Mathematics for Computer Science - CRT

Libin Wang

School of Computer Science, South China Normal University

April 25, 2025

导引.

Chinese Remainder Theorem(中国剩余定理),或称为中国余数 定理则更准确。

历史.

中国剩余定理有着满满的中国传统文化元素,与之相关的名人包括:春秋时期的孙子、秦汉时期的韩信、宋朝的沈括和秦久韶等。南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题所谓"物不知数"问题则为国人所熟知:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

中国剩余定理讨论一元同余方程组的高效解法。

Example

Example 1. Suppose we wish to solve:

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

中国剩余定理讨论一元同余方程组的高效解法。

Example

Example 1. Suppose we wish to solve:

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

Solution.

1. We have x = 5t + 2 from the first congruence, for $t \in \mathbb{N}$;

中国剩余定理讨论一元同余方程组的高效解法。

Example

Example 1. Suppose we wish to solve:

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

- 1. We have x = 5t + 2 from the first congruence, for $t \in \mathbb{N}$;
- 2. Substitute for *x* in the second congruence, $5t + 2 \equiv 3 \pmod{7}$;

中国剩余定理讨论一元同余方程组的高效解法。

Example

Example 1. Suppose we wish to solve:

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

- 1. We have x = 5t + 2 from the first congruence, for $t \in \mathbb{N}$;
- 2. Substitute for *x* in the second congruence, $5t + 2 \equiv 3 \pmod{7}$;
- 3. Simplifies, get $5t \equiv 1 \pmod{7}$;

中国剩余定理讨论一元同余方程组的高效解法。

Example

Example 1. Suppose we wish to solve:

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

- 1. We have x = 5t + 2 from the first congruence, for $t \in \mathbb{N}$;
- 2. Substitute for *x* in the second congruence, $5t + 2 \equiv 3 \pmod{7}$;
- 3. Simplifies, get $5t \equiv 1 \pmod{7}$;
- 4. Multiplies both sides with 5^{-1} to get t=7s+3 for $s\in\mathbb{N}$;

中国剩余定理讨论一元同余方程组的高效解法。

Example

Example 1. Suppose we wish to solve:

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

- 1. We have x = 5t + 2 from the first congruence, for $t \in \mathbb{N}$;
- 2. Substitute for x in the second congruence, $5t + 2 \equiv 3 \pmod{7}$;
- 3. Simplifies, get $5t \equiv 1 \pmod{7}$;
- 4. Multiplies both sides with 5^{-1} to get t = 7s + 3 for $s \in \mathbb{N}$;
- 5. Finally, x = 35s + 17, means $x \equiv 17 \pmod{35}$.

For any system of equations like this, the *Chinese Remainder Theorem*, short for CRT, tells us there is always a unique solution up to a certain modulus, and describes how to find the solution efficiently.

Theorem

Let p, q be primes, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is unique $x, 0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

Theorem

Let p, q be coprime positive integers, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is a unique x, $0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

Proof Idea

• Given a and p, how can we find some 1_p s.t. $a*1_p \equiv a \pmod{p}$?

Theorem

Let p, q be coprime positive integers, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is a unique x, $0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

- Given a and p, how can we find some 1_p s.t. $a*1_p \equiv a \pmod{p}$?
- 2 1_p must be a 1 under modulo p

Theorem

Let p, q be coprime positive integers, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is a unique x, $0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

- Given a and p, how can we find some 1_p s.t. $a*1_p \equiv a \pmod{p}$?
- 2 1_p must be a 1 under modulo p
- Recall something from our previous courses, we have many options.

Theorem

Let p, q be coprime positive integers, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is a unique x, $0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

- Given a and p, how can we find some 1_p s.t. $a*1_p \equiv a \pmod{p}$?
- 2 1_p must be a 1 under modulo p
- Recall something from our previous courses, we have many options.
- We try this: find some c s.t. $1_p \equiv cc^{-1} \equiv 1 \pmod{p}$

Theorem

Let p, q be coprime positive integers, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is a unique x, $0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

- Given a and p, how can we find some 1_p s.t. $a*1_p \equiv a \pmod{p}$?
- 2 1_p must be a 1 under modulo p
- Recall something from our previous courses, we have many options.
- We try this: find some c s.t. $1_p \equiv cc^{-1} \equiv 1 \pmod{p}$
- **5** Similarly, for the *q*-part, we find $1_q \equiv dd^{-1} \equiv 1 \pmod{q}$

Theorem

Let p, q be coprime positive integers, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is a unique x, $0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

- Given a and p, how can we find some 1_p s.t. $a*1_p \equiv a \pmod{p}$?
- 2 1_p must be a 1 under modulo p
- Recall something from our previous courses, we have many options.
- We try this: find some c s.t. $1_p \equiv cc^{-1} \equiv 1 \pmod{p}$
- **5** Similarly, for the *q*-part, we find $1_q \equiv dd^{-1} \equiv 1 \pmod{q}$
- And then x must be something like that $x = (a*1_p + b*1_q) = (acc^{-1} + bdd^{-1})$, what should be c and d?

