Fall 2022 - Winter Break Update

Mason Smith

January 31, 2023

Agenda

- Introduction
- 2 Game Design Update
- 3 Training Policies
- Simulation
- **6** Ongoing Work

Updated Worlds

Figure 1: Updated World Designs

Introduction

Winter Break:

- Simulation of assuming bias policies revealed trivial effects
- Primarily a product of game design and training approach

Current Work:

- Improving game design to allow for consistent training (non-trivial)
- Training stable CPT value functions that represent biased policies
- Testing effects of assuming different biases for H in simulation

Challenges:

- Stuck in local optima due to sparse gains and frequent penalties
- Sensitive and fine balance for the following hyper-parameters that induce interesting policies to contrast:
 - Admissible bounds for risk-sensitivity
 - World design and initial conditions
 - Learning hyper-parameters

Agenda

- Introduction
- ② Game Design Update Issues with Current Game List of Updates Updated World Designs
- 3 Training Policies
- 4 Simulation
- 6 Ongoing Work

Issues with Current Game

Different worlds induced differences in bias policies either

- too strong
 - risk-averse had 0% catch rate while risk-seeking had 100% catch rate
 - When switching to incorrect assumption $\rightarrow 0\%$ catch rate
 - impossible to evaluate coordination strategies were incompatible or had same outcome
- too weak
 - both policies either had near 100% or both had 0% performance
 - solution is so obvious that CPT does not change it
 - again produced trivial result due similarity between strategies

Training Results (World 3)

Figure 2: World 3 Training Results

List of Updates

- Redesigned world initial states and penalty locations
- Reward for catching target $r(catch) = 20 \rightarrow 25$
- Single cumulative reward r_{ζ} at the end of the game
 - apply eligibility traces $(TD(\lambda))$ to account for increased sparsity
- Reward is now non-negative
 - the cumulative reward at the end of the game is $r_{\zeta} = max(r_{\zeta}, 0)$
 - new objective: maximize your reward upon catching the target
 - doing really bad and not catching the stag are now equivalent
 - eliminates trivial policy of avoiding rewards by never moving (especially relevant in averse-conditions)

Updated Worlds

Figure 3: Updated World Designs

Agenda

- Introduction
- 2 Game Design Update
- Training Policies
 Training Setup

Training Setu

Algorithm

Creating Biased Policies

Results

Discussion

- 4 Simulation
- **6** Ongoing Work

Training Setup

- Implemented a independent
 - joint-Q learning algorithm
 - \bullet directed exploration
 - eligibility traces
 - Quantal Response Equilibrium (QRE) used as the equilibrium condition
- Trained 3x policies π trained during self-play:
 - baseline/optimal (π_0)
 - risk-averse (π_A)
 - risk-seeking (π_S)
- Baseline policy π_0 was used as prior for biased policies π_A and π_S trained with cumulative prospect theory (CPT) agents
- Sophistication (level of recursion) was set to 3 in the QRE

Notation

- ego agent denoted by subscript $(\cdot)_k$ where $(\cdot)_{-k}$ represents the partner and $k, -k \in K$
- joint state $s \in S$ where $S = S_k \times S_{-k}$
- joint action $a \in A$ where $A = A_k \times A_{-k}$
 - a may be written as $a = \{a_k, a_{-k}\}$ for clarity
 - alternatively, a expressed as policies $a = \{\pi_k(s), \pi_{-k}(s)\}$
- ego stage reward r_t
- let $e_k(s, a)$ denote an eligibility trace keeping track of state visitations within an episode that decays by λ each step
- let $\mathcal{P}_{CPT} = \{b, l, \gamma^+, \gamma^-, \delta^+, \delta^-\}$ denote a CPT model
- let $\mathbb{C}[(\cdot)]$ denote the expected value of rewards given true rewards and a CPT transformation

