

Deep Learning

Prof. Jorge Zavaleta Prof. Sergio Serra

RJ, outubro de 2024

Deep Learning (DL)

- Deep Learning (DL) Aprendizado **Profundo:**
 - ✓ Este é um subcampo do aprendizado de máquina no qual redes neurais profundas e multicamadas são usadas para fazer previsões, especialmente destacando-se em visão computacional, reconhecimento de fala, compreensão de linguagem natural e etc.

Redes Neurais Profundas

Serra, S. & Zavaleta, J. (2024). Fundamentos de Ciencia de Dados. PPGI-UFRJ.

Redes Neurais Profundas

Arif, T. M., & Rahim, M. A. (2024). Deep Learning for Engineers (1° ed). Chapman and Hall/CRC. https://doi.org/10.1201/9781003402923

Arquitetura de Deep Learning (DL)

• O aprendizado profundo cria muitas camadas de neurônios, tentando aprender a representação estruturada de big data, camada por camada.

- **Dataset**: imagens, vídeos, texto, dados de satélite, áudio, ...
- **Modelo**: Arquitetura de redes neurais (CNN, RNN, LSTM,...)
- Hardware: CPU, GPU (NVidia), FPGA, ASIC, TPU, NPU, ...
- Frameworks: TensorFlow, PyTorch, ...

Dataset + Model + Framework + Hardware = DL

Datasets

FMA: A Dataset For Music Analysis

Arquitetura do modelo

- Um bom modelo é aquele cujas previsões correspondem de forma confiável à realidade esperada.
- A precisão do modelo em um conjunto de dados é um fator determinante importante para saber se ele é adequado para uso em uma aplicação do mundo real.
- Arquitetura = grafo + nós + arestas

Task	Example model architectures
Image classification	ResNet-152 (2015), MobileNet (2017)
Text classification	BERT (2018), XLNet (2019)
Image segmentation	U-Net (2015), DeepLabV3 (2018)
Image translation	Pix2Pix (2017)
Object detection	YOLO9000 (2016), Mask R-CNN (2017)
Speech generation	WaveNet (2016)

[Koul et al., 2020]

Frameworks

Popular deep learning frameworks

Framework	Best suited for	Typical target platform
TensorFlow (including Keras)	Training	Desktops, servers
PyTorch	Training	Desktops, servers
MXNet	Training	Desktops, servers
TensorFlow Serving	Inference	Servers
TensorFlow Lite	Inference	Mobile and embedded devices
TensorFlow.js	Inference	Browsers
ml5.js	Inference	Browsers
Core ML	Inference	Apple devices
Xnor Al2GO	Inference	Embedded devices

Koul, A., Ganju, S., & Kasam, M. (2020). Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI and Computer-Vision Projects Using Python, Keras, and TensorFlow. O'Reilly Media [Keul et al., 2020]

Hardware

- CPU (Central Process Unit)
- GPU (Graphic Process Unit)
- FPGA (Field-Programming Gate Array)
- ASIC (Application-Specific Integrated Circuit)
- TPU (Tensor Processing Unit)
- Edge TPU
- NPU (Neural Processing Unit)

Initial Network Design Iterate with translate

Deep Learning (DL) - Keras

Main: https://keras.io/

Github: https://github.com/keras-team/keras

Deep Learning (DL) - KERAS

- O que é Keras?
 - ✓ Biblioteca de rede neural escrita em Python
 - ✓ Projetada para ser minimalista e direta
 - ✓ Construída em cima do TensorFlow e Theano
- Por que usar Keras?
 - ✓ Simples para começar, simples para continuar
 - ✓ Altamente modular e fácil de expandir
 - ✓ Profunda o suficiente para construir modelos importantes

Keras

Prepare Input

(Images, videos, text, audio)

- A ideia geral é basear-se em camadas de entradas e saídas
 - 1. Preparar as entradas e especificar da dimensão de saída;
 - 2. Definir a arquitetura do modelo e construir o gráfico computacional;
 - 3. Especificar o otimizador e configurar o processo de aprendizado;
 - 4. Especificar as entradas, saídas do gráfico computacional (modelo) e a função de custo;
 - 5. Treinar e testar o modelo no conjunto de dados.

