5.4 Das bestimmte Integral

1. Die Fläche unter einer Kurve

Tafelbild, Mathematik für Informatik, p.225

Gegeben sei eine beschränkte Funktion f auf einem Intervall [a,b]. Unser Ziel ist es, die Fläche, die vom Funktionsgraphen und der x-Achse begrenzt wird, zu bestimmen. Dazu zerlegen wir das Intervall [a,b] in n Teilintervalle $[x_0,x_1],\ldots,[x_{n-1},x_n]$ mit

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b.$$

Dann werten wir die Funktion f in jedem Intervall an einer Zwischenstelle $\xi_i \in [x_{i-1}, x_i]$ aus und bilden die Summe

$$S_n = \sum_{i=1}^n f\left(\xi_i
ight) \left(x_i - x_{i-1}
ight)$$

Das ist die so genannte Riemann'sche Summe. Diese Summe sieht wenn man sie Abbilden würde so aus:

Definiert ist diese Summe so:

♦ Definition 5.44

Mathematik für Informatik, p.226

Sei I=[a,b] ein Intervall. Jede Wahl von Unterteilungspunkten gemäß (5.11) definiert eine Zerlegung des Intervalls in die Teilintervalle $[x_0,x_1],\ldots,[x_{n-1},x_n]$. Die Länge des längsten Teilintervalls einer Zerlegung Z heißt Feinheit $\mathcal{F}(Z)$ der Zerlegung Z.

Die einer Zerlegung und einer Auswahl von Zwischenstellen entsprechende Summe (5.12) heißt Riemann'sche Zwischensumme.

Definition bestimmtes Integral

Tafelbild

Obligation Definition Ausgezeichnete Zerlegungsfolge

Definition 5.45

Mathematik für Informatik, p.226, Tafelbild

Sei I=[a,b] ein Intervall und $f:I\to\mathbb{R}$. Falls jede Folge $(S_n)_{n\in\mathbb{N}}$ von Zwischensummen, deren zugehörige Zerlegungsfolge $\lim_{n\to\infty}\mathcal{F}\left(Z_n\right)=0$ erfüllt, gegen denselben Grenzwert konvergiert, so nennt man diesen Grenzwert das **bestimmte Integral** von f auf dem Intervall [a,b] und schreibt $\int_a^b f(x)dx$. Funktionen, die ein bestimmtes Integral besitzen, heißen **integrierbar**. Dabei heißen a und b Integrationsgrenzen und x Integrationsvariable. Falls die obere Integrationsgrenze nicht größer als die untere ist, so definiert man:

$$\int_a^b f(x)dx = -\int_b^a f(x)dx, ext{ falls } a>b, ext{ und } \int_a^a f(x)dx = 0$$

Bemerkung: Das bestimmte Integral von f entspricht also genau der Fläche, die der Graph mit der x-Achse einschließt, wobei Gebiete, die unterhalb der x-Achse liegen, negativ gewichtet werden.

Obersumme und Untersumme

Tafelbild, Mathematik für Informatik, p.227

Wenn man bei der Riemannschen Zwischensumme die Zwischenstellen ξ_i so wählt, dass die Funktion f an diesen Stellen ihr Maximum bzw. Minimum im jeweiligen Teilintervall $[x_{i-1}, x_i]$ annimmt, spricht man von:

- Obersumme: Hierbei gilt $f(\xi_i) = \max_{x \in [x_{i-1}, x_i]} f(x)$ für $i = 1, \dots, n$. Die Obersumme ist also die Summe der Flächen von Rechtecken, deren Höhe jeweils das Maximum der Funktion im jeweiligen Teilintervall ist.
- Untersumme: Hierbei gilt $f(\xi_i) = \min_{x \in [x_{i-1}, x_i]} f(x)$ für $i = 1, \dots, n$. Die Untersumme ist die Summe der Flächen von Rechtecken, deren Höhe jeweils das Minimum der Funktion im jeweiligen Teilintervall ist.

