Elementary Graph Algorithms

Graph Representation

- \rightarrow G=(V,E)
 - V: set of vertices
 - E: set of edges
 - ▶ Directed edge: (u,v)
 - Undirected edge: {u,v}
- Graph representations affect the complexity of algorithms

Adjacency List: Undirected

Adjacency Matrix: Undirected

	1	2	3	4	5
1	0	1	1	1	0
2	1	0	O	1	O
3	1	0	O	1	1
4	1	1	1	O	1
5	O	O	1	1	O

Incidence Matrix: Undirected

	a	b	C	d	e	f	g
1	1	O	O	O	1	1	0
2	1	1	O	O	0	O	0
3	О	O	O	1	1	0	1
4	О	1	1	O	0	1	1
5	0	0	1	1	0	0	0

Adjacency List: Directed

Adjacency Matrix: Directed

	1	2	3	4	5
1	0	1	0	1	0
2	O	0	O	1	O
3	1	0	O	1	1
4	0	0	O	O	O
5	0	0	O	1	O

Incidence Matrix: Directed

	a	b	C	d	e	f	g
1	_1	0	0	0	1	_1	0
2	1		O	O	O	O	O
3	O	O	O		1	O	_1
4	O	1	1	O	O	1	1
5	0	0	_1	1	0	0	0

Graph Representation: Comparison

- Adjacency list
 - ▶ Space: Θ(|V|+|E|)
 - Random access an edge: O(d) d: degree
 - ▶ Enumerate edges incident to a vertex: O(d)
- Adjacency matrix
 - ▶ Space: $\Theta(|V|^2)$
 - Random access an edge: Θ(1)
 - ▶ Enumerate edges incident to a vertex: O(|V|)

- Given a graph G=(V,E) and a source vertex $s\in V$.
- ▶ BFS computes the set of vertices reachable from s.
- For each vertex v reachable set, BFS computes the shortest unweighted path from s to v.
- Use a queue

- Initialization: For each $v \in V \setminus \{s\}$
 - v.c=WHITE white color: not discovered
 - ▶ v.d=∞ known min distance from s
 - ▶ v.π=NIL predecessor
- ▶ Initialization: vertex s
 - s.c=GRAY gray color: discovered & unvisited
 - **▶** s.d=0
 - \rightarrow s. π =NIL predecessor

- ▶ Initialization: queue Q
 - **▶ Q**=∅
 - Q.enqueue(s)
- Main loop: while $(Q \neq \emptyset)$
 - ▶ u=Q.dequeue()
 - For each v s.t. (u,v)∈E
 if v.c==WHITE
 v.c=GRAY, v.d=u.d+1, v.π=u, Q.enqueue(v)
 u.c=BLACK black color: visited

V	A	В	С	D	Е	F	G	Н
π	В	NIL	NIL	NIL	A	В	F	NIL
d	1	0	00	∞	2	1	2	∞

V	A	В	С	D	Е	F	G	Н
π	В	NIL	NIL	G	A	В	F	G
d	1	0	8	3	2	1	2	3

V	Α	В	С	D	Е	F	G	Н
π	В	NIL	D	G	A	В	F	G
d	1	0	4	3	2	1	2	3

V	A	В	С	D	Е	F	G	Н
π	В	NIL	D	G	A	В	F	G
d	1	0	4	3	2	1	2	3

V	А	В	С	D	Е	F	G	Н
π	В	NIL	NIL	NIL	A	E	F	NIL
d	1	0	∞	∞	2	3	4	∞

Time Complexity

- ▶ Adjacency list O(|V|+|E|)
 - ▶ Initialization: O(|V|)
 - ► Main loop: O(|E|)
 - ▶ Outer: O(|V|)
 - ▶ Inner: O(d)
- ▶ Adjacency array O(|V|²)
 - ▶ Initialization: O(|V|)
 - Main loop: $O(|V|^2)$
 - ▶ Outer: O(|V|)
 - ightharpoonup Inner: O(|V|)

BFS Property

- $\delta(u,v)$: the minimum #edges from u to v
- Lemma 22.1:
 - ▶ $\delta(s,v) \le \delta(s,u) + 1$ for every $(u,v) \in E$.
- Proof
 - u is reachable from s: Assume the shortest path from s to v is $(s,u_1),...,(u_{k-1},u_k),(u_k,u)$. Then $(s,u_1),...,(u_{k-1},u_k),(u_k,u),(u,v)$ is a path from s to v and its length is $\delta(s,u)+1$.
 - If u is unreachable, then the inequality is always true, since $\delta(s,u)=\infty$.

