PART III

GELFAND THEORY & SPECTRAL THEOREM

In these notes we go through the basic theory of C^* -algebras and spectral theory. The topics in this document will include spectral mapping theorem, Gelfand-Naimark theory.

1 | Gelfand-Naimark Theory

Our goal is now to abstract out the properties of operators on Hilbert spaces and study them. This will help us study more general quantum systems. Let \mathcal{A} be a Banach space over \mathbb{C} i.e., \mathcal{A} is a vector space with a norm such that it's also complete under this norm. It's called a Banach algebra if it has a product structure such that,

$$||AB|| \le ||A|| \, ||B||.$$

Since $||A_1B_1-A_2B_2|| \le ||A_1|| ||B_1-B_2|| + ||B_2|| ||A_1-A_2||$ the multiplication map is continuous. An involutive Banach algebra or a *-algebra is a Banach algebra with a *-operation,

$$A \mapsto A^*$$

such that, $(A^*)^* = A$, $(A+B)^* = A^* + B^*$, $(\lambda A)^* = \overline{\lambda} A^*$, $(AB)^* = B^*A^*$, and $||A|| = ||A^*||$. All these properties are imported from what we expect from the adjoint operation on operators on Hilbert spaces.

A *-algebra that satisfies,

$$||A^*A|| = ||A^*|| ||A|| = ||A||^2,$$

is called a C^* -algebra. It can be checked that the algebra of bounded operators on a Hilbert space \mathcal{H} forms a C^* -algebra with respect to the adjoint operation. By embedding into the operators on the algebra every C^* -algebra can be made to contain the unit element. Hence we will assume every C^* -algebra to be unital in this document.

1.1 | Spectral Mapping Theorem

An element $A \in \mathcal{A}$ is said to be invertible if there exists a unique element A^{-1} such that $AA^{-1} = A^{-1}A = 1$. The set of all invertible elements forms a group and is called the general linear group of \mathcal{A} . Denoted by $\mathcal{G}(\mathcal{A})$. Our aim is to show that $\mathcal{G}(\mathcal{A})$ is open in \mathcal{A} .

Consider the unit ball around $1 \in \mathcal{A}$, i.e., $B_1(1) = \{A \mid ||A-1|| \le 1\}$. Since $||A-1|| \le 1$, $\sum_{n>0} ||A-1||^n < \infty$, so, $A' = \sum_{n>0} (A-1)^n$ converges.

$$AA' = A'A = (1 - (1 - A))A' = A' - (1 - A)A' = \sum_{n \ge 0} (1 - A)^n - (1 - A)A'$$
$$= \sum_{n \ge 0} (1 - A)^n - \sum_{n \ge 1} (1 - A)^n = 1.$$

So, every $A \in B_1(1)$ is invertible. As a corollary, if $||A|| < |\lambda|$, then $(A - \lambda)$ is invertible with the inverse, $(A - \lambda)^{-1} = -\sum_{n \geq 0} A^n / \lambda^{n+1}$. Since left multiplication by an element $L_B(A) = BA$ is continuous, for $B \in \mathcal{G}(A)$, L_B is invertible with inverse $L_{B^{-1}}$.

Since the open unit ball around 1 is invertible 1 is in the interior of $\mathcal{G}(\mathcal{A})$. Using this we can obtain open balls around every element $B \in \mathcal{G}(\mathcal{A})$ using translations. $B \in \mathcal{G}(\mathcal{A})$, then the continuous map L_B takes the open ball around 1 to an open ball around B i.e., $L_B(B_1(1))$ is an open ball around B entirely contained in $\mathcal{G}(\mathcal{A})$. Hence $\mathcal{G}(\mathcal{A})$ is open.

Let $A \in \mathcal{A}$, the spectrum of A in \mathcal{A} is defined as,

$$\sigma(A) = \{ \lambda \in \mathbb{C} \mid (A - \lambda) \text{ is not invertible} \}.$$

 $\sigma(A)$ is a closed subset of the disk $\{\lambda \mid |\lambda| \leq ||A||\}$. For any $\lambda \notin \sigma(A)$, the resolvent of A is defined as,

$$R_A(\lambda) = (\lambda - A)^{-1}$$

where $R_A : \mathbb{C} \backslash \sigma(A) \to \mathcal{A}$. If $\lambda, \mu \notin \sigma(A)$ then we have,

$$(\mu - \lambda)\mathbb{I} = (\mu - A) - (\lambda - A)$$

$$= (\lambda - A)(\lambda - A)^{-1}(\mu - A) - (\lambda - A)(\mu - A)(\mu - A)^{-1}$$

$$= (\lambda - A)R_A(\lambda)(\mu - A) - (\lambda - A)R_A(\mu)(\mu - A)^{-1}$$

$$= (\lambda - A)[R_A(\lambda) - R_A(\mu)](\mu - A)$$

So we have,

$$R_A(\lambda)(\mu - \lambda)R_A(\mu) = R(\lambda)(\lambda - A)[R_A(\lambda) - R_A(\mu)](\mu - A)R_A(\mu)$$
$$\frac{R_A(\lambda) - R_A(\mu)}{\mu - \lambda} = R_A(\lambda)R_A(\mu)$$

