EECS 376: Foundations of Computer Science

Lecture 15 - Cook-Levin Theorem and Satisfiability

Plan in this part of the course

Lecture 1:

• Define P and NP

Lecture 2: (today)

- Define polynomial-time mapping reduction
- Define NP-hard and NP-complete.
- Show the first NP-complete problem: SAT

Lectures 3 - 4:

• Show many NP-complete problems via reductions

The Complexity Class P

P is the set of all decision problems that can be decided in polynomial time.

- For any problem L, an efficient decider Decide-L for L is s.t.

 - x is a "yes" instance ⇔ Decide-L(x) accepts x is a "no" instance ⇔ Decide-L(x) rejects (follows from above)
 - Decide-L(x) runs in poly(|x|) time
- P is the set of all decision problems that have efficient deciders

Example: is $gcd(x,y) \le b$?

The Complexity Class NP

NP is the set of all decision problems whose yes-instances can be verified in polynomial time.

- For any problem L, an efficient verifier Verify-L) for L is s.t.

 - x is a "yes" instance ⇔ 3C Verify-L(x, C) accepts
 x is a "no" instance ⇔ VC Verify-L(x, C) rejects (follows from above)
 - $\circ \quad \text{Verify-L}(\textbf{x},\textbf{C}) \, \text{runs in poly}(|\textbf{x}|) \, \text{time}$
- NP is the set of all decision problems that have efficient verifiers
- If Verify-L(x, C) accepts, then C is called a certificate.

Example: Subset Sum, TSP, SAT **Quiz**: Explain why $P \subseteq NP$.

Two Possible Worlds

Polynomial-time mapping reduction (also called Karp reduction)

Note: a different type of reduction from Turing reduction

Polynomial-time mapping reduction from A to B (denoted $A \leq p B$)

Defn: $A \leq_P B$ if there is a poly-time-computable function f where

x is a yes-instance of $A \Leftrightarrow f(x)$ is a yes-instance of **B**.

In words, given any instance of A, in polynomial time we can construct an instance of B whose yes/no answer is the same.

"Problem B is at least as hard as Problem A"

Polynomial-time mapping reduction from A to B (denoted $A \leq p B$)

Defn: $A \leq_P B$ if there is a poly-time-computable function f where

x is a yes-instance of $A \Leftrightarrow f(x)$ is a yes-instance of **B**.

In words, given any instance of A, in polynomial time we can construct an instance of ${\bf B}$ whose ${\bf yes/no}$ answer is the same.

NP-hardness and NP-completeness

NP-Hardness and **NP**-Completeness

Informal definition: A problem L is NP-hard if it is at least as hard as EVERY problem in NP.

Formal definition: A problem L is \overline{NP} -hard if: for EVERY problem X in NP, $X \le_P L$.

Showing that some problem is NP-hard seems very strong.

But we will do it soon!

A problem L is NP-complete if

L∈NP

L is NP-hard

Exercise

Recall: A ≤_P B if

• there is a poly-time-computable function f where

• x in A ⇔ f(x) in B.

A problem **L** is **NP**-hard if for EVERY problem **X** in NP, $\mathbf{X} \leq_p \mathbf{L}$.

Exercise: Suppose $A \le_p B$ 1. If $B \in P$, then $A \in P$.

- O Given an instance x for A, compute an instance f(x) for B in poly time.
- O As B ∈ P, we can decide f(x) in poly time. Then, return the same answer for A.
- 2. If A is NP-hard, then B is NP-hard.
 - O Fact: if $X \leq_p A$ and $A \leq_p B$, then $X \leq_p B$. (see HW.)
- O For any $X \in NP$, $X \leq_p A$. (A is NP-hard). So, for any $X \in NP$, $X \leq_p B$. (B is NP-hard). Suppose L is NP-complete. Then, $L \in P$ iff P = NP
- O Suppose $L \notin P$. As $L \in NP$, then $P \neq NP$.
- $\mbox{O} \quad \mbox{Suppose L} \in \mbox{\bf P.} \mbox{ As L is {\bf NP-hard, every NP-problem X is in P. So, {\bf NP} \subseteq {\bf P.} } \label{eq:continuous}$

Two Possible Worlds

The Cook-Levin Theorem (1971):

SAT is NP-complete

20

Terminology on Formulas

A **Boolean formula** Φ is made up of:

- "literals": variables and their negations (e.g. x, y, z, $\neg x$, $\neg y$, $\neg z$)
- OR: V
- AND: Λ

Example:

 $\Phi 1 = (x \vee y) \wedge (\neg y \vee x \vee \neg z) \wedge (\neg x \vee (y \wedge \neg z))$

 $\boldsymbol{\Phi}$ is $\boldsymbol{\textit{satisfiable}}$ if

- \exists a true/false assignment **A** to the variables so that Φ (**A**) = true
- For example, Φ1 is satisfiable.
- o Assign x = F, y = T, z = F

24

Satisfiability (SAT)

Input: A Boolean formula Φ **Output:** Is Φ *satisfiable*?

