iPV++

Group 17
Angelica Becker, Jeffrey Claudio, Emmanuel Ortiz

Motivation

- Clean energy source
- Increased want/need for renewable energy
- Reduce cost and complexity of installation and maintenance
- Optimize configuration
- Sponsored

Existing PV Systems

Goals and Objectives

- Develop and design an advanced integrated and cost-effective PV system:
 - Design a unique architecture that integrates smart power electronics and local storage and battery management to harvest solar power
 - Present new innovative inverter with smart and dynamic control algorithm
 - 'Plug-and-play' easy replacement of battery and inverter to accelerator
 PV deployment and significantly reduce installation and maintenance costs

IPV++ Enclosure

- Electrical Team
 - DC/DC Converter
 - DC/AC Inverter
- Mechanical Team
 - PV Rack
 - Thermal Management and Packaging

Specifications

DC/DC Converter	Dual Input400V Output500W Output
Single-Phase Inverter	Input 400VOutput of 120VPotential to be Grid-Tied
Microcontroller	 Programming DC/DC Controller and DC/AC Modules

DC/DC Converter

DC/DC Converter

Charging Mode

Charging Mode

Frequency Manipulation (Constant DC Link)

Maximum Power Mode

Maximum Power Mode

Phase Manipulation

DC/DC Component Selection

DC/DC Microcontroller

Microcontroller		
STM32F334K8T7		
Price	\$4.34	
I/O Lines	10	
Main Memory	64KB	
Clock Speed	72MHz	
PWM	20	
Advanced Timer	4 Independent Channels	

MOSFETs

DC/DC Switching

	FDB035N10A	IPB020N10N5ATMA1
Rds(on)	3 mOhm	2 mOhm
Qg	89 nC	168 nC
Vds	100 V	100 V
Price	\$5.97	\$7.33

DC/AC Inverter

Inverter Control

DC/AC Component Selection

DC/AC Inverter Microcontroller

Name	Atmel	DSPIC
Model	ATmega2560	dsPIC33FJ16GS504
Size	8-bit	16-bit
PWM	8	10
Price	\$1.50	\$4.70

LC Filter

LC Filter

Components value at Switching Frequency 150,000 Hz

Component	Value	Part Number	Price
Capacitor	6 uF	B32754C360 5K000	\$4.46
Inductor	470 uH	ATCA-08- 471M-V	\$9.20

Power MOSFET

MOSFET Power Loss

Power MOSFET

IPB60R080P7ATMA1				
Rds(on)	80 mOhm			
Qg	51 nC			
Vds	650 V			
T(on)	15 ns			
T(off)	70 ns			
Price	\$6.39			

Sinusoidal Pulse Width Modulation

Output Before and After LC Filter

Issues

- Communication/Expectations
- Funding
- Parts Shortage
- Simulation
- Programming

Changes to Design

- Uni-Directional
- External Resonator added to DC/DC Converter Stage
- Revision B: DC/AC Inverter for a more efficient design
- Microcontroller change in DC/AC Inverter

Changes to Design

Arduino Mega

- 256 KB Flash Memory
- 15 PWM Channels
- Open Source Code

Administrative

Budget

Part	Price	
DC/DC Converter	\$174.75	
DC/AC Inverter	\$224.57	
PCBs	\$56.00	
	Total : \$455.33	

Work Distribution

	Jeffrey	Angelica	Emmanuel
DC/DC Converter	Р		S
DC/AC Inverter		Р	Р
PCB Design	Р	S	Р
Programming	S	Р	

Questions?