FCC Test Report

for

2.4GHz Radio Control System

Trade Name : SKYION

Model Number : MOD-3

FCC ID : YUP-2012-MOD3

Report Number: RF- C450-1207-488

Date of Receipt : August 1, 2012

Date of Report : August 23, 2012

Prepared for

Supercon Co., Ltd.

No. 16, Lane 105, Cheng Fu Rd, Sanhsia District, New Taipei City, Taiwan

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

NVLAP LAB CODE 200575-0

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by NVLAP, NIST or any U.S. government agency. The test result in the report applies only to the sample tested.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Verification of Compliance

Equipment under Test : 2.4GHz Radio Control System

Model No. : MOD-3

FCC ID : YUP-2012-MOD3 **Applicant** : Supercon Co., Ltd.

Address : No. 16, Lane 105, Cheng Fu Rd, Sanhsia District, New

Taipei City, Taiwan

Applicable Standards : 47 CFR part 15, Subpart C

Date of Testing : August 1~10, 2012

Deviation : N/A

Condition of Test Sample : Mass Production

We, Central Research Technology Co., hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

: Cathy Cham, DATE: Ang. 23, 20/2
(Cathy Chen/ Technical Manager)

: J. Y. Ull , DATE: Aug. 23, 20/2 PREPARED BY

APPROVED BY

(Tsun-Yu Shih/General Manager)

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Contents

1	General Description	4
1.1	General Description of EUT	4
1.2	Test Methodology	4
1.3	Applied standards	5
1.4	The Support Units :	8
1.5	Layout of Setup	8
1.6	Test Capability	9
1.7	Measurement Uncertainty	11
2	Field Strength of Fundamental Measurement	12
2.1	Applied standard	12
2.2	Test Instruments	13
2.3	Measurement Procedure	14
2.4	Test configuration	15
2.5	Test Data	16
3	Radiated Emission Measurement	23
3.1	Applied standard	23
3.2	Test Instruments	24
3.3	Measurement Procedure	26
3.4	Test configuration	27
3.5	Test Data	28
4	Antenna Requirement	43
4.1	Applied standard	43
4.2	Antenna Information	43
4.3	Result	43
	ment 1 – Photographs of the Test Configurations	
Attach	ment 2 –External Photographs of EUT	

Attachment 3 -Internal Photographs of EUT

1 General Description

1.1 General Description of EUT

Equipment under Test : 2.4GHz Radio Control System

Model No. : MOD-3

Power in : DC 6V by batteries

Test Voltage : 6Vdc

Manufacturer : Supercon Co., Ltd.

Channel Numbers : 59

Frequency Range : 2407~2465MHz

Channel Bandwidth : 1MHz Modulation : GFSK

Antenna Spec : Printed Antenna 3dBi

Function Description :

The EUT is used to transmit control command. Please refer to the user's manual for the details.

1.2 Test Methodology

For this EUT, both conducted and radiated emissions were performed according to the procrdures illustrated in ANSI C63.4:2003 and other required measurements were illustrated in separate sections of this test report for detail.

Since the EUT is considered a potable unit, it was pre-tested on the positioned of each 3 axis. There for only the test data of the worse case- X axiz was used for Radiated test.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.3 Applied standards

(1) Conduction Emission Requirement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Fraguency of Emission (MHz)	Conducted Limit (dBuV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

(2) Field strength of emissions

According to 15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field Strength	Field Strength	
Frequency	of Fundamental (millivolts/meter)	of Harmonics (microvolts/meter)	
902 - 928 MHz	50	500	
2400 - 2483.5 MHz	50 50	500	
5725 - 5875 MHz	50	500	
24.0 - 24.25 GHz	250	2500	

(3) Radiated Emission Requirement

According to 15.249(d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

For intentional device, according to §15.209, the general requirement of field strength of radiated emissions from intentional radiator at a distance of 3 meters shall not exceed the below table.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
960 – 1610	3	500	54.0
above 1610	3	500	54.0

Note 1- The lower limit shall apply at the transition frequency.

(4) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

 $^{^{\}rm 1}$ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

² Above 38.6

1.4 The Support Units

No.	Unit	Model No./ Serial No.	Trade Name	Power Code	Supported by lab.
N/A	*	*	*	*	*

1.5 Layout of Setup

EUT

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
N/A	*	*	*	*	*	*	*

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4:2003.

