Link between Sobolev norms after cosine change

Martin AVERSENG

July 4, 2017

1 Notations and preliminary results

In this note, when u refers to a function defined on $\Gamma_x = (-1,1)$, we will denote by α the function such that

$$u = \frac{\alpha}{\omega}, \quad \omega(x) = \sqrt{1 - x^2},\tag{1}$$

and by $\tilde{\alpha}(\theta) = \alpha(\cos \theta)$. Let $\Gamma_{\theta} = (0, \pi)$. Let H^s stand for the usual Sobolev space of order s. For $\Gamma \subset \tilde{\Gamma}$, where $\tilde{\Gamma}$ is any closed Lipschitz curve, recall that $\tilde{H}^s(\Gamma)$ is defined by

$$\tilde{H}^s(\Gamma) = \left\{ u \in H^s(\tilde{\Gamma}) \;\middle|\; \tilde{u} \in H^s(\tilde{\Gamma}) \right\}, \\ \tilde{u}(x) = \left\{ \begin{array}{cc} u(x) & x \in \Gamma \\ 0 & x \in \tilde{\Gamma} \setminus \overline{\Gamma} \end{array} \right\}$$

We denote by $\|\cdot\|_s$ the H^s norm. Also, recall that for integer s, the norms \tilde{H}^s and H^s are equivalent. Given that functions in $H^1(\mathbb{R})$ are continuous, the elements of $\tilde{H}^1(-1,1)$ must vanish at x=-1,1, so we have simply

$$\tilde{H}^1(\Gamma_x) = H_0^1(\Gamma_x)$$

with equivalent norms.

We first state the following lemma which is a particular case of a weighted Hardy inequality (see for example the introduction of [1]).

Lemma 1.1. Let $\alpha \in C_0^{\infty}(\Gamma_x)$. There holds

$$\int_{\Gamma_x} \frac{\alpha^2(x)}{\omega^3(x)} \le \int_{\Gamma_x} \alpha'^2(x)\omega(x)dx$$

Remark 1.1. Observe that after cosine change of variable, this result is equivalent to

$$\int_0^{\pi} \frac{\tilde{\alpha}^2(\theta)}{\sin^2 \theta} d\theta \le \int_0^{\pi} \tilde{\alpha}'^2(\theta) d\theta,$$

which, taking into account $\sin \theta \sim \theta$, is under the form of a classical Hardy inequality.

We also introduce S and N the usual single layer operator and hypersingular operator on Γ_x . The kernel of S is chosen so that it is positive definite and bounded below on $\tilde{H}^{-\frac{1}{2}}(\Gamma_x)$. For example, one can choose

$$Su(x) = -\frac{1}{2\pi} \int_{-1}^{1} \ln|x - y| u(y) dy, \quad x \in \Gamma$$
 (2)

In this case, we have

Lemma 1.2.

1. For any $u \in \tilde{H}^{-\frac{1}{2}}(\Gamma_x)$, one has

$$\|u\|_{\tilde{H}^{-\frac{1}{2}}(\Gamma_x)} \sim \sqrt{\langle Su, u \rangle}_{H^{\frac{1}{2}}(\Gamma_x), \tilde{H}^{-\frac{1}{2}}(\Gamma_x)}$$

2. For any $u \in \tilde{H}^{\frac{1}{2}}(\Gamma_x)$, one has

$$\|u\|_{\tilde{H}^{\frac{1}{2}}(\Gamma_x)} \sim \sqrt{\langle Nu,u\rangle}_{H^{-\frac{1}{2}}(\Gamma_x),\tilde{H}^{\frac{1}{2}}(\Gamma_x)}$$

By $a \sim b$, we imply that there exist two constants c and C such that $ca \leq b \leq Ca$.

As was shown in [2], we have the following result: (the proof will be reproduced here for convenience)

Proposition 1.1. Let $x = \cos \theta$, we have the identity

$$Su(x) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln \left| \sqrt{2} \sin \frac{\theta - \theta'}{2} \right| \tilde{\alpha}(\theta') d\theta'$$
 (3)

Proof. In (2), do the variable change

$$x = \cos \theta, y = \cos \theta', \frac{-dy}{\omega} = d\theta' \tag{4}$$

leading to

$$Su(x) = -\frac{1}{2\pi} \int_0^{\pi} \ln\left|\cos\theta - \cos\theta'\right| \tilde{\alpha}(\theta) d\theta$$

The result is then obtained with the help of the formula $\cos \theta - \cos \theta' = -2 \sin \frac{\theta - \theta'}{2} \sin \frac{\theta + \theta'}{2}$. \square

Remark 1.2. This shows that, in the variable θ , the single layer potential is actually a convolution by the kernel $A(\theta) = -\frac{1}{2\pi} \ln \left| \sqrt{2} \sin \frac{\theta}{2} \right|$.

We easily deduce the following formula

Lemma 1.3. For smooth u and v in $C_0^{\infty}(\Gamma_x)$,

$$\langle Su, v \rangle = \frac{-1}{4\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \ln \left| \sqrt{2} \sin \frac{\theta - \theta'}{2} \right| \tilde{\alpha}(\theta) \tilde{\beta}(\theta') d\theta d\theta'$$
 (5)

2 Norm estimates

Theorem 2.1. We have the following four estimates:

(i)
$$\|u\|_{\tilde{H}^{-\frac{1}{2}}(\Gamma_x)} \le C \|\tilde{\alpha}\|_{-1/2}$$

(ii)
$$\|\sqrt{\omega}u\|_{L^2(\Gamma)} \le C \|\tilde{\alpha}\|_0$$

(iii)
$$\|\omega u\|_{\tilde{H}^{\frac{1}{2}}(\Gamma_x)} \le C \|\tilde{\alpha}\|_{1/2}$$

$$(iv) \left\| \omega^{\frac{3}{2}} u \right\|_{1} \leq C \left\| \tilde{\alpha} \right\|_{1}$$

Proof. Proof of (ii):

By the change of variables $t = \cos \theta$, we can see that

$$\int_{-1}^{1} \frac{\alpha^{2}(x)}{\omega(x)} dx = \int_{0}^{\pi} \tilde{\alpha}^{2}(\theta) d\theta$$

Proof of (iv):

The same change of variables also yields

$$\int_{-1}^{1} \omega \alpha'(x)^{2} dx = \int_{0}^{\pi} \tilde{\alpha'}^{2}(\theta) d\theta$$

Morever, observe that

$$\left(\omega^{\frac{3}{2}}u\right)' = \left(\sqrt{\omega}\alpha\right)'$$
$$= -\frac{x\alpha}{2\omega^{\frac{3}{2}}} + \alpha'\sqrt{\omega}.$$

The second term has its L^2 norm controlled by the H^1 norm of $\tilde{\alpha}$. It remains to show that this also holds for the first one that is,

$$\int_{-1}^{1} \frac{\alpha^2}{\omega^3} \le C \|\tilde{\alpha}\|_1,$$

which is a simple consequence of Lemma 1.1

Proof of (i):

Since $\tilde{\alpha}$ can be extended as an even $2\pi - periodic$ function, its Sobolev norm of order s can be expressed as

$$\|\tilde{\alpha}\|_{s}^{2} = |\alpha_{0}|^{2} + \sum_{n=1}^{+\infty} |\alpha_{n}|^{2} n^{2s},$$

where α_k are the usual Fourier coefficients. Simple calculations show that

$$\|\tilde{\alpha}\|_{-\frac{1}{2}} = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \tilde{\alpha}(\theta) \tilde{\alpha}(\theta') \left(\frac{1}{2} + \sum_{n=1}^{\infty} \frac{\cos\left(n\left(\theta - \theta'\right)\right)}{n}\right)$$

We aim to compute the function G in parenthesis:

$$G(\theta) = \frac{1}{2} + \sum_{n=1}^{+\infty} \frac{\cos n\theta}{n}$$

To achieve this, we will need the following well-known property of Chebyshev's polynomials $T_n(x)$.

Lemma 2.1. For any $t \in (-1,1)$,

$$\sum_{n=0}^{+\infty} t^n T_n(x) = \frac{1 - tx}{1 - 2tx + t^2}$$

Integrating in t and taking the value at t = 1 leads to the following identity:

$$\sum_{n=1}^{+\infty} \frac{T_n(x)}{n} = -\ln\sqrt{2 - 2x}$$

Therefore, taking $x = \cos \theta$, we find:

$$G(\theta) = \frac{1}{2} - \ln \sqrt{2 - 2\cos\theta}$$
$$= -\ln\left[2e^{-1/2}\sin\frac{|\theta|}{2}\right]$$

By Proposition 1.1, we see that there exists a constant C such that

$$\|\tilde{\alpha}\|_{-1/2} = C |\alpha_0|^2 + \sqrt{\langle Su, u \rangle} \tag{6}$$

which implies the first inequality. \Box

References

- [1] David Eric Edmunds and Ritva Hurri-Syrjänen. Weighted hardy inequalities. *Journal of mathematical analysis and applications*, 310(2):424–435, 2005.
- [2] Yeli Yan, Ian H Sloan, et al. On integral equations of the first kind with logarithmic kernels. University of NSW, 1988.