How to find an optimal schedule?

1. Optimizing over tasks in the canonical form:

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines
 - 1.3 Add late tasks in any order

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of *A* in increasing deadlines
 - 1.3 Add late tasks in any order
- 2. Minimize penalties of late tasks \equiv maximize penalties of early tasks

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines
 - 1.3 Add late tasks in any order
- 2. Minimize penalties of late tasks \equiv maximize penalties of early tasks

Modeled by a matroid $M = (S, \mathcal{I})$, where

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines
 - 1.3 Add late tasks in any order
- 2. Minimize penalties of late tasks \equiv maximize penalties of early tasks

Modeled by a matroid $M = (S, \mathcal{I})$, where

$$S = \{a_1, \ldots, a_n\}$$

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines
 - 1.3 Add late tasks in any order
- 2. Minimize penalties of late tasks \equiv maximize penalties of early tasks

Modeled by a matroid $M = (S, \mathcal{I})$, where

$$S = \{a_1, \ldots, a_n\}$$

 $\mathcal{I} = \{A \subseteq S : \exists \text{ a way to schedule the tasks in } A \text{ s.t. no task is late}\}$

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines
 - 1.3 Add late tasks in any order
- 2. Minimize penalties of late tasks \equiv maximize penalties of early tasks

Modeled by a matroid $M = (S, \mathcal{I})$, where

$$S = \{a_1, \ldots, a_n\}$$

 $\mathcal{I} = \{A \subseteq S : \exists \text{ a way to schedule the tasks in } A \text{ s.t. no task is late}\}$

w : penalty

How to find an optimal schedule?

- 1. Optimizing over tasks in the canonical form:
 - 1.1 Find a set A of tasks that are early
 - 1.2 Sort the tasks of A in increasing deadlines
 - 1.3 Add late tasks in any order
- 2. Minimize penalties of late tasks \equiv maximize penalties of early tasks

Modeled by a matroid $M = (S, \mathcal{I})$, where

$$S = \{a_1, \ldots, a_n\}$$

 $\mathcal{I} = \{A \subseteq S : \exists \text{ a way to schedule the tasks in } A \text{ s.t. no task is late}\}$

w : penalty

Finding an optimal schedule \equiv finding max-weighted indep. subset of M

$$M = (S, \mathcal{I})$$
 is a matroid

$$M = (S, \mathcal{I})$$
 is a matroid

• \mathcal{I} has the hereditary property: if $A \subseteq B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$

$$M = (S, \mathcal{I})$$
 is a matroid

- \mathcal{I} has the hereditary property: if $A \subseteq B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$
- Exchange property: Say $A, B \in \mathcal{I}$ and |B| > |A|.

 Next to show $\exists x \in \beta A$ $f : AU(x) \in \mathcal{I}$

$$M = (S, \mathcal{I})$$
 is a matroid

- \mathcal{I} has the hereditary property: if $A \subseteq B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$
- Exchange property: Say $A, B \in \mathcal{I}$ and |B| > |A|.

Assume A and B are sorted in increasing order of deadlines

$M = (S, \mathcal{I})$ is a matroid

- \mathcal{I} has the hereditary property: if $A \subseteq B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$
- Exchange property: Say $A, B \in \mathcal{I}$ and |B| > |A|.

Assume A and B are sorted in increasing order of deadlines Let k be the time when the last task in A is finished

$M = (S, \mathcal{I})$ is a matroid

- \mathcal{I} has the hereditary property: if $A \subseteq B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$
- Exchange property: Say $A, B \in \mathcal{I}$ and |B| > |A|.

Assume A and B are sorted in increasing order of deadlines

Let k be the time when the last task in A is finished

Let x be the first task in B that finished after k

then AUM ET

$M = (S, \mathcal{I})$ is a matroid

- \mathcal{I} has the hereditary property: if $A \subseteq B$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$
- Exchange property: Say $A, B \in \mathcal{I}$ and |B| > |A|. Assume A and B are sorted in

Assume A and B are sorted in increasing order of deadlines Let k be the time when the last task in A is finished Let x be the first task in B that finished after kThen $A \cup \{x\} \subseteq \mathcal{I}$

1 **def** Greedy $(M = (S, \mathcal{I}), weights w)$:

1 **def** GREEDY(
$$M = (S, \mathcal{I})$$
, weights w):
2 | Set $A := \{ \}$;

```
1 def GREEDY(M = (S, \mathcal{I}), weights w):

2 | Set A := \{ \};

3 | Sort S in decreasing order of w; // O(n \log n)
```

```
1 def GREEDY (M = (S, \mathcal{I}), weights w):

2   Set A := \{\};

3   Sort S in decreasing order of w;   // O(n \log n)

4   for x \in S:
```

Running time: let n = |S|

Assume checking if $A \cup \{x\} \in \mathcal{I}$ takes O(f(n)).

```
1 def Greedy (M = (S, \mathcal{I}), weights w):
    Set A := \{ \};
    Sort S in decreasing order of w;
                                                                      // O(n \log n)
    for x \in S:
    if A \cup \{x\} \in \mathcal{I}:

A := A \cup \{x\};
       return A;
  Running time: let n = |S|
```

Running time: let n = |S|Assume checking if $A \cup \{x\} \in \mathcal{I}$ takes O(f(n)). Lines 5-6 takes $O(n \cdot f(n))$

```
1 def Greedy (M = (S, \mathcal{I}), weights w):
    Set A := \{ \};
     Sort S in decreasing order of w;
                                                                     // O(n \log n)
     for x \in S:
    if A \cup \{x\} \in \mathcal{I}:

A := A \cup \{x\};
      return A;
  Running time: let n = |S|
  Assume checking if A \cup \{x\} \in \mathcal{I} takes O(f(n)). Lines 5-6 takes O(n \cdot f(n))
  Claim: f(n) = O(n) for task scheduling problem (Homework)
```

```
1 def Greedy (M = (S, \mathcal{I}), weights w):
    Set A := \{ \};
     Sort S in decreasing order of w;
                                                                    // O(n \log n)
     for x \in S:
   if A \cup \{x\} \in \mathcal{I}:

A := A \cup \{x\};
      return A;
  Running time: let n = |S|
  Assume checking if A \cup \{x\} \in \mathcal{I} takes O(f(n)). Lines 5-6 takes O(n \cdot f(n))
  Claim: f(n) = O(n) for task scheduling problem (Homework)
  Total running time: O(n^2)
```

Greedy algorithms

Horn formulas (Textbook Section 5.3)

Consider the following puzzle

Consider the following puzzle

• If Alice has a dog, then Bob has a cat

Consider the following puzzle

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat

Consider the following puzzle

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Consider the following puzzle

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Question: what pets do they have?

Boolean formulas

Basics of boolean formulas

Basics of boolean formulas

Variables: possibilities
 Knowledge about variables is represented by a special type of boolean formulas

Basics of boolean formulas

Variables: possibilities

Knowledge about variables is represented by a special type of boolean formulas

Goal; find a consistent explanation of the knowledge

- Variables: possibilities
 - Knowledge about variables is represented by a special type of boolean formulas
 - Goal; find a consistent explanation of the knowledge
- **Boolean variable:** x = 1 (true) or x = 0 (false)

- Variables: possibilities
 - Knowledge about variables is represented by a special type of boolean formulas
 - Goal; find a consistent explanation of the knowledge when x=1
- Boolean variable: x = 1 (true) or x = 0 (false)

- Variables: possibilities
 - Knowledge about variables is represented by a special type of boolean formulas
 - Goal; find a *consistent* explanation of the knowledge
- **Boolean variable:** x = 1 (true) or x = 0 (false)
- **Literal:** x (positive literal), \bar{x} (negative literal)
- **Clause:** a clause consists of literals connected by \wedge (AND), \vee (OR), \Longrightarrow (implies)

- Variables: possibilities
 Knowledge about variables is represented by a special type of boolean formulas
 - Goal; find a consistent explanation of the knowledge
- Boolean variable: x = 1 (true) or x = 0 (false)
- **Literal:** x (positive literal), \bar{x} (negative literal)
- Clause: a clause consists of literals connected by ∧ (AND), ∨ (OR), ⇒ (implies)

Examples:
$$x \wedge \bar{y}$$
, $(x \wedge y) \Longrightarrow z$

In a Horn formula, there are only two types of clauses (Horn clauses):

• Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$

In a Horn formula, there are only two types of clauses (Horn clauses):

■ **Implication:** $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals

In a Horn formula, there are only two types of clauses (Horn clauses):

• Implication: $(x_1 \land x_2 \land \cdots \land x_n) \Longrightarrow y$

LHS: $\ensuremath{\mathrm{AND}}$ of any number of positive literals

RHS: single positive literal

- Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals RHS: single positive literal
 - $(x \wedge \overline{y}) \implies z$

- Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals RHS: single positive literal
 - $(x \wedge \bar{y}) \implies z \quad X$

- Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals RHS: single positive literal
 - $(x \wedge \bar{y}) \implies z \quad X$
 - $(x \bigcirc y) \implies z$

In a Horn formula, there are only two types of clauses (Horn clauses):

- Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals RHS: single positive literal
 - $(x \wedge \bar{y}) \implies z \quad X$
 - $(x \lor y) \implies z \quad X$

- Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals RHS: single positive literal
 - $(x \wedge \bar{y}) \implies z \quad X$
 - $(x \lor y) \implies z \quad X$
 - $\Rightarrow z \Leftarrow_2 \Rightarrow_{\overline{z}}$

In a Horn formula, there are only two types of clauses (Horn clauses):

• Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$

LHS: AND of any number of positive literals

RHS: single positive literal

•
$$(x \wedge \bar{y}) \implies z \quad X$$

$$\bullet$$
 $(x \lor y) \Longrightarrow z X$

$$-(x \lor y) \longrightarrow z \lor v$$

In a Horn formula, there are only two types of clauses (Horn clauses):

- Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals RHS: single positive literal
 - $(x \wedge \bar{y}) \implies z \quad X$
 - $(x \lor y) \implies z \quad X$
 - $\blacksquare \implies z \checkmark$
- Pure negative clauses $\bar{x}_1 \vee \bar{x}_2 \vee \cdots \vee \bar{x}_n$

- Implication: $(x_1 \land x_2 \land \cdots \land x_n) \implies y$ LHS: AND of any number of positive literals RHS: single positive literal
 - $(x \wedge \bar{y}) \implies z \quad X$
 - $(x \lor y) \implies z \quad X$
 - $\blacksquare \implies z \checkmark$
- Pure negative clauses $\bar{x}_1 \vee \bar{x}_2 \vee \cdots \vee \bar{x}_n$ OR of any number of negative literals

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

• a: Alice has a dog

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog
- x: Alice has a cat

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog
- x: Alice has a cat
- y: Bob has a cat

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog 3/1
- b: Bob has a dog v/ı
- c: Charlie has a dog
- x: Alice has a cat
- 5 . .
- y: Bob has a cat
- z: Charlie has a cat

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog
- x: Alice has a cat
- y: Bob has a cat
- z: Charlie has a cat.

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog
- x: Alice has a cat
- y: Bob has a cat
- z: Charlie has a cat

$$a \implies y$$

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog
- x: Alice has a cat
- y: Bob has a cat
- z: Charlie has a cat.

$$a \Longrightarrow y$$

$$(b \wedge c) \implies x$$

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog
- x: Alice has a cat
- y: Bob has a cat
- z: Charlie has a cat.

Modelled by a set of Horn clauses:

$$\begin{array}{c}
a \Longrightarrow y \\
(b \land c) \Longrightarrow x \\
(y \land z) \Longrightarrow x
\end{array}$$

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog
- b: Bob has a dog
- c: Charlie has a dog
- x: Alice has a cat
- y: Bob has a cat
- z: Charlie has a cat

$$a \implies y$$

$$(b \land c) \implies x$$

$$(y \wedge z) \implies x$$

$$\bar{a} \lor \bar{c}$$

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog 0
- *b*: Bob has a dog 6
- c: Charlie has a dog り
- x: Alice has a cat \boldsymbol{y}
- y: Bob has a cat 6
- z: Charlie has a cat

$$\checkmark a \implies y$$

$$\lor (b \land c) \implies x$$

$$\checkmark (y \land z) \implies x$$

$$\sqrt{x} \vee \bar{z} \iff \chi \approx \bar{z}$$

Consider the puzzle:

- If Alice has a dog, then Bob has a cat
- If Charlie and Bob both have pets of the same species, then Alice has a cat
- Charlie and Alice don't share a pet of the same species

Define variables:

- a: Alice has a dog ∪
- b: Bob has a dog
- c: Charlie has a dog |
- x: Alice has a cat
- y: Bob has a cat
- z: Charlie has a cat n

Modelled by a set of Horn clauses:

$$a \implies y$$

$$(b \land c) \implies x$$

$$(y \wedge z) \implies x$$

$$\bar{a} \vee \bar{c}$$

$$\bar{x} \vee \bar{z}$$

Question: satisfying assignment?

