প্রধান সূচিপত্র

অধ্যায়	অধ্যায়ের নাম	পৃষ্ঠা নং
অধ্যায় - ০১	সোল্ডারিং এবং কালার কোড	
অধ্যায় - ০২	অর্ধপরিবাহী	
অধ্যায় - ০৩	সেমিকন্ডাক্টর ডায়োড	
অধ্যায় - ০৪	বিশেষ ধরনের ডায়োড	
অধ্যায় - ০৫	ডিসি পাওয়ার সাপ্লাই	
অধ্যায় - ০৬	বাইপোলার জাংশন ট্রানজিস্টর	
অধ্যায় - ০৭	ট্রানজিস্টরের বৈশিষ্ট্য	
অধ্যায় - ০৮	ট্রানজিস্টর বায়াসিং এবং স্ট্যাবিলাইজেশন	
অধ্যায় - ০৯	সিঙ্গেল স্টেজ ট্রানজিস্টর অ্যাম্প্লিফায়ার	
অধ্যায় - ১০	মাল্টিস্টেজ ট্রানজিস্টর অ্যাম্প্লিফায়ার	

/////

অধ্যায় **০১**

সোল্ডারিং এবং কালার কোড

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
২০২১			

"বর্তমান তাদের, কিন্তু ভবিষ্যৎ যার জন্য আমি কাজ করেছি - সেটা আমার।"

নিকোলাস টেসলা

অতি সংক্ষিপ্ত প্রশ্নোত্তর

- ১। কালার কোড কী ?
 উত্তরঃ রেজিস্টর বা ক্যাপাসিটর –এর মান প্রকাশের উদ্দেশ্যে এদের গায়ে বিভিন্ন রঙের
 কতগুলো চিহ্ন রিং আকারে প্রদান করা থাকে। এ চিহ্নগুলোকে কালার কোড বা কালার কোড পদ্ধতি বলে।
- ২। ইলেকট্রনিক্স বলতে কী বুঝায় ?
 উত্তরঃ বিজ্ঞান ও প্রযুক্তির যে শাখায় ভ্যাকুয়াম, গ্যাস ও সেমিকন্ডাক্টর –এর মধ্যে দিয়ে ইলেক্ট্রন প্রবাহ এবং নিয়ন্ত্রণ সম্পর্কে বিস্তারিত আলোচনা করা হয় তাকে ইলেক্ট্রনিক্স বলে।
- ৩। সোল্ডারিং বলতে কী বুঝায় ?
 উত্তরঃ সোল্ডারিং শব্দের অভিধানিক অর্থ ঝালাই করা। দুই বা ততোধিক পরিবাহী পদার্থকে
 উত্তপ্ত সোল্ডারিং আয়রন –এর সাহায়্যে সোল্ডার গলিয়ে সংযোগ করার পদ্ধতিকে সোল্ডারিং
 বলা হয়।
- ৪। ইলেকট্রনিক্স ডিভাইস কাকে বলে ? উত্তরঃ যে সমস্ত ডিভাইসে কোন ভ্যাকুয়াম গ্যাস বা সেমিকভাক্তর এর মধ্য দিয়ে ইলেকট্রন প্রবাহের ফলে সৃষ্ট কারেন্ট প্রবাহিত হয় তাদেরকে ইলেকট্রনিক্স ডিভাইস বলে।
- ৫। রেজিস্ট্যান্সের টলারেন্স বলতে কী বুঝায় ?

উত্তরঃ

সংক্ষিপ্ত প্রশ্নোত্তর

- ১। আদর্শ সোল্ডারিং এর শর্তগুলো লেখ । উত্তরঃ ভালো ঝালাই-এর শর্ত বা নিয়মসমূহ নিম্নরূপ:
 - (১) ঝালাই-এর পূর্বে ঝালাই-এর স্থান (জায়গা) ভালোভাবে পরিষ্কার করতে হবে।

- (২)ইলেকট্রনিক সার্কিটের ক্ষেত্রে 25 ওয়াট থেকে 40 ওয়াটের সোল্ডারিং আয়রন ব্যবহার করতে হবে।
- (৩) সোল্ডারিং ভালোভাবে গরম করে নিতে হবে।
- (৪) সোল্ডারিং বিট এবং সংযোগস্থল রেজিন দিয়ে পরিষ্কার করে নিতে হবে।
- (৫)রেজিন কোরড ব্যবহার করতে হবে, তা না হলে আলাদাভাবে রেজিন ব্যবহার করতে হবে। অধিক পরিমাণ টিনযুক্ত সোল্ডার ব্যবহার করতে হবে; সাধারণত টিনের পরিমাণ 60% এবং সীসার পরিমাণ 40% যুক্ত সোল্ডার ব্যবহার করতে হয়।
- (৬) প্রয়োজনমত সোল্ডার লাগাতে হবে। খুব কম অথবা বেশি সোল্ডার ব্যবহার করা যাবে না। কনিক্যাল আকারে সোল্ডার লাগাতে হবে।
- ২। আদর্শ সোল্ডারিং এর বৈশিষ্ট্যগুলো লেখ । উত্তরঃ আদর্শ সোল্ডারিং-এর বৈশিষ্ট্যগুলো নিচে দেওয়া হলো-
 - (১) ভালো সোল্ডার জয়েন্ট মসৃণ (Smooth) হওয়া প্রয়োজন।
 - (২) ভালো সোল্ডার জয়েন্ট উজ্জ্বল (Bright) হতে হবে।
 - (৩) সোল্ডার জয়েন্ট পরিষ্কার পরিচ্ছন্ন হতে হবে।
 - (৪) তারের প্রান্ত বা লিড সোল্ডার দ্বারা আবৃত থাকা প্রয়োজন।
 - (৫) সোল্ডার জয়েন্ট নমনীয় হওয়া প্রয়োজন।
 - (৬) ভালো সোল্ডারিং জয়েন্টের তল (Surface) বক্রতল বিশিষ্ট হওয়া প্রয়োজন।
- ৩। ইলেকট্রোলাইটিক ও নন-ইলেকট্রোলাইটিক ক্যাসিটরের মধ্যে পার্থক্য লেখ । উত্তরঃ ইলেকট্রোলাইটিক ও নন-ইলেকট্রোলাইটিক এর পার্থক্য নিম্নে দেওয়া হল:

ইলেকট্রোলাইটিক ক্যাপাসিটর	নন-ইলেকট্রোলাইটিক ক্যাপাসিটর
১ । এতে পজিটিভ (+ vc) প্লেট বা	১। এতে পজিটিভ (+ vc) প্লেট বা ইলেকট্রোড
ইলেকট্রোড এবং নেগেটিভ (-vc)	এবং নেগেটিভ (-vc) ইলেকট্রোড নির্দিষ্ট করা
ইলেকট্রোড নির্দিষ্ট করা থাকে।	থাকে না।
২। এতে ডাই-ইলেকট্রিক হিসেবে	২। এতে ডাই-ইলেকট্রিক হিসাবে
ইলেকট্রোলাইট ব্যবহৃত হয়।	ইলেকট্রোলাইট ছাড়া অন্য পদার্থ ব্যবহৃত হয়।
৩। এর আকার ছোট হয়ে থাকে।	৩। তুলনামূলকভাবে আকারে বড় হয়ে থাকে।

 ৪। শুধুমাত্র ডিসি সার্কিটে ব্যবহৃত হয়ে
 ৪। এগুলো এসি, ডিসি উভয় ধরনের সার্কিটে

 থাকে।
 ব্যবহৃত হয়ে থাকে।

রচনামূলক প্রশোত্তর

১। একটি রেজিস্টার এর গায়ে চারটি ব্যান্ড আছে । প্রথম ব্যান্ড এর রং সবুজ , ২য় ব্যান্ড এর রং নীল, ৩য় ব্যান্ড এর রং লাল এবং ৪র্থ ব্যান্ড এর রং সোনালী হলে রেজিস্টর এর মোট রং কত ?

অধ্যায় **০২**

অর্ধপরিবাহী

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
२०२\$			

"গণিত তার কাছেই প্রকৃত সৌন্দর্য সহকারে ধরা দেয়, যে বিশুদ্ধ মন ও ভালোবাসা নিয়ে গণিতের দিকে অগ্রসর হয়"

অতি সংক্ষিপ্ত প্রশ্নোত্তর

- ১। সেমিকভাক্টর কাকে বলে ?
 উত্তরঃ যে সকল পদার্থের কারেন্ট প্রবাহে বাধা দেওয়ার ক্ষমতা পরিবাহী ও অপরিবাহীর
 মাঝামাঝি, তাকে সেমিকভাক্টর বলে।
- ২। ডোপিং কী ?
 উত্তরঃ যে পদ্ধতিতে খাঁটি সেমিকভাক্টরে ভেজাল মিশ্রিত করে এর পরিবাহীতা বৃদ্ধি করা যায়,
 তাকে ডোপিং বলে। এটি ভেজাল সেমিকভাক্টর তৈরির প্রক্রিয়া।
- ৩। সেমিকভাক্টরের শ্রেণীবিভাগ লেখ ।
 উত্তরঃ সেমিকভাক্টর দুই প্রকার। যথা-
 - (১) ইনট্রিনসিক বা খাঁটি সেমিকভাক্টর
 - (২) এক্সট্রিনসিক বা ভেজাল সেমিকন্ডাক্টর। ভেজাল সেমিকন্ডাক্টর আবার দুই প্রকার। যথা-
 - (১) P –টাইপ সেমিকভাক্টর
 - (২) N -টাইপ সেমিকভাক্টর।
- ৪। হোল ও ইলেকট্রন কী ?

