UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS MATEMÁTICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

TRABAJO DE FIN DE GRADO

Algoritmos de Aprendizaje Automático aplicados a problemas de Ciberseguridad

Presentado por: Pablo Jiménez Poyatos

Dirigido por: Luis Fernando Llana Diaz

Grado en Matemáticas

Curso académico 2023-24

Agradecimientos

	Resumen
Palabras clave:	
	Abstract
Keywords:	

Índice general

1.	Intr	roducción	1								
	1.1.	Motivación y objetivos del trabajo									
	1.2.	Contexto y antecedentes del trabajo	1								
		1.2.1. Redes neuronales	1								
		1.2.2. Importancia de la detección y prevención de ataques	1								
		1.2.3. Evolución de las amenazas cibernéticas	1								
		1.2.4. Avances en el aprendizaje automático para ciberseguridad	1								
	1.3.	Estructura de la memoria	1								
	1.4.	Contribuciones	1								
2.	Fun	damentos de las redes neuronales	3								
	2.1.	Revisión teórica	3								
	2.2.	Arquitecturas relevantes	3								
		2.2.1. Autoencoder	3								
		2.2.2. Deep Belief Networks	4								
		2.2.3. Red Neuronal Convolucional	4								
		2.2.4. Red Neuronal Recurrente	4								
	2.3.	Implementación en Python	4								
		2.3.1. Frameworks	4								
	2.4.	Principales Deep Learning Frameworks. Keras	4								
3.	\mathbf{Apl}	icación en la ciberseguridad	7								
	3.1.	Clasificación de Malware	7								

ÍNDICE GENERAL

		3.1.1.	Microsoft Malware Classification Challenge	7
		3.1.2.	Autoencoder	11
		3.1.3.	Red Neuronal Convolucional	11
		3.1.4.	Resultados	11
	3.2.	Detecc	ción de intrusiones	11
		3.2.1.	KDD Cup 1999	11
		3.2.2.	Autoencoder	11
		3.2.3.	Red Neuronal Convolucional	11
		3.2.4.	Red Neuronal Profunda	12
		3.2.5.	Red Neuronal Recurrente	12
		3.2.6.	Restricted Boltzmann Machine	12
		3.2.7.	Resultados	12
4.	Con	ıclusioı	nes y Trabajo Futuro	13
	4.1.	Conclu	isiones	13
	4.2.	Traba	jo futuro	13
Bi	bliog	rrafía		15

Introducción

- 1.1. Motivación y objetivos del trabajo
- 1.2. Contexto y antecedentes del trabajo
- 1.2.1. Redes neuronales
- 1.2.2. Importancia de la detección y prevención de ataques

Destaca la importancia crítica de la detección y prevención de ataques cibernéticos en entornos empresariales y gubernamentales, así como en la protección de datos sensibles y la infraestructura crítica.

1.2.3. Evolución de las amenazas cibernéticas

Describe brevemente cómo han evolucionado las amenazas en el ámbito de la ciberseguridad a lo largo del tiempo, desde virus simples hasta ataques sofisticados como el ransomware y el phishing.

1.2.4. Avances en el aprendizaje automático para ciberseguridad

Proporciona una visión general de cómo los algoritmos de aprendizaje automático han revolucionado el campo de la ciberseguridad, permitiendo la detección temprana de amenazas, el análisis de comportamiento anómalo y la automatización de respuestas.

1.3. Estructura de la memoria

1.4. Contribuciones

Fundamentos de las redes neuronales

2.1. Revisión teórica

Puedo introducir los tipos de funciones de activavion. Esta bien explicado en el TFG wuolah o en el articulo de KDD cup 199 de DNN network intrusion. Puedo añadir overfitting y underfitting. lo que es aprendizaje supervisado y no supervisao Partes de una neurona y como trabaja(bias, pesos...)

2.2. Arquitecturas relevantes

Mini tabla resumen en Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective y miniresumen de todos los tipos en review Deep Cybersecurity: A Comprehensive Overview from Neural Networkand Deep Learning Perspective y review

2.2.1. Autoencoder

Leer y sacar la información del word autoencoders.

Los autoencoders son una clase de redes neuronales artificiales utilizadas en aprendizaje no supervisado para aprender representaciones eficientes de datos. Su objetivo principal es codificar la entrada en una representación comprimida y significativa, y luego decodificarla de manera que la reconstrucción sea lo más similar posible a la entrada original.

La arquitectura básica de un autoencoder consta de dos partes: el encoder y el decoder. El encoder mapea los datos de entrada a una representación oculta de menor dimensión utilizando funciones principalmente no lineales, mientras que el decoder reconstruye los datos de entrada a partir de esta representación oculta. Durante el entrenamiento, los parámetros del autoencoder se optimizan para minimizar la diferencia entre la entrada y la salida reconstruida, utilizando una función de pérdida que mide esta discrepancia.

Los autoencoders se han utilizado en una amplia variedad de aplicaciones, incluida la reducción de dimensionalidad, la extracción de características, la eliminación de ruido en los datos de entrada y la detección de anomalías. Su versatilidad y capacidad para aprender representaciones

útiles de los datos los hacen herramientas poderosas en el campo del aprendizaje automático y la inteligencia artificial.

