MRTF-A

En 2001, MERCHER et al. 2001 décrivent une translocation impliquée dans les leucémies aigües mégacaryocytiques. Il s'agit de la translocation d'un gène du chromosome 1 sur le chromosome 22, le gène fusion est nommmé One-Twenty-Two-Megakaryocytic-Acute-Leukemia (OTT-MAL). Les fonctions des deux gènes qui ont fusionné est alors inconnue.

En 2002, deux homologues de la myocardine sont identifiés dans le génome humain par Wang et al. 2002 et sont nommés Myocardin-Related Transcription Factor A et B (MRTF-A/B). MRTF-A correspond au gène du chromosome 22 MAL (ou MKL1) et MRTF-B à un gène du chromosome 16 (MAL16 ou MKL2). Un homologue est également découvert chez la souris et nommé Basic, SAP et Coil-coil (BSAC) (Sasazuki 2002).

Alors que cette protéine sera appelée dans la suite de ce document MRTF-A, elle pourra être identifiée indifféremment comme MAL, MKL1 ou BSAC dans la bibliographie.

0.1 MRTF-A, cofacteur de Serum Response Factor

La fonction principale des protéines de la famille des myocardines est l'activation du facteur de transcription Serum Response Factor.

0.1.1 Serum Response Factor

Serum Response Factor est un facteur de transcription qui fait partie de la famille MADS (MCM-1, Agamous, Deficiens, SRF). SRF est présent en un seul exemplaire dans le génome humain mais peut être transcrit en 4 isoformes. La protéine SRF comprend un signal de localisation nucléaire (NLS), une boîte MADS composée du site de liaison à l'ADN et d'un domaine de dimérisation, et d'un domain de transactivation auquel se fixent ses cofacteurs.

Un dimère SRF se fixe sur une séquence consensus de nucléotides sur l'ADN appelée boîte $\mathrm{CArG}: \mathrm{CC}(\mathrm{A/T})_6\mathrm{GG}$, ou sur une séquence CArG -like, qui diffère du consensus d'une seule base, avec une affinité plus faible. Le gène srf contenant lui-même deux boîtes CArG , il est sa propre cible, dans une boucle de rétroaction positive.

0.1.2 Les cofacteurs de SRF : TCF et MRTF

Serum Response Factor n'est lui-même qu'un transactivateur faible, mais il peut être activé par deux grandes familles de cofacteurs : les Ternary Complex Factors, et les Myocardin-Related Transcription Factor.

Les deux familles ne sont pas concurrentes pour se lier à SRF: la plupart des sites sur l'ADN sont spécifiques de l'une ou l'autre des familles de cofacteurs (ESNAULT et al. 2014). Même lorsque les MRTF sont séquestrées dans le cytoplasmes, les TCF ne les remplacent pas sur les sites de liaison à SRF.

Un ChIP-seq sur des fibroblastes 3T3 a estimé que 921 gènes sont susceptibles d'être régulés par MRTF/SRF en réponse au sérum, et 76 gènes par TCF/SRF (ESNAULT et al. 2014), ce qui représente entre 3 et 4% du génome. Les MRTF sont donc un élément important de la régulation transcriptionnelle, et l'acteur principal de la régulation de SRF.

Les autres cofacteurs de SRF?

Ternary Complex Factors

Elk1, Net et SAP-1 sont trois coactivateurs de SRF de la même famille, les TCF. Ils possèdent un domaine qui leur permet de se lier à des sites spécifiques sur l'ADN (Ets Binding Sites). Lorsqu'un site Ets et une boîte CArG sont adjacents, ils forment un Serum Response Element (SRE). La formation d'un complexe TCF-SRF sur un SRE déclenche la transcription du gène cible.

Les TCF sont phosphorylées et activées par les MAPK (Mitogen Activated Protein Kinases).

0.1.3 La famille Myocardine

Cette famille de cofacteurs de SRF comprend la myocardine, MRTF-A et MRTF-B.

La myocardine se présente sous deux isoformes, une forme cardiaque et une forme spécifique au muscle lisse. Les deux sont exclusivement localisées dans le noyau et sont constitutivement actives, en raison de motifs RPEL déficients ou incomplets.

