پوشش گراف برای کد

محمد تنهایی

Overview

The most common application of graph criteria is to program source

Graph: Usually the control flow graph (CFG)

Node coverage : Execute every statement

Edge coverage : Execute every branch

Loops: Looping structures such as for loops, while loops, etc.

Data flow coverage : Augment the CFG

defs are statements that assign values to variables

uses are statements that use variables

Control Flow Graphs

A CFG models all executions of a method by describing control structures

Nodes: Statements or sequences of statements (basic blocks)

Edges: Transfers of control

Basic Block : A sequence of statements such that if the first statement is executed, all statements will be (no branches)

CFGs are sometimes annotated with extra information

branch predicates

defs

uses

Rules for translating statements into graphs ...

```
if (x < y)
{
    y = 0;
    x = x + 1;
}
else
{
    x = y;
}</pre>
```

```
if (x < y)
{
    y = 0;
    x = x + 1;
}
else
{
    x = y;
}</pre>
```



```
if (x < y)
{
    y = 0;
    x = x + 1;
}
else
{
    x = y;
}</pre>
```

```
if (x < y)
{
    y = 0;
    x = x + 1;
}</pre>
```

```
if (x < y)
{
    y = 0;
    x = x + 1;
}
else
{
    x = y;
}</pre>
```


CFG: The if-Return Statement

```
if (x < y)
{
    return;
}
print (x);
return;</pre>
```

CFG: The if-Return Statement

```
if (x < y)
{
   return;
}
print (x);
return;</pre>
```


CFG: The if-Return Statement

```
if (x < y)
{
    return;
}
print (x);
return;</pre>
```


No edge from node 2 to 3.

The return nodes must be distinct.

Loops

Loops require "extra" nodes to be added

Nodes that <u>do not</u> represent statements or basic blocks

```
x = 0;
while (x < y)
{
    y = f (x, y);
    x = x + 1;
}</pre>
```

```
x = 0;
while (x < y)
{
  y = f (x, y);
  x = x + 1;
}
```



```
x = 0;
while (x < y)
{
  y = f (x, y);
  x = x + 1;
}
```



```
x = 0;
while (x < y)
{
  y = f (x, y);
  x = x + 1;
}
```


CFG: The case (switch) Structure

```
read (c);
switch (c)
  case 'N':
   y = 25;
   break;
  case 'Y':
   y = 50;
   break;
  default:
   y = 0;
   break;
print (y);
```

CFG: The case (switch) Structure

```
read (c);
switch (c)
  case 'N':
   y = 25;
   break;
  case 'Y':
   y = 50;
   break;
  default:
   y = 0;
   break;
print (y);
```


Example Control Flow – Stats

```
public static void computeStats (int [ ] numbers)
  int length = numbers.length;
  double med, var, sd, mean, sum, varsum;
  sum = 0:
  for (int i = 0; i < length; i++)
     sum += numbers [ i ];
  med = numbers [ length / 2 ];
  mean = sum / (double) length;
  varsum = 0;
  for (int i = 0; i < length; i++)
     varsum = varsum + ((numbers [1] - mean) * (numbers [1] - mean));
  var = varsum / (length - 1.0);
  sd = Math.sqrt (var);
  System.out.println ("length:
                                        " + length);
                                         " + mean);
  System.out.println ("mean:
   System.out.println ("median:
                                         " + med);
   System.out.println ("variance:
                                         " + var);
   System.out.println ("standard deviation: " + sd);
```

