,*	•
٠.	
.	
4 97 (a)	
720	

รหัสนักศึกษา

เลขที่นั่งสอบ

- การคาสเคพาสโนโตปีพละของเลเสรมนา -

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2555

วิชา CTE 327 Steel & Timber Design สอบวันจันทร์ที่ 3 ธันวาคม พ.ศ. 2555 ภาควิชาครุศาสตร์โยธา เวลา 09.00 – 12.00 น.

กาเดือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 16 หน้า (รวมใบปะหน้า)
- 2. อนุญาตให้ใช้เครื่องคำนวณได้
- 3. อนุญาตให้นำเอกสารเข้าห้องสอบได้
- 4. ให้ทำในข้อสอบเท่านั้น
- 5. ในกรณีที่โจทย์ข้อสอบมี<u>ข้อมูลที่ไม่ครบถ้วนสมบูรณ์</u> ให้สมมดิค่าที่ต้องใช้ได้ตามความจำเป็น

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริดในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ดร. ธีระวุฒิ มูฮำหมัด

ผู้ออกข้อสอบ

โทร. 081-649-4687

air.	െ പ ⊿	ہا ہا
ชื่อ	รหสนกศึกษา	เลขทันงสอบ

Problem 1 - Design of Beam - Column (20 points)

โครงสร้างในรูปที่ 1 เป็นโครงสร้างเหล็กที่มีแรงมากระทำดังรูป ผลการวิเครวะห์หญ*น*รุงศานย์ใหญ่องเสาตันแรกที่ อยู่ด้านซ้ายมือสุด เนื่องจาก

- Dead Load และ Live Load ได้แสดงไว้ในรูปที่ 2
- Wind Load ได้แสดงไว้ในรูปที่ 3

เหล็กรูปพรรณที่ใช้เป็นชั้นคุณภาพ มอก. SS400 โดยมีขนาดหน้าตัดของโครงสร้าง ดังนี้

- เสาใช้หน้าตัด W200x200x49.9
- คานใช้หน้าดัด 600x200x106

(n) Structural Geometry and Loading

รูปที่ 1 โครงสร้างและโมเดล

(n) Axial Force (ton)

(1) Bending Moment (ton-m)

รูปที่ 2 แรงภายในเนื่องจาก Dead Load & Live Load

(ก) Axial Force (ton)

(ป) Bending Moment (ton-m)

รูปที่ 3 แรงภายในเนื่องจาก Wind Load

	Load Combination ที่พิจารณา Dead, Live และ Wind Loads ร่วมกัน 🗡 (ปีเป็น)	44.865 25 4.300 C 25 6.36.14
	สูตรและการแทนค่า	คำตอบพร้อมหน่วย
N	=	
	=	
M	=	
	=	
	1.2 จงคำนวณหาค่า fa และ fb ของเสา	
	สูตรและการแทนค่า	คำตอบพร้อมหน่วย
f _a	=	
	=	}
f _b	=	
	=	
•	1.3 จงคำนวณหาค่า F _a ของเสา เมื่อโครงสร้างเสามีการค้ำยันทางข้าง (Lateral bracing) ที่ปลายด้านบน
	ด้านล่าง และกึ่งกลางของเสาดังแสดงในรูปที่ 1 (ก) สูตรและการแทนค่า	คำตอบพร ้ อมหน่วย
G _{top}	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALIMADIA 1991 M 19
- юр		
	=	
G _{bot}		
K _x	=	
	=	
<u></u>		3
K_y		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

ชื่	อ				

به	٠	ell.	
รหล	็นก	ศกษา	

	เลข ที่นั่ หลอบ
_	a intitioner

งหาวิทยาลัยเทคในโลยีพระลอมเกล้ารบ_{าย}

1.4 คำนวณหาค่า F_a เมื่อสมมติให้ $K_x = K_y = 1.5$

	สูตรและการแทนค่า	คำตอบพร้อมหน่วย
KL/r	=	
	=	
$\frac{KL/r}{C_c}$	=	
	=	
Fa	=	
	=	
	กราฟ F_a vs. $\frac{KL}{r}$	

1.5 จงคำนวณหาค่า F_b ของเสา เมื่อกำหนตให้

- C_b = 1.5 และ r_T = 5.51 cm
- ullet L $_{c1}$ = 2.54 m, L $_{c2}$ = 6.72 m, L $_{u1}$ = 3.61 m, L $_{u2}$ = 10.08 m, และ L $_{v}$ = 8.08 m
- คำนวณหาค่า F_b ของเสา สำหรับการวิบัติแบบ LTB เท่านั้น

