Курсовая работа

Сведение задачи из теории игр к задаче линейного программирования на платформе *MS Excel*

Выполнил: студент группы ФН2–52Б Кононенко А. А.

Руководитель курсовой работы: Рудаков И. А.

Московский государственный технический университет имени Н.Э. Баумана

Постановка задачи из теории игр

Дана платёжная матрица размерности $m \times n$ для игр без седловой точки. Это значит, что нижняя цена игры $\alpha = \max_i \min_j a_{ij}$ меньше верхней цены игры $\beta = \min_j \max_i a_{ij}$. Поэтому решений в чистых стратегиях не будет. В данной курсовой работе необходимо:

- Обосновать метод сведения задачи из теории игр к задаче линейного программирования.
- Научиться программировать задачу линейного программирования в Excel.
- Посчитать в Excel несколько задач для учебного процесса.

Условия (1) и (2) образуют стандартную задачу максимизации:

$$F(x) = c_1 x_1 + c_2 x_2 + \dots c_n x_n \to max$$
 (1)

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \leq b_i, & i = \overline{1, m}, \\ x_j \geq 0, & j = \overline{1, n}. \end{cases}$$
 (2)

Условия (3) и (4) образуют стандартную задачу минимизации:

$$F(x) = c_1 x_1 + c_2 x_2 + \dots c_n x_n \to min$$
 (3)

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i, \ i = \overline{1, m}, \\ x_j \ge 0, \ j = \overline{1, n}. \end{cases} \tag{4}$$

С каждой задачей линейного программирования вида

$$\begin{cases} F(x) = \sum_{k=1}^{n} c_k x_k \to max; \\ \sum_{k=1}^{n} a_{ik} x_k \le b_i, \quad i = \overline{1, m}, \\ x_k \ge 0, \ k = \overline{1, n}, \end{cases}$$
 (5)

можно связать другую задачу линейного программирования

$$\begin{cases}
G(x) = \sum_{k=1}^{m} b_i y_i \to min; \\
\sum_{k=1}^{m} a_{ik} y_i \ge c_k, \quad k = \overline{1, n}, \\
y_i \ge 0, i = \overline{1, m},
\end{cases} (6)$$

Задачу (б) называют двойственной задачей линейного программирования по отношению к задаче (5).

Теория игр

Пусть $S=s_1,\ldots,s_n$ — множество всех чистых стратегий игрока. Для любых вероятностей α_1,\ldots,α_n , таких что $0\leq\alpha_1\leq\cdots\leq\alpha_n\leq 1$ и $\alpha_1+\ldots+\alpha_n=1$, стратегия вида

$$\begin{cases} s_1 \in \text{ вероятностью } \alpha_1 \\ \dots \\ s_n \in \text{ вероятностью } \alpha_n \end{cases}$$
 (7)

называется смешанной стратегией. Обозначим

$$S_A = \overrightarrow{p} = (p_1, \ldots, p_n); S_B = \overrightarrow{q} = (q_1, \ldots, q_m)$$

за смешанные стратегии игроков A и B. Оптимальная стратегия — это такая стратегия, которая при многократном повторении игры обеспечит данному игроку максимально возможный средний выигрыш (минимально возможный средний проигрыш).

Теорема Неймана

Применение оптимальных смешанных стратегий гарантирует игроку максимально возможный средний выигрыш (минимально возможный средний проигрыш) равный цене игры

$$\nu^* = \max_{\overrightarrow{p}} \min_{\overrightarrow{q}} \overrightarrow{p} M \overrightarrow{q}^T = \min_{\overrightarrow{q}} \max_{\overrightarrow{p}} \overrightarrow{p} M \overrightarrow{q}^T = \overrightarrow{p}^* M \overrightarrow{q}^*, \tag{8}$$

где M — исходная платёжная матрица, которая является матрицей выигрышей игрока A; $\overrightarrow{p}^*=(p_1^*,\ldots,p_n^*),$ $\overrightarrow{q}^*=(q_1^*,\ldots,q_m^*)$ — оптимальные стратегии.

Оптимальные стратегии обладают следующими свойствами:

- $\overrightarrow{p}^* M \overrightarrow{q}^{*T} = \nu^*,$

Обоснование сведения задачи из ТИ к ЗЛП

Чтобы получить $\nu^*>0$, прибавим ко всем ячейкам a_{ij} матрицы элемент $\max_{\substack{i,j\\j}} |+1$. Пусть A принименяет оптимальные смешанные стратегии \overrightarrow{p}^* против чистой стратегии B_j , т.е. $\overrightarrow{q}=\overrightarrow{q_j}=\left(0,\,\ldots,\,1^j,\,\ldots,\,0\right)=B_j$. Из первого свойства оптимальных стратегий следует, что $\overrightarrow{p}^*M\overrightarrow{q_j}^T\geq \nu^*$ при $j=\{1,\,\ldots,\,m\}$;

$$M\overrightarrow{q_j}^T = (a_{1j}, a_{2j}, \ldots, a_{nj})^T \Rightarrow \overrightarrow{p}^* M \overrightarrow{q_j}^T = a_{1j}p_1^* + a_{2j}p_2^* + \ldots + a_{nj}p_n^*.$$

Таким образом получаем систему из m уравнений и n неизвестных

$$\begin{cases}
a_{11}p_{1}^{*} + a_{21}p_{2}^{*} + \dots + a_{n1}p_{n}^{*} \geq \nu^{*} \\
\dots \\
a_{1m}p_{1}^{*} + a_{2m}p_{2}^{*} + \dots + a_{nm}p_{n}^{*} \geq \nu^{*}
\end{cases}$$
(9)

Обозначим $x_1 = \frac{p_1^*}{\nu^*}, \, \dots, \, x_n = \frac{p_n^*}{\nu^*}.$ Так как $p_i > 0$ для $\forall i = \overline{1, \, n}$, то

$$\begin{cases}
a_{11}x_1^* + a_{21}x_2^* + \dots + a_{n1}x_n^* \ge 1 \\
\dots \\
a_{1m}x_1^* + a_{2m}x_2^* + \dots + a_{nm}x_n^* \ge 1
\end{cases}$$
(10)

$$p_1^* + p_2^* + \ldots + p_n^* = 1 \iff \frac{p_1^*}{\nu^*} + \ldots + \frac{p_n^*}{\nu^*} = \frac{1}{\nu^*} \iff x_1 + x_2 + \ldots + x_n = \frac{1}{\nu^*}.$$

Игрок A хочет максимизировать выигрыш $u^* o max \Leftrightarrow rac{1}{
u^*} o min.$

$$x_1 + x_2 + \ldots + x_n \to \min. \tag{11}$$

Условия (10) и (11) образуют задачу линейного программирования на минимум. Решив её, найдём $x_1,\,\dots,\,x_n$. Теперь сможем найти оптимальную цену игры $\nu^*=\frac{1}{x_1,\,\dots,\,x_n}$.

Тогда оптимальные стратегии A будут равны $p_1=x_1\nu^*,\ldots,p_n=x_n\nu^*.$ Пусть игрок B принимает оптимальную стратегию $q^*=(q_1,\ldots,q_m)$ против чистой стратегии A_i , т.е. $\overrightarrow{p}=\overrightarrow{p_i}=\left(0,\ldots,1^i,\ldots,0\right)=A_i.$ Из первого свойства оптимальных стратегий следует, что

$$\overrightarrow{p_i} M \overrightarrow{q}^{*T} \leq \nu^*$$
 при $i = \{1, \ldots, n\};$ (12) $\overrightarrow{p_i} M = (a_{i1}, a_{i2}, \ldots, a_{im})^T \Rightarrow \overrightarrow{p_i} M \overrightarrow{q}^{*T} = a_{i1} p_1^*, + \ldots + a_{im} p_m^*.$ (13)

Учитывая (12), (13), получаем систему из n уравнений и m неизвестных

$$\begin{cases} a_{11}q_1^* + a_{12}q_2^* + \ldots + a_{1m}q_m^* \leq \nu^* \\ \ldots \\ a_{n1}q_1^* + a_{n2}q_2^* + \ldots + a_{nm}q_m^* \leq \nu^* \end{cases}$$

Произведя замену аналогично, что и в первом случае, получаем ЗЛП на максимум

$$y_1 + y_2 + \ldots + y_m \to max. \tag{14}$$

$$y_{1} + y_{2} + \dots + y_{m} \to max.$$

$$\begin{cases} a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1m}y_{m} \leq 1, \\ \dots & \dots \\ a_{n1}y_{1} + a_{n2}y_{2} + \dots + a_{nm}y_{m} \leq 1. \end{cases}$$

$$(14)$$

Решив её, получим значения $q_1^* = y_1 \nu^*, \dots, q_n^* = y_n \nu^*$. Условия (11),(10) и (14),(15) — взаимнодвойственные ЗЛП.

Любую матричную игру можно свести к задаче линейного программирования, вернее, к паре двойственных друг другу задач линейного программирования и наоборот, любой ЗЛП соответствует некоторая игра.

Решение задачи линейного программирования с помощью надстройки «Поиск решения»

- Ввод платёжной матрицы игрока A с исходными данными.
- ② Строим функции для вычисления минимумов по строкам A_i и максимумов по столбцам B_j . Затем вычисляем максимум из минимумов и минимум из максимумов.
- Вычисляем максимальный по модулю элемент в матрице.
- Для того, чтобы цена ν^* была положительной, необходимо, чтобы для всех ячеек матрицы выполнялось неравенство $a_{ij} \geq 0$, а для этого добавляем к каждой ячейке $m_i x |a_{ij}| + 1$.
- lacktriangle B меню Excel водим параметры ightarrow надстройки ightarrow поиск решения.
- Введя граничные условия в надстройке «поиск решения», находим минимум целевой функции, цену игры (где ν^* цена игры для преобразованной матрицы, а ν цена игры для изначально заданной матрицы), значения неизвестных переменных (иксов) и коэффициентов при них (вероятностей).
- Аналогичным образом решаем двойственную ЗЛП на поиск максимума.

Решение примеров: Экономическая задача

 $A_1,\ A_2,\ A_3,$ — 3 вида продукции, $B_1,\ B_2,\ B_3,\ B_4.$ — 4 состояния спроса. Дана платёжная матрица. Найти оптимальные пропорции в выпускаемой продукции.

A B	B1	B2	В3	B4
A1	3	3	6	8
A2	9	10	4	2
A3	7	7	5	4

Рис.: Исходная платёжная матрица

Решение. Задача сводится к игре, в которой игра предприятия A против спроса B задана платёжной матрицей. Сначала упростим игру, исключив из платёжной матрицы заведомо невыгодные стратегии.

Решение примеров

Заключение

В этой курсовой работе проведено обоснование метода сведения задач из теории игр к задаче линейного программирования, получены навыки программирования задачи линейного программирования на платформе *MS Excel*, было решено несколько задач учебного процесса из теории игр путём их сведения к задаче линейного программирования и последующего её решения.

Список использованных источников

- Волков И. К., Загоруйко Е. А. Исследование операций. М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. 435 с.
- Грешнилов А. А. Математические методы принятия решений. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 647 с.
- Кулешова О. В. Microsoft Excel 2010. Анализ и Визуализация данных. Решение практических задач. М.: «Специалист» при МГТУ им Баумана, 2012. 47 с.
- Шагин В. Л. Теория игр. М.: Изд-во Юрайт, 2015. 223 с.