Practice Sets for Mathematics for Class VIII Covered all topics CBSE, ICSE, NCERT and all State Boards

Santanu Kundu

 $28 th\ April,\ 2025$

Contents

In	trod	uction		5			
Ι	\mathbf{Pr}	oblen	ns on Algebra	7			
1	Square and Cubes						
	1.1	Proble	ems	10			
		1.1.1	Check whether perfect square or not	10			
		1.1.2	Which term needs to be added to make it a perfect square	10			
		1.1.3	Expand the followings	10			
		1.1.4	Evaluate the followings	10			
Π	. N .	[iscel]	laneous Practice Set	11			
1	1 MATHEMATICS Problem Set 01						

4 CONTENTS

Introduction

This Books is prepared to boost concept in Mathematics, along with keeping in mind for Olympiad and Competitive based problems.

6 INTRODUCTION

Part I Problems on Algebra

Chapter 1

Formula based Square and Cube problems

1.
$$(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2 = (a+b)^2 - 4ab$$

3.
$$a^2 + b^2 = \begin{cases} (a+b)^2 - 2ab \\ (a-b)^2 + 2ab \\ \frac{1}{2} \left\{ (a+b)^2 + (a-b)^2 \right\} \end{cases}$$

4.
$$\begin{cases} a^{2} - b^{2} &= (a+b) \cdot (a-b) \\ (a+b)^{2} - (a-b)^{2} &= 4ab \\ (a+b)(a-b) &= a^{2} - b^{2} \\ ab &= \left(\frac{a+b}{2}\right)^{2} - \left(\frac{a-b}{2}\right)^{2} \end{cases}$$

5.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

6.
$$a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2} \left\{ (a-b)^2 + (b-c)^2 + (c-a)^2 \right\}$$

7.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b)$$

8.
$$(a+b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a-b)$$

9.
$$a^3 + b^3 = \begin{cases} (a+b)^3 - 3ab(a+b) \\ (a+b)\left\{(a+b)^2 - 3ab\right\} \\ (a+b)(a^2 - ab + b^2) \end{cases}$$

10.
$$a^3 - b^3 = \begin{cases} (a-b)^3 + 3ab(a-b) \\ (a-b)\left\{(a-b)^2 + 3ab\right\} \\ (a-b)(a^2 + ab + b^2) \end{cases}$$

11.
$$a^3 + b^3 + c^3 - 3abc = \begin{cases} (a+b+c)(a^2+b^2+c^2-ab-bc-ca) \\ \frac{1}{2}(a+b+c)\left\{(a-b)^2 + (b-c)^2 + (c-a)^2\right\} \end{cases}$$

12.
$$(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)$$

1.1 Problems

1.1.1 Check whether perfect square or not

1.
$$x^2 + 6xyz + 9y^2z^2$$

2.
$$x^4 + 6x^2 + 16$$

1.1.2 Which term needs to be added to make it a perfect square

1.
$$x^4 + 6x^2 + 16$$

3.
$$a^6 - 6a^3 + 1$$

2.
$$a^+9b^2$$

4.
$$4a^4 + b^4$$

1.1.3 Expand the followings

1.
$$(x+4y)^2$$

3.
$$(x+y-z)^2$$

2.
$$(x+4y-5)^2$$

4.
$$(x-2y+3z)^2$$

1.1.4 Evaluate the followings

1. If
$$x + \frac{1}{x} = 2$$
, then calculate

(a)
$$x^2 + \frac{1}{x^2}$$

(b)
$$x^3 + \frac{1}{x^3}$$

(c)
$$x^4 + \frac{1}{x^4}$$

(d)
$$x^{2025} + \frac{1}{x^{2025}}$$

(e)
$$x^a + \frac{1}{x^a}$$
, where a is any real number.

2. If
$$x + \frac{1}{x} = -2$$
, then calculate

(a)
$$x^2 + \frac{1}{x^2}$$

(b)
$$x^3 + \frac{1}{x^3}$$

(c)
$$x^4 + \frac{1}{x^4}$$

(d)
$$x^{2025} + \frac{1}{x^{2025}}$$

(e)
$$x^a + \frac{1}{x^a}$$
, where a is any integer.

- 3. If $x + \frac{1}{x} = \sqrt{3}$, then calculate
 - (a) $x^2 + \frac{1}{x^2}$
 - (b) $x^3 + \frac{1}{x^3}$
 - (c) $x^4 + \frac{1}{x^4}$
 - (d) $x^5 + \frac{1}{x^5}$
 - (e) $x^6 + \frac{1}{x^6}$
 - (f) $x^{2025} + \frac{1}{x^{2025}}$
 - (g) $x^a + \frac{1}{x^a}$, where a is any positive integer number.
- 4. If $x + \frac{1}{x} = -\sqrt{3}$, then calculate
 - (a) $x^2 + \frac{1}{x^2}$
 - (b) $x^3 + \frac{1}{x^3}$
 - (c) $x^4 + \frac{1}{x^4}$
 - (d) $x^5 + \frac{1}{x^5}$
 - (e) $x^6 + \frac{1}{x^6}$
 - (f) $x^{2025} + \frac{1}{x^{2025}}$
 - (g) $x^a + \frac{1}{x^a}$, where a is any positive integer number.

Part II Miscellaneous Practice Set

Chapter 1

MATHEMATICS Problem Set 01

Maximum Marks: 50 Start Time: Time: 1 Hour 30 Minutes End Time:

Conceptual Questions (1 Mark each)