The PCA

Helwig Hauser *et al.*, UiB Dept. of Informatics

Looking Back & Forth

Last time:

- from changing bases to the SVD
- SVD facts and interpreting the SVD
- data matrices and the SVD
- rank-k approximation with the SVD

Today:

- variance, covariance, and correlation
- eigenanalysis
- PCA (principal component analysis)

Introduction

Principal Component Analysis (PCA):

- represents the data (also) in an alternative frame
 such that most data variance is aligned with the new "x-axis"
- PCA is based on an eigenanalysis of the covariance matrix and the corresponding eigenvalues indicate, how much variance is explained by each axis
- PCA can be used as a basis for dimension reduction:
 if only those k axes are used that correspond to the largest variance in the data, this leads to a k-dimensional approximation
- PCA can be useful, when dealing with noisy data:
 much of the signal can be concentrated into the first components, possibly raising the SNR (after dimension reduction)

Variance

In 1D:

- 1st and 2nd order moments in descriptive statistics.
 - the mean μ estimates the center of the data:
 - the standard deviation σ estimates $\frac{1}{\mu-3\sigma}$ $\frac{1}{\mu-2\sigma}$ $\frac{1}{\mu-\sigma}$ the variation / dispersion of the data (68–95–99.7–rule):
 - the variance σ^2 is the square of the standard deviation:

Rewriting variance:

- shift the data by $-\mu$ to center it
- computing the variance as $\mathbf{x}^{\mathsf{T}}\mathbf{x}/(n-1)$ (col. \mathbf{x})
- -x = [65; 58; 74; 54; 72; 62; 72]

$$mu = mean(x)$$

$$x_c = x-mu$$

x_size = size(x); n = x_size(1)
sigma_2 = (x_c.' * x_c) / (n-1)

$$\sigma = \sqrt{\frac{1}{n}} \sum_{i} (x_i - \mu)^2$$

$$\sigma^2 = \underbrace{\frac{1}{n}}_{i} \sum_{i} (x_i - \mu)$$

99.7% of the data are within 3 standard deviations of the mean

95% within
2 standard deviations
68% within
1 standard
deviation

for an unbiased estimator, divide by *n*-1

 $\mu + 3\sigma$

[MATLAB ex. 2d_A]

Variance and Covariance

In nD:

- the center is estimated per dimension (one may also rescale!)
- the variation is estimated (after centering):
 - within each dimension **x**: $\sigma^2_{\mathbf{x}} = \mathbf{x}^{\mathsf{T}} \mathbf{x} / (n-1)$
 - between dims. $\mathbf{x} \otimes \mathbf{y}$ (covariance): $\sigma_{\mathbf{xy}}^2 = \mathbf{x}^T \mathbf{y} / (n-1)$

All variances / covariances in n**D**:

- variances and covariances show up in the covariance matrix:
 - given data matrix **D** (items in cols.): $\Sigma^2_{\mathbf{D}} = \mathbf{D} \mathbf{D}^T / (n-1)$
 - transposed matrix **D** (items in rows): $\Sigma_{\mathbf{D}}^2 = \mathbf{D}^{\mathsf{T}} \mathbf{D} / (n-1)$

Eigenanalysis

Assume a square matrix A in $\mathbb{R}^{n\times n}$:

- then an eigenvalue problem is written as $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$ with λ being a scalar value, i.e., an eigenvalue of \mathbf{A}
- to solve an eigenvalue problem for both \mathbf{x} and λ means to find—in addition to all **eigenvalues** λ_i —all corresponding vectors \mathbf{x}_i , i.e., the **eigenvectors** \mathbf{x}_i , for which the left-multiplication with \mathbf{A} is the same as a scalar stretching/shrinking of \mathbf{x} (by λ)

(eigenvectors **x** do not change direction under **A**, only length, if at all)

the blue vector is an eigenvector of the depicted shear operation (but not so the red vector)

Eigenvalues

Given a square, real-valued matrix A, then:

- the eigenvalues can be positive, zero, or negative
- the eigenvalues can be complex (they appear in pairs for $\mathbf{A} \in \mathbb{R}^{n \times n}$)
- the eigenvalues can appear multiple times (algebraic multiplicity μ)
- all eigenvalues add up to the trace of A
- all eigenvalues multiply to the determinant of A
- A is invertible, if and only if all eigenvalues of A are non-zero
- **A** is invertible ⇒ the eigenvalues of \mathbf{A}^{-1} are $1/\lambda_i$
- if A is unitary, then the norm of all eigenvalues of A is 1
- if $\mathbf{A} = \mathbf{A}^*$ (\mathbf{A} is self-adjoint), then all eigenvalues are real (in particular true for symmetric, real-valued matrices!)
- the eigenvalues of \mathbf{A}^k are λ_i^k , if k a positive integer
- if A is positive-/negative (semi-)definite,
 then all eigenvalues of A are positive/negative (incl. 0)

Eigenvectors

Each eigenvalue λ_i (algebraic multiplicity $\mu_i \ge 1$)

- corresponds to a subspace, i.e., the eigenspace spanned by the corresponding eigenvector(s)
- if A is symmetric,
 then the eigenvectors are orthogonal to each other
- any multiple of an eigenvector is also an eigenvector
- the eigenvectors can be complex (pairs of them)
- eigenspaces are γ_i -dimensional ($\gamma_i \ge 1$) geometric multiplicity (the usual case is 1D)

```
in MATLAB: "[V, L]=eig(A)" gives the (normalized) eigenvectors (as columns of \mathbf{V}) and the eigenvalues (as major diagonal of \mathbf{L})
```


hyperbolic rotation

 $c = \cosh \varphi$

 $s = \sinh \varphi$

 $\lambda^2 - 2c\lambda + 1$

 $\lambda_1 = e^{\varphi}$

 $\lambda_2 = e^{-\varphi}$

 $\mu_1 = 1$

 $\mu_2 = 1$

 $\gamma_1 = 1$

 $\gamma_2 = 1$

 $(\lambda - 1)^2$

 $\lambda_1 = \lambda_2 = 1$

 $\mu_1 = 2$

 $\gamma_1 = 1$

 $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Eigenvalues and Eigenvectors in 2D				
from Wikipedia]	scaling	unequal scaling	rotation	horizontal shear
illustration		L L L L L L L L L L L L L L L L L L L		P P y y x x x x x x x x x x x x x x x x
	[1. 0]	$\lceil k, 0 \rceil$	[c _s]	$\lceil 1 k \rceil$

 $|(\lambda-k_1)(\lambda-k_2)|$

 $\lambda_1 = k_1$

 $\lambda_2 = k_2$

 $\mu_1 = 1$

 $\mu_2 = 1$

 $\gamma_1 = 1$

 $\gamma_2 = 1$

 $\begin{bmatrix} s & c \end{bmatrix}$

 $c = \cos \theta$

 $s = \sin \theta$

 $\lambda^2 - 2c\lambda + 1$

 $\lambda_1 = e^{\mathbf{i}\theta} = c + s\mathbf{i}$

 $\lambda_2 = e^{-i\theta} = c - si$

 $\mu_1 = 1$

 $\mu_2 = 1$

 $\gamma_1 = 1$

 $\gamma_2 = 1$

 $\begin{bmatrix} n & 0 \\ 0 & k \end{bmatrix}$

 $(\lambda - k)^2$

 $\lambda_1 = \lambda_2 = k$

 $\mu_1 = 2$

 $\gamma_1 = 2$

All non-zero vectors

matrix

characteristic

polynomial

eigenvalues λ_i

algebraic multipl.

 $\mu_i = \mu(\lambda_i)$

geometric multipl.

 $\gamma_i = \gamma(\lambda_i)$

eigenvectors

Writing it all-in-one: a Decomposition!

Assuming *n* solutions $\mathbf{x}_i \otimes \lambda_i$ to $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$ (multiplicity OK)

- then
$$\mathbf{A}\,\mathbf{x}_1=\lambda_1\,\mathbf{x}_1$$
 $\mathbf{A}\,\mathbf{x}_2=\lambda_2\,\mathbf{x}_2$ \Rightarrow $\mathbf{A}\,\mathbf{V}=\mathbf{V}\,\mathbf{\Lambda}$ \vdots $\mathbf{A}\,\mathbf{x}_n=\lambda_n\,\mathbf{x}_n$

$$\Rightarrow$$
 AV = **V** Λ

with
$$\mathbf{V} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \mathbf{x}_n)$$
 and

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

$$\Rightarrow$$
 $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$

A better Frame

Eigenanalysis...

