Differentiable Relaxations and Reparameterisations

Jonathon Hare

What are differentiable relaxations and reparameterisations?

- We've seen that we can build arbitrary computational graphs from a variety of building blocks
- But, those blocks need to be differentiable to work in our optimisation framework
 - More specifically they need to be continuous and differentiable almost everywhere.
- That limits what we can do... Can we work around that?
 - Relaxations make continuous (and potentially differentiable everywhere) approximations.
 - Reparameterisations rewrite functions to factor out stochastic variables from the parameters.

Aside: continuity and differentiable almost everywhere

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - * it does not have any abrupt changes in value
 - * small changes in x result in small changes to f(x) everywhere in the domain of x
 - ReLU is differentiable almost everywhere
 - * No gradient at x = 0; only left and right gradients at that point
 - * There are subgradients at x=0; implementations usually just arbitrarily pick f'(0)=0
- Functions that are differentiable almost everywhere or have subgradients tend to be compatible with gradient descent methods
 - We expect that the loss landscape is different for each batch & that we'll never actually reach a minima, and we only need to *mostly* take steps in the right direction.

Relaxing ReLU

- Softplus (softplus(x) = $\ln(1 + e^x)$) is a relaxation of ReLU that is differentiable everywhere.
- Its derivative is the Sigmoid function
- Not widely used; counter-intuitively, even though it neither saturates completely and is differentiable everywhere, empirically it has been shown that ReLU works better.

Interpretations of softmax

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!
 - softmax can be viewed as a continuous and differentiable relaxation of the arg max function with one-hot output encoding.
 - The arg max function is not continuous or differentiable; softmax provides an approximation:

$$\mathbf{x} = \begin{bmatrix} 1.1 & 4.0 & -0.1 & 2.3 \\ \arg \max(\mathbf{x}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0.044 & 0.797 & 0.013 & 0.146 \end{bmatrix}$$

The Softmax function with temperature

Consider what happens if you were to divide the input logits to a softmax by a scalar temperature parameter T.

softmax
$$(\boldsymbol{x}/T)_i = \frac{e^{x_i/T}}{\sum_{j=1}^K e^{x_j/T}} \quad \forall i = 1, 2, \dots, K$$

arg max — softmax with temperature

arg max — scalar approximation

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we are not actually going get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation¹.

¹for now — we'll address this in a few slides time!

- First, consider how to convert a one-hot vector to index representation in a differentiable manner: $[0,0,1,0] \rightarrow 2$
 - Just dot product with a vector of indices: [0, 1, 2, 3]
- The same process can be applied to the softmax distribution
 - As temperature $T \to 0$, softmax $(x/T) \cdot [0, 1, ..., N] \to \arg\max(x)$ for $x \in \mathbb{R}^N$.

arg max — scalar approximation

$$\mathbf{x} = [\ 1.1 \ \ 4.0 \ \ -0.1 \ \ 2.3 \]^{\top}$$
 $\mathbf{i} = [\ 0.0 \ \ 1.0 \ \ 2.0 \ \ 3.0 \]^{\top}$
softmax $(\mathbf{x}/1.0)^{\top}\mathbf{i} = 1.2606$
softmax $(\mathbf{x}/0.8)^{\top}\mathbf{i} = 1.1894$
softmax $(\mathbf{x}/0.6)^{\top}\mathbf{i} = 1.1037$
softmax $(\mathbf{x}/0.4)^{\top}\mathbf{i} = 1.0274$
softmax $(\mathbf{x}/0.2)^{\top}\mathbf{i} = 1.0004$

max

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.
 - As temperature $T \to 0$, softmax $(\boldsymbol{x}/T)^{\top} \boldsymbol{x} \to \max(\boldsymbol{x})$.

