Численные методы оптимизации

к.ф.-м.н., доцент А.Н. Дарьина

Литература

- № Измаилов А.Ф., Солодов М.В. Численные методы оптимизации. М.: Физматлит, 2003, 2005, 2008 (второе издание).
- № Измаилов А.Ф. Чувствительность в оптимизации. М.: Физматлит, 2006.
- Izmailov A.F., Solodov M.V. Newton-type methods for optimization and variational problems. Springer Series in Operations Research and Financial Engineering. Springer International Publishing Switzerland, 2014.
- Izmailov A.F., Solodov M.V. Otimização. V. 1. Condições de otimalidade, elementos de análise convexa e de dualidade. Rio de Janeiro: IMPA, 2005, 2009, 2014, 2020 (quarto edição).
- Izmailov A.F., Solodov M.V. Otimização. V. 2. Métodos computacionais. Rio de Janeiro: IMPA, 2007, 2012 (segunda edição).

Литература

- Nocedal J., Wright S.J. Numerical optimization. New York, Berlin, Heidelberg: Springer-Verlag, 2000, 2006 (second edition).
- Bonnans J.F., Gilbert J.Ch., Lemaréchal C., Sagastizábal C. Numerical optimization. Theoretical and practical aspects. Berlin: Springer-Verlag, 2003, 2006 (second edition).
- Facchinei F., Pang J.-S. Finite-dimensional variational inequalities and complementarity problems. New York: Springer-Verlag, 2003.

- ullet \mathbb{R} множество вещественных чисел.
- ullet \mathbb{R}_+ множество неотрицательных вещественных чисел.
- \[
 \mathbb{R}^n n\]
 - мерное арифметическое пространство, снабженное евклидовым скалярным произведением и соответствующей нормой.
- ullet $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x \geqslant 0\}$ неотрицательный ортант в \mathbb{R}^n .
- ullet $\mathbb{R}(m,\,n)$ пространство вещественных m imes n-матриц, снабженное нормой, подчиненной нормам в \mathbb{R}^n и \mathbb{R}^m .
- \bullet x_1, \ldots, x_n обычно компоненты вектора $x \in \mathbb{R}^n$ в стандартном базисе пространства \mathbb{R}^n .
- $\langle x, y \rangle = \sum_{j=1}^{n} x_{j} y_{j}$ евклидово скалярное произведение векторов $x, y \in \mathbb{R}^{n}$.

- $\bullet \ \|x\| = \sqrt{\langle x, x \rangle}$ евклидова норма вектора $x \in \mathbb{R}^n$.
- $\|x\|_p = \sqrt[p]{\sum_{j=1}^n |x_j|^p} p$ -норма вектора $x \in \mathbb{R}^n$ (в частности, $\|x\| = \|x\|_2$).
- $\|x\|_{\infty}=\max\{|x_1|,\ldots,|x_n|\}-\infty$ -норма вектора $x\in\mathbb{R}^n$.
- $B(\bar{x}, \delta) = \{x \in \mathbb{R}^n \mid ||x \bar{x}|| \leq \delta\}$ замкнутый шар радиуса δ с центром в точке $\bar{x} \in \mathbb{R}^n$.
- $\operatorname{dist}(x, X) = \inf_{y \in X} \|x y\|$ расстояние от точки x до множества X.
- $\{x^k\} \to x \quad (k \to \infty)$ последовательность $\{x^k\}$ сходится к x (для числовых последовательностей $\{a_k\}$ используются обозначения $a_k \to a \quad (k \to \infty)$ или $\lim_{k \to \infty} a_k = a$).

- \bullet int X внутренность множества X.
- \bullet cl X замыкание множества X.
- conv X выпуклая оболочка множества X, т.е. минимальное выпуклое множество, содержащее X (множество X выпуклое, если $tx^1 + (1-t)x^2 \in X$ $\forall x^1, x^2 \in X, \ \forall \ t \in [0, 1]$).
- cone X коническая оболочка множества X, т.е. минимальный выпуклый конус, содержащий X (множество X конус, если $tx \in X \ \forall \ x \in X$, $\forall \ t \geqslant 0$).
- $X^{\perp}=\{\xi\in\mathbb{R}^n\mid \langle \xi,x\rangle=0\ \forall\,x\in X\}$ ортогональное дополнение множества $X\subset\mathbb{R}^n$.
- $K^{\circ} = \{ \xi \in \mathbb{R}^n \mid \langle \xi, x \rangle \leqslant 0 \ \forall x \in K \}$ конус, полярный (отрицательно сопряженный) к конусу $K \subset \mathbb{R}^n$.

- I единичная матрица (размер указывается явно либо ясен из контекста).
- im $A = \{y \in \mathbb{R}^m \mid \exists \, x \in \mathbb{R}^n : \, Ax = y\}$ образ (множество значений) матрицы (линейного оператора) $A \in \mathbb{R}(m, n)$.
- \bullet ker $A = \{x \in \mathbb{R}^n \mid Ax = 0\}$ ядро (множество нулей) матрицы (линейного оператора) $A \in \mathbb{R}(m, n)$.
- |S| количество элементов конечного множества S.

- f'(x) градиент (вектор частных производных) функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке $x \in \mathbb{R}^n$ ($f'(x) \in \mathbb{R}^n$).
- $\frac{\partial f}{\partial x}(x,y)$ частный градиент функции $f:\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ по переменной x в точке $(x,y) \in \mathbb{R}^n \times \mathbb{R}^m$ $(\frac{\partial f}{\partial x}(x,y) \in \mathbb{R}^n)$.
- f''(x) матрица Гессе (вторых частных производных) функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке $x \in \mathbb{R}^n$ ($f''(x) \in \mathbb{R}(n, n)$).
- F'(x) матрица Якоби (частных производных) отображения $F: \mathbb{R}^n \to \mathbb{R}^m$ в точке $x \in \mathbb{R}^n$ $(F'(x) \in \mathbb{R}(m, n)).$
- $F'(x; d) = \lim_{t\to 0+} (F(x+td) F(x))/t$ производная отображения $F: \mathbb{R}^n \to \mathbb{R}^m$ в точке $x \in \mathbb{R}^n$ по направлению $d \in \mathbb{R}^n$.