EAIiIB	Paweł Biłko Klaudia Kromołowska		Rok II	Grupa 2a	Zespół 4
Temat:			Numer ćwiczenia:		
Pomiar ws	półczynnika zała	mania światła	51		
Data wykonania	Data oddania	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel doświadczenia

Wyznaczenie współczynnika załamania światła dla płytki szklanej i pleksiglasowej metodą pomiaru grubości pozornej płytki przy pomocy mikroskopu.

2 Wstęp teoretyczny

Prawo załamania

Gdy wiązka światła przechodzi przez dwa ośrodki o różnych własnościach optycznych, to na powierzchni granicznej częściowo zostaje odbita, a częściowo przechodzi do drugiego środowiska, ulegając załamaniu. Opisuje je wzór:

$$n = \frac{\sin \theta_1}{\sin \theta_2}$$

Gdzie n jest współczynnikiem załamania ośrodka 2 względem ośrodka 1. Kąt θ_1 jest kątem padania wiązki na powierzchnię graniczną od strony ośrodka 1, kąt θ_2 zaś kątem względem powierzchni granicznej, ale już w ośrodku 2.

Dodatkowo współczynnik ten zależy od długości fali światła padającego, zatem załamanie może służyć do rozszczepienia wiązki światła na wiązki składowe o różnych długościach fal.

3 Układ pomiarowy

W skład układu pomiarowego wchodzi mikroskop z czujnikiem mikrometrzycznym i nasadką krzyżową, śruba mikrometryczna, zestaw płytek szklanych i pleksiglasowych, na których zrobiono jedna nad drugą na przeciwległych powierzchniach kreski, jedną pionową i jedną poziomą.

Rys. w1. Schemat budowy mikroskopu: a) mikroskop i jego elementy: 1 – kondensor, 2 – obiektyw, 3 – okular, 4 – lusterko lub lampka oświetleniowa, 5 – czujnik mikrometryczny, którego stopka spoczywa na ruchomej części mikroskopu, 6 – nasadka krzyżowa XY mocująca z pokrętłami do przesuwu płytki, 7a – pokrętło służące do przesuwu stolika ruchem zgrubnym, 7b – pokrętło służące do przesuwu stolika ruchem dokładnym; b) zasada powstawania obrazu (A") przedmiotu (A).

4 Wykonanie ćwiczenia

Nota o usterce

Ze względu na usterkę czujnika mikrometrycznego posłużono się alternatywnym sposobem zbierania pomiarów.

- 1. Zmierzyć śrubą mikrometryczną grubość płytki d w pobliżu kresek
- 2. Ustawić badaną płytkę na stoliku mikroskopu w uchwycie i dobrać ostrość tak by uzyskać kontrastowy obraz. Regulując położenie stolika pokrętłem 7a zaobserwować górny i dolny ślad na płytce
- 3. Pokrętłem 7b przesunąć stolik mikroskopu do momentu uzyskania ostrego obrazu śladu na dolnej powierzchni płytki
- 4. Odczytać położenie a_d wskazówki czujnika mikrometrycznego
- 5. Przesunąć stolik do momentu uzyskania ostrego obrazu śladu na drugiej powierzchni
- 6. Odczytać ponownie wartość wskaźnika, zapisać jako wartość położenia a_q

5 Wyniki pomiarów

Material: pleksiglas						
Grubość rzeczywista: \overline{d} =3,80 [mm]						
niepewność $u(d)=0.01$ [mm]						
	Wekazar	nie czujnika	Grubość	Współczynnik		
Lp. a_d	WSKazai	не сидніка	pozorna	załamania		
	a_d	a_g	$h = a_g - a_d$	$n = \frac{\overline{d}}{\overline{b}}$		
	[mm]	[mm]	[mm]	$n = \frac{\overline{\overline{h}}}{h}$		
1.	0	2,70	2,70			
2.	0	2,40	2,40			
3.	0	2,39	2,39			
4.	0	2,41	2,41			
5.	0	2,64	2,64	1.552		
6.	0	2,39	2,39	1.002		
7.	0	2,37	2,37			
8.	0	2,32	2,32			
9.	0	2,40	2,40			
10.	0	2,46	2,46			
		Niepewność	0,039	0,078		
		Wartość	2,448			
		średnia	2,440			

Materiał: szkło + filtr			Grubość rzeczywista \overline{d} =3,80[mm]			
Długość fali		Wskazanie czujnika		Grubość	Wartość	Współczynnik
	rugosc ian	W SKazame Czujinka		pozorna	średnia	załamania
	λ	a_d	a_g	$h = a_d - a_g$	\overline{h}	$n = \frac{\overline{d}}{\overline{b}}$
	$[\mu m]$	[mm]	[mm]	[mm]	76	$n = \frac{\overline{h}}{h}$
	7:-1	0	2,48	2,48	2,53	1,502
I Zielony 0,50		0	2,53	2,53		
	0	2,58	2,58			
	AT: 1 : 1 :	0	2,31	2,31		
II Niebieski 0,48		0	2,36	2,36	2,337	1,626
	0,10	0	2,34	2,34		
III Czerwony 0,63	0	2,38	2,38			
	•	0	2,40	2,40	2,410	1,577
		0	2,45	2,45		

6 Opracowanie wyników

- 1. Przyjmuję niepewność pomiaru grubości rzeczywistej płytki u(d)=0,01[mm]
- 2. Obliczam wartości współczynnika załamania światła ze wzoru $n=\frac{d}{h}$
- 3. Wyliczam niepewność typu A grubości pozornej dla każdego koloru światła

Rodzaj	Grubość	Niepewność $u(h)$ [mm]	
światła	pozorna $h[mm]$	Niepewnosc $u(n)$ [mm]	
Zielone	2,530	0,050	
Niebieskie	2,337	0,025	
Czerwone	2,410	0,036	
Białe	2,448	0,039	

4. Wyznaczam niepewność obliczonego współczynnika załamania światła. Niepewność współczynnika załamania światła:

$$u(n) = \sqrt{\left(\frac{\partial n}{\partial d}u(d)\right)^2 + \left(\frac{\partial n}{\partial h}u(h)\right)^2} = \sqrt{\left(\frac{1}{h}u(d)\right)^2 + \left(\frac{-d}{h^2}u(h)\right)^2}$$

Co można uprościć do:

$$u(n) = n\sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2} = n\sqrt{\left(\frac{0,01}{3,80}\right)^2 + \left(\frac{u(h)}{h}\right)^2}$$

Dla światła zielonego:

$$u(n) = 1,502\sqrt{\left(\frac{0,01}{3,80}\right)^2 + \left(\frac{0,05}{2,53}\right)^2} = 0,030$$

Dla światła niebieskiego:

$$u(n) = 1,626\sqrt{\left(\frac{0,01}{3,80}\right)^2 + \left(\frac{0,025}{2,337}\right)^2} = 0,018$$

Dla światła czerwonego:

$$u(n) = 1,577\sqrt{\left(\frac{0,01}{3,80}\right)^2 + \left(\frac{0,036}{2,410}\right)^2} = 0,024$$

Dla światła białego:

$$u(n) = 1,552\sqrt{\left(\frac{0,01}{3,80}\right)^2 + \left(\frac{0,039}{2,448}\right)^2} = 0,025$$

5. Zestawienie wyników

Rodzaj światła	Współczynnik załamania n	Niepewność $u(n)$	Zgodność z wartością tablicową w granicach niepewności rozszerzonej
Zielone	1,502	0,030	TAK
Niebieskie	1,626	0,018	NIE
Czerwone	1,577	0,024	NIE
Białe	1,552	0,025	TAK

7 Wnioski

Wartość współczynnika załamania po oświetleniu płytki szklanej światłem białym jest zgodna z przyjętą wartością tablicową 1.5 w granicy niepewności. Wyznaczony współczynnik załamania światła niebieskiego i czerwonego nie mieści się w granicy niepewności. Jest to najprawdopodobniej spowodowane niedokładnością pomiaru wynikającą z subiektywności momentu dokonania pomiaru, tj. zdecydowania w którym momencie obraz jest wystarczająco ostry. Jednocześnie usterka wskaźnika czujnika mikrometrycznego spowodowała, że musieliśmy obracać jego tarczę przy każdym pomiarze, co mogło spowodowac dodatkową niedokładność.