

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа N = 1

Тема Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

Студент Тэмуужин Янжинлхам
Группа ИУ7И-67Б (ИУ7-63Б)
Оценка (баллы)
Преподаватель Градов В.М.

Цель работы: Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге–Кутта).

Исходные данные: ОДУ, не имеющее аналитического решения

$$u'(x) = x^2 + u^2, u(0) = 0 (1)$$

Результат работы программы.

+			+	<u> </u>		
X	Picard 1	Picard 2	Picard 3	Picard 4	Euler 	Runge–Kutta +
0	0	0	0	0	0	0
0.05	4.1666666666666768e-05	4.166667906746133e-05	4.1666679067466026e-05	4.1666679067466026e-05	4.1541762228105165e-05	4.1666637400572926e-05
0.1	0.000333333333333517	0.000333334920634939	0.00033333492064455903	0.0003333349206445591	0.00033283507622937196	0.0003333348373039962
0.15	0.001124999999999956	0.00112502712053571	0.0011250271213678247	0.0011250271213678433	0.0011239022450205845	0.0011250269963130374
0.2	0.002666666666664385	0.002666869841269613	0.002666869860971943	0.0026668698609733444	0.0026648694839915615	0.002666869694075716
0.25	0.005208333333332632	0.0052093021453366	0.005209302374711146	0.005209302374750973	0.005206175080258996	0.005209302165712262
0.3	0.00899999999998495	0.009003471428569923	0.009003473132966783	0.009003473133580535	0.008998965532308624	0.009003472881823413
0.35	0.014291666666663943	0.014301879253469494	0.014301888543941316	0.014301888550140699	0.01429574368436661	0.01430188825467234
0.4	0.0213333333333289	0.021359339682535235	0.021359380049815538	0.02135938009578444	0.021351335131572384	0.021359379755054683
0.45	0.03037499999999327	0.03043431261160038	0.030434460122459938	0.0304344603916728	0.030424243444528338	0.03043446000360797
0.5	0.04166666666665698	0.041790674603164844	0.041791144842796016	0.0417911461517908	0.04177847206666301	0.04179114571510469
0.55	0.055458333333331995	0.05569998971972854	0.055701332047024495	0.05570133752317956	0.05568590239482369	0.055701337045386316
0.6	0.0719999999998209	0.07244434285712469	0.0724478408659165	0.07244786110331794	0.07242933528131332	0.07244786063815355
0.65	0.09154166666664332	0.09231979807785318	0.09232824257751952	0.09232830998043302	0.09230632927729898	0.09232830977804653
0.7	0.11433333333333355	0.1156405444441386	0.11565964609074489	0.11565985159702784	0.11563400648419903	0.11565985264158647
0.75	0.14062499999996272	0.14274379185264	0.14278464655807882	0.1427852272945425	0.14275505024367086	0.14278523305593457
0.8	0.1706666666666207	0.1739954793650313	0.17407870560478717	0.17408024196895736	0.17404519431813467	0.1740802636747424
0.85	0.2047083333332775	0.20979685854408775	0.20995931018053454	0.20996314675603403	0.2099226098357745	0.20996321821615502
0.9	0.24299999999993294	0.2505920142856423	0.25089735870182156	0.25090646413504375	0.25085974775873815	0.25090668106183533
0.95	0.28579166666658695	0.2968763856521948	0.29743135371783314	0.2974520107446704	0.29739841177067056	0.2974526299089603
1.0	0.333333333333333	0.34920634920624494	0.3501851470104385	0.3502301639518097	0.3501691514801412	0.35023184256185214
1.05	0.38587499999989067	0.4082099273436259	0.40989019488004164	0.40998483099919786	0.40991652954196156	0.4099891832755223
1.1	0.443666666665399	0.47459868412683676	0.4774135497211181	0.47760616913808607	0.47753251057172863	0.4776170193330265
1.15	0.5069583333331876	0.5491808711183775	0.5537931530570965	0.5541739525974525	0.5541012792690408	0.5542000797158418
1.2	0.5759999999998334	0.6328758857140807	0.6402824226979018	0.6410157082912116	0.6409604469610019	0.6410767222804395
1.25	0.6510416666664772	0.7267301044764457	0.7384066646035261	0.7397855277365051	0.7397862425917447	0.739924217442007
1.3	0.7323333333331191	0.8319341539679718	0.8500345155666877	0.8525720804964604	0.8527146059235435	0.8528799866234037
1.35	0.820124999999759	0.9498416815844914	0.9774684693767697	0.9820482182273187	0.9825173964233044	0.9827180451573538
1.4	0.914666666663967	1.0819896888885037	1.1235595975289352	1.131680299062579	1.132865664876475	1.1331126630533572
1.45	1.0162083333333332	1.2301204899425071	1.2918528954201776	1.3060239471312942	1.3087350185017432	1.3090444011988234
1.5	1.124999999996654	1.3962053571423343	1.486771326294453	1.5111458821856327	1.517051822669519	1.5174475202408506
1.55	1.241291666666296	1.582469917050483	1.7138486700252302	1.75523101590291	1.7677660675472395	1.768285129243752
1.6	1.3653333333329243	1.7914213587294519	1.9800237982880848	2.049463794881526	2.075720932888461	2.0764233280901516
1.65	1.4973749999995498	2.025877517075072	2.29401209418783	2.4093183493552703	2.4641077779669605	2.465096068177834
1.7	1.637666666666173	2.288997893649842	2.666773534112534	2.8564620749786447	2.971334765577356	2.9727970702337476
1.75	1.7864583333327932	2.5843166775162585	3.112101595112406	3.421585410071681	3.666021950089084	3.6683366578385335
1.8	1.943999999994109	2.9157778285701523	3.647362809566589	4.148637988120319	4.684098258813609	4.688130118726142
1.85	2.1105416666660255	3.2877722858740204	4.294423655265417	5.101211191410592	6.338385271973278	6.346523966403968
1.9	2.2863333333326374	3.7051773634903595	5.080809769769827	6.3722111522661375	9.545667663186862	9.566989872825133
1.95	2.471624999999246	4.173398396314999	6.04115247501911	8.098595115399545	18.64485062499572	18.747228267572805
2.0	2.66666666665851	4.698412698410433	7.218989593587453	10.48392331731751	270.06840575160396	317.4901471958484
+			· · · · · · · · · · · · · · · · · · ·			

Рис. 1: Результат при $h=10^{-4}, x_{max}=2, \alpha=1,$ шаг вывода – 0.05

Рис. 2: График функции в диапазоне [-2; 2]

Рис. 3: График функции в диапазоне [-2; 2]

Рис. 4: График функции в диапазоне [1.99; 2]

Вопросы.

1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара, т.е. для КАЖДОГО приближения указать свои границы применимости. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

i-ое приближение Пикара можно считать решением уравнения до тех пор, пока его результаты совпадают (до второго знака после запятой) с результатами (i+1)-ого приближения Пикара.

• 1 приближение считается решением на интервале [0; 0.86)

X	Picard 1	Picard 2
0.86	0.2120186666666687	0.21754133051131883
0.87	0.21950099999993986	0.22548917134720317

Таблица 1

• 2 приближение считается решением на интервале [0; 0.99)

X	Picard 2	Picard 3
0.99	0.3382276880619151	0.3391034505882876
1.0	0.34920634920624494	0.3501851470104385

Таблица 2

• 3 приближение считается решением на интервале [0; 1.25)

X	Picard 3	Picard 4
1.25	0.7384066646035261	0.7397855277365051
1.26	0.7595851613848043	0.7611455007335479

Таблица 3

- чтобы определить интервал значений аргумента для 4-ого приближения необходимо найти 5-ое приближение (не выполнялось в данной работе).
- 2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Если при шаге, приближенному к нулю, полученные в окрестности точки значения примерно совпадают, то расчет значений был произведен правильно.

Считают, что численный метод сходится в точке x, если $|yi-v(x_i)| \to 0$ при $h \to 0, x_i = x$

- 3. Каково значение решения уравнения в точке x=2, т.е. привести значение u(2). $u(2) \approx 317$.
- Дайте оценку точки разрыва решения уравнения.
 Нет точки разрыва.
- 5. Покажите, что метод Пикара сходится к точному аналитическому решению уравнения $u'(x) = x^2 + u, u(0) = 0$