Case Study: Stock Evaluation

冯耀扬 冼名儒 张博远 张希雅

November 2024

1 Introduction

We select Walmart Inc. (WMT) as our study object, and we use discounted cash flow technique to evaluate the intrinsic price of the stock with two types of cash flow: dividend and free cash flow to equity.

2 Dividend Discounted Model

According to the DDM, the value of the stock V_i can be represented as

$$V_i = \sum_{t=1}^{\infty} \frac{D_t}{(1+k)^t}$$

where D_t and k respectively represents dividend in date t and discount rate. For simplicity, we suppose that dividend grows at a constant rate g. So the equation above can be transformed into

$$V_i = \frac{D_1}{k - g}$$

we then calculate as well as estimate every single variable within the equation, and get the result of intrinsic value on the basis of it.

2.1 The Estimation of g

Year	Cash Dividends	Net Income	Shareholder's Equity
2024	6140	15511	83861
2023	6114	11680	76693
2022	6152	13673	83253
2021	6116	13510	80925
2020	6048	14881	74669

Table 1: Necessary Data of Walmart Inc. for Dividend Discounted Model (Dollars in Million)

Year	Dividend Per Share (D)	Year	Dividend Per Share (D)
2024	0.76	2018	2.04
2023	2.24	2017	2.00
2022	2.20	2016	1.96
2021	2.16	2015	1.92
2020	2.12	2014	1.88
2019	2.08	2013	1.59

Table 2: 10 Years' Dividend Per Share of Walmart Inc.

The dividend per share in 2024 is eccentric. After referring to "Walmart 2024 annual report", we found that Walmart "effected a 3-for-1 forward split of its common stock and a proportionate increase in the number of authorized shares", thus, to calculate the Historical g, we adjust D_{2024} to $0.76 \times 3 = 2.28$.

Historical g =
$$\sqrt[10]{\frac{2.28}{1.88}} - 1 = 0.02$$

Then we calculated the Implied g. We know that

$$\mbox{Retention rate} = \frac{\mbox{Net income} - \mbox{Cash dividend}}{\mbox{Net income}}$$

$$ROE = \frac{Net income}{Shareholders' equity}$$

	Retention rate	ROE
2024	0.6	0.185
2023	0.48	0.15
2022	0.55	0.164
average	0.54	0.166

Table 3: 3 Years' Retention Rate and ROE of Walmart Inc.

Implied g = Retention rate
$$\times$$
 ROE = $0.54 \times 0.166 = 0.09$

According to the material, g is estimated with the method below.

$$g = \frac{\text{Historical g} + \text{Implied g}}{2} = \frac{0.09 + 0.02}{2} = 0.055$$

However, in view of the trends of the stock price last year, which is a dramatic surge, it's more practical to use a growth rate close to the Implied g rather than Historical g. In "Walmart 2024 annual report", it is said that "Effective February 20, 2024, the Company approved the fiscal 2025 annual dividend of \$0.83 per share, an increase over the fiscal 2024 annual dividend of \$0.76 per share". The expected growth rate goes up to $\frac{0.83-0.76}{0.76} = 0.0921$. Conservatively, we use 0.09 as the growth rate. In the end, g = 0.09.

2.2 The Estimation of k

With the aim of estimating k, we take advantage of CAPM model to obtain the required return and take it as the discount rate.

We grasp the monthly data of the return of Walmart (R_{WMT}) and the return of the market portfolio (R_m) ranging from 2019 to 2024. After basic arrangement, we make a regression analysis with the help of stata, figuring out the value of β . The result of our regression are as below.

. reg RWMTt RSP500t

	Source	SS	df	MS	Number of obs	=	71
_					F(1, 69)	=	17.95
	Model	.036502981	1	.036502981	Prob > F	=	0.0001
	Residual	.140329556	69	.002033762	R-squared	=	0.2064
-					Adj R-squared	=	0.1949
	Total	.176832537	70	.002526179	Root MSE	=	.0451

RWMTt	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
RSP500t	.441056	.1041069		0.000	.2333684	.6487436
_cons	.0071446	.0054432		0.194	0037142	.0180035

In the graph, the "RWMTt" is R_{WMT} , the "RSP500t" is R_m evaluated with reference to the return rate of S&P 500 Index, specifically $R_{m,t} = \frac{I_t - I_{t-1}}{I_t}$, and the "Coefficient" is β , approximately equal to 0.44.

