

FRC Steering

Ralph Lambert, FRC 1094

rivercityrobots@hotmail.com

636-542-0533

Steering - Considerations

- Pushing Force
- Position Holding
- Driving Straight
- Accurate Turning
- Axis of Rotation
- Degrees of Freedom
- Maintainability

- Complexity
- Risk
- Weight
- Cost
- Field Terrain
- Ease of Control
 - Controls Laws and Controllers

Robot Steering Factors

- Wheel Types
- Tread Types (Coefficient of Friction, μ)
- Number of Wheels
- Mounting Options
 - -Orientation
 - -Fixed vs Moveable

Pushing (Traction) Force

Coefficient of Friction (COF, μ)

- Interaction of Playing Surface & Wheel Tread
 - Material Soft or Sticky vs Hard or Slick
 - Shape Smooth or Rough

Wheel/Tread Types

- High Traction
- Slick
- Casters
- Omni-Wheels
- Mecanum
- Tank Treads

AndyMark Wheels

AndyMark Omniwheels

AndyMark Mecanum

Kornylak Wheels

<u>Transwheel</u>®

<u>Palletflo®</u>

6" Mecanum Wheel

Omniwheel

Pallet Flow

Rotacaster

Mini-Wheel®

<u>Superwheel</u>®

Heavy-Duty Mecanum Wheel

Vexrobotics.com/FRC Robot Traction Wheels

Skyway Wheels

Turning with Simple 4Wheel System

4 Wheel Drive

- Four Fixed High Traction (High μ)Wheels
- Symmetrical Wheel Motion for Forward and Back
- Differential Wheel Motion for Turns
- Ability to Turn Depends on Torque Created by Wheels Rotating Longitudinally vs Sliding Laterally

Turning with Simple 4Wheel System

D D HT HT SLμ

- Two Fixed High Traction
 (HT) Wheels & Two
 Wheels with Small Lateral
 μ (SLμ)
- Symmetrical Wheel Motion for Forward and Back
- Differential Wheel Motion for Turns
- Ability to Turn Depends on Torque Created by Wheels Rotating Longitudinally vs Sliding Laterally

Turning with Simple 6Wheel System

- Center HT Wheels
 ≈1/8" Lower Than
 Corner Wheels
- Can Use SLµ or HT
 Wheel on Corners
- Wheel Base for Turning Shortened
- Differential WheelMotion for Turns

Movement with Mecanum Wheel System

- Wheel Have Rollers Mounted at 45 Deg Angle
- Wheels Are Independently Driven
- Can Drive Straight,
 Rotate, Move Laterally and Any Combination
 Thereof
- Traction Reduced

Swerve/Crab Drive

- Angle and Speed of Each Wheel Controllable
- Can Move in Any
 Direction Independent of Chassis Orientation
- High Traction

Holonomic Drive

- Four High Traction Omni
 Wheels Mounted
 Orthogonally on Chassis
- Each Wheel
 Independently Driven
- Can Move in Any Direction
 Independent of Chassis
 Orientation

Objectively EvaluateAlternatives Designs

- Weighted Objective Table, Evaluation Matrix, Rubric
- List Design Options
- List Evaluation Criteria
- Assign Weights to Criteria
- Estimate Score for Each
 Element in Matrix
- Calculate Weighted Score