Exact Truthmaker Semantics in relation to multi-valued logic

Dongwoo Kim

Philosophy Program Graduate Center, CUNY

The Second Korea Logic Day January 14th, 2022

Outline

- Basic ideas of truthmaker semantics
 - The Truthmaker principle
 - Formal framework
 - Exact truthmaker semantics for classical propositional logic
- Exactification of multi-valued semantics
 - The idea of Exactification
 - Analysis of truth
 - Analysis of consequence

Outline

- Basic ideas of truthmaker semantics
 - The Truthmaker principle
 - Formal framework
 - Exact truthmaker semantics for classical propositional logic
- Exactification of multi-valued semantics
 - The idea of Exactification
 - Analysis of truth
 - Analysis of consequence

- The Truthmaker Principle says that every true proposition is made true by something (Williamson 1999).
- That something is called a state.
- We do not attempt to further analyze what a state is; it is whatever does the job of truthmaking.
- For an intuitive example, consider the proposition *P* that the Empire State Building is between 33rd and 34th Streets in Manhattan.
- *P* is made true by the presence of the building in that location; call this state *s*.
- We say that s is a *verifier* for P.

- The Truthmaker Principle says that every true proposition is made true by something (Williamson 1999).
- That something is called a state.
- We do not attempt to further analyze what a state is; it is whatever does the job of truthmaking.
- For an intuitive example, consider the proposition *P* that the Empire State Building is between 33rd and 34th Streets in Manhattan.
- *P* is made true by the presence of the building in that location; call this state *s*.
- We say that s is a *verifier* for P.

- The Truthmaker Principle says that every true proposition is made true by something (Williamson 1999).
- That something is called a state.
- We do not attempt to further analyze what a state is; it is whatever does the job of truthmaking.
- For an intuitive example, consider the proposition *P* that the Empire State Building is between 33rd and 34th Streets in Manhattan.
- *P* is made true by the presence of the building in that location; call this state *s*.
- We say that s is a *verifier* for P.

- The Truthmaker Principle says that every true proposition is made true by something (Williamson 1999).
- That something is called a state.
- We do not attempt to further analyze what a state is; it is whatever does the job of truthmaking.
- For an intuitive example, consider the proposition *P* that the Empire State Building is between 33rd and 34th Streets in Manhattan.
- *P* is made true by the presence of the building in that location; call this state *s*.
- We say that s is a *verifier* for P.

- The Truthmaker Principle says that every true proposition is made true by something (Williamson 1999).
- That something is called a state.
- We do not attempt to further analyze what a state is; it is whatever does the job of truthmaking.
- For an intuitive example, consider the proposition *P* that the Empire State Building is between 33rd and 34th Streets in Manhattan.
- *P* is made true by the presence of the building in that location; call this state *s*.
- We say that s is a verifier for P.

- The Truthmaker Principle says that every true proposition is made true by something (Williamson 1999).
- That something is called a state.
- We do not attempt to further analyze what a state is; it is whatever does the job of truthmaking.
- ullet For an intuitive example, consider the proposition P that the Empire State Building is between 33rd and 34th Streets in Manhattan.
- *P* is made true by the presence of the building in that location; call this state *s*.
- We say that s is a verifier for P.

The unilateral and bilateral truthmaker principles

- The Unilateral Truthmaker Principle says that a proposition is false just in case it has no verifier.
- The Bilateral Truthmaker Principle says that every false proposition is made false by something, i.e., a falsifier.
- In what follows, we shall adopt the Bilateral Truthmaker Principle.

The unilateral and bilateral truthmaker principles

- The Unilateral Truthmaker Principle says that a proposition is false just in case it has no verifier.
- The Bilateral Truthmaker Principle says that every false proposition is made false by something, i.e., a falsifier.
- In what follows, we shall adopt the Bilateral Truthmaker Principle.

The unilateral and bilateral truthmaker principles

- The Unilateral Truthmaker Principle says that a proposition is false just in case it has no verifier.
- The Bilateral Truthmaker Principle says that every false proposition is made false by something, i.e., a falsifier.
- In what follows, we shall adopt the Bilateral Truthmaker Principle.

- A verifier for a proposition is said to be *exact* if it is entirely relevant to the truth of the proposition.
- And it is said to be *inexact* if it is partially relevant.
- For example, *P* is exactly verified by the presence of the Empire State Building between 33rd and 34th Streets.
- Its presence together with five pigeons on the top, by contrast, would be an inexact verifier for *P*.

- A verifier for a proposition is said to be *exact* if it is entirely relevant to the truth of the proposition.
- And it is said to be *inexact* if it is partially relevant.
- For example, *P* is exactly verified by the presence of the Empire State Building between 33rd and 34th Streets.
- Its presence together with five pigeons on the top, by contrast, would be an inexact verifier for *P*.

- A verifier for a proposition is said to be *exact* if it is entirely relevant to the truth of the proposition.
- And it is said to be inexact if it is partially relevant.
- For example, *P* is exactly verified by the presence of the Empire State Building between 33rd and 34th Streets.
- Its presence together with five pigeons on the top, by contrast, would be an inexact verifier for *P*.

- A verifier for a proposition is said to be *exact* if it is entirely relevant to the truth of the proposition.
- And it is said to be inexact if it is partially relevant.
- For example, *P* is exactly verified by the presence of the Empire State Building between 33rd and 34th Streets.
- Its presence together with five pigeons on the top, by contrast, would be an inexact verifier for *P*.

Outline

- Basic ideas of truthmaker semantics
 - The Truthmaker principle
 - Formal framework
 - Exact truthmaker semantics for classical propositional logic
- Exactification of multi-valued semantics
 - The idea of Exactification
 - Analysis of truth
 - Analysis of consequence

- One way of formalizing these basic ideas is given by Fine (2017) in terms of partial ordering.
- A partial order is an ordered pair $\langle \mathcal{S}, \sqsubseteq \rangle$, where \sqsubseteq is a reflexive, transitive, and anti-symmetric binary relation on \mathcal{S} .
- A partial order $\langle \mathcal{S}, \sqsubseteq \rangle$ is said to be *complete* if and only if every subset S of \mathcal{S} has a least upper bound ($\bigsqcup S$, in symbol).

- One way of formalizing these basic ideas is given by Fine (2017) in terms of partial ordering.
- A partial order is an ordered pair $\langle \mathscr{S}, \sqsubseteq \rangle$, where \sqsubseteq is a reflexive, transitive, and anti-symmetric binary relation on \mathscr{S} .
- A partial order $\langle \mathcal{S}, \sqsubseteq \rangle$ is said to be *complete* if and only if every subset S of \mathcal{S} has a least upper bound ($\bigsqcup S$, in symbol).

- One way of formalizing these basic ideas is given by Fine (2017) in terms of partial ordering.
- A partial order is an ordered pair $\langle \mathscr{S}, \sqsubseteq \rangle$, where \sqsubseteq is a reflexive, transitive, and anti-symmetric binary relation on \mathscr{S} .
- A partial order $\langle \mathscr{S}, \sqsubseteq \rangle$ is said to be *complete* if and only if every subset S of \mathscr{S} has a least upper bound ($\bigcup S$, in symbol).

- One way of formalizing these basic ideas is given by Fine (2017) in terms of partial ordering.
- A partial order is an ordered pair $\langle \mathscr{S}, \sqsubseteq \rangle$, where \sqsubseteq is a reflexive, transitive, and anti-symmetric binary relation on \mathscr{S} .
- A partial order $\langle \mathscr{S}, \sqsubseteq \rangle$ is said to be *complete* if and only if every subset S of \mathscr{S} has a least upper bound ($\bigcup S$, in symbol).
- Notice that if a partial order is complete, there exist the

 —-least and

 —-greatest elements, called the bottom and top elements respectively.

Example 1

Example 2

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,

- o s and t are part of T
- So we would have: s = 1, r = 1, but
- It is also reasonable that suit To where
 - $S \sqcup t = \bigcup \{s, t\}.$

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example
 - s: the presence of the Empire State
 Building in its location;
 t: the presence of five pigeons on the topp and
- s and t are part of \top .
- So we would have: s □ T, t □ T, but neither T □ s nor T □ t.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = \bigsqcup \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - L: the null state:
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state:
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state:
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state:
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state:
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state;
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state;
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- ullet Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state;
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state:
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - \bullet \top : the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- A state space $\langle \mathscr{S}, \sqsubseteq \rangle$ is a complete partial order.
- Intuitively, $\mathscr S$ is the set of states and \sqsubseteq is a parthood relation on $\mathscr S.$
- For example,
 - ⊥: the null state;
 - s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 and
 - T: the presence of both.
- s and t are part of \top .
- So we would have: $s \sqsubseteq \top$, $t \sqsubseteq \top$, but neither $\top \sqsubseteq s$ nor $\top \sqsubseteq t$.
- It is also reasonable that $s \sqcup t = \top$, where $s \sqcup t = | | \{s, t\}$.

- s: the presence of the Empire State Building in its location;
 t: the presence of five pigeons on the top;
 ⊤: the presence of both.
- We also let:
 - P: the proposition that the Empire State Building is between 33rd and 34th Streets in Manhattan;
 - Q: the proposition that there are five pigeons on the top of the Empire State Building.
- Intuitively, then, s is an exact verifier for P, and t for Q.
- T is an inexact verifier both for P and for Q. For only part of \top , namely s, is relevant to the truth of P.
- Like considerations apply to Q.

- s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 - \top : the presence of both.
- We also let:
 - *P*: the proposition that the Empire State Building is between 33rd and 34th Streets in Manhattan;
 - *Q*: the proposition that there are five pigeons on the top of the Empire State Building.
- Intuitively, then, s is an exact verifier for P, and t for Q.
- T is an inexact verifier both for P and for Q. For only part of T, namely s, is relevant to the truth of P.
- Like considerations apply to Q.

- s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 - \top : the presence of both.
- We also let:
 - *P*: the proposition that the Empire State Building is between 33rd and 34th Streets in Manhattan;
 - *Q*: the proposition that there are five pigeons on the top of the Empire State Building.
- Intuitively, then, s is an exact verifier for P, and t for Q.
- T is an inexact verifier both for P and for Q. For only part of T, namely s, is relevant to the truth of P.
- Like considerations apply to Q.

- s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 - \top : the presence of both.
- We also let:
 - *P*: the proposition that the Empire State Building is between 33rd and 34th Streets in Manhattan:
 - *Q*: the proposition that there are five pigeons on the top of the Empire State Building.
- Intuitively, then, s is an exact verifier for P, and t for Q.
- T is an inexact verifier both for P and for Q. For only part of T, namely s, is relevant to the truth of P.
- Like considerations apply to Q.

- s: the presence of the Empire State Building in its location;
 - t: the presence of five pigeons on the top;
 - \top : the presence of both.
- We also let:
 - *P*: the proposition that the Empire State Building is between 33rd and 34th Streets in Manhattan:
 - *Q*: the proposition that there are five pigeons on the top of the Empire State Building.
- Intuitively, then, s is an exact verifier for P, and t for Q.
- T is an inexact verifier both for P and for Q. For only part of T, namely s, is relevant to the truth of P.
- Like considerations apply to Q.

- s: the presence of the Empire State Building in its location;
 t: the presence of five pigeons on the top;
 T: the presence of both.
- We also let:
 - *P*: the proposition that the Empire State Building is between 33rd and 34th Streets in Manhattan;
 - *Q*: the proposition that there are five pigeons on the top of the Empire State Building.
- Intuitively, then, s is an exact verifier for P, and t for Q.
- \top is an inexact verifier both for P and for Q. For only part of \top , namely s, is relevant to the truth of P.
- Like considerations apply to Q.

- s: the presence of the Empire State Building in its location;
 t: the presence of five pigeons on the top;
 ⊤: the presence of both.
- We also let:
 - *P*: the proposition that the Empire State Building is between 33rd and 34th Streets in Manhattan;
 - *Q*: the proposition that there are five pigeons on the top of the Empire State Building.
- Intuitively, then, s is an exact verifier for P, and t for Q.
- \top is an inexact verifier both for P and for Q. For only part of \top , namely s, is relevant to the truth of P.
- Like considerations apply to Q.

Outline

- Basic ideas of truthmaker semantics
 - The Truthmaker principle
 - Formal framework
 - Exact truthmaker semantics for classical propositional logic
- Exactification of multi-valued semantics
 - The idea of Exactification
 - Analysis of truth
 - Analysis of consequence

- Let P_1 , P_2 , ... be a countable list of propositional variables; we shall often use P, Q, R as metavariables for propositional variables.
- The well-formed formulas are constructed in the usual way, using the connectives ¬, ∧, ∨.
- We shall use A, B, C, ... as metavariables for well-formed formulas.
- $\bullet \ (A\supset B)=_{df}(\neg A\vee B).$

- Let P_1 , P_2 , ... be a countable list of propositional variables; we shall often use P, Q, R as metavariables for propositional variables.
- The well-formed formulas are constructed in the usual way, using the connectives ¬, ∧, ∨.
- We shall use A, B, C, ... as metavariables for well-formed formulas.
- $\bullet \ (A\supset B)=_{df}(\neg A\vee B).$

- Let P_1 , P_2 , ... be a countable list of propositional variables; we shall often use P, Q, R as metavariables for propositional variables.
- The well-formed formulas are constructed in the usual way, using the connectives ¬, ∧, ∨.
- We shall use A, B, C, ... as metavariables for well-formed formulas.
- $\bullet \ (A\supset B)=_{df}(\neg A\vee B).$

- Let P_1 , P_2 , ... be a countable list of propositional variables; we shall often use P, Q, R as metavariables for propositional variables.
- The well-formed formulas are constructed in the usual way, using the connectives ¬, ∧, ∨.
- We shall use A, B, C, ... as metavariables for well-formed formulas.
- $(A \supset B) =_{df} (\neg A \lor B)$.

- Let Γ be a set of formulas.
- $At(\Gamma) = \{P : P \text{ occurs in some formulas of } \Gamma\}.$
- $Fml(\Gamma)$ = the formulas whose atomic subformulas are all in $At(\Gamma)$.
- A truthmaker model $\mathfrak A$ of Γ is an ordered triple $\langle \mathscr S, \sqsubseteq, v \rangle$, where
 - \bigcirc $(\mathscr{S}, \sqsubseteq)$ is a state space, and
 - ② v is a valuation that takes each state $s \in \mathscr{S}$ to a pair $\langle [s]^+, [s]^- \rangle$ of subsets of $At(\Gamma)$.
- We require that for each $P \in At(\Gamma)$, there is at least one $s \in \mathcal{S}$ such that $P \in [s]^+ \cup [s]^-$.

- Let Γ be a set of formulas.
- $At(\Gamma) = \{P : P \text{ occurs in some formulas of } \Gamma\}.$
- $FmI(\Gamma)$ = the formulas whose atomic subformulas are all in $At(\Gamma)$.
- A truthmaker model $\mathfrak A$ of Γ is an ordered triple $\langle \mathscr S,\sqsubseteq,v\rangle$, where
 - $(\mathcal{S}, \sqsubseteq)$ is a state space, and
 - **●** v is a valuation that takes each state $s \in \mathscr{S}$ to a pair $\langle [s]^+, [s]^- \rangle$ of subsets of $At(\Gamma)$.
- We require that for each $P \in At(\Gamma)$, there is at least one $s \in \mathcal{S}$ such that $P \in [s]^+ \cup [s]^-$.

- Let Γ be a set of formulas.
- $At(\Gamma) = \{P : P \text{ occurs in some formulas of } \Gamma\}.$
- $Fml(\Gamma)$ = the formulas whose atomic subformulas are all in $At(\Gamma)$.
- A truthmaker model $\mathfrak A$ of Γ is an ordered triple $\langle \mathscr S, \sqsubseteq, v \rangle$, where
 - \bigcirc $(\mathscr{S},\sqsubseteq)$ is a state space, and
 - **○** *v* is a valuation that takes each state $s \in \mathcal{S}$ to a pair $\langle [s]^+, [s]^- \rangle$ of subsets of $At(\Gamma)$.
- We require that for each $P \in At(\Gamma)$, there is at least one $s \in \mathcal{S}$ such that $P \in [s]^+ \cup [s]^-$.

- Let Γ be a set of formulas.
- $At(\Gamma) = \{P : P \text{ occurs in some formulas of } \Gamma\}.$
- $Fml(\Gamma)$ = the formulas whose atomic subformulas are all in $At(\Gamma)$.
- A truthmaker model $\mathfrak A$ of Γ is an ordered triple $\langle \mathscr S, \sqsubseteq, \nu \rangle$, where
 - \bigcirc $\langle \mathscr{S}, \sqsubseteq \rangle$ is a state space, and
 - ② v is a valuation that takes each state $s \in \mathcal{S}$ to a pair $\langle [s]^+, [s]^- \rangle$ of subsets of $At(\Gamma)$.
- We require that for each $P \in At(\Gamma)$, there is at least one $s \in \mathcal{S}$ such that $P \in [s]^+ \cup [s]^-$.

- Let Γ be a set of formulas.
- $At(\Gamma) = \{P : P \text{ occurs in some formulas of } \Gamma\}.$
- $Fml(\Gamma)$ = the formulas whose atomic subformulas are all in $At(\Gamma)$.
- A truthmaker model $\mathfrak A$ of Γ is an ordered triple $\langle \mathscr S, \sqsubseteq, \nu \rangle$, where
 - \bigcirc $\langle \mathscr{S}, \sqsubseteq \rangle$ is a state space, and
 - ② v is a valuation that takes each state $s \in \mathcal{S}$ to a pair $\langle [s]^+, [s]^- \rangle$ of subsets of $At(\Gamma)$.
- We require that for each $P \in At(\Gamma)$, there is at least one $s \in \mathcal{S}$ such that $P \in [s]^+ \cup [s]^-$.

- Let Γ be a set of formulas.
- $At(\Gamma) = \{P : P \text{ occurs in some formulas of } \Gamma\}.$
- $Fml(\Gamma)$ = the formulas whose atomic subformulas are all in $At(\Gamma)$.
- A truthmaker model $\mathfrak A$ of Γ is an ordered triple $\langle \mathscr S, \sqsubseteq, \nu \rangle$, where
 - \bigcirc $\langle \mathscr{S}, \sqsubseteq \rangle$ is a state space, and
 - ② v is a valuation that takes each state $s \in \mathscr{S}$ to a pair $\langle [s]^+, [s]^- \rangle$ of subsets of $At(\Gamma)$.
- We require that for each $P \in At(\Gamma)$, there is at least one $s \in \mathscr{S}$ such that $P \in [s]^+ \cup [s]^-$.

- Let Γ be a set of formulas.
- $At(\Gamma) = \{P : P \text{ occurs in some formulas of } \Gamma\}.$
- $Fml(\Gamma)$ = the formulas whose atomic subformulas are all in $At(\Gamma)$.
- A truthmaker model $\mathfrak A$ of Γ is an ordered triple $\langle \mathscr S, \sqsubseteq, \nu \rangle$, where
 - \bigcirc $\langle \mathscr{S}, \sqsubseteq \rangle$ is a state space, and
 - ② v is a valuation that takes each state $s \in \mathscr{S}$ to a pair $\langle [s]^+, [s]^- \rangle$ of subsets of $At(\Gamma)$.
- We require that for each $P \in At(\Gamma)$, there is at least one $s \in \mathscr{S}$ such that $P \in [s]^+ \cup [s]^-$.

• Given a truthmaker model $\mathfrak A$ of Γ , the notions of exact verification and falsification (written $s \Vdash^+ A$ and $s \Vdash^- A$, respectively) can be defined as follows:

• We shall often omit the mention of \mathfrak{A} .

• Given a truthmaker model $\mathfrak A$ of Γ , the notions of exact verification and falsification (written $s \Vdash^+ A$ and $s \Vdash^- A$, respectively) can be defined as follows:

• We shall often omit the mention of \mathfrak{A} .

• Given a truthmaker model $\mathfrak A$ of Γ , and a formula $A \in Fml(\Gamma)$, let:

$$|A|^+ = \{ s \in \mathscr{S} : s \Vdash^+ A \};$$

$$|A|^- = \{ s \in \mathscr{S} : s \Vdash^- A \}.$$

• Given any $S, T \subseteq \mathcal{S}$, let's write

$$S \sqcup T = \{s \sqcup t : s \in S \text{ and } t \in T\};$$

Notice that $S \sqcup T = \emptyset$ if either $S = \emptyset$ or $T = \emptyset$.

• Given a truthmaker model $\mathfrak A$ of Γ , and a formula $A \in Fml(\Gamma)$, let:

$$|A|^+ = \{ s \in \mathscr{S} : s \Vdash^+ A \};$$

$$|A|^- = \{ s \in \mathscr{S} : s \Vdash^- A \}.$$

• Given any $S, T \subseteq \mathscr{S}$, let's write

$$S \sqcup T = \{s \sqcup t : s \in S \text{ and } t \in T\};$$

Notice that $S \sqcup T = \emptyset$ if either $S = \emptyset$ or $T = \emptyset$.

• With these notations, we can rewrite the inductive clauses as follows:

Inexact verification and falsification

- A state s is an *inexact verifier* for A, written $s \triangleright^+ A$, if and only if s extends an exact verifier for A, i.e., $s' \sqsubseteq s$ for some $s' \Vdash^+ A$.
- s is an inexact falsifier of A, written $s \triangleright^- A$, if and only if s extends an exact falsifier for A.

Inexact verification and falsification

- A state s is an *inexact verifier* for A, written $s \triangleright^+ A$, if and only if s extends an exact verifier for A, i.e., $s' \sqsubseteq s$ for some $s' \Vdash^+ A$.
- s is an *inexact falsifier* of A, written $s \triangleright^- A$, if and only if s extends an exact falsifier for A.

Outline

- Basic ideas of truthmaker semantics
 - The Truthmaker principle
 - Formal framework
 - Exact truthmaker semantics for classical propositional logic
- Exactification of multi-valued semantics
 - The idea of Exactification
 - Analysis of truth
 - Analysis of consequence

- Exactification is the idea due to Kit Fine that an inexact verifier (falsifier) for a proposition has an underlying exact verifier (falsifier).
- Consider a classical Boolean valuation, for example.
- It can be considered as a state in a model that verifies those formulas that are true—falsifies those formulas that are false—under the valuation.
- The relevant notions of verification and falsification are inexact.
 - The Boolean valuation determines the truth-value of every formula
 - For any formula A, therefore, the Boolean valuation—conceived as a state—may have parts that are irrelevant to the truth or falsity of A.
- It thus follows from Exactification that every Boolean valuation can be represented as a state that contains an exact verifier (falsifier) for every formula that is true (false) under the valuation.

- Exactification is the idea due to Kit Fine that an inexact verifier (falsifier) for a proposition has an underlying exact verifier (falsifier).
- Consider a classical Boolean valuation, for example.
- It can be considered as a state in a model that verifies those formulas that are true—falsifies those formulas that are false—under the valuation.
- The relevant notions of verification and falsification are inexact.
 - The Boolean valuation determines the truth-value of every formula.
 - For any formula A, therefore, the Boolean valuation—conceived as a state—may have parts that are irrelevant to the truth or falsity of A
- It thus follows from Exactification that every Boolean valuation can be represented as a state that contains an exact verifier (falsifier) for every formula that is true (false) under the valuation.

- Exactification is the idea due to Kit Fine that an inexact verifier (falsifier) for a proposition has an underlying exact verifier (falsifier).
- Consider a classical Boolean valuation, for example.
- It can be considered as a state in a model that verifies those formulas that are true—falsifies those formulas that are false—under the valuation.
- The relevant notions of verification and falsification are inexact.
 The Boolean valuation determines the truth-value of every formula.
 For any formula A, therefore, the Boolean valuation—conceived as a state—may have parts that are irrelevant to the truth or falsity of A.
- It thus follows from Exactification that every Boolean valuation can be represented as a state that contains an exact verifier (falsifier) for every formula that is true (false) under the valuation.

- Exactification is the idea due to Kit Fine that an inexact verifier (falsifier) for a proposition has an underlying exact verifier (falsifier).
- Consider a classical Boolean valuation, for example.
- It can be considered as a state in a model that verifies those formulas that are true—falsifies those formulas that are false—under the valuation.
- The relevant notions of verification and falsification are inexact.
 - The Boolean valuation determines the truth-value of every formula.
 - For any formula A, therefore, the Boolean valuation—conceived as a state—may have parts that are irrelevant to the truth or falsity of A.
- It thus follows from Exactification that every Boolean valuation can be represented as a state that contains an exact verifier (falsifier) for every formula that is true (false) under the valuation.

- Exactification is the idea due to Kit Fine that an inexact verifier (falsifier) for a proposition has an underlying exact verifier (falsifier).
- Consider a classical Boolean valuation, for example.
- It can be considered as a state in a model that verifies those formulas that are true—falsifies those formulas that are false—under the valuation.
- The relevant notions of verification and falsification are inexact.
 - The Boolean valuation determines the truth-value of every formula.
 - For any formula A, therefore, the Boolean valuation—conceived as a state—may have parts that are irrelevant to the truth or falsity of A.
- It thus follows from Exactification that every Boolean valuation can be represented as a state that contains an exact verifier (falsifier) for every formula that is true (false) under the valuation.