Based on the CAPM model, we can get the expectation of the return rate of the stock of Walmart (R_{WMT})

$$E(R_{WMT}) = E(R_f) + \beta [E(R_m) - E(R_f)]$$

where $E(R_f)$ is equal to rate of return on LT Treasury Composite whose value is 4.68% and $E(R_m)$ is equal to 13.8%.

$$E(R_{WMT}) = 4.68\% + 0.44(13.8\% - 4.68\%) = 8.7\%$$

In the end, k = 0.087

2.3 Modulation

We run into the problem of k < g, which means the denominator is a negative value. So we turn into a three-stage grow model.

We use Gorden growth model to estimate the long-run constant growth rate.

$$g' = \frac{P_0 \times \text{Required return} - D_0}{P_0 + D_0} = \frac{84.25 \times 0.087 - 0.76}{84.25 + 0.76} = 0.0773$$

Year	Dividend Per Share	Present Value at 8.7%
0	0.76	0.76
1	$0.83 = 0.76 \times (1 + 9\%)$	0.76
2	$0.90 = 0.83 \times (1 + 8.68\%)$	0.76
3	$0.97 = 0.9 \times (1 + 8.37\%)$	0.76
4	$1.05 = 0.97 \times (1 + 8.05\%)$	0.75
5	$1.13 = 1.05 \times (1 + 7.73\%)$	0.75
After Year 5	$125.59 = 1.13 \times (1 + 7.73\%) \div (8.7\% - 7.73\%)$	82.75

Table 4: The Present Value of the Dividends in Three-Stage Model

So, adding up the present value, we get the intrinsic value.

Intrinsic value =
$$0.76 + 0.76 + 0.76 + 0.75 + 0.75 + 82.75 = 86.53$$

2.4 Summary

We choose dividend discount model as our instrument to evaluate the intrinsic value of Walmart Inc., and suppose that it's a case of perpetual constant growth. We separately calculate the variable g and k, adjusting them in accordance with the real-world conditions. After noticing that k < g, we modulate our origin model. The intrinsic value we estimated is \$86.53

3 Free Cash Flow to Equity Modle

The FCFE model projects the future FCFE values and discounts them back to the present value using the cost of equity (k_e) as the discount rate. This provides the estimated equity value of the company:

$$V_i = \sum_{t=1}^{\infty} \frac{FCFE_t}{(1+k_e)^t}$$

Specifically, if the firm is in its mature, constant-growth phase, it is possible to use a model similar to the reduced from DDM:

$$V_i = \frac{FCFE_1}{k - g}$$

From the previous calculations, we have determined the specific value of k, which is 0.087. Next, we need to estimate the values of FCFE and g.

3.1 The Estimation of g

Currently, only the FCFE values from 2019 to 2024 are available online, which makes the time span too short to reliably estimate g. Therefore, we have been decided to use the PRAT model to estimate the growth rate of FCFE.

The PRAT model is a framework used to estimate a company's sustainable growth rate. It is based on four key factors: Profit margin (P), Retention ratio (R), Asset turnover (A), and Financial leverage (T). These components reflect how efficiently a company generates profits, retains earnings, utilizes its assets, and employs debt. The model calculates growth as:

$$g = P \times R \times A \times T$$

By reviewing Walmart's financial statements, we can derive the following data:

	Jan31,2024
Cash dividends declared	6,140
Net income	15,511
Net sales	642,637
Total assets	252,399
Total shareholders' equity	83,861

Table 5: Financial Data (US\$ in millions) of Walmart Inc.

Retention rate = (Net income – Cash dividends declared)
$$\div$$
 net income = $(15,511-6,140) \div 15,5110.54 = 0.60$

Profit margin =
$$100 \times \text{Net income} \div \text{Net sales}$$

= $100 \times 15,511 \div 642,637 = 2.41\%$

Asset turnover = Net sales
$$\div$$
 Total assets
= $642, 637 \div 252, 399 = 2.55$

Financial leverage = Total assets
$$\div$$
 Total shareholders' equity assets = $252,399 \div 83,861 = 3.01$

$$g = 0.55 \times 2.23\% \times 2.35 \times 3.07 = 8.89\%$$

Next, we will use the single-stage valuation model to calculate the future growth rate of FCFE.

```
g = 100 \times (Equity market value \times r-FCFE) \div (Equity market value + FCFE)
```

As of January 31, 2024, Walmart's market capitalization is 444,892 million, resulting in a g value of 0.0478. The g values for the intermediate years derived through linear interpolation are shown in the table below:

	Year Value	g_t
1	g_1	0.0889
2	g_2	0.0786
3	g_3	0.0684
4	g_4	0.0581
5	g_5	0.0478

Table 6: FCFE growth rate (g) forecast

3.2 Modulation

From the previous calculations, it is determined that k < g. Therefore, we use the three-stage growth model to calculate the present value. Adding up the present value, we get the intrinsic value.

Year	FEFC	Present Value at 8.7%
0	16632	16632
1	$18110.58 = 16632 \times (1 + 0.0889)$	1661.07157
2	$19534.08 = 18110.58 \times (1 + 0.0786)$	16532.31996
3	$20870.21 = 19534.08 \times (1 + 0.0684)$	16249.43022
4	$22082.77 = 20870.21 \times (1 + 0.0581)$	15817.40765
5	$23138.32 = 22082.77 \times (1 + 0.0478)$	15246.99148
After Year 5	$618477.9276 = 23138.32 \times (1 + 0.0478) \div (0.087 - 0.0478)$	374927.1931

Table 7: The Present Value of FCFE in Three-Stage Model(US\$ in millions)

```
\begin{aligned} & \text{Intrinsic value} = 1661.07157 + 16532.31996 + 16249.43022 \\ & + 15817.40765 + 15246.99148 + 374927.1931 = 455434.414 \end{aligned}
```

3.3 Summary

In this section, we chose the FCFE model as the tool for evaluating Walmart's intrinsic value, assuming perpetual constant growth. Subsequently, we calculated the variables g and k separately. When historical FCFE data was unavailable, we used the PRAT model to estimate the value of g and calculated its changes

for each period. The condition where k < g still persisted in the model, so we adjusted the calculation method. Finally, the estimated intrinsic value was 455434.414 million, which is higher than the verified market capitalization data (444,892 million) but without a significant difference.

4 Relative valuation techniques

Another method that we use to evaluate the price of NYSE: WMT is by using relative valuation techniques. Specifically, we use the Earnings Multiplier Model, the Price/Book Value Ratio, and the Price/Sales Ratio to forecast Walmart's stock price. By examining the growth pattern of the company, we have noticed that these ratios of Walmart alongside with its stock price have witnessed a gradual growth in recent years which has continued to the end of the period which we have intended to investigate. This indicates that Walmart is not in a market that is clear, which means that the historical data of Walmart may not be an appropriate way to estimate the current stock price. Instead, we turned to seek the relevance between Walmart and its peers/competitors. We would use the data from three companies in the retail market, namely Costco (COST), Target (NYSE: TGT) and Dollar General (NYSE: DG) and hope to find correlations that can assist us in determining the ratios of Walmart. An overall examination of these figures brought us to the conclusion that simply calculating the means of these data would not be adaptable, as these numbers demonstrates apparent differences. Thus, we instead hope to find the correlations between these figures and try to use them to determine our estimation of Walmart's stock price. With available data, we would try to determine the ratios for Walmart's third season of fiscal year 2025.

To acquire our results, we have decided to apply Stata, a software designed to determine relations between variables. Due to the fact that the database available is limited, we have decided to imply the linear model in our analysis (we have also tested quadratic models but was met with disappointing and insignificant results).

