Machine Learning zur Vorhersage von Kanten in optimalen Lösungen für das Traveling Salesman Problem

FACHBEREICH INFORMATIK, HOCHSCHULE BONN RHEIN SIEG AHMAD KADER

Inhaltsverzeichnis

- Einleitung
- Stand der Forschung
 - Traditionelle Ansätze zur Lösung des Traveling Salesman Problems
 - Machine Learning Ansätze zur Lösung des Traveling Salesman Problems
- Methodik
 - Die verwendeten Daten
 - Die Analyse der Daten
 - Die ausgewählten Merkmale
- Ergebnisse
 - Analyse der Heuristiken
 - Analyse der MSTs
 - Analyse des k-RNG
- Schluss
- Zusammenfassung

Einleitung

- Vorhersage Kanten mithilfe Machine Learning
- Forschungsfragen:
 - ML Lösungen > Lösungen Heuristiken?
 - Wie schneiden Heuristiken untereinander ab?
- Ziele:
 - Implementierung, Training und Testen einer ML-Methode
 - Vergleich der Lösungen der Heuristiken mit den optimalen Lösungen

Stand der Forschung

- Das TSP gilt als einer der meist erforschten kombinatorischen Optimierungsprobleme [1]
- TSP ist ein:
 - Graphenproblem G = (V, E)
 - Knotenmenge $V = \{1, ..., n\}$
 - Kantenmenge $E = \{(u, v) \mid u, v \in V, u \neq v\}$
 - Gewichtungsfunktion $w(e) \rightarrow Z^+$ [1]
- Tour finden, die:
 - Alle Knoten maximal einmal besucht
 - Im Ursprungsknoten endet
 - Die Summe der Gewichte minimiert

Traditionelle Ansätze zur Lösung des Traveling Salesman Problems

Brute Force

- Naiv
- Berechnet optimale Lösung
- Nicht effizient f
 ür große Knotenmengen

Branch-and-Cut [2]

- Berechnet Teilgraphen
- Berechnet eine untere Schranke für die optimale Lösung

• Heuristiken [3]

- Berechnen nicht die optimale Lösung
- Berechnen Lösung in effizienter Zeit (die meisten in $O(n^2)$)
- Relativ einfach zu implementieren

Dynamische Programmierung [4]

- TSP wird in kleinere Teilprogramme aufgeteilt
- Hohe Laufzeit- und Speicheranforderung für größere Problemgrößen

Machine Learning Ansätze zur Lösung des Traveling Salesman Problems

Reinforcement Learning [5]

- Training eines Agenten oder Lernalgorithmus
- Schrittweise Entscheidung zur Auswahl des nächsten Knotens
- Lernt durch Belohnungen und Bestrafung

Genetischer Algorithmus [6]

- Generierung einer zufälligen Population von Touren
- Die Touren werden durch den Crossover und der Mutation verbessert
- Der Fitnessscore entscheidet, welche Touren in die n\u00e4chste Generation weiter genutzt werden

Neuronale Netze [7]

- Trainiert eine Funktion, die die optimale Reihenfolge berechnet
- Als Input dienen die Knoten des TSP
- Das NN liefert eine Permutation von Knoten

Methodik

Die verwendeten Daten

- 1000 TSPs wurden generiert
- 1000 optimale Lösungen berechnet
- Je 1000 Lösungen für 8 Heuristiken berechnet
- Die Größe der TSPs liegen zwischen 300 und 500 Knoten

 D 	ie /	Anal	yse	der	Daten
-----------------------	------	------	-----	-----	-------

Approximationsgüte	heu –opt	* 100
Approximationoguto	opt	100

- Der Prozentsatz der Kanten, die in der optimalen Lösung liegen $\frac{amount}{dimension}*100$
- MSTs als untere Schranke [8]
- k-RNG
 - 1. Anzahl optimale Kanten im 1-RNG
 - 2. Anzahl Kanten des Greedy Algorithmus im 1-RNG
 - 3. Anzahl optimale Kanten im k-RNG

Die ausgewählten Merkmale

Merkmale aus den Papers

- Merkmal aus der linearen Programmierung[1]
- Merkmal aus MSTs[1]
- Lokale Merkmale[1]
- Merkmal aus reduzierten Graphen[1]
- Merkmale aus Graphen[9]
- Statistische Merkmale[9]

Weitere Merkmale

- Merkmale aus den Heuristiken
- Merkmale mithilfe von k-RNGs
- MST zur Wahrscheinlichkeit des Vorkommens einer Kante

Random Forest Tree

- 50% Greedy Touren zum Training
- 50% Greedy Touren zum Testen
- Optimalen Touren zur Evaluierung und Klassifikation

Die Analyse der Heuristiken hat gezeigt, dass:

- Farthest Insertion hat die beste Approximationsgüte mit 10,1%
- Die meisten optimalen Kanten hat der Greedy Algorithmus mit 74%
- Nearest Insertion hat die wenigsten optimalen Kanten mit 53,8%
- MST Heuristik hat die schlechteste Approximationgüte mit 36,5%

Analyse der MSTs

- Die Approximationsgüte gilt als untere Schranke der TSPs
- Approximationsgüte liegt bei 89,5%
- Der Prozentsatz der optimalen Kanten liegt bei 75,5%

- Analyse der 1-RNGs
 - 81,8% der optimalen Kanten liegen im 1-RNG
 - 82.7% der Kanten des Greedy Algorithmus liegen im 1-RNG

k	absoluten Zahlen	Prozentanteile
9	328339	81.87
1	54893	13.69
2	13051	3.25
3	3407	0.85
4	974	0.24
5	288	0.07
6	80	0.02
7	29	0.01
8	8	0
9	1	0
10	9	0
11	1	0

Schluss

- Merkmale und RFT nicht impementiert
- Forschungsfragen:
 - ML Lösungen > Lösungen Heuristiken? X
 - Wie schneiden Heuristiken untereinander ab? ✓
- Ziele:
 - Implementierung, Training und Testen einer ML-Methode X
 - Vergleich der Lösungen der Heuristiken mit den optimalen Lösungen

Zusammenfassung

- Kurze Erklärung zum Thema
- Überblick über die Ziele und Forschungsfragen der Arbeit
- TSP kurz erklärt
- Traditionelle- und Machine Learning Ansätze zur Lösung vorgestellt
- Methodik der Analysen vorgestellt
- Merkmale f
 ür den Machine Learning Ansatz vorgestellt
- Ergebnisse der Analysen vorgestellt
- Aufgezeigt welche Ziele und Forschungsfragen erreicht bzw. beantwortet wurden

Danke für ihre Aufmerksamkeit!

Literaturverzeichnis

- [1] J. Fitzpatrick, D. Ajwani, and P. Carroll, "Learning to sparsify travelling salesman problem instances," 2021.
- [2] S. Ait Bouziaren and B. Aghezzaf, "An improved augmented ε -constraint and branch-andcut method to solve the tsp with profits," IEEE Transactions on Intelligent Transportation Systems, vol. 20, pp. 195–204, Jan 2019.
- [3] D. Nuraiman, F. Ilahi, Y. Dewi, and E. A. Z. Hamidi, "A new hybrid method based on nearest neighbor algorithm and 2-opt algorithm for traveling salesman problem," in 2018 4th International Conference on Wireless and Telematics (ICWT), pp. 1–4, 2018.
- [4] V. B. Lobo, B. B. Alengadan, S. Siddiqui, A. Minu, and N. Ansari, "Traveling salesman problem for a bidirectional graph using dynamic programming," in 2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), pp. 127–132, 2016.

Literaturverzeichnis

- [5] H. Yang and M. Gu, "A new baseline of policy gradient for traveling salesman problem," in 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7, 2022.
- [6] C. Ding, Y. Cheng, and M. He, "Two-level genetic algorithm for clustered traveling salesmanproblem with application in large-scale tsps," Tsinghua Science and Technology, vol. 12, no. 4, pp. 459–465, 2007.
- [7] Z. Xing and S. Tu, "A graph neural network assisted monte carlo tree search approach to traveling salesman problem," IEEE Access, vol. 8, pp. 108418–108428, 2020.
- [8] G. Reinelt, "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, vol. 3, pp. 376–384, November 1991.
- [9] Y. Sun, A. Ernst, X. Li, and J. Weiner, "Generalization of machine learning for problem reduction: a case study on travelling salesman problems," OR Spectrum, vol. 43, pp. 607–633, sep 2020.

Literaturverzeichnis

[10] A. Hagberg, P. Swart, and D. S Chult, "Exploring network structure, dynamics, and function using networkx," Technical report, 2008.