

Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer

David Berthelot*, Colin Raffel*, Aurko Roy, and Ian Goodfellow (*equal contribution)

Abstract

Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.

Interpolation and representations

Interpolation as a benchmark

Representation learning

MNIST	32 256	94.90±0.14 93.94±0.13		96.00 ± 0.27 98.51 ± 0.04		96.56±0.31 98.74±0.14				97.50±0.18 97.25±1.42		98.25 ± 0.11 99.00 ± 0.08
SVHN	32 256	26.21 ± 0.42 22.74 ± 0.05		25.15 ± 0.78 77.89 ± 0.35		29.58 ± 3.22 66.30 ± 1.06				24.53±1.3 44.94±20.		$34.47{\pm}1.14$ $85.14{\pm}0.20$
CIFAR-10	256 1024		47.92 ± 0.20 51.62 ± 0.25		0.36 0.14				$\pm 1.45 \\ \pm 0.88$	42.80±0.4 16.22±12.		52.77 ± 0.45 63.99 ± 0.47
Single-layer classifier accuracy												
	•	Dataset	d_z	Baseline	Denois	sing	VAE	AAE	VQ-VAE	ACAI		
		MNIST	32 256	77.56 53.70	82.5 70.8	-	75.74 83.44	79.19 81.00	82.39 96.80	94.38 96.17		

Clustering accuracy

Synthetic line task

Interpolation examples

SVHN

CelebA

Pointers

Paper: https://arxiv.org/abs/1807.07543
Code: http://github.com/brain-research/acai
This poster: http://bit.ly/acai-poster

E-mails: dberth@google.com, craffel@gmail.com

Aurko

David

lan