O ANUS AND TO BE UNIVERSE	ITE	ER, SIKSHA 'O' ANUSANDHAN (Deemed to be University)		LESSON PLAN	
Programme	B.Te	ch.	Academic Year	2024-25	
Department	CSE	CSIT	Semester	3^{rd}	
Credit	4		Grading Pattern	1	
Subject Code	EET	1211			
Subject Name	Digital Logic Design				
Weekly Course Format	3L - 2P				
Subject Coordinator (s)	ubject Coordinator (s) Dr. Sunita Samant, Dr. Manoj Naik & Dr. Monalisa Mohanty				
Text Books(s): (1) Fundametals of Logic Design by Roth, Kinney and Raghunandan, Cengage.					
	Students will be able to				
	CO1	Able to state and explain different number systems, binary codes.			
	CO2	Able to apply the principles of Boolean algebra, Karnaugh map and Quine-McCluskey Method to simplify logic expressions and implement it using gates.			
Course Outcomes	CO3	3 Able to analyse and design various combinational circuits.			

Able to analyse and design Memory and Programmable Logic Devices.

CO6 Able to implement various digital circuits using HDL and standard ICs.

Able to analyse and understand latches, flip-flops, registers and counter operations.

CO4

CO5

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
1	Digital Systems and Switching Circuits.	RK_1.1 (pg.2-4)	CO1	
2	Number Systems and Conversion.	RK_1.2 (pg.4-7)	CO1	
3	Binary Arithmetic and Representation of Negative Numbers.	RK_1.3-1.4 (pg.8-17)	CO1	
4	Lab#1: Introduction to different ICs and examine the operation of logic gates.		CO6	
5	Binary Codes.	RK_1.5 (pg.17-18)	CO1	
6	Introduction to Boolean Algebra, Basic Operations, Boolean Expressions, Basic theorems and Laws.	RK_2.1-2.5 (pg.26-35)	CO2	
7	Simplification Theorems, Multiplying Out and Factoring, Multiplying Out and Factoring Expressions	RK_2.6- 2.7,3.1 (pg.35- 40,50-51)	CO2	
8	Lab#2: Examine and analyze the gate level minimization for boolean function.		CO6	
9	Complimenting Boolean Expression Problem Solving	RK_2.8 (pg.41-42)	CO2	
10	Exclusive-OR and Equivalence Operations. The Consensus Theorem	RK_3.2-3.3 (pg.51-55)	CO2	Assignment-1: Introduction to Electronics Number System and Conversion, Boolean Algebra
11	Algebraic Simplification of Switching Expressions and Proving Validity of an Equation Problem Solving	RK_3.4-3.5 (pg.55-58)	CO2	Quiz-1
12	Lab#3: Design, construct & examine the combinational circuit to solve a given oroblem		CO6	

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
13	Canonical Form: Minterm and Maxterm Expansions,	RK_4.2 (pg.71-74)	CO2	
14	Generation of Switching Equation From Truth Table, General Minterm and Maxterm Expansions, and Incom- pletely Specified Functions	RK ₋ 4.3-4.5 (pg.74-81)	CO2	
15	Examples of Truth Table Construction Problem Solving	RK_4.6 (pg.81-83)	CO2	
16	Lab#4: Introduction to VHDL and Design of combinational circuits using VHDL		CO6	
17	Examples of Truth Table Construction Problem Solving	RK_4.6 (pg.81-83)	CO2	Assignment-2: Application Of Boolean alge- bra Minterm and Maxterm Expansions, K-maps
18	Minimum form of switching functions, Two- and Three-Variable Karnaugh Maps	RK_5.1-5.2 (pg.94-100)	CO2	
19	Four-Variable Karnaugh Maps	RK_5.3 (pg.100- 103)	CO2	
20	Lab#5: Design and Examine different Decoder, Encoder, and Multiplexer circuits using VHDL Circuits		CO6	
21	Design of Half Adder, Full Adder, Half Subtracter, Full Subtracter, and Binary Adder and Subtracters	RK_9.9 (pg.233- 237)	CO2	
22	Design of Binary Comparator	RK_9.10 (pg.240- 244)	CO2	
23	Quine-McCluskey Methods: Determination of Prime Implicants and the Prime Implicant Chart	RK_6.1-6.2 (pg.128- 134)	CO2	Quiz-2

