14 - Conversor Digital Analógico ADC Ouestões

Lucas Gonçalves Serrano - RA: 12.01328-5 Flávia Janine Béo Rosante - RA: 13.03188-0 Erica Yumi Kido - RA: 13.02422-0

5 de junho de 2016

1 ADC

Questão. 1.1: Quantização áudio

A frequência de amostragem adotada internacionalmente é de 8000 amostras por segundo, então cada nível de valor corresponde a um código de 8 bits.

Questão. 1.2: Aliasing

Aliasing é quando mais de um sinal se torna igual em referência, ou seja, não é mais possível distinguir entre os dois, causando uma perda de informações do sinal, tornando-o menos preciso, para diminuir este erro utilizamos técnicas de anti-aliasing, que são filtros utilizados no sinal para remover em partes esse problema, temos muitos tipos de filtros que cumprem essa função, como filtros de reconstrução para áudio.

Questão. 1.3: SNR

É a medida de um sinal em meio ruidoso, é a razão entre a potência do sinal pela potência do ruído. O valor ideal de SNR para um ADC é calculado através da transformação do SNR em decibéis. Está relacionado com o número de bits do conversor.

Questão. 1.4: ENOB

Especifica a resolução ideal de um circuito ADC que teria a mesma resolução do circuito real. A resolução de um circuito é especificada pelo número de bits usado para representar o o valor analógico, porém em circuitos reais eles geram distorções e barulho.

1.1 Tipos de Conversores

Questão. 1.5: Tipos de conversores Ele funciona da seguinte forma: O sistema é zerado e o bit mais significativo do registrador é colocado em 1, a tensão no momento é comparada com a da entrada, se a da entrada for maior o dígito fica em 1, se não, é zerado. O bit mais significativo é colocado em 1 e volta o processo novamente até ocorrer a verificação de todos os bits.

2 SAM4S

Questão. 2.1: 1Mhz

Segundo o teorema de Nyquist, a taxa de amostragem deve ser no mínimo duas vezes o valor da frequência máxima, portanto $Fm\acute{a}x = 500~KHz$.

2.0.1 Entrada analógica

2.1 MUX

PIO	Pino
PA17	X1
PA18	X1
PA19	X1
PA20	X1
PB0	X1
PB1	X1
PB2	X1
PB3	X1
PA21	X1
PA22	X1
PC13	X1
PC15	X1
PC12	X1
PC29	X1
PC30	X1

Questão. 2.2: Pinos

2.1.1 Sensor de temperatura

Questão. 2.3: Consumo

A corrente é de 50 à 80 micro Amperes.

2.1.2 Tensão de referência

Questão. 2.4: Tensão de referência

- A tensão de referência pode ser setado via o jumper JP2.
- A tensão pode assumir os valores de 2.5V ou de 3.3V.
- Neste pino, a tensão é de 2.5V baseada no LM4040.

2.2 Ganho programado (PGA) e Offset

Questão. 2.5: Diagrama de blocos :

DMA

Trigger

Gain

2.3 Modos de operação

2.4 Tempos de conversão e chaveamento

Questão. 2.6: ADC timings

• ADC Startup time: de 20 à 40 micro segundos

• Tracking Time: 15 períodos de clock do ADC (valor mínimo)

• Conversion Time: 20 períodos de clock do ADC