APACHE SPARK - INTRODUZIONE

LIMITI DI MAPREDUCE

- Eccessive operazioni di I/O (spesso collo di bottiglia per l'esecuzione).
- Rigidità del flusso di esecuzione (fase map, seguita da fase shuffle and sort, seguita da fase reduce).
- Overhead iniziale ogni volta che si avvia un job MapReduce.
- Non si adatta bene a flussi di lavoro iterativi, come PageRank o algoritmi di machine learning.
- Rende necessario gestire manualmente dettagli di basso livello (ad esempio, individuare manualmente quando una chiave cambia, nei reducer).
- Operazioni che dovrebbero essere semplici, come ordinamento o join di due dataset, diventano complicate.

PUNTI DI FORZA DI MAPREDUCE

Alcune caratteristiche di MapReduce sono molto importanti, e sono alla base anche di Apache Spark.

- Scalabilità (lo stesso codice può essere eseguito su un cluster con un solo nodo o con 1000 nodi).
- Paradigma shared-nothing (evita problemi di sincronizzazione e condivisione della memoria che caratterizzano altri paradigmi).
- Fault tolerance (i dati e le computazioni intermedie sono sempre al sicuro, anche in caso di malfunzionamenti).
- Accesso semplice ai dati contenuti in un file system distribuito (HDFS).

OSSERVAZIONI

- La memoria principale dei cluster è spesso poco utilizzata:
 - in certi casi i dati da analizzare possono essere contenuti completamente (o in gran parte) nella memoria RAM dei nodi del cluster;
 - il costo della memoria diminuisce sempre più.
- Alcune delle operazioni di I/O compiute da MapReduce sono ridondanti, specialmente nel caso di algoritmi iterativi:
 - i risultati intermedi spesso non sono importanti, e salvarli su HDFS comporta uno spreco di tempo.
- Sono necessarie API di alto livello per rendere semplice realizzare le operazioni più comuni.

- Spark è un framework open source per il calcolo distribuito proposto come alternativa a MapReduce.
- Sviluppato nel 2009 presso il laboratorio di ricerca AMPLab di Berkeley, e successivamente donato alla Apache Software Foundation.
- Il suo punto di forza principale è la possibilità di effettuare elaborazioni in-memory, e di salvare i risultati intermedi in memoria (caching).
- Adatto sia per flussi di lavoro iterativi (machine learning) che interattivi (ad esempio, query SQL).
- Fornisce API di alto livello per Python, Java e Scala.
- Permette di combinare in modo semplice ed efficiente diversi carichi di lavoro (query SQL, training di algoritmi di machine learning, operazioni su grafi, stream processing).

APPLICAZIONI ITERATIVE

MapReduce

Spark

Apache Spark - Introduzione

APPLICAZIONI INTERATTIVE

MapReduce

Spark

Spark è costituito da molteplici componenti strettamente integrati, che sono specializzati per diversi carichi di lavoro, come ad esempio query SQL o algoritmi di machine learning.

Spark Core

- Contiene le funzionalità di base di Spark, inclusi i componenti per la pianificazione dei task, la gestione della memoria, il ripristino dei guasti, l'interazione con i sistemi di storage e altro ancora.
- Fornisce le API per gestire i Resilient Distributed Dataset (RDD), che costituiscono la principale astrazione di programmazione di Spark.
- Gli RDD rappresentano un insieme di elementi distribuiti su molti nodi del cluster, che possono essere manipolati in parallelo.

Spark SQL

- È il pacchetto di Spark per lavorare con dati strutturati.
- Consente di interrogare i dati tramite SQL e la variante Apache Hive di SQL, chiamata Hive Query Language (HQL).
- Offre la possibilità di combinare le query SQL con le manipolazioni dei dati supportate dagli RDD in Python, Java e Scala, il tutto in un'unica applicazione, combinando così SQL con analisi complesse.

Spark Streaming

- Consente l'elaborazione di flussi di dati in tempo reale (ad esempio file di log generati dai server Web).
- Riceve flussi di dati in tempo reale e li divide in batch, che vengono poi elaborati dal motore Spark per generare il flusso finale dei risultati.

MLlib

- Fornisce diversi tipi di algoritmi di machine learning, tra cui la classificazione, la regressione, il clustering e il filtraggio collaborativo.
- Tutti questi algoritmi sono progettati per essere scalalabili all'interno di un cluster.

GraphX

- È una libreria per la manipolazione di grafi (ad esempio, grafo delle amicizie in un social network).
- Estende le API degli RDD, offrendo vari operatori per la manipolazione di grafi in modo parallelo e una raccolta degli algoritmi più comuni sui grafi.

ESECUZIONE DI UN PROGRAMMA SPARK - 1

Spark può essere eseguito in locale o in modalità cluster.

- Le applicazioni Spark vengono eseguite come insiemi indipendenti di processi su un cluster, coordinati dall'oggetto SparkContext nel programma principale (chiamato programma driver).
- Lo SparkContext può connettersi a diversi tipi di cluster manager (YARN, Mesos o il proprio cluster manager standalone), che allocano le risorse tra le varie applicazioni.