Last time, we showed that SAT is in **NP**.

- Certificate: a true/false assignment \mathbf{C} to variables where $\Phi(\mathbf{C})$ = true
- Verifier: Verify(Φ , C): Check that Φ (C) = true

To prove that SAT is **NP**-complete, remain to prove that SAT is **NP**-hard

A problem L is NP-complete if

L∈NP

L is NP-hard

Proving SAT is NP-hard

Goal: for every problem **L** in NP, $\mathbf{L} \leq_p \mathbf{SAT}$.

Fix a problem L in NP. Let x be an instance of **L** of size |x| = n.

There is an efficient verifier V s.t.

- x is a "yes" instance $\Leftrightarrow \exists C \ V(x, C)$ accepts
- V(x, C) runs in n^k time (k is a constant)

Important: But not on C

Will show: in poly(n) time, can construct a formula $\varphi_{V,x}$ s.t.

- $\exists \vec{c} \ V(x, \vec{c})$ accepts $\Leftrightarrow \varphi_{V,x}$ is satisfiable
- So, $L \leq_p SAT$, Done.

Recall defn: $A \le_P B$ if there is a poly-time-computable function f where $_{55}$ x is a yes-instance of $A \Leftrightarrow f(x)$ is a yes-instance of B.

Overview of Formula Construction

x: instance of size n.

 $V(x, \mathbf{C})$: a TM that runs in n^k steps

Goal: construct formula $\varphi_{V,x}$ s.t.

 $\exists C V(x, C)$ accepts \Leftrightarrow \exists assignment $\mathbf{A} \varphi_{V,\chi}(\mathbf{A}) = \text{true}$

Variables of $\varphi_{V,x}$ is based on the **execution tableau** of V

Execution Tableau: Visualizing the execution of TM

If a row of the tableau says "#011 q_5 0001#" it means:

- The tape says: "0110001"
- We are in state ${\bf q}_5$ The head is pointing to the symbol right after the state, i.e. 0110001

Symbols in tableau consists of $S = \{0,1\} \cup \{\#,\$,\bot\} \cup Q$ Q: set of the states of V^{23}

Overview of Formula Construction

Goal: construct formula $\varphi_{V,x}$ s.t.

 $\exists C V(x, C)$ accepts \Leftrightarrow \exists assignment $\mathbf{A} \varphi_{V,x}(\mathbf{A}) = \mathsf{T}$

- Variables of $\varphi_{V,x}$ are $\boldsymbol{t_{i,j,s}}$ for all $i,j \leq n^k$ and each symbol s
- Intention $t_{i,j,s} = T$ iff symbol in cell (i,j) of the tableau is "s"
- Assignment of $\varphi_{V,\chi} \Leftrightarrow \text{Values in tableau}$

Overview of Formula Construction

Assignment of $\varphi_{V,x} \Leftrightarrow \text{Values in tableau}$

$$\varphi_{V,\chi} = \varphi_{start} \wedge \varphi_{cell} \wedge \varphi_{accept} \wedge \varphi_{step}$$

- φ_{start} fixes the value of \emph{x} in the first row of the tableau
- $arphi_{accept}$ checks if the tableau contains the **accepting state** \mathbf{q}_{accept}
- φ_{cell} checks that there is exactly **one symbol per cell**
- φ_{step} checks that the tableau is valid according to transition rules of V

If we can ensure (1) - (4), we have $\exists \textbf{\textit{C}} \ V(x,\textbf{\textit{C}}) \ \text{accepts} \Leftrightarrow \exists \ \text{assignment} \ \textbf{\textit{A}} \ \varphi_{V,x}(\textbf{\textit{A}}) = \mathsf{T}$

6/4/24

(1) φ_{start} fixes the value of x in the first row of the tableau

- Initial state q
- Input x, |x| = n; certificate C, $|C| = m \le n^k$
- \$ a special symbol that separates x and c
- WE DO NOT KNOW c (!!), so we leave a "placeholder"

 $\varphi_{start} = \mathsf{t}_{\mathsf{1},\mathsf{1},\#} \wedge \mathsf{t}_{\mathsf{1},\mathsf{2},\mathsf{q0}} \wedge \mathsf{t}_{\mathsf{1},\mathsf{3},\mathsf{x1}} \wedge \mathsf{t}_{\mathsf{1},\mathsf{4},\mathsf{x2}} \wedge \ldots \wedge \mathsf{t}_{\mathsf{1},\mathsf{n+2},\mathsf{xn}} \wedge \mathsf{t}_{\mathsf{1},\mathsf{n+3},\$} \wedge \qquad \qquad \mathsf{This fixes the first n+3 symbols}$ $(c_1 \text{ can be either 1 or 0 or } \bot)$