Die Integrierbarkeit einer Funktion f lässt sich auch mit Hilfe dieser Ober- und Untersummen charakterisieren. Das entsprechende Kriterium wird hier ohne Beweis angegeben.

i Satz 5.47 (Riemann'sches Integrabilitätskriterium)

Mathematik für Informatik, p.227

Eine auf dem Intervall [a,b] beschränkte Funktion f ist genau dann integrierbar, wenn es zu jedem $\varepsilon > 0$ eine Zerlegung Z von [a,b] gibt, so dass die zugehörige Obersumme $O_Z(f)$ und Untersumme $U_Z(f)$ die Ungleichung $O_Z(f) - U_Z(f) < \varepsilon$ erfüllen.

Beispiele

∷ Beispiel 5.46

Tafelbild, Mathematik für Informatik, p.226

Eine nicht integrierbare Funktion ist die so genannte Dirichlet'sche Sprungfunktion $f:[0,1]\to\mathbb{R}$, definiert durch

$$f(x) = egin{cases} 1 & ext{ falls } x \in \mathbb{Q} \ 0 & ext{ falls } x
otin \mathbb{Q} \end{cases}$$

Da jedes Teilintervall $[x_i,x_{i+1}]$ einer Zerlegung von [0,1] sowohl rationale als auch irrationale Zahlen enthält, lassen sich sämtliche Zwischenstellen ξ_i rational bzw. irrational wählen. Im ersteren Fall ergibt die Zwischensumme (5.12) den Wert $S_n=1$, während im letzteren Fall $S_n=0$ gilt. Somit ist f nicht integrierbar.

Sätze zur Integrierbarkeit

(i) Satz 5.48

Mathematik für Informatik, p.227, Tafelbild

Jede auf [a, b] definierte monotone Funktion ist integrierbar.

Beweis. Es genügt, den Fall einer monoton wachsenden Funktion $f\mathbf{zu}$ betrachten. Eine solche Funktion f ist durch f(a) nach unten und durch f(b) nach oben beschränkt. Die Behauptung folgt nun direkt aus Satz 5.47: Wir geben uns eine Zerlegung $a=x_0 < x_1 < \cdots < x_n = b$ vor. Dann gilt offensichtlich $\min_{x_{i-1} \le x \le x_i} f(x) = f(x_{i-1})$ und $\max_{x_{i-1} \le x \le x_i} f(x) = f(x_i)$. Daraus folgt

$$egin{aligned} O_Z(f) - U_Z(f) &= \sum_{i=1}^n \left(f\left(x_i
ight) - f\left(x_{i-1}
ight)
ight) \left(x_i - x_{i-1}
ight) \ &\leq \mathcal{F}(Z) \sum_{i=1}^n \left(f\left(x_i
ight) - f\left(x_{i-1}
ight)
ight) = \mathcal{F}(Z) (f(b) - f(a)) \end{aligned}$$

und dieser Wert kann beliebig klein gemacht werden, indem man eine Zerlegung mit hinreichend kleiner Feinheit wählt.

Jede monotone Funktion ist integrierbar

♦ Definition 5.49

Mathematik für Informatik, p.228

Eine Funktion heißt stückweise stetig im Intervall [a,b], wenn sie dort beschränkt sowie mit Ausnahme von höchstens endlich vielen Stellen stetig ist und an jeder Unstetigkeitsstelle beide einseitigen Grenzwerte existieren.

(i) Satz 5.50

Jede auf [a, b] stückweise stetige Funktion ist integrierbar.

Ohne Beweis.

(i) Satz 5.51

Für jede integrierbare Funktion $f:[a,b]\to\mathbb{R}$ ist auch |f| integrierbar.

Beweis. Wir betrachten ein Teilintervall $I_k=[x_{k-1},x_k]$ einer Zerlegung von [a,b]. Sei $m_k=\min_{x\in I_k}f(x)$ und $M_k=\max_{x\in I_k}f(x)$ sowie $\bar{m}_k=\min_{x\in I_k}|f(x)|$ und $\bar{M}_k=\max_{x\in I_k}|f(x)|$. Für alle $x,y\in I_k$ gilt dann

$$||f(x)|-|f(y)||\leq |f(x)-f(y)|\leq M_k-m_k$$

und daher insbesondere $\bar{M}_k - \bar{m}_k \leq M_k - m_k$. Da f integrierbar ist, gibt es zu jedem $\varepsilon > 0$ eine Zerlegung Z mit $O_Z(f) - U_Z(f) < \varepsilon$. So eine Zerlegung erfüllt aber auch

$$egin{aligned} O_Z(|f|) - U_Z(|f|) & \leq \sum_{k=1}^n \left(ar{M}_k - ar{m}_k
ight)(x_i - x_{i-1}) \ & \leq \sum_{k=1}^n \left(M_k - m_k
ight)(x_i - x_{i-1}) = O_Z(f) - U_Z(f) < arepsilon \end{aligned}$$

und daher ist nach Satz 5.47 auch |f| integrierbar.