	สูตรและการแ ทนค่า	คำตอบพร้อมหน่วย
F _b	=	
	=	
	กราฟ $F_{b,LTB}$ vs. L_b	

ชื่อ รหัสนักศึกษา เลขา	ที่นั่งสอบ
------------------------	------------

1.6 จงตรวจสอบ P-M Interaction ของเสา

<u>สมมติ</u>ให้ K_x = 1.7 และ K_y = 1.5

ur tottett but war

<u>สมมติ</u>ให้ F_a = F_b = 0.4F_y

.....เดอเซเป็นโรรีสสราสาดรั**รรมม**

	สูตรและการแทนค่า	คำตอบพร้อมหน่วย
C _m	กรณี Braced Frame	
	=	
	=	
	กรณี Unbraced Frame	
	=	
	=	
		Use C _m =
(ret ()		_
$\left(\frac{KL_{r}}{r}\right)_{b}$	=	
1		
F' _e	=	
6		
В	=	
	=	
P-M	@ Ends	
	@ Midspan	
Ť		

Problem 2 - Design of Tension Member (10 points)

ดานการแรง โดยเกียงสร้าง Truss ในรูปที่ 4 เป็นเหล็กชั้นคุณภาพ มอก. SS400 ที่มีใหญ่ หลัดใช้นี้ Angle ขนาด L75x75x12 (ดูคุณสมบัติของหน้าตัดจากตารางที่ 1 ในหน้า 16) กำหนดให้ใช้สลักเกลี่ยว A490 จำนวน 2 ตัว ที่มี d_{bolt} ขนาด 27 mm ยึดที่ปลายแต่ละด้านของ Member เพื่อทำจุดต่อแบบ Lap Joint โดยมีการเจาะรูบนขาข้างเดียวดังแสดง ในรูปที่ 5 (ระยะ g₁ = 4 cm)

รูปที่ 4 โครงสร้าง Truss และตำแน่งของจุดต่อในโครงสร้าง

รูปที่ 5 จุดต่อแบบ Lap Joint ของ Tension Member

2.1 จงคำนวณหา P_D และ P_L ที่ Member AC จะรับได้ ถ้า Dead Load มีค่าเป็น 2 เท่าของ Live Load ($P_D = 2$ P_L) และพิจารณาการวิบัติแบบ Yielding ของ Angle ($N_{AC} < T_y$) เท่านั้น

	สูดรและการแทนค่า	คำตอบ พร ้อมหน่วย
Т _у =		
=		

Hint:

u.
● กำหนดให้ P = P_D + P_L จงคำนวณหา support reactions (โครงสร้างมีครามสมมาตร)

● จาก support reactions ที่ได้ จงคำนวณหา axial force ใน Member AC (N_{AC})

• จากเงื่อนไข N_{AC} < T_y จงคำนวณหา P

• จาก P ที่ได้ จงคำนวณหา P_D และ P_L

Problem 2 - Design of Tension Member (continued)

m 2 - Design of Tension Member (continued)

2.2 จงออกแบบระยะ Pitch (s) เพื่อป้องกันการวิบัติแบบ Block Shear ของ Angle (โนเลน) Hint:

กำหนดให้ระยะ Pitch = s จงวาดรูปรอยขาตของ Block shear

• จงคำนวณหา Anv (โดยติดค่า s เอาไว้)

จงคำนวณหา A_{nt}

จาก A_{nv} และ A_{nt} ที่ได้ จงคำนวณหา T_{bs}

• จาก T_y < T_{bs} จงคำนวณหา s_{req} และเลือกระยะ s ที่จะใช้

Problem 3 - Design of Tension Member (10 points)

Tension Member ในโครงสร้างหนึ่งเป็นเหล็กชั้นคุณภาพ มอก. "รีรี**406** พ**ที่มีห**หัวตั้งเป็นเหล็กฉากขนาด L75x75x12 (ดูคุณสมบัติของหน้าตัดจากตารางที่ 1 ในหน้า 16) และมีการเจาะรูไว้สำหรับสลักเกลี้ยว A490 ขนาด เส้นผ่าศูนย์กลาง (d_{bolt}) 24 mm บนขาทั้ง 2 ด้านๆ ละ 2 รู เพื่อยึดต่อกับเหล็กประกับ (Gusset plate) ดังแสดงในรูปที่ 6 (ระยะ g₁ = 4 cm)

3.1 จงออกแบบระยะ Pitch (s) ที่ทำให้การวิบัติแบบ Fracture (T_t) เกิดขึ้นโดยมีรอยขาดผ่านรูเจาะ 1 รูเท่านั้น <u>H</u>int:

● จงวาดรูปคลี่ของ Angle และวาดรูปรอยขาดของ Fracture แต่ละรอยที่เป็นไปได้

• จงคำนวณหาระยะ g ของ Angle ที่คลื่แล้ว

ชื่อ	รหัสนักศึกษา

Problem 3 - Design of Tension Member (continued)

งหาวทยาลัยเทคในไลยีพระจอมเกล้า_{มีนาง}

● จงคำนวณหา An ของแต่ละรอยขาด (เช่น An1, An2, An3, …)

● จงคำนวณหาระยะ s_{req} โดยกำหนดให้ A_{n1} < A_{n2} < A_{n3} < ... เมื่อ A_{n1} คือพื้นที่ของรอยขาดที่ผ่านรูเจาะ 1 รู เท่านั้น และออกแบบระยะ s ที่จะใช้

ชื่	อ	รหัสนักศึกษา	เลขที่นั้งสือให้การกับ.
` 3.	2 จากระยะ Pitch (รหัสนักศึกษารหัสนักศึกษา (s) ที่ออกแบบไว้ จงตรวจสอบว่า Member นี้จะเกิด	นหาวทยาลัยเทค ใน ใก้ผู้ห รือ บบกก
	Fracture (T _f)		
		สูดรและการแทนค่า	คำตอบพร้อมหน่วย
A _n	=		
	=		
\bar{x}	=		
	=		
L_{conn}	=		
	=		
U	=		
	=		
Tf	=		
	=		
T _y	=		
4	=		
สรุป			<u>'</u>

ı.		
ส	ิก	

	٠	۰	B	
รา	หล _ั ล	นก	ศก	በት

. 1 1
LANTINATE
PRINTING AND COMMITTEE.

Problem 4 - Design of Connection (10 points)

งทาวทยาลัยเทคในโลยีพระคอมเกลา_{ยา}

จงออกแบบรอยต่อแบบ Lap Joint ของเหล็กหน้าตัด L75x75x12 (ดูคุณสมบัติของหน้าตัดจากดารางที่ 1 ใน หน้า 16) ที่เป็นชั้นคุณภาพ มอก. SS400 และมีเหล็กแผ่นหนา 15 mm เป็นเหล็กประกับ (Gusset Plates) โดย<u>ใม่ด้อง</u> ตรวจสอบการวิบัติแบบ Fracture และ Block Shear

4.1 เมื่อทำรอยต่อโดยใช้สลักเกลียว A490N ขนาดเส้นผ่าศูนย์กลาง (d_{bolt}) 24 mm (ใช้ระยะ g₁ = 4 cm)

	สูตรและการแทนค่า	คำดอบพร้อมหน่วย
m		
A _{bolt}	=	
	=	
bolt		
F.		
t		
n _{bolt,req1}	=	
	=	
n _{bolt,req2}	=	
	=	
n _{bolt,req}		
	วูปรอยต่อ	

ชื่	รหัสนักศึกษา เสื้อทำรอยต่อโดยการเชื่อมแบบ Fillet welds ด้วยลวดเชื่อม E80 มหาวัทยาลัยเทคใน	ให้ผลาน
4.:	2 เมื่อทำรอยต่อโดยการเชื่อมแบบ Fillet welds ด้วยลวดเชื่อม E80 มหาวทยาลัยเทค โ น	<u>โลยีพระถอบเตล่ามาก</u>
	สูตรและการแทนค่า	คำตอบพร้อมหน่ว
a _{min}		
a _{max}	=	
	=	
a		
t _e	=	
	=	
t	=	
	=	
F _{E80}		
Fu		
L _{weld,req1}	=	
	=	
L _{weld,req2}	=	
	=	
L _{weld,req}		4

Ĩ	อ	รหัสนักศึกษา	ใส่หรื	หนังสอา
L _{weld1}	=		: ภายาสัยเ ทค ใน	โลยีพระกอมแกล้า". บบ
	=			
L _{weld2}	=			
	=			
End	=			
return				
				,
	รูปรอยต่อ			

สานทุพชมผูน เหาวทยาลัยเทคในใลยีพระจอมเคล้าแบบ

ตารางที่ 1 คุณสมบัติของเหล็กฉาก (Angle หรือ L-shape)

(cm²) (kg/m) Cs Cs I. I. I. I. max Is. 1.427 1.12 0.719 0.719 0.797 0.797 1.26 2.336 1.83 1.09 1.09 3.53 3.53 5.6 3.492 2.74 1.27 1.24 6.5 6.5 10.3 5.802 4.55 1.66 1.66 19.6 19.6 14.4 6.367 5 1.77 1.77 25.3 25.3 40.1 8.127 6.38 1.93 1.93 37.1 37.1 58.9 8.727 6.38 1.93 1.93 37.1 37.1 58.9 16.56 2.29 2.06 2.06 46.1 46.1 73.2 16.56 2.29 2.18 56.4 56.4 89.6 10.55 8.28 2.42 2.42 80.7 128 19 14.9 2.82 2.72 46.7 46.7	Vala (mm.)			Southing (c)	าราชกุด สูนเป็น (cm)		โนเมหต์อินเนอร์เซีย (cm)) ធម្មរុស្ត	(FAST (cm)	2 (cm)		
1,427 1,12 0,719 0,719 0,797 0,797 1,26 2,336 1,83 1,09 1,09 3,53 3,53 3,53 5,6 3,492 2,74 1,27 1,24 6,5 6,5 10,3 5,802 4,55 1,66 1,66 19,6 19,6 14,4 6,367 5 1,77 1,77 25,3 25,3 40,1 8,127 6,38 1,93 1,93 37,1 37,1 58,9 8,727 6,85 2,06 2,06 46,1 46,1 46,1 73,2 16,56 2,29 2,19 81,9 81,9 129 34,5 16,56 2,29 2,18 2,18 56,4 56,4 89,6 10,55 8,28 2,42 2,42 80,7 128 19 14,9 2,82 2,82 175 175 278 29,76 23,4 4,14 4,14 740 740 1180 34,77 27,3 4,14 4,24 888 <th>-</th> <th>(cm²)</th> <th>(kg/m.)</th> <th>ø</th> <th>"</th> <th>3</th> <th>_^</th> <th>max I,</th> <th>) H</th> <th>*</th> <th></th> <th>тах г</th> <th>y wile</th> <th></th>	-	(cm²)	(kg/m.)	ø	"	3	_^	max I,) H	*		тах г	y wile	
2.336 1.83 1.09 1.09 3.53 3.53 5.6 3.492 2.74 1.27 1.24 6.5 6.5 10.3 3.892 3.06 1.37 1.37 9.06 9.06 144 5.802 4.55 1.66 1.66 19.6 19.6 144 6.367 5 1.77 1.77 25.3 25.3 40.1 8.127 6.38 1.93 37.1 37.1 58.9 8.727 6.85 2.06 2.06 46.1 46.1 46.1 58.9 16.56 2.29 2.29 81.9 81.9 129 34.5 34.5 10.55 8.28 2.42 2.42 80.7 80.7 128 37.8 10.55 8.28 2.42 80.7 80.7 128 37.8 10.55 8.28 2.82 2.82 175 175 278 29.76 23.4 4.14 4.14 740 740 1180 42.74 33.6 4.24 808	ဧ	1.427	1.12	0.719	0.719	0.797	0.797	1.26	0.332	0.747	0.747	0.94	0.483	
3.492 2.74 1.27 1.24 6.5 6.5 10.3 3.892 3.06 1.37 1.37 9.06 9.06 14.4 5.802 4.55 1.66 1.66 19.6 19.6 14.4 6.367 5 1.77 1.77 25.3 25.3 40.1 8.127 6.36 2.06 2.06 46.1 46.1 73.2 16.56 2.29 2.29 81.9 81.9 129 34.5 16.56 2.29 2.29 81.9 81.9 129 34.5 10.55 8.28 2.42 2.42 80.7 80.7 128 10 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 467 467 740 1180 42.74 33.6 4.14 4.14 740 740 1180	က	2.336	1.83	1.09	1.09	3.53	3.53	5.6	1.46	1.23	1.23	1.55	0.79	,
3.892 3.06 1.37 1.37 9.06 9.06 14.4 5.802 4.55 1.66 1.66 19.6 19.6 31.2 6.367 5 1.77 1.77 25.3 25.3 40.1 8.127 6.38 1.93 1.93 37.1 37.1 58.9 8.727 6.85 2.06 2.06 46.1 46.1 46.1 73.2 16.56 2.29 2.29 81.9 81.9 129 34.5 10.55 8.28 2.42 80.7 80.7 128 19 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 4.14 740 740 1180 42.74 33.6 4.24 488 888 1410	4	3.492	2.74	1.27	1.24	6.5	6.5	10.3	2.7	1.36	1.36	1.72	0.88	—∢
