# **Cancel or Not**

Import tools

```
1 | import pandas as pd
                                                   # basic data tools
2 import numpy as np
3 from sklearn.preprocessing import LabelEncoder # reprocessing tools
4 from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV # model selection
6 from sklearn import model_selection
7 from sklearn import metrics
8 import joblib
                                                   # model saving
9 import datetime
10 from sklearn.linear_model import LogisticRegression #Models:# # LogisticRegression
11 from sklearn.ensemble import RandomForestClassifier
12 import lightgbm as lgbm
                                                            # # LightGBM
13 from xgboost import XGBClassifier
                                                            # # XGBoost
14 import seaborn as sns
                                                 # plotting
15 from matplotlib.pyplot import savefig
16 from matplotlib.pyplot import axes
17 from matplotlib import pyplot as plt
```

Accessing data:

```
# df = pd.read_csv('../data/hotel_bookings.csv')
train = pd.read_csv('../data/train.csv') # pre-spllited dataset in previous work
test = pd.read_csv('../data/test.csv')

# Extra features spreadsheet for hepling understanding
features = pd.read_csv('../data/feature_description.csv', header=None)
features.columns = ['feature', 'description']
```

# Cleaning, Exploration and Basic Feature Engineering

Task alread done, see part1.ipynb if needed.

# **Preparation**

Check features:

```
# show features
pd.set_option("display.max_colwidth", 200)
pd.merge(features, train.describe().T, left_on='feature', right_index=True, how="right")
```

```
dataframe tbody tr th {
    vertical-align: top;
}

dataframe thead th {
    text-align: right;
}
```

|    | feature                        | description                                                                                                                                        | count   | mean       | std        | min  | 25%     | 50%   | 759  |
|----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------|------|---------|-------|------|
| 1  | is_canceled                    | order canceled (1) or<br>not (0)                                                                                                                   | 95512.0 | 0.370414   | 0.482918   | 0.00 | 0.0000  | 0.0   | 1.0  |
| 2  | lead_time                      | Number of days that<br>elapsed between the<br>entering date of the<br>booking into the PMS<br>and the arrival date                                 | 95512.0 | 104.151583 | 106.821437 | 0.00 | 18.0000 | 69.0  | 160. |
| 5  | arrival_date_week_number       | Week number of year for arrival date                                                                                                               | 95512.0 | 27.171047  | 13.593740  | 1.00 | 16.0000 | 28.0  | 38.0 |
| 6  | arrival_date_day_of_month      | Day of arrival date                                                                                                                                | 95512.0 | 15.797041  | 8.785365   | 1.00 | 8.0000  | 16.0  | 23.0 |
| 7  | stays_in_weekend_nights        | Number of weekend<br>nights (Saturday or<br>Sunday) the guest<br>stayed or booked to<br>stay at the hotel                                          | 95512.0 | 0.927852   | 0.997446   | 0.00 | 0.0000  | 1.0   | 2.0  |
| 8  | stays_in_week_nights           | Number of week<br>nights (Monday to<br>Friday) the guest<br>stayed or booked to<br>stay at the hotel                                               | 95512.0 | 2.500806   | 1.905649   | 0.00 | 1.0000  | 2.0   | 3.0  |
| 9  | adults                         | Number of adults                                                                                                                                   | 95512.0 | 1.856866   | 0.594198   | 0.00 | 2.0000  | 2.0   | 2.0  |
| 10 | children                       | Number of children                                                                                                                                 | 95512.0 | 0.104175   | 0.399210   | 0.00 | 0.0000  | 0.0   | 0.0  |
| 11 | babies                         | Number of babies                                                                                                                                   | 95512.0 | 0.008020   | 0.094440   | 0.00 | 0.0000  | 0.0   | 0.0  |
| 16 | is_repeated_guest              | Value indicating if the<br>booking name was<br>from a repeated guest<br>(1) or not (0)                                                             | 95512.0 | 0.031640   | 0.175041   | 0.00 | 0.0000  | 0.0   | 0.0  |
| 17 | previous_cancellations         | Number of previous<br>bookings that were<br>cancelled by the<br>customer prior to the<br>current booking                                           | 95512.0 | 0.086617   | 0.830586   | 0.00 | 0.0000  | 0.0   | 0.0  |
| 18 | previous_bookings_not_canceled | Number of previous<br>bookings not<br>cancelled by the<br>customer prior to the<br>current booking                                                 | 95512.0 | 0.139899   | 1.546800   | 0.00 | 0.0000  | 0.0   | 0.0  |
| 21 | booking_changes                | Number of changes/amendments made to the booking from the moment the booking was entered on the PMS until the moment of check-in or cancellation   | 95512.0 | 0.219972   | 0.649299   | 0.00 | 0.0000  | 0.0   | 0.0  |
| 23 | agent                          | ID of the travel agency<br>that made the<br>booking                                                                                                | 82419.0 | 86.795436  | 110.798087 | 1.00 | 9.0000  | 14.0  | 229. |
| 24 | company                        | ID of the company/entity that made the booking or responsible for paying the booking. ID is presented instead of designation for anonymity reasons | 5454.0  | 189.881371 | 132.301220 | 6.00 | 62.0000 | 179.0 | 270. |
| 25 | days_in_waiting_list           | Number of days the<br>booking was in the<br>waiting list before it<br>was confirmed to the<br>customer                                             | 95512.0 | 2.307710   | 17.414238  | 0.00 | 0.0000  | 0.0   | 0.0  |