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
24	Lab#6: Examine the operation of various Flip-Flop circuits using VHDL		CO6	
25	Quine-McCluskey Methods: Determination of Prime Implicants and the Prime Implicant Chart	RK_6.1-6.2 (pg.128- 134)	CO2	
26	Simplification of Incompletely Specified Functions and Simplification Using Map-Entered Variables Problem Solving	RK_6.4-6.5 (pg.136- 139)	CO2	
27	Multi-Level Gate Circuits, NAND and NOR Gates, Design of Two-Level NAND and NOR Gate Circuits	RK ₋ 7.1-7.2 (pg.148- 154)	CO2	
28	Lab#7: Examine the operation of various Flip-Flop circuits using basic logic gates		CO6	
29	Design of Two-level, Multi-Level NAND- and NOR-Gate Circuits, Circuit Conversion Using Alternative Gate Symbols	RK ₋ 7.3-7.5 (pg.154- 162)	CO2	
30	Design of Two-level, Multi-Level NAND- and NOR-Gate Circuits, Circuit Conversion Using Alternative Gate Symbols Problem Solving	RK ₋ 7.3-7.5 (pg.154- 162)	CO2	Assignment3: Quine- McCluskey Method, Design of Multi- Level circuits using NAND- and NOR- Gate, Design of Combinational Circuits
31	Multiplexers and design of Boolean functions using MUX	RK_9.2 (pg.202- 211)	CO3	
32	Lab#8: Design and Examine Synchronous and Asynchronous counter circuits using basic logic gates		CO6	

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
33	Multiplexers and design of Boolean functions using MUX	RK_9.2 (pg.202- 211)	CO3	
34	Three-State Buffers, Decoders and Encoders, Cascading of Decoders and Design of Boolean Function using Decoder	RK_9.4 (215-217)	CO3	
35	Three-State Buffers, Decoders and Encoders, Cascading of Decoders and Design of Boolean Function using Decoder	RK_9.4 (pg.215-217	CO3	Assignment-4: Multiplex- ers, Decoder and Encoder, VHDL
36	Lab#9: Design and Examine different Shift Register circuits using basic logic gates		CO6	
37	Set-Reset Latch. Gated Latches.	RK ₋ 11.1- 11.3 (pg.294- 304)	CO5	Quiz-3
38	D, S-R and J-K Flip-Flop,T Flip-Flop	RK_11.5- 11.7 (pg.307- 311)	CO5	
39	Analysis of clocked Sequential Circuits	RK_13.1- 13.3 (pg.374- 386)	CO5	
40	Lab#10: Design and examine synchronous skip counter circuit using basic logic gates		CO6	
41	Registers	RK_12.1- 12.2 (pg.332- 341)	CO5	

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
42	Design of Binary Counters, Counters for Other Sequence, Counter Design Using S-R and J-K Flip-Flops, and Bi- nary Ripple Counter	RK_12.3- 12.6 (pg.341- 358)	CO5	
43	Design of Binary Counters, Counters for Other Sequence, Counter Design Using S-R and J-K Flip-Flops, and Bi- nary Ripple Counter	RK ₋ 12.3- 12.6 (pg.341- 358)	CO5	
44	Lab#11: Design and examine sequence detector circuit using basic logic gates		CO6	
45	Read-Only Memories	RK_9.5 (pg.1-4)2 7- 222	CO4	
46	Programmable Logic Devices: Programmable Array Logic, Programmable Logic Array	RK_9.6 (pg.222- 227)	CO4	Assignment-5: Latches and Flip-Flops, Registers and Counters, Analysis of Clocked Sequential Circuits, Programmable Logic Devices
47	Programmable Logic Devices: Programmable Array Logic, Programmable Logic Array	RK_9.6 (pg.222- 227)	CO4	
48	Lab#12: project evaluation		CO6	