Building Distributed Applications using Microsoft Orleans

Praveen Raghuvanshi
@praveenraghuvan

LET'S BEGIN NOW!

INTRODUCTION!

- Cloud Architect @ HARMAN
- Domain: Professional Audio, Video & Control
- Area of Expertise: Cloud, Distributed computing
- Area of Interest: AI/ML, Cloud and IoT
- Location: Bangalore, India
- Azure certified
- Member NET foundation

AGENDA

Actor Model
Threading, Concurrency, Actors, Different APM frameworks

Project 'Microsoft Orleans'
History, About, Use cases

Components of Orleans
Grains(Virtual Actors), Silo, Cluster

Deployment Models
In-process, Single or Multiple host, Cloud

Dashboard

06 Demo

THREADING, CONCURRENCY AND PARALLELISM

Vending Machine

- Simultaneously, not parallel. (context switch)
- A logical distinction.
- Can be worked with single core

Vending Machine

Vending Machine

imgflip.com

- Processor's power physically
- Multi-core

ACTOR MODEL

mailbox
message

- Invented by Carl Hewitt in 1973
- An actor is a computer process with an address.
- It encapsulates state and behavior within it.
- Message passing and async communication
- Single thread execution

- Sequential message processing
- Location Transparency
- No data sharing.
- No locks, thread management and concurrency issues
- Easy to scale, highly performance and fault-tolerant.

DITO TO actor

ACTOR MODEL FRAMEWORK

02 MICROSOFT ORLEANS

SIMPLE

Simple for developers, widely accessible programming model.

SCALABLE

Scalable, something that can be deployed to single or multiple node.

ABSTRACTED

Abstract the underlying intricacies of distributed computing/programming.

OVERVIEW

- Created by Microsoft Research
- Open Sourced in January 2015
- Built with Azure in mind
- Based on Virtual actor
- Used in Halo 4 and 5
- Used in various Azure services
- Support multiple deployment
- No Concurrency Issues

03 ORLEANS COMPONENTS

User/jack@email.com

class User : Grain, IUser

ACTOR

- Grains are implementations of Actors
- They have an identity
- Loosely Coupled(Backed by an Interface)
- Terminated to free compute resources

LIFECYCLE

- Activating
- Active
- Deactivating
- Persisted

STORAGE

- It can be stored in memory(Volatile)
- Stored in DB for persistence

SILOS

- Its an host for a Grain
- Manages lifecycle of a Grain
- Generally have 1 silo per Node/Container/Machine
- A cluster is used for fault tolerance and Scalability

04 DEPLOYMENT

DEPLOYMENTS

05 DASHBOARD

Overview

🗞 Grains

Silos

≡ Log Stream

ERROR RATE

18.53%

REQ/SEC

41.88

AVERAGE RESPON...

20.60ms

Cluster Profiling

Methods with Most Calls

Methods with Most Exceptions Methods with Highest Latency

06 DEMO

REFERENCES

- FDSA
- FSADFSA

THANK YOU FOR WATCHING!

ANY QUESTIONS?

https://linktr.ee/praveenraghuvanshi