Data Encryption Standard (DES)

- ☐ To review a short history of DES
- **☐** To define the basic structure of DES
- ☐ To describe the details of building elements of DES
- ☐ To describe the round keys generation process
- **□** To analyze DES

6-1 INTRODUCTION

The Data Encryption Standard (DES) is a symmetrickey block cipher published by the National Institute of Standards and Technology (NIST).

Topics discussed in this section:

6.1.1 History

6.1.2 Overview

In 1973, NIST published a request for proposals for a national symmetric-key cryptosystem. A proposal from IBM, a modification of a project called Lucifer, was accepted as DES. DES was published in the Federal Register in March 1975 as a draft of the Federal Information Processing Standard (FIPS).

6.1.2 Overview

DES is a block cipher, as shown in Figure 6.1.

Figure 6.1 Encryption and decryption with DES

6-2 DES STRUCTURE

The encryption process is made of two permutations (P-boxes), which we call initial and final permutations, and sixteen Feistel rounds.

Topics discussed in this section:

- **6.2.1** Initial and Final Permutations
- **6.2.2 Rounds**
- **6.2.3** Cipher and Reverse Cipher
- **6.2.4** Examples

6-2 Continue

Figure 6.2 General structure of DES

6.2.1 Initial and Final Permutations

Figure 6.3 Initial and final permutation steps in DES

 Table 6.1
 Initial and final permutation tables

Initial Permutation	Final Permutation					
58 50 42 34 26 18 10 02	40 08 48 16 56 24 64 32					
60 52 44 36 28 20 12 04	39 07 47 15 55 23 63 31					
62 54 46 38 30 22 14 06	38 06 46 14 54 22 62 30					
64 56 48 40 32 24 16 08	37 05 45 13 53 21 61 29					
57 49 41 33 25 17 09 01	36 04 44 12 52 20 60 28					
59 51 43 35 27 19 11 03	35 03 43 11 51 19 59 27					
61 53 45 37 29 21 13 05	34 02 42 10 50 18 58 26					
63 55 47 39 31 23 15 07	33 01 41 09 49 17 57 25					

Example 6.1

Find the output of the initial permutation box when the input is given in hexadecimal as:

0x0000 0080 0000 0002

Solution

Only bit 25 and bit 64 are 1s; the other bits are 0s. In the final permutation, bit 25 becomes bit 64 and bit 63 becomes bit 15. The result is

0x0002 0000 0000 0001

Example 6.2

Prove that the initial and final permutations are the inverse of each other by finding the output of the final permutation if the input is

0x0002 0000 0000 0001

Solution

The input has only two 1s; the output must also have only two 1s. Using Table 6.1, we can find the output related to these two bits. Bit 15 in the input becomes bit 63 in the output. Bit 64 in the input becomes bit 25 in the output. So the output has only two 1s, bit 25 and bit 63. The result in hexadecimal is

0x0000 0080 0000 0002

Note

The initial and final permutations are straight P-boxes that are inverses of each other.

They have no cryptography significance in DES.

6.2.2 *Rounds*

DES uses 16 rounds. Each round of DES is a Feistel cipher.

Figure 6.4
A round in DES
(encryption site)

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output.

Figure 6.5

DES function

Expansion P-box

Since R_{I-1} is a 32-bit input and K_I is a 48-bit key, we first need to expand R_{I-1} to 48 bits.

Figure 6.6 Expansion permutation

Although the relationship between the input and output can be defined mathematically, DES uses Table 6.2 to define this P-box.

Table 6.6 Expansion P-box table

32	01	02	03	04	05
04	05	06	07	08	09
08	09	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	31	31	32	01

XOR Operation

After the expansion permutation, DES uses the XOR operation on the expanded right section and the round key. Note that both the right section and the key are 48-bits in length. Also note that the round key is used only in this operation.

S-Boxes

The S-boxes do the real mixing (confusion). DES uses 8 S-boxes, each with a 6-bit input and a 4-bit output. See Figure 6.7.

Figure 6.7 S-boxes

Figure 6.8 S-box rule

Table 6.3 shows the permutation for S-box 1. For the rest of the boxes see the textbook.

Table 6.3 *S-box 1*

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	10	03	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

6.2.2 Continued Example 6.3

The input to S-box 1 is 100011. What is the output?

Solution

If we write the first and the sixth bits together, we get 11 in binary, which is 3 in decimal. The remaining bits are 0001 in binary, which is 1 in decimal. We look for the value in row 3, column 1, in Table 6.3 (S-box 1). The result is 12 in decimal, which in binary is 1100. So the input 100011 yields the output 1100.

