Практическое занятие 7. Функции случайных величин. Числовые характеристики функции случайных величин

Фу	ункция одной $\mathbf{CB} \ \eta = \varphi(\xi)$				
ДСВ: Ряд распределения <i>η</i>	Случайная величина η принимает значения $y_k = \varphi(x_k)$ с				
	соответствующей вероятностью для x_k .				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	Если значения получаются одинаковые, соответствующие				
	вероятности суммируют. Ряд записывают в порядке				
	возрастания.				
HCB: Плотность распределения η	$g(y) = \sum_{k=0}^{n} f(\psi_k(y)) \cdot \psi'_k(y) $				
	k=1				
	или				
	$g(y) = \int f(x)\delta(y - \varphi(x))dx$				
	-∞				
<u> </u>	исловые характеристики НСВ:				
Общий случай:					
$\eta = \varphi(\xi)$	$m_{\eta} = \int_{-\infty}^{\infty} \varphi(x) f(x) dx \qquad D \eta = \int_{-\infty}^{\infty} [\varphi(x) - m_{\eta}]^2 f(x) dx$				
	Для ДСВ η находят числовые характеристики из ря				
Частный случай:	распределения η				
$\eta = a\xi + b$	$m_{\eta} = a m_{\xi} + b.$				
	$D_{\eta} = a^2 D_{\xi} .$				
	еристики функции двух СВ $\eta = \varphi(\xi_1, \xi_2)$				
Общий случай:	HCB:				
$\eta = \varphi(\xi_1, \xi_2)$	$M\eta = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x_1, x_2) f(x_1, x_2) dx dy$				
	_∞ ∞ ∞,				
	$D_{\eta} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\varphi(x_1, x_2) - m_{\eta})^2 \cdot f_{\xi_1 \xi_2}(x_1, x_2) dx_1 dx_2.$				
Частный случай	$M(\eta) = aM(\xi_1) + bM(\xi_2).$				
(линейная комбинация): $\eta = a\xi_1 + b\xi_2$	$D(\eta) = a^2 D(\xi_1) + 2abK_{\xi_1 \xi_2} + b^2 D(\xi_2).$				
. 51 52	Если ξ_1 и ξ_2 - независимые случайные величины,				
	$D(\eta) = a^2 D(\xi_1) + b^2 D(\xi_2).$				
Частный случай (произведение)	$M(\xi_1\xi_2) = M(\xi_1)M(\xi_2) + K_{\xi_1\xi_2}$.				
$\eta = \xi_1 \cdot \xi_2$	Если ξ_1 и ξ_2 - независимые случайные величины:				
	$M(\xi_1\xi_2) = M(\xi_1)M(\xi_2),$				
	$D(\xi_1 \cdot \xi_2) = D(\xi_1) \cdot D(\xi_2) + m_{\xi_1}^2 D(\xi_2) + m_{\xi_2}^2 D(\xi_1).$				

Примеры

Пример 7.1. Плотность распределения случайной величины ξ равна $f(x) = \frac{1}{\pi(1+x^2)}$. Найти плотность распределения g(y) случайной величины $\eta = \frac{1}{\varepsilon}$.

Решение. *1 способ.*
$$g(y) = \sum_{k=1}^{n} f(\psi_k(y)) \cdot |\psi'_k(y)|$$

Решение задачи располагаем в виде двух столбцов; слева будем писать обозначения функций, принятые в общем случае; справа – конкретные функции, соответствующие данному примеру:

$$f(x)$$

$$y = \varphi(x)$$

$$x = \psi(y)$$

$$x' = \psi'(y)$$

$$g(y)$$

$$f(x) = \frac{1}{\pi(1+x^2)}$$

$$y = 1/x$$

$$x = 1/y$$

$$x' = -\frac{1}{y^2}$$

$$y \in (-\infty, +\infty)$$

$$y \in (-\infty, +\infty)$$

$$y \in (-\infty, +\infty)$$

$$y = \frac{1}{x(1+1/y^2)} \cdot \frac{1}{y^2} = \frac{1}{\pi(1+y^2)}$$

2 способ.