|    | feature                     | description                                                                                                         | count   | mean       | std       | min   | 25%     | 50%  | 759  |
|----|-----------------------------|---------------------------------------------------------------------------------------------------------------------|---------|------------|-----------|-------|---------|------|------|
| 27 | adr                         | Average Daily Rate as defined by dividing the sum of all lodging transactions by the total number of staying nights | 95512.0 | 101.871490 | 51.137746 | -6.38 | 69.0075 | 95.0 | 126. |
| 28 | required_car_parking_spaces | Number of car<br>parking spaces<br>required by the<br>customer                                                      | 95512.0 | 0.062149   | 0.245172  | 0.00  | 0.0000  | 0.0  | 0.0  |
| 29 | total_of_special_requests   | Number of special<br>requests made by the<br>customer (e.g. twin<br>bed or high floor)                              | 95512.0 | 0.572525   | 0.793103  | 0.00  | 0.0000  | 0.0  | 1.0  |

Use plain integer to encode categrical features according to official documentation and explicit explanation in sector Parameters.

## **Preprocessing**

Encoding categorical features:

```
1 categoricals = [
       'hotel'.
3
       'arrival_date_month',
 4
       'meal',
       'country',
6
       'market segment'.
       'distribution_channel',
       'reserved_room_type',
       'assigned_room_type',
       'deposit_type',
10
       'agent',
       'company',
13
       'customer_type',
14 ]
15
16 df = train.append(test) # construct a full dataframe for consistent encoding
17 df = df.fillna('0')
df['children'] = df['children'].astype(int) # type convertting
19 df_cat_tmp = df[categoricals].astype(str).apply(LabelEncoder().fit_transform) # encode cat columns
20 # df_encoded = pd.merge(df.drop(categoricals, axis=1), df_cat_tmp, left_index=True, right_index=True) # merge numeric and encoded cat
    columns
21 df[categoricals] = df_cat_tmp[categoricals].astype(int) # merge numeric and encoded cat columns
22 train_encoded = df.iloc[:len(train)]
23 test_encoded = df.iloc[len(train):]
```

Splitting encoded dataset:

```
target = 'is_canceled' # splitting features and target

X_train, X_test = train_encoded.drop(target, axis=1), test_encoded.drop(target, axis=1)
y_train, y_test = train_encoded[target], test_encoded[target]
```

