Review of Polymer Solutions for Near-Field Electrospinning with Spatial Control

Antonio Osamu Katagiri Tanaka, Héctor Alán Aguirre Soto

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Keywords: polymer, solvent, near-field electrospinning, NFES, fibers, spatial control

Contents

1	Introduction	1
2	NFES	2
3	Polymer Solution and Process Parameters	14
4	Applications	14
5	Fiber Characterization	14
6	Conclusion	14
	References	14

1. Introduction

Diverse polymer patterning techniques have been developed for the fabrication of nanofibers, such as arc discharge [31], chemical vapor deposition, laser ablation [21], and vapor growth [18]. Nonetheless, those processes are expensive due to either the low product yield or the expensive equipment required. The electrospinning method (invented by Formhals

Email addresses: oskatagiri@gmail.com (Antonio Osamu Katagiri Tanaka), alan.aguirre@tec.mx (Héctor Alán Aguirre Soto)

Anton in 1934)can produce fibers with a range of diameters between 10 nm and 10 mm [12,2] from a polymer solution under the influence of an electrostatic force. The applied electric field and solution conductivity and viscosity is an important parameter the affects the fiber diameter during the spinning along with other parameters such as jet length, solution viscosity surrounding gas, flow rate and the collector geometry [1, 14, 4, 26].

Even though electrospinning is an old invention [2], it is currently a trending topic among researchers [11, 22, 23]. One of the reasons electrospinning is to be studied is its potential to fabricate polymer nano-fibers from a variety of polymers. The technique allows the production of thin continuous fibers with ease, with diameters down to 3 nm in some cases, which is something difficult to achieve by other techniques. Furthermore, the basic setup can be modified with ease to fabricate different fibers with diversified functionalities with different materials. The produced fibers can be aligned or unaligned. Besides, the electrospinning equipment is inexpensive and of small size, compared to the equipment of standard spinning techniques. On the other hand, the understanding of the electrospinning process has improved in the last years [15]. As Reneker and Yarin state: "Electrospinning has rapidly changed fiber making from a capital intensive, large scale process to a low cost, broadly applicable method that manufactures fibers on a laboratory bench, to serve diverse needs ranging from materials science and technology to life sciences and clinical medicine." [22]

The main components of the electrospinning technique are the fluid control unit (e.g. syringe pump) and a DC power supply. The process also requires a target electrode or combination of electrodes on which the fibers can be collected. Figure 6.2 describes a typical electrospinning set-up. [15] Two sub-techniques can be derived from electrospinning depending on the distance between the dispensing electrode and the collector. The process in which the electrospun jet can be controlled near the tip is called NFES or near-field electrospinning. [7] Moreover, if the distance between the collector and the dispensing needle is greater, the configuration is known as FFES or far-field electrospinning. [19] The difference between NFES and mechano-electrospinning is the presence of a mechanical collector that allows higher precision when patterning. Figure 6.3 shows a typical near field mechano-electrospinning apparatus.

2. NFES

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Table 1: Electrospun Polymer Solutions - Solution and Process Parameters

