Common Core 5th Grade Curriculum

Albert Ye

September 21, 2023

1 Lecture 1

Definition 1

An integer $p \neq 0, 1, -1$ is **prime** if the only integers which divide p are ± 1 and $\pm p$.

Recall that the integers $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}, \mathbb{N} = \{0, 1, 2, 3, \dots\}.$

Theorem 2 (Twin Prime Conjecture)

There are infinitely many $p \in \mathbb{N}$ such that p is prime and p+2 is prime.

Yitang Zhang proved bounded gaps between primes, so there are infinitely many prime p, p + N.

Theorem 3 (Goldbach Conjecture)

Every even number can be written as the sum of two primes.

Vinagradar proved that every odd number can be written as the sum of 3 primes. The proof should use something called sieves.

Proposition 4

There are infinitely many primes.

Proof. Suppose not and p_1, \ldots, p_n are all the primes. Then, let $p_1 \cdots p_n + 1 = N$.

As we will see, every integer admits a unique decomposition into a product of primes.

1.1 Counting Primes

Let $\pi(x): N \to \mathbb{N}$ return the number of primes p such that 0 .

Then, $\pi(x)$ is unbounded: $\lim_{x\to\infty} \pi(x) = \infty$.

Theorem 5 (Prime Number Theorem)

$$\lim \frac{\pi(x)}{x/\log x} = 1.$$

In other words, $\pi(x) \to \frac{x}{\log x}$.

A better approximation is $\text{Li}(x) = \int_2^x \frac{dt}{\log t}$. The error for Li(x) is $|\pi(x) - \text{Li}(x)| = O(\log x \sqrt{x})$.

1.2 Prime Factorization

Theorem 6 (Uniqueness of Prime Factorization)

Every integer $0 \neq n \in \mathbb{Z}$ can be written as

$$n = (-1)^{Z(n)} \prod_{p \text{ prime}} p^{a_p} \qquad a_p \in \mathbb{N},$$

where all but finitely many a_p are zero, $\epsilon(n) = \begin{cases} 0 & n > 0 \\ 1 & n < 0 \end{cases}$.

To prove this, we first look at a lemma:

Lemma 1.2.1

If $a, b \in \mathbb{Z}$ and b > 0, there exist integers q, r such that a = qb + r and $0 \le r < b$.

Proof. Consider the set of integers of the form $\{a - xb | x \in \mathbb{Z}\} = S$. The set S contains infinitely many positive integers, so contains a least positive integer r = a - qb.

Remark 7

This property does not hold for $S \subset \mathbb{Q}$. Consider $S = \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$.

The rest of the proof will follow later.

Definition 8

Let a_1, \ldots, a_n be integers. Denote (a_1, \ldots, a_n) to be the set $\{b_1 a_1 + \cdots + b_n a_n | b_i \in \mathbb{Z}\}$.

2 Lecture 2

2.1 Prime Factorization, cont.

Recall the theorem of uniqueness of prime factorizations. Also recall that a prime number p is an integer $\neq 0$, so that the only divisors of p are ± 1 and $\pm p$.

Definition 9

If $0 \neq a \in \mathbb{Z}$ and $p \in \mathbb{Z}$ is prime, let $\operatorname{ord}_p a$ denote the largest integer n such that $p^n | a$, i.e. $a = p^n b$.

We define $\operatorname{ord}_p 0 = \infty$.

Lemma 2.1.1

If $a, b \in \mathbb{Z}$, then there exists $d \in \mathbb{Z}$ such that (d) = (a, b). Recall Definition ?? for (a_1, a_2, \dots, a_n) .

Proof. Let d be the smallest integer > 0 in (a, b). We claim that (d) = (a, b). As $d \in (a, b)$, we see that $(d) \subseteq (a, b)$. We have to show that $(a, b) \subseteq (d)$.

