Designing Queries to Extract and Transform Data

Agenda

- Deciding What To Measure
- Query Design Fundamentals
- Designing Data Model using a Star Schema
- Working with the Query Editor Window

Data Discovery

- Data can live in a variety of sources
 - Files (e.g. CSV file, Excel workbook)
 - OLTP Databases
 - OLAP Databases
 - SharePoint Lists and Document Libraries
 - Azure-based services
 - Online services & SaaS applications

Deciding What To Measure

- You Must Determine Measurable Objectives
 - Financial (revenue, expenses, profit margin, etc.)
 - Business processes efficiency
 - Customer Satisfaction Levels

Defining Grain Statements

- Grain statements should be defined in initial design phase
 - Grain statements helps determine requirements for BI queries
 - Grain statements can be created & understood by business users
- Example grain statements for BI project at Wingtip Toys
 - What was the total sales revenue over the last 4 years?
 - What was the sales revenue by year, quarter and month?
 - What was the sales revenue by region, state, city and zip code?
 - What was the sales revenue by category, subcategory and product?
 - What was the growth in sales revenue from month to month in 2013?
 - What was profit margin for each product by year, quarter and month?
 - Have their been any products with significantly decreasing profit margin?

Agenda

- Deciding What To Measure
- Query Design Fundamentals
- Designing Data Model using a Star Schema
- Working with the Query Editor Window

Power BI Desktop is an ETL Tool

- ETL process is essential part of any BI Project
 - Extract the data from wherever it lives
 - Transform the shape of the data for better analysis
 - Load the data into dataset for analysis and reporting

Query Editor Window

- Power BI Desktop provides separate Query Editor window
 - Provides powerful features for designing queries
 - Displays list of all queries in project on the left
 - Displays Properties and Applied Steps for selected query on right
 - Preview of table generated by query output shown in the middle
 - Query can be executed using Apply or Close & Apply command

Query Steps

- A query is created as a sequence of steps
 - Each step is a parameterized operation on the data
 - Each step has formula which can be viewed/edited in formula bar
 - Query starts with Source step to extract data from a data source
 - Additional steps added to perform transform operations on data
 - You can replay query operations one by one by clicking on steps

Advanced Editor

- Power BI Desktop based on "M" functional language
 - Query in Power BI Desktop saved as set of M statements in code
 - Query Editor generates code in M behind the scenes
 - Advanced users can view & modify query code in Advanced Editor

Working with Web Data Sources

- Many public websites publish data using HTML tables
 - Power BI desktop can scrape data from tables in HTML pages

Understanding Query Input and Output

- PBIX project is container for data sources and queries
 - Queries created and saved within scope of Power BI project
 - Queries can pull data from local files
 - Queries can pull data from external content sources
 - Queries main purpose is to load imported data into data model

Query Composition

- Query can serve as source for other queries
 - Allows for creation of reusable base queries & query composition
 - Complexity can be hidden in base queries
 - Reference command creates new query based on another query

Combining Queries

- Query can be merged or appended with another query
 - Merge operation allows you combine columns from two tables
 - Append operation allows you to combine rows from two tables
- Two queries are combined into single output for loading
 - Load settings of main query determines where output is loaded
 - Secondary query acts as source for main query
 - Secondary query be can created with connection-only load setting

Agenda

- Deciding What To Measure
- Query Design Fundamentals
- Designing Data Model using a Star Schema
- Working with the Query Editor Window

Sample OLTP Database: WingtipSalesDB

- Online Transaction Processing (OLTP) System
 - Used for real-time data access and transaction-based data entry
 - Optimized for faster transactions (e.g. inserts, updates & deletes)
 - Tables normalized to reduce/eliminate redundancies
 - Table schemas can be hard for business users to understand

Data Modeling using a Star Schema

- OLAP Modeling often based on Star Schema
 - Tables defined as fact tables or dimension tables
 - Fact tables related to dimension table using 1-to-many relationships

Designing Queries to Build a Star Schema

- Converts OLTP Data Model to OLAP Data Model
 - Sales table is modeled as a OLAP Fact Table
 - Other tables are modeled as OLAP Dimension tables
 - Requires pulling CustomerId column into Sales table
 - All dimension tables should be directly related to fact table

Agenda

- Deciding What To Measure
- Query Design Fundamentals
- Designing Data Model using a Star Schema
- Working with the Query Editor Window

Query Editor Ribbon Tabs

Home tab

Transform tab

Add Column tab

View tab

Examples of Basic Power BI Desktop Steps

- Rename column
- Convert column type
- Trim and clean column values
- Replace column values
- Format column values
- Expanding related column
- Merging columns
- Splitting columns

Cleaning Data

- Special steps available to clean up string-based data
 - Transform > Trim removes whitespace
 - Transform > Clean removed non-printable characters

Converting Column Types

- Transform data to make it more reliable
 - Convert date-time column to date column
- Transform data to make it more efficient
 - Convert decimal to fixed decimal number for currency

PurchaseDate 🔻	1 ² ₃ Quantity	\$ SalesAmount	\$	ProductCost ~
1/28/2012	1	2.95	1.2	Decimal Number
1/28/2012	6		\$	Fixed Decimal Number
1/28/2012	1	19.95	1 ² 3	Whole Number
1/28/2012	5	249.75	<u></u>	Date/Time
1/28/2012	1	2.95		Date

Expanding Related Columns

- Used to pull data from related tables
 - Saves you from performing SQL joins or VLOOKUP

·	ld 🔻	InvoiceId 🔻	ProductId 🔻	Quantity 🔻	SalesAmount 🔻	InvoiceDate 🔻	CustomerId 🔻	Products ৭৫
1	1	1	22	4	119.8	1/28/2012 12:00:00 AM	1	Value
2	2	1	22	1	29.95	1/28/2012 12:00:00 AM	1	Value
3	3	2	22	2	59.9	1/28/2012 12:00:00 AM	2	Value
4	4	3	17	8	399.6	1/28/2012 12:00:00 AM	3	Value
5	5	3	18	2	29.9	1/28/2012 12:00:00 AM	3	Value
6	6	3	18	4	59.8	1/28/2012 12:00:00 AM	3	Value
7	7	4	16	1	2.95	1/28/2012 12:00:00 AM	4	Value

Adding a Custom Column

- Custom column provide custom logic
 - Logic must be written in M programming language

FirstPurchaseDate 🔻	LastPurchaseDate 🔻	CustomerType ~
1/28/2012	1/28/2012	One-time Customer
1/29/2012	11/22/2015	Repeat Customer
1/29/2012	10/2/2015	Repeat Customer
1/29/2012	1/29/2012	One-time Customer
1/29/2012	5/6/2015	Repeat Customer
1/29/2012	1/29/2012	One-time Customer

Adding a Conditional Column

Abstracts away need to write M code

Summary

- Deciding What To Measure
- ✓ Query Design Fundamentals
- Designing Data Model using a Star Schema
- ✓ Working with the Query Editor Window

