

本科实验报告

课程名称:	_ 计算机组成原埋实验_
课程编号.	08060038

学号: 2016051598

学院: 信息科学与技术学院

系: 计算机系_____

专业: 计算机科学与技术

指导教师: 工传胜 梁倬骞

教师单位: 暨南大学计算机系

开课时间: 2019~2020 学年度 第 1 期

暨南大学教务处 2019 年 12 月 05 日

_ 数字逻辑实验_课程实验项目目录

学生姓名: 邝庆璇 学号: 2016051598

		1 11/11 11 •	71)八姚 子	J• = •	100010
序号	实验项目编号	实验项目名称	*实验项目 类型	成绩	指导教师
1	0806003801	验证逻辑门	验证		王传胜 梁 倬骞
2	0806003802	基本逻辑门电路之间的转换	验证		王传胜 梁 倬骞
3	0806003803	超前进位全加器	验证		王传胜 梁 倬骞
4	0806003804	译码器	验证		王传胜 梁 倬骞
5	0806003805	数字比较器	验证		王传胜 梁 倬骞
6	0806003806	七段数码管	验证		王传胜 梁 倬骞
7	0712000807	计数器	验证		王传胜 梁 倬骞
8	0712000808	寄存器	验证		王传胜 梁 倬骞
9	0712000809	时序逻辑电路综合设计	验证		王传胜 梁 倬骞
12					
13					
14					
15					
16					
17					
18					

^{*}实验项目类型:演示性、验证性、验证性、设计性实验。

^{*}此表由学生按顺序填写。

课程名称	数字逻辑	异实验	成绩评定	
实验项目	名称Verilog [门级建模	指导教师_王传服	生 梁倬骞
实验项目	编号 <u>0806003801</u>	实验项目类	型 验证 实验地点	KN126
学生姓名	邝庆璇学号	2016051	1598	
学院 <u>信</u>	息科学技术	系 <u>计算机科学</u>	大专业 计算机科学	与技术
实验时间		0日上午		

一、实验目的

- 1、学会使用 Verilog HDL 进行门级建模;
- 2、初步学会怎么用 Verilog HDL 编写仿真程序;
- 3、初步学会怎么使用 Vivado 软件;
- 4、初步学会验证基本逻辑门的逻辑功能的方法;
- 5、初步学会验证怎么使用 EG0-1 实验板。

二、实验内容

编写 Verilog 程序,验证 3 输入的与门、与非门、或门、或非门、 异或门、同或门

三、实验程序

```
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module exp1(
    input in1,
    input in2,
    input in3,
    output out1,
    output out2,
    //output out3,
    output out4,
    output out5,
    output out6,
    output out7
    );
    and funcAnd(out1, in1, in2, in3);
    or funcOr(out2, in1, in2, in3);
    xor funcXor(out4, in1, in2, in3);
    nand funcNand(out5, in1, in2, in3);
    nor funcNor(out6, in1, in2, in3);
    xnor funcXnor(out7, in1, in2, in3);
endmodule
四、仿真程序
sim 1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/09/30 11:57:26
// Design Name:
// Module Name: sim 1
// Project Name:
// Target Devices:
```

```
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module sim_1(
    output out1,
    output out2,
    //output out3,
    output out4,
    output out5,
    output out6,
    output out7
    );
    reg[2:0] in;
    initial
    begin
        in = 3'b00;
    end
    always #10
    begin
        in = in + 1;
    end
    exp1 exp1(in[2],in[1], in[0], out1, out2, out4, out5, out6, out7);
```

endmodule

六、系统网表

RTL Analysis

七、系统约束

Name	Direction	Neg Diff Pair	Package Pin		Fixed	Bank	I/O Std		Vcco
V 🐼 All ports (9)									
√	orts (9)								
in1	IN		P5	~	1	34	LVCMOS33*	*	3.300
in2	IN		P4	~	1	34	LVCMOS33*	7	3.300
in3	IN		P3	~	1	34	LVCMOS33*	7	3.300
out1	OUT		G4	~	1	35	LVCMOS33*	*	3.300
out2	OUT		G3	~	1	35	LVCMOS33*	7	3.300
✓ out4	OUT		J4	~	1	35	LVCMOS33*	÷	3.300
✓ out5	OUT		H4	~	1	35	LVCMOS33*	¥	3.300
✓ out6	OUT		J3	~	1	35	LVCMOS33*	٠	3.300
✓ out7	OUT		J2	~	1	35	LVCMOS33*	*	3.300

八、实验结果

示例:

输入	No. In1 In2			In3	3	
输入的值	0 2		0			
输出	out1	out2	out4	out5	out6	out7
逻辑运算	And	Or	Xor	Nand	Nor	xnor
输出的值	0	1	1	1	0	0

九、实验体会

此次试验属于初步的实践,学习了门级建模,熟悉了 vivado 软件的使用及 verilog 编程的语法,有效地为数字逻辑试验和学习作准备。感悟:刚开始使用时,使用软件进行建模的流程相对繁琐,但熟悉之后会比较顺利,毕竟初期的实验难度不大。

鱼用入于本什头拉报古专用纸
课程名称
实验项目名称_基本逻辑门电路之间的转换_指导教师_王传胜 梁倬骞_
实验项目编号_0806003802_实验项目类型_验证_实验地点_N126
学生姓名
学院信息科学技术系_计算机科学_专业_计算机科学与技术
实验时间 2019 年 10 月 14 日 上 午
一、实验目的
掌握用 Verilog HDL 进行门级建模;
熟悉用 Verilog HDL 写仿真程序;
熟悉使用 Vivado 软件;
学会验证基本逻辑门电路之间的转换方法;
熟悉使用 EGO-1 实验板。
二、实验内容
用与非门(NAND)来实现异或(XOR)运算
三、实验程序
exp1.v
`timescale 1ns / 1ps
//////////////////////////////////////
// Engineer:
// // Create Date: 2019/10/14 12:11:56
// Design Name:
// Module Name: exp_1 // Project Name:
// Target Devices:
// Tool Versions:

// Description:

```
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module exp 1(
   input in1,
   input in2,
   output out
   );
   nand (temp1, in1, in2);
   nand (temp2, in1, temp1);
   nand (temp3, in2, temp1);
   nand (out, temp2, temp3);
endmodule
四、仿真程序
sim 1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/10/14 12:22:02
// Design Name:
// Module Name: sim_1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
```

Endmodule

exp_1 exp_1(in[1], in[0], out);

六、系统网表

RTL Analysis

Synthesis

七、系统约束

Name	Direction	Neg Diff Pair	Package Pin		Fixed	Bank	I/O Std		Vcco
✓ ☑ All ports (3)								
∨ 🔯 Scalar p	ports (3)								
☑ in1	IN		P5	~	1	34	LVCMOS33*	*	3.300
in2	IN		P4	~	1	34	LVCMOS33*	•	3.300
- out	OUT		G4	~	1	35	LVCMOS33*		3.30

八、实验结果

示例:

输入	In1	In2		
输入端口	P5	P4		
输入的值	0	1		
输出	O	ut		
输出端口	G4			
输出的值	1	1		

(示例照片见下页)

九、实验体会

通过此次试验,进一步地联系了门级建模,也更加熟悉 vivado 的 编程及使用流程(包括模拟 simulation,综合 synthesis,根据硬件设备指定 I/O Ports,生产比特流 generate bitstream,到最后把程序放到设备里面),还有对每一步结果分析。

旦用人了个个人处议日子儿外
课程名称
实验项目名称_超前进位加法器_指导教师_王传胜 梁倬骞
实验项目编号_0806003803_实验项目类型_验证_实验地点_N126
学生姓名
学院信息科学技术系_计算机科学_专业_计算机科学与技术
实验时间 2019 年 10 月 21 日 上 午
一、实验目的
学会用 Verilog HDL 进行数据流建模;
掌握用 Verilog HDL 写仿真程序;
掌握使用 Vivado 软件;
学会超前进位全加器的原理;
掌握使用 EGO-1 实验板。
二、实验内容
用 Verilog HDL 实现 3 位的超前进位加法器。
*注意: 必须使用超前进位实现!!! 不能{c4,sum}=a+b+c0
三、实验程序
exp1.v
`timescale 1ns / 1ps
//////////////////////////////////////
// Engineer:
// // Create Date: 2019/10/21 12:43:16
// Design Name:
// Module Name: exp_1 // Project Name:
77

```
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module exp_1(
   input [2:0] A,
   input [2:0] B,
   input C in,
   output C_out,
   output [2:0] S
   wire [2:0] G = A \& B;
   wire [2:0] P = A ^ B;
   // 2 为高位, 0 为低位, 210
   wire C1, C2; // 从 1 开始的 A1+B1, A2+B2 所产生的进位
   assign C1 = G[0] + (P[0] & C_in); // 记得要加括号呀!
   assign C2 = G[1] + (P[1] \& C1);
   assign C out = G[2] + (P[2] \& C2);
   assign S[0] = P[0] ^ C_in;
   assign S[1] = P[1] ^ C1;
   assign S[2] = P[2] ^ C2;
endmodule
四、仿真程序
sim 1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
```

```
// Create Date: 2019/10/21 12:58:48
// Design Name:
// Module Name: sim_1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module sim_1(
    output C_out,
    output [2:0] S
    );
    reg [5:0] in;
    reg [2:0] A;
    reg [2:0] B;
    reg inc;
    initial
    begin
        in = 6'b000000;
        assign A = in[5:3];
        assign B = in[2:0];
        assign inc = 1;
    end
    always #10
    begin
        in = in + 1;
        inc = inc + 1;
    end
    exp_1 exp_1(A, B, inc, C_out, S);
endmodule
```


六、系统网表

RTL Analysis

七、系统约束

Name	Direction	Neg Diff Pair	Package Pi	n	Fixed	Bank	I/O Std		Vcco
V 🐼 All ports (11)									
~ 👺 A (3)	IN				1	34	LVCMOS33*	•	3.300
☑ A[2]	IN		P5	٧	1	34	LVCMOS33*	•	3.300
	IN		P4	V	1	34	LVCMOS33*		3.300
	IN		P3	V	1	34	LVCMOS33*	•	3.300
B (3)	IN				1	34	LVCMOS33*	*	3.300
☑ B[2]	IN		P2	٧	1	34	LVCMOS33*	*	3.300
☑ B[1]	IN		R2	~	1	34	LVCMOS33*	•	3.300
☑ B[0]	IN		M4	V	1	34	LVCMOS33*	•	3.300
v 🔞 S (3)	OUT				1	35	LVCMOS33*		3.300
√ S[2]	OUT		G4	×	1	35	LVCMOS33*	•	3.300
⊘ S[1]	OUT		G3	v	1	35	LVCMOS33*	•	3.300
⊘ S[0]	OUT		J4	V	V	35	LVCMOS33*		3.300
v 🔯 Scalar port	ts (2)								
C_in	IN		N4	~	1	34	LVCMOS33*	+	3.300
	OUT		H4	V	1	35	LVCMOS33*		3.300

八、实验结果

示例(3+7+1=11=8+3):

输入	A (A2 A1 A0)	B (B2 B1 B0)		C_in		
输入端口	P5 P4 P3	P2 R2 M4		P2 R2 M4		N4
输入的值	011	111		111		1
输出	S (S2 S1 S0)			C_out		
输出端口	G4 G3 J4			H4		
输出的值	0 1 1			1		

(结果照片见下一页)

九、实验体会

通过此次试验,不但学习并练习了 Verilog HDL 进行数据流建模,熟悉了 Verilog 的各种操作符,而且还复习了超前进位全加器的原理。诚然,在编码过程当中,仍存在对 Verilog 语法及 Vivado 软件使用不熟练,导致走了一点弯路(比如没意识到实验程序 expl.v 不能用 while, for 等语句,仿真文件里才能用),但在请教老师同学后迅速解决了问题,并完成了实验。

课程名称
实验项目名称
实验项目编号 0806003804 实验项目类型 验证 实验地点 N126
学生姓名
学院信息科学技术系_计算机科学_专业_计算机科学与技术
实验时间_2019_年_10_月_28_日 _上_午
一、实验目的
掌握用 Verilog HDL 进行数据流建模;
深入理解译码器的原理;
学会用 Verilog HDL 实现 74LS138;
, 2, 7, , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
二、实验内容
用 Verilog HDL 语言实现 74LS138 的功能。
714 Vernog Tible Ver a XXXV 7-125130 WV-XX AC 6
三、实验程序
exp1.v
`timescale 1ns / 1ps
// Company: // Engineer:
//
// Create Date: 2019/10/28 12:13:17
// Design Name:
// Module Name: exp_1 // Project Name:
// Target Devices:
// Tool Versions:
// Description:

```
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module exp 1(
     input [2:0] G,
     input [2:0] A,
     output [7:0] Y
     );
     wire E tmp = (G[0] \& \sim (G[1]) \& \sim (G[2]));
     wire A0 not = ^{\sim}A[0];
     wire A1 not = ^{\sim}A[1];
     wire A2 not = ^{\sim}A[2];
     assign Y[0] = ^(A0 \text{ not } \& A1 \text{ not } \& A2 \text{ not } \& E \text{ tmp});
     assign Y[1] = {}^{\sim}(A[0] \& A1 \text{ not } \& A2 \text{ not } \& E \text{ tmp});
     assign Y[2] = ~(A0_not & A[1] & A2_not & E_tmp);
     assign Y[3] = {}^{\sim}(A[0] \& A[1] \& A2\_not \& E\_tmp);
     assign Y[4] = ^{(A0 \text{ not } \& A1 \text{ not } \& A[2] \& E \text{ tmp});
     assign Y[5] = {}^{\sim}(A[0] \& A1 \text{ not } \& A[2] \& E \text{ tmp});
     assign Y[6] = ^(A0_not & A[1] & A[2] & E_tmp);
     assign Y[7] = {}^{\sim}(A[0] \& A[1] \& A[2] \& E tmp);
endmodule
四、仿真程序
sim 1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/10/28 12:16:20
// Design Name:
// Module Name: sim_1
// Project Name:
```

```
// Target Devices:
// Tool Versions:
// Description:
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module sim 1(
   output [7:0] Y
   );
    reg [2:0] G;
    reg [2:0] A;
   initial
    begin
       assign A = 3'b000;
       assign G = 3'b001;
    end
    always #20
    begin
       assign A = A + 1;
    end
    exp_1 exp_1(G, A, Y);
Endmodule
```


六、系统网表

Synthesis

七、系统约束

Name	Direction	Neg	Package Pin	Fixed	Bank	I/O Std		Vcco	Vret
V 🐼 All ports (14	1)								
→ A (3)	IN			1	34	LVCMOS33*	+	3.300	
	IN		P5 🗸	1	34	LVCMOS33*	*	3.300	
	IN		P4 ~	1	34	LVCMOS33*	•	3.300	
	IN		P3 💙	1	34	LVCMOS33*		3.300	
🗸 👺 G (3)	IN			1	34	LVCMOS33*	•	3.300	
☑ G[2]	IN		P2 ~	1	34	LVCMOS33*	•	3.300	
☑ G[1]	IN		R2 ∨	1	34	LVCMOS33*	•	3.300	
☑ G[0]	IN		M4 ~	1	34	LVCMOS33*	*	3.300	
Scalar p	orts (0)								
√ √ √ (8)	OUT			1	35	LVCMOS33*	•	3.300	
- ☑ Y[7]	OUT		F6 ~	1	35	LVCMOS33*	•	3.300	
√ Y[6]	OUT		G4 ~	1	35	LVCMOS33*	•	3.300	
⋖ Y[5]	OUT		G3 💙	1	35	LVCMOS33*	•	3.300	
 ✓ Y[4]	OUT		J4 🗸	1	35	LVCMOS33*	•	3.300	
√ Y[3]	OUT		H4 ∨	1	35	LVCMOS33*	•	3.300	
⋖ Y[2]	OUT		J3 ~	1	35	LVCMOS33*	*	3.300	
 ✓ Y[1]	OUT		J2 ~	1	35	LVCMOS33*	+	3.300	
√ Y[0]	OUT		K2 ~	1	35	LVCMOS33*		3.300	

八、实验结果

示例(A=101, G=001):

输入	A (A2 A1 A	0)					G (G	3 G2 G1)
输入端口	P5 P4 P3						P2	R2 M4
输入的值	101							0 0 1
输出	Y (Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0)
输出端口	F6	G4	G3	J4	H4	J3	J2	K2
输出的值	1	1	0	1	1	1	1	1

(照片见下页)

九、实验体会

在做之前的经验积累铺垫下,此次实验完成得比较顺利。但因为一开始的时候是照着图而不是真值表来编码,而图的线路比较复杂(看起来),所以很容易乱;然后改成看真值表,就容易找得到规律了。另外,要注意细心一点儿。

课程名称	数字逻辑实验		定
实验项目名称	数字比较器	_指导教师	王传胜 梁倬骞
实验项目编号_080	06003805 实验项目	】类型 <u>验证</u> 实	· 验地点 <u>N126</u>
学生姓名 邝庆瑞	· · 学号 2016	051598	
学院信息科学技	支术 系_计算机系	- 斗学_专业_计算	机科学与技术
实验时间_2019_年	- 11 月 04 日 上	 _午	

一、实验目的

掌握 Verilog HDL 进行数据流建模;

学会使用层次建模的方式来设计整个系统;

学会用 Verilog HDL 实现数字比较器

二、实验内容

用 Verilog HDL 数据流模式实现由级联 2 位数值比较器

三、实验程序

```
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module exp_1(
                             input [1:0] A,
                             input [1:0] B,
                             input [2:0] I, // I[2]: A>B; I[1]: A<B; I[0]: A==B
                             output [2:0] F // F[2]: A>B; F[1]: A<B; F[0]: A==B
                             );
                            //A > B
                             assign F[2] = ((A[1] > B[1]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0] > B[0]) \mid | (A[1] == B[1] \&\& A[0] > B[0] > B[0]
A[0] == B[0] \&\& I[2] > 0));
                           // A < B
                             assign F[1] = ((A[1] < B[1]) \mid | (A[1] == B[1] \&\& A[0] < B[0]) \mid | (A[1] == B[1] \&\& A[0] < A[0]) \mid | (A[1] == A[1] \&\& A[1]
A[0] == B[0] \&\& I[1] > 0));
                            //A == B
                             assign F[0] = (A[1] == B[1] \&\& A[0] == B[0] \&\& I[0] > 0);
endmodule
四、仿真程序
sim 1.v
 `timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/11/04 11:37:29
// Design Name:
// Module Name: sim 1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
```

```
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module sim_1(
    output [2:0] F
    );
    reg [1:0] A;
    reg [1:0] B;
    reg [3:0] AB;
    reg [2:0] I;
    initial
    begin
        AB = 4'b0000;
        A = AB[3:2];
        B = AB[1:0];
        I = 3'b001;
    end
    always #20
    begin
        AB = AB + 1;
        A = AB[3:2];
        B = AB[1:0];
    end
    exp_1 exp_1(A, B, I, F);
```

endmodule

七、系统约束

Name	Direction	N	Package Pin		Fixed	Bank	I/O Std	Vcco
V 🔯 All ports (10))							
A (2)	IN				1	34	LVCMOS33* -	3.300
	IN		P5	~	1	34	LVCMOS33* ▼	3.300
	IN		P4	~	1	34	LVCMOS33* •	3.300
🗸 👺 B (2)	IN				1	34	LVCMOS33* ▼	3.300
▶ B[1]	IN		P3	~	1	34	LVCMOS33* ▼	3.300
▶ B[0]	IN		P2	~	1	34	LVCMOS33* ▼	3.300
√	OUT				1	35	LVCMOS33* ▼	3.300
 √ √ √ F [2]	OUT		F6	~	1	35	LVCMOS33* -	3.300
 ▼ [1]	OUT		G4	~	1	35	LVCMOS33* ▼	3.300
 ✓ F[0]	OUT		G3	~	1	35	LVCMOS33* ▼	3.300
I(3)	IN				1	34	LVCMOS33* •	3.300
☑ I[2]	IN		R2	~	1	34	LVCMOS33* ▼	3.300
☑ I[1]	IN		M4	~	1	34	LVCMOS33* ▼	3.300
№ 1[0]	IN		N4	~	1	34	LVCMOS33* -	3.300

八、实验结果

示例(A=10, B=11, I=100):

输入	A (A1 A0)	B(B1 b0)	I				
输入的值	1 0	11	100				
输出	F (F2 F2 F0)						
输出的值	010						

九、实验体会

在做之前的经验积累铺垫下,此次实验完成得比较顺利。但因为一开始的时候是照着图而不是真值表来编码,而图的线路比较复杂(看起来),所以很容易乱;然后改成看真值表,就容易找得到规律了。另外,要注意细心一点儿。

课程名称数	字逻辑实验	成绩评	定
实验项目名称	七段数码管	_指导教师	王传胜 梁倬骞
实验项目编号_08060	<u>003806</u> 实验项目	类型 <u>验证</u>	实验地点 <u>N126</u>
学生姓名_ 邝庆璇	学号2016	051598	
学院信息科学技术	系_计算机和	十学 专业 计	算机科学与技术
实验时间 <u>2019</u> 年 <u>1</u>			

一、实验目的

掌握用 Verilog HDL 进行数据流建模;

学会在 EGO-1 实验板上使用七段数码管;

学会用 Verilog HDL 实现用七段数码管实现 16 进制数;

二、实验内容

编写 Verilog 程序,使得在七段数码管中显示 0~9, A~F 这 16 进制数。

三、实验程序

```
exp1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/11/11 13:11:15
// Design Name:
// Module Name: exp 11
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
```

```
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module exp 11(
    input [3:0] in_num,
    input [3:0] in_chip,
    output reg [6:0] out num,
    output [3:0] out chip
    );
    assign out_chip = in_chip;
    always @(in_num)
        case (in num)
            4'b0000 : out num = 7'b1111110;
            4'b0001: out num = 7'b0110000;
            4'b0010: out num = 7'b1101101;
            4'b0011 : out_num = 7'b1111001;
            4'b0100 : out num = 7'b0110011;
            4'b0101: out num = 7'b1011011;
            4'b0110 : out num = 7'b1011111;
            4'b0111 : out_num = 7'b1110000;
            4'b1000 : out num = 7'b1111111;
            4'b1001 : out num = 7'b1111011;
            4'b1010: out num = 7'b1110111;
            4'b1011: out num = 7'b0011111;
            4'b1100 : out_num = 7'b1001110;
            4'b1101: out num = 7'b0111101;
            4'b1110 : out num = 7'b1001111;
            4'b1111 : out num = 7'b1000111;
            default : begin
                 out_num = 'bx;
                 $display("not match");
            end
        endcase
endmodule
```

```
四、仿真程序
sim_1.v
endmodule
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/11/11 13:14:02
// Design Name:
// Module Name: sim_11
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module sim_11(
   output [6:0] out num,
   output [3:0] out_chip
   );
   reg [3:0] in_num;
   reg [3:0] in_chip;
   initial
   begin
       in_chip = 4'b1010;
       in_num = 4'b0000;
   end
   always #20
   begin
       in_num = in_num + 1;
   end
   exp_11 exp_11(in_num, in_chip, out_num, out_chip);
```

endmodule

六、系统网表

Synthesis:

七、系统约束

Name	Direction	Neg Diff Pair	Package Pin	Fixed	Bank	I/O Std		Vcco	Vref	Drive Strength	
V 🐼 All ports (19)											
in_chip (4)	IN			1	34	LVCMOS33*	*	3.300			
	IN		P5 ·	/	34	LVCMOS33*	*	3.300			
☑ in_chip[2]	IN		P4 ·	/ /	34	LVCMOS33*	-	3.300			
in_chip[1]	IN		P3	/ /	34	LVCMOS33*	•	3.300			
☑ in_chip[0]	IN		P2 ·	/ /	34	LVCMOS33*		3.300			
in_num (4)	IN			1	34	LVCMOS33*	•	3.300			
	IN		R2	/ /	34	LVCMOS33*	•	3.300			
	IN		M4	/ /	34	LVCMOS33*	*	3.300			
	IN		N4	, ,	34	LVCMOS33*	*	3.300			
in_num[0]	IN		R1 -	/ /	34	LVCMOS33*	*	3.300			
√ √ out_chip (4)	OUT			1	35	LVCMOS33*	•	3.300		12	~
✓ out_chip[3]	OUT		G2	/ /	35	LVCMOS33*	•	3.300		12	~
✓ out_chip[2]	OUT		C2 ·		35	LVCMOS33*	•	3.300		12	~
✓ out_chip[1]	OUT		C1		35	LVCMOS33*	•	3.300		12	~
✓ out_chip[0]	OUT		H1 -	/ /	35	LVCMOS33*	•	3.300		12	~
v do out_num (7)	OUT			1	35	LVCMOS33*	•	3.300		12	~
✓ out_num[6]	OUT		B4 ·		35	LVCMOS33*	•	3.300		12	~
✓ out_num[5]	OUT		A4		35	LVCMOS33*	+	3.300		12	~
✓ out_num[4]	OUT		A3	, 1	35	LVCMOS33*	•	3.300		12	~
✓ out_num[3]	OUT		B1 ·		35	LVCMOS33*	•	3.300		12	~
✓ out_num[2]	OUT		A1 .	/ /	35	LVCMOS33*	•	3.300		12	~
✓ out_num[1]	OUT		B3	/ /	35	LVCMOS33*	•	3.300		12	~
✓ out_num[0]	OUT		B2 ·	, 7	35	LVCMOS33*		3.300		12	

八、实验结果

示例(A=101, G=001):

输入	in_chip (片选)	in_num
输入的值	0100	1101
输出	out_chip	out_num
输出的值	0100	D

九、实验体会

在做之前的经验积累铺垫下,此次实验完成得比较顺利。但因为一开始的时候是照着图而不是真值表来编码,而图的线路比较复杂(看起来),所以很容易乱;然后改成看真值表,就容易找得到规律了。另外,要注意细心一点儿。

暨南大学本科实验报告专用纸

课程名称	数字逻辑实验		
实验项目名称	计数器	_指导教师王传胜 梁倬	骞
实验项目编号_08	06003807 实验	·项目类型_验证_实验地点_	N126
学生姓名_ 邝庆玩	<u> </u>	016051598	
学院信息科学技	支术系_计算	机科学 专业 计算机科学	与技术
实验时间_2019_4	F_11_月_17_日	_上_午	

一、实验目的

学会使用 Verilog HDL 进行行为建模;

学会的 Verilog HDL 行为建模来实现计数器;

学会用 Verilog HDL 行为建模来实现分频器;

二、实验内容

用 Verilog HDL 实现 2 位的十六进制计数器,并用七段数码管来显示十六进制数 00~FF。

三、实验程序

```
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module top(
   input clk,
   input clr,
   output [6:0] a2g,
   output [1:0] an
   );
   wire clk48, clk190;
   wire [7:0] data;
   div div(clk, clk48, clk190);
   counter counter(clk48, clr, data);
   seg_2 seg_2(data, clk190, clr, a2g, an);
endmodule
div.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/03 23:51:03
// Design Name:
// Module Name: div
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
```

```
module div(
   input clk,
   output clk48,
   output clk190
   );
   reg[24:0] q = 25'b0;
   always @(posedge clk) begin
       q \le q + 1;
   end
   assign clk190 = q[18];
   assign clk48 = q[24];
     assign clk190 = clk;
//
//
     assign clk48 = clk;
endmodule
counter.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/03 23:46:46
// Design Name:
// Module Name: counter
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module counter(
   input clk48,
   input clr,
```

```
output reg [7:0] data
   );
   reg isFirst = 1;
   always @(posedge clk48 or posedge clr) begin
       if (clr == 1)
           data <= 0;
       else begin
           if (isFirst) begin
               data <= 0;
               isFirst = 0;
           end
           data <= data + 1;
       end
   end
endmodule
seg_2.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/03 23:29:37
// Design Name:
// Module Name: seg_2
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module seg_2(
   input [7:0] data,
   input clk190,
   input clr,
```

```
output reg [6:0] a2g,
    output reg [1:0] an
    );
    reg s = 0; // 位
    reg [3:0] digit;
    reg isFirst = 1;
    always @(s) begin
         case(s)
              0: digit = data[3:0];
              1: digit = data[7:4];
              default: digit = data[3:0];
         endcase
         case(digit)
             4'b0000: a2g = 7'b1111110;
            4'b0001: a2g = 7'b0110000;
            4'b0010: a2g = 7'b1101101;
            4'b0011: a2g = 7'b1111001;
            4'b0100: a2g = 7'b0110011;
            4'b0101: a2g = 7'b1011011;
            4'b0110: a2g = 7'b1011111;
            4'b0111: a2g = 7'b1110000;
            4'b1000: a2g = 7'b1111111;
            4'b1001: a2g = 7'b1111011;
            4'b1010: a2g = 7'b1110111;
            4'b1011: a2g = 7'b0011111;
            4'b1100: a2g = 7'b1001110;
            4'b1101: a2g = 7'b0111101;
            4'b1110: a2g = 7'b1001111;
            4'b1111: a2g = 7'b1000111;
            default:;
        endcase
        an = 2'b00;
        an[s] = 1;
    end
    //1位计数器
    always @(posedge clk190 or posedge clr) begin
         if (clr) s \le 0;
         else s \le s + 1;
    end
endmodule
```

```
四、仿真程序
sim 1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/03 20:05:06
// Design Name:
// Module Name: sim 1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module sim 1(
    output [6:0] a2g,
    output [1:0] an
    );
    reg clk, clr;
    reg isFirst = 1;
    parameter clk_period = 10;
    initial begin
       clk = 0;
       clr = 1;
       forever begin
           \#(clk\_period / 2) clk = \sim clk;
           if (isFirst == 1) begin
               isFirst = 0;
               clr = 0;
           end
       end
```

end

endmodule

top top(.clk(clk), .clr(clr), .a2g(a2g), .an(an));

五、仿真结果

六、系统网表

Synthesis:

七、系统约束

Name	Direction	Neg Diff Pair	Package Pin	Fixed	Bank	I/O Std	Vcco		Vref	Drive Strength	
V 🐼 All ports (11)											
4 a2g (7)	OUT			1	35	LVCMOS33*		3.300		12	
√a a2g[6]	OUT		B4	v /	35	LVCMOS33*		3.300		12	
√a a2g[5]	OUT		A4	v /	✓ 35 LVCMOS33*		*	3.300		12	
√ a2g[4]	OUT		A3	· /	✓ 35 LVCMOS		▼ 3.300			12	
√a a2g[3]	OUT		B1	∨ ✓ 35 L		LVCMOS33*		3.300		12	
√a a2g[2]	OUT		A1	~ Z	✓ 35 LVCMOS3		₹ 3.300		12		
√ a2g[1]	OUT		B3	v /	35	LVCMOS33* ▼		3.300		12	
√ a2g[0]	OUT		B2	· /	35	LVCMOS33*		3.300	12		
4 an (2)	OUT			1	35	LVCMOS25*		2.500		12	
√ an[1]	OUT		G2	v /	35	LVCMOS25*	MOS25* *			12	
an[0]	OUT		C2	~ /	35	LVCMOS25*	*	2.500		12	
v 🐼 Scalar port	ts (2)										
	IN		P17	· /	14	LVCMOS33*	*	3.300			
	IN		P5	v /	34	LVCMOS33*		3.300			

八、实验结果

当 clr=0 时,就会按照设定的频率连续地进行累加。实验结果照片,就是累加到 8C 的情况:

九、实验体会

主要的难点在于需要更加习惯于时序逻辑的设计、以及 verilog 里多模块的编程;并且发现一些语法上概念的还需要熟练,在编程过程中有所耽搁,但也的确学习了。

暨南大学本科实验报告专用纸

课程名称	数字逻辑实验		
实验项目名称	移位寄存器	_指导教师王传胜	梁倬骞
实验项目编号_080	<u>06003808</u> 实验项	页目类型_验证_实验地,	点 N126
学生姓名	连学号20	16051598	
学院 信息科学技	支术 系 计算机	几科学 专业 计算机科学	学与技术
实验时间 2019 年	- 11 月 28 日	 上 午	

一、实验目的

熟练使用 Verilog HDL 进行行为建模;

学会 Verilog HDL 行为建模来实现移位寄存器;

二、实验内容

先用 Verilog HDL 实现 74LS194 的功能, 再利用 74LS194 实现 8 位数据双向移位寄存器。

三、实验程序

```
dataShift8.v
`timescale 1ns / 1ps
// Company:
// Engineer:
// Create Date: 2019/12/01 15:05:17
// Design Name:
// Module Name: dataShift8
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
// Revision:
// Revision 0.01 - File Created
```

```
// Additional Comments:
//
module dataShift8(
    input notCR,
    input clk,
    input [1:0] g,
    input [1:0] ds,
    input [7:0] DATA,
    output [7:0] Q
    );
    wire clk_out;
    clkdiv clkdiv(.clk_in(clk), .clk(clk_out));
    wire [1:0] dsH, dsL; // 高 4 位/低 4 位的 ds
    assign dsH = {Q[3], ds[1]};
    assign dsL = \{ds[0], Q[4]\};
    shift 194
shiftH(.notCR(notCR), .clk(clk_out), .s(g), .ds(dsH), .data(DATA[7:4]), .q(Q[7:4]));
    shift 194
shiftL(.notCR(notCR), .clk(clk_out), .s(g), .ds(dsL), .data(DATA[3:0]), .q(Q[3:0]));
endmodule
clkdiv.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/11/25 13:34:41
// Design Name:
// Module Name: clkdiv
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
```

```
// Additional Comments:
//
module clkdiv(
   input clk in,
   output clk
   );
   reg [24:0] q = 25'b0;
   always @(posedge clk_in)
   begin
      q = q + 1;
   end
   assign clk = q[24];
    assign clk = clk_in;
//
endmodule
Shift_194.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/01 14:21:14
// Design Name:
// Module Name: shift 194
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module shift 194(
   input notCR,
   input clk,
```

```
input [1:0] s, // 移位方向(高左移低右移)
    input [1:0] ds, // 所移入的数字(左移高右移低)
    input [3:0] data,
    output reg [3:0] q
    );
    always @(posedge clk or posedge notCR)
    begin
        if (notCR != 1)
            q = 4'b0000;
        else
        begin
            case (s)
                2'b00:;
                2'b01: q = {ds[0], q[3:1]}; // right
                2'b10: q = {q[2:0], ds[1]}; // left
                2'b11: q = data;
                default: q = 4'b0000;
            endcase
        end
    end
endmodule
四、仿真程序
sim 1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/01 16:50:08
// Design Name:
// Module Name: sim_1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
```

```
// Additional Comments:
//
module sim 1(
    output [7:0] Q
    );
    reg notCR;
    reg clk;
    reg [1:0] g;
    reg [1:0] ds;
    reg [7:0] DATA;
    reg isFirst;
    parameter clk_period = 10;
    initial
    begin
        clk = 1'b0;
        notCR = 1'b1;
        g=2'b11;// 先送数
        ds = 2'b10;
        DATA = 8'b00101101;
        isFirst = 1'b1;
        forever
        begin
             \#(clk\_period / 2) clk = \sim clk;
             if (isFirst != 0)
             begin
                 isFirst = 1'b0;
                 g = 2'b10; // 左移
             end
        end
    end
    dataShift8 dataShift8(.notCR(notCR), .clk(clk), .g(g), .ds(ds), .DATA(DATA), .Q(Q));
```

endmodule

五、仿真结果

六、系统网表

七、系统约束

DATA (8)	IN			1	34	LVCMOS33*	*	3.300					NONE	~	NONE	
DATA[7]	IN	U3	~	1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
DATA[6]	IN	U2	~	1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
DATA[5]	IN	V2	~	1	34	LVCMOS33*		3.300					NONE	V	NONE	
DATA[4]	IN	V5	~	1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
DATA[3]	IN	V4	~	1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
DATA[2]	IN	R3	~	1	34	LVCMOS33*	*	3.300					NONE	~	NONE	
DATA[1]	IN	T3	~	1	34	LVCMOS33*	*	3.300					NONE	~	NONE	
DATA[0]	IN	T5	~	1	34	LVCMOS33*	٠	3.300					NONE	~	NONE	
v 🤒 ds (2)	IN			1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
	IN	P5	~	1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
☑ ds[0]	IN	P4	~	1	34	LVCMOS33*		3.300					NONE	~	NONE	
v 🤒 g (2)	IN			1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
	IN	P3	~	1	34	LVCMOS33*		3.300					NONE	~	NONE	
☑ g[0]	IN	P2	~	1	34	LVCMOS33*	•	3.300					NONE	~	NONE	
√ 🔞 Q (8)	OUT			1	35	LVCMOS33*	*	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	
☑ Q[7]	OUT	F6	~	1	35	LVCMOS33*	+	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	
☑ Q[6]	OUT	G4	~	1	35	LVCMOS33*	•	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	
☑ Q[5]	OUT	G3	~	1	35	LVCMOS33*	•	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	
☑ Q[4]	OUT	J4	~	1	35	LVCMOS33*	•	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	
☑ Q[3]	OUT	H4	~	1	35	LVCMOS33*	•	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	
	OUT	J3	~	1	35	LVCMOS33*	*	3.300	12	~	SLOW		NONE	~	FP_VTT_50	
☑ Q[1]	OUT	J2	~	1	35	LVCMOS33*	•	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	
☑ Q[0]	OUT	K2	· •	1	35	LVCMOS33*	•	3.300	12	~	SLOW	~	NONE	~	FP_VTT_50	- 5
🗸 🗟 Scalar ports	(2)															
	IN	P17	~	1	14	LVCMOS33*	•	3.300					NONE	~	NONE	
	IN	M4	~	1	34	LVCMOS33*	*	3.300					NONE	~	NONE	~

八、实验结果

比如,把 00101101 进行左移,循环左移入 0,右移到第 4 步,变成 11010000:

九、实验体会

主要的难点在于需要更加习惯于时序逻辑的设计、以及 verilog 里多模块的编程;并且发现一些语法上概念的还需要熟练,在编程过程中有所耽搁,但也的确学习了。

暨南大学本科实验报告专用纸

课程名程	称数 ₋	字逻辑实验		
实验名程	你 <u>时序逻辑电路</u>	综合设计 (交通信号	<u>异灯)</u> 指导教师 <u>王</u>	三传胜 梁倬骞
实验项目	目编号_080600	03808 实验项1	目类型 <u>验证</u> 实验	地点 <u>N126</u>
学生姓》	名 邝庆璇	_学号2016	051598	
学院	信息科学技术	系_计算机和	斗学_专业_计算机	科学与技术
实验时间	间 <u>2019</u> 年 <u>1</u> 2	2月01日上	<u></u> 午	

