# **How Do We Sequence Antibiotics?**

**Brute-Force Algorithms** 

Phillip Compeau and Pavel Pevzner.

Bioinformatics Algorithms: an Active Learning Approach

©2018 by Compeau and Pevzner. All rights reserved

## **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

# Discovery of Penicillin (1928)

#### **Lessons:**

- 1. Keep a messy lab.
- 2. Take vacations.
- 3. Science = mistakes.





Alexander Fleming Copyright 2018 Compeau and Pevzner.

Nathan Reading

## 15 Years Later...

# Antibiotics would be mass-produced for D-Day



# Would I Be Here without Antibiotics?



Bioinf **Strept Goodcus pyogenes** Approach. Copyright 2018 Compeau and Pevzner.

# The Rise of MRSA



Methicillin resistant Staphylococcus aureus

# What are Antibiotics, Anyway?

**Antibiotic** — "a substance that kills bacteria"

Occur naturally because of millions of years of evolutionary warfare

Produced by fungi (e.g., molds) and bacteria



## Antibiotics on the Molecular Level

We will study Tyrocidine B1, an antibiotic produced by *Bacillus Brevis* 

Tyrocidine B1 is a "mini-protein" called a **peptide**: short string of amino acids

# Questions

What makes antibiotics special as peptides?

How are antibiotics produced?

How do we sequence antibiotics?

# Questions

What makes antibiotics special as peptides?

How are antibiotics produced?

How do we sequence antibiotics?

Val-Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr

## **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

#### DNA is **transcribed** into RNA

DNA

- 5' GTGAAACTTTTTCCTTGGTTTAATCAATAT 3'
- 3' CACTTTGAAAAAGGAACCAAATTAGTTATA 5'

#### DNA is **transcribed** into RNA

Transcribed RNA GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

DNA 5' GTGAAACTTTTTCCTTGGTTTAATCAATAT 3'

3' CACTTTGAAAAAGGAACCAAATTAGTTATA 5'

Transcribed RNA CACUUUGAAAAAGGAACCAAAUUAGUUAUA

#### DNA is **transcribed** into RNA



Replace T (thymine) with U (uracil)

RNA is **translated** into peptides

### RNA is **translated** into proteins

**A**denine

Cytosine

4 nucleotides

**G**uanine

**U**racil

### RNA is **translated** into proteins

**A**denine

Cytosine

4 nucleotides

20 amino acids

Guanine

**U**racil

Alanine Al a Cysteine Cys A spartic acid Asp Glutamic acid Gl u Phenylalanine Phe Glycine Gl y Histidine Hi s Пe Isoleucine Lysine Lys Leucine Leu Methionine Met Asparagine Asn Proline Pr o Glutamine Gl n **Arginine** Ar g Ser Serine Threonine Thr Val Valine Tryptophan Tr p Tyrosine Tyr

3-letter code

Amino acid

Bioinformatics Algorithms: An Active Learning Approach. Copyright 2018 Compeau and Pevzner.

### RNA is **translated** into proteins

**A**denine

Cytosine

4 nucleotides

20 amino acids

**G**uanine

**U**racil



Bioinformatics Algorithms: An Active Learning Approach.

Copyright 2018 Compeau and Pevzner.

| Amino acid     | 3-letter code |
|----------------|---------------|
| Alanine        | Al a          |
| Cysteine       | Cys           |
| A spartic acid | Asp           |
| Glutamic acid  | Gl u          |
| Phenylalanine  | Phe           |
| Glycine        | Gl y          |
| Histidine      | His           |
| Isoleucine     | Пе            |
| Lysine         | Lys           |
| Leucine        | Leu           |
| Methionine     | Met           |
| Asparagine     | Asn           |
| Proline        | Pr o          |
| Glutamine      | Gl n          |
| Arginine       | Ar g          |
| Serine         | Ser           |
| Threonine      | Thr           |
| Valine         | Val           |
| Tryptophan     | Tr p          |
| Tyrosine       | Tyr           |

#### Can We Translate 2 Nucleotides at a Time?

|                                                         |             |            |                | Amino acid     | 3-letter code |
|---------------------------------------------------------|-------------|------------|----------------|----------------|---------------|
|                                                         |             |            |                | Alanine        | Al a          |
|                                                         |             |            |                | Cysteine       | Cys           |
| AA                                                      | GA          |            |                | A spartic acid | Asp           |
|                                                         |             |            |                | Glutamic acid  | Gl u          |
| AC                                                      | GC          |            |                | Phenylalanine  | Phe           |
|                                                         |             |            |                | Glycine        | Gl y          |
| AG                                                      | GG          |            |                | Histidine      | His           |
| <b>7</b> T T                                            | <b>O</b> TT |            | _              | Isoleucine     | lle           |
| AU                                                      | GU          |            | <b></b>        | Lysine         | Lys           |
| $\sim$ 7                                                | T T 7\      | 16 2-mers  | 20 amino acids | Leucine        | Leu           |
| CA                                                      | UA          |            |                | Methionine     | Met           |
| $\alpha$                                                | TTC         |            |                | Asparagine     | Asn           |
| CC                                                      | UC          |            |                | Proline        | Pr o          |
| CG                                                      | UG          |            |                | Glutamine      | Gl n          |
| CG                                                      | UG          |            |                | Arginine       | Ar g          |
| CU                                                      | UU          |            |                | Serine         | Ser           |
| CO                                                      | 00          |            |                | Threonine      | Thr           |
| Bioinformatics Algorithms: An Active Learning Approach. |             |            |                | Valine         | Val           |
|                                                         |             | Tryptophan | Trp            |                |               |

Bioinformatics Algorithms: An Active Learning Approach Copyright 2018 Compeau and Pevzner.

Tyrosine

Tyr

#### Can We Translate 2 Nucleotides at a Time?

|                                     |       |                         |                                   | Amino acid    | 3-letter code |
|-------------------------------------|-------|-------------------------|-----------------------------------|---------------|---------------|
|                                     |       |                         |                                   | Alanine       | Al a          |
|                                     |       |                         | _                                 | Cysteine      | Cys           |
| AA                                  | GA    |                         |                                   | Aspartic acid | Asp           |
|                                     | _     |                         |                                   | Glutamic acid | Gl u          |
| AC                                  | GC    |                         |                                   | Phenylalanine | Phe           |
|                                     |       |                         |                                   | Glycine       | Gl y          |
| AG                                  | GG    |                         |                                   | Histidine     | His           |
| <b>~</b> TT                         | OTT.  |                         |                                   | Isoleucine    | lle           |
| AU                                  | GU    |                         | <b>→</b>                          | Lysine        | Lys           |
| $\sim$ 70                           | T T 7 | 16 2-mers               | 20 amino acids                    | Leucine       | Leu           |
| CA                                  | UA    |                         |                                   | Methionine    | Met           |
| $\alpha\alpha$                      | TTC   |                         |                                   | Asparagine    | Asn           |
| CC                                  | UC    |                         |                                   | Proline       | Pr o          |
| CG                                  | UG    |                         |                                   | Glutamine     | Gl n          |
| CG                                  | UG    |                         |                                   | Arginine      | Ar g          |
| CU                                  | UU    |                         | NO!                               | Serine        | Ser           |
| CO                                  | 00    |                         |                                   | Threonine     | Thr           |
|                                     |       | Riginformatics Algorith | nms: An Active Learning Approach. | Valine        | Val           |
| Copyright 2018 Compeau and Pevzner. |       |                         |                                   | Tryptophan    | Tr p          |
|                                     |       | . , 0                   | •                                 | T             | T             |

Tyrosine

Tyr

### Can We Translate 3 Nucleotides at a Time?

|                                     |         |           |         |                          |                                                        | Amino acid    | 3-letter code |
|-------------------------------------|---------|-----------|---------|--------------------------|--------------------------------------------------------|---------------|---------------|
| 7\ 7\ 7\                            | C 7\ 7\ | C $T$ $T$ | TT7\ 7\ |                          |                                                        | Alanine       | Al a          |
| AAA                                 | CAA     | GAA       | UAA     |                          |                                                        | Cysteine      | Cys           |
| AAC                                 | CAC     | GAC       | UAC     |                          |                                                        | Aspartic acid | Asp           |
| AAG                                 | CAG     | GAG       | UAG     |                          |                                                        | Glutamic acid | Gl u          |
| AAU                                 | CAU     | GAU       | UAU     |                          |                                                        | Phenylalanine | Phe           |
| ACA                                 | CCA     | GCA       | UCA     |                          |                                                        | Glycine       | Gl y          |
| ACC                                 | CCC     | GCC       | UCC     |                          |                                                        | Histidine     | His           |
| ACG                                 | CCG     | GCG       | UCG     |                          |                                                        | Isoleucine    | Пе            |
| ACU                                 | CCU     | GCU       | UCU     |                          | <b>——</b>                                              | Lysine        | Lys           |
| AGA                                 | CGA     | GGA       | UGA     | 64 3-mers                | 20 amino acids                                         | Leucine       | Leu           |
| AGC                                 | CGC     | GGC       | UGC     |                          |                                                        | Methionine    | Met           |
| AGG                                 | CGG     | GGG       | UGG     |                          |                                                        | Asparagine    | Asn           |
|                                     |         |           |         |                          |                                                        | Proline       | Pr o          |
| AGU                                 | CGU     | GGU       | UGU     |                          |                                                        | Glutamine     | Gl n          |
| AUA                                 | CUA     | GUA       | UUA     |                          |                                                        | Arginine      | Ar g          |
| AUC                                 | CUC     | GUC       | UUC     |                          |                                                        | Serine        | Ser           |
| AUG                                 | CUG     | GUG       | UUG     |                          |                                                        | Threonine     | Thr           |
| AUU                                 | CUU     | GUU       | UUU     | Disinformation Alexandra |                                                        | Valine        | Val           |
|                                     |         |           |         |                          | ns: An Active Learning Approach.  Compeau and Pevzner. | Tryptophan    | Tr p          |
| Copyright 2010 Compean and revener. |         |           |         |                          |                                                        |               | -             |

Tyrosine

Tyr

#### Can We Translate 3 Nucleotides at a Time?

|          |     |     |     |                  |                                                                   | Amino acid     | 3-letter code |
|----------|-----|-----|-----|------------------|-------------------------------------------------------------------|----------------|---------------|
| 7\ 7\ 7\ | CAA | GAA | UAA |                  |                                                                   | Alanine        | Al a          |
| AAA      |     |     |     |                  |                                                                   | Cysteine       | Cys           |
| AAC      | CAC | GAC | UAC |                  |                                                                   | A spartic acid | Asp           |
| AAG      | CAG | GAG | UAG |                  |                                                                   | Glutamic acid  | Gl u          |
| AAU      | CAU | GAU | UAU |                  |                                                                   | Phenylalanine  | Phe           |
| ACA      | CCA | GCA | UCA |                  |                                                                   | Glycine        | Gl y          |
| ACC      | CCC | GCC | UCC |                  |                                                                   | Histidine      | His           |
| ACG      | CCG | GCG | UCG |                  |                                                                   | Isoleucine     | Пе            |
| ACU      | CCU | GCU | UCU |                  | <b>———</b>                                                        | Lysine         | Lys           |
| AGA      | CGA | GGA | UGA | 64 3-mers        | 20 amino acids                                                    | Leucine        | Leu           |
| AGC      | CGC | GGC | UGC |                  |                                                                   | Methionine     | Met           |
| AGG      | CGG | GGG | UGG |                  |                                                                   | Asparagine     | Asn           |
|          |     |     |     |                  |                                                                   | Proline        | Pr o          |
| AGU      | CGU | GGU | UGU |                  |                                                                   | Glutamine      | Gl n          |
| AUA      | CUA | GUA | UUA |                  |                                                                   | Arginine       | Ar g          |
| AUC      | CUC | GUC | UUC |                  | YES!                                                              | Serine         | Ser           |
| AUG      | CUG | GUG | UUG |                  | ILJ.                                                              | Threonine      | Thr           |
| AUU      | CUU | GUU | UUU | D'a'afa aaal' Al | ·                                                                 | Valine         | Val           |
|          |     |     |     | _                | orithms: An Active Learning Approach. t 2018 Compeau and Pevzner. | Tryptophan     | Tr p          |
|          |     |     |     | Copyrigin        | 2010 Compeau and Fevzner.                                         | Tyrosine       | Tyr           |

Codon: A triplet (3-mer) of nucleotides

**Genetic Code:** assignment of codons to amino acids to make proteins

Codon: A triplet (3-mer) of nucleotides

**Genetic Code:** assignment of codons to amino acids to make proteins



Codon: A triplet (3-mer) of nucleotides

**Genetic Code:** assignment of codons to amino acids to make proteins



Bioinformatics Algorithms: An Active Learning Approach.

Copyright 2018 Compeau and Pevzner.

Codon: A triplet (3-mer) of nucleotides

**Genetic Code:** assignment of codons to amino acids to make proteins



DNA



Francis Crick



Francis Crick



"As it turned out, the use of the word dogma caused almost more trouble than it was worth. Many years later Jacques Monod pointed out to me that I did not appear to understand the correct use of the word dogma, which

matics Algorithms: An Active Learning Approach
IS a belief that cannot be doubted."—Francis Crick

**Goal:** Find a 30-mer in the *Bacillus brevis* genome that transcribes and translates into Tyrocidine B1 (peptide of length 10).

Thousands of different 30-mers could translate into Tyrocidine B1.

Thousands of different 30-mers could translate into Tyrocidine B1.

GTTAAATTATTTCCTTGGTTTAATCAATAT ValLysLeuPheProTrpPheAsnGlnTyr

Thousands of different 30-mers could translate into Tyrocidine B1.

GTTAAATTATTTCCTTGGTTTAATCAATAT

ValLysLeuPheProTrpPheAsnGlnTyr

GTCAAGCTTTTCCCCCTGGTTCAACCAGTAC ValLysLeuPheProTrpPheAsnGlnTyr

Thousands of different 30-mers could translate into Tyrocidine B1.

GTTAAATTATTTCCTTGGTTTAATCAATAT ValLysLeuPheProTrpPheAsnGlnTyr

GTCAAGCTTTTCCCCCTGGTTCAACCAGTAC ValLysLeuPheProTrpPheAsnGlnTyr

GTAAAACTATTTCCGTGGTTCAATCAATAT ValLysLeuPheProTrpPheAsnGlnTyr

Copyright 2018 Compeau and Pevzner.

Thousands of different 30-mers could translate into Tyrocidine B1.

GTTAAATTATTTCCTTGGTTTAATCAATAT

GTCAAGCTTTTCCCCTGGTTCAACCAGTAC

GTAAAACTATTTCCGTGGTTCAATCAATAT

Thousands of different 30-mers could translate into Tyrocidine B1.

GTTAAATTATTTCCTTGGTTTAATCAATAT

GTCAAGCTTTTCCCCCTGGTTCAACCAGTAC

GTAAAACTATTTCCGTGGTTCAATCAATAT

And they are not very similar...

### Translation can start anywhere in the genome; 6 different reading frames

Translated peptides

GluThrPheSerLeuValXXXSerIle XXXAsnPhePheLeuGlyLeuIleAsn ValLysLeuPheProTrpPheAsnGlnTyr

Transcribed RNA

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

DNA

5' GTGAAACTTTTTCCTTGGTTTAATCAATAT 3'

3' CACTTTGAAAAAGGAACCAAATTAGTTATA 5'

Transcribed RNA

CACUUUGAAAAGGAACCAAAUUAGUUAUA

Translated peptides

HisPheLysLysArgProLysIleLeuIle SerValLysGluLysThrXXXAspIle

PheSerLysGlyGlnAsnLeuXXXTyr Bioinformatics Algorithms: An Active Learning Approach.

Copyright 2018 Compeau and Pevzner.

# Tyrocidine B1 is Cyclic



#### Ten different linear representations:

Val-Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr
Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr-Val
...

Tyr-Val-Lysinformatics Algoriths An Prive Carning Approach he -Asn-Gln

How many 30-mers in the *Bacillus brevis* genome encode a **linear representation** of Tyrocidine B1?

How many 30-mers in the *Bacillus brevis* genome encode a **linear representation** of Tyrocidine B1?

How many 30-mers in the *Bacillus brevis* genome encode a **linear representation** of Tyrocidine B1?

```
...processing...
```

How many 30-mers in the *Bacillus brevis* genome encode a **linear representation** of Tyrocidine B1?

```
...processing...
```

...processing...

How many 30-mers in the *Bacillus brevis* genome encode a **linear representation** of Tyrocidine B1?

```
...processing...
```

...processing...

...processing...

How many 30-mers in the *Bacillus brevis* genome encode a **linear representation** of Tyrocidine B1?

```
...processing...
...processing...
...processing...
...processing...
...processing...
```

How many 30-mers in the *Bacillus brevis* genome encode a **linear representation** of Tyrocidine B1?

```
...processing...
...processing...
...processing...
...processing...
...processing...
```



$$\frac{\text{Transcription}}{\text{RNA Polymerase}} \text{RNA} \xrightarrow{\text{Translation}} \text{Protein}$$

$$\frac{\text{Transcription}}{\text{RNA Polymerase}} \text{RNA} \xrightarrow{\text{Translation}} \text{Protein}$$

1963: Edward Tatum inhibits the ribosome in *Bacillus brevis*.



**Edward Tatum** 

$$\frac{\text{Transcription}}{\text{RNA Polymerase}} \text{RNA} \xrightarrow{\text{Translation}} \text{Protein}$$

1963: Edward Tatum inhibits the ribosome in *Bacillus brevis*.

Production of some peptides, including tyrocidines, continues!



**Edward Tatum** 

$$\frac{\text{Transcription}}{\text{RNA Polymerase}} \text{RNA} \xrightarrow{\text{Translation}} \text{Protein}$$

1969: Lipmann shows tyrocidines are non-ribosomal peptides (NRPs).



Fritz Lipmann

$$\frac{\text{Transcription}}{\text{RNA Polymerase}} \text{RNA} \xrightarrow{\text{Translation}} \text{Protein}$$

1969: Lipmann shows tyrocidines are non-ribosomal peptides (NRPs).

NRPs are synthesized not by the ribosome but by NRP synthetase.

Ricinformatics Algorithms: Aff Active Learning Approach.



ormatics Algorithms: An Active Learning Approach Copyright 2018 Compeau and Pevzner.

### NRP Synthetase Adds One Amino Acid at a Time



#### **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

# The Mass Spectrometer

Finding an NRP "hidden" in the *Bacillus brevis* genome will not work for sequencing NRPs.

# The Mass Spectrometer

Finding an NRP "hidden" in the *Bacillus brevis* genome will not work for sequencing NRPs.

Mass spectrometer:

"expensive molecular scale"



Bioinformatics Algorithms: An Active Learning Approach.

Copyright 2018 Compeau and Pevzner.

1 Dalton (Da) ≈ mass of proton/neutron

Mass of molecule ≈ sum of protons/neutrons

1 Dalton (Da) ≈ mass of proton/neutron

Mass of molecule ≈ sum of protons/neutrons

Mass of Glycine ( ${^{\rm C}_2}{^{\rm H}_3}$ ON) ≈ 12 · 2

1 Dalton (Da) ≈ mass of proton/neutron

Mass of molecule ≈ sum of protons/neutrons

Mass of Glycine  $(C_2H_3ON) \approx 12 \cdot 2 + 1 \cdot 3$ 

1 Dalton (Da) ≈ mass of proton/neutron

Mass of molecule ≈ sum of protons/neutrons

Mass of Glycine  $(C_2H_3ON) \approx 12 \cdot 2 + 1 \cdot 3 + 16$ 

1 Dalton (Da) ≈ mass of proton/neutron

Mass of molecule ≈ sum of protons/neutrons

Mass of Glycine  $(C_2H_3ON) \approx 12 \cdot 2 + 1 \cdot 3 + 16 + 14$ 

1 Dalton (Da) ≈ mass of proton/neutron

Mass of molecule ≈ sum of protons/neutrons

Mass of Glycine (
$$C_2H_3ON$$
) ≈ 12 · 2 + 1 · 3 + 16 + 14 ≈ 57 Da

1 Dalton (Da) ≈ mass of proton/neutron

Mass of molecule ≈ sum of protons/neutrons

Mass of Glycine ( $C_2H_3ON$ ) ≈ 12 · 2 + 1 · 3 + 16 + 14 ≈ 57 Da

Actual mass: 57.02 Da Integer mass: 57

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

What is the mass of Tyrocidine B1? (VKLFPWFNQY)

V 99

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I **L** N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H **F** R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

#### Contains masses of all 20 amino acids

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

V K L F P W F N Q Y 
$$99+128+113+147+97+186+147+114+128+163 = 1322$$

#### Note that two amino acid pairs have equal mass:

G A S P V T C I L N D K Q E M H F R Y W 57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

Note that two amino acid pairs have equal mass:

```
I/L
                                            K/Q
G
                                   Ν
                                                   Ε
       S
                                                       Μ
                                                           Η
                                                               F
                                                                   R
                                                                           W
       87
           97
               99 101 103
                             113
                                  114 115
                                            128
                                                  129 131 137 147 156 163 186
```

Note that two amino acid pairs have equal mass:

```
G A S P V T C I/L N D K/Q E M H F R Y W
57 71 87 97 99 101 103 113 114 115 128 129 131 137 147 156 163 186
```

We move from 20 amino acids 

18 integer masses

**NQEL** 

NQEL

NQEL

NQEL

NQEL

NQEL

**NQEL** 

NQEL

NQEL











Theoretical spectrum: mass of every possible subpeptide, plus 0 and the mass of the peptide.

| Mass | Subpeptide |
|------|------------|
| 113  | L          |
| 114  | N          |
| 128  | Q          |
| 129  | E          |
| 227  | LN         |
| 242  | NQ         |
| 242  | EL         |
| 257  | QE         |
| 355  | LNQ        |
| 356  | ELN        |
| 370  | QEL        |
| 371  | NQE        |
| 484  | NQEL       |
| 0    | ach.       |
|      |            |

|                                                                                              | Subpeptide         | Mass |
|----------------------------------------------------------------------------------------------|--------------------|------|
| Theoretical spectrum: mass of                                                                | L                  | 113  |
|                                                                                              | N                  | 114  |
| every possible subpeptide, plus                                                              | Q                  | 128  |
| 0 and the mass of the peptide.                                                               | E                  | 129  |
|                                                                                              | LN                 | 227  |
|                                                                                              | NQ                 | 242  |
|                                                                                              | EL                 | 242  |
| Dontido > Cnoctrum                                                                           | QE                 | 257  |
| Peptide — Spectrum                                                                           | LNQ                | 355  |
| NQEL                                                                                         | ELN                | 356  |
|                                                                                              | QEL                | 370  |
|                                                                                              | NQE                | 371  |
|                                                                                              | NQEL               | 484  |
| Bioinformatics Algorithms: An Active Learning Approad<br>Copyright 2018 Compeau and Pevzner. | ch. \\ \\ \\ \' \' | 0    |

484

NQEL

\\ //

|                                                                                 |               |          | Subpeptide | Mass |
|---------------------------------------------------------------------------------|---------------|----------|------------|------|
| <b>Theoretical spectrum</b> : mass of<br><i>every possible</i> subpeptide, plus |               |          | L          | 113  |
|                                                                                 |               |          | N          | 114  |
|                                                                                 |               |          | Q          | 128  |
| 0 and the mass of the peptide.                                                  |               |          | E          | 129  |
|                                                                                 |               |          | LN         | 227  |
|                                                                                 |               |          | NQ         | 242  |
|                                                                                 | EASY Spectrum |          | EL         | 242  |
| Peptide —                                                                       |               | Spoctrum | QE         | 257  |
| •                                                                               |               | Spectrum | LNQ        | 355  |
| NQEL                                                                            |               |          | ELN        | 356  |
|                                                                                 |               |          | QEL        | 370  |
|                                                                                 |               |          | NQE        | 371  |

Bioinformatics Algorithms: An Active Learning Approach.

Copyright 2018 Compeau and Pevzner.

|                                                                                              | Subpeptide | Mass |
|----------------------------------------------------------------------------------------------|------------|------|
| Theoretical spectrum: mass of                                                                | L          | 113  |
| • • • • • • • • • • • • • • • • • • •                                                        | N          | 114  |
| every possible subpeptide, plus                                                              | Q          | 128  |
| 0 and the mass of the peptide.                                                               | E          | 129  |
|                                                                                              | LN         | 227  |
|                                                                                              | NQ         | 242  |
|                                                                                              | EL         | 242  |
| Pontido / Snoctrum                                                                           | QE         | 257  |
| Peptide                                                                                      | LNQ        | 355  |
| ????                                                                                         | ELN        | 356  |
|                                                                                              | QEL        | 370  |
|                                                                                              | NQE        | 371  |
|                                                                                              | NQEL       | 484  |
| Bioinformatics Algorithms: An Active Learning Approac<br>Copyright 2018 Compeau and Pevzner. | h. w//     | 0    |

