Tables and Priority Queues

Initially prepared by Dr. İlyas Çiçekli; improved by various Bilkent CS202 instructors.

Tables

- Appropriate for problems that must manage data by value.
- Some important operations of tables:
 - Inserting a data item containing the value x.
 - Delete a data item containing the value x.
 - Retrieve a data item containing the value x.
- Various table implementations are possible.
 - We have to analyze the possible implementations so that we can make an intelligent choice.
 - Some operations are implemented more efficiently in certain implementations.

An ordinary table of cities

<u>City</u>	<u>Country</u>	<u>Population</u>
Athens	Greece	2,500,000
Barcelona	Spain	1,800,000
Cairo	Egypt	9,500,000
London	England	9,400,000
New York	U.S.A.	7,300,000
Paris	France	2,200,000
Rome	Italy	2,800,000
Toronto	Canada	3,200,000
Venice	Italy	300,000

Table Operations

- Some of the table operations are possible:
 - Create an empty table
 - Destroy a table
 - Determine whether a table is empty
 - Determine the number of items in the table
 - Insert a new item into a table
 - Delete the item with a given search key
 - Retrieve the item with a given search key
 - Traverse the table
- The client may need a subset of these operations or require more
- Are keys in the table are unique?
 - We will assume that keys in our tables are unique.
 - But, some other tables allow duplicate keys.

Selecting an Implementation

- Since an array or a linked list represents items one after another, these implementations are called linear.
- There are four categories of linear implementations:
 - Unsorted, array based (an unsorted array)
 - Unsorted, pointer based (a simple linked list)
 - Sorted (by search key), array based (a sorted array)
 - Sorted (by search key), pointer based (a sorted linked list).
- We have also nonlinear implementations such as binary search trees.
 - Binary search tree implementation offers several advantages over linear implementations.

Sorted Linear Implementations

Array-based implementation

Pointer-based implementation

A Nonlinear Implementation

Binary search tree implementation

Which Implementation?

- It depends on our application.
- Answer the following questions before selecting an implementation.

1. What operations are needed?

- Our application may not need all operations.
- Some operations can be implemented more efficiently in one implementation, and some others in another implementation.

2. How often is each operation required?

- Some applications may require many occurrences of an operation, but other applications may not.
 - For example, some applications may perform many retrievals, but not so many insertions and deletions. On the other hand, other applications may perform many insertions and deletions.

How to Select an Implementation – Scenario A

- Scenario A: Let us assume that we have an application:
 - Inserts data items into a table.
 - After all data items are inserted, traverses this table in no particular order.
 - Does not perform any retrieval and deletion operations.
- Which implementation is appropriate for this application?
 - Keeping the items in a sorted order provides no advantage for this application.
 - In fact, it will be more costly for this application.
 - → Unsorted implementation is more appropriate.

How to Select an Implementation – Scenario A

- Which unsorted implementation (array-based, pointer-based)?
 - Do we know the maximum size of the table?
 - If we know the expected size is close to the maximum size of the table
 - → an array-based implementation is more appropriate

(because a pointer-based implementation uses extra space for pointers)

- Otherwise,
- → a pointer-based implementation is more appropriate

(because too many entries will be empty in an array-based implementation)

How to Select an Implementation – Scenario B

- Scenario B: Let us assume that we have an application:
 - Performs many retrievals, but few insertions and deletions
 - E.g., a thesaurus (to look up synonyms of a word)
- For this application, a sorted implementation is more appropriate
 - We can use binary search to access data, if we have sorted data.
 - A sorted linked-list implementation is not appropriate since binary search is not practical with linked lists.
 - If we know the maximum size of the table
 - → a sorted array-based implementation is more appropriate for frequent retrievals.
 - Otherwise
 - → a binary search tree implementation is more appropriate for frequent retrievals. (in fact, balanced binary search trees will be used)

How to Select an Implementation – Scenario C

- Scenario C: Let us assume that we have an application:
 - Performs many retrievals as well as many insertions and deletions.

? Sorted Array Implementation

- Retrievals are efficient.
- But insertions and deletions are not efficient.

shifting data

→ a sorted array-based implementation is not appropriate for this application.

? Sorted Linked List Implementation

- Retrievals, insertions, and deletions are not efficient.
- → a sorted linked-list implementation is not appropriate for this application.

?Binary Search Tree Implementation

- Retrieval, insertion, and deletion are efficient in the average case.
- → a binary search tree implementation is appropriate for this application. (provided that the height of the BST is O(logn))

Which Implementation?

