Делимост на цели числа. Най-голям общ делител, тъждество на Безу. Прости числа, основна теорема на аритметиката.

Теорема 1. За произволни цели числа $a, b \in \mathbb{Z}$, $b \neq 0$ съществува единствено частно $q \in \mathbb{Z}$ и остатък $r \in \mathbb{Z}$ при деление на a c b, така че a = bq + r и $0 \leq r < |b|$.

Доказателство. Представяме реалната права $\mathbb{R} = \bigcup_{z \in \mathbb{Z}} [z|b|, z|b| + |b|)$ като непресичащо се обединение на полу-отворени интервали [z|b|, z|b| + |b|). Цялото число a попада в точно един интервал [z|b|, z|b| + |b|). Ако b > 0, полагаме q = z. В случая b < 0 избираме q = -z, така че z|b| = bq. Тогава $bq \le a < bq + |b|$, откъдето r := a - bq изпълнява неравенствата $0 \le r < |b|$.

Определение 2. Цялото число $a \in \mathbb{Z} \setminus \{0\}$ дели цялото число $b \in \mathbb{Z}$, ако съществува $c \in \mathbb{Z}$, така че b = ac.

Лема 3. Нека $a, b \in \mathbb{Z} \setminus \{0\}$ са ненулеви цели числа.

- (i) Aro a denu b u b denu $c \in \mathbb{Z}$, mo a denu c.
- (ii) Ако a дели b u b дели a, то $b = \pm a$.
- (i) По определение, ако a дели b, то съществува $a_1 \in \mathbb{Z}$, така че $b = aa_1$. Аналогично, от това че b дели c следва $c = bb_1$ за някое $b_1 \in \mathbb{Z}$. В резултат, $c = (aa_1)b_1 = a(a_1b_1)$ с $a_1b_1 \in \mathbb{Z}$, което означава, че a дели c.
- (ii) Ако a дели b, то съществува $q_1 \in \mathbb{Z}$ с $aq_1 = b$. От друга страна, b дели a, така че съществува $q_2 \in \mathbb{Z}$ с $bq_2 = a$. Сега от $a = (aq_1)q_2 = a(q_1q_2)$ с $a \in \mathbb{Z} \setminus \{0\}$ следва $q_1q_2 = 1$. Затова $q_1 = q_2 = \pm 1$ и $b = \pm a$.

Определение 4. Нека $a_1, \ldots, a_n \in \mathbb{Z}$ са неедновременно нулеви цели числа. Най-голям общ делител $d = \text{GCD}(a_1, \ldots, a_n)$ на a_1, \ldots, a_n е такова цяло число $d \in \mathbb{Z}$, че:

- (i) $d \partial e_{\Lambda} u a_1, \ldots, a_n$;
- (ii) ако $d_1 \in \mathbb{Z}$ е общ делител на a_1, \ldots, a_n , то d_1 дели d.

Ако съществува, най-големият общ делител $d = \text{GCD}(a_1, \ldots, a_n)$ е определен с точност до знак. По-точно, ако $d \in \mathbb{Z}$ и $d' \in \mathbb{Z}$ са най-големи общи делители на a_1, \ldots, a_n , то d дели d', защото d е общ делител на a_1, \ldots, a_n , а d' е най-голям общ делител на a_1, \ldots, a_n . Обратно, d' дели d защото d' е общ делител на a_1, \ldots, a_n , а d е най-голям общ делител на a_1, \ldots, a_n . От d дели d' и d' дели d получаваме $d' = \pm d$.

Определение 5. Неедновременно нулевите цели числа $a_1, \ldots, a_n \in \mathbb{Z}$ са взаимно прости, ако най-големият им общ делител е $GCD(a_1, \ldots, a_n) = \pm 1$.

Лема 6. Нека $a_1, \ldots, a_n \in \mathbb{Z}$ са произволни неедновременно нулеви цели числа c най-голям общ делител $d = \text{GCD}(a_1, \ldots, a_n)$. Тогава целите числа $\frac{a_1}{d}, \ldots, \frac{a_n}{d}$ са взаимно прости.

Доказателство. Достатъчно е да докажем, че единствените цели общи делители c на $\frac{a_1}{d},\ldots,\frac{a_n}{d}$ са $c=\pm 1$, за да получим, че най-големият общ делител $\mathrm{GCD}\left(\frac{a_1}{d},\ldots,\frac{a_n}{d}\right)=\pm 1$. Наистина, ако c дели $\frac{a_i}{d}$, то съществуват $b_i\in\mathbb{Z}$ с $cb_i=\frac{a_i}{d}$ за всички $1\leq i\leq n$. Тогава $cdb_i=a_i$ и cd е общ делител на a_1,\ldots,a_n . Следователно cd дели най-големия общ делител d на a_1,\ldots,a_n и съществува $q\in\mathbb{Z}$ с cdq=d. Почленното деление на $d\in\mathbb{Z}\setminus\{0\}$ дава cq=1. Това е изпълнено само за $c=q=\pm 1$.

Определение 7. Ненулевите цели числа $a_1, \ldots, a_n \in \mathbb{Z}$ имат най-малко о бщо кратно $m = \mathrm{LCM}(a_1, \ldots, a_n) \in \mathbb{Z}$, ако:

- (i) a_1,\ldots,a_n делят m u
- (ii) всяко общо кратно μ на a_1, \ldots, a_n се дели на m.

Ако съществува, най-малкото общо кратно $m = \mathrm{LCM}(a_1,\ldots,a_n)$ на $a_1,\ldots,a_n \in \mathbb{Z}\setminus\{0\}$ е определено с точност до знак. По-точно, ако m и m' са най-малки общи кратни на a_1,\ldots,a_n , то m дели m', защото m' е общо кратно, а m е най-малко общо кратно на a_1,\ldots,a_n . Обратно, m' дели m, защото m е общо кратно на a_1,\ldots,a_n , а m' е най-малко общо кратно на a_1,\ldots,a_n . От m дели m' и m' дели m следва $m'=\pm m$.

Твърдение 8. (i) Нека $a_1, \ldots, a_n \in \mathbb{Z}$ са неедновременно нулеви цели числа. Тогава най-големият общ делител

$$GCD(a_1, \ldots, a_{n-1}, a_n) = \pm GCD(GCD(a_1, \ldots, a_{n-1}), a_n)$$

(ii) Нека $a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}$ са ненулеви цели числа. Тогава най-малкото общо кратно

$$LCM(a_1, ..., a_{n-1}, a_n) = \pm LCM(LCM(a_1, ..., a_{n-1}), a_n).$$

Доказателство. (і) Да означим

$$d := GCD(a_1, \dots, a_n), d_1 := GCD(a_1, \dots, a_{n-1}), \delta := GCD(d_1, a_n).$$

Тогава d дели δ , защото d е общ делител на d_1 и a_n . По-точно, d дели d_1 , защото d дели a_1,\ldots,a_{n-1} , а $d_1=\mathrm{GCD}(a_1,\ldots,a_{n-1})$ е най-голям общ делител на a_1,\ldots,a_{n-1} . Обратно, δ дели d, защото δ е общ делител на a_1,\ldots,a_{n-1},a_n . Тук използваме, че δ дели d_1 и d_1 дели a_1,\ldots,a_{n-1} , откъдето δ дели a_1,\ldots,a_{n-1} . От d дели δ и δ дели d получаваме, че $\delta=\pm d$.

(ii) Да означим,

$$m := LCM(a_1, \ldots, a_n), \quad m_1 = LCM(a_1, \ldots, a_{n-1}), \quad \mu := LCM(m_1, a_n).$$

Тогава m дели μ , защото μ е общо кратно на a_1,\ldots,a_n . По-точно, μ е кратно на a_n и m_1 , а m_1 е общо кратно на a_1,\ldots,a_{n-1} , откъдето μ е общо кратно на a_1,\ldots,a_{n-1} . От друга страна, μ дели m, защото m е общо кратно на на m_1 и a_n . Тук използваме, че m е общо кратно на a_1,\ldots,a_{n-1} , така че най-малкото общо крато m_1 на a_1,\ldots,a_{n-1} дели m. От m дели μ и μ дели m следва $\mu=\pm m$.

Твърдение 9. За произволни ненулеви цели числа $a, b \in \mathbb{Z} \setminus \{0\}$ е в сила

$$GCD(a, b)LCM(a, b) = \pm ab.$$

Доказателство. Означаваме

$$d := GCD(a, b), \quad m := LCM(a, b),$$

и забелязваме, че $\frac{ab}{m}$ дели d. По-точно, най-малкото общо кратно m на a и b дели общото кратно ab и $\frac{ab}{m} \in \mathbb{Z}$. Числото $\frac{ab}{m}$ е общ делител на a и b, съгласно

$$a = \left(\frac{ab}{m}\right)\left(\frac{m}{b}\right) \quad \text{if} \quad b = \left(\frac{ab}{m}\right)\left(\frac{m}{a}\right) \quad \text{c} \quad \frac{m}{b}, \frac{m}{a} \in \mathbb{Z}.$$

Следователно $\frac{ab}{m}$ дели d и съществува $q_1 \in \mathbb{Z}$ с

$$\frac{ab}{m}q_1 = d.$$

От друга страна, m дели $\frac{ab}{d}$. Тук $\frac{ab}{d}=\left(\frac{a}{d}\right)b\in\mathbb{Z}$, защото d дели a. Цялото число

$$\frac{ab}{d} = a\left(\frac{b}{d}\right) = b\left(\frac{a}{d}\right) \quad c \quad \frac{b}{d}, \frac{a}{d} \in \mathbb{Z}$$

е общо кратно на a и b, откъдето m дели $\frac{ab}{d}$ и

$$\frac{ab}{d} = mq_2$$
 за някое $q_2 \in \mathbb{Z}$.

В резултат,

$$\frac{m}{q_1} = \frac{ab}{d} = mq_2,$$

откъдето $m=mq_1q_2$ и $q_1q_2=1$ след почленно деление с $m\in\mathbb{Z}\setminus\{0\}$. Следователно $q_1=q_2=\pm 1$ и $md=\pm ab$.

Съгласно Твърдение 8 и Твърдение 9, намирането на на най-голям общ делител ии на най-малко общо кратно на няколно числа се свежда до намиране на най-голям общ делител $\mathrm{GCD}(a,b)$ на неедновременно нулеви цели числа $a,b\in\mathbb{Z}$. Това се извършва по следния алгоритъм на Евклид:

Нека $a, b \in \mathbb{Z}, b \neq 0$. Делим последователно a на b с частно и остатък:

Редицата от остатъци $\{r_i\}_{i\geq 1}\in\mathbb{Z}$ е строго намаляваща и след краен брой стъпки достига до 0. Нека r_n е последният ненулев остатък.

Ако $a = bq_1 + r_1$, то твърдим че $GCD(a, b) = \pm GCD(b, r_1)$. В резултат, $GCD(a, b) = \pm GCD(b, r_1) = \pm GCD(r_1, r_2) = \pm GCD(r_2, r_3) = \dots = \pm rmGCD(r_{n-1}, r_n) = \pm r_n$ и последният ненулев остатък r_n се оказва най-голям общ делител на a и b. За да докажем

 $\mathrm{GCD}(a,b) = \mathrm{GCD}(b,r_1)$ да отбележим, че ако $d := \mathrm{GCD}(a,b)$ дели a и b, то d дели $r_1 = a - bq_1$, така че d дели $\delta := \mathrm{GCD}(b,r_1)$. Обратно, δ дели b и r_1 , откъдето δ дели $a = bq_1 + r_1$, а оттам и d. От d дели δ и δ дели d следва $d = \pm \delta$.

Тъждеството на Безу за a и b гласи, че съществуват $u,v\in\mathbb{Z}$, за които

$$au + bv = GCD(a, b).$$

Разглеждайки равенствата отдолу нагоре, $r_n \in r_{n-1}\mathbb{Z} + r_{n-2}\mathbb{Z}$ се представя като сума на кратни на r_{n-1} и r_{n-2} . Понататък, замествайки $r_{n-1} \in r_{n-2}\mathbb{Z} + r_{n-3}\mathbb{Z}$ в представянето на r_n получаваме $r_n \in r_{n-2}\mathbb{Z} + r_{n-3}\mathbb{Z}$. Продължавайки по същия начин извеждаме представяне $r_n \in r_2\mathbb{Z} + r_1\mathbb{Z}$. Въоснова на $r_2 \in r_1\mathbb{Z} + b\mathbb{Z}$ стигаме до извода, че $r_n \in r_1\mathbb{Z} + b\mathbb{Z}$. Накрая, от $r_1 \in a\mathbb{Z} + b\mathbb{Z}$ следва наличието на представяне $r_n \in a\mathbb{Z} + b\mathbb{Z}$, т.е. съществуването на $u, v \in \mathbb{Z}$ с $GCD(a, b) = r_n = au + bv$. С това доказахме следното

Твърдение 10. (Тъждество на Безу:) За произволни неедновременно нулеви $a,b \in \mathbb{Z}$ съществуват цели числа $u,v \in \mathbb{Z}$, така че най-големият общ делител

$$GCD(a, b) = au + bv.$$

Следствие 11. (Следствия от Тъждеството на Безу:)

- (i) aro $a \in \mathbb{Z} \setminus \{0\}$ denu b_1b_2 sa $b_1, b_2 \in \mathbb{Z}$ u $GCD(a, b_1) = \pm 1$, mo a denu b_2 ;
- (ii) aro $a_1 \in \mathbb{Z} \setminus \{0\}$ u $a_2 \in \mathbb{Z} \setminus \{0\}$ desim $b \in \mathbb{Z}$ u $GCD(a_1, a_2) = \pm 1$, mo a_1a_2 desimble.

Доказателство. (i) Тъждеството на Безу за взаимно простите цели числа a и b_1 гласи, че $au+b_1v=1$ за някакви цели числа $u,v\in\mathbb{Z}$. Почленното умножение на това равенство с b_2 дава $ab_2u+b_1b_2v=b_2$. От това, че a дели ab_2u и b_1b_2v получаваме, че a дели $b_2=ab_2u+b_1b_2v$.

(іі) Съгласно Твърдение 9, от $GCD(a_1, a_2) = \pm 1$ следва, че най-малкото общо кратно $LCM(a_1, a_2) = \pm a_1 a_2$. По предположение, b е общо кратно на a_1 и a_2 , така че най-малкото общо кратно $a_1 a_2$ на тези цели числа дели b.

Определение 12. Естествено число p > 1 е просто, ако единствените му естествени делители са 1 и p.

Пема 13. Ако просто число $p \in \mathbb{N}$ дели произведение $a_1 \dots a_n$ на цели числа $a_1, \dots, a_n \in \mathbb{Z}$, то p дели поне един от множителите a_i .

Доказателство. Ако p дели произведение $a_1 \dots a_n$ на цели числа a_1, \dots, a_n и p не дели a_1 , то $GCD(p, a_1) = \pm 1$ и p дели $a_2 \dots a_n$ съгласно Следствие 11 (i). С индукция по броя на множителите получаваме, че p дели a_i за някое $2 \le i \le n$.

Теорема 14. Всяко естествено число n > 1 има единствено с точност до реда на множителите разлагане $n = p_1 \dots p_k$ в произведение на прости множители p_i .

Доказателство. Съществуването на разлагане на n се доказва с индукция по $n \in \mathbb{N}$, n > 1. Да забележим, че n = 2 е просто число, а оттам и свое разлагане. В общия случай, ако n е просто число, то n е свое разлагане. Ако n е съставно, то n се разлага в произведение $n = n_1 n_2$ на естествени числа $1 < n_1, n_2 < n$. По индукционно предположение, съществуват разлагания $n_1 = p_1 \dots p_s$ и $n_2 = p_{s+1} \dots p_k$ в прости множители, така че $n = p_1 \dots p_s p_{s+1} \dots p_k$ е разлагане на n в прости множители.

