Manual for Package: mathematics Revision 28M

Karl Kästner

July 5, 2023

Contents

1	calend	ar	1				
	1.1	days_per_month	1				
	1.2	isnight	1				
2	mathe	matics	1				
	2.1	cast_byte_to_integer	1				
3	compl	ex-analysis	1				
	3.1	$complex_exp_product_im_im . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	2				
	3.2	$complex_exp_product_im_re \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2				
	3.3	$complex_exp_product_re_im \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2				
	3.4	complex_exp_product_re_re	3				
	3.5	croots	3				
	3.6	root_complex	3				
	3.7	test_imroots	3				
4	derivation 3						
	4.1	derive_acfar1	4				
	4.2	derive_ar1_spectral_density	4				
	4.3	derive_ar2param	4				
	4.4	derive_arc_length	4				
	4.5	derive_fourier_power	4				
	4.6	derive_fourier_power_exp	4				
	4.7	derive_laplacian_curvilinear	4				
	4.8	derive_laplacian_fourier_piecewise_linear	4				
	4.9	derive_logtripdf	4				
	4.10	derive_phase_drift_inv	4				
	4.11	derive_smooth1d_parametric	5				
	4 12	derive spectral density handpass initial condition	5				

5	deriva	tion/master	5
	5.1	derive_bc_one_sided	5
	5.2	derive_convergence	5
	5.3	derive_error_fdm	5
	5.4	derive_fdm_poly	5
	5.5	derive_fdm_power	5
	5.6	derive_fdm_taylor	5
	5.7	derive_fdm_vargrid	5
	5.8	derive_fem_2d_mass	6
	5.9	derive_fem_error_2d	6
	5.10	derive_fem_error_3d	6
	5.11	derive_fem_sym_2d	6
	5.12	derive_grid_constants	6
	5.13	derive_interpolation	6
	5.14	derive_laplacian	6
	5.15	derive_limit	6
	5.16	derive_nc_1d	6
	5.17	$derive_nc_1d\$	6
	5.18	derive_nc_2d	7
	5.19	derive_nonuniform_symmetric	7
	5.20	derive_richardson	7
	5.21	derive_sum	7
	5.22	nn	7
	5.23	test_derive	7
	5.24	$test_derive_fdm_poly \dots \dots \dots \dots \dots \dots$	7
	5.25	test_filter	7
	5.26	$\operatorname{test_vargrid}$	7
6	deriva	tion	8
	6.1	$simplify_atan \dots \dots$	8
7	mathe	ematics	8
	7.1	entropy	8
8	finance	e	8
	8.1	derive_skewrnd_walsh_paramter	8
	8.2	gbb_geostd_entire_series	8
	8.3	gbb_mean	8
	8.4	gbb_simulate	8
	8.5	gbb_std	8
	8.6	gbm_bridge	9
	8.7	gbm_cdf	9
	8.8	gbm_fit	9
	8.9	ghm fit old	a

	8.10	gbm_geomean	9
	8.11	gbm_geostd	9
	8.12	gbm_inv	9
	8.13	gbm_mean	9
	8.14	gbm_mean_entire_series	9
	8.15	gbm_median	9
	8.16	gbm_moment2par	10
	8.17	gbm_moment2par_entire_series	10
	8.18	gbm_pdf	10
	8.19	gbm_simulate	10
	8.20	gbm_skewness	10
	8.21	gbm_std	10
	8.22		10
	8.23	gbm_transform_time_step	10
	8.24	put_price_black_scholes	10
	8.25		10
	8.26		11
9	finance		11
	9.1	$test_gbm \dots \dots \dots \dots \dots \dots \dots$	11
	9.2	$test_gbm_pdf \dots \dots$	11
	9.3	test_skewrnd_walsh	11
10	fourion	/@STFT	11
10	10.1	•	11
	10.1		11 11
	10.2		11 11
	10.3 10.4		$\frac{11}{12}$
	10.4 10.5		$\frac{12}{12}$
	10.5	transform	14
11	fourier	·	12
	11.1	amplitude_from_peak	12
	11.2	caesaro_weight	12
	11.3		12
	11.4	example_fourier_window	13
	11.5	fft2_cartesian2radial	13
	11.6	fft_man	13
	11.7	fft_rotate	13
	11.8	fftsmooth	13
	11.9		14
	11.10		$\overline{14}$
	11.11		$^{-4}$
	11.12	•	$\overline{14}$
			15

11.14	fourier_cesaro_correction
11.15	fourier_coefficient_piecewise_linear
11.16	fourier_coefficient_piecewise_linear_1
11.17	fourier_coefficient_ramp3
11.18	fourier_coefficient_ramp_pulse
11.19	fourier_coefficient_ramp_step
11.20	fourier_coefficient_square_pulse
11.21	fourier_complete_negative_half_plane
11.22	fourier_cubic_interaction_coefficients
11.23	fourier_derivative
11.24	fourier_derivative_matrix_1d
11.25	fourier_derivative_matrix_2d
11.26	fourier_expand
11.27	fourier_fit
11.28	fourier_freq2ind
11.29	fourier_interpolate
11.30	fourier_matrix
11.31	fourier_matrix2
11.32	fourier_matrix3
11.33	fourier_matrix_exp
11.34	fourier_multiplicative_interaction_coefficients
11.35	fourier_power
11.36	fourier_power_exp
11.37	fourier_predict
11.38	fourier_quadratic_interaction_coefficients
11.39	fourier_random_phase_walk
11.40	fourier_range
11.41	fourier_regress
11.42	fourier_resampled_fit
11.43	fourier_resampled_predict
11.44	fourier_series_signed_square
11.45	fourier_transform
11.46	fourier_transform_fractional
11.47	fourier_truncate_negative_half_plane
11.48	hyperbolic_fourier_box
11.49	idftmtx_man
11.50	laplace_2d_pwlinear
11.51	mean_fourier_power
11.52	moments_fourier_power
11.53	nanfft
11.54	peaks
11.55	roots_fourier
11.56	spectral_density
11.57	std_fourier_power

11.58	test_complex_exp_product	22
11.59	test_fourier_filter	22
11.60	test_idftmtx	23
11.61	var_fourier_power	23
mathe	matics	23
12.1	gaussfit_quantile	23
geome	try/@Geometry	23
13.1	Geometry	23
13.2		23
13.3	_	23
13.4		24
13.5		24
13.6		24
13.7		24
13.8		24
13.9		24
13.10		24
13.11		24
13.12		25
13.13		25
13.14		25
13.15		25
13.16		25
13.17		25
		25
		26
13.20		26
13.21		26
13.22		26
13.23		26
13.24		26
13.25		26
13.26		26
13.27		27
	1	27
		$\frac{-1}{27}$
		27
		$\frac{-1}{27}$
		27
		27
	1 0	 27
13.35		$\frac{-1}{28}$
	11.59 11.60 11.61 mather 12.1 geome 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 13.22 13.23 13.24 13.25 13.26 13.27 13.28 13.29 13.30 13.31 13.32 13.33 13.34	11.59 test_fourier_filter 11.60 test_idftmtx 11.61 var_fourier_power mathematics 12.1 gaussfit_quantile geometry/@Geometry 13.1 Geometry 13.2 arclength 13.3 arclength_old 13.4 arclength_old2 13.5 base_point 13.6 base_point_limited 13.7 centroid 13.8 cosa_min_max 13.9 cross2 13.10 curvature 13.11 ddot 13.12 distance 13.13 distance 13.14 dot 13.15 edge_length 13.16 enclosed_angle 13.17 enclosed_angle 13.18 hexagon 13.19 inTetra2 13.21 inTetra2 13.22 inTriangle 13.23 intersect 13.24 lineintersect 13.25 lineintersect 13.26 minimum_distance_lines mittenpunkt 13.28 nagelpoint 13.29 onLine 13.30 poly_area 13.31 plumb_line 13.32 poly_area 13.33 poly_edges 13.34 poly_set

	13.36	polyxpoly	28
	13.37		28
	13.38		28
	13.39		28
	13.40		28
	13.41		28
	13.42		29
	13.43		29
	13.44		29
	13.45		29
	13.46		29
	13.47		29
	13.48	9	29
	13.49		29
	13.50		30
	13.51		30
	13.52	0 0	30
	13.53		30
	13.54		30
	13.55	8	30
	13.56		30
	13.57		30
	13.58		31
	13.59	1	31
		O .	
14	geome	try 3	3 1
	14.1	Polygon	31
	14.2	bounding_box	31
	14.3	curvature_1d	31
	14.4	cvt	31
	14.5	deg_to_frac	32
	14.6	ellipse	32
	14.7	ellipseX	32
	14.8	ellipseY	32
	14.9	first_intersect	32
	14.10	golden_ratio	32
	14.11	hypot3	32
	14.12	meanangle	32
	14.13		33
	14.14	meanangle3	33
	14.15	meanangle4	33
	14.16		33
	14.17	9	33
	14.18	pilim	33

	14.19	$streamline_radius_of_curvature \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	4
15	histogi	ram/@Histogram 3-	4
	15.1	2x	4
	15.2	Histogram	4
	15.3	bimodes	4
	15.4	cdf	4
	15.5	cdfS	4
	15.6	chi2test	4
	15.7	cmoment	4
	15.8	cmomentS	4
	15.9	entropy	5
	15.10	entropyS	5
	15.11	export_csv	5
	15.12	iquantile	5
	15.13	kstest	5
	15.14	kurtosis	5
	15.15	kurtosisS	5
	15.16	mean	5
	15.17	meanS	5
	15.18	median	
	15.19	medianS	
	15.20	mode	6
	15.21	modeS	
	15.22	moment	6
	15.23	momentS	
	15.24	pdf	
	15.25	quantile	
	15.26	quantileS	
	15.27	resample	
	15.28	setup	
	15.29	skewness	
	15.30	skewnessS	
	15.31	stairs	
	15.32	stairsS	
	15.33	std	
	15.34	$\operatorname{std}S$	
	15.35	var	
	15.36	varS	
	10.00		•
16	histogi		
	16.1	hist_man	
	16.2	histadapt	
	16.3	historist	8

	16.4	pdf_poly
	16.5	plotedf
	16.6	test_histogram
17	mathe	matics 38
	17.1	imrotmat
18	linear-	algebra 38
	18.1	averaging_matrix_2
	18.2	colnorm
	18.3	$condest_{-}$
	18.4	connectivity_matrix
19	linear-	algebra/coordinate-transformation 39
10	19.1	barycentric2cartesian
	19.2	barycentric2cartesian3
	19.3	cartesian2barycentric
	19.4	cartesian_to_unit_triangle_basis
	19.5	ellipsoid2geoid
	19.6	example_approximate_utm_conversion
	19.7	latlon2utm
	19.8	latlon2utm_simple
	19.9	lowrance_mercator_to_wgs84
	19.10	nmea2utm
	19.11	sn2xy
	19.12	unit_triangle_to_cartesian
	19.13	utm2latlon
	19.14	xy2nt
	19.15	xy2sn
	19.16	xy2sn_java
	19.17	xy2sn_old
20	linear-	algebra 41
	20.1	$\det 2x2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	20.2	$\det 3x3$
	20.3	$\det 4x4 \dots \qquad \qquad 42$
	20.4	$diag2x2 \dots $
	20.5	down
	20.6	$eig2x2 \dots $
21	linear-	algebra/eigenvalue 42
	21.1	eig_bisection
	21.2	eig_inverse
	21.2	eig inverse iteration 49

	21.4	eig_power_iteration	42
22	linear-	algebra/eigenvalue/jacobi-davidson	43
	22.1	afun_jdm	43
	22.2	davidson	43
	22.3	jacobi_davidson	43
	22.4	jacobi_davidson_qr	43
	22.5	jacobi_davidson_qz	43
	22.6	jacobi_davidson_simple	43
	22.7	jdqr	43
	22.8	jdqr_sleijpen	47
	22.9	jdqr_vorst	50
	22.10	jdqz	53
	22.11	mfunc_jdm	57
	22.12	mgs	58
	22.13	$minres_{\perp}$	58
	22.14	$mv_jacobi_davidson $	58
23	linear-	algebra	58
20	23.1	first	58
	23.2	gershgorin_circle	58
	23.3	haussdorff	58
	23.4	ieig2x2	58
	23.5	inv2x2	59
	23.6	inv3x3	59
	23.7	inv4x4	59
	23.8	kernel2matrix	59 59
	20.0	Kernerzmatrix	99
24	linear-	algebra/lanczos	59
	24.1	arnoldi	59
	24.2	arnoldi_new	59
	24.3	eigs_lanczos_man	59
	24.4	lanczos	59
	24.5	lanczos	59
	24.6	lanczos_biorthogonal	60
	24.7	lanczos_biorthogonal_improved	60
	24.8	lanczos_ghep	60
	24.9	mv_lanczos	60
	24.10	reorthogonalise	60
	24.11	test_lanczos	60
25	linoor	algebra	60
⊿ ∪	25.1	laplacian_eigenvalue	60
	25.2	laplacian_eigenvector	60

	25.3	laplacian_power	60
	25.4	least_squares_perpendicular_offset	61
	25.5	left	61
26	linear-	algebra/linear-systems	61
	26.1	$gmres_man \ \dots $	61
	26.2	minres_recycle	61
27	linear-	algebra	61
	27.1	lpmean	61
	27.2	lpnorm	61
	27.3	matvec3	61
	27.4	max2d	61
	27.5	mid	62
	27.6	mpoweri	62
	27.7	mtimes2x2	62
	27.8	mtimes3x3	62
	27.9	nannorm	62
	27.10	nanshift	62
	27.11	nl	62
	27.12	normalise	63
	27.13	normalize1	63
	27.14	normrows	63
	27.15	orth2	63
	27.16	orth_man	63
	27.17	orthogonalise	63
	27.18	padd2	63
	27.19	paddext	64
	27.20	paddval1	64
	27.21	paddval2	64
28	linear-	algebra/polynomial	64
	28.1	chebychev	64
	28.2	piecewise_polynomial	64
	28.3	roots1	64
	28.4	roots2	64
	28.5	roots2poly	65
	28.6	roots3	65
	28.7	roots4	65
	28.8	roots_piecewise_linear	65
	28.9	test_roots4	65
	28.10	vanderi_1d	65
	20.10	vanderi_rd	00
29	linear-	algebra	65

	29.1	randrot
	29.2	right
	29.3	rot2
	29.4	rot2dir
	29.5	rot3
	29.6	rotR 66
	29.7	rownorm
	29.8	simmilarity_matrix
	29.9	spnorm
	29.10	spzeros
	29.11	test_roots3
	29.12	transform_minmax
	29.13	transpose3
	29.14	transposeall
	29.15	up
	29.16	vander_nd
	29.17	vanderd_2d
30	\mathbf{logic}	67
	30.1	bitor_man
21	master	·/plot 68
IJΙ	31.1	attach_boundary_value
	31.1	cartesian_polar
	31.3	img_vargrid
	31.4	plot_basis_functions
	31.5	plot_convergence
	31.6	plot_dof
	31.7	plot_eigenbar
	31.8	plot_error_estimation
	31.9	plot_error_estimation_2
	31.10	plot_error_fem
	31.11	plot_fdm_kernel
	31.12	plot_fdm_vs_fem
	31.13	plot_fem_accuracy
	31.14	plot_function_and_grid
	31.15	plot_hat
	31.16	plot_hydrogen_wf
	31.17	plot_mesh
	31.18	plot_mesh_2
	31.19	plot_refine
	31.20	plot_refine_3d
	31.21	plot_runtime
	31.22	plot_spectrum

	31.23	$plot_wave function \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	70
32	master	r/ported	70
	32.1	assemble_2d_phi_phi	70
	32.2	assemble_3d_dphi_dphi	70
	32.3	assemble_3d_phi_phi	70
	32.4	$dV_{-}2d_{-} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	70
	32.5	derivative_2d	70
	32.6	derivative_3d	71
	32.7	element_neighbour_2d	71
	32.8	prefetch_2d	71
	32.9	promote_2d_3_10	71
	32.10	promote_2d_3_15	71
	32.11	promote_2d_3_21	71
	32.12	promote_2d_3_6	71
	32.13	promote_3d_4_10	71
	32.14	promote_3d_4_20	71
	32.15	promote_3d_4_35	71
	32.16	vander_2d	72
	32.17	vander_3d	72
33	mathe		72
	33.1	monotoneous_indices	72
	33.2	nearest_fractional_timestep	72
34	numbe	er-theory	72
	34.1	ceiln	72
	34.2	digitsb	72
	34.3	floorn	72
	34.4	iseven	73
	34.5	multichoosek	73
	34.6	nchoosek_man	73
	34.7	pythagorean_triple	73
	34.8	roundn	73
~~			
35		ical-methods	73
	35.1	$advect_analytic \ldots \ldots \ldots \ldots \ldots \ldots$	73
36	numer	ical-methods/differentiation	74
	36.1	derivative1	74
	36.2	derivative2	74
۰.		Seed and the de-	- 1
37			74
	37.1	diffuse_analytic	74

38	numer	ical-methods/finite-difference	74
	38.1	cdiff	74
	38.2	${\it cdiffb} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	74
	38.3	${\it central_difference} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	74
	38.4	cmean	75
	38.5	cmean2	75
	38.6	$derivative_matrix_1_1d \dots \dots \dots \dots \dots \dots \dots$	75
	38.7	$derivative_matrix_2_1d \dots \dots \dots \dots \dots \dots \dots$	75
	38.8	$derivative_matrix_2d \ldots \ldots \ldots \ldots \ldots \ldots$	75
	38.9	derivative_matrix_curvilinear	75
	38.10	derivative_matrix_curvilinear_2	75
	38.11	$\label{limited} \mbox{difference_kernel} \ \dots $	76
	38.12	diffusion_matrix_2d_anisotropic	76
	38.13	diffusion_matrix_2d_anisotropic2	76
	38.14	directional_neighbour	76
	38.15	distmat	76
	38.16	downwind_difference	76
	38.17	$gradpde2d \dots \dots$	76
	38.18	laplacian	76
	38.19	laplacian_fdm	77
	38.20	lrmean	77
39	numer	ical-methods/finite-difference/master	77
	39.1	$fdm_adaptive_grid \dots \dots$	77
	39.2	$fdm_adaptive_refinement_old \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	77
	39.3	$fdm_assemble_d1_2d \ \dots $	77
	39.4	$fdm_assemble_d2_2d \ \dots \dots \dots \dots \dots \dots \dots$	77
	39.5	Talli-abbellibic-a2-2a	11
	00.0	fdm_confinement	77
	39.6		
		$fdm_confinement\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	77
	39.6	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	77 77
	39.6 39.7	fdm_confinement	77 77 77
	39.6 39.7 39.8	fdm_confinement	77 77 77 78
	39.6 39.7 39.8 39.9	fdm_confinement	77 77 77 78 78
	39.6 39.7 39.8 39.9 39.10	fdm_confinement	77 77 77 78 78 78
	39.6 39.7 39.8 39.9 39.10 39.11	fdm_confinement	77 77 77 78 78 78
	39.6 39.7 39.8 39.9 39.10 39.11 39.12	fdm_confinement	77 77 78 78 78 78 78
	39.6 39.7 39.8 39.9 39.10 39.11 39.12 39.13	fdm_confinement	77 77 78 78 78 78 78 78
	39.6 39.7 39.8 39.9 39.10 39.11 39.12 39.13 39.14	fdm_confinement fdm_d_vargrid fdm_h_unstructured fdm_hydrogen_vargrid fdm_mark_unstructured_2d fdm_plot fdm_plot_series fdm_refine_2d fdm_refine_3d fdm_refine_unstructured_2d	77 77 78 78 78 78 78 78 78
	39.6 39.7 39.8 39.9 39.10 39.11 39.12 39.13 39.14 39.15	fdm_confinement fdm_d_vargrid fdm_h_unstructured fdm_hydrogen_vargrid fdm_mark_unstructured_2d fdm_plot fdm_plot_series fdm_refine_2d fdm_refine_3d fdm_refine_unstructured_2d fdm_schroedinger_2d	777 777 78 78 78 78 78 78 78
40	39.6 39.7 39.8 39.9 39.10 39.11 39.12 39.13 39.14 39.15 39.16 39.17	fdm_confinement fdm_d_vargrid fdm_h_unstructured fdm_hydrogen_vargrid fdm_mark_unstructured_2d fdm_plot fdm_plot_series fdm_refine_2d fdm_refine_3d fdm_refine_unstructured_2d fdm_schroedinger_2d fdm_schroedinger_3d	77 77 78 78 78 78 78 78 78 78
40	39.6 39.7 39.8 39.9 39.10 39.11 39.12 39.13 39.14 39.15 39.16 39.17	fdm_confinement fdm_d_vargrid fdm_h_unstructured fdm_hydrogen_vargrid fdm_mark_unstructured_2d fdm_plot fdm_plot_series fdm_refine_2d fdm_refine_3d fdm_refine_unstructured_2d fdm_schroedinger_2d fdm_schroedinger_3d relocate	77 77 78 78 78 78 78 78 78

	40.3	ratio	79
	40.4	steplength	79
	40.5	swapoddeven	79
	40.6	test_derivative_matrix_2d	79
	40.7	test_derivative_matrix_curvilinear	79
	40.8	test_difference_kernel	79
	40.9	$upwind_difference \ \dots \dots \dots \dots \dots \dots \dots$	80
41	numer	ical-methods/finite-element	80
	41.1	Mesh_2d_java	80
	41.2	Tree_2d_java	80
	41.3	assemble_1d_dphi_dphi	80
	41.4	assemble_1d_phi_phi	80
	41.5	assemble_2d_dphi_dphi_java	80
	41.6	assemble_2d_phi_phi_java	80
	41.7	assemble_3d_dphi_dphi_java	80
	41.8	assemble_3d_phi_phi_java	80
	41.9	boundary_1d	81
	41.10	boundary_2d	81
	41.11	boundary_3d	81
	41.12	check_area_2d	81
	41.13	circmesh	81
	41.14	cropradius	81
	41.15	display_2d	81
	41.16	display_3d	81
	41.17	distort	81
	41.18	err_2d	81
	41.19	estimate_err_2d_3	82
	41.20	example_1d	82
	41.21	example_2d	82
	41.22	explode	82
	41.23	fem_2d	82
	41.24	$fem_2d_heuristic_mesh \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	82
	41.25	fem_get_2d_radial	82
	41.26	$fem_interpolation $	82
	41.27	$fem_plot_1d \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	82
	41.28	$fem_plot_1d_series \ \dots $	82
	41.29	$fem_plot_2d \ldots \ldots \ldots \ldots \ldots \ldots$	83
	41.30	$fem_plot_2d_series \ \dots $	83
	41.31	$fem_plot_3d \ldots \ldots \ldots \ldots \ldots \ldots$	83
	41.32	$fem_plot_3d_series \ \dots $	83
	41.33	$fem_plot_confine_series $	83
	41.34	$fem_radial \ldots \ldots \ldots \ldots \ldots \ldots$	83
	41.35	flip 2d	83

	41.36	get_mesh_arrays	33
	41.37	hashkey	33
42			34
	42.1	1	34
	42.2	1 1	34
	42.3	8	34
	42.4	9	34
	42.5		34
	42.6	9	34
	42.7	8	34
	42.8	8	34
	42.9	8	35
	42.10	8	35
	42.11	8	35
	42.12	int_1d_nc_2	35
	42.13	int_1d_nc_3	35
	42.14	int_1d_nc_4	35
	42.15	int_1d_nc_5	35
	42.16	int_1d_nc_6	35
	42.17	int_1d_nc_7	35
	42.18	int_1d_nc_7_hardy	35
	42.19	int_2d_gauss_1	36
	42.20	int_2d_gauss_12	36
	42.21	int_2d_gauss_13	36
	42.22		36
	42.23	int_2d_gauss_19	36
	42.24	int_2d_gauss_25	36
	42.25	int_2d_gauss_3	36
	42.26	int_2d_gauss_33	36
	42.27	int_2d_gauss_4	36
	42.28	int_2d_gauss_6	36
	42.29		37
	42.30	int_2d_gauss_9	37
	42.31	9	37
	42.32	int_2d_nc_15	37
	42.33		37
	42.34		37
	42.35		37
	42.36		37
	42.37	9	37
	42.38	9	37
	42.39		38
	42.40	9	38
	·		

