Coursework 2

*** IMPORTANT ***

Please submit ONE .doc/.html/.pdf file to the dropbox 2 on moodle. Please include any R code, plots or results obtained by running the R code to your solution file, if required.

1. Logistic regression (1%) [Textbook 4.10]

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter's lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

- (a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
- (b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
- (c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

2. Logistic regression (1%) [Textbook 4.11]

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

- (a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
- (b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

3. Validation set approach (1%) [Textbook 5.5]

In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of

this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.

- (a) Fit a logistic regression model that uses income and balance to predict default.
- (b) Using the validation set approach; estimate the test error of this model. In order to do this, you must perform the following steps:
 - i. Split the sample set into a training set and a validation set.
 - ii. Fit a multiple logistic regression model using only the training observations.
 - iii. Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the default category if the posterior probability is greater than 0.5.
 - iv. Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.
- (c) Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.
- (d) Now consider a logistic regression model that predicts the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate.

4. LOOCV and Loop (2%) [Textbook 5.7]

In Sections 5.3.2 and 5.3.3, we saw that the cv.glm() function can be used in order to compute the LOOCV test error estimate. Alternatively, one could compute those quantities using just the glm() and predict.glm() functions, and a for loop. You will now take this approach in order to compute the LOOCV error for a simple logistic regression model on the Weekly data set. Recall that in the context of classification problems, the LOOCV error is given in (5.4).

- (a) Fit a logistic regression model that predicts Direction using Lag1 and Lag2.
- (b) Fit a logistic regression model that predicts Direction using Lag1 and Lag2 using all but the first observation.
- (c) Use the model from (b) to predict the direction of the first observation. You can do this by predicting that the first observation will go up if P(Direction="Up" | Lag1, Lag2) > 0.5. Was this observation correctly classified?

- (d) Write a for loop from i = 1 to i = n, where n is the number of observations in the data set, that performs each of the following steps:
 - i. Fit a logistic regression model using all but the ith observation to predict Direction using Lag1 and Lag2.
 - ii. Compute the posterior probability of the market moving up for the ith observation.
 - iii. Use the posterior probability for the ith observation in order to predict whether or not the market moves up.
 - iv. Determine whether or not an error was made in predicting the direction for the ith observation. If an error was made, then indicate this as a 1, and otherwise indicate it as a 0.
- (e) Take the average of the n numbers obtained in (d)iv in order to obtain the LOOCV estimate for the test error. Comment on the results.

5. [OPTIONAL] LOOCV (1%) [Textbook 5.8]

[This problem is optional, and you will get an extra 1% if you solve it correctly.]

We will now perform cross-validation on a simulated data set.

- (a) Generate a simulated data set as follows:
- > set.seed(1)
- > x=rnorm(100)
- $> v=x-2*x^2+ rnorm(100)$

In this data set, what is n and what is p? Write out the model used to generate the data in equation form.

- (b) Create a scatterplot of *X* against *Y*. Comment on what you find.
- (c) Set a random seed, and then compute the LOOCV errors that result from fitting the following four models using least squares:

i.
$$Y = \beta_0 + \beta_1 X + \varepsilon$$

ii.
$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$

iii.
$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$$

iv.
$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 X^4 + \varepsilon$$
.

Note you may find it helpful to use the data.frame() function to create a single data set containing both X and Y.

(d) Repeat (c) using another random seed, and report your results. Are your results the same as what you got in (c)? Why?

- (e) Which of the models in (c) had the smallest LOOCV error? Is this what you expected? Explain your answer.
- (f) Comment on the statistical significance of the coefficient estimates that results from fitting each of the models in (c) using least squares. Do these results agree with the conclusions drawn based on the cross-validation results?