

FCC RF Test Report

APPLICANT : Doro AB

EQUIPMENT: **GSM** Mobile Telephone

BRAND NAME : doro

MODEL NAME : Doro PhoneEasy 612i
MARKETING NAME : Doro PhoneEasy 612i

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The product was received on Oct. 22, 2013 and testing was completed on Oct. 30, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

Innoe Tsui

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398

Page Number : 1 of 66
Report Issued Date : Nov. 11, 2013

Report Version : Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAI	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Site	6
	1.7	Applied Standards	6
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Descriptions of Test Mode	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TES	T RESULT	11
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	20
	3.4	20dB Bandwidth Measurement	23
	3.5	Peak Output Power Measurement	
	3.6	Conducted Band Edges Measurement	32
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	64
4	LIST	OF MEASURING EQUIPMENT	65
5	UNC	ERTAINTY OF EVALUATION	66
ΑP	PEND	DIX A. PHOTOGRAPHS OF EUT	
ΑP	PEND	DIX B. SETUP PHOTOGRAPHS	

TEL: 86-755-3320-2398

Page Number : 2 of 66 Report Issued Date: Nov. 11, 2013

Report No.: FR3O2201

Report Version : Rev. 01

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3O2201	Rev. 01	Initial issue of report	Nov. 11, 2013

TEL: 86-755- 3320-2398 Report Issue

Page Number : 3 of 66
Report Issued Date : Nov. 11, 2013

Report Version : Rev. 01

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.03 dB at 2483.700 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 3.70 dB at 0.560 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755-3320-2398

Page Number : 4 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

1 General Description

1.1 Applicant

Doro AB

Magistratsvägen 10 SE-226 43 Lund Sweden

1.2 Manufacturer

CK TELECOM LTD.

Technology Road. High-Tech Development Zone. Heyuan, Guangdong, P. R. China.

1.3 Feature of Equipment Under Test

Product Feature				
Equipment	GSM Mobile Telephone			
Brand Name	doro			
Model Name	Doro PhoneEasy 612i			
Marketing Name	Doro PhoneEasy 612i			
IMEI Number	359326050001052			
EUT supports Radios application	GSM/GPRS/Bluetooth v3.0 + EDR			
HW Version	YACHTPLUS-V2.0			
SW Version	YACHTPLUS-S01A_DORO612i_L18EN_200_131011			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 8.76 dBm (0.00752 W) Bluetooth EDR (2Mbps) : 8.25 dBm (0.00668 W) Bluetooth EDR (3Mbps) : 8.55 dBm (0.00716 W)			
Antenna Type	PIFA Antenna with gain -2.0 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755-3320-2398

Page Number : 5 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

1.5 **Modification of EUT**

No modifications are made to the EUT during all test items.

1.6 **Testing Site**

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.				
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan				
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.				
	TEL: +86-755- 3320-2398				
Test Site No.	5	Sporton Site No) .	FCC Registration No.	
rest Site No.	TH01-SZ	CO01-SZ	03CH01-SZ	831040	

Report No.: FR3O2201

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 **Applied Standards**

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC Public Notice DA 00-705
- ANSI C63.4-2003

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

: 6 of 66 Page Number TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

Report No.: FR3O2201

		В	luetooth RF Output Powe	er
Channel	Frequency		Data Rate / Modulation	
Chamilei	Frequency	GFSK	π/4-DQPSK	8-DPSK
		1Mbps	2Mbps	3Mbps
Ch00	2402MHz	<mark>8.76</mark> dBm	8.25 dBm	8.51 dBm
Ch39	2441MHz	8.32 dBm	7.82 dBm	8.14 dBm
Ch78	2480MHz	8.74 dBm	8.24 dBm	8.55 dBm

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels, and different data rates were conducted to determine the final configuration (Y plane as worst plane) from all possible combinations, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

TEL: 86-755- 3320-2398 Report Issued Date: Nov. 11, 2013
Report Version: Rev. 01

Page Number

: 7 of 66

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Report No.: FR3O2201

: 8 of 66

Page Number

	Summary table of Test Cases					
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π /4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Conducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth BER 1Mbps GFSK					
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
	2					
AC						
Conducted						
Emission	Earphone + Cradle					

Remark:

- For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate
 has the highest RF output power at preliminary tests, and no other significantly frequencies found in
 conducted spurious emission.
- 2. All the radiated test cases were performed with USB Cable, Adapter 4, Earphone and Cradle.

