

BEAT TRANSFORMER: Demixed Beat and Downbeat Tracking with Dilated Self-Attention

NYU 上海 3 知 知 大 学

Jingwei Zhao Gus Xia Ye Wang

MUSIC X LAB

KEY IDEA

- When humans perceive music beats, instead of relying solely on the spectral energy, we can "understand" the music in a deeper musical context.
- To reflect our musical understanding, we resort to demixed audio input and excavate metrical cues with both temporal attention and instrumental attention.
- We formalize dilated self-attention mechanism for temporal attention, which demonstrates superior sequential modelling power with linear complexity.

RESOURCE

Colab Notebook GitHub Paper

DILATED SELF-ATTENTION AND DEMIXED BEAT TRACKING

(a) Layer-wise view of dilated self-attention (Adapted from TCN structures [9, 27])

(b) Attention matrix view at layer 2

Figure 1: Illustration of dilated self-attention (with a non-causal short window of size 5) over a three-layer Transformer. Part (a) shows the hierarchical connectivity across layers, which shares the same pattern as TCN in [9]. Part (b) shows the attention matrix at layer 2, with colours indicating relative position. The white colour indicates unattainable positions.

Figure 3: Demixed Transformer block. Two Transformer layers are stacked "orthogonally", each handling time-wise dilated self-attention and instrument-wise self-attention.

COMPLETE ARCHITECTURE

MODELS IN COMPARISON

- Ours w/o Demix: Use Temporal Transformer Layers only, while input is a single spectrogram of audio mixture.
- TCN+Demix: Each Temporal Transformer Layer is replaced by a TCN layer with same dilation rate & feature size.
- Ours+Aug.: During training, we apply partial-demix augmentation to further improve our model's performance.
- Bock et. al. [1]: SOTA beat tracking architecture based on TCN.
- Hung et. al. [2]: SOTA model based on SpecTNT, a variant of Transformer which models time-frequency relation.

Model Performance

Dataset	Model	Beat Accuracy			Downbeat Accuracy		
		F-Measure	CMLt	AMLt	F-Measure	CMLt	AMLt
Ballroom	TCN+Demix	0.960	0.942	0.961	0.927	0.926	0.957
	Ours w/o Demix	0.968	0.946	0.965	0.930	0.925	0.963
	Ours	0.967	0.949	<u>0.967</u>	0.928	0.931	0.958
	Ours+Aug.	0.968	<u>0.954</u>	0.966	<u>0.941</u>	<u>0.944</u>	0.969
	Bock et al.	0.962	0.947	0.961	0.916	0.913	0.960
	Hung et al.	0.962	0.939	0.967	0.937	0.927	0.968
GTZAN	TCN+Demix	0.873	0.780	0.907	0.700	0.646	0.842
	Ours w/o Demix	0.876	0.787	0.914	0.686	0.633	0.834
	Ours	0.881	0.797	0.921	0.703	0.653	0.845
	Ours+Aug.	0.885	0.800	0.922	0.714	0.665	0.844
	Bock et al.	0.885	0.813	0.931	0.672	0.640	0.832
	Hung et al.	0.887	0.812	0.920	0.756	0.715	0.881

Layer 1 (lower scale)

REFERENCES

- S. Böck and M. E. P. Davies, "Deconstruct, analyse, reconstruct: How to improve tempo, beat, and downbeat estimation," in *Proceedings of the* 21th International Society for Music Information Retrieval Conference, ISMIR, pp. 574–582, 2020.
- Y. Hung, J. Wang, X. Song, W. T. Lu, and M. Won, "Modeling beats and downbeats with a time-frequency transformer," in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, pp. 401–405, IEEE, 2022.
- Interpretation with Markov chain rules
 - Each attention matrix represents a one-step transition on a finite-state Markov chain
 - Product of attention matrices through layers represents a multi-step transition
- Attention Visualization
 - Cumulative product of attention matrices
 - Our model gathers information from both local and global scales with an organized hierarchy, which resembles the way we human detect music beats and downbeats.

Layer 3 (beat scale)

Layer 5 (downbeat scale)