Linear Programming and the Simplex method

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova

Mathematical Programming models

$$\begin{aligned} & \min(\max) & f(x) \\ & \text{s.t.} & g_i(x) = b_i & (i = 1 \dots k) \\ & g_i(x) \le b_i & (i = k + 1 \dots k') \\ & g_i(x) \ge b_i & (i = k' + 1 \dots m) \\ & x \in \mathbb{R}^n \end{aligned}$$

•
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is a vector (column) of n **REAL** variables;

- f e g_i are functions $\mathbb{R}^n \to \mathbb{R}$
- $b_i \in \mathbb{R}$

Linear Programming (LP) models

 $f \in g_i$ are **linear** functions of x

$$\begin{array}{lll} \min(\max) & c_1x_1 + c_2x_2 + \ldots + c_nx_n \\ \text{s.t.} & a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n &= b_i \quad (i = 1 \ldots k) \\ & a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n &\leq b_i \quad (i = k+1 \ldots k') \\ & a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n &\geq b_i \quad (i = k'+1 \ldots m) \\ & x_i \in \mathbb{R} & (i = 1 \ldots n) \end{array}$$

Notice: for the moment, just **CONTINUOUS** variables are considered!!!

We need different methods for models with integer or binary variables.

Resolution of an LP model

- Feasible solution: $x \in \mathbb{R}^n$ satisfying all the constraints
- Feasible region: set of all the feasible solutions x
- Optimal solution x^* [min]: $c^T x^* \le c^T x, \forall x \in \mathbb{R}^n, x$ feasible.

Solving a LP model is determining if it:

- is unfeasible
- is unlimited
- has a (finite) optimal solution

Resolution of an LP model

- Feasible solution: $x \in \mathbb{R}^n$ satisfying all the constraints
- Feasible region: set of all the feasible solutions x
- Optimal solution x^* [min]: $c^T x^* \leq c^T x, \forall x \in \mathbb{R}^n, x$ feasible.

Solving a LP model is determining if it:

- is unfeasible i.e. there's no feasible solution in the feasible region: the constraints are contradictory
- is unlimited i.e. we have an infinite solution because the feasible region is unlimited in the direction to optimize
- has a (finite) optimal solution

Geometry of LP

The feasible region is a **polyedron** (intersection of a finite number of closed half-spaces and hyperplanes in \mathbb{R}^n)

LP problem: $\min(\max)\{c^Tx : x \in P\}$, P is a polyhedron in \mathbb{R}^n .

Vertex of a polyhedron: definition

• $z \in \mathbb{R}^n$ is a **convex combination** of two points x and y if $\exists \lambda \in [0,1]$: $z = \lambda x + (1 - \lambda)y$

- $z \in \mathbb{R}^n$ is a **strict convex combination** of two points x and y if $\exists \lambda \in \langle (0,1) \rangle : z = \lambda x + (1-\lambda)y$.
- v ∈ P is vertex of a polyhedron P if it is not a strict convex combination of two distinct points of P:

$$\nexists x, y \in P, \lambda \in (0,1) : x \neq y, v = \lambda x + (1-\lambda)y$$

Vertex of a polyhedron: definition

• $z \in \mathbb{R}^n$ is a **convex combination** of two points x and y if $\exists \lambda \in [0,1]$: $z = \lambda x + (1 - \lambda)y$

- $z \in \mathbb{R}^n$ is a **strict convex combination** of two points x and y if $\exists \lambda \in \langle (0,1) \rangle : z = \lambda x + (1-\lambda)y$.
- v ∈ P is vertex of a polyhedron P if it is not a strict convex combination of two distinct points of P:

$$\nexists x, y \in P, \lambda \in (0,1) : x \neq y, v = \lambda x + (1 - \lambda)y$$

Vertex of a polyhedron: definition

• $z \in \mathbb{R}^n$ is a **convex combination** of two points x and y if $\exists \lambda \in [0,1]$: $z = \lambda x + (1 - \lambda)y$

- $z \in \mathbb{R}^n$ is a **strict convex combination** of two points x and y if $\exists \lambda \in \langle (0,1) \rangle : z = \lambda x + (1-\lambda)y$.
- v ∈ P is vertex of a polyhedron P if it is not a strict convex combination of two distinct points of P:

$$\nexists x, y \in P, \lambda \in (0,1) : x \neq y, v = \lambda x + (1 - \lambda)y$$

Representation of polyhedra

$$z \in \mathbb{R}^n$$
 is **convex combination** of $x^1, x^2 \dots x^k$ if $\exists \lambda_1, \lambda_2 \dots \lambda_k \geq 0$: $\sum_{i=1}^k \lambda_i = 1$ and $z = \sum_{i=1}^k \lambda_i x^i$

Theorem: representation of polyhedra [Minkowski-Weyl] - case limited

Polydron limited $P \subseteq \mathbb{R}^n$, $v^1, v^2, ..., v^k$ ($v^i \in \mathbb{R}^n$) vertices of P if $x \in P$ then $x = \sum_{i=1}^k \lambda_i v^i$ with $\lambda_i \geq 0, \forall i = 1..k$ and $\sum_{i=1}^k \lambda_i = 1$ (x is convex combination of the vertices of P)

Representation of polyhedra

$$z \in \mathbb{R}^n$$
 is **convex combination** of $x^1, x^2 \dots x^k$ if $\exists \lambda_1, \lambda_2 \dots \lambda_k \geq 0$: $\sum_{i=1}^k \lambda_i = 1$ and $z = \sum_{i=1}^k \lambda_i x^i$

Theorem: representation of polyhedra [Minkowski-Weyl] - case limited

Polydron limited $P \subseteq \mathbb{R}^n$, $v^1, v^2, ..., v^k$ ($v^i \in \mathbb{R}^n$) vertices of P if $x \in P$ then $x = \sum_{i=1}^k \lambda_i v^i$ with $\lambda_i \geq 0, \forall i = 1..k$ and $\sum_{i=1}^k \lambda_i = 1$ (x is convex combination of the vertices of P)

Optimal vertex: from graphical intuition to proof

Theorem: optimal vertex(fix *min* objective function)

LP problem $\min\{c^Tx : x \in P\}$, P non empty and limited

- LP ha optimal solution
- one of the optimal solution of LP is a vertex of P

Proof:

$$V = \{v^{1}, v^{2} \dots v^{k}\} \qquad v^{*} = \arg\min_{v \in V} c^{T} v$$

$$c^{T} x = c^{T} \sum_{i=1}^{k} \lambda_{i} v^{i} = \sum_{i=1}^{k} \lambda_{i} c^{T} v^{i} \ge \sum_{i=1}^{k} \lambda_{i} c^{T} v^{*} = c^{T} v^{*} \sum_{i=1}^{k} \lambda_{i} = c^{T} v^{*}$$

Summarizing: $\forall x \in P, \ c^T v^* \le c^T x$

We can limit the search of an optimal solution to the vertices of P!

Optimal vertex: from graphical intuition to proof

Theorem: optimal vertex(fix *min* objective function)

LP problem $\min\{c^Tx : x \in P\}$, P non empty and limited

- LP ha optimal solution
- one of the optimal solution of LP is a vertex of P

Proof:

$$V = \{v^1, v^2 \dots v^k\}$$
 $v^* = \arg\min_{v \in V} c^T v$

$$c^{T}x = c^{T} \sum_{i=1}^{k} \lambda_{i} v^{i} = \sum_{i=1}^{k} \lambda_{i} c^{T} v^{i} \ge \sum_{i=1}^{k} \lambda_{i} c^{T} v^{*} = c^{T} v^{*} \sum_{i=1}^{k} \lambda_{i} = c^{T} v^{*}$$

Summarizing:
$$\forall x \in P, c^T v^* \leq c^T x$$

Optimal vertex: from graphical intuition to proof

Theorem: optimal vertex(fix *min* objective function)

LP problem $\min\{c^Tx : x \in P\}$, P non empty and limited

- LP ha optimal solution
- one of the optimal solution of LP is a vertex of P

Proof:

$$V = \{v^1, v^2 \dots v^k\}$$
 $v^* = \arg\min_{v \in V} c^T v$

$$c^{T}x = c^{T} \sum_{i=1}^{k} \lambda_{i} v^{i} = \sum_{i=1}^{k} \lambda_{i} c^{T} v^{i} \ge \sum_{i=1}^{k} \lambda_{i} c^{T} v^{*} = c^{T} v^{*} \sum_{i=1}^{k} \lambda_{i} = c^{T} v^{*}$$

Summarizing:
$$\forall x \in P, c^T v^* \leq c^T x$$

We can limit the search of an optimal solution to the vertices of P!

Vertex comes from intersection of generating hyperplanes

Vertex comes from intersection of generating hyperplanes

Vertex comes from intersection of generating hyperplanes

71

50

 $+ 4x_2 \leq 24$ s.t. $3x_1$

 $x_1 + 4x_2 \leq 20$ (e2)

 $3x_1 + 2x_2 \le 18$ (e3)

 $, x_2 \geq 0$ X_1

 $b = e1 \cap e2$ (2,9/2) $C = e1 \cap e3$

(4,3)82

 $E = e3 \cap (x_2 = 0)$ (6,0)

78

 $0 = (x_1 = 0) \cap (x_2 = 0)$

(0,0)0

 $A = e2 \cap (x_1 = 0)$ (0.5)

C optimum!

Write the constraints as equations

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

5-3=2 degrees of freedom:

Write the constraints as equations

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

5 - 3 = 2 degrees of freedom:

Write the constraints as equations

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

5-3=2 degrees of freedom:

Write the constraints as equations

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

5-3=2 degrees of freedom:

Write the constraints as equations

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

5-3=2 degrees of freedom:

Write the constraints as equations

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

5-3=2 degrees of freedom:

Write the constraints as **equations**

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

5-3=2 degrees of freedom:

Standard form for LP problems

min
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$

s.t. $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n = b_i \quad (i = 1 \ldots m)$
 $x_i \in \mathbb{R}_+$ $(i = 1 \ldots n)$

```
- minimizing objective function (if not, multiply by -1);

- variables \geq 0; (if not, substitution) (+/- slack/surplus variables)

- b_i \geq 0. (if not, multiply by -1)
```

Standard form: example

$$\begin{array}{ll} \max & 5(-3x_1+5x_2-7x_3)+34 \\ s.t. & -2x_1+7x_2+6x_3-2x_1 \leq 5 \\ & -3x_1+x_3+12 \geq 13 \\ & x_1+x_2 \leq -2 \\ & x_1 \leq 0 \\ & x_2 \geq 0 \end{array}$$

min
$$-3\hat{x}_1 - 5x_2 + 7x_3^+ - 7x_3^-$$

 $s.t.$ $4\hat{x}_1 + 7x_2 + 6x_3^+ - 6x_3^- + s_1 = 5$
 $3\hat{x}_1 + x_3^+ - x_3^- - s_2 = 1$
 $\hat{x}_1 - x_2 - s_3 = 2$

Standard form: example

$$\begin{array}{ll} \max & 5(-3x_1+5x_2-7x_3)+34 \\ s.t. & -2x_1+7x_2+6x_3-2x_1 \leq 5 \\ & -3x_1+x_3+12 \geq 13 \\ & x_1+x_2 \leq -2 \\ & x_1 \leq 0 \\ & x_2 \geq 0 \end{array}$$

$$\begin{array}{ll} \hat{x}_1 = -x_1 & (\hat{x}_1 \geq 0) \\ x_3 = x_3^+ - x_3^- & (x_3^+ \geq 0 \ , \ x_3^- \geq 0) \end{array}$$

min
$$-3\hat{x}_1 - 5x_2 + 7x_3^+ - 7x_3^-$$

s.t. $4\hat{x}_1 + 7x_2 + 6x_3^+ - 6x_3^- + s_1 = 5$
 $3\hat{x}_1 + x_3^+ - x_3^- - s_2 = 1$
 $\hat{x}_1 - x_2 - s_3 = 2$
 $\hat{x}_1 > 0$, $x_2 > 0$, $x_3^+ > 0$, $x_2^- > 0$, $s_1 > 0$, $s_2 > 0$, $s_3 > 0$.

Linear algebra: definitions

• column vector
$$v \in \mathbb{R}^{n \times 1}$$
: $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

- row vector $v^T \in \mathbb{R}^{1 \times n}$: $v^T = [v_1, v_2, ..., v_n]$
- matrix $A \in \mathbb{R}^{m \times n} = \left[egin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}
 ight]$
- $v, w \in \mathbb{R}^n$, scalar product $v \cdot w = \sum_{i=1}^n v_i w_i = v^T w = v w^T$
- Rank of $A \in \mathbb{R}^{m \times n}$, $\rho(A)$, max linearly independent rows/columns
- $B \in \mathbb{R}^{m \times m}$ invertible $\iff \rho(B) = m \iff det(B) \neq 0$

Systems of linear equations

 Systems of equations in matrix form: a system of m equations in n variables can be written as:

$$Ax = b$$
, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ e $x \in \mathbb{R}^n$.

- Theorem of Rouché-Capelli: Ax = b has solutions $\iff \rho(A) = \rho(A|b) = r \ (\infty^{n-r} \text{ solutions}).$
- Elementary row operations:
 - swap row i and row j;
 - multiply row i by a non-zero scalar;
 - substitute row *i* by row *i* plus α times row j ($\alpha \in \mathbb{R}$).

Elementary operations on (augmented) matrix [A|b] leave the same solutions as Ax = b.

• Gauss-Jordan method for solving Ax = b: make elementary row operations on [A|b] so that A contains an identity matrix of dimension $\rho(A) = \rho(A|b)$.

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- Basis of A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

•
$$Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$$

- $x_B = B^{-1}b B^{-1}Nx_N$
- imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \left[\begin{array}{c} x_B \\ x_N \end{array} \right] = \left[\begin{array}{c} B^{-1}b \\ 0 \end{array} \right]$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- Basis of A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

•
$$Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$$

- $x_B = B^{-1}b B^{-1}Nx_N$
- imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \left[\begin{array}{c} x_B \\ x_N \end{array} \right] = \left[\begin{array}{c} B^{-1}b \\ 0 \end{array} \right]$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- Basis of A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

•
$$Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$$

- $x_B = B^{-1}b B^{-1}Nx_N$
- imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \left[\begin{array}{c} x_B \\ x_N \end{array} \right] = \left[\begin{array}{c} B^{-1}b \\ 0 \end{array} \right]$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- Basis of A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

•
$$Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$$

- $x_B = B^{-1}b B^{-1}Nx_N$
- imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

【Linear Programming and Simplex 15 / 44

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- Basis of A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

•
$$Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$$

• $x_B = B^{-1}b - B^{-1}Nx_N$

L. De Giovanni

• imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \left[\begin{array}{c} x_B \\ x_N \end{array} \right] = \left[\begin{array}{c} B^{-1}b \\ 0 \end{array} \right]$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

《ロト《意》《意》《意》 意 ◇ Q ○
Linear Programming and Simplex 15 / 44

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- **Basis of** A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

•
$$Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$$

- $x_B = B^{-1}b B^{-1}Nx_N$
- imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \left[\begin{array}{c} x_B \\ x_N \end{array} \right] = \left[\begin{array}{c} B^{-1}b \\ 0 \end{array} \right]$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- Basis of A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

•
$$Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$$

- $x_B = B^{-1}b B^{-1}Nx_N$
- imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \left[\begin{array}{c} x_B \\ x_N \end{array} \right] = \left[\begin{array}{c} B^{-1}b \\ 0 \end{array} \right]$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

Basic solutions

- **Assumptions**: system Ax = b, $A \in \mathbb{R}^{m \times n}$, $\rho(A) = m$, m < n
- **Basis of** A: square submatrix with maximum rank, $B \in \mathbb{R}^{m \times m}$

•
$$A = [B|N]$$
 $B \in \mathbb{R}^{m \times m}, det(B) \neq 0$
 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, x_B \in \mathbb{R}^m, x_N \in \mathbb{R}^{n-m}$

- $Ax = b \Longrightarrow [B|N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b$
- $x_B = B^{-1}b B^{-1}Nx_N$
- imposing $x_N = 0$, we obtain a so called **basic solution**:

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

- many different basic solutions by choosing a **different basis** of A
- variables equal to 0 are n-m (or more: degenerate basic solutions)

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

min
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n = b_i$ $(i = 1 \ldots m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1 \ldots n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

min
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n = b_i$ $(i = 1 \ldots m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1 \ldots n)$ $x \ge 0$

$$3x_1 +4x_2 +s_1 = 24$$

 $x_1 +4x_2 +s_2 = 20$
 $3x_1 +2x_2 +s_3 = 18$

$$3x_1 +4x_2 +s_1 = 24
x_1 +4x_2 +s_2 = 20
3x_1 +2x_2 +s_3 = 18$$

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 24 \\ 20 \\ 18 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ s_{3} \end{bmatrix} = B_{1}^{-1}b = \begin{bmatrix} 2 \\ 4,5 \\ 3 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$3x_1 +4x_2 +s_1 = 24
x_1 +4x_2 +s_2 = 20
3x_1 +2x_2 +s_3 = 18$$

