

# Gruppo TeamAFK - Progetto "Predire in Grafana"

gruppoafk 15@gmail.com

#### Informazioni sul documento

| Versione                                                             | 1.0.0                                                      |  |
|----------------------------------------------------------------------|------------------------------------------------------------|--|
| Approvatore                                                          | Alessandro Canesso                                         |  |
| Redattori  Victor Dutca Simone Meneghin Olivier Utshudi Davide Zilio |                                                            |  |
| Verificatori                                                         | Simone Federico Bergamin<br>Fouad Farid<br>Simone Meneghin |  |
| Uso Esterno                                                          |                                                            |  |
| Distribuzione                                                        | Prof. Cardin Riccardo<br>TeamAFK                           |  |

#### Descrizione

Allegato Tecnico contenente le scelte architetturali che il TeamAFK ha effettuato ai fini realizzativi del progetto Predire in Grafana. Comprende i design pattern utilizzati e i diagrammi di attività, sequenza, classi e package.

# Indice

| 1 | Intr | roduzio  | one                                   | . 4  |
|---|------|----------|---------------------------------------|------|
|   | 1.1  | Scopo    | del documento                         | . 4  |
|   | 1.2  | _        | del prodotto                          |      |
|   | 1.3  | -        | rio                                   |      |
|   | 1.4  |          | nenti                                 |      |
|   |      | 1.4.1    | Riferimenti normativi                 |      |
|   |      | 1.4.2    | Riferimenti informativi               |      |
| 2 | Arc  | hitettu  | ıra del prodotto                      | . 5  |
|   | 2.1  |          | zione generale                        |      |
|   |      | 2.1.1    | Diagrammi delle attività              |      |
|   | 2.2  | Archite  | ettura Training Tool                  |      |
|   |      | 2.2.1    | Descrizione                           |      |
|   |      | 2.2.2    | Diagrammi dei package                 |      |
|   |      | 2.2.3    | Diagrammi delle classi                |      |
|   |      | 2.2.4    | Diagrammi di sequenza                 |      |
|   |      | 2.2.5    | Design pattern notevoli utilizzati    |      |
|   | 2.3  | Archite  | ettura Prediction Plug-in             |      |
|   |      | 2.3.1    | Descrizione                           |      |
|   |      | 2.3.2    | Diagrammi dei package                 |      |
|   |      | 2.3.3    | Diagrammi delle classi                |      |
|   |      | 2.3.4    | Diagrammi di sequenza                 |      |
|   |      | 2.3.5    | Design pattern notevoli utilizzati    |      |
| 3 | Rec  | uisiti s | $\operatorname{\mathbf{soddisfatti}}$ | . 18 |
|   | 3.1  | _        | a del soddisfacimento dei requisiti   |      |
|   | 3.2  |          | i del soddisfacimento dei requisiti   |      |

# Elenco delle figure

| 2.1.1 | Diagramma delle attività dello UC1                           | 6  |
|-------|--------------------------------------------------------------|----|
| 2.1.2 | Diagramma delle attività dello UC2                           | 7  |
| 2.1.3 | Diagramma delle attività dello UC3                           | 8  |
| 2.1.4 | Diagramma delle attività dello UC4                           | 9  |
| 2.1.5 | Diagramma delle attività dello UC5                           | 10 |
| 2.1.6 | Diagramma delle attività dello UC6                           | 11 |
| 2.2.1 | Diagramma dei package del Training Tool                      | 12 |
| 2.2.2 | Diagramma delle classi del Model del Training Tool           | 12 |
| 2.2.3 | Diagramma delle classi della View del Training Tool          | 13 |
| 2.2.4 | Diagramma delle classi del ViewModel del Training Tool       | 14 |
| 2.2.5 | Diagramma di sequenza del TrainSVM                           | 15 |
| 2.3.1 | Diagramma dei package del Prediction Plug-in                 | 15 |
| 2.3.2 | Diagramma delle classi del Model del Prediction Plug-in      | 16 |
| 2.3.3 | Diagramma delle classi della View del Prediction Plug-in     | 16 |
| 2.3.4 | Diagramma delle classi del Controller del Prediction Plug-in | 17 |

| ь |     | - | -   |   |
|---|-----|---|-----|---|
| - | ъ.  |   | -14 | • |
| , | - 1 |   | •   | • |
|   |     |   |     |   |

| Elenco | delle | tabel | le           |
|--------|-------|-------|--------------|
| THEHCO | uene  | tabei | $\mathbf{r}$ |

## 1 Introduzione

#### 1.1 Scopo del documento

Lo scopo del documento è una descrizione esaustiva delle capacità del software *Predire in Grafana* sviluppato dal team AFK. Il documento si concluderà con un resoconto su quanto sia stato soddisfatto dei vari requisiti.

