Calculus 1- Exercise 12

All exercises should be submitted by January 22th by 23:00. Delays won't be accepted aside for special cases which will be approved beforehand. These are the submission regulations (also available on the Moodle):

- 1. Exercises are personal and cannot be submitted in groups.
- 2. Write your name, ID and tutorial group in the header of the exercise.
- 3. They should be written clearly on A4 pages. Hard-to-read exercises will not be graded.
- 4. Serious effort has to be shown by the student. Unreadable or extremely partial answers will be disregarded.
- 5. Exercises submitted late without the TA's approval will not be accepted.

Questions:

1.

(a) Prove that the equation

$$x \cdot \left(1 + \sqrt{x^2 + 1}\right)^3 = \frac{1}{2}$$

has a unique solution in \mathbb{R} .

(b) Let $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{R}$ such that $a_1, a_2, a_3 > 0$ and $b_1 < b_2 < b_3$. Prove that the equation

$$\frac{a_1}{x-b_1}+\frac{a_2}{x-b_2}+\frac{a_3}{x-b_3}=0$$

has exactly two distinct solutions in \mathbb{R} .

2. Compute each one of the following limits or prove that it doesn't exist:

(a)
$$\lim_{x\to 0} \frac{x^2 - x\sin x}{(e^x - 1)\cdot \ln(1+x)}$$

(b)
$$\lim_{x \to 0^+} \left(x^2 \cdot \ln x \right)$$

(c)
$$\lim_{x \to 0^{-}} \left(\frac{1}{x} \cdot e^{\frac{1}{x}} \right)$$

(d)
$$\lim_{x\to 0} (1+x)^{\frac{1}{\tan x}}$$

- 3. Let $L \in \mathbb{R}$ and let f be a function that is differentiable on a deleted neighbourhood of $x_0 \in \mathbb{R}$ such that $\lim_{x \to x_0} f'(x) = L$.
 - (a) Give an example of a function satisfying the above conditions, and such that f is not differentiable at x_0 .
 - (b) Assume in addition that f is continuous at x_0 and prove that f is differentiable at x_0 and $f'(x_0) = L$.
- 4. Let $f:[0,\infty)\to\mathbb{R}$ be a differentiable function. Assume that f' is increasing and f(0)=0.
 - (a) Prove that for every x > 0 we have $\frac{f(x)}{x} \le f'(x)$.
 - (b) Let $g(x) = \frac{f(x)}{x}$ for every x > 0. Prove that g is increasing on $(0, \infty)$.
- 5. Prove or disprove each of the following statements:
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. If the equation f'(x) = 0 has exactly one solution, then the equation f(x) = 0 has at least two solutions.
 - (b) Let $a \in \mathbb{R}$ and let $f, g: (-\infty, a] \to \mathbb{R}$ be two differentiable functions. Suppose that $f(a) \leq g(a)$ and f'(x) > g'(x) for every $x \in (-\infty, a]$. Then f(x) < g(x) for every x < a.
 - (c) For every x > 0, $\arctan(x) < x$.
 - (d) The function

$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

is differentiable.

- (e) We have $1.984^{2.020}<2.020^{1.984}.$ Hint: Consider the function $f\left(x\right)=x^{\frac{1}{x}}$ for every x>0.
- (f) Let $f:[a,b)\to\mathbb{R}$ be a differentiable function such that $\lim_{x\to b^-}f(x)$ does not exist in the extended sense. Then there exists an $x_0\in[a,b)$ for which $f'(x_0)=0$.