

Grundbegriffe der Informatik Tutorium 33

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 11.11.2016

Gliederung

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Aussagenlogik

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student kit edu

Aussagenlogik

- Das wars erst mal zu formalen Sprachen.
- Heute ist Freitag.
- Die Menge aller M\u00e4nner dieser Welt ist disjunkt zur Menge aller Frauen dieser Welt.

Das sind alles Aussagen. Aussagen sind entweder wahr oder falsch.

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

Maximilian Staab,
maximilian.staab@fsmi.uniZeumrBeispiel:
Lukas Bach.

lukas.bach@student.kit.edu

A := "Die Straße ist nass."

Aussagenlogik

B := "Es regnet."

Aussagen lassen sich verknüpfen:

- Logisches Und: $A \land B = A$ und B = Die Straße ist nass und es regnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist, dann regnet es.}$
- Arr Äquivalenz: $A \leftrightarrow B = A$ und B sind äquivalent = Die Straße ist genau dann nass, wenn es regnet.
 - $A \leftrightarrow B = (A \to B) \land (B \to A)$, also die Straße ist nass wenn es regnet *und* es regnet wenn die Straße nass ist.

Übung zu Aussagenlogik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

A := "Die Straße ist nass."

Aussagenlogik

■ *B* := "Es regnet."

• $C := \pi$ ist gleich 3."

• Was ist $B \rightarrow C$? "Wenn es regnet, ist π gleich 3."

<i>X</i> ₁	<i>X</i> ₂	$\neg x_1$	$x_1 \wedge x_2$	$x_1 \vee x_2$	$x_1 \rightarrow x_2$
f	f	w	f	f	W
f	w	w	f	W	w
W	f	f	f	w	f
W	w	f	w	W	W

Syntax der Aussagenlogik

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas bach@student kit edu

Aussagenlogik

Menge der Aussagevariablen:

 $Var_{AL} \subseteq \{P_i : i \in \mathbb{N}_0\} \text{ oder } \{P, Q, R, S, \dots\}$

Alphabet der Aussagenlogik:

$$A_{AL} = \{(,),\neg,\wedge,\vee,\rightarrow,\leftrightarrow\} \cup \textit{Var}_{AL}$$

Boolesche Funktionen

Maximilian Staab,
maximilian staab@fsmi.uni-karlsruhe.de.

maximilian.staab@fsmi.uni-karIsruhe.d Lukas Bach.

lukas.bach@student.kit.edu

Aussagenlogik

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f: \mathbb{B}^n \to \mathbb{B}$ mit $\mathbb{B} = \{w, f\}$.

Typische Boolsche Funktionen: $b_{\neg}(x) = \neg x$, $b_{\lor}(x_1, x_2) = x_1 \lor x_2 \ldots$

Interpretationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.

Interpretation

Aussagenlogik

Eine Interpretation ist eine Abbildung $I:V\to\mathbb{B}$, die einer Variablenmenge eine "Interpretation", also wahr oder falsch zuordnet.

Weiter legt man $val_I(F)$ als Auswertung einer aussagenlogischer Formel F fest.

$$val_{I}(X) = I(X)$$

 $val_{I}(\neg G) = b_{\neg}(val_{I}(G))$
 $val_{I}(G \wedge H) = b_{\wedge}(val_{I}(G), val_{I}(H))$
 $val_{I}(G \vee H) = b_{\vee}(val_{I}(G), val_{I}(H))$
 $val_{I}(G \rightarrow H) = b_{\rightarrow}(val_{I}(G), val_{I}(H))$

Übung zu Interpretationen

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach@student kit edu

- Wie viele Interpretationen gibt es bei k = 1, 2, 3 Variablen?
- Wie viele Interpretationen gibt es bei k+1 Variablen im Vergleich zu k Variablen?

Übung zur Aussagenlogik

Maximilian Staab, Sei A := w, B := w, C := f.

maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach,

Lukas Bach, lukas bach@student.kit.edu Ist $(A \land B) \lor \neg C$ wahr oder falsch?

$$(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$$
, die Aussage ist also wahr.

Aussagenlogik

■ Ist $\neg(A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg(A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Aussagen Äquivalenz

Erinnerung: $A \leftrightarrow B$ heißt: $A \rightarrow B \land B \rightarrow A$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann: A ist genau dann wahr, wenn B wahr ist.

