

Normalizzazione Basi di Dati

Corso di Laurea in Informatica per il Management

Alma Mater Studiorum - Università di Bologna

Prof. Marco Di Felice

Dipartimento di Informatica — Scienza e Ingegneria marco.difelice3@unibo.it

Progettazione logica

Le **ridondanze** sui dati possono essere di due tipi:

- Ridondanza concettuale → non ci sono duplicazioni dello stesso dato, ma sono memorizzate informazioni che possono essere ricavate da altre già contenute nel DB.
- Ridondanza fisica

 esistono duplicazioni sui dati, che possono generare anomalie nelle operazioni sui dati ...

Esempi di **ridondanze concettuali** che possono presentarsi già nel diagramma E-R...

Le **ridondanze** sui dati possono essere di due tipi:

- Ridondanza concettuale → non ci sono duplicazioni dello stesso dato, ma sono memorizzate informazioni che possono essere ricavate da altre già contenute nel DB.
- Ridondanza fisica

 esistono duplicazioni sui dati, che possono generare anomalie nelle operazioni sui dati ...

D. Cosa c'è di strano in questa tabella?

<u>Docente</u>	Livello	Salario	Dipartimento	Direttore	Corso
Rossi	4	15000	Fisica	Neri	Mat. Discreta
Rossi	4	15000	Chimica	Rossini	Analisi I
Bianchi	3	10000	Informatica	Viola	Basi di Dati
Neri	4	15000	Informatica	Viola	Programmazione
Neri	4	15000	Matematica	Bruni	Inf. di base
Rossi	3	15000	Matematica	Bruni	Geometria

D. Cosa c'è di strano in questa tabella?

<u>Docente</u>	Livello	Salario	Dipartimento	Direttore	<u>Corso</u>
Rossi	4	15000	Fisica	Neri	Mat. Discreta
Rossi	4	15000	Chimica	Rossini	Analisi I
Bianchi	3	10000	Informatica	Viola	Basi di Dati
Neri	4	15000	Informatica	Viola	Programmazione
Neri	4	15000	Matematica	Bruni	Inf. di base
Rossi	3	15000	Matematica	Bruni	Geometria

R. Lo stipendio di ciascun docente è ripetuto in tutte le tuple relative → **Ridondanze sui dati**!

D. Cosa c'è di strano in questa tabella?

<u>Docente</u>	Livello	Salario	Dipartimento	Direttore	Corso
Rossi	4	15000	Fisica	Neri	Mat. Discreta
Rossi	4	15000	Chimica	Rossini	Analisi I
Bianchi	3	10000	Informatica	Viola	Basi di Dati
Neri	4	15000	Informatica	Viola	Programmazione
Neri	4	15000	Matematica	Bruni	Inf. di base
Rossi	3	15000	Matematica	Bruni	Geometria

A. Il direttore di un dipartimento è ripetuto in tutte le tuple relative → **Ridondanze sui dati**!

D. Cosa c'è di strano in questa tabella?

<u>Docente</u>	Livello	Salario	Dipartimento	Direttore	Corso
Rossi	4	15000	Fisica	Neri	Mat. Discreta
Rossi	4	15000	Chimica	Rossini	Analisi I
Bianchi	3	10000	Informatica	Viola	Basi di Dati
Neri	4	15000	Informatica	Viola	Programmazione
Neri	4	15000	Matematica	Bruni	Inf. di base
Rossi	3	15000	Matematica	Bruni	Geometria

○ Anomalia di aggiornamento → se varia lo stipendio, devo modificare tutte le tuple del docente!

Q. Cosa c'e' di strano in questa tabella?

<u>Docente</u>	Livello	Salario	Dipartimento	Direttore	<u>Corso</u>
Rossi	4	15000	Fisica	Neri	Mat. Discreta
Rossi	4	15000	Chimica	Rossini	Analisi I
Bianchi	3	10000	Informatica	Viola	Basi di Dati
Neri	4	15000	Informatica	Viola	Programmazione
Neri	4	15000	Matematica	Bruni	Inf. di base
Rossi	3	15000	Matematica	Bruni	Geometria

○ Anomalia di cancellazione → Se un docente non ha corsi, dobbiamo eliminare tutti i suoi dati ...

Docente	Livello	Salario	Dipartimento	Direttore	Corso

- V1. Ogni dipartimento ha un solo direttore.
- V2. Ogni docente ha un solo stipendio (anche se ha più corsi).
- V3. Lo stipendio dipende dal livello e non dal dipartimento o dal corso tenuto!

