TD 7 : Chaîne de Markov, récurrence et mesure stationnaire

Exercice 1:

Retour à l'exercice 5 de la feuille 6. On considère la file d'attente des requêtes à un serveur informatique : X_n représente la taille de la file d'attente à l'instant n et ξ_{n+1} le nombre de requêtes qui arrivent entre n et n+1 $((\xi_n)_{n\geqslant 1}$ suite i.i.d. de loi μ).

- 1. Soit ϕ la fonction génératrice de ξ_1 et G_n celle de X_n . Donner une relation liant G_{n+1} à G_n et ϕ .
- 2. Montrer qu'il existe une unique probabilité invariante dont on déterminera la fonction génératrice, si et seulement si, $\mathbf{E}[\xi_1] < 1$.

Exercice 2:

Soit $(X_n)_{n\geqslant 0}$ définie sur **Z** par la récurrence suivante

$$X_0 = 0, \quad X_{n+1} = X_n + Z_{n+1},$$

avec $(Z_n)_{n\geqslant 1}$ une suite *i.i.d.* de loi de Bernoulli $\mathbf{P}[Z_1=1]=p=1-\mathbf{P}[Z_1=-1]$.

- 1. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov et déterminer P son noyau de transition.
- 2. Calculer pour tout $n \ge 0$, $\mathbf{P}_0[X_n = 0]$.
- 3. Montrer que la chaîne est irréductible.
- 4. En utilisant la formule de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

montrer que $\mathbf{E}_0[N_0] = \infty$ si et seulement si $p = \frac{1}{2}$.

5. Etudier la récurrence en fonction du paramètre p.

Exercice 3:

Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur **N** de noyau de transition Q défini pour un $p\in]0,1[$ par

$$\begin{cases} Q(0,1) = 1 \\ Q(n,n+1) = p, \quad Q(n,n-1) = 1-p, \quad \forall n \geqslant 1 \end{cases}$$

- 1. Ecrire la dynamique de la chaîne de Markov. Quelle est la différence avec la dynamique de l'exercice précédent?
- 2. La chaîne est-elle irréducitble?
- 3. Montrer que la chaîne est transiente si $p > \frac{1}{2}$.
- 4. Soit $p < \frac{1}{2}$. Déterminer l'unique probabilité réversible. Qu'en déduit-on sur la récurrence de la chaîne?
- 5. Que peut-on dire dans le cas $p = \frac{1}{2}$?

Exercice 4:

Soit X une μ -P chaîne de Markov sur E dénombrable. Soit $\psi: E \to F$ une application dans F dénombrable.

- 1. On suppose ψ bijective. Montrer que si $Y_n = \psi(X_n)$ alors $(Y_n)_{n \geqslant 0}$ est une ν –Q chaîne de Markov sur F. Déterminer la loi initiale ν et la matrice de transition Q.
- 2. On suppose ψ surjective telle que pour tout $j \in F$

$$P(x, \psi^{-1}(j)) = P(y, \psi^{-1}(j))$$
 si $\psi(x) = \psi(y)$. (*)

Montrer que $Y_n = \psi(X_n)$ est une $\nu - Q$ chaîne de Markov où pour tout $i,j \in F$

$$Q(i,j) = P(x, \psi^{-1}(j))$$
 avec $x \in \psi^{-1}(i)$.

3. Dans les 2 cas précédents, montrer que si π est une probabilité stationnaire pour P alors la loi image $\pi \circ \psi^{-1}$ est une probabilité stationnaire pour Q.

Exercice 5:

Retour à l'exercice 6 de la feuille 5. On considère d balles (d > 1) numérotées de 1 à d et réparties dans deux urnes A et B. L'état initial des urnes est de X_0 balles dans l'urne A et donc de $d - X_0$ balles dans l'urne B. Un changement d'état est modélisé de la façon suivante : « on tire un numéro de balle selon la loi uniforme sur $\{1, 2, \ldots, d\}$ et à un tirage i on déplace la balle numéro i d'une urne à l'autre. »

Le nombre de balles dans l'urne A après n changement d'états est noté X_n et la chaîne de Markov $(X_n)_{n\geqslant 0}$ est appelée chaîne d'Ehrenfest.

- 1. Rappeler la matrice de transition P de la chaîne $(X_n)_{n\geqslant 0}$.
- 2. En résolvant $\pi P = \pi$ déterminer la probabilité stationnaire π .
- 3. Exprimer en fonction de π , $\lim_n P^n(x,y)$ pour tout couple d'états (x,y).
- 4. On modifie maintenant le changement d'état de la chaîne : « on tire un numéro de balle selon la loi uniforme sur $\{1, 2, \dots, d\}$ et à un tirage i on déplace la balle numéro i d'une urne à l'autre **avec probabilité** $\frac{1}{2}$ ».

Refaire l'exercice pour cette chaîne d'Ehrensfest modifiée.