Archit Jain (2019101053) Pulkit Gupta (2019101078)

MDL-Assignment 3-Part I POMDP

- @ Roll-Number used for calculations 2019101053
- E Last four digit of Hall-number 1053 x = 1 ((1053 %30 + 1)/100) x = 1 4/100

• Last two digit of noll-number 53 y = (53)%4+1 y = 1+1 y = 2

1 Observation table used - Table 2

P(Observation = Red State = Red)	0.90
P(obervation = Green State = Green)	0.85

- Tritial position S1, S3, S6
- States

Red D Green

For simplicity lets generate 2 tables

Table - 1

Sta	le	Colour	Observed	
			R	G
- 4	31	Red	०.५०	0.10
	S2 Green		0.15	0.85
	53	Red	0.90	0.10
	Sy	Coreen	0.15	0.85
	Ss Creen		0.15	0.85
_	56	Red	0.90	0.10

Table 2: Initial belief states

State	Buobability
51	1/3
S ₂	0
53	//3
Sy	O SAME SAME SAME SAME SAME SAME SAME SAME
55	0
56	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Action-Observation pairs (Given)

Equation Using the equation mentioned below $b'(s) = \alpha P(0|\alpha,s) \left(\sum_{s' \in s} P(s|\alpha,s') b(s')\right)$ for finding $b(s_i)$

Pair 1 Agent took right and observed green

=) Finding raw persbabelities $\dot{b}(s_1) = \alpha(0.10) \left(\frac{1}{3}(0.04) + 0.(0.04)\right)$

$$= \alpha \left(0.10\right) \left(0.04\right) \left(\frac{1}{3}\right)$$

$$= \alpha \left(\frac{1}{3000}\right)$$

$$b'(s_2) = \alpha (0.85) \left(\frac{1}{3} (0.96) + \frac{1}{3} (0.04) \right)$$

= $\alpha \left(\frac{85}{300} \right)$

$$b'(S_3) = \alpha(0.10)(0(0.96) + 0(0.04))$$

= $\alpha(0.10).(0)$

$$b'(s_4) = \alpha(0.85)(\frac{1}{3}(0.96) + 0(0.04))$$

= $\alpha(0.85)(0.96)(\frac{1}{3})$

$$= \alpha \left(\frac{3000}{816} \right)$$

$$b'(S_5) = \alpha \left(0.85\right) \left(0 \left(0.96\right) + \frac{1}{3} \left(0.04\right)\right)$$

$$= \alpha \left(0.85\right) \left(0.04\right) \left(y_3\right)$$

$$= \alpha \left(\frac{3H}{3000}\right)$$

$$b'(S_6) = \alpha \left(0.10\right) \left(0 \left(0.96\right) + \frac{1}{3} \left(0.96\right)\right)$$

$$= \alpha \left(\frac{3H}{3000}\right)$$

$$= \alpha \left(\frac{3H}{3000}\right)$$

$$= \alpha \left(\frac{3H}{3000}\right)$$

$$+ \alpha \left(\frac{3H}{3000}\right) + \alpha \left(\frac{850}{3000}\right) + 0 + \alpha \left(\frac{816}{3000}\right)$$

$$+ \alpha \left(\frac{3H}{3000}\right)$$

$$= \alpha \left(\frac{18q\phi}{3000}\right) + \alpha \left(\frac{2}{5}\right)$$

$$= \alpha \left(\frac{18q\phi}{3000}\right) = \alpha \left(\frac{2}{5}\right)$$

$$= \alpha \left(\frac{18q\phi}{3000}\right) = \alpha \left(\frac{2}{5}\right)$$

=) After normalization the Belief is:

	The second secon	Control of the Contro	
	Fraction	Decimal	
b (s,)	5 (300)	0.00222	
b (s ₂)	3 (<u>300</u>)	0.47222	
b(s ₃)	5 (0)	0	
b (sa)	$\frac{3}{3}\left(\frac{3000}{3000}\right)$	0.45333	
P(22)	$\frac{5}{3}\left(\frac{34}{3aro}\right)$	0.01888	
b (s ₁)	3 (<u>96</u>)	0.05 333	