|                                 |               |                                                                 | Subpeptide  | Mass |
|---------------------------------|---------------|-----------------------------------------------------------------|-------------|------|
| Theoretic                       | cal spectrum  | · mass of                                                       | L           | 113  |
| Theoretical spectrum: mass of   |               |                                                                 | N           | 114  |
| every possible subpeptide, plus |               |                                                                 |             | 128  |
| 0 and the                       | mass of the   | e peptide.                                                      | E           | 129  |
|                                 |               |                                                                 | LN          | 227  |
|                                 |               |                                                                 | NQ          | 242  |
| Peptide ????                    | HARD Spectrum | EL                                                              | 242         |      |
|                                 |               | Spoctrum                                                        | QE          | 257  |
|                                 |               | Spectrum                                                        | LNQ         | 355  |
|                                 |               | ELN                                                             | 356         |      |
|                                 |               |                                                                 | QEL         | 370  |
|                                 |               |                                                                 | NQE         | 371  |
|                                 |               |                                                                 | NQEL        | 484  |
|                                 | _             | rithms: An Active Learning Approac<br>2018 Compeau and Pevzner. | h.<br>\\ // | 0    |

| Theoretical spectrum: mass of                                                               | 113 |  |
|---------------------------------------------------------------------------------------------|-----|--|
|                                                                                             |     |  |
| every possible subpeptide, plus                                                             | 128 |  |
| 0 and the mass of the peptide.                                                              | 129 |  |
|                                                                                             | 227 |  |
|                                                                                             | 242 |  |
|                                                                                             | 242 |  |
| Peptide HARD Spectrum                                                                       | 257 |  |
| Peptide 			 Spectrum                                                                        | 355 |  |
|                                                                                             | 356 |  |
| Cyclopeptide Sequencing Problem:                                                            | 370 |  |
| Reconstruct a cyclic peptide from its                                                       | 371 |  |
| theoretical spectrum.                                                                       | 484 |  |
| Bioinformatics Algorithms: An Active Learning Approach.  Convright 2018 Compean and Peyzner | 0   |  |

### **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

The mass of the entire peptide is usually known.

#### Algorithm:

- 1. Generate all peptides with given mass (1322).
- 2. Form their theoretical spectra.
- 3. Look for matches with the given spectrum

**Brute Force Algorithm**: "Try all" candidate solutions.







Total Mass: 484

Total Mass: 484 Total Mass: 484

Total Mass: 484 Total Mass: 484

These peptides are completely different.

Total Mass: 484 Total Mass: 484

These peptides are completely different.

How can we exclude the incorrect peptide?

| Spectrum of   | TMDH | S                                                                                           | pectrum of | NQEL |
|---------------|------|---------------------------------------------------------------------------------------------|------------|------|
| W //          | 0    |                                                                                             | W //       | 0    |
| Т             | 101  |                                                                                             | L          | 113  |
| D             | 115  |                                                                                             | N          | 114  |
| М             | 131  |                                                                                             | Q          | 128  |
| Н             | 137  |                                                                                             | E          | 129  |
| $\mathtt{TM}$ | 232  |                                                                                             | LN         | 227  |
| HT            | 238  |                                                                                             | NQ         | 242  |
| MD            | 246  |                                                                                             | EL         | 242  |
| DH            | 252  |                                                                                             | QE         | 257  |
| TMD           | 347  |                                                                                             | LNQ        | 355  |
| DHT           | 353  |                                                                                             | ELN        | 356  |
| HTM           | 369  |                                                                                             | QEL        | 370  |
| MDH           | 383  |                                                                                             | NQE        | 371  |
| TMDH          | 484  | Bioinformatics Algorithms: An Active Learning Approach. Copyright 2018 Compeau and Pevzner. | NQEL       | 484  |

| Spectrum of | TMDH |                                                                                            | Spectrum of | NQEL |
|-------------|------|--------------------------------------------------------------------------------------------|-------------|------|
| W //        | 0    |                                                                                            | w //        | 0    |
| Т           | 101  |                                                                                            | L           | 113  |
| D           | 115  |                                                                                            | N           | 114  |
| M           | 131  |                                                                                            | Q           | 128  |
| H           | 137  | Their spectra completely                                                                   | <b>y</b> E  | 129  |
| TM          | 232  | disagree!                                                                                  | LN          | 227  |
| HT          | 238  | 3.13 3. <b>8</b> . 3 3 1                                                                   | NQ          | 242  |
| MD          | 246  |                                                                                            | EL          | 242  |
| DH          | 252  |                                                                                            | QE          | 257  |
| TMD         | 347  |                                                                                            | LNQ         | 355  |
| DHT         | 353  |                                                                                            | ELN         | 356  |
| HTM         | 369  |                                                                                            | QEL         | 370  |
| MDH         | 383  | District amounties Algorithms at An Astino Loganics Apparent                               | NQE         | 371  |
| TMDH        | 484  | Bioinformatics Algorithms: An Active Learning Approach Copyright 2018 Compeau and Pevzner. | NQEL        | 484  |

| Spectrum of | TMDH |                                                                                            | Spectrum of | NQEL |
|-------------|------|--------------------------------------------------------------------------------------------|-------------|------|
| W //        | 0    |                                                                                            | w //        | 0    |
| Т           | 101  |                                                                                            | L           | 113  |
| D           | 115  |                                                                                            | N           | 114  |
| M           | 131  |                                                                                            | Q           | 128  |
| Н           | 137  | Their spectra completely                                                                   | <b>y</b> E  | 129  |
| TM          | 232  | disagree!                                                                                  | LN          | 227  |
| HT          | 238  | 3.13 S.B. 3 3 1                                                                            | NQ          | 242  |
| MD          | 246  |                                                                                            | EL          | 242  |
| DH          | 252  | How can we use this?                                                                       | QE          | 257  |
| TMD         | 347  |                                                                                            | LNQ         | 355  |
| DHT         | 353  |                                                                                            | ELN         | 356  |
| HTM         | 369  |                                                                                            | QEL         | 370  |
| MDH         | 383  |                                                                                            | NQE         | 371  |
| TMDH        | 484  | Bioinformatics Algorithms: An Active Learning Approach Copyright 2018 Compeau and Pevzner. | NQEL        | 484  |

#### A New Idea

**Idea:** Let's slowly build up candidate solutions from smaller *linear* peptides.

We need to restrict the total number of linear peptides that we consider.

### **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra













Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

Which amino acids have masses in *Spectrum*?

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

### Which amino acids have masses in *Spectrum*?

I/L K/O Ν Ε F W M Η R 97 99 101 103 113 128 129 131 137 147 156 163 186 87 114 115

```
Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497
```

### Which amino acids have masses in *Spectrum*?

```
I/L
                                      K/O
                             Ν
                                              Ε
                                                          F
                                                                       W
                                                  M
                                                      Η
                                                              R
                      113
                            114 115
                                      128
                                             129 131 137 147 156 163 186
87
    97
        99
           101 103
```

```
Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497
```

Which amino acids have masses in *Spectrum*?

```
G A S P V T C I/L N D K/Q E M H F R Y W 57 71 87 97 99 101 103 113 114 115 128 129 131 137 147 156 163 186
```

We start with four "1-mer" peptides:

$$P$$
,  $V$ ,  $T$ ,  $C$ 

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

#### **Extend** these 1-mers into all possible 2-mers:

PA VA TA CA

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

### **Extend** these 1-mers into all possible 2-mers:

PA VA TA CA PC VC TC

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

| $\mathbf{P}A$ | <b>V</b> A       | ${f T}$ A    | CA         |
|---------------|------------------|--------------|------------|
| PC            | <b>V</b> C       | TC           | <b>C</b> C |
| PD            | $\mathbf{v}_{D}$ | ${f T}{f D}$ | CD         |

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

| $\mathbf{P}A$          | <b>V</b> A     | ${f T}$ A    | CA         |
|------------------------|----------------|--------------|------------|
| PC                     | <b>V</b> C     | TC           | <b>C</b> C |
| PD                     | $\mathbf{v}$ D | ${f T}{f D}$ | <b>C</b> D |
| $\mathbf{P}\mathrm{E}$ | f vE           | ${f T}{f E}$ | <b>C</b> E |

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

| PA  | <b>V</b> A     | ${f T}{f A}$ | <b>C</b> A |
|-----|----------------|--------------|------------|
| PC  | <b>V</b> C     | TC           | <b>C</b> C |
| PD  | $\mathbf{v}$ D | ${f T}{f D}$ | <b>C</b> D |
| PE  | <b>V</b> E     | ${f T}{f E}$ | CE         |
| ••• | •••            | •••          | •••        |

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

| PA            | <b>V</b> A                | ${f T}{f A}$ | CA  |
|---------------|---------------------------|--------------|-----|
| PC            | <b>V</b> C                | TC           | CC  |
| PD            | $\mathbf{v}$ D            | ${f T}{f D}$ | CD  |
| PE            | $\mathbf{v}_{\mathrm{E}}$ | ${f T}{f E}$ | CE  |
| •••           | •••                       | •••          | ••• |
| $\mathbf{P}W$ | $\mathbf{v}$ W            | ${f T}W$     | CW  |