So, as $\lambda \to \mu$, $R'_A(\lambda)$ exists and is equal to $-R_A(\lambda)^2$. $R_A(\lambda)$ is continuous in λ . $R_A(\lambda)$ is analytic \mathcal{A} valued function on $\mathbb{C}\setminus\sigma(A)$, i.e., complex derivative $R'_A(\lambda)$ exists and is continuous. Suppose $\sigma(A)$ is empty, then R_A is an analytic function on all of \mathbb{C} . As $\lambda \to \infty$ we have,

$$||R_A(\lambda)|| = |\lambda|^{-1}||(1 - \lambda^{-1}A^{-1})^{-1}||$$

Since $(1-\lambda^{-1}A^{-1}) \to 1$ as $\lambda \to \infty$ we have, $||R_A(\lambda)|| \to 0$ as $\lambda \to \infty$. Since $\lim_{\lambda \to \mu} [\varphi(R_A(\lambda)) - \varphi(R_A(\mu))]/(\lambda - \mu) = \lim_{\lambda \to \mu} (\varphi(R_A(\lambda) - R_A(\mu)))/(\lambda - \mu)$. So, $\varphi \circ R_A$ is a bounded analytic function. Since bounded entire functions are constant by Liouville's theorem R_A is a constant function, equal to zero which is a contradiction. $\sigma(A)$ is also closed and bounded hence it's closed.

LEMMA 1.1. If $A \in \mathcal{A}$ then $\sigma(A) \subset \mathbb{C}$ is nonempty and compact.

Suppose there exists $A \neq \lambda 1$, then $A - \lambda 1 \neq 0$, if every element of \mathcal{A} is invertible we have, $(A - \lambda)$ is invertible for all $\lambda \in \mathbb{C}$ or $\sigma(A)$ is empty which cannot happen by previous lemma.

THEOREM 1.2. (GELFAND-MAZUR) If A is a Banach algebra in which every non-zero element is invertible, then $A \cong \mathbb{C}$.

If p(z) is a polynomial, then the map $p(z) \mapsto p(A)$ is a homomorphism from $\mathbb{C}[z]$ to the algebra generated by 1 and A denoted by [1, A].

Theorem 1.3. (Spectral Mapping Theorem) $p(z) = \sum_{i=0}^{N} a_i z^i$. Then,

$$\sigma(p(A)) = p(\sigma(A)) = \{p(\lambda) \mid \lambda \in \sigma(A)\}\$$

PROOF

Fix $\lambda \in \mathbb{C}$, without loss of generality assume $a_N \neq 0$. Then we have by fundamental theorem of algebra, $p(z) - \lambda = a_N \prod_{n=1}^{N} (z - \lambda_i)$ since $p(z) \mapsto p(A)$ is an algebra homomorphism we have,

$$p(A) - \lambda = a_N \prod_{n=1}^{N} (A - \lambda_i)$$

So, $\lambda \notin \sigma(p(A))$ if and only if $\lambda_i \notin \sigma(A)$ and $\lambda \notin p(\sigma(A))$.

The spectrum depends on the ambient algebra. If $A - \lambda$ is invertible in \mathcal{A} with inverse $(A - \lambda)^{-1}$ but $(A - \lambda)^{-1}$ might not be in $\mathcal{B} \subsetneq \mathcal{A}$. So we have,

$$\sigma_{\mathcal{B}}(A) \supset \sigma_{\mathcal{A}}(A).$$

where $\sigma_{\mathcal{B}}(A)$ is the spectrum with respect to \mathcal{B} . The spectral radius is defined as follows,

$$\rho(A) = \sup_{\lambda \in \sigma(A)} \{|\lambda|\}$$

Clearly $\rho(A) \leq ||A||$ because otherwise there exists some $\lambda \in \mathbb{C}$ with $|\lambda| > ||A||$ or $(A - \lambda)$ is invertible. The spectral radius is given by the following formula (hard proof which I will skip here),

THEOREM 1.4. (SPECTRAL RADIUS FORMULA)

$$\rho(A) = \lim_{n \to \infty} ||A^n||^{1/n}.$$

So, for self-adjoint and normal elements we have $||A^2|| = ||A||^2$. By applying spectral radius formula we get that, for normal elements,

$$||A|| = \rho(A).$$

1.2 | MAXIMAL IDEALS & SPECTRUM

The Gelfand-Naimark theorem gives a Hilbert nullstellensatz type relation between geometric objects and commutative C^* -algebras. All algebras in this section will be assumed unital and commutative.

Let \mathcal{A} be a commutative Banach algebra, a multiplicative functional φ is a linear functional that's also an algebra homomorphism, $\varphi : \mathcal{A} \to \mathbb{C}$,

$$\varphi: AB \mapsto \varphi(A)\varphi(B).$$

The set of all multiplicative functionals will be called the spectrum of \mathcal{A} denoted by, $\sigma(\mathcal{A})$. The reason for this name will soon become clear. Multiplicative linear functionals are also called characters in some books.