- Linear implementations of a table can be appropriate despite its difficulties.
 - Linear implementations are easy to understand, easy to implement.
 - For small tables, linear implementations can be appropriate.
 - For large tables, linear implementations may still be appropriate
 (e.g., for the case that has only insertions to an unsorted table--Scenario A)
- In general, a binary search tree implementation is a better choice.

Worst case: O(n)for most table operations

Average case: O(log₂n)
 for most table operations

Balanced binary search trees increase the efficiency.

Which Implementation?

The average-case time complexities of the table operations

	Insertion	Deletion	Retrieval	Traversal
Unsorted array based	O(1)	O(n)	O(n)	O(n)
Unsorted pointer based	O(1)	O(n)	O(n)	O(n)
Sorted array based	O(n)	O(n)	O(log n)	O(n)
Sorted pointer based	O(n)	O(n)	O(n)	O(n)
Binary search tree	O(log n)	O(log n)	O(log n)	O(n)

Binary Search Tree Implementation - TableB.h

```
#include "BST.h"// Binary search tree operations
typedef TreeItemType TableItemType;
class Table {
public:
            // default constructor
   Table();
   // copy constructor and destructor are supplied by the compiler
   bool tableIsEmpty() const;
   int tableLength() const;
   void tableInsert(const TableItemType& newItem) throw(TableException);
   void tableDelete(KeyType searchKey) throw(TableException);
   void tableRetrieve(KeyType searchKey, TableItemType& tableItem) const
                                                throw (TableException);
   void traverseTable(FunctionType visit);
protected:
   void setSize(int newSize);
private:
                                        // BST that contains the table's items
  BinarySearchTree bst;
                                                // Number of items in the table
   int size;
```

Binary Search Tree Implementation – tableInsert

```
#include "TableB.h"// header file

void Table::tableInsert(const TableItemType& newItem) throw(TableException) {
    try {
        bst.searchTreeInsert(newItem);
        ++size;
    }
    catch (TreeException e) {
        throw TableException("Cannot insert item");
    }
}
```

The Priority Queue

Priority queue is a variation of the table.

- Each data item in a priority queue has a priority value.
- Using a priority queue we prioritize a list of tasks:
 - Job scheduling

Major operations:

- Insert an item with a priority value into its proper position in the priority queue.
- Deletion is not the same as the deletion in the table. We delete the item with the highest priority.

Priority Queue Operations

create – creates an empty priority queue.

destroy – destroys a priority queue.

delete

isEmpty — determines whether a priority queue is empty or not.

insert – inserts a new item (with a priority value) into a priority queue.

 retrieves the item in a priority queue with the highest priority value, and deletes that item from the priority queue.

Which Implementations?

1. Array-based implementation

Insertion will be O(n)

2. Linked-list implementation

Insertion will be O(n)

3. BST implementation

Insertion is O(log₂n) in average
 but O(n) in the worst case.

We need a balanced BST so that we can get better performance [O(logn) in the worst case] → HEAP

Heaps

Definition: A heap is a complete binary tree such that

- It is empty, or
- Its root contains a search key greater than or equal to the search key in each of its children, and each of its children is also a heap.
- Since the root contains the item with the largest search key, heap in this definition is also known as **maxheap**.
- On the other hand, a heap which places the smallest search key in its root is know as *minheap*.
- We will talk about maxheap as heap in the rest of our discussions.

Complete binary tree

- → Completely filled on all levels except possibly the lowest level
- → The lowest level is filled from left to right

Heap Property: Min-Heap

The smallest element in any subtree is the root element in a min-heap

<u>Min heap</u>: For every node i other than root, $A[parent(i)] \le A[i]$

→ Parent node is always smaller than the child nodes

Heap Property: Max-Heap

The largest element in any subtree is the root element in a max-heap

We will focus on max-heaps

<u>Max heap</u>: For every node i other than root, $A[parent(i)] \ge A[i]$

→ Parent node is always larger than the child nodes

Differences between a Heap and a BST

- A heap is NOT a binary search tree.
 - 1. A BST can be seen as sorted, but a heap is ordered in much weaker sense.
 - Although it is not sorted, the order of a heap is sufficient for the efficient implementation of priority queue operations.
 - 2. A BST has different shapes, but a heap is always complete binary tree.

$$left(i) = 2i + 1$$

e.g. Left child of node 3 has index 7

$$right(i) = 2i + 2$$

e.g. Right child of node 1 has index 4

$$parent(i) = \lfloor (i-1)/2 \rfloor$$

e.g. Parent of node 6 has index 2

- □ items[0] is always the root element
- Array items has two attributes:
 - MAX_SIZE: Size of the memory allocated for array items
 - size: The number elements in heap at a given time

size ≤ MAX_SIZE

Major Heap Operations

Two major heap operations are insertion and deletion.

Insertion

- Inserts a new item into a heap.
- After the insertion, the heap must satisfy the heap properties.

Deletion

- Retrieves and deletes the root of the heap.
- After the deletion, the heap must satisfy the heap properties.

Heap Delete – First Step

- The first step of **heapDelete** is to retrieve and delete the root.
 - This creates two disjoint heaps.

Heap Delete – Second Step

- Move the last item into the root.
- The resulting structure may not be heap; it is called as semiheap.

0	5
1	9
2	6
2	3
4	2

Heap Delete – Last Step

The last step of *heapDelete* transforms the semiheap into a heap.

First semiheap passed to heapRebuild

Second semiheap passed to heapRebuild

Recursive calls to heapRebuild

Heap Delete

heapDelete (items, size)

 $\max \leftarrow items[0]$

items[0] \leftarrow items[size-1]

 $size \leftarrow size - 1$

<u>heapRebuild</u>(items, 0, size)

return max

Return the max element, and reorganize the heap to maintain heap property

only decrement size in the array does not actually delete the node

Maintaining heap property:

Subtrees rooted at left(i) and right(i) are already heaps.

But, items[i] may violate the heap property (i.e., may be smaller than its children)

Idea: Float down the value at items[i] in the heap so that subtree rooted at i becomes a heap.

select larger child

rebuildHeap(items, 0, 9)

recursive call: rebuildHeap(items, 1, 9)

recursive call: rebuildHeap(items, 3, 9)

Rebuild Heap: Summary (Floating Down the Value)

rebuildHeap(items, 0, 9)

Heap Operations: Rebuild Heap

after rebuildHeap:

Heap Delete

ANALYSIS

- Since the height of a complete binary tree with n nodes is always \[\log_2(n+1) \]
 - → heapDelete is O(log₂n) worst case and average case

Heap Insert

A new item is inserted at the bottom of the tree, and it trickles up to its proper place

ANALYSIS

- Since the height of a complete binary tree with n nodes is always \[\log_2(n+1) \]
 - → heapInsert is O(log₂n)

worst case and average case

Heap Implementation

```
constint MAX HEAP = maximum-size-of-heap;
#include "KeyedItem.h"// definition of KeyedItem
typedef KeyedItem HeapItemType;
class Heap {
public:
                                         // default constructor
  Heap();
   // copy constructor and destructor are supplied by the compiler
  bool heapIsEmpty() const;
  void heapInsert(const HeapItemType& newItem) throw(HeapException);
   void heapDelete(HeapItemType& rootItem) throw(HeapException);
protected:
  void heapRebuild(int root);
                                        // Converts the semiheap rooted at
                                         // index root into a heap
private:
                                        // array of heap items
   HeapItemType items[MAX HEAP];
   int
                size;
                                         // number of heap items
};
```

Heap Implementation

```
// Default constructor
Heap::Heap() : size(0) {
}
boolHeap::heapIsEmpty() const {
   return (size == 0);
}
```

Heap Implementation -- heapInsert

```
void Heap::heapInsert(constHeapItemType&newItem) throw(HeapException) {
   if (size >= MAX HEAP)
         throw HeapException ("HeapException: Heap full");
   // Place the new item at the end of the heap
   items[size] = newItem;
                                                                   can be recursive
                                                                   heapRebuild(lastIndex)
                                                                   modify heapRebuild to trickle up
                                                                   instead of root to leaf
   // Trickle new item up to its proper position
   int place = size;
   int parent = (place - 1)/2; integer division, root index no matter left or right child
   while ( (place > 0) && (items[place].getKey() > items[parent].getKey()) ) {
         HeapItemType temp = items[parent];
         items[parent] = items[place];
         items[place] = temp;
        place = parent;
        parent = (place - 1)/2;
   ++size;
```

Heap Implementation -- heapDelete

```
Void Heap::heapDelete(HeapItemType&rootItem) throw(HeapException) {
   if (heapIsEmpty())
        throwHeapException("HeapException: Heap empty");
   else {
        rootItem = items[0];
        items[0] = items[--size];
        heapRebuild(0);
   }
```

Heap Implementation -- heapRebuild

```
voidHeap::heapRebuild(int root) {
   int child = 2 * root + 1;  // index of root's left child, if any
  if ( child < size ) {</pre>
       // root is not a leaf so that it has a left child
       int rightChild = child + 1; // index of a right child, if any
       // If root has right child, find larger child
       if ( (rightChild < size) &&</pre>
            (items[rightChild].getKey() >items[child].getKey()) )
               // If root's item is smaller than larger child, swap values
       if ( items[root].getKey() < items[child].getKey() ) {</pre>
               HeapItemType temp = items[root];
               items[root] = items[child];
               items[child] = temp;
               // transform the new subtree into a heap
               heapRebuild (child);
```

Heap Implementation of PriorityQueue

- The heap implementation of the priority queue is straightforward
 - Since the heap operations and the priority queue operations are the same.
- When we use the heap,
 - Insertion and deletion operations of the priority queue will be O(log₂n).