TEL: 86-755- 3320-2398 Report Issued Date : Nov. 11, 2013 Report Version : Rev. 01

Connection Diagram of Test System 2.3

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-3320-2398

Page Number : 9 of 66 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
3.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Nokia	BH-108	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 7.5 + 10 = 17.5 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR3O2201

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW ≥ 1% of the span; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	1Mbps	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Page Number

: 11 of 66

TEL: 86-755- 3320-2398 Report Issued Date : Nov. 11, 2013 Report Version : Rev. 01

Number of Hopping Channel Plot on Channel 00 - 78

Date: 28.OCT.2013 20:24:32

Date: 28.OCT.2013 20:29:35

Page Number TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels; RBW ≥ 1% of the span;
 VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.Page NumberTEL: 86-755- 3320-2398Report Issued

Page Number : 13 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

3.2.5 Test Result of Hopping Channel Separation

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Report No.: FR3O2201

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.008	0.6080	Pass
39	2441	1.002	0.6320	Pass
78	2480	1.002	0.5947	Pass

Channel Separation Plot on Channel 00 - 01

Date: 28.OCT.2013 21:27:44

Page Number : 14 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 : Rev. 01 Report Version

Date: 28.OCT.2013 19:56:55

Channel Separation Plot on Channel 77 - 78

Date: 28.OCT.2013 21:31:08

Page Number : 15 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

FCC RF Test Report

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Report No.: FR3O2201

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.8480	Pass
39	2441	1.002	0.8480	Pass
78	2480	1.002	0.8280	Pass

Channel Separation Plot on Channel 00 - 01

Date: 28.OCT.2013 21:11:44

Page Number : 16 of 66 Report Issued Date: Nov. 11, 2013 TEL: 86-755-3320-2398 Report Version : Rev. 01

Channel Separation Plot on Channel 39 - 40

Date: 28.OCT.2013 19:59:26

Channel Separation Plot on Channel 77 - 78

Date: 28.OCT.2013 20:00:06

Page Number TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

Test Engineer:

Fly Chen

Test Mode :	3Mbps	Temperature :	24~26 ℃

Relative Humidity:

50~53%

Report No.: FR3O2201

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.008	0.8240	Pass
39	2441	1.002	0.8240	Pass
78	2480	1.002	0.8240	Pass

Channel Separation Plot on Channel 00 - 01

Date: 28.OCT.2013 20:00:45

Page Number : 18 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

Channel Separation Plot on Channel 39 - 40

Date: 28.OCT.2013 20:01:29

Channel Separation Plot on Channel 77 - 78

Date: 28.OCT.2013 21:07:30

Page Number TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398

Report

Page Number : 20 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

FCC RF Test Report

3.3.5 Test Result of Dwell Time

Test Mode :	DH5	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Report No.: FR3O2201

: 21 of 66

Page Number

Mode	Hopping Channel Number	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	79	106.67	2.892	0.31	0.4	Pass
AFH	20	53.33	2.892	0.15	0.4	Pass

Remark:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.
 With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),
 Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 86-755- 3320-2398 Report Issued Date : Nov. 11, 2013 Report Version : Rev. 01

Package Transfer Time Plot

Report No.: FR3O2201

Date: 28.OCT.2013 08:47:46

Page Number Report Issued Date: Nov. 11, 2013 TEL: 86-755-3320-2398 Report Version : Rev. 01

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Measure and record the results in the test report.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.Page NumberTEL: 86-755- 3320-2398Report Issued Date

