Módulo: Aplicações dos princípios aditivo e multiplicativo

- Permutações simples
- Permutações circulares
- Arranjos simples
- Combinações simples
- Permutações com repetições
- Arranjos com repetições
- Combinações com repetições

Objetivo:

Importância:

As permutações, os arranjos e as combinações aparecem na modelagem de problemas provenientes, principalmente, das seguintes áreas:

- probabilidades
- teoria de grafos
- análise de algoritmos

Exemplos:

- Algoritmos randômicos (probabilísticos)
- Armazenamento de informações em banco de dados nos computadores
- Análise do comportamento de um algoritmo através da contagem das suas operações.

Aula 7: Permutações simples e circulares

Conteúdo:

- Introdução
- Fatorial de um número
- Permutação simples
- Número de permutações simples
- Permutação circular
- Número de permutações circulares

Introdução:

Exemplo 1:

- (a) Comprei três canetas de distintas cores, azul, verde e branca, para dar de presente a três amigos, João, Rita e Luiza.
- (b) Comprei mais uma caneta, de cor preta, pois tinha esquecido do Gabriel.

Em cada caso, de quantas maneiras diferentes eu posso distribuí-las?

Resumindo

Problema:

De quantas maneiras diferentes eu posso distribuir as canetas:

- (a) azul, verde e branca
- (b) azul, verde, branca e preta

Resposta:

Eu posso reparti-las

- (a) de 6 maneiras diferentes
- (b) de 24 maneiras diferentes
- **Observação:** $6 = 3 \times 2 \times 1$

$$24 = 4 \times 3 \times 2 \times 1$$

Fatorial de um número:

O fatorial de um número natural n, denotado por n! é o produto dos n primeiros números naturais:

$$n! := n(n-1)(n-2) \dots 1$$

$$3! = 3 \times 2 \times 1$$

$$4! = 4 \times 3 \times 2 \times 1$$

$$0! := 1$$

Exemplo 2:

Quantos números distintos de 5 algarismos podem se formar com os dígitos 3, 5, 7, 8 e 9 ?

Resolução:

Possibilidades:

$$\frac{5}{p_1} \quad \frac{4}{p_2} \quad \frac{3}{p_3} \quad \frac{2}{p_4} \quad \frac{1}{p_5} = 5!$$
posições dos dígitos no número

Resposta: Podem se formar 5! = 120 números diferentes de 5 algarismos

Características dos exemplos:

- Os <u>elementos</u> considerados são <u>diferentes</u>
- <u>Cada troca de posição</u> (de ordem) dos elementos corresponde a <u>uma possibilidade</u>
- Na obtenção do número de possibilidades aplica-se os princípios aditivo e multiplicativo

Permutação simples:

Dados n objetos <u>distintos</u>, a₁, a₂, ..., a_n, uma permutação simples é uma <u>ordenação</u> desses elementos.

Dados os dígitos 3, 5, 7, 8 e 9,

87539 é uma permutação simples de 3, 5, 7, 8, 9.

Número de permutações simples:

Problema

<u>Dados</u> n elementos distintos, a₁, a₂, ..., a_n, <u>encontrar</u> o <u>número</u> de permutações simples

O número de permutações simples de n elementos distintos, denominado P_n , é dado por:

$$P_n = n! = n(n-1) \dots 1$$

Prove esta propriedade usando indução

Permutações simples: Número de permutações simples

7.14

Prova:

Seja P(n): $P_n = n!$

Prova

Voltar

(1) Base de indução:

P(1): $P_1 = 1! = 1$ verdadeira

(2) Hipótese de indução:

Assume P(k): $P_k = k!$ é verdadeira

(3) Passo indutivo:

Prova

Voltar

Mostrar que $P_{k+1} = (k + 1)!$ é verdadeira

Provemos que $P_{k+1} = (k + 1)!$ é verdadeira:

Sejam $a_1, a_2, \dots, a_k, a_{k+1}$ elementos distintos.

