Bayesian Neural Networks

Practical Deep Learning for Science 04 July, 2023

Let's say we are doing an experiment

X	Y
1.1	3.3
2.3	6.9
3.3	9.9
3.9	11.7
9.6	28.8
10.1	30.3
11.3	33.9
4.7	14.1
8.2	24.6
5.9	17.7

What is Y at x = 7?

We can still train an NN with only one weight to do the same

Let's say we are doing an experiment

X	Y
1.1	3.3
2.3	6.9
3.3	9.9
3.9	11.7
9.6	28.8
10.1	30.3
11.3	33.9
4.7	14.1
8.2	24.6
5.9	17.7

What is Y at x = 7?

We can still train an NN with only one weight to do the same

Let's say we are doing an experiment

Ideal situation

What we see

If we train a network

We will get

What we want

Line Fit with Uncertainty

How do we quantify the uncertainty with NN

Aleatoric uncertainty Noise in the data More data won't help Epistemic uncertainty Uncertainty in the model parameters More data will help

• We need to modify the network to accommodate these two uncertainties

Model uncertainty

Gaussian (μ , σ)

Model weight before

Model weight after

- ullet Each weight, instead of being a number, will be two numbers μ and σ
- During forward pass, we sample from the Gaussian (μ, σ)

Model uncertainty

How about the uncertainty from the data

- Let's add another Gaussian into the picture
- Mean = output of the NN (a gaussian)
- Sigma = another Gaussian we'll learn

