第三章 内积空间与 Hilbert 空间

习题 3

- 1. 举出至少两个线性赋范空间 X, 使得在 X 上的范数不能由内积生成.
- 2. 设 $\{x_n\}$ 为内积空间 H 中点列. $\|x_n\| \to \|x\|$, 且 $(x_n, y) \to (x, y)$ $(y \in H)$ $(n \to \infty)$, 证明: $x_n \to x$ $(n \to \infty)$.
- 3. 设 E_n 是 n 维线性空间, $\{e_1, e_2, \dots, e_n\}$ 是 E_n 的一个基, $(\alpha_{ij})(i, j = 1, 2, \dots, n)$ 是正定矩阵, 对 E_n 中的元素 $x = \sum_{i=1}^n x_i e_i$ 及 $y = \sum_{i=1}^n y_i e_i$, 定义

$$(x,y) = \sum_{i,j=1}^{n} \alpha_{ij} x_i y_j,$$
 (3.0.1)

则 (\cdot,\cdot) 是 E_n 上的一个内积. 反之, 设 (\cdot,\cdot) 是 E_n 上的一个内积, 则必存在正定矩阵 (α_{ij}) 使得 (3.0.1) 成立.

4. 设 H 是内积空间, x_1, x_2, \dots, x_n 是 H 中的元素, 它们满足条件

$$(x_{\mu}, x_{\gamma}) = \begin{cases} 0, & \text{if } \mu \neq \gamma, \\ 1, & \text{if } \mu = \gamma. \end{cases}$$

证明 $\{x_1, x_2, \cdots, x_n\}$ 是线性无关的.

- 5. 设 x, y 是复内积空间 X 中的两个非零元素,则
 - (1) ||x + y|| = ||x|| + ||y|| 当且仅当 y 是 x 的正倍数;
 - (2) ||x y|| = |||x|| ||y||| 当且仅当 y 是 x 的正倍数;
 - (3) 给定 $z \in X$, ||x y|| = ||x z|| + ||z y|| 当且仅当存在 $\alpha \in [0, 1]$, 使得

$$z = \alpha x + (1 - \alpha)y.$$

$$(1-a) \|x\|_2^2 \le \|\sum \lambda_i e_i\|^2 \le (1+a) \|x\|_2^2$$
.

- 7. 设 X 为内积空间, $x,y \in X$, 假定 $\|\lambda x + (1-\lambda)y\| = \|x\|, \forall \lambda (0 \le \lambda \le 1)$. 证明 x = y. 若 X 是赋范空间但不是内积空间时,情况又如何?
- 8. 设 H 是 Hilbert 空间, $\{x_n\} \subset H$, 满足 $\sum_{n=1}^{\infty} \|x_n\| < \infty$. 证明 $\sum_{n=1}^{\infty} x_n$ 在 H 中收敛.
- 9. 设 $\{H_n\}(n=1,2,\cdots)$ 为一列内积空间. 令

$$H = \{ \{x_n\} | x_n \in H_n, \sum_{n=1}^{\infty} ||x_n||^2 < \infty \}.$$

对于 $\{x_n\}, \{y_n\} \in H$. 定义

$$\alpha\{x_n\} + \beta\{y_n\} = \{\alpha x_n + \beta y_n\} \quad (\alpha, \beta \in K),$$
$$(\{x_n\}, \{y_n\}) = \sum_{n=1}^{\infty} (x_n, y_n).$$

证明 H 是内积空间, 并且当每一个 H_n 都是 Hilbert 空间时, H 是 Hilbert 空间.

- 10. 对于内积空间 H. 下述条件等价:
 - $(1) \quad x \perp y;$
 - (2) $||x + \alpha y|| \ge ||x||$, $\forall \alpha \in \mathbb{C}$;
 - (3) $||x + \alpha y|| = ||x \alpha y||, \quad \forall \alpha \in \mathbb{C}.$
- 11. 若内积空间 X 是实的,则 $||x+y||^2 = ||x||^2 + ||y||^2$ 蕴含着 $x \perp y$,但若 X 是复空间时, $x \perp y$ 未必成立. 举例说明之.
- 12. 设 $M = \{x | x = \{x_n\} \in l^2, x_{2n} = 0, n = 1, 2, \dots\}$, 证明 $M \neq l^2$ 的闭子空间,且求出 M^{\perp} .
- 13. 设 $X = \mathbb{R}^k$, $A = \{a\}$, 其中 $a = (a_1, \dots, a_k)$, 证明

$$A^{\perp} = \{(x_1, \dots, x_k) \in \mathbb{R}^k | \sum_{j=1}^k a_j x_j = 0 \}.$$

- 14. 设 X 是内积空间, $A \subset X$. 证明 $A^{\perp} = \bar{A}^{\perp}$.
- 15. 设 X 和 Y 是 Hilbert 空间 H 的线性子空间, 令 $X+Y=\{x+y|x\in X,\ y\in Y\}$. 证明 $(X+Y)^\perp=X^\perp\cap Y^\perp$.
- 16. 在 $L^2[a,b]$ 中, 令 $S = \{e^{2\pi i n x}\}_{n=-\infty}^{\infty}$.
 - (1) 若 $|b-a| \le 1$. 求证 $S^{\perp} = \{0\}$;
 - (2) 若 |b-a| > 1. 求证 $S^{\perp} \neq \{0\}$.
- 17. 设 M, N 是内积空间 H 的子空间, $M \perp N$, $L = M \oplus N$, 证明 L 是闭子空间的充分必要条件是 M, N 均为闭子空间 (充分性部分假定 H 完备).
- 18. 在 C[-1,1] = X 中. 令
 - (1) $M_1 = \{ f \in X | f(x) = 0, \forall x < 0 \};$
 - (2) $M_2 = \{ f \in X | f(0) = 0 \}.$

计算 M_1, M_2 在 X 中关于内积 $(f,g) = \int_{-1}^1 f(x)\overline{g(x)} dx$ 的正交补.

