OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET <u>1</u> OF <u>25</u>

FIG. 1 (PRIOR ART)

FIG.2 (PRIOR ART)

SOURCE-DRAIN CURRENT

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET 2 OF 25

FIG. 3 (PRIOR ART)

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET <u>3</u> OF <u>25</u>

F I G. 4

FIG.5

FIG.6

FIG.7

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET <u>7</u> OF <u>25</u>

F I G. 9

F I G. 10

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET <u>8</u> OF <u>25</u>

F I G. 12

F/G.13

F1G.14

FIG. 15

F/G.16

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET 13 OF 25

F I G. 17

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET <u>15</u> OF <u>25</u>

F I G. 19

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET 16 OF 25

FIG. 20

START ST1.1 MEASURE I ds-V gs CHARACTERISTICS (LINEAR AREA) OF TWO TRANSISTORS HAVING DIFFERENT CHANNEL WIDTH EXTRACT THRESHOLD VOLTAGES V thNa, V thWi OF TWO TRANSISTORS BY EXTRAPOLATION ETC, AND LET ESTIMATED VALUE OF THRESHOLD VOLTAGE DIFFERENCE BE $\delta_{\text{guess}} = V_{\text{thNa}} - V_{\text{thWi}}$ ST1.3 DETERMINE LOWER AND UPPER LIMITS OF AREA OF δ AS $\delta_{inf} = \delta_{guess} - K$ AND $\delta_{\text{sup}} = \delta_{\text{guess}} + K$, RESPECTIVELY, WHERE K IS 0.2V, FOR EXAMPLE, AND LET INITIAL VALUE BE $\delta = \delta_{inf}$ ST1.4 $\delta_{\inf} \leq \delta \leq \delta_{\sup}$ LET THRESHOLD VOLTAGE OF WIDE TRANSISTOR BE V thwi. AND SUPPOSE THAT OF NARROW TRANSISTOR BE $V_{thNa} = V_{thNi} + \delta$ FROM THRESHOLD VOLTAGE IN ST1.5, MEASURE GATE OVERDRIVE (GATE VOLTAGE-THRESHOLD VOLTAGE) V gt FOR ABOUT 20 POINTS AT INTERVALS IN AREA Ω (e.g. $0.3V \le V_{gt} \le 1.3V$), AND FIND $DW^{\#'}$ (δ , V_{gtn}), $R^{\#'}$ (δ , V_{gtn}), h (δ , V_{gtn}), AND $F(\delta, V_{gtn}) = R^{\#'} - h \cdot DW^{\#'}$, where n=1,2,...,20. CALCULATE STANDARD DEVIATION σ [F(δ)] OF FUNCTION F IN AREA Ω LET BE $\delta = \delta + Q$, WHERE Q IS 0.01, FOR EXAMPLE ST1.9 FIND $\delta = \delta_0$ WITH WHICH σ [F(δ)] BE A MINIMUM, AT THIS TIMES, TRUE THRESHOLD VOLTAGE OF NARROW TRANSISTOR IS $V_{thNa} = V_{thWi} + \delta_0$. THRESHOLD VOLTAGE OF WIDE TRANSISTOR IS $V_{thWi} = V_{thWi}$ AS IN ST1.5 MEASURE GATE OVERDRIVE FROM THRESHOLD VOLTAGE IN ST1.10 ST1.9, TO FIND $dW^{**}(V_{gt})$ ST1.11 LET DW OF NARROW TRANSISTOR BE $DW_{Na}(V_{gt}) = dW^{**}(V_{gt})$, AT THIS TIME, EFFECTIVE CHANNEL WIDTH OF \mathbf{w}_{Na} OF NARROW TRANSISTOR IS GIVEN BY $W_{effNa}(V_{gt}) = W_{mNa} - DW_{Na}(V_{gt})$

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET <u>17</u> OF <u>25</u>

F1G.21

F1G.22

F1G.24

F1G.25

OBLON, SPIVAK, ET AL DOCKET #: 244907US2DIV INV: Kenji YAMAGUCHI SHEET <u>22</u> OF 25

FIG. 26 START ST1.1 MEASURE I ds-V gs CHARACTERISTICS (LINEAR AREA) OF TWO TRANSISTORS HAVING DIFFERENT CHANNEL WIDTH ST1.2 EXTRACT THRESHOLD VOLTAGES V thNa, V thWi OF TWO TRANSISTORS BY EXTRAPOLATION ETC, AND LET ESTIMATED VALUE OF THRESHOLD VOLTAGE DIFFERENCE BE $\delta_{\text{guess}} = V_{\text{thNa}} - V_{\text{thWi}}$ DETERMINE LOWER AND UPPER LIMITS OF AREA OF δ AS $\delta_{inf} = \delta_{guess} - K$ AND $\delta_{\text{sup}} = \delta_{\text{guess}} + K$, RESPECTIVELY, WHERE K IS 0.2V, FOR EXAMPLE, AND LET INITIAL VALUE BE $\delta = \delta_{inf}$ $\delta_{\inf} \leq \delta \leq \delta_{\sup}$ ST1.5 LET THRESHOLD VOLTAGE OF WIDE TRANSISTOR BE $V_{thWi} = V_{thWi}$, AND SUPPOSE THAT OF NARROW TRANSISTOR BE $V_{thNa} = V_{thWi} + \delta$ FROM THRESHOLD VOLTAGE IN ST1.5, MEASURE GATE OVERDRIVE (GATE VOLTAGE-THRESHOLD VOLTAGE) V_{gt} AND, IN AN AREA Ω , e.g. $0.2V \le V_{gt} \le 0.6V$, FIND $DW^{\#}(\delta, V_{gtn})$, WHERE $n=1,2,\cdots,20$. CALCULATE STANDARD DEVIATION OF DW# IN AREA Q LET BE $\delta = \delta + Q$, WHERE Q IS 0.01, FOR EXAMPLE ST1.32 FIND $\delta = \delta_0$ WITH WHICH σ [DW#] BE A MINIMUM, AT THIS TIME, TRUE THRESHOLD VOLTAGE OF NARROW TRANSISTOR IS $v_{thNa} = v_{thWi} + \delta_0$. THRESHOLD VOLTAGE OF WIDE TRANSISTOR IS $V_{thWi} = V_{thWi}$ AS IN ST1.5 GIVE DW BY < DW $^{\#}$ > $\delta = \delta_0$ GIVE EFFECTIVE CHANNEL WIDTH BY Weff = Wm - DW

F1G.28

F1G.29