6.2.2 Continued Example 6.4

The input to S-box 8 is 000000. What is the output?

Solution

If we write the first and the sixth bits together, we get 00 in binary, which is 0 in decimal. The remaining bits are 0000 in binary, which is 0 in decimal. We look for the value in row 0, column 0, in Table 6.10 (S-box 8). The result is 13 in decimal, which is 1101 in binary. So the input 000000 yields the output 1101.

Straight Permutation

 Table 6.11
 Straight permutation table

16	07	20	21	29	12	28	17
01 02 19	15	23	26	05	18	31	10
02	08	24	14	32	27	03	09
19	13	30	06	22	11	04	25

6.2.3 Cipher and Reverse Cipher

Using mixers and swappers, we can create the cipher and reverse cipher, each having 16 rounds.

First Approach

To achieve this goal, one approach is to make the last round (round 16) different from the others; it has only a mixer and no swapper.

Note

In the first approach, there is no swapper in the last round.

Figure 6.9 DES cipher and reverse cipher for the first approach

Algorithm 6.1 Pseudocode for DES cipher

```
Cipher (plainBlock[64], RoundKeys[16, 48], cipherBlock[64])

{
    permute (64, 64, plainBlock, inBlock, InitialPermutationTable)
    split (64, 32, inBlock, leftBlock, rightBlock)
    for (round = 1 to 16)
    {
        mixer (leftBlock, rightBlock, RoundKeys[round])
        if (round!=16) swapper (leftBlock, rightBlock)
    }
    combine (32, 64, leftBlock, rightBlock, outBlock)
    permute (64, 64, outBlock, cipherBlock, FinalPermutationTable)
}
```

-

6.2.3 Continued

Algorithm 6.1 Pseudocode for DES cipher (Continued)

```
mixer (leftBlock[48], rightBlock[48], RoundKey[48])
{
    copy (32, rightBlock, T1)
    function (T1, RoundKey, T2)
    exclusiveOr (32, leftBlock, T2, T3)
    copy (32, T3, rightBlock)
}
swapper (leftBlock[32], rigthBlock[32])
{
    copy (32, leftBlock, T)
    copy (32, rightBlock, leftBlock)
    copy (32, T, rightBlock)
}
```


Algorithm 6.1 Pseudocode for DES cipher (Continued)

```
function (inBlock[32], RoundKey[48], outBlock[32])
{
    permute (32, 48, inBlock, T1, ExpansionPermutationTable)
    exclusiveOr (48, T1, RoundKey, T2)
    substitute (T2, T3, SubstituteTables)
    permute (32, 32, T3, outBlock, StraightPermutationTable)
}
```

-

6.2.3 Continued

Algorithm 6.1 Pseudocode for DES cipher (Continued)

```
substitute (inBlock[32], outBlock[48], SubstitutionTables[8, 4, 16])
     for (i = 1 \text{ to } 8)
         row \leftarrow 2 \times inBlock[i \times 6 + 1] + inBlock[i \times 6 + 6]
          col \leftarrow 8 \times inBlock[i \times 6 + 2] + 4 \times inBlock[i \times 6 + 3] +
                  2 \times \text{inBlock}[i \times 6 + 4] + \text{inBlock}[i \times 6 + 5]
          value = SubstitutionTables |i||row||col|
          outBlock[[i \times 4 + 1] \leftarrow value / 8;
                                                                   value \leftarrow value mod 8
           outBlock[[i \times 4 + 2] \leftarrow value / 4;
                                                                   value \leftarrow value mod 4
           outBlock[[i \times 4 + 3] \leftarrow value / 2;
                                                         value \leftarrow value mod 2
          outBlock[[i \times 4 + 4] \leftarrow value
```


Alternative Approach

We can make all 16 rounds the same by including one swapper to the 16th round and add an extra swapper after that (two swappers cancel the effect of each other).

Key Generation

The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key.

