

QUÍMICA NUCLEAR

PROF. DIEGO J. RAPOSO

DJRS@POLI.BR

DIEGORAPOSO@HOTMAIL.COM

TÓPICOS ABORDADOS

- Introdução (relevância, partículas subatômicas);
- Interação entre partículas subatômicas para formar átomos (energia de ligação, Eq. de Einstein);
- Descrição quântica do núcleo (estabilidade e n° de prótons/nêutrons);
- Processos nucleares importantes (reações nucleares: fusão/fissão/decaimentos);
- Tipos de **decaimento** $(\alpha/\beta^+/\beta^-/CE/\gamma)$;
- Efeitos biológicos;
- Cinética de decaimento radioativo.

INTRODUÇÃO

- Química: interações entre elétrons, quebra e formação de ligações, interações não covalentes;
- Química/Física nuclear: alterações e interações entre núcleons (prótons e nêutrons);
- Núcleos instáveis: análise de compostos orgânicos e inorgânicos (geoquímica, arqueologia, biologia);
- Núcleos estáveis: ressonância magnética nuclear, marcação de átomos em moléculas;
- Muitas outras!

PROPRIEDADES DOS NÚCLEONS

1,6022 · 10⁻¹⁹ C

 $1,6605 \cdot 10^{-27} \text{ kg}$

6,6261 · 10⁻³⁴ J s

2л

- Prótons;
- Nêutrons;
- Elétrons;
- Fótons;
- Átomos.

Partícula	Símbolo	Carga / e	Massa / u	Spin / ħ
Elétron	e-	-1	0,00055	1/2
Próton	p	+1	1,00728	1/2
Nêutron	n	0	1,00867	1/2

PROPRIEDADES DOS ÁTOMOS

- Relembrando representação de um átomo:
 - Z: número de prótons;
 - A: número de prótons + número de nêutrons;
 - N = A-Z: número de nêutrons;
 - N_e: número de elétrons;
 - $Q = Z N_{\rho}$: carga do átomo;
 - Q > 0: ion positivo;
 - Q < 0: ion negativo.

de nêutrons (n) Símbolo do elemento Número químico atômico Dependem do número de prótons (p) Dependem do número nêutrons (n), Número de número de A-Z, e está relacionado aos diferentes nêutrons isótopos do elemento

Número

de massa

Dependem do número

Carga do

Dependem do

prótons (p) e de

elétrons (e)

átomo

de prótons (p) e

• Exemplos:

• Um átomo de sódio possui número de massa 23 e número atômico 11. Quantos nêutrons ele possui?

 Qual o elemento químico neutro que possui 27 elétrons?

$$Q = Z - N_e = 0 \rightarrow Z = N_e = 27 \leftrightarrow Co$$
27

 Quantos elétrons um íon com carga +2 tem se seu número atômico é 12? Qual o elemento?

$$Q = Z - N_e = 2 \rightarrow N_e = 12 - 2 = 10$$
$$Z = 12 \leftrightarrow Mg$$

 Mg^{2+}

$$Z \leftrightarrow X$$

$$A = Z + N$$

$$Q = Z - N_e$$

$$Z_{1} \leftrightarrow X$$

$$A_{1} = Z_{1} + N_{1}$$

$$Q_{1} = Z_{1} - N_{e1}$$

$$Z_2 \Leftrightarrow Y$$

$$A_2 = Z_2 + N_2$$

$$Q_2 = Z_2 - N_{e2}$$

Exemplos:

Ir para Tabela Periódica

- 1°) De que forma os isótopos de um certo elemento são sempre distintos? Em que sentido eles são equivalentes?
- 2°) Determine número de prótons, nêutrons e elétrons nos isótopos usados em diagnóstico médico a seguir. Consulte a tabela periódica e indique também o elemento:
 - a) Número atômico 9, número de massa 18, carga -1;
 - b) Número atômico 43, número de massa 99, carga +7;
 - c) Número atômico 53, número de massa 131, carga de -1;
 - d) Número atômico 81, Número de massa 201, carga +1;

1°) Distintos: valores de A (ou N);

2°) a) 9; 9; 10; F

b) 43; 56; 36; Tc

Iguais: valores de Z

c) 53; 78; 54; I d) 81; 120; 80; Tl

• Exemplos:

3°) a) Que características têm em comum os átomos de argônio-40, potássio-40 e cálcio-40? b) Em que eles são diferentes?

4°) a) Determine o número total de prótons, nêutrons e elétrons de uma molécula de tetrafluoreto de carbono, CF₄, supondo que todos os átomos são dos isótopos mais estáveis dos elementos. **b)** Qual é a massa total de prótons, nêutrons e elétrons de uma molécula de tetrafluoreto de carbono? Calcule as três massas.