Take $c \in (a, b)$, then we see from ?? that c = qd + r with $0 \le r < d$. Then $r = c - qd \in (a, b)$. By minimality of d, we see that r = 0, so c = qd implie $c \in (d)$.

Definition 10

If $a, b \in \mathbb{Z}$, then a greatest common divisor d of a, b is an integer which divides a, b such that any other integer c with that property satisfies c|d.

Remark 11

If we insist $d \ge 0$, then it is unique. Because if $c, d \ge 0$ are both gcd(a, b), then c|d and d|c, which implies $c = \pm d$, but because of positivity we must have c = d.

Proposition 12

If $a, b \in \mathbb{Z}$, then the d appearing in ?? s.t. d = (a, b) is a greatest common divisor of a, b.

Proof. If (d) = (a, b), then $a \in (d) = d\mathbb{Z} \implies d|a$. If $c \in \mathbb{Z}$ is any common divisor of a and b, then c divides an + bm for all $m, n \in \mathbb{Z}$. As $d \in (a, b)$, d has this form, so c|d.

Thus, by definition, d must be the greatest common divisor.

Definition 13

We say that $a, b \in \mathbb{Z}$ are **relatively prime** if (a, b) = 1.

In other words, the only nonzero integers that divide a and b are ± 1 .

Lemma 2.1.2

Suppose a|bc, and (a,b) = 1. Then, a|c.

Proof. (a,b)=1 implies 1=an+bm for some n,m. So c=acn+bcm. Notice that the right term contains bc and the left term contains a, so c must be divisible by a.

Corollary 14

If p is prime and p|ab, then p|a or p|b.

Proof. If (p, a) = p, then we're done as p|a.

Suppose instead that (p, a) = 1. From ??, we have p|b.

We take the contrapositive to see that if a prime p doesn't divide a or b, then it doesn't divide ab.

Proposition 15

Fix a prime p. If $a, b \in \mathbb{Z}$, then $\operatorname{ord}_p ab = \operatorname{ord}_p a + \operatorname{ord}_p b$.

Proof. Let $\operatorname{ord}_p a = n$, $\operatorname{ord}_p b = m$. Then, we see that $a = p^n c$, $b = p^m d$ where $p \not | c$, $p \not | d$. So $ab = p^n c \cdot p^m d = p^{n+m}(cd)$. We know that p cannot divide cd from ??, so $\operatorname{ord}_p ab = n + m$.

Now, we can finally prove Theorem ??.

Proof of ??. Fix $n \in \mathbb{Z}$ and suppose that $n = (-1)^{\epsilon(n)} \prod_{p} p^{a_p}$.

Then, fix a prime q. We see that

$$\operatorname{ord}_q n = 0 + \sum_p a_p \operatorname{ord}_q p = a_q.$$

This is because $\operatorname{ord}_q p = \begin{cases} 1 & q = p \\ 0 & q \neq p \end{cases}$. This implies that the only factors that will contribute to $\operatorname{ord}_q n$ are the terms of q, of which there are a_q .

Hence, a_p for each prime p is determined solely by n, so the prime factorization is unique.

3 Lecture 3

Lemma 3.0.1

Every nonconstant irreducible polynomial has a factorization into nonconstant irreducible polynomials.

4 Lecture 4

4.1 Factorization of Polynomials

Recall ?? from last lecture.

Again let $k = \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Definition 16

A nonzero polynomial is called **monic** if the coefficient of its leading term is 1.

Definition 17

If $p(x) \in k[x]$ is nonconstant irreducible, and $0 \neq q(x) \in k[x]$ is any other polynomial. Let $\operatorname{ord}_p q$ be defined as the greatest integer $n \geq 0$ such that $p^n(x)|g(x)$ but $p^{n+1}(x) \not|g(x)$.

Theorem 18

Every nonconstant polynomial g(x) admits a unique factorization of the form $g(x) = c \prod_{p(x)} p(x)^{a_p}$, where $c \in k^x = k \setminus \{0\}$ and the product is over all irreducible, nonconstant, monic polynomials.

