Support vector machines

Hung-Hsuan Chen

Many are taken from Prof. C.-J. Lin's and J. Leskovec's slides

(Linear) support vector classification

- Data point $i: \mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{id})$
- Class label of i: y_i
 - Two classes
 - _ Class 1: $y_i = 1$
 - _ Class 2: $y_i = -1$
- Find a hyperplane to separate the data points

Assume the dataset is linearly separable

- Discriminant function $f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x} + b)$
 - There are many different choices of w and b

Margin distance

• Given two parallel hyperplanes H_1 and H_2

$$H_1: \mathbf{w}^T \mathbf{x} = b_1$$
$$H_2: \mathbf{w}^T \mathbf{x} = b_2$$

• The distance between H_1 and H_2 is

$$d(H_1, H_2) = \frac{|b_1 - b_2|}{|\mathbf{w}|_2}$$

• Distance between $\mathbf{w}^T \mathbf{x}_i + b = 1$ and $\mathbf{w}^T \mathbf{x}_i + b = -1$:

$$margin = \frac{2}{||\mathbf{w}||_2}$$

Maximum margin

•
$$\mathbf{w}, b = \operatorname{argmax}_{\mathbf{w}, b} \frac{2}{\left| |\mathbf{w}| \right|_2}$$

• This is the same as

$$\mathbf{w}, b = \operatorname{argmin}_{\mathbf{w}, b} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

This is modeled as a quadratic programming problem

$$\min_{\mathbf{w}, b} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
Subject to $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \ \forall i$

Non-linearly separable dataset

 If non-linearly separable → introduce penalty

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + C(\text{# of mistakes})$$

- If $C \rightarrow \infty$: allows no error
- If C=0: basically ignores the data at all

Introduce slack variable

Not all mistakes are equally bad

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + C \sum_{i=1}^{n} \xi_{i}$$
Subject to

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \forall i$$

• If a point is on the wrong side \rightarrow get penalty ξ_i

For each data point x:

If $d(x, L) \ge 1$ and at the right side:

don't care

Else: pay linear penalty

Soft margin classification

- Why soft margin
 - The training data may not be linearly separable
 - Even if the training data is linearly separable, allowing some error may increase the margin
- Essentially, there are two objectives (which may against each other)
 - Minimize the training error
 - Prevent error
 - Maximize the margin

Prevent overfitting (allow some error)

Soft margin classification formula

Original (linear) formula

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}$$
Subject to
$$y_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + b) \ge 1 \ \forall i$$

New formula

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \xi_i \right)$$

Subject to

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$

and $\xi_i > 0 \ \forall i$

- C: control overfitting
 - $_$ A large C makes most ξ_i 's to zero
- ξ_i : slack variables

Linear SVM with soft margin sif data incorrect predred

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i$$

Subject to

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \boldsymbol{\xi}_i \, \forall i$$

This is the same as

Inis is the same as
$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \max \left\{ 0, 1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right\} \right)$$
Margin inverse

11/3/20

Regularization parameter

Empirical loss L (how well we fit training data)

would be 1-0(20)

if date correct predicted

71-0 nould be regarive

nould be. 17

10

If the point is at the wrong

结合设订用GD

Derivatives

$$f(\mathbf{w}, b) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^n \max\left\{0, 1 - y_i(\mathbf{w}^T\mathbf{x}_i + b)\right\}$$

$$i=1$$

$$\Rightarrow \nabla_{w_j} f = w_j + C \sum_{i=1}^n \frac{\partial \max\left\{0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)\right\}}{\partial w_j} = \begin{cases} w_j & \text{if } y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1\\ w_j + C(-y_i x_{ij}) & \text{else} \end{cases}$$

means connect predicted

cause: 1- Ji(WXi+b) < 0

Solve Linear SVM by GD

```
Note: h is batch size
\nabla_{w_{j}} f(\mathbf{x}_{1:k}) = w_{j} + C \sum_{i=1}^{N} \frac{\partial \max \left\{ 0, 1 - y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \right\}}{\partial w_{j}}
w_{j} = w_{j} - \alpha \nabla_{w_{j}} f
}
       if (w converges) break
```

Solve Linear SVM by SGD

```
for (i=1,2, ..., n) {
   for (j=1,2, ..., d) {
                                   \partial \max \left\{ 0, 1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right\}
       \nabla_{w_i} f(\mathbf{x}_i) = w_j + C -
                                                     \partial w_i
       w_j = w_j - \alpha \nabla_{w_i} f
   if (w converges) break
```


- Detour
 - Lagrange multiplier

– KKT condition

& project low din to high dim

I use to check Lagrange 25 46

- Math caution!
 - If you get lost, I hope you at least understand the linear SVM

Generalized Lagrange multiplier

Standard form problem

Minimize
$$f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq 0$ $(i = 1,...,p)$ and $h_j(\mathbf{x}) = 0$ $(j = 1,...,m)$

Lagrangian

$$\mathcal{L}(\mathbf{x}, \lambda, \mathbf{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{p} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{m} \mu_i h_i(\mathbf{x})$$

The characteristic of the solution

SVM (ignore slack variables):
$$\frac{1}{\min \frac{1}{\mathbf{w}}} \mathbf{w} \mathbf{w}$$

$$\mathbf{w}_{b} \frac{1}{2} \mathbf{w} \mathbf{w}$$
Subject to
$$y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \geq 1 \ \forall i$$

-W7x+b=-1

$$\mathcal{L}(\mathbf{w}, b, \lambda) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i} \lambda_i \left[1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right]$$
- No equality constraints (no µ's)

- Based on the KKT condition: if \mathbf{w}^* is the optimal solution to the standard form problem, then there exist KKT multipliers λ and μ such that
 - Lagrangian optimality $\nabla \mathscr{L}(\mathbf{w}^*, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0 - - \quad (1)$
 - Primal feasibility $g_i(\mathbf{w}^*) \le 0 \ \forall i ---- (2)$ $h_i(\mathbf{w}^*) = 0 \ \forall j ---- (3)$
 - Dual feasibility $\lambda_i \ge 0 \ \forall i - - - (4)$
 - Complementary slackness $\lambda_i g_i(\mathbf{w}^*) = 0 \ \forall i ---- (5)$
- Assume linearly-separable, by condition (4) and (5):
 - If a training instance \mathbf{x}_i is <u>not</u> on the two hyperplanes (i.e., $g_i(\mathbf{w}^*) < 0$), λ_i must be 0

Map features to higher dimensional

- Transform the data into a higher dimension feature space so that linear separation is possible
 - Higher dimensional (could be infinite) feature space

$$\bullet \underbrace{\phi(\mathbf{x}_i)} = \left[\phi_1(\mathbf{x}_i), \phi_2(\mathbf{x}_i), \ldots\right]^T$$

2D 60 30

Example

The positive and negative examples are not linearly- separable by the 2D features (x_1, x_2)

If we add one more feature

 $x_3 = x_1^2 + x_2^2$, the blue points are those with $x_3 \le 0.6^2$, and the red points are those with $x_3 > 0.6^2$

$$-\phi(x_1, x_2) = (x_1, x_2, x_3) = (x_1, x_2, x_1^2 + x_1^2 + x_2^2)$$
• 2D to 3D

The points become linearly separable

Kernel SVM

- Linear SVM: length of \mathbf{w} is d (the same as the size of \mathbf{x}_i)
- Kernel SVM: length of ${\bf w}$ is larger than d (the same as the size of $\phi({\bf x}_i)$)
 - Kernel SVM can fit a more complex function
 - The size of $\phi(\mathbf{x}_i)$ is large (and could be *infinity*)
 - How to efficiently compute **w** and $\mathbf{w}^T \phi(\mathbf{x}_i)$?
 - How to store w?

