

TXL 221: Yarn Manufacture I

3 Credits

Course Coordinator: Prof. Sohel Rana

B.Tech. M.Tech. Ph.D. (IIT Delhi) FHEA CMgr (UK)

05-02-2024

Minor: 40

Quiz: 20

Major: 40

Attendance Policy

Minimum Attendance

Attendance less than 75%

■ Attendance more than 95%

Late attendance

: 75%

: One grade down

: 5 bonus marks will be added to the final marks.

: Will be marked as absent after attendance has been already registered.

Opening/Blowroom:

- ✓ Principle of fibre opening in blow room
- ✓ Principle of fibre cleaning in blow room
- ✓ Opening and cleaning machines
- ✓ Principle of fibre blending
- **✓** Recent developments

Course Outline (Lecture)

Carding:

- Objective and principle of carding
- Machine elements and operations
- Sliver formation and fibre configurations in sliver
- Automation and recent developments

Course Outline (Lecture)

Drafting/Drawframe:

- ✓ Objectives, principles and methods of roller drafting.
- ✓ Purpose and principle of condensation of fibres.
- ✓ Causes of mass variation of sliver and control.
- ✓ Automation and recent developments in draw frames

Reference Books

- ✓ A Practical Guide to Opening and Carding, Short-staple Spinning Series (Volume 2), By W. Klein
- ✓ A Practical Guide to Combing and Drawing, Short-staple Spinning Series (Volume 3), By W. Klein
- ✓ Fundamentals of Spun Yarn Technology By Carl A Lawrence
- ✓ Handbook of Yarn Production-Technology, Science and Economics By Peter R. Lord
- ✓ Spun Yarn Technology By Eric Oxtoby
- ✓ NPTEL lecture series, IIT Delhi

Introduction

What is a yarn?

"A yarn may be defined as a product of substantial length and relatively small cross-section of fibres and/or filament(s) with or without twist, used for interlacing in processes such as knitting, weaving, or sewing"

Different Types of Yarn

Continuous filament yarns

Staple spun yarns

Composite yarns

Folded/plied/doubled yarns

Production of Staple Yarn: Cotton and Blends

Seed fibre, cellulosic, hydrophilic

Removal of cotton fibre from seeds

Ginning process

227 kg each 0.2 g/cm³

Cotton Bale

How to make cotton yarn from bale?

- ✓ Opening
- ✓ Cleaning why?

Impurities in Cotton Fibre

- ➤ Vegetable matter (50-80%)

 Seed fragments, stem fragments, leaf fragments, etc.
- ➤ Mineral matter (10-20%)

 Dust, sand, soil, etc.
- > Fibre fragments
- Others
 Metal particles, cloth fragments, packaging materials, etc.

Trash size > 500 micron

Dust < 50 micron

Micro dust < 15 micron

Problems?

Yarn fault, damage to machines, health hazard to the workers

How staple yarns are produced?

Spinning Process Flowchart

Blowroom

05-02-2024

Blowroom

VARIOline ECOrized

30% energy savings in fiber transport

Introduction to Blowroom

The state of the s

Fibres come to spinning mill in bale form.

Blowroom Operating Zones

Why Blowroom has different zones and machines?

Opening of Bale

How to open bale?

✓ Removing individual fibres from bale?

✓ Dividing and subdividing bales?

Question: In a spinning mill, cotton fiber is supplied in compacted bales of about 226.8 kg each. The bale dimensions is typically $1.4 \times 0.53 \times 0.64$ m, and the bale density is 478 kg/m^3 . If the individual fibers are 30 mm in length and 1.7 dtex fineness and the production rate of the plant is 500 kg/h, then how many fibres need to be separated per second from the bale?

Ans:

No. of fibres in each bale = 45 billion (approx.)

No. fibres to be separated per hour = 98 billion, 27 million fibers per second

Opening of Bale

How to open bale?

Removing large clumps of fibres from a bale

Progressively dividing the large clumps into many smaller pieces.

Opening of Tufts

TOTAL OF THE OF

Different Possibilities

✓ A large tuft is divided into several smaller tufts

✓ Volume of tuft increases without disintegration

✓ Shape of the tuft changes

Before After

How to measure fibre openness?

