

MITx 6.86x

 \square Bookmark this page

Machine Learning with Python-From Linear Models to Deep Learning

Discussion Course **Progress** Resources Dates

Course / Unit 5. Reinforcement Learning (2 weeks) / Homework 5

Homework due May 3, 2023 08:59 -03 Completed

Consider an Markov Decision Process with 6 states $s \in \{0,1,2,3,4,5\}$ and 2 actions by the following transition probability functions For states 1, 2, and 3:

$$T\left(s,M,s-1\right) =1$$

$$T\left(s,C,s+2\right)=0.7$$

$$T\left(s,C,s\right)=0.3$$

For state 0:

$$T\left(s,M,s
ight) =1$$

$$T\left(s,C,s
ight) =1$$

For states 4 and 5:

$$T\left(s,M,s-1
ight) =1$$

$$T\left(s,C,s\right) =1$$

Note that all transition probabilities not defined by the above are equal to ${f 0}.$ The rewards R are defined by:

$$R\left(s,a,s'
ight)=|s'-s|^{rac{1}{3}}\;orall s
eq s',$$
 and $R\left(s,a,s
ight)=(s+4)^{rac{-1}{2}}$, $orall s
eq 0.$ $R\left(0,M,0
ight)=R\left(0,C,0
ight)=0.$ Also, the discount factor $\gamma=0.6$.

$$W_{\alpha} : \text{withintime} \ O \ (\alpha, \alpha) \quad O \ \forall \alpha \in \{0, 1, 9, 9, 4, 5\} \text{ and } \forall \alpha \in \{0, M\}$$

2

6.0/6.0 points (graded) Input the Q-values

correct to 3 decimal places after one Q-value iteration

0	•
0	~
1	•
1.016	~
1	•
1.004	~
1	•
0.995	~
1	•
0.354	~
1	•
0.333	~

Submit

You have used 1 of 4 attempts

Show all posts

Reward clarification

For the case where both s != s' and s != 0 hold true, which reward function should we use? The first, the sec

Connect

Blog

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>