Lagrangian of kernel SVM

$$\mathcal{L}(\mathbf{w}, b, \lambda) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + \sum_{i} \lambda_{i} \left[1 - y_{i} \left(\mathbf{w}^{T} \phi(\mathbf{x}_{i}) + b \right) \right]$$

$$\begin{cases} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \lambda) = \mathbf{w} - \sum \lambda_i y_i \phi(\mathbf{x}_i) := 0 \\ \nabla_{\mathbf{b}} \mathcal{L}(\mathbf{w}, b, \lambda) = -\sum \lambda_i y_i := 0 \\ \Rightarrow \begin{cases} \mathbf{w} = \sum \lambda_i y_i \phi(\mathbf{x}_i) \\ \sum \lambda_i y_i := 0 \end{cases} \end{cases}$$

• Given a test instance \mathbf{X}_t , the discriminant function is

$$f(\mathbf{x}_t) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_t) + b = \sum_{i} \lambda_i y_i \boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\phi}(\mathbf{x}_t) + b$$

Prediction is a **linear combination of training instances** $\mathbf{w}^T \phi(\mathbf{x}_t)$ plus bias

High dimensional mapping example

$$f(\mathbf{x}_t) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_t) + b = \sum_{i} \lambda_i y_i \boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\phi}(\mathbf{x}_t) + b$$

• Example:

$$\mathbf{x}_i = \left[x_{i1}, x_{i2}\right]^T \in \mathbb{R}^2, \, \phi\left(\mathbf{x}_i\right) \in \mathbb{R}^6$$

o If we set (assume)

$$\phi(\mathbf{x}_i) = [1, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, \sqrt{2}x_{i1}x_{i2}, x_{i1}^2, x_{i2}^2]^T$$

o Then

$$\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_t) = 1 + x_{i1}^2 x_{t1}^2 + x_{i2}^2 x_{t2}^2 + 2x_{i1} x_{t1} + 2x_{i2} x_{t2} + 2x_{i1} x_{t1} x_{t2} x_{t2}$$

— When the target dimension is large, it is inefficient to generate $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_i)$ $\forall i$ and perform the dot

11/3/20 product

Kernel trick example

If

$$\phi \left(\mathbf{x}_i \right) = [1, \sqrt{2} x_{i1}, \sqrt{2} x_{i2}, \sqrt{2} x_{i1} x_{i2}, \ x_{i1}^2, x_{i2}^2]^T,$$
 then:

 $_{\odot}$ Computing $\left(1+\mathbf{x}_{i}^{T}\mathbf{x}_{T}\right)^{2}$ is much more efficient than computing $\phi(\mathbf{x}_{i})$, $\phi(\mathbf{x}_{t})$, and then $\phi(\mathbf{x}_{i})^{T}\phi(\mathbf{x}_{t})$

Kernel trick example

$$f(\mathbf{x}_t) = \mathbf{w}^T \phi(\mathbf{x}_t) + b = \sum_i \lambda_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_t) + b$$

- If $\phi(\mathbf{x}_i)$'s dimension is very high
 - Store w is costly
 - Compute discriminant function $f(\mathbf{x}_t) = \mathbf{w}^T \phi(\mathbf{x}_t) + b$ is costly
- We may use $(1 + \mathbf{x}_i^T \mathbf{x}_T)^2$ to efficiently map features to higher dimension
- We compute

$$\sum_{i} \lambda_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_t) + b = \sum_{i} \lambda_i y_i (1 + \mathbf{x}_i^T \mathbf{x}_T)^2 + b \text{ as the discriminant function}$$

Popular kernels

Linear kernel (i.e., linear SVM)

$$K(\mathbf{x}_i, \mathbf{x}_t) = \mathbf{x}_i^T \mathbf{x}_t = \langle \mathbf{x}_i, \mathbf{x}_t \rangle$$

· Polynomial kernel

$$K(\mathbf{x}_i, \mathbf{x}_t) = (\langle \mathbf{x}_i, \mathbf{x}_t \rangle + r)^d, \ r > 0$$

• Gaussian (RBF) kernel

$$K(\mathbf{x}_i, \mathbf{x}_t) = \exp(-\gamma ||\mathbf{x}_i - \mathbf{x}_t||^2)$$

• The dimension of $K(\mathbf{x}_i, \mathbf{x}_t)$ could be <u>infinity</u> (e.g., RBF kernel), but the dimensions of \mathbf{x}_i and \mathbf{x}_t are finite

Mapping to infinite dimensional

• Assume $\mathbf{x}_i \in R^1$, $\gamma > 0$

Assume
$$\mathbf{x}_{i} \in R^{1}$$
, $\gamma > 0$

$$\exp\left(-\gamma \left\|\mathbf{x}_{i} - \mathbf{x}_{t}\right\|^{2}\right) = \exp\left(-\gamma \left(\mathbf{x}_{i} - \mathbf{x}_{t}\right)^{2}\right) = \exp\left(-\gamma \mathbf{x}_{i}^{2} - \gamma \mathbf{x}_{j}^{2}\right)$$

$$= \exp\left(-\gamma \mathbf{x}_{i}^{2} - \gamma \mathbf{x}_{j}^{2}\right) \cdot \exp\left(2\gamma \mathbf{x}_{i} \mathbf{x}_{j}\right)$$

$$= \exp\left(-\gamma \mathbf{x}_{i}^{2} - \gamma \mathbf{x}_{j}^{2}\right) \left(1 + \frac{2\gamma \mathbf{x}_{i} \mathbf{x}_{j}}{1!} + \frac{\left(2\gamma \mathbf{x}_{i} \mathbf{x}_{j}\right)^{2}}{2!} + \frac{\left(2\gamma \mathbf{x}_{i} \mathbf{x}_{j}\right)^{3}}{3!} + \dots\right)$$

$$= \exp\left(-\gamma \mathbf{x}_{i}^{2} - \gamma \mathbf{x}_{j}^{2}\right) \left(1 \cdot 1 + \sqrt{\frac{2\gamma}{1!}} \mathbf{x}_{i} \sqrt{\frac{2\gamma}{1!}} \mathbf{x}_{j} + \sqrt{\frac{\left(2\gamma\right)^{2}}{2!}} \mathbf{x}_{i}^{2} \sqrt{\frac{\left(2\gamma\right)^{2}}{2!}} \mathbf{x}_{j}^{2} + \sqrt{\frac{\left(2\gamma\right)^{3}}{3!}} \mathbf{x}_{i}^{3} \sqrt{\frac{\left(2\gamma\right)^{3}}{3!}} \mathbf{x}_{j}^{3} + \dots\right)$$

$$= \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right),$$
Where $\phi\left(\mathbf{x}_{i}\right) = \exp\left(-\gamma \mathbf{x}_{i}^{2}\right) \left[1, \sqrt{\frac{2\gamma}{1!}} \mathbf{x}_{i}, \sqrt{\frac{\left(2\gamma\right)^{2}}{2!}} \mathbf{x}_{i}^{2}, \sqrt{\frac{\left(2\gamma\right)^{3}}{3!}} \mathbf{x}_{i}^{3}, \dots\right]^{T}$

By Taylor expansion:

Characteristics of the solution

 $\rightarrow \Sigma \lambda i \gamma i \phi(x)^{T}$

Discriminant function

$$f(\mathbf{x}_t) = \mathbf{w}^T \phi(\mathbf{x}_t) + b = \sum_{i=1}^{t} \lambda_i y_i K(\mathbf{x}_i, \mathbf{x}_t) + b$$

• Many λ_i 's are 0

- $p(x_i) \phi(x_t)$
- Memorizing training instance (\mathbf{x}_i, y_i) only if $\lambda_i > 0$
- We don't need to form w explicitly
- To predict the label of a test instance \mathbf{x}_{t} , we need to compute the <u>Kernel</u> of the test instance with the training instances whose λ_{i} 's are larger than zeros
 - These training instances are called "support vectors"

