

New Doppler Spectral Processing Technique for Identifying Atmospheric Signals from Radar Wind Profilers

Jonathan Helmus¹, Virendra P. Ghate¹, Richard Coulter¹, Scott Collis¹, Karen L. Johnson², Scott Giangrande², Pavlos Kollias³

¹Argonne National Laboratory, USA ²Brookhaven National Laboratory, USA ³McGill University, Montreal, Canada

The ARM Climate Research Facility

- The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research facility provides in situ and remote sensing data with a mission to improve climate and earth systems models.
- The program operates a large number of instruments. Many of these instruments are deployed together to provide a more complete description of the system being measured.
- Instruments are located at three fixed sites as well as two mobile facilities that can be deployed in support of field campaigns around the globe.
- Many of the programs dataset covers an extended time period with continuous operation for more than a decade.

Introduction to the ARM Radar Wind Profiler (RWP)

- ARM operates a number of Radar Wind Profiles (RWP) at both fixed sites and mobile facilities.
- The profilers provide Doppler spectra, radar moments, and a consensus profile of wind speed and direction.
- Instruments operate in 2 modes:
 - "wind" for obtaining wind profiles.
 - "precip" for radar moments with a high time resolution.

Locations of ARM RWP instruments

- : Fixed site
- : Mobile facility
- : Past mobile facility

Operational Modes and Specification

Operating parameters of the ARM RWP

Parameter	Wind Mode	Precip Mode
Frequency	915 MHz	915 MHz
Beam width	8 degrees	8 degrees
Pulse width	417/2833 ns	417/2833 ns
FFT bins	64/64	128/128
Range gates	40/30	75/75
Range spacing	61/200 meters	120/206 meters
Min height	.136/.284 km	.327/.327 km
Max height	2.5/6.2 km	9.2 / 15.6 km
Time resolution	~84 seconds	~ 14 seconds

Atmospheric parameters from RWP data

PBL height derived from RWP moments.

- Currently only the spectra, radar moments, and consensus winds, are available from the ARM RWP.
- A number of atmospheric parameters may be determined from RWP measurements:
 - Planetary boundary layer height
 - Cloud top height
 - Vertical wind speed and direction
 - TKE dissipation rates
 - Index of refraction
 - Rain rate

Previous work with RWP spectra and moments

Previous work focused on the "precip" mode data. Expanding on the method of Tridon $et \ al^1$, moments were calculated from Doppler spectra, pulse modes merged and a reflectivity value calculated using data from a co-located disdrometer. Data available for summer 2012, 2013.

[1] Tridon et al. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1038.

Clutter in the ARM RWP Moments

Clutter in the ARM RWP Moments

Clutter in the ARM RWP Moments

Clutter in the ARM RWP Doppler Spectra

Short pulse, North beam

RWP clutter classification using fuzzy logic

- Membership functions developed to model the character of each classification.
- Inspired by techniques in Bianco and Wilczak, 2002. J. Tech., 19, 1745–1758.

Gate Classification

- Degree of membership is calculated using the membership function for each radar moment.
- Each gate calculated independently.

Gate Classification

- Each gate is assigned the classification with the largest degree of membership.
- Other flexible assignments can be made by comparing the three membership metrics.

Time UTC (hr)

Improving moments: Original Moments

Improving moments: Remove Clutter

Improving moments: Remove Clutter + Noise

Improving moments: ... and De-speckle

Conclusion and future work

This presentation has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Climate Research Facility.

- Fuzzy logic can be used to classify ARM RWP data as noise, clutter or atmospheric signal using only data from the moments.
- Removal of clutter and noise combined with a de-speckling algorithm leads significant improvements to the RWP moments.
- Future work:
 - Investigate improvements by including other moment based parameters, spectral data and measurement and from co-located instruments.
 - Attempt to recover any underlying atmospheric signal from gates in which clutter has been detected, re-calculate moments.
 - Determine if removal of clutter improves derived atmospheric parameters such as as wind profiles and PBL height.