ARML: Polynomials

Authors
Justin Stevens

Polynomials

1.1 Lecture

A polynomial P(x) is defined as being of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_i x^i + a_1 x + a_0 \text{ for } 0 \le i \le n$$

We define the degree of a polynomial to be the highest degree of the polynomial. In the above form, deg P = n.

Example 1.1.1. $P(x) = x^2 + 5x + 9$ is a polynomial as is $P(x) = \pi \times x^3 + \sqrt{3} \times x^2 + \frac{1}{9}$, while $P(x) = \frac{1}{x+2}$ and $P(x) = \sqrt{x}$ are both **not** polynomials.

Polynomials can similarly be defined in terms of their roots. Let r_1 be a root of P(x) and we get

$$P(x) = (x - r_1)P_1(x)$$
 for $\deg P = n - 1$

Now,

$$P_1(x) = (x - r_2)P_2(x)$$
 for $\deg P = n - 2$

and repeating this process we arrive at

$$P(x) = a_n(x - r_1)(x - r_2)(x - r_3) \cdots (x - r_n)$$

Polynomials Justin Stevens Page 3

Example 1.1.2 (Canada). For real a, the polynomials $1988x^2 + ax + 8891 = 0$ and $8891x^2 + ax + 1988 = 0$ share a common root. Find all possible values of a.

Solution. Subtract the two equations results in

$$(8891 - 1988)x^2 + (1998 - 8891) = 0 \implies x^2 - 1 = 0$$

Therefore, $x = \pm 1$. If x = 1, we get a = -10879, which results in both polynomials having the common root of x = 1. If x = -1, we get a = 10879, which results in both polynomials having the common root of x = -1.

The answer is therefore $a = \pm 10879$.

Example 1.1.3 (ARML). If P(x) is a polynomial in x, and $x^{23}+23x^{17}-18x^{16}-24x^{15}+108x^{14}=(x^4-3x^2-2x+9)\times P(x)$ for all values of x, compute the sum of the coefficients of P(x).

Solution. The sum of the coefficients of P(x) is the same as P(1). Now just plug x = 1 into the above equation.

For a quadratic of the form $P(x) = a_2x^2 + a_1x + a_0$ and roots r_1, r_2 , you are likely aware of the relations $r_1 + r_2 = \frac{-a_1}{a_2}$ and $r_1r_2 = \frac{a_0}{a_2}$. We will now attempt to derive similar relations for a cubic.

For $P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, we can also express P(x) in terms of its roots as $P(x) = a_3(x - r_1)(x - r_2)(x - r_3)$. Expanding this we get

$$P(x) = a_3(x - r_1)(x - r_2)(x - r_3) = a_3(x^3 - x^2(r_1 + r_2 + r_3) + x(r_1r_2 + r_1r_3 + r_2r_3) - r_1r_2r_3)$$

= $a_3x^3 + a_2x^2 + a_1x + a_0$

Setting the coefficients equal, we arrive at:

$$\begin{cases} r_1 + r_2 + r_3 = -\frac{a_2}{a_3} \\ r_1 r_2 + r_1 r_3 + r_2 r_3 = \frac{a_1}{a_3} \\ r_1 r_2 r_3 = \frac{-a_0}{a_3} \end{cases}$$

Polynomials Justin Stevens Page 4

Example 1.1.4. Find the sum and the product of all the roots of $x^3 + 2x^2 - 3x + 9 = 0$.

Solution. By the above relations, $r_1 + r_2 + r_3 = -\frac{2}{1}$ and $r_1r_2r_3 = -\frac{9}{1} = -9$.

Example 1.1.5. Suppose $5x^3 + 4x^2 - 8x + 6 = 0$ has three real roots a, b, and c. Find the value of a(1 + b + c) + b(1 + a + c) + c(1 + a + b).

Example 1.1.6. Find all ordered pairs (x, y, z) that satisfy

$$x + y + z = 17,$$

$$xy + xz + yz = 94,$$

$$xyz = 168$$

Solution. Set up the polynomial $f(a) = a^3 - 17a^2 + 94a - 168$ with roots x, y, z

Problem 1.1.1 (A bit harder than the previous one). Find all ordered pairs (x, y, z) that satisfy

$$x + y - z = 0$$

$$zx - xy + yz = 27$$

$$xyz = 54$$

Before we delve into Vieta's formula, we need some notation.

$$\sigma_k = \sum_{1 \le a_1 \le a_2 \le \dots \le a_k \le n} r_{a_1} r_{a_2} \cdots r_{a_k}$$

This notation may look incredibly intimidating, but I promise it is a lot easier than it looks. All it really is saying is that you are summing the product of k different numbers.