Let $\varphi \in \sigma(A)$, for any $A \in A$, we have, $\varphi(A) = \varphi(1 \cdot A) = \varphi(1)\varphi(A)$, or $\varphi(1) = 1$. If A is invertible then $\varphi(A^{-1})\varphi(A) = \varphi(A^{-1}A) = 1$ or $\varphi(A)$ is non-zero. Suppose $|\varphi(A)| \nleq ||A||$, then, $A - |\varphi(A)|$ is invertible.

$$\varphi(A - |\varphi(A)|) = \varphi(A) - |\varphi(A)|$$

adjusting the phase of A this term can be made zero. This is however a contradiction as φ is non-zero for invertible elements of A. So for every $\varphi \in \sigma(A)$, we have $|\varphi(A)| \leq ||A||$. Equipped with the weak* topology, $\sigma(A)$ is a closed subset of the closed unit ball B of A^* .

$$\sigma(\mathcal{A}) \subset B$$
, is closed

By Alaoglu's theorem, ??, $\sigma(A)$ is a compact Hausdorff space.

A left (or right, in our case it's irrelevant as we are dealing with commutative algebras) ideal of \mathcal{A} is a subalgebra $\mathcal{I} \subset \mathcal{A}$ such that $AB \in \mathcal{I}$ whenever $A \in \mathcal{I}$ and for all $B \in \mathcal{A}$. \mathcal{I} is a proper ideal if $\mathcal{I} \neq \mathcal{A}$, and \mathcal{I} is a maximal ideal if it's not contained in any proper ideal. If an ideal contains invertible an element, say A then $AA^{-1} = 1 \in \mathcal{I}$ which means that $B \in \mathcal{I}$ for all $B \in \mathcal{A}$, or $\mathcal{I} = \mathcal{A}$. If $A \in \mathcal{A}$ is not invertible then $\mathcal{I}_A = \{BA \mid B \in \mathcal{A}\}$ is an ideal containing A. Let $\overline{\mathcal{I}}$ be the closure of \mathcal{I} . Since the invertible elements of \mathcal{A} form a group and is an open set in \mathcal{A} . $\overline{\mathcal{I}}$ cannot contain the identity of \mathcal{A} . $\overline{\mathcal{I}}$ is a proper ideal. Every ideal is contained in some maximal ideal, and since the closure of a proper ideal is also a proper ideal, the maximal ideals are closed. The collection of all maximal ideals of \mathcal{A} will be denoted by $\mathcal{M}(\mathcal{A})$. Every non invertible element is contained in some maximal ideal.

Let $\varphi \in \sigma(\mathcal{A})$, for $A \in \ker(\varphi)$, and for all $B \in \mathcal{A}$,

$$\varphi(AB) = \varphi(A)\varphi(B) = 0,$$

so $AB \in \ker(\varphi)$. So it's an ideal. Since $\varphi(1) = 1 \notin \ker(\varphi)$ it's a proper ideal. Suppose $\ker(\varphi)$ is not a maximal ideal, and let $\ker(\varphi) \subseteq \mathcal{I}$ with \mathcal{I} a proper ideal.

Let $A \in \mathcal{I} \setminus \ker(\varphi)$, then we have, $A = (A - \varphi(A) \cdot 1) + \varphi(A) \cdot 1$. So, we can write $A = A' + \lambda \cdot 1$, for some $A' = A - \varphi(A) \cdot 1 \in \ker(\varphi)$ and $\lambda \in \mathbb{C}$. So, 1 is in the span of A and $\ker(\varphi)$. Equivalently, $\mathcal{I} = \mathcal{A}$ (!). $\ker(\varphi)$ is indeed a maximal ideal. Our goal is to relate the maximal ideals and multiplicative linear functionals.

THEOREM 1.5.

$$\varphi \mapsto \ker(\varphi),$$

is a one-to-one correspondence between $\sigma(A)$ and $\mathcal{M}(A)$.

PROOF

Suppose $\ker(\varphi) = \ker(\varkappa)$, every $A \in \mathcal{A}$ can be written as, $A = \varphi(A) \cdot 1 + B$ for some $B \in \ker(\varphi)$. So we have, $\varkappa(A) = \varphi(A)\varkappa(1) + \varkappa(B)$. Since $\ker(\varphi) = \ker(\varkappa)$ we have $\varkappa(B) = 0$ and hence for all $A \in \mathcal{A}$,

$$\varphi(A) = \varkappa(A).$$

or $\varphi = \varkappa$. Hence the mapping $\varphi \mapsto \ker(\varphi)$ is injective.

Suppose \mathcal{I} is a maximal ideal. Let $\pi: \mathcal{A} \to \mathcal{A}/\mathcal{I}$ be the quotient map. \mathcal{A}/\mathcal{I} inherits algebra structure from \mathcal{A} and also inherits a norm $||A + \mathcal{I}|| = \inf\{||A + I|| \mid I \in \mathcal{I}\}$ making it a Banach algebra.

