RAKAI REGRESSION UPDATES

K.Asabere

```
library(MASS)
library(tidyverse)
library(broom)
library(finalfit)
library(conflicted)
library(gtsummary)
library(gt)
conflict_prefer("select", "dplyr")
conflict_prefer("filter", "dplyr")
```

```
rakai = read_csv("rakai_updated.csv")
```

```
mutate(
 suppbc = if_else(viral_load_b4 == "Viral Load Suppression", 1, 0),
 suppac = if_else(viral_load_after == "Viral Load Suppression", 1, 0)
) %>%
mutate(ageyrs = ageyrs %>% ff_label("Age (years)"),
       sex = if_else(sex == "F", "Female", "Male") %>%
         as factor() %>%
         fct_relevel("Female") %>%
         ff_label("Sex"),
       mobility = case_when(
         mobility %in% c(3,8,10) ~ "In-migrant",
         .default = "Long-term resident") %>%
         fct_relevel("In-migrant") %>%
         ff_label("Migration"),
       community_type = case_when(
         comm_num %in% c(38,770,771,774) ~ "Fishing community",
         .default = "Inland Community") %>%
         fct_relevel("Inland Community") %>%
         ff_label("Community type"),
       fishing_comm = if_else(community_type == "Fishing Community",1,0) %>%
         ff_label("Lake Victoria Fishing Community"),
       primary_occupation = case_when(
         occup1 %in% c(1,2,5) ~ "Agriculture/Homebrewing",
         occup1 %in% c(10,11) ~ "Trading or shopkeeping",
         occup1 %in% c(12,18) ~ "Bar work or waitressing",
         occup1 %in% c(2,3,4) \sim "House work",
         occup1 == 7 ~ "Fishing-related occupation",
         .default = "Other") %>%
         fct_relevel("Agriculture/Homebrewing", "Trading or shopkeeping") %>%
         ff_label("Primary Occupation"),
       age_cat = case_when(
         ageyrs < 30 \sim "<30",
         ageyrs >= 30 \& ageyrs <= 39 ~ "30-39",
         ageyrs >=40 & ageyrs <= 49 ~ "40-49") %>%
         fct relevel("<30") %>%
         ff_label("Age group"),
       current_marital_status = case_when(
         currmarr == 1 ~ "Currently married",
```

```
currmarr == 2 ~ "Previously married",
       currmarr == 8 ~ "Never married"
     ) %>%
       fct_relevel("Never married", "Currently married") %>%
       ff_label("Current marital status"),
     art_duration = case_when(
       artyrs >= 1 & artyrs < 2 ~ "1-2 years",
       artyrs > 2 & artyrs <= 5 ~ "2-5 years",
       artyrs > 5 \sim ">5 years",
       .default = "<1 year"</pre>
     ) %>%
       fct_relevel("<1 year","1-2 years","2-5 years") %>%
       ff_label("Time on ART"),
     education_level = case_when(
       educyrs == 8 ~ "No formal education",
       educyrs %in% c(1,2) ~ "Primary",
       educyrs %in% c(3,4) ~ "Secondary",
       educyrs %in% c(5,6,7,10,11) ~ "Technical/University"
     ) %>%
       fct relevel("No formal education") %>%
       ff_label("Educational attainment"),
     religion = case_when(
       religion %in% c(1,6) ~ "Other or none",
       religion %in% c(2,3,4) ~ "Catholic/Christian",
       religion == 5 ~ "Muslim"
     ) %>%
       ff_label("Religion"),
      hivac = if_else(hivac == 1, 1, 0) \%>%
  ff_label("Missed scheduled Visit"),
hivbc = if_else(hivbc == 1, 1, 0) %>%
  ff_label("Missed Scheduled Visit"),
artrunac = if_else(artrunac == 1, 1, 0) %>%
  ff_label("Run out of ART1"),
artrunbc = if_else(artrunbc == 1, 1, 0) %>%
  ff_label("Run out of ART"),
```

```
artstrac = if_else(artstrac == 1, 1, 0) %>%
     ff_label("Reduced ART Intake"),
    artstrbc = if_else(artstrbc == 1, 1, 0) %>%
      ff label("Reduced ART Intake"))
df_viraemia <- df_rakai_reg %>%
 select(sex,age_cat,mobility,community_type,art_duration,
hivbc,artrunbc,artstrbc,hivac,artrunac,artstrac,viral_load_b4,
 viral_load_after,suppbc,suppac) %>%
  mutate(any_disruption_b4 = if_else(rowSums(across(hivbc:artrunbc),na.rm = TRUE) > 0,1,0) '
 ff_label("Any ART Disruption"),
any_disruption_after = if_else(rowSums(across(hivac:artstrac),na.rm = TRUE) > 0,1,0)%>%
  ff_label("Any ART Disruption"))
df_viraemia <- df_viraemia %>%
 mutate(
   viraemia after_covid = if_else(viral_load_after == "Viraemia", "Yes", "No") %>%
     fct_relevel("No") %>%
     ff_label("Viraemia"),
    viraemia after_dum = if_else(viral_load_after == "Viraemia",1,0) %>%
      ff_label("Viraemia"),
   viraemia_b4_covid = if_else(viral_load_b4 == "Viraemia","Yes","No") %>%
     fct_relevel("No") %>%
     ff_label("Viraemia"),
   viraemia_b4_dum = if_else(viral_load_b4 == "Viraemia",1,0) %>%
     ff_label("Viraemia"),
     art_disruption_b4 = if_else(any_disruption_b4 == 1, "Yes", "No") %>%
     fct_relevel("No") %>%
     ff_label("Any ART Disruption pre-covid"),
   art_disruption_after = if_else(any_disruption_after == 1, "Yes", "No") %>%
```

