El Arte de la Programación Rápida

Programación Dinámica

Problema ejemplo

- Vamos a analizar la técnica de Programación dinámica a través de un ejemplo.
- Calcular los caminos más cortos entre todos los pares de nodos de un grafo.

Primera aproximación: backtracking

- No, no otra vez!!!!;)
- ¿Cuál es el espacio de búsqueda?

Primera aproximación : backtracking

- Funciona, pero esta solución es muy ineficiente.
- Rápidamente se puede ver que, aún si el grafo es no dirigido, el algoritmo es proporcional a n!
 - Para n=10, ya tengo un orden de 10⁶ elementos que procesar...
- Problema: vuelvo a calcular lo mismo una y otra vez:

¡Los subárboles son iguales!

EAPR - EPS - UAM

Programación Dinámica:

técnica para implementar eficientemente algoritmos recursivos por medio del almacenamiento de resultados intermedios

EAPR - EPS - UAM

-

Caminos más cortos con P.D.

- Ordeno (numero) los nodos
 - (ya estaba hecho ⁽²⁾)
 - pienso algoritmo recursivo:
 - En cada nivel de recursión k, considero todos los caminos que pasan solo por nodos con índice menor que k.
 - De hecho, ni siquiera necesitamos que sea recursivo!

EAPR - EPS - UAM

Caminos más cortos con P.D.

- Algoritmo:
 - Para cada nodo intermedio k (entre 1 y n)
 - Para cada nodo de salida i
 - Para cada nodo de llegada j
 - Veo si utilizando el nodo k existe un camino más corto que el camino que ya existía entre i y j.
 - Si existe, lo apunto, si no, me quedo con el anterior

EAPR - EPS - UAM

(

Caminos más cortos con P.D.

- Implementación:
 - Utilizamos matriz de adyacencia
 - Implica utilizar espacio de n², pero al fin y al cabo tenemos que guardar la información de distancia entre nodos de todas formas.

costo

0	∞	3	œ	œ	œ
∞	0	5	1	∞	∞
3	5	0	17	4	œ
∞	1	17	0	∞	9
∞	∞	4	∞	0	2
∞	∞	∞	9	2	0

EAPR - EPS - UAM

Costo de caminos más cortos

• Algoritmo:

```
for (k=1; k<=n; k++)
  for (i=1; i<=n; i++)
    for (j=1; j<=n; j++) {
        nuevo = costo(i,k)+costo(k,j);
        if (nuevo < costo(i,j))
            costo(i,j) = nuevo;
    }</pre>
```

EAPR - EPS - UAM

1

Caminos más cortos

- El algoritmo anterior me da el menor costo.
- Pero no me dice el camino que tiene asociado dicho costo.
- Para saber el camino, basta guardar el nodo intermedio de cada paso.

EAPR - EPS - UAM

Caminos más cortos con P.D.

• Algoritmo:

```
for (k=1; k<=n; k++)
  for (i=1; i<=n; i++)
    for (j=1; j<=n; j++) {
        nuevo = costo(i,k)+costo(k,j);
        if (nuevo < costo(i,j)) {
            costo(i,j) = nuevo;
            camino(i,j) = k;
        }
    }
}</pre>
```

EAPR - EPS - UAM

¿Cuál es el camino?

◆ Si queremos imprimir el camino de mínimo costo entre x e y:

```
Hacemos z = camino(x,y).
Si z==y, imprimimos y //ya hemos llegado.
Sino, imprimimos camino de x a z y de z a y.
```

EAPR - EPS - UAM

1/