- 19. 若 H 是内积空间, $M, N \subset H$, 则
 - (1) 若 $M \perp N$, 则 $M \subset N^{\perp}$, $N \subset M^{\perp}$;
 - (2) $M^{\perp} = (\overline{M})^{\perp}$.
- 20. 设 (X, ||·||) 是赋范空间.
 - (1) 证明赋范空间 $(X, \|\cdot\|)$ 是严格凸的, 当且仅当, 对任意 $x, y \in X$, $x \neq 0$, $y \neq 0$,

||x + y|| = ||x|| + ||y|| 必有 $x = \alpha y$ $(\alpha > 0).$

- (2) 证明在严格凸赋范空间中, 对于每个 $x \in X$, x 关于任意闭子空间 Y 的最佳逼近是唯一的.
- 21. 赋范线性空间 X 被称作是一致凸的,若 X 中的任何满足 $||x_n|| = ||y_n|| = 1$, $||x_n + y_n|| \to 2$ 的序列 $\{x_n\}$, $\{y_n\}$ 有 $||x_n y_n|| \to 0$.
 - (1) 证明任何内积空间都是一致凸的.
 - (2) C[a,b] 不是一致凸的.
 - (3) $L^{1}[a,b]$ 不是一致凸的.
- 22. 设 $\{x_1, x_2, x_3\}$ 是内积空间 X 中的线性无关集,假定 $\{x_1, x_2\}$ 满足 $(x_i, x_j) = \delta_{ij}, 1 \leq i, j \leq 2$. 定义 $f: \mathbb{C}^2 \to \mathbb{R}$ 如下:

$$f(\alpha_1, \alpha_2) = \|\alpha_1 x_1 + \alpha_2 x_2 - x_3\|.$$

证明当 $\alpha_i = (x_3, x_i), i = 1, 2$ 时, f 取得最小值.

- 23. 设 $\{e_{\alpha}\}(\alpha \in I)$ 是内积空间 H 中的标准正交系. 证明对于每个 $x \in H$, x 关于这个标准 正交系的 Fourier 系数 $\{(x, e_{\alpha}) | \alpha \in I\}$ 中最多有可数个不为零.
- 24. M 是 H 的闭线性子空间, $\{e_n\}$ 与 $\{e'_n\}$ 分别是 M 与 M^{\perp} 的标准正交基, 证明 $\{e_n\} \cup \{e'_n\}$ 构成 H 的标准正交基.
- 25. 设 H 为 Hilbert 空间, 若 $E \subset H$ 是线性子空间并且对于任意的 $x \in H$, x 在 E 上的投影存在, 则 E 是闭的.
- 26. 设 $A = \{e_k\}$ 是内积空间 X 中的标准正交系. 证明对 $\forall x, y \in X$, 有

$$\sum_{k=1}^{\infty} |(x, e_k)(y, e_k)| \le ||x|| ||y||.$$

- 27. 设 H 为 Hilbert 空间, $\{e_k\}$, $\{e_k'\}$ 是 H 中的两个标准正交系, 并且 $\sum_{k=1}^{\infty} \|e_k e_k'\|^2 < 1$. 证明如果 $\{e_k\}$, $\{e_k'\}$ 中之一是完备的, 则另一个也是完备的.
- 28. 举例说明内积空间中的完全标准正交系不一定是完备的.
- 29. 称 $H_n(t)=(-1)^ne^{t^2}\frac{\mathrm{d}^n}{\mathrm{d}t^n}e^{-t^2}$ 为 Hermite 多项式, 令

$$e_n(t) = (2^n n! \sqrt{\pi})^{-1/2} e^{-\frac{t^2}{2}} H_n(t), \qquad (n = 1, 2, 3, \dots),$$

证明 $\{e_n\}$ 组成 $L^2(-\infty, +\infty)$ 中的一个完备的标准正交系.

- 30. 令 $L_n(t)$ 为拉盖尔(Laguerre)函数 $e^t \frac{\mathrm{d}^n}{\mathrm{d}t^n} (t^n e^{-t})$, 证明 $\{\frac{1}{n!} e^{-t/2} L_n(t)\}$ ($n = 1, 2, \cdots$) 组成 $L^2(0, \infty)$ 中的一个完备的标准正交系.
- 31. 证明在可分的内积空间中, 任一标准正交系最多为一可数集.

第三章习题简答

1. $\mathbf{M}(1)$ \mathbf{l}^p $(p \neq 2)$ 上的范数不能由内积生成. 事实上, 取

$$x = (1, 0, \cdots), y = (0, 1, 0, \cdots),$$

显然

$$||x|| = ||y|| = 1.$$

又由

$$x + y = (1, 1, 0, \cdots), x - y = (1, -1, 0, \cdots),$$

得

$$||x+y|| = ||x-y|| = 2^{\frac{1}{p}}.$$

当 $p \neq 2$ 时,有

$$||x + y||^2 + ||x - y||^2 = 2 \times 2^{\frac{1}{p}} \neq 2(||x||^2 + ||y||^2) = 4,$$

所以不满足平行四边行法则,则 l^p ($p \neq 2$) 上的范数不能由内积生成.

(2) C[a,b] 上的范数不能由内积生成. 事实上, 取 $x(t)=1,\ y(t)=\frac{t-a}{b-a},\ 则$

$$||x|| = ||y|| = 1,$$

$$x(t) + y(t) = 1 + \frac{t-a}{b-a}, x(t) - y(t) = 1 - \frac{t-a}{b-a},$$

 $||x+y|| = 2, ||x-y|| = 1,$

所以

$$||x + y||^2 + ||x - y||^2 = 5 \neq 2(||x||^2 + ||y||^2) = 4,$$

故 C[a,b] 上的范数不能由内积生成.

2. 证明 因为

$$||x_n - x||^2 = (x_n - x, x_n - x)$$

= $||x_n||^2 - (x_n, x) - (x, x_n) + ||x||^2$, (3.0.2)

已知 $\lim_{n\to\infty} ||x_n|| \to ||x||$, 由条件可知,

$$\lim_{n \to \infty} (x_n, x) \to (x, x), \ \lim_{n \to \infty} (x, x_n) \to (x, x),$$

对(3.0.2) 式等号两边取极限, 我们有

$$\lim_{n \to \infty} ||x_n - x||^2 = ||x||^2 - (x, x) - (x, x) + ||x||^2 = 0,$$

3. 证明 首先证明 (\cdot,\cdot) 是 E_n 上的一个内积.

(1) 对 $\forall x \in E_n$, $(x,x) = \sum_{i,j=1}^n \alpha_{ij} x_i x_j$. 由于 (α_{ij}) 是正定方阵, 故 $(x,x) \ge 0$, 且当 (x,x) = 0 时推出 x = 0.