PROBLEMA: Abbiamo usato un'unica tabella per rappresentare informazioni eterogenee!

Da dove deriva una **ridondanza**?

Traduzioni non corrette nel modello logico relazionale...

Da dove deriva una **ridondanza**?

Errori durante la progettazione concettuale ...

 Sarebbe stato meglio ristrutturare lo schema E-R, partizionando l'entità ed introducendo delle relazioni uno-a-molti o molti-a-molti!

 Per risolvere le anomalie viste fin qui, si introduce un nuovo concetto del modello relazionale: la Dipendenza Funzionale (DF).

Data una tabella su uno schema R(X) e due attributi Y e Z di X. Esiste la dipendenza funzionale Y \rightarrow Z se per ogni coppia di tuple t1 e t2 di r con t1[Y]=t2[Y], si ha anche che t1[Z]=t2[Z].

 Per risolvere le anomalie viste fin qui, si introduce un nuovo concetto del modello relazionale: la Dipendenza Funzionale (DF).

Data una tabella su uno schema R(X) e due liste di attributi $Y=\{Y_0, Y_1,..., Y_n\}$ e $Z=\{Z_0, Z_1,..., Z_m\}$. Esiste la dipendenza funzionale $Y \rightarrow Z$ se per ogni coppia di tuple t1 e t2 di r con t1[Y]=t2[Y], si ha anche che t1[Z]=t2[Z].

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Sede	Ruolo
Rossi	20000	Marte	Roma	Tecnico
Verdi	35000	Giove	Bologna	Tecnico
Verdi	35000	Venere	Milano	Progettista
Neri	55000	Venere	Milano	Direttore
Neri	55000	Giove	Bologna	Direttore
Neri	55000	Marte	Roma	Tecnico
Bianchi	48000	Venere	Milano	Consulente

○ DF1: Impiegato → Stipendio

Spiegazione: [Ogni impiegato ha un unico stipendio]

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Sede	Ruolo
Rossi	20000	Marte	Roma	Tecnico
Verdi	35000	Giove	Bologna	Tecnico
Verdi	35000	Venere	Milano	Progettista
Neri	55000	Venere	Milano	Direttore
Neri	55000	Giove	Bologna	Direttore
Neri	55000	Marte	Roma	Tecnico
Bianchi	48000	Venere	Milano	Consulente

○ DF2: Progetto → Sede

Spiegazione: [Ogni progetto ha un'unica sede]

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Sede	Ruolo
Rossi	20000	Marte	Roma	Tecnico
Verdi	35000	Giove	Bologna	Tecnico
Verdi	35000	Venere	Milano	Progettista
Neri	55000	Venere	Milano	Direttore
Neri	55000	Giove	Bologna	Direttore
Neri	55000	Marte	Roma	Tecnico
Bianchi	48000	Venere	Milano	Consulente

DF3: Impiegato → Impiegato

DF ovvia (Y→Y). Per definizione stessa di DF ...

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Sede	Ruolo
Rossi	20000	Marte	Roma	Tecnico
Verdi	35000	Giove	Bologna	Tecnico
Verdi	35000	Venere	Milano	Progettista
Neri	55000	Venere	Milano	Direttore
Neri	55000	Giove	Bologna	Direttore
Neri	55000	Marte	Roma	Tecnico
Bianchi	48000	Venere	Milano	Consulente

○ DF4: Impiegato Progetto → Ruolo

Spiegazione: Un impiegato può coprire un solo ruolo per progetto!

 Le dipendenze funzionali sono definite a livello di schema e non a livello di istanza!

<u>Matricola</u>	Cognome	Corso	Voto
1244	Rossi	Basi di Dati	18
1567	Bianchi	Programmazione	22
1898	Bianchi	Analisi I	20
2040	Verdi	Programmazione	22
2121	Verdi	Basi di Dati	18
2678	Bruni	Analisi I	20

○ Dipendenza funzionale Corso → Voto? NO!

Le dipendenze funzionali sono definite **a livello di schema** e non a livello di istanza!

<u>Matricola</u>	Studente	Corso	Docente	Voto
1244	Rossi	Basi di Dati	Di Felice	18
1567	Bianchi	Programmazione	Messina	22
1898	Bianchi	Analisi I	Mughetti	20
2040	Verdi	Programmazione	Messina	22
2121	Verdi	Basi di Dati	Di Felice	18
2678	Bruni	Analisi I	Mughetti	20

 ○ Dipendenza funzionale Corso → Docente ? Può essere, occorre considerare le specifiche del sistema ...

