First-Order logic (FO)

First-Order logic (FO)

First-Order logic (FO)

Vocabulary

Relational symbols:

Variables:

Quantifiers:

Boolean connectives:

$$\Sigma = \{R, S, T, ...\}$$

(aka <u>signature</u>)

 $x, y, ..., x_1, x_2, ...$

∃, ∀

 $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$

Vocabulary Re

Relational symbols:

 $\Sigma = \{R, S, T, ...\}$

(aka <u>signature</u>)

Variables:

 $x, y, ..., x_1, x_2, ...$

Quantifiers:

∃, ∀

Boolean connectives:

 $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$

Syntax

 $\varphi: \ R(x_1, ..., x_k) \ | \ ... \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \neg \varphi \ | \ \varphi \to \varphi \ | \ \varphi \leftrightarrow \varphi$

 $\exists x \, \varphi \mid \forall x \, \varphi \mid \dots$

Vocabulary

Relational symbols:

 $\Sigma = \{R, S, T, ...\}$

(aka <u>signature</u>)

Variables:

 $x, y, ..., x_1, x_2, ...$

Quantifiers:

 $\exists \forall$

Boolean connectives:

 \vee , \wedge , \neg , \rightarrow , \leftrightarrow

Syntax

 $\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \Rightarrow \phi \mid \phi \leftrightarrow \phi$

 $\exists x \, \varphi \mid \forall x \, \varphi \mid \dots$

Semantics

Now a model consists of a <u>universe</u> **U**JM

+ some <u>mappings</u> $R \mapsto R^M \subseteq U^M \times ... \times U^M$

 $x \mapsto x^{M} \in U^{M}$

Vocabulary

Relational symbols:

 $\Sigma = \{R, S, T, ...\}$ (aka <u>signature</u>)

Variables:

X, y, ..., X₁, X₂, ...

Quantifiers:

 \exists , \forall

Boolean connectives:

 $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$

Syntax

$$\varphi: R(x_1,...,x_k) \mid ... \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \neg \varphi \mid \varphi \Rightarrow \varphi \mid \varphi \leftrightarrow \varphi$$

$$\exists x \varphi \mid \forall x \varphi \mid ...$$

Semantics

Now a model consists of a universe

+ some mappings
$$R \mapsto R^M \subseteq U^M \times ... \times U^M$$

 $x \mapsto x^M \in U^M$

$$M \models \varphi_1 \lor \varphi_2$$
 iff $M \models \varphi_1$ or $M \models \varphi_2$

$$M \models R(x_1,...,x_k)$$
 iff $(x_1^M,...,x_k^M) \in R^M$

$$M \models \exists x \, \varphi$$
 iff $M[x:=u] \models \varphi$ for some $u \in U^M$

$$M \models \forall x \, \varphi$$
 iff $M[x:=u] \models \varphi$ for every $u \in U^M$

Syntax
$$\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \to \phi \mid \phi \leftrightarrow \phi$$
 $\exists x \phi \mid \forall x \phi \mid ...$

"All humans are mortal. Socrates is human. So Socrates is mortal."

$$\phi(y) = ((\forall x A(x) \rightarrow B(x)) & A(y)) \rightarrow B(y)$$

Syntax
$$\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \Rightarrow \phi \mid \phi \leftrightarrow \phi$$
 $\exists x \phi \mid \forall x \phi \mid ...$

"All humans are mortal. Socrates is human. So Socrates is mortal."

$$\phi(y) = ((\forall x A(x) \rightarrow B(x)) & A(y)) \rightarrow B(y)$$

Syntax
$$\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \Rightarrow \phi \mid \phi \leftrightarrow \phi$$
 $\exists x \phi \mid \forall x \phi \mid ...$

"There is a node in the graph that is isolated from all other nodes."

$$\phi = \exists x \forall y \neg (x=y) \rightarrow \neg E(x,y)$$

Syntax
$$\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \to \phi \mid \phi \leftrightarrow \phi$$
 $\exists x \phi \mid \forall x \phi \mid ...$

"There is a node in the graph that is isolated from all other nodes."

$$\phi = \exists x \forall y \neg (x=y) \rightarrow \neg E(x,y)$$

$$M: U^{M} = \{ \text{nodes of a graph} \}$$

 $E^{M} = \{ \text{edges of a graph} \}$

Syntax $\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \to \phi \mid \phi \leftrightarrow \phi$ $\exists x \phi \mid \forall x \phi \mid ...$

Syntax
$$\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \Rightarrow \phi \mid \phi \leftrightarrow \phi$$
 $\exists x \phi \mid \forall x \phi \mid ...$

"There's a man such that when he runs, everybody runs."

$$\phi = \exists x \ R(x) \Rightarrow \forall y \ R(y)$$

Syntax
$$\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \to \phi \mid \phi \leftrightarrow \phi$$
 $\exists x \phi \mid \forall x \phi \mid ...$

"There's a man such that when he runs, everybody runs."

$$\phi = \exists x \ \mathbf{R}(x) \Rightarrow \forall y \ \mathbf{R}(y)$$

$$M: U^{M} = \{Ben, Han, Leia, Luke\}$$

 $R^{M} = \{Ben, Han\}$

Syntax
$$\phi: R(x_1,...,x_k) \mid ... \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \phi \to \phi \mid \phi \leftrightarrow \phi$$
 $\exists x \phi \mid \forall x \phi \mid ...$

"There's a man such that when he runs, everybody runs."

$$\phi = \exists x \ R(x) \Rightarrow \forall y \ R(y)$$

$$M: \quad U^M = \{Ben, Han, Leia, Luke\} \\ R^M = \{Ben, Han\} \qquad \qquad R^M' = \{Ben, Han, Leia, Luke\} \\ R^M' = \{Ben, Han, Leia, Luke\}$$