Greedy approach for Horn formulas

Problem (Horn Satisfiability)

Given a set of Horn clauses, determine whether or not there is a consistent explanation,

Greedy approach for Horn formulas

Problem (Horn Satisfiability)

Given a set of Horn clauses, determine whether or not there is a consistent explanation, i.e., an assignment of 0/1 to variables that satisfy all clauses

Greedy approach for Horn formulas

Problem (Horn Satisfiability)

Given a set of Horn clauses, determine whether or not there is a consistent explanation, i.e., an assignment of 0/1 to variables that satisfy all clauses

Example:
$$\underbrace{(x \land y) \implies z}_{\bigvee}, \; \overline{x} \lor \overline{w}_{\bigvee}$$

Greedy approach for Horn formulas

Problem (Horn Satisfiability)

Given a set of Horn clauses, determine whether or not there is a consistent explanation, i.e., an assignment of 0/1 to variables that satisfy all clauses

Example: $(x \land y) \implies z, \bar{x} \lor \bar{w}$ can be satisfied by x = 0, y = 0, z = 0, w = 0

Greedy approach for Horn formulas

Problem (Horn Satisfiability)

Given a set of Horn clauses, determine whether or not there is a consistent explanation, i.e., an assignment of 0/1 to variables that satisfy all clauses

Example:
$$(x \land y) \implies z, \bar{x} \lor \bar{w}$$
 can be satisfied by $x = 0, y = 0, z = 0, w = 0$

Greedy heuristic: start with all 0. Only set a variable to 1 if you need to, i.e., when an implication says you need to

Greedy approach for Horn formulas

Problem (Horn Satisfiability)

Given a set of Horn clauses, determine whether or not there is a consistent explanation, i.e., an assignment of 0/1 to variables that satisfy all clauses

Example:
$$(x \land y) \implies z, \bar{x} \lor \bar{w}$$
 can be satisfied by $x = 0, v = 0, z = 0, w = 0$

Greedy heuristic: start with all 0. Only set a variable to 1 if you need to, i.e., when an implication says you need to \bigcirc

Recall: $p \implies q \iff \bar{p} \lor q$

def Greedy_Horn(set of Horn clauses):

def Greedy_Horn(set of Horn clauses):

Set all variables to 0;

```
def Greedy_Horn(set of Horn clauses):
    Set all variables to 0;
    while there exists an "\Longrightarrow" that is not satisfied:
       Set its RHS to 1;
    if all pure negative clauses are 1:
       return the assignment;
   else:
       return "unsatisfiable";
```



```
def Greedy_Horn(set of Horn clauses):
    Set all variables to 0:
    while there exists an "\Longrightarrow" that is not satisfied:
        Set its RHS to 1;
    if all pure negative clauses are 1:
        return the assignment;
   else:
        return "unsatisfiable";
Example: \implies x, x \implies y, (\bar{x} \vee \bar{y})
```

```
def Greedy_Horn(set of Horn clauses):
    Set all variables to 0:
    while there exists an "\Longrightarrow" that is not satisfied:
        Set its RHS to 1;
    if all pure negative clauses are 1:
        return the assignment;
    else:
        return "unsatisfiable";
Example: (\Longrightarrow), (\bar{x} \leadsto y) (\bar{x} \lor \bar{y})
```

```
def Greedy_Horn(set of Horn clauses):
   Set all variables to 0:
   while there exists an "\Longrightarrow" that is not satisfied:
       Set its RHS to 1;
   if all pure negative clauses are 1:
       return the assignment;
   else:
       return "unsatisfiable";
   0 \implies x X
```

```
def Greedy_Horn(set of Horn clauses):
    Set all variables to 0:
    while there exists an "\Longrightarrow" that is not satisfied:
        Set its RHS to 1;
    if all pure negative clauses are 1:
        return the assignment;
   else:
        return "unsatisfiable";
Example: \implies x, x \implies y, (\bar{x} \vee \bar{y})
 0 \quad 0 \implies x X
 1 0 x \implies y X
```

