1. Дано: h(t)непр h(R)=R, f(h(t))непр Док: f(x)непр. Док-во. Пусть имеем $x_n\searrow x_0$, $y_0=f(x_0)$, $y_n=f(x_n)$ но $|y_n-y_0|>\varepsilon$ Возьмем $t_0:h(t_0)=x_0$, среди всех $t_1:h(t_1)=x_1$ ищем ближайшее к t_0 Два случая: ближайшее есть, возьмем его, предположим для определенности, что $t_1>t_0$, $x_1>x_0$. Тогда для всех $t_0< t< t_1$ $h(t)< h(t_1)$, иначе между t и t_0 найдется t^* , $h(t^*)=h(t_1)$ -противоречие с выбором t_1 - ближайшей.

t и t_0 найдется t^* , $h(t^*)=h(t_1)$ -противоречие с выбором t_1 - ближайшей. Если ближайшего нет, то есть $t_1^{(m)}$, монотонно приближающаяся к некоторому t_1 , тогда $h(t_1)=h(t_1^{(m)})\forall m$ -противоречие. Если же $t_1=t_0$ - противоречие с непрерывностью h. Итак, на (t_0,t_1) точно $h(t)< h(t_1)$, но $h(t_0)=x_0,h(t_1)=x_1$. Для $x_2\in (x_0,x_1)$ найдется по теореме о промежуточном значении $t_2\in (t_0,t_1):h(t_2)=x_2$. И так далее, получим последовательность t_n убывающую в сторону t_0 (но не обязательно к t_0). Пусть ее предел $t_0^*>t_0$, тогда $h(t_0^*)=\lim x_n=x_0$,

$$\exists \lim f(x_n) = \lim f(h(t_n)) = f(h(t_0^*)) = f(x_0)$$

Доказали, что для любой $x_n \to x$ монотонно (направление монотонности очевидно любое годится),

$$\lim f(x_n) = f(x_0)$$

Тогда и из любой $x_n \to x$ это верно Значит, $\lim_{x\to x_0} f(x) = f(x_0)$, f обязательно непрерывна