Multiplicity and Koszul Homology

Lemma 0.1. Let M be a finitely generated R-module and let I be an ideal of R. Then

$$\sqrt{\operatorname{Ann}(M/IM)} = \sqrt{\langle I, \operatorname{Ann} M \rangle}.$$

Proof. To prove the equality on radicals, it suffices to show that a prime \mathfrak{p} of R contains Ann(M/IM) if and only if it contains $\langle I, Ann M \rangle$. Recall that for any finitely generated R-module N, we have V(Ann N) = Supp N, or equivalently, $\mathfrak{p} \supseteq Ann N$ if and only if $N_{\mathfrak{p}} \neq 0$. Thus since M is finitely generated (and hence M/IM is finitely generated too), we have

$$\mathfrak{p} \supseteq \operatorname{Ann}(M/IM) \iff M_{\mathfrak{p}}/I_{\mathfrak{p}}M_{\mathfrak{p}} \neq 0$$

$$\iff M_{\mathfrak{p}} \neq 0 \text{ and } I_{\mathfrak{p}} \subseteq \mathfrak{p}_{\mathfrak{p}}$$

$$\iff \mathfrak{p} \supseteq \operatorname{Ann} M \text{ and } I \subseteq \mathfrak{p}$$

$$\iff \mathfrak{p} \supseteq \langle \operatorname{Ann} M, I \rangle$$

□ be a

Let $A = (A, \mathfrak{m}, \mathbb{k})$ be a noetherian local ring, let $x = x_1, \ldots, x_r$ be a sequence contained in \mathfrak{m} , and let M be a finitely generated A-module such that $\ell(M/xM) < \infty$ (equivalently, we have $\mathfrak{m} = \sqrt{\operatorname{Ann}(M/xM)}$). We set K = K(x, M) to be koszul complex with respect to x and M and we denote its homology by H(x, M). Recall that the A-module $H_i(x, M)$ is finitely generated and annihilated by $\langle x, \operatorname{Ann} M \rangle$, hence they have finite length (indeed, we have $\mathfrak{m} = \sqrt{\operatorname{Ann}(M/xM)} = \sqrt{\langle x, \operatorname{Ann} M \rangle}$). We may therefore define the **Euler-Poincare characteristic**

$$\chi(x, M) = \sum_{i=0}^{r} (-1)^{i} \ell(H_{i}(x, M)).$$

On the other hand, we the Hilbert-Samuel polynomial $P_x(M)$ has degree $\leq r$, and we have

$$P_x(M,n) = e_x(M,r)\frac{n^r}{r!} + Q(n)$$

with deg Q < r and where $e_x(M, r) = \Delta^r P_x(M)$ is the Hilbert-Samuel multiplicity.

Theorem o.2. We have $\chi(x, M) = e_x(M, r)$.

Proof. We prove this in several steps:

Step 1: To ease notation in what follows, we set $Q = \langle x \rangle$. We first equip A with the standard Q-filtration $A = (Q^n)$ and view it as a filtered ring. Similarly, we equip M with the Q-filtration $M = (Q^n M)$ and view it as a filtered A-module. We now equip K with a Q-filtration as follows: for each $n \in \mathbb{N}$, let K^n be the R-subcomplex of K whose component in homological degree i

$$K_i^n = \begin{cases} Q^{n-i} K_i, & \text{if } 0 \le i < n \\ K_i & \text{else} \end{cases}$$

Thus for example, we have

$$K^{0} = M + \sum Me_{i} + \sum Me_{i,j} + \cdots$$

$$K^{1} = QM + \sum Me_{i} + \sum Me_{i,j} + \cdots$$

$$K^{2} = Q^{2}M + \sum QMe_{i} + \sum Me_{i,j} + \cdots$$

$$\vdots$$

Notice that

$$\begin{split} K^0/K^1 &= M/QM \\ K^1/K^2 &= QM/Q^2M + \sum (M/QM)e_i \\ K^2/K^3 &= Q^2M/Q^3M + \sum (QM/Q^2M)e_i + \sum (M/QM)e_{i,j} \\ &: \end{split}$$

In particular, we clearly have

$$gr(K) = \bigoplus_{n=0}^{\infty} K^n / K^{n+1}$$

$$= gr(M) + \sum_{i=0}^{\infty} gr(M)e_i + \sum_{i=0}^{\infty} gr(M)e_{i,i}$$

$$= K(x, gr(M)).$$

Finally, we have

$$\chi(x, M) = \sum_{i=0}^{r} (-1)^{i} \ell(H_{i}(x, M))$$

$$= \sum_{i=0}^{r} (-1)^{i} \ell(H_{i}(K/K^{n}))$$

$$= \sum_{i=0}^{r} (-1)^{i} \ell(K_{i}/K_{i}^{n})$$

$$= \sum_{i=0}^{r} (-1)^{i} \ell\left(\bigoplus_{\binom{r}{i}} M/x^{n-i}M\right)$$

$$= \sum_{i=0}^{r} (-1)^{i} \ell\left(\bigoplus_{\binom{r}{i}} \ell(M/x^{n-i}M)\right)$$

$$= e_{x}(M, r).$$