Задача 14

Используя данные о школьниках, выявить степень их алкогольной зависимости. В данных, взятых с UCI 'Students' (исходная выборка изъята из UCI, но осталась в других источниках), содержится информация о 30 признаках для каждого школьника, включая социальные и гендерные, а также указана материальная обеспеченность и количество свободного времени. Выбрать на свой взгляд наиболее весомые признаки и предсказать степень употребления алкоголя по выходным или будним по шкале от 0 до 5.

Данные: https://github.com/amanchoudhary/student-alcohol-consumption-prediction)

(https://github.com/amanchoudhary/student-alcohol-consumption-prediction)

Out[42]:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc
0	GP	F	18	U	GT3	А	4	4	at_home	teacher	 4	3	4	1	1
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3

3 rows × 33 columns

Описание признаков:

feature	description
school	student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira)
sex	student's sex (binary: 'F' - female or 'M' - male)
age	student's age (numeric: from 15 to 22)
address	student's home address type (binary: 'U' - urban or 'R' - rural)
famsize	family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3)
Pstatus	parent's cohabitation status (binary: 'T' - living together or 'A' - apart)
Medu	mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education)
Fedu	father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education)
Mjob	mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')
Fjob	father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other')
reason	reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other')
guardian	student's guardian (nominal: 'mother', 'father' or 'other'
traveltime	home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour)
studytime	weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours)
failures	number of past class failures (numeric: n if 1<=n<3, else 4)

feature	description
schoolsup	extra educational support (binary: yes or no)
famsup	family educational support (binary: yes or no)
paid	extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
activities	extra-curricular activities (binary: yes or no)
nursery	attended nursery school (binary: yes or no)
higher	wants to take higher education (binary: yes or no)
internet	Internet access at home (binary: yes or no)
romantic	with a romantic relationship (binary: yes or no)
famrel	quality of family relationships (numeric: from 1 - very bad to 5 - excellent)
freetime	free time after school (numeric: from 1 - very low to 5 - very high)
goout	going out with friends (numeric: from 1 - very low to 5 - very high)
Dalc	workday alcohol consumption (numeric: from 1 - very low to 5 - very high)
Walc	weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)
health	current health status (numeric: from 1 - very bad to 5 - very good)
absences	number of school absences (numeric: from 0 to 93)

Подготовим данные: заменим категориальные признаки на бинарные (one-hot encoding), разделим входные признаки и те, которые мы должны предсказать.

Out[43]:

	GP_school	is_female	age	address_is_rural	big_family	parents_live_apart	Medu	Fedu	Mjob	Fjob	 famrel
0	1	1	18	0	1	1	4	4	at_home	teacher	 4
1	1	1	17	0	1	0	1	1	at_home	other	 5
2	1	1	15	0	0	0	1	1	at_home	other	 4

3 rows × 33 columns

Out[441:

	GP_school	is_female	age	address_is_rural	big_family	parents_live_apart	Medu	Fedu	traveltime	studytime	 x0
0	1.0	1.0	18.0	0.0	1.0	1.0	4.0	4.0	2.0	2.0	
1	1.0	1.0	17.0	0.0	1.0	0.0	1.0	1.0	1.0	2.0	
2	1.0	1.0	15.0	0.0	0.0	0.0	1.0	1.0	1.0	2.0	

3 rows × 42 columns

Теперь посмотрим, какие признаки кореллируют и уберём лишние.

```
In [40]: plt.figure(figsize=(8,8))
    sns.heatmap(data.corr())
    t = plt.title("Корреляция признаков")
```


Итак, из признаков с оценками (G1, G2, G3) оставим только G3, а Fedu и Medu усредним.

```
In [34]: M data['parents_education'] = (data['Fedu'] + data['Medu'])/2
  data.drop(['Fedu', 'Medu', 'G1', 'G2'], axis=1, inplace=True)
  data = pd.DataFrame(scale(data), columns=data.columns)
  data.head(3)
```

Out[34]:

	GP_school	is_female	age	address_is_rural	big_family	parents_live_apart	traveltime	studytime	failures	scho
0	0.730944	0.833377	1.031695	-0.660182	0.648175	2.666927	0.576718	0.083653	-0.374305	2.9
1	0.730944	0.833377	0.210137	-0.660182	0.648175	-0.374963	-0.760032	0.083653	-0.374305	-0.3
2	0.730944	0.833377	-1.432980	-0.660182	-1.542792	-0.374963	-0.760032	0.083653	-0.374305	2.9

3 rows × 37 columns

Будем рассматривать задачу регрессии (хотя фактически нас просят предсказать 5 классов, но на них есть порядок). В ответе округлим предсказания до ближайшего целого от 1 до 5.

```
In [9]: | The antiferior of the content of the
```

no round: 0.5958400507521732 rounded: 0.7092511013215859 accuracy: 0.579295154185022

Test

no round: 0.8545655788660281 rounded: 1.005128205128205 accuracy: 0.5128205128205128

