Práctica 1

Objetivo:

Realizar programas en R-info en los que múltiples robots realizan tareas. Diseñar soluciones con robots del mismo tipo y con robots de diferentes tipos. Analizar situaciones de posibles colisiones.

- 1) Realice un programa para que un robot junte todas las flores de la avenida 1 y las deposite al final de dicha avenida. Al finalizar, debe informar la cantidad de flores depositadas y la cantidad de esquinas sin flores que encontró durante el recorrido.
 - a) Modifique el programa anterior para que el mismo robot realice lo mismo en las avenidas 1, 3 v 5.
 - **b)** Modifique el programa anterior para que el trabajo sea realizado por 3 robots: uno realiza la avenida 1, otro realiza la avenida 3 y otro la avenida 5. Cada robot debe iniciar en las esquina (1,1), (3,1) y (5,1) respectivamente.
- 2) Realice un programa en el que 4 robots limpien de papeles el perímetro de un cuadrado de lado 20 en sentido horario, como se muestra en la figura:

El vértice inferior izquierdo del cuadrado se ubica en la esquina (10,10).

Al finalizar, cada robot debe informar la cantidad de papeles juntados en su lado.

Al realizar este programa, analizar:

- a) ¿Cómo deben declararse la o las áreas?
- b) ¿Existe riesgo de colisión?
- **3)** Realice un programa en el que 3 robots realicen escaleras de 4 escalones. El tamaño de cada escalón se incrementa en un 1 respecto al escalón anterior. El primer escalón será de 1x1, el segundo de 2x2, y así sucesivamente, como se muestra a continuación:

Al finalizar el recorrido, cada robot debe informar la cantidad de escalones en los que la cantidad de papeles superó en 1 a la cantidad de flores. Las esquinas deben quedar sin modificar.

- **4)** Realice un programa en el que dos robots se encargan de limpiar las ciudad. La ciudad se dividió en 4 áreas: las impares (1 y 3) deben limpiarse de flores; y las pares (2 y 4) deben limpiarse de papeles. Un robot debe encargarse de las áreas impares y otro robot de las pares. Modularice el recorrido de cada área
 - Área 1: desde la avenida 1 hasta la avenida 25
 - Área 2: desde la avenida 26 hasta la avenida 50
 - Área 3: desde la avenida 51 hasta la avenida 75
 - Área 4: desde la avenida 76 hasta la avenida 100

- a) Analizar (no es necesario implementar) qué se debería modificar si ahora se pide que la ciudad se divida en 20 áreas:
 - Área 1: Avenidas 1 a 5
 - Área 2: Avenidas 6 a 10

• ...

- Área 19: Avenidas 91 a 95Área 20: Avenidas 96 a 100
- 5) Realice un programa en el que cuatro robots realizan las siguientes actividades:
 - El robot 1 debe limpiar de flores las primeras 15 esquinas de las calles 75 y 80. Al finalizar cada calle, debe depositar todas las flores en la última esquina.
 - El robot 2 debe limpiar de papeles las últimas 20 esquinas de las avenidas 75 y 80. Al finalizar cada avenida debe depositar todos los papeles en la primera esquina.
 - El robot 3 debe limpiar de flores las últimas 30 esquinas de las calles 10 y 15. Al finalizar cada calle, debe depositar todas las flores en la última esquina.
 - El robot 4 debe limpiar de papeles las primeras 10 esquinas de las avenidas 10 y 15. Al finalizar cada avenida debe depositar todos los papeles en la primera esquina.

Práctica 2 Concurrente

Objetivo:

Realizar programas en R-info con distintos tipos de robots. Utilizar el pasaje de mensajes para la comunicación entre robots. Usar la función random para generar valores aleatorios.

- 1. Dos robots compiten para ver cuál junta más flores. El primer robot recoge todas las flores de la avenida 1 entre las calles 1 y 10. El segundo robot recoge todas las flores de la avenida 2, entre las calles 11 y 20.
 - Al finalizar el recorrido, el robot que recogió mayor cantidad de flores debe informar la diferencia de flores que obtuvo respecto al robot perdedor (el que obtuvo menos flores). Los robots inician en las esquinas (1, 1) y (2, 11) respectivamente.
 - **b**. Modifique el ejercicio anterior, considerando que ahora habrá un robot fiscalizador, que será responsable de informar la diferencia de flores que obtuvo el ganador con respecto al perdedor. El robot fiscalizador se ubica en la esquina (2,1)
 - c. Modifique el ejercicio anterior para que ahora participen 6 robots
 - o Robot 1: Avenida 1, entre las calles 1 y 10
 - o Robot 2: Avenida 2, entre las calles 11 y 20
 - o Robot 3: Avenida 3, entre las calles 21 y 30
 - o Robot 4: Avenida 4, entre las calles 31 y 40
 - o Robot 5: Avenida 5, entre las calles 41 y 50
 - Robot 6: Avenida 6, entre las calles 51 y 60
 - o Fiscalizador: Avenida 2, calle 1

El fiscalizador deberá informar la cantidad de flores que juntó el robot ganador.

- **d.** Modifique el inciso anterior para que ahora el fiscalizador informe también, cuál fue el robot ganador.
- **e.** <u>Analizar (no es necesario implementar)</u>: ¿cómo se puede implementar el inciso 1.c. sin robot fiscalizador?
 - → ¿qué cantidad de robots participarán del juego?
 - → ¿qué cantidad de mensajes deben enviarse?
- 2. Realice un programa en el que 3 robots realizan una escalera de 4 escalones cada uno. Todos los escalones tienen un ancho fijo de 1, y un alto aleatorio entre 1 y 5. Al finalizar el recorrido, cada robot deberá enviar al robot jefe la cantidad de escalones que tenían más flores que papeles. Una vez que los tres robots finalizaron, el robot jefe deberá informar la suma de las cantidades enviadas por los 3 robots.
 - El robot jefe inicia en la esquina (1,1)
 - o El robot 1 inicia en la esquina (2,1)
 - El robot 2 inicia en la esquina (7,1)
 - o El robot 3 inicia en la esquina (12,1)

- 3. Realice un programa con 2 equipos:
 - El equipo A, compuesto por los robots A1 y A2, debe juntar papeles de las primeras 20 esquinas de la calle 1
 - El equipo B, compuesto por los robots B1 y B2, debe juntar flores de las primeras 20 esquinas de la calle 5

Los robots A1 y B1 deberán realizar las 10 primeras esquinas de su recorrido, y al finalizar avisarán a los robots A2 y B2 respectivamente para que continúen con las siguientes 10 esquinas. El segundo robot de cada equipo debe informar la cantidad de elementos recogidos en las 20 esquinas.

Inicialice los 4 robots en las esquinas que considere más apropiadas según el trayecto que le corresponde realizar a cada uno.

- **b.** Modifique el programa anterior para que cada equipo repita el recorrido con las siguientes 20 esquinas de sus correspondientes calles.
- **c**. Analice (no es necesario implementar) cómo implementaría el inciso **b** si ahora cada equipo debe realizar 8 segmentos de 20 esquinas.
- 4. Realice un programa en el que un robot fiscalizador controla el acceso de 4 robots recolectores al cuadrante encerrado entre las esquinas (25,25) y (75,75). Para ello, el robot fiscalizador avisa a un robot recolector aleatorio que puede ingresar al área. El robot que recibe la autorización de acceso calcula una esquina aleatoria dentro del área, limpia dicha esquina de flores y papeles, regresa a su esquina y avisa al robot fiscalizador que ya finalizó.

Se realizarán en total 10 accesos al cuadrante entre los 4 robots recolectores. Al finalizar, el robot fiscalizador deberá indicar al robot ganador que se posicione en la esquina (50,50).

El robot fiscalizador inicia en la esquina (1,1) y los robots recolectores inician en las esquinas (25,1) (30,1) (35,1) y (40,1) respectivamente.

Práctica 3 Concurrente

Objetivo:

Realizar programas en R-info con distintos tipos de robots. Utilizar memoria compartida para la comunicación y sincronización entre robots. Combinar problemas con memoria compartida y pasaje de mensajes.

1- Realice un programa con 2 robots recolectores de flores (floreros) y 2 robots recolectores de papeles (papeleros).

Los floreros comparten área y tienen 5 intentos cada uno para juntar las flores de una esquina, dentro de dicha área, elegida al azar en cada intento. Del mismo modo, los papeleros comparten área y tienen 3 intentos cada uno para juntar los papeles. En cada intento cada robot va a la esquina al azar, junta todos los elementos (flores o papeles según le corresponda) y vuelve a su esquina original. Al finalizar sus intentos cada robot debe acceder a la esquina (10, 10) y depositar los elementos recogidos de a uno.

