Logica proposizionale e algebra Booleana

Vittorio Zaccaria October 26, 2018

Outline

proposizionale

Introduzione alla logica

Motivazione

- Le istruzioni impartite al calcolatore spesso sono condizionali ovvero valide solo se alcune premesse sono valide.
- Ad esempio:
 Se l'utente ha inserito un numero di carta di credito corretto ed un codice di controllo di 3 cifre allora autorizza la transazione

Se l'anno corrente è bisestile allora stampa "anno bisestile" al terminale altrimenti stampa "anno non bisestile"

Motivazione

Sappiamo che tali istruzioni possono essere date attraverso l'uso di un costrutto if-then-else che è costituito da tre parti:

Premessa ("if")	Conclusione ("then")	Alternativa ("else")
carta corretta e CCV inserito	autorizza la transazione	
anno corrente è bisestile	stampa anno bisestile	stampa anno non bisestile

La premessa è anche detta proposizione o condizione, ovvero un'affermazione sulla realtà che può essere vera oppure falsa.

Logica

- · La logica è una branca della scienza matematica che studia:
 - come è possibile definire in maniera non ambigua le condizioni (sintassi)
 - come è possibile prevederne/calcolarne il valore di verità (semantica)
- · È praticamente un linguaggio

Sintassi: proposizioni semplici

- Una proposizione semplice è una affermazione sulla realtà che può essere vera oppure falsa e che non può essere suddivisa in condizioni più semplici, ad esempio:
 - "Sono miliardario"
 - · "2+2=4"
 - · "2+2=5"

Sintassi: proposizioni complesse

Chiamate formule, sono costruite a partire da <u>connettivi logici</u> <u>vero-funzionali</u>^{1, 2} che combinano espressioni più semplici, ad esempio:

Esempio	Nome connettivo
2+2=4 ∧ 3+3=6	DISGIUNZIONE
$2+2=4 \lor 3+3=6$	CONGIUNZIONE
¬ 2+2=5	NEGAZIONE
$x>2 \rightarrow 2x>4$	IMPLICAZIONE
x>3 ⊕ x<1	CONGIUZIONE ESCLUSIVA

¹La verità della proposizione dipende solo e soltanto dalla verità delle sotto-proposizioni.

 $^{^2}A$ livello di precedenza degli operatori, \neg ha precedenza maggiore di tutti, seguito da $\land,\lor e\to esattamente in questo ordine.$

Sintassi: Proposizioni complesse

- · Alcune proposizioni sono solo apparentemente semplici
- Ad esempio, la proposizione "L'anno X è bisestile" equivale in italiano a

se X è divisibile per 100, deve essere divisibile anche per 400, altrimenti deve essere divisibile per 4

- Più formalmente:
 (X è divisibile per 100) e (X è divisibile per 400) o (X non è divisibile per 100) e (X è divisibile per 4)
- Usando i connettivi logici
 (X è divisibile per 100) ∧ (X è divisibile per 400) ∨ (X non è divisibile per 100) ∧ (X è divisibile per 4)

Semantica di una proposizione

Semantica di una proposizione semplice

La semantica di una proposizione semplice è il suo valore di verità, che può essere noto:

- "Sono miliardario" = F (falso)
- "2+2=4" = V (vero)
- "2+2=5" = F

oppure dipendente da altri parametri:

- "Oggi piove" (dipende da quando interpretiamo questa proposizione)
- · X è divisibile per 100 (dipende dal valore della variabile X)

Nell'ultimo caso, le proposizioni sono chiamate predicati.

Semantica di una proposizione complessa

Vi sono 3 modi per ricavare il valore di verità di una proposizione complessa

- · Tramite tabelle della verità
- Tramite l'algebra Booleana (rappresenta una scorciatoia alle tabelle della verità)
- (Opzionale) Tramite deduzione naturale (metodo molto più potente delle tabelle della verità)

La semantica di una proposizione complessa è data interamente dai valori di verità delle proposizioni semplici che la compongono e dalla tabelle della verità connettivi utilizzati. Se A e B sono due sotto-proposizioni:

					$A\toB$	
F	F	V	F	F	V V	V
F	V	V	F	V	V	F
V	F	F	F	V	F	F
V	V	F	V	V	V	V

Supponiamo di avere la seguente proposizione complessa:

$$(P \land Q) \to \neg R \tag{1}$$

Non conoscendo i valori delle tre proposizioni più semplici, siamo costretti a considerare tutti i possibili casi:

			1	3	1	4	2	1
Р	Q	R	(P	\wedge	Q)	\rightarrow	\neg	R
F	F	F	F	F	F	V	V	F
F	F	V	F	F	F	V	F	V
F	V	F	F	F	V	V	V	F
F	V	V	F	F	V	V	F	V
V	F	F	V	F	F	V	V	F
V	F	V	V	F	F	V	F	V
V	V	F	V	V	V	V	V	F
V	V	V	V	V	V	F	F	V

Riprendiamo la proposizione complessa:

(X è divisibile per 100) \land (X è divisibile per 400) \lor (X non è divisibile per 100) \land (X è divisibile per 4)

e riscriviamola in maniera compatta con:

- sotto-proposizione d100 = X è divisibile per 100
- sotto-proposizione d400 = X è divisibile per 400
- sotto-proposizione d4 = X è divisibile per 4

Otteniamo:

$$(d100 \wedge d400) \vee (\neg d100 \wedge d4)$$

Non conoscendo i valori di X, siamo costretti a considerare tutti i possibili casi³:

