FIG.1

BASIC ENCODING SCHEME

FREQUENCY ALLOCATION AFTER THE FIRST LEVEL OF TRANSFORM

PSNR VALUES FOR PICTURES RESTORED AFTER COMPRESSING BY JPEG 2000 AND GIVEN METHOD

		PS	NR (Db)
PICTURE QCIF	COMPRESSION RATIO	JPEG2000 (LURA WAVE COMPANY)	GIVEN METHOD
		RGB	RGB
FOREMAN 1	29,1	27,62	29,94
FOREMAN 2	26,7	26,65	28,85
HORSE	34,26	28,86	29,99

FIG.3

PSNR VALUES FOR PICTURES RESTORED AFTER COMPRESSING BY JPEG 2000 AND GIVEN METHOD

		PS	NR (Db)
PICTURE SIF	COMPRESSION RATIO	JPEG2000 (LURA WAVE COMPANY)	GIVEN METHOD
		RGB	RGB
BOAT	49.34	30.5	30.54
DANCE	46.35	27.24	27.27
HORSE	50.12	33.44	33.49

FIG.5

Visual quality for pictures restored after compressing by JPEG2000 and given method.

FIG.4

FIG.6

Visual quality for pictures restored after compressing by JPEG2000 and given method.

Compression ratio is the same

Original Picture - Boat

JPEG2000

Given Method

Visual quality for pictures restored after compressing by JPEG2000 and given method.

FIG.7

Compression ratio is the same

Original Picture - Dance

JPEG2000

Given Method

Visual quality for pictures restored after compressing by JPEG2000 and given method.

Compression ratio is the same

Original Picture - Horse

JPEG2000

Given Method

FIG.8

FIG.9A

Filtering coefficients for the first level of wavelet decomposition.

 $h_{i,j}^0(i,j=0,1,...,20)$

	2 9	80	6	10	=
0.00000000 0.000000000	0.00000000 0.00000000 0.000000000	0.00000000	0.00000000	0.0000000	0.00000000
0 00000000 0.0000000 0	0.00000000 0.000000000 0.00000000	0.00000000	0.00000000	0.00000000	0.0000000
-0.00000001 -0.00000001 -0.00000001 -0.	0.00000001 0.00000000 0.00000000	0.00000000	0.00000000	0.0000000.0	0.00000000
-0.00000001 0.00000001 0.00000000	0.00000000 0.00000000 0.00000000 0	0.00000000	0.00000000	0.00000000	0.00000000
-0.00000005 0.00000004	0.00000005 -0.00000001 -0.00000002	0.00000000	0.00000000	0.0000000	0.00000000
0.00000003 -0.00000003 0.00000000	0.00000001 0.00000000 0.00000000	0.0000000.0	0.00000000	0.00000000	0.00000000
0.00000023 -0.00000019	-0.00000021 0.00000003 0.00000007 0	0.00000000	-0.00000002	0.0000000.0	0.0000001
-0.0000000 0.0000000 0.00000000-	0.00000000 -0.00000001 0.000000001	0.00000000	0.0000000.0	0.00000000	0.00000000
36 -0.00000143 0.00000081	0.00000100 -0.00000013 -0.00000031	0.00000001	0.00000007	-0.00000001	-0.00000002
0.00000087 -0.00000078 -0.00000005	0.00000026 0.00000004 -0.00000006 -0	-0.0000002	0.00000003	0.0000000	-0.00000001
-0.00000544 0.00000551 -0.00000348	-0.00000436 0.00000061 0.00000130 -0	-0.00000003	-0.00000029	0.00000004	0.0000000
-0.00000518 0.00000474 -0.00000004	-0.00000134 -0.00000014 0.00000047 0	0.0000000	-0.00000016	0.0000000	0.00000004
008 -0.00002944 0.00001573	0.00001730 -0.00000283 -0.00000529 C	0.00000018	0.00000094	-0.00000016	-0.00000029
0.00000410 -0.00000448 -0.00000901	-0.00000242 0.00000114 0.00000060 -0	-0.00000040	0.00000018	0.00000008	-0.00000003
-0.00026852 0.00025435 -0.00005571	-0.00009557 0.00000880 0.00002624 C	0.00000060	-0.00000529	0.00000047	0.00000130
41 0.00014289 -0.00000283	-0.00005370 -0.00000153 0.00000880 C	0.00000114	-0.00000283	-0.00000014	0.00000061
192 -0.00054612 0.00020612	0.00035986 -0.00005370 -0.00009557 -0	-0.00000242	0.00001730	-0.00000134	-0.00000436
03 -0.00126582 -0.00002280	0.00020612 -0.00000283 -0.00005571 -6	-0.00000001	0.00001573	-0.00000004	-0.00000348
-0.00621867 0.00583947 -0.00126582	-0.00054612 0.00014289 0.00025435 -0	-0.00000448	-0.00002944	0.00000474	0.00000551
0.00661641 -0.00621867 0.00136103	0 00016141	0.00000410	0.00003008	-0.00000518	-0.00000544
33 -0.07749230 -0.00304332	0.00066192 -0.00016141 -0.00026852 (0.00016031	0.00041010	90000000	-0 00007364

FIG.9B

Filtering coefficients for the first level of wavelet decomposition.

Row	13	14	15	91	17	18	19	20	21
-	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000
2	0.00000000	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
3	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000
4	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000
5	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
9	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
7	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000
8	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000
6	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	000000000
10	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000
11	-0.00000002	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000
12	-0.0000001	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000	0.0000000
13	0.00000006	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000	0.00000000
14	0.00000001	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000
15	-0.00000026	0.00000000	0.00000005	0.00000000	-0.00000001	0.00000000	0.0000000	0.00000000	0.00000000
16	-0.00000011	-0.00000001	0.00000003	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000000	0.00000000
17	0.00000086	0.00000000	-0.00000018	0.00000001	0.00000004	0.0000000	-0.0000001	0.0000000	000000000
18	0.00000070	0.00000004	-0.00000016	0.00000000	0.00000003	0.0000000	-0.0000001	0.0000000	000000000
19	-0.00000124	0.00000008	0.00000018	-0.00000003	-0.00000004	0.00000000	0.0000001	0.0000000	000000000
20	0.00000121	-0.00000008	-0.00000017	0.00000003	0.0000003	0.0000000	-0.00000001	0.0000000	000000000
21	0.00001204	0.00000052	-0.00000233	0.00000000	0.00000044	0.0000000	-0.0000000	000000000	0 0000000

FIG.10A

Filtering coefficients for the second level of wavelet decomposition.

 $h_{i,j}^1(i,j=0,1,...,20)$

Column Row j	-	2	3	4	5	9	7	&	6	10	=	12
-	0.00000002	0.00000000	0.00000000	0.0000000	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000
2	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
3	-0.0000000	-0.0000001	0.00000001	-0.0000001	-0.0000001	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
4	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
5	0.00000046	0.00000003	-0.00000004	0.00000004	0.00000004	-0.00000001	-0.00000001	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
9	0.00000000	0.00000003	-0.00000003	0.0000000.0	0.00000001	0.0000000.0	0.00000000.0	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
7	-0.00000241	-0.0000018	0.00000019	-0.00000017	-0.00000018	0.00000003	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000000
œ	0.00000051	-0.00000008	0.00000008	0.00000004	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
6	0.00001237	0.00000123	-0.00000128	0.00000072	0.00000089	-0.00000011	-0.00000027	0.00000001	0.00000006	-0.00000001	-0.00000002	0.00000000
10	0.00000187	0.00000079	-0.00000072	-0.00000004	0.00000023	0.00000003	-0.00000005	-0.00000001	0.00000002	0.00000000	-0.00000001	0.00000000
11	-0.00006793	-0.00000483	0.00000482	-0.00000317	-0.00000396	0.00000054	0.00000115	-0.00000002	-0.00000025	0.00000004	0.00000008	-0.00000001
12	0.00000180	-0.00000495	0.00000455	-0.00000014	-0.00000128	-0.00000012	0.00000044	0.00000007	-0.00000014	0.00000000	0.00000004	0.00000000
13	0.00038895	0.00002709	-0.00002621	0.00001475	0.00001576	-0.00000261	-0.00000476	0.00000015	0.00000080	-0.00000014	-0.00000025	0.00000002
41	-0.00016234	0.00000358	-0.00000401	-0.00000868	-0.00000269	0.00000105	0.00000060	-0.00000037	0.00000015	0.00000007	-0.00000002	-0.00000001
15	-0.00184548	-0.00025898	0.00024484	-0.00005349	-0.00009021	-0.000090210.00000805	0.00002428	0.00000000	-0.00000476	0.00000044	0.00000115	-0.00000005
16	-0.00097797	-0.00015240	0.00013594	-0.00000267	-0.00005187	-0.00000133	0.00000805	0.00000105	-0.00000261	-0.00000012	0.00000054	0.00000003
17	0.01534378	0.00059814	-0.00048562	0.00019644	0.00034831	-0.00005187	-0.00009021	-0.00000269	0.00001576	-0.00000128	-0.00000396	0.00000023
18	-0.00288156	0.00137763	-0.00128885	-0.00000824	0.00019644	-0.00000267	-0.00005349	-0.00000868	0.00001475	-0.00000014	-0.00000317	-0.0000004
19	-0.07733850	-0.00602388	0.00565912	-0.00128885	-0.00048562	0.00013594	0.00024484	-0.00000401	-0.00002621	0.00000455	0.00000482	-0.00000072
20	0.08023786	0.00640669	-0.00602388	0.00137763	0.00059814	-0.00015240	-0.00025898	0.00000358	0.00002709	-0.00000495	-0.00000483	0.00000079
21	0.47382556	0.08023786	-0.07733850	-0.00288156	0.01534378	-0.00097797	-0.00184548	-0.00016234	0.00038895	0.00000180	-0.00006793	0.00000187

FIG.10B

Filtering coefficients for the second level of wavelet decomposition.

Column	13	14	15	16	17	18	61	20	21
	0.0000000.0	0.00000000	0.00000000.0	0.00000000.0	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
2	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
3	0.00000000	0.00000000	0.00000000	0.0000000.0	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
4	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
5	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
9	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
7	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
8	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
6	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
10	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
11	-0.00000002	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
12	-0.00000001	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
13	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
14	0.00000001	0.00000000	0.00000000	0.00000000.0	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
15	-0.00000027	0.00000000	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000000	0.00000000
16	-0.00000011	-0.00000001	0.00000003	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000000	0.00000000
17	0.00000089	0.00000000	-0.00000018	0.00000001	0.00000004	0.00000000	-0.00000001	0.00000000	0.00000000
18	0.00000072	0.00000004	-0.00000017	0.00000000	0.00000004	0.00000000	-0.00000001	0.00000000	0.00000000
19	-0.00000128	0.00000008	0.00000019	-0.00000003	-0.00000004	0.00000000	0.00000001	0.00000000	0.00000000
20	0.00000123	-0.00000008	-0.00000018	0.00000003	0.00000003	0.00000000	-0.00000001	0.00000000	0.00000000
21	0.00001237	0.00000051	-0.00000241	0.00000000	0.00000046	0.00000000	6000000000	0.00000000	0.00000002

FIG.11A

¥

Filtering coefficients for the third level of wavelet decomposition.

 $h_{i,j}^{2}(i, j = 0,1,...,20)$

12	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000002	-0.00000001	-0.00000005	0.00000003	0.00000023	-0.00000004	-0.00000070	0.00000078	0.00000189
=	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	-0.00000002	0.00000000	0.00000007	0.00000004	-0.00000024	-0.00000002	0.00000112	0.00000052	-0.00000385	-0.00000309	0.00000464	-0.00000470	-0.00006649
10	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000004	0.00000000	-0.00000014	0.00000007	0.00000044	-0.00000012	-0.00000127	-0.00000016	0.00000449	-0.00000489	0.00000148
6	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000000	0.00000002	-0.00000024	-0.00000014	0.00000077	0.00000015	-0.00000462	-0.00000256	0.00001535	0.00001449	-0.00002534	0.00002638	0.00038357
80	0.00000000	0.00000000	0.00000000	0.00000000	0:00000000	0.00000000	0.00000000	0.00000000	0.00000001	-0.00000001	-0.00000002	0.00000007	0.00000015	0:00000036	0.00000061	0.00000102	-0.00000275	-0.00000858	-0.00000391	0.00000345	-0,00016301
7	0.00000000	0.00000000	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000005	0.00000000	-0.00000026	-0.00000005	0.00000112	0.00000044	-0.00000462	0.00000061	0.00002376	0.00000785	-0.00008876	-0.00005290	0.00024232	-0.00025672	-0.00182269
9	0.00000000	0.00000000	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000003	-0.00000001	-0.00000011	0.00000003	0.00000052	-0.00000012	-0.00000256	0.00000102	0.00000785	-0.00000126	-0.00005140	-0.00000258	0.00013401	-0.00014985	-0.00098480
5	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000004	0.00000001	-0.00000018	0.00000000	0.00000086	0.00000023	-0.00000385	-0.00000127	0.00001535	-0.00000275	-0.00008876	-0.00005140	0.00034524	0.00019374	-0.00046943	0.00058164	0.01529107
4	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000003	0.00000000	-0.00000016	0.00000004	0.00000000	-0.00000004	-0.00000309	-0.00000016	0.00001449	-0.00000858	-0.00005290	-0.00000258	0.00019374	-0.00000432	-0.00129472	0.00138132	-0.00283905
3	0.00000000	0.00000000	0.00000001	0.00000000	-0.00000004	-0.00000003	0.00000018	0.00000008	-0.00000124	-0.00000070	0.00000464	0.00000449	-0.00002534	-0.00000391	0.00024232	0.00013401	-0.00046943	-0.00129472	0.00561056	-0.00597188	-0.07729822
2	0.00000000	0.00000000	-0.00000001	0.00000000	0.00000003	0.00000003	-0.00000017	-0.00000008	0.00000121	0.00000078	-0.00000470	-0.00000489	0.00002638	0.00000345	-0.00025672	-0.00014985	0.00058164	0.00138132	-0.00597188	0.00635153	0.08017953
1	0.00000002	0.00000000	-0.00000008	0.00000000	0.00000044	0.00000000	-0.00000233	0.00000052	0.00001204	0.00000189	-0.00006849	0.00000148	0.00038357	-0.00016301	-0.00182269	-0.00098480	0.01529107	-0.00283905	-0.07729822	0.08017953	0.47386529
Column Row j	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21

FIG.11B

Filtering coefficients for the third level of wavelet decomposition.

	0.00000000 0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	0.00000000
0.00000000	-0.00000001
0.00000000	0.00000000
0.00000000	0.00000005
0.00000000	0.00000003
0.00000001	-0.00000018
0.00000000	-0.00000016
-0.00000003	0.00000018
0.00000003	-0.00000017
0.00000000	-0.00000233