- Área de floreros: (1,1) a (5, 10)
- Área de papeleros: (6, 1) a (10, 9)
- Esquinas de inicio de floreros: (6,10) y (7,10)
- Esquinas de inicio de papeleros: (8,10) y (9,10)
- **2-** Realice un programa en el cual 2 robots corren una carrera. El recorrido realizado por cada uno es el que se muestra en la siguiente figura. Durante el recorrido el robot 1 debe juntar todas las flores que encuentre en los vértices de cada escalón, mientras que el robot 2 debe juntar todos los papeles que encuentre en los vértices de cada escalón.

Al finalizar deben informar la cantidad de elementos recogidos.

El robot 1 debe iniciar su recorrido en la esquina (1,1) y el robot 2 debe iniciar su recorrido en la esquina (31,1).

Al finalizar la carrera, un robot jefe (inicializado en la esquina (15,1)) debe informar qué robot llegó primero a la esquina central de su recorrido.

3- Realice un programa donde 4 robots colaboren para recoger todas las flores de una esquina indicada por un robot jefe, seleccionada de manera aleatoria dentro del cuadrante (2,2) y (10,10). Para ello el jefe determina inicialmente una esquina y los robots deben

accederla, tomar **de a una** las flores y volver a su posición inicial. Cuando los robots terminan el jefe deberá informar cuál de ellos logró recoger más flores.

Las esquinas de inicio de los robots deberán ser jefe (1,1) y robots (2,1), (3, 1), (4,1) y (5,1).

4- Realice un programa en el que 4 robots mueven **de a una** todas las flores de la esquina (10,10) a la esquina (11,11). Para ello, cada robot que toma una flor de la esquina (10,10) la deposita en la esquina (11,11) y luego retorna a su esquina inicial. Cada robot que finaliza (o, sea, que detecta que la esquina (10,10) se ha vaciado) deberá avisar al robot coordinador que ha finalizado. Cuando todos los robots finalizaron, el robot coordinador deberá informar qué robot finalizó último y a continuación deberá recolectar todas las flores de la esquina (11,11).

El robot coordinador inicia en la esquina (1,1). Los robots inician en las esquinas (9,9) (9,10) (9,11) y (9,12).

b- Implemente una variante en la cual los robots luego de tomar cada flor de la esquina (10,10) vuelvan a su esquina inicial, pasen a la esquina (11,11) a depositarla y finalmente vuelvan a la esquina inicial.

c- Analizar:

- ¿Cuál de las 2 soluciones maximiza la concurrencia?
- ¿Se podría resolver este problema sin que los robots deban regresar a su esquina inicial?
- **5-** Realice un programa en el que 4 robots juegan una carrera por avenidas diferentes: 4, 6, 8 y 10 respectivamente. Todos los robots inician en la calle 1.

Para poder avanzar, cada robot debe juntar un papel de una fuente de papeles localizada en la esquina (11,11), colocarlo en la esquina actual de su avenida y avanzar un paso. Cuando la esquina fuente ya no tiene más papeles, o cuando se haya completado la avenida, deberán avisar al robot coordinador y este determinará el robot que llegó más lejos.

- **6.a-** Tres robots deben recorrer el perímetro de su cuadrante, como se indica a continuación:
 - El robot 1 comienza la esquina (2,2) y debe realizar un cuadrante de 6x6 juntando todas las flores que encuentre
 - El robot 2 comienza en la esquina (5,5) y debe realizar un cuadrante de 10x10 juntando todas las flores y los papeles que encuentre
 - El robot 3 comienza en la esquina (9,9) y debe realizar un cuadrante de 7x7 juntando todos los papeles que encuentre

Cada robot que finalice su cuadrante deberá avisar al robot fiscalizador. Al recibir el aviso, el robot fiscalizador indicará inmediatamente una calle a la que deberá dirigirse el robot recolector, considerando que el robot que finalizó primero irá a la calle 20, el segundo a la 21 y el tercero a la 22.

Cuando los robots recolectores reciben un número de calle, deberán posicionarse en la avenida 1 de dicha calle, y avanzar a lo largo de la calle depositando en cada esquina un papel, una flor o ambos, según lo que cada robot haya juntado. El recorrido finalizará al completar la calle o vaciarse las bolsas.