Les Myocardin-Related Transcription Factors A et B sont exprimées dans un grand nombre de tissus : muscles cardiaques, lisses et squelettiques, neurones, cellules épithéliales, mégacaryocytes ...Contrairement à la myocardine, les MRTF peuvent être séquestrées dans le cytoplasme, ce qui les empêche d'activer SRF et la transcription. La régulation de la localisation de MRTF est assurée par l'actine, qui peut former un complexe avec la partie N-terminale des MRTF.

0.2 Rôles de MRTF-A

Depuis sa découverte au début des années 2000, de nombreux rôles de MRTF-A ont été mis en évidence dans des types cellulaires et dans des tissus très divers.

0.2.1 Embryogenèse

Les MRTF sont exprimées dès le jour 10 du développement de l'embryon (Wang et al. 2002), dans tous les tissus. La délétion de MRTF-B entraîne l'échec de la gastrulation, et donc une fin précoce de l'embryogenèse (Katarzyna Kalita, Kuzniewska et Kaczmarek 2012). Au contraire, 60% des mutants MRTF-A^{-/-} sont viables et atteignent l'âge adulte, les autres étant perdus pendant l'embryogenèse car souffrant de défauts cardiaques. Les mutants survivants sont dépourvus de ces anomalies cardiaques, et vivent jusqu'à l'âge adulte (S. Li et al. 2006, Sun et al. 2006). Cependant, les femelles souffrent d'un défaut de formation de la glande mammaire, lié à une apoptose précoce des cellules myoépithéliales qui déclenchent l'éjection du lait. Il apparaît donc que chez la souris, tandis que MRTF-B est indispensable à l'embryogenèse, l'absence de MRTF-A peut être compensée dans la plus grande partie des tissus. Les souris possédant un gène mutant dominant négatif de MRTF-A sont en revanche de plus petite taille, ne bougent pas et ne survivent que quelques jours, principalement à cause des défauts de musculature de leur diaphragme (Shijie Li et al. 2005).

- 0.2.2 Régulation de la masse musculaire
- 0.2.3 Transition EMT
- 0.2.4 MRTF-A et cancers

FIGURE 1 - Structure de MRTF-A (SCHARENBERG et al. 2014)

Structure de MRTF-A

0.2.5 Les motifs RPEL

La partie N-terminale de MRTF-A contient trois motifs RPEL consécutifs, qui peuvent se lier aux monomères d'actine (Posern et al. 2004, Mouilleron et al. 2008) avec des affinités variables, les deux premiers motifs se liant plus fortement que le troisième (Guettler et al. 2008). La structure détaillée du complexe montre que les trois motifs RPEL se lient à 3 à 5 monomères d'actine selon la concentration en monomères d'actine. (HIRANO et MATSUURA 2011, TREISMAN et al. 2011).

Deux domaines basiques, B2 et B3 sont inclus dans les motifs RPEL et forment un signal de localisation nucléaire (NLS) bipartite (RAJAKYLÄ, Maria K. VARTIAINEN et TREISMAN 2010). Lorsqu'il n'y a pas d'actine sur les motifs RPEL, ce NLS peut se lier au complexe Importine α/β (HIRANO et MATSUURA 2011,RAJAKYLÄ, Maria K. VARTIAINEN et TREISMAN 2010) et MRTF-A est importée dans le noyau de la cellule, où se trouve SRF. En présence de suffisamment de monomères, le NLS est recouvert par l'actine liée aux RPEL, MRTF-A reste cytoplasmique (Posern 2002, MIRALLES et al. 2003, Posern et al. 2004).

MRTF-A est exportée du noyau par Crm1 (M. K. VARTIAINEN et al. 2007, HAYA-SHI et MORITA 2013). Ces deux articles se contredisent sur la question de la liaison à l'actine : le premier prétend qu'elle est indispensable, le second qu'elle empêche l'export

Les motifs RPEL sont donc la clé de la régulation de MRTF-A par l'actine : selon la concentration en monomères d'actine, MRTF-A est localisée dans le cytoplasme en cas d'excès et dans le noyau, où se trouve SRF, en cas de manque. Lorsque le domaine RPEL est muté ou absent, la protéine est constitutivement nucléaire (MIRALLES et al. 2003), comme la myocardine, dont les motifs RPEL ne sont plus fonctionnels (GUETTLER et al. 2008).

