Problem 1. Find the eigenvalues and singular values of

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}.$$

Moreover, describe the null space and the eigenvectors whose the eigenvalue is 0. In addition, express A by $X\Lambda X^{-1}$ in several ways, where Λ is diagonal.

Problem 2. Provide examples satisfying

- (1) diagonlizable and invertible.
- (2) diagonlizable and non-invertible.
- (3) non-diagonlizable and invertible.
- (4) non-diagonlizable and non-invertible.

Problem 3. Let $\lambda_1, \dots, lambda_k$ be eigenvalues of diagonalizable matrix A. Is there a relation between the ranks of $A - \lambda_i I$?

Problem 4. A sequence a_n with $a_0 = -1$, $a_1 = 4$ has the recurrence relation $a_{n+2} = a_{n+1} + 2a_n$. What is a_n ?