Machine Learning

Decision Tree

Page 1

©

- One of the widely used and practical methods for classification
- Utilizes a tree structure to model relationships among the features and the potential outcomes (target attribute)
- Decision trees consist of nodes and branches.

- Nodes are decision points
- Branches are the result of the decision function.
- The nodes are of three types:
 - Root Node (representing the original data) and a decision function
 - Branch Node (representing a decision function)
 - Leaf Node (holds the result of all the previous functions that flow to it)

- Goal of a decision tree is to classify or predict an outcome based on a set of predictors
- For example: to Predict whether a customer will buy a product or not. Predictors: age of customer, credit rating etc
- Tree creation splits data into subsets and subsets into further smaller subsets.
- The algorithm stops splitting data when data within the subsets are sufficiently homogenous or some other stopping criterion is met

Decision Tree – visualize the increasing depth of tree

https://share.cocalc.com/share/8b892baf91f98d0cf6172b872c8ad6694d0f7204/PythonDataScienceHandbook/notebooks/05.08-Random-Forests.ipynb?viewer=share

- After executing all the decision functions from Root Node to Leaf Node, the class of a data point is decided by the leaf node to which it reaches
- The leaf node may not contain all data points of same class. The Leaf Node belongs to the majority class
- Once a decision tree has been constructed, it is a simple matter to convert it into an equivalent set of rules that can be applied to a new data point and predict its class

Decision Tree Training

- Decision tree algorithm learns through the measure of impurity of data in a node
- Which of the following node has the most impurity?

- Impurity at a node is measured based on mixture of different classes in the target column of a node
- The objective is to minimize the impurity as much as possible at the leaf nodes

Measuring Impurity

Entropy

- A box contains 6 red and 4 black balls.
- · (Imagine that these represent data points of two different classes)

- Entropy of the box is calculated as: $Entropy = \sum_{i=1}^{C} -p_i * \log_2(p_i)$
- Entropy = $-(0.6 * \log_2(0.6)) (0.4 * \log_2(0.4)) = 0.9709506$
- If we remove all red balls from the bag and then entropy will be
- Entropy = $-1.0 \cdot \log_2(1.0) 0.0 \cdot \log_2(0) = 0$
- What do you think is the interpretation of Entropy = 0?

Entropy

- Entropy ranges from 0 to 1.
- Entropy 0 means 100% information
- Entropy 1 mean maximum uncertainty
- Entropy values for a two-class variable are as follows

Entropy – Information Gain

Information Gain =
$$1 - \frac{4}{8}0.81 - \frac{4}{8}0.81 = 0.19$$

Entropy - example

Decision tree to predict whether a loan given to a person would result in a write-off or not. Data consists of 30 instances. 16 belong to the write-off class and the other 14 belong to the non-write-off class.

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Balance < 50K) = -\frac{12}{13}\log_2\left(\frac{12}{13}\right) - \frac{1}{13}\log_2\left(\frac{1}{13}\right) \approx 0.39$$

$$E(Balance > 50K) = -\frac{4}{17}\log_2\left(\frac{4}{17}\right) - \frac{13}{17}\log_2\left(\frac{13}{17}\right) \approx 0.79$$

Weighted Average of entropy for each node:

$$E(Balance) = \frac{13}{30} \times 0.39 + \frac{17}{30} \times 0.79$$
$$= 0.62$$

Information Gain:

$$IG(Parent, Balance) = E(Parent) - E(Balance)$$

$$= 0.99 - 0.62$$

$$= 0.37$$
Page 11

Gini Index

- Gini index is another measure which gives similar results as Entropy
- It is calculated by subtracting the sum of the squared probabilities of each class from one

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

- When uncertainty is highest, i.e. when data is evenly distributed in a node, value will be 0.5
- In perfectly classified node, values will be 0

Gini Index – Information Gain

$$1 - \left(\left(\frac{3}{4}\right)^2 + \left(\frac{1}{4}\right)^2\right) = \frac{3}{8} = 0.375 \qquad 1 - \left(\left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2\right) = \frac{3}{8} = 0.375$$

