Teoria de Modelos e Aplicações

Caio Lopes, Henrique Lecco

ICMC - USP

30 de julho de 2020

Os objetivos da aula de hoje são:

Os objetivos da aula de hoje são:

 Definir eliminação de quantificadores e provar uma caracterização

Os objetivos da aula de hoje são:

- Definir eliminação de quantificadores e provar uma caracterização
- Definir RCF e provar que essa teoria elimina quantificadores;

Objetivos o

Os objetivos da aula de hoje são:

- Definir eliminação de quantificadores e provar uma caracterização
- Definir RCF e provar que essa teoria elimina quantificadores;
- Enunciar e demonstrar o 17° problema de Hilbert.

Os objetivos da aula de hoje são:

- Definir eliminação de quantificadores e provar uma caracterização
- Definir RCF e provar que essa teoria elimina quantificadores;
- Enunciar e demonstrar o 17° problema de Hilbert.

Observação: As referências para as demonstrações dos fatos algébrico que iremos assumir podem ser encontradas na bibliografia do curso, que está listada no github. Também recomendamos o livro Model Theory of Fields, do David Marker.

Definições:

① Uma teoria T é consistente se não existe uma fórmula ϕ tal que $T \models \phi$ e $T \models \neg \phi$;

Definições:

- Uma teoria T é consistente se não existe uma fórmula ϕ tal que $T \models \phi$ e $T \models \neg \phi$;
- ② Uma fórmula é atômica se é do tipo $t_1 = t_2$ ou $\mathbf{r}(t_1, ..., t_n)$;

Resultados

Se uma teoria é consistente, então ela admite um modelo;

Resultados

- Se uma teoria é consistente, então ela admite um modelo;
- Compacidade Uma teoria admite modelo se, e somente se, todas as suas coleções finitas de sentenças admitem modelo.

Eliminação de quantificadores

Definição: Uma teoria T admite eliminação de quantificadores se para toda fórmula $\phi(v, x_1, ..., x_m)$, existe uma fórmula $\psi(v, x_1, ..., x_m)$ livre de quantificadores de forma que

$$T \models \forall v [\phi(v, x_1, ..., x_m) \leftrightarrow \psi(v, x_1, ..., x_m)]$$

Teorema de caracterização

Teorema(Teste do João): Seja L uma linguagem contendo ao menos um símbolo de constante. Sejam T uma L-teoria e $\phi(x_1,...,x_m)$ uma L-fórmula. São equivalentes:

Teorema de caracterização

Teorema(Teste do João): Seja L uma linguagem contendo ao menos um símbolo de constante. Sejam T uma L-teoria e $\phi(x_1,...,x_m)$ uma L-fórmula. São equivalentes:

• Existe uma fórmula $\psi(x_1,...,x_m)$ livre de quantificadores tal que $T \models \forall \overline{x}(\phi(\overline{x}) \leftrightarrow \psi(\overline{x}))$

Teorema de caracterização

Teorema(Teste do João): Seja L uma linguagem contendo ao menos um símbolo de constante. Sejam T uma L-teoria e $\phi(x_1,...,x_m)$ uma L-fórmula. São equivalentes:

- **9** Existe uma fórmula $\psi(x_1,...,x_m)$ livre de quantificadores tal que $T \models \forall \overline{x}(\phi(\overline{x}) \leftrightarrow \psi(\overline{x}))$
- ② Se M e N são modelos tais que $M, N \models T$ e C é um modelo de forma que $C \subset M$ e $C \subset N$, então $M \models \phi(\overline{a})$ se, e somente se, $N \models \phi(\overline{a})$ para todo $\overline{a} \in C$

$$1) \Rightarrow 2)$$
:

$$M \models \phi(\overline{a})$$

$$M \models \phi(\overline{a})$$

$$\Leftrightarrow M \models \psi(\overline{a}) \text{ pois } M \models \forall \overline{v}(\phi(\overline{v}) \leftrightarrow \psi(\overline{v}))$$