fct_relevel("No") %>%

)

ff_label("Any ART Disruption post-covid"),

saveRDS(df_viraemia, file = "df_viraemia.rds")

```
df_table_1 <- df_rakai_reg %>%
  select(
    ageyrs,age_cat,sex,current_marital_status,education_level,primary_occupation,
    mobility, community_type, art_duration
  )
df_table_1 %>%
  tbl_summary(
    by = sex,
    statistic = list(
      all_categorical() ~ "{n} ({p}%)",
      all_continuous() ~ "{median} ({IQR})"
    ),
    digits = list(
     all_categorical() ~ 0,
      all_continuous() ~ 0
    )
  ) %>%
  add_overall() %>%
  bold_labels() %>%
  italicize_levels() %>%
  modify_spanning_header(
     all_stat_cols() ~ "**Sex**"
```

```
# saveRDS(df_table_1, file = "df_table_1.rds")
```

Combined Forest Plot of Univariable and Multivariable Regressions with Viraemia after Covid as Outcome

```
df_viraemia <- read_rds("df_viraemia.rds") %>%
    drop_na()

# missing_glimpse(df_viraemia)
# ff_glimpse(df_viraemia)
```

Multivariate log binomial regression with viraemia after covid as outcome and summarise the prevalence ratios and confidence intervals into a table.

		\mathbf{Sex}	
Characteristic	$\overline{\textbf{Overall N} = 2,785^1}$	Female $N = 1,780^{1}$	Male $N = 1,005$
Age (years)	38 (11)	36 (11)	39 (9)
Age group	,	,	· /
<30	$434 \ (16\%)$	344 (19%)	90 (9%)
30-39	1,203(43%)	788 (44%)	415 (41%)
40-49	1,148 (41%)	648 (36%)	500 (50%)
Current marital status		,	,
Never married	138 (5%)	93 (5%)	45 (4%)
Currently married	1,692 (61%)	1,015(57%)	677 (67%)
Previously married	955 (34%)	672 (38%)	283 (28%)
Educational attainment	,	,	,
$No\ formal\ education$	255 (9%)	165 (9%)	90 (9%)
Primary	1,902 (68%)	1,170~(66%)	732(73%)
Secondary	396 (14%)	278 (16%)	118 (12%)
Technical/University	232 (8%)	167 (9%)	65 (6%)
Primary Occupation		,	,
Agriculture/Homebrewing	698 (25%)	520 (29%)	178 (18%)
Trading or shopkeeping	520 (19%)	410 (23%)	110 (11%)
Bar work or waitressing	278 (10%)	274(15%)	4 (0%)
Fishing-related occupation	501 (18%)	3 (0%)	498 (50%)
$House\ work$	282 (10%)	278 (16%)	4 (0%)
Other	506 (18%)	295 (17%)	211 (21%)
Migration	,	,	,
In- $migrant$	630 (23%)	458 (26%)	172 (17%)
Long-term resident	2,155(77%)	1,322(74%)	833 (83%)
Community type	, , ,	, , ,	,
Inland Community	1,260 (45%)	924 (52%)	336 (33%)
Fishing community	1,525 (55%)	856 (48%)	669~(67%)
Time on ART	, , ,	,	()
<1 year	220 (8%)	150 (8%)	70 (7%)
1-2 years	78 (3%)	50 (3%)	28 (3%)
2-5 years	737(26%)	436 (24%)	301 (30%)
>5 years	1,750(63%)	1,144~(64%)	606 (60%)

 $[\]overline{{}^{I}\mathrm{Median}}$ (IQR); n (%)

```
# Fit the log-binomial model
model_viraemia_logbin <- df_viraemia %>%
    glm(viraemia_after_dum ~ any_disruption_after + any_disruption_b4 + sex +
        age_cat + mobility + community_type + art_duration,
        family = binomial(link = "log"), data = .)

# Extract results and format
viraemia_multivariate_df <- model_viraemia_logbin %>%
    tidy(exponentiate = TRUE, conf.int = TRUE) %>%
    mutate(model = "Adjusted") %>%
    select(term, model, estimate, conf.low, conf.high) %>%
    mutate(across(where(is.numeric), \(x) round(x, 2))) %>%
    dplyr::filter(term != "(Intercept)")

# Print results
viraemia_multivariate_df
```

term	model	estimate	conf.low	conf.high
any_disruption_after	Adjusted	1.47	0.93	2.22
any_disruption_b4	Adjusted	1.38	0.70	2.48
sexMale	Adjusted	2.24	1.60	3.14
$age_cat30-39$	Adjusted	0.48	0.33	0.71
$age_cat40-49$	Adjusted	0.18	0.10	0.29
mobilityLong-term resident	Adjusted	1.07	0.73	1.60
community_typeFishing community	Adjusted	1.21	0.85	1.74
art_duration1-2 years	Adjusted	0.48	0.14	1.26
art_duration2-5 years	Adjusted	0.82	0.48	1.46
art_duration>5 years	Adjusted	0.75	0.45	1.31

Univariate log binomial regression with viraemia after covid as outcome and summarise the prevalence ratios and confidence intervals into a table.

```
str_c(dependent_var, " ~ ", .) \%>\%
  map(
    .f = ~glm(
     formula = as.formula(.x),
     family = binomial(link = "log"),
      data = df_viraemia
    )
  ) %>%
  map(
    .f = ~tidy(.x, exponentiate = TRUE, conf.int = TRUE)
  ) %>%
  bind_rows() %>%
  mutate(across(where(is.numeric), \(x) round(x, 2)),
         model = "Unadjusted") %>%
  filter(term != "(Intercept)") %>%
  select(term, model, estimate, conf.low, conf.high)
# Print results
viraemia_univariate_df
```

term	model	estimate	conf.low	conf.high
any_disruption_after	Unadjusted	1.68	1.10	2.47
any_disruption_b4	Unadjusted	1.87	0.97	3.21
sexMale	Unadjusted	1.85	1.33	2.57
$age_cat30-39$	Unadjusted	0.55	0.38	0.80
$age_cat40-49$	Unadjusted	0.21	0.12	0.33
mobilityLong-term resident	Unadjusted	0.87	0.60	1.28
community_typeFishing community	Unadjusted	1.50	1.07	2.13
art_duration1-2 years	Unadjusted	0.71	0.21	1.88
art_duration2-5 years	Unadjusted	0.84	0.50	1.50
art_duration>5 years	Unadjusted	0.55	0.34	0.96

```
# combine univariate and multivariate model dataframes into one dataframe
viraemia_forest_df <- bind_rows(viraemia_univariate_df,viraemia_multivariate_df)%>% mutate(term == "any_disruption_after" ~ "ART Disruption After (Yes)",
    term == "any_disruption_b4" ~ "ART Disruption Before (Yes)",
    term == "sexMale" ~ "Sex (Male vs Female)",
    term == "age_cat<30" ~ "Age: <30 vs 40-49",
    term == "age_cat30-39" ~ "Age: 30-39 vs 40-49",</pre>
```

```
term == "mobilityLong-term resident" ~ "Mobility (Long-term Resident)",
    term == "community_typeFishing community" ~ "Community Type (Fishing)",
    term == "art_duration2-5 years" ~ "ART Duration: 2-5 years",
    term == "art_duration>5 years" ~ "ART Duration: >5 years",
    term == "viraemia_b4_dum" ~ "Viraemia before Covid",
    TRUE ~ term
)) %>%
    arrange(desc(estimate))
```

