Problema 19. Se hace la combustión del etano alimentando C_2H_6 (30.08 g/mol) y O_2 (32 g/mol) en un reactor continuo para obtener CO_2 (44.01 g/mol) y H_2O (18.02 g/mol). Sabiendo que se añade un exceso de 40 % de oxígeno en la forma de aire (21 % de O_2 y 79 % de N_2 en mol) (la masa molecular del N_2 es 28.01 g/mol) y que la reacción tiene una conversión de 90 %.

- a) Escriba la reacción balanceada de la combustión del etano.
- b) Dibuje el diagrama de proceso con todas las especies en las entradas y en la salida, así como los datos pertinentes del problema.
- c) Presente todos los cálculos de las fracciones y flujos másicos de todos los componentes en todas las corrientes.
- d) Presente los resultados en una tabla de flujos (masas).

a)

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O_2$$

b)

Como es un proceso continuo en estado estacionario reaccionante, entonces la ecuación general de balance en el sistema es:

• Reactivos:

• Productos:

$$\label{eq:entrada} \begin{split} \text{Entrada} + \text{Generación} &- \text{Salida} - \frac{\text{Consumo}}{\text{Consumo}} = \frac{\text{Acumulación}}{\text{Entrada}} \\ &= \text{Salida} - \text{Generación} \end{split}$$

• Inertes:

$$\label{eq:entrada} \begin{split} \text{Entrada} + \frac{\text{Generación}}{\text{Centrada}} - \frac{\text{Salida}}{\text{Salida}} &= \frac{\text{Acumulación}}{\text{Acumulación}} \end{split}$$

c) y d) Sea ξ el grado de avance de la reacción.

Ecuaciones independientes (7):

• Balance de C₂H₆:

$$\label{eq:corriente} \begin{array}{l} Corriente\ 1 = Corriente\ 2 + Consumo \\ A\ mol\ C_2H_6 = C_1\ mol\ C_2H_6 + 2\xi\ mol\ C_2H_6 \end{array}$$

• Balance de O_2 :

$$\label{eq:Corriente} \mbox{Corriente 1} = \mbox{Corriente 2} + \mbox{Consumo}$$
 (B mol aire)
(0.21 mol O2/mol aire) = C2 mol O2 + 7 ξ mol O2

• Balance de N_2 :

$$\label{eq:corriente2} \text{Corriente 2} \\ \text{(B mol aire)} (0.79 \text{ mol N}_2/\text{mol aire}) = C_5 \text{ mol N}_2$$

• Balance de CO₂:

$$0 = \mbox{Corriente} \ 2 \mbox{- Generación}$$

$$0 \ \mbox{mol} \ \mbox{CO}_2 = \mbox{C}_3 \ \mbox{mol} \ \mbox{CO}_2 \mbox{- } 4\xi \ \mbox{mol} \ \mbox{CO}_2$$

• Balance de H₂O:

$$0 = \mbox{Corriente} \ 2 \mbox{- Generación}$$

$$0 \ \mbox{mol} \ \mbox{H}_2 O = C_4 \ \mbox{mol} \ \mbox{H}_2 O \mbox{- } 6\xi \ \mbox{mol} \ \mbox{H}_2 O$$

• Exceso de oxígeno:

El oxígeno es el reactivo en exceso, por lo que el etano es el limitante. Estequiométricamente, A moles de etano reaccionan con $\frac{7}{2}A$ moles de oxígeno, entonces los moles estequiométricos de oxígeno son $\frac{7}{2}A$.

$$0.4 = \frac{\text{Moles alimentados} - \text{Moles estequiom\'etricos}}{\text{Moles estequiom\'etricos}} = \frac{\text{(B mol aire)}(0.21 \text{ mol } O_2/\text{mol aire}) - \frac{7}{2}\text{A mol } O_2}{\frac{7}{2}\text{A mol } O_2}$$

• Conversión del etano:

$$0.9 = \frac{\text{Consumido}}{\text{Suministrado}} = \frac{\text{A mol } C_2H_6 - C_1 \text{ mol } C_2H_6}{\text{A mol } C_2H_6}$$

En donde hay 8 incógnitas = $\{A, B, C_1, C_2, C_3, C_4, C_5, \xi\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 8 - 7 = 1

Por lo que hay que asignar una base de cálculo. Sea A = 100.