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 24 \\ 20 \\ 18 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ s_{3} \end{bmatrix} = B_{1}^{-1}b = \begin{bmatrix} 2 \\ 4,5 \\ 3 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x^{T} = (2 \ 9/2 \ 0 \ 0 \ 3) \longrightarrow \text{vertex B}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$B_2 = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 1 \\ 3 & 2 & 0 \end{bmatrix}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$3x_1 +4x_2 +s_1 = 24
x_1 +4x_2 +s_2 = 20
3x_1 +2x_2 +s_3 = 18$$

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 24 \\ 20 \\ 18 \end{bmatrix}$$

$$B_{2} = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 1 \\ 3 & 2 & 0 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ s_{2} \end{bmatrix} = B_{2}^{-1}b = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} s_{1} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24
x_1 + 4x_2 + s_2 = 20
3x_1 + 2x_2 + s_3 = 18$$

$$3x_1 +4x_2 +s_1 = 24
x_1 +4x_2 +s_2 = 20
3x_1 +2x_2 +s_3 = 18$$

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 24 \\ 20 \\ 18 \end{bmatrix}$$

$$B_{2} = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 1 \\ 3 & 2 & 0 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ s_{2} \end{bmatrix} = B_{2}^{-1}b = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} s_{1} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x^{T} = (4 \ 3 \ 0 \ 2 \ 0) \longrightarrow \text{vertex } C$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$B_3 = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$3x_1 +4x_2 +s_1 = 24
x_1 +4x_2 +s_2 = 20
3x_1 +2x_2 +s_3 = 18$$

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 24 \\ 20 \\ 18 \end{bmatrix}$$

$$B_{3} = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ s_{1} \\ s_{2} \end{bmatrix} = B_{3}^{-1}b = \begin{bmatrix} 6 \\ 6 \\ 14 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} x_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$3x_1 +4x_2 +s_1 = 24
x_1 +4x_2 +s_2 = 20
3x_1 +2x_2 +s_3 = 18$$

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 24 \\ 20 \\ 18 \end{bmatrix}$$

$$B_{3} = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ s_{1} \\ s_{2} \end{bmatrix} = B_{3}^{-1}b = \begin{bmatrix} 6 \\ 6 \\ 14 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} x_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x^{T} = (6\ 0\ 6\ 14\ 0) \longrightarrow \text{vertex } E$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$B_4 = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 4 & 0 \\ 3 & 2 & 0 \end{bmatrix}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x > 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$3x_1 +4x_2 +s_1 = 24
x_1 +4x_2 +s_2 = 20
3x_1 +2x_2 +s_3 = 18$$

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 24 \\ 20 \\ 18 \end{bmatrix}$$

$$B_{4} = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 4 & 0 \\ 3 & 2 & 0 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ s_{1} \end{bmatrix} = B_{4}^{-1}b = \begin{bmatrix} 18/5 \\ 21/5 \\ -18/5 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} s_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$
 min c^Tx
s.t. $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$ $(i = 1...m)$ s.t. $Ax = b$
 $x_i \in \mathbb{R}_+$ $(i = 1...n)$ $x \ge 0$

• basis B gives a **feasible basic solution** if $x_B = B^{-1}b \ge 0$

$$3x_1 + 4x_2 + s_1 = 24$$

 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$

$$B_{4} = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 4 & 0 \\ 3 & 2 & 0 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ s_{1} \end{bmatrix} = B_{4}^{-1}b = \begin{bmatrix} 18/5 \\ 21/5 \\ -18/5 \end{bmatrix}$$

$$x_{N} = \begin{bmatrix} s_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $x^{T} = (18/5 \ 21/5 \ -18/5 \ 0 \ 0) \rightarrow \text{n.f.!}$

Vertices and basic solution

Feasible basic solution $\rightsquigarrow n-m$ variables are 0 \rightsquigarrow intersection of the right number of hyperplanes \rightsquigarrow vertex!

PL min
$$\{c^T x : Ax = b, x \ge 0\}$$
 $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$

Theorem: vertices correspond to feasible basic solutions (algebraic characterization of the vertices of a polyhedron)

x feasible basic solution of $Ax = b \iff x$ is a vertex of P

Corollary: optimal basic solution

If P non empty and limited, then there exists at least an optimal solution which is a basic feasible solution

Vertices and basic solution

Feasible basic solution $\rightsquigarrow n-m$ variables are $0 \rightsquigarrow$ intersection of the right number of hyperplanes \rightsquigarrow vertex!

PL min
$$\{c^T x : Ax = b, x \ge 0\}$$
 $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$

Theorem: **vertices correspond to feasible basic solutions**(algebraic characterization of the vertices of a polyhedron)

x feasible basic solution of $Ax = b \iff x$ is a vertex of P

Corollary: optimal basic solution

If *P* non empty and limited, then there exists at least an optimal solution which is a basic feasible solution

Vertices and basic solution

Feasible basic solution $\rightsquigarrow n-m$ variables are $0 \rightsquigarrow$ intersection of the right number of hyperplanes \rightsquigarrow vertex!

PL min
$$\{c^T x : Ax = b, x \ge 0\}$$
 $P = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$

Theorem: **vertices correspond to feasible basic solutions**(algebraic characterization of the vertices of a polyhedron)

x feasible basic solution of $Ax = b \iff x$ is a vertex of P

Corollary: optimal basic solution

If *P* non empty and limited, then there exists at least an optimal solution which is a basic feasible solution

Algorithm for LP (case limited): sketch

Consider all the feasible basic solutions:

- put the LP in standard form $min\{c^Tx : Ax = b, x \ge 0\}$
- 2 incumbent $= +\infty$
- repeat
- \bullet generate a combination of m columns of A
- \bullet let B be the corresponding submatrix of A
- if det(B) == 0 then continue else compute $x_B = B^{-1}b$
- if $x_B \ge 0$ and $c^T x_B < incumbent$ then update incumbent
- until(no other column combinations)

Complexity: up to
$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$
 basic solution!!!

⇒ Symplex method: more efficient exploration of the basic solutions (only feasible and improving)

Algorithm for LP (case limited): sketch

Consider all the feasible basic solutions:

- put the LP in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$
- **2** incumbent $= +\infty$
- repeat
- $oldsymbol{0}$ generate a combination of m columns of A
- \bullet let B be the corresponding submatrix of A
- if det(B) == 0 then continue else compute $x_B = B^{-1}b$
- if $x_B \ge 0$ and $c^T x_B < incumbent$ then update incumbent
- until(no other column combinations)

Complexity: up to
$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$
 basic solution!!!

⇒ Symplex method: more efficient exploration of the basic solutions (only feasible and improving)

Algorithm for LP (case limited): sketch

Consider all the feasible basic solutions:

- put the LP in standard form min $\{c^Tx : Ax = b, x \ge 0\}$
- $incumbent = +\infty$

- repeat
- generate a combination of m columns of A
- let B be the corresponding submatrix of A **5**
- if det(B) == 0 then continue else compute $x_B = B^{-1}b$
- if $x_B > 0$ and $c^T x_B < incumbent$ then update incumbent
- until(no other column combinations)

Complexity: up to
$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$
 basic solution!!!

⇒ **Symplex method**: more efficient exploration of the basic solutions (only **feasible** and **improving**)

LP problem in **standard form**:

min
$$z = -13x_1 - 10x_2$$

 $s.t.$ $3x_1 + 4x_2 + s_1 = 24$
 $x_1 + 4x_2 + s_2 = 20$
 $3x_1 + 2x_2 + s_3 = 18$
 $x_1 , x_2 , s_1 , s_2 , s_3 \ge 0$

an initial basic feasible solution (vertex B):

$$\bullet B = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 0 \\ 3 & 2 & 1 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

•
$$x_B = \begin{bmatrix} x_1 \\ x_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 9/2 \\ 3 \end{bmatrix}$$
 $x_N = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

•
$$z_B = c^T x = c_B^T x_B + c_N^T x_N = -71$$

Change basis: **New basic solution** \Rightarrow one non-basic variable increases **affecting** x_B **and** z_B

$$\begin{array}{rcl}
x_{B} & = & B^{-1}b - B^{-1}N \times_{N} \\
z & = & c^{T}x = c_{B}^{T}x_{B} + c_{N}^{T}x_{N} = c_{B}^{T}(B^{-1}b - B^{-1}N \times_{N}) + c_{N}^{T}x_{N} \\
& = & c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N) \times_{N}
\end{array}$$

Write x_B and z as functions of only **non-basic** variables

For the sake of manual computation, use Gauss-Jordan:

$$Ax = b$$
 \rightsquigarrow $\begin{bmatrix} B \ N \ | \ b \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} B^{-1}B = I \ B^{-1}N = \overline{N} \ | \ B^{-1}b = \overline{b} \end{bmatrix}$

$$z_B = \bar{b} - \bar{N}x_N$$
 $z = ...$

Change basis: **New basic solution** \Rightarrow one non-basic variable increases **affecting** x_B **and** z_B

$$\begin{array}{rcl}
x_{B} & = & B^{-1}b - B^{-1}N \times_{N} \\
z & = & c^{T}x = c_{B}^{T}x_{B} + c_{N}^{T}x_{N} = c_{B}^{T}(B^{-1}b - B^{-1}N \times_{N}) + c_{N}^{T}x_{N} \\
& = & c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N) \times_{N}
\end{array}$$

Write x_B and z as functions of only **non-basic** variables

For the sake of manual computation, use Gauss-Jordan:

$$Ax = b$$
 \rightsquigarrow $\begin{bmatrix} B \ N \ | \ b \end{bmatrix}$ \rightsquigarrow $\begin{bmatrix} B^{-1}B = I \ B^{-1}N = \overline{N} \ | \ B^{-1}b = \overline{b} \end{bmatrix}$

$$x_B = \bar{b} - \bar{N}x_N$$
 $z = ...$

←□ → ←□ → ← 글 → ← 글 → → ○ → ○

Example
$$x_1$$
 x_2 s_3 s_1 s_2 \overline{b} 3 4 0 1 $0 | 24 \\ 1 & 4 & 0 & 0 & 1 | 20 \\ 3 & 2 & 1 & 0 & 0 | 18 \\ \hline (R_1/3) & 1 & 4/3 & 0 & 1/3 & 0 | 8 \\ (R_2 - R_1/3) & 0 & 8/3 & 0 & -1/3 & 1 | 12 \\ (R_3 - R_1) & 0 & -2 & 1 & -1 & 0 | -6 \\ \hline (R_1 - 1/2 R_2) & 1 & 0 & 0 & 1/2 & -1/2 | 2 \\ (3/8 R_2) & 0 & 1 & 0 & -1/8 & 3/8 & 9/2 \\ (R_3 + 3/4 R_2) & 0 & 0 & 1 & -5/4 & 3/4 | 3 \\ \hline x_1 & = & 2 & - & 1/2 & s_1 & + & 1/2 & s_2 \\ x_2 & = & 9/2 & + & 1/8 & s_1 & - & 3/8 & s_2 \\ s_3 & = & 3 & + & 5/4 & s_1 & - & 3/4 & s_2 \\ \hline \end{cases}$

$$z = -13x_1 - 10x_2 = -71 + 21/4 s_1 - 11/4 s_2$$

$$x_1$$
 = 2 - 1/2 s_1 + 1/2 s_2
 x_2 = 9/2 + 1/8 s_1 - 3/8 s_2
 s_3 = 3 + 5/4 s_1 - 3/4 s_2

$$z = -13x_1 - 10x_2 = -71 + 21/4 s_1 - 11/4 s_2$$

Example	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	$ar{b}$	
	3	4	0	1	0	24	
	1	4	0	0	1	20	
	3	2	1	0	0	18	
$(R_1/3)$	1	4/3	0	1/3	0	8	
$(R_2 - R_1/3)$	0	8/3	0		1	12	
(R_3-R_1)	0	-2	1	-1	0	-6	
$(R_1 - 1/2 R_2)$	1	0	0	1/2	-1/2	2	
$(3/8 R_2)$	0	1	0	-1/8		9/2	
$(R_3 + 3/4 R_2)$	0	0	1	-5/4	3/4	[′] 3	

$$x_1$$
 = 2 - 1/2 s_1 + 1/2 s_2
 x_2 = 9/2 + 1/8 s_1 - 3/8 s_2

$$z = -13x_1 - 10x_2 = -71 + 21/4 s_1 - 11/4 s_2$$

$$z = -13x_1 - 10x_2 = -71 + 21/4 s_1 - 11/4 s_2$$

$$z = -71 + 21/4 \quad s_1 \quad -11/4 \quad s_2$$

- ullet In order to minimize, it is convenient to increase s_2 (and keep $s_1=0$)
- Equalities have to be always satisfied...:

$$x_1 = 2 + 1/2 s_2$$

 $x_2 = 9/2 - 3/8 s_2$
 $s_3 = 3 - 3/4 s_2$

$$x_1 \ge 0 \Rightarrow 2 + 1/2s_2 \ge 0 \Rightarrow s_2 \ge -4$$
 always!
 $x_2 \ge 0 \Rightarrow 9/2 - 3/8s_2 \ge 0 \Rightarrow s_2 \le 12$
 $s_3 \ge 0 \Rightarrow 3 - 3/4s_2 \ge 0 \Rightarrow s_2 \le 4$

- New feasible and better solutions with $s_1 = 0$ and $0 \le s_2 \le 4$
- $s_2 = 4 \Rightarrow s_3 = 0$: new <u>basic</u>, <u>feasible</u> and <u>better</u> solution

$$z = -71 + 21/4 \quad s_1 \quad -11/4 \quad s_2$$

- In order to minimize, it is convenient to increase s_2 (and keep $s_1=0$)
- Equalities have to be always satisfied...:

$$x_1 = 2 + 1/2 s_2$$

 $x_2 = 9/2 - 3/8 s_2$
 $s_3 = 3 - 3/4 s_2$

$$x_1 \ge 0 \Rightarrow 2 + 1/2s_2 \ge 0 \Rightarrow s_2 \ge -4$$
 always!
 $x_2 \ge 0 \Rightarrow 9/2 - 3/8s_2 \ge 0 \Rightarrow s_2 \le 12$
 $s_3 \ge 0 \Rightarrow 3 - 3/4s_2 \ge 0 \Rightarrow s_2 \le 4$

- New feasible and better solutions with $s_1 = 0$ and $0 \le s_2 \le 4$
- $s_2 = 4 \Rightarrow s_3 = 0$: new <u>basic</u>, <u>feasible</u> and <u>better</u> solution

$$z = -71 + 21/4 \quad s_1 \quad -11/4 \quad s_2$$

- In order to minimize, it is convenient to increase s_2 (and keep $s_1 = 0$)
- Equalities have to be always satisfied...:

$$x_1 = 2 + 1/2 s_2$$

 $x_2 = 9/2 - 3/8 s_2$
 $s_3 = 3 - 3/4 s_2$

$$x_1 \ge 0 \Rightarrow 2 + 1/2s_2 \ge 0 \Rightarrow s_2 \ge -4$$
 always!
 $x_2 \ge 0 \Rightarrow 9/2 - 3/8s_2 \ge 0 \Rightarrow s_2 \le 12$
 $s_3 \ge 0 \Rightarrow 3 - 3/4s_2 \ge 0 \Rightarrow s_2 \le 4$

- New feasible and better solutions with $s_1 = 0$ and $0 \le s_2 \le 4$
- $s_2 = 4 \Rightarrow s_3 = 0$: new <u>basic</u>, <u>feasible</u> and <u>better</u> solution

$$z = -71 + 21/4 s_1 - \frac{11}{4} s_2$$

- In order to minimize, it is convenient to increase s_2 (and keep $s_1=0$)
- Equalities have to be always satisfied...:

$$x_1 = 2 + 1/2 s_2$$

 $x_2 = 9/2 - 3/8 s_2$
 $s_3 = 3 - 3/4 s_2$

while preserving non-negativity:

$$x_1 \ge 0 \Rightarrow 2 + 1/2s_2 \ge 0 \Rightarrow s_2 \ge -4$$
 always!
 $x_2 \ge 0 \Rightarrow 9/2 - 3/8s_2 \ge 0 \Rightarrow s_2 \le 12$
 $s_3 \ge 0 \Rightarrow 3 - 3/4s_2 \ge 0 \Rightarrow s_2 \le 4$

- New **feasible** and **better** solutions with $s_1 = 0$ and $0 \le s_2 \le 4$
- $s_2 = 4 \Rightarrow s_3 = 0$: new <u>basic</u>, <u>feasible</u> and <u>better</u> solution

4日 → 4日 → 4 目 → 4 目 → 9 Q (**)

$$z = -71 + 21/4 \quad s_1 \quad -11/4 \quad s_2 =$$

- In order to minimize, it is convenient to increase s_2 (and keep $s_1=0$)
- Equalities have to be always satisfied...:

$$x_1 = 2 + 1/2 s_2$$

 $x_2 = 9/2 - 3/8 s_2$
 $s_3 = 3 - 3/4 s_2$

$$x_1 \ge 0 \Rightarrow 2 + 1/2s_2 \ge 0 \Rightarrow s_2 \ge -4$$
 always!
 $x_2 \ge 0 \Rightarrow 9/2 - 3/8s_2 \ge 0 \Rightarrow s_2 \le 12$
 $s_3 \ge 0 \Rightarrow 3 - 3/4s_2 \ge 0 \Rightarrow s_2 \le 4$

