

# Métricas de avaliação III: RMSE

| ≡ Ciclo                     | Ciclo 03: Aprendizado supervisionado - Regressão |
|-----------------------------|--------------------------------------------------|
| # Aula                      | 24                                               |
| <ul><li>O Created</li></ul> | @January 30, 2023 2:51 PM                        |
| ☑ Done                      | <b>▽</b>                                         |
| ☑ Ready                     | ✓                                                |

# **Objetivo da Aula:**

| ☐ A reta de | regressão |
|-------------|-----------|
|-------------|-----------|

| O erro RMS |  | 0 | erro | RM | ISI |  |
|------------|--|---|------|----|-----|--|
|------------|--|---|------|----|-----|--|

|   | Vantagens e  | desvantagens  | do | RMSE |
|---|--------------|---------------|----|------|
| _ | varitagono o | accidentagono | au |      |

### Conteúdo:

# **▼ 1.** A reta de regressão

## **▼ 2.** O erro RMSE

RMSE (Root Mean Square Error) calcula a raiz quadrada do erro médio quadrático (MSE) entre as previsões e os valores reais.

O valor do RMSE está na mesma unidade de medida da variável resposta, o que faz a interpretação do erro ser direta. Essa métrica de erro atribui um erro maior para previsões com altos valores de erro.

#### **▼ 2.1 Fórmula**

A raíz quadrada do erro médio quadrático, conhecido como RMSE, é calculado da seguinte forma:

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

### **▼ 2.2** Exemplo:

| Posição | Altura atual ( y ) | Altura predita ( ŷ ) | Error (y - ŷ) | Error (y - ŷ) ^2 | ((y-ŷ)/y)^2              |
|---------|--------------------|----------------------|---------------|------------------|--------------------------|
| 1       | 188                | 180                  | 8             | 64               | ( 0.04 ) ^ 2 =<br>0.0018 |
| 2       | 180                | 160                  | 20            | 400              |                          |

| 3 | 175         | 170 | 5  | 25             |
|---|-------------|-----|----|----------------|
| 4 | 148         | 150 | -2 | 4              |
| 5 | 203         | 200 | 3  | 9              |
| 6 | 184         | 190 | -6 | 36             |
| 7 | 150         | 140 | 10 | 100            |
|   |             |     |    | MSE = 91,14 m2 |
|   | Média = 170 |     |    | RMSE = 9,54m   |
|   |             |     |    | RMSPE = 5%     |

O erro médio ponderado entre as previsões e os valores reais neste conjunto de dados é 9.55, o que provavelmente é um bom valor, uma vez que a altura real média no conjunto de dados é 170.

#### **▼ 2.2.1** Como interpretar o RMSE

O RMSE é uma medida de performance do modelo na mesma escala da variável alvo. O RMSE pode ser interpretado como o erro médio que as previsões do modelo tem com os dados reais, sendo que o erro está na mesma escala.

#### ▼ 2.2.1.1 Por exemplo:

Um valor de RMSE de R\$1.000 para a previsão do preço de venda de uma casa parece bom, uma vez que os preços das casas tendem a ser maior do que R\$ 100.000.

Entretanto, o mesmo RMSE de R\$ 1.000 para a previsão de vendas de um computador entre R\$ 800 e R\$ 5.000 é terrível .

## ▼ 3. Vantagens e Desvantagens do RMSE

### **▼ 3.1 Vantagens:**

- 1. Atribui um peso maior para grandes erros.
- 2. Apresenta a mesma unidade de medida da variável resposta.

### **▼ 3.2** Desvantagens:

1. Não é robusto na presença de outliers.

## **▼ 4. RMSE na prática**

```
y_pred = lr_model.predict( x_train )
df1 = df.loc[:, ['id_cliente', 'saldo_atual']]
df1['predicted'] = y_pred
# 4.0 Model Performance
## 4.1 R squared
r2_squared = np.round( 100*mt.r2_score( y_train, y_pred ), 2 )
print( 'R2 square: {}%'.format( r2_squared ) )
## 4.2 MSE
mse = np.round( mt.mean_squared_error( y_train, y_pred ) , 2 )
print( 'A cada previsão, o erro médio é de: U${}'.format( mse ) )
## 4.3 RMSE
rmse = np.sqrt( mse )
print( 'A cada previsão, o erro médio é de: U${}'.format( rmse ) )
# 5.0 Conclusão
print( '{}}% da variação da variável alvo y é reduzida, levando em consideração o preditor'.format( r2_squared ) )
 print( \ '\{\}\% \ da \ variação \ da \ variável \ alvo \ y \ \'e \ "explicada \ pela \ variação \ do \ preditor \ x'.format( \ r2\_squared ) \ )
```

### **▼** 5. Resumo

- 1. RMSE apresenta o erro médio na mesma unidade de medida da variável resposta. Portanto, facilita a interpretação.
- 2. RMSE ainda atribui um peso maior aos grandes erros de previsão.

### ▼ 6. Próxima aula

Exercícios