Then, $a_p = \operatorname{ord}_p g$, and c is the leading term of g.

We start with the following lemma:

Lemma 4.1.1

If $f(x), g(x) \in k[x]$ are polynomials with $0 \neq g(x)$ then we can find polynomials q(x) and r(x) with either r(x) = 0 or $0 \leq \deg r(x) < \deg g(x)$ s.t. f(x) = q(x)g(x) + r(x).

Proof. If g|f, then g(x)q(x) = f(x) for some q(x), and let r(x) = 0. Suppose otherwise, and $f \neq 0$. Consider the set $f(x) \in \{f(x) - h(x)g(x), h(x) \in k[x]\}$, and let q(x) be such that r(x) = f(x) - q(x)g(x) is of least degree in this set.

It remains to show r = 0 or $\deg r < \deg g$. Suppose otherwise, and that r(x) has leading term ax^d and g(x) has leading term bx^n with $d \ge n$. Let $m9x = \frac{a}{b}x^{d-n}g(x)$. Then m(x) is a polynomial such that $\deg(r(x) - m(x)) < \deg r(x)$.

However, $r(x) - m(x) = f(x) - (q(x) + \frac{a}{b}x^{d-n})g(x)$, so $r(x) - m(x) \in S$. This contradicts the definitions of r(x).

Definition 19

If $f_1(x), \ldots, f_n(x)$ are polynomials, let (f_1, f_2, \ldots, f_n) be defined similarly to integers.

Lemma 4.1.2

Given $f(x), g(x) \in k(x)$, there is a $d(x) \in k[x]$ s.t. (f, g) = (d).

Proof. Let d(x) be a polynomial of least degree in (f,g). We have $(d) \subset (f,g)$. Let $c(x) \in (f,g)$. Then, if d|c, we're done. If not, then there exists q(x), r(x) s.t. c(x) = q(x)d(x) + r(x), with $\deg r(x) < \deg d(x)$. Then $r(x) = c(x) - q(x)d(x) \in (f,g)$, which is a contradiction as $\deg r < \deg d$.

5 Lecture 5

Continue proving ??.

Definition 20

We say $f(x), g(x) \in k[x]$ are **relatively prime** if (f, g) = 1.

Definition 21

A greatest common divisor, or gcd of f and $g \in k[x]$ is a polynomial d(x) which divides f and g and has the property that if $c(x) \in k[x]$ divides f and g then c|d. (Ambiguous up to a scalar.)

Lemma 5.0.1

If f and g are relatively prime and f|gh, then f|h.

Proof. If (f,g) = 1 then 1 = a(x)f(x) + b(x)g(x). So h(x) = a(x)f(x)h(x) + b(x)g(x)h(x) = f(x)(a(x)h(x) + b(x)j(x)) for some other polynomial j(x). Then, f(x)|h(x).

If d(x) = (f(x), g(x)) and $x \in k^x$ then αd is also a gcd o f and g; $(\alpha d) = (d)$.

Now, recall that a nonconstant polynomial f(x) is **irreducible** if its only divisors are of the form αf or α ($\alpha \in k^*$); i.e. if any polynomial divides f, it's either a scalar or a scalar multiple of f.

Lemma 5.0.2

If p(x) is irreducible and p|fg, then p|f or p|g.

Proof. (p, f) = (1) or $(p) = (\alpha p)$ for all $x \in k^*$. If (p, f) = (p), then p|f. Otherwise, (p, f) = (1), so from Lemma ?? we have p|g.

Definition 22 (Order in Polynomial Terms)

If p is a nonconstant polynomial and $g \neq f \in k[x]$ then $\operatorname{ord}_p f$ is the largest $a \in \mathbb{Z}_{>0}$ such that $p^a|f$.

Lemma 5.0.3

If $p(x) \in k[x]$ is irreducible and $a, b \in k[x]$, then $\operatorname{ord}_p(ab) = \operatorname{ord}_p(a) + \operatorname{ord}_p(b)$.