5.802 4.55 1.66 1.66 19.6 19.6 19.6 31.2 6.367 5 1.77 1.77 25.3 25.3 40.1 8.127 6.38 1.93 37.1 37.1 58.9 8.727 6.85 2.06 2.06 46.1 46.1 73.2 16.56 2.29 2.29 81.9 81.9 129 34.5 10.55 8.28 2.42 2.42 80.7 89.6 10.55 8.28 2.82 175 175 278 19 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 467 467 467 740 1180 42.74 33.6 4.24 42.4 4888 888 1410	4	3.892	3.06	1.37	1.37	90.6	90.6	14.4	3.76	1.53	1.53	1.92	0.983	
6.367 5 1.77 1.77 25.3 25.3 40.1 8.127 6.38 1.93 37.1 37.1 58.9 8.727 6.85 2.06 2.06 46.1 46.1 73.2 16.56 2.29 2.29 81.9 81.9 129 34.5 9.327 7.32 2.18 2.18 56.4 56.4 89.6 10.55 8.28 2.42 2.42 80.7 80.7 128 19 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 467 467 740 1180 42.74 33.6 4.24 888 888 1410	5	5.802	4.55	1.66	1.66	19.6	19.6	31.2	8.09	1.84	1.82	2.32	1.18	-1
8.127 6.38 1.93 1.93 37.1 37.1 58.9 8.727 6.85 2.06 2.06 46.1 46.1 73.2 16.56 2.29 2.29 81.9 129 34.5 73.2 9.327 7.32 2.18 2.18 56.4 56.4 89.6 75 10.55 8.28 2.42 2.42 80.7 80.7 128 78 19 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 467 467 467 740 1180 42.74 33.6 4.24 888 888 1410	5	6.367	5	1.77	1.77	25.3	25.3	40.1	10.5	1.99	1.99	2.51	1.28	
8.727 6.85 2.06 2.06 46.1 46.1 73.2 16.56 2.29 2.29 81.9 81.9 81.9 34.5 9.327 7.32 2.18 2.18 56.4 56.4 89.6 10.55 8.28 2.42 2.42 80.7 80.7 128 19 14.9 2.82 175 175 278 29.76 23.4 3.64 467 467 740 743 42.74 33.6 4.24 42.4 888 888 1410	9	8.127	6.38	1.93	1.93	37.1	37.1	58.9	15.3	2.14	2.14	2.69	1.37	
16.56 2.29 2.29 81.9 81.9 129 34.5 9.327 7.32 2.18 2.18 56.4 56.4 89.6 10.55 8.28 2.42 2.42 80.7 80.7 128 19 14.9 2.82 175 175 278 29.76 23.4 3.64 4.74 467 740 740 42.74 33.6 4.24 888 888 1410	9	8.727	6.85	2.06	2.06	46.1	46.1	73.2	19	2.3	2.3	2.9	1.48	
9.327 7.32 2.18 2.18 56.4 56.4 56.4 89.6 10.55 8.28 2.42 2.42 80.7 80.7 128 19 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 3.64 467 467 740 743 42.74 33.6 4.24 488 888 1410	12	16.56	2.29	2.29	81.9	81.9	129	34.5	2.22	2.22	2.79	1.44	75	×
10.55 8.28 2.42 2.42 80.7 80.7 128 19 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 3.64 467 467 743 34.77 27.3 4.14 4.14 740 740 1180 42.74 33.6 4.24 888 888 1410	9	9.327	7.32	2.18	2.18	56.4	56.4	9.68	23.2	2.46	2.46	3.1	1.58	ິ
19 14.9 2.82 2.82 175 175 278 29.76 23.4 3.64 3.64 467 467 467 743 34.77 27.3 4.14 4.14 740 740 1180 42.74 33.6 4.24 888 888 1410	9	10.55	8.28	2.42	2.42	80.7	80.7	128	33.4	2.77	2.77	3.48	1.78	
29.76 23.4 3.64 3.64 467 467 743 34.77 27.3 4.14 4.14 740 740 1180 42.74 33.6 4.24 888 888 1410	10	19	14.9	2.82	2.82	175	175	278	72	3.04	3.04	3.83	1.95	
34.77 27.3 4.14 4.14 740 740 1180 42.74 33.6 4.24 888 888 1410	12	29.76	23.4	3.64	3.64	467	467	743	192	3.96	3.96	5	2.54	
42.74 33.6 4.24 4.24 888 888 1410	12	34.77	27.3	4.14	4.14	740	740	1180	304	4.61	4.61	5.82	2.96	
	15	42.74	33.6	4.24	4.24	888	888	1410	365	4.56	4.56	5.75	2.92	

16.