0.2.6 La région basique et SRF

La région B1 est le site de liaison de MRTF-A à SRF. MRTF-A s'attache préférentiellement à SRF en dimère (MIRALLES et al. 2003). Le complexe MRTF-A-5 actines ne peut pas se lier à SRF et l'activer, la présence de MRTF-A dans le noyau n'est donc pas suffisante pour activer SRF, il faut également que la concentration en G-actine dissocie le complexe (M. K. VARTIAINEN et al. 2007).

0.2.7 Leucine zipper et oligomérisation

MRTF-A/B peuvent former des homo ou des hétérodimères (MIRALLES et al. 2003). Un dominant négatif pourra ainsi bloquer une protéine WT dans un hétérodimère non fonctionnel (A. Selvaraj et R. Prywes 2003, Cen, Ahalya Selvaraj et Ron Prywes 2004, Shijie Li et al. 2005, Rajakylä, Maria K. Vartiainen et Treisman 2010). La formation des dimères n'est pas indispensable à la fonctionnalité de MRTF-A, les mutations dans cette région réduisent son efficacité sans l'inhiber totalement (A. Selvaraj et R. Prywes 2003). OTT-MAL est également capable de former des hétérodimères avec les MRTF, et donc de perturber leur équilibre.

0.2.8 SAP et TAD

Dans les cellules épithéliales, il a été montré qu'un groupe de gènes est activé par MRTF-A et nécessite particulièrement la zone SAP, tout en étant indépendant de SRF (ASPARUHOVA et al. 2011, GURBUZ et al. 2014)

0.2.9 Phosphorylation

MRTF-A peut être phosphorylée (MIRALLES et al. 2003, CEN, Ahalya SELVARAJ et Ron PRYWES 2004,). Dans les neurones, la phosphorylation de MRTF-A par ERK1/2 est même la voie principale de régulation de son activité, car la protéine est toujours nucléaire, mais elle n'active SRF qu'une fois phosphorylée (K. Kalita et al. 2006).

0.2.10 Isoformes

D'après SCHARENBERG et al. 2014, il existe 2 isoformes de MRTF-A chez l'humain, une version longue (MRTF-A_L) et une courte(MRTF-A_S). La version longue présente 80 acides aminés avant le premier motif RPEL, contre 15 seulement pour la version courte. Cette dernière contient deux TAD de 9 acides aminés (9aaTAD), un à l'extrémité C-terminale, et un à l'extrémité N-terminale spécifique à cet isoforme. Une surexpression de MRTF-A_S est observée en réponse à $TGF-\beta$ ou à une contrainte cyclique dans les cellules épithéliales.

- 0.3 En amont de MRTF-A : voie de signalisation et régulation de l'actine
- 0.3.1 Régulation de l'actine
- 0.3.2 Les protéines liées à l'actine
- 0.3.3 La voie RhoA
- 0.3.4 MICAL2
- 0.4 En aval de MRTF-A : SRF et gènes cibles

