CS 5/7320 Artificial Intelligence

Adversarial Search and Games AIMA Chapter 5

Slides by Michael Hahsler with figures from the AIMA textbook

Games

- Games typically confront the agent with a competitive (adversarial) environment affected by an opponent (strategic environment).
- Games are episodic.
- We will focus on planning for
 - two-player zero-sum games with
 - deterministic game mechanics and
 - perfect information (i.e., fully observable environment).
- We call the two players:
 - 1) Max tries to maximize his utility.
 - **Min** tries to minimize Max's utility since it is a zero-sum game.

Definition of a Game

Definition:

 s_0 The initial state (position, board, hand).

Actions(s) Legal moves in state s.

Result(s, a) Transition model.

Terminal(s) Test for terminal states.

Utility(s) Utility for player Max for terminal states.

- **State space**: a graph defined by the initial state and the transition function containing all reachable states (e.g., chess positions).
- Game tree: a search tree superimposed on the state space. A complete game tree follows every sequence from the current state to the terminal state (the game ends).

Example: Tic-tac-toe

 S_0

Actions(s)

Result(s, a)

Terminal(s)

Utility(s)

Empty board.

Play empty squares.

Symbol (x/o) is placed on empty square.

Did a player win or is the game a draw?

+1 if x wins, -1 if o wins and 0 for a draw.

Utility is only defined for terminal states.

Here player x is Max and player o is Min.

Note: This game still uses a goal-based agent that plans actions to reach a winning terminal state!

Tic-tac-toe: Partial Game Tree

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The opponent is seen as part of an environment with nondeterministic actions. Non-determinism is the result of the unknown moves by the opponent. We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - a. Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Recall AND-OR Search from AIMA Chapter 4

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Recall: Nondeterministic Actions

For **planning**, we do not know what the opponents moves will be. We have already modeled this issue using nondeterministic actions.

Outcome of actions in the environment is nondeterministic = transition model need to describe uncertainty about the opponent's behavior.

Each action consists of the move by the player and all possible (i.e., nondeterministic) responses by the opponent.

Example transition:

$$Results(s_1, a) = \{s_2, s_4, s_5\}$$

i.e., action a in s_1 can lead to one of several states (which is called a belief state of the agent).

Recall: AND-OR DFS Search Algorithm

= nested If-then-else statements

```
function AND-OR-SEARCH(problem) returns a conditional plan, or failure
  return OR-SEARCH(problem, problem.INITIAL, [])
function OR-SEARCH(problem, state, path) returns a conditional plan, or failure
  if problem.IS-GOAL(state) then return the empty plan
  if IS-CYCLE(path) then return failure
                                                    // don't follow loops
                                                                                                my
  for each action in problem.ACTIONS(state) do // check all possible actions
                                                                                              moves
      plan \leftarrow AND\text{-SEARCH}(problem, RESULTS(state, action), [state] + path])
      if plan \neq failure then return [action] + plan
                                                                  all states that can result from
  return failure
                                                                        opponent's moves
function AND-SEARCH(problem, states, path) returns a conditional plan, or failure
  for each s_i in states do
                                                     // check all possible current states
      plan_i \leftarrow \text{OR-SEARCH}(problem, s_i, path)
                                                                                            Go through
                                                       abandon subtree if a loss is found
      if plan_i = failure then return failure
                                                                                             opponent
  return [if s_1 then plan_1 else if s_2 then plan_2 else ... if s_{n-1} then plan_{n-1} else plan_n]
                                                                                               moves
```

Tic-tac-toe: AND-OR Search

We play MAX and decide on our actions (OR). MIN's actions introduce non-determinism (AND).

Minimax Search and Alpha-Beta Pruning

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Idea: Minimax Decision

 Assign each state s a minimax value that reflects the utility realized if both players play optimally from s to the end of the game:

$$Minimax(s) = \begin{cases} Utility(s) & \text{if } terminal(s) \\ \max_{a \in Actions(s)} Minimax(Result(s, a)) & \text{if } move = Max \\ \min_{a \in Actions(s)} Minimax(Result(s, a)) & \text{if } move = Min \end{cases}$$

- This is a recursive definition which can be solved from terminal states backwards.
- The **optimal decision** for Max is the action that leads to the state with the largest minimax value. That is the largest possible utility if both players play optimally.

Minimax Search: Back-up Minimax Values

Approach: Follow tree to each terminal node and back up minimax value.

