RADNI I REAKTIVNI OTPORI U KRUGU IZMJENIČNE STRUJE

Joško Križanović

Split, ______ 2023.

Elektrotehinka (550) - Laboratorijske vježbe Smjer računarstvo (stručno)

Fakultet elektrotehnike, strojarstva i brodogradnje - FESB

1 Serijski spoj aktivnog i induktivnog otpora

Zadatak:

Zadan je strujni krug sa Slike 1.

- Vrijednosti pojedinih elemenata iz strujnog kruga su: $U=5V, f=1kHz, L=100mH, R=1k\Omega.$
- Izmjerite struju u krugu i napone na elementima.
- Na temelju dobivenih podataka izračunajte R, X_L, Z, P, Q, S i $cos\Phi$. Vrijednosti R i X_L usporedite sa zadanima i komentirajte.
- Nacrtajte vektorski dijagram zadanog kruga, trokut otpora i trokut snaga.

Slika 1 – Shema serijskog spoja aktivnog i induktivnog (kapacitivnog) otpora.

	I[mA]	$U_R[V]$	$U_L[V]$
IZR.	6.227	3.11	3.91

	$R[\Omega]$	$X_L[\Omega]$	$Z[\Omega]$	P[mW]	Q[mVAr]	S[mVA]	$cos\phi$
IZM.							

$$X_L = 2fL\pi = 628.1\Omega$$

$$Z = \sqrt{R^2 + X_L^2} = 802.98\Omega$$

$$I = \frac{U}{Z} = \frac{5V}{802.98\Omega} = 6.227mA$$

$$U_R = IR = 3.11V$$

$$U_L = IX_L = 3.91V$$

2 Serijski spoj aktivnog i kapacitivnog otpora

Zadatak:

Zadan je strujni krug sa Slike 1.

- Sastavite strujni krug prema Slici 1. s podacima $U = 5V, f = 1kHz, C = 0.22\mu F, R = 1k\Omega$ (zavojnicu zamijenite kondenzatorom).
- Izmjerite struju u krugu i napone na elementima.
- Na temelju dobivenih podataka izračunajte R, X_C, Z, P, Q, S i $cos\Phi$. Vrijednosti R i X_C usporedite sa zadanima i komentirajte.
- Nacrtajte vektorski dijagram zadanog kruga, trokut otpora i trokut snaga.

	I[mA]	$U_R[V]$	$U_C[V]$
IZR.	6.227	3.11	3.91

	$R[\Omega]$	$X_C[\Omega]$	$Z[\Omega]$	P[mW]	Q[mVAr]	S[mVA]	$cos\phi$
IZM.							

$$X_{C} = \frac{1}{2fC\pi} = 723.431\Omega$$

$$Z = \sqrt{R^{2} + X_{C}^{2}} = 879.404\Omega$$

$$I = \frac{U}{Z} = \frac{5V}{879.404\Omega} = 5.686mA$$

$$U_{R} = IR = 2.843V$$

$$U_{C} = IX_{C} = 4.113V$$

3 Paralelni spoj aktivnog i induktivnog otpora

Zadatak:

Zadan je strujni krug sa Slike 2.

- Sastavite strujni krug prema Slici 2. s podacima $U=5V,\,f=1kHz,\,L=100mH,\,R=1k\Omega.$
- Izmjerite struje u krugu.
- Na temelju dobivenih podataka izračunajte G, B_L, Y, P, Q, S i $cos\Phi$. Vrijednosti R i X_L usporedite sa zadanima i komentirajte.
- Nacrtajte vektorski dijagram zadanog kruga, trokut vodljivosti i trokut snaga.

Slika 2 – Shema spoja za metodu superpozicije.

	I[mA]	$I_R[mA]$	$I_L[mA]$
IZR.	12.78	10	7.96

	$G[\Omega]$	$B_L[\Omega]$	$Y[\Omega]$	P[mW]	Q[mVAr]	S[mVA]	$cos\phi$
IZM.							

$$I_R = \frac{U}{R} = 10mA$$

$$I_L = \frac{U}{X_L} = 7.96mA$$

$$I = \sqrt{I_R^2 + I_L^2} = 12.78mA$$

4 Paralelni spoj aktivnog i kapacitivnog otpora

Zadatak:

Zadan je strujni krug sa Slike 2.

- Sastavite strujni krug prema Slici 2. s podacima $U = 5V, f = 1kHz, C = 0.22\mu F, R = 1k\Omega$ (zavojnicu zamijenite kondenzatorom).
- Izmjerite struje u krugu.
- Na temelju dobivenih podataka izračunajte G, B_C, Y, P, Q, S i $cos\Phi$. Vrijednosti R i X_C usporedite sa zadanima i komentirajte.
- Nacrtajte vektorski dijagram zadanog kruga, trokut vodljivosti i trokut snaga.

	I[mA]	$I_R[mA]$	$I_C[mA]$
IZR.	12.16	10	6.91

	$G[\Omega]$	$B_C[\Omega]$	$Y[\Omega]$	P[mW]	Q[mVAr]	S[mVA]	$cos\phi$
IZM.							

$$I_R = \frac{U}{R} = 10mA$$

$$I_C = \frac{U}{X_C} = 6.91mA$$

$$I = \sqrt{I_R^2 + I_C^2} = 12.16mA$$

5 Komentar: