

CBSE Class 12 physics Important Questions Chapter 13 Amines

3 Mark Questions

1.

Ans.

2.A compound (X) having formula C₃H₇ NO reacts with Br₂ in the presence of NaOH to give

another compound (Y). Compound (Y) reacts with ${\rm HNO_2}$ to form ethanol and N_2 gas . Identify (X) and (Y) . Write the reaction involved.

Ans.

$$X (C_3H_7NO) + Br_2$$
 NaOH Y HNO₂ $CH_3 CH_2 OH + N_2$

Since Y gives ethanol and $\,N_{\rm 2}$ gas with $H\!NO_{\rm 2}$, therefore it is $C\!H_{\rm 3}C\!H_{\rm 2}N\!H_{\rm 2}$.

Ethan amine (Y) is formed on reacting (X) with Br_2 and NaOH;

Therefore X is $CH_1CH_2CO NH_2$.

Therefore

$$X = CH_1CH_2CONH_2$$

$$Y = CH_3CH_2NH_2$$

The reactions are -

$$\mathsf{CH_3}\,\mathsf{CH_2}\,\mathsf{CONH_2} + \mathsf{Br_2} \xrightarrow{\mathsf{NaOH}} \mathsf{CH_3}\,\mathsf{CH_2}\,\mathsf{NH_2}\,(\mathsf{Y}) \xrightarrow{\mathsf{HNO_2}} \mathsf{CH_3}\,\mathsf{CH_2}\,\mathsf{OH} \, + \, \mathsf{N_2}$$

3.An organic compound A (C_3H_5N) on boiling with alkali gives NH_3 and sodium salt of an acid B $(C_3H_6O_2)$. The compound A on reduction gives $C(C_3H_9N)$ which on treatment with nitrous acid gives an alcohol $D(C_3H_8O)$. Identify A to D

Ans.

(A) NaOH
$$C_3H_6OONa + NH_3$$

(H) $HNO_2 C_3H_8O$

(C) (D) Alcohol

Since the compound (A) gives sodium salt and ammonia, (A) is cyanide. The compound (C) is a primary amine as it reacts with HNO_2 and forms an alcohol (D) Therefore

$$A = CH_3CH_2CN$$
, $B = CH_3CH_2COOH_3$

$$C = CH_3CH_2CH_2NH_2$$
, $D = CH_3CH_2CH_2OH$

Equations are-

4.

$$C_6H_5CONH_2$$
 $\xrightarrow{P_2O_5 \text{ or}}$ (A) $\xrightarrow{\text{catalytic reduction}}$ (B) $\xrightarrow{\text{HONO or}}$ (C) $\xrightarrow{\text{NaNO}_2 / \text{HCl}}$

Ans.

$$C_6H_5CONH_2$$
 P_2O_5 or C_6H_5CN
 C_6H_5 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH

5.

(A)
$$\frac{Br_2/KOH}{\bullet}$$
 (B) $\frac{NaNO_2/HCI}{HNO_2}$ (C) $\frac{Red P}{Br_2}$ CH₃ Br

Ans.

6.

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{aq. Br}_2 \\
\hline
 & \text{A)} & \begin{array}{c}
 & \text{NANO}_2 / \text{HCI} \\
\hline
 & \text{HNO}_2
\end{array}$$
(B)
$$\begin{array}{c}
 & \text{H}_3 \text{PO}_2 \\
\hline
 & \Delta
\end{array}$$
(C)

Ans.

7.

(A)
$$\xrightarrow{\text{Ag CN}}$$
 (B) $\xrightarrow{\text{Sn / HCI}}$ (C) $\xrightarrow{\text{NaNO}_2 / \text{HCI}}$ CH₃ N-N-O CH₃ I CH₃

Ans.

8.

$$C_6H_5NH_2$$
 CH3 CO CI $C_6H_5NH_2$ (A) $C_6H_5NH_2$ (B) $C_6H_5NH_2$ (C)

Ans.

9.

(A)
$$\frac{\text{HNO}_3 / \text{H}_2\text{SO}_4}{\text{Conc.}}$$
 (B) $\frac{\text{Sn. / HCl}}{\text{CONC.}}$ (C) $\frac{\text{CH Cl}_3 / \text{KOH}}{\text{NH CO CH}_3}$ (E) $\frac{\text{H}_2 / \text{Pt}}{\text{NH CO CH}_3}$ (F)

Ans.

10.

(A)
$$\frac{\text{NaOH} / \text{B}_2}{\text{NaNO}_2 / \text{HCI}}$$
 (C) $\frac{\text{CI}_2 / \text{Fe}}{\text{El}_2 / \text{Fe}}$ (F) $\frac{\text{CI}_2 / \text{Fe}}{\text{H}_2 / \text{Pt}}$ (E) $\frac{\text{CI}_2 / \text{Fe}}{\text{CH}_2 \text{NH}_2}$

Ans.

11. How will you convert?

- (i) Benzene into aniline
- (ii) Benzene into N, N-dimethylaniline
- (iii) $C1-(CH_2)_4$ -Cl into hexan-1, 6-diamine?

Ans.(i)

(ii)

(iii)

$$CI - (CH_2)_4 - CI$$
 Ethanolic NaCN \longrightarrow N \Longrightarrow C $- (CH_2)_4 - C \Longrightarrow$ N \Longrightarrow 1, 4 $-$ Dichlorobutane \Longrightarrow H_2/Ni \Longrightarrow H_2/Ni \Longrightarrow H_2/Ni \Longrightarrow Hexane $-1,6$ $-$ diamine

12. Write reactions of the final alkylation product of aniline with excess of methyl iodide in the presence of sodium carbonate solution.

Ans. Aniline reacts with methyl iodide to produce N, N-dimethylaniline.

$$\begin{array}{c|c} NH_2 & N & CH_3 \\ \hline \\ CH_3I & CH_3I \\ \hline \\ Aniline & N, N-Dimethylaniline \\ \end{array}$$

With excess methyl iodide, in the presence of Na_2CO_3 solution, N, N-dimethylaniline produces N, N, N-trimethylanilinium carbonate.

N, N - Dimethylaniline N, N, N - Trimethylanilinium iodide

N, N, N - Trimethylanilinium Carbonate

13.Convert

- (i) 3-Methylaniline into 3-nitrotoluene.
- (ii) Aniline into 1, 3, 5-tribromobenzene.

Ans.(i)

$$\begin{array}{c} NH_2 \\ + NaNO_2 + 2HCI \xrightarrow{273-278 \text{ K}} \\ 3- \text{Methylaniline} \\ NO_2 \\ NaBF_4 + N_2 + \\ \hline \\ NaNO_2 \\ \hline \\ NaNO_2 \\ \hline \\ CH_3 \\ \hline \\ NaNO_2 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_4 \\ CH_5 \\ C$$

(ii)

NH₂

$$Br_{2}/H_{2}O$$

$$R_{1}/H_{2}O$$

$$R_{2}/H_{2}O$$

$$R_{2}/H_{2}O$$

$$R_{3}/H_{2}O$$

$$R_{3}/H_{2}O$$

$$R_{4}/H_{2}O$$

$$R_{3}/H_{2}O$$

$$R_{5}/H_{2}O$$

$$R_{7}/H_{2}O$$

1, 3, 5 - Tribromobenzene