INTRODUCTION TO SOFTWARE ENGINEERING

Part I

INTRODUCTION TO SOFTWARE ENGINEERING

Part I.1 – Overview of Software Engineering

Content

- Why study software engineering?
 - Software crisis
 - Software project success rate
 - Examples of software development failures
 - Causes of software failures
 - How has software engineering changed?
- What is software engineering?
- Steps of software development
- Who does software engineering?
 - Members of the development team

- Software crisis (of the 1960s, 1970s, and 1980s)
 - During the 1970s,

- Productively used
- Used after modifications
- Used after major redesign
- No longer used a short time after delivery
- Undeliverable

Software project success rate

Table I

Standish project benchmarks over the years

Year	Successful (%)	Challenged (%)	Failed (%)
1994	16	53	31
1996	27	33	40
1998	26	46	28
2000	28	49	23
2004	29	53	18
2006	35	46	19
2009	32	44	24

Standish Group, CHAOS Report, 2010

- Successful projects are on time, on budget, and have a satisfactory implementation.
- Challenged projects
 are over budget, late,
 and/or have
 an unsatisfactory
 implementation.
- Failed projects are projects that were either canceled prior to completion or not used after implementation.

TRADITIONAL RESOLUTION FOR ALL PROJECTS

	2011	2012	2013	2014	2015
SUCCESSFUL	39%	37%	41%	36%	36%
CHALLENGED	39%	46%	40%	47%	45%
FAILED	22%	17%	19%	17%	19%

The Traditional resolution of all software projects from FY2011-2015 within the new CHAOS database.

IT Project Outcomes Based on CHAOS 2020: Beyond Infinity Report

Software project success rate

The Cost of Poor Software Quality in the US: A 2020

Standish Group,

Report,

CHAOS

- Examples of software failures
 - Ariane 5 Flight 501 functioned well for 40 seconds, then veered off course and was destroyed (June 4, 1996); contained four satellites: cost was \$500 million

https://www.youtube.com/vatch?v=N6PWATvLQCY

• Therac-25, a computer-controlled radiation therapy machine was involved in at least six accidents

tray including the target, a flattening filter, the collimator jaws and an ion chamber was moved OUT for "electron" mode, and IN for "photon" mode.

https://www.crcpress.com/

8

- Causes of software failures
 - More complicated problems
 - Lack of appropriate training in software engineering
 - Unclear goal
 - Incomplete/wrong specification and requirements
 - Change of specification and requirements
 - Design errors, programming errors
 - Lack of planning

• ...

How Has SE Changed? Wasserman's Seven Key Factors

- 1. Critically of time-to-market
- 2. Shifts in the economics of computing
- 3. Availability of powerful desktop computing
- 4. Extensive local- and wide-area networking
- 5. Availability and adoption of object-oriented technology
- 6. Graphical user interfaces
- 7. Unpredictability of the waterfall model of software development

How Has SE Changed? Wasserman's Seven Key Factors (continued)

The key factors that have changed the software development

How Has SE Changed? Wasserman's Discipline of Software Engineering

- Abstractions
- Analysis and design methods and notations
- User interface prototyping
- Software architecture
- Software process
- Reuse
- Measurement
- Tools and integrated environments

Content

- Why study software engineering?
 - Software crisis
 - Software project success rate
 - Examples of software development failures
 - Causes of software failures
 - How has software engineering changed?
- What is software engineering?
- Steps of software development
- Who does software engineering?
 - Members of the development team

Software

- Computer programs and associated documentation. Software products may be developed for a particular customer or may be developed for a general market.
- Software includes:
 - The source code and binary/object code;
 - Documents such as requirements analysis, specification, design.
 - The procedure is used to setup and operate software system.

Software

So	oftware components	Example
Program	1. Source codes	
	2. Object codes	
Documents	1. Analysis/Specification	
		a. Formal specification
		b. Context diagram
		c. Data flow diagram
	2. Design	
		a. E-R diagram
	3. Implementation	
		a. Code list
	4. Testing	
		a. Test data
		b. Test results
Operation procedures	 Installation and user guide Troubleshooting guide 	de

- Types of software
 - System software is the software that acts as tools to help construct or support applications software.
 - Operating systems
 - Databases
 - Networking software
 - Compilers
 - ...