term	model	estimate	conf.low	conf.high
Sex (Male vs Female)	Adjusted	2.24	1.60	3.14
ART Disruption Before (Yes)	Unadjusted	1.87	0.97	3.21
Sex (Male vs Female)	Unadjusted	1.85	1.33	2.57
ART Disruption After (Yes)	Unadjusted	1.68	1.10	2.47
Community Type (Fishing)	Unadjusted	1.50	1.07	2.13
ART Disruption After (Yes)	Adjusted	1.47	0.93	2.22
ART Disruption Before (Yes)	Adjusted	1.38	0.70	2.48
Community Type (Fishing)	Adjusted	1.21	0.85	1.74
Mobility (Long-term Resident)	Adjusted	1.07	0.73	1.60
Mobility (Long-term Resident)	Unadjusted	0.87	0.60	1.28
ART Duration: 2-5 years	Unadjusted	0.84	0.50	1.50
ART Duration: 2-5 years	Adjusted	0.82	0.48	1.46
ART Duration: >5 years	Adjusted	0.75	0.45	1.31
art_duration1-2 years	Unadjusted	0.71	0.21	1.88
Age: 30-39 vs 40-49	Unadjusted	0.55	0.38	0.80
ART Duration: >5 years	Unadjusted	0.55	0.34	0.96
Age: 30-39 vs 40-49	Adjusted	0.48	0.33	0.71
art_duration1-2 years	Adjusted	0.48	0.14	1.26
$age_cat40-49$	Unadjusted	0.21	0.12	0.33
age_cat40-49	Adjusted	0.18	0.10	0.29

```
labs(title = "Forest Plot of Prevalence Ratios",
    x = "Variables",
    y = "Prevalence Ratio (95% CI)",
    color = "Model Type") +
theme_minimal(base_size = 14)
```

Forest Plot of Prevalence Rat

Stratification by Sex

```
unnest(cols = results) %>%
select(sex, term, estimate, conf.low, conf.high) %>%
mutate(across(where(is.numeric), \(x) round(x, 2))) %>%
dplyr::filter(term != "(Intercept)")

# Print results
model_viraemia_sex
```

sex	term	estimate	conf.low	conf.high
Female	any_disruption_after	1.26	0.66	2.23
Female	any_disruption_b4	1.19	0.41	2.72
Female	$age_cat30-39$	0.39	0.23	0.66
Female	$age_cat40-49$	0.17	0.07	0.36
Female	mobilityLong-term resident	0.82	0.50	1.38
Female	community_typeFishing community	1.39	0.85	2.31
Female	art_duration1-2 years	0.47	0.11	1.50
Female	art_duration2-5 years	0.71	0.35	1.53
Female	art_duration>5 years	0.51	0.26	1.07
Male	any_disruption_after	1.80	0.93	3.19
Male	any_disruption_b4	1.37	0.53	3.04
Male	$age_cat30-39$	0.64	0.36	1.25
Male	$age_cat40-49$	0.21	0.10	0.44
Male	mobilityLong-term resident	1.73	0.89	3.87
Male	community_typeFishing community	0.97	0.59	1.64
Male	art_duration1-2 years	0.42	0.02	2.34
Male	art_duration2-5 years	0.97	0.43	2.58
Male	art_duration>5 years	1.11	0.52	2.87

```
sex_forest_df <- model_viraemia_sex %>%
  mutate(term = case_when(
    term == "any_disruption_after" ~ "ART Disruption After (Yes)",
    term == "any_disruption_b4" ~ "ART Disruption Before (Yes)",
    term == "sexMale" ~ "Sex (Male vs Female)",
    term == "age_cat<30" ~ "Age: <30 vs 40-49",
    term == "age_cat30-39" ~ "Age: 30-39 vs 40-49",
    term == "mobilityLong-term resident" ~ "Mobility (Long-term Resident)",
    term == "community_typeFishing community" ~ "Community Type (Fishing)",
    term == "art_duration2-5 years" ~ "ART Duration: 2-5 years",
    term == "art_duration>5 years" ~ "ART Duration: >5 years",
    term == "viraemia_b4_dum" ~ "Viraemia before Covid",
```

```
TRUE ~ term
)) %>%
arrange(desc(estimate))
sex_forest_df
```

sex	term	estimate	conf.low	conf.high
Male	ART Disruption After (Yes)	1.80	0.93	3.19
Male	Mobility (Long-term Resident)	1.73	0.89	3.87
Female	Community Type (Fishing)	1.39	0.85	2.31
Male	ART Disruption Before (Yes)	1.37	0.53	3.04
Female	ART Disruption After (Yes)	1.26	0.66	2.23
Female	ART Disruption Before (Yes)	1.19	0.41	2.72
Male	ART Duration: >5 years	1.11	0.52	2.87
Male	Community Type (Fishing)	0.97	0.59	1.64
Male	ART Duration: 2-5 years	0.97	0.43	2.58
Female	Mobility (Long-term Resident)	0.82	0.50	1.38
Female	ART Duration: 2-5 years	0.71	0.35	1.53
Male	Age: 30-39 vs 40-49	0.64	0.36	1.25
Female	ART Duration: >5 years	0.51	0.26	1.07
Female	art_duration1-2 years	0.47	0.11	1.50
Male	art_duration1-2 years	0.42	0.02	2.34
Female	Age: 30-39 vs 40-49	0.39	0.23	0.66
Male	age_cat40-49	0.21	0.10	0.44
Female	$age_cat40-49$	0.17	0.07	0.36

```
axis.text = element_text(face = "bold", size = 10),
axis.title = element_text(face = "bold", size = 10),
legend.text = element_text(face = "bold", size = 10),
legend.title = element_text(face = "bold", size = 10)
)
```

Prevalence Ratios by Sex

Univariable and Multivariable Regressions with ART Disruption as Outcome

Multivariate log binomial regression with any ART disruption after covid as outcome and summarise the prevalence ratios and confidence intervals into a table.

