第四章 非线性方程(组)的迭代算法

/* Solutions of Nonlinear Equations */

§ 1 问题的背景

(1) 求n次多项式的根

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0 \quad (a_n \neq 0)$$

(2)光的衍射理论

$$x - \tan x = 0$$

(3)行星轨道计算,求开普勒方程

$$x - a \sin x = b$$

(4) 研究求解非线性方程(组) f(x) = 0 的数值方法

二分法(一维问题) /* Bisection Method in 1D*/

误差分析: 第1步产生的 $x_1 = \frac{a+b}{2}$ 有误差 $|x_1 - x^*| \le \frac{b-a}{2}$ 第 k 步产生的 x_k 有误差 $|x_k - x^*| \le \frac{b-a}{2^k}$

对于给定的精度 ε ,可估计二分法所需的步数 k:

$$\frac{b-a}{2^k} < \varepsilon \quad \Rightarrow \quad k > \frac{\left[\ln(b-a)-\ln\varepsilon\right]}{\ln 2}$$

优点:①简单;

② 对f(x) 要求不高(只要连续即可).

缺点: ① 无法求复根及偶重根;

- ② 收敛慢, 仅线性收敛;
- ③ 难以推广到多维空间。

➤ 试位法 /* Regula Falsi Method */

注:试位法每次迭代比二分法多算一次乘法,而且不保证收敛。当 $f''(x) \ge 0, x \in [a,b]$ 时,是收敛的。

§ 2 不动点迭代法 /* Fixed-Point Iteration */

等价变换
$$f(x) = 0 \iff x = g(x)$$

$$f(x)$$
 的根 \longleftrightarrow $g(x)$ 的不动点

从一个初值 x_0 出发,计算

思路

$$x_1 = g(x_0), x_2 = g(x_1), ..., x_{k+1} = g(x_k), ...$$

若 $\{x_k\}_{k=0}^{\infty}$ 收敛,即存在 x^* 使得 $\lim_{k\to\infty} x_k = x^*$

且 g 连续,则由 $\lim_{k\to\infty} x_{k+1} = \lim_{k\to\infty} g(x_k)$

可知
$$x^* = g(x^*)$$

即 x^* 是g的不动点,也就是f的根。

定理 考虑方程 $x = g(x), g(x) \in C[a, b],$ 若

(I) 当 $x \in [a, b]$ 时, $g(x) \in [a, b]$;

(II) $\exists 0 \le L < 1$ 使得 $|g'(x)| \le L < 1$ 对 $\forall x \in [a, b]$ 成立。

则任取 $x_0 \in [a, b]$,由 $x_{k+1} = g(x_k)$ 得到的序列 $\{x_k\}_{k=0}^{\infty}$ 收 敛于g(x) 在[a,b]上的唯一不动点。并且有误差估计式:

①
$$|x^*-x_k|^2 \frac{1}{1-L} |x_{k+1}-x_k|$$

$$(k=1,2,\dots)$$

且存在极限 $\lim_{k\to\infty}\frac{x^*-x_{k+1}}{x^*-x_k}$ $g'(x^*)$

证明: ① g(x) 在[a,b]上存在不动点?

令
$$f(x) = g(x) - x$$
 :: $a \le g(x) \le b$
:: $f(a) = g(a) - a \ge 0$, $f(b) = g(b) - b \le 0$
⇒ $f(x)$ 有根

② 不动点唯一?

反证:若不然,设还有 $\tilde{x} = g(\tilde{x})$,则

$$x^* - \widetilde{x} = g(x^*) - g(\widetilde{x}) = g'(\xi)(x^* - \widetilde{x}), \quad \xi \mathbf{E} x^* \mathbf{n} \widetilde{x} \mathbf{之间}.$$

$$\Rightarrow (x^* - \widetilde{x})(1 - g'(\xi)) = 0 \quad \text{m} |g'(\xi)| < 1 \quad \therefore x^* = \widetilde{x}$$

③ 当 $k \to \infty$ 时, x_k 收敛到 x^* ?

