Predictive modeling in the reservoir kernel motif space

Peter Tino[†], Robert Simon Fong^{†,‡}, Roberto Fabio Leonarduzzi[‡]

[†] University of Birmingham; [‡]Theory Lab, Huawei

Overview

- 1 Introduction
- 2 Linear Reservoir as Temporal Kernel
- 3 RMM: Prediction model based on Reservoir Motifs
- 4 Geometric View of RMM
- **5** Experimental results and Discussions

Two Paradigms of Time Series Forecasting

- "Trades time for space" time series a static input
- Temporal correlation is disregarded due to the nature of the static input. [2]

- Captures temporal dependencies in the input data stream through parametric state-space modelling
- Sequentially encodes input time series in state space

Two Paradigms of Time Series Forecasting

- "Trades time for space" time series a static input
- Temporal correlation is disregarded due to the nature of the static input. [2]

- Captures temporal dependencies in the input data stream through parametric state-space modelling
- Sequentially encodes input time series in state space

Brief overview

- Inspired by the kernel representation of linear Echo State Networks (ESN) [1]
- In linear ESN Canonical dot product of such feature representations
 ⇔ inner product of the time series themselves (due to linearity)
- Representational structure of linear ESN is thus given by the eigenspace of the metric tensor corresponding to the inner product.
- In this work: use the positive eigenvectors (motifs) to build a *learnable* state space representation.

Linear Reservoir System

A linear reservoir system $R := (\mathbf{W}, \mathbf{w}, h)$ operating on *univariate* input has corresponding driven linear dynamical system:

$$\begin{cases} \mathbf{x}(t) = \mathbf{W}\mathbf{x}(t-1) + \mathbf{w}u(t) \\ \mathbf{y}(t) = h\left(\mathbf{x}(t)\right), \end{cases}$$
 (1)

where:

- $\mathbf{W} \in \mathbb{R}^{N \times N}$ dynamic coupling
- $\mathbf{w} \in \mathbb{R}^N$ input couplings
- $h: \mathbb{R}^N \to \mathbb{R}^d$ trainable readout map
- $\{\mathbf{x}(t)\}_t \subset \mathbb{R}^N$ states
- $\{u(t)\}_t \subset \mathbb{R}$ inputs
- $\{\mathbf{y}(t)\}_t \subset \mathbb{R}^d$ outputs

State Space Representation

Given two sufficiently long time series of length $\tau > N$,

$$\mathbf{u} = (u(-\tau + 1), u(-\tau + 2), \dots, u(-1), u(0))$$

=: $(u_1, u_2, \dots, u_{\tau}) \in \mathbb{R}^{\tau}$

and

$$\mathbf{v} = (v(-\tau + 1), v(-\tau + 2), \dots, v(-1), v(0))$$

=: $(v_1, v_2, \dots, v_{\tau}) \in \mathbb{R}^{\tau}$

The feature space representation of \mathbf{u} and \mathbf{v} under $R := (\mathbf{W}, \mathbf{w}, h)$ with zero initial states is given by [1]:

$$\phi(\mathbf{u}) = \sum_{j=1}^{\tau} u_j \mathbf{W}^{\tau-j} \mathbf{w}, \quad \phi(\mathbf{v}) = \sum_{j=1}^{\tau} v_j \mathbf{W}^{\tau-j} \mathbf{w}.$$

Reservoir Motifs I

Reservoir kernel – canonical dot product defined by:

$$K(\mathbf{u}, \mathbf{v}) = \langle \phi(\mathbf{u}), \phi(\mathbf{v}) \rangle$$

Let $\mathbf{Q} = [Q_{i,j}]$ denote the matrix corresponding to the inner product K:

$$\mathbf{u}^{\top} \mathbf{Q} \mathbf{v} := K(\mathbf{u}, \mathbf{v});$$

$$Q_{i,j} = \mathbf{w}^{\top} (\mathbf{W}^{\top})^{i-1} \mathbf{W}^{j-1} \mathbf{w}.$$

Then since **Q** is symmetric positive semi-definite, it admits eigen-decomposition:

$$\mathbf{Q} = \mathbf{M} \Lambda_Q \mathbf{M}^{\top}.$$

Motifs – The $N_m := \operatorname{rank}(Q) \leq N \leq \tau$ eigenvectors $\{\mathbf{m}_1, \dots, \mathbf{m}_{N_m}\} \subset \mathbb{R}^{\tau}$ of **M** with *positive* (equiv. non-zero) eigenvalues are called the **motifs** of the linear system (1).

Reservoir Motifs II

Under the eigen-decomposition of \mathbf{Q} , we rewrite K as:

$$\textit{K}(\textbf{u},\textbf{v}) = \left(\boldsymbol{\Lambda}_{\textit{Q}}^{\frac{1}{2}}\textbf{M}^{\top}\textbf{u}\right)^{\top}\left(\boldsymbol{\Lambda}_{\textit{Q}}^{\frac{1}{2}}\textbf{M}^{\top}\textbf{v}\right) = \langle \tilde{\textbf{u}}, \tilde{\textbf{v}} \rangle,$$

where

$$\varphi(\mathbf{u}) = \tilde{\mathbf{u}} = \Lambda_Q^{\frac{1}{2}} \mathbf{M}^{\top} \mathbf{u}$$

$$= \begin{bmatrix} \lambda_1^{\frac{1}{2}} \cdot \langle \mathbf{m}_1, \mathbf{u} \rangle \\ & \vdots \\ \lambda_{N_m}^{\frac{1}{2}} \cdot \langle \mathbf{m}_{N_m}, \mathbf{u} \rangle \end{bmatrix}$$

$$= \left(\lambda_i^{\frac{1}{2}} \cdot \langle \mathbf{m}_i, \mathbf{u} \rangle \right)_{i=1}^{N_m} \in \mathbb{R}^{N_m}.$$

Reservoir Motifs III

Under the eigen-decomposition of \mathbf{Q} , we rewrite K as:

$$\textit{K}(\textbf{u},\textbf{v}) = \left(\boldsymbol{\Lambda}_{\textit{Q}}^{\frac{1}{2}}\textbf{M}^{\top}\textbf{u}\right)^{\top}\left(\boldsymbol{\Lambda}_{\textit{Q}}^{\frac{1}{2}}\textbf{M}^{\top}\textbf{v}\right) = \langle \boldsymbol{\tilde{u}}, \boldsymbol{\tilde{v}} \rangle,$$

where

$$\varphi(\mathbf{u}) = \tilde{\mathbf{u}} = \mathbf{\Lambda}_{Q}^{\frac{1}{2}} \mathbf{M}^{\top} \mathbf{u}
= \begin{bmatrix} \lambda_{1}^{\frac{1}{2}} \cdot \langle \mathbf{m}_{1}, \mathbf{u} \rangle \\ \vdots \\ \lambda_{N_{m}}^{\frac{1}{2}} \cdot \langle \mathbf{m}_{N_{m}}, \mathbf{u} \rangle \end{bmatrix}
= \left(\lambda_{i}^{\frac{1}{2}} \cdot \langle \mathbf{m}_{i}, \mathbf{u} \rangle \right)_{i=1}^{N_{m}} \in \mathbb{R}^{N_{m}}.$$

Reservoir Motif Machine

In the kernel view of Reservoir Computing the motif weights are fixed by Λ_Q , we propose to make them adaptable, denoted by the set of **motif coefficients**, $C := \{c_i \in \mathbb{R}\}_{i=1}^{N_m}$:

Reservoir Kernel: $$\begin{split} \varphi(\mathbf{u}) &= \begin{bmatrix} \lambda_1^{\frac{1}{2}} \cdot \langle \mathbf{m}_1, \mathbf{u} \rangle \\ & \vdots \\ \lambda_{N_m}^{\frac{1}{2}} \cdot \langle \mathbf{m}_{N_m}, \mathbf{u} \rangle \end{bmatrix} \\ &= \left(\lambda_i^{\frac{1}{2}} \cdot \langle \mathbf{m}_i, \mathbf{u} \rangle \right)_{i=1}^{N_m} \in \mathbb{R}^{N_m}. \end{split}$$

Reservoir Motif Machine

$$arphi \left(\mathbf{u}; C
ight) = egin{bmatrix} oldsymbol{c}_1 \cdot \langle \mathbf{m}_1, \mathbf{u}
angle \ dots \ oldsymbol{c}_{N_m} \cdot \langle \mathbf{m}_{N_m}, \mathbf{u}
angle \end{bmatrix} \ = \left(oldsymbol{c}_i \cdot \langle \mathbf{m}_i, \mathbf{u}
angle
ight)_{i=1}^{N_m} \in \mathbb{R}^{N_m}.$$

RMM II: absorption of motif weights

Let $q:\mathbb{R}^{N_m} o\mathbb{R}^d$ be a readout map of an RMM. We can defined $ilde{q}:\mathbb{R}^{N_m} o\mathbb{R}^d$ by:

$$\tilde{q}\left(x_{1},\ldots,x_{N_{m}}\right):=q\left(c_{1}\cdot x_{1},\ldots,c_{N_{m}}\cdot x_{N_{m}}\right).$$

Therefore it suffices to consider C = 1 as a linear system:

$$\mathbf{y}(t) = q(\varphi(\mathbf{z}(t, \tau); 1))$$

= $q(\mathbf{M}^{\top}\mathbf{z}(t, \tau)).$

Geometric view of RMM

The feature space representation of **u** under reservoir system can be expressed as a linear operator:

$$\mathbf{A}\mathbf{u} := \phi(\mathbf{u}) = \sum_{j=1}^{\tau} u_j \mathbf{W}^{\tau-j} \mathbf{w} = \mathbf{A}\mathbf{u}.$$

Consider the SVD of $\mathbf{A} \in \mathbb{R}^{N \times \tau}$:

$$\mathbf{A}^{\top}\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{\top},$$

Since $N < \tau$, the linear operator **A** projects the time series **u** onto the N singular vectors of non-zero singular values, denoted by $\{\mathbf{v}_1,\ldots,\mathbf{v}_N\}$ with weights $d_1^{\frac{1}{2}},d_2^{\frac{1}{2}},\ldots,d_N^{\frac{1}{2}}$.

Geometric view of RMM II

Notice $\mathbf{Q} = \mathbf{A}^{\top} \mathbf{A}$, hence the reservoir motifs are precisely the $N_m \leq N < \tau$ singular vectors of A with nonzero singular values.

The representation of time series by RMM, given by:

$$arphi\left(\mathbf{u}\left(t, au
ight);\mathbb{1}
ight)=\mathbf{M}^{ op}\mathbf{u}\left(t, au
ight)$$

are therefore *projections* of \mathbf{u} (t,τ) onto the feature space defined by the reservoir kernel. In other words, they are *not* an approximation of the reservoir state reached upon reading \mathbf{u} up to time t.

Univariate Time Series Prediction

		Lin-RMM		Informer		LSTMa		ARIMA	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ECL	48	0.155	0.301	0.239	0.359	0.493	0.539	0.879	0.764
	168	0.175	0.322	0.447	0.503	0.723	0.655	1.032	0.833
	336	0.166	0.314	0.489	0.528	1.212	0.898	1.136	0.876
	720	0.164	0.314	0.540	0.571	1.511	0.966	1.251	0.933
	960	0.162	0.312	0.582	0.608	1.545	1.006	1.370	0.982
ETTh1	24	0.029	0.127	0.098	0.247	0.114	0.272	0.108	0.284
	48	0.044	0.156	0.158	0.319	0.193	0.358	0.175	0.424
	168	0.079	0.211	0.183	0.346	0.236	0.392	0.396	0.504
	336	0.108	0.254	0.222	0.387	0.590	0.698	0.468	0.593
	720	0.189	0.353	0.269	0.435	0.683	0.768	0.659	0.766
ETTh2	24	0.058	0.180	0.093	0.240	0.155	0.307	3.554	0.445
	48	0.083	0.220	0.155	0.314	0.190	0.348	3.190	0.474
	168	0.146	0.298	0.232	0.389	0.385	0.514	2.800	0.595
	336	0.186	0.347	0.263	0.417	0.558	0.606	2.753	0.738
	720	0.275	0.427	0.277	0.431	0.640	0.681	2.878	1.044
ETTm1	24	0.010	0.073	0.030	0.137	0.121	0.233	0.090	0.206
	48	0.018	0.098	0.069	0.203	0.305	0.411	0.179	0.306
	96	0.028	0.124	0.194	0.372	0.287	0.420	0.272	0.399
	288	0.053	0.171	0.401	0.554	0.524	0.584	0.462	0.558
	672	0.079	0.209	0.512	0.644	1.064	0.873	0.639	0.697
Weather	24	0.091	0.208	0.117	0.251	0.131	0.254	0.219	0.355
	48	0.135	0.260	0.178	0.318	0.190	0.334	0.273	0.409
	168	0.222	0.345	0.266	0.398	0.341	0.448	0.503	0.599
	336	0.277	0.391	0.297	0.416	0.456	0.554	0.728	0.730

Our Lin-RMM model is compared with the Informer, LSTM, and ARIMA models based on their performance results reported in [3] through the mean square error (MSE) and mean absolute error (MAE).

Multivariate Time Series Prediction

		Lin-RMM		f-Fedformer		w-Fedformer	
		$_{ m MSE}$	MAE	$_{\mathrm{MSE}}$	MAE	MSE	MAE
	96	0.107	0.226	0.203	0.287	0.204	0.288
ETTm2	192	0.140	0.263	0.269	0.328	0.316	0.363
E111112	336	0.177	0.302	0.325	0.366	0.359	0.387
	720	0.223	0.349	0.421	0.415	0.433	0.432
	96	0.874	0.680	0.148	0.278	0.139	0.276
Evolvence	192	1.857	1.025	0.271	0.380	0.256	0.369
Exchange	336	2.819	1.306	0.460	0.500	0.426	0.464
	720	1.753	1.013	1.195	0.841	1.090	0.800
	24	1.549	1.005	3.338	1.260	2.203	0.963
ILI	36	1.544	1.003	2.678	1.080	2.272	0.976
ILI	48	1.279	0.885	2.622	1.078	2.209	0.981
	60	1.119	0.804	2.857	1.157	2.545	1.061
	96	2.677	0.876	0.217	0.296	0.227	0.304
Weather	192	3.295	0.956	0.276	0.336	0.295	0.363
weather	336	2.926	0.939	0.339	0.380	0.381	0.416
	720	2.373	0.912	0.403	0.428	0.424	0.434

Our Lin-RMM model is compared with the Fedformer based on their performance results reported in [4] through the mean square error (MSE) and mean absolute error (MAE).

Motifs of Datasets

References I

- [1] P. Tino.

 Dynamical systems as temporal feature spaces.

 J. Mach. Learn. Res., 21:44–1, 2020.
- [2] A. Zeng, M. Chen, L. Zhang, and Q. Xu. Are transformers effective for time series forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages 11121–11128, 2023.
- [3] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI Conference on Artificial Intelligence, 2020.
- [4] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In International Conference on Machine Learning, pages 27268–27286. PMLR, 2022.