$$\boldsymbol{x} = \begin{bmatrix} 1.1 & 4.0 & -0.1 & 2.3 \end{bmatrix}^{\top}$$
 softmax $(\boldsymbol{x}/1.0)^{\top}\boldsymbol{x} = 3.571$ softmax $(\boldsymbol{x}/0.8)^{\top}\boldsymbol{x} = 3.736$ softmax $(\boldsymbol{x}/0.6)^{\top}\boldsymbol{x} = 3.881$ softmax $(\boldsymbol{x}/0.4)^{\top}\boldsymbol{x} = 3.974$ softmax $(\boldsymbol{x}/0.2)^{\top}\boldsymbol{x} = 3.999$

L1 norm

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model
- abs is continuous and differentiable almost everywhere, but...
- unlike ReLU, the gradients left and right of the discontinuity point in equal and opposite directions
 - This can cause oscillations that prevent or hamper learning

Relaxing the L1 norm

• Huber loss (aka Smooth L1 loss) relaxes L1 by mixing it with L2 near the origin:

$$z_i = \begin{cases} 0.5(x_i - y_i)^2, & \text{if } |x_i - y_i| < 1\\ |x_i - y_i| - 0.5, & \text{otherwise} \end{cases}$$

• In both cases gradients reduce in magnitude and switch direction smoothly which can lead to much less oscillation.

Backpropagation through random operations

- ullet Up until now all the models we've considered have performed deterministic transformations of input variables $oldsymbol{x}$.
- What if we want to build a model that performs a stochastic transformation of x?
- ullet A simple way to do this is to augment the input $oldsymbol{x}$ with a random vector $oldsymbol{z}$ sampled from some distribution
 - The network would learn a function f(x, z) that is internally deterministic, but appears stochastic to an observer that does not have access to z.
 - provided that f is continuous and differentiable (almost everywhere) we can perform gradient based optimisation as usual.

Differentiable Sampling

Consider

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

How can we take derivatives of y with respect to μ and σ^2 ?

Differentiable Sampling

If we rewrite

$$y = \mu + \sigma z$$
 where $z = \mathcal{N}(0, 1)$

Then it is clear that y is a function of a deterministic operation with variables μ and σ with an (extra) input z.

- Crucially the extra input is an r.v. whose distribution is not a function of any variables whose derivatives
 we wish to calculate.
- The derivatives $dy/d\mu$ and $dy/d\sigma$ tell us how an infinitesimal change in μ or σ would change y if we could repeat the sampling operation with the *same* value of z

The reparameterisation trick

- The 'trick' of factoring out the source of randomness into an extra input z is often called the **reparameterisation trick**.
- It doesn't just apply to the Gaussian distribution!
 - More generally we can express any probability distribution $p(y; \theta)$ or $p(y|x; \theta)$ as $p(y; \omega)$ where ω contains the parameters θ and if applicable inputs x.

- A sample $y \sim p(y; \omega)$ can be rewritten as $y = f(z, \omega)$ where z is a source of randomness.
- We can thus compute derivatives $\partial y/\partial \omega$ and use gradient based optimisation as long as
 - * f is continuous and differentiable almost everywhere
 - * ω is not a function of z
 - * and z is not a function of ω

Backpropagation through discrete stochastic operations

- Consider a stochastic model $y = f(z, \omega)$ where the outputs are **discrete**.
 - This implies f must be a step function.
 - Derivatives of a step function at the step are undefined.
 - Derivatives are zero almost everywhere.
 - If we have a loss $\mathcal{L}(y)$ the gradients don't give us any information on how to update the parameters θ to minimise the loss
- Potential solutions:
 - Policy Gradient Methods (e.g. the REINFORCE algorithm)
 - A relaxation and another 'trick': Gumbel Softmax and the Straight-through operator

REINFORCE: REward Increment = nonnegative Factor \times Offset Reinforcement \times Characteristic Eligibility

- $\mathcal{L}(f(z,\omega))$ has useless derivatives
- But the expected loss $\mathbb{E}_{z \sim p(z)} \mathcal{L}(f(z, \omega))$ is often smooth and continuous.
 - This is not tractable with high dimensional $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$.
 - But, it can be estimated without bias using an Monte Carlo average.
- REINFORCE is a family of algorithms that utilise this idea.

