<u>Painel</u> / Meus cursos / <u>SC26EL</u> / <u>9-Formas Canônicas e Transformações de Similaridade</u> / <u>Questionário sobre Formas Canônicas e Transformações de Similaridade</u>

Iniciado em	domingo, 1 ago 2021, 21:04
Estado	Finalizada
Concluída em	domingo, 1 ago 2021, 21:27
Tempo	22 minutos 54 segundos
empregado	
Notas	6,3/8,0
Avaliar	7.9 de um máximo de 10.0(79 %)

Correto

Atingiu 1,0 de 1,0 Identifique as seguintes representações em espaço de estados:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$\begin{bmatrix} x_1 \\ \end{bmatrix}$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Forma canônica controlável

Forma canônica observável

Forma não canônica

~

Forma canônica controlável

~

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Forma canônica observável

Forma canônica de Jordan

Forma canônica diagonal

/

Parcialmente correto

Atingiu 0,9 de 1,0 Considere o sistema $G(s) = \frac{2}{s^2 + 3s + 2}$. Obtenha as representações nas formas canônicas controlável, observável e diagonal ou de Jordan desse sistema. As representações tem a forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

onde
$$A=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
, $B=egin{bmatrix} b_{11} \ b_{21} \end{bmatrix}$ e $C=egin{bmatrix} c_{11} & c_{12} \end{bmatrix}$.

1) FORMA CANÔNICA CONTROLÁVEL

Os elementos a_{ii} da matriz A são:

$$a_{11}=0$$
, $a_{12}=1$ \checkmark , $a_{21}=-2$ \checkmark e $a_{22}=-2$ \checkmark .

Os elementos b_{ij} da matrix B são:

$$b_{12} = \boxed{0}$$
 e $b_{12} = \boxed{1}$.

Os elementos c_{ii} da matriz C são:

$$c_{11} = 2$$
 \checkmark e $c_{12} = 0$ \checkmark .

O valor de
$$D = 0$$
 .

2) FORMA CANÔNICA OBSERVÁVEL

Os elementos a_{ii} da matriz A são:

$$a_{11}=0$$
, $a_{12}=$ -2 \checkmark , $a_{21}=$ 1 \checkmark e $a_{22}=$ -2 \checkmark .

Os elementos b_{ij} da matrix B são:

$$b_{12} = 2$$
 \checkmark e $b_{12} = 0$ \checkmark .

Os elementos c_{ii} da matriz C são:

$$c_{11} = \boxed{0}$$
 e $c_{12} = \boxed{1}$

O valor de
$$D = 0$$
 .

3) FORMA CANÔNICA DIAGONAL OU DE JORDAN

Como o sistema tem polos distintos , é possível a representação na forma canônica

Os elementos a_{ij} da matriz A são (considere os polos em ordem decrescente na diagonal principal):

Os elementos b_{ij} da matrix B são:

$$b_{12} = \boxed{1}$$
 \checkmark e $b_{12} = \boxed{1}$

Os elementos c_{ij} da matriz C são:

$$c_{11} = \boxed{2}$$
 e $c_{12} = \boxed{-2}$

O valor de
$$D = 0$$

Parcialmente correto

Atingiu 0,6 de 1,0 Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são: Num(s) = 0 $\checkmark s^3 + 0$ $\checkmark s^2 + 1$ $\checkmark s + 2$ \checkmark . Os coeficientes do polinômio do denominador são: Den(s) = 1 $\checkmark s^3 + -2$ $\checkmark s^2 + -2$ $\checkmark s + -2$ \checkmark .

Parcialmente correto

Atingiu 0,6 de 1,0 Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -12 \\ 0 & 1 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são:

$$Num(s) = \boxed{0} \qquad \checkmark \quad s^3 + \boxed{1} \qquad \checkmark \quad s^2 + \boxed{0} \qquad \checkmark \quad s + \boxed{3} \qquad \checkmark \quad .$$

Os coeficientes do polinômio do denominador são:

$$Den(s) = \begin{bmatrix} 1 & \checkmark & s^3 + \end{bmatrix} 5 & × & s^2 + \end{bmatrix} 5 & × & s + \end{bmatrix} 5$$

Questão **5**

Correto

Atingiu 1,0 de 1,0 Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são: Num(s) = 0 \checkmark $s^2 + 0$ \checkmark s + 1 \checkmark . Os coeficientes do polinômio do denominador são: Den(s) = 1 \checkmark $s^2 + 3$ \checkmark s + 2 \checkmark .

Parcialmente correto

Atingiu 0,7 de 1,0 Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são: Num(s) = 0 \checkmark $s^2 + 0$ \checkmark s + 1 \checkmark . Os coeficientes do polinômio do denominador são: Den(s) = 1 \checkmark $s^2 + 3$ \checkmark s + -2 \checkmark .

Parcialmente correto

Atingiu 0,9 de 1,0 Considere o sistema $G(s) = \frac{s+1}{s^2+6s+9}$. Obtenha a representação em espaço de estados na forma canônica diagonal ou de Jordan.

O sistema tem uma representação na forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

O sistema por ter polos com multiplicidade diferente de 1 v possui representação na forma canônica

de Jordan

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são (considere os elementos da diagonal principal em ordem decrescente):

$$a_{11}=$$
 -3 \checkmark , $a_{12}=$ 1 \checkmark , $a_{21}=$ 0 \checkmark e $a_{22}=$ -3 \checkmark .

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \ b_{21} \end{array}
ight]$ são:

$$b_{11} = \boxed{0}$$
 e $b_{21} = \boxed{1}$.

Os elementos c_{ij} da matriz $C = \begin{bmatrix} c_{11} & c_{12} \end{bmatrix}$ são:

$$c_{11} = \boxed{}$$
 -3 \times e $c_{12} = \boxed{}$ 1

O valor de
$$D = \begin{bmatrix} 0 \\ \end{bmatrix}$$
.

Parcialmente correto

Atingiu 0,6 de 1,0 Dada a representação abaixo, ache a matriz de transformação P que diagonaliza o sistema. Também ache sua representação na forma canônica diagonal.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -20 \\ 1 & 0 & -32 \\ 0 & 1 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Os autovalores desse sistema, em ordem decrescente, são: $\lambda_1=$ -13 \times , $\lambda_2=$ -20 \times e $\lambda_3=$

Para a determinação dos autovetores associados, considere $x_3 = 1$. Os autovetores tem a forma $V_i = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^T$.

O autovetor associado à
$$\lambda_1$$
 é: $V_1 = [$

O autovetor associado à
$$\lambda_2$$
 é: $V_2 = [$

A matriz de transformação tem a forma $P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$. Logo, os elementos desta matriz são:

$$p_{11} =$$
 \mathbf{x} $p_{12} =$ \mathbf{x} $p_{13} =$ 2

$$p_{31} = \boxed{1}$$
 $p_{32} = \boxed{1}$ $p_{33} = \boxed{11}$

Logo, o sistema diagonalizado tem a forma:

$$\dot{z}=Az+Bu$$

$$y = Cz + Du$$

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ são:

$$a_{11} = \begin{bmatrix} -1 \\ & \end{bmatrix} \checkmark \quad a_{12} = \begin{bmatrix} 0 \\ & \end{bmatrix} \checkmark \quad a_{13} = \begin{bmatrix} 0 \\ & \end{bmatrix} \checkmark$$

$$a_{21} = \begin{bmatrix} 0 \\ \end{bmatrix} \checkmark \quad a_{22} = \begin{bmatrix} \\ \end{bmatrix} \checkmark \quad a_{23} = \begin{bmatrix} 0 \\ \end{bmatrix} \checkmark$$

$$a_{31} = \boxed{0}$$
 \checkmark $a_{32} = \boxed{0}$ \checkmark $a_{33} = \boxed{}$

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \\ b_{21} \\ b_{31} \end{array}
ight]$ são:

$$b_{11}=$$
 2 \checkmark , $b_{21}=$ \checkmark e $b_{31}=$

Os elementos c_{ij} da matriz $C = \left[egin{array}{ccc} c_{11} & c_{12} & c_{13} \end{array}
ight]$ são:

$$c_{11} = \boxed{1}$$
 , $c_{12} = \boxed{1}$ e $c_{13} = \boxed{1}$

O valor de
$$D = 0$$

 ■ Script Python

Seguir para...

Aula 10 - Resolução das Equações de Estado ►

