

Hands-on Deep Learning for Industrial Informatics Applications

Presented by:

- Rashmika Nawaratne
- Achini Adikari
- Daswin De Silva

Centre for Data Analytics and Cognition La Trobe University, Melbourne, Australia.

RESEARCH CENTRE FOR DATA, ANALYTICS AND COGNITION (CDAC)

Centre for Data Analytics and Cognition

 Vision: to revolutionise human engagement and interaction in data intensive environments by advancing a new paradigm of AI, self-structuring artificial intelligence, inspired by human cognition.

- Novel ideas, high impact publications, research collaborations and research funding
- Technology transformation and integration of research into tools and platforms.
 - Software (API) libraries and platforms developed for industry and commercial applications
- Collaboration with academia, industry and government.
 - More than \$3 million of government and industry funding (2014-2019)
- Training postgraduate teaching and executive education in data analytics and AI.
 - More than 100 full-time equivalent coursework students with increasing rates of employment.

<u>Artificial Intelligence (AI)</u>

Reproduction of human intellectual activities

Component technologies

Expert systems

Robotics

Human interfaces Machine learning

Learning of rules and patterns hidden in data

Algorithms

SVM

Random **Forest**

K-means

Neural networks

X1 X2 X3 <Perceptron>

Modeling of neural signaling

Learning model that emulates brain activities

Sato et al., "Overview of Deep Learning", 20183

A Neural Network for multiple attributes

- A single neuron is sufficient when just the single attributes (size
 of the house) is available.
- But when there are multiple features such as number of bedrooms, bathrooms, parking, postcode, etc., more than a single neuron is needed to model the non-linear relationship across all attributes.
- Solution is a network of neurons (neural network).
- Think about what new features can be derived based on these features.
- Family size, Walkability, School quality sounds logical?
- A neural network is capable of automatically identifying hidden features from the input features, and finally a prediction.
- Let us further explore these "hidden features".

price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e+04	21613.000000	21613.000000	21613,000000	21613.000000
5.400881e+05	3,370842	2,114757	2079.899738	1.510697e+04	1,494309	0.007542	0.234303	3,409430
3.671272e+05	0.930062	0.770163	918.440897	4.142051e+04	0.539989	0.088517	0.786318	0.650743
7.50 <mark>0000e+04</mark>	0.000000	0.000000	290.000000	5.200000e+02	1.000000	0.000000	0.000000	1.000000
3.219500e+05	3.000000	1,750000	1427.000000	5.040000e+03	1.000000	0.000000	0.000000	3.000000
4.500000e+05	3,000000	2.250000	1910.000000	7.618000e+03	1.500000	0.000000	0.000000	3.000000
8.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	0.000000	0.000000	4.000000
7.700000e+08	33.000000	8.000000	13540.000000	1.651359e+08	3.500000	1.000000	4.000000	5.000000

Extracting hidden features

- Feature engineering in traditional machine learning the extraction of hidden features is usually conducted by humans as a pre-processing step.
- Even though traditional neural networks have the capability to automatically extract features, it requires multiple layers of intermediary neurons.
- As the number of multiple layers of intermediary neurons increases, so does the training time and computational complexities. This is why traditional neural networks are limited to 2 or 3 hidden layers.

Deep neural networks consist of more than 3 layers with a large number of hidden units, which

facilitates automatic feature extraction.

A deep neural network is much more effective because it can automatically extract features and learn/train based on these features.

Is there a hype in Deep Learning?

- The performance of traditional machine learning algorithms has not kept up with exponential increases in the volume, velocity and variety of data.
- The learning performance saturates very early into the training phase.
- In the case of neural networks, the performance of the model increases as the availability of the data increases.

