

# FONCTION ZÉTA DE RIEMANN

### Fonction Zéta de Riemann

Pour x réel, on pose  $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ . On définit ainsi la fonction Zeta de Riemann.

## Partie I

Dans cette partie, on étudie sommairement les variations de la fonction  $\zeta$ .

- 1. Quel est le domaine de définition de la fonction  $\zeta$ ? [S]
- 2. Montrer que la fonction  $\zeta$  est strictement décroissante. [S]
- 3. En déduire que  $\lim_{x\to 1+} \zeta(x) = +\infty$ . [S]
- 4. (a) Montrer que pour tout  $x \ge 2$  et tout  $N \ge 1$  on  $a : 1 \le \zeta(x) \le \sum_{n=1}^{N} \frac{1}{n^x} + \sum_{n=N+1}^{\infty} \frac{1}{n^2}$ . [S]
  - (b) En déduire que  $\lim_{x\to +\infty} \zeta(x) = 1$ . [S]
- 5. Montrer que la fonction  $\zeta$  est convexe. [S]
- 6. Montrer que  $\zeta$  est de classe  $\mathcal{C}^{\infty}$  et que :  $\forall p \in \mathbb{N}^*, \forall x > 1, \zeta^{(p)}(x) = \sum_{n=2}^{+\infty} \frac{(-\ln n)^p}{n^x}$ . Retrouver ainsi le résultat des questions 2 et 5. [S]
- 7. Représenter sommairement la courbe représentative de la fonction  $\zeta$ . [S]

### Partie II

Dans cette partie, on étudie plus précisément le comportement de la fonction  $\zeta$  en 1 et en  $+\infty$ , et on établit sa dérivabilité à tout ordre.

- 1. Pour  $n \ge 2$  et x > 0, montrer les inégalités  $\int_n^{n+1} t^{-x} dt \le n^{-x} \le \int_{n-1}^n t^{-x} dt$ . [S]
- 2. En déduire que pour x > 1 et  $N \ge 2$  on a :  $\frac{N^{1-x}}{x-1} \le \sum_{n=N}^{\infty} \frac{1}{n^x} \le \frac{(N-1)^{1-x}}{x-1}$ . [S]
- 3. Montrer que lorsque x tend vers  $+\infty$ , alors  $\zeta(x)-1\sim 2^{-x}$ . [S]
- 4. Déduire de la question II-2 que  $\zeta(x) \sim \frac{1}{x-1}$  quand x tend vers 1. [S]

### Partie III

Dans cette partie, on améliore le résultat de la question II-4

On définit une série de fonctions  $\sum f_n$  par :  $f_n(x) = n^{-x} - \int_n^{n+1} t^{-x} dt$ .

1. Montrer que la suite de terne général  $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n+1)$  est convergente.

Sa limite est notée  $\gamma$  et on l'appelle la constante d'Euler ( $\gamma \approx 0.5772156649$ ). [S]

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



### FONCTION ZÉTA DE RIEMANN

Énoncé

- 2. Prouver que pour  $n \ge 1$  et x > 0 on a :  $0 \le f_n(x) \le n^{-x} (n+1)^{-x}$ . [S]
- 3. Montrer que la série de fonctions  $\sum f_n$  est convergente sur  $]0, +\infty[$ . [S]
- 4. Soit S la somme de la série  $\sum f_n$  sur  $\mathbb{R}^{+*}$ . Montrer que  $S(1) = \gamma$  et donner l'expression de S(x) quand x > 1. [S]
- 5. Prouver que la convergence de la série  $\sum f_n$  est uniforme sur  $[1, +\infty[$ . [S]
- 6. En déduire que lorsque x tend vers 1 alors  $\zeta(x) \frac{1}{x-1}$  tend vers  $\gamma$ . [S]



# Corrigé du problème

## Partie I

- 1. Pour tout x réel, la série définisant  $\zeta(x)$  est une série de référence de Riemann. Une telle série est convergente si et seulement si x > 1. Le domaine de définition de la fonction  $\zeta$  est donc  $]1, +\infty[$ . [Q]
- 2. Soient x et y deux réels tels que 1 < x < y. Pour tout  $n \ge 2$ , on a alors  $\frac{1}{n^y} < \frac{1}{n^x}$ .