#### 1.2 Scopo del prodotto

Predire in  $\operatorname{Grafana}_G$  soddisfa le necessità di monitorare costantemente applicazioni e informazioni contenute in esse. Con questo scopo il team AFK si propone per la realizzazione per l'azienda  $\operatorname{Zucchetti} \operatorname{SPA}$  di un  $\operatorname{tool}_G$  di addestramento e di un plug-in $_G$  di monitoraggio per  $\operatorname{Grafana}$  che utilizzi algoritmi di  $\operatorname{SVM}_G$  e Regressione Lineare $_G$  sui dati in ingresso.

#### 1.3 Glossario

Per evitare ambiguità nei documenti formali, viene fornito il documento *Glossario*, contenente tutti i termini considerati di difficile comprensione. Perciò nella documentazione fornita ogni vocabolo contenuto nel Glossario è contrassegnato dalla lettera G a pedice.

#### 1.4 Riferimenti

#### 1.4.1 Riferimenti normativi

- Capitolato d'appalto C4: https://www.math.unipd.it/~tullio/IS-1/2019/Progetto/C4.pdf;
- $norme\_di\_progetto\_v3.0.0$ ;
- VI\_2020-06-01.

#### 1.4.2 Riferimenti informativi

• analisi dei requisiti v3.0.0;

# 2 Architettura del prodotto

## 2.1 Descrizione generale

Il progetto *Predire in Grafana* prevede la realizzazione di due moduli: un plug-in per la piattaforma Grafana e un tool esterno di supporto, rispettivamente chiamati **Prediction Plug-in** e **Training Tool**.

Il Training Tool si occupa di addestrare un algoritmo di *SVM* o *Regressione Lineare* utilizzando un dataset inserito dall'utente, per poi generare un file json contenente le informazioni necessarie per poter effettuare un calcolo di predizione. Questo modulo è stato sviluppato seguendo il pattern *Model-View-ViewModel (MVVM)*.

Il Prediction Plug-in invece si occuperà di ricevere in input il json e una volta collegati i predittori contenuti nel file ad un flusso dati, permetterà di iniziare ad effettuare i calcoli di previsione. Questo modulo è stato sviluppato seguendo il pattern Model-View-Controller (MVC).

Le motivazioni principali che hanno portato alla scelta del design pattern MVVM per il Training Tool sono:

• per la realizzazione del componente è stato utilizzato *React* e abbiamo ritenuto che questo pattern si accoppiasse bene con la struttura di *React*.

Le motivazioni principali che hanno portato alla scelta del design pattern MVC per il Prediction Plug-in sono:

• abbiamo ritenuto che questo pattern si accoppiasse meglio con la struttura dei plug-in di Grafana.

Inoltre entrambi i pattern permettono:

- di disaccoppiare la parte di presentation logic da quella di business logic;
- il riutilizzo di alcune componenti in altri contesti.

## 2.1.1 Diagrammi delle attività



Figura 2.1.1: Diagramma delle attività dello UC1



Figura 2.1.2: Diagramma delle attività dello UC2



Figura 2.1.3: Diagramma delle attività dello UC3



Figura 2.1.4: Diagramma delle attività dello UC4



Figura 2.1.5: Diagramma delle attività dello UC5



Figura 2.1.6: Diagramma delle attività dello UC6

## 2.2 Architettura Training Tool

#### 2.2.1 Descrizione

L'implemetenazione del tool è stata realizzata utilizzando il design pattern MVVM. Il passaggio di dati dalle view al model avviene attraverso la modifica di un campo dati props immesso dal ViewModel. Attraverso queste props il ViewModel chiama le funzioni corrette quando l'utente interagisce con la vista. La divisione tra Business  $Logic_G$  e Presentation Logic è rafforzato da questo utilizzo delle props. Nel modello viene fornita funzionalità per la gestione degli algoritmi tramite le classi SVMtrain e RLtrain che verranno utilizzate dal ViewModel.

