Br-su

The BP-50 algorithm consists of the following steps:

- qbp(T_list, e_list) => m_list
- BP_gauging(T_list, e_dict, m_list) => T_list, w_dict
- apply_2local_gate(T_list, e_list, w_list, U_list)
 => T_list, w_dict
- (4) merge_SU_weights(T_list, w_list) => T_list

The Simple - Update procedure

apply-2local-gate (Ti, Ti, Wi, Wi, Wi, Q, Q, MaxD, eps)

BP-Gaugine

"Gauging tensor networks with belief propagation", Joseph Tindall and Matt Fishman, SciPost Phys. 15, 222 (2023)

Explanation

T₂

T₁

T₂

T₆

The BP fixed points assure:

We want to take it to the Vidal Gauge:

0

We achieve this by: $T_{3} = \frac{m_{1\rightarrow 3}^{-1/2}}{m_{1\rightarrow 2}^{-1/2}} = \frac{m_{2\rightarrow 5}^{-1/2}}{m_{2\rightarrow 1}^{-1/2}}$ $T_{4} = \frac{m_{1\rightarrow 2}^{-1/2}}{m_{1\rightarrow 4}^{-1/2}} = \frac{m_{2\rightarrow 5}^{-1/2}}{m_{2\rightarrow 6}^{-1/2}} = \frac{m_{2\rightarrow 6}^{-1/2}}{m_{2\rightarrow 6}}$

The BP-Gauge fixing alg! should go like that:

 \bigcirc Go over all eges e = (i, j)

1. calc Mins, mins

2. Calc Mis = minsi minsi

3. SVD: Mi = U·S·V

4. Absorb Ti milisio

T; V M3-1 T;

Example on a random PEPS

The example-BP-SU.py file contains an example of using the BPSU library for running SU on a random PEPS (on some random graph), and using BP to move to the Vidal gauge.

The structure of the PEPS is as follows:

Note that blue labels denote the vertex number and red labels denote the edge labels