

<u>Home</u>

Maths

Exponential Rates

Exponential Rates

An experiment involves two substances, Substance 1 and Substance 2, whose masses are changing. The mass, M_1 grams, of Substance 1 at time t hours is given by

$$M_1 = 400 \mathrm{e}^{-0.014t}$$

.

The mass, M_2 grams, of Substance 2 is increasing exponentially and the mass at certain times is shown in the following table.

t (hours)	0	10	20
M_2 (grams)	75	120	192

A critical stage in the experiment is reached at time T hours when the masses of the two substances are equal.

Part A Rate of change of Substance 1

Find the rate at which the mass of Substance 1 is changing when $t=10\,\mathrm{hours}$, giving your answer in grams per hour $(\mathrm{g\,hour^{-1}})$ correct to 2 significant figures.

Show that T is the root of an equation of the form $\mathrm{e}^{kt}=c$. State the values of the constants k and c.

What is the value of k?

What is the value of c? Please give your answer to 3 significant figures.

${\bf Part \ C} \qquad {\bf Value \ of} \ T$

Find the value of T to 3 significant figures.

Used with permission from UCLES, June 2011, OCR C3 Paper 4723, question 8.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

<u>Home</u>

Maths

Expansions and Algebra

Expansions and Algebra

Part A Indices and surds

Simplify $2x^{\frac{2}{3}} imes 3x^{-1}$.

The following symbols may be useful: \boldsymbol{x}

Part B Indices

Express $2^{40} imes 4^{30}$ in the form 2^n .

The following symbols may be useful: n

Part C Simplifying expressions

Express $\frac{26}{4-\sqrt{3}}$ in the form $a+b\sqrt{3}$.

The following symbols may be useful: a, $\ \ b$

Part D Binomial expansions

Find the first four terms in the expansion, in ascending powers of x, of

$$\left(1+3x\right)^8 \ .$$

The following symbols may be useful: x

Part E Summing binomial expansions

Show that, if terms involving x^4 and higher powers of x may be ignored,

$$(1+3x)^8 + (1-3x)^8 = a + bx^2$$

Enter $a + bx^2$, substituting in the values for a and b.

The following symbols may be useful: \boldsymbol{x}

Part F Estimating

Use the equation from the previous part $(1+3x)^8+(1-3x)^8=a+bx^2$ to solve this question.

Find the value of $1.000\,003^8+0.999\,997^8$ correct to 12 decimal places.

Adapted with permission from UCLES, A Level, January 2008, Paper 4722, Question 10, and June 2002, Paper 2, Question 5.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.