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsum;
   sum = 0;
   for (int i = 0; i < length; i++)
      sum += numbers [ i ];
   med = numbers [ length / 2 ];
   mean = sum / (double) length;
   varsum = 0:
   for (int i = 0; i < length; i++)
      varsum = varsum + ((numbers [ I ] - mean) * (numbers [ I ] - mean));
   var = varsum / ( length - 1.0 );
   sd = Math.sqrt (var);
   System.out.println ("length:
                                           " + length);
   System.out.println ("mean:
                                           " + mean);
   System.out.println ("median:
                                           " + med);
   System.out.println ("variance:
                                           " + var);
   System.out.println ("standard deviation: " + sd);
```

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsulp
   sum = 0:
   for (int i = 0; i < length; i++)
      sum += numbers [ i ];
   med = numbers [ length / 2 ];
   mean = sum / (double) length;
   varsum = 0:
   for (int i = 0; i < length; i++)
      varsum = varsum + ((numbers [ I ] - mean) * (numbers [ I ] - mean));
   var = varsum / ( length - 1.0 );
   sd = Math.sqrt (var);
   System.out.println ("length:
                                           " + length);
   System.out.println ("mean:
                                           " + mean);
   System.out.println ("median:
                                           " + med);
   System.out.println ("variance:
                                           " + var);
   System.out.println ("standard deviation: " + sd);
```

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsum
   sum = 0:
   for((int i
      sum += numbers [ i ];
   med = numbers [ length / 2 ];
   mean = sum / (double) length;
   varsum = 0:
   for (int i = 0; i < length; i++)
      varsum = varsum + ((numbers [ I ] - mean) * (numbers [ I ] - mean));
   var = varsum / ( length - 1.0 );
   sd = Math.sqrt (var);
   System.out.println ("length:
                                           " + length);
   System.out.println ("mean:
                                           " + mean);
   System.out.println ("median:
                                           " + med);
   System.out.println ("variance:
                                           " + var);
   System.out.println ("standard deviation: " + sd);
```

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsum
   for((int i
      sum += numbers [ i ];
   med = numbers [ length / 2 ];
   mean = sum / (double) length;
   varsum = 0:
   for (int i = 0; i < length; i++)
      varsum = varsum + ((numbers [ I ] - mean) * (numbers [ I ] - mean));
   var = varsum / ( length - 1.0 );
   sd = Math.sqrt (var);
   System.out.println ("length:
                                           " + length);
   System.out.println ("mean:
                                           " + mean);
   System.out.println ("median:
                                           " + med);
   System.out.println ("variance:
                                           " + var);
   System.out.println ("standard deviation: " + sd);
```

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsum
      sum += numbers [
   med = numbers [ length / 2 ];
   mean = sum / (double) length;
   varsum = 0:
   for (int i = 0; i < length; i++)
      varsum = varsum + ((numbers [ I ] - mean) * (numbers [ I ] - mean));
  var = varsum / ( length - 1.0 );
   sd = Math.sqrt (var);
   System.out.println ("length:
                                          " + length);
   System.out.println ("mean:
                                          " + mean);
   System.out.println ("median:
                                          " + med);
   System.out.println ("variance:
                                           " + var);
   System.out.println ("standard deviation: " + sd);
```

```
public static void computeStats (int [ ] numbers)
   int length = numbers.length;
  double med, var, sd, mean, sum, varsulp
      sum += numbers [
   med = numbers [length / 2];
  mean = sum / (double) length
   varsum = 0:
            -0·i < length: i++)
      varsum = varsum + ((numbers [ I ] - mean) * (numbers [ I ] - mean));
  var = varsum / ( length - 1.0 );
  sd = Math.sqrt (var);
   System.out.println ("length:
                                          " + length);
   System.out.println ("mean:
                                          " + mean);
   System.out.println ("median:
                                          " + med);
   System.out.println ("variance:
                                          " + var);
   System.out.println ("standard deviation: " + sd);
```

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsulp
      sum += numbers [
   med = numbers [length / 2];
   mean = sum / (double) length
   varsum = 0:
            -0.i Length: i++)
      varsum = varsum + ((numbers [ I ] - mean) * (numbers [ I ] - mean));
  var = varsum / ( length - 1.0 );
   sd = Math.sqrt (var);
   System.out.println ("length:
                                          " + length);
   System.out.println ("mean:
                                          " + mean);
   System.out.println ("median:
                                          " + med);
   System.out.println ("variance:
                                          " + var);
   System.out.println ("standard deviation: " + sd);
```


