STAT462 Data Analysis Project: Ames Housing Price Prediction

Yiqi Xiong

Introduction

Housing price is one of the indexes for the economy. Sharply decreased housing prices and over-issued sub-prime mortgage unbalanced the relationship between the global real estate market and the baking system, then it ultimately triggered the global financial crisis in 2008. Housing evaluation is also crucial for different groups with a multitude of purposes: homeowners, investors, tax assessors, and other real estate market participants. (Frew. & Jud., 2003) Housing prices can be influenced by various factors, such as location, neighborhood, and total living area. Therefore, it is important to predict the housing prices to provide a practical suggestion for both buyer and seller. Moreover, the development of a housing price prediction model would greatly assist in the prediction of future housing prices and the establishment of real estate policies. (Park. & Bae., 2015) This project uses regression analysis as a study methodology to develop housing price prediction models. The "AmesHousing" data set was collected from the Ames Assessor's Office, and it contains information on computing assessed values for individual residential properties sold in Ames, IA from 2006 to 2010. The data set has 2930 observations and 80 variables (exclude 2 observation identifiers): 23 nominal, 23 ordinal, 14 discrete, and 20 continuous variables, and they are the direct description of the quality and quantity of many physical attributes of the property. (De Cock, 2011) This project uses 20 continuous variables for the construct regression models. The goal of this project is to select important features for predicting housing prices and to find which model can achieve better performance.

Data Preprocessing

We extract 20 continuous variables (Table 1) from the original "AmesHousing" data set, and We drop observations with missing value. (Output 1) Since the variable "Total Bsmt SF" is the sum of the "BsmtFin SF 1" and "BsmtFin SF 2", we drop "Total Bsmt SF", and similar situation also applies to the variable "Gr Liv Area" to considering keep more information. The final data set dimension 2421 observations and 18 variables. The response is the "SalePrice", and the other variables are predictors.

Exploratory Data Analysis

After we fit histogram and boxplot to every18 variables, we observe that all variables are not normally distributed, and they are all skewed to the right. From boxplots and the summary statistics (Output 2), we can see there exists large variation and some outliers among the dataset, especially for "SalePrice".

Therefore, checking for influential points and normality for regression model is necessary. From Figure 2, we observe negative relationship between the combination of "SalePrice" with "Low.Qual.Fin.SF", "Misc.Val", and "Low.Qual.Fin.SF" respectively. No relationship between "BsmtFin.SF.2" and "SalePrice" because of many "0" value in "BsmtFin.SF.2". Other predictors have positive relationship with "SalePrice". We do not find multicollinearity issue from the plot, but further validation is needed. We also split the dataset into a 25% testing set and a 75% training set. The following models will perform predictions based on training set and compare accuracy based on the testing set.

Figure 1: Distribution of "SalePrice"

Figure 2: Correlation plot of data set

Analysis

First, we fit the full linear model. The variable "Lot.Frontage", "Low.Qual.Fin.SF", and "3Ssn.Porch" are not statistically significant at 0.05 level from model summary (Output 3) using T test, but "Lot.Frontage" is significant and "BsmtFin.SF.2" is insignificant from the ANOVA (Analysis of Variance) using F test.(Output 4)The full linear model is significant, but the normality assumption is not satisfied from Shapiro-Wilk test. The linearity and equal variance assumption are satisfied if we ignore the labeled outliers.(Output 5) Also, the VIF result (Output 6) confirms there is no serious multicollinearity problem among predictors. The following fitted models have same diagnostic conclusion. After we remove outliers, we apply full model again. "BsmtFin.SF.2" becomes insignificant. Since "Lot.Frontage" is very close to significant. Then, we drop "BsmtFin.SF.2", "Low.Qual.Fin.SF",

and "3Ssn.Porch" to perform a sub linear model. Since the response has an extreme wide range and huge variation, we decide to apply cubic root transformation on "SalePrice" to reduce homoscedasticity. The same procedures are applied to cubic root transformation models. Second, We apply general lest squared regression with an autoregressive process of order 1 on cubic_root_sub model. Third, we perform AIC and BIC selection based on full cubic root model. The AIC for AIC selection is 10195.16 and for BIC selection is 10195.26. Lastly, we fit models based on selected variables using the ridge, lasso, and elastic net.

