

Repaso para Evaluación Parcial

Pregunta 1 – [4 puntos]

La tetraciclina es un medicamento que se receta para el acné severo. La familia de las tetraciclinas puede incrementar la sensibilidad a la luz solar. Se ha preparado un potencial fármaco muy similar a la tetraciclina. Un grupo de químicos farmacéuticos se encuentra anlizando las estructuras y Ud. decide apoyarlos.

Tetraciclina	Derivado de la tetraciclina			
OH OH OH OH	OH OH OH OH			

- a) [2 p] Señale en la imagen todas las familias y grupos funcionales presentes en la Tetraciclina.
- b) [1 p] Estudios predictivos señalan que la Tetraciclina es más soluble que su derivado. ¿A qué se debe esto? Explique.
- c) [1 p] Determine si los carbonos A y B son primarios, secundarios, terciarios o cuaternarios.

Pregunta 2 – [4 puntos]

La contaminación ambiental suele tener sustancias contaminantes como los hidrocarburos, algunos de ellos halogenados. Estos hidrocarburos en la atmósfera pueden generar smog fotoquímico y con ello irritación de vías respiratorias, disminución de la visibilidad de un ecosistema e incluso la reducción del turismo debido a la poca atracción que generaría un ecosistema contaminado. En un monitoreo ambiental se encontraron dos compuestos (1 y 2), que deben ser identificados para encontrar la mejor forma de remediar.

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{F} \\ \mathsf{CH_2} \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{C} - \mathsf{CH_3} \\ \mathsf{CH_2} \\ \mathsf{CH_2} \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{Br} \\ \\ \mathsf{Compuesto} \ 1 \\ \end{array} \qquad \qquad \text{isopentano}$$

- a) [2 p] ¿Cuál es el nombre IUPAC del compuesto 1?
- b) [1 p] ¿Cuál es la fórmula molecular, fórmula empírica y fórmula topológica del compuesto 2?
- c) [1 p] ¿Cuáles son todos los radicales alquilo que se pueden formar a partir del compuesto 2? Dibújelos.

Pregunta 3 – [4 puntos]

Existen isómeros geométricos que pueden interconvertirse entre *cis* y *trans* gracias a la acción de la luz. La revista *Chem. Rev.* **2022**, *122*, 2, 2650 señala que uno de ellos es la bixina, sustancia que se emplea como aditivo colorante en la industria alimentaria bajo el código de E-160b.

	Enlace doble	Isomería geometría relativa	Isomería geométrica absoluta
A 011	А		
OH	В		
F	С		
	D		
	Е		
ĊI		C	D V

a) [1 p] Complete la tabla con la isomería geométrica y absoluta para los carbonos señalados A – E. Si los carbonos no tuviesen alguna isomería coloque un aspa "x" donde corresponda. Asuma que los enlaces señalados se encuentran en la cadena principal.

b) [2 p] Otro alqueno importante en la naturaleza es la feromona de la polilla del manzano. Esta molécula es muy similar al

c) [1 p] Entre otros productos encontrados en la naturaleza se encontró un alqueno con un único doble enlace. Como no se conocía su estructura se hizo reaccionar con el HBr y se obtuvo la **molécula B**. ¿Cuál es la fórmula topológica del alqueno del que procede la **molécula B**?

Molécula B

Número atómico: C = 6 Cl = 17 F = 9 H = 1 N = 7 O = 8

Pregunta 4 – [4 puntos]

Con el objetivo de encontrar cada vez mejores solventes con mayor punto de ebullición pero que puedan disolver compuestos apolares, se piensa realizar dos ensayos:

- a) [2 p] **Primer ensayo**: preparar la forma más estable del cis-1-isopropil-3-metilciclohexano. Para ello, Ud. debe primero dibujar la estructura más estable de tal compuesto.
- b) [2 p] **Segundo ensayo**: brindar el nombre del compuesto obtenido, del cual se sabe su estructura y que posee ramificaciones metil y fenil.

Pregunta 5 – [4 puntos]

Un científico le consulta a Ud. si con la siguiente reacción se puede obtener el 2,6-diclorofenol. Justifique su respuesta. En caso no se obtenga dicha sustancia, indique estructura química del producto o los productos obtenidos junto con sus nombres.

Datos adicionales:

	Producto (%)				Producto (%)			
	Orto	Meta	Para		Orto	Meta	Para	
Desactivadores orientadores meta				Desactivadores	Desactivadores orientadores orto y para			
-N(CH ₃) ₃	2	87	11	-F	13	1	86	
-NO ₂	7	91	2	-CI	35	1	64	
-CO ₂ H	22	76	2	–Br	43	1	56	
-CN	17	81	2	-I	45	1	54	
-CO ₂ CH ₃	28	66	6	Activadores ort	o y para			
-COCH ₃	26	72	2	-CH ₃	63	3	34	
-CHO	19	72	9	-ОН	50	0	50	
				-NHCOCH ₃	19	2	79	