Page Number : 23 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

3.4.5 Test Result of 20dB Bandwidth

Test Mode :	1Mbps	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Report No.: FR3O2201

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	0.912
39	2441	0.948
78	2480	0.892

20 dB Bandwidth Plot on Channel 00

Date: 28.OCT.2013 20:04:34

Page Number : 24 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

20 dB Bandwidth Plot on Channel 39

Date: 28.OCT.2013 20:04:59

20 dB Bandwidth Plot on Channel 78

Date: 28.OCT.2013 20:05:22

Page Number : 25 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

Test Mode :	2Mbps	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.272
39	2441	1.272
78	2480	1.242

20 dB Bandwidth Plot on Channel 00

Date: 28.OCT.2013 20:05:49

Page Number : 26 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

20 dB Bandwidth Plot on Channel 39

Report No.: FR3O2201

Date: 28.OCT.2013 20:06:18

20 dB Bandwidth Plot on Channel 78

Date: 28.OCT.2013 20:06:56

Page Number : 27 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

FCC RF Test Report

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Report No.: FR3O2201

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.236
39	2441	1.236
78	2480	1.236

20 dB Bandwidth Plot on Channel 00

Date: 28.OCT.2013 20:07:45

Page Number : 28 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

Date: 28.OCT.2013 20:08:01

20 dB Bandwidth Plot on Channel 78

Date: 28.OCT.2013 20:08:13

Page Number : 29 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR3O2201

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

TEL: 86-755- 3320-2398 Report Issued Date : Nov. 11, 2013 Report Version : Rev. 01

Page Number

: 30 of 66

3.5.5 Test Result of Peak Output Power

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Report No.: FR3O2201

Channel Frequency		RF Power (dBm)		
		GFSK	Max. Limits	Doog/Foil
	(MHz)	1 Mbps	(dBm)	Pass/Fail
00	2402	8.76	20.97	Pass
39	2441	8.32	20.97	Pass
78	2480	8.74	20.97	Pass

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel (MHz)		RF Power (dBm)		
		π/4-DQPSK	Max. Limits	Pass/Fail
	(IVITIZ)	2 Mbps	(dBm)	Pass/Faii
00	2402	8.25	20.97	Pass
39	2441	7.82	20.97	Pass
78	2480	8.24	20.97	Pass

Test Mode :	3Mbps	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

	Eroguanov	R	F Power (dBm)		
Channel	Frequency (MHz)	8-DPSK			
	(WITIZ)	3 Mbps (dBm)		Pass/Fail	
00	2402	8.51	20.97	Pass	
39	2441	8.14	20.97	Pass	
78	2480	8.55	20.97	Pass	

Page Number : 31 of 66 TEL: 86-755-3320-2398 Report Issued Date: Nov. 11, 2013 Report Version : Rev. 01

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz (≥ 1% span=10MHz), VBW = 300kHz (≥ RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.6 Test Result of Conducted Band Edges

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Low Band Edge Plot on Channel 00

Date: 28.OCT.2013 21:41:44

High Band Edge Plot on Channel 78

Date: 28.OCT.2013 21:50:10

TEL: 86-755- 3320-2398

Page Number : 33 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Low Band Edge Plot on Channel 00

Date: 28.OCT.2013 21:43:15

High Band Edge Plot on Channel 78

Date: 28.OCT.2013 21:48:23

TEL: 86-755- 3320-2398

Test Mode :	3Mbps	Temperature :	24~26℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Low Band Edge Plot on Channel 00

