

Dep. of Mechanical Eng.

Robotics

Dr. Saeed Behzadipour

Homework 2

Yashar Zafari 99106209

November 3, 2023

Robotics

Homework 2 Yashar Zafari 99106209

Questions

Construct a model for the RPP robot in Simulink/Simmechanis. Show your reference frames on the following figure and submit them along with your Simulink model.

Question 1

Use the IC block to set the values of the joint variables according to the following table and find the position of the tip of the last link (end-effector):

$\theta(deg)$	-90	30	150	-18	56	280
$d_1(mm)$	150	120	30	100	30	220
$d_2(mm)$	100	80	0	0	170	110

$$L_1 = 45mm, L_2 = 22.5mm, L_3 = 30mm$$

Figure 2: Front view of the robot.

Yashar Zafari Page 1 of 4

Solution

I begin by placing the coordinates in the specified locations on the every link of the robot as the figure beside. By linking $Frame_0$ with World Frame via revolute joint, the rotation of the robot with respect to World Frame is available. Hence $Frame_1$ is defined in a manner that there is a prismatic joint along the z-axis and this joint performs the altitude of robot's endeffector. Afterwards $Frame_2$ is defined such that there is a prismatic joint between $Link_2$ and $Link_3$ along the z-axis and this joint performs length of robot's end-effector hand.

Figure 3: Frame Placement

Now the robot is modeled as below in Simulink:

Figure 4: Simulink Model

At the start of every simulation, a pop-up window asks for the values of the robot's parameters, θ , d_1 , and d_2 , to configure the robot according to the parameters. Using the transformation sensor, the end-effector's position is calculated and is concatenated in a vector called "pos" in the Base Workspace for every 6 simulation. The position of the robot's end-effector for every configuration is shown in the table below:

99106209 Page 2 of 4

03	$\theta(deg)$	-90	30	150	-18	56	280
Config.	$d_1(mm)$	150	120	30	100	30	220
Ŭ	$d_2(mm)$	100	80	0	0	170	110
Œ.	x(mm)	130.00	-93.9711	23.9711	-33.5270	-190.9712	130.0589
End-Eff.	y(mm)	45.00	72.7628	-48.4808	42.4375	74.5319	68.6271
R	z(mm)	172.50	142.50	52.50	122.50	52.50	242.50

Question 2

Follow the DH convention, fill up the table, and use your last assignment to solve the forward Kinematics and find the end-effector position for the last table's joint values. Report your DH table and the results and compare with those of part 1.

Solution

Following the DH convention, $Frame_0$ or respectively our World Frame is contacted with $Frame_1$ through revolute joint along z-axis. Next, $Frame_2$ is placed in between $Link_1$ and $Link_2$ along the z-axis performing as prismatic joint. The other prismatic joint between $Link_2$ and Link3 is represented with $Frame_3$ which its z-axis is along the prismatic joint path and $Link_3$ and also its x-axis is placed on the common perpendicular of z_2 and z_3 . Note that following the DH convention forced us to place $Frame_3 L_3 = 30mm$ behind the start point of prismatic joint and d_2 , thus the end-effector frame, $Frame_4$, is placed in a way that its z-axis is along the z-axis of $Frame_3$ and its x-axis is parallel with the x-axis of $Frame_3$, which apparently represents the displacement of end-effector via prismatic joint. As said before, this displacement is actually $d_2 + 30$ due to frames' placement based on DH convention. DH Table is formed as below:

Figure 5: Frame Placement

	θ	d	l	α
1	$\underline{\theta}$	$\underline{d_1}$	0	0
2	0	L_3	L_3	-90°
3	0	$\underline{d_2}$	0	0

According to the DH table, H_4^0 is found as below:

$$H_4^0 = \prod_{i=0}^3 H_{i+1}^i = H_1^0 H_2^1 H_3^2 H_4^3 = R_{z,\theta} T_{z,d_1} T_{x,-L_1} T_{z,L_2} R_{x,-90} T_{z,d_2+L_3}$$

99106209 Page 3 of 4

Using the homogeneous transformation above, the position of the robot's end-effector is found as below:

$$\begin{bmatrix} \vec{O}_4^0 \\ 1 \end{bmatrix} = H_4^0 \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$$

The steps above are implemented in the MATLAB code below:

The position of the robot's end-effector according to the DH convention is shown in the table below:

Config.	$\theta(deg)$	-90	30	150	-18	56	280
	$d_1(mm)$	150	120	30	100	30	220
Ŭ	$d_2(mm)$	100	80	0	0	170	110
-Eff.	x(mm)	130.00	-93.9711	23.9711	-33.5270	-190.9712	130.0589
-р	y(mm)	45.00	72.7628	-48.4808	42.4375	74.5319	68.6271
End	z(mm)	172.50	142.50	52.50	122.50	52.50	242.50

Conclusion

It's apparent that the Simulink model and DH convention have the same results for the position of the robot's end-effector.

99106209 Page 4 of 4