

WEEK 8: DELIVERABLES

BANK MARKETING CAMPAIGN

'DATA SCIENCE'

GROUP NAME: DATA SCIENCE MASTER

NAME: ABHIMANYU GANGANI EMAIL: <u>Agangani97@gmail.com</u> COUNTRY: UNITED KINGDOM

COLLEGE: ANGLIA RUSKIN UNIVERSITY

SPECIALIZATION: DATA SCIENCE

PROBLEM DESCRIPTION:

ABC Bank wants to sell it's term deposit product to customers and before launching the product they want to develop a model which help them in understanding whether a particular customer will buy their product or not.

To achieve this task they have consulted an analytics consultancy to automate the process of classification.

The Analytics company have to come up with an ML model to shortlist the customers whose chances to buy the product is higher. This will lead marketing team to target on the given lead.

BUSINESS UNDERSTANDING:

There's been a revenue decline for the ABC bank and to overcome that they want to come up with the actions needed to be taken. With analysis they came to know that customers are not depositing as frequently as before. Banks make investments from the investment made by customers to make high profits.

Banks also urges customers to buy other products such as insurance and Different kind of deposits. They want to check the customers from existing data they pursue and filter the customers having higher chances of buying any new schemes or products from the bank.

DATA UNDERSTANDING:

Data belongs to a banking organisation and corresponds to marketing campaigns. These campaigns are based on phone calls. More than one call to the same client tells whether the bank term deposit (product) was subscribed by client or not.

There are four datasets provided for this classification problem. We are having 2 pairs of test and train datasets.

Bank.csv and Bank_full.csv are one pair having 16 features and Bank_additional.csv and Bank_additional_full.csv are having 20 features. Bank.csv is the older version of bank additional.csv.

Below are the details of all four datasets:

File	Dataset Type	Description
Bank.csv	Test	4521
		observations(10% of
		train data) and 16
		features
Bank_full.csv	Train	45211 observations
		and 16 features
Bank_additional.csv	Test	4111
		observations(10% of
		train data) and 20
		features
Bank_additional_full.csv	Train	41118 observations
		and 20 features

Datatype and Description of columns:

Data #	columns (total 21 Column	columns): Dtype	Description
0	age	int64	Age of Client.
1	job	object	Type of Job.
2	marital	object	Marital Status.
3	education	object	Level of Education.
4	default	object	Has credit in default?
5	housing	object	Has housing loan?
6	loan	object	Has personal loan?
7	contact	object	How client has been communicated?
8	month	object	last contacted month.
9	day_of_week	object	last contacted day.
10	duration	int64	duration of communication (seconds).
11	campaign	int64	number of contacts performed in
			Campaign.
	1 1	int64	number of days passed after contact.
13	previous	int64	number of total contacts performed.
	-	object	outcome of the previous campaign.
	-	float64	Employment variation rate.
	cons.price.idx		Consumer price index.
	cons.conf.idx		Consumer confidence index.
	euribor3m		Euribor 3 months rate.
			number of employees.
20	_	-	has the client subscribed product.
dtype	es: float64(5), int	:64(5), objec	ct (11)

- First 7 features are the client information.
- Features 8-11 are last contact information.

- Features 12-15 are other important details regarding contact.
- Features 16-20 are economic and social features.
- The 21st feature is the target variable(dependent).

Data Problems:

Missing Attribute:

None of the dataset contains any missing value.

	_
age	0
job	0
marital	0
education	0
default	0
housing	0
loan	0
contact	0
month	0
day_of_week	0
duration	0
campaign	0
pdays	0
previous	0
poutcome	0
emp.var.rate	0
cons.price.idx	0
cons.conf.idx	0
euribor3m	0
nr.employed	0
У	0

```
#Checking null values
bank add.isnull().sum()
age
job
                   0
marital
                   0
education
                   0
                   0
default
housing
                   0
loan
                   0
contact
month
                   0
day of week
                   0
duration
                   0
campaign
                   0
                   0
pdays
previous
                   0
poutcome
                   0
emp.var.rate
                   0
cons.price.idx
cons.conf.idx
                   0
euribor3m
                   0
nr.employed
                   0
                   0
dtype: int64
```

```
#Checking null values
bank_full.isnull().sum()
              0
age
job
              0
marital
              0
education
              0
default
              0
balance
              0
housing
              0
loan
              0
contact
              0
day
              0
month
              0
              0
duration
campaign
              0
pdays
              0
previous
              0
poutcome
              0
              0
dtype: int64
```

```
#Checking null values
bank.isnull().sum()
              0
age
job
              0
marital
              0
education
              0
default
              0
              0
balance
              0
housing
              0
loan
contact
              0
day
              0
month
              0
duration
              0
campaign
              0
pdays
              0
              0
previous
              0
poutcome
              0
У
dtype: int64
```

Value Counts:

Some of the variables consists of value counts as "Unknown" which is significantly high. *So we assume "Unknown" as another category for these variables.*

admin. blue-collar technician services management retired entrepreneu self-employ housemaid unemployed student unknown Name: job,	red	10422 9254 6743 3969 2924 1720 1456 1421 1060 1014 875 330 int64	
	80	 ype: i	nt64
university. high.school basic.9y professiona basic.4y basic.6y unknown illiterate Name: educa	l.cour		12168 9515 6045 5243 4176 2292 1731 18 int64
no unknown yes Name: defau	32588 8597 3	 ype: i	.nt64
yes no unknown Name: housi	21576 18622 990 ng, dt	 ype: i	nt64
no yes unknown Name: loan,	33950 6248 990 dtype	: int6	. — — — — — — — — — — — — — — — — — — —

Duplicate Counts:

```
In [70]: #Checking the count of duplicates in bank_add_full dataset
    print(f'There are {bank_add_full.duplicated().sum()} duplicates in bank_addition_full.')
    bank_add_full.drop_duplicates(inplace=True, keep= 'first')

There are 12 duplicates in bank_addition_full.
```

<u>There are 12 duplicates present in the bank_additional_full dataset, we</u> will remove the duplicates using drop_duplicates function.

Outliers:

Outliers are the values which lie at above 3 standard deviation distance fr om the other Values in normal distribution.

It might occur due to improper collection of the data. . Outliers can disturb our analysis by changing the mean on normal distribution graph. F ollowing variables consists of significant outliers.

• 'Age' Feature:

• 'Campaign Feature:

The maximum value for 'age' variable is 98 and that of 'campaign' variable is 56 and both are significant values.

Since model is needed to be generalized to reflect the real world data we are not going to remove these outliers as these seems to be realistic value .

Skewness and Kurtosis:

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point. Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution.

```
#Checking skewness
import warnings
warnings.filterwarnings('ignore')
bank add full.skew(axis=0, skipna=True)
                  0.784560
age
duration
                  3.262808
                  4.762044
campaign
pdays
                 -4.921386
previous
                  3.831396
                 -0.724061
emp.var.rate
cons.price.idx
                 -0.230853
cons.conf.idx
                 0.302876
euribor3m
                 -0.709194
nr.employed
                 -1.044317
dtype: float64
```

3.70	0.791113
age	****
duration	20.243771
campaign	36.971857
pdays	22.221553
previous	20.102164
emp.var.rate	-1.062698
cons.price.idx	-0.829851
cons.conf.idx	-0.359097
euribor3m	-1.406791
nr.employed	-0.003540

GITHUB LINK: https://github.com/AbhimanyuGangani/Week 7
Bank Marketing/tree/main/Week 8 Bank Marketing