Выше мы использовали все доступные признаки. Теперь попробуем установить оптимальное число признаков, пользуясь критерием Стьюдента для гипотезы о незначимости каждого из признаков. Отсортируем признаки в порядке возрастания pvalue и будем последовательно добавлять следующие по значимости.

```
accuracy results = []
            mse results round = []
            for k in range(1, features + 1):
                lr = LinearRegression(fit intercept=True)
                reduced features = sorted features[:k]
                X train reduced = X train[reduced features]
                X test reduced = X test[reduced features]
                lr.fit(X_train_reduced, y_train)
                y pred = lr.predict(X train reduced)
                y test_pred = lr.predict(X_test_reduced)
                y pred rounded = np.minimum(np.round(y pred), 5)
                y_test_pred_rounded = np.minimum(np.round(y_test_pred), 5)
                mse_results.append((mean_squared_error(y_pred, y_train),
                                   mean_squared_error(y_test_pred, y_test)))
                mse_results_round.append((mean_squared_error(y_pred_rounded, y_train),
                                   mean_squared_error(y_test_pred_rounded, y_test)))
                accuracy_results.append((accuracy_score(y_pred_rounded, y train),
                                   accuracy score(y test pred rounded, y test)))
```

Посчитаем дисперсию ошибки при взятии разных подвыборок в качестве тестовой.

```
In [13]: | indices = np.arange(data.shape[0])
             indices shuffled = []
             test size = int(np.round(0.3 * data.shape[0]))
             partitions size = 100
             mse data = np.zeros((partitions size, features))
             accuracy data = np.zeros((partitions size, features))
             mse_test_data = np.zeros((partitions_size, features))
             accuracy_test_data = np.zeros((partitions_size, features))
             for i in range(partitions size):
                 indices shuffled = np.random.permutation(indices)
                 X train = data.iloc[indices shuffled[test size:]]
                 X_test = data.iloc[indices_shuffled[:test_size]]
                 y train = y Dalc[indices shuffled[test size:]]
                 y_test = y_Dalc[indices_shuffled[:test_size]]
                 for k in range(1, features + 1):
                     lr = LinearRegression(fit intercept=True)
                     reduced features = sorted features[:k]
                     X train reduced = X train[reduced features]
                     X_test_reduced = X_test[reduced_features]
                     lr.fit(X_train_reduced, y_train)
                     y pred = lr.predict(X train reduced)
                     y_test_pred = lr.predict(X_test_reduced)
                     y pred rounded = np.minimum(np.round(y pred), 5)
                     y_test_pred_rounded = np.minimum(np.round(y_test_pred), 5)
                     mse_data[i][k-1] = mean_squared_error(y_pred_rounded, y_train)
                     accuracy data[i][k-1] = accuracy score(y pred rounded, y train)
                     mse_test_data[i][k-1] = mean_squared_error(y_test_pred_rounded, y_test)
                     accuracy test data[i][k-1] = accuracy score(y test pred rounded, y test)
```

```
In [ ]: • M
```

MSE

train: 0.043711321156705604 test: 0.0911881493949942 Accuracy

train: 0.021003891011671237 test: 0.035083109815568746

Построим график зависимости ошибки от количества признаков, указав на нём и дисперсию тоже.

```
In [15]: \mathbb{N} plt.figure(figsize=(12, 6))
             plt.plot(np.arange(1, features + 1), mse results test, label='test')
             plt.fill_between(np.arange(1, features + 1),
                              mse results_test - mse_test_std,
                              mse results test + mse test std,
                              alpha = 0.3, label='test std')
             plt.plot(np.arange(1, features + 1), mse results train, label='train')
             plt.fill between(np.arange(1, features + 1),
                              mse results train - mse std,
                              mse_results_train + mse_std,
                              alpha = 0.3, label='train std')
             plt.legend()
             plt.grid()
             plt.ylabel('MSE')
             plt.xlabel('количество признаков')
             t = plt.title('Зависимость MSE от количества признаков')
             plt.savefig('graph.jpg')
```


Таким образом, мы видим, что уже после 8 признаков ошибка на контрольной выборке начинает расти.

Accuracy менее важная для нас метрика, но убедимся, что на ней 8 признаков тоже являются одним из оптимальных выборов:

```
plt.figure(figsize=(10, 6))
In [16]:
             plt.plot(np.arange(1, features + 1), np.array(accuracy_results).T[0],
                     label='train')
             plt.plot(np.arange(1, features + 1), np.array(accuracy_results).T[1],
                     label='test')
             plt.fill between(np.arange(1, features + 1),
                              acc results train - acc std,
                              acc_results_train + acc_std,
                              alpha = 0.3, label='test_std')
             plt.fill between(np.arange(1, features +\overline{1}),
                              acc results test - acc test std,
                              acc_results_test + acc_test_std,
                              alpha = 0.3, label='train std')
             plt.legend()
             plt.grid()
             plt.ylabel('accuracy')
             plt.xlabel('количество признаков')
             t = plt.title('Зависимость ассигасу от количества признаков')
```


In []: ▶