Нека $p_1 \dots p_k = n = q_1 \dots q_l$ са две разлагания на n в прости множители p_i, q_j . Без ограничение на общността можем да считаме, че $k \leq l$. Простото число p_k дели

произведението $q_1\dots q_l$, така че p_k дели q_i за някое $1\leq i\leq l$. След преномерация можем да считаме, че p_k дели q_l . Понеже q_l е просто число и единствените естествени делители на q_l са 1 и q_l , оттук следва $q_l=p_k$ поради $p_k>1$. След почленно деление на $p_k\neq 0$ получаваме $p_1\dots p_{k-1}=q_1\dots q_{l-1}$ с $k-1\leq l-1$. С индукция по k оттук следва k-1=l-1 и $p_i=q_i$ за всички $1\leq i\leq k-1$ след подходяща преномерация на q_1,\dots,q_{k-1} .

Задача 15. Нека $a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}$ са ненулеви цели числа, а $\{p_1, \ldots, p_s\}$ е обединението на простите множители на a_1, \ldots, a_n , така че

$$a_i = \pm \prod_{j=1}^s p_j^{k_{ij}}$$
 за някои $k_{ij} \in \mathbb{Z}^{\geq 0}.$

Tога ва най-големият общ делител на a_1, \ldots, a_n е

$$GCD(a_1, ..., a_n) = \pm \prod_{j=1}^{s} p_j^{\min(k_{1j}, k_{2j}, ..., k_{nj})},$$

a най-малкото общо кратно на a_1,\ldots,a_n e

$$LCM(a_1, ..., a_n) = \pm \prod_{j=1}^{s} p_j^{\max(k_{1j}, k_{2j}, ..., k_{nj})}.$$

Доказателство. Да забележим, че

$$d := \prod_{j=1}^{s} p_j^{\min(k_{1j}k_{2j}, \dots, k_{nj})}$$

дели a_i за всяко $1 \le i \le n$, защото

$$\frac{a_i}{d} = \pm \prod_{j=1}^{s} p_j^{k_{ij} - \min(k_{1j}, \dots, k_{nj})} \in \mathbb{Z},$$

съгласно $k_{ij} \geq \min(k_{1j}, \dots, k_{nj})$. Следователно d е общ делител на a_1, \dots, a_n . Ако $d_1 \in \mathbb{Z}$ е общ делител на a_1, \dots, a_n , то

$$d_1 = \pm \prod_{j=1}^s p_j^{l_j}$$
 за $l_j \in \mathbb{Z}^{\geq 0}$ и

$$\frac{a_i}{d_1} = \pm \prod_{j=1}^s p_j^{k_{ij} - l_j} \in \mathbb{Z}$$

изисква $k_{ij} \geq l_j$ за всички $1 \leq i \leq n$ и всички $1 \leq j \leq s$. Оттук получаваме, че $\min(k_{1j},\dots,k_{nj}) \geq l_j$ и

$$\frac{d}{d_1} = \pm \prod_{j=1}^s p_j^{\min(k_{1j},\dots,k_{nj})-l_j} \in \mathbb{Z}.$$

Това доказва, че $GCD(a_1, \ldots, a_n) = \pm d$.

Нека

$$m := \prod_{j=1}^{s} p_j^{\max(k_{1j}, \dots, k_{nj})}.$$

Тогава

$$\frac{m}{a_i} = \pm \prod_{j=1}^s p_j^{\max(k_{1j},\dots,k_{nj}) - k_{ij}} \in \mathbb{Z}$$

за всички $1 \leq i \leq n$, съгласно $\max(k_{1j},\ldots,k_{nj}) \geq k_{ij}$ и m е общо кратно на a_1,\ldots,a_n . Произволно общо кратно на a_1,\ldots,a_n е от вида

$$m_1 = \pm \prod_{j=1}^s p_j^{r_j} \prod_{j=s+1}^t p_j^{r_j}$$
 c $\frac{m_1}{a_i} = \pm \prod_{j=1}^s p_j^{r_j - k_{ij}} \prod_{j=s+1}^t p_j^{r_j} \in \mathbb{Z}$

така че $r_j \geq k_{ij}$ за всички $1 \leq i \leq n$ и всички $1 \leq j \leq s$. Оттук, $r_j \geq \max(k_{1j}, \ldots, k_{nj})$ и

$$\frac{m_1}{m} = \pm \prod_{j=1}^{s} p_j^{r_j - \max(k_{1j}, \dots, k_{nj})} \prod_{j=s+1}^{t} p_j^{r_j} \in \mathbb{Z}.$$

Това доказва, че m дели m_1 и $LCM(a_1, \ldots, a_n) = \pm m$.

Определение 16. Разбиване на множество S е представяне $S = \bigcup_{\alpha \in A} S_{\alpha}$ като обединение на две по две непресичащи се подмножества $S_{\alpha} \cap S_{\beta} = \emptyset$.

Например, представянето $\mathbb{Z} = 2\mathbb{Z} \cup (2\mathbb{Z} + 1)$ на целите числа като обединение на четни и нечетни е разбиване на \mathbb{Z} .

Определение 17. Всяко подмножество R на $S \times S$ се нарича бинарна релация в S. Записваме $a \sim b$ за $a, b \in R$.

Определение 18. *Казваме, че* $R \subseteq S \times S$ *е релация на еквивалентност, ако:*

- (i) $a \sim a$ за всяко $a \in S$;
- (ii) от $a \sim b$ следва $b \sim a$ за всички $a, b \in S$;
- (iii) om $a \sim b$ u $b \sim c$ следва $a \sim c$ за $a, b, c \in S$.

Твърдение 19. Разбиванията на множество S са във взаимно еднозначно съответствие c релациите на еквивалентност в S.

Доказателство. Ако $S = \bigcup_{\alpha \in A} S_{\alpha}$ е разбиване на S, полагаме $a \sim b$, ако $a,b \in S_{\alpha}$ принадлежат на едно и също подмножество от разбиването. Тогава $a \sim a$ и от $a \sim b$ следва $b \sim a$. Ако $a \sim b$ и $b \sim c$, то съществуват $\alpha, \beta \in A$ с $a,b \in S_{\alpha}$ и $b,c \in S_{\beta}$. Съгласно $S_{\alpha} \cap S_{\beta} = \emptyset$ за $S_{\alpha} \neq S_{\beta}$, стигаме до извода, че $S_{\alpha} = S_{\beta}$ и $a,b,c \in S_{\alpha}$. Оттук, $a \sim c$ и \sim е релация на еквивалентност.

Нека \sim е релация на еквивалентност в S. За всяко $a \in S$ разглеждаме класа на еквивалентност $C_a := \{x \in S \,|\, x \sim a\}$ на a. Тогава $S = \cup_{a \in S} C_a$ и ако $C_a \cap C_b \neq \emptyset$ за някои $a,b \in S$, то $C_a = C_b$. По-точно, ако съществува $c \in C_a \cap C_b$, то $c \sim a$ и $c \sim b$, откъдето $a \sim b$. Сега за всяко $x \in C_a$ е в сила $x \sim a$. Комбинирайки с $a \sim b$, получаваме $x \sim b$. В резултат, $x \in C_b$ и $C_a \subseteq C_b$. Аналогично, ако $y \in C_b$, то $y \sim b$. Съгласно $b \sim a$ получаваме $y \sim a$. Оттук, $y \in C_a$ и $C_b \subseteq C_a$. Това доказва $C_a = C_b$ за $C_a \cap C_b \neq \emptyset$ и установява, че $S = \bigcup_{a \in S} C_a$ е разбиване на S.

Ако $S = \bigcup_{\alpha \in A} S_{\alpha}$ е разбиване на S, то за всяко $a \in S_{\alpha}$ класът на еквивалентност

$$C_a = \{x \in S \mid x \sim a\} = \{x \in S \mid x \in S_\alpha\} = S_\alpha$$

съвпада с S_{α} и разбиванията $S=\cup_{\alpha\in A}S_{\alpha}=\cup_{a\in S}C_a$ съвпадат.

Ако \sim е релация на еквивалентност в S, то разбиването $S = \cup_{a \in S} C_a$ отговаря на релацията на еквивалентност $R' \subseteq S \times S$, за която $(a,b) \in R'$ точно когато $b \in C_a$.

Съгласно $C_a = \{x \in S \mid x \sim a\}, R'$ съвпада с първоначалната релация на еквивалентност и съответствието между разбиванията на S и релациите на еквивалентност в S е биективно.

Твърдение 20. Релациите на еквивалентност в множество S са във взаимно еднозначно съответствие със сюрективните изображения $f: S \to T$ на S.

