Python for Data Science

BIPN 162

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt

Name A Better Trio. I'll Wait

That's it.

Objectives for today

- Install and import packages for Python
- Create NumPy arrays
- Execute methods & access attributes of arrays
- Create & manipulate Pandas dataframes
- Introduce the microarray data for today (& a1!)

Python supports modular programming in multiple ways.

Functions and **classes** are examples of tools for low-level modular programming.

Python **modules** are a higher-level modular programming construct, where we can collect related variables, functions and classes in a module.

Modules are often bundled up into packages.

Packages in Python

Python's standard library works for some purposes, but there are many very useful packages for additional purposes:

- **numpy** (http://numpy.scipy.org): numerical Python
- **scipy** (http://www.scipy.org): scientific Python; built on numpy
- matplotlib (http://www.matplotlib.org) graphics library

Installing packages & importing modules

To install packages, use

\$ pip install PACKAGE

We typically won't need to do this in the DataHub, because many packages have been installed into our container. However, you *may* need to do this for local notebook operation.

You can then import modules from the package with

>>> from PACKAGE import MODULE

to see all of the modules available, use

>>> print(dir(MODULE))

Module	Built-In	Description
CSV	Yes	Aids in the reading, writing, and analysis of CSV files.
zipfile	Yes	Aids in the creation and extraction of compressed ZIP archive files.
matplotlib	No	Graphics library for plotting
plotly	No	A graphics library used for creating interactive plots for the web.
seaborn	No	A graphics library built on top of matplotlib with high-quality plots
pandas	No	A data processing library that specializes in data frames, which are analogous to spreadsheets.
scikit-learn	No	Contains basic tools for machine learning (i.e., helping to learn from data and make predictions).
numpy	No	Offers highly efficient data processing.
pygame	No	A game programming library that helps to build interactive, graphical games in Python.
django	No	Web development library that aids in designing websites and web applications.

Objectives for today

- Install and import packages for Python
- Create NumPy arrays
- Execute methods & access attributes of arrays
- Create & manipulate Pandas dataframes
- Introduce the microarray data for today (& a1!)

NumPy is the fundamental package for scientific computing with Python

- A numpy array is a grid of values which are all the same type (they're homogenous)
- Useful attributes:
 - o ndim = # of dimensions
 - shape = a tuple of integers giving the size of the array along each dimension
 - o dtype = type of data

Numpy Arrays

my_array = 1D array

3	2	4	1	
---	---	---	---	--

$$my_array[0] = 3$$

$$my_array.shape = (4,)$$

2D array

3	2	4	1
1	2	5	3

how to index 2D NumPy

arrays

$$my_array[1,3] = 3$$

$$my_array.shape = (2,4)$$

data = [
$$\begin{bmatrix} A, B, C \end{bmatrix}$$
, $\langle 0 \\ D, E, F \end{bmatrix}$, $\langle 1 \\ data[1, 0] = D$ data[1,1] = $\begin{bmatrix} B \\ data[1, 2] = F \end{bmatrix}$
data[2,0] = $\begin{bmatrix} G, H, I \end{bmatrix}$ data[2,2] = $\begin{bmatrix} I, I \\ I, I \end{bmatrix}$

Slicing & indexing NumPy arrays works *almost* the same as with Python lists

However, be aware that if you slice an array, it changes the original array.

If you need to copy, you need to explicitly do:

```
v3 = v[2:4].copy()
```

In this case, we would not change original array (v).

```
In [33]: v = np.random.random((5,4))
Out[33]: array([[0.70782755, 0.1080363, 0.63931318, 0.30594658],
                [0.23089631, 0.58842692, 0.03879193, 0.56396161],
                [0.92250973, 0.54564224, 0.89690301, 0.76679512],
                [0.83668402, 0.18075749, 0.54652922, 0.03487156],
                [0.48236452, 0.77258043, 0.61857768, 0.66614441]])
In [35]: v2 = v[2:4]
         v2
Out[35]: array([[0.92250973, 0.54564224, 0.89690301, 0.76679512],
                [0.83668402, 0.18075749, 0.54652922, 0.03487156]])
In [37]: v2[1,3] = 2
In [38]: v
Out[38]: array([[0.70782755, 0.1080363, 0.63931318, 0.30594658],
                [0.23089631, 0.58842692, 0.03879193, 0.56396161],
                [0.92250973, 0.54564224, 0.89690301, 0.76679512],
                [0.83668402, 0.18075749, 0.54652922, 2.
                [0.48236452, 0.77258043, 0.61857768, 0.66614441]])
```

You can also use lists & Booleans to index NumPy arrays

We can also use this to selectively operate on values in the array that meet our criteria:

Useful NumPy functions

See <u>here</u> for a useful Numpy overview.

Key NumPy takeaways

- Import a library into a program using import libraryname
- Use the NumPy library to work with arrays in Python.
- The expression array.shape gives the shape of an array.
- Use array [x, y] to select a single element from a 2D array.
- Array indices start at 0, not 1.
- Use low: high to specify a slice that includes the indices from low to high-1.
- Use np.mean(array), np.max(array), and np.min(array) to calculate simple statistics.
- Use np.mean(array, axis=0) or np.mean(array, axis=1) to calculate statistics across the specified axis.