উত্তরঃ কোনো পরমাণুর কো-ভ্যালেন্ট বন্ডে ইলেকট্রনের শূন্যতা বা ঘাটতিকে হোল বলে। হোল পজেটিভ চার্জ বহন করে। আবার পরমাণুর যে স্থায়ী কণিকা নিউক্লিউয়াসকে কেন্দ্র করে বিভিন্ন কক্ষপথে ঘূর্ণায়মান অবস্থায় থাকে, তাকে ইলেকট্রন বলে। ইলেকট্রন নেগেটিভ চার্জ বহন করে।

৫। কো – ভ্যালেন্ট বন্ড কী ?
উত্তরঃ একটি পরমাণুর ভ্যালেন্স ইলেকট্রনগুলো অন্য পরমাণুর ভ্যালেন্স ইলেকট্রনের সাথে
ইলেকট্রন শিয়ারিং –এর মাধ্যমে যে বন্ধন সৃষ্টি করে তাকে সমযোজী বন্ধন বা কো-ভ্যালেন্ট বন্ড বলে।

- ৬। মাইনোরিটি ক্যারিয়ার বলতে কী বুঝায় ? উত্তরঃ
- ৭। এনার্জি ব্যান্ড বলতে কি বুঝায় ? উত্তরঃ পরমাণূর ইলেকট্রনসমূহ বিভিন্ন কক্ষ পথে একটি নির্দিষ্ট শক্তিস্তরে সারিবদ্ধভাবে অবস্থান করে। এ শক্তিস্তরগুলোকে এনার্জি ব্যান্ড বলে।

সংক্ষিপ্ত প্রশ্নোত্তর

১। একটি সিলিকন পরমাণুর পারমাণবিক গঠনচিত্র অঙ্কন করে বর্ণনা কর । উত্তরঃ পাশের চিত্রে সিলিকন পরমাণুর গঠনচিত্র দেখানো হয়েছে। সিলিকনের পারমাণবিক সংখ্যা = 14 অর্থাৎ সিলিকনের ইলেকট্রন সংখ্যা 14 এবং এর প্রোটন সংখ্যাও 14। এই 14টি ইলেকট্রন

2n² সূত্রানুসারে বিভিন্ন শক্তিস্তরে বিন্যস্ত হয়। প্রথম শক্তিস্তরে 2.12 = 2টি, দ্বিতীয় শক্তি স্তরে

2.22 = 8 টি এবং অবশিষ্ট [14 - (2 + 8)] = 4টি ইলেকট্রন তৃতীয় বা বাইরের শক্তিস্তরে (Outer most orbit-এ) বিন্যস্ত হয়। যেহেতু বাইরের বা সর্বশেষ শক্তিস্তরে 4 টি ইলেকট্রন থাকে, সেহেতু সিলিকন একটি সেমিকভাক্টর পদার্থ।

চিত্র: সিলিকন পরমাণুর গঠনচিত্র

২। মেজোরিটি ও মাইনোরিটি ক্যারিয়ার বলতে কী বুঝায় ?
উত্তরঃ মেজোরিটি ক্যারিয়ার: P-টাইপ সেমিকভাক্টরে হোলের আধিক্য এবং N-টাইপ
সেমিকভাক্টরে ইলেকট্রনের আধিক্য থাকে বলে P-টাইপের ক্ষেত্রে হোলকে এবং N-টাইপ
সেমিকভাক্টরের ক্ষেত্রে ইলেকট্রনকে মেজোরিটি ক্যারিয়ার বলে। মাইনোরিটি ক্যারিয়ার:
তাপজনিত কারণে অথবা অন্য কোন কারণে P-টাইপ সেমিকভাক্টরে খুব সামান্য পরিমাণ মুক্ত
ইলেকট্রনের সৃষ্টি হয় এবং N-টাইপ সেমিকভাক্টরে খুব সামান্য পরিমাণ হোলের সৃষ্টি হয়। P-

টাইপ সেমিকভাক্টরের ক্ষেত্রে এ সংখ্যালঘু ইলেকট্রনকে এবং N-টাইপ সেমিকভাকটরের ক্ষেত্রে এ সংখ্যালঘু হোলকে মাইনোরিটি ক্যারিয়ার বলে।

৩। একটি জার্মেনিয়াম পরমাণুর পারমাণবিক গঠন চিত্রসহ আলোচনা কর । উত্তরঃ আমরা জানি, জার্মেনিয়ামের পারমাণবিক সংখ্যা 32। এই ইলেকট্রনসমূহ $2n^2$ সূত্রানুসারে বিভিন্ন অর্বিটে ভাগ হবে। ১ম শক্তিস্তরে 2.12 = 2টি, ২য় শক্তিস্তরে 2.22 ৪টি, তৃতীয় শক্তি স্তরে 2.32 = - 18টি এবং অবশিষ্ট [32(2+8+18)] = টি ইলেকট্রন ৪র্থ বা বাইরের শক্তিস্তরে বিন্যস্ত হবে। সূতরাং জার্মেনিয়ামের ভ্যালেন্স (যোজ্যতা) ইলেকট্রন 4টি। অতএব জার্মেনিয়ামও সেমিকন্ডাক্টর পদার্থ।

- ৪। সেমিকভাঙ্গরের বৈশিষ্ট্যগুলো লেখ । উত্তরঃ সেমিকভাঙ্গরের বৈশিষ্ট্যগুলো নিচে দেয়া হলো
 - (১) এদের পরিবাহিতা প্রায় কন্ডাক্টরের মত।
 - (২) রেজিস্টিভিটি পরিবাহী ও অপরিবাহীর মাঝামাঝি।
 - (৩) এদের তাপমাত্রা সহগ ঋণাত্মক। অর্থাৎ তাপমাত্রা বৃদ্ধিতে রেজিস্ট্যান্স হ্রাস পায়।
 - (৪) এদের সাথে ভেজাল পদার্থ মিশ্রিত করে পরিবাহিতা বৃদ্ধি করা যায়।
 - (৫) পরম শূন্য তাপমাত্রায় এরা ইনসুলেটরের ন্যায় আচরণ করে।
- ে। পি টাইপ সেমিকভাক্টর তৈরি করার পদ্ধতি বর্ণনা কর ।

উত্তরঃ পি-টাইপ সেমিকন্ডাক্টর: পিওর সিলিকন বা জার্মেনিয়াম প্রমাণুর সাথে একটি ত্রিযোজী পরমাণু অপদ্রব্য বা ভেজাল হিসেবে যুক্ত করলে বা মিশানো হলে তার তিনটি ভ্যালেন্স ইলেকট্রন নিকটবর্তী তিনটি সিলিকনের ভ্যালেন্স ইলেকট্রনের সাথে শেয়ারিং-এর মাধ্যমে কো-ভ্যালেন্ট বন্ড সৃষ্টি করে। কিন্তু তার যোজ্যতা ইলেকট্রনের ঘাটতি থাকায় ৪র্থ সিলিকনটির সাথে বন্ধন সৃষ্টি করতে পারে না, ফলে একটি ফাঁকা স্থান বা হোলের সৃষ্টি হয়। এরূপে প্রতিটি ত্রিযোজী পরমাণু মেশানোর ফলে একটি করে হোলের সৃষ্টি হয়। এরূপে প্রতিটি ত্রিযোজী পরমাণু মেশানোর ফলে একটি করে হোলের সৃষ্টি হয়। আর এই হোল পজিটিভ চার্জ বহন

করে বলে উৎপাদিত বা গঠিত নতুন সেমিকভাক্টরকে বলা হয় পি-টাইপ (Positive-type) সেমিকভাক্টর। অধিক ডোপিং-এর ফলে অধিক হোল উৎপত্তি হয়। এজন্য পি-টাইপ সেমিকভাক্টরের মেজোরিটি চার্জ ক্যারিয়ার হচ্ছে হোল এবং মাইনোরিটি চার্জ বা ক্যারিয়ার হচ্ছে ইলেকট্রন। ত্রিযোজী পরমাণুকে গ্রহীত (Acceptor) পরমাণুও বলা হয়, কারণ রিকম্বিনেশনের সময় প্রত্যেকটি হোল একটি করে ইলেকট্রন গ্রহণ করে। এরূপ Acceptor Atom হল অ্যালুমিনিয়াম, বোরন এবং গ্যালিয়াম।

৬। কন্ডাক্টর , ইনসুলেটর এবং সেমিকন্ডাক্টরের এনার্জি লেভেল ডায়াগ্রাম আঁক । উত্তরঃ নিচে কন্ডাক্টর , ইনসুলেটর এবং সেমিকন্ডাক্টরের এনার্জি লেভেল ডায়াগ্রাম আঁক করা হলো-

রচনামূলক প্রশোত্তর

১। কীভাবে পি – টাইপ ও এন – টাইপ সেমিকভাক্টর তৈরি করা হয় চিত্রসহ আলোচনা কর।
উত্তরঃ ডোপিং (Doping): খাঁটি সেমিকভাক্টরে ভেজাল মিশ্রিত করা হলে এদের পরিবাহিতা
বৃদ্ধি পায়। যে পদ্ধতিতে খাঁটি সেমিকভাক্টরে ভেজাল মিশ্রিত করে এদের পরিবাহিতা বৃদ্ধি করা
হয়, তাকে ডোপিং বলে।

আবার, যে সেমিকন্ডাক্টরে ভেজাল মিশ্রিত থাকে, তাকে ভেজাল বা ডোপড (Doped) সেমিকন্ডাক্টর বলে। খাঁটি সেমিকন্ডাক্টরে ডোপিং করে P ও N টাইপ সেমিকন্ডাক্টর তৈরি করা হয়।

বাহের

সাধারণ তাপমাত্রায় খাঁটি সেমিকভাক্টরের পরিবাহিতা খুবই কম। এ সকল সেমিকভাক্টর পদার্থকে ইলেকট্রনিক ডিভাইসে ব্যবহার করতে হলে এদের কারেন্ট বহন ক্ষমতা অর্থাৎ কন্ডাকটিভিটি বৃদ্ধি করা প্রয়োজন। এ কন্ডাকটিভিটি বৃদ্ধি করার উদ্দেশ্যেই সেমিকভাক্টরে ডোপিং করা হয়। সাধারণভাবে 108 টি সেমিকভাক্টর পরমাণুর সাথে 1টি ভেজাল পরমাণু মিশ্রিত করে ডোপিং করা হয়। ভেজাল পরমাণু হিসেবে সাধারণত ত্রিযোজী এবং পঞ্চযোজী মৌল ডোপিং করা হয়। ত্রিযোজী ভেজাল পরমাণু হিসেবে গ্যালিয়াম, ইন্ডিয়াম, অ্যালুমিনিয়াম, বোরন প্রভৃতি এবং পঞ্চযোজী ভেজাল পরমাণু হিসেবে বিসমাথ, অ্যান্টিমনি, আর্সেনিক, ফসফরাস ইত্যাদি ডোপিং করা হয়।

সাথে

P-টাইপ সেমিকভাক্টর (P-Type Semiconductor):

কপথে এর বা দুটি

কোনো-খাঁটি সেমিকন্ডাক্টরের সাথে ভেজাল হিসেবে যখন সামান্য পরিমাণ ত্রিযোজী মৌল, যেমন- ইন্ডিয়াম, গ্যালিয়াম, অ্যালুমিনিয়াম ইত্যাদি মিশ্রিত করা হয় তখন ঐ ভেজাল মিশ্রিত সেমিকন্ডাক্টরকে P-টাইপ সেমিকন্ডাক্টর বলে।

