FEDERATED LEARNING WITH HETEROGENEOUS DATA FORMAT

Under the guidance of

Prof Mrinal Kanti Das Department of Data Science, IIT Palakkad

-Santhosh V(142302020)

-Siva Kumar(142302008)

Quick Outline

- What is Federated Learning
- Objective
- Applications
- Types Of Federated Learning (Data Partitioning)
- Types Of Federated Learning(Based On Client)
- Aggregation Algorithms
- Results & Observations
- References

Shift from centralized data to decentralized data

The standard ML considers a centralized dataset processed in tightly integrated system.

- Sending data to cloud for centralized ML is too costly
 - Self driving cars generate several TBs of data every day
 - Some wireless networks have limited bandwidth
- Dats is too sensitive(medical reports)
 - Data privacy
 - Keeping the control over data and give the competitive advantage in business and research

What is Federated Learning?

Federated Learning Process

Client - Server Setup

Step1: Initialization of Model

Step2: Training the model on client data

Step3: Sharing the parameters to Global model

Step4: Aggregation of parameters at server

Step5: Sharing the updated parameters to clients

Applications

Google G-Board - Federated GRU(Gated Recurrent Unit)

Types of federated learning - Data partitioning

Horizontal Federated Learning

- Sample-based federated learning or homogenous federated learning
- Involves separating the data that has the same features but operates within a different sample space

HORIZONTAL DATA

This data comes from different sample spaces, but has very similar features.

Vertical Federated Learning

- Feature-based federated learning or heterogeneous federated learning.
- Data shares the same sample space, but different feature space

Types of federated learning - Clients

Cross-Device vs Cross-Silo FL

- Small size node (smartphones, edge devices, etc)
- Might not be available at each iteration.
- a) Cross-Device Federated Learning

- Large size node (companies organizations)
- Necessary to participate in each iteration

b) Cross-Silo Federated Learning

Cross-device FL

- Massive number of parties
- Small dataset per party (could be size 1)
- Limited availability and reliability
- Some parties may be malicious
- Communication is often the primary bottleneck.
- Partitioning by example (horizontal)

Cross-silo FL

- 2-100 parties
- Medium to large dataset per party
- Reliable parties, almost always available
- Parties are typically honest
- Might be computation or communication.
- Example-partitioned (horizontal) or feature-partitioned (vertical).

The main challenges in Federated learning?

Problem Statement

FL systems gaining wider adoption for privacy preserving machine learning

- Heterogeneity is expected to cause **lowered performance of the trained models** with **longer convergence time**.
- Leading to excessive energy consumption for both the cloud infrastructure and battery powered devices.
- Find Out Innovative algorithms for FL task with lower convergence time with minimal impact on data privacy.

The main challenges in Vertical Federated learning

 One of the main challenges in vertical federated learning is aggregation of the weights

AGGREGATION ALGORITHMS

FEDAVG- (Communication-Efficient Learning of Deep Networks from Decentralized Data)

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

```
Server executes:
   initialize wo
  for each round t = 1, 2, \dots do
      m \leftarrow \max(C \cdot K, 1)
      S_t \leftarrow \text{(random set of } m \text{ clients)}
      for each client k \in S_t in parallel do
         w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)
      m_t \leftarrow \sum_{k \in S_t} n_k
      w_{t+1} \leftarrow \sum_{k \in S_t} \frac{n_k}{m_t} w_{t+1}^k || Erratum<sup>4</sup>
ClientUpdate(k, w): // Run on client k
   \mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)
  for each local epoch i from 1 to E do
      for batch b \in \mathcal{B} do
         w \leftarrow w - \eta \nabla \ell(w; b)
   return w to server
```

FEDPROX- (Federated Optimization in Heterogeneous Networks)

Algorithm 2 FedProx (Proposed Framework)

Input:
$$K, T, \mu, \gamma, w^0, N, p_k, k = 1, \cdots, N$$
 for $t = 0, \cdots, T-1$ do Server selects a subset S_t of K devices at random (each device k is chosen with probability p_k) Server sends w^t to all chosen devices Each chosen device $k \in S_t$ finds a w_k^{t+1} which is a γ_k^t -inexact minimizer of: $w_k^{t+1} \approx \arg\min_w h_k(w; w^t) = F_k(w) + \frac{\mu}{2} \|w - w^t\|^2$ Each device $k \in S_t$ sends w_k^{t+1} back to the server Server aggregates the w 's as $w^{t+1} = \frac{1}{K} \sum_{k \in S_t} w_k^{t+1}$ end for

QFEDAVG

Algorithm 2 q-FedAvg

- 1: **Input:** $K, E, T, q, 1/L, \eta, w^0, p_k, k = 1, \dots, m$
- 2: **for** $t = 0, \dots, T 1$ **do**
- 3: Server selects a subset S_t of K devices at random (each device k is chosen with prob. p_k)
- Server sends w^t to all selected devices
- 5: Each selected device k updates w^t for E epochs of SGD on F_k with step-size η to obtain \bar{w}_k^{t+1}
- 6: Each selected device k computes:

$$\begin{split} & \overset{\mathbf{T}}{\Delta} w_k^t = L(w^t - \bar{w}_k^{t+1}) \\ & \Delta_k^t = F_k^q(w^t) \Delta w_k^t \\ & h_k^t = q F_k^{q-1}(w^t) \|\Delta w_k^t\|^2 + L F_k^q(w^t) \end{split}$$

