OpenWRT WireGuard Server Setup guide using LuCi

Introduction

<u>WireGuard</u> is an open-source VPN solution written in C by <u>Jason Donenfeld</u> and <u>others</u>, aiming to fix many of the problems that have plagued other modern server-to-server VPN offerings like IPSec/IKEv2, OpenVPN, or L2TP. It many ways it can be seen as a replacement for OpenVPN.

It has three advantages over OpenVPN, it is much faster especially on lower-spec hardware such as Soho routers (my own R7800 goes from 85 Mb/s on OpenVPN to 300 Mb/s with WireGuard), it is easy to setup if you know how, the guides will help you with that and it has a very small code base (about 4000 lines) so that it can easily be reviewed and checked for vulnerabilities.

Some key points about WireGuard:

- Layer 3 only no bridging
- UDP only punches through firewall
- Like SSH authenticated keys
- Executes in Linux Kernel
- Static routing

This is guide is to setup WireGuard as a server.

A server is a WireGuard interface listening for incoming connections e.g. from your phone/laptop from outside. A client is making an outbound connection to a WireGuard server.

But as WireGuard basically is a peer to peer connection it can be both "client" and "server" at the same time, and if you have this setup between two routers we are talking about a site-to-site setup

This guide is based upon OpenWRT 24.10 but also should work on 23.05 and Main builds and uses LuCi to set things up but the resulting config files are also listed.

General Remarks

The most important parts of WireGuard are the public/private keys and the Allowed IP.

The public key is distributed to the peers.

The Allowed IP serves two roles, the first is that the allowed IP is used to know which of the peers public keys (if there is more than one peer) should be used to encrypt the packets.

Therefore the Allowed IP's must be unique for each peer!

The second one is security, if WireGuard detects a source IP which is not in the Allowed IP's the packets are discarded.

The keys are 32 bytes long and can be easily represented in Base64 encoding in 44 characters the last character is always an =.

As WireGuard is a routed solution all three involved subnets have to be different. So the Servers subnet, the WG subnet and the Clients subnet all have to be different!

As you often cannot choose the subnet of the client it is best to avoid using frequently used subnet for your routers IP address of e.g. 192.168.1.1/24 or 192.168.0.1/24

To be able to connect from outside your internet facing router must have a public IP address (either IPv4 and/or IPv6).

Check if your router has a proper Public IPv4 address with (from command line):

A public IP address is **not** something starting with 192.168.X.X, 10.X.X.X, 172.16-31.X.X or a <u>CGNAT address</u> (IP addresses from 100.64.0.0 to 100.127.255.255)

[`]ifstatus wan | grep address `

Furthermore proper testing can only be done from outside e.g. with your phone or laptop on cellular data or from a friends/neighbors internet.

Index

Introduction	1
General Remarks	
Server setup	
Installation	
Create WireGuard Interface	
Firewall Setup	
1. Opening up the port (55443 in this example) with a traffic rule	
2a. Allowing traffic for the wgserver's the interface	
2b. Alternative setup	
3. Allow IPv6 internet for wgserver clients	
4. Allow seamless access to LAN clients	
Peer Setup	
Setup WireGuard on your Client	13
Site-to-site setup	14
On the server side (site A, subnet 192.168.5.0/24):	14
On the client side (site B, subnet 192.168.9.0/24):	
DNSMasq resolution between networks	14
Asking for Help	15
References	16
WireGuard server in the cloud	16
Setup Oracle free OpenVPN cloud server	16
Amazon Web services (AWS)	

Server setup

Installation

Install WireGuard:

LuCi > System > Software: click `Update Lists` to get the latest packages for your build

Install: `luci-proto-wireguard`, `wireguard-tools` and `wg-installer-client` (only necessary if you later want to install a client)

Create WireGuard Interface

Next up we are going to create the WireGuard Interface:

Network > Interfaces on the bottom click: `Add New interface`

Name: give the interface a name (hyphens are not allowed and the name has to be less than 15 characters!)

Protocol: WireGuard VPN

Click: Create interface and the Interface configuration screen should appear:

Click: Generate new key pair

Listen port: 55443, you can use any port with is not already taken.

IP Addresses: 172.22.22.1/24, if you also want IPv6 use a <u>ULA address</u> e.g.: fd8f:de49::1/64, you can use an <u>ULA calculator</u> if you want

Interfaces » wgserver

General Settings Advanced Settings Firewall Settings DHCP Server Peers

Status

Protocol

Disable this interface

Bring up on boot

Private Key

Public Key

Listen Port

IP Addresses

Device: wgserver
Uptime: 0h 1m 41s
RX: 0 B (0 Pkts.)
TX: 0 B (0 Pkts.)
IPv4: 172.22.22.1/24
IPv6: fd8f.de49:19f1:ffff::1/64

WireGuard VPN

Required. Base64-encoded private key for this interface.

ML5BqgOUmKMklzhXGSXnmFWeTVD1gI
Base64-encoded public key of this interface for sharing.

Generate new key pair

55443

Optional. UDP port used for outgoing and incoming packets.

Recommended. IP addresses of the WireGuard interface.

172.22.22.1/24 fd8f:de49::1/64

Save and then Save & Apply

Protocol: WireGuard VPN Uptime: Oh 2m 41s RX: O B (O Pkts.) TX: O B (O Pkts.) IPv4: 172.22.22.1/24 IPv6: fd8f:de49:19f1:ffff::1/64

Firewall Setup

The firewall setup consist of three things:

- 1. Opening up the port (55443 in this example) with a traffic rule
- 2a. Allowing traffic for the wgserver the interface
- 3. Allow IPv6 internet for your wgserver clients, Optional if you have implemented IPv6 and want your cleints to have IPv6 internet

1. Opening up the port (55443 in this example) with a traffic rule

Network > Firewall > Traffic Rules

Add new traffic rule Name: allow-55443

Protocol: UDP, click drop down button and disable TCP

Source zone: WAN

Destination zone: Device (input)

Destination port: 55443, the port the wgserver interface listens on

Action: accept

The traffic rule, by default, applies to IPv4 and IPv6, you can restrict the rule to IPv4 on the Advanced Tab

2a. Allowing traffic for the wgserver's the interface

The easiest method is to edit the wg server interface.

Network > Interfaces and click the *edit* button on the *wgserver interface*

Go to Firewall settings:

Click on the drop down button and click on lan, this will add the wgserver interface to the lan zone

Save and Save & Apply

/etc/config/firewall:

config zone

option name 'lan'
option input 'ACCEPT'
option output 'ACCEPT'
option forward 'ACCEPT'
list network 'lan'
list network 'wgserver'

2b. Alternative setup

This can be used if you want a more finer grained control.

Instead of adding the wgserver interface to the LAN zone, create a separate firewall zone: Go to Network > Firewall and

Click Add

Name: wgserver (or a name to your liking)

Input: accept (unless you do not want your wgserver clients to have access to your router)

Output: accept (always set accept)

Intra zone Forward: accept (unless yo do not want your wgserver clients to be able to communicate with each other)

Covered networks: *wgserver* (this is the wgserver interface)

allow forward to destination zones:

lan zone (to allow to connect to your lan clients)

wan zone (optional to give your wg server clients internet access via your router)

allow forward from source zones:

lan zone (optional only to allow bidirectional traffic e.g. in case you have a site-to-site setup, ote that your wg server clients also have to allow this traffic)

3. Allow IPv6 internet for wgserver clients

If IPv6 is implemented and you want wgserver clients to have internet access via IPv6 then Masquerading should be enabled for the WireGuard subnet out of the WAN.