Example 1.1.7. For n = 3, all possible products of 2 numbers are $\sigma_2 = r_1r_2 + r_1r_3 + r_2r_3$. All possible products of 1 number is $\sigma_1 = r_1 + r_2 + r_3$ and all possible products of 3 numbers are $\sigma_3 = r_1r_2r_3$. Therefore, we can rewrite the above cubic relations as

$$\sigma_3 = \frac{-a_0}{a_3}, \sigma_2 = \frac{-a_2}{a_3}, \sigma_1 = \frac{a_1}{a_3}$$

Theorem 1.1.1 (Vieta's). For a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$ and roots r_1, r_2, \dots, r_n , we have

$$\sigma_k = (-1)^k \times \frac{a_{n-k}}{a_n}$$

For example, for n = 4, we have

$$\begin{split} \sigma_4 &= r_1 r_2 r_3 r_4 = \frac{a_0}{a_4} \\ \sigma_3 &= r_1 r_2 r_3 + r_1 r_2 r_4 + r_1 r_3 r_4 + r_2 r_3 r_4 = \frac{-a_1}{a_4} \\ \sigma_2 &= r_1 r_2 + r_1 r_3 + r_1 r_4 + r_2 r_3 + r_2 r_4 + r_3 r_4 = \frac{a_2}{a_4} \\ \sigma_1 &= r_1 + r_2 + r_3 + r_4 = \frac{-a_3}{a_4} \end{split}$$

Example 1.1.8. Find the product of the roots of $50x^{50}+49x^{49}+\cdots+1=0$.

Solution. The product is
$$\sigma_{50} = (-1)^{50} \frac{a_0}{a_{50}} = \boxed{\frac{1}{50}}$$
.

Example 1.1.9. Three of the roots of $x^4 + ax^2 + bx + c = 0$ are 2, -3, 5. Find the values of a + b + c.

Solution. By Vieta's, $\sigma_1 = r_1 + r_2 + r_3 + r_4 = \frac{-a_3}{a_4}$, but $a_3 = 0$ since there is no x^3 term, therefore $r_1 + r_2 + r_3 + r_4 = 0$. We are given the roots 2, -3, 5, therefore the fourth root must be -4. This gives

$$x^4 + ax^2 + bx + c = (x - 2)(x - (-3))(x - (-4))(x - 5)$$

Now set x = 1 in the above equation.

Example 1.1.10. Let $p(x) = x^3 - 5x^2 + 12x - 19$ have roots a, b, and c. Find the value of $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac}$.

Solution.
$$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} = \frac{5}{19}$$

Example 1.1.11. Find (2+r)(2+s)(2+t)(2+u) if r, s, t, and u are the roots of $f(x) = 3x^4 - x^3 + 2x^2 + 7x + 2$.

Solution.
$$f(x) = 3(x-r)(x-s)(x-t)(x-u)$$
 The desired value is $\frac{f(-2)}{3} = \frac{2}{3}$

Example 1.1.12. Find the two values of k for which $2x^3 - 9x^2 + 12x - k$ has a double root.

Solution. Set the roots to be a, a, and b. Then $2a + b = \frac{9}{2}$ and $a^2 + 2ab = \frac{12}{2} = 6$. Solving this system gives a = 1, 2 which results in k = 4, 5. Checking gives $2x^3 - 9x^2 + 12x - 5 = (x - 1)^2(2x - 5)$ and $2x^3 - 9x^2 + 12x - 4 = (x - 2)^2(2x - 1)$.

Example 1.1.13. Suppose the roots of $x^3 + 3x^2 + 4x - 11 = 0$ are a, b, and c and the roots of $x^3 + rx^2 + sx + t = 0$ are a + b, b + c, a + c. (i) Find r. (ii) Find t.

Solution. (i) Using Vieta's,

$$r = -[(a+b) + (b+c) + (a+c)] = -2(a+b+c)$$

Also, a + b + c = -3, therefore r = -2(-3) = 6.

(ii) Using Vieta's,

$$t = -(a + b)(b + c)(a + c)$$

Now, also by Vieta's, we have a + b + c = -3. Therefore

$$t = -(-3 - c)(-3 - a)(-3 - b)$$

Next, factor $x^3 + 3x^2 + 4x - 11 = (x - a)(x - b)(x - c)$. Substituting x = -3 into the above equation results in $(-3)^3 + 3(-3)^2 + 4(-3) - 11 = (-3 - a)(-3 - b)(-3 - c)$ or therefore (-3 - a)(-3 - b)(-3 - c) = -23. To finish, we get t = -(3 - c)(3 - a)(3 - b) = 23.

Example 1.1.14. Let r_1, r_2, r_3 be the roots of the polynomial $5x^3 - 11x^2 + 7x + 3$. Evaluate $r_1^3 + r_2^3 + r_3^3$.

