SL191/161

Dr. Blair D. Sullivan

November 3, 2017

optimization problems

o instance -> solution w/ cost.

o goal: find a solution w/ min (max) cost.

objective: max/min cost. solution

OPT(x) = min/max possible cost of a solution for x.

NPO: (equiv of NP)

Linstance

· Size of soln & P

o recognite instance/soln e P

o cost function eP

decision Phablem: (s OPT(x) ≤q? (min)

instance

(max)

OPT (x) > g?

Approximation We say ALG is a c-approximation for a problem if

Cost COPT(X) COST (ALG(X))

note: Cグー (min)

い~ cost (ALG(K)) COST (OPT(X))

(MOX)

してし

usually regune ALG to be poly-time,

EX: Vertex Cover -> min. VC

Clique -> max Clique

Ind. Set -> max (S

Makespan Scheduling (min) Loost # soln size

(valid /feasible)

Examples

1 Vertex Cover:

Idea: greedy strategy. Not good to add all n, but what about one at a time?

Arbitrary order > could devolve to > Star > probably high-deg is a good idea.

(b) greedily covering edges actually leads to a much better approximation.

ALG: while $E(Gi) \neq \emptyset$, pick an edge uv, add u and v to C. delete $u_1v \rightarrow Gi+1$. When considering edge uv, we know either $u \in C$ or $v \in C$. So by adding both, we could only have doubled the necessary size.

ALG 2: Sort so PIN P2N than smilar analysis on last job. apply ALG 1. 5 how 3/2 using

Load balancing: Given jobs jumijk w/ pracessing times pumply and two machines M., Mz. Goal: assign jobs to machines so that makespan (max, $\sum_{j=1,2} \sum_{j \neq m_j} y_j$) is minimized.

Goal: design a 2-approx. Improve it to 3/2-approx.

Observe: OPT > Max fpif.

-----> ALGO: use 1 machine Observation 2: OPT > 1/2 Zpi ALG1: Assign a job ja -> machine M1. Now assign jobs to Mz until

2 pe > 1/4 pa (Mz has mane work) -> assign another job to Mi. repeat until it has more work. Let W[i] = amount of work assigned to machine] when job ? is altocated.

Look @ machine w/ longest runthme. Consider the last job it was assigned. W[k] $\leq \frac{1}{2} \sum_{p_i \leq 0pT} M_i$ [k] $\leq \frac{1}{2} \sum_{p_i \leq 0pT} \sum_{p_i \leq 0pT} M_i$ [k] $\leq \frac{1}{2} \sum_{p_i \leq 0pT} \sum_{p_i \leq 0pT} M_i$ [k] $\leq \frac{1}{2} \sum_{p_i \leq 0pT} M_i$ [k]

Given £70, give a (1+E)-approximation algorithm for every with polynomial running times fixed E in 1x1 Approximation Schemes L parameter

in other words $O(f(e), n^{g(e)})$

This is a PTAS <-polynomial-time approx. scheme.

complexity class: PTAS = {NPO with a PTAS}

FPT WIT. E could be problematic e.g. 2 1/2 $O(f(\epsilon) \cdot n^{O(1)})$ EPTAS: efficient PTAS

(poly (/E). n ocr) FPTAS: Sully PTAS

PTAS Strategies

o he know that our problem is likely hard to solve exactly.

$$\boxed{I} \Rightarrow \boxed{A} \Rightarrow \boxed{A(I)}$$
instance algorithm solution

if A is exact, Cost (A(I)) =OPT(I)

<u>solution</u>: add "structure" that depends on ε . (ε big \Rightarrow lots)

Implies 3 strategies

- (1) structure on input (--) we'll talk about these

structure during execution. more approx/PTAS
references:

both have free

PDF5

Online:

Opening of Approximation Algorithms by

Williamson & Shmoys

Approximation Algorithms by

Vazirani

Structuring Input

- A simplify I -> I* in poly. time.
- (B) solve on I^* in polytime. $\leftarrow I^*$ had better be nice!
- (c) translate solution back (exploit similarity)

Ex Load Balancing Pr..., Pk? & two machines M., Mz.

Ideas for A: $\begin{cases} \text{o rounding} \\ \text{o merging} \\ \text{o cutting} \end{cases}$ categorize jobs. $\begin{cases} \text{big} \\ \text{pi} \end{cases} > \epsilon \\ \text{L} \end{cases}$

small Pi < EL

- $(A): I \rightarrow I^*$ bigjobs remain the same. (I* has Pi V i w/ Pi>EL) let $S = \sum_{\substack{i \leq mall \\ iob}} p_i \Rightarrow give I^* \lfloor \frac{S}{\epsilon} \rfloor_{iob} \text{ jobs } \omega/\text{ cost } \epsilon \rfloor_{iob}$ each.
- B) key: how many jobs in It? how big are It's jobs? >> EL all jobs take $\leq 2L$. $\Rightarrow \# jobs \leq 2L/_{EL} = \frac{2}{E}$ brute $2^{\frac{3}{E}}$

o obviously, schedule big jobs on same machine as in I*.

Say
$$Si^* = \sum$$
 small jobs on Mi^* in I*

$$M_1$$
 has= $B_1^* + S_1^* + 2\varepsilon L$
 M_2 has= $B_2^* + S_2^*$ kn

threw away & EL time

Object (1+
$$\epsilon$$
) \leq OPT (I) + ϵ L. \leq (1+ ϵ) OPT (I)