Lecture 10: Optimality Conditions for Linearly Constrained Problems

Shi Pu

School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

Outline

1 Separation and Alternative Systems

2 The KKT Conditions

3 Examples

Outline

1 Separation and Alternative Systems

The KKT Conditions

3 Examples

Linearly Constrained Problems: Separation \to Alternative Theorems \to Optimality Conditions

A hyperplane

$$H = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^{\top} \mathbf{x} = b \right\} \quad (\mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, b \in \mathbb{R})$$

is said to strictly separate a point $\mathbf{y} \notin S$ from S if

$$\mathbf{a}^{ op}\mathbf{y}>b$$

and

$$\mathbf{a}^{\top}\mathbf{x} \leq b$$
 for all $\mathbf{x} \in S$.

Theorem (separation of a point from a closed and convex set)

Let $C \subset \mathbb{R}^n$ be a nonempty closed and convex set, and let $\mathbf{y} \notin C$. Then there exists $\mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that

$$\mathbf{p}^{\top}\mathbf{y} > \alpha$$
 and $\mathbf{p}^{\top}\mathbf{x} < \alpha$ for all $\mathbf{x} \in C$.

Separation Theorem

Proof.

■ By the second orthogonal projection theorem, the vector $\bar{\mathbf{x}} = P_C(\mathbf{y}) \in C$ satisfies

$$(\mathbf{y} - \mathbf{\bar{x}})^{\top}(\mathbf{x} - \mathbf{\bar{x}}) \leq 0 \text{ for all } \mathbf{x} \in C$$

which is the same as

$$(\mathbf{y} - \mathbf{\bar{x}})^{\top} \mathbf{x} \leq (\mathbf{y} - \mathbf{\bar{x}})^{\top} \mathbf{\bar{x}}$$
 for all $\mathbf{x} \in \mathcal{C}$

- Denote $\mathbf{p} = \mathbf{y} \bar{\mathbf{x}} \neq \mathbf{0}$ and $\alpha = (\mathbf{y} \bar{\mathbf{x}})^{\top} \bar{\mathbf{x}}$. Then $\mathbf{p}^{\top} \mathbf{x} \leq \alpha$ for all $\mathbf{x} \in C$
- On the other hand,

$$\mathbf{p}^{\top}\mathbf{y} = (\mathbf{y} - \bar{\mathbf{x}})^{\top}\mathbf{y} = (\mathbf{y} - \bar{\mathbf{x}})^{\top}(\mathbf{y} - \bar{\mathbf{x}}) + (\mathbf{y} - \bar{\mathbf{x}})^{\top}\bar{\mathbf{x}} = \|\mathbf{y} - \bar{\mathbf{x}}\|^2 + \alpha > \alpha.$$

Farkas' Lemma - an Alternative Theorem

Lemma (Farkas' Lemma)

Let $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution:

- (A) $Ax \le 0$, $c^{T}x > 0$
- (B) $\mathbf{A}^{\mathsf{T}}\mathbf{y} = \mathbf{c}, \ \mathbf{y} \geq 0$

Another equivalent formulation is the following.

Lemma (Farkas' Lemma - second formulation)

Let $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the following claims are equivalent:

- 1. The implication $\mathbf{A}\mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{c}^{\top}\mathbf{x} \leq \mathbf{0}$ holds true.
- 2. There exists $\mathbf{y} \in \mathbb{R}_+^m$ such that $\mathbf{A}^\top \mathbf{y} = \mathbf{c}$.

What does it mean? Example.

$$\mathbf{A} = \begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} -1 \\ 9 \end{pmatrix}$$

Farkas' Lemma

Proof.

- Suppose that statement 2 holds: $\exists \mathbf{y} \in \mathbb{R}_+^m$ such that $\mathbf{A}^\top \mathbf{y} = \mathbf{c}$.
- To see that the implication 1 holds, suppose that $\mathbf{A}\mathbf{x} \leq \mathbf{0}$ for some $\mathbf{x} \in \mathbb{R}^n$.
- Multiplying this inequality from the left by \mathbf{y}^{\top} :

$$y^{\top}Ax \leq 0$$
.

Hence,

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} \leq \mathbf{0}$$
.

■ Suppose that implication 1 is satisfied, and let us show that statement 2 holds. Suppose in contradiction that statement 2 is not true.

Farkas' Lemma

Proof Contd.

