Laplace Transform Tables

Time Function	LaPlace Transform
Unit Impulse, $\delta(t)$	1
Unit step, $u_s(t)$ $\mathcal{L}(\mathcal{L})$	$\frac{1}{s}$
t	$\left(\frac{1}{s^2}\right)$
(2)) ¹ 🖸
$\frac{t^n}{n!}$	$\frac{1}{s^{n+1}}$
(e ^{-at})	$\left(\frac{1}{s+\alpha}\right)$
- Cout	$(5+\alpha)^2$
$1-e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$

Time Function	LaPlace Transform
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$e^{-\alpha t}\sin(\omega t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
cos(ωt)	$\frac{5}{5^2+\omega^2}$
$\int e^{-\alpha t} \cos(\alpha t)$	$\frac{(z+\alpha)^2+\omega^2}{(z+\alpha)^2+\omega^2}$
$\frac{\omega_n e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \underbrace{\sin(\omega_n \sqrt{1-\zeta^2} t)}_{\text{for } (\zeta \le 1)}$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$\frac{-\omega_n^2 e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \sin(\omega_n \sqrt{1-\zeta^2} t - \theta)$ where $\theta = \cos^{-1}(\zeta)$ and $(\zeta < 1)$	$\frac{s\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

1.) Please consider the differential equation below with zero initial conditions
$$x(0) = \dot{x}(0) = 0$$
.

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = u(t)$$

- a) If $u(t) \neq 3\delta(t) X(s) = L[x(t)] = ?$
- b) Find the solution x(t) to the differential equation by finding the inverse Laplace transform of X(s) for the same input

input.
a)
$$\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$$

 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$
 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$
 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$
 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$
 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$
 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+f\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$
 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+f\ddot{x}+6\ddot{x}+6\ddot{x}}{2}\right)=\mathcal{L}\left(u\right)$
 $\mathcal{L}\left(\frac{\ddot{x}+f\ddot{x}+f\ddot{x}+6\ddot{x}+$

2) Please find the transfer function Vout(s) / Vin(s) for the following electrical system:

$$\frac{1}{2z} = \frac{1}{R_2} + C_2 S$$

$$\frac{1}{2z} = \frac{1}{1/R_2 + C_2 S}$$

$$\frac{1}{R_2 + C_2 S}$$

$$\frac{V_{\text{out}}}{V_{\text{lh}}} = \frac{2}{2} + 22$$

3) In the following block diagram, if G(s) = 1/(s+2) please calculate the closed-loop transfer function Y(s)/R(s).

4.) Please find the time constant of the following equation (f x(0) = 10)

$$\mathcal{L}(\dot{\chi}) = s \times (n) - \chi(b)$$

$$5\frac{dx}{dt} + 6x = 0$$

$$6 \times (1) = 0$$

$$X(1)\left(2x+1\right)=20$$

$$\chi(1) = \frac{10}{10} = \frac{55+6}{5}$$

$$\chi(t) = 10e^{-6/t}$$
, $t > 0$

$$\frac{5}{6} \times + \times = 0$$

$$7 = \frac{5}{6}$$

$$-\frac{6}{7}t=-\frac{6}{7}=\frac{5}{6}$$

5.) Please find the free response (x(t)) of the following differential equation using Laplace transform. Initial conditions are x(0) = 2, $\dot{x}(0) = -2$. $\mathcal{L}\left(\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = u(t)\right)$ $(1)(\int_{0}^{2} X(I) - \int_{0}^{2} X(I) - \dot{X}(I) + (1)(\int_{0}^{2} X(I) - \dot{X}(I)) + (1)(\int_{0}^{2} X(I) - \dot{X}(I) + (1)(\int_{0}^{2} X(I) - \dot{X}(I)) + (1)(\int_{0}^{2} X(I) - \dot{X}(I) + (1)(\int_{0}^{2} X(I)$ $\chi(n)(s^2+3s+2)-2s+2-6=0$ $\chi(s) (s^2 + 3s + 2) = 2s + 4$ $\chi(s) = \frac{2s + 4}{s^2 + 3s + 2} = \frac{2s + 4}{(s + 2)(s + 1)} = \frac{2}{s + (1)} \Rightarrow \chi(4) = 2e$ $\chi(s) = \frac{2s + 4}{s^2 + 3s + 2} = \frac{2s + 4}{(s + 2)(s + 1)} = \frac{2}{s + (1)} \Rightarrow \chi(4) = 2e$