

Sequences

Subgraphs

Connected | Disconnected

connected : 1 component

Component: Induces empty cut

: connected

Eulerian Circuits

Given: connected

Bridges

If a span-tree doesn't have e: must not be a bridge must be in a cycle

Corollary: Method 1

- 1) Add: = \ E(T) => T+e has 1 cycle (C)
- 2 Remove: ec => T+e-e : new span tree of G

Corollary : Method 2

- 1) Remove: $e \in E(T)$ => T-e has 2 Components (C_1, C_2)
- (2) Add: e C.I(V(C1)) or C.I(V(C1)) => T-e+e': new span tree of G

trees

i. If G is connected w' edge e

bridge now bridge

every span T 3: span tree
has e with e

Bipartite

Planarity

1 graph => many planar embeddings (different faces/degrees)

Colouring

```
K-colourable \neq> (K-1)-colourable

K-colourable \Rightarrow (K+1)-colourable

K-colourable \Rightarrow K-colourable
```

Extreme Cases: Minimum colouis

Colouring Planar

Colouring Duals

G	G*
1), deg(v) = K	f, deg(f)=K
f, deg(f) = K	1), deg(v) = K

G is connected
$$=> (G^*)^* = G$$

minimum #colours needed is not preserved

C = covers all edges

reed at least 2 vestices to cover all edges

$$|C_{min}| \ge \frac{\alpha}{a}$$

Edge Colouring

Edge k - colouring

partitions the edges of G into K total matchings

bipartite:

Figure 8.11: A graph with an edge 3-colouring