Consider the following closed and convex (why?) set

$$S = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{A}^ op \mathbf{y} \text{ for some } \mathbf{y} \in \mathbb{R}_+^m
ight\}$$

- **c** ∉ *S*
- By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^n \backslash \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^\top \mathbf{c} > \alpha$ and

$$\mathbf{p}^{\top}\mathbf{x} \leq \alpha$$
 for all $\mathbf{x} \in S$

- $\bullet \mathbf{0} \in S \Rightarrow \alpha \ge 0 \Rightarrow \mathbf{p}^{\mathsf{T}} \mathbf{c} > 0.$
- (1) is equivalent to $\mathbf{p}^{\top} \mathbf{A}^{\top} \mathbf{y} \leq \alpha$ for all $\mathbf{y} \geq \mathbf{0}$ or to $(\mathbf{A}\mathbf{p})^{\top} \mathbf{y} \leq \alpha$ for all $\mathbf{y} \geq \mathbf{0}$
- lacktriangle Therefore, $\mathbf{Ap} \leq \mathbf{0}$
- Contradiction to the assertion that implication 1 holds.

(1)

Gordan's Alternative Theorem

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution

- (A) $\mathbf{A}\mathbf{x} < \mathbf{0}$
- (B) $\mathbf{p} \neq \mathbf{0}, \ \mathbf{A}^{\top} \mathbf{p} = \mathbf{0}, \ \mathbf{p} \geq \mathbf{0}$

Gordan's Alternative Theorem

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution

- (A) Ax < 0
- (B) $\mathbf{p} \neq 0$, $\mathbf{A}^{\top} \mathbf{p} = \mathbf{0}$, $\mathbf{p} \geq \mathbf{0}$

Proof.

- Suppose that system (A) has a solution.
- Assume in contradiction that (B) is feasible: $\exists \mathbf{p} \neq \mathbf{0}$ satisfying $\mathbf{A}^{\top} \mathbf{p} = \mathbf{0}, \mathbf{p} \geq \mathbf{0}$.
- Multiplying the equality $\mathbf{A}^{\top}\mathbf{p} = \mathbf{0}$ from the left by \mathbf{x}^{\top} yields $(\mathbf{A}\mathbf{x})^{\top}\mathbf{p} = \mathbf{0}$, which is an impossible equality.

Gordan's Alternative Theorem

Proof Contd.

- Now suppose that system (A) does not have a solution.
- System (A) is equivalent to (s is scalar) to $\mathbf{A}\mathbf{x} + s\mathbf{e} \leq 0, s > 0$, or to

$$\tilde{\mathbf{A}} \begin{pmatrix} \mathbf{x} \\ s \end{pmatrix} \le 0, \ \mathbf{c}^{\top} \begin{pmatrix} \mathbf{x} \\ s \end{pmatrix} > 0$$

where $\tilde{\mathbf{A}} = (\mathbf{A} \ \mathbf{e})$ and $\mathbf{c} = \mathbf{e}_{n+1}$.

■ The infeasibility of (A) is thus equivalent to the infeasibility of system

$$\tilde{\mathbf{A}}\mathbf{w} \leq \mathbf{0}, \ \mathbf{c}^{\top}\mathbf{w} > 0, \ \mathbf{w} \in \mathbb{R}^{n+1}$$

■ By Farkas' lemma, $\exists \mathbf{z} \in \mathbb{R}_+^m$ such that

$$\begin{pmatrix} \mathbf{A}^{\top} \\ \mathbf{e}^{\top} \end{pmatrix} \mathbf{z} = \mathbf{c}$$

- $\blacksquare \Leftrightarrow \exists \mathbf{z} \in \mathbb{R}_{+}^{m}: \ \mathbf{A}^{\top}\mathbf{z} = \mathbf{0}, \ \mathbf{e}^{\top}\mathbf{z} = \mathbf{1} \Leftrightarrow \exists \mathbf{0} \neq \mathbf{z} \in \mathbb{R}_{+}^{m}: \ \mathbf{A}^{\top}\mathbf{z} = \mathbf{0}$
- $\blacksquare \Rightarrow$ System (B) is feasible.

Outline

1 Separation and Alternative Systems

2 The KKT Conditions

3 Examples

KKT Conditions for Linearly Constrained Problems

Theorem (KKT conditions for linearly constrained problems - necessary optimality conditions)

Consider the minimization problem

(P)
$$\min_{\mathbf{s.t.}} f(\mathbf{x})$$

s.t. $\mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i}, i = 1, 2, \dots, m$

where f is continuously differentiable over \mathbb{R}^n , $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_m \in \mathbb{R}^n, b_1, b_2, \cdots, b_m \in \mathbb{R}$ and let \mathbf{x}^* be a local minimum point of (P). Then there exist $\lambda_1, \lambda_2, \cdots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}$$
 (2)

and

$$\lambda_i(\mathbf{a}_i^{\top}\mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \cdots, m$$
(3)

KKT Conditions for Linearly Constrained Problems

Proof.