Polymer(s)	Solvent(s)	NFES Variant	Process Parameters and Fiber Characterization	Ref
Poly(ethylene ox-	Deionized wa-	Low-Voltage	Solution Concentration: 1, 2, and 3 $wt\%$ PEO	[1]
ide) (PEO)	ter	NFES	Nozzle: 27 gauge type 304; stainless steel needle	
, , ,			Solution deposition rate: lower than $1\mu L/h$	
			Nozzle-to-substrate distance: 1mm	
			Substrate composition: Pyrolyzed SU-8 carbon and	
			Si	
			Applied voltage: polymer jet initiated at 400-600 V	
			and dispensed at 200-400 V	
			x-y stage velocity: $10-40mm/s$	
			Fiber Diameter: 50-425nm	
			Distance between adjacent fibers: Not determined	
Poly[2-	acetonitrile	Typical NFES	Solution Concentration:	[2
methoxy-5-(2-	toluene mix-	process	10mg of MEH-PPV in $2mL$ of toluene; $500mL$ of MEH-	
ethylhexyloxy)-	ture $(65/35)$;		PPV solution with $250mg$ of PEO in $3.5mL$ of acetoni-	
1,4-	acetic acid		trile; $500mL$ of MEH-PPV solution with $250mg$ of PEO	
phenylenevinylene	•		in $3mL$ of acetic acid / toluene (17 / 83). The resulting	
(MEH-	(17/83); pure		MEH-PPV/PEO concentration is 1:100	
PPV) with	toluene		Nozzle: mm-diameter tip Tungsten spinneret in a 26	
Poly(ethylene			gauge needle	
oxide) (PEO)			Solution deposition rate: $50\mu L/h$	
			Nozzle-to-substrate distance: $500 \mu m$	
			Substrate composition: SiO2/Si (oxide thickness =	
			800 nm)	
			Applied voltage: around $1.3kV$	
			x-y stage velocity: $50cm/s$	
			Fiber Diameter: 100nm	
			Distance between adjacent fibers: around $100\mu m$	

ಬ

Table 1 continue Poly(ethylene ox-	Water	Scanning Tip	Solution Concentration: 7wt% PEO	[3]
ide) (PEO)		Electrospinning and NFES	Nozzle: Needle outer diameter of $200\mu m$ and inner diameter of $100\mu m$	L.
		and THE	Solution deposition rate: $0.1\mu L/h$	
			Nozzle-to-substrate distance: $500\mu m$	
			Substrate composition: Not determined	
			Applied voltage: polymer jet initiated at $1.5 \ kV$ and dispensed at $600V$	
			x-y stage velocity: 120mm/s	
			Fiber Diameter: $709\pm131nm$; $49-74nm$ when applied voltage is $800V$	
			Distance between adjacent fibers: Not deter- mined	
			Notes: $108m$ yield in $15min$ with a fiber diameter of	
			$709\pm131nm$	
Poly(vinylidine	N,N	Helix	Solution Concentration: 1.8g PVDF in 4.1g of DMF	[4]
fluorid) (PVDF)	Dimethyl- formamide	Electrohydro- dynamic Printing	and $4.1g$ of acetone. The resulting concentration is 18% PVDF.	
	(DMF)	(HE-printing)	Nozzle: Needle outer diameter of $510\mu m$ and inner	
			diameter of $260\mu m$	
			Solution deposition rate: $400nL/min$	
			Nozzle-to-substrate distance: 10-50mm	
			Substrate composition: Poly(dimethylsiloxane)	
			(PDMS) on Ecoflex	
			Applied voltage: 1.5–3kV	
			x-y stage velocity: 0-400mm/min	
			Fiber Diameter: about 1.5-3μm	
			Distance between adjacent fibers: Not determined Continued on n	

Polyhedral	Dimethyl	Electrohydro-	Solution Concentration: POSS-PCU and POSS-	[5]
Oligomeric	acetamide	dynamic 3D	PCL-PCU used in $20\%w/w$ concentration in DMAC	
Silsesquioxane-	(DMAC) and	Print-patterning	•	
Poly(Carbonate-	1-Butanol	or Electrohydro-	Nozzle: needle of 750 μm in diameter	
Urea) Urethane		dynamic Jetting	Solution deposition rate: less than $1\mu L/min$	
(POSS-PCU)			Nozzle-to-substrate distance: about between	
and Polyhe-			$500\mu m$ to $2mm$	
dral Oligomeric			Substrate composition: Not determined	
Silsesquioxane			Applied voltage: $8.0-10.0kV$	
Poly(Caprolactone	;-		x-y stage velocity: $10mm/s$	
Poly(Carbonate-			Fiber Diameter: $5-50\mu m$	
Urea)Urethane)			Distance between adjacent fibers: $250\mu m$	
(POSS-PCL-				
PCU)				
D 1 / (1 1	Distilled wa-	Electrohydro-	Solution Concentration: 6wt% PEO	[6]
Poly(ethylene ox-	Distilled wa-	v		
Poly(ethylene oxide) (PEO)	ter	dynamic Writing	Nozzle: Not determined	
• (•		•		Ε.
• (•		dynamic Writing	Nozzle:Not determined	
• (•		dynamic Writing or Mechano-	Nozzle: Not determined Solution deposition rate: 1200nL/min	L .
• (•		dynamic Writing or Mechano- electrospinning	Nozzle: Not determined Solution deposition rate: 1200nL/min Nozzle-to-substrate distance: 7.5mm	
• (•		dynamic Writing or Mechano- electrospinning	Nozzle: Not determined Solution deposition rate: 1200nL/min Nozzle-to-substrate distance: 7.5mm Substrate composition: Not determined	•
• (•		dynamic Writing or Mechano- electrospinning	Nozzle: Not determined Solution deposition rate: $1200nL/min$ Nozzle-to-substrate distance: $7.5mm$ Substrate composition: Not determined Applied voltage: polymer jet initiated at $2~kV$ and	•
• (•		dynamic Writing or Mechano- electrospinning	Nozzle: Not determined Solution deposition rate: $1200nL/min$ Nozzle-to-substrate distance: $7.5mm$ Substrate composition: Not determined Applied voltage: polymer jet initiated at $2~kV$ and dispensed at $0.8\text{-}1kV$	•

6	

June 18, 2019

Poly(ethylene ox-	Deionized wa-	Airflow-assisted	Solution Concentration: 8wt% PEO	[7]
ide) (PEO)	ter and the	Electrohydro-	Nozzle: Outer airflow passage diameter: 1mm Airflow	
, , ,	ethanol with	dynamic Direct-	gas pump pressure: $25kPa$ Inner liquid passage diam-	
	a volume ratio	writing (EDW)	eter: $0.21mm$	
	of 3:1		Solution deposition rate: $30\mu L/h$	
			Nozzle-to-substrate distance: 2mm	
			Substrate composition: Silicon	
			Applied voltage: about $2kV$	
			x-y stage velocity: $1-20mm/s$	
			Fiber Diameter: $3.73 \pm 1.37 \mu m$	
			Distance between adjacent fibers: $5.13 \pm 6.67 \mu m$	
Poly(Vinylidene	Acetone and	3D Electrospin-	Solution Concentration: $17wt\%$ PVDF; $1.7g$ of	[8]
Fluoride)	Dimethyl	ning	PVDF, $5g$ of acetone, $0.5g$ of Capstone FS-66, $5g$ of	
(PVDF)	Sulfoxide		DMSO	
	(DMSO)		Nozzle: Needle inner diameter of $100\mu m$	
			Solution deposition rate: $14 nL/min$	
			Nozzle-to-substrate distance: $750\mu m$	
			Substrate composition: A4 size commercial print-	
			ing paper (Double A)	
			Applied voltage: 1.9kV	
			x-y stage velocity: $10mm/s$	
			Fiber Diameter: Not determined	
			Distance between adjacent fibers: Not determined	

$\frac{Table\ 1\ continue}{\text{Poly}(9-\text{Vinyl})}$	Styrene	Typical NFES	Solution Concentration: 3.96wt% PVK in styrene	[9]
Carbazole)	Diyiche	process	Nozzle: Needle inner diameter of $100\mu m$	[9]
(PVK)		ргоссья	Solution deposition rate: $500nL/min$	
(1 V 11)			Nozzle-to-substrate distance: around 2.5mm	
			Substrate composition: Si/SiO2	
			Applied voltage: $3-4kV$	
			x-y stage velocity: $13.3cm/s$	
			Fiber Diameter: $289.26 \pm 35.37nm$	
			Distance between adjacent fibers: $50\mu m$	
			Notes: $15m$ yield in $2min$	
Polystyrene (PS)	1,2,4-	Electrohydro-	Solution Concentration: 1 to 5wt% PS	[10
<i>y y</i>	Trichloro	dynamic (EHD)	Nozzle: Glass nozzle inner diameter of $2\mu m$ and outer	L
	benzene	jet printing	diameter of $2.66\mu m$	
		v i	Solution deposition rate: Si	
			Nozzle-to-substrate distance: 20, 30, $40\mu m$	
			Substrate composition:	
			Applied voltage: 500 to 400V in 25V increments	
			x-y stage velocity: $0.01-10mm/s$	
			Fiber Diameter: about $60-170\mu m$	
			Distance between adjacent fibers: Not determined	
Poly(ethylene ox-	Not deter-	Typical NFES	Solution Concentration: $3wt\%$ PEO	[11
de) (PEO)	mined	process	Nozzle: Not determined	
			Solution deposition rate: Not determined	
			Nozzle-to-substrate distance: $500 \mu m$	
			Substrate composition: Si	
			Applied voltage: $1000V$	
			x-y stage velocity: $20cm/s$	
			Fiber Diameter: 300nm	
			Distance between adjacent fibers: $25\mu m$	

7

Table 1 continue					
Poly(ethylene ox-	Distilled	wa-	Multinozzle	Solution Concentration: $5wt\%$	[12]
ide) (PEO)	ter		NFES	Nozzle: four-nozzle and six-nozzle array with needle	
				spacing changes from $1.5mm$ to $3.5mm$	
				Solution deposition rate: $1-3\mu L/min$	
				Nozzle-to-substrate distance: 2mm	
				Substrate composition: Not determined	
				Applied voltage: $1.7-2.7kV$	
				x-y stage velocity: Not determined	
				Fiber Diameter: $5.47 \mu m$	
				Distance between adjacent fibers: 3-5 mm	
Poly(ethylene ox-	Distilled	wa-	Multinozzle	Solution Concentration: $5wt\%$	[13]
ide) (PEO)	ter		NFES	Nozzle: Dual-28G-needle array with needle inner di-	
				ameter of $0.18mm$ and outer diameter of $0.36mm$; with	
				needle spacing changes from $2.0mm$ to $3.0mm$	
				Solution deposition rate: $0.2\mu L/min$	
				Nozzle-to-substrate distance: 3.0-4.0mm	
				Substrate composition: Not determined	
				Applied voltage: $2.0-3.0kV$	
				x-y stage velocity: $20mm/s$	
				Fiber Diameter: Not determined	
				Distance between adjacent fibers: $218-326\mu m$	

 ∞

Table 1 continue Poly(ethylene ox-	Distille	d wa-	Multinozzle	Solution Concentration: $5 wt\%$	[14]
ide) (PEO)	ter		NFES	Nozzle: Dual-28G-needle array with needle inner di-	. ,
, , ,				ameter of $180\mu m$ and outer diameter of $360\mu m$; with	
				needle spacing changes of $2.0mm$	
				Solution deposition rate: $0.2\mu L/min$	
				Nozzle-to-substrate distance: 4.0mm	
				Substrate composition: chromium-plated glass	
				Applied voltage: $2.5kV$	
				x-y stage velocity: $20mm/s$	
				Fiber Diameter: Not determined	
				Distance between adjacent fibers: 2.3002-	
				2.7224mm	
Poly(ethylene ox-	Not	deter-	Typical NFES		[15]
ide) (PEO)	mined		process	Nozzle: G30 needle with inner diameter of 0.15mm	
				Solution deposition rate: Not determined	
				Nozzle-to-substrate distance: 1-3mm	
				Substrate composition: Silicon	
				Applied voltage: 1250V	
				x-y stage velocity: Not determined	
				Fiber Diameter: Not determined	
				Distance between adjacent fibers: $20\mu m$	

