

Instituto Tecnológico de Estudios Superiores de Monterrey, Campus Querétaro

Manual

Manual de Instalación y Despliegue de CowVision

Presenta

Carlos Rodrigo Salguero Alcántara A00833341

Diego Perdomo Salcedo A01709150

CowVision: Guía de Instalación y Despliegue		
In	troducción	2
C	aracterísticas Principales	2
R	equisitos del sistema	2
ln	stalación	2
Ej	jecutando Inferencia (Predicciones)	3
	Procesamiento de Imágenes Individuales	3
	Ejemplo de salida con información visual	4
	Ejemplo de salida sin información visual	4
	Procesamiento de Múltiples Imágenes	4
	Configuración avanzada	5
Er	ntrenamiento del Modelo	5
	Entrenamiento en Computadora sin GPU	6
So	olución de Problemas	7
Er	ntrenamiento en Computadoras más Potentes	7
C	onseios Generales	8

CowVision: Guía de Instalación y Despliegue

Introducción

CowVision es un sistema avanzado de visión por computadora diseñado para detectar vacas utilizando modelos YOLO (You Only Look Once).

Características Principales

- Detección Precisa: utiliza YOLO9 para detectar vacas con alta precisión.
- Procesamiento Eficiente: capaz de procesar imágenes individuales o directorios completos.
- Personalizable: ajusta los parámetros de detección según tus necesidades.
- Compatible con Raspberry Pi: optimizado para funcionar en hardware de bajo consumo

Requisitos del sistema

- Raspberry Pi 4 (recomendado) o superior
- Al menos 4GB de RAM
- ❖ Python 3.10
- Espacio libre de almacenamiento de al menos 2GB
- Sistema operativo Raspberry Pi OS o Ubuntu 22.04

Instalación

Sigue estos pasos para instalar CowVision en tu Raspberry Pi:

1. Actualiza tu sistema

```
sudo apt update && sudo apt upgrade -y
```

2. Instala las dependencias necesarias (en caso de no contar con ellas)

```
sudo apt install -y python3-pip python3-venv libopencv-dev
```

3. Descarga la última versión de CowVision

```
# Clona el repositorio o descarga el archivo zip de la versión
git clone https://github.com/salgue441/caetec-cow-classification
cd caetec-cow-classification
```

4. Crea un entorno virtual de Python

```
python3 -m venv {nombre}
source {nombre}/bin/activate
```

5. Instala el paquete en modo desarrollo

```
pip install -e .
```

6. Descarga y coloca los archivos del modelo

Descarga los archivos del modelo desde <u>Drive</u> o la sección de lanzamiento (releases) en GitHub.

- Crea una carpeta llamada model a nivel raíz del proyecto
- Coloca yolov9c.pt en el directorio model.
- Coloca best.pt en el directorio model.

```
mkdir -p model
```

Ejecutando Inferencia (Predicciones)

Una vez instalado, puedes utilizar CowVision para detectar varias vacas en imágenes. La herramienta principal es run-cow-inference.

Procesamiento de Imágenes Individuales

Para procesar una sola imagen y guardar el resultado con cajas de detección:

```
# Activa el entorno virtual primero
```

source {nombre}/bin/activate

Ejecuta la inferencia en una imagen con salida visual Run-cow-inference --image ruta/a/imagen.jpg --output resultados/detectada.jpg

Ejemplo de salida con información visual

Para obtener solo la información de detección sin salida visual

run-cow-inference --image ruta/a/imagen.jpg --no-render

Ejemplo de salida sin información visual

Image: 2024-04-12-14-30-03_jpg.rf.230619284902124f1e5aa940f3b79ef9.jpg

Detections: 5

Detection 1: probability 0.78
Detection 2: probability 0.76

```
Detection 3: probability 0.75

Detection 4: probability 0.71

Detection 5: probability 0.47
```

Procesamiento de Múltiples Imágenes

Para procesar todas las imágenes en un directorio

```
run-cow-inference --dir ruta/a/imagenes/ --output resultados/
```

El directorio de salida se creará si no existe. Cada imagen procesada se guardará con "_detected" añadido al nombre del archivo.

Configuración avanzada

Puedes ajustar los parámetros de detección para mejorar los resultados

Explicación de parámetros:

- --conf es el Umbral de confianza (0.0 1.0). Valores más altos requieren mayor certeza.
- --iou es el umbral de Intersección sobre Unión (0.0 1.0). Controla la eliminación de duplicados.
- --min-area es el área mínima (en píxeles) para considerar una detección válida.