4.1 Earnings Multiplier Model

We regressed the P/E ratio of Walmart on all three other firms and each of them Separately to get the results:

. reg w csc dlg tar

17	er of obs =		MS	df	SS	Source
1.57		- F(3,		_		
0.2431			89.1787669	3	267.536301	Model
0.2665	uared =		56.6325135	13	736.222676	Residual
0.0973	R-squared =		0.0 0 0			
7.5255	MSE =	i Root	62.734936	16	1003.75898	Total
interval]	[95% conf.	P> t	t	Std. err.	Coefficient	W
1.615602	2510022	0.138		.4320107	.6823001	csc
1.623281	-1.671974	0.975	-0.03	.7626601	0243465	dlg
2.117352	278128	0.121	1.66	.5544147	.9196121	tar
43.79125	-70.5273	0.622	-0.51	26.45811	-13.36803	_cons
						reg w csc
17 1.79	er of obs =	Numbe	MS	df	SS	Source
0.2013			106.817259	1	106.817259	Model
0.2013	uared =		59.7961145	15	896.941718	Residual
0.0468	R-squared =		39.7901143	13	090.941710	Residuat
7.7328	•	-	62.734936	16	1003.75898	Total
intervall	[95% conf.	P> t	t	Std. err.	Coefficient	W
Intervati						
	2202270	0 201	1 24	4260024	E70E617	
1.480461 41.76398	3393379 -28.22866	0.201 0.686		.4268924 16.41902	.5705617 6.76766	_cons
1.480461	-28.22866 er of obs =	0.686				
1.480461 41.76398 17 0.00 0.9556	-28.22866 er of obs = 15) = > F =	Numbe - F(1, Prob	0.41 MS	16.41902	6.76766 SS .214172195	_cons reg w dlg Source Model
1.480461 41.76398 17 0.00 0.9556 0.0002	-28.22866 er of obs = 15) = > F = uared =	Numbe - F(1, Prob R-squ	0.41 MS	16.41902	6.76766 SS	_cons reg w dlg Source
1.480461 41.76398 17 0.00 0.9556	-28.22866 er of obs = 15) = > F = uared = 8-squared =	Numbe - F(1, Prob R-squ	0.41 MS	16.41902 df	6.76766 SS .214172195	_cons reg w dlg Source Model
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664	-28.22866 er of obs = 15) = > F = uared = 8-squared =	Numbe - F(1, Prob R-squ	MS .214172195 66.902987	df	6.76766 SS .214172195 1003.5448	_cons reg w dlg Source Model Residual
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794	-28.22866 er of obs = 15) = > F = uared = 8-squared =	Numbe - F(1, Prob R-squ	MS .214172195 66.902987 62.734936	df	6.76766 SS .214172195 1003.5448	_cons reg w dlg Source Model Residual
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794	-28.22866 er of obs = 15) = > F = uared = R-squared = MSE =	Numbe F(1, Prob R-squ Adj F	MS .214172195 66.902987 62.734936 t -0.06	df 1 15 16	6.76766 SS .214172195 1003.5448 1003.75898	_cons reg w dlg Source Model Residual Total
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval]	-28.22866 er of obs = 15) = > F = uared = R-squared = MSE = [95% conf.	Numbe - F(1, Prob R-squ - Adj F Root P> t 0.956	MS .214172195 66.902987 62.734936 t -0.06	16.41902 df 1 15 16 Std. err.	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291	_cons reg w dlg Source Model Residual Total w
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671	-28.22866 er of obs = 15) = > F = uared = R-squared = MSE = [95% conf1.722018 -4.556844	Numbe - F(1, Prob Root P> t 0.956 0.085	MS .214172195 66.902987 62.734936 t -0.06	16.41902 df 1 15 16 Std. err.	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291	_cons reg w dlg Source Model Residual Total w dlg _cons