- **6.b** Analizar (no es necesario implementar): ¿cómo debería modificarse el ejercicio anterior si los robots recolectores no conocen de antemano el tamaño de su cuadrante (por ejemplo, porque lo calcula el fiscalizador de manera aleatoria)?
- **6.c.** Modifique el ejercicio anterior (**6.a**) para que ahora el robot fiscalizador espere a que todos los robots recolectores hayan completado sus cuadrantes antes de indicarles la calle que deberán recorrer.

Práctica 4 Concurrente

Objetivo:

Realizar programas en R-info con distintos tipos de robots. Utilizar memoria compartida para la comunicación y sincronización entre robots. Combinar problemas con memoria compartida y pasaje de mensajes. Distinguir modelos de algoritmos a desarrollar de acuerdo al problema planteado.

1- Clientes y Servidores

Existe un robot que sirve de flores a tres robots clientes. Cada cliente solicita al servidor que le deposite en su esquina siguiente una cantidad de flores aleatoria (entre 1 y 4). Por ejemplo, si el cliente se encuentra en la esquina (2,1) le solicitará que coloque x cantidad de flores en la esquina (2,2).

Cuando el robot servidor deposita las flores en la esquina solicitada, el cliente las junta y las deposita una a una a lo largo de la avenida en la que se encuentra.

El programa finaliza cuando todos los robos clientes completan su avenida. Asuma que el robot servidor tiene flores suficientes en su bolsa.

El robot servidor se inicia en la esquina (100,100) Los robots clientes inician en las esquinas (1,1), (2,1) y (3,1) respectivamente

Protocolo Cliente/Servidor

Cliente:

INICIO: calcularRandom flores

Enviar ID al servidor

Enviar cantFlores al servidor

Enviar mi Avenida actua

Enviar Calle siguiente

Esperar ACK del servidor

Ir a la esquina Avenida, Calle

JuntarFlores

Volver a la esquina

Avanzar dejando flores

Si llegué a la avenida 100

enviar 0 al servidor

sino

Volver a INICIO

Servidor

INICIO: Recibir ID

Recibir N Flores de ID

si (flores <> 0)

recibir avenida de ID

recibir calle de ID

pos(avenida,calle)

depositar N flores volver a (100,100)

enviar ACK a robot ID

volver a INICIO

sino

contar un robot terminado

si terminaron los 3 robots

terminar

2. Productores y consumidores

Existen dos robots productores que recorren las avenidas 5 y 10 respectivamente, juntando todos los papeles de su avenida. A lo largo del recorrido, cada vez que juntan 5 papeles, los depositan en la esquina (50,50).

Además existen dos robots consumidores que intentan tomar una cantidad aleatoria de papeles (entre 2 y 5) de la esquina (50,50) para depositarla en su esquina de origen. Si la esquina (50,50) no posee la cantidad de papeles requerida, vuelven a su esquina de origen sin tomar ningún papel. Si luego de 8 intentos **seguidos** detectan que la esquina (50,50) no tiene papeles suficientes para juntar, entonces asumirán que los productores ya han completado su trabajo y por lo tanto terminarán su tarea también.

Los consumidores inician en las esquinas (11,1) y (12,1) respectivamente.

3. Sincronización barrera

Tres robots deben vaciar de papeles su avenida, comenzando por la calle 1 y terminando en la calle 100. El trabajo lo deben realizar todos juntos y en etapas: los robots inician juntos y cuando todos completan una etapa del trabajo pueden avanzar a la siguiente, lo que significa que para poder pasar de etapa los robots deben esperar que todos hayan completado la etapa en curso. Se proponen dos posibles soluciones a este problema: etapas homogéneas o etapas heterogéneas:

- a) Implemente el programa considerando que cada robot completa una etapa cada 5 esquinas
- b) Implemente el programa considerando que cada robot completa una etapa luego de juntar N papeles. El valor de N (entre 1 y 5) lo calcula cada robot antes de iniciar cada etapa.

En cada solución, analice cómo debería finalizar el programa.

Los robots inician en las esquinas (1,1), (2,1) y (3,1) respectivamente. Existe un robot coordinador, cuya única tarea es asignar identificadores a cada robot.

4. Jefe y trabajadores - Master/Slave

Un robot jefe asigna tareas a los trabajadores. Las tareas consisten en 1. recoger flores, 2. recoger papeles, 3. vaciar bolsa, 4. finalizar .

