Práctica 1

Probabilidades

2023

1 ¿Con qué vamos a trabajar?

- Repaso de Normales
- Vectores Discretos
- Suma y promedio de variables aleatorias
- Ley de los Grandes Números para variables normales.

2 Manos a la obra

- 1. Sea G_n una variable aleatoria con distribución normal, con esperanza $\mu = 70$ y varianza $\sigma^2 = 9/n$: $G_n \sim \mathcal{N}(70, 9/n)$.
 - (a) Consideremos n = 1. Calcular la probabilidad de que G_1 diste de su media en más de dos unidades

$$\mathbb{P}(|G_1 - 70| > 2)$$

- (b) Hallar una expresión que dependa de n para la probabilidad de que G_n diste de su media en más de dos unidades.
- (c) Hallar n para que la probabilidad de que G_n diste de su media en más de dos unidades sea a lo sumo 0,01.
- (d) Determinar si fue necesario conocer el valor de μ para responder a las preguntas planteadas.
- 2. Calculo de probabilidades en el mundo normal:
 - (a) Sea $Z \sim \mathcal{N}(0,1)$. Calcular $\mathbb{P}(-1.65 \le Z \le 1.65)$.
 - (b) Sea $X \sim \mathcal{N}(\mu, \sigma^2)$. Calcular $\mathbb{P}(X 1.65\sigma \le \mu \le X + 1.65\sigma)$.
 - (c) Sea $Z \sim \mathcal{N}(0,1)$. Hallar a de forma tal que $\mathbb{P}(-a \leq Z \leq a) = 0.99$.
- 3. En una cierta población, se elige un trabajador mayor de 30 años. Sean

X =cantidad de años de educación que recibió,

Y = salario que cobra (en miles de pesos).

Se sabe que la función de probabilidad puntual del vector aleatorio (X,Y) está dado por $p_{XY}(x,y)$

	Y = 4	Y = 10	Y = 15
X = 7	0.14	0.06	0
X = 12		0.16	0.01
X = 18	0.02		0.03
X = 24	0.01	0.03	0.06

- (a) Completar la tabla, sabiendo que $\mathbb{P}(Y=4)=0.48$.
- (b) Calcular la probabilidad de que un individuo haya recibido al menos 18 años de educación y gane a los sumo \$10000.
- (c) Hallar las funciones de probabilidad puntual p_X y p_Y , también conocidas como marginales.
- (d) Calcular $\mathbb{E}(X)$ y $\mathbb{E}(Y)$.
- (e) ¿Son las variables X e Y independientes?
- (f) Calcular la covarianza entre $X \in Y$.
- 4. De una urna que contiene 3 bolillas numeradas 1, 2 y 3, se extraen sin reposición y sucesivamente 2 bolillas. Sea X el número de la primera bolilla e Y el de la segunda.
 - (a) Hallar $p_{X,Y}(x,y)$
 - (b) Calcular $\mathbb{P}(X < Y)$.
 - (c) ξ Son X e Y independientes?
- 5. El peso (en Kg.) de una horma de queso Brie es una variable aleatoria con distribución normal de media $\mu=3$ y desvío $\sigma=0.1$. Un horma cuyo peso es es inferior a los 2.85 Kg es declarada insatisfactoria. Un lote de n=15 hormas es enviado a una prueba de control de calidad. ¿Cuál es la probabilidad de que 3 o más hormas resulten insatisfactorias?
- 6. El número de reclamos por errores en la facturación que recibe diariamente una oficina de una empresa de telefonía celular es una v.a. con distribución $\mathcal{P}(5)$, mientras que el número de reclamos de otro tipo es una v.a. con distribución $\mathcal{P}(15)$. Suponiendo independencia entre ambos tipos de reclamos.
 - (a) Hallar la probabilidad de que en un día dado haya por lo menos 23 reclamos.
 - (b) Si un día dado hubo 18 reclamos, ¿cuál es la probabilidad de que 8 de ellos hayan sido por errores en la facturación?
- 7. Un astrónomo quiere estimar la distancia (en años luz) a una estrella. Sabe que debido a las condiciones atmosféricas y errores propios del telescopio, cada medición D_i no da exactamente la distacia sino que difiere de esta en un término ε_i que denota el error entre la medición y la verdadera magnitud de interés. Es decir, asumimos que $D_i = d + \varepsilon_i$ donde ε_i denota la diferencia entre la medición y la verdadera magnitud d. El astrónomo decide tomar una serie de mediciones D_i , independientes e idénticamente distribuídas, y usa el promedio

$$\overline{D}_n = \frac{1}{n} \sum_{i=1}^n D_i \tag{1}$$

de n de estas mediciones como una estimación de la distancia d. Si supone que los errores ε_i son independientes e idénticamente distribuidad con media 0 y desvío estándar $\sigma = 2$ (años luz).

(a) Calcular la esperanza y varianza de D_i : $\mathbb{E}(D_i) = \dots$ y $Var(D_i) = \dots$

(b) Calcular la esperanza y varianza de \overline{D}_n : $\mathbb{E}(\overline{D}_n) = \dots$ y $Var(\overline{D}_n) = \dots$

Asumimos en adelante que $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$.

(c) indicar cuás es la distribución de cada D_i y cuás es la distribución del promedio \overline{D}_n :

$$D_i \sim \dots \qquad \overline{D}_n \sim \dots$$
 (2)

- (d) Si realiza n = 160 mediciones, calcular la probabilidad de que la distancia estimada difiera de la verdadera magnitud d en menos de 0.5 años luz.
- (e) ¿Cuántas mediciones se deben realizar para que probabilidad de que la distancia estimada difiera de la verdadera magnitud d en menos de 0.5 años luz sea al menos 0.9.
- 8. Sean X_i variables aleatorias independientes e idénticamente distribuídas, con $X_i \sim \mathcal{N}(\mu, \sigma^2)$, siendo $\sigma^2 = 0.25$. Calcular la siguiente probabilidad

$$\mathbb{P}\left(\overline{X}_n - \frac{1.96 \times \sqrt{0.25}}{\sqrt{n}} < \mu < \overline{X}_n + \frac{1.96 \times \sqrt{0.25}}{\sqrt{n}}\right)$$