Edge-Pair Coverage

TR

A. [1, 2, 3]

D. [3, 4, 3]

E. [3, 5, 6]

F. [4, 3, 5]

G. [5, 6, 7]

H. [5, 6, 8]

I. [6, 7, 6]

J. [7, 6, 8]

K. [4, 3, 4]

L. [7, 6, 7]

Test Paths

[i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

B. [2, 3, 4] | ii. [1, 2, 3, 5, 6, 8]

C. [2, 3, 5] | iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 1]

Edge-Pair Coverage

TR

A. [1, 2, 3]

C. [2, 3, 5]

D. [3, 4, 3]

E. [3, 5, 6]

F. [4, 3, 5]

G. [5, 6, 7]

H. [5, 6, 8]

I. [6, 7, 6]

J. [7, 6, 8]

K. [4, 3, 4]

L. [7, 6, 7]

Test Paths

[i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

B. [2, 3, 4] | ii. [1, 2, 3, 5, 6, 8]

|iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7,]

6, 7, 6, 8

TP TRs toured

sidetrips

Edge-Pair Coverage

TR

A. [1, 2, 3]

D. [3, 4, 3]

E. [3, 5, 6]

F. [4, 3, 5]

G. [5, 6, 7]

H. [5, 6, 8]

I. [6, 7, 6]

J. [7, 6, 8]

K. [4, 3, 4]

L. [7, 6, 7]

Test Paths

[i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

B. [2, 3, 4] | ii. [1, 2, 3, 5, 6, 8]

C. [2, 3, 5] | iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 1]

TP	TRs toured	sidetrips
i	A, B, D, E, F, G, I, J	C, H

Edge-Pair Coverage

TR

A. [1, 2, 3]

D. [3, 4, 3]

E. [3, 5, 6]

F. [4, 3, 5]

G. [5, 6, 7]

H. [5, 6, 8]

I. [6, 7, 6]

J. [7, 6, 8]

K. [4, 3, 4]

L. [7, 6, 7]

Test Paths

[i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

B. [2, 3, 4] | ii. [1, 2, 3, 5, 6, 8]

C. [2, 3, 5] | iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 1]

TP	TRs toured	sidetrips
i	A, B, D, E, F, G, I, J	C, H
ii	A, C, E, H	

Edge-Pair Coverage

TR

A. [1, 2, 3]

C.[2,3,5]

D. [3, 4, 3]

E. [3, 5, 6]

F. [4, 3, 5]

G. [5, 6, 7]

H. [5, 6, 8]

I. [6, 7, 6]

J. [7, 6, 8]

K. [4, 3, 4]

L. [7, 6, 7]

Test Paths

[i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

B. [2, 3, 4] | ii. [1, 2, 3, 5, 6, 8]

|iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7,

TP	TRs toured	sidetrips
i	A, B, D, E, F, G, I, J	C, H
ii	A, C, E, H	
iii	A, B, D, E, F, G, I, J, K, L	C, H

Test Paths	
i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]]
ii. [1, 2, 3, 4, 3, 4, 3,	
5, 6, 7, 6, 7, 6, 8]	
iii. [1, 2, 3, 4, 3, 5, 6, 8]	
iv. [1, 2, 3, 5, 6, 7, 6, 8]	
v. [1, 2, 3, 5, 6, 8]	

TP	TRs toured	sidetrips
i	A, D, E, F, G	H, I, J

Test Paths i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8] ii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 8] iii. [1, 2, 3, 4, 3, 5, 6, 8] iv. [1, 2, 3, 5, 6, 7, 6, 8] v. [1, 2, 3, 5, 6, 8]

TP	TRs toured	sidetrips
i	A, D, E, F, G	H, I, J
ii	A, B, C, D, E, F, G,	H, I, J

<u> </u>	
Test Paths	
i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]	
ii. [1, 2, 3, 4, 3, 4, 3,	
5, 6, 7, 6, 7, 6, 8]	
iii. [1, 2, 3, 4, 3, 5, 6, 8]	
iv. [1, 2, 3, 5, 6, 7, 6, 8]	
v. [1, 2, 3, 5, 6, 8]	

