Безопасность в локальной сети

Физический и канальный уровень в модели OSI

Сетевой уровень

Канальный уровень

Физический уровень Драйвер NIC

Функции физического уровня

- Физический уровень описывает способы передачи бит данных через физические среды линий связи, соединяющие сетевые устройства.
- На этом уровне описываются параметры сигналов, такие как амплитуда, частота, фаза, используемая модуляция, манипуляция.
- Решаются вопросы связанные с синхронизацией, избавлением от помех, скорости передачи данных.

Безопасность на физическом

- Экранирование кабеля
- Заземление кабельной системы
- Экранирование помещений, где размещено сетевое оборудование
- Использование оптоволоконных линий
- Управление зоной покрытия (для беспроводных сетей)

Функции канального уровня

- Передача данных узлам, находящимся в том же сегменте локальной сети.
- Обнаружение и исправление ошибок, возникших на физическом уровне.
- Контроль доступа к разделяемой среде передачи

Кадры Ethernet

Ethernet II

IEEE 802.2 LLC

IEEE 802.2 SNAP

Адресация на канальном уровне

Связь физической и логической адресации - протокол ARP

Селективный и неразборчивый режимы работы сетевого адаптера

Снифферы и их применение

Сниффер - программа или устройство для перехвата и анализа сетевого трафика

Меры защиты от снифферов

- Криптографические методы
- Сегментирование сети
- Обнаружение несанкционированных анализаторов трафика
 - Анализ задержек
 - Ping со случайным destination MAC
 - Сниффер кэширует данные ARP от всех хостов (обычный хост сначала отправит ARP запрос)

MAC-spoofing

- МАС-адрес является основным идентификатором узла на канальном уровне. Атака может быть реализована через подмену МАС-адреса:
 - На физическом уровне
 - В момент считывания в память ОС

Port security

DHCP Snooping

14

Dynamic ARP inspection

IP Source Guard

Виртуальные локальные сети

- Виртуальной локальной сетью (VLAN) называется логическая *группа* узлов сети, трафик которой, в том числе и широковещательный, на канальном уровне полностью изолирован от других узлов сет
- Передача кадров между разными виртуальными сетями на основании МАС-адреса невозможна независимо от типа адреса: уникального, группового или широковещательного.
 - гибкость внедрения;
 - VLAN обеспечивают возможность контроля широковещательных сообщений, что увеличивает полосу пропускания;
 - VLAN позволяют повысить безопасность сети, посредством политики взаимодействия пользователей из разных виртуальных сетей.

Логическая сегментация сети с использованием VLAN

VLAN на основе портов

VLAN на основе стандарта IEEE 802.1Q

Маркированный кадр

Обычный (немарки	рованнь	ій) кадр					
		сточника SA)	Данные (Data)	Контрольная последовательность кадра (CRC)		ь		
Маркирова	анный ка	др 802.1	p/802.1Q					
Адрес назначения (DA)		Адрес источника (SA)		Ter (Tag)		анные Data)	Контрольная последовательность кадра (CRC)	
1 3	Идентификатор протокола тега (TPID) 0x8100		Приорите (Priority)	канонич	Индикатор канонического формата (CFI)		катор ¶D)	
	16 бит		3 бита	1 6	1 бит		r	

Продвижение кадров VLAN IEEE 802.1Q

Входящий трафик

Исходящий трафик

Виды сетевого оборудования

	Уровень OSI	Применение	Маршрутизация	VLAN	QoS	WAN connect
Концентратор		Многопортовый				
(hub)	1	повторитель	Нет	Нет	Нет	Нет
Коммутатор L2						
(L2 switch)	2	Коммутация LAN	Нет	Да	Ограничена	Нет
Коммутатор L3 (L3 switch)	2и3	Коммутация и маршрутизация VI AN	В основном, статическая	Да	Да	Нет
Коммутатор L3+	2110	Расширенная	OTATIFICORATI	дч	Αω	1101
(L3+ switch)	2и3	маршрутизация	Динамическая	Да	Да	Да
Маршрутизатор	3+	Межсетевое соединение	Динамическая	Да	Да	Да

