FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H1

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 24000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 40° (Đai det)

Load property: Va đập nhẹ Coupling force on the shaft: 49.74 (N)

Shaft Params	Mo	otor	I		I	I	Worl	cing
P (kW)	0.	.6	0.50	64	0.5	542	0.5	31
n (v/ph)	72	20	257.	.14	58	.44	58.4	44
T (Nmm)	795	8.3	2094	6.6	885	71.2	8677	'3.6
u	•	2.	80	4	.40		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\rm w}$ $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{11} = l_{21} = 2.l_{13}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Hoàng Trung An......22010740 Class: K16-KTCĐT_2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H2

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 21000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 5° (Đai det)

Load property: Va đập nhẹ Coupling force on the shaft: 17.56 (N)

Shaft Params	Mo	otor	I		I	I	Worl	cing
P(kW)	0	.8	0.73	52	0.7	'22	0.70	08
n (v/ph)	14	50	580.	.00	131	.82	131.	.82
T (Nmm)	526	9.0	1238	2.1	523	06.9	5129	2.7
u		2	2.50		.40		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\rm w}$ $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Nguyễn Hoàng Anh......22013901 Class: K16-KTCĐT_2

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) **Semester: 2024.1**

Project number: 1/P.MEM16.H3

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 22000 \text{ (hour)}$

1 (shift) Number of shifts:

The tilt angle of the center line of the belt drive: 40° (Đại thang)

Load property: Va đập vừa Coupling force on the shaft: 36.84 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	1.	.0	0.94	41	0.9	004	0.8	86
n (v/ph)	72	20	228.	.57	63	.49	63.	49
T (Nmm)	132	63.9	3931	6.4	1359	77.3	1332	69.8
u		3.	3.15		.60		1	

- Distances between the load positions are given by the formula as:

 $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{12} = 5.b_{\rm w}$

 $l_{11} = l_{21} = 2.l_{13}$

 $l_{23} = l_{21} + 6.b_{\rm w}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Trần Tuấn Anh.....22010768 Student: Class: K16-KTCDT 1

Instructor: Vũ Lê Huy

DEAN

LECTURER

(sign and full name)

(sign and full name)

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H4

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 17000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 15° (Đại thang)

Load property: Va đập nhẹ Coupling force on the shaft: 45.59 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	1.	.1	1.03	35	0.9	94	0.9	74
n (v/ph)	96	50	480.	.00	126	5.32	126	.32
T (Nmm)	109	42.7			751	48.0	7363	86.0
u		2.00		3	.80		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\rm w}$ $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Gia Bảo......22010593 Class: K16-KTCĐT_2

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H5

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 17000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 25° (Đai det)

Load property: Êm
Coupling force on the shaft: 15.54 (N)

Shaft Params	Motor		I	I	I	Worl	king
P (kW)	0.5	0.4	170	0.4	-51	0.4	42
n (v/ph)	960	428	3.57	104	.53	104.	.53
T (Nmm)	4974.0	104	73.2	412	04.0	4038	31.7
u		2.24	4	.10		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Nguyễn Đức Bình......22010960 Class: K16-KTCĐT_3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H6

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 14000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 45° (Đại thang)

Load property: Êm
Coupling force on the shaft: 16.58 (N)

Shaft Params	Mo	tor	I		I	I	Worl	cing
P (kW)	0.	6	0.56	54	0.5	42	0.5	31
n (v/ph)	96	50	304.	76	69.	.26	69.	26
T (Nmm)	596	8.8	1767	3.6	747	34.3	7321	7.6
u		3.	15	4	.40		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Văn Doanh.......22010652 Class: K16-KTCĐT_1

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H7

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 12000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 40° (Đai det)

Load property: Êm

Coupling force on the shaft: 40.70 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	.9	0.84	46	0.8	312	0.7	96
n (v/ph)	96	50	304.	76	84	.66	84.	66
T (Nmm)	895	3.1	2651	0.4	915	97.0	8979	92.1
u	•	3.	15	3	.60		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Hùng Dương......22014374 Class: K16-KTCĐT_2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H8

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 10000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 0° (Đai det)

Load property: Va đập vừa Coupling force on the shaft: 34.44 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	.9	0.84	46	0.8	312	0.79	96
n (v/ph)	96	50	269.	.66	74	.91	74.	91
T (Nmm)	895	3.1	2996	1.1	1035	518.9	1014	79.1
u	·	3.:	56	3	.60		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\rm w}$ $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Đức Hải......22010578 Class: K16-KTCĐT_1

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H9

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 10000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 20° (Đai det)

Load property: Va đập vừa Coupling force on the shaft: 22.11 (N)

Shaft Params	Mo	otor	I		I	I	Worl	cing
P(kW)	0.	.6	0.50	64	0.5	542	0.5	31
n (v/ph)	72	20	321.	.43	82	.42	82.4	42
T (Nmm)	795	58.3	1675	7.0	628	01.5	6152	6.9
u	•	2.	24	3	.90		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Lê Trọng Hiếu......22011037 Class: K16-KTCĐT_3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H10

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 17000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 60° (Đai det)

Load property: Va đập vừa Coupling force on the shaft: 25.79 (N)

Shaft Params	Mo	otor	I		I	I	Worl	cing
P(kW)	0.	.7	0.63	58	0.6	532	0.6	19
n (v/ph)	72	20	228.	.57	55	.75	55.	75
T (Nmm)	928	34.7	2749	2.2	1082	261.9	10603	35.0
u	•	3.	15	4	.10		1	_

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Nguyễn Huy Hoàng......22010951 Class: K16-KTCĐT 3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H11

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 18000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the belt drive: 90° (Đại thang)

Load property: Va đập vừa Coupling force on the shaft: 21.32 (N)

Shaft Params	Mo	tor	I		I	I	Work	cing
P (kW)	0.	6	0.56	54	0.5	542	0.5	31
n (v/ph)	96	50	384.	00	89	.30	89	30
T (Nmm)	596	8.8	1402	6.6	579	63.0	5678	6.7
u		2	50	4	.30		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Đặng Nguyễn Quang Huy......22010701 Class: K16-KTCĐT_1

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H12

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 12000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 20° (Đai det)

Load property: Va đập vừa Coupling force on the shaft: 31.41 (N)

Shaft Params	Mo	tor	I		I	I	Worl	cing
P (kW)	0.	9	0.84	46	0.8	312	0.79	96
n (v/ph)	72	20	257.	.14	65	.93	65.9	93
T (Nmm)	1193	37.5	3141	9.8	1176	518.7	1153	01.1
u		2.	80	3	.90		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Đức Khang......22011063 Class: K16-KTCĐT_3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H13

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 11000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 80° (Đại thang)

Load property: Va đập vừa Coupling force on the shaft: 49.74 (N)

Shaft Params	Mo	otor	I		I	I	Work	cing
P (kW)	0.	9	0.84	46	0.8	312	0.79	96
n (v/ph)	72	20	257.	14	67.	.67	67.0	67
T (Nmm)	1193	37.5	3141	9.8	1145	94.4	11233	36.3
u		2.	80	3	.80		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Ngô Thị Thùy Linh......22010446 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H14

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 20000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 45° (Đại thang)

Load property: Êm
Coupling force on the shaft: 25.61 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P (kW)	0	.7	0.65	58	0.6	532	0.6	19
n (v/ph)	14	50			201	.39	201.	.39
T (Nmm)	461	0.3	866	7.4	299	69.7	2935	33.2
u		2.00		3	.60		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Nguyễn Thành Lộc......22010598 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H15

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 14000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 30° (Đại thang)

Load property: Êm
Coupling force on the shaft: 24.87 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P (kW)	0	.9	0.84	46	0.8	312	0.79	96
n (v/ph)	96	50	480.	.00	126	5.32	126	.32
T (Nmm)	895	3.1	1683	1.9	613	88.5	6017	18.9
u		2.	00	3	.80		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Nguyễn Xuân Minh......22010639 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H16

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 25000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the belt drive: 55° (Đai det)

Load property: Va đập vừa Coupling force on the shaft: 34.44 (N)

Shaft Params	Motor	I		II	Working
P(kW)	0.9	0.846		0.812	0.796
n (v/ph)	960	480.00)	114.29	114.29
T (Nmm)	8953.1	16831.	9 6	7850.2	66513.3
u	2	.00	4.20		1

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Hữu Nghĩa......20011010 Class: K14-CĐT

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H17

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 22000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the belt drive: 25° (Đại thang)

Load property: Êm

Coupling force on the shaft: 10.40 (N)

Shaft Params	Mo	otor	I		I	I	Worl	cing
P(kW)	0.	.6	0.50	54	0.5	542	0.5	31
n (v/ph)	14	50	647.	32	165	5.98	165.	.98
T (Nmm)	395	1.7	8320	0.8	311	85.1	3055	52.2
u	·	2.	24	3	.90		1	_

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Thái Minh Quân......22011109 Class: K16-KTCĐT_3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H18

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 25000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 70° (Đai det)

Load property: Va đập vừa Coupling force on the shaft: 33.16 (N)

Shaft Params	Mo	otor	I		I	I	Worl	cing
P(kW)	1.	.0	0.94	41	0.9	904	0.8	86
n (v/ph)	96	50	428.	.57	97	.40	97.	40
T (Nmm)	994	17.9	2096	8.7	886	36.6	8687	1.7
u		2.24		4	.40		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\rm w}$ $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{11} = l_{21} = 2.l_{13}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Nguyễn Văn Quyến......22010985 Class: K16-KTCĐT 3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H19

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 14000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the belt drive: 10° (Đại thang)

Load property: Êm
Coupling force on the shaft: 29.64 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	.9	0.84	0.846		312	0.7	96
n (v/ph)	14	50	517.	517.86		5.28	136	.28
T (Nmm)	592	7.6	1560	1.3	569	02.0	5578	30.7
u	•	2.80		3	.80		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Ngô Đức Thắng......22014523 Class: K16-KTCĐT_3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H20

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 18000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the belt drive: 35° (Đại thang)

Load property: Va đập nhẹ Coupling force on the shaft: 25.79 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P (kW)	0.	.7	0.65	58	0.6	532	0.6	19
n (v/ph)	72	20	360.	00	80	.00	80.	00
T (Nmm)	928	4.7	1745	5.3	754	45.0	7389	93.1
u		2.	00	4	.50		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Phạm Thị Thủy......22011010 Class: K16-KTCĐT_2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 1/P.MEM16.H21

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 25000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the belt drive: 65° (Đai det)

Load property: Êm
Coupling force on the shaft: 30.19 (N)

Shaft Params	Mo	otor	I		I	I	Worl	cing
P(kW)	1.	.1	1.03	35	0.9	94	0.9	74
n (v/ph)	14	50	517.	.86	117	'.70	117.	.70
T (Nmm)	724	4.8	1908	6.7	806	51.7	7902	28.9
u	•	2.	80	4	.40		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Hữu Toàn......22011478 Class: K16-KTCĐT_2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 1/P.MEM16.H22

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 15000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the belt drive: 25° (Đại thang)

Load property: Va đập nhẹ Coupling force on the shaft: 33.16 (N)

Shaft Params	Mo	tor	I		I	I	Worl	king
P(kW)	0.	9	0.84	16	0.8	312	0.7	96
n (v/ph)	72	20	202.	25	51.	.86	51.	86
T (Nmm)	1193	37.5	3994	7.1	1495	29.5	1465	83.1
u		3.	56	3	.90		1	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\rm w}$ $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{11} = l_{21} = 2.l_{13}$

Requirements: + Performing the design calculation of the belt and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Hữu Văn......22011194 Class: K16-KTCĐT 3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H1

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 24000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the chain drive: 5°

Load property: Va đập nhẹ Coupling force on the shaft: 66.32 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	.7	0.68	86	0.6	59	0.6	33
n (rpm)	72	20	720	0.0	171	.43	50.	42
T (Nmm)	928	34.7	7 9099		367	11.5	1198	95.9
u		1	1		.20	3	.40	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Hà Việt Anh......22011039 Class: K16-KTCĐT 3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H2

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 18000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 55°

Load property: Va đập vừa Coupling force on the shaft: 29.01 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	0.7		36	0.6	559	0.6	33
n (rpm)	96	960		.0	259	0.46	76.	31
T (Nmm)	696	3.5	6824	4.3	242	56.0	7921	8.3
u			1	3	.70	3	.40	

- Distances between the load positions are given by the formula as:

$$l_{12} = 5.b_{\text{w}}$$
 $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2 + Presenting the report on paper with A4 size.

Student: Nguyễn Hùng Anh......22010732 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

(sign and full name) (sign and full name)

 $l_{23} = l_{21} + 6.b_{\rm w}$

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H3

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 20000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 55°

Load property: Êm

Coupling force on the shaft: 99.48 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	.9	0.88	82	0.847		0.8	13
n (rpm)	72	20	720	0.0	194	.59	69.	50
T (Nmm)	119	37.5	1169	11698.8		41568.7		14.4
u		1		3	.70	2	.80	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

+ Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Chu Bång......22010955 Class: K16-KTCÐT 3

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H4

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 12000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 75°

Load property: Va đập vừa Coupling force on the shaft: 72.35 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	1.	1.2		76	1.129		1.0	84
n (rpm)	72	20	720	0.0	180	0.00	90.	00
T (Nmm)	159	16.7	1559	8.3	598	59899.7		24.4
u			[4	.00	2	.00	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Duy Bình......22010710 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H5

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 11000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 20°

Load property: Va đập nhẹ Coupling force on the shaft: 88.43 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	1.	.2	1.1	76	1.129		1.0	84
n (rpm)	72	20	720	0.0	180	0.00	75.	00
T (Nmm)	159	16.7	1559	8.3	3.3 59899.7		1380	29.3
u		1		4	4.00 2.4		.40	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Phạm Quyết Chiến......20010997 Class: K14-CĐT

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Semester: 2024.1

Project number: 2/P.MEM16.H6

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 14000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 50°

Load property: Êm

Coupling force on the shaft: 79.58 (N)

Shaft Params	Mo	Motor		I		II		king
P(kW)	1.	1.2		76	1.129		1.0	84
n (rpm)	72	20	720	0.0	175	5.61	83.	62
T (Nmm)	159	16.7	1559	8.3	61397.1		1238	00.5
u		1		4	.10	2	.10	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Mạnh Dũng......22010928 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Semester: 2024.1

Project number: 2/P.MEM16.H7

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 21000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 90°

Load property: Va đập vừa Coupling force on the shaft: 18.30 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	.5	0.49	90	0.471		0.4	52
n (rpm)	14	50	1450	0.0	353	3.66	136	.02
T (Nmm)	329	3.1	3227.2		12718.6		3173	35.0
u		1		4	1.10 2.		.60	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Trần Văn Đạt......22011214 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H8

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 22000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 15°

Load property: Va đập vừa Coupling force on the shaft: 94.74 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P (kW)	1.	.0	0.98	30	0.9	41	0.9	04
n (rpm)	72	20	720	.0	171	.43	68.	57
T (Nmm)	1320	63.9	1299	8.6	524	21.1	1259	03.5
u		1	[4	.20	2	.50	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Đặng Duy Hiếu......22014152 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H9

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 15000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 35°