1)
$$\Rightarrow$$
 2) : Seja $\overline{a} \in C$. Temos que:

$$M \models \phi(\overline{a})$$

$$\Leftrightarrow M \models \psi(\overline{a}) \text{ pois } M \models \forall \overline{v}(\phi(\overline{v}) \leftrightarrow \psi(\overline{v}))$$

$$\Leftrightarrow C \models \psi(\overline{a}) \text{ pois } C \subset M \text{ e } \psi(\overline{x}) \text{ \'e livre de quantificadores}$$

$$M \models \phi(\overline{a})$$

- $\Leftrightarrow M \models \psi(\overline{a}) \text{ pois } M \models \forall \overline{v}(\phi(\overline{v}) \leftrightarrow \psi(\overline{v}))$
- $\Leftrightarrow C \models \psi(\overline{a})$ pois $C \subset M$ e $\psi(\overline{x})$ é livre de quantificadores
- \Leftrightarrow $N \models \psi(\overline{a})$ pois $C \subset N$ e $\psi(\overline{x})$ é livre de quantificadores

$$M \models \phi(\overline{a})$$

- $\Leftrightarrow M \models \psi(\overline{a}) \text{ pois } M \models \forall \overline{v}(\phi(\overline{v}) \leftrightarrow \psi(\overline{v}))$
- $\Leftrightarrow C \models \psi(\overline{a})$ pois $C \subset M$ e $\psi(\overline{x})$ é livre de quantificadores
- \Leftrightarrow $N \models \psi(\overline{a})$ pois $C \subset N$ e $\psi(\overline{x})$ é livre de quantificadores

 $2) \Rightarrow 1)$:

$$2) \Rightarrow 1)$$
:

Seja $\phi(\overline{x})$ uma L-fórmula. Primeiro, suponha que $\phi(\overline{x})$ não é consistente com T. Então $T \models \forall \overline{v} \neg \phi(\overline{x})$, então se c é um símbolo de constante da linguagem, segue que $T \models \forall \overline{v} [\phi(\overline{v}) \leftrightarrow c \neq c]$. Ou seja, ϕ é equivalente a uma fórmula sem quantificadores $(c \neq c)$.

$$2) \Rightarrow 1)$$
:

Seja $\phi(\overline{x})$ uma L-fórmula. Primeiro, suponha que $\phi(\overline{x})$ não é consistente com T. Então $T \models \forall \overline{v} \neg \phi(\overline{x})$, então se c é um símbolo de constante da linguagem, segue que $T \models \forall \overline{v} [\phi(\overline{v}) \leftrightarrow c \neq c]$. Ou seja, ϕ é equivalente a uma fórmula sem quantificadores $(c \neq c)$. Analogamente, se $\neg \phi(\overline{x})$ não é consistente com T, temos que $T \models \forall \overline{v} [\phi(\overline{v}) \leftrightarrow c = c]$.

$$2) \Rightarrow 1)$$
:

Seja $\phi(\overline{x})$ uma L-fórmula. Primeiro, suponha que $\phi(\overline{x})$ não é consistente com T. Então $T \models \forall \overline{v} \neg \phi(\overline{x})$, então se c é um símbolo de constante da linguagem, segue que $T \models \forall \overline{v} [\phi(\overline{v}) \leftrightarrow c \neq c]$. Ou seja, ϕ é equivalente a uma fórmula sem quantificadores $(c \neq c)$. Analogamente, se $\neg \phi(\overline{x})$ não é consistente com T, temos que $T \models \forall \overline{v} [\phi(\overline{v}) \leftrightarrow c = c]$.

Assim, vamos nos concentrar nos casos em que $\phi(\overline{x})$ e $\neg \phi(\overline{x})$ são consistentes com T.

Defina

$$\Gamma := \{ \psi(\overline{x}) : \psi(\overline{x}) \text{ \'e livre de quantificadores e } T \vdash \forall \overline{x} (\phi(\overline{x}) \to \psi(\overline{x})) \},$$

isto é, o conjunto de fórmulas livres de quantificadores que são consequência de $\phi(\overline{x})$.

Prova: Suponha que não. Então $T \cup \Gamma(\overline{d}) \cup \{\neg \phi(\overline{d})\}$ é consistente pois $T \cup \Gamma(\overline{d})$ é consistente e estamos assumindo $\neg \phi$ consistente. Portanto existe um modelo M tal que

$$M \models T \cup \Gamma(\overline{d}) \cup \{\neg \phi(\overline{d})\}.$$

Prova: Suponha que não. Então $T \cup \Gamma(\overline{d}) \cup \{\neg \phi(\overline{d})\}$ é consistente pois $T \cup \Gamma(\overline{d})$ é consistente e estamos assumindo $\neg \phi$ consistente. Portanto existe um modelo M tal que

$$M \models T \cup \Gamma(\overline{d}) \cup \{\neg \phi(\overline{d})\}.$$

Seja C o submodelo de M gerado por \overline{d} , isto é, o menor submodelo de M que contém \overline{d} em seu universo, é fechado pelas funções da linguagem e contém as constantes da linguagem, ou ainda, C é o conjunto de termos da linguagem com parâmetros \overline{d} .

Prova: Suponha que não. Então $T \cup \Gamma(\overline{d}) \cup \{\neg \phi(\overline{d})\}$ é consistente pois $T \cup \Gamma(\overline{d})$ é consistente e estamos assumindo $\neg \phi$ consistente. Portanto existe um modelo M tal que

$$M \models T \cup \Gamma(\overline{d}) \cup \{\neg \phi(\overline{d})\}.$$

Seja C o submodelo de M gerado por \overline{d} , isto é, o menor submodelo de M que contém \overline{d} em seu universo, é fechado pelas funções da linguagem e contém as constantes da linguagem, ou ainda, C é o conjunto de termos da linguagem com parâmetros \overline{d} .

Como $C \subset M$, $M \models \Gamma(\overline{d})$ e todas as fórmulas de $\Gamma(\overline{d})$ são livres de quantificadores, então $C \models \Gamma(\overline{d})$.

Defina $L_{\overline{d}}$ a linguagem L acrescentada de uma constante para cada entrada de \overline{d} .

Defina $L_{\overline{d}}$ a linguagem L acrescentada de uma constante para cada entrada de \overline{d} .

Agora tome Diag(C) o conjunto das fórmulas atômicas ou negação de atômicas (com parâmetros em C) que são verdade em C com a linguagem $L_{\overline{d}}$.

Defina $L_{\overline{d}}$ a linguagem L acrescentada de uma constante para cada entrada de \overline{d} .

Agora tome Diag(C) o conjunto das fórmulas atômicas ou negação de atômicas (com parâmetros em C) que são verdade em C com a linguagem $L_{\overline{d}}$.

Seja
$$\Sigma = T \cup Diag(C) \cup \{\phi(\overline{d})\}.$$

Afirmação: Σ é consistente.

Afirmação: Σ é consistente.

Prova: Suponha que Σ não é consistente. Então $T \cup Diag(C) \models \neg \phi(\overline{d})$ pois admite modelo.

Afirmação: Σ é consistente.

Prova: Suponha que Σ não é consistente. Então $T \cup Diag(C) \models \neg \phi(\overline{d})$ pois admite modelo.

Por compacidade, existem $\psi_1(\overline{d}),...,\psi_n(\overline{d})\in \mathit{Diag}(C)$ tais que

$$T \models \forall \overline{v} \left(\left(\bigwedge_{i=1}^{n} \psi_{i}(\overline{v}) \right) \rightarrow \neg \phi(\overline{v}) \right),$$

Afirmação: Σ é consistente.

Prova: Suponha que Σ não é consistente. Então $T \cup Diag(C) \models \neg \phi(\overline{d})$ pois admite modelo.