- By measuring specific volume
- By measuring tuft weight

M1, M2,...blowroom machines

- ✓ Plucking
- ✓ Tearing between oppositely moving spikes
- ✓ Teasing in nipped state by needles or saw tooth
- ✓ Using impact force at nipped state or free flight

TOTAL OF TECHNOLOGY

Plucking out

- Two spring systems facing each other.
- Material is grasped like finger
- Very gentle action
- Produces large tufts of uneven size

Forks or Plucker

Rotating discs

- ✓ Two rotating disc picks up fibre tufts from bale surface
- ✓ Tuft size: 30-80 mg

How blending is possible?

- Bale layout

Teasing out by Tooth disc

- ✓ Tooth discs have triangular plucking elements
- ✓ The discs are secured to a shaft
- **✓** Asymmetrically formed
- **✓** Operate only in one direction
- ✓ If the disc needs to operate in both direction?

Tearing

- ✓ Tufts are acted by oppositely moving spikes and torn apart into pieces
- ✓ Thorough mixing How?
- **✓** Formation of neps
- ✓ The intensity of opening action depends on
 - Distance between the spiked devices
 - Speed relationships
 - Total working surface
 - No. of points

Impact by Bladed Beaters

- ✓ Consists of 2-3 beater bars
- ✓ In one rotation, the feed sheet receives 2-3 blows across the full width

Opening and cleaning effect?

Low

Beating lines on tuft sheet

Impact by Strikers

- ✓ Flat, oval or round bars are riveted or screwed to a cylinder
- ✓ Various spacing of the strikers elements may be used. Why?
- ✓ Speed: 600 1000 rpm

Striking points

Opening intensity depends on

- **✓** Distance between feeding and opening elements
- ✓ Speed ratio
- **✓** Number of striking elements

Why are the striking elements staggered?

Tuft sheet

Teasing out by Saw teeth

- ✓ A cylinder surface filled with saw tooth
- ✓ Fine setting between the elements
- ✓ Suitable for smaller flocks
- ✓ Generate new surfaces
- ✓ Spacing between teeth: 6 8.5 mm Tooth height: 4.5 - 5.5 mm

Suitable for finest opening and best cleaning.

Teasing out by Needles

- ✓ Pinned bars are secured to the cast iron arms
- ✓ The inclined pins penetrate and combs through the fibres
- ✓ Generates new tuft surface and liberates trash particles
- ✓ Operates at 800-900 rpm

Kirschner Beater

Cleaning efficiency is very high

Opening Intensity

✓ Fibre Mass/Striker

✓ Blows/Kg

Intensity of opening
$$(I) = \frac{P \times 10^6}{60 \times n_b \times N}$$

$$N_k = \frac{Blows\ per\ hour}{Production\ per\ hour\ (Kg)} = \frac{1}{P}(60 \times n_b \times N)$$

 $P = production rate (Kg/h), n_b = beater speed (rpm), N = number of strikers$

✓ Beats/inch

$$Intensity = \frac{\textit{Speed of beater} \times number \textit{ of blades on beater}}{\textit{Delivery of feed roller}}$$

$$= \frac{\textit{Speed of beater} \times \textit{number of blades on beater}}{\textit{Circumference of feed roller} \times \textit{speed of feed roller}}$$

Typical beats per inch: 30-50

Cleaning Principle

Mechanism of Trash Liberation

- ✓ Loss of kinetic energy (scrubbing)
- ✓ Impulse (Beating)
- ✓ Centrifugal force
- **✓ Pneumatic force**

Loss of kinetic energy (scrubbing)

✓ The kinetic energy of trash particles after impact becomes almost zero and liberated from fibre tufts

What is separation mechanism?

The liberated particles fall down due to gravity and separated

Mechanism of Trash Liberation

Grid Bars

Cleaning action depends on:

- ✓ Distance of grid bars from beater
- ✓ Gaps between the bars
- ✓ Setting angle related to the beater

- ✓ Slotted sheets (a): Poor cleaning
- ✓ Perforated sheets (b): Poor cleaning
- ✓ Triangular section bars (c): Mostly used
- ✓ Angle bars (d): Moderate cleaning
- ✓ Blades (e): Strong and effective

Mechanism of Trash Liberation

Impulse (Beating)

- Flocks are fed by feed rollers and are subjected to strong blows by the blades of a beater.
- Velocity of tufts changes instantly (in microseconds)

Impulse: change in momentum $= m(v_i - vf)$

m is the mass of tuft, v_i is the initial velocity, v_f is the initial velocity, i.e., feed roller surface speed, final velocity (surface speed of bater at the top of strikers)

How the trash will be separated?