• "R is a function"

$$\phi = \forall x \exists y \ R(x,y) \land \forall z \ R(x,z) \Rightarrow y=z$$

in this case, one can use the shorthand

"
$$R(x)=...$$
" for $\exists y R(x,y) \land \forall z R(x,z) \rightarrow z=...$

• "R is a function"

$$\phi = \forall x \exists y \ R(x,y) \land \forall z \ R(x,z) \rightarrow y=z$$

in this case, one can use the shorthand

"
$$R(x)=...$$
" for $\exists y R(x,y) \land \forall z R(x,z) \rightarrow z=...$

• "+ is commutative"

$$\varphi = \forall x \ \forall y \ x + y = y + x$$

note: + is a ternary relational symbol, so "x+y=z" is shorthand for "+(x,y,z)"

• "R is a function"

$$\phi = \forall x \exists y \ R(x,y) \land \forall z \ R(x,z) \rightarrow y=z$$

in this case, one can use the shorthand

"
$$R(x)=...$$
" for $\exists y R(x,y) \land \forall z R(x,z) \rightarrow z=...$

• "+ is commutative"

$$\phi = \forall x \ \forall y \ x+y = y+x$$

note: + is a ternary relational symbol, so "x+y=z" is shorthand for "+(x,y,z)"

• "+ admits zero and inverses"

$$\varphi = \exists x_0 \ \forall y \ x_0 + y = y \land \ \forall y \ \exists z \ y + z = x_0$$

• "f is continuous"

$$\phi = \forall x \forall \epsilon \exists \delta \forall y ||x-y|| < \delta \Rightarrow ||f(x) - f(y)|| < \epsilon$$

• "f is uniformly continuous"

$$\phi = \forall \varepsilon \exists \delta \forall x \forall y ||x-y|| < \delta \Rightarrow ||f(x) - f(y)|| < \varepsilon$$

• "f is continuous"

$$\phi = \forall x \forall \epsilon \exists \delta \forall y ||x-y|| < \delta \Rightarrow ||f(x) - f(y)|| < \epsilon$$

• "f is uniformly continuous"

$$\phi = \forall \varepsilon \exists \delta \forall x \forall y ||x-y|| < \delta \Rightarrow ||f(x) - f(y)|| < \varepsilon$$

What is an appropriate signature for the above formulas?

$$\phi = \forall x \ \forall \epsilon \ \exists \delta \ \forall y \ ||x-y|| < \delta \Rightarrow ||f(x) - f(y)|| < \epsilon$$

• "f is uniformly continuous"

$$\varphi = \forall \varepsilon \exists \delta \forall x \forall y ||x-y|| < \delta \rightarrow ||f(x) - f(y)|| < \varepsilon$$

What is an appropriate signature for the above formulas?

Are the formulas equivalent? Is one a consequence of another? Can you prove it?

(hint: $\exists x \ \forall y \ \alpha \rightarrow \forall y \ \exists x \ \alpha$ assuming universe is non-empty)

Choose appropriate universes and signatures, and define these properties in FO:

$$\varphi = \dots$$

$$\phi(x,y,z) = \dots$$

(for fixed
$$p$$
)

$$\varphi_p(x,y) = \dots$$

$$\phi = \dots$$

5. "In the infinite sequence of a's and b's, every a is followed by b"

$$\varphi = \dots$$

Normal forms

as for QBF, i.e.
$$\phi = Qx_1 \dots Qx_n \ \alpha(x_1,\dots,x_n)$$

$$\varphi: \exists x \varphi \mid \forall x \varphi \mid \varphi \lor \varphi \mid \alpha$$

$$\alpha: R(x_1,...,x_k) | \neg R(x_1,...,x_k)$$

Normal forms

as for QBF, i.e.
$$\phi = Qx_1 \dots Qx_n \ \alpha(x_1,...,x_n)$$

$$\phi: \exists x \phi \mid \forall x \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \alpha$$

$$\alpha: R(x_1,...,x_k) \mid \neg R(x_1,...,x_k)$$

Lemma

Given ϕ (\leftrightarrow -free), one can compute in polynomial time an *equivalent* formula ϕ^* in NNF

Proof

As for propositional logic, push negations inside:

$$\neg \forall \varphi \implies \exists \neg \varphi$$

$$\neg \exists \varphi \implies \forall \neg \varphi$$

$$\neg (\varphi_1 \land \varphi_2) \implies \neg \varphi_1 \lor \neg \varphi_2$$

$$\neg (\varphi_1 \lor \varphi_2) \implies \neg \varphi_1 \land \neg \varphi_2$$

Algorithms

Model-checking problem

input: formula ϕ + *finite* model M

output: yes iff $M \models \phi$

Satisfiability problem

input: formula φ

output: yes iff $M \models \phi$ for some M

(recall: ϕ <u>valid</u> iff $\neg \phi$ is not satisfiable

 ϕ , ϕ ' equivalent iff $\phi \leftrightarrow \phi$ ' is valid)

Algorithms

Model-checking problem

input: formula ϕ + finite model M

output: yes iff $M \models \phi$

UNDECIDABLE

Satisfiability problem

input: formula \phi

output: yes iff $M \models \phi$ for some M

(recall: ϕ valid iff $\neg \phi$ is not satisfiable

 ϕ , ϕ ' equivalent iff $\phi \leftrightarrow \phi$ ' is valid)

Algorithms — model-checking

```
Model-check(\phi, M)
   if \varphi = R(x_1,...,x_k) then
        if (x_1^M,...,x_k^M) \in \mathbb{R}^M then
            return true
        else
            return false
    else if \varphi = \varphi_1 \vee \varphi_2 then
        return Model-check(\phi_1, M) OR
                 Model-check(φ<sub>2</sub>, M)
    else if ...
    else if \varphi = \exists x \varphi' then
        for u \in U^{M} do
            if Model-check(\varphi', M[x:=u]) then
                return true
        return false
    else if \varphi = \forall x \varphi' then
        for u \in U^{M} do
            if NOT Model-check(φ', M[x:=u]) then
                return false
        return true
```

Algorithms — satisfiability

Theorem [Trakhtenbrot '50] Satisfiability of FO is undecidable

Algorithms — satisfiability

Theorem [Trakhtenbrot '50]

Satisfiability of FO is undecidable

Proof by reduction from Domino (aka Tiling) problem...