- **x*** is a local minimum \Rightarrow **x*** is a stationary point.
- $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} \mathbf{x}^*) \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}_i^{\top} \mathbf{x} \le b_i$ for any $i = 1, 2, \dots, m$.
- Denote the set of active constraints by

$$I(\mathbf{x}^*) = \{i : \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$$

Making the change of variables $\mathbf{y} = \mathbf{x} - \mathbf{x}^*$, we have $\nabla f(\mathbf{x}^*)^\top \mathbf{y} \ge 0$ for any $\mathbf{y} \in \mathbb{R}^m$ satisfying $\mathbf{a}_i^\top (\mathbf{y} + \mathbf{x}^*) \le b_i, i = 1, 2, \cdots, m$, or $\nabla f(\mathbf{x}^*)^\top \mathbf{y} \ge 0$ for any \mathbf{y} satisfying

$$\mathbf{a}_{i}^{\top} \mathbf{y} \leq 0 \quad i \in I(\mathbf{x}^{*})$$

 $\mathbf{a}_{i}^{\top} \mathbf{y} \leq b_{i} - \mathbf{a}_{i}^{\top} \mathbf{x}^{*} \quad i \notin I(\mathbf{x}^{*})$

KKT Conditions for Linearly Constrained Problems

Proof Contd.

The second set of inequalities can be removed, that is, we will prove that

$$\mathbf{a}_i^{\top}\mathbf{y} \leq \mathbf{0}$$
 for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^{\top}\mathbf{y} \geq \mathbf{0}$

- Suppose then that **y** satisfies $\mathbf{a}_i^{\top}\mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*)$
- Since $b_i \mathbf{a}_i^{\top} \mathbf{x}^* > 0$ for all $i \notin I(\mathbf{x}^*)$, it follows that there exists a small enough $\alpha > 0$ for which $\mathbf{a}_i^{\top}(\alpha \mathbf{y}) \leq b_i \mathbf{a}_i^{\top} \mathbf{x}^*$.
- Thus, since in addition $\mathbf{a}_i^{\top}(\alpha \mathbf{y}) \leq 0$ for any $i \in I(\mathbf{x}^*)$, it follows by the stationarity condition that $\nabla f(\mathbf{x}^*)^{\top} \mathbf{y} \geq 0$.
- We have shown $\mathbf{a}_i^{\top} \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^{\top} \mathbf{y} \geq 0$.
- By Farkas' lemma, $\exists \lambda_i \geq 0, i \in I(\mathbf{x}^*)$ s.t. $-\nabla f(\mathbf{x}^*) = \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i$.
- Defining $\lambda_i = 0$ for all $i \notin I(\mathbf{x}^*)$ we get that $\lambda_i(\mathbf{a}_i^\top \mathbf{x}^* b_i) = 0$ for all $i \in \{1, 2, \dots, m\}$ and $\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}$.

Theorem (KKT conditions for convex linearly constrained problems - necessary and sufficient optimality conditions)

Consider the minimization problem

(P)
$$\min_{\mathbf{s.t.}} f(\mathbf{x})$$

s.t. $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, i = 1, 2, \dots, m$

where f is a convex continuously differentiable function over \mathbb{R}^n , $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_m \in \mathbb{R}^n, b_1, b_2, \cdots, b_m \in \mathbb{R}$ and let \mathbf{x}^* be a feasible solution of (P). Then \mathbf{x}^* is an optimal solution if and only if there exist $\lambda_1, \lambda_2, \cdots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}$$
 (4)

and

$$\lambda_i(\mathbf{a}_i^{\mathsf{T}}\mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \cdots, m \tag{5}$$

The Convex Case

Proof.

- Necessity was proven.
- Suppose that **x*** is a feasible solution of (P) satisfying (4) and (5). Let **x** be a feasible solution of (P).
- Define the function

$$h(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i (\mathbf{a}_i^{\top} \mathbf{x} - b_i)$$

- $\nabla h(\mathbf{x}^*) = 0 \Rightarrow \mathbf{x}^*$ is a minimizer of h over \mathbb{R}^n .

$$f(\mathbf{x}^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^\top \mathbf{x}^* - b_i) \le f(\mathbf{x}) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^\top \mathbf{x} - b_i) \le f(\mathbf{x})$$

Problems with Equality and Inequality Constraints

Theorem (KKT conditions for linearly constrained problems)

Consider the minimization problem

(Q) min
$$f(\mathbf{x})$$

 $\mathbf{s.t.} \quad \mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, 2, \dots, m$
 $\mathbf{c}_j^{\top} \mathbf{x} = d_j, \ j = 1, 2, \dots, p$

where f is continuously differentiable, $\mathbf{a}_i, \mathbf{c}_j \in \mathbb{R}^n, b_i, d_j \in \mathbb{R}$.

