US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250261360 A1 August 14, 2025 CHOI; Yoon Young et al.

GROUND-CONNECTED SUPPORTS WITH INSULATING SPACERS FOR SEMICONDUCTOR MEMORY CAPACITORS AND METHOD OF FABRICATING THE SAME

Abstract

A semiconductor device may comprise: a plurality of lower electrodes which are on a substrate; a first electrode support which is between adjacent lower electrodes and comprises a metallic material; a dielectric layer which is on the lower electrodes and the first electrode support to extend along profiles of the first electrode support and each of the lower electrodes; and an upper electrode which is on the dielectric layer.

Inventors: CHOI; Yoon Young (Seoul, KR), KIM; Seung Jin (Hwaseong-si, KR), LEE;

Byung-Hyun (Hwaseong-si, KR), PARK; Sang Jae (Seoul, KR)

Applicant: Samsung Electronics Co., Ltd. (Suwon-si, KR)

Family ID: 1000008561427

Assignee: Samsung Electronics Co., Ltd. (Suwon-si, KR)

Appl. No.: 19/191448

Filed: April 28, 2025

Foreign Application Priority Data

KR 10-2019-0151871 Nov. 25, 2019

Related U.S. Application Data

parent US continuation 18395918 20231226 PENDING child US 19191448 parent US continuation 17032655 20200925 parent-grant-document US 11910593 child US 18395918

Publication Classification

Int. Cl.: H10B12/00 (20230101); G11C5/10 (20060101); G11C11/402 (20060101); H10D1/00 (20250101); H10D1/68 (20250101)

U.S. Cl.:

CPC **H10B12/34** (20230201); **G11C5/10** (20130101); **G11C11/4023** (20130101); **H10D1/042** (20250101); **H10D1/716** (20250101);

Background/Summary

[0001] This U.S. non-provisional application is a Continuation of U.S. application Ser. No. 18/395,918, filed on Dec. 26, 2023, which is a Continuation of U.S. application Ser. No. 17/032,655, filed on Sep. 25, 2020, which claims the benefit of priority under 35 U.S.C. § 119 Korean Patent Application No. 10-2019-0151871, filed on Nov. 25, 2019, in the Korean Intellectual Property Office (KIPO), the entire disclosures of each of which are incorporated herein in its entirety by reference.

BACKGROUND

1. Field

[0002] The present disclosure relates to a semiconductor device, and more particularly, to a semiconductor device that comprises a conductive electrode extending in a direction and a support structure supporting the conductive electrode.

2. Description of the Related Art

[0003] As semiconductor devices become more integrated larger capacitance and higher integration density is beneficial, leading to design rules being continuously reduced. This trend is noticeable in dynamic random access memory (DRAM) which is a type the semiconductor memory device, which is provided a smaller footprint in more integrated devices. However, in order for a DRAM device to operate, more than a certain level of capacitance is required in each cell, which may be hindered by the smaller footprint, as capacitance is a function of the surface area of the capacitor's electrode.

[0004] To this end, research is being conducted on utilizing a dielectric layer having a high dielectric constant in a capacitor and/or increasing a contact area between a lower electrode of the capacitor and the dielectric layer, for example, a capacitor wherein the contact area between the capacitor and the dielectric layer increases when the height of the lower electrode is increased, thereby increasing the capacitance of the capacitor.

[0005] To prevent the lower electrode from tilting or collapsing due to the increased height of the lower electrode, the use of a support structure capable of supporting the lower electrode has been suggested.

SUMMARY

[0006] Aspects related to various example embodiments of the present inventive concepts provide a semiconductor device in which an electrode support supporting a lower electrode is connected to a ground voltage to improve the performance and reliability of the device.

[0007] Aspects related to various example embodiments of the present inventive concepts also provide a method of fabricating a semiconductor device in which an electrode support supporting a lower electrode is connected to a ground voltage to improve the performance and reliability of the device.

[0008] According to some example embodiments of the present inventive concepts, a

semiconductor device comprises: a plurality of lower electrodes on a substrate; a first electrode support between adjacent lower electrodes and comprises a conductive material; a dielectric layer on the plurality of lower electrodes and the first electrode support extending along profiles of the plurality of first electrode support and each of the lower electrodes; and an upper electrode on the dielectric layer.

[0009] According to some example embodiments of the present inventive concepts, a semiconductor device comprises: a plurality of lower electrodes on a substrate; an electrode support, comprising a conductive material, between adjacent lower electrodes of the plurality of lower electrodes, and comprising a support exposed area on an upper surface of the electrode support; a dielectric layer on the electrode support and the lower electrodes but not on the support exposed area of the electrode support; an upper electrode on the dielectric layer; an upper plate electrode on the upper electrode and electrically connected to the electrode support; and a ground plug connected to the upper plate electrode.

[0010] According to some example embodiments of the present inventive concepts, a semiconductor device comprises: an electrode support on a substrate and defining a plurality of lower electrode holes; insulating spacers on sidewalls of each of the lower electrode holes; a plurality of lower electrodes in the lower electrode holes and spaced apart from the electrode support by the insulating spacer; a dielectric layer on the lower electrodes and the electrode support; and an upper electrode on the dielectric layer and electrically connected to the electrode support. However, aspects of the example embodiments of the present inventive concepts are not restricted to the ones set forth herein. The above and other aspects of the example embodiments will become more apparent to one of ordinary skill in the art to which the example embodiments pertain by referencing the detailed description of the example embodiments of the present inventive concepts given below.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:

[0012] FIGS. **1** and **2** are plan views of a semiconductor device according to at least one example embodiment of the present inventive concepts;

[0013] FIGS. 3 and 4 are cross-sectional views taken along A-A and B-B of FIG. 2;

[0014] FIG. 5 is an enlarged view of a part P of FIG. 4;

[0015] FIGS. **6** and **7** respectively illustrate semiconductor devices according to at least one example embodiment of the present inventive concepts;

[0016] FIG. **8** illustrates a semiconductor device according at least one example embodiment of the present inventive concepts;

[0017] FIGS. **9** through **11** respectively illustrate semiconductor devices according to at least one example embodiment of the present inventive concepts;

[0018] FIG. **12** illustrates a semiconductor device according to at least one example embodiment of the present inventive concepts;

[0019] FIG. **13** illustrates a semiconductor device according to at least one example embodiment of the present inventive concepts;

[0020] FIGS. **14** and **15** illustrate a semiconductor device according to at least one example embodiment of the present inventive concepts;

[0021] FIG. **16** illustrates a semiconductor device according to at least one example embodiment of the present inventive concepts;

- [0022] FIGS. **17** through **19** respectively illustrate semiconductor devices according to at least one example embodiment of the present inventive concepts;
- [0023] FIGS. **20** and **21** illustrate a semiconductor device according to at least one example embodiment of the present inventive concepts;
- [0024] FIGS. **22** through **34** are views illustrating operations of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts;
- [0025] FIG. **35** is a view illustrating an operation of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts; [0026] FIGS. **36** through **39** are views illustrating operations of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts; and
- [0027] FIG. **40** is a view illustrating an operation of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts. DETAILED DESCRIPTION
- [0028] Drawings relating to a semiconductor device according to example embodiments of the [0029] present inventive concepts illustrate a capacitor and electrode supports included in a dynamic random access memory (DRAM).
- [0030] Although the terms "first," "second," "third," etc., may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections, should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, or section, from another region, layer, or section. Thus, a first element, component, region, layer, or section, discussed below may be termed a second element, component, region, layer, or section, without departing from the scope of this disclosure.
- [0031] When an element is referred to as being "on," "connected to," "coupled to," or "adjacent to," another element, the element may be directly on, connected to, coupled to, or adjacent to, the other element, or one or more other intervening elements may be present. In contrast, when an element is referred to as being "directly on," "directly connected to," "directly coupled to," or "immediately adjacent to," another element there are no intervening elements present. [0032] Spatially relative terms, such as "lower," "upper," and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "lower" other elements or features would then be oriented "above" the other elements or features. Thus, the example terms "lower" and "upper" may encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. In addition, when an element is referred to as being "between" two elements, the element may be the only element between the two elements, or one or more other intervening elements may be present. [0033] FIGS. **1** and **2** are plan views of a semiconductor device according to at least one example embodiment of the present inventive concepts. FIGS. 3 and 4 are cross-sectional views taken along A-A and B-B of FIG. **2**. FIG. **5** is an enlarged view of a part P of FIG. **4**.
- [0034] For reference, FIG. 1 is a plan view of lower electrodes 210 and a second electrode support 150 of the semiconductor device. FIG. 2 is an example plan view of an upper electrode 230 formed on the lower electrodes 210 and the second electrode support 150 of FIG. 1. FIGS. 3 and 4 are examples of cross-sectional views of an upper plate electrode 240 and a first ground plug 270 on the upper electrode 230 of FIG. 2.
- [0035] Referring to FIGS. **1** through **5**, the semiconductor device according to the embodiments

may include a plurality of lower electrodes **210**, a first electrode support **130**, the second electrode support **150**, insulating spacers **160**, a capacitor dielectric layer **220**, the upper electrode **230**, the upper plate electrode **240**, and the first ground plug **270**.

[0036] First landing pads **115** may be on a substrate **100**. The first landing pads **115** may be connected to the substrate **100**. The first landing pads **115** may be electrically connected to conductive areas formed on the substrate **100** or in the substrate **100**. The first landing pads **115** may be connected to the substrate **100** via first storage contacts **105**. The first landing pads **115** may be on the first storage contacts **105**, respectively.

[0037] A first interlayer insulating film **110** may be on the substrate **100**. The first storage contacts **105** and the first landing pads **115** may be in the first interlayer insulating film **110** on the substrate **100**. The substrate **100** may be a silicon substrate like bulk silicon or silicon-on-insulator (SOI). Alternatively, the substrate **100** may be, but is not limited to, a semiconductor substrate, like a substrate including silicon germanium, silicon germanium on insulator (SGOI), indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide, and/or gallium antimonide. In the following description, the substrate **100** will be described as a silicon substrate. [0038] The first interlayer insulating film **110** may include an insulator material, for example, at least one of silicon oxide, silicon nitride, silicon oxynitride (SiON), silicon oxycarbonitride (SiOCN), and/or combinations of the same. The first storage contacts **105** may include, for example, at least one of a semiconductor material doped with impurities, a conductive silicide compound, a conductive metal nitride, a metal, and/or a combination thereof. The first landing pads 115 may include, for example, at least one of a semiconductor material doped with impurities, a conductive silicide compound, a conductive metal nitride, a metal, and/or a combination thereof. In the semiconductor device according to an example embodiment, the first landing pads 115 may include tungsten (W). The first landing pads 115 and the first storage contacts may include the same or different materials.

[0039] A first etch stop layer **120** may be on the first interlayer insulating film **110**. The first etch stop layer **120** may expose at least a part of each of the first landing pads **115**. For example, the first etch stop layer **120** may be on the first landing pads **115**. The first etch stop layer **120** may include electrode pad openings which at least partially expose the first landing pads **115**. The first etch stop layer **120** may include, for example, at least one of silicon nitride (SiN), silicon carbonitride (SiCN), silicon boron nitride (SiBn), silicon oxycarbide (SiCO), silicon oxynitride (SiON), silicon oxide (SiO), and silicon oxycarbonitride (SiOCN). Herein, unless otherwise specifically indicated, the atomic abbreviations indicate the comprising atomic composition of the material but do not include or limit the ratio of atoms in the material. For example, silicon oxycarbide (SiCO) indicates that it contains silicon (Si), carbon (C) and oxygen (O) and does not indicate a specific 1:1:1 ratio between silicon (Si), carbon (C) and oxygen (O).

[0040] The lower electrodes **210** may be on the substrate **100**. The lower electrodes **210** may be on the first landing pads **115**. A part of each of the lower electrodes **210** may be in the first etch stop layer **120**. The lower electrodes **210** may pass through the first etch stop layer **120** and connected to the first landing pads **115**.

[0041] For example, each of the lower electrodes **210** may be shaped like a pillar. For example, the lower electrodes **210** may include a cylinder (e.g., with a circular or ovoid cross-section) and/or may include a polygonal cross-section. The lower electrodes **210** may extend in a thickness direction of the substrate **100** (e.g., extending in a direction away from the upper surface of the substrate **100**). A length to which the lower electrodes **210** extend in the thickness direction of the substrate **100** may be greater than a length to which the lower electrodes **210** extend in a direction DR**1**, DR**2**, or DR**3** parallel to the substrate **100**.

[0042] The lower electrodes **210** may be repeatedly aligned along a first direction DR**1** and a second direction DR**2**. The first direction DR**1** and the second direction DR**2** may be orthogonal to each other. The lower electrodes **210** repeatedly aligned in the first direction DR**1** may also be

repeatedly aligned in the second direction DR2. The lower electrodes **210** repeatedly aligned in the second direction DR2 may not be linearly arranged along the second direction DR2. The lower electrodes **210** repeatedly aligned in the second direction DR2 may be arranged in a zigzag pattern. The lower electrodes **210** may be linearly arranged along a third direction DR3.

[0043] The lower electrodes **210** may include, but are not limited to, a doped semiconductor material, a conductive metal nitride (such as titanium nitride, tantalum nitride, niobium nitride or tungsten nitride), a metal (such as ruthenium, iridium, titanium or tantalum), and/or a conductive metal oxide (such as iridium oxide or niobium oxide). In the semiconductor device according to the example embodiments, the lower electrodes **210** may include titanium nitride (TiN). Alternatively, in the semiconductor device according to another example embodiment, the lower electrodes **210** may include niobium nitride (NbN).

[0044] The first electrode support **130** may be on the first etch stop layer **120**. The first electrode support **130** may be spaced apart from the first etch stop layer **120**. The first electrode support **130** may be between adjacent lower electrodes **210**.

[0045] The first electrode support **130** may include a plurality of first electrode holes **130***h* formed at positions corresponding to the lower electrodes **210**. The lower electrodes **210** may penetrate the first electrode holes **130***h* in the thickness direction of the substrate **100**. The first electrode support **130** may contact the lower electrodes **210**. The first electrode support **130** may partially contact sidewalls of the lower electrodes **210**. The first electrode support **130** may contact the lower electrodes **210** at the first electrode holes **130***h*.

[0046] The first electrode support **130** may include first through patterns **130***tp* formed between adjacent lower electrodes **210**. A description of the first through patterns **130***tp* may be similar to a description of second through patterns **150***tp* to be given later.

[0047] The first electrode support **130** may include an insulating material, for example, at least one of silicon nitride, silicon carbonitride, silicon boron nitride, silicon oxycarbide, silicon oxycarbonitride, silicon oxycarbonitride.

[0048] The second electrode support **150** may be on the first electrode support **130**. The second electrode support **150** may be spaced apart from the first electrode support **130**. The second electrode support **150** may be between adjacent lower electrodes **210**. The second electrode support **150** may include a plurality of second electrode holes **150***h* formed at positions corresponding to the lower electrodes **210**. The lower electrodes **210** may penetrate the second electrode holes **150***h*. The second electrode support **150** may be spaced apart from and, thus, not contact the lower electrodes **210**.

[0049] The second electrode support **150** may include the second through patterns **150**tp formed between adjacent lower electrodes **210**. The second through patterns **150**tp may be formed at positions corresponding to the first through patterns **130**tp. The first through patterns **130**tp and the second through patterns **150**tp may overlap in the thickness direction of the substrate **100**. The first through patterns **130**tp and the second through patterns **150**tp may be formed in the process of forming the first electrode support **130** and the second electrode support **150**.

[0050] The second electrode support **150** may include a conductive material, for example, a metallic material. The second electrode support **150** may include at least one of, for example, a semiconductor material doped with impurities, a conductive silicide compound, a conductive metal nitride, and a metal. In the following description, the second electrode support **150** will be described as including a metallic material.

[0051] Each of the first through patterns **130***tp* and the second through patterns **150***tp* may be formed over a plurality of adjacent lower electrodes **210**. In the semiconductor device according to an example embodiment, each of the first through patterns **130***tp* and the second through patterns **150***tp* may be formed between four adjacent lower electrodes **210**. Four lower electrodes **210** meeting one second through pattern **150***tp* may be at vertices of a quadrangle. The lower electrodes **210** are not in the first through patterns **130***tp* and the second through patterns **150***tp*.

[0052] In FIG. **1**, one lower electrode **210** not meeting the second through patterns **150***tp* is located between the second through patterns **150***tp* adjacent to each other in the first direction DR**1**. However, embodiments are not limited to this case. For example, no lower electrode **210** not meeting the second through patterns **150***tp* may be located between the second through patterns **150***tp* adjacent to each other in the first direction DR**1**. Alternatively, two or more lower electrodes **210** not meeting the second through patterns **150***tp* may be located between the second through patterns **150***tp* adjacent to each other in the first direction DR**1**.

[0053] The second electrode support **150** may include an electrode support part **150_1** in which the second electrode holes **150***h* are formed and an edge part **150_2** along the edges of the electrode support part **150_1** and surrounds the electrode support part **150_1**. The edge part **150_2** of the second electrode support **150** may define a boundary of the second electrode support **150**. The edge part **150_2** of the second electrode support **150** may be a part located further out than outermost lower electrodes **210**.

[0054] The electrode support part **150_1** of the second electrode support **150** may include an inner support area **150_11** in which the second through patterns **150**tp are formed and an outer support area **150_12** in which the second through patterns **150**tp are not formed.

[0055] The second electrode support **150** includes an upper surface **150***us* and a lower surface **150***bs* facing each other. For example, the lower surface **150***bs* of the second electrode support **150** may face the substrate **100**. The second electrode holes **150***bs* of the second electrode support **150** and the lower surface **150***bs* of the second electrode support **150**. Although the upper surface **150***us* of the second electrode support **150** is illustrated as lying in the same plane as an upper surface **210***us* of each lower electrode **210**, embodiments are not limited to this case. For example, some and/or all of the lower electrodes **210** may also protrude above the upper surface **150***us* of the second electrode support **150**.

[0056] The upper surface **150***us* of the second electrode support **150** may include first boundary lines **150***sb* extending in the first direction DR**1** and second boundary lines **150***sa* extending in the second direction DR**2**. The first boundary lines **150***sb* of the second electrode support **150** and the second boundary lines **150***sa* of the second electrode support **150** may form the boundary of the second electrode support **150**.

[0057] In FIG. **1**, the first boundary lines **150**sb of the second electrode support **150** and the second boundary lines **150**sa of the second electrode support **150** are directly connected to each other. However, this is merely an example used for ease of description, and embodiments are not limited to this example. The first boundary lines **150**sb of the second electrode support **150** and the second boundary lines **150**sa of the second electrode support **150** may also be connected by a connection boundary, and the connection boundary may include various shapes such as a straight line, a curve, a step shape, and/or a wavy shape.

[0058] The upper surface **150***us* of the second electrode support **150** may include an unexposed area **150***us*_**1** covered by the capacitor dielectric layer **220** and the upper electrode **230** and an exposed area **150***us*_**2** not covered by the capacitor dielectric layer **220** and the upper electrode **230**. The exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** is a part on which the capacitor dielectric layer **220** and the upper electrode **230** are not formed. The edge part **150**_**2** of the second electrode support **150** includes the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**. For example, the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** may be shaped like a rectangle extending in the first direction DR**1** or the second direction DR**2**.

[0059] In the semiconductor device according to the example embodiments, the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** may extend along the first boundary lines **150***sb* of the second electrode support **150** and the second boundary lines **150***sa* of the second electrode support **150**.

[0060] In FIG. 2, the exposed area **150***us***_2** of the second electrode support **150** extending along

each of the first boundary lines **150**sb and the exposed area **150**us_**2** of the second electrode support **150** extending along each of the second boundary lines **150**sa do not meet each other. However, embodiments are not limited to this case. Unlike in the drawing, the exposed area **150**us_**2** of the upper surface **150**us of the second electrode support **150** may also extend along the entire boundary of the second electrode support **150**. Unlike in the drawing, the exposed area **150**us_**2** of the upper surface **150**us of the second electrode support **150** may also extend along one of the two first boundary lines **150**sb facing each other. In addition, the exposed area **150**us_**2** of the upper surface **15**-us of the second electrode support **150** may extend along one of the two second boundary lines **150**sa facing each other.

[0061] In the semiconductor device according to the embodiments, a thickness t11 of the second electrode support 150 in the thickness direction of the substrate 100 may be greater than a thickness t12 of the first electrode support 130. Unlike in the drawings, the first electrode support 130 including an insulating material may not be between the second electrode support 150 and the first etch stop layer 120. That is, only one electrode support may support the lower electrodes 210. [0062] The insulating spacers 160 may be between the second electrode support 150 and the lower electrode support 150 and the lower electrodes 210.

[0063] The lower electrodes **210** and the second electrode support **150** may be spaced apart by the insulating spacers **160**. The insulating spacers **160** may electrically insulate the lower electrodes **210** from the second electrode support **150** including a conductive material.

[0064] The insulating spacers **160** may be formed on sidewalls of the second electrode holes **150***h*. The insulating spacers **160** may entirely cover the sidewalls of the lower electrodes **210**, which define the second electrode holes **150***h* that form boundaries with the lower electrodes **210**. [0065] Each of the lower electrodes **210** may include an overlap area **210_1** which laterally overlaps the insulating spacers **160** and a non-overlap area **210_2** which does not laterally overlap the insulating spacers **160**. The insulating spacers **160** may partially cover the sidewalls of each of the lower electrodes **210**. The insulating spacers **160** may cover sidewalls **210_1**sw of the overlap area **210_1** of each of the lower electrodes **210**. The insulating spacers **160** do not cover sidewalls **210_2**sw of the non-overlap area **210_2** of each of the lower electrodes **210**.

[0066] In the semiconductor device according to the embodiments, a distance t**14** from the upper surface **150***us* of the second electrode support **150** to a bottom of each insulating spacer **160** may be greater than the thickness t**11** of the second electrode support **150**.

[0067] Each of the insulating spacers **160** may include a part whose thickness d**1** increases as a distance from the substrate **100** increases. For example, a part of an insulating spacer **160** on a part of each sidewall **210_1**sw of each lower electrode **210** may become thicker as the distance from the substrate **100** increases. In FIG. **5**, the thickness dl of each insulating spacer **160** increases and then decreases as the distance from the substrate **100** increases, but embodiments are not limited to this case. That is, the thickness dl of each insulating spacer **160** may increase and then remain constant as the distance from the substrate **100** increases.

[0068] In each part where a second through pattern **150***tp* is formed, upper parts of lower electrodes **210**, which meet the second through pattern **150***tp*, may be chamfered. In the semiconductor device according to the embodiments, a height t**13** of each of the chamfered parts of the lower electrodes **210** may be greater than the distance t**14** from the upper surface **150***us* of the second electrode support **150** to the bottom of each insulating spacer **160**. For example, in each part where the second through pattern **150***tp* is formed, the insulating spacers **160** may not be on the sidewalls of the lower electrodes **210** that meet the second through pattern **150***tp*. The insulating spacers **160** may not be on the sidewalls of the lower electrodes **210** in each part overlapping the second through pattern **150***tp*.

[0069] The insulating spacers **160** may include an insulating material, for example, at least one of silicon oxide, silicon carbonitride, silicon nitride, silicon oxycarbide, silicon oxynitride, and a high

dielectric constant (high-k) material containing a metal. The high-k material containing a metal may include one of, for example, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, lead zinc niobate, and combinations of the same. In the semiconductor device according to the example embodiments, the insulating spacers **160** may include an insulating material having a higher dielectric constant than silicon oxide. For example, the insulating spacers **160** may include silicon carbonitride.

[0070] The capacitor dielectric layer **220** may be formed on the lower electrodes **210**, the first electrode support **130**, and the second electrode support **150**. The capacitor dielectric layer **220** may extend along the profile of the lower electrodes **210**, upper and lower surfaces of the first electrode support **130**, the upper surface **150***us* of the second electrode support **150**, and the lower surface **150***bs* of the second electrode support **150**. The capacitor dielectric layer **220** does not extend between the second electrode support **150** and the insulating spacers **160**. The capacitor dielectric layer **220** may include an insulator material, for example, at least one of silicon oxide (SiO2), silicon nitride (SiN), silicon oxynitride (SiON), and/or a high-k material containing a metal. Although the capacitor dielectric layer **220** is illustrated as being a single layer, this is merely an example used for ease of description and illustration, and embodiments are not limited to this example. For example, according to an example embodiment, the capacitor dielectric layer **220** in the semiconductor device may include a structure with sequentially stacked dielectric layers, for example, a structure in which zirconium oxide, aluminum oxide, and zirconium oxide are sequentially stacked.

[0071] In the semiconductor device according to the example embodiments, the capacitor dielectric layer **220** may include a dielectric layer including hafnium (Hf). In the semiconductor device according to the example embodiments, the capacitor dielectric layer **220** may have a stacked structure of a ferroelectric material layer and a paraelectric material layer.

[0072] The ferroelectric material layer may have ferroelectric properties. The ferroelectric material layer may be thick enough to have ferroelectric properties. The thickness range of the ferroelectric material layer having ferroelectric properties may vary according to a ferroelectric material. [0073] For example, the ferroelectric material layer may include a monometal oxide. The ferroelectric material layer may include a monometal oxide layer. Here, the monometal oxide may be a binary compound composed of one metal and oxygen. The ferroelectric material layer including the monometal oxide may have an orthorhombic crystal system.

[0074] In an example, the metal included in the monometal oxide layer may be hafnium (Hf). The monometal oxide layer may be a hafnium oxide (HfO) layer. Here, the hafnium oxide layer may have a chemical formula that conforms to stoichiometry or may have a chemical formula that does not conform to stoichiometry.

[0075] In another example, the metal included in the monometal oxide layer may be one of rare earth metals belonging to lanthanoids. The monometal oxide layer may include a rare earth metal oxide layer including a metal belonging to lanthanoids. Here, the rare earth metal oxide layer including a metal belonging to lanthanoids may have a chemical formula that conforms to stoichiometry or may have a chemical formula that does not conform to stoichiometry. When the ferroelectric material layer includes the monometal oxide layer, it may have a thickness of, for example, 1 nm to 10 nm.

[0076] In another example embodiment, the ferroelectric material layer may include a bimetal oxide. The ferroelectric material layer may include a bimetal oxide layer. Here, the bimetal oxide may be a ternary compound comprising two metals and oxygen. The ferroelectric material layer including the bimetal oxide may have an orthorhombic crystal system.

[0077] The metal included in the bimetal oxide layer may be, for example, hafnium (Hf) and zirconium (Zr). The bimetal oxide layer may be a hafnium zirconium oxide (HfZrO). For example,

the bimetal oxide layer may include a (Hf.sub.xZr.sub.(1-x)O) layer, wherein x may be 0.2 to 0.8. Here, the hafnium zirconium oxide (HfZrO) layer may have a chemical formula that conforms to stoichiometry or may have a chemical formula that does not conform to stoichiometry. [0078] When the ferroelectric material layer includes the bimetal oxide layer, it may have a thickness of, for example, 1 nm to 20 nm.

[0079] The paraelectric material layer may be a dielectric layer including zirconium (Zr) or a stacked layer including zirconium (Zr). The paraelectric material layer may comprise the same chemical formula as the ferroelectric material layer. Although the chemical formula may be the same, the exhibited ferroelectric properties and/or paraelectric properties of the material layers may depend from the crystal structure of the dielectric material.

[0080] The paraelectric material may have a positive dielectric constant, and the ferroelectric material may have a negative dielectric constant in a specific section of capacitor dielectric layer **220**. That is, the paraelectric material may have a positive capacitance, and the ferroelectric material may have a negative capacitance.

[0081] Generally, when two or more capacitors having a positive capacitance are connected in series, the sum of the capacitances decreases. However, when a capacitor having a negative capacitance and a capacitor having a positive capacitance are connected in series the sum of the capacitances increases.

[0082] The upper electrode **230** may be on the capacitor dielectric layer **220**. The upper electrode **230** may extend along the profile of the capacitor dielectric layer **220**. The upper electrode **230** may include, but is not limited to, a doped semiconductor material, a conductive metal nitride (such as titanium nitride, tantalum nitride, niobium nitride or tungsten nitride), a metal (such as ruthenium, iridium, titanium or tantalum), and/or a conductive metal oxide (such as iridium oxide or niobium oxide). In the semiconductor device according to the embodiments, the upper electrode **230** may include titanium nitride (TiN) and/or niobium nitride (NbN).

[0083] The upper plate electrode **240** may be on the upper electrode **230**. The upper plate electrode **240** may be above an area defined within the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** and on the unexposed area **150***us*_**1** of the upper surface **150***us* of the second electrode support **150**. For example, the upper plate electrode **240** may not be formed on the exposed area **150***us*_**2** of the upper surface of the second electrode support **150**, and/or the upper plate electrode **240** may not cover the exposed area **150***us*_**2** of the upper surface of the second electrode support **150**.

[0084] The upper plate electrode **240** may include at least one of, for example, an elemental semiconductor material layer and/or a compound semiconductor material layer. The upper plate electrode **240** may include doped n-type or p-type impurities.

[0085] A support connection pattern **250** may be on the exposed area **150***us*_**2** of the upper surface of the second electrode support **150**. The support connection pattern **250** may cover the exposed area **150***us*_**2** of the upper surface of the second electrode support **150** on which the capacitor dielectric layer **220**, the upper electrode **230** and the upper plate electrode **240** are not formed. The support connection pattern **250** may be connected to the second electrode support **150**. The support connection pattern **250** may be connected to the upper plate electrode **240**. The second electrode support **150** may be electrically connected to the upper plate electrode **240** through the support connection pattern **250**. The upper plate electrode **240** may be electrically connected to the second electrode support **150** through the exposed area **150***us*_**2** of the upper surface of the second electrode support **150**.

[0086] In an example embodiment, a part of the support connection pattern **250** may protrude in a lateral direction (e.g., the first direction DR**1**) further than a sidewall of the second electrode support **150**. Although the support connection pattern **250** laterally protrudes further than a sidewall of the upper plate electrode **240** in FIG. **3**, embodiments are not limited to this case.

[0087] For example, when the exposed area **150***us***_2** of the upper surface of the second electrode support **150** does not extend up to the first boundary lines **150***sb* and/or the second boundary lines **150***sa* unlike in FIG. **2**, the support connection pattern **250** may not laterally protrude further than the sidewalls of the second electrode support **150**.

[0088] The support connection pattern **250** may include a conductive material, for example, at least one of a semiconductor material doped with impurities, a conductive silicide compound, a conductive metal nitride, a conductive metal oxide, and/or a metal.

[0089] A second interlayer insulating film **260** may be on the upper plate electrode **240**. The second interlayer insulating film **260** may cover both an upper surface of the support connection pattern **250** and sidewalls of the support connection pattern **250**.

[0090] The first ground plug **270** may be in the second interlayer insulating film **260** and connected to the upper plate electrode **240**. The first ground plug **270** may fill a first ground plug hole **270***h* in the second interlayer insulating film **260**.

[0091] The first ground plug **270** may be electrically connected to the upper plate electrode **240**, the support connection pattern **250**, the upper electrode **230**, and the second electrode support **150**. The first ground plug **270** may be electrically connected to the second electrode support **150** via the upper plate electrode **240** and the support connection pattern **250**. The first ground plug **270** may be electrically connected to the second electrode support **150** through the exposed area **150***us*_**2** of the upper surface of the second electrode support **150**.

[0092] The first ground plug **270** may be connected to a specific voltage, for example, a ground voltage. The upper plate electrode **240**, the support connection pattern **250**, the upper electrode **230**, and the second electrode support **150** may be connected to the ground voltage. The first ground plug **270** may include a conductor, for example, at least one of a semiconductor material doped with impurities, a conductive silicide compound, a conductive metal nitride, a conductive metal oxide, and a metal.

[0093] As a distance between the lower electrodes **210** decreases, a leakage current may be generated between adjacent lower electrodes **210**. The leakage current generated between adjacent lower electrodes **210** may reduce the reliability and performance of the semiconductor device. [0094] However, since the second electrode support **150** includes a conductive material and is connected to the ground voltage, the leakage current between the adjacent lower electrodes **210** can be prevented, thereby improving the reliability and performance of the semiconductor device. Further, since the second electrode support **150** is electrically connected to the upper electrode **230**, each insulating spacer **160** between the second electrode support **150** and a lower electrode **210** may serve as a dielectric layer of a capacitor, thereby increasing the capacitance of the capacitor of the semiconductor device.

[0095] FIGS. **6** and **7** respectively illustrate semiconductor devices according to at least one example embodiment of the present inventive concepts. FIG. **8** illustrates a semiconductor device according to at least one example embodiment of the present inventive concepts. For ease of description, identical reference numerals are used for the same constituent elements in the drawings, and a duplicate description thereof will may be omitted, and differences from the semiconductor device described above with reference to FIGS. **1** through **5** will be mainly described.

[0096] Referring to FIGS. **6** and **7**, in the semiconductor devices according to the embodiments, a thickness dl of each insulating spacer **160** may be constant as a distance from a substrate **100** increases.

[0097] In FIG. **6**, each insulating spacer **160** may be mounted on a non-overlap area **210_2** of a lower electrode **210**. In FIG. **7**, each insulating spacer **160** may be mounted on a capacitor dielectric layer **220** and an upper electrode **230** between a second electrode support **150** and a first electrode support **130**.

[0098] Referring to FIG. 8, in the semiconductor device according to an example embodiment, an

- upper plate electrode **240** may be on an exposed area **150***us*_**2** of an upper surface **150***us* of a second electrode support **150**.
- [0099] The upper plate electrode **240** may cover the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**. A first ground plug **270** may be electrically connected to the second electrode support **150** via the upper plate electrode **240**.
- [0100] FIGS. **9** through **11** respectively illustrate semiconductor devices according to at least one example embodiment of the present inventive concepts. For ease of description, identical reference numerals are used for the same constituent elements in the drawings, and a duplicate description thereof will may be omitted, and differences from the semiconductor device described above with reference to FIGS. **1** through **5** will be mainly described.
- [0101] Referring to FIGS. **9** through **11**, each of the semiconductor devices according to the embodiments may further include a second ground plug **271** directly connected to an exposed area **150***us*_**2** of an upper surface **150***us* of a second electrode support **150**.
- [0102] The second ground plug **271** may fill a second ground plug hole **271***h* in a second interlayer insulating film **260**. The second ground plug **271** may be directly connected to the second electrode support **150**. The second ground plug **271** may be electrically connected to the second electrode support **150** without connecting through the upper plate electrode **240**. The second ground plug **271** may be connected to, for example, a ground voltage.
- [0103] In FIG. **9**, a part of the second ground plug **271** may be on the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**, and the other part of the second ground plug **271** may be on an unexposed area **150***us*_**1** of the upper surface **150***us* of the second electrode support **150**. A part of the second ground plug **271** may sit on the upper plate electrode **240**. Alternatively, the second ground plug **271** may completely and/or partially penetrate the upper plate electrode **240**, the upper electrode **230**, and/or the capacitor dielectric layer **220** over the unexposed area **150***us*_**1** of the upper surface **150***us* of the second electrode support **150**. [0104] In FIG. **10**, the second ground plug **271** may be on the exposed area **150***us*_**2** of the upper surface **150***us* of the second ground plug **271** may be located on the exposed area **150***us*_2 of the upper surface **150***us* of the second electrode support **150**.
- [0105] In FIG. **11**, a part of the second ground plug **271** may be on the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**, and the other part of the second ground plug **271** may not be on the upper surface **150***us* of the second electrode support **150**. The part of the second ground plug **271** not on the upper surface **150***us* of the second electrode support **150** may extend past the upper surface **150***us*, in the thickness direction, towards the substrate, and partially contact the sidewall of the second electrode support **150**. A part of the second ground plug **271** may sit on the second electrode support **150**.
- [0106] In FIGS. **9** and **11**, a first ground plug **270** is on the upper plate electrode **240**. However, embodiments are not limited to this case. For example, semiconductor device may include only the second ground plug **271**, without the first ground plug **270**.
- [0107] FIG. 12 illustrates a semiconductor device according to at least one example embodiment of the present inventive concepts. FIG. 13 illustrates a semiconductor device according to at least one example embodiment of the present inventive concepts. FIGS. 14 and 15 illustrate a semiconductor device according to at least one example embodiment of the present inventive concepts. FIG. 16 illustrates a semiconductor device according to at least one example embodiment of the present inventive concepts. For ease of description, identical reference numerals are used for the same constituent elements in the drawings, and a duplicate description thereof will may be omitted, and differences from the semiconductor device described above with reference to FIGS. 1 through 5 will be mainly described. For reference, each of FIGS. 13 and 14 is an example plan view of an upper electrode 230 on lower electrodes 210 and a second electrode support 150.
- [0108] Referring to FIG. 12, in the semiconductor device according to the example embodiment, a

- height t**13** of a chamfered part of a lower electrode **210** may be greater than a distance t**14** (see FIG. **5**) from an upper surface **150***us* of a second electrode support **150** to a bottom of each insulating spacer **160**. In a part where a second through pattern **150***tp* is formed, the insulating spacers **160** may be on sidewalls of lower electrodes **210** that meet the second through pattern **150***tp*. The insulating spacers **160** may be on the sidewalls of the lower electrodes **210** in the part overlapping the second through pattern **150***tp*.
- [0109] Referring to FIG. **13**, in the semiconductor device according to the example embodiment, an exposed area **150***us*_**2** of an upper surface **150***us* of a second electrode support **150** may be along second boundary lines **150***sa* of the second electrode support **150**. However, the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** is not along first boundary lines **150***sb* of the second electrode support **150**.
- [0110] The exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** may be defined along the first boundary lines **150***sb* of the second electrode support **150** or the second boundary lines **150***sa* of the second electrode support **150** that extend in a different direction from the first boundary lines **150***sb*.
- [0111] Referring to FIGS. **14** and **15**, the semiconductor device according to the example embodiment may further include a second ground plug **271** connected to an edge part **150**_2 of a second electrode support **150** in an upper surface **150***us* of the second electrode support **150**.
- [0112] The second ground plug **271** may fill a second ground plug hole **271***h* in a second interlayer insulating film **260**. The upper surface **150***us* of the second electrode support **150** does not include a rectangular exposed area extending along first boundary lines **150***sb* of the second electrode support **150** and second boundary lines **150***sa* of the second electrode support **150**.
- [0113] Although only the second ground plug **271** is illustrated in FIG. **15**, embodiments are not limited to this case. A first ground plug **270** (see FIG. **3**) connected to an upper plate electrode **240** may be further included in the semiconductor device.
- [0114] Referring to FIG. **16**, in the semiconductor device according to the embodiments, each lower electrode **210** may be shaped like a cylinder.
- [0115] Each lower electrode **210** may include a bottom part extending along an upper surface of a first landing pad **115** and a sidewall part extending in a thickness direction of a substrate **100** from the bottom part. The upper electrode **230** may extend in the thickness direction, filling an inner gap inside the sidewall part of the lower electrode **210**. A capacitor dielectric layer **220** may be between the upper electrode **230** and the lower electrode **210**. The thickness of the upper electrode **230** in an area overlapping the second electrode support **150** may be less than a thickness of the upper electrode **230** at an area overlapping the first electrode support **130**.
- [0116] FIGS. **17** through **19** respectively illustrate semiconductor devices according to at least one example embodiment of the present inventive concepts. For ease of description, identical reference numerals are used for the same constituent elements in the drawings, and a duplicate description thereof will may be omitted, and differences from the semiconductor device described above with reference to FIGS. **1** through **5** will be mainly described. For reference, each of FIGS. **17** through **19** is a plan view of lower electrodes **210** and a second electrode support **150** of a semiconductor device.
- [0117] Referring to FIG. **17**, in a semiconductor device according to at least one example embodiment of the present inventive concepts, each second through pattern **150***tp* may be formed between three adjacent lower electrodes **210**.
- [0118] Three lower electrodes **210** meeting one second through pattern **150***tp* may be located at vertices of a triangle or a trianguloid.
- [0119] A first through pattern **130***tp* (see FIG. **4**) included in a first electrode support **130** may be at a position corresponding to each second through pattern **150***tp* and may have a shape corresponding to that of each second through pattern **150***tp*.
- [0120] Referring to FIG. 18, in a semiconductor device according to at least one example

- embodiment of the present inventive concepts, each second through pattern **150***tp* may be shaped like a bar extending in a first direction DR**1**.
- [0121] Each second through pattern **150***t* may be formed over three lower electrodes **210** adjacent to each other in the first direction DR**1** and four lower electrodes **210** adjacent to each other in the first direction DR**1**. However, this is merely an example used for ease of description, and embodiments are not limited to this example. For example, the quantity of lower electrodes **210** may be more or less than depicted.
- [0122] Referring to FIG. **19**, in a semiconductor device according to at least one example embodiment of the present inventive concepts, lower electrodes **210** repeatedly aligned in a second direction DR**2** may be linearly arranged along the second direction DR**2**.
- [0123] The lower electrodes **210** repeatedly aligned in a first direction DR**1** may be arranged along the first direction DR**1**. In addition, the lower electrodes **210** repeatedly aligned in the second direction DR**2** may be arranged along the second direction DR**2**.
- [0124] FIGS. **20** and **21** illustrate a semiconductor device according to at least one example embodiment of the present inventive concepts. For reference, FIG. **21** is a cross-sectional view taken along C-C of FIG. **20**.
- [0125] Although FIG. **20** illustrates an example layout view of a DRAM excluding a capacitor CAP, embodiments are not limited to this case. A first direction DR**1** and a second direction DR**2** of FIG. **20** may be the first direction DR**1** and the second direction DR**2** of FIG. **1**. However, embodiments are not limited to this case, and the first direction DR**1** of FIG. **20** may also correspond to the second direction DR**2** of FIG. **1**, and the second direction DR**2** of FIG. **20** may also correspond to the first direction DR**1** of FIG. **1**.
- [0126] Referring to FIG. **20**, the semiconductor device according to the example embodiment may include a plurality of active areas ACT. The active areas ACT may be defined by an element isolation layer **305** (see FIG. **21**) formed in a substrate **100** (see FIG. **21**).
- [0127] As design rules of the semiconductor device are reduced, the active areas ACT may be in the shape of diagonal or oblique bars as illustrated in the drawing. The active areas ACT may be shaped like bars extending in a fourth direction DR4.
- [0128] A plurality of gate electrodes may be on the active areas ACT to cross the active areas ACT in the first direction DR1. The gate electrodes may extend parallel to each other. The gate electrodes may be, for example, a plurality of word lines WL. The word lines WL may be at regular intervals. A width of each word line WL or a gap between the word lines WL may be determined according to the design rules. A plurality of bit lines BL may be on the word lines WL to extend in the second direction DR2 orthogonal to the word lines WL. The bit lines BL may extend parallel to each other. The bit lines BL may be at regular intervals. A width of each bit line BL or a gap between the bit lines BL may be determined according to the design rules.
- [0129] The semiconductor device according to the embodiments may include various contact arrays formed on the active areas ACT. The various contact arrays may include, for example, direct contacts DC, buried contacts BC, and landing pads LP. Here, the direct contacts DC may be contacts that electrically connect the active areas ACT to the bit lines BL. The buried contacts BC may be contacts that connect the active areas ACT to lower electrodes **210** (see FIG. **21**) of the capacitor CAP (see FIG. **21**).
- [0130] In the arrangement structure, a contact area between each buried contact BC and a corresponding active area ACT may be small. Accordingly, a conductive second landing pad LP may be introduced to increase the contact area with the corresponding active area ACT and a contact area with a corresponding lower electrode **210** (see FIG. **21**) of the capacitor CAP. The second landing pad LP may be between each buried contact BC and the corresponding active area ACT or between each buried contact BC and the corresponding lower electrode **210** of the capacitor CAP. In the semiconductor device according to the embodiments, the second landing pad LP may be between each buried contact BC and the corresponding lower electrode **210** of the

capacitor CAP. The contact area increased by the introduction of the second landing pad LP may reduce the contact resistance between each active area ACT and a corresponding lower electrode **210** of the capacitor CAP.

[0131] In the semiconductor device according to the embodiments, each direct contact DC may be in a central part of a corresponding active area ACT. The buried contacts BC may be at both ends of each active area ACT. Since the buried contacts BC are at both ends of each active area ACT, the second landing pads LP may be adjacent to both ends of each active area ACT to partially overlap the buried contacts BC. For example, each buried contact BC may be formed to overlap an active area ACT and the element isolation layer **305** (see FIG. **21**) located between adjacent word lines WL and between adjacent bit lines BL.

[0132] The word lines WL may be buried in the substrate **100**. The word lines WL may cross the active areas ACT between the direct contacts DC or the buried contacts BC.

[0133] As illustrated in the drawing, two word lines WL may cross one active area ACT. Since the active areas ACT are obliquely, the word lines WL may be at an angle of less than 90 degrees to the active areas ACT.

[0134] The direct contacts DC and the buried contacts BC may be symmetrically. Therefore, the direct contacts DC and the buried contacts BC may lie on a straight line along the first direction DR1 and the second direction DR4. Unlike the direct contacts DC and the buried contacts BC, the second landing pads LP may be in a zigzag pattern in the second direction DR2 in which the bit lines BL extend. In addition, the second landing pads LP may be to overlap the same side of each bit line BL in the first direction DR1 in which the word lines WL extend. For example, each second landing pad LP in a first line may overlap a left side of a corresponding bit line BL and each second landing pad LP of a second line may overlap a right side of the corresponding bit line BL. [0135] Referring to FIGS. 20 and 21, the semiconductor device according to the example embodiment may include gate structures 315_1 and 315_2, second storage contacts 350, and the capacitor CAP.

[0136] The element isolation layer **305** may be formed in the substrate **100**. The element isolation layer **305** may have a shallow trench isolation (STI) structure with element isolation characteristics. The element isolation layer **305** may define the active areas ACT on the substrate **100**.

[0137] The gate structures **315_1** and **315_2** may be formed in the substrate **100** and the element isolation layer **305**. The gate structures **315_1** and **315_2** may be formed to cross the element isolation layer **305** and the active areas ACT defined by the element isolation layer **305**. The gate structures **315_1** and **315_2** include gate structures **315_1** in the active areas ACT of the substrate **100** and gate structures **315_2** in the element isolation layer **305**. Each of the gate structures **315_1** and **315_2** may include a buried gate trench **320**t formed in the substrate **100** or the element isolation layer **305**, a gate insulating layer **330**, a gate electrode **320**, and a gate block pattern **340**. The gate electrode **320** may correspond to each of the word lines WL. For example, a depth of the buried gate trench **320**t formed in the substrate **100** may be different from that of the buried gate trench **320**t formed in the element isolation layer **305**.

[0138] The gate insulating layer **330** may extend along sidewalls and a bottom surface of the buried gate trench **320***t*. The gate insulating layer **330** may extend along the profile of at least a part of the buried gate trench **320***t*. The gate insulating layer **330** may include, for example, at least one of silicon oxide, silicon oxynitride, silicon nitride, and a high-k material containing a metal.

[0139] The gate electrode **320** may be formed on the gate insulating layer **330**. The gate electrode **320** may fill a part of the buried gate trench **320***t*.

[0140] The gate electrode **320** may include, for example, at least one of a semiconductor material doped with impurities, a conductive silicide compound, a conductive metal nitride, a conductive metal oxide, a conductive metal oxynitride, and/or a metal.

[0141] The gate block pattern **340** may be formed on the gate electrode **320**. The gate block pattern **340** may fill the buried gate trench **320***t* remaining after the gate electrode **320** is formed. The gate

- block pattern **340** may include an insulator, for example, at least one of silicon nitride, silicon oxynitride, silicon oxycarbonitride, and/or combinations of the same.
- [0142] A third lower interlayer insulating film **370** may be on the substrate **100** and the element isolation layer **305**. The third lower interlayer insulating film **370** may cover the gate struct5ures **315 1** and **315 2**.
- [0143] The second storage contacts **350** may be formed in the third lower interlayer insulating film **370**. The second storage contacts **350** may be connected to the substrate **100**. More specifically, the second storage contacts **350** may be connected to source/drain regions formed in the active areas ACT of the substrate **100**. A second storage contact **350** may be on at least one side of each of the gate structures **315_1** and **315_2**. For example, the second storage contacts **350** may respectively be on both sides of each of the gate structures **315_1** and **315_2**. The second storage contacts **350** may correspond to the buried contacts BC, and may act as contact plugs for the source/drain regions. In addition, the second storage contacts **350** may correspond to the first storage contacts **105** of FIGS. **3** and **4**.
- [0144] Storage pads **360** may be formed on the second storage contacts **350**. The storage pads **360** may be electrically connected to the second storage contacts **350**. Here, the storage pads **360** may correspond to the second landing pads LP. In addition, the storage pads **360** may correspond to the first landing pads **115** of FIGS. **3** and **4**.
- [0145] A third upper interlayer insulating film **375** may be formed on the third lower interlayer insulating film **370**. The third upper interlayer insulating film **375** may cover the storage pads **360**. The third upper interlayer insulating film **375** and the third lower interlayer insulating film **370** may correspond to the first interlayer insulating film **110** of FIGS. **3** and **4**. A second etch stop layer **380** may be formed on the third upper interlayer insulating film **375** and the storage pads **360**. The second etch stop layer **380** may correspond to the first etch stop layer **120** of FIGS. **3** and **4**. [0146] The capacitor CAP may be on the storage pads **360**. The capacitor CAP may be connected to the storage pads **360**. The capacitor CAP may be electrically connected to the second storage contacts **350**.
- [0147] The capacitor CAP may include the lower electrodes **210**, a capacitor dielectric layer **220**, an upper electrode **230**, and an upper plate electrode **240**. A first electrode support **130** and a second electrode support **150** may be formed on the second etch stop layer **380**.
- [0148] The lower electrodes **210**, the capacitor dielectric layer **220**, the upper electrode **230**, the upper plate electrode **240**, the first electrode support **130**, and the second electrode support **150** included in the capacitor CAP may be substantially the same as those described above with reference to FIGS. **1** through **19**.
- [0149] FIGS. **22** through **34** are views illustrating operations of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts.
- [0150] For reference, FIGS. **22**, **24**, **26**, **28**, and **29** are plan views illustrating intermediate operations, and FIGS. **23**, **25**, **27**, and **31** are cross-sectional views taken along B-B of FIGS. **22**, **24**, **26** and **29**. FIG. **30** is a cross-sectional view taken along A-A of FIG. **29**.
- [0151] Referring to FIGS. **22** and **23**, a mold structure including a plurality of lower electrode holes **210***h* may be formed on a substrate **100**. The lower electrode holes **210***h* may expose first landing pads **115**. The mold structure may include a first mold layer **125***p*, a first electrode support layer **130***p*, a second mold layer **135***p*, and a second electrode support layer **150***p* sequentially stacked on the substrate **100**.
- [0152] The first mold layer **125***p*, the first electrode support layer **130***p*, the second mold layer **135***p*, and the second electrode support layer **150***p* may be sequentially formed on the substrate **100**. Then, the lower electrode holes **210***h* may be formed, thereby forming the mold structure on the substrate **100**. The lower electrode holes **210***h* may be formed by etching the sequentially

- stacked first mold layer **125***p*, the first electrode support layer **130***p*, the second mold layer **135***p*, and the second electrode support layer **150***p* using a wet and/or dry etching process. The etching process may include a mask (not illustrated) to protect the mold structure during the etching process, and to define the lower electrode holes **210***h*.
- [0153] Referring to FIGS. **24** and **25**, an insulating spacer layer **160***p* may be formed on the upper surface and the sidewalls of the lower electrode holes **210***h*. The insulating spacer layer **160***p* may cover part of the sidewalls of the lower electrode holes **210***h* and an upper surface of the second electrode support layer **150***p*. The insulating spacer layer **160***p* may entirely cover sidewalls of the second electrode support layer **150***p* defining the lower electrode holes **210***h*.
- [0154] The insulating spacer layer **160***p* may be formed using a deposition method with poor step coverage. By using this deposition method, the insulating spacer layer **160***p* may be formed to cover only an upper part of the mold structure, and therefore not forming the insulating spacer layer **160***p* on the exposed upper surfaces of the first landing pads **115**.
- [0155] Referring to FIGS. **26** and **27**, a lower electrode layer may fill the lower electrode holes **210***h* in which the insulating spacer layer **160***p* is formed.
- [0156] A part of the lower electrode layer and the insulating spacer layer **160***p* on the upper surface of the second electrode support layer **150***p* may be removed, for example through a etch-back process or a chemical mechanical polishing process lower electrodes **210** filling the lower electrode holes **210***h* may be formed. Accordingly, insulating spacers **160** may be formed between the lower electrodes **210** and the second electrode support layer **150***p*.
- [0157] Unlike in FIGS. **24** through **27**, a sacrificial layer may be formed to fill a part of each of the lower electrode holes **210***h*. After the insulating spacers **160** are formed on the sidewalls of the lower electrode holes **210***h* exposed by the sacrificial layer, the sacrificial layer may be removed. After the removal of the sacrificial layer, the lower electrodes **210** may be formed to fill the lower electrode holes **210***h*.
- [0158] Referring to FIG. **28**, a first mask pattern **155** including first openings **155***op* may be formed on the second electrode support layer **150***p* and the lower electrodes **210**.
- [0159] The first mask pattern **155** may be a mask used to form a second electrode support **150** (see FIG. **3**) and a first electrode support **130** (see FIG. **3**). In addition, the first openings **155***op* may be located at positions corresponding to first through patterns **130***tp* (see FIG. **4**) and second through patterns **150***tp* (see FIG. **4**).
- [0160] Referring to FIGS. **29** through **31**, the second electrode support layer **150***p* and the first electrode support layer **130***p* may be patterned using the first mask pattern **155**. Accordingly, the first electrode support **130** and the second electrode support **150** may be formed on the substrate **100**.
- [0161] While the first electrode support **130** and the second electrode support **150** are formed, the first through patterns **130***tp* and the second through patterns **150***tp* may be formed.
- [0162] The second electrode support layer **150***p* may be patterned using the first mask pattern **155**, thereby forming the second electrode support **150**. While the second electrode support **150** is formed, the second electrode support layer **150***p* exposed by the first openings **155***op* may be removed to form the second through patterns **150***tp*. While the second through patterns **150***tp* are formed, an upper part of each of the lower electrodes **210** exposed by the first openings **155***op* may be chamfered.
- [0163] Then, the exposed second mold layer $\mathbf{135}p$ is removed. The removal of the second mold layer $\mathbf{135}p$ exposes a part of sidewalls of each of the lower electrodes $\mathbf{210}$.
- [0164] After the second mold layer **135***p* is removed, the exposed first electrode support layer **130***p* may be patterned using the first mask pattern **155**. Accordingly, the first electrode support **130** may be formed. While the first electrode support **130** is formed, the first electrode support layer **130***p* exposed by the first openings **155***op* may be removed to form the first through patterns **130***tp*. [0165] Then, the exposed first mold layer **125***p* is removed. The removal of the first mold layer