Result

We can overserve coefficient estimates of each model in Table 1. The values of coefficients from models with cubic root transformation are very close. The sub linear model, cubic root sub model, and generalized least squares regression based on the cubic root sub model do not contain "BsmtFin.SF.2", "Low.Qual.Fin.SF", and "3Ssn.Porch". The AIC selection, Lasso regression and Elastic Net do not contain "Lot.Frontage", "Low.Qual.Fin.SF", and "3Ssn.Porch". The BIC selection does not choose "Lot.Frontage", "Lor.Area" "Low.Qual.Fin.SF", and "3Ssn.Porch". Since all model selection drop the predictor "Low.Qual.Fin.SF", and "3Ssn.Porch", it implies these two variables may not influence sale price. Also, the increasing total area of the house, including basement, living area, and garage result higher sale prices. The smaller pool area, less expensive miscellaneous feature, shorter distance between the property and the street, and smaller enclosed porch area will also increase the sale price.

	Full_Linear	Sub_Linear	Full_Cubic_rt	Sub_Cubic_rt	gls	AIC	BIC	Ridge	Lasso	Elastic Net
(Intercept)	-15971.5	-14407.47	36.30244	36.49613	36.49747356	36.11337	36.1165525	37.16751	36.79766	36.86352
Lot Frontage	-97.4461	-104.2353	-0.00660804	-0.0073275	-0.00732889			-0.001785847		
Lot Area	0.504395	0.573146	2.9385E-05	3.7405E-05	3.74907E-05	2.20635E-05		3.74565E-05	1.2967E-05	1.4966E-05
Mas Vnr Area	58.26353	59.02929	0.003148997	0.00325371	0.003252351	0.003146292	0.00307769	0.004016454	0.00327806	0.00335835
BsmtFin SF 1	54.13022	45.32046	0.005327887	0.00428518	0.004284577	0.005364535	0.0053726	0.004309428	0.00410146	0.00408961
BsmtFin SF 2	32.63058		0.003854303			0.003877597	0.00395946	0.002720816	0.00199865	0.00200858
Bsmt Unf SF	38.07184	28.64135	0.00407384	0.00294743	0.002948476	0.004095717	0.00407978	0.00322113	0.00283962	0.00284368
1 st Flr SF	65.22939	72.19611	0.005994319	0.00680967	0.006808081	0.005848842	0.00601404	0.005765341	0.00648787	0.00641697
2nd Flr SF	64.50233	62.82666	0.006388789	0.00617878	0.006179138	0.006354505	0.00641462	0.005608478	0.00590152	0.00584953
Low Qual Fir	-0.32961		-0.0014195					-0.001286164		
Garage Area	90.28449	91.9141	0.009443645	0.00965156	0.00965102	0.009376428	0.00939557	0.009501216	0.00977071	0.00975925
Wood Deck S	62.62332	67.23239	0.006516175	0.00707654	0.00707719	0.006525632	0.0065283	0.006815707	0.00608722	0.0061398
Open Porch S	47.95113	52.36256	0.005158114	0.00563465	0.005631578	0.005087379	0.0050007	0.006601976	0.00460899	0.00478358
Enclosed Por	-58.8158	-59.01903	-0.00778937	-0.0078509	-0.00786324	-0.0080504	-0.008003	-0.007585307	-0.0067516	-0.0067872
3-Ssn Porch	24.20309		0.004372154					0.004206297		
Screen Porch	60.22199	64.39311	0.006256544	0.0066953	0.006698939	0.006138448	0.00620639	0.006258218	0.00457075	0.00466178
Pool Area	-94.6223	-86.58328	-0.01301816	-0.1206262	-0.01207044	-0.01327337	-0.0132775	-0.01060477	-0.0083985	-0.0084201
Misc Val	-19.1513	-19.24978	-0.00167625	-0.0016868	-0.00168654	-0.00166788	-0.0016592	-0.001520685	-0.0013866	-0.0013878

Table 1: Model coefficients

To choose a model that has better performance for predicting house sale price, we use R squared, RMSE(root mean squared error), and MAE(mean absolute error) to evaluate the model prediction performance. From Table 2, we choose lasso regression for our final prediction model, since lasso regression has relatively high R squared, lowest RMSE, and relatively small MEA value by comparing with other models. We also take mean, median, and maximum from lasso regression to predict sale price with 95% confidence interval and prediction interval. (Figure 3) For example, we have 95% confidence that a house with a true value \$169278 (=55.31803^3) will fall in a range between \$166290 and \$172301.

Table 2: Model Performance

Figure 3: Prediction on Lasso Regression

Conclusion

We perform various regression models in this project. The lasso regression model has a better performance in predicting housing prices since it can explain more observations and have high prediction accuracy when we only use the continuous variables in the original data set. To further improve our model, we can use all predictors to build models. In this way, we can consider more factors that can influence sale price, then we may achieve a better prediction performance. Moreover, since the real estate market closely relates to the economy. We can also connect the economic environment to housing prices, which will generate a spatial-temporal relationship for prediction models.

Reference:

- Frew, J., & Jud, G. (2003). Estimating the value of apartment buildings. *Journal of Real Estate Research*, 25(1), 77-86.
- Park, B., & Bae, J. K. (2015). Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. *Expert Systems with Applications*, 42(6), 2928-2934.
- De Cock, D. (2011). Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. *Journal of Statistics Education*, 19(3).

Code Soucre:

- kassambara. (2018) Penalized Regression Essentials: Ridge, Lasso & Elastic Net. *Statistical tools for high-throughput data analysis*. Retrieved from: http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/153-penalized-regression-essentials-ridge-lasso-elastic-net/#elastic-net/
- Luis. (2011) Linear regression with correlated data. Retrieved from: https://www.r-bloggers.com/linear-regression-with-correlated-data/

Appendix

Fields	Description				
Lot Frontage	Linear feet of street connected to property				
Lot Area	Lot size in square feet				
Mas Vnr Area	Masonry veneer area in square feet				
BsmtFin SF 1	Type 1 finished square feet				
BsmtFin SF 2	Type 2 finished square feet				
Bsmt Unf SF	Unfinished square feet of basement area				
Total Bsmt SF	Total square feet of basement area				
1st Flr SF	First Floor square feet				
2nd Flr SF	Second floor square feet				
Low Qual Fin SF	Low quality finished square feet (all floors)				
Gr Liv Area	Above grade (ground) living area square feet				
Garage Area	Size of garage in square feet				
Wood Deck SF	Wood deck area in square feet				
Open Porch SF	Open porch area in square feet				
Enclosed Porch	Enclosed porch area in square feet				
3-Ssn Porch	Three season porch area in square feet				
Screen Porch	Screen porch area in square feet				
Pool Area	Pool area in square feet				
Misc Val	\$Value of miscellaneous feature				
SalePrice	Sale price \$\$				

Table 1: Data filed description.

colS	ums(sapply(hous	ing, is.na))			
##	Lot Frontage	Lot Area	Mas Vnr Area	BsmtFin SF 1	BsmtFin SF 2
##	490	0	23	1	1
##	Bsmt Unf SF	Total Bsmt SF	1st Flr SF	2nd Flr SF	Low Qual Fin SF
##	1	1	0	0	0
##	Gr Liv Area	Garage Area	Wood Deck SF	Open Porch SF	Enclosed Porch
##	0	1	0	0	0
##	3Ssn Porch	Screen Porch	Pool Area	Misc Val	SalePrice
##	0	0	0	0	0

