

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
6. Juni 2002 (06.06.2002)

(10) Internationale Veröffentlichungsnummer
WO 02/44114 A1

PCT

- (51) Internationale Patentklassifikation⁷: C07C 15/00, 309/28, C11D 1/22 (74) Anwalt: ISENBRUCK, Günter; Bardehle, Pagenberg, Dost, Altenburg, Geissler, Is, enbruck, Theodor-Heuss-Anlage 12, 68165 Mannheim (DE).
- (21) Internationales Aktenzeichen: PCT/EP01/13322 (81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GII, GM, IIR, IIU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (22) Internationales Anmeldedatum: 16. November 2001 (16.11.2001) (84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
- (25) Einreichungssprache: Deutsch (85) Veröffentlichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität: 100 59 398.4 30. November 2000 (30.11.2000) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): NARBESHUBER, Thomas [AT/DE]; Lameystrasse 18, 68165 Mannheim (DE). STEINBRENNER, Ulrich [DE/DE]; Müller-Thurgau-Weg 20, 67435 Neustadt (DE). KRACK, Gerhard [DE/DE]; Justus-Liebig-Str. 4, 67117 Limburgerhof (DE).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR THE PRODUCTION OF ALKYL ARYL SULPHONATES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON ALKYLARYLSULFONATEN

(57) Abstract: The production of alkyl aryl compounds can be achieved by the following steps: 1) production of an olefin mixture, comprising, as a statistical mean, predominantly single-branched C₁₀₋₁₄ olefins, by means of a) reaction of a C₄ olefin mixture on a metathesis catalyst to give an olefin mixture containing 2-pentene and/or 3-hexene and optional separation of 2-pentene and/or 3-hexene, followed by dimerisation of the obtained 2-pentene and/or 3-hexene on a dimerisation catalyst to give a mixture containing C₁₀₋₁₂ olefins and optional separation of the C₁₀₋₁₂ olefins, or b) extraction of predominantly single-branched paraffins from kerosene fractions and subsequent dehydrogenation, or c) Fischer-Tropsch synthesis of olefins or paraffins, whereby the paraffins are dehydrogenated, or d) dimerisation of short-chain internal olefins, or e) isomerisation of linear olefins or paraffins, whereby the isomerised paraffins are dehydrogenated, 2) reaction of the olefin mixture obtained in step 1) with an aromatic hydrocarbon in the presence of an alkylation catalyst containing zeolites of the faujasite type.

A1

WO 02/44114

(57) Zusammenfassung: Die Herstellung von Alkylarylverbindungen erfolgt durch 1) Herstellung eines Gemisches von in statistischen Mittel vorwiegend einfachverzweigten C₁₀₋₁₄-Olefinen durch a) Umsetzung eines C₄-Olefin-Gemisches an einem Metathese-Katalysator zur Herstellung eines 2-Penten und/oder 3-Hexen enthaltenden Olefingemisches und gegebenenfalls Abtrennung von 2-Penten und/oder 3-Hexen, gefolgt von Dimerisierung des erhaltenen 2-Pentens und/oder 3-Hexens an einem Dimerisierungs-katalysator zu einem C₁₀₋₁₂-Olefine enthaltenden Gemisch und gegebenenfalls Abtrennung der C₁₀₋₁₂-Olefine oder b) Extraktion vorwiegend einfach verzweigter Paraffine aus Kerosinschnitten und nachfolgende Dehydrierung, oder c) Fischer-Tropsch-Synthese von Olefinen oder Paraffinen, wobei die Paraffine dehydriert werden, oder d) Dimerisierung kürzerkettiger interner Olefine, oder e) Isomerisierung von linearen Olefinen oder Paraffinen, wobei die isomerisierten Paraffine dehydriert werden, 2) Umsetzung des in Stufe 1) erhaltenen Olefingemisches mit einem aromatischen Kohlenwasserstoff in Gegenwart eines Alkylierungskatalysators, der Zeolithe des Typs Faujasit enthält.

Verfahren zur Herstellung von Alkylarylsulfonaten

5

Die vorliegende Erfindung betrifft Verfahren zur Herstellung von Alkylarylverbindungen
10 und Alkylarylsulfonaten, nach diesen Verfahren erhältliche Alkylaryle und
Alkylarylsulfonate, die Verwendung letzterer als Tenside, vorzugsweise in Wasch- und
Reinigungsmitteln, und diese enthaltende Wasch- und Reinigungsmittel.

Alkylbenzolsulfonate (ABS) werden seit langer Zeit als Tenside in Wasch- und
15 Reinigungsmitteln eingesetzt. Nachdem zunächst derartige Tenside auf Basis von
Tetrapropylenbenzolsulfonat eingesetzt wurden, die jedoch schlecht biologisch abbaubar
waren, wurden in der Folgezeit möglichst lineare Alkylbenzolsulfonate (LAS) hergestellt
und verwendet. Lineare Alkylbenzolsulfonate weisen jedoch nicht in allen
Anwendungsbereichen ausreichende Eigenschaftsprofile auf.

20

So wäre es zum Beispiel vorteilhaft, ihre Kaltwascheigenschaften oder ihre Eigenschaften
in hartem Wasser zu verbessern. Ebenso wünschenswert ist die leichte Formulierbarkeit,
gegeben durch die Viskosität der Sulfonate und deren Löslichkeit. Diese verbesserten
Eigenschaften zeigen geringfügig verzweigte Verbindungen bzw. Mischungen von
25 geringfügig verzweigten Verbindungen mit linearen Verbindungen, wobei man jedoch das
richtige Maß an Verzweigung und/oder das richtige Maß an Mischung erzielen muß. Zu
starke Verzweigungen benachteiligen die biologische Abbaubarkeit der Produkte. Zu
lineare Produkte beeinflussen die Viskosität und die Löslichkeit der Sulfonate negativ.

30 Darüber hinaus spielt das Verhältnis von terminalen Phenylalkanen (2-Phenylalkane und 3-
Phenylalkane) zu internen Phenylalkanen (4-, 5-, 6- etc. Phenylalkane) eine Rolle für die
Produkteigenschaften. Ein 2-Phenylanteil von etwa 20 - 40 % und ein 2- und 3-
Phenylanteil von etwa 40 - 60 % können hinsichtlich der Produktqualität (Löslichkeit,
Viskosität, Wascheigenschaften, biologische Abbaubarkeit) vorteilhaft sein.

35

- 2 -

Tenside mit sehr hohen 2- und 3-Phenylgehalten können den wesentlichen Nachteil aufweisen, daß die Verarbeitbarkeit der Produkte durch einen starken Anstieg der Viskosität der Sulfonate leidet.

- 5 Darüber hinaus kann sich ein nicht-optimales Löslichkeitsverhalten ergeben. So ist z.B. der Krafft-Punkt einer Lösung von LAS mit sehr hohen oder sehr niedrigen 2- und 3-Phenylanteilen um bis zu 10-20 °C höher als bei optimaler Wahl des 2- und 3-Phenylanteils.
- 10 BR 9204326 betrifft die Alkylierung von Aromaten mit linearen Olefinen an modifizierten Faujasit-Zeolithen.

EP-A-0 160144 beschreibt die Alkylierung von Aromaten mit vorwiegend langkettigen Olefinen (z.B. C₁₆) über partiell kollabierten FAU-Strukturen.

- 15 US 5,030,786 beschreibt die Trocknung eines aromatischen und olefinischen Feedstocks und die nachfolgende Alkylierung über FAU bzw. BEA Zeolithe. Es werden bevorzugt Ethen und Propen als olefinische Einsatzstoffe verwendet.
- 20 US 4,990,718 beschreibt die Di- bzw. Oligomerisierung von C₆₋₁₄-alpha-Olefinen und die nachfolgende Alkylierung von aromatischen Kohlenwasserstoffen mit den Dimerisierungsprodukten, die ein Verzweigungsverhältnis von 0,1-0,19 aufweisen, an Zeolithen mit einer Porengröße von 6.4-7.5Å, vorwiegend Zeolithe des Typs Faujasit.
- 25 WO 99/05241 betrifft Reinigungsmittel, die verzweigte Alkylarylsulfonate als Tenside enthalten. Die Alkylarylsulfonate werden durch Dimerisierung von Olefinen zu Vinylidenolefinen und nachfolgende Alkylierung von Benzol an einem formselektiven Katalysator wie MOR oder BEA erhalten. Darauf folgt eine Sulfonierung.
- 30 WO 90/14160 beschreibt spezielle Zeolithe des Typs Faujasit zur Alkylierung. Ethylbenzol und Cumol werden mittels dieser Katalysatoren hergestellt.

Die bislang zur Alkylierung eingesetzten Olefine weisen entweder gar keine Verzweigungen auf, was der Konzeption der vorliegenden Erfindung widerspricht oder zeigen teilweise einen zu hohen oder zu niedrigen Verzweigungsgrad bzw. ergeben ein nicht optimales Verhältnis terminaler zu interner Phenylalkane. Zum anderen Teil werden sie aus teuren Ausgangsstoffen wie zum Beispiel Propen oder alpha-Olefinen hergestellt,

und teilweise beträgt der Anteil der für die Tensidherstellung interessanten Olefinfraktionen nur etwa 20 %. Dies führt zu teuren Aufarbeitungsschritten. Darüberhinaus werden Katalysatoren angewendet, deren niedrige Raum/Zeit-Ausbeuten, hohe Deaktivierungsraten und hohe Katalysatorkosten eine wirtschaftliche Ausführung der
5 Verfahren verhindern.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung von Alkylarylsulfonaten bzw. den zugrundeliegenden Alkylarylverbindungen, die zumindest teilweise verzweigt sind und damit für den Einsatz in Wasch- und
10 Reinigungsmitteln gegenüber den bekannten Verbindungen vorteilhafte Eigenschaften aufweisen. Sie sollen insbesondere ein geeignetes Eigenschaftsprofil aus biologischer Abbaubarkeit, Unempfindlichkeit gegen Wasserhärte, Löslichkeit und Viskosität bei der Herstellung und beim Einsatz aufweisen. Zudem sollen die Alkylarylsulfonate kostengünstig herstellbar sein.
15

Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Alkylarylverbindungen durch

- 20 1) Herstellung eines Gemisches von im statistischen Mittel vorwiegend einfach-verzweigten C₁₀₋₁₄-Olefinen durch
 - a) Umsetzung eines C₄-Olefin-Gemisches an einem Methathese-Katalysator zur Herstellung eines 2-Penten und/oder 3-Hexen enthaltenden Olefingemisches und gegebenenfalls Abtrennung von 2-Penten und/oder 3-Hexen, gefolgt von Dimerisierung des erhaltenen 2-Pentens und/oder 3-Hexens an einem Dimerisierungskatalysator zu einem C₁₀₋₁₂-Olefine enthaltenden Gemisch und gegebenenfalls Abtrennung der C₁₀₋₁₂-Olefine, oder
25
 - b) Extraktion vorwiegend einfach verzweigter Paraffine aus Kerosinschnitten und nachfolgende Dehydrierung, oder
30
 - c) Fischer-Tropsch-Synthese von Olefinen oder Paraffinen, wobei die Paraffine dehydriert werden, oder
35
 - d) Dimerisierung kürzerkettiger interner Olefine, oder

- 4 -

- e) Isomerisierung von linearen Olefinen oder Paraffinen, wobei die isomerisierten Paraffine dehydriert werden,
- 5 2) Umsetzung des in Stufe 1) erhaltenen Olefingemisches mit einem aromatischen Kohlenwasserstoff in Gegenwart eines Alkylierungskatalysators, der Zeolithe des Typs Faujasit enthält.

Die erhaltenen Alkylarylverbindungen werden nachfolgend in Stufe 3) sulfoniert und neutralisiert.

- 10 Es werden durch die Kombination von Zeolith Faujasit als Alkylierungskatalysator mit den aus Stufen 1a) bis 1e) erhaltenen Olefinen Produkte erhalten, die nach Sulfonierung und Neutralisation Tenside ergeben, die überragende Eigenschaften, insbesondere hinsichtlich der Empfindlichkeit gegen Härte bildenden Ionen, der Löslichkeit der Sulfonate, 15 der Viskosität der Sulfonate und ihrer Wascheigenschaften aufweisen. Darüber hinaus ist das vorliegende Verfahren äußerst kostengünstig, da die Produktströme so flexibel gestaltet werden können, daß keine Nebenprodukte anfallen.

- Ausgehend von einem C₄-Strom werden in Stufe 1a) durch die Metathese lineare, interne 20 Olefine hergestellt, die sodann über den Dimerisierungsschritt in verzweigte Olefine überführt werden.

- Das erfindungsgemäße Verfahren mit Stufe 1a bietet den wesentlichen Vorteil, daß durch 25 die Kombination von Metathese und Dimerisierung ein Olefingemisch erhalten wird, welches nach Alkylierung eines Aromaten mit den erfindungsgemäßen Katalysatoren, Sulfonierung und Neutralisation ein Tensid liefert, das sich durch seine Kombination von hervorragenden Anwendungseigenschaften (Löslichkeit, Viskosität, Stabilität gegen Wasserhärte, Wascheigenschaften, biologischer Abbaubarkeit) auszeichnet. Hinsichtlich 30 der biologischen Abbaubarkeit von Alkylarylsulfonaten sind Verbindungen, die weniger stark an Klärschlamm adsorbiert werden bzw. durch verminderte Ausfällung durch Wasserhärte eine höhere Bioverfügbarkeit aufweisen als herkömmliches LAS, besonders vorteilhaft.

