MATH 0120 Business Calculus. Worksheet 3.

University of Pittsburgh, 6W2-Summer 2019

Name:

Partial derivatives

1. Find the first partial derivatives of the function.

(a)
$$f(x,y) = y^5 x^4 - \frac{x}{y}$$

(b)
$$f(x,y) = \frac{x}{(4x+7y)^2} + \ln(1+x^4y^3 + e^{x^2-y^2})$$

(c)
$$f(x,y) = \frac{y}{1+x^2+y^2} + \sqrt{1+x^2+y^2}$$

Maximum and minimum values

2. Find the local maximum and minimum values and saddle points of the function.

(a)
$$f(x,y) = xy - 2x - 2y - x^2 - y^2$$

(b) $f(x,y) = y^3 + 3x^2y - 6x^2 - 6y^2 + 2$

(c)
$$f(x,y) = xe^{-2x^2 - 2y^2}$$

Lagrange Multipliers

- 3. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.
 - (a) f(x,y) = 3x + y subject to $x^2 + y^2 = 10$.

(b) $f(x,y) = e^{xy}$ subject to $x^3 + y^3 = 16$.

(c) f(x,y,z) = 2x + 2y + z subject to $x^2 + y^2 + z^2 = 9$.