Patent Docket: K35A0635

In The Claims:

6

7

8

9

10

11

12

13

14

Please cancel, without prejudice, claim 16.

Please amend the remaining claims as follows:

- 1 1. (currently amended) A disk drive 2drive comprising:
- 2 (a) a disk 4disk for storing data, the disk 4disk comprising a public area 6area for storing plaintext data and a pristine area 8area for storing encrypted data;
- 4 (b) a head 10head for reading the encrypted data from the pristine area 8area of the disk 5 4disk;
 - (c) a control system 12system for controlling access to the pristine area 8area of the disk 4disk;
 - (d) authentication eircuitry 14circuitry for authenticating a request received from an external entity to access the pristine area 8area of the disk 4disk and for enabling the control system 12system if the request is authenticated;
 - (e) a secret drive key 16key; and
 - (f) decryption eircuitry 18circuitry, responsive to the secret drive key 16key, for decrypting the encrypted data stored in the pristine area 8area of the disk 4disk to generate decrypted data.
- 1 2. (original) The disk drive of claim 1, wherein the encrypted data comprises encrypted authentication data.
- 1 3. (original) The disk drive of claim 2, wherein the authentication circuitry is responsive to the decrypted data.
- 1 4. (original) The disk drive of claim 2, wherein the encrypted authentication data comprises 2 encrypted user authentication data.

Patent Docket: K35A0635

- 1 5. (original) The disk drive of claim 2, wherein the encrypted authentication data comprises 2 encrypted device authentication data for authenticating a device, the device comprising a 3 unique device ID configured during manufacture of the device. 1 6. (original) The disk drive of claim 2, wherein the encrypted authentication data comprises 2 encrypted information for implementing a challenge and response verification sequence. 1 7. (original) The disk drive of claim 2, wherein the encrypted authentication data comprises 2 encrypted message authentication data. 8. (original) The disk drive of claim 7, wherein the encrypted authentication data comprises encrypted key data for generating a message authentication code. 1 9. (original) The disk drive of claim 1, wherein the encrypted data comprises encrypted key 2 data for decrypting an encrypted message. 1 10. (original) The disk drive of claim 1, wherein the encrypted data comprises encrypted 2 message data. 1 11. (original) The disk drive of claim 1, wherein the disk drive further comprises encryption 2 circuitry for encrypting plaintext data into the encrypted data stored in the pristine area. 1 12. (original) The disk drive of claim 1, wherein: 2 (a) the disk further comprises embedded servo sectors comprising servo bursts; 3 (b) the control system comprises a servo control system responsive to the embedded
- 5 (c) the authentication circuitry enables the servo control system.

servo sectors; and

4

Patent Docket: K35A0635

1	13.	(original) The disk drive of claim 12, wherein:
2		(a) the servo bursts are written to the disk in encrypted form; and
3		(b) the authentication circuitry enables the servo control system to decrypt the servo
4		bursts.
1	14.	(original) The disk drive of claim 13, wherein:
2		(a) the servo bursts are written to the disk with additive noise generated from a pseudo
3		random sequence;
4		(b) the pseudo random sequence is generated from a polynomial;
5		(c) the servo control system uses the polynomial to decrypt the servo bursts; and
6		(d) the authentication circuitry provides the polynomial to the servo control system.
1	15.	(original) A disk drive comprising:
2		(a) a disk for storing data, the disk comprising a public area for storing plaintext data and
3		a pristine area for storing encrypted data;
4		(b) a head for reading data from the disk;
5		(c) a control system for controlling access to the disk;
6		(d) a secret drive key;
7		(e) decryption circuitry, responsive to the secret drive key, for decrypting the encrypted
8		data stored in the pristine area of the disk to generate decrypted data; and
9		(f) authentication circuitry, responsive to the decrypted data, for authenticating a request
10		received from an external entity to access the disk and for enabling the control system
11		if the request is authenticated.

1 16. (canceled)

- 1 17. (original) A method of processing a request received by a disk drive from an external
 2 entity to access encrypted data stored in a pristine area of a disk, the method comprising
 3 the steps of:
 - (a) authenticating the request to access the pristine area and enabling access to the pristine area if the request is authenticated;
 - (b) reading the encrypted data stored in the pristine area; and
- 7 (c) decrypting the encrypted data using a secret drive key within the disk drive to generate decrypted data.

 \mathcal{Y}_{I}

4

5

6

2

- 18. (original) The method as recited in claim 17, wherein the encrypted data comprises encrypted authentication data.
- 1 19. (original) The method as recited in claim 18, wherein the step of authenticating is responsive to the decrypted data.
- 1 20. (original) The method as recited in claim 18, wherein the encrypted authentication data comprises encrypted user authentication data.
- 1 21. (original) The method as recited in claim 18, wherein the encrypted authentication data
 2 comprises encrypted device authentication data for authenticating a device, the device
 3 comprising a unique device ID configured during manufacture of the device.
- 1 22. (original) The method as recited in claim 18, wherein the encrypted authentication data
 2 comprises encrypted information for implementing a challenge and response verification
 3 sequence.

Patent Docket: K35A0635

1 23. (original) The method as recited in claim 18, wherein the encrypted authentication data 2 comprises encrypted message authentication data. 24. (original) The method as recited in claim 23, wherein the encrypted authentication data 1 2 comprises encrypted key data for generating a message authentication code. 1 25. (original) The method as recited in claim 17, wherein the encrypted data comprises 2 encrypted key data for decrypting an encrypted message. 26. (original) The method as recited in claim 17, wherein the encrypted data comprises encrypted message data. 27. 1 (original) The method as recited in claim 17, further comprising the step of encrypting 2 plaintext data to generate the encrypted data stored in the pristine area. 1 28. (original) The method as recited in claim 17, wherein the disk further comprises 2 embedded servo sectors comprising servo bursts, the method further comprising the steps 3 of: 4 (a) servoing a head over the disk in response to the embedded servo sectors; and 5 (b) enabling servoing in the pristine area if the request is authenticated. 1 29. (currently amended) The disk drive of method as recited in claim 28, wherein: 2 (a) the servo bursts are written to the disk in encrypted form; and 3 (b) the step of authenticating the request to access the pristine area comprises the step of 4 decrypting the servo bursts.

8

1	30.	(currently amended) The disk drive of method as recited in claim 29, wherein:
2		(a) the servo bursts are written to the disk with additive noise generated from a pseudo
3		random sequence;
4		(b) the pseudo random sequence is generated from a polynomial; and
5		(c) the step of servoing uses the polynomial to decrypt the servo bursts.
1	31.	(original) A method of processing a request received by a disk drive from an external
2		entity to access data stored on a disk, the disk comprising a public area for storing
3		plaintext data and a pristine area for storing encrypted data, the method comprising the
4		steps of:
5		(a) decrypting the encrypted data stored in the pristine area of the disk using a secret
6		drive key within the disk drive to generate decrypted data; and
7		(b) using the decrypted data to authenticate the request received from the external entity

before allowing access to the disk.