Test Room Type of Test Room		Descriptions
TR1	10m semi-anechoic chamber	Complying with the NSA requirements in
IKI	(23m×14m×9m)	documents CISPR 22 and ANSI
TD44	3m semi-anechoic chamber	C63.4:2003. For the radiated emission
TR11	$(9m \times 6m \times 6m)$	measurement.
TR13	Test Site	For the RF conducted emission
11(13	rest Site	measurement.
TR5	Shielding Room	For the conducted emission measurement.
IKS	(8m×5m×4m)	For the conducted emission measurement.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Laboratory Competence Information

Central Research Technology Co. has been accredited / filed / authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
	USA	NVLAP	200575-0	ISO/IEC 17025
	R.O.C.	TAF	0905	ISO/IEC 17025
	(Taiwan)	IAF	0905	130/IEC 17023
Accreditation			SL2-IN-E-0033,	
Certificate	R.O.C.		SL2-IS-E-0033,	
		BSMI	SL2-R1/R2-E-0033,	ISO/IEC 17025
	(Taiwan)		SL2-A1-E-0033	
			SL2-L1-E-0033	
	USA	FCC	474046,TW1053	Test facility list
	USA	100	474040,1 00 1003	& NSA Data
Site Filing	Canada	IC	4699A-1,-3	Test facility list
Document	Cariaua	Ю	4099A-1,-3	& NSA Data
	lonon	VCCI	P 1527 C 1600 T 1441 C 10	Test facility list
	Japan	VCCI	R-1527,C-1609,T-1441,G-10	& NSA Data
Authorization	Germany	TUV	10021687	ISO/IEC 17025
Certificate	Norway	Nemko	ELA 212	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.7 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Test Item	Measurement Uncertainty		
Radiated Emission: (30MHz~200MHz)	Horizontal 3.5dB; Vertical 3.8dB		
Radiated Emission: (200MHz~1GHz)	Horizontal 3.9dB; Vertical 3.9dB		
Radiated Emission: (1GHz~18GHz)	Horizontal 3.5dB; Vertical 3.6dB		
Radiated Emission: (18GHz~26.5GHz)	Horizontal 4.4dB; Vertical 4.5dB		
Line Conducted Emission	ESH2-Z5	3.1dB	
Line Conducted Linission	ENV 4200	2.8dB	

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 12/43

2 Field Strength of Fundamental Measurement

Result: Pass

2.1 Applied standard

Fundamental Frequency	Peak	Average
□ 902 – 928 MHz	500mV/m (114dBuV/m)	50mV/m (94dBuV/m)
☑ 2400 – 2483.5 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 5725 – 5875 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 24.0 – 24.25 GHz	2500 mV/m (128dBuV/m)	250 mV/m (108dBuV/m)

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration
Equipment	Manufacturer	Serial No.	Calibration Date	Due Date
Spectrum Analyzer	Agilent	FSP40/ 100031	July 11, 2012	July 11, 2013
Antenna	EMCO	3117/ 00082847	March 1, 2012	March 1, 2013
PRE-AMPLIFIER	MITEQ	JS4-00101800-28-1 0P/1498979	Dec. 21, 2011	Dec. 21, 2012
PRE-AMPLIFIER	MITEQ	JS4-00101800-28-5 A/742309	Dec. 14, 2011	Dec. 14, 2012
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	Feb. 12, 2012	Feb. 12, 2013

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
1MHz	1MHz	Peak	Maxhold	Peak
1MHz	10Hz	Peak	Maxhold	Average

Climatic Condition

Ambient Temperature: 27°C Relative Humidity: 58%

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

FCC Test Report

Report No.:RF- C450-1207-488

Page: 14/43

2.3 Measurement Procedure

a. The EUT was set up per the test configuration figured in the next section of this chapter to

simulate the typical usage per the user's manual.

b. A software provided by client enabled the EUT to transmit and receive data at operating

frequency.

