STAT 610: Discussion 11

1 Summary

• If we have a pivot $Q(X, \theta)$, a $1 - \alpha$ confidence interval involves finding a and b so that $\mathbb{P}(a < Q < b) = 1 - \alpha$. Typically, the length of the interval on θ will be some function of a and b like b - a or $1/a^2 - 1/b^2$. If Q has density f and the length can be expressed as $\int_a^b g(t)dt$, the shortest pivotal interval is the solution of

$$\min_{C} \int_{C} g(t)dt \text{ subject to } \int_{C} f(t)dt = 1 - \alpha.$$

Then, the solution of the above constraint optimization problem is $C = \{t : g(t) < \lambda f(t)\}$, where λ is chosen so that $\int_C f(t)dt = 1 - \alpha$.

- UMA confidence set: A 1α set is uniformly most accurate (UMA) if it minimizes the probability of false coverage over a class of 1α confidence sets.
 - UMA confidence sets are constructed by inverting the acceptance region of UMP tests.

2 Questions

 $L-P \longrightarrow \bigcirc \qquad [-l_0:0:0]$

1. Let X_1, \ldots, X_n be i.i.d $\text{Exp}(\theta)$.

(a) Find a UMP size α hypothesis test of H_0 ; $\theta = \theta_0$ v.s. $H_1: \theta < \theta_0$.

(b) Find a UMA $1 - \alpha$ confidence interval based on inverting the test in part (a). Show that the interval can be expressed as

$$C^*(x_1,\ldots,x_n) = \left\{\theta: 0 \le \theta \le \frac{\sum x_i}{G_{n,\alpha}}\right\},\,$$

where $G_{n,\alpha}$ is α quantile of Gamma(n,1).

(c) Find the expected length of $C^*(x_1, \ldots, x_n)$.

b)
$$A(X) = \begin{cases} Z'(X) > G_{n,d} \end{cases}$$

$$C(X) = \left\{ \begin{array}{c} 0 & \frac{27}{10} \\ 0 & \frac{27}{10} \end{array} \right\}$$

$$\frac{2}{6}\left\{\begin{array}{c|c}0&\frac{7}{6}&86\\\end{array}\right\}$$

$$\frac{E\left(\frac{EX_{i}}{G_{n,d}}-D\right)=\frac{n\theta_{o}}{G_{n,d}}$$

- 2. Let X_1, \ldots, X_n be i.i.d. from the distribution $E(\theta, \theta)$ where $\theta > 0$ is unknown.
 - (a) Show that both \bar{X}/θ , and $X_{(1)}/\theta$ are pivotal quantities.
 - (b) Find the 1- α confidence intervals based on these two pivotal quantities.
 - (c) Which one is better?

$$e \frac{\sum x_i - n\theta}{n\theta} \sim \operatorname{Gramma}(n, \frac{1}{n})$$

$$\theta = \frac{\chi_{(1)} - \theta}{\theta} \sim Gamma(1, \frac{1}{n})$$

3. (Cox's Paradox) We are to test

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta > \theta_0,$$

where we observe X with distribution

$$X \sim \begin{cases} \mathcal{N}(\theta, 100), & \text{with probability } p \\ \mathcal{N}(\theta, 1), & \text{with probability } 1 - p. \end{cases}$$
 6 = 1

(a) Show that the test given by

reject
$$H_0$$
 if $X > \theta_0 + z_\alpha \sigma$,

where $\sigma = 1$ or 10 depending on which population is sampled, is a level α test.

(b) Show that the following test of size α is given by

reject
$$H_0$$
 if $X
geq \theta_0 + z_{(\alpha-p)/(1-p)}$ and $\sigma = 1$; otherwise always reject H_0 .

Derive a $1 - \alpha$ confidence set by inverting the acceptance region of this test, and show that it is the empty set with positive probability.

For
$$\chi_{(1)}$$
 $I - \frac{(y_0)(x_0)}{n}$
 $I - \frac{(y_0)(x_0)(x_0)}{n}$
 I

$$P(X \in R(X)) = (I-P) P(X > 0.+24)$$

$$P(X \in R(X)) = (I-P) P(X > 0.+24)$$

$$P(X > 0.+$$

$$A(\theta) = \left\{ 6 = 1 \text{ and } X \in \theta + \frac{2}{4} \right\}$$

$$\frac{C(X) = \int_{0}^{\infty} 6 = 1}{\int_{0}^{\infty} x - \frac{2aup}{1-p}} < 0$$

There is probability p that.