Neoscholar - Spring 2024: Robot Dynamics and Control

Lecture 1

Quan Nguyen (quann@usc.edu)

Assistant Professor,

Department of Aerospace and Mechanical Engineering University of Southern California

Myself

- Quan Nguyen
 - https://viterbi.usc.edu/directory/faculty/Nguyen/Quan
 - Assistant Professor of AME, USC
 - Postdoctoral Associate, MIT
 - PhD, CMU

My Research

- Dynamic Robotics and Control Laboratory (https://sites.usc.edu/quann/)
- Control and Learning for Dynamic Robotics
 - Legged robots: quadruped robots, bipedal robots
 - Wheel-legged robots
 - Autonomous vehicles

Trajectory Optimization and Gait Library

Optimized Jumping of Quadruped Robots

Contact-timing and Trajectory Optimization **USC

Adaptive Force-based Control for Legged Robots

Conventional MPC

unknown 3 kg load

Adaptive MPC

unknown 5 kg load

Adaptive Force-based Control for Legged Robots

Walking on Soft Terrain with Unknown Impact Model

Conventional MPC

Adaptive MPC

Navigating Various Terrains

Grass

Rough Terrain

Gravel

Slope

Running with Different Gaits

Trotting

Unknown 5 kg load

Bounding

Unknown 3 kg load

Robust High-speed Running via DRL

Robust High-speed Running via DRL

Pose Optimization for Wheel-legged Robots

Rolling up an obstacle of **0.3m** height

Force-and-moment-based MPC for Bipedal Robots USC

Force-and-moment-based MPC for Bipedal Robots USC

Force-and-moment-based MPC for Bipedal Robots USC

Robotics

- This is a very broad field
 - Robot design
 - Control (focus of this course)
 - Path planning, behavior planning, decision making,...
 - Computer vision, sensing, localization,...
 - •
- Focus of the course:
 - Robot dynamics and control techniques
 - Application:
 - Robot manipulation: robot arms (fixed base)
 - Robot locomotion: mobile robots (UAVs/ drones, autonomous vehicles, legged robots,...) (floating base)

Course Syllabus

- Course content:
 - Robot kinematics & dynamics
 - Robotics arm
 - Mobile robots (UAVs/drones, self-driving cars, legged robots,...)
 - Robot control:
 - LQR (Linear Quadratic Regulator)
 - MPC (Model Predictive Control)
 - Force control, impedance control
 - Nonlinear control
 - •
 - Trajectory optimization

Model Predictive Control

Di Carlo, et al. "Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control." IROS 2018

Model Predictive Control

Grady, et al. "Robust Sampling Based Model Predictive Control with Sparse Objective Information." RSS 2018.

Katz, et al. "Mini cheetah: A platform for pushing the limits of dynamic quadruped control." ICRA 2019.

Loianno, et al. "Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and IMU." *RAL 2016*

Blackmore, et al. "Lossless convexification of control constraints for a class of nonlinear optimal control problems." *Systems & Control Letters* 2012.

http://larsblackmore.com/

https://www.aa.washington.edu/facultyfinder/behcet-acikmese

Course Syllabus

Textbook:

- No required textbook for this course
- Recommended resources (check the syllabus)
- Software for HW: MATLAB
 - I will not teach programming in this course. You will need to learn it by yourself.
 - We will provide detailed instructions as much as possible for you to learn it.
 - We will have a tutorial session on MATLAB to teach you basic functions.

Grading breakdown

• Weekly HWs: 35%

Midterm exam: 25%

• Final exam: 35%

• Participation: 5%

Total: 100%

Course Syllabus

- Participation (5%):
 - Regularly attending lectures
 - Actively engaging in class discussion

Teaching Style

- Will mostly use handwriting for my lectures
 - It takes me more time to write down the notes.
 - It may help you to understand and remember the lecture better. (We will have a lot of math in this course.)
 - I will upload the note after each lecture, but I encourage students to take notes during the lecture.
- From the 2^{nd} lecture onward => very few slides.

Basic concepts

- Feedback control
 - Car driving and feedback control