Ir para Tabela Periódica

• Exemplos:

5°) Complete a tabela a seguir:

Elemento	Símbolo	Prótons	Nêutrons	Elétrons	Número de massa
	³⁶ Cl				
		30			65
			20	20	
Lantânio			80		

6°) Determine o número atômico e o número de massa dos átomos A e B, que são isóbaros e apresentam a seguinte representação:

$$\begin{array}{ccc}
5x \\
10+x & 4x+8 \\
11+x & 11+x
\end{array}$$

PROPRIEDADES DAS PARTÍCULAS

- Relembrando representação de uma partícula subatômica:
 - x: símbolo da partícula;
 - m(x): massa da partícula;
 - q_x: carga da partícula;
- Como a partícula não tem número atômico, é comum usar a representação:

$$m(x) = \frac{1}{q_x} x - \frac{1}{+1} p = \frac{1}{0} n = 0$$

FORMAÇÃO DO NÚCLEO ATÔMICO

- Interações atrativas (força forte) de curto alcance;
- Interações repulsivas (força eletromagnética) de longo alcance;
- A formação do núcleo é mais favorável, o que abaixa a energia do sistema de partículas isoladas;
- Isso resulta na liberação de energia, a energia de ligação: E_b.

Força repulsiva entre prótons distantes

Força atrativa entre núcleons próximos

FORMAÇÃO DO NÚCLEO ATÔMICO

O (final – inicial) daria uma massa e uma energia negativas (o que é verdade). Mas a energia e a massa perdidas são positivas (o negativo das definições anteriores

 Essa energia é proporcional a massa perdida quando os núcleons se unem, de acordo com a equação de Einstein:

$$E = mc^2$$
 2,9979 · 10⁸ m/s

 A formação de um núcleo com Z prótons e N = A – Z nêutrons é dada por:

$$Z_{+1}^{1}p + (A - Z)_{0}^{1}n \longrightarrow {}_{Z}^{A}X + E_{b}$$

$$m = Zm({}_{+1}^{1}p) + (A - Z)m({}_{0}^{1}n) - m({}_{Z}^{A}X)$$

$$E_{b} = [Zm(_{+1}^{1}p) + (A - Z)m(_{0}^{1}n) - m(_{Z}^{A}X)]c^{2}$$

Massa / u	Massa / (MeV/c²)
$m({}_{+1}^{1}p)$	938,272
$m({}^1_0{ m n})$	939,565
$m({}^{0}_{-1}\!\mathrm{e})$	0,510999
1	931,494

(energia dada em MeV)

FORMAÇÃO DO NÚCLEO ATÔMICO

• Exemplos:

• Calcule a energia de ligação do núcleon 4 He, a partícula α .

$$E_{b} = [2m(_{+1}^{1}p) + 2m(_{0}^{1}n) - m(_{2}^{4}He)]c^{2}$$

$$4 u \cdot \frac{931,494 \text{ MeV}/c^2}{1 u} = 3725,976 \text{ MeV}/c^2$$

Massa / u	Massa / (MeV/c²)
$m({}_{+1}^{1}\mathrm{p})$	938,272
$m({ extstyle 1 \over 0} extrm{n})$	939,565
$m({}^{0}_{-1}\mathrm{e})$	0,510999
1	931,494

 $E_{\rm h} = [2 \cdot (938,272 + 939,565) - 3725,976] \,\text{MeV} = 29,698 \,\text{MeV}$ (para 4 núcleons)

Um núcleo de ⁵⁶₂₆Fe possui uma massa de 55,93494
 u. Calcule a energia de ligação por núcleon desse núcleo (faça em casa!).

(faixa de energia de radiação gama!!)

DESCRIÇÃO QUÂNTICA DO NÚCLEO

- Funções de onda dos núcleons interagindo se sobrepõem, e a resolução da Eq. de Schrödinger leva a funções de onda do núcleo com diferentes estados de energia;
- O resultado são diferentes camadas em ordem crescente de energia, como nas camadas K, L, M, ... para os elétrons;
- Configurações de camadas fechadas, com 2, 8, 18, ... elétrons são mais estáveis (gases nobres);
- Da mesma maneira, núcleos com A = 2, 8, 20, 28, 50, etc núcleons são mais estáveis. Os valores dessa sequência são chamados de números mágicos.
- Nota-se que a estabilidade do número de prótons e nêutrons segue a seguinte ordem:

nêutron: 2, 8, 20, 28, 50, 82, 126, 184

próton: 2, 8, 20, 28, 50, 82, 114

Quanto mais núcleons seguem esses números, maior a chance de serem estáveis (mas há exceções)

Z	N	N° de isótopos estáveis
Par	Par	163
Par	Ímpar	53
Ímpar	Par	50
ĺmpar	Ímpar	4

- Núcleos instáveis passam por processos nucleares para adquirir estabilidade;
- Tais processos são:
 - Reações nucleares;
 - Decaimentos radioativos.

