TD entraînement : mouvements courbes

Glissade d'un pingouin sur un igloo

Un pingouin, assimilable à un point matériel M de masse m décide de faire du toboggan. Il s'élance sans vitesse initiale du sommet A d'un igloo voisin, assimilable à une demi sphère S de rayon R et de centre O, posée sur un plan horizontal Π . On considère que le glissement s'effectue sans frottement dans le plan vertical (xOz).

- 1) Appliquer le PFD au pingouin pour en déduire deux équations différentielles portant sur l'angle θ . Identifier l'équation du mouvement qui permet de déterminer $\theta(t)$. Quelle information l'autre information contient-elle?
- 2) En multipliant l'équation du mouvement par $\dot{\theta}$ et en intégrant sur t, montrer que

$$\dot{\theta}^2 = \frac{2g}{R}(1 - \cos\theta)$$

- 3) En déduire la norme de la force de réaction de l'igloo.
- 4) Le pingouin décolle-t-il du toit de l'igloo avant d'atteindre le sol? Si oui, pour quel angle?

Oscillations d'un anneau sur un cerceau

Un cerceau de centre O et de rayon R est maintenu dans un plan vertical, \sqrt{g} et un anneau de masse m assimilé à un point matériel M peut glisser sans frottements le long de ce cerceau.

- 1) Qu'est-ce que l'hypothèse « sans frottements » implique pour la réaction du cerceau sur l'anneau?
- 2) Écrire le PFD appliqué à l'anneau et le projeter dans une base adaptée.
- 3) En déduire l'équation différentielle régissant le mouvement.

On se place dans l'approximation des petits angles ($|\theta| < \theta_0 = 20^{\circ}$). Initialement, l'anneau est situé à la verticale en-dessous de O et il est lancé vers la droite, avec une vitesse initiale de norme v_0 .

- 4) En déduire l'équation horaire du mouvement.
- 5) À quelle condition sur v_0 l'approximation des petits angles est-elle vérifiée?

Anneau sur une tige en rotation

On considère un petit anneau M de masse m considéré comme ponctuel, soumis à la pesanteur et susceptible de se déplacer sans frottement le long d'une tige OA horizontale dans le plan (xOy), de longueur ℓ , effectuant des mouvements de rotation caractérisés par une vitesse angulaire ω constante autour d'un axe fixe vertical Δ passant par son extrémité O. Le référentiel lié au laboratoire est considéré comme galiléen. On considère :

- \diamond le repère cartésien $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ fixe dans le référentiel du laboratoire et associé aux axes x, y et z;
- \diamond la base cylindrique locale $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$ associée au point M. L'anneau est libéré sans vitesse initiale par rapport à la tige, à une distance r_0 du point O (avec $r_0 < \ell$). On repère la position de l'anneau sur la tige par la distance r = OM entre le point O et l'anneau M.
- 1) Faire un bilan des forces agissant sur l'anneau en les projetant dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$. En appliquant le principe fondamental de la dynamique, établir l'équation différentielle vérifiée par r(t).
- 2) Intégrer cette équation différentielle en prenant en compte les conditions initiales définies précédemment, et déterminer la solution r(t) en fonction de r_0 , ω et t.
- 3) Exprimer les composantes de la réaction \overrightarrow{R} de la tige sur M dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$ en fonction de m, g, \dot{r} et ω .
- 4) Déduire de la question 2 le temps τ que va mettre l'anneau pour quitter la tige. On exprimera τ en fonction de r_0 , ℓ et ω .

$|\mathbf{IV}|$

Pendule conique

Dans un champ uniforme de pesanteur \overrightarrow{g} vertical et vers le bas, un point matériel M de masse m tourne à la vitesse angulaire ω constante autour de l'axe (Oz) dirigé vers le haut en décrivant un cercle de centre O et de rayon R. M est suspendu à un fil inextensible de longueur L et de masse négligeable, fixé en un point A de (Oz). L'angle α de (Oz) avec AM est constant.

- 1) Quel système de coordonnées utiliser?
- 2) Effectuer un bilan des forces s'appliquant à la masse et les écrire dans la base choisie.
- 3) Appliquer le PFD puis exprimer $\cos \alpha$ en fonction de g, L et ω . En déduire que la vitesse angulaire doit forcément être supérieure à une vitesse angulaire limite ω_{lim} pour qu'un tel mouvement puisse être possible.
- 4) Que dire du cas où ω devient très grande?
- 5) Application numérique : calculer α pour $L=20\,\mathrm{cm}$ et $\omega=3\,\mathrm{tours\cdot s^{-1}}.$