Lemma 22.2

- ▶ Suppose v.d is computed by BFS running on G from s. We have v.d≥ $\delta(s,v)$ for v∈V.
- ▶ Proof: By induction on #Enqueue
 - ▶ Basis: s.d= $0=\delta(s,s)$ and v.d= $\infty \ge \delta(s,v)$ for v≠s.
 - Inductive hypothesis v.d $\geq \delta(s,v)$ after the k-th Enqueue.
 - ▶ Inductive step: (k+1)-th enqueue triggered by edge (u,v). $v.d=u.d+1 \ge \delta(s,u)+1 \ge \delta(s,v)$

Lemma 22.3

- Suppose that during the execution of BFS on a graph G=(V,E), the queue Q contains the vertices $\langle v_1,...,v_r \rangle$ where v_1 is the head of Q and v_r is the tail. Then, $v_r.d \le v_1.d+1$ and $v_i.d \le v_{i+1}.d$ for $1 \le i < r$.
- ▶ Proof: by induction on #operation
- ▶ Basis: Initially $Q = \langle s \rangle$, s.d≤s.d+1.
- Induction hypothesis: Lemma 22.2 is true for <k operations.

Proof: Lemma 22.3

- ▶ Inductive step: the k-th operation
 - Queue $\langle v_1,...,v_r \rangle$
 - ▶ Dequeue: Since $v_1.d \le v_2.d$ and $v_1.d+1 \ge v_r.d$, we have $v_2.d+1 \ge v_1.d+1 \ge v_r.d$. v_2 : new head
 - ▶ Enqueue triggered by (u,v):
 - \rightarrow v.d=u.d+1 \leq v₁.d+1 tail.d \leq head.d+1
 - v_i.d is increasing:
 - Q.enqueue(v) is the first enqueue after u=Q.dequeue: v_r.d≤u.d+1=v.d
 - ▶ Otherwise: v_r.d=u.d+1=v.d

Proof: Lemma 22.3

$$v_r.d=w.d=u.d+1=v.d$$

Corollary 22.4

- Suppose that vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued before v_j. Then v_i.d≤v_j.d at the time that v_j is enqueued.
- Proof:
 - ▶ By lemma 22.3, and v_j.d is set to a finite value only once.

Theorem 22.5

- ▶ Suppose v.d is computed by BFS running on G from s. We have v.d= $\delta(s,v)$ for v∈V.
- ▶ Proof: BWOC, assume v.d> $\delta(s,v)$ and $\delta(s,v)$ is minimum. Lemma 22.2
- ▶ v \neq s and v is reachable, so $\delta(s,v)\geq 1$.
- There exists (u,v) s.t. $\delta(s,u)+1=\delta(s,v)$.
- $\delta(s,u) < \delta(s,v) \text{ implies u.d} = \delta(s,u) < \delta(s,v) < v.d.$
- u is enqueued before v. Corollary 22.4

Proof: Theorem 22.5

- When u is dequeued, there are two cases
 - v is not in Q, BFS set v.d=u.d+1.

v is in Q, BFS set v.d≤u.d+1 Lemma 22.3

 \triangleright v.d≤u.d+1=δ(s,u)+1=δ(s,v), a contradiction.

BFS Tree

- Predecessor subgraph $G_{\pi}=(V_{\pi},E_{\pi})$
 - $V_{\pi}=\{s\}\cup\{v:v.\pi\neq NIL\}$
 - $E_{\pi} = \{(v.\pi,v): v \in V_{\pi} \setminus \{s\}\}$
- If $v.\pi$ are obtained by running BFS on vertex s, then G_{π} is called BFS tree.
- The shortest path from s to v in G_{π} is also the shortest path from s to v in G.

