Índices de sensibilidade

Análise de sensibilidade global

Métodos Globais

Método de Morris

Índices ANCOVA

Índices de Borgonovo

Índices Kucherenko

Índices Sobol

Método de Cotter*

Métodos Globais

Método de Morris

Índices ANCOVA

Índices de Borgonovo

Índices Kucherenko

Índices Sobol

Método de Cotter*

Variáveis: A, B, C

Α	В	С
-	-	-
+	-	-
-	+	-
-	-	+
-	+	+
+	-	+
+	+	-
+	+	+

Variáveis: A, B, C

índice Cotter

$$I_{Cotter}(i) = |C_o(i)| + |C_e(i)|$$

Onde:

$$C_o(i) = \frac{1}{4}[(y_{2M+1} - y_{M+i}) + (y_i - y_0)]$$

$$C_e(i) = \frac{1}{4} [(y_{2M+1} - y_{M+i}) - (y_i - y_0)]$$

Método de Cotter e Morris - Exemplo

	Е	fy
0	-	-
1	+	-
2	-	+
3	-	+
4	+	-
5	+	+

$$C_o(E) = \frac{1}{4}[(y_5 - y_3) + (y_1 - y_0)]$$

$$C_e(E) = \frac{1}{4}[(y_5 - y_3) - (y_1 - y_0)]$$

$$C_o(fy) = \frac{1}{4}[(y_5 - y_4) + (y_2 - y_0)]$$

$$C_o(fy) = \frac{1}{4}[(y_5 - y_4) - (y_2 - y_0)]$$

Métodos Globais

Método de Morris

Índices ANCOVA

Índices de Borgonovo

Índices Kucherenko

Índices Sobol

Método de Cotter*

Métodos Globais

Método de Morris

Índices ANCOVA

Índices de Borgonovo

Índices Kucherenko

Índices Sobol

Método de Cotter*

$$Y = \mathcal{M}(X)$$

$$Y = \mathcal{M}(X)$$

Supõe que o modelo pode ser decomposto em uma série de somas de dimensões crescentes

$$Y = \mathcal{M}_0 + \sum_{i=1}^{M} \mathcal{M}_i(x_i) + \sum_{1 \le i \le j \le M}^{M} \mathcal{M}_{ij}(x_i, x_j) + \mathcal{M}_{1,2,\dots,M}(x_1, x_2, \dots, x_M)$$

$$Y = \mathcal{M}(X)$$

Supõe que o modelo pode ser decomposto em uma série de somas de dimensões crescentes

$$Y = \mathcal{M}_0 + \sum_{i=1}^{M} \mathcal{M}_i(x_i) + \sum_{1 \le i \le j \le M}^{M} \mathcal{M}_{ij}(x_i, x_j) + \mathcal{M}_{1,2,\dots,M}(x_1, x_2, \dots, x_M)$$

$$Y = \mathcal{M}(X)$$

Supõe que o modelo pode ser decomposto em uma série de somas de dimensões crescentes

$$Y = \mathcal{M}_0 + \sum_{i=1}^{M} \mathcal{M}_i(x_i) + \sum_{1 \le i \le j \le M}^{M} \mathcal{M}_{ij}(x_i, x_j) + \mathcal{M}_{1,2,\dots,M}(x_1, x_2, \dots, x_M)$$

$$Var(Y) = \sum_{i=1}^{M} V_i + \sum_{1 \le i \le j \le M}^{M} V_{ij} + \dots + V_{1,2,\dots,M}$$

$$Var(Y) = \sum_{i=1}^{M} V_i + \sum_{1 \le i \le j \le M}^{M} V_{ij} + \cdots + V_{1,2,\dots,M}$$

Variâncias parciais

ÍNDICES DE PRIMEIRA ORDEM

$$S_i = \frac{V_i}{Var(Y)}$$

ÍNDICES DE ORDEM SUPERIOR

$$S_{i,j,k} = \frac{\sum V_{i,j,k}}{Var(Y)}$$

ÍNDICES TOTAL

$$S_{i,j,k} = \frac{\sum V_{i,j,k}}{Var(Y)} \qquad S_i^T = \frac{\sum_{\{i,...,M\} \supset i} V_{i,...,M}}{Var(Y)}$$

POR MONTE CARLO

$$Y = \mathcal{M}(X_v, X_w) e Y_v = \mathcal{M}(X_v, X_w')$$

$$S_{v} = \frac{Var[E(Y|X_{v}, X'_{w})]}{Var(Y)} \Rightarrow S_{v} = \frac{Cov(Y, Y_{v})}{Var(Y)}$$

HOMMA ESTIMATOR

$$S_{v} = \frac{\frac{1}{N} \sum y_{i} y_{i}^{v} - \left(\frac{1}{N} \sum y_{i}\right) \left(\frac{1}{N} \sum y_{i}^{v}\right)}{\frac{1}{N} \sum y_{i}^{2} - \left(\frac{1}{N} \sum y_{i}\right)^{2}}$$

JASON ESTIMATOR

$$S_{v} = \frac{\frac{1}{N} \sum y_{i} y_{i}^{v} - \left(\frac{1}{N} \sum \left[\frac{y_{i} + y_{i}^{v}}{2}\right]\right)^{2}}{\frac{1}{N} \sum \left[\frac{(y_{i})^{2} + (y_{i}^{v})^{2}}{2}\right] - \left(\frac{1}{N} \sum \left[\frac{y_{i} + y_{i}^{v}}{2}\right]\right)^{2}}$$

POR PCE

• É notória a semelhança entre as decomposições. Por isso toma-se proveito dessa semelhança!

POR PCE

• É notória a semelhança entre as decomposições. Por isso toma-se proveito dessa semelhança!

Por conta da ortogonalidade dos polinômios, surge:

$$Var(Y) = \sum_{\alpha=1}^{\infty} y_{\alpha}^{2}$$

$$Var(Y) = \sum_{\alpha=1}^{\infty} y_{\alpha}^{2}$$