■ $\neg (A \lor A)$ ist genau dann wahr, wenn $\neg A$ wahr ist, also gilt: $\neg (A \lor A) \leftrightarrow \neg A$.

Mehr zu Äquivalenz

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Alternative Definition zu Äquivalenz

Aussagenlogik

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_I(G) = val_I(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

- Man schreibt $G \equiv H$
- $\blacksquare \mathbb{B}^V \to \mathbb{B} : I \mapsto val_I(G)$

Beispiele

 $(\neg(\neg P))$ ist äquivalent zu P $(\neg(P \land Q))$ ist äquivalent zu $((\neg P) \lor (\neg Q))$

Beispiele zu Äquivalenz

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
 - Die Vereinigung zweier Mengen A und B hat die Kardinalität $|A| + |B| \leftrightarrow A \cap B = \emptyset \leftrightarrow A$ und B sind disjunkt.
- p ist eine rationale Zahl $\leftrightarrow p$ lässt sich darstellen als $p = \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{N} \leftrightarrow p \in \mathbb{Q}$.

Wahrheitstabellen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

$$\bullet (((P \to Q) \lor Q) \to (P \land \neg Q))$$

Р	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \land \neg Q)$
W	w	W	W	f	f
W	f	f	f	W	w
f	w	f	W	f	f
f	f	f	f	W	f

Übungen zu Aussagenlogik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aussagenlogik

Übungen zu Aussagenlogik

- Schreibe Wahrheitstabellen zu den Formeln um den Wahrheitsgehalt festzustellen.
 - $\neg (P \land Q) \land \neg (Q \land P)$
 - $(P \land Q \land R) \leftrightarrow (\neg P \lor Q)$
 - $\bullet (A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$
 - Welche dieser Aussagen sind wahr?
 - $\neg (P \land Q) = \neg P \lor \neg Q$
 - $P \land P = P \lor P$
 - $(P \lor Q) \land R = (P \land R) \lor (Q \land R)$

Wahrheitstabellen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Aussagenlogik

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	A o B	$A \leftrightarrow B$
W	w	f	W	W	W	W
w	f	f	f	w	f	f
f	w	w	f	w	W	f
f	f	w	f	f	W	w

Aufgabe

Finde einen logischen Ausdruck in A und B unter Verwendung von \land, \lor und \neg , der die Aussage "Entweder A oder B" repräsentiert

Wahrheitstabellen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.e

Aufgabe

Aussagenlogik

Finde einen logischen Ausdruck in A und B unter Verwendung von \land, \lor und \neg , der die Aussage "Entweder A oder B" repräsentiert

Lösung

Α	В	$A \wedge \neg B$	$\neg A \wedge B$	$(A \land \neg B) \lor (\neg A \land B)$
W	W	f	f	f
W	f	w	f	W
f	w	f	w	W
f	f	f	f	f

Weitere Begriffe

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Tautologie

Aussagenlogik

Die Formel *G* ist eine Tautologie (oder allgemeingültig), wenn *G* für alle Interpretationen wahr ist.

Erfüllbarkeit

Eine Formel *G* ist erfüllbar, wenn sie für mindestens eine Interpretation wahr ist.

Lemma

Wenn $G \equiv H$ ist, dann ist $G \leftrightarrow H$ eine Tautologie.

Übung zu Tautologien

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Aussagenlogik

Sind das Tautologien?

$$lacksquare (G
ightarrow (H
ightarrow K))
ightarrow ((G
ightarrow H)
ightarrow (G
ightarrow K))$$
 Ja

$$(\neg P \to Q) \land R \lor P \quad \text{Nein}$$

$$lacksquare$$
 $G o (H o G)$ Ja

$$\bullet (\neg P \to \neg Q) \to ((\neg P \to Q) \to P) \quad \mathsf{Ja}$$

Übung zu Erfüllbarkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Aussagenlogik

Sind die folgenden Ausdrücke erfüllbar?

$$\neg (A \lor \neg A)$$
 nein

•
$$(P \land \neg Q) \lor (\neg P \land R)$$
 Ja

Informationen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit

Aussagenlogik

Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul