Arthurian Tales

Dan Fretwell

Heilbronn Institute for Mathematical Research
University of Bristol
(daniel.fretwell@bristol.ac.uk)

Joint work with N. Dummigan

*Sir not appearing in this talk.

Attached to \mathcal{L} is an Orthogonal group scheme, $\mathcal{O}_{\mathcal{L}}$.

Fact

If $X_{\mathcal{L}}$ is the (finite) set of isometry classes of lattices in the genus of \mathcal{L} then

$$O_{\mathcal{L}}(\mathbb{Q})\backslash O_{\mathcal{L}}(\mathbb{A}_f)/\prod_{\rho}O_{\mathcal{L}}(\mathbb{Z}_{\rho})\longleftrightarrow X_{\mathcal{L}}=\{[\mathcal{L}_1]=[\mathcal{L}],[\mathcal{L}_2],...,[\mathcal{L}_h]\}.$$

Attached to \mathcal{L} is an Orthogonal group scheme, $O_{\mathcal{L}}$.

Fact

If $X_{\mathcal{L}}$ is the (finite) set of isometry classes of lattices in the genus of \mathcal{L} then

$$O_{\mathcal{L}}(\mathbb{Q})\backslash O_{\mathcal{L}}(\mathbb{A}_f)/\prod_{\rho}O_{\mathcal{L}}(\mathbb{Z}_{\rho})\longleftrightarrow X_{\mathcal{L}}=\{[\mathcal{L}_1]=[\mathcal{L}],[\mathcal{L}_2],...,[\mathcal{L}_h]\}.$$

Attached to \mathcal{L} is an Orthogonal group scheme, $O_{\mathcal{L}}$.

Fact

If $X_{\mathcal{L}}$ is the (finite) set of isometry classes of lattices in the genus of \mathcal{L} then

$$O_{\mathcal{L}}(\mathbb{Q})\backslash O_{\mathcal{L}}(\mathbb{A}_f)/\prod_{\rho}O_{\mathcal{L}}(\mathbb{Z}_{\rho})\longleftrightarrow X_{\mathcal{L}}=\{[\mathcal{L}_1]=[\mathcal{L}],[\mathcal{L}_2],...,[\mathcal{L}_h]\}.$$

Attached to \mathcal{L} is an Orthogonal group scheme, $O_{\mathcal{L}}$.

Fact.

If $X_{\mathcal{L}}$ is the (finite) set of isometry classes of lattices in the genus of \mathcal{L} then

$$O_{\mathcal{L}}(\mathbb{Q})\setminus O_{\mathcal{L}}(\mathbb{A}_f)/\prod_{\rho}O_{\mathcal{L}}(\mathbb{Z}_{\rho})\longleftrightarrow X_{\mathcal{L}}=\{[\mathcal{L}_1]=[\mathcal{L}],[\mathcal{L}_2],...,[\mathcal{L}_h]\}.$$

$$f: X_{\mathcal{L}} \longrightarrow \mathbb{C}.$$

Surely this space is uninteresting?! We need Hecke operators...

Definition

Let p be prime. A p-neighbour of \mathcal{L} is a lattice $\mathcal{L}' \subset \mathbb{Q}^n$ such that $\mathcal{L}/(\mathcal{L} \cap \mathcal{L}') \equiv \mathbb{Z}/p\mathbb{Z}$.

Also natural objects in the theory of quadratic forms

$$f: X_{\mathcal{L}} \longrightarrow \mathbb{C}.$$

Surely this space is uninteresting?! We need Hecke operators...

Definition

Let p be prime. A p-neighbour of \mathcal{L} is a lattice $\mathcal{L}' \subset \mathbb{Q}^n$ such that $\mathcal{L}/(\mathcal{L} \cap \mathcal{L}') \equiv \mathbb{Z}/p\mathbb{Z}$.

Also natural objects in the theory of quadratic forms.

$$f: X_{\mathcal{L}} \longrightarrow \mathbb{C}.$$

Surely this space is uninteresting?! We need Hecke operators...

Definition

Let p be prime. A p-neighbour of \mathcal{L} is a lattice $\mathcal{L}' \subset \mathbb{Q}^n$ such that $\mathcal{L}/(\mathcal{L} \cap \mathcal{L}') \equiv \mathbb{Z}/p\mathbb{Z}$.

Also natural objects in the theory of quadratic forms

$$f: X_{\mathcal{L}} \longrightarrow \mathbb{C}$$
.

Surely this space is uninteresting?! We need Hecke operators...

Definition

Let p be prime. A p-neighbour of \mathcal{L} is a lattice $\mathcal{L}' \subset \mathbb{Q}^n$ such that $\mathcal{L}/(\mathcal{L} \cap \mathcal{L}') \equiv \mathbb{Z}/p\mathbb{Z}$.

Also natural objects in the theory of quadratic forms.

Fact

Each p-neighbour of \mathcal{L} is isometric to a unique \mathcal{L}_i and we can compute all $N_p(n) = \frac{p^{n-1}-1}{p-1} + p^{\frac{n}{2}-1}$ of them.

Natural linear map on $M_{\mathcal{L}}$:

$$T_{p}(f)([\mathcal{L}_{i}]) = \sum_{\mathcal{L}'} f([\mathcal{L}']) = \sum_{i=1}^{h} N_{p}(\mathcal{L}_{i}, \mathcal{L}_{j}) f([\mathcal{L}_{j}]),$$

where \mathcal{L}' are the *p*-neighbours of \mathcal{L}_i and $N_p(\mathcal{L}_i, \mathcal{L}_j)$ is the number of *p*-neighbours of \mathcal{L}_i that are isometric to \mathcal{L}_j (natural numbers in the theory of quadratic forms).

Fact

Each *p*-neighbour of \mathcal{L} is isometric to a unique \mathcal{L}_i and we can compute all $N_p(n) = \frac{p^{n-1}-1}{p-1} + p^{\frac{n}{2}-1}$ of them.

Natural linear map on $M_{\mathcal{L}}$:

$$T_p(f)([\mathcal{L}_i]) = \sum_{\mathcal{L}'} f([\mathcal{L}']) = \sum_{i=1}^h N_p(\mathcal{L}_i, \mathcal{L}_j) f([\mathcal{L}_j]),$$

where \mathcal{L}' are the *p*-neighbours of \mathcal{L}_i and $N_p(\mathcal{L}_i, \mathcal{L}_j)$ is the number of *p*-neighbours of \mathcal{L}_i that are isometric to \mathcal{L}_j (natural numbers in the theory of quadratic forms).

T_p can be thought of as one of a family of Hecke operators at p.

Don't we diagonalise Hecke operators?

Fact

There is a basis $v_1, v_2, ..., v_h \in M_{\mathcal{L}}$ of simultaneous eigenforms for the T_p , i.e. $T_p(v_i) = \lambda_p(v_i)v_i$ for all p.

Constant function $v_1([\mathcal{L}_i]) = 1$ satisfies $T_p(v_1) = N_p(n)v_1$.

This can be thought of as an Eisenstein series.

The other eigenforms/eigenvalues are much more mysterious

Fact

There is a basis $v_1, v_2, ..., v_h \in M_{\mathcal{L}}$ of simultaneous eigenforms for the T_p , i.e. $T_p(v_i) = \lambda_p(v_i)v_i$ for all p.

Constant function $v_1([\mathcal{L}_i]) = 1$ satisfies $T_p(v_1) = N_p(n)v_1$.

This can be thought of as an Eisenstein series.

The other eigenforms/eigenvalues are much more mysterious

Fact

There is a basis $v_1, v_2, ..., v_h \in M_{\mathcal{L}}$ of simultaneous eigenforms for the T_p , i.e. $T_p(v_i) = \lambda_p(v_i)v_i$ for all p.

Constant function $v_1([\mathcal{L}_i]) = 1$ satisfies $T_p(v_1) = N_p(n)v_1$.

This can be thought of as an Eisenstein series.

The other eigenforms/eigenvalues are much more mysterious.

Fact

There is a basis $v_1, v_2, ..., v_h \in M_{\mathcal{L}}$ of simultaneous eigenforms for the T_p , i.e. $T_p(v_i) = \lambda_p(v_i)v_i$ for all p.

Constant function $v_1([\mathcal{L}_i]) = 1$ satisfies $T_p(v_1) = N_p(n)v_1$.

This can be thought of as an Eisenstein series.

The other eigenforms/eigenvalues are much more mysterious.

Fact

There is a basis $v_1, v_2, ..., v_h \in M_{\mathcal{L}}$ of simultaneous eigenforms for the T_p , i.e. $T_p(v_i) = \lambda_p(v_i)v_i$ for all p.

Constant function $v_1([\mathcal{L}_i]) = 1$ satisfies $T_p(v_1) = N_p(n)v_1$.

This can be thought of as an Eisenstein series.

The other eigenforms/eigenvalues are much more mysterious.

The v_i generate irreducible automorphic representations π_i of $O_{\mathcal{L}}(\mathbb{A}_{\mathbb{Q}})$ that are everywhere unramified and trivial at infinity.