Standarzation (note that categorical features ignored due to model requirements):

```
X_num_train, X_num_test = X_train.drop(categoricals, axis=1), X_test.drop(categoricals, axis=1) # extracting numerical features

# scaling
scaler = StandardScaler()
scaled_features_train = scaler.transform(X_num_train)
scaled_features_test = scaler.transform(X_num_test)

# merge numeric & categorical features
scaled_features_df_train = pd.DataFrame(scaled_features_train, index=X_num_train.index, columns=X_num_train.columns)
scaled_features_df_test = pd.DataFrame(scaled_features_test, index=X_num_test.index, columns=X_num_test.columns)

# create standerized dataframes
X_train_std = pd.merge(X_train[categoricals], scaled_features_df_train, left_index=True, right_index=True)
X_test_std = pd.merge(X_test[categoricals], scaled_features_df_test, left_index=True, right_index=True)
```

# Modelling

Define a cutomized DridSearchCV function for convinience:

```
1 def algorithm_pipeline(model, \
```

```
param_grid, \
                          X_train_data = X_train_std, \
                          X_test_data = X_test_std, \
5
                          y_train_data = y_train, \
6
                          y_test_data = y_test, \
                          cv=10, \
                          scoring_fit='accuracy',
9
                          do_probabilities = False):
10
11
        gs = GridSearchCV(
12
           estimator=model,
13
           param_grid=param_grid,
14
           cv=cv.
15
           n_jobs=-1,
16
           scoring=scoring_fit,
17
           verbose=2,
18
           refit=True # return the best refitted model
19
20
21
       fitted_model = gs.fit(X_train_data, y_train_data)
22
23
       if do_probabilities:
24
         y_pred = fitted_model.predict_proba(X_test_data)
        else:
        y_pred = fitted_model.predict(X_test_data)
26
27
28
       return fitted_model, y_pred
```

# 1. Logistic Regrssion (baseline)

```
1 | lr = LogisticRegression(penalty='12', max_iter=7600)
2 | lr = lr.fit(X_train, y_train)
```

```
y_pred = lr.predict(X_test)
print(f'Train(accuracy): {lr.score(X_train, y_train).round(5)}')
print(f'Trest(accuracy): {lr.score(X_test, y_test).round(5)}\n')
print(metrics.classification_report(y_test, y_pred))

cm_matrix = pd.DataFrame(data=metrics.confusion_matrix(y_test, y_pred), columns=['PP', 'PN'], index=['AP', 'AN'])

cm_plot = sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='RdBu_r') # visualize confusion matrix with seaborn heatmap
cm_plot
```

```
1 | Train(accuracy): 0.79377
 2 Test(accuracy): 0.79433
                precision recall f1-score support
  4
  6
              0
                                     0.85
                          0.59
                                  0.68
             1
                    0.80
                                            8845
  8
  9
       accuracy
                                     0.79
                                            23878
      macro avg
                    0.80
                          0.75
                                     0.76
                                            23878
 11 weighted avg
                    0.80
                            0.79
                                     0.79
                                             23878
```

```
1 <matplotlib.axes._subplots.AxesSubplot at 0x1ac18372448>
```



```
clf = lr
now = datetime.datetime.now()
file_name = "../models/LogisticRegression_" + now.strftime("%m%d%H%M")

# save parameters
with open(f"{file_name}_{gs.best_score_.round(4)*100}%.txt", "w") as para_file:
```

```
para_file.write(str(gs.best_params_))
print(gs.best_params_)

# save figure
cm_plot.get_figure().savefig(file_name + ".png")

# save model
joblib.dump(clf, file_name + ".model")

# use this to load a saved model
# lgbm_loded = joblib.load('.model')

1 {'boosting': 'dart' 'feature fraction': 0.7 'lambda l2': 0.1 'max depth': 25 'min split gain': 0.1 'n estimators': 3000
```

```
1 ['../models/LogisticRegression_04161442.model']
```

## 2. Random Forest (baseline)

Fit the training set:

Prediction and result:

```
y_pred = forest.predict(X_test)
print(f'Train(accuracy): {forest.score(X_train, y_train).round(5)}')
print(f'Test(accuracy): {forest.score(X_test, y_test).round(5)}\n')
print(metrics.classification_report(y_test, y_pred))

cm_matrix = pd.DataFrame(data=metrics.confusion_matrix(y_test, y_pred), columns=['PP', 'PN'], index=['AP', 'AN'])
cm_plot = sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='RdBu_r') # visualize confusion matrix with seaborn heatmap
cm_plot
```

```
1 | Train(accuracy): 0.97796
2 Test(accuracy): 0.8925
               precision recall f1-score support
             0
                    0.90
                          0.94
6
                                    0.92
                                             15033
                    0.89
                          0.81
                                     0.85
                                             8845
9
                                     0.89
                                             23878
      accuracy
                    0.89
                            0.88
10
                                     0.88
                                             23878
     macro avg
11 weighted avg
                    0.89
                            0.89
                                     0.89
                                             23878
```

```
1 | <matplotlib.axes._subplots.AxesSubplot at 0x1405cbe3188>
```



#### Feature importance:

```
1) hotel
                                   0.146114
    2) lead_time
                                   0.120920
                                   0.115639
    arrival_date_month
3
    4) arrival_date_week_number
                                   0.068819
    5) arrival_date_day_of_month
                                   0.062851
                                   0.059945
    stays_in_weekend_nights
    7) stays_in_week_nights
                                   0.046318
    8) adults
                                   0.045873
8
9
    9) children
                                   0.044790
10 10) babies
                                   0.035386
11 11) meal
                                   0.030336
12 12) country
                                   0.026822
13 | 13) market_segment
                                   0.026390
14 14) distribution_channel
                                   0.025442
15 15) is_repeated_guest
                                   0.024904
16 16) previous_cancellations
                                   0.022886
17 previous_bookings_not_canceled 0.019146
18 18) reserved_room_type 0.014447
   19) assigned_room_type
                                   0.011666
20 20) booking_changes
                                   0.011630
21 21) deposit_type
                                   0.010561
22 22) agent
                                   0.009580
23 23) company
                                   0.005719
24 24) days_in_waiting_list
                                   0.004627
25 25) customer_type
                                   0.004015
                                   0.002204
26 26) adr
27 27) required_car_parking_spaces
                                   0.002110
28 28) total_of_special_requests
                                   0.000859
```

## Save:

```
1 clf = forest
2 now = datetime.datetime.now()
    file_name = "../models/RandomForest_" + now.strftime("%m%d%H%M")
5 # save parameters
 6
    with open(f"{file_name}_{gs.best_score_.round(4)*100}%.txt", "w") as para_file:
     para_file.write(str(gs.best_params_))
 8
      print(gs.best_params_)
10 # save figure
cm_plot.get_figure().savefig(file_name + ".png")
12
13 # save model
joblib.dump(clf, file_name + ".model")
15
    # use this to load a saved model
17 # lgbm_loded = joblib.load('.model')
```

```
[ 'colsample_bytree': 0.7, 'max_depth': 50, 'n_estimators': 100, 'reg_alpha': 1.3, 'reg_lambda': 1.1, 'subsample': 0.9}
```

```
1 ['../models/RandomForest_04160226.model']
```

# 3. LightGBM

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

<u>GitHub</u> | <u>Documentation</u> | <u>Parameter Tuning (official tutorial)</u>

```
1 | # !pip install lightgbm # if not installed
 2 lgbmclf = lgbm.LGBMclassifier()
   param_grid = {
4 # 'objective ...
5 'objective':['binary'],
          'objective':['binary','cross_entropy'],
       'boosting':['gbdt', 'dart'],
          'boosting':['dart'],
       'n_estimators': [3000],
 8
       'num_leaves': [25, 50, 100],
 9
        'min_data_in_leaf':[]
10 #
       'max_depth': [10, 25],
        'reg_alpha': [1.1, 1.3],
'reg_lambda': [1.1, 1.3],
12 #
13 # 'reg_lambua . _ 'lambda_12': [0.1, 0.3],
        'min_split_gain': [0.1, 0.3],
       'feature_fraction': [0.5, 0.7],
16
        'subsample': [0.7, 0.9],
'subsample_freq': [20]
17 #
18 #
19 #
        'max_bin': [100, 150]
20 }
21 gs, pred = algorithm_pipeline(lgbmclf, param_grid, cv=3) # some parameters already define above, see function algorithm_pipeline()
22 print(gs.best_score_)
23 print(gs.best_params_)
```

1 | Fitting 3 folds for each of 96 candidates, totalling 288 fits

```
1 | 0.8903593200853003
2 {'boosting': 'dart', 'feature_fraction': 0.7, 'lambda_12': 0.1, 'max_depth': 25, 'min_split_gain': 0.1, 'n_estimators': 3000, 'num_leaves': 100, 'objective': 'binary'}
```

Prediction and result:

```
clf = gs.best_estimator_
clf.fit(X_train, y_train)
print(f'Train(accuracy): {clf.score(X_train, y_train).round(5)}') # Python >= 3.7

print(f'Test(accuracy): {clf.score(X_test, y_test).round(5)}\n')
y_pred = clf.predict(X_test)
print(metrics.classification_report(y_test, y_pred))

cm_matrix = pd.DataFrame(data=metrics.confusion_matrix(y_test, y_pred), columns=['PP', 'PN'], index=['AP', 'AN'])
cm_plot = sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='RdBu_r') # visualize confusion matrix with seaborn heatmap
cm_plot
```

```
1 | Train(accuracy): 0.98896
2 Test(accuracy): 0.89614
4
                precision recall f1-score support
5
                    0.91 0.93 0.92
0.88 0.84 0.86
6
             0
                                              15033
             1
                                               8845
9
                                      0.90
                                               23878
      accuracy
                  0.89 0.88 0.89
0.90 0.90 0.90
     macro avg
10
                                               23878
11 weighted avg
                                               23878
```

```
1 <matplotlib.axes._subplots.AxesSubplot at 0x1ac5f715f48>
```



Dump the model to file for persistence:

```
1  now = datetime.datetime.now()
    file_name = "../models/LightGBM_" + now.strftime("%m%d%H%M")
 4 # save parameters
   with open(f"{file_name}_{gs.best_score_.round(4)*100}%.txt", "w") as para_file:
       para_file.write(str(gs.best_params_))
       print(gs.best_params_)
 9 # save figure
10 cm_plot.get_figure().savefig(file_name + ".png")
11
12 # save model
joblib.dump(clf, file_name + ".model")
14
15 # use this to load a saved model
16 # lgbm_loded = joblib.load('.model')
1 | {'boosting': 'dart', 'feature_fraction': 0.7, 'lambda_12': 0.1, 'max_depth': 25, 'min_split_gain': 0.1, 'n_estimators': 3000,
   'num_leaves': 100, 'objective': 'binary'}
```

```
1 ['../models/LightGBM_04161347.model']
```

```
1 | lgbm.plot_importance(clf, height = 0.7, figsize = (6, 10), dpi = 60)
```

```
1 <matplotlib.axes._subplots.AxesSubplot at 0x1ac71de8c88>
```



```
# !pip install graphviz
| # !pip install graphviz
| # lgbm.plot_tree(clf, figsize = (6, 10), dpi = 60)

| Collecting graphviz
| Downloading graphviz-0.13.2-py2.py3-none-any.whl (17 kB)
```

```
1 | # train_scores_mean = gs.cv_results_["mean_train_score"]
 2 # train_scores_std = gs.cv_results_["std_train_score"]
 3 test_scores_mean = gs.cv_results_["mean_test_score"]
   test_scores_std = gs.cv_results_["std_test_score"]
 params = range(len(gs.cv_results_["params"]))
 7 plt_cv = plt.figure()
8 plt.title('Model')
9 plt.xlabel('Parameter Combinition')
10 plt.ylabel('Score')
   # plot train scores
11
plt.semilogx(params, test_scores_mean, label='Mean Test score',
                color='navy')
13
plt.legend(loc='best')
15 plt.show()
plt_cv.savefig(file_name + "_cvresult.png")
```