 \mathcal{A}/\mathcal{I} has no non-trivial ideals, because otherwise if \mathcal{I}' is an ideal of \mathcal{A}/\mathcal{I} then, consider $\pi^{-1}(\mathcal{I}')$. For all $J \in \pi^{-1}(\mathcal{I}')$ and $A \in \mathcal{A}$ since $\pi(J) \in \mathcal{I}'$ we have,

$$\pi(JA) = \pi(J)\pi(A) \in \mathcal{I}'.$$

So, $JA \in \pi^{-1}(\mathcal{I}')$ and hence $\pi^{-1}(\mathcal{I}')$ is an ideal. Since $\mathcal{I} \subsetneq \pi^{-1}(\mathcal{I}')$ it cannot be a maximal ideal. This is a contradiction as we assumed it to be a maximal ideal. Hence every non-zero element of \mathcal{A}/\mathcal{I} is invertible because otherwise we can construct an ideal containing the element. By Gelfand-Mazur theorem we have,

$$\mathcal{A}/\mathcal{I} \cong \mathbb{C} \cdot 1$$

Let the above isomorphism be φ . The composition, $\varphi \circ \pi$ is in $\sigma(\mathcal{A})$ with $\ker(\varphi \circ \pi) = \mathcal{I}$. The map $\varphi \mapsto \ker(\varphi)$ is surjective.

This allows us to think of $\mathcal{M}(\mathcal{A})$ as a compact Hausdorff space. For every $A \in \mathcal{A}$ we have a map, $\widehat{A}(\varphi) = \varphi(A)$. With the weak* topology on $\sigma(\mathcal{A})$, \widehat{A} is a continuous map on $\sigma(\mathcal{A})$. The map,

$$\Gamma: A \mapsto \widehat{A}$$
 (Gelfand transform)

is called Gelfand tranformation on \mathcal{A} . It's a map from \mathcal{A} to $C(\sigma(\mathcal{A}))$. Here C(X) means continuous maps on X to \mathbb{C} . If $A, B \in \mathcal{A}$ then we have,

$$\widehat{AB}(\varphi) = \varphi(AB) = \varphi(A)\varphi(B) = \widehat{A}(\varphi)\widehat{B}(\varphi).$$

So, the Gelfand transformation is an algebra homomorphism, and $\widehat{1}(\varphi) = \varphi(1) = 1$, so $\widehat{1}$ is a constant function. If A is invertible then for all $\varphi \in \sigma(A)$ we have, $\varphi(AA^{-1}) = 1$ or $\varphi(A)$ is non vanishing. Conversely suppose \widehat{A} is never vanishing, and suppose A is not invertible, then there exists a maximal ideal \mathcal{I}_A containing A. Let the associate multiplicative functional be φ_A such that $\ker \varphi_A = \mathcal{I}_A$. So we have,

$$\varphi_A(A) = \widehat{A}(\varphi_A) = 0$$

this is a contradiction as we started with the assumption that \widehat{A} is non-vanishing. Hence A is invertible if and only if \widehat{A} is non-vanishing. A *-algebra \mathcal{A} is said to be symmetric if

$$\Gamma(A^*) = \widehat{A^*} = \overline{\widehat{A}}.$$

Our goal is to show that for commutative C^* -algebras the Gelfand transform is an isometric isomorphism.

THEOREM 1.6.

$$\|\widehat{A}\|_{sup} \le \|A\|.$$

Proof

Let $\lambda \in \sigma(A)$, i.e., $A - \lambda$ is not invertible. There exists φ_A such that $\varphi_A(A - \lambda) = 0$. So, we have,

$$\varphi_A(A) = \lambda.$$

So, λ is in the range of \widehat{A} . Conversely, suppose μ is in the range of \widehat{A} , then there exists $\varphi \in \sigma(A)$ such that $\widehat{A}(\varphi) = \mu$, or $\varphi(A - \lambda) = 0$, which means that $A - \lambda$ is not invertible. So, range of \widehat{A} is same as spectrum of $\sigma(A)$.

Now,
$$\|\widehat{A}\|_{sup} = \sup_{\varphi \in \sigma(\mathcal{A})} \{|\widehat{A}(\varphi)|\}$$
. So, $\|\widehat{A}\|_{sup} = \rho(A) \le \|A\|$.

Suppose \mathcal{A} is symmetric, i.e., $\widehat{A^*} = \overline{\widehat{A}}$, then for all self-adjoint elements, $A = A^*$, $\widehat{A} = \overline{\widehat{A}}$. \widehat{A} is a real valued function. Conversely, every element A can be written as a combination of self-adjoint operators, $A = A_1 + iA_2$, so we have, $A^* = A_1^* - iA_2^*$, and hence,

$$\widehat{A}^* = \widehat{A}_1 - i\widehat{A}_2 = \overline{\widehat{A}}.$$

So, \mathcal{A} is symmetric if and only if \widehat{A} is real valued function for self-adjoint A.

If \mathcal{A} is a C^* -algebra then we have $||B^*B|| = ||B||^2$ for all $B \in \mathcal{A}$. Let $A \in \mathcal{A}$ be self-adjoint, consider B = A + it, then we have,

$$||B||^2 = ||B^*B|| = ||A||^2 + t^2$$

Since, $\varphi(B)^2 \le ||B||^2 = ||A||^2 + t^2$, we get,

$$\varphi(A+it)^{2} = (Re(\varphi(A)) + iIm(\varphi(A)) + it)^{2}$$

= $Re(\varphi(A))^{2} + Im(\varphi(A))^{2} + 2Im(\varphi(A))t + t^{2} \le ||A||^{2} + t^{2}.$

Which means $Re(\varphi(A))^2 + Im(\varphi(A))^2 + 2Im(\varphi(A))t \leq ||A||^2$ i.e., right side is independent of t, so on the left side $Im(\varphi(A))$ must be zero. Hence $\varphi(A)$ is real valued for all $\varphi \in \sigma(A)$ or equivalently \widehat{A} is real valued for all $A = A^*$. Hence C^* -algebras are symmetric.

THEOREM 1.7. If A is symmetric then $\Gamma(A)$ is dense in $C(\sigma(A))$.

PROOF

The proof is an application of Stone-Weierstrass theorem, [3]. If \mathcal{A} is symmetric then $\Gamma(\mathcal{A})$ is closed under conplex conjugation because,

$$\Gamma(A)^* = \Gamma(A^*).$$

So, $\Gamma(A)$ is a self-adjoint subalgebra. $\Gamma(1) = 1$, so $\Gamma(A)$ contains constant functions, and $\Gamma(A)$ separates the points on $\sigma(A)$, because if $\varphi, \varkappa \in \sigma(A)$ with $\varphi \neq \varkappa$ then there exists $A \in A$ such that $\varphi(A) \neq \varkappa(A)$ i.e., $\Gamma(A)$ is such that $\Gamma(A)(\varphi) \neq \Gamma(A)(\varkappa)$.

So by Stone-Weierstrass theorem
$$\Gamma(A)$$
 is a dense subset of $C(\sigma(A))$.

Suppose $A \in \mathcal{A}$, let $\sigma(A)$ be the spectrum of the operator, i.e., $\sigma(A) = \{\lambda \mid (A - \lambda) \text{ is not intertible}\}$. Suppose $\lambda \in \sigma(A)$ then $A - \lambda$ is not invertible, hence there exists some maximal ideal \mathcal{I}_{λ} containing $A - \lambda$. Let $\varphi_{\lambda} \in \sigma(\mathcal{A})$ such that $\ker(\varphi_{\lambda}) = \mathcal{I}_{\lambda}$. Or equivalently, $\varphi_{\lambda}(A - \lambda) = 0$, or

$$\varphi_{\lambda}(A) = \lambda$$

So, to each $\lambda \in \sigma(A)$ we have a multiplicative functional φ_{λ} such that $\varphi_{\lambda}(A) = \lambda$.

If $\mathcal{A} = [A, 1]$, i.e., if \mathcal{A} is generated by the identity and the operator A then $\varphi \in \sigma(\mathcal{A})$ is determined by its action on A. Since $\varphi(A^{-1}) = \varphi(A)^{-1}$ and $\varphi(A^*) = \overline{\varphi(A)}$ we have, $\widehat{A}(\varphi_1) = \widehat{A}(\varphi_2) \implies \varphi_1 = \varphi_2$. The map,

$$\widehat{A}: \sigma([A,1]) \to \sigma(A)$$

is injective and surjective.

THEOREM 1.8. (GELFAND-NAIMARK THEOREM) If A is a unital commutative C^* -algebra then Γ is an isometric *-isomorphism of A to $C(\sigma(A))$.

SKETCH OF PROOF

Suppose A is a commutative Banach algebra, we will show that $\|\widehat{A}\|_{\sup} = \|A\|$ if and only if $\|A^{2^k}\| = \|A\|^{2^k}$ for $k \ge 1$. If $\|\widehat{A}\|_{\sup} = \|A\|$ then,

$$||A^{2^k}|| \le ||A||^{2^k} = ||\widehat{A}||_{\sup}^{2^k} = ||\widehat{A}^{2^k}||_{\sup} \le ||A^{2^k}||.$$

Here in the first step we used the product norm inequality, in the second step the assumption that $\|\widehat{A}\|_{\sup} = \|A\|$, in the third step the definition of sup norm, and in the fourth step the fact that $\varphi(A) \leq \|A\|$ for all $\varphi \in \sigma(A)$. So,

$$\|\widehat{A}\|_{\sup} = \|A\| \implies \|A^{2^k}\| = \|A\|^{2^k}.$$

Conversely, if $||A^{2^k}|| = ||A||^{2^k}$ for all $k \ge 1$, we have, $||A^{2^k}||^{1/2^k} = ||A||$, but since $\lim_k ||A^{2^k}||^{1/2^k} = \rho(A)$ and since $||\widehat{A}||_{sup} = \rho(A)$, we have,

$$||A^{2^k}|| = ||A||^{2^k} \implies ||\widehat{A}||_{sup} = ||A||.$$

Now for the case of commutative C^* -algebra \mathcal{A} , for any $B \in \mathcal{A}$, the element $A = B^*B$ is self-adjoint and hence,

$$||A^{2^k}|| = ||(A^{2^k-1})^*(A^{2^k-1})|| = ||A^{2^k-1}||^2.$$

So, we have $||A^{2^k}|| = ||A||^{2^k}$ and hence $||\widehat{A}||_{sup} = ||A||$. Since A is a C^* -algebra we also have, $||B^*B|| = ||B^2||$, so we have,

$$||B||^2 = ||A|| = ||\widehat{A}||_{sup} = ||\widehat{B}|^2||_{sup} = ||\widehat{B}||^2_{sup}.$$

 Γ is an isometry with closed, dense and injective range.

