

Programación

UD 1: Introducción a la programación ALGORITMOS

Manos a la obra!

En un juego, el ganador obtiene una ficha roja; el segundo, una ficha azul; y el tercero, una amarilla. Al final de varias rondas, la puntuación se calcula de la siguiente manera: Al cubo de la cantidad de fichas rojas se adiciona el doble de fichas azules y se descuenta el cuadrado de las fichas amarillas. Si Andrés llegó 3 veces en primer lugar, 4 veces de último y 6 veces de intermedio, ¿Qué puntuación obtuvo?

(Adaptado de Melo (2001), página 30).

Parte 1 del enunciado

En un juego, el <u>ganador</u> obtiene una ficha <u>roja</u>; el <u>segundo</u>, una ficha <u>azul</u>; y el <u>tercero</u>, una <u>amarilla</u>.

¿Tenemos datos importantes?

Así es, debemos entender que existen 3 tipos de fichas. Una por cada posición.

Ayudas: Subrayar y colorear

Parte 2 del enunciado

Al final de varias rondas, el <u>puntaje se calcula</u> de la siguiente manera: <u>Al cubo</u> de la cantidad de fichas <u>rojas</u> se <u>adiciona el doble</u> de fichas <u>azules</u> y <u>se descuenta el cuadrado</u> de las fichas <u>amarillas</u>.

¿Tenemos datos importantes?

Sí! tenemos una fórmula para calcular el puntaje final.

Parte 3 del enunciado

Si Andrés llegó <u>3 veces en primer lugar,</u> 4 <u>veces de último</u> y <u>6 veces de intermedio, ¿ Qué puntuación obtuvo?</u>

¿Tenemos datos importantes?

Sí, tenemos la cantidad de veces que Andrés ha ganado en los 3 distintos lugares.

Además tenemos la pregunta, es decir, sabemos que debemos tener un resultado concreto.

¿Y ahora?

Hemos leído el enunciado y re leído, obtuvimos los datos de acuerdo a cada parte del enunciado, por lo que ahora pasamos a **TRAZAR** un plan según los datos que tenemos.

Es decir ordenarlos según por cada parte del enunciado y verificar que operaciones necesito para resolver el problema.

Trazando nuestro plan

Parte 1:

Roja para el primer lugar

Azul para el segundo lugar

Amarilla para el tercer lugar

Parte 2:

Armamos la fórmula para calcular puntuación final:

$$PF = (R^3) + (2 \times Az) - (Am^2)$$

Parte 3:

Andrés tiene: 3 fichas rojas (R), 6 azules (Az) y 4 amarillas (Am).

Continuamos...

Nuestro tercer paso es **EJECUTAR** nuestra traza según los datos obtenidos al entender el problema.

Quiere decir unir las operaciones elegidas y aplicar los datos en dichas operaciones.

Ejecutando el plan

Por lo que tenemos:

Andrés tiene: 3 fichas rojas (R), 6 azules (Az) y 4 amarillas (Am).

Y la fórmula obtenida:

$$PF = (R^3) + (2 \times Az) - (Am^2)$$

Reemplazando tenemos:

$$PF = (3^3) + (2x6) - (4^2)$$

Continuando cada operación:

$$PF = 27 + 12 - 16$$

Nuestro resultado final es: PF = 23

Revisando

Al ejecutar nuestro plan ahora debemos **REVISAR**, para ello debemos comprobar que nuestro resultado es correcto, quiere decir que debemos revisar los cálculos y verificar con la solución estimada.

Tenemos que dar una solución completa, en nuestro caso sería como respuesta según la pregunta del problema:

La puntuación final que obtuvo Andrés fue de 23

Resumiendo

Entonces para resolver un problema debemos:

Entender → Trazar → **Ejecutar** → Revisar

Diseñar un algoritmo (II)

Traducir un algoritmo (II)

```
//Indicamos el inicio del programa
INICIO
//Declaramos las variables y las iniciamos
ENTERO fichas rojas = 3;
ENTERO fichas azules = 6;
ENTERO fichas amarillas = 4;
ENTERO puntaje final = 0;
//Escribirmos la operación a utilizar
puntaje final = fichas rojas^3 + 2*fichas azules - fichas amarillas^2;
//Imprimimos por pantalla el texto que queremos mostrar
IMPRIMIR "El puntaje final de Andres es de "
//Imprimimos por pantalla la variable que queremos mostrar
IMPRIMIR puntaje final;
//Indicamos el fin del programa
FIN
```

Ayudas: // indica comentario

Veamos si generalizamos el problema

¿Qué sucede si existen más jugadores?

