Physique numérique I

SPRING-PENDULUM SYSTEM

Baptiste Claudon - Kent Barbey

Assistant : André Calado Coroado

Group 15

9th November 2019

Table of contents

1	Intr	roduction	3
2	Analytical calculations		4
	2.1	Differential motion equation	4
	2.2	Equilibrium	5
	2.3	Mechanical energy	5
	2.4	Non conservative forces' power	5
	2.5	Small oscillations around the stable solution of the equilibrium	6
3	$\mathbf{C}+$	+ implementation	7
	3.1	Størmer-Verlet scheme	7
4	Simulation and results analysis		
	4.1	Small oscillations around equilibrium: simple harmonic oscillator	8
	4.2	Resonance with the exiting force	8
	4.3	Large movements without damping nor excitation	8
	4.4	Large movements without damping but with excitation	8
		4.4.1 Mechanical energy theorem	8
		4.4.2 Poincaré maps	8
		4.4.3 Sensitivity to initial conditions	8
	4.5	Large movements with damping and excitation	8
		4.5.1 Mechanical energy theorem	8
		4.5.2 Sensitivity to initial conditions: a step towards chaos	8
		4.5.3 mah man Poincaré maps	8
		4.5.4 Strange attractors	8
	4.6	To go further	8
5	Con	nclusion	9

List of Figures

1 Introduction

2 ANALYTICAL CALCULATIONS

Let us consider the dynamics of a mass m of electric charge q tied to a spring of stiffness k and length at rest l_0 . The position of the mass over time is given by a vector $\vec{r}(t)$ in a Cartesian coordinate system with x and y axis as shown in **Fig.1**. The spring is attached on its other end to the point $(x,y) = (\hat{x},\hat{y}) = (0,0)$.

The position, speed and acceleration are respectively written as:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \qquad \qquad \vec{u}(t) = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} \qquad \qquad \vec{a}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix}$$

with initial conditions : $x(0) = x_0, y(0) = y_0, \dot{x}(0) = \dot{y}(0) = 0.$

The mass is under the influence of four forces:

- 1. The weight : $\vec{P} = \begin{pmatrix} 0 \\ -mg \end{pmatrix}$
- 2. The spring force : $\vec{F}_k = \begin{pmatrix} -k(l-l_0)\sin(\theta) \\ k(l-l_0)\cos(\theta) \end{pmatrix}$, where l is the length of the spring and $l-l_0$ its deformation.
- 3. An oscillating excitation force : $\vec{F}_E = q \cos(\omega t) \begin{pmatrix} E_x \\ E_y \end{pmatrix}$ with $E_{x,y}$ the electric field coordinates and ω a given frequency.
- 4. The drag force : $\vec{F}_T = -\nu \vec{v}(t)$

The numerical values for the simulations, unless otherwise stated, are m=1.5kg, $k=4.5\mathrm{N.m^{-1}}$, $l_0=1.1\mathrm{m}$, $q=10^{-4}\mathrm{C}$ and $g=9.81\mathrm{m.s^{-2}}$.

2.1 DIFFERENTIAL MOTION EQUATION

Noticing that $x = l\sin(\theta)$, $y = -l\cos(\theta)$ and $\theta = \arctan(\frac{x}{-y})$, Newton's second law yields:

$$\vec{F}_k + m\vec{g} + \vec{F}_T + \vec{F}_E = m\vec{a} \tag{1}$$

Hence the differential equations system:

$$\begin{cases}
\ddot{x}(t) = -\frac{k}{m}x + \frac{k}{m}l_0\sin(\theta) - \frac{\nu}{m}\dot{x} + \frac{q}{m}E_x\cos(\omega t) \\
\ddot{y}(t) = -\frac{k}{m}y - \frac{k}{m}l_0\cos(\theta) - \frac{\nu}{m}\dot{y} + \frac{q}{m}E_y\cos(\omega t) - g
\end{cases}$$
(2)

which is equivalent to:

$$\begin{cases}
\ddot{x} + \omega_0^2 x + \gamma \dot{x} = \omega_0^2 l_0 \sin(\theta) + \frac{q}{m} E_x \cos(\omega t) \\
\ddot{y} + \omega_0^2 y + \gamma \dot{y} = -\omega_0^2 l_0 \cos(\theta) + \frac{q}{m} E_y \cos(\omega t) - g
\end{cases}$$
(3)

with $\frac{k}{m} = \omega_0^2$ and $\frac{\nu}{m} = \gamma$. These are the typical equations of a damped and forced harmonic oscillator.

2.2 EQUILIBRIUM

Let $E_x = E_y = \nu = 0$. Equations (3) are reduced to

$$\begin{cases} \ddot{x} + \omega_0^2 (x - l_0 \sin(\theta)) = 0 \\ \ddot{y} + \omega_0^2 (y + l_0 \cos(\theta)) - g = 0 \end{cases}$$
 (4)

Simple harmonic oscillators equations are recognisable. The equilibrium is determined when the net force is zero, i.e. $\ddot{x} = \ddot{y} = 0$. Therefore:

$$\begin{cases} \omega_0^2(x - l_0 \sin(\theta)) = 0\\ \omega_0^2(y + l_0 \cos(\theta)) - g = 0 \end{cases}$$
 (5)

The first equation gives two solutions knowing the expressions of x and y in polar coordinates:

- 1. $l = l_0$ which is not compatible with the second equation since $g \neq 0$.
- 2. $\theta_{1,2} = 0$, π which gives $x_1 = x_2 = 0$ and by injecting into the second equation : $y_1 = -l_0 \frac{g}{\omega_0^2} = -l$ and $y_2 = l_0 \frac{g}{\omega_0^2} = l$.

Hence the stable and unstable equilibrium positions respectively :

- 1. $(x_1, y_1) = (0, -l_0 \frac{g}{\omega_0^2})$
- 2. $(x_2, y_2) = (0, l_0 \frac{g}{\omega_0^2})$

2.3 MECHANICAL ENERGY

By definition, the mechanical energy is given by:

$$E_m = E_K + E_P = \frac{1}{2}mv^2 + mgy + \frac{1}{2}(l - l_0)^2 - q(E_x x + E_y y)$$
(6)

knowing that:

- $l = \sqrt{x^2 + y^2}$
- The electric force being conservative, the electric potential is : $qV = q\left(-\int \vec{E} d\vec{l}\right) = -q(E_x x + E_y y)$ with $d\vec{l} = (dx, dy)$

2.4 Non conservative forces' power

The only non conservative force is the drag force. By definition, the power of a force \vec{F}_T is :

$$P_{nc} = \frac{dW_{nc}}{dt} = \frac{\vec{F}_T d\vec{r}}{dt} = -\nu v^2 \tag{7}$$

where $v^2 = \dot{x}^2 + \dot{y}^2$

2.5 Small oscillations around the stable solution of the equilibrium

Equations (4) is used. Small oscillations δx and δy are applied respectively to x_1 and y_1 . Hence:

$$x(t) = x_1 + \delta x = \delta x \Rightarrow \ddot{x}(t) = \delta \ddot{x} \tag{8}$$

$$y(t) = y_1 + \delta y \Rightarrow \ddot{y}(t) = \delta \ddot{y} \tag{9}$$

Therefore for δx :

$$\delta \ddot{x}(t) = -\omega_0^2 \delta x - \omega_0^2 l_0 \sin\left(\arctan\left(\frac{x}{y}\right)\right) \tag{10}$$

A Taylor series expansion around x_1 and y_1 gives :

$$-\omega_0^2 l_0 \frac{d}{dx} \sin\left(\arctan\left(\frac{x}{y}\right)\right) \bigg|_{x_1, y_1} \delta x = \frac{\delta x}{y_1}$$
(11)

Hence (11) in (3) yields:

$$\delta \ddot{x}(t) = -\omega_0^2 \delta x \left(1 + \frac{l_0}{\frac{-g}{\omega_0^2} - l_0} \right)$$
$$= \delta x \frac{g}{y_1}$$
$$= \delta x \frac{g}{-l_{eq}}$$

Finally:

$$\delta \ddot{x}(t) + \frac{g}{l_{eq}} \delta x = \delta \ddot{x}(t) + \omega_2^2 \delta x = 0$$
 (12)

where $\omega_2^2 = \sqrt{\frac{g}{l_{eq}}} = \sqrt{\frac{kg}{gm + kl_0}}$ the eigenfrequency corresponding to the pendulum. The solution of the initial Cauchy problem(with initial conditions) with (8) is:

$$x(t) = x_0 \cos(w_2 t) \tag{13}$$

On the same basis, the equation for a small oscillation for δy yields:

$$\delta \ddot{y}(t) = \omega_0^2 (y_1 + \delta y) - \omega_0^2 l_0 \cos(\theta) - g$$
$$\approx -\omega_0^2 (y_1 + \delta y) - \omega_0^2 l_0 - g$$
$$= -\omega_0^2 \delta y$$

Finally the full equation:

$$\delta \ddot{y}(t) + \omega_1^2 \delta y = 0 \tag{14}$$

With $\omega_0^2 = \omega_1^2$ and therefore $\omega_1 = \sqrt{\frac{k}{m}}$ the eigenfrequency corresponding to the spring. The solution of the initial Cauchy problem(with initial conditions) with (9) is:

$$y(t) = y_1 + \delta y = (y_0 - y_1)\cos(\omega_1 t) + y_1 \tag{15}$$

- 3 C++ implementation
- 3.1 Størmer-Verlet scheme

4 SIMULATION AND RESULTS ANALYSIS

- 4.1 Small oscillations around equilibrium: simple harmonic oscillator
- 4.2 RESONANCE WITH THE EXITING FORCE
- 4.3 Large movements without damping nor excitation
- 4.4 Large movements without damping but with excitation
- 4.4.1 MECHANICAL ENERGY THEOREM
- 4.4.2 Poincaré maps
- 4.4.3 Sensitivity to initial conditions
- 4.5 Large movements with damping and excitation
- 4.5.1 MECHANICAL ENERGY THEOREM
- 4.5.2 Sensitivity to initial conditions : a step towards chaos
- 4.5.3 MAH MAN POINCARÉ MAPS
- 4.5.4 STRANGE ATTRACTORS
- 4.6 To go further...

5 Conclusion

ADDENDUM