Embedded Systems

Memory and memory map Lesson 05

Francesco Menichelli francesco.menichelli@uniroma1.it

Memory – Data retention

- Memory devices are used to store program and data for the CPU
- They can be divided in two groups depending on a parameter known as data retention
 - Volatile (data is lost at power off)
 - SRAM, DRAM
 - Non volatile (data is retained after a power off)
 - EPROM, EEPROM, FLASH

Memory – Size

- The most basic way to characterize a memory is by its capacity
 - E.g. 64 Mbit.
- However, given size, manufacturers usually make several versions of a memory with a different data width. This parameter is called aspect ratio

Memory - RAM

- Static RAM (SRAM)
 - Manufactured using standard logic
 - Consume only leakage current if not used
 - It basic cell is composed by 6 transistors
 - Higher speed, Higher cost
- Dynamic RAM (DRAM)
 - Manufactured using dedicated processes
 - Must be refreshed if not used (consumes power)
 - It basic cell is composed by 1 transistor
 - Lower speed, Lower cost

Memory - RAM

- With present technology, SRAM in the order of 1-1000 kbyte can ben easily integrated in the microcontroller
- If system requires above 1Mbyte of RAM, external DRAM could be the only solution.
 - Embedded Linux requires at least 4-8Mbyte to run smoothly
- DRAM requires hardware for refresh function (DRAM controller)
- Using integrated SRAM is the preferred choice:
 - Cost
 - Speed
 - Reliability

Example – Coldfire MCF548x (Freescale)

Memory - FLASH

- The most common non-volatile memory technology
 - Slow write, reduced lifetime
 - Read is faster than write, but not as SRAM
- Used for program memory in microcontrollers
 - Integrated or external
- For medium/high performance CPU (approx. above 50MHz clock), can be too slow to respond in 1 cycle
 - architectural techniques to raise bandwidth

Board example – external memory

Board example – external memory

Memory in 8-bit architectures

- The smallest element of a memory is a byte (8-bit)
- Memory address space is indexed on <u>bytes</u>
 - byte 0 is at address 0, byte 1 is at address 1
- Processor can access memory in bytes.

Memory in 32-bit architectures

- The smallest element of a memory is a byte (8-bit)
- Memory address space is indexed on <u>bytes</u>
 - byte 0 is at address 0, byte 1 is at address 1
- Processor can access memory in words (4 bytes) half words (2 bytes) or bytes.

Memory in 32-bit architectures

• The ARM processor can generate 3 kinds of memory accesses: word, half word, bytes:

```
    LDR r0,[r1] ; read a word (4 byte) in one step
    LDRH r0,[r1] ; read a half word and put it in r0 (bits 31-16 in r0 are zeroed)
    LDRB r0,[r1] ; read a byte and put it in r0 (bits 31-8 in r0 are zeroed)
```


Memory mapped I/O

- Device registers are mapped within the CPU addressable memory space
- In order to read or change the value of a register, CPU performs load and store operations, as for memory
 - LDR r0,[r1]
 - STR r0,[r1]

Where r1 has been previously loaded with the address of the register.

Memory mapped I/O

Access size for registers

```
1. STR r0,[r1]; write a word (4 bytes) in one step
```

2. STRH r0,[r1]; write a half word (2 bytes)

3. STRB r0,[r1]; write a byte

0x44332211 r0	0x200	0x201	0x202	0x203
r1=0x200	0x55	0x66	0x77	0x88
1.	0x11	0x22	0x33	0x44
2.	0x11	0x22	0x77	0x88
3.	0x11	0x66	0x77	0x88

PIC16F648 (Microchip) – Program memory

	1		r		r		ı
Indirect addr.(1)	00h	Indirect addr.(1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh		8Fh		10Fh		18Fh
T1CON	10h		90h				
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah	EEDATA	9Ah				
	1Bh	EEADR	9Bh				
	1Ch	EECON1	9Ch				
	1Dh	EECON2(1)	9Dh				
	1Eh		9Eh				
CMCON	1Fh	VRCON	9Fh		11Fh		
	20h		A0h		120h		
General		General	Aun	General			
Purpose		Purpose		Purpose			
Register		Register		Register 80 Bytes			
80 Bytes		80 Bytes		ou bytes			
	6Fh		EFh		. 16Fh		1EFh
	70h		F0h		170h		1F0h
16 Bytes		accesses	. 011	accesses		accesses	
	75.	70h-7Fh		70h-7Fh	4756	70h-7Fh	4555
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFh
Dalik U		Dank 1		Dank 2		Dank	

Unimplemented data memory locations, read as '0'.

