Tarea 10 Hiram Isaí Torres Espinosa

INDICACIONES. — Contesta los siguientes problemas y ejercicios de interpolación utilizando las TABLAS TERMODINÁMICAS correspondientes, una vez realizado digitaliza tu archivo entregable con extensión PDF, nombrándolo de la siguiente manera: APELLIDO PATERNO APELLIDO MATERNO NOMBRE_TAREA 10

- 1. Un recipiente rígido contiene 10 kg de agua a 90 °C. Si 8 kg del agua están en forma líquida y el resto como vapor, determine:
 - a) la presión en el recipiente
 - \circ De la tabla A-4 se obtiene que la P_{sat} = 70.183
 - b) el volumen del recipiente

$$\begin{array}{l} \circ \ \ V_{total} = V_{agua} + V_{vapor} \\ V_{total} = (0.001036\frac{m^3}{kg})(8kg) + (2.3593\frac{m^3}{kg})(2kg) \\ V_{total} = 4.726888 \end{array}$$

- 2. Refrigerante 134a sobrecalentado, cuyo volumen específico es 0.46190 pies3/lbm, fluye por un tubo a 120 psia. ¿Cuál es la temperatura de saturación en el tubo?
 - \circ Obteniendo de la tabla A-13E se obtiene que para una P=120psia y un $v=0.46190rac{ft^3}{lbm}$ la temperatura es: T=140K
- 3. Con la Tabla A-17 Propiedades de gas ideal del aire, complementa la siguiente tabla utilizando

los valores de referencia y el método de interpolación:

	$T_{[K]}$	$h_{m{ beta}_{kg}^{\underline{kJ}}m{ beta}}$	P_r	$u_{oldsymbol{l}rac{kJ}{kg}oldsymbol{l}}$	V_r
1	223	222.985	0.49261	158.974	1303.7
2	278.29	278.41	1.0666	198.524	750

	$T_{\llbracket K rbracket}$	$h_{m{ biglie}{m{ar{k}g}}m{m{l}}}$	P_r	$u_{oldsymbol{ ilde{l}}rac{kJ}{kg}oldsymbol{ extstyle{l}}}$	V_r
3	299.2028	299.39	1.3734	213.5	625.47
4	843.53	870	58.57	627.86	41.37
5	941.86	980.03	90	709.66	30.05
6	535	539.165	10.735	385.59	143.2
7	1186.25	1261.67	227.138	921.12	15
8	583.78	590	14.73	422.42	113.77
9	770	789.105	41.31	568.065	53.59
10	870.39	899.853	66.151	650	37.816

Para completar la tabla y realizar cada operación más rapido, hice un programa en python el cual define una función y pide los valores solo para teclearlos y que resuelva la interpolación.

Dejo el código también para su visualización

```
def interpolacion (y1,x,x1,y2,x2):
    return y1+(x-x1)*((y2-y1)/(x2-x1))

x = float(input("Valor x:"))
x1 = float(input("Valor x1:"))
x2 = float(input("Valor x2:"))
y1 = float(input("Valor y1:"))
y2 = float(input("Valor y2:"))
resultado = interpolacion(y1,x,x1,y2,x2)
print(resultado)
```