

Classification of Kickstarter's successful/failed projects based on data crawled by a scraper robot

Promotion février 2020 Gloria González Curto

Problem definition and goal

Kickstarter: a global crowdfunding platform focused on creativity.

Creators propose projects and fix an economic goal and a deadline.

If the goal is reached, the pledged money is collected from backers.

Goal

Predict if a project is going to succeed or fail its crowdfunding campaign based on data crawled by a web robot from the kickstarter site.

Interest of the project

- Guide creators to succeed in the set up of their project campaign.
- → Guide creators to decide to launch a campaign on kickstarter based on their project's general subject

Description of raw data

- Raw data were collected from https://webrobots.io/kickstarterdatasets/
- Crawl executed on February 13 2020
- → 57 CSV files with 3500 to 4000 rows each and 38 variables (redundant)
- → 6/38 variables are JSON encoded
- Other variables are related to: project text description, profile location goal, pledged, currency, index for conversion into USDs dates (UNIX time) state of the project (TARGET)

Dataset statistics (pandas profiling package)

- → Number of variables 38
- → Number of observations 206174
- → Missing cells 824297
- → Missing cells (%) 10.5%
- → Duplicate rows 0
- → Duplicate rows (%) 0.0%
- → Total size in memory 1.2 GiB
- Variable types

CAT 18

NUM 12

BOOL 7

URL :

Sources of data leaks:

- → Rows(projects):
 - Errors parsing JSON:
 - Tried to fix errors with regexp and replaces
 - Filter out problematic rows (forecast of 22800 → 206174 rows)
 - Text in several languages
 - Translation
 - Detection of language and translation
 - Custom made filter to select English text (206174 → 122590 rows)

Sources of data leaks:

- → Columns (features):
 - Variables with high amounts of missing values
 - Redundant or low information
 - High correlation to target
 - Incomplete information for ongoing projects

Creation of variables:

- Dummification of categorical variables
- Date derived variables
 - Year, month, day (created, deadline, launched, state change at)
 - Initial duration of the project
 - Project set-up
- Profile (integer score accounting for profile completeness)

Creation of variables:

- → Frequency score:
 - Selection of 200 keywords by category and project state, and its frequency (computed on training sets)
 - Add the frequency for occurrences of successful keywords
 - Subtract the frequency for occurrences of failed keywords
 - Normalize by text length

Country selection(198 levels)::

• More than 55% of successful projects and more than 50 projects

Secondary category selection (159 subcategories):

- More than 55% of successful projects
- Information non redundant to principal category (15)

Selection of 46 subcategories

Secondary category selection (159 subcategories):

- More than 55% of successful projects
- Information non redundant to principal category (15)

Selection of 46 subcategories

Secondary category selection (159 subcategories):

- More than 55% of successful projects
- Information non redundant to principal category (15)

Selection of 46 subcategories

Exploratory data visualization: temporal dimension

Exploratory data visualization: temporal dimension

Exploratory data visualization: wordclouds

Category: Comics

Exploratory data visualization: wordclouds

Category: Fashion

Exploratory data visualization: wordclouds

Category: Food

data pre-processing: split train and test

XGBoost binary classification: bayesian hyperparameter optimization

Parameters for crossvalidation:

'objective': 'binary:logistic',
'max_depth': int(max_depth),
'gamma': gamma,
'learning_rate':learning_rate,
'subsample': subsample,
'eval_metric': 'auc'

num_boost_round=100
nfold=5
early_stopping_rounds=80
as_pandas=True
seed=37

Hyper parameter space:

'max_depth': (3, 8), # default 6
'gamma': (0, 5), # default 0
'learning_rate':(0, 1), #default 0.3
'subsample':(0, 1) # default 1

XGBoost binary classification: Evaluation metrics on test set

	precision	recall t	1-score	support
O 1	0.83 0.90	0.89 0.84	0.86 0.87	15423 17677
accuracy macro avg weighted avg	0.86 0.87	0.87 0.86	0.86 0.86 0.86	33100 33100 33100

Confusion matrix

0 1 0[13763 1660] 1[2844 14833]

Model decision tree

SHAP: model interpretation

SHAP: model interpretation

SHAP: Error evaluation

base value model output value

SHAP: Error evaluation

base value model output value

Features important for the success of a project:

Category

Complete profile

Saturation tendency (increased rate of failed projects)

Perspectives:

Perfect model:

Complete evaluation of wrong predicitions

PCA or Temporal Split

Change XGBoost booster (dart booster)

Other classifiers

New features (google trends)

Development tools

Visual Studio Code

