Fondamenti dell'Informatica

1 semestre

Prova scritta di esame del 19-6-2019

Prof. Giorgio Gambosi

a.a. 2018-2019

Ad ogni quesito proposto è associato il numero di punti ottenuti in caso di risposta corretta ed esaustiva. Risposte parziali possono portare all'attribuzione di una frazione di tale punteggio. Spiegare in modo chiaro ed esauriente i passaggi effettuati.

Il punteggio finale della prova risulta come somma dei punteggi acquisiti per i vari quesiti.

Quesito 1 (7 punti): Si consideri il linguaggio delle espressione parentetiche corrette, costituito dall'insieme delle stringhe sull'alfabeto $\sigma = \{(,)\}^+$ tali che:

- 1. $\#_{\sigma}^{(} = \#_{\sigma}^{)}$
- 2. per ogni prefisso x di σ , $\#_x^{(} \geq \#_x^{)}$

dove $\#_x^a$ indica il numero di caratteri a nella stringa x. Si dimostri che L è un linguaggio strettamente context free.

Soluzione:

Il linguaggio L può essere mostrato essere context free osservando che una espressione parentetica corretta può essere costituita da:

- una sequenza di espressioni parentetiche corrette, come (())()((())), oppure
- una espressione parentetica corretta racchiusa tra parentesi
- la coppia ()

Ne deriva la grammatica context free

$$S \rightarrow SS|(S)|()$$

In alternativa, si può osservare che L è riconosciuto dal PDA seguente, che accetta per pila vuota:

	(q_0, Z_0)	(q_0, X)
((q_0, XZ_0)	(q_0, XX)
)	_	$(q_0,arepsilon)$
ε	$(q_0, arepsilon)$	_

Per mostrare che il linguaggio non è regolare, applichiamo il pumping lemma per i linguaggi regolari alla stringa $\binom{n}{i} = uvw$. Dato che $|uv| \le n$ e $|v| \ge 1$ per ipotesi, abbiamo che necessariamente $v = \binom{k}{i}$ con $k \ge 1$, per cui $uv^2w = \binom{n+k}{i} \notin L$

 $\textbf{Quesito 2} \ (\textit{7 punti}): \ \textit{Definire un automa a stati finiti deterministico che riconosca il linguaggio} \ (ab + (b+c)^*)^*.$

Soluzione: Possibile automa non deterministico con ε -transizioni che accetta il linguaggio

Automa non deterministico che accetta il linguaggio

Automa deterministico totale equivalente

Quesito 3 (7 punti): Definire una grammatica in CNF che generi il linguaggio $L=\{a^mb^nc^pd^q|m+n=p+q,m+n\geq 1\}.$

Soluzione: Possibile grammatica

 $S \rightarrow aSd|bXd|aYc|bZc$

 $X \rightarrow bXd|bZc|\varepsilon$

 $Y \quad \to \quad aYc|bZc|\varepsilon$

 $Z \rightarrow bZc|\varepsilon$

Forma ridotta

 $S \rightarrow aSd|bXd|aYc|bZc|ad|bd|ac|bc$

 $X \rightarrow bXd|bZc|bd|bc$

 $Y \quad \to \quad aYc|bZc|ac|bc$

 $Z \rightarrow bZc|bc$

CNF

 $S \rightarrow AU|BV|AW|BT|AD|BD|AC|BC$

 $X \quad \rightarrow \quad BV|BT|BD|BC$

 $Y \rightarrow AW|BT|AC|BC$

 $Z \rightarrow BT|BC$

 $U \rightarrow SD$

 $V \rightarrow XD$

 $W \rightarrow YC$

 $T \rightarrow ZC$

 $A \rightarrow \epsilon$

 $B \rightarrow b$

 $C \quad \to \quad c$

 $D \rightarrow d$

Quesito 4 (4 punti): Definire una espressione regolare che rappresenti l'insieme delle stringhe su $\{0,1\}$ aventi sia 00 che 11 come sottostringhe.

Soluzione: $(0+1)^*00(0+1)^*11(0+1)^* + (0+1)^*11(0+1)^*00(0+1)^*$

Quesito 5 (2 punti): Sia L un linguaggio non regolare: è corretto dedurre che, dato che l'insieme dei linguaggi regolari è chiuso rispetto all'operazione *, L^* non è regolare? Motivare la risposta.

Quesito 6 (4 punti): Sia data la grammatica

$$S \rightarrow Sa|bS|abS|\varepsilon$$

mostrare che nessuna stringa generata dalla grammatica contiene aab come sottostringa.

Quesito 7 (2 punti): Cosa si intende per "derivazione destra" di una stringa?