1 Epipolar geometry

Figure 1: All points X_1, X_2, \dots, X_L lie on the same epipolar line in the right view

Epipolar geometry is used in stereo vision to limit the searching space when looking for matching points in both images. A point X in 3D space is seen in image A as a point x, which is on the line between camera A's focal point and point X. This line is seen by camera B as a line. This is called an *epipolar line*. Given both the cameras internal and external matrices and a point x_A we can generate an epipolar line corresponding to this point in image B. This constrains the search space to this 1D line.

The points called e_L and e_R in figure 1 are called the *epipolar points* of both images. Epipolar lines rotate around the epipolar point of a given image.

2 Rectification

As we have seen in section 1, we can constrain the search space to a 1D line. However due to the nature computers store images, it would be very convenient if these epipolar lines were parallel to the horizontal scanlines. This is done by a process called rectification. This process transforms both images so that the epipolar lines of the images align horizontally. For this, we need a matrix that relates the two cameras. This matrix is called the $fundamental\ matrix$ or $bifocal\ tensor$ and is denoted by the symbol F.

2.1 Fundamental matrix

Given a point x in image A, Fx describes the epipolar line in image B on which the corresponding point x' must lie. This means that F has to satisfy the equation

$$x'^T F x = 0$$

for all corresponding points x and x'. Given enough corresponding points, we can solve this equation linearly. The more points available, the more accurate this fundamental matrix becomes.¹

2.2 Chessboard points

The corresponding points necessary for generating the fundamental matrix is obtained by making multiple pictures of a chessboard in the environment. The OpenCV toolkit has a builtin function to recognize the corners of a chessboard. In this project we will not elaborate on that subject.

¹That is, if the corresponding points are accurate as well.