- ... leads to the eigenvalue/eigenvector decomposition $\mathbf{A} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}$ with \mathbf{V} hosting all (normalized) eigenvectors and $\boldsymbol{\Lambda}$ having all eigenvalues along the major diagonal
- ... if **A** is real-valued and symmetric, then **V** is unitary, i.e., an orthonormal basis of \mathbb{R}^n (important for PCA)

This suggests...

... that we can consider our \mathbf{A} in terms of basis \mathbf{V} : $\mathbf{X} = \mathbf{V}^* \mathbf{A}$ (\mathbf{X} is then \mathbf{A} in orthonormal \mathbf{V} -coordinates)

This leads to:

[see the MATLAB example 2d_C]

- Given A in orthonormal V-coords. (by $X = V^*A$), $A = V \wedge V^*$ leads to $X = V^*A = V^*V \wedge V^* = \Lambda V^*$
- in particular $\mathbf{X} \mathbf{v} = [\mathbf{A} \mathbf{v}]_{\mathbf{V}} = \mathbf{\Lambda} \mathbf{V}^* \mathbf{v} = \mathbf{\Lambda} [\mathbf{v}]_{\mathbf{V}}$ (dim.-wise scaling!)

Eigenanalysis – Interpretation

Assuming a mapping A: $\mathbb{R}^2 \to \mathbb{R}^2$ (again),

- and also considering four vectors (1)
 - four vectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

 $\mathbf{A} = \left(\begin{array}{cc} -0.4 & 1.2 \\ 1.2 & -1.1 \end{array} \right)$

('*' below after the mapping)

Then the eigenanalysis of A gives:

in MATLAB: "[V, L]=eig(A)"

- eigenvalues −2 and ½
- and eigenvectors $\begin{pmatrix} -0.6 \\ 0.8 \end{pmatrix}^{\mathbf{V}_1} & \begin{pmatrix} -0.8 \\ -0.6 \end{pmatrix}^{\mathbf{V}_2}$

[see the MATLAB example 2d_D]

SVD–Eigenanalysis Comparison

Both are decomposition/diagonalization approaches,

i.e., both lead to a factorization of A into PMQ
 with M (singular values or eigenvalues) being diagonal and P & Q representing two change of basis steps

But

- the SVD exists always (+), even for rectangular matrices (+), while the eigendecomposition not necessarily exists (-) - the SVD exists always (+), even for rectangular matrices (+), while the eigendecomposition not necessarily exists (-) example: nilpotent matrix $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- the SVD results in a real-valued solution (+), while the eigenvalues/eigenvectors may be complex-valued (-)
- the SVD uses two bases $\mathbf{U} \otimes \mathbf{V}$ (-), which always are unitary/orthonormal (+), the eigendecomp. uses one (+), \mathbf{V} , that may not be orthogonal (-)

PCA – Introduction

Some data

- may be "intrinsically" r-dimensional, but represented d-dimensional with d>r
- example: if all data $\mathbf{d}_i \in \mathbb{R}^3$ are of form $\mathbf{d}_i = s_i \mathbf{v}$, $\mathbf{v} \in \mathbb{R}^3$, then their representation is 3D, while their intrinsic dimensionality is 1

Let's look at some people's data:

- we consider Height vs. Shoesize now (they look correlated, right?!)
- the covariance matrix looks like

$$\Sigma_{\mathbf{D}}^2 = \begin{pmatrix} 388.7857 & 82.9229 \\ 82.9229 & 20.3942 \end{pmatrix}$$

with major off-diagonal values!

PCA – Diagonalizing Σ^2

Next step (after normalization/standardization):

- transform such that the covariance matrix becomes diagonal! (since Σ^2 is real-valued and symmetric, we use the eigendecomp.)

This leads to the eigenvalues & eigenvectors of Σ^2 :

eigenvalues ≈1.93 and ≈0.07
 with the corresponding eigenvectors

$$\mathbf{V} = \left(\begin{array}{ccc} -0.7071 & 0.7071 \\ -0.7071 & -0.7071 \end{array} \right)$$

called principal components (PC)

 the vast difference in eigenvalues tells that this dataset is mostly 1D!

PCA – Look at the Scores

Next step:

– we can now look at the data in terms of \mathbf{V} , i.e., in the PC of \mathbf{D} (the $[\mathbf{D}]_{\mathbf{V}}$ are called the *scores* in PCA)

The scores are then uncorrelated

PCA – Low-rank Approximation

Similar to the SVD,

– we can compute a lower-(k-)dimensional approximation of the (normalized) data **D** by "only" considering the largest eigenvalues

Given scores [D]_V,

- we keep only the data rows corresponding to the largest k eigenvalues
- assuming that we reordered V & Λ
 so that the eigenvalues in Λ
 became sorted in decreasing size
- we then compute $\mathbf{D'}_k$ by $\mathbf{D'}_k = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_k) \ (\mathbf{d}_{\mathbf{V}1}^{\mathsf{T}} \ \mathbf{d}_{\mathbf{V}2}^{\mathsf{T}} \ ... \ \mathbf{d}_{\mathbf{V}k}^{\mathsf{T}})^{\mathsf{T}}$

[see the MATLAB example 2d_E]

PCA vs. SVD

The lower-dimensional approximation with PCA overlaps with the rank-k approximation with SVD:

- the eigenvalues from PCA, λ_i , are equal to $\sigma_i^2/(n-1)$
- the left-singular vectors **U** are the PC from PCA (up to sign change), if data rows are given (otherwise it's **V**)

Relation:

- 1. data \mathbf{D} , d dims. x n items (in the cols.)
- 2. $\Sigma^2 = \mathbf{D} \mathbf{D}^T / (n-1) / / \text{covariance-matrix}$
- 3. $\Sigma^2 = V \Lambda V^* // eigendecomposition$
- 4. $[D]_{V} = V * D // scores$
- 5. **D** = **U S W*** // SVD
- 6. $\Sigma^2 = U S W^* (W S^* U^*) / (n-1) // 2. \& 5.$ = $U (S S^* / (n-1)) U^* = V \Lambda V^* // 3.$

PCA – Investigate the Loadings (1)

With PCA

- we transform the data into a new Cartesian coordinate frame (the PCs are orthogonal to each other)
- so that the covariance between the scores is zero (we remove any redundancy from the data)

Challenging (as with the SVD):

- considering the scores $[\mathbf{D}]_{\mathbf{V}}$ of data \mathbf{D} , esp. after normalization, we usually lack a good interpretation of the new axes—they are linear combinations of the original data-axes, i.e., the "new data" $[\mathbf{D}]_{\mathbf{V}}$ is a mix (linear combination) of \mathbf{D}
- one way to interpret the principal components, is to look at their *loadings*: to which degree play the original data-axes into them?

PCA – Investigate the Loadings (2)

The loadings

- of PC i are given by the components of eigenvector \mathbf{v}_i
- given data rows (items in cols.),
 - data item j is given by column j in **D**: $(d_{...j})$
 - the scores of data item j are then $(d_{\mathbf{v}_{...,j}}) = \mathbf{V}^*(d_{...,j})$, i.e., $d_{\mathbf{v}_{1,j}} = \mathbf{v}_1^T(d_{...,j})$, $d_{\mathbf{v}_{2,j}} = \mathbf{v}_2^T(d_{...,j})$, aso.
- interpretation:
 - the "new" x-coordinate of some data item
 is a linear combination of all original attributes of this item,
 weighted by the entries of eigenvector #1,
 i.e.,
 - a large absolute component #k in eigenvector #g tells about a major influence of data attribute #k onto the principal component #g

PCA – Investigate the Loadings (3)

Back to our example:

looking (again) at **V**, we see:

$$\mathbf{V} = \begin{pmatrix} -0.7071 & 0.7071 \\ -0.7071 & -0.7071 \end{pmatrix}$$

- the 1st principal component is a (negative) combination of Height and Shoesize, whereas
- the 2nd principal component expresses their disagreement (e.g., large feet, but short)
- taking also the vastly different eigenvalues (~1.93 vs. ~0.07)
 into account, we find that
 - mostly, it's about the overall size (height & feet)
 - minor differences exist (larger feet, while being a bit shorter)

Considering all of the people's data, i.e.,

- the four data attributes Age, Height, Weight, and Shoesize

Steps: [see the MATLAB example 2d_F]

- 1. load the data
- 2. set up the data \mathbf{D} (here data cols., again, i.e., items in the rows); compute also n, d, all per-dim. means \mathbf{mu} & std.-dev. values \mathbf{sigma}
- 3. normalize the data: **Dz** becomes the z-score of **D**
- 4. visualize to check

[...]