2.2.2. Deep Belief Networks

Red Neuronal Profunda

2.2.3. Red Neuronal Convolucional

2.2.4. Red Neuronal Recurrente

Restricted Boltzmann Machine

2.3. Implementación en Python

2.3.1. Frameworks

numpy matplotlib sklearn

Deep neural network

2.4. Principales Deep Learning Frameworks. Keras.

A medida que las técnicas de aprendizaje profundo han ido ganando popularidad, muchas organizaciones académicas e industriales se han centrado en desarrollar marcos de trabajo para facilitar la experimentación con redes neuronales profundas de manera sencilla para el usuario. En esta sección, ofrecemos una visión general de los bibliotecas más conocidss: Tensor-Flow, PyTorch y Keras.

TensorFlow [11] es una biblioteca de código abierto que fue desarrollada en 2016 por el equipo de Google Brain del departamento de IA de Google. Es una plataforma que se centra principalmente en el aprendizaje automático y la computación de alto rendimiento. Su modelo de programación permite que los datos fluyan de una operación a otra de manera flexible gracias a su estructura de grafo computacional y al concepto de flujo de datos. Los gráficos son estructuras de datos que contienen un conjunto de objetos tf.Operation (nodos), que representan unidades de cálculo y objetos tf.Tensor ¹, que representan las unidades de datos que fluyen entre esas operaciones (Figura 2.1). Esto permite una ejecución eficiente y paralela de operaciones en diferentes dispositivos de hardware, como en una CPU, GPU, dispositivos móviles y sistemas distribuidos a

Figura 2.1: Gráfico de una red neuronal.

¹arreglos multidimensionales que pueden contener datos de cualquier tipo y forma

gran escala con cientos de nodos. Esta flexibilidad y además su capacidad de diferenciación automática lo hacen una biblioteca útil para una gran variedad de aplicaciones, desde la investigación hasta el desarrollo y la producción de modelos de aprendizaje automático.

PyTorch [8], presentado por el equipo de investigación en IA de Facebook en 2016, es una biblioteca de aprendizaje profundo desarrollado en Python que simplifica la creación de modelos complejos a través de una interfaz de programación sencilla. A diferencia de otros marcos populares que emplean gráficos de computación estáticos, PyTorch se basa en la computación dinámica (su topología puede variar durante la ejecución del programa), lo que permite una mayor flexibilidad para diseñar arquitecturas complejas. Cambiar el comportamiento de una red neuronal típicamente implica reiniciar desde cero, pero PyTorch emplea una técnica llamada auto-diferenciación en modo inverso, que permite realizar cambios en el comportamiento de la red con poco esfuerzo. PyTorch se ha vuelto popular tanto en la comunidad científica como en la industria debido a su facilidad de uso y su capacidad para crear modelos complejos de manera eficiente. Además, ha sido adoptado por varias organizaciones importantes, incluidas Facebook, Twitter y NVIDIA, lo que garantiza su continuo desarrollo y soporte.

Keras [10] es un marco de redes neuronales de código abierto desarrollado por François Cholle, un miembro del equipo de IA de Google. Se considera un meta-marco de trabajo que interactúa con otros marcos. En particular puede ejecutarse en la parte superior de TensorFlow y Theano. Está implementado en Python y proporciona APIs de redes neuronales de alto nivel para desarrollar modelos de aprendizaje profundo. En lugar de manejar operaciones de bajo nivel (diferenciación y manipulación de tensores), Keras depende de una biblioteca especializada que sirve como su motor de backend. Keras minimiza el número de acciones requeridas por un usuario para una acción específica. Una característica importante de Keras es su facilidad de uso sin sacrificar la flexibilidad. Keras permite a los usuarios implementar sus modelos como si estuvieran implementados en los marcos base (como TensorFlow o Theano²). Proporciona un rendimiento y escalabilidad de nivel industrial, siendo utilizado por organizaciones de renombre como NASA, YouTube y Waymo para una amplia gama de aplicaciones en inteligencia artificial y aprendizaje automático.

Analizando los resultados de [20], podemos observar que usando la CPU, Keras destaca por encima de las demás. No solo logra el mejor accuracy en los tres datasets (MNIST, CIFAR-10, CIFAR-100), sino que además también tiene los tiempos de ejecución más bajos y una de las mejores tasas de convergencia. Estos datos sobresalientes además de su facilidad de uso, accesibilidad y documentación bien estructurada han sido determinantes para acabar por decantarme por Keras. Según Aakash Nain [2]

Keras is that sweet spot where you get flexibility for research and consistency for deployment. Keras is to Deep Learning what Ubuntu is to Operating Systems.

y según Matthew Carrigan [22]

The best thing you can say about any software library is that the abstractions it chooses feel completely natural, such that there is zero friction between thinking about what you want to do and thinking about how you want to code it. That's exactly what you get with Keras.

 $^{^2{\}rm Librer\'ia}$ de Python para aprendizaje automático.

Aplicación en la ciberseguridad

3.1. Clasificación de Malware

Hoy en día, uno de los principales retos que enfrenta el software anti-malware es la enorme cantidad de datos y archivos que se requieren evaluar en busca de posibles amenazas maliciosas. Una de las razones principales de este volumen tan elevado de archivos diferentes es que los creadores de malware introducen variaciones en los componentes maliciosos para evadir la detección. Esto implica que los archivos maliciosos pertenecientes a la misma "familia" de malware (con patrones de comportamiento similares), se modifican constantemente utilizando diversas tácticas, lo que hace que parezcan ser múltiples archivos distintos.