Visualizing "support vectors"

A numerical example

- Training data: five 1D data points with labels
 - _ First class (+1): $x_{1,1} = 1$, $x_{2,1} = 2$, $x_{5,1} = 6$
 - _ Second class (-1): $x_{3,1} = 4$, $x_{4,1} = 5$
- Non-linearly separable
- Use polynomial kernel with degree 2

$$K(\mathbf{x}_i, \mathbf{x}_t) = \left(\left\langle \mathbf{x}_i, \mathbf{x}_t \right\rangle + 1\right)^2$$

• Solve λ_i (i = 1,...,5) by a standard QP solver

$$\left[\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \right] = [0, 2.5, 0, 7.333, 4.833]$$

The discriminant function of the example

- $[\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5] = [0, 2.5, 0, 7.333, 4.833]$ – Since $\lambda_1 = \lambda_3 = 0$, the support vectors are $(x_2, x_4, x_5) = (2, 5, 6)$
- The discriminant function

$$f(z) = \sum_{i=1}^{n} \lambda_{i} y_{i} \phi(x_{i})^{T} \phi(z) + b$$

$$= \left[2.5(1)(2z+1)^{2} + 7.333(-1)(5z+1)^{2} + 4.833(1)(6z+1)^{2} \right] + b$$

$$= 0.6667z^{2} - 5.333z + b$$

$$f(x_{2,1}) = f(x_{5,1}) = 1 \text{ and } f(x_{4,1}) = -1, \text{ we can get } b = 9$$

$$f(z) = 0.6667z^{2} - 5.333z + 9$$

Visualize the discriminant function

Standard SVM

Standard form

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \xi_i$$
Subject to (1) $y_i (\mathbf{w}^T \phi(\mathbf{x}_i) + b) \ge 1 - \xi$

$$(2) \xi_i > 0 \ \forall i$$

Review of SVM

- Large margin
 - Prevent overfitting
- Soft margin
 - Make the margin become larger
 - Prevent overfitting
- Kernel trick
 - Make the data linearly separable
 - Efficiently transform the input features into high (could be infinite) dimensional space

Revisiting logistic regression and SVM from another viewpoint

Deriving SVM and LogReg from regularized linear classification

- We derived SVM from the viewpoint of maximal margin
- We derived logistic regression from maximizing the log-likelihood (or minimizing the cross entropy loss)
- However, both can be considered from the viewpoint of <u>regularized linear classification</u>

Regularized linear classification

Training data:

$$\{\mathbf{x}_{i}, y_{i}\}_{i=1,\dots,n}, \mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in \{\pm 1\}$$

Objective

$$\min_{\mathbf{w}} f(\mathbf{w}), f(\mathbf{w}) \equiv \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i=1}^n \xi(\mathbf{w}; \mathbf{x}_i, y_i)$$

- $-\xi(\mathbf{w}; \mathbf{x}_i, y_i): \text{loss function; we hope } y_i \mathbf{w}^T \mathbf{x} > 0$
 - · Trying to fit the training data
- $-(\mathbf{w}^T\mathbf{w})/2$: regularization term
 - We skip the L1 regularization term here
 - · Prevent over-fit the training data
- C: regularization parameter

Loss functions

- Common loss functions in classification
 - Hinge loss

•
$$\xi_{L1}(\mathbf{w}; \mathbf{x}_i, y_i) = \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

Squared hinge loss

•
$$\xi_{L2}(\mathbf{w}; \mathbf{x}_i, y_i) = \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)^2$$

Logistic loss

•
$$\xi_{LR}(\mathbf{w}; \mathbf{x}_i, y_i) = \log(1 + e^{-y_i \mathbf{w}^T \mathbf{x}_i})$$

- This is different from what we derived previously
 - » We used 1/0 to encode two classes before, but here we use +1/-1
- SVM: ξ_{L1} and ξ_{L2}
- Logistic Regression: ξ_{LR}