Figure 6.10
Key generation

 Table 6.12
 Parity-bit drop table

57	49	41	33	25	17	09	01
58	50	42	34	26	18	10	02
59	51	43	35	27	19	11	03
60	52	44	36	63	55	47	39
31	23	15	07	62	54	46	38
30	22	14	06	61	53	45	37
29	21	13	05	28	20	12	04

 Table 6.13
 Number of bits shifts

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bit shifts	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

 Table 6.14
 Key-compression table

(d)							
14	17	11	24	01	05	03	28
15	06	21	10	23	19	12	04
26	08	16	07	27	20	13	02
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

Algorithm 6.2 Algorithm for round-key generation

```
Key_Generator (keyWithParities[64], RoundKeys[16, 48], ShiftTable[16])
{
    permute (64, 56, keyWithParities, cipherKey, ParityDropTable)
    split (56, 28, cipherKey, leftKey, rightKey)
    for (round = 1 to 16)
    {
        shiftLeft (leftKey, ShiftTable[round])
        shiftLeft (rightKey, ShiftTable[round])
        combine (28, 56, leftKey, rightKey, preRoundKey)
        permute (56, 48, preRoundKey, RoundKeys[round], KeyCompressionTable)
    }
}
```

-

6.2.3 Continued

Algorithm 6.2 Algorithm for round-key generation (Continue)

We choose a random plaintext block and a random key, and determine what the ciphertext block would be (all in hexadecimal):

Plaintext: 123456ABCD132536 Key: AABB09182736CCDD

CipherText: C0B7A8D05F3A829C

Table 6.15 Trace of data for Example 6.5

Plaintext: 123456ABCD132536										
After initial permutation: 14A7D67818CA18AD After splitting: L_0 =14A7D678 R_0 =18CA18AD										
Round	Left	Right	Round Key							
Round 1	18CA18AD	5A78E394	194CD072DE8C							
Round 2	5A78E394	4A1210F6	4568581ABCCE							
Round 3	4A1210F6	В8089591	06EDA4ACF5B5							
Round 4	В8089591	236779C2	DA2D032B6EE3							

6.2.4 Continued

Example 6.5 Continued

Table 6.15 Trace of data for Example 6.5 (Conintued

Round 5	236779C2	A15A4B87	69A629FEC913
Round 6	A15A4B87	2E8F9C65	C1948E87475E
Round 7	2E8F9C65	A9FC20A3	708AD2DDB3C0
Round 8	A9FC20A3	308BEE97	34F822F0C66D
Round 9	308BEE97	10AF9D37	84BB4473DCCC
Round 10	10AF9D37	6CA6CB20	02765708B5BF
Round 11	6CA6CB20	FF3C485F	6D5560AF7CA5
Round 12	FF3C485F	22A5963B	C2C1E96A4BF3
Round 13	22A5963B	387CCDAA	99C31397C91F
Round 14	387CCDAA	BD2DD2AB	251B8BC717D0
Round 15	BD2DD2AB	CF26B472	3330C5D9A36D
Round 16	19BA9212	CF26B472	181C5D75C66D

After combination: 19BA9212CF26B472

Ciphertext: C0B7A8D05F3A829C

(after final permutation)

Let us see how Bob, at the destination, can decipher the ciphertext received from Alice using the same key. Table 6.16 shows some interesting points.

7. 1	CODTAODOFFTAAOOOC
(inhertext	C0B7A8D05F3A829C
Cipici icai.	COD // TODOST S/ TOZOC

After initial permutation: 19BA9212CF26B472 After splitting: L_0 =19BA9212 R_0 =CF26B472

Round	Left	Right	Round Key
Round 1	CF26B472	BD2DD2AB	181C5D75C66D
Round 2	BD2DD2AB	387CCDAA	3330C5D9A36D
• • •			
Round 15	5A78E394	18CA18AD	4568581ABCCE
Round 16	14A7D678	18CA18AD	194CD072DE8C

After combination: 14A7D67818CA18AD

Plaintext: 123456ABCD132536 (after final permutation)

DES Round Structure

6-3 DES ANALYSIS

Critics have used a strong magnifier to analyze DES. Tests have been done to measure the strength of some desired properties in a block cipher.

Topics discussed in this section:

- **6.3.1 Properties**
- **6.3.2** Design Criteria
- **6.3.3** DES Weaknesses

6.3.1 Properties

Two desired properties of a block cipher are the avalanche effect and the completeness.

Example 6.7

To check the avalanche effect in DES, let us encrypt two plaintext blocks (with the same key) that differ only in one bit and observe the differences in the number of bits in each round.

Plaintext: 0000000000000000 Key: 22234512987ABB23

Ciphertext: 4789FD476E82A5F1

Ciphertext: 0A4ED5C15A63FEA3

Example 6.7 Continued

Although the two plaintext blocks differ only in the rightmost bit, the ciphertext blocks differ in 29 bits. This means that changing approximately 1.5 percent of the plaintext creates a change of approximately 45 percent in the ciphertext.

