackrel{m}{+}$ $\stackrel{F}{+}$ only contain gates and structure.

Sequential circuit components

Delay

Feedback

Dark circuits $\stackrel{m}{+}$ $\stackrel{r}{+}$ may contain delay or feedback.

Circuit morphisms

Morphisms in a freely generated symmetric traced monoidal category

Semantics

Interpretation

Values are interpreted in a lattice V:

Interpretation

Stream functions

The semantics of circuits is that of stream functions.

A stream \mathbf{V}^{ω} is an infinite sequence of values.

A stream function $f: (\mathbf{V}^m)^\omega \to (\mathbf{V}^n)^\omega$ consumes and produces streams.

Causal stream functions

Not all stream functions correspond to sequential circuits...

Causal

Monotone

'Finite'

Depends on past inputs

with respect to the lattice

Specifies finite behaviours

Theorem

Every monotone causal stream function with 'finite behaviours' corresponds to a class of sequential circuits.

Equational reasoning

Equality of circuits

When are two circuits equal? When they have the same behviour

When they have the same stream function

Reasoning with streams is a pain.

We want to reason equationally: what equations do we need?

First goal: productivity.

A closed circuit is productive if it is equal to an instant value and a delayed subcircuit under the equational theory.

$$F \stackrel{n}{+} = G \stackrel{n}{+}$$

Combinational equations

These reduce any closed combinational circuit $(r)^n$ to some $(r)^n$ to some $(r)^n$

Sequential equations

Non delay-guarded feedback

How do we deal with something like this?

We need a way to eliminate non delay-guarded feedback.

Non delay-guarded feedback

Our gates are monotonic, so they must have a least fixed point... Because the value set ${\bf V}$ is finite, we can always find this fixpoint!

Non delay-guarded feedback

In **V**, the length of the longest chain is 2...

We want

$$F$$
 = G

Axioms of STMCs

Eliminating 'instant feedback'

Axioms of STMCs

Axioms of STMCs

Axioms of STMCs

Combinational circuit equations

Tidying up

Any circuit has an instantaneous value and a delayed subcircuit.

$$F \stackrel{n}{=} G$$

These values are the elements of the corresponding stream!

Open circuits

We still cannot translate between open circuits with the same behaviour.

When do two circuits have the same stream?

Open circuits

We can think of circuits as state machines:

The circuit $= \hat{F}$ produces the state transition and output of $\stackrel{m}{+} F \stackrel{n}{+}$.

Idea: for all accessible states, if the outputs are equal then the original circuits are equal under the equational theory.

(cf. Mealy machine bisimulation)

21

Theorem

Proof.

Theorem

$$\stackrel{m}{+} \stackrel{n}{+} = \stackrel{m}{+} \stackrel{G}{\longrightarrow} \stackrel{n}{+}$$
 if and only if their streams are equal.

Proof.

$$\stackrel{m}{\longleftarrow} G \stackrel{n}{\longrightarrow}$$

22

Theorem

$$\stackrel{m}{+} \stackrel{n}{+} = \stackrel{m}{+} \stackrel{G}{\longrightarrow} \stackrel{n}{}$$
 if and only if their streams are equal.

Proof.

Theorem

$$\stackrel{m}{+} \stackrel{n}{+} = \stackrel{m}{+} \stackrel{n}{G} \stackrel{n}{+}$$
 if and only if their streams are equal.

Proof.

Conclusion

We have presented a categorical framework for sequential circuits

Circuits have semantics as stream functions

It is easier to reason equationally

We have full abstraction: a correspondence between syntactic and semantic

Next step: refine the rewriting system