BFS Tree

Depth First Search

- Given a graph G=(V,E) and an optional source vertex $s\in V$.
- ▶ DFS computes the set of vertices reachable from s.
- ▶ DFS can detect the existence of cycles.
- ▶ DFS cannot directly compute the shortest distance!
- DFS needs a stack, however, you may use recursive function to implement DFS.

Depth First Search

- ▶ Initialization: For each v∈V
 - v.c=WHITE white color: not discovered
 - ▶ v.π=NIL predecessor
- ▶ Initialization: time=0
- ▶ Main Loop: For each v∈V
 - ▶ if v.c==WHITE
 DFS-Visit(v)

DFS-Visit(u)

```
\rightarrow time = time +1
 u.d = time discover time
 u.c = GRAY mark u discovered
 for each v s.t. (u,v) \in E
   if v.c = WHITE
      v.\pi=u
      DFS-Visit(v)
 time = time + 1
 u.f = time
           finish time
 u.c = BLACK mark u visited
```


	S	t	u	V	W	X	У	Z
π	NIL							

	S	t	u	V	W	X	У	Z
π	Z	NIL						

	S	t	u	V	W	X	У	Z
π	Z	NIL	NIL	NIL	NIL	NIL	NIL	S

	S	t	u	V	W	X	У	Z
π	ZL	NIL	NIL	NIL	NIL	NIL	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	NIL	NIL	NIL	NIL	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	NIL	NIL	NIL	NIL	У	Z	S

	S	t	u	V	W	X	У	Z
π	ΝIL	NIL	NIL	NIL	NIL	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	NIL	NIL	NIL	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	Z	NIL	NIL	NIL	Z	У	Z	S

50

	S	t	u	V	W	X	У	Z
π	Z	NIL NIL	NIL	NIL	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	NIL	NIL	NIL	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	ΝIL	Z	NIL	NIL	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	Z	NIL	t	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	ΝIL	NIL	t	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	ΖIL	t	t	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	NIL	t	t	Z	У	Z	S

	S	t	u	V	W	X	У	Z
π	NIL	ΖIL	t	t	Z	У	Z	S

DFS Forest

	S	t	u	V	W	X	У	Z
π	NIL	ZIL	t	t	Z	У	Z	S

DFS: Edge Classification

- Tree edge (u_T,v_T): the edge first discovers v_T . I.e., $v_T.\pi=u_T$.
- ▶ Back edge (u_B,v_B): v_B is an ancestor of u_B.
- Forward edge (u_F,v_F): u_F is already an ancestor of v_F.
- Cross edge (u_C,v_C): All the other edges.
 - ▶ u_C and v_C are not in the same tree
 - ▶ u_C and v_C are in the same tree but there is no path from one to another in the tree.

DFS Forest

	S	t	u	V	W	X	У	Z
π	NIL	ΝIL	t	t	Z	У	Z	S

DFS: Edge Classification

Back edges Forward edges Cross edges Tree edges W \mathbf{X} 8 9 10 11 12 13 14 15 16 5 6

DFS: Edge Classification

Tree edge (u_T,v_T): $v_T.\pi=u_T$

▶ Back edge (u_B,v_B):

 $v_B = u_B$ or $v_B \cdot d < u_B \cdot d < u_B \cdot f < v_B \cdot f$

Forward edge (u_F,v_F):

 $\blacktriangleright v_F.\pi \neq u_F$ and $u_F.d < v_F.d < v_F.f < u_F.f$

Cross edge (u_C,v_C): Otherwise.

V	
B.f	
	u
<u<sub>F.f</u<sub>	W
2.	

Back edges

Туре	Tree	Back	Forward	Cross
V.C	WHITE	GRAY	BLACK	BLACK

Forward edges

DFS Property

- ▶ Parenthesis theorem (Thm 22.7)
- ▶ In any DFS of a graph G=(V,E), for any two vertices u and v, exactly one of the following 3 conditions holds:
 - $[u.d,u.f] \cap [v.d,v.f] = \emptyset$ and neither u nor v is a descendant of the other in the DFS forest.
 - \blacktriangleright [u.d,u.f] \subseteq [v.d,v.f] and u is v's descendent.
 - \blacktriangleright [v.d,v.f] \subseteq [u.d,u.f] and v is u's descendent.