Para poder analizar y clasificar eficazmente estas cantidades masivas de archivos, es necesario agruparlos e identificar sus respectivas familias. Además, estos criterios de agrupación pueden aplicarse a nuevos archivos encontrados en computadoras para detectarlos como maliciosos y asociarlos a una familia específica.

3.1.1. Microsoft Malware Classification Challenge

El conjunto de datos utilizado en este estudio proviene del Microsoft Malware Classification Challenge (BIG 2015) [1], una competición dirigida a la comunidad científica con el objetivo de promover el desarrollo de técnicas efectivas para agrupar diferentes variantes de malware. Se decidió escoger este dataset porque el objetivo que tengo en este trabajo es el de aprender y desarrollar diferentes métodos de aprendizaje automático y este dataset nos permite utilizar tanto una CNN como un Autoencoder según [26].

Se puede descargar desde su página web [1]. Tiene un tamaño de 0.5 TB sin comprimir. Para poder manipularla en mi ordenador, tuve que seguir los siguientes pasos. Primero, me descargué la carpeta comprimida (7z) con todo el dataset. Después, la subí al servidor Simba de la facultad de informática y finalmente, usando el comando 7zz x $file_-$ name.7z, la descomprimí.

Este dataset contiene 5 archivos:

- dataSample.7z Carpeta comprida(7z) con una muestra de los datos disponibles.
- train.7z Carpeta comprida(7z) con los datos para el conjunto de entrenamiento.
- trainLabels.csv Archivo csv con las etiquetas asociadas a cada archivo de train.

- test.7z Carpeta comprida 7z con los datos sin procesar para el conjunto de prueba.
- sampleSubmission.csv Archivo csv con el formato de envío válido de las soluciones.

Para nuestro estudio, nos enfocaremos exclusivamente en el conjunto de datos de entrenamiento, que consta de los archivos "train.7z" y "trainLabels.csv". Los archivos 'test.7z' y 'sampleSubmission.csv' están destinados específicamente para la competición. Nosotros no los utilizaremos debido a que son programas de malware sin etiquetar y para este problema de clasificación, es necesario conocerlas. Además, la carpeta 'dataSample.7z' proporciona dos programas que se encuentran también en la carpeta train.7z, por lo que tampoco la utilizaremos.

Cada programa malicioso tiene un identificador, un valor hash de 20 caracteres que identifica de forma única el archivo, y una etiqueta de clase, que es un número entero que representa una de las 9 familias de malware al que puede pertenecer. Por ejemplo, el programa 0ACDbR5M3ZhBJajygTuf tiene como etiqueta el valor 7. Esta información se puede consultar en el archivo "trainLabels.csv". Cada programa tiene dos archivos, uno asm¹ con el código extraído por la herramienta de desensamblado IDA y otro bytes² con la representación hexadecimal del contenido binario del programa pero sin los encabezados ejecutables (para garantizar esterilidad). Para nuestro estudio vamos a utilizar únicamente este ultimo archivo.

Figura 3.1: Explicación del contenido de "0ACDbR5M3ZhBJajygTuf.bytes".

Como aparece en la figura 3.1, los ocho primeros caracteres son direcciones de memoria, seguido de la representación hexadecimal del contenido binario del programa, que contiene 16 bytes (cada uno dos caracteres). A veces nos podemos encontrar con "??" en el lugar de un byte. Este símbolo se utiliza en estos archivos para representar que se desconoce su información porque su memoria no se puede leer [6].

Distribución del dataset

Hay un total de 21.741 programas de malware, pero nosotros tan solo usaremos los 10.868 pertenecientes al entrenamiento. Estos programas pertenecen a una de estas 9 familias de malware: Rammit, Lollipop, Kelihos_ ver3, Vundo, Simda, Tracur, Kelihos_ ver1, Obfuscator y Gatak. Según [13], podemos deinirlas como:

 $^{^1\}mathrm{Es}$ una secuencia de bytes que lo podemos visualizar como si fuera un texto plano

²Realmente no es un archivo bytes, sino un archivo de texto con letras

1. Ramnit es un malware tipo gusano que infecta archivos ejecutables de Windows, archivos de Microsoft Office y archivos HTML. Cuando los ha infectado, el ordenador pasa a formar parte de una red de bots, que son controladas por un nodo central de forma remota. Este malware puede robar información sensible y puede propagarse a través de conexiones de red y unidades extraíbles.

Figura 3.2: Estructura de un botnet. Imagen sacada de [24].

- 2. Lollipop es un tipo de programa adware que muestra anuncios no deseados en los navegadores web. También puede redirigir los resultados de búsqueda a recursos web ilegítimos, descargar aplicaciones maliciosas y robar la información del ordenador monitoreando sus actividades web. Este adware se puede descargar desde el sitio web del programa o empaquetarse con algunos programas de terceros.
- 3. Simda es un troyano backdoor que infecta ordenadores descargando y ejecutando archivos arbitrarios que pueden incluir malware adicional. Los ordenadores infectados pasar a ser parte de una botnet, lo que les permite cometer aciones criminales como robo de contraseñas, credenciales bancarias o descargar otros tipos de malware.
- **4. Vundo** es otro troyano conocido por causar publicidad emergente para programas de antivirus falsos. A menudo se distribuye como un archivo DLL(Dynamic Link Library) ³ y se instala en el ordenador como un Objeto Auxiliar del Navegador (BHO) sin su consentimiento. Además, utiliza técnicas

avanzadas para evitar su detección y eliminación.

- 5. **Kelihos_ ver3** es un troyano tipo backdoor ⁴ que distribuye correos electrónicos que pueden contener enlaces falsos a instaladores de malware. Consta de tres tipos de bots [15]: controladores (operados por los dueños y donde se crean las instrucciones), enrutadores (redistribuyen las instrucciones a otros bots) y trabajadores (ejecutan las instrucciones).
- 6. **Tracur** es un descargador troyano que agrega el proceso 'explorer.exe' a la lista de excepciones del Firewall de Windows para disminuir deliberadamente la seguridad del sistema y permitir la comunicación no autorizada a través del firewall. Además, esta familia también te puede redirigir a enlaces maliciosos para descargar e instalar otros tipos de malware.
- 7. **Kelihos_ ver1** es una versión más antigua del troyano Kelihos_ ver3 pero tiene el mismo funcionamiento y las mismas partes.
- 8. **Obfuscator.ACY** es un tipo de malware sofisticado que oculta su propósito y podría sobrepasar las capas de seguridad del software. Se puede propagar mediante archivos adjuntos de correo electrónico, anuncios web y descargas de archivos.
- 9. **Gatak** es un troyano que abre una puerta trasera en el ordenador. Se propaga a través de sitios web falsos que ofrecen claves de licencias de productos. Una vez infectado el sistema, Gatak recopila información del ordenador.

Como ya mencionamos antes, vamos a entrenar nuestras redes neuronales con 10.868 archivos bytes. De estos archivos, solo nos son válidos 10.860 porque en los 8 restantes (pertenecientes a

³Una parte del programa que se ejecuta cuando una aplicación se lo pide. Se suele guardar en un directorio del sistema.

⁴Un backdoor permite que una entidad no autorizada tome el control completo del sistema de una víctima sin su consentimiento.

la familia Ramnit), todo su contenido son "??". Con estos programas finales, vamos a ver sus datos en el gráfico 3.3.

Figura 3.3: Distribución del BIG 2015 training dataset.

Analizando 3.3, podemos observar como la distribución entre las clases no es uniforme. Mientras que de la clase Simbda hay 42 muestras, de la clase Kelihos_ ver3 hay 2942, es decir, un 98 % más. En [14] deciden prescindir de esta clase, pero nosotros hemos decidido hacer el análisis con las 9 clases. A la hora de crear nuestros modelos, hemos dividido el conjunto de datos aleatoriamente en grupos del $75\,\%$, $15\,\%$ y $10\,\%$ para entrenamiento, test y validación respectivamente. La imagen 3.4 muestra como quedarían distribuidas las clases en los diferentes grupos.

Figura 3.4: Distribución de las clases en cada grupo.

Como podemos observar, todos los programas proporcionados son malware, lo que nos indica que con este dataset no podemos crear un modelo que nos prediga si un programa es malware o no, sino que tan solo podemos hacer un modelo de clasificación. Para ello vamos a abordar este experimento de dos formas diferentes. Una de ellas es utilizando una CNN y la otra es usando un autoencoder. utilizar dos redes neuronales

3.1.2. Autoencoder

3.1.3. Red Neuronal Convolucional

3.1.4. Resultados

El entorno de hardware en el que he realizado todos los experimentos es un sistema operativo Debian 12.2 con Linux version 6.1.0-17-amd64. La CPU utilizada es un Intel(R) Xeon(R) W-2235 CPU con $3.8 \text{ GHz} (3,80*10^9\text{Hz})$ con 6 núcleos. La memoria RAM disponible es de 128 GB.

3.2. Detección de intrusiones

3.2.1. KDD Cup 1999

3.2.2. Autoencoder

Para la clasificación binaria usar autoencoder con el entrenamiento de las imágenes (buenas o malas) y según el error que den, se clasifica. Para la multiclasificación, tenemos dos opciones:

- Usamos autoencoder para comprimir la información de entrada y despues esa información la usamos para clasificarla usando una DNN [18]
- Usamos una cadena de autoencoders en el cual la salida de h es la entrada del autoencoder h+1. Utilizo el articulo [9] donde se desarrolla todo el modelo y explicacion y ademas se hace referencia al artículo [5] porque se basa en él (lo de salida de h es la entrada de h+1). Ver tambien:
 - Asymmetric Stacked Autoencoder
 - Constrained Nonlinear Control Allocation based on Deep Auto-Encoder Neural Networks.

El algoritmo consiste en entrenar las capas por separado en la que el input del autoencoder es la salida del autoencoder anterior. Lo que de verdad nos interesa es la capa oculta, que tiene una representación comprimida de los datos de entrada y sus pesos. Estos pesos son con los que se inicializa el entrenamiento de la stacked autoencoder acabando en softmax. He usado el url para enterlo https://amiralavi.com/tied-autoencoders/. Además en [4] explica bastante bien la diferencia entre capa autoencoder y un autoencoder.

3.2.3. Red Neuronal Convolucional

Para clasificar los datos del dataset KDD 1999 usando las Convolutional Neural Network (CNN) vamos a seguir los siguientes articulos [16, 31, 25, 17]. Prácticamente todo el cuerpo del experimento se encuentra en el artículo [16], pero en el artículo [17] aparece la parte de normalización de los datos y algunos hiperparametros de inicio.

