KOCAELİ UNIVERSITY FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VLSI DESIGN TERM PROJECT 4 BIT ADDER

CELİL KOÇ

160207055

KOCAELİ 2020

Contents

SCHEMATIC DESIGNS	4
NETLIST FILE GENERATED FROM SCHEMATIC	5
SIMULATION RESULTS	7
4 Bit Adder , A and B Inputs	8
4 Bit Adder Output for Addition	
Power Analysis for Addition	11
4 Bit Adder Output for Substraction	12
Power Analysis for Substraction	13
RESULTS	13
LAYOUT DESIGNS	14
SIMULATION SETTINGS FOR T-SPICE	16
SIMULATION RESULTS	16
4 Bit Adder , A and B Inputs	16
4 Bit Adder Outputs for Addition	19
Power Analysis for Addition	20
4 Bit Adder Outputs for Substraction	21
Power Analysis for Substraction	21

Şekil 1 - 4 Bit Adder Schematic	4
Şekil 2 - Fulladder Schematic used by 4 Bit Adder	4
Şekil 3 - XOR Gate used by Fulladder	5
Şekil 4 Input A	8
Şekil 5 Input B	9
Şekil 6 Adder Output	. 10
Şekil 7 Transient Power Analysis for Addition	. 11
Şekil 8 Adder Output	. 12
Şekil 9 Transient Power Analysis for Substraction	. 13
Şekil 10 4 Bit Adder Layout	. 14
Şekil 11 Fulladder Layout	. 15
Şekil 12 XOR Layout	. 15
Şekil 13 Input Sequence 1 for A	. 17
Şekil 14 Input Sequence 2 for A	. 17
Şekil 15 Input Sequence 1 for B	. 18
Şekil 16 Input Sequence 2 for B	. 18
Şekil 17 Adder Output for Input Sequence 1 (Addition)	. 19
Şekil 18 Adder Output for Input Sequence 2 (Addition)	. 19
Şekil 19 Transient Power Analysis for Input Sequence 1	. 20
Şekil 20 Transient Power Analysis for Input Sequence 2	. 20
Şekil 21 Adder Output for Input Sequence 2 (Substraction)	. 21
Şekil 22 Transient Power Analysis for Input Sequence 2 (Substraction)	. 21

SCHEMATIC DESIGNS

Şekil 1 - 4 Bit Adder Schematic

Şekil 2 - Fulladder Schematic used by 4 Bit Adder

Şekil 3 - XOR Gate used by Fulladder

NETLIST FILE GENERATED FROM SCHEMATIC

* SPICE export by: SEDIT 13.00

* Export time: Tue Dec 15 21:46:17 2020

* Design: lab2 * Cell: adder * View: view0 * Export as: top-le

* Export as: top-level cell * Export mode: hierarchical

* Exclude .model: no * Exclude .end: no * Expand paths: yes * Wrap lines: no

* Root path: C:\Users\Ck_sy\Desktop\VLSI\lab2

* Exclude global pins: no * Control property name: SPICE

****** Simulation Settings - General section *******

****** Subcircuits ************

.subckt and A B Out Gnd Vdd

*----- Devices: SPICE.ORDER > 0 ------

.subckt inverter In Out Gnd Vdd

*----- Devices: SPICE.ORDER > 0 ------

 $MNMOS_1$ Out In Gnd Gnd NMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u MPMOS_1 Out In Vdd Vdd PMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u .ends

.subckt or A B Out Gnd Vdd

*----- Devices: SPICE.ORDER > 0 ------

MNMOS_1 N_3 A Gnd Gnd NMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u MNMOS_2 N_3 B Gnd Gnd NMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u

```
MNMOS_3 Out N_3 Gnd Gnd NMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u MPMOS_1 N_1 A Vdd Vdd PMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u MPMOS_2 N_3 B N_1 N_2 PMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u MPMOS_3 Out N_3 Vdd Vdd PMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u .ends

.subckt XOR A B Out Gnd Vdd
Xand_2 N_3 B N_4 Gnd Vdd and
Xand_1 N_1 A N_2 Gnd Vdd and
Xor_1 N_4 N_2 Out Gnd Vdd or
```

.subckt full_adder A B Cin Cout Sum Gnd Vdd Xand_1 Cin N_1 N_3 Gnd Vdd and Xor_1 N_2 N_3 Cout Gnd Vdd or Xand_2 B A N_2 Gnd Vdd and XXOR_1 B A N_1 Gnd Vdd XOR XXOR_2 Cin N_1 Sum Gnd Vdd XOR

Xinverter_1 B N_1 Gnd Vdd inverter Xinverter_2 A N_3 Gnd Vdd inverter

.ends

****** Simulation Settings - Parameters and SPICE Options ******

Xfull_adder_1 N_2 B1 N_1 N_4 S1 Gnd Vdd full_adder Xfull_adder_2 N_3 B0 Cin N_1 S0 Gnd Vdd full_adder XXOR_1 A1 Cin N_2 Gnd Vdd XOR XXOR_2 A0 Cin N_3 Gnd Vdd XOR Xfull_adder_3 N_5 B2 N_4 N_8 S2 Gnd Vdd full_adder Xfull_adder_4 N_6 B3 N_8 Cout S3 Gnd Vdd full_adder XXOR_3 A2 Cin N_5 Gnd Vdd XOR XXOR_4 A3 Cin N_6 Gnd Vdd XOR

