Student Name: Student Number:

Foundations of Computing II Assignment 5 – Solutions

Turing Machines, Undecidability

Distributed: 23.11.2020 - Due Date: 06.12.2020

Upload your solutions to the OLAT system.

5.1 Turing Machines

Draw Turing machines (TMs) for the following languages and briefly explain how your TMs work.

a) $L_1 = \{a^k b^k w \mid k \in \mathbb{N}^+ \text{ and } w \in \{a, b\}^*\}$

Consider the following TM M_1 with Lang $(M_1) = L_1$.

The TM M_1 works as follows. It starts by replacing the first a by an X which marks that this letter has already been processed. If another letter than a is found on the start position, the machine gets stuck in a non-accepting state (namely q_0). After that, M_1 moves its head to the right over all subsequent as and Ys. If this is the first time,

no Y is found. The first b that is found is marked by replacing it by a Y; this was the first not-yet-processed b. While replacing b by Y, the head is moved to the left, and the state q_2 is entered. After that, the head is moved to the left over all Ys. If the rightmost X is found, the head is moved to the right such that it is now positioned right of this X and the state q_0 is entered. If an a is found in q_2 instead, M_1 enters the state q_3 , where it moves its head to the left over all remaining as. It again changes to state q_0 if the rightmost X is encountered.

Finally, if M_1 finds a Y right next to an X in q_0 , we know that it replaced the same number of as and bs. Therefore, it can enter the accepting state and halt; this way, M_1 neglects what is right of the last Y it wrote.

b) $L_2 = \{w0w \mid w \in \{1, 2\}^*\}$

Consider the following TM M_2 with Land $(M_2) = L_2$.

The overall idea behind M_2 is to compare the strings it finds before and after the 0 symbol by symbol. As before, the machine is constructed in such a way that it gets stuck in a non-accepting state if it finds more than one 0. The same happens if it does not find any 0 at all.

Starting from q_0 , M_2 moves either to q_1 or q_5 , depending on whether it reads a 1 or a 2. Depending on this state, it knows whether it must find another 1 or 2 in the second part of the word. After the first 0 it finds, it moves over all letters that are already marked; the marking is done by replacing 1s by Xs and 2s by Ys. Then, it marks another 1 or 2, and moves back to the field that is next to the one it marked in the first part of the word. It is then back in q_0 and the process is repeated.

Finally, if M_2 finds a 0 in q_0 , it moves to q_9 . This can also happen if no 1 or 2 are found at all, which ensures that the word 0 is accepted. Then it moves over all symbols that

are already marked, that is, Xs and Ys. M_2 only accepts if it finds a blank B after that. If it encounters a letter different from B after reading all Xs and Ys, the word is not accepted as the part behind the 0 is longer than the one before. If the first part is longer, M_2 gets stuck before, namely when it encounters a B either in q_2 or q_6 .

Hint: It is sufficient to construct TMs with one tape each. Recall that you can assume that the input word only contains letters from the implicitly given alphabet; for instance, in a), there are only letters a and b on the tape at the beginning.

5.2 Turing Machines and Configurations

Consider the following TM M with Lang $(M) \subseteq \{0,1\}^*$.

- a) Give the computation of M (that is, the unique sequence of configurations) on the following words; indicate when M gets stuck or accepts.
 - i. 01
 - ii. 001
 - iii. 101
 - iv. 00111

i.
$$q_001 \vdash 0q_01 \vdash q_10Y \vdash Xq_2Y \vdash XYq_2 \sqcup \vdash Xq_3YZ$$
 and M accepts
ii. $q_0001 \vdash 0q_001 \vdash 00q_01 \vdash 0q_10Y \vdash 0Xq_2Y \vdash 0XYq_2 \sqcup$

$$\vdash 0Xq_3YZ \vdash 0q_3XYZ \vdash q_30XYZ$$
 and M gets stuck
iii. $q_0101 \vdash q_1 \sqcup Y01$ and M gets stuck
iv. $q_000111 \vdash 0q_00111 \vdash 00q_0111 \vdash 0q_10Y11 \vdash 0Xq_2Y11 \vdash 0XYq_211$

$$\vdash 0Xq_1YY1 \vdash 0q_1XYY1 \vdash q_10XYY1 \vdash Xq_2XYY1$$

$$\vdash XXq_2YY1 \vdash XXYq_2Y1 \vdash XXYYq_21 \vdash XXYYq_1YY$$

$$\vdash XXq_1YYY \vdash Xq_1XYYY \vdash q_1XXYYY$$

$$\vdash q_1 \sqcup XXYYY$$
 and M gets stuck

b) Describe Lang(M) in words.