(2)

$$(\beta_1 x + \beta_2 y, z) = \sum_{i,j=1}^n \alpha_{ij} (\beta_1 x_i + \beta_2 y_i) z_j$$

=
$$\sum_{i,j=1}^n \alpha_{ij} \beta_1 x_i z_j + \sum_{i,j=1}^n \alpha_{ij} \beta_2 x_i z_j = \beta_1(x, z) + \beta_2(y, z).$$

(3) 因为 (α_{ij}) 对称的, $\alpha_{ij} = \alpha_{ji}$, 故

$$(x,y) = \sum_{i,j=1}^{n} \alpha_{ij} x_i y_j = \sum_{i,j=1}^{n} \alpha_{ij} x_i y_j = (y,x).$$

综上知, (x,y) 是 X 上的内积.

反之, 若 (x,y) 为 X 上内积, 令 $\alpha_{ij} = (e_i, e_j)$, $\forall x = \sum_{i=1}^n x_i e_i$, 有

$$0 \le (x, x) = (\sum_{i=1}^{n} x_i e_i, \sum_{i=1}^{n} x_j e_j) = \sum_{i,j=1}^{n} \alpha_{ij} x_i x_j,$$

且当 $x \neq 0$ 时, $\sum_{i,j=1}^{n} \alpha_{ij} x_i x_j = (x,x) > 0$, 所以 (α_{ij}) 是正定方阵.

4. 证明设

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0,$$

则由

$$(x_{\mu}, x_{\gamma}) = \begin{cases} 0, & \text{if } \mu \neq \gamma, \\ 1, & \text{if } \mu = \gamma. \end{cases}$$

知, 对每个 $\gamma(1 \le \gamma \le n)$ 有

$$\alpha_{\gamma} = (\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n, x_{\gamma}) = 0,$$

所以 x_1, x_2, \cdots, x_n 必线性无关.

5. 证明 (1) 充分性. 设存在 $\lambda > 0$ 使 $y = \lambda x$, 则

$$||x + y|| = ||(1 + \lambda)x|| = (1 + \lambda) ||x|| = ||x|| + ||y||.$$

必要性. 设 ||x+y||=||x||+||y||, 则

$$\parallel x+y\parallel^2 = (\parallel x\parallel+\parallel y\parallel)^2 = \parallel x\parallel^2 + \parallel y\parallel^2 + 2\parallel x\parallel\cdot\parallel y\parallel.$$

另一方面

$$||x + y||^2 = (x + y, x + y) = ||x||^2 + ||y||^2 + 2Re(x, y),$$

所以

$$Re(x,y) = \parallel x \parallel \cdot \parallel y \parallel$$
.

从而有

$$||y - \frac{||y||}{||x||}x||^2 = 2||y||^2 - 2\frac{||y||}{||x||}Re(x,y) = 0,$$

故 $y = \frac{\|y\|}{\|x\|} x$, 即 $y \in x$ 的正倍数.

(2) 充分性. 设存在 λ 使 $y = \lambda x$, 则

$$\parallel x-y\parallel = \parallel (1-\lambda)x\parallel = |1-\lambda|\parallel x\parallel = |\parallel x\parallel - \parallel y\parallel |.$$

必要性. 设 ||x-y|| = ||x|| - ||y||, 则

$$||x - y||^2 = (||x|| - ||y||)^2 = ||x||^2 + ||y||^2 - 2||x|| \cdot ||y||$$

又

$$||x - y||^2 = (x - y, x - y) = ||x||^2 + ||y||^2 - 2Re(x, y).$$

所以

$$Re(x,y) = \parallel x \parallel \cdot \parallel y \parallel$$
.

从而有

$$||y - \frac{||y||}{||x||}x||^2 = 2||y||^2 - 2\frac{||y||}{||x||}Re(x,y) = 0,$$

故 $y = \frac{\|y\|}{\|x\|} x$, 即 y 是 x 的正倍数.

(3) 当 $z \neq x, y$ 时,由 (1)知,

$$||x - y|| = ||(x - z) + (z - y)|| = ||x - z|| + ||z - y||$$

当且仅当存在 $\lambda > 0$,使得 $(z - y) = \lambda(x - z)$. 令 $\alpha = \frac{\lambda}{1 + \lambda} \in (0, 1)$,则

$$z = \alpha x + (1 - \alpha)y.$$

当 z = x, 或 z = y 时, 取 $\alpha = 0$, 或 $\alpha = 1$ 便可.

6. 证明 要证的是以下不等式:

$$| \| \sum \lambda_{i} e_{i} \|^{2} - \| x \|_{2}^{2} | = | \sum \lambda_{i} \overline{\lambda}_{j} (e_{i}, e_{j}) - \sum |\lambda_{i}|^{2} |$$

$$= | \sum_{i \neq j} \lambda_{i} \overline{\lambda}_{j} (e_{i}, e_{j}) | \leq a (\sum_{i \neq j} |\lambda_{i} \overline{\lambda_{j}}|^{2})^{\frac{1}{2}}$$

$$\leq a (\sum |\lambda_{i}|^{2} |\lambda_{j}|^{2})^{\frac{1}{2}} = a \| x \|_{2}^{2}.$$

7. 证明 由于对 $\forall \lambda \in [0,1]$ 有 $\|\lambda x + (1-\lambda)y\| = \|x\|$, 故 λ 分别取 $0,\frac{1}{2}$ 得

$$||x|| = ||y||, \ \mathbb{H}, ||x + y|| = 2||x||.$$

因为 H 是内积空间, 由平行四边形法则得

$$||x - y||^2 = 2(||x||^2 + ||y||^2) - ||x + y||^2 = 0.$$

故 x = y. 若 X 是赋范空间但不是内积空间时, x = y 不一定成立. 例如, 在 C[0,1] 中, 令

$$x(t) \equiv 1, \ y(t) = t,$$

则对 $\forall \lambda \in [0,1]$ 有

$$\|\lambda x + (1 - \lambda)y\| = \max_{0 \le t \le 1} |\lambda + (1 - \lambda)t| = 1 = \|x\|.$$

但是

$$||x - y|| = \max_{0 \le t \le 1} |1 - t| = 1 \ne 0,$$

即 $x \neq y$.