一、实验目的

理解有限状态机 FSM 的原理;

学会 Verilog HDL 来实现有限状态机 FSM 熟练利用 FSM 解决问题

二、实验内容

实现交通信号灯。我们要为一个十字路口交通信号灯设计程序。 该十字路口分为南北方向和东西方向,每个方向都有红、黄、绿三种 颜色信号灯。下图给出了信号灯的状态表:

状态	南北信号灯	东西信号灯	持续(秒)
0	绿	红	6
1	黄	红	1
2	红	绿	6
3	红	黄	1
0	绿	红	6

三、实验程序

top.v

```
// Design Name:
// Module Name: top
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
module top(
    input clk,
    input clr,
    output [5:0] lights
    );
    wire clk 3;
    clk_div clkdiv(clk, clr, clk_3);
    traffic traffic(clk_3, clr, lights);
endmodule
clk_div.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/03 17:00:01
// Design Name:
// Module Name: clk_div
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
```

```
//
module clk_div(
   input clk,
   input clr,
   output clk_3
   );
   reg [24:0] q;
   always @(posedge clk or posedge clr) begin
      if (clr == 1) q <= 0;
      else q \le q + 1;
   end
//
    assign clk_3 = q[24];
   assign clk_3 = clk;
endmodule
traffic.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/02 17:09:54
// Design Name:
// Module Name: traffic
// Project Name:
// Target Devices:
// Tool Versions:
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module traffic(
   input clk 3,
   input clr,
```

```
output reg [5:0] lights
);
reg [1:0] state;
reg [4:0] count;
// 4 种状态
parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
// 3HZ, 则 SEC6: 6S, 18 个时钟周期; SEC1: 1s, 3 个时钟周期
parameter SEC6 = 5'b10001, SEC1 = 5'b00010;
// 高 3 位: 南北方向灯色(高到低每位分别代表绿黄红); 低三位: 西东
parameter LRR = 6'b001001, LRY = 6'b001010, LRG = 6'b001100,
         LYR = 6'b010001, LYY = 6'b010010, LYG = 6'b010100,
         LGR = 6'b100001, LGY = 6'b100010, LGG = 6'b100100;
// set status
always @(posedge clk_3 or posedge clr) begin
    if (clr == 1) begin
         state <= S0;
         count <= 0;
    end
    else begin
         case (state)
             S0:
                  if (count < SEC6) begin
                       state <= S0;
                       count <= count + 1;
                  end
                  else begin
                       state <= S1;
                       count \leq 0;
                  end
             S1:
                 if (count < SEC1) begin
                     state <= S1;
                      count <= count + 1;
                 end
                 else begin
                      state <= S2;
                      count <= 0;
                 end
            S2:
                 if (count < SEC6) begin
                      state <= S2;
                      count <= count + 1;
```

```
end
                    else begin
                        state <= S3;
                        count <= 0;
                    end
               S3:
                    if (count < SEC1) begin
                        state <= S3;
                        count <= count + 1;</pre>
                    end
                    else begin
                        state <= S0;
                        count <= 0;
                    end
                 default:
                     state <= S0;
            endcase
        end
    end
    // set lights according to current state
    always @(*) begin
        case(state)
            S0: lights = LGR;
            S1: lights = LYR;
            S2: lights = LRG;
            S3: lights = LRY;
            default: lights = LRR;
        endcase
    end
endmodule
四、仿真程序
sim 1.v
`timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 2019/12/03 17:09:59
// Design Name:
```

```
// Module Name: sim_1
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module sim_1(
    output [5:0] lights
    reg clk, clr;
    parameter clk_period = 10;
    initial begin
        clr = 1'b0;
        clk = 1'b0;
        forever
            #(clk_period / 2) clk = ~clk;
     end
     top top(clk, clr, lights);
endmodule
```

五、仿真结果

六、系统网表

RTL:

Synthesis:

七、系统约束

Name	Direction	Neg Diff Pair	Package Pin	Fixed	Bank	I/O Std		Vcco
V MI ports (8)								
d lights (6)	OUT			1	35	LVCMOS33*	•	3.300
✓ lights[5]	OUT		F6		35	LVCMOS33*	•	3.300
✓ lights[4]	OUT		G4 ×	/	35	LVCMOS33*	•	3.300
✓ lights[3]	OUT		G3 ×	/	35	LVCMOS33*	٠	3.300
√ lights[2]	OUT		J4	· •	35	LVCMOS33*	*	3.300
✓ lights[1]	OUT		H4 ^	/	35	LVCMOS33*	+	3.300
√ lights[0]	OUT		J3		35	LVCMOS33*	•	3.300
→ Scalar ports	(2)							
	IN		P17	/	14	LVCMOS33*	•	3.300
☑ clr	IN		P5 \	/ /	34	LVCMOS33*	•	3.300

八、实验结果

按照预期,按照 6s 或 1s 的时间间隔轮流着 4 个状态对应的 4 灯的情况: LGR, LYR, LRG, LRY。比如,以下就是 LRG 状态,表示南北为红(R. Red),东西为绿(G, Green)

九、实验体会

经过前面的若干铺垫,对于时序逻辑已经比较熟悉,因此这次实验总体还算顺利。P.S.: 这算是本实验课最后一个实验了,一个学期下来,对 Verilog HDL 数字逻辑的编程有了较好的学习,收获颇丰。感谢老师的帮助与指点!有缘再会!