Finally, we can prove ??.

Proof. Weite $0 \neq f(x) = c \prod_p p(x)^{a_p}$. For every monic irreducible polynomial q, $\operatorname{ord}_q f = \sum_f a_p \operatorname{ord}_q p$, and we see that $\operatorname{ord}_q p = \begin{cases} 1 & q = p \\ 0 & q \neq p \end{cases}$. This must be a_q .

The scalar c is the leading coefficient of f, so every polynomial factorization uniquely determines one polynomial.

6 Lecture 6

Proposition 23

If $k = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (any field) then k[x] contains infinitely many irreducible polynomials.

Proof. Suppose not, and $p_1(x), \ldots, p_n(x)$ exhaust the irreducible polynomials. Thus $q(x) = 1 + p_1(x)p_2(x)\cdots p_n(x)$ is a polynomial not divisible by the $p_i(x)$, but it must factor into a product of the $p_i(x)$, a contradiction.

Lemma 6.0.1

Every integer $n \neq 0$ can be written as $n = ab^2$ where a is squarefree.

Definition 24

An integer $n \neq 0$ is squarefree if it isn't divisible by the square of any prime.

Proof. If |n| = 1 then it's squarefree. If |n| > 1 then $n = (-1)^{\epsilon(n)} p_1^{2a_1 + b_1} \cdots p_m^{2a_m + b_m}$, where b_i is either 0 or 1 for all i. Then, in turn,

$$n = [p_1^{2a_1} \cdots p_m^{2a_m}][(-1)^{\epsilon(n)} p_1^{b_1} \cdots p_m^{b_m}].$$

We see that the first term is b^2 and the second term is a squarefree a.

Definition 25

 $\nu(n)$ =number of positive divisors

 $\sigma(n) = \text{sum of positive divisors}$

Proposition 26

Let $n \in \mathbb{Z}_{>1}$ have a prime factorization $n = p_1^{a_1} \cdots p_m^{a_m}$. Then,

- $\nu(n) = (a_1 + 1)(a_2 + 1) \cdots (a_n + 1)$
- $\sigma(n) = \left(\sum_{i=0}^{a_1} p_1^i\right) \cdots \left(\sum_{i=0}^{a_n} p_n^i\right).$

Recall that $\sum_{n=a}^{b} x^n = \frac{x^{b+1} - x^a}{x-1}$, so $\sigma(n) = \left(\frac{p_1^{a_1+1} - 1}{p_1 - 1}\right) \cdots \left(\frac{p_n^{a_n+1} - 1}{p_n - 1}\right)$.

Definition 27

An integer > 0 is **perfect** if $\sigma(n) = 2n$.

Euler claimed that every even perfect number can be written as $2^m(2^{m+1}-1)$, where $2^{m+1}-1$ is a Mersenne prime.

6.1 Mobius Function

Definition 28 (Mobius Mu Function)

The Mobius $\mu: \mathbb{Z}_{>0} \to \{0, \pm 1\}$ returns $\mu(n) = 0$ if n is not squarefree, $\mu(1) = 1$, and if n > 1, $n = p_1, \dots, p_m$, then $\mu(n) = (-1)^m$.

Proposition 29

If n > 1 then $\sum_{d|n} \mu(d) = 0$.

Proof. $n = p_1^{a_1} \cdots p_m^{a_m}$. Notice that for any $a_i > 1$, we can ignore and take mod 2 because non-squarefree implies a Mobius of 0.

Therefore,
$$\sum_{d|n} \mu(d) = \sum \mu(p_1^{\epsilon_1} \cdots p_m^{\epsilon_m}) = (1-1)^m = 0.$$

6.2 Dirichlet Convolution

Definition 30

If f, g are two functions $\mathbb{Z}_{>0} \to \mathbb{C}$, then the Dirichlet convolution of f and g is defined to be $(f \cdot g)(n) = \sum_{d \mid n} f(d)g(\frac{n}{d})$.

Remark 31

Dirichlet convolution is associative; given $f, g, h : \mathbb{Z}_{>0} \to \mathbb{C}$, then $((f \cdot g) \cdot h)(n) = (f \cdot (g \cdot h))(n) = \sum f(d_1)g(d_2)h(d_3)$,

Definition 32

Let
$$1(n) = \begin{cases} 1 & n = 1 \\ 0 & n > 1 \end{cases}$$
. Then, $(f * 1)(N) = \sum_{d|n} f(d)$.

Theorem 33 (Mobius Inversion)

If $f: \mathbb{Z}_{>0} \to \mathbb{C}$ and $F(n) = \sum_{d|n} f(d)$, then $\sum_{d|n} F(d) \mu\left(\frac{n}{d}\right) = f(n)$, or as we simplify it, $\mu \times F = f$.

7 Lecture 7

7.1 Prime Counting

Definition 34 (Euler Totient)

We define $\phi: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. $\phi(n)$ is the number of integers in [1,n] relatively prime to n.

$$\phi(1) = 1, \ \phi(p) = p - 1 \ \text{for prime } p.$$

Proposition 35

$$(\phi \cdot)(n) = \sum_{d|n} \phi(d) = n.$$

Proof. Consider the set $\left\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right\}$. Write these fractions in lowest terms.

For each d|n, we wish to count the functions above with d in lowest terms. These fractions will be a subset of the fractions $\frac{a}{n}$ where $\frac{n}{d}|a$, i.e. a subset of the fractions $\left\{\frac{1}{d},\frac{2}{d},\ldots,\frac{d}{d}\right\}$. There are $\phi(d)$ many fractions on this list with d in the domain, when written in lowest terms.

So if $J_d \subset \left\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right\}$ corresponds to the fractions of denominator d in lowest terms, then $S = \bigcup_{d|n} J_d$, and $n = |S| = \sum_{d|n} |J_d| = \sum_{d|n} \phi(d)$.

From Mobius inversion, we have $\phi = (\phi \cdot 1) \cdot \mu$. We know that $(\phi \cdot 1) = id$ where id(n) = n, so we have $\mu \cdot id = \sum_{d|n} \mu(d) \frac{n}{d}$. Now, let $n = p_1^{a_1} \cdots p_m^{a_m}$. Then,

$$\mu \cdot id = n - \sum_{i} \frac{n}{p_i} + \sum_{i < j} \frac{n}{p_i p_j} - \sum_{i < j < k} \frac{n}{p_i p_j p_k} \cdots \text{ (by definition of Mobius inversion)}$$
$$= n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_m} \right) = \phi(n).$$

Theorem 36

 $\sum_{p \text{ prime } \frac{1}{p}}$ diverges.

Also consider $\pi(x) = \frac{x}{\log x} (1 + \left(\frac{1}{\log x}\right).$

Proof. Of $n \in \mathbb{Z}_{>0}$, let $p_1, \ldots, p_{\pi(n)}$ be the primes $\leq n$ and let

$$\lambda(n) = \prod_{i=1}^{\pi(n)} \left(1 - \frac{1}{p_i}\right)^{-1}.$$

Notice that each inner value for the product term is $\sum_{a=0}^{\infty} \left(\frac{1}{p_i}\right)^a$.

Then, $\lambda(n) = \sum \frac{1}{p_1^{a_1} \cdots p_{\pi(n)}^a}$, where the sum is over all $\pi(n)$ -tuples $(a_1, \dots, a_{\pi(n)}) \in \mathbb{Z}_{\geq 0}^{\pi(n)}$. Then, we have

$$\log \lambda(n) = -\sum_{i=1}^{\pi(n)} \log(1 - p_i)^{-1} = \sum_{i=1}^{\pi(n)} \sum_{m=1}^{\infty} (mp_i^m)^{-1}.$$

If we can prove that $\log \lambda(n)$ converges, then we see that $\lambda(n)$ is divergent and we are done.

