

O Algoritmo de Bellman-Ford

Notas de Aula nº 10 13 de dezembro de 2012

Ciência da Computação Grafos Prof. Leandro Zatesko

_	Exercícios	
4	Uma vantagem no uso do Algoritmo de Bellman-Ford	4
3	Análise do Algoritmo de Bellman-Ford 3.1 Demonstração da parada	3
2	O Algoritmo de Bellman-Ford	2
1	Ciclos negativos em grafos com pesos nas arestas	1

O Algoritmo de Dijkstra, proposto em 1959, apresenta complexidade de tempo O(|E(G)| + $|V(G)|\log|V(G)|$) quando implementado com uma heap de Fibonacci ao invés de uma heap binária. Em termos assintóticos, esta é a melhor complexidade de tempo conhecida mesmo nos dias de hoje para o Problema do Caminho Mínimo. O Algoritmo de Dijkstra, entretanto, não funciona se houver arestas com pesos negativos. Nestas Notas apresentamos um algoritmo que, embora mais ineficiente que o Algoritmo de Dijkstra, funciona mesmo havendo arestas com pesos negativos. Trata-se do Algoritmo de Bellman-Ford, desenvolvido por Richard Bellman e por Lester Ford Jr. entre 1958 e 1962.

Ciclos negativos em grafos com pesos nas arestas

DEFINIÇÃO 1.1. Um ciclo negativo num grafo com pesos nas arestas (V, E, ρ) é um ciclo com ciclo negativo no mínimo 3 vértices tal que a soma dos pesos das arestas do ciclo é menor que zero.

No grafo da Figura 1, um ciclo negativo é o ciclo definido por C = 1, 2, 3, 4, 7, 6, 1, pois a soma dos pesos das arestas deste ciclo é -3. O Algoritmo de Bellman-Ford não funciona em grafos com ciclos negativos, a menos que esses ciclos estejam numa componenta conexa distinta daquela em que se encontra a origem s sobre a qual se executará o Algoritmo, ou seja, a menos que esses ciclos não sejam alcançáveis a partir de s.

Como era de se esperar, a desigualdade triangular continua valendo mesmo que haja ares- inalcançável a partir de tas com pesos negativos.

Teorema 1.2. Para todo grafo G com peso nas arestas e toda tripla de vértices de G distintos s, u qualquer vértice do ciclo e w tais que $w \in N_G(u)$ vale que

s, não há problema, já que a distância de a partir de s vai ser ∞ de qualquer jeito.

Se um ciclo negativo for

 $\operatorname{dist}(s, w) \leq \operatorname{dist}(s, u) + \rho(\{u, w\}),$

ainda que haja arestas com pesos negativos e ainda que haja ciclos negativos.

Demonstração. Exercício 4.

Corolário 1.3. Se $P = v_0 v_1 \cdots v_k$ é um caminho mínimo num grafo com pesos nas arestas, ainda que haja arestas com pesos negativos e ainda que haja ciclos negativos, o subcaminho $P^i = v_0 v_1 \cdots v_i$ é também mínimo para todo $i \in [o..k]$.

Demonstração. Exercício 5.

2 O Algoritmo de Bellman-Ford

```
Bellman-Ford(G,s):
    para todo v \in V(G), faça:
       dist[v] \leftarrow \infty;
       pai[v] \leftarrow v;
    dist[s] \leftarrow o;
    para j de 1 até |V(G)| - 1, faça:
       para todo u \in V(G), faça:
          para todo w \in N_G(u) \setminus \{pai[u]\}, faça:
             se dist[w] > dist[u] + \rho(\{u, w\}), então,
8
                dist[w] \leftarrow dist[u] + \rho(\{u, w\});
9
                pai[w] \leftarrow u;
10
    para todo u \in V(G), faça:
11
12
       para todo w \in N_G(u) \setminus \{pai[u]\}, faça:
          se dist[w] > dist[u] + \rho(\{u, w\}), então,
13
             devolva "ERRO! Há ciclos negativos alcançáveis a partir da origem!"
14
    devolva dist, pai.
```

Algoritmo 1

3 Análise do Algoritmo de Bellman-Ford

3.1 Demonstração da parada

Todos os laços são executados um número finito de vezes, então, o Algoritmo para.