$$|x^* - x_k| = |g(x^*) - g(x_{k-1})| = |g'(\xi_{k-1})| \cdot |x^* - x_{k-1}|$$

$$\leq L |x^* - x_{k-1}| \leq \dots \leq L^k |x^* - x_0| \to 0$$

$$|x^* - x_k| \le \frac{1}{1 - L} |x_{k+1} - x_k| ?$$

$$|x_{k+1} - x_k| \ge |x^* - x_k| - |x^* - x_{k+1}| \ge |x^* - x_k| - L|x^* - x_k|$$

(5)
$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|$$
?
 $|x_{k+1} - x_k| = |g(x_k) - g(x_{k-1})| = |g'(\xi_k)(x_k - x_{k-1})|$
 $\le L|x_k - x_{k-1}| \le \dots \le L^k |x_1 - x_0|$

6
$$\lim_{k \to \infty} \frac{x^* - x_{k+1}}{x^* - x_k} = g'(x^*)$$
?
$$\lim_{k \to \infty} \frac{x^* - x_{k+1}}{x^* - x_k} = \lim_{k \to \infty} \frac{g(x^*) - g(x_k)}{x^* - x_k} = \lim_{k \to \infty} \frac{g'(\xi_k)(x^* - x_k)}{x^* - x_k} = g'(x^*)$$

注:定理条件非必要条件,可将[a,b]缩小,定义局部收敛性:若在 x^* 的某 δ 领域 $B_{\delta} = \{x \mid |x - x^*| \le \delta\}$ 有 $g \in C^1[a,b]$ 且 $|g'(x^*)| < 1$,则由 $\forall x_0 \in B_{\delta}$ 开始的迭代收敛。即调整初值可得到收敛的结果。

注:上述定理条件(II),换成下列Lipschitz(利普希兹)条件也存在唯一的不动点。

(II) $\exists 0 \le L < 1$ 使得 $|g(x) - g(y)| \le L |x - y|$ 对 $\forall x \in [a, b]$ 成立。

L称为利普希兹常数

反证:若不然,设还有两个不动点 x_1^* , x_2^* 且 $x_1^* \neq x_2^*$,则

$$|x_1^* - x_2^*| = |g(x_1^*) - g(x_2^*)|$$

$$\leq L |x_1^* - x_2^*| < |x_1^* - x_2^*|,$$

引出矛盾,所以不动点唯一。

有
$$|x_{k+p} - x_k| = |x_{k+p} - x_{k+p-1} + x_{k+p-1} + \dots + x_{k+1} - x_k|$$

 $\leq |x_{k+p} - x_{k+p-1}| + |x_{k+p-1} - x_{k+p-2}| + \dots + |x_{k+1} - x_k|$
 $\leq (L^{p-1} + L^{p-2} + \dots + L + 1) |x_{k+1} - x_k| \leq \frac{1}{1-L} |x_{k+1} - x_k|$

迭代法的收敛阶 /* Order of Convergence */

定义 设迭代序列 $\{x_{k+1}\}$ 满足 $x_{k+1} = g(x_k)$ 收敛到g(x) 的不动点 x^* 。设 $e_k = x_k - x^*$,若 $\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C > 0$,则称该迭代为至少 p 阶收敛,其中 C 称为渐进误差常数, $p \ge 1$ 。

$$p = 1$$
 , $0 < C < 1$ 有 $\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|} = C \neq 0$, 称为至少线性收敛。

$$p=1$$
 , C=0 有 $\lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|} = 0$, 称为超线性收敛。

$$p \ge 1$$
, C=0有 $\lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|^p} = 0$, 称为超 p 阶收敛。

注:(1)超线性收敛不一定有p>1。例如 $x_n=1/n^n$ 超线性收敛到0,但对任何p>1都没有p阶收敛。

(2)n维情形,上述定义中的绝对值换成范数即可。

§ 3 局部收敛性 /* local convergence */

> 待定参数法:

若
$$|g'(x)| \ge 1$$
,则将 $x = g(x)$ 等价地改造为
$$x = x - Kx + Kg(x) = (1 - K)x + Kg(x) = \varphi(x)$$
 求 K ,使得 $x = x - Kx + Kg(x) = (1 - K)x + Kg(x) = \varphi(x)$

例:求 $f(x) = x^3 - 3x + 1 = 0$ 在(1,2)的实根。 如果用 $x = \frac{1}{3}(x^3 + 1) = g(x)$ 进行迭代,则在(1,2)中有 $|g'(x)| = |x^2| > 1$ 现令 $\varphi(x) = (1-K)x + Kg(x) = (1-K)x + \frac{K}{3}(x^3+1)$ 希望 $|\varphi'(x)| = |1 - K + Kx^2| < 1$, 即 $\frac{-2}{x^2-1} < K < 0$ 在 (1,2) 上可取任意 $-\frac{2}{3} < K < 0$ 例如K = -0.5 ,则对应 $x = \frac{3}{2}x - \frac{1}{6}(x^3 + 1)$ 即产生收敛序列。

> Aitken 加速:

一般地,有:
$$\hat{x}_K = x_K - \frac{(x_{K+1} - x_K)^2}{x_K - 2x_{K+1} + x_{K+2}}$$

$$x_0, x_1 = g(x_0), x_2 = g(x_1),$$

 $\hat{x}_0, x_3 = g(x_2),$

$$\hat{x}_1, x_4 = g(x_3),$$

 $\{\hat{x}_K\}$ 比 $\{x_K\}$ 收敛得略快。

> Steffensen 加速:

$$x_0, x_1 = g(x_0), x_2 = g(x_1),$$

$$\hat{x}_0, \ \overline{x}_1 = g(\hat{x}_0), \ \overline{x}_2 = g(\overline{x}_1),$$

数值实例: 计算 $x^3 + 4x^2 - 10 = 0$ 在[1,2]上的根

$$x^* \approx 1.365230013414097 \dots$$

无效的不动点构造

$$x = g(x) = x - (x^3 + 4x^2 - 10)$$

有效的不动点构造

$$x = g(x) = \left(\frac{10}{4+x}\right)^2$$

24 A2 VA *A-1_	a = a(a)	A :412件 (D)分子	C4- CC
迭代次数k	$x_{k+1} = g(x_k)$	Aitken迭代法	Steffensen迭代法
0	1.5000000000000000	1.5000000000000000	1.5000000000000000
1	1.348399724926484	1.365265223957260	1.365265223957260
2	1.367376371991283	1.365230584541776	1.365230013416586
3	1.364957015402487	1.365230022656744	1.365230013414097
4	1.365264748113442	1.365230013563715	
5	1.365225594160525	1.365230013416519	
6	1.365230575673434	1.365230013414136	
7	1.365229941878183	1.365230013414098	二阶收敛
8	1.365230022515568	1.365230013414097	
9	1.365230012256122		
10	1.365230013561425	土刀とドロベルトクト	
11	1.365230013395352	超线形收敛	
12	1.365230013416482		
13	1.365230013413793		
14	1.365230013414136	6世 田公田在春春	
15	1.365230013414092	线形收敛	

 \rightarrow Aitken 加速有 p > 1 , 如果 $\{x_k\}$ 线形收敛 , 且

$$\lim_{k\to\infty} \frac{\widehat{x}_k - x^*}{\widehat{x}_k - x^*} = 0$$
 ,为超线性收敛.

Steffensen 加速,满足条件 $g'(x^*) \neq 1$ 时,平方收敛,有 p = 2.

Q: 如何实际确定收敛阶和渐近误差常数?