Solution. Use

$$r_1^3 + r_2^3 + r_3^3 - 3r_1r_2r_3 = (r_1 + r_2 + r_3) \left[r_1^2 + r_2^2 + r_3^2 - (r_1r_2 + r_1r_3 + r_2r_3) \right]$$

Example 1.1.15 (Transformations). Given the polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ with roots r_1, r_2, \cdots, r_n . (i) Find the polynomial with roots $\frac{1}{r_1}, \frac{1}{r_2}, \cdots, \frac{1}{r_n}$. (ii) Find the polynomial with roots mr_1, mr_2, \cdots, mr_n . (iii) Find the polynomial with roots $r_1 + 1, r_2 + 1, \cdots, r_n + 1$.

Example 1.1.16. Consider the polynomial $f(x) = x^3 - 9x^2 + 8x - 17 = 0$ with roots a, b, c. Compute $\frac{1}{a+3} + \frac{1}{b+3} + \frac{1}{c+3}$.

Polynomials Justin Stevens Page 8

1.2 Problem Solving Time!

Problem 1.2.1. Let r_1, r_2 , and r_3 be the three roots of the cubic $x^3 + 3x^2 + 4x - 4$. Find the value of $r_1r_2 + r_1r_3 + r_2r_3$.

Problem 1.2.2. Suppose the polynomial $5x^3 + 4x^2 - 8x + 6$ has three real roots a, b, and c. Find the value of a(1 + b + c) + b(1 + a + c) + c(1 + a + b).

Problem 1.2.3. Let m and n be the roots of the quadratic equation $4x^2 + 5x + 3 = 0$. Find (m+7)(n+7).

Problem 1.2.4. What is the sum of the reciprocals of the roots of the equation $\frac{2003}{2004}x + 1 + \frac{1}{x} = 0$?

Problem 1.2.5. The equation $x^3 - 4x^2 + 5x - 1.9 = 0$ has real roots r, s, and t. Find the length of an interior diagonal of a box with sides r, s, and t.

Problem 1.2.6. Determine (r+s)(s+t)(t+r) if r, s, and t are the three real roots of the polynomial $x^3 + 9x^2 - 9x - 8$.

Problem 1.2.7. Determine all real numbers a such that the two polynomials $x^2 + ax + 1$ and $x^2 + x + a$ have at least one root in common.

Problem 1.2.8. Let p, q, and r be the distinct roots of $x^3 - x^2 + x - 2 = 0$. Find $p^3 + q^3 + r^3$.

Problem 1.2.9. Find the sum of the roots of $x^{2001} + (\frac{1}{2} - x)^{2001} = 0$.

Problem 1.2.10. Let P(x) be a quadratic polynomial with real coefficients satisfying $x^2 - 2x + 2 \le P(x) \le 2x^2 - 4x + 3$ for all real numbers x, and suppose P(11) = 181. Find P(16).

Problem 1.2.11. For certain real values of a, b, c, and d, the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ has four nonreal roots. The product of two of these roots is 13 + i and the sum of the other two roots is 3 + 4i. Find b.

Problem 1.2.12. ζ_1, ζ_2 , and ζ_3 are complex numbers such that

$$\zeta_1 + \zeta_2 + \zeta_3 = 1$$

$$\zeta_1^2 + \zeta_2^2 + \zeta_3^2 = 3$$

$$\zeta_1^3 + \zeta_2^3 + \zeta_3^3 = 7$$

Compute $\zeta_1^7 + \zeta_2^7 + \zeta_3^7$.

Problem 1.2.13. Let P be the product of the nonreal roots of $x^4 - 4x^3 + 6x^2 - 4x = 2005$. Find |P|.

Problem 1.2.14. The equation $2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$ has three real roots. Given that their sum is $\frac{m}{n}$ where m and n are relatively prime positive integers, find m + n.

Problem 1.2.15. For how many real numbers a does the quadratic equation $x^2 + ax + 6a = 0$ have only integer roots for x?

Problem 1.2.16. In the polynomial $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$, the product of 2 of its roots is -32. Find k.

Problem 1.2.17. Consider the polynomials $P(x) = x^6 - x^5 - x^3 - x^2 - x$ and $Q(x) = x^4 - x^3 - x^2 - 1$. Given that z_1, z_2, z_3 , and z_4 are the roots of Q(x) = 0, find $P(z_1) + P(z_2) + P(z_3) + P(z_4)$.

Problem 1.2.18. If α, β, γ are the roots of $x^3 - x - 1 = 0$, compute $\frac{1+a}{1-a} + \frac{1+b}{1-b} + \frac{1+\gamma}{1-\gamma}$

Problem 1.2.19. Let α_1 and α_2 be the roots of the quadratic $x^2 - 5x - 2 = 0$, and let β_1, β_2 , and β_3 be the roots of the cubic $x^3 - 3x - 1 = 0$. Compute $(\alpha_1 + \beta_1)(\alpha_1 + \beta_2)(\alpha_1 + \beta_3)(\alpha_2 + \beta_1)(\alpha_2 + \beta_2)(\alpha_2 + \beta_3)$.