TP	TRs toured	sidetrips
i	A, D, E, F, G	H, I, J
ii	A, B, C, D, E, F, G,	Н, І, Ј
iii	A, F, H	J

Test Paths i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8] ii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 8] iii. [1, 2, 3, 4, 3, 5, 6, 8] iv. [1, 2, 3, 5, 6, 7, 6, 8] v. [1, 2, 3, 5, 6, 8]

TP	TRs toured	sidetrips
i	A, D, E, F, G	H, I, J
ii	A, B, C, D, E, F, G,	H, I, J
iii	A, F, H	J
iv	D, E, I	J

	1,12113
Test Paths	
i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]]
ii. [1, 2, 3, 4, 3, 4, 3,	
5, 6, 7, 6, 7, 6, 8]	
iii. [1, 2, 3, 4, 3, 5, 6, 8]	
iv. [1, 2, 3, 5, 6, 7, 6, 8]	
v. [1, 2, 3, 5, 6, 8]	

TP	TRs toured	sidetrips
i	A, D, E, F, G	H, I, J
ii	A, B, C, D, E, F, G,	H, I, J
iii	A, F, H	J
iv	D, E, I	J
V	J	

Data Flow Coverage for Source

def: a location where a value is stored into memory

- x appears on the left side of an assignment (x = 44;)
- x is an actual parameter in a call and the method changes its value
- x is a formal parameter of a method (implicit def when method starts)
- x is an input to a program

use: a location where variable's value is accessed

- x appears on the right side of an assignment
- x appears in a conditional test
- x is an actual parameter to a method
- x is an output of the program
- x is an output of a method in a return statement

If a def and a use appear on the same node, then it is only a DU-pair if the def occurs after the use and the node is in a loop

Example Data Flow – Stats

```
public static void computeStats (int [ ] numbers)
  int length = numbers.length;
  double med, var, sd, mean, sum, varsum;
  sum = 0:
  for (int i = 0; i < length; i++)
     sum += numbers [ i ];
  mean = sum / (double) length;
  med = numbers [ length / 2 ];
  varsum = 0;
  for (int i = 0; i < length; i++)
     varsum = varsum + ((numbers [i] - mean) * (numbers [i] - mean));
  var = varsum / (length - 1.0);
  sd = Math.sqrt (var);
  System.out.println ("length:
                                        " + length);
  System.out.println ("mean:
                                         " + mean);
   System.out.println ("median:
                                         " + med);
   System.out.println ("variance:
                                         " + var);
   System.out.println ("standard deviation: " + sd);
```


CFG for Stats – With Defs & Uses

CFG for Stats – With Defs & Uses

Defs and Uses Tables for Stats

Node	Def	Use
1	{ numbers, sum, length }	
2	{ i }	
3		
4	{ sum, i }	{ numbers, i, sum }
5	{ mean, med, varsum, i }	{ numbers, length, sum }
6		
7	{ varsum, i }	{ varsum, numbers, i, mean }
8	{ var, sd }	{ varsum, length, var, mean, med, var, sd }

Edge	Use
(1, 2)	
(2, 3)	
(3, 4)	{ i, length }
(4, 3)	
(3, 5)	{ i, length }
(5, 6)	
(6, 7)	{ i, length }
(7, 6)	
(6, 8)	{ i, length }

variable	DU Pairs
numbers	(1,4)(1,5)(1,7)
length	(1,5)(1,8)(1,(3,4))(1,(3,5))(1,(6,7))(1,(6,8))
med	(5, 8)
var	(8,8)
sd	(8,8)
mean	(5,7)(5,8)
sum	(1,4)(1,5)(4,4)(4,5)
varsum	(5,7)(5,8)(7,7)(7,8)
i	(2,4)(2,(3,4))(2,(3,5))(2,7)(2,(6,7))(2,(6,8))
	(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, (6,7)) (4, (6,8))
	(5,7)(5,(6,7))(5,(6,8))
	(7,7)(7,(6,7))(7,(6,8))