- New **feasible** and **better** solutions with $s_1 = 0$ and $0 \le s_2 \le 4$
- $s_2 = 4 \Rightarrow s_3 = 0$: new <u>basic</u>, <u>feasible</u> and <u>better</u> solution

New basic solution! s_2 (now > 0) takes the place of s_3 (now = 0):

We basic solution:
$$\frac{32}{2}$$
 (now > 0) takes the place of $\frac{3}{3}$ (now = 0).
$$B = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 1 \\ 3 & 2 & 0 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad x_B = \begin{bmatrix} x_1 \\ x_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 4 \end{bmatrix}$$

$$x_N = \begin{bmatrix} s_1 \\ s_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad z_B = c^T x = c_B^T x_B + c_N^T x_N = -82$$

Same arguments as before: x_B and z as a function of x_N :

$$x_1 = 4 + 1/3 \quad s_1 - 2/3 \quad s_3$$
 $x_2 = 3 - 1/2 \quad s_1 - 1/2 \quad s_3$
 $s_3 = 4 + 5/3 \quad s_1 - 4/3 \quad s_3$
 $z = -82 + 2/3 \quad s_1 + 11/3 \quad s_3$

Optimal solution! Visited 2 out of
$$\begin{pmatrix} 5 \\ 3 \end{pmatrix} = 10$$
 possible basis

Example

New basic solution! s_2 (now > 0) takes the place of s_3 (now = 0):

We basic solution:
$$s_2$$
 (now > 0) takes the place of s_3 (now = 0).
$$B = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 1 \\ 3 & 2 & 0 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad x_B = \begin{bmatrix} x_1 \\ x_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 4 \end{bmatrix}$$

$$x_N = \begin{bmatrix} s_1 \\ s_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad z_B = c^T x = c_B^T x_B + c_N^T x_N = -82$$

Same arguments as before: x_B and z as a function of x_N :

$$x_1 = 4 + 1/3 s_1 - 2/3 s_3$$

 $x_2 = 3 - 1/2 s_1 - 1/2 s_3$
 $s_3 = 4 + 5/3 s_1 - 4/3 s_3$
 $z = -82 + 2/3 s_1 + 11/3 s_3$

Optimal solution! Visited 2 out of
$$\begin{pmatrix} 5 \\ 3 \end{pmatrix} = 10$$
 possible basis

Example

New basic solution! s_2 (now > 0) takes the place of s_3 (now = 0):

We basic solution:
$$s_2$$
 (now > 0) takes the place of s_3 (now = 0).
$$B = \begin{bmatrix} 3 & 4 & 0 \\ 1 & 4 & 1 \\ 3 & 2 & 0 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad x_B = \begin{bmatrix} x_1 \\ x_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 4 \end{bmatrix}$$

$$x_N = \begin{bmatrix} s_1 \\ s_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad z_B = c^T x = c_B^T x_B + c_N^T x_N = -82$$

Same arguments as before: x_B and z as a function of x_N :

$$x_1 = 4 + 1/3 s_1 - 2/3 s_3$$

 $x_2 = 3 - 1/2 s_1 - 1/2 s_3$
 $s_3 = 4 + 5/3 s_1 - 4/3 s_3$
 $z = -82 + 2/3 s_1 + 11/3 s_3$

Optimal solution! Visited 2 out of $\begin{pmatrix} 5 \\ 3 \end{pmatrix} = 10$ possible basis

LP in canonical form

PL min $\{z = c^T x : Ax = b, x \ge 0\}$ is in **canonical form with respect to** basis B if all basic variables and the objective are explicitly written as functions of **non-basic variables only**:

$$z = \bar{z}_{B} + \bar{c}_{N_{1}} \times_{N_{1}} + \bar{c}_{N_{2}} \times_{N_{2}} + \ldots + \bar{c}_{N_{(n-m)}} \times_{N_{(n-m)}} \times_{N_{(n-m)}} \times_{B_{i}} = \bar{b}_{i} - \bar{a}_{iN_{1}} \times_{N_{1}} - \bar{a}_{iN_{2}} \times_{N_{2}} - \ldots - \bar{a}_{iN_{(n-m)}} \times_{N_{(n-m)}} (i = 1 \ldots m)$$

- \bar{z}_B scalar (objective function value for the corresponding basic solution)
- \bar{b}_i scalar (value of basic variable i)
- B_i index of the *i*-th basic variable $(i = 1 \dots m)$
- N_j index of the j-th non-basic variable $(j = 1 \dots n m)$
- \bar{c}_{N_j} coefficient of the *j*-th non-basic variable in the objective function (reduced cost of the variable with respect to basis B)
- $-\bar{a}_{iN_{j}}$ coefficient of the *j*-th non-basic variable in the constraints that makes explicit the *i*-th basic variable

Simplex method: optimality check

- Reduced cost of a variable: marginal unit increment of the objective function
- The reduced cost of a basis variable is $\bar{c}_{B_i} = 0$

Theorem: Sufficient optimality conditions

Given an LP and a feasible basis B, if all the reduced costs with respect to B are ≥ 0 , then B is an optimal basis

$$ar{c}_j \geq 0, \; orall \; j = 1 \ldots n \quad \Rightarrow \quad B \; ext{optimal}$$

• Notice: the inverse is not true! [there may be optimal basic solutions with negative reduced costs]

Simplex method: optimality check

- Reduced cost of a variable: marginal unit increment of the objective function
- The reduced cost of a basis variable is $\bar{c}_{B_i} = 0$

Theorem: Sufficient optimality conditions

Given an LP and a feasible basis B, if all the reduced costs with respect to B are ≥ 0 , then B is an optimal basis

$$\bar{c}_i \geq 0, \ \forall \ j = 1 \dots n \quad \Rightarrow \quad B \text{ optimal}$$

• Notice: the inverse is not true! [there may be optimal basic solutions with negative reduced costs]

- ullet From feasible basis B, obtain a \tilde{B} adjacent, feasible, improving
- ullet One column (pprox variable) enters and one variable leaves the basis
- Entering variable (improvement): $any x_h : \bar{c}_h < 0$

$$z = \bar{z}_B + \bar{c}_h x_h = \bar{z}_{\tilde{B}} \le \bar{z}_B$$

$$x_{B_i} \ge 0 \quad \Rightarrow \quad b_i - \bar{a}_{ih} x_h \ge 0, \ \forall \ i \quad \Rightarrow \quad x_h \le \frac{\bar{b}_i}{\bar{a}_{ih}}, \ \forall \ i : \bar{a}_{ih} > 0$$

$$t = \arg\min_{i=1...m} \left\{ \frac{\bar{b}_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$$

$$x_h = \frac{\bar{b}_t}{\bar{a}_{th}} \ge 0 \quad \Rightarrow \quad x_{\mathcal{B}_t} = 0 \ [x_{\mathcal{B}_t} \text{ leaves the basis!}]$$

- ullet From feasible basis B, obtain a \tilde{B} adjacent, feasible, improving
- ullet One column (pprox variable) enters and one variable leaves the basis
- **Entering** variable (improvement): $any x_h : \bar{c}_h < 0$

$$z = \bar{z}_B + \bar{c}_h x_h = \bar{z}_{\tilde{B}} \le \bar{z}_B$$

$$x_{B_{i}} \geq 0 \quad \Rightarrow \quad b_{i} - \bar{a}_{ih} x_{h} \geq 0, \ \forall \ i \quad \Rightarrow \quad x_{h} \leq \frac{\bar{b}_{i}}{\bar{a}_{ih}}, \ \forall \ i : \bar{a}_{ih} > 0$$

$$t = \arg \min_{i=1...m} \left\{ \frac{\bar{b}_{i}}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$$

$$x_h = \frac{\bar{b}_t}{\bar{a}_{th}} \ge 0 \quad \Rightarrow \quad x_{B_t} = 0 \ [x_{B_t} \text{ leaves the basis!}]$$

- ullet From feasible basis B, obtain a \tilde{B} adjacent, feasible, improving
- ullet One column (pprox variable) enters and one variable leaves the basis
- **Entering** variable (improvement): $any x_h : \bar{c}_h < 0$

$$z = \bar{z}_B + \bar{c}_h x_h = \bar{z}_{\tilde{B}} \le \bar{z}_B$$

$$x_{B_i} \ge 0 \quad \Rightarrow \quad b_i - \bar{a}_{ih} \ x_h \ge 0, \ \forall \ i \quad \Rightarrow \quad x_h \le \frac{\bar{b}_i}{\bar{a}_{ih}}, \ \forall \ i : \bar{a}_{ih} > 0$$

$$t = \arg\min_{i=1...m} \left\{ \frac{\bar{b}_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$$

$$x_h = \frac{\bar{b}_t}{\bar{a}_{th}} \ge 0 \quad \Rightarrow \quad x_{B_t} = 0 \ [x_{B_t} \text{ leaves the basis!}]$$

