

Problem 9 Design of Experiments (DOE) Interactive Seminar

E326 – Lean Manufacturing & Six Sigma

SCHOOL OF **ENGINEERING**

E326 Lean Manufacturing and Six Sigma Topic Tree

- Design of Experiment
- One-Factor-At-A-Time Experiment
 - Factorial Experiment

Objectives of Improve phase:

Improve the process by identifying the vital "Xs" and implementable solutions.

Overview of E326 Lean Manufacturing and Six Sigma

Scenario – Right on Target

- Mobile phone manufacturer T has recently declared that they have developed new battery technology which would speed up the charging process of batteries by multiple times current standards.
- You, as a learner of Lean Six Sigma, have learnt about using ANOVA
 to identify significant factors affecting response. You are interested to
 know if there are systematic methods for you to conduct experiments
 to predict the desired response (output) with varying variables (inputs)
 so that you can optimized efforts.

Scenario Tasks of the day

- Using the catapult experimentation tool provided, decide on a suitable plan a systematic experiment and propose the significant factors that will factor the response being studied.
- You will present the charts that will assist in predicting the significant factors with their settings that will allow desired response's setting to be obtained.

Scenario Definition Template

What do we know?

What do we not know?

What do we need to find out?

Design of Experiment (DOE)

- DOE is the scientific process of planning an experiment that will yield statistically useful results.
- It is a structured, organized method that is used to determine the relationship between the different factors (Xs) affecting a process and the response of that process (Y).
- The general objective/application of a designed experiment is to find a design that will produce a specific, desired amount of information at a minimum cost to the company. A designed experiment involves varying input factors (Xs) to find out which variables, or combination of variables, deliver optimised output (Y).

Design Of Experiments (DOE)

The objectives of DOE are to determine:

- Which variables (e.g. time, temperature, pressure) are most influential on a response (yield, strength).
- The settings of influential variables (e.g. high temperature, low pressure) that result in
 - ➤ a response near a desired value (e.g. maximum yield, 26 lbs. seal strength).
 - > variability of the response is small.
 - > minimize the impact of uncontrollable variables (e.g. room temperature, humidity).

General Model of DOE

Objectives of DOE

- Which factors are most influential on the response
- Best settings of the influential factors for maximum response
- Best settings of the influential factors for minimizing variability
- Best settings of the influential factors for robustness vs. the noise factors

Common Terminologies

Factors

 Input variables of interest in the experiment that affect the response variable

Levels

 Settings for the factors that are investigated in the experiment Response variable

 output variable of the process that is to be optimized

Observation

 measured value of the response variable

Example:

A DOE was conducted on 2 different battery types (high cost and low cost) with either goldplated or standard connector type placed in either ambient or cold temperature had their battery discharge time measured to predict battery discharge time when the influential factors were varied.

Solution:

Factors studied: 1. Battery type

2. Connector type

3. Battery temperature

Levels of each factor:

1. Battery type – High cost and Low cost

2. Connector type – Gold-plated and standard

3. Battery temperature - Ambient and cold

Response variable: battery discharge time

Common Terminologies

Treatments

 Combinations of the various factor levels used in the experiment

Experimental run

 an experimental trial corresponding to a particular treatment, under which the response is measured

Example:

A DOE was conducted on 2 different battery types (high cost and low cost) with either goldplated or standard connector type placed in either ambient or cold temperature had their battery discharge time measured to predict battery discharge time when the influential factors were varied.

Solution:

Possible treatments: High cost Battery type gold-plated Connector type at ambient Battery temperature

Experimental runs:

Experimental	Battery	Connector	Battery
run	Type	Туре	Temperature
1	High cost	Gold-plated	Ambient
2	High cost	Gold-plated	Cold
3	High cost	Standard	Ambient
4	High cost	Standard	Cold
5	Low cost	Gold-plated	Ambient
6	Low cost	Gold-plated	Cold
7	Low cost	Standard	Ambient
8	Low cost	Standard	Cold

Common Terminologies

Treatments

Combinations of the various factor levels used in the experiment

Experimental run

 an experimental trial corresponding to a particular treatment, under which the response is measured

Response variable

output variable of the process that is to be optimized

Example:

A DOE was conducted on 2 different battery types (high cost and low cost) with either goldplated or standard connector type placed in either ambient or cold temperature had their battery discharge time measured to predict battery discharge time when the influential factors were varied.

Solution:

Possible treatments: High cost Battery type gold-plated Connector type at ambient Battery

temperature

Experimental runs:

Experimental	Battery	Connector	Battery
run	Туре	Туре	Temperature
1	High cost	Gold-plated	Ambient
2	High cost	Gold-plated	Cold
3	High cost	Standard	Ambient
4	High cost	Standard	Cold
5	Low cost	Gold-plated	Ambient
6	Low cost	Gold-plated	Cold
7	Low cost	Standard	Ambient
8	Low cost	Standard	Cold

TEST Yourself

Keith, a design engineer, has prototyped a miniature Multi-Terrain Vehicle and is analysing the vehicle braking reaction time by conducting a Design of Experiment (DOE) study. The DOE test matrix and the respective braking reaction time (in seconds) are tabulated in the table below. Identify the factors and the number of levels. What is the response being studied?

