MITSUBISHI RF POWER TRANSISTOR

2SC2905

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2905 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers applications in UHF band.

FEATURES

- High power output, high gain: $P_O \ge 45W$, $G_{pe} \ge 4.8dB$ @ $V_{CC} = 12.5V$, f = 520MHz, $P_{in} = 15W$.
- Emitter ballasted construction.
- High ruggedness: Ability to withstand more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_O = 45W, f = 520MHz.
- High reliability due to gold metalization die.
- Flange type ceramic package.
- $\dot{Z}_{in} = 1.2 + j1.1\Omega$, $\dot{Z}_{out} = 1.3 + j1.0\Omega$ @ $V_{CC} = 12.5V$, f = 520MHz, $P_{O} = 45W$.

APPLICATION

For output stage of 35-40W power amplifiers in UHF band.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
V _{EBO}	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		15	A
PC	Collector dissipation	T _C = 25°C	120	- w
Τj	Junction temperature		175	°C
Tstg	Storage temperature		-55 to 175	°C

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C=25°C)

Symbol	Parameter	Test conditions	Limits			
			Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	$I_E = 10 \text{mA}, I_C = 0$	4			V
V _{(BR)CBO}	Collector to base breakdown voltage	IC = 10mA, I _E = 0	35			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C = 0.1A, R _{BE} = ∞	17			V
СВО	Collector cut off current	V _{CB} = 15V, I _E = 0			2	mA
IEBO	Emitter cut off current	$V_{EB} = 3V$, $I_C = 0$			3	mA
h _{FE}	DC forward current gain *	V _{CE} = 10V, I _C = 1A	10	50	180	
Po	Power Output	V _{CC} = 12.5V, P _{in} = 15W, f = 520MHz	45	50		W
$\eta_{\rm C}$	Collector efficiency		60	65		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change.

NPN EPITAXIAL PLANAR TYPE

Dimensions: mm

 L_1,L_2 : Microstrip: Board Material 1.6mm Thick, glass-teflon $\epsilon_\Gamma = 2.7$

L₃: 1 Turn, AWG #13, 8mm I.D. 5 Turns, AWG #13, 8mm I.D RFC: 9 Turns, AWG #20, 4mm I.D.

F.B.:

Ferrite Bead 82pF, 220pF, 2200pF, 4700pF, 33µF in Parallel 82pF, 220pF, 2200pF, 4700pF, 22µF in Parallel

TEST CIRCUIT BOARD LAYOUT (f = 520MHz)

100pF(Ribbon Lead Mica) 12pF(Ribbon Lead Mica)

C₁: C₂: C₃: C₄: C₅: CV₂: F.B. 20pF(Ribbon Lead Mica) 12pF(Ribbon Lead Mica)

- 10pF(Air Variable Capacitor) muRata TTA 43 A 100A - 20pF(Air Variable Capacitor) muRata TTA 45 A 200A

Ferrite Bead

RFC: 9 Turns, AWG #20, 4mm I.D.

1 Turns, AWG #13, 8mm I.D. Microstrip: Board Material 1.6mm Thick, glass-teflon &r = 2.7

NPN EPITAXIAL PLANAR TYPE

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. CASE TEMPERATURE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)

OUTPUT POWER VS. FREQUENCY

SERIES INPUT AND OUTPUT IMPEDANCE VS. FREQUENCY CHARACTERISTICS

