Security in Distributed Systems

Security in Distributed Systems

Objectives

- To understand why security is crucial in distributed systems
- To learn about major security mechanisms

Topics

- Security statistics, IT systems, and security concerns
- Major terminology
 - Vulnerability, trust, and risk
- Prevention and policies in security areas
- Attacks and damage
 - Classifications of threats and attacks
- Major security pillars and examples
 - Authentication, authorization, en-/decryption
- Identities and one-time passwords

Cybersecurity Statistics as of 2021

- □ 2007: Hackers attack

 every 39 s, on average 2,244 times a day
- 2018: 62% of businesses experienced phishing and social engineering attacks
- □ 2019: Data breaches exposed 4.1 billion records
- 52% of breaches featured hacking, 28% involved malware, 33% included phishing or social engineering
- 2020: Estimated number of passwords used by humans/machines worldwide will be at 300 Billion
- 2022: Worldwide spending on cybersecurity countermeasures to reach \$133.7 Billion USD

IT System's Status Today

- Current status on interconnection and penetration:
 - Distributed Systems (DS) (Verteiltes System)
- (Vernetzung und Durchdringung)
- Globalization of information/communication: IT of daily life!
- Cooperation across boundaries: e-mail, e-commerce, conferencing, data exchange, ...
- Critical dependencies of such applications!
- Current status on complexity:
 - #System components increases
 - Components interact beyond linear schemes
 - Software engineering crisis reliability, testing, interfacing
- Current status on time:
 - Time-to-market extremely short!

IT: Information Technology

Security for Distributed Systems

- Communication networks (enabler for distribution)
 - Telecommunication networks
 - Closed networks with open standards, but maintained centrally
 - Internet
 - Open networks maintained in a decentralized, but closed manner
- Applications
 - Stand-alone (e.g., word processing, compiler, or "Tetris")
 - Networked and distributed (e.g., Web, e-mail, or banking IT)
- Concern and consequence

IT: Information Technology

- Distributed applications vulnerable due to their distribution
- Security mechanisms are inevitable for any distributed system, including all components and communication networks

Security – Quantification

Quantification of security in IT systems

- Violability (Verletzlichkeit) determines risks (Risiko) taken
 - What can go wrong will go wrong

Resulting

- Problems: Information security, attacks, damages, ...
- Counter-measures: Cryptography, authorization, trust, ...

(Gegenmaßnahmen: Kryptographie, Authorisation, Vertrauen ...)

Vulnerability, Threat, and Risk

Vulnerability

A quality or characteristic of a system that provides an opportunity for misuse.

Threat

 Any potentially malicious or otherwise occurrence that can have an undesirable effect on the assets and resources of an IT system.

□ Risk

= Threat X Vulnerabilities *OR* Likelihood X Impact

IT Security defines a process of risk management, supported by a set of suitable technical measures!

Security Areas (1)

- Organizational Security (OS)
 - Trusted Third Party (TTP)
 - Certification Authority (CA)
 - Access rights (who will be enabled to do what)
 - Key management (distribution of keys)

- Security services, mechanisms, algorithms, ...
- User Behavior (UB)
 - Passwords, internal- and external attacks, ...
- Information Security/Information System Security (IS)
 - Effect on content, procedure, or system

Security Areas (2)

- Severe (security-concern related) issues and problems
 - How to achieve OS?
 - Whom to trust? Government, company, individual, ...
 - Who certifies? Government, company, individual, ...
 - Who assigns rights with which knowledge?
 - Who controls the key management? Where to store keys?
 - Are key pairs always private? Evalon and back doors ...
 - How to ensure TS?
 - Cf. partly this lecture
 - How to control, check, guide UB?
 - Openness on algorithms and schemes, protocols or systems
 - Security by obscurity
 - Security models and public information

Prevention: Security and Safety

Security: Sicherheit

Safety: Schutz von Leib und Leben

Security measures address red area. Safety measures address blue area.

(Sicherheitsmaßnahme/ Schutzmaßnahme)

Security and safety will **never** be achievable with a 100% guarantee!

