Applications of Taylor Polynominals

1. **Quote.** "I have been impressed with the urgency of doing. Knowing is not enough; we must apply."

(Leonardo da Vinci, Italian polymath, 1452-1519)

2. Reminder 1.

If f has a power series representation at a then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

and this representation is called the Taylor series of the function f at a.

3. Reminder 2 - Taylor's Inequality.

If

$$\left| f^{(n+1)}(x) \right| \le M \text{ for } |x-a| \le d$$

then the remainder of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$.

4. Example.

- (a) Approximate $f(x) = x^{2/3}$ by a Taylor polynomial centred at a=1 with degree 3.
- (b) Use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_3(x)$ when $0.8 \le x \le 1.2$.

5. **Example.** Approximate the area between the curve $y = \frac{\sin x}{x}$ and the x-axis for

$$-\pi \leq x \leq \pi$$
.

6. **Example.** A classic example from Physics – the frictionless pendulum.

We consider a pendulum of mass m and length ℓ , and ignore friction. Denote by $\phi(t)$ the angle of displacement at time t, and let $g\approx 9.81ms^{-2}$, the gravitational constant. Newton's law of motion states $\vec{F}=m\vec{a}$, where \vec{a} denotes acceleration. In our case this leads to $m\ell\phi''(t)=-mg\sin{(\phi(t))}$. Setting $\omega^2=\frac{g}{l}$ this becomes a differential equation for the function $\phi(t)$,

$$\phi''(t) + \omega^2 \sin(\phi(t)) = 0$$

Taylor approximation: $\sin \phi =$

Let's try to solve this new differential equation via power series.

Notes.