3.2.4. Red Neuronal Profunda

Por otro lado, el método Deep Neural Network (DNN) utiliza una arquitectura muy parecida a una CNN. Podemos ver todo el procesamiento de los datos y el modelo en el artículo [21]. Además, hay buena explicacion del experimento en [30]. Por último, en el artículo [7] están los experimentos con DNN, RNN, RBM que puedo tomar también como referencia porque está muy bien explicado las capas e hiperparametros que utiliza.

3.2.5. Red Neuronal Recurrente

En el articulo [7] están los experimentos con DNN, RNN, RBM que puedo tomar también como referencia porque está muy bien explicado las capas e hiperparametros que utiliza.

3.2.6. Restricted Boltzmann Machine

En el articulo [7] están los experimentos con DNN, RNN, RBM que puedo tomar también como referencia porque está muy bien explicado las capas e hiperparametros que utiliza.

3.2.7. Resultados

El entorno de hardware en el que he realizado todos los experimentos es un sistema operativo Debian 12.2 con Linux version 6.1.0-17-amd64. La CPU utilizada es un Intel(R) Xeon(R) W-2235 CPU con 3.8 GHz $(3,80*10^9\text{Hz})$ con 6 núcleos. La memoria RAM disponible es de 128 GB.

Conclusiones y Trabajo Futuro

- 4.1. Conclusiones
- 4.2. Trabajo futuro

Bibliografía

- [1] Microsoft malware classification challenge (big 2015), 2015.
- [2] Aakash Nain. Keras Documentation. https://keras.io/. Consultado el 06-05-2024.
- [3] Apache Software Foundation. Apache mxnet, 2015.
- [4] Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. *PloS one*, 12(7):e0180944, 2017.
- [5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep networks. Advances in neural information processing systems, 19, 2006.
- [6] Niken Dwi Wahyu Cahyani, Erwid M Jadied, Nurul Hidayah Ab Rahman, and Endro Ariyanto. The influence of virtual secure mode (vsm) on memory acquisition. *International Journal of Advanced Computer Science and Applications*, 13(11), 2022.
- [7] Wisam Elmasry, Akhan Akbulut, and Abdul Halim Zaim. Empirical study on multiclass classification-based network intrusion detection. *Computational Intelligence*, 35(4):919–954, 2019.
- [8] Facebook AI Research. Pytorch, 2017.
- [9] Fahimeh Farahnakian and Jukka Heikkonen. A deep auto-encoder based approach for intrusion detection system. In 2018 20th International Conference on Advanced Communication Technology (ICACT), pages 178–183. IEEE, 2018.
- [10] Google AI Team. Keras, 2015.
- [11] Google Brain Team. Tensorflow, 2015.
- [12] Sanchit Gupta, Harshit Sharma, and Sarvjeet Kaur. Malware characterization using windows api call sequences. In Security, Privacy, and Applied Cryptography Engineering: 6th International Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings 6, pages 271–280. Springer, 2016.
- [13] Yen-Hung Frank Hu, Abdinur Ali, Chung-Chu George Hsieh, and Aurelia Williams. Machine learning techniques for classifying malicious api calls and n-grams in kaggle data-set. In 2019 SoutheastCon, pages 1–8. IEEE, 2019.
- [14] Temesguen Messay Kebede, Ouboti Djaneye-Boundjou, Barath Narayanan Narayanan, Anca Ralescu, and David Kapp. Classification of malware programs using autoencoders based deep learning architecture and its application to the microsoft malware classification challenge (big 2015) dataset. In 2017 IEEE National Aerospace and Electronics Conference (NAECON), pages 70–75. IEEE, 2017.

[15] Max Kerkers, José Jair Santanna, and Anna Sperotto. Characterisation of the kelihos. b botnet. In Monitoring and Securing Virtualized Networks and Services: 8th IFIP WG 6.6 International Conference on Autonomous Infrastructure, Management, and Security, AIMS 2014, Brno, Czech Republic, June 30–July 3, 2014. Proceedings 8, pages 79–91. Springer, 2014.