- Erfindungsgemäß kann das Verfahren zur Herstellung von Alkylarylsulfonaten folgende 35 Merkmale aufweisen:

- 5 -

- Herstellung eines Gemisches leicht verzweigter Olefine mit einer Gesamt C-Zahl von 10-14.
- 5 - Umsetzung des in Stufe 1) erhaltenen Olefingemisches mit einem aromatischen Kohlenwasserstoff in Gegenwart eines Alkylierungskatalysators des Typs Faujasit zur Bildung alkylaromatischer Verbindungen, wobei vor Umsetzung zusätzliche lineare Olefine zugemischt werden können.
- 10 - Sulfonierung und Neutralisation der in Stufe 2) erhaltenen alkylaromatischen Verbindungen und Neutralisation zu Alkylarylsulfonaten, wobei vor der Sulfonierung zusätzlich lineare Alkylbenzole zugesetzt werden können.
- Ggf. Abmischen der in Stufe 2) erhaltenen Alkylarylsulfonate mit linearen Alkylarylsulfonaten.

15

Stufe 1) des erfindungsgemäßen Verfahrens ist die Herstellung eines Gemisches leicht verzweigter Olefine mit einer Gesamt C-Zahl von 10-14.

20 1a)

Bevorzugt ist die Umsetzung eines C₄-Olefin-Gemisches an einem Metathesekatalysator zur Herstellung eines 2-Penten und/oder 3-Hexen enthaltenden Olefingemisches und gegebenenfalls Abtrennung von 2-Penten und/oder 3-Hexen. Die Metathese kann beispielsweise wie in DE-A-199 32 060 beschrieben, durchgeführt werden. Das erhaltene 25 2-Penten und/oder 3-Hexen wird an einem Dimerisierungskatalysator zu einem C₁₀₋₁₂-Olefin-Gemisch dimerisiert. Gegebenenfalls werden die erhaltenen C₁₀₋₁₂-Olefine abgetrennt.

Die Metathesereaktion wird dabei vorzugsweise in Gegenwart von heterogenen, nicht oder 30 nur geringfügig isomerisierungsaktiven Metathesekatalysatoren durchgeführt, die aus der Klasse der auf anorganischen Trägern aufgebrachten Übergangsmetallverbindungen von Metallen der VI.b, VII.b oder VIII.-Gruppe des Periodensystems der Elemente ausgewählt sind.

35 Bevorzugt wird als Metathesekatalysator Rheniumoxid auf einem Träger, vorzugsweise auf γ-Aluminiumoxid oder auf Al₂O₃/B₂O₃/SiO₂-Mischträgern eingesetzt.

Insbesondere wird als Katalysator $\text{Re}_2\text{O}_7/\gamma\text{-Al}_2\text{O}_3$ mit einem Rheniumoxid-Gehalt von 1 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-%, besonders bevorzugt 6 bis 12 Gew.-% eingesetzt.

- 5 Die Metathese wird bei Flüssigfahrweise vorzugsweise bei einer Temperatur von 0 bis 150°C, besonders bevorzugt 20-80°C sowie einem Druck von 2-200 bar, besonders bevorzugt 5-30 bar, durchgeführt.

Wenn die Metathese in der Gasphase durchgeführt wird, beträgt die Temperatur
10 vorzugsweise 20 bis 300°C, besonders bevorzugt 50 bis 200°C. Der Druck beträgt in diesem Fall vorzugsweise 1 bis 20 bar, besonders bevorzugt 1 bis 5 bar.

Die Herstellung von C₅/C₆-Olefinen und gegebenenfalls Propen aus Steamcracker- oder Raffinerie-C₄-Strömen kann die Teilschritte (1) bis (4) umfassen:

- 15 (1) Abtrennung von Butadien und acetylenischen Verbindungen durch gegebenenfalls Extraktion von Butadien mit einem Butadien-selektiven Lösungsmittel und nachfolgend /oder Selektivhydrierung von in Roh-C₄-Schnitt enthaltenen Butadienen und acetylenischen Verunreinigungen um einen Reaktionsaustrag zu erhalten, der n-Butene und Isobuten und im wesentlichen keine Butadiene und acetylenischen Verbindungen enthält,
- 20 (2) Abtrennung von Isobuten durch Umsetzung des in der vorstehenden Stufe erhaltenen Reaktionsaustrags mit einem Alkohol in Gegenwart eines sauren Katalysators zu einem Ether, Abtrennung des Ethers und des Alkohols, die gleichzeitig oder nach der Veretherung erfolgen kann, um einen Reaktionsaustrag zu erhalten, der n-Butene und gegebenenfalls Oxygenat-Verunreinigungen enthält, wobei gebildeter Ether ausgetragen oder zur Reingewinnung von Isobuten rückgespalten werden kann und dem Veretherungsschritt ein Destillationsschritt zur Abtrennung von Isobuten nachfolgen kann, wobei gegebenenfalls auch eingeschleuste C₃-, i-C₄- sowie C₅-Kohlenwasserstoffe destillativ im Rahmen der Aufarbeitung des Ethers abgetrennt werden können, oder Oligomerisierung oder Polymerisation von Isobuten aus dem in der vorstehenden Stufe erhaltenen Reaktionsaustrag in Gegenwart eines sauren Katalysators, dessen Säurestärke zur selektiven Abtrennung von Isobuten als Oligo- oder Polyisobuten geeignet ist, um einen Strom zu erhalten, der 0 bis 15 % Rest-Isobuten aufweist,
- 25 (3) Abtrennung von Isobuten durch Umsetzung des in der vorstehenden Stufe erhaltenen Reaktionsaustrags mit einem Alkohol in Gegenwart eines sauren Katalysators zu einem Ether, Abtrennung des Ethers und des Alkohols, die gleichzeitig oder nach der Veretherung erfolgen kann, um einen Reaktionsaustrag zu erhalten, der n-Butene und gegebenenfalls Oxygenat-Verunreinigungen enthält, wobei gebildeter Ether ausgetragen oder zur Reingewinnung von Isobuten rückgespalten werden kann und dem Veretherungsschritt ein Destillationsschritt zur Abtrennung von Isobuten nachfolgen kann, wobei gegebenenfalls auch eingeschleuste C₃-, i-C₄- sowie C₅-Kohlenwasserstoffe destillativ im Rahmen der Aufarbeitung des Ethers abgetrennt werden können, oder Oligomerisierung oder Polymerisation von Isobuten aus dem in der vorstehenden Stufe erhaltenen Reaktionsaustrag in Gegenwart eines sauren Katalysators, dessen Säurestärke zur selektiven Abtrennung von Isobuten als Oligo- oder Polyisobuten geeignet ist, um einen Strom zu erhalten, der 0 bis 15 % Rest-Isobuten aufweist,
- 30 (4) Abtrennung von Isobuten durch Umsetzung des in der vorstehenden Stufe erhaltenen Reaktionsaustrags mit einem Alkohol in Gegenwart eines sauren Katalysators zu einem Ether, Abtrennung des Ethers und des Alkohols, die gleichzeitig oder nach der Veretherung erfolgen kann, um einen Reaktionsaustrag zu erhalten, der n-Butene und gegebenenfalls Oxygenat-Verunreinigungen enthält, wobei gebildeter Ether ausgetragen oder zur Reingewinnung von Isobuten rückgespalten werden kann und dem Veretherungsschritt ein Destillationsschritt zur Abtrennung von Isobuten nachfolgen kann, wobei gegebenenfalls auch eingeschleuste C₃-, i-C₄- sowie C₅-Kohlenwasserstoffe destillativ im Rahmen der Aufarbeitung des Ethers abgetrennt werden können, oder Oligomerisierung oder Polymerisation von Isobuten aus dem in der vorstehenden Stufe erhaltenen Reaktionsaustrag in Gegenwart eines sauren Katalysators, dessen Säurestärke zur selektiven Abtrennung von Isobuten als Oligo- oder Polyisobuten geeignet ist, um einen Strom zu erhalten, der 0 bis 15 % Rest-Isobuten aufweist,
- 35 (5) Abtrennung von Isobuten durch Umsetzung des in der vorstehenden Stufe erhaltenen Reaktionsaustrags mit einem Alkohol in Gegenwart eines sauren Katalysators zu einem Ether, Abtrennung des Ethers und des Alkohols, die gleichzeitig oder nach der Veretherung erfolgen kann, um einen Reaktionsaustrag zu erhalten, der n-Butene und gegebenenfalls Oxygenat-Verunreinigungen enthält, wobei gebildeter Ether ausgetragen oder zur Reingewinnung von Isobuten rückgespalten werden kann und dem Veretherungsschritt ein Destillationsschritt zur Abtrennung von Isobuten nachfolgen kann, wobei gegebenenfalls auch eingeschleuste C₃-, i-C₄- sowie C₅-Kohlenwasserstoffe destillativ im Rahmen der Aufarbeitung des Ethers abgetrennt werden können, oder Oligomerisierung oder Polymerisation von Isobuten aus dem in der vorstehenden Stufe erhaltenen Reaktionsaustrag in Gegenwart eines sauren Katalysators, dessen Säurestärke zur selektiven Abtrennung von Isobuten als Oligo- oder Polyisobuten geeignet ist, um einen Strom zu erhalten, der 0 bis 15 % Rest-Isobuten aufweist,

- (3) Abtrennen der Oxygenat-Verunreinigungen des Austrags der vorstehenden Schritte an entsprechend ausgewählten Absorbermaterialien,
- 5 (4) Metathesereaktion des so erhaltenen Raffinats II-Stromes wie beschrieben.

Vorzugsweise wird der Teilschritt Selektivhydrierung von in Roh-C₄-Schnitt enthaltenen Butadien und acetylenischen Verunreinigungen zweistufig durchgeführt durch Inkontaktbringen des Roh-C₄-Schnittes in flüssiger Phase mit einem Katalysator, der mindestens ein Metall, ausgewählt aus der Gruppe Nickel, Palladium und Platin, auf einem Träger enthält, vorzugsweise Palladium auf Aluminiumoxid, bei einer Temperatur von 20 bis 200°C, einem Druck von 1 bis 50 bar, einer Volumengeschwindigkeit von 0,5 bis 30 m³ Frischfeed pro m³ Katalysator pro Stunde und einem Verhältnis von Recycle zu Zustrom von 0 bis 30 mit einem Molverhältnis von Wasserstoff zu Diolefinen von 0,5 bis 15 50, um einen Reaktionsaustrag zu erhalten, in welchem neben Isobuten die n-Butene 1-Buten und 2-Buten in einem Molverhältnis von 2:1 bis 1:10, vorzugsweise von 2:1 bis 1:3, vorliegen und im wesentlichen keine Diolefine und acetylenischen Verbindungen enthalten sind. Für einen maximalen Hexenaustausch liegt vorzugsweise 1-Buten im Überschuß vor, für eine hohe Propenausbeute liegt vorzugsweise 2-Buten im Überschuß vor. Das bedeutet, 20 daß das gesamte Molverhältnis im ersten Fall 2:1 bis 1:1 und im zweiten Fall 1:1 bis 1:3 betragen kann.

Vorzugsweise wird der Teilschritt Butadien-Extraktion aus Roh-C₄-Schnitt mit einem Butadien-selektiven Lösungsmittel durchgeführt, ausgewählt aus der Klasse polar-25 aprotischer Lösungsmittel, wie Aceton, Furfural, Acetonitril, Dimethylacetamid, Dimethylformamid und N-Methylpyrrolidon, um einen Reaktionsaustrag zu erhalten, in welchem nach anschließender Selektivhydrierung/Isomerisierung die n-Butene 1-Buten und 2-Buten in einem Molverhältnis 2:1 bis 1:10, vorzugsweise von 2:1 bis 1:3, vorliegen.

30 Vorzugsweise wird der Teilschritt Isobuten-Veretherung in einer dreistufigen Reaktorkaskade mit Methanol oder Isobutanol, vorzugsweise Isobutanol in Gegenwart eines sauren Ionentauschers durchgeführt, in der geflutete Festbettkatalysatoren von oben nach unten durchströmt werden, wobei die Reaktor-Eingangstemperatur 0 bis 60°C, 35 vorzugsweise 10 bis 50°C, die Ausgangstemperatur 25 bis 85°C, vorzugsweise 35 bis 75°C, der Druck 2 bis 50 bar, vorzugsweise 3 bis 20 bar und das Verhältnis von Isobutanol zu

- 8 -

Isobuten 0,8 bis 2,0, vorzugsweise 1,0 bis 1,5 beträgt sowie der Gesamtumsatz dem Gleichgewichtsumsatz entspricht.

Vorzugsweise wird der Teilschritt Isobuten-Abtrennung durch Oligomerisierung oder 5 Polymerisation von Isobuten ausgehend von dem nach den vorstehend beschriebenen Stufen Butadien-Extraktion und/oder Selektivhydrierung erhaltenen Reaktionsaustrag in Gegenwart eines Katalysators durchgeführt, der ausgewählt ist aus der Klasse homogener und heterogener Broensted- oder Lewis-Säuren, siehe DE-A-100 13 253.

10 Bei der Dimerisierung der im Metatheseschritt erhaltenen Olefine oder Olefingemische erhält man Dimerisierungsprodukte, die im Hinblick auf die weitere Verarbeitung zu Alkylaromaten besonders günstige Komponenten und besonders vorteilhafte Zusammensetzungen aufweisen.

15 Für eine detailliertere Beschreibung des Metathese/Dimerisierungsverfahrens und der vorgelagerten Schritte wird auf DE-A-199 32 060 verwiesen.

Neben der eben beschriebenen Metathese/Dimerisierungsreaktion sind jedoch auch 20 konventionelle Verfahren zur Herstellung leicht verzweigter Olefine durchführbar. Dies ist z.B. 1b) die Extraktion von i-Paraffinen aus Diesel/Kerosin-Faktionen, welche entweder bei der Rohölverarbeitung und -veredelung entstehen oder 1c) durch synthetische Verfahren wie zum Beispiel der Fischer-Tropsch Synthese gebildet werden, und optional nachfolgende Dehydrierung der i-Paraffine zu i-Olefinen.

25 Darüber hinaus können leicht verzweigte Olefine z.B. 1d) durch die Dimerisierung von kürzerkettigen Olefinen hergestellt werden.

Eine weitere Möglichkeit stellt zum Beispiel 1e) die Isomerisierung von geeigneten 30 linearen Olefinen zu leicht verzweigten Olefinen dar.

