Matboard Bridge

Design Calculations

Nabeth Ghazi

Contents

T	Des	$\operatorname{gn} 0$	T
	1.1	Hand Calculations	1
		1.1.0 Cross Section	1
		1.1.1 Flexural Tension Failure	1
		1.1.2 Flexural Compression Failure	1
		1.1.3 Material Shear Stress Failure	2
		1.1.4 Glue Shear Stress Failure	2
		1.1.5 Case 1 Flexural Buckling Failure	2
		1.1.6 Case 2 Flexural Buckling Failure	3
		1.1.7 Case 3 Flexural Buckling Failure	3
		1.1.8 Shear Buckling Failure	3
		1.1.9 FOS and P_{fail}	4
	1.2	Intermediate Code Calculations	4
	1.3	Code Output	5
		1.3.1 FOS and P_{fail}	5
		1.3.2 Shear Force and Bending Moment Capacities Diagram	5
2	Fina	l Design	6
	2.1	Code Output	6
		2.1.1 FOS and P_{fail}	6
		2.1.2 Shear Force and Bending Moment Capacities Diagram	6

1 Design 0

1.1 Hand Calculations

1.1.0 Cross Section

$$\bar{y} = \frac{\sum A_i y_i}{\sum A_i} = \frac{\sum b_i h_i y_i}{\sum b_i h_i}$$

$$= \frac{(80)(1.27)(0.635) + (100)(1.27)(75.63) + 2(1.27)(73.73)(38.135) + 2(5)(1.27)(74.365)}{(80)(1.27) + (100)(1.27) + 2(1.27)(73.73) + 2(5)(1.27)}$$

$$= 41.4296 \,\text{mm} = \frac{41.4 \,\text{mm}}{}$$

$$I = \sum I_i + A_i d_i^2 = \frac{b_i h_i^3}{12} + b_i h_i (\bar{y} - y_i)^2$$

$$= \frac{(80)(1.27)^3}{12} + (80)(1.27)[(41.4296) - (0.635)]^2$$

$$+ \frac{(100)(1.27)^3}{12} + (100)(1.27)[(41.4296) - (75.63)]^2$$

$$+ 2\left(\frac{(1.27)(73.73)^3}{12} + (1.27)(73.73)[(41.4296) - (38.135)]^2\right)$$

$$+ 2\left(\frac{(5)(1.27)^3}{12} + (5)(1.27)[(41.4296) - (74.365)]^2\right)$$

$$= 418.309 \times 10^3 \text{ mm}^4 = \frac{418 \times 10^3 \text{ mm}^4}{418 \times 10^3 \text{ mm}^4}$$

1.1.1 Flexural Tension Failure

$$M_{\text{max}} = 69445.3 \,\text{N} \,\text{mm}$$
 at $x_{\text{train}} \in \{557 \,\text{mm}, 644 \,\text{mm}\}$
 $y_{bot} = \bar{y} - 0 = 41.4296 \,\text{mm}$
 $\sigma_{\text{demand}} = \frac{M_{max} y_{bot}}{I} = \frac{(69445.3)(41.4296)}{(418.309 \times 10^3)} = 6.87791 \,\text{MPa}$
 $\sigma_{\text{tension}} = 30 \,\text{MPa}$
 $\sigma_{\text{tension}} = \frac{\sigma_{\text{tension}}}{\sigma_{\text{demand}}} = \frac{(30)}{(6.87791)} = 4.3618 = 4.36$

1.1.2 Flexural Compression Failure

$$\begin{split} M_{\text{max}} &= 69\,445.3\,\text{N}\,\text{mm} \quad \text{at} \quad x_{\text{train}} \in \{557\,\text{mm}, 644\,\text{mm}\} \\ y_{top} &= \bar{y} - h = (41.4296) - (76.27) = -34.8404\,\text{mm} \\ \sigma_{\text{demand}} &= \frac{M_{max}y_{top}}{I} = \frac{(69445.3)(-34.8404)}{(418.309\times10^3)} = -5.784\,01\,\text{MPa} \\ \sigma_{\text{comp}} &= -6\,\text{MPa} \end{split}$$

$$FOS_{comp} = \frac{\sigma_{comp}}{\sigma_{demand}} = \frac{(-6)}{(-5.78401)} = 1.03734 = 1.03734$$

1.1.3 Material Shear Stress Failure

$$V_{\text{max}} = 240 \,\text{N}$$
 at $x_{\text{train}} = 1 \,\text{mm}$

$$Q(\bar{y}) = \sum A_i d_i$$
= 2(1.27)(41.4296 - 1.27) $\left(\frac{41.4296 - 1.27}{2}\right) + (80)(1.27) \left(41.4296 - \frac{1.27}{2}\right)$
= 6192.98 MPa

$$b(\bar{y}) = 2(1.27) = 2.54 \,\mathrm{mm}$$

$$\tau_{demand} = \frac{VQ}{Ib} = \frac{(240)(6192.98)}{(418.309 \times 10^3)(2.54)} = 1.398\,88\,\mathrm{MPa}$$

$$\tau_{max} = 4 \, \text{MPa}$$

$$FOS_{shear} = \frac{\tau_{max}}{\tau_{demand}} = \frac{(4)}{(1.39888)} = 2.85943 = 2.86$$