- [16] Jiyeon Kim, Jiwon Kim, Hyunjung Kim, Minsun Shim, and Eunjung Choi. Cnn-based network intrusion detection against denial-of-service attacks. *Electronics*, 9(6):916, 2020.
- [17] Taejoon Kim, Sang C Suh, Hyunjoo Kim, Jonghyun Kim, and Jinoh Kim. An encoding technique for cnn-based network anomaly detection. In 2018 IEEE International Conference on Big Data (Big Data), pages 2960–2965. IEEE, 2018.
- [18] Ivandro O Lopes, Deqing Zou, Ihsan H Abdulqadder, Francis A Ruambo, Bin Yuan, and Hai Jin. Effective network intrusion detection via representation learning: A denoising autoencoder approach. *Computer Communications*, 194:55–65, 2022.
- [19] Mika Luoma-aho. Analysis of modern malware: obfuscation techniques. 2023.
- [20] Nesma Mahmoud, Youssef Essam, Radwa Elshawi, and Sherif Sakr. Dlbench: an experimental evaluation of deep learning frameworks. In 2019 IEEE International Congress on Big Data (BigDataCongress), pages 149–156. IEEE, 2019.
- [21] Mohammed Maithem and Ghadaa A Al-Sultany. Network intrusion detection system using deep neural networks. In *Journal of Physics: Conference Series*, volume 1804, page 012138. IOP Publishing, 2021.
- [22] Matthew Carrigan. Keras Documentation. https://keras.io/. Consultado el 06-05-2024.
- [23] Montreal University. Theano, 2010.
- [24] Mohammad Najafimehr, Sajjad Zarifzadeh, and Seyedakbar Mostafavi. A hybrid machine learning approach for detecting unprecedented ddos attacks. The Journal of Supercomputing, 78, 04 2022.
- [25] Sinh-Ngoc Nguyen, Van-Quyet Nguyen, Jintae Choi, and Kyungbaek Kim. Design and implementation of intrusion detection system using convolutional neural network for dos detection. In *Proceedings of the 2nd international conference on machine learning and soft computing*, pages 34–38, 2018.
- [26] Prajoy Podder, Subrato Bharati, M Mondal, Pinto Kumar Paul, and Utku Kose. Artificial neural network for cybersecurity: A comprehensive review. arXiv preprint arXiv:2107.01185, 2021.
- [27] Sajedul Talukder. Tools and techniques for malware detection and analysis. arXiv preprint arXiv:2002.06819, 2020.
- [28] Mingdong Tang and Quan Qian. Dynamic api call sequence visualisation for malware classification. *IET Information Security*, 13(4):367–377, 2019.
- [29] Tokyo University. Chainer, 2015.
- [30] Rahul K Vigneswaran, R Vinayakumar, KP Soman, and Prabaharan Poornachandran. Evaluating shallow and deep neural networks for network intrusion detection systems in cyber security. In 2018 9th International conference on computing, communication and networking technologies (ICCCNT), pages 1–6. IEEE, 2018.

[31] Zhongxue Yang and Adem Karahoca. An anomaly intrusion detection approach using cellular neural networks. In *Computer and Information Sciences–ISCIS 2006: 21th International Symposium, Istanbul, Turkey, November 1-3, 2006. Proceedings 21*, pages 908–917. Springer, 2006.

- [32] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In 2010 International conference on broadband, wireless computing, communication and applications, pages 297–300. IEEE, 2010.
- [33] Mohamad Fadli Zolkipli and Aman Jantan. Malware behavior analysis: Learning and understanding current malware threats. In 2010 Second International Conference on Network Applications, Protocols and Services, pages 218–221. IEEE, 2010.