Na última posição p_{k+1} tem-se (k + 1) possibilidades

Fixado um elemento na posição p_{k+1} <u>restam k</u> elementos para ordenar em k posições (permutação de elementos):

para 1 possibilidade em p_{k+1} tem-se P_k permutações das posições p_1 , ... , p_k então, para (k+1) possibilidades em p_{k+1} tem-se (k+1) P_k permutações das posições p_{k+1}

Logo, $P_{k+1} = (k+1) P_k^{HI} = (k+1) k! = (k+1)!$ é verdadeira

Portanto, P(n): $P_n = n!$ é verdadeira para todo $n \in \mathbb{N}$

Exemplo 3:

Vários amigos combinaram passar o dia no clube. Planejaram ir para a piscina, fazer um churrasco e jogar volei. De quantas maneiras diferentes podem programar essas atividades?

Resolução:

elementos: p (piscina) c (churrasco) v (volei) número de programas possíveis: $P_3 = 3! = 6$

Resposta:

Eles podem programar as atividades planejadas de 6 maneiras diferentes.

Exemplo 4:

Quantos números distintos de 5 algarismos podem se formar com os dígitos 0, 5, 7, 8 e 9?

PS

Voltar

Lembremos que <u>algarismo</u> é cada um dos símbolos usados na representação de um número no sistema decimal de numeração.

Ilustração:

 $57809 \rightarrow 5.10^4 + 7.10^3 + 8.10^2 + 0.10^1 + 9.10^0$

05789 <u>é uma ordenação</u> de <u>5 dígitos</u> que <u>não</u> corresponde à representação no sistema decimal

5789 corresponde à representação no sistema decimal

Conclusão:

Os números de 5 algarismos <u>não iniciam</u> com <u>0</u>.

Exemplo 4 (resolução):

Raciocínio 1:

dígitos do problema: 0, 5, 7, 8, 9

Possibilidades

$$\begin{array}{c|c}
4 \times & P_4 \\
\hline
 & = 4 \cdot 4! = 96 \\
\hline
 & posições dos dígitos \\
 & no número
\end{array}$$

- Na primeira posição temos 4 possibilidades (excluimos o 0)
- Nas posições restantes temos 4 posições para 4 dígitos incluindo o 0, ou seja, P_4 possibilidades

Resposta: Podem se formar 96 números diferentes de 5 algarismos com 0, 5, 7, 8 e 9.

Exemplo 4 (raciocínio 2):

Usamos o conceito de complemento.

U: conjunto universo := conjunto das ordenações de 5 dígitos formados com 0, 5, 7, 8 e 9 sem repetição $(05798 \in U)$

A := conjunto dos números de 5 <u>algarismos</u> formados com 0, 5, 7, 8 e 9 = conjunto dos elementos de U que <u>não</u> iniciam com 0

B := conjunto dos elementos de U que <u>iniciam</u> com 0

$$A = U - B$$

número de possibilidades = |A| = |U| - |B|

$$|\mathbf{U}| = \mathbf{P}_5 \ , \ |\mathbf{B}| = \mathbf{P}_4$$

número de possibilidades = $P_5 - P_4 = 5! - 4! = 96$

Observação: 5! - 4! = 5.4! - 4! = (5 - 1) 4! = 4.4!

Exemplo 5:

Nove amigos assistem a um show, com lugares marcados consecutivos. As mulheres (quatro) se sentam todas juntas e os homens também. De quantas maneiras diferentes podem se sentar?

Resolução: mulheres M₁, M₂, M₃, M₄

homens H_1 , H_2 , H_3 , H_4 , H_5

Algumas possibilidades: $M_1, M_2, M_3, M_4, H_1, H_2, H_3, H_4, H_5$

 $H_1, H_2, H_3, H_4, H_5, M_1, M_2, M_3, M_4$

Número de possibilidades: $2P_4P_5 = 2 \cdot 4! \cdot 5! = 5760$

Resposta: Podem se sentar de 5760 maneiras diferentes.