- Exactification is the idea due to Kit Fine that an inexact verifier (falsifier) for a proposition has an underlying exact verifier (falsifier).
- Consider a classical Boolean valuation, for example.
- It can be considered as a state in a model that verifies those formulas that are true—falsifies those formulas that are false—under the valuation.
- The relevant notions of verification and falsification are inexact.
 - The Boolean valuation determines the truth-value of every formula.
 - For any formula A, therefore, the Boolean valuation—conceived as a state—may have parts that are irrelevant to the truth or falsity of A.
- It thus follows from Exactification that every Boolean valuation can be represented as a state that contains an exact verifier (falsifier) for every formula that is true (false) under the valuation.

- Exactification is the idea due to Kit Fine that an inexact verifier (falsifier) for a proposition has an underlying exact verifier (falsifier).
- Consider a classical Boolean valuation, for example.
- It can be considered as a state in a model that verifies those formulas that are true—falsifies those formulas that are false—under the valuation.
- The relevant notions of verification and falsification are inexact.
 - The Boolean valuation determines the truth-value of every formula.
 - For any formula A, therefore, the Boolean valuation—conceived as a state—may have parts that are irrelevant to the truth or falsity of A.
- It thus follows from Exactification that every Boolean valuation can be represented as a state that contains an exact verifier (falsifier) for every formula that is true (false) under the valuation.

Auxiliary notions

- Let $\mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, v \rangle$ be a model and s be a state in \mathscr{S} .
- s is said to be atomically consistent just in case there is no propositional variable P such that $s \triangleright^+ P$ and $s \triangleright^- P$.
- s is said to be atomically complete just in case for all propositional variables P, $s \triangleright^+ P$ or $s \triangleright^- P$.
- One notable feature of the current semantics is that it allows models to have states that are atomically inconsistent and/or incomplete.

Auxiliary notions

- $\bullet \ \, \mathsf{Let} \,\, \mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, \mathsf{v} \rangle \,\, \mathsf{be} \,\, \mathsf{a} \,\, \mathsf{model} \,\, \mathsf{and} \,\, \mathsf{s} \,\, \mathsf{be} \,\, \mathsf{a} \,\, \mathsf{state} \,\, \mathsf{in} \,\, \mathscr{S}.$
- s is said to be atomically consistent just in case there is no propositional variable P such that $s \triangleright^+ P$ and $s \triangleright^- P$.
- s is said to be atomically complete just in case for all propositional variables P, $s \triangleright^+ P$ or $s \triangleright^- P$.
- One notable feature of the current semantics is that it allows models to have states that are atomically inconsistent and/or incomplete.

Auxiliary notions

- $\bullet \ \, \mathsf{Let} \,\, \mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, \nu \rangle \,\, \mathsf{be} \,\, \mathsf{a} \,\, \mathsf{model} \,\, \mathsf{and} \,\, s \,\, \mathsf{be} \,\, \mathsf{a} \,\, \mathsf{state} \,\, \mathsf{in} \,\, \mathscr{S}.$
- s is said to be atomically consistent just in case there is no propositional variable P such that $s \triangleright^+ P$ and $s \triangleright^- P$.
- s is said to be atomically complete just in case for all propositional variables P, $s \triangleright^+ P$ or $s \triangleright^- P$.
- One notable feature of the current semantics is that it allows models to have states that are atomically inconsistent and/or incomplete.

Auxiliary notions

- Let $\mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, \nu \rangle$ be a model and s be a state in \mathscr{S} .
- s is said to be atomically consistent just in case there is no propositional variable P such that $s \triangleright^+ P$ and $s \triangleright^- P$.
- s is said to be atomically complete just in case for all propositional variables P, $s \triangleright^+ P$ or $s \triangleright^- P$.
- One notable feature of the current semantics is that it allows models to have states that are atomically inconsistent and/or incomplete.

Outline

- Basic ideas of truthmaker semantics
 - The Truthmaker principle
 - Formal framework
 - Exact truthmaker semantics for classical propositional logic
- Exactification of multi-valued semantics
 - The idea of Exactification
 - Analysis of truth
 - Analysis of consequence

- Due to the feature just mentioned, the current semantics naturally corresponds to Belnap's four-valued semantics, where each formula is assigned one of the four truth-values: True, False, Both, Neither.
- For each state s in $\mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, v \rangle$ for Γ , define the corresponding four-valued assignment φ_s for propositional variables in $At(\Gamma)$:

$$\varphi_{s}(P) = \begin{cases} \{T\} & \text{if } s \triangleright^{+} P \text{ and } s \not \triangleright^{-} P; \\ \{F\} & \text{if } s \not \triangleright^{+} P \text{ and } s \triangleright^{-} P; \\ \{T, F\} & \text{if } s \triangleright^{+} P \text{ and } s \triangleright^{-} P; \\ \emptyset & \text{if } s \not \triangleright^{+} P \text{ and } s \not \triangleright^{-} P. \end{cases}$$

- A Belnapian valuation $\overline{\varphi}_s$ is a valuation extending φ_s to all formulas according to the scheme as given by Belnap.
- Obviously, then, for all formulas $A \in Fml(\Gamma)$, $s \triangleright^+ A$ if and only if $T \in \overline{\varphi_s}(A)$, and $s \triangleright^- A$ if and only if $F \in \overline{\varphi_s}(A)$.

- Due to the feature just mentioned, the current semantics naturally corresponds to Belnap's four-valued semantics, where each formula is assigned one of the four truth-values: True, False, Both, Neither.
- For each state s in $\mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, v \rangle$ for Γ , define the corresponding four-valued assignment φ_s for propositional variables in $At(\Gamma)$:

$$\varphi_s(P) = \begin{cases} \{T\} & \text{if } s \triangleright^+ P \text{ and } s \not \triangleright^- P; \\ \{F\} & \text{if } s \not \triangleright^+ P \text{ and } s \triangleright^- P; \\ \{T, F\} & \text{if } s \triangleright^+ P \text{ and } s \triangleright^- P; \\ \emptyset & \text{if } s \not \triangleright^+ P \text{ and } s \not \triangleright^- P. \end{cases}$$

- A Belnapian valuation $\overline{\varphi}_s$ is a valuation extending φ_s to all formulas according to the scheme as given by Belnap.
- Obviously, then, for all formulas $A \in Fml(\Gamma)$, $s \triangleright^+ A$ if and only if $T \in \overline{\varphi_s}(A)$, and $s \triangleright^- A$ if and only if $F \in \overline{\varphi_s}(A)$.

- Due to the feature just mentioned, the current semantics naturally corresponds to Belnap's four-valued semantics, where each formula is assigned one of the four truth-values: True, False, Both, Neither.
- For each state s in $\mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, v \rangle$ for Γ , define the corresponding four-valued assignment φ_s for propositional variables in $At(\Gamma)$:

$$\varphi_s(P) = \begin{cases} \{T\} & \text{if } s \triangleright^+ P \text{ and } s \not \triangleright^- P; \\ \{F\} & \text{if } s \not \triangleright^+ P \text{ and } s \triangleright^- P; \\ \{T, F\} & \text{if } s \triangleright^+ P \text{ and } s \triangleright^- P; \\ \emptyset & \text{if } s \not \triangleright^+ P \text{ and } s \not \triangleright^- P. \end{cases}$$

- A Belnapian valuation $\overline{\varphi_s}$ is a valuation extending φ_s to all formulas according to the scheme as given by Belnap.
- Obviously, then, for all formulas $A \in Fml(\Gamma)$, $s \triangleright^+ A$ if and only if $T \in \overline{\varphi_s}(A)$, and $s \triangleright^- A$ if and only if $F \in \overline{\varphi_s}(A)$.

- Due to the feature just mentioned, the current semantics naturally corresponds to Belnap's four-valued semantics, where each formula is assigned one of the four truth-values: True, False, Both, Neither.
- For each state s in $\mathfrak{A} = \langle \mathscr{S}, \sqsubseteq, v \rangle$ for Γ , define the corresponding four-valued assignment φ_s for propositional variables in $At(\Gamma)$:

$$\varphi_s(P) = \begin{cases} \{T\} & \text{if } s \triangleright^+ P \text{ and } s \not \triangleright^- P; \\ \{F\} & \text{if } s \not \triangleright^+ P \text{ and } s \triangleright^- P; \\ \{T, F\} & \text{if } s \triangleright^+ P \text{ and } s \triangleright^- P; \\ \emptyset & \text{if } s \not \triangleright^+ P \text{ and } s \not \triangleright^- P. \end{cases}$$

- A Belnapian valuation $\overline{\varphi_s}$ is a valuation extending φ_s to all formulas according to the scheme as given by Belnap.
- Obviously, then, for all formulas $A \in Fml(\Gamma)$, $s \triangleright^+ A$ if and only if $T \in \overline{\varphi_s}(A)$, and $s \triangleright^- A$ if and only if $F \in \overline{\varphi_s}(A)$.