- 7: Each selected device k sends Δ_k^t and h_k^t back to the server
- 8: Server updates w^{t+1} as:

$$w^{t+1} = w^t - \frac{\sum_{k \in S_t} \Delta_k^t}{\sum_{k \in S_t} h_k^t}$$

9: end for

Open Source Federated Learning Frameworks

Baseline Models - Flower Framework

Horizontal Federated Learning - MNIST dataset(with different class distributions to each client)


```
'53 | server.py:222 | fit_round 10: strategy sampled 2
                                                       'val_accuracy': [0.7257999777793884], 'v
                                                      .Eval accuracy: 0.9534000158309937
25 | server.py:236 | fit round 10 received 2 results
                                                       Fit history: {'accuracy': [0.98950129747]
                                                                                      3945], 'va'
its.
                     siva@siva-Swift-SF314-55G: ~/Desktop/Federated
                                                                                      237
129
                                                                                      9076116085
   Fit history: {'accuracy': [0.9826192855834961], 'loss': [0.05435093492269516],
                                                                                      2297], 'va
<sup>93</sup> 'val accuracy': [0.6518999934196472], 'val loss': [1.8747718334197998]}
                                                                                      976
   Eval accuracy: 0.930899977684021
                                                                                      9181103706
  Fit history: {'accuracy': [0.9859786033630371], 'loss': [0.04499607905745506],
                                                                                      44031], 'v
  | 'val accuracy': [0.6579999923706055], 'val loss': [1.7222992181777954]}
                                                                                      449
 (Eval accuracy: 0.9405999779701233
                                                                                      9254590272
.663Fit history: {'accuracy': [0.9871470332145691], 'loss': [0.036762069910764694],
                                                                                      5449], 'va
<sup>134</sup> 'val accuracy': [0.6499999761581421], 'val loss': [1.7135902643203735]}
                                                                                      398
  Eval accuracy: 0.9534000158309937
                                                                                      398 | conn
  Fit history: {'accuracy': [0.9898734092712402], 'loss': [0.029244087636470795],
                                                                                      98 | app.p
    'val_accuracy': [0.6620000004768372], 'val_loss': [2.1011500358581543]}
  Eval accuracy: 0.9473999738693237
   Fit history: {'accuracy': [0.9913339614868164], 'loss': [0.026174629107117653],
    'val accuracy': [0.6406999826431274], 'val loss': [1.861505389213562]}
   Eval accuracy: 0.9520999789237976
   Fit history: {'accuracy': [0.9929406046867371]. 'loss': [0.020072871819138527].
    'val_accuracy': [0.6643000245094299], 'val_loss': [1.7174336910247803]}
   Eval accuracy: 0.9546999931335449
   Fit history: {'accuracy': [0.992112934589386], 'loss': [0.021396998316049576],
    'val accuracy': [0.6766999959945679], 'val loss': [1.8145411014556885]}
   Eval accuracy: 0.9527999758720398
   DEBUG flwr 2024-03-15 01:57:52,398 | connection.pv:220 | gRPC channel closed
   INFO flwr 2024-03-15 01:57:52,398 | app.py:398 | Disconnect and shut down
   siva@siva-Swift-SF314-55G:~/Desktop/FederatedS
```