Date: 28.OCT.2013 21:44:59

High Band Edge Plot on Channel 78

Date: 28.OCT.2013 21:46:42

TEL: 86-755- 3320-2398

3.6.7 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

1Mbps Hopping Mode Low Band Edge Plot

Date: 28.OCT.2013 22:03:51

1Mbps Hopping Mode High Band Edge Plot

Date: 28.OCT.2013 22:00:50

TEL: 86-755-3320-2398 Report Version : Rev. 01

Page Number Report Issued Date: Nov. 11, 2013

Test Mode :	2Mbps	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

2Mbps Hopping Mode Low Band Edge Plot

Date: 28.OCT.2013 22:06:26

2Mbps Hopping Mode High Band Edge Plot

Date: 28.OCT.2013 21:56:20

FCC RF Test Report

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Report No.: FR3O2201

3Mbps Hopping Mode Low Band Edge Plot

Date: 28.OCT.2013 22:10:16

3Mbps Hopping Mode High Band Edge Plot

Date: 28.OCT.2013 22:12:38

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755-3320-2398

Page Number : 39 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Report No.: FR3O2201

3.7.5 Test Result of Conducted Spurious Emission

Test Mode :	1Mbps	Temperature :	24~26℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Report No.: FR3O2201

1Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 20:14:36

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 20:15:28

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

1Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 20:16:20

1Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 20:17:12

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

1Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 20:18:04

1Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 20:18:56

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

2Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 20:30:58

2Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 20:31:50

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

2Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 21:12:51

2Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 21:13:12

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

2Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 20:34:26

2Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 20:35:18

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

3Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 20:46:46

3Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 20:47:08

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

3Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 21:04:38

3Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 21:05:00

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

3Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 28.OCT.2013 20:54:27

3Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 28.OCT.2013 20:54:48

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

TEL: 86-755-3320-2398

Page Number : 49 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Report No.: FR3O2201

3.8.3 **Test Procedures**

1. The testing follows the guidelines in Spurious Radiated Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.

Report No.: FR3O2201

50 of 66

- 2. The EUT was placed on a turntable with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- For each suspected emission, the EUT was arranged to its worst case and then tune the 4. Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: 6.
 - Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$
 - Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 7. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755- 3320-2398 Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Page Number

: 51 of 66

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755- 3320-2398

Page Number : 52 of 66 Report Issued Date : Nov. 11, 2013

Report No.: FR3O2201

Report Version : Rev. 01

Duty cycle correction factor for average measurement 3.8.6

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Report No.: FR3O2201

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.76 \text{ ms}/100\text{ms}) = -24.79 \text{ dB}$

3.8.7 Test Result of Radiated Spurious at Band Edges

Test Mode :	1Mbps	Temperature :	23~25°C
Test Channel :	00	Relative Humidity :	48~52%
		Test Engineer :	Gavin Zhang

Report No.: FR3O2201

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Level Over Limit Read Antenna Cable Preamp Ant Table Remark										
	Limit Line Level Factor Loss Factor Pos Pos											
(MHz)	z) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB) (dB) (dB) (cm) (deg)											
2389.65	49.51	-24.49	74	41.57	32.14	5.59	29.79	156	288	Peak		
2389.65	24.72	-29.28	54	-	-	-	-	156	288	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	cy Level Over Limit Read Antenna Cable Preamp Ant Table Rema											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.83	59.34	-14.66	74	51.36	32.14	5.62	29.78	123	238	Peak		
2389.83	34.55	-19.45	54	-	-	-	-	123	238	Average		

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.79dB) derived from 20log (dwell time/100ms).

For example: Average level = $49.51dB\mu V/m - 24.79$ (dB) = $24.72dB\mu V/m$.

Test Mode :	1Mbps	Temperature :	23~25°C
Test Channel :	78	Relative Humidity :	48~52%
		Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	requency Level Over Limit Read Antenna Cable Preamp Ant Table F											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.7	70.97	-3.03	74	62.75	32.27	5.71	29.76	195	160	Peak		
2483.7	46.18	-7.82	54	-	_	_	_	195	160	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Rer										Remark		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.54	70.94	-3.06	74	62.72	32.27	5.71	29.76	141	226	Peak		
2483.54	46.15	-7.85	54	-	-	-	-	141	226	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 55 of 66TEL: 86-755- 3320-2398Report Issued Date: Nov. 11, 2013Report Version: Rev. 01

Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic) 3.8.8

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Report No.: FR3O2201

Test Mode :	1Mbps	Temperature :	23~25°C					
Test Channel :	00	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
Remark :	2402 MHz is fundamental si	.02 MHz is fundamental signal which can be ignored.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	99.11	-	-	91.13	32.14	5.62	29.78	156	288	Peak
2402	74.32	-	-	-	-	-	-	156	288	Average
4804	43.94	-30.06	74	59.27	33.63	8.33	57.29	151	219	Peak
4804	19.15	-34.85	54	-	-	-	-	151	219	Average

Note: Other harmonics are lower than background noise.