Heap Implementation of PriorityQueue

```
#include "Heap.h"// ADT heap operations
typedef HeapItemType PQItemType;
class PriorityQueue {
public:
   // default constructor, copy constructor, and destructor
   // are supplied by the compiler
   // priority-queue operations:
  bool pqIsEmpty() const;
  void pqInsert(const PQItemType& newItem) throw (PQException);
   void pgDelete(PQItemType& priorityItem) throw (PQException);
private:
  Heap h;
};
```

Heap Implementation of PriorityQueue

```
bool PriorityQueue::pqIsEmpty() const {
   return h.heapIsEmpty();
void PriorityQueue::pqInsert(const PQItemType& newItem) throw (PQException) {
   try {
        h.heapInsert(newItem);
   catch (HeapException e) {
        throw PQueueException ("Priority queue is full");
void PriorityQueue::pqDelete(PQItemType& priorityItem) throw (PQException) {
   try {
        h.heapDelete(priorityItem);
   catch (HeapException e) {
        throw PQueueException ("Priority queue is empty");
```

Heap or Binary Search Tree?

Heapsort

We can make use of a heap to sort an array:

- 1. Create a heap from the given initial array with n items.
- 2. Swap the root of the heap with the last element in the heap.
- 3. Now, we have a semiheap with n-1 items, and a sorted array with one item.
- 4. Using heapRebuild convert this semiheap into a heap. Now we will have a heap with n-1 items.
- 5. Repeat the steps 2-4 as long as the number of items in the heap is more than 1.

Heapsort -- Building a heap from an array

A heap corresponding to anArray

The initial contents of anArray


```
for (index = n - 1; index >= 0; index--) {
    // Invariant: the tree rooted at index is a semiheap
    heapRebuild(anArray, index, n)
    // Assertion: the tree rooted at index is a heap.
}
```

Where are the leaves stored?

Heapsort -- Building a heap from an array

A heap corresponding to anArray

The initial contents of anArray

Heapsort -- Building a heap from an array

Tree representation of anArray Array anArray Original anArray After heapRebuild (anArray, 2, 6) 10 After heapRebuild (anArray, 1, 6) After heapRebuild (anArray, 0, 6)

Heapsort

```
heapSort(inout anArray:ArrayType, in n:integer) {
  // build an initial heap
  for (index = (n/2) - 1; index >= 0; index--)
                                                            O(n)
       heapRebuild(anArray, index, n)
  for (last = n-1; last >0; last--) {
       // invariant: anArray[0..last] is a heap,
       // anArray[last+1..n-1] is sorted and
       // contains the largest items of anArray.
       swap anArray[0] and anArray[last]
                                                           O(nlogn)
       // make the heap region a heap again
       heapRebuild(anArray, 0, last)
```

Heapsort

Heapsort partitions an array into two regions.

- Each step moves an item from the HeapRegion to SortedRegion.
- The invariant of the heapsort algorithm is:

After the kth step,

- The SortedRegion contains the k largest value and they are in sorted order.
- The items in the HeapRegion form a heap.

Heapsort -- Trace

Tree representation of Heap region Array anArray Heap After making anArray a heap 9 last Sorted Heap After swapping anArray [0] with 9 3 10 anArray[last] and decrementing last last Sorted Heap After heapRebuild (anArray, 0, 4) last Sorted Heap After swapping anArray [0] with anArray[last] and decrementing last last Sorted Heap After heapRebuild (anArray, 0, 3) last

Heapsort -- Trace

After swapping anArray[0] with anArray[Last] and decrementing last

/³\

After rebuildHeap (anArray, 0, 2)

Heap			Sorted		
5	3	2	6	9	10
	_	last		_	

/⁵\

After swapping anArray[0] with anArray[last] and decrementing last

/²

After heapRebuild (anArray, 0, 1)

Heap		Sorted				
3	2	5	6	9	10	
	lagt				_	

/³

After swapping anArray[0] with anArray[last] and decrementing last

Неар	Sorted						
2	3	5	6	9	10		
last							

Array is sorted

Heapsort -- Analysis

Heapsort is

```
O(n log n) at the average case
```

O(n log n) at the worst case

- Compared against quicksort,
 - Heapsort usually takes more time at the average case
 - But its worst case is also O(n log n).