Sistemas Distribuídos – Fundamentos de Algoritmos Distribuídos (Continuação)

Prof. DSc Marcelo Lisboa Rocha

Propagação de Informação

- A finalidade do algoritmo é tornar um ítem / conhecido de todos os nós da rede.
- É iniciado por um ou mais nós que possuam *l* inicialmente.
- O algoritmo é apresentado no próximo slide para os nós que possuem / e para os demais nós.

Propagação de Informação

Algoritmo para Programação de Informação

- 1. Para os nós que possuem / inicialmente:
 - Envie / para todos os vizinhos.

- 2. Para os demais nós:
 - Primeira cópia de / recebida => Envie / para todos os vizinhos.

Propagação de Informação

- É imediato verificar que as seguintes propriedades valem:
- 1. O algoritmo termina.
- 2. 2|E| = O(|E|) mensagens são enviadas.
- 3. O tempo gasto é O(n).
- 4. Cada nó recebe / pela primeira vez através da trajetória mais curta de um nó que possui i inicialmente a ele, sendo o comprimento da trajetória medido em termos de tempo de propagação.

- A finalidade do algoritmo é tornar um ítem / conhecido de todos os nós da rede.
- É suposto que apenas um nós inicia o algoritmo.
- Informar ao nó inicial quando / já tiver atingido todos os outros nós.

- As seguintes variáveis são utilizadas por cada processador p_i:
- d_i: grau de p_i em G .
- r_i: número de cópias de I já recebidas (inicializada com 0).
- v_i: apontado para o vizinho de quem a primeira cópia de I foi recebida.
- O algoritmo para o nó que possui / inicialmente, bem como para os demais é apresentado no próximo slide.

- 1. Algoritmo para o nó p_k que possui *l* inicialmente:
 - Envie / para todos os vizinhos;
 - Cópia de I recebida => r_k = r_k + 1;
 - $r_k = d_k => o$ algoritmo termina.
- 2. Algoritmo para um outro nó p_k:
 - Primeira cópia de / recebida => v_k = vizinho que a enviou;
 - Envie / para todos os vizinhos, exceto para v_k;
 - $\bullet \quad \mathbf{r_k} = \mathbf{r_k} + \mathbf{1};$
 - Outra cópia de / recebida => r_k = r_k +1;
 - $r_k = d_k =$ envie / para v_k .

- As seguintes propriedades são válidas para o algoritmo:
- 1. O algoritmo termina.
- 2. O número de mensagens enviadas é 2|E|=O(|E|) e o tempo gasto é O(n).
- 3. Seja p_k o nó que inicia o algoritmo. Quando o algoritmo termina em p_k, todos os demais nós já receberam *l*.
- Da propriedade (3), tem-se:
 - Os apontadores v_i formam uma árvore que atinge todos os nós de G (árvore geradora) com raiz em p_k.