	defs come before uses, do not count	
variable	DU Pairs defs come before uses, do not count pairs DU pairs	
numbers	(1,4)(1,5)(1,7)	
length	(1,5)(1,8)(1,(3,4))(1,(3,5))(1,(6,7))(1,(6,8))	
med	(5, 8)	
var	(8,8)	
sd	(8,8)	
mean	(5,7)(5,8)	
sum	(1,4)(1,5)(4,4)(4,5)	
varsum	(5,7)(5,8)(7,7)(7,8)	
i	(2,4)(2,(3,4))(2,(3,5))(2,7)(2,(6,7))(2,(6,8))	
	(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, (6,7)) (4, (6,8))	
	(5,7)(5,(6,7))(5,(6,8))	
	(7,7)(7,(6,7))(7,(6,8))	

	defended to the second design of the second design
variable	DU Pairs DU Pairs
numbers	(1,4)(1,5)(1,7)
length	(1,5)(1,8)(1,(3,4))(1,(3,5))(1,(6,7))(1,(6,8))
med	(5, 8)
var	defs after use in loop, these are
sd	(8, 8) valid DU pairs
mean	(5,7)(5,8)
sum	(1,4)(1,5)(4,4)(4,5)
varsum	(5,7)(5,8)(7,7)(7,8)
i	(2,4)(2,(3,4))(2,(3,5))(2,7)(2,(6,7))(2,(6,8))
	(4,4)(4,(3,4))(4,(3,5))(4,7)(4,(6,7))(4,(6,8))
	(5,7)(5,(6,7))(5,(6,8))
	(7,7)(7,(6,7))(7,(6,8))

	defendance de ferrança de met coluct
variable	DU Paurs defs come before uses, do not count as SDU pairs
numbers	(1,4)(1,5)(1,7)
length	(1,5)(1,8)(1,(3,4))(1,(3,5))(1,(6,7))(1,(6,8))
med	(5, 8)
var	defs after use in loop, these are
sd	(8, 8) valid DU pairs
mean	(5, 7) (5, 8) No def-clear path
sum	(1,4)(1,5)(4,4)(4,5) different scope for i
varsum	(5,7)(5,8)(7,7)(7,8)
i	(2,4)(2,(3,4))(2,(3,5))(2,(6,7))(2,(6,7))(2,(6,8))
	(4,4)(4,(3,4))(4,(3,5))(4,7)(4,(6,7))(4,(6,8))
	(5,7)(5,(6,7))(5,(6,8))
	(7,7)(7,(6,7))(7,(6,8))

variable	DU Pairs defs come before uses, do not count	
numbers	(1,4)(1,5)(1,7)	
length	(1,5)(1,8)(1,(3,4))(1,(3,5))(1,(6,7))(1,(6,8))	
med	(5,8)	
var	defs after use in loop, these are valid DU pairs	
sd	(8, 8) Valid DO pairs	
mean	(5, 7) (5, 8) No def-elear path	
sum	(1,4)(1,5)(4,4)(4,5) different scope for i	
varsum	(5,7)(5,8)(7,7)(7,8)	
li	(2,4)(2,(3,4))(2,(3,5))(2,(6,7))(2,(6,8))	
	(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, (6,7)) (4, (6,8))	
	(5,7)(5,(6,7))(5,(6,8)) No path through graph from nodes 5	
	(7,7)(7,(6,7))(7,(6,8)) No path through graph from nodes 3 and 7 to 4 or 3	

DU Paths for Stats

variable	DU Pairs	DU Paths
numbers	(1, 4) (1, 5) (1, 7)	[1, 2, 3, 4] [1, 2, 3, 5] [1, 2, 3, 5, 6, 7]
length	(1, 5) (1, 8) (1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8))	[1, 2, 3, 5] [1, 2, 3, 5, 6, 8] [1, 2, 3, 4] [1, 2, 3, 5] [1, 2, 3, 5, 6, 7] [1, 2, 3, 5, 6, 8]
med	(5, 8)	[5, 6, 8]
var	(8, 8)	No path needed
sd	(8, 8)	No path needed
sum	(1, 4) (1, 5) (4, 4) (4, 5)	[1, 2, 3, 4] [1, 2, 3, 5] [4, 3, 4] [4, 3, 5]

variable	DU Pairs	DU Paths
mean	(5, 7) (5, 8)	[5, 6, 7] [5, 6, 8]
varsum	(5, 7) (5, 8) (7, 7) (7, 8)	[5, 6, 7] [5, 6, 8] [7, 6, 7] [7, 6, 8]
i	(2, 4) (2, (3,4)) (2, (3,5)) (4, 4) (4, (3,4)) (4, (3,5)) (5, 7) (5, (6,7)) (5, (6,8)) (7, 7) (7, (6,7)) (7, (6,8))	[2,3,4] [2,3,5] [4,3,4] [4,3,4] [4,3,5] [5,6,7] [5,6,7] [5,6,7] [7,6,7] [7,6,7] [7,6,8]

There are 38 DU paths for Stats, but only 12 unique

[1, 2, 3, 4]	[4, 3, 4]
[1, 2, 3, 5]	[4, 3, 5]
[1, 2, 3, 5, 6, 7]	[5, 6, 7]
[1, 2, 3, 5, 6, 8]	[5, 6, 8]
[2, 3, 4]	[7, 6, 7]
[2, 3, 5]	[7, 6, 8]

There are 38 DU paths for Stats, but only 12 unique

5 expect a loop not to be "entered"

There are 38 DU paths for Stats, but only 12 unique

5 expect a loop not to be "entered"

5 require at least one iteration of a loop

There are 38 DU paths for Stats, but only 12 unique

```
Test Case: numbers = (44); length = 1

Test Path: [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

Additional DU Paths covered (no sidetrips)

[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]

The five stars \Leftrightarrow that require at least one iteration of a loop
```

```
Test Case: numbers = (44); length = 1

Test Path: [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

Additional DU Paths covered (no sidetrips)

[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]

The five stars \Leftrightarrow that require at least one iteration of a loop
```

```
Test Case: numbers = (2, 10, 15); length = 3

Test Path: [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]

DU Paths covered (no sidetrips)

[4, 3, 4] [7, 6, 7]

The two stars that require at least two iterations of a loop
```

```
Test Case: numbers = (44); length = 1

Test Path: [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

Additional DU Paths covered (no sidetrips)

[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]

The five stars \Leftrightarrow that require at least one iteration of a loop
```

```
Test Case: numbers = (2, 10, 15); length = 3

Test Path: [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]

DU Paths covered (no sidetrips)

[4, 3, 4] [7, 6, 7]

The two stars \bigcirc that require at least two iterations of a loop
```

Other DU paths \(\triangle \) require arrays with length 0 to skip loops But the method fails with divide by zero on the statement ...

mean = sum / (double) length;

```
Test Case: numbers = (44); length = 1

Test Path: [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

Additional DU Paths covered (no sidetrips)

[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]

The five stars \div \text{that require at least one iteration of a loop}
```

```
Test Case: numbers = (2, 10, 15); length = 3
Test Path: [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]
DU Paths covered (no sidetrips)
[4, 3, 4] [7, 6, 7]
The two stars \bigcirc that require at least two iterations of a loop
```

Other DU paths \(\preceq\) require arrays with length 0 to skip loops But the method fails with divide by zero on the statement ...

mean = sum / (double) length;

Example: TestPat

```
public int pat (char[] subject, char[] pattern)
// Post: if pattern is not a substring of
  subject, return -1
     else return (zero-based) index where
  the pattern (first)
//
     starts in subject
 final int NOTFOUND = -1;
 int iSub = 0, rtnIndex = NOTFOUND;
 boolean isPat = false;
 int subjectLen = subject.length;
 int patternLen = pattern length;
```

```
while (isPat == false && iSub + patternLen - 1 <
  subjectLen)
   if (subject [iSub] == pattern [0])
     rtnIndex = iSub; // Starting at zero
     isPat = true;
     for (int iPat = 1; iPat < patternLen; iPat ++)
       if (subject[iSub + iPat] != pattern[iPat])
         rtnIndex = NOTFOUND;
         isPat = false;
         break; // out of for loop
   iSub ++;
 return (rtnIndex);
```


Figure 2.12. A graph showing an example of du-paths.