Network > Firewall > Wan zone : click edit

goto Advanced Settings: IPv6 Masquerading: Enable

Restrict Masquerading to given source subnets: fd8f:de49::0/64 (WireGuard IPv6 subnet)

Save and Save & Apply

Firewall - Zone Settings

General Settings Advanced Settings Conntrack Settings

The options below control the forwarding policies between this zone (wan) and other zones. *Destination zones* cover forward forwarded traffic from other zones targeted at wan. The forwarding rule is *unidirectional*, e.g. a forward from lan to wan doe

Covered devices	unspecified ▼
	Use this option to classify zone traffic by raw, no
Covered subnets	+
	Use this option to classify zone traffic by source
IPv6 Masquerading	✓ Enable network address and port translation IP
Restrict to address family	IPv4 and IPv6
Restrict Masquerading to given source subnets	fd8f:de49::0/64
	0.0.0.0/0

/etc/config/firewall:
config zone
 option name 'wan'
 <>
 option masq6 '1'

list masq_src 'fd8f:de49::0/64'

Furthermore there is no standard default route for IPv6 as "source" routing is used so source routing should be disabled.

Network > Interfaces > WAN6: **click** *edit* goto *Advanced Settings:*

Disable Source Routing by removing the tick:

IPv6 source routing

Automatically handle multiple uplink interfaces using source-based policy routing.

Save and Save & Apply

4. Allow seamless access to LAN clients

Your LAN clients might not accept traffic from your WG clients because traffic comes from another subnet and LAN clients might have their own firewall which blocks non local traffic.

The best way to solve this is to tweak the firewall of local clients to accept traffic from the WG subnet.

For Windows:

How to Add IP Address in Windows Firewall

Step 1) On the Start menu, Click 'Windows Firewall with Advanced Security'.

Step 2) Click the 'Advanced settings' option in the sidebar.

Step 3) On the left side, click the option 'Inbound Rules'.

Step 4) On the right, under the section 'Actions', click on the option 'New Rule'. Windows Firewall shows you the New Inbound Rule Wizard.

Step 5) A new window will open and Select the 'custom' option and click Next.

Step 6) In the left-hand side again, go to the option 'Scope'.

Step 7) Add the IP address and click on the 'Ok' button.

But if that is not feasible you can masquerade the WireGuard traffic which comes out of the router. Simplest method is to use option 2b for setting up the firewall and Enable Masquerading on the LAN interface.

However this Masquerades all traffic so better is to only Masquerade WG traffic with the following firewall NAT rule: Network > Firewall > NAT rules:

With Masquerading WG traffic you loose logging and access control but in a typical SoHo setup, where you trust your users, that is not a big deal.

Peer Setup

Next setup the peers for the WireGuard server.

Peers are the clients which connects from outside to the wgserver.

There are WireGuard clients for almost operating systems.

We are going to setup one Peer but you can of course add as many as you want, note that you can reuse this one peer for multiple clients but you can only connect one at a time!

Go to Network > Interfaces > wgserver > Peers

Click: Add Peer

Description: give a name for your Peer

Click *Generate new key pair,* the keys for the peer will be filled in.

Allowed IPs: 172.22.22.2/32, the wgserver has this address 172.22.22.1/24, all peers should have an address in this

subnet so for this peer use 172.22.22.2/32, note the /32 mask. Subsequent peers will use .3/32 etc.

For IPv6 you add: fd8f:de49::2/128, note the /128 mask

Route Allowed IPs: Enable, Always enable this

Endpoint host: Leave blank

Endpoint port: 554433, this is the listening port of the wgserver (only used to make your config).

Persistent keep alive: 25, most clients are behind NAT so to keep the connection open use persistent keep alive (only

used to make your config).

Interfaces » wgserver » Edit peer Disabled Enable / Disable peer. Restart wireguard interfa Description My Phone Optional. Description of peer. Public Key 1/eg09g0LT72ogh2sUC9ySNbbb4yhOo+c Required. Public key of the WireGuard peer. Private Key ••••••• Optional. Private key of the WireGuard peer. The a connection but allows generating a peer conf can be removed after the configuration has bee Generate new key pair Preshared Kev Optional. Base64-encoded preshared key. Adds symmetric-key cryptography for post-quantum Generate preshared key Allowed IPs 172.22.22.2/32 fd8f:de49::2/128 Optional. IP addresses and prefixes that this pe tunnel. Usually the peer's tunnel IP addresses ar through the tunnel. Route Allowed IPs Optional. Create routes for Allowed IPs for this p **Endpoint Host** vpn.example.com Optional. Host of peer. Names are resolved prior **Endpoint Port** 55443 Optional. Port of peer. Persistent Keep Alive Optional. Seconds between keep alive message Recommended value if this device is behind a N Configuration Export Generate configuration... Generates a configuration suitable for import o Save Open the peer again by clicking on Edit.

