NYC Bus Clustering Analysis

Josh Lim

Agenda

- Introduce the data
- 2. Justify cleaning process
- 3. Explain clustering method/process
- 4. Cluster Analysis
- 5. Dimension Reduction Comparison
- 6. Discuss limitations
- 7. Possible next steps

About the Data

- Obtained dataset from <u>kaggle</u>
- Data comes from New York City MTA buses data stream service
- Initial dataset was very large:
 - o 17 Columns
 - 6,865,376 Rows

- Average time for clustering 6,000,000 rows ~ 6-7 hours
- Average time for clustering 100,000 rows < 30 minutes
- Sampled down to 100,000 rows
- Given a random state of 13.

- Around 16% of the data in Expected Arrival Time was missing
- Missing data did not appear until further into the dataset
- Filled missing data with forward fill method

ScheduledArrivalTime

10:23:20

08:07:39

13:38:00

15:30:00

18:12:24

17:06:35

ScheduledArrivalTime

10:23:20

Original Data

ExpectedArrivalTime

2017-10-16 10:25:48

2017-10-16 10:25:48

2017-10-08 13:41:22

2017-10-24 15:39:57

Newly Formatted Data

ExpectedArrivalTimeDayofWeek

0
6
1
2

2017-10-18 18:21:16

Clustering Methods

- Two dimensionality reduction techniques used
 - PCA
 - o t-SNE
- Two clustering methods used
 - KMeans Clustering
 - Agglomerative Clustering
- Silhouette score used to determine best clustering method
 - Used to analyze separation distance between clusters
 - Ranges from -1 to 1

Applying KMeans to the Data

- 3-10 values were chosen to test out KMeans with PCA
- Set a random state of 13 so I would have consistent scores to compare
- Of the 7 values, K = 4 had best silhouette score
 KMeans with PCA Silhouette Score Results:
 - 3 clusters: 0.111
 - 4 clusters: 0.115
 - 5 clusters: 0.104
 - 6 clusters: 0.100
 - 7 clusters: 0.099
 - 8 clusters: 0.095
 - 9 clusters: 0.096
 - 10 clusters: 0.097

2	13460
3	11930
1	10191
0	5532

Late Bus Cluster

Late Bus Cluster

- Late Bus Cluster
- Morning Rush Hour Bus Cluster

- Late Bus Cluster
- Morning Rush Hour Bus Cluster
- Evening Rush Hour Bus Cluster

- Late/Weekday Bus Cluster
- Morning Rush Hour Bus Cluster
- Evening Rush Hour/Weekend Bus Cluster

Applying Agglomerative Clustering to the Data

- Three methods to determining distance in Agglomerative Clustering:
 - Complete
 - Average
 - Ward
- Tested out all three linkage methods with specified clusters 4-10

Applying Agglomerative Clustering to the Data

Silhouette Score for Agglomerative Clustering with complete linkage:

4 clusters is: 0.33938366

5 clusters is: 0.33242837

• 6 clusters is: 0.30105183

• 7 clusters is: 0.29495662

• 8 clusters is: 0.27527076

• 9 clusters is: 0.26274875

• 10 clusters is: 0.2507642

Silhouette Score for Agglomerative Clustering with average linkage:

4 clusters is: 0.35945204

5 clusters is: 0.3402213

• 6 clusters is: 0.33245412

7 clusters is: 0.3241567

8 clusters is: 0.30453718

• 9 clusters is: 0.28516117

• 10 clusters is: 0.26398465

Silhouette Score for Agglomerative Clustering with ward linkage:

4 clusters is: 0.31179234

5 clusters is: 0.3195911

6 clusters is: 0.36392343

7 clusters is: 0.353737

• 8 clusters is: 0.35034788

9 clusters is: 0.3562737

10 clusters is: 0.363912

Applying Agglomerative Clustering to the Data

Silhouette Score for Agglomerative Clustering with complete linkage:

4 clusters is: 0.33938366

• 5 clusters is: 0.33242837

• 6 clusters is: 0.30105183

• 7 clusters is: 0.29495662

• 8 clusters is: 0.27527076

• 9 clusters is: 0.26274875

• 10 clusters is: 0.2507642

Silhouette Score for Agglomerative Clustering with average linkage:

4 clusters is: 0.35945204

• 5 clusters is: 0.3402213

• 6 clusters is: 0.33245412

7 clusters is: 0.3241567

• 8 clusters is: 0.30453718

9 clusters is: 0.28516117

10 clusters is: 0.26398465

Silhouette Score for Agglomerative Clustering with ward linkage:

4 clusters is: 0.31179234

5 clusters is: 0.3195911

6 clusters is: 0.36392343

7 clusters is: 0.353737

• 8 clusters is: 0.35034788

9 clusters is: 0.3562737

10 clusters is: 0.363912

0	9182
1	7716
2	7243
5	6597
3	5266
4	5109

- Late Bus Cluster
- Closest to On Time Bus Cluster

- Late Bus Cluster
- Closest to On Time Bus Cluster

- Late Bus Cluster
- Closest to On Time Bus Cluster
- 12 AM 2 AM Bus Cluster

- Late Bus Cluster
- Closest to On Time/Morning
 Rush Hour Bus Cluster
- 12 AM 2 AM Bus Cluster

- Late Bus Cluster
- Closest to On Time/Morning
 Rush Hour Bus Cluster
- 12 AM 2 AM Bus Cluster
- Afternoon Evening Rush Hour Bus Cluster

- Late Bus Cluster
- Closest to On Time/Morning
 Rush Hour Bus Cluster
- 12 AM 2 AM Bus Cluster
- Afternoon Evening Rush Hour Bus Cluster

Comparing Dimensionality Reduction Methods

Comparing Dimensionality Reduction Methods

The Silhouette Score for 4 clusters is:0.1147058207173504 The Silhouette Score for 6 clusters is:0.36392343

Overall Conclusion

- Agglomerative Clustering with t-SNE creates better results than KMeans with PCA
 - 0.364 silhouette score vs 0.115
 - t-SNE appears to separate the data more effectively
- Labeled clusters can be used to determine which bus routes will be considered late
 - KMeans: cluster that ran on weekdays was also the bus cluster that happened to be the latest to its destination
 - Agglomerative: cluster that was closest to being on time also happened to be the morning rush hour cluster

Limitations

- Data was too large to use entire dataset in given time frame of the project
 - Subsampling can result with information loss
 - Clustering methods were not completely efficient due to smaller data sample
- Time constraint

Possible Next Steps

- Explore more with dimension reductionality techniques
 - Try lower perplexities for t-SNE
 - Utilize UMAP
- Apply clustering to original dataset
 - o 7 million rows vs 100,000
- Determine if there is a pattern to late bus lines
 - Are particular published bus lines more late than others?
 - Do busses that start at particular origin stops tend to be later than others?

Thank you! Questions?