Output 1: Report for missing value

Lot.Frontage	Lot.Area	Mas.Vnr.Area	BsmtFin.SF.1	BsmtFin.SF.2	ad (data\$Lat Enantage)	22 26202
Min. : 21.00	Min. : 1300	Min. : 0.00	Min. : 0.0	Min. : 0.00	sd(data\$Lot.Frontage)	23.36302
1st Qu.: 58.00	1st Qu.: 7207	1st Qu.: 0.00	1st Qu.: 0.0	1st Qu.: 0.00	sd(data\$Lot.Area)	6443.529
Median : 68.00 Mean : 69.18	Median : 9247 Mean : 9708	Median : 0.00 Mean : 99.92	Median : 338.0 Mean : 426.4	Median : 0.00 Mean : 46.93	sd(data\$Mas.Vnr.Area)	180.0843
3rd Qu.: 80.00	3rd Qu.: 11202		3rd Qu.: 716.0	3rd Qu.: 0.00	sd(data\$BsmtFin.SF.1)	462.835
Max. :313.00	Max. :215245	Max. :1600.00	Max. :5644.0	Max. :1474.00	sd(data\$BsmtFin.SF.2)	162.3563
Bsmt.Unf.SF	X1st.Flr.SF		ow.Qual.Fin.SF	Garage.Area	,	
Min. : 0.0	Min. : 334		in. : 0.000	Min. : 0.0	sd(data\$Bsmt.Unf.SF)	444.0202
1st Qu.: 228.0 Median : 486.0	1st Qu.: 866 Median :1073		st Qu.: 0.000 edian : 0.000	1st Qu.: 308.0 Median : 477.0	sd(data\$X1st.Flr.SF)	397.63
Mean : 576.1	Mean :1153		ean : 5.151	Mean : 468.7	sd(data\$X2nd.Flr.SF)	421.4685
3rd Qu.: 817.0	3rd Qu.:1378		rd Qu.: 0.000	3rd Qu.: 576.0	sd(data\$Low.Qual.Fin.SF)	48.60975
Max. :2336.0	Max. :5095		ax. :1064.000	Max. :1488.0	· · · · /	222.0557
Wood.Deck.SF	Open.Porch.SF	Enclosed.Porch	X3Ssn.Porch	Screen.Porch	sd(data\$Garage.Area)	222.0557
Min. : 0.00	Min. : 0.00	Min. : 0.00	Min. : 0.000	Min. : 0.00	sd(data\$Wood.Deck.SF)	120.8667
1st Qu.: 0.00 Median : 0.00	1st Qu.: 0.00 Median : 25.00	1st Qu.: 0.00 Median : 0.00	1st Qu.: 0.000 Median: 0.000	1st Qu.: 0.00 Median : 0.00	sd(data\$Open.Porch.SF)	67.95858
Mean : 89.21	Mean : 46.78	Mean : 23.67	Mean : 2.434	Mean : 16.17	sd(data\$Enclosed.Porch)	64.38114
3rd Qu.:168.00	3rd Qu.: 68.00	3rd Qu.: 0.00	3rd Qu.: 0.000		sd(data\$X3Ssn.Porch)	24.69179
Max. :870.00	Max. :742.00	Max. :1012.00	Max. :508.000	Max. :576.00	,	
Pool.Area	Misc.Val	SalePrice			sd(data\$Screen.Porch)	56.38898
Min. : 0.00	Min. : 0.0				sd(data\$Open.Porch.SF)	67.95858
1st Qu.: 0.00	1st Qu.: 0.0				· · · · · · /	
Median : 0.00	Median: 0.0				sd(data\$Pool.Area)	36.17878
Mean : 2.41 3rd Qu.: 0.00	Mean : 44.4	48 Mean :179706			sd(data\$Misc.Val)	503.2732
	3rd Qu.: 0.0	30 3rd Qu.:212000			su(datapiviisc. v ai)	303.2732

Output 2: Summary statistics

```
Call:
lm(formula = SalePrice ~ ., data = housing_train)
Residuals:
   Min
           1Q Median
                          3Q
                                 Max
-672724 -20059 -159 19555 318004
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
             -1.597e+04 4.195e+03 -3.808 0.000145 ***
Lot.Frontage -9.745e+01 5.350e+01 -1.821 0.068709 .
              5.044e-01 1.741e-01 2.897 0.003819 **
Lot.Area
              5.826e+01 6.942e+00 8.393 < 2e-16 ***
Mas.Vnr.Area
              5.413e+01 4.317e+00 12.540 < 2e-16 ***
BsmtFin.SF.1
              3.263e+01 7.325e+00 4.455 8.92e-06 ***
BsmtFin.SF.2
              3.807e+01 4.200e+00 9.064 < 2e-16 ***
Bsmt.Unf.SF
              6.523e+01 4.932e+00 13.226 < 2e-16 ***
X2nd.Flr.SF
X1st.Flr.SF
               6.450e+01 2.905e+00 22.205 < 2e-16 ***
Low.Qual.Fin.SF -3.296e-01 2.102e+01 -0.016 0.987488
Garage.Area 9.028e+01 5.910e+00 15.275 < 2e-16 ***
              6.262e+01 8.941e+00 7.004 3.50e-12 ***
Wood.Deck.SF
Open.Porch.SF 4.795e+01 1.652e+01 2.903 0.003746 **
Enclosed.Porch -5.882e+01 1.736e+01 -3.388 0.000720 ***
X3Ssn.Porch 2.420e+01 4.166e+01 0.581 0.561311
Screen.Porch 6.022e+01 1.791e+01 3.362 0.000791 ***
Pool.Area -9.462e+01 2.865e+01 -3.302 0.000977 ***
Misc.Val
             -1.915e+01 1.807e+00 -10.598 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 42900 on 1797 degrees of freedom
```