Stufe 2) ist die Umsetzung des in Stufe 1) erhaltenen Olefingemisches mit einem aromatischen Kohlenwasserstoff in Gegenwart eines Alkylierungskatalysators des Typs 35 Faujasit zur Bildung alkylaromatischer Verbindungen, wobei vor Umsetzung zusätzliche lineare Olefine zugemischt werden können.

Dabei wird vorzugsweise ein Alkylierungskatalysator eingesetzt, der zu alkylaromatischen Verbindungen führt, die im Alkylrest ein bis drei Kohlenstoffatome mit einem H/C-Index von 1 aufweisen, oder die Reaktionsbedingungen werden entsprechend gewählt.

- 5 Bei der Auswahl des erfindungsgemäß eingesetzten Faujazit-Katalysators ist ungeachtet des großen Einflusses des eingesetzten Feedstocks auf die Minimierung von durch den Katalysator gebildeten Verbindungen, die dadurch gekennzeichnet sind, daß sie C-Atome mit einem H/C-Index von 0 in der Seitenkette beinhalten, zu achten. Der Anteil an C-Atomen im Alkylrest mit einem H/C Index von 0 sollte im statistischen Mittel aller 10 Verbindungen kleiner als 5% (bevorzugt kleiner 1%) betragen.

Der H/C-Index definiert die Anzahl der Protonen pro Kohlenstoffatom.

- Die nach dem erfindungsgemäßen Verfahren eingesetzten Olefine weisen bevorzugt keine 15 Kohlenstoffatome mit einem H/C-Index von 0 in der Seitenkette auf. Führt man nun die Alkylierung des Aromaten mit dem Olefin unter Bedingungen durch, wie sie hier beschrieben sind und bei denen keine Gerüstsomerisierung des Olefins stattfindet, so können Kohlenstoffatome mit einem H/C-Index von 0 nur in Benzylstellung zum 20 Aromaten entstehen, d.h. es genügt, den H/C-Index der benzylischen Kohlenstoffatome zu ermitteln.

- Des weiteren sollen Verbindungen gebildet werden, die im Mittel 1 bis 3 C-Atome mit einem H/C-Index von 1 in der Seitenkette aufweisen. Dies wird insbesondere durch die 25 Auswahl eines geeigneten Feedstocks als auch geeigneter Katalysatoren erreicht, die einerseits durch ihre Geometrie die Bildung der unerwünschten Produkte unterdrücken und andererseits aber eine ausreichende Reaktionsgeschwindigkeit zulassen.

- Katalysatoren für das erfindungsgemäße Verfahren sind Zeolithe des Typs Faujasit, insbesondere Zeolith Y und dessen Abkömmlinge. Unter Abkömmlingen verstehen wir 30 modifizierte Faujasite, die z.B. durch Verfahren wie Ionentausch, Steaming, Blockierung externer Zentren, etc. hergestellt werden können. Die Katalysatoren zeichnen sich insbesondere dadurch aus, daß sie im Röntgenpulverdiffraktogramm über 20% einer Phase enthalten, die mit der kubischen Struktur des Faujasiten indiziert werden kann.

- 35 Obwohl in der publizierten Literatur (z.B. Cao et al., Appl.Catal. 184 (1999) 231; Sivasanker et al., J.Catal. 138 (1992) 386; Liang et al., Zeolites 17 (1996) 297; Almeida et al., Appl.Catal. 114 (1994) 141) gezeigt wurde, daß Zeolithe des Typs Faujasit (FAU) im

- 10 -

Gegensatz zu den Zeolithen Mordenit (MOR) und Beta (BEA) praktisch keine Formselektivität bei der Alkylierung von Aromaten mit linearen Olefinen aufweisen - ein ähnlicher Ansatz ist z.B. in WO 99/05082 zu finden, wo MOR und BEA Zeolith für die Umsetzung mit verzweigten Olefinen beschrieben sind – wurde nun überraschend
5 gefunden, daß Zeolith des Typs Faujasit bei der Alkylierung von aromatischen Kohlenwasserstoffen (bevorzugt Benzol) mit leicht verzweigten Olefinen (bevorzugt solche aus einer Metathese/Dimerisierung Stufe 1a) formselektives Verhalten zeigen und darüber hinaus einen optimalen Anteil an 2- und 3-Phenylalkanen erzeugen bei gleichzeitig geringen Katalysatorkosten -so ist HY derzeit ca. 3-4 mal preiswerter als H-MOR oder H-
10 BEA , wirtschaftlich interessanten Raum/Zeit-Ausbeuten und einem moderaten Desaktivierungsverhalten aufweisen.

Formselektivität beschreibt in der heterogenen Katalyse das Phänomen, Edukte, Übergangszustände oder Produkte durch eine vom Katalysator vorgegebene sterische
15 Hinderung von der Teilnahme an der Reaktion auszuschließen bzw. bei der Reaktion nicht zuzulassen. Dieses Phänomen ist in Hinblick auf die erfindungsgemäßen Alkylbenzole und Alkylbenzolsulfonate, insbesondere in Hinblick auf deren H/C-Indizes von entscheidender Bedeutung. Während mit nicht formselektiven Katalysatoren Produkte erhalten werden, die in der Seitenkette C-Atome mit H/C Indizes von 0 beinhalten, werden diese
20 Verbindungen erfindungsgemäß mit formselektiven Katalysatoren ausgeschlossen.

Katalysatoren mit engen Poresystemen weisen jedoch stets den Nachteil auf, daß die erzielbaren Raum/Zeit-Ausbeuten geringer ausfallen als bei Katalysatoren mit größeren Poren bzw. bei makro- oder mesoporösen Stoffen. Deshalb ist es wichtig, einen
25 Katalysator zu finden, der sowohl die Vorbedingung der entsprechend gewünschten Formselektivität erfüllt, jedoch zusätzlich möglichst hohe Raum/Zeit-Ausbeuten aufweist, so daß einer wirtschaftlichen Ausübung des Verfahrens nichts im Wege steht.

Darüber hinaus ist bekannt, daß zu enge Poresysteme einer starken und raschen
30 Desaktivierung unterliegen, die ebenfalls die Wirtschaftlichkeit der Verfahren durch die Notwendigkeit oftmaliger Regenerierungen der Katalysatoren beeinträchtigt.

Bei der Auswahl der Katalysatoren sollte darüber hinaus auf deren Neigung hinsichtlich Desaktivierung geachtet werden. Eindimensionale Poresysteme weisen meistens den
35 Nachteil einer raschen Verstopfung der Poren durch Abbau- bzw. Aufbauprodukte aus dem Prozeß auf. Darüberhinaus ist die Diffusionshemmung der Reaktanden und der Produkte in

- 11 -

eindimensionalen Poresystemen größer als in mehrdimensionalen. Katalysatoren mit mehrdimensionalen Poresystemen sind daher zu bevorzugen.

Die eingesetzten Katalysatoren können natürlichen oder synthetischen Ursprungs sein,
5 deren Eigenschaften sind durch literaturbekannte Methoden, wie sie z.B. in J. Weitkamp und L. Puppe, *Catalysis and Zeolites, Fundamentals and Applications*, Kapitel 3: G. Kühl, *Modification of Zeolites*, Springer Verlag, Berlin, 1999 (Ionenaustausch, Dealuminierung, Dehydroxylierung und Extraktion von Gitteraluminium, thermische Behandlung, Steaming, Behandlung mit Säuren oder SiCl₄, Blockierung spezieller, z.B. externer, azider
10 Zentren durch z.B. Silylierung, Reinsertion von Aluminium, Behandlung mit Aluminiumhalogeniden und Oxosäuren) beschrieben sind, in gewissem Umfang einstellbar. Wichtig für die vorliegende Erfindung ist, daß die Katalysatoren mehr als 10 µmol/g saure Zentren bei einem pK_s-Wert kleiner 3,3 besitzen. Die Zahl der sauren Zentren wird dabei nach der Methode der Hammett-Titration mit Dimethylgelb [CAS-No.
15 60-11-7] als Indikator und n-Butylamin als Sonde gemäß H.A. Benesi und B.H.C. Winquist in *Adv. Catal.*, Vol. 27, Academic Press 1978, S. 100 ff., bestimmt.

Des weiteren können die Katalysatoren auch bereits gebrauchtes Katalysatormaterial beinhalten oder aus solchem Material bestehen, welches durch die üblichen Methoden regeneriert wurde, z. B. durch eine Rekalzinierung in Luft, H₂O, CO₂ oder Inertgas bei Temperaturen größer 200 °C, durch Waschen mit H₂O, Säuren oder organischen Lösungsmitteln, durch Steamen oder durch Behandlung im Vakuum bei Temperaturen größer 200 °C.

25 Sie können in Form von Pulver oder bevorzugt in Form von Formkörpern wie Strängen, Tabletten oder Splitt eingesetzt werden. Für die Verformung kann 2 bis 60 Gew.-% (bezogen auf die zu verformende Masse) Bindemittel zugesetzt werden. Als Bindemittel eignen sich verschiedene Aluminiumoxide, bevorzugt Boehmit, amorphe Aluminosilikate mit einem molaren SiO₂/Al₂O₃-Verhältnis von 25:75 bis 95:5, Siliciumdioxid, bevorzugt
30 hochdisperses SiO₂ wie z.B. Silikasole, Gemische aus hochdispersem SiO₂ und hochdispersem Al₂O₃, hochdisperses TiO₂ sowie Tone.

Nach der Verformung werden die Extrudate oder Presslinge zweckmäßig bei 110 °C/16 h getrocknet und bei 300 bis 500 °C für 2 bis 16 h calciniert, wobei die Calcinierung optional auch direkt im Alkylierungsreaktor erfolgen kann.

- 12 -

In der Regel werden die Katalysatoren in der H-Form eingesetzt. Zur Erhöhung der Selektivität, der Standzeit und der Anzahl der möglichen Katalysatorregenerierungen kann man jedoch zudem verschiedene Modifizierungen an den Katalysatoren vornehmen.

5 Eine Modifizierung der Katalysatoren besteht darin, daß man die unverformten Katalysatoren mit Alkalimetallen wie Na und K, Erdalkalimetallen wie Ca, Mg, Erdmetallen wie Tl, Übergangsmetallen wie beispielsweise Mn, Fe, Mo, Cu, Zn, Cr, Edelmetallen und/oder Seltenerdmetallen wie z.B. La, Ce oder Y Ionen austauschen bzw. dotieren kann.

10 Eine vorteilhafte Katalysatorausführungsform besteht darin, daß man die verformten Katalysatoren in einem Strömungsrohr vorlegt und bei 20 bis 100 °C z. B. ein Halogenid, ein Acetat, ein Oxalat, ein Citrat oder ein Nitrat der oben beschriebenen Metalle in gelöster Form darüberleitet. Ein derartiger Ionenaustausch kann z. B. an der Wasserstoff-,
15 Ammonium- und Alkaliform der Katalysatoren vorgenommen werden.

Eine andere Möglichkeit der Metallaufbringung auf die Katalysatoren besteht darin, dass man das zeolithische Material z. B. mit einem Halogenid, Acetat, Oxalat, Citrat, Nitrat oder Oxid der oben beschriebenen Metalle in wässriger oder alkoholischer Lösung
20 imprägniert.

Sowohl an einen Ionenaustausch als auch an eine Imprägnierung kann man eine Trocknung, wahlweise eine abermalige Calcination anschließen. Bei den metalldotierten Katalysatoren kann eine Nachbehandlung mit Wasserstoff und/oder mit Wasserdampf
25 günstig sein.

Eine weitere Möglichkeit der Modifizierung des Katalysators besteht darin, daß man das heterogenkatalytische Material - verformt oder unverformt - einer Behandlung mit Säuren, wie Salzsäure (HCl), Flusssäure (HF), Phosphorsäure (H_3PO_4), Schwefelsäure (H_2SO_4),
30 Oxalsäure (HO_2C-CO_2H) oder deren Gemische unterwirft.

Eine besondere Ausführungsform besteht darin, daß man das Katalysatorpulver vor seiner Verformung mit Flußsäure (0,001 bis 2 molar, bevorzugt 0,05 bis 0,5 molar) 1 bis 3 Stunden unter Rückfluss behandelt. Nach Abfiltrieren und Auswaschen wird in der Regel
35 bei 100 bis 160 °C getrocknet und bei 400 bis 550 °C calciniert.

Eine weitere besondere Ausführungsform liegt in einer HCl-Behandlung der Heterogenkatalysatoren nach ihrer Verformung mit Bindemittel. Hierbei wird der Heterogenkatalysator in der Regel 1 bis 3 Stunden bei Temperaturen zwischen 60 und 80°C mit einer 3 bis 25 %igen, insbesondere mit einer 12 bis 20 %igen Salzsäure 5 behandelt, anschließend ausgewaschen, bei 100 bis 160 °C getrocknet und bei 400 bis 550 °C calciniert.

Eine andere Möglichkeit der Modifizierung des Katalysators ist der Austausch mit Ammoniumsalzen, z. B. mit NH₄Cl, oder mit Mono-, Di- oder Polyaminen. Hierbei wird 10 der mit Bindemittel verformte Heterogenkatalysator in der Regel bei 60 bis 80 °C mit 10 bis 25 %iger, bevorzugt ca. 20 %iger, NH₄Cl-Lösung 2 h kontinuierlich in gewichtsmäßiger Heterogenkatalysator/Ammoniumchlorid-Lösung von 1:15 ausgetauscht und danach bei 100 bis 120 °C getrocknet.

15 Eine weitere Modifikation, die an aluminiumhaltigen Katalysatoren vorgenommen werden kann, ist eine Dealuminierung, bei der ein Teil der Aluminiumatome durch Silicium ersetzt wird oder die Katalysatoren durch beispielsweise hydrothermale Behandlung in ihrem 20 Aluminiumgehalt abgereichert werden. An eine hydrothermale Dealuminierung schließt sich vorteilhafterweise eine Extraktion mit Säuren oder Komplexbildnern an, um gebildetes Nichtgitteraluminium zu entfernen. Der Ersatz von Aluminium durch Silicium kann beispielsweise mit Hilfe von (NH₄)₂SiF₆ oder SiCl₄ erfolgen. Beispiele für Dealuminierungen von Y-Zeolithen finden sich in Corma et al., Stud. Surf. Sci. Catal. 37 (1987), Seiten 495 bis 503.