Lang(M) does not contain the empty word ε , because it cannot transition from its start state q_0 to its accepting state q_4 if the tape is empty (that is, only contains blanks).

Otherwise, it runs over all 0s without changing them. If a 1 is encountered, it is marked by replacing it by Y; M changes to q_1 in this case. After that, M runs back over all Xs and Ys until it finds the rightmost 0 (if there is one). This 0 is then marked by replacing it by X; M changes to q_2 . After this first iteration, the rightmost 0 and the leftmost 1 are marked. M continues this way. Just as seen in ii. and iv., M gets stuck if the numbers of 0s and 1s encountered do not match. It does not accept any word where a 0 follows a 1.

We conclude that $Lang(M) = \{0^n 1^n \mid n \in \mathbb{N}^+\}.$

5.3 Diagonalization

Consider the following two languages.

```
L_{\text{diag},1} = \{ w \in \{0,1\}^* \mid w = w_{2i} \text{ and } M_i \text{ does not accept } w_{2i} \} ,

L_{\text{diag},2} = \{ w \in \{0,1\}^* \mid w = w_i \text{ and } M_{2i} \text{ does not accept } w_i \} .
```

Here, we again assume that M_i is the *i*th TM in a fixed ordering and w_i is the *i*th binary word in a fixed ordering over some given alphabet. We see that both of these languages are constructed in a way that reminds us of the language L_{diag} ; the only part that is different is that we do not speak about the main diagonal of the corresponding table, but two different diagonals that are shallower or steeper, respectively.

a) For one of the two languages, prove that it is not recursively enumerable.

The language $L_{\text{diag},1}$ is not recursively enumerable. We can prove this claim analogously to the proof that shows that L_{diag} (that is, the original diagonal language) is not recursively enumerable.

Towards contradiction, assume $L_{\text{diag},1}$ were recursively enumerable. This means that there is some TM M that accepts this language, that is, $\text{Lang}(M) = L_{\text{diag},1}$. M must be in the list of all TMs, thus $M = M_i$ for some $i \in \mathbb{N}^+$.

- Assume $w_{2i} \in L_{\text{diag},1}$. Then, M_i accepts w_{2i} , because M_i accepts $L_{\text{diag},1}$. However, by the definition of $L_{\text{diag},1}$, w_{2i} cannot be accepted by M_i , because $L_{\text{diag},1}$ only contains the words w_j that are not accepted by M_j , for any $j \in \mathbb{N}^+$; thus, $w_{2i} \notin \text{Lang}(M_i) = L_{\text{diag},1}$.
- Assume $w_{2i} \notin L_{\text{diag},1}$. Then, M_i does not accept w_{2i} ; but by definition, in this case w_{2i} must be in $L_{\text{diag},1}$.

In both cases, we get a contradiction; because we just showed

$$w_{2i} \in L_{\text{diag},1} \iff w_{2i} \notin L_{\text{diag},1}$$
.

Therefore, the TM M cannot exist, which directly implies that $L_{\text{diag},1}$ is not recursively enumerable.

b) For the other language, explain why the same argument as in a) is not valid to prove that this language is also not recursively enumerable.

For the language $L_{\text{diag},2}$, we cannot give a similar argument, because we do not consider every TM in the list of all TMs, but only every second. This does not allow for a contradiction in the above way, because the TM for $L_{\text{diag},2}$ could be the jth TM and there is no i such that j=2i. Therefore, the hypothesis that w_j is in $\text{Lang}(M_j)$ does not lead to a contradiction since it is not necessary that w_j is not in $L_{\text{diag},2}$.

However, note that this does not imply that $L_{\text{diag},2}$ is recursively enumerable. It only means that this particular proof does not work.

5.4 More Diagonalization

Let L be some infinite language over $\{0,1\}$. Explain how we can identify a subset $L_{\text{diag},L}$ of L such that $L_{\text{diag},L}$ is not recursively enumerable.

Once more, let M_i be the *i*th TM in some fixed ordering. The idea of the following construction is to design $L_{\text{diag},L}$ relative to L as

$$L_{\text{diag},L} = \{ w \in \{0,1\}^* \mid w = w_i \text{ is the } i \text{th word in } L \text{ for some } i \in \mathbb{N}^+ \text{ and } M_i \text{ does not accept } w_i \}$$
.