OO	Hex	Dec										
02 2 30 48 5E 94 8C 140 BA 186 E8 232 03 3 31 49 5F 95 8D 141 BB 187 E9 233 04 4 32 50 60 96 8E 142 BC 188 EA 234 05 5 33 51 61 97 8F 143 BD 189 EB 235 06 6 34 52 62 98 90 144 BE 190 EC 236 07 7 35 53 63 99 9 144 BE 190 EC 236 08 8 36 54 64 100 92 146 C0 192 EE 238 0A 10 38 56 66 102 94 148 C2 194	00	0	2E	46	5C	92	8A	138	B8	184	E6	230
03	01	1	2F	47	5D	93	8B	139	В9	185	E7	231
04 4 32 50 60 96 8E 142 BC 188 EA 234 05 5 33 51 61 97 8F 143 BD 189 EB 235 06 6 34 52 62 98 90 144 BE 190 EC 236 07 7 35 53 63 99 91 145 BF 191 ED 237 08 8 36 54 64 100 92 146 C0 192 EE 238 09 9 37 55 65 101 93 147 C1 193 EF 249 0A 10 38 56 66 102 94 148 C2 194 FO 240 0B 11 39 57 67 103 95 149 C3 195	02	2	30	48	5E	94	8C	140	BA	186	E8	232
05 5 33 51 61 97 8F 143 BD 189 EB 235 06 6 34 52 62 98 90 144 BE 190 EC 236 07 7 35 53 63 99 91 145 BF 191 ED 237 08 8 36 54 64 100 92 146 CO 192 EE 238 09 9 37 55 65 101 93 147 C1 193 EF 239 0A 10 38 56 66 102 94 148 C2 194 FO 240 0B 11 39 57 67 103 95 149 C3 195 F1 241 0C 12 3A 58 68 104 96 150 C4 196	03	3	31	49	5F	95	8D	141	BB	187	E9	233
06 6 34 52 62 98 90 144 BE 190 EC 236 07 7 35 53 63 99 91 145 BF 191 ED 237 08 8 36 54 64 100 92 146 CO 192 EE 238 09 9 37 55 65 101 93 147 C1 193 EF 239 0A 10 38 56 66 102 94 148 C2 194 F0 240 0B 11 39 57 67 103 95 149 C3 195 F1 241 0C 12 3A 58 68 104 96 150 C4 196 F2 242 0D 13 3B 59 69 105 97 151 C5 197 <td>04</td> <td>4</td> <td>32</td> <td>50</td> <td>60</td> <td>96</td> <td>8E</td> <td>142</td> <td>BC</td> <td>188</td> <td>EA</td> <td>234</td>	04	4	32	50	60	96	8E	142	BC	188	EA	234
07 7 35 53 63 99 91 145 BF 191 ED 237 08 8 36 54 64 100 92 146 CO 192 EE 238 09 9 37 55 65 101 93 147 CI 193 EF 239 0A 10 38 56 66 102 94 148 C2 194 FO 240 0B 11 39 57 67 103 95 149 C3 195 F1 241 0C 12 3A 58 68 104 96 150 C4 196 F2 242 0D 13 3B 59 69 105 97 151 C5 197 F3 243 0E 14 3C 60 6A 106 98 152 C6 198<	05	5	33	51	61	97	8F	143	BD	189	EB	235
08 8 36 54 64 100 92 146 CO 192 EE 238 09 9 37 55 65 101 93 147 C1 193 EF 239 0A 10 38 56 66 102 94 148 C2 194 F0 239 0B 11 39 57 67 103 95 149 C3 195 F1 241 0C 12 3A 58 68 104 96 150 C4 196 F2 242 0D 13 3B 59 69 105 97 151 C5 197 F3 243 0E 14 3C 60 68 106 98 152 C6 198 F4 244 0F 15 3D 61 68 107 99 153 C7 19	06	6	34	52	62	98	90	144	BE	190	EC	236
09 9 37 55 65 101 93 147 C1 193 EF 239 0A 10 38 56 66 102 94 148 C2 194 F0 240 0B 11 39 57 67 103 95 149 C3 195 F1 241 0C 12 3A 58 68 104 96 150 C4 196 F2 242 0D 13 3B 59 69 105 97 151 C5 197 F3 243 0E 14 3C 60 6A 106 98 152 C6 198 F4 244 0F 15 3D 61 6B 107 99 153 C7 199 F5 245 10 16 3B 62 6C 108 9A 154 C8 2	07		35	53	63	99	91	145	BF	191	ED	237
OA 10 38 56 66 102 94 148 C2 194 F0 240 OB 11 39 57 67 103 95 149 C3 195 F1 241 OC 12 3A 58 68 104 96 150 C4 196 F2 242 OD 13 3B 59 69 105 97 151 C5 197 F3 243 0E 14 3C 60 6A 106 98 152 C6 198 F4 244 0F 15 3D 61 6B 107 99 153 C7 199 F5 245 10 16 3E 62 6C 108 9A 154 C8 200 F6 246 11 17 3F 36 6D 109 9B 155 C9	08	8		54	64	100	92	146		192		238
OB 11 39 57 67 103 95 149 C3 195 F1 241 OC 12 3A 58 68 104 96 150 C4 196 F2 242 OD 13 3B 59 69 105 97 151 C5 197 F3 243 OE 14 3C 60 6A 106 98 152 C6 198 F4 244 OF 15 3D 61 6B 107 99 153 C7 199 F5 245 10 16 3E 62 6C 108 9A 154 C8 200 F6 246 11 17 3F 63 6D 109 9B 155 C9 201 F7 247 12 18 40 64 6E 110 9C 156 CA												
OC 12 3A 58 68 104 96 150 C4 196 F2 242 OD 13 3B 59 69 105 97 151 C5 197 F3 243 OE 14 3C 60 6A 106 98 152 C6 198 F4 244 OF 15 3D 61 6B 107 99 153 C7 199 F5 245 10 16 3E 62 6C 108 9A 154 C8 200 F6 246 11 17 3F 63 6D 109 9B 155 C9 201 F7 247 12 18 40 64 6E 110 9C 156 CA 202 F8 248 13 19 41 65 6F 111 9D 157 CB												
OD 13 3B 59 69 105 97 151 C5 197 F3 243 OE 14 3C 60 6A 106 98 152 C6 198 F4 244 OF 15 3D 61 6B 107 99 153 C7 199 F5 245 10 16 3E 62 6C 108 9A 154 C8 200 F6 246 11 17 3F 63 6D 109 9B 155 C9 201 F7 247 12 18 40 64 6E 110 9C 156 CA 202 F8 248 13 19 41 65 6F 111 9D 157 CB 203 F9 249 14 20 42 66 70 112 9E 158 CC												
OE 14 3C 60 6A 106 98 152 C6 198 F4 244 OF 15 3D 61 6B 107 99 153 C7 199 F5 245 10 16 3E 62 6C 108 9A 154 C8 200 F6 246 11 17 3F 63 6D 109 9B 155 C9 201 F7 247 12 18 40 64 6E 110 9C 156 CA 202 F8 248 13 19 41 65 6F 111 9D 157 CB 203 F9 249 14 20 42 66 70 112 9E 158 CC 204 FA 250 15 21 43 67 71 113 9F 159 CD												
OF 15 3D 61 6B 107 99 153 C7 199 F5 245 10 16 3E 62 6C 108 9A 154 C8 200 F6 246 11 17 3F 63 6D 109 9B 155 C9 201 F7 247 12 18 40 64 6E 110 9C 156 CA 202 F8 248 13 19 41 65 6F 111 9D 157 CB 203 F9 249 14 20 42 66 70 112 9E 158 CC 204 FA 250 15 21 43 67 71 113 9F 159 CD 205 FB 251 16 22 44 68 72 114 A0 160 CE												
10 16 3E 62 6C 108 9A 154 C8 200 F6 246 11 17 3F 63 6D 109 9B 155 C9 201 F7 247 12 18 40 64 6E 110 9C 156 CA 202 F8 248 13 19 41 65 6F 111 9D 157 CB 203 F9 249 14 20 42 66 70 112 9E 158 CC 204 FA 250 15 21 43 67 71 113 9F 159 CD 205 FB 251 16 22 44 68 72 114 A0 160 CE 206 FC 252 17 23 45 69 73 115 A1 161 CF			1									