## 4. XGBoost

XGBoost - Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen & Guestrin (2016) doi:10.1145/2939672.2939 785.

### Github | Documentation | Parameter Tuning (official tutorial)

Installing collected packages: graphvizSuccessfully installed graphviz-0.13.2

Parameter tuning using GS

```
1 xgb = XGBClassifier()
    param_grid = {
        'n_estimators': [50, 100, 500],
       'colsample_bytree': [0.7, 0.8],
 4
        'max_depth': [5, 15, 25, 50],
5
6
       'reg_alpha': [1.1, 1.3],
       'reg_lambda': [1.1, 1.3],
       'subsample': [0.7, 0.9],
           'tree_method':['gpu_hist'],
9 #
           'gpu_id':[1]
10 #
11 }
   gs, pred = algorithm_pipeline(xgb, param_grid, cv=3)
12
13 print(gs.best_score_)
14 print(gs.best_params_)
```

```
1 | Fitting 3 folds for each of 192 candidates, totalling 576 fits
```

```
0.8873858846569945
2 {'colsample_bytree': 0.7, 'max_depth': 50, 'n_estimators': 100, 'reg_alpha': 1.3, 'reg_lambda': 1.1, 'subsample': 0.9}
```

Prediction and result:

```
clf = gs.best_estimator_
clf.fit(X_train, y_train)
print(f'Train(accuracy): {clf.score(X_train, y_train).round(5)}') # Python >= 3.7

print(f'Test(accuracy): {clf.score(X_test, y_test).round(5)}\n')
y_pred = clf.predict(X_test)
print(metrics.classification_report(y_test, y_pred))

cm_matrix = pd.DataFrame(data=metrics.confusion_matrix(y_test, y_pred), columns=['PP', 'PN'], index=['AP', 'AN'])
cm_plot = sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='RdBu_r') # visualize confusion matrix with seaborn heatmap
cm_plot
```

```
1 Train(accuracy): 0.99574
   Test(accuracy): 0.89404
                         recall f1-score support
4
               precision
5
                         0.93
            0
                   0.90
                                    0.92
                                           15033
                   0.87
                           0.83
                                   0.85
                                            8845
            1
8
                                            23878
9
      accuracy
                                     0.89
10
      macro avg
                   0.89
                           0.88
                                     0.89
                                            23878
11 weighted avg
                   0.89
                         0.89
                                     0.89
                                            23878
```

### 1 <matplotlib.axes.\_subplots.AxesSubplot at 0x1405e6b0248>



### Dumping to file:

```
now = datetime.datetime.now()
file_name = "../models/XGBoost_" + now.strftime("%m%d%H%M")

# save parameters
with open(f"{file_name}_{gs.best_score_.round(4)*100}%.txt", "w") as para_file:
    para_file.write(str(gs.best_params_))
    print(gs.best_params_)

# save figure
cm_plot.get_figure().savefig(file_name + ".png")

# save model
joblib.dump(clf, file_name + ".model")

# use this to load a saved model
# lgbm_loded = joblib.load('.model')
```

```
1 {'colsample_bytree': 0.7, 'max_depth': 50, 'n_estimators': 100, 'reg_alpha': 1.3, 'reg_lambda': 1.1, 'subsample': 0.9}
```

```
1 ['../models/XGBoost_04160226.model']
```