PHYSICS PRACTICAL SHEETS Date .10th Oct 2023KU CAMPUS Experiment No.3 Class CE GroupT Roll No. 25 Sub. PHY102 Shift Afternoon Object of the Experiment (Block Letter) DETERMINATION OF SURFACE TENSION OF WATER BY CAPILLARY RISE METHOD #Apparatus Required: i) Capillary tube, uniform hore and different radii ii) Needle iii) A glass strip iv) Thin rubbes band v) Glass venel vi) Clamp stand vii) Travelling microscope viii) Adjustable stand # Theory when a capillary tube is dipped in water, it rises in the capillary tube till the weight is balanced by the upward component of the surface tension. At equilibrium, the weight of the liquid column and the vestical component of the surface tension are equal. 80, 2 - 8 TT COS 0 = TT r 2 (n + r) 89 Hele, r = radius of tube h = height of liquid column. S = density of wates column S = surface tension of wates. Since r < ch and $\theta \approx 8-9^{\circ}$, Then the surface tension of the liquid is determined by formula = rh89

#Observations and Calculations

lassmate

Temperature of water (T) = 25°C Least count of vernier scale = 1/20 cm

No. of vernier divisions = 50

Vernier constant = 0.001 cm

Density of water = 1 gm/cc

Experimental arrangement for measuring surface tension.

Fig. Cross-section of capillary tube.

	No	Position of meniscus				Aporition of needle tip				Height
	of	Values of		Total	Hean	violues of		Total 1	Hean	h= X-Y
	obs	Main	Vernier	X (cm)	(cm)	Hain	Vernies	Y(un)	(cm)	(cm)
		scale	scale			scale	scale			
	1	4-70	1	4. 7031	4.703	2-50	20	2-520	2.525	2-180
I	2	4.70	5	4.705		2.50	25	2-525		
	4	4.70	3	4-703	4.707	2.50	20	2.520	2.525	2-184
Ū	2	4.70	11	4-719		2.50	25	R-525		

Determining diameter of the capillary tube.

No of	Tube	Hicroscope reading				Diameter		Hean	Hean
ob5	No	a	Ь	C	d	b-a	0-0	diameter	radius
1	I	6.040	5-914	7-976	7-846	0-126	0-130	0-128	0.064
2	I	6-087	5 944	7-867	7.722	0143	0-145	0.144	0.072

#Result

The value of surface tension for tube I. $\delta = 68.3148$ tube II. $\delta = 77.05152$

The mean value of surface tension of water = 72.70816

The surface tension of water $(7=25^{\circ}c) = 70.4$ dyne cm⁻¹.

The surface tension of water $(7=25^{\circ}c) = 70.4$ dyne cm⁻¹.

The surface tension of water $(7=25^{\circ}c) = 70.4$ dyne cm⁻¹.

The surface tension of water $(7=25^{\circ}c) = 70.4$ dyne cm⁻¹.