Le dipendenze funzionali hanno sempre un verso!

<u>Matricola</u>	Studente	Corso	Docente	Voto
1244	Rossi	Basi di Dati	Di Felice	18
1567	Bianchi	Programmazione	Messina	22
1898	Bianchi	Analisi I	Mughetti	20
2040	Verdi	Programmazione	Messina	22
2121	Verdi	Basi di Dati	Di Felice	18
2678	Bruni	Analisi I	Mughetti	20
4354	Bruni	Sistemi Context-aware	Di Felice	28

○ Corso → Docente? OK Docente → Corso? NO!

- Le dipendenze funzionali sono una generalizzazione del vincolo di chiave (e di <u>superchiave</u>).
- Data una tabella con schema R(X), con superchiave K.
 Esiste un vincolo di dipendenza funzionale tra K e qualsiasi attributo dello tabella o combinazione degli stessi.

$$K \to X_1, X_1 \subseteq X$$

ImpiegatoStipendioProgettoSedeRuolo	
-------------------------------------	--

ESEMPIO. Impiegato, Progetto è una (super)**chiave della relazione** → non possono esistere due tuple con lo stesso valore della coppia <Impiegato, Progetto>!

```
DF_1: Impiegato Progetto \rightarrow Stipendio
```

DF₂: Impiegato Progetto → Sede

DF₃: Impiegato Progetto → Ruolo

DF₄: Impiegato Progetto → Sede Ruolo

• • • •

DF_n: Impiegato Progetto → Impiegato Stipendio Progetto Sede Ruolo

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Sede	Ruolo
Rossi	20000	Marte	Roma	Tecnico
Verdi	35000	Giove	Bologna	Tecnico
Verdi	35000	Venere	Milano	Progettista
Neri	55000	Venere	Milano	Direttore
Neri	55000	Giove	Bologna	Direttore
Neri	55000	Marte	Roma	Tecnico
Bianchi	48000	Venere	Milano	Consulente

○ DF1: Impiegato → Stipendio

○ DF2: Progetto → Sede

○ DF3: Impiegato Progetto → Ruolo

Dipendenze funzionali "buone" e "cattive".

○ DF1: Impiegato → Stipendio (2)

○ DF2: Progetto → Sede

Ridondanza sui dati, possibili anomalie (aggiornamento, cancellazione, etc) nelle operazioni sui dati ...

○ DF3: Impiegato Progetto → Ruolo

Non determina ridondanze sui dati ...

Perchè DF3 non causa anomalie a differenza di DF1 e di DF2?

○ DF1: Impiegato → Stipendio

○ **DF2:** Progetto → Sede

○ DF3: Impiegato Progetto → Ruolo

Motivo:

- DF3 ha sulla sinistra una (super)chiave.
- DF1 e DF2 non contengono una (super)chiave.

FORMA NORMALE di BOYCE-CODD (FNBC)

Uno schema R(X) si dice in **forma normale di Boyce e Codd** se per ogni dipendenza funzionale (non ovvia) Y→ Z definita su di esso, Y è una **superchiave** di R(X).

- Se una tabella è in FNBC, non presenta le anomalie e ridondanze viste fin qui.
- Se una tabella NON è in FNBC, bisogna trasformarla (normalizzarla) -se possibile- in FNBC.

Esempi di tabelle...

<u>Localita</u>	<u>Stato</u>	Abitanti
Roma	Italia	60000000
Cambridge	UK	50000
Cambridge	US	200000
Bologna	Italia	400000
NY	US	15000000

DF: Localita Stato → Abitanti Rispetta la FNBC!

<u>Localita</u>	<u>Stato</u>	Prefisso
Roma	Italia	0039
Cambridge	US	001
Cambridge	UK	0044
Bologna	Italia	0039
NY	US	001

DF: Stato → Prefisso **NON** rispetta la FNBC!