8. 证明 令 $\sum_{n=1}^{\infty} x_n = M, s_k = \sum_{n=1}^{k} x_n$, 由

$$|| s_k - s_{k'} || = || \sum_{n=k'+1}^k x_n || \le \sum_{n=k'+1}^k || x_n || (k' < k),$$

知 $\{s_k\}$ 是基本列,而 H 完备,则存在 $x \in H$,满足

$$x = \lim_{k \to \infty} s_k = \sum_{n=1}^{\infty} x_n,$$

且

$$||x|| = \lim_{k \to \infty} ||s_k|| \le \lim_{k \to \infty} \sum_{n=1}^{k} ||x_n|| = M.$$

9. 证明 对 $\{x_n\}, \{y_n\} \in H$, 有

$$|\sum_{n=1}^{\infty} (x_n, y_n)| \le \sum_{n=1}^{\infty} ||x_n|| \cdot ||y_n|| \le (\sum_{n=1}^{\infty} ||x_n||^2)^{\frac{1}{2}} \cdot (\sum_{n=1}^{\infty} ||y_n||^2)^{\frac{1}{2}},$$

所以 $(\{x_n\}, \{y_n\}) = \sum_{n=1}^{\infty} (x_n, y_n)$ 是有意义的,容易验证按这个内积的定义H是一个内积空间. 现设每个 H_n 是 Hilbert 空间,我们证明 H 也是 Hilbert 空间.设 $\{x^{(i)}\}$ 是 H 中的基本列,其中 $x^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \cdots, x_n^{(i)}, \cdots\}$ 则 $\forall \varepsilon > 0$, 存在 i_0 , 使 $i, j \geq i_0$ 时

$$\parallel x^{(i)} - x^{(j)} \parallel < \varepsilon,$$

即

$$\sum_{n=1}^{\infty} \parallel x_n^{(i)} - x_n^{(j)} \parallel^2 < \varepsilon^2,$$

从而对每一个 $n,\{x_n^{(i)}\}$ 是 H_n 中的基本列,设 $\lim_{i\to\infty}x_n^{(i)}=x_n^{(0)}(n=1,2,3,\cdots)$,记

$$x = \{x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)}, \cdots\},\$$

证明 $x \in H$, 且 $\|x^{(i)} - x\| \to 0$ $(i \to \infty)$. 因为对任意的自然数 k, 当 $i, j \ge i_0$ 时

$$\sum_{n=1}^{k} \| x_n^{(i)} - x_n^{(j)} \|^2 < \varepsilon^2.$$

令 $i \to \infty$, 则当 $i > i_0$ 时

$$\sum_{n=1}^{k} \| x_n^{(i)} - x_n^{(0)} \|^2 < \varepsilon^2,$$

再令 $k \to \infty$, 得

$$\sum_{n=1}^{\infty} \| x_n^{(i)} - x_n^{(0)} \|^2 < \varepsilon^2, \quad (i \ge i_0).$$

于是 $x = x^{(i)} - (x^{(i)} - x) \in H$ 且 $\lim_{i \to \infty} ||x^{(i)} - x|| = 0$, 故 H 也 Hilbert 空间.

10. 证明 $(1) \Rightarrow (2), (1) \Rightarrow (3)$ 显然成立.

(2)
$$\Rightarrow$$
 (1). 若 $||x + \alpha y|| \ge ||x||$, 且 $y \ne 0$, 则取 $\alpha = -\frac{(x,y)}{||y||^2}$, 可得

$$0 \le (x + \alpha y, x + \alpha y) - \|x\|^2 = \overline{\alpha}(x, y) + \alpha(y, x) + |\alpha|^2 \|y\|^2 = -|(x, y)|^2 \|y\|^{-2} \le 0$$

故必有 $x \perp y$.

 $(3) \Rightarrow (1)$. 若 || $x + \alpha y$ ||≥|| $x - \alpha y$ ||, 则

$$(x + \alpha y, x + \alpha y) = (x - \alpha y, x - \alpha y),$$

展开得

$$Re\overline{\alpha}(x,y) = 0$$

分别取 $\alpha = 1, \alpha = i$, 得 (x, y) 的实部虚部均为 0, 即 (x, y) = 0.

11. 证明 在实内积空间内,

$$||x + y||^2 = (x + y, x + y) = ||x||^2 + 2(x, y) + ||y||^2,$$

故 $||x+y||^2 = ||x||^2 + ||y||^2$ 当且仅当 (x,y) = 0, 即 $x \perp y$. 若是复内积空间, $x \perp y$ 不一定成立. 例如在 \mathbb{C} 中取 x = 1 + i, y = 1 - i, 则

$$||x + y||^2 = ||x||^2 + ||y||^2$$

但 $(x,y) \neq 0$.

12. 证明 显然 $M \in l^2$ 的线性子空间. 下面证 $\overline{M} = M$. 易知 $M \subseteq \overline{M}$, 只需证 $\overline{M} \subseteq M$. 对 $\forall x = \{x_n\} \in \overline{M}$, $\exists \{x^k\} \subseteq M$ 使得 $x^k \to x$. 即

$$||x^k - x|| = \{\sum_{n=1}^{\infty} |x_n^k - x_n|^2\}^{\frac{1}{2}} \to 0, \ k \to \infty.$$

从而对于 $\forall n, \ x_n^k \to x_n \ (k \to \infty)$. 由 $x^k \in M$ 得, 对 $n = 2m \ (m = 1, 2, \cdots) \ x_{2m}^k = 0$, 因此 $x_{2m} = 0$. 这表明了 $x \in M$. 故 $\overline{M} \subseteq M$.则 $M \notin l^2$ 的闭子空间.

令 $N = \{x | x = \{x_n\} \in l^2, \ x_{2n-1} = 0, \ n = 1, 2, \cdots\}$. 下面证明 $M^{\perp} = N$.

对于 $\forall x = \{x_n\} \in N, \ \forall y = \{y_n\} \in M, \ 有$

$$(x,y) = \sum_{n=1}^{\infty} x_n \overline{y}_n = 0,$$

从而 $x \in M^{\perp}$, 即 $N \subseteq M^{\perp}$.

对于 $\forall x \in M^{\perp}$, 取 $\{y^k\} \subseteq M$, 满足

$$y_n^k = \begin{cases} 1, & n = 2k - 1; \\ 0, & n \neq 2k - 1, \end{cases}$$

则 $(x, y^k) = \sum_{n=1}^{\infty} x_n \overline{y}_n^k = x_{2k-1} = 0, (k = 1, 2, \cdots).$ 因此 $x \in N$, 即 $M^{\perp} \subseteq N$. 故

$$M^{\perp} = \{x | x = \{x_n\} \in l^2, \ x_{2n-1} = 0, \ n = 1, 2, \dots\}.$$

13. 证明 因为 $A^{\perp} = \{x = (x_1, \cdots, x_k) \in \mathbb{R}^k | (x, a) = 0\}$, 且 $(x, a) = \sum_{j=1}^k a_j x_j$, 所以得

$$A^{\perp} = \{(x_1, \dots, x_k) \in \mathbb{R}^k | \sum_{j=1}^k a_j x_j = 0 \}.$$

14. 证明 因为 $A \subset \bar{A}$, 所以 $A^{\perp} \supset \bar{A}^{\perp}$. 反之, 任取 $x \in A^{\perp}$. 对任意的 $y \in \bar{A}$, 存在 $\{y_n\} \subset A$, 使得 $y_n \to y$ $(n \to \infty)$. 因此

$$(x,y) = \lim_{n \to \infty} (x, y_n) = 0,$$

从而 $x \in (\bar{A})^{\perp}$. 故, $A^{\perp} \subset (\bar{A})^{\perp}$.

