Strontium Optical Lattice Clock Comparison Over 1415 Kilometers

Joe Becker

Texas A&M Department of Physics and Astronomy jbecker@physics.tamu.edu

September 15, 2016

Outline

- Motivation
- 2 Background
- Apparatus
- 4 Results
- 6 Conclusion

Why Compare Clocks?

Moving to an Optical Standard

- You can only measure frequency against a standard.
- The current time standard (caesium) is based on microwave frequencies.
- Current optical clock comparisons are limited to 4×10^{-16} fractional agreement due to the caesium clocks.
- In order to move to the new more accurate time standard optical clocks need to be directly compared.

Why Compare Clocks?

An Optical Clock Network for New Physics

An optical clock network has the potential to open new avenues to experiments:

- The search for dark matter
- The Einstein equivalence principle
- Very long baseline interferometry
- Building a new geodetic reference frame on relativistic geodesy

Falke et al. [2014], Ushijima et al. [2015], Takamoto et al. [2005]

J. Becker (Texas A&M) OSA News September 15, 2016

Strontium Clocks Frequency Comparison

Grebing et al. [2016]

Schematic of Clock Comparison

Lisdat et al. [2016]

J. Becker (Texas A&M) OSA News September 15, 2016

Schematic of Transfer Laser System

Nicolodi et al. [2014]

Fiber Brillouin Amplification Schematic

Raupach et al. [2015]

Uplink Map

Chiodo et al. [2015]

Chiodo et al. [2015]

0.9

0.1

0.15

≪ 0.1

1.9

Table 1 Officertainty budget.				
Clock uncertainty	Sr lattice clock Paris		Sr lattice clock Braunschweig	
	Corr. (10 ^{- 17})	Unc. (10 ^{- 17})	Corr. (10 ^{- 17})	Unc. (10 ^{- 17})
First and higher-order lattice LS	0	2.5	- 1.1	1.0
Black-body radiation	515.5	1.8	492.9	1.3

0.8

1.2

20

4.1

3.6

496.3

Ratio Sr _{PTB} /Sr _{SYRTE}	Campaign I Unc. (10 ^{– 17})	Campaign II Unc. (10 ^{– 17})	
Systematics Sr _{SYRTE}	4.1	4.1	
Systematics Sr _{PTB}	2.1	1.9	
Statistical uncertainty	2	2	
fs combs	0.1	0.1	
Link uncertainty	< 0.1	0.03	
Counter synchronization*	10	< 0.01	
Gravity potential correction†	0.4	0.4	
Total clock comparison	11.2	5.0	

Corr., fractional correction; LS, light shift; Unc., fractional uncertainty.

134.8

650.3

Lisdat et al. [2016]

Table 1 | Hassatsiate budget

Black-body radiation oven

Quadratic Zeeman shift

Density shift

Line pulling

Total clocks

The numbers vary slightly over the course of the measurement. All uncertainties are 1σ .

^{*}Frequency counters have been synchronized in the second campaign. \dagger The applied gravity potential correction is -247.2×10^{-17} , see text.

Bold entries represent the sum of all the individual contributions listed before rather than another contribution.

Frequency Ratio Between PTB and SYRTE

Lisdat et al. [2016]

Allen Deviation Plots

Lisdat et al. [2016]

Conclusions

- Researchers measured a fractional offset between the two clocks as $(4.7 \pm 5.0) \times 10^{-17}$.
- After less than an hour of averaging they reached a statistical uncertainty of 2×10^{-17} . This marks an order of magnitude improvement on all previous long distance frequency comparisons with a four order of magnitude reduction in measurement time.
- The foundations are set for an optical clock network across the continent of Europe.

- N. Chiodo, N. Quintin, F. Stefani, F. Wiotte, E. Camisard, C. Chardonnet, G. Santarelli, A. Amy-Klein, P.-E. Pottie, and O. Lopez. Cascaded optical fiber link using the internet network for remote clocks comparison. Optics express, 23(26): 33927–37, 2015. ISSN 1094-4087. doi: 10.1364/OE.23.033927. URL http://arxiv.org/abs/1509.05885.
- S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and C. Lisdat. A strontium lattice clock with 3 × 10 17 inaccuracy and its frequency. New Journal of Physics, 16:0-18, 2014. ISSN 13672630. doi: 10.1088/1367-2630/16/7/073023.
- C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, and C. Lisdat. Realization of a timescale with an accurate optical lattice clock. *Optica*, 3(6):563, jun 2016. ISSN 2334-2536. doi: 10.1364/OPTICA.3.000563. URL http://arxiv.org/abs/1511.03888https://www.osapublishing.org/abstract.cfm?URI=optica-3-6-563.
- C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie. A clock network for geodesy and fundamental science. Nature Communications, 7:12443, aug 2016. ISSN 2041-1723. doi: 10.1038/ncomms12443. URL http://arxiv.org/abs/1511.07735http://www.nature.com/doifinder/10.1038/ncomms12443.
- D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq. Spectral purity transfer between optical wavelengths at the 10-18 level. CPEM Digest (Conference on Precision Electromagnetic Measurements), 8(January):64-65, 2014. ISSN 05891485. doi: 10.1109/CPEM.2014.6898260.
- S. M. F. Raupach, A. Koczwara, and G. Grosche. Brillouin amplification supports 110-20 uncertainty in optical frequency transfer over 1400 km of underground fiber. Physical Review A - Atomic, Molecular, and Optical Physics, 92(2):1–5, 2015. ISSN 10941622. doi: 10.1103/PhysRevA.92.021801.
- M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori. An optical lattice clock. *Nature*, 435(7040):321–324, 2005. ISSN 0028-0836. doi: 10.1038/nature03541.
- Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori. Cryogenic optical lattice clocks. Nature Photonics, 9(February): 1-5, 2015. ISSN 1749-4885. doi: 10.1038/nphoton.2015.5. URL http://www.nature.com/doifinder/10.1038/nphoton.2015.5.