- Now, Boolean valuations can be considered as Belnapian valuations that assign only {T} and {F} to formulas.
- It is easy to see that those Belnapian valuations correspond to atomically consistent and complete states in the current semantics.
- This gives a simple truthmaker semantical analysis of the notion of "truth under a Boolean valuation."
- A formula is true (false) under a Boolean valuation just in case it has an exact verifier (falsifier) under an atomically consistent and complete state (in a model).
- This way, the current semantics exactifies the notion of "truth (falsity) under a Boolean valuation."

- Now, Boolean valuations can be considered as Belnapian valuations that assign only $\{T\}$ and $\{F\}$ to formulas.
- It is easy to see that those Belnapian valuations correspond to atomically consistent and complete states in the current semantics.
- This gives a simple truthmaker semantical analysis of the notion of "truth under a Boolean valuation."
- A formula is true (false) under a Boolean valuation just in case it has an exact verifier (falsifier) under an atomically consistent and complete state (in a model).
- This way, the current semantics exactifies the notion of "truth (falsity) under a Boolean valuation."

- Now, Boolean valuations can be considered as Belnapian valuations that assign only $\{T\}$ and $\{F\}$ to formulas.
- It is easy to see that those Belnapian valuations correspond to atomically consistent and complete states in the current semantics.
- This gives a simple truthmaker semantical analysis of the notion of "truth under a Boolean valuation."
- A formula is true (false) under a Boolean valuation just in case it has an exact verifier (falsifier) under an atomically consistent and complete state (in a model).
- This way, the current semantics exactifies the notion of "truth (falsity) under a Boolean valuation."

- Now, Boolean valuations can be considered as Belnapian valuations that assign only $\{T\}$ and $\{F\}$ to formulas.
- It is easy to see that those Belnapian valuations correspond to atomically consistent and complete states in the current semantics.
- This gives a simple truthmaker semantical analysis of the notion of "truth under a Boolean valuation."
- A formula is true (false) under a Boolean valuation just in case it has an exact verifier (falsifier) under an atomically consistent and complete state (in a model).
- This way, the current semantics exactifies the notion of "truth (falsity) under a Boolean valuation."

- Now, Boolean valuations can be considered as Belnapian valuations that assign only $\{T\}$ and $\{F\}$ to formulas.
- It is easy to see that those Belnapian valuations correspond to atomically consistent and complete states in the current semantics.
- This gives a simple truthmaker semantical analysis of the notion of "truth under a Boolean valuation."
- A formula is true (false) under a Boolean valuation just in case it has an exact verifier (falsifier) under an atomically consistent and complete state (in a model).
- This way, the current semantics exactifies the notion of "truth (falsity) under a Boolean valuation."

Analysis of "Truth under a strong K3 valuation"

- In a similar fashion, Strong Kleene three-valued valuations can be considered as Belnapian valuations that assign $\{T\}$, $\{F\}$, \emptyset to formulas.
- Those Belnapian valuations correspond to atomically consistent states in the current semantics.
- So we have the following analysis of "truth under a strong K3 valuation": a formula is true (false) under a strong K3 valuation just in case it has an exact verifier (falsifier) under an atomically consistent state (in a model).

Analysis of "Truth under a strong K3 valuation"

- In a similar fashion, Strong Kleene three-valued valuations can be considered as Belnapian valuations that assign $\{T\}$, $\{F\}$, \emptyset to formulas.
- Those Belnapian valuations correspond to atomically consistent states in the current semantics.
- So we have the following analysis of "truth under a strong K3 valuation": a formula is true (false) under a strong K3 valuation just in case it has an exact verifier (falsifier) under an atomically consistent state (in a model).

Analysis of "Truth under a strong K3 valuation"

- In a similar fashion, Strong Kleene three-valued valuations can be considered as Belnapian valuations that assign $\{T\}$, $\{F\}$, \emptyset to formulas.
- Those Belnapian valuations correspond to atomically consistent states in the current semantics.
- So we have the following analysis of "truth under a strong K3 valuation": a formula is true (false) under a strong K3 valuation just in case it has an exact verifier (falsifier) under an atomically consistent state (in a model).

- Another well-known three-valued valuation is Priest's LP.
- LP valuations are Belnapian valuations that assign $\{T\}$, $\{F\}$, $\{T,F\}$ to formulas.
- Those Belnapian valuations correspond to atomically complete states.
- So, a formula is true (false) under a LP valuation just in case it has an exact verifier (falsifier) under an atomically complete state (in a model).

- Another well-known three-valued valuation is Priest's LP.
- LP valuations are Belnapian valuations that assign $\{T\}$, $\{F\}$, $\{T,F\}$ to formulas.
- Those Belnapian valuations correspond to atomically complete states.
- So, a formula is true (false) under a LP valuation just in case it has an exact verifier (falsifier) under an atomically complete state (in a model).

- Another well-known three-valued valuation is Priest's LP.
- LP valuations are Belnapian valuations that assign $\{T\}$, $\{F\}$, $\{T,F\}$ to formulas.
- Those Belnapian valuations correspond to atomically complete states.
- So, a formula is true (false) under a LP valuation just in case it has an exact verifier (falsifier) under an atomically complete state (in a model).

- Another well-known three-valued valuation is Priest's LP.
- LP valuations are Belnapian valuations that assign $\{T\}$, $\{F\}$, $\{T,F\}$ to formulas.
- Those Belnapian valuations correspond to atomically complete states.
- So, a formula is true (false) under a LP valuation just in case it has an exact verifier (falsifier) under an atomically complete state (in a model).

Outline

- Basic ideas of truthmaker semantics
 - The Truthmaker principle
 - Formal framework
 - Exact truthmaker semantics for classical propositional logic
- Exactification of multi-valued semantics
 - The idea of Exactification
 - Analysis of truth
 - Analysis of consequence

• Let us turn to the notion of consequence

- Consider as an example the following simple analysis of classical consequence.
- In the standard semantics, classical consequence is understood as the preservation of truth under all Boolean valuations.
- Truth (falsity) under a Boolean valuation is analyzed as inexact verification (falsification) under an atomically consistent and complete state.
- So, the most straightforward analysis of classical consequence would be in terms of the preservation of inexact verification under all modally sound and complete states (in all models).
 - A is a classical consequence of Γ if and only if in all models $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and for all modally sound and complete states in $\mathscr{S}, v \models A$ whenever $s v \models B$ for all $B \in \Gamma$.

- Let us turn to the notion of consequence
- Consider as an example the following simple analysis of classical consequence.
- In the standard semantics, classical consequence is understood as the preservation of truth under all Boolean valuations.
- Truth (falsity) under a Boolean valuation is analyzed as inexact verification (falsification) under an atomically consistent and complete state.
- So, the most straightforward analysis of classical consequence would be in terms of the preservation of inexact verification under all modally sound and complete states (in all models).
 - A is a classical consequence of Γ if and only if in all models $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and for all modally sound and complete states in \mathscr{S} , $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us turn to the notion of consequence
- Consider as an example the following simple analysis of classical consequence.
- In the standard semantics, classical consequence is understood as the preservation of truth under all Boolean valuations.
- Truth (falsity) under a Boolean valuation is analyzed as inexact verification (falsification) under an atomically consistent and complete state.
- So, the most straightforward analysis of classical consequence would be in terms of the preservation of inexact verification under all modally sound and complete states (in all models).
 - A is a classical consequence of Γ if and only if in all models $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and for all modally sound and complete states in \mathscr{S} , $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us turn to the notion of consequence
- Consider as an example the following simple analysis of classical consequence.
- In the standard semantics, classical consequence is understood as the preservation of truth under all Boolean valuations.
- Truth (falsity) under a Boolean valuation is analyzed as inexact verification (falsification) under an atomically consistent and complete state.
- So, the most straightforward analysis of classical consequence would be in terms of the preservation of inexact verification under all modally sound and complete states (in all models).
 - A is a classical consequence of Γ if and only if in all models $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and for all modally sound and complete states in \mathscr{S} , $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us turn to the notion of consequence
- Consider as an example the following simple analysis of classical consequence.
- In the standard semantics, classical consequence is understood as the preservation of truth under all Boolean valuations.
- Truth (falsity) under a Boolean valuation is analyzed as inexact verification (falsification) under an atomically consistent and complete state.
- So, the most straightforward analysis of classical consequence would be in terms of the preservation of inexact verification under all modally sound and complete states (in all models).
 - A is a classical consequence of Γ if and only if in all models $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and for all modally sound and complete states in \mathscr{S} , $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us turn to the notion of consequence
- Consider as an example the following simple analysis of classical consequence.
- In the standard semantics, classical consequence is understood as the preservation of truth under all Boolean valuations.
- Truth (falsity) under a Boolean valuation is analyzed as inexact verification (falsification) under an atomically consistent and complete state.
- So, the most straightforward analysis of classical consequence would be in terms of the preservation of inexact verification under all modally sound and complete states (in all models).
 - A is a classical consequence of Γ if and only if in all models $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and for all modally sound and complete states in \mathscr{S} , $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

Dropping the atomic completeness requirement

- On the basis of this analysis, we can easily establish the soundness and completeness results of classical propositional logic with respect to the proposed truthmaker semantics.
- But there is an alternative analysis that does not appeal to atomic completeness condition.

