Skill Development Lab-2, 2018-19

Name: Omkar Dhaigude

Roll no: 223015 Gr no:17U052

ASSIGNMENT NO.4.

<u>Aim :-</u> For a weighted graph G, find the minimum spanning tree using Prims algorithm .

Objective:- To study the prims algorithm.

Theory:-

Prim's algorithm is also a <u>Greedy algorithm</u>. It starts with an empty spanning tree. The idea is to maintain two sets of vertices. The first set contains the vertices already included in the MST, the other set contains the vertices not yet included. At every step, it considers all the edges that connect the two sets, and picks the minimum weight edge from these edges. After picking the edge, it moves the other endpoint of the edge to the set containing MST.

A group of edges that connects two set of vertices in a graph is called <u>cut in graph theory</u>. So, at every step of Prim's algorithm, we find a cut (of two sets, one contains the vertices already included in MST and other contains rest of the verices), pick the minimum weight edge from the cut and include this vertex to

Algorithm:-

1) Create a set mstSet that keeps track of vertices already included in MST.

MST Set (the set that contains already included vertices)

- **2)** Assign a key value to all vertices in the input graph. Initialize all key values as INFINITE. Assign key value as 0 for the first vertex so that it is picked first.
- **3)** While mstSet doesn't include all vertices
-a) Pick a vertex u which is not there in mstSet and has minimum key value.
-b) Include u to mstSet.
-c) Update key value of all adjacent vertices of u. To update the key values, iterate through all adjacent vertices. For every adjacent vertex v, if weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v

Skill Development Lab-2, 2018-19

Name: Omkar Dhaigude

Roll no: 223015 Gr no:17U052

The idea of using key values is to pick the minimum weight edge from <u>cut</u>. The key values are used only for vertices which are not yet included in MST, the key value for these vertices indicate the minimum weight edges connecting them to the set of vertices included in MST.

Program Code:-

```
#include<iostream>
#include<conio.h>
#include<stdlib.h>
using namespace std;
int cost[10][10],i,j,k,n,stk[10],top,v,visit[10],visited[10],u;
main()
{
      int m,c;
      cout <<"enterno of vertices";</pre>
      cin >> n;
      cout <<"ente no of edges";
      cin >> m;
      cout <<"\nEDGES Cost\n";</pre>
      for(k=1;k<=m;k++)
      {
```

```
Skill Development Lab-2, 2018-19
Name: Omkar Dhaigude
Roll no: 223015
Gr no:17U052
              cin >>i>>j>>c;
              cost[i][j]=c;
       }
      for(i=1;i<=n;i++)
      for(j=1;j<=n;j++)
             if(cost[i][j]==0)
              cost[i][j]=31999;
       cout <<"ORDER OF VISITED VERTICES";</pre>
       k=1;
      while(k<n)
       {
              m=31999;
             if(k==1)
              {
                    for(i=1;i<=n;i++)
                            for(j=1;j<=m;j++)
                            if(cost[i][j]<m)</pre>
                            {
                                   m=cost[i][j];
                                   u=i;
                            }
```

S.Y.-C, Department of Computer Engineering, VIIT, 2018-19

```
Skill Development Lab-2, 2018-19
Name: Omkar Dhaigude
Roll no: 223015
Gr no:17U052
             }
             else
             {
                    for(j=n;j>=1;j--)
                    if(cost[v][j]<m && visited[j]!=1 && visit[j]!=1)
                    {
                           visit[j]=1;
                           stk[top]=j;
                           top++;
                           m=cost[v][j];
                           u=j;
                    }
             }
             cost[v][u]=31999;
             v=u;
             cout<<v << " ";
             k++;
             visit[v]=0; visited[v]=1;
       }
```

Output Screenshots:-

Skill Development Lab-2 ,2018-19

Name: Omkar Dhaigude

Roll no: 223015 Gr no:17U052

Conclusion:- Thus, we have studied prims algorithm.