Algebra

李錦州

January 9, 2022

Contents

1	Gro	pups	2
	1.1	Binary Operations	2
	1.2	Groups	2
	1.3	Subgroup	4
	1.4	Cyclic Group	5
2	Per	mutations, Cosets and Direct Products	8
	2.1	Groups of Permutations	8
	2.2	Orbits, Cycles and the Alternating Groups	12
	2.3	Cosets and the Theorem of Lagrange	14
	2.4	Direct Products and Finitely Generated Abelian Groups Direct Products	16
	2.5	Homomorphisms	18
	2.6	Factor Groups	22
	2.7	Isomorphism	25
3	Rings and Fields		
	3.1	Rings and Fields	28
	3.2	Integral Domains	31
	3.3	Fermat's and Euler's Theorem	32
	3.4	The field of Quotients of an Integral Domain	36
	3.5	Rings of Polynomial	37
	3.6	Factorization of Polynomial over a Field	39
	3.7	Homomorphism and Factor Rings	40
	3.8	Prime Ideal and Maximal Ideal	41

Chapter 1

Groups

1.1 Binary Operations

Definition 1.1

A binary operator (二元運算) * on a set S is a function mapping form $S \times S$ into S (*: $S \times S \to S$). Each $(a,b) \in S \times S$, will denote the element *(a,b) of S is a*b.

Example 1.1

Addition (+) is a binary operator on \mathbb{R} . Mapping $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Each $(a,b) \in \mathbb{R} \times \mathbb{R}$, +(a,b) = a+b.

Definition 1.2

Let * be a binary operator on S. Define S is **closed under** *, if $\forall a, b \in S$, then $a * b \in S$.

Example 1.2

 $\mathbb{Z}_{<0}$ is **not** closed under \times . Since $-1, -2 \in \mathbb{Z}_{<0}$, and $(-1) \times (-2) = 2 \notin \mathbb{Z}_{<0}$.

1.2 Groups

Definition 1.3

Suppose a set G is closed under a binary operator *. Define (G, *) is a **group** if it satisfy the following axioms.

- (G1) $\forall a, b, c \in G$, (a * b) * c = a * (b * c). (Is called associativity (結合律).)
- (G2) $\exists e \in G$ such that $\forall x \in G, x * e = e * x = x$. (e is called identity element (單位元素).)
- (G3) $\forall a \in G, \exists a' \in G \text{ such that } a * a' = a' * a = e. \ (a' \text{ is inverse } (反元素) \text{ of } a.)$

Definition 1.4

A group (G,*) is abelian (阿貝爾群, or commutative groups 可交換群) if $\forall a,b \in G, \ a*b = b*a$. (滿足交換律)

Example 1.3 Let $G = \{M \in M_{n \times n}(\mathbb{R}) | M \text{ is invertible} \}$, prove that (G, \cdot) is a non-abelian group.

(G0) $\forall A, B \in G, \exists A^{-1}, B^{-1} \text{ such that } AA^{-1} = BB^{-1} = I_n, \text{ Then }$

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = I_n.$$

Thus AB is invertible, so $AB \in G$. Hence G is closed under \cdot .

- (G1) $\forall A, B, C \in G, A(BC) = (AB)C.$
- (G2) $\exists I_n \in G, \forall A \in G \text{ such that } AI_n = I_n A = A.$
- (G3) $\forall A \in G$, $\exists A^{-1}$ such that $AA^{-1} = A^{-1}A = I_n$. Hence G is a group.

(Abelian) Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $AB = \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix} \neq \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix} = BA$. Hence G is a non-abelian group.

Theorem 1.1

If (G, *) is a group, then $\forall a, b, c \in G$, a * b = a * c imply b = c, and b * a = c * a imply b = c.

Proof

By (G3), then $\exists a' \in G$ such that a * a' = a' * a = e. Thus

$$a * b = a * c$$

$$\Rightarrow a' * (a * b) = a' * (a * c)$$

$$\Rightarrow (a' * a)b = (a' * a)c$$

$$\Rightarrow b = c.$$

Similar, $b * a = c * a \Rightarrow b = c$.

Theorem 1.2

If (G, *) is a group, then

- 1. $\exists ! e \in G$ such that $\forall a \in G$, a * e = e * a = a.
- 2. $\forall a \in G, \exists! a' \in G \text{ such that } a * a' = a' * a = e.$

Proof

- 1. Suppose $\exists e, e' \in G$ such that $\forall a \in G, e*a = a*e = a$ and e'*a = a*e' = a. By Theorem 1, e = e'. Hence $\exists !e$ is a identity element.
- 2. Suppose $\exists a', a'' \in G$ such that a * a' = a' * a = e and a * a'' = a'' * a = e. By Theorem 1, a' = a''. Hence $\exists ! a'$ is inverse of a.

Theorem 1.3

If (G, *) is a group, then $\forall a, b \in G$, we have (a * b)' = b' * a'.

Proof

Since (a * b) * (b' * a') = a * (b * b') * a' = aea' = a * a' = e. Hence (b' * a') is the inverse of (a * b), that is (a * b)' = (b' * a').

Definition 1.5

Let (G, *) be a set of G with a binary operation *.

- 1. If only (G0) hold, then define (G, *) is a **semigroup**.
- 2. If (G0) and (G1) hold, then define (G, *) is a **monoid**.

Theorem 1.4

Let (G, *) be a semigroup, if

- 1. $\exists e \in G$ such that $\forall a \in G$, e * a = a, and
- 2. $\forall a \in G, \exists a^{-1} \in G \text{ such that } a^{-1} * a = e.$

then (G,*) is a group.

1.3 Subgroup

Definition 1.6

If (G, *) is a group, then the **order** |G| of G is the number of elements in G.

Definition 1.7

Suppose (G, *) is a group, and $H \subset G$. If H satisfy following condition

- 1. $\forall a, b \in H, a * b \in H$
- $e \in H$

3. $\forall a \in H, a^{-1} \in H$.

then (H, *) is a **subgroup** of (G, *). Denote by $H \leq G$.

Theorem 1.5

Every group G has two subgroup G and $\{e\}$.

Definition 1.8 Let (G, *) be a group, $a \in G$, and $n, m \in \mathbb{N} \cup \{0\}$, they following the operation.

- 1. $a^n = \underbrace{a * a * \cdot * a}_{n \text{ times}}$.
- 2. $a^{-m} = \underbrace{a^{-1} * a^{-1} * \cdot * a^{-1}}_{m \text{ times}}$.
- 3. $a^0 = e$, where e is the identity element of G.

Theorem 1.6

Let (G, *) be a group and $a \in G$, then $H = \{a^n | n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a. That is, every subgroup containing a contains H.

Proof

- 1. $\forall r, s \in \mathbb{Z}, a^r * a^s = a^{r+s} \in H$.
- 2. $e = a^0 \in H$.
- 3. $\forall a^r \in H, (a^r)^{-1} = a^{-r} \in H.$

So $H \leq G$. Hence H is a subgroup of (G, *).

Definition 1.9

Let (C, *) be a group and $a \in G$. Then $H = \{a^n | n \in \mathbb{Z}\}$ is called a **cyclic subgroup of** G **generated** by a, denote by $a \in G$.

Definition 1.10

If $G = \langle a \rangle$, then called a is a **generator** of G, or a **generates** G. that is $\forall x \in G, \exists n \in \mathbb{Z}_{>0}$ such that $x = a^n$.

1.4 Cyclic Group

Definition 1.11

(G,*) is a cyclic group if $\exists a \in G$ such $G = \langle a \rangle$.

Theorem 1.7

Every cyclic group is abelian.

Proof

Let $G = \langle a \rangle$, then $\forall g_1, g_2 \in G$, $\exists r_1, r_2 \in \mathbb{Z}$ such that $g_1 = a^{r_1}$ and $g_2 = a^{r_2}$. Then

$$q_1 * q_2 = a^{a_1}a^{r_2} = a^{r_1+r_2} = a^{r_2}a^{r_1} = q_2 * q_1.$$

Hence G is abelian.

Theorem 1.8 (Division Algorithm for \mathbb{Z})

If $m \in \mathbb{R}_{>0}$ and $n \in \mathbb{Z}$, then $\exists !q, r \in \mathbb{Z}$ such that m = qn' + r and $0 \le r < m$.

Theorem 1.9

A subgroup of a cyclic group is cyclic.

Proof

Let $G = \langle a \rangle$ and $H \leq G$. If $H = \{e\}$, then is cyclic. If $H \neq \{e\}$, then $a^n \in H$ for some $n \in \mathbb{Z}_{>0}$. Let m be the smallest positive integer such that $a^m \in H$. Let $c = a^m \in H$. Claim $H = \langle c \rangle$. (i.e. $\forall b \in H$, $\exists q \in \mathbb{Z}$ such that $b = c^q$.) Let $b \in H \leq G = \langle a \rangle$. $\exists n \in \mathbb{Z}$ such that $b = a^n$. By division algorithm, $\exists q, r \in \mathbb{Z}$ such that n = qm + r and $0 \leq r < m$. Then

$$a^n = a^{qm+r} = (a^m)^q * a^r$$

 $a^r = a^n * (a^m)^{-q} \in H \text{ (Since } a^n, a^m \in H)$

Since m is the mallest positive integer such that $a^m \in H$, and $a^r \in H$ with $0 \le r < m$, that force r = 0. Thus $n = mq \implies b = a^n = (a^m)^q = c^q \in H$. Hence H is cyclic.

Theorem 1.10

The subgroup of $(\mathbb{Z}, +)$ are precisely the groups $(n\mathbb{Z}, +)$ for $n \in \mathbb{Z}$.

Definition 1.12

Let $r, s \in \mathbb{Z}_{>0}$, then $H = \{nr + ms | n, m \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z}, +)$. By Theorem 10, $\exists d \in \mathbb{Z}_{>0}$ such that $H = \langle d \rangle$. Then d is the **greatest common divisor** (gcd) r and s. On the other hand, if $d = \gcd(r, s)$, then $\exists n, m \in \mathbb{Z}$ such that d = nr + ms.

Definition 1.13

Let (G, *) and (G', *') be two groups. Define G is **isomorphic** (同構), if $\exists a$ a one-to-one and onto function $\phi: G \to G'$ such that $\forall a, b \in G$, $\phi(a * b) = \phi(a) *' \phi(b)$, denoted by $G \simeq G'$.

Theorem 1.11

Let $G = \langle a \rangle$, then

- 1. If |G| is infinite, then $G \simeq (\mathbb{Z}, +)$.
- 2. If |G| = n is finite, then $G \simeq (\mathbb{Z}_n, +)$.

Proof

If $\forall m \in \mathbb{Z}_{>0}$, $a^m \neq e$. Claim $a^h \neq a^k$ if $h \neq k$. Assume $a^h = a^k$ and h > k. Then $a^h * a^{-k} = a^{h-k} = a^0 = e$ and $h - k \in \mathbb{Z}_{>0}$. So $G = a^m | m \in \mathbb{Z}$. Define $\phi : G \to \mathbb{Z}$ with $a^m \to m$. Then ϕ is one-to-one and onto by claim. and $\phi(a^i * a^j) = \phi(a^{i+j}) = i + j = \phi(a^i) + \phi(a^j)$. Hence $G \simeq (\mathbb{Z}, +)$.

If $\exists m \in \mathbb{Z}_{>0}$ such that $a^m = e$. Let n be the smallest integer such that $a^n = e$. Claim $a^k \neq a^k$ if 0 < h << n. If $a^h = a^k$, then $a^{k-h} = e$ and 0 < k - h < n. So $G = a, a^2, \dots, a^n = e$. Define $\phi : G \to \mathbb{Z}_n$ with $a_i \to i$ for $i = 0, 1, 2, \dots n - 1$. Then ϕ is one-to-one and onto. Since $a^n = e$, so $a^i a^j = a^k$ where $k = i + j \in \mathbb{Z}_n$. Hence $G \simeq (\mathbb{Z}_n, +)$.

Theorem 1.12

Let $G = \langle a \rangle$ and |G| = n, if $H = \langle a^r \rangle$ with $r \in \mathbb{Z}_{>0}$, then |H| = n/d, where $d = \gcd(n, r)$. Also $\langle a^r \rangle = \langle a^s \rangle$ if and only if $\gcd(n, r) = \gcd(n, s)$.

Theorem 1.13

If $G = \langle a \rangle$ and |G| = n. If gcd(n, r) = 1, then $G = \langle a^r \rangle$.

Chapter 2

Permutations, Cosets and Direct Products

2.1 Groups of Permutations

Definition 2.1

A **permutation** of a set A is a function $\phi: A \to A$ that one-to-one and onto.

Example 2.1

Let $A = \{1, 2, 3, 4\}$ and $\phi: A \to A$

$$1 \mapsto 2$$
, $2 \mapsto 1$, $3 \mapsto 4$, $4 \mapsto 3$

is a permutation. As we write

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad \text{or} \quad \phi = (1, 2)(3, 4)$$

Definition 2.2

Suppose A is a nonempty set, then let S_A be the set of all permutation of A.

Theorem 2.1

Define function composition \circ is a binary operation of S_A , then (S_A, \circ) is a group.

Proof

(G0) Let $f, g \in S_A$ and $a_1, a_2 \in A$. If $f \circ g(a_1) = f \circ g(a_2)$, then $f(g(a_1)) = f(g(a_2))$, since f is one-to-one, then $g(a_1) = g(2)$, since g is one-to-one, then $g(a_1) = g(2)$, since g is one-to-one.

Let $f, g \in S_A$ and $a \in A$. Since f is onto, so $\exists a' \in A$ such that f(a') = a. Since g is onto, so $\exists a'' \in A$ such that g(a'') = a'. Then $f \circ g(a'') = f(g(a'')) = f(a') = a$. Hence $f \circ g$ is onto.

So $\forall f, g \in S_A, f \circ g \in S_A$.

(G1) Let $f, g, h \in S_A$ and $a \in A$, we have

$$(f \circ g) \circ h(a) = (f \circ g)(h(a)) = f(g(h(a)))$$

$$f \circ (g \circ h)(a) = f \circ (g(g(a))) = f(g(h(a)))$$

Hence $\forall f, g, h \in S_A$, $(f \circ g) \circ h = f \circ (g \circ h)$.

(G2) Let i(a) = a for all $a \in A$, then $i \in S_A$. Let $f \in S_A$, then

$$f \circ i(a) = f(i(a)) = f(a)$$

$$i \circ f(a) = i(f(a)) = f(a)$$

Hence i is the identity of S_A , such that $\forall f \in S_A$, $f \circ i = i \circ f = f$.

(G3) Let $f \in S_A$, and $f^{-1}: A \to A$ with $f^{-1}(a) = a'$ where f(a') = a. (Note that $\forall a \in A, \exists! a' \in A$ such that f(a') = a, since f is one-to-one.) So

$$f\circ f^{-1}(a)=f(f^{-1}(a))=f(a')=a=i(a)$$

$$f^{-1} \circ f(a') = f^{-1}(f(a')) = f^{-1}(a) = a' = i(a')$$

Hence $\forall f \in S_A, \exists f^{-1} \in S_A \text{ such that } f \circ f^{-1} = f^{-1} \circ f = i.$

Hence (S_A, \circ) is a group.

Definition 2.3

Let $A = \{1, 2, \dots, n\}$, The group S_A is called **symmetric group** on n letters, denote by S_n , and $|S_A| = n!$.

Example 2.2

Let A = 1, 2, 3, then S_A is S_3 , and $|S_3| = 3! = 6$.

$$\phi_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = e \in S_{3}, \qquad \phi_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (2,3) \in S_{3},$$

$$\phi_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1,2) \in S_{3}, \qquad \phi_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1,2,3) \in S_{3},$$

$$\phi_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1,3,2) \in S_{3}, \qquad \phi_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (1,3) \in S_{3}.$$

Operator use first for the latter (先對後項作用).

$$(1\ 2\ 3)^2 = (1\ 2\ 3)(1\ 2\ 3) = (1\ 3\ 2).$$

Remark 2.1

 S_3 is non-abelian.

$$(1\ 2\ 3)(1\ 2) = (1\ 3)$$

$$(1\ 2)(1\ 2\ 3) = (2\ 3).$$

Definition 2.4

Let G be a group and $a_i \in G$, $i \in I$. If H is the smallest subgroup of G containing $\{a_i | i \in I\}$, then define H is generated by $\{a_i | i \in I\}$, and $H = \langle a_i | i \in I \rangle$.

Theorem 2.2

 $H = \langle a_i | i \in I \rangle$ has at element precisely these element of G.

Definition 2.5

Define $D_n = \langle a, b | a^n = b^2 = e, bab = a^{-1} \rangle$ is the *n*th **dihedral group**, that is the group of symmetries of the regular *n*-gun, which include rotations and reflections.

Remark 2.2

- 1. $S_3 \simeq D_3$.
- 2. $|D_n| = 2n$.

Theorem 2.3

Let (G,*) and (G',*') be groups. If $\phi: G \to G'$ be a one-to-one function such that $\forall x,y \in G, \ \phi(x*y) = \phi(x)*'\phi(y)$. Then $\phi(G) \leq G'$ and $G \simeq \phi(G)$.

Proof First

(G0) $\forall x', y' \in \phi(G), \exists x, y \in G \text{ such that } \phi(x) = x' \text{ and } \phi(y) = y'.$ Then

$$x'*'y' = \phi(x)*'\phi(y) = \phi(x*y) \in \phi(G)$$

(G2) Let e' be the identity of G'. Then

$$e' *' \phi(e) = \phi(e) = \phi(e * e) = \phi(e) *' \phi(e)$$
$$\Rightarrow e' = \phi(e) \in \phi(G).$$

(G2) $\forall x' \in \phi(G), \exists x \in G \text{ such that } \phi(x) = x', \text{ then }$

$$e' = \phi(e) = \phi(x * x^{-1}) = \phi(x) *' \phi(x^{-1}) = x' *' \phi(x^{-1})$$

$$\Rightarrow (x')^{-1} = \phi(x^{-1})$$

Hence $\phi(G) \leq G'$.

Since $\phi: G \to \phi(G)$ is a one-to-one and onto function with $\forall x, y \in G, \, \phi(xy) = \phi(x)\phi(y)$. Hence $G \simeq \phi(G)$.

Theorem 2.4

If G is a group and |G| = n, then $G \leq S_n$.

Theorem 2.5 (Cayley's Theorem)

Every group G is isomorphic to a subgroup of S_G .

Proof

x Let G be a group. Define $\phi: G \to S_G$, for $x \in G$, let $\lambda_x: G \to G$ define by $\lambda_x(g) = xg$. Now we check $\lambda_x \in S_G$ (i.e. λ_x is one-to-one and onto.) Assume $\forall g_1, g_2 \in G$, $\lambda_x(g_1) = \lambda_x(g_2)$, then

$$\lambda_x(g_1) = \lambda_x(g_2) \quad \Rightarrow \quad xg_1 = xg_2 \quad \Rightarrow \quad g_1 = g_2$$

thus λ_x is one-to-one. Since $\forall g \in G, x^{-1}g \in G$, then

$$\lambda_x(x^{-1}g) = xx^{-1}g = g$$

thus λ_x is onto. Hence $\lambda_x \in S_G$.

Assume $\exists x_1, x_2 \in G$ such that $\phi(x_1) = \phi(x_2)$, then

$$\phi(x_1) = \phi(x_2) \quad \Rightarrow \quad \lambda_{x_1} = \lambda_{x_2},$$

then $\forall g \in G$,

$$\lambda_{x_1}(g) = \lambda_{x_2}(g) \quad \Rightarrow \quad x_1 g = x_2 g \quad \Rightarrow \quad x_1 = x_2$$

then ϕ is one-to-one. Let $x, y \in G$, then

$$\phi(xy) = \lambda_{xy}$$

$$\phi(x)\phi(y) = \lambda_x \circ \lambda_y$$

let $g \in G$, then

$$\lambda_{xy}(g) = xyg$$

$$\lambda_x \circ \lambda_y(g) = \lambda_x(\lambda_y(g)) = \lambda_x(yg) = xyg$$

Hence G is isomorphic to a subgroup of S_G .

2.2 Orbits, Cycles and the Alternating Groups

Definition 2.6

An equivalence relation on a set A is a subset R of $A \times A$ satisfies the following properties for $\forall x, y, z \in A$.

Reflexive xRx.

Symmetric If xRy, then yRx.

Transitive If xRy and yRz, then xRz.

The xRy means $(x,y) \in R \subseteq (A \times A)$.

Definition 2.7

A partition (分割) of a set A is collection of nonempty subsets of A such that every element of A is in exactly one of the subset.

Theorem 2.6

Let A be a nonempty set and \sim be an equivalence relation on A, then

- 1. The relation \sim yields a partition of A.
- 2. Each partition of A give rise to an equivalence relation \sim on A, where $a \sim b$.

Theorem 2.7

Let $A = \{1, 2, \dots, n\}$ and $\sigma = S_A$. Then $\forall a, b \in A$, $a \sim b$ if and only if $\exists n \in \mathbb{Z}$ such that $\sigma^n(a) = b$, where \sim is an equivalence relation on A.

Proof

Reflexive: Since $a = \sigma^0(a)$ and $\sigma^0(e) = e$, then $a \sim a$.

Symmetric: If $a \sim b$, then $\exists n \in \mathbb{Z}$ such that $\sigma^n(a) = b$, therefore $a = \sigma^{-n}(b)$, since $-n \in \mathbb{Z}$, so $b \sim a$.

Transitive: If $a \sim b$ and $b \sim c$, $\exists m, n \in \mathbb{Z}$ such that $\sigma^m(a) = b$ and $\sigma^n(b) = c$, therefore $c = \sigma^m(b) = \sigma^m(\sigma^n(a)) = \sigma^{m+n}(b)$. Since $(m+n) \in \mathbb{Z}$, then $a \sim c$.

12

Definition 2.8

Let $\sigma \in A$. The equivalence classes in A determine by \sim are the **orbits** of σ .

