CMSC 303 Introduction to Theory of Computation, VCU Assignment: 3

Name: Steven Hernandez

1. (a) $R_a = 0\Sigma^*1$

Which says: 0 concatenated with zero or more character concatenated with 1.

(b) $R_b = (\Sigma^* 0 \Sigma^*)^4$

Says: zero or more characters followed by a 0 follower by zero or more of any character, which is then repeated 4 times.

(c) $R_c = 1 \bigcup 11 \bigcup \epsilon$

Which explicitly states the contents of the language.

(d) $R_d = \{\Sigma\} \bigcup \{\Sigma\Sigma\} \bigcup \{\Sigma\Sigma\Sigma\} \bigcup \{\epsilon\}$

Explicitly allows for any strings with one character or two characters or three characters of no characters.

(e) We develop this by beginning with a DFA M such that $M = \{x | x \text{ contains } 110\}$. From here, we change F = Q - F. Now, our DFA is matching $M = \{x | x \text{ contains } 110\}$.

$$R_e = \epsilon \bigcup 0^* (10)^* 1 \bigcup 0^* (10)^* 111^* = 0^* (10)^* 1^*$$

The center group $(10)^*$ states that there must be a 0 following directly after any 1, or else we end up int the third part 1^* , which prevents us from placing another zero, or else we our language would allow $\Sigma^*110\Sigma^*$.

(f) $R_f = \Sigma^+$

Plus indicates 1 or more.

2. (a) $M_a = (Q, \Sigma, \delta, q, F)$ such that:

$$Q = \{q_0\}$$

 Σ is our language

$$q = q_0$$

$$F = \{q_0\}$$

$$\delta = \epsilon$$

because any transitions would mean a character was read, which would not be a part of the language we are looking for.

(b) $M_b = (Q, \Sigma, \delta, q, F)$ such that:

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$q = q_0$$

$$F = \{q_3\}$$

Define δ by:

δ	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_3	q_3

3. State Diagram for M:

Steps for reaching regular expression for M:

(a) Add q_{start} and q_{end} as explained in Lemma 1.60

(b) Update each transition to a regular expression.

(d) Simplified to:

Thus our regular expression is $((\Sigma 0^*1)0)^*(\Sigma 0^*1)(11)^*$.

4. (a) Claim: $L = \{www|w \in \{0,1\}^*\}$ is not regular.

Proof: Assume to the contrary that L is regular. Let p be the pumping length given by the pumping lemma. We choose s = yyy such that |y| = p and $y \in \{0,1\}^*$.

By condition 3 of the pumping lemma, $|xy| \le p$, we can conclude that $|xy| \le |y|$. Thus, by pumping down s by setting i = 0, no matter the values for x, y, z we will be creating a new string $s_2 = y'yy$ such that |y'| < |y|. Thus $s_2 \notin L$. Contradiction.

(b) Claim: $L = \{1^n 0^m 1^n | m, n \ge 0\}$ is not regular.

Proof: Assume to the contrary that L is regular. Let p be the pumping length given by the pumping lemma. We choose $s = 1^p 0^1 1^p$. Notice, because $s \in L$ and |s| > p, the pumping lemma guarantees that s can be split into three peices s = xyz, where for any i > 0 the string xy^iz is in L.

Because by the condition 3 of the pumping lemma $|xy| \le p$, both x and y can only contains 1s from the beginning of the string s. Thus, $x = 1^*$, $y = 1^+$ (because of condition 2, |y| > 0) and $z = 1^*01^p$. So, if we were to change i from $s = xy^iz$ such that i = 0, then out new string would become $1^{p-|y|}0^11^p \notin L$. Contradiction.

(c) Claim: $L = \{x | x \in \{0, 1\}^* \text{ is not a palindrome} \}$ is not regular.

Proof: We begin by creating a new language $L_2 = \{s | s \in \{0,1\}^* \text{ is a palindrome}\}$. Note, this language is the inverse of L. Understand that if we have some DFA M, with F equal to the final states of M, then we can get M (inverse of M) by taking Q - F from the original M. Thus, if we are able to show that L_2 is not regular, we can show as well that L is not regular because DFAs for each language would be the exact same other than the values for F for each language.

Now, assume to the contrary, that L_2 is regular. Let p be the pumping length given by the pumping lemma. We choose a string $s=1^p0^11^p$. Notice, because $s\in L$ and |s|>p, the pumping lemma guarantees that s can be split into three peices s=xyz, where for any $i\geq 0$ the string xy^iz is in L.

Because by the condition 3 of the pumping lemma $|xy| \le p$, both x and y can only contains 1s from the beginning of the string s. Thus, $x = 1^*$, $y = 1^+$ (because of condition 2, |y| > 0) and $z = 1^*01^p$. So, if we were to change i from $s = xy^iz$ such that i = 0, then out new string would become $1^{p-|y|}0^11^p \not\in L_2$. Contradiction.

As stated above, because L_2 is not regular and is the inverse of L, L is not regular either.

- 5. (a) The problem here, is that the pumping lemma does not allow us to select the values for x, y, z explicitely. We take into account all different possibilities for these variables.
 - (b) Claim: $B = \left\{ 0^k x 0^k | k \geq 1 \text{ and } x \in \Sigma^* \right\}$ is regular.

Notice: we don't really have to be aware of anything other than beginning and ending with a zero because $x \in \Sigma^*$ handles any discrepincies in number of zeros. So for example, $0010 \in B$ where k=1 and $x=01 \in \Sigma^*$.

Proof: We construct an NFA $M=(Q,\Sigma,\delta,q,F)$ that recognizes B such that:

$$Q=\{q_0,q_1,q_2\}$$

$$q = q_0$$

$$F = \{q_2\}$$

Define δ by:

δ	0	1
q_0	$\{q_1\}$	Ø
$ q_1 $	$\{q_1,q_2\}$	$\{q_1\}$
q_2	Ø	Ø