Test Mode :	1Mbps	Temperature :	23~25°C
Test Channel :	00	Relative Humidity :	48~52%
Test Engineer :	Gavin Zhang	Polarization :	Vertical
Remark :	2402 MHz is fundamental si	gnal which can be igno	ored.

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	104.41	-	-	96.43	32.14	5.62	29.78	123	238	Peak
2402	79.62	-	-	-	-	-	-	123	238	Average
4804	38.19	-35.81	74	53.52	33.63	8.33	57.29	151	219	Peak
4804	13.4	-40.6	54	-	-	-	-	151	219	Average

Note: Other harmonics are lower than background noise.

Test Mode :	1Mbps	Temperature :	23~25°C						
Test Channel :	39	Relative Humidity :	48~52%						
Test Engineer :	Gavin Zhang	Polarization :	Horizontal						
Remark :	2441 MHz is fundamental si	441 MHz is fundamental signal which can be ignored.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2441	102.12	-	-	93.98	32.22	5.68	29.76	185	293	Peak
2441	77.33	-	-	-	-	-	-	185	293	Average
4882	44.47	-29.53	74	59.43	33.8	8.41	57.17	115	258	Peak
4882	19.68	-34.32	54	-	-	-	-	115	258	Average
7323	41.9	-32.1	74	53.72	35.32	10	57.14	152	309	Peak
7323	17.11	-36.89	54	-	-	-	-	152	309	Average

Note: Other harmonics are lower than background noise.

Test Mode :	1Mbps	Temperature :	23~25°C			
Test Channel :	39	Relative Humidity :	48~52%			
Test Engineer :	Gavin Zhang	Polarization : Vertical				
Remark :	2441 MHz is fundamental si	gnal which can be igno	ored.			

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2441	106.25	-	-	98.11	32.22	5.68	29.76	118	244	Peak
2441	81.46	-	-	-	-	-	-	118	244	Average
4882	38.39	-35.61	74	53.35	33.8	8.41	57.17	115	258	Peak
4882	13.6	-40.4	54	-	-	-	-	115	258	Average
7323	40.29	-33.71	74	52.11	35.32	10	57.14	152	309	Peak
7323	15.5	-38.5	54	-	-	-	-	152	309	Average

Note: Other harmonics are lower than background noise.

FCC RF Test Report

Test Mode :	1Mbps	Temperature :	23~25°C
Test Channel :	78	Relative Humidity :	48~52%
Test Engineer :	Gavin Zhang	Polarization :	Horizontal
Remark :	2480 MHz is fundamental si	gnal which can be igno	ored.

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
187.14	26	-17.5	43.5	45.29	9.45	1.64	30.38	145	208	Peak
426.73	22.57	-23.43	46	33.1	16.7	2.35	29.58	-	-	Peak
621.7	24.08	-21.92	46	31.41	19.02	2.82	29.17	-	-	Peak
779.81	26.8	-19.2	46	32.03	20.6	3.13	28.96	-	-	Peak
865.17	26.96	-19.04	46	31.25	21.26	3.3	28.85	-	-	Peak
939.86	27	-19	46	30.2	22.1	3.45	28.75	-	-	Peak
2480	104.54	-	-	96.32	32.27	5.71	29.76	195	160	Peak
2480	79.75	-	-	-	-	-	-	195	160	Average
4960	42.43	-31.57	74	56.95	34.01	8.49	57.02	118	289	Peak
4960	17.64	-36.36	54	-	-	-	-	118	289	Average
7440	41.41	-32.59	74	52.99	35.37	10.04	56.99	158	273	Peak
7440	16.62	-37.38	54	-	-	-	-	158	273	Average

Note: Other harmonics are lower than background noise.