CMPSC 465 Spring 2022

```
def Greedy_Horn(set of Horn clauses):
    Set all variables to 0:
    while there exists an "\Longrightarrow" that is not satisfied:
        Set its RHS to 1;
    if all pure negative clauses are 1:
        return the assignment;
    else:
        return "unsatisfiable";
Example: \implies x, x \implies y, (\bar{x} \vee \bar{y})
 0 \quad 0 \implies x X
 1 0 x \implies y X
    1 \implies x \checkmark, x \implies y \checkmark, (\bar{x} \lor \bar{y}) \checkmark
```

```
def Greedy_Horn(set of Horn clauses):
    Set all variables to 0:
    while there exists an "\Longrightarrow" that is not satisfied:
        Set its RHS to 1;
    if all pure negative clauses are 1:
        return the assignment;
    else:
        return "unsatisfiable";
Example: \implies x, x \implies y, (\bar{x} \vee \bar{y})
 0 \quad 0 \implies x X
                                                        Unsatisfiable
 1 0 x \implies y X
    1 \implies x \checkmark, x \implies y \checkmark, (\bar{x} \lor \bar{y}) \checkmark
```

Correctness: If $GREEDY_HORN$ finds an assignment, then the problem has a satisfying assignment

Correctness: If GREEDY_HORN finds an assignment, then the problem has a satisfying assignment If it returns "unsatisfiable", is it really unsatisfiable?

 $\label{local_correctness} \textbf{Correctness:} \ \ \text{If} \ \ GREEDY_HORN \ \ \text{finds an assignment, then the problem}$ has a satisfying assignment

If it returns "unsatisfiable", is it really unsatisfiable?

Theorem

The variables set to 1 by Greedy_Horn must be 1 in **any** satisfying assignment

 $\label{lem:correctness: If $G{\tt REEDY_HORN}$ finds an assignment, then the problem has a satisfying assignment}$

If it returns "unsatisfiable", is it really unsatisfiable?

Theorem

The variables set to 1 by GREEDY_HORN must be 1 in any satisfying assignment

Exercise: Prove this by induction

Correctness: If $GREEDY_HORN$ finds an assignment, then the problem has a satisfying assignment

If it returns "unsatisfiable", is it really unsatisfiable?

Theorem

The variables set to 1 by GREEDY_HORN must be 1 in **any** satisfying assignment

Exercise: Prove this by induction

How does this theorem help?

If all the pure negative clauses cannot be satisfied after the while loop, then there's no such assignment satisfying them

Correctness: If $GREEDY_HORN$ finds an assignment, then the problem has a satisfying assignment

If it returns "unsatisfiable", is it really unsatisfiable?

Theorem

The variables set to 1 by Greedy_Horn must be 1 in **any** satisfying assignment

Exercise: Prove this by induction

How does this theorem help?

If all the pure negative clauses cannot be satisfied after the while loop, then there's no such assignment satisfying them

Running time: Let n be the size of the Horn formula, i.e., the number occurrences of literals.

Correctness: If $GREEDY_HORN$ finds an assignment, then the problem has a satisfying assignment

If it returns "unsatisfiable", is it really unsatisfiable?

Theorem

The variables set to 1 by GREEDY_HORN must be 1 in **any** satisfying assignment

Exercise: Prove this by induction

How does this theorem help?

If all the pure negative clauses cannot be satisfied after the while loop, then there's no such assignment satisfying them

Running time: Let n be the size of the Horn formula, i.e., the number occurrences of literals.

Total running time: $O(n^2)$.

Correctness: If $GREEDY_HORN$ finds an assignment, then the problem has a satisfying assignment

If it returns "unsatisfiable", is it really unsatisfiable?

Theorem

The variables set to 1 by $GREEDY_HORN$ must be 1 in any satisfying assignment

Exercise: Prove this by induction

How does this theorem help?

If all the pure negative clauses cannot be satisfied after the while loop, then there's no such assignment satisfying them

Running time: Let n be the size of the Horn formula, i.e., the number occurrences of literals.

Total running time: $O(n^2)$. Can be improved to O(n) (exercise)