Package 'sparseregMRP'

May 7, 2019

Title	MRP	Estimates	from	sparsereg	Regressions
-------	-----	-----------	------	-----------	-------------

Version 0.0.1

Description Functions to facilitate MRP estimates from sparsereg multilevel regressions. The package is a set of custom functions, but adapted for general use in the future.

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

R topics documented:

count	t_cellsize	co	iver ount onin	th	e r	ш	nb	er	of	po	pı	ula	tic	n															
Index																													7
	unit_rmse				•		٠		•	•	•		•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	 •	•	6
	synth_cellsize																												6
	sum_to_geo																												5
	scatter_mrp																												5
	predict_on_cells .																												4
	mrp_estimate																												4
	logit																												
	eval_mrp expit																												
	dev_logit																												
	count_cellsize																												

Description

Given a individual level population dataset and variables of interest, count the number of population and the fraction of that subpopulation in the geography of interest

Usage

```
count_cellsize(size, popvar, geovar, ...)
```

2 dev_logit

Arguments

size A population, or census data frame

popvar The variable that indicates the population

geovar The variable that indicates the final grouping variable of interest

... variables that are in the regression

Examples

```
size <- read_csv("https://www.shirokuriwaki.com/datasets/popsize08.csv")
size_cell <- count_cellsize(size, popvar = pop2008, geovar = stt, eth, age, sex, inc, edu)</pre>
```

dev_logit

Deviance from predicted values of a logit model

Description

Deviance from predicted values of a logit model

Usage

```
dev_logit(y, xb = NULL, phat = NULL, w = 1)
```

Arguments

y vector of the outcome that was regressed on, or the true values to predict

xb estimates from the logit model, before the link function is applied.

phat estimates from the logit model, after link function is applied. Only either xb or

phat is necessary.

w survey weights if appplicable

Details

The deviance without weights, $dev(\hat{p})$ for target y is computed as

$$-2 \times \sum_{i=1}^{n} y_i \log(\hat{p_i}) + (1 - y_i) \log(1 - \hat{p_i})$$

where

$$\hat{p} = \frac{\exp X\beta}{\exp X\beta + 1}$$

With weights, this simply becomes

$$-2 \times \sum_{i=1}^{n} w_i y_i \log(\hat{p_i}) + w_i (1 - y_i) \log(1 - \hat{p_i})$$

eval_mrp 3

eval_mrp

function to evaluate RMSE and correlation

Description

function to evaluate RMSE and correlation

Usage

```
eval_mrp(tbl, truth, est_suffix)
```

Arguments

truth variable name of the truth to predict (no quotes)
est_suffix regex for variable names of estimates to consider

Value

A dataframe with three columns, model, rmse, and corr. One row for each model specified

expit

Inverse logit function (xb to p)

Description

Inverse logit function (xb to p)

Usage

expit(x)

logit

Logit function (p to xb)

Description

```
\log(p/(1-p))
```

Usage

logit(x)

4 predict_on_cells

mrn actimata	wanner function for MDD estimates
mrp_estimate	wrapper function for MRP estimates

Description

wrapper function for MRP estimates

Usage

```
mrp_estimate(model, est_name, cells = size_cell, geovar = stt,
    fracvar = frac_of_state, return_vec = FALSE)
```

Arguments

model a lm, glm, glmer, or sparsereg object

est_name pick a name for your estimate

cells cell counts produced from count_cellsize

geovar variable for geography of interest fracvar variabel for the cell fraction

return_vec whether to return the results as a data frame or vector

predict_on_cells

Predict a model on a dataset. Intended to predict on to a cell count

Description

Predict a model on a dataset. Intended to predict on to a cell count

Usage

```
predict_on_cells(model, data, draws = 1000)
```

Arguments

model a lm, glm, glmer, stan_glmer, or sparsereg object

data a data frame with the appropriate predictors, output from count_cellsize

draws number of posterior draws in stan

Value

A vector of predicted values

scatter_mrp 5

iagnostic graphic

Description

Scatterplot with x as truth and y as estiamte

Usage

```
scatter_mrp(x, y, ggtemplate = gg0, data = mrp_df,
null = global_mean)
```

Arguments

x the xaxis variable (no quotes)y the yaxis variable (no quotes)

ggtemplate an empty ggplot object with formatting layout data a dataframe which includes columns x and y

null the global mean a null benchmark

sum_to_geo Sum up the number of observations based on a geography

Description

Sum up the number of observations based on a geography

Usage

```
sum_to_geo(data, geovar, predvar, fracvar, name)
```

Arguments

data the dataset that has all the variables

geovar the variable indicating the geography to sum up to

predvar the variable for the predicted value

fracvar the variable that indicates the relative size of the cell, a string

name for the new var, a string

6 unit_rmse

synth_cellsize

Synthetic expansion

Description

Creates a synthetic post-stratification dataset by simple multiplication, i.e. distribution of variables in new cells (entered as marginals) are orthogonal to original counts

Usage

```
synth_cellsize(start, marginal)
```

Arguments

start

starting cell counts. These will have been estimated by census data.

marginal

new information we want to incorporate by synthetic approach, usually only as a marginal distribution. Must be a dataframe with three variables: the geography variable (same name for original count data), one variable that indicates the category of the new variable (e.g. "voted" and "not voted"), and a variable called "frac" which indicates the proportion of people of that category within that geography - i.e. all values within a geography must sum to 1.

unit_rmse

RMSE between two vectors

Description

RMSE between two vectors

Usage

```
unit_rmse(mu = truth, muhat)
```

Arguments

mu

A vector, conventionally the estimand

muhat

same length vectorm conventionally the estimate

Index

```
count_cellsize, 1
dev_logit, 2
eval_mrp, 3
expit, 3
logit, 3
mrp_estimate, 4
predict_on_cells, 4
scatter_mrp, 5
sum_to_geo, 5
synth_cellsize, 6
unit_rmse, 6
```