Visualizing the loss functions

Regularized linear classification with kernel

• Training data:

$$\{\mathbf{x}_i, y_i\}_{i=1,\dots,m}, \ \mathbf{x}_i \in R^n, y_i \in \{\pm 1\}$$

Objective

$$\min_{\mathbf{w}} f(\mathbf{w}), f(\mathbf{w}) \equiv \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i=1}^{m} \xi(\mathbf{w}; \phi(\mathbf{x}_i), y_i)$$

- $= \xi(\mathbf{w}; \boldsymbol{\phi}(\mathbf{x}_i), y_i)$: loss function; we hope $y_i \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) > 0$
 - Trying to fit the training data
- $-\mathbf{w}^T\mathbf{w}/2$: regularization term
 - We skip the L1 regularization term here
 - · Prevent over-fit the training data
- C: regularization parameter

Logistic regression vs SVM

- Logistic regression and SVM are very related
- Their performance (i.e., test accuracy) is usually similar
- Due to the naming, the typical deriving process, and historical reasons, many believe that SVM and logistic regression are very different
 - This is a misunderstanding

Linear or kernel? SVM or Logistic Regression?

- When people say SVM, they typically mean "kernel SVM"
 - But there is linear SVM

$$\min_{\mathbf{w}} f(\mathbf{w}), f(\mathbf{w}) \equiv \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i=1}^{m} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

- When people say logistic regression, they typically mean "linear logistic regression"
 - But there is kernel logistic regression

$$\min_{\mathbf{w}} f(\mathbf{w}), f(\mathbf{w}) \equiv \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i=1}^{m} \log \left(1 + e^{-y_i \mathbf{w}^T \phi(\mathbf{x}_i)} \right)$$

- However, kernel logistic regression is rarely used in practice
 - Most λ_i are not zero \rightarrow if we want to apply the kernel trick (instead of storing **w** explicitly), almost all training samples need to be memorized

Regularized linear regression

Training data:

$$\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1,\dots,m}, \mathbf{x}_{i} \in \mathbb{R}^{n}, y_{i} \in \mathbb{R}^{1}$$

Objective

$$\min_{\mathbf{w}} \left(\frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i=1}^m \xi(\mathbf{w}; \mathbf{x}_i, y_i) \right)$$

- $-\xi(\mathbf{w};\mathbf{x}_i,y_i)$: loss function
 - · Trying to fit the training data
- $-\mathbf{w}^T\mathbf{w}/2$: regularization term
 - We skip the L1 regularization term here
 - · Prevent over-fit the training data
- C: regularization parameter

Loss functions for regression

- Some commonly used loss functions
 - L1 loss

•
$$\xi_{L1}(\mathbf{w}; \mathbf{x}_i, y_i) = |y_i - \mathbf{w}^T \mathbf{x}_i|$$

– L2 loss

•
$$\xi_{L2}(\mathbf{w}; \mathbf{x}_i, y_i) = (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

 $-\epsilon$ -insensitive loss

•
$$\xi_{\epsilon}(\mathbf{w}; \mathbf{x}_i, y_i) = \max(|\mathbf{w}^T \mathbf{x}_i - y_i| - \epsilon, 0)$$

- ϵ -insensitive square loss

•
$$\xi_{\epsilon 2}(\mathbf{w}; \mathbf{x}_i, y_i) = \max(\left|\mathbf{w}^T \mathbf{x}_i - y_i\right| - \epsilon, 0)^2$$

- SVM (support vector regression): ξ_{ϵ} , $\xi_{\epsilon 2}$
- Linear Regression: ξ_{L2}

Regularized regression with kernel

• Training data:

$$\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1,\dots,m}, \ \mathbf{x}_{i} \in \mathbb{R}^{n}, y_{i} \in \mathbb{R}^{1}$$

