ADAPTIVE CAVALIERI SIMPSON ALGORITHM

DIPARTIMENTO DI MATEMATICA

Project Algorithm and Parallel Computing

Professor Danilo Ardagna

Academic Year 2018-2019

Daniele Ceccarelli & Matilde Perego

Overview

- Introduction
 - The formulas: Standard, Composite & Adaptive Cavalieri Simpson
 - Adaptive Cavalieri Simpson
 - Definition
 - Intervals
 - Error and tolerance

- Code
 - Single
 - MPI
- Numerical experiments

Introduction

Standard Cavalieri Simpson

$$I_s(f) = (b-a)[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)]$$

Composite Cavalieri Simpson

$$I_s^c(f) = \frac{H}{6} \sum_{k=0}^{N-1} \left[f(x_k) + 4f\left(\frac{x_k + x_{k+1}}{2}\right) + f(x_{k+1}) \right]$$

Adaptive Cavalieri Simpson

Adaptive Cavalieri Simpson formula

Goal: approximate the integral of a function

Characteristic:

Non-uniform distribution of integration nodes;

Higher performance

 \rightarrow adaptive algorithm guarantees the same accuracy of the composite formula, but with a lower number of quadrature nodes and so with **less evaluation of f**;

Recursivity

→ if the error exceeds a fixed tolerance, the algorithm divides the interval of integration in two subintervals and applies adaptive Simpson's method to the first one.

Adaptive Intervals

The integration step is modified dynamically in order to satisfy the tolerance control

- 1. Calculate an **approximation** $I_s(f)$ of $I(f) = \int_{\alpha}^{\beta} f(x) dx$ (First step: $\alpha = a$, $\beta = b$)
- 2. Define $H = \beta \alpha$ and evaluate the error:
 - Error < tolerance ✓ → the approximation is ok
 - Error > tolerance \times \rightarrow the interval (α, β) is divided in two subinterval: $H = (\beta \alpha)/2$

$$\rightarrow$$
 evaluation of $I(f) = \int_{\alpha}^{\alpha+H} f(x) dx$

- → check again the error
- 3. Consider the interval $(\alpha + H, b)$, **update** $H = (\beta (\alpha + H))$ and repeat the procedure until the whole interval has been approximated.

Adaptive Intervals

Intervals:

- A = active
 → interval on which we are evaluating the integral;
- S = already evaluated
 → interval of integration that had already been evaluated;
- N = still to evaluate
 → remaining interval on which evaluating the integral.

Error & tolerance

$$E_s(f; \alpha, \beta) < \varepsilon \frac{\beta - \alpha}{b - a}$$
 in $[\alpha, \beta] \subset [a, b]$ then the respective content is the specific transfer.

then the error on the whole interval respects the tolerance ε .

Using the Cavalieri-Simpson error formula $I(f) - I_s(f) = -\frac{1}{16} \frac{(b-a)^3}{180} f^{(4)}(\xi)$ we obtain:

$$E_{S}(f;\alpha,\beta) = \int_{\alpha}^{\beta} f(x)dx - I_{S}(f) = -\frac{(b-a)^{5}}{2880} f^{(4)}(\xi) < \varepsilon \frac{\beta - \alpha}{b - a}$$
 (1)

As ξ is unknown we can use the **composite quadrature formula** to estimate the value of $\int_{\alpha}^{\beta} f(x)dx$ with a step $H = (\beta - \alpha)/2$ and we get:

$$\int_{\alpha}^{\beta} f(x)dx - I_{s}^{c}(f) = -\frac{(b-a)^{5}}{46080} f^{(4)}(\eta)$$
 (2)

Error & tolerance

Subtracting (1)-(2):
$$\Delta I = I_S^c(f) - I_S(f) = -\frac{(b-a)^5}{2880} f^{(4)}(\xi) + \frac{(b-a)^5}{46080} f^{(4)}(\eta)$$

Assuming $f^{(4)}(x)$ is almost constant on the interval $f^{(4)}(\xi) \simeq f^{(4)}(\eta)$ we can evaluate its value and obtain the error estimate:

$$\int_{\alpha}^{\beta} f(x)dx - I_{s}^{c}(f) \cong \frac{1}{15} \Delta I$$

the integration step H will be accepted only if:

$$\frac{1}{15} |\Delta I| < \frac{\varepsilon}{2} \frac{\beta - \alpha}{b - a}$$

ERROR ESTIMATE

Single code organization


```
public:
Interval_helper.hh
private:
    real a,b;
    real length;
    real alpha, beta;
    std::vector<real> nodes:
    bool finish = false;
    bool inverted;
public:
    interval_helper(...)
    void divide_interval();
    void update extremes();
    void change_finish_flag();
    getters & print
```

```
Adaptive_cav_simp.hh
private:
  interval_helper I;
  const real tol;
  const real h_min;
  const std::function<real(real)> &f;
  void divide_interval_adapt();
  void update_extremes_adapt();
                                                        Cavalieri_simpson.hh
  bool tol_control(...) const
                                                        private:
                                                        real cavalieri_simpson (...);
  adaptive_cav_simp(...)
  real solve();
  bool finish_computation() const
  void print_intervals() const;
                                                        Cavalieri simpson 5 points.hh
                                                        private:
                                                        real cavalieri_simpson_5_points (...);
```

Classes single code

- Adaptive_cav_simp.hh
 - Solve () → the real core of the program
 → applies adaptive Cavalieri Simpson formula (*)
 - \circ Interval_helper object ightarrow helps to manage dynamical interval
 - Tol_control → control over the tolerance using the error estimate
 - Print_intervals () → prints the mesh dynamically created by the algorithm

Classes single code

Interval_helper.hh

- Divide_interval () → splits the interval dynamically when the error is bigger than the tolerance
- Update_extremes () → updates the extremes dynamically when the error respects the tolerance
- This class contains both the fixed interval extremes and the dynamical ones

Classes single code

Cavalieri_simpson.hh

 Evaluates the integral of the function f between a and b with standard Cavalieri-Simpson formula:

$$I_s(f) = (b-a)[f(a) + 4f(\frac{a+b}{2}) + f(b)]$$

- Cavalieri_simpson_5_points.hh
 - Evaluates the integral of the function f between a and b with 5 points composite Cavalieri-Simpson formula

$$I_{s}^{c}(f) = \frac{H}{6} \sum_{k=0}^{4} \left[f(x_{k}) + 4f\left(\frac{x_{k} + x_{k+1}}{2}\right) + f(x_{k+1}) \right]$$


```
while(I.get_alpha() != b)
 real alpha = I.get alpha();
 real beta = I.get beta();
 real value1 = numerical::cavalieri simpson(f, alpha, beta);
 real value2 = numerical::cavalieri simpson 5 points(f, alpha, beta); //compute the integral (with 5 points cav simp)
 if(tol_control(value1, value2))
   result += value1;
   update extremes adapt();
 else if (beta - alpha < h min)
     std::cout << "Warning, h too small in: ( " << alpha << ", " << beta << " )" << '\n';
     result += value1;
     update_extremes_adapt();
   divide_interval_adapt();
```

MPI code introduction

We decided to implement a code that put together the <u>composite</u> algorithm and the <u>adaptive</u> one of Cavalier Simpson formula for quadrature in order to improve the performances \rightarrow for this purpose we used **parallel computation**.

How we used MPI?

- For the evaluation of the integrals to control the tolerance;
- We did not divided all the interval a priori, because in presence of singularities we could run into the risk that a rank has to do a higher number of iteration respect the others.

MPI code organization


```
Adaptive_cav_simp.hh
                                      private:
                                        interval_helper I;
                                        const real tol;
                                        const real h_min;
                                        const std::function<real(real)> &f;
                                        void divide_interval_adapt();
                                        void update_extremes_adapt();
                                        bool tol control(...) const
                                      public:
Interval_helper.hh
                                        adaptive cav simp(...)
                                                                                           Cavalieri_simpson_MPI.hh
                                        real solve();
private:
                                        bool finish_computation() const
                                                                                           private:
    real a,b;
                                        void print intervals()const;
                                                                                              real cavalieri_simpson_MPI (...);
    real length;
    real alpha, beta;
    std::vector<real> nodes;
    bool finish = false;
    bool inverted:
                                                                                          Cavalieri_simpson_composite.hh
public:
                                                                                          private:
    interval_helper(...)
                                                                                          real cavalieri_simpson_composite (...);
    void divide_interval();
    void update_extremes();
    void change finish flag();
    getters & print
```


Adaptive_cav_simp.hh

- Solve () → the real core of the program
 → applies adaptive Cavalieri Simpson formula (*)
- Interval_helper object → helps to manage dynamical interval
- Tol_control → control over the tolerance using the error estimate
- Print_intervals () → prints the mesh dynamically created by the algorithm
- \circ N \rightarrow number of subintervals for the composite cavalieri simpson method

Interval_helper.hh

- Divide_interval () → splits the interval dynamically when the error is bigger than the tolerance
- Update_extremes () → updates the extremes dynamically when the error respects the tolerance
- This class contains both the fixed interval extremes and the dynamical ones

Cavalieri_simpson_MPI.hh

- Divides the dynamical interval into N subintervals and send to every rank a portion of length local_h in order to apply composite Cavalieri Simpson formula with local_n intervals
- Manage the case n % size ! = 0 employing a cyclic partition
- Use MPI_Allreduce to sum all the result computed in the ranks

Cavalieri_simpson_composite.hh

 Evaluates the integral of the function f between a and b composite Cavalierisimpson formula with 2*local_N + 1 points

$$I_s^c(f) = \frac{H}{6} \sum_{k=0}^{N-1} \left[f(x_k) + 4f\left(\frac{x_k + x_{k+1}}{2}\right) + f(x_{k+1}) \right]$$

Which methods should we compare?

Our "competitor" is of course the classical composite Cav-Simp and we compare our two methods with it separately.

- How can we compare the methods?
 - Number of functional evaluations needed to have a fixed error;
 - for MPI-comp. this number is the sum of eval. for all the ranks;
 - We print both the total number and the number of final iteration since the classical composite Cav-Simp does not have a tolerance control.

	Single Adaptive	Composite
Error 1	$1.8541*10^{-4}$	1.8315*10 ⁻⁴
Func. Eval. 1	24(150)	365(16830)
Error 2	$2.2093*10^{-6}$	$2.2092*10^{-6}$
Func. Eval. 2	27(195)	30177 (113846499)

	MPI Comp. Adaptive	Composite		
Error 1	$2.9084*10^{-5}$	$2.9036*10^{-5}$		
Func. Eval. 1	88(539)	2297(660669)		
Error 2	$2.2093*10^{-6}$	$2.2092*10^{-6}$		
Func. Eval. 2	99(704)	30177 (113846499)		

tol1 =
$$10^{-4}$$
, h_min1 = 10^{-3}
tol2 = 10^{-5} , h_min2 = 10^{-4}

$$f(x) = \chi_{\{0;0.4\}}(x), \quad \forall x \in [0,1]$$

Adaptive Cavalieri Simpson Algorithm

	Single Adaptive	Composite		
Error 1	$2.5998*10^{-4}$	$2.4956*10^{-4}$		
Func. Eval. 1	192(1096)	181(4180)		
Error 2	$2.8023*10^{-5}$	2.7658*10 ⁻⁵		
Func. Eval. 2	342(2244)	313(12397)		

	MPI Comp. Adaptive	Composite
Error 1	$2.42571*10^{-4}$	2.2856*10 ⁻⁴
Func. Eval. 1	154(550)	185(4365)
Error 2	$2.2737*10^{-5}$	$2.26445*10^{-5}$
Func. Eval. 2	264(1133)	329(13689)

tol1 =
$$10^{-4}$$
, h_min1 = 10^{-3}
tol2 = 10^{-5} , h_min2 = 10^{-4}

$$f(x) = x^{10}, \qquad \forall x \in [-2,2]$$

	Single Adaptive	Composite		
Error 1	$3.1458*10^{-5}$	2.3280*10 ⁻⁵		
Func. Eval. 1	48(180)	53 (372)		
Error 2	$9.7810*10^{-6}$	$7.9696*10^{-6}$		
Func. Eval. 2	87(396)	69 (624)		

	MPI Comp. Adaptive	Composite
Error 1	$1.4022*10^{-4}$	1.0105*10 ⁻⁴
Func. Eval. 1	33(66)	37(184)
Error 2	$4.2033*10^{-6}$	$4.1620*10^{-6}$
Func. Eval. 2	66(165)	81(855)

tol1 =
$$10^{-4}$$
, h_min1 = 10^{-3}
tol2 = 10^{-5} , h_min2 = 10^{-4}

$$f(x) = 20(1 - x^2)^3, \quad \forall x \in [-1,1]$$

Speedup(k cores) =
$$\frac{Time \ adaptive \ composite \ serial}{Time \ adaptive \ composite \ with \ k \ cores}$$

tol =
$$10^{-7}$$
, h_min = 10^{-6}
 $f(x) = x^{10}$, $\forall x \in [-2,2]$

Cores\N	100	200	300	400	500	600	700	800	900	1000	Ideal
2	1,508575	1,765025	1,818812	1,891797	1,830256	1,800858	1,895594	1,880052	1,897403	1,890893	2
3	2,300389	2,526643	2,551977	2,32655	2,396777	2,477877	2,492347	2,534427	2,560699	2,63699	3
4	2,575355	3,011805	3,251444	3,287034	3,216842	3,428276	3,418942	3,342296	3,34121	3,408207	4

References

- Calcolo Scientifico: Esercizi e problemi risolti con MATLAB e Octave, Alfio Quarteroni,
 Fausto Saleri
- Slide of lessons of the course Algorithm and Parallel Computing of Professor Danilo Ardagna