ESECUZIONE DI UN PROGRAMMA SPARK - 2

- Una volta connesso, Spark acquisisce esecutori (executors) sui nodi del cluster, che sono processi che eseguono calcoli e memorizzano dati per l'applicazione.
- Successivamente, SparkContext invia il codice dell'applicazione agli esecutori e, infine, assegna agli esecutori i task da svolgere.

INSTALLAZIONE E SETUP

RDD - RESILIENT DISTRIBUTED DATASET

- Il concetto alla base di una elaborazione Spark è l'RDD (Resilient Distributed Dataset), una collezione distribuita di oggetti immutabili che, durante l'esecuzione, risiedono tipicamente nelle memorie principali dei nodi del cluster.
- Gli RDD possono essere manipolati mediante diversi operatori che agiscono in parallelo e sono resistenti ai fallimenti.
- La fault tolerance è garantita da un meccanismo di replicazione e, quando necessario, di ricostruzione automatica.

RDD

25

RDD - RESILIENT DISTRIBUTED DATASET

- **Resilient:** la fault tolerance degli RDD è garantita automaticamente da Spark.
- Distributed: gli RDD sono divisi in partizioni, e ciascuna partizione può risiedere su un nodo diverso.
- Dataset: gli RDD rappresentano collezioni di dati.

RDD - Partizioni

- Ogni set di dati in RDD è diviso in partizioni logiche, che possono essere calcolate su diversi nodi del cluster.
- Gli RDD possono contenere qualsiasi tipo di oggetto Python, Java o Scala, incluse classi definite dall'utente.
- Ad esempio, un semplice array può essere diviso in partizioni e utilizzato da Spark come RDD.

CICLO DI VITA DI UN RDD - CREAZIONE, TRASFORMAZIONI, AZIONI

- Si può creare un RDD partizionando (e, quindi, parallelizzando) una collezione dati esistente nel programma del driver (ad esempio una lista in Python).
- In alternativa, si può caricare un set di dati in un sistema di archiviazione esterno, ad esempio un file system condiviso o HDFS.
- Infine, un RDD può essere costruito a partire da un altro RDD, applicando una o più trasformazioni, come map o filter.
- Dopo avere applicato le trasformazioni necessarie, è possibile eseguire delle azioni sugli RDD (ad esempio salvarli su disco, o visualizzarli a schermo).

TRASFORMAZIONI E AZIONI

CREARE UN RDD - PARALLELIZE

• È possibile creare un RDD a partire da una collezione di dati (lista, set, ecc.) utilizzando il metodo parallelize dell'oggetto sc:

- collect è un'azione che restituisce una lista contenente tutti gli elementi di un RDD.
- glom è una trasformazione che raggruppa tutti gli elementi all'interno di ciascuna partizione in una lista.
- È possibile specificare il numero di partizioni da creare, quando si usa il metodo parallelize:

```
values = [1, 2, 4, 7, 8, 3, 6, 7]
rdd = sc.parallelize(values, 5)
rdd.getNumPartitions() # 5
rdd.glom().collect() # [[1], [2, 4], [7], [8, 3], [6, 7]]
```

RDD

30

CREARE UN RDD - TEXTFILE

 Il metodo textFile dell'oggetto sc legge un file di testo (o tutti i file presenti in una directory) dal file system locale o da HDFS:

```
rdd = sc.textFile('temperature_input/')
rdd.take(5)  # restituisce i primi 5 elementi dell'RDD
# ['2008-01-01,00:00:00,13.7',
# '2008-01-01,01:00:00,13.0',
# '2008-01-01,02:00:00,13.0',
# '2008-01-01,03:00:00,13.0',
# '2008-01-01,04:00:00,13.5']
```

- Nella VM Cloudera, il file system di default per Spark è HDFS, quindi la directory dell'esempio precedente viene cercata su HDFS.
 - Per indicare un percorso (assoluto) sul file system locale, si deve specificare il protocollo file://

```
rdd = sc.textFile('file:///home/cloudera/temperature_input/')
```

• Se HDFS non è stato configurato, il percorso (relativo o assoluto) viene cercato sul file system locale.

RDD

31

TRASFORMAZIONI

LAZY EVALUATION

- Le trasformazioni non vengono eseguite immediatamente. Al contrario, la loro esecuzione è posticipata fino a quando non viene effettuata un'azione (lazy evaluation).
- Spark tiene traccia della sequenza di trasformazioni da applicare all'RDD iniziale (lineage, o discendenza), compreso da dove leggere i dati.
- Nell'esempio illustrato in figura, le operazioni textFile e filter non sono eseguite immediatamente, ma solo dopo che viene richiesta l'azione count.

 Dato un RDD e una funzione func, crea un nuovo RDD costituito solo dagli elementi per i quali func restituisce true.

```
def is_even(x):
    return x % 2 == 0

rdd1 = sc.parallelize([1, 2, 3, 4, 5])
rdd2 = rdd1.filter(is_even)

rdd1.collect() # [1, 2, 3, 4, 5]
rdd2.collect() # [2, 4]
```

• Quando la funzione è molto semplice, è possibile utilizzare la sintassi più concisa delle Lambda (funzioni usa e getta):

```
rdd2 = rdd1.filter(lambda x: x % 2 == 0)
```


 Dato un RDD e una funzione func, restituisce un nuovo RDD ottenuto applicando func ad ogni elemento dell'RDD originale.

```
rdd1 = sc.parallelize([1, 2, 3, 4, 5])
rdd2 = rdd1.map(lambda x: x * 2)
rdd1.collect()  # [1, 2, 3, 4, 5]
rdd2.collect()  # [2, 4, 6, 8, 10]
```

• A differenza dei mapper in MapReduce, il metodo map restituisce un RDD che ha **sempre** lo stesso numero di elementi dell'RDD originale (come la funzione map della programmazione funzionale).

• Come map, ma appiattisce il risultato finale.

```
words = sc.parallelize(['uno due', 'tre quattro', 'cinque sei sette otto'])
words.map(lambda x: x.split()).collect()
# [['uno', 'due'], ['tre', 'quattro'], ['cinque', 'sei', 'sette', 'otto']]
words.flatMap(lambda x: x.split()).collect()
# ['uno', 'due', 'tre', 'quattro', 'cinque', 'sei', 'sette', 'otto']
```

 Può essere utilizzata per restituire un numero di elementi diverso rispetto all'RDD di partenza e, quindi, generalizza sia map che filter.

PARSING DELLE TEMPERATURE - MAP + FILTER

```
def map_temp(line):
    date, time, temp = line.split(',')
    vear. month. day = date.split('-')
    return int(year), float(temp)
def filter_temp(key_value):
    year, temp = key_value
    return temp <= 50.0
rdd1 = sc.textFile('temperature_input/')
rdd2 = rdd1.map(map_temp).filter(filter_temp)
rdd2.take(5)
# \( \( (2008, 13.7), (2008, 13.0), (2008, 13.0), (2008, 13.0), (2008, 13.5) \)
```

PARSING DELLE TEMPERATURE - FLATMAP

```
def flatmap_temp(line):
    date, time, temp = line.split(',')
    vear. month. day = date.split('-')
    result = \prod
    if float(temp) <= 50.0:</pre>
        value = int(year), float(temp)
        result.append(value)
    return result
rdd1 = sc.textFile('temperature_input/')
rdd2 = rdd1.flatMap(flatmap_temp)
rdd2.take(5)
# \( \( (2008, 13.7), (2008, 13.0), (2008, 13.0), (2008, 13.0), (2008, 13.5) \)
```

TRASFORMAZIONI DI TIPO INSIEMISTICO

 Gli RDD supportano le classiche operazioni tra set, come unione e intersezione:

```
r1 = sc.parallelize([1, 2, 3, 4, 5])

r2 = sc.parallelize([3, 1, 9, 2, 1, 2, 14])

r1.union(r2).collect() # [1, 2, 3, 4, 5, 3, 1, 9, 2, 1, 2, 14]

r1.subtract(r2).collect() # [1, 2, 3]

r1.subtract(r2).collect() # [4, 5]

r2.distinct().collect() # [1, 9, 2, 3, 14]
```

- union effettua l'unione (senza eliminare eventuali duplicati).
- intersection effettua l'intersezione.
- subtract effettua la sottrazione del secondo RDD dal primo.
- distinct elimina i duplicati.

TRASFORMAZIONI SU PAIR RDD

- In molti casi è comodo considerare coppie chiave-valore.
- Gli RDD costituiti da coppie di questo tipo sono chiamati Pair RDD.
- In Python, un Pair RDD è formato da tuple (chiave, valore).
- Alcune trasformazioni e azioni hanno senso solo se applicate a Pair RDD.
- A parte questo, in Python non ci sono differenze sostanziali tra i normali RDD e i Pair RDD.

```
key_values = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)])
key_values.collect() # [('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)]
```

- keys restituisce un nuovo RDD contenente solo le chiavi di un Pair RDD.
- values restituisce un nuovo RDD contenente solo i valori di un Pair RDD.

```
rdd = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)])
keys = rdd.keys()
values = rdd.values()

keys.collect()  # ['a', 'b', 'a', 'b', 'c']
values.collect()  # [7, 4, 1, 6, 3]
```

GROUPBYKEY

• Raggruppa tutti i valori con la stessa chiave e restituisce un nuovo RDD.

```
rdd = sc.textFile('temperature_input/')
parsed_temp = rdd.map(map_temp).filter(filter_temp)
grouped = parsed_temp.groupByKey()
grouped.take(3)
# [(2010, <pyspark.resultiterable.ResultIterable at 0x113db2bd0>),
# (2011, <pyspark.resultiterable.ResultIterable at 0x113dabc50>),
# (2012, <pyspark.resultiterable.ResultIterable at 0x113dab10>)]
```

• Il valore associato a ciascuna chiave è un oggetto iterabile (ad esempio in un ciclo for) che contiene tutti i valori associati a quella chiave.

TRASFORMAZIONI NARROW E WIDE

Narrow transformation

- Input and output stays in same partition
- · No data movement is needed

Wide transformation

- · Input from other partitions are required
- Data shuffling is needed before processing

• Alcune trasformazioni sono semplici (ed efficienti) da effettuare, mentre altre richiedono una fase di shuffle, che può rallentare l'intero job.

TRASFORMAZIONI NARROW E WIDE

• map, flatMap e filter sono trasformazioni di tipo narrow.

 groupByKey è una trasformazione di tipo wide.

