Supervised Learning Revision Notes (18-19)

Study Suggestions

- Lecture notes
- Problems in lectures notes
- Past exams
- Assumed background knowledge includes but is not limited to
 - 1. Probability (Bayes rule, conditional probability, expectation, random variables, basic combinatorics)
 - 2. Linear Algebra (singular value decomposition, positive semi-definite, positive definite, rank, linear systems of equations)
 - 3. Misc: convexity, boolean functions (and, or, not, conjunctive normal form, disjunctive normal form, conjunction, disjunction)

Exam Format

Ten questions each with two sub-parts (each sub-part is 5 points) (answer all questions).

There are nine lecture files on moodle. The lecture "7. Sparsity and Matrix Estimation" is not explicitly examined. Each of the remaining 8 lectures has a question associated with it. The remaining two questions are also drawn from the 8 examinable lectures.

Lectures

DISCLAIMER: Exam is not limited to outline topic headers.

- 1. Introduction
 - Supervised learning model
 - Least squares
 - Introducing a bias term
 - Normal equations
 - Bayes Estimator
 - k-NN
 - 1-NN is asymptotically 2 \times "optimal"
 - k-NN is optimal
 - Optimal supervised learning
 - Bias-variance decomposition
 - NFL Theorem
 - Hypothesis space
 - Bayes classifier

- Overfitting and Underfitting
- Cross-validation
- 2. Kernels and Regularization
 - ullet Inner product/vector/normed space
 - Ill-posed problems
 - Ridge regression (as an example of regularisation)
 - Primal vs Dual representation
 - Computational considerations
 - Representer theorem
 - Feature maps
 - Basis functions explicit feature map
 - Kernel functions implicit feature Map
 - * Definition (Role of PSDness)
 - * Kernel construction
 - * Example kernels : Polynomial, Anova, Gaussian
 - * min Kernel
- 3. Tree-based learning algorithms and Boosting
 - Classification and Regression Trees
 - Recursive Binary Partition
 - Optimization formulation
 - "Greedy" approximate algorithm
 - Cost-complexity pruning
 - Classification trees
 - Node impurity measures
 - Ensemble Methods (Wisdom of crowds)
 - Not examined 18-19: Details of Chernoff bound argument
 - Bagging
 - Random Forests
 - Weak Learners
 - Definition
 - \bullet Boosting (Adaboost)
 - Weak Learner
 - Distribution on training set
 - Final classifier is a linear combination of weak classifiers
 - Exponential convergence of training error
 - Boosting as exponential minimiser
 - Boosting generalisation guarantees [not examined 18-19]
 - Additive Models, Exponential Loss (vs other loss functions) and Boosting
 - Comparison between boosting and bagging
- 4. Support Vector Machines
 - Linear Classifier
 - Hyperplane (Separating)
 - Margin of hyperplane and a point
 - Optimal Separating Hyperplane (OSH) (parameterization normal vs canonical)
 - Solution form of OSH in primal and dual (Combination of support vectors)
 - Support vectors and generalisation
 - Non-separable case
 - ullet Role of the parameter C
 - connection to regularisation
- 5. Online learning I

- Online learning model
 - Loss bound
- Learning with expert advice
 - Halving algorithm
 - Weighted majority algorithm
 - Regret bound
 - Experts algorithm (AKA Weighted average algorithm) bound for general loss functions difference in results log and arbitrary loss function
 - Expected loss bound for WAA/Hedge
- Learning with thresholded linear combinations
 - Linear classifiers and disjunctions
 - Perceptron
 - Winnow
 - Learning boolean functions
 - * Definitions (conjunction, disjunction, (monotone) literal, term, etc)
 - * Perceptron and Winnow mistake bounds
 - * Case study: Finding a maximally sparse classifier is NP-hard [not examined 18-19]
 - * Case study: DNF
 - (a) Anova Kernel
- Learning with sequences of experts [not examined 18-19]
- Tracking the best expert [not examined 18-19]
 - Fixed Share algorithm [not examined 18-19]
 - Shifting loss bound [not examined 18-19]
- 6. Sparsity and Matrix estimation [not examined 18-19]
- 7. Learning Theory
 - learning model
 - definitions of expected (AKA true error, generalisation error) and empirical errors
 - validation set bound
 - empirical risk minimisation (ERM)
 - "expected" vs "confident" bounds
 - PAC Model
 - Realisability assumption
 - role of ϵ and δ
 - NFL lower bound result
 - Learning with finite hypothesis classes
 - Sample complexity
 - VC-dimension (Definition as well as be able to compute for a hypothesis class)
 - VC-dimension (Large Margin Halfspaces)
 - VC-dimension upper bound for PAC learning and connection to finite hypothesis class
 - Agnostic model
 - Error decomposition approximation and estimation error.
- 8. Advanced Online Learning
 - Partial feedback setting
 - Motivation "exploration vs exploitation"
 - Unbiased estimator
 - Importance weighting
 - EXP3
 - Connection to hedge
 - Model: Deterministic Oblivious Adversary

- Theorem (bound how does it compare to hedge)
- Matrix completion
- Factor Model
- Rank Complexity, Margin Complexity
- mistake bound for matrix winnow applied to matrix completion
- Multi-task interpretation
- (k, \ell)-biclustering (definition, VC-dimension lower bound, connection to margin complexity)
- 9. Graph-based Semi-supervised learning
 - Overview
 - Why SSL?
 - Comparison to SL and UL
 - Transduction and Induction
 - Graphs
 - Intrinsic vs extrinsic
 - How to build (k-NN, ϵ -ball, tree-based, weighted graph, combo)
 - Graph classifier
 - * Cut as a measure of smoothness/complexity
 - Algorithmic frameworks
 - Minimum cut
 - Laplacian
 - Spectral clustering (cut versus ratio objectives)
 - Interpolation as a limit case of regularization
 - Minimum cut transduction
 - Laplacian-based transduction
 - quadratic form $\mathbf{u}^T L \mathbf{u}$ (connection to cut)
 - associated kernel as pseudo-inverse
 - Laplacian Interpolation (AKA harmonic minimization, label propagation, Laplacian interpolated regularization)
 - Motivation via consensus
 - Harmonic solution
 - Interpreting Laplacian-based transduction
 - Graph as a resistive network
 - Effective resistance
 - * Computation
 - * Kirchoff Circuit Laws [not examined 18-19]
 - * Connection to kernel (pseudo-inverse of Laplacian)
 - * Proof that $R(i,j) := (e_i e_j)^T L^+(e_i e_j)$ [not examined 18-19]
 - * Connection to random walks
 - * Labeling respects cluster structure (two-clique example)
 - Sections VIII-X [not examined 18-19]