Przedmiot: Bazy danych	Data: 30.11.2023r.
Temat: Diagram ER, dokładny opis tabel	
Grupa: PS.02	Prowadzący: mgr inż. Marek Kopczewski
Zespół:	
- Dominik Gąsowski (lider)	Ocena:
- Wojciech Domański	

1. Projekt bazy danych

Nasz projekt obejmuje bazę danych aplikacji Spotify. Spotify to aplikacja muzyczna umożliwiająca tworzenie playlist, słuchanie muzyki itp.

2. Diagram ER

Diagram ER

3. SQL

3.1. Tworzenie tabel

Opis tabel:

Utwory – Tabela zawierająca informacje na temat utworów. Posiada ona klucz podstawowy "ID_Utworu" i dwa klucze obce: "ID_Wykonawcy" oraz "ID_Albumu". Utwory są połączone z wykonawcami relacją wiele do jednego. Każdy wykonawca może mieć wiele utworów.

Wykonawcy – Tabela o wykonawcach. Ma klucz podstawowy ID_Wykonawcy. Jest połączona z utworami relacją wspomnianą punkt wyżej oraz z albumami.

Albumy – Tabela na temat albumów muzycznych. Posiada klucz podstawowy "ID_Albumu" oraz klucz obcy nawiązujący do tabeli Utwory. Jest połączona z utworami relacją jeden do wielu. Dopuszczalne są nulle (nie każdy utwór musi należeć do jakiegoś albumu).

Teksty_utworow – Tabela połączona z tabelą Utwory relacją jeden do jeden. Każdy utwór ma swój tekst (nie bierzemy pod uwagę melodii bez słów).

Statystyki_utworow – Tabela połączona w ten sam sposób jak tabela wyżej (Teksty_utworow). Zawiera pole ilość odtworzen (każda piosenka została ileś razy odsłuchana)

Oceny_utworów – Zawiera informacje na temat ocen utworów. Ma klucz podstawowy "ID_Oceny" oraz klucz obcy "ID_Utworu", dzięki któremu jest połączona relacją z utworami wiele do jednego.

Podcasty – Tabela na temat podcastów. Zawiera informacje na temat podcastów, klucz podstawowy ID_Podcastu oraz klucz obcy do tabeli wykonawcy. Jest połączona z wykonawcami relacją wiele do jednego (jeden wykonawca może mieć wiele podcastów)

Wydarzenia – Tabela zawierająca informacje na temat koncertów, meet-upów. Ma klucz podstawowy ID_Wydarzenia oraz klucz obcy ID_Wykonawcy. Jest połączona z wykonawcami relacją wiele do jednego (każdy wykonawca z biegiem czasu organizuje co raz więcej wydarzeń).

Nowosci – Tabela zawierające najnowsze utwory i ich daty wydania. Zawiera klucz obcy ID_Utworu. Jest połączona z utworami relacją jeden do jeden (nowy utwór mieści się również w tabeli Utwory).

Utwory_w_playlistach – Tabela łącznikowa między tabelą "Utwory" oraz "Playlisty". Dzięki niej przyporządkowujemy utwory do poszczególnych playlist. Zawiera tylko klucze obce do obu tabel.

Gatunki_utworow – Tabela łącznikowa między tabelą "Utwory" i "Gatunki". Mówi nam o tym, do jakiego gatunku należy dany utwór. Zawiera tylko 2 pola: klucze obce do tabel wymienionych wyżej.

Gatunki – Zawiera klucz podstawowy "ID_Gatunku" oraz jego nazwę. Tabela ta mówi nam o możliwych gatunkach, do jakich mogą zaliczać się utwory.

Playlisty – Tabela zawierająca klucz podstawowy "ID_Playlisty" oraz klucz obcy "ID_Uzytkownika". Tabela jest połączona z tabelą "Uzytkownicy" relacją wiele do jednego. (Każdy użytkownik może posiadać wiele playlist).

Uzytkownicy – Tabela o użytkownikach korzystających ze Spotify. Zawiera informacje na temat użytkowników (ich login,email,haslo). Zawiera klucz podstawowy "ID_Uzytkownika".

Historia_odtwarzania – Tabela łącznikowa między tabelą "Utwory" i "Uzytkownicy". Mówi nam ona jakich utworów słuchali użytkownicy. Dodatkowo posiada ona datę odsłuchania z godziną.