c. If the EUT is tabletop equipment, it should be placed on a wooden table with a height of 0.8

meters above the reference ground plane in the semi-anechoic chamber. If the EUT is

floor-standing equipment, it should be placed on a non-conducted support with a height of 12

millimeters above the reference ground plane in the semi-anechoic chamber.

d. The EUT is set 3m away from the receiving antenna.

e. Rapidly sweep the signal in the test frequency range by using the spectrum through the

Maximum-peak detector.

f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4

meters above the reference ground plane continuously to determine higher emission level and

record it.

g. Then measure frequency found from step f. by using the spectrum with rotating the EUT and

positioning the receiving antenna height to determine the maximum level.

h. Set the spectrum detector to be Peak or Average to find out the maximum level occurred.

i. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving

antenna and compare the maximum level with the required limit.

a. Change the receiving antenna to another polarization to measure radiated emission by following

step e. to i. again.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test configuration 2.4

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 16/43

2.5 Test Data

Test Mode : Continuous Transmitting Tester : Bill

Frequency (MHz)	Polarization	/-ID\/\		Factor	Output Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dB)	
		PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
0.407	V	122.07	92.23	-39.45	82.62	52.78	114	94	31.38	41.22
2407	Н	122.06	92.22	-39.45	82.61	52.77	114	94	31.39	41.23
2436	V	121.87	91.81	-39.40	82.47	52.41	114	94	31.53	41.59
	Н	121.86	91.93	-39.40	82.46	52.53	114	94	31.54	41.47
2465	V	122.00	91.97	-39.35	82.65	52.62	114	94	31.35	41.38
	Н	122.02	91.98	-39.35	82.67	52.63	114	94	31.33	41.37

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Output Field Strength (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Output Field Strength

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2407MHz, Vertical Polarization - Peak

2407MHz, Vertical Polarization - Average

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2407MHz, Horizontal Polarization - Peak

2407MHz, Horizontal Polarization - Average

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2436MHz, Vertical Polarization - Peak

2436MHz, Vertical Polarization - Average

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2436MHz, Horizontal Polarization - Peak

2436MHz, Horizontal Polarization - Average

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2465MHz, Vertical Polarization - Peak

2465MHz, Vertical Polarization - Average

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2465MHz, Horizontal Polarization - Peak

2465MHz, Horizontal Polarization - Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3 Radiated Emission Measurement

Result: Pass

3.1 Applied standard

Limit for Harmonics Radiation Emission Measurement

Fundamental Frequency	Field Strength of Harmonics
□ 902 – 928 MHz	500 uV/m (54dBuV/m)
☑ 2400 – 2483.5 MHz	500 uV/m (54dBuV/m)
□ 5725 – 5875 MHz	500 uV/m (54dBuV/m)
□ 24.0 – 24.25 GHz	2500 uV/m(68dBuV/m)

Limit for Other Emissions except Harmonics

Frequency (MHz)	Quasi-peak (dBμV/m)				
30 to 88	40				
88 to 216	43.5				
216 to 960	46				
960 to 1000	54				
Frequency (MHz)	Peak (dBμV/m)	Average (dBμV/m)			
Above 1000	74 54				

Note 1- The lower limit shall apply at the transition frequency.

Note 2- Additional provisions may be required for cases where interference occurs.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 24/43