25 Die Modifikation durch Silylierung ist allgemein in J. Weitkamp und L. Puppe, Catalysis and Zeolites, Fundamentals and Applications, Kapitel 3: G. Kühl, Modification of Zeolites, Springer Verlag, Berlin, 1999 beschrieben. Man geht dabei in der Regel so vor, daß man azide Zentren selektiv, z.B. die externen durch sperrige Basen wie z.B. 2,2,6,6,-Tetramethyl-piperidin oder 2,6-Lutidin blockiert und den Zeolith dann mit geeigneten Si-30 Verbindungen wie z.B. Tetraethylorthosilikat, Tetramethylorthosilikat, C1-C20-Trialkylsilylchlorid, -methylat oder -ethylat oder SiCl₄ behandelt. Diese Behandlung kann sowohl mit gasförmigen Si-Verbindungen als auch mit in wasserfreien Lösemitteln wie z.B. Kohlenwasserstoffen oder Alkoholen gelösten Si-Verbindungen erfolgen. Auch eine Kombination verschiedener Si-Verbindungen ist möglich. Alternativ kann die Si-35 Verbindung auch schon die für azide Zentren selektive Amingruppe enthalten, wie z.B. 2,6-Trimethylsilylpiperidin. Im Anschluß werden die so modifizierten Katalysatoren in der Regel bei Temperaturen von 200 bis 500°C in O₂-haltiger Atmosphäre kalziniert.

Eine weitere Modifikation besteht in der Blockade externer Zentren durch Vermengen oder Vermahlen des Katalysatorpulvers mit Metalloxiden wie z.B. MgO und anschließender Kalzinierung bei 200-500°C.

5

Die Katalysatoren kann man als Stränge mit Durchmessern von z. B. 1 bis 4 mm oder als Tabletten mit z. B. 3 bis 5 mm Durchmesser für die Aromatenalkylierung einsetzen.

10 Die erfindungsgemäße Art des eingesetzten aliphatischen Rohstoffes sowie die erfindungsgemäße Wahl des Katalysators führen zu den für Wasch- und Reinigungsmittelanwendungen optimalen Verhältnissen an 2-, 3-, 4-, 5- und 6-Phenylalkanen bei. Bevorzugt wird ein 2-Phenylanteil von 20-40% und ein 2- und 3-Phenylanteil von 40-60% hergestellt.

15

Bevorzugte Reaktionsdurchführung

20 Die Alkylierung wird derart durchgeführt, daß man den Aromaten (das Aromatengemisch) und das Olefin(gemisch) in einer geeigneten Reaktionszone durch Inkontaktbringen mit dem Katalysator reagieren läßt, nach der Reaktion das Reaktionsgemisch aufarbeitet und so die Wertprodukte gewinnt.

25 Geeignete Reaktionszonen stellen z.B. Rohrreaktoren, Rührkessel oder eine Rührkesselkaskade, eine Wirbelschicht, ein Schlaufenreaktor oder ein Fest-Flüssig-Fließbett dar. Liegt der Katalysator in fester Form vor, so kann er entweder als Aufschlammung (Slurry), als Festbett, als Fließbett oder als Wirbelbett eingesetzt werden.

30 Die Reaktionspartner können bei Verwendung eines Festbettreaktors entweder im Gleichstrom oder im Gegenstrom geführt werden. Auch die Ausführung als katalytische Destillation ist möglich.

Die Reaktionspartner liegen entweder in flüssigem und/oder in gasförmigem Zustand, bevorzugt jedoch im flüssigen Zustand vor. Auch die Reaktion im überkritischen Zustand ist möglich.

35

Die Reaktionstemperatur wird so gewählt, daß auf der einen Seite möglichst vollständiger Umsatz des Olefins stattfindet und auf der anderen Seite möglichst wenig Nebenprodukte

- 15 -

entstehen. Nebenprodukte sind vor allem Dialkylbenzole, Diphenylalkane und Olefinoligomere. Die Wahl der Temperaturführung hängt außerdem entscheidend vom gewählten Katalysator ab. Reaktionstemperaturen zwischen 50°C und 500°C (bevorzugt 80 bis 350°C, besonders bevorzugt 80-250°C) sind anwendbar.

5

Der Druck der Reaktion richtet sich nach der gewählten Fahrweise (Reaktortyp) und beträgt zwischen 0,1 und 100 bar, die Katalysatorbelastung (WHSV) wird zwischen 0,1 und 100 gewählt.

- 10 Die Reaktionspartner können optional mit inerten Stoffen verdünnt werden. Inerte Stoffe sind bevorzugt Paraffine.

Das Mol-Verhältnis von Aromat:Olefin wird üblicherweise zwischen 1:1 und 100:1 (bevorzugt 2:1-20:1) eingestellt.

15

Das Verfahren kann dabei diskontinuierlich, semikontinuierlich durch Vorlage von z.B. Katalysator und Aromat und Dosierung von Olefin oder vollkontinuierlich, gegebenenfalls auch unter kontinuierlicher Zu- und Abführung von Katalysator durchgeführt werden.

- 20 Katalysator mit ungenügender Aktivität kann direkt im Alkylierungsreaktor oder in einer separaten Anlage durch

25 1) Wäsche mit Lösemitteln wie z.B. Alkane, Aromaten wie z.B. Benzol, Toluol oder Xylol, Ether wie z.B. Tetrahydrofuran, Tetrahydropyran, Dioxan, Dioxolan, Diethylether oder Methyl-t-Butylether, Alkohole wie z.B. Methanol, Ethanol, Propanol und Isopropanol, Amide wie z.B. Dimethylformamid oder Formamid, Nitrile wie z.B. Acrylnitril oder Wasser bei Temperaturen von 20 bis 200°C,

30 2) durch Behandlung mit Wasserdampf bei Temperaturen von 100°C bis 400°C

35 3) durch thermische Behandlung in reaktiver Gasatmosphäre (O_2 und O_2 -haltige Gasgemische, CO_2 , CO , H_2) bei 200 - 600°C oder

4) durch thermische Behandlung in inerter Gasatmosphäre (N_2 , Edelgase) bei 200 - 600°C regeneriert werden. Alternativ kann desaktivierter Katalysator - wie oben beschrieben - auch bei der Herstellung von neuem Katalysator zugegeben werden.

Aromatische Einsatzstoffe

Möglich sind alle aromatischen Kohlenwasserstoffe der Formel Ar-R, wobei Ar einen monocyclischen oder bicyclischen aromatischen Kohlenwasserstoff-Rest darstellt und R aus H, C₁₋₅ bevorzugt C₁₋₃-Alkyl, OH, OR etc., bevorzugt H oder C₁₋₃-Alkyl ausgewählt ist. Bevorzugt sind Benzol und Toluol.

Stufe 3)

In Stufe 3) werden die in Stufe 2) erhaltenen alkylaromatischen Verbindungen sulfoniert und zu Alkylarylsulfonaten neutralisiert.

Alkylaryle werden durch

- Sulfonierung (z.B. mit SO₃, Oleum, Chlorsulfonsäure, etc., bevorzugt mit SO₃) und nachfolgende
- Neutralisation (z.B. mit Na-, K-, NH₄-, Mg-Verbindungen, bevorzugt mit Na-Verbindungen)

zu Alkylarylsulfonaten umgesetzt. Sulfonierung und Neutralisation sind in der Literatur hinreichend beschrieben und werden nach dem Stand der Technik ausgeführt. Die Sulfonierung wird bevorzugt in einem Fallfilmreaktor ausgeführt, kann aber auch in einem Rührkessel erfolgen. Die Sulfonierung mit SO₃ ist der Sulfonierung mit Oleum vorzuziehen.

25 Mischungen

Die nach oben beschriebenen Verfahren hergestellten Verbindungen werden (vorzugsweise) entweder als solche weiterverarbeitet, oder vorher mit anderen Alkylarylen gemischt und dann der Weiterverarbeitung zugeführt. Um diesen Prozeß zu vereinfachen, kann es auch sinnvoll sein, die Rohstoffe, die zur Herstellung der oben genannten anderen 30 Alkylaryle verwendet werden, direkt mit den Rohstoffen des vorliegenden Verfahrens zu mischen und dann das erfindungsgemäße Verfahren durchzuführen. So ist z.B. die Mischung von leicht verzweigten Olefinströmen aus dem erfindungsgemäßen Verfahren mit linearen Olefinen sinnvoll. Auch Mischungen der Alkylarylsulfonsäuren bzw. der Alkylarylsulfonate sind anwendbar. Die Mischungen werden immer in Hinblick auf die 35 Optimierung der Produktqualität der aus dem Alkylaryl gefertigten Tenside vorgenommen.

- 17 -

Einen beispielhaften Überblick über Alkylierung, Sulfonierung, Neutralisation gibt z.B. „Alkylarylsulfonates: History, Manufacture, Analysis and Environmental Properties“ in Surf. Sci. Ser. 56 (1996) Kapitel 2, Marcel Dekker, New York und darin enthaltene Referenzen.

5

Analyse der Strukturparameter

Bei der Alkylierung von Aromaten mit Olefinen entstehen Alkylaromaten der Formeln RⁿArCH₂R (1), RⁿArCHRR' (2) und RⁿArCRR'R'' (3). Rⁿ bezeichnet H bzw. C₁-C₃-Alkyl. Die Anteile von (1)-(3) werden, wie am Beispiel für Benzol als Aromat im folgenden gezeigt, ermittelt:

1) Der Reaktoraustrag wird destilliert und unumgesetzter Aromat, unumgesetztes Olefin und Schweralkylat, welches durch Alkylierung des Aromaten mit mehr als einem Molekül Olefin entstanden ist, abgetrennt.

15

2) Anschließend wird der Anteil an (1) wie folgt bestimmt:

25 mg Alkylbenzol und 5 mg Chromacetylacetonat (CAS 21679-31-2) werden in 500mg CDCl₃ gelöst und in ein NMR-Probenröhrchen mit 5 mm Innendurchmesser gegeben.

Anschließend wird mit einer invers-gated Pulssequenz alle 6 s ein C₁₃-NMR-Spektrum

20

mit 125 MHz Meßfrequenz aufgenommen und 6000 dieser Spektren gemittelt. Das Summenspektrum wird anschließend auf CDCl₃ = 77,47 ppm normiert. Der Anteil an Strukturen des Typs (1) ergibt sich nun aus

Anteil an (1) = (Integral von 139 bis 143,5 ppm) / (Integral von 139 bis 152 ppm)

25

3) Dann wird der Anteil an (2) wie folgt bestimmt:

5 mg Alkylbenzol und 0,5 mg SiMe₄ werden in 500mg CDCl₃ gelöst und in ein NMR-Probenröhrchen mit 5 mm Innendurchmesser gegeben. Anschließend wird mit einer 30°

30

Pulssequenz alle 5 s ein H₁-NMR-Spektrum mit 500 MHz Meßfrequenz aufgenommen und 32 dieser Spektren gemittelt. Das Summenspektrum wird anschließend auf SiMe₄ = 0 ppm normiert. Der Anteil an Strukturen des Typs (2) ergibt sich nun aus

35

Anteil an (2) = 5 * (Integral von 2,2 bis 3,2 ppm) / (Integral von 6,9 bis 7,6 ppm) - 2 * Anteil an (1)

3) Der Anteil an (3) ergibt sich nun über die Normierungsbedingung

Anteil an (1) + Anteil an (2) + Anteil an (3) = 100%

Die Bestimmung für von Benzol verschiedene Aromaten erfolgt analog.

5

Die Erfindung betrifft auch Alkylarylverbindungen und Alkylarylsulfonate, die nach einem wie vorstehend beschriebenen Verfahren erhältlich sind.

10 Die erfindungsgemäßen Alkylarylsulfonate werden vorzugsweise als Tenside, insbesondere in Wasch- und Reinigungsmitteln eingesetzt. Die Erfindung betrifft auch Wasch- und Reinigungsmittel, enthaltend neben üblichen Inhaltsstoffen Alkylarylsulfonate, wie sie vorstehend beschrieben sind.

15 Nicht ausschließliche Beispiele üblicher Inhaltsstoffe der erfindungsgemäßen Wasch- und Reinigungsmittel sind im folgenden aufgeführt:

Bleichmittel

Beispiele sind Alkaliperborate oder Alkalicarbonat-Perhydrate, insbesondere die Natriumsalze.

20

Ein Beispiel einer verwendbaren organischen Persäure ist Peressigsäure, die vorzugsweise bei der gewerblichen Textilwäsche oder der gewerblichen Reinigung verwendet wird.

25 Vorteilhaft verwendbare Bleich- oder Textilwaschmittelzusammensetzungen enthalten C₁-C₁₂-Percarbonsäuren, C₈-C₁₆-Dipercarbonsäuren, Imidopercapronsäuren, oder Aryldipercapronsäuren. Bevorzugte Beispiele verwendbarer Säuren sind Peressigsäure, lineare oder verzweigte Octan-, Nonan-, Decan- oder Dodecanmonopersäuren, Decan- und Dodecandipersäure, Mono- und Dipercphthalsäuren, -isophthalsäuren und -terephthalsäuren, Phthalimidopercapronsäure und Terephthaloyldipercapronsäure. Ebenfalls können polymere Persäuren verwendet werden, beispielsweise solche, die 30 Acrylsäuregrundbausteine enthalten, in denen eine Peroxifunktion vorliegt. Die Percarbonsäuren können als freie Säuren oder als Salze der Säuren, vorzugsweise Alkali- oder Erdalkalimetallsalze, verwendet werden.