En sommant pour  $n \ge 2$ , on trouve  $1 + \sum_{n=2}^{\infty} \frac{1}{n^y} < 1 + \sum_{n=2}^{\infty} \frac{1}{n^x}$ , c'est-à-dire  $\zeta(y) < \zeta(x)$ .

La fonction  $\zeta$  est donc strictement décroissante sur  $]1, +\infty[$ . [Q]

3. La fonction  $\zeta$  étant décroissante sur ]1,  $+\infty$ [, elle admet une limite en 1 à droite. Cette limite est un réel  $\lambda$  si  $\zeta$  est majorée, et  $+\infty$  sinon.

Par l'absurde, supposons  $\lim_{x\to 1+} \zeta(x) = \lambda \in \mathbb{R}$ .

Alors, toujours en vertu de la décroissante de  $\zeta$ , on a :  $\forall x > 1, \zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x} \leq \lambda$ .

On en déduit, pour tout x > 1 et pour tout N de  $\mathbb{N}^*$  :  $\sum_{n=1}^{N} \frac{1}{n^x} \le \lambda$ .

On peut faire tendre x vers 1 dans cette inégalité car la somme est finie.

On en déduit que pour tout entier N de  $\mathbb{N}^*$  on a :  $\sum_{n=1}^{N} \frac{1}{n} \leq \lambda$ .

Mais c'est absurde, car la série harmonique diverge. On a en effet  $\lim_{N\to+\infty}\sum_{n=1}^N\frac{1}{n}=+\infty$ . On en déduit donc bien que  $\lim_{x\to 1+}\zeta(x)=+\infty$ . [Q]

4. (a) Il est clair que pour tout x > 1, on a  $\zeta(x) = 1 + \sum_{n=2}^{\infty} \frac{1}{n^x} \ge 1$ .

Soit N un entier strictement positif. Pour tout  $x \ge 2$ , on a l'inégalité  $\frac{1}{n^x} \le \frac{1}{n^2}$ .

Ainsi: 
$$\forall x \ge 2, \ 1 \le \zeta(x) = \sum_{n=1}^{N} \frac{1}{n^x} + \sum_{n=N+1}^{\infty} \frac{1}{n^x} \le \sum_{n=1}^{N} \frac{1}{n^x} + \sum_{n=N+1}^{\infty} \frac{1}{n^2}.$$
 [Q]

(b) Première variante:

On sait que l'application  $\zeta$  est décroissante et minorée (par 1 par exemple.)

On en déduit que  $\ell = \lim_{x \to +\infty} \zeta(x)$  existe dans IR (et même  $\ell \geq 1$ .)

On fait d'abord tendre x vers  $+\infty$  dans le résultat de la question précédente.

On en déduit :  $\forall x \geq 2, 1 \leq \ell \leq 1 + \sum_{n=N+1}^{\infty} \frac{1}{n^2}$ .

On fait enfin tendre N vers  $+\infty$  dans ce résultat et on trouve  $\ell=1$ .

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



#### Deuxième variante:

On reprend l'encadrement obtenu dans la question (4a). On se donne  $\varepsilon > 0$ .

Puisque 
$$\lim_{N\to+\infty}\sum_{n=N+1}^{\infty}\frac{1}{n^2}=0$$
, il existe un entier  $N_0$  tel que  $0\leq\sum_{n=N_0+1}^{\infty}\frac{1}{n^2}\leq\frac{\varepsilon}{2}$ .

Pour cet entier  $N_0$ , on a  $\lim_{x\to+\infty}\sum_{n=1}^{N_0}\frac{1}{n^x}=1$  (limite dans une somme finie.)

Il existe donc un réel 
$$x_0 \ge 2$$
 tel que  $x \ge x_0 \Rightarrow \sum_{n=1}^{N_0} \frac{1}{n^x} \le 1 + \frac{\varepsilon}{2}$ .

