UNIVERSITE ABOU BEKR BELKAID – TLEMCEN FACULTE DES SCIENCES - DEPARTEMENT D'INFORMATIQUE

Administration des SGBD

TD N°4: (L3 2017-2018)

Exercice 1 Soit les relations suivantes :

EMPLOYE (Matricule, NomEmp, Poste, DateEmbauche, MatriculeSupérieur#, Salaire, CodeDept#)

DEPARTEMENT (CodeDept, NomDept, Lieu)

PROJET (CodeProjet, NomProj)

PARTICIPATION (Matricule#, CodeProjet#, Fonction)

Donnez les requêtes suivantes en SQL et en algèbre relationnelle, puis proposer les arbres algébriques correspondants ainsi que les différents plans d'exécution de ces requêtes :

- 1. Matricule et nom des employés qui ont été embauchés avant le 1 janvier 2000.
 - SELECT Matricule, NomEmp FROM EMPLOYE
 WHERE DateEmbauche < 01/01/2000
 - $\prod_{\text{[Matricule, NomEmp]}} (\sigma_{\text{[DateEmbauche}} < 01/01/2000]} (Employe))$
 - R1 \leftarrow Sélectionner de la table Employe ceux dont la DateEmbauche est < 01/01/2000 R2 \leftarrow Projeter R1 sur Matricule et NomEmp
 - \prod [Matricule, NomEmp](σ [DateEmbauche < 01/01/2000] (\prod [Matricule, NomEmp, DateEmbauche](Employe))
 - R1← Projeter EMPLOYE sur Matricule, NomEmp et DateEmbauche
 - R2← Sélectionner de la table R1 les employés dont la DateEmbauche est < 01/01/2000
 - R3← Projeter R2 sur Matricule et NomEmp
- 2. Nom des employés avec le nom du département où ils travaillent.
 - SELECT NomEmp, NomDept
 FROM EMPLOYE, DEPARTEMENT
 WHERE EMPLOYE.CodeDept= DEPARTEMENT.CodeDept
 - ∏[NomEmp, NomDept] (EMPLOYE ➤ DEPARTEMENT)
 - R1 ← Joindre EMPLOYE avec DEPARTEMENT par CodeDept
 R2←Projeter R1 sur NomEmp et NomDept
 - $\prod_{[NomEmp, NomDept]}(\prod_{[NomEmp, CodeDept]}(EMPLOYE) \bowtie \prod_{[NomDept, CodeDept]}(DEPARTEMENT))$
 - R2← Projeter EMPLOYE sur NomEmp et CodeDept
 - R2← Projeter DEPARTEMENT sur NomDept et CodeDept
 - R3← Joindre R1 avec R2 par CodeDept
 - R4← Projeter R3 sur NomEmp et NomDept (Pour éjecter le CodeDept)
- 3. Nom des employés qui travaillent dans le département Comptabilité.
 - SELECT NomEmp

FROM EMPLOYE, DEPARTEMENT

WHERE NomDept= 'Comptabilite' And EMPLOYE.CodeDept = DEPARTEMENT.CodeDept

- ∏_{NomEmp} (σ [NomDept= 'Comptabilite']</sub> (EMPLOYE ⋈ DEPARTEMENT))
 - R1 ← Joindre EMPLOYE avec DEPARTEMENT par CodeDept
 - R2← Sélectionner de la table R1 les tuples dont le NomDept= Comptabilite
 - R2← Projeter R2 sur NomEmp