P-টাইপ সেমিকভাক্টর তৈরিতে চতুর্যোজী মৌল বিশুদ্ধ জার্মেনিয়াম

কারিগরি পাঠশালা

(Ge) বা সিলিকনের (Si) সাথে ত্রিযোজী মৌল (ইন্ডিয়াম, গ্যালিয়াম, ইত্যাদি) ভেজাল হিসেবে মিশ্রিত করলে ভেজাল পরমাণুর তিনটি ভ্যালেন্স ইলেকট্রন জার্মেনিয়াম বা সিলিকন পরমাণুর তিনটি ভ্যালেন্স

ইলেকট্রনের সাথে তিনটি কো-ভ্যালেন্ট বন্ড সৃষ্টি করে
কিন্তু জার্মেনিয়াম বা সিলিকন পরমাণুর আর একটি
ইলেকট্রনের সাথে বন্ড সৃষ্টির জন্য একটি গ্যালিয়ামের
ভ্যালেন্স ইলেকট্রনের ঘাটতি পড়ে। অর্থাৎ একটি জায়গা
ফাঁকা থাকে। এ ফাঁকা জায়গাকে হোল (Hole) বলে।

ইলেকট্রনের ঘাটতির জন্যই হোলের সৃষ্টি হয় বলে এটি পজেটিভ চার্জ যুক্ত হয়।
পজেটিভ চার্জযুক্ত ভেজাল সেমিকভাক্টরকে P-টাইপ সেমিকভাক্টর বলে। উপরের চিত্রে একটি
P-টাইপ সেমিকভাক্টরের কো-ভ্যালেন্ট বন্ড দেখানো হয়েছে। এতে চতুর্যোজী জার্মেনিয়াম (Ge)
এর সাথে ত্রিযোজী গ্যালিয়াম (Ga) এর মিশ্রণ দেখানো হয়েছে।

এন-টাইপ সেমিকভাক্টর (N-type Semiconductor):

কোন খাঁটি সেমিকভাক্টরের সাথে ভেজাল হিসেবে যখন সামান্য পরিমাণ পঞ্চযোজী মৌল, যেমন- আর্সেনিক, অ্যান্টিমনি, ফসফরাস ইত্যাদি মিশ্রিত করা হয় তখন ঐ ভেজাল মিশ্রিত সেমিকভাক্টরকে N-টাইপ সেমিকভাক্টর বলে।

কারিগরি পাঠশালা

N-টাইপ সেমিকভাক্টর তৈরিতে চতুর্যোজী মৌল বিশুদ্ধ জার্মেনিয়াম বা সিলিকনের সাথে পঞ্চযোজী মৌল আর্সেনিক, অ্যান্টিমনি বা ফসফরাস ভেজাল হিসেবে মিশ্রিত করলে ভেজাল পরমাণুর চারটি ভ্যালেন্স ইলেকট্রন জার্মেনিয়াম বা সিলিকন পরমাণুর চারটি ভ্যালেন্স ইলেকট্রনের সাথে চারটি কো-ভ্যালেন্ট বভের সৃষ্টি করে। কিন্তু আর একটি ইলেকট্রন মুক্ত অবস্থায় থাকে। এ ইলেকট্রনটিকে মুক্ত (Free) ইলেকট্রন বলে। এরূপ ভেজাল মিশ্রিত সেমিকভাক্টরে ইলেকট্রনের আধিক্য থাকে বলে এটি নেগেটিভ চার্জ যুক্ত হয়। আর তাই একে N টাইপ সেমিকভাক্টর বলে। উপরের চিত্রে একটি N-টাইপ সেমিকভাক্টরের গঠন দেখানো হয়েছে। এতে চতুর্যোজী জার্মেনিয়াম (Ge) এর সাথে পঞ্চযোজী অ্যান্টিমনি (Sb) এর মিশ্রণ দেখানো হয়েছে।

সমযোজী বন্ধন (Covalent Bond): আমরা জানি, প্রকৃতিতে সকল মৌলই তার পরমাণুর বাইরের শক্তিস্তরকে ৪ (আটি) ইলেকট্রন দ্বারা পূর্ণ করতে চায়। স্বাভাবিকভাবে মৌলের পরমাণুসমূহ পাশাপাশি অবস্থান করলে এক পরমাণু অন্য পরমাণুর ইলেকট্রন গ্রহণ করে অথবা অন্য পরমাণুকে ইলেকট্রন দান করে বা উভয় পরমাণুর ইলেকট্রন শেয়ার করে তাদের বাইরের শক্তিস্তর বা ড্যালেন্স ব্যান্ড ৪ (আট) টি ইলেকট্রন দ্বারা পূর্ণ করে নিরপেক্ষ হয়। যদি একটি পরমাণুর ভ্যালেন্স ইলেকট্রন অন্য একটি পরমাণুর ভ্যালেন্স ইলেকট্রন-এর সাথে শেয়ার করে বন্ধন সৃষ্টি করে, তখন এ বন্ধনকে কো-ভ্যালেন্ট বন্ড বলে। সেমিকন্ডাক্টরে প্রত্যেকের ভ্যালেন্স ইলেকট্রন 4 (চার) টি। তাই শোয়ারিং পদ্ধতিতে বন্ধন সৃষ্টি করে সর্বশেষে অর্বিটে আটিট ইলেকট্রন পূর্ণ করে।

২। কন্ডাক্টর , সেমিকন্ডাক্টর এবং ইনসুলেটর –এর এনার্জি ব্যান্ড ডায়াগ্রাম অঙ্কন করে এদের পার্থক্যগুলো দেখাও ।

অধ্যায় ০৩

সেমিকভাক্টর ডায়োড

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্লাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
 রচনামূলক প্রশ্নাবলি 		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
২০২১			

" কখনো সপ্ন দেখা বন্ধ করো না, পরিশ্রমই তোমাকে সাফল্যের দিকে নিয়ে যাবে "

মেরি কুরি

অতি সংক্ষিপ্ত প্রশ্নোত্তর

- ১। পটেনশিয়াল ব্যারিয়ার কাকে বলে ?
 - উত্তরঃ পি-এন জাংশনের উভয় পার্শ্বে যে বিপরীত ধর্মী চার্জের (ইলেকট্রিক ফিল্ড) সৃষ্টি হয়, তাকে পটেনশিয়াল ব্যারিয়ার বা পটেনশিয়াল হিল বলে। এর মান Ge এর জন্য 0.3V এবং Si এর জন্য 0.7V।
- ২। বায়াসিং কেন করা হয় ?
 উত্তরঃ ইলেকট্রনিক ডিভাইস বা যন্ত্রাংশকে কার্যক্ষম বা কার্যপযোগী করার জন্য এক্সটারনাল
 বা বাহ্যিক ভোল্টেজ প্রয়োগ করতে হয়। এ বাহ্যিক ভোল্টেজ প্রয়োগ করার পদ্ধতিকে বায়াসিং

বলে।

- ৩। কাট ইন ভোল্টেজ কাকে বলে ?
 - উত্তরঃ ফরোয়ার্ড ভোল্টেজের যে মানে ফরোয়ার্ড কারেন্ট শূন্য হতে বৃদ্ধি পেতে আরম্ভ করে। সেই ভোল্টেজকে কাট ইন বা অফসেট বা ব্রেক পয়েন্ট ভোল্টেজ বলে।
- ৪। নি ভাল্টেজ কী ? উত্তরঃ যে ভোল্টেজ অতিক্রম করলেই পি-এন জাংশনে কারেন্ট উল্লেখযোগ্য হারে বাড়তে থাকে, তাকে নি ভোল্টেজ বলে।
- ৫। ডিফিউশন কারেন্ট কী ?
 উত্তরঃ একটি পি-টাইপ এবং একটি এন-টাইপ সেমিকভাক্টর এক সাথে সংযোগ করা হলে
 মেজোরিটি চার্জ ক্যারিয়ারগুলো জাংশন ভেদ করে এক পার্শ্ব হতে অন্য পার্শ্বে চালাচলের যে
 প্রবণতা দেখায়, তাকে ডিফিউশন কারেন্ট বলে।
- ৬। ড্রিফট কারেন্ট কী ?
 উত্তরঃ কোন সেমিকভাক্টরে একটি ইলেকট্রিক ফিল্ড প্রয়োগ করা হলে এর চার্জ ক্যারিয়ারগুলো
 (হোল ও মুক্ত ইলেকট্রন) ফিল্ড প্রদত্ত ফোর্সের অভিমুখে তাড়িত হয়ে যে কারেন্ট প্রবাহের সৃষ্টি
 করে, তাকে ড্রিফট কারেন্ট বলে।
- ৭। ব্রেক ডাউন ভোল্টেজ কাকে বলে ?

উত্তরঃ রিভার্স ভোল্টেজের যে মানে রিভার্স কারেন্ট অতিরিক্ত বৃদ্ধি পায় এবং জাংশন ব্রেক ডাউন ঘটে, সেই ভোল্টেজকে ব্রেক ডাউন ভোল্টেজ বলে।

সংক্ষিপ্ত প্রশ্নোত্তর

১। পি-এন জাংশন কীভাবে গঠিত হয় ?

উত্তরঃ একটি পি-টাইপ সেমিকভাক্টর এবং একটি এন-টাইপ সেমিকভাক্টরকে পরস্পরের সঙ্গে যুক্ত করলে যে ক্রিস্টাল তৈরি হয় তাকে ডায়োড বলে। পি-টাইপ সেমিকভাক্টর ও এন-টাইপ সেমিকভাক্টর যেখানে যুক্ত হয় বা মিলিত হয়, সে সংযোগস্থলকে পি-এন (P-N) জাংশন বলে। এজন্য একে পি-এন জাংশন ডায়োড বলে। একে সেমিকভাক্টর ডায়োড বা সলিড স্টেট ডায়োড বা রেকটিফাইং ডায়োডও বলা হয়।

আমরা জানি, পি-টাইপে প্রচুর পরিমাণ (Majority) হোল চার্জ এবং এন-টাইপ সেমিকভাক্টরে প্রচুর পরিমাণ ইলেকট্রন চার্জ (Majority) ক্যারিয়ার থাকে। দুটি ভিন্ন ধরনের সেমিকভাক্টর সংযোগের পরে উভয়ের রিপালশন-এর কারণে এন-পার্শ্বের ইলেকট্রনসমূহ ডিফিউশনের সময় কিছু ইলেকট্রন জাংশন ভেদ করে পি-পার্শ্বেও ডিফিউজ প্রবেশ করা হয়। ফলে জাংশনের এন-পার্শ্বে হোলের (+ Ve আয়ন) সৃষ্টি হয় এবং পি-পার্শ্বে জাংশনের নিকটে ইলেকট্রনসমূহ হোলের সাথে রিকম্বিনেশন-এর মাধ্যমে নেগেটিভ আয়নে পরিণত হয় এবং জাংশনের উভয় পার্শ্বের আয়নসমূহ 'নিরপেক্ষ হয়ে থাকে, যা চিত্র (b) তে Round Plus এবং Round Minus দিয়ে দেখানো হয়েছে এবং তাত্তিকভাবে জাংশন তলের উভয় পার্শ্বে Donor (দাতা) ও Acceptor

কারিগরি পাঠশালা

7////

পৃষ্ঠা-

(গ্রহীতা)-এর ঘনত্ব সমান হয়। এরূপে গঠিত পি-এন জাংশনের মৌলিক অপারেশন ডায়োড, ট্রানজিস্টর এবং অন্যান্য সলিড স্টেট ডিভাইসে পরিলক্ষিত হয়।

২। ডায়োডের ভি/আই বৈশিষ্ট্য রেখা অঙ্কন কর । উত্তরঃ ডায়োডের ভি/আই বৈশিষ্ট্য রেখা অঙ্কন নিম্নরূপ-

চিত্র : ডায়োডের V/I বৈশিষ্ট্য রেখা

৩। পি-এন জাংশন বা ডায়োডের ফরোয়ার্ড-রিভার্স বৈশিষ্ট্য রেখা অঙ্কন কর । উত্তরঃ নিচে পি-এন জাংশন বা ডায়োডের ফরোয়ার্ড-রিভার্স বৈশিষ্ট্য রেখা অঙ্কন করা হলো-

রচনামূলক প্রশোত্তর

১। পি-এন জাংশন বা সেমিকভাক্টর ডায়োডের ভি/আই বৈশিষ্ট্য রেখা অঙ্কন করে বর্ণনা কর উত্তরঃ (Forward-Reverse (V / I) Characterisitics Curve of P-N Junction or Diode) ডায়োডের আড়াআড়ি ভোল্টেজ এবং এর মধ্য দিয়ে প্রবাহিত কারেন্টের সম্পর্ক যে কার্ডের মাধ্যমে দেখানো হয় সেই কার্ডকে V-I বৈশিষ্ট্য কার্ড বলে। এর সাহায্যে নির্দিষ্ট ডায়োড ভোল্টেজের জন্য ডায়োডের মধ্য দিয়ে কি পরিমাণ কারেন্ট প্রবাহিত হয় তা সহজেই জানা যায়। নিচের চিত্রে একটি ডায়োডের V-I বৈশিষ্ট্য কার্ড দেখানো হয়েছে

ফরোয়ার্ড ভোল্টেজ V_F যখন ব্যারিয়ার ভোল্টেজ (V_0) অপেক্ষা কম থাকে, তখন ফরোয়ার্ড কারেন্ট (I_F) শূন্য হয়। কারণ V_0 , V_F কে বাধা দেয়। কিন্তু ফরোয়ার্ড ভোল্টেজ বৃদ্ধি করতে থাকলে যখন এটা V_F অপেক্ষা বেশি হয় তখন সামান্য কারেন্ট প্রবাহিত হয়। যে ভোল্টেজে ফরোয়ার্ড কারেন্ট শূন্য হতে বৃদ্ধি পেতে আরম্ভ করে সেই ভোল্টেজকে কাট-ইন বা অফসেট বা ব্রেক পয়েন্ট ভোল্টেজ (V_K) বলে। এ কাট-ইন ভোল্টেজ প্রায় ব্যারিয়ার ভোল্টেজের সমান। রিভার্স ভোল্টেজকে (V_R) ধীরে ধীরে বৃদ্ধি করতে থাকলে খুব সামান্য রিভার্স কারেন্ট (I_R) প্রবাহিত হবে এবং তা ভোল্টেজ বৃদ্ধির সাথে সাথে বাড়তে থাকবে V_R কে আরো বৃদ্ধি করা হলে I_R আরও বৃদ্ধি পাবে এবং এক সময় দ্রুত বৃদ্ধি পেয়ে সর্বোচ্চ মান I_0 তে পৌছায়।

রিভার্স কারেন্টের এ সর্বোচ্চ মানকে রিভার্স সেচুরেশন কারেন্ট বলে। রিভার্স ভোল্টেজের যে

মানে রিভার্স কারেন্ট খুব দ্রুত গতিতে বৃদ্ধি পেয়ে সর্বোচ্চ মানে পৌঁছায়, তাকে ব্রেক ডাউন

ভোল্টেজ বলে।

২। একটি পি-এন জাংশন ডায়োডের ফরোয়ার্ড ও রিভার্স চিত্র এবং বৈশিষ্ট্য রেখা অঙ্কনপূর্বক ব্যাখ্যা কর ।

উত্তরঃ পি-এন জাংশনের বা ডায়োডের ফরোয়ার্ড বৈশিষ্ট্য (Forward V/I Characteristics):

যখন ব্যাটারি ভোল্টেজ $V_F=0$ তখন ডায়োড কারেন্ট $I_r=0$ (চিত্র-ক) অর্থাৎ কোন কারেন্ট প্রবাহ হয় না। ব্যাটারি ভোল্টেজ বৃদ্ধি করতে থাকলে ফরোয়ার্ড কারেন্ট I_F প্রবাহিত হতে শুরু করে। কিন্তু ব্যাটারি ভোল্টেজকে যখন ব্যারিয়ার পটেনশিয়ালের কাছাকাছি বৃদ্ধি করা হয় তখন ফরোয়ার্ড কারেন্ট I_F খুব তাড়া তাড়ি বৃদ্ধি পেতে থাকে (চিত্র-খ)। ব্যাটারির এ ভোল্টেজকে কাট-ইন ভোল্টেজ বলে। এ ভোল্টেজকে চিত্র-'খ' তে V_K দ্বারা দেখানো হয়েছে।

ফরোয়ার্ড বৈশিষ্ট্য রেখা

পি-এন জাংশনের বা ডায়োডের রিভার্স বৈশিষ্ট্য (Reverse V/I characteristics):

যখন ব্যাটারি ভোল্টেজ $V_R=0$ তখন ডায়োড কারেন্ট $I_r=0$ (চিত্র-ক) অর্থাৎ কোন কারেন্ট প্রবাহিত হয় না। V_R কে শূন্য হতে বৃদ্ধি করতে থাকলে I_R বৃদ্ধি পেতে থাকে এবং সর্বোচ্চ মানে পৌছায়। এখন V_R কে আরও বৃদ্ধি করতে থাকলে রিভার্স কারেন্ট এমন অবস্থায় পৌঁছায় যে তখন এ কারেন্ট V_R এর ওপর আর নির্ভর করে না। এ কারেন্টকে রিভার্স

সেচুরেশন (Saturation) কারেন্ট বা লিকেজ কারেন্ট I_0 বলে এবং V_R এর এ মানকে অর্থাৎ V_R এর যে মানে রিভার্স কারেন্ট অতিরিক্ত বৃদ্ধি পায় এবং জাংশনের ব্রেকডাউন ঘটে সেই ভোল্টেজকে ব্রেকডাউন ভোল্টেজ V_B বলে।

অধ্যায় 80

বিশেষ ধরনের ডায়োড

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
২০২১			

" আমাদের সবচেয়ে বড় দুর্বলতা হলো হার ছেড়ে দেওয়া "

থমাস আলভা এডিসন

////

অতি সংক্ষিপ্ত প্রশ্নোত্তর

- ১। LCD এর পূর্ণনাম লেখ । উত্তরঃ LCD –এর পূর্ণনাম হলো- Liquid Crystal Diode.
- ২। Schottky Diode এর গঠন চিত্র লেখ । উত্তরঃ
- । জিনার ব্রেক ডাউন কী ?উত্তরঃ
- 8 I LCD এর পূর্ণ অর্থ কী ? এর প্রতিক আঁক ।
- ে। জিনার ইফেক্ট কী ?
- ৬। LED –এর ব্যবহার লেখ ।

সংক্ষিপ্ত প্রশ্নোত্তর

১। জিনার ডায়োডের এবং সাধারণ ডায়োডের মধ্যে পার্থক্য কী ?
উত্তরঃ নিচে জিনার ডায়োড এবং সাধারণ ডায়োডের মধ্যে পার্থক্যসমূহ দেওয়া হলো:

জিনার ডায়োড	সাধারণ ডায়োড
১। জিনার ভোল্টেজ অনুযায়ী একে ডোপিং	১। এর ভোল্টেজ রেটিং অনুযায়ী একে
করা হয়।	ডোপিং করানো হয়।
২। ভেজাল মেশানোর পরিমাণ সাধারণ	২। ভেজাল মেশানোর পরিমাণ জিনার
ডায়োড অপেক্ষা বেশি।	ডায়োড অপেক্ষা কম।
৩। এর একটি সুক্ষ ব্রেক ডাউন ভোল্টেজ	৩। এর কোন নির্দিষ্ট ব্রেক ডাউন ভোল্টেজ
থাকে, যাকে জিনার ভোল্টেজ বলা হয়।	নেই।
৪। একে সর্বদা রিভার্স বায়াসে সংযোগ	৪। একে সর্বদা ফরোয়ার্ড বায়াসে সংযোগ
করা হয়।	করা হয়।
ে। নির্দিষ্ট পরিমাণ রিভার্স ভোল্টেজে এতে	ে। পিক ইনভার্স ভোল্টেজের অতিরিক্ত
কন্ডাকশন ঘটে।	ভোল্টেজে এটি নষ্ট হয়ে যায়।

৬। লোডের সাথে প্যারালালে সংযোগ করা	৬। লোডের সাথে সিরিজে সংযোগ করা হয়।
হয়	

- ২। জিনার ডায়োডের ৪ টি ব্যবহার লেখ । উত্তরঃ জিনার ডায়োডের ব্যবহার
 - (১) ডিসি ভোল্টেজ স্ট্যাবিলাইজার এবং রেগুলেটর তৈরিতে
 - (২) এসি ভোল্টেজ অ্যামপ্লিচ্যুড লিমিটারে
 - (৩)অ্যানালগ সার্কিটসমূহে
 - (৪) পাওয়ার সার্কিটসমূহে
 - (৫)রিভার্স ভোল্টেজ কন্ট্রোল এবং পিক ক্লিপার ইত্যাদি।
- ৩। জিনার ডায়োডের ভি/আই কার্ভ আঙ্কন কর ।

উত্তরঃ জিনার ডায়োডের বৈশিষ্ট্য রেখাচিত্র অঙ্কন করে সংক্ষেপে বর্ণনা করা হলো:

চিত্র : (ক) জিনার ডায়োড বর্তনী

জিনার ডায়োডে ফরোয়ার্ড বায়াস প্রয়োগ করে বৃদ্ধি করা হলে এটি সাধারণ ডায়োডের মতই বৈশিষ্ট্য প্রদর্শন করে কিন্তু রিভার্স বায়াস প্রয়োগ করে বৃদ্ধি করতে থাকলে রিভার্স কারেন্ট হঠাৎ খুব দ্রুত গতিতে বৃদ্ধি পেতে থাকে। ভোল্টেজের যে মানে রিভার্স কারেন্ট হঠাৎ খুব বেশি বেড়ে যায়, তাকে ব্রেক ডাউন ভোল্টেজ বলে। উপরের (খ) চিত্রে একে V {z} দ্বারা চিহ্নিত করা হয়েছে। এ ব্রেক ডাউন অঞ্চলকে রিভার্স ক্যারেকটারিস্টিকের নি বলা হয়। ব্রেক ডাউন ভোল্টেজকে জিনার ভোল্টেজ (Vz) এবং হঠাৎ বর্ধিত কারেন্টকে জিনার কারেন্ট $(I \{z\})$ বলে। উপরের (খ) চিত্রে জিনার ডায়োডের ফরোয়ার্ড এবং রিভার্স বৈশিষ্ট্য রেখা দেখানো হয়েছে।

 ৪। ফটো ডায়োডের গঠন চিত্র ও প্রতীক অঙ্কন কর । কারিগার পাঠশালা

উত্তরঃ নিচে ফটো ডায়োডের গঠন চিত্র ও প্রতীক অঙ্কন দেওয়া হলো-

চিত্র : ফটো ডায়োড (ক) গঠন (খ) প্রতীক

রচনামূলক প্রশ্নোত্তর

- ১। জিনার ডায়োড কীভাবে ভোল্টেজ রেগুলেটর হিসেবে কাজ করে ? উত্তরঃ
- ২। চিত্রসহ সোলার সেলের কার্যপ্রণালি বর্ণনা কর ।

উত্তরঃ সোলার সেল (Solar cell): যে সেলের ওপর বিকির্ণ আলোক (Radiated light) রশ্মি পতনের ফলে উক্ত সেলে ইএমএফ (emi) উৎপন্ন হয়, তাকে সোলার সেল বলে। আলোক রশ্মি পতনের ফলে ইএমএফ বা ভোল্টেজ উৎপন্ন হয় বলে একে ফটো ভোল্টাইক সেলও বলা হয়। এতে উৎপন্ন ভোল্টেজের পরিমাণ পতিত আলোর তীব্রতার ওপর নির্ভর করে। সোলার সেল সোলার এনার্জিকে ইলেকট্রিক্যাল এনার্জিতে রূপান্তরিত করে বলে একে আবার এনার্জি কনভার্টারও বলা হয়। সোলার সেলের গঠন (Construction of Solar Cell):

চিত্ৰঃ সোলার সেল (ক) গঠন (খ) প্রতীক

////

উপরের চিত্রে একটি সোলার সেলের গঠন (চিত্র-ক) এবং প্রতীক (চিত্র-খ) দেখানো হয়েছে। সোলার সেল প্রকৃতপক্ষে দুই টার্মিনাল দুই স্তর বিশিষ্ট বৃহতাকার (giant) পি-এন জাংশন ডায়োড। এর পি ও এন স্তর বিশেষ ভাবে ডোপিং করে তৈরি করা হয়। এর পি ও এন স্তর সাধারণত সিলিকন (Si), সেলেনিয়াম (Se), জার্মেনিয়াম (Ge), ইন্ডিয়াম আর্সেনাইড (InAs) এবং ইন্ডিয়াম এন্টিমোনাইড (InSb) দ্বারা তৈরি করা হয়। সোলার সেলের পি-টাইপ স্তরের পুরুত্ব খুব পাতলা হয়, যাতে রেডিয়েটেড আলোক রশ্মি খুব সহজেই জাংশনে আঘাত করতে পারে। পি-স্তরের ওপরের দিকে নিকেলের তৈরি যে প্লেট থাকে তা থেকে সেলের পজেটিভ টার্মিনাল এবং এন-স্তরের নিচের দিকের প্লেট থেকে নেগেটিভ টার্মিনাল বের করা হয়। সোলার সেলের কার্যপ্রণালি (Operation of Solar Cell): যখন বিকির্ণ আলোক রশ্মির আলোক কণাগুলো (Photons) সোলার সেলের পাতলা পি-স্তর ভেদ করে জাংশনে আঘাত করে এবং জাংশন ভেদ করে নিচের দিকে এন-স্তরের ইলেকট্রন দ্বারা শোষিত (absorbed) হয়। এতে জাংশনের উভয় দিকে মুক্ত হোল এবং ইলেকট্রন উৎপন্ন (Formation) হয়। এ মুক্ত হোল এবং ইলেকট্রনগুলো পি-এন জাংশনের ডিপ্লেশন লেয়ার দ্বারা পৃথক অবস্থায় থাকে। ফলে জাংশনের উভয় দিকে একটি পটেনশিয়াল ডিফারেন্সের সৃষ্টি হয়, যা সোলার সেলের ই.এম.এফ হিসেবে কাজ করে। এ ইএমএফ-এর পরিমাণ বিকীর্ণ আলোক রশ্মির তীব্রতার ওপর নির্ভর করে।

অধ্যায় 0(t

ডিসি পাওয়ার সাপ্লাই

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
২০২১			

" একটি দরজা বন্ধ হলে আরেকটি দরজা খুলে যায়; কিন্তু আমরা প্রায়ই বন্ধ দরজার দিকে এতক্ষন তাকিয়ে থাকি যে খোলা দরজাটি দেখতে না পাই"

আলেকজাণ্ডার

অতি সংক্ষিপ্ত প্রশ্নোতর

১। রেক্টিফায়ার কী?

উত্তরঃ যে ডিভাইসের সাহায্যে এসিকে ডিসিতে রূপান্তরিত করা যায়, তাকে রেক্টিফায়ার বলে।

- ২। পালসেডিং ডিসি কাকে বলে ?
 - উত্তরঃ রেক্টিফায়ারের আউটপুটে প্রাপ্ত এসি উপাদান মিশ্রিত ডিসিকে পালসেটিং ডিসি বলে।
- ৩। ডিসি পাওয়ার সাপ্লাই ইউনিট এর চিত্র অঙ্কন করে বিভিন্ন অংশের নাম লেখ । উত্তরঃ ট্রান্সফরম
- ৪। রিপল ফ্যাক্টর কাকে বলে ?

উত্তরঃ রিপল ফ্যাক্টর : রেক্টিফায়ারের আউটপুটে প্রাপ্ত পালসেটিং ডিসিতে অবস্থিত এসি কম্পোনেন্টের (উপাদান) আরএমএস মান এবং ডিসি কম্পোনেন্টের মানের অনুপাতকে রিপল ফ্যাক্টর বলে। এটি একটি ধ্রুব সংখ্যা।

৫। TUF - কী?

উত্তরঃ Transformer Utilization Factor –এর সংক্ষিপ্ত রূপ হচ্ছে–

 $TUF = \frac{Dc Power to be dilivered to the load}{Ac rating of transformer secondary} = \frac{P_{dc}}{P_{ac}}$

৬। PIV ও LED – এর পূর্ণনাম লেখ ।

উত্তরঃ PIV = Peak Inverse Voltage

LED = Light Emitting Diode

৭। ফিল্টার সার্কিট কেন ব্যবহৃত হয় ?

উত্তরঃ যে সার্কিটের মাধ্যমে পালসেটিং ডিসিকে খাঁটি ডিসিতে পরিণত করা যায়, তাকে ফিল্টার সার্কিট বলে।

৮। PIV মানে কী ?

উত্তরঃ PIV এর পূর্ণ অর্থ হলো পিক ইনভার্স ভোল্টেজ। রেক্টিফায়ারে ব্যবহৃত ডায়োড বা ডায়োডসমূহ প্রতি অর্ধ সাইকেল পরপর রিভার্স বায়াস প্রাপ্ত হয়। রিভার্স বায়াস প্রাপ্ত অবস্থায় ডায়োড বা ডায়োডসমূহের আড়াআড়িতে যে ভোল্টেজ পাওয়া যায় তাকে PIV বলে।

সংক্ষিপ্ত প্রশ্নোত্তর

১। R-L ও R-C ফিল্টার সার্কিট অঙ্কন কর ।

উত্তরঃ R-LR-C ফিল্টার সার্কিট অঙ্কন দেখানো হলো:

চিত্ৰ: (b) R - C (Resistive-Capacitive) Filter Circuit

২। ফিল্টারের কাজ কী?

উত্তরঃ সকল ইলেকট্রনিক সার্কিটের জন্যই বিশুদ্ধ ডিসি সাপ্লাই প্রয়োজন কিন্তু রেক্টিফায়ারের আউটপুটে যে ডিসি পাওয়া যায় তা পালসেটিং অর্থাৎ অবিশুদ্ধ ডিসি। এতে এসি এবং ডিসি এ উভয় কম্পোনেন্ট বিদ্যমান থাকে। কাজেই ডিসিতে পরিচালিত যন্ত্রপাতি অর্থাৎ ইলেকট্রনিক যন্ত্রপাতিতে এ ডিসি প্রয়োগ করা হলে কাজে বিদ্নের সৃষ্টি করে এবং যন্ত্রপাতিরও ক্ষতি হওয়ার সম্ভাবনা থাকে। তাই এ পালসেটিং ডিসিকে খাঁটি ডিসিতে পরিণত করার জন্য ফিল্টার সার্কিটের প্রয়োজন হয়। ফিল্টার সার্কিটের প্রয়োজন হয়। ফিল্টার সার্কিটের প্রয়োজন হয়। ফিল্টার সার্কিট পালসেটিং ডিসিকে খাঁটি ডিসিতে পরিণত করতে পারে।

। হাফ-ওয়েভ ও ফুল-ওয়েভ রেক্টিফায়ারের মাঝে পার্থক্য লেখ ।
 উত্তরঃ নিচে হাফ-ওয়েড ও ফুল-ওয়েভ রেক্টিফায়ারের মাঝে পার্থক্য লেখা হলো:

হাফ-ওয়েভ রেক্টিফায়ার	ফুল-ওয়েভ রেক্টিফায়ার
১। এ পদ্ধতিতে ইনপুটে প্রয়োগকৃত এসি	১। এ পদ্ধতিতে ইনপুটে প্রয়োগকৃত এসি
সিগন্যালের অর্ধেক আউটপুটে পাওয়া যায়।	সিগন্যালের সম্পূর্ণটাই আউটপুটে পাওয়া

	यात्र ।
২। একটিমাত্র ডায়োড হলেই চলে।	২। একাধিক ডায়োড লাগে।
৩। ভোল্টেজ কম পাওয়া যায়।	৩। ভোল্টেজ বেশি পাওয়া যায়।
৪। তুলনামূলকভাবে রেগুলেশন খারাপ।	৪। তুলনামূলকভাবে রেগুলেশন ভালো।
ে। রিপল ফ্যাক্টর অনেক বেশি, অর্থাৎ	ে।রিপল ফ্যাক্টর অনেক কম, অর্থাৎ 0.481
1.211	

৪। একটি ডিসি ভোল্টেজ রেগুলেটরের ব্লক ডায়াগ্রাম অঙ্কন করে বিভিন্ন অংশের নাম লেখ । উত্তরঃ নিচে একটি ডিসি ভোল্টেজ রেগুলেটরের ব্লক ডায়াগ্রাম অঙ্কন করে বিভিন্ন অংশের নাম দেওয়া হলো-

একটি রেগুলেটেড ডিসি পাওয়ার সাপ্লাই ইউনিট নিম্নলিখিত অংশগুলো নিয়ে গঠিত।

(১) ট্রান্সফর্মার (Transformer), (২) রেক্টিফায়ার (Rectifier), (৩) ফিল্টার সার্কিট (Filter Circuit), (৪) ভোল্টেজ রেগুলেটর (Voltage Regulator) I

রচনামূলক প্রশ্নোত্তর

\$ । Full Wave Bridge Rectifier Circuit – অঙ্কন করে বর্ণনা কর ।
উত্তরঃ ফুল-ওয়েভ ব্রিজ রেক্টিফায়ার (Full Wave Bridge Rectifier): সেন্টার ট্যাপ ফুলওয়েভ রেক্টিফায়ারের মত ব্রিজ রেক্টিফায়ারও একটি ফুল-ওয়েভ রেক্টিফায়ার। তবে এতে
সেন্টার ট্যাপ ট্রান্সফরমারের প্রয়োজন পড়ে না। তাই আকারে তুলনামূলকভাবে ছোট এবং এর
খরচও কিছুটা কম পড়ে।

গঠন প্রণালি (Construction):

চিত্র: ফুল-ওয়েভ ব্রিজ রেক্টিফায়ার ও ইনপুট আউটপুট ওয়েভ

উপরের চিত্রে একটি ব্রিজ রেক্টিফায়ার সার্কিট (চিত্র-ক) এবং এর ইনপুট ও আউটপুট ওয়েভ ফরম (চিত্র-খ) দেখানো হয়েছে। ব্রিজ রেক্টিফায়ারে একটি স্টেপ ডাউন ট্রান্সফর্মার ব্যবহার করা হয়। এতে চারটি ডায়োড $D_{11} D_{2} D_{3}$ এবং D_{4} ব্যবহার করা হয়েছে। লোড হিসেবে রেজিস্টর R_{L} ব্যবহার করা হয়েছে এবং এ লোড রেজিস্টর R_{11} এর আড়াআড়িতে আউটপুট গ্রহণ করা হয়।

কার্যপ্রণালি (Working Procedure): ইনপুট সিগন্যালের পজেটিভ হাফ সাইকেলে যখন D_{2} এবং D_{4} ফরোয়ার্ড বায়াস প্রাপ্ত হয় তখন D_{1} এবং D_{3} রিভার্স বায়াস (নেগেট্রিভ হাফ সাইকেল) প্রাপ্ত হয়। এ অবস্থায় D_{2} D_{4} এবং লোড রেজিস্টরের P_{L} মধ্য দিয়ে তীর P_{4} যখন রিভার্স বায়াস প্রাপ্ত হয়। আবার নেগেটিভ হাফ সাইকেলে P_{4} যখন রিভার্স বায়াস প্রাপ্ত হয়, P_{4} যখন ফরোয়ার্ড বায়াস (পজেটিভ হাফ সাইকেল) প্রাপ্ত হয়। এ অবস্থায় P_{4} এবং P_{4} এর মধ্য দিয়ে তীর P_{4} টিহ্নিভ দিকে কারেন্ট প্রবাহিত হয়।

অতএব, দেখা যায় এতে ইনপুট সিগন্যালের উভয় অর্ধ সাইকেলেই লোড রেজিস্টর R_{L} এর মধ্য দিয়ে একই দিকে কারেন্ট প্রবাহিত হয় এবং আউটপুটে ভোল্টেজ পাওয়া যায়। তাই একে ফুল-ওয়েভ রেক্টিফায়ার বলে। এর আউটপুটেও সামান্য পালসেটিং ডিসি পাওয়া যায়।

- ২। একটি রেগুলেটেড ডিসি পাওয়ার সাপ্লাই ইউনিটের ব্লক ডায়াগ্রাম অঙ্কন করে বিভিন্ন ব্লকের কাজ উল্লেখ কর ।
- ৩। চিত্রসহ একটি সেন্টার ট্যাপ ফুল ওয়েভ রেক্টিফায়ারের কার্যপ্রণালি বর্ণনা কর ।

অধ্যায় ০**৬**

বাইপোলার জাংশন ট্রানজিস্টর

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
२०२५			

"স্বপ্ন সেটা নয় যা ঘুমিয়ে দেখা যায়, স্বপ্ন সেটা যা তোমাকে ঘুমাতে দেয় না।"

7///

আবুল কালাম

অতি সংক্ষিপ্ত প্রশ্নোত্তর

- ১। ট্রানজিস্টরকে কীভাবে বায়াসিং করা হয় ?
 উত্তরঃ ট্রানজিস্টরের ইমিটার –বেস জাংশনে ফরোয়ার্ড বায়াস এবং কালেক্টর- বেস জাংশনে
 রিভার্স বায়াস প্রয়োগ করা হয়।
- ২। ট্রানজিস্টর কী ?
 উত্তরঃ ট্রানজিস্টর তিন টার্মিনাল, তিন স্তর বিশিষ্ট একটি ডিভাইস যার ইনপুটে কোন
 ইলেকট্রিক্যাল সিগন্যাল প্রয়োগ করলে আউটপুটে তা বর্ধিত আকারে পাওয়া যায়।
- ৩। ট্রানজিস্টর এর প্রকারভেদ লেখ । উত্তরঃ নিচে Transistor –এর প্রকারভেদ লেখা হলো :
 - (১) বাইপোলার জাংশন ট্রানজিস্টর
 - (ক) PNP ট্রানজিস্টর
 - (খ) NP ট্রানজিস্টর
 - (২)ইউনিপোলার জাংশন ট্রানজিস্টর
 - (ক) জাংশন ফিল্ড ইফেক্ট ট্রানজিস্টর
 - (খ) মসফেট টাইপ ফিল্ড ইফেক্ট ট্রানজিস্টর
 - (গ) গ্যালিয়াম আর্সেনাইড টাইপ ফিল্ড ইফেক্ট ট্রানজিস্টর
- ৪। বাইপোলের ট্রানজিস্টর কাকে বলে ?
 উত্তরঃ যে ট্রানজিস্টরে হোল এবং ইলেকট্রন দু'টি ক্যারিয়ার দ্বারা কারেন্ট প্রবাহের সৃষ্টি হয়,
 তাকে বাইপোলার ট্রানজিস্টর বলে।

সংক্ষিপ্ত প্রশ্নোত্তর

১। ট্রানজিস্টর – এর বায়াসিং রুল দুটি লেখ ।

উত্তরঃ ট্রানজিস্টরকে বায়াসিংকরণে যে সকল পদ্ধতি অবলম্বন করা হয় তা হলো-

- i. বেস বায়াস অথবা ফিক্সড কারেন্ট বায়ার্স (Base Bias of Fixed Current Bias)।
- ii. ইমিটার ফিডব্যাক সহযোগে বেস বায়াস (Base Bias with Emitter Feedback) ।
- iii. কালেক্টর ফিডব্যাক সহযোগে বেস বায়াস (Base Bias with Collector Feedback)।
- iv. কালেক্টর এবং ইমিটার ফিডব্যাক সহকারে বেস বায়াস (Base Bias with Collector and Emitter Feedback)।
- v. দুটো সরবরাহ ব্যবস্থা সহযোগে ইমিটার বায়াস (Emitter Bias with Two Supplies)। ভোল্টেজ বিভক্তকারী বায়াস (Voltage Divider Bias) ইত্যাদি।
- ২। একটি এনপিএন ও একটি পিএনপি ট্রানজিস্টরের প্রতীক অঙ্কন করে ইমিটার, বেস এবং কালেক্টর চিহ্নিত কর ।

উত্তরঃ নিচে একটি NPN ও একটি PNP ট্রানজিস্টরের প্রতীক অঙ্কন করে ইমিটার, বেস এবং কালেক্টর চিহ্নিত করা হলো:

রচনামূলক প্রশ্নোত্তর

- ১। দেখাও যে, I_E = I_B + I_C
- ২। চিত্রসহ পিএনপি ট্রানজিস্টরের কার্যপ্রণালি বা এর কারেন্ট প্রবাহের কৌশল বর্ণনা কর ।
- ৩। চিত্রসহ এনপিএন ট্রানজিস্টরের কার্যপ্রণালি বা এর কারেন্ট প্রবাহের কৌশল বর্ণনা কর ।

অধ্যায় ০ **৭**

ট্রানজিস্টরের বৈশিষ্ট্য

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
২০২১			

"সাফল্য অর্জন করতে হলে আগে নিজের উপর বিশ্বাস রাখতে হবে।"

