

嶋野 友也(2018.08.10)

1.WEEK1の講座内容

Recap of main Machine Learning Algorithm

- (1)Linear: separate 2 parts (ex. Logistic Regression, Support Vector Machine)
- (2)Tree-Based: (ex. Decision Tree, Random Forest, GBDT)
- (3)kNN
- (4)Neaural Net
- GBDT, Neaural Net is most powerful methods

Feature Processing and generation with respect to model

(1)numeric (数值)

(a)Scaling:違う幅だと意味をなさないから揃える

· MinMax Scaler:最小最大值基準

· Standard Scaler: 平均值基準

- (b)OutLier:異常値を排除することでズレを防止
- (c)Rank
- (d)Log、Sqrt
- (2)categorical (カテゴリー)
- (3)ordinal (順序付カテゴリー) 順序はあるが差分に意味がない 数値とは別 (ex.小学校、中学校、高校)

Non Tree Basedの場合: One-Hot-Encoding

Tree Based の場合: Label Encoding、Frequency Encoding

- (4)datetime (日付)
- (5)coordinate (座標)

2.売上予測のイメージ

売上予測のイメージ

○ 「線形回帰」のイメージ

木とかイメージがわかないし、線形回帰モデルで分析しよう! 実は違ったんですが・・・

3.分析

分析(線形回帰)

- 店舗、商品、月ごとの売上数を集計
- 「0」~「32」の売上数から「33」の売上を予測するモデル分析 売上実績がない月は「0」埋め

clf = linear_model.LinearRegression()
clf.fit(X, Y)

4. テスト

テスト

- テストデータとトレーニングデータを結合(実績値を追加)
- 「1」~「33」の売上数から次月度の売上を予測(前述のモデルを使用)

実績値が不明なデータは「0」埋め(雑!)

	ID	shop_id	item_id	0	1	2	3	4	5	6	 24	25	26	27	28	29	30	31	32	33	34
0	0	5	5037	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 2.0	0.0	0.0	0.0	1.0	1.0	1.0	3.0	1.0	0.0	
1	1	5	5320	NaN	 NaN	NaN	•														
2	2	5	5233	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	3.0	2.0	0.0	1.0	3.0	1.0	
3	3	5	5232	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	0.0	0.0	7
4	4	5	5268	NaN	 NaN	NaN	Ne	NaN													
5	5	5	5039	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	1.0	1.0	
6	6	5	5041	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	2.0	
7	7	5	5046	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
8	8	5	5319	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 9.0	2.0	3.0	2.0	2.0	4.0	3.0	2.0	3.0	0.0	
9	9	5	5003	NaN	 NaN	NaN															

result = clf.predict(X)

- 結果 score 2.93116 (761/784位) 7/26時点
- なんか違う!これって過去数値の加重平均じゃん。イメージしたのは時系列分析

5.悪戦苦闘の日々

課題事項

• 相関係数

>print(clf.coef_.round(2))

 $[0.01 - 0.03 \overline{0.02} \ 0.00 - 0.06 \ 0.09 \ \cdot \cdot \cdot \ 0.07 - 0.00 \ 0.50 \ 0.01 \ 0.76 - 0.11 \ 0.01]$

3ヶ月前の売上数と5か月前の売上数に大きく依存します。 *そんなわけないだろ!!*

直近3ヶ月平均とか、そういう方が自然でしょ・・・

 $[0.00 - 0.00 \ 0.00 \ 0.00 \ -0.00 \ 0.00 \ \cdot \cdot \cdot \ 0.00 \ 0.10 \ 0.10 \ 0.10 \ 0.25 \ 0.25 \ 0.25]$

- テストデータの補完(実績なし商品)
 - (1)実績なしは「0」補完 「0」でなく全商品の平均値で補完しよう!
 - (2)実績なしは「0」補完 「0」ではなく、商品ごとの平均値で補完しよう!
- その他

売上数以外の項目使用、Scaling未実施、トレーニングデータの分析など課題多数

チャレンジ結果

	date	title	score
第1回	7月27日	線形回帰	2.93116
第2回	7月27日	3ヶ月平均値	3.69924
第3回	8月04日	商品平均值補完	5.90242
第4回	8月04日	商品ごと平均値補完	8.84502

やればやるほど点数が下がり、テンション下がったので、WEEK2以降の講座を受けてから、がんばります