Each π_i has local Langlands parameters (up to conjugation):

$$c_{\infty}(\pi_i): W_{\mathbb{R}} \longrightarrow \mathcal{O}_{\mathcal{L}}(\mathbb{C}),$$

 $c_{p}(\pi_i): W_{\mathbb{Q}_p} \longrightarrow \mathcal{O}_{\mathcal{L}}(\mathbb{C}).$

- $c_{\infty}(\pi_i)(z) = \operatorname{diag}(w^{\frac{n}{2}-1}, w^{\frac{n}{2}-2}, ..., 1, w^{1-\frac{n}{2}}, w^{2-\frac{n}{2}}, ..., 1),$ where $z \in \mathbb{C}^{\times} = W_{\mathbb{C}} \hookrightarrow W_{\mathbb{R}}$ and $w = \frac{z}{2}$,
- $t_p(\pi_i) = c_p(\pi_i)(\operatorname{Frob}_p)$ fully determines $c_p(\pi_i)$ and $\lambda_p(v_i) = p^{\frac{n}{2}-1}\operatorname{Tr}(t_p(\pi_i))$.

The v_i generate irreducible automorphic representations π_i of $O_{\mathcal{L}}(\mathbb{A}_{\mathbb{Q}})$ that are everywhere unramified and trivial at infinity.

Each π_i has local Langlands parameters (up to conjugation):

$$egin{aligned} c_{\infty}(\pi_i) : W_{\mathbb{R}} &\longrightarrow O_{\mathcal{L}}(\mathbb{C}), \ c_{p}(\pi_i) : W_{\mathbb{Q}_p} &\longrightarrow O_{\mathcal{L}}(\mathbb{C}). \end{aligned}$$

- $c_{\infty}(\pi_i)(z) = \operatorname{diag}(w^{\frac{n}{2}-1}, w^{\frac{n}{2}-2}, ..., 1, w^{1-\frac{n}{2}}, w^{2-\frac{n}{2}}, ..., 1),$ where $z \in \mathbb{C}^{\times} = W_{\mathbb{C}} \hookrightarrow W_{\mathbb{R}}$ and $w = \frac{z}{2}$,
- $t_p(\pi_i) = c_p(\pi_i)(\operatorname{Frob}_p)$ fully determines $c_p(\pi_i)$ and $\lambda_p(v_i) = p^{\frac{n}{2}-1}\operatorname{Tr}(t_p(\pi_i))$.

The v_i generate irreducible automorphic representations π_i of $O_{\mathcal{L}}(\mathbb{A}_{\mathbb{Q}})$ that are everywhere unramified and trivial at infinity.

Each π_i has local Langlands parameters (up to conjugation):

$$egin{aligned} c_{\infty}(\pi_i) : W_{\mathbb{R}} &\longrightarrow O_{\mathcal{L}}(\mathbb{C}), \ c_p(\pi_i) : W_{\mathbb{Q}_p} &\longrightarrow O_{\mathcal{L}}(\mathbb{C}). \end{aligned}$$

- $c_{\infty}(\pi_i)(z) = \operatorname{diag}(w^{\frac{n}{2}-1}, w^{\frac{n}{2}-2}, ..., 1, w^{1-\frac{n}{2}}, w^{2-\frac{n}{2}}, ..., 1),$ where $z \in \mathbb{C}^{\times} = W_{\mathbb{C}} \hookrightarrow W_{\mathbb{R}}$ and $w = \frac{z}{z}$,
- $t_p(\pi_i) = c_p(\pi_i)(\operatorname{Frob}_p)$ fully determines $c_p(\pi_i)$ and $\lambda_p(v_i) = p^{\frac{n}{2}-1}\operatorname{Tr}(t_p(\pi_i))$.

Each π_i has a "global Arthur parameter", a formal unordered sum $\oplus \Pi_k[d_k]$ where:

- Π_k is a cuspidal automorphic representation of $GL_{n_k}(\mathbb{A}_{\mathbb{Q}})$
- $\sum n_k d_k = n$,
- $c_{\infty}(\pi_i) = \oplus c_{\infty}(\Pi_k[d_k])$ and $c_p(\pi_i) = \oplus c_p(\Pi_k[d_k])$.
- $m{c}_{\infty}(\Pi_{k}[d_{k}])(z) = \ c_{\infty}(\Pi_{k})(z) \otimes ext{diag}(w^{rac{d_{k}-1}{2}}, w^{rac{d_{k}-3}{2}}, ..., w^{rac{3-d_{k}}{2}}, w^{rac{1-d_{k}}{2}}),$
- $c_p(\Pi_k[d_k])$ is fully determined by:

$$t_p(\Pi_k[d_k]) = t_p(\Pi_k) \otimes \text{diag}(p^{\frac{d_k-1}{2}}, p^{\frac{d_k-3}{2}}, ..., p^{\frac{3-d_k}{2}}, p^{\frac{1-d_k}{2}}).$$

 $(c_{\infty}(\Pi_k), c_p(\Pi_k))$ are $GL_{n_k}(\mathbb{A}_{\mathbb{O}})$ Local Langlands parameters.)

Each π_i has a "global Arthur parameter", a formal unordered sum $\oplus \Pi_k[d_k]$ where:

- Π_k is a cuspidal automorphic representation of $GL_{n_k}(\mathbb{A}_{\mathbb{Q}})$,
- $\sum n_k d_k = n$,
- $c_{\infty}(\pi_i) = \oplus c_{\infty}(\Pi_k[d_k])$ and $c_p(\pi_i) = \oplus c_p(\Pi_k[d_k])$.
- $c_{\infty}(\Pi_{k}[d_{k}])(z) = \\ c_{\infty}(\Pi_{k})(z) \otimes \operatorname{diag}(w^{\frac{d_{k}-1}{2}}, w^{\frac{d_{k}-3}{2}}, ..., w^{\frac{3-d_{k}}{2}}, w^{\frac{1-d_{k}}{2}}),$
- $c_p(\Pi_k[d_k])$ is fully determined by

$$t_p(\Pi_k[d_k]) = t_p(\Pi_k) \otimes \text{diag}(p^{\frac{d_k-1}{2}}, p^{\frac{d_k-3}{2}}, ..., p^{\frac{3-d_k}{2}}, p^{\frac{1-d_k}{2}}).$$

 $(c_{\infty}(\Pi_k), c_{\mathcal{D}}(\Pi_k))$ are $GL_{\mathcal{D}_k}(\mathbb{A}_{\mathbb{O}})$ Local Langlands parameters.)

Each π_i has a "global Arthur parameter", a formal unordered sum $\oplus \Pi_k[d_k]$ where:

- Π_k is a cuspidal automorphic representation of $GL_{n_k}(\mathbb{A}_{\mathbb{Q}})$,
- $\sum n_k d_k = n$,
- $c_{\infty}(\pi_i) = \oplus c_{\infty}(\Pi_k[d_k])$ and $c_p(\pi_i) = \oplus c_p(\Pi_k[d_k])$.
- $c_{\infty}(\Pi_k[d_k])(z) = c_{\infty}(\Pi_k)(z) \otimes \operatorname{diag}(w^{\frac{d_k-1}{2}}, w^{\frac{d_k-3}{2}}, ..., w^{\frac{3-d_k}{2}}, w^{\frac{1-d_k}{2}}),$
- $c_p(\Pi_k[d_k])$ is fully determined by:

$$t_p(\Pi_k[d_k]) = t_p(\Pi_k) \otimes \text{diag}(p^{\frac{d_k-1}{2}}, p^{\frac{d_k-3}{2}}, ..., p^{\frac{3-d_k}{2}}, p^{\frac{1-d_k}{2}}).$$

 $(c_{\infty}(\Pi_k), c_p(\Pi_k))$ are $GL_{n_k}(\mathbb{A}_{\mathbb{Q}})$ Local Langlands parameters.)

Phew...

Summary - Knowing the global Arthur parameter of π_i explicitly gives $\lambda_p(v_i)$ in terms of eigenvalues of automorphic representations of general linear groups (for all p simultaneously).

From now on we take $\mathcal{L} = E_n = D_n + \mathbb{Z}\mathbf{e}$, where $D_n = \{\mathbf{x} \in \mathbb{Z}^n \mid \sum x_i \equiv 0 \mod 2\}$ and $\mathbf{e} = \frac{1}{2}(1, 1, ..., 1)$

Interesting question

Fixing n, can we describe the global Arthur parameters of the π_i explicitly?

Phew...

Summary - Knowing the global Arthur parameter of π_i explicitly gives $\lambda_p(v_i)$ in terms of eigenvalues of automorphic representations of general linear groups (for all p simultaneously).

From now on we take
$$\mathcal{L} = E_n = D_n + \mathbb{Z}\mathbf{e}$$
, where $D_n = \{\mathbf{x} \in \mathbb{Z}^n \mid \sum x_i \equiv 0 \bmod 2\}$ and $\mathbf{e} = \frac{1}{2}(1, 1, ..., 1)$.

Interesting question

Fixing n, can we describe the global Arthur parameters of the π_i explicitly?

Phew...

Summary - Knowing the global Arthur parameter of π_i explicitly gives $\lambda_p(v_i)$ in terms of eigenvalues of automorphic representations of general linear groups (for all p simultaneously).

From now on we take
$$\mathcal{L} = E_n = D_n + \mathbb{Z}\mathbf{e}$$
, where $D_n = \{\mathbf{x} \in \mathbb{Z}^n \mid \sum x_i \equiv 0 \bmod 2\}$ and $\mathbf{e} = \frac{1}{2}(1, 1, ..., 1)$.

Interesting question

Fixing n, can we describe the global Arthur parameters of the π_i explicitly?

$$X_8 = \{[E_8]\}, M_8 = \mathbb{C}v_1 \text{ with } v_1 = 1.$$

Global Arthur parameter is $[7] \oplus [1]$:

$$c_{\infty}(z) = \operatorname{diag}(w^{3}, w^{2}, w, 1, w^{-1}, w^{-2}, w^{-3}) \oplus (1)$$

$$= \operatorname{diag}(w^{3}, w^{2}, w, 1, w^{-1}, w^{-2}, w^{-3}, 1),$$

$$p^{3}\operatorname{Tr}(t_{p}) = p^{3}\operatorname{Tr}(\operatorname{diag}(p^{3}, p^{2}, p, 1, p^{-1}, p^{-2}, p^{-3}, 1))$$

$$= p^{6} + p^{5} + p^{4} + \dots + 1 + p^{3}$$

$$= \frac{p^{7} - 1}{p - 1} + p^{3}$$

$$= N_{p}(8)$$

$$= \lambda_{p}(y_{1})$$

$$X_8 = \{[E_8]\}, M_8 = \mathbb{C}v_1 \text{ with } v_1 = 1.$$

Global Arthur parameter is [7] \oplus [1]:

$$c_{\infty}(z) = \operatorname{diag}(w^{3}, w^{2}, w, 1, w^{-1}, w^{-2}, w^{-3}) \oplus (1)$$

$$= \operatorname{diag}(w^{3}, w^{2}, w, 1, w^{-1}, w^{-2}, w^{-3}, 1),$$

$$p^{3}\operatorname{Tr}(t_{p}) = p^{3}\operatorname{Tr}(\operatorname{diag}(p^{3}, p^{2}, p, 1, p^{-1}, p^{-2}, p^{-3}, 1))$$

$$= p^{6} + p^{5} + p^{4} + \dots + 1 + p^{3}$$

$$= \frac{p^{7} - 1}{p - 1} + p^{3}$$

$$= N_{p}(8)$$

$$= \lambda_{p}(8)$$

$$X_8 = \{[E_8]\}, M_8 = \mathbb{C}v_1 \text{ with } v_1 = 1.$$

Global Arthur parameter is [7] \oplus [1]:

$$\begin{split} c_{\infty}(z) &= \operatorname{diag}(w^3, w^2, w, 1, w^{-1}, w^{-2}, w^{-3}) \oplus (1) \\ &= \operatorname{diag}(w^3, w^2, w, 1, w^{-1}, w^{-2}, w^{-3}, 1), \\ p^3 \operatorname{Tr}(t_p) &= p^3 \operatorname{Tr}(\operatorname{diag}(p^3, p^2, p, 1, p^{-1}, p^{-2}, p^{-3}, 1)) \\ &= p^6 + p^5 + p^4 + \dots + 1 + p^3 \\ &= \frac{p^7 - 1}{p - 1} + p^3 \\ &= N_p(8) \\ &= \lambda_p(v_1). \end{split}$$

 $X_{16}=\{[E_{16}],[E_8\oplus E_8]\},~M_{16}=\mathbb{C}v_1\oplus \mathbb{C}v_2 \text{ with } v_1=[1,1] \text{ and } v_2=[405,-286].$ We find $\lambda_2(v_2)=1800.$

Global Arthur parameter of v_1 is [15] \oplus [1]...but what about v_2 ?

Guess - $\Delta_{11}[4] \oplus [7] \oplus [1]$ (with Δ_{11} being the GL_2 representation attached to $\Delta \in S_{12}(SL_2(\mathbb{Z}))$).

 $X_{16}=\{[E_{16}],[E_8\oplus E_8]\},~M_{16}=\mathbb{C}v_1\oplus \mathbb{C}v_2 \text{ with } v_1=[1,1] \text{ and } v_2=[405,-286].$ We find $\lambda_2(v_2)=1800.$

Global Arthur parameter of v_1 is [15] \oplus [1]...but what about v_2 ?

Guess - $\Delta_{11}[4] \oplus [7] \oplus [1]$ (with Δ_{11} being the GL_2 representation attached to $\Delta \in S_{12}(SL_2(\mathbb{Z}))$).

 $X_{16}=\{[E_{16}],[E_8\oplus E_8]\},~M_{16}=\mathbb{C}v_1\oplus \mathbb{C}v_2 \text{ with } v_1=[1,1] \text{ and } v_2=[405,-286].$ We find $\lambda_2(v_2)=1800.$

Global Arthur parameter of v_1 is $[15] \oplus [1]$...but what about v_2 ?

Guess - $\Delta_{11}[4] \oplus [7] \oplus [1]$ (with Δ_{11} being the GL_2 representation attached to $\Delta \in S_{12}(SL_2(\mathbb{Z}))$).

$$\begin{split} c_{\infty}(z) &= \operatorname{diag}(w^{\frac{11}{2}}, w^{-\frac{11}{2}}) \otimes \operatorname{diag}(w^{\frac{3}{2}}, w^{\frac{1}{2}}, w^{-\frac{1}{2}}, w^{-\frac{3}{2}}) \\ &\oplus \operatorname{diag}(w^{3}, w^{2}, w, 1, w^{-1}, w^{-2}, w^{-3}, 1) \\ &= \operatorname{diag}(w^{7}, ..., w, 1, w^{-1}, ..., w^{-7}, 1), \\ \rho^{7} \operatorname{Tr}(t_{p}(\Delta_{11}[4])) &= 2^{7} \operatorname{Tr}(\operatorname{diag}(\alpha_{p}, \alpha_{p}^{-1}) \otimes \operatorname{diag}(p^{\frac{3}{2}}, p^{\frac{1}{2}}, p^{-\frac{1}{2}}, p^{-\frac{3}{2}})) \\ &= \rho^{7}(p^{\frac{3}{2}} + p^{\frac{1}{2}} + p^{-\frac{1}{2}} + p^{-\frac{3}{2}})(\alpha_{p} + \alpha_{p}^{-1}) \\ &= (p^{3} + p^{2} + p + 1)\tau(p), \\ \rho^{7} \operatorname{Tr}(t_{p}) &= p^{4}\left(\frac{p^{7} - 1}{p - 1}\right) + p^{7} + \tau(p)\left(\frac{p^{4} - 1}{p - 1}\right). \end{split}$$

Plugging in p = 2 gives $1800 = \lambda_2(v_2)$.

$$\begin{split} c_{\infty}(z) &= \operatorname{diag}(w^{\frac{11}{2}}, w^{-\frac{11}{2}}) \otimes \operatorname{diag}(w^{\frac{3}{2}}, w^{\frac{1}{2}}, w^{-\frac{1}{2}}, w^{-\frac{3}{2}}) \\ &\oplus \operatorname{diag}(w^{3}, w^{2}, w, 1, w^{-1}, w^{-2}, w^{-3}, 1) \\ &= \operatorname{diag}(w^{7}, ..., w, 1, w^{-1}, ..., w^{-7}, 1), \\ p^{7}\operatorname{Tr}(t_{p}(\Delta_{11}[4])) &= 2^{7}\operatorname{Tr}(\operatorname{diag}(\alpha_{p}, \alpha_{p}^{-1}) \otimes \operatorname{diag}(p^{\frac{3}{2}}, p^{\frac{1}{2}}, p^{-\frac{1}{2}}, p^{-\frac{3}{2}})) \\ &= p^{7}(p^{\frac{3}{2}} + p^{\frac{1}{2}} + p^{-\frac{1}{2}} + p^{-\frac{3}{2}})(\alpha_{p} + \alpha_{p}^{-1}) \\ &= (p^{3} + p^{2} + p + 1)\tau(p), \\ p^{7}\operatorname{Tr}(t_{p}) &= p^{4}\left(\frac{p^{7} - 1}{p - 1}\right) + p^{7} + \tau(p)\left(\frac{p^{4} - 1}{p - 1}\right). \end{split}$$

Plugging in p = 2 gives $1800 = \lambda_2(v_2)$.

$$\begin{split} c_{\infty}(z) &= \mathsf{diag}(w^{\frac{11}{2}}, w^{-\frac{11}{2}}) \otimes \mathsf{diag}(w^{\frac{3}{2}}, w^{\frac{1}{2}}, w^{-\frac{1}{2}}, w^{-\frac{3}{2}}) \\ &\oplus \mathsf{diag}(w^3, w^2, w, 1, w^{-1}, w^{-2}, w^{-3}, 1) \\ &= \mathsf{diag}(w^7, ..., w, 1, w^{-1}, ..., w^{-7}, 1), \\ p^7\mathsf{Tr}(t_p(\Delta_{11}[4])) &= 2^7\mathsf{Tr}(\mathsf{diag}(\alpha_p, \alpha_p^{-1}) \otimes \mathsf{diag}(p^{\frac{3}{2}}, p^{\frac{1}{2}}, p^{-\frac{1}{2}}, p^{-\frac{3}{2}})) \\ &= p^7(p^{\frac{3}{2}} + p^{\frac{1}{2}} + p^{-\frac{1}{2}} + p^{-\frac{3}{2}})(\alpha_p + \alpha_p^{-1}) \\ &= (p^3 + p^2 + p + 1)\tau(p), \\ p^7\mathsf{Tr}(t_p) &= p^4\left(\frac{p^7 - 1}{p - 1}\right) + p^7 + \tau(p)\left(\frac{p^4 - 1}{p - 1}\right). \end{split}$$

Plugging in p = 2 gives $1800 = \lambda_2(v_2)$.

$$\begin{split} c_{\infty}(z) &= \mathsf{diag}(w^{\frac{11}{2}}, w^{-\frac{11}{2}}) \otimes \mathsf{diag}(w^{\frac{3}{2}}, w^{\frac{1}{2}}, w^{-\frac{1}{2}}, w^{-\frac{3}{2}}) \\ &\oplus \mathsf{diag}(w^3, w^2, w, 1, w^{-1}, w^{-2}, w^{-3}, 1) \\ &= \mathsf{diag}(w^7, ..., w, 1, w^{-1}, ..., w^{-7}, 1), \\ p^7\mathsf{Tr}(t_p(\Delta_{11}[4])) &= 2^7\mathsf{Tr}(\mathsf{diag}(\alpha_p, \alpha_p^{-1}) \otimes \mathsf{diag}(p^{\frac{3}{2}}, p^{\frac{1}{2}}, p^{-\frac{1}{2}}, p^{-\frac{3}{2}})) \\ &= p^7(p^{\frac{3}{2}} + p^{\frac{1}{2}} + p^{-\frac{1}{2}} + p^{-\frac{3}{2}})(\alpha_p + \alpha_p^{-1}) \\ &= (p^3 + p^2 + p + 1)\tau(p), \\ p^7\mathsf{Tr}(t_p) &= p^4\left(\frac{p^7 - 1}{p - 1}\right) + p^7 + \tau(p)\left(\frac{p^4 - 1}{p - 1}\right). \end{split}$$

Plugging in p = 2 gives $1800 = \lambda_2(v_2)$.

We haven't proved that the parameter is correct, only that it works at ∞ and p = 2.

To prove it we use theta series. For each $m \ge 1$ there is a linear map:

$$\theta^{(m)}:M_n\to M_{\frac{n}{2}}(\operatorname{Sp}_{2m}(\mathbb{Z})),$$

$$[x_1,...,x_h]\mapsto \sum_{i=1}^h \frac{x_i}{|\operatorname{Aut}(\mathcal{L}_i)|} \theta^{(m)}(\mathcal{L}_i).$$

Theorem (Ralllis)

- $\theta^{(m)}(v_i)$ is either 0 or an eigenform $F_i^{(m)}$.
- If $\frac{n}{2} \ge m$ and $\theta^{(m)}(v_i) = F_i^{(m)}$ then

$$t_{p}(\pi_{i}) = \begin{cases} t_{p}(\pi_{F_{i}}) \cup \{p^{\pm(\frac{n}{2}-m-1)}, ..., p^{\pm 1}, 1\} & \text{if } \frac{n}{2} > m \\ t_{p}(\pi_{F_{i}}) \setminus \{1\} & \text{if } \frac{n}{2} = m \end{cases}$$

We haven't proved that the parameter is correct, only that it works at ∞ and p = 2.

To prove it we use theta series. For each $m \ge 1$ there is a linear map:

$$\theta^{(m)}:M_n o M_{\frac{n}{2}}(\operatorname{Sp}_{2m}(\mathbb{Z})),$$

$$[x_1,...,x_h]\mapsto \sum_{i=1}^n \frac{x_i}{|\operatorname{Aut}(\mathcal{L}_i)|}\theta^{(m)}(\mathcal{L}_i).$$

Theorem (Ralllis)

- $\theta^{(m)}(v_i)$ is either 0 or an eigenform $F_i^{(m)}$.
- If $\frac{n}{2} \ge m$ and $\theta^{(m)}(v_i) = F_i^{(m)}$ then:

$$t_{p}(\pi_{i}) = \begin{cases} t_{p}(\pi_{F_{i}}) \cup \{p^{\pm(\frac{n}{2}-m-1)}, ..., p^{\pm 1}, 1\} & \text{if } \frac{n}{2} > m \\ t_{p}(\pi_{F_{i}}) \setminus \{1\} & \text{if } \frac{n}{2} = m \end{cases}$$

We haven't proved that the parameter is correct, only that it works at ∞ and p = 2.

To prove it we use theta series. For each $m \ge 1$ there is a linear map:

$$\theta^{(m)}:M_n o M_{\frac{n}{2}}(\operatorname{\mathsf{Sp}}_{2m}(\mathbb{Z})),$$

$$[x_1,...,x_h]\mapsto \sum_{i=1}^n \frac{x_i}{|\operatorname{Aut}(\mathcal{L}_i)|}\theta^{(m)}(\mathcal{L}_i).$$

Theorem (Ralllis)

- $\theta^{(m)}(v_i)$ is either 0 or an eigenform $F_i^{(m)}$.
- If $\frac{n}{2} \geq m$ and $\theta^{(m)}(v_i) = F_i^{(m)}$ then:

$$t_{p}(\pi_{i}) = \begin{cases} t_{p}(\pi_{F_{i}}) \cup \{p^{\pm(\frac{n}{2}-m-1)}, ..., p^{\pm 1}, 1\} & \text{if } \frac{n}{2} > m \\ t_{p}(\pi_{F_{i}}) \setminus \{1\} & \text{if } \frac{n}{2} = m \end{cases}$$

If we can find a good m and the corresponding $F_i^{(m)}$ then we would be done. But this is infeasible.

Instead we can generate eigenforms $F \in M_{\frac{n}{2}}(\operatorname{Sp}_{2m}(\mathbb{Z}))$ that have the correct $t_p(\pi_F)$ and then show that $F \subset \operatorname{Im}(\theta^{(m)})$, by the following:

Theorem (Böcherer)

If $\frac{n}{2} > m$ then $F \subset \operatorname{Im}(\theta^{(m)})$ if and only if $L(\operatorname{st}, F, \frac{n}{2} - m) \neq 0$.

If we can find a good m and the corresponding $F_i^{(m)}$ then we would be done. But this is infeasible.

Instead we can generate eigenforms $F \in M_{\frac{n}{2}}(\mathrm{Sp}_{2m}(\mathbb{Z}))$ that have the correct $t_p(\pi_F)$ and then show that $F \subset \mathrm{Im}(\theta^{(m)})$, by the following:

Theorem (Böcherer

If $\frac{n}{2} > m$ then $F \subset \operatorname{Im}(\theta^{(m)})$ if and only if $L(\operatorname{st}, F, \frac{n}{2} - m) \neq 0$.

If we can find a good m and the corresponding $F_i^{(m)}$ then we would be done. But this is infeasible.

Instead we can generate eigenforms $F \in M_{\frac{n}{2}}(\mathrm{Sp}_{2m}(\mathbb{Z}))$ that have the correct $t_p(\pi_F)$ and then show that $F \subset \mathrm{Im}(\theta^{(m)})$, by the following:

Theorem (Böcherer)

If $\frac{n}{2} > m$ then $F \subset \text{Im}(\theta^{(m)})$ if and only if $L(\text{st}, F, \frac{n}{2} - m) \neq 0$.

$$L(st, I^{(4)}(\Delta), s) = \zeta(s) \prod_{i=1}^{4} L(\Delta, s + 8 - i).$$

- $I^{(4)}(\Delta) \in \operatorname{Im}(\theta^{(4)})$ since $L(\operatorname{st}, I^{(4)}(\Delta), 4) \neq 0$
- This explains $\Delta_{11}[4] \oplus [1]$
- [7] comes from the extra $\{p^{\pm 3}, p^{\pm 2}, p^{\pm 1}, 1\}$ in Rallis' theorem.

$$L(st, I^{(4)}(\Delta), s) = \zeta(s) \prod_{i=1}^{4} L(\Delta, s + 8 - i).$$

- $I^{(4)}(\Delta) \in \operatorname{Im}(\theta^{(4)})$ since $L(\operatorname{st}, I^{(4)}(\Delta), 4) \neq 0$
- This explains $\Delta_{11}[4] \oplus [1]$
- [7] comes from the extra $\{p^{\pm 3}, p^{\pm 2}, p^{\pm 1}, 1\}$ in Rallis' theorem.

$$L(st, I^{(4)}(\Delta), s) = \zeta(s) \prod_{i=1}^{4} L(\Delta, s + 8 - i).$$

- $I^{(4)}(\Delta) \in \operatorname{Im}(\theta^{(4)})$ since $L(\operatorname{st}, I^{(4)}(\Delta), 4) \neq 0$
- This explains $\Delta_{11}[4] \oplus [1]$
- [7] comes from the extra $\{p^{\pm 3}, p^{\pm 2}, p^{\pm 1}, 1\}$ in Rallis' theorem.

$$L(st, I^{(4)}(\Delta), s) = \zeta(s) \prod_{i=1}^{4} L(\Delta, s + 8 - i).$$

- $I^{(4)}(\Delta) \in \operatorname{Im}(\theta^{(4)})$ since $L(\operatorname{st}, I^{(4)}(\Delta), 4) \neq 0$
- This explains $\Delta_{11}[4] \oplus [1]$
- [7] comes from the extra $\{p^{\pm 3}, p^{\pm 2}, p^{\pm 1}, 1\}$ in Rallis' theorem.

$$L(st, I^{(4)}(\Delta), s) = \zeta(s) \prod_{i=1}^{4} L(\Delta, s + 8 - i).$$

- $I^{(4)}(\Delta) \in \text{Im}(\theta^{(4)})$ since $L(\text{st}, I^{(4)}(\Delta), 4) \neq 0$
- This explains $\Delta_{11}[4] \oplus [1]$
- [7] comes from the extra $\{p^{\pm 3}, p^{\pm 2}, p^{\pm 1}, 1\}$ in Rallis' theorem.

Recall the eigenforms $v_1 = [1, 1]$ and $v_2 = [405, -286]$.

$$286v_1 + v_2 = [691, 0] \equiv [0, 0] \mod 691.$$

$$\lambda_p(v_1) \equiv \lambda_p(v_2) \mod 691$$
 $p^7 \text{Tr}(t_p(\pi_1)) \equiv p^7 \text{Tr}(t_p(\pi_2)) \mod 691$
 $(p^3 + p^2 + p + 1)\tau(p) \equiv (p^3 + p^2 + p + 1)(1 + p^{11}) \mod 691$
 $\tau(p) \equiv 1 + p^{11} \mod 691$ (Galois reps trickery

Recall the eigenforms $v_1 = [1, 1]$ and $v_2 = [405, -286]$.

$$286v_1+v_2=[691,0]\equiv [0,0] \ \text{mod} \ 691.$$

$$\lambda_p(v_1) \equiv \lambda_p(v_2) \text{ mod 691}$$
 $p^7 \text{Tr}(t_p(\pi_1)) \equiv p^7 \text{Tr}(t_p(\pi_2)) \text{ mod 691}$
 $(p^3 + p^2 + p + 1)\tau(p) \equiv (p^3 + p^2 + p + 1)(1 + p^{11}) \text{ mod 691}$
 $\tau(p) \equiv 1 + p^{11} \text{ mod 691}$ (Galois reps trickery

Recall the eigenforms $v_1 = [1, 1]$ and $v_2 = [405, -286]$.

$$286v_1+v_2=[691,0]\equiv [0,0] \ \text{mod} \ 691.$$

$$\lambda_p(v_1) \equiv \lambda_p(v_2) \mod 691$$
 $p^7 \text{Tr}(t_p(\pi_1)) \equiv p^7 \text{Tr}(t_p(\pi_2)) \mod 691$
 $p^3 + p^2 + p + 1)\tau(p) \equiv (p^3 + p^2 + p + 1)(1 + p^{11}) \mod 691$
 $\tau(p) \equiv 1 + p^{11} \mod 691$ (Galois reps tricker

Recall the eigenforms $v_1 = [1, 1]$ and $v_2 = [405, -286]$.

$$286v_1 + v_2 = [691, 0] \equiv [0, 0] \mod 691.$$

$$\lambda_p(v_1) \equiv \lambda_p(v_2) \mod 691$$
 $p^7 \operatorname{Tr}(t_p(\pi_1)) \equiv p^7 \operatorname{Tr}(t_p(\pi_2)) \mod 691$

$$(p^3 + p^2 + p + 1)\tau(p) \equiv (p^3 + p^2 + p + 1)(1 + p^{11}) \mod 691$$

 $\tau(p) \equiv 1 + p^{11} \mod 691$ (Galois reps trickery

Recall the eigenforms $v_1 = [1, 1]$ and $v_2 = [405, -286]$.

$$286v_1 + v_2 = [691, 0] \equiv [0, 0] \mod 691.$$

$$\lambda_p(v_1) \equiv \lambda_p(v_2) \mod 691$$

$$p^7 \text{Tr}(t_p(\pi_1)) \equiv p^7 \text{Tr}(t_p(\pi_2)) \mod 691$$

$$(p^3 + p^2 + p + 1)\tau(p) \equiv (p^3 + p^2 + p + 1)(1 + p^{11}) \mod 691$$

$$\tau(p) = 1 + p^{11} \mod 691$$
(Galois repostricles)

Recall the eigenforms $v_1 = [1, 1]$ and $v_2 = [405, -286]$.

$$286v_1+v_2=[691,0]\equiv [0,0] \ \text{mod} \ 691.$$

$$\lambda_p(v_1) \equiv \lambda_p(v_2) \mod 691$$
 $p^7 \text{Tr}(t_p(\pi_1)) \equiv p^7 \text{Tr}(t_p(\pi_2)) \mod 691$
 $(p^3 + p^2 + p + 1)\tau(p) \equiv (p^3 + p^2 + p + 1)(1 + p^{11}) \mod 691$
 $au(p) \equiv 1 + p^{11} \mod 691$ (Galois reps trickery)

n=24

 $|X_{24}| = 24$ (Niemeier lattices).

Theorem (Chenevier/Lannes)

$$[1] \oplus [23] \qquad \qquad \operatorname{Sym}^2 \Delta \oplus \Delta_{17}[4] \oplus \Delta[2] \oplus [9]$$

$$\operatorname{Sym}^2 \Delta \oplus [21] \qquad \qquad \operatorname{Sym}^2 \Delta \oplus \Delta_{15}[6] \oplus [9]$$

$$\Delta_{21}[2] \oplus [1] \oplus [19] \qquad \qquad \Delta_{15}[8] \oplus [1] \oplus [7]$$

$$\operatorname{Sym}^2 \Delta \oplus \Delta_{19}[2] \oplus [17] \qquad \qquad \Delta_{21}[2] \oplus \Delta_{17}[2] \oplus \Delta[4] \oplus [1] \oplus [7]$$

$$\Delta_{21}[2] \oplus \Delta_{17}[2] \oplus [1] \oplus [15] \qquad \qquad \Delta_{19}[4] \oplus \Delta[4] \oplus [1] \oplus [7]$$

$$\Delta_{19}[4] \oplus [1] \oplus [15] \qquad \qquad \Delta_{21}[2] \oplus \Delta_{15}[4] \oplus [1] \oplus [7]$$

$$\operatorname{Sym}^2 \Delta \oplus \Delta_{19}[2] \oplus \Delta_{15}[2] \oplus [13] \qquad \operatorname{Sym}^2 \Delta \oplus \Delta_{19}[2] \oplus \Delta[6] \oplus [5]$$

$$\operatorname{Sym}^2 \Delta \oplus \Delta_{19}[2] \oplus \Delta_{17}[4] \oplus [13] \qquad \qquad \Delta_{21}[2] \oplus \Delta[8] \oplus [1] \oplus [3]$$

$$\Delta_{21}[2] \oplus \Delta_{15}[4] \oplus [1] \oplus [11] \qquad \qquad \Delta_{21,13}[2] \oplus \Delta_{17}[2] \oplus \Delta_{15}[2] \oplus \Delta[2] \oplus [5]$$

$$\operatorname{Sym}^2 \Delta \oplus \Delta_{19}[2] \oplus \Delta_{16}[4] \oplus [1] \oplus [3]$$

$$\Delta_{21,13}[2] \oplus \Delta_{17}[2] \oplus [1] \oplus [11] \qquad \qquad \operatorname{Sym}^2 \Delta \oplus \Delta_{19}[2] \oplus \Delta[4] \oplus [1] \oplus [3]$$

$$\operatorname{Sym}^2 \Delta \oplus \Delta_{19}[2] \oplus \Delta_{15}[2] \oplus \Delta[2] \oplus [9] \qquad \qquad \Delta[12]$$

- NOT easy to prove correctness (Arthur multiplicity formula).
- Old friends: Δ_{k-1} (weight k cuspform). New friends: $\operatorname{Sym}^2\Delta_{k-1}$ (symmetric square lifts), $\Delta_{j+2k-3,j+1}$ (genus 2 vector valued Siegel modular forms of weight (j,k)).
- $\lambda_p(v_{16}) \equiv \lambda_p(v_{22}) \mod 41$ for all p, proving the congruence:

$$\tau_{4,10}(p) \equiv \tau_{22}(p) + p^{13} + p^8 \mod 41,$$

- $au_{4,10}(p)$ eigenvalues of $F \in S_{4,10}(Sp_4(\mathbb{Z}))$, $au_{22}(p)$ eigenvalues of $f \in S_{22}(SL_2(\mathbb{Z}))$. First ever proved example of "Harder's congruence".
- Unfortunately $|X_{32}|$ is way too big to continue!

- NOT easy to prove correctness (Arthur multiplicity formula).
- Old friends: Δ_{k-1} (weight k cuspform). New friends: $\operatorname{Sym}^2 \Delta_{k-1}$ (symmetric square lifts), $\Delta_{j+2k-3,j+1}$ (genus 2 vector valued Siegel modular forms of weight (j,k)).
- $\lambda_p(v_{16}) \equiv \lambda_p(v_{22})$ mod 41 for all p, proving the congruence:

$$\tau_{4,10}(p) \equiv \tau_{22}(p) + p^{13} + p^8 \mod 41$$

 $au_{4,10}(p)$ eigenvalues of $F \in S_{4,10}(Sp_4(\mathbb{Z}))$, $au_{22}(p)$ eigenvalues of $f \in S_{22}(SL_2(\mathbb{Z}))$. First ever proved example of "Harder's congruence".

• Unfortunately $|X_{32}|$ is way too big to continue!

- NOT easy to prove correctness (Arthur multiplicity formula).
- Old friends: Δ_{k-1} (weight k cuspform). New friends: $\operatorname{Sym}^2 \Delta_{k-1}$ (symmetric square lifts), $\Delta_{j+2k-3,j+1}$ (genus 2 vector valued Siegel modular forms of weight (j,k)).
- $\lambda_p(v_{16}) \equiv \lambda_p(v_{22})$ mod 41 for all p, proving the congruence:

$$\tau_{4,10}(p) \equiv \tau_{22}(p) + p^{13} + p^8 \mod 41.$$

- $au_{4,10}(p)$ eigenvalues of $F \in S_{4,10}(Sp_4(\mathbb{Z}))$, $au_{22}(p)$ eigenvalues of $f \in S_{22}(SL_2(\mathbb{Z}))$. First ever proved example of "Harder's congruence"
- Unfortunately $|X_{32}|$ is way too big to continue!

- NOT easy to prove correctness (Arthur multiplicity formula).
- Old friends: Δ_{k-1} (weight k cuspform). New friends: $\operatorname{Sym}^2 \Delta_{k-1}$ (symmetric square lifts), $\Delta_{j+2k-3,j+1}$ (genus 2 vector valued Siegel modular forms of weight (j,k)).
- $\lambda_p(v_{16}) \equiv \lambda_p(v_{22}) \mod 41$ for all p, proving the congruence:

$$\tau_{4,10}(p) \equiv \tau_{22}(p) + p^{13} + p^8 \mod 41,$$

- $au_{4,10}(p)$ eigenvalues of $F \in S_{4,10}(Sp_4(\mathbb{Z}))$, $au_{22}(p)$ eigenvalues of $f \in S_{22}(SL_2(\mathbb{Z}))$. First ever proved example of "Harder's congruence".
- Unfortunately $|X_{32}|$ is way too big to continue!

- NOT easy to prove correctness (Arthur multiplicity formula).
- Old friends: Δ_{k-1} (weight k cuspform). New friends: $\operatorname{Sym}^2 \Delta_{k-1}$ (symmetric square lifts), $\Delta_{j+2k-3,j+1}$ (genus 2 vector valued Siegel modular forms of weight (j,k)).
- $\lambda_p(v_{16}) \equiv \lambda_p(v_{22}) \mod 41$ for all p, proving the congruence:

$$\tau_{4,10}(p) \equiv \tau_{22}(p) + p^{13} + p^8 \mod 41,$$

- $au_{4,10}(p)$ eigenvalues of $F \in S_{4,10}(Sp_4(\mathbb{Z}))$, $au_{22}(p)$ eigenvalues of $f \in S_{22}(SL_2(\mathbb{Z}))$. First ever proved example of "Harder's congruence".
- Unfortunately $|X_{32}|$ is way too big to continue!

Why not work over a real quadratic field? Even unimodular lattices can then exist in much lower dimensions!

- Described X_n for all plausible dimensions,
- Diagonalized the spaces M_n and calculated some small eigenvalues,
- Guessed global Arthur parameters, proving where possible,
- Observed congruences (some known, others new).

Why not work over a real quadratic field? Even unimodular lattices can then exist in much lower dimensions!

- Described X_n for all plausible dimensions,
- Diagonalized the spaces M_n and calculated some small eigenvalues,
- Guessed global Arthur parameters, proving where possible,
- Observed congruences (some known, others new)

Why not work over a real quadratic field? Even unimodular lattices can then exist in much lower dimensions!

- Described X_n for all plausible dimensions,
- Diagonalized the spaces M_n and calculated some small eigenvalues,
- Guessed global Arthur parameters, proving where possible,
- Observed congruences (some known, others new)

Why not work over a real quadratic field? Even unimodular lattices can then exist in much lower dimensions!

- Described X_n for all plausible dimensions,
- Diagonalized the spaces M_n and calculated some small eigenvalues,
- Guessed global Arthur parameters, proving where possible,
- Observed congruences (some known, others new).

Why not work over a real quadratic field? Even unimodular lattices can then exist in much lower dimensions!

- Described X_n for all plausible dimensions,
- Diagonalized the spaces M_n and calculated some small eigenvalues,
- Guessed global Arthur parameters, proving where possible,
- Observed congruences (some known, others new)

Why not work over a real quadratic field? Even unimodular lattices can then exist in much lower dimensions!

- Described X_n for all plausible dimensions,
- Diagonalized the spaces M_n and calculated some small eigenvalues,
- Guessed global Arthur parameters, proving where possible,
- Observed congruences (some known, others new).

For $K = \mathbb{Q}(\sqrt{5})$ even unimodular lattices of rank n exist if and only if $4 \mid n$.

n=4 $|X_4| = 1$, $M_{\mathcal{L}} = \mathbb{C}v_1$ with $v_1 = 1$. Arthur parameter [3] \oplus [1]. **n=8** $|X_8| = 2$, $M_{\mathcal{L}} = \mathbb{C}v_1 \oplus \mathbb{C}v_2$ with $v_1 = [1, 1]$ and $v_2 = [-25, 42]$.

Arthur parameters: $[7] \oplus [1]$ and $\Delta_5[2] \oplus [1] \oplus [3]$ (where Δ_5 comes from $f \in S_6(SL_2(\mathcal{O}_K))$).

 $25v_1 + v_2 \equiv [0, 0] \mod 67$ implies $\lambda_{\mathfrak{p}}(v_1) = \lambda_{\mathfrak{p}}(v_2) \mod 67$, which proves the (known) Eisenstein congruence:

$$\tau_6(\mathfrak{p}) \equiv 1 + N(\mathfrak{p})^5 \bmod 67.$$

For $K = \mathbb{Q}(\sqrt{5})$ even unimodular lattices of rank n exist if and only if $4 \mid n$.

n=4
$$|X_4|=1$$
, $M_{\mathcal{L}}=\mathbb{C} v_1$ with $v_1=1$. Arthur parameter [3] \oplus [1].

n=8 $|X_8|=2$, $M_{\mathcal L}=\mathbb C v_1\oplus \mathbb C v_2$ with $v_1=[1,1]$ and $v_2=[-25,42].$

Arthur parameters: $[7] \oplus [1]$ and $\Delta_5[2] \oplus [1] \oplus [3]$ (where Δ_5 comes from $f \in S_6(SL_2(\mathcal{O}_K))$).

 $25v_1 + v_2 \equiv [0,0] \mod 67$ implies $\lambda_{\mathfrak{p}}(v_1) = \lambda_{\mathfrak{p}}(v_2) \mod 67$ which proves the (known) Eisenstein congruence:

$$\tau_6(\mathfrak{p}) \equiv 1 + N(\mathfrak{p})^5 \mod 67$$

For $K = \mathbb{Q}(\sqrt{5})$ even unimodular lattices of rank n exist if and only if $4 \mid n$.

n=4
$$|X_4| = 1$$
, $M_{\mathcal{L}} = \mathbb{C}v_1$ with $v_1 = 1$. Arthur parameter [3] \oplus [1].

n=8
$$|X_8| = 2$$
, $M_{\mathcal{L}} = \mathbb{C}v_1 \oplus \mathbb{C}v_2$ with $v_1 = [1, 1]$ and $v_2 = [-25, 42]$.

Arthur parameters: $[7] \oplus [1]$ and $\Delta_5[2] \oplus [1] \oplus [3]$ (where Δ_5 comes from $f \in S_6(SL_2(\mathcal{O}_K))$).

 $25v_1 + v_2 \equiv [0, 0] \mod 67$ implies $\lambda_{\mathfrak{p}}(v_1) = \lambda_{\mathfrak{p}}(v_2) \mod 67$, which proves the (known) Eisenstein congruence:

$$\tau_6(\mathfrak{p}) \equiv 1 + N(\mathfrak{p})^5 \mod 67$$

For $K = \mathbb{Q}(\sqrt{5})$ even unimodular lattices of rank n exist if and only if $4 \mid n$.

n=4
$$|X_4|=1$$
, $M_{\mathcal{L}}=\mathbb{C}v_1$ with $v_1=1$. Arthur parameter [3] \oplus [1].

n=8
$$|X_8| = 2$$
, $M_{\mathcal{L}} = \mathbb{C}v_1 \oplus \mathbb{C}v_2$ with $v_1 = [1, 1]$ and $v_2 = [-25, 42]$.

Arthur parameters: $[7] \oplus [1]$ and $\Delta_5[2] \oplus [1] \oplus [3]$ (where Δ_5 comes from $f \in S_6(SL_2(\mathcal{O}_K))$).

 $25v_1 + v_2 \equiv [0,0] \mod 67$ implies $\lambda_{\mathfrak{p}}(v_1) = \lambda_{\mathfrak{p}}(v_2) \mod 67$ which proves the (known) Eisenstein congruence:

$$\tau_6(\mathfrak{p}) \equiv 1 + N(\mathfrak{p})^5 \mod 67$$

For $K = \mathbb{Q}(\sqrt{5})$ even unimodular lattices of rank n exist if and only if $4 \mid n$.

n=4
$$|X_4| = 1$$
, $M_{\mathcal{L}} = \mathbb{C}v_1$ with $v_1 = 1$. Arthur parameter [3] \oplus [1].

n=8
$$|X_8| = 2$$
, $M_{\mathcal{L}} = \mathbb{C}v_1 \oplus \mathbb{C}v_2$ with $v_1 = [1, 1]$ and $v_2 = [-25, 42]$.

Arthur parameters: $[7] \oplus [1]$ and $\Delta_5[2] \oplus [1] \oplus [3]$ (where Δ_5 comes from $f \in S_6(SL_2(\mathcal{O}_K))$).

 $25v_1 + v_2 \equiv [0,0] \mod 67$ implies $\lambda_{\mathfrak{p}}(v_1) = \lambda_{\mathfrak{p}}(v_2) \mod 67$, which proves the (known) Eisenstein congruence:

$$\tau_6(\mathfrak{p}) \equiv 1 + N(\mathfrak{p})^5 \mod 67.$$

$$n=12 |X_{12}| = 15$$

Theorem (Dummigan, F.)

$$\begin{array}{c} [1] \oplus [11] & ? \\ \operatorname{Sym}^2 \Delta_5 \oplus [9] & \Delta_{(9,5)}[2] \oplus \Delta_{(5,9)}[2] \oplus [1] \oplus [3] \\ \Delta_9^{(2)}[2] \oplus [1] \oplus [7] & \Delta_9^{(2)}[2] \oplus \Delta_5[2] \oplus [1] \oplus [3] \\ \Delta_9^{(2)}[2] \oplus [1] \oplus [7] & \Delta_9^{(2)}[2] \oplus \Delta_5[2] \oplus [1] \oplus [3] \\ \Delta_5[6] & \operatorname{Sym}^2 \Delta_5 \oplus \Delta_5[4] \oplus [1] \\ \operatorname{Sym}^2 \Delta_5 \oplus \Delta_7[2] \oplus [5] & \operatorname{Sym}^2 \Delta_5 \oplus \Delta_{(7,3)}[2] \oplus \Delta_{(3,7)}[2] \oplus [1] \\ ? & ? \\ \Delta_7[4] \oplus [1] \oplus [3] & \end{array}$$

New friends: $\Delta_{(k_1-1,k_2-1)}$ (non-parallel weight $f \in S_{k_1,k_2}(SL_2(\mathcal{O}_K))$).

The $\lambda_{\mathfrak{p}}(v_i)$ corresponding to Arthur Parameters $\Delta_7[4] \oplus [1] \oplus [3]$ and $\Delta_{(9,5)}[2] \oplus \Delta_{(5,9)}[2] \oplus [1] \oplus [3]$ are congruent mod 29.

- Δ_7 is base change of "dihedral" $g \in S_8(\Gamma_0(5), \chi_5)$
- $\Delta_{(9,5)}$ corresponds to $h \in S_{[10,6]}(SL_2(\mathcal{O}_K))$.
- Congruence implies (at split prime p):

$$a_g(p)(1+p^2) \equiv a_h(\mathfrak{p}) + a_h(\overline{\mathfrak{p}}) \mod \mathfrak{q}_{29}.$$

 LHS corresponds to a reducible Gal(ℚ/K)-rep and so RHS must too (residually). Indeed we observe:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^7 + \alpha^7 N(\mathfrak{p})^2 \mod \mathfrak{q}'_{29},$$

for any $\mathfrak{p} \nmid 29$ and totally positive α generating \mathfrak{p}

The $\lambda_{\mathfrak{p}}(v_i)$ corresponding to Arthur Parameters $\Delta_7[4] \oplus [1] \oplus [3]$ and $\Delta_{(9,5)}[2] \oplus \Delta_{(5,9)}[2] \oplus [1] \oplus [3]$ are congruent mod 29.

- Δ_7 is base change of "dihedral" $g \in S_8(\Gamma_0(5), \chi_5)$
- $\Delta_{(9,5)}$ corresponds to $h \in S_{[10,6]}(SL_2(\mathcal{O}_K))$.
- Congruence implies (at split prime p):

$$a_g(p)(1+p^2) \equiv a_h(\mathfrak{p}) + a_h(\overline{\mathfrak{p}}) \mod \mathfrak{q}_{29}.$$

• LHS corresponds to a reducible $Gal(\overline{\mathbb{Q}}/K)$ -rep and so RHS must too (residually). Indeed we observe:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^7 + \alpha^7 N(\mathfrak{p})^2 \mod \mathfrak{q}'_{29},$$

for any $\mathfrak{p} \nmid 29$ and totally positive lpha generating \mathfrak{p}

The $\lambda_{\mathfrak{p}}(v_i)$ corresponding to Arthur Parameters $\Delta_7[4] \oplus [1] \oplus [3]$ and $\Delta_{(9,5)}[2] \oplus \Delta_{(5,9)}[2] \oplus [1] \oplus [3]$ are congruent mod 29.

- Δ_7 is base change of "dihedral" $g \in S_8(\Gamma_0(5), \chi_5)$
- $\Delta_{(9,5)}$ corresponds to $h \in S_{[10,6]}(SL_2(\mathcal{O}_K))$.
- Congruence implies (at split prime p):

$$a_g(p)(1+p^2) \equiv a_h(\mathfrak{p}) + a_h(\overline{\mathfrak{p}}) \mod \mathfrak{q}_{29}.$$

 LHS corresponds to a reducible Gal(ℚ/K)-rep and so RHS must too (residually). Indeed we observe:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^7 + \alpha^7 N(\mathfrak{p})^2 \mod \mathfrak{q}'_{29},$$

for any $\mathfrak{p} \nmid 29$ and totally positive α generating \mathfrak{p}

The $\lambda_{\mathfrak{p}}(v_i)$ corresponding to Arthur Parameters $\Delta_7[4] \oplus [1] \oplus [3]$ and $\Delta_{(9,5)}[2] \oplus \Delta_{(5,9)}[2] \oplus [1] \oplus [3]$ are congruent mod 29.

- Δ_7 is base change of "dihedral" $g \in S_8(\Gamma_0(5), \chi_5)$
- $\Delta_{(9,5)}$ corresponds to $h \in S_{[10,6]}(SL_2(\mathcal{O}_K))$.
- Congruence implies (at split prime *p*):

$$a_g(p)(1+p^2)\equiv a_h(\mathfrak{p})+a_h(\overline{\mathfrak{p}}) \bmod \mathfrak{q}_{29}.$$

LHS corresponds to a reducible Gal(ℚ/K)-rep and so RHS must too (residually). Indeed we observe:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^7 + \alpha^7 N(\mathfrak{p})^2 \mod \mathfrak{q}'_{29},$$

for any $\mathfrak{p} \nmid 29$ and totally positive α generating \mathfrak{p}

The $\lambda_{\mathfrak{p}}(v_i)$ corresponding to Arthur Parameters $\Delta_7[4] \oplus [1] \oplus [3]$ and $\Delta_{(9,5)}[2] \oplus \Delta_{(5,9)}[2] \oplus [1] \oplus [3]$ are congruent mod 29.

- Δ_7 is base change of "dihedral" $g \in S_8(\Gamma_0(5), \chi_5)$
- $\Delta_{(9,5)}$ corresponds to $h \in S_{[10,6]}(SL_2(\mathcal{O}_K))$.
- Congruence implies (at split prime *p*):

$$a_g(p)(1+p^2)\equiv a_h(\mathfrak{p})+a_h(\overline{\mathfrak{p}}) \bmod \mathfrak{q}_{29}.$$

• LHS corresponds to a reducible $Gal(\overline{\mathbb{Q}}/K)$ -rep and so RHS must too (residually). Indeed we observe:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^7 + \alpha^7 N(\mathfrak{p})^2 \mod \mathfrak{q}'_{29},$$

for any $\mathfrak{p} \nmid 29$ and totally positive α generating \mathfrak{p} .

- Modulus 29 comes from the fact that $g \equiv \overline{g} \mod \langle \sqrt{-29} \rangle$.
- Weights are 8 = 4 + 4 and [10, 6] = [4 + 2(4) 2, 4 + 2].

Theoretical justification:

• Can lift h to a vector valued paramodular F such that $\lambda_F(p) = a_h(\mathfrak{p}) + a_h(\overline{\mathfrak{p}})$ at split primes. We get (conjectural) congruence of Klingen-Eisenstein type:

$$\lambda_F(p) \equiv a_g(p)(1+p^2) \bmod \langle \sqrt{-29} \rangle.$$

- Modulus 29 comes from the fact that $g \equiv \overline{g} \mod \langle \sqrt{-29} \rangle$.
- Weights are 8 = 4 + 4 and [10, 6] = [4 + 2(4) 2, 4 + 2].

Theoretical justification:

Can lift h to a vector valued paramodular F such that
 λ_F(p) = a_h(p) + a_h(p̄) at split primes. We get (conjectural)
 congruence of Klingen-Eisenstein type:

$$\lambda_F(p) \equiv a_g(p)(1+p^2) \bmod \langle \sqrt{-29} \rangle.$$

In general these congruences should link weights j + k and [j + 2k - 2, j + 2] (if F is a lift). The "dihedral" prime can then be shown to appear in the Deligne period for L_{5}(ad⁰(g), k - 1).

- Modulus 29 comes from the fact that $g \equiv \overline{g} \mod \langle \sqrt{-29} \rangle$.
- Weights are 8 = 4 + 4 and [10, 6] = [4 + 2(4) 2, 4 + 2].

Theoretical justification:

• Can lift h to a vector valued paramodular F such that $\lambda_F(p) = a_h(\mathfrak{p}) + a_h(\overline{\mathfrak{p}})$ at split primes. We get (conjectural) congruence of Klingen-Eisenstein type:

$$\lambda_F(p) \equiv a_g(p)(1+p^2) \bmod \langle \sqrt{-29} \rangle.$$

- Modulus 29 comes from the fact that $g \equiv \overline{g} \mod \langle \sqrt{-29} \rangle$.
- Weights are 8 = 4 + 4 and [10, 6] = [4 + 2(4) 2, 4 + 2].

Theoretical justification:

Can lift h to a vector valued paramodular F such that
 λ_F(p) = a_h(p) + a_h(p̄) at split primes. We get (conjectural)
 congruence of Klingen-Eisenstein type:

$$\lambda_F(p) \equiv a_g(p)(1+p^2) \; {\sf mod} \; \langle \sqrt{-29}
angle.$$

- Modulus 29 comes from the fact that $g \equiv \overline{g} \mod \langle \sqrt{-29} \rangle$.
- Weights are 8 = 4 + 4 and [10, 6] = [4 + 2(4) 2, 4 + 2].

Theoretical justification:

Can lift h to a vector valued paramodular F such that
 λ_F(p) = a_h(p) + a_h(p̄) at split primes. We get (conjectural)
 congruence of Klingen-Eisenstein type:

$$\lambda_F(p) \equiv a_g(p)(1+p^2) \bmod \langle \sqrt{-29} \rangle.$$

The following is made more precise in the paper...and is stated in more generality.

Conjecture

Suppose:

- $g \in S_{j+k}(\Gamma_0(5), \chi_5)$, eigenform with $j \ge 0$ even and $k \ge 4$.
 - $ullet g \equiv \overline{g} mod \mathfrak{q},$ with "dihedral" $\mathfrak{q} \mid q,q > 2(j+k), q
 eq 5$
- g ordinary at q and $\overline{\rho}_{q,q}$ absolutely irreducible.
- $q \nmid (5^{k-1} 1)$ (local obstruction to F being a lift).
- Then there exists $h \in S_{[j+2k-2,j+2]}(\mathsf{SL}_2(\mathcal{O}_K))$ such that

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^{j+k-1} + \alpha^{j+k-1} N(\mathfrak{p})^{k-2} \mod \mathfrak{q}',$$

for all $\mathfrak{p} \nmid \alpha$ and totally positive α generating \mathfrak{p} .

The following is made more precise in the paper...and is stated in more generality.

Conjecture

Suppose:

- $g \in S_{j+k}(\Gamma_0(5), \chi_5)$, eigenform with $j \ge 0$ even and $k \ge 4$.
- $g \equiv \overline{g} \mod \mathfrak{q}$, with "dihedral" $\mathfrak{q} \mid q, q > 2(j+k), q \neq 5$.
- ullet g ordinary at $\mathfrak q$ and $\overline{
 ho}_{q,\mathfrak q}$ absolutely irreducible.
- $q \nmid (5^{k-1} 1)$ (local obstruction to F being a lift)
- Then there exists $h \in S_{[j+2k-2,j+2]}(\mathsf{SL}_2(\mathcal{O}_K))$ such that:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^{j+k-1} + \alpha^{j+k-1} N(\mathfrak{p})^{k-2} \bmod \mathfrak{q}',$$

for all $\mathfrak{p} \nmid \mathfrak{q}$ and totally positive α generating \mathfrak{p} .

The following is made more precise in the paper...and is stated in more generality.

Conjecture

Suppose:

- $g \in S_{j+k}(\Gamma_0(5), \chi_5)$, eigenform with $j \ge 0$ even and $k \ge 4$.
- $g \equiv \overline{g} \mod \mathfrak{q}$, with "dihedral" $\mathfrak{q} \mid q, q > 2(j+k), q \neq 5$.
- g ordinary at \mathfrak{q} and $\overline{\rho}_{g,\mathfrak{q}}$ absolutely irreducible.
- $q \nmid (5^{k-1} 1)$ (local obstruction to F being a lift).

Then there exists $h \in S_{[j+2k-2,j+2]}(\mathsf{SL}_2(\mathcal{O}_K))$ such that:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^{j+k-1} + \alpha^{j+k-1} N(\mathfrak{p})^{k-2} \mod \mathfrak{q}',$$

for all $\mathfrak{p} \nmid g$ and totally positive α generating \mathfrak{p} .

The following is made more precise in the paper...and is stated in more generality.

Conjecture

Suppose:

- $g \in S_{j+k}(\Gamma_0(5), \chi_5)$, eigenform with $j \ge 0$ even and $k \ge 4$.
- $ullet g \equiv \overline{g} mod \mathfrak{q}, ext{ with "dihedral" } \mathfrak{q} \mid q,q > 2(j+k), q
 eq 5.$
- g ordinary at \mathfrak{q} and $\overline{\rho}_{g,\mathfrak{q}}$ absolutely irreducible.
- $q \nmid (5^{k-1} 1)$ (local obstruction to F being a lift).

Then there exists $h \in S_{[j+2k-2,j+2]}(SL_2(\mathcal{O}_K))$ such that:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^{j+k-1} + \alpha^{j+k-1} N(\mathfrak{p})^{k-2} \mod \mathfrak{q}',$$

for all $\mathfrak{p} \nmid g$ and totally positive α generating \mathfrak{p} .

The following is made more precise in the paper...and is stated in more generality.

Conjecture

Suppose:

- $g \in S_{j+k}(\Gamma_0(5), \chi_5)$, eigenform with $j \ge 0$ even and $k \ge 4$.
- $g \equiv \overline{g} \mod \mathfrak{q}$, with "dihedral" $\mathfrak{q} \mid q, q > 2(j+k), q \neq 5$.
- g ordinary at \mathfrak{q} and $\overline{\rho}_{q,\mathfrak{q}}$ absolutely irreducible.
- $q \nmid (5^{k-1} 1)$ (local obstruction to F being a lift).

Then there exists $h \in S_{[j+2k-2,j+2]}(SL_2(\mathcal{O}_K))$ such that:

$$a_h(\mathfrak{p}) \equiv \overline{\alpha}^{j+k-1} + \alpha^{j+k-1} N(\mathfrak{p})^{k-2} \mod \mathfrak{q}',$$

for all $\mathfrak{p} \nmid q$ and totally positive α generating \mathfrak{p} .

$$n=12 |X_{12}| = 15$$

Theorem (Dummigan, F.)

$$\begin{array}{c} [1] \oplus [11] \\ \operatorname{Sym}^2 \Delta_5 \oplus [9] \\ \Delta_{9}^{(2)}[2] \oplus [1] \oplus [7] \\ \Delta_{9}^{(2)}[2] \oplus [1] \oplus [7] \\ \Delta_{9}^{(2)}[2] \oplus [1] \oplus [7] \\ \Delta_{9}^{(2)}[2] \oplus \Delta_{5}[2] \oplus [1] \oplus [3] \\ \Delta_{9}^{(2)}[2] \oplus \Delta_{5}[2] \oplus \Delta_{5}[2] \oplus [1] \oplus [3] \\ \Delta_{5}[6] \\ \operatorname{Sym}^2 \Delta_5 \oplus \Delta_{5}[4] \oplus [1] \\ \operatorname{Sym}^2 \Delta_5 \oplus \Delta_{7}[2] \oplus [5] \\ \operatorname{Sym}^2 \Delta_5 \oplus \Delta_{(7,3)}[2] \oplus \Delta_{(3,7)}[2] \oplus [1] \\ \bigcirc \\ \Delta_{7}[4] \oplus [1] \oplus [3] \\ \end{array}$$

New friends: $\Delta_{(k_1-1,k_2-1)}$ (non-parallel weight $f \in S_{k_1,k_2}(SL_2(\mathcal{O}_K))$).

i	$\lambda_i (T_{(2)})$	$\lambda_i \left(T_{(\sqrt{5})}\right)$	91	Global Arthur parameters
1	1399125	12210156	0	[1] ⊕ [11]
2	348900	2446380	1	$\operatorname{Sym}^2 \Delta_5 \oplus [9]$
3	$89250 + 150\sqrt{809}$	$494820 - 360\sqrt{809}$	2	$\Delta_{9}^{(2)}[2] \oplus [1] \oplus [7]$
4	$89250 - 150\sqrt{809}$	$494820 + 360\sqrt{809}$	2	$\Delta_9^{(2)}[2] \oplus [1] \oplus [7]$
5	27300	-351540	6	$\Delta_5[6]$ $\operatorname{Sym}^2 \Delta_5 \oplus \Delta_7[2] \oplus [5]$
6	24000	107100	3	Sym As a Arter a Pri
7	21300	90900 45900	3	$\Delta_{7}[4] \oplus [1] \oplus [3]$
8	18300	27900	4	2
9	10800 9600	45900	4	$\Delta_{(9,5)}[2] \oplus \Delta_{(5,9)}[2] \oplus [1] \oplus [3]$
10		$12420 - 360\sqrt{809}$	4	$\int \Delta_{9}^{(2)}[2] \oplus \Delta_{5}[2] \oplus [1] \oplus [3]$
11	$8850 + 150\sqrt{809}$	$12420 + 360\sqrt{809}$	4	$\Delta_5^{(2)}[2] \oplus \Delta_5[2] \oplus [1] \oplus [3]$ $\operatorname{Sym}^2 \Delta_5 \oplus \Delta_5[4] \oplus [1]$
12	8850 - 150√809	-62100	5	Sym ² $\Delta_5 \oplus \Delta_{(7,3)}[2] \oplus \Delta_{(5,7)}[2] \oplus [1]$
13	7200 -6000	17100	≤ 5 ≤ 5	Sym 25 0 2000 ?
14	900	-13500	201	

 $\mathcal{N}(p)^{\frac{d}{2}}T(\oplus (f_{p}\left(\Pi_{k}\right)\otimes diag(N(p)^{\frac{d_{k-1}}{2}},\mathcal{N}(p)^{\frac{d_{k-1}}{2}},\ldots,\mathcal{N}(p)^{\frac{2-d_{k}}{2}},\mathcal{N}(p)^{\frac{1-d_{k}}{2}})))$

HAVE YOU SEEN MY ARTHUR PARAMETERS? IF SO CONTACT: daniel.fretwell@bristol.ac.uk

REWARD: MATHEMATICAL ENLIGHTENMENT (+POTENTIAL PAPER) hool of Mathematics