CHAPTER 10

THEORY OF GRAPHS AND TREES

10.3

Isomorphisms of Graphs

Isomorphisms of Graphs (1/3)

Two graphs that are the same except for the labeling of their vertices and edges are called *isomorphic*. The word *isomorphism* comes from the Greek, meaning "same form." Isomorphic graphs are those that have essentially the same form.

Definition

Let G and G' be graphs with vertex sets V(G) and V(G') and edge sets E(G) and E(G'), respectively. G is isomorphic to G' if, and only if, there exist one-to-one correspondences $g: V(G) \to V(G')$ and $h: E(G) \to E(G')$ that preserve the edge-endpoint functions of G and G' in the sense that for each $v \in V(G)$ and $e \in E(G)$,

v is an endpoint of $e \iff g(v)$ is an endpoint of h(e).

10.3.1

Isomorphisms of Graphs (2/3)

In words, *G* is isomorphic to *G'* if, and only if, the vertices and edges of *G* and *G'* can be matched up by one-to-one, onto functions in such a way that the edges between corresponding vertices correspond to each other.

Example 10.3.1 – Showing That Two Graphs Are Isomorphic

Show that the following two graphs are isomorphic.

Example 10.3.1 – *Solution* (1/4)

To solve this problem, you must find functions $g: V(G) \rightarrow V(G')$ and $h: E(G) \rightarrow E(G')$ such that for each $v \in V(G)$ and $e \in E(G)$, v is an endpoint of e if, and only if, g(v) is an endpoint of h(e).

Setting up such functions is partly a matter of trial and error and partly a matter of deduction.

For instance, since e_2 and e_3 are parallel [have the same endpoints], $h(e_2)$ and $h(e_3)$ must be parallel also.

Example 10.3.1 – *Solution* (2/4)

continued

So $h(e_2) = f_1$ and $h(e_3) = f_2$ or $h(e_2) = f_2$ and $h(e_3) = f_1$. Also, the endpoints of e_2 and e_3 must correspond to the endpoints of f_1 and f_2 , and so $g(v_3) = w_1$ and $g(v_4) = w_5$ or $g(v_3) = w_5$ and $g(v_4) = w_1$.

Similarly, since v_1 is the endpoint of four distinct edges (e_1 , e_7 , e_5 , and e_4), $g(v_1)$ must also be the endpoint of four distinct edges [because every edge incident on $g(v_1)$ is the image under h of an edge incident on v_1 and h is one-to-one and onto].

Example 10.3.1 – *Solution* (3/4)

continued

But the only vertex in G' that has four edges coming out of it is w_2 , and so $g(v_1) = w_2$. Now if $g(v_3) = w_1$, then since v_1 and v_3 are endpoints of e_1 in G, $g(v_1) = w_2$ and $g(v_3) = w_1$ must be endpoints of $h(e_1)$ in G'. This implies that $h(e_1) = f_3$.

By continuing in this way, possibly making some arbitrary choices as you go, you eventually can find functions *g* and *h* to define the isomorphism between *G* and *G*′.

Example 10.3.1 – *Solution* (4/4)

continued

One pair of functions (there are several) is the following:

Isomorphisms of Graphs (3/3)

Theorem 10.3.1 Graph Isomorphism Is an Equivalence Relation

Let *S* be a set of graphs and let *R* be the relation of graph isomorphism on *S*. Then *R* is an equivalence relation on *S*.

Definition

A property P is called an **invariant for graph isomorphism** if, and only if, given any graphs G and G', if G has property P and G' is isomorphic to G, then G' has property P.

Theorem 10.3.2

Each of the following properties is an invariant for graph isomorphism, where n, m, and k are all nonnegative integers:

- 1. has *n* vertices
- 2. has *m* edges
- 3. has a vertex of degree *k*
- 4. has *m* vertices of degree *k*
- 5. has a circuit of length *k*

- 6. has a simple circuit of length *k*
- 7. has *m* simple circuits of length *k*
- 8. is connected
- 9. has an Euler circuit
- 10. has a Hamiltonian circuit.

Example 10.3.3 – Showing That Two Graphs Are Not Isomorphic

Show that the following pairs of graphs are not isomorphic by finding an isomorphic invariant that they do not share.

a.

Example 10.3.3 – Solution

a. G has nine edges; G' has only eight.

b. *H* has a vertex of degree 4; *H'* does not.

Graph Isomorphism for Simple Graphs

Graph Isomorphism for Simple Graphs (1/1)

When graphs *G* and *G'* are both simple, the definition of *G* being isomorphic to *G'* can be written without referring to the correspondence between the edges of *G* and the edges of *G'*.

Definition

If G and G' are simple graphs, then G is isomorphic to G' if, and only if, there exists a one-to-one correspondence g from the vertex set V(G) of G to the vertex set V(G') of G' that preserves the edge-endpoint functions of G and G' in the sense that for all vertices G and G' and G' in the sense that for all vertices G and G' in the sense that G and G' in the sense that G' is the sense that G'

 $\{u, v\}$ is an edge in $G \iff \{g(u), g(v)\}$ is an edge in G'. 10.3.2

Example 10.3.5 – *Isomorphism of Simple Graphs*

Are the two graphs shown below isomorphic? If so, define an isomorphism.

Example 10.3.5 – *Solution* (1/2)

Yes. Define $g: V(G) \rightarrow V(G')$ by the arrow diagram shown below.

Then *g* is one-to-one and onto by inspection.

Example 10.3.5 – *Solution* (2/2)

continued

The fact that *g* preserves the edge-endpoint functions of *G* and *G'* is shown by the following table:

Edges of G	Edges of G'
$\{a,b\}$	${y, w} = {g(a), g(b)}$
$\{a,c\}$	${y, x} = {g(a), g(c)}$
$\{a,d\}$	${y, z} = {g(a), g(d)}$
$\{c,d\}$	${x, z} = {g(c), g(d)}$