	42.41	int_3d_gauss_4	88
	42.42	$int_3d_gauss_45$	88
	42.43	$int_3d_gauss_5 \dots \dots$	88
	42.44	$int_3d_nc_11 \ldots \ldots \ldots \ldots \ldots$	88
	42.45	$int_3d_nc_4 \ldots \ldots \ldots \ldots \ldots$	88
	42.46	int_3d_nc_6	88
	42.47	$int_3d_nc_8 \ \dots $	88
43	numer	ical-methods/finite-element	89
	43.1	interpolation_matrix	89
	43.2	mark	89
	43.3	mark_1d	89
	43.4	mesh_1d_uniform	89
	43.5	mesh_3d_uniform	89
	43.6	mesh_interpolate	89
	43.7	neighbour_1d	89
	43.8	old	89
	43.9	pdeeig_1d	89
	43.10	pdeeig_2d	90
	43.11	pdeeig_3d	90
	43.12	polynomial_derivative_1d	90
	43.13	potential_const	90
	43.14	potential_coulomb	90
	43.15	potential_harmonic_oscillator	90
	43.16	project_circle	90
	43.17	project_rectangle	90
	43.18	promote_1d_2_3	90
	43.19	promote_1d_2_4	90
	43.20	promote_1d_2_5	91
	43.21	promote_1d_2_6	91
	43.22	quadrilaterate	91
	43.23	recalculate_regularity_2d	91
	43.24	$refine_1d \dots \dots \dots \dots \dots \dots \dots \dots \dots $	91
	43.25	refine_2d_21	91
	43.26	refine_2d_structural	91
	43.27	$regularity_1d \ldots \ldots \ldots \ldots \ldots \ldots$	91
	43.28	regularity_2d	91
	43.29	regularity_3d	92
	43.30	relocate_2d	92
	43.31	$test_circmesh \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	92
	43.32	$test_hermite $	92
	43.33	tri_assign_points	92
	43.34	triangulation_uniform	92
	43.35	vander 1d	92

	43.36	vanderd_1d	92
	43.37	vanderi_1d	
	10.01	validottilia	02
44	numer	rical-methods/finite-volume/@Advection	93
	44.1	Advection	93
	44.2	$dot_advection $	93
45	numer	rical-methods/finite-volume/@Burgers	93
	45.1	burgers_split	93
	45.2	dot_burgers_fdm	93
	45.3	dot_burgers_fft	
46	numer	rical-methods/finite-volume/@Finite_Volume	93
	46.1	Finite_Volume	93
	46.2	apply_bc	94
	46.3	solve	94
	46.4	step_split_strang	
	46.5	step_unsplit	
	10.0	biop_unspire	01
47	numer	rical-methods/finite-volume/@Flux_Limiter	94
	47.1	Flux_Limiter	94
	47.2	beam_warming	94
	47.3	fromm	95
	47.4	$lax_wendroff \dots $	95
	47.5	$\min \mod \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	95
	47.6	$monotized_central \ \dots \dots \dots \dots \dots \dots \dots \dots$	95
	47.7	muscl	95
	47.8	superbee	95
	47.9	upwind	95
	47.10	vanLeer	96
10	n1122.04	rical-methods/finite-volume/@KDV	96
40	48.1	dot_kdv_fdm	96
		dot_kdv_fft	96 96
	48.3	kdv_split	
	40.0	kdv_spiit	90
49	numer	${ m rical-methods/finite-volume/@Reconstruct_Average_E}$	volve 96
	49.1	Reconstruct_Average_Evolve	96
	49.2	advect_highres	97
	49.3	advect_lowress	97
5 0	numer	rical-methods/finite-volume	97
	50.1	Godunov	97
	50.2	Lax_Friedrich	97
	50.3	Measure	97

	50.4	Roe	97
	50.5	fv_swe	98
	50.6	$staggered_euler \dots \dots \dots \dots \dots$	98
	50.7	staggered_grid	98
51	numer	rical-methods	98
	51.1	grid2quad	98
52	numer	rical-methods/integration	98
	52.1	$cumintL \dots $	98
	52.2	cumintR	98
	52.3	$cumint_trapezoidal $	98
	52.4	int_1d_gauss_laguerre	99
	52.5	int_trapezoidal	99
53	numer	rical-methods/interpolation/@Kriging	99
	53.1	Kriging	99
	53.2	estimate_semivariance	99
	53.3	$interpolate_{-}\dots\dots\dots\dots\dots$	99
$\bf 54$	numer	${ m cical-methods/interpolation/@RegularizedInterpolator}$	c1100
	54.1	RegularizedInterpolator1	100
	54.2	init	100
5 5	numer	${ m rical-methods/interpolation/@Regularized Interpolator}$	c 2 100
	55.1	RegularizedInterpolator2	
	55.2	init	100
56	numer	${ m cical-methods/interpolation/@Regularized Interpolator}$	r 310 0
	56.1	RegularizedInterpolator3	100
	56.2	init	100
57	numer	rical-methods/interpolation 1	101
	57.1	IDW	101
	57.2	IPoly	101
	57.3	-	101
	57.4		101
	57.5	_	101
	57.6		101
	57.7	r	101
	57.8		102
	57.9		102
	57.10		102
	57.11		102
	57.12	interp1_circular	-

	57.13	$interp1_limited \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	102
	57.14	$interp1_man $	102
	57.15	$interp1_piecewise_linear \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	103
	57.16	$interp1_save $	103
	57.17	$interp1_slope \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	103
	57.18	$interp1_smooth \dots \dots$	103
	57.19	$interp1_unique \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	103
	57.20	$interp2_man $	103
	57.21	$interp_angle $	103
	57.22	$interp_fourier \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	104
	57.23	$interp_fourier_batch \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	104
	57.24	$interp_sn \ \dots $	104
	57.25	$interp_sn2$	104
	57.26	interp_sn3	104
	57.27	$interp_sn_\dots$	104
	57.28	$limit_by_distance_1d \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	104
	57.29	resample1	105
	57.30	resample_d_min	105
	57.31	resample_vector	105
	57.32	$test_interp1_limited \ \dots \dots \dots \dots \dots \dots \dots \dots$	105
58			105
	58.1	$inverse_complex $	
	58.2	maccormack_step	
	58.3	minmod	105
59	numer	ical-methods/multigrid	105
90	59.1	mg_interpolate	
	59.2	mg_restrict	
	00.2	ing_confect	100
60	numer	$ical-methods/ode/@BVPS_Characteristic$	106
	60.1	BVPS_Characteristic	106
	60.2	$assemble 1_A \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	60.3	$assemble 1_A_Q \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	106
	60.4	$assemble 2_A \dots \dots \dots \dots \dots \dots \dots \dots \dots $	106
	60.5	$assemble_AA \ \dots \dots$	106
	60.6	$assemble_AAA \ \dots $	106
	60.7	$assemble Lc \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	107
	60.8	bvp1c	107
	60.9	check_arguments	107
	60.10	couple_junctions	107
	60.11	derivative	107
	60.12	init	107
	60.13	inner2outer_bvp2c	107

	60.14	reconstruct
	60.15	resample
	60.16	solve
	60.17	$test_assemble1_A \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	60.18	$test_assemble2_A \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
61	numer	$ical-methods/ode/@Time_Stepper$ 108
	61.1	Time_Stepper
	61.2	solve
62	numer	ical-methods/ode 108
	62.1	bvp2fdm
	62.2	bvp2wavetrain
	62.3	bvp2wavetwopass
	62.4	ivp_euler_forward
	62.5	ivp_euler_forward2
	62.6	ivprk2
	62.7	ode2_matrix
	62.8	ode2characteristic
	62.9	$step_trapezoidal \ldots \ldots$
	62.10	test_bvp2
63	numer	ical-methods/optimisation 110
	63.1	aitken_iteration
	63.2	anderson_iteration
	63.3	$armijo_stopping_criterion \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.4	astar
	63.5	binsearch
	63.6	bisection
	63.7	box1
	63.8	box2
	63.9	cauchy
	63.10	cauchy2
	63.11	directional_derivative
	63.12	dud
	63.13	extreme3
	63.14	extreme_quadratic
	63.15	ftest
	63.16	fzero_bisect
	63.17	fzero_newton
	63.18	grad
	63.19	hessian
	63.20	hessian_from_gradient
	63 21	hessian projected 113

	63.22	line_search
	63.23	line_search2
	63.24	line_search_polynomial
	63.25	$line_search_polynomial 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots 114$
	63.26	$line_search_quadratic \dots \dots$
	63.27	$line_search_quadratic2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 114$
	63.28	$line_search_wolfe \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.29	ls_bgfs
	63.30	ls_broyden
	63.31	$ls_generalized_secant \dots \dots$
	63.32	nlcg
	63.33	nlls
	63.34	picard
	63.35	$poly_extrema \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.36	$quadratic_function \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.37	$quadratic_programming \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.38	$quadratic_step \dots \dots$
	63.39	rosenbrock
	63.40	sqrt_heron
	63.41	$test_directional_derivative \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.42	$test_dud \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	63.43	$test_fzero_newton $
	63.44	$test_line_search_quadratic2 \dots \dots$
	63.45	$test_ls_generalized_secant \dots \dots$
	63.46	$test_nlcg_6_order \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.47	test_nlls
61	numon	ical-methods/pde 117
	64.1	laplacian2d_fundamental_solution
	04.1	Taptacianizu_tunuamentai_sotution
65	numer	ical-methods/piecewise-polynomials 118
	65.1	Hermite1
	65.2	
	65.3	hp2_predict
	65.4	hp_predict
	65.5	hp_regress
	65.6	lp_count
	65.7	lp_predict
	65.8	lp_regress
	65.9	lp_regress
		ical-methods 119
	bb. I	test_adams_bashforth

67	mathe	matics	119
	67.1	oversampleNZ	119
		•	
68	\mathbf{pdes}		119
	68.1	$heat_equation_fundamental_solution \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	119
	68.2	heat_equation_width	119
	68.3	heat_equation_width_to_time	120
69	regress		120
	69.1	PolyOLS	120
	69.2	coefftest	120
	69.3	detrend	120
	69.4	$\mathrm{fit} \ \ldots \ldots$	120
	69.5	$\mathrm{fit}_{-} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	120
	69.6	predict	120
	69.7	predict	120
	69.8	slope	121
		•	
70	regress		121
	70.1	PowerLS	121
	70.2	$\mathrm{fit} \ \ldots \ldots$	121
	70.3	predict	121
	70.4	predict	121
7 1	regress	sion/@Theil	121
	71.1	Theil	121
	71.2	$\operatorname{detrend} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	121
	71.3	$\mathrm{fit}\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	122
	71.4	predict	122
	71.5	slope	
72	regress	sion	$\bf 122$
	72.1	Theil_Multivariate	122
	72.2	areg	
	72.3	ginireg	122
	72.4	hessimplereg	123
	72.5	l1lin	123
	72.6	lsq_sparam	
	72.7	polyfitd	
	72.8	regression_method_of_moments	
	72.9	robustlinreg	
	72.10	theil2	
	72.11	theil_generalised	
	72.11		124

	72.13	weighted_median_regression	24
7 3	set-the	eory 12	24
	73.1	issubset	24
74	mathe	matics 12	24
	74.1	shuffle_index	25
7 5	signal-	processing 12	25
	75.1	asymwin	25
7 6	signal-	processing/autocorrelation 12	25
	76.1	acf_radial	25
	76.2	acfar1	25
	76.3	acfar1_2	25
	76.4	acfar2	25
	76.5	acfar2_2	25
	76.6	ar1_cutoff_frequency	26
	76.7	ar1_effective_sample_size	26
	76.8	ar1_mse_mu_single_sample	26
	76.9	ar1_mse_pop	26
	76.10	ar1_mse_range	26
	76.11	ar1_spectrum	26
	76.12	ar1_to_tikhonov	26
	76.13	ar1_var_factor	27
	76.14	ar1_var_factor	27
	76.15	ar1_var_range2	27
	76.16	ar1delay	27
	76.17	ar1delay_old	27
	76.18	ar2_acf2c	27
	76.19	ar2conv	28
	76.20	ar2dof	28
	76.21	ar2param	28
	76.22	autocorr2	28
	76.23	autocorr_angular	28
	76.24	autocorr_bandpass	28
	76.25	autocorr_decay_rate	28
	76.26	autocorr_effective_sample_size	28
	76.27	autocorr_fft	29
	76.28	autocorr_forest	29
	76.29	autocorr_genton	29
	76.30	autocorr_highpass	29
	76.31	autocorr_lowpass	29
	76.32	autocorr periodic additive noise	20

	76.33	$autocorr_periodic_windowed $
	76.34	autocorr_radial
	76.35	autocorr_radial_hexagonal_pattern
	76.36	autocorrelation_max
77	signal-	processing 130
	77.1	average_wave_shape
	77.2	bandpass
	77.3	bandpass_continuous_cdf
	77.4	bartlett
	77.5	bin1d
	77.6	bin2d
	77.7	binormrnd
	77.8	coherence
	77.9	conv1_man
	77.10	conv2_man
	77.10	conv2z
	77.11	conv30
	77.13	$conv_{\perp}$
	77.14	conv_centered
	77.14	
	77.16	convz
		cosexpdelay
	77.17	csmooth
	77.18	daniell_window
	77.19	db2neper
	77.20	db2power
	77.21	derive_bandpass_continuous_scale
	77.22	derive_danielle_weight
	77.23	derive_limit_0_acfar
	77.24	detect_peak
	77.25	determine_phase_shift
	77.26	$determine_phase_shift1 \dots \dots$
	77.27	doublesum_ij
	77.28	$effective_mask_size \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	77.29	$effective_sample_size_to_ar1 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	77.30	$fcut2Lw_gausswin$
	77.31	fcut_gausswin
	77.32	filt_hodges_lehman
7 8	signal-	processing/filters 134
	78.1	circfilt2
	78.2	filter1
	78.3	filter2
		filter 134

	78.5	filter_r_to_f0
	78.6	filter_rho_to_f0
	78.7	filter_twosided $\dots \dots \dots$
	78.8	filteriir
	78.9	filterp
	78.10	filterp1
	78.11	$filterstd \dots \dots$
	78.12	gaussfilt2
	78.13	lowpass_discrete
	78.14	meanfilt2
	78.15	medfilt1_man
	78.16	medfilt1_man2
	78.17	$medfilt1_padded \dots 137$
	78.18	$medfilt1_reduced \dots 137$
	78.19	trifilt1
	78.20	trifilt2
79	_	processing 137
	79.1	firls_man
	79.2	fit_spectral_density
	79.3	fit_spectral_density_2d
	79.4	fit_spectral_density_radial
	79.5	flattopwin
	79.6	frequency_response_boxcar
	79.7	freqz_boxcar
	79.8	gaussfilt1
	79.9	hanchangewin
	79.10	hanchangewin2
	79.11	hanwin
	79.12	hanwin
	79.13	high_pass_1d_simple
	79.14	kaiserwin
	79.15	kalman
	79.16	lanczoswin
	79.17	last
	79.18	maxfilt1
	79.19	meanfilt1
	79.20	mid_term_single_sample
	79.21	minfilt1
	79.22	minmax
	79.23	mu2ar1
	79.24	mysmooth
	79.25	nanautocorr
	79.26	nanmedfilt1

	80.6 80.7	bandpass2d_convolution	
		-	
	80.8	bandpass2d_ideal	
	80.9	bandpass2d_implicit	
	80.10	bandpass2d_iso	
	80.11	bandpass_arg	
	80.11	bandpass_f0_to_rho	
	80.13	bandpass_max	
	80.14	bandpass_max2	
	80.15	highpass	
	80.16	highpass1d_fft_cos	
	80.17	highpass1d_implicit	
	80.18	highpass2d_fft	
	80.19	highpass2d_ideal	
	80.20	highpass2d_implicit	
	80.21	highpass_arg	
	80.22	highpass_fc_to_rho	
	80.23	lowpass	3
	80.24	lowpass1d_fft	3
	80.25	lowpass1d_implicit	3
	80.26	lowpass2	4
	80.27	lowpass2d_anisotropic	4
	80.28	lowpass2d_convolution	4
	80.29	lowpass2d_fft	4
	80.30	lowpass2d_ideal	4
	80.31	lowpass2d_implicit	4
	80.32	lowpass_arg	4
	80.33	lowpass_fc_to_rho	5
	80.34	lowpass_iir	5
	80.35	lowpass_iir_symmetric	5
	80.36	$low pass filter 2 \dots $	5
0.4	. ,		_
81	_	processing 14	
	81.1	peaks_man	J

82	signal-	processing/periodogram	145
	82.1	periodogram	145
	82.2	periodogram_2d	145
	82.3	periodogram_align	145
	82.4	periodogram_angular	146
	82.5	periodogram_bartlett	146
	82.6	periodogram_bootstrap	146
	82.7	periodogram_confidence_interval	146
	82.8	periodogram_filter	146
	82.9	periodogram_median	146
	82.10	periodogram_normalize	146
	82.11	periodogram_normalize_2d	146
	82.12	periodogram_p_value	147
	82.13	periodogram_qq	147
	82.14	periodogram_quantiles	147
	82.15	periodogram_radial	147
	82.16	periodogram_std	148
	82.17	periodogram_test_periodicity	148
	82.18	periodogram_test_periodicity_2d	149
	82.19	periodogram_test_stationarity	149
	82.20	$periodogram_welsh \dots \dots \dots \dots \dots \dots$	150
83	signal-	processing	150
			100
	83.1	•	
	83.1 83.2	polyfilt1	150
		•	150 150
	83.2	polyfilt1	150 150 150
	83.2 83.3	polyfilt1	150 150 150 150
	83.2 83.3 83.4	polyfilt1	150 150 150 150 150
	83.2 83.3 83.4 83.5	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1	150 150 150 150 150 150
	83.2 83.3 83.4 83.5 83.6	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar1_dual	150 150 150 150 150 150 151
	83.2 83.3 83.4 83.5 83.6 83.7	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2 randarp	150 150 150 150 150 150 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2	150 150 150 150 150 150 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2 randarp rectwin	150 150 150 150 150 150 151 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2 randarp rectwin recursive_sum	150 150 150 150 150 150 151 151 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10 83.11	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2 randarp rectwin recursive_sum select_range	150 150 150 150 150 151 151 151 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10 83.11 83.12	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2 randarp rectwin recursive_sum select_range smooth1d_parametric	150 150 150 150 150 150 151 151 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10 83.11 83.12	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2 randarp rectwin recursive_sum select_range smooth1d_parametric smooth2	150 150 150 150 150 150 151 151 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10 83.11 83.12 83.13 83.14	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar2 randarp rectwin recursive_sum select_range smooth1d_parametric smooth_man	150 150 150 150 150 151 151 151 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10 83.11 83.12 83.13 83.14 83.15	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar1_dual randar2 randarp rectwin recursive_sum select_range smooth1d_parametric smooth_man smooth_parametric	150 150 150 150 150 150 151 151 151 151
	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10 83.11 83.12 83.13 83.14 83.15 83.16	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar1_dual randar2 randarp rectwin recursive_sum select_range smooth1d_parametric smooth_man smooth_parametric2	150 150 150 150 150 150 151 151 151 151
84	83.2 83.3 83.4 83.5 83.6 83.7 83.8 83.9 83.10 83.11 83.12 83.13 83.14 83.15 83.16 83.17 83.18	polyfilt1 qmedfilt1 quadratfilt1 quadratwin randar1 randar1_dual randar2 randarp rectwin recursive_sum select_range smooth1d_parametric smooth_barametric smooth_parametric2 smooth_with_splines	150 150 150 150 150 150 151 151 151 151

	84.2	hex_angular_pdf_max
	84.3	hex_angular_pdf_max2par
	84.4	spectral_density_ar2
	84.5	spectral_density_area
	84.6	spectral_density_estimate_2d
	84.7	spectral_density_flat
	84.8	spectral_density_forest
	84.9	spectral_density_gausswin
	84.10	spectral_density_lorentzian
	84.11	spectral_density_lorentzian_max
	84.12	spectral_density_lorentzian_max2par
	84.13	spectral_density_lorentzian_scale
	84.14	spectral_density_maximum_bias_corrected 154
	84.15	spectral_density_periodic_additive_noise
	84.16	spectral_density_rectwin
	84.17	spectral_density_wperiodic
85	_	processing 154
	85.1	spectrogram
	85.2	sum_i_lag
	85.3	sum_ii
	85.4	sum_ii
	85.5	sum_ij
	85.6	sum_ij
	85.7	sum_ij_partial
	85.8	sum_multivar
	85.9	test_acfar1
	85.10	tikhonov_to_ar1
	85.11	trapwin
	85.12	triwin
	85.13	triwin2
	85.14	$tukeywin_man \dots \dots$
	85.15	varar1
	85.16	$welch_spectrogram \dots \dots$
	85.17	wfilt
	85.18	winbandpass
		. / . 1
86	_	processing/windows 156
	86.1	circwin
	86.2	danielle_window
	86.3	gausswin
	86.4	gausswin1
	86.5	gausswin2
	86.6	radial_window

	86.7	range_window
	86.8	rectwin_cutoff_frequency
	86.9	std_window
	86.10	window2d
	86.11	$window_make_odd \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
97	gigmal.	processing 158
01	87.1	processing 158 winfilt0
	87.2	winlength
	87.3	wmeanfilt
	87.4	wmedfilt
	87.5	wordfilt
	87.6	wordfilt_edgeworth
	87.7	wrapphase
	87.8	xar1
	87.9	xcorr_man
	01.9	ACOIT_IIIaII
88	sorting	
	88.1	sort2
	88.2	sort2d
89	spatial	-pattern-analysis/@Spatial_Pattern 159
	89.1	Spatial_Pattern
	89.2	analyze_grid
	89.3	analyze_transect
	89.4	clear_1d_properties
	89.5	clear_2d_properties
	89.6	fit_parametric_densities
	89.7	imread
	89.8	plot
	89.9	plot_transect
	89.10	prepare_analysis
	89.11	report
	89.12	resample_functions
	89.13	tabulate
00	anatial	-pattern-analysis/@Spatial Pattern Array 161
90	90.1	
	90.1	ı
	90.2	analyze
	90.3	assign_regions
	90.4	fetch
	90.6	generate_filename
	90.6	9
	90.1	quality_check

91	spatial	-pattern-analysis	162
	91.1	approximate_ratio_distribution	162
	91.2	banded_pattern	162
	91.3	hexagonal_pattern	163
	91.4	patch_size_1d	163
	91.5	patch_size_2d	163
	91.6	pattern_isotropic_rotated	163
	91.7	reconstruct_isotropic_density	163
	91.8	$separate_isotropic_from_anisotropic_density \ . \ . \ . \ . \ . \ . \ .$	163
	91.9	$suppress_low_frequency_lobe . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	163
92	spatial	-statistics	164
	92.1	cov_cell_averages_1d	164
	92.2	cov_cell_averages_2d	
93	special	l-functions	165
	93.1	bessel_sphere	
	93.2	besseliln_large_x	
	93.3	beta_man	
	93.4	betainc_man	
	93.5	digamma_man	
	93.6	exp10	
	93.7	hankel_sphere	165
	93.8	hermite	165
	93.9	laguerre_roots	166
	93.10	lambertw_numeric	166
	93.11	legendre_man	166
	93.12	$neumann_sphere \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	166
94	statist	ics	166
	94.1	atan_s2	166
	94.2	binomial	
95	statist	ics/circular	167
	95.1	circular_fmoment	
	95.2	circular_fquantile	
	95.3	circular_fstd	
	95.4	circular_fvar	
96	statist	ics	167
	96.1	coefficient_of_determination	
	96.2	conditional_expectation_normal	
	96.3	correlation_confidence_pearson	
97	statist	ics/distributions	167

	97.1	PDF	167
98	statist	ics/distributions/anisotropic	168
	98.1	anisotropic_pattern	168
	98.2	anisotropic_pattern_acf	168
	98.3	$anisotropic_pattern_pdf \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	168
99	statist	ics/distributions/beta	168
	99.1	beta_kurt	168
	99.2	beta_mean	168
	99.3	beta_moment2par	168
	99.4	beta_skew	168
	99.5	beta_std	168
10	Ostatist:	ics/distributions/bivariate-normal	169
	100.1	binorm_separation_coefficient	169
	100.2	binormedf	169
	100.3	binormfit	
	100.4	binormpdf \dots	
10	1statist:	ics/distributions/chi2	169
	101.1	chi2_kurt	169
	101.2	chi2_mean	
	101.3	chi2_skew	
	101.4	chi2_std	
10	2statist	ics/distributions/circular-normal	170
		wnormpdf	
10.	3statist	ics/distributions/edgeworth	170
10		edgeworth_cdf	
	103.2	edgeworth_pdf	
		•	
10		ics/distributions/exp	170
	104.1	exppdf_max2par	170
10	5statist:	ics/distributions/fisher	170
	105.1	$fisher_mean \dots \dots$	170
	105.2	fisher_moment2par	170
	105.3	fisher_std	171
10	6statist	ics/distributions/gamma	171
	106.1	gamma_mean	171
	106.2	gamma_mode	171
	106.3	gamma_mode2par	171

106.4	gamma_moment2par
106.5	gamma_std
106.6	gamma_stirling
106.7	gampdf_man
106.8	generalized_gamma_mean
107statist	ics/distributions/hotelling-t2 172
107.1	t2cdf
107.2	t2inv
108statist	ics/distributions/kurt-normal 172
108.1	kurtnedf
108.2	kurtnpdf
109statist	ics/distributions/log-triangular 172
109.1	logtrialtcdf
109.2	logtrialtinv
109.3	logtrialtmean
109.4	logtrialtpdf
109.5	logtrialtrnd
109.6	logtricdf
109.7	logtriinv
109.8	logtrimean
109.9	logtripdf
109.10	logtrirnd
110statist	ics/distributions/log-uniform 174
110.1	logu_median
110.2	logucdf
110.3	logucm
110.4	loguinv
110.5	logumean
110.6	logupdf
110.7	logurnd
110.8	loguvar
111statist	ics/distributions/loglog 175
111.1	loglogpdf
112statist	ics/distributions/lognormal 175
112.1	logn_corr
112.2	logn_cov
112.3	logn_mean
112.4	logn_mode
112.5	logn_mode2par