- D. Come **normalizzare** una tabella?
- R. Creare tabelle separate per ogni dipendenza funzionale

IMPIEGATO→ STIPENDIO

<u>Impiegato</u>	Stipendio
Rossi	20000
Verdi	35000
Neri	55000
Bianchi	48000

IMPIEGATO, PROGETTO \rightarrow RUOLO

<u>Impiegato</u>	<u>Progetto</u>	Ruolo
Rossi	Marte	Tecnico
Verdi	Giove	Tecnico
Verdi	Venere	Progettista
Neri	Venere	Direttore
Neri	Giove	Direttore
Neri	Marte	Tecnico
Bianchi	Venere	Consulente

PROGETTO → SEDE

Progetto Sede

Marte Roma

Giove Bologna

Venere Milano

D. Tutte le decomposizioni vanno bene?

<u>Impiegato</u>	<u>Progetto</u>	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

IMPIEGATO→	SEDE
<u>Impiegato</u>	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

PROGETTO→ SEDE			
<u>Progetto</u>	Sede		
Marte	Roma		
Giove	Milano		
Venere	Milano		
Saturno	Milano		

- **DF1**. Impiegato → Sede (Ogni impiegato lavora in una sola sede)
- **DF2**. Progetto → Sede (Ogni progetto ha la stessa sede)

D. Tutte le decomposizioni vanno bene?

<u>Impiegato</u>	Sede		<u>Progetto</u>	Sede
Rossi	Roma		Marte	Roma
Verdi	Milano	$\triangleright \triangleleft$	Giove	Milano
Neri	Milano		Venere	Milano
INCII	IVIIIaIIU		Saturno	Milano

 Se combino le due tabelle della decomposizione tramite operatore di join, non ottengo la tabella di partenza! (decomposizione con perdita/aggiunta)

I <u>mpiegato</u>	<u>Progetto</u>	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Verdi	Saturno	Milano
Neri	Venere	Milano
Neri	Giove	Milano
Neri	Saturno	Milano

DECOMPOSIZIONE SENZA PERDITA

Uno schema R(X) si **decompone senza perdita** negli schemi R1(X1) ed R2(X2) se, per ogni possibile istanza r di R(X), il join naturale delle di X1 ed X2 produce la tabella di partenza.

$$\pi_{X1}(r) \triangleright \triangleleft \pi_{X2}(r) = r$$

 In caso di decomposizione con perdite/aggiunte, possono generarsi delle tuple spurie dopo il join.

Anche se una decomposizione è senza aggiunte, può comunque presentare dei problemi di conservazione delle dipendenze ...

						<u>Impiegato</u>	<u>Progetto</u>
<u>Impiegato</u>	Progetto	Sede				Rossi	Marte
Rossi	Marte	Roma				110001	.viai ce
				<u>Impiegato</u>	Sede	Verdi	Giove
Verdi	Giove	Milano	N.	Rossi	Roma		
				110331	Noma	Verdi	Venere
Verdi	Venere	Milano	L	Verdi	Milano		
				verai	TVIIIGITO	Neri	Venere
Neri	Venere	Milano		Neri	Milano		
						Neri	Saturno
Neri	Saturno	Milano					

Con questa decomposizione, non ho tuple spurie ...

 Anche se una decomposizione è senza perdite, può comunque presentare dei problemi di conservazione delle dipendenze ...

<u>Impiegato</u>	<u>Progetto</u>
Rossi	Marte
Verdi	Giove
Verdi	Venere
Neri	Venere
Neri	Saturno
Neri	Marte

D. Che accade se aggiungo l'impiegato Neri al progetto Marte?

 $\triangleright \triangleleft$

 Anche se una decomposizione è senza perdite, può comunque presentare dei problemi di conservazione delle dipendenze ...

Implegato
Sede

Rossi
Roma

Verdi
Milano

Neri
Milano

<u>Impiegato</u>	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Venere	Milano
Neri	Saturno	Milano
Neri	Marte	Milano

Violazione del vincolo di dipendenza **Progetto** → **Sede**

- D. Tutte le decomposizioni vanno bene?
- **R. NO!** Le decomposizione deve soddisfare **tre proprietà**:
- Soddisfacimento della FNBC: ogni tabella deve essere in FNBC.
- Decomposizione senza perdita: il join delle tabelle decomposte deve produrre la relazione originaria.
- Conservazione delle dipendenze: il join delle tabelle decomposte deve rispettare tutte le DF dello schema originario.

- D. Data una relazione non in FNBC, è sempre possibile ottenere una decomposizione in FNBC?
- R. NO! consideriamo un controesempio ...

Dirigente	<u>Progetto</u>	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

- **DF1**. Progetto Sede → Dirigente
- DF2. Dirigente → Sede

PROBLEMA: DF1 coinvolge tutti gli attributi, nessuna decomposizione può preservare la dipendenza!