Pair 2 Agent took left and observed Red

=> Finding naw perobability.

$$b'(s_1) = \alpha(0.90) \left(\frac{2}{900}(0.96) + \frac{425}{900}(0.96)\right)$$

$$= \alpha (0.90) \left(\frac{427}{900} \right) (0.96) = \alpha \left(\frac{40992}{100000} \right)$$

$$b'(s_2) = \alpha \left(0.15\right) \left(\frac{2}{900} \left(0.04\right) + 0.\left(0.96\right)\right)$$
$$= \alpha \left(\frac{4}{30000}\right)$$

$$b'(s_{3}) = \alpha (0.90) \left(\frac{425}{900} (0.04) + \frac{136}{300} (0.96) \right)$$

$$= \alpha (0.90) \left(\frac{40868}{90000} \right) = \alpha \left(\frac{40868}{300000} \right)$$

$$b'(s_{4}) = \alpha (0.15) \left(0.(0.04) + \frac{17}{900} (0.96) \right)$$

$$= \alpha \left(\frac{272}{100000} \right)$$

$$b'(s_{5}) = \alpha (0.15) \left(\frac{408}{900} (0.04) + \frac{48}{900} (0.96) \right)$$

$$= \alpha \left(\frac{104}{10000} \right)$$

$$b'(s_{6}) = \alpha (0.90) \left(\frac{17}{900} (0.04) + \frac{48}{900} (0.04) \right)$$

$$= \alpha \left(\frac{26}{10000} \right)$$

$$\xi b'(s_{5}) = 1 = \frac{\alpha}{300000} \left(\frac{3(40992) + 44 + 3(40868) + 3(272)}{40(104) + 30(26)} \right)$$

$$= \alpha \left(\frac{250364}{300044} \right)$$

$$\Rightarrow \alpha = \frac{3000}{2503}$$

> After normalisation belief is:

en e para especial de la companya d	Fueltion	Decimal,
p(2')	300 (40992)	0.441314
b (S2)	3000 (300000)	0.000015
p (23)	3000 (100 000)	0.489828
b(s4)	3000 (272)	0.003260
p(22) 3000 (104)	0.012465
P(2	$\frac{3000}{2503} \left(\frac{26}{10000} \right)$	0.003116

Pair 3

Agent took action left and observed green

$$P_{2}(2) = \propto (0.10) \left(\frac{3000}{2503} \left(\frac{10000}{10000} \right) (0.00) + \frac{3000}{2503} \left(\frac{300000}{2503} \right) (0.00) \right)$$

$$= \propto \left(\frac{11806080}{250300000} \right)$$

$$b'(s_2) = \alpha \left(0.85\right) \left(\frac{3000}{2503} \left(\frac{40992}{100000}\right) (0.04) + \frac{3000}{2503} \left(\frac{40868}{100000}\right) (0.96)\right)$$

$$= \alpha \left(\frac{(34742016)13}{250300000}\right) = \alpha \left(\frac{104226048}{2503000000}\right)$$

=> After normalization belief is

terreprisenta interesso di distribui di selembra di selembra di selembra di selembra di selembra di selembra d	Fraction !	Decimal
b(s1)	123504792	0.095592
b (S2)	104226048	0.843902
b(S3)	78384 123504792	0.000634
b (Su)	6714456 123504792	0.054365
p (22	664224	0.005378
b (s	15600	0.000126

Final Answers upto 4 decimal not examel off.

1 0.0022 0.4722 0 0.4533 0.0188 0.0533 2 0.4913 0.000015 0.4898 0.0032 0.0124 0.0031 3 0.0955 0.8439 0.0006 0.0543 0.0053 0.0001	Number	b(s1)	b(s2)	b(S3)	b(s4)	P(22)	p(2°)
3 0.0955 0.8439 0.0006 0.0543 0.0053	ι	0.0022	0.4722	0	0.4533	0.0188	0.0533
3 0.0955 0.8439 0.0006 0.0543 0.0053 0.0001	2	0.4913	0.000015	0,4898	0.0032	0.0124	0.0031
	3	0.0955	0.8439	0.0006	0.0543	0.0053	0.0001