Bleichaktivator

35

Bleichkatalysatoren sind beispielsweise quaternisierte Imine und Sulfonimine, wie sie beispielsweise beschrieben sind in US 5,360,568, US 5,360,569 und EP-A-0 453 003, wie

- 19 -

auch Mangan-Komplexe, wie sie beispielsweise beschrieben sind in WO-A 94/21777. Weitere verwendbare metallhaltige Bleichkatalysatoren sind beschrieben in EP-A-0 458 397, EP-A-0 458 398, EP-A-0 549 272.

- 5 Bleichaktivatoren sind beispielsweise Verbindungen der nachstehenden Substanzklassen: Polyacylierte Zucker oder Zuckerderivate mit C₁₋₁₀-Acylresten, vorzugsweise Acetyl-, Propionyl-, Octanoyl-, Nonanoyl- oder Benzoylresten, besonders bevorzugt Acetylresten, sind als Bleichaktivatoren verwendbar. Als Zucker oder Zuckerderivate sind Mono- oder Disaccharide sowie deren reduzierte oder oxidierte Derivate verwendbar, vorzugsweise Glucose, Mannose, Fructose, Saccharose, Xylose oder Lactose. Besonders geeignete Bleichaktivatoren dieser Substanzklasse sind beispielsweise Pentaacetylglucose, Xylosetetraacetat, 1-Benzoyl-2,3,4,6-tetraacetylglucose und 1-Octanoyl-2,3,4,6-tetraacetylglucose.
- 10 15 Eine weitere verwendbare Substanzklasse sind die Acyloxybenzolsulfonsäuren und deren Alkali- und Erdalkalimetallsalze, wobei C₁₋₁₄-Acylreste verwendbar sind. Bevorzugt sind Acetyl-, Propionyl-, Octanoyl-, Nonanoyl- und Benzoylreste, insbesondere Acetylreste und Nonanoylreste. Besonders geeignete Bleichaktivatoren dieser Substanzklasse sind Acyloxybenzolsulfonsäure. Vorzugsweise werden sie in Form ihrer Natriumsalze eingesetzt.

Weiterhin verwendbar sind O-Acyloximester wie z. B. O-Acetylacetoxim, O-Benzoylacetonoxim, Bis(propylimino)carbonat, Bis(cyclohexylimino)carbonat. Erfindungsgemäß verwendbare acylierte Oxime sind beispielsweise beschrieben in der EP-A-0 028 432. Erfindungsgemäß verwendbare Oximester sind beispielsweise beschrieben in der EP-A-0 267 046.

- Ebenfalls verwendbar sind N-Acylcarprolactame wie beispielsweise N-Acetylcaprolactam, N-Benzoylcyclolactam, N-Octanoylcyclolactam, Carbonylbiscaprolactam.
- 30 Weiterhin verwendbar sind
- N-diacylierte und N,N'-tetraacylierte Amine, z. B. N,N,N',N'-Tetraacetyl-methylendiamin und -ethylendiamin (TAED), N,N-Diacetylanilin, N,N-Diacetyl-p-toluidin oder 1,3-diacylierte Hydantoine wie 1,3-Diacetyl-5,5-dimethylhydantoin;
 - N-Alkyl-N-sulfonyl-carbonamide, z.B. N-Methyl-N-mesyl-acetamid oder N-Methyl-N-mesyl-benzamid;

- 20 -

- N-acylierte cyclische Hydrazide, acylierte Triazole oder Urazole, z.B. Monoacetyl-maleinsäurehydrazid;
- O,N,N-trisubstituierte Hydroxylamine, z.B. O-Benzoyl-N,N-succinylhydroxylamin, O-Acetyl-N,N-succinyl-hydroxylamin oder O,N,N-Triacetylhydroxylamin;
- 5 - N,N'-diacyl-sulfurylamide, z.B. N,N'-Dimethyl-N,N'-diacetyl-sulfurylamid oder N,N'-Diethyl-N,N'-dipropionyl-sulfurylamid;
- Triacylcyanurate, z.B. Triacetylcyanurat oder Tribenzoylcyanurat;
- Carbonsäureanhydride, z.B. Benzoësäureanhydrid, m-chlorbenzoësäureanhydrid oder Phthalsäureanhydrid;
- 10 - 1,3-Diacyl-4,5-diacyloxy-imidazoline, z.B. 1,3-Diacetyl-4,5-diacetoxyimidazolin;
- Tetraacetylglycoluril und Tetrapropionylglycoluril;
- diacylierte 2,5-Diketopiperazine, z.B. 1,4-Diacetyl-2,5-diketopiperazin;
- Acylierungsprodukte von Propylendiharnstoff und 2,2-Dimethylpropylen-diharnstoff, z.B. Tetraacetylpropylendiharnstoff;
- 15 - α -Acyloxy-polyacyl-malonamide, z.B. α -Acetoxy-N,N'-diacetylmalonamid;
- Diacyl-dioxohexahydro-1,3,5-triazine, z.B. 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazin.

Ebenso verwendbar sind 1-Alkyl- oder 1-Aryl-(4H)-3,1-benzoxazin-4-one, wie sie beispielsweise beschrieben sind in der EP-B1-0 332 294 und der EP-B 0 502 013. Insbesondere verwendbar sind 2-Phenyl-(4H)-3,1-benzoxazin-4-on und 2-Methyl-(4H)-3,1-benzoxazin-4-on.

Weiterhin verwendbar sind kationische Nitrile wie sie beispielsweise in EP 303 520 und EP 458 391 A1 beschrieben sind. Beispiele für geeignete Kationnitrite sind die Methosulfate oder Tosylate von Trimethylammoniumacetonitril, N,N-Dimethyl-N-octylammonium-acetonitril, 2-(Trimethylammonium)propionitril, 2-(Trimethylammonium)-2-methyl-propionitril, N-Methylpiperazinium-N,N'-diacetonitril und N-Methylmorpholiniumacetronitril.

30 Besonders geeignete kristalline Bleichaktivatoren sind Tetraacetylethylendiamin (TAED), NOBS, isoNOBS, Carbonylbiscaprolactam, Benzoylcapro lactam, Bis(2-propylimino)carbonat, Bis(cyclohexylimino)carbonat, O-Benzoylacetonoxim und 1-Phenyl-(4H)-3,1-benzoxazin-4-on, Anthranil, Phenylanthranil, N-Methylmorpholinoacetonitril, N-Octanoylcapro lactam (OCL) und N-Methylpiperazin-N,N'-diacetonitril sowie flüssige oder schlecht kristallisierende Bleichaktivatoren in einer als Festprodukt konfektionierten Form.

Bleichstabilisator

- 5 Dabei handelt es sich um Additive, die Schwermetallspuren adsorbieren, binden oder komplexieren können. Beispiele für erfindungsgemäß verwendbare Zusätze mit bleichstabilisierender Wirkung sind polyanionische Verbindungen wie Polyphosphate, Polycarboxylate, Polyhydroxypolycarboxylate, lösliche Silikate als vollständig oder teilweise neutralisierte Alkali- oder Erdalkalisalze, insbesondere als neutrale Na- oder Mg-
10 Salze, die relativ schwache Bleichstabilisatoren sind. Starke erfindungsgemäß verwendbare Bleichstabilisatoren sind beispielsweise Komplexbildner, wie Ethylenediamintetraacetat (EDTA), Nitritotriessigsäure (NTA), Methylglycindiessigsäure (MGDA), β -Alanindiessigsäure (ADA), Ethylenediamin-N,N'-disuccinat (EDDS) und Phosphonate wie Ethylenediamintetramethylenphosphonat, Diethylentriaminpentamethylenphosphonat oder
15 Hydroxyethyliden-1,1-diphosphonsäure in Form der Säuren oder als teilweise oder vollständig neutralisierte Alkalimetallsalze. Vorzugsweise werden die Komplexbildner in Form ihrer Na-Salze eingesetzt.

Auf dem Gebiet der Textilwäsche, der Bleiche und der Reinigung im Haushalt und im gewerblichen Bereich können die beschriebenen Bleich- oder Textilwaschmittelzusammensetzungen gemäß einer Ausführungsform der Erfindung nahezu alle üblichen Bestandteilen von Wasch-, Bleich- und Reinigungsmitteln enthalten. Man kann auf diese Weise beispielsweise Mittel aufbauen, die sich speziell zur Textilbehandlung bei niederen Temperaturen eignen, und auch solche, die in mehreren Temperaturbereichen bis hinauf zum traditionellen Bereich der Kochwäsche geeignet sind.
20
25

Hauptbestandteile von Textilwasch- und Reinigungsmitteln sind neben Bleichmittelzusammensetzungen Gerüstsubstanzen (Builder), d. h. anorganische Builder und/oder organische Cobuilder, und Tenside, insbesondere anionische und/oder nichtionische Tenside. Daneben können andere übliche Hilfsstoffe und Begleitstoffe wie Stellmittel, Komplexbildner, Phosphonate, Farbstoffe, Korrosionsinhibitoren, Vergrauungsinhibitoren und/oder Soil-Release-Polymer, Farübertragungsinhibitoren, Bleichkatalysatoren, Peroxidstabilisatoren, Elektrolyte, optische Aufheller, Enzyme, Parfumöle, Schaumregulatoren und aktivierende Substanzen in diesen Mitteln vorliegen,
30
35 wenn dies zweckmäßig ist.

Anorganische Builder (Gerüstsubstanzen)

Als anorganische Buildersubstanzen eignen sich alle üblichen anorganischen Builder wie Alumosilikate, Silikate, Carbonate und Phosphate.

5

Geeignete anorganische Builder sind z.B. Alumosilikate mit ionenaustauschenden Eigenschaften wie z.B. Zeolithe. Verschiedene Typen von Zeolithen sind geeignet, insbesondere Zeolith A, X, B, P, MAP und HS in ihrer Na-Form oder in Formen, in denen Na teilweise gegen andere Kationen wie Li, K, Ca, Mg oder Ammonium ausgetauscht sind. Geeignete Zeolithe sind beispielsweise beschrieben in EP-A 038 591, EP-A 021 491, EP-A 087 035, US-A 4,604,224, GB-A2 013 259, EP-A 522 726, EP-A 384 070 und WO-A 94/24 251.

10 Weitere geeignete anorganische Builder sind z.B. amorphe oder kristalline Silikate wie z.B. amorphe Disilikate, kristalline Disilikate wie das Schichtsilikat SKS-6 (Hersteller Hoechst). Die Silikate können in Form ihrer Alkali-, Erdalkali- oder Ammoniumsalze eingesetzt werden. Vorzugsweise werden Na-, Li- und Mg-Silikate eingesetzt.

Anionische Tenside

20

Geeignete anionische Tenside sind die erfindungsgemäß linearen und/oder leicht verzweigten Alkylbenzolsulfonate (LAS).

25 Weitere geeignete anionische Tenside sind beispielsweise Fettalkoholsulfate von Fettalkoholen mit 8 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen, z.B. C₉-C₁₁-Alkoholsulfate, C₁₂-C₁₃-Alkoholsulfate, Cetylulfat, Myristylsulfat, Palmitylsulfat, Stearylsulfat und Talgfettalkoholsulfat.

30 Weitere geeignete anionische Tenside sind sulfatierte ethoxylierte C₈-C₂₂-Alkohole (Alkylethersulfate) bzw. deren lösliche Salze. Verbindungen dieser Art werden beispielsweise dadurch hergestellt, daß man zunächst einen C₈-C₂₂-, vorzugsweise einen C₁₀-C₁₈-Alkohol, z.B. einen Fettalkohol, alkoxyliert und das Alkoxylierungsprodukt anschließend sulfatiert. Für die Alkoxylierung verwendet man vorzugsweise Ethylenoxid, wobei man pro Mol Fettalkohol 2 bis 50, vorzugsweise 3 bis 20 mol Ethylenoxid einsetzt.

35 Die Alkoxylierung der Alkohole kann jedoch auch mit Propylenoxid allein und gegebenenfalls Butylenoxid durchgeführt werden. Geeignet sind außerdem solche alkoxylierte C₈-C₂₂-Alkohole, die Ethylenoxid und Propylenoxid oder Ethylenoxid und

Butylenoxid enthalten. Die alkoxylierten C₈- bis C₂₂-Alkohole können die Ethylenoxid-, Propylenoxid- und Butylenoxideinheiten in Form von Blöcken oder in statistischer Verteilung enthalten.

- 5 Weitere geeignete anionische Tenside sind N-Acylsarkosinate mit aliphatischen gesättigten oder ungesättigten C₈-C₂₅-Acylresten, vorzugsweise C₁₀-C₂₀-Acylresten, z. B. N-Oleoylsarkosinat.

Die anionischen Tenside werden dem Waschmittel vorzugsweise in Form von Salzen
10 zugegeben. Geeignete Kationen in diesen Salzen sind Alkalimetallsalze wie Natrium, Kalium und Lithium und Ammoniumsalze wie z.B. Hydroxyethylammonium-, Di(hydroxyethyl)ammonium- und Tri(hydroxyethyl)ammoniumsalze.

Vorzugsweise enthalten die erfindungsgemäßen Waschmittel C₁₀-C₁₃-lineare und/oder –
15 leicht verzweigte Alkylbenzolsulfonate (LAS).

Nichtionische Tenside

20 Als nichtionische Tenside eignen sich beispielsweise alkoxylierte C₈-C₂₂-Alkohole wie Fettalkoholalkoxylate oder Oxoalkoholalkoxylate. Die Alkoxylierung kann mit Ethylenoxid, Propylenoxid und/oder Butylenoxid durchgeführt werden. Als Tensid einsetzbar sind hierbei sämtliche alkoxylierten Alkohole, die mindestens zwei Moleküle eines vorstehend genannten Alkylenoxids addiert enthalten. Auch hierbei kommen
25 Blockpolymerivate von Ethylenoxid, Propylenoxid und/oder Butylenoxid in Betracht oder Anlagerungsprodukte, die die genannten Alkylenoxide in statistischer Verteilung enthalten. Pro Mol Alkohol verwendet man 2 bis 50, vorzugsweise 3 bis 20 mol mindestens eines Alkylenoxids. Vorzugsweise setzt man als Alkylenoxid Ethylenoxid ein. Die Alkohole haben vorzugsweise 10 bis 18 Kohlenstoffatome.

