Hands-on Machine Learning

6. Decision Trees

Training and Visualizing a Decision Tree

Build a Decision Tree

> Train a DecisionTreeClassifier on the iris dataset:

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)
X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values
y_iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X_iris, y_iris)
```

Visualize a Decision Tree

➤ Visualize the Decision Tree by using the export_graphviz() method to output a graph definition file called *iris_tree.dot*:

```
from sklearn.tree import export_graphviz

export_graphviz(
    tree_clf,
    out_file=str(IMAGES_PATH / "iris_tree.dot"),
    feature_names=["petal length (cm)", "petal width (cm)"],
    class_names=iris.target_names,
    rounded=True,
    filled=True
)

from graphviz import Source
Source.from_file(IMAGES_PATH / "iris_tree.dot")
```

```
petal length (cm) <= 2.45
              qini = 0.667
                                    Root node &
             samples = 150
                                    split node
           value = [50, 50, 50]
             class = setosa
                          False
        True
                     petal width (cm) <= 1.75
   gini = 0.0
                            qini = 0.5
 samples = 50
                                               Split node
                         samples = 100
value = [50, 0, 0]
                        value = [0, 50, 50]
 class = setosa
                        class = versicolor
Leaf node
                gini = 0.168
                                      aini = 0.043
     Leaf
                                                      Leaf
               samples = 54
                                     samples = 46
              value = [0, 49, 5]
                                    value = [0, 1, 45]
                                                      node
                                    class = virginica
```

Use the dot command-line tool to convert this .dot file to PNG:

```
$ dot -Tpng iris_tree.dot -o iris_tree.png
```

Node Attributes in a Decision Tree

- samples attribute counts how many training instances it applies to.
- value attribute tells you how many training instances of each class this node applies to.
- ➢ gini attribute measures its Gini impurity: a node is "pure" (gini=0) if all training instances it applies to belong to the same class.

Gini Impurity

 \triangleright Gini impurity G_i of the i-th node:

$$G_i = 1 - \sum_{k=1}^n p_{i,k}^2$$

- $p_{i,k}$ is the ratio of class k instances among the training instances in the i-th node.
- Example (green node):

$$G = 1 - \left(\frac{0}{54}\right)^2 - \left(\frac{49}{54}\right)^2 - \left(\frac{5}{54}\right)^2 = 0.168$$

Decision Boundaries

> Decision tree's decision boundaries when max depth is set to 3.

Model Interpretation

- Decision trees are intuitive, and their decisions are easy to interpret.
 - > Such models are often called white box models.
- Neural networks are considered black box models: they make great predictions, but it is hard to explain in simple terms why the predictions were made.
- The field of *interpretable ML* aims at creating ML systems that can explain their decisions in a way humans can understand.

The COMPAS Race Bias

Estimating Class Probabilities

- \triangleright A decision tree can estimate the probability that an instance belongs to a particular class k.
 - raverse the tree to find the leaf node for this instance, and then return the ratio of training instances of class k in this node.
- Example. A flower whose petals are 5 cm long and 1.5 cm wide: 0% setosa (0/54), 90.7% versicolor (49/54), and 9.3% virginica (5/54).

2. The CART Training Algorithm

The CART Training Algorithm

- Scikit-Learn uses the Classification and Regression Tree (CART) algorithm to train decision trees.
 - The algorithm first splits the training set into two subsets using a single feature k and a threshold t_k (e.g., petal length \leq 2.45 cm).
- \triangleright How does it choose k and t_k ?
 - > It searches for the pair (k, t_k) that produces the purest subsets, weighted by their size by minimizing the cost function:

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$

- \succ $G_{\text{left/right}}$ measures the gini impurity of the left/right subset.
- $ightharpoonup m_{
 m left/right}$ is the number of instances in the left/right subset.

The CART Training Algorithm

- ➤ Once the CART algorithm has split the training set in two, it splits the subsets using the same logic, recursively.
 - It stops recursing once it reaches the maximum depth (defined by the max_depth hyperparameter), or if it cannot find a split that will reduce impurity.

➤ A few other hyperparameters control additional stopping conditions: min_samples_split, min_samples_leaf, and max leaf nodes.

The CART Training Algorithm

- > The CART algorithm is a *greedy algorithm*: it greedily searches for an optimum split at the top level, then repeats the process at each subsequent level.
 - > It does not check whether or not the split will lead to the lowest possible impurity several levels down.
- > Finding the optimal decision tree is an NP-hard problem.
 - \triangleright It requires $O(2^m)$ time, making the problem intractable even for small training sets.
- \triangleright Prediction complexity = $O(\log_2 m)$ (traversing the decision tree)
- ightharpoonup Training complexity = $O(n \times m \log_2 m)$

Gini Impurity or Entropy?

- ➢ By default, the DecisionTreeClassifier class uses the Gini impurity measure, but you can select the entropy measure instead by setting the criterion hyperparameter to "entropy".
- ➤ In ML, entropy is frequently used as an impurity measure: a set's entropy is zero when it contains instances of only one class.

$$H_i = -\sum_{k=1}^n p_{i,k} \log_2 p_{i,k}$$

> Gini impurity is slightly faster to compute, while entropy tends to produce slightly more balanced trees.

3. Regularization

Regularization Hyperparameters

- Decision trees make few assumptions about the training data.
 - > e.g. linear models assume that the data is linear.
- > If left unconstrained, the tree structure will adapt itself to the training data, fitting it very closely—most likely overfitting it.
- ➤ Decision tree is a *nonparametric model*: the number of parameters is not determined prior to training.
 - A parametric model, e.g. a linear model, has a predetermined number of parameters, so its degree of freedom is limited, reducing the risk of overfitting.

Regularization Hyperparameters

- > max depth: maximum depth of the decision tree.
- max_features: maximum number of features that are evaluated for splitting at each node.
- > max leaf nodes: maximum number of leaf nodes.
- min_samples_split: minimum number of samples a node must have before it can be split.
- min_samples_leaf: minimum number of samples a leaf node must have to be created.
- min_weight_fraction_leaf: same as min_samples_leaf but expressed as a fraction of the total number of weighted instances.

Regularized Decision Tree