- Applications software is software that helps perform some directly useful or enjoyable task.
 - Games
 - Information systems
 - Real-time systems
 - Embedded systems
 - Office software
 - Scientific software

• ...

Software can either be off-the-shelf or tailor-made for a particular application.

- The first NATO conference (1968): Software engineering is the establishment and use of sound engineering principles in order to obtain economically software that is reliable and works efficiently on real machines.
- IEEE Standard 61012-1990 Software engineering is:
 - (1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software, that is, the application of engineering to software, and
 - (2) The study of approaches as in (1).

- The goal of software engineering is to create software:
 - High quality
 - Satisfying customer requirements
 - Deploying and operating easily
 - Maintaining easily
 - On time
 - On budget
 - The price is getting lower and lower

CICT – CTU

Software development steps

- Maintenance step and various development steps
 - Maintenance alone consumes about 50-70% the total cost of a software system over its lifetime.

- Requirements Analysis & Definition: collecting customers' requirements and modeling the requirements.
- Design: modeling the system and detailing each module (system design and program design).
- Implementation: using a detailed design and choose a programming tools for coding modules.

- Testing: detecting errors via program testing and system testing.
- System delivery: deploying the system at the customer side; training and supporting clients.
- Maintenance: correcting errors; improving functions; modifying software to adapt to environmental change.

• Global distribution of effort: 40 - 20 - 40

Distribution of maintenance activities

Who Does Software Engineering?

- Customer: the company, organization, or person who pays for the software system.
- Developer: the company, organization, or person who is building the software system.
- User: the person or people who will actually use the system.

Who Does Software Engineering? (continued)

Participants (stakeholders) in a software development project

Who Does Software Engineering? Members of the Development Team

- Requirement analysts: work with the customers to identify and document the requirements.
- **Designers**: generate a system-level description of what the system is to do.
- Programmers: write lines of code to implement the design.
- Testers: catch faults.
- Trainers: show users how to use the system.
- Maintenance team: fix faults or make changes to the system after the system has been accepted.
- Librarians: prepare and store documents such as requirements specification, design description, etc.
- Configuration management team: maintain a correspondence among various the requirement, the design, the implementation and the tests.

Who Does Software Engineering? Members of the Development Team (continued)

 Typical roles played by the members of a development team

Homework

• Content:

- Find at least 5 of the most costly software failures in 2023? For each failure, name the software and summarize the damage caused by that failure?
- As a software developer, present your thoughts on reducing the negative effects caused by software failures?
- Format: the answer sheet is presented on 1 page of A4 paper, set the margins (top, bottom, left, right) of 2cm, use Times New Roman 12pt font, line spacing 1, justified text.
- Note: write down the references used for this homework on page 2.
- Deadline: 17h00, 02/01/2024 (submit: elearning.ctu.edu.vn)

References

- Shari Lawrence Pfleeger, Joanne M.Atlee, Software Engineering theory and practice, Pearson Prentice Hall, 4th edition, 2010.
- Hans Van Vliet, Software Engineering principles and practice, John Wiley, 2007.
- Hiep Xuan Huynh, Lan Phuong Phan, Introduction to Software Engineering, Can Tho university publishing house, 2010.

CICT – CTU

Q&A

What is Software Engineering Solving Problems

- Software products are large and complex
- Development requires analysis and synthesis
 - Analysis: decompose a large problem into smaller, understandable pieces
 - abstraction is the key
 - Synthesis: build (compose) a software from smaller building blocks
 - composition is challenging

What is Software Engineering Solving Problems (continued)

The analysis process

What is Software Engineering Solving Problems (continued)

The synthesis process

What is Software Engineering Solving Problems (continued)

- Method: refers to a formal procedure; a formal "recipe" for accomplishing a goal that is typically independent of the tools used
- Tool: an instrument or automated system for accomplishing something in a better way
- Procedure: a combination of tools and techniques to produce a product
- Paradigm: philosophy or approach for building a product (e.g., OO vs structured approaches)

How Successful Have We Been? Terminology for Describing Bugs

- A fault: occurs when a human makes a mistake, called an error, in performing some software activities
- A failure: is a departure from the system's required behaviour

