Дискретная математика 1 семестр ПИ, Лекция, 10/23/21

Собрано 23 октября 2021 г. в 17:31

Содержание

1.	Теория вероятности	1
	1.1. Испытания Бернулли	1
	1.2. Предельные случаи испытаний Бернулли	2

Теорема 1.0.1 (Формула Байеса). Пусть $H_1, H_2, ..., H_n$ – полная группа событий. A – событие (считаем произошедшим). Тогда

$$P(H_k|A) + \frac{P(H_k) \cdot P(A|H_k)}{\sum_{i=1}^{n} P(H_i) \cdot P(A|H_i)}$$

Доказательство.

$$P(H_k|A) = \frac{P(H_k \cap A)}{P(A)} = \frac{P(H_k) \cdot P(A|H_k)}{\sum_{i=1}^{n} P(H_i) \cdot P(A|H_i)}$$

1.1. Испытания Бернулли

Def. 1.1.1. Обозначим $P_n(m)$ – вероятность получить m успехов за n испытаний.

Теорема 1.1.2 (Теорема Бернулли). Рассмотрим упорядоченный набор: $\underbrace{SSS...S}_{n}\underbrace{FFF...F}_{n-m}$, где

S обозначает успех, а F – неудачу. В силу независимости испытаний, вероятность получить конкретный упорядоченный набор равна $p^m(1-p)^{n-m}$. Таких наборов, очевидно, C_p^m

Теорема 1.1.3. $0 \leqslant m_1 \leqslant m_2 \leqslant n$. $P_n(m_1, m_2)$ – успех наступил от m_1 до m_2 раз.

$$P_n(m_1, m_2) = \sum_{i=m_1}^{m_2} C_n^k p^k (1-p)^{n-k}$$

Def. 1.1.4. Наивероятнейшее число событий – число событий в испытаниях Бернулли с наибольшей вероятностью.

Теорема 1.1.5. Наивероятнейшее число успехов в n испытаниях заключено между числами np - (1 - p) и np + p

Доказательство. Рассмотрим следующее соотношение:

$$\frac{P_n(m)}{P_n(m-1)} = \frac{C_n^m p^m (1-p)^{n-m}}{C_n^{m-1} p^{m-1} (1-p)^{n-m+1}} = \frac{p}{1-p} \cdot \frac{n!(m-1)!(n-m+1)!}{n!m!(n-m)!} = \frac{p}{1-p} \cdot \frac{n-m+1}{m}$$

Отсюда очевидно, что

$$P_n(m) > P_n(m-1), m < (n+1)p$$

 $P_n(m) = P_n(m-1), m = (n+1)p$
 $P_n(m) < P_n(m-1), m > (n+1)p$

Значит, при m < (n+1)p $P_n(m)$ возрастает, при m > (n+1)p – убывает. Тогда несложно найти m такое, чтобы $P_n(m)$ было наибольшим:

$$\begin{cases} P_n(m) > P_n(m-1) \\ P_n(m+1) < P_n(m) \end{cases} \Leftrightarrow \begin{cases} m < (n+1)p \\ m+1 > (n+1)p \end{cases} \Leftrightarrow np+p-1 < m < np+p$$

1.2. Предельные случаи испытаний Бернулли

Рассмотрим ситуацию, когда вероятность какого-то события уменьшается пропорционально n, т.е. $p \sim \frac{1}{n}$

Теорема 1.2.1 (Теорема Пуассона). Пусть $np = \text{const}, \lambda = np$.

$$\forall m, \forall \lambda \lim_{n \to \infty} P_n(m) = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

Доказательство.

$$P_{n}(m) = C_{n}^{m} p^{m} \cdot (1-p)^{n-m} = \frac{n!}{m!(n-m)!} \cdot \left(\frac{\lambda}{n}\right)^{m} \left(1 - \frac{\lambda}{n}\right)^{n-m} =$$

$$= \frac{n(n-1)...(n-m)+1}{m!} \cdot \left(1 - \frac{\lambda}{n}\right)^{n-m} \cdot \left(\frac{\lambda}{n}\right)^{m} =$$

$$= \frac{\lambda^{m}}{m!} \left(1 - \frac{\lambda}{n}\right)^{n} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) ... \left(1 - \frac{m-1}{n}\right) \left(1 - \frac{\lambda}{n}\right)^{-m} \Rightarrow$$

$$\Rightarrow \lim_{n \to \infty} P_{n}(m) = \lim_{n \to \infty} \frac{\lambda^{m}}{m!} \left(1 - \frac{\lambda}{n}\right)^{n} = \frac{\lambda^{m}}{m!} \cdot e^{-\lambda}$$

Теорема 1.2.2 (Локальная теорема Муавра-Лапласа). Пусть $x_n = \frac{m-np}{\sqrt{np(1-p)}}$. Предположим, что x_n ограничена при $n \to \infty$. Тогда

$$\sqrt{np(1-p)} \cdot P_n(m) \sim \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x_n^2}{2}}$$