Prevention: Security Policies and Models

Security policy

- A statement of what is and what is not allowed
- Axiomatic (formal) or lists of allowed/forbidden actions
 Orthogonal policies may create security vulnerabilities!
- Security models
 - The formulation of a security policy which governs all entities and which rules to constitute them
 - Representation of a particular policy or set of policies
 - Describing (if possible formally) and documenting policies
 - Testing policies for completeness and consistency
 - Supporting the concept and design phase of an implementation
 - Checking if the resulting implementation meets all requirements

Attacks and Damage

Attacks

Aggressive, violent act against a person, system (component)

Damage

Physical harm impairing value, usefulness, or normal function

Cyber attacks

 Sabotaging control of industrial security systems, causing substantial physical damage and business interruption

IT damages

- Utilities: telecommunications, oil, gas, energy interruptions
- Privacy breaches
- Consumer data losses,
- Service, data of any industry with industrial control systems

IT Attacks and Damage Examples (1)

Estimation of damage

- Melissa (1999): Word 97/2000
 - 300,000,000 US\$ with 150,000 systems infected for about 4 days
- ILOVEYOU (2000): Outlook
 - 10,000,000,000 US\$ with 500,000 systems infected for 24 hours
- SQL Slammer (2003): Databases
 - Exploits" buffer overflow of UDP Port 1434
 - 1st min: duplication of population all 8.5 s
 - From 3rd min: slower duplication due to network capacity
 - All 10 min: about 90% of all susceptible hosts infected
- Stuxnet (2010)
 - Worm attacking Supervisory Control and Data Acquisition (SCADA)
 - Explicitly programmed for a Siemens control technology (Simatic-S7), addressing a particular industry

IT Attacks and Damage Examples (2)

- Targeted attacks (2013) at one company did cost up to \$2.4
 Million USD in damages per attack/incident
- WannaCry ransomware attack (2017)
 - Ransomware crypto-worm, targeting Windows machines
 - Encrypting data and demanding ransom payments
 - Infected more than 230,000 computers in over 150 countries
- DDoS attack (2018)
 - Targeted GitHub (online code management service)
 - At peaks incoming traffic at a rate of 1.3 Tbit/s
 - Sending packets at a rate of 126.9 Million/s
- DDoS attack (2019)

https://www.thesslstore.com/blog/largest-ddos-attack-in-history/

- Unnamed client of Imperva experiencing 500 ... 580 Million packets/s
- Attacking network/website with packets of 800 to 900 Byte length each

Data Transfer/Service Provisioning Attacks

One possible passive attack

TCP: Transmission Control Protocol

- Eavesdropping only, no change of data
- Threat for confidentiality
- Multiple possible active attacks
 - Changing, deletion, insertion
 - Threat for confidentiality, integrity, authenticity
- Denial-of-Service (DoS) attacks

- SYN flooding by sending TCP-SYN messages to TCP Server
- Distributed Denial-of-Service attacks (DDoS)
 - Sources of attack at millions of different nodes

Technical Leaks: Buffer Overflow (1)

- Major security risks in current software
 - Targeted at von-Neumann Architecture
- Data are stored/written into main memory of a machine, which are too large for this memory segment
 - Effects:
 - "Wrong" data areas are overwritten
 - Program crash
 - Corruption of application data
 - Change of run-time data
 - Exploit: run-time data contains the return address of a procedure, thus, code transferred in an attacking packet may be executed with similar privileges as the process attacked

Technical Leaks: Buffer Overflow (2)

Copy 1st element

Copy 2nd element

Copy 3rd element

Further Threats and Countermeasures

Packet Snooper

Reading of packet content (data) → Encryption

Packet Sniffer

 Reading of source and destination addresses (protocol header) → Encapsulation of packet and encryption

Session Hijacking

 Session with multiple messages between two parties, a third party may gain control of this session → Authentication

Data Tempering

 Similar to session hijacking, however, only a part of the data transfer will be intercepted → Authentication and encryption

Threats and Attacks Classification

Major 7 Security Pillars (1)

- □ Authentication (Authentifizierung/Authentifikation)
 - Authentication ensures that partners involved in communications can prove that the peer is that it claims to be
- Authorization (Autorisierung)
 - Authorization ensures that a partner with a known ID is enabled to utilize a service
- □ Integrity (Unversehrtheit, Fälschungssicherheit)
 - Integrity provides protection against the modification of a message along a transmission path
- □ Privacy (Privatheit)
 - Privacy defines the degree of publication of personal information and data

Major 7 Security Pillars (2)

Confidentiality (Vertraulichkeit)

- Confidentiality protects transmitted data against
 eavesdroppers in a communication channel ensuring that
 only an authorized receiver can interpret the message
 received
- □ Non-repudiation (Nicht-Zurückweisbarkeit/Nicht-Abstreitbarkeit)
 - Non-repudiation provides that neither the sender nor the receiver can deny that a communication has taken place
- □ Anti-replay protection (Schutz gegen Wiedereinspielung)
 - Anti-replay protection protects a receiver from the duplicated reception of a previously obtained and already authenticated message

Authentication (1)

- Mechanisms to prove that the peer that it claims to be is the peer
 - Ownership (Besitz)
 - E.g., smart card, physical device
 - Knowledge (Wissen)
 - E.g., password, account
 - Biometrics (Körperliche Merkmale)
 - E.g., finger print, iris scan
 - Location or context
 - E.g., being a well-known person at a certain place for a certain reason
 - Proficiency (Können)
 - *E.g.*, signing

Authentication (2)

- □ Hash function (Message Digest Code, MDC)
 - Message M (arbitrarily long) → Hash H(M) (minimum of 128 bit length)
 - Note: "One-way" feature of function
 - Efficient generation
 - Very low collision possibility: M, M' with H(M)=H(M')
 - Examples: (MD5), SHA-256, RIPEMD-160
- Cryptographic hash function (Message Authentication Code, MAC)
 - Message M, key K → Hash H(M, K)
 - May be constructed out of MDC
 - HMAC (RFC 2104), e.g., HMAC-MD5

Authentication (3)

- Authentication and integrity of packets
 - Adding of a Sequence Number (SN) to ensure order (re-use)
 - Securing against replay attacks by time stamps (synchronized clocks) or challenge-response mechanisms utilizing random numbers
 - Adding of MAC (Message Authentication Code) or signature, calculated from data, SN, key
- Authentication of systems or users
 - Application of non-cryptographic mechanisms
 - Username and password, biometric approaches (finger print, iris)
 - Application of cryptographic mechanisms
 - Login messages with MAC and signature or PKI, use-only-once
 PKI: Public Key Infrastructure

Multi-factor Authentication

□ 2-factor case

- Increasing the level of security
- Combination of two different authentication schemes
 - Bank card and PIN (Personal Identification Number)
 - Credit card and signature
 - PIN and fingerprint
 - (Weak example: username and password)

□ 3-factor case

- Achieves "highest" degree of security
 - Username and password and fingerprint
 - Username and password and SecureID token (SmartCard)

AAA

- AAA (Authentication, Authorization, and Accounting)
 important for effective network management/security
 - Access of network via Network Access Server (NAS),
 Communication, Remote Access, or Terminal Servers
 - Provisioning at the point of network entry, e.g., dial-in users
 - Control who is allowed to connect to the network ("First A")
 - Control what users are allowed to do ("Second A")
 - Accounting of utilized resources ("Third A") for monitoring, charging (monetary/incentives), and billing
 - At the access point (NAS: Network Access Server)
 - Within the network
 - Along communication paths

Example – SWITCH's AAI Federation

Authentication and Authorization Infrastructure (AAI)

- To simplify inter-organizational access to Web resources
- AAI applies the concept of Federated Identity Management
 - Shibboleth-based
- Deployed by most Swiss universities
- Single login
- □ Characteristics as of August 2014:
 - Close to 400.000 AAI-enabled accounts
 - More than 55 Home Organizations
 - More than 800 Web resources handled

VHO: Virtual Home Organization

Situation with an AAI

- No user registration and user data maintenance at resource needed
- Single login process for the users
- Many new resources available for the users
- Enlarged user communities for resources
- Authorization independent of location
 - Efficient implementation of inter-institutional access

User Administration
Authentication

Authorization

Resource

Authorization (1)

- Exact definition of
 - Access to services
 - Access to resources
 - Possibility to view database entries
 - Option to change files
 - **—** ...
- Authorization is highly application-dependent
 - Network: e.g., access to a WLAN-based Internet connectivity
 - System: e.g., access to files in an operating system
- Means and mechanisms vary
 - Access control matrices

WLAN: Wireless Local Area Network

Authorization (2) and Protection

- Protection (Zugriffsschutz)
 - Mechanisms to ensure the access rights onto resources by programs, processes, and users
- Definition of access rules by policies
- Protection Domains (D) define a set of objects (O) and its access rights (in"{ }")
 - Domain may be equaling a user, a process, a procedure, ...
- Examples
 - Process in D₂ is able to access O₂ in write mode
 - <O₄, {print}> is separately accessible by D₂ and D₃

$$O_1$$
, {read, write}> O_2 , {execute}> O_2 , {execute}> O_3 , {read, write}> O_3 , {read}>

Protection Domains in Operating Systems

- Operating systems: Unix, Windows, MacOS X, ...
 - Protections required for multiple users, processes, threads
- □ Domain = User
- Change of the domain
 - Temporal change of the userID
- Support by a file system
 - ID of owner and domain bit (setuid bit) are associated with the file.
 - setuid bit = off: Execute the file with the userID
 - setuid bit = on: Execute the file with the ID of the file owner

Authorization (3) and Access Control Matrix

- Owner is allowed to change access rights (column) for other domains
- Change of a domain controlled by "switch", e.g., process executed in D₂ may change to D₃ or D₄
- "control" allows for the administration of access rights within a domain, e.g., process in D₂ may change D₄
- A single column defines an Access Control List (ACL)
- Support of user groups highly useful

F: File

D: Domain

P: Printer

	F ₁	F ₂	F ₃	Ρ	D ₁	D_2	D_3	D_4
D ₁	r		r			S		
D_2				р			S	S C
D_3		r o	r	е				
D ₄	rw O		rw O		S			

r: read

w: write

o: owner

s: switch

p: print

c: control

e: execute

Authorization (4) – Access Control

- Based on applications: Model of access rights (AR)
 - Examples: Unix/NT file system AR, SNMP objects AR
- Based on network/transport layer: Firewalls
 - Packet filter based on source/destination address and ports (TCP/UDP)
 - Topology-driven ingress/egress filtering
 - Gateways with access control and logging
 - Use of private IP addresses and address translations (NAT)

Firewalling Mechanisms

- Based on network/transport layer
 - Packet filter based on
 - Analysis of incoming and outgoing packets
 - Source/destination address and ports (TCP/UDP)
 - Valid and fire-walled data maintained in an access list
 - Incoming: deny *.*.*.*, 23 blocks telnet
 - Outgoing: permit 137.193.*.*, 80 enables http for hosts IP=137.193.x.y
 - Example: Firewalls located in routers
 - Filtering based on IP address and port number: *e.g.*, port 80 packets will stop the access to a WWW server hidden behind the firewall
- Most secure solution
 - Physical separation of internal and external hosts

IP: Internet Protocol

TCP: Transmission Control Protocol

UDP: User Datagram Protocol

WWW: World-wide Web

Encryption and Decryption

- □ En-/Decoding (En-/Decryption) (Verschlüsselung/Entschlüsselung)
 - of data to ensure confidentiality and privacy
 - Encoding of plain text
 - Only possible with the knowledge of a key (the "secret")
 - Easy to do and fast to process
 - Decoding of cipher text (encrypted data)
 - Only successful with the right key
 - Extremely large, dedicated, and specific calculation effort, iff the key is not known (attack situation only), otherwise easy and fast to process
 - Respective algorithms
 - In the past, based on alphabet shifts (Cesar's Shiffre)
 - More elaborate schemes applied today
 - Provides for confidentiality, integrity, and partially privacy

Cryptography

Cryptographic Variants

- Symmetric cryptography
 - Entities own a shared,
 secret key

- Advantages
 - Small overhead/calculation
 - Short keys
- Drawbacks
 - Key exchange complicated

- Asymmetric cryptography (public key cryptography)
 - Key pair of private/public parts

- Advantages
 - Public keys easy to publish
- Drawbacks
 - Longer keys
 - Larger overhead/calculation

Symmetric Encryption

Symmetric encryption

- Current minimum key length 80 or better 128 bit
- Secure algorithms: 3DES (Digital Encryption Standard), IDEA

Operation

- Block cipher with 64 bit blocks
- Electronic Code-book (ECB)
 - Block-wise encryption
 - Attacker may interchange blocks
- Cipher Block Chaining (CBC)
 - "More" secure: every block is dependent on preceding block
- Byte-wise encryption

Asymmetric Encryption

- Asymmetric encryption (Public Key Encryption)
 - Encryption easy and publicly accessible to everyone
 - Decryption difficult for everyone except the intended recipient
 - Current minimum key length 1024 bit (309 decimal digits)
 - Secure algorithms: RSA (Rivest-Shamir-Adelman), ElGamal
- Practical encryption: Hybrid approaches
 - First: User authentication and exchange of a session key,
 public-key-based (in a non hybrid version: symmetric)
 - Second: Symmetric encryption of user data by session key and further authentication required with session key
 - Note: Longer sessions should change session key on a periodical basis, e.g., once per 30 min or 1 hour

Asymmetric Schemes and Signatures

□ Cf. CECN class as of Fall Term 2019

- Public key encryption
 - Examples
 - RSA principle with trap door function
 - Example calculation based on prime numbers
 - Principle of prime number factorization
 - Theory vs. practice
- Application of asymmetric schemes
 - Signatures and Certificates
 - Digital signature
 - Certification of the association between public key and "individual"

Identities in an Electronic World

Host identity

- Related to a network: per-layer naming conventions
- Hostname, Internet Protocol (IP) address, Medium Access
 Control (MAC) address ("Ethernet Address")
- Uniform Resource Locator (URL) for web pages
- Maintained in distributed data bases with respective mappings
- Spoofing possible, mapping mechanisms are not secure
- Identifiers (ID) represent a formal description:
 - IDs may be dynamic (DHCP) or static (fixed IP address)
 - IDs may be local (MAC address) or global (IP address, URL)
- How to identify an "individual" uniquely, non-reputably?

One-time Passwords – Example (1)

- One-time passwords (OTP) are generated by a continuous hashing of an initial password
 - Remember: A cryptographic hash function H is a "one way" function!
- □ Alice starts with s = "hello" and applies H = "SHA-1"
 - f(s)=f572d396fae9206628714fb2ce00f72e94f2258f
 - f(f(s)) = 532879bf0a70126eb698cc6aeab1792be32b9270
 - f(f(f(s))) = dec69a5f76bbe15a2fc574d0ae7edabcc5cb4ab9
 - f(f(f(s)))=d128cbe9c3f1370f93f005b81ebcfeb2bc9806c6
- □ Finally, Alice and Bob share f(f(f(f(s))))
 - 1st password f(f(f(s))), 2nd password f(f(s)), 3rd password ...

One-time Passwords – Example (2)

□ Alice

has f(f(f(s))),f(f(s)),f(f(s)),f(s),s

sends f(f(f(s)))

dec69a5f76bbe15a2fc574d0ae7edabcc5cb4ab9

Next time she

sends f(f(s))

532879bf0a70126eb698cc6aeab1792be32b9270

Bob

has y=f(f(f(f(s))))

d128cbe9c3f1370f93f005b81ebcfeb2bc9806c6

receives x=f(f(f(s)))

dec69a5f76bbe15a2fc574d0ae7edabcc5cb4ab9

Bob checks if $f(x) \leftrightarrow y$, password

OK: y=f(f(f(s)))

Bob receives x=f(f(s))

532879bf0a70126eb698cc6aeab1792be32b9270

Bob checks if $f(x) \leftrightarrow y$, password

OK: y=f(f(s))

One-time Passwords – Example (3)

- Bob easily checks, if the next password has been used
 - A cryptographic has function has been applied!
 - $f(s) \rightarrow f(f(s))$ simple calculation
 - $f(f(s)) \rightarrow f(s)$ very, very difficult calculation.
 - Eavesdropping on f(f(s)) does not help, since he/she cannot derive the next password from this information!
- Holding a OTP leads to a possible authentication, which can lead to a verification of a certificate, thus, an identification of an "individual" (a person or machine)
 - Only an "indirect" identification, possibly reputable