Due to failure to converge, Poisson regression with robust standard errors was fitted.

```
vcov = vcovHC(model_disruption_multivariate
# Correct calculation of confidence intervals
conf_int <- confint.default(model_disruption_multivariate) # Compute log-scale CIs</pre>
conf_int <- exp(conf_int) # Exponentiate to get PRR CIs</pre>
# Convert to tibble and merge correct confidence intervals
disruption_multivariate_df <- tidy(model_disruption_multivariate_robust) %>%
  mutate(
    estimate = exp(estimate) # Exponentiate coefficients
  ) %>%
 left_join(
   tibble(term = rownames(conf_int), conf.low = conf_int[,1], conf.high = conf_int[,2]),
    by = "term"
  ) %>%
  mutate(model = "Adjusted") %>%
  select(term, model, estimate, conf.low, conf.high) %>%
  mutate(across(where(is.numeric), \(x) round(x, 2))) %>%
  dplyr::filter(term != "(Intercept)")
# Print results
disruption_multivariate_df
```

term	model	estimate	conf.low	conf.high
any_disruption_b4	Adjusted	5.73	4.45	7.36
sexMale	Adjusted	0.76	0.60	0.95
age_cat30-39	Adjusted	1.15	0.86	1.53
age_cat40-49	Adjusted	0.99	0.71	1.36
mobilityLong-term resident	Adjusted	0.75	0.59	0.94
community_typeFishing community	Adjusted	1.54	1.23	1.93
art_duration1-2 years	Adjusted	1.15	0.63	2.07
art_duration2-5 years	Adjusted	0.71	0.49	1.04
art_duration>5 years	Adjusted	0.67	0.47	0.95
viraemia_b4_dum	$\operatorname{Adjusted}$	1.29	0.87	1.91

Univariate negative binomial regression with any ART disruption after covid as outcome and summarise the prevalence ratios and confidence intervals into a table.

```
explanatory_vars <- c("any_disruption_b4","sex","age_cat","mobility","community_type","art_dependent_var <- "art_disruption_after"</pre>
```

```
# Fit log-binomial models for each explanatory variable
disruption_univariate_df <- explanatory_vars %>%
 str_c("any_disruption_after ~ ", .) %>%
 map(
   .f = ~glm(
     formula = as.formula(.x),
     family = binomial(link = "log"),
     data = df_viraemia
   )
 ) %>%
 map(
   .f = ~tidy(.x, exponentiate = TRUE, conf.int = TRUE)
 ) %>%
 bind_rows() %>%
 mutate(across(where(is.numeric), \(x) round(x, 2)),
         model = "Unadjusted") %>%
 filter(term != "(Intercept)") %>%
 select(term, model, estimate, conf.low, conf.high)
# Print results
disruption_univariate_df
```

term	model	estimate	conf.low	conf.high
any_disruption_b4	Unadjusted	6.09	5.13	7.14
sexMale	Unadjusted	0.79	0.64	0.97
$age_cat30-39$	Unadjusted	0.91	0.71	1.17
$age_cat40-49$	Unadjusted	0.64	0.49	0.84
mobilityLong-term resident	Unadjusted	0.57	0.47	0.69
community_typeFishing community	Unadjusted	1.61	1.32	1.98
art_duration1-2 years	Unadjusted	1.31	0.76	2.15
art_duration2-5 years	Unadjusted	0.81	0.58	1.16
art_duration>5 years	Unadjusted	0.75	0.55	1.05
viraemia_b4_dum	Unadjusted	1.58	1.09	2.18

```
disruption_forest_df <- bind_rows(disruption_univariate_df,disruption_multivariate_df)%>%
  mutate(term = case_when(
    term == "any_disruption_after" ~ "ART Disruption After (Yes)",
    term == "any_disruption_b4" ~ "ART Disruption Before (Yes)",
    term == "sexMale" ~ "Sex (Male vs Female)",
    term == "age_cat<30" ~ "Age: <30 vs 40-49",</pre>
```

```
term == "age_cat30-39" ~ "Age: 30-39 vs 40-49",
    term == "mobilityLong-term resident" ~ "Mobility (Long-term Resident)",
    term == "community_typeFishing community" ~ "Community Type (Fishing)",
    term == "art_duration2-5 years" ~ "ART Duration: 2-5 years",
    term == "art_duration>5 years" ~ "ART Duration: >5 years",
    term == "viraemia_b4_dum" ~ "Viraemia before Covid",
    TRUE ~ term
    )) %>%
    arrange(desc(estimate))
disruption_forest_df
```

