Bonsuk Low

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Aerospace Engineering and Engineering Mechanics

ASE 367K FLIGHT DYNAMICS Fall 2024

HOMEWORK 3 Due: 2024-09-20 at 11:59pm via Canvas

Problem 1

The vertical tail volume of an aircraft is defined by

$$V_F = \frac{S_f(x_{ac_f} - x_{cg})}{Sb},$$

where S_f and S are the fin and wing planform area, respectively, b is the wing span, and $x_{ac_f} - x_{cg}$ is the distance between the aerodynamic center of the fin and the CG of the aircraft. For an airplane with $C_{L_{\alpha_f}} = 5.5$, assuming negligible sidewash effects, what tail volume is required to achieve a weathercock stability derivative of $C_{n_\beta} = 0.16$?

Problem 2

For the airplane below, assume the right engine fails when the aircraft is in level flight at 130 knots, creating a yawing moment of 100000 [ft-lb]. Neglect the fuselage effect, determine:

- a. The resulting sideslip angle in degrees if no rudder deflection is input.
- b. The rudder input δ_r required to maintain the direction of flight prior to the engine failure.

Assume sea level, standard conditions: $\rho = 0.002378$ [slugs/ft³]. Also,

1 [knot] = 1.6878 [ft/s].

[0.0 [20/2].						
Wing		Horizontal Tail			Vertical Fin			
$\overline{}$	=	80 [ft]						
S	=	$1200 \; [\mathrm{ft}^2]$	S	=	$250 \; [{ m ft}^2]$	S	=	$125 \; [{ m ft}^2]$
$ar{c}$	=	10 [ft]	$ar{c}$	=	5 [ft]	$ar{c}$	=	5 [ft]
i	=	$0 [\deg]$	i	=	-1.6 [deg]			
$C_{L_{lpha}}$	=	$5.2 \; [\mathrm{rad}^{-1}]$	$C_{L_{lpha}}$	=	$4.5 \; [\mathrm{rad}^{-1}]$	$C_{L_{lpha}}$	=	$5.5 \; [\mathrm{rad}^{-1}]$
C_{L_0}	=	0.1	C_{L_0}	=	0.0	C_{L_0}	=	0.0
$C_{M_{ac}}$	=	-0.1	$C_{M_{ac}}$	=	0.0	$C_{M_{ac}}$	=	0.0
			$C_{L_{\delta_e}}$	=	$1.5 \; [\mathrm{rad}^{-1}]$	$C_{L_{\delta_{m{r}}}}$	=	$1.5 \; [\mathrm{rad}^{-1}]$
x_{ac}	=	13 [ft]	x_{ac}		40 [ft]	x_{ac}	=	40 [ft]
			ϵ_0	=	$1.0 [\deg]$	σ_0	=	$0.0 \; [\mathrm{deg}]$
			ϵ_{lpha}	=	0.3	σ_{eta}	=	0.0
			η	=	0.95	η	=	1.0

The cg of the aircraft is at $x_{cg} = 14$ [ft], the weight of the aircraft is 20,000 [lb], and

$$C_{M_{0p}} = 0.0 \,, \quad C_{M_{0_f}} = 0.0 \,, \quad C_{M_{lpha_p}} = 0.0 \,\, [\mathrm{rad}^{-1}] \,, \quad \mathrm{and} \quad C_{M_{lpha_f}} = 0.0 \,\, [\mathrm{rad}^{-1}] \,.$$

$$V_{V} = \frac{S_{F}(X_{ac_{f}} - X_{cg})}{S_{b}}$$

$$C_{L}\alpha_{f} = 5.5$$

$$C_{L}\alpha_{f} = \frac{dC_{L}}{d\alpha_{f}}$$

$$C_{n}\beta = 0.16$$

$$Cn_{F} = -V_{V} \left(\frac{V_{F}}{V}\right)^{2} C_{LF}$$

$$\frac{\delta Cn_{F}}{\delta \alpha_{F}} = -V_{V} \left(\frac{V_{F}}{V}\right)^{2} \frac{\delta C_{VF}}{\delta \alpha_{F}}$$

$$\frac{\delta (n_{F})}{\delta \beta} = -V_{V} \left(\frac{V_{F}}{V}\right)^{2} \left(L_{XF}\right)^{2}$$

$$Cn_{B} = 0.16 = -V_{V} \left(\frac{V_{F}}{V}\right)^{2} \left(5.5\right)$$

$$\frac{-0.16}{5.5} = -V_{V} \left(1\right)^{2}$$

$$1/L = + 0.029$$

$$\frac{30}{5\beta} = 0$$

$$z = \beta + \beta$$

Assume fin is not in propeller Slipstreem

$$C_{nF} = -V_{V} \left(\frac{V_{F}}{V}\right)^{2} C_{LF}$$

$$\frac{\partial C_{nF}}{\partial \beta} = -V_{V} \left(\frac{V_{F}}{V}\right)^{2} \frac{C_{LF}}{\partial \beta}$$

$$C_{LF} = \alpha_F (-\beta + \beta) + \alpha_F \delta_F$$

$$C_{LF} = -\beta_{A_F} + \alpha_F \alpha$$

$$\frac{\delta_{C_{LF}}}{\delta_F} = -\alpha_F$$

$$\frac{\delta_{C_{LF}}}{\delta_F} = \alpha_F V_V (-\frac{V_F}{V_V})^2$$

$$0.16 = 5.5 \text{ W } (\frac{\text{Ve}}{\text{V}})^2$$

$$V_V = 0.029$$

 $a_F = C_{L_{X_F}}$

130 Knots = 217.415 ft/s

Neaghe = 100,000 ft-1b.

a)
$$C_n = C_n \beta \beta t$$
 $C_n s \delta v$ 0, since $\delta r = 0$ uptol

 $C_n = \frac{N}{4 \cdot V \cdot Sb}$ $C_n s \delta v$ 0, since $\delta r = 0$ uptol

 $C_n = \frac{N}{4 \cdot V \cdot Sb}$ $C_n s \delta v$ 0, since $\delta r = 0$ uptol

 $C_n = \frac{N}{4 \cdot V \cdot Sb}$ $C_n s \delta v$ 0, since $\delta r = 0$ uptol

 $C_n = \frac{N}{4 \cdot V \cdot Sb}$ $C_n s \delta v$ 0 of $\delta v = 0$ of

b)
$$C_n = C_{np}p + C_{ns}s_r$$

$$= C_{ns}s_r$$

$$= C_{ns}s_r$$

$$C_{ns} = -\alpha_r V_v (4)^r$$

$$V_{v} = 0.03385$$

$$Cn8r = -1.5(0.03385) = -0.050775$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$= \frac{100,000}{2(0.002378)(219.415)^{2}(1200)(80)}$$

$$= 0.0181976$$

$$0.0181976 = -0.0507758$$

$$8_7 = -0.3584 = -20.5346$$