30 Eine weitere Klasse geeigneter nichtionischer Tenside sind Alkylphenolethoxylate mit C₆-C₁₄-Alkylketten und 5 bis 30 mol Ethylenoxideinheiten.

Eine andere Klasse nichtionischer Tenside sind Alkylpolyglucoside mit 8 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen in der Alkylkette. Diese Verbindungen
35 enthalten meist 1 bis 20, vorzugsweise 1,1 bis 5 Glucosideinheiten.

Eine andere Klasse nichtionischer Tenside sind N-Alkylglucanide der allgemeinen Struktur II oder III

5

wobei R⁶ C₆-C₂₂-Alkyl, R7 H oder C₁-C₄-Alkyl und R8 ein Polyhydroxyalkyl-Rest mit 5 bis 12 C-Atomen und mindestens 3 Hydroxygruppen ist. Vorzugsweise ist R₆ C₁₀-C₁₈-Alkyl, R⁷ Methyl und R⁸ ein C₅- oder C₆-Rest. Beispielsweise erhält man derartige Verbindungen durch die Acylierung von reduzierend aminierten Zuckern mit Säurechloriden von C₁₀-C₁₈-Carbonsäuren.

15 Organischer Cobuilder

- Geeignete niedermolekulare Polycarboxylate als organische Cobuilder sind beispielsweise: C₄-C₂₀-Di-, -Tri- und -Tetracarbonsäuren wie z.B. Bernsteinsäure, Propantricarbonsäure, Butantetracarbonsäure, Cyclopentantetracarbonsäure und Alkyl- und Alkenylbernsteinsäuren mit C₂-C₁₆-Alkyl- bzw.-Alkenyl-Resten;
- C₄-C₂₀-Hydroxycarbonsäuren wie z.B. Äpfelsäure, Weinsäure, Gluconsäure, Glucarsäure, Citronensäure, Lactobionsäure und Saccharosemono-, -di- und tricarbonsäure;
- Aminopolycarboxylate wie z.B. Nitrilotriessigsäure, Methylglycindiessigsäure, Alanindiessigsäure, Ethylendiamintetraessigsäure und Serindiessigsäure;
- Salze von Phosphonsäuren wie z.B. Hydroxyethandiphosphonsäure, Ethylendiamintetra(methylenphosphonat) und Diethylentriaminpenta(methylenphosphonat).
- Geeignete oligomere oder polymere Polycarboxylate als organische Cobuilder sind beispielsweise:

- 25 -

Oligomaleinsäuren, wie sie beispielsweise in EP-A-451 508 und EP-A-396 303 beschrieben sind;

Co- und Terpolymere ungesättigter C₄-C₈-Dicarbonsäuren, wobei als Comonomere
5 monoethylenisch ungesättigte Monomere

- aus der Gruppe (i) in Mengen von bis zu 95 Gew.-%
- aus der Gruppe (ii) in Mengen von bis zu 60 Gew.-%
- aus der Gruppe (iii) in Mengen von bis zu 20 Gew.-%
- 10 einpolymerisiert enthalten sein können.

Als ungesättigte C₄-C₈-Dicarbonsäuren sind hierbei beispielsweise Maleinsäure, Fumarsäure, Itaconsäure und Citraconsäure geeignet. Bevorzugt ist Maleinsäure.

15 Die Gruppe (i) umfaßt monoethylenisch ungesättigte C₃-C₈-Monocarbonsäuren wie z.B. Acrylsäure, Methacrylsäure, Crotonsäure und Vinylsäure. Bevorzugt werden aus der Gruppe (i) Acrylsäure und Methacrylsäure eingesetzt.

Die Gruppe (ii) umfaßt monoethylenisch ungesättigte C₂-C₂₂-Olefine, Vinylalkylether mit C₁-
20 C₈-Alkylgruppen, Styrol, Vinylester von C₁-C₈ Carbonsäuren, (Meth)acrylamid und Vinylpyrrolidon. Bevorzugt werden aus der Gruppe (ii) C₂-C₆-Olefine, Vinylalkylether mit C₁-C₄-Alkylgruppen, Vinylacetat und Vinylpropionat eingesetzt.

25 Die Gruppe (iii) umfaßt (Meth)acrylester von C₁-C₈-Alkoholen, (Meth)acrylnitril, (Meth)acrylamide von C₁-C₈-Aminen, N-Vinylformamid und Vinylimidazol.

Falls die Polymeren der Gruppe (ii) Vinylester einpolymerisiert enthalten, können diese auch teilweise oder vollständig zu Vinylalkohol-Struktureinheiten hydrolysiert vorliegen.
Geeignete Co- und Terpolymere sind beispielsweise aus US-A 3 887 806 sowie DE-A43 13
30 909 bekannt.

Als Copolymeren von Dicarbonsäuren eignen sich als organische Cobuilder vorzugsweise:

Copolymeren von Maleinsäure und Acrylsäure im Gewichtsverhältnis 10:90 bis 95:5,
35 besonders bevorzugt solche im Gewichtsverhältnis 30:70 bis 90:10 mit Molmassen von 10.000 bis 150.000;

Terpolymere aus Maleinsäure, Acrylsäure und einem Vinylester einer C₁-C₃-Carbonsäure im Gewichtsverhältnis 10(Maleinsäure):90(Acrylsäure + Vinylester) bis 95(Maleinsäure):5(Acrylsäure + Vinylester), wobei das Gew.-Verhältnis von Acrylsäure zu Vinylester im Bereich von 20:80 bis 80:20 variieren kann, und besonders bevorzugt

5

Terpolymere aus Maleinsäure, Acrylsäure und Vinylacetat oder Vinylpropionat im Gewichtsverhältnis 20(Maleinsäure):80(Acrylsäure + Vinylester) bis 90(Maleinsäure):10(Acrylsäure + Vinylester), wobei das Gewichtsverhältnis von Acrylsäure zum Vinylester im Bereich von 30:70 bis 70:30 variieren kann;

10

Copolymere von Maleinsäure mit C₂-C₈-Olefinen im Molverhältnis 40:60 bis 80:20, wobei Copolymere von Maleinsäure mit Ethylen, Propylen oder Isobutan im Molverhältnis 50:50 besonders bevorzugt sind.

15

Pfropfpolymere ungesättigter Carbonsäuren auf niedermolekulare Kohlenhydrate oder hydrierte Kohlenhydrate, vgl. US-A 5,227,446, DE-A-44 15 623, DE-A-43 13 909, sind ebenfalls als organische Cobuilder geeignet.

20

Geeignete ungesättigte Carbonsäuren sind hierbei beispielsweise Maleinsäure, Fumarsäure, Itaconsäure, Citraconsäure, Acrylsäure, Methacrylsäure, Crotonsäure und Vinylessigsäure sowie Mischungen aus Acrylsäure und Maleinsäure, die in Mengen von 40 bis 95Gew.-%, bezogen auf die zu pfropfende Komponente, aufgepfropft werden.

25

Zur Modifizierung können zusätzlich bis zu 30 Gew.-%, bezogen auf die zu pfropfende Komponente, weitere monoethylenisch ungesättigte Monomere einpolymerisiert vorliegen. Geeignete modifizierende Monomere sind die oben genannten Monomere der Gruppen (ii) und (iii).

30

Als Pfropfgrundlage sind abgebaut Polysaccharide wie z.B saure oder enzymatisch abgebaut Stärken, Inuline oder Zellulose, reduzierte (hydrierte oder hydrierend aminierte) abgebaut Polysaccharide wie z.B. Mannit, Sorbit, Aminosorbit und Glucamin geeignet sowie Polyalkylenglycole mit Molmassen bis zu M_w = 5.000 wie z.B Polyethylenglycole, Etylenoxid/Propylenoxid- bzw. Etylenoxid/Butylenoxid-Blockcopolymere, statistische Etylenoxid/Propylenoxid- bzw. Etylenoxid/Butylenoxid-Copolymere, alkoxilierte ein- oder mehrbasische C₁-C₂₂-Alkohole, vgl. US-A 4,746,456.

35

Bevorzugt werden aus dieser Gruppe gepfropfte abgebauten bzw. abgebauten reduzierten Stärken und gepfropfte Polyethylenoxide eingesetzt, wobei 20 bis 80 Gew.-% Monomere bezogen auf die Pfropfkomponente bei der Pfropfpolymerisation eingesetzt werden. Zur Pfropfung wird vorzugsweise eine Mischung von Maleinsäure und Acrylsäure im Gew.-Verhältnis von 90:10
5 bis 10:90 eingesetzt.

Polyglyoxylsäuren als organische Cobuilder sind beispielsweise beschrieben in EP-B-001 004, US-A 5,399,286, DE-A-41 06 355 und EP-A-656 914. Die Endgruppen der Polyglyoxylsäuren können unterschiedliche Strukturen aufweisen.

10 Polyamidocarbonsäuren und modifizierte Polyamidocarbonsäuren als organische Cobuilder sind beispielsweise bekannt aus EP-A-454 126, EP-B-511 037, WO-A 94/01486 und EP-A-581 452.

15 Vorzugsweise verwendet man als organische Cobuilder auch Polyasparaginsäure oder Cokondensate der Asparaginsäure mit weiteren Aminosäuren, C₄-C₂₅-Mono-oder -Dicarbonsäuren und/oder C₄-C₂₅-Mono- oder -Diaminen. Besonders bevorzugt werden in phosphorhaltigen Säuren hergestellte, mit C₆-C₂₂-Mono- oder -Dicarbonsäuren bzw. mit C₆-C₂₂-Mono- oder -Diaminen modifizierte Polyasparaginsäuren eingesetzt.

20 Kondensationsprodukte der Citronensäure mit Hydroxycarbonsäuren oder Polyhydroxyverbindungen als organische Cobuilder sind z.B. bekannt aus WO-A 93/22362 und WO-A 92/16493. Solche Carboxylgruppen enthaltende Kondensate haben üblicherweise Molmassen bis zu 10.000, vorzugsweise bis zu 5.000.

25 **Vergrauungsinhibitoren und Soil-Release-Polymere**

Geeignete Soil-Release-Polymere und/oder Vergrauungsinhibitoren für Waschmittel sind beispielsweise:

30 Polyester aus Polyethylenoxiden mit Ethylenglycol und/oder Propylenglycol und aromatischen Dicarbonsäuren oder aromatischen und aliphatischen Dicarbonsäuren;

35 Polyester aus einseitig endgruppenverschlossenen Polyethylenoxiden mit zwei-und/oder mehrwertigen Alkoholen und Dicarbonsäure.

Derartige Polyester sind bekannt, beispielsweise aus US-A 3,557,039, GB-A 1 154 730, EP-A-185 427, EP-A-241 984, EP-A-241 985, EP-A- 272 033 und US-A 5,142,020.

- Weitere geeignete Soil-Release-Polymer sind amphiphile Propf- oder Copolymer von
- 5 Vinyl-und/oder Acrylestern auf Polyalkylenoxide (vgl. US-A 4,746,456, US-A 4,846,995, DE-A-37 11 299, US-A 4,904,408, US-A 4,846,994 und US-A 4,849,126) oder modifizierte Cellulosen wie z.B. Methylcellulose, Hydroxypropylcellulose oder Carboxymethylcellulose.

Farübertragungsinhibitoren

10

Als Farübertragungsinhibitoren werden beispielsweise Homo- und Copolymer des Vinylpyrrolidons, des Vinylimidazols, des Vinyloxazolidons und des 4-Vinylpyridin-N-oxids mit Molmassen von 15.000 bis 100.000 sowie vernetzte feinteilige Polymere auf Basis dieser Monomeren eingesetzt. Die hier genannte Verwendung solcher Polymere ist bekannt, vgl.

15 DE-B- 22 32 353, DE-A-28 14 287, DE-A-28 14 329 und DE-A-43 16 023.

Enzyme

20

Geeignete Enzyme sind beispielsweise Proteasen, Amylasen, Lipasen und Cellulasen, insbesondere Proteasen. Es können mehrere Enzyme in Kombination verwendet werden.

25

Neben der Anwendung in Wasch- und Reinigungsmitteln für die Textilwäsche im Haushalt sind die erfindungsgemäß verwendbaren Waschmittelzusammensetzungen auch im Bereich der gewerblichen Textilwäsche und der gewerblichen Reinigung einsetzbar. In der Regel wird in diesem Einsatzbereich Peressigsäure als Bleichmittel eingesetzt, die als wäßrige Lösung der Waschflotte zugesetzt wird.