3.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration	
Equipment	Manufacturer	Serial No.	Calibration Date	Due Date	
EMI Test Receiver	R&S	ESCS 30/	Sept. 8, 2011	Sont 9 2012	
Elvii Test Receivei	Ras	836858/020	Sept. 6, 2011	Sept. 8, 2012	
Spectrum Analyzer	Agilent	FSP40/ 100031	July 11, 2012	July 11, 2013	
Broadband	R&S	HL-562/	May 2, 2012	May 2, 2013	
Antenna	Nao	830547/010	Way 2, 2012	May 2, 2013	
Antenna	EMCO	3117/ 00082847	March 1, 2012	March 1, 2013	
Duo Arondition	Mini Cinavit	ZKL-2/	July 16, 2012	Jan.16, 2013	
Pre-Amplifier	Mini Circuit	001	July 10, 2012		
Pre-Amplifier	Mini Circuit	ZKL-2/	July 16, 2012	Jan.16, 2013	
Pre-Ampliner	Willii Circuit	002	odly 10, 2012		
PRE-AMPLIFIER	MITEQ	JS4-00101800-28-1 0P/1498979	Dec. 21, 2011	Dec. 21, 2012	
PRE-AMPLIFIER	MITEQ	JS4-00101800-28-5 A/742309	Dec. 14, 2011	Dec. 14, 2012	
RF Cable	JYEBAO	0214/	July 16, 2012	Jan.16, 2013	
IXI Cable	JILDAO	C0049	Gary 10, 2012		
RF Cable	JYEBAO	0214/	July 16, 2012	Jan.16, 2013	
TH GADIC	0125/10	C0050		232010	
RF Cable	H+S	Sucoflex 104/ C0081	April 16, 2012	Oct. 16, 2012	
Semi - anechoic	ETS.	TR11/	Feb. 12, 2012	Fob 12 2012	
Chamber	LINDGREN	906-A	Feb. 12, 2012	Feb. 12, 2013	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.
- 3. The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz
1MHz	3MHz	Peak	Maxhold	Above 1GHz, Peak
1MHz	10Hz	Peak	Maxhold	Above 1GHz, Average

Climatic Condition

Ambient Temperature : 24°C Relative Humidity :53%

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

TEL.: 886-2-25984542 FAX.: 886-2-25984546 Page : 25/43

3.3 Measurement Procedure

a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.

b. A software provided by client enabled the EUT to transmit and receive data at operating frequency.(if necessary)

c. If the EUT is tabletop equipment, it should be placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it should be placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.

d. The EUT is set 3m away from the interference receiving antenna.

e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.

f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least six frequencies associated with higher emission levels and record them.

g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.

h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per CISPR 16-1 to find out the maximum level occurred.

i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or Average to find out the maximum level occurred, if any.

j. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.

k. Change the receiving antenna to another polarization to measure radiated emission by following step e. to j. again.

 If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.

m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate A.V. value will be measured and presented.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX.: 886-2-25984546

Test configuration 3.4

3.5 Test Data

Band Edge

Test Mode : Continuous Transmitting **Tester** : Bill

Operating Frequency (MHz)		Antenna Frequency Polarization (MHz)	Reading Data (dBuV)		Correction Factor (dB/m)	Emission (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
(MHz)	(**************************************	PK.	AV.	PK.		AV.	PK.	AV.	PK.	AV.	
2407	V	2385.80	99.24	72.67	-39.49	59.75	33.18	74	54	14.25	20.82
2407	Н	2385.80	99.01	72.66	-39.49	59.52	33.17	74	54	14.48	20.83
2465	V	2493.65	98.48	72.35	-39.30	59.18	33.05	74	54	14.82	20.95
2465	Н	2493.68	101.87	72.36	-39.30	62.57	33.06	74	54	11.43	20.94

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier
- 2. Emission (dBuV/m) = Reading Data + Correction Factor
- 3. Margin(dB) = Limit Emission

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Low Channel (2407MHz), V Polarization

Low Channel (2407MHz), H Polarization

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

High Channel (2465MHz), V Polarization

High Channel (2465MHz), H Polarization

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Emission Measurement below 1000MHz

Test Mode : 2407MHz, Continuous Transmitting

Test Distance : 3m Tester : Bill

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2407MHz, Continuous Transmitting

Test Distance : 3m Tester : Bill

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2436MHz, Continuous Transmitting

Test Distance : 3m Tester : Bill

Polarization: Vertical: Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2436MHz, Continuous Transmitting

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2465MHz, Continuous Transmitting

Polarization: Vertical: Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2465MHz, Continuous Transmitting

Test Distance : 3m Tester : Bill

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Emission Measurement above 1000MHz

Test Model : 2407MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11 Lane 41 Fushuen St., Jungshan Chiu, Ta

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 38/43

Test Model : 2407MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 39/43

Test Model : 2436MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 40/43

Test Model : 2436MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

Test Model : 2465MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2465MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

4 Antenna Requirement

4.1 Applied standard

According to 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

4.2 Antenna Information

This antenna is a permanently attached antenna

4.3 Result

Comply the standard

No. 11, Lane 41, Fushuen St., Jungshan C TEL.: 886-2-25984542 FAX.: 886-2-25984546