(i) (necessity of the KKT conditions) If \mathbf{x}^* is a local minimum of (Q), then there exist $\lambda_1, \lambda_2, \dots, \lambda_m \geq 0$ and $\mu_1, \mu_2, \dots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i + \sum_{j=1}^p \mu_j \mathbf{c}_j = \mathbf{0}$$
 (6)

$$\lambda_i(\mathbf{a}_i^{\top}\mathbf{x}^* - b_i) = 0, \ i = 1, 2, \cdots, m$$
 (7)

Problems with Equality and Inequality Constraints

Theorem (KKT conditions for convex linearly constrained problems)

(ii) (sufficiency in the convex case) If f is convex over \mathbb{R}^n and \mathbf{x}^* is a feasible solution of (Q) for which there exist $\lambda_1, \dots, \lambda_m \geq 0$ and $\mu_1, \dots, \mu_p \in \mathbb{R}$ such that (6) and (7) are satisfied, then \mathbf{x}^* is an optimal solution of (Q).

See Theorem 10.7 of the textbook.

Representation via the Lagrangian

Given the a problem

(NLP) min
$$f(\mathbf{x})$$

(NLP) s.t. $g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m$
 $h_j(\mathbf{x}) = 0, j = 1, 2, \dots, p$

The associated Lagrangian function is

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}).$$

The KKT conditions can be written as

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda, \mu) = \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = 0$$
$$\lambda_i g_i(\mathbf{x}^*) = 0, \ i = 1, 2, \cdots, m$$

Outline

1 Separation and Alternative Systems

2 The KKT Conditions

3 Examples

Examples

min
$$\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$

s.t. $x_1 + x_2 + x_3 = 3$

Examples

$$\begin{aligned} & \min \quad x_1^2 + 2x_2^2 + 4x_1x_2 \\ & \text{s.t.} \quad x_1 + x_2 = 1 \\ & \quad x_1, x_2 \geq 0 \end{aligned}$$

Projection onto Affine Spaces

Lemma

Let C be the affine space

$$C = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}\}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Assume the rows of \mathbf{A} are linearly independent. Then

$$P_{\mathcal{C}}(\mathbf{y}) = \mathbf{y} - \mathbf{A}^{\top} (\mathbf{A} \mathbf{A}^{\top})^{-1} (\mathbf{A} \mathbf{y} - \mathbf{b})$$

Orthogonal Projection onto Hyperplanes

Consider the hyperplane

$$H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\top \mathbf{x} = b \} \quad (\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R})$$

Then by the previous slide:

$$P_H(\mathbf{y}) = \mathbf{y} - \mathbf{a}(\mathbf{a}^{\top}\mathbf{a})^{-1}(\mathbf{a}^{\top}\mathbf{y} - b) = \mathbf{y} - \frac{\mathbf{a}^{\top}\mathbf{y} - b}{\|\mathbf{a}\|^2}\mathbf{a}$$

Lemma (distance of a point from a hyperplane)

Let $H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^{\top}\mathbf{x} = b \}$, where $\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Then

$$d(\mathbf{y}, H) = \frac{|\mathbf{a}^{\top}\mathbf{y} - b|}{\|\mathbf{a}\|}$$

Proof.

$$d(\mathbf{y}, H) = \|\mathbf{y} - P_H(\mathbf{y})\| = \|\mathbf{y} - (\mathbf{y} - \frac{\mathbf{a}^\top \mathbf{y} - b}{\|\mathbf{a}\|^2} \mathbf{a})\| = \frac{|\mathbf{a}^\top \mathbf{y} - b|}{\|\mathbf{a}\|}.$$

Orthogonal Projection onto Half-Spaces

Let
$$H^- = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\top \mathbf{x} \le b \}$$
, where $\mathbf{0} \ne \mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Then,

$$P_{H^{-}}(\mathbf{y}) = \mathbf{y} - \frac{[\mathbf{a}^{\top}\mathbf{y} - b]_{+}}{\|\mathbf{a}\|^{2}}\mathbf{a}$$

Orthogonal Regression

- $\mathbf{a}_1, \cdots, \mathbf{a}_m \in \mathbb{R}^n$
- For a given $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ and $y \in \mathbb{R}$, we define the hyperplane:

$$H_{\mathbf{x},y} := \{ \mathbf{a} \in \mathbb{R}^n : \mathbf{x}^\top \mathbf{a} = y \}$$

■ In the orthogonal regression problem we seek to find a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ and $y \in \mathbb{R}$ such that the sum of squared Euclidean distances between the points $\mathbf{a}_1, \dots, \mathbf{a}_m$ to $H_{\mathbf{x}, \mathbf{y}}$ is minimal:

$$\min_{\mathbf{x},y} \left\{ \sum_{i=1}^m d(\mathbf{a}_i, H_{\mathbf{x},y})^2 : \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R} \right\}$$

Orthogonal Regression

- $d(\mathbf{a}_i, H_{\mathbf{x},y})^2 = \frac{(\mathbf{a}_i^\top \mathbf{x} y)^2}{\|\mathbf{x}\|^2}, \ i = 1, \cdots, m.$
- The Orthogonal Regression problem is the same as

$$\min\biggl\{\sum_{i=1}^m\frac{(\mathbf{a}_i^\top\mathbf{x}-y)^2}{\|\mathbf{x}\|^2}:\mathbf{0}\neq\mathbf{x}\in\mathbb{R}^n,y\in\mathbb{R}\biggr\}$$

- Fixing **x** and minimizing first with respect to y we obtain that the optimal y is given by $y = \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}^{\top} \mathbf{x} = \frac{1}{m} \mathbf{e}^{\top} \mathbf{A} \mathbf{x}$, where $\mathbf{A} = [\mathbf{a}_{1}, \mathbf{a}_{2}, \dots, \mathbf{a}_{m}]^{\top}$.
- Using the above expression for y we obtain that

$$\begin{split} &\sum_{i=1}^{m} (\mathbf{a}_{i}^{\top} \mathbf{x} - \mathbf{y})^{2} \\ &= \sum_{i=1}^{m} (\mathbf{a}_{i}^{\top} \mathbf{x} - \frac{1}{m} \mathbf{e}^{\top} \mathbf{A} \mathbf{x})^{2} \\ &= \sum_{i=1}^{m} (\mathbf{a}_{i}^{\top} \mathbf{x})^{2} - \frac{2}{m} \sum_{i=1}^{m} (\mathbf{e}^{\top} \mathbf{A} \mathbf{x}) (\mathbf{a}_{i}^{\top} \mathbf{x}) + \frac{1}{m} (\mathbf{e}^{\top} \mathbf{A} \mathbf{x})^{2} \\ &= \sum_{i=1}^{m} (\mathbf{a}_{i}^{\top} \mathbf{x})^{2} - \frac{1}{m} (\mathbf{e}^{\top} \mathbf{A} \mathbf{x})^{2} = \|\mathbf{A} \mathbf{x}\|^{2} - \frac{1}{m} (\mathbf{e}^{\top} \mathbf{A} \mathbf{x})^{2} \\ &= \mathbf{x}^{\top} \mathbf{A}^{\top} (\mathbf{I}_{m} - \frac{1}{m} \mathbf{e} \mathbf{e}^{\top}) \mathbf{A} \mathbf{x} \end{split}$$

4 D > 4 B > 4 E > 4 E > 9 Q C

Orthogonal Regression

Therefore, a reformulation of the problem is

$$\min_{\mathbf{x}} \left\{ \frac{\mathbf{x}^{\top} [\mathbf{A}^{\top} (\mathbf{I}_m - \frac{1}{m} \mathbf{e} \mathbf{e}^{\top}) \mathbf{A}] \mathbf{x}}{\|\mathbf{x}\|^2} : \mathbf{x} \neq \mathbf{0} \right\}$$

Proposition

An optimal solution of the orthogonal regression problem is (\mathbf{x},y) , where \mathbf{x} is an eigenvector of $\mathbf{A}^{\top}(\mathbf{I}_m-\frac{1}{m}\mathbf{e}\mathbf{e}^{\top})\mathbf{A}$ associated with the minimum eigenvalue and $y=\frac{1}{m}\sum_{i=1}^{m}\mathbf{a}_i^{\top}\mathbf{x}$. The optimal function value of the problem is $\lambda_{min}[\mathbf{A}^{\top}(\mathbf{I}_m-\frac{1}{m}\mathbf{e}\mathbf{e}^{\top})\mathbf{A}]$.

See Lemma 1.12 of the textbook.