CS & IT

Discrete Mathematics

Set Theory

DPP 07 Discussion notes

SATISH YADAV SIR

TOPICS TO BE COVERED

01 Question

02 Discussion

Which of the following pairs of elements are comparable in the poset (N, I) where N is set of all integers. [MCQ]

- A. 6, 7 ×
- B. 3,5 X
- G 5,15 / 5 5 02 15 5
- D. 4, 6

Which of the following pairs of sets are not comparable in the poset $[P(A), \subseteq]$ where

$$A = \{0, 1, 2\}$$

- $\{0\}, \{0, 1\}$ $\{0\} \subseteq \{0, 1\}$
- $\phi, \{0, 1, 2\}$ $\phi \subseteq \{0, 1, 2\}$
- C. {1,2} {0,1,2} {|2| = |0|,2|

Let $U = \{1, 2, 3, 4, 5, 6, 7\}$, with A = R(U), and let R be the subset relation on A. For $B = \{\{1\}, \{2\}, \{2, 3\}\}\} \subseteq A$, then the number of upper bounds that exist for B is X and the number of lower bounds that

exist for B is Y, ther value of X + Y is?

Let $(A, R_1), (B, R_2)$ e two posets. On $A \times B$, define relation R by (a,b)R(x,y) if aR_1x and bR_2y . Consider the following statement:

R is a partial order.

R is not a partial order. II.

Only I is true.

Only II is true.

Both I and II are true.

Neither I nor II is true.

Define the relation R on the set Z by a Rb if a - b is a nonnegative even integer. Then consider the following statement regarding $\{(a,b) \mid a-b=2.m\}$ [NAT] m=0.1.-relation R:

- R is a partial order.
- R is a total order. Η.

The number of correct statements for R is/are?

