Filtering, smoothing and prediction

Sensor fusion & nonlinear filtering

Lars Hammarstrand

WHAT IS FILTERING?

• Filtering is about recursively estimating parameters of interest based on measurements.

Notation

 Let x_k contain parameters of interest and y_k the measurements at time k. (Time is usually discrete.)

Objective

• Compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ where $\mathbf{y}_{1:k} \stackrel{\triangle}{=} \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \dots & \mathbf{y}_k \end{bmatrix}$ contains all data up to time k.

FILTERING IN AUTOMOTIVE APPLICATION

 Vehciles fuses / filters noisy observations from onboard sensor, i.e., radar, lidar and camera, to estimate the current traffic situation:

 \mathbf{x}_k : current relative position and velocity of other cars

 I_k : current relative position, headning and shape of the current lane.

 \mathbf{g}_k : current relative position, heading and shape of the guard rails.

FILTERING IN OTHER APPLICATIONS

 Historically, positioning of airplanes and ships have been important examples.

 \mathbf{x}_k : positions and velocities of planes

 Control of physical systems often require estimation of the interior state.

 \mathbf{x}_k : angle of crankshaft, pressure, etc.

 Often important to assess the states in many other types of systems, e.g., biological or economical.

 \mathbf{x}_k : diffusion coefficients, spread of a disease or prices.

FILTERING, SMOOTHING AND PREDICTION

Smoothing and prediction are closely related to filtering.

SMOOTHING IN AUTOMOTIVE APPLICATIONS

- Autonmous vehicles use detailed maps to position themselves and to navigate.
- Collect sensor data from many vehicles to jointly estimate their trajectories and the map:

I: global position, headning and shape of the all lanes.

g: global position, heading and shape of the guard rails.

s: global position of signs and its type.

SMOOTHING IN OTHER APPLICATIONS

 Surveillance of, e.g., airports is important for safety reasons.

 \mathbf{x}_k : positions of people, bags, etc.

- Other examples:
 - Communication systems: having received a complete message you try to decode it.
 - Sports: determine where a ball bounced, if someone cheated...
 - Medicine: e.g., use sequences of arterial blood pressure to estimate the intracranial pressure.

PREDICTIONS IN AUTOMOTIVE APPLICATION

 Vehciles make predicitons of the traffic situation in the near future when, e.g., planning for a safe path or assessing collision risks:

 \mathbf{x}_{k+n} : future relative position and velocity of other cars

 I_{k+n} : future relative position, headning and shape of the current lane.

 \mathbf{g}_{k+n} : future relative position, heading and shape of the guard rails.

PREDICTION IN OTHER APPLICATIONS

 Weather predictions are important, e.g., to plan routes of airplanes.

 \mathbf{x}_k : winds, pressures, temperatures, etc.

- Other examples:
 - Economy: the management of companies relies on forecasts of, e.g., demand.
 - Politics: many decisions are based on predictions regarding population growth, the financial market, etc.

SELF-ASSESSMENT

Check all that apply.

- The prediction problem is about predicting future measurements given the current state vector.
- In smoothing we conditione on data observed after time k when we compute the distribution of x_k.
- In filtering, smoothing and prediction, both the measurements and the state variables may vary with time.