

PERCEPTRONS AND MULTILAYER PERCEPTRONS

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

PERCEPTRON

MULTILAYER PERCEPTRONS

THRESHOLD LOGIC UNIT

Mc Culloch and Pitts, 1943

First mathematical model for a neuron For \boldsymbol{x} boolean vector, $w,b\in\mathbb{R}$:

$$f(x) = 1_{\{w \sum_{i} x_i + b \ge 0\}}$$

and in particular

$$ightharpoonup OR(x,y) = \mathbb{1}_{\{x+y-0.5>0\}}$$

$$ightharpoonup AND(x,y) = \mathbb{1}_{\{x+y-1.5 \ge 0\}}$$

$$NOT(x) = \mathbb{1}_{\{-x+0.5>0\}}$$

Any Boolean function can be build with such units.

PERCEPTRON

PERCEPTRON

A more general view

$$f(\boldsymbol{x}) = \sigma(\boldsymbol{w}^T\boldsymbol{x} + b)$$

where

▶ w: synaptic weights

▶ b: bias

 $ightharpoonup w^T x$: post synaptic potential

 \triangleright σ : activation function

Graphical representations

1 "Neural" representation

2

Graphical representations

- "Neural" representation
- 2 Computational graph
 - white nodes: inputs and outputs
 - red nodes: model parameters
 - blue nodes: operations

Graphical representations

- "Neural" representation
- 2 Computational graph
 - white nodes: inputs and outputs
 - red nodes: model parameters
 - blue nodes: operations

Basic brick

This unit is the basic brick of all neural networks

LEARNING THE PERCEPTRON

Problem statement

How to build the model?

- ▶ Input: Learning set $Z = \left\{ ({m x}_i, y_i), i \in [\![1 \cdots n]\!], {m x}_i \in \mathbb{R}^{d+1}, y_i \in \mathbb{R} \right\}$
- ▶ Unknown: $w \in \mathbb{R}^{d+1}$

LEARNING THE PERCEPTRON

Problem statement

How to build the model?

- ▶ Input: Learning set $Z = \left\{ (\boldsymbol{x}_i, y_i), i \in \llbracket 1 \cdots n \rrbracket, \boldsymbol{x}_i \in \mathbb{R}^{d+1}, y_i \in \mathbb{R} \right\}$
- ▶ Unknown: $w \in \mathbb{R}^{d+1}$

Key Idea

For each $x_i \in Z$:

- ightharpoonup expected output: y_i
- ightharpoonup computed output: $h_i = \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) = f_{\boldsymbol{w}}(\boldsymbol{x})$

If $\mathcal{L}: \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \to \mathbb{R}$ is a loss function

$$\hat{\boldsymbol{w}} = Arg \min_{\boldsymbol{w}} \sum_{(\boldsymbol{x}, y) \in Z} \mathcal{L}(f_{\boldsymbol{w}}(\boldsymbol{x}), y)$$

EXAMPLES OF LOSS FUNCTIONS

Binary classification (-1/1)

- 1 Characteristic function: $\mathcal{L}(f_{\boldsymbol{w}}(x),y)=\mathbb{1}_{yf_{\boldsymbol{w}}(x)\leq 0}$
- 2 Logistic loss: $\mathcal{L}(f_{\boldsymbol{w}}(x), y) = \ln\left(1 + e^{-yf_{\boldsymbol{w}}(x)}\right)$
- 3 binary cross-entropy: $\mathcal{L}(f_{m{w}}(x),y) = -\left(ylog(f_{m{w}}(x)) + (1-y)log(1-f_{m{w}}(x))\right)$

Regression

- Hinge loss: $\mathcal{L}(f_{\boldsymbol{w}}(x), y) = (1 yf_{\boldsymbol{w}}(x))_+ = max(0, 1 yf_{\boldsymbol{w}}(x))$
- 2 MSE (L_2 loss) : $\mathcal{L}(f_{\boldsymbol{w}}(x), y) = ||f_{\boldsymbol{w}}(x) y||^2$
- Huber loss : $\mathcal{L}(f_{\boldsymbol{w}}(x), y) = \begin{cases} \frac{1}{2\epsilon} (f_{\boldsymbol{w}}(x) y)^2 & \text{if } |f_{\boldsymbol{w}}(x) y| \geq \epsilon \\ 0 & \text{otherwise} \end{cases}$

FIRST TRAINING ALGORITHM

Here, $\sigma(x) \in \{-1, 1\}$ Given a training set

$$Z = \{(\boldsymbol{x}_i, y_i), i \in [1 \cdots n], \boldsymbol{x}_i \in \mathbb{R}^{d+1}, y_i \in \{-1, 1\}\}$$

this linear operator can be trained for a binary classification problem.

$$\begin{aligned} & \boldsymbol{w}^0 = \boldsymbol{0} \\ & k = 0 \\ & \textbf{while} \; \exists i \, such \, that \\ & y_i((\boldsymbol{w^k})^T\boldsymbol{x}_i) \leq 0 \; \textbf{do} \\ & \mid \boldsymbol{w^{k+1}} = \boldsymbol{w^k} + y_i\boldsymbol{x}_i \\ & k = k+1 \end{aligned}$$

FIRST TRAINING ALGORITHM

Convergence iff:

Points lie in a sphere of radius R:

$$(\forall i \in [\![1\cdots n]\!]) |\![\boldsymbol{x}_i|\!] \leq R$$

▶ The two classes can be separated by a margin:

$$\exists \tilde{\boldsymbol{w}}, \|\tilde{\boldsymbol{w}}\| = 1 \ \exists \gamma > 0, \ (\forall i \in [1 \cdots n]) \ y_i(\tilde{\boldsymbol{w}}^T \boldsymbol{x}_i) \ge \gamma/2$$

If so, the perceptron stops as soon as it finds a separating hyperplane.

FIRST TRAINING ALGORITHM

Convergence iff:

Points lie in a sphere of radius R:

$$(\forall i \in [1 \cdots n]) ||x_i|| \le R$$

▶ The two classes can be separated by a margin:

$$\exists \tilde{\boldsymbol{w}}, \|\tilde{\boldsymbol{w}}\| = 1 \ \exists \gamma > 0, \ (\forall i \in [1 \cdots n]) \ y_i(\tilde{\boldsymbol{w}}^T \boldsymbol{x}_i) \ge \gamma/2$$

If so, the perceptron stops as soon as it finds a separating hyperplane. But what if the data is non linearly separable?

One possible solution: minimize the amount of errors.

1 Change σ function to make it differentiable

² Error

$$\ell(\boldsymbol{w}) = \sum_{(\boldsymbol{x}, y) \in Z} \mathcal{L}(f_{\boldsymbol{w}}(\boldsymbol{x}), y)$$

Minimize the error w.r.t w.

Gradient

At a local minimum the gradient is null: $\sum_{(\bm{x},y)\in Z}\nabla_{\bm{w}}\mathcal{L}\left(f_{\bm{w}}(\bm{x}),y\right)=\bm{0}$

Gradient

At a local minimum the gradient is null: $\sum_{(\boldsymbol{x},y)\in Z}\nabla_{\boldsymbol{w}}\mathcal{L}\left(f_{\boldsymbol{w}}(\boldsymbol{x}),y\right)=\mathbf{0}$

Gradient Descent Algorithm

- Initialization: ${m w}={m w}_0$, k=0
- While (non stop)

$$2.1 \ \boldsymbol{g}_k = \frac{1}{|Z|} \sum_{(\boldsymbol{x},y) \in Z} \nabla_{\boldsymbol{w}} \mathcal{L} \left(f_{\boldsymbol{w_k}}(\boldsymbol{x}), y \right)$$

- $2.2 \boldsymbol{w}_{k+1} = \boldsymbol{w}_k \eta \boldsymbol{g}_k$
- $2.3 \quad k = k + 1$

Additional ressource

See Slides "toy example" and "Optimization for deep Learning".

Algorithm parameters:

- stopping criterion
- $ightharpoonup \eta$: learning rate
- Weight initialization

LIMOS

Different learning strategies

- Compute the error over all Z: real gradient descent
- Compute the error on one example only: stochastic gradient descent (SGD)
- Compute the error on a batch of example: batch learning (minibatch)

But...

If we want to accurately classify the data (and allow a good generalization property), we need to find something else...

Stacking linear classifiers

A linear classifier of the form

$$f: \mathbb{R}^{d+1} \quad o \quad \mathbb{R} \ oldsymbol{x} \quad \mapsto \quad \sigma(oldsymbol{w}^T oldsymbol{x} + b)$$

Stacking linear classifiers

A linear classifier of the form

$$f: \mathbb{R}^{d+1} \quad o \quad \mathbb{R}$$
 $oldsymbol{x} \quad \mapsto \quad \sigma(oldsymbol{w}^T oldsymbol{x} + b)$

can naturally be component-wise extended to any function $f:\mathbb{R}^{d+1} \to \mathbb{R}^c$

And even...

The general structure can be defined using ${m x}^{(0)} = {m x}$ and

$$(\forall l \in \llbracket 1 \cdots L \rrbracket) \quad \boldsymbol{x}^{(l)} = \sigma(\boldsymbol{w}^{(l)^T} \boldsymbol{x}^{(l-1)} + b^{(l)})$$

This is a Multilayer Perceptron (MLP).

BUILDING COMPLEX NEURAL NETWORKS

 $\begin{array}{l} h \in \mathbb{R}, \\ \boldsymbol{w}, x \in \mathbb{R}^{d+1} \\ b \in \mathbb{R} \end{array}$

BUILDING COMPLEX NEURAL NETWORKS

$$h = \sigma(\boldsymbol{w}^T x + b)$$

 $h \in \mathbb{R},$ $\boldsymbol{w}, x \in \mathbb{R}^{d+1}$ $b \in \mathbb{R}$

Parallel composition

$$\boldsymbol{h} = \sigma(\boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{b})$$

 $egin{aligned} m{h} \in \mathbb{R}^q \ m{W} \in \mathcal{M}_{d+1,q}(\mathbb{R}) \ m{b} \in \mathbb{R}^q, \ \sigma & ext{element-wise function} \end{aligned}$

BUILDING COMPLEX NEURAL NETWORKS

$$h = \sigma(\boldsymbol{w}^T x + b)$$

 $h \in \mathbb{R},$ $\boldsymbol{w}, x \in \mathbb{R}^{d+1}$ $b \in \mathbb{R}$

Parallel composition

100× speed up

$$\boldsymbol{h} = \sigma(\boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{b})$$

 $egin{aligned} m{h} \in \mathbb{R}^q \ m{W} \in \mathcal{M}_{d+1,q}(\mathbb{R}) \ m{b} \in \mathbb{R}^q, \ \sigma ext{ element-wise function} \end{aligned}$

h is the output of a layer.

σ has to be non linear (otherwise equivalent to a perceptron).

Name	Graph	f	f'
Logistic / sigmoïd		$f(x) = \frac{1}{1 + e^{-x}}$	$f'(x) = f(x) \left(1 - f(x) \right)$
tanh		$f(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f^2(x)$
atan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
ReLU		$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$
Linear exponential		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$

Expanding the gradient descent

lacktriangle At step k of the gradient descent, need to evaluate

$$\nabla_{\theta} \mathcal{L}\left(f_{\theta}(\boldsymbol{x}), y\right)$$

- $\blacktriangleright \ \ \text{Evaluation of the total derivatives} \ \ \frac{\partial \mathcal{L}}{\partial \pmb{W}_j} \ \ \text{and} \ \ \frac{\partial \mathcal{L}}{\partial \pmb{b}_j} \text{, } j \in \llbracket 1 \dots L \rrbracket$
- ⇒ Automatic differentiation on the computational graph

Expanding the gradient descent

At step k of the gradient descent, need to evaluate

$$\nabla_{\theta} \mathcal{L}\left(f_{\theta}(\boldsymbol{x}), y\right)$$

- ▶ Evaluation of the total derivatives $\frac{\partial \mathcal{L}}{\partial \mathbf{W}_j}$ and $\frac{\partial \mathcal{L}}{\partial \mathbf{b}_j}$, $j \in \llbracket 1 \dots L \rrbracket$
- ⇒ Automatic differentiation on the computational graph

Chain Rule

Let $g: \mathbb{R} \to \mathbb{R}^m$ and $f: \mathbb{R}^m \to \mathbb{R}$

$$f \circ g(x) = f(u) = y$$
 where $u = g(x) = (g_1(x) \dots g_m(x))^T = (u_1 \dots u_m)$

Chain rule:

$$\frac{dy}{dx} = \sum_{j=1}^{m} \frac{\partial y}{\partial u_j} \underbrace{\frac{du_j}{dx}}_{\text{recursiv}}$$

Automatic differentiation

- ► MLP = composition of differentiable functions
- The total derivatives of the loss can be evaluated backward, by applying the chain rule recursively over its computational graph.

Automatic differentiation

- MLP = composition of differentiable functions
- The total derivatives of the loss can be evaluated backward, by applying the chain rule recursively over its computational graph.

Automatic differentiation

- 1 Forward pass: values are all computed from inputs to outputs
- Backward pass: the total derivatives are computed by walking through all paths from outputs to parameters in the computational graph and accumulating the terms.

Automatic differentiation

- MLP = composition of differentiable functions
- The total derivatives of the loss can be evaluated backward, by applying the chain rule recursively over its computational graph.

Automatic differentiation

- 1 Forward pass: values are all computed from inputs to outputs
- Backward pass: the total derivatives are computed by walking through all paths from outputs to parameters in the computational graph and accumulating the terms.

Additional ressource

See Slides "backpropagation" and "Vanishing gradient".

Example: derivatives with respect to $oldsymbol{W}_1$

- Forward pass: u_1, u_2, u_3 and \hat{y} computed by traversing the graph, given x, W_1 and W_2
- Backward pass :

$$\frac{d\hat{y}}{d\mathbf{W}_{1}} = \frac{\partial \hat{y}}{\partial \mathbf{u}_{3}} \frac{\partial \mathbf{u}_{3}}{\partial \mathbf{u}_{2}} \frac{\partial \mathbf{u}_{2}}{\partial \mathbf{u}_{1}} \frac{\partial \mathbf{u}_{1}}{\partial \mathbf{W}_{1}}
= \frac{\partial \sigma(\mathbf{u}_{3})}{\partial \mathbf{u}_{3}} \frac{\partial \mathbf{W}_{2}^{T} u_{2}}{\partial \mathbf{u}_{2}} \frac{\partial \sigma(\mathbf{u}_{1})}{\partial \mathbf{u}_{1}} \frac{\partial \mathbf{W}_{1}^{T} u_{1}}{\partial \mathbf{W}_{1}}$$

Evaluating the partial derivatives requires the intermediate values computed forward

Theorem (Cybenko 1989; Hornik et al, 1991)

Let σ be a bounded, non-constant continuous function. Let I_d denote the d-dimensional hypercube, and $C(I_d)$ denote the space of continuous functions on I_d .

$$(\forall f \in C(I_d))(\forall \epsilon > 0)(\exists q > 0, v_i, \mathbf{w_i}, b_i, i \in \llbracket 1 \dots q \rrbracket)$$
 such that

$$F(\mathbf{x}) = \sum_{i=1}^{q} v_i \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x} + b)$$

satisfies

$$\sup_{\mathbf{x}\in I_d} |f(\mathbf{x}) - F(\mathbf{x})| < \epsilon$$

$$f(x) = x^2, |Z| = 50$$

A simple example

- \triangleright |Z| points uniformly sampled (red) over the definition set
- 1 hidden layer MLP, 3 neurons.
- tanh activation function, and linear output neurons
- network output : blue curve
- hidden neurons outputs: dashed curves

Properties

- Guarantees that a single hidden layer network can represent any classification problem in which the boundary is locally linear (smooth)
- Does not inform about good/bad architectures, nor how they relate to the optimization procedure
- Generalizes to any non-polynomial (possibly unbounded) activation function, including the ReLU

Theorem (Barron, 1992)

Let a one-hidden layer MLP with q hidden neurons , p inputs and |Z|=n. The mean integrated square error between the estimated network \hat{F} and the target function f is bounded by

$$O\left(\frac{C_f^2}{q} + \frac{qp}{n}log(n)\right)$$

where C_f measures the global smoothness of f.

Properties

- Combines approximation and estimation errors.
- Provided enough data, guarantees that adding more neurons will result in a better approximation

EFFECT OF DEPTH

Theorem (Montúfar et al, 2014)

A MLP with ReLU as activation functions, p inputs, L hidden layers with $q \geq p$ neurons can compute functions having $\Omega\left(\left(\frac{q}{p}\right)^{(L-1)p}q^p\right)$ linear regions (asymptotic lower bound).

Properties

- ▶ The number of linear regions of deep models grows exponentially in L and polynomially in q.
- Even for small values of L and q, deep rectifier models are able to produce substantially more linear regions than shallow rectifier models.