 SELECT NomEmp FROM (SELECT NomEmp, CodeDept FROM EMPLOYE) AS E, (SELECT * FROM DEPARTEMENT WHERE NomDept= 'Comptabilite') AS D WHERE E.CodeDept = D.CodeDept ∏_{NomEmp} (EMPLOYE ⋈ (σ [NomDept= 'Comptabilite'] DEPARTEMENT) R1 ← Projeter EMPLOYE sur NomEmp, CodeDept R2← Sélectionner de la table DEPARTEMENT les tuples dont le NomDept= Comptabilite R3← Joindre R1 avec R2 R4← Projeter R3 sur NomEmp 4. Matricule des employés qui participent à tous les projets. SELECT Matricule FROM PARTICIPATION **GROUP BY Matricule** HAVING COUNT(DISTINCT (CodeProjet)) = (SELECT COUNT(CodeProjet) FROM PROJET) • (∏[Matricule, CodeProjet]PARTICIPATION) ÷ (∏CodeProjetPROJET) R1 ← Projeter Participation sur Matricule et CodeProjet R2← Projeter Projet sur CodeProjet $R3 \leftarrow R1/R2$ 5. Nom des employés qui ne participent à aucun projet. SELECT NomEmp FROM EMPLOYE WHERE Matricule NOT IN (SELECT Matricule FROM PARTICIPATION) Ou SELECT NomEmp FROM (SELECT Matricule, NomEmp FROM EMPLOYE) AS E1, (SELECT Matricule FROM EMPLOYE WHERE Matricule NOT IN (SELECT Matricule FROM PARTICIPATION)) AS E2 WHERE E1.Matricule = E2.Matricule $\prod_{\text{NomEmp}} (\text{EMPLOYE} \bowtie (\prod_{\text{Matricule}} \text{EMPLOYE} - \prod_{\text{Matricule}} \text{PARTICIPATION}))$ R1 ← Projeter EMPLOYE sur Matricule R2← Projeter PARTICIPATION sur Matricule

R1 ← Projeter EMPLOYE sur Matricule
R2← Projeter PARTICIPATION sur Matricule
R3← R1- R2
R4← Joindre EMPLOYE avec R3
R5← Projeter R4 sur NomEmp

- 6. Nom des départements qui ont à la fois au moins un ingénieur et au moins une secrétaire.
 - (SELECT NomDept FROM DEPARTEMENT, EMPLOYE
 WHERE Poste = 'Ingénieur' AND EMPLOYE.CodeDept = DEPARTEMENT.CodeDept)
 INTERSECT
 (SELECT NomDept FROM DEPARTEMENT, EMPLOYE
 WHERE Poste = 'Secrétaire' WHERE EMPLOYE.CodeDept = DEPARTEMENT.CodeDept);
 Ou

SELECT Dept_Ing.NomDept FROM
 (SELECT NomDept FROM DEPARTEMENT, EMPLOYE
 WHERE Poste = 'Ingénieur' AND EMPLOYE.CodeDept = DEPARTEMENT.CodeDept) AS Dept_Ing,
 (SELECT NomDept FROM DEPARTEMENT, EMPLOYE
 WHERE Poste = 'Secrétaire') WHERE EMPLOYE.CodeDept = DEPARTEMENT.CodeDept) AS Dept_Sec
 WHERE Dept_Ing.NomDept = Dept_Sec.NomDept;

- (∏_{NomDept} (σ [Poste= 'Ingénieur']</sub> (EMPLOYE ⋈ DEPARTEMENT))) ∩ (∏_{NomDept} (σ [Poste= 'Secrétaire']</sub> (EMPLOYE ⋈ DEPARTEMENT)))
 - R1 ← Joindre EMPLOYE avec DEPARTEMENT par CodeDept
 - R2← Sélectionner de la table R1 les tuples dont le Poste=Ingénieur
 - R3← Projeter R2 sur NomDept
 - R4← Sélectionner de la table R1 les tuples dont le Poste= Secrétaire
 - R5← Projeter R4 sur NomDept
 - R6← Joindre R3 avec R5 par NomDept

Exercice 2 Soit deux relations :

CINEMA (NomCinema, Adresse, Gerant)

SALLE (NomCinema#, NumSalle, Capacite, Type)

- 1. Donner la requête SQL qui donne les adresses des cinémas ayant des salles d'une capacité > 150.
 - SELECT Adresse