Por compacidade, existem $\psi_1(\overline{d}),...,\psi_n(\overline{d}) \in Diag(C)$ tais que

$$T \models \forall \overline{v} \left(\left(\bigwedge_{i=1}^{n} \psi_{i}(\overline{v}) \right) \rightarrow \neg \phi(\overline{v}) \right),$$

que é equivalente a

$$T \models \forall \overline{v} \left(\phi(\overline{v}) \to \left(\bigvee_{i=1}^{n} \neg \psi_{i}(\overline{v}) \right) \right)$$

Para cada $1 \le i \le n$, $\psi_i(\overline{\nu})$ é atômica ou negação de atômica, o que significa que $\psi_i(\overline{\nu})$ é livre de quantificadores, então $\bigvee_{i=1}^n \neg \psi_i(\overline{\nu}) \in \Gamma$.

Para cada $1 \le i \le n$, $\psi_i(\overline{v})$ é atômica ou negação de atômica, o que significa que $\psi_i(\overline{v})$ é livre de quantificadores, então $\bigvee_{i=1}^n \neg \psi_i(\overline{v}) \in \Gamma$.

Portanto, $C \models \bigvee_{i=1}^{n} \neg \psi_{i}(\overline{d})$ (pois $C \models \Gamma(\overline{d})$), logo, para ao menos um $1 \leq i \leq n$, temos que $C \models \neg \psi_{i}(\overline{d})$, mas $\psi_{i}(\overline{d}) \in Diag(C)$, portanto $C \models \psi_{i}(\overline{d})$, contradição.

Voltemos a demonstração da afirmação. Temos que Σ é consistente. Seja N um modelo tal que $N \models \Sigma$. Como $\phi(\overline{d}) \in \Sigma$, segue que $N \models \phi(\overline{d})$. Como $Diag(C) \subset \Sigma$, toda fórmula livre de quantificadores com parâmetros em C e que é verdade em C é verdade em C, portanto $C \subset N$.

Voltemos a demonstração da afirmação. Temos que Σ é consistente. Seja N um modelo tal que $N \models \Sigma$. Como $\phi(\overline{d}) \in \Sigma$, segue que $N \models \phi(\overline{d})$. Como $Diag(C) \subset \Sigma$, toda fórmula livre de quantificadores com parâmetros em C e que é verdade em C é verdade em C0.

Temos, por hipótese, que se $M \models \neg \phi(\overline{d}), \overline{d} \in C, C \subset M$ e $C \subset N$, então $N \models \neg \phi(\overline{d})$, absurdo pois $N \models \phi(\overline{d})$ e é consistente.

Voltemos a demonstração da afirmação. Temos que Σ é consistente. Seja N um modelo tal que $N \models \Sigma$. Como $\phi(\overline{d}) \in \Sigma$, segue que $N \models \phi(\overline{d})$. Como $Diag(C) \subset \Sigma$, toda fórmula livre de quantificadores com parâmetros em C e que é verdade em C é verdade em C, portanto $C \subset N$.

Temos, por hipótese, que se $M \models \neg \phi(\overline{d})$, $\overline{d} \in C$, $C \subset M$ e $C \subset N$, então $N \models \neg \phi(\overline{d})$, absurdo pois $N \models \phi(\overline{d})$ e é consistente.

Isso conclui a demonstração da afirmação. Voltemos a demonstração do Teorema.

Então temos que $T \cup \Gamma(\overline{d}) \models \phi(\overline{d})$. Por compacidade, existem $\psi_1, ..., \psi_n \in \Gamma$ de forma que $T \models \forall \overline{v}(\bigwedge_{i=1}^n \psi_i(\overline{v}) \to \phi(\overline{v}))$.

Então temos que $T \cup \Gamma(\overline{d}) \models \phi(\overline{d})$. Por compacidade, existem $\psi_1, ..., \psi_n \in \Gamma$ de forma que $T \models \forall \overline{v}(\bigwedge_{i=1}^n \psi_i(\overline{v}) \to \phi(\overline{v}))$.

Logo, $T \models \forall \overline{v}(\bigwedge_{i=1}^n \psi_i(\overline{v}) \leftrightarrow \phi(\overline{v}))$ e $\bigwedge_{i=1}^n \psi_i(\overline{v})$ é livre de quantificadores. \square

O conceito de corpo real fechado é a generalização dos números reais.

O conceito de corpo real fechado é a generalização dos números reais.

Definição:

O conceito de corpo real fechado é a generalização dos números reais.

Definição:

① Um corpo F é formalmente real se -1 $n\tilde{a}o$ é a soma de quadrados.

O conceito de corpo real fechado é a generalização dos números reais.

Definição:

- Um corpo F é formalmente real se −1 não é a soma de quadrados.
- Um corpo é real fechado se é formalmente real e não pode ser estendido por um corpo formalmente real.

A teoria de corpos reais fechados é denotada por *RCF* (Real Closed Fields).

A teoria de corpos reais fechados é denotada por *RCF* (Real Closed Fields).

Voltemos, mais uma vez, à linguagem de anéis $L_{ring} = \{0, 1, +, \cdot\}$. Mas dessa vez, iremos adicionar um símbolo de relação que representará uma ordem: $L_{oring} = L_{ring} \cup \{<\}$.

Teorema de Artin-Schreier

Teorema: Seja *F* um corpo formalmente real. São equivalentes:

Teorema de Artin-Schreier

Teorema: Seja F um corpo formalmente real. São equivalentes:

F é fechado real;

Teorema de Artin-Schreier

Teorema: Seja *F* um corpo formalmente real. São equivalentes:

- F é fechado real;
- ② Para todo $a \in F$, existe b tal que $b^2 = a$ ou $b^2 = -a$. Além disso, todo polinômio de grau ímpar tem raiz.

A definição da teoria *RCF* é corolário do teorema anterior. Ela é dada por:

Axiomas de corpo;

A definição da teoria *RCF* é corolário do teorema anterior. Ela é dada por:

- Axiomas de corpo;
- Sentenças garantindo que -1 não é a soma de quadrados, isto é, para cada $n \in \mathbb{N}$

$$(\forall x_1, ..., x_n)x_1^2 + ... + x_n^2 + 1 \neq 0$$

A definição da teoria *RCF* é corolário do teorema anterior. Ela é dada por:

- Axiomas de corpo;
- Sentenças garantindo que -1 não é a soma de quadrados, isto é, para cada $n\in\mathbb{N}$

$$(\forall x_1,...,x_n)x_1^2+...+x_n^2+1\neq 0$$

 Uma sentença garantindo que todo elemento ou seu negativo é um quadrado, isto é,

$$(\forall x \exists y)[y^2 = x] \lor [y^2 + x = 0]$$

A definição da teoria *RCF* é corolário do teorema anterior. Ela é dada por:

- Axiomas de corpo;
- Sentenças garantindo que -1 não é a soma de quadrados, isto é, para cada $n\in\mathbb{N}$

$$(\forall x_1,...,x_n)x_1^2+...+x_n^2+1\neq 0$$

 Uma sentença garantindo que todo elemento ou seu negativo é um quadrado, isto é,

$$(\forall x \exists y)[y^2 = x] \lor [y^2 + x = 0]$$

• Sentenças garantindo que todo polinômio de grau ímpar tem raiz, isto é, para cada $n \in \mathbb{N}$

 $(\forall x_0, ..., x_{2n+1} \exists y) x_{2n+1} y^{2n+1} + ... + x \exists y + x_0 = 0$

Caio Lopes, Henrique Lecco (ICMC - USP)

A definição da teoria *RCF* é corolário do teorema anterior. Ela é dada por:

- Axiomas de corpo;
- Sentenças garantindo que -1 não é a soma de quadrados, isto é, para cada $n\in\mathbb{N}$

$$(\forall x_1,...,x_n)x_1^2+...+x_n^2+1\neq 0$$

 Uma sentença garantindo que todo elemento ou seu negativo é um quadrado, isto é,

$$(\forall x \exists y)[y^2 = x] \lor [y^2 + x = 0]$$

• Sentenças garantindo que todo polinômio de grau ímpar tem raiz, isto é, para cada $n \in \mathbb{N}$

 $(\forall x_0, ..., x_{2n+1} \exists y) x_{2n+1} y^{2n+1} + ... + x \exists y + x_0 = 0$

Caio Lopes, Henrique Lecco (ICMC - USP)

Temos o necessário para provar que RCF elimina quantificadores.

RCE

Temos o necessário para provar que *RCF* elimina quantificadores.

Teorema: *RCF* admite eliminação de quantificadores.

Temos o necessário para provar que *RCF* elimina quantificadores.

Teorema: *RCF* admite eliminação de quantificadores.

Prova:

Temos o necessário para provar que RCF elimina quantificadores.

Teorema: *RCF* admite eliminação de quantificadores.

Prova:

Sejam F_1, F_2 modelos de RCF e $K \subset F_1, F_2$. Seja K' o corpo de frações de K.

Temos o necessário para provar que RCF elimina quantificadores.

Teorema: *RCF* admite eliminação de quantificadores.

Prova:

Sejam F_1, F_2 modelos de RCF e $K \subset F_1, F_2$. Seja K' o corpo de frações de K.

Precisaremos de outro teorema, também provado por Artin e Schreier: Todo corpo ordenado tem um único fecho algébrico real (a menos de isomorfismo). Seja R o fecho algébrico de K', que é único e portanto $R \subset F_1, F_2$. Sejam $\phi(v, \overline{w})$ uma fórmula livre de quantificadores, $\overline{a} \in K$ e $b \in F_1$. Seja R o fecho algébrico de K', que é único e portanto $R \subset F_1, F_2$. Sejam $\phi(v, \overline{w})$ uma fórmula livre de quantificadores, $\overline{a} \in K$ e $b \in F_1$.

Suponha que $F_1 \models \phi(b, \overline{a})$, ou seja, $F_1 \models \exists v \phi(v, \overline{a})$. Queremos mostrar que $F_2 \models \exists v \phi(v, \overline{a})$. Note que é suficiente mostrarmos que $R \models \exists v \phi(v, \overline{a})$.

Como ϕ é livre de quantificadores, existem polinômios $f_1,...,f_n,g_1,...,g_m \in K[x]$ tal que $\phi(v,\overline{a})$ é equivalente a

$$\left(\bigwedge_{i=1}^n f_i(v)=0\right)\wedge\left(\bigwedge_{i=1}^m g_i(v)>0\right)$$

Como ϕ é livre de quantificadores, existem polinômios $f_1,...,f_n,g_1,...,g_m \in K[x]$ tal que $\phi(v,\overline{a})$ é equivalente a

$$\left(\bigwedge_{i=1}^n f_i(v)=0\right)\wedge\left(\bigwedge_{i=1}^m g_i(v)>0\right)$$

Como $F_1 \models \phi(b, \overline{a})$, segue que $f_i(b) = 0$ para algum i. Ou seja, b é algébrico sobre K e portanto $b \in R \subset F_2$, que é fecho algébrico. Portanto só precisamos considerar $\phi(v, \overline{a})$ da forma

$$\bigwedge_{i=1}^n g_i(v) > 0$$

Outro resultado algébrico nos diz que: se F é corpo real fechado e $f \in F[x]$, então f pode ser reescrito em fatores do tipo (x - a) ou $(x - a)^2 + b^2$ para alguns $a, b \in F, b \neq 0$.

Outro resultado algébrico nos diz que: se F é corpo real fechado e $f \in F[x]$, então f pode ser reescrito em fatores do tipo (x - a) ou $(x - a)^2 + b^2$ para alguns $a, b \in F, b \neq 0$.

Fatore cada g_i como descrito acima. Note que como $(x-a)^2+b^2\geq 0$ para todos a,b,x, segue que para que $g_i>0$ é necessário apenas que um número par dos termos $(x-c_{1_i})...(x-c_{p_i})$ seja negativo.

Sem perda de generalidade, suponha que $c_{j_i} \leq c_{k_i}$ para $1 \leq j < k \leq p_i$.

Sem perda de generalidade, suponha que $c_{j_i} \leq c_{k_i}$ para $1 \leq j < k \leq p_i$.

Afirmação: $g_i(x) > 0$ se e somente se:

• Caso p_i for impar:

$$\bigvee_{j=1}^{\frac{p_i-1}{2}} [c_{(2j-1)_i} < x \land x < c_{(2j)_i}] \lor c_{p_i} < x$$

• Caso p_i for par:

$$x < c_{1_i} \lor \bigvee_{j=1}^{\frac{p_i-2}{2}} [c_{(2j)_i} < x \land x < c_{(2j+1)_i}] \lor c_{p_i} < x$$

Sem perda de generalidade, suponha que $c_{j_i} \leq c_{k_i}$ para $1 \leq j < k \leq p_i$.

Afirmação: $g_i(x) > 0$ se e somente se:

• Caso p_i for impar:

$$\bigvee_{j=1}^{\frac{p_i-1}{2}} [c_{(2j-1)_i} < x \land x < c_{(2j)_i}] \lor c_{p_i} < x$$

• Caso p_i for par:

$$x < c_{1_i} \lor \bigvee_{j=1}^{\frac{p_i-2}{2}} [c_{(2j)_i} < x \land x < c_{(2j+1)_i}] \lor c_{p_i} < x$$

Exercício

Sem perda de generalidade, suponha que $c_{j_i} \le c_{k_i}$ para $1 \le j < k \le p_i$.

Afirmação: $g_i(x) > 0$ se e somente se:

• Caso p_i for impar:

$$\bigvee_{j=1}^{\frac{p_i-1}{2}} \left[c_{(2j-1)_i} < x \land x < c_{(2j)_i} \right] \lor c_{p_i} < x$$

• Caso p_i for par:

$$x < c_{1_i} \lor \bigvee_{j=1}^{\frac{p_i-2}{2}} [c_{(2j)_i} < x \land x < c_{(2j+1)_i}] \lor c_{p_i} < x$$

Exercício:p

Seja $\theta(x, c_{1_1}, ..., c_{p_m})$ a conjunção de todas as fórmulas anteriores. Note que essa fórmula é equivalente a

$$\bigwedge_{i=1}^n f_i(v) = 0 \wedge \bigwedge_{i=1}^m g_i(v) > 0,$$

que por sua vez já vimos ser equivalente a $\phi(v, \overline{a})$

Seja $c_{max} = max\{c_{p_i}: 1 \leq i \leq m\} \geq 1$. Note que $c_{max} \in R$, pois cada $c_{p_i} \in R$, por hipótese. Portanto $c_{max} \in F_2$. Note também que, como $c_{max} \leq c_{p_i}$ para todo i, temos que $R \models \theta(c_{max}, c_{1_1}, ..., c_{p_m})$.

Seja $c_{max} = max\{c_{p_i}: 1 \leq i \leq m\} \geq 1$. Note que $c_{max} \in R$, pois cada $c_{p_i} \in R$, por hipótese. Portanto $c_{max} \in F_2$. Note também que, como $c_{max} \leq c_{p_i}$ para todo i, temos que $R \models \theta(c_{max}, c_{1_1}, ..., c_{p_m})$.

Portanto $R \models \phi(c_{max}, \overline{a})$ que é equivalente a $R \models \exists v \ \phi(v, \overline{a})$. Como $R \subset F_2$, segue que $F_2 \models \exists v \ \phi(v, \overline{a})$.

Seja $c_{max} = max\{c_{p_i}: 1 \le i \le m\} \ge 1$. Note que $c_{max} \in R$, pois cada $c_{p_i} \in R$, por hipótese. Portanto $c_{max} \in F_2$. Note também que, como $c_{max} \le c_{p_i}$ para todo i, temos que $R \models \theta(c_{max}, c_{1_1}, ..., c_{p_m})$.

Portanto $R \models \phi(c_{max}, \overline{a})$ que é equivalente a $R \models \exists v \ \phi(v, \overline{a})$. Como $R \subset F_2$, segue que $F_2 \models \exists v \ \phi(v, \overline{a})$.

Aplicando o Teste de João, existe uma fórmula livre de quantificadores equivalente a ϕ , como queríamos. \square

Proposição: Eliminação de quantificadores ⇒ modelo-completo.

Proposição: Eliminação de quantificadores ⇒ modelo-completo.

Corolário: RCF é modelo-completo.