Objectives for today

- Install and import packages for Python
- Create NumPy arrays
- Execute methods & access attributes of arrays
- Create & manipulatePandas dataframes
- Introduce the microarray data for today (& a1!)

Pandas is a useful module that creates "data frames"

- great for real-world, heterogeneous data
- similar to Excel spreadsheets (but way faster!)
- "numpy with labels"
- Smartly deals with missing data

Numpy:

	0	1	2
0			
1			
2			

Pandas:

	Height	Weight	Age
Amy			
Brad			
Caroline			

df = the dataframe we are operating on!

Useful Pandas methods

```
df.mean() Returns the mean of all columns
```

```
df.corr() Returns the correlation between columns in a data frame
```

df.count() Returns the number of non-null values in each data frame column

df.max() Returns the highest value in each column

df.min() Returns the lowest value in each column

df.median()Returns the median of each column

df.std() Returns the standard deviation of each column

For more useful functions, see <u>this overview</u>.

Pandas tutor for visualization https://pandastutor.com/

Objectives for today

- Install and import packages for Python
- Create NumPy arrays
- Execute methods & access attributes of arrays
- Create & manipulate
 Pandas dataframes
- Introduce the microarray data for today (& a1!)

Why should we care about the brain's gene expression?

"Characterizing the complete transcriptional architecture of the human brain will provide important information for understanding the impact of genetic disorders on different brain regions and functional circuits.

Furthermore, conservation and divergence in brain function between humans and other species provide **essential information for the understanding of drug action**, which is often poorly conserved across species."

(Hawrylycz et al., 2012)

A few essential reminders

The central dogma: DNA is **transcribed** into mRNA, which is **translated** into protein

- During transcription, a poly(A) tail is added to the mRNA, distinguishing it from other types of RNA that are transcribed
- This poly(A) tail serves as a good way to recognize it with primers.

A few essential reminders (continued)

- Genes are composed of introns and exons
 - Exons remain in mRNA, and ultimately code for amino acids
- Most cells contain the same genes, but show different patterns of transcription, or gene expression
- Genes can have different alleles

genome

coding & non-coding genes

about
20,000-25,000
protein coding
genes in humans,
~3 billion DNA base
pairs

transcriptome

small percentage of genes (~5%) that are transcribed into readouts (**transcripts**)

has different **splices** of genes

proteome

all of the protein translated from mRNA

dynamic & interacting, therefore difficult to study

RNA!= protein

Different ways of measuring gene expression

In situ hybridization

- Probes for DNA or RNA
- Spatial map of gene expression ✓
- Can assay a small number of genes
- Difficult to quantify (<u>Lee et al. 2008</u>)

Microarray

- Probes for DNA or RNA
- Spatial map of gene expression
 - /
- Assay 1000s of genes ✓
- Relative quantification

Gene Symbol	Probe Name	
DISC1	A_23_P62967	
DISC1	A_24_P83787	
DISC1	A 24 P928061	
DISC1	CUST 1334 PI416573500	
DISC1	CUST 1376 PI416379584	
DISC1	CUST_13_PI416558205	
DISC1	CUST_15700_PI416261804	
DISC1	CUST 683 PI416408490	
TSNAX	A 23 P51572	
TSNAX	A_24_P148151	

What do we need to know when working with a dataset?

- Method of data collection
 - Was the data collected ethically?
 - Limitations/benefits of the data collection approach
 - Questions we can/cannot answer with the method
- Best practices for data analysis
- Structure of data set & corresponding metadata

History & Contributions of the Allen Brain Institute

huma

Video describing the acquisition of human microarray data

Summary of the ABA Human Microarray Dataset

- 6 different subjects (5 male, 1 female, ages
 18-68 years)
 - No known neuropsychiatric or neuropathological history
 - o <u>Details here</u>
- ~500 brain regions
- Sequenced with microarray chip

Images: Gryglewski et al. (2018) & Utah Genetics

Overview of process

Post mortem brain donation

MRI scan on full brain http://human.brain-map.org/mri viewers/data

Brain macro- or microsectioned (laser)

Detailed protocol: https://www.protocols.io/view/human-tissue-slicing-and-dissections-for-nuclear-i-7aehibe/abstract Full documentation: https://help.brain-map.org/display/humanbrain/Documentation

DNA Microarray

Extract mRNA from samples Create cDNA (via reverse transcriptase) attached to fluorophore Bind to a <u>microarray chip</u> with Whole Human Genome probe set

Positive controls: Pooled RNA samples from same brain, and other brains

Negative control: nuclease free deionized water (NFdH2O)

Normalize expression across all samples (from one subject)

and later, across batches of experiments.

Images: Agilent

Resources

NumPy

NumPy quickstart — NumPy v1.26 Manual

NumPy: the absolute basics for beginners

Numerical & Scientific Computing with

Python: Introduction into NumPy

Lecture-2-Numpy.ipynb

<u>Analyzing Patient Data – Programming</u>
<u>with Python</u>

Pandas

A Quick Introduction to the "Pandas"

Python Library

10 minutes to pandas — pandas 1.0.5

documentation

Pandas Tutor

Python Data Science with pandas