9

June 18, 2019

Gelatin	Acetic Acid	Typical	NFES	Solution Concentration: $11wt\%$ gelatin, $30wt\%$ wa-	[16]
(porcine skin)	and Ethyl	process		ter, $35.4wt\%$ acetic acid, $23.6wt\%$ ethyl acetate	
	Acetate			Nozzle: 19G needle tip with outer diameter of 1.08mm	
				Solution deposition rate: Not determined	
				Nozzle-to-substrate distance: 1.25mm	
				Substrate composition: Poly(Dimethylsiloxane)	
				(PDMS) films	
				Applied voltage: 1000V	
				x-y stage velocity: Not determined	
				Fiber Diameter: around $2-3\mu m$	
				Distance between adjacent fibers: $40\mu m$	
Poly(ethylene ox-	Water/Ethanol	Typical	NFES	Solution Concentration: PEO concentrations of	[17
ide) (PEO)	(v/v = 60/40)	process		16% adn $18%$	
				Nozzle: $40\mu m$	
				Solution deposition rate:	
				Nozzle-to-substrate distance: 1mm	
				Substrate composition: Planar silicon	
				Applied voltage: $1.7kV$	
				x-y stage velocity: $0.36m/s$	
				Fiber Diameter: $5.15\mu m$	
				Distance between adjacent fibers: Not determined	

	ide) (PEO)	(v/v=3/1)	dynamic Direct-Write (EDW)	Nozzle: Stainless needle with inner diameter of $210\mu m$ and outer diameter of $400\mu m$ Solution deposition rate: $50\mu L/h$ Nozzle-to-substrate distance: $2mm$ Substrate composition: Poly(ethylene terephthalate) (PET)	1 -1
				Applied voltage: $3kV$ x-y stage velocity: $700mm/s$ Fiber Diameter: $15\text{-}35\mu m$ Distance between adjacent fibers: $70\mu m$	
11	Poly(ethylene oxide) (PEO)	Deionized water	Mechano- Electrospinning	Solution Concentration: $3wt\%$ PEO Nozzle: Stainless steel nozzle with inner diameter of $160\mu m$ and outer diameter of $310\mu m$ Solution deposition rate: $50nL/min$ Nozzle-to-substrate distance: $2\text{-}5mm$ Substrate composition: Silicone Applied voltage:polymer jet initiated at $2kV$ and dispensed at $1kV$ x-y stage velocity: $200\text{-}400mm/s$ Fiber Diameter: from 344 ± 32 to $214\pm27nm$ Distance between adjacent fibers: Not determined	[19]

Solution Concentration: 14wt% PEO

Continued on next page

[18]

Table 1 continued
Poly(ethylene ox-

Water/Ethanol Electrohydro-

<u></u>
\sim

$\frac{Table \ 1 \ continue}{Poly(co-Glycolic)}$	Dimethyl	Tethered Pyro-	Solution Concentration: Not determined	[20]
acid (PLGA)	Carbonate	Electrohydro-	Nozzle: nozzle-free	[-~]
((DMC)	dynamic Spinning		
	,	(TPES)	placed directly on a flat substrate	
		,	Nozzle-to-substrate distance: Taylor's cone is fo-	
			cused and put in direct contact with the collector	
			Substrate composition: Poly(tetrafluoroethylene)	
			(PTFE) coated glass slide	
			Applied voltage: pyro-electric field of between 2.7	
			$x10^7 \ V/m \text{ and } 5.5x10^7 \ V/m$	
			x-y stage velocity: Not determined	
			Fiber Diameter: 304.7nm	
			Distance between adjacent fibers: Not determined	
Poly(ethylene	N,N	Typical NFES	, ,	[21
oxide) (PEO)	Dimethyl-	process	with $0.75wt\%$ PEO, $1wt\%$ TBF; the blend is diluted	
with Tetrabuty-	formamide		with $30vol\%$ DMF	
lammonium	(DMF)		μmμm Solution domosition mater Net determined	
tetrafluoroborate			Solution deposition rate: Not determined Nozzle-to-substrate distance: Not determined	
(TBF) and SU-8 2002			Substrate composition: Brass disk with a diameter	
2002			of 38mm	
		Applied voltage: 980V		
		x-y stage velocity: Not determined		
			Fiber Diameter: Not determined	
			Distance between adjacent fibers: Not determined	