	112.6	logn_moment2par
	112.7	logn_moment2par_correlated
	112.8	logn_param2moment
	112.9	logn_skewness
	112.10	logn_std
	112.11	$lognpdf_{-}$
	112.12	lognpdf_entropy
11	3statist	ics/distributions/logskew 176
	113.1	logskewcdf
	113.2	logskewpdf
11	4statist	ics/distributions/mises 177
	114.1	mises_max2par
	114.2	mises_std
	114.3	mises_var
	114.4	misesn_max2par
	114.5	misesnpdf
	114.6	misespdf
11	5statist	ics/distributions 177
	115.1	ncx2_moment2par
11	6statist	ics/distributions/normal 178
	116.1	normpdf_entropy
	116.2	normpdf_mode
	116.3	normpdf_mode2par
11	7statist	ics/distributions/passes 178
	117.1	bandpass1d_continuous_pdf
	117.2	bandpass1d_continuous_pdf_max
	117.3	bandpass1d_continuous_pdf_max2par
	117.4	bandpass1d_continuous_pdf_scale
	117.5	bandpass1d_discrete_pdf
	117.6	bandpass2d_discrete_pdf
	117.7	bandpass2d_pdf_exact
	117.8	bandpass2d_pdf_hankel
	117.9	bandpass2d_pdf_mode
	117.10	bandpass2d_pdf_mode2par
	117.11	bandpass2d_pdf_scale
	117.12	highpass1d_continuous_pdf
	117.13	highpass1d_discrete_cos_pdf
	117.14	highpass1d_disrete_pdf
	117.15	highpass2d_discrete_pdf

	117.16	highpass2d_pdf
	117.17	highpass2d_pdf_hankel
	117.18	lowpass1d_continuous_pdf
	117.19	lowpass1d_continuous_pdf_scale
	117.20	lowpass1d_discrete_pdf
	117.21	lowpass1d_one_sided_pdf
	117.22	lowpass2d_discrete_acf
	117.23	lowpass2d_discrete_pdf
	117.24	lowpass2d_pdf
	117.25	lowpass2d_pdf_hankel
	117.26	lowpass2d_pdf_series
11	&tatist	ics/distributions 182
		pdfsample
11	Octobiat	ics/distributions/phase-drift 182
11	119.1	phase_drift_acf
	119.2	phase_drift_acf_2d
	119.2 119.3	phase_drift_cdf
	119.4	phase_drift_inv
	119.5	phase_drift_parallel_acf
	119.6	phase_drift_parallel_pdf
	119.7	phase_drift_parallel_pdf_max
	119.8	phase_drift_parallel_pdf_max2par
	119.9	phase_drift_parallel_pdf_mode2par
	119.10	phase_drift_patch_size_distribution
	119.11	phase_drift_pdf
	119.12	phase_drift_pdf_2d
	119.13	phase_drift_pdf_mode
	119.14	phase_drift_pdf_mode2par
	119.15	phase_drift_pdf_reg2par
	119.16	phase_drift_pdf_scale
12	0statist	ics/distributions/skew-normal 184
	120.1	skew_generalized_normal_fit
	120.2	skew_generalized_normpdf
	120.3	skewcdf
	120.4	skewparam_to_central_moments
	120.5	skewpdf
	120.6	skewpdf_entropy
12	1statist	ics/distributions/triangular 185
	121.1	tricdf
	191.9	

121.3	trimedian	. 185
121.4	tripdf	. 185
121.5	trirnd	. 185
122statist	cics/distributions/weibull	186
122.1	wbl_std	
122.1	wbi_std	. 100
123statist	cics/distributions/wrapped-normal	186
123.1	$normpdf_wrapped \dots \dots \dots \dots \dots \dots \dots \dots$	
123.2	$normpdf_wrapped_mode $. 186
123.3	$normpdf_wrapped_mode2par \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 186
124statist	ics	186
124.1	error_propagation_fraction	
124.2	error_propagation_product	
124.2 124.3	example_standard_error_of_sample_quantiles	
124.4	f_var_finite	
124.5	gaussfit3	
124.6	gaussfit_quantile	
124.0 124.7	geoserr	
124.7	geostd	
124.9	hodges_lehmann_correlation	
124.10	hodges_lehmann_dispersion	
124.10	nouges_ieimaini_dispersion	. 101
125statist	cics/information-theory	188
125.1	akaike_information_criterion	. 188
125.2	bayesian_information_criterion	. 188
126statist	ics	188
126.1	jackknife_block	
126.2	kurtosis_bias_corrected	
126.3	limit	
126.4	logfactorial	
126.5	lognfit_quantile	
126.6	max_exprnd	
126.7	maxnnormals	
126.8	mean_angle	
126.9	mean_max_n	
126.10	mean_min_n	
126.10 126.11	midrange	
126.11 126.12	minavg	
126.12 126.13	mode_man	
120.10	111040_111411	. 100
	cics/moment-statistics	190
197 1	out a governman?	100

127.2	autocorr_man4
127.3	autocorr_man5
127.4	blockserr
127.5	comoment
127.6	corr_man
127.7	cov_man
127.8	dof
127.9	edgeworth_quantile
127.10	effective_sample_size
127.11	f_correlation
127.12	f_finite
127.13	lmean
127.14	lmoment
127.15	maskmean
127.16	masknanmean
127.17	mean1
127.18	mean_man
127.19	mse
127.20	nanautocorr_man1
127.21	nanautocorr_man2
127.22	nanautocorr_man4
127.23	nancorr
127.24	nancumsum
127.25	nanlmean
127.26	nanr2
127.27	nanrms
127.28	nanrmse
127.29	nanserr
127.30	nanwmean
127.31	nanwstd
127.32	nanwvar
127.33	nanxcorr
127.34	pearson
127.35	pearson_to_kendall
127.36	pool_samples
127.37	qmean
127.38	range_mean
127.39	rmse
127.40	serr
127.41	serr1
127.42	test_qskew
127.43	test_qstd_qskew_optimal_p
127.44	wautocorr
127 45	wearr 196

	127.46	wcov
	127.47	wdof
	127.48	wkurt
	127.49	wmean
	127.50	wrms
	127.51	wserr
	127.52	wskew
	127.53	wstd
	127.54	wvar
12	28statist	ics 198
	128.1	nangeomean
	128.2	nangeostd
19	Octatict	ics/nonparametric-statistics 198
14	129.1	kernel1d
	129.1 129.2	kernel2d
	120.2	Reflict2d
13	Ostatist	
	130.1	normalize_exponential_random_variable 198
	130.2	normmoment
	130.3	normpdf2
13	1statist	ics/order-statistics 199
	131.1	hodges_lehmann_location
	131.2	kendall
	131.3	kendall_to_pearson
	131.4	mad2sd
	131.5	madcorr
	131.6	median2_holder
	131.7	median_ci
	131.8	median_man
	131.9	
	101.0	mediani
	131.10	mediani
	131.10 131.11	mediani <
	131.10 131.11 131.12	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200
	131.10 131.11 131.12 131.13	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200 oja_median 201
	131.10 131.11 131.12 131.13 131.14	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200 oja_median 201 qkurtosis 201
	131.10 131.11 131.12 131.13 131.14 131.15	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200 oja_median 201 qkurtosis 201 qmoments 201
	131.10 131.11 131.12 131.13 131.14 131.15 131.16	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200 oja_median 201 qkurtosis 201 qmoments 201 qskew 201
	131.10 131.11 131.12 131.13 131.14 131.15 131.16 131.17	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200 oja_median 201 qkurtosis 201 qmoments 201 qskew 201 qskewq 201 201 201 202 201 203 201 204 201 205 201 206 201 207 201 208 201 209 201 200 201 201 201 202 201 203 201 204 201 205 201 206 201 207 201 208 201 209 201 201 201 202 201 203 201 204 201 205 201 206 201 207 201
	131.10 131.11 131.12 131.13 131.14 131.15 131.16 131.17 131.18	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200 oja_median 201 qkurtosis 201 qmoments 201 qskew 201 qskewq 201 qstdq 202
	131.10 131.11 131.12 131.13 131.14 131.15 131.16 131.17	mediani 200 nanmadcorr 200 nanwmedian 200 nanwquantile 200 oja_median 201 qkurtosis 201 qmoments 201 qskew 201 qskewq 201 201 201 202 201 203 201 204 201 205 201 206 201 207 201 208 201 209 201 200 201 201 201 202 201 203 201 204 201 205 201 206 201 207 201 208 201 209 201 201 201 202 201 203 201 204 201 205 201 206 201 207 201

131.21	quantile2_chaudhuri
131.22	quantile2_projected
131.23	quantile2_projected2
131.24	quantile_envelope
131.25	quantile_regression_simple
131.26	ranking
131.27	spatial_median
131.28	spatial_quantile
131.29	spatial_quantile2
131.30	spatial_quantile3
131.31	spatial_rank
131.32	spatial_sign
131.33	spatial_signed_rank
131.34	spearman
131.35	spearman_rank
131.36	spearman_to_pearson
131.37	wmedian
131.38	wquantile
132statist	
132.1	qstd
132.2	quantile_extrap
132.3	quantile_sin
123statict	cics/random-number-generation 205
133.1	laplacernd
133.1 133.2	randc
133.2 133.3	skewness2param
133.4	skewpdf_central_moments
133.4 133.5	skewrnd
100.0	Skewfild
134statist	cics 205
134.1	range
134.2	resample_with_replacement
	cics/resampling-statistics/@Jackknife 206
135.1	Jackknife
135.2	estimated_STATIC
135.3	matrix1_STATIC
135.4	matrix2
136statist	cics/resampling-statistics 207
136.1	block_jackknife
136.2	jackknife_moments

	136.3	moving_block_jackknife
	136.4	randblockserr
	136.5	resample
13	7statist	
	137.1	scale_quantile_sd
	137.2	sd_sample_quantiles
	137.3	spatialrnd
	137.4	trimmed_mean
	137.5	$ttest2_man \dots 208$
	137.6	ttest_man
	137.7	ttest_paired
	137.8	uniformnpdf
	137.9	wgeomean
	137.10	wgeovar
	137.11	wharmean
	137.12	wharstd
	137.13	wharvar
10	0.41	900
13	&tocha	
	138.1	brownian_drift_hitting_probability
	138.2	brownian_drift_hitting_probability2
	138.3	brownian_field
	138.4	brownian_field_scaled
	138.5	brownian_motion_1d_acf
	138.6	brownian_motion_1d_cov
	138.7	brownian_motion_1d_fft
	138.8	brownian_motion_1d_fourier
	138.9	brownian_motion_1d_interleave
	138.10	$brownian_motion_1d_laplacian $
	138.11	brownian_motion_2d_cov
	138.12	brownian_motion_2d_fft
	138.13	$brownian_motion_2d_fft_old \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	138.14	brownian_motion_2d_fourier
	138.15	brownian_motion_2d_interleave
	138.16	brownian_motion_2d_interleaving
	138.17	$brownian_motion_2d_kahunen \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	138.18	brownian_motion_2d_laplacian
	138.19	$brownian_motion_with_drift_hitting_probability~.~.~.~.~.~211$
10	0.4 . 1	
т3		stic/geometric-ar1 212
	139.1	geometric_ar1_2d_generate
	139.2	geometric_ar1_2d_generate_1
	139.3	$geometric_ar1_2d_grid_cell_averaged_cov~.~.~.~.~.~.~212$

139.4	geometric_ar1_2d_grid_cell_averaged_generate
139.5	geometric_ar1_2d_grid_cell_averaged_moment2par 212
139.6	geometric_ar1_2d_grid_cell_averaged_std
140stocha	astic 212
140.1	ornstein_uhlenbeck_cov
140.2	ornstein_uhlenbeck_mean
140.3	ornstein_uhlenbeck_spectral_density
140.4	ornstein_uhlenbeck_std
141mathe	ematics 213
	ternary_diagram
142test/fi	inance 213
142.1	test_gbb_mean
142.2	test_gbb_std
142.2 142.3	test_gbm_mean
142.4	test_gbm_mean_entire_series
142.4 142.5	test_gbm_moment2par
142.6	test_gbm_moment2par_entire_series
142.0 142.7	test_gbm_std
142.8	test_gbm_std_entire_series
112.0	
143test/f	
143.1	test_fourier_freq2ind
144test/n	
144.1	dat_test_lanczos_3d_k_20_n_40
144.2	poisson2d_blk
144.3	qr_implicit_givens_2
144.4	spectral_derivative_2d
144.5	test_2d_eigensolver_hydrogen
144.6	test_2d_refine
144.7	test_3d_eigensolver_hydrogen
144.8	test_FEM
144.9	test_Mesh_3d
144.10	test_arnoldi
144.11	test_arpackc
144.12	test_assemble
144.13	test_assembly_performance
144.14	test_bc_one_sided
144.15	test_compare_solvers
144.16	test_complete
144.17	test_convergence

144.18	test_convergence_b
144.19	test_df_2d
144.20	test_eig_algs
144.21	test_eig_inverse
144.22	test_eigs_lanczos
144.23	test_eigs_lanczos_1
144.24	test_eigs_lanczos_2
144.25	test_eigs_lanczos_performance
144.26	test_fdm
144.27	test_fdm_d_vargrid
144.28	test_fdm_spectral
144.29	test_fem
144.30	test_fem_1d
144.31	test_fem_1d_higher_order
144.32	test_fem_2d_adaptive
144.33	test_fem_2d_higher_order
144.34	test_fem_3d_higher_order
144.35	test_fem_3d_refine
144.36	test_fem_b
144.37	test_fem_derivative
144.38	test_fem_quadrature
144.39	test_final
144.40	test_fix_substitution
144.41	test_forward
144.42	test_get_sparse_arrays
144.43	test_harmonic_oscillator
144.44	test_high_order_fdm_periodic_bc
144.45	test_hydrogen_wf
144.46	test_ichol
144.47	test_interpolation
144.48	test_inverse_problem
144.49	test_it_vs_exact
144.50	test_jama
144.51	test_jd
144.52	test_jdqz
144.53	test_lanczos_2
144.54	test_lanczos_biorthogonal
144.55	test_laplacian
144.56	test_laplacian_non_uniform
144.57	test_laplacian_simple
144.58	test_mesh_2d_uniform
144.59	test_mesh_2d_uniform_2
144.60	test_mesh_circle
144.61	test_mesh_generation

144.62	test_mesh_interpolate	20
144.63	test_mg	20
144.64	test_minres_recycle	20
144.65	test_multigrid	21
144.66	test_nc	21
144.67	test_nonuniform_symmetric	21
144.68	test_pde	21
144.69	test_permutation	21
144.70	test_poison_fem	21
144.71	test_polar	21
144.72	test_potential	21
144.73	test_powers	21
144.74	$test_precondition \dots \dots$	21
144.75	test_project_rectangle	22
144.76		
144.77	test_quantum_well	22
144.78	test_radial_adaptive	22
144.79	test_radial_confinement	22
144.80	test_radial_fixes	22
144.81	$test_refine_2d \dots \dots$	22
144.82	$test_refine_2d_b \dots \dots \dots \dots \dots \dots \dots \dots \dots $	22
144.83	test_refine_3d	22
144.84	test_refine_structural	22
144.85	$test_regularisation \dots 2$	23
144.86	$test_round_off $	23
144.87	test_schrödinger_potentials	23
144.88	test_uniform_mesh	23
144.89	$test_vargrid$	23
•		23
145.1	test_extreme3	23
1/Atost/si	ignal-processing/autocorrelation 22	23
146.1	test_acf	
146.2	test_acf_bias	_
146.2 146.3	test_acfar1_2	
146.4		$\frac{20}{24}$
146.5	test_acfar1_4	
146.6	test_acfar2	
146.7	test_ar1_var_factor	
146.8	test_ar1_var_factor_2	
146.9	test_ar1_var_mu_single_sample	
146.10	test_ar1_var_pop	
146.11		
- IU.II		

146.12	test_ar1delay
146.13	test_ar2
146.14	$test_phase_drift_acf \dots \dots$
1 <i>47</i> test/s	ignal-processing/passes 225
147.1	test_bandpass2d
147.2	test_bandpass2d_ideal
147.2 147.3	test_lowpass1d_fft
147.5 147.4	test_lowpass1d_implicit
147.4 147.5	test_lowpass2d_anisotropic
147.6	test lowpass2d_fft
147.7	test_lowpass2d_rho
111.1	000010Wpass24110
•	ignal-processing/periodogram 225
148.1	$test_periodicity_test_2d $
148.2	test_periodogram_bartlett_se
148.3	test_periodogram_gauss
148.4	test_periodogram_radial
148.5	test_periodogram_test
148.6	test_periodogram_test_periodicity_2d
148.7	test_periogogram_significance
$149 \mathrm{test/s}$	ignal-processing/spectral-density 226
149.1	test_phase_drift_parallel_pdf
149.2	test_phase_drift_parallel_pdf_mode2par
149.3	test_phase_drift_pdf
149.4	test_phase_drift_pdf_2d
149.5	test_phase_drift_pdf_mode
149.6	test_phase_drift_pdf_mode2par
149.7	test_phase_drift_pdf_scale
149.8	test_spectral_density_2
149.9	test_spectral_density_bandpass_2d
149.10	test_spectral_density_bandpass_2d_max2par
149.11	test_spectral_density_bandpass_continuous
149.12	test_spectral_density_bandpass_continuous_1 227
149.13	test_spectral_density_bandpass_maximum
149.14	test_spectral_density_bandpass_scale
149.15	test_spectral_density_bp
149.16	test_spectral_density_bp_2d
149.17	test_spectral_density_bp_approx
149.18	test_spectral_density_flat
149.19	test_spectral_density_hp_cos
149.20	test_spectral_density_lorentzian_max
149 21	test spectral density lorentzian scale 928

149.22	test_spectral_density_lowpass	228
149.23	test_spectral_density_lowpass_continuous	228
149.24		
149.25	test_spectral_density_maxiumum_bias_corrected	229
150 test/si	ignal-processing	229
150.1	test_autocorrelation_max	229
150.2	$test_cdf_bandpass_continuous\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	229
150.3	$test_fit_spectral_density \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	229
150.4	$test_phase_drift_cdf $	229
1 2 14 4 /		000
, -	patial-pattern-analysis	229
151.1	test_approximate_ratio_distribution	
151.2	test_approximate_ratio_quantile	
151.3	test_separate_isotropic_density	229
152test/s ₁	patial-statistics	230
152.1		230
152.2	9	
153test/st	tatistics/distributions/anisotropic	230
153.1	1 1	
153.2	$test_anisotropic_pattern_pdf $	230
15/4-ogt /gt	tatistics/distributions/gamma	230
154.1	test_generalized_gamma_mean	
104.1	test_generanzed_gamma_mean	230
155test/st	tatistics/distributions/log-uniform	230
•	test_logurnd	230
•	tatistics/distributions/lognormal	230
156.1	test_logn_cov	230
157test/st	tatistics/distributions/mises	23 1
157.1	test_mises_std	
101.1	(COS)	_0.
158test/st	tatistics/distributions/passes	23 1
158.1	$test_bandpass2d_pdf$	231
158.2	test_bandpass2d_pdf_hankel	231
158.3	test_bandpass2d_pdf_mode	
158.4	test_lowpass2d_pdf_hankel	
158.5	test_lowpass2d_pdf_series	
•	tatistics/distributions/skew-normal	231
159.1	test_skew_generalized_normpdf	23°

160 test/s	etatistics/distributions	231
•	$test_normpdf_wrapped \dots \dots \dots \dots \dots \dots \dots$. 231
161test/s	statistics/distributions/weibull	232
•	test_wbl_std	. 232
162 test/s	etatistics/moment-statistics	232
162.1	test_wmean	. 232
163 test/s	etatistics	232
163.1	test_fisher_moment2par	. 232
163.2	test_gamma_mode	
163.3	$test_normalize_exponential_random_variable \ . \ . \ . \ . \ .$	
164test/s	tochastic	232
$164.\overset{'}{1}$	test_brownian_field	. 232
164.2	test_brownian_field_scaled	
165test/s	tochastics	232
	test_brownian_surface	
166test		233
166.1	test_S	
166.2	test_advect_analytic	
166.3	test_asymbp	
166.4	$\operatorname{test_bandwidth} \dots \dots \dots \dots \dots \dots \dots$	
166.5	test_bartlett_angle	
166.6	test_bartlett_distribution	
166.7	test_bartlett_expansion	
166.8	test_beta	
166.9	test_betainc	
166.10	test_bivariate_covariance_term	. 234
166.11		
166.12	31	
166.13	9.	
166.14	test_brownian_motion_2d_cov	. 234
166.15	test_brownian_motion_2d_fft	. 234
166.16	test_brownian_noise_1d	. 234
166.17	test_brownian_noise_2d	. 234
166.18	test_brownian_noise_interleave	. 234
166.19	test_coherence	. 234
166.20		
166.21	- v	
166.22	test_convexity	. 235
166.23	·	

166.24	test_determine_phase_shift
166.25	test_diffuse_analytic
166.26	test_diffusion_matrix
166.27	test_ellipse
166.28	test_error_propagation_fraction
166.29	test_f
166.30	test_f2
166.31	test_fit_2d_spectral_density
166.32	test_fourier
166.33	test_fourier_derivative
166.34	test_fourier_derivative_1
166.35	test_fourier_integral
166.36	test_fourier_mask_covariance_matrix
166.37	test_ft_bp
166.38	test_gam
166.39	test_gamma_distribution
166.40	test_gampdf_man
166.41	test_gaussfit3
166.42	test_gaussian_flat
166.43	test_geoserr
166.44	test_hexagonal_pattern
166.45	test_iafrate
166.46	test_implicit_ode
166.47	test_imrotmat
166.48	test_integration
166.49	test_ivp
166.50	test_jacobian
166.51	test_lanczoswin
166.52	test_laplacian_power
166.53	test_lognfit_quantile
166.54	test_ls_perpendicular_offset
166.55	test_madcorr
166.56	test_mask
166.57	test_max_normal
166.58	test_moments
166.59	test_moments_fourier_power
166.60	test_mtimes3x3
166.61	test_noisy_oscillator
166.62	test_nonperiodic_pattern
166.63	test_normalization
166.64	test_ols
166.65	test_parcorr
166.66	test_positivity_preserving
166.67	test_randar1

166.68	test_randar1_multivariate
166.69	test_randar2
166.70	test_ratio_distributions
166.71	test_sd_rectwin
166.72	test_spatialrnd
166.73	test_spectrum_additivity
166.74	test_stationarity
166.75	test_stationarity2
166.76	test_sum_ij
166.77	test_sum_multivar
166.78	test_trifilt1
166.79	test_wautocorr
166.80	test_wavelet_transform
166.81	test_whittle
166.82	test_window
166.83	test_wordfilt
166.84	test_xar1_mid_term
10 - 11	1.
167mathe	
167 mathe	trapezoidal_fixed
167.1	trapezoidal_fixed
167.1 168 wavele	trapezoidal_fixed
167.1 168wavel e 168.1	trapezoidal_fixed
167.1 168wavel 168.1 168.2	trapezoidal_fixed 24 et 24 contiuous_wavelet_transform 24 cwt_man 24
167.1 168wavel e 168.1	trapezoidal_fixed 24 et 24 contiuous_wavelet_transform 24 cwt_man 24 cwt_man2 24
167.1 168wavel 168.1 168.2 168.3	trapezoidal_fixed 24 et 24 contiuous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24
167.1 168wavele 168.1 168.2 168.3 168.4	trapezoidal_fixed 24 et 24 contiuous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24
167.1 168wavelo 168.1 168.2 168.3 168.4 168.5	trapezoidal_fixed 24 et 24 contiuous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24
167.1 168wavele 168.1 168.2 168.3 168.4 168.5 168.6	trapezoidal_fixed 24 et 24 contiuous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_phasewrap 24
167.1 168wavele 168.1 168.2 168.3 168.4 168.5 168.6 168.7	trapezoidal_fixed 24 et 24 continous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_phasewrap 24 test_wavelet 24
167.1 168wavele 168.1 168.2 168.3 168.4 168.5 168.6 168.7 168.8	trapezoidal_fixed 24 et 24 contiuous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_wavelet 24 test_wavelet2 24
167.1 168wavele 168.1 168.2 168.3 168.4 168.5 168.6 168.7 168.8 168.9	trapezoidal_fixed 24 et 24 continous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_phasewrap 24 test_wavelet 24
167.1 168wavele 168.1 168.2 168.3 168.4 168.5 168.6 168.7 168.8 168.9 168.10	et 24 continous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_phasewrap 24 test_wavelet 24 test_wavelet 24 test_wavelet_analysis 24
167.1 168wavelet 168.1 168.2 168.3 168.4 168.5 168.6 168.7 168.8 168.9 168.10 168.11	et 24 continous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_phasewrap 24 test_wavelet 24 test_wavelet 24 test_wavelet_analysis 24 test_wavelet_reconstruct 24
167.1 168wavele 168.1 168.2 168.3 168.4 168.5 168.6 168.7 168.8 168.9 168.10 168.11 168.12 168.13	et 24 continous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_wavelet 24 test_wavelet 24 test_wavelet_analysis 24 test_wavelet_reconstruct 24 test_wtc 24
167.1 168wavele 168.1 168.2 168.3 168.4 168.5 168.6 168.7 168.8 168.9 168.10 168.11 168.12 168.13 168.14	et 24 continous_wavelet_transform 24 cwt_man 24 cwt_man2 24 example_wavelets 24 phasewrap 24 test_cwt_man 24 test_phasewrap 24 test_wavelet 24 test_wavelet2 24 test_wavelet_analysis 24 test_wavelet_reconstruct 24 test_wtc 24 wavelet 24