## 2.2.2 Diagrammi dei package



Figura 2.2.1: Diagramma dei package del Training Tool

#### 2.2.3 Diagrammi delle classi

#### Model



Figura 2.2.2: Diagramma delle classi del Model del Training Tool

#### View



Figura 2.2.3: Diagramma delle classi della View del Training Tool

#### ViewModel



Figura 2.2.4: Diagramma delle classi del ViewModel del Training Tool

#### 2.2.4 Diagrammi di sequenza



Figura 2.2.5: Diagramma di sequenza del TrainSVM

#### 2.2.5 Design pattern notevoli utilizzati

## 2.3 Architettura Prediction Plug-in

#### 2.3.1 Descrizione

#### 2.3.2 Diagrammi dei package



Figura 2.3.1: Diagramma dei package del Prediction Plug-in

#### 2.3.3 Diagrammi delle classi

#### Model



Figura 2.3.2: Diagramma delle classi del Model del Prediction Plug-in

#### View



Figura 2.3.3: Diagramma delle classi della View del Prediction Plug-in

#### Controller



Figura 2.3.4: Diagramma delle classi del Controller del Prediction Plug-in

## 2.3.4 Diagrammi di sequenza

## 2.3.5 Design pattern notevoli utilizzati

# 3 Requisiti soddisfatti

# 3.1 Tabella del soddisfacimento dei requisiti

Tabella 3.1.1: Tabella del soddisfacimento dei requisiti

| Codice  | Esito       |
|---------|-------------|
| Re1F1   | Soddisfatto |
| Re1F1.1 | Soddisfatto |
| Re1F1.2 | Soddisfatto |
| Re1F1.3 | Soddisfatto |
| Re1F1.4 | Soddisfatto |
| Re1F2   | Soddisfatto |
| Re1F2.1 | Soddisfatto |
| Re1F2.2 | Soddisfatto |
| Re1F3   | Soddisfatto |
| Re1F3.1 | Soddisfatto |
| Re1F3.2 | Soddisfatto |
| Re1F3.3 | Soddisfatto |
| Re1F3.4 | Soddisfatto |
| Re1F4   | Soddisfatto |
| Re1F5   | Soddisfatto |
| Re1F6   | Soddisfatto |
| Re1F6.1 | Soddisfatto |
| Re1F6.2 | Soddisfatto |
| Re1F6.3 | Soddisfatto |
| Re1F7   | Soddisfatto |
| Re1F8   | Soddisfatto |
| Re1F9   | Soddisfatto |
| Re1F10  | Soddisfatto |
| Re1F11  | Soddisfatto |
| Re1F12  | Soddisfatto |

Tabella 3.1.1: (continua)

| Codice  | Esito       |
|---------|-------------|
| Re1F13  | Soddisfatto |
| Re1F14  | Soddisfatto |
| Re1F15  | Soddisfatto |
| Re1F16  | Soddisfatto |
| Re1F17  | Soddisfatto |
| Re1F18  | Soddisfatto |
| Re1F19  | Soddisfatto |
| Re1F20  | Soddisfatto |
| Re1F21  | Soddisfatto |
| Re1F22  | Soddisfatto |
| Re1F23  | Soddisfatto |
| Re3F24  | Soddisfatto |
| Re1Q1   | Soddisfatto |
| Re1Q2   | Soddisfatto |
| Re1Q2.1 | Soddisfatto |
| Re2Q2.2 | Soddisfatto |
| Re1Q3   | Soddisfatto |
| Re1Q4   | Soddisfatto |
| Re2Q5   | Soddisfatto |
| Re2Q6   | Soddisfatto |
| Re2Q7   | Soddisfatto |
| Re1V1   | Soddisfatto |
| Re1V1.1 | Soddisfatto |
| Re1V1.2 | Soddisfatto |
| Re1V1.3 | Soddisfatto |
| Re1V1.4 | Soddisfatto |
| Re1V2   | Soddisfatto |
| Re1V3   | Soddisfatto |
|         |             |

Tabella 3.1.1: (continua)

| Codice | Esito       |
|--------|-------------|
| Re1V4  | Soddisfatto |
| Re1V5  | Soddisfatto |

# 3.2 Grafici del soddisfacimento dei requisiti