Algorithms — satisfiability

Theorem [Trakhtenbrot '50]

Satisfiability of FO is undecidable

Proof by <u>reduction</u> from Domino (aka Tiling) problem...

Reduction from P to P':

Algorithm A that solves P by using an oracle that returns solutions to P'

(think of "P easier than P")

e.g. many-one reduction: for all x P(x) iff P'(A(x))

Domino _____

Input: 4-sided dominos:

Domino -

Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

•

. .

Domino

Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

•

Rules: sides must match, you can't rotate the dominos, but you can 'clone' them.

Domino - Why is it undecidable?

It can encode *halting* computations of Turing machines:

Domino - Why is it undecidable?

It can encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

Domino - Why is it undecidable?

It can encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

The (undecidable) Domino problem

Domino - Why is it undecidable?

It can encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

(head is here, symbol is rewritten, head moves left)

The (undecidable) Domino problem

Domino - Why is it undecidable?

It can encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

(head is here, symbol is rewritten, head moves left)

(initial configuration)

The (undecidable) Domino problem

Domino - Why is it undecidable?

It can encode *halting* computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

(head is here, symbol is rewritten, head moves left)

(initial configuration)

(halting configuration)

• • •

Domino reduces to Sat-FO

(domino has a solution iff ϕ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that...

2. Assign one domino to each node:

a unary relation

Domino reduces to Sat-FO

(domino has a solution iff ϕ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that...

2. Assign one domino to each node:

a unary relation

for each domino

3. Match the sides

 $\forall x \ \forall y$

if H(x,y), then $D_a(x) \wedge D_b(y)$

for some dominos **a,b** that 'match' horizontally (Idem vertically)

1. There is a grid: H(,) and V(,) are relations representing bijections such that...

2. Assign one domino to each node:

a unary relation

3. Match the sides

$$\forall x \ \forall y$$

if
$$H(x,y)$$
, then $D_a(x) \wedge D_b(y)$

for some dominos **a,b** that 'match' horizontally (Idem vertically)

4. Borders are white.

Recap + quiz

- Model-checking for FO (does $M \models \phi$?) is **PSPACE**-complete
- Satisfiability for FO (does $M \models \phi$ for some M?) is undecidable

Recap + quiz

- Model-checking for FO (does $M \models \phi$?) is **PSPACE**-complete
- Satisfiability for FO (does $M \models \phi$ for some M?) is undecidable

What about

- Validity for FO? (Problem def.: does $M \models \phi$ for every M?)
- Equivalence for FO? (Problem def.: is it true that, for every M, $M \models \varphi$ iff $M \models \varphi$ '?)

Recap + quiz

- Model-checking for FO (does $M \models \phi$?) is **PSPACE**-complete
- Satisfiability for FO (does $M \models \phi$ for some M?) is undecidable

What about

- Validity for FO? (Problem def.: does $M \models \phi$ for every M?)
- Equivalence for FO? (Problem def.: is it true that, for every M, $M \models \phi$ iff $M \models \phi$?)

Can you recall the complexity of analogous problems for

- Propositional logic?
- <u>QBF</u>

<u>Logical theory of a model</u> $M = set of all formulas <math>\phi$ that hold on M

<u>Logical theory of a model</u> $M = set of all formulas <math>\phi$ that hold on M

 $FO[U^{M}, R^{M}, S^{M}, ...]$ denotes the FO theory of $M = (U^{M}, R^{M}, S^{M}, ...)$

<u>Logical theory of a model</u> $M = set of all formulas <math>\phi$ that hold on M

$$FO[U^{M}, R^{M}, S^{M}, ...]$$
 denotes the FO theory of $M = (U^{M}, R^{M}, S^{M}, ...)$

Example

 $FO[\mathbb{N},<] = \{ \exists x (x=x), \ \forall x \exists y \ x < y, \ \exists y \ \forall x \ \neg(x < y), \ \forall x \forall y \ x = y \lor x < y \lor y < x, \ \dots \}$

<u>Logical theory of a model</u> $M = set of all formulas <math>\phi$ that hold on M

$$FO[U^{M}, R^{M}, S^{M}, ...]$$
 denotes the FO theory of $M = (U^{M}, R^{M}, S^{M}, ...)$

Example

$$FO[\mathbb{N},<] = \{ \exists x (x=x), \ \forall x \exists y \ x < y, \ \exists y \ \forall x \ \neg(x < y), \ \forall x \forall y \ x = y \lor x < y \lor y < x, \ \dots \}$$

(notation abuse: relation = is often present, but not explicitly listed any symbol R is often identified with its relation R^{M})

$$FO[N, +, \cdot]$$
 = Peano arithmetic

$$FO[\mathbb{R}, +, \cdot]$$
 = Arithmetic theory of real numbers

$$FO[\mathbb{Z}, +]$$
 = Presburger arithmetic

$$FO[\mathbb{N}^2, \leq_1, \leq_2]$$
 = First-order theory of the unlabelled grid

$$FO[\{0,1\},=] \approx \{Valid QBFs\}$$

$$FO[V_R, E_R]$$
 = First-order theory of "random" graph

$$FO[C_M, T_M]$$
 = First-order theory of the transition graph of a Turing machine M

 $FO[N, +, \cdot]$ = Peano arithmetic

 $FO[\mathbb{R}, +, \cdot]$ = Arithmetic theory of real numbers

 $FO[\mathbb{Z}, +]$ = Presburger arithmetic

 $FO[\mathbb{N}^2, \leq_1, \leq_2]$ = First-order theory of the unlabelled grid

 $FO[\{0,1\},=] \approx \{Valid QBFs\}$

 $FO[V_R, E_R]$ = First-order theory of "random" graph

 $FO[C_M, T_M]$ = First-order theory of the transition graph of a Turing machine M

How do 1

compare them?