 Table 6.17
 Number of bit differences for Example 6.7

Rounds	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bit differences	1	6	20	29	30	33	32	29	32	39	33	28	30	31	30	29

Completeness effect

Completeness effect means that each bit of the ciphertext needs to depend on many bits on the plaintext.

6.3.2 Design Criteria

S-Boxe

The design provides confusion of bits from each round to the next.

P-Boxes

They provide diffusion of bits.

Number of Rounds

DES uses sixteen rounds of Feistel ciphers. the ciphertext is thoroughly a random function of plaintext and ciphertext.

6.3.3 DES Weaknesses

During the last few years critics have found some weaknesses in DES.

Weaknesses in Cipher Design

- 1. Weaknesses in S-boxes
- 2. Weaknesses in P-boxes
- 3. Weaknesses in Key

 Table 6.18
 Weak keys

Keys before parities drop (64 bits)	Actual key (56 bits)
0101 0101 0101 0101	0000000 0000000
1F1F 1F1F 0E0E 0E0E	0000000 FFFFFF
E0E0 E0E0 F1F1 F1F1	FFFFFF 000000
FEFE FEFE FEFE	FFFFFFF FFFFFFF

Example 6.8

Let us try the first weak key in Table 6.18 to encrypt a block two times. After two encryptions with the same key the original plaintext block is created. Note that we have used the encryption algorithm two times, not one encryption followed by another decryption.

Key: 0x0101010101010101

Plaintext: 0x1234567887654321 Ciphertext: 0x814FE938589154F7

Key: 0x0101010101010101

Plaintext: 0x814FE938589154F7 Ciphertext: 0x1234567887654321

Figure 6.11 Double encryption and decryption with a weak key

 Table 6.19
 Semi-weak keys

First key in the pair	Second key in the pair
01FE 01FE 01FE	FE01 FE01 FE01
1FE0 1FE0 0EF1 0EF1	E01F E01F F10E F10E
01E0 01E1 01F1 01F1	E001 E001 F101 F101
1FFE 1FFE OEFE OEFE	FE1F FE1F FE0E FE0E
011F 011F 010E 010E	1F01 1F01 0E01 0E01
EOFE EOFE F1FE F1FE	FEEO FEEO FEF1 FEF1

Round key 1	9153E54319BD	6EAC1ABCE642
Round key 2	6EAC1ABCE642	9153E54319BD
Round key 3	6EAC1ABCE642	9153E54319BD
Round key 4	6EAC1ABCE642	9153E54319BD
Round key 5	6EAC1ABCE642	9153E54319BD
Round key 6	6EAC1ABCE642	9153E54319BD
Round key 7	6EAC1ABCE642	9153E54319BD
Round key 8	6EAC1ABCE642	9153E54319BD
Round key 9	9153E54319BD	6EAC1ABCE642
Round key 10	9153E54319BD	6EAC1ABCE642
Round key 11	9153E54319BD	6EAC1ABCE642
Round key 12	9153E54319BD	6EAC1ABCE642
Round key 13	9153E54319BD	6EAC1ABCE642
Round key 14	9153E54319BD	6EAC1ABCE642
Round key 15	9153E54319BD	6EAC1ABCE642
Round key 16	6EAC1ABCE642	9153E54319BD

4

Figure 6.12 A pair of semi-weak keys in encryption and decryption

What is the probability of randomly selecting a weak, a semiweak, or a possible weak key?

Solution

DES has a key domain of 2^{56} . The total number of the above keys are 64 (4 + 12 + 48). The probability of choosing one of these keys is 8.8×10^{-16} , almost impossible.

Key Complement In the key domain (2^{56}) , definitely half of the keys are *complement* of the other half. A **key complement** can be made by inverting (changing 0 to 1 or 1 to 0) each bit in the key. Does a key complement simplify the job of the cryptanalysis? It happens that it does. Eve can use only half of the possible keys (2^{55}) to perform brute-force attack. This is because

$$C = E(K, P) \rightarrow \overline{C} = E(\overline{K}, \overline{P})$$

In other words, if we encrypt the complement of plaintext with the complement of the key, we get the complement of the ciphertext. Eve does not have to test all 2^{56} possible keys, she can test only half of them and then complement the result.

Example 6.10

Let us test the claim about the complement keys. We have used an arbitrary key and plaintext to find the corresponding ciphertext. If we have the key complement and the plaintext, we can obtain the complement of the previous ciphertext (Table 6.20).