Доказательство. Вспомним, что $k! \sim \sqrt{2\pi k} \left(\frac{k}{e}\right) k$. $n-m=n(1-p)-x_n\sqrt{np(1-p)}$. Тогда

$$\sqrt{np(1-p)}P_{n}(m) = \sqrt{np(1-p)}C_{n}^{m}p^{m}(1-p)^{n-m} = \frac{\sqrt{np(1-p)\cdot n!}}{m!(n-m)!}\cdot p^{m}\cdot (1-p)^{n-m}
\approx \frac{\sqrt{np(1-p)}\cdot \sqrt{2\pi n}\left(\frac{n}{e}\right)^{n}}{\sqrt{2\pi m}\cdot \left(\frac{m}{e}\right)^{m}\cdot \sqrt{2\pi (n-m)}\cdot \left(\frac{n-m}{e}\right)^{n-m}}\cdot p^{m}\cdot (1-p)^{n-m}
= \frac{\sqrt{np(1-p)}\cdot \sqrt{n}\cdot n^{n}}{\sqrt{2\pi}\cdot \sqrt{m}\cdot m^{n}\cdot (n-m)^{n-m}}\cdot p^{m}(1-p)^{n-m} = \frac{1}{\sqrt{2\pi}}\left(\frac{np}{m}\right)^{m}\cdot \left(\frac{n(1-p)}{n-m}\right)^{n-m}\sqrt{\frac{np}{m}}\cdot \sqrt{\frac{n(1-p)}{n-m}}
= \frac{1}{\sqrt{2\pi}\cdot \sqrt{m}\cdot m^{m}\cdot (n-m)^{n-m}}\cdot p^{m}(1-p)^{n-m} = \frac{1}{\sqrt{2\pi}}\left(\frac{np}{m}\right)^{m}\cdot \left(\frac{n(1-p)}{n-m}\right)^{n-m}\sqrt{\frac{np}{m}}\cdot \sqrt{\frac{n(1-p)}{n-m}}
= \frac{1}{\sqrt{2\pi}\cdot \sqrt{m}\cdot m^{m}\cdot (n-m)^{n-m}}\cdot p^{m}(1-p)^{n-m} = \frac{1}{\sqrt{2\pi}}\left(\frac{np}{m}\right)^{m}\cdot \left(\frac{n(1-p)}{n-m}\right)^{n-m}\sqrt{\frac{np}{m}}\cdot \sqrt{\frac{n(1-p)}{n-m}}$$

$$m = np + x_n \sqrt{np(1-p)}$$

$$\frac{m}{np} = 1 + \frac{x_n \sqrt{1-p}}{\sqrt{np}} \xrightarrow[n \to \infty]{} 1$$

$$\frac{n-m}{n(1-p)} = 1 - \frac{x_n \sqrt{p}}{\sqrt{n(1-p)}} \xrightarrow[n \to \infty]{} 1$$

Пусть, для удобства, $\exp(x) = e^x$. Тогда

$$\sqrt{np(1-p)}P_n(m) \approx \frac{1}{\sqrt{2\pi}} \cdot \left(1 + \frac{x_n\sqrt{1-p}}{\sqrt{np}}\right)^{-m} \left(1 - \frac{x_n\sqrt{p}}{\sqrt{n(1-p)}}\right)^{-(n-m)} =$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-m \cdot \ln\left(1 + \frac{x_n\sqrt{1-p}}{\sqrt{np}}\right) - (n-m) \cdot \ln\left(1 - \frac{x_n\sqrt{p}}{\sqrt{n(1-p)}}\right)\right)$$

Как мы знаем (откуда?)

$$\ln(1+y) \xrightarrow{y\to 0} y - \frac{y^2}{2}(1+O(1))$$

Следовательно $\sqrt{np(1-p)}P_n(m) =$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-m\left(\frac{x_n\sqrt{1-p}}{\sqrt{np}} - \frac{x_n^2}{2np}\right)(1+O(1)) - (n-m)\left(-\frac{x_n\sqrt{p}}{\sqrt{n(1-p)}} - \frac{x_n^2p}{2n(1-p)}\right)(1+O(1))\right)$$

$$x_n \left(\frac{(n-m)\sqrt{p}}{\sqrt{n(1-p)}} - \frac{m\sqrt{1-p}}{\sqrt{np}} \right) =$$

$$= \frac{x_n}{\sqrt{np(1-p)}} \left(np(1-p) - x_n \sqrt{np(1-p)}p - n(1-p) \cdot p - x_n \sqrt{np(1-p)}(1-p) \right) =$$

$$= -x_n^2 (p + (1-p)) = -x_n^2$$

Таким образом:

$$\sqrt{np(1-p)}P_n(m) \approx \frac{1}{\sqrt{2\pi}}e^{\left(-x_n^2 + \frac{x_n^2}{2}\right)(1+O(1))} \approx \frac{1}{\sqrt{2\pi}}e^{-\frac{x_n^2}{2}}$$