Authenticated Encryption

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa

Emai: gianluca.dini@unipi.it
Version: 14/04/2025

1

Authenticated encryption

HOW TO MIX CIPHERS AND MACS

Apr-25

Authenticated encryption

2

Secrecy and integrity

· We have primitives for secrecy and integrity

Secrecy: ciphersIntegrity: MAC

 What if we wish to achieve secrecy and integrity at the same time?

Apr-25

uthenticated encryption

3

Encrypt and authenticate (E&M)

• Alice and Bob want to achieve both confidentiality and integrity

Ky for combde Kibity, yphen Kz for author Waty Non MAC

Alice (k1, k2) message x $y = Enc_{k1}(x)$ $t = MAC_{k2}(x)$

-----> [y, t] ----->

x = Dec_{k1}(y) if V_{k2}(x, t) return x else return «error»

Bob (k1, k2)

Apr-25

Authenticated encryption

Is it secure?

- The tag t might leak information about x
 - Nothing in the definition of security for a MAC implies that it hides information about x
- If the MAC is deterministic (e.g., CBC-MAC and HMAC), then it leaks whether the same message is encrypted twice
 - Traffic analysis
 - Using CBC becomes almost useless

Apr-25

Authenticated encryption

5

5

Encrypt then authenticate (EtM)

Secure one here!

Alice and Bob want to achieve confidentiality and integrity

Apr-25

Authenticated encryption

Security of encrypt then authenticate

- It can be proved that if Enc is CPA-secure and MAC is secure then:
 - The combination is CPA-secure (encryption must be randomized)
 - The combination is a secure MAC

Apr-25

Authenticated encryptio

7

7

Three different approaches

- Encrypt and MAC (E&M)
 - Discouraged
 - SSH

(1st one discussed)

- Encrypt then MAC (EtM)
 - Always correct (Second one discussed)
 - Ipsec
- MAC then Encrypt (MtE)
 - correctness depends on Enc-MAC combinations
 - TLS/SSL

3 possibilities

In Allach muc to pt and In Crypt resulting bundle. Duthenticated encryption

Plaintext

Encryption

Key Hash function

Ciphertext MAC

10

O Can be proven that security depends on Enc and MAX: MAC continues a cyphen and you might have interphence between the two cyphers.

Authenticated encryption

AUTHENTICATED ENCRYPTION

Apr-25

uthenticated encryption

11

11

Authenticated Encryption

- Most of applications require message privacy and message authentication
- Combining privacy and authentication is a challenging task that is rarely done securely with adhoc constructions
- Authenticated Encryption (AE) are encryption modes which simultaneously assure the confidentiality and authenticity of data.

Apr-25

Authenticated encryption

12

Data (AEAD) (Ass. Data: put that is only anthonouse) • AEAD allows checking the integrity of both the

- AEAD allows checking the integrity of both the encrypted and unencrypted information in a message.
 - E.g., network packets or frames where the header needs visibility, the payload needs confidentiality, and both need integrity and authenticity.

14

Apr-25

Several standards

Standards and associated data

- · NIST , in wall go counter
 - CCM: CBC-MAC then CTR mode encryption
 - 802.11i
 - GCM: CTR mode encryption then MAC
 - · Very efficient
- IETF
 - EAX: CTR mode encryption than OMAC
- NIST and IETF standards support AEAD

Apr-25

Authenticated encryption

15

15

Cipher Block Chaining Message Authentication Code (CCM)

- NIST SP 800-38C
- For IEEE 802.11 WiFi
- AES-CTR and CMAC
- Single key K
- Drawback:
 - CCM is quite complex: it requires two passes through the plaintext

Apr-25

Authenticated encryption

16

17

Galois Counter Mode (GCM)

- GCM is an encryption mode which also computes a MAC
 - Confidentiality and authenticity
- GCM protects
 - Confidentiality of a plaintext x
 - Authenticity of plaintext x and
 - Authenticity of AAD which is left in the clear

Apr-25

Authenticated encryption

18

GCM - main components

- Cipher in the Counter Mode (CTR)
 - Confidentiality
 - Block size: 128 bit (e.g., AES-128)
- Galois field multiplication
 - Authentication
 - GMAC exploses multiplication in Galas freld

 Based on GHASH which exploits multiplication in GF(2128)
 - - Irreducible polynomial $P(x) = x^{128} + x^7 + x^2 + x + 1$
 - Easy and efficient in HW

Apr-25 Authenticated encryption

19

19

GCM - advantage

- Assume that AAD and ciphertext (y₁, y₂, ..., y_n) constitute a sequence of blocks $X = X_1, X_2, ..., X_m$
- GHASH(X, H)
 - $-H=E_k(0)$
 - $-Y_0 = 0^{128}$
 - $-Y_i = (Y_{i-1} \oplus X_i) \cdot H$ which can be re-written as
 - $\; (X_1 \cdot H^m) \oplus (X_2 \cdot H^{m-1}) \oplus \cdots \oplus (X_{m-1} \cdot H^2) \oplus$

- H², H³, ..., H^m can be precomputed

- Xi's can be processed in parallel

Authenticated encryption

Authenticated encryption

Authenticated encryption

Authenticated encryption

Apr-25