Keras - camadas

- Modelos:
 - ✓ Sequential Pilha linear de camadas. Útil para construir modelos simples.
 - √ Functional Multi-input e multi-output
 - ✓ Subclassing Máxima flexibilidade
- Keras tem um número de camadas pré-definidas:
 - Regulares: Dense, tipo MLP;
 - Camadas recorrentes: LSTM, GRU, etc
 - Camadas Convolucionais: 1D, 2D, 3D
 - Autoencoders construir outros tipos de camadas.
 - Outras: Dropout, noise, Pooling, Normalization, Embedding, etc.

Keras – API Estimador

- É uma API TensorFlow de alto nível que encapsula as seguintes funcionalidades:
 - Treinamento
 - Avaliação
 - Previsão
 - Exportar o modelo para disponibilização para outros usos
- Se pode aproveitar vários estimadores pré-instalados, bem como escrever o próprio modelo com a API do Estimador.
- Os estimadores simplificam as implementações de compartilhamento entre os desenvolvedores de modelos.

Prof. Dr. Jorge Zavaleta

zavaleta@pet-si.ufrrj.br

Keras – Métodos padrão

- O método de treinamento padrão, pode usar as seguintes funções:
 - model.compile()
 - model.fit()
 - model.evaluate()
 - model.predict()
- Se pode personalizar o processo de treinamento, em vez de seguir opções de treinamento padrão que permitem usar funções como model.compile(), model.fit(), model.evaluate () e model.predict().
- Para personalizar se pode usar tf.GradientTape().

Keras - otimizadores

- Otimizadores:
 - ✓ SGD (Stochastic gradient descente)
 - ✓ SGD with momentum
 - ✓ Adam
 - ✓ AdaGrad
 - ✓ RMSprop (Root Mean Squared Propagation)
 - ✓ AdaDelta
 - ✓ Adamax
 - ✓ Nadam
- Funções de custo
 - ✓ MSE, MAE, Categorical cross entropy, KL Divergence.

TensorFlow para Keras

- TensorFlow é uma biblioteca de computação científica de algoritmos de aprendizado profundo, de código aberto desenvolvida pela Google Brain.
- Principais recursos:
 - Funciona com Python, C++, Java, R e Go.
 - Keras API padrão de rede neural de alto nível que foi integrada ao TensorFlow.
 - O TensorFlow permite a implantação de modelos e facilidade de uso na produção.
 - O suporte para computação rápida foi introduzido no TensorFlow 2.x, além da computação gráfica baseada em gráficos estáticos.
 - O TensorFlow tem um excelente suporte da comunidade.

Arquiteturas DL comuns

- Redes Convolucionais:
 - ✓ Alex net
 - √ VGG
 - ✓ Res-Net
 - ✓ DenseNet
- Dense Block 1

 Convolution

 Dense Block 2

 Dense Block 2

 Pooling

 Prediction

 Prediction

 Prediction

 Prediction

 Prooling

 Prediction

 Prooling

https://github.com/liuzhuang13/DenseNet

- ✓ Modelos generativos
 - ✓ Autoencoders
 - ✓ GAN Generative adversarial network

DL - Aplicações

DL - Aplicações

Industrial Factory & Automation

- Improving pick and place
- Predictive maintenance/failure

Agriculture

Optimize crop watering and harvesting

Retail

- Improve automated checkout
- Track shoppers and provide incentives

Prof. Dr. Jorge Zavaleta

zavaleta@pet-si.ufrrj.br

DL - Aplicações

Prof. Dr. Jorge Zavaleta

zavaleta@pet-si.ufrrj.br

DL - Aplicações

https://alexlenail.me/NN-SVG/

DL - Aplicações

- Processamento de Linguagem Natural (PLN)
- Visão Computacional
- Medicina
- Biologia
- Geração de Imagens
- Sistemas de recomendação
- Robótica
- Outras aplicações Mercado financeiro,
 ...

Bibliografia

