Relevance Search and Anomaly Detection using Bipartite Graphs

Student: Vikramaditya Jakkula

Committee: Dr. Larry Holder (chair), Dr. Ananth Kalyanaraman, Dr. K.C. Wang

What is an Anomaly?

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data.
- Anomaly pattern is a pattern in the data that does not conform to the normal behaviour.
- Also referred to as outliers, exceptions, peculiarities, surprise, etc.

Anomaly Detection

- Normal Pattern → Deviations → Anomaly Pattern
- •Anomaly detection deals with deviations (data points) that are very different from the "normal" activities (rest of the data points)
- General Steps
 - Identify "normal" data
 - Define "anomalous" data
 - Construct useful set of features
 - Use outlier/anomaly detection algorithm
 - Statistics based
 - Distance based
 - Model based

Challenges in Anomaly Detection

- Defining normal behavior from abnormal
- Availability of ground truth
- Dealing with Noise
- Normal behavior evolves with time

Application of Anomaly Detection

- Fraud detection (credit card, phone, etc)
- Spam detection
- Image Analysis
 - detecting geographic hotspots
- Network intrusion detection
- Health Informatics Epidemic Outbreaks, and more.

Introduction

Bipartite Graph:

A graph whose vertices can be divided into two disjoint sets *U* and *V* such that every edge connects a vertex in *U* to one in *V*; that is, *U* and *V* are independent sets.

Relevance Search:

Given a node "a" in v1, the relevancy(via a relevancy score) of all other nodes in V1 to "a" forms relevance search.

• Anomaly Detection:

Given a node a in V1, computing the normality score in V2 for all nodes connected to a and ones with lowest score are deemed anomaly.

Application of Bipartite Graphs

- P2P System: Files and Peers form V1 and V2 and edge is download or upload action.
- Stock Markets: Traders and stocks form V1 and V2 and the buying and selling action form the edge.
- Research Publications:
 Conferences and authors form V1 and V2 and edge represents the publication

Related Work

- Graph Partitioning:
 - Spectral partitioning methods
 - Information theoretic approaches
 - And so forth.
 - No particular reason as why they picked METIS compared to others.
- Outlier Detection:
 - Finds outlier edges in a graphs
 - Finding anomalous substructures
 - Key trade off was computation cost.
- Random-Walks: Includes pagerank, similarity rank and other ranking approaches where random walk is used.
- Collaborative Filtering: Not applicable to anomaly detection

Data Representation

- Data is viewed as bipartite graph
- The graph G is conceptually stored in a k-byn matrix M, where M(i, j) is the weight of the edge < i, j >

$$M_{k\times n} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 1 & 1 & \dots & 1 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & 1 & 0 & \dots & 1 \\ \dots & & & & & & \\ 0 & 0 & 1 & 0 & 1 & \dots & 1 \end{pmatrix}$$

• The value can be 0/1 for an unweighted graph, or any nonnegative value for a weighted graph.

Proposed Method: Relevance Search

```
Algorithm RSE(Exact RS)
Input: node a, bipartite matrix M, restarting probability c, tolerant threshold \varepsilon
0. initialize \vec{q}_a = 0 except the a-th element is 1 (q_a(a) = 1)
1. construct M_A (see Equation 1) and P_A = col\_norm(M_A)
2. while (|\Delta \vec{u}_a| > \varepsilon)
\vec{u}_a = (1-c)P_A\vec{u}_a + c\vec{q}_a
3. return \vec{u}_a(1:k)
```

```
Algorithm RSA(Approximate RS)
Input: the bipartite graph G, the number of partitions \kappa, input node a
0. divide G into \kappa partitions G_1 \dots G_{\kappa} (one-time cost)
1. find the partition G_i containing a
2. construct the approximate bipartite matrix M' of G_i (ignore the edges cross two partitions)
3. apply RS_E on a and M'
4. set 0 relevance scores for the nodes that are not in G_i
```

- Exact RS has slow convergence rate
- Approximate RS uses graph partition (METIS is used) to result in k non-overlapping sub graphs of about same size.

Proposed Method: Anomaly Detection

The normality score ns(t) can be any

function.

Algorithm AD(Anomaly Detection) .

Input: input node t, bipartite transition matrix P

- 0. find the set $S_t = \{a_1, a_2, ...\}$ such that $\forall a_i \in S_t, \langle a_i, t \rangle \in E$.
- 1. compute all the relevance score vectors \vec{R} of $a \in S_t$
- 2. construct the similarity matrix RS_t from R over S_t
- 3. apply the score function over RS_t to obtain the final normality score ns(t)
- 4. return ns(t)

Experiment Settings

- Three real world datasets were used.
- Conference –Author:
 - Row represents conferences and column an author.
 - On an average, every conf. has 510 authors, every author publishes in 5 conf.
- Author Paper:
 - Row represents author, and column represents paper.
 - On an average every author has 3 papers, every paper has 2 authors.

IMDB:

- Row represents actor/actress and column represents movies.
- On an average every actor/actress plays in 4 movies, and every movie has 11 actors/actress.

Dataset	Rows	Columns	Nonzeros	Weighted
CA	288590	2687	661535	yes
AP	315688	471514	1073168	no
IMDB	553388	204000	2269811	no

Evaluation of Exact RS

- Goal: To check whether nodes with high relevance scores are closely related to query node.
- CA dataset:
 - Displays top 10 conferences for a selected example of KDD.
- AP Dataset:
 - Picked an arbitrary example and found close collaborators.
- IMDB Dataset:
 - Just picked Robert De Niro
 - Issue to note is sequel of movies

Evaluation of Convergence

- Goal: Evaluate the variation of restart probability(c) and convergence threshold(E) to get the best values
- E has lesser effect on relevance score and is chosen to be 0.1
- No of iterations drop when C is larger which means the method converges quickly.
- For efficiency and effectiveness the value of C = 0.15 and e = 0.1

Evaluation of Approximate RS

• We observe with graph partition leads to reduced precision in all three datasets.

Evaluation of Anomaly Detection

- Artificial anomalies injected (100 injected)
- We note that the injected anomalies can be easily identified as the normality scores are low in all three datasets.

Evaluation of Computational Cost

- All computation comes down to RS execution
- An approach using partitions is computationally effective.

Anomaly Detection in Smart Environments

- Standardization of Smart Sensor Datasets
- Apply to activity abnormality detection (also power consumption analysis)
- Feedback to Learning Models
- Reminder systems and prompting system performance improvement
- Evaluation of human lifestyles & improvement suggestions
- Power Anomaly analysis

Bipartite Graphs based approach to Anomaly Detection in Smart Environments

 We use three Scenarios/tasks for illustrations:

Activity Abnormality Detection

Recommendation/Prompting System

Power Abnormality Detection

Activity Abnormality Detection

- Time and Activities form the two set of vertices and the edges are the frequency of occurrence.
- Help find anomalous activities which can be used to investigate, automate or inputted as feedback to learning algorithms.

Recommendation / Prompting System with Anomaly analysis

- User Profile and recommendation are two set of vertices and the no of times this was suggested is the edge.
- Helps identify lifestyle changes and abnormalities which can also help evaluate emotional state of the user.

Power Abnormality Detection

- Neighborhood and house are vertices, with power consumption as edge.
- Help find abnormal power usage and help residents make better decisions in power consumption.

Conclusion

- Authors address relevance search and anomaly detection on bipartite graphs with solution:
 - Fast convergence
 - Scalable
 - Simplistic to implement
 - Easy to interpret results
- Anomaly detection is very niche problem in smart environment world and has wide benefits in this domain, with large application opportunities.