综上即得

$$A^{\perp} = (\bar{A})^{\perp}.$$

15. 证明 任取 $z \in (X+Y)^{\perp}$, 对 $\forall x+y \in X+Y$, 有 (z,x+y)=0. 分别取 y=0,x=0, 得

$$(z, x) = 0 \ \forall x \in X, \ (z, y) = 0 \ \forall y \in Y,$$

故 $z \in X^{\perp} \cap Y^{\perp}$, 即 $(X + Y)^{\perp} \subset (X^{\perp} \cap Y^{\perp})$.

另一方面, 任取 $z \in X^{\perp} \cap Y^{\perp}$, 则对 $\forall x \in X, \ y \in Y, \ fata{(z,x) = 0, \ (z,y) = 0.}$ 故对 $\forall x + y \in X + Y, \ fat{(z,x+y) = 0}$, 即 $z \in (X+Y)^{\perp}$. 所以 $(X^{\perp} \cap Y^{\perp}) \subset (X+Y)^{\perp}$. 综上所述,

$$(X+Y)^{\perp} = (X^{\perp} \cap Y^{\perp}).$$

16. 证明 对于 $\forall n, e^{2\pi i n x}$ 的周期是 1.

(1) 若 |b-a|=1, $\{e^{2\pi inx}\}_{n=-\infty}^{\infty}$ 是 $L^2[a,b]$ 上的一组正交基, 故 $S^{\perp}=\{0\}$. 若 |b-a|<1, 对 $\forall u\in S^{\perp}\subset L^2[a,b]$, 令

$$\widetilde{u} = \left\{ \begin{array}{ll} u, & x \in [a, b] \\ 0, & x \in [b, a + 1] \end{array} \right.$$

则由

$$\int_{a}^{a+1} \widetilde{u}e^{2\pi inx}dx = 0$$

知 $\widetilde{u} = 0$ $(x \in [a, a+1])$, 即 u = 0 $(x \in [a, b])$. 故 $S^{\perp} = \{0\}$.

(2) 若 |b-a| > 1, 这时 $\{e^{2\pi i n x}\}_{n=-\infty}^{\infty}$ 是 $L^{2}[b-1,b]$ 上的一组正交基. 因此 $L^{2}[b-1,b]$ 上的函数可以由它 Fourier 的系数决定. 则对 $\forall u \in L^{2}[a,b-1], u \neq 0$, 可将它扩充为 $L^{2}[a,b]$ 上的函数 $v(x) \in S^{\perp}$,而 $v(x) \neq 0$. 事实上,令

$$v = \begin{cases} u(x), & x \in [a, b-1] \\ \widetilde{u}(x), & x \in [b-1, b] \end{cases}$$

其中 (b-1,b]上 的函数 $\widetilde{u}(x)$ 的傅里叶系数通过 u(x) 在 [a,b-1] 上的值来计算,即

$$\widetilde{u}_n = \int_{b-1}^b \widetilde{u}e^{2\pi i nx} dx = -\int_a^{b-1} ue^{2\pi i nx} dx,$$

于是

$$\widetilde{u} = \sum_{n=-\infty}^{\infty} \widetilde{u}_n e^{2\pi i n x} \in L^2[b-1, b],$$

并且

$$\int_{a}^{b} v e^{2\pi i n x} dx = \int_{a}^{b-1} u e^{2\pi i n x} dx + \int_{b-1}^{b} \widetilde{u} e^{2\pi i n x} dx = 0.$$

 $\mathbb{P} v(x) \in S^{\perp}$.

17. 证明 必要性. 设 L 为闭子空间, $\{x_n\} \subset M, x_n \to x(n \to \infty)$, 则 $x \in L$ 且对一切 $y \in N$ 有

$$(x,y) = \lim_{n \to \infty} (x_n, y) = 0,$$

所以 $x \in N^{\perp}$. 因为 $L = M \bigoplus N$ 且 $x \in L, x \in N^{\perp}$, 故 $x \in M$. 所以 M 为闭子空间. 同理可证 N 也为闭子空间.

充分性. 设 $\{x^{(n)}\}\subset L,\ x^{(n)}\to x\in H\ (n\to\infty),\$ 令

$$x^{(n)} = x_1^{(n)} + x_2^{(n)}, x_1^{(n)} \in M, x_2^{(n)} \in N,$$

对 x 作正交分解:

$$x = x_1 + x_2 \ (x_1 \in M, x_2 \in M^{\perp}).$$

因为

$$||x_i^{(n)} - x_i|| \le ||x^{(n)} - x|| \to 0 \quad (i = 1, 2)$$

由 M, N 闭可知 $x_1 \in M, x_2 \in N$, 故 $x \in L$ 即 L 是闭子空间.

18. 解(1)

$$M_{1}^{\perp} = \{g \in X | \int_{-1}^{1} f\overline{g}dx = 0, \ \forall f \in M_{1}\}$$

$$= \{g \in X | \int_{-1}^{0} f\overline{g}dx + \int_{0}^{1} f\overline{g}dx = 0, \ \forall f \in M_{1}\}$$

$$= \{g \in X | \int_{0}^{1} f\overline{g}dx = 0, \ \forall f \in M_{1}\} = \{g \in X | g(x) = 0, \ 1 \ge x > 0\}$$

(2)

$$M_2^{\perp} = \{ g \in X | \int_{-1}^1 f \overline{g} dx = 0, \ \forall f \in M_2 \}$$

即对任意的 $f(x) \in X$ 且 f(0) = 0,都有

$$\int_{-1}^{1} f\overline{g} \mathrm{d}x = 0.$$

任取 $f(x) \in X$, 且 $f(x) = 0, -1 \le x \le 0$, 由 (1) 可推知 $g(x) = 0, 0 \le x \le 1$. 同理, 任 取 $f(x) \in X$, 且 $f(x) = 0, 0 \le x \le 1$, n 类似于 (1), 经计算可得 $g(x) = 0, -1 \le x \le 0$. 综上可得

$$M_2^{\perp} = \{g(x) \equiv 0, x \in [-1, 1]\}.$$

19. 证明 (1) 因为

$$M^{\perp} = \{x : (x, y) = 0, \forall y \in M\}, \ N^{\perp} = \{x : (x, y) = 0, \forall y \in N\}, \ N \perp M,$$

所以 $N \subset M^{\perp}$. $M \subset N^{\perp}$.