3.2 Demonstração da corretude

Lema 3.1. Se G não possui ciclos negativos alcançáveis a partir de s, então, em qualquer momento da execução de Bellman-Ford(G,s) vale para todo $u \in V(G)$ que $dist[u] \geqslant dist(s,u)$ e, uma vez que $dist[u] \leftarrow dist(s,u)$, dist[u] nunca mais é alterado.

Demonstração. Exercício 6.

vale se G possui ciclos negativos alcançáveis a partir de s. Tente achar um contraexemplo! A demonstração é mais

Note que este Lema não

A aemonstração e mais ou menos a que fizemos na aula do Algoritmo do Dijkstra, mas você precisa tomar cuidado com os ciclos negativos! **Lema 3.2.** Se dist $(s, v) = \infty$, então, $dist[v] = \infty$ durante toda a execução do Algoritmo.

Demonstração. Exercício 7.

٠

Lema 3.3. Em qualquer momento da execução do Algoritmo vale para todo vértice v que $dist[v] = dist[pai[v]] + \rho(pai[v], v)$.

Demonstração. Exercício 8.

♦

Lema 3.4. Num grafo G com pesos possivelmente negativos nas arestas mas sem ciclos negativos alcançáveis a partir de s, se $P = v_o v_1 v_2 \cdots v_{k-1} v_k$ é um caminho mínimo entre $s = v_o$ e $w = v_k$, então, para todo $i \in [o..k]$, após i iterações do laço da linha 5 de Bellman-Ford(G,s) vale que $dist[v_i] = dist(s, v_i)$ para todo $j \in [o..i]$.

Demonstração. Para i=0 após o iterações do laço da linha 5 vale que $dist[v_o]=dist[s]=0=$ dist(s,s). Se i, entretanto, é maior que o, suponhamos por indução que para todo i' < i valha, após i' iterações do laço da linha 5, que $dist[v_j]= dist(s,v_j)$ para todo $j \in [o..i']$. Então, da hipótese da indução, após i-1 iterações, $dist[v_{i-1}]= dist(s,v_{i-1})$. Assim, na i-ésima iteração do laço da linha 7, quando u for tomado $u=v_{i-1}$:

• Se $pai[u] \neq v_i$, então, quando w for tomado $w = v_i$ a relaxação fará valer que $dist[v_i] \leq dist[v_{i-1}] + \rho(\{u,w\})$. Porém, como $dist[v_{i-1}] = dist(s,v_{i-1})$, e como $dist(s,v_{i-1}) + \rho(\{u,w\}) = c(P^i)$ sendo $P^i = v_0 \cdots v_i$, e como do Corolário 1.3 P^i é mínimo, temos que $c(P^i) = dist(s,v_i)$ e portanto que

$$dist[v_i] \leq dist(s, v_i)$$
.

Por outro lado, já que o grafo não possui ciclos negativos alcançáveis a partir de s, vale o Lema 3.1, o que nos traz que

$$dist[v_i] \ge dist(s, v_i)$$

e por conseguinte que $dist[v_i] = dist(s, v_i)$, como queríamos.

• Se $pai[u] = v_i$, então, w não poderá ser tomado v_i para acertar $dist[v_i]$, mas isso nem será necessário. Vejamos: como $dist[v_{i-1}] = dist(s, v_{i-1})$ e como, do Lema 3.3, $dist[v_{i-1}] = dist[v_i] + \rho(v_i, v_{i-1})$, temos que

$$dist(s, v_{i-1}) = dist[v_i] + \rho(v_i, v_{i-1}).$$
(1)

Do Lema 3.1, uma vez que o grafo não possui ciclos negativos a partir de s, $dist[v_i] \ge dist(s, v_i)$, e, portanto, $dist(s, v_{i-1}) \ge dist(s, v_i) + \rho(v_i, v_{i-1})$. Por outro lado, do Teorema 1.2, $dist(s, v_{i-1}) \le dist(s, v_i) + \rho(v_i, v_{i-1})$. Concluímos dessarte que $dist(s, v_{i-1}) = dist(s, v_i) + \rho(v_i, v_{i-1})$, o que pela Equação 1 significa que $dist[v_i] = dist(s, v_i)$, como desejávamos.

