Maestría en Inteligencia Artificial Aplicada

- Curso: Ciencia y analítica de datos
- Tecnológico de Monterrey
- Prof Maria Paz Rico
- Reto_Entrega1

Nombres y matrículas de los integrantes del equipo:

- Andres Javier Galindo Vargas A01793927
- Carlos Jesús Peñaloza Julio A01793931

```
# Instalacion de la libreria
!pip install patool
```

! pip install qeds fiona geopandas xgboost gensim folium pyLDAvis descartes

Requirement already satisfied: folium in /usr/local/lib/python3.7/dist-packages (0.12 A Requirement already satisfied: pyLDAvis in /usr/local/lib/python3.7/dist-packages (3. Requirement already satisfied: descartes in /usr/local/lib/python3.7/dist-packages (1 Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pandas-datareader in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: statsmodels in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pyarrow in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: quandl in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: openpyxl in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: seaborn in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: quantecon in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: cligj>=0.5 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: munch in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: click-plugins>=1.0 in /usr/local/lib/python3.7/dist-pa Requirement already satisfied: certifi in /usr/local/lib/python3.7/dist-packages (from

Requirement already satisfied: smart-open>=1.2.1 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: jinja2>=2.9 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: branca>=0.3.0 in /usr/local/lib/python3.7/dist-package

Requirement already satisfied: click>=4.0 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: six>=1.7 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: attrs>=17 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: shapely>=1.6 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: pytroj>=2.2.0 in /usr/local/lib/python3.7/dist-package (Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages

```
kequirement aiready satistied: MarkupSate>=0,23 in /usr/iocal/iiD/pytnon3.//dist-pack
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: funcy in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: sklearn in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: numexpr in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: et-xmlfile in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from p
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: inflection>=0.3.1 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: more-itertools in /usr/local/lib/python3.7/dist-packag
Requirement already satisfied: numba in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: sympy in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/python3.7
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-pa
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: patsy>=0.5 in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: mnmaths=0 19 in /usr/local/lih/nython3 7/dist-nackages
```

Import de la librerias de Trabajo

```
#Librerías
import patoolib as pt
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import geopandas as gpd
from shapely.geometry import Point

from sklearn.cluster import KMeans

import folium # plotting library
from folium import plugins

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
```

```
#Bajar los datos: Base de datos de calidad de agua
!wget 'http://201.116.60.46/Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip'
pt.extract_archive('Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip')

--2022-11-16 20:28:27-- http://201.116.60.46/Datos_de_calidad_del_agua_de_5000_sitios_c
Connecting to 201.116.60.46:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2556825 (2.4M) [application/x-zip-compressed]
Saving to: 'Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip.1'

Datos_de_calidad_de 100%[================] 2.44M 2.12MB/s in 1.2s

2022-11-16 20:28:29 (2.12 MB/s) - 'Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip ...
patool: Extracting Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip ...
patool: running /usr/bin/7z x -o./Unpack_luo_r9os -- Datos_de_calidad_del_agua_de_5000_s
patool: ... Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip extracted to `Dato
'Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip extracted to `Dato
'Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip extracted to `Dato
```

Lectura dataset monitoreo de aguas subterraneas

```
#Leer archivo
file = 'Datos_de_calidad_del_agua_2020/Datos_de_calidad_del_agua_de_sitios_de_monitoreo_de_ag
df = pd.read_csv(file, encoding = 'latin1')
df.head()
```

	CLAVE	SITIO	ORGANISMO_DE_CUENCA	ESTADO	MUNICIP
0	DLAGU6	POZO SAN GIL	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	ASIENT
1	DLAGU6516	POZO R013 CAÑADA HONDA	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	AGUASCALIENTI
2	DLAGU7	POZO COSIO	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	COS
3	DLAGU9	POZO EL SALITRILLO	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	RINCON I ROM(
4	DLBAJ107	RANCHO EL TECOLOTE	PENINSULA DE BAJA CALIFORNIA	BAJA CALIFORNIA SUR	LA P.
5 rc	ows × 57 colum	ns			
4					

