Columns: Euler Buckling

Parthenon: Greece

 Loads act along the axis of the structure

 Loads act perpendicular to the axis of the structure

Case 1: Low levels of load

The deformations are axial only

Case 2: High levels of load

The deformations/deflections are governed by the bending with large deformations

Buckling

Buckling: Simple Case Study

Free to move in x but not y

Free to move in y but not x

Fixed

Simple Pinned Structure

Actual Engineering Structure

Buckling: Simple Case Study

Free to move in x but not y

Free to move in y but not x

Pinned

Actual Engineering Structure

Moment Balance: $P\delta = M = 2\beta\theta$

Small Angle Assumption: $\delta = \frac{L}{2}\theta$

Load at which the structure is in equilibrium:

$$P = \frac{4\beta}{L}$$

Force Balance, for structure to be in equilibrium:

$$P\delta = M = 2\beta\theta$$

Case #1: Restoring moment $(2\beta\theta)$ is GREATER than the moment of due to the applied load $(P\delta)$

$$2\beta\theta > P\delta \longrightarrow 2\beta\theta > P\frac{L}{2}\theta$$

$$P < \frac{4\beta}{L}$$

STABLE EQUILIBRIUM

Case #2: Restoring moment $(2\beta\theta)$ is LESS than the moment of due to the applied load $(P\delta)$

$$2\beta\theta < P\delta$$

$$P > \frac{4\beta}{L}$$

UNSTABLE EQUILIBRIUM

Rough Work

$$\delta = \frac{L}{2}\theta$$

Pinned-Pinned Columns

Differential Equation of Deflection Curve:

$$EI\frac{d^2w}{dy^2} + Pw = 0$$

$$\frac{d^2w}{dy^2} + k^2w = 0 \qquad where, k^2 = \frac{P}{EI}$$

$$\frac{d^2w}{dy^2} + k^2w = 0 \qquad where, k^2 = \frac{P}{EI}$$

General solution of the differential equation:

Boundary Conditions:

Trivial Solution:

Buckling Equation:

$$w = C_1 \sin(ky) + C_2 \cos(ky)$$

$$w = 0 \text{ at } y = 0, \qquad y = L$$

$$C_2 = 0 \qquad C_1 \sin(kL) = 0$$

Χ

Both C_1 and C_2 are zero

$$\sin(kL) = 0$$

$$\sin(kL) = 0 \longrightarrow kL = 0, \pi, 2\pi, ...$$

Either: $C_1 = 0$ or $\sin(kL) = 0$

$$kL = 0, \pi, 2\pi, \dots$$
 where, $k^2 = \frac{P}{EI}$

Case #1:
$$kL = 0$$
 \longrightarrow $P = 0$

Case #2:
$$kL = n\pi$$
 \longrightarrow $P = \frac{n^2 \pi^2 EI}{L^2}$

Critical loads on the structure

Deflection Equation: $w = C_1 \sin(\frac{n\pi}{L}y)$

For n = 1, Fundamental Case of column buckling:

Load
$$\pi^2 FI$$

$$w = C_1 \sin(\frac{\pi}{L}y)$$

Deflection

Deflection shape for n=2

<u>Fixed-Free</u> <u>Columns</u>

$$\frac{d^2w}{dy^2} = \frac{M}{EI}$$

$$EI\frac{d^2w}{dy^2} = P(\delta - w)$$

$$\frac{d^2w}{dy^2} + k^2w = k^2\delta$$

$$w = C_1 \sin(ky) + C_2 \cos(ky) + \delta$$

Boundary Conditions:
$$w = 0$$
 and $w' = 0$ at $y = 0$

$$C_2 = -\delta$$
 $C_1 = 0$

$$w = \delta(1 - \cos(ky))$$

Boundary Conditions:
$$w = \delta at y = L$$
 \longrightarrow $\cos(kL) = 0$

$$\cos(kL) = 0$$

$$kL = \frac{n\pi}{2} \qquad n = 1, 3, 5 \dots$$

$$P = \frac{n^2 \pi^2 EI}{4L^2}$$

For n = 1, Fundamental Case of column buckling:

$$w = \delta \left(1 - \cos \left(\frac{\pi}{2I} y \right) \right)$$

$$\frac{\pi^2 EI}{4\pi^2}$$
 $w = \delta \left(1 - \cos\left(\frac{\pi}{2I}y\right)\right)$

Fixed-Pinned Columns

Differential Equation of Deflection Curve:

Force Balance

$$R_x = R$$

$$R_y = P$$

Moment Balance about A:

$$M_P = [-w\hat{\imath}] \times [-P\hat{\jmath}] = wP\hat{k}$$

$$M_R = [y\hat{\jmath}] \times [-R\hat{\imath}] = yR\hat{k}$$

$$M_y + wP + yR = RL$$

$$M_{y} = RL - Ry - Pw$$

$$\frac{d^2w}{dv^2} = \frac{M}{EI}$$

$$\frac{d^2w}{dy^2} + k^2w = \frac{R}{EI}(L - y)$$

Deflection curve: $w = C_1 \sin(ky) + C_2 \cos(ky) + \frac{R}{P}(L-y)$

$$w = C_1 \sin(ky) + C_2 \cos(ky) + \frac{R}{P}(L - y)$$

Boundary Conditions:
$$w = 0$$
 and $w' = 0$ at $y = 0$ $w = 0$ at $y = L$

$$C_2 + \frac{RL}{P} = 0$$

$$C_2 = -C_1 kR$$

$$C_1 k - \frac{R}{P} = 0$$

$$C_1 tan(kL) + C_2 = 0$$
 \longrightarrow $kL = tan(kL)$

$$kL = 4.49$$

$$P_{cr} = \frac{20.19EI}{L^2} \longrightarrow P_{cr} = \frac{2.046\pi^2 EI}{L^2}$$
 $w = C_1[\sin(ky) - kL\cos(ky) + k(L-y)]$

Fixed-Fixed Columns

- 1. Points of inflection: Points at which the sign of the curvature changes
- 2. Moment at the points of inflection is zero
- 3. Deflection is symmetrical with slope of deflection curve zero at top, base and middle

$$P_{cr} = \frac{\pi^2 EI}{L_e^2} \qquad \longrightarrow \qquad P_{cr} = \frac{4\pi^2 EI}{L^2}$$

The critical load for a column with fixed ends is 4 times the critical load for column with pinned ends

Pinned-Pinned Columns

Fixed-Free

Fixed-Pinned Columns

Fixed-Fixed Columns

$$L_e = L$$

 \boldsymbol{A}

$$P_{Cr} = \frac{\pi^2 EI}{I^2}$$

$$L_e = 2L$$

$$P_{cr} = \frac{\pi^2 EI}{4I^2}$$

$$P_{cr} = \frac{\pi^2 EI}{L_e^2} \qquad L_e = 0.699L$$

$$P_{cr} = \frac{2.046\pi^2 EI}{L^2}$$

$$L_e = 0.5L$$

$$P_{cr} = \frac{4\pi^2 EI}{L^2}$$

THANK YOU!

Email:

- 1. <u>bhattacharyyanurag@gmail.com</u>
- 2. anurag.bhattacharyya@sri.com