

MODEL COMPARISON

SYRACUSE UNIVERSITYSchool of Information Studies

BASELINES FOR MODEL EVALUATION

If your classification model reached 80% accuracy, is it "good enough"?

Two common baselines for comparison

Random guess: If there are two categories, a model based on random guess would result in 50% accuracy.

Majority vote: If the data set is skewed, a trivial model would assign all test data to the larger category.

In the Titanic training data set, the majority vote model would result in 549/891 = 62% accuracy.

Your model is expected to outperform the common baselines.

MAJORITY VOTE BASELINE

	Predictions			
Classes	buy_computer =	buy_computer =	Total	Recall(%)
	yes	no		
buy_computer =	7,000	0	7,000	1
yes				
buy_computer = no	3,000	0	3,000	0
Total	10,000	0	10,000	
Precision (%)	.70	n/a		

FAIR COMPARISON

When comparing the performance of two models, e.g., an unpruned tree vs. a pruned tree, make sure the comparison is fair, meaning, the test data should be exactly the same.

Common mistakes:

Run hold-out test on one model but cross-validation on another model. Set up different numbers of folds for the two models when using cross-validation.

Set up different split ratio for the two models when using hold-out test.

OTHER ASPECTS OF EVALUATION

When comparing two classification models, predictive capability (as measured by accuracy, precision, recall, etc.) is only one aspect to examine.

Other aspects:

Speed

Robustness

Scalability

Model interpretability

OTHER ASPECTS OF EVALUATION

Speed

Time to construct model (training time)

Time to use the model (classification/prediction time)

Robustness

Handling noise and missing values

Scalability

The data set size keeps increasing

Interpretability

Understanding the insight provided by the model

IS THE MODEL GOOD ENOUGH?

There is always room for improvement for nontrivial prediction tasks.

Evaluation from system perspective

Evaluation from user perspective