1 Einführung

1.1 Algebraische Kurven

Jede glatte, projektive Kurve C über \mathbb{C} ist eine eindimensionale, kompakte komplexwertige Riemannsche Fläche, die topologisch durch ihr Geschlecht klassifiziert werden kann.

$$g = \frac{1}{2} \operatorname{rk} H_1(C, \mathbb{Z}) = \dim_{\mathbb{C}} H^0(C, K_C)$$

 $K_C = \Omega_C^1$ bezeichnet hierbei das **kanonische Bündel**, d.h., für jede offene Menge U ergibt sich

$$K_C(U) = \{f(z)dz \mid f \text{ ist holomorph auf } U\}$$

In dieser Hinsicht unterscheidet man drei Fälle:

• g=0: Dann ist C einfach zusammenhängend, ergo isomorph zu $\mathbb{P}^1=\mathbb{C}\cup\{\infty\}$. Es gilt

$$K_C \cong \mathcal{O}_{\mathbb{P}_1}(-2)$$

• g = 1: Dann handelt es sich bei C um eine elliptische Kurve. Es existiert in diesem Fall ein $\tau \in \mathbb{H} = \{z \in \mathbb{C} \mid \Im z > 0\}$, sodass

$$C \cong \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z}) \cong E \subset \mathbb{P}^2$$

Ferner gilt

$$K_C = \mathcal{O}_C$$

Außerdem ist die universelle Überlagerung von C ganz $\mathbb C$ in diesem Fall und es gilt

$$\{\text{Elliptische Kurven}\}/\cong \xrightarrow{\cong} \mathbb{A}^1$$

• g > 1: In diesem Fall ist C isomorph zu \mathbb{H}/Γ , wobei Γ eine Fuchssche Gruppe, d.h. diskrete Untergruppe von $\mathrm{PSL}_2(\mathbb{R})$, ist, die auf \mathbb{H} operiert. Der Grad von K_C ist 2g-2 und für jedes g > 0 existiert eine quasi-projektive Varietät M_g mit

{Glatte projektive Kurven von Geschlecht
$$g/\mathbb{C}$$
} / $\cong \stackrel{\cong}{\longrightarrow} M_g$

1.2 Projektive Varietäten

1.3 Definition: Der projektive Raum

Definiere den komplexwertigen projektiven Raum der Dimension n durch

$$\mathbb{P}^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim = \mathsf{Proj}\mathbb{C}[X_0, \dots, X_n]$$

wobei $a \sim b :\iff \exists \lambda \in \mathbb{C}^{\times} : a = \lambda b \text{ für } a, b \in \mathbb{C}^{n+1} \setminus \{0\}.$ \mathbb{P}^n wird von folgenden Karten überdeckt

$$U_i = \{ [z_0 : \ldots : z_n] \mid z_i \neq 0 \} \cong \mathbb{A}^n$$

1.4 Definition: Zariski-Topologie

Eine Teilmenge $V \subset \mathbb{P}^n$ heißt **abgeschlossen** in der Zariski-Topologie, falls ein homogenes Ideal $I \subset \mathbb{C}[X_0, \dots, X_n]$ existiert, sodass V = V(I).

V heißt **reduzibel**, falls $V = V_1 \cup V_2$ mit $\emptyset \neq V_1, V_2 \subsetneq_a V$

1.5 Bemerkung

Jede abgeschlossene Teilmenge von \mathbb{P}^n ist eine Vereinigungen von irreduziblen, abgeschlossenen Komponenten.

1.6 Definition

Definiere die **Dimension** von $V \subseteq_a \mathbb{P}^n$ durch das maximale d, für welches irreduzible, abgeschlossene Mengen $X_i \subseteq \mathbb{P}^n$ existieren, sodass sich folgende, echt aufsteigende Kette ergibt

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n \subseteq V$$

1.7 Definition

Eine **projektive Varietät** ist ein geringter Raum isomorph zu (V, \mathcal{O}_V) mit $V \subset_{a,i} \mathbb{P}^n$ und $\mathcal{O}_V = \mathcal{O}_{\mathbb{P}^n}/\mathcal{I}_V$.

Morphismen sind stetige Abbildungen $f: V \to W$ mit

$$f^{-1}\mathcal{O}_W \hookrightarrow \mathcal{O}_V$$

wobei $f^{-1}O_W$ die Garbifizierung der Prägarbe

$$U \longmapsto \lim_{f(U) \subseteq X \subseteq_{\mathfrak{g}} W} \mathcal{O}_W(X)$$

1.8 Definition

Setze für $p \in V$

$$\mathcal{O}_{V,p} := \lim_{p \in U \subseteq_o V} \mathcal{O}_V(U) \triangleright \mathfrak{m}_{V,p} := \{ f \in \mathcal{O}_{V,p} \mid f(p) = 0 \}$$
$$T_p V := \operatorname{Hom}_{\mathbb{C}} \left(\mathfrak{m}_{V,p} / \mathfrak{m}_{V,p}^2, \mathbb{C} \right)$$

Es gilt

$$\dim_{\mathbb{C}}(T_pV) \ge \dim V$$

Gilt hier Gleichheit, so heißt V in p glatt.

1.9 Birationale Abbildungen

1.10 Lemma: Aufblasung

Sei X eine glatte projektive Varietät, $n = \dim X$ und $p \in X$.

Dann existiert eine weitere glatte projektive Varietät Y und eine Abbildung $f: Y \to X$, sodass

$$Y \setminus f^{-1}(p) \xrightarrow{\cong, f} X \setminus \{p\}$$

und

$$f^{-1}(p) \cong \mathbb{P}^{n-1}$$

Beweis

Setze

$$Y=\operatorname{Proj}_{\mathcal{O}_X}(\bigoplus_{n\geq 0}I_p^n)$$

1.11 Definition

Ein Morphismus $f: X \to Y$ projektiver Varietäten heißt **birational**, falls offene Mengen $X_o \subset X, Y_o \subset Y$ existieren, sodass

$$X_o \xrightarrow{f,\cong} Y_o$$

In diesem Fall heißen X und Y birational äquivalent.

1.12 Numerische Invarianten

1.13 Definition: Plurigenera

Definiere für eine glatte projektive Varietät X seinen **Plurigenus** durch

$$P_m(X) := \dim H^0(X, K_X^{\otimes m})$$

Man kann zeigen, dass für jedes X ein $\kappa = \kappa(X) \in \{-\infty, 0, 1, \dots, \dim X\}$ und a, b > 0 existieren, sodass für fast alle m gilt

$$am^{\kappa} \le P_m(X) \le bm^{\kappa}$$

Man nennt $\kappa(X)$ die **Kodaira-Dimension** von X.