Topological Data Analysis

2022-2023

Solutions of Exercises

17 November 2022

K: (12) (13) (14) (23) (25) (36) (456)

$$C_0 = \mathbb{Z}(A) \oplus ... \oplus \mathbb{Z}(G) \cong \mathbb{Z}^G$$

$$C_{1} = \mathbb{Z}(12) \oplus ... \oplus \mathbb{Z}(56) \cong \mathbb{Z}^{9}$$

$$C_2 = \mathbb{Z}(456) \cong \mathbb{Z}$$

$$0 \rightarrow C_2 \xrightarrow{Q_2} C_4 \xrightarrow{Q_A} C_0 \longrightarrow 0$$

$$Q_{1}: \qquad (12) \quad (13) \quad (14) \quad (23) \quad (25) \quad (36) \quad (45) \quad (46) \quad (56)$$

$$(2)$$
 1 0 0 -1 -1 0 0 0 0

$$(4)$$
 0 0 1 0 0 0 -1 -1 0

$$(5)$$
 0 0 0 1 0 1 0 -1

- -1 0 0 0 0 0 0 0 0 0 1 -1 -1 -1 0 0 0 0 0 0 1 0 1 -1 -1 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 1 0 1 -1 -1 0 0 0 0 1 0 1 1
- -1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

rank
$$Q_1 = 5$$

rank Ker $Q_1 = 4$

$$H_0(K) = C_0/Im Q_1 \cong \mathbb{Z}$$
 generated by any vertex

 $H_2(K) = Ker Q_2 = 0$
 $H_1(K) = Ker Q_1 \cong \mathbb{Z}^3$

For $H_1(K)$, we know that $Ker D_1$ has a basis of 4 vectors. One of these is 10 = (56) - (46) + (45), which was obtained from the column reduction of the last three columns of D_1 . This vector v is a generator of $Im D_2$. Therefore $H_1(K)$ is a free abelian group of rank 3.