term	model	estimate	conf.low	conf.high
ART Disruption Before (Yes)	Unadjusted	6.09	5.13	7.14
ART Disruption Before (Yes)	Adjusted	5.73	4.45	7.36
Community Type (Fishing)	Unadjusted	1.61	1.32	1.98
Viraemia before Covid	Unadjusted	1.58	1.09	2.18
Community Type (Fishing)	Adjusted	1.54	1.23	1.93
art_duration1-2 years	Unadjusted	1.31	0.76	2.15
Viraemia before Covid	Adjusted	1.29	0.87	1.91
Age: 30-39 vs 40-49	Adjusted	1.15	0.86	1.53
art_duration1-2 years	Adjusted	1.15	0.63	2.07
$age_cat40-49$	Adjusted	0.99	0.71	1.36
Age: 30-39 vs 40-49	Unadjusted	0.91	0.71	1.17
ART Duration: 2-5 years	Unadjusted	0.81	0.58	1.16
Sex (Male vs Female)	Unadjusted	0.79	0.64	0.97
Sex (Male vs Female)	Adjusted	0.76	0.60	0.95
ART Duration: >5 years	Unadjusted	0.75	0.55	1.05
Mobility (Long-term Resident)	Adjusted	0.75	0.59	0.94
ART Duration: 2-5 years	Adjusted	0.71	0.49	1.04
ART Duration: >5 years	Adjusted	0.67	0.47	0.95
$age_cat40-49$	Unadjusted	0.64	0.49	0.84
Mobility (Long-term Resident)	Unadjusted	0.57	0.47	0.69

```
scale_color_manual(values = c("Unadjusted" = "blue", "Adjusted" = "red")) +
labs(
    # title = "Forest Plot of Prevalence Ratios",
    x = " ",
    y = "Prevalence Risk Ratio of Any ART Disruption after Covid-19",
    color = " "
) +
theme_minimal(base_size = 10) +
theme(
    legend.position = "bottom",
    axis.text = element_text(face = "bold", size = 10),
    legend.text = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10)
)
```


Adjusted Unadjusted

Forest plots

Prevalence Risk Ratio of Viraemia after Covid-19

```
ggplot(viraemia_forest_df, aes(x = term, y = estimate, color = model)) +
 geom_point(position = position_dodge(width = 0.5), size = 2) +
 geom_errorbar(aes(ymin = conf.low, ymax = conf.high),
                position = position_dodge(width = 0.5), width = 0.2) +
 geom_hline(yintercept = 1, linetype = "dashed", color = "black") +
 coord_flip() +
 scale_y_continuous(breaks = c(1:max(viraemia_forest_df$conf.high + 1)),
                     limits = c(0, max(viraemia_forest_df$conf.high) + 2))+
 scale_color_manual(values = c("Unadjusted" = "blue", "Adjusted" = "red")) +
 labs(
   # title = "Forest Plot of Prevalence Ratios",
   x = " ",
   y = "Prevalence Risk Ratio of Viraemia after Covid-19",
   color = " "
 theme_minimal(base_size = 10) +
 theme(
   legend.position = "bottom",
   axis.text = element_text(face = "bold", size = 10),
   axis.title = element_text(face = "bold", size = 10),
   legend.text = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10)
```


Prevalence Risk Ratio of Any ART Disruption After Covid-19

```
ggplot(disruption_forest_df, aes(x = term, y = estimate, color = model)) +
      geom_point(position = position_dodge(width = 0.5), size = 2) +
     geom_errorbar(aes(ymin = conf.low, ymax = conf.high),
                    position = position_dodge(width = 0.5), width = 0.2) +
     geom_hline(yintercept = 1, linetype = "dashed", color = "black") +
      coord_flip() +
      scale_y_continuous(breaks = c(1:max(disruption_forest_df$conf.high + 1)),
                         limits = c(0, max(disruption_forest_df$conf.high) + 2))+
     scale_color_manual(values = c("Unadjusted" = "blue", "Adjusted" = "red")) +
     labs(
       # title = "Forest Plot of Prevalence Ratios",
       x = " ",
       y = "Prevalence Risk Ratio of Any ART Disruption after Covid-19",
       color = " "
      ) +
      theme_minimal(base_size = 10) +
     theme(
       legend.position = "bottom",
       axis.text = element_text(face = "bold", size = 10),
       axis.title = element_text(face = "bold", size = 10),
```

```
legend.text = element_text(face = "bold", size = 10),
legend.title = element_text(face = "bold", size = 10)
)
```


