

Methods of Artificial Intelligence: Lecture

9. Session: Vagueness and Uncertainty II (FINAL PART)

Kai-Uwe Kühnberger, Nohayr Muhammad Winter Term 2022/2023 January 20th, 2023

Overview

- Bayesian Networks
 - Bayes' Rule
 - Example
 - Constructing Bayesian Networks

Bayesian Networks

Bayes' Rule & Example

Bayes' Rule

Product rule
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

- Example: Sore throat → flu
 - Known facts
 - $P(sore\ throat) = 0.3$
 - P(flu) = 0.4
 - *P*(*sore throat* | *flu*) = 0.6

$$P(flu | sorethroat) = \frac{P(sorethroat | flu)P(flu)}{P(sorethroat)}$$

With P = 0.8 we can infer that someone has the flu if she reports a sore throat

Towards Bayesian Networks

Idea: A single cause directly influences several effects and all effects are conditionally independent given the cause.

This is an example of a naive Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i\mathbf{P}(Effect_i|Cause)$$

Total number of parameters is linear in n

Towards Bayesian Networks

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

Bayesian Networks

- Bayesian network implicitly specifies a joint probability distribution
 P(X₁, X₂, ..., X_n) over random variables
- Explicitly, we only have to define n conditional probability distributions P(X_i | Parents(X_i)) for i=1,...,n
- Parents(X_i) denotes a subset of {X₁, X₂, ..., X_n} called the set of parents of X_i

Parents(
$$I$$
)= {}

$$Parents(PK) = \{\}$$

$$Parents(S) = \{I\}$$

$$Parents(G) = \{S, PK\}$$

Bayesian Networks Example

Grade	(S=little, PK=no)	(S=little, PK=yes)	
1.0	0.01	0.02	
1.3	0.02	0.04	
	•••		

Bayesian Networks Definition

- Formally, a Bayesian network is a pair $(P(X_1, ..., X_n), G)$, where
 - \blacksquare P(X₁, ..., X_n) is a joint distribution over random variables X₁, ..., X_n
 - G is a directed, acyclic graph (DAG) over $X_1, ..., X_n$ (BN Structure)
 - P factorizes according to G, that is,

$$P(X_1, ..., X_n) = P(X_1 | Parents(X_1)) * ... * P(X_n | Parents(X_n)),$$

where Parents(X_i) is the set of parents of X_i in G

 Important: a Bayesian network is not just a DAG, but also consists of a probabilistic model

Bayesian Networks Factorization

P(I, PK, S, G) = P(I) * P(PK) * P(S | I) * P(G | S, PK)

Exercise

Assume we are given a Bayesian network (P, G) and the BN structure G looks as follows:

Write down the factorization of P.

Solution

P(A,B,C,D,E) = P(A) * P(B) * P(C | A) * P(D | B) * P(E | C, D)

Bayesian Networks

Constructing a Bayesian Network

Scenario:

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Properties

CPT: Conditional Probability Table

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1+1+4+2+2=10 numbers (vs. 2⁵ numbers)

Global Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$

Constructing Bayesian Networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i=1 to n add X_i to the network select parents from X_1,\ldots,X_{i-1} such that $\mathbf{P}(X_i|Parents(X_i))=\mathbf{P}(X_i|X_1,\ldots,X_{i-1})$

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)}$$
$$= \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$$

$$P(J|M) = P(J)$$
?

$$P(J|M) = P(J)$$
? No
$$P(A|J,M) = P(A|J)$$
? $P(A|J,M) = P(A)$?

$$\begin{array}{l} P(J|M) = P(J)? \quad \mbox{No} \\ P(A|J,M) = P(A|J)? \ P(A|J,M) = P(A)? \quad \mbox{No} \\ P(B|A,J,M) = P(B|A)? \\ P(B|A,J,M) = P(B)? \end{array}$$

$$P(J|M) = P(J)$$
? No $P(A|J,M) = P(A)$? No $P(B|A,J,M) = P(B|A)$? Yes $P(B|A,J,M) = P(B)$? No $P(E|B,A,J,M) = P(E|A)$? No $P(E|B,A,J,M) = P(E|A)$? $P(E|B,A,J,M) = P(E|A)$?

$$P(J|M) = P(J)$$
? No $P(A|J,M) = P(A|J)$? $P(A|J,M) = P(A)$? No $P(B|A,J,M) = P(B|A)$? Yes $P(B|A,J,M) = P(B)$? No $P(E|B,A,J,M) = P(E|A)$? No $P(E|B,A,J,M) = P(E|A)$? No $P(E|B,A,J,M) = P(E|A,B)$? Yes

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1+2+4+2+4=13 numbers needed

Further Readings

Most topics can be found in:

S. Russell, P. Norvig.

Artificial Intelligence - A modern approach.

Pearson Education, 2010, 3rd Edition.

Sections 13.1: Introduction to acting under uncertainty

Sections 13.2–3: Basic probability and probabilistic logic notions

Sections 14.7.3: Fuzzy sets and fuzzy logics

T.J. Ross.

Fuzzy logic with engineering applications.

John Wiley & Sons. 2009.

D. Koller, N. Friedman.

Probabilistic graphicals models: principles and techniques.

MIT Press. 2009.

