PredictionWriteup_smartDevices

SS

23/06/2021

Loading Libraries

library(caret)
library(knitr)
library(rpart)
library(rpart.plot)
library(randomForest)
library(latexpdf)

Download the dataset using predefined urls

```
trainUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
testUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"</pre>
```

Load the dataset into variables

```
Post Cleaning of data variables i.e marking unusable fields as NA from #DIV/0!.
```

```
training_Data <- read.csv(url(trainUrl), na.strings = c("NA", "#DIV/0!", ""))
testing_Data <- read.csv(url(testUrl), na.strings = c("NA", "#DIV/0!", ""))</pre>
```

Data Transformations i.e cleaning of data

```
Getting rid of columns having unwanted data elements i.e NA
```

```
training_Data <- training_Data[, colSums(is.na(training_Data)) == 0]
testing_Data <- testing_Data[, colSums(is.na(testing_Data)) == 0]
head(training_Data)
head(testing_Data)</pre>
```

Deleting Columns which are not related

```
Removing Columns which are not required for prediction purpose training_Data <- training_Data[, -c(1:7)] testing_Data <- testing_Data[, -c(1:7)] Final Snapshot of Data to be used as input to models head(training_Data) head(testing_Data)
```

Partioning the training set into two different dataset

```
Splitting the datasets into two parts with 70 percent in training set and 30 percent in testing data set.
traning_Partition_Data <- createDataPartition(training_Data$classe, p = 0.7, list = F)</pre>
training_DataSet <- training_Data[traning_Partition_Data, ]</pre>
testing_DataSet <- training_Data[-traning_Partition_Data, ]</pre>
Checking Dimesnions for both sets
dim(training_Data)
dim(testing_DataSet)
\# Prediction Model 1 - using Decision Tree
decision_Tree_Model <- rpart(classe ~ ., data = training_DataSet, method = "class")</pre>
decision_Tree_Prediction <- predict(decision_Tree_Model, testing_DataSet, type = "class")</pre>
# Ploting Decision Tree
rpart.plot(decision_Tree_Model, main = "Decision Tree", under = T, faclen = 0)
# Applying confusion matrix to test results
confusionMatrix(factor(decision_Tree_Prediction), factor(testing_DataSet$classe))
Overall Statistics
                Accuracy : 0.7336
                  95% CI : (0.7221, 0.7448)
    No Information Rate: 0.2845
    P-Value [Acc > NIR] : < 2.2e-16
                   Kappa : 0.6613
```

Decision Tree

Figure 1: Decision Tree.

```
\# Prediction model 2 -using Random Forest
```

```
training_DataSet$classe = factor(training_DataSet$classe)
random_Forest_Model <- randomForest(classe ~. , data = training_DataSet, method = "class")
random_Forest_Prediction <- predict(random_Forest_Model, testing_DataSet, type = "class")
confusionMatrix(factor(random_Forest_Prediction), factor(testing_DataSet$classe))</pre>
```

Overall Statistics

Accuracy : 0.9949

95% CI: (0.9927, 0.9966)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.9936

Final Prediction using RF method

Final_Prediction <- predict(random_Forest_Model, testing_DataSet, type = "class")</pre>

Conclusion

Accuracy level of Random Forest Model is better than that of decision tree model as it is evident from the model statistics

Prediction Result for first 20 test cases

head(Final_Prediction,30)