

دانشكده مهندسي كامپيوتر

مهلت ارسال: ساعت ۲۴ شنبه ۲۸ خرداد ۱۴۰۱

حل تمرین هشت

به موارد زیر توجه کنید:

- ۱- حتما نام و شماره دانشجویی خود را روی پاسخنامه بنویسید.
- ۲- در حل سوالات به نوشتن جواب آخر اکتفا نکنید. همه مراحل میانی را هم بنویسید.
- ۳- کل پاسخ تمرینات را در قالب یک فایل pdf با شماره دانشجویی خود نام گذاری کرده در سامانه CW بارگذاری کنید.
 - ۴- در صورت مشاهده هر گونه مشابهت نامتعارف هر دو (یا چند) نفر <mark>کل نمره</mark> این تمرین را از دست خواهند داد.
 - ۵- هر ساعت تاخیر در ارسال تمرین ۲٪ از نمره آن را کم خواهد کرد و حداکثر تاخیر مجاز ۲۴ ساعت است.

سوالات:

۱- (۵ نمره) نمودار حالت ماشین Mealy برای شناسایی دو الگوی 10011 و 10100 با همپوشانی مجاز را رسم کنید و با استفاده از ساده ترین PLA بسازید.

پاسخ:

حالتهای این مدار عبارتند از:

Start: حالت شروع، حالتی که هنوز هیچ بیت صحیحی دریافت نشده است (خروجی ۰)

S1: حاتی که یک بیت صحیح دریافت شده است (خروجی ۰)

S10: حالتی که دو بیت صحیح دریافت شده است (خروجی ۰)

S100: حالتی که سه بیت صحیح دریافت شده است (خروجی ۰)

S101: حالتي كه سه بيت صحيح دريافت شده است (خروجي ٠)

انتی که چهار بیت صحیح دریافت شده است (ورودی $ext{ } o$ خروجی ا و ورودی ا o خروجی o

اں کہ چھار بیت صحیح دریافت شدہ است (ورودی $\cdot \to \dot{}$ خروجی $\cdot \ominus$ و ورودی ا $\to \dot{}$ خروجی ایدمالتی کہ چھار بیت صحیح دریافت شدہ است

هفت حالت داریم پس نیاز به سه بیت حالت داریم که آنها را با با سه فلیپفلاپ D ذخیره می کنیم. ورودی را هم D و خروجی را Y مینامیم.

State Name	ABC
Start	000
S1	001
S10	010
S101	101
S100	100
S1010	110
S1001	111
Don't care	011

		Α	В	С	D	A+	B+	C+	У
0	start	0	0	0	0	0	0	0	0
1	start	0	0	0	1	0	0	1	0
2	s1	0	0	1	0	0	1	0	0
3	s1	0	0	1	1	0	0	1	0
4	s10	0	1	0	0	1	0	0	0
5	s10	0	1	0	1	1	0	1	0
6	DC	0	1	1	0	х	х	Х	Х
7	DC	0	1	1	1	х	х	Х	Х
8	s100	1	0	0	0	0	0	0	0
9	s100	1	0	0	1	1	1	1	0
10	s101	1	0	1	0	1	1	0	0
11	s101	1	0	1	1	0	0	1	0
12	s1010	1	1	0	0	1	0	0	1
13	s1010	1	1	0	1	1	0	1	0
14	s1001	1	1	1	0	0	1	0	0
15	s1001	1	1	1	1	0	0	1	1

Map $\overline{C}.\overline{D}$ $\overline{C}.D$ C.D $C.\overline{D}$ $\overline{A}.\overline{B}$ 0 0 0 0 \overline{A} .B 0 0 X X A.B 0 0 $A.\overline{B} = 0$ 0 0 0

y = Q2.Q1.Q0'.x' + Q2.Q1.Q0.x y = BCD + ABC'D' = Q1.Q0.x + Q2.Q1.Q0'x'y' = B' + A' + C'D + CD' = Q1' + Q2' + Q0'x + Q0.x'

	$\overline{C}.\overline{D}$	\overline{C} .D	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	0	0	0	0
\overline{A} .B	1	1	X	X
A.B	1	1	0	0
$A.\overline{B}$	0	1	0	1

 $Q2_next = BC' + AC'D + AB'CD' = Q1.Q0' + Q2.Q0'.x + Q2.Q1'.Q0.x'$ $Q2_next' = A'B' + CD + BC + B'C'D' = Q2'Q1' + Q0x + Q1Q0 + Q1'Q0'x'$