•

Teorema 3.5. Se G não possui ciclos negativos alcançáveis a partir da origem s, após a execução de Bellman-Ford(G, s) vale que dist[u] = dist(s, u) para todo u.

Demonstração. Seja u um vértice qualquer, seja P um caminho mínimo de s a u e seja k o número de arestas de P. Como P é um caminho, não pode repetir vértices, o que nos traz que $k \leq |V(G)| - 1$. Então, do Lema 3.4, após k iterações do laço da linha 5 vale que dist[u] = dist(s,u). Ainda, do Lema 3.1, dist[u] nunca mais é alterado depois que atinge dist(s,u).

Por fim, quando o laço da linha 5 terminar, a execução das linhas 11-14 não encontrará nenhuma aresta $\{u,w\}$ passível de relação, pois todos os vértices u já terão seu valor dist[u] certo. A execução cairá portanto na linha 15 e o Algoritmo devolverá o valor correto.

3.3 Análise da complexidade de tempo

Esbocemos:

- o laço da linha 1 é iterado exatas |V(G)| vezes, sendo que cada iteração custa tempo O(1), já que podemos assumir que a estrutura dist é de acesso randômico e já que fazemos a análise da complexidade de tempo de um algoritmo em função do tamanho da entrada;
- a linha 4 também custa tempo O(1);
- o laço da linha 5 é iterado exatas |V(G)| 1 vezes, sendo que cada iteração custa:
 - o laço da linha 6 é iterado para todo vértice u, sendo que cada iteração custa $d_G(u)O(1)$, já que podemos assumir que O(1) é o tempo das linhas 8–10;
- o laço da linha 11 é iterado para todo vértice u, sendo que cada iteração custa $d_G(u)O(1)$, já que podemos assumir que O(1) é o tempo das linhas 13–14.

Totalizando:

$$\begin{split} T_{\text{Bellman-Ford}}(|V(G)| + |E(G)|) & \leq |V(G)|O(1) + O(1) + \left((|V(G)| - 1) \sum_{u \in V(G)} d_G(u)O(1)\right) + \sum_{u \in V(G)} d_G(u)O(1) \\ & = O(|V(G)|) + |V(G)| \Big(2|E(G)|O(1)\Big) \\ & = O(|V(G)||E(G)|). \end{split}$$

3.4 Análise da complexidade de espaço

Não é difícil perceber que *dist* assume todos os vértices do grafo G, o que faz com que o Algoritmo de Bellman-Ford tenha uma indesejada complexidade de espaço O(|V(G)|).

4 Uma vantagem no uso do Algoritmo de Bellman-Ford

A principal vantagem do Algoritmo de Bellman-Ford, que faz com que ele seja bastante utilizado em roteamento de redes, é que pode ser facilmente distribuído e facilmente aplicado num contexto dinâmico, em que o grafo está mudando o tempo todo. Numa rede, por exemplo, cada nó da rede armazena uma tabela com as distâncias conhecidas daquele nó até os demais nós da rede. Quando ocorre alguma mudança, o nó que verificar esse mudança dispara a informação para seus vizinhos, que vai ser propagada para toda a rede de ciclo em ciclo.

Computers are like air conditioners — they stop working properly if you open Windows.

Linus Torvalds?

5 Exercícios

Exercício 1. Execute o Algoritmo de Bellman-Ford para o grafo da Figura 2 a partir da origem 1 e descubra um caminho mínimo de 1 a 5.

Exercício 2. O grafo da Figura 3 possui ciclos negativos? O Algoritmo de Bellman-Ford funciona se executado a partir da origem 5? E se for executado a partir da origem 10?

Figura 3

Exercício 3. Execute o Algoritmo de Bellman-Ford para o grafo da Figura 1 (a partir de qualquer origem) e tente entender por que o Algoritmo falha quando há ciclos negativos alcançáveis a partir da origem.

Exercício 4. Mostre o Teorema 1.2.

Exercício 5. Mostre o Corolário 1.3.

Exercício 6. Mostre o Lema 3.1.

Exercício 7. Mostre o Lema 3.2.

Exercício 8. Mostre o Lema 3.3.