Data Management Systems Introduction to Design Theory

Matteo Devigili

May 24th, 2021

Agenda

- Functional Dependencies
- Data Anomalies
- Normal Forms:
 - i 1NF
 - ii BCNF
 - iii 3NF

Functional Dependencies

"If two tuples of R agree on all of the attributes A_1, A_2, \ldots, A_n then they must also agree on all of another list of attributes B_1, B_2, \ldots, B_m . We write this FD formally as $A_1, A_2, \ldots, A_n \to B_1, B_2, \ldots, B_m$ and say that: A_1, A_2, \ldots, A_n functionally determine A_1, A_2, \ldots, A_m "

Garcia-Molina, Ullman, Widom 2008

Example Courses

Table: Courses

Name	Year	Weeks	Degree
NLP	2020/2021	7	Business Analytics
DMS	2020/2021	6	Business Analytics
DMS	2020/2021	6	Actuarial Science
DMS	2020/2021	6	Actuarial Management
D-Viz	2020/2021	6	Business Analytics
D-Viz	2020/2021	6	Actuarial Management
DMS	2019/2020	2	Business Analytics
D-Viz	2019/2020	4	Business Analytics

What is the **FD**?

Example

Courses

Table: Courses

Name	Year	Weeks	Degree
NLP	2020/2021	7	Business Analytics
DMS	2020/2021	6	Business Analytics
DMS	2020/2021	6	Actuarial Science
DMS	2020/2021	6	Actuarial Management
D-Viz	2020/2021	6	Business Analytics
D-Viz	2020/2021	6	Actuarial Management
DMS	2019/2020	2	Business Analytics
D-Viz	2019/2020	4	Business Analytics

 $\textit{name year} \rightarrow \textit{weeks}$

Example Courses

Table: Courses

Name	Year	Weeks	Degree
NLP	2020/2021	7	Business Analytics
DMS	2020/2021	6	Business Analytics
DMS	2020/2021	6	Actuarial Science
DMS	2020/2021	6	Actuarial Management
D-Viz	2020/2021	6	Business Analytics
D-Viz	2020/2021	6	Actuarial Management
DMS	2019/2020	2	Business Analytics
D-Viz	2019/2020	4	Business Analytics

What about: $\textit{name year} \rightarrow \textit{degree}$

Keys & Superkeys

- "A <u>superkey</u> of a relation schema $R = \{A_1, A_2, \dots, A_n\}$ is a set of attributes $S \subseteq R$ with the property that no two tuples t_1 and t_2 in any legal relation state r of R will have $t_1[S] = t_2[S]$ "
- "A key K is a superkey with the additional property that removal of any attribute from K will cause K not to be a superkey anymore" (a key has to be minimal)

Elmasri, Ramez, and Shamkant B. Navathe 2016

Example

Keys & Superkeys

Table: Courses

Name	Year	Weeks	Degree	Count
NLP	2020/2021	7	Business Analytics	57
DMS	2020/2021	6	Business Analytics	45
DMS	2020/2021	6	Actuarial Science	15
DMS	2020/2021	6	Actuarial Management	9
D-Viz	2020/2021	6	Business Analytics	58
D-Viz	2020/2021	6	Actuarial Management	19
DMS	2019/2020	2	Business Analytics	10
D-Viz	2019/2020	4	Business Analytics	80

a possible superkey: {name, year, weeks, degree} the key: {name, year, degree}

Functional Dependencies

So what?

```
i Look for FDs;
```

ii Use FDs to design better relation schemas;

iii Pay attention to local FDs!

Data Anomalies

- Redundancy: unnecessary repetition of information;
- Update Anomalies: we may replace information of a tuple, but forget about others;
- *Deletion Anomalies*: after deleting, we may accidentally lose some other information.

Example Redundancy

Table: Courses

Name	Year	Term	Weeks	Degree
NLP	2020/2021	Т3	7	Business Analytics
DMS	2020/2021	T3	6	Business Analytics
DMS	2020/2021	Т3	6	Actuarial Science
DMS	2020/2021	Т3	6	Actuarial Management
D-Viz	2020/2021	T1	6	Business Analytics
D-Viz	2020/2021	T1	6	Actuarial Management
DMS	2019/2020	T2	2	Business Analytics
D-Viz	2019/2020	T2	4	Business Analytics

Example Update Anomalies

Table: Courses

Name	Year	Term	Weeks	Degree
NLP	2020/2021	Т3	7	Business Analytics
DMS	2020/2021	T3	5	Business Analytics
DMS	2020/2021	T3	6	Actuarial Science
DMS	2020/2021	Т3	6	Actuarial Management
D-Viz	2020/2021	T1	6	Business Analytics
D-Viz	2020/2021	T1	6	Actuarial Management
DMS	2019/2020	T2	2	Business Analytics
D-Viz	2019/2020	T2	4	Business Analytics

Example Deletion Anomalies

Table: Courses

Name	Year	Term	Weeks	Degree
NLP	2020/2021	T 3	7	Business Analytics
DMS	2020/2021	T3	6	Business Analytics
DMS	2020/2021	Т3	6	Actuarial Science
DMS	2020/2021	Т3	6	Actuarial Management
D-Viz	2020/2021	T1	6	Business Analytics
D-Viz	2020/2021	T1	6	Actuarial Management
DMS	2019/2020	T2	2	Business Analytics
D-Viz	2019/2020	T2	4	Business Analytics

Decomposition

A possible decomposition:

Name	Year	Term	Weeks
NLP	2020/2021	Т3	7
DMS	2020/2021	T3	6
D-Viz	2020/2021	T1	6
DMS	2019/2020	T2	2
D-Viz	2019/2020	T2	4

Name	Year	Degree
NLP	2020/2021	Business Analytics
DMS	2020/2021	Business Analytics
DMS	2020/2021	Actuarial Science
DMS	2020/2021	Actuarial Management
D-Viz	2020/2021	Business Analytics
D-Viz	2020/2021	Actuarial Management
DMS	2019/2020	Business Analytics
D-Viz	2019/2020	Business Analytics

References

- 1 Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom. Database Systems: The Complete Book, Pearson, 2008.
- 2 Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems, Global Edition, Pearson Education Limited, 2016.