Prevalence Risk Ratio of Viraemia after Covid-19 By Sex

```
theme(
    legend.position = "bottom",
    plot.title = element_text(face = "bold", size = 14, hjust = 0.5),
    axis.text = element_text(face = "bold", size = 10),
    axis.title = element_text(face = "bold", size = 10),
    legend.text = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10)
)
```


Female Male

Regression Tables

Any ART Disruption Post-Covid

	ART DISRUPTI	ON POST COVID	N POST COVID PREVALENCE RISK RATIOS		
Variable	No N = 2,409 ¹	Yes N = 375 ¹	PRR (95% CI) ²	AdjPRR (95% CI) ²	
ART Disruption pre-	42 (1.7%)	84 (22%)	6.09 (4.75-7.72)	5.61 (4.34-7.16)	
Viraemia pre-covid	107 (4.4%)	28 (7.5%)	1.58 (1.05-2.28)	1.29 (0.85-1.88)	
Sex					
Female	1,520 (63%)	259 (69%)	_	_	
Male	889 (37%)	116 (31%)	0.79 (0.63-0.98)	0.76 (0.60-0.95)	
Age Group					
40-49	1,026 (43%)	122 (33%)	_	_	
<30	362 (15%)	72 (19%)	1.56 (1.16-2.08)	1.03 (0.75-1.42)	
30-39	1,021 (42%)	181 (48%)	1.42 (1.13-1.79)	1.17 (0.93-1.49)	
Mobility					
In-migrant	502 (21%)	127 (34%)	_	_	
Long-term resident	1,907 (79%)	248 (66%)	0.57 (0.46-0.71)	0.73 (0.58-0.92)	
Community type					
Inland community	1,132 (47%)	127(34%)	_	_	
Fishing community	1,277 (53%)	248 (66%)	1.61 (1.30-2.00)	1.55 (1.24-1.93)	
Time on ART					
<2 years	138 (5.7%)	29 (7.7%)	_	_	
2-5 years	742 (31%)	125 (33%)	0.83 (0.56-1.27)	0.75 (0.50-1.15)	
>5 years	1,529 (63%)	221 (59%)	0.73 (0.50-1.09)	0.66 (0.45-1.00)	
¹n(%)					
² PRR= Prevalence Risk	Ratio, CI= Confi	dence Interval			

Viraemia Post-Covid

	VIRAEMIA POST COVID		PREVALENCE RISK RATIOS		
Variable	No N = 2,650 ¹	Yes N = 135 ¹	PRR (95% CI) ²	AdjPRR (95% CI) ²	
Any ART Disruption post-covid					
No	2,303 (95.6%)	107 (4.4%)	_	_	
Yes Any ART Disruption pre-covid	347 (93%)	28 (7.5%)	1.68 (1.09-2.51)	1.48 (0.92-2.30)	
No	2,535 (95.3%)	124 (4.7%)	_	_	
Yes Sex	115 (91%)	11 (8.7%)	1.87 (0.95-3.31)	1.40 (0.68-2.64)	
Female Male	1,71 4 (96%) 936 (93%)	66 (3.7%) 69 (6.9%)	 1.85 (1.32-2.6 0)	 2.2 7 (1.59-3.23)	
Age Group					
<30	390 (90%)	44 (10%)			
3 0 -39	1,136 (94%)	67 (5.6%)	0.55 (0.38-0.81)	0.47 (0.32-0.71)	
40-49 Mobility	1,124 (98%)	24 (2.1%)	0.21 (0.12-0.34)	0.17 (0.10-0.29)	
In-migrant	596 (95%)	34 (5.4%)			
Long-term resident Community type	2 ,0 54 (95%)	101 (4.7%)	0.87 (0.60-1.30)	1.09 (0.73-1.66)	
Inland community	1,212 (96%)	48 (3.8%)	_	_	
Fishing community Time on ART	1,438 (94%)	87 (5.7%)	1.50 (1.06-2.15)	1.16 (0.81-1.68)	
<2 years	160 (95%)	8(4.8%)	_	_	
2-5 years	810 (93%)	57 (6.6%)	1.38 (0.70-3.13)	1.45 (0.72-3.33)	
>5 years	1, 68 0 (96%)	70 (4.0%)	0.84 (0.43-1.89)	1.22 (0.61-2.79)	
¹n(%)					
² PRR= Prevalence Risk	Ratio, CI= Confid	ence Interval			

Viraemia Sex Stratification

```
sex_viraemia_table <- sex_forest_df %>%
arrange(term, sex) %>%
mutate(
    PRR_CI = paste0(estimate, " (", conf.low, " - ", conf.high, ")")
```

