Struktur dan Fungsi CPU Pertemuan 8

Oleh:

Riyanto Sigit, S.T, M.Kom Nur Rosyid Mubtada'i S.Kom Setiawardhana, S.T Hero Yudo Martono, S.T

Politeknik Elektronika Negeri Surabaya - ITS 2005

Tujuan

- Mengerti struktur dan Fungsi CPU yaitu dapat melakukan Fech Instruksi, Interpreter instuksi, Fech data, exekusi, dan menyimpan kembali. Serta struktur dari register macam-macam register dan fungsinya
- Mengerti aliran data pada siklus pengambilan, siklus tak langsung, siklus interupt, Mengerti pipelining, dan mengerti teknik-teknik menangani percabangan pada pipelining

Materi

- Bagian ini membahas aspek aspek struktur dan fungsi CPU untuk dasar pembahasan bab berikutnya, yaitu RISC.
- Fokus bab struktur dan fungsi CPU adalah organisasi prosesor dan register, siklus instruksi dan strategi dalam metode pipelining

4.1. Organisasi Prosesor

- Perhatikan mekanisme dan persyaratan yang terdapat pada CPU
- Aktivitas yang dilakukan CPU
 - Apa saja ?

? Aktivitas CPU

- Fetch Instruction/Mengambil Instruksi, CPU harus membaca instruksi dari memori
- Interpret Data/Mengambil Data, eksekusi suatu instruksi mungkin memerlukan pembacaan data dari memori atau modul I/O
- Fetch Data/Mengambil Data, ksekusi suatu instruksi mungkin memerlukan pembacaan data dari memori atau modul I/O
- Process Data/Mengolah Data, eksekusi suatu instruksi mungkin memerlukan operasi aritmetika atau logika terhadap data
- Writa Data/Menulis Data, hasil eksekusi mungkin memerlukan penulisan data ke memori

CPU vs Tugas

- Agar dapat melakukan tugas, CPU harus :
 - CPU menyimpan data untuk sementara waktu.
 - CPU harus mengingat lokasi instruksi terakhir sehingga CPU akan dapat mengambil instruksi berikutnya.
 - CPU perlu menyimpan instruksi dan data untuk sementara waktu pada saat instruksi sedang dieksekusi.
- CPU memerlukan memori internal berukuran kecil yang dikenal dengan register

Blok Diagram CPU

Remember please?

■ What's CPU and its components?

CPU

- ALU
 - melakukan komputasi atau pengolahan data berdasar instruksi yang diberikan padanya
- Komponen-komponen utama CPU
 - Arithmetic and logic unit (ALU)
 - Register
 - Control unit (CU).
- Control unit
 - Mengontrol perpindahan data dan instruksi ke CPU atau dari CPU dan mengontrol operasi ALU.
 - Selain itu menunjukkan memori internal minimum, yang terdiri dari beberapa lokasi penyimpan, yang disebut register

CPU

- Lintasan perpindahan data dan kontrol logika digambarkan, termasuk elemen yang diberi label bus CPU internal.
- Elemen ini dibutuhkan untuk memindahkan data antara bermaca-macam register dengan ALU, karena pada kenyataannya ALU hanya beroperasi pada data yang berada di dalam memori CPU internal
- Menunjukkan elemenelemen dasar ALU

4.2. Organisasi Register

- Sistem komputer menggunakan hirarki memori.
- Pada tingkatan yang atas, memori yang lebih cepat, lebih kecil, dan lebih mahal (per bit).
- Di dalam CPU terdapat sekumpulan register yang tingkatan memorinya berada di atas hirarki memori utama dan cache
- Apa fungsi register pada CPU ?

Fungsi register CPU

- User-visible Registers
 - Register ini memungkinkan pemogram bahasa mesin dan bahasa assembler meminimalkan referensi main memori dengan cara mengoptimasi penggunaan register
- Control and Status Registers
 - Register ini digunakan oleh unit kontrol untuk mengontrol operasi CPU dan oleh program sistem operasi untuk mengontrol eksekusi program
- Tidak terdapat pemisahan yang jelas antara kedua jenis register di atas

User Visible Register

- adalah register yang dapat direferensikan dengan menggunakan bahasa mesin yang dieksekusi CPU.
- Kategorinya :
 - General Purpose
 - Data
 - Alamat
 - Kode-kode Kondisi

- General-purpose register dapat digunakan untuk berbagai fungsi oleh pemrogram.
- General-purpose register dapat berisi operand sembarang opcode.
- Pada kasus-kasus tertentu, general-purpose register dapat digunakan untuk fungsi-fungsi pengalamatan (misalnya, register indirect, displacement).
- Pada kasus lainnya, terdapat partial atau batasan yang jelas antara register data dengan register alamat

Register Data dan Alamat?

- Register data hanya dapat dipakai untuk menampung data dan tidak dapat digunakan untuk kalkulasi dan alamat operand.
- Register alamat menyerupai generalpurpose register, atau register-register tersebut dapat digunakan untuk mode pengalamatan tertentu
- Bagaimana Contohnya ?

Segment Pointer,

- Register segmen menyimpan alamat berbasis segmen.
- Mungkin terdapat beberapa register, misalnya satu register untuk sistem operasi dan satu register untuk proses saat itu

Register Index,

Untuk alamat-alamat yang terindeks dan mungkin autoindexed

Stack Pointer,

- apabila terdapat pengalaman stack yang user-visible, maka biasanya stack berada di dalam memori dan terdapat register dedicated yang menunjuk ke bagian atas stack.
- Memungkinkan pengalamatan implisit, yaitu push, pop, dan instruksi stack lainnya tidak perlu operand stack eksplisit

? Masalah

- Apakah perlu menggunakan generalpurpose register seluruhnya atau hanya untuk keperluan-keperluan khusus saja ?
- Jumlah register yang harus tersedia, baik general-purpose maupun register data dan register alamat ?

Sharing (1)

- Specifier operand hanya perlu mengidentifikasi salah satu kumpulan register khusus saja, dan tidak perlu mengidentifikasi seluruhnya, karena itu akan dapat menghemat bit.
- Kekhususan ini membatasi fleksibilitas pemrogram.
- Tidak terdapat solusi akhir bagi masalah rancangan ini, namun seperti telah dinyatakan di atas, kecenderungan mengarah ke penggunaan register yang khusus

Sharing (2)

- Jumlah register sangat menentukan kinerja suatu prosesor.
- Jumlah register juga berpengaruh pada rancangan set instruksi karena register yang lebih banyak akan memerlukan bits operand specifier yang lebih banyak pula.
- Register yang berukuran antara 8 hingga 32 dapat dikatakan optimum.
- Register yang jumlahnya lebih sedikit akan menghasilkan referensi memori yang lebih banyak, register yang lebih banyak tidak akan mengurangi jumlah referensi memori secara berarti.

Control and Status Register

- Bermacam-macam register CPU yang digunakan untuk mengontrol operasi CPU
- "Non Visible" vs "Visible" ?
 - Tidak visible bagi pengguna
 - Visible terhadap instruksi mesin yang dieksekusi pada mode kontrol atau sistem operasi

Register yang penting bagi eksekusi instruksi

- Program Counter (PC) atau Pencacah Program
 - berisi alamat instruksi yang akan diambil
- Instruction Register (IR)
 - berisi instruksi yang terakhir diambil
- Memori Address Register (MAR)
 - berisi alamat sebuah lokasi di dalam memori
- Memori Buffer Register (MBR)
 - berisi sebuah word data yang akan dituliskan ke dalam memori atau word yang terakhir dibaca

Program Status Word (PSW)

- adalah semua rancangan CPU mencakup sebuah register atau sekumpulan register
- Berisi informasi status.
- Berisi kode kondisi dan informasi status lainnya

Common field atau flag, Apa saja?

Sign

 Berisi bit tanda hasil operasi aritmetika terakhir, negatif atau positf

Zero

Diset bila hasil sama dengan nol

Carry

- Diset apabila operasi yang dihasilkan di dalam carry (penambahan) ke dalam bit yang lebih tinggi atau borrow (pengurangan) dari bit yang lebih tinggi.
- Digunakan untuk operasi aritmetika multiword

Common field atau flag, Apa saja?

Equal

Disetel apabila hasil pembandingan logikanya sama

Overflow

Digunakan untuk mengindikasikan overflow perhitungan operasi aritmetika

Interrupt Enable/Disable

Digunakan untuk mengizinkan atau mencegah interrupt

Supervisor

 Mengindikasikan apakah CPU sedang mengeksekusi dalam mode supervisor atau mode user. Instruksi tertentu hanya dapat dieksekusi dalam mode supervisor saja, dan daerah-daerah tertentu di dalam memori hanya dapat diakses dalam mode supervisor saja

- Terdapat beberapa register lainnya yang berkaitan dengan status dan kontrol yang dapat ditemukan di dalam rancangan CPU tertentu.
- Selain PSW, mungkin terdapat suatu pointer ke blok memori yang berisi informasi status tambahan (misalnya blok-blok kontrol proses).
- Pada mesin yang memakai interrupt bervektor, dapat disediakan register vektor interrupt

- Perancang harus menentukan jumlah informasi kontrol yang harus berada di dalam register dan jumlah yang berada di dalam memori.
- Keuntungan atau kerugiannya didasari pada pertimbangan biaya dengan kecepatan