Name	Muhammad Asad
Reg. #	2019-EE-383
Marks	

Experiment # 11

Designing of up counter and down counters

Objective:

- To design up & down counter
- Working out the essential distinctive features of synchronous and asynchronous counters.

Apparatus:

Workstation Core 2 Duo, UniTr@inLucas Nulle, SO4201-9TCard, Jumpers wires, Power Supplies

Procedure:

Exercise 1:

Implement the 2-bit up/down asynchronous counter circuit in Verilog HDL.

Use a control bit to allow selection between the **up** and **down** counting modes.

If control bit **S** is set (S = 0), the counter is to count **up**.

If control bit **S** is not set (S = 1), the counter is to count **down**.

The following table shows the bit patterns occurring during up and down counts:

Up counter

	Q2	Q1
0	0	0
1	0	1
2	1	0
3	1	1
0	0	0

Down counter

	Q2	Q1
0	0	0
3	1	1
2	1	0
1	0	1
0	0	0

From the experiment set-up, determine the condition for clock input C2:

Equation:

C2=SQ+S'Q'

Accordingly:

If S=1: C2 = Q

If S=0: C2 = Q'

Circuit diagram:

HDL Code:

```
module Taskl(J,K,CLK,Q);
      input J, K, CLK;
       output Q;
      reg Q;
     initial begin
       Q=0;
      end
    always @(posedge CLK)

case ({J,K})
      2'b00 : Q <= Q;
       2'b01 : Q <= 0;
13
      2'b10 : Q <= 1;
      2'bl1 : Q <= ~Q;
14
     endcase endmodule
     module Gates (A, Q, F);
      input A,Q;
18
      output F;
19
       wire B, C, D, E, F;
20
       not nl(B,A);
      not n2(C,Q);
21
22
       and al(D,A,Q);
23
       and a2 (E, B, C);
       or r1(F, D, E);
       endmodule
25
     pmodule TB_12();
       reg J, K, CLK;
       reg A;
29
       wire Q, Z;
30
       Taskl hl (J,K,CLK,Q);
       Gates gl(A,Q,F);
      Task1 h2 (J, K, F, Z);
     initial begin
33
34
      CLK = 0;
35
     - end
       CLK = 0;
34
35
36
        always #5 CLK=~CLK;
37
      initial begin
38
       J=1; K=1; A=1;
      Lend
39
     endmodule
```

Waveform:

Exercise 2:

Asynchronous up and down counter experiment:

Experiment steps: Asynchronous up and down counter

1. Connect the card to the UniTr@in-I as shown in the list of connections on the right.

Click on the image for a schematic representation of the wiring

Note: Inputs which are not connected (for example, J and K inputs),

2. Open the following virtual instruments from the *Instruments* menu:

List of connections

From	То
Interface S	Terminal FF C1
Digital In 0	Terminal FF Q1
Digital In 1	Terminal FF Q2
Digital Out 0	Terminal NOT E1
Terminal NOT E1	Terminal NAND E4
Terminal FF Q1	Terminal NAND E3
Terminal FF Q1	Terminal NAND E2
Terminal NOT Q1	Terminal NAND E1
Terminal NANDQ1	Terminal NAND E5
Terminal NANDQ2	Terminal NAND E6
Terminal NANDQ3	Terminal FF C2

Settings

- Function generator
- Extended digital inputs and outputs

Frequency: 1Hz

Logic

Power ON

- 3. Start the function generator and observe the display of the digital inputs. Switch S (DO0) from 0 to 1.
- 4. What can you observe after the circuit has been started up?

This circuit can count upto 4 from 0to3. It depends on input of S. If S is equal to 1 it counts down from 3-0 and if S is equal to 0 it counts up 0-3.

Exercise 3:

Synchronous up and down counter

This experiment is intended to investigate the operation of a synchronous up and down counter. A synchronous counter is capable of binary up and down counting between 0 and 3. A control bit is to allow selection between the **up** and **down** counting modes.

Determine the number of JK flip-flops required here.

n = 2

In the following table, enter the values which occur in the up and down counting modes.

Table

	for t _n		for t _{n+1}	
Counting direction	21	2^{0}	21	2^{0}
	$Q2_n$	$Q1_n$	Q2 _{n+1}	$Q1_{n+1}$
Down	0	0	1	1
	1	1	1	0
	1	0	0	1
	0	1	0	0
Up	0	0	0	1
	0	1	1	0
	1	0	1	1

Circuit configuration using a JK flip-flop and gates

Experiment steps: Synchronous up and down count

1. Connect the card to the UniTr@in-I as shown in the list of connections on the right.

Click on the image for a schematic representation of the wiring

From er	To	
Inleist co (Sco)	Terminal FF	
Digital In 0	Terminal FF Q1	
Digital In 1	Terminal FF Q2	
Digital Out 0	Terminal NOT E1	
Terminal NOT E1	Terminal NAND E4	
Terminal FF Q1	Terminal NAND E3	
Terminal FF Q1	Terminal NAND E2	
Terminal NOT Q1	Terminal NAND E1	
Terminal NAND Q1	Terminal NAND E5	
Terminal NAND Q2	Terminal NAND E6	

- 2. Open the following virtual instruments from the *Instruments* menu:
 - Function generator
 - Extended digital inputs and outputs

- 3. Start the function generator and observe the display of the digital inputs. Switch S (DO0) from 0 to 1.
- **4.** What can you observe after the circuit has been started up?

 I observed that the circuit is built using JK flip flops. Its output depends on Up or Down inputs.