Notation

- a policy π_k
 - always denotes choosing ego action a_k in state s
 - a_k sampled from joint state-joint action values $Q_k(s,a)$
 - requires inferring partner -k policy $\hat{\pi}_{-k}$
 - $Q_k(s,a)$ is reduced to joint state-ego action values $Q_k(s,a_k)$ by
 - conditioning on $\hat{\pi}_{-k}$
 - s.t. $Q_k(s, a_k) = \mathbb{E}[Q_k(s, a|a = \{a_k, a_{-k} = \hat{\pi}_{-k}(s)\})] \ \forall a_k \in A_k$
 - a_k is drawn from $Q_k(s, a_k)$ using a nominal Boltzmann dist. ¹
 - for brevity this reduction will be implied and we will write $Q_k(s, \{a_k, \hat{\pi}_{-k}(s)\})$ to denote the full expression $\mathbb{E}[Q_k(s, a|a = \{a_k, a_{-k} = \hat{\pi}_{-k}(s)\})] \ \forall a_k \in A_k$

¹nominal implies that rationality =1

Algorithm

IQL-QRE

```
Initialize Q_k(s, a) arbitrarily for all s, a
foreach episode do
      Initialize s and e_k(s, a) = \mathbf{0}
      foreach step of episode do
            a_k \leftarrow \text{ego action given by } \pi_k(s|\hat{\pi}_{-k}(s))
            Take action a_k, observe joint action a, rewards r_k, and next state s'
           \delta \leftarrow r_k + \gamma \max_{a'_k} Q_k(s', \{a'_k, \hat{\pi}_{-k}(s')\}) - Q_k(s, a)
           e_k(s,a) \leftarrow e_k(s,a) + 1
            foreach s \times a do
                  Q_k(s, a) \leftarrow Q_k(s, a) + \alpha \delta e_k(s, a)
                  e_k(s,a) \leftarrow \gamma \lambda e_k(s,a)
            end foreach
            s, a \leftarrow s', a'
            Until s is terminal;
       end foreach
 end foreach
```

Area Under the Indifference Curve (AUIC)

area under the indifference curve (AUIC) is an expression of preference for accepting or rejecting a gamble over actions with certain outcomes in terms of probabilities p(accept)

- AUIC is evaluated over space of feasible rewards **R** in the game
- Define binomial-choices (a_1, a_2)
 - with outcomes sampled from \mathbf{R} s.t. $\mathbf{R}_1, \mathbf{R}_2 = \mathbf{R}$
- The outcomes of each choice are then:
 - a_1 containing one certain outcome
 - with possible rewards $\mathbf{R}_1 = \{r_1 0.5 * r_\rho \ \forall \ r_1 \in \mathbf{R}_1\}$
 - a_2 containing two uncertain outcomes (with/without penalty r_{ρ})
 - with possible rewards $\mathbf{R}_2 = \{[r_2, (r_2 r_\rho)] \ \forall \ r_2 \in \mathbf{R}_2\}$
 - with probabilities $p = [(1 p_{\rho}), p_{\rho}]$ for each outcome occurring

Area Under the Indifference Curve (AUIC)

- Indifference Curve:²
 - a continuous curve through the 2D reward space $(\mathbf{R}_1 \times \mathbf{R}_2)$
 - occurs when no preference is expressed s.t. p(accept) = 1 p(accept)
- $p(accept) = p(a_2)$ then implies risk-sensitivity where
 - An optimal agent expresses no preference³ given $r_1 = r_2 \ \forall \ r_1, r_2 \in \mathbf{R}$
 - Preferences become more complex as we apply CPT $\mathbb{C}[(\cdot)]$
- AUIC⁴ will be calculated as follows:
 - Expresses the cumulative (mean) probability of p(accept) across a symmetrical space of rewards transformed by CPT
 - Centered around 0 for legibility s.t. AUIC $\in (-0.5, 0.5)$
 - AUIC = $\frac{1}{|\mathbf{R}_1 \times \mathbf{R}_2|} \sum_{r_1, r_2 \in \mathbf{R}_1, \mathbf{R}_2} p(accept | \mathbb{C}[r_1, r_2]) 0.5$