On en déduit :  $x \ge x_0 \Rightarrow 1 \le \zeta(x) \le 1 + \varepsilon$ . Il en découle que  $\lim_{x \to +\infty} \zeta(x) = 1$ .

Remarque : dans cette variante on n'utilise pas la monotonie de  $\zeta$ . [Q]

5. Rappelons qu'une fonction  $f: I \to \mathbb{R}$  est dite convexe sur l'intervalle I si :

$$\forall (x,y) \in I^2, \forall \lambda \in [0,1], f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

Pour tout a > 0, l'application  $x \mapsto \varphi(x) = a^x$  est convexe sur  $\mathbb{R}$  donc sur  $]1, +\infty[$  car  $\varphi''(x) = (\ln a)^2 a^x \ge 0$  (condition suffisante de convexité.)

En particulier, les applications  $f_n: x \mapsto \frac{1}{n^x}$  sont convexes sur  $\mathbb{R}$ .

On en déduit :  $\forall x, y > 1, \forall n \in \mathbb{N}^*$  :  $f_n(\lambda x + (1 - \lambda)y) \le \lambda f_n(x) + (1 - \lambda)f_n(y)$ .

Si on somme ces inégalités pour tout n de  $\mathbb{N}^*$ , on obtient :

$$\forall x > 1, \forall y > 1, \zeta(\lambda x + (1 - \lambda)y) \le \lambda \zeta(x) + (1 - \lambda)\zeta(y)$$

L'application  $\zeta$  est donc convexe sur  $]1, +\infty[$ .

Remarque : dans cette méthode, il n'a pas été nécessaire d'utiliser  $\zeta''(x) \ge 0$  (d'ailleurs on n'a encore pas établi la dérivabilité de la fonction  $\zeta$ .) [Q]

6. Pour  $n \ge 1$  et tout réel x, posons  $f_n(x) = \frac{1}{n^x}$ . Notons que  $f_1' \equiv 0$ .

Les applications  $f_n$  sont de classe  $\mathcal{C}^{\infty}$  sur  $\mathbb{R}$ :  $\forall p \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n^{(p)}(x) = \frac{(-\ln n)^p}{n^x}$ .

Soit 
$$a > 1$$
. On a alors :  $\forall n \ge 2, \forall p \in \mathbb{N}^*, \forall x \ge a, \left| f_n^{(p)}(x) \right| \le \frac{(\ln n)^p}{n^a}$ .

Or  $\lambda_n = \frac{(\ln n)^p}{n^a}$  est le terme général d'une série convergente (série de Bertrand.)

Ainsi les séries  $\sum f_n^{(p)}$  sont CVN (donc CVU) convergentes sure  $[a, +\infty[$  quand a > 1.

On peut donc appliquer indéfiniment le théorème de dérivation des séries de fonctions.

On en déduit que l'application  $\zeta$  est de classe  $\mathcal{C}^{\infty}$  sur tout intervalle  $[a, +\infty[$  avec a > 0 et donc sur  $]1, +\infty[$ , et qu'on peut dériver la somme terme à terme à tout ordre.

Ainsi: 
$$\forall x > 1, \forall p \in \mathbb{N}^*, \zeta^{(p)}(x) = \sum_{n=2}^{+\infty} f_n^{(p)}(x) = \sum_{n=2}^{+\infty} \frac{(-\ln n)^p}{n^x}.$$

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



On constate en particulier que :

$$- \forall x > 1, \zeta'(x) = -\sum_{n=2}^{+\infty} \frac{\ln n}{n^x} < 0 : \text{la fonction } \zeta \text{ est strictement décroissante sur } ]1, +\infty[.$$

$$- \forall x > 1, \zeta''(x) = \sum_{n=2}^{+\infty} \frac{(\ln n)^2}{n^x} > 0 : \text{la fonction } \zeta \text{ est convexe sur } ]1, +\infty[.$$

$$[Q]$$

7. Les questions précéentes donnent une idée de la courbe  $y=\zeta(x)$ . Pour l'instant le seul point connu sur la courbe est  $(2, \frac{\pi^2}{6})$ .