Analisis de los Datos

#El conjunto de datos muestra la siguiente información: #shape print('Shape: ', df.shape) print('Columns: ',df.columns) #dtypes print('Dtypes: ',df.dtypes) Shape: (1068, 57) Columns: Index(['CLAVE', 'SITIO', 'ORGANISMO_DE_CUENCA', 'ESTADO', 'MUNICIPIO', 'ACUIFERO', 'SUBTIPO', 'LONGITUD', 'LATITUD', 'PERIODO', 'ALC mg/L', 'CALIDAD_ALC', 'CONDUCT_mS/cm', 'CALIDAD_CONDUC', 'SDT_mg/L', 'SDT_M_mg/L', 'CALIDAD_SDT_ra', 'CALIDAD_SDT_salin', 'FLUORUROS_mg/L', 'CALIDAD_FLUO', 'DUR_mg/L', 'CALIDAD_DUR', 'COLI_FEC_NMP/100_mL', 'CALIDAD_COLI_FEC', 'N_NO3_mg/L', 'CALIDAD_N_NO3', 'AS_TOT_mg/L', 'CALIDAD_AS', 'CD_TOT_mg/L', 'CALIDAD_CD', 'CR_TOT_mg/L', 'CALIDAD_CR', 'HG_TOT_mg/L', 'CALIDAD_HG', 'PB_TOT_mg/L', 'CALIDAD_PB', 'MN_TOT_mg/L', 'CALIDAD_MN', 'FE_TOT_mg/L', 'CALIDAD_FE', 'SEMAFORO', 'CONTAMINANTES', 'CUMPLE CON ALC', 'CUMPLE CON COND', 'CUMPLE CON SDT ra', 'CUMPLE CON SDT salin', 'CUMPLE CON FLUO', 'CUMPLE CON DUR', 'CUMPLE_CON_CF', 'CUMPLE_CON_NO3', 'CUMPLE_CON_AS', 'CUMPLE_CON_CD', 'CUMPLE CON CR', 'CUMPLE CON HG', 'CUMPLE CON PB', 'CUMPLE CON MN', 'CUMPLE CON FE'], dtype='object') object Dtypes: CLAVE SITI0 object object ORGANISMO_DE_CUENCA **ESTADO** object **MUNICIPIO** object **ACUIFERO** object object **SUBTIPO** LONGITUD float64 LATITUD float64 **PERIODO** int64 ALC mg/L float64 CALIDAD ALC object CONDUCT mS/cm float64 CALIDAD CONDUC object SDT mg/L float64 SDT_M_mg/L object CALIDAD SDT ra object CALIDAD SDT salin object FLUORUROS mg/L object CALIDAD FLUO object DUR mg/L object CALIDAD DUR object COLI FEC NMP/100 mL object CALIDAD COLI FEC object N NO3 mg/L object CALIDAD N NO3 object AS TOT mg/L object CALIDAD AS object

object

CD TOT mg/L

```
object
CALIDAD_CD
CR_TOT_mg/L
                          object
CALIDAD_CR
                          object
HG_TOT_mg/L
                          object
CALIDAD_HG
                          object
PB_TOT_mg/L
                          object
CALIDAD_PB
                          object
MN_TOT_mg/L
                          object
CALIDAD MN
                          object
FE_TOT_mg/L
                          object
CALIDAD FE
                          object
SEMAFORO
                          object
```

#Revisamos cuántos datos nulos tenemos en el conjunto
df.isnull().sum()

CLAVE	0
SITIO	0
ORGANISMO_DE_CUENCA	0
ESTADO	0
MUNICIPIO	0
ACUIFERO	0
SUBTIPO	0
LONGITUD	0
LATITUD	0
PERIODO	0
ALC_mg/L	4
CALIDAD_ALC	4
CONDUCT_mS/cm	6
CALIDAD_CONDUC	6
SDT_mg/L	1068
SDT_M_mg/L	2
CALIDAD_SDT_ra	2
CALIDAD_SDT_salin	2
FLUORUROS_mg/L	0
CALIDAD_FLUO	0
DUR_mg/L	1
CALIDAD_DUR	1
COLI_FEC_NMP/100_mL	0
CALIDAD_COLI_FEC	0
N_NO3_mg/L	1
CALIDAD_N_NO3	1
AS_TOT_mg/L	0
CALIDAD_AS	0
CD_TOT_mg/L	0
CALIDAD_CD	0
CR_TOT_mg/L	0
CALIDAD_CR	0
HG_TOT_mg/L	0
CALIDAD_HG	0
PB_TOT_mg/L	0
CALIDAD_PB	0
MN_TOT_mg/L	0
CALIDAD_MN	0
FE_TOT_mg/L	0
-	

CALIDAD_FE	0
SEMAFORO	0
CONTAMINANTES	434
CUMPLE_CON_ALC	0
CUMPLE_CON_COND	0
CUMPLE_CON_SDT_ra	0
CUMPLE_CON_SDT_salin	0
CUMPLE_CON_FLUO	0
CUMPLE_CON_DUR	0
CUMPLE_CON_CF	0
CUMPLE_CON_NO3	0
CUMPLE_CON_AS	0
CUMPLE_CON_CD	0
CUMPLE_CON_CR	0
CUMPLE_CON_HG	0
CUMPLE_CON_PB	0
CUMPLE_CON_MN	0
CUMPLE_CON_FE	0
dtung. int61	

#Teniendo en cuenta los tipos de variables del conjunto de datos, procedemos a revisar la est
df.describe().transpose()

	count	mean	std	min	25%	50%	
LONGITUD	1068.0	-101.891007	6.703263	-116.66425	-105.388865	-102.17418	
LATITUD	1068.0	23.163618	3.887670	14.56115	20.212055	22.61719	
PERIODO	1068.0	2020.000000	0.000000	2020.00000	2020.000000	2020.00000	2
ALC_mg/L	1064.0	235.633759	116.874291	26.64000	164.000000	215.52750	
CONDUCT_mS/cm	1062.0	1138.953013	1245.563674	50.40000	501.750000	815.00000	1
SDT_mg/L	0.0	NaN	NaN	NaN	NaN	NaN	
◀							•

#Dado que se identificaron datos nulos, se procede a ordenarlos para un mejor análisis
df.isna().sum().sort_values(ascending=False)

SDT_mg/L	1068
CONTAMINANTES	434
CALIDAD_CONDUC	6
CONDUCT_mS/cm	6
ALC_mg/L	4
CALIDAD_ALC	4
CALIDAD_SDT_ra	2
SDT_M_mg/L	2
CALIDAD_SDT_salin	2
CALIDAD_N_NO3	1
CALIDAD_DUR	1
N_NO3_mg/L	1
DUR_mg/L	1

```
CUMPLE CON COND
CUMPLE_CON_ALC
                             0
SEMAFORO
                             0
CALIDAD FE
                             0
FE_TOT_mg/L
CALIDAD MN
                             0
CUMPLE CON SDT ra
CUMPLE CON SDT salin
                             0
CLAVE
CUMPLE_CON_FLUO
                             0
                             0
CUMPLE CON DUR
CALIDAD PB
                             0
CUMPLE CON CF
                             0
CUMPLE CON NO3
                             0
CUMPLE CON AS
                             0
CUMPLE_CON_CD
                             0
CUMPLE CON CR
                             0
CUMPLE_CON_HG
                             0
CUMPLE_CON_PB
                             0
CUMPLE CON MN
                             0
MN_TOT_mg/L
                             0
CD TOT mg/L
                             0
PB TOT mg/L
CALIDAD HG
                             0
                             0
ORGANISMO DE CUENCA
                             0
ESTAD0
                             0
MUNICIPIO
                             0
ACUIFERO
SUBTIPO
                             0
LONGITUD
                             0
LATITUD
                             0
PERIODO
                             0
FLUORUROS mg/L
                             0
CALIDAD FLUO
                             0
COLI_FEC_NMP/100_mL
CALIDAD COLI FEC
                             0
AS TOT mg/L
CALIDAD AS
SITI0
CALIDAD CD
                             0
                             0
CR_TOT_mg/L
                             0
CALIDAD CR
HG TOT mg/L
                             0
CUMPLE CON FE
                             0
dtvpe: int64
```

Limpieza De Datos Nulos

```
16/11/22, 16:04
                            RetoEntrega_1_Limpieza,_análisis,_visualización_y_kmeans_Equipo63.ipynb - Colaboratory
   #Porcentaje de registros nulos
   print('Los datos nulos representan el ' + str(round(df.isna().sum().sum()/df.shape[0] * 100,2
         El total de datos es de: 1068
         El total de datos nulos es de: 1532
        Los datos nulos representan el 143.45% del total de los valores
   pd.set option('display.max columns', None)
   datos nul = df[df.isnull().any(axis=1)].shape[0]
   print('El total de datos es de: ' + str(df.shape[0]) +
          '\nEl total de datos nulos es de: ' + str(datos nul))
   #Porcentaje de registros nulos
   print('Los datos nulos representan el ' + str(round(datos_nul/df.shape[0] * 100,2)) + '% del
        El total de datos es de: 1068
        El total de datos nulos es de: 1068
         Los datos nulos representan el 100.0% del total de los valores
   df.isna().any()
        CLAVE
                                  False
        SITI0
                                  False
        ORGANISMO DE CUENCA
                                  False
        ESTADO
                                  False
        MUNICIPIO
                                  False
        ACUIFERO
                                  False
        SUBTIPO
                                  False
        LONGITUD
                                  False
        LATITUD
                                  False
        PERIODO
                                  False
        ALC mg/L
                                   True
        CALIDAD ALC
                                   True
        CONDUCT mS/cm
                                   True
        CALIDAD CONDUC
                                   True
        SDT mg/L
                                   True
                                   True
        SDT M mg/L
        CALIDAD SDT ra
                                   True
        CALIDAD SDT salin
                                   True
        FLUORUROS mg/L
                                  False
        CALIDAD FLUO
                                  False
        DUR mg/L
                                   True
        CALIDAD DUR
                                   True
```

