Lógica

Mauro Polenta Mora

Ejercicio 4

Consigna

Considere un lenguaje de primer orden del tipo $\langle -; 2, 2, 1; 1 \rangle$. Sea A una estructura de dicho tipo definida como sigue: $A = \langle \mathbb{N}, +, *, S, 0 \rangle$ donde S(x) = x + 1.

1. Defina los símbolos del alfabeto y dé dos términos distintos t_1 y t_2 del lenguaje tales

$$t_1^A = t_2^A = 3$$

- 2. Demuestre que para todo $n \in \mathbb{N}$ hay un término t tal que $t^A = n$.
- 3. Sea t un término y n un natural. Demuestre que si $t^A=n$ entonces existe t' tal que $t'^A = n$ y tiene más ocurrencias de los símbolos f_1 y c_1 .
- 4. Demuestre por el absurdo que para todo $n \in \mathbb{N}$ hay infinitos términos t tales que $t^A = n$.

Resolución

Parte 1

Considerando el alfabeto por defecto para el tipo definido:

• $f_1, f_2, f_3; c_1$

Encontremos dos términos diferentes tal que su interpretación sea 3:

- $\begin{array}{ll} \bullet & t_1 = f_3(f_3(f_3(c_1))) \\ \bullet & t_2 = f_1(f_3(f_3(f_3(c_1))), c_1) \end{array}$

Es bien fácil ver que ambos términos evaluados en la estructura A son 3.

Parte 2

Probemos la propiedad dada usando el PIP sobre N. Definimos la propiedad como:

$$P(n): (\overline{\forall} n \in \mathbb{N}) \overline{\exists} t \in TERM_A \text{ tal que } t^A = n$$

Demostración

Paso base

$$P(0): \overline{\exists} t \in TERM_A \text{ tal que } t^A = 0$$

Esto es trivial pues $c_1^A = 0$, y sabemos que $c_1 \in TERM_A$

Paso inductivo

$$\begin{array}{ll} (\mathrm{H}) \ P(n): \overline{\exists} t_1 \in TERM_A \ \mathrm{tal} \ \mathrm{que} \ (t_1)^A = n \\ (\mathrm{I}) \ P(n+1): \overline{\exists} t_2 \in TERM_A \ \mathrm{tal} \ \mathrm{que} \ (t_2)^A = n+1 \end{array}$$

(I)
$$P(n+1): \overline{\exists} t_2 \in TERM_A \text{ tal que } (t_2)^A = n+1$$

Evaluemos la tesis para ver que podemos decir sobre ella:

$$\begin{aligned} n+1 \\ = &(\text{por hipótesis inductiva: } (t_1)^A = n) \\ &(t_1)^A + 1 \\ = &(\text{por interpretación de } f_3) \\ &f_3((t_1)^A) \\ = &(\text{por interpretación de términos cerrados}) \\ &f_3(t_1)^A \end{aligned}$$

Por lo que encontramos $t_2 \in TERM_A$ tal que se cumple que:

$$f_3(t_1)^A = n+1$$

Lo que prueba la tesis, y por lo tanto la propiedad para todos los naturales. ■

Parte 3

Para probar esta parte, tomaremos un $t \in TERM_A$ cualquiera, que cumpla con $t^A = n$. Veamos que:

$$t^A = n$$
 \iff (aritmética)
$$t^A + 0 = n$$
 \iff (interpretación de f_1, c_2)
$$f_1(t, c_1)^A = n$$

Por lo que encontramos $t^\prime=f_1(t,c_1)$ que cumple con lo que buscabamos, es decir que

También se observa trivialmente que t' tiene más ocurrencias de f_1 y c_1 que t, esto porque tiene las mismas que tiene t (pues lo incluye) y a eso le suma una ocurrencia de ambas f_1 $y c_1$

Para finalizar, podemos concluir que esto se cumple para cualquier t, porque hicimos el razonamiento para un t cualquiera.

Parte 4

Supongamos que existe un $n \in \mathbb{N}$ tal que solo hay $m \in \mathbb{N}$ términos $t \in \{t_1, \dots, t_m\}$ que cumplen que $t^A = n$.

Consideremos $t' \in \{t_1, \dots, t_m\}$ como el término con la máxima cantidad de ocurrencias de f_1 , esto es posible pues los términos son finitos.

De la forma en la que elegimos t', sabemos que $t'^A = n$, por lo que podemos aplicar la propidad que probamos en la parte anterior (parte 3). Con esto obtenemos a quién llamamos $t'' \in TERM_A$, veamos lo que podemos decir sobre este término:

- 1. Cómo $t''^A=n$ por la propiedad de la parte 3, podemos decir que $t''\in\{t_1,\ldots,t_m\}$. 2. También por la propiedad de la parte 3, t'' tiene más ocurrencias de f_1 que t'.

Pero estas dos observaciones son contradictorias, pues t' era el elemento con mayor cantidad de ocurrencias del conjunto $\{t_1, \dots, t_m\}$. ABSURDO!

Por lo tanto, queda probado que para todo $n \in \mathbb{N}$ hay infinitos términos t tales que $t^A = n$.