আবুল কালাম

পৃষ্ঠা-

7///

অতি সংক্ষিপ্ত প্রশ্নোত্তর

- ১। অ্যামপ্লিফিকেশন ফ্যাক্টর কী ? উত্তরঃ অ্যামপ্লিফায়ারের আউটপুট সিগন্যাল এবং ইনপুট সিগন্যালের অনুপাতকেই অ্যামপ্লিফিকেন ফ্যাক্টর বা গেইন ফ্যাক্টর বলে।
- ২। α ও β এর মাঝে সম্পর্ক সূচক সূত্রটি লেখ । উত্তরঃ α ও β এর মাঝে সম্পর্ক সূচক সুত্রটি হলো-

$$\alpha = \frac{\beta}{1+\beta}$$
 অথবা, $\beta = \frac{\alpha}{1+\alpha}$

- ৩। অ্যামপ্লিফায়ার কাকে বলে ?
 উত্তরঃ যে ডিভাইস বা সার্কিটের ইনপুটে ছোট সিগন্যাল প্রয়োগ আউটপুটে বড় আকারে
 পাওয়া যায়, তাকে অ্যামপ্লিফায়ার বলে।
- ৪। ট্রানজিস্টরের কয়েকটি ব্যবহার উল্লেখ কর ।উত্তরঃ নিচে ট্রানজিস্টরের কয়েকটি ব্যবহার উল্লেখ করা হলো :
 - (১) অ্যামপ্লিফার সার্কিট
 - (২) সুইচিং সার্কিট
 - (৩)অসিলেটর সার্কিট
 - (৪) লজিক সার্কিট
 - (৫)ইনভার্টার সার্কিট।

সংক্ষিপ্ত প্রশোত্তর

- **১।** α ও β এর সম্পর্ক নির্ণয় কর । উত্তরঃ
- ২। ট্রানজিস্টরের বেসিক কনফিগারেশন সার্কিটগুলো অঙ্কন কর । উত্তরঃ ট্রানজিস্টরকে সার্কিটে তিন পদ্ধতিতে সংযোগ করা হয়, যথা-

i. কমন-ইমিটার সংযোগ (ii) কমন-বেস সংযোগ এবং (iii) কমন-কালেক্টর সংযোগ।

(i) কমন-ইমিটার সংযোগ:

(박) PNP-Common Emitter Connection

(ii) কমন-বেস সংযোগ:

(iii) কমন-কালেক্টর সংযোগ পদ্ধতি:

I_B আউটপুট

(4) PNP-Common Collector Connection

(박) NPN-Common Collector Connection

রচনামূলক প্রশ্নোত্তর

১। প্রমান কর যে,
$$\alpha = \frac{\beta}{1+\beta} = \frac{\gamma-1}{\gamma}$$

২। ট্রানজিস্টরের কমন বেস, কমন ইমিটার এবং কমন কালেক্টর কনফিগারেশন একে এগুলো সম্পর্কে সংক্ষিপ্ত বর্ণনা দেও ।

7////

অধ্যায় **০ ৮**

ট্রানজিস্টর বায়াসিং এবং স্ট্যাবিলাইজেশন

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
২০২১			

"পরিশ্রম করলে ভাগ্য পরিবর্তন হয়, অলসরা শুধু ভাগ্যের দোহাই দেয়।"

জাফর ইকবাল

অতি সংক্ষিপ্ত প্রশ্নোত্তর

১। Q পয়েন্ট কী ?

উত্তরঃ কালেক্টর কারেন্ট (Ic) এবং কালেক্টর ইমিটার ভোল্টেজ (V_{CE}) এর মানের জন্য DC লোড লাইনের যে নির্দিষ্ট বিন্দু যা ট্রানজিস্টরের ইনপুটে কোনো signal ছাড়া পাওয়া যায় তাকে Operating point বা কার্যকরী বিন্দু বা স্থির বিন্দু বা Quicent point বা Q-point বলা হয়। Operating point এর সবচেয়ে ভালো অবস্থান হচ্ছে cut off point ও saturation point এর মধ্যখানে ।

- ২। ফেইথফুল অ্যামপ্লিফিকেশন কাকে বলে ? উত্তরঃ কোন দুর্বল সিগন্যালকে কোনরূপ পরিবর্তন ছাড়াই শক্তিশালীকরণের পদ্ধতিকেই ফেইথফুল অ্যামপ্লিফিকেশন বলে।
- ৩। লোড লাইন কী ?
 উত্তরঃ যে ক্যারেকটারিসটিকস কার্ভে কোনো নির্দিষ্ট লোড রেজিস্ট্যান্সের কালেক্টর ইমিটার ভোল্টেজ এবং কালেক্টর কারেন্টের পরিবর্তন নির্দেশ করে তাকে লোড লাইন বলে।
- ৪। বায়াসিং বলতে কী বুঝায় ? উত্তরঃ ট্রানজিস্টরকে কার্যোপযোগী করার জন্য এতে বাহির হতে ডিসি সাপ্লাই প্রয়োগ করা হয়। তাকে বায়াসিং বলে।

সংক্ষিপ্ত প্রশ্নোত্তর

- ১। ট্রানজিস্টরে সঠিক বায়াসিং এর শর্তগুলো লেখ । উত্তরঃ ট্রানজিস্টরে দুটি শর্ত মেনে বায়াসিং করা হয়। যেমন
 - i. বেস-ইমিটার জাংশন ফরোয়ার্ড বায়াস এবং
 - ii. বেস-কালেক্টর জাংশন রিভার্স বায়াসিং করা হয়।
- ২। CE ট্রানজিস্টর অ্যামপ্লিফায়ার এর ডি.সি. লোড লাইন চিত্রসহ ব্যাখ্যা কর ।

উত্তরঃ নিচের চিত্র অনুযায়ী একটি কমন ইমিটার NPN ট্রানজিস্টর সার্কিট বিবেচনা করি। যখন কোন সিগন্যাল প্রয়োগ করা হয় না তখন সার্কিটটি ডিসি অবস্থায় অবস্থান করে। এ অবস্থায় আউটপুট বৈশিষ্ট্য রেখা নিচের চিত্রে দেখানো হলো:

চিত্র : CE ট্রানজিস্টর সার্কিট ও ডিসি লোড লাইন

যে কোন সময় কালেক্টর ইমিটার ভোল্টেজ, $V_{CE}=V_{CC}-I_C$ R_C যেহেতু V_{CC} এবং R_C এর মান নির্দিষ্ট একটি এক ঘাত (First degree) বিশিষ্ট সমীকরণ। কাজেই আউটপুট বৈশিষ্ট্য রেখার উপর একে একটি সরলরেখা দ্বারা প্রকাশ করা যায়। এ সরলরেখাকেই ডিসি লোড বলা হয়। যে কোন মানের R_C এর জন্য (V_{CE} , I_C) পয়েন্ট এর সঞ্চার পথ তৈরি করা যায়। এ লোড লাইন অঙ্কনের জন্য দুটি বিন্দু প্রয়োজন, বিন্দুদ্বয়ের সংযোগকারী রেখাই লোড লাইন। বিন্দুদ্বয় নিম্নলিখিতভাবে বের করা যায়:

(ক) যখন I_C = ০ তখন কালেক্টর-ইমিটার ভোল্টেজ, V_{CE} সাপ্লাই ভোল্টেজ V_{CC} এর সমান হয়। অর্থাৎ বা, V_{CE} = V_{CC} — $0 \times R$ $_C$

একে কাট-অফ অবস্থা বলা হয়। এ বিন্দুই লোড লাইনের উপর একটি বিন্দু যা চিত্র (ii) তে কালেক্টর ইমিটার ভোল্টেজ, V CE অক্ষে B (O B = V CC) বিন্দু দ্বারা দেখানো হয়েছে। V CE = V CC - 0* R C

(খ) যখন V CC =0 তখন I_{C} = 0 তখন এর সমান অর্থাৎ O = VCC - I_{C} * R_{C} বা, একে স্যাচুরেশন অবস্থা বলা হয়। এ বিন্দুই দ্বিতীয় বিন্দু নির্দেশ করবে যা চিত্রে A(OA = VCCRC) বি IC = V CCRC C

দ্বারা দেখানো হয়েছে। এ বিন্দুদ্বয় A ও B এর সংযোগকারী সরলরেখাই ডিসি লোড লাইন নির্দেশ করবে।

রচনামূলক প্রশোত্তর

১। ভোল্টেজ ডিভাইডার পদ্ধতি বায়াসিং আলোচনা কর ।

উত্তরঃ ভোল্টেজ বিভাজনের বায়াস পদ্ধতি (Voltage divider bias method): ট্রানজিস্টর সার্কিটের ভালোমানের বায়াসিং এবং স্ট্যাবিলাইজেশনের জন্য এটি একটি বহুল ব্যবহৃত পদ্ধতি। এ পদ্ধতিতে দুটো রেজিস্টর R_1 এবং R_2 সরবরাহ ভোল্টেজের V_{cc} এর সাথে সিরিজে যুক্ত করা হয়। ইমিটার রেজিস্ট্যান্স R_E এর মাধ্যমে স্ট্যাবিলাইজেশনের ব্যবস্থা করা যায়। R_1 এবং R_2 দ্বারা V_{cc} ভোল্টেজকে বিভক্ত করা হয় বলে তাকে ভোল্টেজ বিভক্তকারী বায়াস বলে। R_2 এর আড়াআড়িতে ড্রপকৃত ভোল্টেজ বেস-ইমিটার জাংশনে ফরোয়ার্ড বায়াস প্রদান করে। ফলে সিগন্যাল বিহীন অবস্থায় বেস কারেন্ট এবং কালেক্টর কারেন্ট প্রবাহিত হয়। নিচের চিত্রে তা দেখানো হলো-

সার্কিট বিশ্লেষণ (Circuit analysis): মনে করি R_1 রেজিস্টরে I_1 পরিমাণ কারেন্ট প্রবাহিত হচ্ছে।

অধ্যায় ০ **১**

সিঙ্গেল স্টেজ ট্রানজিস্টর অ্যাম্প্লিফায়ার

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্নাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
২০২১			

"তুমি যদি পৃথিবী বদলাতে চাও, আগে নিজেকে বদলাও।"

জাফর ইকবাল

অতি সংক্ষিপ্ত প্রশ্নোত্তর

- ১। লোড লাইন কাকে বলে ? উত্তরঃ ট্রানজিস্টরের কাট অফ পয়েন্ট এবং সেচুরেশন পয়েন্টে সংযোগ রেখাকে লোড লাইন বলে।
- ২। সিঙ্গেল স্টেজ ট্রানজিস্টর অ্যামপ্লিফায়ার বলতে কী বোঝায় ?
 উত্তরঃ যখন সহযোগী কম্পোনেন্টসহ একটি মাত্র ট্রানজিস্টরকে দুর্বল সিগন্যাল নিবর্ধনে
 অ্যামপ্লিফায়ার হিসেবে ব্যবহার কারা হয় তখন তাকে সিঙ্গেল (এক) স্টেজ ট্রানজিস্টর
 অ্যামপ্লিফায়ার বলা হয়।
- ৩। অ্যামপ্লিফায়ার কাকে বলে ?
 উত্তরঃ যে ডিভাইস বা সার্কিটের ইনপুটে ছোট সিগন্যাল প্রয়োগ করে আউটপুটে বড় আকারে
 পাওয়া যায়, তাকে অ্যামপ্লিফার বলে।
- ৪। কারেন্ট অ্যামপ্লিফিকেশন ফ্যাক্টর কী ?
 উত্তরঃ অ্যামপ্লিফায়ারের আউটপুট কারেন্ট এবং ইনপুট কারেন্টের অনুপাতকে কারেন্ট
 অ্যামপ্লিফিকেশন ফ্যাক্টর বলে।

সংক্ষিপ্ত প্রশ্নোতর

১। CE অ্যামপ্লিফায়ারের DC সমতুল্য সার্কিট অঙ্কন কর । উত্তরঃ নিচে CE অ্যামপ্লিফায়ারের DC সমতুল্য সার্কিট অঙ্কন করা হলো-

২। CE অ্যামপ্লিফায়ারের AC সমতুল্য সার্কিট অঙ্কন কর । উত্তরঃ নিচে CE অ্যামপ্লিফায়ারের AC সমতুল্য সার্কিট অঙ্কন করা হলো-

৩। একটি ট্রানজিস্টর অ্যামপ্লিফায়ার সমতুল্য সার্কিট অঙ্কন কর । উত্তরঃ নিচে একটি ট্রানজিস্টর অ্যামপ্লিফায়ারের সমতুল্য সার্কিট অঙ্কন করা হলো:

- ৪। ট্রানজিস্টর সংযোগ কয় প্রকার ও কী কী ?উত্তরঃ ট্রানজিস্টর সংযোগ ও প্রকার। যথা:
 - (১) কমন বেস ট্রানজিস্টর অ্যামপ্লিফায়ার
 - (২)কমন ইমিটার ট্রানজিস্টর অ্যামপ্লিফায়ার
 - (৩)কমন কালেক্টর ট্রানজিস্টর অ্যামপ্লিফায়ার।

রচনামূলক প্রশোত্তর

১। চিত্রসহ একটি পি.এন.পি এবং এন.পি.এন কমন ইমিটার ট্রানজিস্টর অ্যামপ্লিফায়ারের মূলনীতি বর্ণনা কর ।

অধ্যায় ১০

মাল্টিস্টেজ ট্রানজিস্টর অ্যাম্প্লিফায়ার

এই অধ্যায়ের প্রধান সূচিপত্র (contants)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
 রচনামূলক প্রশ্নাবলি 		

বোর্ড প্রশ্নাবলির বিশ্লেষন (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিনিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন....নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতিসংক্ষিপ্ত	সংক্ষিপ্ত	রচনামূলক
২০২৪			
২০২৩			
२०२२			
२०२५			

" তুমি যদি সহজভাবে ব্যাখ্যা করতে না পারো , তবে তুমি সেটা যথেষ্ট বুঝোনি "

আলবার্ট আইনস্টাইন

অতি সংক্ষিপ্ত প্রশ্নোত্তর

১। মাল্টিস্টেজ অ্যামপ্লিফায়ার কী ?

উত্তরঃ যে কোন ট্রানজিস্টর থেকে প্রাপ্ত সিগন্যাল খুবই দুর্বল হয় । তা সিঙ্গেল স্টেজ অ্যামপ্লিফায়ার বর্ধিত করলেও আউটপুট ডিভাইসকে পরিচালনা করা সম্ভব হয় না। আউটপুট ডিভাইসকে সঠিকভাবে পরিচালনা করার জন্য খুবই শক্তিশালী সিগন্যালের দরকার। এ প্রকার সিগন্যাল প্রাপ্তির জন্য মাল্টিস্টেজ অ্যামপ্লিফায়ার ব্যবহার করা হয়।

- ২। ভোল্টেজ গেইন কী ?
 - উত্তরঃ অ্যামপ্লিফায়ার সার্কিটের লোডের আড়াআড়িতে প্রাপ্ত এসি আউটপুট ভোল্টেজ (v_o) এবং এসি ইনপুট ভোল্টেজ (v_{in}) এর অনুপাতকে ভোল্টেজ গেইন বলা (A_v) হয়।
- ৩। কারেন্ট গেইন কী ? উত্তরঃ অ্যামপ্লিফায়ার সার্কিটের আউটপুট কারেন্টের পরিবর্তন (ΔΙ $_{
 m o}$) এবং ইনপুট কারেন্টের পরিবর্তন ΔΙ $_{
 m in}$ এর অনুপাতকে কারেন্ট গেইন ($A_{
 m i}$) বলে।
- ৪। গেইন বলতে কী বুঝায় ?
 উত্তরঃ অ্যামপ্লিফায়ারের আউটপুট ইলেকট্রিক্যাল রাশি (Voltage/current) ও ইনপুট ইলেকট্রিক্যাল রাশির (Voltage/current) এর মানের অনুপাতকে গেইন বলা হয়।
- ৫। গেইন কত প্রকার ও কী কী ?
 উত্তরঃ গেইন সাধারণ ৩ প্রকার। যথা-
 - (১) ভোল্টেজ গেইন
 - (২)কারেন্ট গেইন
 - (৩) পাওয়ার গেইন

সংক্ষিপ্ত প্রশ্নোত্তর

১। Frequency response curve চিত্রসহ বর্ণনা কর । উত্তরঃ ফ্রিকুয়েন্সি রেসপন্স (Frequency Response): কোন অ্যাপ্লিফায়ারের সার্কিটের ভোল্টেজ গেইন এবং ফ্রিকুয়েন্সির মধ্যকার সম্পর্ক স্থাপন করলে যে কার্ড পাওয়া যায়, তাকে সেই অ্যাপ্লিফায়ারের ফ্রিকুয়েন্সি রেসপন্স কার্ড বলে। নিচের চিত্রে একটি সাধারণ অ্যামপ্লিফায়ার রেসপন্স কার্ড দেখানো হয়েছে। অ্যাপ্লিফায়ারের গেইন শূন্য থেকে ফ্রিকুয়েন্সি বৃদ্ধির সাথে বৃদ্ধি পায় যতক্ষণ না এটি fr-এ সর্বাধিক হয়; ফ্রিকুয়েন্সির ঐ অবস্থাকে রেজোন্যান্স অবস্থা এবং এ ফ্রিকুয়েন্সিকে রেজোন্যান্স ফ্রিকুয়েন্সি বলা হয়। f- $\{r\}$ অতিক্রম করে ফ্রিকুয়েন্সি আরও বাড়লে গেইন কমা শুরু হয়। এটা এখন স্পষ্ট যে অ্যামপ্লিফায়ার কর্মক্ষমতা তার ফ্রিকুয়েন্সি প্রতিক্রিয়া উপর একটি বৃহৎ পরিমাণে নির্ভর করে।

রচনামূলক প্রশ্নোত্তর

১। একটি আর.সি. কাপন্ড মাল্টিস্টেজ অ্যামপ্লিফায়ারের কার্যপ্রণালি চিত্রসহ বর্ণনা কর উত্তরঃ আরসি কাপলড অ্যামপ্লিফায়ার (RC Coupled Amplifier): R-C কাপলড অ্যামপ্লিফায়ার বহুল ব্যবহৃত ও জনপ্রিয়, কারণ এটি দামে সস্তা এবং বৃহৎ রেঞ্জের ফ্রিকুয়েঙ্গিতে ভালো বিশ্বস্ততা রয়েছে। চিত্রে একটি টু-স্টেজ R-C কাপলড অ্যামপ্লিফায়ারের সার্কিট ডায়াগ্রাম দেওয়া হলো। এখানে যে দুটি সিঙ্গেল স্টেজ ট্রানজিস্টর অ্যামপ্লিফায়ার ব্যবহার করা হয়েছে এতে কমন ইমিটার কনফিগারেশন ব্যবহার করা হয়েছে। রেজিস্টর R_{c1} , R_{c2} এবং ক্যাপাসিটর C_1 সমন্বয়ে কাপলিং নেটওয়ার্ক গঠিত হয়েছে। Q_1 এর কালেক্টর লোড R_{c1} এবং Q_2 এর কালেক্টর লোড R_{c2} । ক্যাপাসিটর C_{in} ইনপুট সিগন্যালকে কাপল করে অপর দিকে C_C আউটপুট সিগন্যালকে লোডের সাথে কাপল করে।

কার্যপ্রণালি: C_{in} এর মাধ্যমে যখন ইনপুট সিগন্যালকে Q_1 এর বেসে কাপল করা হয় তখন এটি বিবর্ধিত হয়ে কমন-ইমিটার সংযোগের নিয়ম অনুযায়ী Q_1 এর কালেক্টর ভোল্টেজের ফেজ ইনপুট সিগন্যালের $180~\deg$ আউট অফ ফেজে থাকে।

চিত্র- টু-স্টেজ R-C কাপলড অ্যামপ্লিফায়ারের সার্কিট

 R_2 তে প্রথম স্টেজের আউটপুট কাপলিং ক্যাপাসিটর C_1 এর মাধ্যমে দ্বিতীয় স্টেজের ইনপুট হিসেবে Q_2 তে যায়। এখানে C_1 কে অনেক সময় ব্লকিং ক্যাপাসিটরও বলা হয়। কারণ এটি ডিসি ভোল্টেজের প্রবাহকে বাধা দেয়। এভাবে প্রথম স্টেজের আউটপুট দ্বিতীয় স্টেজের Q_2 ট্রানজিস্টর এর বেসে প্রয়োগ করা হয়।

পনরায় বিবর্ধিত হয় এবং সাথে সাথে এর ফেজও পুনরায় $180 \, \deg$ বিপরীত হয়। Q_2 এর আউটপুট, কাপলিং ক্যাপাসিটর C_C এর মাধ্যমে লোড রেজিস্টর এ যায়। এখানে লক্ষণীয় যে, ইনপুট সিগন্যাল দুইবার বিবর্ধিত হওয়ায় আউটপুট ভোল্টেজ V_o এবং ইনপুট ভোল্টেজ V_i ইনফেজে থাকে। এই বিবর্ধিত সিগন্যাল লোডে প্রবাহিত হয়ে লোডকে কার্যকরী করে তোলে।