We can now again argue similarly as in the original proof. For a contradiction, suppose that $L_{\text{diag},L}$ were recursively enumerable, and let M be a TM with $L_{\text{diag},L} = \text{Lang}(M)$; there has to be an $i \in \mathbb{N}^+$ with $M = M_i$, and therefore $L_{\text{diag},L} = \text{Lang}(M_i)$. This time, consider the ith word w_i in L.

- Assume $w_i \in L_{\text{diag},L}$. Then, M_i accepts w_i , because M_i accepts $L_{\text{diag},L}$. However, w_i cannot be accepted by M_i , because $L_{\text{diag},L}$ only contains the words w_j from L that are not accepted by M_j , for every $j \in \mathbb{N}^+$; thus, $w_i \notin \text{Lang}(M_i) = L_{\text{diag},L}$.
- Assume $w_i \notin L_{\text{diag},L}$. Then, M_i does not accept w_i ; but in this case w_i must be in $L_{\text{diag},L}$.

We therefore obtain

$$w_i \in L_{\text{diag},L} \iff w_i \notin L_{\text{diag},L}$$
,

which is a contradiction. As a consequence, $L_{\text{diag},L}$ cannot be recursively enumerable.

5.5 Reductions

 L_{diag} was the first language for which we showed that it is not recursively enumerable and thus not recursive. To prove that there are other languages that are not recursively enumerable or not recursive, we use reductions.

In the lecture, we showed that $L_{\rm U}$ is not recursive and argued as follows. We know that, if $L_{\rm U}$ were recursive, then also its complement $\overline{L}_{\rm U}$ would be recursive. Thus, if we succeed in showing that $\overline{L}_{\rm U}$ is not recursive, then $L_{\rm U}$ cannot be recursive. We then reduced $L_{\rm diag}$ to $\overline{L}_{\rm U}$, that is, the problem of deciding whether a given word is in $L_{\rm diag}$ to deciding whether some word is in $\overline{L}_{\rm U}$. If then we would have a TM \overline{U}^* for deciding $\overline{L}_{\rm U}$ (that is, if this language were recursive), we could use it to decide $L_{\rm diag}$ (that is, this language would also

be recursive).

We want to slightly modify the original proof, but essentially prove the same statement.

a) Formally define the language $\overline{L}_{\text{diag}}$, that is, the complement of L_{diag} .

 $\overline{L}_{\text{diag}}$ contains all binary strings w for which it holds that, if w is the ith binary string, the TM M_i accepts w. Formally, we have

$$\overline{L}_{\text{diag}} = \{ w \in \{0,1\}^* \mid w = w_i \text{ and } M_i \text{ accepts } w_i \}$$
.

b) Prove that $\overline{L}_{\text{diag}}$ is recursively enumerable.

We describe a TM \overline{D} that accepts all strings in $\overline{L}_{\text{diag}}$. \overline{D} is not guaranteed to halt if a given string is not in $\overline{L}_{\text{diag}}$ (in this case, this word is in L_{diag}). However, \overline{D} accepts all words (and thus halts) that are in $\overline{L}_{\text{diag}}$.

For a given input w, \overline{D} computes the index i of this word; thus, $w = w_i$ for some $i \in \mathbb{N}^+$. Then, \overline{D} computes the index i of the ith TM M_i . After that, \overline{D} simulates M_i on w_i . If M_i enters an accepting state, \overline{D} also accepts; if M_i gets stuck, \overline{D} also gets stuck by entering a state that does not have any outgoing transition. If M_i runs forever, \overline{D} also runs forever since the simulation of M_i on w_i never ends.

- If w_i is accepted by M_i , \overline{D} will eventually accept by definition. In this case, $w = w_i$ is in $\overline{L}_{\text{diag}}$.
- Otherwise \overline{D} will either reject $w = w_i$ by getting stuck or never halt. In this case, $w = w_i$ is not in $\overline{L}_{\text{diag}}$.
- c) Reduce $\overline{L}_{\text{diag}}$ to L_{U} to give an alternative proof that L_{U} is not recursive.

Assume that U^* is a TM for $L_{\rm U}$ that always halts. We design a TM \overline{D}^* for $\overline{L}_{\rm diag}$ analogously to the original proof. The idea is given in the following figure.