[Q]

### Partie II

1. L'application  $t\mapsto t^{-x}$  est continue sur  $\mathbb{R}^{+*}$  et décroissante.

Pour  $n \le t \le n+1$  on a donc  $t^{-x} \le n^{-x}$  puis  $\int_n^{n+1} t^{-x} dt \le n^{-x}$  par intégration. De même, on a  $n^{-x} \le t^{-x}$  si  $t \in [n-1,n]$ , puis  $n^{-x} \le \int_n^n t^{-x} dt$  par intégration. [Q]

2. Soit N et M deux entiers, avec  $2 \le N \le M$ . Reprenons l'encadrement vu dans la question II-1.

Par sommation de n=N à n=M :  $\int_N^{M+1} t^{-x} \, \mathrm{d}t \leq \sum_{n=N}^M \frac{1}{n^x} \leq \int_{N-1}^M t^{-x} \, \mathrm{d}t.$ 

Quand  $M \to +\infty$ , sachant que x > 1, on obtient :  $\int_{N}^{+\infty} t^{-x} dt \le \sum_{n=N}^{+\infty} \frac{1}{n^{x}} \le \int_{N-1}^{+\infty} t^{-x} dt$ .

Mais une primitive de  $t \mapsto t^{-x}$  est  $t \mapsto \frac{t^{1-x}}{1-x}$ . Donc  $\int_N^{+\infty} t^{-x} dt = \left[\frac{t^{1-x}}{1-x}\right]_N^{+\infty} = \frac{N^{1-x}}{x-1}$ .

On a donc bien obtenu, pour x > 1 et  $N \ge 2$ :  $\frac{N^{1-x}}{x-1} \le \sum_{n=N}^{\infty} \frac{1}{n^x} \le \frac{(N-1)^{1-x}}{x-1}$ . [Q]

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.





3. Pour tout 
$$x > 1$$
, on a déjà l'inégalité :  $\zeta(x) = \sum_{x=1}^{+\infty} \frac{1}{n^x} \ge 1 + \frac{1}{2^x}$ .

Avec 
$$N = 3$$
, la question II-2 donne :  $\sum_{x=3}^{\infty} \frac{1}{n^x} \le \frac{2^{1-x}}{x-1}$  c'est-à-dire  $\zeta(x) - 1 - \frac{1}{2^x} \le \frac{2^{1-x}}{x-1}$ .

On a donc l'encadrement : 
$$0 \le \zeta(x) - 1 - \frac{1}{2^x} \le \frac{2}{x-1} 2^{-x}$$
.

Ainsi, quand  $x \to +\infty$  on trouve  $\zeta(x) - 1 - \frac{1}{2^x} = o\left(\frac{1}{2^x}\right)$ . On en déduit  $\zeta(x) - 1 \sim 2^{-x}$ .

4. Avec 
$$N=2$$
, l'encadrement vu en II-2 donne :  $1+\frac{2^{1-x}}{x-1} \leq \zeta(x) \leq 1+\frac{1}{x-1}$ .

Autrement dit : 
$$x - 1 + 2^{1-x} \le (x - 1)\zeta(x) \le x$$
.

On en déduit 
$$\lim_{x\to 1}(x-1)\zeta(x)=1$$
, c'est-à-dire  $\zeta(x)\sim \frac{1}{x-1}$  quand  $x$  tend vers 1. [Q]

### Partie III

1. On sait que la suite  $(u_n)$  a même nature que la série  $\sum v_n$  avec  $v_n = u_n - u_{n-1}$ .

Or 
$$v_n = \frac{1}{n} - \ln(n+1) + \ln(n) = \frac{1}{n} - \ln(1 + \frac{1}{n}) = O(\frac{1}{n^2}).$$

La série  $\sum v_n$ , dominée par une série de Riemann, est convergente.

