#### **Mathematical Operations**

- Base 10: our native base.
- Glyphs: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The algorithms to evaluate various functions are the same, regardless of base
- On a computer, we are limited to a certain number of digits.
- We can summarize our results: 0 == FALSE, 1 == TRUE
  - For unsigned operations:
    - the final value is Zero (Z)
    - the calculation resulted in final carry (C)
  - For signed values
    - the final value is Negative (S)
    - the calculation resulted in an overflow ()

#### Addition: (Before)

- First, introduce some status values:
  - Zero, Carry, (Sign, Overflow)
- Assume a word size of 4
- Notice the notation of "to carry" a value



| C 7 |  |  |
|-----|--|--|









C Z

### Addition: (After)

- First, introduce some status values:
  - Zero, Carry, (Sign, Overflow)
- Assume a word size of 4
- Notice the notation of "to carry" a value







#### Subtraction (before)

- 3757 1963 = 1794
- Traditional Method:
  - Notice the notation of "to borrow" a value
- Other Methods: (common core)
  - Left → Right (Mental Math)
  - Singapore (No Borrow)
  - Counting Up (Giving Change)
- Via Method of Complements



#### Subtraction (after)

- 3757 1963 = 1794
- Traditional Method:
  - Notice the notation of "to borrow" a value
- Other Methods: (common core)
  - Left → Right (Mental Math)
  - Singapore (No Borrow)
  - Counting Up (Giving Change)
- Via Method of Complements



### Method of Complements

- A technique to encode both positive and negative numbers
  - o uses the same algorithm to perform addition
  - subtraction perform my addition of complements
- Complement: a thing that completes or brings to perfection
- Radix 10: (the radix or base is the number of unique digits to represent a number)
  - o 10's complement

| 7 + x = 10   | : x is the 10s complements of 7  | x = 3  |
|--------------|----------------------------------|--------|
| 46 + y = 100 | : y is the 10s complements of 46 | y = 54 |

o 9's complement

The math:

| ۱. | 2nd Grade   | 10's complement  | 9's complement            |  |
|----|-------------|------------------|---------------------------|--|
|    | 45          | 45               | 45                        |  |
|    | <u>- 11</u> | <u>+ 89</u>      | <u>+ 88</u>               |  |
|    | 34          | <del>-1</del> 34 | <del>-1</del> 33 + 1 = 34 |  |

## Algorithm: Subtraction via 9's Complements

- Example: 873 218 ⇒ 0873 0218
- 1. Take the nines complement of the subtrahend (0218)
- 2. Add the complement to the minuend (0873)
- 3. Drop the leading "1"
- 4. Add 1



## Algorithm: Subtraction via 9's Complements

- Example: 873 218 ⇒ 0873 0218
- 1. Take the nines complement of the subtrahend (0218)
- 2. Add the complement to the minuend (0873)
- 3. Drop the leading "1"
- 4. Add 1
- Optimization: introduce initial carry in





# Algorithm: Subtraction via 10's Complements

- Example:  $13 9 \Rightarrow 0013 0009$
- 1. Take the 10s complement of the subtrahend (0009)
- 2. Add the complement to the minuend
- 3. Drop the leading "1".
- Optimization: Addition of adding one is baked in!



0