- Discuss all cases
- ▶ Focus on the case u.d<v.d
- u.d>v.d: Symmetric to the case u.d<v.d
- u.d<v.d & v.d<u.f
 - ▶ v is GRAY when v is discovered.
 - v is a descendant of u.
 - ▶ v.f<u.f: DFS-Visit(v) is called by DFS-Visit(u).
 - ▶ We have u.d<v.d<v.f<u.f

- u.d<v.d & v.d>u.f
 - u.d<u.f<v.d<v.f
 - ▶ When v is discovered, u is BLACK.
 - u is not an ancestor of v.
 - ▶ When u is discovered, v is WHITE.
 - > v is not an ancestor of u.
- ▶ We completely discussed the case u.d<v.d
- u.d>v.d: Symmetric to the case u.d<v.d

DFS Property

- White path theorem (Thm 22.9)
- ▶ In a DFS forest of a graph G=(V,E), v is a descendant of u if and only if at the time u.d that DFS discovers u, there is a path from u to v consisting entirely of white vertices.

Theorem 22.9

When z is discovered, there is a all-white path from z to x.

- Part 1: v is a descendant of u, then there exists a white path from u to v.
- u=v: we color u after setting u.d.
- Note the path from u to v in DFS tree. Any vertex w on the path is a descendant of u, so we have u.d≤w.d by Thm 22.7. This means w is WHITE when u is discovered.

- Part 2: When u is discovered, there exists a white path from u to v implies v is a descendant of u.
- ▶ BWOC, assume v is not a descendant of u. WLOG, assume v is the closest one.

- **▶** By Thm 22.7: u.d≤w.d<w.f≤u.f
- After w is discovered, v is still WHITE.
- (w,v) triggers DFS-Visit(v), so w.d<v.d<w.f.
- By Thm 22.7: u.d≤w.d<v.d<v.f<w.f≤u.f
 v is a descendant of u.

DFS Property

- DFS of an undirected graph (Thm 22.10)
- In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

- Treat an undirected edge {u,v} as two directed edges (u,v) and (v,u).
 - ▶ When one is marked, we ignore another.
- Assume u is discovered first and (u,v) is not marked as a tree edge.
 - v is a descendent of u. white path thm
 - ▶ When v is discovered, (v,u) will be marked as a back edge, and (u,v) will be ignored.
 - ▶ {u,v} is a back edge.

DFS Property

- ▶ Back edges imply cycles (Lemma 22.11)
- A directed graph G is acyclic if and only if a DFS of G yields no back edges.

If there is a back edge (u,v), then we know u is a descendant of v in DFS forest. So append (u,v) on the path from v to u, we have a cycle.

▶ Suppose there is a cycle containing (u,v), and v is the first discovered vertex. When v is discovered, all other vertices in the cycle are white. There is a white path from v to u, so u is a descendent of v in DFS forest. We can conclude (u,v) is a back edge.

Topological Sort

- A topological sort of a directed acyclic graph (DAG) G=(V,E) is a linear ordering of V such that if G contains an edge (u,v), then u appears before v in the ordering.
- Algorithm: O(|V| + |E|)
 - ▶ Run DFS on G. abort if any back edge exists
 - ▶ Sort the vertices by their finish time in descending order.
 - ► Counting sort: O(|V|)
 - ▶ Modify DFS: Use a linked list/stack O(|V|)

手錶

Correctness Proof

- Goal: if $(u,v) \in E$ then v.f<u.f.
 - ▶ This is sufficient (why?)
- G is acyclic: no back edges.
- (u,v) is a tree edge or a forward edge:
 - u.d<v.d<v.f<u.f (Thm 22.7)
- (u,v) is a cross edge:
 - v.c=BLACK when u is discovered.
 - ▶ v.f<u.d<u.f</p>

Sufficient

Homework & Bonus

- Homework: Give a non-recursive algorithm perform topological sort in O(|V|+|E|)-time.
- ▶ Bonus: strongly connected components
 - Present algorithms
 - Kosaraju's (Ch22.5)
 - ▶ Tarjan's
 - Create a programming assignment for future students.