Client1 accuracy- 0.6766 Client2 accuracy- 0.7257 Global accuracy- 0.9527

Horizontal Federated Learning - MNIST fashion dataset(with different class distributions to each client)

```
Eval accuracy: 0.7864999771118164
                                            Fit history: {'accuracy': [0.9518635272979
erver.py:173 | evaluate round 10: strategy
                                             'val accuracy': [0.6815999746322632], 'val
                                            Eval accuracy: 0.7803999781608582
erver.py:187 | evaluate_round 10 received
                                            Fit history: {'accuracy': [0.9536482691764
                                             'val accuracy': [0.6883999705314636], 'val
erver.py:153 | FL finished in 36.2526219430
                                           Eval accuracy: 0.79830002784729
                                            Fit history: {'accuracy': [0.9561679959297
                  siva@siva-Swift-SF314-55G: ~/Des al_accuracy': [0.6604999899864197], 'val_lo
                                             Eval accuracy: 0.8104000091552734
6 Fit history: {'accuracy': [0.9194741845130 Fit history: {'accuracy': [0.9566929340362
val_accuracy': [0.5965999960899353], 'val_lo val_accuracy': [0.5964999794960022], 'val_
 Eval accuracy: 0.76419997215271
                                             Eval accuracy: 0.7509999871253967
p Fit history: {'accuracy': [0.9271665215492 Fit history: {'accuracy': [0.9591600894927
  val_accuracy': [0.6291000247001648], 'val_'val accuracy': [0.7106000185012817], 'val_
Eval accuracy: 0.7864999771118164
                                             Eval accuracy: 0.8256000280380249
p Fit history: {'accuracy': [0.9318403005599DEBUG flwr 2024-03-15 02:25:47,183 | connec
 'val_accuracy': [0.5871000289916992], 'val_INFO flwr 2024-03-15 02:25:47,184 | app.py:
 Eval accuracy: 0.7803999781608582
                                            siva@siva-Swift-SF314-55G:-/Desktop/Feder
 Fit history: {'accuracy': [0.9355890750885v1], toss : [v.109243/082229003], v.
 al accuracy': [0.5968000292778015], 'val loss': [3.11248779296875]}
 Eval accuracy: 0.79830002784729
 Fit history: {'accuracy': [0.9352483153343201], 'loss': [0.17073878645896912].
  'val_accuracy': [0.6484000086784363], 'val loss': [2.4795634746551514]}
 Eval accuracy: 0.8104000091552734
 Fit history: {'accuracy': [0.9387536644935608], 'loss': [0.1595885306596756],
 val accuracy': [0.5792999863624573], 'val loss': [3.3508050441741943]}
 Eval accuracy: 0.7509999871253967
 Fit history: {'accuracy': [0.9414800405502319], 'loss': [0.15539324283599854],
  'val accuracy': [0.5788000226020813], 'val loss': [3.385594367980957]}
 Eval accuracy: 0.8256000280380249
 DEBUG flwr 2024-03-15 02:25:47,183 | connection.py:220 | gRPC channel closed
 INFO flwr 2024-03-15 02:25:47,183 | app.py:398 | Disconnect and shut down
  siva@siva-Swift-SF314-55G:-/Desktop/Federated15
```

Client1 accuracy- 0.7106 Client2 accuracy- 0.5788 Global accuracy-0.8256

EXPERIMENT SETUP - 2

Centralized VS Decentralized

DATASET: TITANIC DATASET

```
Running centralised training...
Train accuracy: 84.248%
Test accuracy: 82.022%
Running decentralised training...
Iteration 1, loss = 0.64399825
Iteration 2, loss = 0.56226789
                                           Client 0 test accuracy: 73.034%
Iteration 3, loss = 0.49493030
                                           Client 1 test accuracy: 81.461%
Iteration 4. loss = 0.45459877
                                           Client 2 test accuracy: 71.348%
Iteration 5, loss = 0.43634872
                                           Combined test accuracy: 80.337%
Iteration 6, loss = 0.43703215
Iteration 7, loss = 0.43900626
Iteration 8, loss = 0.42954290
Iteration 9, loss = 0.42684795
Iteration 10, loss = 0.42327625
Iteration 11, loss = 0.42247988
Iteration 12, loss = 0.42048271
Iteration 13, loss = 0.41931750
Iteration 14, loss = 0.41798792
Iteration 15, loss = 0.41693441
```

EXPERIMENT SETUP - 2

Centralized VS Decentralized

DATASET : CANCER DATASET

```
Training loss did not improve more than tol=0.000100 for 10 consecutive epochs.
Stopping.
Client 0 test accuracy: 96.512%
Client 1 test accuracy: 94.186%
Client 2 test accuracy: 94.186%
Combined Test accuracy: 96.512%
```

```
Running centralised training...
Train accuracy: 98.758%
Test accuracy: 95.349%
```

Implementation

EXPERIMENT SETUP -3

Experimenting with different aggregating algorithm

1.Fedavg

2.FedProx

3.QFedavg

DATASET: TITANIC DATASET, WATER QUALITY DATASET

Water Quality Dataset

- Dataset Classification Problem(Two class)(20 features)(7999 data points)
- Number of clients : 3
- Client 1 Features {'aluminium', 'ammonia', 'arsenic', 'barium', 'cadmium', 'chloramine', 'chromium', 'is_safe'}
- Client 2 Features {'copper', 'flouride', 'bacteria', 'viruses', 'lead', 'nitrates', 'nitrites','is_safe'}
- Client 3 -Features ('mercury' 'perchlorate' 'radium' 'selenium' 'silver' 'uranium', 'is_safe')

Results & Observations

Titanic Dataset

- Dataset - Classification Problem(Two class)(12 features)(891 data points)

- Number of clients : 3

- Client 1 - Features {"Parch", "Cabin", "Pclass", "Survived"}

- Client 2 - Features {"sex", "Title", "Survived"}

- Client 3 - Features ('Age', 'SibSp', 'Embarked', Cabin)

Results & Observations

References

Github link for resources(Research papers and codes for frameworks):

- 1. https://github.com/monk1337/Aweome-Heathcare-Federated-Learning?tab=readme-ov-file
- 2. https://github.com/albarqouni/Federated-Learning-In-Healthcare?tab=readme-ov-file
- 3. https://github.com/adap/flower (flower framework)
- 4. https://github.com/FedML-AI/FedML/tree/master/python/fedml
- 5. https://github.com/OpenMined/PySyft(pysyft framework)

Thank you