Checking the structure & characteristics of the dataset:

1. Data type of all columns in the "customers" table.

```
SELECT column_name, data_type
FROM `businessoperation.Target01.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers';
```


2. Get the time range between which the orders were placed:
select order_id, time(order_purchase_timestamp) as time_range
from `Target01.orders`;

1	order_id	time_range
2	7a4df5d8cff4090	11:10:33
3	35de4050331c6	1:07:58
4	b5359909123fa0	1:07:52
5	dba5062fbda3af	17:21:04
6	90ab3e7d52544	13:12:34
7	fa65dad1b0e818	12:45:34
8	1df2775799eecd	11:03:05
9	6190a94657e10	13:36:30
10	58ce513a55c740	18:05:07

3. Count the number of Cities and States in our dataset.
select count(distinct geolocation_city) total_cities, count(distinct
geolocation_state) total_states
from `businessoperation.Target01.geolocation`;

In-depth Exploration

Is there a growing trend in the no. of orders placed over the past years?
 select * from
 (select extract(year from order_purchase_timestamp) as year,

count(order_id) as yearly_count,
from `businessoperation.Target01.orders`

```
group by extract(year from order_purchase_timestamp))
order by year;
```

Yes as per the result of the query, there is a upward trend over the year with sharp growth in year 2017 from 2016.

1	JOB IN	IFORMATION		RESULTS	JSC	N
I	Row	year ▼	1.	yearly_count	¥ /1	
	1	20	16		329	
	2	20	17	4	45101	
	3	20	18		54011	

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
select year, month, count(order_id) as no_of_orders from
(select order_id, extract(month from order_purchase_timestamp) as month,
extract(year from order_purchase_timestamp) as year
from `businessoperation.Target01.orders`)
group by year, month
order by year, month asc;
```

No, I see no seasonality in the given data as the order purchase data comprises of 3 years data and I find no tends in the given consecutive year.

It is not accurate to find seasonality on the basis of approximately 2 complete year.

	A	В	С	D
1	year	month	no_of_ord	ers
2	2016	9	4	
3	2016	10	324	
4	2016	12	1	
5	2017	1	800	
6	2017	2	1780	
7	2017	3	2682	
8	2017	4	2404	
9	2017	5	3700	
10	2017	6	3245	
11	2017	7	4026	

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
Select time_zone, count(time_zone)
from (
select case
when (time(order_purchase_timestamp) between '00:00:00' and '06:00:00') THEN
'Dawn'
when (time(order_purchase_timestamp) between '07:00:00' and '12:00:00') then
'Mornings'
when (time(order_purchase_timestamp) between '13:00:00' and '18:00:00') then
'Afternoon'
else 'Night'
end as time_zone
from `businessoperation.Target01.orders`
order by time(order_purchase_timestamp))
group by time_zone
order by count(time_zone) desc;
Highest order placed during Night time.
```


Evolution of E-commerce orders in the Brazil region:

1. Get the month on month no. of orders placed in each state.

```
select state, year, month, count(month) from(
select extract(year from ord.order_purchase_timestamp) as year,
extract(month from ord.order_purchase_timestamp) as month,
cus.customer_state as state from `Target01.orders` ord
left join
`Target01.customers` cus
on ord.customer_id = cus.customer_id)
group by state,year,month
order by year,month;
```

Since, the data fetching is not for any particular year, I have showed the year column to be more articulate with the data.

_				_
1	state	year	month	f0_
2	RR	2016	9	1
3	RS	2016	9	1
4	SP	2016	9	2
5	SP	2016	10	113
6	RS	2016	10	24
7	RJ	2016	10	56
8	MT	2016	10	3
9	GO	2016	10	9
10	MG	2016	10	40
11	CE	2016	10	8

2. How are the customers distributed across all the states?

```
select customer_state, count(*) as customer_count
from `Target01.customers`
group by customer_state
order by customer_count desc;
```

_		_	
1	customer_state	customer_	count
2	SP	41746	
3	RJ	12852	
4	MG	11635	
5	RS	5466	
6	PR	5045	
7	SC	3637	
8	BA	3380	
9	DF	2140	
10	ES	2033	
11	GO	2020	
10	DE .	4050	

Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

Join 2 table order and payment to get month and count of year group by (year) You can use the "payment_value" column in the payments table to get the cost of orders.

select

```
((abs((sum_17 - sum_18))/sum_17)* 100) as percentage_increase
from(
select sum(pay.payment_value) as sum_17 from
`Target01.payments` pay join `Target01.orders` o
on pay.order_id = o.order_id
where extract(year from o.order_purchase_timestamp) = 2017
and extract(month from o.order_purchase_timestamp) not in (9,10,11,12)),
(select sum(pay.payment_value) as sum_18 from `Target01.payments` pay join
`Target01.orders` o
on pay.order_id = o.order_id
where extract(year from o.order_purchase_timestamp) = 2018
and extract(month from o.order_purchase_timestamp) not in (9,10,11,12));

OUTPUT (%INCREASE): 136.97687164....(136.98 approx)
```

2. Calculate the Total & Average value of order price for each state.

```
select state, sum(amount) as Total, sum(amount)/count(state) as Average_value
from(
select cus.customer_state as state, pay.payment_value as amount from
`Target01.payments` pay
join `Target01.orders` ord on pay.order_id = ord.order_id
join `Target01.customers` cus on ord.customer_id = cus.customer_id)
group by state;
```

1	state	Total	Average_value
2	BA	616645.8	170.816
3	SP	5998227	137.5046
4	RJ	2144380	158.5259
5	MT	187029.3	195.2289
6	GO	350092.3	165.7634
7	ES	325967.6	154.707
8	RS	890898.5	157.1804
9	MG	1872257	154.7064
10	MA	152523	198.8566
11	sc	623086.4	165.9793

3. Calculate the Total & Average value of order freight for each state.

```
select cus.customer_state, sum(items.freight_value) as Total,
sum(items.freight_value)/count(distinct cus.customer_state) Average_value from
`Target01.order_items` items
join `Target01.orders` ord
on items.order_id = ord.order_id
join `Target01.customers` cus
on ord.customer_id = cus.customer_id
group by cus.customer_state
order by cus.customer_state;
```

1 customer_state	Total	Average_value
2 AC	3686.75	3686.75
3 AL	15914.59	15914.59
4 AM	5478.89	5478.89
5 AP	2788.5	2788.5
6 BA	100156.7	100156.7
7 CE	48351.59	48351.59
8 DF	50625.5	50625.5
9 ES	49764.6	49764.6
10 GO	53114.98	53114.98
11 MA	31523.77	31523.77
12 MG	270853.5	270853.5

Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

```
select order_id, date_diff(order_delivered_customer_date,
```

```
order_purchase_timestamp,day) delivery_time
from `Target01.orders`
order by date_diff(order_delivered_customer_date,
order_purchase_timestamp,day) desc;
```

1	order_id	delivery_time
2	ca07593549f181	209
3	1b3190b2dfa9d7	208
4	440d0d17af5528	195
5	0f4519c5f1c541c	194
6	285ab9426d698	194
7	2fb597c2f772eca	194
8	47b40429ed8cce	191
9	2fe324febf907e3	189
10	2d7561026d542	188
11	437222e3fd1b07	187
12	c27815f7e3dd0b	187

2. Calculate the difference (in days) between the estimated & actual delivery date of an order.

```
select
```

```
order_id, date_diff(order_estimated_delivery_date, order_delivered_customer_date, d
ay) diff_estimated_delivery
from `Target01.orders`
order by order_id;
```

1	order_id	diff_estimated_delivery
2	00010242fe8c5a6d1ba2dd792cb16214	8
3	00018f77f2f0320c557190d7a144bdd3	2
4	000229ec398224ef6ca0657da4fc703e	13
5	00024acbcdf0a6daa1e931b038114c75	5
6	00042b26cf59d7ce69dfabb4e55b4fd9	15
7	00048cc3ae777c65dbb7d2a0634bc1ea	14
8	00054e8431b9d7675808bcb819fb4a32	16
9	000576fe39319847cbb9d288c5617fa6	15
10	0005a1a1728c9d785b8e2b08b904576c	0
11	0005f50442cb953dcd1d21e1fb923495	18
12	0006462-76-004-92-445-524-9-4-64	10

3. Find out the top 5 states with the highest & lowest average freight value.

```
-- highest
```

```
with cal as (select cus.customer_state as cus1, (sum(ord_it.freight_value)/5)
avg1 from
`Target01.order_items` ord_it join `Target01.orders` ord
on ord_it.order_id = ord.order_id
join `Target01.customers` cus
on ord.customer_id=cus.customer_id
group by cus.customer_state
order by sum(ord_it.freight_value)/5)
select cus1, avg1
from cal
order by cal.avg1 desc
limit 5;
```


-- lowest

```
with call as (select cus.customer_state as cus1, (sum(ord_it.freight_value)/5)
avg1 from
```

[`]Target01.order_items` ord_it join `Target01.orders` ord

```
on ord_it.order_id = ord.order_id
join `Target01.customers` cus
on ord.customer_id=cus.customer_id
group by cus.customer_state
order by sum(ord_it.freight_value)/5)
select cus1, avg1
from cal1
order by cal1.avg1
limit 5;
```


4. Find out the top 5 states with the highest & lowest average delivery time.

```
select cus.customer_state,
round(avg(TIMESTAMP_DIFF(TIMESTAMP(ord.order_delivered_customer_date),TIMESTAMP(
ord.order_purchase_timestamp),hour)),2) as delivery_time
from `Target01.orders` ord
left join `Target01.customers` cus
on ord.customer_id = cus.customer_id
group by cus.customer_state
order by delivery_time desc
limit 5;
```



```
select cus.customer_state,
round(avg(TIMESTAMP_DIFF(TIMESTAMP(ord.order_delivered_customer_date), TIMESTAMP(
ord.order_purchase_timestamp), hour)),2) as delivery_time
from `Target01.orders` ord
left join `Target01.customers` cus
on ord.customer_id = cus.customer_id
group by cus.customer_state
order by delivery_time
limit 5;
```

Row	customer_state ▼	delivery_time ▼
1	SP	209.77
2	PR	287.3
3	MG	287.75
4	DF	310.72
5	SC	358.52

5. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
(select cus.customer_state,
round(avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_custom
er_date,day)))as delivery
from `Target01.orders` ord
```

```
left join `Target01.customers` cus
on ord.customer_id = cus.customer_id
group by cus.customer_state)
order by delivery desc
limit 5;
```



```
(select cus.customer_state,
round(avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_custom
er_date,day)))as delivery
from `Target01.orders` ord
left join `Target01.customers` cus
on ord.customer_id = cus.customer_id
group by cus.customer_state)
order by delivery
limit 5;
```

Row /	customer_state ▼	delivery ▼
1	AL	8.0
2	MA	9.0
3	SE	9.0
4	SP	10.0
5	BA	10.0

Analysis based on the payments:

pay.payment_type)

order by payment_type, year, month;

select year,month,payment_type, sum(month_count) over(order by month)
from(
 select (extract(year from ord.order_purchase_timestamp))year,
 (extract(month from order_purchase_timestamp))month,
 pay.payment_type, count(ord.order_id) as month_count
 from `Target01.payments` pay
 join `Target01.orders` ord
 on pay.order_id = ord.order_id
 group by extract(year from ord.order_purchase_timestamp),
 extract(month from ord.order_purchase_timestamp),

1. Find the month on month no. of orders placed using different payment types.

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select payment_installments, count(order_id) as no_of_orders
from `Target01.payments`
group by payment_installments
```

Row	payment_installment	no_of_orders ▼
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268