False

False

True

True

False

False

False

False

False

COLI FEC NMP/100 mL

CALIDAD COLI FEC

N NO3 mg/L

AS_TOT_mg/L

CD TOT mg/L

CALIDAD CD

CR TOT mg/L

CALIDAD AS

CALIDAD N NO3

```
CALIDAD CR
                         False
HG_TOT_mg/L
                         False
CALIDAD HG
                         False
PB TOT mg/L
                         False
CALIDAD PB
                         False
MN_TOT_mg/L
                         False
CALIDAD MN
                         False
FE TOT mg/L
                         False
CALIDAD FE
                         False
SEMAFORO
                         False
CONTAMINANTES
                         True
CUMPLE CON ALC
                         False
CUMPLE_CON_COND
                         False
CUMPLE CON SDT ra
                         False
CUMPLE_CON_SDT_salin
                         False
CUMPLE_CON_FLUO
                         False
CUMPLE CON DUR
                         False
CUMPLE_CON_CF
                         False
CUMPLE_CON_NO3
                         False
CUMPLE CON AS
                         False
CUMPLE_CON_CD
                         False
CUMPLE CON CR
                         False
CUMPLE CON HG
                         False
CUMPLE_CON_PB
                         False
CUMPLE CON MN
                         False
CUMPLE CON FE
                         False
dtype: bool
```

df_imp = df.copy()
df_sin_nulos = df.copy()

df sin nulos.head()

	CLAVE	SITIO	ORGANISMO_DE_CUENCA	ESTADO	MUNICIPIO	
0	DLAGU6	POZO SAN GIL	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	ASIENTOS	
1	DLAGU6516	POZO R013 CAÑADA HONDA	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	AGUASCALIENTES	
2	DLAGU7	POZO COSIO	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	cosio	Α(
3	DLAGU9	POZO EL SALITRILLO	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	RINCON DE ROMOS	Αſ
4	DLBAJ107	RANCHO EL TECOLOTE	PENINSULA DE BAJA CALIFORNIA	BAJA CALIFORNIA SUR	LA PAZ	

Analisis de Variables

```
[ ] L, 2 celdas ocultas
```

Variables Categóricas

```
[ ] L, 3 celdas ocultas
```

Variables numéricas

```
[ ] L, 6 celdas ocultas
```

Escalamiento de las variables

from sklearn.compose import ColumnTransformer

```
transformer = ColumnTransformer(transformers=[
    ("cat", cat_pipeline, lista_cat),
    ("num", num_pipeline, lista_num)
], remainder='passthrough');
```

df_imp_num

	ALC_mg/L	CONDUCT_mS/cm	SDT_M_mg/L	FLUORUROS_mg/L	DUR_mg/L	COLI_FEC_NMP,
0	229.990	940.0	603.6000	0.9766	213.7320	
1	231.990	608.0	445.4000	0.9298	185.0514	
2	204.920	532.0	342.0000	1.8045	120.7190	
3	327.000	686.0	478.6000	1.1229	199.8790	
4	309.885	1841.0	1179.0000	0.2343	476.9872	
1063	231.045	2350.0	1545.8000	0.2000	752.0960	
1064	256.000	529.0	297.0000	0.2000	273.0000	
1065	330.690	2600.0	1873.0000	0.7574	660.2126	
1066	193.140	873.0	690.6667	0.7108	406.3680	
1067	263.070	817.0	495.0000	0.4002	362.5440	
1068 rd	ows × 14 colu	umns				

df_imp_num.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1068 entries, 0 to 1067
Data columns (total 14 columns):

mediana = df_imp_num[name].median()

Data	COTAMMIS (COCAT IT C	0±umi13).	
#	Column	Non-Null Count	Dtype
0	ALC_mg/L	1068 non-null	float64
1	CONDUCT_mS/cm	1068 non-null	float64
2	SDT_M_mg/L	1068 non-null	float64
3	FLUORUROS_mg/L	1068 non-null	float64

df_imp_num[name] = df_imp_num[name].replace(np.nan, mediana)

```
DUR mg/L
                         1068 non-null
                                          float64
5
    COLI_FEC_NMP/100_mL
                         1068 non-null
                                          float64
6
    N NO3 mg/L
                         1068 non-null
                                          float64
7
    AS_TOT_mg/L
                         1068 non-null
                                          float64
    CD_TOT_mg/L
8
                         1068 non-null
                                          float64
9
    CR_TOT_mg/L
                         1068 non-null
                                          float64
                                          float64
10
   HG_TOT_mg/L
                         1068 non-null
   PB_TOT_mg/L
11
                         1068 non-null
                                          float64
12 MN TOT mg/L
                         1068 non-null
                                          float64
13 FE_TOT_mg/L
                         1068 non-null
                                          float64
```

dtypes: float64(14)
memory usage: 116.9 KB

Estadistica Descriptiva

df_imp_num.describe().transpose()

	count	mean	std	min	25%	
ALC_mg/L	1068.0	235.558455	116.661485	26.6400	164.048750	215.52
CONDUCT_mS/cm	1068.0	1137.133052	1242.292889	50.4000	505.500000	815.00
SDT_M_mg/L	1068.0	895.454185	2748.991295	25.0000	337.700000	550.40
FLUORUROS_mg/L	1068.0	1.075600	1.924278	0.2000	0.267175	0.50
DUR_mg/L	1068.0	347.842003	359.514579	20.0000	121.274100	245.33
COLI_FEC_NMP/100_mL	1068.0	355.490356	2052.457014	1.1000	1.100000	1.10
N_NO3_mg/L	1068.0	4.317663	8.341504	0.0200	0.650932	2.08
AS_TOT_mg/L	1068.0	0.019618	0.035209	0.0100	0.010000	0.01
CD_TOT_mg/L	1068.0	0.003030	0.000894	0.0030	0.003000	0.00
CR_TOT_mg/L	1068.0	0.012476	0.154435	0.0040	0.004000	0.00
HG_TOT_mg/L	1068.0	0.000467	0.000479	0.0004	0.000400	0.00
PB_TOT_mg/L	1068.0	0.004310	0.003342	0.0040	0.004000	0.00
MN_TOT_mg/L	1068.0	0.072478	0.376512	0.0015	0.001500	0.00
FE_TOT_mg/L	1068.0	0.410387	5.537974	0.0250	0.025000	0.04
4						•

Nivel de correlación de las variables

df_imp_num.corr()

	ALC_mg/L	CONDUCT_mS/cm	SDT_M_mg/L	FLUORUROS_mg/L	DUR_n
ALC_mg/L	1.000000	0.217212	0.079572	0.068860	0.243
CONDUCT_mS/cm	0.217212	1.000000	0.286244	-0.025071	0.692
SDT_M_mg/L	0.079572	0.286244	1.000000	-0.013709	0.347
FLUORUROS_mg/L	0.068860	-0.025071	-0.013709	1.000000	-0.149
DUR_mg/L	0.243404	0.692656	0.347211	-0.149549	1.000
COLI_FEC_NMP/100_mL	-0.016338	0.018021	-0.001102	0.003564	0.031
N_NO3_mg/L	-0.000346	0.219881	0.101522	-0.019672	0.301
AS_TOT_mg/L	0.073458	-0.005047	-0.010092	0.444079	-0.10€
CD_TOT_mg/L	0.032706	0.029083	0.010807	-0.015123	0.025
CR_TOT_mg/L	-0.014234	0.004436	-0.000494	-0.005205	0.007
HG_TOT_mg/L	0.069779	0.057007	0.020332	-0.028597	0.064
PB_TOT_mg/L	0.016989	0.024816	0.002517	-0.034191	-0.017
MN_TOT_mg/L	0.129942	0.095940	0.018963	-0.049742	0.083
EE TOT mall	U U434E4	n no2172	U UJU1UJ	0 000004	0 050

outliers = df_imp_num.boxplot(figsize = (15,10),showmeans = True)

outliers.plot()

plt.xticks(rotation=90)

plt.show()

#Histograma de correlación
f, ax = plt.subplots(figsize=(10, 10))
tst = df.corr()['ALC_mg/L'].copy()
tst = tst.drop('ALC_mg/L')
tst.sort_values(inplace=True)
tst.plot(kind='bar', alpha=0.6)

<matplotlib.axes._subplots.AxesSubplot at 0x7ff954f7e990>

#Matriz de correlación

```
f, ax = plt.subplots(figsize=(10, 10))
plt.title('Correlación de Pearson')
#sns.heatmap(df.astype(float).corr(), linewidths=0.7,vmax=1.0, square=True, annot=True)
corrmat = df.corr()
sns.heatmap(corrmat, vmin = -1, vmax=1, square=True, annot = True)
```


Algoritmo K-MEANS

Realizar análisis para encontrar si existe una relación entre la calidad del agua y su ubicación geográfica a través de K- means.

UBICACIÓN GEOGRÁFICA

```
#Basados en la latitud y longitud se creará un dataframe y posteriormente se presentarán las
latlong=df[['LONGITUD','LATITUD']]
latlong["COORDENADAS"] = list(zip(latlong.LONGITUD, latlong.LATITUD))
latlong["COORDENADAS"] = latlong["COORDENADAS"].apply(Point)
latlong.head()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWar
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable
This is separate from the ipykernel package so we can avoid doing imports until
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWar
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable after removing the cwd from sys.path.

	LONGITUD	LATITUD	COORDENADAS
0	-102.02210	22.20887	POINT (-102.0221 22.20887)
1	-102.20075	21.99958	POINT (-102.20075 21.99958)
2	-102.28801	22.36685	POINT (-102.28801 22.36685)
3	-102.29449	22.18435	POINT (-102.29449 22.18435)
4	-110.24480	23.45138	POINT (-110.2448 23.45138)
- 4			

```
ubicacion_geografica = gpd.GeoDataFrame(latlong, geometry="COORDENADAS")
world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"))
world = world.set_index("iso_a3")
world.name.unique()
fig, gax = plt.subplots(figsize=(10,10))

# By only plotting rows in which the continent is 'South America' we only plot SA.
world.query("name == 'Mexico'").plot(ax=gax, edgecolor='black',color='white')

# By the way, if you haven't read the book 'longitude' by Dava Sobel, you should...
gax.set_xlabel('LONGITUD')
gax.set_ylabel('LATITUD')
```

gax.spines['top'].set_visible(False)
gax.spines['right'].set_visible(False)

ubicacion_geografica.plot(ax=gax, color='red', alpha = 0.5)
ubicacion_geografica

	LONGITUD	LATITUD	COORDENADAS
0	-102.02210	22.20887	POINT (-102.02210 22.20887)
1	-102.20075	21.99958	POINT (-102.20075 21.99958)
2	-102.28801	22.36685	POINT (-102.28801 22.36685)
3	-102.29449	22.18435	POINT (-102.29449 22.18435)
4	-110.24480	23.45138	POINT (-110.24480 23.45138)
1063	-99.54191	24.76036	POINT (-99.54191 24.76036)
1064	-99.70099	24.78280	POINT (-99.70099 24.78280)
1065	-99.82249	25.55197	POINT (-99.82249 25.55197)
1066	-100.32683	24.80118	POINT (-100.32683 24.80118)
1067	-100.73302	25.09380	POINT (-100.73302 25.09380)

1068 rows × 3 columns

K_clusters = range(10,40)
kmeans = [KMeans(n_clusters=i) for i in K_clusters]

```
Y_axis = latlong[['LONGITUD']]
X_axis = latlong[['LATITUD']]
score = [kmeans[i].fit(Y_axis).score(Y_axis) for i in range(len(kmeans))]
plt.plot(K_clusters, score)
plt.xlabel('Número de Clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
plt.show()
```



```
#Coordenadas halladas:
X = latlong[["LONGITUD","LATITUD"]]
X
```

LONGITUD LATITUD

```
#Aplicamos K-means
kmeans = KMeans(n_clusters=25).fit(X)
centroides = kmeans.cluster_centers_
labels = kmeans.predict(X)
c_c = kmeans.cluster_centers_
mdf = pd.DataFrame(c_c)

mdf["Coordenadas"] = list(zip(mdf[0], mdf[1]))
mdf["Coordenadas"] = mdf["Coordenadas"].apply(Point)

geo_mdf = gpd.GeoDataFrame(mdf, geometry="Coordenadas")
geo_mdf
```

	0	1	Coordenadas
0	-98.449027	19.055544	POINT (-98.44903 19.05554)
1	-106.372195	23.435289	POINT (-106.37219 23.43529)
2	-89.627607	20.535159	POINT (-89.62761 20.53516)
3	-110.504722	28.989829	POINT (-110.50472 28.98983)
4	-102.463826	22.560986	POINT (-102.46383 22.56099)

Realizar análisis para encontrar si existe una relación entre la calidad del agua y su ubicación geográfica a través de K- means.

```
7 -93.018481 17.887457 POINT (-93.01848 17.88746)
```

#La variable categórica que nos permite conocer la calidad del agua es CALIDAD_COLI_FEC #Procedemos entonces a contar la clasificación desde fuertemente contaminada hasta excelente

```
df['CALIDAD COLI FEC'].value counts()
     Potable - Excelente
                                739
     Buena calidad
                                208
     Aceptable
                                 60
     Contaminada
                                 49
     Fuertemente contaminada
                                 12
     Name: CALIDAD COLI FEC, dtype: int64
fig, gax = plt.subplots(figsize=(20,20))
world.query("name == 'Mexico'").plot(ax = gax, edgecolor='black', color='white')
ubicacion geografica.plot(ax=gax, color='red', alpha = 0.5)
geo mdf.plot(ax=gax, color='blue', alpha = 1, markersize = 300)
#Graficamos
gax.set xlabel('LONGITUD')
gax.set_ylabel('LATITUD')
gax.set_title('Acueducto México')
gax.spines['top'].set_visible(False)
gax.spines['right'].set_visible(False)
plt.show()
```


Hasta la ubicación de los clusters de acuerdo con el resultado de k-means podríamos considerar que son los puntos más relevantes en cuanto a ubicación de los acuiferos y la respectiva calidad del agua.

Vemos importante en este punto, revisar la validación que se hace con la variable categórica "SEMAFORO" y una variable relacionada con la calidad del agua como lo es "CALIDAD_COLI_FEC".

```
#Revisaremos cómo está el conteo de la variable "SEMAFORO"
plt.figure(figsize=(8, 6))
sns.countplot(df['SEMAFORO'], palette='Set2')
plt.xlabel("'SEMAFORO'")
plt.title("Count Plot of 'SEMAFORO'")
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

Text(0.5, 1.0, "Count Plot of 'SEMAFORO'")

df['SEMAFORO'].value_counts()

Verde 434 Rojo 387 Amarillo 247

Name: SEMAFORO, dtype: int64

Aquí importa ver la relación de las coordenadas con el color y el cluster correspondiente por lo que adicionamos esa columna al dataframe.

latlong['COLOR']= df['SEMAFORO']
latlong['CLUSTER'] = labels
latlong

```
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user""Entry point for launching an IPython kernel.
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user

	LONGITUD	LATITUD	COORDENADAS	COLOR	CLUSTER
0	-102.02210	22.20887	POINT (-102.02210 22.20887)	Verde	4
1	-102.20075	21.99958	POINT (-102.20075 21.99958)	Verde	4
2	100 00001	30 3660 E	DOINT / 100 00001 00 06605)	Doio	1

Para poder ubicar las coordenadas en el mapa de México y relacionarla con el valor en el semáforo, es necesario traducir al inglés los valores de la columna "SEMAFORO" incluyendo también el encabezado.