1 calendar

$1.1 \quad days_per_month$

1.2 isnight

2 mathematics

mathematical functions of various kind

2.1 cast_byte_to_integer

cast byte to integer

3 complex-analysis

operations on complex numbers

3.1 complex_exp_product_im_im

$3.2 \quad complex_exp_product_im_re$

product of the imaginary part of one and the real part of a second complex exponential $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

the product has two frequency components

input :

c : complex amplitudes

o : frequencies

```
output :
     cp : amplitude of the product
     op : frequencies of the product
```

$3.3 \quad complex_exp_product_re_im$

$3.4 \quad complex_exp_product_re_re$

```
product of the real part of two complex exponentials
re(c1 exp(io1x))*re(c2 exp(io2x)) =
               real(c1*c2*exp(i*(n1+n2)*o*x)) ...
       1/2*(
             + real(conj(c1)*c2*exp(i*(n2-n1)*o*x)) )
the product has two frequency components
 input :
       c : complex amplitudes
       o : frequencies
output :
       cp : amplitude of the product
       op : frequencies of the product
3.5 croots
nth-roots of a complex number
input:
c : complex number
```

n : order of root
 n must be rational, to obtain n solutions
 otherwise no finite set of solutions exists

r : roots of the complex number

$3.6 \quad root_complex$

root of a complex number

3.7 test_imroots

4 derivation

derivation of several functions by means of symbolic computation

- 4.1 derive_acfar1
- 4.2 derive_ar1_spectral_density
- $4.3 \quad derive_ar2param$
- ${\bf 4.4}\quad derive_arc_length$
- 4.5 derive_fourier_power

4.6	derive_fourier_power_exp
4.7	derive_laplacian_curvilinear
4.8	derive_laplacian_fourier_piecewise_linear
4.9	${\tt derive_logtripdf}$
4.10	${\bf derive_phase_drift_inv}$
4.11	$derive_smooth1d_parametric$
4.12	$derive_spectral_density_bandpass_initial_condition$
	derivation/master derive_bc_one_sided
5.2	derive_convergence

- 5.3 derive_error_fdm
- 5.4 derive_fdm_poly
- 5.5 derive_fdm_power
- 5.6 derive_fdm_taylor
- 5.7 derive_fdm_vargrid
- 5.8 derive_fem_2d_mass
- 5.9 derive_fem_error_2d
- 5.10 derive_fem_error_3d
- 5.11 derive_fem_sym_2d
- 5.12 derive_grid_constants

5.13	${\bf derive_interpolation}$
5.14	derive_laplacian
5.15	${f derive_limit}$
5.16	$ m derive_nc_1d$
5.17	$derive_nc_1d_$
5.18	$ m derive_nc_2d$
5.19	$derive_nonuniform_symmetric$
%	
5.20	derive_richardson
5.21	$derive_sum$
5.22	nn

- 5.23 test_derive
- 5.24 test_derive_fdm_poly
- 5.25 test_filter
- 5.26 test_vargrid

6 derivation

derivation of several functions by means of symbolic computation

6.1 simplify_atan

symbolic simplification of the arcus tangent

7 mathematics

mathematical functions of various kind

- 7.1 entropy
- 8 finance
- 8.1 derive_skewrnd_walsh_paramter

8.2	$gbb_geostd_entire_series$
8.3	gbb_mean
8.4	${f gbb_simulate}$
8.5	${ m gbb_std}$
8.6	${f gbm_bridge}$
8.7	${ m gbm_cdf}$
8.8	${ m gbm_fit}$
8.9	${ m gbm_fit_old}$
8.10	${ m gbm_geomean}$

 $8.11 \quad gbm_geostd$

8.12	${ m gbm_inv}$
8.13	${f gbm_mean}$
8.14	${\tt gbm_mean_entire_series}$
8.15	${ m gbm_median}$
8.16	${ m gbm_moment2par}$
8.17	$gbm_moment2par_entire_series$
8.18	${ m gbm_pdf}$
8.19	$gbm_simulate$
8.20	${ m gbm_skewness}$

 $8.21 \quad gbm_std$

8.22	${ m gbm_std_entire_series}$
8.23	${\tt gbm_transform_time_step}$
8.24	put_price_black_scholes
8.25	${\bf skewgbm_simulate}$
8.26	$\mathbf{skewrnd}_{-}\mathbf{walsh}$
9 fi	nance/test
	${ m test_gbm}$
9.2 1	${ m test_gbm_pdf}$

9.3 test_skewrnd_walsh

10 fourier/@STFT

10.1 STFT

class for short time fourier transform

Note: the interval Ti should be set to at leat 2*max(T), as otherwise coefficients

tend to oscillate in the presence of noise

Note: for convenience, the independent variable is labeled as time (t).

but the independent variable is arbitrary, so it works likewise in space

10.2 itransform

inverse of the short time fourier transform

10.3 stft_

static wrapper for STFT

10.4 stftmat

transformation matrix for the short time fourier transform

10.5 transform

short time fourier transform

11 fourier

support and analysis functions both for the discrete (fast) fourier
 transform (dft/fft)
and continuous fourier analysis (fourier series)

11.1 amplitude_from_peak

```
amplitude and standard deviation of the amplitude of a frequency
   component
represented by a peak in the fourier domain
input :
h : peak height
w : peak width at half height

output:
a : amplitude in real space
s : standard deviation of the frequency (!)
```

11.2 caesaro_weight

11.3 dftmtx_man

```
fourier matrix in matlab style with a limited number of rows,
columns of higher frequencies are omitted

input :
n : number of samples
nr : number of columns

output :
F : fourier matrix
```

11.4 example_fourier_window

11.5 fft2_cartesian2radial

11.6 fft_man

```
fast fourier transform for complex input data
input:
F : data in real space
output :
F : fourier transformation of F
```

11.7 fft_rotate

11.8 fftsmooth

smooth the fourier transform and determine upper and lower bound
 confidence intervals

input :
f :
sfunc : a smoothing function (for example fir convolution with
 rectangular window)
 returns filtered (mean) value and normalized fir window

nf : window length

nsigma : number of standard deviations for confidnce intervals

output :
ff : filtered fourier transform
l : lower bound
u : upper bound

11.9 fix_fourier

```
fill gaps (missing data) by means of fourier extrapolation
fix periodic data series with fourier interpolation
longest gap should not exceed 1/2 of the shortest time span of
   interest (1/cutoff frequency)
note: this limit equals the position of first side lobe of the ft
   of a rectangular window with gap length
```

11.10 fourier_2d_padd

11.11 fourier_2d_quadrants

11.12 fourier_axis

return axis of frequencies and periods for the discrete fourier
 transform
as computed by fft (matlab-style)

input:

X : sample locations (equal interval)

L : length of samples
n : number of samples

output :

f : frequencies
T : periods

N : frequency id

11.13 fourier_axis_2d

frequency axis of the 2d fourier transform as computed by Matlab function [fx, fy, fr, ft, Tx, Ty, mask, N] = fourier_axis_2d(L,n)

11.14 fourier_cesaro_correction

11.15 fourier_coefficient_piecewise_linear

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

1,r : end points of piecewise linear function

lval, rval : values at end points

L : length of domain

n : number of samples/highest frequency

output

a, b : coefficients for frequency components

11.16 fourier_coefficient_piecewise_linear_1

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input

 ${\tt X}$: end points of piecewise linear function

Y : values at end points

output :

ab : coefficients for frequency components

11.17 fourier_coefficient_ramp3

fourier series coefficient of a ramp

11.18 fourier_coefficient_ramp_pulse

fourier series coefficient of a ramp pules

11.19 fourier_coefficient_ramp_step

fourier coefficient of a ramp-step

11.20 fourier_coefficient_square_pulse

fourier series coefficients of a square pulse

11.21 fourier_complete_negative_half_plane

11.22 fourier_cubic_interaction_coefficients

11.23 fourier_derivative

derivative via fourier transform exponential convergence for periodic functions results in spurious oscillations for aperiodic functions

input:

x : data, sampled in equal intervals

k : order of the derivative

dx : kth-derivative of x

- note : 1) the derivative converges with spectral accuracy, i.e. is exact up to rounding condition for L sufficiently large and ${\bf x}$ being periodic
 - - over the boundary
 - 3) discontinuous derivatives result in gibbs phenomenon

11.24 fourier_derivative_matrix_1d

11.25 fourier_derivative_matrix_2d

11.26 fourier_expand

expand values of fourier series

11.27 fourier_fit

fit a fourier series to a set of sample points that are not spaced
 in
equal intervals

11.28 fourier_freq2ind

11.29 fourier_interpolate

interpolate samples y sampled at moments (location) t to locations ti

11.30 fourier_matrix

transformation matrix for a continuous fourier series (not for the discrete dft/fft)

11.31 fourier_matrix2

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.32 fourier_matrix3

transformation matrix for the continous fourier transform this is a matrix with (2*n+1) real columns

11.33 fourier_matrix_exp

transformation matrix for a continuous fourier series (not for the discrete dft/fft)

11.34 fourier_multiplicative_interaction_coefficients

11.35 fourier_power

```
powers of a continuous fourier series in sin/cos form

powers of a^p = (ur + u1 sin(ot) + u2 sin(ot+dp))^p

phase of first component assumed 0

frequencies higher than 2-omega ignored in input
frequencies higher than 3-omega not computed
```

11.36 fourier_power_exp

11.37 fourier_predict

expand a continous fourier series at times t

11.38 fourier_quadratic_interaction_coefficients

11.39 fourier_random_phase_walk

evaluete fourier series where the phase undergoes a brownian motion

11.40 fourier_range

approximate range of a continous Fourier series with 2 components range(y) = max(y) - min(y)

11.41 fourier_regress

fit a continous fourier series to a set of sample points not
 sampled
at equal intervals

11.42 fourier_resampled_fit

fits coefficients of a continuous fourier transform, but stores them as resampled values

11.43 fourier_resampled_predict

interpolates a continuous fourier series that has been stored as
 values
at their support points

11.44 fourier_series_signed_square

```
coefficients of the Fourier series of Q|Q|
Q|Q| = Q_a^2 y 
= |\cos a + \cos t| (\cos a + \cos t) (8.6)
= a0 + a1 \cos t + ... + an \cos n t 
\cos a is midrange
\cos t is tidal variation
c.f Dronkers 1964, eq. 8.10
```

11.45 fourier_transform

```
continuous fourier transformation of y
(not discrete fourier transformation dft/fft)
input:
```

11.46 fourier_transform_fractional

11.47 fourier_truncate_negative_half_plane

11.48 hyperbolic_fourier_box

11.49 idftmtx_man

inverse matrix for the discrete fourier transform in matlab style with a limited number of columns, thus ignoring higher frequencies keep 2nc+1 columns (mean and conj-complex pairs of nc frequencies)

$11.50 \quad laplace_2d_pwlinear$

least squares with piecewise integration
[x0,p,q,r] piecewise linear polynomials at the boundaries

11.51 mean_fourier_power

11.52 moments_fourier_power

11.53 nanfft

discrete fourier transform of a data series with gaps

11.54 peaks

f : frequency (if not given as input)

11.55 roots_fourier

zeros of continuous fourier series series

$$f = a_0 + sum_j = n a_i cos(j x) + b_i sin(j x)$$

11.56 spectral_density

spectral density

$11.57 \quad std_fourier_power$

11.58 test_complex_exp_product

11.59 test_fourier_filter

11.60 test_idftmtx

11.61 var_fourier_power

12 mathematics

mathematical functions of various kind

12.1 gaussfit_quantile

13 geometry/@Geometry

13.1 Geometry

13.2 arclength

arc length of a two dimensional curve 8th order accurate does not require the segments length to vary smoothly note: the curve can be considered parametric, e.g. x = x(t), y=y(t) and and t = t(s), but the error term contains derivatives of t, thus a non smooth t (strongly varying distance between points) requires the scaling as done below

13.3 arclength_old

arc length of a two dimensional function

13.4 arclength_old2

arc length of a two dimensional function

13.5 base_point

base point (fusspunkt), i.e. point on a line with shortest distance to another point $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

13.6 base_point_limited

base point (Fusspunkt) of a point on a line

13.7 centroid

centroid of a polygone

13.8 cosa_min_max

13.9 cross2

cross product in two dimensions

13.10 curvature

curvature of a function in two dimensions

13.11 ddot

sum of squares of cos of inner angles of triangle

13.12 distance

equclidan distance between two points

13.13 distance2

euclidean distance between two points
this function requires a and be of equal dimensions, or the least
the first pair or second pair to be a scalar

13.14 dot

dot product

13.15 edge_length

edge length

13.16 enclosed_angle

angle enclosed between two lines

13.17 enclosing_triangle

smallest enclosing equilateral triangle with bottom site paralle to $\ensuremath{\mathtt{X}}$ axis

13.18 hexagon

coordinates of a hexagon, scaled and rotated

13.19 inPolygon

flag points contained in a polygon much faster than matlab internal function

13.20 in Tetra

flag points contained in tetrahedron

13.21 inTetra2

flag points contained in tetrahedron

13.22 inTriangle

flag points contained in triangle
function [flag, c] = inTriangle(P1,P2,P3,P0)

13.23 intersect

intersect between two lines

13.24 lineintersect

intersect of two lines

13.25 lineintersect1

intersect of two lines

13.26 minimum_distance_lines

minimum distance of two lines in three dimensions

13.27 mittenpunkt

mittenpunkt of a triangle

13.28 nagelpoint

nagelpoint of a triangle

13.29 onLine

13.30 orthocentre

orthocentre of triangle

13.31 plumb_line

13.32 poly_area

area of a polygon
function A = poly_area(x,y)

13.33 poly_edges

edges of a polygon

13.34 poly_set

associate point at arbitary location with a polygon it is contained in and assign the value of the polygon to it

13.35 poly_width

width of polygon width holes by surface normals holes / islands separated with NaN order of points of outer boundary must be cw order of points of holes must be ccw note that this function does not give the true width for expanding sections use voronoi polygons for this

13.36 polyxpoly

intersections of two polygons

13.37 project_to_curve

closest point on a curve with respect to a point at distance to the $\ensuremath{\text{curve}}$

13.38 quad_isconvex

13.39 random_disk

draw random points on the unit disk

13.40 random_simplex

random point inside of a triangle

13.41 sphere_volume

volume of a sphere
function v = sphere_volume(r)

13.42 tetra_volume

volume of a tetrahedron

13.43 tobarycentric

cartesian to barycentric coordinates

13.44 tobarycentric1

cartesian to barycentric coordinates

13.45 tobarycentric2

cartesian to barycentric coordinates

13.46 tobarycentric3

cartesian to barycentric coordinates

13.47 tri_angle

cos of angles of a triangle

13.48 tri_area

angle of a triangle

13.49 tri_centroid

centroid of a triangle

13.50 tri_distance_opposit_midpoint

distance between corner of a triangle and its opposing mid-point

13.51 tri_edge_length

edge length of a triangle

13.52 tri_edge_midpoint

mid point of a triangle

13.53 tri_excircle

excircle of a triangle

13.54 tri_height

height of a triangle

13.55 tri_incircle

incircle of a triangle

13.56 tri_isacute

flag acute triangles

13.57 tri_isobtuse

flag obntuse triangles

13.58 tri_semiperimeter

semiperimeter of a triangle

13.59 tri_side_length

edge lenght of triangle

14 geometry

14.1 Polygon

Simple 2D polygon class

Polygon properties:

x - x coordinates of polygon y - y coordinates of polygon nnodes - number of nodes in the polygon

Polygon methods:

in - checks whether given points lie inside, on the edge, or
 outside of the polygon
area - returns the area of the polygon
centerline - computes the centerline of the river
iscw - check whether polygon is clockwise
reverse - reverse the order of the polygon

14.2 bounding_box

bounding box of X

14.3 curvature_1d

curvature of a sampled parametric curve in two dimensions

14.4 cvt

centroidal voronoi tesselation

14.5 deg_to_frac

degree, minutes and seconds to fractions

14.6 ellipse

```
return points on an ellipse
n : number of points
ci : confidence interval, i.e. for 1 sigma
```

14.7 ellipseX

x-coordinates of y-coordinates of an ellipse

14.8 ellipseY

14.9 first_intersect

get first intersection between lines in $\ensuremath{\mathtt{A}}$ and $\ensuremath{\mathtt{B}}$

14.10 golden_ratio

golden ratio

14.11 hypot3

 ${\tt hypothenuse} \ {\tt in} \ {\tt 3D}$

14.12 meanangle

weighted mean of angles

14.13 meanangle2

mean angle

14.14 meanangle3

mean angle

14.15 meanangle4

mean angle

14.16 medianangle

```
median angle angle, that has the smallest squared distance to all others
```

14.17 medianangle2

```
median angle
input
alpha : x*m, [rad] angle
ouput
ma : 1*m, [rad] median angle
sa : 1*m, [rad] standard error of median angle for uncorrelated
error
```

14.18 pilim

```
limit to +- pi
```

14.19 streamline_radius_of_curvature

```
streamline radius of curvature simplifies when rotatate to streamwise coordinates to R = 1/dv/ds * u
```

15 histogram/@Histogram

15.1 2x

15.2 Histogram

15.4	cdf
15.5	cdfS
15.6	chi2test
15.7	cmoment
15.8	cmomentS
15.9	entropy
15.10	entropyS
15.11	${ m export_csv}$

15.12 iquantile

15.3 bimodes

- 15.13 kstest
- 15.14 kurtosis
- 15.15 kurtosisS
- 15.16 mean
- 15.17 meanS
- 15.18 median
- 15.19 medianS
- 15.20 mode
- $15.21 \mod S$
- 15.22 moment

15.23 momentS

15.24 pdf

15.25 quantile

15.26 quantileS

15.27 resample

15.28 setup

15.29 skewness

15.30 skewnessS

15.31 stairs

15.32 stairsS

- 15.33 std
- $15.34 ext{ stdS}$
- 15.35 var
- $15.36 \quad varS$
- 16 histogram
- 16.1 hist_man
- 16.2 histadapt
- 16.3 histconst
- 16.4 pdf_poly
- 16.5 plotcdf

16.6 test_histogram

17 mathematics

mathematical functions of various kind

17.1 imrotmat

- 18 linear-algebra
- $18.1 \quad averaging_matrix_2$

18.2 colnorm

norms of columns

18.3 condest_

estimation of the condition number

18.4 connectivity_matrix

19 linear-algebra/coordinate-transformation

19.1 barycentric2cartesian

barycentric to cartesian coordinates

19.2 barycentric2cartesian3

convert barycentric to cartesian coordinates

19.3 cartesian2barycentric

cartesian to barycentric coordinates

19.4 cartesian_to_unit_triangle_basis

transform coodinates into unit triangle

19.5 ellipsoid2geoid

19.6 example_approximate_utm_conversion

19.7 latlon2utm

transform latitude and longitude to WGS84 UTM

19.8 latlon2utm_simple

19.9 lowrance_mercator_to_wgs84

convert lowrance coordinates to wgs84 based on spreadsheet by D Whitney King and Patty B at Lowrance

19.10 nmea2utm

convert nmea messages to utm coordinates

$19.11 \quad sn2xy$

convert sn to xy coordinates

19.12 unit_triangle_to_cartesian

transform coordinates in unit triangle to cartesian coordinates

19.13 utm2latlon

convert wgs84 utm to latitute and longitude

19.14 xy2nt

project all points onto the cross section and assign them nz-coordinates

transform coordinate into N-T reference rotate coordinate, so that cross section goes along x-axis then x and y are n and t respectively scaled by width N and T coordinates

$19.15 \quad xy2sn$

convert cartesian to streamwise coordiantes

19.16 xy2sn_java

use java port for speed up

$19.17 \text{ xy}2\text{sn_old}$

transform points from cartesian into streamwise coordinates ${\tt NOTE} \,:\, {\tt prefer} \,\, {\tt the} \,\, {\tt java} \,\, {\tt version}, \,\, {\tt this} \,\, {\tt has} \,\, {\tt some} \,\, {\tt problems} \,\, {\tt with} \,\, {\tt round} \,\,$

20 linear-algebra

$20.1 \det 2x2$

2x2 matrix inverse of 2x2 matrices stacked along dim 3

20.2 det3x3

determinant of stacked 3x3 matrices

$20.3 \det 4x4$

determinant of stacked 4x4 matrices

20.4 diag2x2

diagonal of stacked 2x2 matrices

20.5 down

$20.6 \quad eig2x2$

eigenvalues of stacked 2x2 matrices

21	linear-algebra/eigenvalue
21.1	${ m eig}_{ ext{-}}{ m bisection}$
21.2	eig_inverse
21.3	$eig_inverse_iteration$
21.4	${ m eig_power_iteration}$
22	linear-algebra/eigenvalue/jacobi-davidson
	afun_jdm
22.2	davidson
22.3	${\bf jacobi_davidson}$
22.4	$jacobi_davidson_qr$
22.5	jacobi_davidson_qz

22.6 jacobi_davidson_simple

22.7 jdgr

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
  V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V, *W
%
% Compute approximate eigenpair and residual
%
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
\mbox{\ensuremath{\mbox{\%}}} Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
% Compute approximate eigenpair and residual
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
%
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
  V W AV.
%
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
   M=W,*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
```

```
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[]; R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   _____
%===== END ARNOLDI
   _____
% not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   % compute vectors and matrices for skew projection
% solve preconditioned system
% 0 step of bicgstab eq. 1 step of bicgstab
\% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
```

```
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form ------
%----- compute qz form ------
%----- sort eigenvalues ------
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

22.8 jdqr_sleijpen

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
% V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V*W
% Compute approximate eigenpair and residual
%
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
%
  V W AV.
%
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
```

```
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
%
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%
   M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[]; R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   _____
%====== END ARNOLDI
   _____
% not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   _____
% compute vectors and matrices for skew projection
% solve preconditioned system
% O step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
```

```
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
\mbox{\ensuremath{\mbox{\%}}} sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1];
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues -----
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

22.9 jdqr_vorst

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
  V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V*W
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
%
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
```

```
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   V W AV.
%
   Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
%
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%
   M=W'*V
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
```

```
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   %====== END ARNOLDI
   % not accurate enough M=Rw'\(M/Rv);
%======= COMPUTE SORTED JORDAN FORM
   _____
% accepted separation between eigenvalues:
% no preconditioning
% solve left preconditioned system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% no preconditioning
\% solve two-sided expl. precond. system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% "unprecondition" solution
%%%% u(:,j+1)=Atilde*u(:,j)
%%%% r(:,j+1)=Atilde*r(:,j)
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues -----
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues -----
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
```

22.10 jdqz

```
% Read/set parameters
% Return if eigenvalueproblem is trivial
% Initialize target, test space and interaction matrices
% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??
% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda
% Solve the preconditioned correction equation
```

```
% Expand the subspaces and the interaction matrices
% Check for stagnation
% Solve projected eigenproblem
% Compute approximate eigenpair and residual
%=== an alternative, but less stable way of computing z =====
% display history
% save history
% check convergence
% EXPAND Schur form
\% Expand preconditioned Schur matrix MinvZ=M\Zschur
% check for conjugate pair
\% To detect whether another eigenpair is accurate enough
% restart if dim(V)> jmax
% Initialize target, test space and interaction matrices
% additional stabilisation. May not be needed
% V=RepGS(Zschur,V); [AV,BV]=MV(V);
% end add. stab.
% Solve the preconditioned correction equation
\% expand the subspaces and the interaction matrices
% Check for stagnation
% compute approximate eigenpair
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
% display history
% save history
% check convergence
% expand Schur form
% ZastQ=Z'*Q0
% the final Oschur
% check for conjugate pair
% t perp Zschur, t in span(Q0,imag(q))
% To detect whether another eigenpair is accurate enough
% restart if dim(V)> jmax
%===== END JDQZ
   %====== PREPROCESSING
   _____
%_____
%====== ARNOLDI (for initial spaces)
   _____
%% then precond=I and target = 0: apply Arnoldi with A
%===== END ARNOLDI
   _____
%====== POSTPROCESSING
   _____
```

```
%====== SORT QZ DECOMPOSITION INTERACTION MATRICES
  _____
%====== COMPUTE SORTED JORDAN FORM
  %===== END JORDAN FORM
  %===== OUTPUT
  _____
%====== UPDATE PRECONDITIONED SCHUR VECTORS
  %====== SOLVE CORRECTION EQUATION
  % solve preconditioned system
%-----
%====== LINEAR SOLVERS
  % [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt;
% xtol=norm(r-At+Z*(Z'*At))/norm(r);
%===== Iterative methods
  _____
\% 0 step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Z implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Z explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
```

