OPEN ENDED EXPERIMENT 2

AIM: Simulation of 2 bit Magnitude comparator using Verilog HDL in EDA Playground.

Design and Verification of 2 bit Magnitude comparator circuit in TinkerCAD.

Component/Software Used:

Component/Software	Specifications
ICs	74HC04,74HC08, 74HC32,
	74HC86
Bread Board, Power supply,	-
LEDs,	
Resistors, Switches, Push	
button for	
manual clock, Connecting	
wires	
Software(s) Used	TinkerCAD, EDA Playground

Theory:

A magnitude digital Comparator is a combinational circuit that compares two digital or binary numbers in order to find out whether one binary number is equal, less than or greater than the other binary number. We logically design a circuit for which we will have two inputs one for A and other for B and have three output terminals, one for A > B condition, one for A = B condition and one for A < B condition.

	INPUT			OUTPUT		
A1	AO	B1	ВО	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

K-Map for 2 bit comparator

B1B0		A :			
A1A0 00		01 11		10	
00	1	0	0	О	
01	0	1	0	0	
11	0	0	1	0	
10	0.	Ò	0	1	


```
A>B:- A1B1' + A0B1'B0' + A1A0B0'

A=B:- A1'A0'B1'B0' + A1'A0B1'B0 + A1A0B1B0 +

A1A0'B1B0'

= A1'B1' (A0'B0' + A0B0) + A1B1 (A0B0 + A0'B0')

= (A0B0 + A0'B0') (A1B1 + A1'B1')

= (A0 Ex-Nor B0) (A1 Ex-Nor B1)

A<B:- A1'B1 + A0'B1B0 + A1'A0'B0
```

Verilog codes and Testbench codes:

https://www.edaplayground.com/x/tiC6

Testbench:

module comparator_tb();

```
reg [1:0] x;
reg [1:0] y;
reg xltyin;
reg xgtyin;
wire xgty,xlty,xety;
```

```
initial
 begin
  $dumpfile("dump.vcd");
  $dumpvars;
 end
initial
 begin
  x = 2'b0;
  y = 2'b0;
  xltyin = 1'b0;
  xgtyin = 1'b0;
  #10 x = 2'b01;
  #10 y = 2'b10;
  #10 xgtyin = 1'b1;
  #10 \text{ xgtyin} = 1'b0;
     x = 2'b10;
  #10 xltyin = 1'b1;
  #10 x = 2'b11;
  #10 $finish;
 end
twobitcomparator u_dut(
 .xgtyin(xgtyin),
 .xltyin(xltyin),
 .x(x),
 .y(y),
 .xgty(xgty),
 .xlty(xlty),
 .xety(xety)
);
 endmodule
```

```
Design: module twobitcomparator(xgtyin,xltyin,x,y,xgty,xlty,xety); //I/O output xgty, xety, xlty; input xgtyin, xltyin; input [1:0] x,y; assign xgty = xgtyin | (\simxltyin & ((x[1] > y[1]) | ((x[1] == y[1]) & (x[0] > y[0])))); assign xlty = xltyin | (\simxgtyin & ((x[1] < y[1]) | ((x[1] == y[1]) & (x[0] < y[0])))); assign xety = \sim(xlty | xgty); endmodule Observation / Results:
```


A = B

EP WAVE

Conclusion:

By conducting this experiment we were able to simulate a 2 bit comparator in Verilog HDL using EDA Playground. We also designed and verified the circuit of a 2 bit comparator in TinkerCAD and with this we were able to find out how a 2 bit comparator works and we understood the logic behind it.

Souvik Pal 2029032