COMP4901L Assignment6 Writeup

WONG Yuk Chun (ycwongal, 20419764)

CHEUNG Daniel (dcheungaa, 20423088)

Part 1

Q1.1

a)

$$f(x,w) = \sigma(\sigma(x_1w_1)w_2 + x_2)$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d\sigma}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$= \frac{1 + e^{-x} - 1}{1 + e^{-x}} \times \frac{1}{1 + e^{-x}}$$

$$= (1 - \sigma(x))\sigma(x)$$

$$\therefore \frac{\partial f}{\partial w_2} = \frac{\partial f}{\partial \sigma(x_1w_1)w_2 + x_2} \frac{\partial \sigma(x_1w_1)w_2 + x_2}{\partial w_2}$$

$$= (1 - \sigma(\sigma(x_1w_1)w_2 + x_2))\sigma(\sigma(x_1w_1)w_2 + x_2)\sigma(x_1w_1)$$
At the current step,
$$\frac{\partial f}{\partial w_2} = (1 - \sigma(\sigma(1 \cdot 0)0 + 0))\sigma(\sigma(1 \cdot 0)0 + 0)\sigma(1 \cdot 0)$$

b)

L2 loss is defined as
$$(y_{\text{true}} - y_{\text{predicted}})^2$$

$$y_{\text{predicted}} = f(x, w) = \sigma(\sigma(1 \cdot 0)0 + 0) = 0.5$$

$$\therefore \frac{\partial L}{\partial f} = 2(5 - 0.5)(-1) = -9$$

$$w_2 := w_2 - \eta \frac{\partial L}{\partial w_2}$$

$$= 0 - 0.5 \frac{\partial L}{\partial f} \frac{\partial f}{\partial w_2}$$

$$= 0 - 0.5 \times -9 \times 0.125$$

$$= 0.5625$$

Q1.2

Suppose a linear function: g(x) = cxThen for the output of a 2-layer network $c(\mathbf{W}_1c(\mathbf{W}_2\mathbf{x} + \mathbf{b}_2) + \mathbf{b}_1) = c(c\mathbf{W}_1\mathbf{W}_2\mathbf{x} + c\mathbf{W}_1\mathbf{b}_2 + \mathbf{b}_1)$ $= c(\mathbf{W}'\mathbf{x} + \mathbf{b}')$ The result corresponds to the result of a single layer network, just with a different set of weights and biases. As such, continuing on this logic, no matter how many number of hidden linear layers the network has, it will still be no different than with just 1 single linear layer.

Q1.3

ReLU, besides being faster in calculation, it also brings sparsity and a reduced likelihood of vanishing gradient. And in practice, ReLU seems to perform better than sigmoids.

Q.1.4

Having weights as constant values would prevent the network from learning, because the gradient and propagation error would be the same. And as such, all the weight updates would subsequently also be the same.

Q1.5

a) AlexNet

~60M, from its paper https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

b) VGG-16

Layer	Tensor	Weights	Biases	Parameters	
Input Image	224x224x3	0	0	0	
conv3-64	224x224x64	1728	64	1792	
conv3-64	224x224x64	36864	64	36928	
maxpool (size 2, stride 2)	112x112x64	0	0	0	
conv3-128	112x112x128	73728	128	73856	
conv3-128	112x112x128	147459	128	147584	
maxpool	56x56x128	0	0	0	
conv3-256	56x56x256	294912	256	295168	
conv3-256	56x56x256	589824	256	590080	
conv3-256	56x56x256	589824	256	590080	
maxpool	28x28x256	0	0	0	
conv3-512	28x28x512	1179648	512	1180160	
conv3-512	28x28x512	2359296	512	2359808	
conv3-512	28x28x512	2359296	512	2359808	
maxpool	14x14x512	0	0	0	
conv3-512	14x14x512	2359296	512	2359808	
conv3-512	14x14x512	2359296	512	2359808	
conv3-512	14x14x512	2359296	512	2359808	
maxpool	7x7x512	0	0	0	
FC-4096	4096x1	102760448	4096	102764544	
FC-4096	4096x1	16777216	4096	16781312	
FC-1000	1000x1	4096000	1000	4097000	
Total				138,357,544	

c) GoogLeNet

From the paper,

 $\# \ of \ parameters = (2.7 + 112 + 159 + 380 + 364 + 437 + 463 + 580 + 840 + 1072 + 1388 + 1000)K = 6797.7K$

Nets ordered in desc. # of parameters: VGG16 > AlexNet > GoogLeNet

Comparing to VGG16, GoogLeNet has most of its parameters in its inception blocks, but VGG16 has most in its fully connected layers. By using instead, an average pool then a linear layer, not much more parameters are added to the model.

Part 4

Accuracy: 0.974

confusion matrix:

	1	51	0	0	0	0	0	0	0	0	0
	2	0	52	1	Θ	Θ	Θ	0	Θ	0	0
	3	0	0	41	1	0	0	0	Θ	1	Θ
	4	0	0	0	61	0	1	0	1	1	Θ
	5	0	0	0	0	46	0	1	1	0	0
	6	0	0	0	0	0	45	0	1	0	0
	7	0	0	0	0	0	0	41	Θ	0	Θ
	8	0	0	0	0	0	0	0	47	0	2
	9	0	0	0	1	0	0	0	Θ	59	Θ
1	0	0	0	0	0	0	0	0	1	0	44

7 and 9 are the most easily confused digit. If we squueze the loop of 9, it looks like 7. Or in some style of 7 there is verticle stroke at top left and horizontal line in middle and we intersect both line, it looks like 9

3 and 8 are also easily confused. If the start and end of 3 is closer to the middle, it looks like 8.

Part 5

Layer 1 (original image)

5

Layer 2

Layer 3

Some filters' output are blank which mean they are not activated by this digit or their weights are zero

Some filters' output are almost the same with other filter output

Some filters' output are the blur version of the original image

Some filters are extracting the vertical edges, some are extracting the horizontal edges

Some filters make the digit thicker, some make the digit thinner

Layer 3 is RELU layer which makes all negative value in layer 2 zero, but negative value are displayed as black, so layer2 and layer3 display the same.

Part 6


```
image1.JPG contains 10 numbers: 1 2 3 4 5 6 3 8 7 0
image2.JPG contains 10 numbers: 1 2 3 9 5 5 7 8 1 0
```

3 image3.png contains 5 numbers: 6 0 6 2 4

4 image4.jpg contains 54 numbers: 1 0 7 1 1 6 3 2 6 1 4 6 3 4 1 4 2 2 0 5 4 4 1 1 1 1 4 9 0 2 5 5 1 7 7 4 4 1 7 4 2 9 1 4 3 4 2 2 9 7 4 4 1 1

Some digits in image4 are disconnected, so misdetection happened.