Nick Rozanski Eoin Woods Chris Cooper-Bland

Number 2 in an occasional series

Agenda

Agenda

- Introduction to Big Data (15 minutes)
- Exercise 1: Hadoop (60 minutes)
- Exercise 2: Spark (30 minutes)
- Exercise 3: Hive (45 minutes)

Introduction to Big Data

History and Background

The Origins of Big Data

The Three V's

- First proposed by META Group analyst Doug Laney in 2001 (https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf)
- Driven by the (then) looming growth in e-commerce and the strain this would impose on computer systems

Volume

The increase in depth and breadth of data

Velocity

The speed at which data needs to be made available for use

Variety

- Problems caused by incompatible data formats, non-aligned data structures and inconsistent data semantics
- Subsequent analysts have added additional V's such as Variability and Veracity (data quality)

The MapReduce Algorithm

MapReduce

- Paper published by Google in 2004 (http://research.google.com/archive/mapreduce.html)
- Describes how they rewrote their production indexing system using MapReduce

 Provides automatic parallelization and distribution, fault-tolerance, I/O scheduling and status monitoring

Map Reduce Steps

- Map step: master breaks up query and distributes portions across a massive number of computers
- Reduce step: results collated and returned to requestor

Benchmark

scan 10 billion 100-byte records to extract records matching a rare pattern (92K matching records); once started up 1800 machines read 1 TB of data at peak of ~31 GB/s

Today's Big Data Landscape

All Big Data tools are required by EU Law to have ridiculous names

- Sqoop
- Oozie
- Pig
- Impala
- Flume
- Parquet

A Simple Big Data Stack

Hadoop

- scalable file storage
- batch execution

Spark

 scaleable interactive and streaming execution

Hive

- relational abstraction
- data warehousing

Hadoop, Spark and Hive

Hadoop

- Doug Cutting and others started working on a web crawler called Nutch in 2002
- This eventually morphed into Hadoop and was adopted by Yahoo! in 2006
- It became a top-level Apache project and was adopted by Last.fm, Facebook and others
- The Yahoo web map comprised 100 billion nodes and 1 trillion edges by 2009
- Hadoop continued to break records for volume and velocity: in 2014, a team from Databricks sorted 100TB of data in 1,406 seconds on 207 nodes (4.27TB per min)
- Hadoop is a made-up name (the name of Doug Cutting's daughter's yellow toy elephant)

Spark

- Started at UC Berkeley's AMPLab in 2009 and open sourced in 2010
- A Top-Level Apache Project since 2014

Hive

- Originally developed at Facebook around 2007-8
- https://www.facebook.com/notes/facebook-engineering/hive-a-petabyte-scale-data-warehouse-using-hadoop/89508453919/
- Now used at Netflix, FINRA (UK regulator), and part of Amazon Elastic MapReduce

Hadoop

A Big Data Virtual Filesystem

Hadoop Overview

MORE WORK ON THIS

- HDFS scalable, fault-tolerant, distributed file system
- distributes storage and computation across many servers, so can grow linearly and economically with demand
- Hadoop moves compute processes to the data on HDFS and not the other way around
- Health diagnosis, management and data rebalancing with minimal operator intervention
- https://www.quora.com/What-are-some-of-the-largest-Hadoop-clusters-to-date
- Offers a subset of POSIX file management capabilities
- Data is stored in datanodes, with data replicated across them for performance and reliability
- NameNode keeps the directory tree and tracks where across the cluster data is kept
- Clients talk to the NameNodewhen they wish to locate a file
- NameNode is a SPOF if it is offline, HDFS is offline
- SecondaryNameNode provides some resilience but...
- YARN for cluster management
- https://wiki.apache.org/hadoop/FrontPage

Exercise 1: Hadoop

Goals of This Exercise

- install the Big Data software
- configure the Big Data software
- start Hadoop and check it is running
- format the Hadoop filesystem
- load a file into Hadoop
- browse the Hadoop filesystem

Spark

A Big Data Processing Engine

Spark Overview

MORE WORK ON THIS

- Resilient Distributed Dataset a fault-tolerant collection of elements that can be operated on in parallel
- RDDs often reference a dataset in an external storage system such as Hadoop HDFS
- Once created, can call operations on the RDD (count, sum, average etc, plus more sophisticated analysis like graphing and machine learning) which execute in parallel
- Spark cuts the dataset into a number of partitions and runs a task for each
- It processes data in-memory so can be much faster than traditional map / reduce
- Has an extensive set of APIs for Java, Scala and Python
- DataFrames (since 2015) "a distributed collection of data organized into named columns"
- conceptually equivalent to a table in a relational database, in particular queries can be optimised (like in an RDBMS)
- can then access programmatically, or using Spark SQL or Hive SQL (Hive seems to offer more features, esp. around security)
- you are sacrificing performance for convenience
- we will be mapping fields in CVS files to DataFrames, but can also use JSON, Parquet, RDBMS tables etc)

Exercise 2: Spark

Goals of This Exercise

- start Hadoop and Spark and check they are running
- start the Spark client
- load the Hadoop file into Spark
- do some data science!

Hive

A Big Data data warehousing infrastructure

Hive Overview

HIVE

NOT REALLY STARTED YET

- Metastore http://www.cloudera.com/documentation/archive/cdh/4-x/4-2-0/Clnstallation-Guide/cdh4ig_topic_18_4.html
- Uses Apache Derby small-footprint embedded RDBMS implemented in Java

Exercise 3: Hive

Goals of This Exercise

- start Hadoop, Spark and Hive and check they are running
- start the Hive client
- create a Hive table from the Hadoop file
- do some more data science!

Next Steps

Bigger Big Data Other Big Data Tools

Next Steps

- Multiple slaves
- YARN
- Cloudera VM

TO DO

Appendix

Further Information

Useful Links

Hadoop FAQ

http://wiki.apache.org/hadoop/FAQ

Hadoop Filesystem commands Reference

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

Set Up Hadoop Cluster

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/
SingleCluster.html#Prepare_to_Start_the_Hadoop_Cluster

Pyspark sqlContext Reference

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Hive SQL Reference

- https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL
- https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML