CS 455 – Computer Security Fundamentals

Dr. Chen-Yeou (Charles) Yu

- Someone used to ask me how to describe the great picture in Computer Security
- My answered is --- interdisciplinary study

- A high level algorithm will be presented to fight against unwanted calls.
 - Introduction
 - The power of crowdsourcing
 - Edge computing can help us
 - Contextual Info. can help us
 - Calling content can help us
 - Finally, our high level algorithm

- The growth of telecommunication fraud has caused tremendous loss to end users.
- In this study, it is purely from an end user's perspective.
- In the US, the Federal Trade Commission (FTC) have worked with telephone carriers to blacklist robocalls or scam callers by periodically announce latest blacklisted numbers as datasets on their website.
- Google, have embedded signature-based blocking mechanism in their latest Android systems --- less effective
 - They try to involve OEM phone manufacturers, carriers, and end users to maintain the blacklists
 - At least, this is their 1st step

- With the advancements in internet and telephony technology, scammers, spammers and criminals are exploiting new types of abuses on top of it.
 - Caller number spoofing --- by taking advantage of low cost and spamming campaign to easily reach and deceive end use
 - Most of the people would reject the call from 1-800 calls, but they still pick up the local calls (the same area code)
 - More recently, open-source software has made it possible for almost anyone to spoof calls with little cost or technical knowledge.
 - One of the most prevalent ways of spoofing is through VoIP.
 - VoIP stands for "Voice over Internet Protocol" and is basically a phone service delivered via the Internet.
 - If your internet connection is of decent quality, then your phone service can be delivered through the internet rather than your phone carrier.

- So it is like the video streaming, no need for video channels
- In this way, we don't even need the landlines
- VoIP service provider can give you a choice to setup the phone number
 - The representing phone numbers
- And it can be changed at any time
 - What!??

- Criminals may target special ethnic groups or the people in specific location.
 - I will talk about this later in the Social Engineering
 - For example, international students in the college towns are easily targeted
- Purely signature based (phone# based) blacklisting is not good enough

The power of crowdsourcing

- Since the unwanted calls would like to pretend to be local callers, we can do "simple statistics" to sort the "local heavy hitters"
- Local people can contribute their efforts to catch the local heavy hitters during a period
- Still, they will use the number spoofing technology and the local heavy hitters has to be re-ranked periodically

Edge computing can help us

- The resources are used to be in the centralized cloud
 - Now, services are pushed to the edge (Distributed Computing)
 - Cell phone base stations are good candidates to deploy edge servers / edge services
 - If someone would like to make a phone call to you, the last step would be a "search" performed by the cell phone base station (because you registered in this base station), and get the call directed to your device (from the perspective of topology)
 - Edge servers can run strong location binding services. For example, local weather, local traffic
 - They can be a good service pool to compute the "local heavy hitter list"
 - They can push the most updated "local black list" to end users
 - End users can contribute their local black lists to edge services to help them compute the "local heavy hitters"

- Yes, it is. But you need to know machine learning a little bit. Or? You can
 use simple statistics for approximation
- For example, this is someone's "working hours" in the company

Day	7-8AM	8-9AM	9-10AM	10-11AM	11-12AM	12-1PM	1-2PM	2-3PM	3-4PM	4-5PM
Day 1	Driving	Working	Working	Working	Eating	Working	Meeting	Working	Working	Break
Day 2	Driving	Meeting	Working	Working	Working	Eating	Working	Meeting	Working	Working
Day 3	Eating	Working	Working	Working	Working	Eating	Meeting	Working	Meeting	Break
Day 4	Meeting	Driving	Eating	Working	Working	Eating	Meeting	Working	Working	Break
Predicted Day 5	Driving	Working	Working	Working	Working	Eating	Meeting	Working	Working	Break

• There is a great purpose to know someone's predicted contextual info.

- What if we have a list of predefined states with the "willing" to pick up the phone? "1": Yes, pick up. "0": No, I don't want to pick up!
- For example, in a daily schedule, not just the working hours, I might have the following states = {Driving, Working, Eating, Sleeping, Break, Shower, Cooking, Recreation, Reading, Workout}

Here is the example output for working hours (8AM~5PM)

D	ay	7-8AM	8-9AM	9-10AM	10-11AM	11-12AM	12-1PM	1-2PM	2-3PM	3-4PM	4-5PM
D	ay 1	Driving, 0	Working, 0	Working, 0	Working, 0	Eating, 1	Working, 0	Meeting, 0	Working, 0	Working, 0	Break, 1
D	ay 2	Driving, 0	Meeting, 0	Working, 0	Working, 0	Working, 0	Eating, 1	Working, 0	Meeting, 0	Working, 0	Working, 0
D	ay 3	Eating, 1	Working, 0	Working, 0	Working, 0	Working, 0	Eating, 1	Meeting, 0	Working, 0	Meeting, 0	Break, 1
D	ay 4	Meeting, 0	Driving, 0	Eating, 1	Working, 0	Working, 0	Eating, 1	Meeting, 0	Working, 0	Working, 0	Break, 1
-	redicted ay 5	Driving, 0	Working, 0	Working, 0	Working, 0	Working, 0	Eating, 1	Meeting, 0	Working, 0	Working, 0	Break, 1

- Another thing, what if we are just getting tired to differentiate the spam/scam/robo calls?
 - We can simply put all of them into "unwanted".
 - This is the human centered design which starts from knowing your daily schedule first. (It would be good to have a "predicted" schedule!)
 - If I can know your following schedule, in advance, it would be wonderful!
 - Hourly
 - Half-hourly
 - ...
 - For example, if someone calls you during the weekend, I can give this phone call with higher "unwanted" possibility
 - Or, when I'm sleeping in the midnight. The phone calls can be totally seen as "unwanted", except my close friends.

- If we can collect someone's schedule, we can do some predictions
 - What are you doing in the next hour, next half-hour or even next minute?
 - We can use Neural Network or Recurrent Neural Network (RNN) for time series prediction
 - Ideally, if a machine learning model is well-trained, it can output a good prediction of a person's daily schedule
 - For example, if someone calls me at 9 PM, it is supposed to be for my shower time.
 - If this phone number is in my contact list in my phone, just let it ring
 - If this phone number is **unknown**, I can see my phone with a **pop-up a warning notification**, saying this one could be "**unwanted**"
 - It serves as a suggestion, not to pick up this one!

Calling content can help us

- Keyword identification
 - It's a good manner to listen to other's speaking ^_^
 - Because it can give you lots of "features"
 - If we can keep a dictionary of keywords
 - All of the U.S. governmental agencies or public offices, they do not call you.
 - Instead, they are very traditional, then mail you the letters, NOT emails.
 - If you can identify they are saying they are from some agencies... (You know what I mean)
 - If you can identify their speaking with very strong foreign accents...
 - If you can identify their speaking are about insurance (property, vehicle, life, health,...)
 - Then, you know those calls are possibly unwanted!

Calling content can help us

- Maybe we can try to listen to their speaking for the previous 10 secs, if we can develop such kind a of App
 - Then, we can quickly make the decision, hang up the phone number and blacklist it, or not?

Finally, our high level algorithm

```
Data: incomingCallerID, CurrentContactList
Result: BlackCallerIDList
While incomingCallerID do:
             Read incomingCallerID;
             if incomingCallerID NOT IN CurrentContactList
                          if previous 10 secs matches some of our keywords
                                        BlackCallerIDList+= incomingCallerID
                          end if
                          if timestamp(incomingCallerID) is mapped to "0"
                                       BlackCallerIDList+= incomingCallerID
                          end if
             else
                          Let the phone ring
             end if
```

Finally, our high level algorithm

- However, this algorithm is not perfect
 - It needs some work-arounds
 - The part of the timestamp(incomingCallerID) depends on someone's living style
 - For example, if Dr. Yu get fired by Truman and went to a startup company being a CEO, his lifestyle would be TOTALLY different from his daily schedule recently.
 - We will need to re-train our machine learning model and do re-prediction
 - There is an kind of performance index, the prediction error rate
 - If the rate is getting higher, we know it is the time to re-train the model.
 - You can definitely use pure statistics but the effect wouldn't be good.

Appendix

- Everything to Know About Phone Number Spoofing
 - https://www.kaspersky.com/resource-center/preemptive-safety/phone-number-spoofing