(Z, N): (par, par) > (par, impar) \gtrsim (impar, par) > (impar, impar) Ζ 21 20 19 N pequeno estabiliza N grande necessário 18 17 N pequeno já estabiliza 16 N pequeno já estabiliza 15

Número par de nêutrons para estabilizar

MAPA DE NUCLÍDEOS E RAZÃO N/Z

- Até Z = 20, núcleos estáveis geralmente apresentam N/Z = 1 (ou seja, números iguais de prótons e nêutrons, o que leva a um número par de núcleons);
- A partir desse ponto núcleos estáveis possuem N/Z > 1, com tanto N/Z ≤1 como N/Z << 1 e N/Z >> 1 levando a núcleos instáveis.

ESTABILIDADE DOS ISÓTOPOS DOS ELEMENTOS

Todos os átomos com Z > 83 não possuem isótopos estáveis. Ou seja, todos são radioativos.

PREVENDO ESTABILIDADE NUCLEAR

- I. Calcule o número total de núcleons (prótons e nêutrons). Se o número de núcleons é par, a chance de ser estável é grande. Se Z > 83 ele é instável, necessariamente;
- II. O número de prótons ou de nêutrons é <u>mágico</u>? Eles frequentemente levam a núcleos estáveis;
- III. Verifique a <u>razão N/Z</u> e, pelo número atômico, preveja a posição do núcleo no mapa. N/Z >>1 e N/Z << 1 são instáveis. N/Z = 1 é estável abaixo de Z = 20, e instável para $Z \ge 20$.

PREVENDO ESTABILIDADE NUCLEAR

• Exemplos:

7°) Indique se os isótopos a seguir são estáveis ou instáveis:

- $^{40}_{20}$ Ca; A = 40, Z = 20 --> N = A Z = 20. I) A é mágico; II) Z e N são mágicos; III) N/Z = 1. Muito estável
- $^{54}_{25}$ Mn; A = 54, Z = 25 --> N = A Z = 29. I) Não; II) Não; III) N/Z > 1. Instável.
- $^{2}_{84}^{10}$ Po. **Z > 83.** Instável.

8°) Indique se os isótopos a seguir são estáveis ou instáveis:

- $^{30}_{15}P$;
- ⁹⁸₄₃Tc;
- ¹¹⁸₅₀Sn;
- ²³⁹₉₄Pu.

REAÇÕES NUCLEARES

- Fissão nuclear: ocorre uma separação, espontânea (natural) ou induzida (artificial) de um núcleo;
- Isso ocorre porque sua massa é grande demais para que os prótons e nêutrons se mantenham unidos;
- O resultado dessa divisão é a formação de dois ou mais núcleos, partículas e energia;

$${A_1 + A_2 \atop Z_1 + Z_2}$$
W(+partículas) $\longrightarrow {A_1 \atop Z_1}$ X + ${A_2 \atop Z_2}$ Y + E(+partículas)

• Fonte não-renovável de energia nuclear e termoelétrica.

Bomba atômica

https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/10%3A__Nuclear_Physics/10.06%3A_Fission A fissão nuclear espontânea ocorre via oscilações naturais na forma do núcleo. Ex.:

$$^{238}U \rightarrow ^{95}Sr + ^{140}Xe + 3^{1}n$$

- Por quê esse isótopo do urânio é instável?
- Calcule a energia liberada. Considere:
 - $m(^{238}U) = 238,050784 u;$

$$1 u = 931,5 MeV/c^2$$

- $m(^{95}Sr) = 94,919388 u;$
- $m(^{140}\text{Xe}) = 139,921610 \text{ u};$
- $m(^{1}n) = 1,008665 u.$

$$E = [238,050784 - 94,919388 - 139,921610 - 3 \cdot 1,008665] \text{ u } c^2$$

 $E = [0,183791] \text{ u } c^2 = 0,183791 \cdot 931,5 \text{ MeV} = 171,2 \text{ MeV}$

