Planche 1.

Question de cours. Donner une application de \mathbb{R}^2 dans \mathbb{R}^2 qui ne soit pas une application linéaire.

Exercice 1. Soit $f \in L(E)$. Montrer que $f \circ f = 0$ ssi $Im(f) \subset Ker(f)$.

Exercice 2. On pose l'application suivante :

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
$$(x, y, z) \longmapsto (x + y, x - y + z)$$

Montrer que f est linéaire, calculer son noyau et son image.

Planche 2.

Question de cours. Soit E un espace vectoriel et f un endomorphisme. Démontrer que Ker(f) est un sous-espace vectoriel de E.

Est ce qu'on a toujours $Ker(f) \bigoplus Im(f) = E$? Est ce que c'est des fois le cas?

Exercice 1. Soit $f \in L(E)$. Montrer que $Ker(f) = Ker(f^2) \iff Im(f) \bigcap Ker(f) = \{0\}$

Exercice 2. Donner une CNS sur $(a, b, c) \in \mathbb{R}^3$ pour que la famille de vecteurs ((1, 1, 0), (0, 1, 1), (a, b, c)) soit liée.

Planche 3.

Question de cours. Démontrer que si f est injective de E dans F et $(x_i)_{i\in I}$ est une famille libre de E, alors l'image de cette famille par f et libre.

Exercice 1. Soit $f \in L(E)$. Montrer que E = Ker(f) + Im(f) ssi $Im(f) = Im(f^2)$.

Exercice 2. Dire si les familles suivantes sont libres ou liées.

- a) Les $x \mapsto x a$ pour $a \in \mathbb{R}$.
- b) Les $x \mapsto e^{ax}$ pour $a \in \mathbb{R}$.
- c) Les $x \mapsto \cos(x+a)$ pour $a \in \mathbb{R}$.

Solutions - Planche 1.

Question de cours. On pose par exemple f(x,y) = (x*y,0). On devrait avoir f(1,1) = f(1,0) + f(0,1) mais non car f(1,1) = (1,0) et f(1,0) = f(0,1) = 0.

Exercice 1. Si $f \circ f = 0$. Soit $y \in Im(f)$. Alors il existe $x \in E$ tel que y = f(x). Donc f(y) = f(f(x)) = 0. Donc $y \in Ker(f)$. On a donc $Im(f) \subset Ker(f)$. Si $Im(f) \subset Ker(f)$. Soit $x \in E$. Alors $f(x) \in \overline{Im(f)}$. Donc f(f(x)) = 0. Donc f(f(x)) = 0. On a montré l'équivalence.

Exercice 2. Montrons que f est \mathbb{K} -linéaire : soient $\lambda, \mu \in \mathbb{K}$ et les x_i, y_i, z_i dans \mathbb{K} .

$$f(\lambda(x_1, y_1, z_1) + \mu(x_2, y_2, z_2)) = f(\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2, \lambda z_1 + \mu z_2)$$

$$= (\lambda x_1 + \mu x_2 + \lambda y_1 + \mu y_2, \lambda x_1 + \mu x_2 - \lambda y_1 - \mu y_2 + \lambda z_1 + \mu z_2)$$

$$= (\lambda x_1 + \lambda y_1, \lambda x_1 - \lambda y_1 + \lambda z_1) + (\mu x_2 + \mu y_2, \mu x_2 - \mu y_2 + \mu z_2)$$

$$= \lambda(x_1 + y_1, x_1 - y_1 + z_1) + \mu(x_2 + y_2, x_2 - y_2 + z_2) = \lambda f(x_1, y_1, z_1) + \mu f(x_2, y_2, z_2)$$

Donc f est \mathbb{K} -linéaire.

Calculons son noyau. Soit $(x, y, z) \in Ker(f)$. Alors

$$x + y = 0$$
 et $x - y + z = 0$

D'où y=-x et z=-2x. Donc $(x,y,z)\in Vect_{\mathbb{K}}(1,-1,-2)$. Réciproquement on vérifie que $Vect_{\mathbb{K}}(1,-1,-2)\in Ker(f)$. Donc

$$Ker(f) = Vect_{\mathbb{K}}(1, -1, -2)$$

Montrons que f est surjective. Soit $u, v \in \mathbb{K}$. On pose x = u, y = 0 et z = v - u. On a alors f(x, y, z) = (u + 0, u - 0 + v - u) = (u, v). Donc f est surjective.

Solutions - Planche 2.

Question de cours. Non, ce n'est pas vrai en général. Par exemple si on pose f(x,y) = (0,x), alors f(1,0) = (0,1). Or $(0,1) \in Ker(f)$ car f(0,1) = (0,0). Donc (0,1) n'est pas nul et appartient à $Ker(f) \cap Im(f)$. Donc les deux sous-espaces vectoriels ne peuvent être en somme directe.

Oui, c'est des fois le cas. Par exemple si f = 0 ... Après on peut trouver un exemple moins trivial. Genre f(x, y) = (x, 0). On a alors Ker(f) = Vect(0, 1) et Im(f) = Vect(1, 0) qui sont supplémentaires.

Exercice 1. Supposons que $Ker(f) = Ker(f^2)$. Soit $y \in Im(f) \cap Ker(f)$. Alors il existe $x \in E$ tel que y = f(x) et f(y) = 0. Dnc f(f(x)) = 0. Donc $x \in Ker(f^2)$. Donc $x \in Ker(f)$. Donc f(x) = 0. Or f(x) = 0. Donc f(x) = 0. Donc f(x) = 0.