FROM CINEMA

WHERE NomCinema IN

(SELECT NomCinema FROM Salle WHERE capacité > 150

Ou

SELECT Adresse

FROM CINEMA, SALLE

WHERE capacité > 150

AND CINEMA.NomCinema = SALLE.NomCinema

2. Optimiser votre requête SQL.

SELECT Adresse

FROM (SELECT NomCinema, Adresse FROM CINEMA) AS A, (SELECT NomCinema FROM SALLE WHERE capacité > 150) AS B WHERE A.NomCinema = B.NomCinema

Exercice 3 Soit le schéma ci-dessous :

Etudiant (IdEtud, NomEtud, AdrEtud, Etat)

Formation (IdF, NomF, AdrF)

Cours (IdCours, IdF#, Intitule, Resp)

Inscr (IdCours#, IdEtud#, Note)

1. Analyser l'arbre suivant et essayer de l'améliorer :

- Réduire la table Etudiant en gardant ldEtd, NomEtd, Res
- Réduire la table Cours en gardant IdCours et Intitule
- Regrouper les 2 opérations de restriction (libellé=Anglais)
 et (Note=15) avec la projection sur (NomEtd, Res)
- L'ordre de jointure peut être modifié sachant les cardinalités des tables de jointure.

2. Traduire l'arbre en algèbre relationnel avant et après amélioration

Avant amélioration

 $\Pi_{[NomEtd,Res,]}$ ($\sigma_{[IdEtd=NoEtud']}$ ($\sigma_{[IdCours=NoCours]}$ (Cours \bowtie ($\sigma_{[IdEtd=NoEtud']}$ (Etudiant \bowtie_{Inscr}))))))

Aprés amélioration

 $\Pi_{\text{[NomEtd,Res,]}}$ ($\sigma_{\text{[Intitule='anglais' and Note ='15']}}$ ($\Pi_{\text{[NoCours,Intitule]}}$ (Cours) \bowtie ($\Pi_{\text{[IdEtd,NomEtd,Res]}}$ (Etudiant) \bowtie Inscr)))

3. Optimisez les requêtes suivantes :

- a. Q1= \prod [NomF, AdrF] σ [Formation.ldF = Cours.ldF] (σ [Resp='Mohamed'] Cours \times Formation)
 Q1= \prod [NomF, AdrF] σ [Formation.ldF = Cours.ldF] (σ [Resp='Mohamed'] (\prod [ldF, Resp] Cours) \times Formation)
- b. Q2 = SELECT NomF, Intitule, IdCours FROM Formation, Cours, Inscr, Etudiant
 WHERE (NomEtd = 'Amine') AND (Cours.IdCours = Inscr.NoCours) AND (Formation.IdF = Cours.IdF) AND
 (Etudiant.IdEtd = Inscr.NoEtd)
 - Q2 = SELECT NomF, Intitule, IdCours FROM Formation, Cours, Inscr, (SELECT IdEtd FROM Etudiant WHERE NomEtd = 'Amine') WHERE (Cours.IdCours = Inscr.NoCours) AND (Formation.IdF = Cours.IdF) AND (Etudiant.IdEtd = Inscr.NoEtd)
- c. Q3 = SELECT NomEtd, Note, IdCours FROM Etudiant, Inscr, Cours, Formation
 WHERE (NomF = 'Informatique') AND (Intitule='ADM_BDD') AND (Cours.IdCours = Inscr.NoCours) AND
 (Formation.IdF = Cours.IdF) AND (Etudiant.IdEtd=Inscr.NoEtd)

```
Q3 = SELECT NomEtd, Note, IdCours FROM Etudiant, Inscr, (SELECT * FROM Cours WHERE Intitule='ADM_BDD'), (SELECT IdF, NomF FROM Formation WHERE NomF = 'Informatique')
WHERE (Cours.IdCours = Inscr.NoCours) AND (Formation.IdF = Cours.IdF) AND (Etudiant.IdEtd=Inscr.NoEtd)
```

NB: Les améliorations apportées ne sont pas exhaustives, en revanche, il y a d'autres améliorations qui peuvent être apportées

MATALLAH H