Znajomi – tabela łącznikowa między użytkownikami. Posiada ona dwa klucze obce, które mówią nam kto kogo zna z użytkowników.

Historia_wyszukiwania – Tabela zawierająca informacje na temat tego, czego szukał użytkownik na Spotify. Zapisujemy w niej na bieżąco to co wpisuje użytkownik szukając piosenki.

Preferencje_uzytkownikow – Tabela ma dwa klucze obce: "ID_Gatunku" i "ID_Uzytkownika". Dzięki niej wiemy jakie gatunki lubi dany użytkownik i możemy mu proponować trafniejsze utwory.

Stacje_radiowe – Posiada klucz podstawowy "ID_Radia" oraz klucz obcy łączący tabelę z Gatunkami w relacji wiele do jednego (każdy gatunek może być wyborem wielu stacji).

Zgłoszenia – Tabela zawierająca informacje na temat zgłoszeń użytkowników. Ma klucz podstawowy ID_Zgloszenia oraz klucz obcy łączący tę tabelę z "Uzytkownicy". Dodaliśmy również datę zgłoszenia, dzięki której będziemy mogli rozpatrywać na bieżąco zgłoszenia.

Statystyki_uzytkownikow – zawiera klucz obcy do tabeli użytkowników oraz informacje takie jak czas słuchania utworów oraz ostatnia aktywność w Spotify. Na jej podstawie możemy m.in. tworzyć podsumowania na koniec roku.

Subskrypcje – Tabela zawierająca informacje na temat dostępnych subskrypcji (m.in. darmowa).

Subskrypcje_uzytkownikow – Tabela łącznikowa między użytkownikami i subskrypcjami. Dzięki niej możemy tworzyć zestawienia na temat tego, jakie subskrypcje posiadają użytkownicy.

Współpracownicy – Tabela łącznikowa. Zawiera informacje na temat utworów, które zostały stworzone przez więcej niż jednego wykonawcę. Mamy 3 klucze obce: ID_Utworu (z tabeli "Utwory"), ID_Wspolpracownika (z tabeli "Uzytkownicy") oraz ID_Uzytkownika (również do tabeli "Uzytkownicy").

Przykładowe komendy tworzące tebele:

CREATE TABLE Kraje(Kraj_pochodzenia varchar(250) NOT NULL, PRIMARY KEY(Kraj_pochodzenia));

CREATE TABLE Wykonawcy(ID_Wykonawcy INT(3) NOT NULL AUTO_INCREMENT, Nazwa_wykonawcy varchar(100) NOT NULL, Kraj_pochodzenia varchar(250) NOT NULL, Opis varchar(500), PRIMARY KEY(ID_Wykonawcy), FOREIGN KEY(Kraj_pochodzenia) REFERENCES Kraje(Kraj_pochodzenia));

3.2 Modyfikacja tabel

Po zakończeniu tworzenia tabel nastąpiła potrzeba modyfikacji niektórych z nich. Do tego użyliśmy dyrektywy 'ALTER TABLE'.

Przykładowe komendy modyfikujące tabele:

ALTER TABLE wspolpracownicy ADD PRIMARY KEY(ID_Wykonawcy,ID_Wspolpracownika,ID_Utworu);

ALTER TABLE Subskrypcje_uzytkownikow MODIFY ID_Subskrypcji_uzytkownikow INTEGER(3) NOT NULL AUTO_INCREMENT FIRST;

3.3 Wprowadzanie danych

Po stworzeniu oraz zmodyfikowaniu tabel wypełniliśmy naszą bazę przykładowymi danymi, do tego użyliśmy komendy 'INSER INTO'.

Przykładowe komendy wprowadzające dane:

```
INSERT INTO Podcasty(ID_Wykonawcy,Data_wydania,Czas,Nazwa) VALUES(1,"1652-01-13",400,"Trailer GTA VI"),(1,"1651-07-16",500,"Podcast3"),(2,"2012-04-12",900,"Podcast4"),(6,"2019-08-07",12000,"Podcast5"),(6,"2016-12-16",5000,"Podcast6"),(1,"1921-01-30",1921,"Podcast7"),(10,"1892-12-13",2100,"Podcast8"),(4,"2018-11-12",900,"gasnijpokadet"),(3,"2012-12-20",1200,"aedbtnhgOIDflu");
```

INSERT INTO Statystyki_utworow(ID_Utworu, Ilosc_odtworzen) VALUES (1, 150), (2, 230), (3, 180), (4, 300), (5, 270), (6, 210), (7, 320), (8, 250), (9, 190), (10, 280);

3.4 Modyfikacja oraz usuwanie danych

Przy użyiu bazy danych przećwiczyliśmy modyfikowanie oraz usuwanie przechowywanych danych używając instrukcji 'UPDATE' oraz 'DELETE'.