WORKFLOW DI MAPREDUCE IN SPARK

- Possiamo emulare il workflow di MapReduce (mapper, shuffle and sort, reducer) utilizzando tre trasformazioni in sequenza:
 - il compito del mapper è svolto da una flatMap;
 - il compito della fase shuffle and sort è svolto da una groupByKey;
 - il compito del reducer è svolto da un'altra flatMap.
- In Spark esistono altre trasformazioni più specifiche che permettono di ottenere lo stesso risultato in modo più semplice ed efficiente.

TEMPERATURA MASSIMA - FLATMAP + GROUPBYKEY + FLATMAP

```
def mapper temp(line):
    date, time, temp = line.split(',')
    year, month, day = date.split('-')
    result = \Pi
    if float(temp) <= 50.0:
        value = int(year), float(temp)
        result.append(value)
    return result
def reducer_temp(key_val):
    vear, temp list = kev val
    max_temp = float('-inf')
    for temp in temp_list:
        max temp = max(temp. max temp)
    return [(year, max_temp)]
rdd = sc.textFile('temperature_input/')
result = rdd.flatMap(mapper_temp).groupByKey().flatMap(reducer_temp)
result.collect()
```

REDUCEBYKEY

- Simile all'operazione reduce della programmazione funzionale, ma applica la funzione di riduzione per ogni chiave di un Pair RDD.
- La funzione passata come argomento ha il compito di ridurre tutti gli elementi con la stessa chiave a un solo valore.

```
key_values = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)])
reduce_sum = key_values.reduceByKey(lambda x, y: x + y)
reduce_sum.collect()  # [('a', 8), ('c', 3), ('b', 10)]
reduce_max = key_values.reduceByKey(max)
reduce_max.collect()  # [('a', 7), ('c', 3), ('b', 6)]
```

Più efficiente di groupByKey (Spark può utilizzare dei combiner automaticamente).

DIFFERENZE TRA REDUCEBYKEY E GROUPBYKEY

TEMPERATURA MASSIMA - MAP + FILTER + REDUCEBYKEY

```
def parse_temperatures(line):
    date, time, temp = line.split(',')
    vear. month. day = date.split('-')
    return int(year), float(temp)
def filter_temperatures(key_value):
    vear. temp = kev value
    return temp <= 50.0
temp_rdd = sc.textFile('temperature_input/')
parsed_temp = temp_rdd.map(parse_temperatures)
filtered temp = parsed temp.filter(filter temperatures)
max_year_temp = filtered_temp.reduceByKey(max)
max year temp.collect() \# \Gamma(2010, 40.7), (2011, 35.0), \ldots
# In alternativa, espressione unica
# temp_rdd.map(parse_temperatures).filter(filter_temperatures).reduceByKey(max)
```

MAPVALUES E FLATMAPVALUES

- mapValues e flatMapValues funzionano come map e flatMap, rispettivamente, ma operano solo sui valori.
- Utili quando è necessario applicare una map (o flatMap) su un Pair RDD, ma si vogliono modificare solo i valori, lasciando invariate le chiavi.
- Più efficienti di map e flatMap, perché consentono a Spark di ottimizzare meglio la computazione (il partizionamento rimane invariato).

```
key_values = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)])
# Calcola il quadrato dei valori, senza modificare le chiavi
values_squared = key_values.mapValues(lambda x: x * x)
values_squared.collect()
# [('a', 49), ('b', 16), ('a', 1), ('b', 36), ('c', 9)]
```

CALCOLARE LA MEDIA PER OGNI CHIAVE

- Per calcolare la media dei valori associati ad ogni chiave, non basta utilizzare reduceByKey, perché siamo interessati a due cose (per ogni chiave): la somma dei valori e il numero dei valori.
- Una volta calcolati somma e numero dei valori, la media sarà semplicemente sum values / num values.

- Possiamo utilizzare groupByKey e operare in modo simile a quanto visto con MapReduce.
- groupByKey è però meno efficiente di reduceByKey.
- Combinando mapValues e reduceByKey possiamo ottenere lo stesso risultato.

CALCOLARE LA MEDIA PER OGNI CHIAVE - GROUPBYKEY

```
def calc_avg_temp(temp_list):
    sum_values = 0
    num_values = len(temp_list)

for temp in temp_list:
    sum_values += temp

    return sum_values / num_values

# Supponiamo di avere a disposizione le temperature già parsate (v. slide precedenti)
parsed_temp.take(3)  # [(2008, 13.7), (2008, 13.0), (2008, 13.0)]

avg_temp = parsed_temp.groupByKey().mapValues(calc_avg_temp)
avg_temp.collect()
```

CALCOLARE LA MEDIA PER OGNI CHIAVE - MAPVALUES + REDUCEBYKEY

1. Utilizziamo mapValues per associare un contatore (1) a ciascuna coppia chiave-valore, come nel word count.

```
Input: (pirate, 3). Output: (pirate, (3, 1))
```

- 2. Utilizziamo reduceByKey per sommare sia i valori sia i contatori.
- 3. Utilizziamo mapValues per calcolare la media come sum_values / num_values

CALCOLARE LA MEDIA PER OGNI CHIAVE - MAPVALUES + REDUCEBYKEY

```
def sum values and counters(x, v):
    value1, counter1 = x
    value2, counter2 = y
    return value1 + value2, counter1 + counter2
def calc ava(sum counter):
    values_sum, counter = sum_counter
    return values sum / counter
# Supponiamo di avere a disposizione le temperature già parsate (v. slide precedenti)
parsed temp.take(3)
                        # [(2008, 13.7), (2008, 13.0), (2008, 13.0)]
temp\_counters = parsed\_temp.mapValues(lambda x: (x, 1))
sum counters = temp counters.reduceBvKev(sum values and counters)
avq_temp = sum_counters.mapValues(calc_avq)
ava_temp.collect()
```

ORDINAMENTO IN BASE ALLA CHIAVE - SORTBYKEY

• sortByKey ordina un Pair RDD in base alla chiave.

```
rdd = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)]) rdd.sortByKey().collect() # [('a', 7), ('a', 1), ('b', 4), ('b', 6), ('c', 3)]
```

 Come parametro opzionale, è possibile specificare se l'ordinamento deve essere ascendente o discendente (ascending).

```
rdd.sortByKey(ascending=False).collect()
# [('c', 3), ('b', 4), ('b', 6), ('a', 7), ('a', 1)]
```

• È anche possibile specificare una funzione da applicare a ciascun elemento prima di effettuare i confronti (keyfunc).

```
rdd = sc.parallelize([('a', 7), ('b', 4), ('A', 1), ('B', 6), ('C', 3)])
rdd.sortByKey().collect()
# [('A', 1), ('B', 6), ('C', 3), ('a', 7), ('b', 4)]
rdd.sortByKey(keyfunc=lambda x: x.lower()).collect()
# [('a', 7), ('A', 1), ('b', 4), ('B', 6), ('C', 3)]
```

ORDINAMENTO GENERICO - SORTBY

- Ordina in base a una funzione passata come parametro.
- Più generale di sortByKey, può essere usata quando si vuole ordinare in base al valore, o quando non si ha a che fare con un Pair RDD.
- Come nel caso di sortByKey, i parametri da specificare sono keyfunc (richiesto) e ascending (opzionale).

```
rdd = sc.parallelize([('a', 7), ('b', 4), ('A', 1), ('B', 6), ('C', 3)])
rdd.sortBy(ascending=False, keyfunc=lambda key_value: key_value[1]).collect()
# [('a', 7), ('B', 6), ('b', 4), ('C', 3), ('A', 1)]
```


 Dati due Pair RDD, join restituisce un nuovo RDD contenente tutte le coppie di elementi con chiavi corrispondenti.

```
rdd1 = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)])
rdd2 = sc.parallelize([('a', 5), ('b', 9)])

result = rdd1.join(rdd2)
result.collect()
# [('a', (7, 5)), ('a', (1, 5)), ('b', (4, 9)), ('b', (6, 9))]
```

- join considera solo chiavi presenti in entrambi gli RDD.
- Altri operatori, come left0uterJoin, right0uterJoin e full0uterJoin considerano anche le chiavi presenti solo in uno dei due RDD.

LEFTOUTERJOIN, RIGHTOUTERJOIN, FULLOUTERJOIN

```
rdd1 = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)])
rdd2 = sc.parallelize([('a', 5), ('b', 9)])
# leftOuterJoin considera anche le chiavi presenti solo nel primo RDD (c)
rdd1.leftOuterJoin(rdd2).collect()
# [('a', (7, 5)), ('a', (1, 5)), ('c', (3, None)), ('b', (4, 9)), ('b', (6, 9))]
# rightOuterJoin considera anche le chiavi presenti solo nel secondo RDD (z)
rdd1.rightOuterJoin(rdd2).collect()
# [('a', (7, 5)), ('a', (1, 5)), ('b', (4, 9)), ('b', (6, 9)), ('z', (None, 4))]
# fullOuterJoin considera anche le chiavi presenti solo in uno dei due RDD (c, z)
rdd1.fullOuterJoin(rdd2).collect()
# \Gamma('a', (7, 5)),
# ('a', (1, 5)),
# ('c'. (3. None)).
# ('b', (4, 9)),
# ('b', (6, 9)),
# ('z', (None, 4))]
```

AZIONI

Azioni applicabili a tutti gli RDD

- collect() restituisce una lista contenente tutti gli elementi di un RDD.
 Da utilizzare con attenzione se l'RDD è composto da molti elementi.
- take(n) restituisce una lista contenente i primi n elementi di un RDD.
- saveAsTextFile(path) salva l'RDD su file.

Azioni applicabili a Pair RDD

 collectAsMap() è simile a collect, ma può essere applicato solo a Pair RDD in cui ogni chiave compare al massimo una volta, e restituisce un dizionario invece di una lista di tuple.

```
rdd = sc.parallelize([('a', 5), ('b', 9), ('z', 4)])
rdd.collectAsMap() # {'a': 5, 'b': 9, 'z': 4}
```

 lookup(key) restituisce una lista contenente i valori associati ad una particolare chiave in un Pair RDD.

```
rdd = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)]) rdd.lookup('a') # [7, 1]
```

Azioni

58

AZIONI DI AGGREGAZIONE - MIN, MAX, MEAN

- min() restituisce il valore minimo contenuto in un RDD.
- max() restituisce il valore massimo contenuto in un RDD.

```
rdd = sc.parallelize([5, 8, 1, 6, 14, 9, 3])
rdd.min() # 1
rdd.max() # 14
```

- mean() restituisce il valore medio contenuto in un RDD.
- min e max consentono di indicare, in modo opzionale, una funzione da applicare a ciascun elemento prima di effettuare i confronti (key).

Azioni 59

CONTARE GLI ELEMENTI - COUNT, COUNTBYVALUE E COUNTBYKEY

- count() restituisce il numero di elementi contenuti in un RDD.
- countByValue() conta le occorrenze di ogni valore presente in un RDD.

```
rdd1 = sc.parallelize(['a', 'a', 'c', 'a', 'd', 'b', 'a', 'c'])
rdd1.countByValue()  # {'a': 4, 'b': 1, 'c': 2, 'd': 1}
```

• countByKey() conta le occorrenze di ogni chiave presente in un RDD.

```
rdd2 = sc.parallelize([('a', 7), ('b', 4), ('a', 1), ('b', 6), ('c', 3)])
rdd2.countByKey()  # {'a': 2, 'b': 2, 'c': 1}
```

Azioni

AZIONI CON ORDINAMENTO - TOP E TAKEORDERED

- top(n) restituisce una lista contenente i primi n elementi di un RDD, ordinati in modo decrescente.
- takeOrdered(n) restituisce una lista contenente i primi n elementi di un RDD, ordinati in modo crescente.
- Entrambi i metodi consentono di indicare, in modo opzionale, una funzione da applicare a ciascun elemento prima di effettuare i confronti (key).

```
# Supponiamo che parsed_temp sia un Pair RDD contenente coppie chiave-valore # di tipo anno-temperatura parsed_temp.take(5)
# [(2008, 13.7), (2008, 13.0), (2008, 13.0), (2008, 13.0), (2008, 13.5)]
# Otteniamo le 5 temperature più basse parsed_temp.takeOrdered(5, key=lambda year_temp: year_temp[1])
# [(2014, -1.5), (2014, 0.0), (2014, 0.0), (2014, 0.0), (2014, 0.0)]
# Otteniamo le 5 temperature più alte parsed_temp.top(5, key=lambda year_temp: year_temp[1])
# [(2016, 41.0), (2010, 40.7), (2016, 40.0), (2016, 40.0), (2016, 40.0)]
```

Azioni 61

AGGREGATEBYKEY

- aggregateByKey è un metodo più generale, rispetto a reduceByKey.
- Per utilizzare aggregateByKey è necessario specificare tre parametri:
 - 1. un valore iniziale;
 - 2. una funzione per combinare, all'interno di ogni partizione, i valori corrispondenti a una particolare chiave;
 - 3. una funzione per combinare i risultati parziali provenienti da partizioni diverse.
- Esempio: calcolo della temperatura media, per ogni anno.
- L'obiettivo, come nel caso dell'utilizzo di mapValues + reduceByKey, è quello di ottenere delle tuple (year, (sum_values, count_values)), che consentiranno poi di calcolare facilmente le medie, anno per anno.
- In questo caso, vogliamo calcolare prima le tuple all'interno di una singola partizione, e poi combinare le tuple provenienti da partizioni diverse.

PRIMO PASSO - CALCOLARE LE TUPLE ALL'INTERNO DI UNA PARTIZIONE

- Il valore iniziale è una tupla che rappresenta la somma iniziale delle temperature e il numero di elementi considerati: (0.0, 0)
- La funzione che combina valori all'interno di ogni partizione accetterà due parametri (sum_count, other_value):
 - sum_count sarà una tupla contenente i valori correnti della somma di temperature e del numero di elementi considerati;
 - other_value sarà un nuovo valore di temperatura.
- Vogliamo sommare il nuovo valore di temperatura a quelli già considerati, e incrementare il contatore.

```
def combine_within_partition(sum_count, other_value):
    curr_sum, curr_count = sum_count
    return curr_sum + other_value, curr_count + 1
```

SECONDO PASSO - COMBINARE RISULTATI PARZIALI DI PARTIZIONI DIVERSE

- La funzione che combina risultati parziali provenienti da partizioni diverse accetterà due parametri (sum_count1, sum_count2).
- Entrambi i parametri saranno tuple del tipo (values_sum, values_count).
- Vogliamo sommare i valori tra loro e i contatori tra loro.

```
def combine_between_partitions(sum_count1, sum_count2):
    sum1, count1 = sum_count1
    sum2, count2 = sum_count2
    return sum1 + sum2, count1 + count2
```

- Alla fine otterremo ancora tuple del tipo (values_sum, values_count).
- Per calcolare la media possiamo utilizzare una mapValues per calcolare values_sum / values_count.

TEMPERATURA MEDIA - AGGREGATEBYKEY

```
def combine_within_partition(sum_count, other_value):
    curr_sum, curr_count = sum_count
    return curr sum + other value, curr count + 1
def combine between partitions(sum count1, sum count2):
    sum1, count1 = sum_count1
    sum2, count2 = sum_count2
    return sum1 + sum2, count1 + count2
def calc ava(sum count):
    values_sum, count = sum_count
    return values sum / count
# Supponiamo di avere a disposizione le temperature già parsate (v. slide precedenti)
parsed_temp.take(3) # [(2008, 13.7), (2008, 13.0), (2008, 13.0)]
initial_val = (0.0, 0)
sum_counters = parsed_temp.aggregateByKey(initial_val, combine_within_partition,
                                          combine between partitions)
avg_temp = sum_counters.mapValues(calc_ava)
ava temp.collect()
```

COMBINEBYKEY

- combineByKey è un metodo ancora più generale.
- groupByKey, reduceByKey e aggregateByKey sono implementate in funzione di combineByKey.
- La differenza principale, rispetto a aggregateByKey, è che il valore iniziale è anch'esso una funzione.
- Per utilizzare combineByKey è quindi necessario specificare tre funzioni: una per calcolare il valore iniziale, una per combinare valori all'interno di ciascuna partizione, e una per combinare risultati parziali di partizioni diverse.

PERSISTENZA, BROADCAST E CONTATORI

 Se si accede più volte allo stesso RDD, Spark ricalcola tutte le trasformazioni necessarie per ricostruirlo, a partire dalla creazione dell'RDD originario.

- Una delle funzionalità più importanti di Spark è la capacità di mantenere parte dei dati in memoria durante l'elaborazione, per evitare questo problema e migliorare le prestazioni.
- Per specificare che un RDD deve essere mantenuto in memoria si usano i metodi cache() e persist().
- Dopo aver utilizzato uno di questi metodi, la prima volta che viene eseguita un'azione su quell'RDD le sue partizioni saranno memorizzate in memoria sui nodi del cluster corrispondenti.

- La cache di Spark è fault-tolerant: se una qualsiasi partizione di un RDD viene persa, verrà automaticamente ricalcolata utilizzando le trasformazioni che l'hanno creata in origine.
- Ogni RDD può essere memorizzato utilizzando un diverso livello di archiviazione:
 - StorageLevel.MEMORY_ONLY
 - StorageLevel.DISK_ONLY
 - StorageLevel.MEMORY_AND_DISK
- Il metodo persist() consente di specificare il livello di archiviazione:

```
rdd_cached = rdd.persist(StorageLevel.DISK_ONLY)
```

• Il metodo cache() è equivalente a

```
rdd_cached = rdd.persist(StorageLevel.MEMORY_ONLY)
```

- MEMORY_ONLY: memorizza l'RDD in memoria. Se non c'è abbastanza spazio, alcune partizioni non vengono salvate in cache e sono ricalcolate al volo quando necessario.
- DISK_ONLY: memorizza l'RDD su disco.
- MEMORY_AND_DISK: memorizza l'RDD in memoria. Se non c'è abbastanza spazio, alcune partizioni vengono salvate su disco.

Туре	Memory used	CPU Time
MEMORY_ONLY	High	Low
DISK_ONLY	Low	High
MEMORY_AND_DISK	High	Medium

VARIABILI CONDIVISE

- Spark consente l'utilizzo di due tipi di variabili condivise, con precise limitazioni:
 - accumulatori
 - variabili broadcast
- Gli accumulatori consentono di mantenere uno o più contatori distribuiti, ad esempio per motivi di debug.
- Le variabili broadcast sono molto utili per rendere disponibili alcune variabili (in sola lettura) a tutti i nodi, in modo efficiente.

ACCUMULATORI

- All'interno delle funzioni utilizzate nelle trasformazioni/azioni, è possibile fare riferimento a variabili definite al di fuori (ad esempio variabili globali).
- In questo caso, però, ogni task in esecuzione sul cluster riceve una nuova copia della variabile, e gli aggiornamenti da queste copie non vengono propagati al driver.
- Ad esempio, se proviamo a contare i valori di temperatura maggiori di 30°C con una variabile globale, senza utilizzare accumulatori, ciascun worker modificherà la propria copia locale della variabile, e la copia presente sul driver avrà sempre valore 0.

TENTATIVO DI IMPLEMENTARE UN CONTATORE SENZA USARE ACCUMULATORI

```
def parse_temp(line):
   date, time, temp = line.split(',')
   year, month, day = date.split('-')
   alobal temp over30 # Necessario per modificare la variabile alobale
   if float(temp) > 30.0:
       temp_over30 += 1
   return int(year), float(temp)
temp over 30 = 0
rdd = sc.textFile('temperature_input/')
rdd parsed = rdd.map(parse temp)
print(temp_over30) # Il valore stampato sarà 0
```

ACCUMULATORI

 Per creare un accumulatore, si utilizza il metodo sc.accumulator() nel driver:

```
count = sc.accumulator(0)
```

• I worker potranno incrementare il valore dell'accumulatore utilizzando il metodo add (o l'operatore +=):

```
count += 1
```

• Infine, il driver potrà visualizzare il valore dell'accumulatore:

```
print(count.value)
```

- I worker non possono visualizzare il valore dell'accumulatore, possono solo incrementarlo.
- Attenzione: visto che le trasformazioni in Spark sono lazy, è necessario eseguire un'azione per ottenere il valore corretto.

CONTATORE DELLE TEMPERATURE MAGGIORI DI UNA SOGLIA - ACCUMULATORI

```
def parse_temp(line):
   date, time, temp = line.split(',')
   vear. month. day = date.split('-')
   alobal temp_over30  # Necessario per modificare la variabile globale
   if float(temp) > 30.0:
       temp_over30 += 1
   return int(vear), float(temp)
temp_over30 = sc.accumulator(0)
rdd = sc.textFile('temperature input/')
rdd_parsed = rdd.map(parse_temp)
print(temp_over30)
                             # Il valore stampato sarà 0
rdd_parsed.count()
                             # Eseguiamo un'azione qualsiasi sull'RDD
print(temp_over30)
                             # Il valore stampato sarà 1017
```

VARIABILI BROADCAST

- Le variabili broadcast consentono di inviare una variabile (in sola lettura) a tutti i worker, in modo efficiente.
- Sono utili se l'applicazione ha bisogno di inviare, ad esempio, grosse tabelle di lookup o vettori di feature in un algoritmo di machine learning.
- L'invio dei dati avviene in modo efficiente, con un meccanismo simile a quello di BitTorrent.

```
stopwords_list = load_stopwords()
stopwords = sc.broadcast(stopwords_list)
```

• I worker possono accedere al contenuto di una variabile condivisa attraverso la proprietà value:

```
stopwords.value
```

WORD COUNT CON VARIABILE BROADCAST - 1

```
import re
def load_stopwords():
    with open('stopwords-it.txt') as stopwords_file:
        stopwords = {word.strip() for word in stopwords_file}
    return stopwords
def split_words(line):
    line = line.lower()
    words = re.split('\W+', line)
    return words
def add counter(word):
    word = word.lower()
    return word, 1
def filter_words(word):
    if word == '' or word.isdigit() or word in stopwords.value:
        return False
    return True
```

WORD COUNT CON VARIABILE BROADCAST - 2

← Continua

```
stopwords = sc.broadcast(load_stopwords())
rdd = sc.textFile('wikipedia_input/')
words = rdd.flatMap(split_words).filter(filter_words).map(add_counter)
word_count = words.reduceByKey(lambda x, y: x + y)
top_words = word_count.top(100, key=lambda x: x[1])
print(top_words)
```

LETTURA FILE CSV/JSON

- In Spark 1.6, per leggere un file CSV era necessario caricarlo in un RDD come un file di testo qualunque, splittare i campi (ad esempio usando la virgola come separatore) e modificarli come necessario (ad esempio convertendo alcuni campi da stringa a intero o float).
- Nel caso in cui fosse presente un header con i nomi delle colonne, nella prima riga del file, era necessario rimuoverlo prima di svolgere le altre operazioni.
- Da Spark 2 in poi, è possibile leggere file in formati standard (come CSV e JSON) in modo molto più semplice, utilizzando spark.read.
- Supponiamo di voler leggere un file CSV di noleggio biciclette, contenente informazioni sulla data e sul numero di utenti registrati, non registrati e totali che hanno noleggiato una bicicletta quel giorno:

```
date,casual,registered,total_users
2011-01-01,331,654,985
2011-01-02,131,670,801
2011-01-03,120,1229,1349
```

LETTURA FILE CSV CON SC.TEXTFILE()

```
def remove header(line):
   if line[0].isdigit():
       return True
    else:
        return False
def parse sharina(line):
    date, casual, registered, total users = line.split('.')
    casual = int(casual)
    registered = int(registered)
    total users = int(total users)
    return {'date': date, 'casual': casual, 'registered': registered,
            'total users': total users}
# Lettura dei dati da file e parsina
sharina = sc.textFile('sharina.csv')
sharing = sharing.filter(remove_header).map(parse_sharing)
sharina.take(2)
# [{'casual': 331, 'date': '2011-01', 'registered': 654, 'total_users': 985},
# {'casual': 131, 'date': '2011-01-02', 'registered': 670, 'total_users': 801}]
```

SPARK 2 - LETTURA FILE CSV/JSON

- Il metodo spark.read.csv(file_path) consente di leggere file di tipo CSV.
- È possibile specificare moltissime opzioni tramite parametri opzionali (fare riferimento all'help per maggiori informazioni). Tra le più importanti:
 - header (valore booleano) consente di specificare se la prima riga contiene un header con i nomi dei campi;
 - inferSchema (valore booleano) consente di specificare se Spark deve provare a inferire automaticamente il tipo di ciascun campo: utilizzare questa opzione rende l'operazione di lettura più lenta, ma è comodo se la struttura dell'RDD non è troppo complessa.
 - sep (stringa) consente di specificare il separatore (il carattere virgola, di default).
- Il metodo csv restituisce un DataFrame (struttura dati utilizzata in Spark SQL, come vedremo). I DataFrame possiedono una proprietà (chiamata rdd) che restituisce l'RDD corrispondente.

LETTURA FILE CSV CON SPARK.READ.CSV()

 Per leggere il dataset dell'esempio precedente è sufficiente una sola riga di codice:

- L'RDD ottenuto è costituito da oggetti di tipo Row, che sono read-only.
- È possibile accedere alle proprietà di questi oggetti utilizzando la notazione del punto (obj_name.property) o la notazione delle parentesi quadre (obj_name['property']).
- Ad esempio, se si vuole ottenere un Pair RDD che contiene come chiave la data e come valore il numero totale di utenti:

```
date_users = sharing.map(lambda row: (row.date, row.total_users))
date_users.take(2)
# [(datetime.datetime(2011, 1, 1, 0, 0), 985),
# (datetime.datetime(2011, 1, 2, 0, 0), 801)]
```