Per risolvere casi come quello precedente, si introduce **una nuova definizione di forma normale** meno restrittiva della forma di Boyce e Codd...

TERZA FORMA NORMALE (TFN)

Una tabella r è in **terza forma normale** se per ogni dipendenza funzionale X→A dello schema, **ALMENO UNA delle seguenti condizioni è verificata**:

- X è una superchiave di r
- A appartiene ad almeno una chiave K di r

La tabella considerata fin qui rispetta la TFN!

Dirigente	<u>Progetto</u>	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

OF1. Progetto Sede → Dirigente

○ DF2. Dirigente → Sede

DF1: Progetto Sede è una chiave →

Condizione 1 soddisfatta!

DF2: Sede è parte di una chiave →

Condizione 2 soddisfatta!

Se è già in TFN, **non è necessaria alcuna nomalizzazione!** Putroppo le ridondanze sui dati restano ...

CONFRONTO TRA TFN e FNBC

(svantaggi) La TFN è meno restrittiva della FNBC

- Tollera alcune ridondanze ed anomalie sui dati.
- Certifica meno lo qualità dello schema ottenuto.

(VANTAGGI) La TFN è sempre ottenibile, qualsiasi sia la tabella

COME? Algoritmo di normalizzazione in TFN!

ALGORITMO DI NORMALIZZAZIONE IN TERZA FORMA NORMALE (TFN)

TERZA FORMA NORMALE (TFN)

Una tabella r è in **terza forma normale** se per ogni dipendenza funzionale X A (non banale) dello schema, **almeno una delle seguenti condizioni è verificata**:

- X è una superchiave di r
- A appartiene ad almeno una chiave K di r

DIPENDENZA FUNZIONALE BANALE

Una dipendenza funzionale X > Y si dice **banale** se Y è contenuto in X.

ESEMPI:

- Impiegato Progetto → Impiegato
- Impiegato Progetto Sede → Impiegato Progetto

Questo genere di dipendenze funzionali non ci interessano, e non le conseriamo come tali nel resto della trattazione ...

Data una relazione r con schema R(X) non in TFN, **normalizzare in TFN** vuol dire: decomporre r nelle relazioni $r_1, r_2, ... r_n$, garantendo che:

- \circ Ogni r_i (1<=i<=n) è in TFN.
- La decomposizione è senza perdite. r_1 ▷ \triangleleft r_2 ▷ \triangleleft $r_n = r$
- La decomposizione conserva tutte le dipendenze F definite sullo schema R(X) di partenza.

Ad esempio, data la relazione: **R(ACDGMPRS)**, con dipendenze funzionali:

 $F = \{M \rightarrow RSDG, MS \rightarrow CD, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow AM\}$

Qual è la sua decomposizione in 3FN?

In molti casi, la decomposizione non è così intuitiva ...

IDEA alla base dell'algoritmo di normalizzazione:

- Semplificare l'insieme di dipendenze F, rimuovendo quelle non necessarie, e trasformando ogni dipendenza in modo che nella parte destra compaia un singolo attributo.
- Raggruppare gli attributi coinvolti nelle stesse dipendenze, e costruire le tabelle corrispondenti.
- Assicurarsi che almeno una delle tabella prodotta contenga la chiave della tabella originaria.

IMPLICAZIONE FUNZIONALE

Dato un <u>insieme di dipendenze funzionali</u> F, ed una <u>dipendenza funzionale</u> f, diremo che **F implica f** se ogni tabella che soddisfa F soddisfa anche f.

F: {Impiegato → Livello, Livello → Stipendio}

f: Impiegato → Stipendio

In questo caso, F implica f? SI!

Dim. Devo dimostrare che se in una tabella sono vere entrambe le dipendenze funzionali di F, allora vale anche la dipendenza funzionale f...

IMPLICAZIONE FUNZIONALE

Dato un <u>insieme di dipendenze funzionali</u> F, ed una <u>dipendenza funzionale</u> f, diremo che **F implica f** se ogni tabella che soddisfa F soddisfa anche f.

F: {Impiegato → Livello, Impiegato → Stipendio}

f: Livello → Stipendio

In questo caso, Fimplica f? NO!

<u>Impiegato</u>	Livello	Stipendio
Neri	4	13400
Rossi	4	15000

CHIUSURA DI UNA DIPENDENZA FUNZIONALE

Dato uno schema R(U), con un insieme di dipendenze F. Sia X un insieme di attributi contenuti in U. Si definisce la **chiusura di X rispetto ad F(X^+_F)** come l'insieme degli attributi che dipendono funzionalmente da X:

$$X_F^+ = \{A \mid A \in U \ e \ F \ implies X \rightarrow A \}$$

Esempio (facile). Siano:

$$F=\{A \rightarrow B, A \rightarrow C\}$$

Vogliamo conoscere la chiusura di A: A+_F

$$A_F^+=\{B,C\}$$

Esempio (facile). Siano:

$$F=\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$$

Vogliamo conoscere la chiusura di A: A+_F

$$A_F^+=\{B,C,D\}$$

INPUT: X (attributi) e F (dipendenze)

оитрит: La chiusura di X rispetto ad F: X⁺_F

- **1)** $X_F^+=X$.
- 2) Per ogni dipendenza f: Y→A in F

Se
$$(Y \subseteq X_F^+) \land (A \notin X_F^+) \implies X_F^+ = X_F^+ \cup \{A\}$$

3) Ripeti il passo 2 finchè non è possible aggiungere nuovi elementi in X⁺_F.

```
Esempio. Siano:

R=(ABCDE)

F=\{A \rightarrow B, BC \rightarrow D, B \rightarrow E, E \rightarrow C\}

A^{+}_{F}=\{A\}

A^{+}_{F}=\{A,B\} // con f: A \rightarrow B

A^{+}_{F}=\{A,B,E\} // con f: B \rightarrow E

A^{+}_{F}=\{A,B,E,C\} // con f: E \rightarrow C

A^{+}_{F}=\{A,B,E,C,D\} // con f: BC \rightarrow D
```

- D. Come verificare se F implica f: $X \rightarrow Y$?
- 1. Calcolare la chiusura X⁺_F
- 1. Se Y appartiene ad X+_F, allora F implica f.

ESEMPIO

$$F=\{A \rightarrow B, BC \rightarrow D, B \rightarrow E, E \rightarrow C\}$$
 f: $A \rightarrow E$

$$A_F^+=\{A,B,E,C,D\}$$

.... Quindi F implica A >> E

Data una tabella con schema R(U), l'algoritmo per determinare la chiusura X^+_F puo' essere usato anche per verificare se X e' una superchiave di R.

...COME?

Dato uno schema R(U), con un insieme F di dipendenze funzionali, allora:

un insieme di attributi K è una (super)chiave di R(U) se: F implica K→U.

Dato uno schema R(U), con un insieme F di dipendenze funzionali, allora:

un insieme di attributi K è una (super)chiave di R(U) se F implica K→U.

ESEMPIO

R=(ABCDE) F={A \rightarrow B, BC \rightarrow D, B \rightarrow E, E \rightarrow C}

Se A è una chiave allora F implica A \rightarrow ABCDE.

A⁺_F={A,B,E,C,D} quindi A è una chiave!

INSIEMI DI DIPENDENZE EQUIVALENTI

Dati due <u>insiemi di dipendenze funzionali</u> F_1 ed F_2 , essi si dicono **equivalenti** se F_1 implica ciascuna dipendenza di F_2 e viceversa.

ESEMPIO

$$F=\{A \rightarrow B, AB \rightarrow C\}$$
 $F_1=\{A \rightarrow B, A \rightarrow C\}$

F e F₁ sono equivalenti! Occorre fare 4 verifiche ...

INSIEMI DI DIPENDENZE NON RIDONDANTI

Dato un <u>insieme di dipendenze funzionali</u> F definito su uno schema R(U), esso si dice **non ridondante** se non esiste una dipendenza f di F tale che F-{f} implica f.

ESEMPIO

 $F=\{A \rightarrow B, AB \rightarrow C, A \rightarrow C\}$

F è ridondante perchè: $F-\{A\rightarrow C\}$ implica $A\rightarrow C!$

INSIEMI DI DIPENDENZE RIDOTTE

Dato un <u>insieme di dipendenze funzionali</u> F definito su uno schema R(U), esso si dice **ridotto** se (1) <u>non è ridondante</u>, e (2) <u>non è possibile ottenere un insieme F' equivalente</u> eliminando attributi dai primi membri di una o più dipendenze di F.

ESEMPIO

$$F=\{A \rightarrow B, AB \rightarrow C\}$$

F NON è ridotto perchè B può essere eliminato da AB \rightarrow C e si ottiene ancora un insieme F₂ equivalente ad F!

