MM54HC73/MM74HC73 Dual J-K Flip-Flops with Clear

General Description

These J-K Flip-Flops utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power dissipation of standard CMOS integrated circuits. These devices can drive 10 LS-TTL loads.

These flip-flops are edge sensitive to the clock input and change state on the negative going transition of the clock pulse. Each one has independent, J, K, CLOCK, and CLEAR inputs and Q and $\overline{\rm Q}$ outputs. CLEAR is independent of the clock and accomplished by a low level on the input.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 16 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 μ A maximum
- Low quiescent current: 40 µA (74HC Series)
- High output drive: 10 LS-TTL loads

Connection and Logic Diagrams

Truth Table

	Inputs	Outputs			
CLR	CLK	J	K	Q	Q
L	X	Х	Х	L	Н
Н	\downarrow	L	L	Q0	$\overline{Q}0$
Н	\downarrow	Н	L	Н	L
Н	\downarrow	L	Н	L	Н
Н	\downarrow	Н	Н	TOGGLE	
Н	Н	Χ	Χ	Q0	$\overline{Q}0$

Order Number MM54HC73 or MM74HC73

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required,

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation (P_D)
(Note 3)

S.O. Package only

600 mW
500 mW

Lead Temperature (T_L) (Soldering 10 seconds)

260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (TA)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C		
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum Low Level		2.0V		0.5	0.5	0.5	V
	Input Voltage**		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum High Level	V _{IN} = V _{IH} or V _{II}						
0	Output Voltage	I _{OUT} ≤20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		V _{IN} =V _{IH} or V _{IL}						
		I _{OUT} ≤4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
VOL	Maximum Low Level	V _{IN} =V _{IH} or V _{IL}						
02	Output Voltage	I _{OUT} ≤20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		V _{IN} = V _{IH} or V _{IL}						
		I _{OUT} ≤4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		4.0	40	80	μΑ

 $\textbf{Note 1:} \ \textbf{Absolute Maximum Ratings are those values beyond which damage to the device may occur.}$

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} =5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Q or Q		16	21	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clear to Q or \overline{Q}		21	26	ns
t _{REM}	Minimum Removal Time, Clear to Clock		10	20	ns
ts Minimum Setup Time, J or K to Clock			14	20	ns
t _H	Minimum Hold Time J or K to Clock		-3	0	ns
t _W	Minimum Pulse Width, Clock or Clear		10	16	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}, t_f = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
f _{MAX}	Maximum Operating Frequency		2.0V 4.5V 6.0V	9 45 53	5 27 32	4 21 25	3 18 21	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Q or Q		2.0V 4.5V 6.0V	70 18 15	126 25 21	160 32 27	185 37 32	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clear to Q or Q		2.0V 4.5V 6.0V	126 25 21	155 31 26	194 39 32	250 47 40	ns ns ns
t _{REM}	Minimum Removal Time Clear to Clock		2.0V 4.5V 6.0V	55 11 9	100 20 17	125 25 21	150 30 25	ns ns ns
t _S	Minimum Setup Time J or K to Clock		2.0V 4.5V 6.0V	77 15.4 13	100 20 17	125 25 21	150 30 25	ns ns ns
t _H	Minimum Hold Time J or K from Clock		2.0V 4.5V 6.0V	-3 -3 -3	0 0 0	0 0 0	0 0 0	ns ns ns
t _W	Minimum Pulse Width Clock or Clear		2.0V 4.5V 6.0V	55 11 9	80 16 14	100 20 18	120 24 21	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per flip-flop)		80				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Physical Dimensions inches (millimeters) (19.939) MAX 14 13 12 11 10 9 8 0.025 (0.635)0.220-D.310 RAD (5.588-7.874) 1 2 3 4 5 6 7 0.290-0.320 0.200 (5.080) MAX 0.020-0.060 (D.127) MIN (7.366-8.128) 0.060 ± 0.005 (1.524 ±0.127) 0.180 (0.508-1.524) -MA (4.572) 95° ±5 86°94° TYF 10° MAX 0.008-0.012 (0.203-D.305) 0.310-0.410 0.125-0.200 (7.874-10.41) 0.098 (0.457 ±0.076) (3.175-5.080) (2.489) 0.100 ±0.010 MAX BOTH ENDS (2 540 +0 254) (3.81) MIN J14A (REV G) **Dual-In Line Package (J)** Order Number MM54HC73J or MM74HC73J NS Package J14A 0.740 - 0.770 (18.80 - 19.56) 14 13 12 11 10 9 14 13 12 INDEX 0.250 ± 0.010 (6.350 ± 0.254) $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX DEPTH 0.125 - 0.150 (3.175 - 3.810) 0.280 (7.112) MIN 0.014-0.023 (0.356-0.584) TYP 0.100 ± 0.010 (2.540 ± 0.254) 0.050 ± 0.010 (1.270 - 0.254) TYP 0.325 + 0.040

LIFE SUPPORT POLICY

Dual-In Line Package (N) Order Number MM74HC73N NS Package N14A

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408