Supposons que $Im(f) \cap Ker(f) = 0$. Soit $x \in Ker(f)$. Alors f(x) = 0. Donc f(f(x)) = f(0) = 0. Donc $x \in Ker(f^2)$. Donc $Ker(f) \subset Ker(f^2)$. Soit $x \in Ker(f^2)$. Alors f(f(x)) = 0. On pose y = f(x). Alors $y \in Ker(f) \cap Im(f)$. Donc y = 0. Donc $x \in Ker(f)$. Donc $Ker(f^2) \subset Ker(f)$. Donc $Ker(f) = Ker(f^2)$.

Exercice 2. Trouvons la CNS. Supposons que la famille soit liée. Alors il existe λ, μ, α des réels non tous nuls tels que $\alpha(a, b, c) + \lambda(1, 1, 0) + \mu(0, 1, 1) = 0$. On veut exprimer (a, b, c) en fonction des deux autres vecteurs pour obtenir une condition mais pour cela il faut diviser par α et donc vérifier que α est non nul.

Si $\alpha = 0$, alors $\lambda(1, 1, 0) + \mu(0, 1, 1) = 0$. Mais alors $\lambda = 0$ d'après la première coordonée et $\mu = 0$ par la seconde. Donc c'est exclu (car le triplet est non nul).

Donc $\alpha \neq 0$ et on peut supposer que $(a,b,c) = \lambda(1,1,0) + \mu(0,1,1)$. Donc coordonées par coordonées cela dit que :

$$\begin{cases} a = \lambda \\ b = \lambda + \mu \\ c = \mu \end{cases}$$

Donc b = a + c.

Vérifions que cette condition est suffisante. Supposons que b=a+c et montrons que la famille est liée. On a simplement :

$$(a,b,c) = (a,a+c,c) = a(1,1,0) + c(0,1,1)$$

Donc la famille est liée.

Finalement la CNS est b = a + c

Solutions - Planche 3.

Exercice 1. • Supposons que Ker(f) + Im(f) = E. Soit $y \in Im(f^2)$. Alors il existe $x \in E$ tel que y = f(f(x)). Donc $y \in Im(f)$. Donc $Im(f^2) \subset Im(f)$. Soit $y \in Im(f)$. Alors il existe $x \in E$ tel que y = f(x). Or x se décompose en x + y avec $x \in E$ tel que $x \in E$. Donc $x \in E$ tel que $x \in E$ tel

• Supposons que $Im(f) = Im(f^2)$. Soit $x \in E$. Alors x = x - f(x) + f(x). $f(x) \in Im(f)$ ça c'est facile. Par contre $x - f(x) \in Ker(f)$? Est ce que $f(x) - f^2(x) = 0$? Bah pas trop. Par contre f(x) = f(f(u)) pour un $u \in E$ car $f(x) \in Im(f) = Im(f^2)$. Donc en fait on peut décomposer x en x = x - f(u) + f(u). Et là c'est bon, $x - f(u) \in Ker(f)$ et $f(u) \in Im(f)$. Donc E = Im(f) + Ker(f).

Finalement on a bien, E = Ker(f) + Im(f) ssi $Im(f) = Im(f^2)$.

Exercice 2.

a) Supposons que la famille soit liée, alors il existe a_1, \dots, a_n des réels deux à deux différents et $(\lambda_1, \dots, \lambda_n)$ des réels tels que $\sum_{i=1}^n \lambda_i |x - a_i| = 0$

Comme $|x - a_i|$ n'est pas dérivable uniquement en a_i alors comme 0 est dérivable partout alors $\lambda_i = 0$ pour tout i. Donc <u>la famille est libre</u>.

b) Supposons que la famille soit liée, alors il existe a_1, \dots, a_n des réels deux à deux différents et $(\lambda_1, \dots, \lambda_n)$ des réels tels que $\sum_{i=1}^n \lambda_i e^{a_i x} = 0$

Quitte à permuter, supposons que a_n soit le plus grand réel des a_i . Alors en divisant par $e^{a_n x}$ on obtient :

$$\sum_{i=1}^{n} \lambda_i e^{(a_i - a_n)x} = 0$$

On fait tendre x vers l'infini et on obtient $\lambda_n = 0$.

On répète l'opération et on montre que $\lambda_i = 0$ pour tout i. Donc <u>la famille est libre</u>.

c) Soient λ, μ, δ trois réels. On pose $a = \cos(\lambda), b = -\sin(\lambda), c = \cos(\mu)$ et $d = -\sin(\mu)$. Si $\cos(x + \lambda)$ et $\cos(x + \mu)$ sont liées alors toute la famille est liée. Sinon ils forment une famille libre. On va montrer que $\cos(x + \mu)$ est lié à ces deux vecteurs. On pose $e = \cos(\delta)$ et $f = -\sin(\delta)$. On cherche u et v des réels tels que :

 $\cos(x + \delta) = e\cos(x) + f\sin(x) = u\cos(x + \lambda) + v\cos(x + \mu) = u(a\cos(x) + b\sin(x)) + v(c\cos(x) + d\sin(x)) \text{ Donc}, \ e\cos(x) + f\sin(x) = (ua + vc)\cos(x) + (ub + vd)\sin(x)$

Ainsin on cherche u et v tels que

$$\begin{cases} e = ua + vc \\ f = ub + vd \end{cases}$$

Si a est non nul on a : u=e/a-vc/a donc f=eb/a-vcb/a+vd donc v(d-cb/a)=f-eb/a. Donc si $d-cb/a\neq 0$ on obtient $v=\frac{f-eb/a}{d-db/a}$. Puis on trouve u. Sinon ad=cb, mais cela contredit le fait que $\cos(x+\lambda)$ et $\cos(x+\mu)$ soient libre.

Si a=0, alors on a v=e/c car $c\neq 0$ car cela contredirait le fait que les deux soient libre.