 A fissão nuclear induzida é causada pelo bombardeamento de nêutrons nos núcleos pesados (fissionáveis). Ex.:

$$^{235}_{92}\text{U} + ^{1}_{0}\text{n} \longrightarrow ^{141}_{56}\text{Ba} + ^{92}_{36}\text{Kr} + 3^{1}_{0}\text{n} + \Delta E$$

$${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow {}^{141}_{54}Xe + {}^{94}_{38}Sr + 2{}^{1}_{0}n + \Delta E$$

$${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow {}^{132}_{50}Sn + {}^{101}_{42}Mo + 3{}^{1}_{0}n + \Delta E$$

- Nêutrons são propagadores quando resultam em mais nêutrons como resultado da fissão nuclear.
- Devido a sua velocidade, a maioria escapa do sistema ao serem produzidos em pequenas quantidades do isótopo;
- Dizemos que a massa deste é subcrítica, e a quantidade de nêutrons que não escapa não é suficiente para sustentar a reação em cadeia;
- A massa do isótopo é crítica se a quantidade de nêutrons reaproveitados é suficiente para sustentar a reação;
- Supercrítica é a massa que leva não só a uma reação que se mantém, mas de maneira tão intensa que pode levar a explosão;
- Esse é o caso da reação usada nas bombas lançada em Hiroshima e Nagazaki (bomba atômica).

A massa crítica depende do tipo de material, sua pureza, da temperatura, do formato da amostra e de como a geração de nêutrons é controlada

 Fusão nuclear: colisão entre dois ou mais núcleos, resultando em um ou mais núcleos e possivelmente partículas subatômicas e energia;

 Normalmente dois átomos de baixa massa molar se unem para formar um átomo mais "pesado".

$${}_{Z_1}^{A_1}X + {}_{Z_2}^{A_2}Y \longrightarrow {}_{Z_1+Z_2}^{A_1+A_2}W + E(+partículas)$$

• Sol:

$${}^{1}\text{H} + {}^{1}\text{H} \rightarrow {}^{2}\text{H} + e^{+} + \nu_{e}$$
 ${}^{1}\text{H} + {}^{2}\text{H} \rightarrow {}^{3}\text{He} + \gamma$
 ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + {}^{1}\text{H} + {}^{1}\text{H}$

(0,42 MeV)

(5,59 meV)

(12,86 MeV)

$$2e^- + 4^{1}H \rightarrow {}^{4}He + 2\nu_e + 6\gamma$$
 (26,7 MeV)

- Bomba-H (bomba de hidrogênio, arma termonuclear):
 - Fusão termonuclear: altas temperaturas levam à fusão dos núcleos;

$$\frac{2}{1}D + \frac{3}{1}T \rightarrow \frac{1}{0}n + \frac{4}{2}He$$
 (17,6 MeV)
 $\frac{6}{3}Li + \frac{1}{0}n \rightarrow \frac{3}{1}T + \frac{4}{2}He$ (4,8 MeV)

Reagentes Intermediários Produtos

0,020 quilotons
10 megatons/tonelada

0,1 megatons
60 megatons/tonelada

COMPARANDO BOMBAS

• Formação do núcleo de hélio/reação de fusão do hidrogênio para produzir hélio no sol:

$$\frac{30 \text{ MeV}}{\text{átomo de }^{4}\text{He}} \cdot \frac{6,0221 \cdot 10^{23} \text{ átomos de } 4_{\text{He}}}{1 \text{ mol de }^{4}\text{He}} \cdot \frac{1 \text{ mol de }^{4}\text{He}}{4,0026 \text{ g}} = 4,51 \cdot 10^{24} \frac{\text{MeV}}{\text{g}}$$

• Fissão de urânio: $\frac{171,2 \text{ MeV}}{\text{átomo de}^{238}\text{U}} \cdot \frac{6,0221 \cdot 10^{23} \text{ átomos de}^{238}\text{U}}{1 \text{ mol de}^{238}\text{U}} \cdot \frac{1 \text{ mol de}^{238}\text{U}}{238,050784 \text{ g}} = 4,33 \cdot 10^{23} \frac{\text{MeV}}{\text{g}}$

$$4,33 \cdot 10^{23} \frac{\text{MeV}}{\text{g}} \cdot \frac{10^6 \text{eV}}{\text{g}} \cdot \frac{10^3 \text{ g}}{1 \text{ kg}} \cdot \frac{0,160206 \cdot 10^{-18} \text{ J}}{1 \text{ eV}} \cdot \frac{1 \text{ megaton}}{8 \cdot 10^{15} \text{ J}} = \frac{0,9 \text{ megatons}}{100 \text{ kg}}$$

