Exercici 3 (4 punts)

(a) (0.75 punts) Digueu i justifiqueu si per a cada regió de les figures (a) i (b) existeix un LP per al qual la regió és factible, o no pot existir tal LP. En cas que les regions puguin ser factibles per a un LP, doneu les restriccions determinades per la regió (Ajut: L'equació de la recta que passa per (3,7), (7,5) és x + 2y = 17.)

Solució La figura (a) no és convexa i per tant no es pot expressar el seu interior amb restriccins lineals. La figura (d) si que és convexa: Les res triccions són:

subject to:
$$x + 2y \le 17$$

 $y \le 7$
 $x \le 7$
 $x, y \ge 0$.

(b) (0.75 punts) Donat un graf no dirigit G = (V, E), definim el seu diàmetre d com la màxima distància entre qualsevol parell de vèrtexs de G. Doneu un algorisme, el més eficient possible, que amb entrada un graf no dirigit qualsevol G amb n vèrtexs i m arestes, calculi el diàmetre de G.

Solució: Utilitzant l'algorisme de Bernard-Floyd-Warshall podem obtenir les distanciès entre qualsevol parell de punts. Després hem de calcular el màxim. El cost és $O(n^3)$ tant si és dens com si és espars.

(c) (0.75 punts) És cert que si a una xarxa de flux tots els arcs tenen capacitats amb valors diferents, el flux amb valor màxim és únic?

Solució: Fals. A la figura hi han 3 maneres diferents de definr un flux amb valor màxim.

(d) (0.75 punts) Sigui G = (V, E, w) un graf dirigit amb $w : E \to \mathbb{Z}$ i tal que G no té cicles negatius. Donat dos vèrtexs s, t, volem calcular el camí $s \to t$ amb mínim pes i volem fer-ho **utilitzant Programació Lineal**. Per a cada $v \in V$ definim una variable d_v que representa la distància més curta de s fins a v. Com a l'algorisme de Bellman-Ford-Moore, $d_s = 0$. Doneu la formalització del problema com a equació lineal amb les restriccions corresponents.

Solució:

```
min d_t,

subject to:

d_s = 0

d_v \le d_u + w(u, v), per tot u t.q. (u, v) \in \vec{E}

d_v \ge 0, per tot u \in V
```

(e) (1 punt) Donat com a entrada un graf dirigit G = (V, E, w) on $w : E \to \mathbb{Z}^+$, i un vèrtex inicial $s \in V$, volem trobar el camí **simple** de màxima distància entre s i la resta dels vèrtexs a G. Per a grafs generals, no es coneix una solució polinòmica per a aquest problema. Doneu un algorisme polinòmic per al cas particular que G sigui un DAG (graf dirigit sense cicles). Podeu obtenir un algorisme amb cost O(n+m)? (Recordeu que un camí simple és aquell que no repeteix cap vèrtex.)

Solució: donat els DAG G = (V, E), w, considerem el graf G amb pesos w'(e) = -w(e) per a tota aresta $e \in E$ (per tant $w' : E \to \mathbb{Z}^-$). Aleshores com com que G, w no té cicles (positius) G, w' no tindrà cicles negatius, podem utilitzar BFMS per a trobar les distancies més curtes de s a tots els vèrtexs a G, w' i aquest seran també els camins màxims a G, w. El cost és mn. Però podem fer ho més ràpid: Construïm el l·layout" de l'ordre topològic del DAG i trobem les distancies més curtes a G, w' com hem fet a classe, aquestes distancies també seran les més llargues, i es pot fer en temps O(n+m) = O(n).