Considering all of the people's data, i.e.,

the four data attributes Age, Height, Weight, and Shoesize

Steps:

- 1. load the data
- 2. set up the data **D** (here data compute also *n*, *d*, all per-
- 3. normalize the data: **Dz** b
- 4. visualize to check

[...]

Considering all of the people's data, i.e.,

- the four data attributes Age, Height, Weight, and Shoesize

Steps:

- [...]
- 5. compute the covariance matrix **S2z** and do the eigendecomposition into **Vz** and **Lz**
- 6. sort by the absolute eigenvalue value to get LzS and VzS
- 7. compute the scores **DzScores**
- 8. look at them
- [...]

Considering all c

the four data a

Steps:

- [...]
- 5. compute the covand do the eiger
- 6. sort by the abso
- 7. compute the scc
- 8. look at them

[...]

[see the MATLAB example 2d_F]

Considering all of the people's data, i.e.,

- the four data attributes Age, Height, Weight, and Shoesize

Steps:

```
[...]
```

- 9. do a 2D-reconstruction **DzReco2**
- 10. do a comparative visualization
- 11. undo the normalization for the reconstruction, get **Dreco2**
- 12. visualize

```
[…]
```


Shoesize

Considering all

- the four data

Steps:

- [...]
- 9. do a 2D-reco
- 10. do a compara
- 11. undo the nor
- 12. visualize

[...]

Considering all of the people's data, i.e.,

- the four data attributes Age, Height, Weight, and Shoesize

Steps:

```
[...]
```

- 9. do a 2D-reconstruction **DzReco2**
- 10. do a comparative visualization
- 11. undo the normalization for the reconstruction, get **Dreco2**
- 12. visualize

```
[...]
```


Considering all

- the four data

Steps:

- [...]
- 9. do a 2D-recor
- 10. do a compara
- 11. undo the norr
- 12. visualize
- [...]

Considering all of the people's data, i.e.,

- the four data attributes Age, Height, Weight, and Shoesize

Steps:

[...]

13. look at the loadings

Considering all of the people's data, i.e.,

the four data attributes Age, Height, Weight, and

Considering all of the people's data, i.e.,

the four data attributes Age Weight Maig

Considering all of the people's data, i.e.,

the four data attributes Age Height Maig

Considering all of the people's data, i.e.,

the four data attributes Age Height Maig

Considering all of the people's data, i.e.,

the four data attributes Age Height Maig

PCA – Remarks

Principal Component Analysis (PCA)

- can be seen as a best-possible linear technique for dimension reduction (best in the least sum of squared distances sense)
- is sensitive to the scaling of individual dimensions
 (therefore, often normalization is done dimension-wise first)
- this issue (PCA sensitive to dim.-scaling) implies that PCA is to a certain degree "arbitrary", when dimensions of different units are studied (that cannot be mapped to each other, like temperatures and costs)
- PCA makes only sense, when the data is centered
- numerous extensions / alternative approaches exist,
 including non-linear techniques, sparse PCA, robust PCA, ...

How to Solve an Eigenproblem

Focus up to here:

how to use an eigenanalysis

Not touched (yet):

how to solve an eigenproblem

In short:

- given $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$,
- we get to $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = 0$
 - if $(\mathbf{A} \lambda \mathbf{I})$ is non-singular, then only $\mathbf{x} = \mathbf{0}$ is a solution
 - thus, and in order to find non-degenerated solutions, we need to require that $(\mathbf{A} \lambda \mathbf{I})$ is singular, i.e., $\det(\mathbf{A} \lambda \mathbf{I}) = 0$
- $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ is called the characteristic equation of \mathbf{A} , leading to the eigenvalues λ_i
- having the λ_i , we can solve $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = 0$ for the \mathbf{x}_i

Outlook

Next:

- a new part of INF250 with
 - data fitting (somehow a continuation of this part!)
 - splines
 - iterative methods

Reading and Related Material

In the book:

- chapter 2 (on linear systems), mostly section 2.1, and related parts
- chapter 15 (on SVD, etc.)

Course notes:

section 4

An interactive online-book:

http://lmmersiveMath.com/,
 chapters (1–4 &) 5 (on Gaussian elimination)
 and 6 (on The Matrix)

On Wikipedia:

many good pages