Information Gain =
$$0.5 - \frac{4}{8}0.375 - \frac{4}{8}0.375 = 0.125$$

Entropy and Gini Index

Comparison for 2-class problem

Decision Tree Algorithms

- ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The algorithm creates a multiway tree, finding for each node (i.e. in a greedy manner) the categorical feature that will yield the largest information gain for categorical targets
- C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining a discrete attribute
- C5.0 is latest version release under a proprietary license. It uses less memory and builds smaller rulesets than C4.5 while being more accurate
- CART (Classification and Regression Trees) is very similar to C4.5, but it differs in that it supports numerical target variables. It creates binary tree. Available in Scikitlearn

Advantages :

- Simple to understand and to interpret
- Trees can be visualized
- Able to handle both numerical and categorical data.
- Requires less data preparation. Does well with missing data
- Does not assume relationship between features and target variables

Disadvantages:

- Decision trees can be unstable and tend to overfit. (Mitigation: Use decision trees within an ensemble)
- Decision tree learners create biased trees if some classes dominate
- Divide feature space in axis parallel boundaries which may not be optimum

Decision Tree - Parameters

- max_depth Is the maximum length of a path from root to leaf (in terms of number of decision points. The leaf node is not split further. It could lead to a tree with leaf node containing many observations on one side of the tree, whereas on the other side, nodes containing much less observations get further split
- min_sample_split A limit to stop further splitting of nodes when the number of observations in the node is lower than this value
- min_sample_leaf Minimum number of samples a leaf node must have.
 When a leaf contains too few observations, further splitting will result in overfitting (modeling of noise in the data)
- max leaf nodes maximum number of leaf nodes in a tree

Machine Learning

Ensemble Techniques

© Page 18

Ensemble - Background

- What is Ensemble?
 - Do not predict using a single classifier but learn a set of classifiers
 - An ensemble of classifiers is created by combining predictions of multiple classifiers for improving prediction performance
- Why Ensemble?
 - Combining the outputs of several classifiers may reduce the risk of selecting a poorly performing classifier
 - The errors made while classifying instances by one classifier are generally averaged out by the correct classification of another classifier, so that the overall classification accuracy is improved

Ensemble - Background

- In some parts of the feature space, the different classifiers produce similar results
- In regions where the data points from different classes overlap, the classifiers give different results
- By using information from multiple classifiers, the result may be better than an individual classifier

Ensemble

- For Ensemble to work successfully, we need to ensure each learner (classifier, in this case) is slightly different
- How to achieve this?
 - Provide different data to different classifiers
 - Perform random sampling with replacement of rows
 - Provide different features as input to different classifiers
 - By adjusting the weights assigned to each data point to force an instance to focus on certain data points more

Bagging

- Bagging term is made from Bootstrap Aggregation
- It is used to reduce the variance of a decision tree
- It creates several subsets of data from training sample chosen randomly with replacement.
- Each subset data is used to train a decision tree
- As a result, we have an ensemble of different models.
- For classification, bagging is used with voting to decide the class of an input while for regression average or median values are calculated
- This concept can be extended for other models too, but is commonly used for Decision Tree

Bootstrap sampling

 Generate new training sets using sampling with replacement. It is called bootstrap sampling

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Some data may appear in more than one set
- Some data will appear more than once in a set

Bagging

Random Forest

- Build each tree using a sample drawn with replacement (bootstrap) from the training set
- When splitting a node during the construction of a tree, the split that is chosen is no longer the best split among all the features
- Instead, the split is picked is the best split among a random subset (say, k number of subsets) of the features
- As a result of this randomness, the bias of the forest usually slightly increases (with respect to the bias of a single non-random tree)
- Due to averaging, its variance decreases, usually more than compensating the increase in bias, hence yielding overall a better result

Random Forest

- Advantages
 - The process of averaging or combining the results of different decision trees helps to overcome the problem of overfitting
 - Less variance than a single decision tree
 - Higher accuracy than a single decision tree
- Disadvantages
 - The advantage of Decision Tree, interpretability, is lost. No interpretability
 - Need to choose the number of trees

Exercise

Ensemble Techniques

Machine Learning

Bias Variance

Page 28

©

Bias Variance Errors

Bias

- Caused by our selection of the attributes and our interpretation of their influence on each other
- The real model in the universe / population may have many more attributes and the attributes interacting in different ways not reflected in our model

Variance

- Different test data gives very different scores. Variance is the amount that the estimate of the target function will change if different training data was used
- Caused by overfitting of model

Bias – Variance trade-off

Select the right complexity model to trade=off Bias and Variance errors