Prevalence Risk Ratios by Sex

Variable	Female PRR (95% CI)	Male PRR (95% CI)
ART Disruption After (Yes)	1.26 (0.66 - 2.23)	1.8 (0.93 - 3.19)
ART Disruption Before (Yes)	1.19 (0.41 - 2.72)	$1.37 \ (0.53 - 3.04)$
ART Duration: 2-5 years	$0.71 \ (0.35 - 1.53)$	$0.97 \ (0.43 - 2.58)$
ART Duration: >5 years	$0.51 \ (0.26 - 1.07)$	$1.11 \ (0.52 - 2.87)$
Age: 30-39 vs 40-49	$0.39 \ (0.23 - 0.66)$	$0.64 \ (0.36 - 1.25)$
Community Type (Fishing)	$1.39 \ (0.85 - 2.31)$	0.97 (0.59 - 1.64)
Mobility (Long-term Resident)	$0.82 \ (0.5 - 1.38)$	$1.73 \ (0.89 - 3.87)$
$age_cat40-49$	$0.17 \ (0.07 - 0.36)$	0.21 (0.1 - 0.44)
art_duration1-2 years	$0.47 \ (0.11 - 1.5)$	$0.42 \ (0.02 - 2.34)$

```
) %>%
 select(term, sex, PRR_CI) %>%
 pivot_wider(names_from = sex, values_from = PRR_CI)
sex_viraemia_table %>%
 gt() %>%
 tab_header(
   title = "Prevalence Risk Ratios by Sex",
   #subtitle = "Comparison of Univariate Negative Binomial Models"
 ) %>%
 cols_label(
   term = "Variable",
   Female = "Female PRR (95% CI)",
   Male = "Male PRR (95% CI)"
 ) %>%
 tab_options(table.font.names = "Times New Roman") %>%
 fmt_number(columns = 2:3, decimals = 2) %>%
 opt_table_lines()
```

sex_viraemia_table

term	Female	Male
ART Disruption After (Yes)	1.26 (0.66 - 2.23)	,
ART Disruption Before (Yes)	$1.19 \ (0.41 - 2.72)$	$1.37 \ (0.53 - 3.04)$
ART Duration: 2-5 years	$0.71 \ (0.35 - 1.53)$	$0.97 \ (0.43 - 2.58)$

term	Female	Male
ART Duration: >5 years	0.51 (0.26 - 1.07)	1.11 (0.52 - 2.87)
Age: 30-39 vs 40-49	$0.39 \ (0.23 - 0.66)$	$0.64 \ (0.36 - 1.25)$
Community Type (Fishing)	$1.39 \ (0.85 - 2.31)$	$0.97 \ (0.59 - 1.64)$
Mobility (Long-term Resident)	$0.82 \ (0.5 - 1.38)$	$1.73 \ (0.89 - 3.87)$
$age_cat40-49$	$0.17 \ (0.07 - 0.36)$	$0.21 \ (0.1 - 0.44)$
art_duration1-2 years	$0.47 \ (0.11 - 1.5)$	$0.42 \ (0.02 - 2.34)$

Characteristic	Female (N = 1,779)	Male (N = 1,005)	Female PRR (95% CI)	Male PRR (95% CI)
Any ART Disruption Pre- COVID	80 (4.5%)	46 (4.6%)	_	_
Any ART Disruption	259 (15%)	116 (12%)	1.24 (0.63 - 2.28)	1.83 (0.91 - 3.43)
Age Group				
40-49	648 (36%)	500 (50%)	_	_
<30	344 (19%)	90 (9.0%)	5.91 (2.73 - 14.24)	4.84 (2.18 - 10.48)
30-39	787 (44%)	415 (41%)	2.35 (1.1 - 5.6)	3.1 (1.76 - 5.75)
Migration				
In-migrant	457 (26%)	172 (17%)	_	_
Long-term resident	1,322 (74%)	833 (83%)	0.85 (0.5 - 1.45)	1.78 (0.9 - 4.08)
Community Type				
Inland Community	923 (52%)	336 (33%)	_	_
Fishing Community	856 (48%)	669 (67%)	1.30 (0.79 - 2.17)	0.92 (0.55 - 1.59)
Time on ART				
<2 years	116 (6.5%)	51 (5.1%)	_	_
2-5 years	519 (29%)	348 (35%)	1.21 (0.53 - 3.27)	2.26 (0.66 - 14.2)
>5 years	1,144 (64%)	606 (60%)	0.80 (0.35 - 2.15)	2.4 (0.71 - 14.99)
Viraemia				
Viraemia (Yes)	66 (3.7%)	69 (6.9%)	_	_