$$g(y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{(1+x^2)} \delta\left(y - \frac{1}{x}\right) dx = \frac{1}{\pi} \left[\int_{-\infty}^{0} \frac{1}{(1+x^2)} \delta\left(y - \frac{1}{x}\right) dx + \int_{0}^{\infty} \frac{1}{1+x^2} \delta\left(y - \frac{1}{x}\right) dx \right] =$$

$$= \begin{vmatrix} u = \frac{1}{x}, & x = \frac{1}{u}, & \frac{1}{1+x^2} = \frac{1}{1+1/u^2} = \frac{u^2}{1+u^2}, \\ dx = -\frac{1}{u^2} du, & x = 0 \Rightarrow u = \infty, & x = \pm \infty \Rightarrow u = 0 \end{vmatrix} = \frac{1}{\pi} \left[-\int_{0}^{\infty} \frac{du}{1+u^2} \delta(y - u) - \int_{+\infty}^{0} \frac{du}{1+u^2} \delta(y - u) \right] =$$

$$= \frac{1}{\pi} \left[\int_{-\infty}^{0} \frac{\delta(y - u) du}{1+u^2} + \int_{0}^{\infty} \frac{\delta(y - u) du}{1+u^2} \right] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\delta(y - u)}{1+u^2} du = \frac{1}{\pi} \cdot \frac{1}{1+y^2}.$$

Пример 7.2. Бросаются 3 монеты. Пусть $\xi_i = 1$, если i-ая монета выпала орлом вверх и $\xi_i = 0$ в противном случае, i = 1,2,3. Построить ряд распределения случайной величины $\eta = \xi_1 + \xi_2 - \xi_3$.

Решение.

1. Определяем пространство элементарных исходов.

Элементарными исходами рассматриваемого случайного эксперимента являются упорядоченные наборы чисел (n_1, n_2, n_3) , где n_i либо нуль, либо единица i = 1,2,3. Всего элементарных исходов $2^3 = 8$. Следовательно, вероятность элементарного исхода равна 1/8.

2. Определяем множество возможных значений η .

Случайная величина η на элементарном исходе (n_1, n_2, n_3) принимает значение $\eta = n_1 + n_2 - n_3$.

3. Составляем таблицу элементарных исходов и соответствующих им значений η .

n_1	0	1	0	0	1	1	0	1
n_2	0	0	1	0	1	0	1	1
n_3	0	0	0	1	0	1	1	1
$\eta = n_1 + n_2 - n_3$	0	1	1	-1	2	0	0	1

4. Определяем вероятности значений η и строим ее ряд распределения. Имеем

Пример 7.3.

Задан закон распределения ДСВ:

X	-1	1	2
p	0.1	0.3	0.6

Найти $M\eta$, если a) $\varphi(x) = x^2$ б) $\varphi(x) = 2x + 10$.

Решение а) СВ принимает η значения $y_1 = \varphi(x_1) = (-1)^2 = 1$, $y_2 = \varphi(x_2) = 1^2 = 1$, $y_3 = \varphi(x_3) = 2^2 = 4$ $M\eta = 1 \cdot (0.1 + 0.3) + 4 \cdot 0.6 = 2.8$

б) 1 способ: а) СВ принимает η значения $y_1 = \varphi(x_1) = 2 \cdot (-1) + 10 = 8$, $y_2 = \varphi(x_2) = 2 \cdot 1 + 10 = 12$, $y_3 = \varphi(x_3) = 2 \cdot 2 + 10 = 14$

 $M\eta = 8 \cdot 0.1 + 12 \cdot 0.3 + 14 \cdot 0.6 = 0.8 + 3.6 + 8.4 = 12.8$

2 способ. Найдем математическое ожидание ξ :

 $M(\xi) = -0.1 + 0.3 + 1.2 = 1.4$. Воспользуемся формулой

 $M(\eta) = M(ax+b) = am_{\mathcal{E}} + b$ и тогда $M(\eta) = M(2x+10) = 2m_{\mathcal{E}} + 10 = 2,8 + 10 = 12,8.$

Пример 7.4. Случайная величина ξ имеет равномерное распределение $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Найти математическое ожидание случайной величины $\eta = \cos \xi$, не находя плотность распределения.

Решение

Используем формулу $M\eta = \int\limits_{-\infty}^{\infty} \varphi(x)f(x)dx$, где $f(x) = \frac{1}{\pi}$, $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$, $\varphi(x) = \cos x$. Тогда

$$M\eta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \cdot \frac{1}{\pi} dx = \frac{1}{\pi} \sin x \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{2}{\pi}$$

Пример 7.5. . Непрерывная случайная величина ξ равномерно распределена на отрезке $x \in [1; 3]$. Найдите математическое ожидание и дисперсию случайной величины $\eta = 3\xi + 1$

Решение.

Для равномерно распределенной случайной величины $m_{\xi} = \frac{a+b}{2} = \frac{1+3}{2} = 2$

$$D_{\xi} = \frac{(b-a)^2}{12} = \frac{4}{12} = \frac{1}{3}$$

Тогда для $\eta=3\xi+1$ имеем $m_{\eta}=3m_{\xi}+1$ =7

$$D_{\eta}=9D_{\xi}=3$$

Пример 7.6.. Непрерывная случайная величина ξ распределена по нормальному закону с $m_{\xi}=1$ и $D_{\xi}=2$. Найдите математическое ожидание и дисперсию случайной величины $\eta=2\xi+1$.

Решение

Пример 7.7.. Для независимых случайных величины ξ_1 и ξ_2 с известными числовыми характеристиками $M_{\xi_1}=-2$, $M_{\xi_2}=3$, $D_{\xi_1}=3$, $D_{\xi_2}=2$ найдите математическое ожидание и среднеквадратическое отклонение случайной величины $\eta=-\xi_1+2\xi_2$.

Решение

Так как
$$\xi_1$$
 и ξ_2 - независимы, то $M(\eta) = -M(\xi_1) + 2M(\xi_2)$. $D(\eta) = D(\xi_1) + 4D(\xi_2) = 3 + 8 = 11$
$$\sigma(\eta) = \sqrt{D(\eta)} = \sqrt{11}$$

Пример 7.8.

Найдите распределение случайной величины $\eta=\xi_1-\xi_2$ и $M(\eta)$, если известно распределение случайного дискретного вектора $\left(\xi_1,\ \xi_2\right)$

$\xi_2 \setminus \xi_1$	$\xi_1 = 2$	$\xi_1 = 3$	$\xi_1 = 4$
$\xi_2 = -2$	0,2	0	0,1
$\xi_2 = -1$	0	0,1	0,6

$$\xi_1 = 2, \xi_2 = -2, \eta = \xi_1 - \xi_2 = 4, p = 0.2$$

$$\xi_1 = 2, \xi_2 = 0, \eta = \xi_1 - \xi_2 = 2, p = 0$$

$$\xi_1 = 3, \xi_2 = -2, \eta = \xi_1 - \xi_2 = 5, p = 0$$

$$\xi_1 = 3, \xi_2 = -1, \eta = \xi_1 - \xi_2 = 4, p = 0.1$$

$$\xi_1 = 4, \xi_2 = -2, \eta = \xi_1 - \xi_2 = 6, p = 0.1$$

$$\xi_1 = 4, \xi_2 = -1, \eta = \xi_1 - \xi_2 = 5, p = 0.6$$

η	4	5	6
p	0.3	0.6	0.1

Пример 7.9. Независимые случайные величины X и Y имеют нулевое математическое ожидание и единичную дисперсию. Найти коэффициент корреляции случайных величин

$$K(2X + Y, 2X - Y) = 4D_x + 2K_{xy} - D_y - 2K_{xy} = 4D_x - D_y = 3$$

$$D(2X + Y) = 4D_x + 4K_{xy} + D_y = 5 \quad \sigma_u = \sqrt{5}$$

$$D(2X - Y) = 4D_x - 4K_{xy} + D_y = 5 \quad \sigma_v = \sqrt{5}$$

$$r_{uv} = \frac{3}{\sqrt{25}} = \frac{3}{5} = 0.6$$

Задачи для самостоятельного решения

7.1. Задан закон распределения ДСВ:

X	-2	0	2
p	0.2	0.3	0.5

Найти $M\eta$, $D\eta$, если a) $\varphi(x) = x^2$ б) $\varphi(x) = 2x - 5$.

7.2.

Задан закон распределения ДСВ:

X	-2	-1	0	1	2	3
р	0,1	0,2	0,3	0,25	0,1	0,05

Найти закон распределения случайных величин: a) $\eta = 2x^2 - 3$ б) $\eta = \sin \frac{\pi}{3}x$ в) $\eta = 3x - 3$ Найти числовые характеристики.

7.3.

НСВ распределена равномерно при $x \in (1;5)$. Найти числовые характеристики СВ, если : a) $\varphi(x) = x^2$ б) $\varphi(x) = 2x - 5$.

7.4. Случайная величина X равномерно распределена от 0 до 1. Определить математическое ожидание и дисперсию величины Y = X - 0.2.

7.5. Случайный вектор $\bar{\xi} = (\xi_1, \xi_2)$ имеет вектор математических ожиданий $\bar{m}(2;3)$ и корреляционную матрицу $K = \begin{pmatrix} 4 & -1 \\ -1 & 5 \end{pmatrix}$.

$$\eta_1 = 2\xi_1 + \xi_2, \ \eta_2 = \xi_1 - 3\xi_2.$$

Вычислить вектор математических ожиданий $m_{\eta} = (M\eta_1, M\eta_2)$ случайного вектора $\overline{\eta} = (\eta_1, \eta_2)$ и корреляционную матрицу вектора $\overline{\eta}$.

5

7.6. Случайный вектор $\bar{\xi} = (\xi_1, \xi_2)$ имеет вектор математических ожиданий $\overline{m}(2;3)$ и корреляционную матрицу $K = \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix}$.

$$\eta_1 = 3\xi_1 + \xi_2, \ \eta_2 = \xi_1 - 2\xi_2.$$

Вычислить вектор математических ожиданий $m_{\eta} = (M\eta_1, M\eta_2)$ случайного вектора и вектор дисперсий и корреляционный момент вектора $\overline{\eta} = (\eta_1, \eta_2)$

- **7.7.** Случайные величины X и Y независимы. X имеет нормальное распределение (N(1;2)), Y- равномерное при $x \in (-1;5)$. Найти математическое ожидание и дисперсию случайной величины $\eta = \xi_1 \cdot \xi_2$
- **7.8.** ДСВ X и Y независимы. X имеет биномиальное распределение (n=4, p=0.4), Y распределение Пуассона ($\lambda=2$). Найти математическое ожидание и дисперсию случайной величины $\eta=\xi_1\cdot\xi_2$
 - 7.9. Даны две независимые дискретные случайные величины X и Y:

x_i	1	2
p	0.2	0.8

y_i	3	5
p	0.4	0.6

Составить закон распределения вероятностей суммы Z=X + Y . Найти числовые характеристики Z.

- **7.10.** СВ распределена равномерно при $x \in (1;5)$. Найти плотность распределения и числовые характеристики СВ $\eta = \xi^2$
- **7.11.** Непрерывная случайная величина ξ равномерно распределена на отрезке $x \in [-2; 2]$.

Найдите математическое ожидание и дисперсию случайной величины $\eta=2\xi-2$.

- **7.12.**. Непрерывная случайная величина ξ распределена по нормальному закону с $m_{\xi}=2$ и $D_{\xi}=1$
- . Найдите математическое ожидание и дисперсию случайной величины $\eta=3\xi+1$.
- 7.13. Распределение дискретной случайной величины ξ задано таблицей

ξ	3	4	5
P	0,3	0,2	0,5

Найдите математическое ожидание и дисперсию случайной величины $\eta = 2\xi + 1$.

7.14. Распределение дискретной случайной величины ξ задано таблицей

ξ	1	2	3
P	0,1	0,3	0,6

Найдите математическое ожидание и дисперсию случайной величины $\eta = 3\xi + 1$.

7.15. Распределение дискретной случайной величины ξ задано таблицей

ξ	1	2	3
P	0,1	0,3	0,6

Найдите математическое ожидание и дисперсию случайной величины $\eta = 3\xi^2 - 2$.

7.16. Найдите распределение случайной величины $\eta = \xi_1 + \xi_2$ и $M(\eta)$, если известно распределение случайного дискретного вектора $\left(\xi_1,\ \xi_2\right)$

$\xi_2 \setminus \xi_1$	$\xi_1 = 2$	$\xi_1 = 3$	$\xi_1 = 4$	
$\xi_2 = -2$	0,2	0	0,1	
$\xi_2 = -1$	0	0,1	0,6	

7.17. Найдите распределение случайной величины $\eta = \max(\xi_1,\ \xi_2)$ и $M(\eta)$, если известно распределение дискретного случайного вектора $(\xi_1,\ \xi_2)$

$\xi_2 \setminus \xi_1$	$\xi_1 = 2$	$\xi_1 = 3$	$\xi_1 = 4$
$\xi_2 = -2$	0,2	0	0,1
$\xi_2 = -1$	0	0,1	0,6

7.18. Найдите распределение случайной величины $\eta = \min(\xi_1, \ 4 - \xi_2)$ и $M(\eta)$, если известно

распределение дискретного случайного вектора $(\xi_1,\ \xi_2)$

$\xi_2 \setminus \xi_1$	$\xi_1 = 2$	$\xi_1 = 3$	$\xi_1 = 4$
$\xi_2 = -2$	0,2	0	0,1
$\xi_2 = -1$	0	0,1	0,6

7.19. Найдите распределение случайной величины $\eta = \max(5,\ \xi_1 - \xi_2)$ и $M(\eta)$, если известно распределение дискретного случайного вектора $\left(\xi_1,\ \xi_2\right)$

$\xi_2 \setminus \xi_1$	$\xi_1 = 2$	$\xi_1 = 3$	$\xi_1 = 4$
$\xi_2 = -2$	0,2	0	0,1
$\xi_2 = -1$	0	0,1	0,6

7.20. Найдите распределение случайной величины $\eta = \frac{\xi_1}{\xi_2}$ и $M(\eta)$, если известно распределение

7

дискретного случайного вектора $\left(\xi_1,\ \xi_2\right)$

$\xi_2 \setminus \xi_1$	$\xi_1 = 2$	$\xi_1 = 3$	$\xi_1 = 4$
$\xi_2 = -2$	0,2	0	0,1
$\xi_2 = -1$	0	0,1	0,6