Objective

$$\min_{\mathbf{w}} f(\mathbf{w}), f(\mathbf{w}) \equiv \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i=1}^m \xi(\mathbf{w}; \phi(\mathbf{x}_i), y_i)$$

- $-\xi(\mathbf{w};\phi(\mathbf{x}_i),y_i)$: loss function
 - Trying to fit the training data
- $-\mathbf{w}^T\mathbf{w}/2$: regularization term
 - We skip the L1 regularization term here
 - · Prevent over-fit the training data
- C: regularization parameter

Summary

- The same classification method can be derived from different ways
 - SVM
 - Maximize margin
 - Minimizing training loss with regularization constraints
 - LR
 - Maximize log-likelihood
 - Minimizing training loss with regularization constraints
- Linear regression and support vector regression are also under the same umbrella
- Understanding the concept of training loss and regularization enables you to self-study many machine learning techniques

Quiz

- What are "support vectors" of SVM?
- When increasing training samples, will the size of "logistic regression model" increase?
- When increasing training samples, will the size of "linear SVM model" increase?
- When increasing training samples, will the size of "kernel SVM model" increase?

Appendix

Convex optimization and quadratic programming

A convex optimization problem is one of the form

Minimize
$$f_0(\mathbf{x})$$

Subject to
$$f_i(\mathbf{x}) \leq 0, i = 1, ..., m$$

$$\mathbf{a}_{j}^{T}\mathbf{x} = \mathbf{b}_{j}, \ j = 1, ..., \ p$$

Where $f_0, ..., f_m$ are convex functions

- The convex optimization problem is called a quadratic programming (QP) if the objective function is (convex) quadratic, and the constraint functions are affine
 - Minimize $f_0(\mathbf{x}) = (1/2)\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{q}^T\mathbf{x} + \mathbf{r}$
 - Subject to Gx ≤ h and Ax = b

Primal problem

- The standard form problem re-formulate as the Primal problem min max $\mathscr{L}(\mathbf{x}, \lambda, \boldsymbol{\mu})$ $x \lambda_i \ge 0, \mu$ Why?

why?
$$\max_{\lambda_{i} \geq 0, \, \mu} \mathcal{L}(\mathbf{x}, \lambda, \mathbf{\mu}) = \max_{\lambda_{i} \geq 0, \, \mu} \left[f(\mathbf{x}) + \sum_{i=1}^{p} \lambda_{i} g_{i}(\mathbf{x}) + \sum_{j=1}^{m} \mu_{j} h_{j}(\mathbf{x}) \right]$$

$$= \max_{\lambda_{i} \geq 0, \, \mu} \left[f(\mathbf{x}) + \sum_{j=1}^{p} \lambda_{i} g_{i}(\mathbf{x}) \right] \left(\because h_{j}(\mathbf{x}) = 0 \right)$$

$$= f(\mathbf{x}) \left(\because g_{i}(\mathbf{x}) \not \leq 0 \right)$$

$$\Rightarrow \min_{\mathbf{x} \in \mathbb{R}} \max_{\lambda_{i} \geq 0, \, \mu} \mathcal{L}(\mathbf{x}, \lambda, \mathbf{\mu}) = \min_{\mathbf{x} \in \mathbb{R}} f(\mathbf{x})$$

$$\Rightarrow \min_{\mathbf{x}} \max_{\lambda_i \geq 0, \, \mu} \mathcal{L}(\mathbf{x}, \lambda, \mu) = \min_{\mathbf{x}} f(\mathbf{x})$$

Dual problem

- Primal problem: $p^* = \min_{\mathbf{x}} \max_{\lambda_i \geq 0, \mu} \mathcal{L}(\mathbf{x}, \lambda, \mu)$
- Dual problem: $d^* = \max_{\substack{\lambda_i \geq 0, \ \mu \ \mathbf{x}}} \min \mathcal{L}(\mathbf{x}, \lambda, \mu)$
- $p^* \ge d^*$
 - The min of the max is no less than the max of the min
 - Duality gap: $p^* d^*$