²white line in the following figures

³is indifferent when presented choices

⁴ also be described as a preference anomaly but a modified-AUIC is more consistent with the literature

Interpretting AUIC

- AUIC $< p_{\epsilon}$: the agent cumulatively prefers rejecting the gamble and is risk-averse
- AUIC > p_{ϵ} : the agent cumulatively prefers accepting the gamble and is risk-seeking
- $|AUIC| < p_{\epsilon}$: the agent agent has week cumulative preferences and is risk-insensitive
- \bullet AUIC = 0: the agent has no cumulative preferences and is optimal
- where $p_{\epsilon} = 0.1$ is a threshold defining what we consider risk-sensitive

Area Under the Indifference Curve (AUIC)

Figure 4: AUIC Samples

Creating Biased Policies

- CPT parameters \mathcal{P}_{CPT} were stochastically perturbed while training biased policies
 - \mathcal{P}_{CPT} were sampled in batches every 200 episodes
 - \mathcal{P}_{CPT} were sampled from feasible bounds found in previous studies
 - \mathcal{P}_{CPT} attributed to averse or seeking behavior based on AUIC
 - \mathcal{P}_{CPT} is continuously sampled until intended risk-sensitivity (AUIC) is met

Training Results (World 1)

Figure 5: World 1 Training Results

Training Results (World 2)

Figure 6: World 2 Training Results

Training Results (World 3)

Figure 7: World 3 Training Results

Training Results (World 4)

Figure 8: World 4 Training Results

Training Results (World 5)

Figure 9: World 5 Training Results

Training Results (World 6)

Figure 10: World 6 Training Results

Training Results (World 7)

Figure 11: World 7 Training Results

Discussion

- Policies are generally noisy due to
 - non-stationarity
 - rationality constant = 1
- Equilibrium would be less stochastic with higher rationalities
- Noise is sufficient for contrasting strategy e.i. there exists dis-coordination and vulnerability to partner uncertainty
- Baseline (optimal) π_0 policies are often similar to Risk-Seeking π_S policies since the game is designed for the agents to succeed
 - Rushing through penalties is often a good strategy
 - π_S still more susceptible to partner and target stochasticity
- *may make minor attempts to improve policies in future but this is good for now

Agenda

- 1 Introduction
- 2 Game Design Update
- 3 Training Policies
- Simulation
 Formulation
 Results
 Discussion
- 6 Ongoing Work

Simulation Setup

Goal:

- How assumptions of H's risk-sensitivity effect team performance
- Validate conflicting optimal policies based on risk-sensitivity

Experimental Conditions:

- We manipulate
 - what R assumes H's policy to be $(\hat{\pi}_H)$
 - what H's policy actually is (π_H)
- The experimental condition is then written as $\mathcal{C}_{\pi_H}^{\hat{\pi}_H}$
 - superscript is R's assumption of H policy
 - subscript is H's actual policy
 - no script denotes all possible combinations of the missing index
 - e.i. $\mathcal{C}_{\pi_A} = \mathcal{C}_{\pi_A}^{\hat{\pi}_A} \cup \mathcal{C}_{\pi_A}^{\hat{\pi}_S}$

Simulation Setup

Experimental Conditions:

- Therefore, we get four experimental conditions C:
 - $C_{\pi_A}^{\hat{\pi}_A}$: Assume-Averse + Is-Averse (Correct Assumption)
 - $\mathcal{C}_{\pi_A}^{\hat{\pi}_S}$: Assume-Seeking + Is-Averse (Incorrect Assumption)
 - $C_{\pi_S}^{\hat{\pi}_A}$: Assume-Averse + Is-Seeking (Incorrect Assumption)
 - $C_{\pi_S}^{\hat{\pi}_S}$: Assume-Seeking + Is-Seeking (Correct Assumption)
 - two baseline policies are also used $C_{\pi_0}^{\hat{\pi}_0}$ for reference

