1. Soit (u_n) la suite telle que $u_0=0$, $u_1=1$ et $u_{n+2}=5u_{n+1}-6u_n$ pour tout $n\in\mathbb{N}$. Montrer que $\forall n\in\mathbb{N}$, $u_n=3^n-2^n$.

2. Résoudre l'inéquation $x-2 \le \sqrt{|x+1|}$.

3. Effectuer les changements d'indice suivants (remplir les pointillés).

$$\sum_{k=1}^{n+2} a_k = \sum_{j=0}^{\dots} a_{..}$$

$$\sum_{k=2}^{n-1} a_{k+1} = \sum_{j=\dots}^{n+1} a_{\dots}$$

$$\sum_{k=1}^{n+2} a_k = \sum_{j=0}^{\dots} a_{\dots} \qquad \sum_{k=2}^{n-1} a_{k+1} = \sum_{j=\dots}^{n+1} a_{\dots} \qquad \sum_{k=0}^{n-2} a_{k+3} = \sum_{j=\dots}^{n} a_{j-2}$$

4. Soit $a \in \mathbb{R}$. Montrer rigoureusement l'implication $(\forall \varepsilon \in \mathbb{R}_+^*, |a| \le \varepsilon) \Longrightarrow a = 0$.

5. Soient A, B et C trois ensembles tels que $A \cup B = B \cap C$ et $B \cup C = C \cap A$. Montrer que A = B = C.

6. Calculer $S_n = \sum_{k=1}^n \ln\left(1 + \frac{1}{k}\right)$.