$$f(x) = [x] - floor function.$$

Type - 1 discontinuity at
$$x = \mathbb{Z}$$
 because

$$\lim_{x \uparrow z} f_{(x)} = Z - (\neq Z = \lim_{x \downarrow z} f_{(x)})$$
for $Z \in \mathbb{Z}$

$$f(x) = x - [x]$$
 - fractional function.

at
$$\chi = \mathbb{Z}$$
 because

$$\lim_{x \uparrow z} f(x) = 1 \neq 0 = \lim_{x \downarrow z} f(x)$$

20. If E is a nonempty subset of a metric space X, define the distance from $x \in X$ to E by

$$\rho_E(x) = \inf_{z \in E} d(x, z).$$

(a) Prove that $\rho_{E}(x) = 0$ if and only if $x \in \vec{E}$.

(b) Prove that ρ_E is a uniformly continuous function on X, by showing that

$$|\rho_{E}(x) - \rho_{E}(y)| \leq d(x, y)$$

for all $x \in X$, $y \in X$.

Hint: $\rho_E(x) \le d(x, z) \le d(x, y) + d(y, z)$, so that

$$\rho_{E}(x) \leq d(x, y) + \rho_{E}(y).$$

$$(\alpha) \cdot (\Rightarrow) : \rho_{E}(x) = \inf_{z \in E} d(x, z) = 0 \Rightarrow \forall z > 0 \exists e \in E \text{ s.t.} d(x, e) < E$$

$$\Rightarrow x \in \overline{E}$$

(
$$\Leftarrow$$
): $\chi \in \widehat{E} \Rightarrow \forall \epsilon > 0$ fee E s.e. $d(x,e) - 0 < \epsilon$. We also know infd(x, ϵ) ≥ 0 .

(b).
$$\rho_{\epsilon}(x) \leq d(x, z) \leq d(x, y) + d(y, z)$$
, and. $d(y, z) > \rho_{\epsilon}(y)$

$$\Rightarrow \rho_{\varepsilon}(x) \leqslant d(x,y) + \rho_{\varepsilon}(y)$$

$$\rho_{\varepsilon}(x) - \rho_{\varepsilon}(y) \leqslant d(x,y)$$

Using the same argument, but snap x and y, we have:

$$\ell_{\epsilon}(y) - \ell_{\epsilon}(x) \leq \lambda(x, y)$$

$$S_{o} | l_{\epsilon}(x) - l_{\epsilon}(y) | = d(l_{\epsilon}(x), l_{\epsilon}(y)) \leq d(x, y)$$
 for all $x, y \in X$

Set
$$\varepsilon = d(x,y)$$
, $\delta = \varrho$. $d(x,y) < \delta \Rightarrow d(x,y) < \varepsilon \Rightarrow d(f_{\varepsilon}(x,f_{\varepsilon}(y)) < \varepsilon$

$$\Rightarrow$$
 For any $\epsilon > 0$, $\exists \delta = \epsilon$ such that $d(P_{\epsilon}(x), P_{\epsilon}(y)) < \epsilon$ whenever $d(x,y) < \delta$

$$\lim_{x\to\infty} \frac{10\cdot2^{x}-x^{1-\alpha}}{2^{x+1}-\sin(x^{1})} = \lim_{x\to\infty} \frac{10-\frac{x^{1-\alpha}}{2^{x}}}{2-\frac{\sin(x^{1})}{2^{x}}}$$

$$\lim_{x\to\infty} \frac{x^{1-\alpha}}{2^{x}} = 0 \qquad \lim_{x\to\infty} \frac{10-\frac{x^{1-\alpha}}{2^{x}}}{1-\frac{\sin(x^{1})}{2^{x}}} \qquad \lim_{x\to\infty} \frac{x^{1-\alpha}}{1-\frac{\cos(x^{1})}{2^{x}}} = 0 \qquad \lim_{x\to\infty} \frac{x^{1-\alpha}}{$$

Claim: $\lim_{x\to\infty} \frac{\sin(x^2)}{2^x} = 0$. Pf: $\frac{-1}{2^x} \leqslant \frac{\sin(x^2)}{2^x} \leqslant \frac{1}{2^x}$ both sides \rightarrow 0 as $\times \rightarrow \infty$. It follows by squeeze theorem

$$\lim_{x \to \infty} \frac{10 \cdot 2^{x} - x^{1^{\circ}}}{2^{x+1} - \sin(x^{2})} = \lim_{x \to \infty} \frac{10 - \frac{x^{1^{\circ}}}{2^{x}}}{2 - \frac{\sin(x^{1})}{2^{x}}} = \frac{10 - 0}{2 - 0} = 5$$

f(x) = dx is uniformly continuous on $[0, \infty)$

5 x.

Pf: $\forall \varepsilon > D$, Set $\delta = \varepsilon^2$. For all p, q such that $|p-q| < \delta$ and $p, q \in [D, \infty)$:

$$\Rightarrow |\sqrt{p} + \sqrt{q}| \cdot |\sqrt{p} - \sqrt{q}| < \varepsilon^2$$

Since | Jp - Jq | < | Jp + Jq | , we get | Jp + Jq | . | Jp - Jq | > | Jp - Jq | 2

$$\Rightarrow$$
 fex = \int_X is uniformly continuous on [0, ∞)

 $h(x) = \sin x$ is uniformly continuous on $[0, \infty)$

Pf.

Lemma: /sinx/ \ (X/ for x \ \ \ \ \ \ \)

Pf: When x=0, it is obvious. When $x \neq 0$, we argue geometrically that the arc length (x) is always larger than $\sin(x)$.

tor p, q ∈ [0, ∞): |p-q| < 8

Lemma $\left| \frac{p-q}{2} \right| < \frac{\varepsilon}{2}$

 $\left| \sin \frac{p-q}{2} \right| \left| \cos \frac{p+q}{2} \right| < \frac{\varepsilon}{2}$

product to $\left| 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2} \right| < \varepsilon.$ Sum formula $\left| \sin(p) - \sin(q) \right| < \varepsilon.$

Thus, 4270, 78 s.t. | sin(p) - sin(q) | < 8 nheuerer | p-g| < 8. q.e.d.