Dropping the atomic completeness requirement

- On the basis of this analysis, we can easily establish the soundness and completeness results of classical propositional logic with respect to the proposed truthmaker semantics.
- But there is an alternative analysis that does not appeal to atomic completeness condition.

- This can be done by generalizing the notion of consequence.
- Consequence is typically understood as the preservation of truth.
- This is ambiguous in the context of multi-valued semantics.
- In the case of Belnap's four-valued semantics, truth may mean either $\{T\}$, $\{T,F\}$, or both

- This can be done by generalizing the notion of consequence.
- Consequence is typically understood as the preservation of truth.
- This is ambiguous in the context of multi-valued semantics.
- In the case of Belnap's four-valued semantics, truth may mean either $\{T\}$, $\{T,F\}$, or both

- This can be done by generalizing the notion of consequence.
- Consequence is typically understood as the preservation of truth.
- This is ambiguous in the context of multi-valued semantics.
- In the case of Belnap's four-valued semantics, truth may mean either $\{T\}$, $\{T,F\}$, or both

- This can be done by generalizing the notion of consequence.
- Consequence is typically understood as the preservation of truth.
- This is ambiguous in the context of multi-valued semantics.
- In the case of Belnap's four-valued semantics, truth may mean either $\{T\}$, $\{T,F\}$, or both

- This issue is resolved in multi-valued semantics by generalizing the notion of consequence as the preservation of *designated* values.
- Consider we have *n* possible truth-values.
- The set 𝒯 of designated truth-values is any non-empty subset of the n-possible truth-values.
- A is a consequence of Γ if and only if A is assigned a value in $\mathscr D$ by every valuation that assigns a value in $\mathscr D$ to every formula in Γ .

- This issue is resolved in multi-valued semantics by generalizing the notion of consequence as the preservation of *designated* values.
- Consider we have *n* possible truth-values.
- The set 𝒯 of designated truth-values is any non-empty subset of the n-possible truth-values.
- A is a consequence of Γ if and only if A is assigned a value in $\mathscr D$ by every valuation that assigns a value in $\mathscr D$ to every formula in Γ .

- This issue is resolved in multi-valued semantics by generalizing the notion of consequence as the preservation of *designated* values.
- Consider we have *n* possible truth-values.
- The set 𝒯 of designated truth-values is any non-empty subset of the n-possible truth-values.
- A is a consequence of Γ if and only if A is assigned a value in $\mathscr D$ by every valuation that assigns a value in $\mathscr D$ to every formula in Γ .

- This issue is resolved in multi-valued semantics by generalizing the notion of consequence as the preservation of *designated* values.
- Consider we have *n* possible truth-values.
- The set 𝒯 of designated truth-values is any non-empty subset of the n-possible truth-values.
- A is a consequence of Γ if and only if A is assigned a value in $\mathscr D$ by every valuation that assigns a value in $\mathscr D$ to every formula in Γ .

- Consider the Belnapian four-valued valuations.
- The FDE consequence relation is defined by by taking the set \mathcal{D} of designated values to be $\{\{T\}, \{T, F\}\}.$
 - A is an FDE-consequence of Γ just in case A is assigned a value in {{T}, {T,F}} under every Belnapian valuation that assigns to every formula in Γ a value in {{T}, {T,F}}.
- Now recall that to every Belnapian valuation ϕ there corresponds a state s in a model such that, for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the FDE consequence relation thus:
 - A is an FDE-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Consider the Belnapian four-valued valuations.
- The FDE consequence relation is defined by by taking the set \mathscr{D} of designated values to be $\{\{T\}, \{T, F\}\}.$
 - A is an FDE-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every Belnapian valuation that assigns to every formula in Γ a value in $\{\{T\}, \{T, F\}\}$.
- Now recall that to every Belnapian valuation ϕ there corresponds a state s in a model such that, for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the FDE consequence relation thus:
 - A is an FDE-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Consider the Belnapian four-valued valuations.
- The FDE consequence relation is defined by by taking the set \mathscr{D} of designated values to be $\{\{T\}, \{T, F\}\}.$
 - A is an FDE-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every Belnapian valuation that assigns to every formula in Γ a value in $\{\{T\}, \{T, F\}\}$.
- Now recall that to every Belnapian valuation ϕ there corresponds a state s in a model such that, for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the FDE consequence relation thus:
 - A is an FDE-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Consider the Belnapian four-valued valuations.
- The FDE consequence relation is defined by by taking the set \mathscr{D} of designated values to be $\{\{T\}, \{T, F\}\}.$
 - A is an FDE-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every Belnapian valuation that assigns to every formula in Γ a value in $\{\{T\}, \{T, F\}\}$.
- Now recall that to every Belnapian valuation ϕ there corresponds a state s in a model such that, for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the FDE consequence relation thus:
 - A is an FDE-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Consider the Belnapian four-valued valuations.
- The FDE consequence relation is defined by by taking the set \mathscr{D} of designated values to be $\{\{T\}, \{T, F\}\}.$
 - A is an FDE-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every Belnapian valuation that assigns to every formula in Γ a value in $\{\{T\}, \{T, F\}\}$.
- Now recall that to every Belnapian valuation ϕ there corresponds a state s in a model such that, for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the FDE consequence relation thus:
 - A is an FDE-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Consider the Belnapian four-valued valuations.
- The FDE consequence relation is defined by by taking the set \mathscr{D} of designated values to be $\{\{T\}, \{T, F\}\}.$
 - A is an FDE-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every Belnapian valuation that assigns to every formula in Γ a value in $\{\{T\}, \{T, F\}\}$.
- Now recall that to every Belnapian valuation ϕ there corresponds a state s in a model such that, for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the FDE consequence relation thus:
 - A is an FDE-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- In similar fashion, we can give analysis of K3-consequence.
- The K3 consequence is defined by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathcal{D} = \{\{T\}\}$.
 - A is an K3-consequence of Γ just in case A is assigned {T} under every
 K3 valuation that assigns {T} to every formula in Γ.
- Every K3 valuation ϕ corresponds an atomically consistent state s in a model. For any formula C, in other words,

$$\phi(C) = \{T\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the K3 consequence relation thus:
 - A is an K3-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically consistent $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- In similar fashion, we can give analysis of K3-consequence.
- The K3 consequence is defined by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathcal{D} = \{\{T\}\}$.
 - A is an K3-consequence of Γ just in case A is assigned $\{T\}$ under every K3 valuation that assigns $\{T\}$ to every formula in Γ .
- Every K3 valuation ϕ corresponds an atomically consistent state s in a model. For any formula C, in other words,

$$\phi(C) = \{T\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the K3 consequence relation thus:
 - A is an K3-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically consistent $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- In similar fashion, we can give analysis of K3-consequence.
- The K3 consequence is defined by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathcal{D} = \{\{T\}\}$.
 - A is an K3-consequence of Γ just in case A is assigned $\{T\}$ under every K3 valuation that assigns $\{T\}$ to every formula in Γ .
- Every K3 valuation ϕ corresponds an atomically consistent state s in a model. For any formula C, in other words,

$$\phi(C) = \{T\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the K3 consequence relation thus:
 - A is an K3-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically consistent $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- In similar fashion, we can give analysis of K3-consequence.
- The K3 consequence is defined by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}\}$.
 - A is an K3-consequence of Γ just in case A is assigned $\{T\}$ under every K3 valuation that assigns $\{T\}$ to every formula in Γ .
- Every K3 valuation ϕ corresponds an atomically consistent state s in a model. For any formula C, in other words,