Deep learning vs conventional machine learning:

- 1. Automated feature extraction
- 2. Utilization of Big Data for training
- 3. High performance computing infrastructure that accommodates the computational complexity of advanced activations
- 4. New brain-inspired learning algorithms for optimization and regularization

Source: Online 6

Widely used deep neural network types

Centre for Data Analytics and Cognition

Deep Neural Network

Recurrent Neural Network

Convolutional Neural Network

Source: Online

Many options for developing a deep learning algorithm

Deep Learning Framework Power Scores by KDnuggets, Sept, 2018

Deep Learning Framework Power Scores 2018

Model Architecture

DNN - "Hello World"


```
X train, X test, y train, y test = train test split(df numerical, Y scaled,
                                         test size=0.3, random state=2)
NN model = Sequential()
NN_model.add(Dense(36, input dim = X train.shape[1], activation='relu'))
                                                      36
NN model.add(Dense(24, activation='relu'))
NN model.add(Dense(12, activation='relu'))
NN model.add(Dense(8, activation='relu'))
NN model.add(Dense(1, activation='linear'))
# Compile the DNN
NN model.compile(loss='mean absolute error', optimizer='sgd', metrics=['mse'])
# Train the model
NN model.fit(X train, y train, epochs=epochs, batch size=batch size,
                                  validation split = validation split)
                                              Hyper-params
```

IEEE ETFA 2020, Vienna, Austria

Ć

Python on Google Colab

- Google Colaboratory (Colab) is a free Jupyter notebook environment that requires no setup.
- This runs on Google Cloud Servers.
- Go to https://colab.research.google.com/
 (Tested on Chrome, Firefox and Safari)
- Sign in to your Gmail account
- Create a new Python 3 Notebook
- Hands on ...

Exercise 1: Deep Neural Networks for House Price Prediction

- Standard application of DNN to predict house price based on multiple attributes.
- Using the Ames Housing dataset^[1]
- The dataset contains 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa.
- In this workbook we will,
 - 1. Pre-process the data
 - 2. Develop a deep neural network model for price prediction
 - 3. Train the model
 - 4. Evaluate the model
- [https://github.com/CDAC-lab/deep-learning-tutorial]

[1] D. De Cock, "Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression Project," Journal of Statistics Education, vol. 19, no. 3, p. null-null, Nov. 2011.

Sequence in datasets

- Sequences are data structures where each sample could be seen as a series of data points.
- E.g., "I am excited to present the DL workshop at ETFA 2020."
 This sentence is an example that consists of multiple words and each word depends on the previous (one or many) terms.
- Same sequencing applies to instances such as IoT readings, audio, video and time-series data.
- Some application areas:
 - Motor traffic prediction
 - Energy consumption prediction
 - Human activity monitoring
 - Image recognition and annotation
 - Asset monitoring and lifecycle management
 - Speech recognition (Siri, Alexa, Google)
 - Language translation
 - Stock market prediction

Structured data

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

Sequence data e.g., IoT, Text, Time Series

	Date	Open	Sales
	2013-09-13	1	8610
>	2013-07-31	1	10895
	2014-10-26	0	0
	2015-05-12	1	6043
	2013-10-19	1	3568
	2014-01-15	1	5163
	2014-09-09	1	5978
	2013-12-20	1	12352

Exercise 2: Traffic Prediction using Recurrent Neural Networks

Centre for Data Analytics and Cognition

- Hands on Recurrent Neural Networks (LSTM).
- Experiment with Bluetooth traffic monitoring data from Victoria roads authority, Australia.
- Uses RNN to predict the traffic flow (vehicle count) at intersection Z, based on its neighboring road segments.
- [https://github.com/CDAC-lab/deep-learning-tutorial]

[1] D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A. Adikari, S. Nguyen, T. Kempitiya, D. De Silva, D. Alahakoon, D. Pothuhera. "Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management." IEEE Transactions on Intelligent Transportation Systems, pp. 1–12, 2019.