Theorem

Let p, q be coprime positive integers, n = pq. For each $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_q$, there is a unique $x, 0 \le x < n$ such that $x \equiv a \pmod{p}$ and $x \equiv b \pmod{q}$.

Proof.

By construction. Since p, q are coprime, these must exist p_1 and q_1 such that $p_1 \equiv p^{-1} \pmod{q}$ and $q_1 \equiv q^{-1} \pmod{p}$. Let integer x be:

$$y = aqq_1 + bpp_1$$

It is easy to check that y satisfies both equations. It remains to show no other solutions exist modulo n. Suppose $\exists z \neq y$ is another solution. Then (z-y)=tp and (z-y)=sq, for some $t,s\in\mathbb{N}$. Since p and q are coprime, then (z-y)=kpq, for $k\in\mathbb{N}$. Hence $z\equiv y\ (\text{mod }n)$.

Example

Example 2. Suppose we wish to solve:

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

- 1. Let a = 2, b = 3, p = 5, q = 7, n = pq = 35;
- 2. Compute $p_1 \equiv p^{-1} (\text{mod } q)$ and $q_1 \equiv q^{-1} (\text{mod } p)$ using EGCD algorithm; $p_1 = 3, \ q_1 = 3;$
- 3. $y \equiv aqq_1 + bpp_1 \pmod{n}$; y = 17;
- 4. It is easy to check that y is a correct solution.

Exercise.

求解以下方程.

Suppose we wish to solve:

$$x \equiv 3 \pmod{11}$$

$$x \equiv 4 \pmod{13}$$

Exercise.

求解以下方程.

Suppose we wish to solve:

$$x \equiv 3 \pmod{11}$$

$$x \equiv 4 \pmod{13}$$

Ans.

...

Proof.

By construction. Since p, q are coprime, these must exist p_1 and q_1 such that $pp_1 + qq_1 = 1$, by Bezout Theorem. Then we have:

$$pp_1 \equiv 1 \pmod{q}$$

 $qq_1 \equiv 1 \pmod{p}$

Let $t = aqq_1 + bpp_1$, we can check that, t is indeed a solution of the equations.

The Chinese Remainder Theorem—CRT—两种证明的对比.

Remark.

第一种证明有点啰嗦,但是它告诉你,如何去发现证明。第二种证明简洁,直观非常棒,但是你不容易想到。或者,你不知道如何去发现这种证明。后者看上去很容易,但是,如果你意识到,这种证明竟然不出现在大多数的数论教材,你就明白,它是一种颇为独到的见解。然而它也有缺点,从它出发难以找到"通解",也就是说它不具备第一种证明的那种"思想"。

Generization.

For Several Equations, we have a generized version of CRT.

Theorem

Let m_1, m_2, \dots, m_n be a set of pairwise relatively prime integers. Then the system of n equations:

$$x \equiv a_1 \pmod{m_1}$$
 \dots
 $x \equiv a_n \pmod{m_n}$

has a unique solution for x modulo M where $M = m_1 m_2 \cdots m_n$.

Generization.

Proof.

By construction. Let $M = \prod_{i=1}^n m_i$, $b_i = M/m_i$, $b_i' = b_i^{-1} \pmod{m_i}$. Then

$$y = \sum_{i=1}^{n} a_i b_i b_i' \pmod{M}$$

is the unique solution.

A perspective from Abstract Algebra.

Motivation.

Let n = pq, p, q > 1 are relatively prime. Given a positive integer x, it can be expressed as a unique pair $([x \mod p], [x \mod q])$.

A perspective from Abstract Algebra.

Theorem

Let p, q > 1 be coprime, n = pq. Then

$$\mathbb{Z}_n \cong \mathbb{Z}_p \times \mathbb{Z}_q$$
 and $\mathbb{Z}_n^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

Proof.

1. Define ϕ as a function mapping from \mathbb{Z}_n to $\mathbb{Z}_p \times \mathbb{Z}_q$ as:

$$\phi(x) \triangleq ([x \bmod p], [x \bmod q])$$

- 2. Show ϕ is bijective.
- 3. Check that $\phi(x)$ preserves the group operation.

A perspective from Abstract Algebra.

Theorem

Let p, q > 1 be coprime, n = pq. Then

$$\mathbb{Z}_n \cong \mathbb{Z}_p \times \mathbb{Z}_q$$
 and $\mathbb{Z}_n^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

Proof.

1. Define ϕ as a function mapping from \mathbb{Z}_n to $\mathbb{Z}_p \times \mathbb{Z}_q$ as:

$$\phi(x) \triangleq ([x \bmod p], [x \bmod q])$$

- 2. Show ϕ is bijective.
- 3. Check that $\phi(x)$ preserves the group operation.

The proof that it is an isomorphism from \mathbb{Z}_n^* to $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$ is similar.

Remark.

Remark

首先,注意到 $\mathbb{Z}_p \times \mathbb{Z}_q$ 是加法群,请验证!

How to prove the bijection?

Proof.

证明映射 ϕ 是一种双射,即证明 ϕ 是满射且单射。满射显然,因为根据中国剩余定理,任意序对中的两个同余式在模 n 下存在唯一解。证明单射即证明,如果对任意正整数 a,b < n,有 $([a \mod p],[a \mod q]) = ([b \mod p],[b \mod q])$,则 a = b。再次根据中国剩余定理可得。

How to prove the isomorphism?

Proof.

证明映射 ϕ 保持群操作,即需要证明:

$$\begin{array}{lll} \phi(a+b) & = & ([(a+b) \bmod p], [(a+b) \bmod q]) \\ & = & ([a \bmod p], [a \bmod q]) + ([b \bmod p], [b \bmod q]) \\ & = & \phi(a) + \phi(b) \end{array}$$

Example

Example 3. Take $n=15=5\cdot 3$. $\mathbb{Z}_n^*=\{1,2,4,7,8,11,13,14\}$ is isomorphic to $\mathbb{Z}_5^*\times \mathbb{Z}_3^*$ since we can give following correspondence:

$$1 \leftrightarrow (1,1)$$
 $2 \leftrightarrow (2,2)$ $4 \leftrightarrow (4,1)$ $7 \leftrightarrow (2,1)$

$$8 \leftrightarrow (3,2)$$
 $11 \leftrightarrow (1,2)$ $13 \leftrightarrow (3,1)$ $14 \leftrightarrow (4,2)$

Example

Example 4. To compute $14 \cdot 13 \mod 15$. Since $14 \leftrightarrow (4,2)$ and $13 \leftrightarrow (3,1)$, we have:

$$(4,2)\cdot (3,1)=([4\cdot 3\bmod 5],[2\cdot 1\bmod 3])=(2,2).$$

Note that $(2,2) \leftrightarrow 2$, which is the correct answer.

Example

Example 5. To compute $11^{53} \mod 15$. Since $11 \leftrightarrow (1,2)$ and $2 \equiv -1 \mod 3$ we have:

$$(1,2)^{53} = ([1^{53} \bmod 5], [-1^{53} \bmod 3]) = (1,-1 \bmod 3) = (1,2).$$

Thus, $11^{53} \mod 15 = 11$

Example

Example 6. 设 n = pq 为合数, p 和 q 是两个不同的素数。以下等式在模 n 的意义上有多少个解?

$$x^2 \equiv 1 \pmod{n}$$

为此,需要解以下两个同余方程

$$x^2 \equiv 1 \pmod{p}$$
$$x^2 \equiv 1 \pmod{q}$$

以上两式分别有两个不同的解。因此在模 n 的意义上总共有 4 个解。同时,这也就解决了上一章的一个遗留问题。

Example

Example 7. To compute $12^{12} \mod 143$

Example

Example 7. To compute $12^{12} \mod 143$ 解:

- $i \exists n = 143, n = p * q = 13 * 11;$
- 求: $12^{12} \mod 13$ 和 $12^{12} \mod 11$;
- 所以, $12^{12} \mod 143 = 1$.

Little thought.

Remark

A practical application: if we have many computations to perform on $x \in \mathbb{Z}_n^*$ (e.g. RSA signing and decryption), we can convert x to $(a,b) \in \mathbb{Z}_p^* \times \mathbb{Z}_q^*$ and do all the computations on a and b instead before converting back.

This is often cheaper because for many algorithms, doubling the size of the input more than doubles the running time.

Homeworks Exercises.

Homeworks.

1. Using CRT to solve:

$$x \equiv 8 \pmod{11}$$

$$x \equiv 3 \pmod{19}$$

2. Using CRT to solve the system of congruence:

$$x \equiv 1 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

$$x \equiv 3 \pmod{9}$$

$$x \equiv 4 \pmod{11}$$

3. Write a program(C or Python) to solve CRT.

Homeworks Exercises.

Homeworks.

- 4. Complete the proof that it is an isomorphism from \mathbb{Z}_n^* to $\mathbb{Z}_n^* \times \mathbb{Z}_q^*$.
- 5. Let p=5 and q=7, n=pq. Please explicitly give the correspondece between \mathbb{Z}_n^* and $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$. Hint: Programming is permitted.

Homeworks Exercises.

Homeworks.

6. 请求解 $x^{113} \equiv 15 \pmod{221}$ [提示:这是一道似曾相识的习题,然而中国剩余定理能保证你顺利完成目标。]