$$\phi(C) = \{T\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the K3 consequence relation thus:
 - A is an K3-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically consistent $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- In similar fashion, we can give analysis of K3-consequence.
- The K3 consequence is defined by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}\}$.
 - A is an K3-consequence of Γ just in case A is assigned $\{T\}$ under every K3 valuation that assigns $\{T\}$ to every formula in Γ .
- Every K3 valuation ϕ corresponds an atomically consistent state s in a model. For any formula C, in other words,

$$\phi(C) = \{T\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the K3 consequence relation thus:
 - A is an K3-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically consistent $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- In similar fashion, we can give analysis of K3-consequence.
- The K3 consequence is defined by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}\}$.
 - A is an K3-consequence of Γ just in case A is assigned $\{T\}$ under every K3 valuation that assigns $\{T\}$ to every formula in Γ .
- Every K3 valuation ϕ corresponds an atomically consistent state s in a model. For any formula C, in other words,

$$\phi(C) = \{T\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- So, we can give a truthmaker semantical analysis of the K3 consequence relation thus:
 - A is an K3-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically consistent $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us now consider LP-consequence.
- One way of defining the LP consequence is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, $\{T,F\}$ and by setting $\mathcal{D} = \{\{T\}, \{T,F\}\}.$
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every LP valuation that assigns a value in $\{\{T\}, \{T, F\}\}$ to every formula in Γ .
- Every LP valuation corresponds an atomically complete state s in a model in the usual sense: for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- The LP consequence relation can be analyzed thus:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically complete $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us now consider LP-consequence.
- One way of defining the LP consequence is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, $\{T,F\}$ and by setting $\mathscr{D} = \{\{T\}, \{T,F\}\}.$
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every LP valuation that assigns a value in $\{\{T\}, \{T, F\}\}$ to every formula in Γ .
- Every LP valuation corresponds an atomically complete state s in a model in the usual sense: for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- The LP consequence relation can be analyzed thus:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically complete $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us now consider LP-consequence.
- One way of defining the LP consequence is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, $\{T,F\}$ and by setting $\mathscr{D} = \{\{T\}, \{T,F\}\}.$
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every LP valuation that assigns a value in $\{\{T\}, \{T, F\}\}$ to every formula in Γ .
- Every LP valuation corresponds an atomically complete state s in a model in the usual sense: for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \quad \Leftrightarrow \quad s \triangleright^+ C.$$

- The LP consequence relation can be analyzed thus:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically complete $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us now consider LP-consequence.
- One way of defining the LP consequence is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, $\{T,F\}$ and by setting $\mathscr{D} = \{\{T\}, \{T,F\}\}.$
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T,F\}\}$ under every LP valuation that assigns a value in $\{\{T\}, \{T,F\}\}$ to every formula in Γ .
- Every LP valuation corresponds an atomically complete state s in a model in the usual sense: for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \Leftrightarrow s \triangleright^+ C.$$

• The LP consequence relation can be analyzed thus:

A is an LP-consequence of Γ if and only if, for any A = {𝒯, ⊑, v} and any atomically complete s ∈ 𝒯, s▷⁺ A whenever s▷⁺ B for all B ∈ Γ.

- Let us now consider LP-consequence.
- One way of defining the LP consequence is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, $\{T,F\}$ and by setting $\mathscr{D} = \{\{T\}, \{T,F\}\}.$
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every LP valuation that assigns a value in $\{\{T\}, \{T, F\}\}$ to every formula in Γ .
- Every LP valuation corresponds an atomically complete state s in a model in the usual sense: for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \Leftrightarrow s \triangleright^+ C.$$

- The LP consequence relation can be analyzed thus:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically complete $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Let us now consider LP-consequence.
- One way of defining the LP consequence is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, $\{T,F\}$ and by setting $\mathscr{D} = \{\{T\}, \{T,F\}\}.$
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\}, \{T, F\}\}$ under every LP valuation that assigns a value in $\{\{T\}, \{T, F\}\}$ to every formula in Γ .
- Every LP valuation corresponds an atomically complete state s in a model in the usual sense: for any formula C,

$$\phi(C) \in \{\{T\}, \{T, F\}\} \Leftrightarrow s \triangleright^+ C.$$

- The LP consequence relation can be analyzed thus:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically complete $s \in \mathscr{S}$, $s \triangleright^+ A$ whenever $s \triangleright^+ B$ for all $B \in \Gamma$.

- Another way of defining the LP consequence should be mentioned.
- It is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\},\emptyset\}$.
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\},\emptyset\}$ under every K3 valuation that assigns a value in $\{\{T\},\emptyset\}$ to every formula in Γ .
- On this definition, LP consequence is understood as the preservation of *non-falsity* under every K3 valuation.
- Given any K3 valuation ϕ and a corresponding state s in a model, we have: for any formula C,

$$\phi(C) \in \{\{T\},\emptyset\} \quad \Leftrightarrow \quad s \not \triangleright^- C.$$

- The LP consequence relation can be given an alternative analysis:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{ \mathscr{S}, \sqsubseteq, v \}$ an any atomically sound $s \in \mathscr{S}$, $s \nvDash^- A$ whenever $s \nvDash^- B$ for all $B \in \Gamma$.

- Another way of defining the LP consequence should be mentioned.
- It is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}, \emptyset\}$.
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\},\emptyset\}$ under every K3 valuation that assigns a value in $\{\{T\},\emptyset\}$ to every formula in Γ .
- On this definition, LP consequence is understood as the preservation of *non-falsity* under every K3 valuation.
- Given any K3 valuation ϕ and a corresponding state s in a model, we have: for any formula C,

$$\phi(C) \in \{\{T\},\emptyset\} \Leftrightarrow s \not \triangleright^- C.$$

• The LP consequence relation can be given an alternative analysis:

• A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically sound $s \in \mathscr{S}$, $s \not\models A$ whenever $s \not\models B$ for all $B \in \Gamma$.

- Another way of defining the LP consequence should be mentioned.
- It is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\},\emptyset\}$.
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\},\emptyset\}$ under every K3 valuation that assigns a value in $\{\{T\},\emptyset\}$ to every formula in Γ .
- On this definition, LP consequence is understood as the preservation of *non-falsity* under every K3 valuation.
- Given any K3 valuation ϕ and a corresponding state s in a model, we have: for any formula C,

$$\phi(C) \in \{\{T\},\emptyset\} \quad \Leftrightarrow \quad s \not \triangleright^- C.$$

• The LP consequence relation can be given an alternative analysis:

A is an LP-consequence of Γ if and only if, for any 𝔄 = {𝒯, ⊑, v} and any atomically sound s ∈ 𝒯, s № A whenever s № B for all B ∈ Γ.

- Another way of defining the LP consequence should be mentioned.
- It is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}, \emptyset\}$.
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\},\emptyset\}$ under every K3 valuation that assigns a value in $\{\{T\},\emptyset\}$ to every formula in Γ .
- On this definition, LP consequence is understood as the preservation of non-falsity under every K3 valuation.
- Given any K3 valuation ϕ and a corresponding state s in a model, we have: for any formula C,

$$\phi(C) \in \{\{T\},\emptyset\} \quad \Leftrightarrow \quad s \not \triangleright^- C.$$

• The LP consequence relation can be given an alternative analysis:

• A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically sound $s \in \mathscr{S}$, $s \not\models^- A$ whenever $s \not\models^- B$ for all $B \in \Gamma$.

- Another way of defining the LP consequence should be mentioned.
- It is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}, \emptyset\}$.
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\},\emptyset\}$ under every K3 valuation that assigns a value in $\{\{T\},\emptyset\}$ to every formula in Γ .
- On this definition, LP consequence is understood as the preservation of non-falsity under every K3 valuation.
- Given any K3 valuation ϕ and a corresponding state s in a model, we have: for any formula C,

$$\phi(C) \in \{\{T\},\emptyset\} \Leftrightarrow s \not \triangleright^- C.$$

The LP consequence relation can be given an alternative analysis:
A is an LP-consequence of Γ if and only if, for any 𝔄 = {𝒯, ⊆, v} and any atomically sound s ∈ 𝒯 s ⋈ ¬A whenever s ⋈ ¬B for all B ∈ Γ

- Another way of defining the LP consequence should be mentioned.
- It is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}, \emptyset\}$.
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\},\emptyset\}$ under every K3 valuation that assigns a value in $\{\{T\},\emptyset\}$ to every formula in Γ .
- On this definition, LP consequence is understood as the preservation of non-falsity under every K3 valuation.
- Given any K3 valuation ϕ and a corresponding state s in a model, we have: for any formula C,

$$\phi(C) \in \{\{T\},\emptyset\} \quad \Leftrightarrow \quad s \not \triangleright^- C.$$

- The LP consequence relation can be given an alternative analysis:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{ \mathscr{S}, \sqsubseteq, v \}$ and any atomically sound $s \in \mathscr{S}$, $s \not \vdash A$ whenever $s \not \vdash B$ for all $B \in \Gamma$.

- Another way of defining the LP consequence should be mentioned.
- It is by restricting Belnapian valuations to those that assign $\{T\}$, $\{F\}$, \emptyset and by setting $\mathscr{D} = \{\{T\}, \emptyset\}$.
 - A is an LP-consequence of Γ just in case A is assigned a value in $\{\{T\},\emptyset\}$ under every K3 valuation that assigns a value in $\{\{T\},\emptyset\}$ to every formula in Γ .
- On this definition, LP consequence is understood as the preservation of non-falsity under every K3 valuation.
- Given any K3 valuation ϕ and a corresponding state s in a model, we have: for any formula C,

$$\phi(C) \in \{\{T\},\emptyset\} \Leftrightarrow s \not \triangleright^- C.$$

- The LP consequence relation can be given an alternative analysis:
 - A is an LP-consequence of Γ if and only if, for any $\mathfrak{A} = \{\mathscr{S}, \sqsubseteq, v\}$ and any atomically sound $s \in \mathscr{S}$, $s \not \triangleright A$ whenever $s \not \triangleright B$ for all $B \in \Gamma$.

- Now let us go back to the classical consequence relation.
- The problem is: how can we give an analysis of classical consequence without appeal to atomic completeness?
- A solution to this problem is to further generalize the notion of consequence by allowing two sets of designated values, one for Γ—the set of premises—and the other for A—the conclusion.
- Say that A is a consequence of Γ just in case A is assigned a value in \mathcal{D}_1 whenever every formula in Γ is assigned a value in \mathcal{D}_2 , where again \mathcal{D}_1 and \mathcal{D}_2 are any non-empty subsets of possible truth-values.
- This "mixed" notion of consequence has become standard in the recent literature of logical paradoxes, such as the Liar and Curry.

- Now let us go back to the classical consequence relation.
- The problem is: how can we give an analysis of classical consequence without appeal to atomic completeness?
- A solution to this problem is to further generalize the notion of consequence by allowing two sets of designated values, one for Γ—the set of premises—and the other for A—the conclusion.
- Say that A is a consequence of Γ just in case A is assigned a value in \mathcal{D}_1 whenever every formula in Γ is assigned a value in \mathcal{D}_2 , where again \mathcal{D}_1 and \mathcal{D}_2 are any non-empty subsets of possible truth-values.
- This "mixed" notion of consequence has become standard in the recent literature of logical paradoxes, such as the Liar and Curry.

- Now let us go back to the classical consequence relation.
- The problem is: how can we give an analysis of classical consequence without appeal to atomic completeness?
- A solution to this problem is to further generalize the notion of consequence by allowing two sets of designated values, one for Γ—the set of premises—and the other for A—the conclusion.
- Say that A is a consequence of Γ just in case A is assigned a value in \mathcal{D}_1 whenever every formula in Γ is assigned a value in \mathcal{D}_2 , where again \mathcal{D}_1 and \mathcal{D}_2 are any non-empty subsets of possible truth-values.
- This "mixed" notion of consequence has become standard in the recent literature of logical paradoxes, such as the Liar and Curry.

- Now let us go back to the classical consequence relation.
- The problem is: how can we give an analysis of classical consequence without appeal to atomic completeness?
- A solution to this problem is to further generalize the notion of consequence by allowing two sets of designated values, one for Γ—the set of premises—and the other for A—the conclusion.
- Say that A is a consequence of Γ just in case A is assigned a value in \mathcal{D}_1 whenever every formula in Γ is assigned a value in \mathcal{D}_2 , where again \mathcal{D}_1 and \mathcal{D}_2 are any non-empty subsets of possible truth-values.
- This "mixed" notion of consequence has become standard in the recent literature of logical paradoxes, such as the Liar and Curry.

- Now let us go back to the classical consequence relation.
- The problem is: how can we give an analysis of classical consequence without appeal to atomic completeness?
- A solution to this problem is to further generalize the notion of consequence by allowing two sets of designated values, one for Γ—the set of premises—and the other for A—the conclusion.
- Say that A is a consequence of Γ just in case A is assigned a value in \mathscr{D}_1 whenever every formula in Γ is assigned a value in \mathscr{D}_2 , where again \mathscr{D}_1 and \mathscr{D}_2 are any non-empty subsets of possible truth-values.
- This "mixed" notion of consequence has become standard in the recent literature of logical paradoxes, such as the Liar and Curry.

- Using this mixed notion, we may define the notion of classical consequence as follows:
 - A is a classical consequence of Γ if and only if A is assigned a value in $\{\{T\},\emptyset\}$ by every K3-valuation that assigns $\{T\}$ to every formula in Γ
- Intuitively, A is a classical consequence of Γ just in case A can never be false as long as every $B \in \Gamma$ is true.
- In a sense, then, classical consequence is defined by mixing LP and K3 consequence relations.

- Using this mixed notion, we may define the notion of classical consequence as follows:
 - A is a classical consequence of Γ if and only if A is assigned a value in $\{\{\mathcal{T}\},\emptyset\}$ by every K3-valuation that assigns $\{\mathcal{T}\}$ to every formula in Γ .
- Intuitively, A is a classical consequence of Γ just in case A can never be false as long as every $B \in \Gamma$ is true.
- In a sense, then, classical consequence is defined by mixing LP and K3 consequence relations.

- Using this mixed notion, we may define the notion of classical consequence as follows:
 - A is a classical consequence of Γ if and only if A is assigned a value in $\{\{\mathcal{T}\},\emptyset\}$ by every K3-valuation that assigns $\{\mathcal{T}\}$ to every formula in Γ .
- Intuitively, A is a classical consequence of Γ just in case A can never be false as long as every $B \in \Gamma$ is true.
- In a sense, then, classical consequence is defined by mixing LP and K3 consequence relations.

- Using this mixed notion, we may define the notion of classical consequence as follows:
 - A is a classical consequence of Γ if and only if A is assigned a value in $\{\{\mathcal{T}\},\emptyset\}$ by every K3-valuation that assigns $\{\mathcal{T}\}$ to every formula in Γ .
- Intuitively, A is a classical consequence of Γ just in case A can never be false as long as every $B \in \Gamma$ is true.
- In a sense, then, classical consequence is defined by mixing LP and K3 consequence relations.

- We thus arrive at the following truthmaker semantical analysis of classical consequence:
 - A is a classical consequence of Γ just in case for all models $\mathscr{A} = \langle \mathscr{S}, \sqsubseteq, v \rangle$ and all atomically consistent states $s \in \mathscr{S}$, $s \not \triangleright^- A$ if $s \triangleright^+ B$ for all $B \in \Gamma$.
- Using this notion of classical consequence, we can easily establish the usual soundness and completeness results.

- We thus arrive at the following truthmaker semantical analysis of classical consequence:
 - A is a classical consequence of Γ just in case for all models $\mathscr{A} = \langle \mathscr{S}, \sqsubseteq, \nu \rangle$ and all atomically consistent states $s \in \mathscr{S}$, $s \not \triangleright^- A$ if $s \triangleright^+ B$ for all $B \in \Gamma$.
- Using this notion of classical consequence, we can easily establish the usual soundness and completeness results.

- We thus arrive at the following truthmaker semantical analysis of classical consequence:
 - A is a classical consequence of Γ just in case for all models $\mathscr{A} = \langle \mathscr{S}, \sqsubseteq, \nu \rangle$ and all atomically consistent states $s \in \mathscr{S}$, $s \not \triangleright^- A$ if $s \triangleright^+ B$ for all $B \in \Gamma$.
- Using this notion of classical consequence, we can easily establish the usual soundness and completeness results.

Conclusion

- In this talk, I discuss a formal exact truthmaker semantics for classical logic in relation to some of the best known many-valued semantics, Belnap's four-valued semantics, K3, and LP.
- I hope that I have made it clear that the exact truthmaker semantics offers a unitary formal framework for all those semantics.

Conclusion

- In this talk, I discuss a formal exact truthmaker semantics for classical logic in relation to some of the best known many-valued semantics, Belnap's four-valued semantics, K3, and LP.
- I hope that I have made it clear that the exact truthmaker semantics offers a unitary formal framework for all those semantics.