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671	-28.22866 er of obs = 15) = > F = 2	Number	MS .214172195 66.902987 62.734936 t -0.06 1.85	df 1 15 16 Std. err7870181 15.9618	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291 29.46493	_cons reg w dlg Source Model Residual Total w dlg _cons reg w tar Source
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671	-28.22866 er of obs = 15) = 5	Numbe F(1, Prob R-squ Adj F Root P> t 0.956 0.085	MS .214172195 66.902987 62.734936 t -0.06 1.85	16.41902 df 1 15 16 Std. err. .7870181 15.9618	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291 29.46493	_cons reg w dlg Source Model Residual Total w dlg _cons reg w tar Source Model
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671 17 1.99 0.1791 0.1169	-28.22866 er of obs = 15) = 5	Numbe F(1, Prob R-sqt Adj F Root P> t 0.956 0.085	MS .214172195 66.902987 62.734936 t -0.06 1.85	df 1 15 16 Std. err7870181 15.9618	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291 29.46493	_cons reg w dlg Source Model Residual Total w dlg _cons reg w tar Source
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671	-28.22866 er of obs = 15) = > F = uared = MSE = [95% conf. -1.722018 -4.556844 er of obs = 15) = > F = uared = uare	Number	MS .214172195 66.902987 62.734936 t -0.06 1.85	16.41902 df 1 15 16 Std. err. .7870181 15.9618	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291 29.46493	_cons reg w dlg Source Model Residual Total w dlg _cons reg w tar Source Model
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671 17 1.99 0.1791 0.1169 0.0581 7.6871	-28.22866 er of obs = 15) = > F = uared = MSE = [95% conf. -1.722018 -4.556844 er of obs = 15) = > F = uared = uare	Numbe - F(1, Prob - Adj F Root P> t 0.956 0.085 Numbe - F(1, Frob - R-squ	MS .214172195 66.902987 62.734936 t -0.06 1.85 MS 117.380595 59.0918921 62.734936	df 15 16 Std. err7879181 15.9618 df	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291 29.46493 SS 117.380595 886.378381	_cons reg w dlg Source Model Residual Total w dlg _cons reg w tar Source Model Residual
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671 17 1.99 0.1791 0.1169 0.0581 7.6871	-28.22866 er of obs = 15) = > F = uared = MSE = [95% conf. -1.722018 -4.556844 er of obs = 15) = > F = uared = MSE = R-squared = MSE = [95% conf.	Number	MS .214172195 66.902987 62.734936 t -0.06 1.85 MS 117.380595 59.0918921 62.734936	df 1 15 16 Std. err7870181 15.9618 df 1 15 Std. err.	6.76766 SS .214172195 1003.5448 1003.75898 Coefficient0445291 29.46493 SS 117.380595 886.378381 1003.75898 Coefficient	_cons reg w dlg Source Model Residual Total w dlg _cons reg w tar Source Model Residual Total
1.480461 41.76398 17 0.00 0.9556 0.0002 -0.0664 8.1794 interval] 1.63296 63.48671 17 1.99 0.1791 0.1169 0.0581 7.6871	-28.22866 er of obs = 15) =	Number	MS .214172195 66.902987 62.734936 t -0.06 1.85 MS 117.380595 59.0918921 62.734936	16.41902 df 1 15 16 Std. err. .7870181 15.9618 df 1 15	SS .214172195 1003.5448 1003.75898 Coefficient0445291 29.46493 SS 117.380595 886.378381 1003.75898	_cons reg w dlg Source Model Residual Total w dlg _cons reg w tar Source Model Residual Total

From the results, we can see that the P-values are all relatively high. At significance level of 0.05 we fail to acquire meaningful results. Using the unrestricted model t we calculate the Price/Earnings ratio for Walmart to be 35.991707. The actual number is 35.66. The earning per share on that date is 1.93, so the estimated price is 69.46. Actual price on date is 68.64.

4.2 Price/Book Value Ratio

We regressed the P/B ratio of Walmart on all three other firms and each of them separately to get the results:

. reg w csc d	lg tar						
Source	ss	df	MS	Numbe	r of obs	=	19
				- F(3,	15)	=	1.69
Model	.60103121	3	.200343737	Prob	> F	=	0.2124
Residual	1.78144247	15	.118762832	R-squ	ared	=	0.2523
				- Adj R	-squared	=	0.1027
Total	2.38247368	18	.132359649	Root	MSE	=	.34462
w	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
CSC	.0715607	.0458577	1.56	0.139	02618	26	.169304
dlg	0329623	.0908101	-0.36	0.722	22651	96	.1605949
tar	0171552	.0965872	-0.18	0.861	2230	26	.1887156
_cons	4.252488	.6130627	6.94	0.000	2.9457	75	5.5592
. reg w tar							
Source	ss	df	MS		er of obs	=	19
				- F(1,		=	0.23
Model	.032206703	1	.032206703			=	0.6355
Residual	2.35026698	17	.138250999		uared	=	0.0135
				-	R-squared	=	
Total	2.38247368	18	.132359649	9 Root	MSE	=	.37182
W	Coefficient	Std. err.	t	P> t	[95% (onf.	interval]
tar	0254068	.0526394	-0.48	0.635	13646	61	.0856526
_cons	4.82681	.3454021	13.97	0.000	4.0986		5.555545
	•						

dlg _cons	0624784 5.112608	.0476262 .3506874	-1.31 14.58		162961 372723	.0380042 5.852494
W	Coefficient	Std. err.	t	P> t [9	95% conf.	interval]
Total	2.38247368	18	.132359649		=	
Residual	2.16346194	17	.127262467	/ R-squared - Adj R-squ		0.0919 0.0385
Model	.219011745	1	.219011745		=	
Source	SS	df	MS	Number of - F(1, 17)	f obs = =	19 1.72
reg w dlg						
_cons	3.882728	.3861333	10.06	0.000 3.	068058	4.697398
csc	.0738901	.0357324	2.07	0.0546	014986	.1492789
W	Coefficient	Std. err.	t	P> t [9	95% conf.	interval]
Total	2.38247368	18	.132359649		=	
Residual	1.90364008	17	.111978828	B R-squared - Adj R-squ		
Model	.478833608	1	.478833608		=	0.00.2
Source	SS	df	MS	Number of - F(1, 17)	f obs = =	19 4.28
reg w csc	1					

From the results, we can see that at a significance level of 0.1, the regression of w (Walmart) on csc (Costco) produced meaningful results. By applying the results of the unrestricted model and the w-csc model we get the estimated P/B value of Walmart to be 5.25 and 5.12 respectively. The real P/B value on that date (31/07/2024) is 6.08, and actual price is 68.64. Estimated prices are 59.27 and 57.80.

4.3 Price/Sales Ratio

We regressed the P/S ratio of Walmart on all three other firms and each of them separately and on both csc (Costco) and tar (Target) to get the results:

. reg w csc dlg tar

Source	SS	(df I	MS	Numbe	er of	obs	=	19
					F(3,	15)		=	8.08
Model	.01658650	4	3 .0055	28835	Prob	> F		=	0.0019
Residual	.01026612	7 :	L5 .0006	84408	R-sq	uared		=	0.6177
					Adj F	R−squa	red	=	0.5412
Total	.02685263	2 :	18 .0014	91813	Root	MSE		=	.02616
w	Coefficien	t Std. e	rr.	t I	P> t	[95	% con	f. int	erval]
csc	.0376893	.061927	77 0.0	61 (0.552	09	43065	.1	696852
dlg	0735243	.034737	72 -2.:	12	0.051	14	75649	.0	005163
tar	.1530606	.040048	38 3.	82	0.002	.06	76986	. 2	384226
_cons	.6153712	.084650	97 7.	27	0.000	. 43	49425	.7	957998
reg w csc									
Source	SS	df	MS		umber of (1, 17)	obs	=	19 4.96	
Model	.006067189	1	.00606718		rob > F		=	0.0397	
Residual	.020785442	17	.00122267	3 R	-squared		=	0.2259	
				_ A	dj R-squ	ared	=	0.1804	
Total	.026852632	18	.00149181	.3 R	oot MSE		=	.03497	
w	Coefficient	Std. err.	t	P> t	[9	5% con	f. in	terval]	-
CSC	.1290025	.0579108	2.23	0.04	a a	068214		2511835	
_cons	.5479928	.0590978	9.27	0.00		233073	-	5726783	
reg w dlg									•
Source	SS	df	MS		umber of (1, 17)	obs	=	19 0.49	
Model	.000745103	1	.00074510		(1, 1/) rob > F		=	0.4955	
Residual	.026107529	17	.00153573		-squared		=	0.0277	
					dj R-squ			-0.0294	
Total	.026852632	18	.00149181		oot MSE		=	.03919	
w	Coefficient	Std. err.	t	P> t	[9	5% con	f. in	terval]	=
dl a	0205322	.0294772	-0.70	0.49	6 _ A	827236		9416592	
dlg	.7060098	.0294772	-0.70 17.38	0.49		827236 203185		7917012	
_cons	. / 000098	.0400135	17.38	0.00		742TQ2	• •	91/012	

