CSCI 4560/6560 Evolutionary Computation Final Exam - Fall 2016

NAME:		
Problem(1):		
Problem(2):		
Problem(3):		
Problem(4):		
Problem(5):		
Total:		

1. [10 Points]

The Partition problem is stated as follows. Given a set of N positive integers $X = \{x_1, x_2, \ldots, x_n\}$ separate them into two subsets P_1 and P_2 such that the difference between the sum of the elements in P_1 and the sum of the elements in P_2 is minimized. For example, if N=5 and the set $X = \{12, 17, 3, 24, 16\}$, the sets $P_1 = \{12, 24\}$ and $P_2 = \{17, 3, 16\}$ constitute an optimal solution for the Partition problem in this example as they have equal sums.

Formulate the *Partition* problem as a Genetic or Evolutionary Algorithm optimization. you should specify:

- A representation.
- A fitness function. Give 3 examples of individuals and their fitness values if you are solving the above example (i.e. $X = \{12, 17, 3, 24, 16\}$).
- A set of mutation and/or crossover and/or repair operators. Intelligent operators that are suitable for this particular problem domain will earn more credit.
- A termination criterion for the evolutionary optimization.

- (a) What is the main feature distinguishing each of the following from other evolutionary computation approaches:
 - i. Genetic programming
 - ii. Classifier systems
- (b) Briefly mention the major difference between each of the following pairs:
 - i. Success rate and mean best fitness.
 - ii. Absolute and relative evidence in parameter control in evolutionary algorithms.
 - iii. [For 6560 students only] Rank based and depth based fitness assignment methods in evolutionary multi-objective optimization.

Consider a genetic algorithm using binary representation with strings of length 5. Assume that the initial population was as follows:

Individual	Genotype	Fitness
1	10001	A
2	11100	В
3	00011	\mathbf{C}
4	01110	D

Assume also that a Goldberg-style canonical generational GA (using 1-point crossover and bit mutation) is used with mutation probability $p_m = 0.01$ and crossover probability $p_c = 1.0$. The population size is kept constant at 4 individuals and all intermediate populations have 4 individuals also.

- (a) If A = B = C = D = 10, what is the expected number of instances of the following schemata in the **mating pool**: 1^{****} , 001^{**} .
- (b) If A = B = 10 and C = D = 20, what is the expected number of instances of the following schemata in the **mating pool**: 0^{****} , 100^{**} .
- (c) Give a set of values for A, B, C, and D which makes the expected number of instances of schema 1**** in the **mating pool** twice the expected number of instances of schema 0**1* in the same pool.

- (a) Give brief definitions for the following:
 - i. Building Block hypothesis
 - ii. Deception in Genetic Algorithms
- (b) Briefly mention the major difference between each of the following pairs:
 - i. Michigan approach and Pittsburgh approach in classifier systems
 - ii. Fitness sharing and crowding.
 - iii. Parameter Tuning and Parameter Control in evolutionary algorithms.

Consider the paper: "An empirical study on GAs without parameters" presented in class.

- (a) Give one possible advantage for using the proposed approach over parameter tuning.
- (b) What did the authors use as an alternative to setting the population size parameter?
- (c) What representation did the authors use? Give your opinion regarding their choice of representation.