Verwendung in Textilwaschmitteln

30

Ein typisches erfindungsgemäßes pulver- oder granulatförmiges Vollwaschmittel kann beispielsweise folgende Zusammensetzung aufweisen:

35

- 0,5 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, mindestens eines anionischen und/- oder nichtionischen Tensids,
- 0,5 bis 60 Gew.-%, vorzugsweise 15 bis 40 Gew.-%, mindestens eines anorganischen Builders,

- 0 bis 20 Gew.-%, vorzugsweise 0,5 bis 8 Gew.-%, mindestens eines organischen Cobuilders,
 - 2 bis 35 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, eines anorganischen Bleichmittels,
 - 0,1 bis 20 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, eines Bleichaktivators,
 - 5 gegebenenfalls in Abmischung mit weiteren Bleichaktivatoren,
 - 0 bis 1 Gew.-%, vorzugsweise bis höchstens 0,5 Gew.-%, eines Bleichkatalysators,
 - 0 bis 5 Gew.-%, vorzugsweise 0 bis 2,5% Gew.-%, eines polymeren Farübertragungs-inhibitors,
 - 0 bis 1,5 Gew.-%, vorzugsweise 0,1 bis 1,0 Gew.-%, Protease,
 - 10 - 0 bis 1,5 Gew.-%, vorzugsweise 0,1 bis 1,0 Gew.-%, Lipase,
 - 0 bis 1,5 Gew.-%, vorzugsweise 0,2 bis 1,0 Gew.-% eines Soil-Release-Polymers,
- ad 100% übliche Hilfs- und Begleitstoffe und Wasser.
- 15 Vorzugsweise in Waschmitteln eingesetzte anorganische Builder sind Natriumcarbonat, Natriumhydrogencarbonat, Zeolith A und P sowie amorphe und kristalline Na-Silikate.
- Vorzugsweise in Waschmitteln eingesetzte organische Cobuilder sind Acrylsäure/Maleinsäure-Copolymere, Acrylsäure/Maleinsäure/Vinylester-Terpolymere und
- 20 Citronensäure.
- Vorzugsweise in Waschmitteln eingesetzte anorganische Bleichmittel sind Natriumperborat und Natriumcarbonat-Perhydrat.
- 25 Vorzugsweise in Waschmitteln eingesetzte anionische Tenside sind die erfundungsgemäßen linearen und leicht verzweigten Alkylbenzolsulfonate (LAS), Fettalkoholsulfate und Seifen.
- Vorzugsweise in Waschmitteln eingesetzte nichtionische Tenside sind C₁₁-C₁₇-Oxoalkoholethoxylate mit 3-13 Ethylenoxid-Einheiten, C₁₀-C₁₆-Fettalkoholethoxylate mit 3-
- 30 13 Ethylenoxideinheiten sowie zusätzlich mit 1-4 Propylenoxid- oder Butylenoxid-Einheiten alkoxylierte ethoxylierte Fett- oder Oxoalkohole.
- Vorzugsweise in Waschmitteln eingesetzte Enzyme sind Protease, Lipase und Cellulase. Von den handelsüblichen Enzymen werden dem Waschmittel in der Regel Mengen von 0,05 bis
- 35 2,0 Gew.-%, vorzugsweise 0,2 bis 1,5 Gew.-%, des konfektionierten Enzyms zugesetzt. Geeignete Proteasen sind z.B Savinase, Desazym und Esperase (Hersteller Novo Nordisk).

- 30 -

Eine geeignete Lipase ist z.B. Lipolase (Hersteller Novo Nordisk). Eine geeignete Cellulase ist z.B. Celluzym (Hersteller Novo Nordisk).

- Vorzugsweise in Waschmitteln eingesetzte Vergrauungsinhibitoren und Soil-Release-
5 Polymere sind Ppropfpolymere von Vinylacetat auf Polyethylenoxid der Molmasse 2.500-
8.000 im Gewichtsverhältnis 1,2:1 bis 3,0:1,
Polyethylenterephthalate/Oxyethylenterephthalate der Molmasse 3.000 bis 25.000 aus
Polyethylenoxiden der Molmasse 750 bis 5.000 mit Terephthalsäure und Ethylenoxid und
einem Molverhältnis von Polyethylenterephthalat zu Polyoxyethylenterephthalat von 8:1 bis
10 1:1 sowie Blockpolykondensate gemäß DE-A-44 03 866.

Vorzugsweise in Waschmitteln eingesetzte Farbübertragungsinhibitoren sind lösliche
Vinylpyrrolidon- und Vinylimidazol-Copolymere mit Molmassen über 25.000 sowie
feinteilige vernetzte Polymere auf Basis Vinylimidazol.

- 15 Die erfindungsgemäßen pulver- oder granulatförmigen Waschmittel können bis zu 60 Gew.-%
anorganischer Stellmittel enthalten. Üblicherweise wird hierfür Natriumsulfat verwendet.
Vorzugsweise sind die erfindungsgemäßen Waschmittel aber arm an Stellmitteln und
enthalten nur bis zu 20 Gew.-%, besonders bevorzugt nur bis 8Gew.-% an Stellmitteln.

- 20 Die erfindungsgemäßen Waschmittel können unterschiedliche Schüttdichten im Bereich von
300 bis 1.200, insbesondere 500 bis 950g/l, besitzen. Moderne Kompaktwaschmittel besitzen
in der Regel hohe Schüttdichten und zeigen einen Granulataufbau.

- 25 Die Erfindung wird anhand der nachstehenden Beispiele näher erläutert.

Beispiel 1

- 30 Eine butadienfreie C₄-Fraktion mit einem Gesamtbutengehalt von 84,2 Gew.-% sowie
einem Molverhältnis 1-Buten zu 2-Butene von 1 zu 1,06 wird bei 40°C und 10 bar
kontinuierlich über einen mit Re₂O₇/Al₂O₃-Heterogenkontakt bestückten Rohrreaktor
geleitet. Die Katalysator-Belastung beträgt im Beispiel 4500 kg/m²h. Der Reaktionsaustrag
wird destillativ getrennt und enthält folgende Komponenten (Angaben in Massenprozent):
35 Ethen 1,15 %; Propen 18,9 %, Butane 15,8 %, 2-Butene 19,7 %, 1-Buten 13,3 %, i-Buten
1,0 %, 2-Penten 19,4 %, Methylbutene 0,45 %, 3-Hexen 10,3 %.

2-Penten und 3-Hexen werden aus dem Produkt destillativ in Reinheiten > 99 Gew.-% gewonnen.

Beispiel 2

5

Kontinuierliche Dimerisierung von 3-Hexen im Festbettverfahren

Katalysator: 50 % NiO, 34 % SiO₂, 13 % TiO₂, 3 % Al₂O₃ (gemäß DE 43 39 713)

eingesetzt als 1-1,5 mm Splitt (100 ml), 24 h bei 160°C in N₂ konditioniert

Reaktor: isotherm, 16 mm-Ø-Reaktor

10 WHSV: 0,25 kg/l.h

Druck: 20 bis 25 bar

Temperatur: 100 bis 160°C

Das Sammel-Produkt wurde bis zu einer C₁₂-Reinheit von 99,9 Gew.-% aufdestilliert und eine Bestimmung der Gerüstisomeren der C₁₂-Fraktion durchgeführt (14,2 % n-Dodecene,

15 31,8 % 5-Methylundecene, 29,1 % 4-Ethyldecene, 6,6 % 5,6-Dimethyldecene, 9,3 % 4-Methyl-5-ethylnonene, 3,7 % 4,5-Diethyloctene, Angaben in Gew.-%).

Beispiel 3

20 2-Penten aus der Raffinat II-Metathese wurde analog zu Beispiel 2 kontinuierlich an einem Ni-Hetrogenkatalysator dimerisiert. Durch fraktionierte Destillation des Produktes wurde eine Decenfraktion mit einer Reinheit von 99,5 % erhalten.

1 H-NMR-spektroskopisch wurde nach Hydrierung des Olefins ein Isoindex von 1,36 bestimmt. Die hydierte Probe wurde dann gaschromatographisch in Hinblick auf die 25 Gerüstisomere der Paraffine analysiert. (n-Decan 13,0 %, 4-Methylnonan 26,9 %, 3-Ethyloctan 16,5 %, 4,5-Dimethyloctan 5,4 %, 3,4-Diethylhexan 6,8 %, 3-Ethyl-4-methylheptan 9,2 %, (Angaben in Gew.-%)). Die Probe enthält 22 % C 10-Paraffine nicht zuzuordnender Struktur.

30 Beispiel 4

Eine Mischung von 2-Penten und 3-Hexen aus der Raffinat II-Metathese wurde analog zu Beispiel 2 und Beispiel 3 kontinuierlich dimerisiert. Durch fraktionierte Destillation des Produktes wurde eine Decen-/Undecen-/Dodecenfraktion mit einer Reinheit von 99,5 % erhalten.

Beispiel 5 (Vergleich)

In einem 6 L Reaktor wurden 6458g Benzol und 39,2g AlCl₃ vorgelegt und unter Röhren
1393g eines C₁₂-Olefingemisches entsprechend Beispiel 2 zudosiert. Die
5 Reaktionstemperatur von 20 °C wurde durch Kühlung im Eisbad und durch Variation der
Dosiergeschwindigkeit des Olefingemisches reguliert. Nach 55 min wurde das
Reaktionsgemisch dekantiert, mit NaOH neutralisiert und mit demineralisiertem Wasser
gewaschen. Danach erfolgte eine Filtration und Trocknung über Rund- und Wattefilter.
Die LAB-Ausbeute betrug 83,4%. Das Alkylbenzolgemisch bestand aus 56% PhCH₂R',
10 44% PhCRR'R'' und 0% PhCH₂R .

Beispiel 6

- 15 In einen 2 L Vierhalskolben mit Magnetrührer, Thermometer, Tropftrichter,
Gaseinleitfritte und Gasausgang werden 1900 g an SO₃-verarmtem Oleum vorgelegt. Über
den Gasausgang ist dieser Kolben mit einem 1 L Dreihalskolben über einen Vitonschlauch
verbunden.
- 20 In diesem 1 L Kolben mit Blattrührer, Thermometer, Gaseinleitfritte und Gasausgang wird
eine Alkylbenzolmischung analog Beispiel 5 vorgelegt:

Das verarmte Oleum wird im SO₃-Entwickler auf 120 °C gebracht und das Oleum (65%ig)
über einen Tropftrichter innerhalb von 30 Minuten zugegeben. Mit einem Stickstoffstrom
25 von 80 L/h wird das SO₃-Gas ausgestript und über ein 6mm Einleitrohr in das
Alkylbenzol eingeleitet. Die Temperatur der Alkylbenzol/Alkylbenzolsulfonsäure-
Mischung steigt langsam auf 40 °C an und wird mit Kühlwasser auf 40 °C gehalten. Das
Restgas wird über eine Wasserstrahlpumpe abgesaugt.

- 30 Das molare Verhältnis von SO₃/Alkylbenzol beträgt 1,01:1.
Die gebildete Alkylbenzol-Sulfonsäure wird nach einer Nachreaktionszeit von 4h mit
0,4Gew% Wasser stabilisiert und danach mit NaOH zum Alkylbenzolsulfonat neutralisiert.

Beispiel 7

- 35 12,75g HY-Zeolith (Si:Al = 5,58:1 molar) wurde 5h bei 500°C getrocknet und zusammen
mit 120g Benzol, 25,5g eines C₁₂-Olefingemisches entsprechend Beispiel 2 in einem 300

ml Stahlautoklaven 6h bei 180°C unter N₂ gerührt. Anschließend wurde der Zeolith abgetrennt und das Produktgemisch mittels GC analysiert (Säule DB-5, 50m). Es bestand aus 87,1% Benzol, 3,7% unumgesetztem C₁₂-Olefin, 7,6% Dodecylbenzol und <0,1% Schweralkylat (Dialkylbenzole) neben geringen Anteilen an unidentifizierten
5 Kohlenwasserstoffen.

Das Produktgemisch wurde bei 1 mbar im Vakuum destilliert. Zwischen 130°C und 150°C wurden 9,5g eines Alkylbenzolgemesches bestehend aus 97% PhCH₂R', 0% PhCRR'R'' und 3% PhCH₂R erhalten.

10

Beispiel 8

Ein Alkylbenzolgemesch analog Beispiel 7 wurde wie in Beispiel 6 ausgeführt zum Alkylbenzolsulfonat umgesetzt.

15

Beispiel 9 (Vergleich)

12,75g H-MOR-Zeolith (Si:Al = 24,5:1 molar) wurde 5h bei 500°C getrocknet und zusammen mit 120g Benzol, 25,5g eines C₁₂-Olefingemisches entsprechend Beispiel 2 in
20 einem 300 ml Stahlautoklaven 6h bei 180°C unter N₂ gerührt. Anschließend wurde der Zeolith abgetrennt und das Produktgemisch mittels GC analysiert (Säule DB-5, 50m). Es bestand aus 85,1% Benzol, 8,8% unumgesetztem C₁₂-Olefin, 4,4% Dodecylbenzol und <0,1% Schweralkylat (Dialkylbenzole) neben geringen Anteilen an unidentifizierten Kohlenwasserstoffen.

25 Das Produktgemisch wurde bei 1 mbar im Vakuum destilliert. Zwischen 130°C und 150°C wurden 4,9g eines Alkylbenzolgemesches bestehend aus 96% PhCH₂R', 2% PhCRR'R'' und 2% PhCH₂R erhalten.

30

12,75g H-ZSM-5-Zeolith (Si:Al = 42,5:1 molar) wurde 5h bei 500°C getrocknet und zusammen mit 120g Benzol, 25,5g eines C₁₂-Olefingemisches entsprechend Beispiel 2 in
einem 300 ml Stahlautoklaven 6h bei 180°C unter N₂ gerührt. Anschließend wurde der Zeolith abgetrennt und das Produktgemisch mittels GC analysiert (Säule DB-5, 50m). Es
35 bestand aus 88,6% Benzol, 7,1% unumgesetztem C₁₂-Olefin, 1,0% Dodecylbenzol und <0,1% Schweralkylat (Dialkylbenzole) neben geringen Anteilen an unidentifizierten Kohlenwasserstoffen.

Beispiel 11 (Vergleich)

5

12,75g H-MCM-22-Zeolith (Si:Al = 18,8:1 molar) wurde 5h bei 500°C getrocknet und zusammen mit 120g Benzol, 25,5g eines C₁₂-Olefingemisches entsprechend Beispiel 2 in einem 300 ml Stahlautoklaven 6h bei 180°C unter N₂ gerührt. Anschließend wurde der Zeolith abgetrennt und das Produktgemisch mittels GC analysiert (Säule DB-5, 50m). Es bestand aus 87,1% Benzol, 5,6% unumgesetztem C₁₂-Olefin, 6,7% Dodecylbenzol und <0,1% Schweralkylat (Dialkylbenzole) neben geringen Anteilen an unidentifizierten Kohlenwasserstoffen.

10

Das Produktgemisch wurde bei 1 mbar im Vakuum destilliert. Zwischen 130°C und 150°C wurden 8,4g eines Alkylbenzolgemesches bestehend aus 73% PhCHRR', 23% PhCRR'R'' und 4% PhCH₂R erhalten.

