

H A	Planar Graph
	E F H E
	Creaph Coloring
→	The coloxing of simple graph is assignment of colox to each vertex of graph so that no two adjacent vertices are assigned the same colox.
<u>ا</u>	The chromatic no of a graph is the least no of color needed for a coloring of this graph. Chromatic no of graph -> $\chi(G)$
	Four Colox Theorem The chromatic no of a planar graph is no greater than 4 that means
	Two things are required to show that the chromatic no of graph is k: We must show that graph can be colored with k colors. This can be done by constructing such a coloring.
<u>ь</u>)	We must show that the graph cannot be colored using less than k colors.

Scanned by CamScanner

	P(K+1) = (K+1)(K+2)
	LHS 2
	1+2+3+k+(k+1)
	\Rightarrow $k(k+1) + (k+1)$
	2
	$= \frac{(k+1)\left(\frac{k}{2}+1\right)}{}$
	= (k+1)(k+2)
	2
	$= RHS$ Hence it is true $\forall n \in N$
	Hence it is true to be
	Linear Equations
	Linewo Equations
	Degree 1
	A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$
	This relation is linear b'coz the right hand side is the sum of previous term frevi of the sequence each multiplied by the to n.
Theorem:	Let c, & c2 be the real numbers. Suppose that $r^2 - q_R - c_2 = 0$ has two distinct root r, &r.
	then the sequence {an} is the sol of recurre
-	relation $a_n = G a_{n-1} + C_2 a_{n-2} + + C_k a_{n-k} + a_n d$
	relation $a_n = \zeta_1 a_{n-1} + \zeta_2 a_{n-2} + \cdots + \zeta_k a_{n-k}$ if and only if $a_n = \alpha_1 x_1^n + \alpha_2 x_2^n$ for $n = 0, 1, 2$ where $\alpha_1 \otimes \alpha_2$ are constants.
	d, of a are constants.

Scanned by CamScanner