¿Cómo podríamos calcular el puntaje final para un nuevo jugador y con cantidades de fichas distintas a Andrés?

¿Tienes alguna idea?

Diseñar un algoritmo

Traducir un algoritmo

```
INICIO
ENTERO f rojas=0, f azules=0, f amarillas=0, puntaje final=0;
TEXTO nombre jugador = " "; //se inicia con un espacio
IMPRIMIR "Ingrese el nombre del jugador: ";
LEER nombre jugador;
IMPRIMIR "Ingrese cantidad fichas rojas:";
LEER f rojas;
IMPRIMIR "Ingrese cantidad fichas azules:";
LEER f azules;
IMPRIMIR "Ingrese cantidad fichas amarillas:";
LEER f amarillas;
puntaje final = f rojas^3 + 2*f azules - f amarillas^2;
IMPRIMIR "El puntaje final de ";
IMPRIMIR nombre jugador;
IMPRIMIR " es de: ";
IMPRIMIR puntaje final;
FIN
```

¿Y si agregamos algo más?

- ✓ Sucede que ahora queremos seguir calculando más jugadores, por ejemplo 50 o 15 o 1000, pero sin tener que ejecutar tantas veces nuestro programa, solo sabemos que el usuario me diría cuantos jugadores se desea que le calculemos el puntaje.
- √¿Alguna idea? ¿como puedo modificar mi programa para que calcule los puntajes tantas veces según el usuario me ha dicho en un inicio la cantidad de jugadores?

Traducir un algoritmo

```
TNTCTO
ENTERO f rojas=0, f azules=0, f amarillas=0, puntaje final=0;
ENTERO cantidad jugadores = 0, contador = 0;
TEXTO nombre jugador = " "; //se inicia con un espacio
IMPRIMIR "Ingrese la cantidad de jugadores: ";
LEER cantidad jugadores;
MIENTRAS (contador < cantidad jugadores)
   IMPRIMIR "Ingrese el nombre del jugador: ";
   LEER nombre jugador;
   IMPRIMIR "Ingrese cantidad fichas rojas:";
   LEER f rojas;
   IMPRIMIR "Ingrese cantidad fichas azules:";
   LEER f azules;
   IMPRIMIR "Ingrese cantidad fichas amarillas:";
   LEER f amarillas;
```

```
puntaje_final = f_rojas^3 + 2*f_azules - f_amarillas^2;
IMPRIMIR "El puntaje final de ";
IMPRIMIR nombre_jugador;
IMPRIMIR " es de: ";
IMPRIMIR puntaje_final;
contador = contador + 1;
FIN MIENTRAS
IMPRIMIR "Se ha calculado los puntajes de los jugadores";
FIN
```

Depurar un algoritmo

- ✓ En este caso haremos una tabla para mostrar la depuración del programa, imaginándonos las impresiones por pantalla.
- ✓ Suponemos que el usuario quiere calcular el puntaje de 4 jugadores.
- ✓ Iniciamos nuestras variables.

Variables / n° vueltas	valor inicial
cantidad_jugadores	4
contador (valor inicial)	0
nombre_jugador	11 11
f_rojas	0
f_azules	0
f_amarillas	0
puntaje_final	0

Vuelta (iteración) 1

Variables / n° vueltas	valor inicial	1
cantidad_jugadores	4	4
contador (valor inicial)	0	0
nombre_jugador	11 11	Jorge
f_rojas	0	10
f_azules	0	5
f_amarillas	0	0
puntaje_final	0	1010

Validamos la condición **mientras**: contador < cantidad_jugadores

Reemplazamos los valores: 0 < 4

Donde el resultado de esta operación es VERDADERA, por lo que entra al ciclo mientras y ejecuta las operaciones que están dentro.