Con la coversión del etano:

$$0.9 = \frac{100 \ \text{mol} \ C_2H_6 - C_1 \ \text{mol} \ C_2H_6}{100 \ \text{mol} \ C_2H_6}$$

$$C_1 \ \text{mol} \ C_2H_6 = 100 \ \text{mol} \ C_2H_6 - (0.9)(100 \ \text{mol} \ C_2H_6) = 10 \ \text{mol} \ C_2H_6$$

Con el exceso de oxígeno:

$$0.4 = \frac{(\text{B mol aire})(0.21 \text{ mol } O_2/\text{mol aire}) - \frac{7}{2}(100) \text{ mol } O_2}{\frac{7}{2}(100) \text{ mol } O_2}$$

$$\text{B mol aire} = \frac{[0.4][\frac{7}{2}(100) \text{ mol } O_2] + \frac{7}{2}(100) \text{ mol } O_2}{0.21 \text{ mol } O_2/\text{mol aire}} = 2333.3333 \text{ mol aire}$$

En el balance de C_2H_6 :

$$\begin{array}{c} 100 \; \mathrm{mol} \; C_2H_6 = 10 \; \mathrm{mol} \; C_2H_6 + 2\xi \; \mathrm{mol} \; C_2H_6 \\ \xi \; \mathrm{mol} \; C_2H_6 = \frac{100 \; \; \mathrm{mol} \; \; C_2H_6 - 10 \; \; \mathrm{mol} \; \; C_2H_6}{2} = 45 \; \mathrm{mol} \; C_2H_6 \end{array}$$

En el balance de O_2 :

$$(2333.3333~mol~aire)(0.21~mol~O_2/mol~aire) = C_2~mol~O_2 + 7(45)~mol~O_2$$
 $C_2~mol~O_2 = (2333.3333~mol~aire)(0.21~mol~O_2/mol~aire)$ - 7(45) $mol~O_2 = 175~mol~O_2$

En el balance de N_2 :

 $(2333.3333 \text{ mol aire})(0.79 \text{ mol } N_2/\text{mol aire}) = C_5 \text{ mol } N_2 = 1843.3333 \text{ mol } N_2$

En el balance de CO_2 :

0 mol
$$\rm CO_2 = C_3$$
 mol $\rm CO_2$ - 4(45) mol $\rm CO_2$
$$\rm C_3 \ mol\ CO_2 = 4(45) \ mol\ CO_2 = 180 \ mol\ CO_2$$

En el balance de H_2O :

$$0~mol~H_2O=C_4~mol~H_2O$$
 - 6(45) mol H_2O $C_4~mol~H_2O=6(45)~mol~H_2O=270~mol~H_2O$

Cantidad molar (mol)				Fracción molar				
	1	2			1	2		
C_2H_6	100	10		C_2H_6	0.0411	0.00403		
O_2	490	175		O_2	0.2014	0.07061		
N_2	1843.3333	1843.3333		N_2	0.7575	0.74378		
CO_2	0	180		CO_2	0	0.07263		
$\rm H_2O$	0	270		$\mathrm{H}_{2}\mathrm{O}$	0	0.10894		
Total	2433.3333	2478.3333						

Considerando las masas moleculares dichas en el enunciado del problema:

Cantidad másica (g)			Fracción másica			
	1	2		1	2	
C_2H_6	3008	300.8	C_2H_6	0.0428	0.00428	
O_2	15680	5600	O_2	0.2230	0.07964	
N_2	51631.7667	51631.7667	N_2	0.7342	0.73424	
CO_2	0	7921.8	CO_2	0	0.11265	
$\rm H_2O$	0	4865.4	$\rm H_2O$	0	0.06919	
Total	70319.7667	70319.7667				