Residual standard error: 42900 on 1797 degrees of freedom Multiple R-squared: 0.7276, Adjusted R-squared: 0.725 F-statistic: 282.3 on 17 and 1797 DF, p-value: < 2.2e-16

Output 3: Full Linear Model Summary

Output 4: ANOVA for full linear model

Output 5: Diagnostic plots for full linear model

```
vif(full_linear)
                                                          BsmtFin.SF.1
                                                                            BsmtFin.SF.2
##
      Lot.Frontage
                            Lot.Area
                                         Mas.Vnr.Area
##
           1.535619
                            1.386764
                                             1.434204
                                                              4.053617
                                                                                1.439785
##
       Bsmt.Unf.SF
                         X1st.Flr.SF
                                          X2nd.Flr.SF Low.Qual.Fin.SF
                                                                            Garage.Area
##
          3.399242
                            3.841746
                                             1.437851
                                                              1.023035
                                                                                1.619682
                                                                            Screen.Porch
       Wood.Deck.SF
                       Open.Porch.SF
                                       Enclosed.Porch
                                                           X3Ssn.Porch
##
           1.174250
                            1.185472
                                                              1.007203
                                                                                1.037652
                                             1.069250
          Pool.Area
                            Misc. Val
                            1.055056
           1.069327
```

