Zadanie 1. Preferencje decydenta wyraża funkcja użyteczności $u(x) = -e^{-2x}$.

X, Y, Z to wypłaty w trzech różnych grach;

X ma rozkład normalny o średniej 3 i wariancji 2,

Y ma rozkład normalny o średniej 4 i wariancji 3,

Z ma rozkład zdegenerowany Pr(Z = 2) = 1.

Jeśli $a \succ b$ oznacza, iż decydent preferuje a ponad b, $a \approx b$ oznacza, że jest ze względu na a oraz b indyferentny, które z poniższych zdań są prawdziwe?

- (A) $X \succ Y \approx Z$
- (B) $Z \succ X \succ Y$
- (C) $X \succ Z \succ Y$
- (D) $Z \succ X \approx Y$
- (E) $Y \approx X \succ Z$

Zadanie 2. Wykres funkcji użyteczności pewnego decydenta przejawiającego awersję do ryzyka przechodzi przez następujących 5 punktów:

(0;0)

(1;1)

(x; 2.5)

(9;3)

(13; 3,5)

Zbiór wszystkich dopuszczalnych wartości x to przedział:

(A) (5; 6)

(B) (5;7)

(C) (2.5;7)

(D) (2.5; 6)

(E) (5;9)

Zadanie 3. Rozkład prawdopodobieństwa zmiennej X dany jest w tabeli:

х	0	1	2	5	10	20
Pr(X=x)	0.8	0.1	0.03	0.03	0.03	0.01

Wyznacz d, jeśli wiadomo, że $E[I_d(X)] = 0.37$.

Wyjaśnienie:

$$I_d(x) = \begin{cases} x - d & \text{gdy } x > d \\ 0 & \text{poza tym} \end{cases}$$

- (A) $2\frac{2}{3}$
- (B) 3
- (C) $3\frac{1}{3}$
- (D) $3\frac{2}{3}$
- (E) 4

Zadanie 4. O rozkładzie zmiennej X wiadomo, iż $\Pr(X=0)=0.8$, $\Pr(X>0)=0.2$, E(X/X>0)=100. Zbiór dopuszczalnych wartości $E\big[I_{10}(x)\big]$ jest przedziałem:

- (A) [18; 20)
- (B) [10; 20)
- (C) (12; 18]
- (D) (0; 20)
- (E) [10; 18]

Zadanie 5. Rozkład warunkowy dwóch ryzyk X i Y przy danym poziomie parametru ⊖ ma następujące charakterystyki:

$$COV(X, Y/\Theta = \theta) = \frac{1}{2}\theta$$
,

$$E(X/\Theta=\theta)=\theta$$
,

$$E(Y/\Theta=\theta)=\theta$$
;

podczas gdy zróżnicowanie parametru Θ w populacji ryzyk daje się opisać rozkładem Gamma (3,6) . Oblicz COV(X,Y) .

- $(A) \qquad \frac{1}{12}$
- (B) $\frac{1}{8}$
- (C) $\frac{1}{6}$
- (C) $\frac{1}{4}$
- (E) $\frac{1}{3}$

Zadanie 6. Znajdź Pr(S=3), gdzie S ma złożony rozkład Poissona o parametrze częstotliwości $\lambda=2$ i gdzie rozkład wartości pojedynczej szkody dany jest funkcją prawdopodobieństwa f(x):

х	1	2	3	4
f(x)	0.5	0.2	0.2	0.1

- (A) $\frac{29}{30}e^{-2}$
- (B) e^{-2}
- (C) $\frac{16}{15}e^{-2}$
- (D) $\frac{7}{6}e^{-2}$
- (E) $\frac{4}{3}e^{-2}$

Zadanie 7. Mamy portfel rocznych polis na życie składający się z dwóch subportfeli. Subportfel 1 zawiera 800 polis ze współczynnikiem q=0.005 i kwotą benefitu 10; subportfel 2 zawiera 50 polis ze współczynnikiem q=0.01 i kwotą benefitu 20. Niech S_i oznacza łączną wartość wypłat w i-tym subportfelu, zaś \widetilde{S}_i oznacza aproksymację zmiennej S_i powstałą przez zastąpienie rozkładu dwumianowego takim rozkładem Poissona, że $E(\widetilde{S}_i) = E(S_i)$. Wskaźnik względnego przeszacowania wariancji $\frac{VAR(\widetilde{S}_1 + \widetilde{S}_2)}{VAR(S_1 + S_2)}$ wynosi :

- (A) $\frac{50}{49}$
- (B) $\frac{75}{74}$
- (C) $\frac{100}{99}$
- (D) $\frac{125}{124}$
- (E) $\frac{150}{149}$

Zadanie 8. Klasyczny proces nadwyżki ubezpieczyciela charakteryzują parametry:

c pochodna funkcji sumy zgromadzonych składek,

λ częstotliwość (roczna) Poissonowskiego procesu pojawiania się szkód,

u nadwyżka początkowa,

 $F(\cdot)$ dystrybuanta rozkładu wartości pojedynczej szkody.

Rozważmy proces podstawowy P_0 o dodatnich parametrach $c=c_0$, $\lambda=\lambda_0$, $u=u_0$ oraz o wykładniczym rozkładzie wartości pojedynczej szkody z dodatnią wartością oczekiwaną $\frac{1}{\beta}$ (mniejszą od $\frac{c}{\lambda}$). Rozważmy następnie trzy modyfikacje P_1, P_2, P_3 procesu P_0 o parametrach:

	c	λ	и	F
P_1	$c_1 = 2c_0$	$\lambda_1 = 2\lambda_0$	$u_1 = u_0$	$F_1(x) = F_0(x) x \in R$
P_2	$c_2 = 2c_0$	$\lambda_2 = \lambda_0$	$u_2 = u_0$	$F_2(x) = F_0(2x) x \in R$
P_3	$c_3 = 2c_0$	$\lambda_3 = \lambda_0$	$u_3 = 2u_0$	$F_3(x) = F_0(2x) x \in R$

Niech Ψ_0, Ψ_1, Ψ_2 i Ψ_3 oznaczają prawdopodobieństwa ruiny w odpowiednich przypadkach. Zachodzą między nimi następujące relacje:

$$(A) \qquad \Psi_0 = \Psi_1 = \Psi_2 \neq \Psi_3$$

(B)
$$\Psi_0 = \Psi_1 \neq \Psi_2 = \Psi_3$$

(C)
$$\Psi_0 \neq \Psi_1 = \Psi_2 = \Psi_3$$

(D)
$$\Psi_0 = \Psi_1 = \Psi_3 \neq \Psi_2$$

$$(E) \qquad \Psi_1 \neq \Psi_0 = \Psi_2 = \Psi_3$$

Zadanie 9. Pewien portfel ryzyk generuje szkody w taki sposób, iż ilość szkód jest procesem Poissona ze stałą częstotliwością 100 rocznie, zaś rozkład wartości szkody w momencie t (jeśli w tym momencie do szkody dojdzie) ma dystrybuantę $F_t(x) = F_0(x \cdot e^{0.1 \cdot t})$ dla $x \in R$, o wartości oczekiwanej $p_1(t) = 10 \cdot e^{0.1 \cdot t}$. Odstęp w czasie między zajściem szkody a wypłatą odszkodowania ma rozkład wykładniczy ze średnią $\frac{10}{19}$. Wartość szkody nie ulega zmianie pomiędzy momentem jej zajścia a momentem wypłaty. Wartość oczekiwana niewypłaconych odszkodowań za szkody zaistniałe do momentu t wynosi:

- (A) $450 \cdot e^{0.1 \cdot t}$
- (B) $475 \cdot e^{0.1 \cdot t}$
- (C) $500 \cdot e^{0.1 \cdot t}$
- (D) $530 \cdot e^{0.1 \cdot t}$
- (E) $555 \cdot e^{0.1 \cdot t}$

10. Portfel ryzyk składa się z dwóch niezależnych subportfeli. Wyznaczono charakterystyki rozkładu łącznej wartości szkód z tych subportfeli:

	wartość oczekiwana	wariancja	skośność
subportfel 1	5	9	2
subportfel 2	15	16	1/4

Rozkład łącznej wartości szkód z całego portfela aproksymujemy przesuniętym rozkładem Gamma (x_0, α, β) zachowującym wartość pierwszych trzech momentów zmiennej aproksymowanej. Parametry (x_0, α, β) wynoszą:

- (A) $\left(-\frac{10}{7}, \frac{900}{49}, \frac{6}{7}\right)$
- (B) $\left(\frac{15}{7}, \frac{625}{49}, \frac{5}{7}\right)$
- (C) $\left(\frac{40}{7}, \frac{400}{49}, \frac{4}{7}\right)$
- (D) $\left(\frac{65}{7}, \frac{225}{49}, \frac{3}{7}\right)$
- (E) $\left(\frac{90}{7}, \frac{100}{49}, \frac{2}{7}\right)$

Egzamin dla Aktuariuszy z 5 października 1996 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	D	
2	В	
3	Е	
4	A	
5	Е	
6	A	
7	Е	
8	D	
9	C	
10	В	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.