Beating action

Mechanism of Trash Liberation

Centrifugal force

- ✓ Trash particles resting on the saw tooth, strikers or blades are subjected to a high centrifugal force.
- ✓ Trash particles have low attachment with the striking elements.

$$CF = mr\omega^2$$

What is the trash separating mechanism?

Mechanism of Trash Separation

Pneumatic force

- ✓ Trash with liberated trash particles are directed towards a moving perforated screen.
- ✓ Trash particles are sucked through the perforations

Separation by buoyancy difference

- ✓ Mixture of tufts and trash particles are directed downwards
- ✓ A stream of air flow cross the path horizontally.

Dust and Metal Removal

Dust Removal

Difficulties:

- ✓ Dust is lighter than fibres
- ✓ Strong adherence with fibres

Liberation mechanism:

- > High metal to fibre friction
- Fibre to fibre friction

Separation Mechanism:

✓ Through suction

Metal Extractor

Cleaning Efficiency

Cleaning efficiency (CE %) =
$$\frac{Trash\ in\ feed\ (\%) - trash\ in\ delivery\ (\%)}{Trash\ in\ feed\ (\%)} \times 100$$

- **❖** The CE % of individual cleaner varies according to their type and position
- The beater or cleaner in the beginning of the blowroom line shows
 higher cleaning efficiency
- ❖ More cleaning means more waste and loss of good fibres (lint)
- **❖** Lint in the waste should be in the range of 20-30%.
- **❖** After opening and cleaning nep level in blowroom increases significantly
 - due to blunt opening elements and grid bars
 - due to repeated action of beaters or strikers

Opening and Cleaning Principle

What we have learnt so far.....

Importance of Yarn manufacturing in India

- India is the world's second largest cotton producing country
- India has the world's second largest spinning capacity after China
- Ample opportunities in Technical Textiles (NTTM), entrepreneurship, machine manufacturing, etc.

Different Steps in Yarn Manufacturing

Objectives and Principles of Opening and Cleaning

- What is opening?
- Why and how opening is done?
- Why and how cleaning is done?
- Why does a blowroom line need a specific opener and cleaner at a specific place?
- How opening and cleaning intensity are measured?
- What are the parameters which affect opening and cleaning intensity?

New Opening and Cleaning Principles.....

05-02-2024

Automatic Bale Opener: Unifloc (Rieter)

- ✓ Rotating tooth discs pluck out fibre flocks (micro tufts)
- **✓** Bale height is automatically detected
- ✓ Depth of penetration: 2-4 mm
- ✓ Can turn by 180° to process bales on the other side
- ✓ Production: up to 2000 kg/hr

05-02-2024 S. Rana

Coarse Cleaner

Step Cleaner

- Consists of series of drums with four rows of striking elements
- ✓ Grid bars cover 25% of individual drum chamber
- ✓ Inclination angle 45 to 60°
- ✓ Beater speed: 500 to 600 rpm

Coarse Cleaner

- ✓ The drum surface is covered with 6-8 rows of striking elements
- ✓ The fibre tufts enters at right angle to the beater axis and receives strikes
- ✓ The guide plates ensure than the fibre tufts follow a spiral path. Why?

B 12 UNIclean Efficient and reliable pre-cleaning

Monocylinder Cleaner

TOTAL OF TECHNOLOGY

Coarse Cleaner

UNIclean B12

Fine Cleaner

Cleaner CL-C3 (Trützschler)

RN Cleaner (Trützschler)

Intensive Cleaner

ERM Cleaner (Rieter)

Uniflex (Rieter)

Filing chute (1)

Perforated drum (2)

Feed roll (3)

Grid bar (4)

Opening cylinder (5)