Unstructured data - images and video

- DNN can be effectively used to analyse (classify/predict) numerical attributes and sequential datasets (using RNN).
- However, there are a number of application areas such defense and security, weather analysis, telecommunication, transportation, entertainment, etc., that generate high-dimensional data such as images and videos.

Source: Online

14

Oversimplification of treating images as digits

- High dimensionality
 - Size: 200 x 200 pixels (40,000 attributes)
 - Colour, 3 channels for red, greed and blue $(40,000 \times 3 = 120,000 \text{ attributes})$
- Rotation
- Scale
- Location

Source: Online IEEE ETFA 2020, Vienna, Austria

Convolutional Neural Networks (CNN)

16

- · Convolution: Latin for "to convolve" means to roll together.
- Convolution can be thought of as the mix of two functions by multiplication.
- The static red curve is the input image, and the mobile function is a filter which picks up a signal or feature in the image. The two functions relate through multiplication.

Source: Online

Workings of CNN

- A CNN is composed of two major parts; feature extraction and classification.
- Feature extraction is the process of automatically extracting features from the images.
 - Features can be understood as attributes of the image, e.g., an image of a cat might have features like whiskers, two ears, four legs etc. A handwritten digit image might have features as horizontal and vertical lines or loops and curves.
- Classification is the aspect related to prediction of an outcome.

Machine Learning

Car
Not Car
Output

Deep Learning

Car
Not Car
Not Car
Output

Feature extraction • Classification

Output

Output

Source: Mesman et al. 2011

CNN: Feature Extraction

- Feature extraction of a CNN is conducted using three types of operations. 1) Convolution, 2) Non-Linearity and 3) Pooling.
- Convolution is the mathematical operation which is central to the efficacy of this algorithm.
- Convolution operation is performed on an input image using a filter or a kernel.

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Input Filter / Kernel

IEEE ETFA 2020, Vienna, Austria Source: Karkare 2019 18

CNN: Feature Extraction – Convolution Operation

Horizontal Edge Filter

Vertical Edge Filter

Source: Karkare 2019

CNN: Feature Extraction – Non-Linearity

- After sliding our filter over the original image, the output which we get is passed through another mathematical function which is called an activation function.
- This is the same activation function ReLU (Rectified Linear Unit) we used for the Deep Neural Network.
- Makes this computationally inexpensive than the standard activation functions, such as sinh or tanh.

IEEE ETFA 2020, Vienna, Austria Source: Karkare 2019 20

CNN: Classification

- In the CNN, feature extraction is conducted using convolution, activation (non-linearity) and pooling layers.
- Now the extracted features are fed into a 2 or 3 hidden layers (similar to layers in a Deep Neural Network). This is called **Fully Connected** layers in the CNN.

IEEE ETFA 2020, Vienna, Austria Source: Kdnuggets 2015 21

Deep Learning so far...

Structured data

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

Deep Neural Network

Sequence data e.g., IoT, Text

			Date	Open	Sales
			2013-09-13	1	8610
	tweet	w	2013-07-31	1	10895
0	@user when a father is dysfunctional and is s		2014-10-26	0	0
1	@user @user thanks for #lyft credit i can't us		2015-05-12	1	6043
2	bihday your majesty		2013-10-19	1	3568
3	#model i love u take with u all the time in		2014-01-15	1	5163
4	factsguide: society now #motivation		2014-09-09	1	5978
			2013-12-20	1	12352

Recurrent Neural Network

Image and Video data

Convolutional Neural Network

Other DNN techniques and architectures

- CapsNet
 - add structures called "capsules" to a CNN to reuse output from several of those capsules to form more stable representations for higher order capsules.
- Generative Adversarial Networks
 - a deep neural net architectures comprised of two nets, pitting one against the other
 - Image generation (e.g., <u>https://thispersondoesnotexist.com/</u>)
- Latent spaces
 - Utilize/train intermediate layers of deep network as feature layer for complementary (secondary) machine learning task
 - E.g., Autoencoder, GSOM

