Casos de prueba: teniendo en cuenta que tenemos que hacer casos de prueba para TAD grafo y sus algoritmos, y para la solución del problema, separamos los casos de pruebas en dos partes.

Para esto debemos tener en cuenta que todos los casos de prueba cuentan con grafos ponderados dirigidos (Nota: nuestro algoritmo también permite trabajar con grafos no dirigidos)

SetUp TAD grafo y sus algoritmos:

Nombre	Clase	Escenario
setupStage1()	MatrixGraph	Se crea un escenario en el que existen 3 vértices con las siguientes conexiones: 1-2(peso: 2) 2-3(peso: 1) 2-1(peso: 2) 3-1(peso: 8) 3-2(peso: 3)
setupStage2()	ListGraph	Se crea un escenario en el que existen 3 vértices con las siguientes conexiones: 1-2(peso: 2) 2-3(peso: 1) 2-1(peso: 2) 3-1(peso: 8) 3-2(peso: 3)

Casos de prueba para TAD grafo y sus algoritmos:

Clase	Metodo	Setup	Entrada	Salida
MatrixGraph	addVertex	setupStage1()	Un vértice nuevo	Una matriz con 4 vértices
MatrixGraph	floydWarshall	setupStage1()	ir del vértice 3, al 1	el camino mas corto siendo: 3- 2-1 con un peso de: 5
ListGraph	addVertex	setupStage2()	Un vértice nuevo	Una lista con 4 vértices
ListGraph	dijkstra	setupStage2()	ir del vértice 3, al 1	el camino más corto siendo: 3- 2-1 con un peso de: 5
MatrixGraph	addEdge	setupStage1()	Se agrega la siguiente conexión: 1-3(peso: 1)	La posición en la matriz [1][3] = 1

ListGraph	addEdge	setupStage2()	Se agrega la	Vértice 1 con
			siguiente	una arista mas
			conexión:	
			1-3(peso: 1)	

SetUp Solución del problema:

Nombre	Clase	Escenario
setupStage1()	DistributionAlgorithms	Se crean 4 oficinas: Office1: City = San Francisco Products = 100 Office2: City = New York Products = 123 Office3: City = Chicago Products = 231 Office4: City = Miami Products = 98 Con las siguientes conexiones: San Francisco – Miami (peso: 121) San Francisco – New York (peso: 190) Chicago – Miami (peso: 12) Chicago – New York (peso: 123) New York – Miami (peso: 270) New York – Chicago (peso: 98) Miami - San Francisco (peso: 129)

Casos de prueba para Solución del problema:

Clase	Metodo	Setup	Entrada	Salida
DistributionAlgorit	determineShortestPath	setupStage	Ir de New	New york
hms		1	York a	
			miami	Chicago
				- Miami
				Un peso
				de: 110
DistributionAlgorit	determineMeanProductsPerGrou	setupStage		Un solo
hms	р	1		grupo con
				4 oficinas
				dentro.
				Promedio
				= 138