Sätze zu Rechenregeln und co

(i) Satz 5.52

Tafelbild, Mathematik für Informatik, p.228, Mathematik für Informatik, p.229

Satz 5.52 Seien f und g integrierbar auf [a, b]. Dann folgt:

(i) Die Funktion $f\mapsto \int_a^b f(x)dx$ ist linear, d.h., es gelten die beiden Identitäten

$$\int_a^b Kf(x)dx = K \int_a^b f(x)dx$$

für alle Konstanten $K \in \mathbb{R}$, und

$$\int_a^b (f(x)+g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx.$$

(ii) Sei $a \le c \le b$, dann ist (siehe Abb. 5.11, links)

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

- (iii) Aus $f(x) \leq g(x)$ für alle $x \in [a,b]$ folgt $\int_a^b f(x) dx \leq \int_a^b g(x) dx.$
- (iv) Für a < b gelten die Ungleichungen

$$\left|\int_a^b f(x) dx
ight| \leq \int_a^b |f(x)| dx \leq (b-a) \sup_{x \in [a,b]} |f(x)|$$

und

$$f(b-a)\inf_{x\in [a,b]}f(x)\leq \int_a^bf(x)dx\leq (b-a)\sup_{x\in [a,b]}f(x)$$

2. Hauptsatz der Differential und Integralrechnung

Mittelwertsatz der Integralreihe

i Satz 5.53 (Mittelwertsatz der Integralrechnung)

Tafelbild, Mathematik für Informatik, p.229, Mathematik für Informatik, p.230

Sei f stetig auf dem Intervall [a,b]. Dann gibt es ein $\xi \in [a,b]$, so dass $\int_a^b f(x) dx = f(\xi)(b-a)$.

Beweis. Der Satz besagt, dass die Fläche unter dem Funktionsgraphen durch ein flächengleiches Rechteck dargestellt werden kann, dessen Höhe ein "Mittelwert" der im Intervall [a,b]

Hauptsatz der Differenetial und Integralrechnung

i Satz 5.55 (Hauptsatz der Differential- und Integralrechnung)

Mathematik für Informatik, p.231, Mathematik für Informatik, p.231, Tafelbild

Sei f eine auf dem Intervall [a,b] stetige Funktion. Dann ist $F(x)=\int_a^x f(t)dt$ eine Stammfunktion von f. Jede beliebige Stammfunktion F von f erfüllt

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Bemerkung: Statt F(b) - F(a) schreibt man kürzer auch $F(x)|_a^b$

Beweis. Wir zeigen zunächst, dass F eine Stammfunktion von f ist. Es gilt

$$rac{F(x) - F\left(x_0
ight)}{x - x_0} = rac{1}{x - x_0} igg(\int_a^x f(t) dt - \int_a^{x_0} f(t) dt igg) = rac{1}{x - x_0} \int_{x_0}^x f(t) dt = f(\xi),$$

für ein ξ mit $x_0 \leq \xi \leq x$, wobei die letzte Gleichung aus dem Mittelwertsatz der Integralrechnung folgt. Der Grenzübergang $x \to x_0$, der auch $\xi \to x_0$ impliziert, liefert schließlich $F'(x_0) = \lim_{\xi \to x_0} f(\xi) = f(x_0)$.

