目录

第一章	剑指 150	4
1.1	第一章函数极限连续	4
	1.1.1 考点 1 常用函数及常用曲线 p4	4
1.2	考点 2 函数的几种特性(特别要记忆对这些特性总结的结论)p11	5
1.3	考点 3 极限的定义 p14	5
1.4	考点 4 极限的性质 p19	5
1.5	考点 5 无穷小与无穷大 p20	5
1.6	考点 6 极限的四则运算法则及两个重要极限 p25	5
	1.6.1 极限的四则运算法则	5
1.7	考点 7 等价代换 p29	5
1.8	考点 8 洛必达法则	5
1.9	考点 9 泰勒公式(多项式的高次逼近)p35	5
	1.9.1 泰勒公式	5
1.10	考点 10 幂指函数 $u(x)^{v(x)}$ 的极限 p38 \dots	6
1.11	考点 11 已知极限反求参数及无穷小阶数的比较 p40	6
1.12	考点 12 数列的极限 p43	6
1.13	考点 13 函数的连续性与间断点 p48	6
1.14	考点 14 闭区间上连续函数的性质 p53	6
盤一音	一元函数微分学	7
2.1	考点 15 导数定义	•
2.2	考点 16 四则、复合函数、反函数及对数求导法则 p62	
2.3	考点 17 高阶导数 p65	
$\frac{2.3}{2.4}$	考点 18 隐函数及由参数方程所确定的函数的求导法则 p67	
2.5	考点 19 分段函数及绝对值函数求导 p70	7
$\frac{2.6}{2.6}$	考点 20 导数的几何、物理意义及相关变化率 p75	
$\frac{2.0}{2.7}$	考点 21 函数的微分 p77	
	考点 22 中值定理 p80	
	考点 23 单调性与极值、最值 p91	7
	考点 24 凹凸性与拐点 p99	7
	考点 25 渐近线、曲率 p102	7
	考点 26 函数图形的描绘 p105	7
	考点 20 函数图形的抽绘 p100	7
4.13	/5 PL 41 NL BLICKEY BY 吊第/小字T\ DIUU	- (
0.14	考点 28 用导数讨论方程的根 p109	7

目录 2

第三章	一元函数积分学	8
3.1	考点 29 原函数与不定积分的概念、积分公式 p114	8
3.2	考点 30 凑微分法求不定积分 p117	8
3.3	考点 31 换元法求不定积分 p120	8
3.4	考点 32 分布积分法求不定积分 p121	8
3.5	考点 33 有理函数的积分 p124	8
3.6	考点 34 定积分的定义及性质 p125	8
3.7	考点 35 定积分的计算方法及若干技巧 p132	8
3.8	考点 36 变限积分函数及其求导原理 p140	8
3.9	考点 37 变限积分函数的综合题 p145	8
3.10	考点 38 定积分不等式的证明 p150	8
3.11	考点 39 定积分与极限的综合题 p154	8
3.12	考点 40 反常积分 p157	8
	考点 41 平面图形的面积 p161	8
	考点 42 空间图形的体积 p165	8
	考点 43 平面曲线的弧长 p168	8
	考点 44 旋转曲面的侧面积 p169	8
3.17	考点 45 定积分的物理应用 p170	8
第四章	向量代数与空间解析几何	9
4.1	考点 46 向量及其运算 p173	9
4.2	考点 47 平面积空间直线 p175	9
4.3	考点 48 曲面及空间曲线 p180	9
第五章	多元函数微分学	10
5.1	考点 49 二元函数的极限及连续 p185	
5.2	考点 50 偏导数 p188	
5.3	考点 51 全微分 p192	
5.4	考点 52 复合函数的偏导数与全微分 p195	
5.5	考点 53 隐函数的偏导数及全微分 p200	
5.6	考点 54 极值与最值 p203	
5.7	考点 55 多元函数微分学的几何应用 p209	10
5.8	考点 56 方向导数与梯度 p212	
5.9	考点 57 二元函数的二阶泰勒公式 p214	10
第六章	多元函数积分学	11
6.1	考点 58 二重积分概念与几何意义 p217	11
6.2	考点 59 直角坐标计算二重积分 p221	11
6.3	考点 60 极坐标计算二重积分 p224	
6.4	考点 61 换序及换系 p227	
6.5	考点 62 需分区域计算的几种情况 p233	
6.6	考点 63 先一后二法(投影法)与先二后一法(截面法)p236	
6.7	考点 64 利用球面坐标计算三重积分 p240	
	考点 65 三重积分的性质及换序 p241	11

-	=
ㅂ	V
\sim	~ ~

8.3

8.5

8.6

目录		3
6.9	考点 66 第一类(平面、空间)曲线积分 p242	11
6.10	考点 67 第二类平面曲线积分 p246	11
6.11	考点 68 第一类曲面积分 p253	11
6.12	考点 69 第二类曲面积分 p256	11
6.13	考点 70 第二类空间曲线积分的计算 p262	11
6.14	考点 71 多元函数积分学的应用及场论初步 p264	11
第七章	无穷级数 	12
7.1	考点 72 用定义和基本性质判断技术的敛散性 p270	12
7.2	考点 73 正项级数敛散性的判别方法 p272	12
7.3	考点 74 交错基数敛散性的判别方法 p276	12
7.4	考点 75 任意项基数敛散性的判别方法 p278	12
7.5	考点 76 收敛发散的证明题 p281	12
7.6	考点 77 幂级数的收敛半径及收敛域的求法 p282	12
7.7	考点 78 求一般函数项级数的收敛域 p286	12
7.8	考点 79 函数展开成幂级数 p286	12
7.9	考点 80 幂级数的和函数的求法 p290	12
7.10	考点 81 常数项级数的求和 p295	12
7.11	考点 82 傅立叶级数 p297	12
第八章	常微分方程	13
8.1	考点 83 微分方程的基本概念 p301	13
8.2	考点 84 一阶微分方程 p302	13

13

13

13

13

第一章 剑指 150

开始于 2023 年 3 月 1 日 高昆轮

1.1 第一章函数极限连续

1.1.1 考点 1 常用函数及常用曲线 p4

函数的概念及一些常用函数

- 1. 绝对值函数 y=|x| 在 x=0 处连续,但是是不可导的(左导数不等于右导数) $|a_1\pm a_2\pm ...\pm a_n| \leq |a_1|+|a_2|+...+|a_n|$
- 2. 最值函数

$$\begin{split} U &= \max\{f(x), g(x)\} = \frac{f(x) + g(x) + |f(x) - g(x)|}{2} \\ V &= \min\{f(x), g(x)\} = \frac{f(x) + g(x) - |f(x) - g(x)|}{2} \\ U + V &= f(x) + g(x), U - V = |f(x) - g(x)|, U \bullet V = f(x)g(x) \end{split}$$

3. 符号函数

$$x \quad \sqrt{x^2} = |x| = xsgn(x)$$

4. 取整函数

$$[x+n] = [x] + n, \quad n, x-1 < [x] \le x$$

5. 幂指函数

$$u(x)^{v(x)} = e^{v(x)lnu(x)}$$

- 6. 狄利克雷函数
- 7.

- 1.2 考点 2 函数的几种特性 (特别要记忆对这些特性总结的结论) p11
 - 1.3 考点 3 极限的定义 p14
 - 1.4 考点 4 极限的性质 p19
 - 1.5 考点 5 无穷小与无穷大 p20
 - 1.6 考点 6 极限的四则运算法则及两个重要极限 p25

1.6.1 极限的四则运算法则

- 1. 若 $\lim f(x) = A(\exists)$, $\lim g(x) = B(\exists)$
 - (a) $\lim [f(x) \pm g(x)] = \lim f(x) \pm g(x) = A \pm B$
- 2. 若 $\lim f(x)$ 存在, $\lim g(x)$ 不存在,则 $\lim [f(x) \pm g(x)]$ 必不存在
- 3. 若 $\lim f(x)$ 不存在, $\lim g(x)$ 不存在,则 $\lim [f(x) \pm g(x)]$ 不一定不存在(可能存在)
- 4. 若 $\lim \frac{f(x)}{g(x)} = A$, 且 $\lim g(x) = 0$, 则 $\lim f(x) = 0$ "母为 0,推子为 0"
- 5. 若 $\lim \frac{f(x)}{g(x)} = A \neq 0$,且 $\lim f(x) = 0$,则 $\lim g(x) = 0$ "子为 0,推母为 0"
 - 1.7 考点 7 等价代换 p29
 - 1.8 考点 8 洛必达法则
 - 1.9 考点 9 泰勒公式 (多项式的高次逼近) p35
- 1.9.1 泰勒公式

泰勒公式表

- $\sin x = x \frac{x^3}{3!} + o(x^3)$
- $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$
- $\arcsin x = x + \frac{x^3}{3!} + o(x^3)$
- $\tan x = x + \frac{x^3}{3} + o(x^3)$
- $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$
- $ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$
- $\arctan x = x \frac{x^3}{3} + o(x^3)$
- $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + o(x^3)$
- $ln(x + \sqrt{1 + x^2}) = x \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^3)$

用泰勒公式求极限

- 1. $\frac{A}{B}$: 适用于 "上下同阶" 的原则 如果分母 (或者分子) 是 x 的 k 此幂, 则应该把分子 (或分母) 展开到 x 的 k 次幂.
- 2. A B: 适用于幂次最低原则 将 A, B 分别展开到它们的系数不相等的 x 的最低次幂为止.
 - 1.10 考点 10 幂指函数 $u(x)^{v(x)}$ 的极限 p38
 - 1.11 考点 11 已知极限反求参数及无穷小阶数的比较 p40
 - 1.12 考点 12 数列的极限 p43
 - 1.13 考点 13 函数的连续性与间断点 p48
 - 1.14 考点 14 闭区间上连续函数的性质 p53

第二章 一元函数微分学

- 2.1 考点 15 导数定义
- 2.2 考点 16 四则、复合函数、反函数及对数求导法则 p62
 - 2.3 考点 17 高阶导数 p65
- 2.4 考点 18 隐函数及由参数方程所确定的函数的求导法则 p67
 - 2.5 考点 19 分段函数及绝对值函数求导 p70
 - 2.6 考点 20 导数的几何、物理意义及相关变化率 p75
 - 2.7 考点 21 函数的微分 p77
 - 2.8 考点 22 中值定理 p80
 - 2.9 考点 23 单调性与极值、最值 p91
 - 2.10 考点 24 凹凸性与拐点 p99
 - 2.11 考点 25 渐近线、曲率 p102
 - 2.12 考点 26 函数图形的描绘 p105
 - 2.13 考点 27 证明函数或常数不等式 p106
 - 2.14 考点 28 用导数讨论方程的根 p109

第三章 一元函数积分学

- 3.1 考点 29 原函数与不定积分的概念、积分公式 p114
 - 3.2 考点 30 凑微分法求不定积分 p117
 - 3.3 考点 31 换元法求不定积分 p120
 - 3.4 考点 32 分布积分法求不定积分 p121
 - 3.5 考点 33 有理函数的积分 p124
 - 3.6 考点 34 定积分的定义及性质 p125
 - 3.7 考点 35 定积分的计算方法及若干技巧 p132
 - 3.8 考点 36 变限积分函数及其求导原理 p140
 - 3.9 考点 37 变限积分函数的综合题 p145
 - 3.10 考点 38 定积分不等式的证明 p150
 - 3.11 考点 39 定积分与极限的综合题 p154
 - 3.12 考点 40 反常积分 p157
 - 3.13 考点 41 平面图形的面积 p161
 - 3.14 考点 42 空间图形的体积 p165
 - 3.15 考点 43 平面曲线的弧长 p168
 - 3.16 考点 44 旋转曲面的侧面积 p169
 - 3.17 考点 45 定积分的物理应用 p170

第四章 向量代数与空间解析几何

- 4.1 考点 46 向量及其运算 p173
- 4.2 考点 47 平面积空间直线 p175
- 4.3 考点 48 曲面及空间曲线 p180

第五章 多元函数微分学

- 5.1 考点 49 二元函数的极限及连续 p185
 - 5.2 考点 50 偏导数 p188
 - 5.3 考点 51 全微分 p192
- 5.4 考点 52 复合函数的偏导数与全微分 p195
 - 5.5 考点 53 隐函数的偏导数及全微分 p200
 - 5.6 考点 54 极值与最值 p203
- 5.7 考点 55 多元函数微分学的几何应用 p209
 - 5.8 考点 56 方向导数与梯度 p212
 - 5.9 考点 57 二元函数的二阶泰勒公式 p214

第六章 多元函数积分学

- 6.1 考点 58 二重积分概念与几何意义 p217
 - 6.2 考点 59 直角坐标计算二重积分 p221
 - 6.3 考点 60 极坐标计算二重积分 p224
 - 6.4 考点 61 换序及换系 p227
- 6.5 考点 62 需分区域计算的几种情况 p233
- 6.6 考点 63 先一后二法(投影法)与先二后一法(截面法)p236
 - 6.7 考点 64 利用球面坐标计算三重积分 p240
 - 6.8 考点 65 三重积分的性质及换序 p241
 - 6.9 考点 66 第一类 (平面、空间) 曲线积分 p242
 - 6.10 考点 67 第二类平面曲线积分 p246
 - 6.11 考点 68 第一类曲面积分 p253
 - 6.12 考点 69 第二类曲面积分 p256
 - 6.13 考点 70 第二类空间曲线积分的计算 p262
 - 6.14 考点 71 多元函数积分学的应用及场论初步 p264

第七章 无穷级数

- 7.1 考点 72 用定义和基本性质判断技术的敛散性 p270
 - 7.2 考点 73 正项级数敛散性的判别方法 p272
 - 7.3 考点 74 交错基数敛散性的判别方法 p276
 - 7.4 考点 75 任意项基数敛散性的判别方法 p278
 - 7.5 考点 76 收敛发散的证明题 p281
 - 7.6 考点 77 幂级数的收敛半径及收敛域的求法 p282
 - 7.7 考点 78 求一般函数项级数的收敛域 p286
 - 7.8 考点 79 函数展开成幂级数 p286
 - 7.9 考点 80 幂级数的和函数的求法 p290
 - 7.10 考点 81 常数项级数的求和 p295
 - 7.11 考点 82 傅立叶级数 p297

第八章 常微分方程

8.1 考点 83 微分方程的基本概念 p301

- 1. 微分方程的通解与特解 不含任意常数的解称为特解 含独立任意常数个数与微分方程阶数相同的解称为微分方程的通解 阶数与个数相同
- 2. 线性与非线性微分方程 看与 y 有关的次方是几次,若大于等于 2 次即为非线性
 - 8.2 考点 84 一阶微分方程 p302
 - 8.3 考点 85 二阶可降阶的微分方程 p307
 - 8.4 考点 86 常系数线性微分方程及欧拉方程 p308
 - 8.5 考点 87 已知方程的解反求方程及进一步研究方程的解 p312
 - 8.6 考点 88 通过变形改造建立微分方程并求解 p318
 - 8.7 考点 89 微分方程的应用 p323