Bibliographie

- Asparuhova, M. B. et al. (2011). "The transcriptional regulator megakaryoblastic leukemia-1 mediates serum response factor-independent activation of tenascin-C transcription by mechanical stress". In: The FASEB Journal 25.10, p. 3477-3488. ISSN: 0892-6638, 1530-6860. DOI: 10.1096/fj.11-187310. URL: http://www.fasebj.org/cgi/doi/10.1096/fj.11-187310 (visité le 23/01/2015).
- CEN, Bo, Ahalya Selvaraj et Ron Prywes (2004). "Myocardin/MKL family of SRF coactivators: Key regulators of immediate early and muscle specific gene expression". In: *Journal of Cellular Biochemistry* 93.1, p. 74–82. ISSN: 0730-2312, 1097-4644. DOI: 10.1002/jcb.20199. URL: http://doi.wiley.com/10.1002/jcb.20199 (visité le 12/12/2014).
- ESNAULT, C. et al. (2014). "Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts". In: Genes & Development 28.9, p. 943-958. ISSN: 0890-9369. DOI: 10.1101/gad.239327.114. URL: http://genesdev.cshlp.org/cgi/doi/10.1101/gad.239327.114 (visité le 13/01/2015).
- GUETTLER, S. et al. (2008). "RPEL Motifs Link the Serum Response Factor Cofactor MAL but Not Myocardin to Rho Signaling via Actin Binding". In: Molecular and Cellular Biology 28.2, p. 732-742. ISSN: 0270-7306. DOI: 10.1128/MCB.01623-07. URL: http://mcb.asm.org/cgi/doi/10.1128/MCB.01623-07 (visité le 17/12/2014).
- GURBUZ, Irem et al. (2014). "SAP domain-dependent Mkl1 signaling stimulates proliferation and cell migration by induction of a distinct gene set indicative of poor prognosis in breast cancer patients". In: *Molecular cancer* 13.1, p. 22. URL: http://www.biomedcentral.com/content/pdf/1476-4598-13-22.pdf (visité le 11/12/2014).
- HAYASHI, K. et T. MORITA (2013). "Differences in the Nuclear Export Mechanism between Myocardin and Myocardin-related Transcription Factor A". In: Journal of Biological Chemistry 288.8, p. 5743-5755. ISSN: 0021-9258, 1083-351X. DOI: 10.1074/jbc.M112.408120. URL: http://www.jbc.org/cgi/doi/10.1074/jbc.M112.408120 (visité le 30/01/2015).
- HIRANO, Hidemi et Yoshiyuki MATSUURA (2011). "Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL". In: *Biochemical and Biophysical Research Communications* 414.2, p. 373–378. ISSN:

- $0006291 \, \mathrm{X.~DOI:} \ 10.1016/j.bbrc.2011.09.079. \ URL: http://linkinghub.elsevier.com/retrieve/pii/S0006291X11016834 (visité le <math>21/10/2013$).
- KALITA, Katarzyna, Bozena Kuzniewska et Leszek Kaczmarek (2012). "MKLs: Co-factors of serum response factor (SRF) in neuronal responses". In: *The International Journal of Biochemistry & Cell Biology* 44.9, p. 1444-1447. ISSN: 13572725. DOI: 10.1016/j.biocel.2012.05.008. URL: http://linkinghub.elsevier.com/retrieve/pii/S1357272512001744 (visité le 21/10/2013).
- KALITA, K. et al. (2006). "Role of Megakaryoblastic Acute Leukemia-1 in ERK1/2-Dependent Stimulation of Serum Response Factor-Driven Transcription by BDNF or Increased Synaptic Activity". In: Journal of Neuroscience 26.39, p. 10020-10032. ISSN: 0270-6474, 1529-2401. DOI: 10.1523/JNEUROSCI. 2644-06.2006. URL: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2644-06.2006 (visité le 02/02/2015).
- LI, Shijie et al. (2005). "Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice". In: Proceedings of the National Academy of Sciences of the United States of America 102.4, p. 1082-1087. URL: http://www.pnas.org/content/102/4/1082.short (visité le 11/12/2014).
- Li, S. et al. (2006). "Requirement of a Myocardin-Related Transcription Factor for Development of Mammary Myoepithelial Cells". In: *Molecular and Cellular Biology* 26.15, p. 5797–5808. ISSN: 0270-7306. DOI: 10.1128/MCB.00211-06. URL: http://mcb.asm.org/cgi/doi/10.1128/MCB.00211-06 (visité le 17/12/2014).
- MERCHER, Thomas et al. (2001). "Involvement of a human gene related to the Drosophila spen gene in the recurrent t (1; 22) translocation of acute megakaryocytic leukemia". In: Proceedings of the National Academy of Sciences 98.10, p. 5776-5779. URL: http://www.pnas.org/content/98/10/5776.short (visité le 12/12/2014).
- MIRALLES, Francesc et al. (2003). "Actin dynamics control SRF activity by regulation of its coactivator MAL". In: Cell 113.3, p. 329-342. URL: http://www.sciencedirect.com/science/article/pii/S0092867403002782 (visité le 21/10/2013).
- MOUILLERON, Stephane et al. (2008). "Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL". In: *The EMBO journal* 27.23, p. 3198-3208. URL: http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2008235a.html (visité le 21/10/2013).
- Posern, Guido et al. (2004). "Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL". In: *The EMBO journal* 23.20, p. 3973-3983. URL: http://www.nature.com/emboj/journal/v23/n20/abs/7600404a.html (visité le 21/10/2013).
- RAJAKYLÄ, Eeva Kaisa, Maria K. VARTIAINEN et Richard TREISMAN (2010). "An actin-regulated importin α/β -dependent extended bipartite NLS directs nuclear import of MRTF-A". In: The EMBO journal 29.20, p. 3448—