Table 1 continue	ed			
Poly(ethylene ox-	Water:Ethanol	Suspension NFES	Solution Concentration: 14wt% PEO	[22]
ide) (PEO)	(3:2)		Nozzle: stainless steel needle (25 G) with inner diam-	
			eter of $0.25mm$	
			Solution deposition rate: $3nL/s$	
			Nozzle-to-substrate distance: between 0.5 and	
			10mm with $0.5mm$ increments	
			Substrate composition: Planar silicon electrodes	
			Applied voltage: $1.6kV$	
			x-y stage velocity: 50 , 150 , and $250mm/s$	
			Fiber Diameter: 300nm	
			Distance between adjacent fibers: 0.1 and 0.5mm	
Poly(ethylene ox-	Deionized wa-		Solution Concentration: 10wt% PEO	[23]
ide) (PEO)	ter		Nozzle: 32G metal needle	
			Solution deposition rate: (Jet impact speed of	
			5mm/s)	
			Nozzle-to-substrate distance: 0.5mm	
			Substrate composition: p-type silicon wafer	
			Applied voltage: $400V$	
			x-y stage velocity: $5mm/s$	
			Fiber Diameter:	
			Distance between adjacent fibers: $50\mu m$	

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

3. Polymer Solution and Process Parameters

- 4. Applications
- 5. Fiber Characterization
- 6. Conclusion

References

- G. S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin, M. J. Madou, Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning, Nano Letters 11 (4) (2011) 1831–1837. doi:10.1021/nl2006164.
- [2] D. D. Camillo, V. Fasano, F. Ruggieri, S. Santucci, L. Lozzi, A. Camposeo, D. Pisignano, Near-field electrospinning of conjugated polymer light-emitting nanofibers, Nanoscale 5 (2013) 11637–11642. doi:10.1039/C3NR03094F.
- [3] C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns, Appl Phys Lett (2008) 3doi:10.1063/1.2975834.
- [4] Y. Duan, Y. Ding, Z. Xu, Y. Huang, Z. Yin, Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers., Polymers 9 (9) (sep 2017). doi:10.3390/polym9090434.
- [5] A. Gupta, A. M. Seifalian, Z. Ahmad, M. J. Edirisinghe, M. C. Winslet, Novel Electrohydrodynamic Printing of Nanocomposite Biopolymer Scaffolds, Journal of BIOACTIVE AND COMPATIBLE POLY-MERS 22 (2007). doi:10.1177/0883911507078268.
- [6] Y. Huang, Y. Duan, Y. Ding, N. Bu, Y. Pan, N. Lu, Z. Yin, Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers, Scientific Reports 4 (1) (2015) 5949. doi:10.1038/srep05949.
- [7] J. Jiang, X. Wang, W. Li, J. Liu, Y. Liu, G. Zheng, J. Jiang, X. Wang, W. Li, J. Liu, Y. Liu, G. Zheng, Electrohydrodynamic Direct-Writing Micropatterns with Assisted Airflow, Micromachines 9 (9) (2018) 456. doi:10.3390/mi9090456.
- [8] J. Kim, B. Maeng, J. Park, Characterization of 3D electrospinning on inkjet printed conductive pattern on paper, Micro and Nano Systems Letters 6 (1) (2018) 12. doi:10.1186/s40486-018-0074-1.
- [9] S.-Y. Min, T.-S. Kim, B. J. Kim, H. Cho, Y.-Y. Noh, H. Yang, J. H. Cho, T.-W. Lee, Large-scale organic nanowire lithography and electronics, Nature Communications 4 (1) (2013) 1773. doi:10.1038/ncomms2785.
- [10] C. Song, J. A. Rogers, J.-M. Kim, H. Ahn, Patterned polydiacetylene-embedded polystyrene nanofibers based on electrohydrodynamic jet printing, Macromolecular Research 23 (1) (2015) 118–123. doi:10.1007/s13233-015-3024-2.
- [11] D. Sun, C. Chang, S. Li, L. Lin, Near-Field Electrospinning (2006). doi:10.1021/nl0602701.
- [12] H. Wang, S. Huang, F. Liang, P. Wu, M. Li, S. Lin, X. Chen, Research on Multinozzle Near-Field Electrospinning Patterned Deposition, Journal of Nanomaterials 2015 (2015) 1–8. doi:10.1155/2015/529138.
- [13] Z. Wang, X. Chen, J. Zeng, F. Liang, P. Wu, H. Wang, Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning, AIP Advances 7 (3) (2017) 035310. doi:10.1063/1.4974936.