Figure 2.13. Graph showing explicit def and use sets. 25

Table 2.1. Defs and uses at each node in the CFG for TestPat		
node	def	use
1 2	{subject, pattern} {NOTFOUND, isPat, iSub, rtnIndex, subjectLen, patternLen}	{subject, pattern}
3 4		
5 6	{rtnIndex, isPat, iPat}	{iSub}
7 8 9 10 11	{rtnIndex, isPat} {iPat} {iSub}	{NOTFOUND} {iPat} {iSub} {rtnIndex}

Table 2.2. Defs and uses at each edge in the CFG for TestPat.		
edge	use	
(1, 2) (2, 3) (3, 4) (3, 11) (4, 5) (4, 10) (5, 6)	{iSub, patternLen, subjectLen, isPat} {iSub, patternLen, subjectLen, isPat} {subject, iSub, pattern} {subject, iSub, pattern}	
(6, 7) (6, 10) (7, 8) (7, 9) (8, 10) (9, 6) (10, 3)	{iPat, patternLen} {iPat, patternLen} {subject, iSub, iPat, pattern} {subject, iSub, iPat, pattern}	

Table 2.3. Du-path sets for each variable in TestPat				
variable	du-path set	du-paths	prefix?	
NOTFOUND	du (2, NOTFOUND)	[2,3,4,5,6,7,8]		
rtnIndex	du (2, rtnIndex)	[2,3,11]		
	du (5, rtnIndex)	[5,6,10,3,11]		
	du (8, rtnIndex)	[8,10,3,11]		
iSub	du (2, iSub)	[2,3,4]	Yes	
		[2,3,4,5]	Yes	
		[2,3,4,5,6,7,8]	Yes	
		[2,3,4,5,6,7,9]		
		[2,3,4,5,6,10]		
		[2,3,4,5,6,7,8,10]		
		[2,3,4,10] [2,3,11]		
	du (10, iSub)	[10,3,4]	Yes	
	da (10, 13ab)	[10,3,4,5]	Yes	
		[10,3,4,5,6,7,8]	Yes	
		[10,3,4,5,6,7,9]	103	
		[10,3,4,5,6,10]		
		[10,3,4,5,6,7,8,10]		
		[10,3,4,10]		
		[10,3,11]		
iPat	du (5, iPat)	[5,6,7]	Yes	
	* * *	[5,6,10]		
		[5,6,7,8]		
		[5,6,7,9]		
	du (9, iPat)	[9,6,7]	Yes	
		[9,6,10]		
		[9,6,7,8]		
		[9,6,7,9]		
isPat	du (2, isPat)	[2,3,4]		
		[2,3,11]		
	du (5, isPat)	[5,6,10,3,4]		
		[5,6,10,3,11]		
	du (8, isPat)	[8,10,3,4]		
aublaat	de de contracts	[8,10,3,11]	V	
subject	du (1, subject)	[1,2] [1,2,3,4,5]	Yes Yes	
		[1,2,3,4,10]	ies	
		[1,2,3,4,10]		
		[1,2,3,4,5,6,7,9]		
pattern	du (1, pattern)	[1,2]	Yes	
pattorn	dd (1, pattern)	[1,2,3,4,5]	Yes	
		[1,2,3,4,10]	100	
		[1,2,3,4,5,6,7,8]		
		[1,2,3,4,5,6,7,9]		
subjectLen	du (2, subjectLen)	[2,3,4]		
'	, , ,	[2,3,11]		
patternLen	du (2, patternLen)	[2,3,4]	Yes	
		[2,3,11]		
		[2,3,4,5,6,7]		
		[2,3,4,5,6,10]		

