Online Structure Learning for Traffic Management

Evangelos Michelioudakis¹, Alexander Artikis^{2,1} and Georgios Paliouras¹

 $^1 \mbox{Institute}$ of Informatics and Telecommunications, NCSR "Demokritos" $^2 \mbox{Department}$ of Maritime Studies, University of Piraeus

26th International Conference on Inductive Logic Programming

September 6, 2016

Introduction

- ▶ Event recognition applications in sensor environments:
 - Mostly based on manually constructed patterns
 - Patterns may be very hard to identify manually
 - ▶ Learning relational structures in the presence of uncertainty is desirable
- lacktriangle We applied OSLlpha to learning definitions for traffic congestions
 - Real sensor data provided in the context of the SPEEDD project¹
 - Learned definitions are used for event detection

¹www.speedd-project.eu

Event Recognition

- ► Event Calculus & Axiomatization
 - ▶ Logic formalism to represent and reason about events and their effects
 - ▶ CE initiations and terminations define whether a fluent holds or not
 - Law of inertia: Fluents persist over time, unless affected by an event

Learning CE Definitions

Learnt Hypothesis H_t:

 $\begin{aligned} \mathbf{0.4} & \texttt{HoldsAt}(\texttt{congestion}(lid), t{+}1) \Leftarrow \\ & \texttt{HappensAt}(\texttt{fast_S1t20}(lid), t) \land \\ & \texttt{HappensAt}(\texttt{fast_0gt45}(lid), t) \end{aligned}$

 $\text{HoldsAt}(f, t+1) \Leftarrow \\ \text{InitiatedAt}(f, t)$

 $\begin{aligned} \texttt{HoldsAt}(f,\,t{+}1) &\Leftarrow \\ &\texttt{HoldsAt}(f,\,t) \, \wedge \\ &\neg \texttt{TerminatedAt}(f,\,t) \end{aligned}$

 $\neg \text{HoldsAt}(f, t+1) \Leftarrow$

TerminatedAt(f, t)

 $\neg HoldsAt(f, t+1) \Leftarrow \neg HoldsAt(f, t) \land$

 $\neg \mathtt{InitiatedAt}(f,\,t)$

$OSL\alpha$

Data Stream/Training Examples

Micro-Batch D_t

HappensAt(fast_Slt25(53708), 99) HappensAt(fast_Ogt55(53708), 99) HappensAt(slow_Slt15(53708), 99) HappensAt(slow_Ogt65(53708), 99)

 $\begin{array}{l} \mathtt{Next}(99,\ 100) \\ \mathtt{HoldsAt}(\mathtt{congestion}(53708),\ 100) \end{array}$

..

Dataset

- Real data collected from sensors
 - Mounted on the southern part of the Grenoble ring road
 - ▶ 19 collection points along 12km stretch on the highway
 - ► Each collection point has a sensor per lane
- ▶ Consists of one month of data ($\approx 3.3 \text{GiB}$)
- Annotated by human traffic controllers for traffic congestion
- lacktriangle Sensor data are collected every 15 seconds and contain:
 - ► Total number of vehicles passing through a lane
 - Average speed and sensor occupancy

Learning Challenges (1/3)

- ► Traffic congestion annotation is largely incomplete
 - Leading to the incorrect penalization of good rules

Learning Challenges (2/3)

Quality of information of each sensor differs

Learning Challenges (3/3)

- Generic location- and lane-agnostic rules are not sufficient
 - ► They capture the concept of traffic congestion in a few locations, and completely fail in others.

```
\begin{split} & \texttt{InitiatedAt}(\texttt{congestion}(lid),\,t) \Leftarrow \\ & \texttt{HappensAt}(\texttt{aggr}(lid,occupancy,avgspd),\,t) \land \\ & avgspd < 50 \land occupancy > 25 \end{split}
```

Experimental Setup

- Data are stored in a database
 - Micro-batches were constructed dynamically by querying the database
- ▶ Input events were produced by discretizing the numerical data
- ightharpoonup The total length of the training sequence consists of 172799 timepoints
 - We consider only SDEs in fast lanes
- ▶ 10-fold cross-validation
- ▶ Compare $OSL\alpha$ vs AdaGrad online weight learner
 - lacktriangleright OSLlpha starting from an empty hypothesis
 - AdaGrad operating on manually constructed definitions

Experimental Results

Summary & Future Work

- \blacktriangleright OSL α achieves comparable predictive accuracy to manually curated rules
- lacktriangle OSLlpha can process data batches efficiently
 - ► Faster search procedure may match AdaGrad processing time
- Low predictive accuracy of the learned model
 - lacktriangle Extend OSLlpha to handle missing supervision

Acknowledgements

Guestions?