Sammanfattning av SF1672 Linjär algebra

Yashar Honarmandi

19 november 2017

Sammanfattning

Detta är en sammanfattning av viktiga definitioner, teoremer och algoritmer i kursen SF1672 Linjär algebra.

Innehåll

1	\mathbf{Alg}	oritmer	1	
2	Vek	ctorer	1	
	2.1	Definitioner	1	
	2.2	Satser	2	
3	Matriser			
	3.1	Definitioner	2	
	3.2	Satser	2	
4	Linjära avbildningar 3			
	4.1	Definitioner	3	
	4.2	Satser	4	
5	Vektorrum 4			
	5.1	Definitioner	4	
		Revis	2 3 4 4	

1 Algoritmer

Dessa algoritmer kan vara smarta att kunna för att lösa problemer i linjär algebra.

Gauss-Jordan-elimination Ett ekvationssystem

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_n = b_2$$

$$\vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_n = b_n$$

kan lösas vid att konstruera en totalmatris

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} & b_n \end{bmatrix}$$

och göra Gauss-Jordan-elimination på denna.

Syftet med Gauss-Jordanelimination är att varje kolumn ska ha ett och endast ett pivotelement, även kallad en ledande etta. En ledande etta är en etta som inte har någon andra tal i samma kolumn eller till vänster i samma rad. För att få sådana, gör man operationer på radarna i matrisen enligt följande regler:

- Radar kan multipliceras med konstanter. Forsöka, dock, att undveka 0, eftersom det fjärnar information, vilket är otrevligt.
- Radar kan adderas och subtraheras med andra rader, var båda potensielt multiplicerad med en lämplig konstant.

• Radar kan byta plats.

När man är klar, ska matrisen (förhoppingsvis) se ut så här:

$$\begin{bmatrix}
1 & 0 & \dots & 0 & a_1 \\
0 & 1 & \dots & 0 & a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & 1 & a_n
\end{bmatrix}$$

var alla a_i är reella tal.

Invertering av en matris Ställ upp en totalmatris [A|I]. Vid att radreducera A till identitetsmatrisen blir I radreducerad till A^{-1} . Att visa detta är enkelt om man använder elementärmatriser.

2 Vektorer

2.1 Definitioner

Linjärt hölje Det linjära höljet av vektorerna $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ är

$$\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\} = \left\{ \sum_{i=1}^n t_i \mathbf{v}_i \mid t_i \in \mathbb{R} \right\}$$

Linjärt oberoende vektorer Vektorerna $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ är linjärt oberoende om ekvationen

$$\sum_{i=1}^n t_i \mathbf{v}_i = \mathbf{0}$$

endast har lösningen $t_i = 0$ för i = 1, 2, ..., n.

Enhetsvektorer i \mathbb{R}^m Vektorerna

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

i \mathbb{R}^m kallas enhetsvektorer. Man har att Span $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{\}} = \mathbb{R}^m$.

2.2 Satser

3 Matriser

3.1 Definitioner

Matris-vektor-produkt Betrakta $m \times n$ -matrisen

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} & b_n \end{bmatrix}$$
 om $d_{i,j} = 0$ när $i \neq j$.

Transponat För en matris $A = (a_{i,j})$ definieras transponatet som $A^T - (a_{i,j})$

och vektoren i \mathbb{R}^n

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Matrisproduktet $A\mathbf{x}$ definieras som

$$A\mathbf{x} = \begin{bmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_nA & \text{sin invers } A^{-1} \text{ uppfyller} \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n \\ \vdots & AA^{-1} = A^{-1}A = I. \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n \end{bmatrix}$$
Elementärmatriser En matris E

i \mathbb{R}^m .

Homogena ekvationssystem Ett homogent ekvationssystem kan skrivas på formen

$$A\mathbf{x} = \mathbf{0}$$
.

Motsatsen är då inhomogena ekvationssystem.

Addition av matriser För två matriser $A = (a_{i,j}), B = (b_{i,j})$ har man

$$A + B = (a_{i,j} + b_{i,j}).$$

Mutliplikation av matriser med konstanter För en matris A = $(a_{i,j})$ har man

$$cA = (ca_{i,i}), c \in \mathbb{R}.$$

Diagonalmatriser En matris $D = (d_{i,j})$ kallas en diagonal matris

Matrismultiplikation Matrismultiplikation av en $m \times p$ -matris Aoch en $p \times n$ -matris B ges av

$$AB = C : c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}.$$

Inversen av en matris En matris

$$AA^{-1} = A^{-1}A = I.$$

är en elementärmatris om produktet EA kan fås vid att göra en radoperation på A.

Rang Rangen till en matris, skrivit som rankA, är dim(ColA).

3.2 Satser

Matriskolumner linjära ochhöljen Följande påståenden ekvivalenta:

- a) $A\mathbf{x} = \mathbf{b}$ har lösning för varje
- b) Varje $\mathbf{b} \in \mathbb{R}^m$ är en linjär kombination av kolumnerna i A.

- c) Span $\mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_n} = \mathbb{R}^m$.
- d) Den reducerade matrisen till A har m ledande ettor.

Bevis Ekvivalensen till a, b och c är vel trivial eller någonting.

Antag att c gäller och att A ej har m ledande ettor. Då måste man vid Gauss-Jordan-elimination av A få en rad med bara nollor. Antag att detta är sista raden i matrisen. Betrakta vektorn

$$\mathbf{b}' = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Eftersom Gauss-Jordan-elimination inte ändrar det linjära höljet av kolummnerna till en matris, borde man kunne hitta en kombination av elementerna i den sista raden i A så att man får 1, eftersom $\mathbf{b}' \in \mathbb{R}^m$. Då alla elementerna i denna raden är nollor, är detta omöjligt.

Lösningen till inhomogena ekvationssystem Om det inhomogena ekvationssystemet

$$A\mathbf{x} = \mathbf{0}$$

har lösningen \mathbf{x}_h , har det inhomogena ekvationssystemet

$$A\mathbf{x} = \mathbf{b}$$

lösningen $\mathbf{x} = \mathbf{x}_h + \mathbf{x}_i$, var \mathbf{x}_i är någon vektor som uppfyllar ekvationssystemet.

Bevis Ganska enkelt.

Linjärt beroende av kolumner i en matris Kolumnerna i en matris är linjärt oberoende omm (om och endast om) $A\mathbf{x} = \mathbf{0}$ endast har den triviala lösningen. Specielt gäller det att om antal rader är mindre än antal kolumner är kolumnvektorerna linjärt beroende.

 ${f Bevis}$ Någonting med radreduktion.

Inverterbarhet av en matris En matris A är inverterbar om och endast om det A = 0.

Bevis Använd elementärmatriser.

Rangsatsen För en $n \times m$ -matris A är rank $A + \dim(\text{Null } A) = m$.

4 Linjära avbildningar

4.1 Definitioner

Linjära avbildningar En avbildning $T(\mathbf{x})$ är linjär om

•
$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$$
 och

•
$$T(c\mathbf{x}) = cT(\mathbf{x})$$
 för något c .

Bilden till en avbildning För en avbildning $T(\mathbf{x})$ definierar man bildet till T som

$$Im(T) = {\mathbf{y} : \mathbf{y} = T(\mathbf{x})}.$$

Nollrummet till en avbildning För en avbildning $T(\mathbf{x})$ definierar man nollrummet till T som

$$Null(T) = \{ \mathbf{x} : T(\mathbf{x}) = \mathbf{0} \}.$$

Linjära avbildningar En avbildning T är linjär om

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y}),$$

$$T(c\mathbf{x}) = cT(\mathbf{x}), c \in \mathbb{R}.$$

4.2 Satser

Avildningar och enhetsvektorer För en linjär avbildning $T(\mathbf{x})$ har man att

$$T(\mathbf{x}) = \sum_{i=1}^{n} x_i T(\mathbf{e}_i)$$

var x_i är komponenterna av \mathbf{x} .

Bevis Borde gå.

Avbildningar och matriser För en avbildning $T(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}^m$ kan man definiera matrisen

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)]$$

var \mathbf{e}_i är enhetsvektorerna i \mathbb{R}^n . Då kan avbildningen skrivas som

$$T(\mathbf{x}) = A\mathbf{x}.$$

Bevis Inte svårt alls.

Samansättning av linjära avbildningar För två linjära avbildningar S,T är avbildningen $S \circ T$ linjär.

Bevis Vi använder oss av definitionen.

Dimensionalitet och avbildningar För en avbildning $T: \mathbb{R}^n \to \mathbb{R}^m$ är $\dim(\operatorname{Im} T) + \dim(\operatorname{Null} T) = n$.

5 Vektorrum

5.1 Definitioner

Gruper En grupp definieras av en mängd X och en binär operation \cdot på två elementer i X (kommer ej skrivas ut). Denna operationen ska uppfylla

- operationen är assosiativ, dvs. a(bc) = (ab)c.
- det finns ett enhetselement e så att ae = ea = a.
- det för varje element finns en invers så att $aa^{-1} = a^{-1}a = e$.

Abelska gruper En grupp är abelsk om den uppfyllar ab = ba för alla $b, a \in X$.

Vektorrum

Delrum En delmängd V av ett vektorrum är ett delrum om

- $e \in V$.
- $x, y \in V \implies x + y \in V$.
- $cx \in V$ för alla $c \in \mathbb{R}$.

Bas i R^n $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ är en bas för V om

- Span($\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$) = V.
- vektorerna i basen är linjärt oberoende.

Alla vektorer i V kan skrivas som basvektorer på följande sätt:

$$\mathbf{x} = \sum_{i=0}^{k} c_i \mathbf{v}_i,$$

$$\mathbf{x}_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}.$$

Dimension Dimensionen till ett vektorrum är antalet vektorer i basis.

5.2 Bevis

Delrum i \mathbb{R}^n Om V är ett delrum i \mathbb{R}^n kan det skrivas som $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$.

Bevis 2 ez.