MAPAS HIPSOMÉTRICOS E CURVAS DE NÍVEL A PARTIR DE IMAGENS SRTM

1. Introdução

Em ambientes GIS as imagens SRTM podem ser usadas para gerar curvas de nível, mapas hipsométricos, mapas de relevo sombreado, mapas de declividade, entre outros.

Para os exemplos a seguir, utilizaremos a imagem GeoTiff com dados de Altimetria SRTM "SD-23-Y-C" baixada do site da EMBRAPA e disponível no site do curso.

2. Carregando imagens SRTM e gerando Mapas Hipsométricos

- 1. Entrar no QGIS.
- 2. Carregar a imagem SRTM (LAT/LONG WGS84 EPSG:4326)). Efetuar ajuste de contraste, se necessário.

- 3. Para melhorar a visualização, podemos transformar a imagem "Banda simples cinza" para "Banda simples falsa-cor":
 - dar um duplo clique sobre o nome da camada para abrir a janela de propriedades;
 - escolher a aba "Estilo";
 - trocar o tipo de renderização para "Banda simples falsa-cor";
 - escolher Modo, Classes e limites Mín e Máx;
 - clicar no botão "Classificar" e depois em "OK".

3. Ajustando a Projeção da imagem SRTM e Recortando a Área de Interesse

3.1. Alterando a Projeção LONGLAT para UTM

Para gerar curvas de nível, é necessário converter a imagem SRTM de Coordenadas Geográficas (Latitude, Longitude e Altitude) para Coordenadas UTM (X,Y,Z)

- 1. No menu "Raster", opção "Projeções", selecionar "Deformar (Reprojeção)...".
- 2. Escolher o nome do arquivo de entrada "SD-23-Y-C.tif" e de saída "UTM.tif".
- 3. Escolher o SRC fonte (EPSG:4326) e o SRC alvo SIRGAS 2000 / UTM zone 22S (EPSG:31982).
- 4. Clicar em "OK".

5. Se necessário, melhorar o contraste da imagem na janela de Propriedades, aba Estilo.

- 6. Alterar o EPSG do projeto para 31982. Clicar com o botão direito do mouse na camada UTM e escolher a opção "Definir o SRC do Projeto a partir da camada".
- 7. Remover a camada "SD-23-Y-C" que não será mais utilizada.

3.2. Recortando a imagem SRTM

1. Cortar apenas a porção da imagem de interesse usando a ferramenta "Cortador" do menu "Raster", opção "Extração". **Importante**: selecione através de um retângulo a área escolhida, sem sair de cima da imagem original. **Sugestão**: neste tutorial, selecione uma parte bem pequena para que os próximos procedimentos não fiquem muito lentos.

2. Remover a camada UTM que não será mais utilizada.

4. Extraindo curvas de nível da imagem SRTM

- 1. Abrir um novo projeto no QGIS e carregar a imagem Corte.tif que está em UTM.
- 2. No menu "Raster", opção "Extração", escolher "Contorno".
- 3. Escolher o nome do arquivo de entrada "Corte.tif", do arquivo de saída "Curvas.shp" e o intervalo entre as curvas de 10 metros.
- 4. Escolher o nome do atributo da tabela que irá armazenar as informações de altimetria (Cota).

- 5. Veja na Tabela de Atributos a coluna "Cota" com os dados de altimetria de cada curva.
- 6. Para colocar rótulo nas curvas de nível, entre na janela de Propriedades, selecione a aba "Rótulos" e escolha rotular a camada com o atributo "Cota".

7. Sobrepondo as curvas de nível a uma camada do OpenLayers, podemos ver algumas incoerências como, por exemplo, o nível do lago que varia entre 1000m e 1040m. A precisão dos mapas de altimetria SRTM não é muito boa, devido ao modo de aquisição e à baixa resolução. Portanto, deve ser utilizadas apenas para estudos preliminares.

8. Note que o Openlayers altera o SRC do Projeto. Se quiser, retorne para 31982.

5. Perfil de Elevação

O plugin "Profile Tool – Terrain Profile" permite a geração de perfis de elevação através de cortes no terreno.

- 1. Instalar o plugin "Profile Tool" através do menu "Complementos" opção "Gerenciar e instalar complementos...".
- 2. Abrir um novo projeto no QGIS e carregar a imagem Corte.tif.
- 3. Selecione a camada "Corte" e ative a ferramenta "Terrain Profile" do plugin "Profile Tool" através do menu "Complementos".
- 4. Desenhe sobre a imagem a linha que define o corte do terreno. Utilize um clique do mouse para iniciar o traçado e um duplo clique para finalizar.

4. Também existe a opção de traçar um polígono. Utilize cliques para definir os pontos e um duplo clique para finalizar.

6. Visualização 3D

Através do menu "Processar", opção "Caixa de Ferramentas", temos acesso à ambientes GIS externos como o GRASS, SAGA, ORFEO e outros. O GRASS GIS possui uma ferramenta (nviz) que permite visualizar uma superfície SRTM em 3D.

- 1. Abrir um novo projeto no QGIS e carregar a imagem Corte.tif.
- 2. Através do menu "Processar", abrir a "Caixa de Ferramentas".
- 3. Na parte inferior da caixa de ferramentas, mudar de "Simplified interface" para "Advanced interface".
- 4. Em "Comandos GRASS", "Visualization", selecionar a ferramenta "nviz" com um duplo clique.

4. Na opção "Arquivo Raster para elevação", clicar no botão à direita, selecionar a camada "Corte" e clicar em "OK".

5. Clicar em "Run".

6. Ajustar as opções de visualização no painel à esquerda.