Theorem 1 (Negative answer to Thorisson Problem 3.1). Let $Y = (Y_k)_{k \in \mathbb{Z}}$ be an arbitrary stationary $\{0,1\}$ -valued process. Let $(p_k)_{k \geq 0} \subset (0,1)$ satisfy

$$p_k \xrightarrow{k \to \infty} 0,$$
 (1a)

$$c := \liminf_{n \to \infty} \sum_{k=n}^{2n} p_k > 0. \tag{1b}$$

Let $(J_k)_{k\in\mathbb{Z}}$ be independent Bernoulli (p_k) variables, independent of Y, and set

$$X_k := Y_k \oplus J_k,$$

where \oplus denotes addition modulo 2 (the XOR-operator on $\{0,1\}$). Denote by θ_n the time-shift: $(\theta_n \mathbf{x})_t := x_{t+n}$. Then

- (a) Setwise convergence: $\lim_{n\to\infty} P(\theta_n X \in A) = P(Y \in A) \quad \forall A \in \mathcal{E}^{\infty}.$
- (b) No total-variation convergence: $\liminf_{n\to\infty} \|P(\theta_n X) P(Y)\|_{\text{TV}} \ge 1 e^{-c} > 0.$

Hence setwise convergence of the shifted laws does not imply convergence in total variation.

Proof. Step 1 (setwise convergence). Fix a cylinder A that depends on the coordinates $t_1 < \cdots < t_m$. Because $X_k \neq Y_k$ exactly when $J_k = 1$,

$$|P(\theta_n X \in A) - P(Y \in A)| \le \sum_{i=1}^m p_{n+t_i} \xrightarrow{n \to \infty} 0$$
 (by (1a)).

Let C denote the *finite cylinder sets*; this family is a π -system since it is closed under finite intersections. Set

$$\mathcal{D} := \left\{ A \subset \{0, 1\}^{\mathbb{Z}} : P(\theta_n X \in A) \xrightarrow{n \to \infty} P(Y \in A) \right\}.$$

 \mathcal{D} fulfills the properties of a Dynkin system, and is then one. The estimate above shows $\mathcal{C} \subset \mathcal{D}$. Hence the $\pi - \lambda$ lemma gives

$$\sigma(\mathcal{C}) = \mathcal{E}^{\infty} \subset \mathcal{D},$$

so $P(\theta_n X \in A) \to P(Y \in A)$ for every $A \in \mathcal{E}^{\infty}$; that is, setwise convergence holds. Step 2 (failure of total variation). For fixed $n \in \mathbb{N}$ condition on the entire path Y = y and put

$$\mu_{\nu} := \mathcal{L}(\theta_n X \mid Y = y), \qquad \nu_{\nu} := \delta_{\nu}.$$

Only the coordinates $n, \ldots, 2n$ can differ, so

$$\|\mu_y - \nu_y\|_{\text{TV}} = P((J_n, \dots, J_{2n}) \neq (0, \dots, 0)) = 1 - \prod_{k=n}^{2n} (1 - p_k) \ge 1 - \exp(-\sum_{k=n}^{2n} p_k).$$

Using (1b) and taking $\liminf_{n\to\infty}$ we obtain

$$\liminf_{n \to \infty} ||P(\theta_n X) - P(Y)||_{\text{TV}} \ge 1 - e^{-c} > 0,$$

which proves (b). \Box