Cannings

Marie Temple-Boyer

February 14, 2022

This document is not the documentation of the module cannings. This is only some explanations and details on the Cannings model that the module simulates.

1 Reproduction in the class Cannings

We consider an haploid population of size N without recombination. A reproduction is made using the following steps:

- 1. Each individual produces offspring
- 2. If there are less offspring than the population size N then more offspring are generated.
- 3. Only N offspring are chosen to survive and compose the next generation.

1.1 Step 1: generation of the offspring with a Cannings model

Let $(X_i)_{1 \leq i \leq N}$ be identical independent N-valued random variable. The number of offspring of the i^{th} individual is X_i .

The distribution of X_1 can be chosen by the user when constructing a object from the class Cannings.

1.2 Step 2: artificially adding offspring to reach the population size

If there are more offspring than the size of the population nothing happens in this step. Else let assume that $m \leq N$ offspring have been generated with step 1. Then N-m offspring are generated using a Wright-Fisher model. It means that for these N-m offspring, the probability that the parent is the i^{th} individual is $\frac{1}{N}$.

1.3 Step 3: Drawing the surviving offspring

The N surviving offspring that will compose the next generation will be drawn without replacement from all the offspring previously generated.

Note that if the step 2 has generated offspring, then this step only consist of selecting all of them.

2 Adding natural selection

We consider that there are two alleles: the type 1 and the type 0. The individuals always transfer their type to their offspring. The type 1 is associated with some selection coefficient.

2.1 Fecundity selection

Let assume that the individuals of type 1 have a fecundity selection advantage of coefficient s_f . Then the step 1 is replace by the following:

The number of offspring of the i^{th} individual is $(1 + s_f)X_i$ if it has the type 1 and X_i otherwise where the X_i are defined as previously.

2.2 Viability selection

Let assume that the individuals of type 1 have a viability selection advantage of coefficient s_v . Then the step 3 is replace by the following:

The N surviving offspring that will compose the next generation will be drawn without replacement from all the offspring previously generated according to the non central Wallenius distribution 1 with a weigh $1 + s_{v}$ for the offspring of type 1 and 1 for the offspring of type 0.

3 Child class of Cannings

3.1 Subclass Schweinsberg

Let p_0 and α be two reals such that $0 \le p_0 \le 1$ and $0 < \alpha$.

The class Schweinsberg is a subclass of Cannings for which the law of X_1 is the following:

$$\mathbb{P}(X_1 = 0) = p_0$$

$$\mathbb{P}(X_1 \ge k) = (1 - p_0) \frac{1}{k^{\alpha}} \text{ for all } k \ge 1$$

According the Schweinsberg, if the expectation of X_1 is greater than 1 then this process converge as the population grows to infinity to a β -coalescent of parameter α if $1 < \alpha < 2$ and to a Kingman coalescent if $\alpha = 2$. [1]

3.2 Subclass Poisson

Let $\lambda > 0$ be a real.

The class Poisson is a subclass of Cannings for which the law of X_1 is a Poisson distribution of parameter λ .

When λ is greater than one and close to one this model is an approximation of the Wright-Fisher model.

References

[1] Jason Schweinsberg. Coalescent processes obtained from supercritical galton–watson processes. Stochastic processes and their Applications, 106(1):107–139, 2003.

¹See the Wikipedia web page for more details