Definição: Seja F um corpo real fechado e $f \in F(\overline{x})$ uma função racional em n variáveis $(f(\overline{x}) = \frac{p(\overline{x})}{q(\overline{x})})$. Dizemos que f é positiva semidefinida se $f(\overline{a}) \geq 0$ para todo $\overline{a} \in F^n$.

A motivação de Hilbert incluir esse problema na sua lista veio de um outro problema que ele resolveu. Ele mostrou que existem polinômios positivos semidefinidos que não podem ser escritos como a soma de quadrados de polinômios. Por exemplo:

A motivação de Hilbert incluir esse problema na sua lista veio de um outro problema que ele resolveu. Ele mostrou que existem polinômios positivos semidefinidos que não podem ser escritos como a soma de quadrados de polinômios. Por exemplo:

$$M(x,y) = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$$

A motivação de Hilbert incluir esse problema na sua lista veio de um outro problema que ele resolveu. Ele mostrou que existem polinômios positivos semidefinidos que não podem ser escritos como a soma de quadrados de polinômios. Por exemplo:

$$M(x,y) = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$$

Entretanto, é possível escrever esse polinômio como a soma de quadrados de funções racionais:

A motivação de Hilbert incluir esse problema na sua lista veio de um outro problema que ele resolveu. Ele mostrou que existem polinômios positivos semidefinidos que não podem ser escritos como a soma de quadrados de polinômios. Por exemplo:

$$M(x,y) = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$$

Entretanto, é possível escrever esse polinômio como a soma de quadrados de funções racionais:

$$M(x,y) = \frac{x^2y^2(x^2+y^2+1)(x^2+y^2-2)+(x^2-y^2)^2}{(x^2+y^2)^2}$$

Um último Teorema de Artin-Schreier antes de provarmos o teorema. **Teorema:** Se F é formalmente real e se $a \in F$ não é a soma de quadrados, então existe uma ordem em F tal que a é negativo.

Um último Teorema de Artin-Schreier antes de provarmos o teorema. **Teorema:** Se F é formalmente real e se $a \in F$ não é a soma de quadrados, então existe uma ordem em F tal que a é negativo.

Teorema: Se $f \in F(\overline{x})$ é uma função racional positiva semidefinida sobre um corpo real fechado F, então f é a soma de quadrados de funções racionais.

Por um dos teoremas antei que vimos, existe uma ordem \leq de $F(\overline{x})$ de forma que f < 0. Seja R uma extensão fechada, real e que estende \leq .

Por um dos teoremas antei que vimos, existe uma ordem \leq de $F(\overline{x})$ de forma que f < 0. Seja R uma extensão fechada, real e que estende \leq .

Note que

$$R \models (\exists \overline{v}) f(\overline{v}) < 0$$

Por um dos teoremas antei que vimos, existe uma ordem \leq de $F(\overline{x})$ de forma que f < 0. Seja R uma extensão fechada, real e que estende \leq .

Note que

$$R \models (\exists \overline{v}) f(\overline{v}) < 0$$

Como RCF é modelo-completa e $F \subset R$, segue que

Por um dos teoremas antei que vimos, existe uma ordem \leq de $F(\overline{x})$ de forma que f < 0. Seja R uma extensão fechada, real e que estende \leq .

Note que

$$R \models (\exists \overline{v}) f(\overline{v}) < 0$$

Como RCF é modelo-completa e $F \subset R$, segue que

$$F \models (\exists \overline{v}) f(\overline{v}) < 0$$

Por um dos teoremas antei que vimos, existe uma ordem \leq de $F(\overline{x})$ de forma que f < 0. Seja R uma extensão fechada, real e que estende \leq .

Note que

$$R \models (\exists \overline{v}) f(\overline{v}) < 0$$

Como RCF é modelo-completa e $F \subset R$, segue que

$$F \models (\exists \overline{v}) f(\overline{v}) < 0$$

Ou seja, existe $\overline{a} \in F^n$ tal que $f(\overline{a}) < 0$, absurdo pois f é positiva semidefinida. \square

Acabou

Até segunda! :)