Simulation Analysis

Approach:

- We **only compare between R's assumption** and within H's actually policy
- H's actually policy directly effects game performance and invalidates some evaluation metrics
- R's policy will be $\pi_R = \pi_0$ conditioned on $\hat{\pi}_H$ using QRE
- H will assume R uses H's true policy $\hat{\pi}_R = \pi_H$
- Run simulated game 1000x for each of the 4 conditions

Simulation Results (Mean)

Figure 12: Evaluation of simulated conditions summary

Observations

Observation 1: Similar performances in baseline $\pi_H = \pi_0$ and risk-seeking $\pi_H = \pi_S$ human conditions:

- worlds designed with simple, achievable catches in mind (best strategy = rush target)
- realized trajectories ζ_t are then similar $\zeta(\pi_0)_t \approx \zeta(\pi_S)_t$
- H's perceived reward $\sum \tilde{r}(\pi_0)_t < \sum \tilde{r}(\pi_S)_t$ due to the discounted penalties
- Coordination effects diminish as we get closer to the target

Observations

Observation 2: Agent Rewards, Team Rewards, and Episode Length

- Sizable performance losses when $\mathcal{C}_{\pi_A}^{\hat{\pi}_A} \to \mathcal{C}_{\pi_A}^{\hat{\pi}_S}$
- Negligible difference when $C_{\pi_S}^{\hat{\pi}_S} \to C_{\pi_S}^{\hat{\pi}_A}$ as described by discussion in Observation 1
- Higher cumulative rewards for R is product of game design, not policy assumption

Observation 3: # of Penalty States Entered

- High number of penalty states entered by R when $C_{\pi_A}^{\hat{\pi}_S}$
- R assumes H will rush straight towards the target but H does not
- R therefore has to idle or move about in penalty states to wait for H to approach

Observations

Observation 4: Accuracy of Agent's Mental Model (MM(Partner))

- ullet Both MM's of their partner saw significant losses in all ${\mathcal C}$
- H's MM(R) more significant losses than when $C_{\pi_A}^{\hat{\pi}_A} \to C_{\pi_A}^{\hat{\pi}_S}$
- R's MM(H) was more accurate in the $C_{\pi_0}^{\hat{\pi}_0}$ than when $C_{\pi_S}^{\hat{\pi}_S}$
- Baseline π_0 had best prediction accuracy in MM
- Generally, agents found partner's actions harder to predict ⁵
- Has implications for trust degradation (process information)

 $^{^5}$ This supports Observation 1 in that effective coordination in MM's can significantly decrease with little loss in task performance by mere virtue of being closer to the target

Discussion

Summary:

- Expected effects of correct vs incorrect assumption for C_{π_A} in all categories
- Expected effects of correct vs incorrect in MM of partner actions for all $\mathcal C$
- Unexpected negligible losses in reward, episode length and p(catch) for C_{π_S}
- Unexpected similarity between $C_{\pi_0}^{\hat{\pi}_0}$, $C_{\pi_S}^{\hat{\pi}_S}$, and $C_{\pi_S}^{\hat{\pi}_A}$ policies

Implication:

- Trust as process information likely affected in all $\mathcal C$
- Trust as performance information likely affected when C_{π_A} 6
- Sufficient effect in coordination to evaluate trajectories when \mathcal{C}_{π_A}

⁶Would like to see more coordination effect when C_{π_S} but this is exceedingly challenging with a approxitaley rational target

Agenda

- 1 Introduction
- 2 Game Design Update
- Training Policies
- Simulation
- **6** Ongoing Work

Ongoing Work

Status:

- Game is functioning with all policy conditions
- Hosting multiple concurrent users available
- Data collection system is validated

Open Items:

- Need a long-term web hosting solution (security and ISP compatibility)
- Likely need to purchase a web host service if ISP reaches out
- Might be a good idea anyway since I am bootlegging a non-http port for http
- Final pretrial validation (4x participants)