- El usuario ingresa los valores de cada ficha y las reemplazamos en la fórmula donde obtenemos el resultado final.
- La última operación del ciclo mientras es:
- contador = contador + 1, es decir estamos aumentando en 1 la variable contador por lo que su nuevo valor es 1, este valor inicial de la siguiente vuelta.

Vuelta (iteración) 2

Variables / n° vueltas	valor inicial	1	2
cantidad_jugadores	4	4	4
contador (valor inicial)	0	0	1
nombre_jugador	11 11	Jorge	Ana
f_rojas	0	10	8
f_azules	0	5	4
f_amarillas	0	0	3
puntaje_final	0	1010	511

Volvemos a validar la condición mientras con nuevo valor de la variable contador: 1 < 4

Donde el resultado VERDADERA, se entra al ciclo mientras y ejecuta las operaciones nuevamente

El usuario ingresa los valores de cada ficha y las reemplazamos en la fórmula donde obtenemos el resultado final.

La última operación del ciclo mientras es:

contador = contador + 1, es decir estamos aumentando en 1 la variable contador por lo que su nuevo valor es 2, este valor inicial de la siguiente vuelta.

Vuelta (iteración) 3

Variables / n° vueltas	valor inicial	1	2	3
cantidad_jugadores	4	4	4	4
contador (valor inicial)	0	0	1	2
nombre_jugador	11 11	Jorge	Ana	Fran
f_rojas	0	10	8	7
f_azules	0	5	4	3
f_amarillas	0	0	3	5
puntaje_final	0	1010	511	324

Volvemos a validar la condición mientras con nuevo valor de la variable contador: 2 < 4

Donde el resultado VERDADERA, se entra al ciclo mientras y ejecuta las operaciones nuevamente

El usuario ingresa los valores de cada ficha y las reemplazamos en la fórmula donde obtenemos el resultado final.

La última operación del ciclo mientras es:

contador = contador + 1, es decir estamos aumentando en 1 la variable contador por lo que su nuevo valor es 3, este valor inicial de la siguiente vuelta.

Vuelta (iteración) 4

Variables / n° vueltas	VI	1	2	3	4
cantidad_jugadores	4	4	4	4	4
contador (valor inicia)	0	0	1	2	3
nombre_jugador	11 11	Jorge	Ana	Fran	Fabiola
f_rojas	0	10	8	7	6
f_azules	0	5	4	3	2
f_amarillas	0	0	3	5	7
puntaje_final	0	1010	511	324	171

Volvemos a validar la condición mientras con nuevo valor de la variable contador:

Donde el resultado VERDADERA, se entra al ciclo mientras y ejecuta las operaciones nuevamente

El usuario ingresa los valores de cada ficha y las reemplazamos en la fórmula donde obtenemos el resultado final.

La última operación del ciclo mientras es:

contador = contador + 1, es decir estamos aumentando en 1 la variable contador por lo que su nuevo valor es 4, este valor inicial de la siguiente vuelta.

Vuelta (iteración) 5

Variables / n° vueltas	valor inicial	1	2	3	4	5
cantidad_jugadores	4	4	4	4	4	4
contador (valor que inicia)	0	0	1	2	3	4
nombre_jugador	11 11	Jorge	Ana	Francisco	Fabiola	-
f_rojas	0	10	8	7	6	-
f_azules	0	5	4	3	2	-
f_amarillas	0	0	3	5	7	-
puntaje_final	0	1010	511	324	171	-

Volvemos a validar la condición mientras con nuevo valor de la variable contador: 4 < 4

Donde el resultado FALSA, no entra al ciclo mientras y muestra por pantalla el mensaje final y finaliza nuestro programa.

Depurar el programa

Así se resuelven las depuraciones de nuestra traducción.

La finalidad, recordar, es verificar si nuestro análisis, diseño y traducción están correctos.

En caso de haber error sabremos en que parte tenemos el error y así corregirlo.

La depuración también se realiza en caso de un programa ya existente.

¡Solo debes practicar!