Lecture 5 Matrices, Gaussian Elimination, LU Decomposition

Reminder of Matrices

Remark 1 We need to solve a system of linear equations of the form:

$$\begin{array}{rclcrcl} a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n & = & b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,n}x_n & = & b_2 \\ & \vdots & & \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,n}x_n & = & b_n \end{array}$$

or in matrix form:

$$A\mathbf{x} = \mathbf{b}$$

where $A \in \mathbb{R}^{n \times n}$ is a matrix, $\mathbf{x} \in \mathbb{R}^n$ are unknowns, and $\mathbf{b} \in \mathbb{R}^n$.

Example 1

$$\begin{array}{rcl} x_1 + 2x_2 - 4x_3 + x_4 & = & 1 \\ 3x_1 - x_2 + x_3 + 4x_4 & = & 3 \\ x_1 - 2x_2 - 4x_3 + x_4 & = & -1 \\ 2x_1 - x_2 - x_3 + 3x_4 & = & 2 \end{array}$$

or in matrix form:

$$A\mathbf{x} = \mathbf{b}$$

where

$$A = \begin{bmatrix} 1 & 2 & -4 & 1 \\ 3 & -1 & 1 & 4 \\ 1 & -2 & 3 & -1 \\ 2 & -1 & -1 & 3 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ -1 \\ 2 \end{bmatrix}$$

How do we solve such a system of linear equations?

Central Questions:

- What is Gaussian elimination? LU decomposition?
- How is LU decomposition related to Gaussian elimination?
- How is an LU decomposition A = LU computed?
- For any square $A \in \mathbb{R}^{n \times n}$, does a decomposition A = LU exist?

Definition 1 – Matrices

A Matrix $A \in \mathbb{R}^{m \times n}$ is a rectangular array of numbers:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n-1} & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n-1} & a_{2,n} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m-1,1} & a_{m-1,2} & \dots & a_{m-1,n-1} & a_{m-1,n} \\ a_{m,1} & a_{m,2} & \dots & a_{m,n-1} & a_{m,n} \end{bmatrix}$$

Numbers $a_{i,j}$ are elements of A, or entries of A.

First index (i) of element $a_{i,j}$ is the row index.

Second index (j) of element $a_{i,j}$ is the column index.

Definition 2 – Vectors An *n*-vector is a "skinny" matrix (dimension $n \times 1$ or $1 \times n$).

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \text{ or } \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \dots & x_{n-1} & x_n \end{bmatrix}$$

Elements x_i are components of **x**.

Convention: vectors generally column vectors assume $\mathbf{x} \in \mathbb{R}^n$ means $\mathbf{x} \in \mathbb{R}^{n \times 1}$.

To scipy, scalars are vectors of length 1 and also matrices of dimension $1\times 1.$

Special Matrices

Definition 3 – Zero Matrix

$$\forall A \in \mathbb{R}^{m \times n} \quad A + 0 = 0 + A = A, \text{ where } 0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Definition 4 – Identity Matrix

$$A \in \mathbb{R}^{n \times n}$$
 $AI = IA = A$, where $I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$

Special Vectors

Definition 5 – Coordinate Vector A vector with all 0s and a single 1, at position k, is the kth-coordinate vector.

$$\mathbf{e}_k = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Definition 6 – Matrix Transpose If $A \in \mathbb{R}^{m \times n}$, $C = A^T \in \mathbb{R}^{n \times m}$ is

$$c_{i,j} = aj, i \quad (1 \le i \le n, 1 \le j \le m)$$

Example 2 Find the transpose:

$$\begin{bmatrix} -7 & -5 & 6 \\ -1 & -8 & 10 \end{bmatrix}^T$$

Definition 7 – Symmetric Matrix If $A \in \mathbb{R}^{n \times n}$ satisfies $A = A^T$, A is said to be symmetric.

Remark 2 If
$$\mu \in \mathbb{R}$$
 and $A \in \mathbb{R}^{m \times n}$, $C = \mu A \in \mathbb{R}^{m \times n}$ is

$$c_{i,j} = \mu a_{i,j} \quad (i = 1: m, j = 1: n)$$

Example 3 Simplify

$$3\begin{bmatrix} 1 & -2 \\ -3 & \frac{1}{2} \end{bmatrix}$$

Remark 3 Scalar multiplication in scipy/numpy uses operator *.

$$A = np.array([[1,-2],[-3,0.5]])$$

$$B = 3 * A$$

Definition 8 – Matrix Addition If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times n}$, matrix sum $C = A + B \in \mathbb{R}^{m \times n}$ is

$$c_{i,j} = a_{i,j} + b_{i,j} \quad (i = 1: m, j = 1: n)$$

Example 4 Simplify

$$\begin{bmatrix} -2 & -3 & 3 \\ 4 & -5 & -3 \end{bmatrix} + \begin{bmatrix} 7 & 5 & 2 \\ -9 & -3 & 8 \end{bmatrix}$$

Remark 4 Matrices must be conformable (same shape) for addition.

Remark 5 Matrix addition in scipy uses + operator.

```
A = np.array([[-2.0,-3,3],[4,-5,-3]])
B = np.array([[7.0,5,2],[-9,-3,8]])
C = A + B
```

Definition 9 – Matrix Multiplication If $A \in \mathbb{R}^{m \times s}$, $B \in \mathbb{R}^{s \times n}$, matrix product $C = AB \in \mathbb{R}^{m \times n}$ is

$$c_{i,j} = \sum_{k=1}^{s} a_{i,k} b_{k,j} \quad (i = 1 : m, j = 1 : n)$$

Example 5 Simplify

$$\begin{bmatrix} -1 & 5 & -4 \\ -4 & 1 & 2 \end{bmatrix} \begin{bmatrix} -2 & -1 & 0 \\ 3 & 3 & 2 \\ -1 & -1 & 2 \end{bmatrix}$$

Remark 6 Note: $AB \neq BA$ in general!

Remark 7 In scipy: scipy.dot(A, B) or scipy.matmul(A, B). Requires A and B satisfies:

scipy.shape(A)[1] == scipy.shape(B)[0]

Definition 10 – Matrix Inverse Square matrix $A \in \mathbb{R}^{n \times n}$ is invertible (or regular or nonsingular) if there exists $B \in \mathbb{R}^{n \times n}$ such that

$$AB = BA = I$$

Inverse of A is unique and denoted A^{-1} ; A must be square.

Example 6 Simplify

$$\begin{bmatrix} -2 & -2 & 4 \\ 1 & -3 & 0 \\ -4 & 4 & 1 \end{bmatrix}^{-1}$$

Remark 8 For any scalars $\mu \in \mathbb{R}$:

1.
$$A + 0 = 0 + A = A$$

2.
$$IA = AI = A$$

3.
$$A(B+C) = AB + AC$$
 for any $A \in \mathbb{R}^{m \times s}$; $B, C \in \mathbb{R}^{s \times n}$

4.
$$(AB)C = A(BC)$$
 for any $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times \ell}$, $C \in \mathbb{R}^{\ell \times n}$

5.
$$\mu(AB) = (\mu A)B = A(\mu B)$$
 for any $A \in \mathbb{R}^{m \times s}$, $B \in \mathbb{R}^{s \times n}$

6.
$$(\mu A)^T = \mu A^T$$

7.
$$(A+B)^T = A^T + B^T$$
 for any matrices $A, B \in \mathbb{R}^{m \times n}$

8.
$$(AB)^T = B^T A^T$$
 for any $A \in \mathbb{R}^{m \times s}$, $B \in \mathbb{R}^{s \times n}$

9.
$$(AB)^{-1} = B^{-1}A^{-1}$$
 for any invertible $A, B \in \mathbb{R}^{n \times n}$

Theorem 1 – Nonsingular Matrix Properties For $A \in \mathbb{R}^{n \times n}$, the following properties are equivalent:

- 1. The inverse of A exists; i.e., A is nonsingular.
- 2. $\det(A) \neq 0$.
- 3. For every $\mathbf{b} \in \mathbb{R}^n$, system $A\mathbf{x} = \mathbf{b}$ has unique solution $\mathbf{x} \in \mathbb{R}^n$.
- 4. $A\mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$.
- 5. The rows of A form a basis for \mathbb{R}^n .
- 6. The columns of A form a basis for \mathbb{R}^n .
- 7. The map $\{A : \mathbb{R}^n \text{ into } \mathbb{R}^n\}$ is one-to-one (injective).
- 8. The map $\{A : \mathbb{R}^n \text{ into } \mathbb{R}^n\}$ is onto (surjective).
- 9. 0 is not an eigenvalue of A.