Note: This is just a generalization of the AND-OR Tree Search and returns the first action of the conditional plan.

```
\begin{aligned} & \textbf{function} \ \text{MINIMAX-SEARCH}(game, state) \ \textbf{returns} \ an \ action \\ & \text{player} \leftarrow game. \text{To-Move}(state) \\ & value, \ move \leftarrow \text{MAX-VALUE}(game, state) \\ & \textbf{return} \ move \end{aligned}
```

if v2 < v then

return v, move

 $v, move \leftarrow v2, a$

function MAX-VALUE(game, state) returns a (utility, move) pair if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null $v \leftarrow -\infty$ for each a in game.ACTIONS(state) do v2, $a2 \leftarrow$ MIN-VALUE(game, game.RESULT(state, a)) if v2 > v then v, $move \leftarrow v2$, a Find the action that leads to the best value.

Represents OR Search

```
function MIN-VALUE(game, state) returns a (utility, move) pair if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null v \leftarrow +\infty for each a in game.ACTIONS(state) do v2, a2 \leftarrow \text{MAX-VALUE}(game, game.\text{RESULT}(state, a))
```

Represents AND Search

Exercise: Simple 2-Ply Game

- What are the terminal state utilities for Min?
- Compute all MV (minimax values).
- How do we traverse the game tree? What is the Big-O notation for time and space?
- What is the optimal action for Max?

b: max branching factor m: max depth of tree

Issue: Game Tree Size

Minimax search traverses the complete game tree using DFS!

Space complexity: O(bm)Time complexity: $O(b^m)$

- Fast solution is only feasible for very simple games with small branching factor!
- Example: Tic-tac-toe $b = 9, m = 9 \rightarrow 0(9^9) = 0(387,420,489)$ b decreases from 9 to 8, 7, ... the actual size is smaller than: $1(9)(9\times8)(9\times8\times7)$... (9!) = 986,409 nodes
- We need to reduce the search space! → Game tree pruning

Alpha-Beta Pruning

 Idea: Do not search parts of the tree if they do not make a difference to the outcome.

Observations:

- min(3, x, y) can never be more than 3
- $\max(5, \min(3, x, y, ...))$ does not depend on the values of x or y.
- Minimax search applies alternating min and max.
- **Approach**: maintain bounds for the minimax value $[\alpha, \beta]$ and prune subtrees (i.e., don't follow actions) that do not affect the current minimax value bound.
 - Alpha is used by Max and means "Minimax(s) is at least α ."
 - Beta is used by Min and means "Minimax(s) is at most β ."

Example: Alpha-Beta Search

Max updates α (utility is at least)

Min updates β (utility is at most)

Utility cannot be more than 2 in the subtree, but we already can get 3 from the first subtree. Prune the rest.

Once a subtree is fully evaluated, the interval has a length of 0 $(\alpha = \beta)$.

```
function ALPHA-BETA-SEARCH(game, state) returns an action
                                                                             = minimax search + pruning
  player \leftarrow qame.To-Move(state)
   value, move \leftarrow MAX-VALUE(game, state, -\infty, +\infty)
  return move
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
   v \leftarrow -\infty // v is the minimax value
  for each a in game.ACTIONS(state) do
     v2, a2 \leftarrow MIN-VALUE(qame, qame.RESULT(state, a), <math>\alpha, \beta)
     if v2 > v then —
                                      Found a better action?
        v, move \leftarrow v2, a
        \alpha \leftarrow \text{MAX}(\alpha, v)
                                                     Abandon subtree if Max finds an
     if v \geq \beta then return v, move
                                                     actions that has more value than
                                                     the best-known move Min has in
   return v, move
                                                             another subtree.
function MIN-VALUE(qame, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow +\infty
  for each a in game.ACTIONS(state) do
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
     if v2 < v then
                                         Found a better action?
        v, move \leftarrow v2, a
        \beta \leftarrow \text{MIN}(\beta, v)
                                                     Abandon subtree if Min finds an
     if v < \alpha then return v, move
                                                      actions that has less value than
                                                    the best-known move Max has in
   return v, move
```

another subtree.

Move Ordering for Alpha-Beta Search

- Idea: Pruning is more effective if good alpha-beta bounds can be found in the first few checked subtrees.
- Move ordering for DFS = Check good moves for Min and Max first.
- We need expert knowledge or some heuristic to determine what a good move is.

• Issue: Optimal decision algorithms still scale poorly even when using alpha-beta pruning with move ordering.

Exercise: Simple 2-Ply Game

- Find the $[\alpha, \beta]$ intervals for all nodes.
- What part of the tree can be pruned?
- What would be the optimal move ordering?

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large or search takes too long)

- Heuristic Alpha-Beta Tree Search:
 - a. Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Cutting off search

Reduce the search cost by restricting the search depth:

- 1. Stop search at a non-terminal node.
- 2. Use a heuristic evaluation function Eval(s) to approximate the utility for that node/state.

Needed properties of the evaluation function:

- Fast to compute.
- $Eval(s) \in [Utility(loss), Utility(win)]$
- Correlated with the actual chance of winning (e.g., using features of the state).

Examples:

1. A weighted linear function

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

where f_i is a feature of the state (e.g., # of pieces captured in chess).