1.1.4 Glue Shear Stress Failure

$$V_{\text{max}} = 240 \,\text{N}$$
 at $x_{\text{train}} = 1 \,\text{mm}$

$$Q(75) = \sum A_i d_i = (100)(1.27) \left(34.8404 - \frac{1.27}{2}\right) = 4344.09 \,\text{MPa}$$

$$b(75) = 2(5 + 1.27) = 12.54 \,\mathrm{mm}$$

$$\tau_{demand} = \frac{VQ}{Ib} = \frac{(240)(4344.09)}{(418.309 \times 10^3)(12.54)} = 198.754 \times 10^{-3} \,\mathrm{MPa}$$

$$\tau_{glue} = 2 \,\mathrm{MPa}$$

$$FOS_{glue} = \frac{\tau_{max}}{\tau_{demand}} = \frac{(2)}{(198.754 \times 10^{-3})} = 10.0627 = 10.0627$$

1.1.5 Case 1 Flexural Buckling Failure

$$M_{\rm max} = 69\,445.3\,\mathrm{N\,mm} \quad \mathrm{at} \quad x_{\rm train} \in \{557\,\mathrm{mm}, 644\,\mathrm{mm}\}$$

$$\sigma_{\rm demand} = \frac{M_{\rm max}y_{\rm top}}{I} = \frac{(69445.3)(34.8404)}{(418.309 \times 10^3)} = 5.784\,01\,{\rm MPa}$$

$$b_{\text{crit.1}} = 80 - 1.27 = 78.73 \,\text{mm}$$

$$\sigma_{\rm crit,1} = \frac{K\pi^2 E}{12\left(1-\mu^2\right)} \left(\frac{t}{b_{\rm crit,1}}\right)^2 = \frac{(4)\,\pi^2\left(4000\right)}{12\left[1-\left(0.2\right)^2\right]} \left(\frac{1.27}{78.73}\right)^2 = 3.566\,93\,\mathrm{MPa}$$

$$FOS_{buck,1} = \frac{\sigma_{crit,1}}{\sigma_{demand}} = \frac{(3.56693)}{(5.78401)} = 0.616688 = 617 \times 10^{-3}$$

1.1.6 Case 2 Flexural Buckling Failure

$$\begin{split} M_{\text{max}} &= 69\,445.3\,\text{N}\,\text{mm} \quad \text{at} \quad x_{\text{train}} \in \{557\,\text{mm}, 644\,\text{mm}\} \\ \sigma_{\text{demand}} &= \frac{M_{\text{max}}y_{\text{top}}}{I} = \frac{(69445.3)(34.8404)}{(418.309\times10^3)} = 5.784\,01\,\text{MPa} \\ b_{\text{crit},2} &= \frac{100-80}{2} + \frac{1.27}{2} = 10.635\,\text{mm} \\ \sigma_{\text{crit},2} &= \frac{K\pi^2 E}{12\,(1-\mu^2)} \left(\frac{t}{b_{\text{crit},2}}\right)^2 = \frac{(0.425)\,\pi^2\,(4000)}{12\,\left[1-(0.2)^2\right]} \left(\frac{1.27}{10.635}\right)^2 = 20.7696\,\text{MPa} \\ \text{FOS}_{\text{buck},2} &= \frac{\sigma_{\text{crit},2}}{\sigma_{\text{demand}}} = \frac{(20.7696)}{(5.78401)} = 3.59087 = 3.59 \end{split}$$

1.1.7 Case 3 Flexural Buckling Failure

$$\begin{split} &M_{\text{max}} = 69\,445.3\,\text{N}\,\text{mm} \quad \text{at} \quad x_{\text{train}} \in \{557\,\text{mm}, 644\,\text{mm}\} \\ &y_{\text{crit},3} = y_{top} - 1.27 = 34.8404 - 2.54 = 33.5704\,\text{mm} \\ &\sigma_{\text{demand}} = \frac{M_{\text{max}}y_{\text{crit},3}}{I} = \frac{(69445.3)(33.5704)}{(418.309\times10^3)} = 5.573\,17\,\text{MPa} \\ &b_{\text{crit},3} = y_{top} - \frac{3(1.27)}{2} = 34.8404 - 1.905 = 32.9354\,\text{mm} \\ &\sigma_{\text{crit},3} = \frac{K\pi^2 E}{12\,(1-\mu^2)} \left(\frac{t}{b_{\text{crit},3}}\right)^2 = \frac{(6)\,\pi^2\,(4000)}{12\,\left[1-(0.2)^2\right]} \left(\frac{1.27}{32.9354}\right)^2 = 30.5731\,\text{MPa} \\ &\text{FOS}_{\text{buck},3} = \frac{\sigma_{\text{crit},3}}{\sigma_{\text{demand}}} = \frac{(30.5731)}{(5.57317)} = 5.48576 = \boxed{5.49} \end{split}$$

