递归数列及函数"增长"

离散数学教学组

回顾

- 鸽笼原理
 - 基本的原理
 - 一般的鸽笼原理
 - 运用的例子
- 排列与组合
 - 基本的排列组合
 - 组合与二项式系数
 - 有重复的排列组合

提要

• 递归数列

• 函数"增长"

递归思维:例1

 汉诺塔问题: How many moves are need to move all the disks to the third peg by moving only one at a time and never placing a disk on top of a smaller one.


```
T(1) = 1

T(n) = 2T(n-1) + 1
```

```
void hanoi(int n,char one, two, three)

// 将n个盘从one座借助two座,移到three座

{
    void move(char x,char y);
    if(n==1) then move(one,three);
    else {
        hanoi(n-1,one,three,two);
        move(one,three);
        hanoi(n-1,two,one,three);
    }
}
```

汉诺塔问题的解

$$T(n) = 2T(n-1) + 1$$

$$2T(n-1) = 4T(n-2) + 2$$

$$4T(n-2) = 8T(n-3) + 4$$

.

$$2^{n-2}T(2) = 2^{n-1}T(1) + 2^{n-2}$$

$$T(n)=2^n-1$$

递归思维:例2

- Cutting the plane
 - How many sections can be generated at most by n straight lines with infinite length?

Solution of Cutting the Plane

$$L(n) = L(n-1)+n$$

$$= L(n-2)+(n-1)+n$$

$$= L(n-3)+(n-2)+(n-1)+n$$

$$=$$

$$= L(0)+1+2+....+(n-2)+(n-1)+n$$

$$L(n) = n(n+1)/2 + 1$$

递归思维:例 3 Josephus Problem

- Live or die, it's a problem!
- Legend has it that Josephus wouldn't have lived to become famous without his mathematical talents. During the Jewish Roman war, he was among a band of 41 Jewish rebels trapped in a cave by the Romans. Preferring suicide to capture, the rebels decided to form a circle and, proceeding around it, to kill every third remaining person until no one was left. But Josephus along with an unindicted co-conspirator, wanted none of the suicide nonsense; so he quickly calculated where he and his end should stand in the vicious circle.

We use a simpler version: "every second..."

Make a Try: for n=10

For 2n Persons (n=1,2,3,...)

The solution is: newnumber (J(n))

And the newnumber(k) is 2k-1

And What about 2n+1 Persons (n=1,2,3)

The solution is: newnumber (J(n))

And for the time, the newnumber(k) is 2k+1

Solution in Recursive Equations

$$J(1) = 1;$$

$$J(2n) = 2J(n) - 1, \qquad \text{for } n \geqslant 1;$$

$$J(2n+1) = 2J(n) + 1, \qquad \text{for } n \geqslant 1.$$

Explicit Solution for small *n's*

				8 9 10 11 12 13 14 15	
J(n)	1	1 3	1 3 5 7	1 3 5 7 9 11 13 15	1

Look carefully ...
and, find the pattern...
and, prove it!

If we write n in the form $n = 2^m + l$, (where 2^m is the largest power of 2 not exceeding n and where l is what's left),

the solution to our recurrence seems to be:

$$J(2^m + l) = 2l + 1$$
, for $m \ge 0$ and $0 \le l < 2^m$.

As an example: J(100) = J(64+36) = 36*2+1 = 73

NANULUS ON NECES OF THE PROPERTY OF THE PROPER

Binary Representation

• Suppose *n*'s binary expansion is :

$$n = (b_m b_{m-1} \dots b_1 b_0)_2$$

• then:

```
n = (1 b_{m-1} b_{m-2} ... b_1 b_0)_2,
l = (0 b_{m-1} b_{m-2} ... b_1 b_0)_2,
2l = (b_{m-1} b_{m-2} ... b_1 b_0 0)_2,
2l+1 = (b_{m-1} b_{m-2} ... b_1 b_0 1)_2,
J(n) = (b_{m-1} b_{m-2} ... b_1 b_0 b_m)_2
```


Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
		1	0	1	1
	2 40	2	0	1	1
1 1 1 1 1 1 1 1 1 1		3	1	1	2
2 49	e to e to	4	1	2	3
砂纺砂纺	e so e so e so	5	2	3	5
e to et to et to	e to et to et to	6	3	5	8
	ob a db				

Rabbits and the Fibonacci Numbers

递归(递推)数列

- 例子:
 - 4,7,10,13,16,.....
 - 1,1,2,3,5,8,13,21,34,..... (a)
 - 0, 1, 2, 2, 6, 5,12,10, 20, 17, 30, 26,
- Recurrence relation: the recursive formula, e.g.:
 - for (a)
 - $f_n = f_{n-1} + f_{n-2}$ (n>2), $f_1 = f_2 = 1$
 - $f_1=f_2=1$: initial condition

寻找递推公式

- Let $A=\{0,1\}$. C_n : the number of strings of length n in A^* that do not contain adjacent 0's
 - $C_1 = ?; C_2 = ?;$
 - $C_3 = ?$
 - $C_n = ?$
- $C_{n} = C_{n-1} + C_{n-2}$