The description of \overline{D}^* and all arguments can also be given in a way similar to the original construction. We first give $x = w_i$ to a TM R that computes the index i and the ith TM M_i . R then outputs the word $y = \text{Code}(M_i)111w_i$, which is a valid input for U^* . It expects the part before the three 1s to be the encoding of a TM and the string behind them to be some binary word. Then, by the definition of L_U , U^* will accept if and only if the TM M_i that is encoded accepts w_i , which is the case if and

only if $x = w_i$ is in $\overline{L}_{\text{diag}}$. It other words, we have

$$x \in \overline{L}_{\text{diag}} \iff y \in L_{\text{U}}$$
,

and we can simply give the same answer to decide whether x is in $\overline{L}_{\text{diag}}$. Consequently, \overline{D}^* decides $\overline{L}_{\text{diag}}$, which is a contradiction to the fact that $\overline{L}_{\text{diag}}$ is not recursive (which in turn immediately follows from the fact that L_{diag} is not recursive).

5.6 More Reductions

Consider the two languages

$$L_3 = \{(M, M', w) \mid M \text{ and } M' \text{ are TMs and } w \in \text{Lang}(M) \cap \text{Lang}(M')\},$$

 $L_4 = \{(M, M', w) \mid M \text{ and } M' \text{ are TMs and } w \in \text{Lang}(M) \cup \text{Lang}(M')\}.$

a) Show that neither L_3 nor L_4 is recursive by giving a reduction from L_U .

Suppose L_3 were recursive. Then we can use a hypothetical TM M_3^* for L_3 to decide L_U . Any input x = (M, w), for which we want to decide whether it is in L_U , is mapped to an input (M, M, w) that is given to M_3^* . If and only if $(M, M, w) \in L_3$, and consequently M_3^* accepts this input, both given TMs that are encoded in it (that is, the TM M) accept w; thus, $w \in \text{Lang}(M) = \text{Lang}(M) \cap \text{Lang}(M)$. As a result, we have

$$(M, w) \in L_{\mathrm{U}} \iff (M, M, w) \in L_3$$
,

and therefore can take the answer of M_3^* to decide whether $x \in L_U$. We can use the same construction to give a reduction to L_4 instead of L_3 .

b) Give a reduction from L_3 to L_U . Do so by using that the two TMs M and M' can be simulated sequentially on the same word.

Suppose $L_{\rm U}$ were recursive and let TM U^* denote the corresponding TM. Consider an input x=(M,M',w) for L_3 . We design a TM M'' that first simulates M on any given input y. If M accepts y, M'' simulates M' on y. If M' also accepts y, M'' accepts. If M or M' rejects y, M'' rejects. If M or M' runs forever on y, M'' also runs forever, because its simulation never ends. Then (M'',w) is given to U^* . If and only if $(M'',w) \in L_{\rm U}$, and hence U^* answers that M'' accepts w, we know that both M and M' accept w. Therefore, $w \in {\rm Lang}(M) \cap {\rm Lang}(M')$, that is $(M,M',w) \in L_3$ and we have

$$(M, M', w) \in L_3 \iff (M'', w) \in L_U$$
,

and we can take the answer of U^* to decide whether $x \in L_3$.

c) Point out where we run into problems for a similar reduction as in exercise part b) from L_4 to L_U . How can we deal with this problem?

We cannot follow a similar approach for L_4 . First simulating M and then M' may lead to M not halting although M' would accept. This is fine for exercise part b) where the condition is that both TMs accept w, but here it is sufficient if one does. As one possible solution to this problem, M'' does not simulate M and M' sequentially but in parallel on the same input. This is achieved by a diagonalization argument, somewhat similar to that which allows us to enumerate the rational numbers. First, M is simulated doing its first computational step on w; then M' is simulated doing its first two steps on w; then again M is simulated with its first three steps on w etc. If M or M' accepts w after a finite number of computational steps, w will eventually be accepted. (M'', w) is then again given to the hypothetical TM U^* for L_U .

5.7 Yet Another Reduction

Consider TMs with exactly one accepting state and some fixed way to encode them. Using a reduction, show that the language

$$L_5 = \{(M, w, i) \mid M \text{ is a TM that visits its } ith$$

state at least once when processing $w\}$.

is not recursive.

Suppose, L_5 were recursive. We give a reduction from L_U to L_5 . Consider an input x = (M, w) for L_U . Since M has one accepting state, we can compute its index, say $j \in \mathbb{N}$. Then we create an input (M, w, j) that is given to the hypothetical TM M_5^* which decides L_5 . If M_5^* accepts (M, w, j), this means that the jth state of M is visited when M gets w as input. Since the jth state of M is its unique accepting state, we have

M visits its jth state at least once when processing $w \iff w \in \text{Lang}(M)$,

and therefore

$$(M, w) \in L_{\mathrm{U}} \iff (M, w, j) \in L_{5}$$
.

We can consequently take the answer of M_5^* as answer to decide whether $x \in L_U$.