Click: Generate configurations

Connection Endpoint: this is the WAN IP address or DDNS address your wgserver listens on

Allowed IPs: standard 0.0.0.0/0, ::/0, which means all traffic from your wg client will use the tunnel

DNS server: standard your routers IP address, not all clients can deal with this (rebind protection, using the wgserver interface (172.22.22.1) might help) but you router might also not listen on the wgserver interface so to be sure that

you have got DNS resolution use 1.1.1.1

Addresses: do not change

Interfaces » waserver » Edit peer » Generate configuration The generated configuration can be imported into a WireGuard client application to set up a connection toward Connection endpoint my.ddns.nl The public hostname or IP address of this system th usually is a static public IP address, a static hostnar Allowed IPs 0.0.0.0/0 ::/0 -- Please choose -- ▼ IP addresses that are allowed inside the tunnel. The packets with source IP addresses matching this list matching destination IP. **DNS Servers** 192.168.5.1 1.1.1.1 DNS servers for the remote clients using this tunnel wireguard clients require this to be set. Addresses 172.22.22.2/32 fd8f:de49::2/128 -- Please choose --IP addresses for the peer to use inside the tunnel. Sc [Interface] PrivateKey = iGrogUvTflvHv1y8cZxHVJYzeosjccZSfGiyX64FUko= Address = 172.22.22.2/32, fd8f:de49::2/128 ListenPort = 55443DNS = 192.168.5.1, 1.1.1.1

[Peer]

PresharedKey not used
AllowedIPs = 0.0.0.0/0, ::/0
Endpoint = my.ddns.nl:55443
PersistentKeepAlive = 25

PublicKey = ML5BqgOUmKMklzhXGSXnmFWeTVD1gDn15SEB8f/T5zo=

Setup WireGuard on your Client

Setup WireGuard on your client (phone/laptop etc) by downloading the WireGuard app via goolge play store, apple store Microsoft store or download from the WireGuard website.

For OpenWRT see: https://github.com/egc112/OpenWRT-egc-add-on/tree/main/notes

For DDWRT see: https://forum.dd-wrt.com/phpBB2/viewtopic.php?t=327397

You can import the settings with the QR code or copy the text and paste in a file, name it *peer-172.22.22.2.conf* which can be used to import in your wg client

Finish by Saving and Applying everything and do a reboot!

Now see if you can connect from outside e.g. with your phone or laptop on cellular.

Note that your LAN clients will not always allow traffic from a foreign subnet, in that case you have to tweak the firewall of said lan clients to allow traffic from 172.22.22.0/24 (the wg servers subnet), or masquerade this traffic

Site-to-site setup

Although WireGuard is a peer to peer connection we still make a distinction between a server, listening for incoming connections and a client which initiates a connection to a server via an endpoint.

A site-to-site setup is the ultimate peer to peer setup in which the WireGuard interfaces are used to make a connection between two routers for bidirectional traffic.

Prerequisites:

All involved subnets need to be unique, so both routers must be on a different subnets and the wg subnet also must be different!

To start just setup one side as a server (Site A) and the other side as a client (Site B), check that you have a working connection.

WireGuard subnet: 172.22.22.0/24

On the server side (site A, subnet 192.168.5.0/24):

Network > Interfaces > wgserver interface: edit > Peers > edit Peer of side B

Peer setup of side B:

Allowed IPs: Add whole subnet of site B: 192.168.9.0/24

On the client side (site B, subnet 192.168.9.0/24):

Network > Firewall

WAN zone: remove wgclient interface from the WAN zone

LAN zone: add wgclient interface to the LAN zone

Network > Interfaces > wgclient interface: edit > Peers > edit Peer of side A

Peer setup of side A:

Allowed IPs: 1. **Remove** 0.0.0.0/0 and ::0/0

2. Add the whole subnet of side A: 192.168.5.0/243. Add the whole subnet of WireGuard: 172.22.22.0/24

DNSMasq resolution between networks

It is perfectly possible to use DNSMasq for DNS between both routers resolution.

Prerequisites: the domain names must be different

For a proper setup if both sides are OpenWRT routers four things are important

The first is to make sure that the DNS server can actually process queries form the other side. DNSmasq has to listen on all interfaces so also on the WG interface, by default this is the case but if you changed that then you have to add the WG interface as listen interface.

The second is that DNSMasq has to answer non local request coming from the other side.

For this disable Local Service only (DNSMasq: -local-service):
Luci DNS-DHCP > Filter >Local service only : untick/disable, \
or in /etc/config/dhcp > config dnsmasq
option localservice '0'

The third is that DNSMasq is now also using a DNS server with a local RFC1918 address.

DNSmasq has rebind protection which shield you from using local addresses as that can be used to spoof DNS so disable Rebind Protection:

Luci DNS-DHCP > Filter > Rebind protection untick/disable

/etc/config/dhcp > config dnsmasq

option rebind_protection '0'

instead of disabling Rebind protection you can also whitelist the domain of the other side Luci DNS-DHCP > Filter > Domain Whitelist "set name of domain of other side" /etc/config/dhcp > config dnsmasq

list rebind_domain 'set name of domain of other side'

The fourth is that you have to instruct DNSMasq which server it has to use to resolve the domain of the other side, this assumes you have set a different domain name for each side e.g. *lan5* (router is 192.168.5.1) and *lan9* (router is 192.168.9.1)

On router *lan5* add: server=/lan9/192.168.9.1 /etc/config/dhcp > config dnsmasq:

list server '/lan9/192.168.9.1'

On lan9: server=/lan5/192.168.5.1 /etc/config/dhcp > config dnsmasq: list server '/home1/192.168.1.1'

Asking for Help

You can ask for help at the OpenWRT forum.

If you do it helps if we can have a look at your configs, so please connect to your OpenWRT device <u>using ssh</u> and copy the output of the following commands and post it on the forum using the "Preformatted text </> " button

Remember to redact keys, passwords, MAC addresses and any public IP addresses you may have:

- ubus call system board
- cat /etc/config/network
- cat /etc/config/wireless
- cat /etc/config/firewall
- wg show

References

https://openwrt.org/docs/guide-user/services/vpn/wireguard/start

https://wiki.dd-wrt.com/wiki/index.php/Wireguard

https://www.wireguard.com/quickstart/

https://www.wireguard.com/

https://github.com/pirate/wireguard-docs

https://www.wireguard.com/papers/wireguard.pdf

https://wiki.archlinux.org/index.php/WireGuard

 $\underline{\text{https://stackoverflow.com/questions/65178004/what-does-ip-4-rule-add-table-main-suppress-prefixlength-0-}\\$

meaning

ipv6:

https://angristan.xyz/2019/01/how-to-setup-vpn-server-wireguard-nat-ipv6/

https://try.popho.be/wg.html

suppress prefix length and wg quick

https://ro-che.info/articles/2021-02-27-linux-routing

https://stackoverflow.com/questions/65178004/what-does-ip-4-rule-add-table-main-suppress-prefixlength-0-meaning

Packet flow:

https://www.procustodibus.com/blog/2021/01/wireguard-endpoints-and-ip-addresses/

WireGuard server in the cloud

Setup Oracle free OpenVPN cloud server

https://www.youtube.com/watch?v=E-CLtExRzX8

https://mateo.cogeanu.com/2020/wireguard-vpn-pihole-on-free-oracle-cloud/

Amazon Web services (AWS)

https://www.youtube.com/watch?v=m-i2JBtG4FE