Accelerated Failure Time Model Model Diagnosis Model Diagnosis for parametric regression • Object: Assessing the adequacy of the fitted models to the data • Method: Graphical diagnostic procedures (informal but very useful) using residuals. Standardized residuals • Recall that the log-linear model is of the form $Y_i = \log(T_i^0) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \sigma \varepsilon_i.$ or $\varepsilon_i = \frac{\log(T_i^0) - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})}{2}$ • Define the standardized residuals as $R_i = \frac{\log(T_i) - (\widehat{\beta_0} + \widehat{\beta_1} x_{i1} + \dots + \widehat{\beta_p} x_{ip})}{\widehat{\beta_0} + \widehat{\beta_1} x_{i1} + \dots + \widehat{\beta_p} x_{ip}}$ - $\widehat{eta_0},\widehat{eta_1},\ldots,\widehat{eta_p}$, and $\widehat{\sigma}$ are the estimated parameters. An approximation of the error term in the model. - Gives the standardized difference between observed and predicted values.

Standardized residuals

- If the log-linear model is correct, then $\{R_i\}_{i=1}^n$ can be viewed as censored sample from the distribution of ε .
 - $\begin{array}{l} \mbox{For example, if a Weibull model holds, then } \{R_i\}_{i=1}^n \\ \mbox{are roughly a censored sample from a standard} \\ \mbox{extreme value distribution.} \end{array}$
 - For example, if a Loglogistic model holds, then $\{R_i\}_{i=1}^n$ are roughly a censored sample from a logistic distribution.
- However, a residual plot of $\{R_i\}_{i=1}^n$ is not very useful.

Standardized residuals

• Density of standard extreme value distribution $f(t) = \exp(t - \exp(t))$.

Standardized residuals

Random numbers generated from standard extreme value distribution

Standardized residuals

- The traditional residual plot is not useful to assess whether error distribution assumption is satisfied.
- · Instead, we will use survival plots
 - Estimate survival function using standardized residuals
 - check if the survival function follows the functional form of a given distribution.

Standardized residuals

If a Weibull model holds, then

- $\{R_i\}_{i=1}^n$ are roughly a censored sample from a standard extreme value distribution.
- $\{U_i = \exp(R_i)\}_{i=1}^n$ is roughly a censored sample from an Exponential distribution.
- Recall that for Exponential distribution

$$S(t) = \exp(-\lambda t) \text{ or } -\log(S(t)) = \lambda t$$

- Survival plot for Weibull model
 - Obtain K-M estimator $\hat{S}(\cdot)$ based on $\{U_i\}_{i=1}^n$.
 - Plot $-\log\left(\hat{S}(U_i)\right)$ against U_i and check if straight line that go through the origin.

Standardized residuals

If a Loglogistic model holds, then

- $\{R_i\}_{i=1}^n$ are roughly a censored sample from a logistic distribution.
- $\{U_i = \exp(R_i)\}_{i=1}^n$ is roughly a censored sample from an loglogistic distribution.
- Recall that for loglogistic distribution

$$S(t) = \frac{1}{1+\lambda t^{\alpha}} logit(S(t)) = -\log(\lambda) - \alpha \log(t)$$

- Survival plot for Loglogistic model
 - Obtain K-M estimator $\hat{S}(\cdot)$ based on $\{U_i\}_{i=1}^n$
 - Plot $logit\left(\hat{S}(U_i)\right)$ against $log(U_i)$ and check if it is a straight line

Standardized residuals

- It measures the standardized difference between the observed and the predicted log survival time.
- Definition is similar to residuals in linear regression.
- Inconvenient: for different error distribution, a different survival plot is needed.

Cox-snell residuals

• The Cox-snell residuals are defined as

$$r_i = \widehat{H}(T_i \mid \boldsymbol{x}_i)$$

- $\widehat{H}(\cdot | \mathbf{x})$ is the cumulative hazard from fitted model.
- For example, if exponential model is assumed, then

$$\begin{split} H(\,t\mid \pmb{x}\,) &= t \exp\!\left(-\beta_0 - \beta_1 x_1 - \dots - \beta_p x_p\right), \\ \text{and} \quad r_i &= \widehat{H}(\,T_i\mid \pmb{x}_i\,) = T_i \exp\!\left(-\widehat{\beta}_0 - \widehat{\beta}_1 x_{i1} - \dots - \widehat{\beta}_p x_{in}\right), \end{split}$$

 $\hat{eta}_p x_{ip}$).
• Cox-snell residuals are very different from the usual residuals, e.g. $r_i > 0$ for all i.

Cox-snell residuals

Theorem: Let T be a random variable, and H(t) be the cumulative hazard function of T. Then

$$H(T) \sim Exp(1)$$
.

Proof: Let F(t) be the CDF of T. Then

$$F(T) \sim U(0,1)$$

$$\Rightarrow S(T) = 1 - F(T) \sim U(0,1)$$

$$\Rightarrow H(T) = -\log(S(T)) \sim Exp(1).$$

Cox-snell residuals

If the model fits the data, then Cox-snell residuals $\{r_i = \widehat{H}(T_i \mid \mathbf{x}_i)\}_{i=1}^n$ approximately is a censored sample from a standard exponential distribution.

- Let $\hat{S}(\cdot)$ be the K-M estimator using $\{r_i\}_{i=1}^n$
- a plot of $-\log[\hat{S}(r_i)]$ vs r_i should be a straight line with slope 1.

Residuals in SAS

- You can specify output of desired residuals in the OUTPUT STATEMENT
 - CRESIDUAL | CRES: Cox-Snell residuals
 - SRESIDUAL \mid SRES: standardized residuals

Summary

- The standardized residual is easy to understand, but not convenient.
- Different survival plots of the residuals are needed for different regression models.
- Cox-snell residual is the estimated cumulative hazard function, not traditional residuals.
- Can always been viewed as censored sample from exponential distribution.
- Always use log of survival (Is) plot to assess for goodness of fit.