Strong duality

- $d^* = p^*$
- If the following conditions are true, then strong duality holds
 - 1. f and g_i 's are convex
 - 2. h_i 's are linear functions (i.e., Exists a_i and b_i such that $h_i(\mathbf{x}) = a_i^T \mathbf{x} + b_i$)
 - 3. Exists some **x** such that $g_i(\mathbf{x}) \leq 0$
 - In SVM, the above conditions holds
 - We may solve the dual problem instead of the primal problem

Lagrangian in SVM

$$\mathscr{L}(\mathbf{w}, b, \lambda) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i} \lambda_i \left[1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right]$$

- No equality constraints (no μ 's)

$$\begin{cases} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \lambda) = \mathbf{w} - \sum \lambda_i y_i \mathbf{x}_i \coloneqq 0 \\ \nabla_b \mathcal{L}(\mathbf{w}, b, \lambda) = -\sum \lambda_i y_i \coloneqq 0 \end{cases}$$

$$\Rightarrow \begin{cases} \mathbf{w} = \sum \lambda_i y_i \mathbf{x}_i \\ \sum \lambda_i y_i \coloneqq 0 \end{cases}$$

Primal and dual problem in SVM

Primal:

$$p^* = \underset{\mathbf{w} \quad \lambda_i \geq 0}{\operatorname{minmax}} \mathcal{L}(\mathbf{w}, \lambda)$$

Dual:

$$p^* = \underset{\mathbf{w}}{\text{minmax}} \mathcal{L}(\mathbf{w}, \lambda)$$

$$\mathbf{w} \quad \lambda_i \geq 0$$
Dual:
$$\int_{\mathbf{w}} \mathbf{w} = \sum_{\mathbf{k} \geq 0} \lambda_i y_i \mathbf{x}_i$$

$$\sum_{\mathbf{k} \geq 0} \lambda_i y_i := 0$$

$$\int_{\mathbf{k} \geq 0} \mathbf{w} \mathbf{w} \mathbf{w} \cdot \sum_{\mathbf{k} \geq 0} \sum_{\mathbf{w} \geq 0} \mathbf{w} \mathbf{w} \cdot \sum_{\mathbf{k} \geq 0} \sum_{\mathbf{k} \geq 0} \sum_{\mathbf{k} \geq 0} \sum_{\mathbf{k} \geq 0} \sum_{\mathbf{k} \leq 0} \sum_{\mathbf{k} \leq 0} \sum_{\mathbf{k} \geq 0} \sum_{\mathbf{k} \leq 0} \sum_{\mathbf{$$

Subject to: $\lambda_i \geq 0$ and $\sum_i \lambda_i y_i = 0$

The dual problem

$$\max_{\lambda_i \geq 0} \left[-\frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Big\langle \mathbf{x}_i \mathbf{x}_j \Big\rangle + \sum_i \lambda_i \right]$$
 Subject to $\lambda_i \geq 0$ and $\sum_i \lambda_i y_i = 0$

- λ_i 's are the only unknowns
- This is a quadratic programming (QP) problem
 - A global maximum of λ_i 's can always be found
 - How to solve? Use standard QP solvers
- We don't compute explicitly compute w
- Discriminant function:

$$f(\mathbf{x}_t) = \mathbf{w}^T \mathbf{x}_t + b = \sum \lambda_i y_i \langle \mathbf{x}_i, \mathbf{x}_t \rangle + b$$

Optimization type of solving SVM

- Dual QP
 - SMO, SVM-light, etc.
 - Many available QP solvers
 - List: http://www.numerical.rl.ac.uk/people/nimg/qp/qp.html
- Primal SGD
 - NORMA
 - SVM-SGD
- Dual Coordinate Descent
 - LibLinear
- We skip the details here. If interested, read
 - "Convex optimization" by Boyd and Vandenberghe
 - "Large-Scale Support Vector Machines: Algorithms and Theory" by Aditya Krishna Menon