Lecture # 9

Counting Sort

Theorem 8.1

Any comparison-based sorting algorithm has worst-case running time Ω(n log n)

Proof: (Book Page No 167, 2nd Edition)

- The lower bound implies that if we hope to sort numbers faster than O(n log n), we cannot do it by making comparisons alone.
- Is it possible to sort without making comparisons?
- The answer is yes, but only under very restrictive circumstances.

Counting Sort

- We will consider Counting Sort algorithm that is faster and work by not making comparisons.
- Counting sort assumes that the numbers to be sorted are in the range 1 to k where k is small. The basic idea is to determine the rank of each number in final sorted array.
- The rank of an item is the number of elements that are less than or equal to it.
- Once we know the ranks, we simply copy numbers to their final position in an output array.

Counting Sort

- The algorithm uses three arrays. As usual,
- A[1..n] holds the initial input,
- B[1..n] holds the sorted output and
- C[1..k] is an array of integers. C[x] is the rank of x in A, where x ∈ [1..k].

Example

 \boldsymbol{C}

Input [A[1n]	7	1	3	1	. 2	2 4	1	5	7	2		4	3		
	1	2	3	4	- 5	6	7		8	9	1	.0	11		
Output B [1n]	1	1	2	2	3	3	3	4	4	5		7	7		
B[10] = B[C[7]] = B[C[A[1]]] = A[1] = 7															
			1	2	3	4	5		6	7	′				
	C		0	2	4	7	8	9	9	10					
	C[A[1]] = C[A[1]] - 1														
	C		0	2	4	6	8		9	9					

Counting Sort Algorithm

```
COUNTING-SORT (array A, array B, int k)
      for i \leftarrow 1 to k
    do C[i] \leftarrow 0
                        k times
 3 for j \leftarrow 1 to length[A]
                                        n times
    do C[A[j]] \leftarrow C[A[j]] + 1
 5 // C[i] now contains the number of elements = i
     fori←2 to k
                                       k times
     do C[i] \leftarrow C[i] + C[i-1]
     // C[i] now contains the number of elements < i
     for j \leftarrow length[A] downto 1
    do B[C[A[j]]] \leftarrow A[j]
10
         C[A[j]] \leftarrow C[A[j]] - 1
```

- There are four (unnested) loops, executed k times, n times, k - 1 times, and n times, respectively,
- so the total running time is **Θ(n + k)** time.
- If $k = \Theta(n)$, then the total running time is $\Theta(n)$.