TEL: 86-755-3320-2398

Page Number : 58 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Report No.: FR3O2201

FCC RF Test Report

Test Mode :	1Mbps	Temperature :	23~25°C					
Test Channel :	78	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
Remark :	2480 MHz is fundamental si	2480 MHz is fundamental signal which can be ignored.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
104.69	17.3	-26.2	43.5	34.86	11.8	1.29	30.65	-	-	Peak
176.47	19.3	-24.2	43.5	38.81	9.3	1.6	30.41	-	-	Peak
416.06	21.22	-24.78	46	31.71	16.78	2.34	29.61	-	-	Peak
554.77	23.67	-22.33	46	31.47	18.8	2.66	29.26	-	-	Peak
765.26	26.81	-19.19	46	32.36	20.34	3.09	28.98	-	-	Peak
931.13	27.56	-18.44	46	31.12	21.8	3.4	28.76	125	302	Peak
2480	105.28	-	-	97.06	32.27	5.71	29.76	141	226	Peak
2480	80.49	-	-	-	-	-	-	141	226	Average
4960	38.75	-35.25	74	53.27	34.01	8.49	57.02	118	289	Peak
4960	13.96	-40.04	54	-	-	-	-	118	289	Average
7440	40.53	-33.47	74	52.11	35.37	10.04	56.99	158	273	Peak
7440	15.74	-38.26	54	-	-	-	-	158	273	Average

Note: Other harmonics are lower than background noise.

TEL: 86-755-3320-2398

Page Number : 59 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Report No.: FR3O2201

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR3O2201

Eroquency of emission (MUz)	Conducted limit (dBμV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

TEL: 86-755- 3320-2398 Report Issued Date : Nov. 11, 2013 Report Version : Rev. 01

Page Number

: 60 of 66

3.9.4 Test Setup

TEL: 86-755-3320-2398

Page Number : 61 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

3.9.5 Test Result of AC Conducted Emission

Report No.: FR3O2201

TEL: 86-755- 3320-2398 Report Issued Date: Nov. 11, 2013
Report Version: Rev. 01

Page Number

FCC RF Test Report

Test Mode :	Mode 1	Temperature :	23~24 ℃
Test Engineer :	Henry Chen	Relative Humidity :	49~50%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Function Type :	GSM1900 Idle + Bluetooth Earphone + Cradle	Link + USB Cable	(Charging from Adapter 5) +

