Data Structure in Mathematics

Assignment 2

R-3.8 Order the following functions by asymptotic growth rate.

$$4n \log n + 2n$$
 2^{10} $2^{\log n}$ $3n + 100 \log n$ $4n$ 2^n $n^2 + 10n$ n^3 $n \log n$

Answer:

constant:
$$2^{10}$$

n: $2^{\log n} = n$
n: $3n + 100 \log n$ (3 > 1)
n: $4n$ (4 > 3)
 $n \log n$: $n \log n$
 $n \log n$: $4n \log n + 2n$
 n^2 : $n^2 + 10n$
 n^3 : n^3
 2^n : 2^n

R-3.18 Show that 2^{n+1} is $O(2^n)$.

Answer: From the power rules, $2^{n+1} = 2 \cdot 2^n$. Notice that, there is a constant C = 2 such that $2^{n+1} \le C \cdot f(n)$, where $f(n) = 2^n$. Thus, 2^{n+1} is $O(2^n)$

R-3.20 Show that n^2 is $\Omega(n \log n)$.

Answer: We know that f(n) is O(g(n)) if and only if g(n) is $\Omega(f(n))$. Therefore, if $n \log n$ is $O(n^2)$. Then, n^2 is in fact $\Omega(n \log n)$. $n \log n$ is $O(n^2)$. **R-3.24** Give a big-Oh characterization, in terms of n, of the running time of the example 2function shown in Code Fragment 3.10.

definition:

```
def example2(S):
    n = len(S)
    total = 0
    for j in range(0, n, 2):
        total += S[j]
    return total
```

Answer: To access the length of S, we need $S \ge 1$. The loop runs n/2 times which is still O(n). Each loop requires at least O(1) times. Therefore, the return takes O(1). Thus, O(1 + n + 1) is O(n).

R-3.26 Give a big-Oh characterization, in terms of n, of the running time of the example 4 function shown in Code Fragment 3.10.

definition:

```
def example4(S):
    n = len(S)
    prefix = 0
    total = 0
    for j in range(n):
        prefix += S[j]
        total += prefix
    return total
```

Answer: Initial state of O(n) is O(1). The loop is called n times. Each time, the loop uses O(1). Therefore, the total is O(n) and the return is O(1). The total is O(1 + n + 1) = O(n)