Remark 9 Rule for matrix multiplication permits representation of linear systems of equations using matrices and vectors.

e.g, linear system of equations

$$2x_1 + x_2 + x_3 = 4$$

$$4x_1 + 3x_2 + 3x_3 + x_4 = 11$$

$$8x_1 + 7x_2 + 9x_3 + 5x_4 = 29$$

$$6x_1 + 7x_2 + 9x_3 + 8x_4 = 30$$

can be written as $A\mathbf{x} = \mathbf{b}$ with

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \\ 29 \\ 30 \end{bmatrix}$$

Remark 10 We can solve linear systems of equations in scipy with the linalg module using

```
scipy.linalg.solve
```

scipy.linalg actually calls the LAPACK and BLAS routines, optimized for your hardware under Linux.

Simplest use:

Remark 11 Never solve linear systems by computing A^{-1} and $\mathbf{x} = A^{-1}\mathbf{b}$! Use scipy's built-in solvers that avoid inverting matrices. We will see that computing A^{-1} explicitly is slow and often leads to large numerical errors.

Definition 11 – Diagonal System

Given vector $\mathbf{b} = (b_1, ..., b_n)^T \in \mathbb{R}^n$, and diagonal matrix D, wish to solve linear system of equations $D\mathbf{x} = \mathbf{b}$, i.e.,

$$\begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Solution of $D\mathbf{x} = \mathbf{b}$ directly computable:

$$x_k = \frac{b_k}{d_k} \quad (d_k \neq 0, k = 1:n)$$

Example 7 Solve the system of linear equations:

$$\begin{bmatrix} 2 & & \\ & 3 & \\ & & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ 1 \end{bmatrix}$$

Definition 12 – Upper Triangular Systems Given $\mathbf{b} = (b_1, ..., b_n)^T \in (R)^n$ and U upper triangular, wish to solve linear system of equations $U\mathbf{x} = \mathbf{b}$, i.e.,

$$\begin{bmatrix} U_{1,1} & U_{1,2} & \dots & U_{1,n} \\ & U_{2,2} & \dots & U_{2,n} \\ & & \ddots & \vdots \\ & & & U_{n,n} \end{bmatrix}$$

Remark 12 Solution of $U\mathbf{x} = \mathbf{b}$ through backward substitution:

$$x_k = \frac{1}{U_{k,k}} (b_k - \sum_{j=k+1}^n U_{k,j} x_k) \quad (k=1:n)$$

Example 8 Solve the linear system of equations:

$$\begin{bmatrix} 2 & 3 & -2 \\ & 3 & 5 \\ & & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ 1 \end{bmatrix}$$

Definition 13 – Lower Triangular Systems Given $\mathbf{b} = (b_1, ..., b_n)^T \in (R)^n$ and L lower triangular, wish to solve linear system of equations $L\mathbf{x} = \mathbf{b}$, i.e.,

$$\begin{bmatrix} L_{1,1} & & & \\ L_{2,1} & L_{2,2} & & \\ \vdots & \vdots & \ddots & \\ L_{n,1} & L_{n,2} & \dots & L_{n,n} \end{bmatrix}$$

Remark 13 Solution of $L\mathbf{x} = \mathbf{b}$ through backward substitution:

$$x_k = \frac{1}{L_{k,k}} (b_k - \sum_{j=1}^{k-1} L_{k,j} x_j) \quad (k = 1:n)$$

Example 9 Solve the linear system of equations:

$$\begin{bmatrix} 2 \\ 3 & 3 \\ -2 & 5 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ 1 \end{bmatrix}$$

Gaussian Elimination

Remark 14 Gaussian elimination transforms a general system $A\mathbf{x} = \mathbf{b}$ into an easy-to-solve system.

