Instalações Elétricas Prediais e Industriais I — TE344

Aterramento

UFPR - UNIVERSIDADE FEDERAL DO PARANÁ

DELT - DEPARTAMENTO DE ENGENHARIA ELÉTRICA

PROF. DR. CLEVERSON LUIZ DA SILVA PINTO

Aterramento

É a ligação elétrica intencional com a Terra que visa proporcionar um meio favorável e seguro (de baixíssima resistência elétrica e robustez mecânica conveniente) ao percurso de correntes elétricas perigosas e indesejáveis. Tais como correntes produzidas por descargas atmosféricas (raios) ou ainda por ocasião das faltas elétricas.

•

Aterramento

Um sistema de aterramento visa:

- Segurança de atuação da proteção;
- Proteção das instalações quanto à descarga atmosférica;
- Proteção do indivíduo contra contatos com partes metálicas da instalação energizadas acidentalmente;
- Uniformização do potencial em toda a área do projeto, prevenindo contra lesões perigosas que possam surgir durante uma falta fase-terra.

.

Tipos de aterramento

- Aterramento Funcional:

Deve ser utilizado para garantir o funcionamento correto dos equipamentos ou permitir o funcionamento adequado da instalação (NBR 5410).

Consiste na ligação à terra de um dos condutores da instalação, o condutor neutro, que assim é denominado porque o seu potencial elétrico é (teoricamente) nula em relação ao potencial da Terra, considerado zero.

O condutor neutro é representado pela letra N e a NBR 5410 recomenda a utilização de cor azul para a isolação deste condutor.

- Aterramento de proteção:

Ligação das massas (carcaças metálicas de quadros de distribuição, de transformadores, de motores, eletrodutos metálicos, etc.) e de elementos condutores estranhos à instalação à terra, com o objetivo de garantir a proteção contra contatos indiretos.

Representado pela letra PE e, em condutores isolados, deve-se utilizar a cor verde ou verde-amarela, conforme recomendação da NBR5410.

Eletrodos de aterramento

São os condutores colocados em contato com a terra. Estes podem ser: hastes, perfis, barras, cabos nus, fitas, etc. A ABNT NBR 5410 estabelece que o eletrodo de aterramento preferencial de uma instalação seja aquele constituído pelas armaduras de aço embutidas no concreto

das fundações das edificações.

Malha de terra

Eletrodo de aterramento

O termo "eletrodo" refere-se sempre ao condutor ou ao conjunto de condutores em contato com a terra e, portanto, abrange desde uma simples haste isolada até uma complexa "malha" de aterramento, constituída pela associação de hastes com cabos.

NTC901100- COPEL

Condutor de proteção (PE)

Condutor prescrito em certas medidas de proteção contra os choques elétricos e destinado a ligar eletricamente:

- massa
- elementos condutores estranhos à instalação
- eletrodos de aterramento principal
- eletrodos de aterramento, e/ou
- pontos de alimentação ligados à terra ou ao ponto neutro artificial

Condutor PEN

Condutor ligado à terra garantindo ao mesmo tempo as funções de condutor de proteção e de condutor neutro; a designação PEN resulta da combinação PE (de condutor de proteção) +N (de neutro); o condutor PEN não é considerado um condutor vivo;

Terminal (ou barra) de aterramento principal

Terminal (ou barra) destinado a ligar, ao dispositivo de aterramento, os condutores de proteção, incluindo os condutores de eqüipontencialidade e, eventualmente, os condutores que garantam um aterramento funcional;

Resistência de aterramento (total)

Resistência elétrica entre o terminal de aterramento principal de uma instalação elétrica e a terra;

Condutor de aterramento

Condutor de proteção que liga o terminal (ou barra) de aterramento principal ao eletrodo de aterramento;

Ligação equipotencial

Ligação elétrica destinada a colocar no mesmo potencial ou em potenciais vizinhos as massas e os elementos condutores estranhos à instalação. Podemos ter numa instalação três tipos de ligação equipotencial:

- a ligação equipotencial principal,
- ligações equipotenciais suplementares,
- ligações equipotenciais não ligadas à terra;

Condutor de equipotencialidade

Condutor de proteção que garante uma ligação equipotencial;

Condutor de proteção principal

Condutor de proteção que liga os diversos condutores de proteção da instalação ao terminal de aterramento principal.

Eletrodos de aterramento

Eletrodos de aterramento

Aterramento equipotencial

Aterramento em armaduras de Estruturas de concreto

- A experiência tem demonstrado que as armaduras de aço das estacas, dos blocos da fundação e das vigas baldrame, interligadas nas condições correntes de execução, constituem um eletrodo de aterramento excelente.
- Podem ser usadas no aterramento para descargas atmosféricas.
- Quando utilizadas como elementos naturais do sistema de aterramento de um SPDA, permite a melhor distribuição da corrente do raio.

Fig. 4.23 Aterramento em fundação de edificação.

Os sistemas de aterramento de BT devem, segundo a NBR 5410, obedecer a um dos esquemas abaixo:

- primeira letra Situação da alimentação em relação à terra:
- •T = um ponto diretamente aterrado;
- •I = isolação de todas as partes vivas em relação à terra ou aterramento de um ponto através de impedância;
- segunda letra Situação das massas da instalação elétrica em relação à terra:
- •T = massas diretamente aterradas, independentemente do aterramento eventual de um ponto da alimentação;
- •N = massas ligadas ao ponto da alimentação aterrado (em corrente alternada, o ponto aterrado é normalmente o ponto neutro);
- outras letras (eventuais) Disposição do condutor neutro e do condutor de proteção:
- •S = funções de neutro e de proteção asseguradas por condutores distintos;
- •C = funções de neutro e de proteção combinadas em um único condutor (condutor PEN).

Sistema TN-S

Na figura temos o secundário de um transformador (cabine primária trifásica) ligado em Y. O neutro é aterrado logo na entrada, e levado até a carga. Paralelamente, outro condutor identificado como PE é utilizado como fio terra, e é conectado à carcaça (massa) do equipamento.

Sistema TN-C

As funções de neutro e de proteção são combinadas em um único condutor ao longo de toda a instalação.

Sistema TN-C-S

As funções de neutro e de proteção são combinadas em um único condutor, em parte da instalação é separado e em parte é conjunto.

Sistema TT

Esse sistema é o mais eficiente de todos. Na figura observamos que o neutro é aterrado logo na entrada e segue (como neutro) até a carga (equipamento). A massa do equipamento é aterrada com uma haste própria, independente da haste de aterramento do neutro.

Sistema IT

- Continuidade (mantém o circuito em funcionamento quando submetido ao primeiro defeito);

- Emprego de dispositivos e técnicas especiais para a sinalização e localização do

primeiro defeito

Sistema IT

B.2

Sistema IT

1) O neutro pode ser ou não distribuído;

A = sem aterramento da alimentação;

B = alimentação aterrada através de impedância;

 B.1 = massas aterradas em eletrodos separados e independentes do eletrodo de aterramento da alimentação;

 B.2 = massas coletivamente aterradas em eletrodo independente do eletrodo de aterramento da alimentação;

B.3 = massas coletivamente aterradas no mesmo eletrodo da alimentação.