Load property: Êm

Coupling force on the shaft: 32.93 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	1.	.0	0.98	80	0.9	41	0.9	04
n (rpm)	14	50	1450	0.0	353	.66	101	.05
T (Nmm)	658	6.2 6454		4.5	25410.1		8543	34.9
u		1		4.10 3		.50		

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\rm w}$ $l_{13} = l_{22} = 4.b_{\rm w}$ $l_{11} = l_{21}$

 $l_{11} = l_{21} = 2.l_{13}$

 $l_{23} = l_{21} + 6.b_{\rm w}$

Requirements:

- + Performing the design calculation of the chain and gear drives
- + Performing the design calculation of the shaft: 1
- + Presenting the report on paper with A4 size.

Student: Nguyễn Như Hoà......20011003 Class: K14-CĐT

Instructor: Vũ Lê Huy

DEAN

LECTURER

(sign and full name)

(sign and full name)

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H10

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 22000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 10°

Load property: Va đập vừa Coupling force on the shaft: 42.63 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P (kW)	0.	.6	0.58	88	0.565		0.5	43
n (rpm)	96	50	960	0.0	259	0.46	112	.81
T (Nmm)	596	8.8 58		9.4	2079	20796.1		68.0
u		1		3	3.70 2		.30	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Ngô Sinh Hùng......20011004 Class: K14-CĐT

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H11

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 25000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 50°

Load property: Va đập nhẹ Coupling force on the shaft: 45.59 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	1.	.1	1.07	78	1.0	35	0.9	94
n (rpm)	96	50	960	.0	246	5.15	111	.89
T (Nmm)	109	42.7	1072	3.9	401	55.4	8483	39.6
u		1		3	.90	2	.20	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Ngô Thế Hướng......22010538 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 2/P.MEM16.H12

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 14000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the chain drive: 90°

Load property: Va đập vừa Coupling force on the shaft: 132.64 (N)

Shaft Params	Mo	Motor		I		I	Worl	king
P(kW)	1.	1.2		76	1.129		1.0	84
n (rpm)	72	20	720	0.0	189	.47	72.	87
T (Nmm)	159	16.7	1559	98.3 56		05.8	1420	63.9
u		1		3	3.80 2.60			

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Nam Khánh......22010856 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H13

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 25000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 75°

Load property: Va đập vừa Coupling force on the shaft: 32.93 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	1.	.2	1.17	76	1.129		1.0	84
n (rpm)	14	50	1450	0.0	391	.89	145	.14
T (Nmm)	790	3.4	7745	5.4	5.4 2751		7132	25.6
u		1	1	3	.70	2	.70	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Hoàng Đức Long......22010790 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

 $l_{23} = l_{21} + 6.b_{\rm w}$

Project number: 2/P.MEM16.H14

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 15000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 50°

Load property: Êm

Coupling force on the shaft: 33.16 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king
P(kW)	0.	.5	0.49	90	0.471		0.4	52
n (rpm)	72	20	720	0.0	160	0.00	72.	73
T (Nmm)	663	1.9 6499		9.3	28112.8		5935	51.0
u		1		4	.50	2	.20	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$

+ Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Vũ Hữu Lộc......22011006 Class: K16-KTCĐT 3

Instructor: Vũ Lê Huy

Requirements:

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H15

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 23000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the chain drive: 85°

Load property: Va đập nhẹ Coupling force on the shaft: 99.48 (N)

Shaft Params	Motor		I		II		Working	
P(kW)	1.2		1.176		1.129		1.084	
n (rpm)	720		720.0		184.62		80.	27
T (Nmm)	159	16.7	1559	15598.3		58400.8		67.2
u		1		3	.90 2.		.30	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Vũ Trí Minh......22010944 Class: K16-KTCĐT 3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H16

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 22000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 90°

Load property: Va đập nhẹ Coupling force on the shaft: 45.22 (N)