I'll pick this up later.

Somehow we're done. Easy.

8 Lecture 8

We go back to ??. Because of a fire alarm, there wasn't anything else covered.

9 Lecture 9

9.1 Estimates for Prime Counting Function

Last time, we proved that $\sum_{p} \frac{1}{p}$ for prime p diverges.

We go back to ??, the Prime Number Theorem.

Theorem (Prime Number Theorem)

$$\pi(x) = \frac{x}{\log x} \left(1 + O\left(\frac{1}{\log x}\right) \right).$$

Theorem 37

$$\sum_{p \text{ prime}, p \le n} \frac{1}{p} = \log \log n + C.$$

Proof. Sketch: We turn p into a function of $\pi(x)$, and then use $\pi(n)$

We let $\theta(x) = \sum_{p \le x, p \text{ prime}} \log p$.

10 Lecture 10

10.1 Estimates for Prime Counting Function

Lemma 10.1.1

$$\theta(x) = \sum_{p \leq x, p \text{ prime}} \log p < (4 \log 2) x.$$

Proposition 38

There exists a constant $C_2 \in \mathbb{R}_{>0}$ such that $\pi(x) < \frac{c_2 x}{\log x}$.

Proof.

$$\begin{split} \theta(x) &= \sum_{p \leq x, p \text{ prime}} \log p \\ &> \sum_{p \geq \sqrt{x}, p \text{ prime}}^{p \leq x} \log p \\ &\geq \log \sqrt{x} (\pi(x) - \pi(\sqrt{x})) \\ &= \log \sqrt{x} \pi(x) - \sqrt{x} \log \sqrt{x}. \\ \pi(x) &\leq \frac{2\theta(x)}{\log x} + \sqrt{x} \\ &< (8 \log 2) \frac{x}{\log x} + \sqrt{x} \\ &< (2 + 8 \log 2) \frac{x}{\log x} < \frac{2x}{\log x}. \end{split}$$

Therefore, we see that $c_2 \geq 2$ works.

Proposition 39

There exists a constant $c_1 \in \mathbb{R} \geq 0$ such that $\frac{c_1 x}{\log x} < \pi(x)$.

Proof.
$$\theta(x) \sim {2n \choose n} = {n+1 \choose 1} {n+2 \choose 2} \cdots {2n \choose n} \ge 2^n$$
.

Let $t_p = \lfloor \frac{\log 2n}{\log p} \rfloor = \log_p 2n$. We also see that $n \log 2 \leq \sum_{p \leq n, p \text{ prime}} t_p \log p = \sum_{p \leq n, p \text{ prime}} \lfloor \frac{\log 2n}{\log p} \rfloor \log p = K$.

If $\log p > \frac{1}{2}\log(2n)$, then $\frac{\log 2n}{\log p} < 2$ and its floor is 1.

Then,
$$K = \sum_{p \text{ prime}, p \leq \sqrt{2n}} \lfloor \frac{\log 2n}{\log p} \rfloor \log p + \sum_{p \text{ prime}, 2n > p > \sqrt{2n}} \log p \leq \theta(2n)$$
.

Putting in $n \log 2 \le K$, we have $n \log 2 \le \sqrt{2n} \log 2n + \theta(2n)$, so $\theta(2n) \ge n \log 2 - \sqrt{2n} \log 2n$.

Next time, we'll show that this estimate for θ implies a lower bound for $\pi(x)$.

11 Lecture 11

11.1 Announcements

Brief summary of topics covered:

1.1, 1.2, entirety of Chapter 2, 3.1, 3.2. The hardest parts are also not easy to test, and should not be memorized. Because that would be absolutely fucking evil.

11.2 Estimates for Prime Counting Function

Last time, we were trying to prove:

Theorem 40

$$\pi(x) < \frac{c_2}{\log x},$$

for some constant $c_2 \in \mathbb{R}$.