Przykładowe komendy modyfikujące dane:

```
UPDATE albumy SET nazwa="nowa nazwa" WHERE ID_Albumu = 1;
```

UPDATE historia_odtwarzania SET Data_odtworzenia = '2025-12-12 08:30:00' WHERE ID_Uzytkownika=1 AND ID_Utworu=1;

Przykładowe komendy usuwające dane:

```
DELETE FROM Podcasty WHERE YEAR(Data wydania) = 2017;
```

DELETE FROM Playlisty WHERE Nazwa LIKE 'A%';

3.5 Tworzenie widoków

Stworzyliśmy dwa widoki: pierwszy zawierające dane z jednej tabeli, drugi łączący dwie tabele.

Do stworzenia pierwszego z nich użyliśmy polecenia: CREATE VIEW widok1 AS SELECT nazwa, email FROM użytkownicy WHERE id_uzytkownika > 5;

Drugi widok:

CREATE VIEW widok2 AS SELECT subskrypcje_uzytkownikow.Data_rozpoczecia, subskrypcje_uzytkownikow.Data_zakonczenia FROM subskrypcje, subskrypcje_uzytkownikow WHERE subskrypcje.id_subskrypcji=subskrypcje_uzytkownikow.id_subskrypcji_uzytkownikow AND subskrypcje.Nazwa="Basic";

Po ich stworzeniu były widocze w liście tabel oraz mogliśmy z nich korzystać jak z normalnych tabel:

3.6 Tworzenie indeksów

Podobnie jak w przypadku widoków, stworzyliśmy dwa indeksy, pierwszy zawierający jedną kolumnę, drugi łączący trzy kolumny.

Do stworzenia pierwszego z nich użyliśmy polecenia: CREATE INDEX indeks1 ON utwory(ID_Utworu);

Drugi indeks:

CREATE INDEX indeks1 ON Albumy(ID_Albumu, Nazwa, Data_wydania);

3.7 Uprawnienia dla użytkowników

Stworzyliśmy dwóch użytkowników: uzytkownik1 oraz uzytkownik2: create user 'uzytkownik1'@'localhost' IDENTIFIED BY 'uzytkownik1'; create user 'uzytkownik2'@'localhost' IDENTIFIED BY 'uzytkownik2';

Nowi użytkownicy zostali pomyślnie utworzeni:

Następnie nadaliśmy im prawa do oczytu, modyfikacji oraz usuwania odpowiednich tabel, widoków.

GRANT SELECT, INSERT, UPDATE, DELETE ON widok1 TO 'uzytkownik1'@'localhost';

GRANT SELECT, INSERT, UPDATE, DELETE ON widok2 TO 'uzytkownik2'@'localhost';

Uprawnienia użytkownika pierwszego

Uprawnienia użytkownika drugiego

Sprawdziliśmy działanie uprawnień poprzez wyświetlanie widoków:

Wnioski:

Zaprojektowana przez nas baza danych jest w trzeciej postaci normalnej, do tego wymagane było stworzenie paru dodatkowych tabel. Widoki w bazach danych są przydatne przy skomplikowanych zapytaniach, zamiast zagnieżdżonych 'selectów' możemy używać widoków. Są one również stosowane w celach bezpieczeństwa baz – pracownicy używający ich nie pracują bezpośrednio na tabelach. Wykorzystaliśmy to przy tworzeniu użytkowników – pierwszy miał tylko dostęp do widoku 'widok1', drugi natomiast to widoku 'widok2'. Indeksy w bazach danych są strukturami, które mają zwiększyć efektywność wyszukiwania, sortowanie itp. Przyspieszają one dostęp do rekordów w tabeli.

Pozostałe instrukcje SQL znajdują się w pliku sql.txt.