11 17 3F 63 6D 109 9B 155 C9 201 F7 247 12 18 40 64 6E 110 9C 156 CA 202 F8 248 13 19 41 65 6F 111 9D 157 CB 203 F9 249 14 20 42 66 70 112 9E 158 CC 204 FA 250 15 21 43 67 71 113 9F 159 CD 205 FB 251 16 22 44 68 72 114 A0 160 CE 206 FC 252 17 23 45 69 73 115 A1 161 CF 207 FD 253 18 24 46 70 74 116 A2 162 D0												
12 18 40 64 6E 110 9C 156 CA 202 F8 248 13 19 41 65 6F 111 9D 157 CB 203 F9 249 14 20 42 66 70 112 9E 158 CC 204 FA 250 15 21 43 67 71 113 9F 159 CD 205 FB 251 16 22 44 68 72 114 A0 160 CE 206 FC 252 17 23 45 69 73 115 A1 161 CF 207 FD 253 18 24 46 70 74 116 A2 162 D0 208 FE 254 19 25 47 71 75 117 A3 163 D1												
13 19 41 65 6F 111 9D 157 CB 203 F9 249 14 20 42 66 70 112 9E 158 CC 204 FA 250 15 21 43 67 71 113 9F 159 CD 205 FB 251 16 22 44 68 72 114 A0 160 CE 206 FC 252 17 23 45 69 73 115 A1 161 CF 207 FD 253 18 24 46 70 74 116 A2 162 D0 208 FE 254 19 25 47 71 75 117 A3 163 D1 209 FF 255 1A 26 48 72 76 118 A4 164 D2												
14 20 42 66 70 112 9E 158 CC 204 FA 250 15 21 43 67 71 113 9F 159 CD 205 FB 251 16 22 44 68 72 114 A0 160 CE 206 FC 252 17 23 45 69 73 115 A1 161 CF 207 FD 253 18 24 46 70 74 116 A2 162 D0 208 FE 254 19 25 47 71 75 117 A3 163 D1 209 FF 255 1A 26 48 72 76 118 A4 164 D2 210 1B 27 49 73 77 119 A5 165 D3 211 1			1									
15 21 43 67 71 113 9F 159 CD 205 FB 251 16 22 44 68 72 114 A0 160 CE 206 FC 252 17 23 45 69 73 115 A1 161 CF 207 FD 253 18 24 46 70 74 116 A2 162 D0 208 FE 254 19 25 47 71 75 117 A3 163 D1 209 FF 255 1A 26 48 72 76 118 A4 164 D2 210 1B 27 49 73 77 119 A5 165 D3 211 1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B												
16 22 44 68 72 114 A0 160 CE 206 FC 252 17 23 45 69 73 115 A1 161 CF 207 FD 253 18 24 46 70 74 116 A2 162 D0 208 FE 254 19 25 47 71 75 117 A3 163 D1 209 FF 255 1A 26 48 72 76 118 A4 164 D2 210 1B 27 49 73 77 119 A5 165 D3 211 1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A<			1									
17 23 45 69 73 115 A1 161 CF 207 FD 253 18 24 46 70 74 116 A2 162 D0 208 FE 254 19 25 47 71 75 117 A3 163 D1 209 FF 255 1A 26 48 72 76 118 A4 164 D2 210 1B 27 49 73 77 119 A5 165 D3 211 1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9<												
18 24 46 70 74 116 A2 162 D0 208 FE 254 19 25 47 71 75 117 A3 163 D1 209 FF 255 1A 26 48 72 76 118 A4 164 D2 210 1B 27 49 73 77 119 A5 165 D3 211 1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8<												
19 25 47 71 75 117 A3 163 D1 209 FF 255 1A 26 48 72 76 118 A4 164 D2 210 1B 27 49 73 77 119 A5 165 D3 211 1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 <												
1A 26 48 72 76 118 A4 164 D2 210 1B 27 49 73 77 119 A5 165 D3 211 1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219												
1B 27 49 73 77 119 A5 165 D3 211 1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FF</td> <td>255</td>			1								FF	255
1C 28 4A 74 78 120 A6 166 D4 212 1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 <td></td>												
1D 29 4B 75 79 121 A7 167 D5 213 1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 <td></td>												
1E 30 4C 76 7A 122 A8 168 D6 214 1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 <td></td>												
1F 31 4D 77 7B 123 A9 169 D7 215 20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 <td></td>												
20 32 4E 78 7C 124 AA 170 D8 216 21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 <td></td>												
21 33 4F 79 7D 125 AB 171 D9 217 22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 <td></td>												
22 34 50 80 7E 126 AC 172 DA 218 23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 <td></td>												
23 35 51 81 7F 127 AD 173 DB 219 24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 <td></td>												
24 36 52 82 80 128 AE 174 DC 220 25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
25 37 53 83 81 129 AF 175 DD 221 26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
26 38 54 84 82 130 B0 176 DE 222 27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
27 39 55 85 83 131 B1 177 DF 223 28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
28 40 56 86 84 132 B2 178 E0 224 29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
29 41 57 87 85 133 B3 179 E1 225 2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
2A 42 58 88 86 134 B4 180 E2 226 2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
2B 43 59 89 87 135 B5 181 E3 227 2C 44 5A 90 88 136 B6 182 E4 228												
2C 44 5A 90 88 136 B6 182 E4 228												
, , , , , , , , , , , , , , , , , , , ,	2D	45	5B	91	89	137	B7	183	E5	229	1	

Cuadro 1: Tabla de códigos hexadecimales y sus equivalentes decimales