

Concours d'accès en 1^{ère} année des ENSA Maroc Juillet 2015

Epreuve de Mathématiques

Durée: 1H30 min

				Q1. La somme
		$\binom{k}{12} - 34 =$	$1/\sqrt{\frac{12}{2}}$	
		12 - 34 =	$\frac{1}{2}$	
)15	D) 2015	C) 2014	B) 2013	A) 2012
	***************************************			$Q_2. n \in IN^*$
		Min(i,j) =	1≤i≤7 1≤j≤7	
n+1)(n+2)	(n+1)(n+2)	$(\tilde{C})\frac{n(n+2)}{2}$	$B) \frac{n(n+1)}{n}$	A) $\frac{n(n+1)(2n+1)}{6}$
6	D) $\frac{(n+1)(n+2)}{6}$	(C) 3	(b) 3	Q3. Soit le réel
		$\frac{25}{7}$ -3 $+\sqrt{9+\frac{125}{27}}$	$\lambda = \sqrt[3]{3 + \sqrt{9 + 1}}$	
		V	V	En calculant λ^3 , mo
= 3	D) $\lambda = 3$	C) $\lambda = 2$	B) $\lambda = 1$	A) $\lambda = 0$
(APPER APPER AND ADDRESS OF THE PARTY OF THE				Q4.
		$\left(\frac{\sin(n)}{3}\right)^n =$	$\lim_{n\to +\infty}$	
	D) 0	$(\mathcal{E})^{\frac{2}{3}}$	B) $\frac{1}{3}$	A) 1
		+1		Q5.
		$\sum_{k=0}^{\infty} \frac{n}{n^2 + k} =$	$\lim_{n\to+\infty}$	
	D) k	C) 2	B) 1	A) 0
= 3	D) 0	$\frac{\sin(n)}{3}^n = \frac{1}{2}$ $\frac{1}{2} \frac{n}{n^2 + k} = \frac{1}{2}$	$\lim_{n \to +\infty} $ $ B \frac{1}{3}$ $\lim_{n \to +\infty} $	A) $\lambda = 0$

Q6.

$$\lim_{x \to 0} \frac{e^{10 x} - e^{7x}}{x} =$$

A) 1

B) 2

C) 3

D) 4

Q7.

$$\lim_{x \to 0^+} \left(1 + \sin^2 \left(\frac{1}{x} \right) \right) \ln x =$$

A) 1

B) 0

C) -00

 $D) + \infty$

Q8.

$$\int_0^1 \frac{e^x}{(10 - 3e^x)^2} \ dx =$$

A) $\frac{1}{3}(\frac{1}{10-3e}-\frac{1}{7})$ B) $\frac{1}{2}(\frac{1}{10-3e}+\frac{1}{7})$ C) $\frac{1}{3}(\frac{1}{10-e}-\frac{1}{7})$ D) $\frac{1}{10-3e}$

Q9.

$$\int_{1}^{e} \left(\frac{\ln x}{x}\right)^{2} dx =$$

A) $-\frac{5}{6}$

B) $2 + \frac{5}{e}$ C) $\frac{5}{e}$

D) $2 - \frac{5}{e}$

Q10.

$$\int_0^1 \frac{1}{x^2 + 3x + 2} dx =$$

A) $ln(\frac{4}{3})$

B) $\frac{4}{3}$

C) $ln(\frac{5}{3})$

D) $\frac{5}{3}$

Problème 1:

On considère plusieurs urnes de boules $U_1, U_2, \ldots, U_n, \ldots$ telles que: la première urne, U_1, \ldots, U_n, \ldots contient trois boules jaunes et deux boules vertes et chacune des autres urnes contient deux boules jaunes et deux boules vertes.

On réalise des tirages successifs de la manière suivante:

- on tire au hasard une boule de U_1 ;
- on place la boule tirée de U_1 dans U_2 , puis on tire une boule dans U_2 ;
- on place la boule tirée de U_2 dans U_3 , puis on tire une boule dans U_3 ;
- ...etc.

Pour tout entier $n \ge 1$, on note E_n l'événement "la boule tirée de U_n est verte" et $P_n = P(E_n)$ sa

probabilité.	Thole E_n revenement is	boule thee de o_n est ve	erte et $P_n = P'(E_n)$ sa
Q11. La valeur de P_1 est			
A) 0,54	B) 0,40	C) 0,44	D) 0,64
Q12. Sachant qu'on a tiré boule verte de U_2 est	une boule verte de U_1 et c	 u'on l'a placée dans <i>U</i> 2	, la probabilité de tirer une
A) 0,60	B) 0,83	C) 0,80	D) 0,33
Q13. La valeur de P2 est			
A) 0,44	B) 0,46	C) 0,48	D) 0,45
Q14. La relation entre P_n	et P_{n+1} est		
A) $P_{n+1} = 5 + 5P_n$	B) $P_{n+1} = 2 + 5P_n$	C) $P_{n+1} = 5 + 2P_n$	D) $5 P_{n+1} = 2 + P_n$
Q15. En étudiant le comp tirage on a	portement de la suite P_n , po	eut-on confirmer qu'ap	rès un grand nombre de
A) une chance sur deux de tirer une boule verte	B) une chance sur trois de tirer une boule verte	C) une chance sur quatre de tirer une boule verte	D) une chance sur cinq de tirer une boule verte

77%			16	10	1					
P	'n	0	n	1	ø	TH	Э	P	2	٠
	A	4.0	2	ж.	•	a.a.	ж.	-	454	۰

Le plan complexe P est rapporté au repère orthonormal direct $(0, \vec{i}, \vec{j})$; unité graphique 1cm. Soient A, B et C les points d'affixes respectives a=2, $b=3+i\sqrt{3}$ et $c=2i\sqrt{3}$.

Q16. La mesure de l'angle \widehat{ABC} vaut

A) 90°

B) 95°

C) 85°

D) 180°

Q17. L'affixe w du centre Ω du cercle circonscrit au triangle ABC est

A) $1 - i\sqrt{3}$

B) $1 + i\sqrt{3}$

(c) $-1 + i\sqrt{3}$

D) $-1 - i\sqrt{3}$

Q18. On note A_n le point d'affixe z_n , où z_n est la suite de nombres complexes, de premier terme $z_0 = 0$, et telle que, pour tout entier naturel n:

$$z_{n+1} = \frac{1 + i\sqrt{3}}{2} z_n + 2.$$

On considère la suite $t_n = z_n - w$.

En faisant remarquer que w est solution de l'équation $z = \frac{1+i\sqrt{3}}{2}z + 2$. La suite t_n vérifie la relation:

A) $t_{n+1} = \frac{1 + i\sqrt{3}}{2} t_n$ B) $t_{n+1} = \frac{1 - i\sqrt{3}}{2} t_n$ C) $1 + i\sqrt{3} t_{n+1} = 2 t_n$ D) $1 + i\sqrt{3} t_n = 2 t_{n+1}$

Q19. En déduire que pour tout entier naturel n, on a

 $A) A_{n+6} = 2A_n$

 $B) A_{n+6} = -A_n$

 $C) A_{n+6} = A_n$

 $D) A_{n+6} = -2 A_n$

Q20. La valeur de A_{2015} est

A) $-1 + 2i\sqrt{3}$

B) $3 + i\sqrt{3}$

C) $3i\sqrt{2}$

D) $-1 + i\sqrt{3}$