Homework 7 (due Nov. 23)

MATH 110 | Introduction to Number Theory | Fall 2022

Problem 1. In what follows, we fix a prime number p. For n an integer, recall that $v_p(n)$ is the exponent of p appearing in the prime factorization of n. Namely, $p^{v_p(n)} \mid n$, while $p^{v_p(n)+1} \nmid n$. Extend this definition to nonzero fractions as follows:

$$v_p(\frac{n}{m}) := v_p(n) - v_p(m).$$

(a) (2 pts) Show that, if the two fractions $\frac{n}{m}$ and $\frac{n'}{m'}$ represent the same rational number, then $v_p(\frac{n}{m}) = v_p(\frac{n'}{m'})$.

Hence, we obtain a function $v_p \colon \mathbb{Q}^{\times} \to \mathbb{Z}$. (Recall that \mathbb{Q}^{\times} consists of nonzero rational numbers). The p-adic norm of a rational number x is defined to be

$$|x|_p := \begin{cases} p^{-v_p(x)} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

For example,

$$\left| \frac{24}{25} \right|_2 = \frac{1}{8}, \qquad \left| \frac{24}{25} \right|_3 = \frac{1}{3}, \qquad \left| \frac{24}{25} \right|_5 = 25.$$

- (b) (3 pts) Prove that $|-x|_p=|x|_p,$ and $|xy|_p=|x|_p|y|_p.$
- (c) (5 pts) Prove the ultrametric triangle inequality

$$|x+y|_p \le \max\Bigl\{|x|_p,|y|_p\Bigr\}.$$

Remark. Note that $\max \left\{ |x|_p, |y|_p \right\} \leqslant |x|_p + |y|_p$. Hence, the ultrametric triangle inequality implies the usual triangle inequality. The previous two says that $|\cdot|_p$ can be viewed as analogy of the usual Euclidean norm of vectors, or the absolute value of real numbers.

For $z \in \mathbb{Q}$, the *p*-adic ball with center z and radius $r \in \mathbb{R}$ is defined to be

$$B_{|\cdot|_p}(z,r) := \left\{ x \in \mathbb{Q} \mid |x - z|_p \leqslant r \right\}.$$

(d) (5 pts) Prove that the p-adic ball $B_{|\cdot|_p}(0,1)$ is closed under addition and multiplication.

Since, clearly $0, 1 \in B_{|\cdot|_p}(0,1)$, we have actually proven that $B_{|\cdot|_p}(0,1)$ is a ring. This ring is called the **non-complete ring of** p-adic integers and is usually denoted by $\mathbb{Z}_{(p)}$.

(e) (2 pts) We can explicitly describe $\mathbb{Z}_{(p)}$. Prove that

$$\mathbb{Z}_{(p)} = \Big\{ \frac{a}{b} \in \mathbb{Q} \ \Big| \ a,b \in \mathbb{Z}, \ p \nmid b, \ \mathrm{GCD}(a,b) = 1 \Big\}.$$

(f) (3 pts) Let a be an integer and e be a positive integer. Describe the p-adic ball $B_{|\cdot|_p}(a, p^{-e})$ using the language of congruence.

Problem 2. Let R be a ring. A polynomial with coefficients in R is an expression

(2.1)
$$f(T) = a_n T^n + \dots + a_1 T + a_0,$$

where $a_0, \dots, a_n \in R$. The set of all polynomials with coefficients in R is denoted R[T]. Let f(T) be a polynomial as in (2.1). Its **derivative** is the polynomial

$$f'(T) := na_n T^{n-1} + \dots + a_1.$$

Note that this definition is formal, not involving any limit. The **second derivative** f''(T) of f(T) is the derivative of f'(T). In general, the k-th derivative $f^{(k)}(T)$ of f(T) is the derivative of $f^{(k-1)}(T)$.

(a) (5 pts) Let $a \in R$. Prove the Taylor expansion:

$$f(a+T) = f(a) + f'(a)T + \frac{f''(a)}{2!}T^2 + \dots + \frac{f^{(n)}(a)}{n!}T^n,$$

where n is the degree of f(T).

(b) (5 pts) Let f(T) be a polynomial with coefficients in \mathbb{Z} and k a positive integer. Prove that $\frac{1}{k!}f^{(k)}(T)$ has coefficients in \mathbb{Z} . That is to say, every coefficient of $f^{(k)}(T)$ is a multiple of k!.

Problem 3. Let $\phi: R \to S$ be a map between rings preserving the operations (sum to sum, product to product, zero to zero, and one to one). Then we have a map

$$\phi_* \colon R[T] \longrightarrow S[T]$$

mapping a polynomial

$$f(T) = a_n T^n + \dots + a_1 T + a_0 \in R[T],$$

to a polynomial

$$\phi_* f(T) = \phi(a_n) T^n + \dots + \phi(a_1) T + \phi(a_0) \in S[T].$$

If this is the case, we say f(T) descends to $\phi_*f(T)$, or f(T) is a lifting of $\phi_*f(T)$.

Let f(T) be a polynomial with coefficients in R. Say $r \in R$ is a **root** of f(T) in R if f(r) = 0 in R. Say $s \in S$ is a **root** of f(T) in S (through ϕ) if $\phi_* f(s) = 0$ in S.

(a) (2 pts) Show that, if $r \in R$ is a root of f(T) in R, then $\phi(r)$ is a root of f(T) in S.

If this is the case, we say r is a **lifting** of the root $\phi(r)$ of f(T) to R.

(b) (3 pts) Give an example to show that even if $\phi: R \to S$ is subjective, NOT all roots in S can have a lifting in R.

Hint. Consider $R = \mathbb{Z}$, $S = \mathbb{Z}/m$ (for your favorite m), and ϕ the natural quotient map $\mathbb{Z} \to \mathbb{Z}/m$. Then consider a polynomial which have no roots in \mathbb{Z} .

Problem 4. In what follows, Let f(T) be a polynomial with coefficients in \mathbb{Z} . Then for any positive integer m, we can talk about roots of f(T) in \mathbb{Z}/m (through the natural quotient map $\mathbb{Z} \to \mathbb{Z}/m$). In particular, we consider $m = p^e$, where p is a prime number and e is a positive integer.

(a) (4 pts) Show that, for any $a \in \mathbb{Z}$, we have

$$f(a + p^e T) \equiv f(a) + f'(a)p^e T \pmod{p^{2e}}.$$

(The congruence relation reads as saying both sides (as polynomials of T) descend to the same polynomial with coefficients in \mathbb{Z}/p^{2e} .) Note that this is a statement about polynomials not about integers.

Remark. This implies that $f(a + p^e t) \equiv f(a) + f'(a)p^e t \pmod{p^{2e}}$ for all $t \in \mathbb{Z}$.

(b) (5 pts) Finish proving the *Hensel's lemma*: if α is a root of f(T) in \mathbb{Z}/p^e and is NOT a root of f'(T) in \mathbb{Z}/p , then there is a unique congruence class $\tilde{\alpha} \in \mathbb{Z}/p^{e+e'}$ (where $e' \leq e$) such that $\tilde{\alpha}$ is a lifting of the root $\alpha \in \mathbb{Z}/p^e$ of f(T) to $\tilde{\alpha} \in \mathbb{Z}/p^{e+e'}$.

Hint. Read the lecture note. You can use the theorem on lifting multiplicative inverse.

In what follows, we fix a prime number p. Say a sequence $(x_n)_{n\in\mathbb{N}}$ of rational numbers is a **Cauchy sequence with respect to the** p-adic norm (a **Cauchy sequence** for short) if for every positive real number $\varepsilon > 0$, there is a positive integer N such that for all natural numbers m, n > N,

$$|x_m - x_n|_p < \varepsilon.$$

Say a rational number $x \in \mathbb{Q}$ is the **limit** of a sequence $(x_n)_{n \in \mathbb{N}}$ of rational numbers **with** respect to the *p*-adic norm if for every positive real number $\varepsilon > 0$, there is a positive integer N such that for all natural numbers n > N,

$$|x_n - x|_p < \varepsilon.$$

Say two Cauchy sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ are **equivalent** if the sequence $(x_n-y_n)_{n\in\mathbb{N}}$ has the limit 0.

- (c) (3 pts) Prove that, if a sequence $(x_n)_{n\in\mathbb{N}}$ of rational numbers has a limit $x\in\mathbb{Q}$ with respect to the p-adic norm, then it is a Cauchy sequence.
- (d) (5 pts) Finish proving the following version of *Hensel's lemma*: if x_0 is an integer such that $p \mid f(x_0)$ but $p \nmid f'(x_0)$, then it can be extended into a unique (up to equivalence) Cauchy sequence $(x_n)_{n \in \mathbb{N}}$ such that the sequence $(f(x_n))_{n \in \mathbb{N}}$ has the limit 0 with respect to the p-adic norm.

Hint. Using problem 1.(f) to translate the statement in the language of congruence.

(e) (3 pts) Give an example to show that NOT every Cauchy sequence has a limit in \mathbb{Q} with respect to the p-adic norm.

Hint. You may want to use problem 3.(b). Consider a sequence obtained from the Hensel's limit.