REVISED SIMPLEX METHOD

Description of Pivoting

Revised Simplex: Partial Reconstruction

2. Objective row coefficients

Choosing Entering Variable

$$\frac{\mathbf{x}_B = \hat{\mathbf{b}} + \hat{A}\mathbf{x}_I}{z = z_0 + \hat{c} \mathbf{x}_I}$$

Q: How do we compute the objective coefficients (aka reduced costs)?

Computing Objective Coefficients

- Original Problem Data: A, b, c
- Current Basis Set: $B = \{x_{B1}, x_{B2}, \dots, x_{Bm}\}$

Choosing Entering Variable

$$\pi = \mathbf{c_B}^{\mathsf{T}} A_B^{-1}$$

$$\hat{\mathbf{c}} = \mathbf{c}_I^{\mathsf{T}} - \pi A_I$$

Computing the Objective Row

• Compute $\pi = \mathbf{c}_B^{\mathsf{T}} A_B^{-1}$ by solving the system of equations

$$\pi A_B = \mathbf{c}_B^\mathsf{T}$$

Obtain obj. row coefficients by computing

$$\hat{\mathbf{c}} = \mathbf{c}_I^\mathsf{T} - \pi A_I$$

ullet Objective value is $z=\pi {f b}$

Entering Variable Analysis

$$z = c_0 + c_1 x_{I1} + \cdots + c_j x_{Ij} + \cdots + c_n x_{In}$$

Choose positive coefficient c_j If no such coefficient, then dictionary is final.

Leaving Variable Analysis

$$x_{B1} = b_1 + a_{1j}x_{Ij} + a_{2j}x_{Ij}$$
 \vdots
 $x_{Bm} = b_m + a_{mj}x_{Ij}$
 $z = c_0 + c_1x_{I1} + \cdots + c_jx_{Ij} + \cdots + c_nx_{In}$

 $\hat{\mathbf{b}}$ and $\hat{\mathbf{a}}_j$

Leaving Variable Analysis

• Compute $\hat{\mathbf{b}}=A_B^{-1}\mathbf{b}$ by solving the equations $A_B\hat{\mathbf{b}}=\mathbf{b}$

• Compute $\hat{\mathbf{a}}_j = -A_B^{-1}A_j$ by solving the equations

$$A_B \hat{\mathbf{a}}_j = -A_j$$

We have enough data to perform leaving variable analysis.