

Sample space of sequences: coin

100A

Xiaowu Dai

Basics
Population
Region
Coin

Flip a fair coin n times independently.

Sample space Ω_n : all possible sequences of heads and tails.

$$|\Omega_n|=2^n$$
.

$$\Omega_n = \Omega_1 \times \Omega_1 \times \dots \times \Omega_1 = \Omega_1^n.$$

 Ω_1 : base sample space of flipping the fair coin once.

 Ω_n : hyper sample space of flipping n times independently.

Population of sequences.

Sample space of sequences: die

100A

Xiaowu Da

Basics
Population
Region

Coin Markov

Reasonin

Roll a fair die n times independently.

Sample space Ω_n : all possible sequences of numbers.

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$|\Omega_n| = 6^n$$
.

$$\Omega_n = \Omega_1 \times \Omega_1 \times ... \times \Omega_1 = \Omega_1^n.$$

 Ω_1 : base sample space of rolling the fair die once.

 Ω_n : hyper sample space of rolling n times independently.

Population of sequences.

Sample space of sequences: population

100A

Xiaowu Dai

Population
Region

Coin Markov

Markov Reasoni Randomly sample a person from a population of N (e.g., 300 million) people.

Repeat random sampling n (e.g., 1000) times independently. Sample space Ω_n : all possible sequences of people.

$$|\Omega_n| = N^n$$
 (e.g., $300m^{1000}$).

$$\Omega_n = \Omega_1 \times \Omega_1 \times \dots \times \Omega_1 = \Omega_1^n.$$

 Ω_1 : base sample space, the population of people.

 Ω_n : hyper sample space, the hyper-population of sequences. **Population of sequences.**

Sample space of sequences: region

100A

Coin

Randomly sample a point from a region. Repeat the above n times independently. Sample space Ω_n : all possible sequences of points.

$$\Omega_n = \Omega_1 \times \Omega_1 \times \dots \times \Omega_1 = \Omega_1^n.$$

 Ω_1 : base sample space, unit square $[0,1]^2$.

 Ω_n : hyper sample space, unit hyper-cube $[0,1]^{2n}$.

 $(x_1, y_1, x_2, y_2, ..., x_n, y_n)$: a point in Ω_n .

Population of sequences.

Population of sequences

100A

Xiaowu Dai

Basics Population Region

Region
Coin
Markov

Equally likely outcomes in Ω_1 + independent repetitions = equally likely sequences in Ω_n .

m: number of times A happens.

m fluctuates over all sequences.

Among all equally likely possibilities, 99.999% are like below, where m/n is close to P(A).

.00000001% are like below, where m/n are far from P(A).

Convergence in probability, concentration of measure, law of large number

100A

Xiaowu Dai

Basics
Populatio
Region
Coin

All sequences in Ω_n are equally likely. Among all equally likely possibilities, 99.999% are like below, where m/n is close to P(A).

Can prove $P(|\frac{m}{n} - P(A)| \le .01) \to 1$ as $n \to \infty$.

A representative sequence: $|m(\text{sequence})/n - P(A)| \leq .01$.

A non-representative sequence: |m/n - P(A)| > .01.

Among all possible sequences, the proportion of representative sequences $\to 1$ as $n \to \infty$.

- (1) Population setting: count the number of sequences.
- (2) Region setting: measure the volume of set of sequences.

Permutation

100A

Xiaowu Da

Basics
Populatio
Region
Coin

Markov

n different cards. Choose k of them. Order matters. Number of different sequences:

$$P_{n,k} = n(n-1)...(n-k+1).$$
 $P_{4,2} = 4 \times 3 = 12.$

$$P_{n,n} = n!$$

How many different ways to permute things.

Combination

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

Reasoni

n different balls. Choose k of them. Order does NOT matters. Number of different combinations:

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$

$$\binom{4}{2} = \frac{4 \times 3}{2} = 6.$$

Combination

100A

Xiaowu Da

Population

Coin

Markov

Each combination corresponds to k! permutations.

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$

$$\binom{4}{2} = \frac{4 \times 3}{2} = 6.$$

Coin flipping

100A

Coin

Example 4: Coin flipping

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTH, TTTT

$$|A_2| = {4 \choose 2} = \frac{4 \times 3}{2} = 6.$$

Do not confuse order of picking blanks with order of coin flippings.

In general, flip a fair coin n times independently,

$$P(A_k) = P(\{\omega : X(\omega) = k\}) = P(X = k) = \frac{\binom{n}{k}}{2^n}.$$

Survey sampling

100A

Xiaowu Dai

Basics
Population
Region
Coin

Population of N people, M males. Repeat random sampling n times independently

 $\rightarrow N^n$ equally likely sequences.

For a sequence ω , $X(\omega) =$ number of males in ω .

 $A_m = \{\omega : X(\omega) = m\}$: sequences with m males.

 $|A_m| = \binom{n}{m} M^m (N-M)^{n-m}$. n blanks. Choose m blanks for males, the rest n-m blanks for females. Each male blank has M choices. Each female blank has N-M choices.

Survey sampling

100A

Xiaowu Da

Basics Population

Region

Coin

Markov

D....

Population of N people. M males. Sample a person, $p=M/N={\sf Prob(male)}.$

$$P(A_m) = P(X = m) = \frac{|A_m|}{|\Omega_n|}$$
$$= \frac{\binom{n}{m} M^m (N - M)^{n - m}}{N^n}$$
$$= \binom{n}{m} p^m (1 - p)^{n - m}.$$

Most sequences are representative, $X/n \approx M/N = p$.

Binomial distribution, probability mass function

100A

Xiaowu Dai

Basics
Population
Region
Coin

Flip a coin n times independently, $p=\mbox{probability of head}.$

$$p(x) = P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$

 $x = 0, 1, ..., n.$

p(x): probability mass function, probability distribution.

Survey sampling, poll before election, p=M/N. Monte Carlo, $p=\pi/4$.