Resume - PIC16F648 (Microchip)

- Program and data memory spaces are independent
- Program memory address space is linear
- Program memory word size is 13-bit
 - Custom design, general purpose memories are in 8-bit multiples
- Data memory address space is <u>banked</u>
 - ISA limitation: only 7-bit addresses can be generated (128 locations)
- Data memory cell size is 8-bit

16-bit words

ATmega128 (ATMEL)

ATmega128 (ATMEL)

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(\$FF)	Reserved	-	-	-	-	-	-	-	-	
_	Reserved	-	_	-	_	_	1	-	-	
(\$9E)	Reserved	-	-	-	_	_	ı	ı	_	
(\$9D)	UCSR1C	-	UMSEL1	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	190
(\$9C)	UDR1	USART1 I/O D	USART1 I/O Data Register						188	
(\$9B)	UCSR1A	RXC1	TXC1	UDRE1	FE1	DOR1	UPE1	U2X1	MPCM1	188
(\$9A)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	UCSZ12	RXB81	TXB81	189
(\$99)	UBRR1L	USART1 Baud	Rate Register Lo	ow						192
(\$98)	UBRR1H	-	_	-	-	USART1 Baud	Rate Register Hig	gh		192
(\$97)	Reserved	-	_	-	_	_	1	1	_	
(\$96)	Reserved	-	-	-	-	_	ı	-	-	
(\$95)	UCSR0C	-	UMSEL0	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	190
(\$94)	Reserved	-	-	-	-	_	-	-	-	
(\$93)	Reserved	-	_	1	_	_	1	1	_	
(\$92)	Reserved	-	-	-	-	-	-	-	-	
(\$91)	Reserved	-	-	-	-	-	-	-	-	
(\$90)	UBRR0H	-	-	-	-	USART0 Baud	Rate Register Hig	gh		192
(\$8F)	Reserved	-	-	-	_	_	-	-	-	
(\$8E)	Reserved	-	-	-	-	-	-	-	-	
(\$8D)	Reserved	-	-	-	-	-	-	-	-	
(\$8C)	TCCR3C	FOC3A	FOC3B	FOC3C	-	-	-	-	-	135
(\$8B)	TCCR3A	COM3A1	COM3A0	COM3B1	COM3B0	COM3C1	COM3C0	WGM31	WGM30	130
(\$8A)	TCCR3B	ICNC3	ICES3	-	WGM33	WGM32	CS32	CS31	CS30	134
(\$89)	TCNT3H	Timer/Counter	Timer/Counter3 – Counter Register High Byte						136	
(\$88)	TCNT3L	Timer/Counter3 – Counter Register Low Byte						136		
(\$87)	OCR3AH	Timer/Counter3 – Output Compare Register A High Byte					136			
(\$86)	OCR3AL	Timer/Counter3 – Output Compare Register A Low Byte					136			
(\$85)	OCR3BH	Timer/Counter	Timer/Counter3 – Output Compare Register B High Byte					137		
(\$84)	OCR3BL	Timer/Counter3 – Output Compare Register B Low Byte					137			
(\$83)	OCR3CH	Timer/Counter	Timer/Counter3 – Output Compare Register C High Byte						137	
(\$82)	OCR3CL	Timer/Counter3 – Output Compare Register C Low Byte						137		
(\$81)	ICR3H	Timer/Counter3 – Input Capture Register High Byte					137			
(\$80)	ICR3L	Timer/Counter3 – Input Capture Register Low Byte					137			
(\$7F)	Reserved	_			_	_	_	-	_	

Resume - ATmega128 (ATMEL)

- Program and data memory spaces are independent
- Program memory address space is linear
- Program memory word size is 16-bit
- Data memory address space is <u>linear</u>
- Data memory cell size is 8-bit

Bus	Boundary address	Peripheral
243	_	-
	0x4001 4C00- 0x4001 FFFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4/I2S4
	0x4001 3000 - 0x4001 33FF	SPI1
APB2	0x4001 2C00 - 0x4001 2FFF	SDIO
APDZ	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1
	0x4000 7400 - 0x4000 FFFF	Reserved

Resume - STM32F401 (STM)

- Program and data memory spaces are <u>unified</u>
- Address space is linear, word size is 32-bit
- Bit banding (ARM Cortex specific)
 - Bit banding regions map each word in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the alias region has the same effect as a readmodify-write operation on the targeted bit in the bit-band region.
 - Allows atomic read-modify-write operation without specialized instruction and hardware

Bit banding

A mapping formula shows how to reference each word in the alias region to a corresponding bit in the bit-band region. The mapping formula is:

bit word addr = bit band base + (byte offset
$$\times$$
 32) + (bit number \times 4)

where:

- bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit
- bit_band_base is the starting address of the alias region
- byte_offset is the number of the byte in the bit-band region that contains the targeted bit
- bit number is the bit position (0-7) of the targeted bit

Example

The following example shows how to map bit 2 of the byte located at SRAM address 0x20000300 to the alias region:

$$0x22006008 = 0x22000000 + (0x300*32) + (2*4)$$

Writing to address 0x22006008 has the same effect as a read-modify-write operation on bit 2 of the byte at SRAM address 0x20000300.