Chapter 2 Stationary Currents

2.3. Charge Conservation and Kirchhoff' Current Law

2.3.1 Charge conservation in integral formulation

Electric current = transport of charge carriers

$$I = \frac{dQ}{dt}$$
 $[I] = \frac{c}{s} = A$; $J = 6E \Rightarrow I = \int \frac{da}{dt}$; $V_{12} = \int E dt$

Generally:

- > Transport processes are described by balance equations (How much is flowing into a volumen, how much is flowing out of the volume);
- this is a fundamental procedure, when describing physical phenomena

Balance of charge in volume V:

agreement:

. Outflow of a volume
$$\int \vec{J} \cdot d\vec{a} > 0$$

. In flow into a volume
$$\int_{\partial V} \exists . d\vec{a} < 0 \quad \vec{J} \text{ is not parallel} \rightarrow \text{net inflow}$$

$$\Rightarrow \frac{dQ(v)}{dt} \Rightarrow \text{ if } Q(v) \text{ does not Change}$$

$$\frac{dQ(v)}{dt} = -\int_{\overline{J}} \cdot d\overline{a}$$

$$\frac{\partial Q(V)}{\partial t} + \int \vec{J} \cdot d\vec{a} = 0 \quad \text{Charge balance equation} \qquad (2.20)$$
if $\frac{\partial Q(V)}{\partial t} = 0$ Stationary Current C inflow = outflow)

2.3.2 Kirchhoff's Current Law

Consider N wires connected in on node:

Balance: Calculate flux integral over closed surface around volume V

Balance: Calculate flux integral over closed surface around the surface
$$\frac{1}{3}$$
 and $\frac{1}{3}$ and $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{3}$ area $\frac{1}{3}$ area $\frac{1}{3}$ and $\frac{1}{3}$ area $\frac{1}{$

2.3.3 Charge conservation in differential form

It is true, if no source is present $(\frac{dQ}{dt} \neq 0)$

2.3.3 Charge conservation in differential form (Derivation analog to Gauss's law)

$$\frac{dQ(v)}{dt} = -\int \vec{J} \cdot d\vec{a} \qquad Q(v) = \int P(\vec{\tau}, t) dv$$

$$\frac{d}{dt} \int P(\vec{\tau}, t) dv = \int \frac{\partial \vec{\tau}}{\partial t} P(\vec{\tau}, t) dv$$

$$\frac{\partial P(\vec{\tau}, t)}{\partial t} = - \text{div}\vec{J} \cdot d\vec{a}$$

$$\frac{\partial P(\vec{\tau}, t)}{\partial t} + \text{div}\vec{J} = 0 \qquad (1.23)$$