8.1 Sequence models

Lecture based on "Dive into Deep Learning" http://D2L.AI (Zhang et al., 2020)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Example (Stock prices)

Let's denote the prices by $x_t \geq 0$, i.e. at time $t \in \mathbb{N}$ we observe price x_t .

Predict the stock market price x_t on day t via

$$x_t \sim p(x_t|x_{t-1},\ldots x_1).$$

Problem:

How do we train a model to predict x_t ?

- Use historical observations to predict the next observation given the ones up to right now.
- Values of x_t change, but the dynamics of the time series are typically assumed to not change (stationary).
- Estimate of the entire time series via

$$p(x_1, \dots x_T) = \prod_{t=1}^T p(x_t | x_{t-1}, \dots x_1).$$

Example (Stock prices)

Let's denote the prices by $x_t \geq 0$, i.e. at time $t \in \mathbb{N}$ we observe price x_t .

Predict the stock market price x_t on day t via

$$x_t \sim p(x_t|x_{t-1}, \dots x_1).$$

The number of inputs, $x_{t-1}, \ldots x_1$ varies with t.

Solution 1: Autoregressive models

- Assume that the complete sequence $x_{t-1}, \ldots x_1$ isn't necessary.
- ullet Assume timespan au sufficient and only use $x_{t-1}, \dots x_{t- au}$ observations.
- Number of arguments is always the same, for $t > \tau$.

Markov model

- In an autoregressive model we use only $(x_{t-1}, \dots x_{t-\tau})$ instead of $(x_{t-1}, \dots x_1)$ to estimate x_t .
- If $\tau = 1$, we have a **first order** Markov model and p(x) is given by

$$p(x_1, \dots x_T) = \prod_{t=1}^T p(x_t | x_{t-1}).$$

- ullet If x_t is discrete, **dynamic programming** can be used to compute values along the chain exactly.
 - $x_{t+1}|x_{t-1}$ is computed from

$$p(x_{t+1}|x_{t-1}) = \sum_{x_t} p(x_{t+1}|x_t)p(x_t|x_{t-1})$$

4 Convolution 24.06.2020

Example (Stock prices)

Let's denote the prices by $x_t \geq 0$, i.e. at time $t \in \mathbb{N}$ we observe price x_t .

Predict the stock market price x_t on day t via

$$x_t \sim p(x_t|x_{t-1},\ldots x_1).$$

Problem:

The number of inputs, $x_{t-1}, \ldots x_1$ varies with on t.

Solution 2: Latent Autoregressive models

- ullet introduce summary variable h_t of the past observations
- estimate $x_t | x_{t-1}, h_{t-1}$

Note on the direction of a time series

In principle, it is possible to unfold $p(x_1, \dots x_T)$ in reverse order.

By conditioning we can always write

$$p(x_1, \dots x_T) = \prod_{t=T}^{1} p(x_t | x_{t+1}, \dots x_T).$$

- Usually, there exists a natural direction for the data (e.g., forward in time).
- If we change x_t , we may be able to influence x_{t+1} going forward but not the converse.
- Consequently, it ought be easier to explain $x_{t+1}|x_t$ rather than $x_t|x_{t+1}$. Hoyer et al., 2008 show that in some cases we can find $x_{t+1} = f(x_t) + \epsilon$ for some additive noise, whereas the converse is not true.

6 Convolution 24.06.2020

¹For more on causal inference see e.g. the book by Peters, Janzing and Schölkopf, 2015.

Summary – Sequence models

- Sequence models require specialized statistical tools for estimation.
 - autoregressive models
 - latent-variable autoregressive models
- If you have a time series, always respect the **temporal order** of the data when training, i.e. never train on future data.
- For causal models (e.g. time going forward), estimating the forward direction is typically easier than the reverse direction. i.e. we can get use simpler networks.

7 Convolution 24.06.2020