- [14] Z. Wang, X. Chen, J. Zhang, Y.-J. Lin, K. Li, J. Zeng, P. Wu, Y. He, Y. Li, H. Wang, Fabrication and evaluation of controllable deposition distance for aligned pattern by multi-nozzle near-field electrospinning, AIP Advances 8 (7) (2018) 075111. doi:10.1063/1.5032082.
- [15] J. Xu, M. Abecassis, Z. Zhang, P. Guo, J. Huang, K. Ehmann, J. Cao, Accuracy Improvement of Nano-fiber Deposition by Near-Field Electrospinning, International Workshop on Microfactories IWMF2014 (9th) (2014).
- [16] N. Xue, X. Li, C. Bertulli, Z. Li, A. Patharagulpong, A. Sadok, Y. Y. S. Huang, Rapid Patterning of 1-D Collagenous Topography as an ECM Protein Fibril Platform for Image Cytometry, PLoS ONE 9 (4) (2014) e93590. doi:10.1371/journal.pone.0093590.
- [17] G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, L. Lin, Precision deposition of a nanofibre by near-field electrospinning, Journal of Physics D: Applied Physics 43 (41) (2010) 415501. doi:10.1088/0022-3727/43/41/415501.
- [18] J.-Y. Zheng, H.-Y. Liu, X. Wang, Y. Zhao, W.-W. Huang, G.-F. Zheng, D.-H. Sun, Electrohydrodynamic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate, Journal of Nanomaterials 2014 (2014) 1–7. doi:10.1155/2014/708186.
- [19] N. Bu, Y. Huang, X. Wang, Z. Yin, Materials and Manufacturing Processes Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning (2012). doi:10.1080/10426914.2012.700145.
- [20] S. Coppola, V. Vespini, G. Nasti, O. Gennari, S. Grilli, M. Ventre, M. Iannone, P. A. Netti, P. Ferraro, Tethered Pyro-Electrohydrodynamic Spinning for Patterning Well-Ordered Structures at Micro-and Nanoscale, Chem. Mater 26 (2014) 3360. doi:10.1021/cm501265j.
- [21] A. Cisquella-Serra, M. Magnani, Álvaro Gual-Mosegui, S. Holmberg, M. Madou, M. Gamero-Castaño, Study of the electrostatic jet initiation in near-field electrospinning, Journal of Colloid and Interface Science 543 (2019) 106–113. doi:10.1016/J.JCIS.2019.02.041.
- [22] A. R. Nagle, C. D. Fay, Z. Xie, G. G. Wallace, X. Wang, M. J. Higgins, A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays, Nanotechnology 30 (19) (2019) 195301. doi:10.1088/1361-6528/ab011b.
- [23] D. Shin, J. Kim, J. Chang, Experimental study on jet impact speed in near-field electrospinning for precise patterning of nanofiber, Journal of Manufacturing Processes 36 (2018) 231–237. doi:10.1016/J.JMAPRO.2018.10.011.