M328K Homework 8

Joshua Dong

March 31, 2014

0.1 - 6.1.16

Show that if n is a composite integer with $n \neq 4$, then $(n-1)! \equiv 0 \pmod{n}$

If n is composite, then there two possibilities:

Case 1:

There exist different prime integers a and b where ab=n and $2 \le a < b \le n-2$. Both a and b are in the product (ab-1)!.

Therefore (ab-1)! is divisible by ab.

Case 2:

If n cannot be expressed as a product of two different primes, then n is a square where $n=p^2$.

p appears in the factorial product of (n-1)!, therefore $p \mid (n-1)!$.

We can say $2p \mid (n-1)!$ if 2p < n, which is true for all squares where $n \neq 4$.

If $2p \mid (n-1)!$ and $p \mid (n-1)!$, then $2p^2 \mid (n-1)!$.

Therefore $2n \mid (n-1)!$.

Therefore $n \mid (n-1)!$.

Therefore, $(n-1)! \equiv 0 \pmod{n}$ for all composites $n, n \neq 4$.

0.2 - 6.1.22

Show that $30 \mid (n^9 - n) \ \forall n \in \mathbb{Z}^+$.

$$\begin{array}{l} 2,3,5 \mid n(n-1)(n+1)(n^2+1) \rightarrow \\ 30 \mid n(n-1)(n+1)(n^2+1) \rightarrow \\ 30 \mid n(n-1)(n+1)(n^2+1)(n^4+1) \rightarrow \\ 30 \mid (n^9-n). \end{array}$$

n(n-1) forms a sequence of three consecutive integers.

Therefore, one of them must divide 2 (this could be trivially shown with an enumeration of possibilities in the form 2q + r).

$$\therefore 2 \mid n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+.$$

n(n-1)(n+1) forms a sequence of three consecutive integers.

We can use the same argument we used to prove divisibility by two.

$$\therefore 3 \mid n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+.$$

Suppose 5 does not divide k(k-1)(k+1).

k must then be in the form 5t + 2 or 5t + 3 for some $t \in \mathbb{Z}^+$, as a form of 5t + 0, 5t + 1, or 5t + 4 would result in the product having a term divisible by 5. If k is in the form 5t + 2 or 5t + 3, then $(k^2 + 1)$ is in the form 25t + 4 + 1 or 25t + 9 + 1, both which are divisible by 5.

$$\therefore 5 \mid n(n-1)(n+1)(n^2+1) \ \forall n \in \mathbb{Z}^+.$$

$$\therefore 30 \mid (n^9 - n) \ \forall n \in \mathbb{Z}^+.$$

(However, it is worth noting that if n < 2, then the product is 0)

0.3 6.3.4

Show that if $a, m \in \mathbb{Z}^+$, (a, m) = (a - 1, m) = 1, then $1 + a + a^2 + ... + a^{\varphi(m) - 1} \equiv 0 \pmod{m}$.

Let
$$x \in \mathbb{Z}$$
 where $x = 1 + a + a^2 + \dots + a^{\varphi(m)-1}$
 $ax = a + a^2 + \dots + a^{\varphi(m-1)} + a^{\varphi(m)}$
 $ax + 1 = 1 + a + a^2 + \dots + a^{\varphi(m-1)} + a^{\varphi(m)}$
 $ax + 1 = x + a^{\varphi(m)}$
 $x = \frac{a^{\varphi(m)} - 1}{a - 1}$
 $1 + a + a^2 + \dots + a^{\varphi(m)-1} \equiv \frac{a^{\varphi(m)} - 1}{a - 1} \pmod{m}$
 $\frac{a^{\varphi(m)} - 1}{a - 1} \equiv \frac{1 - 1}{a - 1} \equiv 0 \pmod{m}$, by Euler's totient theorem, given $a > 1$.
 $\therefore 1 + a + a^2 + \dots + a^{\varphi(m)-1} \equiv 0 \pmod{m} \quad \forall a, m \in \mathbb{Z}^+, (a, m) = (a - 1, m) = 1$.

0.4 6.3.10

Show that $a^{\varphi(b)} + b^{\varphi(a)} \equiv 1 \pmod{ab}$ given $a \perp b$.

```
\begin{array}{l} a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv b^{\varphi(a)} - 1 \equiv 0 \pmod{a} \text{ by Euler's totient theorem } (a \perp b). \\ \text{Without loss of generality, } a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv 0 \pmod{b}. \\ \therefore a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv 0 \pmod{ab}. \\ \therefore a^{\varphi(b)} + b^{\varphi(a)} \equiv 1 \pmod{ab} \text{ for all coprime integers a and b.} \end{array}
```