2 | Spectral Theorem

Let \mathcal{A} be a commutative C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ containing I. By Gelfand-Naimark theorem, we have an isometric isomorphism between $C(\sigma(\mathcal{A}))$ and \mathcal{A} given by the Gelfand transform. Denote the inverse Gelfand transform of $f \in C(\sigma(\mathcal{A}))$ by $T_f \in \mathcal{A}$, we have $||T_f|| = ||f||_{\sup}$.

For every $\varphi, \varkappa \in \mathcal{H}$ we have the map,

$$f \mapsto \langle T_f \varphi | \varkappa \rangle$$

This is a bounded linear functional on $C(\sigma(A))$ because,

$$|\langle T_f \varphi | \varkappa \rangle| \le ||T_f|| \, ||\varphi|| ||\varkappa|| = ||f||_{\sup} ||\varphi|| ||\varkappa||.$$

Riesz representation theorem says that bounded linear functionals on locally compact Hausdorff spaces correspond to unique Borel measures. Since $\sigma(\mathcal{A})$ is a locally compact Hausdorff space, to each bounded linear functional $f \mapsto |\langle T_f \varphi | \varkappa \rangle|$ there exists a unique complex Borel measure $\mu_{\varphi,\varkappa}$ on $\sigma(\mathcal{A})$ such that,

$$\langle T_f \varphi | \varkappa \rangle = \int_{\sigma(\mathcal{A})} f d\mu_{\varphi,\varkappa}$$

with $\|\mu_{\varphi,\varkappa}\| \leq \|\varphi\| \|\varkappa\|$. So the assignment, $(\varphi,\varkappa) \to \mu_{\varphi,\varkappa}$, is a map from $\mathcal{H} \times \mathcal{H}$ to $\mathcal{M}(\sigma(\mathcal{A}))$. Where $\mathcal{M}(\sigma(\mathcal{A}))$ is the set of all measures on $\sigma(\mathcal{A})$. Since the Gelfand transform takes adjoint to complex conjugate of the function, we have, $T_f^* = T_{\overline{f}}$ and for all $f \in C(\sigma(\mathcal{A}))$,

$$\int_{\sigma(\mathcal{A})} f d\mu_{\varphi,\varkappa} = \langle T_f \varphi | \varkappa \rangle = \langle \varphi | T_f^* \varkappa \rangle = \overline{\langle T_f^* \varkappa | \varphi \rangle} = \overline{\int_{\sigma(\mathcal{A})} \overline{f} d\mu_{\varkappa,\varphi}} = \int_{\sigma(\mathcal{A})} f d\overline{\mu_{\varphi,\varkappa}}.$$

Hence, we have, $\mu_{\varphi,\varkappa} = \overline{\mu_{\varkappa,\varphi}}$. For any positive function $f = \overline{g}g$ we have,

$$\int f d\mu_{\varphi,\varphi} = \langle T_f \varphi | \varphi \rangle = \langle T_g^* T_g \varphi | \varphi \rangle = \| T_g \varphi \|^2 \ge 0.$$

So $\mu_{\varphi,\varphi}$ is a positive measure for all φ .

Once we have $\mu_{\varphi,\varkappa}$ we can define the integral for any Borel measurable function $f \in B(\sigma(A))$ by $\int f d\mu_{\varphi,\varkappa}$. Now,

$$\left| \int_{\sigma(\mathcal{A})} f d\mu_{\varphi,\varkappa} \right| \le \|f\|_{\sup} \|\mu_{\varphi,\varkappa} \le \|f\|_{\sup} \|\varphi\| \|\varkappa\|.$$

and hence it defines a unique bounded operator $T_f \in \mathcal{B}(\mathcal{H})$,

$$\langle T_f \varphi | \varkappa \rangle = \int_{\sigma(\mathcal{A})} f d\mu_{\varphi,\varkappa}.$$

and it clearly agrees with the definition for $f \in C(\sigma(A))$.

$$\langle T_{\overline{f}}\varphi|\varkappa\rangle = \int_{\sigma(\mathcal{A})} \overline{f} d\mu_{\varphi,\varkappa} = \overline{\int_{\sigma(\mathcal{A})} f d\mu_{\varkappa,\varphi}} = \overline{\langle T_f \varkappa|\varphi\rangle} = \langle \varphi|T_f \varkappa\rangle = \langle T_f^*\varphi|\varkappa\rangle.$$

So it maps \overline{f} to T_f^* . Now, consider T_{fg} , to start, assume $f, g \in C(\sigma(\mathcal{A}))$, we have by definition of $\mu_{\varphi,\varkappa}$,

$$\int_{\sigma(\mathcal{A})} fg d\mu_{\varphi,\varkappa} = \langle T_f T_g \varphi | \varkappa \rangle = \int_{\sigma(\mathcal{A})} f d\mu_{T_g \varphi,\varkappa}.$$

So, we have $gd\mu_{\varphi,\varkappa} = d\mu_{T_g\varphi,\varkappa}$ for all $g \in C(\sigma(\mathcal{A}))$. Now using this, we have for all $f \in B(\sigma(\mathcal{A}))$,

$$\int_{\sigma(\mathcal{A})} fg d\mu_{\varphi,\varkappa} = \int_{\sigma(\mathcal{A})} fd\mu_{T_g\varphi,\varkappa} = \langle T_f T_g \varphi | \varkappa \rangle = \langle T_g \varphi | T_f^* \varkappa \rangle = \int_{\sigma(\mathcal{A})} g d\mu_{\varphi,T_f^* \varkappa}.$$