Table 2.4. Test paths to satisfy all du-paths coverage on TestPat			
test case (subject,pattern,output)	test path(t)		
(a, bc, -1)	[1,2,3,11]		
(ab, a, 0)	[1,2,3,4,5,6,10,3,11]		
(ab, ab, 0)	[1,2,3,4,5,6,7,9,6,10,3,11]		
(ab, ac, −1)	[1,2,3,4,5,6,7,8,10,3,11]		
(ab, b, 1)	[1,2,3,4,10,3,4,5,6,10,3,11]		
(ab, c, −1)	[1,2,3,4,10,3,4,10,3,11]		
(abc, abc, 0)	[1,2,3,4,5,6,7,9,6,7,9,6,10,3,11]		
(abc, abd, −1)	[1,2,3,4,5,6,7,9,6,7,8,10,3,11]		
(abc, ac −1)	[1,2,3,4,5,6,7,8,10,3,4,10,3,11]		
(abc, ba, −1)	[1,2,3,4,10,3,4,5,6,7,8,10,3,11]		
(abc, bc, 1)	[1,2,3,4,10,3,4,5,6,7,9,6,10,3,11]		

test case (subject,pattern, output)	test path(t)	du-path toured
(ab, ac, -1)	[1,2,3,4,5,6,7,8,10,3,11]	[2,3,4,5,6,7,8](NOTFOUND)
(a, bc, -1)	[1,2,3,11]	[2,3,11](rtnIndex)
(ab, a, 0)	[1,2,3,4,5,6,10,3,11]	[5,6,10,3,11](rtnIndex)
(ab, ac, -1)	[1,2,3,4,5,6,7,8,10,3,11]	[8,10,3,11](rtnIndex)
(ab, ab, 0)	[1,2,3,4,5,6,7,9,6,10,3,11]	[2,3,4,5,6,7,9] (iSub)
(ab, a, 0)	[1,2,3,4,5,6,10,3,11]	[2,3,4,5,6,10](iSub)
(ab, ac, -1)	[1,2,3,4,5,6,7,8,10,3,11]	[2,3,4,5,6,7,8,10](iSub)
(ab, c, −1)	[1,2,3,4,10,3,4,10,3,11]	[2,3,4,10](iSub)
(a, bc, −1)	[1,2,3,11]	[2,3,11] (iSub)
(abc, bc, 1)	[1,2,3,4,10,3,4,5,6,7,9,6,10,3,11]	[10,3,4,5,6,7,9](iSub)
(ab, b, 1)	[1,2,3,4,10,3,4,5,6,10,3,11]	[10,3,4,5,6,10](iSub)
(abc, ba, −1)	[1,2,3,4,10,3,4,5,6,7,8,10,3,11]	[10,3,4,5,6,7,8,10](iSub)
(ab, c, −1)	[1,2,3,4,10,3,4,10,3,11]	[10,3,4,10](iSub)

فلاصه

Applying the graph test criteria to control flow graphs is relatively straightforward

Most of the developmental research work was done with CFGs

A few subtle decisions must be made to translate control structures into the graph

Some tools will assign each statement to a unique node

These slides and the book uses basic blocks

Coverage is the same, although the bookkeeping will differ

کوییز دوم Quick Sort

```
QuickSort(a,beg,end) //a is Array
if(beg<end)
 p=beg, pivot=a[beg];
 int p=beg, pivot=a[beg], loc;
 for(loc=beg+1;loc<=end;loc++)</pre>
  if(pivot>a[loc])
   a[p]=a[loc];
   a[loc]=a[p+1];
   a[p+1]=pivot;
   p=p+1;
 QuickSort(a,beg,p-1);
 QuickSort(a,p+1,end);
```

کوبیز حوم Quick Sort

```
QuickSort(a,beg,end) //a is Array
                                          ۱. گراف معادل
if(beg<end)
 p=beg, pivot=a[beg];
                                        ۲. مسیر های اصلی
 int p=beg, pivot=a[beg], loc;
 ۴ تعیین مسیرهای آزمون (++for(loc=beg+1;loc<=end;loc+)
  if(pivot>a[loc])
                                        ۴. تعیین آزمونهها
   a[p]=a[loc];
   a[loc]=a[p+1];
   a[p+1]=pivot;
   p=p+1;
 QuickSort(a, beq, p-1);
 QuickSort(a,p+1,end);
```