REINFORCE: REward Increment = nonnegative Factor \times Offset Reinforcement \times Characteristic Eligibility

The simplest form of REINFORCE is easy to derive by differentiating the expected loss:

$$\mathbb{E}_{z}[\mathcal{L}(y)] = \sum_{y} \mathcal{L}(y)p(y) \tag{1}$$

$$\frac{\partial \mathbb{E}[\mathcal{L}(\boldsymbol{y})]}{\partial \boldsymbol{\omega}} = \sum_{\boldsymbol{y}} \mathcal{L}(\boldsymbol{y}) \frac{\partial p(\boldsymbol{y})}{\partial \boldsymbol{\omega}}$$
(2)

$$= \sum_{y} \mathcal{L}(y) p(y) \frac{\partial \log p(y)}{\partial \omega}$$
(3)

$$\approx \frac{1}{m} \sum_{\mathbf{y}^{(i)} \sim p(\mathbf{y}), i=1}^{m} \mathcal{L}(\mathbf{y}^{(i)}) \frac{\partial \log p(\mathbf{y}^{(i)})}{\partial \boldsymbol{\omega}}$$
(4)

- This gives us an unbiased MC estimator of the gradient.
- \bullet Unfortunately this is a very high variance estimator, so it would require many samples of y to be drawn to obtain a good estimate
 - or equivalently, if only one sample were drawn, SGD would converge very slowly and **require** a small learning rate.

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, t, from a vocabulary of K tokens is achieved by sampling a categorical distribution

$$t \sim \operatorname{Cat}(p_1, \dots, p_K); \sum_i p_i = 1.$$

Generating the probabilities p_1, \ldots, p_K directly from a neural network has potential numerical problems; it's much easier to generate logits, x_1, \ldots, x_K . [0.5em] The gumbel-softmax reparameterisation allows us to sample directly using the logits:

$$t = \underset{i \in \{1, \dots, K\}}{\operatorname{argmax}} x_i + z_i$$

where $z_1, \ldots z_K$ are i.i.d Gumbel (0,1) variates which can be computed from Uniform variates through $-\log(-\log(\mathcal{U}(0,1)))$.

Differentiable Sampling: Straight-Through Gumbel Softmax

Ok, but how does that help? argmax isn't differentiable! [0.5em] ...but we've already seen that we can relax arg max using

$$\operatorname{softargmax}(\boldsymbol{y}) = \sum_{i} \frac{e^{y_i/T}}{\sum_{j} e^{y_j/T}} i$$

where T is the temperature parameter.

Differentiable Sampling: Straight-Through Gumbel Softmax

But... this clearly gives us a result that will be non-integer; we cannot round or clip because it would be non-differentiable. [0.5em] The Straight-Through operator allows us to take the result of a true argmax that has the gradient of the softargmax:

$$\operatorname{STargmax}(\boldsymbol{y}) = \operatorname{softargmax}(\boldsymbol{y}) + \operatorname{stopgradient}(\operatorname{argmax}(\boldsymbol{y}) - \operatorname{softargmax}(\boldsymbol{y}))$$

where stopgradient is defined such that stopgradient(a) = a and ∇ stopgradient(a) = 0.

Straight-Through Gumbel Softmax

Combine the gumbel softmax trick with the STargmax to give you discrete samples, with a usable gradient².

Summary

- Differentiable programming works with functions that are continuous and differentiable almost everywhere.
- Some non-continuous functions can be relaxed to make them more amenable to gradient based optimisation by making continuous approximations.
- Some continuous functions with discontinuous gradients can be relaxed to make optimisation more stable.
- Reparameterisations can allow us to differentiate through random operations such as sampling
- We can even make networks output/utilise discrete variables by combining relaxations and reparameterisations.

 $^{^2}$ The ST operator is biased but low variance; in practice it works very well and is better than the high-variance unbiased estimates you could get through REINFORCE.