Exemplo 6:

De quantos modos 4 rapazes e 4 moças podem se sentar em 4 bancos de 2 lugares cada um, de modo que em cada banco fiquem 1 rapaz e 1 moça?

Resolução:

- 1^a moça pode escolher seu lugar de 8 modos
- 2ª moça pode escolher seu lugar de 6 modos
- 3ª moça pode escolher seu lugar de 4 modos
- 4ª moça pode escolher seu lugar de 2 modos

Número de possibilidades para as moças: 8.6.4.2

Exemplo 6 (continuação):

Considere uma colocação das moças.

Para cada colocação das moças, os moços sentam de P_4 maneiras diferentes nos 4 lugares restantes.

Número total de possibilidades: 8.6.4.2.4! = 9216

Resposta: Podem se sentar de 9216 maneiras diferentes

 Observação: A resposta não muda se analisarmos primeiro os rapazes (8 . 6 . 4 . 2 modos) e depois as moças (4!)

Exemplo 7:

Quantos anagramas podem ser formados com a palavra VIRUS?

Resolução:

- 1 anagrama de VIRUS: 1 transposição das letras de VIRUS (permutação das letras de VIRUS)
- VIRUS tem letras distintas
- n: número de letras da palavra VIRUS = 5

Resposta:

A partir da palavra VIRUS podem ser formados $P_5 = 5! = 120$ anagramas.

Exemplo 8:

Quantos anagramas da palavra VIRUS começam e terminam em consoante?

Resolução:

Possibilidades: $3 \times p_3 \times p_4 \times p_5$ $p_1 p_2 p_3 p_4 p_5$ posição das letras em um anagrama

consoantes de VIRUS: V, R, S

Ordem da análise das possibilidades:

- 1^{a}) possibilidades para a posição $p_1 = 3$
- 2^{a}) possibilidades para a posição $p_5 = 2$
- 3^{a}) possibilidades para as posições p_{2} , p_{3} , $p_{4} = P_{3} = 3!$

Resposta: da palavra VIRUS podem ser formados

3.2.3! = 36 anagramas que começam e terminam em consoante.

Exemplo 9:

Ana, Luis e Fernando sentam-se juntos na aula de monitoria do curso de informática. De quantas maneiras diferentes podem se sentar, se:

- (1) as cadeiras estão numa mesma fila
- 1 2 3
- (2) as cadeiras formam um triângulo e estão numeradas

2 3

- (3) as cadeiras formam um triângulo e o que interessa é a posição de cada pessoa em relação as outras duas
 - → Ilustração:
 A
 F
 L
 F
 A
 L
 F
 A
 L
 F
 A
 L
 F
 A
 D
 Mesma possibilidade
 ceder

Exemplo 9 (primeira parte):

Ana, Luis e Fernando sentam-se juntos na aula de monitoria do curso de informática. De quantas maneiras diferentes podem-se sentar, se:

(1) as cadeiras estão numa mesma fila

Resolução:

Número de possibilidades: $P_3 = 3! = 6$

Resposta: Eles podem se sentar numa fila de

6 maneiras distintas

Exemplo 9 (segunda parte):

Ana, Luis e Fernando sentam-se juntos na aula de monitoria do curso de informática. De quantas maneiras diferentes podem se sentar, se:

(2) as cadeiras formam um triângulo e estão numerados

2 3

Resolução: importa a cadeira em que estão sentados:

- Ilustração: A F L L L F A L F A possibilidades diferentes

Resposta: Eles podem se sentar nos <u>lugares</u>

<u>numerados</u> de 6 maneiras distintas

Permutações simples: Número de permutações simples

7.28

Exemplo 9 (terceira parte):

Ana, Luis e Fernando sentam-se juntos na aula de monitoria do curso de informática. De quantas maneiras diferentes podem se sentar, se:

(3) as cadeiras formam um triângulo e o que interessa é a posição de cada pessoa em relação as outras duas

Resolução:

3 permutações de A, L e F --- 1 possibilidade

 P_3 permutações de A, L e F $\longrightarrow \frac{P_3}{3}$ possibilidades

Resposta:

A quantidade de posições diferentes é $\frac{3!}{3} = \frac{3 \cdot 2!}{3} = 2$

Permutação circular:

Dados n objetos <u>distintos</u>, a₁, a₂, ..., a_n, uma permutação circular é uma ordenação onde o que importa é a posição relativa dos objetos.

Observação

Duas permutações circulares são iguais quando uma pode ser obtida da outra por uma rotação.

Ilustração

permutações circulares iguais

PC

Voltar

cederi

Número de permutações circulares:

Problema

<u>Dados</u> n elementos distintos, a₁, a₂, ..., a_n, <u>encontrar</u> o <u>número</u> de permutações circulares

Propriedade

O número de permutações circulares de n objetos distintos, denominado $(PC)_n$, é dado por:

$$(PC)_n = \frac{P_n}{n} = \frac{n!}{n} = (n-1)!$$

Ilustração

$$(PC)_3 = \frac{3!}{3} = 2! = 2$$

Exemplo 10:

Quantas rodas de ciranda podem ser formadas com 5 crianças?

representam a mesma permutação circular

Exemplo 10 (continuação):

Resolução:

5 permutações simples \longrightarrow 1 permutação circular total de permutações, P_5 \longrightarrow $\frac{P_5}{5}$ = $(PC)_5$

$$\frac{P_5}{5} = \frac{5!}{5} = 4! = 4.3.2.1 = 24$$

Resposta:

Podem ser formadas 24 rodas diferentes de ciranda

Exemplo 11:

De quantas maneiras é possível formar uma roda de ciranda com 6 crianças, c_1 , c_2 , c_3 , c_4 , c_5 e c_6 de modo que c_1 e c_2 não fiquem juntas?

Resolução:

Primeira etapa

Considere c_3 , c_4 , c_5 , c_6 . Podem se formar

$$(PC)_4 = (4-1)! = 3! = 6$$

Exemplo 11 (segunda etapa):

Para <u>cada roda</u> formada por c_3 , c_4 , c_5 , c_6 tem-se <u>4</u> maneiras de se <u>colocar c_1 </u>

1 roda

PC

Voltar

Exemplo 11 (terceira etapa):

Para <u>cada roda</u> formada por c_1 , c_3 , c_4 , c_5 , c_6 tem-se <u>3</u> maneiras de se <u>colocar</u> c_2

1 roda incluída <mark>c</mark>1

PC

Voltar

Exemplo 11 (análise final):

$$(PC)_4 = 6$$

primeira etapa (c₃, c₄, c₅, c₆)

4

segunda etapa (inclusão de c₁)

3

terceira etapa (inclusão de c₂)

Resposta:

Podem ser formadas 6 . 4 . 3 = 72 rodas diferentes de modo que c_1 e c_2 não fiquem juntas.

Resumo:

Sejam n objetos <u>distintos</u> $a_1, a_2, ..., a_n$.

Conceitos:

Permutação simples

de $a_1, a_2, ..., a_n$

Permutação circular de a_1, a_2, \dots, a_n

Características:

importam as <u>posições</u> que os objetos ocupam.

(exemplo: $a_1 a_2 a_3 ... a_n \neq a_2 a_3 ... a_n a_1$)

importa a <u>posição relativa</u> <u>dos objetos entre si</u>.

 $(exemplo: a_1 a_2 a_3 ... a_n = a_2 a_3 ... a_n a_1)$

Propriedades:

1. Número de permutações simples:

$$P_n = n! = n(n-1)(n-2)...2.1$$

2. Número de permutações circulares: $(PC)_n = \frac{P_n}{n} = (n-1)!$