So, we have for all $f \in B(\sigma(\mathcal{A}))$, $fd\mu_{\varphi,\varkappa} = d\mu_{\varphi,T_f^*\varkappa}$. Now for $g \in B(\sigma(\mathcal{A}))$, we havem

$$\langle T_f T_g \varphi | \varkappa \rangle = \langle T_g \varphi | T_f^* \varkappa \rangle = \int_{\sigma(\mathcal{A})} g d\mu_{\varphi, T_f^* \varkappa} = \int_{\sigma(\mathcal{A})} f g d\mu_{\varphi, \varkappa} = \langle T_{fg} \varphi | \varkappa \rangle.$$

Which means that $T_{fg} = T_f T_g$, and hence it's an algebra homomorphism. The map $f \mapsto T_f$ is a *-homomorphism. Hence we have a representation of Borel functions on $\sigma(\mathcal{A})$ on the Hilbert space \mathcal{H} .

Suppose S commutes with all $T \in \mathcal{A}$, then S commutes with all T_f with $f \in C(\sigma(\mathcal{A}))$. So we have,

$$\int_{\sigma(\mathcal{A})} f d\mu_{\varphi,S^*\varkappa} = \langle T_f \varphi | S^* \varkappa \rangle = \langle S T_f \varphi | \varkappa \rangle = \langle T_f S \varphi | \varkappa \rangle = \int_{\sigma(\mathcal{A})} f d\mu_{S\varphi,\varkappa}$$

So, $\mu_{\varphi,S^*\varkappa} = \mu_{S\varphi,\varkappa}$. Hence for any $f \in B(\sigma(\mathcal{A}))$,

$$\langle T_f S \varphi | \varkappa \rangle = \int_{\sigma(\mathcal{A})} f d\mu_{S\varphi,\varkappa} = \int_{\sigma(\mathcal{A})} f d\mu_{\varphi,S^*\varkappa} = \langle T_f \varphi | S^* \varkappa = \langle S T_f \varphi | \varkappa$$

Since this holds for all $\varphi, \varkappa \in \mathcal{H}$, S must commute with all T_f for $f \in B(\sigma(\mathcal{A}))$.

If $\{f_n\} \subset B(\sigma(\mathcal{A}))$ and $f_n \to f$ then $T_{f_n} \to T_f$ in weak operator topology, because $\int_{\sigma(\mathcal{A})} f_n d\mu_{\varphi,\varkappa} \to \int_{\sigma(\mathcal{A})} f d\mu_{\varphi,\varkappa}$ by dominated convergence.

2.1 | Spectral Measure

Similar to how we used characteristic functions in integration theory, we will do the same with operators. Let $\epsilon \subset \sigma(\mathcal{A})$ be a Borel set, let χ_{ϵ} be the characteristic function of ϵ , i.e., $\chi_{\epsilon}(x) = 1$ if $x \in \epsilon$ and zero otherwise.

$$E(\epsilon) := T_{\chi_{\epsilon}}.$$

we can now list some immediate properties of the

 $E(\epsilon)$ is an orthogonal projection. This is because clearly the characteristic function satisfies $\chi_{\epsilon} = \chi_{\epsilon}^2 = \overline{\chi_{\epsilon}}$, the conjugation is because it's a real valued function. This gives us,

$$E(\epsilon) = T_{\gamma_{\epsilon}} = T_{\gamma_{\epsilon}} T_{\gamma_{\epsilon}} = E(\epsilon)^2 = T_{\overline{\gamma_{\epsilon}}} = E(\epsilon)^*$$
 (projection)

Hence $E(\epsilon)$ is a projection.

 $E(\varnothing)$ corresponds to the constant zero function, since $f \mapsto T_f$ is an algebra homomorphism, it sends the zero map to zero map, and identity to identity and hence,

$$E(\emptyset) = T_{\chi_{\emptyset}} = 0, \quad E(\sigma(A)) = 1$$
 (empty sets & whole set)

For intersection of two sets ϵ , ϵ' , we have, $\chi_{\epsilon \cap \epsilon'} = \chi_{\epsilon} \chi_{\epsilon'}$, and hence we have,

$$E(\epsilon \cap \epsilon') = T_{\chi_{\epsilon \cap \epsilon'}} = T_{\chi_{\epsilon} \chi_{\epsilon'}} = E(\epsilon) E(\epsilon').$$
 (disjoint intersection)

If ϵ_i are disjoint then we have for any finite unions,

$$\chi_{\coprod_i \epsilon_i} = \sum_{i=1}^n \chi_{\epsilon_i}$$

So,

$$E(\coprod_{i} \epsilon_{i}) = \sum_{i=1}^{n} E(\epsilon_{i}).$$

Now for the infinite case, let $v_n = \coprod_{i=1}^n \epsilon_i$, and $v = \coprod_{i \geq 0} \epsilon_i$, then $\chi_{v_n} \to \chi_v$ so, we have,

$$\sum_{i=1}^{n} E(\epsilon_i) = E(\upsilon_n) \to E(\upsilon).$$

 $v = v_n \prod (v \setminus v_n)$, and hence $E(v) = E(v_n) + E(v \setminus v_n)$. For $\varphi \in \mathcal{H}$,

$$||[E(v) - E(v_n)]\varphi||^2 = ||E(v \setminus v_n)\varphi||^2 = \langle E(v \setminus v_n)\varphi | E(v \setminus v_n)\varphi \rangle = \langle E(v \setminus v_n)\varphi | \varphi \rangle \to 0$$

Hence the series strongly converges.

$$E(\coprod_{i} \epsilon_{i}) = \sum_{i} E(\epsilon_{i})$$
 (convergence)

Let ϵ and ϵ' be disjoint, then we have,

$$\langle E(\epsilon)\varphi|E(\epsilon')\varkappa\rangle = \langle E(\epsilon')E(\epsilon)\varphi|\varkappa\rangle = \langle E(\epsilon'\cap\epsilon)\varphi|\varkappa\rangle = \langle E(\varnothing)\varphi|\varkappa\rangle = 0.$$

So, $E(\epsilon)$ and $E(\epsilon')$ are mutually orthogonal.

Now similar to how we define measures, we consider a measure space (Ω, Σ) consisting of a set Ω , together with a σ -algebra Σ . A \mathcal{H} -projection valued measure on (Ω, Σ) or spectral measure is a map,

$$E: \Sigma \to \mathcal{B}(\mathcal{H}).$$

that satisfy the above conditions, projection, empty sets & whole set, disjoint intersection, and convergence. For each $\varphi, \varkappa \in \mathcal{H}$, one can construct ordinary complex measures,

$$E_{\varphi,\varkappa}(\epsilon) = \langle E(\epsilon)\varphi|\varkappa\rangle.$$

this turns out to be a measure, because the above requirements force it. This is a 'measure valued inner product', $(\varphi, \varkappa) \mapsto E_{\varphi, \varkappa}$. $\|E_{\varphi, \varphi}\| = E_{\varphi, \varphi}(\Omega) = \|\varphi\|^2$. For any function $f \in B((\Omega, \Sigma))$, for any φ, \varkappa with $\|\varphi\|^2 = \|\varkappa\|^2 = 1$, we have by polarization,

$$\left| \int f dP_{\varphi,\varkappa} \right| \leq \frac{1}{4} \|f\|_{\sup} \left[\|\varphi + \varkappa\|^2 + \|\varphi - \varkappa\|^2 + \|\varphi + i\varkappa\|^2 + \|\varphi - i\varkappa\|^2 \right] \leq 4 \|f\|_{\sup}.$$

So it is bounded, and hence defines a bounded operator T, such that,

$$\langle T\varphi|\varkappa\rangle = \int_{\Omega} f dE_{\varphi,\varkappa}.$$

We will hence denote T by,

$$T = \int_{\Omega} f dE.$$

The map $f \mapsto \int f dE$ is linear and $|\int f dE| \le 4||f||_{sup}$. Every Borel measurable function is a uniform limit of simple functions, i.e., functions of the form $f = \sum_{i=0}^{n} c_i \chi_{\epsilon_i}$, so it's enough to study simple functions. In such case,

$$\int_{\Omega} f dE_{\varphi,\varkappa} = \sum_{i} c_{i} E_{\varphi,\varkappa}(\epsilon_{i}) = \left\langle \sum_{i} c_{i} E(\epsilon_{i}) \varphi | \varkappa \right\rangle.$$

For any two simple functions, $f = \sum_{i=1}^{n} c_i \chi_{\epsilon_i}$ and $g = \sum_{j=1}^{m} d_j \chi_{\epsilon_j}$,

$$fg = \sum_{i,j} c_i d_j \chi_{\epsilon_i \cap \epsilon_j}.$$

This gives us,

$$\int_{\Omega} fg dE = \sum_{i,j} c_i d_j E(\epsilon_i \cap \epsilon_j) = \sum_{i,j} c_i d_j E(\epsilon_i) E(\epsilon_j) = \int f dE \int g dE.$$

So, $fg \mapsto \int f dE \int g dE$ i.e., it's an algebra homomorphism. It follows because $E(\epsilon) = E^*(\epsilon)$ that $\int \overline{f} dE = (\int f dE)^*$. Hence it's a *-homomorphism from $B(\Omega)$ to $\mathcal{B}(\mathcal{H})$.

THEOREM 2.1. (SPECTRAL THEOREM) Let $A \subset \mathcal{B}(\mathcal{H})$ be commutative C^* -algebra, and let $\Omega = \sigma(A)$, then there exists a unique spectral measure E on Ω such that

$$T = \int \widehat{T} dE.$$

where \widehat{T} is the Gelfand transform of T. If S commutes with all $T \in \mathcal{A}$ then S commutes with all $E(\epsilon)$, for Borel set $\epsilon \subset \Omega = \sigma(\mathcal{A})$.

PROOF

We only have to prove the uniqueness of the spectral measure, which holds by uniqueness of Riesz representation. The other assertion regarding S which commutes with \mathcal{A} is also already proved.

REFERENCES

- [1] V S SUNDER, Functional Analysis: Spectral Theory, Birkhauser Advanced Texts, 1991
- [2] G B FOLLAND, A Course in Abstract Harmonic Analysis, second edition, CRC Press, 2015
- [3] Stone-Weierstrass theorem, Wikipedia