PROBLEMI D'ESAME DI TEORIA DI GALOIS

A. Sia $G = GL_2(\mathbf{F}_5)$ il gruppo delle matrici invertibile due per due a coefficienti in \mathbf{F}_5 .

- 1. Dimostrare che l'ordine di G è 480;
- 2. Dimostrare che $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ genera un sottogruppo di Sylow di G e dire se si tratta di un sottogruppo normale;
- 3. Calcolare un p-sottogruppo di Sylow di $\mathrm{GL}_2(\mathbf{F}_p)$ per ogni fissato numero primo p;
- 4. Calcolare l'ordine dell' elemento $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ in G;
- 5. Sia B l'insieme delle matrici diagonali di G. Dimostrare che B è un sottogruppo di G e calcolarne l'ordine;
- 6. Dimostrare che

$$C = B \cup \left\{ \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} | a, b \in \mathbf{F}_5^* \right\}$$

- è un 2-Sylow di G e dire se è un sottogruppo normale.
- 7. Determinare un 3-sottogruppo di Sylow di G e dire se è normale. Suggerimento: Dimostrare che $\mathrm{SL}_2(\mathbf{F}_5)$ contiene un 3-sottogruppo di Sylow e osservare che se $a^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ allora $a^2 = a^{-1}$.

B. Sia
$$f(t) = t^6 - 8t^3 + 15$$
.

- 1. Determinare il campo di spezzamento $\mathbf{Q}(f)$ di f;
- 2. Determinare tutti gli elementi di $\operatorname{Gal}(\mathbf{Q}(f)/\mathbf{Q})$;
- 3. Dimostrare che $\mathbf{Q}(f)$ è un estensione di Galois di $\mathbf{Q}(\sqrt{-3})$ e dimostrare che $\mathrm{Gal}(\mathbf{Q}(f)/\mathbf{Q}(\sqrt{-3}))$ è isomorfo a $\mathbf{Z}/3\mathbf{Z}\times\mathbf{Z}/3\mathbf{Z}$;
- 4. Determinare tutti i sottocampi di $\mathbf{Q}(f)$ che sono estensioni cubiche di \mathbf{Q} ;
- 5. Trovare un elemento $\alpha \in \mathbf{Q}(f)$ tale che $\mathbf{Q}(f) = \mathbf{Q}(\alpha)$.