2. A deep neural network trained on complete games.

Heuristic Alpha-Beta Tree Search: Cutting off search HMV = heuristic minimax value

Forward pruning

To save time, we can prune moves that appear bad.

There are many ways move quality can be evaluated:

- Low heuristic value.
- Low evaluation value after shallow search (cut-off search).
- Past experience.

Issue: May prune important moves.

Heuristic Alpha-Beta Tree Search: Example for Forward Pruning

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large or search takes too long)

- Heuristic Alpha-Beta Tree Search:
 - Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Idea

- Approximate Eval(s) as the average utility of several simulation runs to the terminal state (called playouts).
- Playout policy: How to choose moves during the simulation runs? Example playout policies:
 - Random.
 - Heuristics for good moves developed by experts.
 - Learn good moves from self-play (e.g., with deep neural networks). We will talk about this when we talk about "Learning from Examples."
- Typically used for problems with
 - High branching factor (many possible moves make the tree very wide).
 - Unknown or hard to define good evaluation functions.

Pure Monte Carlo Search

Find the next best move.

- Method
 - 1. Simulate N playouts from the current state.
 - 2. Select the move that results in the highest win percentage.
- Optimality Guarantee: Converges to optimal play for stochastic games as N increases.
- Typical strategy for N: **Do as many playouts as you can** given the available time budget for the move.

Playout Selection Strategy

Issue: Pure Monte Carlo Search spends a lot of time to create playouts for bad move.

Better: Select the starting state for playouts to focus on important parts of the game tree (i.e., good moves).

This presents the following tradeoff:

Selection using Upper Confidence Bounds (UCB1)

Tradeoff constant $\approx \sqrt{2}$ can be optimizes using experiments

$$UCB1(n) = \frac{U(n)}{N(n)} + C\sqrt{\frac{\log N(Parent(n))}{N(n)}}$$

Average utility (=exploitation)

High for nodes with few playouts relative to the parent node (=**exploration**). Goes to 0 for large N(n)

n ... node in the game tree

U(n) ... total utility of all playouts going through node n

N(n) ... number of playouts through n

Selection strategy: Select node with highest UCB1 score.

Monte Carlo Tree Search (MCTS)

Pure Monte Carlo search always start playouts from a given state.

Monte Carlo Tree Search builds a partial game tree and can start playouts from any state (node) in that tree.

Important considerations:

- We can use UCB1 as the **selection strategy** to decide what part of the tree we should focus on for the next playout. This balances exploration and exploitation.
- We typically can only store a small part of the game tree, so we do not store the complete playout runs.

function MONTE-CARLO-TREE-SEARCH(state) returns an action

 $tree \leftarrow Node(state)$

while IS-TIME-REMAINING() do

 $leaf \leftarrow SELECT(tree)$

Highest UCB1 score

 $child \leftarrow \text{EXPAND}(leaf)$

 $result \leftarrow SIMULATE(child)$

BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose node has highest number of playouts

UCB1 selection favors win percentage more and more.

Select leaf with highest UCB1 score

Note: the simulation path is not recorded to preserve memory!

Online Play Using MCTS

- Search and update a partial tree to use up the time budget for the move.
- Keep the relevant subtree from move to move and expand from there.

Stochastic Games

- Game includes a "random action" r (e.g., dice, dealt cards)
- Add chance nodes that calculate the expected value.

Expectiminimax

- Game includes a "random action" r (e.g., dice, dealt cards).
- For chance nodes we calculate the expected minimax value.

```
Expectiminimax(s) = \begin{cases} Utility(s) & \text{if } terminal(s) \\ \max_{a \in Actions(s)} Expectiminimax(Result(s, a)) & \text{if } move = Max \\ \min_{a \in Actions(s)} Expectiminimax(Result(s, a)) & \text{if } move = Min \\ \sum_{r} P(r)Expectiminimax(Result(s, r)) & \text{if } move = Chance \end{cases}
```

Options:

- Use Minimax algorithm. Issue: Search tree size explodes if the number of "random actions" is large. Think of drawing cards for poker!
- Cut-off search and approximate Expectiminimax with an evaluation function.
- Perform Monte Carlo Tree Search.

Conclusion

Nondeterministic actions:

 The opponent is seen as part of an environment with nondeterministic actions. Non-determinism is the result of the unknown moves by the opponent. All possible moves are considered.

Optimal decisions:

- Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.
- Choice nodes and Expectiminimax for stochastic games.

Heuristic Alpha-Beta Tree Search:

- Cut off game tree and use *heuristic* evaluation function for utility (based on state features).
- Forward Pruning: ignore poor moves.
- Learn heuristic from data using MCTS

Monte Carlo Tree search:

- Simulate complete games and calculate proportion of wins.
- Use modified UCB1 scores to expand the partial game tree.
- Learn playout policy using self-play and deep learning.