Solutions to Topology by Conover

niceguy

July 3, 2022

1 Some Familiar Topological Spaces and Basic Topological Concepts

1.1 Exercises 1.2

- 1. Let $A = (0,1) \cup (1,3)$. For the given $x \in A$, give a value of r > 0 such that $(x-r,x+r) \subseteq A$.
 - (a) $x = \frac{3}{4}$
 - (b) x = 2
 - (c) $x = \frac{9}{8}$

Solution: $\frac{1}{16}$

2. Prove that $A = (0,1) \cup (1,3)$ is an open subset of \mathbb{R} .

Solution:

Case 1: $x \in (0,1)$

Let $d = \min\{1-x, x\}$. $(x-\frac{d}{2}, x+\frac{d}{2}) \subseteq A$ is an open set.

Case 2: $x \in (1,3)$

Let $d = \min\{3 - x, x - 1\}$. The proof proceeds similarly as Case 1.

As $\forall x \in A \exists$ an open interval $\subseteq A$ which contains x, A is an open set by definition.

3. Prove than an ordinary open interval is an open subset of \mathbb{R} but that an open set need *not* be an open interval.

Solution:

All open intervals are open subsets:

Replace 0 with x-r and 1 with x+r as in Case 1 from the question above.

Open sets need not be an open interval:

The empty set is an open set, but no open interval is empty, as it contains x (open intervals are in the form (x-r,x+r)).

4. State precisely what it means when a subset A of $\mathbb R$ is not open.

Solution: $\exists x \in A \text{ such that } (x-r,x+r)-A \neq \emptyset \forall r>0$

- 5. Prove that the following subsets of \mathbb{R} are not open.
 - (a) The set of rational numbers

Solution:

An open interval is nonempty. As it is an open set, it cannot contain a single point only (next question) so it must contain at least 2 points. WLOG, let the 2 points be p < q. Using limits, $\exists n \in \mathbb{N}$ such that $r = p + \frac{\sqrt{2}}{n} < q$. Since all open intervals contain an irrational r, no open intervals can be a subset of the rationals, hence it is not open.

(b) A set consisting of a single point

Solution:

 \forall open intervals (x-r,x+r), it contains the distinct points x and $x+\frac{r}{2}$. Therefore, $\{x\}$ cannot be open.

(c) An interval of the form [a, b), where a < b

Solution:

 \forall open intervals (a-r,a+r), $b=a-\frac{r}{2}$ is a point in that interval which is outside of [a,b).

(d) The set $A = \{x \in \mathbb{R} : x \neq \frac{1}{n}, \text{ for } n \in \mathbb{Z}^+\}$

Solution:

 $\frac{1}{n}$ tends to 0. Therefore $\forall r > 0 \exists n \in \mathbb{N}$ such that $r > \frac{1}{n}$. Therefore all open intervals (0-r,0+r) contains a point outside of A.

1.2 Theorem 1.3

6. (a) The union of any collection of open subsets of the real line is also an open subset of the line

Solution:

Let $\bigcup A$ denote the union of subsets A. Then

$$x \in \bigcup A \Rightarrow x \in A \Rightarrow x \in (x - r, x + r) \subseteq A \subseteq \bigcup A$$

for some r > 0.

As all points in $\bigcup A$ are in open intervals which are subsets of $\bigcup A$, the union is open by definition.

(b) The intersection of any finite collection of open subsets of the real line is also an open subset of the line.

Solution:

This can be proven with induction.

Let A and B be open sets. $x \in A \cap B \Rightarrow x \in A$. Since A is open, $\exists r_A > 0$ such that

$$x \in (x - r_A, x + r_A) \subseteq A$$

The same holds for B. Letting $r = \min\{r_A, r_B\}$,

$$x \in (x-r,x+r) \subseteq A \cap B \forall x \in A \cap B$$

The same proof is used for the base case and the induction step.

(c) Both the empty set and $\mathbb R$ itself are open subsets of the real line.

Solution:

Empty set:

$$a \Rightarrow b$$

is defined to be true when a is false. The definition of an open set A involves the assumption $x \in A$, which is false, so it is vacuously true for the empty set.

 $\forall x \in \mathbb{R}, (x-1,x+1) \in \mathbb{R}$