Calcul différentiel Sous-variétés

Question 1/19

Carte pour une variété topologique

Réponse 1/19

$$(U,\varphi)$$
 avec U un ouvert de X et $\varphi\colon U\to \varphi(U)\subset \mathbb{R}^n$ un homéomorphisme

Question 2/19

Deux cartes (U_1, φ_1) et (U_2, φ_2) sont compatibles d'ordre k

Réponse 2/19

$$U_1 \cap U_2 = \emptyset$$
 ou $\varphi_2 \circ \varphi_1^{-1} : \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$ est un \mathcal{C}^k -difféomorphisme

Question 3/19

Atlas d'ordre k

Réponse 3/19

Atlas dont deux cartes sont toujours compatibles d'ordre k

Question 4/19

Variété différentielle de classe \mathcal{C}^k

Réponse 4/19

Variété topologique munie d'une structure différentielle de classe \mathcal{C}^k

Question 5/19

Espace tangent pour une sous-variété définie par paramétrisation

Réponse 5/19

$$T_x M = \operatorname{im}(\mathrm{d}h_0)$$

Question 6/19

Définition par submersion

Réponse 6/19

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de xdans \mathbb{R}^n et une submersion $g:U\to\mathbb{R}^{n-p}$ de classe \mathcal{C}^k tels que $M \cap U = g^{-1}(0_{\mathbb{R}^{n-p}})$ Il suffit d'avoir la surjectivité sur M car elle se conserve localement

^{1.} dg_x est surjective pour tout x

Question 7/19

Théorème de Whitney (version forte)

Réponse 7/19

Toute variété différentielle compacte de dimension n se plonge dans \mathbb{R}^{2n} comme une sous-variété de dimension nCe résultat est optimal car la bouteille de Klein est de dimension 2 mais n'est pas une sous-variété différentielle de dimension 2 de \mathbb{R}^3

Question 8/19

Atlas pour une variété topologique

Réponse 8/19

Famille
$$((U_i, \varphi_i))_{i \in I}$$
 tel que $X = \bigcup_{i \in I} (U_i)$

Question 9/19

X est une variété topologique

Réponse 9/19

X est un espace séparé tel que pour tout $x \in X$, il existe un voisinage ouvert de x homéomorphe à un ouvert de \mathbb{R}^n

Question 10/19

Structure différentielle de classe \mathcal{C}^k de M

Réponse 10/19

Atlas de classe C^k maximal, i.e. si une carte est compatible avec toutes celle de l'atlas alors elle appartient à l'atlas

Question 11/19

Définition par redressement

Réponse 11/19

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n , un voisinage ouvert V de 0 dans \mathbb{R}^n et un \mathcal{C}^k -difféomorphisme $f:U\to V$ tels que $f(M \cap U) = V \cap (\mathbb{R}^d \times \{0\})$

Question 12/19

 $T_x M$

Réponse 12/19

$$\{v \in \mathbb{R}^n, \exists \gamma :] - \varepsilon, \varepsilon[\to M, \gamma(0) = x \land \gamma'(0) = v \}$$
 C'est un espace vectoriel de \mathbb{R}^n de dimension $\dim(M)$

Question 13/19

Espace tangent pour une sous-variété définie par un graphe

Réponse 13/19

$$T_x M = \{(h, \mathrm{d}\varphi_x(h)), h \in \mathbb{R}^d\}$$

Pour $M = \{(x, \varphi(x)), x \in U\}, U$ un ouvert de \mathbb{R}^d et $\varphi: U \to \mathbb{R}^{n-d}$

Question 14/19

Définition par les graphes

Réponse 14/19

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n tel que $M \cap U$ soit le graphe d'une application f de classe \mathcal{C}^k d'un ouvert de $\mathbb{R}^d \cong \mathbb{R}^d \times \{0\} \text{ dans } \mathbb{R}^{n-d} \cong \{0\} \times \mathbb{R}^{n-d}$

Question 15/19

Espace tangent pour une sous-variété définie par submersion

Réponse 15/19

$$T_x M = \bigcap_{i=1} (\ker(\mathrm{d}(g_i)_x))$$

n-d

Question 16/19

 $f: M \to N$ continue est de classe \mathcal{C}^k en aM et N sont deux variétés de classe \mathcal{C}^k

Réponse 16/19

$$f(a) \in N$$
 et il existe (U, φ) et (V, ψ) deux cartes de M et N telles que

cartes de
$$M$$
 et N telles que
$$\psi \circ f \circ \varphi^{-1} : \varphi (f^{-1}(V) \cap U) \to \psi(V) \text{ est } \mathcal{C}^k$$

$$U \xrightarrow{f} V$$

$$\downarrow \varphi$$

$$\psi \circ f \circ \varphi^{-1} : \varphi(f^{-1}(V) \cap U) \to \psi(V) \text{ est } \mathcal{C}^{\kappa}$$

$$U \xrightarrow{f} V$$

$$\downarrow \varphi \qquad \qquad \psi \downarrow$$

$$\varphi(U) \qquad \qquad \psi(V)$$

$$U \xrightarrow{f} V \\ \downarrow \varphi \qquad \qquad \downarrow V \\ \varphi(U) \qquad \qquad \psi \downarrow V \\ \downarrow \mathrm{id} \qquad \qquad \downarrow \mathrm{id} \downarrow V$$

 $\varphi(f^{-1}(V) \cap U) \stackrel{\cdot}{\hookrightarrow} \psi \circ f \circ \varphi^{-1} \Longrightarrow$

Question 17/19

Définition par paramétrisation

Réponse 17/19

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $h \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n , un voisinage ouvert Ω de 0 dans \mathbb{R}^p et une appication $h:\Omega\to\mathbb{R}^n$ qui soit une immersion¹ et un homéomorphisme de classe \mathcal{C}^k sur $M \cap U$

^{1.} dh_x est injective

Question 18/19

Fibré tangent

Réponse 18/19

$$\{(x,v), x \in M, v \in T_x M\}$$

Question 19/19

$$f: M \to N$$
 est numérique

Réponse 19/19

f est de classe \mathcal{C}^k et $N = \mathbb{R}$