Entrenamiento del Modelo

Si necesitas reentrenar el modelo con tus propios datos, sigue estos pasos:

1. Prepara tu conjunto de datos: organiza tus imágenes (etiquetadas con bounding-boxes) y anotaciones en el siguiente formato:

El archivo data.yaml debe contener:

```
train: data/images/train/
val: data/images/val/
test: data/images/test/
nc: 1 # número de clases
names: ['cow'] # nombre de las clases
```

2. Inicia el entrenamiento

Parámetros importantes:

 --epochs es el número de épocas de entrenamiento (más épocas = más tiempo de entrenamiento)

- --batch_size es el tamaño del lote (reducir si hay problemas de memoria)
- **3. Monitoreo del entrenamiento**: el progreso del entrenamiento se guardará en la carpeta runs /. Puedes revisar las métricas y visualizaciones generadas.
 - a. Curva de pérdida y precisión
 - b. Imágenes de validación con predicciones
 - c. Matrices de confusión
 - d. Métricas de rendimiento (mAP, precisión, recall)
- 4. Usando el modelo entrenado: una vez completado el entrenamiento, el modelo guardará los mejores y últimos pesos en runs/detect/trainX/weights/best.pt y runs/detect/trainX/weights/last.pt. Puedes usar estos pesos para inferencia.

Entrenamiento en Computadora sin GPU

Si no tienes acceso a una GPU, aún puedes entrenar en CPU, pero será mucho más lento. Considera reducir el tamaño de las imágenes y el número de épocas para hacer el entrenamiento más manejable en CPU.

Solución de Problemas

Problema	Solución
FileNotFoundError	Verifica que los archivos del modelo estén ubicados correctamente en la carpeta de modelo.
Errores de importación	Asegúrate de haber activado el entorno virtual.
<pre>ImportError: No module named</pre>	Verifica que todas las dependencias estén instaladas pip install -e .
Errores de memoria	Reduce el tamaño de las imágenes o ajusta el batch size durante el entrenamiento.
Rendimiento lento en inferencia (predicciones)	Usa imágenes más pequeñas y considera ajustar el parámetroconf entre 0.3 y 0.4.
Error "CUDA not available"	Si no tienes GPU, el modelo automáticamente usará CPU. Ignora este mensaje.
Error "CUDA out of memory"	Reduce el batch size durante el entrenamiento o usa imágenes más pequeñas.
Problemas con OpenCV	Asegúrate de tener instaladas las dependencias correctas: sudo apt install libopencv-dev.
No se detectan objetos	Intenta reducir el umbral de confianzaconf 0.2 para aumentar la sensibilidad.
Detecciones falsas	Aumentar el umbral de confianzaconf 0.6 para mejorar la precisión.

Entrenamiento en Computadoras más Potentes

Para entrenar el modelo en una computadora de escritorio o servidor con más recursos (recomendado), sigue estos pasos:

1. Configura el entorno de tu computadora

```
source {nombre}/bin/activate pip install -e .
```

python3 -m venv {nombre}

2. Aprovecha la GPU si está disponible

- Si tienes una GPU de NVIDIA, instala CUDA y cuDNN según las instrucciones oficiales
- Instala la versión de PyTorch compatible con CUDA

```
pip install torch torchvision --index-url
https://download.pytorch.org/whl/cu118
```

3. Ajusta los parámetros de entrenamiento para hardware potente

```
train-cow-model -data_yaml data/data.yaml -epochs 300 -batch_size 16
```

4. Transfiere el modelo entrenado a la Raspberry Pi:

- Copia el archivo de pesos runs/detect/train/weights/best.pt a tu Raspberry Pi.
- Colócalo en la ruta correcta: models/best.pt.

Consejos Generales

1. Rendimiento óptimo

- a. Usa el formato de imagen JPG en lugar de PNG para un procesamiento más rápido
- b. Para entrenamiento, usa una GPU si es posible; para inferencia, la CPU es suficiente en muchos casos

2. Gestión de datos

- a. Organiza tus imágenes de entrenamiento de tus modelos entrenados
- b. Haz copias de seguridad de tus modelos entrenados
- c. Considera usar un servicio de almacenamiento en la nube para datasets grandes

3. Optimización de flujo de trabajo

- a. Entrena en hardware potente, despliega para inferencia en dispositivos más pequeños
- b. Monitorea el rendimiento de tu modelo con diferentes configuraciones
- c. Documenta los parámetros y resultados de cada entrenamiento