(2) 因为 $M \subset \overline{M}$, 所以 $\overline{M}^{\perp} \subset M^{\perp}$. 反之,对 $\forall z \in \overline{M}$ 存在 $\{x_n\} \subset M$ 使得

$$x_n \to z \ (n \to \infty).$$

从而对 $\forall y \in M^{\perp}$, 有

$$(y,z) = (y, \lim_{n \to \infty} x_n) = \lim_{n \to \infty} (y, x_n) = 0.$$

故 $y \in (\overline{M})^{\perp}$, 即 $M^{\perp} \subset (\overline{M})^{\perp}$. 则 $M^{\perp} = (\overline{M})^{\perp}$.

20. 证明 (1) 对 $\forall x, y \in X, x \neq y$ 并且 ||x|| = ||y|| = 1, 有

$$\|\alpha x + \beta y\| < 1, \ \forall \alpha, \ \beta > 0, \ \alpha + \beta = 1.$$

若 $\|\alpha x + \beta y\| = 1$, 则存在 $\tilde{\alpha} > 0$ 使得 $\alpha x = \tilde{\alpha} \beta y$, 于是

$$1 = \parallel x \parallel = \frac{\widetilde{\alpha}\beta}{\alpha} \parallel y \parallel = \frac{\widetilde{\alpha}\beta}{\alpha},$$

从而得 x = y, 矛盾. 故赋范空间 $(X, ||\cdot||)$ 是严格凸的.

反过来,设x,y是X中非零元使得 $\|x+y\|=\|x\|+\|y\|$. 再设

$$a = ||x||, b = ||y||, x_1 = \frac{x}{a}, y_1 = \frac{y}{b},$$

则 $a > 0, b > 0, \|x_1\| = \|y_1\| = 1, 且$

$$\parallel \frac{a}{a+b}x_1 + \frac{b}{a+b}y_1 \parallel = 1,$$

由于赋范空间 $(X, \|\cdot\|)$ 是严格凸的, 故 $x_1 = y_1$, 即 $x = \alpha y$, 其中 $\alpha = \frac{a}{b}$.

(2) 假设 x_0, y_0 都是 x 关于 Y 的最佳逼近, 则

$$d \stackrel{\Delta}{=} \inf_{y \in Y} ||x - y|| = ||x - x_0|| = ||x - y_0||.$$

由 $x_0, y_0 \in Y$ 知 $\frac{x_0 + y_0}{2} \in Y$, 从而 $\|x - \frac{x_0 + y_0}{2}\| \ge d$. 另一方面, 由于赋范空间 $(X, \|\cdot\|)$ 是严格凸的, 故

$$||x - \frac{x_0 + y_0}{2}|| = d||\frac{x - x_0}{2d} + \frac{x - y_0}{2d}|| < d,$$

矛盾, 则 $x_0 = y_0$.

21. 证明 (1) 设 $\{x_n\} \subset X, \{y_n\} \subset X$, 满足

$$||x_n|| = ||y_n|| = 1, ||x_n + y_n|| \to 2.$$

由平行四边形法则可知

$$||x_n - y_n||^2 = 2(||x_n||^2 + ||y_n||^2) - ||x_n + y_n||^2 = 4 - ||x_n + y_n||^2,$$

故 $\lim_{n\to\infty} \|x_n-y_n\| = \lim_{n\to\infty} (4-\|x_n+y_n\|^2)^{\frac{1}{2}} = 0$. 则内积空间是一致凸的. (2) 在 C[a,b]中,取 $x_n(t)=1,y_n(t)=\frac{t-a}{b-a}$,则

$$||x_n|| = ||y_n|| = \frac{||x_n + y_n||}{2} = ||x_n - y_n|| = 1.$$

显然, $||x_n + y_n|| \to 2$ $(n \to \infty)$, 但是 $||x_n - y_n|| = 1 \to 0$ $(n \to \infty)$. 故 C[a, b] 不是一致 凸的.

(3) 在
$$L[a,b]$$
 中, 取 $x_n(t) = \frac{1}{b-a}, y_n(t) = \frac{2(t-a)}{(b-a)^2},$ 则
$$\|x_n\| = \|y_n\| = \frac{\|x_n + y_n\|}{2} = 1,$$

$$\|x_n - y_n\| = \frac{1}{2}.$$

显然, $||x_n + y_n|| \to 2 \ (n \to \infty)$, 但是 $||x_n - y_n|| = \frac{1}{2} \to 0 \ (n \to \infty)$. 故 L[a, b] 不是一致 凸的.

22. 证明

$$f(\alpha_1, \alpha_2) = \parallel \alpha_1 x_1 + \alpha_2 x_2 - x_3 \parallel$$

= $\parallel (x_3, x_1)x_1 + (x_3, x_2)x_2 - x_3 + (\alpha_1 - (x_3, x_1))x_1 + (\alpha_2 - (x_3, x_2))x_2 \parallel$

因为

$$((x_3, x_1)x_1 + (x_3, x_2)x_2 - x_3, (\alpha_1 - (x_3, x_1))x_1 + (\alpha_2 - (x_3, x_2))x_2) = 0$$

所以

$$((x_3,x_1)x_1+(x_3,x_2)x_2-x_3)\perp((\alpha_1-(x_3,x_1))x_1+(\alpha_2-(x_3,x_2))x_2))$$

所以

$$f(\alpha_1, \alpha_2) = \|\alpha_1 x_1 + \alpha_2 x_2 - x_3\| + \|(\alpha_1 - (x_3, x_1))x_1 + (\alpha_2 - (x_3, x_2))x_2\|$$

又因为 $x_1 \perp x_2$ 故

$$f(\alpha_1, \alpha_2) = \|\alpha_1 x_1 + \alpha_2 x_2 - x_3\| + |\alpha_1 - (x_3, x_1)| \|x_1\| + |\alpha_2 - (x_3, x_2)| \|x_2\|$$

所以,当 $\alpha_1 = (x_3, x_1), \alpha_2 = (x_3, x_2)$ 时, f 取最小值.