Elementary Row Operations

- Interchanging two equations: $R_i \leftrightarrow R_j$.
- Multiplying an equation by a nonzero scalar: $R_i \leftarrow \lambda R_j$.
- Adding a multiple of an equation to another: $R_i \leftarrow R_i + \lambda R_j$.

Central Idea

Reduce square system of linear equations to upper triangular system by sequence of elementary row operations.

Example 10 Consider solving linear system of equations:

$$2x_1 + x_2 + x_3 = 4$$

$$4x_1 + 3x_2 + 3x_3 + x_4 = 11$$

$$8x_1 + 7x_2 + 9x_3 + 5x_4 = 29$$

$$6x_1 + 7x_2 + 9x_3 + 8x_4 = 30$$

Write the system as $A\mathbf{x} = \mathbf{b}$, form augmented system, and carry out elimination.

Definition 14 – Pivot Element

Pivot element on diagonal used to zero out entries.

pivot =
$$A_{k,k}$$
 ($k = 1 : n - 1$)

Definition 15 - Multiplier

Multiplier for eliminating $A_{k,\ell}$ with pivot element $A_{k,k}$ is

$$m_{k,\ell} := \frac{A_{k,\ell}}{A_{k,k}} \quad (k = 1: n - 1, \ell = k + 1: n)$$

Remark 15 Multiply kth now by $-m_{k,\ell}$ and add to ℓ th row.

Zeros out kth column below diagonal pivot element.

For the moment, assume no row interchanges.

Remark 16 Key Observation

Each stage of elimination amounts to multiplying A on the left by unit lower triangular matrix with negatives of multipliers in pivot column.

LU Decomposition

Remark 17 Gaussian elimination is equivalent to finding L and U such that:

- L is the lower triangular matrix (ones on diagonal),
- *U* is upper triangular matrix,
- \bullet A = LU.

Definition 16 A pair of matrices L and U with the propertiews above is an LU decomposition (or LU factorisation or Gauss factorisation) of A.

Remark 18 1. Start by writing down $n \times n$ matrix A and identity matrix.

- 2. Carry out steps of Gaussian elimination, transforming A to upper triangular ("row echelon") form.
- 3. At each stage of elimination, write multiplier $m_{k,\ell}$ in (k,ℓ) position of identity matrix $(k=1:n-1,\ell=k+1:n)$.
- 4. At end, result is upper triangular U and unit lower triangular L. Even if A is invertible, procedure above may not work. Pivoting required for some matrices.

Example 11 Start from square matrix A and an identity matrix. Find the triangular factors L and U such that LU = A, with:

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

```
 \begin{array}{lll} \textbf{Remark 19} & \textbf{Pseudo-code for LU decomposition without pivoting:} \\ \textbf{Require:} & A \in \mathbb{R}^{n \times n} \\ U \leftarrow A \\ L \leftarrow I & \rhd \text{ (initialize matrices)} \\ j \leftarrow 1 & & \\ \textbf{while } j \leq n-1 \text{ do} & \rhd \text{ (loop through pivot columns)} \\ i \leftarrow j+1 & & \\ \textbf{while } i \leq n \text{ do} & \\ L_{i,j} \leftarrow \frac{U_{i,j}}{U_{j,j}} & \rhd \text{ (store multiplier in $L$ matrix)} \\ U_{i,j:n} \leftarrow U_{i,j:n} - L_{i,j}U_{j,j:n} & \rhd \text{ (update row $i$ of $U$ matrix)} \\ \textbf{end while} & & \\ \textbf{end while} & & \\ \end{array}
```

Theorem 2 For a given nonsingular matrix $A \in \mathbb{R}^{n \times n}$, the LU decomposition A = LU exists and is unique if and only if all the leading principal submatrices of A are nonsingular.

Note: a leading submatrix is obtained from a matrix A by extracting its first k rows and columns: A(1:k,1:k).

- ullet LU decomposition A=LU has L lower unit triangular and U upper triangular.
- Not always possible to find A = LU for A nonsingular.
- When A nonsingular, always possible to find permutation P such that PA = LU, i.e., so that PA has a Gauss (LU) factorisation.