Reduction from P to P':

Algorithm A that solves P by using an oracle that returns solutions to P'

e.g. for all x P(x) iff P'(A(x))

Reduction from P to P':

Algorithm A that solves P by using an oracle that returns solutions to P'

e.g. for all x P(x) iff P'(A(x))

Take
$$P = FO[M] = \{ \phi \mid M \models \phi \}$$

 $P' = FO[M'] = \{ \phi' \mid M' \models \phi' \}$

for all ϕ $M \models \phi$ iff $M' \models A(\phi)$

described by a logical interpretation of M into M'

Reduction from P to P':

Algorithm A that solves P by using an oracle that returns solutions to P'

e.g. for all x P(x) iff P'(A(x))

Take
$$P = FO[M] = \{ \phi \mid M \models \phi \}$$

 $P' = FO[M'] = \{ \phi' \mid M' \models \phi' \}$

for all
$$\phi$$
 $M \models \phi$ iff $M' \models A(\phi)$

described by a logical interpretation of M into M'

FO interpretation of M into M': a mapping $\alpha: R \mapsto \alpha_R$ such that

$$M[\bar{u}] \models R(\bar{x}) \text{ iff } M'[\bar{x} := \bar{u}] \models \alpha_R(\bar{x})$$

FO interpretation of M into M': a mapping $\alpha: R \mapsto \alpha_R$ such that

$$M[\bar{u}] \models R(\bar{x})$$
 iff $M'[\bar{x} := \bar{u}] \models \alpha_R(\bar{x})$

FO interpretation of M into M': a mapping $\alpha: R \mapsto \alpha_R$ such that

$$M[\bar{u}] \models R(\bar{x}) \text{ iff } M'[\bar{x} := \bar{u}] \models \alpha_R(\bar{x})$$

Examples

• interpretation of $M = (\mathbb{N}, \leq)$ into $M' = (\mathbb{N}, +)$

$$\alpha_{\leq}(x, y) = \exists z \ y = x + z$$

FO interpretation of M into M': a mapping $\alpha : R \mapsto \alpha_R$ such that

$$M[\bar{u}] \models R(\bar{x}) \text{ iff } M'[\bar{x} := \bar{u}] \models \alpha_R(\bar{x})$$

Examples

• interpretation of $M = (\mathbb{N}, \leq)$ into $M' = (\mathbb{N}, +)$ $\alpha_{\leq}(x, y) = \exists z \ y = x + z$

• interpretation of $M=(\{0,1\}^*,\leq_{inorder})$ into $M'=(\{0,1\}^*,0,1,\cdot)$ $\approx (\mathbb{Q},\leq)$

$$\alpha_{\leq_{\text{inorder}}}(x, y) = \exists x', y', z \quad (x=z \cdot 0 \cdot x' \land y=z \cdot 1 \cdot y') \lor (x=y \cdot 0 \cdot x') \lor (y=x \cdot 1 \cdot x')$$

In fact, an FO interpretation of M into M' is more complex (and powerful)

• <u>definitions of relations</u>: $\alpha_R(\bar{x})$ such that $R^M = \{ \bar{u} \mid M'[\bar{x} := \bar{u}] \models \alpha_R(\bar{x}) \}$

(e.g. to interpret (\mathbb{N}, \leq) into $(\mathbb{N}, +)$)

In fact, an FO interpretation of M into M' is more complex (and powerful)

- <u>definitions of relations</u>: $\alpha_{\mathbb{R}}(\bar{\mathbf{X}})$ such that $\mathbb{R}^{M} = \{\bar{\mathbf{U}} \mid M'[\bar{\mathbf{X}} := \bar{\mathbf{U}}] \models \alpha_{\mathbb{R}}(\bar{\mathbf{X}})\}$ (e.g. to interpret (\mathbb{N}, \leq) into $(\mathbb{N}, +)$)
- <u>definition of universe</u>: $\alpha_U(x)$ such that $U^M = \{ u \mid M'[x:=u] \models \alpha_U(x) \}$ (e.g. to interpret (\mathbb{N}, \leq) into $(\mathbb{Z}, \leq, 0)$)

In fact, an FO interpretation of M into M' is more complex (and powerful)

- <u>definitions of relations</u>: $\alpha_{R}(\bar{X})$ such that $R^{M} = \{\bar{u} \mid M'[\bar{X} := \bar{u}] \models \alpha_{R}(\bar{X})\}$ (e.g. to interpret (\mathbb{N}, \leq) into $(\mathbb{N}, +)$)
- <u>definition of universe</u>: $\alpha_{U}(x)$ such that $U^{M} = \{ u \mid M'[x:=u] \models \alpha_{U}(x) \}$ (e.g. to interpret (\mathbb{N}, \leq) into $(\mathbb{Z}, \leq, 0)$)
- k-dimensionality: elements of U^M can be k-tuples of elements of $U^{M'}$ (e.g. to interpret $(\mathbb{C},+,\cdot)$ into $(\mathbb{R},+,\cdot)$)

In fact, an FO interpretation of M into M' is more complex (and powerful)

- <u>definitions of relations</u>: $\alpha_{\mathbb{R}}(\bar{\mathbf{X}})$ such that $\mathbb{R}^{M} = \{\bar{\mathbf{U}} \mid M'[\bar{\mathbf{X}} := \bar{\mathbf{U}}] \models \alpha_{\mathbb{R}}(\bar{\mathbf{X}})\}$ (e.g. to interpret (\mathbb{N}, \leq) into $(\mathbb{N}, +)$)
- <u>definition of universe</u>: $\alpha_{U}(x)$ such that $U^{M} = \{ u \mid M'[x:=u] \models \alpha_{U}(x) \}$ (e.g. to interpret (\mathbb{N}, \leq) into $(\mathbb{Z}, \leq, 0)$)
- k-dimensionality: elements of U^M can be k-tuples of elements of $U^{M'}$ (e.g. to interpret $(\mathbb{C},+,\cdot)$ into $(\mathbb{R},+,\cdot)$)
- <u>quotient</u>: $\alpha_{=}(\bar{x},\bar{y})$ such that $M[...] \models (\bar{x}=\bar{y})$ iff $M'[...] \models \alpha_{=}(\bar{x},\bar{y})$