Example 2.3

Find all orbits of

$$\sigma = \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{array}\right) \in S_8.$$

Solution

Since

$$\begin{cases}
1 \stackrel{\sigma}{\rightarrow} 3 \stackrel{\sigma}{\rightarrow} 6 \stackrel{\sigma}{\rightarrow} 1 \\
2 \stackrel{\sigma}{\rightarrow} 8 \stackrel{\sigma}{\rightarrow} 2 \\
4 \stackrel{\sigma}{\rightarrow} 7 \stackrel{\sigma}{\rightarrow} 5 \stackrel{\sigma}{\rightarrow} 4
\end{cases}$$

Hence $\{1, 3, 6\}$, $\{2, 8\}$ and $\{4, 7, 5\}$ are all orbits of σ .

Definition 2.9

- 1. A **permutation** $\sigma \in S_n$ in a cycle if it has at most one orbit containing more than one element.
- 2. The **length** of a cycle is the number of elements in its largest orbit.
- 3. A cycle of length 2 is called **transposition**.

Example 2.4

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1 \ 2)$$
, then $(1,2)$ is a cycle and length of $(1,2)$ is 2.

Theorem 2.8

Every permutation of a finite set is a product of disjoint cycles.

Proof

Let σ is a permutation of a finite set. Suppose B_1, B_2, \dots, B_r be the orbits of σ , define the cycle

$$\mu_i(x) = \begin{cases} \sigma(x) & \text{if } x \in B_i \\ x & \text{if } x \notin B_i \end{cases}.$$

then $\sigma = \mu_1 \mu_2 \cdots m_r$, since B_1, B_2, \cdots, B_r are disjoint, the cycles $\mu_1, \mu_2, \cdots, \mu_r$ are disjoint also.

Remark 2.3

$$(1\ 2\ 3) = (1\ 3)(1\ 2)$$
, and $(a_1\ a_2 \cdots a_n) = (a_1\ a_n)(a_1\ a_{n-1}) \cdots (a_1 a_2)$.

Corollary 2.1

Any permutation of a finite set of at least two elements is a product of transposition.

Theorem 2.9

No permutation in S_n can be expressed both as a product of even number transposition and as a product of odd number transposition.

Definition 2.10

Let $\sigma \in S_n$ is even(odd) if $\sigma = \tau_1 \tau_2 \cdots \tau_n$, where τ_i are transposition and m is even(odd).

Definition 2.11

The subgroup of S_n consisting of the even permutation of n letters is the **alternating group** A_n of n letters.

Theorem 2.10

If $n \geq 2$, then $A_n \leq S_n$ and $|A_n| = (n!)/2$.

Proof

Claim $A_n \leq S_n$,

- (G0) Let $\sigma, \mu \in A_n$, then $\sigma \mu$ is even, therefore $\sigma \mu \in A_n$.
- (G2) $e = (1\ 2)(2\ 1) \in A$.
- (G3) Let $\sigma = \tau_1 \tau_2 \cdots \tau_m \in A_n$, where τ_i for $1 \le i \le n$ are transposition. Let $\mu = \tau_m \tau_{m-1} \cdots \tau_2 \tau_1 \in A_n$. Then $\sigma \mu = e \in A$. Since $\tau_i^{-1} = \tau_i$. So $\sigma^{-1} = \mu \in A$

Hence $A_n \leq S_n$. Claim $|A_n| = (n!)/2$, let $\tau = (1\ 2)$ and define $\lambda : A_n \to B_n$ such that $\forall \sigma \in A_n$, $\lambda(\sigma) = \tau \sigma$. If $\tau \sigma_1 = \tau \sigma_2$, then $\sigma_1 = \sigma_2$, so λ is one-to-one. And $\forall \mu \in B_n$, $\tau \mu \in A_n$, so $\lambda(\tau^{-1}u) = \tau \tau^{-1}\mu = \mu$. So we have $|A_n| = |B_n|$ and $|S_n| = n!$. Hence $|A_n| = (n!)/2$.

2.3 Cosets and the Theorem of Lagrange

Theorem 2.11

Suppose G be a group and $H \leq G$. Let the relation \sim_L be defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$, then \sim_L is a equivalence relation.

Proof

Since

Reflexive $\forall a \in G, a^{-1}a = e \in H$, so $a \sim_L a$.

Symmetric If $a \sim_L b$, then $a^{-1}b \in H$. Since $H \leq G$, then $(a^{-1}b)^{-1} = b^{-1}a \in H$, so $b \sim_L b$.

Transitive If $a \sim_L b$ and $b \sim_L c$, then $a^{-1}b \in H$ and $b^{-1}c \in H$, therefore $(a^{-1}b)(b^{-1}c) = a^{-1}c \in H$, so $a \sim_L c$.

Hence \sim_L is a equivalence relation.

Example 2.5

Let $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$, then $a \sim_L b \iff a^{-1}b = -a + b \in 5\mathbb{Z}$.

Definition 2.12

Let G be a group and $H \leq G$. Then the subset $aH = \{ah | h \in H\}$ of G is the **left coset of** H **containing** a.

Example 2.6

Find all left coset of $5\mathbb{Z}$ of \mathbb{Z} .

Solution

Let a=1, then $1 \sim_L b \iff -1+b \in 5\mathbb{Z} \iff b \in 1+5\mathbb{Z}=aH$. Similar, if a=2, then $2+5\mathbb{Z}=aH$. Hence $5\mathbb{Z}, 1+5\mathbb{Z}, 2+5\mathbb{Z}, 3+5\mathbb{Z}$ and $4+5\mathbb{Z}$ are all cosets of $5\mathbb{Z}$ of \mathbb{Z} .

Theorem 2.12 (The Theorem of Lagrange)

If G is a finite group and $H \leq G$, then $|H| \mid |G|$.

Proof

Let $g \in G$, define $\phi: H \to gH$ with $\phi(h) = gh$. If $\exists h_1, h_2 \in H$ such that $\phi(h_1) = \phi(h_2)$, then

$$\phi(h_1) = \phi(h_2) \quad \Rightarrow \quad gh_1 = gh_2 \quad \Rightarrow \quad h_1 = h_2$$

thus ϕ is one-to-one. $x \in gH$, then $\exists h \in H$ such that x = gh, so

$$\phi(h) = qh = x$$

thus ϕ is onto. Hence |G| = |gH| for all $g \in G$. Let r be the number of left coset of H of G. Then |G| = r|H|. Since \sim_L gives a partition of G, so $|H| \mid |G|$.

Corollary 2.2

Suppose G is a group. If |G| = p is a prime, then G is cyclic.

Proof

Let $a \in G \setminus \{e\}$ and $H = \langle a \rangle \leq G$. By The Theorem of Lagrange, |H| |G|. Since |G| is a prime and |H| > 1. Hence |H| = |G|, that is $G = H = \langle a \rangle$.

Theorem 2.13

If G is a finite set, then |a| |G| for all $a \in G$, where $|a| = |\langle a \rangle|$ is the order of a.

Definition 2.13

Let G is a group and $H \leq G$. Then the number of left cosets of H in G is the **index** (G : H) of H in G.

Remark 2.4

If G is a finite group and $H \leq G$, then $(G : H) = \frac{|G|}{|H|}$.

Theorem 2.14

Suppose G is a group and $K \leq H \leq G$. If (G:H) and (H:K) are both finite, then (G:K) is finite and (G:K) = (G:H)(H:K).

2.4 Direct Products and Finitely Generated Abelian Groups Direct Products

Definition 2.14

The Cartesian product of set S_1, S_2, \dots, S_n is the set of all ordered *n*-tuples (a_1, a_2, \dots, a_n) where $a_i \in S_i$ for $1 \le i \le n$, The Cartesian product denoted by

$$S_1 \times S_2 \times \cdots \times S_n$$
 or $\prod_{i=1}^n S_i$.

Theorem 2.15

Let G_1, G_2, \dots, G_n be groups. For $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n) \in \prod_{i=1}^n G_i$. If define

$$(a_1, a_2, \cdots, a_n)(b_1, b_2, \cdots, b_n) = (a_1b_1, a_2b_2, \cdots, a_nb_n)$$

then $\prod_{i=1}^n G_i$ is a group, and called the **direct product of group** G_i .

Proof

- (G0) Since $a_i, b_i \in G_i$ and G_i is a group, then $a_i b_i \in G_i$, so $\prod_{i=1}^n G_i$ is closed under the operator.
- (G1) Let $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n), (c_1, c_2, \dots, c_n) \in \prod_{i=1}^n G_i$, then $[(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n)] (c_1, c_2, \dots, c_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)(c_1, c_2, \dots, c_n)$ $= ((a_1b_1)c_1, (a_2b_2)c_2, \dots, (a_nb_n)c_n) = (a_1(b_1c_1), a_2(b_2c_2), \dots, a_n(b_nc_n))$ $= (a_1, a_2, \dots, a_n)(b_1c_1, b_2c_2, \dots, b_nc_n) = (a_1, a_2, \dots, a_n) [(b_1, b_2, \dots, b_n)(c_1, c_2, \dots, c_n)].$
- (G2) Let $e_i \in G_i$, then (e_1, e_2, \dots, e_n) is the identity of $\prod_{i=1}^n G_i$ such that $\forall (a_1, a_2, \dots, a_n) \in \prod_{i=1}^n G_i$, $(e_1, e_2, \dots, e_n)(a_1, a_2, \dots, a_n) = (a_1, a_2, \dots, a_n) = (a_1, a_2, \dots, a_n)(e_1, e_2, \dots, e_n)$.

(G3) Let $a_i \in G_i$, since G_i is a group, then $\exists a_i^{-1}$ such that $a_i a_i^{-1} = a_i^{-1} a_i = e_i$, so

$$(a_1, a_2, \dots, a_n)(a_1^{-1}, a_2^{-1}, \dots a_n^{-1}) = (a_1^{-1}, a_2^{-1}, \dots a_n^{-1})(a_1, a_2, \dots, a_n)$$

= (e_1, e_2, \dots, e_n) .

Hence $\prod_{i=1}^n G_i$ is a group.

Example 2.7

Show that $\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6$.

Solution

We have 1 is the generator of \mathbb{Z}_2 and \mathbb{Z}_3 , and $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$, so

$$1 \times (1,1) = (1,1), \quad 2 \times (1,1) = (0,2), \quad 3 \times (1,1) = (1,0),$$

$$4 \times (1,1) = (0,1), \quad 5 \times (1,1) = (1,2), \quad 6 \times (1,1) = (0,0)$$

thus $\mathbb{Z}_2 \times \mathbb{Z}_3 = \langle (1,1) \rangle$ and $\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6$.

Theorem 2.16

Suppose $m, n \in \mathbb{N}$, then $gcd(m, n) = 1 \iff \mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_{mn}$.

Proof

- \Rightarrow) Claim that $\langle (1,1) \rangle = \mathbb{Z}_m \times \mathbb{Z}_n$. If $k(1,1) = (k,k) = (0,0) \in \mathbb{Z}_m \times \mathbb{Z}_n$, then m|k and n|k, thus mn|k since gcd(m,n) = 1. Hence $k \geq mn$. But $mn(1,1) = (mn,mn) = (0,0) \in \mathbb{Z}_m \times \mathbb{Z}_n$, so the order of (1,1) in $\mathbb{Z}_m \times \mathbb{Z}_n$ is mn. So $\langle (1,1) \rangle = \mathbb{Z}_m \times \mathbb{Z}_n$.
- \Leftarrow) Assume $\gcd(m,n)=d>1$. Then $m\left|\frac{mn}{d}\right|$ and $n\left|\frac{mn}{d}\right|$. For all $(r,s)\in\mathbb{Z}_m\times\mathbb{Z}_n$, $\frac{mn}{d}(r,s)=\left(\frac{mn}{d}r,\frac{mn}{d}s\right)=(0,0)\in\mathbb{Z}_m\times\mathbb{Z}_n$ since $m\left|\frac{mn}{d}\right|$ and $n\left|\frac{mn}{d}\right|$. Hence $\nexists(r,s)\in\mathbb{Z}_m\times\mathbb{Z}_n$ can generate the entire group. Thus $\mathbb{Z}_m\times\mathbb{Z}_n$ is not cyclic, so $\mathbb{Z}_m\times\mathbb{Z}_n\simeq\mathbb{Z}_m$, it contradict the condition. Hence $\gcd(m,n)=1$.

Theorem 2.17

 $\prod_{i=1}^{n} \mathbb{Z}_{i} \simeq \mathbb{Z}_{m_{1}m_{2}\cdots m_{n}} \iff \gcd(m_{i}, m_{j}) = 1 \text{ for all } 1 \leq i < j \leq n.$

Definition 2.15

Let $r_1, r_2, \dots, r_m \in \mathbb{N}$ and let $H = \{n \in \mathbb{N} | r_i | n \text{ with } 1 \leq i \leq m\}$. Then $H \leq \mathbb{Z}$ and $\exists l \in \mathbb{N}$ such that $H = \langle l \rangle$, where l is called the **least common Multiple (lcm)** of r_1, r_2, \dots, r_m .

Theorem 2.18

Let $(a_1, a_2, \dots, a_n) \in \prod_{i=1}^n G_i$. If the finite order of a_i in G_i is r_i , then the order of (a_1, a_2, \dots, a_n) in $\prod_{i=1}^n G_i$ is $\operatorname{lcm}(r_1, r_2, \dots, r_n)$.

Example 2.8

Fine the order (8, 4, 10) in $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.

Solution

The order of 8 in \mathbb{Z}_{12} is $\frac{12}{\gcd(8,12)} = \frac{12}{4} = 3$, the order of 4 in \mathbb{Z}_{60} is $\frac{60}{\gcd(4,60)} = \frac{60}{4} = 15$, and the order of 10 in \mathbb{Z}_{24} is $\frac{24}{\gcd(10,24)} = \frac{24}{2} = 12$. Hence the order (8,4,10) in $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$ is $\operatorname{lcm}(3,15,12) = 60$.

Theorem 2.19 (Fundamental Theorem of Finitely Generated Ablien Groups)

Every finitely generated ablien group G is isomorphic to a direct product of cyclic groups of the form $\mathbb{Z}_{P_1^{r_1}} \times \mathbb{Z}_{P_2^{r_2}} \times \cdots \times \mathbb{Z}_{P_n^{r_n}}$. Where p_i are primes, not necessary distinct and $r_i \in \mathbb{N}$.

Example 2.9

Find all ablien groups of order 360.

Solution

Since $360 = 2^3 \times 3^2 \times 5$. So all ablien groups of order 360 are

$$\mathbb{Z}_{360} \simeq \mathbb{Z}_{2^3} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_{5}$$

$$\simeq \mathbb{Z}_{2^2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_{5}$$

$$\simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_{5}$$

$$\simeq \mathbb{Z}_{2^3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

$$\simeq \mathbb{Z}_{2^2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

$$\simeq \mathbb{Z}_{2^2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

$$\simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

2.5 Homomorphisms

Definition 2.16

Let (G,*) and (G',*') be two group. A map $\phi:G\to G'$ is a group homomorphism if

$$\phi(a*b) = \phi(a)*'\phi(b)$$

for all $a, b \in G$.

Example 2.10

Let $A \in M_{m \times n}(\mathbb{R})$, then $\phi : \mathbb{R}^n \to \mathbb{R}^m$ with $\phi(v) = Av$ is linear transformation. For all $v, w \in \mathbb{R}^n$,

$$\phi(v + w) = A(v + w) = A(v) + A(w) = \phi(v) + \phi(w).$$

Hence ϕ is a homomorphism.

Definition 2.17

Let $\phi: X \to Y$ be a map, $A \subseteq X$ and $B \subseteq Y$, then

- 1. The **image** of A in Y under ϕ is $\phi(A) = {\phi(a)|a \in A}$.
- 2. The **inverse image** of B in X under ϕ is $\phi^{-1}(B) = \{x \in X | \phi(x) \in B\}$.

Theorem 2.20

Let $\phi:G\to G'$ be a group homomorphism, then

- 1. $\phi(e)$ is the identity element e' in G', where e is identity element in G.
- 2. $\phi(a^{-1}) = [\phi(a)]^{-1}$, for all $a \in G$.
- 3. $\phi(H) \leq G'$, for all $H \leq G$.
- 4. $\phi^{-1}(K') \leq G$, for all $k' \leq G'$.

Proof

1. For all $a \in G$,

$$\phi(a) = \phi(ae) = \phi(a)\phi(e)$$

$$\Rightarrow \phi(a)^{-1}\phi(a) = \phi(a)^{-1}\phi(a)\phi(e)$$

$$\Rightarrow e' = \phi(e)$$

were e' is the identity in G', so that $\phi(e) = e'$.

2. For all $a \in G$,

$$e' = \phi(e) = \phi(aa^{-1}) = \phi(a)\phi(a^{-1})$$

 $\Rightarrow \phi(a)^{-1}e' = \phi(a)^{-1}\phi(a)\phi(a^{-1})$
 $\Rightarrow \phi(a)^{-1} = \phi(a^{-1})$

3. (G0) For all $a', b' \in \phi(H)$, $\exists a, b \in H$ such that $\phi(a) = a'$ and $\phi(b) = b'$, then $a'b' = \phi(a)\phi(b) = \phi(ab) \in \phi(H)$.

19

- (G2) Since $e \in H$, then $e' = \phi(e) \in \phi(H)$.
- (G3) For all $a' \in \phi(H)$, $\exists a \in H$ such that $\phi(a) = a'$, then $(a')^{-1} = \phi(a)^{-1} = \phi(a^{-1}) \in \phi(H)$, since $a' \in H \leq G$.

Hence $\phi(H) \leq G$.

4. Similarly to 3.

Definition 2.18

Let $\phi:G\to G'$ be a group homomorphism. The set

$$\phi^{-1}(e') = \{ x \in G | \phi(x) = e' \}$$

is the **kernel** of ϕ , denote by $\ker(\phi)$.

Example 2.11

Let $A \in M_{m \times m}(\mathbb{R})$ and $\phi : \mathbb{R}^n \to \mathbb{R}^m$ with $\phi(v) = Av$. Find the $\ker(\phi)$.

Solution

$$\ker(\phi) = \{v \in \mathbb{R}^n | \phi(v) = 0\}$$
$$= \{v \in \mathbb{R}^n | Av = 0\}$$
$$= \text{The null space of } A.$$

Theorem 2.21

Let $\phi: G \to G'$, then $\ker(\phi) \leq G$.

Proof

(G0) Let $a, b \in \ker(\phi)$,

$$\phi(ab) = \phi(a)\phi(b) = e'e' = e'.$$

So $ab \in \ker(\phi)$.

- (G2) Since $\phi(e) = e'$, thus $e \in \ker(\phi)$.
- (G3) For all $a \in \ker(\phi)$,

$$\phi(a^{-1}) = \phi(a)^{-1} = (e')^{-1} = e'$$

So $a^{-1} \in \ker(\phi)$.

Theorem 2.22

Let $\phi: G \to G'$ be a group homomorphism and $H = \ker(\phi)$, then for all $a \in G$,

$$\{x \in G | \phi(x) = \phi(a)\} = aH = Ha.$$

Solution

Claim $\{x \in G | \phi(x) = \phi(a)\} = Ha$,

 \subseteq : Assume that $\phi(x) = \phi(a)$, then

$$e' = \phi(a)\phi(a)^{-1} = \phi(x)\phi(a)^{-1} = \phi(x)\phi(a^{-1}) = \phi(xa^{-1}),$$

So $xa^{-1} \in \ker(\phi) = H$, therefore $x \in aH$.

 \supseteq : For all $x \in Ha$, $\exists h \in H = \ker(\phi)$ such that x = ha, so

$$\phi(x) = \phi(ha) = \phi(h)\phi(a) = e\phi(a) = \phi(a),$$

So
$$x \in \{x \in G | \phi(x) = \phi(a)\}.$$

Hence $\{x \in G | \phi(x) = \phi(a)\} = Ha$. Similarly, $\{x \in G | \phi(x) = \phi(a)\} = aH$.

Corollary 2.3

A group homomorphism $\phi: G \to G'$ is one-to-one if and only if $\ker(\phi) = \{e\}$.

Proof

- \Rightarrow) Since $\phi(e) = e'$, thus $e \in \ker(\phi)$. Since ϕ is one-to-one, thus $\ker(\phi) = \{e\}$.
- \leftarrow) By Theorem, For all $a \in G$, $\{x \in G | \phi(x) = \phi(a)\} = a \ker(\phi) = a\{e\} = \{a\}.$

Definition 2.19

Let G be a group and $H \leq G$, H is **normal** if for all $g \in G$, gH = Hg, denote by $H \triangleq G$.

Theorem 2.23

Let G be a group and $H \leq G$, then the following are equivalence

- 1. gH = Hg, for all $g \in G$.
- 2. $gHg^{-1} = H$, for all $g \in G$.
- 3. $gHg^{-1} \subseteq H$, for all $g \in G$.

Proof

- 1. (1) \iff (2) and (2) \Rightarrow (3) are trival.
- 2. (3) \Rightarrow (2). For all $g \in G$, $g^{-1} \in G$, then

$$g^{-1}H(g^{-1})^{-1} \subseteq H$$

$$\Rightarrow g^{-1}Hg \subseteq H$$

$$\Rightarrow H \subseteq gHg^{-1}$$

So we have $gHg^{-1} \subseteq H$ and $H \subseteq gHg^{-1}$, thus $gHg^{-1} = H$.

Corollary 2.4

If $\phi: G \to G'$ is a group homomorphism, then $\ker(\phi) \triangleq G$.

Theorem 2.24

Suppose G is a abelian group, if $H \leq G$, then $H \triangleq G$.

Proof

Suppose $H \leq G$. Let $g \in G$, then for all $x \in gH$, $\exists h \in H$ such that x = gh, then

$$x = gh = hg$$
 (Since G is abelian)

$$\Rightarrow x \in Hg$$

$$\Rightarrow gH \le Hg.$$

Similarly, $Hg \leq gH$, thus gH = Hg. Hence $H \triangleq G$.

2.6 Factor Groups

Definition 2.20

Suppose G is a group and $H \leq G$. Define a binary operator on all left cosets by aHbH = (ab)H for all $a, b \in G$.

Theorem 2.25

The left cosets multiplication define by aHbH = (ab)H if and only if $H \triangleq G$.

Proof

 \Rightarrow) Claim aH = Ha for all $a \in G$.

 \subseteq) Let $x \in aH$, then xH = aH, and

$$\begin{cases} xHa^{-1}H = (xa^{-1})H \\ aHa^{-1}H = (aa^{-1})H = eH = H \end{cases}$$

Since the left cosets multiplication is will define. so

$$(xa^{-1})H = H \implies xa^{-1} = h \in H \implies x = ha \in Ha$$

Hence $aH \subseteq Ha$.

⊇) Since

$$a^{-1}HaH = (aa^{-1})H = H$$

$$\Rightarrow a^{-1}ha \in H, \forall h \in H$$

$$\Rightarrow ha \in aH, \forall h \in H$$

$$\Rightarrow Ha \subseteq aH.$$

Hence aH = Ha.

 \Leftarrow) Assume $a_1H = a_2H$ and $b_1H = b_2H$, then $\exists h_1, h_2 \in H$ such that $a_1 = a_2h_1$ and $b_1 = b_2h_2$, so

$$a_1b_1 = (a_2h_1)(b_2h_2) = a_2(h_1b_2)h_2$$

Since $Hb_2 = b_2H$, so $\exists h_2 \in H$ such that $h_1b_2 = b_2h_3$, then

$$a_1b_1 = a_2(h_1b_2)h_2 = (a_2b_2)(h_3h_2) \in (a_2b_2)H$$

thus $a_1b_1 \in a_2b_2H$. Hence $a_1b_1H = a_2b_2H$ since left cosets gives a partition of G.

Definition 2.21 Let $H \triangleq G$, then the cosets of H form a group G/H under the binary operator (aH)(bH) = (ab)H, called the **factor group (or quotient group) of** G by H

Proof

- (G0) By theorem.
- (G1) For all $a, b, c \in G$, we have

$$(aHbH)cH = (ab)HcH = ((ab)c)H$$

$$aH(bHcH) = aH(bc)H = (a(bc))H$$

Since (ab)c = a(bc), thus (aHbH)cH = aH(bHcH).

- (G2) For all $a \in G$, (aH)(eH) = (ae)H = aH, thus eH = H is the identity in G/H.
- (G3) For all $a \in G$,

$$(aH)(a^{-1}H) = (aa^{-1})H = H$$

$$(a^{-1}H)(aH) = (a^{-1}a)H = H$$

Example 2.12 Since \mathbb{Z} is an abelian group, then $n\mathbb{Z} \triangleq \mathbb{Z}$ for $n \geq 1$. Let n = 5, then $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/5\mathbb{Z} = \{5\mathbb{Z}, 1 + 5\mathbb{Z}, 2 + 5\mathbb{Z}, 3 + 5\mathbb{Z}, 4 + 5\mathbb{Z}\}.$

Theorem 2.26 Let $H \triangleq G$, then $\phi: G \to G/H$ with $\phi(x) = xH$ is a group homomorphism with kernel H.

Proof Since $\forall a, b \in G$, we have

$$\phi(ab) = (ab)H = (aH)(bH) = \phi(a)\phi(b).$$

Hence ϕ is a group homomorphism. Since for all $x \in \ker(\phi)$

$$\phi(x) = H \implies xH = H \implies x \in H.$$

and for all $x \in H$

$$\phi(x) = xH = H$$
 (Since $x \in H$) $\Rightarrow x \in \ker(\phi)$.

Hence $\ker(\phi) = H$.

Theorem 2.27 (First Homomorphism Theorem) Let $\phi: G \to G'$ be a group homomorphism with kernel H, then $\phi(G) \triangleq G'$ is a group and $\mu: G/H \to \phi(G)$ with $\mu(gH) = \phi(g)$ is a group isomorphism. Moreover, if $\gamma: G \to G/H$ with $\gamma(g) = gH$ is a homomorphism, then for all $g \in G$, $\phi(g) = \mu(\gamma(g))$.

Proof

- 1. By theorem, $\phi(G) \leq G'$.
- 2. For all $g_1H, g_2H \in G/H$,

$$\mu((g_1H)(g_2H)) = \mu((g_1g_2)H) = \phi(g_1g_2) = \phi(g_1)\phi(g_2) = \mu(g_1H)\mu(g_2H).$$

Thus μ is a homomorphism.

- 3. By theorem, μ is one-to-one if and only if $\ker(\mu) = H$ (since H is the identity in G/H).
 - \subseteq : For all $gH \in \ker(\mu)$, $e' = \mu(gH) = \phi(g)$, where e' is the identity in G'. Thus $g \in \ker(\phi) = H$, therefore gH = H.
 - ⊇: Since

$$\mu(H) = \mu(eH) = \phi(e) = e'$$

Hence $H \in \ker(\mu)$.

4. For all $g' \in \phi(G)$, $\exists g \in G$ such that $\phi(g) = g' \in \phi(G)$. Then $\mu(gH) = \phi(g) = g'$.

Hence $\mu: G/H \to \phi(G)$ is a isomorphism.

Theorem 2.28 Let G be a group and $g \in G$, then $i_g : G \to G$ with $i_g(x) = gxg^{-1}$ is a group isomorphism.

Proof

1. For all $x_1, x_2 \in G$,

$$i_g(x_1x_2) = gx_1x_2g^{-1} = (gx_1g^{-1})(gx_2g^{-1}) = i_g(x_1)i_g(x_2).$$

Thus i_g is homomorphism.

2. Assume $i_g(x) = e$, then

$$gxg^{-1} = e \implies g^{-1}gxg^{-1}g = x = g^{-1}eg = e \implies \ker(\phi) = \{e\}$$

Thus i_g is one-to-one.

3. For all $g \in G$,

$$x = gg^{-1}xgg^{-1} = i_q(gxg^{-1})$$

and $gxg^{-1} \in G$. Thus i_g is onto.

Hence i_g is a group isomorphism.

Definition 2.22

Suppose G is a group,

- 1. A group isomorphism $\phi: G \to G$ is an **automorphism** of G, denote by $\operatorname{Aut}(G)$.
- 2. The mapping $i_g: G \to G$ with $i_g(x) = gxg^{-1}$ is called the **inner automorphism of** G by g.

2.7 Isomorphism

Theorem 2.29 (First Isomorphism Theorem) Let $\phi: G \to G'$ be a group homomorphism. Then $G/\ker(\phi) \simeq \phi(G)$. Moreover, if ϕ is onto, then $G/\ker(\phi) \simeq G'$.

Definition 2.23 Let G be a group and $H, N \leq G$. Define $HN = \{hn | h \in H, n \in N\}$. So $N \leq HN$ and $H \leq HN$, but $HN \not\leq G$.

Lemma 2.1

- 1. If $N \triangleq G$ and $H \leq G$, then $NH = HN \leq G$.
- 2. If $N \triangleq G$ and $H \triangleq G$, then $NH \triangleq G$.

Proof Since $N \stackrel{\Delta}{=} G$, thus gN = Ng for all $g \in G$. And $\forall hn \in HN$, $\exists n' \in N$ such that $hn = n'h \in NH$, therefore $HN \subseteq NH$. Similarly, $NH \subseteq HN$. Hence NH = HN.

(G0) For all $h_1n_1, h_2n_2 \in HN$, we have

$$h_1 n_1 h_2 n_2 = h_1 (n_1 h_2) n_2 = h_1 (h_2 n_1) n_2$$
 (Since $N h_2 = h_2 N$)
= $(h_1 h_2) (n_1 n_2) \in HN$.

- (G2) $e = ee \in HN$, since $e \in H$ and $e \in N$.
- (G3) For all $hn \in HN$, We have $(hn)^{-1} = n^{-1}h^{-1} = h^{-1}n^{-1} \in HN$.

Hence $HN \leq G$. Moreover, assume $N \triangleq G$ and $H \triangleq G$, then $\forall h \in H, n \ni N, g \in G$, we have

$$ghng^{-1} = ghg^{-1}ghg^{-1} \in HN$$
 (Since $ghg^{-1} \in H$ and $ghg^{-1} \in N$)

thus $gHNg^{-1} \subset HN$, then $NH \stackrel{\Delta}{=} G$.

Theorem 2.30 (Second Isomorphism Theorem) If $H \leq G$ and $N \stackrel{\triangle}{=} G$, then $HN/N \simeq H/H \cap N$.

Theorem 2.31 (Third Isomorphism Theorem) If $K \leq H \leq G$ with $H, K \triangleq G$, then $G/H \simeq (G/K)/(H/K)$ as a group.

Proof Define $\phi: G/K \to G/H$ with $\phi(qK) = qH$, then

(Well defined) Let $g_1K, g_2K \in G/K$, assume $g_1K = g_2K$, then $g_2^{-1}g_1 \in K \leq H \Rightarrow g_1H = g_2H$. So $\phi(g_1K) = g_1H = g_2H = \phi(g_2)$.

Thus ϕ is well-defined.

(Homomorphism) For all $g_1K, g_2K \in G/K$, then

$$\phi((g_1K)(g_2K)) = \phi((g_1g_2)K) = (g_1g_2)H = (g_1H)(g_2H) = \phi(g_1K)\phi(g_2K).$$

Thus ϕ is homomorphism.

(One-to-one) Since ϕ is one-to-one if and only if $\ker(\phi) = H/K$.

 (\subseteq) For all $gK \in \ker(\phi)$,

$$H = \phi(gK) = gH \quad \Rightarrow \quad g \in H \quad \Rightarrow \quad gK \in H/K.$$

 (\supseteq) For all $hK \in H/K \leq G/K$,

$$\phi(hK) = hH = H \implies hK \in \ker(\phi).$$

Thus ϕ is one-to-one

(Onto) For all $gH \in G/H$ and $gK \in G/K$, since $\phi(gK) = gH$, thus ϕ is onto.

By First Isomorphism Theorem, $(G/K)/(H/K) \simeq G/H$.

Chapter 3

Rings and Fields

3.1 Rings and Fields

Definition 3.1 A ring $\langle R, +, \cdot \rangle$ is a set R with two operation addition + and multiplication \cdot defined on R such the following axioms satisfy

- (R1) $\langle R, + \rangle$ is abelian.
- (R2) Multiplication is associative. (For all $a, b \in R$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.)
- (R3) Distributive is fold. (For all $a, b, c \in R$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ and $(b + c) \cdot a = (b \cdot a) + (c \cdot a)$).

Example 3.1 $\langle \mathbb{Z}, +, \cdot \rangle$, $\langle \mathbb{Q}, +, \cdot \rangle$, $\langle \mathbb{R}, +, \cdot \rangle$, $\langle \mathbb{C}, +, \cdot \rangle$ are rings.

Definition 3.2 Let $\langle R, +, \cdot \rangle$ be a ring. If $a \in R$ and $n \in \mathbb{Z}_{>0}$, then

$$na = \underbrace{a + a + \dots + a}_{n \text{ times}}$$

If $n \in \mathbb{Z}_{<0}$, then

$$na = \underbrace{(-a) + (-a) + \dots + (-a)}_{n \text{ times}}$$

If n = 0, then $0a = a0 = 0_R \in R$ is the **additive identity** in \mathbb{R} .

Theorem 3.1 If R is a ring with additive identity 0_R , then for all $a, b \in R$,

- 1. $0a = a0 = 0_R$.
- 2. $a \cdot (-b) = (-b) \cdot a = -(a \cdot b)$.
- 3. $(-a) \cdot (-b) = ab$.

Proof

1. By (R1) and (R3),

$$a0 + a0 = a(0 + 0) = a0 = a0 + 0_R$$

 $\Rightarrow -(a0) + a0 + a0 = (a0) + a0$
 $\Rightarrow a0 = 0_R$.

Similarly, $0a = 0_R$.

2. By (R3),

$$a(-b) + ab = a(-b+b) = a \cdot 0 = 0_R$$
$$\Rightarrow a(-b) = -ab.$$

Similarly, (-a)b = -ab.

3.
$$(-a)(-b) = -(a(-b)) = -(-(ab)) = ab$$
.

Definition 3.3 Let R and R' be tow rings, a map $\phi: R \to R'$ is a **ring homomorphism** if for all $a, b \in R$,

- 1. $\phi(a+b) = \phi(a) + \phi(b)$, and
- 2. $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$.

And the kernel of ϕ is $\ker(\phi) = \{a \in R | \phi(a) = 0\}.$

Definition 3.4 Let R and R' be tow rings, a map $\phi: R \to R'$ is a **ring isomorphism** if ϕ is a ring homomorphism with one-to-one and onto.

Theorem 3.2 (Reduction Modulo n) Let $\phi : \mathbb{Z} \to \mathbb{Z}_n$ be the deduction map Modulo n such that $\phi(m) = r$, where m = nq + r with $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then ϕ is a ring homomorphism and $\ker(\phi) = n\mathbb{Z}$. Moreover, $\langle \mathbb{Z}/n\mathbb{Z}, +, \cdot \rangle \simeq \langle \mathbb{Z}_n, +, \cdot \rangle$ as a ring.

Proof Let $m_1 = q_1 n + r_1$ and $m_2 = q_2 n + r_2$ with $r_1, r_2, q_1, q_2 \in \mathbb{Z}$ and $0 \le r_1, r_2 < n$.

1. Claim $\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$. Write $r_1 + r_2 = q_3 n + r_3$ with $q_3, r_3 \in \mathbb{Z}$ and $0 \le r_3 < n$, then $\phi(m_1 + m_2) = r_3 = r_1 + r_2 = \phi(m_1) + \phi(m_2)$.

2. Claim $\phi(m_1m_2) = \phi(m_1)\phi(m_2)$. Note that

$$m_1 m_2 = (q_1 n + r_1)(q_2 n + r_2) = n(q_1 q_2 n + q_1 r_2 + q_2 r_1) + r_1 r_2.$$

Write $r_1r_2 = q_3n + r_3$ with $q_3, r_3 \in \mathbb{Z}$ and $0 \le r_3 < n$, then

$$\phi(m_1 m_2) = r_3 \underset{\text{in } \mathbb{Z}_n}{=} r_1 r_2 = \phi(m_1) \phi(m_2).$$

3. Claim $\ker(\phi) = n\mathbb{Z}$.

 \subseteq : For all $s \in \ker(\phi)$, $\phi(s) = 0$ if and only if $n \mid s$. Hence $s \in n\mathbb{Z}$.

 \supseteq : For all $s \in n\mathbb{Z}$, $\phi(s) = 0$. Hence $t \in \ker(\phi)$.

Hence ϕ is a ring homomorphism with $\ker(\phi) = n\mathbb{Z}$.

Example 3.2 Show that $\langle \mathbb{Z}, + \rangle$ and $\langle 2\mathbb{Z}, + \rangle$ with $\phi : \mathbb{Z} \to 2\mathbb{Z}$ such that $\phi(x) = 2x$ are group isomorphism, but not ring homomorphism.

Solution Since $\phi(xy) = 2xy \neq 4xy = (2x)(2y) = \phi(x)\phi(y)$. Hence ϕ not a ring homomorphism. Note that $2\mathbb{Z}$ does not have an identity element for multiplication.

Remark 3.1 Let $m, n \in \mathbb{N}$. If gcd(m, n) = 1, then $\mathbb{Z}_{mn} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$ as a ring.

Definition 3.5

- 1. A ring R is **commutative ring** if for all $a, b \in R$, ab = ba.
- 2. A ring R with unity $1_R \neq 0_R$. An element $u \in R$ is a unit if $\exists u^{-1} \in R$ such that $uu^{-1} = u^{-1}u = 1$.
- 3. If every nonzero element of R is a unit, then R is a division ring.
- 4. A abelian division ring is called a **field**.

Example 3.3 $\langle \mathbb{Q}, +, \cdot \rangle$, $\langle \mathbb{R}, +, \cdot \rangle$ and $\langle \mathbb{C}, +, \cdot \rangle$ are field.

Example 3.4 Find all units of \mathbb{Z}_{14} .

Solution Since

$$1 \times 1 = 1$$

$$3 \times 5 = 15 \stackrel{\text{in} \mathbb{Z}_{14}}{=} 1$$

$$11 \times 9 = 99 \stackrel{\text{in}}{=} \mathbb{Z}_{14} \ 1$$

$$13 \times 13 = 169 \stackrel{\text{in}}{=} \mathbb{Z}_{14} 1.$$

Hence 1, 3, 5, 9, 11 and 13 are all units of \mathbb{Z}_{14} .

Remark 3.2 The units of \mathbb{Z} are ± 1 .

Remark 3.3 Let $n \in \mathbb{N}$. Then t is a unit of \mathbb{Z}_n if and only if gcd(t, n) = 1.

3.2 Integral Domains

Definition 3.6 Let R be a ring. $a, b \in R$ are **zero divisors** if $a \cdot b = 0$ in R.

Example 3.5 Solve the equation $x^2 - 5x + 6 = 0$ in \mathbb{Z}_{12} .

Solution Since $x^2 - 5x + 6 = (x - 3)(x - 2)$, then 2, 3 are solution in \mathbb{Z}_{12} .

$$x = 0, (x - 3)(x - 2) = (-3)(-2) = 6$$

 $x = 1, (x - 3)(x - 2) = (-2)(-1) = 2$

$$x = 4, (x - 3)(x - 2) = (1)(2) = 2$$

$$x = 5, (x - 3)(x - 2) = (2)(3) = 6$$

$$x = 6, (x - 3)(x - 2) = (3)(4) = 12 = 0$$

$$x = 7, (x - 3)(x - 2) = (4)(5) = 20 = 8$$

$$x = 8, (x - 3)(x - 2) = (5)(6) = 30 = 6$$

$$x = 9, (x - 3)(x - 2) = (6)(7) = 42 = 6$$

$$x = 10, (x - 3)(x - 2) = (7)(8) = 56 = 8$$

$$x = 11, (x - 3)(x - 2) = (8)(9) = 72 = 0$$

Hence 2, 3, 6 and 11 are all solution in \mathbb{Z}_{12} , and 6, 11 are zero divisors.

Theorem 3.3 In $\langle \mathbb{Z}_n, +, \cdot \rangle$, the number of zero divisors is the number of that nonzero element that are relatively prime to n.

Corollary 3.1 If p is a prime, then \mathbb{Z}_p has no zero divisors.

Theorem 3.4 A ring R has no zero divisors if and only if the cancellation laws (消去律) hols in R.

Definition 3.7 A ring D is an **integral domain** if D with unity $1 \neq 0$, commutation, and containing no zero divisor.

Theorem 3.5 Every field F is an integral domain.

Proof Let $a, b \in F$. Assume ab = 0 and $a \neq 0$. Since $a \in F \setminus \{0\}$, so $\exists a^{-1} \in F$ such that $aa^{-1} = 1$. Thus

$$ab = 0 \implies a^{-1}ab = a^{-1}0 = 0 \implies b = 0.$$

Hence F has no zero divisor, that is F is an integral domain.

Theorem 3.6 Every finite integral domain D is a field.

Corollary 3.2 If p is a prime, then \mathbb{Z}_p is a field.

Definition 3.8 If $\exists n \in \mathbb{N}$ such that na = 0 for all $a \in R$, then the least such positive integer is the **characteristic** of R. If $\nexists n \in \mathbb{N}$ satisfy the condition, then the **characteristic** of R is 0.

Example 3.6 \mathbb{Z}_n is of characteristic n. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are characteristic 0.

Theorem 3.7 Let R be a ring with 1, if $\exists n \in \mathbb{N}$ such that $n \cdot 1 = 0$, then the smallest n is the characteristic of R.

Proof Suppose $\exists n \in \mathbb{N}$ such that $n \cdot 1 = 0$, then for all $a \in R$,

$$n \cdot a = \underbrace{a + a + a + \dots + a}_{n \text{ times}} = a \cdot (\underbrace{1 + 1 + 1 + \dots + 1}_{n \text{ times}}) = a(n \cdot 1) = a \cdot 0 = 0.$$

3.3 Fermat's and Euler's Theorem

Theorem 3.8 (Fermat's Little Theorem) If $a \in \mathbb{Z}$, p is a prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof Define $\mathbb{Z}_p^* = \{t | \gcd(t, p) = 1\} = \{1, 2, \dots, p-1\}$. Since \mathbb{Z}_p is a field, so (\mathbb{Z}_p^*, \cdot) is a group, and since $|\mathbb{Z}_p^*| = p-1$, so $t^{p-1} = 1$ for all $t \in \mathbb{Z}_p^*$.

Corollary 3.3 If $a \in \mathbb{Z}$ and p is a prime, then $a^p \equiv a \pmod{p}$.

Proof If $p \nmid a$, by Fermat's Little Theorem, $a^{p-1} \equiv 1 \pmod{p}$, then $a^p \equiv a \pmod{p}$. If p|a, then $a \equiv 0 \pmod{p}$, so $a^p \equiv 0 \equiv a \pmod{p}$.

Theorem 3.9 The set G_n of nonzero element of \mathbb{Z}_n and not zero divisor form a group under multiplication modulo n.

Definition 3.9 Let \mathbb{Z}_p^* be the set of units in \mathbb{Z}_n , then $\mathbb{Z}_p^* = \{t | \gcd(t, p) = 1\}$.

Proof

(\subseteq) For all $t \in \mathbb{Z}_n^*$, $\exists r \in \mathbb{Z}_n^*$ such that tr = 1 in \mathbb{Z}_n , then n|tr - 1, so $\exists m \in \mathbb{Z}$ such that $tr - 1 = nm \Rightarrow tr - mn = 1$, that is $\gcd(t, n) = 1$.

(\supseteq) Let $t \in \mathbb{Z}_n^*$ with gcd(t, n) = 1, then $\exists a, b \in \mathbb{Z}$ such that at + bn = 1. Therefore $at + bn \equiv at \equiv 1 \pmod{n}$.

Example 3.7 Find the remainder of 8^{103} when divided by 13.

Solution By Fermat's Little Theorem, $8^{12} \equiv 1 \pmod{13}$, thus

$$8^{103} \equiv (8^{12})^8 8^7 \equiv 8^7 \equiv (8^2)^3 8 \equiv (-1)^3 8 \equiv -8 \equiv 5 \pmod{13}.$$

Example 3.8 Find the inverse of 101 in \mathbb{Z}_{911} .

Solution By Euclidean algorithm,

We have

$$1 = 101 - 50 \times 2$$

$$2 = 911 - 101 \times 9$$

So

$$1 = 101 - 50 \times (911 - 101 \times 9) = 101 \times 451 + 911 \times (-50)$$

Hence $101 \times 451 \equiv 1 \pmod{911}$. So $101^{-1} = 451$ in \mathbb{Z}_{911} .

Definition 3.10 (Euler's Phi Function) Define $\phi : \mathbb{N} \to \mathbb{N}$ with $\phi(n) = |\mathbb{Z}_p^*|$ is the **Euler's Phi Function**.

Theorem 3.10 If $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} \in \mathbb{N}$, where p_i are distinct primes, then

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).$$

Example 3.9 Calculate $\phi(8)$ and $\phi(24)$.

Solution

Method 1

(a)
$$\phi(8) = |\{1, 3, 5, 7\}| = 4$$
.

(b)
$$\phi(24) = |\{1, 5, 7, 11, 13, 17, 19, 23\}| = 8.$$

Method 2

(a)
$$\phi(8) = \phi(2^3) = 8\left(1 - \frac{1}{2}\right) = 4.$$

(b)
$$\phi(24) = \phi(2^3 \times 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 8.$$

Theorem 3.11 (Euler's Theorem) Let $n \in \mathbb{N}$, $a \in \mathbb{Z}$. If gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Proof Let $a \in \mathbb{Z}$ with gcd(a, n) = 1, then a = nq + r for $q, r \in \mathbb{Z}$ and 0 < r < n. Since gcd(a, n) = 1 and 0 < r < n, so gcd(r, n) = 1. Therefore $r \in \mathbb{Z}_n^*$ and since $\langle \mathbb{Z}_n^*, \cdot \rangle$ is a group of order $\phi(n)$, so $r^{\phi(a)} \equiv 1 \pmod{n}$. Hence

$$a^{\phi(n)} \equiv (nq+r)^{\phi(n)} \equiv (0+r)^{\phi(n)} \equiv r^{\phi(n)} \equiv 1 \pmod{n}.$$

Theorem 3.12 Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}_n$. Then $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a, n)|b$. Moreover, when $ax \equiv b \pmod{n}$ has a solution, then it have exactly $\gcd(a, n)$ solutions.

Proof

- (⇒) Suppose $\exists t \in \mathbb{Z}_n$ such that $at \equiv b \pmod{n}$. Then $\exists r \in \mathbb{Z}$ such that $at b = nr \Rightarrow at nr = b$. Hence $\gcd(a,n)|b$.
- (\Leftarrow) Suppose $d = \gcd(a, n)$ with d|b. Let a = da', n = dn' and b = db'. Then $n|ax b \iff dm'|da'x db' \iff m'|a'x b$. So $ax \equiv b \pmod{n}$ has solution if and only if $a'x \equiv b \pmod{n}$.

Example 3.10

- 1. Find all solution of $12x \equiv 27 \pmod{18}$.
- 2. Find all solution of $15x \equiv 27 \pmod{18}$.

Solution

1. Since $gcd(12, 18) = 6 \nmid 27$. Hence it has no solution.

2. Since gcd(15, 18) = 3|27, so it has 3 solutions.

$$15x \equiv 27 \pmod{18}$$
 \Rightarrow $5x \equiv 9 \equiv 3 \pmod{6}$ \Rightarrow $x = 5^{-1} \times 3 \text{ in } \mathbb{Z}_6$

and

we have $1 = 6 + (-1) \times 5$. So $(-1) \times (5) \equiv 1 \pmod{6}$. Thus 5^{-1} in \mathbb{Z}_6 is -1. Hence $x = 5^{-1} \times 3 = (-1) \times 3 = 3$ in \mathbb{Z}_6 . So all solution are 3 + 18k, 9 + 18k and 15 + 18k with $k \in \mathbb{Z}$.

Example 3.11 Show that $383838|n^{37} - n \text{ for all } n \in \mathbb{N}. \ (383838 = 2 \times 3 \times 7 \times 13 \times 19 \times 37.)$

Solution By Fermat's Little Theorem, if p is a prime, then $n^p \equiv n \pmod{p}$ for all $n \in \mathbb{Z}$. So

- 1. $n^2 \equiv n \pmod{2} \Rightarrow n^{37} \equiv (n^{2-1})^{36} n \equiv n \pmod{2} \Rightarrow 2|n^{37} n$.
- 2. $n^3 \equiv n \pmod{3} \Rightarrow n^{37} \equiv (n^{3-1})^{18} n \equiv n \pmod{3} \Rightarrow 3|n^{37} n$.
- 3. $n^7 \equiv n \pmod{7} \Rightarrow n^{37} \equiv (n^{7-1})^6 n \equiv n \pmod{7} \Rightarrow 7|n^{37} n$.
- 4. $n^{13} \equiv n \pmod{13} \Rightarrow n^{37} \equiv (n^{13-1})^3 n \equiv n \pmod{13} \Rightarrow 13 | n^{37} n$.
- 5. $n^{19} \equiv n \pmod{19} \Rightarrow n^{37} \equiv (n^{19-1})^2 n \equiv n \pmod{19} \Rightarrow 19|n^{37} n$.
- 6. $n^{37} \equiv n \pmod{37} \Rightarrow n^{37} \equiv (n^{37-1})^1 n \equiv n \pmod{37} \Rightarrow 37 | n^{37} n$.

By 1. to 6., since they are distinct primes, so $2 \times 3 \times 7 \times 13 \times 19 \times 37 = 383838 | n^{37} - n$.

Theorem 3.13 (Chinese Reminder Theorem) Let $a_i \in \mathbb{Z}$ and $n_i \in \mathbb{N}$ for $i = 1, 2, \dots, k$. If $gcd(n_i, n_j)$ for all $i \neq j$, then the system

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \\ \vdots \\ x \equiv a_k \pmod{n_k} \end{cases},$$

has solution, and the solution is $x = \sum_{i=1}^k a_i x_i N_i$ module $N = \prod_{i=1}^k n_i$. Where $N = \sum_{i=1}^k n_i$ and $N_i = N/n_i$ for $i = 1, 2, \dots, k$

Example 3.12 Solve

$$\begin{cases} x \equiv 2 \pmod{9} \\ x \equiv 4 \pmod{11} \\ x \equiv 6 \pmod{19} \end{cases}$$

Solution Let $N = 9 \cdot 11 \cdot 19 = 1881$, $N_1 = N/9 = 209$, $N_2 = N/11 = 171$, and $N_3 = N/19 = 99$. We solve the solution

$$\begin{cases} 209x_1 \equiv 1 \pmod{9} \\ 171x_2 \equiv 1 \pmod{11} \\ 99x_2 \equiv 1 \pmod{19} \end{cases}$$

Find $x_1 = -4$, $x_2 = 2$, $x_3 = 5$. So the solution is

$$x = (2)(-4)(209) + (4)(2)(171) + (6)(5)(99) = 2666,$$

module N = 18881, Hence x = 785 + 1881k with $k \in \mathbb{Z}$.

3.4 The field of Quotients of an Integral Domain

Definition 3.11 Let D is an integral domain and $S = \{(a,b)|a,b \in D \text{ and } b \neq 0\}$. Then (a,b) and (c,d) are **equivalent** if and only if ad = bd, denote by $(a,b) \sim (c,d)$.

Remark 3.4 The relation \sim is an equivalence relation on S.

Proof

Reflexive. $(a, b) \sim (b, a)$ since ab = ba.

Symmetric. If $(a, b) \sim (c, d)$, then ad = bc = cb, so $(cd) \sim (a, b)$.

Transitive. If $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, then ad = bc and cf = ed, so $ade = bdf = dbe \Rightarrow d(af - be) = 0 \Rightarrow af - be = 0$ (since $d \neq 0$), so $af = be \Rightarrow (a,e) \sim (b,f)$.

Lemma 3.1 For every $[(a,b)], [(c,d)] \in F$, define

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)],$$
 and $[(a,b)] \cdot [(c,d)] = [(ac,bd)].$

which gives well-defined operation of addition and multiplication in F.

Theorem 3.14 If $\langle F, +, \cdot \rangle$ is field, then

- 1. [(0,1)] the identity in $\langle F, + \rangle$.
- 2. The addition inverse of [(a,b)] is [(-a,b)].
- 3. [(1,1)] the identity in $\langle F, \cdot \rangle$.
- 4. If $a \neq 0$, then the multiplication inverse of [(a,b)] is [(b,a)].

Lemma 3.2 The map $i: D \to F$ with i(a) = [(a,1)] is an isomorphism of D with subring F.

Proof

Ring homomorphism. For all $a, b \in D$,

$$i(a + b) = [(a + b, 1)] = [(a, 1)] + [(b, 1)] = i(a) + i(b),$$

and

$$i(ab) = [(ab, 1)] = [(a, 1)][(b, 1)] = i(a)i(b).$$

Thus i is an ring homomorphism.

One-to-one. If $a, b \in D$ such that i(a) = i(b), then

$$i(a) = i(b) \quad \Rightarrow \quad [(a,1)] = [(b,1)] \quad \Rightarrow \quad (a,1) \sim (b,1) \quad \Rightarrow \quad a \cdot 1 = b \cdot 1 \quad \Rightarrow \quad a = b.$$

Thus i is one-to-one.

Hence $D \simeq i(D) \leq F$.

Theorem 3.15 Let F be a field of quotient of D and let L be any field containing D. Then $\exists \psi : F \to L$ is an isomorphism of F and is a subring of L with $\psi(a) = a$ for $a \in D$.

Corollary 3.4 Every field L containing an integral domain D containing a field of quotient of D.

Corollary 3.5 Any two field of quotient of one integral domain are isomorphism.

3.5 Rings of Polynomial

Definition 3.12

1. Let R be a ring. We called a polynomial f(x) with coefficients in R is a formal sum

$$f(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x^1 + a_2 x^2 + \dots + a_n x^n,$$

where $a_i \in R$ for $i = 1, 2, \dots, n$.

- 2. Degree of f(x) is the largest number $m \in \mathbb{N}$ such that $a_m \neq 0$, and a_m is called the leader coefficient.
- 3. f(x) is **monic** if it's leader coefficient 1.

4.
$$R[x] = \{a_n x^n + \dots + a_2 x^2 + a_1 x^1 + a_0 | n \in \mathbb{N}, a_i \in R \text{ for } i = 1, 2, \dots, n\}.$$

Definition 3.13 Let $f(x), g(x) \in \langle R[x], +, \cdot \rangle$ with

$$f(x) = \sum_{i=0}^{n} a_i x^i$$
, and $g(x) = \sum_{i=0}^{m} b_i x^i$.

Then

$$f(x) + g(x) = \left(\sum_{i=0}^{n} a_i x^i\right) + \left(\sum_{i=0}^{n} b_i x^i\right) = \sum_{i=0}^{\max(n,m)} (a_i + b_i) x^i, \text{ and}$$

$$f(x) \cdot g(x) = \left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{i=0}^{m} b_i x^i\right) = \sum_{k=0}^{mn} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) x^k.$$

Example 3.13 Let $R = \mathbb{Z}_5$, $f(x) = 3x^3 + 2x^2 + x + 1$ and $g(x) = 3x^2 + 4x + 3$, then $f, g \in \mathbb{Z}_5[x]$ and

$$f(x) + g(x) = 3x^3 + 5x^2 + 5x + 4 = 3x^3 + 4,$$

$$f(x) \cdot g(x) = 9x^5 + 18x^4 + 20x^3 + 13x^2 + 7x + 3 = 4x^5 + 3x^4 + 3x^2 + 2x + 3.$$

Theorem 3.16

- 1. If R is a ring, then $\langle R[x], +, \cdot \rangle$ is also a ring.
- 2. If R is commutative, then R[x] is also commutative.
- 3. If R has a unity $1 \neq 0$, then 1 is also unity of R[x].
- 4. If R is an integral domain, then R[x] is also an integral domain.
- 5. If R is a filed, then R[x] is a integral domain, but **not** a filed, since R[x] has no unity.

Proof Let $f(x), g(x) \in R[x] \setminus \{0\}$, $f(x) = a_n x^n + \cdots + a_1 x + a_0$ and $g(x) = b_m x^m + \cdots + b_1 x^1 + b_0$, with $a_n \neq 0$ and $b_m \neq 0$. Since R is an integral domain. Thus $a_n b_m \neq 0$ and

$$f(x)g(x) = a_n b_m + \sum_{k=0}^{nm-1} \left(\sum_{i=0}^k a_i b_{k-i}\right) x^k \neq 0.$$

Hence R[x] is also an integral domain.

Definition 3.14 Let R be a ring, then $R[x_1, x_2, \dots, x_n]$ is a ring of polynomial in n variables.

Example 3.14 Let $R = \mathbb{Z}$, then $f(x, y, z) = x + 2y^2 + 3z^3 \in \mathbb{Z}[x, y, z]$.

Theorem 3.17 (The Evaluation Homomorphism for Field Theorem) Let F be a subfield of field of E and $\alpha \in E$. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in F[x]$, and $f(\alpha) = a_n \alpha^n + a_{n-1} \alpha^{n-1} + \cdots + a_0 \in F$. If $f(\alpha) = 0$, then α is z zero (root) of f(x).

Example 3.15 Prove that $x^2 - 2$ has no zero in \mathbb{Q} .

Solution Assume $x^2 - 2 = 0$ with $x \in \mathbb{Q}$, so let x = m/n with gcd(n, m) = 1. Thus

$$0 = x^2 - 2 = \frac{m^2}{n^2} - 2 \quad \Rightarrow \quad m^2 = 2n^2 \quad \Rightarrow \quad 2|m^2 \quad \Rightarrow \quad 2|m \quad \Rightarrow \quad 4|m^2 \quad \Rightarrow \quad 4|2n^2$$

$$\Rightarrow \quad 2|n^2 \quad \Rightarrow \quad 2|n$$

it contract gcd(m, n) = 1. Hence $\nexists x \in \mathbb{Q}$ such that $x^2 - 2 = 0$.

3.6 Factorization of Polynomial over a Field

Theorem 3.18 (Division Algorithm for F[x]) Let F is a field, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, $g(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0 \in F[x]$ with $a_n, b_m \neq 0$. Then $\exists ! q(x), r(x) \in F[x]$ such that f(x) = q(x)g(x) + r(x) with $\deg(r(x)) = \deg(g(x))$.

Corollary 3.6 Let F is a field, $a \in F$ and $f(x) \in F[x]$. Then f(a) = 0 if and only if $\exists g(x) \in F[x]$ such that f(x) = (x - a)g(x).

Corollary 3.7 Let $f(x) \in F[x]$ with $f(x) \neq 0$. If $\deg(f) = n$, then f has at most n roots in F.

Corollary 3.8 If G is a finite subgroup of a multiplication group $\langle F^*, \cdot \rangle$ of F, then G is cyclic.

Example 3.16 Let $G = \mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$. Since $\langle 3 \rangle$ in \mathbb{Z}_7 under multiplication is $\langle 3 \rangle = \{3, 2, 6, 4, 5, 1\}$. So $\mathbb{Z}_7^* = \langle 3 \rangle$. Hence \mathbb{Z}_7^* is cyclic.

Definition 3.15 Let $f(x) \in F[x] \setminus F$, then we called f(x) is **reducible** over F if $\exists g(x), h(x) \in F[x]$ such that f(x) = g(x)h(x). If not, then we called f is **irreducible** over F.

Example 3.17 Let $f(x) = x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$. So f is reducible over \mathbb{R} . But f(x) is irreducible over \mathbb{Q} , since $(x - \sqrt{2}) \notin \mathbb{Q}$.

Theorem 3.19 Let $f(x) \in F[x]$ with degree is 2 or 3. Then f is reducible over F if and only if f has root in F.

Theorem 3.20 Let $f(x) \in \mathbb{Z}[x]$. Then $\exists g(x), h(x) \in \mathbb{Z}[x]$ with $\deg(g) = r$ and $\deg(h) = s$ such that f(x) = g(x)h(x) if and only if $\exists \overline{g}(x), \overline{h}(x) \in \mathbb{Q}[x]$ with $\deg(\overline{g}) = r$ and $\deg(\overline{h}) = s$ such that $f(x) = \overline{g}(x)\overline{h}(x)$.

Corollary 3.9 If $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}$ with $a_0 \neq 0$. If f has no root in \mathbb{Q} , then f(x) has a root $m \in \mathbb{Z}$ and $m|a_0$.

Theorem 3.21 (Eisenstein Criterion) Let $p \in \mathbb{Z}$ be a prime and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$. If $p \nmid a_n$, $p \mid a_i$ for $i = 0, 1, 2, \cdots, n-1$ and $p^2 \nmid a_0$, then f(x) is irreducible over \mathbb{Q} .

Theorem 3.22 By Eisenstein Criterion, taking p = 3, then

$$25x^5 - 9x^4 - 3x^2 - 12$$

is irreducible over \mathbb{Q} .

Definition 3.16 Let $f(x), g(x) \in F[x]$. We say g(x) divides f(x) in F[x] if $\exists q(x) \in F[x]$ such that f(x) = g(x)q(x), denote by g(x)|f(x).

Theorem 3.23 Let p(x) is an irreducible polynomial over F[x] and $f(x), g(x) \in F[x]$. If p(x)|f(x)g(x), then p(x)|f(x) or p(x)|g(x).

Theorem 3.24 Let $f(x) \in F[x] \setminus F$, then f can be uniquely factored into product of irreducible polynomials in F[x].

3.7 Homomorphism and Factor Rings

Theorem 3.25 A map $\phi: R \to R'$ is a ring homomorphism. Then

- 1. If S is a subring of R, then $\phi(S)$ is also a subring of R'.
- 2. If S' is a subring of R', then $\phi^{-1}(S')$ is also a subring of R.
- 3. If R has a unity 1, then $\phi(1)$ is a unity for $\phi(R)$.

Definition 3.17 Let $\phi: R \to R'$ be a ring homomorphism, we called the subring $\phi^{-1}(0') = \{r \in R | \phi(r) = 0'\}$ is the **kernel** of ϕ .

Theorem 3.26 Let $\phi: R \to R'$ be a ring homomorphism, for all $a \in R$, $\phi^{-1}(\phi(a)) = a + \ker(\phi)$.

Corollary 3.10 Let $\phi: R \to R'$ be a ring homomorphism. Then ϕ is one-to-one if and only if $\ker(\phi) = \{0\}.$

Theorem 3.27 Let $\phi: R \to R'$ be a ring homomorphism with $\ker(\phi) = H$. Then the additive of cosets of H form a group with

- 1. (a+H) + (b+H) = (a+b) + H.
- 2. (a+H)(b+H) = (ab) + H.

Theorem 3.28 Let H be a subring of a ring R. Then for all $a, b \in R$, (a + H)(b + H) = ab + H is well-defined if and only if $ah \in H$ and $bh \in H$ for all $a, b \in R$ and $h \in H$.

Definition 3.18 Let I be a subring of a ring R. We called I is an **ideal of** R if $aI \subseteq I$ and $Ia \subseteq I$ for all $a \in R$.

Remark 3.5

- 1. A subring I is an ideal of a ring R if and only if $ax \in I$ and $xa \in I$ for all $x \in I$ and $a \in R$.
- 2. The kernel of a ring homomorphism $\phi: R \to R'$ is an ideal.

Definition 3.19 Let I be an ideal of a ring R, then the ring R/I is a factor ring of R by I.

Theorem 3.29 Let I be an ideal of a ring R. Then $\phi: R \to R/I$ is a ring homomorphism with $\ker(\phi) = I$.

3.8 Prime Ideal and Maximal Ideal

Definition 3.20 Let R be a ring, then R has a least 2 ideals: **improper ideal** R and trivial ideal $\{0\}$. If I is a ideal of R, $I \neq R$ and $I \neq 0$, then we called I is an **proper nontrival ideal of** R.

Theorem 3.30 Let R be a ring with unity 1. If I is a ideal of R containing 1, then N = R.

Corollary 3.11 A field contains *no* proper nontrival ideal.

Definition 3.21 Let M is a proper ideal of R with $M \neq R$, then we called M is a **maximal ideal of** R if not exists ideal $I \subset R$ such that $M \subset I$.

Example 3.18

- 1. If p is a prime, then $p\mathbb{Z}$ is a maximal ideal of \mathbb{Z} and $\mathbb{Z}/p\mathbb{Z}$ is a field.
- 2. If n=6 not a prime, then $6\mathbb{Z}$ si not a maximal ideal of \mathbb{Z} , since $6\mathbb{Z} \subset 3\mathbb{Z}$.

Theorem 3.31 Let R be a commutative ring with unity. Then M is a maximal ideal of R if and only if R/M is a field.

Definition 3.22 Let R be a commutative ring. We called a ideal I of R is a **prime ideal** if $ab \in I$, then $a \in I$ or $b \in I$ for all $ab \in I$.

Example 3.19 Let $R = \mathbb{Z}$ and p is a prime. For all $ab \in \mathbb{Z}$, if $ab \in p\mathbb{Z}$, then $a \in p\mathbb{Z}$ or $b \in p\mathbb{Z}$. So $p\mathbb{Z}$ is a prime ideal.

Theorem 3.32 Let R be a commutative ring with unity 1 and I is an proper ideal of R. Then R/I is a field if and only if I is a prime ideal.

Proof