ФАКТ МФТИ 15 сентября 2023

Лабораторная работа 1.1.1

ОПРЕДЕЛЕНИЕ СИСТЕМАТИЧЕСКИХ И СЛУЧАЙНЫХ ПОГРЕШНОСТЕЙ ПРИ ИЗМЕРЕНИИ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ НИХРОМОВОЙ ПРОВОЛОКИ

Зайцев Александр Б03-305

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока Р4833 (рис. 1), реостат.

рис. 1 Мост постоянного тока Р4833

Удельное сопротивление материала проволоки круглого сечения, изготовленной из однородного материала и имеющей всюду одинаковую толщину, может быть определено по формуле

$$\rho = \frac{R_{\rm np}}{l} \frac{\pi d^2}{4},\tag{1}$$

где $R_{\rm np}$ - сопротивление измеряемого отрезка проволоки, l - его длина, d - диаметр проволоки. Таким образом, для определения удельного сопротивления материала проволоки следует измерить длину, диаметр и величину электрического сопротивления проволоки.

При этом необходимо учесть, что при изготовлении проволоки не удается строго выдержать постоянным ее диаметр. Он немного меняется по длине, причем случайным образом. Поэтому в формулу (1) надо подставлять среднее по длине проволоки значение диаметра и учитывать в дальнейшем соответствующую случайную погрешность этого значения.

Величину сопротивления $R_{\rm np}$ предлагается измерить согласно следующим двум схемам:

рис. 2 Схемы для измерения сопротивления при помощи амперметра и вольтметра

В первом случае вольтметр правильно измеряет падение напряжения на концах проволоки, а амперметр измеряет не величину прошедшего через проволоку тока, а сумму токов, проходящих через проволоку и через вольтметр. Поэтому

$$R_{\text{np1}} = \frac{V_a}{I_a} = R_{\text{np}} \frac{R_v}{R_v + R_{\text{np}}}$$
 (2)

Во втором случае амперметр измеряет силу тока, проходящего через проволоку, но вольтметр измеряет суммарное падение напряжения на проволоке и на амперметре. В этом случае

$$R_{\text{np2}} = \frac{V_6}{I_6} = R_{\text{np}} + R_{\text{A}} (3)$$

Формулы (2) и (3) удобно несколько преобразовать. Для схемы (а):

$$R_{\rm np} = R_{\rm np1} \frac{R_{\rm v}}{R_{\rm v} + R_{\rm np1}} = \frac{R_{\rm np1}}{1 - (R_{\rm np1}/R_{\rm v})} \approx R_{\rm np1} (1 + \frac{R_{\rm np1}}{R_{\rm v}}). (4)$$

Для схемы (6):

$$R_{\rm np} = R_{\rm np2} (1 - \frac{R_A}{R_{\rm np2}}). (5)$$

Члены, стоящие в скобках в формулах (4) и (5), определяют поправки, которые следует внести в измерения. Хотя поправки на сопротивление приборов в принципе всегда могут быть рассчитаны, этого, как правило, не делают. Расчет поправок, который в нашем случае оказался несложным, при измерениях в разветвленных цепях становится очень трудоемким и при каждом переключении прибора должен производиться заново, что практически невозможно.

Таким образом, получаем типичный пример систематической ошибки, возникающей из-за упрощения расчетной формулы. Для схемы (а) сопротивление $R_{\rm пp}$ оказывается заниженным, а для схемы (б) - завышенным относительно рассчитанного.

	Амперметр	Вольметр
Класс точности	-	0,2
Предел измерения, x_n	-	600 мВ
Число делений, п	-	150
Цена деления, x_n / n	-	4 мВ/дел
Чувствительность, n / x_n	-	0,25
Абсолютная погрешность, Δx м	0,01 мА	2 мВ
Внутреннее сопротивление (на данном пределе измерений	1,2 Ом	10 кОм

таб. 1 Основные характеристики приборов

Известно, что $R_{\rm np} \approx 5$, 3 Ом, $R_v = 10$ кОм, $R_A = 1$, 2 Ом. Оценим по формулам (4) и (5) величину поправок при измерении $R_{\rm np}$:

для схемы
$$puc.\ 2a\ \frac{R_{\rm np}}{R_{\rm v}}=5,3\ /\ 10000=0,00053,$$
 то есть 0,053% для схемы $puc.\ 26\ \frac{R_{\rm A}}{R_{\rm np}}=1,2\ /\ 5,3\ \approx\ 0,226,$ то есть 22,6%

Тогда в данной работе величину сопротивления $R_{\rm np}$ мы измерим согласно первой схеме:

рис. З Схема цепи для измерения сопротивления проволоки

Точность измерения с помощью штангенциркуля - 0,1 мм. Точность измерения с помощью микрометра - 0,01 мм.

	1	2	3	4	5	6	7	8	9	10
d_1	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
d_2	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36
$\overline{d}_1 = 0,3 \qquad \overline{d}_2 = 0,36$										

таб. 2 Измерение диаметра проволоки

Диаметр проволоки, измеренный штангенциркулем (d_1) и микрометром (d_2) на 10 различных участках (таб. 2).

При измерении диаметра проволоки штангенциркулем случайная погрешность измерения отсутствует. Следовательно, точность результата определяется только точность штангенциркуля (систематической погрешностью):

$$d_1 = (0, 36 \pm 0, 1) \text{ MM}$$

Измерения с помощью микрометра содержат как систематическую, так и случайную погрешности:

$$\sigma_{_{\text{CMCT}}} = 0,01 \text{ mm}, \qquad \sigma_{_{\text{CJ}}} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (d - \overline{d})^2} = 0$$

$$\sigma = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{сл}}^2} = \sqrt{(0,01)^2 + 0} = 0,01$$

Поскольку $\sigma_{\rm cn}^2 < \sigma_{\rm cuct}^2$, то можно считать проволоку однородной по диаметру, а погрешность диаметра σ_d определяется только $\sigma_{\rm cuct}$ микрометра.

$$d_2 = \overline{d}_2 \pm \sigma_d = 0.36 \pm 0.01 \,\text{mm}$$

Определим площадь поперечного сечения проволоки

$$s = \frac{\pi d_2^2}{4} = \frac{3.14 * 0.36^2}{4} \approx 0,100 \text{ mm}^2$$

Величину погрешности σ_{s} определим по формуле

$$\sigma_s = 2 \frac{\sigma_d}{d} s = 2 \frac{0.01}{0.36} 0, 10 \approx 0,005 \,\mathrm{mm}^2$$

Итак, $s = (0, 100 \pm 0, 005)$ мм², то есть площадь поперечного сечения проволоки определена с точностью 0,5%.

Опыт проводим для следующих трех длин проволоки:

$$l_1 = (20, 0 \pm 0, 1) \text{ cm}; \ l_2 = (30, 0 \pm 0, 1) \text{ cm}; \ l_3 = (50, 0 \pm 0, 1) \text{ cm}.$$

Измерения ведутся при убывающих значениях тока. Показания приборов записаны в таб. 3. Результаты измерения сопротивлений с помощью моста P4833 записаны в таб. 4.

Возможную систематическую погрешность $R_{\rm cp}$ оцениваем по формуле

$$\frac{\sigma_{R_{cp}}^{\text{cuct}}}{R_{cp}} = \sqrt{\left(\frac{\sigma v}{v}\right)^2 + \left(\frac{\sigma I}{I}\right)^2}$$

l = 20 см		<i>l</i> = 30 см		<i>l</i> = 50 см		
V, MB	І, мА	V, мВ	I, MA	V, мВ	I, MA	
600	288,54	600	192,96	600	116,15	
460	221,33	480	155,33	520	100,72	
400	190,77	400	128,93	480	92,91	
320	153,00	320	103,65	440	85,20	
200	95,45	240	77,15	400	77,76	
140	66,7	204	65,74	360	69,77	