			1	3	1	4	2	1	3	1
d100	d400	d4	(d100	\wedge	d400)	\vee	(¬	d100	\wedge	d4)
F	F	F	F	F	F	F	V	F	F	F
F	F	V	F	F	F	V	V	F	V	V
F**	V	F**	F	F	V	F	V	F	F	F
F**	V	V	F	F	V	V	V	F	V	V
V	F	F**	V	F	F	F	F	V	F	F
V	F	V	V	F	F	F	F	V	F	V
V	V	F**	V	V	V	V	F	V	F	F
V	V	V	V	V	V	V	F	V	F	V

³Alcune delle combinazioni non potranno mai verificarsi nella realtà (e.g., se un anno è divisibile per 400 lo sarà anche per 100). Tuttavia, le tabelle della verità considerano le sotto-proposizioni come "scatole chiuse" senza proprietà matematiche.

A. DeMorgan (1806-1871) e G. Boole (1815-1864) osservarono per primi una corrispondenza fra logica proposizionale classica e un particolare esempio di algebra tradizionale dove si restringono i valori delle variabili nell'intervallo {0,1}.

$$x \wedge y = xy$$

$$x \vee y = x + y - (xy)$$

$$\neg x = 1 - x$$

$$x \rightarrow y = (1 - x) + y - (1 - x)y$$
(2)

Questo ci permette di scoprire alcune interessanti proprietà:

Nome proprietà	Esempio
Assorbimento	$a \lor (a \land b) = a \text{ oppure } a \land (a \lor b) = a$
Distributiva	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$
Idempotenza	$a \lor a = a$ oppure $a \land a = a$
DeMorgan (1)	$\neg(\neg x \land \neg y) = x \lor y$
DeMorgan (2)	$\neg(\neg x \vee \neg y) = x \wedge y$
Complemento	$X \land \neg X = F$
Complemento	$x \lor \neg x = T$
Complemento	\$¬¬ x = x
Implicazione materiale	$a \rightarrow b = \neg a \lor b$

Se riprendiamo l'esempio di prima:

$$(P \land Q) \to \neg R \tag{3}$$

possiamo applicare le regole dell'algebra per arrivare ad una espressione più semplice:

$$= (P \land Q) \rightarrow \neg R \quad [\text{IMPL. MATER.}]$$

$$= \neg (P \land Q) \lor \neg R \quad [\text{DE MORGAN 1}]$$

$$= \neg P \lor \neg Q \lor \neg R$$
(4)

che vale F proprio quando tutte le variabili P, Q ed R sono T.

Supponiamo di avere la seguente proposizione complessa:

$$\neg (y > 7 \land \neg (x > 3)) \lor \neg (y > 7) \lor (x < 0)$$

e di voler capire se, quando x=2, esistono valori di y tali per cui l'espressione è vera. Possiamo usare anche in questo caso l'algebra Booleana:

$$\neg (y > 7 \land \neg (x > 3)) \lor \neg (y > 7) \lor (x < 0)$$

$$= \neg (y > 7 \land \neg F) \lor \neg (y > 7) \lor F$$

$$= \neg (y > 7) \lor \neg (y > 7)$$

$$= (y \le 7)$$
(5)

Sono uguali queste due regole di pagamento alla dogana?

Tariffa viene scontata se il camion pesa meno di una tonnellata

 (A) e proviene dalla Francia (B) oppure si muove all'interno di
 una zona di 200 km dal confine (C).

$$A \wedge B \vee C$$

2. La tariffa non e' scontata se il camion e' piu' pesante di una tonnellata e non si muove all'interno di una zona di 200km dal confine oppure non proviene dalla Francia e va a piu' di 200km dal confine.

$$\neg(\neg A \land \neg C \lor \neg B \land \neg C)$$

Applicazioni all'informatica

Introduzione

Vi sono almeno due applicazioni importanti della logica nell'informatica degne di nota:

- Scrittura ed analisi delle condizioni nei linguaggi di programamazione
- · Sviluppo di circuiti logici

Condizioni nei linguaggi di programmazione

Riprendiamo il nostro esempio iniziale:

Se l'anno corrente è bisestile allora stampa "anno bisestile" al terminale altrimenti stampa "anno non bisestile"

e supponiamo di voler scrivere un programma in linguaggio C che faccia proprio questo.

Condizioni nei linguaggi di programmazione

La condizione alla quale eravamo arrivati era la seguente:

$$(d100 \land d400) \lor (\neg d100 \land d4)$$

L'espressione diventa la condizione dell'istruzione di controllo if:

Algebra dei circuiti

Si fonda su due osservazioni:

- 1. Data una qualsiasi funzione di n variabili logiche $f: \mathbb{B}^n \to \mathbb{B}$ è possibile descriverla con una espressione logica.
- Claude Shannon (teoria dell'informazione) dimostrò che gli interruttori elettrici possono essere interpretati come variabili logiche:

$$A = F$$

$$A = V$$

Algebra dei circuiti

Shannon dimostrò anche che alcune configurazioni corrispondono ad operazioni logiche su tali interruttori:

Algebra dei circuiti

Al giorno d'oggi si usano "interruttori" speciali chiamate <u>porte</u> <u>logiche</u>. Questo circuito effettua il calcolo di a + b con un carry in entrata cin producendo la somma s ed un carry in uscita cout.

