



# Session 02: Einführung in die Distributionelle Semantik

Viktoria Schneider & Dominic Schmitz

Verein für Diversität in der Linguistik



#### Brainstorming

- Die erste Gruppenarbeit ©
- Nehmt euch 10 Minuten Zeit einmal zu überlegen, was Distributionelle Semantik sein könnte.



#### Theoretische Implikationen

- Distributionelle Hypothese:
  - "Linguistic items with similar distributions have similar meanings." (e.g., Harris 1954)
- Unterschied in der Distribution von Wörtern = Unterschied in der Bedeutung von Wörtern
- Wort-Vektoren auf der Basis von computationellen Methoden
  - Kontexte werden benutzt um die Semantik eines Wortes zu bestimmen
- Distanz der Vektoren = Ähnlichkeit/Unähnlichkeit der Wörter aus
  - Hohe Distanz = Unähnlichkeit
  - Niedrige Distanz = Ähnlichkeit
- Für die Distanz können verschiedene Messarten benutzt werden (nächste Session)



#### Beispiel Bank

- Bank.1: ein Geldinstitut
- Bank.2: eine Sitzgelegenheit

| $\overline{}$ |                      | •     |          |
|---------------|----------------------|-------|----------|
| l lim         | $\alpha$             | 1000  | <u> </u> |
| Dim           | $\Box$ $\Box$ $\Box$ | ()    |          |
|               | $c_1 c_2$            | 10110 |          |
|               |                      |       |          |

| 7 |        | Geld | Institut | Sitz | Park |
|---|--------|------|----------|------|------|
|   | Bank.1 | 35   | 26       | 15   | 0    |
|   | Bank.2 | 0    | 0        | 37   | 60   |



#### Beispiel Bank

- Bank.1: ein Geldinstitut
- Bank.2: eine Sitzgelegenheit





#### Unterschiedliche Methoden

- Generelles Material: Vektorraum
  - Es gibt vorgefertigte Räume (bspw. FastText)
  - Man kann sie selber berechnen (bspw. NDL)
  - Wichtig: alle Zielwörter müssen im Vektorraum
    - Vorhanden sein
    - Oder berechnet werden können
- CBOW → Continuous Bag Of Words
  - Vektoren auf Grundlage von der Summe mehrerer Wörter
- Skip-Gram  $\rightarrow n$ -grams
  - Vektoren auf Grundlage von ganzen Wörtern
  - Kann angereichter werden mit *n*-grams

Wir glauben an diese Mathemagie ohne die Formel jemals selber rechnen zu wollen ;-)



#### Skip-Gram – ohne *n*-grams

- Vorkommnisse jedes einzelnen Wortes im Vektorraum mit jedem anderen Wort im Vektorraum
- Dimensionen reduziert → je nach Forschungsfrage 100 unendlich (Wörter im Vektorraum)

|        | Geld | Institut | Sitz | Park |
|--------|------|----------|------|------|
| Bank.1 | 35   | 26       | 15   | 0    |
| Bank.2 | 0    | 0        | 37   | 60   |



### Skip-Gram - mit *n*-grams

- Vorkommnisse jedes einzelnen Wortes im Vektorraum mit jedem anderen Wort im Vektorraum und deren *n*-grams
  - n-grams: für Deutsch und Englisch sind 3-6-grams sinnvoll (Bojanowski 2016)
- Dimensionen reduziert → je nach Forschungsfrage 100 unendlich (Wörter im Vektorraum)

|      | #ba | ban | ank | nk# |
|------|-----|-----|-----|-----|
| Bank | 1   | 1   | 1   | 1   |
| Bar  | 1   | 0   | 0   | 0   |



#### **CBOW**

- Vorkommnisse Zielwort im Vektorraum mit der Summe der Vektoren der Wörter in der Umgebung
- Dimensionen reduziert → je nach Forschungsfrage 100 unendlich (Wörter im Vektorraum)





### Beispiel: Fenster 2 Wörter rechts und links vom Zielwort

Skip-gram: jedes Wort wird mit einbezogen (man kann auch nur content words nehmen)



CBOW die Bedeutung der Wörter im Kontext zusammen wird benutzt



 Beide versuchen das Zielwort vorher zu sagen, Skip-gram funktioniert wohl besser mit ngrams als CBOW



Fragen über Fragen...



## Pause ©