2025 年 東京大学·理系 数学

清水 団

2025年3月27日

第1問

座標平面上の点 A(0,0), B(0,1), C(1,1), D(1,0) を考える。実数 0 < t < 1 に対して、線分 AB, BC, CD を t:(1-t) に内分する点をそれぞれ P_t , Q_t , R_t とし、線分 P_tQ_t , Q_tR_t を t:(1-t) に内分する点をそれぞれ S_t , T_t とする。 さらに、線分 S_tT_t を t:(1-t) に内分する点を U_t とする。また、点 A を U_0 , 点 D を U_1 とする。

- (1) 点 U_t の座標を求めよ。
- (2) t が $0 \le t \le 1$ の範囲を動くときに点 U_t が描く曲線と、線分 AD で囲まれた部分の面積を求めよ。
- (3) a を 0 < a < 1 を満たす実数とする。t が 0 \leq t \leq a の範囲を動くときに点 U_t が描く曲線の長さを、a の多項式の形で求めよ。

第2問

- (1) x > 0 のとき、不等式 $\log x \le x 1$ を示せ。
- (2) 次の極限を求めよ。

$$\lim_{n\to\infty} n \int_1^2 \log \left(\frac{1+x^{\frac{1}{n}}}{2}\right) dx$$

第3問

平行四辺形 ABCD において、 \angle ABC = $\frac{\pi}{6}$, AB = a, BC = b, $a \le b$ とする。次の条件を満たす長方形 EFGH を考え、その面積を S とする。

条件:点 A,B,C,D はそれぞれ辺 EF,FG,GH,HE 上にある。 ただし、辺はその両端の点も含むものとする。

- (1) $\angle BCG = \theta$ とするとき、S を a, b, θ を用いて表せ。
- (2) S のとりうる値の最大値を a,b を用いて表せ。

第4問

この問いでは、0 以上の整数の 2 乗になる数を平方数と呼ぶ。a を正の整数とし、 $f_a(x) = x^2 + x - a$ とおく。

- (1) n を正の整数とする。 $f_a(n)$ が平方数ならば、 $n \le a$ であることを示せ。
- (2) $f_a(n)$ が平方数となる正の整数 n の個数を N_a とおく。次の条件 (i), (ii) が同値であることを示せ。
 - (i) $N_a = 1$ である。
 - (ii) 4a+1 は素数である。

第5問

n を 2 以上の整数とする。1 から n までの数字が書かれた札が各 1 枚ずつ合計 n 枚あり、横一列におかれている。1 以上 (n-1) 以下の整数 i に対して、次の操作 (T_i) を考える。

• (T_i) 左から i 番目の札の数字が、左から (i+1) 番目の札の数字よりも大きければ、これら 2 枚の札の位置を入れかえる。そうでなければ、札の位置をかえない。

最初の状態において札の数字は左から $A_1,A_2,...,A_n$ であったとする。 この状態から (n-1) 回の操作 $(T_1),(T_2),...,(T_{n-1})$ を順に行った後、続けて (n-1) 回の操作 $(T_{n-1}),...,(T_2),(T_1)$ を順に行ったところ、札の数字は左から 1,2,...,n と小さい順に並んだ。以下の問いに答えよ。

- (1) A_1 と A_2 のうち少なくとも一方は 2 以下であることを示せ。
- (2) 最初の状態としてありうる札の数字の並び方 $A_1,A_2,...,A_n$ の総数を c_n とする。n が 4 以上の整数であるとき、 c_n を c_{n-1} と c_{n-2} を用いて表せ。

第6問

複素数平面上の点 $\frac{1}{2}$ を中心とする半径 $\frac{1}{2}$ の円の周から原点を除いた曲線を C とする。

- (1) 曲線 C 上の複素数 z に対し、 $\frac{1}{z}$ の実部は 1 であることを示せ。
- (2) α, β を曲線 C 上の相異なる複素数とするとき、 $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ がとりうる範囲を複素数平面上に図示せよ。
- (3) γ を (2) で求めた範囲に属さない複素数とするとき、 $\frac{1}{\gamma}$ の実部がとりうる値の最大値と最小値を求めよ。