Доказателство. Съгласно Твърдение 19, достатъчно е да проверим, че съществува взаимно еднозначно съответствие между разбиванията $S = \bigcup_{\alpha \in A} S_{\alpha}$ на S и сюрективните изображения на множества $f: S \to T$.

Ако $S = \bigcup_{\alpha \in A} S_{\alpha}$ е разбиване на S и $T := \{S_{\alpha} \mid \alpha \in A\}$, то $f : S \to T$, $f(a) = S_{\alpha}$ за $a \in S_{\alpha}$ е сюрективно изображение. Обратно, всяко сюрективно изображение $f : S \to T$ задава разбиване $S = \bigcup_{t \in T} f^{-1}(t)$, защото за $t_1 \neq t_2$ от T е в сила $f^{-1}(t_1) \cap f^{-1}(t_2) = \emptyset$. По-точно, допускането за съществуване на $a \in f^{-1}(t_1) \cap f^{-1}(t_2)$ води до $t_1 = f(a) = t_2$, което е противоречие.

Ако разбиването $S = \bigcup_{\alpha \in A} S_{\alpha}$ отговаря на сюрективното изображение $f: S \to T = \{S_{\alpha} \mid \alpha \in A\}, f(a) = S_{\alpha}$ за $a \in S_{\alpha}$, то слоевете $f^{-1}(S_{\alpha}) = \{a \in S \mid a \in S_{\alpha}\} = S_{\alpha}$ на f съвпадат с подмножествата S_{α} на S.

Ако сюрективното изображение $f: S \to T$ задава разбиване $S = \bigcup_{t \in T} f^{-1}(t)$ то сюрективното изображение $f_1: S \to T_1 = \{f^{-1}(t) \mid t \in T\}$ отговаря на разбиването $S = \bigcup_{t \in T} f^{-1}(t)$. Тук $f^{-1}(t)$ се разглежда като точка на T_1 и като подмножество на S.

Това доказва биективността на съответствието между разбиванията на S и сюрективните изображения на множества $f:S\to T$, а оттам и биективността на съответствието между релациите на еквивалентност в S и сюрективните изображения на множества $f:S\to T$.

Определение 21. Целите числа $a,b\in\mathbb{Z}$ са сравними по модул $n\in\mathbb{N},\ n>1,\ a$ ко n дели a-b. Записваме $a\equiv b (\mathrm{mod}\, n).$

Нека $a=nq_1+r_1$ и $b=nq_2+r_2$ са деленията на n с частни $q_1,q_2\in\mathbb{Z}$ и остатъци $r_1,r_2\in\mathbb{Z},\,0\leq r_1,r_2\leq n-1.$ Тогава

$$a - b = n(q_1 - q_2) + (r_1 - r_2)$$
 c $-(n-1) \le r_1 - r_2 \le n - 1$

се дели на n тогава и само тогава, когато $r_1 - r_2 = 0$. С други думи, $a \equiv b \pmod{n}$ точно когато a и b имат един и същи остатък при деление на n.

Сравнимостта по модул $n \in \mathbb{N}$, n > 1 е релация на еквивалентност, защото n дели a-a=0 за всяко $a \in \mathbb{Z}$. Ако n дели a-b, то n дели b-a. Ако a-b и b-c са кратни на n, то n дели (a-b)+(b-c)=a-c.

За всяко цяло число $0 \le r \le n-1$, класът на еквивалентност

$$C_r = \{x \in \mathbb{Z} \mid x \equiv r \pmod{n}\}$$

се състои от всички цели числа x с остатък r при деление на n. Разбиването на \mathbb{Z} , отговарящо на сравнимостта по модул n е $\mathbb{Z} = \bigcup_{r=0}^{n-1} C_r$. Ако $\mathbb{Z}_n = \{\overline{0},\overline{1},\ldots,\overline{n-1}\}$ е множеството на остатъците при деление на n, то сравнимостта по модул n съответства на сюрективното изображение на множества $f: \mathbb{Z} \to \mathbb{Z}_n$, съпоставящо на цяло число a остатъка $f(a) = \overline{a}$ на a при деление на n.