```
from sklearn.datasets import make_moons

X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42)

tree_clf1 = DecisionTreeClassifier(random_state=42)

tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42)

tree_clf1.fit(X_moons, y_moons)

tree_clf2.fit(X_moons, y_moons)
```


4. Regression

Decision Trees for Regression

> Decision trees are also capable of performing regression tasks.

Decision Trees for Regression

- > The predicted value for each region is the average target value of the instances in that region.
- > The algorithm splits each region in a way that makes most training instances as close as possible to that predicted value.

The CART Algorithm for Regression

> The CART algorithm splits the training set in a way that minimizes the MSE (instead of impurity).

$$J(k, t_k) = \frac{m_{\text{left}}}{m} \text{MSE}_{\text{left}} + \frac{m_{\text{right}}}{m} \text{MSE}_{\text{right}} \quad \text{where} \begin{cases} \text{MSE}_{\text{node}} = \frac{\sum_{i \in \text{node}} \left(\widehat{y}_{\text{node}} - y^{(i)}\right)^2}{m_{\text{node}}} \\ \widehat{y}_{\text{node}} = \frac{\sum_{i \in \text{node}} y^{(i)}}{m_{\text{node}}} \end{cases}$$

> Just like for classification tasks, decision trees are prone to overfitting when dealing with regression tasks.

Regularized Decision Tree for Regression

5. Challenges

Sensitivity to Axis Orientation

Decision trees like orthogonal decision boundaries (all splits are perpendicular to an axis), which makes them sensitive to the data's orientation.

Sensitivity to Axis Orientation

- One way to limit this problem is to scale the data, then apply a principal component analysis (PCA) transformation.
 - PCA rotates the data in a way that reduces the correlation between the features.
- Create a pipeline that scales the data and rotates it using PCA, then train a DecisionTreeClassifier on that data:

```
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

pca_pipeline = make_pipeline(StandardScaler(), PCA())
X_iris_rotated = pca_pipeline.fit_transform(X_iris)
tree_clf_pca = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf_pca.fit(X_iris_rotated, y_iris)
```

Sensitivity to Axis Orientation

 \triangleright The rotation makes it possible to fit the dataset pretty well using only one feature, z_1 , which is a linear function of the original petal length and width.

Decision Trees have a High Variance

- > The main issue with decision trees: high variance.
 - > small changes to the hyperparameters or to the data may produce very different models.
- > Since the training algorithm used by Scikit-Learn randomly selects the set of features to evaluate at each node, even retraining the same decision tree on the exact same data may produce a very different model.
- > By averaging predictions over many trees, it's possible to reduce variance significantly.
 - > Such an *ensemble* of trees is called a *random forest*.