	$\overline{\mathbf{C}}.\overline{\mathbf{D}}$	$\overline{\mathbf{C}}.\mathbf{D}$	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	0	0	0	1
$\overline{\mathbf{A}}.\mathbf{B}$	0	0	x	X
A.B	0	0	0	1
$A.\overline{B}$	0	1	0	1

 $Q1_next = CD' + AB'C'D = Q0.x' + Q2.Q1'.Q0'x$ $Q1_next' = A'C' + C'D' + BC' + CD = Q2'Q0' + Q0'x' + Q1Q0' + Q0x$

	$\overline{\mathrm{C.D}}$	\overline{C} .D	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	0	1	1	0
\overline{A} .B	0	1	X	X
A.B	0	1	1	0
$A.\overline{B}$	0	1	1	0

 $Q0_next = D = x$

۲- (۵ نمره) مداری ترتیبی طراحی کنید که ورودی in را به صورت سریال و با شروع از کمارزش ترین بیت دریافت کند و مکمل دوی
 آن را به همان ترتیب (با شروع از کمارزش ترین بیت) در خروجی out بدهد. ASM Chart و جدول حالت این مدار را رسم کنید و مدار به روش معمول و با استفاده از D-FF بسازید.

مثال: در این مثال مکمل دوی عدد 1110010100 محاسبه شده و برابر با 0001101100 است:

in: 0010100111... out: 0011011000...

پاسخ:

برای محاسبه مکمل دوی یک عدد با شروع از LSB و تا قبل از رسیدن به اولین یک تمام ارقام را بدون تغییر مینویسیم و سپس ارقام پرارزش تر از اولین یک را مکمل می کنیم. پس ASM Chart این مدار به صورت زیر است:

در نتیجه برای جدول حالت داریم:

Q	in	Q^+	out
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

 $out = Q \; xor \; in.$ با توجه به جدول بالا واضح است که $Q^+ = Q + in$ و بالا واضح است که می آید:

۳- (۵ نمره) ابتدا ASM Chart متناظر با جدول حالت زیر را رسم کنید و سپس مدار آن را با روش دیکودر بسازید.

	Ç		
Q	in=0	in=1	out
000	001	000	0
001	001	011	1
010	001	000	1
011	100	010	0
100	100	101	1
101	100	101	0

برای رسم مدار جدول حالت را می کشیم و روابط را از روی جدول حالت مینویسیم:

હ	مالت	in	والم معنى الماني	out
Ī	٦,	0 1	T1 001	0
	7,	٥	T ₁ 001 T ₃ 011	- 1
	τ₂.	0	T ₁ 001 T ₀ 000	- 1
	73	0	T4 100	D
	Т4	0	T4 100	1
	T 5	0	T4 (00 T5 (01)	0

$$Q_2 = T_3 in' + T_4 + T_5$$

$$Q_1 = T_1 in + T_3 in$$

$$Q_0 = T_0 in' + T_1 + T_2 in' + T_4 in + T_5 in$$

۴- (۵ نمره) ASM Chart زیر را یک بار با کدگذاری باینری و روش MUX و یک بار با کدگذاری one-hot به مدار تبدیل کنید.

کدگذاری باینری و روش MUX: ابتدا جدول حالت را رسم می کنیم:

Q_1Q_0	$Q_1^+Q_0^+$	شرط ورودى	mux ₁	mux ₀
00	01	X	x'	1
00	11	x'	Х	1
01	10	у	v	0
01	00	y'	У	
10	11	X	**	1
10	01	x'	X	1
11	00	у	v'	0
11	10	y'	У	U

مهچنین با توجه به ASM Chart واضح است که خروجی فقط در حالات ۱۰ و ۱۰ یک می شود پس می توان گفت $out = Q_1 \ xor \ Q_0$.

در نتیجه مدار به شکل زیر در می آید. ورودیهای clear فلیپفلاپها باید به start وصل باشد که مدار در شروع کار به حالت SO برود.

کدگذاری one-hot:

حالات را به صورت one-hot در چهار بیت S0 تا S3 کدگذاری می کنیم و سپس بدون نیاز به رسم جدول حالت و مستقیما از روی ASM Chart روابط زیر را می نویسیم:

$$S_0 = S_1 y' + S_3 y$$

$$S_1 = S_0 x + S_2 x'$$

$$S_2 = S_1 y + S_3 y'$$

$$S_3 = S_0 x' + S_2 x$$

$$out = S_1 + S_2$$

در نتیجه مدار به شکل زیر در می آید. ورودی preset فلیپفلاپ S_0 و ورودی های clear بقیه فلیپفلاپها باید به start وصل باشد که مدار در شروع کار به حالت S_0 برود.