***** Simulation Settings - Analysis section ******

Vpower Vdd Gnd 5V

.include "C:\Users\Ck_sy\Desktop\VLSI_tech_files\SCN_0.25u_CMOS.md"

Vbit A0 Gnd dc 0 BIT ({0100} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 Vbit2 A1 Gnd dc 0 BIT ({0011} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 Vbit3 A2 Gnd dc 0 BIT ({0000} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 Vbit4 A3 Gnd dc 0 BIT ({0010} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

Vbit5 B0 Gnd dc 0 BIT ({0111} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 Vbit6 B1 Gnd dc 0 BIT ({0001} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 Vbit7 B2 Gnd dc 0 BIT ({0001} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 Vbit8 B3 Gnd dc 0 BIT ({0001} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 Vbit8 B3 Gnd dc 0 BIT ({0001} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

*.print tran v(B0) v(B1) v(B2) v(B3)

*.print tran v(A0) v(A1) v(A2) v(A3)

.tran 40p 40n

.print tran p(Vpower)

.power Vpower 0 40n

****** Simulation Settings - Additional SPICE commands ******

.end

SIMULATION RESULTS

Adder performed both addition and substraction operations for following numbers in simulation; A=0 and B=0, A=1 and B=1, A=10 and B=1, A=2 and B=15.

Adder circuit was simulated for 100mbps. Further more, circuit was simulated for 1gbps but results were not satisfactory.

4 Bit Adder , A and B Inputs

Şekil 4 Input A

Şekil 5 Input B

4 Bit Adder Output for Addition

Cin (K) is 0 for all time.

Şekil 6 Adder Output

Power Analysis for Addition

sumgraph

Power Results
Vpower from time 0 to 4e-008
Average power consumed -> 1.756606e-003 watts
Max power 6.592757e-002 at time 3.03065e-008
Min power 4.043730e-008 at time 2.35e-009

Şekil 7 Transient Power Analysis for Addition

4 Bit Adder Output for Substraction

Cin (K) is 1 for all time.

Şekil 8 Adder Output

At Şekil 7 we see that output is 7 but adder substract 10 from 1, result would have been -9 but 7 is 2's complement of 9. Circuit gives output as 2's complement for substraction.

Power Analysis for Substraction

sumgraph

Power Results Vpower from time 0 to 4e-008 Average power consumed -> 2.599057e-003 watts Max power 6.662638e-002 at time 3.03097e-008 Min power 8.364613e-007 at time 4.11e-009

Şekil 9 Transient Power Analysis for Substraction

RESULTS

As wee can see at the graphs above , we have little glitches at 100mbps which is acceptable. We can design a layout for this circuit.

LAYOUT DESIGNS

Şekil 10 4 Bit Adder Layout

Şekil 11 Fulladder Layout

Şekil 12 XOR Layout

SIMULATION SETTINGS FOR T-SPICE

Netlist file extracted from layout is attached that's why will be not fully shown here.

Vpower Vdd Gnd 5V

 $. include "C:\Users\Ck_sy\Desktop\VLSI_tech_files\SCN_0.25u_CMOS.md"$

Vbit A0 Gnd dc 0 BIT ({1000} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

 $\label{eq:control_potential} \begin{tabular}{ll} Vbit2 A1 Gnd dc 0 BIT (\{0010\} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 \end{tabular}$

Vbit3 A2 Gnd dc 0 BIT ({0101} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

Vbit4 A3 Gnd dc 0 BIT ($\{0010\}$ pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

Vbit5 B0 Gnd dc 0 BIT ({1011} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

Vbit
6 B1 Gnd dc 0 BIT ({0011} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

 $\label{eq:continuous} \begin{tabular}{ll} Vbit7 B2 Gnd dc 0 BIT (\{1111\} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0 \end{tabular}$

Vbit8 B3 Gnd dc 0 BIT ({0001} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

Vbit9 K Gnd dc 0 BIT ({0000} pw=10n lt=10n ht=10n on=5 off=0 rt=0.1n ft=0.1n delay=0) AC 0 0 ROUND=0

- .tran 40p 40n
- *.print tran v(S0) v(S1) v(S2) v(S3) v(Cout)
- *.print tran v(B0) v(B1) v(B2) v(B3)
- *.print tran v(A0) v(A1) v(A2) v(A3)
- .print tran p(Vpower)
- .power Vpower 0 40n

SIMULATION RESULTS

4 Bit Adder, A and B Inputs

Device was tested for 8 different scenarios.

Şekil 13 Input Sequence 1 for A

Şekil 14 Input Sequence 2 for A

Şekil 15 Input Sequence 1 for B

Şekil 16 Input Sequence 2 for B

4 Bit Adder Outputs for Addition

 $\S{ekil\ 17\ Adder\ Output\ for\ Input\ Sequence\ 1\ (Addition)}$

 $\S{ekil}\ 18\ Adder\ Output\ for\ Input\ Sequence\ 2\ (Addition)$

Cin(K) is 0 for all time.

Power Analysis for Addition

Şekil 19 Transient Power Analysis for Input Sequence 1

 ${\it Sekil~20~Transient~Power~Analysis~for~Input~Sequence~2}$

4 Bit Adder Outputs for Substraction

Şekil 21 Adder Output for Input Sequence 2 (Substraction)

Power Analysis for Substraction

Şekil 22 Transient Power Analysis for Input Sequence 2 (Substraction)