Basic Introduction to Electronics

Electrical current

Symbol: *i*

Unit: Ampere (A)

For example: 1 mA = 0.001 Amperes

Voltage

Symbol: v

Unit: Volt (V)

For example: 5 V

Circuit elements

Same v

Different *i*

Same v

Different *i*

Circuit elements

Same v

Different *i*

$$v = i \cdot R$$

$$i = \frac{v}{R}$$

Ohm's Law

Symbol: R

Unit: ohm (Ω)

For example: $1 k\Omega$

Resistor

$$v = i \cdot R$$

$$i = \frac{v}{R}$$

Ohm's Law

$$v = 0$$

$$R = 0$$

$$\stackrel{+}{v} \stackrel{|}{\downarrow} i$$

$$i = 0$$

$$R = \infty$$

If the resistance R is 2 k Ω , the current i is:

- [A] 0 mA
- [B] 2 mA
- [C] 4 mA
- [D] 16 mA
- [E] I don't know

What happens when the resistance *R* is lowered?

- [A] The current *i* increases
- [B] The current i decreases
- [C] The current i stays the same
- [D] The current i cannot be calculated
- [E] I don't know

What happens when the resistance *R* is lowered?

Very bad!

What is the current *i* ?

What is the current i?

No current

If the resistance R is 2 k Ω , the current i is:

If the resistance R is 2 k Ω , the current i is:

$$\sum_{up} v = \sum_{down} v$$

KVL Kirchhoff's Voltage Law

$$i_b = i_1 + i_2$$

$$\sum_{in} i = \sum_{out} i$$

KCL Kirchhoff's Current Law

Relationship between *i* an *v*?

Rules of the game

Rules of the game

$$\sum_{in} i = \sum_{out} i$$

$$\sum_{up} v = \sum_{down} v$$

Ohm's Law

$$v = i \cdot R$$

When the switch is $\underline{\text{closed}}$, the voltage v_2 is:

- [A] 0 V
- [B] 1 mV
- [C] 1 V
- [D] 4 V
- **[E]** 5 V

When the switch is open, the voltage v_2 is:

- [A] 0 V
- [B] 1 mV
- [C] 1 V
- [D] 4 V
- **[E]** 5 V

$1 k\Omega$ 5 V Switch

Observe v_2

HIGH: switch is open

LOW: switch is closed

$1 k\Omega$ 5 V **Switch**

Observe v_2

HIGH: switch is open

LOW: switch is closed

Other components

$$v = f(i)$$

Approximation: if there is any (positive) current flowing through it, $v = V_{FIXED}$. Otherwise, is must be that $v < V_{FIXED}$

- 1. Assume there is no current
- 2. Assume there is some current

$$i = 2 \text{ mA}$$

If the voltage over the LED V_{FIXED} is 3V, what is the current i?

- [A] 0 mA
- [B] 1 mA
- [C] 2 mA
- [D] 3 mA
- [E] 5 mA

Generate V_S

HIGH: light on

LOW: light off

