Algorítmica: práctica 2 Mezclando k vectores ordenados

Sofía Almeida Bruno Antonio Coín Castro María Victoria Granados Pozo Miguel Lentisco Ballesteros José María Martín Luque

Grupo 2

6 de abril de 2017

Objetivo

- Diseño de un algoritmo divide y vencerás que se encargue de combinar k vectores ordenados.
- · Análisis de su eficiencia teórica, empírica e híbrida.
- Comparación con un algoritmo clásico.

Mezcla de 2 vectores

```
void merge(int T1[], int T2[], int S[], int n1, int n2) {
 2
        int p1 = 0, p2 = 0, p3 = 0;
 3
4
5
6
7
       while (p1 < n1 δδ p2 < n2) {
         if (T1[p1] <= T2[p2]) {
            S[p_3] = T_1[p_1];
            D1++:
 8
9
         else {
10
          S[p3] = T2[p2];
11
           p2++;
12
13
14
          p3++;
15
16
17
       while (p1 < n1) {
18
          S[p_{3++}] = T_1[p_{1++}];
19
20
21
       while (p2 < n2) {
22
         S[p3++] = T2[p2++];
23
24
```

Fuerza Bruta

```
int* mezcla_vectores(int** T, int k, int n) {
       int* S = new int[k*n]; // Vector mezcla
 3
       assert(S):
4
5
6
7
       if (k > 1) {
         int* aux = new int [k*n];
         assert(aux);
8
9
         // Primera mezcla
10
         merge(T[o], T[1], S, n, n);
11
12
         // Resto de mezclas
13
         for (int i = 2; i < k; i++) {
14
           merge(S, T[i], aux, i*n, n);
15
           swap(S, aux); // Intercambiamos punteros
16
17
18
         delete [] aux;
19
20
21
       else {
22
         for (int i = 0; i < n; i++) {
23
           S[i] = T[o][i];
24
25
26
27
       return S;
28
```

Eficiencia teórica

Eficiencia empírica

Eficiencia híbrida

Divide y Vencerás

Hemos realizado dos algoritmos usando la técnica Divide y Vencerás:

- Vectores dinámicos
- Vectores de la STL

Vectores Dinámicos

```
int* mezclaDV(int** T, int n, int start, int end) {
       int k = end - start + 1: // Número de vectores
 3
       // Caso base
 5
       if (k == 1) {
6
7
8
9
         return T[start];
       // Caso general
10
       else {
11
         int middle = (start + end) / 2;
12
         int n1 = middle - start + 1:
13
         int n2 = end - (middle + 1) + 1;
14
15
         // Divide
16
         int* izqda = mezclaDV(T, n, start, middle);
17
         int* dcha = mezclaDV(T, n, middle + 1, end);
18
19
         // Vencerás
20
         return merge(izqda, dcha, n * n1, n * n2);
21
22
```

Eficiencia teórica

Eficiencia empírica

Eficiencia híbrida

Vectores de la STL

```
vector<int> mezclaDV(vector<vector<int>> vectores) {
         // Casos base
         if (vectores.size() < 1) {
             vector<int> sol:
             return sol:
         } else if (vectores.size() == 1) {
             return vectores[0];
 9
         } else if (vectores.size() == 2) {
10
             return merge(vectores[0], vectores[1]);
11
12
13
         vector<vector<int>>::iterator half = vectores.begin() + vectores.size() / 2;
14
         vector<vector<int>> firstHalf(vectores.begin(), half), secondHalf(half + 1, vectores.end());
15
16
         // Divide
17
         vector<int> s1 = mezclaDV(firstHalf);
18
         vector<int> s2 = mezclaDV(secondHalf);
19
20
         // Vencerás
21
         return merge(s1, s2);
22
```

Eficiencia teórica

Eficiencia empírica

Eficiencia híbrida

Tamaño del vector (elementos)

Comparación eficiencias

Clásico —— DyV —— DyV STL ——