```
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow
\% 0 step of gmres eq. 1 step of gmres
\% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow
%===== END SOLVE CORRECTION EQUATION
  %====== BASIC OPERATIONS
  y(1:5,1), pause
%====== COMPUTE r AND z
  % E*u=Q*sigma, sigma(1,1)>sigma(2,2)
%======== END computation r and z
  _____
%====== Orthogonalisation
  _____
%===== END Orthogonalisation
  \%====== Sorts Schur form
kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1);
  kappa=2^(round(log2(kappa)));
\%----- compute the qz factorization ------
\%----- scale the eigenvalues ------
\%----- sort the eigenvalues -----
\%----- swap the qz form ------
% repeat SwapQZ if angle is too small
```

```
\% i>j, move ith eigenvalue to position j
% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0
C*P=Q*R
check whether last but one diag. elt r nonzero
C*q
% end computation q
%====== INITIALIZATION
  _____
% defaults
           %%%% search for 'xx' in fieldnames
%% 'ma'
%% 'sch'
%% 'to'
%% 'di'
% jmin=nselect+p0 %%%% 'jmi'
% jmax=jmin+p1 %%%% 'jma'
%% 'te'
%% 'pai'
%% 'av'
%% 'tr'
%% 'fix'
%% 'ns'
%% 'ch'
%% 'lso'
%% 'ls_m'
%% 'ls_t'
%% 'ls_e'
%% 'ty'
%% '1_'
%% 'u_'
%% 'p_'
%% 'sca'
%% 'v0'
initiation
'standard'
'harmonic'
'searchspace'
```

/6
<pre>% or Operator_Form=3 or Operator_Form=5??? %=================================</pre>
%====== DISPLAY FUNCTIONS
%
%
%
%
22.11 mfunc_jdm
22.12 mgs
$22.13 \mathrm{minres}_{-}$
22.14 mv_jacobi_davidson
23 linear-algebra
23.1 first
23.2 gershgorin_circle

range of eigenvalues determined by the gershgorin circle theorem

23.3 haussdorff

haussdorf dimension

box counting: count cectangles passed through by line (covered by polygon)

Koch snow flake 3:4 -> 1.2619 Kantor set 2:3, (4:9) -> 0.6309 quadrat 4:2, 9:3, 16:4 -> 2

23.4 ieig2x2

reconstruct matrix from eigenvalue decomposition

23.5 inv2x2

2x2 inverse of stacked matrices

23.6 inv3x3

23.7 inv4x4

inverse of stacked 4x4 matrices

23.8 kernel2matrix

24 linear-algebra/lanczos

24.1 arnoldi

24.2	${ m arnoldi_new}$
24.3	eigs_lanczos_man
24.4	lanczos
24.5	$lanczos_{-}$
24.6	$lanczos_biorthogonal$
24.7	$lanczos_biorthogonal_improved$
24.8	$lanczos_ghep$
24.9	mv_lanczos
24.10	reorthogonalise

24.11 test_lanczos

25	linear-al	lgebra
	11110011 01	S

- 25.1 laplacian_eigenvalue
- ${\bf 25.2} \quad laplacian_eigenvector$
- 25.3 laplacian_power
- ${\bf 25.4} \quad least_squares_perpendicular_offset$
- 25.5 left

left element of vector, leftmost column is extrapolated

- ${\bf 26}\quad {\bf linear-algebra/linear-systems}$
- 26.1 gmres_man

break on convergence

26.2 minres_recycle

27 linear-algebra

27.1 lpmean

mean of pth-power of a

27.2 lpnorm

norm of 1th-power of a

27.3 matvec3

matrix-vector product of stacked matrices and vectors

27.4 max2d

 $\hbox{\tt maximum value and i-j index for matrix}$

27.5 mid

mid point between neighbouring vector elements

27.6 mpoweri

approximation of A^p, where p is not integer by quadtratic interpolation

$27.7 \quad \text{mtimes} 2x2$

27.8 mtimes3x3

product of stacked 3x3 matrices

27.9 nannorm

norm of a vector, skips nan-values

27.10 nanshift

shift vector, but set out of range values to NaN

27.11 nl

number rows (lines) of a matrix analogue to unix nl command

27.12 normalise

normalise a vector or the columns of a matrix
note that the columns are independently normalised, and hence not
 necessarily
orthogonal to each other use the gram schmidt algorithm for this (
 qr or orth)

27.13 normalize1

normalize columns in x to [-1,1]

27.14 normrows

27.15 orth2

make matrix A orhogonal to B

27.16 orth_man

orthogonalize the columns of A

27.17 orthogonalise

```
make x orthogonal to Y
```

27.18 padd2

padd values around a 2d (image) matrix, constant exprapolation

27.19 paddext

```
padd values to vactor
not suitable for noisy data
order = 0 : constant extrapolation (hold)
order = 1 : linear extrapolation
```

27.20 paddval1

```
padd values at end of x
```

27.21 paddval2

```
padd values to x
```

28 linear-algebra/polynomial

28.1 chebychev

```
c.f. Dronkers 1964, eq. 8.15, p. 300
chebycheff polynomials
function c = chebychev(x,n)
```

28.2 piecewise_polynomial

evaluate piecewise polynomial

$28.3 \quad roots1$

roots of linear functions

$28.4 \quad roots2$

roots of quadratic function $c1 x^2 + c2 x + c3 = 0$

28.5 roots2poly

28.6 roots3

 $28.7 \quad roots4$

 $28.8 \quad roots_piecewise_linear$

 $28.9 test_roots4$

28.10 vanderi_1d

vandermonde matrix of an integral

29 linear-algebra

29.1 randrot

random rotation matrix

29.2 right

get right column by shifting columns to left extrapolate rightmost column $\,$

29.3 rot2

rotation matrix from angle

29.4 rot2dir

rotation matrix from direction vector

29.5 rot3

$29.6 \quad rotR$

29.7 rownorm

29.8 simmilarity_matrix

29.9 spnorm

frobenius norm

29.10 spzeros

allocate a sparze matrix of zeros

$29.11 \quad test_roots3$

29.12 transform_minmax

29.13 transpose3

transpose stacked 3x3 matrices

29.14 transposeall

29.15 up

29.16 vander_nd

29.17 vanderd_2d

30 logic

bitwise operations on integers

30.1 bitor_man

bitwise OR of the numbers of the columns of A
input:
 A (positive integer)

- 31 master/plot
- 31.1 attach_boundary_value
- 31.2 cartesian_polar
- 31.3 img_vargrid
- 31.4 plot_basis_functions
- 31.5 plot_convergence
- $31.6 \quad plot_dof$

31.7	$\operatorname{plot}_{-\operatorname{eigenbar}}$
31.8	${\bf plot_error_estimation}$
31.9	$plot_error_estimation_2$
31.10	${ m plot_error_fem}$
31.11	plot_fdm_kernel
31.12	$plot_fdm_vs_fem$
31.13	plot_fem_accuracy
31.14	$plot_function_and_grid$
31.15	plot_hat

31.16 plot_hydrogen_wf

- $31.17 \quad plot_mesh$
- $31.18 \quad plot_mesh_2$
- 31.19 plot_refine
- 31.20 plot_refine_3d
- 31.21 plot_runtime
- 31.22 plot_spectrum
- 31.23 plot_wavefunction
- 32 master/ported
- 32.1 assemble_2d_phi_phi
- $32.2 \quad assemble_3d_dphi_dphi$

- $32.3 \quad assemble_3d_phi_phi$
- $32.4 \quad dV_{-}2d_{-}$
- 32.5 derivative_2d
- 32.6 derivative_3d
- 32.7 element_neighbour_2d
- 32.8 prefetch_2d_
- $32.9 \quad promote_2d_3_10$
- $32.10 \quad promote_2d_3_15$
- $32.11 \quad promote_2d_3_21$
- $32.12 \quad promote_2d_3_6$

- $32.13 \quad promote_3d_4_10$
- $32.14 \quad promote_3d_4_20$
- 32.15 promote_ $3d_4_35$
- 32.16 vander_2d
- 32.17 vander_3d

33 mathematics

mathematical functions of various kind

- 33.1 monotoneous_indices
- 33.2 nearest_fractional_timestep
- 34 number-theory
- 34.1 ceiln

floor to leading n-digits

34.2 digitsb

number of digits with respect to specified base

34.3 floorn

floor to n-digits

34.4 iseven

true for even numbers in X

34.5 multichoosek

```
all combinations of lenght k from set values with repetitions
c.f. nchoosek, combinations without repetition
input :
    x : scalar integer or vector of arbitrary numbers
```

k : length of subsets

output :

if x scalar : number of combinations if x vector : the exact combinations

34.6 nchoosek_man

```
vecotrised binomial coefficient b = N!/K!(N-K)!
```

34.7 pythagorean_triple

pythagorean triple

34.8 roundn

round to n digits

35 numerical-methods

35.1 advect_analytic

36 numerical-methods/differentiation

36.1 derivative1

first derivative on variable mesh second order accurate

36.2 derivative2

second derivative on a variable mesh

37 numerical-methods

37.1 diffuse_analytic

38 numerical-methods/finite-difference

38.1 cdiff

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
```

38.2 cdiffb

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
TODO use difference matrix function for simplicity
```

38.3 central_difference

38.4 cmean

single gaussian smoothing step with kernel 1/4*[1,2,1]

38.5 cmean2

38.6 derivative_matrix_1_1d

```
finite difference matrix of first derivative in one dimensions n: number of grid points h = L/(n+1) constant step with function [D1, d1] = derivative_matrix_1d(n,L,order)
```

38.7 derivative_matrix_2_1d

finite derivative matrix of second derivative in one dimension

38.8 derivative_matrix_2d

finite difference derivative matrix in two dimensions

38.9 derivative_matrix_curvilinear

derivative matrix on a curvilinear grid

38.10 derivative_matrix_curvilinear_2

derivative matrix on a two dimensional curvilinear grid the grid has not necessarily to be orthogonal

38.11 difference_kernel

difference kernels for equispaced grids
c.f. Computing the Spectrum of the Confined Hydrogen Atom, Kastner,
2012

38.12 diffusion_matrix_2d_anisotropic

38.13 diffusion_matrix_2d_anisotropic2

38.14 directional_neighbour

38.15 distmat

distance matrix for a 2 dimensional rectangular matrix

38.16 downwind_difference

38.17 gradpde2d

```
objective function gradiend on two dimensional regular grid numeric gradient for non-linear least squares optimisation of a PDE on a rectangular grid x_* = \min(f(x)) f = (v(x) - v(x_*))^2 = f(x) + A dx + O(dx^2) a_ij = df_i/dx_j
```

38.18 laplacian

laplacian_fdm 38.19finite difference matrix of the laplacian 38.20 lrmean mean of the left and right element numerical-methods/finite-difference/master**39** 39.1 $fdm_adaptive_grid$ 39.2 $fdm_adaptive_refinement_old$ 39.3 fdm_assemble_d1_2d 39.4 fdm_assemble_d2_2d 39.5 $fdm_confinement$ $39.6 fdm_d_vargrid$

 $fdm_h_unstructured$

39.7

- $39.8 \quad fdm_hydrogen_vargrid$
- $39.9 fdm_mark_unstructured_2d$
- $39.10 \quad fdm_plot$
- $39.11 fdm_plot_series$
- 39.12 fdm_refine_2d
- 39.13 fdm_refine_3d
- 39.14 fdm_refine_unstructured_2d
- 39.15 fdm_schroedinger_2d
- 39.16 fdm_schroedinger_3d
- 39.17 relocate

40 numerical-methods/finite-difference

40.1 mid

mid point between neighbouring vector elements

40.2 pwmid

segment end point to segment mid point transformation for regular 1 $\,$ d grids $\,$

40.3 ratio

ratio of two subsequent values

40.4 steplength

step length of a vector if it were equispaced

40.5 swapoddeven

swap odd and even elements in a vector

40.6 test_derivative_matrix_2d

40.7 test_derivative_matrix_curvilinear

40.8 test_difference_kernel

40.9 upwind_difference

- 41 numerical-methods/finite-element
- 41.1 Mesh_2d_java
- 41.2 Tree_2d_java
- $41.3 \quad assemble_1d_dphi_dphi$
- 41.4 assemble_1d_phi_phi
- $41.5 \quad assemble_2d_dphi_dphi_java$
- 41.6 assemble_2d_phi_phi_java
- 41.7 assemble_3d_dphi_dphi_java
- 41.8 assemble_3d_phi_phi_java

- $41.9 \quad boundary_1d$
- $41.10 \quad boundary_2d$
- $41.11 \quad boundary_3d$
- 41.12 check_area_2d
- 41.13 circmesh
- 41.14 cropradius
- $41.15 \quad display_2d$
- 41.16 display_3d
- 41.17 distort
- 41.18 err₂d

- 41.19 estimate_err_2d_3
- $41.20 \quad example_1d$
- 41.21 example_2d
- 41.22 explode
- 41.23 fem_2d
- 41.24 fem_2d_heuristic_mesh
- $41.25 \quad fem_get_2d_radial$
- 41.26 fem_interpolation
- $41.27 \quad fem_plot_1d$
- 41.28 fem_plot_1d_series

41.29	${ m fem_plot_2d}$
41.30	$fem_plot_2d_series$
41.31	${ m fem_plot_3d}$
41.32	$fem_plot_3d_series$
41.33	$fem_plot_confine_series$
41.34	fem_radial
	ve grid nt grid
41.35	$\mathrm{flip}_{-}\mathrm{2d}$
41.36	${\it get_mesh_arrays}$

41.37 hashkey

- 42 numerical-methods/finite-element/int
- $42.1 \quad int_1d_equal$
- $42.2 \quad int_1d_equal_exp$
- $42.3 \quad int_1d_gauss$
- $42.4 \quad int_1d_gauss_1$

- $42.5 \quad int_1d_gauss_2$
- $42.6 \quad int_1d_gauss_3$
- $42.7 \quad int_1d_gauss_4$
- $42.8 \quad int_1d_gauss_5$

- $42.9 \quad int_1d_gauss_6$
- $42.10 \quad int_1d_gauss_lobatto$
- $42.11 \quad int_1d_gauss_n$
- $42.12 \quad int_1d_nc_2$
- $42.13 \quad int_1d_nc_3$
- $42.14 \quad int_1d_nc_4$
- $42.15 \quad int_1d_nc_5$
- 42.16 int_1d_nc_6
- $42.17 \quad int_1d_nc_7$
- $42.18 \quad int_1d_nc_7_hardy$

- $42.19 \quad int_2d_gauss_1$
- $42.20 \quad int_2d_gauss_12$
- $42.21 \quad int_2d_gauss_13$
- $42.22 \quad int_2d_gauss_16$
- 42.23 int_2d_gauss_19
- $42.24 \quad int_2d_gauss_25$
- $42.25 \quad int_2d_gauss_3$
- $42.26 \quad int_2d_gauss_33$
- $42.27 \quad int_2d_gauss_4$
- $42.28 \quad int_2d_gauss_6$

- $42.29 \quad int_2d_gauss_7$
- $42.30 \quad int_2d_gauss_9$
- $42.31 \quad int_2d_nc_10$
- $42.32 \quad int_2d_nc_15$
- 42.33 int_2d_nc_21
- $42.34 \quad int_2d_nc_3$
- $42.35 \quad int_2d_nc_6$
- 42.36 int_3d_gauss_1
- 42.37 int_3d_gauss_11
- 42.38 int_3d_gauss_14

- $42.39 \quad int_3d_gauss_15$
- $42.40 \quad int_3d_gauss_24$
- $42.41 \quad int_3d_gauss_4$
- $42.42 \quad int_3d_gauss_45$
- $42.43 \quad int_3d_gauss_5$
- 42.44 int_3d_nc_11
- 42.45 int_3d_nc_4
- $42.46 \quad int_3d_nc_6$
- $42.47 \quad int_3d_nc_8$

43	numerical-methods/finite-element
43.1	$interpolation_matrix$
43.2	mark
43.3	$ m mark_{-}1d$
43.4	${ m mesh_1d_uniform}$
43.5	$mesh_3d_uniform$
43.6	$\operatorname{mesh_interpolate}$
43.7	$ m neighbour_1d$
43.8	old

43.9 pdeeig_1d

 $43.10 \quad pdeeig_2d$ 43.11 pdeeig_3d 43.12 polynomial_derivative_1d 43.13 potential_const 43.14 potential_coulomb $43.15 \quad potential_harmonic_oscillator$ 43.16 project_circle 43.17 project_rectangle

 $43.19 \quad promote_1d_2_4$

 $43.18 \quad promote_1d_2_3$

- $43.20 \quad promote_1d_2_5$
- $43.21 \quad promote_1d_2_6$
- 43.22 quadrilaterate
- $43.23 \quad recalculate_regularity_2d$
- 43.24 refine_1d
- 43.25 refine_2d_21
- 43.26 refine_2d_structural
- 43.27 regularity_1d
- $43.28 \quad regularity_2d$

```
43.29 \quad regularity\_3d
       T = [1 \ 2 \ 3 \ 4];
43.30 \quad relocate\_2d
43.31 test_circmesh
43.32 test_hermite
43.33 tri_assign_points
43.34 triangulation_uniform
43.35 vander_1d
van der Monde matrix
```

43.37 vanderi_1d

43.36 vanderd₋1d

44 numerical-methods/finite-volume/@Advection

44.1 Advection

FVM treatment of the Advection equation

44.2 dot_advection

advection equation

$45 \quad numerical-methods/finite-volume/@Burgers$

45.1 burgers_split

```
viscous Burgers' equation, mixed analytic and numerical derivative in frequency space by splitting sheme u_t = -(0.5*u^2)_x + c*u_xx
```

45.2 dot_burgers_fdm

```
viscous burgers' equation

u_t = -d/dx (1/2*u^2) + c d^2/dx^2 u_xx
```

45.3 dot_burgers_fft

```
viscous Burgers' equation in frequency space u_t + (0.5*u^2)_x = c*u_xx
```

46 numerical-methods/finite-volume/@Finite_Volume

46.1 Finite_Volume

```
finite volume method for partial differential equations 1+1
    dimensions
(time and space)
```

46.2 apply_bc

apply boundary conditions

46.3 solve

46.4 step_split_strang

step in time, treat inhomogeneous part by Strang splitting this scheme is not suitable for stationary solutions, for example steady shallow water flow

46.5 step_unsplit

step in time, without splitting the inhomogeneous term

47 numerical-methods/finite-volume/@Flux_Limiter

47.1 Flux_Limiter

class of flux limiters

47.2 beam_warming

beam warming sheme
low resolution
note: works only if sign of eigenvalues point into the same
direction according to RL

47.3 fromm

fromme limiter
low res

47.4 lax_wendroff

lax wendroff scheme second order accurate, but no tvd this is effectively not a limiter eq. 6.39 in randall, leveque

47.5 minmod

min-mod schock limiter

47.6 monotized_central

monotonized central flux limiter

47.7 muscl

muscl flux limiter

47.8 superbee

superbee limiter

47.9 upwind

godunov scheme
godunov, first order accurate

47.10 vanLeer

van Leer limiter

48 numerical-methods/finite-volume/@KDV

$48.1 \quad dot_kdv_fdm$

```
korteweg de vries equation u_t + (0.5*u^2)_x = c*u_xxx
```

48.2 dot_kdv_fft

```
korteweg de vries equation compute derivatives in frequency space u_t + (0.5*u^2)_x = c*u_xxx
```

48.3 kdv_split

korteweg de vries equation in frequency space, derivative treated by splitting scheme

$49 \quad numerical-methods/finite-volume/@Reconstruct_Average_E$

49.1 Reconstruct_Average_Evolve

49.2 advect_highres

single time step for the reconstruct evolve algorithm

49.3 advect_lowress

single time step
low resolution

50 numerical-methods/finite-volume

50.1 Godunov

Godunov, upwind method for systems of pdes

50.2 Lax_Friedrich

Lax-Friedrich-Method
for hyperbolic conservation laws
err = O(dt) + O(dx)
|a dt/dx| < 1</pre>

50.3 Measure

50.4 Roe

non linear roe solver for the SWE (randall, leveque 15.3.1)

The roe solver guarantess:

- \mbox{A} is diagonalisable with real eigenvalues (15.12)
- can be determined by a closed formula
- is an efficient replacement for true Rieman solver

50.5 fv_swe

wrapper for solving SWE

50.6 staggered_euler

forward euler method with staggered grid

50.7 staggered_grid

staggered grid approximation to the SWE

51 numerical-methods

51.1 grid2quad

extract rectangular elements of a structured grid in form of an unstructured quad-mesh format $\,$

52 numerical-methods/integration

52.1 cumintL

cumulative integral from left to right

52.2 cumintR

cumulative integral from right to left

52.3 cumint_trapezoidal

integrate y along x with the trapezoidal rule

52.4 int_1d_gauss_laguerre

52.5 int_trapezoidal

integrate y along x with the trapezoidal rule

53 numerical-methods/interpolation/@Kriging

53.1 Kriging

class for Kriging interpolation

53.2 estimate_semivariance

estimate the parameter of the semivariance model for Kriging interpolation

 $\mbox{\%}$ set up the regression matrix and solve for parameters

53.3 interpolate_

interpolate with Krieging method

this function may interpolate several quantities per coordinate, using the same variogram, if the semivariance of the quantities differs.

the user may prefer to estimate the semivariance and interpolate each quantity

individually

Xs : source point coordinates
Vs : value at source points
Xt : targe point coordinates
Vt : value at target points

E2t : squared interpolation error at target points

54 numerical-methods/interpolation/@RegularizedInterpolator

54.1 RegularizedInterpolator1

class for regularized interpolation (Thikonov) on a 1D mesh

54.2 init

initialize the interpolator with a set of sampling points

55 numerical-methods/interpolation/@RegularizedInterpolator

55.1 RegularizedInterpolator2

class for regularized interpolation on an unstructures mesh (
 interpolation)

55.2 init

initialize the interpolator with a set of point samples

$56 \quad numerical-methods/interpolation/@RegularizedInterpolator$

56.1 RegularizedInterpolator3

class for regularized interpolation (Tikhonov) on a triangulation (unstructured mesh)

56.2 init

initialize the interpolator with a set of sampling points

57 numerical-methods/interpolation

57.1 IDW

spatial averaging by inverse distance weighting

57.2 IPoly

polynomial interpolation class

57.3 IRBM

57.4 ISparse

sparse interpolation class

57.5 Inn

nearest neighbour interpolation

57.6 Interpolator

interpolator super-class

fprintf(1,'Progress: %f%% %fs\n',100*
 idx/size(Xt,1),t);

57.7 fixnan

fill nan-values in vector with gaps

57.8 idw1

spatial average ny inverse distance weighting

57.9 idw2

spatial average by inverse distance weighting

57.10 inner2outer

linear interpolation of segment mit point to grid points at segment ends assumes equal grid spacing

57.11 inner2outer2

interpolate from element (segment) centres to edge points

57.12 interp1_circular

57.13 interp1_limited

interpolate values, but not beyond a certain distance
this function is idempotent, i.e. it will not extrapolate over into
 gaps
exceedint the limit and thus not spuriously extend the series when

called a second time on the same data

57.14 interp1_man

interpolate

57.15 interp1_piecewise_linear

57.16 interp1_save

make interpolation save to round off errors
the matlab internal interpolation suffers from rounding errors,
 which
are unacceptable when values of X and Y are large (for example UTm
 coordinates)
this normalization prevents this

57.17 interp1_slope

quadratic interpolation returning value and derivative(s)

57.18 interp1_smooth

57.19 interp1_unique

matlab fails to interpolate, when ${\bf x}$ values are not unique this function makes the values unique before use

57.20 interp2_man

nearest neighbour interpolation in two dimensions

57.21 interp_angle

interpolate an angle

57.22 interp_fourier

interpolation by the fourier method

57.23 interp_fourier_batch

batch interpolation by the fourier interpolation

57.24 interp_sn

```
interpolate along streamwise coordinates
This gives similar result to setting aspect ratio for sN to
   infinity,
but not quite,as the input point set is not dense (scale for sN to
   infinity does not work)
        sdx = sdx(sdx_);
```

$57.25 \quad interp_sn2$

interpolation in streamwise coordinates

57.26 interp_sn3

57.27 interp_sn_

57.28 limit_by_distance_1d

```
smooth subsequent values along a curve such that v(x0+dx) < v(x0) + (ratio-1)*dx if v is the edge length in a resampled polygon, then v_i/v_i+1) < ratio ratio^1 = exp(a*1)
```

57.29 resample1

interpolation along a parametric curve with variable step width

57.30 resample_d_min

resample a function

57.31 resample_vector

resample a track so that velocity vectors do not run into each other $% \left(1\right) =\left(1\right) \left(1\right)$

57.32 test_interp1_limited

58 numerical-methods

58.1 inverse_complex

58.2 maccormack_step

58.3 minmod

59 numerical-methods/multigrid

59.1 mg_interpolate

$59.2 mg_restrict$

60 numerical-methods/ode/@BVPS_Characteristic

60.1 BVPS_Characteristic

solve coupled first- and second-order 1D boundary-value problems

60.2 assemble1 A

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

60.3 assemble 1_A_Q

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

60.4 assemble 2_A

assemble the discretisation matrix for a second-order ode (non-zero frequency component)

60.5 assemble_AA

assemble the discretisation matrix for each channel iteratively calls assembly for each frequency components

60.6 assemble_AAA

assemble the discretisation matrix for the entire network iteratively calls assembly for each channel

60.7	$assemble_Ic$
60.8	bvp1c
60.9	$\mathbf{check_arguments}$
60.10	${\bf couple_junctions}$
60.11	derivative
60.12	init
60.13	$inner2outer_bvp2c$
60.14	${f reconstruct}$

60.15 resample

60.16 solve

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
   c_1 y" + c_2 y' + c_3 y + c_4 = c_4

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

60.17 test_assemble1_A

60.18 test_assemble2_A

- 61 numerical-methods/ode/@Time_Stepper
- 61.1 Time_Stepper
- 61.2 solve
- 62 numerical-methods/ode
- 62.1 bvp2fdm

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems by the finite difference method

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
c_1 y" + c_2 y' + c_3 y + c_4 = 0

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)
```

where q weighs the waves travelling from left to right and right to

62.2 bvp2wavetrain

left (default [1 1])

solve second order boundary value problem by repeated integration

62.3 bvp2wavetwopass

two pass solution for the linearised wave equation solve first for the wave number k, and then for y

62.4 ivp_euler_forward

solve intial value problem by the euler forward method

62.5 ivp_euler_forward2

62.6 ivprk2

solve initial value problem by the two step runge kutta method

62.7 ode2_matrix

transformation matrix of second order ode to left and right going wave

c = odefun(x)
c1 y'' + c2' y + c3 y == 0
y = y_p + y_m, left and right going wave
d/dx [y_p, y_m] = A*[y_m, y_p]

62.8 ode2characteristic

second order odes transmittded and reflected wave

62.9 step_trapezoidal

single trapezoidal step

62.10 test_bvp2

- 63 numerical-methods/optimisation
- 63.1 aitken_iteration
- 63.2 anderson_iteration

63.3 armijo_stopping_criterion

armijo stopping criterion for optimizations

63.4 astar

astar path finding alforithm

63.5 binsearch

binary search on a line

63.6 bisection

bisection

63.7 box1

test objective function for optimisation routines

63.8 box2

63.9 cauchy

63.10 cauchy2

solve non-linear system by cuachy's method slower than quadratic optimisation, but does not require a hessian

fun : objective function, returns

 ${\tt f}\ :$ scalar, objective function value

 $\label{eq:gamma} g \; : \; nx1, \; gradient \\ x \; : \; nx1, \; initial \; position$

opt : options

63.11 directional_derivative

```
directional (projected) derivative
d : derivative, highest first
p : series expansion around x0
```

63.12 dud

optimization by the dud algorithm

63.13 extreme3

```
extract maxima by quadratic approximation from sampled function val
    (t)
intended to be called after [mval, mid] = max(val) for refinement
    of
locatian and maximum

input
t : sampling time (uniformly spaced)
v : values at sampling times
ouput:
tdx : index where extremum should be computed
t0 : location of the extremum
val0 : value of extremum

v'(dt0) = 0 and v''(dt0) determines type of extremum
```

63.14 extreme_quadratic

63.15 ftest

63.16 fzero_bisect

63.17 fzero_newton

63.18 grad

numerical gradient

63.19 hessian

numerical hessian

63.20 hessian_from_gradient

numerical hessian from gradient

63.21 hessian_projected

numerical hessian projected to one dimenstion

63.22 line_search

bisection routine

63.23 line_search2

bisection method

fun : objective funct
x0 : start value

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

p : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

 $\begin{array}{lll} \mbox{1b} & : \mbox{lower bound for } x \\ \mbox{up} & : \mbox{upper bound for } x \end{array}$

63.24 line_search_polynomial

polynomial line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

63.25 line_search_polynomial2

cubic line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

63.26 line_search_quadratic

quadratic line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

63.27 line_search_quadratic2

quadratic line search

63.28 line_search_wolfe

line search by wolfe method
c.f.: OPTIMIZATION THEORY AND METHODS - Nonlinear Programming, Sun,
 Yuan

63.29 ls_bgfs

least squares by the bgfs method

63.30 ls_broyden

63.31 ls_generalized_secant

least squares by the secant method Barnes, 1965 Wolfe, 1959 Fletcher 1980, 6.3 seber 2003 gerber

63.32 nlcg

non-linear conjugate gradient
input:
x : nx1 start vectort

opt : struct options
fdx : gradient constraint

63.33 nlls

non-linear least squares

63.34 picard

picard iteration

63.35 poly_extrema

extrema of a polynomial

$63.36 \quad quadratic_function$

evaluate quadratic function in higher dimensions

63.37 quadratic_programming

optimize by quadratic programming

63.38 quadratic_step

single step of the quadratic programming

63.39 rosenbrock

rosenbrock test function

$63.40 \quad sqrt_heron$

Heron's method for the square root

- 63.41 test_directional_derivative
- 63.42 test_dud
- 63.43 test_fzero_newton
- $63.44 \quad test_line_search_quadratic 2$
- 63.45 test_ls_generalized_secant
- 63.46 test_nlcg_6_order
- 63.47 test_nlls

$$f = w'*(p*abs(x-1).^4) + w'*(1-p)*abs(x-1).^2;$$

- 64 numerical-methods/pde
- $64.1 \quad laplacian 2 \\ d_fundamental_solution$

65 numerical-methods/piecewise-polynomials

65.1 Hermite1

hermite polynomial interpolation in 1d

65.2 hp2_fit

fit a hermite polynomial
coefficients are derivative free
x0 : left point of first segment
x1 : right point of last segment

n : number of segments
x : sample x-value
val : sample y-value

c : coefficients (values at points, no derivatives)

65.3 hp2_predict

prediction with pw hermite polynomial
c are values at support points

65.4 hp_predict

predict with piecewise hermite polynomial

65.5 hp_regress

fit piecewise hermite polynomial coefficients are values and derivatives

65.6 lp_count

lagrangian basis for interpolation count number of valid samples

$65.7 \quad lp_predict$

lagrangian basis piecwie interpolation, predicor

- 65.8 lp_regress
- 65.9 lp_regress_
- 66 numerical-methods
- 66.1 test_adams_bashforth

67 mathematics

mathematical functions of various kind

- 67.1 oversample NZ
- 68 pdes
- $68.1 \quad heat_equation_fundamental_solution$
- 68.2 heat_equation_width

$68.3 \quad heat_equation_width_to_time$

69 regression/@PolyOLS

69.1 PolyOLS

class for polynomial least squares

69.2 coefftest

69.3 detrend

detrending by polynomial regression

69.4 fit

fit a polynomial function like polyfit, but returns parameter error estimates TODO automatically activate scaleflag

69.5 fit_

fit a polynomial function

69.6 predict

predict polynomial function values

69.7 predict_

69.8 slope

slope by linear regression

70 regression/@PowerLS

70.1 PowerLS

class for power law regression

70.2 fit

fit a power law like polyfit, but returns parameter error estimates

70.3 predict

```
predict with power law
   S2 = diag((A*obj.C)*A');
   L = Y - S;
   U = Y + S;
```

70.4 predict_

71 regression/@Theil

71.1 Theil

Kendal-Theil-Sen robust regression

71.2 detrend

linear detrending of a set of samples by the Theil-Senn Slope

71.3 fit

fit slope and intercept to a set of sample with the Theil-Sen $\tt method$

c : confidence interval c = 2*ns*normcdf(1) for ns-sigma
intervals

 $\begin{array}{l} \texttt{param} \; : \; \texttt{itercept} \; \; \texttt{and} \; \; \texttt{slope} \\ \texttt{P} \; : \; \texttt{confidence} \; \; \texttt{interval} \end{array}$

71.4 predict

predict values and confidence intervals with the Theil-Sen method

71.5 slope

fit the slope with the Theil-Sen method

72 regression

linear and non-linear regression

72.1 Theil_Multivariate

extension of the Theil-Senn regression to higher dimensions by means of the Gauss-Seidel iteration ${\sf Senn}$

72.2 areg

regression using the pth-fraction of samples with smallest residual

72.3 ginireg

gini regression

72.4 hessimplereg

```
hessian, gradient and objective function value of the simple regression  {\tt rhs} \, = \, {\tt p(1)} \, + \, {\tt p(2)} \, \, {\tt x} \, + \, {\tt eps}
```

72.5 l1lin

solve ||Ax - b||_L1 by means of linear programming

72.6 lsq_sparam

parameter covariance of the least squares regression

```
fun : model function for predtiction
b : sample values
```

f(p) = b

p : parameter at point of evaluation (preferably optimum)

72.7 polyfitd

```
fit a polynomial of order n to a set of sampled values and sampled
   values
of the derivative

x0 must contain at least for conditioning as otherwise the
   intercept
cannot be determined
```

72.8 regression_method_of_moments

```
fit linear function ||a b x = y||_L L2 by the method of moments y+eps = alpha + beta*x
```

72.9 robustling

fit a linear function by splitting the x-values at their median $(med(y_left) - med(y_right))/(med(x_left)-med(x_right)$ this approach performs poorly compared to the theil-senn operator

72.10 theil2

Theil senn-estimator for two dimensions (glm)

72.11 theil_generalised

generalization of the Theil-Senn operator to higher dimensions,
for arbitrary functions such as polynomials and multivariate
 regression
either higher order polynomials or glm
c.f. "On theil's fitting method", Pegoraro, 1991

72.12 total_least_squares

total least squares

72.13 weighted_median_regression

weighted median regression c.f. Scholz, 1978

73 set-theory

73.1 issubset

test if set B is subset of A in O(n)-runtime

A : first set
B : second set

P : set of primes (auxiliary)

74 mathematics

mathematical functions of various kind

$74.1 \quad shuffle_index$

75 signal-processing

75.1 asymwin

creates asymmetrical filter windows filter will always have negative weights

76 signal-processing/autocorrelation

76.1 acf_radial

76.2 acfar1

Autocorrelation function of the finite AR1 process

$$a_k = 1/(n-k)sum x_ix_i+1 + (xi + xi+k)mu + mu^2$$

= $r^k + 1/n sum_ij + 1/n$
pause

$76.3 \quad acfar1_2$

autocorrelation of the ar1 process

76.4 acfar2

impulse response of the $\operatorname{ar2}$ process

$76.5 \quad acfar2_2$

autocorrelation of the ar2 process $X_i + a1 X_{i-1} + a2 X_{i-2} = 0$

76.6 ar1_cutoff_frequency

76.7 ar1_effective_sample_size

effective sample size correction for autocorrelated series

$76.8 \quad ar1_mse_mu_single_sample$

standard error of a single sample of an ar1 correlated process

$76.9 \quad ar1_mse_pop$

variance of the population mean of a single realisation around zero $E[(mu_N-0)^2] = E[mu_N^2]$

$76.10 \quad ar1_mse_range$

 ${\tt mean}$ standard error of the ${\tt mean}$ of a range of values taken from an ar1 process

$76.11 \quad ar1_spectrum$

spectrum of the ar1 process

76.12 ar1_to_tikhonov

convert ar1 correlation to tikhonovs lambda

$76.13 \quad ar1_var_factor$

variance correction factor for an autocorrelated finite process n : [1 .. inf] population size m : [1 .. n] samples size rho : [-1 < rho < 1 (for convergence)] correlation of samples

76.14 ar1_var_factor_

variance of an autocorrelated finite process

76.15 ar1_var_range2

variance of sub sample starting at the end of the series from the finite length first order autocorrelated process $s2 = 1/m^2 \ sum_i^m \ sum_j^m \ rho^-|i-j|$

76.16 ar1delay

76.17 ar1delay_old

autocorrelation of the residual

76.18 ar2_acf2c

determine coefficients of the ar2 process from the first two lags of the autocorrelation function

76.19 ar2conv

coefficients of the ar2 process determined from the two leading
 correlations
of the acf [1,r1,r2,...]

76.20 ar2dof

effective samples size for the ar2 process

76.21 ar2param

ar2 parameter estimation from first two terms of acf
acf = [1 a1 a2 ...]

76.22 autocorr2

76.23 autocorr_angular

$76.24 \quad autocorr_bandpass$

$76.25 \quad autocorr_decay_rate$

estimate exponential decay of the autocorrelation

76.26 autocorr_effective_sample_size

effective sample size from acf

76.27 autocorr_fft estimate sample autocorrelation function 76.28 autocorr_forest $autocorr_genton$ 76.29autocorrelation function 76.30 autocorr_highpass 76.31 autocorr_lowpass $76.32 \quad autocorr_periodic_additive_noise$ 76.33 autocorr_periodic_windowed 76.34 autocorr_radial

autocorr_radial_hexagonal_pattern

76.36 autocorrelation_max

77 signal-processing

77.1 average_wave_shape

extract waves with varying length from a wave train and and average their shape $\,$

77.2 bandpass

bandpass filter

77.3 bandpass_continuous_cdf

77.4 bartlett

```
Effective sample size factor for bartlett window c.f. thiebaux c.f spectral analysis-jenkins, eq. (6.3.27) c = acf note: results seams always to be 1 tac too low T : reduction factor for dof for ar1 with a = rho^k = \exp(-k/L), T = 2L
```

77.5 bin1d

bin values of \boldsymbol{v} sampled at \boldsymbol{x} into bins bounded by "edges" apply function \boldsymbol{v} to it

77.6 bin2d

```
bin values of V sampled at X and Y into the grid structured grid ex, ey apply function func to all walues in the bin func = mean : default func = sum : non-normalized frequency histogram in 2D \,
```

77.7 binormrnd

generate two correlated normally distributed vectors

77.8 coherence

$77.9 \quad conv1_man$

convolutions with padding

$77.10 \quad conv2_man$

convolution in 2d

$77.11 \quad conv2z$

77.12 conv30

convolve with rectangular window of lenght $\ensuremath{\mathbf{n}}$ circular boundaries

77.13 conv_

convolution of a with b

77.14 conv_centered

convolve x with filter window f
when length of f is even, this guarantees a symmetric result (no
 off by on
displacement) by making the length of f odd at first

77.15 convz

77.16 cosexpdelay

77.17 csmooth

smooth recursively with [1,2,1]/4 kernel function x = csmooth(x,n,p,circ)

77.18 daniell_window

Daniell window for smoothing the power spectrum c.f. Daniell 1946
Bloomfield 2000
meko 2015

77.19 db2neper

convert decibel to neper

77.20 db2power

power ratio from db

$77.21 \quad derive_bandpass_continuous_scale$

77.22 derive_danielle_weight

77.23 derive_limit_0_acfar

77.24 detect_peak

detect peaks in a vector requires function value to fall to p*max before new value is allowed

77.25 determine_phase_shift

77.26 determine_phase_shift1

average phase and phase shift per time step of a train of waves

77.27 doublesum_ij

double sum of r^i

77.28 effective_mask_size

$77.29 \quad effective_sample_size_to_ar1$

convert effective sample size to ar1 correlation

77.30 fcut2Lw_gausswin

77.31 fcut_gausswin

77.32 filt_hodges_lehman

78 signal-processing/filters

78.1 circfilt2

smooth (filter) the 2D image z with a circular disk of radius nf apply periodic boundary conditions

78.2 filter1

filter along one dimension

78.3 filter2

filter columns of x (matlab does only support vector input)

78.4 filter_

invalidate values that exceed n-times the robust standard deviation

78.5 filter_r_to_f0

78.6 filter_rho_to_f0

78.7 filter_twosided

78.8 filteriir

```
filter adcp t-n data over time
v : nz,nt : values to be filtered
H: nt,1 : depth of ensemble
last : nt,1 : last bin above bottom that can be sampled without
   side lobe interference
nf : scalar : number of reweighted iterations
when samples
- distance to bed is reference (advantageous for near-bed suspended
     transport)
TODO for wash load: distance to surface is more relevant
interpolate depending on z
when depth changes, neighbouring indices do not correspond to same
   relative position in the water column
relative poisition in the colum (s-coordinate) smoothes values
near the bed: absolute distance to bed is chosen
near surface: absolute distance to surface is chosen
-> cubic transformation of index
faster and avoid alising (smoothing along z)
      resample ensemble to same number of bins in S -> filter ->
         resample back
      use nonlinear transform z-s coordinates
-> resampling has to be local (Hi -> H-filtered)
filtered profile coordinates to sample coordinates
      zf -> zi (special transform)
corresponding indices and fractions
filtration step (update of hf and vf)
sample coordinates to updated profile coordinates
(the inverse step is actually not necessary)
write filtered value
```

78.9 filterp

78.10 filterp1

fir filter with some fancy extras

78.11 filterstd

78.12 gaussfilt2

smooth (filter) the 2D image z with a gaussian window apply periodic boundary conditions

78.13 lowpass_discrete

design coefficients of a low pass filter with specified cut of
 frequency
and sampling period
alalogue low pass with pole at s=-omega_c=1/tau=1/RC
Ha = tau/(tau + s) = 1/(1 + omega_c*s)

78.14 meanfilt2

filter with a rectangular window along both dimensions

78.15 medfilt1_man

moving median filter, supports columnwise operation

$78.16 \quad medfilt1_man2$

moving median filter with special treatment of boundaries $\ensuremath{\mathsf{T}}$

$78.17 \quad medfilt 1_padded$

median filter with padding

$78.18 \quad medfilt1_reduced$

median filter with padding

78.19 trifilt1

78.20 trifilt2

filter with a triangular window along both dimensions

79 signal-processing

79.1 firls_man

design finite impulse response filter by the least squares method

79.2 fit_spectral_density

fit spectral densities (probability distributions)

79.3 fit_spectral_density_2d

fit spectral densities

79.4 fit_spectral_density_radial

fit spectral densities

79.5 flattopwin

the flat top window

79.6 frequency_response_boxcar

frquency response of a boxcar filter

79.7 freqz_boxcar

frequncy response of a boxcar filter

79.8 gaussfilt1

filter data series with a gaussian window, assumes periodic bc

79.9 hanchangewin

hanning window for change point detection

79.10 hanchangewin2

nanning window for chage point detection

79.11 hanwin

hanning filter window

79.12 hanwin_

hanning filter window

79.13 high_pass_1d_simple

79.14 kaiserwin

kaiser filter window

79.15 kalman

Kalman filter

79.16 lanczoswin

Lanczos window

79.17 last

lake tail, but for matrices

79.18 maxfilt1

79.19 meanfilt1

moving average filter with special treatment of the boundaries

$79.20 \quad mid_term_single_sample$

variance of single sample, mid term

79.21 minfilt1

79.22 minmax

79.23 mu2ar1

error variance of the mean of the finite length ar1 process

 $(mu)^2 = (sum epsi)^2 = sum_i sum_j eps_i eps_j = sum_ii(rho,n)/n^2$ this has the limit s^2 for rho->1

79.24 mysmooth

79.25 nanautocorr

autocorrelation with nan-values

79.26 nanmedfilt1

medfilt1, skipping nans

79.27 neper2db

convert neper to db

79.28 oscillator_noisy
80 signal-processing/passes 80.1 bandpass1d
80.2 bandpass $1d_{-}$ fft
filter input vector with a spatial (two-sided) bandpass in fourier space
80.3 bandpass1d_implicit
80.4 bandpass2
bandpass filter
80.5 bandpass2d
$80.6 bandpass 2d_convolution$
80.7 bandpass $2d_{-}$ fft
80.8 bandpass2d_ideal

$80.9 \quad bandpass 2d_implicit$

bandpass filter the surface ${\tt x}$ by solving the implicit relation:

80.10 bandpass2d_iso

80.11 bandpass_arg

determine correlation coefficient from frequency of mode for the $\operatorname{symmetric}$

80.12 bandpass_f0_to_rho

correlation coefficient for the pth-order symmetric bandpass filter
 with
maximum at f0 (when rho_lp = rho_hp)

80.13 bandpass_max

80.14 bandpass_max2

80.15 highpass

high pass filter

80.16 highpass1d_fft_cos

filter the input vector with a cosine-shaped highpass in frequency space

80.17	highpass1d_implicit
80.18	highpass2d_fft
80.19	highpass2d_ideal
80.20	$highpass 2 d_implicit$
80.21	${f highpass_arg}$
80.22	highpass_fc_to_rho
80.23	lowpass
low pas	ss filter
80.24	$lowpass1d_fft$

 $80.25 \quad lowpass1d_implicit$

80.26 lowpass2

design low pass filter with cutoff-frequency f1

80.27 lowpass2d_anisotropic

80.28 lowpass2d_convolution

this function is computationally inefficient and serves merely for illustration and tests

80.29 lowpass2d_fft

80.30 lowpass2d_ideal

lowpass filter the input ${\tt x}$ in the Frequency Domain TODO no need to provide dx, follows from size of ${\tt x}$

function [y,S,R,r]=lowpass2d_ideal(x,L,dx,varargin)

80.31 lowpass2d_implicit

function [y] = lowpass2d_implicit(x,rho,a,order,direct)

80.32 lowpass_arg

80.33 lowpass_fc_to_rho

80.34 lowpass_iir

iir-low pass

80.35 lowpass_iir_symmetric

two-sided iir low pass filter (for symmetry)

80.36 lowpassfilter2

low-pass filter of data

81 signal-processing

81.1 peaks_man

peaks of a periodogram

82 signal-processing/periodogram

82.1 periodogram

compute the normalized periodogram

82.2 periodogram_2d

compute the normalized periodogram in two dimensions

82.3 periodogram_align

82.4 periodogram_angular

82.5 periodogram_bartlett

estimate the spectral density nonparametrically with Bartlett's $\tt method \\$

82.6 periodogram_bootstrap

82.7 periodogram_confidence_interval

confidence interval for $periodogram\ values$

82.8 periodogram_filter

82.9 periodogram_median

${\bf 82.10 \quad periodogram_normalize}$

82.11 periodogram_normalize_2d

82.12 periodogram_p_value

82.13 periodogram_qq

```
\operatorname{qq-plot} of a spectral density estimate by smoothing against the expected beta-density
```

82.14 periodogram_quantiles

```
quantiles of a periodogram
```

82.15 periodogram_radial

```
function [Sr,fri,se,count] = periodogram_radial(S2d,L)
compute the radially averaged density
input:
S2d : 2-dimensional density or periodogram
L = [Lx, Ly] : domain length
output:
             : radially averaged periodogram
S_r.normalized : normalized radially averaged periodogram
              : matris operator s that Sr = (A*A')^-1 A'*S2d
f_r : radial frequencies, at which radial periodogram is determined
      discretized in same interval as the 2d-density : f = 1/L
Definitions:
       radial wavenumber, identical to circumferences of circles
           centred at origin with radial frequency fr
             k_r = 2*pi*f_r
       radially averaged periodogram:
       S_r(k_r) = 1/k_r int_0^{k_r} S2d(k_r,s) d s
                = 1/(2 pi) int_0^{2 pi} S2d(k_r,theta) d theta
                ~ 1/(2 pi) sum^nt S2d(k_r,theta) * (2*pi/nt)
                ~ 1/nt sum^nt S2d(k_r,theta)
```

note: the radially averaged "periodogram", is actually a density estimate.

for radial frequencies fr hat are not small

when S is flattened into a vector, the isotropic part of the 2D density can be recovered with:

S_iso = (A*S_radial)
S_radial = A^-1 S_hat

82.16 periodogram_std

standard deviation of a periodogram

82.17 periodogram_test_periodicity

 ${\tt test \ a \ periodogram \ for \ hidden \ periodic \ frequency \ components}$

function [p,ratio,maxShat,mdx,fdx,S] = periodogram_test_periodicity
 (fx,Shat,nf,fmin,fmax,S,mode)

input:

fx : frequengcies

Shat : corresponding periodogram values

 $\ensuremath{\mathsf{nf}}$: number of bins to test for periodicity, ignored when S is given

fmin, fmax : frequency range limits to test

S : exact (a priori known theoretical spectral density,

must not be estimated from the periodogram)

mode : automatically set to "exact", when S given

inclusive : estimate density by smoothing including the central bin

exclusive : estimate density by smoothing excluding the central bin

note: inclusive and exclusive lead to different distribution but identical p-values

TODO pass L and not fx

82.18 periodogram_test_periodicity_2d

```
test a periodogram for hidden periodic frequency components
[p,stat,ratio] = periodogram_test_periodicity_2d(b, nf, bmsk, fmsk,
input:
      b
           (nx * ny): image to test for presence of hidden
          periodicities,
           i.e. periodicities where the frequency is not known a
              priori
         = nfr or [nfx, nfy]
            radius of circular disk (in number of bins) used for
                smoothing
           the periodogram to estimate the spectral density,
             or axes of ellipses for smoothing
             when b is not square a good choice is nfx/nfy ~ Lx/Ly
    {\tt bmsk} : mask in real space selecting parts of the image to
        include in
            the analysis default is entire image
             the mask can have non-integer values to feather the
                borders of the mask
      fmsk : mask in frequency selecting frequencies to test for
          periodicity
            default is all frequencies
            note: when b is real, one half plane can always be
                excluded
            because of symmetry. This slightly increases the
                significance
          : number of samples for the monte-carlo determination of
      ns
             the test statistics, mc is only used when parts of the
                 image are masked
             otherwise the analytic test statistic is used
influence of masking the input file:
            - the root-mean-square energy of the ordinates is
               proportional
             to the number of unmasked points
            - values in the periodogram are not any more linearly
                independent
              so that the dof of the filter window is not nf<sup>2</sup>
```