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

| $\mathbf{P}$ A | <b>V</b> A     | ${f T}{f A}$  | CA         |
|----------------|----------------|---------------|------------|
| PC             | <b>V</b> C     | TC            | <b>C</b> C |
| PD             | <b>V</b> D     | ${f T}{f D}$  | CD         |
| PE             | <b>V</b> E     | ${f T}{f E}$  | CE         |
| •••            | •••            | •••           | •••        |
| $\mathbf{P}W$  | $\mathbf{v}$ W | ${f T}W$      | CW         |
| <b>P</b> Υ     | <b>V</b> Y     | ${f T} {f Y}$ | CY         |

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

| PA  | VA  | TA  | CA  |
|-----|-----|-----|-----|
| PC  | VC  | TC  | CC  |
| PD  | VD  | TD  | CD  |
| PE  | VE  | TE  | CE  |
| ••• | ••• | ••• | ••• |
| PW  | VW  | TW  | CW  |
| PY  | VY  | TY  | CY  |



Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

### PV is **consistent** with *Spectrum*:

$$Mass(P) = 97$$

$$Mass(V) = 99$$

$$Mass(PV) = 196$$

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

### PV is **consistent** with *Spectrum*:

$$Mass(P) = 97$$

$$Mass(V) = 99$$

$$Mass(PV) = 196$$

### PV is **consistent** with *Spectrum*:

$$Mass(P) = 97$$

$$Mass(V) = 99$$

$$Mass(PV) = 196$$

### CD is **inconsistent** with *Spectrum*:

$$Mass(C) = 103$$

$$Mass(D) = 115$$

$$Mass(CD) = 218$$

### PV is **consistent** with *Spectrum*:

$$Mass(P) = 97$$

$$Mass(V) = 99$$

$$Mass(PV) = 196$$

### CD is **inconsistent** with *Spectrum*:

$$Mass(C) = 103$$

$$Mass(D) = 115$$

$$Mass(CD) = 218$$

Spectrum

```
0 97 97 99 101 103 196 198 198 200 202
295 297 299 299 301 394 396 398 400 400 497
```

#### List of consistent 2-mers:

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

#### List of consistent 2-mers:

Expand, then Trim...

Spectrum

```
0 97 97 99 101 103 196 198 198 200 202
295 297 299 299 301 394 396 398 400 400 497
```

#### List of consistent 3-mers:

| PVC | PVT | PTP | PTV | PCV |
|-----|-----|-----|-----|-----|
| VPC | VPT | VTP | VCP | TPV |
| TPC | TVP | CPT | CPV | CVP |

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

#### List of consistent 3-mers:

| PVC | PVT | PTP | PTV | PCV |
|-----|-----|-----|-----|-----|
| VPC | VPT | VTP | VCP | TPV |
| TPC | TVP | CPT | CPV | CVP |

Expand, then Trim...

Spectrum 0 97 97 99 101 103 196 198 198 200 20 295 297 299 299 301 394 396 398 400 400 49

#### List of consistent 4-mers:

PVCP PTPV PTPC PCVP VPTP VCPT TPVC TPCV CPTP CVPT

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

#### List of consistent 4-mers:

PVCP PTPV PTPC PCVP VPTP VCPT TPVC TPCV CPTP CVPT

Expand, then Trim...

Spectrum 0 97 97 99 101 103 196 198 198 200 2 295 297 299 299 301 394 396 398 400 400 4

#### List of consistent 5-mers:

PVCPT PTPVC PTPCV PCVPT VPTPC VCPTP TPVCP TPCVP CPTPV CVPTP

Spectrum 0 97 97 99 101 103 196 198 198 200 202 295 297 299 299 301 394 396 398 400 400 497

#### List of consistent 5-mers:

PVCPT PTPVC PTPCV PCVPT VPTPC VCPTP TPVCP TPCVP CPTPV CVPTP



- 1. Find all amino acids whose masses occur in *Spectrum*. Add to *List*.
- **2. Extend** each peptide in *List* by each of 18 different amino acid masses.
- 3. Trim inconsistent peptides from *List*.
- Return any peptides in List whose theoretical spectra match Spectrum.
- 5. Iterate Steps 2-4 until *List* is empty.

# Is This B-&-B Approach Efficient?

The brute force algorithm to cyclopeptide sequencing is **exponential**.



### Is This B-&-B Approach Efficient?

# B&B for Cyclopeptide Sequencing *may* be exponential **on some dataset**...



Bioinformatics Algorithms: An Active Learning Approach.
Copyright 2018 Compeau and Pevzner.

# Is This B-&-B Approach Efficient?

B&B for Cyclopeptide Sequencing *may* be exponential **on some dataset**...



... buttoin mar Marchine Ctive Lei Sing Merray. fast!

Copyright 2018 Compeau and Pevzner.

#### Can We Go Home Now?



Bioinformatics Algorithms: An Active Learning Approach.

Copyright 2018 Compeau and Pevzner.

#### Can We Go Home Now?

#### NO!

#### **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

Experimental spectra often produce errors.

Experimental spectra often produce errors.

Consider the following spectra for NQEL:

**Theoretical:** 0 113 114 128 129 227 242 242 257 355 356 370 371 484

**Experimental:** 0 99 113 114 128 227 257 299 355 356 370 371 484

Experimental spectra often produce errors.

Consider the following spectra for NQEL:

**Theoretical:** 0 113 114 128 129 227 242 242 257 355 356 370 371 484

**Experimental:** 0 **99** 113 114 128 227 257 **299** 355 356 370 371 484

False masses: present in experimental spectrum, absent from theoretical spectrum

Experimental spectra often produce errors.

Consider the following spectra for NQEL:

**Theoretical:** 0 113 114 128 **129** 227 **242** 242 257 355 356 370 371 484

**Experimental:** 0 **99** 113 114 128 227 257 **299** 355 356 370 371 484

False masses: present in experimental spectrum, absent from theoretical spectrum

Missing masses: present in theoretical spectrum, absent from

Bioinfexperimental spectrum proach.
Copyright 2018 Compeau and Pevzner.

### We Need a New Algorithm

Currently: a peptide's theoretical spectrum must match the experimental spectrum **exactly**.

**Theoretical:** 0 113 114 128 **129** 227 **242** 242 257 355 356 370 371 484

**Experimental:** 0 **99** 113 114 128 227 257 **299** 355 356 370 371 484

### We Need a New Algorithm

Currently: a peptide's theoretical spectrum must match the experimental spectrum **exactly**.

Theoretical: 0 113 114 128 129 227 242 242 257 355 356 370 371 484

Experimental: 0 99 113 114 128 227 257 299 355 356 370 371 484

Instead: **score** a peptide on how many masses its spectrum **shares** with the experimental spectrum.

### We Need a New Algorithm

Currently: a peptide's theoretical spectrum must match the experimental spectrum **exactly**.

Theoretical: 0 113 114 128 129 227 242 242 257 355 356 370 371 484

Experimental: 0 99 113 114 128 227 257 299 355 356 370 371 484

Instead: **score** a peptide on how many masses its spectrum **shares** with the experimental spectrum.

Score(NQEL, ExperimentalSpectrum) = 11

Cut: reduces field to only those players in contention.

| Golfer                           | Score                           |
|----------------------------------|---------------------------------|
| Cabrera                          | -6                              |
| Woods                            | -4                              |
| Watson                           | -1                              |
| McDowell                         | -1                              |
| Scott                            | +1                              |
| Daly  Bioinformatics Algorithms: | +14 An Active Learning Approach |

Copyright 2018 Compeau and Pevzner.

Cut: reduces field to only those players in contention.

| Golfer   | Score                       |
|----------|-----------------------------|
| Cabrera  | -6                          |
| Woods    | -4                          |
| Watson   | -1                          |
| McDowell | -1                          |
| Scott    | +1                          |
| Daly     | +14                         |
| •        | An Active Learning Approach |

Keep top 3 players

oinformatics Algorithms! An Active Learning Approach Copyright 2018 Compeau and Pevzner.

Cut: reduces field to only those players in contention.

| Golfer   | Score |
|----------|-------|
| Cabrera  | -6    |
| Woods    | -4    |
| Watson   | -1    |
| McDowell | -1    |
| Scott    | +1    |
| Daly     | +14   |

Keep top 3 players

oinformatics Algorithms! An Active Learning Approach Copyright 2018 Compeau and Pevzner.

Cut: reduces field to only those players in contention.

| Golfer                     | Score                       |
|----------------------------|-----------------------------|
| Cabrera                    | -6                          |
| Woods                      | -4                          |
| Watson                     | -1                          |
| McDowell                   | -1                          |
| Scott                      | +1                          |
| Daly                       | +14                         |
| Bioinformatics Algorithms: | An Active Learning Approach |

Keep top 3 players "with ties"

Bioinformatics Algorithms: An Active Learning Approach Copyright 2018 Compeau and Pevzner.

Cut: reduces field to only those players in contention.

| Golfer   | Score |
|----------|-------|
| Cabrera  | -6    |
| Woods    | -4    |
| Watson   | -1    |
| McDowell | -1    |

Keep top 3 players "with ties"

# LeaderboardCyclopeptideSequencing

- 1. Add "0-peptide" to Leaderboard as LeaderPeptide.
- Extend each peptide in Leaderboard by each of 18 different amino acid masses.
- Cut low-scoring peptides from Leaderboard. (Keep "top N with ties")
- 4. Update *LeaderPeptide* if there is a higher scoring peptide in *Leaderboard* with mass = parent mass.
- 5. Eliminate all peptides with mass > parent mass.
- 6. Iterate 2-5 until *Leaderboard* is empty.
- 7. Return *LeaderPeptide*.

Warning: This method is a heuristic; it sacrifices precision and may miss the correct solution.

| 0    | 97   | 99   | 113  | 114  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  | 242  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 244  | 260  | 261  | 262  | 283  | 291  | 333  | 340  | 357  | 385  | 388  | 389  | 390  | 390  |
| 405  | 430  | 430  | 447  | 485  | 487  | 503  | 504  | 518  | 543  | 544  | 552  | 575  | 577  |
| 584  | 631  | 632  | 650  | 651  | 671  | 672  | 690  | 691  | 738  | 745  | 747  | 770  | 778  |
| 779  | 804  | 818  | 819  | 820  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  |
| 934  | 965  | 982  | 989  | 1030 | 1031 | 1309 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 |
| 1136 | 1159 | 1175 | 1175 | 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |

| 0    | 97   | 99   | 113  | 114  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  | 242  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 244  | 260  | 261  | 262  | 283  | 291  | 333  | 340  | 357  | 385  | 388  | 389  | 390  | 390  |
| 405  | 430  | 430  | 447  | 485  | 487  | 503  | 504  | 518  | 543  | 544  | 552  | 575  | 577  |
| 584  | 631  | 632  | 650  | 651  | 671  | 672  | 690  | 691  | 738  | 745  | 747  | 770  | 778  |
| 779  | 804  | 818  | 819  | 820  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  |
| 934  | 965  | 982  | 989  | 1030 | 1031 | 1309 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 |
| 1136 | 1159 | 1175 | 1175 | 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |

| 0    | 97   | 99   | 113  | 114  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  | 242  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 244  | 260  | 261  | 262  | 283  | 291  | 333  | 340  | 357  | 385  | 388  | 389  | 390  | 390  |
| 405  | 430  | 430  | 447  | 485  | 487  | 503  | 504  | 518  | 543  | 544  | 552  | 575  | 577  |
| 584  | 631  | 632  | 650  | 651  | 671  | 672  | 690  | 691  | 738  | 745  | 747  | 770  | 778  |
| 779  | 804  | 818  | 819  | 820  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  |
| 934  | 965  | 982  | 989  | 1030 | 1031 | 1309 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 |
| 1136 | 1159 | 1175 | 1175 | 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |

| <i>Spectrum</i> <sub>10</sub> : | 10% false/ | missing | masses |
|---------------------------------|------------|---------|--------|
| 10                              |            |         |        |

| 0    | 97   | 99   |      | 114  |      | 128  | 147  | 147  | 163  | 186  | 227  | 241  | 242  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 244  | 260  | 261  | 262  | 283  | 291  | 333  | 340  | 357  | 385  |      | 389  | 390  | 390  |
| 405  | 430  | 430  | 447  | 485  | 487  | 503  | 504  | 518  | 543  | 544  | 552  | 575  | 577  |
| 584  |      | 632  | 650  | 651  | 671  | 672  | 690  | 691  | 738  | 745  | 747  | 770  | 778  |
| 779  | 804  | 818  | 819  | 820  | 835  | 837  | 875  | 892  |      | 917  | 932  | 932  | 933  |
| 934  | 965  | 982  | 989  | 1030 |      | 1309 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 |
| 1136 | 1159 | 1175 | 1175 | 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |

#### Spectrum<sub>10</sub>: 10% false/missing masses

| 0    | 97   | 99   |      | 114  |      | 128  | 147  | 147  | 163  | 186  | 227  | 241  | 242  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 244  | 260  | 261  | 262  | 283  | 291  | 333  | 340  | 357  | 385  |      | 389  | 390  | 390  |
| 405  | 430  | 430  | 447  | 485  | 487  | 503  | 504  | 518  | 543  | 544  | 552  | 575  | 577  |
| 584  |      | 632  | 650  | 651  | 671  | 672  | 690  | 691  | 738  | 745  | 747  | 770  | 778  |
| 779  | 804  | 818  | 819  | 820  | 835  | 837  | 875  | 892  |      | 917  | 932  | 932  | 933  |
| 934  | 965  | 982  | 989  | 1030 |      | 1309 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 |
| 1136 | 1159 | 1175 | 1175 | 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |

Highest-scoring pentide: VKLFPWFNQY &



| 0    | 97   | 99   | 113  | 114  | 115  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 242  | 244  | 244  | 256  | 260  | 261  | 262  | 283  | 291  | 309  | 330  | 333  | 340  | 347  |
| 357  | 385  | 388  | 389  | 390  | 390  | 405  | 430  | 430  | 435  | 447  | 485  | 487  | 503  |
| 504  | 518  | 543  | 544  | 552  | 575  | 577  | 584  | 599  | 608  | 631  | 632  | 650  | 651  |
| 653  | 671  | 672  | 690  | 691  | 717  | 738  | 745  | 747  | 770  | 778  | 779  | 804  | 818  |
| 819  | 827  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  | 934  | 965  | 982  |
| 989  | 1031 | 1039 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 | 1136 | 1159 | 1175 | 1175 |
| 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |      |      |      |      |

| 0    | 97   | 99   | 113  | 114  | 115  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 242  | 244  | 244  | 256  | 260  | 261  | 262  | 283  | 291  | 309  | 330  | 333  | 340  | 347  |
| 357  | 385  | 388  | 389  | 390  | 390  | 405  | 430  | 430  | 435  | 447  | 485  | 487  | 503  |
| 504  | 518  | 543  | 544  | 552  | 575  | 577  | 584  | 599  | 608  | 631  | 632  | 650  | 651  |
| 653  | 671  | 672  | 690  | 691  | 717  | 738  | 745  | 747  | 770  | 778  | 779  | 804  | 818  |
| 819  | 827  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  | 934  | 965  | 982  |
| 989  | 1031 | 1039 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 | 1136 | 1159 | 1175 | 1175 |
| 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |      |      |      |      |

| 0    | 97   | 99   | 113  | 114  | 115  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 242  | 244  | 244  | 256  | 260  | 261  | 262  | 283  | 291  | 309  | 330  | 333  | 340  | 347  |
| 357  | 385  | 388  | 389  | 390  | 390  | 405  | 430  | 430  | 435  | 447  | 485  | 487  | 503  |
| 504  | 518  | 543  | 544  | 552  | 575  | 577  | 584  | 599  | 608  | 631  | 632  | 650  | 651  |
| 653  | 671  | 672  | 690  | 691  | 717  | 738  | 745  | 747  | 770  | 778  | 779  | 804  | 818  |
| 819  | 827  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  | 934  | 965  | 982  |
| 989  | 1031 | 1039 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 | 1136 | 1159 | 1175 | 1175 |
| 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |      |      |      |      |

| 0    | 97   | 99   | 113  | 114  | 115  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 242  | 244  | 244  | 256  | 260  | 261  | 262  | 283  | 291  | 309  | 330  | 333  | 340  | 347  |
|      | 385  | 388  | 389  | 390  | 390  | 405  |      |      | 435  | 447  | 485  | 487  | 503  |
| 504  | 518  |      | 544  | 552  | 575  | 577  | 584  | 599  | 608  | 631  | 632  | 650  | 651  |
| 653  |      | 672  | 690  | 691  | 717  | 738  | 745  |      | 770  |      | 779  | 804  | 818  |
| 819  | 827  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  | 934  | 965  | 982  |
| 989  |      | 1039 | 1060 |      | 1062 | 1078 | 1080 | 1081 | 1095 | 1136 | 1159 | 1175 | 1175 |
| 1194 | 1194 | 1208 | 1209 | 1223 |      | 1322 |      |      |      |      |      |      |      |

| 0    | 97   | 99   | 113  | 114  | 115  | 128  | 128  | 147  | 147  | 163  | 186  | 227  | 241  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 242  | 244  | 244  | 256  | 260  | 261  | 262  | 283  | 291  | 309  | 330  | 333  | 340  | 347  |
|      | 385  | 388  | 389  | 390  | 390  | 405  |      |      | 435  | 447  | 485  | 487  | 503  |
| 504  | 518  |      | 544  | 552  | 575  | 577  | 584  | 599  | 608  | 631  | 632  | 650  | 651  |
| 653  |      | 672  | 690  | 691  | 717  | 738  | 745  |      | 770  |      | 779  | 804  | 818  |
| 819  | 827  | 835  | 837  | 875  | 892  | 892  | 917  | 932  | 932  | 933  | 934  | 965  | 982  |
| 989  |      | 1039 | 1060 |      | 1062 | 1078 | 1080 | 1081 | 1095 | 1136 | 1159 | 1175 | 1175 |
| 1194 | 1194 | 1208 | 1209 | 1223 |      | 1322 |      |      |      |      |      |      |      |

#### **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

NRPs contain more **non-standard** amino acids because they are free from the Central Dogma.

NRPs contain more **non-standard** amino acids because they are free from the Central Dogma.

Tyrocidine B

Val-Orn-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr

Ornithine: non-standard amino acid

NRPs contain more **non-standard** amino acids because they are free from the Central Dogma.

Tyrocidine B

Val-Orn-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr

Ornithine: non-standard amino acid

Bioinformaticians assume *any integer* between 57 and 200 can act as the mass of an amino acid.

# **Back to Noisy Spectra**

| 0    | 97   | 99   |      | 114  |      | 128  | 147  | 147  | 163  | 186  | 227  | 241  | 242  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 244  | 260  | 261  | 262  | 283  | 291  | 333  | 340  | 357  | 385  |      | 389  | 390  | 390  |
| 405  | 430  | 430  | 447  | 485  | 487  | 503  | 504  | 518  | 543  | 544  | 552  | 575  | 577  |
| 584  |      | 632  | 650  | 651  | 671  | 672  | 690  | 691  | 738  | 745  | 747  | 770  | 778  |
| 779  | 804  | 818  | 819  | 820  | 835  | 837  | 875  | 892  |      | 917  | 932  | 932  | 933  |
| 934  | 965  | 982  | 989  | 1030 |      | 1309 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 |
| 1136 | 1159 | 1175 | 1175 | 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |

# **Back to Noisy Spectra**

### Spectrum<sub>10</sub>: 10% false/missing masses

| 0    | 97   | 99   |      | 114  |      | 128  | 147  | 147  | 163  | 186  | 227  | 241  | 242  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 244  | 260  | 261  | 262  | 283  | 291  | 333  | 340  | 357  | 385  |      | 389  | 390  | 390  |
| 405  | 430  | 430  | 447  | 485  | 487  | 503  | 504  | 518  | 543  | 544  | 552  | 575  | 577  |
| 584  |      | 632  | 650  | 651  | 671  | 672  | 690  | 691  | 738  | 745  | 747  | 770  | 778  |
| 779  | 804  | 818  | 819  | 820  | 835  | 837  | 875  | 892  |      | 917  | 932  | 932  | 933  |
| 934  | 965  | 982  | 989  | 1030 |      | 1309 | 1060 | 1061 | 1062 | 1078 | 1080 | 1081 | 1095 |
| 1136 | 1159 | 1175 | 1175 | 1194 | 1194 | 1208 | 1209 | 1223 | 1225 | 1322 |      |      |      |

Highest-scoring peptide: VKLFPWFN-98-65

Copyright 2018 Compeau and Pevzner.

#### **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

# Restricting Amino Acid Alphabet

**Goal:** reduce the number of amino acids that we need to consider.

**Goal:** reduce the number of amino acids that we need to consider.

Recall the following spectrum for NQEL:

**Experimental:** 0 99 113 114 128 227 257 299 355 356 370 371 484

**Goal:** reduce the number of amino acids that we need to consider.

Recall the following spectrum for NQEL:

**Experimental:** 0 99 113 114 128 227 257 299 355 356 370 371 484

**Goal:** reduce the number of amino acids that we need to consider.

Recall the following spectrum for NQEL:

**Experimental:** 0 99 113 114 **128** 227 **257** 299 355 356 370 371 484

$$Mass(QE) - Mass(Q) = 257 - 128 = 129$$

**Goal:** reduce the number of amino acids that we need to consider.

Recall the following spectrum for NQEL:

**Experimental:** 0 99 113 114 128 **227** 257 299 355 **356** 370 371 484

$$Mass(ELN) - Mass(LN) = 356 - 227 = 129$$

**Goal:** reduce the number of amino acids that we need to consider.

Recall the following spectrum for NQEL:

**Experimental:** 0 99 113 114 128 227 257 299 **355** 356 370 371 **484** 

$$Mass(NQEL) - Mass(LNQ) = 484 - 355 = 129$$

**Spectral convolution:** positive difference between every pair of masses in spectrum.

|     | 11 11                               | false       | ${ m L}$   | N                 | Q                 | LN                     | QΕ               | false              | LNQ              | ELN       | QEL | NQE |
|-----|-------------------------------------|-------------|------------|-------------------|-------------------|------------------------|------------------|--------------------|------------------|-----------|-----|-----|
|     | 0                                   | 99          | 113        | 114               | 128               | 227                    | 257              | 299                | 355              | 356       | 370 | 371 |
| 0   |                                     |             |            |                   |                   |                        |                  |                    |                  |           |     |     |
| 99  | 99                                  |             |            |                   |                   |                        |                  |                    |                  |           |     |     |
| 113 | 113                                 | 14          |            |                   |                   |                        |                  |                    |                  |           |     |     |
| 114 | 114                                 | <b>1</b> 5  | 1          |                   |                   |                        |                  |                    |                  |           |     |     |
| 128 | 128                                 | 29          | 15         | 14                |                   |                        |                  |                    |                  |           |     |     |
| 227 | 227                                 | <b>128</b>  | 114        | 113               | 99                |                        |                  |                    |                  |           |     |     |
| 257 | 257                                 | <b>15</b> 8 | <b>144</b> | 143               | 129               | 30                     |                  |                    |                  |           |     |     |
| 299 | 299                                 | 200         | 186        | 185               | 171               | 72                     | 42               |                    |                  |           |     |     |
| 355 | 355                                 | 256         | 242        | 241               | 227               | 128                    | 98               | 56                 |                  |           |     |     |
| 356 | 356                                 | 257         | 243        | 242               | 228               | 129                    | 99               | 57                 | 1                |           |     |     |
| 370 | 370                                 | 271         | 257        | 256               | 242               | 143                    | 113              | 71                 | 15               | <b>14</b> |     |     |
| 371 | 371                                 | 272         | 258        | 257               | 243               | 144                    | 114              | 72                 | 16               | 15        | 1   |     |
| 484 | 484                                 | 385         | 371        | Bi <b>3770</b> rn | na <b>356</b> /lg | or <mark>257</mark> s: | A <b>22</b> 7tiv | e L <b>185</b> ing | Ap <b>29</b> ach | . 128     | 114 | 113 |
|     | Copyright 2018 Compeau and Pevzner. |             |            |                   |                   |                        |                  |                    |                  |           |     |     |

# What are the most frequent elements between 57 and 200?

|     | 11 11 | false      | $\mathbb{L}$ | N                 | Q                | LN       | QΕ               | false              | LNQ               | ELN   | QEL | NQE |
|-----|-------|------------|--------------|-------------------|------------------|----------|------------------|--------------------|-------------------|-------|-----|-----|
|     | 0     | 99         | 113          | 114               | 128              | 227      | 257              | 299                | 355               | 356   | 370 | 371 |
| 0   |       |            |              |                   |                  |          |                  |                    |                   |       |     |     |
| 99  | 99    |            |              |                   |                  |          |                  |                    |                   |       |     |     |
| 113 | 113   | 14         |              |                   |                  |          |                  |                    |                   |       |     |     |
| 114 | 114   | <b>1</b> 5 | 1            |                   |                  |          |                  |                    |                   |       |     |     |
| 128 | 128   | 29         | 15           | 14                |                  |          |                  |                    |                   |       |     |     |
| 227 | 227   | <b>128</b> | 114          | 113               | 99               |          |                  |                    |                   |       |     |     |
| 257 | 257   | 158        | 144          | 143               | 129              | 30       |                  |                    |                   |       |     |     |
| 299 | 299   | 200        | 186          | 185               | 171              | 72       | 42               |                    |                   |       |     |     |
| 355 | 355   | 256        | 242          | 241               | 227              | 128      | 98               | 56                 |                   |       |     |     |
| 356 | 356   | 257        | 243          | 242               | 228              | 129      | 99               | 57                 | 1                 |       |     |     |
| 370 | 370   | 271        | 257          | 256               | 242              | 143      | 113              | 71                 | 15                | 14    |     |     |
| 371 | 371   | 272        | 258          | 257               | 243              | 144      | 114              | 72                 | 16                | 15    | 1   |     |
| 484 | 484   | 385        | 371          | Bi <b>3779</b> rn | na <b>356</b> lg | orthms:  | A <b>22</b> 7tiv | e L <b>185</b> ing | App <b>20</b> ach | . 128 | 114 | 113 |
|     | 1     |            |              |                   | Copyrigh         | t 2018 C | ompeau           | and Pevzne         | er.               |       |     |     |

# What are the most frequent elements between 57 and 200?

| 99 | 113 | 114 | 128 | 129 |
|----|-----|-----|-----|-----|
| V  | L   | N   | Q   | Е   |

What are the most frequent elements between 57 and 200?

5 Most Frequent Elements in Convolution 
4 amino acids of NQEL!

# ConvolutionCyclopeptideSequencing

1. Form spectral convolution of spectrum.

- 2. Take the *M most frequent* elements in the convolution (between 57 and 200).
- Run LeaderboardCyclopeptideSequencing, forming peptides only on these M integers.

1. Take the convolution of Spectrum<sub>10</sub>.

| 1. | Take the convolution of   | 147 |
|----|---------------------------|-----|
|    |                           | 128 |
|    | Spectrum <sub>10</sub> .  | 97  |
|    |                           | 113 |
| 2. | Pick M = 10 most frequent | 114 |
|    | elements.                 | 186 |
|    |                           | 57  |
|    |                           | 163 |
|    |                           | 99  |
|    |                           | 145 |

| 1. | Take the convolution of  |
|----|--------------------------|
|    | Spectrum <sub>10</sub> . |

2. Pick M = 10 most frequent elements.

| 147 | F   |
|-----|-----|
| 128 | K/Q |
| 97  | Р   |
| 113 | I/L |
| 114 | N   |
| 186 | W   |
| 57  | G   |
| 163 | Y   |
| 99  | V   |
| 145 |     |

| 1. Take the Spectrum | Take the convolution of   | 147 | F   |
|----------------------|---------------------------|-----|-----|
|                      |                           | 128 | K/Q |
|                      | 3pectiani <sub>10</sub> . | 97  | P   |
|                      |                           | 113 | I/L |
| 2.                   | Pick M = 10 most frequent | 114 | N   |
|                      | elements.                 | 186 | W   |
|                      |                           | 57  | G   |
| 3.                   | Run the algorithm         | 163 | Y   |
|                      | Ruff the algorithm        | 99  | V   |
|                      |                           | 145 |     |

| 1. | Take the convolution of  |
|----|--------------------------|
|    | Spectrum <sub>10</sub> . |

2. Pick 
$$M = 10$$
 most frequent elements.

3. Run the algorithm...

| <b>147</b> | F   |  |  |
|------------|-----|--|--|
| 128        | K/C |  |  |

145



ConvolutionCyclopeptideSequencing even reconstructs Tyrocidine B1 from the "noisier"  $Spectrum_{25}$ .

ConvolutionCyclopeptideSequencing even reconstructs Tyrocidine B1 from the "noisier"  $Spectrum_{25}$ .



ConvolutionCyclopeptideSequencing even reconstructs Tyrocidine B1 from the "noisier"  $Spectrum_{25}$ .

ONE MORE THING...

#### **Outline**

- The Discovery of Antibiotics
- How Do Bacteria Make Antibiotics?
- Sequencing Antibiotics by Shattering Them into Pieces
- A Brute Force Algorithm for Cyclopeptide Sequencing
- Cyclopeptide Sequencing with Branch-and-Bound
- Adapting Sequencing for Spectra with Errors
- From 20 to More than 100 Amino Acids
- The Spectral Convolution Saves the Day
- The Truth about Spectra

# The Truth About Spectra

Spectrum<sub>25</sub> is much less noisy than the spectra obtained in practice.

# The Truth About Spectra

Spectrum<sub>25</sub> is much less noisy than the spectra obtained in practice.

Also, the mass spectrometer doesn't simply "weigh" peptide fragments.



# The Truth About Spectra

- 1. Ionize the peptide fragments.
- 2. Sort fragments using electromagnetic field.
- 3. Measure mass/charge ratio of each fragment.
- 4. Determine **intensity** (# of ions) at each mass/charge ratio.



# A Real Tyrocidine B1 Spectrum

**Spectrum**: graph of intensity vs. mass/charge ratio



# A Real Tyrocidine B1 Spectrum

**Spectrum**: graph of intensity vs. mass/charge ratio



### A Real Tyrocidine B1 Spectrum

**Challenge**: Reconstruct a peptide from real spectrum (Stepic).



# **Open Problems**































What if we are given the pairwise distances and want to reconstruct the points?



This is a harder problem, known as the **Beltway Problem** (think: cities on a circular road).



If the points are on a *line segment* instead of a circle, we have the **Turnpike Problem**.



If the points are on a *line segment* instead of a circle, we have the **Turnpike Problem**.



No one has ever found a polynomial algorithm for either the Beltway or Turnpike Problem.

No one has ever found a polynomial algorithm for either the Beltway or Turnpike Problem.

No one has ever found a polynomial algorithm for either the Beltway or Turnpike Problem.



No one has ever found a polynomial algorithm for either the Beltway or Turnpike Problem.



**Question:** Can you find a pseudo-polynomial algorithm for the Beltway Problem?

# Toward a Computational Problem

|                                                                                              | Subpeptide         | Mass |
|----------------------------------------------------------------------------------------------|--------------------|------|
| Theoretical spectrum: mass of                                                                | L                  | 113  |
|                                                                                              | N                  | 114  |
| every possible subpeptide, plus                                                              | Q                  | 128  |
| 0 and the mass of the peptide.                                                               | E                  | 129  |
| Peptide Spectrum NQEL                                                                        | LN                 | 227  |
|                                                                                              | NQ                 | 242  |
|                                                                                              | EL                 | 242  |
|                                                                                              | QE                 | 257  |
|                                                                                              | LNQ                | 355  |
|                                                                                              | ELN                | 356  |
|                                                                                              | QEL                | 370  |
|                                                                                              | NQE                | 371  |
|                                                                                              | NQEL               | 484  |
| Bioinformatics Algorithms: An Active Learning Approad<br>Copyright 2018 Compeau and Pevzner. | ch. \\ \\ \\ \' \' | 0    |

**θ-defensin:** cyclic peptide discovered in macaques (1999); has strong anti-HIV activity.



Copyright 2018 Compeau and Pevzner.

#### Humans and chimps don't make $\theta$ -defensin!





Copyright 2018 Compeau and Pevzner. Courtesy: <u>Aaron Logan</u>

θ-defensin is formed from two proteins encoded by the RTD1a and RTD1b genes, which we lack...



θ-defensin is formed from two proteins encoded by the RTD1a and RTD1b genes, which we lack...



...but humans ido have very similar genes!

A mutation occurred in the human-chimp ancestor, creating a premature stop codon.

A mutation occurred in the human-chimp ancestor, creating a premature stop codon.

Can we get  $\theta$ -defensin back?

A mutation occurred in the human-chimp ancestor, creating a premature stop codon.

Can we get  $\theta$ -defensin back? **YES!** 

A mutation occurred in the human-chimp ancestor, creating a premature stop codon.

Can we get  $\theta$ -defensin back? **YES!** 

We still have the "cut-and-paste" enzymes needed to create  $\theta$ -defensin. But why?

If the enzymes needed for  $\theta$ -defensin aren't used, they would erode into "pseudogenes"...



If the enzymes needed for θ-defensin aren't used, they would erode into "pseudogenes"...



...so why do we have these enzymes?

**Current paradigm**: humans don't produce cyclic peptides.

But maybe, like antibiotics, they've been there all along, waiting to be discovered...

Question: Do humans produce cyclic peptides?