Site : CO01-SZ

Condition: FCC 15C_QP LISN_N_20130328 NEUTRAL

Project : (FR) 302201

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
-	MHz	dBuV	dB	dBuV	dBuV	dB	dB	-
1 *	0.56	42.19	-3.81	46.00	32.00	0.04	10.15	Average
2	0.56	48.89	-7.11	56.00	38.70	0.04	10.15	QP
3	0.61	37.49	-8.51	46.00	27.30	0.04	10.15	Average
4	0.61	44.29	-11.71	56.00	34.10	0.04	10.15	QP
5	1.22	32.51	-13.49	46.00	22.30	0.05	10.16	Average
6	1.22	40.91	-15.09	56.00	30.70	0.05		
7	1.61	32.43	-13.57	46.00	22.21	0.05	10.17	Average
8	1.61	42.23	-13.77	56.00	32.01	0.05	10.17	QP
9	1.94	33.34	-12.66	46.00	23.10	0.06	10.18	Average
10	1.94	43.44	-12.56	56.00	33.20	0.06	10.18	QP
11	2.21	34.46	-11.54	46.00	24.20	0.07	10.19	Average
12	2.21	45.26	-10.74	56.00	35.00	0.07	10.19	QP
13	2.28	35.66	-10.34	46.00	25.40	0.07	10.19	Average
14	2.28	45.46	-10.54	56.00	35.20	0.07	10.19	QP
15	2.50	31.67	-14.33	46.00	21.40	0.07	10.20	Average
16	2.50	42.47	-13.53	56.00	32.20	0.07	10.20	QP
17	3.44	29.00	-17.00	46.00	18.70	0.09	10.21	Average
18	3.44	41.30	-14.70	56.00	31.00	0.09		
19	3.82	31.51	-14.49	46.00	21.19	0.10	10.22	Average
20	3.82	44.01	-11.99	56.00	33.69	0.10	10.22	QP
21	4.22	34.73	-11.27	46.00	24.41			Average
22	4.22	47.13	-8.87	56.00	36.81	0.10	10.22	
23	4.60	36.34	-9.66	46.00	26.00	0.11	10.23	Average
24	4.60	47.84	-8.16	56.00	37.50	0.11	10.23	QP
25	5.00	34.55	-15.45	50.00	24.20	0.11	10.24	Average
26	5.00	45.95	-14.05	60.00	35.60	0.11	10.24	QP
27	5.39	33.37	-16.63	50.00	23.00	0.12		Average
28	5.39	46.07	-13.93	60.00	35.70		10.25	
29	14.06	30.89	-19.11	50.00	19.99			Average
30	14.06	44.19	-15.81	60.00	33.29	0.49	10.41	QP
31	16.05	37.35	-12.65	50.00	26.30			Average
32	16.05		-12.25	60.00	36.70	0.59	10.46	

TEL: 86-755-3320-2398

Page Number : 63 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Report No.: FR3O2201

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

Report No.: FR3O2201

: 64 of 66

Page Number

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Oct. 28, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Oct. 28, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Oct. 28, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Spectrum Analyzer	R&S	FSP30	101362	9kHz~30GHz	Nov. 11, 2012	Oct. 30, 2013	Nov. 10, 2013	Radiation (03CH01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY522601 85	20Hz~26.5GHz	Apr. 04, 2013	Oct. 30, 2013	Apr. 03, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Nov. 12, 2012	Oct. 30, 2013	Nov. 11, 2013	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30MHz~2GHz	Nov. 03, 2012	Oct. 30, 2013	Nov. 02, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz-3000MHz GAIN 30db	Mar. 28, 2013	Oct. 30, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	Oct. 30, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF-Horn	Schwarzbeck	BBHA9170	BBHA9170 249	14GHz~40GHz	Nov. 23, 2012	Oct. 30, 2013	Nov. 22, 2013	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz-30MHz	Nov. 22, 2012	Oct. 30, 2013	Nov. 21, 2013	Radiation (03CH01-SZ)
Turn Table	EM Electronice	EM 1000	N/A	0 ~ 360 degree	N/A	Oct. 30, 2013	N/A	Radiation (03CH01-SZ)
Antenna Mast	EM Electronice	EM 1000	N/A	1 m - 4 m	N/A	Oct. 30, 2013	N/A	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	1142.8007.03	100724	9kHz~3GHz	Mar. 28, 2013	Oct. 25, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 28, 2013	Oct. 25, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 28, 2013	Oct. 25, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	N/A	Nov. 20, 2012	Oct. 25, 2013	Nov. 19, 2013	Conduction (CO01-SZ)

TEL: 86-755-3320-2398

Page Number : 65 of 66
Report Issued Date : Nov. 11, 2013
Report Version : Rev. 01

Report No.: FR3O2201

FCC RF Test Report

Uncertainty of Evaluation 5

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2.26

Report No.: FR3O2201

: 66 of 66

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.54
Confidence of 95% (U = 2Uc(y))	2.54

<u>Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)</u>

Measuring Uncertainty for a Level of	4.70
Confidence of 95% (U = 2Uc(y))	4.72

SPORTON INTERNATIONAL (SHENZHEN) INC.

Appendix A. Photographs of EUT

Please refer to Sporton report number EP3O2201 which is issued separately.

Report No.: FR3O2201

SPORTON INTERNATIONAL (SHENZHEN) INC.