University of Hawai'i

Last name: _			
First name:			

Question:	1	2	3	4	5	6	Total
Points:	10	10	10	10	6	4	50
Score:							

Instructions:

- Write your complete name on your copy.
- Answer all 6 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your	Signature:	

QUESTION 1

Find the solution to the following system of linear equations:

$$\begin{cases} x_1 + x_2 + 3x_3 - x_4 = 3\\ 2x_1 - 2x_2 + x_3 + x_4 = 0 \end{cases}$$

(10 pts)

Does it have one solution, or infinitely many solutions?

Consider the following vectors:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -1 \end{bmatrix}, \ \mathbf{z} = \begin{bmatrix} -2 \\ 3 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} 9 \\ -8 \\ 0 \\ 1 \end{bmatrix}.$$

We would like to know if \mathbf{w} is a linear combination of \mathbf{x} , \mathbf{y} , \mathbf{z} and \mathbf{v} .

- (a) (5 points) Write down the system of linear equations corresponding to this problem. **DO NOT SOLVE THE SYSTEM**.
- (b) (5 points) If the RREF of the augmented matrix of the system from part (a) is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

can you express \mathbf{w} as a linear combination of \mathbf{x} , \mathbf{y} , \mathbf{z} , and \mathbf{v} ? If so, write \mathbf{w} as a linear combination of the other vectors.

(10 pts)

Consider the following homogeneous system of linear equations:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 - x_2 + x_3 - 2x_4 = 0 \\ 3x_1 - x_2 + 2x_3 - x_4 = 0 \end{cases}$$

- (a) (2 points) Write the augmented matrix of the system.
- (b) (2 points) Are there one solution or infinitely many solutions? Justify your answer.
- (c) (6 points) The RREF of the augmented matrix of the system is

$$\begin{bmatrix} 1 & 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 0 \end{bmatrix}$$

Express the solution as a linear combination of basic solution(s).

Question 4 _______(10 pts)

Find the entries of the matrix A if A satisfies the equation:

$$\left(2A^{\top} - 5\begin{bmatrix}1 & 0\\ -1 & 2\end{bmatrix}\right)^{\top} = 4A - 9\begin{bmatrix}1 & 1\\ -1 & 0\end{bmatrix}.$$

D	JESTION 5		(6 pts)
A square matrix A is skew	_	. Show that if A an	\ <u>-</u> /

symmetric, then A-B is skew-symmetric.

Question 6	(4 pts)		
Answer the following questions with True or False . Write down you at the end of each question. Justify briefly your answer in the space after problem.	nswers on the line at		
(a) A matrix B with RREF $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ has rank $(A) = 2$.		(/ 1)
(b) A homogeneous system can have no solution.	(a)	(/ 1)
(c) If $\mathbf{x_1}$ and $\mathbf{x_2}$ are solutions to a system of linear equations denoted by	(b) $\underline{\hspace{1cm}}$ by (S) , then $2\mathbf{x_1} - \mathbf{x_2}$		/ 1)
is also a solution of the system (S) .			
	(c)		
(d) A system of 3 linear equations in 2 variables with a coefficient maunique solution.	atrix of rank 2 has a	(/ 1)

Page 8

(d) ____