Different types of clamping device

- √ Higher clamping distance
- ✓ Not powerful grip
- ✓ Uneven clamping

Feed Plate

- ✓ Small clamping distance
- ✓ More powerful grip
- ✓ Uneven clamping

Pedal rollers

- ✓ 16 pedal rollers
- ✓ Small clamping distance
- ✓ Even clamping

animal wreques

Mixer/Blender

Purpose of blending/mixing

- ✓ To average out the variation in fibre characteristics
- ✓ To engineer a textile yarn with specific properties
- ✓ To produce a certain shade by mixing fibres of different colours
- ✓ To reduce the cost

Form	Stage	Machine
Bale	Blow room	Automatic bale opening machine
Flock/ tuft	Within blow room	 Hand stack blending Automatic blending equipment Multi mixers
Lap	Within blow room	Scutcher
Sliver	Drawing, pre-combing stage, combing	Draw frame, sliver lap machine , comber draw box
Web	Pre combing stage, blending drawing	Ribbon lap machine , blending draw frame
Roving	Spinning	Ring spinning machine

Fibre blending using blowroom

Mixer

Mixing through bale lay down

Cate gory	Number	Odd/ even	U- side	L-side	1 2 3 2 3 3 4 5 4
1 (Shortest)	3	0	1	2	
2	4	E	2	2	
3	6	E	4	2	3 4 5 5 4 3 2 1 2 1
4	4	E	2	2	
5 (Longest)	3	0	1	2	Two rows
	20		10	10	T WO TOWS
1 2	3	2	3 3	3	4 5 4 3 4 5 5 4 3 2 1 2 1

Mixer

Automatic bale opener does not give homogeneous mixing. Why?

Multimixer

- ✓ Consists of 6-10 vertical compartments
- ✓ Cotton tufts are filled up to a certain filling height

Tallhold Proper

Multimixer

Discontinuous Operation

The largest difference in the filling time of tufts in different boxes is known as Blending delay time (BDT)

BDT is constant in case of discontinuous operation

Continuous Operation

The compartments are filled up in a staggered configuration from 1st to last compartment

Multimixer

1st cycle

2nd scycle 4 81 78 63 75 45 60 72 42 57 69 39 54 18 66 36 Conveyor

3rd cycle
1 2 3 4 5 6

99
81 96
78 93 63
75 90 45 60
72 87 30 42 57
69 84 18 27 39 54

Conveyor

Conveyor

Blending delay time (BDT): 45 min

4th cycle: Blending delay time (BDT): 72 min Blending delay time (BDT): 57 min

5th Cycle:

Blending delay time (BDT): 75 min

Blending delay time (BDT): 66 min

6th cycle:

Blending delay time (BDT): 75 min

How BDT changes with feed cycle and number of compartments?

Unimix (Rieter)

B 76 UNImix

90° bend in the material flow produces a shift in the timing resulting in long term blending

Blender

Metered amount of tufts are mixed together to maintain the blend ratio

Blender

- ✓ A metering system is used to drop a measured quantity of material to the conveyor belt
- Materials from 3-4 blenders are dumped together in sandwich form to form the blend

Blender

Blender

UNIblend A 81

- ✓ The amount of trash (%) in feed
- ✓ Speed of the opening device
- ✓ Setting between feed roller and line of action of beater
- ✓ Grid bar inclination and opening

Effect of trash%

Waste % increases linearly with the trash%

Effect of feed pedal distance

Waste % decreases with the increase in feed pedal distance

Effect of grid bar opening

Effect of grid bar angle

Effect of trash% on cleaning

Why non-linear after 4% trash?

Effect of fibre type on cleaning

Cleaning resistance of cotton

Problem: In a blowroom line, a fine cleaner gives cleaning efficiency of 24% for trash content in the feed of 4.3%. The amount of waste collected under the cleaner is 2.8%. Calculate the trash and lint% in the waste.

Ans: Trash collected in waste: 40% Lint collected in waster: 60%

Cleaning of different fibre types

Cleaning of different fibre types

VARIOline cleaning concept - medium trash content

Cleaning of different fibre types

VARIOline cleaning concept - high trash content

Lap Formation

No Scutcher in modern blowroom line:

Flock Feed system

- $Production(m) = delivery speed(m/min) \times duration(min)$
- $Production(Kg) = Delivery speed(m/min) \times duration(min) \times \frac{1}{1000} \times lap \ weight \ (g/m)$