24024
PATENT TRADEMARK OFFICE

I hereby certify that this definition is being deposited with the U.S. Postal Service, with sufficient postage, as first class mail in an envelope addressed to the U.S. Patent and Trademark Office, Box Sequence, P.O. Box 2327, Arlington, Virginia 22202, on this day of March, 2002.

Typed or Printed name of person signing this certificate:

Wendy A. Frick

Signed: Wendy a Frick

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re a	pplication of: Perez, et al.) Examiner: Not yet assigned)
Serial	No.: 10/052,589) Art Unit: Not yet assigned
Filed:	January 18, 2002	,
For:	MODEL SYSTEMS FOR NEUORDEGENERATIVE AND CARDIOVASCULAR DISORDERS	Attorney Docket No.: 26473/04200)
U.S. P	atent and Trademark Office	
Box S	equence	
P.O. B	3ox 2327	
Arling	ton, Virginia 22202	

SECOND PRELIMINARY AMENDMENT AND STATEMENT REGARDING SEQUENCE LISTING

Dear Sir:

The following is in response to the Office Communication mailed February 25, 2002. Please amend the above-described application as follows:

IN THE SPECIFICATION

Page 3, line 15:

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the nucleotide sequence, SEQ ID NO. 1, of the cDNA which encodes the hamster wild-type α_{IB} adrenergic receptor and the predicted amino acid sequence, SEQ ID NO. 2, encoded by this nucleotide sequence.

Figure 2 is the DNA sequence, SEQ ID NO. 3, of the murine α_{1B} adrenergic receptor.

20

25

3Û

wild-type α_{1B} receptor on the cell surface of various organs, and then assaying for changes in α_{1B} receptor function. Such method is useful for identifying compounds which are able to ameliorate the symptoms that result from chronic activation of the α_{1B} adrenergic receptor and assessing the efficacy of the test compound on pathological symptoms that are associated with chronic activation of the α_{1B} adrenergic receptor.

The present invention also relates to methods for treating neurodegenerative disorders in a subject, particularly neurodegenerative disorders evidenced by abnormal locomoter activity or seizures. In one embodiment, the method comprises administering a pharmaceutical composition comprising a biologically effective amount of an α_1 adrenergic receptor antagonist to an animal . As used herein the term " $\alpha 1$ adrenergic antagonist" refers to compounds that bind selectively to the $\alpha 1$ adrenergic receptors and block signaling.

15 INS B

5

10

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the nucleotide sequence of the cDNA which encodes the hamster wild-type α_{1B} adrenergic receptor and the predicted amino acid sequence encoded by this nucleotide sequence.

Figure 2 is the DNA sequence of the promoter of the murine α_{1B} adrenergic receptor.

Figure 3 is a schematic representation of the method used to prepare a vector comprising a sequence encoding the α_{1B} adrenergic receptor.

Figure 4. (A) A map of the transgene construct showing the size of EcoRI fragments and the binding sites for α_{1B} - and SV40-specific southern probes. Three different transgenes were constructed with the only difference between each being the $\alpha_{1B}AR$ cDNA used (either the wild-type (WT), single mutant or triple mutant cDNA). (B) Southern blot analysis of genomic DNA from nontransgenic (NT)(-/-), heterozygous (+/-) and homozygous (+/+) W2 mice. Tail DNA samples were digested with EcoRI, run on 0.8% agarose gels, transferred to nitrocellulose and probed with either the α_{1B} probe or the SV40 probe. The α_{1B} probe hybridized to 3.0 and 1.6 kb fragments which represented the endogenous $\alpha_{1B}AR$ gene and the transgene respectively. Comparatively, the SV40 probe