Il en est donc de même de la suite  $(u_n)$ . On note  $\lim_{n\to\infty}u_n=\gamma$ . [Q]

2. On utilise le résultat de la question II-1.

On sait que 
$$\int_{n}^{n+1} t^{-x} dt \le n^{-x}$$
. On en déduit  $f_n(x) \ge 0$ .

On a également 
$$(n+1)^{-x} \le \int_{0}^{n+1} t^{-x} dt$$
. On en déduit  $f_n(x) \le n^{-x} - (n+1)^{-x}$ . [Q]

3. Pour tout x > 0, et quand n tend vers  $+\infty$ , on a :

$$n^{-x} - (n+1)^{-x} = n^{-x} \left( 1 - \left( 1 + \frac{1}{n} \right)^{-x} \right) = n^{-x} \left( 1 - \left( 1 - \frac{x}{n} + o\left(\frac{1}{n}\right) \right) \right) \sim \frac{x}{n^{x+1}}$$

La série de terme général  $n^{-x} - (n+1)^{-x}$  est donc convergente pour tout x > 0 (par comparaison avec une série de Riemann).

On en déduit que la série de fonctions  $\sum f_n$  est convergente sur  $\mathbb{R}^{+*}$ . [Q]

4. - On 
$$f_n(1) = \frac{1}{n} - \int_{0}^{n+1} \frac{1}{t} dt = \frac{1}{n} - \ln(n+1) + \ln(n)$$
.

On en déduit, pour tout entier 
$$N \ge 1$$
:  $\sum_{n=1}^{N} f_n(1) = \sum_{n=1}^{N} \frac{1}{n} - \ln(N+1)$ .

On fait tendre N vers  $+\infty$  et d'après III-1 on en déduit que  $S(1) = \gamma$ .

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

FONCTION ZÉTA DE RIEMANN



– Pour tout réel x > 1 et tout entier  $N \ge 1$  :

$$\sum_{n=1}^{N} f_n(x) = \sum_{n=1}^{N} \left( n^{-x} - \int_n^{n+1} t^{-x} \, \mathrm{d}t \right) = \sum_{n=1}^{N} \frac{1}{n^x} - \int_1^{N+1} t^{-x} \, \mathrm{d}t = \sum_{n=1}^{N} \frac{1}{n^x} - \left[ \frac{t^{1-x}}{1-x} \right]_1^{N+1}$$

On fait tendre N vers  $+\infty$  et on en déduit :  $\forall x > 1, S(x) = \zeta(x) - \frac{1}{x-1}$ .  $\mathbb{Q}$ 

5. Soit N et M deux entiers avec  $1 \le N \le M$ .

On somme l'encadrement  $0 \le f_n(x) \le n^{-x} - (n+1)^{-x}$  de n = N à n = M.

On en déduit 
$$0 \le \sum_{n=N}^{M} f_n(x) \le N^{-x} - (M+1)^{-x}$$
.

Si on fait tendre M vers  $+\infty$ , on trouve (avec x > 0):  $0 \le \sum_{n=N}^{+\infty} f_n(x) \le \frac{1}{N^x}$ .

Si on suppose  $x \ge 1$  on en déduit, pour tout  $N \ge 1$ :  $0 \le R_N(x) = \sum_{n=N}^{+\infty} f_n(x) \le \frac{1}{N}$ .

Ainsi la suite des restes  $R_N$  de la série  $\sum f_n$  converge uniformément vers la fonction nulle. Cela signifie la convergence uniforme de la série  $\sum f_n$  sur  $[1, +\infty[$ . [Q]

6. Le convergence uniforme de  $\sum f_n$  sur  $[1, +\infty[$  et la continuité des applications  $f_n$  impliquent que la somme S est continue sur  $[1, +\infty[$  et au particulier au point 1.

Or on a 
$$S(1) = \gamma$$
 et  $S(x) = \zeta(x) - \frac{1}{x-1}$  si  $x > 1$ .

La continuité de S en 1 s'écrit donc :  $\lim_{x\to 1+}\left(\zeta(x)-\frac{1}{x-1}\right)=\gamma$ . [Q]

Page 7 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.