Dato uno schema R(U) con insieme di dipendenze F, per trovare una copertura ridotta di F si procede in tre passi:

STEP 1. Sostituire F con F₁, che ha tutti i **secondi membri composti** da un singolo attributo.

M \rightarrow RSDG, MS \rightarrow CD, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow AM

F₁={ M \rightarrow R, M \rightarrow S, M \rightarrow D, M \rightarrow G, MS \rightarrow C, MS \rightarrow D, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow A, MPD \rightarrow M}

STEP 2. Eliminare gli attributi estranei.

Supponiamo di avere $F=\{AB \rightarrow C, A \rightarrow B\}$, e calcoliamo A_F^+

$$A^{+}_{F}=A$$
 $A^{+}_{F}=AB$
 $A^{+}_{F}=ABC$
// da $AB \rightarrow C$

C dipende solo da A, quindi l'attributo B in AB→C puo' essere eliminato preservando l'uguaglianza!

$$F_1 = \{A \rightarrow C, A \rightarrow B\}$$

STEP 2. Eliminare gli attributi estranei.

D. In generale, se ho una dipendenza funzionale del tipo: $AX \rightarrow B$, come faccio a stabilire se l'attributo A può essere eliminato preservando l'uguaglianza?

R. Si calcola X⁺ e si verifica se esso include B, nel qual caso A può essere eliminato dalla dipendenza!

STEP 3. Eliminare le dipendenze non necessarie.

Supponiamo di avere $F=\{B\rightarrow C, B\rightarrow A, C\rightarrow A\}$:

B \rightarrow A è ridondante, in quanto bastano le dipendenze B \rightarrow C, e C \rightarrow A per capire che A dipende da B!

Formalmente, dovrei dimostrare che:

 $F-\{B\rightarrow A\}$ implica $\{B\rightarrow A\}$ quindi, verificare che: $B^+_{F-\{B\rightarrow A\}}$ contiene A ...

STEP 3. Eliminare le ridondanze non necessarie.

D. In generale, come posso stabilire se la dipendenza del tipo X \rightarrow A \text{\end{a}} \text{\text{c}}

R. Si elimina da F, si calcola $X^+_{F-\{X\to A\}}$, e si verifica se tale insieme include ancora A. Nel caso lo includa, si elimina la dipendenza funzionale $X\to A$.

Dati R(U), ed un insieme di dipendenze F, **l'algoritmo di normalizzazione in terza forma normale** procede come segue:

STEP 1 Costruire una copertura ridotta F₁ di F.

 $F=\{M \rightarrow RSDG, MS \rightarrow CD, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow AM\}$

 $F_1=\{M \rightarrow D, M \rightarrow G, M \rightarrow C, G \rightarrow R, D \rightarrow S, S \rightarrow D, MP \rightarrow A\}$

STEP 2. Decomporre F_1 nei sottoinsiemi $F_1^{(1)}$, $F_1^{(2)}$, ... $F_1^{(n)}$: ad ogni sottoinsieme appartengono dipendenze con gli stessi lati sinistri.

```
F_{1}^{(1)} = \{M \rightarrow D, M \rightarrow G, M \rightarrow C\}
F_{1}^{(2)} = \{G \rightarrow R\}
F_{1}^{(3)} = \{D \rightarrow S\}
F_{1}^{(4)} = \{S \rightarrow D\}
F_{1}^{(5)} = \{MP \rightarrow A\}
```

STEP 3. **Se due** o più lati sinistri delle dipendenze si implicano a vincenda, si fondono i relativi insiemi.

$$F_{1}^{(1)} = \{M \rightarrow D, M \rightarrow G, M \rightarrow C\}$$

$$F_{1}^{(2)} = \{G \rightarrow R\}$$

$$F_{1}^{(3)} = \{D \rightarrow S\}$$

$$F_{1}^{(4)} = \{S \rightarrow D\}$$

$$F_{1}^{(5)} = \{MP \rightarrow A\}$$

STEP 3. Trasformare ciascun $F_1^{(i)}$ in una tabella $R^{(i)}$ con gli attributi contenuti in ciascuna dipendenza.

Il lato sinistro diventa la chiave della relazione.

$$F_1^{(1)} = \{M \rightarrow D, M \rightarrow G, M \rightarrow C\}: \mathbb{R}^{(1)} (MDGC)$$

$$F_1^{(2)} = \{G \rightarrow R\}:$$
 $R^{(2)}(GR)$

$$F_1^{(3)} = \{D \rightarrow S, S \rightarrow D\}:$$
 $R^{(3)}(\underline{SD})$

$$F_1^{(4)} = \{MP \rightarrow A\}:$$
 $R^{(4)}(\underline{MPA})$

STEP 5. Se nessuna relazione R⁽ⁱ⁾ cosi' ottenuta contiene una chiave K di R(U), **inserire una nuova tabella R**⁽ⁿ⁺¹⁾ contenente gli attributi della chiave.

Nel nostro caso, la chiave è costituita da: (MP).

 $R^{(1)}(MDGC)$ $R^{(2)}(GR)$ $R^{(3)}(SD)$ $R^{(4)}(MPA)$

 $R^{(4)}(MPA)$ contiene la chiave \rightarrow non c'è necessità di aggiungere altre tabelle!

In conclusione, data la relazione: **R(MGCRDSPA)**, con dipendenze funzionali:

$$F = \{M \rightarrow RSDG, MS \rightarrow CD, G \rightarrow R, D \rightarrow S, S \rightarrow D, MPD \rightarrow AM\}$$

La sua decomposizione in 3FN è la seguente:

 $R^{(1)}(MDGC)$ $R^{(2)}(GR)$ $R^{(3)}(SD)$ $R^{(4)}(MPA)$

Esempio: R(ABCDE) $F=\{C \rightarrow AB, BC \rightarrow DE, D \rightarrow B\}$

STEP (1.a) Ridurre F. (semplificare parte destra delle dipendenze)

$$F_1 = \{C \rightarrow A, C \rightarrow B, BC \rightarrow D, BC \rightarrow E, D \rightarrow B\}$$

STEP (1.b) Ridurre F. (semplificare parte sinistra delle dipendenze)

Calcolo $C_{F1}^+ = \{C, A, B, D, E\}$, e noto che include D ed E!

$$F_2 = \{C \rightarrow A, C \rightarrow B, C \rightarrow D, C \rightarrow E, D \rightarrow B\}$$

$$F_2 = \{C \rightarrow A, C \rightarrow B, C \rightarrow D, C \rightarrow E, D \rightarrow B\}$$

STEP (1.c) Ridurre F. (rimuovere dipendenze)

Che succede se elimino $C \rightarrow B$?

$$F_3 = \{C \rightarrow A, C \rightarrow D, C \rightarrow E, D \rightarrow B\}$$

STEP (2) Decomporre F (in insiemi di dipendenze con lo stesso lato sx)

$$F_{31} = \{C \rightarrow A, C \rightarrow D, C \rightarrow E\}$$

 $F_{32} = \{D \rightarrow B\}$

```
F_{31} = \{C \rightarrow A, C \rightarrow D, C \rightarrow E\}

F_{32} = \{D \rightarrow B\}
```

STEP (3) Fondere gli insiemi. (le cui parti sinistre si implicano)

STEP (4) Costruire le relazioni associate.

 $R_1(\underline{C}ADE)$ $R_2(\underline{D}B)$

STEP (5) Verificare esistenza della chiave.

C+={A,B,C,D,E} → quindi C è una chiave dello schema r

Perchè si chiama **Terza Forma Normale** (**TFN**)?

- **Prima Forma Normale (PFN)** → si suppone sempre rispettata
- Seconda Forma Normale (SFN) → variante debole della TFN.

Procenendo per gradi, si dovrebbe normalizzare in PFN, poi in SFN, e quindi in TFN.

Una relazione r con schema R(U) è in **Seconda Forma Normale** (SFN) quando NON presenta dipendenze parziali, della forma: Y >> A, dove:

- Y è un sottoinsieme proprio della chiave
- A è un qualsiasi sottoinsieme di R(U)

IMPIEGATO(Impiegato, Stipendio, Progetto, Budget)

Impiegato → Stipendio Progetto → Budget

DIPENDENZA PARZIALE!

- Y è un sottoinsieme proprio della chiave
- A è un qualsiasi sottoinsieme di R(U)

IMPIEGATO(Impiegato, Categoria, Stipendio)

Impiegato → Categoria

Categoria → Stipendio

- Una tabella con schema R(U) è in Quarta Forma Normale (4FN) se non presenta dipendenze multivalore non banali diverse da una chiave della tabella. Es. $X \rightarrow Y$ $X \rightarrow Z$
- Una tabella con schema R(U) è in Quinta Forma Normale (5FN) se non è possible decomporre ulteriormente la tabella senza perdere informazioni.