Name:

Due: Wednesday, Dec. 23rdt, 2020

Instructions:

Please include essential steps in your solution. For most of the problems, answers without essential steps may receive a score of 0.

1. Let V be a vector space over the reals with basis $\vec{v}_1, \ldots, \vec{v}_n$. Show that the linear operator $T: \mathbb{R}^n \to V$ given by

$$T((c_1, c_2, \dots, c_n)) = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$$

is an isomorphism of vector spaces.

- 2. Let $V = R^3$ and $\vec{w}_1 = (0,1,0)$, $\vec{w}_2 = (1,1,1)$, $\vec{v}_1 = (1,3,1)$, $\vec{v}_2 = (2,-1,1)$, $\vec{v}_3 = (1,0,1)$. The set $\vec{v}_1, \vec{v}_2, \vec{v}_3$ is a basis of V. Determine which $\vec{v}_j's$ could be replaced by \vec{w}_1 , and which \vec{v}_j could be replaced by both \vec{w}_1 and \vec{w}_2 , while retaining the basis property.
- 3. Assume that $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\} \subset V$, where V is a vector space of dimension n. Answer True/False to the following:
 - (a) If S is a basis of V then k = n.
 - (b) if S spans V, then $k \leq n$.
 - (c) If S is linearly independent then $k \leq n$.
 - (d) If S is linearly independent and k = n, then S spans V.
 - (e) If S spans V and k = n then S is a basis for V.
- 4. Use the fact that B is a reduced echelon form of A to find bases for the row and column spaces of A with no calculations, and the null space with minimum

calculations, where
$$\begin{bmatrix} 3 & 5 & -1 & 5 & 1 \\ 1 & 2 & -1 & 2 & 0 \\ 2 & 3 & 0 & 3 & 1 \end{bmatrix}$$
 and
$$\begin{bmatrix} 1 & 0 & 3 & 0 & 2 \\ 0 & 1 & -2 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
.

5. Let $A = \begin{bmatrix} 0 & 1 & 0 & 1 & 2 \\ 1 & 0 & 2 & 1 & 2 \\ 2 & 2 & 4 & 4 & 8 \end{bmatrix}$. Use the column space algorithm on the matrix $[A\ I_3]$ to find a basis B of C(A) and to expand it to a basis of R^3 .