Sei nun F eine beliebige Stammfunktion von f. Dann gilt nach Satz $5.39F(x)=\int_a^x f(t)dt+c$. Daraus folgt

$$F(b)-F(a)=\int_a^b f(t)dt+c-\left(\int_a^a f(t)dt+c
ight)=\int_a^b f(t)dt$$

Substitution

(i) Satz 5.56 (Substitutionsregel für bestimmte Integrale)

Tafel, Mathematik für Informatik, p.231

Sei f stetig auf [a,b] und ferner sei $g:[c,d] \to [a,b]$ stetig differenzierbar mit g(c)=a und g(d)=b. Dann gilt

$$\int_a^b f(u)du = \int_a^d f(g(x))g'(x)dx$$

d.h., bei der Substitution in bestimmten Integralen müssen auch die Grenzen substituiert werden.

Beweis. Die Behauptung folgt aus der Tatsache, dass für jede Stammfunktion F von f die Funktion F(g(x)) eine Stammfunktion des Integranden auf der rechten Seite von (5.15) ist. Einsetzen der Grenzen ergibt in beiden Fällen F(b) - F(a) und daher (5.15).

Beispiele dazu

: ■ Beispiel 5.57 (c)

Tafel, Mathematik für Informatik, p.233

Wir berechnen die Fläche eines Halbkreises mit dem Radius r=1. Jeder Punkt (x,y) des Kreises erfüllt die Gleichung $x^2+y^2=1$. Im oberen Halbkreis haben wir daher $y=\sqrt{1-x^2}$. Die Fläche des Halbkreises ist dann $\int_{-1}^1 \sqrt{1-x^2} dx$. Dieses Integral lässt sich mit der Substitution $x=\sin t, dx=\cos t dt$ berechnen, wobei auch die Grenzen substituiert werden müssen. Für $x=\pm 1$ bekommen wir daher $t=\pm \frac{\pi}{2}$. Dies ergibt nun

$$egin{split} \int_{-1}^{1} \sqrt{1-x^2} dx &= \int_{-rac{\pi}{2}}^{rac{\pi}{2}} \sqrt{1-\sin^2 t} \cos t dt \ &= \int_{-rac{\pi}{2}}^{rac{\pi}{2}} \cos^2 t dt = \left(rac{t+\sin t \cos t}{2}
ight)igg|_{-rac{\pi}{2}}^{rac{\pi}{2}} &= rac{\pi}{2} \end{split}$$

wobei das letzte Integral mittels partieller Integration gelöst werden kann (siehe Übungsaufgaben).

\equiv Beispiel 5.57 (b)

Mathematik für Informatik, p.232

Mit Hilfe des vorigen Beispiels können wir nun die folgende Abschätzung machen (siehe auch Abb 5.13):

$$rac{1}{2} + rac{1}{3} + \cdots + rac{1}{n} \leq \int_{1}^{n} rac{dx}{x} = \ln n \leq 1 + rac{1}{2} + \cdots + rac{1}{n-1}$$

Abbildung 5.13 links: $\int_a^b \frac{dx}{x}$, Mitte und rechts: linke und rechte Seite von (5.16) für n=6

Daraus folgt $\ln n \le 1 + \frac{1}{2} + \cdots + \frac{1}{n} \le 1 + \ln n$, also

$$0 \leq a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \leq 1$$

Weiters gilt wegen $\ln\left(1+\frac{1}{n}\right)\geq \frac{1}{n}-\frac{1}{2n^2}$ (vgl. Beispiel 5.22)

$$egin{align} a_n-a_{n+1}&=-rac{1}{n+1}-\ln n+\ln (n+1)=-rac{1}{n+1}+\ln \left(1+rac{1}{n}
ight)\ &\geq -rac{1}{n+1}+rac{1}{n}-rac{1}{2n^2}=rac{1}{n^2+n}-rac{1}{2n^2}\ &>0 ext{ für }n\geq 2. \end{align}$$

Die Folge $(a_n)_{n\geq 2}$ ist daher (streng) monoton fallend, nach unten durch 0 beschränkt und somit konvergent. Der Grenzwert $\lim_{n\to\infty}a_n=\gamma\approx 0.577216$ wird EulerMascheroni'sche Konstante genannt. Diese liefert eine asymptotische Formel für die Partialsummenfolge der harmonischen Reihe, die so genannten harmonischen Zahlen

$$H_n = \sum_{k=1}^n rac{1}{k} \sim \ln n + \gamma$$

die in der Analyse vieler Algorithmen (z.B. Quicksort, siehe Kapitel 7, vgl. auch [9] und [17]) auftreten.