Existen 2 robots trabajadores que reciben solicitudes de tareas del robot jefe. Para cada solicitud, reciben la tarea y la esquina donde deben realizarla (salvo cuando la tarea es 4 que no deben acceder a una esquina). Luego de recibir la tarea, los robots van a la esquina indicada, realizan la tarea, avisan al jefe que ya la completaron y quedan a la espera de una nueva tarea.

El robot jefe inicia en la esquina (1,1) y los robots trabajadores inician en las esquinas (2,1) y (3,1). Las tareas se asignan aleatoriamente a cualquier esquina dentro del cuadrante comprendido entre las esquinas (2,2) y (100,100). El robot jefe envía 10 tareas aleatorias a trabajadores aleatorios y termina.

Analice: existe el riesgo de que el programa quede bloqueado, y que ningún robot trabajador pueda realizar su tarea. ¿en qué caso puede suceder esto? ¿qué resulta necesario considerar para evitar esta situación?

Práctica 5 Concurrente

Objetivo: Repaso

1- Se organizó una competencia entre el equipo rojo y el equipo azul. Cada equipo consta de dos robots, y debe realizar una tarea:

- Los robots R1 y R2 del equipo rojo debe juntar todas las flores de las avenidas 2 y 3 respectivamente
- Los robots A1 y A2 del equipo azul debe juntar todos los papeles de las calles 98 y 99 respectivamente

Al finalizar la competencia, un robot fiscalizador deberá informar el equipo que juntó más objetos.

- 2- Tres robots recolectores deben avanzar por su calle vaciando las esquinas. El avance debe realizarse en conjunto en etapas, siguiendo el modelo de sincronización barrera, en el cual los robots deben esperar que todos terminen su tarea antes de avanzar a la siguiente etapa. Cada etapa consiste en recorrer 10 esquinas y luego depositar todas las flores recolectadas en la esquina (50,50). Una vez que los robots recolectores completaron toda su calle, un robot fiscalizador deberá juntar todas las flores de la esquina (50,50) e informar la cantidad total de flores juntadas. Los robots recolectores inician en las esquinas (1,1), (1,2) y (1,3) respectivamente. El robot fiscalizador inicia en la esquina (1,4).
- **3-** Dos robots recolectores avanzan por las calles 3 y 4 respectivamente juntando todas las flores a su paso. Cada esquina tiene a lo sumo una flor. Cada vez que juntan 10 flores o que avanzan 5 esquinas, deberán vaciar de flores su bolsa en el depósito localizado en la esquina (10,10).

Cada vez que se depositan flores en el depósito, un robot cosechador deberá juntar dichas flores.

Cuando ambos recolectores hayan completado sus calles, el robot cosechador deberá informar la cantidad de flores recolectadas.

Los recolectores inician en la esquina (1,3) y (1,4), y el cosechador en la esquina (1,5)

4- Tres robots floreros tienen 8 intentos en total para juntar todas las flores dentro del cuadrante comprendido entre las esquinas (40,40) y (60,60). Para ello, en cada intento un robot fiscalizador indicará a un robot aleatorio la esquina a la que debe dirigirse. El fiscalizador calculará esta esquina de manera aleatoria. Al completarse los 8 intentos, los robots floreros deberán depositar todas las flores juntadas en la esquina (10,10), y el robot fiscalizador deberá informar la cantidad total de flores juntadas por los robots.

Los robots floreros inician en las esquinas (1,1), (2,1) y (3,1) respectivamente, y el fiscalizador en la (4,1).

5- Existe un robot servidor que tiene su bolsa con papeles. Tres robots clientes tienen 4 intentos cada uno para solicitar al servidor que les entregue papeles. Cada vez que el servidor recibe un pedido de papeles de un cliente, se ubicará en la esquina (100,1), colocará allí una cantidad aleatoria de papeles (entre 1 y 5) y avisará al cliente correspondiente la cantidad de papeles que le depositó.

Una vez que un cliente recibe un aviso, deberá recolectar uno a uno los papeles que le corresponden y depositarlos en su esquina inicial.

El programa finalizará cuando todos los clientes hayan completado todos sus intentos. Asuma que el servidor tiene los papeles suficientes para cubrir todas las solicitudes.

Los robots clientes inician en las esquinas (10,1), (11,1) y (12,1), y el robot servidor inicia en la esquina (13,1).