

Spring 17 - GEOG 4/572

GeoVisualization: Geovisual Analytics

Introduction

Bo Zhao Ph.D.

College of Earth, Ocean and Atmospheric Sciences zhao2@oregonstate.edu

Teaching:

My goal is to help students efficiently and friendly communicate with the targeting audience using geovisualization.

- Geog 371: Web Mapping (<u>a lab assignment demo</u>)
- Geog 472/572: Geovisual Analytics

Former Student Project Gallery

Current Research:

- Location-based Social Media;
- Storymap.js a open source map storytelling library
- Carto a geospatial big data platform

Visualization LGBT community in Beijing

Student Project Gallery

GEOG 371: Web Mapping (2017 Winter)

Welcome to the final project presentation of GEOG 371: Web Mapping! The presentation will be held at 361 Strand Hall (The GAZE Lab) on March 22nd, from noon to 1:50pm. Dessert and coffee will be served. The web projects below were ordered randomly.

Divergent America

Satellite Riddles

Pedestrian Accessibility in Corvallis, OR

223

Oregon Water

Scenic Routes in Western Oregon

Where can I fly my drone?

National Wildlife Refuge

Soccer in the Pacific Northwest

The Oregon Trail

Drinking Water

Jefferson

87

(226)

Mary's Peak Viewshed Analysis

EDISTO Array

Cities in Oregon

Now, why are you here …?

So, why study geovisual analytics?

Instructor:	Bo Zhao, zhao2@oregonstate.edu	
	Office Hours: 1500-1600 T or by appointment	
	@347 Strand Ag Hall	
TA:	Kyle R. Hogrefe, <u>hogrefek@oregonstate.edu</u>	
	Office Hours: TBD @257 Wilkinson	
Text:	No required text. Required papers and online	
	materials will be available on the course	
	website.	
Credits:	3	
Meeting:	Lecture: TR 0900 - 0950 @LINC 368;	
	Lab: T 1800 - 1950 @Wilkinson 210	
Prerequisites:	GEOG 370 or GEOG 371	
Grades:	Letter grading (A to F)	

Canvas + GitHub

https://github.com/jakobzhao/GeovisualAnalytics

Texts

No required textbook. Required papers and online materials will be available on canvas.

Your search "geovisalization" did not match any products.

Did you mean: "geovisualization"

Geo-Visualization of Movements: Moving Objects in Static Maps, Animation and The Space-Time Cube Apr 16, 2010 by Biadgilgn Demissie

\$55⁰¹ \$80.00 + \$3.99 shipping Paperback Only 1 left in stock - order soon.

More Buying Choices \$55.01 (15 used & new offers)

Exploring Geovisualization (International Cartographic Association) Feb 10, 2005 by J. Dykes, A.M. MacEachren and M.-J. Kraak \$250⁰⁰ Kindle Edition

Thematic Cartography and Geovisualization, 3rd Edition Apr 14, 2008 by Terry A. Slocum, Robert B. McMaster, Hugh H. Howard and Fritz C. Kessler

\$197⁶³ to buy **Prime**Only 6 left in stock - order soon.

More Buying Choices \$67.58 (50 used & new offers)

Trade in yours for an Amazon Gift Card up to \$40.91

Syllabus

WK	LECTURE (T)	LAB (T)	LECTURE(R)	PROJECT	
Wk 1	Intro to GeoViz	Brainstorm	Geovisualization Presentation	Introduction	
Wk 2	Web Mapping Architecture (Internet Structure, Map Services)	Web Programming Basics (JS, HTML, CSS, and GitHub, etc.)	Web Mapping Basics (leaflet.js)	Team-up	
Wk 3	Virtual Globe (Cesium.js)	Interactive GeoViz (geospatial data operation, storymap.js)	Layout (figure/ground, visual components)	Proposal	
Wk 4	Symbolization (Illustrator, Icons)	Cont'd (Interface Design)	Color	Sketch & Project Summary	
Wk 5	Topography and Labelling (Google font, Mapbox font)	Base Map Design: (Mapbox)	Data Interaction I (D3.js)	Design Scheme (Color, label, icon, and multimedia, etc.)	
Wk 6	Data Interaction II	Cont'd	Map Critique	Revision	
Wk 7	Real-time mapping (e.g., Twitter API, Weather API)	Data Driven Maps	Heatmap (visualizing real-time geospatial data)	Coding	
Wk 8	Cartogram	Cont'd	Network Visualization	Coding	
Wk 9	UAV Mapping	Fieldwork with UAV	Virtual Reality (in GAZE Lab)	Fine-tuning	
Wk 10	Emerging Topics in GeoViz	Project Q&A	Project Presentation	Presentation	

Learning Objectives

Learning Objectives	Assessment			
Consistent with geospatial science (G1 to G3) learning outcomes of the BS degree in Geography and Geospatial Science. Elements specific to this course are shown in learning outcomes 4 to 7.				
G1. Recognize and use basic spatial and cartographic concepts (e.g. scale, projection, and coordinate systems), as well as statistical and surveying principles.	Quizzes			
G2. Demonstrate facility in the classification and analysis of geospatial data (e.g. satellite images, digital maps and their associated tabular datasets) and the ability to use geographic information science technology (software, data collection instruments and devices).	Labs			
G3. Develop and integrate spatial thinking and the capacity to create visualizations (e.g. images, maps, diagrams, charts, 3D views) of spatial phenomena, including those illustrating natural and human systems and their interactions.	Map Critique, Project			
Describe and interpret basic concepts of geovisual programming, create interactive maps using web map libraries.	Labs			
Apply cartographic design principles, basic layout and typography principles. Describe and explain color perception, color models and color management.	Quizzes, Labs			
Demonstrate a working knowledge of programming for web or mobile devices, including interactive 2D or 3D mapping frameworks, e.g., Leaflet, Cesium.	Labs, Project			
Critically assess maps and identify design errors.	Map Critique, Labs			
Additionally, graduate students should be able to:				
Interpret some advanced geovisual analytical methodologies, e.g., cartogram, network, UAV Mapping etc.	Presentation			
Geo-narrate studies in geography using geovisual analytical tools.	Project			
Coordinate a small-size research team to make a geovisual application.	Project			

Grading

14	D	% of Final Grade	
Item	Description	GEOG 472	GEOG 572
Participation	Most classes have time allotted for discussions, inclass work and other activities.	10	10
Quizzes	3 in-class and/or take-home quizzes covering topics from lecture and reading assignments.	15	15
Labs	2 lab assignments (15% each). We understand that many of the programming techniques discussed early in the course will be relatively new. Recognizing this, the first few assignments will contain more detailed instructions.	40	30
Project Development	Students are expected to make concrete contribute to the final project. It could be the proposal, the introduction page, an interactive feature, animation, color scheme, symbolizations or etc.	15	30
Project	Each student is required to collaboratively work on a final project using geovisual analytics. Each student group will make a presentation to demonstrate their work. This final project is mainly evaluated by both the presentation and the quality of the geovisual application.	20	15
TOTAL		100	

Before next lecture, please...

- Read the Course Project: Brainstorm:
 https://github.com/jakobzhao/GeovisualAnalytics/blob/master/proje
 ct/brainstorm.md, and finish the homework.
- Apply a GitHub Account, and watch the course repository at https://github.com/jakobzhao/GeovisualAnalytics
- Working on the reading list of week one.
 https://github.com/jakobzhao/GeovisualAnalytics/blob/master/wk01/
 /readme.md

Any questions?