11.3 Congruence

We define $a \equiv b \pmod{n}$ to mean that n|(a-b).

Definition 41

The relation of congruence defines an equivalence relation aRb. An equivalence relation is a relation which is revlexive, symmetric, and transitive.

- $\bullet \ a \equiv a$
- $a \equiv b \implies b \equiv a$
- $a \equiv b, b \equiv c \implies a \equiv c$.

Given a set S and an equivalence relation R, on S we can form the set $[x] = \{y \in S | yRx\}$.

In our case, $a \in \mathbb{Z} \implies \overline{a} := [a] = \{b \in \mathbb{Z} | a \equiv b \pmod{n}\}.$

Definition 42

If $a \in \mathbb{Z}$, $\overline{a} = \{a + nb | b \in \mathbb{Z}\}$ is called the **congruence class** of a for the modulus n.

Proposition 43

The equivalence classes for R on S partition S.

That is, every $x \in S$ is in some equivalence class $(x \in [k])$, and given $x, y \in S$, either [x] = [y] or $[x] \cap [y] = \emptyset$.

Proof. If $z \in [x] \cap [y]$, xRz and zRy so xRy, so any $w \in S$ has the property that $wRx = wRy \implies [x] = [y]$.

For congruence, this boils down to the fact that

- $\overline{a} = \overline{b} \iff a \equiv b \pmod{n}$.
- $\overline{a} \neq b \iff \overline{a} \cap \overline{b} = \emptyset$
- There are precisely n congreunce classes modulo n.

12 Lecture **12**

12.1 Equivalence Classes, Continued

The set of equivalence classes modulo n is defined as $\mathbb{Z}/n\mathbb{Z}$.

Lemma 12.1.1

The set $\mathbb{Z}/n\mathbb{Z}$ admits addition and multiplication by the formulas:

- $\bullet \ \overline{a} + \overline{b} = \overline{a+b}.$
- $\bullet \ \overline{a} \cdot \overline{b} = \overline{ab}.$

Proof. To check that + and \cdot are defined in this way are well-defined, we must show that we'd get the same thing when changing the representatives, i.e., replacing \bar{a} by a + kn for $k \in \mathbb{Z}$.

$$\overline{a+kn+b+jn} = \overline{a+b} \implies a+kn+b+jn \equiv a+b \pmod{n},$$

which is true after removing all obvious multiples of n. The proof for \overline{ab} is too long to fit in the margins, but it works similarly.

An application of this is finding which polynomials in $\mathbb{Z}[x]$ have no integer solutions.

Remark 44

If $a \equiv b \pmod{n}$, then $a^m \equiv b^m \pmod{n}$.

Let $p(x) = c_m x^m + \cdots + c_1 x + c_0$ for integer c_i . If $a \equiv b \pmod{n}$, we further see that $p(\overline{a}) := \overline{p(a)}$ must equal $p(\overline{b})$. Therefore, $c_m a^m \equiv c_m b^m \pmod{n}$, so $\overline{c_m} a^m = \overline{c_m} b^m$.

Now, we suppose n=2. Then, $p(0)=c_0$, $p(1)=c_n+c_{n-1}+\cdots+c_0$. If p(x) has a solution in the integers, then it must have a solution mod 2 ($p(k)=0 \implies p(\overline{k})\overline{0}$. So, any $p(x) \in k[x]$ with integer solutions must have $p(\overline{0})=\overline{0}$ or $p(\overline{1})=\overline{1}$.

Proposition 45

Any p(x) with c_0 odd and $\sum_{i=0}^{n} c_i$ odd has no integer solutions.

Now, for the general criterion modulo n:

Theorem 46

If $c_0 \not\equiv 0 \pmod{n}$, and $\sum_{i=0}^m k^i c_i \not\equiv 0 \pmod{n}$ for all 0 < k < n, then p(x) has no integer solutions.