寻找显式公式

- 如何为递归序列给出"显式"的公式
 - 即找到一个以自然数为定义域的函数
- Backtracking
 - E.g. 1:
 - $a_n = a_{n-1} + 3$, $a_1 = 2$ =>recurrence relation
 - $a_n = 2+3(n-1)$ => explicit formula
 - E.g. 2
 - $b_n = 2b_{n-1} + 1$, $b_1 = 7$
 - $b_n = 2^{n+2}-1$

Linear Homogeneous Relation

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_m a_{n-k}$$

is called linear homogeneous relation of degree k.

$$c_n = (-2)c_{n-1}$$
 $a_n = a_{n-1} + (3)$

$$f_n = f_{n-1} + f_{n-2}$$
 $g_n = g_{n-1} + g_{n-2}$

For a linear homogeneous recurrence relation of degree k

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_m a_{n-k}$$

the polynomial of degree k

$$x^{k} = r_{1}x^{k-1} + r_{2}x^{k-2} + \dots + r_{m}$$

is called its characteristic equation.

 The characteristic equation of linear homogeneous recurrence relation of degree 2 is:

$$x^2 - r_1 x - r_2 = 0$$

Solution of Recurrence Relation

• If the characteristic equation $x^2 - r_1 x - r_2 = 0$ of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has two distinct roots s_1 and s_2 , then

$$a_n = us_1^n + vs_2^n$$

where *u* and *v* depend on the initial conditions, is the explicit formula for the sequence.

Remembertheequation: $x^2 - r_1x - r_2 = 0$ We need prove that: $us_1^n + vs_2^n = r_1a_{n-1} + r_2a_{n-2}$

$$us_{1}^{n} + vs_{2}^{n} = us_{1}^{n-2}s_{1}^{2} + vs_{2}^{n-2}s_{2}^{2}$$

$$= us_{1}^{n-2}(r_{1}s_{1} + r_{2}) + vs_{2}^{n-2}(r_{1}s_{2} + r_{2})$$

$$= r_{1}us_{1}^{n-1} + r_{2}us_{1}^{n-2} + r_{1}vs_{2}^{n-1} + r_{2}vs_{2}^{n-2}$$

$$= r_{1}(us_{1}^{n-1} + vs_{2}^{n-1}) + r_{2}(us_{1}^{n-2} + vs_{2}^{n-2})$$

$$= r_{1}a_{n-1} + r_{2}a_{n-2}$$

Solution of Recurrence Relation

If the equation has a single root s, then,

$$a_n = us^n + vns^n$$

Solution of Recurrence Relation

•
$$c_n = 3c_{n-1}-2c_{n-2}$$
, $c_1 = 5$, $c_2 = 3$

- Characteristic equation:
 - $X^2 = 3x 2$;
- Get the root: 1,2
- $C_n = u*1^n + v*2^n$
- We have equations:
 - C1 = u + 2v = 5
 - C2 = u + 4v = 3
- So: u = 7, v = -1
- So: $C_n = 7-2^n$

$$f_1 = 1$$
 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$

1, 1, 2, 3, 5, 8, 13, 21, 34,

Explicit formula for Fibonacci Sequence

The characteristic equation is x^2 -x-1=0, which has roots:

$$s_1 = \frac{1+\sqrt{5}}{2}$$
 and $s_2 = \frac{1-\sqrt{5}}{2}$

Note: (by initial conditions) $f_1 = us_1 + vs_2 = 1$ and $f_2 = us_1^2 + vs_2^2 = 1$

which results:
$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

算法的执行步骤数

- 算法的正确性 VS 算法的效率
- 如何去评判一个算法的效率?
 - 时间开销: steps
 - 空间开销: memory
- 算法的执行步骤计数是主要手段
 - 算法的执行步骤数不是简单的算法语句条数!

线性查找 Linear (sequential) search

• 折半查找 Binary search

插入排序法

6 5 3 1 8 7 2 4

遍历所有元素:

构造已排序的子序列;

将待排序元素插入子序列中的合适位置;

