Exercice 1

On considère le système linéaire

$$\begin{pmatrix} 1 & 5 \\ 1.0001 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6.0000 \\ 6.0005 \end{pmatrix}$$

Dont la solution exacte est $X = (5 \ 0.2)^T$.

- a) Calculer les résidus r_1 et r_2 correspondant respectivement aux solutions approximatives $x_1 = \begin{pmatrix} 5.1 & 0.3 \end{pmatrix}^T$ et $x_2 = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$ et en déduire les quantités $| \mid r_1 \mid \mid_{inf}$ et $| \mid r_2 \mid \mid_{inf}$. Commenter les résultats obtenus.
- b) Si on perturbe le membre de droite du système en le remplacant par (6 6)⁷, on obtient la solution (0 1.2)^T. Quelle conclusion peut-on tirer de ce résultat ?
- c) Expliquer les résultats obtenus en (a) et (b) en calculant toutes les quantités pertinentes . Effectuer les calculs en norme || . ||_{inf}