Skriftlig eksamen på Økonomistudiet Vinteren 2016 - 2017

MATEMATIK A

Torsdag den 5. januar 2017

2 timers skriftlig prøve uden hjælpemidler

Dette sæt omfatter 2 sider med 3 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 V-1A ex

Skriftlig eksamen i Matematik A

Torsdag den 5. januar 2017

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Partiel integration.

Lad $I \subseteq \mathbf{R}$ være et åbent, ikke-tomt interval, og lad $f,g:I \to \mathbf{R}$ være to kontinuerte funktioner. Lad $F:I \to \mathbf{R}$ være en stamfunktion til funktionen f, og antag, at funktionen g er differentiabel på hele intervallet I, og at den afledede funktion g' er kontinuert.

(1) Vis, at formlen

$$\int f(x)g(x) dx = F(x)g(x) - \int F(x)g'(x) dx$$

er opfyldt.

(2) Udregn følgende ubestemte integraler

$$\int x \ln x \, dx$$
, $\int x^2 \ln x \, dx$ og $\int x^n \ln x \, dx$, hvor $n \in \mathbf{N}$.

(3) Udregn

$$\int xe^{-x} dx \text{ og } \int_0^1 xe^{-x} dx.$$

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = 2x^2 + 3y^2 + x^2y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Bestem eventuelle stationære punkter for funktionen f.
- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (4) Bestem værdimængden for funktionen f.

Opgave 3. Vi betragter den uendelige række

$$\sum_{n=0}^{\infty} \left(\frac{e^x}{e^{2x} + 1} \right)^n.$$

(1) Vis, at uligheden

$$e^{2x} - e^x + 1 > 0$$

er opfyldt for ethvert $x \in \mathbf{R}$.

- (2) Vis, at den uendelige række (§) er konvergent for ethvert $x \in \mathbf{R}$.
- (3) Bestem en forskrift for sumfunktionen

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{e^x}{e^{2x} + 1} \right)^n.$$

(4) Bestem værdimængden for sumfunktionen f.