82.19 periodogram_test_stationarity

test a periodogram for statoinarity

note : the method works, but is of little practical use, as it requires about 50 periods and a small dx to detect a frequency change by a factor of 2

82.20 periodogram_welsh

83 signal-processing

83.1 polyfilt1

polynomial filter, can be achieved by iteratively processing the data with a mean (zero-order) filter

83.2 qmedfilt1

medfilt1, after fitting a quadratic polynomial

83.3 quadratfilt1

83.4 quadratwin

83.5 randar1

generate random ar1 process
e1 = randar1(sigma,p,n,m)

83.6 randar1_dual

draw random variables of two corrlated ar1 processes

83.7 randar2

generate ar2 process

83.8 randarp

randomly generate the instance of an ar-p process

83.9 rectwin

rectangular window

83.10 recursive_sum

83.11 select_range

83.12 smooth1d_parametric

smooth position of p0=x0,y0 between p1=x1,y1 and p2=x2,y2, so that distance to p1 and p2 becomes equal and the chord length remains the same

83.13 smooth2

smooth vectos of X

83.14 smooth_man

83.15 smooth_parametric

smooth a parametric function given in x-y coordinates
 matvec2x2(R,[dxc;dyc])

83.16 smooth_parametric2

parametrically smooth the curve

$83.17 \quad smooth_with_splines$

83.18 smoothfft

filter with fast fourier transform

84 signal-processing/spectral-density

- $84.1 hex_angular_pdf$
- $84.2 \quad hex_angular_pdf_max$
- $84.3 \quad hex_angular_pdf_max2par$

84.4 spectral_density_ar2

84.5 spectral_density_area

integrate the spectral density over the positive half axis

84.6 spectral_density_estimate_2d

84.7 spectral_density_flat

flat spectral density of a random vector woth iid elements

84.8 spectral_density_forest

84.9 spectral_density_gausswin

84.10 spectral_density_lorentzian

lorentzian spectral density

84.11 spectral_density_lorentzian_max

mode (maximum) of the lorentzian spectral density

84.12 spectral_density_lorentzian_max2par

transform maximum of the lorentzian spectral density to its distribution parameters $% \left(1\right) =\left(1\right) +\left(1\right)$

84.13 spectral_density_lorentzian_scale

normalization scale of the lorentzian spectral density

- 84.14 spectral_density_maximum_bias_corrected
- $84.15 \quad spectral_density_periodic_additive_noise$
- 84.16 spectral_density_rectwin
- 84.17 spectral_density_wperiodic

85 signal-processing

85.1 spectrogram

spectrogram

$85.2 \quad sum_i_lag$

sum of ar1 matrix with lag
sum_i=1^n rho^|i-k|

85.3 sum_ii

sum of ar1 matrix
sum_i=1^n sum_j=1^n rho^|i-j|
this is for the variance, take square root for the standard
 deviation factor

 $85.4 \quad sum_{-ii_{-}}$

 $85.5 \quad sum_{ij}$

```
  \begin{tabular}{ll} sum of ar1 matrix \\ sum_{i=1}^n sum_{j=1}^m r^{i-j} \end{tabular}
```

 $85.6 \quad sum_ij_$

 $85.7 \quad sum_ij_partial_$

85.8 sum_multivar

sum of matrix entries of bivariate ar1 process

85.9 test_acfar1

85.10 tikhonov_to_ar1

convert coefficient of the tikhonov regularization to correlatioon of the arl process $% \left(1\right) =\left(1\right) \left(1\right) \left($

85.11 trapwin

trapezoidal filter window

85.12 triwin

triangular filter window

85.13 triwin2

triangular filter window

85.14 tukeywin_man

85.15 varar1

error variance of a single sample of a finite length ar1 process with respect to the mean, averaged over the population ${\bf r}$

85.16 welch_spectrogram

welch spectrogram

85.17 wfilt

filter with window

85.18 winbandpass

filter with bandpass

86 signal-processing/windows

86.1 circwin

86.2 danielle_window

danielle fourier window

86.3 gausswin

86.4 gausswin1

86.5 gausswin2

86.6 radial_window

radial filter window in the 2d-frequency domain

86.7 range_window

range of values within a certain range of indices (window)

86.8 rectwin_cutoff_frequency

86.9 std_window

moving block standard deviation

$86.10 \quad window2d$

86.11 window_make_odd

87 signal-processing

87.1 winfilt0

filter with window

87.2 winlength

window length for desired cutoff frequency
power at fc is halved
H(wf) = 1/sqrt(2) H(f)
if the filter window were used as a low pass filter
note: the user should prefer a windowed ideal low pass filter
TODO, relate this to DOF

87.3 wmeanfilt

mean filter with window

87.4 wmedfilt

median filter with window

87.5 wordfilt

weighted order filter

87.6 wordfilt_edgeworth

weighed order filter

87.7 wrapphase

87.8 xar1

87.9 xcorr_man

cross correlation of two sampled ar1 processes

88 sorting

88.1 sort2

sort two numbers

88.2 sort2d

sort elements of matrix in ${\tt X}$ returns row and column index of sorted values

89 spatial-pattern-analysis/@Spatial_Pattern

89.1 Spatial_Pattern

class for analysis of remotely sensed and model generated vegetation patterns

89.2 analyze_grid

analyze a 2D spatial pattern, estimate regularity and test for periodicity $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

89.3 analyze_transect

analyze 1D transect through a spatial pattern, either remotely sensed or model generated

89.4 clear_1d_properties

89.5 clear_2d_properties

89.6 fit_parametric_densities

fit parametric spectral densities to the empirical density

89.7 imread

read an image file containing a pattern, mask and geospatial data

89.8 plot

plot the pattern or densities

$89.9 \quad plot_transect$

plot 1D pattern

89.10 prepare_analysis

89.11 report

report statistics of analysis

89.12 resample_functions

resample empirical densities to a comman grid

89.13 tabulate

summarize properties of multiple patterns in a single struct

90 spatial-pattern-analysis/@Spatial_Pattern_Array

90.1 Spatial_Pattern_Array

container class for Spatial_Pattern objects

90.2 analyze

analyze spatial patterns

90.3 assign_regions

90.4 export_shp

90.5 fetch

determine the sampling interval for fetching images from the Google satellite server and later processing

90.6 generate_filename

90.7 quality_check

91 spatial-pattern-analysis

91.1 approximate_ratio_distribution

```
input :
bmsk : region selected for periodicity test (smoothes the
    periodogram)
    : radius of smoothing window (in bins) for estimating the
    spectral density
nsample : number of repetitions to estimate the ratio distribution
         recommended at
output:
            : probabilities for quantiles
      qr1 : quantiles of the distribution for bin m
      qrn : quantiles of the distribution for the maximum of bins
            selected by fmsk
      ratio: ratios for each frequency bin and iteration (only for
            last block, for testing)
intput:
      {\tt bmsk} : mask region pattern/interest in the real domain
      nf : smoothing window radius in the frequency domain for
          density estimation
      ns : number of samples for the monte-carlo simulation
      {\tt fmsk} \; : \; {\tt mask} \; \; {\tt frequencies} \; \; {\tt of} \; \; {\tt interest} \;
      mdx : selection of an a-priori known frequency bin
note the following complications:
      - problem 1 : ratio locally differs near fr=0, fx,fy=fmax and
          fx,fy=fmax/2
      - fits of the fisher or beta distribution are highly unstable
```

91.2 banded_pattern

91.3 hexagonal_pattern

```
function [z, x, y, xx, yy, xe, ye] = hexagonal_pattern(fc,n,L,
    angle0_rad,scale,sbm,p,q)
spot pattern of unit amplitude
output : z : pattern
         x : x-coordinate
         y : y-coordinate
Note : z_{gap} = 1 - z_{spot}
91.4 patch_size_1d
91.5 patch_size_2d
91.6 pattern_isotropic_rotated
91.7 reconstruct_isotropic_density
91.8 separate_isotropic_from_anisotropic_density
```

 $91.9 ext{ suppress_low_frequency_lobe}$

92 spatial-statistics

92.1 cov_cell_averages_1d

92.2 cov_cell_averages_2d

```
determine covariance between grid cell averged values of a
   stationary
stochastic process on an equispaced grid
cov(e_ij,e_kl) = E[(e_ij - mu)*(e_kl - mu)]
             = 1/dx^2 1/dy^2 E[ int int (e(x1,y1) - mu) dx1 dy1 int
                  int (e(x2,y2)-mu) dx2 dy2]
             = 1/dx^2 1/dy^2 E[ int int int int (e(x1,y1) - mu) (e(
                 x2,y2) - mu) dx1 dy1 dx2 dy2) ]
             = 1/dx^2 1/dy^2 int int int cov(x2-x1,y2-y1) dx1
                 dy1 dx2 dy2
f_{ij} = int_{x_i - dx/2}^{x_i + dx/2} int_{y_i - dy/2}^{y_j + dy/2} f(x,y)
    dx dy
integrals approximated by equal spaced mid-point intervales,
this allows to reduce the double-integral along each dimension into
single integral and hence to reduce the computational effort from m
   ^4 to m^2
```

93 special-functions

93.1 bessel_sphere

spherical Bessel function of the first kind

$93.2 \quad besseliln_large_x$

93.3 beta_man

93.4 betainc_man

93.5 digamma_man

$93.6 \exp 10$

93.7 hankel_sphere

```
spherical Hankel function for the far field (incident plane wave) first kind
```

93.8 hermite

probabilistic's hermite polynomial by recurrence relation

input :
n : order
x : value

output:
f : H_n(x)

 $df : d/dx H_n(x)$

93.9 laguerre_roots

93.10 lambertw_numeric

lambert-w function

93.11 legendre_man

legendre polynomials

93.12 neumann_sphere

spherical Neumann function
Bessel function of the second kind

94 statistics

$94.1 \quad atan_s2$

stadard deviation of the arcus tangens by means of taylor expansion

94.2 binomial

generalized binomial coefficient, working for non-integer arguments , in contrast to the matlab buildin function nchoosek

95	statistics/circular
95.1	$\mathbf{circular_fmoment}$

- 95.2 circular_fquantile
- 95.3 circular_fstd
- 95.4 circular_fvar
- 96 statistics
- 96.1 coefficient_of_determination
- 96.2 conditional_expectation_normal
- 96.3 correlation_confidence_pearson

confience intervals of the correlation coefficient c.f. Fischer 1921

97 statistics/distributions

97.1 PDF

class for quasi-distributions from a set of sampling points

98	statistics/distributions/anisotropic
98.1	$anisotropic_pattern$
98.2	$anisotropic_pattern_acf$
98.3	$an isotropic_pattern_pdf$
99 99.1	statistics/distributions/beta beta_kurt
99.2	$beta_mean$
99.3	$beta_moment2par$
	sform central moments (mean and sd) to parameters of the beta function
99.4	beta_skew
99.5	${ m beta_std}$

$100 \quad statistics/distributions/bivariate-normal$

100.1 binorm_separation_coefficient

separation coefficient of a bimodal normal distribution

100.2 binormcdf

bio-modal gaussian distribution

100.3 binormfit

 $\hbox{fit sum of to normal distribution to a histogram}\\$

100.4 binormpdf

101 statistics/distributions/chi2

101.1 chi2_kurt

101.2 chi2_mean

101.3 chi2_skew

101.4 chi2_std

102 statistics/distributions/circular-normal

102.1 wnormpdf

wrapped normal distribution to the unit circle ${\tt c.f.}$ stephens

103 statistics/distributions/edgeworth

103.1 edgeworth_cdf

edgeworth expansion of an unknown cumulative distribution with mean mu, standard deviation sigma, and third and fourth cumulants c.f. Rao 2010

103.2 edgeworth_pdf

probability density of and unknown distribution
with mean mu, standard deviation sigma, and third and fourth
 cumulants
c.f. Rao 2010

104 statistics/distributions/exp

104.1 exppdf_max2par

105 statistics/distributions/fisher

105.1 fisher_mean

105.2 fisher_moment2par

105.3	$fisher_std$	
106	${\rm statistics/distributions/gamma}$	
106.1	gamma_mean	
106.2	gamma_mode	
106.3	${\rm gamma_mode2par}$	
106.4	${ m gamma_moment2par}$	
transform modes (mu,sd) to parameters of the gamma distribution		
106.5	gamma_std	
106.6	gamma_stirling	
106.7	${f gampdf_man}$	

 $106.8 \quad generalized_gamma_mean$

107 statistics/distributions/hotelling-t2

107.1 t2cdf

Hotelling's T-squared cumulative distribution

107.2 t2inv

inverse of Hotelling's T-squared cumulative distribution

108 statistics/distributions/kurt-normal

108.1 kurtncdf

108.2 kurtnpdf

109 statistics/distributions/log-triangular

109.1 logtrialtcdf

pdf of a logarithmic triangular distribution

109.2 logtrialtiny

```
inverse of the logarithmic triangular distribution
= (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/
    log(a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b)
    ) + d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c)
    + b log(c) - d F log(a) log(c)))/(log(a) - log(b))))
```

```
x = (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/log
    (a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b) +
    d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c) + b
    log(c) - d F log(a) log(c)))/(log(a) - log(b))))
```

109.3 logtrialtmean

mean of the logarithmic triangular distribution

109.4 logtrialtpdf

density of the logarithmic triangular distribution

109.5 logtrialtrnd

109.6 logtricdf

cumulative distribution of the logarithmic triangular distribution

109.7 logtriinv

invere of the logarithmic triangular distribution

109.8 logtrimean

 ${\tt mean\ of\ the\ logarithmic\ triangular\ distribution}$

109.9 logtripdf

probability density of the logarithmic triangular distribution

109.10 logtrirnd

110 statistics/distributions/log-uniform

110.1 logu_median

median of the log-uniform distribution

110.2 logucdf

probability density of the logarithmic uniform distribution

110.3 logucm

central moments of the log-uniform distribution

110.4 loguinv

inverse of the log-uniform distribution

110.5 logumean

 ${\tt mean \ of \ the \ log-uniform \ distribution}$

110.6 logupdf

pdf of the log uniform distribution

110.7 logurnd

random numbers following a log-uniform distribution

110.8 loguvar

variance of the log-uniform distribution

111 statistics/distributions/loglog

111.1 loglogpdf

112 statistics/distributions/lognormal

$112.1 \quad logn_corr$

correlation of two log-normal random variables, where the log of
 the variables
is correlated with r

$112.2 \quad logn_cov$

covariance of two log-normally distributed random variables, cov(ea,eb) = cov(exp(mua + sa*za),exp(mub + sb*zb)) where za, zb are standard normal distributed and correlated

112.3 logn_mean

$112.4 \log n_{mode}$

mode (maximum) of the log-normal density

$112.5 \quad logn_mode2par$

$112.6 \quad logn_moment2par$

transform the mode (mu,sd) to parameters of the \log normal distribution

112.7 logn_moment2par_correlated

112.8 logn_param2moment

transform parameters to mode (mu, sd) for the log normal distribution $% \left(1\right) =\left(1\right) \left(1$

$112.9 logn_skewness$

$112.10 \log n_{std}$

$112.11 \quad lognpdf_{-}$

log normal distribution called by modes rather than parameters

112.12 lognpdf_entropy

$113 \quad statistics/distributions/logskew$

113.1 logskewcdf

113.2	$\log s$ kewpdf
	$statistics/distributions/mises \\ mises_max2par$
114.2	${ m mises_std}$
114.3	${ m mises_var}$
114.4	$misesn_max2par$
114.5	misesnpdf
114.6	misespdf
115	statistics/distributions

 $115.1 \quad ncx2_moment2par$

116 statistics/distributions/normal

116.1 normpdf_entropy

116.2 normpdf_mode

116.3 normpdf_mode2par

117 statistics/distributions/passes

117.1 bandpass1d_continuous_pdf

117.2 bandpass1d_continuous_pdf_max

maximum of the bandpass spectral density

117.3 bandpass1d_continuous_pdf_max2par

transform mode (maxima) of the bandpass spectral density into the
 paramter
of the underlying distribution

$117.4 \quad bandpass1d_continuous_pdf_scale$

normaliztation scale of the spatial bandpass density

117.5 bandpass1d_discrete_pdf

spectral density of the discrete spatial (two-sided) bandpass filter $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{2$

117.6 bandpass2d_discrete_pdf

117.7 bandpass2d_pdf_exact

```
function Sb = bandpass2d_pdf(fr,a,order)
not normalized, max (S) = 1;
```

117.8 bandpass2d_pdf_hankel

117.9 bandpass2d_pdf_mode

117.10 bandpass2d_pdf_mode2par

transform mode (maxima) of the bandpass spectral density into the
 paramter
of the underlying distribution

117.11 bandpass2d_pdf_scale

117.12 highpass1d_continuous_pdf

```
function [S_bp,Sc] = spectral_density_highpass_continous(fx,fc,
    order,normalize,pp)

output :
S_bp : spectral density of the highpass filter in continuos space
    limit case of the discrete highpass for dx -> 0
Sc : scale factor to normalize area to 1, if noramlize = true

input :
f : frequency (abszissa)
fc : central frequency, location of maximum on abszissa
order : number of times filter is applied iteratively, not
    necessarily integer
normalize : normalize area under curve int_O^inf S(f) df = 1, if
    not maximum S(fc) = 1
pp : powers for recombination of the lowpass filter
```

117.13 highpass1d_discrete_cos_pdf

consine shaped spectral density of a highpass filter

117.14 highpass1d_disrete_pdf

```
spectral density of the pth-order high-pass

Note that there are two alternative definitions
S_hp = S_h1^p = (1 - S_l1)^p \text{ (recursive highpass-filtering)}
or S_hp^c = (1 - S_lp^p) \text{ (1 - recursive lowpass-filtering)}
here, recursive highpass filtering is represented

Sh = |F*Ah|^2p
Sh^c(1/2p) = F Ah = F(I-Al)
= F(I - Al)
= F(I - F^-1 Sl^1/2 F)
= (F F^-1 - Sl^1/2) F
= (I - Sl^1(1/2)) F
```

function	<pre>[S_h,S_h1] = spectral_density_hp(f,r0,fmax,order,varargin)</pre>	
117.15	$highpass 2d_discrete_pdf$	
117.16	$highpass2d_pdf$	
117.17	$highpass 2d_pdf_hankel$	
117.18	$lowpass1d_continuous_pdf$	
117.19	$lowpass 1 d_continuous_pdf_scale$	
117.20	$lowpass1d_discrete_pdf$	
117.21	$lowpass1d_one_sided_pdf$	
117.22	$lowpass2d_discrete_acf$	
truncated, not wrapped at the end		

 $117.23 \quad lowpass2d_discrete_pdf$

117.24 lowpass $2d_pdf$

117.25 lowpass2d_pdf_hankel

```
spectral density of the two-dimensional lowpass filter with
   autocorrelation

r = exp(-a*sqrt(x^2 + y^2))

efficiently estimated with gauss-laguerre integration and 1D-FFT:

for a radially symmetric function, the radial density is

Sr(r) = S2d(r,0) = S2d(0,r)

with density S2d and autocorrelation R2d

S2d = F_2d^-1 (R2d)

by the slicing theorem:

S2d(x,0) = F_1d^-1 (int R2d(x,y) dy)
```

117.26 lowpass2d_pdf_series

118 statistics/distributions

118.1 pdfsample

```
pdf from sample distribution
Note: better use kernal density estimates
```

119 statistics/distributions/phase-drift

119.1 phase_drift_acf

119.2 phase_drift_acf_2d

119.3	$phase_drift_cdf$
119.4	$phase_drift_inv$
119.5	$phase_drift_parallel_acf$
119.6	$phase_drift_parallel_pdf$
119.7	$phase_drift_parallel_pdf_max$
119.8	$phase_drift_parallel_pdf_max2par$
119.9	$phase_drift_parallel_pdf_mode2par$
119.10	$phase_drift_patch_size_distribution$

spectral density of a fourier series where the phase undergoes
 brownian motion
with standard deviation s per unit distance

 $119.11 \quad phase_drift_pdf$

119.12 phase_drift_pdf_2d

119.13 phase_drift_pdf_mode

 ${\tt mode}$ $({\tt maximum})$ of the spectral density of the fourier series with brownian phase

$119.14 \quad phase_drift_pdf_mode2par$

transform mode to parameters of the brownian phase spectral density

$119.15 \quad phase_drift_pdf_reg2par$

119.16 phase_drift_pdf_scale

normalization scale of the brownian phase spectral density

120 statistics/distributions/skew-normal

120.1 skew_generalized_normal_fit

120.2 skew_generalized_normpdf

120.3 skewcdf

120.4 skewparam_to_central_moments

120.5 skewpdf

skew-normal distribution c.f. Azzalini 1985

120.6 skewpdf_entropy

121 statistics/distributions/triangular

121.1 tricdf

cumulative distribution of the log-triangular distribution

121.2 triiny

inverse of the triangular distribution

121.3 trimedian

median of the triangular distribution

121.4 tripdf

probability density of the triangular distribution

121.5 trirnd

random numbers of the triangular distribution

122	statistics/distributions/weibull
122.1	${f wbl_std}$
123	statistics/distributions/wrapped-normal
123.1	$\mathbf{normpdf_wrapped}$
123.2	${f normpdf_wrapped_mode}$
123.3	normpdf_wrapped_mode2par
124	statistics
124.1	$error_propagation_fraction$
124.2	$error_propagation_product$
124.3	$example_standard_error_of_sample_quantiles$
124.4	$f_{ ext{-}} ext{var_finite}$

reduction of variance when sampling from a finite population

without replacement

124.5 gaussfit3

124.6 gaussfit_quantile

124.7 geoserr

124.8 geostd

124.9 hodges_lehmann_correlation

```
hodges_lehmann correlatoon coefficient
c.f. Shamos 1976
c.f. Bickel and Lehmann 1976
c.f. rousseeuw 1993
c.f. Shevlyakov 2011
```

124.10 hodges_lehmann_dispersion

125 statistics/information-theory

125.1 akaike_information_criterion

akaike information criterion

 $\begin{array}{lll} \text{serr} & : \text{ rmse of model prediction} \\ \text{n} & : \text{ effective sample size} \\ \text{k} & : \text{ number of parameters} \end{array}$

c.f. akaike (1974)
c.f. sugiura 1978

125.2 bayesian_information_criterion

bayesian information criterion

126 statistics

126.1 jackknife_block

126.2 kurtosis_bias_corrected

bias corrected kurtosis

126.3 limit

limit a by lower and upper bound

126.4 logfactorial

approximate log of the factorial

126.5 lognfit_quantile

$126.6 \quad max_exprnd$

126.7 maxnnormals

expected maximum of n normal variables c.f. Wolperts this is the median, not the mean of the maximum! see median of gumbel

126.8 mean_angle

126.9 mean_max_n

126.10 mean_min_n

126.11 midrange

mid range of columns of X

126.12 minavg

solution of the minimum variance problem minimise the variance of the weighted sum of n-independent random variables with equal mean and individual variance

$126.13 \quad mode_man$

127 statistics/moment-statistics

127.1 autocorr_man3

autoccorrelation of the columns of X

127.2 autocorr_man4

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix

c.f. box jenkins 2008 eq. 2.1.12

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

127.3 autocorr_man5

autocorrellation of the columns of X

127.4 blockserr

estimate the standard error of potetially sequentilly correlated data

by blocking

block length should be sufficiently larger than correlation length and sufficiently smaller than data length $\,$

this uses a sliding block approach, which reduces the variation of the error estimate

127.5 comoment

non-central higher order moments of the multivariate normal distribution

c.f. Moments and cumulants of the multivariate real and complex Gaussian distributions

note : there seem to be some typos in the original paper, for x^4 cii^2, the square seems to be missing

mu : nx1 mean vector

C : nxn covariance matrix

k : nx1 powers of variables in moments

127.6 corr_man

correlation of two vectors

127.7 cov_man

covariance matrix of two vectors

127.8 dof

mininum number of support points for a polynomial of degree order in dim dimensions

127.9 edgeworth_quantile

inverse edgeworth expansion c.f. cornis fisher 1937 c.f. Rao 2010 c.f. 2.50 in hall CHERNOZHUKOV 3.3

127.10 effective_sample_size

effective sample size of the weighted mean of uncorrelated data ${\tt c.f.}$ Kish

127.11 f_correlation

correction factor for standard error of the mean of n ar1-correlated iid samples $\ensuremath{\mathsf{S}}$

127.12 f_finite

reduction factor of standard error for sampling from a finite
 distribution
without replacement

127.13 lmean

mean of x.^l, not of abs

127.14 lmoment

1-moment of vector x

127.15 maskmean

mean of the masked values of X

127.16 masknanmean

127.17 mean1

mean of x

127.18 mean_man

mean and standard error of X

127.19 mse

mean squared error of residual vector res this is de-facto the std for an unbiased residual

127.20 nanautocorr_man1

autocorrelation of a vector with nan-values

127.21 nanautocorr_man2

autocorrelation of a vector with nan-values

127.22 nanautocorr_man4

compute autocorrelation for x if x is a vector, or indivvidually
 for the
columns of x if x is a matrix
box jenkins 2008 eq. 2.1.12
TODO nan is problematic!
Note that it is faster to compute the acf in frequency space
as done in the matlab internal function