. reg w tar							
Source	SS	df	MS	Number	of obs	=	19
				- F(1, 1	L7)	=	6.27
Model	.007233984	1	.007233984	Prob >	> F	=	0.0228
Residual	.019618648	17	.001154038			=	
				-	-squared	=	
Total	.026852632	18	.001491813	Root M	1SE	=	.03397
w	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
tar	.0911625	.0364114	2.50	0.023	.01434	11	.1679839
_cons	.6047234	.03045	19.86	0.000	.54047	95	.6689673
. reg w csc ta	ar SS	df	MS		r of obs	=	
Source	SS			- F(2, 1	16)	=	8.11
Source	. 013520399	2	.006760199	- F(2, 1	L6) > F	=	0.0037
Source	SS			- F(2, 1 Prob > R-squa	L6) > F ared	=	8.11 0.0037 0.5035
Source	. 013520399	2	.006760199	- F(2, 1 Prob > R-squa	L6) ≻ F ared -squared	=	8.11 0.0037 0.5035 0.4414
Source Model Residual	.013520399 .013332233	2 16	.006760199	- F(2, 1 Prob > R-squa	L6) ≻ F ared -squared	= = =	8.11 0.0037 0.5035 0.4414
Source Model Residual	.013520399 .013332233	2 16	.006760199	- F(2, 1 Prob > R-squa	L6) > F ared -squared	= = =	8.11 0.0037 0.5035 0.4414 .02887
Source Model Residual	.013520399 .013332233 .026852632	2 16	.006760199 .000833265	F(2, 1) Prob > R-squa Adj R- Root M	L6) > F ared -squared	= = = = onf.	8.11 0.0037 0.5035 0.4414
Source Model Residual Total	.013520399 .013332233 .026852632	2 16 18 Std. err.	.006760199 .000833265	- F(2, 1 Prob > R-squa - Adj R- Root M	L6) - F ared -squared MSE	= = = = = onf.	8.11 0.0037 0.5035 0.4414 .02887

From the results we can see that the results for w-csc and w-tar are both significant at a level of 0.5. The estimated P/S values using the unrestricted model, the w-csc model, the w-tar model and the w-csc&tar model are 0.716, 0.748, 0.659 and 0.730 respectively. Th actual result is 0.83 and the actual price is 68.64. the estimated prices are 59.21, 61.86, 54.50 and 60.37.

4.4 Summary

The ratios that we have examined reflects the company's ability to profit (and thus its value) using different indexes from different stages. Some of the regressions happen to have successful results, but still fail to predict correctly the stock price of our target firm. However, since the database applied is relatively small, there is reason to believe that with a larger number of figures the models can work better.

However, what is more important is to take into account the fact that such an method of evaluating stock prices usually works best in industries where the market is generally clear. The company of our choice—Walmart—does not happen to be in such an industry. The fundamental reason for many of our models above to fail lies in Walmart itself. Walmart has witnessed substantial growth in the recent year due to its continuously growing profits. It has let investors to believe that it has found new growth opportunities. Its ratios, such as P/E, P/B and P/S have all seen dramatic growth in recent months, and that

is why many of our models above were not as appropriate as one may expect. The lesson here is that past experience can only be used as a reference. To become a successful investor, one must be able to assess the specific situation.

5 Contributors

冯耀扬 冼名儒: Dividend Discounted Model

张博远: Relative valuation techniques

张希雅: Free Cash Flow to Equity Modle

洗名儒: also completed the finalization of this report

冯耀扬: also did much research for the case study and found the data source

used in the first to sections of the report