Note: The size of φ_{start} is $O(n^k) = poly(n)$

6/4/24

(2) φ_{accept} checks if the tableau contains the accepting state qaccept

$$\varphi_{accept} = \bigvee_{1 \leq i,j \leq n^k} t_{i,j,q_{accept}}$$

Note: The size of φ_{accept} is $O(n^{2k}) = poly(n)$

6/4/24

(3) φ_{cell} checks that there is exactly **one symbol per cell**

(4) φ_{step} checks that the tableau is valid according to **transition rules of** V

Definition: A 2x3 "window" is *valid* if it could appear in a valid tableau

Example transition rule:

Theorem

The whole tableau is valid if and only if **every 2x3 window is valid**.

TM can only move 1 left/right step at each time.

Exercise after class: see why 2x2 windows do not work

(4) φ_{step} checks that the tableau is valid according to **transition rules of** V

$$\varphi_{step} = \bigwedge_{1 \le i, j \le n^k} \varphi_{window,i,j}$$

$$\begin{split} \varphi_{window,i,j} &= (\mathsf{t}_{\mathsf{i},\mathsf{j},\mathsf{o}} \wedge \mathsf{ti}_{\mathsf{j}+\mathsf{i},\mathsf{q}+} \wedge \mathsf{t}_{\mathsf{i},\mathsf{j}+\mathsf{2},\mathsf{i}} \wedge \mathsf{t}_{\mathsf{i}+\mathsf{1},\mathsf{j}}, \wedge \wedge \mathsf{t}_{\mathsf{i}+\mathsf{1},\mathsf{j}+\mathsf{2},\mathsf{o}} \wedge \mathsf{t}_{\mathsf{i}+\mathsf{1},\mathsf{j}+\mathsf{2},\mathsf{q}\mathsf{S})} \vee (...) \vee ...) \\ & \quad \mathsf{Example of 2x3 valid window} \end{split}$$

0 q₄ 1

More valid windows:

0 1 1 q₃ 1 1

nothing changes if head isn't around head could enter from the side

(4) φ_{step} checks that the tableau is valid according to **transition rules of** V

$$\varphi_{step} = \bigwedge_{1 \le i,j \le n^k} \varphi_{window,i,j}$$

$$\varphi_{\mathrm{window},i,j} = \bigvee_{\substack{\left(s_1,s_2,s_3\\s_4,s_5,s_6\right)\\\text{valid }2\text{x3}\text{ window}}} \left(\begin{array}{c} t_{i,j,s_1} \wedge t_{i,j+1,s_2} \wedge t_{i,j+2,s_3} \wedge \\ t_{i+1,j,s_4} \wedge t_{i+1,j+1,s_5} \wedge t_{i+1,j+2,s_6} \end{array}\right)$$

Note: the size of $\varphi_{window,i,j}$ is $\mathcal{O}(|S|^6) = \mathcal{O}(1)$. So, the size of φ_{step} is $\mathcal{O}(n^{2k})$

Conclusion: Formula Construction

Assignment of $\varphi_{V,x} \Leftrightarrow \text{Values in tableau}$

$$\varphi_{V,\chi} = \varphi_{start} \wedge \varphi_{cell} \wedge \varphi_{accept} \wedge \varphi_{step}$$

- 1. φ_{start} fixes the value of x in the first row of the tableau
- 2. φ_{accept} checks if the tableau contains the **accepting state** \mathbf{q}_{accept}
- 3. φ_{cell} checks that there is exactly **one symbol per cell**
- 4. φ_{step} checks that the tableau is valid according to **transition rules of** V

If we can ensure (1) – (4), we have $\exists C V(x, C)$ accepts $\Leftrightarrow \exists$ assignment $A \varphi_{V,x}(A) = T$

Proving SAT is NP-hard

Goal: for every problem **L** in NP, $\mathbf{L} \leq_p \mathbf{SAT}$.

Fix a problem **L** in NP. Let x be an instance of **L** of size |x| = n.

There is an efficient verifier V s.t.

- x is a "yes" instance $\Leftrightarrow \exists C V(x, C)$ accepts
- V(x, C) runs in n^k time (k is a constant)

Will show: in poly(n) time, can construct a formula $\varphi_{V,x}$ s.t.

- $\exists \mathbf{C} V(x, \mathbf{C})$ accepts $\Leftrightarrow \varphi_{V,x}$ is satisfiable
- So, $L \leq_p SAT$. Done.

Wrap Up

- Define polynomial-time mapping reduction
- Define NP-hard and NP-complete.
- Show the first NP-complete problem: SAT
- SAT \in **P** iff **P** = **NP**
 - o Assuming $P \neq NP$, no efficient algorithm for SAT.
- Next week:
 - o Assuming P ≠ NP, no efficient algorithm for many other problems

39