

Examen Compilers 14 juni 2019

Bert De Saffel

Master in de Industriële Wetenschappen: Informatica Academiejaar 2018–2019

Gecompileerd op 18 oktober 2019

Deel I Closed Book

Question 1

1. Give the transfer functions and dataflow equations for $available\ expressions.$

Statement s	gen[s]	kill[s]
$t \leftarrow b \oplus c$		
$t \leftarrow M[b]$		
$M[a] \leftarrow b$		
$f(a_1,,a_n)$		
$t \leftarrow f(a_1,, a_n)$		

$$in[n] = out[n] =$$

2. Data flow can be pro

Question 2

The following code shows two facts about how symbol tables can be implemented. Which facts?

Question 3

- 1. Which feature(s) should a programming language offer in order to make static links useful.
- 2. Explain how static links can be implemented, not necessarily on an architecture which supports static links.

Question 4

- 1. Give the definition of a basic block.
- 2. What is the difference between a graph of basic blocks and a trace of basic blocks?

Question 5

_ToDo: iets over componenten met twee register mode

Question 6

Consider the following graph:

- 1. Mark the headers of each natural loop in this graph.
- 2. Add preheaders in this graph for eventual optimizations.

 $3.\,$ Fill in the table below, which indicates different relationships between nodes:

P indicates that x (in column) is post-dominated by y (in row).

D indicates that x dominates y.

I indicates that x is the immediate dominator of y.

df indicates that x is in the dominance frontier of y.

Some cells have been filled, as an example.

	a	b	c	d	e	f	g	h	i	j	k	1	m	n
a								P						
c		Ι												
е	D													
i					df									
j														

Question 10

Given the following grammar:

$$\begin{split} S &\to E \\ E &\to i \\ E &\to i(E) \\ E &\to E+1 \end{split}$$

- 1. Give the first and follow sets.
- 2. Give the production rules for the remaining states (3, 5 and 7) in the following SLR state table:

3. Are there shift-reduce conflicts in state 3? Explain.

Question 11

Consider the following LLVM IR code

```
void function (i32 * %0, i64 %1)
    \%2:
         \%3 = icmp eq \%1, 0
         br ... %3, label %4, label %6
    %4:
         \%5 = phi[...
         return i32 %11
    \%6:
         \%7 = phi [...]
         \%8 = phi [...]
         \%9 = \text{getelementptr } i32, i32*\%0, i3\%7
         \%10 = load i32 \%9
         \%11 = \text{add } \%10, \%8
         \%12 = \text{add } \%7, 1
         \%13 = icmp eq \%12, \%1
         br %4, %6
```

- 1. Explain in a few sentences what this code does.
- 2. Is this IR optimized? Explain.
- 3. What does the getelementptr instruction do?
- 4. In the labs, the first parameter of the getelementptr was zero, why is this not the case in this example?

Deel II Open Book

Question 1 (5pt)

The following table gives an interference graph. Cells marked x mean an non-move reated interferences between vertices. Cells marked m are move-related. Registers 1-4 are precolored, while registers A-E have to be assigned a color. Color this graph with coalescing and using 5 registers. Show only the phases used in the following format:

```
simplify A coalesce A and 1 (George) int 1A \, \# the names are in alphabetical order freeze A spill A select A
```

				4					
A	X		X	mx			X	X	X
В	X		\mathbf{m}	\mathbf{X}			\mathbf{X}	\mathbf{x}	\mathbf{m}
\mathbf{C}	m	X	\mathbf{X}	mx x	\mathbf{x}	\mathbf{X}		X	X
D	X	\mathbf{x}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{x}
\mathbf{E}		X							

Question 2 (5pt)