lezione6

Pumping lemma

 $L \in REG \Rightarrow \exists n \geq 0 \text{ t.c. } \forall w \in L \ |w| \geq n \ \exists x,y,z \ w = xyz$ Vale:

- 1. $|xy| \leq n$
- 2. $|y| \ge 1$
- 3. $\forall i \geq 0xy^i z \in L$

Dimostrazione: $L \in REG \Rightarrow \exists A \in DFA$ che riconosce L con n stati. Sia $p \in L$ t.c. $|p| \geq n$, il cammino che determina in A è composto da almeno n+1 stati. Se il cammino è composto da un numero di nodi maggiore del numero degli stati vuol dire che in esso è presente un ciclo. Inoltre possiamo dire che questo ciclo di presenta necessariamente entro l'n-esimo passo di computazione poiché nella sequenza di nodi attraversati ci sarà necessariamente almeno una ripetizione. Questo lemma negato è utile per dimostrare la non regolarità di un linguaggio.

Pumping lemma negato

 $L \in REG \Rightarrow \forall w \in L \ |w| \geq n \ \forall x,y,z \ \text{t.c.} \ w = xyz$ Vale:

- 1. $|xy| \leq n$
- 2. $|y| \ge 1$
- 3. $\exists i \geq 0xy^iz \notin L$

Applicazione Pumping lemma negato

Esempio 1: Dimostrare che $L = \{ww|w \in \{0,1\}^*\} \notin REG$.

Dato $p \in \mathbb{N}$ vogliamo trovare una parola $w \in L$ t.c. $|w| \ge p$ e che per ogni sua scomposizione w = xyz esiste un i t.c. $W' = xy^iz \notin L$.

Scriviamo in maniera generica w. Ad esempio $w=0^p10^p1$, questa parola è evidentemente più lunga di p.

Scegliamo come scomposizione $x = 0^r, y = 0^s, z = 0^{p-(r+s)}10^p \text{ con } r \ge 0, s \ 0, t \ge 0.$

Adesso scriviamo $w' = xy^iz$ per la scomposizione che abbiamo scelto: $0^r(0^s)^i0^{p-(r+s)}10^p1$.

Affinché $w' \notin L$ deve essere vero che: $r + is + p - (r + s) \neq p$, questo perchè vogliamo "rompere" la simmetria della parola. Semplificando otteniamo che $is - s \neq 0$ e questo è vero $\forall i \neq 1$.

Più intuitivamente si può dire che per "rompere" la simmetrie basta elevare a 0 y per ottenere un numero di 0 nella prima metà della parola inferiore al numero di 0 nella seconda metà della parola.

Esemplo 2: Dimostrare che $L = \{w | w \in \{a, b\}^* \land n_a(w) = n_b(w)\} \notin REG.$

Dato $p \in \mathbb{N}$ vogliamo trovare una parola $w \in L$ t.c. $|w| \ge p$ e che per ogni sua scomposizione w = xyz esiste un i t.c. $w' = xy^iz \notin L$.

Procediamo scrivendo in maniera generica una parola che appartiene ad L. Ad esempio:

 $w = b^p a^p$, $|w| \ge p$ dato che $|b^p| = p$.

Ora scomponiamo in maniera generica \boldsymbol{w} :

 $x=b^r,\,y=b^s,\,z=b^ta^p\text{ t.c. }r\geq 0,\,s\,0,\,t\geq 0\text{ e }r+s+t=p.$

Adesso scriviamo $w' = xy^iz$ per la scomposizione che abbiamo scelto: $b^r(b^s)^ib^ta^p$.

Per ottenere $w' \notin L$ deve valere che $r+is+t \neq p$, ma questo è vero $\forall i \neq 1$.

Esempio 3: Dimostrare che $L' = \{w | w \in \{a, b\}^* \land n_a(w) \neq n_b(w)\} \notin REG.$

Sta volta il Pumping lemma non ci aiuta e dobbiamo ragionare diversamente. Nell'esempio 3 è stato dimostrato che $L \notin REG$ ma $L = L'^c$ quindi possiamo concludere che $L' \notin REG$ poich'e il suo complemento non è regolare.

Esempio 4: Dimostrare che $L = \{a^n b^m | n \neq m \land n, m \geq 0\} \notin REG.$

Per questo esempio di nuovo il Pumping lemma non ci aiuta. Proviamo a dimostrare la sua non regolarità per assurdo.

Supponiamo che $L \in REG$ e consideriamo un altro linguaggio che possiamo dimostrare non essere regolare sfruttando il Pumping lemma: $L' = \{a^nb^m|n=m \land n, m \geq 0\}$. Definiamo ora il complemento di L' come unione di L e di un altro linguaggio. Essendo L' il linguaggio delle parole formate da un certo numerdo i a seguite dallo stesso numero di b il suo complemento sarà formato da:

• L, ossia tutte le parole che seguono l'ordinamento di L' (a prima di b) in cui il numero di a differisce dal numero di b;

• $\{xbyaz|x,y,z\in\{a,b\}^{\star}\}$, ossia tutte le parole che non seguono l'ordinamento di L'.

Ora possiamo scrivere che $L'^c = L \cup \{xbyaz | x, y, z \in \{a,b\}^\star\}$. Abbiamo supposto che $L \in REG$, sappiamo che $\{xbyaz | x, y, z \in \{a,b\}^\star\} \in REG$. La classe dei linguaggi regolari è chiusa rispetto all'unione quindi $L'^c \in REG$, ed è chiusa anche rispetto al complemento quindi $L' \in REG$. Questo è un assurdo in quanto sappiamo che $L' \notin REG$.