```
df['SEMAPHORE'] = df['SEMAFORO'].replace(to replace = "Verde", value = "green")
df['SEMAPHORE'].replace(to replace = "Rojo", value = "red", inplace=True)
df['SEMAPHORE'].replace(to replace = "Amarillo", value = "yellow", inplace=True)
            -99.82249 25.55197 POINT (-99.82249 25.55197)
print(df['SEMAPHORE'].head())
print(latlong.head())
    0
         green
     1
         green
     2
            red
     3
         green
           red
    Name: SEMAPHORE, dtype: object
        LONGITUD
                  LATITUD
                                            COORDENADAS COLOR CLUSTER
    0 -102.02210 22.20887 POINT (-102.02210 22.20887) Verde
    1 -102.20075 21.99958 POINT (-102.20075 21.99958) Verde
                                                                      4
    2 -102.28801 22.36685
                            POINT (-102.28801 22.36685)
                                                          Rojo
                                                                      4
    3 -102.29449 22.18435 POINT (-102.29449 22.18435)
                                                         Verde
                                                                      4
     4 -110.24480 23.45138 POINT (-110.24480 23.45138)
                                                          Rojo
                                                                      9
```

Para hacernos una idea de la relación de las dos variables mencionadas "SEMAFORO" y "CALIDAD_COLI_FEC", imprimimos un dataframe con estas y adicionamos la latitud y longitud.

```
df_types = df[['CALIDAD_COLI_FEC', 'SEMAPHORE', 'LONGITUD', 'LATITUD']]
df_types.head(20)
```

	CALIDAD_COLI_FEC	SEMAPHORE	LONGITUD	LATITUD
0	Potable - Excelente	green	-102.022100	22.208870
1	Potable - Excelente	green	-102.200750	21.999580
2	Potable - Excelente	red	-102.288010	22.366850
3	Potable - Excelente	green	-102.294490	22.184350
4	Aceptable	red	-110.244800	23.451380
5	Contaminada	red	-110.220670	23.464930
6	Buena calidad	green	-110.213960	23.474600
7	Aceptable	red	-109.907306	22.890500
8	Buena calidad	green	-110.088778	23.799861
9	Contaminada	red	-110.054722	23.824722
10	Aceptable	green	-109.907091	23.946320
11	Potable - Excelente	green	-110.108253	23.807347
12	Buena calidad	red	-109.958920	23.973740
13	Aceptable	red	-110.061100	23.805540
14	Contaminada	red	-110.111850	23.742210
15	Potable - Excelente	green	-111.720090	25.135490
16	Potable - Excelente	green	-111.803800	25.240100
17	Potable - Excelente	yellow	-111.922210	25.504700
18	Aceptable	red	-109.964667	23.969660
19	Buena calidad	green	-111.485700	26.227900

Ahora miramos cuál es la ocurrencia entre la clasificación de la calidad del agua y los semáforos

```
types = pd.get_dummies(df_types['SEMAPHORE'])
types['CALIDAD_COLI_FEC'] = df_types['CALIDAD_COLI_FEC']
types = types.groupby('CALIDAD_COLI_FEC').sum().reset_index()
types.head()
```

```
CALIDAD_COLI_FEC green red yellow
```

Teniendo en cuenta el análisis de la relación de las dos variables, procederemos a confirmar la cantidad de clusters.

```
codes = types[['CALIDAD_COLI_FEC']]
types.drop('CALIDAD_COLI_FEC', axis=1, inplace=True)

# run k-means clustering
kmeans = KMeans(n_clusters=5, random_state=0).fit(types)

codes['cluster'] = kmeans.labels_
codes.head()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWar A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable after removing the cwd from sys.path.

	CALIDAD_COLI_FEC	cluster
0	Aceptable	3
1	Buena calidad	2
2	Contaminada	1
3	Fuertemente contaminada	4
4	Potable - Excelente	0
4		

types['cluster'] = kmeans.labels_
types.head()

	green	red	yellow	cluster
0	21.0	22.0	17.0	3
1	77.0	72.0	59.0	2
2	0.0	49.0	0.0	1
3	0.0	12.0	0.0	4
4	336.0	232.0	171.0	0

types.groupby('cluster').mean()

	green	red	yellow
cluster			
0	336.0	232.0	171.0
1	0.0	49.0	0.0
2	77.0	72.0	59.0
3	21.0	22.0	17.0
4	0.0	12.0	0.0

sns.catplot(x='cluster', y='green', data=types, kind='bar');

sns.catplot(x='cluster', y='red', data=types, kind='bar');

sns.catplot(x='cluster', y='yellow', data=types, kind='bar');

acuiferos = df[['SITIO', 'ORGANISMO_DE_CUENCA', 'ACUIFERO', 'LONGITUD', 'LATITUD', 'MUNICIPIO', 'E
acuiferos.head()

	SITIO	ORGANISMO_DE_CUENCA	ACUIFERO	LONGITUD	LATITUD	
0	POZO SAN GIL	LERMA SANTIAGO PACIFICO	VALLE DE CHICALOTE	-102.02210	22.20887	
1	POZO R013 CAÑADA HONDA	LERMA SANTIAGO PACIFICO	VALLE DE CHICALOTE	-102.20075	21.99958	AGUAS
2	POZO COSIO	LERMA SANTIAGO PACIFICO	VALLE DE AGUASCALIENTES	-102.28801	22.36685	
4						•

number_of_occurences = pd.DataFrame(acuiferos['ACUIFERO'].value_counts())
number_of_occurences.reset_index(inplace=True)
number_of_occurences.columns = ['ACUIFERO', 'Count']
number_of_occurences.head()

```
ACUIFERO Count

0 PENINSULA DE YUCATAN 119

1 PRINCIPAL-REGION LAGUNERA 28

2 ALTO ATOYAC 19

number_of_occurences = number_of_occurences.merge(acuiferos.drop_duplicates())

1 PANIA 10

number_of_occurences.head()
```

	ACUIFERO	Count	SITIO	ORGANISMO_DE_CUENCA	LONGITUD	LATITUD	MUNICI
0	PENINSULA DE YUCATAN	119	POZO DEL SISTEMA DE AGUA POTABLE DE CANDELARIA	PENINSULA DE YUCATAN	-91.04672	18.18680	CANDELA
1	PENINSULA DE YUCATAN	119	POZO DEL SISTEMA DE AGUA POTABLE DE	PENINSULA DE YUCATAN	-90.55914	19.74566	CAMPEC

#ubicacion_geografica['LATITUDYLONGITUD'] = ubicacion_geografica['LATITUD'] + ubicacion_geografica.com_geografica.LATITUDYLONGITUD, df.SEMAPHORE))
#dicc_semaforo

```
latlong['LATITUDYLONGITUD'] = latlong['LATITUD'] + latlong['LONGITUD']
dicc semaforo = dict(zip(latlong.LATITUDYLONGITUD, df.SEMAPHORE))
dicc_semaforo
import folium
#lat = latlong.iloc[0]['LATITUD']
#lng = latlong.iloc[0]['LONGITUD']
#map = folium.Map(location=[lng, lat], zoom start=5)
#folium.Map( location= (19.419444, -99.145556), zoom_start=10 )
Mexico map=folium.Map(location=[19.432, -99.13], zoom start=6)
for _, row in latlong.iterrows():
   folium.CircleMarker(
        location=[row["LATITUD"], row["LONGITUD"]],
       radius=10,
       weight=2,
       fill=True,
       fill color=dicc semaforo[row["LATITUDYLONGITUD"]],
        color=dicc semaforo[row["LATITUDYLONGITUD"]]
   ).add to(Mexico map)
color='black'
for _, row in latlong.iterrows():
   folium.CircleMarker(
```

```
location=[row[1], row[0]],
    radius=10,
    weight=2,
    fill=True,
    fill_color=color,
    color=color
).add_to(Mexico_map)
Mexico_map
```

```
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user

En el mapa anterior lo que hicimos fue ubicar las coordenadas de los acuiferos y relacionarlos con el comportamiento del semáforo, a continuación se hará la combinación de lo obtenido con la librería folium para ubicar las ocurrencias o participación identificada para cada acuifero, todo esto después de analizar la cantidad de clusters y la cobertura que cada uno podría tener.

```
occurences = folium.map.FeatureGroup()
n_mean = number_of_occurences['Count'].mean()
for lat, lng, number, city, state in zip(number of occurences['LATITUD'],
                                          number_of_occurences['LONGITUD'],
                                          number of occurences['Count'],
                                          number of occurences['MUNICIPIO'],
                                          number of occurences['ESTADO'],):
      occurences.add child(
        folium.vector_layers.CircleMarker(
            [lat, lng],
            radius=number/n mean*5, # define how big you want the circle markers to be
            color='yellow',
            fill=True,
            fill color='blue',
            fill opacity=0.6,
            tooltip = str(number)+','+str(city) +','+ str(state)
        )
    )
```

Mexico map.add child(occurences)


```
map_clusters = folium.Map(location=[19.432, -99.13], zoom_start=6)

# set color scheme for the clusters
x = np.arange(4)
ys = [i + x + (i*x)**2 for i in range(4)]
colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors_array]

# add markers to the map
markers_colors = []
```

Productos de pago de Colab - Cancelar contratos