1.1.8 Shear Buckling Failure

$$\tau_{demand} = \frac{VQ(\bar{y})}{Ib(\bar{y})} = \frac{(240)(6192.98)}{(418.309 \times 10^3)(2.54)} = 1.39888 \,\text{MPa}$$

$$b_{\text{crit},4} = 75 - 1.25 = 73.73 \,\text{mm}$$

$$a_{\text{crit},4} = 1200/3 = 400 \,\text{mm}$$

$$\tau_{\text{crit}} = \frac{K\pi^2 E}{12\left(1 - \mu^2\right)} \left[\left(\frac{t}{b_{\text{crit},4}}\right)^2 + \left(\frac{t}{a_{\text{crit},4}}\right)^2 \right] = \frac{(5)\pi^2 \left(4000\right)}{12\left[1 - \left(0.2\right)^2\right]} \left[\left(\frac{1.27}{73.73}\right)^2 + \left(\frac{1.27}{400}\right)^2 \right] = 5.256\,62\,\text{MPa}$$

$$\text{FOS}_{\text{buck},4} = \frac{\tau_{\text{crit}}}{\tau_{\text{demand}}} = \frac{(5.25662)}{(1.39888)} = 3.75773 = \boxed{3.76}$$

1.1.9 FOS and P_{fail}

```
\begin{split} \text{FOS} &= \min \left\{ \text{FOS}_{\text{tension}}, \text{FOS}_{\text{comp}}, \text{FOS}_{\text{shear}}, \text{FOS}_{\text{glue}}, \text{FOS}_{\text{buck},1}, \text{FOS}_{\text{buck},2}, \text{FOS}_{\text{buck},3}, \text{FOS}_{\text{buck},4} \right\} \\ &= \text{FOS}_{\text{buck},1} \\ &= 0.616688 = \boxed{617 \times 10^{-3}} \\ \\ P_{\text{fail}} &= \text{FOS} \times P_{demand} = (0.616688)(400) = 246.675 \, \text{N} = \boxed{247 \, \text{N}} \end{split}
```

1.2 Intermediate Code Calculations

```
ybar = 41.431094351923186
I = 4.183522089994237e+05
max(M) = 6.94453333333337e+04
ybot = 41.431094351923186
S_{tens_app} = 6.877449421183897
ytop = -34.838905648076810
S_{comp_app} = -5.783163955284811
Q_{max} = 6.193283330576414e+03
b_{centroid} = 2.540000000000000
T_{max_app} = 1.398802523651935
Q_glue = 4.343896017305791e+03
T_glue_app = 0.198724338232346
S_buck1_app = 5.783163017719362
S_buck1_ult = 3.566926726812471
S_buck2_app = 5.783163017719362
S_buck2_ult = 20.769624320288855
S_buck3_app = 5.572346458284259
S_buck3_ult = 30.573884061715709
T_buck_app = 1.398802523651935
T_buck_ult = 5.256619850378164
```

All intermediate hand calculations perfectly match their respective computer-generated values to slide rule precision, excluding T_glue_app which is has a deviation of

$$\varepsilon = \left| 0.198724338232346 - 198.754 \times 10^{-3} \right| < 30.0 \times 10^{-6}$$

which is considered consistent with zero.

1.3 Code Output

1.3.1 FOS and P_{fail}

```
FOS_tens = 4.36

FOS_comp = 1.037

FOS_shear = 2.86

FOS_glue = 10.06

FOS_buck1 = 0.617

FOS_buck2 = 3.59

FOS_buck3 = 5.49

FOS_buckV = 3.76

minFOS = 0.617

P_fail = 247 N
```

All hand calculated FOS and failure load values perfectly match their respective computergenerated values to slide rule precision.

1.3.2 Shear Force and Bending Moment Capacities Diagram

Figure 1. Subplot depicting the shear force and bending moment capacities of design 0 vs. shear force and bending moment envelope as a function of distance along the bridge.

2 Final Design

2.1 Code Output

2.1.1 FOS and P_{fail}

```
FOS_tens = 6.65

FOS_comp = 3.13

FOS_shear = 3.62

FOS_glue = 3.45

FOS_buck1 = 19.13

FOS_buck2 = 45.2

FOS_buck3 = 30.9

FOS_buckV = 3.05

minFOS = 3.05

P_fail = 1220 N
```

2.1.2 Shear Force and Bending Moment Capacities Diagram

Figure 2. Subplot depicting the shear force and bending moment capacities of the final design vs. shear force and bending moment envelope as a function of distance along the bridge.