

Fun with Sensors

Yogi Rampuria Principal Solution Engineer Yugabyte

Fun with Sensors' Data

Yogi Rampuria Principal Solution Engineer Yugabyte

Who am I?

- Solution Engineer @ Yugabyte
- Living in Singapore
- Working with Customers and Partners across South Asia
- Software Engineer from Late 90s
- Active in Cloud Native Community Space (YB,Spring, Cloud, Java, Kubernetes)
- o Blog: yogendra.me

Why the topic?

- I am IoT Hobbyist RPi,
 Arduino, ESP32, etc.
- loT is everywhere
 - Home Automation, Smart Cities, etc.
- Suitability for Distributed SQL
 - Consistency
 - Velocity
 - Volume

IoT: Definition and My Interpretation.

- Small and Low Powered Devices
- o Produce Structured Data
- o Edge Devices and Processing
- Variety of Acquisition: Analog, Digital,
 Visual (Camera), Audio (Mic), Sensors
 (Weather, Bio, Touch)
- Usage: Automotive, Industrial and Home Automation
- o MQTT used for Communication
 - Messaging Oriented
 - Publish/Subscribe Model
 - TCP based
 - Brokers handle publishing and subscription (Mosquitto/RabbitMQ)
 - Messaging system for scalable handle data ingestion (Kafka/RabbitMQ)

MQTT: The Standard for IoT Messaging

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as an extremely lightweight publish/subscribe messaging transport that is ideal for connecting remote devices with a small code footprint and minimal network bandwidth. MQTT today is used in a wide variety of industries, such as automotive, manufacturing, telecommunications, oil and gas, etc.

Market Size

IoT Endpoint by Segment, 2018 - 2020 Worldwide (Installed Base, Billions of Units)

Segment	2018	2019	2020
Utilities	0.98	1.17	1.37
Government	0.40	0.53	0.70
Building Automation	0.23	0.31	0.44
Physical Security	0.83	0.95	1.09
Manufacturing & Natural Resources	0.33	0.40	0.49
Automotive	0.27	0.36	0.47
Healthcare Providers	0.21	0.28	0.36
Retail & Wholesale Trade	0.29	0.36	0.44
Information	0.37	0.37	0.37
Transportation	0.06	0.07	0.08
Total	3.96	4.81	5.81

Source: Gartner (August 2019)

COVID-19 has driven the IoT investment

What does that mean?

- o More sensors -> More data
- o More Data -> More Challenges
 - Scaling
 - Resiliency
 - Automation
 - Lifecycle Management
- o IoT Application/Solution Data Lifecycle
 - Geo-distributed Acquisition
 - Data Residency
 - Data Purging

Enthusiast Architecture

Source: https://www.rototron.info/raspberry-pi-esp32-micropython-mqtt-dht22-tutorial/

- Processing Components are Microservices Based
- Resiliency at All Layers
 - HA, or even better Distributed
- Scalable
 - Scale up and/or out
- Geo-distribution
 - Especially for PII data
 - User Profile
 - Contacts
 - Identification Details
 - Lower Latency

Lets Focus on ...

A Bit More Focus ...

Demo: IoT Fleet Management

Try yourself with instructions at https://github.com/yogendra/fun-with-sensors-data

Summary

- IoT ecosystem is changing rapidly
- YugabyteDB complements Event oriented architecture (Kafka) perfectly
- Data segregation is simplified by YugabyteDB
- Starting small and ability to expand is made possible with YugabyteDB

Thank You

