ouees-201506 Part 2: largescale information systems

Kenji Rikitake

16-JUN-2015
School of Engineering Science
Osaka University
Toyonaka, Osaka, Japan
@jj1bdx

Lecture notes on GitHub

- https://github.com/jj1bdx/oueees-201505public/
- Don't forget to check out the issues!

Cloud computing systems

Cloud computing elements

- Servers and services on the Internet
- Endpoint terminals (smartphones, tablets, laptops, etc.) outside the cloud
- Highly centralized systems depending on the Internet

Inside the services

- A cluster of distributed systems
- Multiple computers collaboratively connected to do the same task
- Highly decentralized or even distributed

Forms of networks 1

¹ Carl S. Sterner, Resilience and Decentralization, http://www.carlsterner.com/research/ 2009_resilience_and_decentralization.shtml

Real world: hierarchy and decentralization ²

² By Jurgen Appelo, licensed CC BY 2.0, https://www.flickr.com/photos/jurgenappelo/5201869924/

Centralized social behavior accerelated by cloud computing

- Sharing everything no privacy
- Panopticon³ style of governance, filtering, censorship, or autocracy
- Complete externalization of resources, leading to no personal control

³ n. a circular prison with cells arranged around a central well, from which prisoners could at all times be observed. (New Oxford American Dictionary, Apple OS X 10.10.3)

Precidio Modelo Prison⁴

⁴ Friman, licensed CC BY-SA 3.0, https://en.wikipedia.org/wiki/Panopticon#/media/File:Presidio-modelo2.JPG

Panoption plan example (public domain)

INGSOC

The slogans: 5

- War is peace
- Freedom is slavery
- Ignorance is strength
- Independent thinking = thoughtcrime

NOTE: this is a fiction!

⁵ George Orwell, "Nineteen Eighty-Four", 1949.

Perpetual War 常在戦場

Why cloud computing has become so dystopian?

We have sold freedom for convenience

Convenience of centralized systems

- Ubiquitous/global accessibility
- Concentrated data for easy analysis
- Easy control of the information flow
- No extra cost for sharing
- No need to think about where the information locates

The inconvenient truth of centralized systems

What if the core/cloud fails?

Inconvenience of centralized systems

- Ubiquity or no accessibility
- When the core fails, no alternative
- When the core loses data, no backup
- The system performance is restricted by the capability of the core
- Endpoint systems will lost all capabilities

Centralized systems are not sustainable

Sustainable information systems: decentralized and distributed

Real-world challenges

- Natural disasters
- Device failures
- Human operation errors
- Political impediments
- Social resentments

Handling failures

- Redundancy: keeping backup units ready
- Fault tolerance: keeping systems running even the components fail
- Resilience by failing fast: early detection of failures and invocation of the recovery procedures

Why fault tolerance?

- Hard disk MTBF ~= 1 million hours
- 1000 hard disks running 24 hours x 365 days
 = 8.76 million hours
- If you're running a system with 1000 hard disks, nine out of 1000 will fail in a year
- Recovery of a disk content takes often a day
- You can't stop a system for a day, can you?

Requirement to keep the systems fault tolerant

- Redundancy: two or more resources for each unit of processing
- Supervising the failure of the units by an independent supervisor
- Rollback capability: undo the incomplete operations and retry

Supervisor

Consistent hashing of Basho Technologies' Riak database ⁶

⁶ (Note: Rikitake was a Basho Technologies employee during February to September 2013.) http://docs.basho.com/riak/latest/theory/concepts/Clusters/

Fault tolerance of Riak

- Multiple copies for each data bucket
- Data evenly distributed to each cluster member node, more resilient to failures
- Even if a node fails, the other nodes respond with the valid data
- Recovery replication will happen after the node recovery
- All automated

The inconvenient truth of distributed systems

Consistency: hard or impossible to maintain

Net split

Recovery from net split is complex

Concurrency: every system is running on its own; synchronization needed

Synchronization

Locking

How precise the locking or synchronization timing should be?

- It depends on the application
- Bank transaction: strict
- Shopping cart: not necessarily strict
- Domain Name System: loose

Current trend: less locking, more inconsistency allowance

Questions

- How much is the cost of synchronization?
- Why do we need concurrent systems?
 Stability? Performance?
- What have we traded in for obtaining the convenient cloud computing systems? Can we take them back?