15

Beispiel 12

20

12,75g HY-Zeolith (Si:Al = 5,58:1 molar) wurde 5h bei 500°C getrocknet und zusammen mit 120g Benzol, 25,5g eines C₁₀-Olefingemisches entsprechend Beispiel 3 in einem 300 ml Stahlautoklaven 6h bei 180°C unter N₂ gerührt. Anschließend wurde der Zeolith abgetrennt und das Produktgemisch mittels GC analysiert (Säule DB-5, 50m). Das Produkt zeigte folgende Isomerenverteilung: 96% PhCHRR', 0% PhCRR'R'' und 4% PhCH₂R.

25

Beispiel 13

Ein Alkylbenzolgemesch analog Beispiel 12 wurde wie in Beispiel 6 ausgeführt zum Alkylbenzolsulfonat umgesetzt.

30

Beispiel 14

35

12,75g HY-Zeolith (Si:Al = 5,58:1 molar) wurde 5h bei 500°C getrocknet und zusammen mit 120g Benzol, 25,5g eines C₁₀₋₁₂-Olefingemisches entsprechend Beispiel 4 in einem 300 ml Stahlautoklaven 6h bei 180°C unter N₂ gerührt. Anschließend wurde der Zeolith abgetrennt und das Produktgemisch mittels GC analysiert (Säule DB-5, 50m). Das Produkt zeigte folgende Isomerenverteilung: 97% PhCHRR', 1% PhCRR'R'' und 2% PhCH₂R.

Beispiel 15

- Ein Alkylbenzolgemisch analog Beispiel 14 wurde wie in Beispiel 6 ausgeführt zum
5 Alkylbenzolsulfonat umgesetzt.

Beispiel 16

- 10 In einen beheizten (120°C) 10 L Vierhalskolben wird mit einer Pumpe 1L/h Oleum (65%) in konzentrierte Schwefelsäure eingeleitet. Durch die Schwefelsäure werden über eine Fritte 130l/h trockene Luft geleitet, die das SO₃ ausstrippen. Der mit SO₃ angereicherte Luftstrom (ca. 4% SO₃) wird in einem 2m-langen Fallfilmreaktor, bei etwa 40-50°C (10-15°C Doppelmantel-Wasserkühlung) mit einer Alkylbenzolmischung analog Beispiel 7 in
15 Kontakt gebracht und diese sulfoniert. Das molare Verhältnis von SO₃/Alkylbenzol beträgt 1,01:1. Die Reaktionszeit im Fallfilmreaktor beträgt etwa 10sec. Das Produkt wird in einen Nachreifungsbehälter gepumpt wo es etwa 4-8h verweilt. Danach wird die Sulfonsäure mit 0,4Gew% Wasser stabilisiert und mit NaOH zum Alkylbenzolsulfonat neutralisiert.

Patentansprüche

5

1. Verfahren zur Herstellung von Alkylarylverbindungen durch

10
1) Herstellung eines Gemisches von im statistischen Mittel vorwiegend einfach-verzweigten C₁₀₋₁₄-Olefinen durch

15

a) Umsetzung eines C₄-Olefin-Gemisches an einem Methathese-Katalysator zur Herstellung eines 2-Penten und/oder 3-Hexen enthaltenden Olefingemisches und gegebenenfalls Abtrennung von 2-Penten und/oder 3-Hexen, gefolgt von Dimerisierung des erhaltenen 2-Pentens und/oder 3-Hexens an einem Dimerisierungskatalysator zu einem C₁₀₋₁₂-Olefine enthaltenden Gemisch und gegebenenfalls Abtrennung der C₁₀₋₁₂-Olefine, oder

20

b) Extraktion vorwiegend einfach verzweigter Paraffine aus Kerosinschnitten und nachfolgende Dehydrierung, oder

c) Fischer-Tropsch-Synthese von Olefinen oder Paraffinen, wobei die Paraffine dehydriert werden, oder

25

d) Dimerisierung kürzerkettiger interner Olefine, oder

e) Isomerisierung von linearen Olefinen oder Paraffinen, wobei die isomerisierten Paraffine dehydriert werden,

30

2) Umsetzung des in Stufe 1) erhaltenen Olefingemisches mit einem aromatischen Kohlenwasserstoff in Gegenwart eines Alkylierungskatalysators, der Zeolithe des Typs Faujasit enthält.

35

2. Verfahren zur Herstellung von Alkylarylsulfonaten durch Herstellung von Alkylarylverbindungen gemäß Anspruch 1 und nachfolgend

3) Sulfonierung und Neutralisation der in Stufe 2) erhaltenen Alkylarylverbindungen.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in Stufe 1a) der Methathesekatalysator ausgewählt ist aus Verbindungen eines Metall der Nebengruppen VIb, VIIb oder VIII des Periodensystems der Elemente.
- 5
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in Stufe 2) die Reaktionsbedingungen und der Katalysator so gewählt werden, daß die erhaltenen Alkylarylverbindungen im Alkylrest 1 bis 3 Kohlenstoffatome mit einem H/C-Index von 1 aufweisen und der Anteil an Kohlenstoffatomen mit einem H/C-Index von 0 im Alkylrest statistisch kleiner als 5% ist.
- 10
5. Alkylarylverbindungen, erhältlich nach dem Verfahren gemäß Anspruch 1.
6. Alkylarylsulfonate, erhältlich nach dem Verfahren gemäß Anspruch 2.
- 15
7. Verwendung von Alkylarylsulfonaten gemäß Anspruch 6 als Tenside.
8. Verwendung nach Anspruch 7 in Wasch- und Reinigungsmitteln.
- 20
9. Wasch- und Reinigungsmittel, enthaltend neben üblichen Inhaltsstoffen Alkylarylsulfonate gemäß Anspruch 6.

INTERNATIONAL SEARCH REPORT

Int. App. No.
PCT/EP 01/13322

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C15/00 C07C309/28 C11D1/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 990 718 A (PELRINE) 5 February 1991 (1991-02-05) cited in the application claims 1,4 ---	1,5
Y		1
X	WO 99 05241 A (THE PROCTER & GAMBLE COMPANY) 4 February 1999 (1999-02-04) cited in the application claims	1,2,5-9
Y		1
X	WO 99 05082 A (THE PROCTER & GAMBLE COMPANY) 4 February 1999 (1999-02-04) cited in the application claims	1,2,5-9
Y		1
X	EP 0 807 616 A (CHEVRON CHEMICAL COMPANY) 19 November 1997 (1997-11-19) claims	1,5
Y		1
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

28 February 2002

08/03/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3010

Authorized officer

Van Geyt, J

INTERNATIONAL SEARCH REPORT

Inte
nal Application No
PCT/EP 01/13322

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	WO 01 64610 A (CHEVRON U.S.A.) 7 September 2001 (2001-09-07) claims -----	1,2,5-9
Y		1

PCT/EP01/13322

ADDITIONAL MATTER PCT/ISA/210

Continuation of box I.2

Claims no: 4

Relevant patent claim 4 relates to a method characterised by a worthwhile peculiarity or quality, namely the H/C ratio of the product.

For this reason the patent claims comprise all those methods, which exhibit this peculiarity or quality, whereas the description of the patent application provides support under the terms of PCT Article 5 for only a limited number of such methods. In the case in question, the patent claims lack the corresponding support or the patent application lacks the necessary disclosure to such a degree that a meaningful search appears impossible to conduct with respect to the entire scope for which protection is sought. Nevertheless, the patent claims also lack the clarity required in PCT Article 6, whereby an attempt was made to define the method in terms of the desired effect. This absence of clarity is such that it makes it impossible to conduct a meaningful search with respect to the entire scope for which protection is sought.

For this reason, the search was directed at those sections of the patent claims which can be regarded as clear, supported and disclosed in the above sense, namely those sections relating to the method as defined in claim 1.

The applicant is reminded that claims, or parts of claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). EPO policy, when acting as an International Preliminary Examining Authority, is normally not to carry out a preliminary examination on matter which has not been searched. This is the case, irrespective of whether or not the claims are amended following receipt of the search report (Article 19 PCT) or during any Chapter II procedure whereby the applicant provides new claims.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte
nal Application No

PCT/EP 01/13322

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
US 4990718	A	05-02-1991	DE 69015743 D1 DE 69015743 T2 EP 0417273 A1 JP 2689283 B2 JP 3505225 T WO 9011986 A1		16-02-1995 11-05-1995 20-03-1991 10-12-1997 14-11-1991 18-10-1990
WO 9905241	A	04-02-1999	AU 8124498 A BR 9810780 A CN 1270623 T EP 1002028 A1 WO 9905241 A1 JP 2001511471 T ZA 9806448 A		16-02-1999 18-09-2001 18-10-2000 24-05-2000 04-02-1999 14-08-2001 21-01-1999
WO 9905082	A	04-02-1999	AU 728580 B2 AU 8124298 A BR 9811519 A CN 1270574 T EG 21244 A EP 1001921 A1 HU 0002735 A2 WO 9905082 A1 JP 2001510858 T TR 200000882 T2 ZA 9806443 A		11-01-2001 16-02-1999 12-09-2000 18-10-2000 30-04-2001 24-05-2000 28-12-2000 04-02-1999 07-08-2001 21-09-2000 21-01-1999
EP 0807616	A	19-11-1997	CA 2204461 A1 DE 69704090 D1 DE 69704090 T2 EP 0807616 A2 JP 10053541 A US 5922922 A		14-11-1997 29-03-2001 13-06-2001 19-11-1997 24-02-1998 13-07-1999
WO 0164610	A	07-09-2001	AU 2327001 A AU 4332301 A NL 1017470 A1 WO 0164610 A1		30-08-2001 12-09-2001 30-08-2001 07-09-2001

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 01/13322

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07C15/00 C07C309/28 C11D1/22

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 4 990 718 A (PELRINE) 5. Februar 1991 (1991-02-05) in der Anmeldung erwähnt Ansprüche 1,4 ---	1,5
Y	WO 99 05241 A (THE PROCTER & GAMBLE COMPANY) 4. Februar 1999 (1999-02-04) in der Anmeldung erwähnt Ansprüche ---	1
X	WO 99 05082 A (THE PROCTER & GAMBLE COMPANY) 4. Februar 1999 (1999-02-04) in der Anmeldung erwähnt Ansprüche ---	1,2,5-9
Y	WO 99 05082 A (THE PROCTER & GAMBLE COMPANY) 4. Februar 1999 (1999-02-04) in der Anmeldung erwähnt Ansprüche ---	1
X	EP 0 807 616 A (CHEVRON CHEMICAL COMPANY) 19. November 1997 (1997-11-19) Ansprüche ---	1,5
Y	EP 0 807 616 A (CHEVRON CHEMICAL COMPANY) 19. November 1997 (1997-11-19) Ansprüche ---	1
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
28. Februar 2002	08/03/2002
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Van Geyt, J

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 01/13322

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Beir. Anspruch Nr.
P, X	WO 01 64610 A (CHEVRON U.S.A.) 7. September 2001 (2001-09-07) Ansprüche -----	1, 2, 5-9
Y		1

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 4

Der geltenden Patentanspruch 4 bezieht sich auf ein Verfahren, jeweils charakterisiert durch eine erstrebenswerte Eigenheit oder Eigenschaft, nämlich der H/C-Index des Produkts.

Der Patentanspruch umfasst daher alle Verfahren, die diese Eigenheit oder Eigenschaft aufweisen, wohingegen die Patentanmeldung Stütze durch die Beschreibung im Sinne von Art. 5 PCT nur für eine begrenzte Zahl solcher Verfahren liefert. Im vorliegenden Fall fehlt der Patentanspruch die entsprechende Stütze bzw. der Patentanmeldung die nötige Offenbarung in einem solchen Maße, daß eine sinnvolle Recherche über den gesamten erstrebten Schutzbereich unmöglich erscheint. Desungeachtet fehlt der Patentanspruch auch die in Art. 6 PCT geforderte Klarheit, nachdem in ihnen versucht wird, das Verfahren über das jeweils erstrebte Ergebnis zu definieren. Auch dieser Mangel an Klarheit ist dergestalt, daß er eine sinnvolle Recherche über den gesamten erstrebten Schutzbereich unmöglich macht. Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, welche im o.a. Sinne als klar, gestützt oder offenbart erscheinen, nämlich die Teile betreffend das Verfahren wie im Anspruch 1 definiert ist.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intra	Das Aktenzeichen
PCT/EP 01/13322	

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 4990718	A	05-02-1991		DE 69015743 D1 DE 69015743 T2 EP 0417273 A1 JP 2689283 B2 JP 3505225 T WO 9011986 A1		16-02-1995 11-05-1995 20-03-1991 10-12-1997 14-11-1991 18-10-1990
WO 9905241	A	04-02-1999		AU 8124498 A BR 9810780 A CN 1270623 T EP 1002028 A1 WO 9905241 A1 JP 2001511471 T ZA 9806448 A		16-02-1999 18-09-2001 18-10-2000 24-05-2000 04-02-1999 14-08-2001 21-01-1999
WO 9905082	A	04-02-1999		AU 728580 B2 AU 8124298 A BR 9811519 A CN 1270574 T EG 21244 A EP 1001921 A1 HU 0002735 A2 WO 9905082 A1 JP 2001510858 T TR 200000882 T2 ZA 9806443 A		11-01-2001 16-02-1999 12-09-2000 18-10-2000 30-04-2001 24-05-2000 28-12-2000 04-02-1999 07-08-2001 21-09-2000 21-01-1999
EP 0807616	A	19-11-1997		CA 2204461 A1 DE 69704090 D1 DE 69704090 T2 EP 0807616 A2 JP 10053541 A US 5922922 A		14-11-1997 29-03-2001 13-06-2001 19-11-1997 24-02-1998 13-07-1999
WO 0164610	A	07-09-2001		AU 2327001 A AU 4332301 A NL 1017470 A1 WO 0164610 A1		30-08-2001 12-09-2001 30-08-2001 07-09-2001