- **125***p* exposes the other part of the sidewalls of each of the lower electrodes **210**. After the removal of the first mold layer **125***p*, the first mask pattern **155** may be removed.
- [0166] Referring to FIG. **32**, a capacitor dielectric layer **220** and an upper electrode **230** may be sequentially formed on the exposed sidewalls of the lower electrodes **210** and upper surfaces **210** of the lower electrodes **210**.
- [0167] The capacitor dielectric layer **220** and the upper electrode **230** are also sequentially formed on an upper surface **150***us* of the second electrode support **150**.
- [0168] An upper plate electrode **240** may be formed on the upper electrode **230**. While the upper plate electrode **240** is formed, the upper electrode **230** may be partially patterned to correspond to the size of the upper plate electrode **240**.
- [0169] Referring to FIG. **33**, the capacitor dielectric layer **220**, the upper electrode **230** and the upper plate electrode **240** may be partially removed to expose a part of the second electrode support **150**. Accordingly, an exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** may be defined.
- [0170] More specifically, a second lower interlayer insulating film **260_1** may be formed on a first etch stop layer **120** to cover the upper plate electrode **240**. The second lower interlayer insulating film **260_1** may expose an upper surface of the upper plate electrode **240**, but embodiments are not limited to this case. A second mask pattern **156** may be formed on the second lower interlayer insulating film **260_1**. The capacitor dielectric layer **220**, the upper electrode **230**, and the upper plate electrode **240** may be partially removed using the second mask pattern **156**. Accordingly, a connection pattern trench **250***t* may be formed to expose the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**.
- [0171] Then, the second mask pattern **156** may be removed.
- [0172] Referring to FIG. **34**, a support connection pattern **250** may be formed to fill the connection pattern trench **250***t*. The support connection pattern **250** may cover the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**.
- [0173] The support connection pattern **250** may be connected to the second electrode support **150** through the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**. [0174] A second upper interlayer insulating film **260**_**2** may be formed on the second lower interlayer insulating film **260**_**1** to cover upper surfaces of the support connection pattern **250** and the upper plate electrode **240**.
- [0175] Referring to FIG. **3**, a first ground plug **270** may be formed in the second upper interlayer insulating film **260**_2 which is a part of a second interlayer insulating film **260**. The first ground plug **270** may be connected to the upper plate electrode **240**. The first ground plug **270** may be electrically connected to the exposed second electrode support **150**.
- [0176] FIG. **35** is a view illustrating an operation of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts. FIG. **35** may be a process performed after FIG. **33**.
- [0177] Referring to FIG. **35**, a second upper interlayer insulating film **260_2** may be formed on a second lower interlayer insulating film **260 1** to fill a connection pattern trench **250***t*.
- [0178] The second upper interlayer insulating film **260_2** may cover an exposed area **150***us***_2** of an upper surface **150***us* of a second electrode support **150**.
- [0179] Referring to FIGS. **9** through **11**, a first ground plug **270** and a second ground plug **271** may be formed in the second upper interlayer insulating film **260**_2 which is a part of a second interlayer insulating film **260**.
- [0180] The first ground plug **270** may be connected to an upper plate electrode **240**, and at least a part of the second ground plug **271** may be connected to the second electrode support **150**.
- [0181] FIGS. **36** through **39** are views illustrating operations of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts. FIG. **36** may be a process performed after FIGS. **29** through **31**.

- [0182] Referring to FIG. **36**, a capacitor dielectric layer **220** and an upper electrode **230** may be sequentially formed on exposed sidewalls of lower electrodes **210** and upper surfaces **210***us* of the lower electrodes **210**.
- [0183] Then, a sacrificial interlayer insulating film **260***sd* may be formed on a first etch stop layer **120**. The sacrificial interlayer insulating film **260***sd* may expose an upper electrode **230** on an upper surface **150***us* of a second electrode support **150** and the upper surfaces **210***us* of the lower electrodes **210**.
- [0184] Referring to FIG. **37**, a third mask pattern **157** may be formed on the upper electrode **230** and the sacrificial interlayer insulating film **260**sd.
- [0185] The capacitor dielectric layer **220** and the upper electrode **230** may be partially removed using the third mask pattern **157** to expose a part of the second electrode support **150**. Accordingly, an exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150** may be defined.
- [0186] Then, the third mask pattern **157** may be removed. In addition, the sacrificial interlayer insulating film **260***sd* may be removed.
- [0187] Referring to FIG. **38**, an upper plate electrode **240** may be formed on the upper electrode **230**. The upper plate electrode **240** may cover the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**.
- [0188] The upper plate electrode **240** may be connected to the second electrode support **150** through the exposed area **150***us*_**2** of the upper surface **150***us* of the second electrode support **150**. [0189] Referring to FIG. **39**, a second interlayer insulating film **260** may be formed on the upper plate electrode **240**.
- [0190] Referring to FIG. **8**, a first ground plug **270** may be formed in the second interlayer insulating film **260**.
- [0191] FIG. **40** is a view illustrating an operation of a method of fabricating a semiconductor device according to at least one example embodiment of the present inventive concepts. FIG. **40** may be a process performed after FIG. **32**.
- [0192] Referring to FIGS. **15** and **40**, a second interlayer insulating film **260** may be formed on an upper plate electrode **240**.
- [0193] A second ground plug **271** may pass through the second interlayer insulating film **260**, the upper plate electrode **240**, an upper plate **230** and a capacitor dielectric layer **220** and then be connected to a second electrode support **150**. The second ground plug **271** may be connected to an edge part **150**_2 of the second electrode support **150**.
- [0194] In concluding the detailed description, those skilled in the art will appreciate that many variations and modifications may be made to the preferred embodiments without substantially departing from the principles of the present inventive concepts. Therefore, the disclosed preferred embodiments of the inventive concepts are used in a generic and descriptive sense only and not for purposes of limitation.

Claims

1. A semiconductor device comprising: a plurality of lower electrodes extending from an upper surface of a substrate in a vertical direction; a first electrode support between adjacent lower electrodes of the plurality of lower electrodes, the first electrode support comprising a conductive material; a second electrode support disposed between the substrate and the first electrode support and spaced apart from the first electrode support in the vertical direction; a dielectric layer disposed on the plurality of lower electrodes, the first electrode support and the second electrode support and extending along profiles of the first electrode support, the second electrode support and each of the plurality of lower electrodes; and an upper electrode on the dielectric layer, wherein a portion of the upper electrode and a portion of the dielectric layer is disposed between the first electrode support

- and the second electrode support.
- **2**. The semiconductor device of claim 1, wherein the second electrode support comprises an insulating material.
- **3.** The semiconductor device of claim 1, wherein each of the plurality of lower electrodes comprises a sidewall extending in the vertical direction, the first electrode support is not in contact with the sidewalls of the adjacent lower electrodes, and the second electrode support is in contact with the sidewalls of the adjacent lower electrodes.
- **4.** The semiconductor device of claim 1, further comprising insulating spacers between the first electrode support and the adjacent lower electrodes.
- **5**. The semiconductor device of claim 4, wherein the insulating spacers comprise an insulating material having a greater dielectric constant than silicon oxide.
- **6**. The semiconductor device of claim 4, wherein a thickness of the first electrode support in the vertical direction is smaller than a thickness of the insulating spacer in the vertical direction.
- **7**. The semiconductor device of claim 1, wherein the first electrode support is electrically connected to the upper electrode.
- **8.** The semiconductor device of claim 7, further comprising a ground plug connected to the upper electrode.
- **9.** The semiconductor device of claim 1, wherein the first electrode support comprises a first surface and a second surface opposite in the vertical direction, the first surface of the first electrode support faces the second electrode support, and the second surface of the first electrode support comprises a support exposed area on which the dielectric layer is not disposed.
- **10**. A semiconductor device comprising: a plurality of lower electrodes on a substrate; a first electrode support, comprising a conductive material, between adjacent lower electrodes of the plurality of lower electrodes, and comprising a support exposed area on an upper surface of the first electrode support; a dielectric layer on the first electrode support and the lower electrodes; and an upper electrode structure on the dielectric layer and contacting the support exposed area of the first electrode support.
- **11**. The semiconductor device of claim 10, further comprising a ground plug connected to the upper electrode structure, wherein the first electrode support is electrically connected to the ground plug.
- **12**. The semiconductor device of claim 10, wherein the dielectric layer is not disposed on the support exposed area of the first electrode support.
- **13**. The semiconductor device of claim 10, wherein the upper electrode structure comprises an upper plate electrode and an upper electrode between the upper plate electrode and the dielectric layer, the upper electrode is not disposed on the support exposed area of the first electrode support.
- **14**. The semiconductor device of claim 13, wherein the upper plate electrode is in contact with the support exposed area of the first electrode support.
- **15**. The semiconductor device of claim 13, wherein the upper electrode structure further comprises a support connection pattern, the upper plate electrode is not disposed on the support exposed area of the first electrode support, and the support connect pattern is connected to the support exposed area of the first electrode support.
- **16**. The semiconductor device of claim 10, further comprising a second electrode support between the substrate and the first electrode support, wherein the second electrode support comprises an insulating material.
- **17**. The semiconductor device of claim 10, further comprising insulating spacers between the first electrode support and each of the lower electrodes.
- **18**. A semiconductor device comprising: an electrode support defining a plurality of lower electrode holes; insulating spacers on sidewalls of each of the lower electrode holes; a plurality of lower electrodes in the lower electrode holes and spaced apart from the electrode support by the insulating spacers; a dielectric layer on the lower electrodes and the electrode support; and an upper electrode on the dielectric layer and electrically connected to the electrode support.

- **19**. The semiconductor device of claim 18, wherein the electrode support comprises a conductive material.
- **20**. The semiconductor device of claim 18, wherein the electrode support comprises a plurality of through patterns, and upper parts of the lower electrodes are chamfered in each part where a through pattern of the plurality of through patterns is formed.