 $maб.\ 3$ Показания вольтметра и амперметра Для всех трех длин l вносим поправку в измеренное значение $R_{\rm пp}$

$$R_{\text{пр}} = R_{\text{ср}} + \frac{R_{\text{ср}}^2}{R_{v}}$$

$$\sigma_{R_{\text{ср}}}^{\text{случ}} = \frac{1}{\sqrt{6}} \sqrt{\frac{\overline{V}^2}{\overline{I}^2} - R_{\text{ср}}^2}$$

$$\frac{\sigma_{R_{\text{сp}}}^{\text{сист}}}{R} = \sqrt{\left(\frac{\sigma V}{V}\right)^2 + \left(\frac{\sigma I}{I}\right)^2}$$

l = 20 cm	<i>l</i> = 30 см	l = 50 cm
$R_0 = 2,187 \text{ Om}$	$R_0 = 3,301 \text{Om}$	$R_0 = 5,385 \text{Om}$
$R_{\rm cp} = 2,090 {\rm Om}$	$R_{\rm cp} = 3,100 {\rm Om}$	$R_{\rm cp} = 5,160~{\rm Om}$
$R_{\rm np} \approx 2,090 {\rm Om}$	$R_{\rm np} \approx 3,100 \mathrm{Om}$	$R_{\rm np} \approx 5,163 \mathrm{Om}$
$\sigma_{R_{\rm cp}}^{\rm c, nyq} \approx 0,097$	$\sigma_{R_{\rm cp}}^{\rm c,nyq} \approx 0,099$	$\sigma_{R_{\rm cp}}^{\rm c,nyy} \approx 0.094$
$\sigma_{R_{\rm cp}}^{\rm cuct} \approx 0,001$	$\sigma_{R_{\rm cp}}^{\rm cuct} \approx 0,001$	$\sigma_{R_{\rm cp}}^{\rm cuct} \approx 0,001$
$\sigma_R \approx 0.097$	$\sigma_R \approx 0.099$	$\sigma_R \approx 0.094$

таб. 4 Результаты измерения сопротивления проволоки

где R_0 - сопротивление проволоки при измерении на мосте P4833.

рис. 4 Вольтамперная характеристика

$$\sigma V = \frac{\Delta x_m}{2} \qquad \sigma I = \frac{\Delta x_m}{2}$$

$$\sigma_R = \sqrt{\sigma_{R_{\rm cp}}^{\text{cmct}^2} + \sigma_{R_{\rm cp}}^{\text{cnyq}^2}}$$

l, cm	20	30	50
<i>R</i> _{ср} , Ом	2,090	3,100	5,160
σ_R , Om	0,097	0,099	0,094

таб. 5 Среднее значение сопротивления и ее погрешность Результаты измерения сопротивления проволоки с помощью вольтметра и амперметра совпадают в пределах погрешности опыта с результатами измерений мостом Р4833.

Определяем удельное сопротивление проволоки по формуле

$$\rho = \frac{R_{np}}{l} \frac{\pi d^2}{4}$$

и погрешность $\sigma_{_{\rho}}$ по формуле

$$\sigma_{\rho} = \sqrt{\left(\frac{\sigma R}{R}\right)^2 + \left(2\frac{\sigma d}{d}\right)^2 + \left(\frac{\sigma l}{l}\right)^2}$$

l, cm	р, 10 ⁻⁴ Ом · см	σ _ρ , 10 ⁻⁴ Ом · см
20	1,06	0,04
30	1,05	0,03
50	1,05	0,01

 $ma6.\ 6\ 3$ начения удельного сопротивления и ее погрешность Окончательно: $\rho=(1,05\pm0,03)\cdot10^{-4}\ \mathrm{Om}\cdot\mathrm{cm}.$ Основной вклад в ошибку σ_{ρ} вносит случайная погрешность измерения сопротивления, составляющая ~9%, поэтому при измерении сопротивления проволоки достаточна точность 3-4%. Полученное значение удельного сопротивления сравнимы с табличными значениями. В справочнике (Физические величины И.С. Григорьев, Е.З. Мейлихов, Энергоатомиздат 1991, https://djvu.online/file/M2AenZIS7603m) для удельного сопротивления нихрома при 20°C значение составляет 1, 06 \cdot 10 $^{-4}$ Ом \cdot см для сплава 70-80% Ni, 20% Cr, 0-2% Mn (массовая доля). Экспериментально полученное значение достаточно близко совпадает с табличным значением удельного сопротивления данного

сплава.