1 Examples of Using The Euler-Lagrange Equation (July 30)

1.1 DuBois-Raymond Lemma

The next lemma allows us to relax the restrictions for the Euler-Lagrange equation to hold from twice continuously differentiable to only once continuously differentiable.

Lemma 1.1. (DuBois-Raymond lemma) Suppose α, β are continuous functions on [a, b] such that

$$\int_{a}^{b} (\alpha(x)v(x) + \beta(x)v'(x)) dx = 0$$

for all test functions v on [a,b]. Then β is C^1 , and $\beta' = \alpha$ on [a,b].

Proof. Let $A(x) = \int_a^x \alpha(t) dt$ be an antiderivative of α . Since α is continuous, A is C^1 . Then

$$\int_{a}^{b} \alpha(x)v(x) \, dx = \int_{a}^{b} A'(x)v(x) \, dx = -\int_{a}^{b} A(x)v'(x) \, dx.$$

By the original assumption,

$$0 = \int_{a}^{b} (\alpha(x)v(x) + \beta(x)v'(x)) dx = \int_{a}^{b} (-A(x) + \beta(x))v'(x) dx.$$

We are done if we are able to show that $-A(x) + \beta(x)$ is constant on [a, b]. Let $\gamma = -A + \beta$. Define C to be the constant

$$C := \frac{1}{b-a} \int_{a}^{b} \gamma(t) dt,$$

so that $\int_a^b (\gamma(t) - C) dt = 0$. Define $v(x) := \int_a^x (\gamma(t) - C) dt$. The function v is C^1 since $\gamma(t) - C$ is continuous, and v(a) = v(b) = 0; so v is a test function on [a, b]. By some algebra,

$$\int_{a}^{b} (\gamma(x) - C)^{2} dx = \int_{a}^{b} (\gamma(x) - C)v'(x) dx = 0.$$

Since $(\gamma(x) - C)^2 \ge 0$ on [a, b], we must have $\gamma(x) = C$. Therefore γ is constant, which proves the lemma.

1.2 Examples

1. Consider two points (a, A), (b, B) in \mathbb{R}^2 with a < b. We seek a function u on [a, b] with u(a) = A, u(b) = B, and with

$$F[u] := \int_a^b \sqrt{1 + u'(x)^2} \, dx$$

minimized. Denote by \mathcal{A} the set of C^1 functions u with u(a) = A and u(b) = B. Suppose that u_* is a minimizer. Then, by the previous lemma applied to the last result of the previous lecture, u_* satisfies the Euler-Lagrange equation. Let $L(x, z, p) := \sqrt{1 + p^2}$. Then $L_z = 0$, and

$$L_p = \frac{p}{\sqrt{1+p^2}}.$$

The Euler-Lagrange equation is, in this case,

$$0 = -\frac{d}{dx}L_p + L_z = -\frac{d}{dx}\frac{u'_*(x)}{\sqrt{1 + u'_*(x))^2}}.$$
 (*)

This implies that

$$u'_*(x) = C\sqrt{1 + u'_*(x)^2}$$

for some constant C, implying

$$u'_*(x)^2 = C(1 + u'_*(x)^2) = C + Cu'_*(x)^2,$$

giving

$$u'_{*}(x)^{2}(1-C) = C,$$

hence u'_* is constant, or $u_*(x) = \alpha x + \beta$ for some constants α, β . As expected, the minimizer is a line. This answer is expected, since the shortest path joining two points is the line joining them.

2. Suppose u is a C^1 function on an interval [a,b]. Consider the surface of revolution obtained by rotating the graph of u on [a,b] about the x-axis. Consider the functional

F[u] :=area of the surface of revolution obtained by rotating Γ_u about the x-axis,

which is, by some calculus,

$$F[u] = \int_{a}^{b} 2\pi u(x) \sqrt{1 + u'(x)^2} \, dx.$$

With the set \mathcal{A} of functions defined as in the previous example, we seek to find a function $u_* \in \mathcal{A}$ minimizing F on \mathcal{A} .

In this example, the Lagrangian is $L(x,z,p)=2\pi z\sqrt{1+p^2}$, which gives

$$L_z = 2\pi\sqrt{1+p^2}$$

and

$$L_p = \frac{2\pi zp}{\sqrt{1+p^2}}$$

The Euler-Lagrange equation is, in this case,

$$0 = -\frac{d}{dx}L_p + L_z = -\frac{d}{dx}\left[\frac{2\pi u(x)u'(x)}{\sqrt{1 + u'(x)^2}} + 2\pi\sqrt{1 + u'(x)^2}\right].$$

Cancel the 2π 's to get the ODE

$$\left[\frac{u(x)u'(x)}{\sqrt{1+u'(x)^2}} + \sqrt{1+u'(x)^2}\right] = 0.$$
 (**)

By magic, the general solution to this differential equation has the form

$$u(x) = \beta \cosh\left(\frac{x - \alpha}{\beta}\right)$$

for some constants α, β . We won't argue why we got this solution, but we can differentiate it and check that it solves the ODE; uniqueness theorems give us what we want.

$$u'(x) = \beta \sinh\left(\frac{x-\alpha}{\beta}\right) \frac{1}{\beta} = \sinh\left(\frac{x-\alpha}{\beta}\right),$$

implying

$$\sqrt{1 + u'(x)^2} = \cosh\left(\frac{x - \alpha}{\beta}\right).$$

It is now obvious that u solves (**). Therefore a minimizer u_* must be of the form

$$u_*(x) = \beta \cosh\left(\frac{x-\alpha}{\beta}\right).$$

We may use the boundary conditions to find α, β .

Consider the special case (a, A) = (0, 1) and (b, B) = (1, 0). The boundary conditions on u_* give us the system

$$\beta \cosh\left(\frac{x-\alpha}{\beta}\right) = 1$$
$$\beta \cosh\left(\frac{1-\alpha}{\beta}\right) = 0.$$

Since cosh is strictly positive, the second equation gives us $\beta = 0$, a contradiction. We conclude that there is no C^1 minimizer in this special case.