INSERTION-SORT(A)

```
1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

冒泡排序

6 5 3 1 8 7 2 4

快速排序

N	T(n)
(数据集规模)	(算法执行步数)
10	550
50	63750
100	505000
	51人一个数字

算法执行步数随着数据规模的变化而变化不同的算法,变化的"剧烈程度"不同

来刻画这种变化并 尝试判断其规律

算法执行步骤函数

- 针对每个算法,可以定义该算法的执行步骤函数 T:N->N:
 - 数据规模->算法执行步骤数

该函数:

- 每个算法均有最佳情况、最差情况和平均情况下的 函数
- 基本代表一个算法的执行效率
- 随着数据规模变化,可以考察该函数的"增长"速度

算法的效率分析-时间开销

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	C6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C8	n-1

对于每个待插入元素,插入已有序子序列时情况不一:

有不同时的比较次数、因插入而导致的子序列移动也不一定义t_i为第j个插入数据所进行的比较次数

算法的最差性能:

最差性能:待排序元素完全 逆序!

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

and

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

函数的增长-算法分析初步

- 集合A上的关系R, 令|A| = n, |R| = n²/2
- 求该关系的传递闭包算法有: S1算法,S2算法
- 如何去判断哪个算法更好一些?
 - 时间开销: steps
 - T_{S1}函数; T_{S2}函数
 - 如何比较时间开销?
 - 看谁"长得快"!

函数增长

N	S1	S2
(数据集规模)	(算法执行步数)	(算法执行步数)
10	550	1250
50	63750	781250
100	505000	12500000

两个算法执行步数随着数据规模的变化而变化不同的算法,变化的"剧烈程度"不同

需要一种数学工具通过执行步骤函数的处理来反映 上述"剧烈程度"

函数的增长

- 定义函数T:N->N:
 - 数据规模->算法执行步骤数
- 针对上述两个算法:
 - $T_{S1}(n) = n^3/2 + n^2/2$ for algorithm S1
 - $T_{S2}(n) = n^4/8$ for algorithm S2

函数的增长速度

- 给定f:N→N, g:N→N, (注:通常N→R)
 - 如果存在常数 $C \in N$ 和 $k \in N$ 使得对于所有大于等于k的n,都有 $f(n) \le C \times g(n)$
 - 我们称:
 - f is O(g) $f \in O(g)$
 - f增长速度不高于g

The part of the graph of f(x) that satisfies f(x) < Cg(x) is shown in color.

FIGURE 2 The Function f(x) is O(g(x)).

例子: $x^2 + 2x + 1$ is $O(x^2)$

The part of the graph of $f(x) = x^2 + 2x + 1$ that satisfies $f(x) < 4x^2$ is shown in blue.

实际上:

- 可以做如下判断:
 - 函数 f 是O(g) if lim_{n→∞}[f(n)/g(n)]=C < ∞
 - if there exists constants $C \in \mathbb{N}$ and $k \in \mathbb{N}$ such that for all $n \ge k$, $f(n) \le Cg(n)$
- 例如: let $f(n)=n^2$, $g(n)=n\lg n$, *则*:
 - f 不是O(g), 因为 $\lim_{n\to\infty}[f(n)/g(n)]=\lim_{n\to\infty}[n^2/n\lg n]=\lim_{n\to\infty}[n/\lg n]=\lim_{n\to\infty}[1/(1/n\ln 2)]=\infty$
 - g是O(f), 因为lim_{n→∞}[g(n)/f(n)]=0

再例:

- let $f(n)=n^2$, $g(n)=7n^2+9n-1$
 - $\lim_{n\to\infty} [f(n)/g(n)] = \lim_{n\to\infty} [n^2/(7n^2 + 9n 1)] = 1/7$
 - 所以: f是O(g)
 - $\lim_{n\to\infty} [g(n)/f(n)] = \lim_{n\to\infty} [(7n^2 + 9n 1)/n^2] = 7$
 - 所以: g是O(f)
- 我们称: f和g长得一样快(同阶)

Θ关系

- n²/100+5n 是 O(3n⁴-5n²), 它是O(10n⁴)?
- 3n4-5n2 和10n4 长得一样快
- 实际上, n⁴ 是所有和3n⁴-5n²同阶的函数中的 最简形式
- 定义N to R+函数集合上的关系Θ:
 - f Og iff f 和g同阶
 - $3n^4-5n^2 \Theta 10n^4$, $(n^4, 3n^4-5n^2) \in \Theta$
- 定理: 0 是等价关系

常见阶

- ○等价类:
 - Let A: $\{f \mid f:N->R+\}$, let $s \in A/\Theta$
 - ∀ f, g ∈ s, f is O(g) and g is O(f)
- 一些常见的代表性阶:
 - $\Theta(1)$, $\Theta(n)$, $\Theta(n^2)$, $\Theta(n^3)$, $\Theta(lg(n))$, $\Theta(nlg(n))$, and $\Theta(2^n)$

范例:

- 从低到高重新排列一下阶:
- $\Theta(1000n^2-n)$, $\Theta(n^{0.2})$, $\Theta(1000000)$, $\Theta(1.3^n)$, $\Theta(n+10^7)$, $\Theta(n \log(n))$
 - Θ(100000)
 - $\Theta(n^{0.2})$
 - $\Theta(n+10^7)$
 - Θ(nlg(n))
 - $\Theta(1000n^2-n)$
 - $\Theta(1.3^{n})$,

注意纵坐标乃是对数刻度

相对增长速度

给定函数g:

 Θ (g):functions that grow at the same rate as g

O(g):functions that grow no faster as g

教材和练习

- 练习:
 - 第六版
 - P349: 24; 36
 - P360: 4(a,b,c,d)
 - 第七版
 - P433: 8; 20
 - P442: 4(a,b,c,d)