宋伦继

定理 设 x^* 为x = g(x)的不动点,若 $g \in C^p(B_\delta(x^*))$, $p \ge 2$;

 $g'(x^*) = \dots = g^{(p-1)}(x^*) = 0$,且 $g^{(p)}(x^*) \neq 0$,则 $x_{k+1} = g(x_k)$ 在 $B_{\delta}(x^*)$ 内 阶收敛。

证明:
$$X_{k+1} = g(X_k)$$

$$= g(X^*) + g'(X^*)(X_k - X^*) + \dots + \underbrace{g^{(p)}(\xi_k)}_{p!}(X_k - X^*)^p$$
利用条件,移项取极限
$$C = \underbrace{g^{(p)}(X^*)}_{p!}$$

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^p}=C>0$$

得证。

§ 4 牛顿法 /* Newton - Raphson Method */

一维情形原理:

将非线性方程线性化——Taylor 展开

取 $x_0 \approx x^*$, 将 f(x)在 x_0 做一阶 Taylor展开:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2$$
, ξ 在 x_0 和 x 之间。

将 $(x^* - x_0)^2$ 看成高阶小量,则有:

 x_0

$$0 = f(x^*) \approx f(x_0) + f'(x_0)(x^* - x_0)$$
 $\Rightarrow x^* \approx x_0 - \frac{f(x_0)}{f'(x_0)}$

只要 $f \in C^1$,每一步迭代都有 $f'(x_k) \neq 0$,而且 $\lim_{k \to \infty} x_k = x^*$,则 x^* 就是 f 的根。

注: Newton's Method 收敛性依赖于x₀ 的选取。

定理

设 $f(x^*)=0$, $f'(x^*)\neq 0$, 且f(x) 在 x^* 的邻域上具有二

阶连续导数,则由Newton法产生的序列

$$x_{n+1} = x_n - f(x_n) / f'(x_n)$$

局部收敛到 x*, 且为平方收敛。

证明: Newton's Method 迭代函数是 $g(x) = x - \frac{f(x)}{f'(x)}$, 则 $g'(x) = f(x) \cdot f''(x)/[f'(x)]^2$

因此 $g'(x^*) = 0$,一般 $g''(x^*) \neq 0$

Newton's Method 有 $\lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|^2} = \left| \frac{f''(x^*)}{2f'(x^*)} \right|$, 只要 $f'(x^*) \neq 0$,

就有 $p \ge 2$ 。 重根是线性收敛的。

见局部收敛性 的证明

由定理可知Newton法局部收敛,且平方收敛。

Newton法算例

计算超越方程

 $x - \tan x = 0$

以x = 0.1为初始解,计算数值解与精确解误差不超过1e-6.

Matlab程序

```
clear; clc; format long;
x0=0.1;%指定初值
tol=1e-6; %精度
x(1)=x0; %赋初值
fprintf('%d %.7f\n',0,x(1));
i=1; u=ones(3,1); %初始化向量
k(1)=1; % 迭代次数
itmax=400; %最大迭代次数
while(norm(u)>tol*norm(x(i))) %Newton迭代
db=1-sec(x(i))^2; % 计算第k步f'(x)
b=x(i)-tan(x(i));% 计算第k步-f(x)
u=b/db;% 计算迭代增量
 x(i+1)=x(i)+u(1); %得第k次迭代解
 i=i+1;
 k(i)=i;
 if(i>itmax) %超出设置最大迭代次数
 error('Exceed maximum iteration.');
 end
end
[k',x',y',z'] %返回所有迭代解
```


经过44次迭代后,从初始解0.5到数值解0.00000015137660,纵向用对数坐标

重根情形, Newton法线性收敛。

(1) 设 x^* 是 f(x) = 0的m重根,m>1, 即 $f(x) = (x - x^*)^m p(x),$

其中p(x)有二阶导数, $p(x^*) \neq 0$, 重根情况下 $f'(x^*) = 0$, 不满足定理条件,不能直接用定理 结论。

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x - x^*)p(x)}{mp(x) + (x - x^*)p'(x)}$$
$$g(x) = 1 - \frac{p(x) + (x - x^*)p'(x)}{mp(x) + (x - x^*)p'(x)}$$

$$g'(x) = 1 - \frac{p(x) + (x - x^*)p'(x)}{mp(x) + (x - x^*)p'(x)} - (x - x^*)p(x)(\frac{1}{mp(x) + (x - x^*)p'(x)})'$$

$$g'(x^*) = 1 - \frac{1}{m}, \text{ FFLO} \neq |g'(x^*)| < 1,$$

Newton法线形收敛。

重根情形,如何提高Newton法至二阶收敛?

(1)取修正迭代函数为:
$$g(x) = x - \frac{mf(x)}{f'(x)}$$

有
$$g(x^*)=x^*, g'(x^*)=0,$$

迭代法
$$x_{k+1} = x_k - \frac{mf(x_k)}{f'(x_k)}$$
至少二阶收敛. (2)取修正迭代函数为:

$$g(x) = x - \frac{\mu(x)}{\mu'(x)}, \qquad \mu(x) = \frac{(x-x^*)p(x)}{mp(x) + (x-x^*)p'(x)} = \frac{f(x)}{f'(x)}$$

有
$$g(x^*)=x^*, g'(x^*)=0,$$

迭代法
$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{f'(x_k)^2 - f(x_k)f''(x_k)}$$
至少二阶收敛。

$f(x) = x - \tan(x)$,采用修正Newton迭代 $g(x) = x - \frac{3f(x)}{f'(x)}$,结果对比

迭代次数	修正前数值解	修正后数值解
0	0.100000000000000	0.100000000000000
1	0.066755682709209	0.000267048127628
2	0.044530248406928	0.000000000007245
10	0.002607488258194	
20	0.000045217910103	
30	0.000000784189563	
40	0.000000015658187	

宋伦继

数值解比较

定理

(收敛的充分条件)设 $f \in C^2[a, b]$,若

(1)
$$f(a) f(b) < 0$$
; (2) $f'(x) \neq 0$, $x \in [a, b]$;

(3)
$$f'$$
 不变号, $x \in [a,b]$

(4) 遊
$$\mathbf{X} x_0 \in [a, b]$$
 (4) 遊 $\mathbf{X} (x_0) > 0$;

则Now and nod产生的序列。

根唯一

产生的序列单调有界,保证收敛。

定理 (局部收敛性)设 $f \in C^2[a,b]$, 若 x^* 为f(x)在[a,b]上的根,且 $f'(x^*) \neq 0$,则存在 x^* 的邻域 $B_\delta(x^*)$ 使得任取初值 $B_\delta(x^*)$,Newton's Method产生的序列 $\{x_k\}$ 收敛到 x^* ,且满足 $B_\delta(x^*)$ 。

证明: Newton's Method 事实上是一种特殊的不动点迭代

其中
$$g(x) = x - \frac{f(x)}{f'(x)}$$
,则

$$|g'(x^*)| = \left| \frac{f''(x^*)f(x^*)}{f'^2(x^*)} \right| = 0 < 1 \implies$$
 \text{ \text{\psi}}

由 Taylor 展开 在单根 /*simple root */ $0 = f(x^*) = f(x_k)$ 附近收敛快

$$0 = f(x^*) = f(x_k^*)$$

$$\Rightarrow x^* = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(\xi_k)}{2! f'(x_k)} (x)$$

$$\Rightarrow \frac{x^* - x_{k+1}}{(x^* - x_k)^2} = -\frac{f''(\xi_k)}{2f'(x_k)} \quad \mathbf{只要} \ f'(x^*) \neq 0 \ , \ \mathbf{Q} \Rightarrow \infty$$

局部收敛性:

需要 x_0 取在 x^* 附近才能保证迭代序列的收敛性。

全局收敛性:

对 x_0 选取无 x^* 附近的要求。

例如:设a>0,求平方根 \sqrt{a} ,化为解方程组

$$x^2 - a = 0$$

迭代公式?

$$x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k}), \quad (k = 0, 1, \dots)$$

可证如果 $0 < x_0 < \sqrt{a}$,有下界 $x_k > \sqrt{a}$, (k = 1,)

$$x_{k+1} - x_k = \frac{a - x_k^2}{2x_k} < 0$$
,单减序列,说明有极限 x^* 。