Output 6: VIF result for full linear model

```
lm(formula = ((SalePrice)^(1/3)) ~ ., data = housing train 1)
lm(formula = SalePrice ~ . - BsmtFin.SF.2 - Low.Qual.Fin.SF
                                                                 Residuals:
    X3Ssn.Porch - Lot.Frontage, data = housing train 1)
                                                                    Min
                                                                             10
                                                                                 Median
                                                                                             30
                                                                                                    Max
                                                                 -60.536
                                                                         -1.856
                                                                                  0.287
                                                                                          2.232
                                                                                                 19.809
Residuals:
   Min
             10
                Median
                              30
                                     Max
                                                                 Coefficients:
-672015 -20733
                    -189
                           19952
                                  314215
                                                                                  Estimate Std. Error t value Pr(>|t|)
                                                                                 3.630e+01 3.927e-01 92.448 < 2e-16 ***
                                                                 (Intercept)
                                                                                -6.608e-03
                                                                                            5.006e-03
                                                                                                       -1.320 0.187018
                                                                Lot.Frontage
Coefficients:
                                                                Lot.Area
                                                                                 2.939e-05
                                                                                            1.629e-05
                                                                                                        1.804 0.071411
                 Estimate Std. Error t value Pr(>|t|)
                                                                Mas.Vnr.Area
                                                                                 3.149e-03
                                                                                            6.495e-04
                                                                                                        4.849 1.35e-06 ***
(Intercept)
                -1.753e+04
                           3.888e+03
                                       -4.508 6.96e-06 ***
                                                                                                       13.166 < 2e-16 ***
                                                                BsmtFin.SF.1
                                                                                 5.328e-03
                                                                                            4.047e-04
                                        2.787 0.005379 **
                4.567e-01
                            1.639e-01
Lot.Area
                                                                 BsmtFin.SF.2
                                                                                 3.854e-03
                                                                                            6.860e-04
                                                                                                        5.619 2.23e-08 ***
Mas.Vnr.Area
                5.901e+01
                            6.977e+00
                                        8.458
                                               < 2e-16 ***
                                                                                                       10.345 < 2e-16 ***
                                                                                            3.938e-04
                                                                Bsmt.Unf.SF
                                                                                 4.074e-03
BsmtFin.SF.1
                4.546e+01
                            3.842e+00
                                       11.831
                                               < 2e-16 ***
                                                                 X1st.Flr.SF
                                                                                 5.994e-03
                                                                                            4.617e-04
                                                                                                       12.984
                                                                                                               < 2e-16 ***
                2.883e+01
                            3.641e+00
                                        7.918 4.19e-15 ***
Bsmt.Unf.SF
                                                                X2nd.Flr.SF
                                                                                 6.389e-03
                                                                                            2.722e-04
                                                                                                       23.472
                                                                                                              < 2e-16 ***
X1st.Flr.SF
                7.017e+01
                            4.582e+00
                                        15.315
                                                                 Low.Qual.Fin.SF
                                                                                -1.419e-03
                                                                                            1.966e-03
                                                                                                       -0.722 0.470347
X2nd.Flr.SF
                6.243e+01
                            2.893e+00
                                       21.576
                                                < 2e-16 ***
                                                                                            5.538e-04
                                                                                                       17.053 < 2e-16 ***
                                                                Garage.Area
                                                                                 9.444e-03
Garage.Area
                9.053e+01
                            5.896e+00
                                       15.353 < 2e-16 ***
                                                                 Wood.Deck.SF
                                                                                 6.516e-03
                                                                                            8.371e-04
                                                                                                        7.784 1.18e-14 ***
Wood.Deck.SF
                6.787e+01
                            8.925e+00
                                        7.605 4.55e-14 ***
                                                                 Open.Porch.SF
                                                                                 5.158e-03
                                                                                            1.545e-03
                                                                                                        3.338 0.000862 ***
Open.Porch.SF
                5.246e+01 1.658e+01
                                        3.164 0.001583 **
                                                                 Enclosed.Porch
                                                                                -7.789e-03
                                                                                            1.627e-03
                                                                                                       -4.789 1.81e-06 ***
                                       -3.477 0.000519 ***
Enclosed.Porch -6.049e+01
                            1.740e+01
                                                                 X3Ssn.Porch
                                                                                 4.372e-03
                                                                                            3.897e-03
                                                                                                       1.122 0.261994
                6.404e+01
                            1.798e+01
                                        3.562 0.000378 ***
                                                                                 6.257e-03
                                                                                            1.676e-03
                                                                                                        3.734 0.000195 ***
                                                                Screen . Porch
                           2.870e+01 -3.148 0.001672 **
Pool.Area
               -9.035e+01
                                                                 Pool.Area
                                                                                -1.302e-02
                                                                                            2.680e-03
                                                                                                       -4.857 1.29e-06 ***
               -1.915e+01 1.817e+00 -10.535 < 2e-16 ***
                                                                                            1.690e-04 -9.917 < 2e-16 ***
Misc.Val
                                                                                -1.676e-03
                                                                Misc.Val
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
                                                                ¡Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 43170 on 1798 degrees of freedom Multiple R-squared: 0.7238, Adjusted R-squared: 0.7218 F-statistic: 362.4 on 13 and 1798 DF. p-value: < 2.2e-16

Output 7: Model Summary for Sub Linear Model

Residual standard error: 4.013 on 1794 degrees of freedom Multiple R-squared: 0.7337, Adjusted R-squared: 0.7312 F-statistic: 290.8 on 17 and 1794 DF, p-value: < 2.2e-16

Output 8: Model Summary for Full Model with Cubic Root Transformation