- 3458. URL : http://www.nature.com/emboj/journal/v29/n20/abs/emboj2010216a.html (visité le 21/10/2013).
- SASAZUKI, T. (2002). "Identification of a Novel Transcriptional Activator, BSAC, by a Functional Cloning to Inhibit Tumor Necrosis Factor-induced Cell Death". In: Journal of Biological Chemistry 277.32, p. 28853–28860. ISSN: 00219258, 1083351X. DOI: 10.1074/jbc.M203190200. URL: http://www.jbc.org/cgi/doi/10.1074/jbc.M203190200 (visité le 30/01/2015).
- Scharenberg, M. A. et al. (2014). "TGF--induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms". In: *Journal of Cell Science* 127.5, p. 1079–1091. ISSN: 0021-9533, 1477-9137. DOI: 10.1242/jcs.142075. URL: http://jcs.biologists.org/cgi/doi/10.1242/jcs.142075 (visité le 31/10/2014).
- SELVARAJ, A. et R. PRYWES (2003). "Megakaryoblastic Leukemia-1/2, a Transcriptional Co-activator of Serum Response Factor, Is Required for Skeletal Myogenic Differentiation". In: Journal of Biological Chemistry 278.43, p. 41977–41987. ISSN: 0021-9258, 1083-351X. DOI: 10.1074/jbc.M305679200. URL: http://www.jbc.org/cgi/doi/10.1074/jbc.M305679200 (visité le 12/12/2014).
- Sun, Y. et al. (2006). "Acute Myeloid Leukemia-Associated Mkl1 (Mrtf-a) Is a Key Regulator of Mammary Gland Function". In: *Molecular and Cellular Biology* 26.15, p. 5809–5826. ISSN: 0270-7306. DOI: 10.1128/MCB.00024-06. URL: http://mcb.asm.org/cgi/doi/10.1128/MCB.00024-06 (visité le 17/12/2014).
- TREISMAN, Richard et al. (2011). "Structure of a Pentavalent G-Actin* MRTF-A Complex Reveals How G-Actin". In: URL: http://www.researchgate.net/profile/Stephane_Mouilleron2/publication/51219331_Structure_of_a_pentavalent_G-actin*MRTF-A_complex_reveals_how_G-actin_controls_nucleocytoplasmic_shuttling_of_a_transcriptional_coactivator/links/0912f5065bb6d82872000000.pdf (visité le 02/02/2015).
- VARTIAINEN, M. K. et al. (2007). "Nuclear Actin Regulates Dynamic Subcellular Localization and Activity of the SRF Cofactor MAL". In: Science 316.5832, p. 1749–1752. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.1141084. URL: http://www.sciencemag.org/cgi/doi/10.1126/science.1141084 (visité le 21/10/2013).
- Wang, Da-Zhi et al. (2002). "Potentiation of serum response factor activity by a family of myocardin-related transcription factors". In: *Proceedings of the National Academy of Sciences* 99.23, p. 14855-14860. URL: http://www.pnas.org/content/99/23/14855.short (visité le 11/12/2014).