Table 6.20Results for Example 6.10

	Original	Complement
Key	1234123412341234	EDCBEDCBEDCB
Plaintext	12345678ABCDEF12	EDCBA987543210ED
Ciphertext	E112BE1DEFC7A367	1EED41E210385C98

6-4 Multiple DES

The major criticism of DES regards its key length. Fortunately DES is not a group. This means that we can use double or triple DES to increase the key size.

Topics discussed in this section:

- **6.4.1** Double DES
- **6.4.4** Triple DES

6-4 Continued

A substitution that maps every possible input to every possible output is a group.

Figure 6.13 Composition of mapping

6.4.1 Double DES

The first approach is to use double DES (2DES).

Meet-in-the-Middle Attack

However, using a known-plaintext attack called meet-in-the-middle attack proves that double DES improves this vulnerability slightly (to 2^{57} tests), but not tremendously (to 2^{112}).

6.4.1 Continued

Figure 6.14 Meet-in-the-middle attack for double DES

4

6.4.1 Continued

Figure 6.15 Tables for meet-in-the-middle attack

$$\mathbf{M} = \mathbf{E}_{k_1}(\mathbf{P})$$

$$M = D_{k_2}(C)$$

M	k_1
•	

M	k_2
•	
<u> </u>	

Find equal M's and record corresponding k_1 and k_2

6.4.2 Triple DES

Figure 6.16 Triple DES with two keys

6.4.2 Continuous

Triple DES with Three Keys

The possibility of known-plaintext attacks on triple DES with two keys has enticed some applications to use triple DES with three keys. Triple DES with three keys is used by many applications such as PGP (See Chapter 16).

6-5 Security of DES

DES, as the first important block cipher, has gone through much scrutiny. Among the attempted attacks, three are of interest: brute-force, differential cryptanalysis, and linear cryptanalysis.

Topics discussed in this section:

- **6.5.1** Brute-Force Attack
- **6.5.2** Differential Cryptanalysis
- **6.5.3** Linear Cryptanalysis

6.5.1 Brute-Force Attack

We have discussed the weakness of short cipher key in DES. Combining this weakness with the key complement weakness, it is clear that DES can be broken using 2⁵⁵ encryptions.

6.5.2 Differential Cryptanalysis

It has been revealed that the designers of DES already knew about this type of attack and designed S-boxes and chose 16 as the number of rounds to make DES specifically resistant to this type of attack.

Differential Cryptanalysis

- a statistical attack against Feistel ciphers
- design of S-P networks has output of function f influenced by both input & key
- hence cannot trace values back through cipher without knowing values of the key
- The scheme can successfully cryptanalyze DES with an effort on the order 2⁴⁷ chosen plaintexts

Differential Cryptanalysis Compares Pairs of Encryptions

- with a known difference in the input
- searching for a known difference in output
- when same subkeys are used

$$\Delta m_{i+1} = m_{i+1} \oplus m'_{i+1}$$

$$= [m_{i-1} \oplus f(m_i, K_i)] \oplus [m'_{i-1} \oplus f(m'_i, K_i)]$$

$$= \Delta m_{i-1} \oplus [f(m_i, K_i) \oplus f(m'_i, K_i)]$$

Differential Cryptanalysis

- have some input difference giving some output difference with probability p
- if find instances of some higher probability input / output difference pairs occurring
- can infer subkey that was used in round
- then must iterate process over many rounds (with decreasing probabilities)

Differential Cryptanalysis

- perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR
- when found
- if intermediate rounds match required XOR have a right pair
- if not then have a wrong pair, relative ratio is S/N for attack
- can then deduce keys values for the rounds
- right pairs suggest same key bits
- wrong pairs give random values
- for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs
- Biham and Shamir have shown how a 13-round iterated characteristic can break the full 16-round DES

6.5.3 Linear Cryptanalysis

Linear cryptanalysis is newer than differential cryptanalysis. DES is more vulnerable to linear cryptanalysis than to differential cryptanalysis. S-boxes are not very resistant to linear cryptanalysis. It has been shown that DES can be broken using 2⁴³ pairs of known plaintexts. However, from the practical point of view, finding so many pairs is very unlikely.

Linear Cryptanalysis

- find linear approximations with prob $p!=\frac{1}{2}$
- P[i1,i2,...,ia] XOR C[j1,j2,...,jb] = K[k1,k2,...,kc]
- where ia,jb,kc are bit locations in P,C,K
- gives linear equation for key bits
- get one key bit using max likelihood algo.
- using a large number of trial encryptions
- effectiveness given by: |p-1/2|