(e.g. to interpret $(\mathbb{Q},+,\cdot)$ into $(\mathbb{Z},+,\cdot)$)

Given M' and an FO interpretation $\alpha = (\alpha_U, \alpha_=, \alpha_R, \alpha_S, ...)$ the interpreted model is $\alpha(M') = (U^M, R^M, S^M, ...)$ where

- $\bullet \ U^{M} = \{ \ [\bar{u}]_{\approx} \ | \ M'[\bar{x} := \bar{u}] \models \alpha_{U}(\bar{x}) \ \}$
- $\bar{\mathbf{u}} \approx \bar{\mathbf{v}}$ iff $\mathbf{M'}[\bar{\mathbf{x}} := \bar{\mathbf{u}}, \bar{\mathbf{y}} := \bar{\mathbf{v}}] \models \alpha_{=}(\bar{\mathbf{x}}, \bar{\mathbf{y}})$
- $\bullet \ R^M = \{ \ ([\bar{u}_1]_{\approx}, ..., [\bar{u}_k]_{\approx}) \ \big| \ M'[\bar{x}_1 := \bar{u}_1, ..., \bar{x}_k := \bar{u}k] \vDash \alpha_R(\bar{x}_1, ..., \bar{x}_k) \ \}$

(needs to be well-defined, namely, \approx needs to be a congruence w.r.t. every relation R)

• ..

Given M' and an FO interpretation $\alpha = (\alpha_U, \alpha_=, \alpha_R, \alpha_S, ...)$ the interpreted model is $\alpha(M') = (U^M, R^M, S^M, ...)$ where

- $\bullet \ U^{M} = \{ \ [\bar{u}]_{\approx} \ | \ M'[\bar{x} := \bar{u}] \models \alpha_{U}(\bar{x}) \}$
- $\bar{\mathbf{u}} \approx \bar{\mathbf{v}}$ iff $\mathbf{M'}[\bar{\mathbf{x}} := \bar{\mathbf{u}}, \bar{\mathbf{y}} := \bar{\mathbf{v}}] \models \alpha_{=}(\bar{\mathbf{x}}, \bar{\mathbf{y}})$
- $\mathbb{R}^{M} = \{ ([\bar{\mathbf{u}}_{1}]_{\approx}, ..., [\bar{\mathbf{u}}_{k}]_{\approx}) \mid \mathbf{M}'[\bar{\mathbf{x}}_{1} := \bar{\mathbf{u}}_{1}, ..., \bar{\mathbf{x}}_{k} := \bar{\mathbf{u}}_{k}] \models \alpha_{R}(\bar{\mathbf{x}}_{1}, ..., \bar{\mathbf{x}}_{k}) \}$

(needs to be well-defined, namely, \approx needs to be a congruence w.r.t. every relation R)

• ...

Theorem If $\alpha = (\alpha_U, \alpha_=, \alpha_R, \alpha_S, ...)$ is an FO interpretation of M into M' then FO[M] reduces to FO[M'], namely, there is an algorithm A_{α}

for all
$$\phi$$
 $M \models \phi$ iff $M' \models A_{\alpha}(\phi)$

Some fancy FO theories

$$FO[\mathbb{N}, +, \cdot]$$
 = Peano arithmetic

$$FO[\mathbb{R}, +, \cdot]$$
 = Arithmetic theory of real numbers

$$FO[\mathbb{Z}, +]$$
 = Presburger arithmetic

$$FO[\mathbb{N}^2, \leq_1, \leq_2]$$
 = First-order theory of the unlabelled grid

$$FO[\{0,1\},=] \approx \{Valid QBFs\}$$

$$FO[V_R, E_R]$$
 = First-order theory of "random" graph

$$FO[C_M, T_M]$$
 = First-order theory of the transition graph of a Turing machine M

$FO[\mathbb{N}, +, \cdot]$ — Peano arithmetic

Theorem

Peano arithmetic is undecidable (one cannot check whether $(\mathbb{N},+,\cdot) \models \phi$ for a given ϕ)

$FO[\mathbb{N}, +, \cdot]$ — Peano arithmetic

Theorem

Peano arithmetic is undecidable (one cannot check whether $(\mathbb{N},+,\cdot) \models \varphi$ for a given φ)

Proof by reduction from undecidable Hilbert's 10th problem... [Matiyasevic '70]

Hilbert's 10th

Given a polynomial p(x,y,z,...)tell whether p(x,y,z,...) = 0 for some integers x, y, z

$FO[\mathbb{N}, +, \cdot]$ — Peano arithmetic

Theorem

Peano arithmetic is undecidable (one cannot check whether $(\mathbb{N},+,\cdot) \models \varphi$ for a given φ)

Proof by reduction from undecidable Hilbert's 10th problem... [Matiyasevic '70]

Hilbert's 10th

Given a polynomial p(x,y,z,...)tell whether p(x,y,z,...) = 0 for some integers x, y, z

- 1. Given polynomial p(x,y,z,...), inductively construct $\phi_p(x,y,z,...,t)$ such that $(\mathbb{Z},+,\cdot,x,y,z,...,t) \models \phi_p$ iff p(x,y,z)=t
- 2. Interpret $(\mathbb{Z},+,\cdot,0)$ into $(\mathbb{N},+,\cdot)$

Some fancy FO theories

$$FO[\mathbb{N}, +, \cdot]$$
 = Peano arithmetic

$$FO[\mathbb{R}, +, \cdot]$$
 = Arithmetic theory of real numbers

$$FO[\mathbb{Z}, +]$$
 = Presburger arithmetic

$$FO[\mathbb{N}^2, \leq_1, \leq_2]$$
 = First-order theory of the unlabelled grid

$$FO[\{0,1\},=] \approx \{Valid QBFs\}$$

$$FO[V_R, E_R]$$
 = First-order theory of "random" graph

$$FO[C_M, T_M]$$
 = First-order theory of the transition graph of a Turing machine M

$FO[\mathbb{R}, +, \cdot]$ — Arithmetic theory of real numbers

Theorem

[Tarski '51]

Every FO formula ϕ over $(\mathbb{R},+,\cdot)$ can be effectively transformed into an equivalent quantifier-free formula ϕ^*

$FO[\mathbb{R}, +, \cdot]$ — Arithmetic theory of real numbers

Theorem

[Tarski '51]

Every FO formula ϕ over $(\mathbb{R},+,\cdot)$ can be effectively transformed into an equivalent quantifier-free formula ϕ^*

Corollary

Given ϕ , one can decide whether $(\mathbb{R},+,\cdot) \models \phi$

$FO[\mathbb{R}, +, \cdot]$ — Arithmetic theory of real numbers

Theorem

[Tarski '51]

Every FO formula ϕ over $(\mathbb{R},+,\cdot)$ can be effectively transformed into an equivalent quantifier-free formula \phi^*

Corollary

Given ϕ , one can decide whether $(\mathbb{R},+,\cdot) \models \phi$

Continuous & discrete

Programs verification

dynamical systems

Computer graphics

Robotics

Coding theory & Cryptography

Grammars & Transducers

$$FO[\mathbb{N}, +, \cdot]$$
 = Peano arithmetic

$$FO[\mathbb{R}, +, \cdot]$$
 = Arithmetic theory of real numbers

$$FO[\mathbb{Z}, +]$$
 = Presburger arithmetic

$$FO[\mathbb{N}^2, \leq_1, \leq_2]$$
 = First-order theory of the unlabelled grid

$$FO[\{0,1\},=] \approx \{Valid QBFs\}$$

$$FO[V_R, E_R]$$
 = First-order theory of "random" graph

$$FO[C_M, T_M]$$
 = First-order theory of the transition graph of a Turing machine M

Theorem

[Presburger '29]

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Corollary

Given ϕ over $(\mathbb{Z},+)$, one can decide whether $(\mathbb{Z},+) \models \phi$

Theorem

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

[Presburger '29]

Corollary Given ϕ over $(\mathbb{Z},+)$, one can decide whether $(\mathbb{Z},+) \models \phi$

Proof idea

Theorem

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,|)$ can be effectively

[Presburger '29]

transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Corollary

Given φ over $(\mathbb{Z},+)$, one can decide whether $(\mathbb{Z},+) \models \varphi$

Proof idea

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

Theorem

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,|)$ can be effectively

[Presburger '29]

transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Corollary

Given ϕ over $(\mathbb{Z},+)$, one can decide whether $(\mathbb{Z},+) \models \phi$

Proof idea

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

Example
$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

Theorem

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,||)$ can be effectively [Presburger '29] transformed into an equivalent quantifier-free formula \$\phi^*\$

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

Example

 $\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$

Theorem

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,||)$ can be effectively [Presburger '29] transformed into an equivalent quantifier-free formula \$\phi^*\$

Proof idea

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

 $\exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$

Theorem

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,||)$ can be effectively [Presburger '29] transformed into an equivalent quantifier-free formula \$\phi^*\$

Proof idea

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

 $\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$

Theorem

Every FO formula ϕ over $(\mathbb{Z},+,0,1,\leq,||)$ can be effectively [Presburger '29] transformed into an equivalent quantifier-free formula \$\phi^*\$

Proof idea

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \ \exists z \ (2x + 4y - 3z \le 7) \ \land \ (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \ \land \ (2z \le -3x + y - 4)$$

$$\exists z \ 2 \cdot (2x + 4y - 7 \le 3z) \ \land \ (2z \le -3x + y - 4) \cdot 3$$

Theorem

Every FO formula ϕ over $(Z,+,0,1,\leq,||)$ can be effectively transformed into an equivalent quantifier-free formula \$\phi^*\$ [Presburger '29]

Proof idea

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

Example
$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

 $\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

Example

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an equivalent quantifier-free formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

Example

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

Theorem

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

[Presburger '29]

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

$$4x + 8y - 14 \le -9x + 3y - 12$$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

$$4x + 8y - 14 \le -9x + 3y - 12$$

$$4x + 8y - 14 \le -9x + 3y - 12$$

Theorem

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

[Presburger '29]

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

 $4x + 8y - 14 \le -9x + 3y - 12$

$$(4-9)x + (8-3)y - (14-12) \le 0$$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

 $\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$
 $4x + 8y - 14 \le -9x + 3y - 12$

$$(-5)x + (5)y - (2) \le 0$$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$
 $\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$
 $4x + 8y - 14 \le -9x + 3y - 12$
 $-5x + 5y - 2 \le 0$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$
 $\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$
 $4x + 8y - 14 \le -9x + 3y - 12$
 $-5x + 5y - 2 \le 0$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$
 $\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$
 $4x + 8y - 14 + m \le -9x + 3y - 12$
 $-5x + 5y - 2 + m \le 0$

Theorem

[Presburger '29]

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

Example

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

6
$$|4x + 8y - 14 + m \wedge 4x + 8y - 14 + m \le -9x + 3y - 12$$

$$6 \mid 4x + 8y - 14 + m \land -5x + 5y - 2 + m \le 0$$

Theorem

Every FO formula ϕ over $(Z,+,0,1,\leq,|)$ can be effectively transformed into an <u>equivalent quantifier-free</u> formula ϕ^*

[Presburger '29]

Proof idea

Show how to remove an innermost quantifier Qz from $\varphi = ... Qz \alpha(..., z)$ Assume:

- $Qz = \exists z$ (if not, treat $\forall z \text{ as } \neg \exists z \neg$)
- α is \vee -free (if not, commute \exists and \vee)

$$\exists z \ \alpha(x,y,z) = \exists z \ (2x + 4y - 3z \le 7) \land (3x - y + 2z \le -4)$$

$$\exists z \ (2x + 4y - 7 \le 3z) \land (2z \le -3x + y - 4)$$

$$\exists z \ (4x + 8y - 14 \le 6z) \land (6z \le -9x + 3y - 12)$$

$$\bigvee_{m=0,...,5}$$
 6 $4x + 8y - 14 + m \land 4x + 8y - 14 + m \le -9x + 3y - 12$

$$\bigvee_{m=0,...,5}$$
 6 $4x + 8y - 14 + m \land -5x + 5y - 2 + m \le 0$

$$FO[\mathbb{N}, +, \cdot]$$
 = Peano arithmetic

$$FO[\mathbb{R}, +, \cdot]$$
 = Arithmetic theory of real numbers

$$FO[\mathbb{Z}, +]$$
 = Presburger arithmetic

$$FO[\mathbb{N}^2, \leq_1, \leq_2]$$
 = First-order theory of the unlabelled grid

$$FO[\{0,1\},=] \approx \{Valid QBFs\}$$

$$FO[V_R, E_R]$$
 = First-order theory of "random" graph

$$FO[C_M, T_M]$$
 = First-order theory of the transition graph of a Turing machine M

$$FO[\mathbb{N}, +, \cdot]$$
 = Peano arithmetic

$$FO[\mathbb{R}, +, \cdot]$$
 = Arithmetic theory of real numbers

$$FO[\mathbb{Z}, +]$$
 = Presburger arithmetic

$$FO[\mathbb{N}^2, \leq_1, \leq_2]$$
 = First-order theory of the unlabelled grid \nearrow DECIDABLE

$$FO[\{0,1\},=] \approx \{Valid QBFs\}$$

$$FO[V_R, E_R]$$
 = First-order theory of "random" graph

$$FO[C_M, T_M]$$
 = First-order theory of the transition graph of a Turing machine M

$$FO[\mathbb{N}, +, \cdot]$$
 = Peano arithmetic

$$FO[\mathbb{R}, +, \cdot]$$
 = Arithmetic theory of real numbers

$$FO[\mathbb{Z}, +]$$
 = Presburger arithmetic

$$FO[\mathbb{N}^2, \leq_1, \leq_2]$$
 = First-order theory of the unlabelled grid \nearrow DECIDABLE

$$FO[\{0,1\},=] \approx \{Valid QBFs\}$$

$$FO[V_R, E_R]$$
 = First-order theory of "random" graph

$$FO[C_M, T_M]$$
 = First-order theory of the transition graph of a Turing machine M

$FO[\{0,1\},=]$ — The FO theory of Boolean algebra

Lemma

Given any QBF ϕ without free variables, one can construct an FO formula ϕ^* such that

$$\models \varphi$$
 iff $(\{0,1\}, =) \models \varphi^*$

$FO[{0,1}, =]$ — The FO theory of Boolean algebra

Lemma

Given any QBF ϕ without free variables, one can construct an FO formula ϕ^* such that

$$\models \varphi$$
 iff $(\{0,1\}, =) \models \varphi^*$

Proof

define $\phi^* = \exists t \phi[x / (x=t)]_{\text{(for all bound variables }x)}$

$FO[{0,1}, =]$ — The FO theory of Boolean algebra

Lemma

Given any QBF ϕ without free variables, one can construct an FO formula ϕ^* such that

$$\models \varphi$$
 iff $(\{0,1\}, =) \models \varphi^*$

Proof

define $\phi^* = \exists t \phi[x / (x=t)]_{\text{(for all bound variables x)}}$

Corollary

 $FO[\{0,1\},=]$ encodes the set of valid QBF formulas

 $FO[\mathbb{N}, +, \cdot]$ = Peano arithmetic

UNDECIDABLE (reduction from H's 10th)

 $FO[\mathbb{R}, +, \cdot]$ = Arithmetic theory of real numbers

DECIDABLE (quantifier elimination)

 $FO[\mathbb{Z}, +]$ = Presburger arithmetic

DECIDABLE (quantifier elimination)

 $FO[\mathbb{N}^2, \leq_1, \leq_2]$ = First-order theory of the unlabelled grid \nearrow DECIDABLE

(interpreted in the former)

 $FO[\{0,1\},=] \approx \{Valid QBFs\}$

EASY

 $FO[V_R, E_R] = First-order theory of "random" graph$

 $FO[C_M, T_M] = First-order theory of the transition$ graph of a Turing machine M

 $FO[\mathbb{N}, +, \cdot]$ = Peano arithmetic

UNDECIDABLE (reduction from H's 10th)

 $FO[\mathbb{R}, +, \cdot]$ = Arithmetic theory of real numbers

DECIDABLE (quantifier elimination)

 $FO[\mathbb{Z}, +]$ = Presburger arithmetic

DECIDABLE (quantifier elimination)

 $FO[\mathbb{N}^2, \leq_1, \leq_2]$ = First-order theory of the unlabelled grid \nearrow DECIDABLE

(interpreted in the former)

 $FO[\{0,1\},=] \approx \{Valid QBFs\}$

EASY

 $FO[V_R, E_R]$ = First-order theory of "random" graph

 $FO[C_M, T_M] = First-order theory of the transition$ graph of a Turing machine M

FO[V_R, E_R] — The FO theory of the "random" graph

A different perspective and a coarser view on expressiveness...

What percentage of finite graphs verify a given FO sentence?

Probability of a formula

 $P_n[\phi]$ = probability that ϕ holds on a <u>random</u> finite graph with n nodes

Probability of a formula

 $P_n[\phi]$ = probability that ϕ holds on a <u>random</u> finite graph with n nodes

$$P_{\infty}[\varphi] = \lim_{n \to \infty} P_n[\varphi]$$

Probability of a formula

 $P_n[\phi]$ = probability that ϕ holds on a <u>random</u> finite graph with n nodes

$$P_{\infty}[\varphi] = \lim_{n \to \infty} P_n[\varphi]$$

Example For ϕ = "the graph is complete",

we have
$$P_n[\phi] = \frac{1}{2^{n(n-1)}}$$

and hence $P_{\infty}[\varphi] = 0$

Theorem (0/1 Law)
[Glebskii et al. '69, Fagin '76]

Every FO formula φ is either almost surely true $(P_{\infty}[\varphi] = 1)$ or almost surely false $(P_{\infty}[\varphi] = 0)$

Every FO formula
$$\varphi$$
 is either almost surely true $(P_{\infty}[\varphi] = 1)$ or almost surely false $(P_{\infty}[\varphi] = 0)$

Examples

•
$$\phi$$
 = "there is a triangle"

$$P_{\infty}[\varphi] = 1$$

Theorem (0/1 Law)
[Glebskii et al. '69, Fagin '76]

Every FO formula φ is either almost surely true $(P_{\infty}[\varphi] = 1)$ or almost surely false $(P_{\infty}[\varphi] = 0)$

Examples

• ϕ = "there is a triangle"

• ϕ = "there no 5-clique"

$$P_{\infty}[\varphi] = 1$$

$$P_{\infty}[\varphi] = 0$$

Every FO formula
$$\varphi$$
 is either almost surely true $(P_{\infty}[\varphi] = 1)$ or almost surely false $(P_{\infty}[\varphi] = 0)$

Examples

•
$$\phi$$
 = "there is a triangle"

•
$$\phi$$
 = "there no 5-clique"

- ϕ = "even number of edges"
- ϕ = "even number of nodes"

$$P_{\infty}[\varphi] = 1$$

$$P_{\infty}[\varphi] = 0$$

Your turn!

Every FO formula
$$\varphi$$
 is either almost surely true $(P_{\infty}[\varphi] = 1)$ or almost surely false $(P_{\infty}[\varphi] = 0)$

Examples

•
$$\phi$$
 = "there is a triangle"

•
$$\phi$$
 = "there no 5-clique"

•
$$\phi$$
 = "even number of edges"

•
$$\phi$$
 = "even number of nodes"

$$P_{\infty}[\varphi] = 1$$

$$P_{\infty}[\varphi] = 0$$

$$P_{\infty}[\varphi] = 1/2$$

 $P_{\infty}[\phi]$ not even defined

Theorem (0/1 Law) [Glebskii et al. '69, Fagin '76] Every FO formula ϕ is either almost surely true $(P_{\infty}[\phi] = 1)$ or almost surely false $(P_{\infty}[\phi] = 0)$

Examples

- ϕ = "there is a triangle"
- ϕ = "there no 5-clique"
- ϕ = "even number of edges"
- ϕ = "even number of nodes"
- ϕ = "more edges than nodes"

$$P_{\infty}[\varphi] = 1$$

$$P_{\infty}[\varphi] = 0$$

Your turn!

$$P_{\infty}[\varphi] = 1/2$$

 $P_{\infty}[\phi]$ not even defined

$$P_{\infty}[\varphi] = 1$$
 (yet not FO-definable...)

Theorem [Grandjean '83]

One can decide in **PSPACE** whether ϕ is almost surely true on finite graphs

Theorem [Grandjean '83]

One can decide in **PSPACE** whether φ is almost surely true on finite graphs

Theorem [Grandjean '83]

One can decide in **PSPACE** whether φ is almost surely true on finite graphs

Theorem [Grandjean '83]

One can decide in **PSPACE** whether φ is almost surely true on finite graphs

Model-checking on large graphs/databases

Don't bother checking the formula, either it's *almost surely true* or *almost surely false*!

Theorem [Grandjean '83]

One can decide in **PSPACE** whether φ is almost surely true on finite graphs

Disclaimer:

0/1 Law only applies applies to unconstrained graphs

Model-checking on large graphs/databases

Don't bother checking the formula, either it's *almost surely true* or *almost surely false*!

Some fancy FO theories

 $FO[\mathbb{N}, +, \cdot]$ = Peano arithmetic

UNDECIDABLE (reduction from H's 10th)

 $FO[\mathbb{R}, +, \cdot]$ = Arithmetic theory of real numbers

DECIDABLE (quantifier elimination)

 $FO[\mathbb{Z}, +]$ = Presburger arithmetic

DECIDABLE (quantifier elimination)

 $FO[\mathbb{N}^2, \leq_1, \leq_2]$ = First-order theory of the unlabelled grid \nearrow DECIDABLE

(interpreted in the former)

 $FO[\{0,1\},=] \approx \{Valid QBFs\}$

EASY

 $FO[V_R, E_R]$ = First-order theory of "random" graph

DECIDABLE (0/1 Law)

 $FO[C_M, T_M] = First-order theory of the transition$ graph of a Turing machine M

Some fancy FO theories

 $FO[\mathbb{N}, +, \cdot]$ = Peano arithmetic

UNDECIDABLE (reduction from H's 10th)

 $FO[\mathbb{R}, +, \cdot]$ = Arithmetic theory of real numbers

DECIDABLE (quantifier elimination)

 $FO[\mathbb{Z}, +]$ = Presburger arithmetic

DECIDABLE (quantifier elimination)

 $FO[\mathbb{N}^2, \leq_1, \leq_2]$ = First-order theory of the unlabelled grid \nearrow DECIDABLE

(interpreted in the former)

 $FO[\{0,1\},=] \approx \{Valid QBFs\}$

EASY

 $FO[V_R, E_R]$ = First-order theory of "random" graph

DECIDABLE (0/1 Law)

 $FO[C_M, T_M]$ = First-order theory of the transition graph of a Turing machine M

Things to remember

Things to remember

- FO is cool and quite expressive
- Model-checking is decidable (in **PSPACE**) when the universe is finite Satisfiability, validity, equivalence are all undecidable (reduction from Domino)
- For infinite universes, one can fix a model and study its FO theory Some FO theories are decidable, some are not
- Some FO theories can be reduced to others via FO interpretations