23. 证明 $\forall x \in X$, 不妨设 $x \neq 0$, 令

$$F = \{e_{\alpha} | (x, e_{\alpha}) \neq 0, \alpha \in I\}$$
$$= \{e_{\alpha} | | (x, e_{\alpha})| > 0, \alpha \in I\}$$

进一步我们有

$$F = \bigcup_{n=1}^{\infty} \{e_{\alpha} | |(x, e_{\alpha})| > \frac{1}{n}, \alpha \in I\}$$

记 $F_n=\{e_{\alpha}||(x,e_{\alpha})|>\frac{1}{n}, \alpha\in I\}$, 显然 F_n 的个数不会超过 $N=n^2[||x||^2+1]([\cdot]$ 表示一个数的整数部分),即 F_n 的个数有限,假若不然,有 $e_{i_1},e_{i_2},\cdots,e_{i_N}$ 满足 $|(x,e_{i_k})|>\frac{1}{n},\ k=1,2,\cdots,N,$ 则

$$\sum_{k=1}^{N} |(x, e_{i_k})|^2 > N \cdot \frac{1}{n^2} \ge ||x||^2,$$

与贝塞尔不等式

$$\sum_{k=1}^{N} |(x, e_{i_k})|^2 \le ||x||^2,$$

矛盾. 由于可数个至多可数集合的并集是可数的, 知 $F = \bigcup_{n=1}^{\infty} F_n$ 是可数集.

24. 证明 对 $\forall x \in H$, 由正交分解定理,

$$x = y + z, \ y \in M, \ z \in M^{\perp}.$$

依照题意,

$$y = \sum_{n=1}^{\infty} (y, e_n), \ z = \sum_{n=1}^{\infty} (z, e'_n).$$

故对 $\forall x \in H$ 有

$$x = y + z = \sum_{n=1}^{\infty} (y, e_n) + \sum_{n=1}^{\infty} (z, e'_n).$$

由此可见, $\{e_n\} \cup \{e'_n\}$ 构成 H 的标准正交基.

25. 证明 取 $\{x_n\} \subset E$, 且 $\lim_{n\to\infty} x_n = x$. 因为 x 在 E 上的投影存在, 故存在 $x_0 \in E$, $x_1 \perp E$ 使得 $x = x_0 + x_1$. 因为 $x_n \in E$, 所以 $(x_n, x_1) = 0$, 从而

$$0 = \lim_{n \to \infty} (x_n, x_1) = (x, x_1) = (x_0 + x_1, x_1) = (x_1, x_1)$$

故 $x_1 = 0$, 即 $x = x_0 \in M$, 则 E 是闭.

26. 证明 由于 $A = \{e_k\}$ 是内积空间 X 中的标准正交系. 故结合 Hölder 不等式和 Bessel 不等式得

$$\sum_{n=1}^{\infty} |(x,e_n)(y,e_n)| \leq \left[\sum_{n=1}^{\infty} |(x,e_n)|^2\right]^{\frac{1}{2}} \left[\sum_{n=1}^{\infty} |(y,e_n)|^2\right]^{\frac{1}{2}} \leq \|x\| \|y\|.$$

27. 证明 设 $\{e_k\}$ 完备, 我们证明 $\{e_k'\}$ 也完备.假若 $\{e_k'\}$ 不完备, 则必存在非零元素 $x_0 \in H$, 使得 $x_0 \perp e_k'$, $k = 1, 2, \cdots$.

又由 $\{e_k\}$ 是完备的, 得

$$||x_0||^2 = \sum_{k=1}^{\infty} |(x_0, e_k)|^2.$$

于是

$$||x_0||^2 = \sum_{k=1}^{\infty} |(x_0, e_k)|^2 = \sum_{k=1}^{\infty} |(x_0, e_k) - (x_0, e'_k)|^2$$

$$= \sum_{k=1}^{\infty} |(x_0, e_k - e'_k)|^2 \le ||x_0||^2 \sum_{k=1}^{\infty} ||e_k - e'_k||^2 < ||x_0||^2,$$

导出矛盾, 故 $\{e'_k\}$ 也完备.

28. 解在 l^2 中, 记 $\mathcal{F} = \{e_2, e_3, \dots, e_n, \dots\}$, 其中 $e_n = \{0, 0, \dots, 0, 1, 0, \dots\}$, 令

$$f_1 = e_1 + \sum_{k=2}^{\infty} \frac{1}{k} e_k,$$

则 $f_1 \in l^2$,再令 U 是由 $\mathcal{F} \cup \{f_1\}$ 所张成的线性子空间, 即

$$U = \{\alpha_1 f_1 + \sum_{k=2}^{n} \alpha_k e_k | n$$
为任一自然数, $\alpha_1, \alpha_2, \dots, \alpha_n$ 为任意实数},

按照 l^2 的线性运算及内积, U 为内积空间, \mathcal{F} 显然是 U 中的标准正交系且可证明 \mathcal{F} 在 U 中是完全的. 事实上, 若 $x \in U$, $x \perp \mathcal{F}$, 则根据 U 的定义, 存在 $\alpha_k (k=1,2,\cdots,n)$ 使 得

$$x = \alpha_1 f_1 + \sum_{k=2}^{n} \alpha_k e_k.$$

取 m > n, 得到 $0 = (x, e_m) = \frac{\alpha_1}{m}$, 因此

$$x = \sum_{k=2}^{n} \alpha_k e_k.$$

同样, 对于 $m \le n$, 有 $0 = (x, e_m) = \alpha_m$, 故 x = 0, 即 f 在 U 中完全. 但是

$$||f_1||^2 = 1 + \sum_{k=2}^{\infty} \frac{1}{k^2}, \ \sum_{k=2}^{\infty} |(f_1, e_k)|^2 = \sum_{k=2}^{\infty} \frac{1}{k^2},$$

则

$$||f_1||^2 \neq \sum_{k=2}^{\infty} |(f_1, e_k)|^2,$$

即 Parseval 等式不成立, 故 \mathcal{F} 在 U 中不是完备的.

29. 证明 首先证明 $\{e_n(t)\}$ 彼此正交. 因为

$$H_n(t) = n! \sum_{j=0}^{N} (-1)^j \frac{2^{n-2j}}{j!(n-2j)!} t^{n-2j}$$
$$= \sum_{j=0}^{N} \frac{(-1)^j}{j!} n(n-1) \cdots (n-2j+1) (2t)^{n-2j},$$

其中

$$N = \begin{cases} \frac{n}{2}, & \text{当n为偶数时} \\ \frac{n-1}{2}, & \text{当n为奇数时} \end{cases}$$

所以

$$H'_n(t) = 2n \sum_{j=0}^{M} \frac{(-1)^j}{j!} n - 1(n-2) \cdots (n-2j)(2t)^{n-1-2j} = 2nH_{n-1}(t),$$

其中

$$M = \begin{cases} \frac{n-2}{2}, & \text{当n为偶数时} \\ \frac{n-1}{2}, & \text{当n为奇数时} \end{cases}$$

令 $v(t) = e^{-t^2}$,则

$$\int_{-\infty}^{\infty} e_m(t)e_n(t)dt = [(2^n n! \sqrt{\pi})(2^m m! \sqrt{\pi})]^{-\frac{1}{2}} \times (-1)^n \int_{-\infty}^{\infty} H_m(t)v^{(n)}(t)dt.$$

又因为

$$\int_{-\infty}^{\infty} H_m(t)v^{(n)}(t)dt = H_m v^{(n-1)}(t) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} 2mH_{m-1}(t)v^{(n-1)}(t)dt$$

$$= -2m \int_{-\infty}^{\infty} H_{m-1}(t)v^{(n-1)}(t)dt = \cdots$$

$$= (-1)^m 2^m m! \int_{-\infty}^{\infty} H_0(t)v^{(n-m)}(t)dt$$

$$= (-1)^m 2^m m! \int_{-\infty}^{\infty} v^{(n-m)}(t)dt$$

故当时 n=m 时,

$$\int_{-\infty}^{\infty} e_n(t)e_m(t)dt = 1.$$

 $n \neq m$ 时,不妨设 m < n, 由于

$$\int_{-\infty}^{\infty} H_m(t)v^{(n)}(t)dt = (-1)^m 2^m m! \int_{-\infty}^{\infty} v^{(n-m)}(t)dt$$
$$= (-1)^m 2^m m! v^{(n-m-1)}(t) \mid_{-\infty}^{\infty} = 0$$

故

$$\int_{-\infty}^{\infty} e_n(t)e_m(t)dt = 0 \qquad (n \neq m)$$

这就证明了 $\{e_n(t)\}$ 是 $L^{2(-\infty,\infty)}$ 中的标准正交系. 又因为 $\{t^k e^{-\frac{t^2}{2}}\}_{k=0}^{\infty}$ 在 $L^2(-\infty,\infty)$ 中完全的,由此可知 $\{P(t)e^{-\frac{t^2}{2}}: P(t)$ 为任一多项式 $\}$ 在 $L^2(-\infty,\infty)$ 中稠密,故 $\{e_n(t)\}$ 是 $L^2(-\infty,\infty)$ 的完备标准正交系.

30. 证明 L_n 是 n 次多项式.当 n > k 时,有

$$\int_0^\infty e^{-t} t^k L_n(t) dt = \int_0^\infty t^k \frac{d^n}{dt^n} (t^n e^{-t}) dt$$

$$= -k \int_0^\infty t^{k-1} \frac{d^{n-1}}{dt^{n-1}} (t^n e^{-t}) dt = \cdots$$

$$= (-1)^k k! \int_0^\infty \frac{d^{n-k}}{dt^{n-k}} (t^n e^{-t}) dt = 0.$$

因此,当 n > m 时,有

$$\int_{0}^{\infty} e^{-t} L_n(t) L_m(t) dt = 0,$$

当 m=n 时,有

$$\int_0^\infty e^{-t} L_n^2(t) dt = (-1)^n t^n \frac{d^n}{dt^n} (t^n e^{-t}) dt$$
$$= n! \int_0^\infty t^n e^{-t} dt = (n!)^2.$$

从而知 $\{\frac{1}{n!}e^{-\frac{t}{2}}L_n(t)\}$ 是标准正交系. 下面证明 $\{\frac{1}{n!}e^{-\frac{t}{2}}L_n(t)\}$ $(n=1,2,3,\cdots)$ 的完备性.因为多项式全体在 $L^2[0,N]$ 中稠密,其中 N 是任一给定的自然数.因此可以证明

$$\left\{\frac{1}{n!}e^{-\frac{t}{2}}L_n(t)\right\} \ (n=1,2,3,\cdots)$$

张成的空间在 $L^2[0,N]$ 中稠密,将 $L^2[0,N]$ 中函数延拓到 $[0,\infty)$ 上,使之在 [0,N] 之外处处为零,于是 $L^2[0,N]$ 便成了 $L^2[0,\infty)$ 的子空间. 而 $L=\cup_{N=1}^\infty L^2[0,N]$ 在 $L^2[0,\infty)$ 中稠密,从而

$$\left\{\frac{1}{n!}e^{-\frac{t}{2}}L_n(t)\right\} \ (n=1,2,3,\cdots)$$

张成的空间在 $L^2[0,\infty)$ 中稠密, 从而可证

$$\left\{\frac{1}{n!}e^{-\frac{t}{2}}L_n(t)\right\} \ (n=1,2,3,\cdots)$$

是完备的标准正交系.

31. 证明 设 $\{e_{\alpha}\}_{\alpha\in I}$ 为 H 中的标准正交系,则

$$(e_{\alpha}, e_{\beta}) = \delta_{\alpha\beta} = \begin{cases} 0, & \alpha \neq \beta \\ 1, & \alpha = \beta \end{cases}$$

且 $\alpha \neq \beta$, $\|e_{\alpha} - e_{\beta}\| = \sqrt{2}$. 因为 H 可分,设 $\{x_n\}$ 为 H 的可数稠密子集,则

$$\bigcup_{n=1}^{\infty} B(x_n, \frac{1}{2}) \supset H,$$

其中 $B(x_n,\frac12)=\{x: \mid x-x_n\mid<\frac12\}$,若 $\{e_\alpha\}$ 不可数,则至少有两个不同的元素 e_α,e_β 同属于某一个开球 $B(x_n,\frac12)$,于是

$$\sqrt{2} = \parallel e_{\alpha} - e_{\beta} \parallel \leq \parallel e_{\alpha} - x_n \parallel + \parallel x_n - e_{\beta} \parallel < 1$$

矛盾,故 $\{e_{\alpha}\}$ 为一可数集.