CPSC 335 – Programming Assignment 4

Pseudocode

```
Java's Hash Function
//Input: a string s and length of string s len
//Output: Hash value
tablesize ← 17
value \leftarrow s[len – 0 – 1]
value ← value % tablesize
power ← 1
if value < 0
      value ← value + tablesize
if len == 1
      return value
for I ← 1 to len - 1
      temp = s[len - i - 1]
      power ← power of 31
      power ← power % tablesize
      if power < 0
            power ← power + tablesize
      value ← value + temp * power
      value ← value % tablesize
      if value < 0
            value ← value + tablesize
return value
```

Cuckoo Insert Function

```
//Input: A string s, a 2-D table t, and function f that hashes a string using first or second hash function according to the index //Output: table number pos and index where the string is stored tablesize \leftarrow 17 index \leftarrow 0 placed \leftarrow false temp \leftarrow s
```

Daniel Nguyen Justin Shelley Nhat "Rocky Nguyen May 3, 2017

```
pos ← f(s, index)

count ← 0

while placed == false and counter < 2 * tablesize

if t[pos][index] is empty

Output pos and index

Placed ← true

return

else

swap t[pos][index] and temp

index ← index ? 1 : 0

pos ← f(temp, index)

counter ← counter + 1
```

Table

	Table T1 – Index 0	Table T2 – Index 1
[0]	Online algorithms	
[1]		Some related problem
[2]	Self-Stabilization	Monge Properties
[3]	are known	Fullerton
[4]	Quantum Nature of Universe	Server Problem
[5]	In physics and	College of Engineering
[6]	One of the greatest	Optimal Tree Construction
[7]		
[8]		
[9]	Cuckoo Hashing	
[10]		
[11]	Algorithm Engineering	Matrix Searching
[12]	Science	
[13]		and Computer Science
[14]	Department of Computer	Dynamic Programming
[15]	emphasis on	mysteries in science
[16]	String Matching	California State University