```
summary(modBIC)
modAIC <- MASS::stepAIC(cubic_linear, k = 2,trace = FALSE)</pre>
modBIC<- MASS::stepAIC(cubic linear, k = log(nrow(housing_train_1)),trace = FALSE)</pre>
summary(modAIC)
                                                                           ## Call:
                                                                           ## lm(formula = ((SalePrice)^(1/3)) ~ Mas.Vnr.Area + BsmtFin.SF.1 +
##
                                                                                BsmtFin.SF.2 + Bsmt.Unf.SF + X1st.Flr.SF + X2nd.Flr.SF +
## Call:
                                                                           ##
                                                                                  Garage.Area + Wood.Deck.SF + Open.Porch.SF + Enclosed.Porch +
## lm(formula = ((SalePrice)^(1/3)) ~ Lot.Area + Mas.Vnr.Area +
##
      BsmtFin.SF.1 + BsmtFin.SF.2 + Bsmt.Unf.SF + X1st.Flr.SF +
                                                                           ##
                                                                                 Screen.Porch + Pool.Area + Misc.Val, data = housing_train_1)
      X2nd.Flr.SF + Garage.Area + Wood.Deck.SF + Open.Porch.SF +
      Enclosed.Porch + Screen.Porch + Pool.Area + Misc.Val, data = housing_train_1 ## Residuals:
##
##
                                                                           ##
                                                                                           1Q Median
                                                                                                           30
                                                                                Min
                                                                                                                   Max
## Residuals:
                                                                           ## -60.621 -1.889 0.281 2.237 19.619
##
     Min
              10 Median
                            30
                                  Max
                                                                           ##
## -61.211 -1.875 0.280 2.223 19.633
                                                                           ## Coefficients:
##
                                                                                               Estimate Std. Error t value Pr(>|t|)
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                                                                           ## (Intercept) 36.1165525 0.3627244 99.570 < 2e-16 ***
## (Intercept)
               3.611e+01 3.626e-01 99.590 < 2e-16 ***
                                                                           ## Mas.Vnr.Area
                                                                                             0.0030777 0.0006473
                                                                                                                     4.754 2.15e-06 ***
                                                                          ## BsmtFin.SF.1 0.0053726 0.0004043 13.289 < 2e-16 ***
## Lot.Area
                2.206e-05 1.529e-05 1.443 0.149099
## Mas.Vnr.Area
               3.146e-03 6.489e-04 4.849 1.35e-06 ***
                                                                           ## BsmtFin.SF.2 0.0039595 0.0006834 5.793 8.12e-09 ***
## BsmtFin.SF.1
                5.365e-03 4.042e-04 13.272 < 2e-16 ***
                                                                                              0.0040798 0.0003935 10.368 < 2e-16 ***
                                                                           ## Bsmt.Unf.SF
## BsmtFin.SF.2
                3.878e-03 6.856e-04 5.656 1.80e-08 ***
                                                                                            0.0060140 0.0004352 13.819 < 2e-16 ***
                                                                          ## X1st.Flr.SF
## Bsmt.Unf.SF
                4.096e-03 3.935e-04 10.408 < 2e-16 ***
                                                                          ## X2nd.Flr.SF 0.0064146 0.0002683 23.912 < 2e-16 ***
## X1st.Flr.SF
                5.849e-03 4.499e-04 13.001 < 2e-16 ***
                                                                          ## Garage.Area
                                                                                              0.0093956 0.0005491 17.111 < 2e-16 ***
## X2nd.Flr.SF
                6.355e-03 2.714e-04 23.414 < 2e-16 ***
                                                                          ## Wood.Deck.SF 0.0065283 0.0008366
                                                                                                                    7.803 1.02e-14 ***
## Garage.Area
                9.376e-03 5.491e-04 17.077 < 2e-16 ***
## Wood.Deck.SF
                6.526e-03 8.364e-04 7.802 1.02e-14 ***
                                                                          ## Open.Porch.SF 0.0050007 0.0015440 3.239 0.001222 **
## Open.Porch.SF 5.087e-03 1.545e-03
                                    3.294 0.001009 **
                                                                          ## Enclosed.Porch -0.0080030 0.0016176 -4.947 8.23e-07 ***
## Enclosed.Porch -8.050e-03 1.617e-03 -4.977 7.07e-07 ***
                                                                          ## Screen.Porch 0.0062064 0.0016742 3.707 0.000216 ***
## Screen.Porch 6.138e-03 1.674e-03 3.666 0.000253 ***
                                                                           ## Pool.Area
                                                                                             -0.0132775  0.0026746  -4.964  7.55e-07 ***
## Pool.Area
               -1.327e-02 2.674e-03 -4.964 7.55e-07 ***
                                                                           ## Misc.Val
                                                                                             -0.0016592 0.0001689 -9.823 < 2e-16 ***
## Misc.Val
               -1.668e-03 1.690e-04 -9.871 < 2e-16 ***
                                                                           ## ---
## ---
                                                                           ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                           ##
## Residual standard error: 4.013 on 1797 degrees of freedom
                                                                           ## Residual standard error: 4.015 on 1798 degrees of freedom
## Multiple R-squared: 0.7332, Adjusted R-squared: 0.7311
                                                                           ## Multiple R-squared: 0.7329, Adjusted R-squared: 0.731
## F-statistic: 352.8 on 14 and 1797 DF, p-value: < 2.2e-16
                                                                           ## F-statistic: 379.5 on 13 and 1798 DF, p-value: < 2.2e-16
```

Output 9: Model Summary for AIC and BIC selection