Shaft Params	Mo	otor	I		II		Working	
P(kW)	1.	.0	0.980		0.941		0.904	
n (rpm)	960		960.0		234.15		90.06	
T (Nmm)	994	7.9	9749		38379.5		95860.5	
u		1		4	.10 2.		.60	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Quang Phúc......22010934 Class: K16-KTCĐT 3

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H17

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 12000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 60°

Load property: Va đập vừa Coupling force on the shaft: 54.89 (N)

Shaft Params	Mo	Motor		I		II		king
P (kW)	1.	.0	0.980		0.941		0.904	
n (rpm)	1450		1450.0		381.58		181	.70
T (Nmm)	658	6.2 645		4.5 2355		50.9	4751	3.5
u		1		3	.80 2.		.10	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Phan Bảo Quốc......22010591 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H18

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 24000 \text{ (hour)}$

Number of shifts: 1 (shift)

The tilt angle of the center line of the chain drive: 85°

Load property: Va đập nhẹ Coupling force on the shaft: 60.37 (N)

Shaft Params	Mo	otor	I		I	I	Worl	king	
P(kW)	1.	.1	1.078		1.035		0.994		
n (rpm)	14	1450		0.0	345.24		111.37		
T (Nmm)	724	4.8	7099	7099.9		28630.1		85235.7	
u		1	1	4	.20	3	.10		

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 2

+ Presenting the report on paper with A4 size.

Student: Vũ Đức Thành......22010922 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H19

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 10000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 25°

Load property: Êm
Coupling force on the shaft: 49.74 (N)

Shaft Params	Mo	otor	I		II		Working	
P(kW)	1.	.0	0.980		0.941		0.904	
n (rpm)	96	960		0.0	252.63		120.30	
T (Nmm)	994	7.9	9749	9.0	35572.0		71763.9	
u		1		3	.80 2		.10	

- Distances between the load positions are given by the formula as:

$$l_{12} = 5.b_{\text{w}}$$
 $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Văn Thịnh......22010640 Class: K16-KTCĐT 1

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H20

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 19000 \text{ (hour)}$

Number of shifts: 2 (shift)

The tilt angle of the center line of the chain drive: 10°

Load property: Êm

Coupling force on the shaft: 29.94 (N)

Shaft Params	Mo	otor	I		II		Working	
P(kW)	1.	.0	0.980		0.941		0.904	
n (rpm)	14	1450		0.0	391.89		111.97	
T (Nmm)	658	6.2 6454		4.5	22931.3		77102.8	
u		1		3	.70 3.		.50	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Nguyễn Văn Tiến......22014512 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER

FACULTY OF MECHANICAL ENGINEERING & MECHATRONICS

MINOR PROJECT

Course Code: MEM703002 Class: Chi tiết máy-1-1-24(N01) Semester: 2024.1

Project number: 2/P.MEM16.H21

A transmission system is given as:

- Working conditions and parameters are given as:

Service time: $L_h = 16000 \text{ (hour)}$

Number of shifts: 3 (shift)

The tilt angle of the center line of the chain drive: 35°

Load property: Va đập nhẹ Coupling force on the shaft: 74.61 (N)

Shaft Params	Mo	Motor		I		II		king
P(kW)	0.9		0.882		0.847		0.813	
n (rpm)	720		720.0		171.43		81.	63
T (Nmm)	119	37.5	1169	11698.8		47184.6		3.9
u		1		4	.20	2	.10	

- Distances between the load positions are given by the formula as:

 $l_{12} = 5.b_{\text{w}}$ $l_{13} = l_{22} = 4.b_{\text{w}}$ $l_{11} = l_{21} = 2.l_{13}$ $l_{23} = l_{21} + 6.b_{\text{w}}$

Requirements: + Performing the design calculation of the chain and gear drives

+ Performing the design calculation of the shaft: 1

+ Presenting the report on paper with A4 size.

Student: Đào Tiến Tuấn......22010619 Class: K16-KTCĐT 2

Instructor: Vũ Lê Huy

DEAN LECTURER