- ullet From feasible basis B, obtain a \tilde{B} adjacent, feasible, improving
- ullet One column (pprox variable) enters and one variable leaves the basis
- **Entering** variable (improvement): $any x_h : \bar{c}_h < 0$

$$z = \bar{z}_B + \bar{c}_h x_h = \bar{z}_{\tilde{B}} \le \bar{z}_B$$

$$x_{B_i} \ge 0 \quad \Rightarrow \quad b_i - \bar{a}_{ih} x_h \ge 0, \ \forall \ i \quad \Rightarrow \quad x_h \le \frac{\bar{b}_i}{\bar{a}_{ih}}, \ \forall \ i : \bar{a}_{ih} > 0$$

$$t = \arg\min_{i=1...m} \left\{ \frac{\bar{b}_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$$

$$x_h = rac{ar{b}_t}{ar{a}_{th}} \geq 0 \quad \Rightarrow \quad x_{\mathcal{B}_t} = 0 \; [x_{\mathcal{B}_t} \; ext{leaves the basis!}]$$

- From feasible basis B, obtain a \tilde{B} adjacent, feasible, improving
- ullet One column (pprox variable) enters and one variable leaves the basis
- **Entering** variable (improvement): $any x_h : \bar{c}_h < 0$

$$z = \bar{z}_B + \bar{c}_h x_h = \bar{z}_{\tilde{B}} \le \bar{z}_B$$

$$x_{B_{i}} \geq 0 \quad \Rightarrow \quad b_{i} - \bar{a}_{ih} x_{h} \geq 0, \ \forall \ i \quad \Rightarrow \quad x_{h} \leq \frac{\bar{b}_{i}}{\bar{a}_{ih}}, \ \forall \ i : \bar{a}_{ih} > 0$$

$$t = \arg\min_{i=1...m} \left\{ \frac{\bar{b}_{i}}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$$

$$x_h = \frac{b_t}{\bar{a}_{th}} \ge 0 \quad \Rightarrow \quad x_{B_t} = 0 \ [x_{B_t} \text{ leaves the basis!}]$$

Simplex method: check for unlimited LP

• Let x_h : $\bar{c}_h < 0$.

$$z = \bar{z}_B + \bar{c}_h x_h$$

$$x_{B_i} = \bar{b}_i - \bar{a}_{ih} x_h \quad (i = 1 \dots m)$$

• If $a_{ih} \leq 0$, $\forall i = 1 \dots m$, feasible solution with $x_h \to +\infty$

Condition of unlimited LP

There exists a basis such that

$$\exists x_h: (\bar{c}_h < 0) \land (\bar{a}_{ih} \leq 0, \forall i=1...m)$$

Simplex method: check for unlimited LP

• Let x_h : $\bar{c}_h < 0$.

$$z = \bar{z}_B + \bar{c}_h x_h$$
 $x_{B_i} = \bar{b}_i - \bar{a}_{ih} x_h (i = 1 \dots m)$

• If $a_{ih} \leq 0, \ \forall \ i = 1 \dots m$, feasible solution with $x_h \to +\infty$

Condition of unlimited LP

There exists a basis such that

$$\exists x_h: (\bar{c}_h < 0) \land (\bar{a}_{ih} \leq 0, \forall i=1...m)$$

Init: PL in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$, and an initial feasible basis B

repeat

write the LP in canonical form with respect to
$$B$$
 $z=\bar{z}_B+\bar{c}_{N_1}\ x_{N_1}+\bar{c}_{N_2}\ x_{N_2}+\ldots+\bar{c}_{N_{(n-m)}}\ x_{N_{(n-m)}}$ $x_{N_{(n-m)}}$ $x_{N_{(n-m)}}$ $x_{N_1}-\bar{a}_{iN_2}\ x_{N_2}-\ldots-\bar{a}_{iN_{(n-m)}}\ x_{N_{(n-m)}}$ $(i=1)$. If $(\bar{c}_j\geq 0,\forall\ j)$ then B is an optimal basis: **stop** If $(\exists\ h:\bar{c}_h<0\ \text{and}\ \bar{a}_{ih}\leq 0,\ \forall\ i)$ then unlimited LP: **stop** Entering variable: any $x_h:\bar{c}_h<0$ Leaving variable: x_{B_t} with $t=\arg\min_{i=1,\ldots,m}\left\{\frac{\bar{b}_i}{\bar{a}_{ih}}:\bar{a}_{ih}>0\right\}$ $B\leftarrow B\oplus A_h\oplus A_{B_t}$ [basis change]

40149141111 1 000

Init: PL in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$, and an initial feasible basis B

repeat

write the LP in canonical form with respect to B

$$z = \overline{z}_B + \overline{c}_{N_1} x_{N_1} + \overline{c}_{N_2} x_{N_2} + \ldots + \overline{c}_{N_{(n-m)}} x_{N_{(n-m)}}$$

 $x_{B_i} = \overline{b}_i - \overline{a}_{iN_1} x_{N_1} - \overline{a}_{iN_2} x_{N_2} - \ldots - \overline{a}_{iN_{(n-m)}} x_{N_{(n-m)}} (i = 1 \ldots m)$

if $(\bar{c}_j \geq 0, \forall j)$ then B is an optimal basis: stop

If $(\exists h : \overline{c}_h < 0 \text{ and } \overline{a}_{ih} \leq 0, \forall i)$ then unlimited LP: stop

Entering variable: any $x_h : \bar{c}_h < 0$

Leaving variable:
$$x_{B_t}$$
 with $t = \arg\min_{i=1...m} \left\{ \frac{\bar{b}_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$

 $B \leftarrow B \oplus A_h \ominus A_{B_t}$ [basis change]

Init: PL in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$, and an initial feasible basis B

repeat

write the LP in canonical form with respect to B

$$z = \overline{z}_{B} + \overline{c}_{N_{1}} x_{N_{1}} + \overline{c}_{N_{2}} x_{N_{2}} + \ldots + \overline{c}_{N_{(n-m)}} x_{N_{(n-m)}} x_{B_{i}} = \overline{b}_{i} - \overline{a}_{iN_{1}} x_{N_{1}} - \overline{a}_{iN_{2}} x_{N_{2}} - \ldots - \overline{a}_{iN_{(n-m)}} x_{N_{(n-m)}} (i = 1 \ldots m)$$

if $(\bar{c}_j \geq 0, \forall j)$ then B is an optimal basis: stop

f $(\exists h : \bar{c}_h < 0 \text{ and } \bar{a}_{ih} \leq 0, \forall i)$ **then** unlimited LP: **stop**

Entering variable: any x_h : $\bar{c}_h < 0$

Leaving variable:
$$x_{B_t}$$
 with $t = \arg\min_{i=1...m} \left\{ \frac{\bar{b}_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$

 $B \leftarrow B \oplus A_h \ominus A_{B_t}$ [basis change]

Init: PL in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$, and an initial feasible basis B

repeat

write the LP in canonical form with respect to B

$$z = \overline{z}_{B} + \overline{c}_{N_{1}} x_{N_{1}} + \overline{c}_{N_{2}} x_{N_{2}} + \ldots + \overline{c}_{N_{(n-m)}} x_{N_{(n-m)}} x_{B_{i}} = \overline{b}_{i} - \overline{a}_{iN_{1}} x_{N_{1}} - \overline{a}_{iN_{2}} x_{N_{2}} - \ldots - \overline{a}_{iN_{(n-m)}} x_{N_{(n-m)}} (i = 1 \ldots m)$$

if $(\bar{c}_j \geq 0, \forall j)$ then B is an optimal basis: **stop**

if
$$(\exists h : \overline{c}_h < 0 \text{ and } \overline{a}_{ih} \leq 0, \ \forall i)$$
 then unlimited LP: stop

Entering variable: any $x_h : \bar{c}_h < 0$

Leaving variable:
$$x_{B_t}$$
 with $t = \arg\min_{i=1...m} \left\{ \frac{b_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$

 $B \leftarrow B \oplus A_h \ominus A_{B_t}$ [basis change]

Init: PL in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$, and an initial feasible basis B

repeat

write the LP in canonical form with respect to
$$B$$

$$z = \overline{z}_{B} + \overline{c}_{N_{1}} x_{N_{1}} + \overline{c}_{N_{2}} x_{N_{2}} + \ldots + \overline{c}_{N_{(n-m)}} x_{N_{(n-m)}}$$

$$x_{B_{i}} = \overline{b}_{i} - \overline{a}_{iN_{1}} x_{N_{1}} - \overline{a}_{iN_{2}} x_{N_{2}} - \ldots - \overline{a}_{iN_{(n-m)}} x_{N_{(n-m)}} (i = 1 \ldots m)$$

if
$$(\bar{c}_j \geq 0, \forall j)$$
 then B is an optimal basis: **stop**

if
$$(\exists h : \overline{c}_h < 0 \text{ and } \overline{a}_{ih} \leq 0, \ \forall i)$$
 then unlimited LP: stop

Entering variable: any $x_h : \bar{c}_h < 0$

Leaving variable:
$$x_{B_t}$$
 with $t = \arg\min_{i=1...m} \left\{ \frac{\bar{b}_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$

$$B \leftarrow B \oplus A_h \ominus A_{B_t}$$
 [basis change]

Init: PL in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$, and an initial feasible basis B

repeat

write the LP in canonical form with respect to
$$B$$

$$z = \overline{z}_{B} + \overline{c}_{N_{1}} x_{N_{1}} + \overline{c}_{N_{2}} x_{N_{2}} + \ldots + \overline{c}_{N_{(n-m)}} x_{N_{(n-m)}} x_{B_{i}} = \overline{b}_{i} - \overline{a}_{iN_{1}} x_{N_{1}} - \overline{a}_{iN_{2}} x_{N_{2}} - \ldots - \overline{a}_{iN_{(n-m)}} x_{N_{(n-m)}} (i = 1 \ldots m)$$

if
$$(\bar{c}_j \geq 0, \forall j)$$
 then B is an optimal basis: **stop**

if
$$(\exists h : \overline{c}_h < 0 \text{ and } \overline{a}_{ih} \leq 0, \ \forall i)$$
 then unlimited LP: stop

Entering variable: any $x_h : \bar{c}_h < 0$

Leaving variable:
$$x_{B_t}$$
 with $t = \arg\min_{i=1...m} \left\{ \frac{b_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$

 $B \leftarrow B \oplus A_h \ominus A_{B_t}$ [basis change] **ntil** (LP optimum found or unlimite

Init: PL in standard form $\min\{c^Tx : Ax = b, x \ge 0\}$, and an initial feasible basis B

repeat

$$z = \overline{z}_{B} + \overline{c}_{N_{1}} x_{N_{1}} + \overline{c}_{N_{2}} x_{N_{2}} + \ldots + \overline{c}_{N_{(n-m)}} x_{N_{(n-m)}} x_{B_{i}} = \overline{b}_{i} - \overline{a}_{iN_{1}} x_{N_{1}} - \overline{a}_{iN_{2}} x_{N_{2}} - \ldots - \overline{a}_{iN_{(n-m)}} x_{N_{(n-m)}} (i = 1 \ldots m)$$

if $(\bar{c}_j \geq 0, \forall j)$ then B is an optimal basis: **stop**

if
$$(\exists h : \overline{c}_h < 0 \text{ and } \overline{a}_{ih} \leq 0, \ \forall i)$$
 then unlimited LP: stop

Entering variable: any $x_h : \bar{c}_h < 0$

Leaving variable:
$$x_{B_t}$$
 with $t = \arg\min_{i=1...m} \left\{ \frac{b_i}{\bar{a}_{ih}} : \bar{a}_{ih} > 0 \right\}$

$$B \leftarrow B \oplus A_h \ominus A_{B_t}$$
 [basis change]

Simplex tableau

- Represent the canonical form, can be used to operate Gauss-Jordan
- **Objective function as a constraint** (imposing the value of a new variable z):

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \quad \rightsquigarrow \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n - z = 0$$

	x_{B_1}		x_{B_m}	x_{N_1}		$X_{N_{n-m}}$	Z	Б	
riga 0		c_B^T			c_N^T		-1	0	
riga 1							0		
:		В			Ν		:	ь	
riga <i>m</i>							0		

• Elementary row (z included) operations: up to reading x_B (and z) as functions of x_N

Simplex tableau

- Represent the canonical form, can be used to operate Gauss-Jordan
- **Objective function as a constraint** (imposing the value of a new variable z):

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \quad \rightsquigarrow \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n - z = 0$$

	x_{B_1}		x_{B_m}	x_{N_1}	 $X_{N_{n-m}}$	Z	\bar{b}
riga 0	0		0			-1	
riga 1	1		0			0	
÷		٠.				:	
riga <i>m</i>	0		1			0	

Tableau in canonical form

• Elementary row (z included) operations: up to reading x_B (and z) as functions of x_N

Tableau and canonical form

	x_{B_1}		X_{B_m}	x_{N_1}	 $X_{N_{n-m}}$	Z	\bar{b}
-z	0		0			-1	
x_{B_1}	1		0			0	
x_{B_i}		٠.				:	
x_{B_m}	0		1			0	

$$z = \bar{z}_B + \bar{c}_{N_1} \times_{N_1} + \bar{c}_{N_2} \times_{N_2} + \ldots + \bar{c}_{N_{(n-m)}} \times_{N_{(n-m)}} \times_{N_{(n-m)}} \times_{B_i} = \bar{b}_i - \bar{a}_{iN_1} \times_{N_1} - \bar{a}_{iN_2} \times_{N_2} - \ldots - \bar{a}_{iN_{(n-m)}} \times_{N_{(n-m)}} (i = 1 \ldots m)$$

Tableau and canonical form

	x_{B_1}		x_{B_m}	x_{N_1}	 $X_{N_{n-m}}$	Z	Б
-z	0		0	\bar{c}_{N_1}	 $\bar{c}_{N_{n-m}}$	-1	$-\bar{z}_B$
x_{B_1}	1		0	$\bar{a}_{1 N_1}$	 ā₁ _{Nn−m}	0	$ar{b}_1$
x_{B_i}		٠		ā _{i N₁}	 ā _{i Nn−m}	:	$ar{b}_i$
x_{B_m}	0		1	$\bar{a}_{m N_1}$	 $\bar{a}_{m N_{n-m}}$	0	$ar{b}_m$

$$z = \bar{z}_B + \bar{c}_{N_1} \times_{N_1} + \bar{c}_{N_2} \times_{N_2} + \ldots + \bar{c}_{N_{(n-m)}} \times_{N_{(n-m)}} \times_{N_{(n-m)}} \times_{B_i} = \bar{b}_i - \bar{a}_{iN_1} \times_{N_1} - \bar{a}_{iN_2} \times_{N_2} - \ldots - \bar{a}_{iN_{(n-m)}} \times_{N_{(n-m)}} (i = 1 \ldots m)$$

• Phase I: solve an artificial problem

$$w^* = \min w = 1^T y = y_1 + y_2 + \dots + y_m$$

 $s.t.$ $Ax + Iy = b$ $y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}_+^m$

If $w^* > 0$, the original problem is unfeasible, stop!

If $w^* = 0$, then y = 0

- ▶ if some *y* in the (degenarate) basis, change basis to put all *y* out, thus obtaining an *x*^B feasible for the original problem!
- Phase II: solve the problem starting from the provided basis B

• Phase I: solve an artificial problem

$$w^* = \min w = 1^T y = y_1 + y_2 + \dots + y_m$$

$$s.t. \quad Ax + Iy = b \qquad \qquad y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}_+^m$$

f $w^* > 0$, the original problem is unfeasible, stop!

- ▶ if some *y* in the (degenarate) basis, change basis to put all *y* out, thus obtaining an *x*_B feasible for the original problem!
- Phase II: solve the problem starting from the provided basis B

• Phase I: solve an artificial problem

$$w^* = \min w = 1^T y = y_1 + y_2 + \dots + y_m$$

$$s.t. \quad Ax + Iy = b \qquad y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}_+^m$$

If $w^* > 0$, the original problem is unfeasible, stop!

If $w^* = 0$, then y = 0

- ▶ if some *y* in the (degenarate) basis, change basis to put all *y* out, thus obtaining an *x*_B feasible for the original problem!
- Phase II: solve the problem starting from the provided basis B

• Phase I: solve an artificial problem

$$w^* = \min w = 1^T y = y_1 + y_2 + \dots + y_m$$

$$s.t. \quad Ax + Iy = b \qquad y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}_+^m$$

If $w^* > 0$, the original problem is unfeasible, stop!

If
$$w^* = 0$$
, then $y = 0$

- if some y in the (degenarate) basis, change basis to put all y out, thus obtaining an x_B feasible for the original problem!
- Phase II: solve the problem starting from the provided basis B

• Phase I: solve an artificial problem

$$w^* = \min w = 1^T y = y_1 + y_2 + \dots + y_m$$

$$s.t. \quad Ax + Iy = b \qquad \qquad y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}_+^m$$

If $w^* > 0$, the original problem is unfeasible, stop!

If
$$w^* = 0$$
, then $y = 0$

- ▶ if some *y* in the (degenarate) basis, change basis to put all *y* out, thus obtaining an *x*_B feasible for the original problem!
- Phase II: solve the problem starting from the provided basis B

Simplex algorithm with matrix operations: revised simplex

$$\min z = c^T x \qquad \min z = c_B^T x_B + c_N^T x_N$$
s.t. $Ax = b$ s.t. $Bx_B + Nx_N = b$

$$x \ge 0 \qquad x_B, x_N \ge 0$$
standard form with (feasible) basis

$$-z + \bar{c}_N^T x_N = -z_B$$
$$I x_B + \bar{N} x_N = \bar{b}$$

canonical form

•
$$\bar{b} = B^{-1}b$$

• $z_B = c_B^T \bar{b}$
• $\bar{N} = B^{-1}N$
• $\bar{c}_N^T = c_N^T - c_B^T B^{-1}N$

The (revised) simplex algorithm

- **1** Let $\beta[1], ..., \beta[m]$ be the column indexes of the **initial basis**
- ② Let $B = [A_{\beta[1]}|...|A_{\beta[m]}]$ and compute B^{-1} e $u^T = c_R^T B^{-1}$
- **3** compute **reduced costs**: $\bar{c}_h = c_h u^T A_h$ for non-basic variables x_h
- 4 If $\bar{c}_h \geq 0$ for all non-basic variables x_h , STOP: B is optimal
- **5** Choose any x_h having $\bar{c}_h < 0$
- **o** Compute $\bar{b} = B^{-1}b = [\bar{b}_i]_{i=1}^m e \bar{A}_h = B^{-1}A_h = [\bar{a}_{ih}]_{i=1}^m$

- If $\bar{a}_{ih} < 0$, $\forall i = 1...m$, **STOP**: unlimited
- **1** Determine $t = \arg\min_{i=1...m} \{\bar{b}_i/\bar{a}_{ih}, \bar{a}_{ih} > 0\}$
- **9** Change basis: $\beta[t] \leftarrow h$.
- Iterate from Step 2

Example

Solve:

Standard form

min
$$-3x_1 - x_2 - 3\hat{x}_3$$

s.t. $2x_1 + x_2 + \hat{x}_3 + x_4 = 2$
 $x_1 + 2x_2 + 3\hat{x}_3 + x_5 = 5$
 $2x_1 + 2x_2 + \hat{x}_3 + x_5 = 6$
 $x_1 , x_2 , \hat{x}_3 , x_4 , x_5 , x_6 \ge 0$

Matrices and initial basis

Feasible initial basis (suppose given): $B = [A_4|A_5|A_6]$

$$\beta[1] = 4$$
 $\beta[2] = 5$ $\beta[3] = 6$

Iteration 1: steps 2–5

$$x_{B}^{T} = \begin{bmatrix} x_{4} & x_{5} & x_{6} \end{bmatrix} \qquad c_{B}^{T} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$u^{T} = c_{B}^{T}B^{-1} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$\bar{c}_{1} = c_{1} - u^{T}A_{1} = -3 - \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} = -3 - 0 = -3$$

$$\bar{c}_{2} = c_{2} - u^{T}A_{2} = -1 - \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} = -1 - 0 = -1 \qquad h = 2 \ (x_{2} \text{ enters})$$

$$\bar{c}_{3} = c_{3} - u^{T}A_{3} = -3 - \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = -3 - 0 = -3$$

Iteration 1: steps 6–9

$$\bar{b} = B^{-1}b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} \qquad \begin{array}{c} x_4 \\ x_5 \\ x_6 \end{array}$$

$$\bar{A}_h = B^{-1}A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$t = \arg\min\left\{\begin{array}{cc} \frac{2}{1} & \frac{5}{2} & \frac{6}{2} \end{array}\right\} = \arg\left(\frac{2}{1}\right) = 1 \qquad \rightsquigarrow x_4 \text{ leaves}$$

$$\beta[1]=2$$
 (column 2 replaces $\beta[1]$ that was 4)

Iteration 2: steps 2–5

Iteration 2: steps 2-5
$$x_{B}^{T} = \begin{bmatrix} x_{2} & x_{5} & x_{6} \end{bmatrix} \qquad c_{B}^{T} = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

$$u^{T} = c_{B}^{T}B^{-1} = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$$

$$\bar{c}_{1} = c_{1} - u^{T}A_{1} = -3 - \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \\ 3 \end{bmatrix} = -3 - (-2) = -1$$

$$\bar{c}_{3} = c_{3} - u^{T}A_{3} = -3 - \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = -3 + 1 = -2 \qquad h = 3$$

$$(\hat{x}_{3} \text{ enters})$$

 $ar{c}_4 = c_4 - u^T A_4 = egin{array}{cccc} 0 - igl[& -1 & 0 & 0 \end{array} igr] egin{array}{cccc} 1 \ 0 \ 0 \end{array} igr] = 0 - (-1) = 1$

Iteration 2: steps 6–9

$$\bar{b} = B^{-1}b = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \qquad \begin{array}{c} x_2 \\ x_5 \\ x_6 \end{array}$$

$$\bar{A}_h = B^{-1}A_3 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$t = \arg\min\left\{\begin{array}{cc} \frac{2}{1} & \frac{1}{1} & X \end{array}\right\} = \arg\left(\frac{1}{1}\right) = 2 \qquad \rightsquigarrow x_5 \text{ leaves}$$

$$\beta[2] = 3$$
 (column 3 replaces column $\beta[2]$ that was 5)

Iteration 3: steps 2–5

$$x_{B}^{T} = \begin{bmatrix} x_{2} & \hat{x}_{3} & x_{6} \end{bmatrix} \qquad c_{B}^{T} = \begin{bmatrix} -1 & -3 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$$

$$u^{T} = c_{B}^{T}B^{-1} = \begin{bmatrix} -1 & -3 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 0 \end{bmatrix}$$

$$\bar{c}_{1} = c_{1} - u^{T}A_{1} = -3 - \begin{bmatrix} 3 & -2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = -3 - (4) = -7 \qquad h = 1$$
(x₁ enters)

It is not necessary to compute all reduced costs, stop as soon **one of them** is negative!

Iteration 3: steps 6–9

$$\bar{b} = B^{-1}b = \begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \qquad \begin{array}{c} x_2 \\ \hat{x}_3 \\ x_6 \end{array}$$

$$\bar{A}_h = B^{-1}A_1 = \begin{bmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

$$t = \arg\min\left\{\begin{array}{cc} \frac{1}{5} & \mathsf{X} & \mathsf{X} \end{array}\right\} = \arg\left(\frac{1}{5}\right) = 1 \qquad \rightsquigarrow x_2 \text{ leaves}$$

$$\beta[1] = 1$$
 (column 1 replaces column $\beta[1]$ that was 2)

Iteration 4

$$x_{B}^{T} = \begin{bmatrix} x_{1} & \hat{x}_{3} & x_{6} \end{bmatrix} \qquad c_{B}^{T} = \begin{bmatrix} -3 & -3 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$u^{T} = c_{B}^{T}B^{-1} = \begin{bmatrix} -3 & -3 & 0 \end{bmatrix} \begin{bmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -6/5 & -3/5 & 0 \end{bmatrix}$$

$$\bar{c}_{2} = c_{2} - u^{T}A_{2} = -1 - \begin{bmatrix} -6/5 & -3/5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = -1 - (12/5) = 7/5$$

$$\bar{c}_{4} = c_{4} - u^{T}A_{4} = 0 - \begin{bmatrix} -6/5 & -3/5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 - (6/5) = 6/5$$

$$\bar{c}_{5} = c_{5} - u^{T}A_{5} = 0 - \begin{bmatrix} -6/5 & -3/5 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0 - (3/5) = 3/5$$

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Optimal solution

Standard form (the one we solved by simplex method):

$$\bullet \ x_B^* \begin{bmatrix} x_1 \\ \hat{x}_3 \\ x_6 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1/5 \\ 8/5 \\ 4 \end{bmatrix}$$

•
$$x_1^* = 1/5$$
; $x_2^* = 0$; $\hat{x}_3^* = 8/5$; $x_4^* = 0$; $x_5^* = 0$; $x_6^* = 4$

•
$$z_{MIN}^* = c^T x^* = c_B^T x_B^T = \begin{bmatrix} -3 & -3 & 0 \end{bmatrix} \begin{bmatrix} 1/5 \\ 8/5 \\ 4 \end{bmatrix} = -27/5$$

Optimal solution for the initial problem:

- $x_1^* = 1/5$
- $x_2^* = 0$
- $x_3^* = -\hat{x}_3^* = -8/5$
- first constraint satisfied with equality (since $x_4^* = 0$)
- second constraint satisfied with equality (since $x_5^* = 0$)
- third constraint satisfied with a slack of 4 (since $x_6^* = 4$)
- $z_{M\Delta X}^* = -z_{MIN}^* = 27/5$.