Decision Tree

Extra Class

Nguyen-Thuan Duong – TA

Outline

- > Introduction
- > Rule-based
- > Decision Tree
- > Classification
- > Regression
- > Question

Introduction

Introduction

Getting Started

Multi-choices	Coding	In-time	Is-passed
30/44	3/8	True	True
40/44	0/8	True	True
20/44	8/8	False	False
35/44	3/8	False	False
10/44	2/8	True	False
15/44	1/8	True	True

Introduction

* Problem

Rule-based

Rule-based

Analysis

Rule-based

Analysis

Rule-based

***** Manual Rules Building

Not

Passed

Decision Tree

Decision Tree Terminologies

Decision Tree Terminologies

Decision Tree Terminologies

***** Manual Tree Building

❖ Problem is handled

Fit data to tree

→ FALSE

→ TRUE

Fit data to tree

❖ Fit data to tree

❖ Fit data to tree

***** Fit data to tree

Note: weight of Multi-choices and Coding equal to 0.5

***** Manual Tree Building

Each rule can build a corresponding tree.

Where is the best rule for dataset to build tree?

Entropy

❖ Mean− Variance − Std Formula

mean

$$E(X) = \sum_{i=1}^{N} X_i P_X(X_i)$$

variance

$$var(X) = E\left(\left(X - E(X)\right)^{2}\right)$$
$$= \sum_{i=1}^{N} \left(X_{i} - E(X)\right)^{2} P_{X}(X_{i})$$

Standard deviation

$$\sigma = \sqrt{var(X)}$$

Example: $X = \{5, 3, 6, 7, 4\}$

$$E(X) = 5 \times \frac{1}{5} + 3 \times \frac{1}{5} + 6 \times \frac{1}{5} + 7 \times \frac{1}{5} + 4 \times \frac{1}{5}$$
$$= 5$$

$$var(X) = \frac{1}{5}[(5-5)^2 + (3-5)^2 + (6-5)^2 + (7-5)^2 + (4-5)^2]$$
$$= \frac{1}{5}(0+4+1+4+1)=2$$

$$\sigma = \sqrt{var(X)} = 1.41$$

Problem

Probability

$$P(\bigcirc) = \frac{1}{10} = 0.1$$

$$P() = \frac{9}{10} = 0.9$$

- Low probability
- High value (information)

Value is scaled with probability

Scale with log2

$$Value(x) = -log2(p(x))$$

❖ Mean of Gain

 $0.9 \times -log2(0.9) = 0.1368$

 $0.1 \times -log2(0.1) = 0.332$

Total value: 0.1368 + 0.332 = 0.4688

Entropy

Calculate Entropy

Entropy: Average of information

$$H(X) := -\sum_{x \in X} p(x) \log(p(x))$$

& Calculate Entropy

$$H(X) := -\sum_{x \in X} p(x) \log(p(x))$$

What exactly does Entropy describe?

Entropy is used to measure disorder, randomness, or uncertainty.

Classification Tree

***** Way to find the best rule

***** Measure Information

❖ Information Gain (IG)

$$IG = Entropy(parent) - \left[\frac{Average}{Weighted}\right] Entropy(children)$$

$$IG(S,F) = E(S) - \sum_{f \in F} \frac{|S_f|}{S} E(S_f)$$

Classification Tree

Classification Tree

***** Change dataset

Entropy:

 $E(S) = -\sum_{c \in C} p_c \log_2 p_c$

Information Gain

$$IG(S,F) = E(S) - \sum_{f \in F} \frac{|S_f|}{|S|} E(S_f)$$

$$S = \{9: Yes, 5: No\} \longrightarrow E(S) = -\frac{9}{14} log_2\left(\frac{9}{14}\right) - \frac{5}{14} log_2\left(\frac{5}{14}\right) = 0.94$$

Parent Entropy

Children IG

Entropy:

Information Gain

$$E(S) = -\sum_{c \in C} p_c \log_2 p_c$$

$$IG(S,F) = E(S) - \sum_{f \in F} \frac{|S_f|}{|S|} E(S_f)$$

$$S_{weak} = \{6: Yes, 2: No\} \longrightarrow E(S_{weak}) = -\frac{6}{8}log_2\left(\frac{6}{8}\right) - \frac{2}{8}log_2\left(\frac{6}{8}\right) = 0.811$$

$$S_{Strong} = \{3: Yes, 3: No\} \longrightarrow E(S_{Strong}) = -\frac{3}{6}log_2\left(\frac{3}{6}\right) - \frac{3}{6}log_2\left(\frac{3}{6}\right) = 1$$

$$Gain(S, Wind) = E(S) - \frac{8}{14}E(S_{weak}) - \frac{6}{14}E(S_{Strong})$$

$$= 0.94 - \frac{8}{14} * 0.811 - \frac{6}{14} * 1 = 0.048$$

Children IG

Entropy:

Information Gain

$$E(S) = -\sum_{c \in C} p_c \log_2 p_c$$

$$IG(S,F) = E(S) - \sum_{f \in F} \frac{|S_f|}{|S|} E(S_f)$$

$$S_{Sunny} = \{2: Yes, 3: No\} \longrightarrow E(S_{Sunny}) = 0.97$$

 $S_{Overcast,Rain} = \{7: Yes, 2: No\} \longrightarrow E(S_{Overcast,Rain}) = 0.764$
 $IG(S, Option_1)$
 $= E(S) - \frac{5}{14}E(S_{Sunny}) - \frac{9}{14}E(S_{Overcast,Rain})$
 $= 0.94 - \frac{5}{14}*0.97 - \frac{9}{14}*0.764 = 0.102$

Gain(S, Outlook) =
$$\max$$

$$\begin{cases}
IG(S, Option_1) = 0.102 \\
IG(S, Option_2) = 0.226 \\
IG(S, Option_3) = 0.003
\end{cases}$$

Children IG

Wind **Play Tennis** Outlook **Temp** Humidity Weak No Sunny Hot High High Strong No Sunny Hot Yes Hot High Weak Overcast Mild Weak Yes Rain High Yes Rain Cool Normal Weak Rain Cool Normal Strong No Cool Normal Yes Overcast Strong Mild High Weak No Sunny Weak Yes Sunny Cool Normal Mild Weak Rain Normal Yes Mild Normal Strong Yes Sunny Mild High Yes Strong Overcast Weak Yes Hot Normal Overcast Rain Mild High Strong No

Entropy:

$$E(S) = -\sum_{c \in C} p_c log_2 p_c$$

Information Gain

$$IG(S,F) = E(S) - \sum_{f \in F} \frac{|S_f|}{|S|} E(S_f)$$

Gain(S, Outlook) = 0.226

Gain(S, Temp) = 0.015

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Choose Outlook with highest Gain score for root node

Option_2 is used to split

Mild

High

Rain

No

Strong

***** Build classfication tree

& Build classfication tree

Outlook	Temp	Humidity	Wind	Label
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Rain	Mild	High	Weak	Yes
Sunny	Mild	High	Weak	No
Rain	Mild	High	Strong	No

Outlook	Temp	Humidity	Wind	Label
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes

& Build classfication tree

AI VIETNAM
All-in-One Course
(TA Session)

Regression Tree

& Getting Started

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

Experience

Salary

***** Compute mean and error

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

$$\mu = \frac{1}{|S|} \sum_{i} S_i = 55.14$$

$$mse = \frac{1}{|S|} \sum_{i} (S_i - \mu)^2$$
$$= 1417.97$$

1	U
Experience	Salary
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

$$\mu_{L} = \frac{1}{|L|} \sum_{i} L_{i} = 0$$

$$mse_{L} = \frac{1}{|L|} \sum_{i} (L_{i} - \mu)^{2} = 0$$

$$a_{mse} = \frac{|L|}{|S|} mse_{L} + \frac{|R|}{|S|} mse_{R}$$

$$= \frac{1}{14} * 0 + \frac{13}{14} * 1275.15$$

$$\mu_R = \frac{1}{|R|} \sum_i R_i = 59.38$$

$$ase_R = \frac{1}{|R|} \sum_i (R_i - \mu)^2 = 12$$

= 1184.07

$$mse_R = \frac{1}{|R|} \sum_{i} (R_i - \mu)^2 = 1275.15$$

Compute mean and error

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

Experience	Salary
1	0
1.5	0
2	0
2.5	0

$$\mu = \frac{1}{|S|} \sum_{i} S_i = 55.14$$

$$mse = \frac{1}{|S|} \sum_{i} (S_i - \mu)^2$$
$$= 1417.97$$

Experience	Salary
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

$$\mu_{L} = \frac{1}{|L|} \sum_{i} L_{i} = 0$$

$$mse_{L} = \frac{1}{|L|} \sum_{i} (L_{i} - \mu)^{2} = 0$$

$$a_{mse} = \frac{|L|}{|S|} mse_L + \frac{|R|}{|S|} mse_R$$
$$= \frac{4}{14} * 0 + \frac{10}{14} * 282.35$$
$$= 201.68$$

$$\mu_{R} = \frac{1}{|R|} \sum_{i} R_{i} = 77.2$$

$$mse_{R} = \frac{1}{|R|} \sum_{i} (R_{i} - \mu)^{2} = 282.35$$
₄₇

Plot tree

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

```
YearsExperience <= 2.75
squared_error = 1417.98
samples = 14
value = 55.143
```

```
squared_error = 0.0
samples = 4
value = 0.0
```

YearsExperience <= 5.25 squared_error = 282.36 samples = 10 value = 77.2

```
squared_error = 14.16
samples = 5
value = 61.2
```

squared_error = 38.56 samples = 5 value = 93.2

AI VIETNAM All-in-One Cours (TA Session)

Experience

1.5

2.5

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93

	2.5	0
	3	60
Getting	3.5	64
O	4	55
	4.5	61
	5	66
	5.5	83
	6	93
	6.5	91
	7	98

7.5

Salary

0 0

0

100 -	
0 -	target=0.00 n=4

1.00

Experience	Salary
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

Experience	Salary
3	60
3.5	64
4	55
4.5	61
5	66

101

7.50

5.25

YearsExperience

Experience	Salary
5.5	83
6	93
6.5	91
7	98
7.5	101

***** Visualize regression line

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

AI VIETNAM
All-in-One Course
(TA Session)

Code Implementation

Question