127.23 nancorr

(co)-correlation matrix when samples a NaN

127.24 nancumsum

cumulative sum, setting nan values to zero

127.25 nanlmean

mean of the 1-th power of the absolute value of \boldsymbol{x}

127.26 nanr2

coefficient of determination when samples are invalid

127.27 nanrms

root mean square value when sample contains nan-values

127.28 nanrmse

root mean square error from vector of residuals this is de-facto the std for an unbiased residual

127.29 nanserr

standard error of \boldsymbol{x} with respect to mean when \boldsymbol{x} contains nan values

127.30 nanwmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = nanwmean(w,x)
```

127.31 nanwstd

weighed standard deviation

127.32 nanwvar

```
weighted variance of columns, corrected for degrees of freedom (
    bessel)

s^2 = sum(w*(x-sum(wx)/sum(w))^2)/sum(w)
```

127.33 nanxcorr

127.34 pearson

pearson correlation coefficient

127.35 pearson_to_kendall

conversion of pearson to kendall correlation coefficient c.f. Kruskal 1958

127.36 pool_samples

pooled mean and standard deviation of several groups of different size, mean and standard deviation

127.37 qmean

trimmed mean

$127.38 \quad range_mean$

$127.39 \quad rmse_{-}$

root mean square error computed from a residual vector this is de-facto the std for an unbiased residual

127.40 serr

standard error of the mean of a set of uncorrelated samples

$127.41 \quad serr1$

127.42 test_qskew

127.43 test_qstd_qskew_optimal_p

127.44 wautocorr

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix samples can be weighted

c.f. box jenkins 2008 eq. 2.1.12

c.f. autocorr_man4

Note that it is faster to compute the acf in frequency space as done in the matlab internal function $% \left(1\right) =\left(1\right) +\left(1\right$

127.45 wcorr

correlation of two vectors when samples are weighted

127.46 wcov

covariance of two vectors when samples are weighted

127.47 wdof

effective degrees of freedom for weighted samples

127.48 wkurt

kurtosis with weighted samples

127.49 wmean

```
weighted mean
min_x sum w (x-mu)^2 \Rightarrow mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = wmean(w,x)
127.50 wrms
weighted root mean square
127.51 wserr
weighted root mean square error
127.52 wskew
skewness of a weighted set of samples
function sk = wskew(w,x)
127.53 wstd
weighed standard deviation
127.54 wvar
weighted variance of columns, corrected for degrees of freedom (
variance of the weighted sample mean of samples with same mean (but
     not necessarily same variance)
s^2 = sum (w^2(x-sum(wx)^2))
s2_mu : error of mean, s2_mu : sd of prediction
```

128 statistics

128.1 nangeomean

128.2 nangeostd

geometric standard deviation ignoring nan-values

129 statistics/nonparametric-statistics

129.1 kernel1d

X : ouput x axis bins
xi : samples along x
m : number of bins in X
fun : kernel function

pdf : propability density of xi

129.2 kernel2d

kernel density estimate in two dimensions

130 statistics

130.1 normalize_exponential_random_variable

130.2 normmoment

expected norm of x.^n, when values x in x are iid normal with mu and $\operatorname{\text{\rm sigma}}$

130.3 normpdf2

pdf of the bivariate normal distribution

131 statistics/order-statistics

131.1 hodges_lehmann_location

hodges lehman location estimator

Asymptotic rms efficency of location estimte:

mean: 1 s/sqrt(n)

hodges lehman: sqrt(pi/3)*s ~ 1.0233 s/sqrt(n) median: pi/2 s/sqrt(n) ~ 1.25 s / sqrt(n)

131.2 kendall

kendall correlation coefficient

131.3 kendall_to_pearson

convert kendall rank correlation coefficient to the person product
 moment
correlation coefficient

c.f. Kruskal, 1958, p. 823

$131.4 \mod 2sd$

transform median absolute deviation to standard deviation for normal distributed values

131.5 madcorr

proxy correlation by median absolute deviation

$131.6 \quad median2_holder$

131.7 median_ci

median and its confidence intervals under assumption of normality se_me = sqrt(1/2 pi) 1.25331 * sd/sqrt(n)

131.8 median_man

median and confidence intervals c is a P value for the confidence interval, default is 0.95 (2-sigma) median of the colums of X

131.9 mediani

index of median, if median is not unique, any of the values is $\ensuremath{\mathtt{chosen}}$

131.10 nanmadcorr

proxy correlation by median absolute deviation

131.11 nanwmedian

weighted median, skips nan-values

131.12 nanwquantile

weighted quantile, skips nan values

131.13 oja_median

```
two dimensional oja median note: the multivariate median is not unique oja 1983, for extension to multivariate function, see chaudhri
```

131.14 qkurtosis

kurosis computed for quantiles

Note: this is a measurement of shape-tailedness and yields the same value for the normal distribution as "kurtosis"

However, this is a separate statistic and hence requires different methods for calculating P-values and hypothesis testing

131.15 qmoments

moments estimated from quantiles

131.16 qskew

skewness estimated from quantiles

Note: this is a measurement of shape-symmetry and yields the same value for the skew-normal distribution as "skewness"

However, this is an own statistic and hence requires different methods for calculating P-values and hypothesis testing

131.17 qskewq

skewness estimated by quantiles

131.18 qstdq

proxy standard deviation determined by quantiles

131.19 quantile1_optimisation

131.20 quantile2_breckling

qunatile regression

131.21 quantile2_chaudhuri

quantile regression

131.22 quantile 2_projected

quantile in two dimensions

131.23 quantile2_projected2

spatial qunatile for chosen direction

131.24 quantile_envelope

131.25 quantile_regression_simple

simple quantile regression

131.26 ranking

ranking for spearman statistics

131.27 spatial_median

c.f. $0ja\ 2008$ is this the same as the $oja\ simplex\ median\ (c.f.\ small\ 1990)$?

131.28 spatial_quantile

spatial quantile

131.29 spatial_quantile2

spatial quantile

131.30 spatial_quantile3

spatial quantile

131.31 spatial_rank

unsigned rank

131.32 spatial_sign

spatial sign

$131.33 \quad spatial_signed_rank$

signed rank

Note: this is only a true rank if ${\tt X}$ is normal with zero mean, abitrary variance

131.34 spearman

spearman's product moment coefficient

131.35 spearman_rank

$131.36 \quad spearman_to_pearson$

conversion of spearman rank to person product moment correlation coefficient

131.37 wmedian

weighted median

131.38 wquantile

weighted quantile

132 statistics

132.1 qstd

132.2 quantile_extrap

132.3 quantile_sin

133 statistics/random-number-generation

133.1 laplacernd

random number of laplace distribution

133.2 randc

correlate to correlated standard normally distributed vectors

133.3 skewness2param

$133.4 \quad skewpdf_central_moments$

133.5 skewrnd

random numbers of the skew normal distribution

134 statistics

134.1 range

range and mid range of input

$134.2 \quad resample_with_replacement$

135 statistics/resampling-statistics/@Jackknife

135.1 Jackknife

class for leave out 1 (delete 1) Jackknife estimates

- note 1 : the 1-delete jackknife does not yield consistend estimates
 for all functions,
 - in particular it will perform poorly on robust estimation functions
 - this is overcome by the d-delete jacknife, where d has to exceed the breakdown point
 - of the estimating function, for example sqrt(n) for the median
 - as this leads to unreasonably large number of repetitions, bootstrap
 - is recommended for large sample cases (or blocking for sequential data)
- note 2 : as a linearisation, jackknife underestimates the error variance in case of

dependence in the data

note 3 : studentisation and the leave out 1 jackknife are related note 4 : the double 1 sample jacknife performs iferior to the d1 jacknife $\,$

135.2 estimated_STATIC

jacknife estimate of mean, bias and standard error

 $\verb|theta0|: estimate from all samples|\\$

dimension

thetad : set of estimates obtained by leaving out one data point each $% \left(1\right) =\left(1\right) \left(1\right)$

last dimension of theta is assumed to be the jackknife

135.3 matrix1_STATIC

matrix of estimation for leaving out two samples at a time

135.4 matrix2

matrix of estimations for jacknive with two samples left out

136 statistics/resampling-statistics

136.1 block_jackknife

136.2 jackknife_moments

moments determined by the jacknife

func : function of interest on the samples (e.g. mean)

A : parameter matrix columns : parameters

rows : samples of the parameter sets

d : number of samples left out

136.3 moving_block_jackknife

```
blocked Jacknfife for autocorrelated data
sliding block, statistically more efficient but computationally
    expensive
note, number of blocks must be sufficiently large h ~ sqrt(n)? << n</pre>
```

136.4 randblockserr

standard error of sequentilly correlated data by blocking block length should be sufficiently larger than correlation length and sufficiently smaller than data length

this uses a sliding block approach, which reduces the variation of the error estimate

 $\ensuremath{\mathsf{TODO}}$ this does not work, randomly picking samples does not reveal the correlation

136.5 resample

```
resample a vector and apply function to it TODO, should be with replacement n : number of samples
```

m : number of subsamples

cx : maximum number of combinations

137 statistics

137.1 scale_quantile_sd

scale factor for the standard deviation of the asymtpotic distibution of sample quantiles (for normal distribution) see cadwell, 1952

137.2 sd_sample_quantiles

137.3 spatialrnd

137.4 trimmed_mean

trimmed mean

137.5 $ttest2_man$

```
two-sample t-test here posix return value standard: h=0 accepted, h=1 failed note: the matlab logic is inverse : h=1 accepted, h=0 failed two sided univariate t-test
```

137.6 ttest_man

two-sample t-test
unequal sample size
equal variance

137.7 ttest_paired

```
paired t-test unequal sample size equal variance more powerfull than unpaired test, as long as correlation between \rm x1 and \rm x2 > 0
```

137.8 uniformnpdf

137.9 wgeomean

```
weighted geometric mean
function mu = wgeomean(w,x)
```

137.10 wgeovar

variance of the weighted geometric mean

137.11 wharmean

weighted harmonic mean

137.12 wharstd

137.13 wharvar

138 stochastic

138.1 brownian_drift_hitting_probability

138.2 brownian_drift_hitting_probability2

138.3 brownian_field

138.4 brownian_field_scaled

generate a square (fractal brownian) field where the variance is
 ellyptic,
i.e. increasing at different rates in both axes
this is facilitated by cropping and stretching
TODO can the kernel directly be adapted?

- 138.5 brownian_motion_1d_acf
- 138.6 brownian_motion_1d_cov
- 138.7 brownian_motion_1d_fft
- 138.8 brownian_motion_1d_fourier
- 138.9 brownian_motion_1d_interleave

138.11	$brownian_motion_2d_cov$
138.12	$brownian_motion_2d_fft$
138.13	$brownian_motion_2d_fft_old$
138.14	$brownian_motion_2d_fourier$
138.15	$brownian_motion_2d_interleave$
138.16	$brownian_motion_2d_interleaving$
138.17	brownian_motion_2d_kahunen
138.18	$brownian_motion_2d_laplacian$
138.19	$brownian_motion_with_drift_hitting_probability$

 $138.10 \quad brownian_motion_1d_laplacian$

139 stochastic/geometric-ar1

139.1 geometric_ar1_2d_generate

139.2 geometric_ar1_2d_generate_1

realization of the spatial geometric ornstein (geometric ar1)
 process
averaged over grid cells

139.3 geometric_ar1_2d_grid_cell_averaged_cov

139.4 geometric_ar1_2d_grid_cell_averaged_generate

simulate a grid cell averaged stochastic process $\exp(z)$ where z follows an Ornstein-Uhlenbeck (AR1) process with mean lmu, standard deviatian sd and stationary autocorrelation $\operatorname{corr}(z(0,0),z(x,y)) = \exp(-\operatorname{sqrt}(x^2 + y^2)/\operatorname{theta})$

139.5 geometric_ar1_2d_grid_cell_averaged_moment2par

139.6 geometric_ar1_2d_grid_cell_averaged_std

mean of the values val covariance fucntion of the values

140 stochastic

140.1 ornstein_uhlenbeck_cov

140.2	$ornstein_uhlenbeck_mean$	
140.3	$ornstein_uhlenbeck_spectral_density$	
140.4	$ornstein_uhlenbeck_std$	
141	mathematics	
mathematical functions of various kind		
141.1	$ternary_diagram$	
142	test/finance	
142.1	${ m test_gbb_mean}$	
142.2	${ m test_gbb_std}$	
142.3	${ m test_gbm_mean}$	

 $142.4 \quad test_gbm_mean_entire_series$

- $142.5 \quad test_gbm_moment2par$
- $142.6 \quad test_gbm_moment2par_entire_series$
- 142.7 test_gbm_std
- $142.8 \quad test_gbm_std_entire_series$
- 143 test/fourier
- 143.1 test_fourier_freq2ind
- 144 test/master
- 144.1 dat_test_lanczos_3d_k_20_n_40
- 144.2 poisson $2d_blk$
- 144.3 qr_implicit_givens_2
- 144.4 spectral_derivative_2d

- $144.5 \quad test_2d_eigensolver_hydrogen$
- 144.6 test_2d_refine
- 144.7 test_ $3d_eigensolver_hydrogen$
- $144.8 \quad test_FEM$
- $144.9 \quad test_Mesh_3d$
- 144.10 test_arnoldi
- 144.11 test_arpackc
- 144.12 test_assemble
- 144.13 test_assembly_performance
- 144.14 test_bc_one_sided

- $144.15 \quad test_compare_solvers$
- 144.16 test_complete
- 144.17 test_convergence
- 144.18 test_convergence_b
- 144.19 $test_df_2d$
- 144.20 test_eig_algs
- 144.21 test_eig_inverse
- 144.22 test_eigs_lanczos
- 144.23 test_eigs_lanczos_1
- 144.24 test_eigs_lanczos_2

- $144.25 \quad test_eigs_lanczos_performance$
- 144.26 test_fdm
- 144.27 test_fdm_d_vargrid
- 144.28 test_fdm_spectral
- 144.29 test_fem
- 144.30 test_fem_1d
- $144.31 \quad test_fem_1d_higher_order$
- 144.32 test_fem_2d_adaptive
- 144.33 test_fem_2d_higher_order
- 144.34 test_fem_3d_higher_order

- 144.35 test_fem_3d_refine
- 144.36 test_fem_b
- 144.37 test_fem_derivative
- 144.38 test_fem_quadrature
- 144.39 test_final
- 144.40 test_fix_substitution
- 144.41 test_forward
- 144.42 test_get_sparse_arrays
- 144.43 test_harmonic_oscillator
- 144.44 test_high_order_fdm_periodic_bc

 $144.45 \quad test_hydrogen_wf$

144.46 test_ichol

144.47 test_interpolation

 $144.48 \quad test_inverse_problem$

144.49 test_it_vs_exact

144.50 $test_jama$

144.51 $test_jd$

144.52 $test_{j}dqz$

144.53 test_lanczos_2

144.54 test_lanczos_biorthogonal

- 144.55 test_laplacian
- $144.56 \quad test_laplacian_non_uniform$
- 144.57 test_laplacian_simple
- 144.58 test_mesh_2d_uniform
- 144.59 test_mesh_2d_uniform_2
- 144.60 test_mesh_circle
- 144.61 test_mesh_generation
- 144.62 test_mesh_interpolate
- 144.63 test_mg
- 144.64 test_minres_recycle

 $144.65 \quad test_multigrid$ 144.66 test_nc 144.67 test_nonuniform_symmetric $144.68 \quad test_pde$ 144.69 test_permutation $144.70 \quad test_poison_fem$ 144.71 test_polar 144.72 test_potential

144.74 test_precondition

144.73 test_powers

- 144.75 test_project_rectangle
- 144.76 $test_qr$
- 144.77 test_quantum_well
- 144.78 test_radial_adaptive
- 144.79 test_radial_confinement
- 144.80 test_radial_fixes
- 144.81 test_refine_2d
- 144.82 test_refine_2d_b
- 144.83 test_refine_3d
- 144.84 test_refine_structural

144.85 test_regularisation
144.86 test_round_off
144.87 test_schrödinger_potentials
144.88 test_uniform_mesh
144.89 test_vargrid
145 test/numerical-methods/optimisation 145.1 test_extreme3
146 test/signal-processing/autocorrelation 146.1 test_acf
146.2 test_acf_bias

146.3 test_acfar1_2

- 146.4 $test_acfar1_3$
- 146.5 test_acfar1_4
- 146.6 test_acfar2
- 146.7 test_ar1_var_factor
- 146.8 test_ar1_var_factor_2
- $146.9 \quad test_ar1_var_mu_single_sample$
- 146.10 $test_ar1_var_pop$
- $146.11 \quad test_ar1_var_pop_1$
- 146.12 test_ar1delay
- 146.13 $test_ar2$

- $146.14 \quad test_phase_drift_acf$
- 147 test/signal-processing/passes
- 147.1 test_bandpass2d
- $147.2 \quad test_bandpass2d_ideal$
- 147.3 test_lowpass1d_fft
- 147.4 test_lowpass1d_implicit
- $147.5 \quad test_lowpass2d_anisotropic$
- $147.6 \quad test_lowpass2d_fft$
- $147.7 \quad test_lowpass2d_rho$
- 148 test/signal-processing/periodogram
- 148.1 test_periodicity_test_2d

148.3 $test_periodogram_gauss$ 148.4 test_periodogram_radial $test_periodogram_test$ 148.5 $148.6 \quad test_periodogram_test_periodicity_2d$ $test_periogogram_significance$ 148.7149 test/signal-processing/spectral-density 149.1 test_phase_drift_parallel_pdf $149.2 \quad test_phase_drift_parallel_pdf_mode2par$

 $148.2 \quad test_periodogram_bartlett_se$

149.3 test_phase_drift_pdf

149.4	$test_phase_drift_pdf_2d$
149.5	$test_phase_drift_pdf_mode$
149.6	$test_phase_drift_pdf_mode2par$
149.7	$test_phase_drift_pdf_scale$
149.8	$test_spectral_density_2$
149.9	$test_spectral_density_bandpass_2d$
149.10	$test_spectral_density_bandpass_2d_max2par$
149.11	$test_spectral_density_bandpass_continuous$
1	title(sprintf('n %d L %g %g%%',[n,L,1e2*rmse(idx,jdx)]))
149.12	$test_spectral_density_bandpass_continuous_1$

 $149.13 \quad test_spectral_density_bandpass_maximum$

- $149.14 \quad test_spectral_density_bandpass_scale$
- 149.15 test_spectral_density_bp
- 149.16 test_spectral_density_bp_2d
- $149.17 \quad test_spectral_density_bp_approx$
- 149.18 test_spectral_density_flat
- $149.19 \quad test_spectral_density_hp_cos$
- $149.20 \quad test_spectral_density_lorentzian_max$
- $149.21 \quad test_spectral_density_lorentzian_scale$
- $149.22 \quad test_spectral_density_lowpass$
- 149.23 test_spectral_density_lowpass_continuous

149.24	$test_spectral_density_lowpass_continuous_1$
149.25	$test_spectral_density_maxiumum_bias_corrected$
150	test/signal-processing
150.1	$test_autocorrelation_max$
150.2	$test_cdf_bandpass_continuous$
150.3	$test_fit_spectral_density$
150.4	$test_phase_drift_cdf$
	test/spatial-pattern-analysis
151.1	$test_approximate_ratio_distribution$
151.2	$test_approximate_ratio_quantile$

 $151.3 \quad test_separate_isotropic_density$

- 152 test/spatial-statistics
- $152.1 \quad test_cov_cell_averages_1d$
- $152.2 \quad test_cov_cell_averages_2d$
- 153 test/statistics/distributions/anisotropic
- 153.1 test_anisotropic_pattern
- $153.2 \quad test_anisotropic_pattern_pdf$
- 154 test/statistics/distributions/gamma
- 154.1 test_generalized_gamma_mean
- 155 test/statistics/distributions/log-uniform
- 155.1 test_logurnd
- 156 test/statistics/distributions/lognormal
- 156.1 test_logn_cov

157	test/statistics/distributions/mises
157.1	$test_mises_std$
158	test/statistics/distributions/passes
158.1	$test_bandpass2d_pdf$
158.2	${ m test_bandpass2d_pdf_hankel}$
1522	${ m test_bandpass2d_pdf_mode}$
100.0	test_bandpass2d_pdf_mode
158.4	$test_lowpass2d_pdf_hankel$
158.5	$test_lowpass2d_pdf_series$
159	test/statistics/distributions/skew-normal
159.1	${ m test_skew_generalized_normpdf}$

160

160.1

 ${\it test/statistics/distributions}$

 $test_normpdf_wrapped$

- $161 ext{ test/statistics/distributions/weibull}$
- $161.1 test_wbl_std$
- 162 test/statistics/moment-statistics
- 162.1 test_wmean
- 163 test/statistics
- 163.1 test_fisher_moment2par
- 163.2 test_gamma_mode
- $163.3 \quad test_normalize_exponential_random_variable$
- 164 test/stochastic
- 164.1 test_brownian_field
- 164.2 test_brownian_field_scaled
- 165 test/stochastics
- 165.1 test_brownian_surface

166 test

 $166.1 \quad test_S$

 $166.2 \quad test_advect_analytic$

166.3 test_asymbp

166.4 test_bandwidth

166.5 test_bartlett_angle

166.6 test_bartlett_distribution

166.7 test_bartlett_expansion

166.8 $test_beta$

166.9 test_betainc

- $166.10 \quad test_bivariate_covariance_term$
- $166.11 \quad test_brownian_drift_hitting_probability$
- 166.12 test_brownian_drift_hitting_probability2
- 166.13 test_brownian_motion_1d
- 166.14 test_brownian_motion_2d_cov
- 166.15 test_brownian_motion_2d_fft
- 166.16 test_brownian_noise_1d
- 166.17 test_brownian_noise_2d
- 166.18 test_brownian_noise_interleave
- 166.19 test_coherence

 $166.20 \quad test_combined_spectral_density$ 166.21 test_continuous_fourier_transform 166.22 test_convexity 166.23 $test_d2$ $166.24 \quad test_determine_phase_shift$ $166.25 \quad test_diffuse_analytic$ 166.26 test_diffusion_matrix 166.27 test_ellipse 166.28 test_error_propagation_fraction

166.29 $test_f$

- 166.30 $test_f2$
- $166.31 \quad test_fit_2d_spectral_density$
- 166.32 test_fourier
- 166.33 test_fourier_derivative
- 166.34 test_fourier_derivative_1
- 166.35 test_fourier_integral
- 166.36 test_fourier_mask_covariance_matrix
- 166.37 $test_ft_p$
- $166.38 \quad test_gam$
- 166.39 test_gamma_distribution

 $166.40 \quad test_gampdf_man$

 $166.41 \quad test_gaussfit3$

 $166.42 \quad test_gaussian_flat$

 $166.43 \quad test_geoserr$

166.44 test_hexagonal_pattern

166.45 test_iafrate

 $166.46 \quad test_implicit_ode$

166.47 test_imrotmat

166.48 test_integration

166.49 test_ivp

- 166.50 test_jacobian
- 166.51 test_lanczoswin
- 166.52 test_laplacian_power
- 166.53 test_lognfit_quantile
- $166.54 \quad test_ls_perpendicular_offset$
- 166.55 test_madcorr
- 166.56 test_mask
- 166.57 test_max_normal
- 166.58 test_moments
- 166.59 test_moments_fourier_power

166.61 test_noisy_oscillator 166.62 test_nonperiodic_pattern 166.63 test_normalizatation 166.64 test_ols 166.65 $test_parcorr$ 166.66 test_positivity_preserving 166.67 test_randar1

 $166.60 test_mtimes3x3$

166.68 test_randar1_multivariate

 $166.69 test_randar2$

- $166.70 \quad test_ratio_distributions$
- 166.71 test_sd_rectwin
- 166.72 test_spatialrnd
- 166.73 test_spectrum_additivity
- 166.74 test_stationarity
- 166.75 test_stationarity2
- 166.76 test_sum_ij
- 166.77 test_sum_multivar
- 166.78 test_trifilt1
- 166.79 test_wautocorr

166.80 test_wavelet_transform

166.81 test_whittle

166.82 test_window

166.83 test_wordfilt

166.84 test_xar1_mid_term

167 mathematics

mathematical functions of various kind

167.1 trapezoidal_fixed

168 wavelet

168.1 continuous_wavelet_transform

continuous wavelet transform
follows "The Illustrated Wavelet Transform Handbook: Introductory
 Theory and ..."

168.2 cwt_man

continuous fourier transform as of time of implmentation, the matlab interal cwt is affected by serious round-off errors and has issues with the scaling, which is not the case here

168.3 cwt_man2

168.4 example_wavelets

168.5 phasewrap

wrap the phase to +/- pi

168.6 $test_cwt_man$

168.7 test_phasewrap

168.8 test_wavelet

168.9 test_wavelet2

168.10 test_wavelet_analysis

168.11 test_wavelet_reconstruct

168.12 test_wtc

168.13 wavelet

wavelet windows

168.14 wavelet_reconstruct

iverses wavelet transform for single frequency (reconstruction of time series) n: window lengths in multiples of filter period 1/f0

168.15 wavelet_transform

wavelet transform for single frequency n : window lengths in multiples of filter period 1/f0