```
library(nlme)
model_gls = gls((SalePrice)^(1/3)~.-BsmtFin.SF.2
               -Low.Qual.Fin.SF-X3Ssn.Porch,correlation = corAR1(form=~1)
               ,data=housing_train_1)
summary(model gls)
## Generalized least squares fit by REML
   Model: (SalePrice)^(1/3) ~ . - BsmtFin.SF.2 - Low.Qual.Fin.SF - X3Ssn.Porch
    Data: housing_train_1
         AIC
                  BIC
    10414.77 10508.17 -5190.385
## Correlation Structure: AR(1)
   Formula: ~1
   Parameter estimate(s):
##
          Phi
## 0.003381842
                    Value Std.Error t-value p-value
                36.49747 0.3946071 92.49066 0.0000
## (Intercept)
## Lot.Frontage -0.00733 0.0050446 -1.45282 0.1464
                  0.00004 0.0000164 2.29145
## Mas.Vnr.Area
                  0.00325 0.0006539 4.97363
## BsmtFin.SF.1
                  0.00428 0.0003603 11.89323 0.0000
                  0.00295 0.0003415 8.63508
## Bsmt.Unf.SF
                                              0.0000
                  0.00681 0.0004406 15.45352
## X2nd.Flr.SF
                  0.00618 0.0002719 22.72309
                                              0.0000
## Garage.Area
                  0.00965 0.0005568 17.33435
                                              0.0000
                  0.00708 0.0008371 8.45395
## Wood.Deck.SF
                                              0.0000
## Open.Porch.SF
                  0.00563 0.0015543 3.62326
## Enclosed.Porch -0.00786 0.0016323 -4.81719
## Screen.Porch
                 0.00670 0.0016856 3.97423 0.0001
                 -0.01207 0.0026967 -4.47605 0.0000
## Pool.Area
                 -0.00169 0.0001704 -9.89579
```

Output 10: Model Summary for General Least Squared Regression

The following code is for ridge, lasso, and elastic net:

```
```{r}
lambda < -10^seq(-3, 3, length = 100)
Ridge
set.seed(123)
ridge <- train(
 (SalePrice)^{(1/3)} \sim data = housing train 1, method = "glmnet",
 trControl = trainControl("cv", number = 10),
 tuneGrid = expand.grid(alpha = 0, lambda = lambda)
coef(ridge$finalModel, ridge$bestTune$lambda)
predictions <- ridge %>% predict(housing_test)
data.frame(
Rsquare = R2(predictions, housing_test$SalePrice),
 RMSE = RMSE(predictions, housing_test$SalePrice),
 MAE = RMSE(predictions, housing test$SalePrice)
)
Lasso
set.seed(123)
lasso <- train(
 (SalePrice)^{\wedge}(1/3) \sim ... data = housing train 1, method = "glmnet",
 trControl = trainControl("cv", number = 10),
 tuneGrid = expand.grid(alpha = 1, lambda = lambda)
)
coef(lasso$finalModel, lasso$bestTune$lambda)
predictions <- lasso %>% predict(housing test)
data.frame(
 Rsquare = R2(predictions, housing_test$SalePrice),
 RMSE = RMSE(predictions, housing_test$SalePrice),
 MAE = RMSE(predictions, housing_test$SalePrice)
Elastic Net
set.seed(123)
elastic <- train(
 (SalePrice)^{(1/3)} \sim ., data = housing_train_1, method = "glmnet",
 trControl = trainControl("cv", number = 10),
 tuneLength = 10
coef(elastic$finalModel, elastic$bestTune$lambda)
predictions <- elastic %>% predict(housing_test)
data.frame(
 Rsquare = R2(predictions, housing test$SalePrice),
 RMSE = RMSE(predictions, housing test$SalePrice),
 MAE = RMSE(predictions, housing_test$SalePrice)
)
```