Moving Speed (m/s)	Load (kg)	Braking Reaction Time (sec)
5	6	1.2
20	6	2.2
5	10	5
20	10	7.6
5	6	1.3
20	6	2.2
5	10	6
20	10	7.5

Solution-

2 factors: Moving Speed & Load

2 levels each: Moving Speed (5 and 20) & Load (6 and 10)

Response: Braking Reaction time

Main Principles of DOE

Randomization

Randomly assign the treatments to the experimental runs so as to control for unknown sources of variation such as human bias.

Replication

Measurements are usually subject to variation and uncertainty. Measurements are repeated and full experiments are replicated to help identify the sources of variation and to better estimate the true effects of treatments

Blocking

Blocking is the arrangement of experimental units into groups (blocks) that are similar to one another. Blocking reduces known but irrelevant sources of variation between units and thus allows greater precision in the estimation of the source of variation under study.

One-Factor-At-a-Time (OFAT) Experiment vs. Factorial Experiment

OFAT Experiment	Factorial Experiment
Perform one factor at a time while other factors remain unchanged	The effect of many factors (variables) can be studied simultaneously
Estimation of the effect of each factor is based on individual observation	The impact of two or more factors on a response can be determined
Unable to estimate interaction between factors	Interaction between factors can be estimated systematically
Unable to predict the optimization well	Improves the prediction of the response resulting in a more efficient process optimization

Factorial Designs

What are Factorial Designs?

They allow us to simultaneously study the effects of two or more factors in a process simultaneously rather than individually with each factor studied at two or more levels:

- Saves time and testing expense
- Reveals the main effect as well as interactions between the factors

When to use Factorial Designs?

Use factorial designs to:

- Efficiently estimate the effect of each factor on the response
- Estimate the effects of interactions between one or more factors on the response
- Test for curvature in the response by including center points in the design

Why use Factorial Designs?

Use factorial designs to answer questions such as:

- Which variables most strongly influence the response?
- What factor settings optimize the response?

Types of Factorial Designs

- Full factorial design
- Fractional factorial design

In this module, we will emphasize on the 2-level full factorial designs

Full Factorial Designs

 A full factorial design experiment measures <u>ALL</u> combinations of the experimental factor levels. The entire set of runs is called the "design".

Example: Three factors with 2-level:

- Pressure (10,20)
- Speed (50,100)
- o Time (45,65)

RunOrder	Pressure	Speed	Temp
1	10	50	45
2	20	50	45
3	10	100	45
4	20	100	45
5	10	50	65
6	20	50	65
7	10	100	65
8	20	100	65

- Minitab provides two types of full factorial designs:
 - Use a <u>two-level</u>, full factorial design (2^k design) when each experimental factor has only two levels
 - Use a general full factorial design when any experimental factor has *more than two levels*. For e.g. Factor A may have more than two levels, Factor B may have three levels, and Factor C may have five levels.

Yates Order

- Purpose: To place the experimental factor levels of total factorial effects in a 2ⁿ factorial design in a standard order prior to running an Experimental Design.
- The convention of alternating the -'s and +'s produces an standard order where the first column consists of alternating low and high settings, the second column consists of alternating pairs of low and high settings, the third column consists of four low followed by four high settings, etc. in the experimental design. It is called the Yates Order which is useful in the design and analysis.
- Observe the pattern in the columns of the table shown.
 - The number of like signs in a set = 2ⁿ⁻¹, where n is the column number in the matrix.
 - For the table shown of n = 3, $2^{(3-1)} = 2^2 = 4$ that is the number of possible combinations between two coded levels of two factors.

Α	В	С
_	-	-
+	-	-
-	+	-
+	+	-
-	-	+
+	-	+
-	+	+
+	+	+

Table of n = 3

Yates Order - explained

Description	Factor A	Factor B	Factor C
n =	1	2	3
Sub n into 2 ⁿ⁻¹	2ⁿ⁻¹ = 2 ⁽¹⁾⁻¹ = 2 ⁰ = 1	2 ⁿ⁻¹ = 2 ⁽²⁾⁻¹ = 2 ¹ = 2	2 ⁿ⁻¹ = 2 ⁽³⁾⁻¹ = 2 ² = 4
This means:	1 low level (-) sign before alternate to 1 high level (+) sign	2 low level (-) sign before alternate to 2 high level (+) sign	4 low level (-) sign before alternate to 4 high level (+) sign

TEST Yourself

Keith, a design engineer, has prototyped a miniature Multi-Terrain Vehicle and is analysing the vehicle braking reaction time by conducting a Design of Experiment (DOE) study. How many treatments will be required using 2^k design? Change the table below to coded design.

Moving Speed (m/s)	Load (kg)	Braking Reaction Time (sec)
5	6	1.2
20	6	2.2
5	10	5
20	10	7.6
5	6	1.3
20	6	2.2
5	10	6
20	10	7.5

Solution-

As k=2, number of treatments = $2^2 = 4$

Moving Speed (m/s)	Load (kg)	Braking Reaction Time (sec)
_	_	1.2
+	-	2.2
_	+	5
+	+	7.6
-	-	1.3
+	-	2.2
-	+	6
+	+	7.5

DOE Example

Using the following example, DOE will be guided in the next few slides.

Mixing Speed	Temperature	Concentration	Reaction Time
10	40	25	39.5
30	40	25	271.2
30	40	12	286.2
30	50	25	45.1
30	50	12	48.3
10	50	25	275.1
10	40	12	36.7
10	50	12	265.6

Setting up the DOE in Minitab

Designs	Runs	Resolution	2^(k-p)
1/2 fraction	4	III	2^(3-1)
Full factorial	8	Full	2^3
Number of center po	ints per b	lock: 0 🔻]
Number of replicates	for corne	r 1 <u>*</u>]
Number of blocks:	1	•	
Help		ОК	Cancel

B Temperature Numeric 40 50	Factor	Name	Type		Low	High
·	Α	Mixing Spee	Numeric	-	10	30
C Concentratio Numeric 12 25	В	Temperature	Numeric	-	40	50
	С	Concentratio	Numeric	-	12	25

Collecting the response data in Minitab

Welcome to Minitab, press F1 for help.

Full Factorial Design

Factors: 3 Base Design: 3, 8
Runs: 8 Replicates: 1
Blocks: 1 Center pts (total): 0

All terms are free from aliasing.

Results and Analysis (Identifying insignificant terms)

Minitab > Stat > DOE > Factorial > Analyse Factorial Design...>Graphs)

Results and Analysis (Identifying insignificant terms)

Results and Analysis (Removing insignificant terms)

Results and Analysis (After removing insignificant terms)

Factorial Regression: Reaction Time versus Mixing Speed, Temperature

Anal	vsis	of	Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model		107908	35969	863.27	0.000
Linear		144	72	1.72	0.288
Mixing Speed	1	144	144	3.45	0.137
Temperature		0	0	0.00	0.979
2-Way Interactions	1	107764	107764	2586.36	0.000
Mixing Speed*Temperature	1	107764	107764	2586.36	0.000
Error	4	167	42		
Total	7	108074			

Model Summary

```
S R-sq R-sq(adj) R-sq(pred)
6.45494 99.85% 99.73% 99.38%
```

Coded Coefficients

Term	Effect	Coef	SE Coef	T-Value	P-Value	VIF
Constant		158.46	2.28	69.44	0.000	
Mixing Speed	8.47	4.24	2.28	1.86	0.137	1.00
Temperature	0.13	0.06	2.28	0.03	0.979	1.00
Mixing Speed*Temperature	-232.13	-116.06	2.28	-50.86	0.000	1.00

Regression Equation in Uncoded Units

Reaction Time = -1939.7 + 104.88 Mixing Speed + 46.44 Temperature - 2.3213 Mixing Speed*Temperature

Alias Structure

Factor Name

A Mixing Speed B Temperature C Concentration

Main Effects Plots

A main effect occurs when the mean response changes across the levels of a factor. You can use main effects plots to compare the relative strength of the effects across factors.

(MINITAB > Stat > DOE > Factorial > Factorial Plots...)

Results and Analysis (Identifying insignificant terms)

Minitab > Stat > DOE > Factorial > Analyse Factorial Design...>Graphs)

Results and Analysis (Identifying insignificant terms)

Minitab > Stat > DOE > Factorial > Analyse Factorial Design...>Graphs)

3 possible scenarios:

NO interaction – parallel lines WEAK interaction – non parallel lines but lines don't intersect STRONG interaction – intersect lines

There is STRONG interaction between the factors.

Cube Plot

Showing the <u>Mean Distance data</u> collected from experiment at each treatment (level combination)

Response Optimizer: Target at 40cm

Minitab>Stat>DOE>Factorial>Response Optimizer

Response Optimizer: Target at 40cm

Response Optimization: Reaction Time

Parameters

Response Goal Lower Target Upper Weight Importance Reaction Time Target 20 40 100 1 1

Solution

Multiple Response Prediction

Variable Setting Mixing Speed 10 Temperature 40.0818

Response Fit SE Fit 95% CI 95% PI Reaction Time 40.00 4.53 (27.43, 52.57) (18.11, 61.89) In order to hit a target at 40 reaction time, one optimized setting is:

- Mixing speed 10
- Temperature 40.0818

Now, you try on the Catapult!