• Bomba-H: $\frac{22,4 \text{ MeV}}{\text{moléculas de LiD}} \cdot \frac{6,0221 \cdot 10^{23} \text{moléculas de LiD}}{1 \text{mol de LiD}} \cdot \frac{1 \text{ mol de LiD}}{6,016705 \text{ g}} = 2,23 \cdot 10^{24} \frac{\text{MeV}}{\text{g}}$

$$2,23 \cdot 10^{24} \frac{\text{MeV}}{\text{g}} \cdot \frac{10^{6} \text{eV}}{\text{g}} \cdot \frac{10^{3} \text{ g}}{1 \text{ kg}} \cdot \frac{0,160206 \cdot 10^{-18} \text{ J}}{1 \text{ eV}} \cdot \frac{1 \text{ megaton}}{8 \cdot 10^{15} \text{ J}} = \frac{4,5 \text{ megatons}}{100 \text{ kg}}$$

PREVENDO SE HAVERIA FISSÃO OU FUSÃO

- A energia de ligação por núcleon, E_b/A, corresponde a energia necessária para retirar um núcleon (próton ou nêutron do núcleo);
- Tal quantidade é análoga à energia de ionização de elétrons em orbitais.
- Similarmente, quanto maior o valor dessa quantidade, mais estável é o núcleo;
- O Ferro-56 é o isótopo mais estável do ponto de vista nuclear.

PREVENDO SE HAVERIA FISSÃO OU FUSÃO

- Os átomos adquirem configuração eletrônica mais estável (a de um gás nobre) ao perder ou ganhar elétrons, dependendo do que é menos custoso energeticamente ("fácil");
- Da mesma forma, como configuração nuclear do Fe é a mais estável, núcleos com maior E_b/A tendem a reduzi-la, e núcleos com menor E_b/A tendem a aumenta-la;
- Isso pode ser alcançado via fusão ou fissão nuclear, respectivamente;

• Exemplos:

9°) Indique se os isótopos instáveis (analisados anteriormente) deverão sofrer fusão ou fissão nuclear, em condições adequadas:

- ⁵⁴₂₅Mn;
- ²¹⁰₈₄Po;
- 30₁₅P;
- 98Tc
- ²³⁹₉₄Pu.

APÊNDICE A: PARTÍCULAS SUBATÔMICAS FUNDAMENTAIS

- Prótons e nêutrons são <u>hádrons</u>
 (combinações de quarks) específicos
 chamados de <u>bárions</u>. Prótons,
 nêutrons e elétrons são as partículas
 subatômicas que compõem o átomo;
- Como prótons e nêutrons são formados de <u>quarks</u> (up e down), o átomo é composto das partículas subatômicas fundamentais quarks, elétrons e das interações entre eles.

Partícula	Previsão	Observação
Bottom	1973	1977
Elétron	1874	1897
Múon	_	1936
Tau	_	1975
Neutrino do elétron	1930	1956
Neutrino do múon	1940s	1962
Neutrino do tau	1970s	2000
Próton	1815	1917
Nêutron	1920	1932
Bóson de Higgs	1964	2012
Glúon	1962	1978
Fóton	_	1899
Bóson W	1968	1983
Bóson Z	1968	1983

APÊNDICE B: GLOSSÁRIO

- Átomo: menor partícula capaz de caracterizar um elemento. É formado por um núcleo com carga positiva e número de prótons Z, que carrega quase toda a massa do átomo, e pelo mesmo número de elétrons, que delimitam seu tamanho;
- <u>Núcleo:</u> porção central, positivamente carregada, de um átomo, a parte dos elétrons em orbitais;
- <u>Núcleons:</u> partículas do núcleo (prótons e nêutrons)
- <u>Nuclídeo</u>: tipo de átomo com valores de A, Z e estado energético definidos, com tempo de vida longo o suficiente para ser observável;
- <u>Isótopos:</u> nuclídeos com o mesmo Z mas valores de A distintos;
- <u>Radiação</u>: ondas eletromagnéticas (radiação eletromagnética) ou partículas em alta velocidade (radiação corpuscular);

APÊNDICE C: MODELOS DO NÚCLEO

Modelo da Gota Líquida

https://universe-review.ca/F14-nucleus02.htm
https://chem.libretexts.org/Courses/Portland Community Colle
ge/CH105%3A Allied Health Chemistry II/07%3A Nuclear Ch
emistry/7.02%3A Stable and Unstable Isotopes

APÊNDICE D: TABELA PERIÓDICA

Voltar para:

Exercícios 1 e 2

Exercícios 3 e 4

Exercícios 5 e 6

Exercício 7

Exercício 8

