REPORT TO BOSS

(Xinqian Wang s4565489/Ziyi Liu 45655335)

Formulation

SETS

T sets of the trucks for every FSD

D sets of target islands DDP

F sets of teansfer islands FSD

DATA

Demand_d $d \in D$ the demend goods(t) for island

 DF_{fd} feF deD the price of transportation from DDP to FSD

 FC_f feF the price of transportation from CDRD to FSD

Cost the price of goods

TruckCost the price of a truck to be allocated to a FSD

TruckCapacity the units of a truck's limitation to transport

VARUABLE

X_{fd}	units of goods from FSD to DDP f∈F d∈D
Y_f	1 or 0, If the FSD f is chosen to transport or not f∈F
Z_{fd}	times of trips to transport from FSD to DDP f∈F d∈D
P_{fd}	units of goods are empty form the last trips from FSD to DDP $f \in F d \in D$
Q_f	times from CDRD to FSD f∈F

 TB_{ft} 1 or 0, If the truck t from FSD f is exist or not $f \in F t \in T$

 TK_{ft} minutes for truck t from FSD f to spend during whole trips $f \in F t \in T$

 TN_f number for trucks in FSD f $f \in F$

 TT_{ftd} minutes for truck t from FSD f to DDPd fEF tET dED

OBJECTIVE FUNCTIONS

$$\begin{split} \text{Minimize (} & \sum_{f \in F, d \in D} Z_{fd} * TruckCapacity * DF_{fd} + \sum_{f \in F, d \in D} Cost * X_{fd} + \\ & \sum_{f \in F} Q_f * FC_f * TruckCapacity + \sum_{f \in F} TN_f * TruckCost \text{)} \end{split}$$

CONSTRAINS

$$\begin{split} \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{f} \in \mathbf{F}} \mathbf{X}_{fd} * \mathbf{Y}_{f} &\geq \mathsf{Demand}_{d} \\ \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D}} \mathbf{X}_{fd} * \mathbf{Y}_{f} &\leq \mathsf{820} \\ \sum_{\mathbf{f} \in \mathbf{F}} \mathbf{Y}_{f} &\leq \mathsf{5} \\ \sum_{\mathbf{f} \in [5,6,7,8]} \mathbf{Y}_{f} &\leq \mathsf{1} \\ \\ \mathsf{TruckCapacity} * \mathbf{Z}_{fd} - \mathbf{X}_{fd} &= \mathbf{P}_{fd} \ \mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D} \\ \\ \mathsf{TruckCapacity} &\geq \mathbf{P}_{fd} &\geq \mathsf{0} \ \mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D} \\ \\ \mathsf{TruckCapacity} &\geq \mathsf{TruckCapacity} * \mathbf{Q}_{f} - \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D}} \mathbf{X}_{fd} &\geq \mathsf{0} \ \mathbf{f} \in \mathbf{F} \\ \\ \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{t} \in \mathbf{T}} \mathsf{TB}_{ft} &\geq \mathsf{Y}_{f} \ \mathbf{f} \in \mathbf{F} \\ \\ \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{t} \in \mathbf{T}} \mathsf{TB}_{ft} &\geq \mathsf{TN}_{f} \ \mathbf{f} \in \mathbf{F} \\ \\ \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{t} \in \mathbf{T}} \mathsf{TB}_{ft} &\leq \mathsf{6} \\ \\ \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D}} \mathsf{Z}_{fd} * \mathsf{3} * \mathsf{DF}_{fd} &\leq \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{t} \in \mathbf{T}} \mathsf{TB}_{ft} * \mathsf{TK}_{ft} \\ \\ \mathsf{TK}_{ft} &\leq \mathsf{720} \ \mathbf{f} \in \mathbf{F}, \mathbf{t} \in \mathbf{T} \\ \\ \mathsf{Z}_{fd} &= \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D}, \mathbf{t} \in \mathbf{T}} \mathsf{TT}_{ftd} * \mathsf{TB}_{ft} \ \mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D} \\ \\ \mathsf{TK}_{ft} &= \sum_{\mathbf{f} \in \mathbf{F}, \mathbf{d} \in \mathbf{D}, \mathbf{T} \in \mathbf{T}} \mathsf{TT}_{ftd} * \mathsf{3} * \mathsf{DF}_{fd} \ \mathbf{f} \in \mathbf{F}, \mathbf{t} \in \mathbf{T} \end{split}$$

Code

Can be found in the python file. Communication 8 constrain will not be included at here.

The answer for communication 5 is \$399307.

The answer for communication 6 is \$404549.

The answer for communication 7 is \$419928.

The answer for communication 8 is \$660168.

The answer for communication 9 is \$561728.