Cuestiones 2.

- 1. En el caso de una curva parametrizada regular $d: I \to IR^3$ d'existe siempre exte) como en el caso de las curvas parametrizadas de IR^2 ?
- 2. Dada $\alpha: I \to \mathbb{R}^3$ parametrizada por el arco den que se traduce para $\alpha''(t)$ el hecho de suponer $\{\alpha'(t), \alpha''(t)\}$ linealmente independiente?
- 3. d'Puedes dar un ejemplo de una curva parametrizada regular $\alpha: I \to \mathbb{R}^3$ para la que no se pueda construir el triedro de Frenet en ningún $t \in I$?
- 4. El hecho de que e'ilt) no dependa de ei(t), t=1,2,3 de donde se deduce?
- 5. d'Puede depender e', (t) de e3 (t)? d'Puede depender e'3 (t) de e, (t)?
- 6. d Como se deduce que a32(t)+a23(t)=0?
- 7. à Qué propiedad tiene la curvatura de ma curva parametrizada regular en R³ que mo tiene la curvatura de ma curva parametrizada regular en R³?
- 8. Si $\alpha: I \to \mathbb{R}^3$ es una auro parametrizada regular de manera que $\{\alpha'(t), \alpha''(t)\}$ es linealmente independiente para todo $t \in I$ y $\phi: J \to I$ es un difeomorfismo d'Se cumple siempre que $\{\beta'(s), \beta''(s)\}$ es linealmente independiente, para todo s, siendo $\beta(s):=\alpha(\phi(s))$?

9. d'Qué interpretación geométrica tiene que $\tau_{\alpha}=0$? 10. Da un ejemplo de una curva en \mathbb{R}^3 que tenga curvatura constante.

11. Supergamos $\alpha: I \to \mathbb{R}^3$ cura paracultizada regular con $\{d'(t), d''(t)\}$ linealmente independiente para todo t y que cumpla $\alpha(I) \subset \mathcal{T}$, para en cierto plano afin \mathcal{T} de \mathbb{R}^3 . Dotemos a \mathcal{T} de ena orientación y consideremos la curvatura de α como curva plana $\mathcal{K}^{\mathcal{T}}_{\alpha}$. É Qué relación hay entre $\mathcal{K}^{\mathcal{T}}_{\alpha}$ y $\mathcal{K}^{\mathcal{T}}_{\alpha}$?

12. ¿Es posible encontrar $\mathcal{T}_{1},\mathcal{T}_{2}: I \to \mathbb{R}^3$ de manera que $\mathcal{K}_{1} = \mathcal{T}_{2}$ y $\mathcal{T}_{2} = \mathcal{K}_{2}$?