In the claims:

1. (currently amended): A process for the preparation of furopyrroles of the general formula

(a) heating a compound of the formula

solvent,

wherein A^1 and A^2 are C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_5 - C_8 cycloalkenyl, aryl or heteroaryl,

 A^3 is hydrogen, C_1 - C_{18} alkyl, cyanomethyl, Ar^3 , - $CR^{30}R^{31}$ - $(CH_2)_m$ - Ar^3 or Y- R^{32} , wherein R^{30} and R^{31} independently of each other stand for hydrogen or C_1 - C_4 alkyl, or phenyl which can be substituted up to three times with C_1 - C_4 alkyl,

 Ar^3 stands for aryl, C_5 - C_8 cycloalkyl, C_5 - C_8 cycloalkenyl or heteroaryl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

R is C_1 - C_{18} alkyl, in particular C_4 - C_4 alkyl, aryl, in particular phenyl, or aralkyl, in particular benzyl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen,

Y is -C(O)-, -C(O)O-, -C(O)NH-, $-SO_2NH$ - or $-SO_2$ - and R^{32} is C_1 - C_{18} alkyl, Ar^3 , or aralkyl.

2. (currently amended): The process according to claim 1, comprising in addition

reacting a compound of formula I with a primary amine of the formula A⁴-NH₂ (IV), wherein a

DPP of formula
$$A^3 - N$$
 $N - A^4$ formula III is obtained,

wherein A⁴ is C₁-C₁₈alkyl or Ar³, wherein Ar³, A¹, A² and A³ are defined as in claim 1.

3. (original): The process according to claim 1, wherein the compound of the formula I, wherein A³ is different from a hydrogen atom, is obtained by reacting a compound of the formula

the meanings as given in claim 1 and X is a leaving group.

4. (currently amended): The process according to any of claims 1 to 3 claim 1, wherein A¹ and A² are radicals of the formula

$$R^1$$
, R^1 , R^2 , R^3 , wherein

R¹ and R² are independently of each other hydrogen, halogen, C₁-C₁8alkyl, C₁-C₁8alkoxy, C₁-C₁8alkylmercapto, C₁-C₁8alkylamino, C₁-C₁8alkoxycarbonyl, C₁-C₁8alkylaminocarbonyl, -CN, -NO₂, trifluoromethyl, C₅-C8cycloalkyl, -C≈N-

(C₁-C₁₈alkyl), phenyl,
$$-C=N$$
 \longrightarrow \mathbb{R}^4 , imidazolyl, pyrrazolyl, triazolyl,

piperazinyl, pyrrolyl, oxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, morpholinyl, piperidinyl or pyrrolidinyl, $-CONX^5X^6$, $-C(O)OX^7$ or $-SO_2X^9$; wherein X^5 and X^6 are hydrogen, linear or branched C_{1-10} -alkyl, C_{5-10} -cycloalkyl or C_{6-10} -aryl, X^7 is hydrogen, linear or branched C_{1-10} -alkyl, C_{5-10} -cycloalkyl or C_{6-10} -aryl, X^9 is hydrogen, linear or branched C_{1-10} -alkyl, C_{5-10} -cycloalkyl, C_{7-10} -aralkyl, C_{6-10} -aryl or $-NX^{10}X^{11}$, wherein X^{10} and X^{11} are hydrogen, linear or branched C_{1-10} -alkyl, C_{7-10} -aralkyl or C_{6-10} -aryl,

G is $-CH_{2^-}$, $-CH(CH_3)_-$, $-C(CH_3)_2$ -, -CH=N-, -N=N-, -O-, -S-, -SO-, $-SO_2$ -, $-SO_2NH-$, -CONH- or $-NR^7-$,

R³ and R⁴ are independently of each other hydrogen, halogen, C₁-C₆alkyl, C₁-C₁₈alkoxy or -CN, R⁵ and R⁶ are independently of each other hydrogen, halogen or C₁-C₆alkyl, and R⁷ is hydrogen or C₁-C₆alkyl;

or A1 and A2 are radicals of the formula

$$R^{26}$$
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{27}
 R^{21}
 R^{21}
 R^{23}
 R^{21}
 R^{22}
 R^{22}
 R^{23}
 R^{21}
 R^{22}

$$R^{21}$$
 R^{22}
 R^{23}
 R^{21}
 R^{23}
 R^{22}
 R^{23}
 R^{22}
 R^{23}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{25}

$$\mathbb{R}^{24}$$

$$\mathbb{R}^{26}$$

wherein R^{21} , R^{22} , R^{23} , R^{25} and R^{26} are independently of each other hydrogen, C_1 - C_8 alkyl, a hydroxyl group, a mercapto group, C_1 - C_8 alkoxy, C_1 - C_8 alkylthio, halogen, halo- C_1 - C_8 alkyl, a cyano group, an aldehyde group, a ketone group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group or a siloxanyl group and R^{24} is a C_1 - C_8 alkyl group.

5. (original): The process according to claim 4, wherein A¹ and A² are radicals of the formula

wherein R¹ and R² are independently of each other hydrogen, chloro, bromo, C₁-C₄alkyl, C₁-C₆alkoxy, C₁-C₆alkylamino, phenyl or CN,

G is -O-, $-NR^7$ -, -N=N- or $-SO_2$ -,

R³ and R⁴ are hydrogen, and

R⁷ is hydrogen, methyl or ethyl.

6. (currently amended): The process according to claim 4 or 5, wherein A³ is cyanomethyl, C₁
C₀alkyl-such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, n
pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, n-hexyl, n-heptyl, n-octyl, 1,1,3,3-tetramethylbutyland 2-ethylhexyl, Y-R³² wherein Y is -C(O)- and R³² is

-(CH₂)_m-Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.

7. (currently amended): The process according to any of claims 4 to 6 claim 4, wherein A4 is

which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl.

8. (currently amended): The process according to any of claims 1 to 7 claim 1, wherein the starting compound of formula (II)

$$A^{1}$$
 $CO_{2}R$
 A^{3} OF
 A^{2}
 $O(II)$

is obtained by reacting a compound of formula (VIII) with an acyl halide A² –COX:

$$A^{3}$$
 A^{3}
 A^{3

wherein R, A¹ and A² have the same meaning as given in claim 1, A³ is aryl, and X is halogen.__, preferably chlorine.

9. (original): The process according to claim 8, wherein the compound of formula (VIII) is obtained by reacting a compound of formula (IIb) with an amine A³ -NH₂:

$$A_{0}^{1} CO_{2}R$$

$$A_{0}^{3} NH_{2}$$

$$A_{0}^{3}$$

wherein R and A¹ have the same meaning as given in claim 1 and A³ is aryl

10. (currently amended): The process according to claim 8—or—9, wherein A²—COX is benzoyl chloride and A³-NH₂ is aniline.

11. (currently amended): A process for the preparation of a DPP of general formula:

reacting a compound of formula (VIII) with a nitrile A²–CN, preferably benzonitril:

$$A^{3} - N + A^{2}$$

$$+ A^{2}$$

$$+ A^{2}$$

$$+ A^{2}$$

$$+ A^{3} - N + A^{2} + A^{$$

wherein A¹, A² and A³ have the meanings as given in claim 1.

12. (original): A DPP of general formula (III)

wherein A¹, A² and A³ have the meanings as given in claim 1.

- 13. (new): A process according to claim 1, wherein R is C_1 - C_4 alkyl, phenyl, or benzyl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen.
- 14. (new): A process according to claim 5, wherein A^3 is cyanomethyl, C_1 - C_8 alkyl, Y- R^{32} wherein Y is -C(O)- and R^{32} is

 $-(CH_2)_m$ -Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.