

Tarea 5

24 de junio de 2024

1º semestre 2024 - Profesores P. Bahamondes - S. Bugedo - N. Alvarado

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 20 de marzo a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Respuestas

Problema 1

- (a) Sean S, A conjuntos tales que $\emptyset \subsetneq S \subsetneq A$ y $\mathcal{X} = \{S, A \setminus S\}$. Demostraremos que \mathcal{X} es partición de A.
 - Como $\varnothing \subsetneq S$, sabemos que $S \neq \varnothing$. Además, como $S \subsetneq A$, existe un elemento $a \in A$ tal que $a \notin S$. Luego, $A \setminus S$ tiene al menos un elemento y concluimos que $A \setminus S \neq \varnothing$. Por lo tanto, los elementos de \mathcal{X} son no vacíos.
 - Demostraremos que $S \cup A \setminus A = A$.
 - ∘ (⊆) Sea $a \in S \cup A \setminus S$. Si $a \in S$, como $S \subseteq A$, se tiene que $a \in A$. Si $a \notin S$, entonces $a \in A \setminus S$. Luego, $a \in A$.
 - ∘ (⊇) Sea $a \in A$. De forma análoga, hay dos casos. Si $a \in S$, entonces claramente $a \in S \cup A \setminus S$. Si $a \notin S$, entonces $a \in A \setminus S$ y por unión, $a \in S \cup A \setminus S$.

Concluimos que $S \cup A \setminus S = A$.

• Demostraremos que $A \cap A \setminus S = \emptyset$. Por definición de diferencia, los elementos de $A \setminus S$ son aquellos de A que no están en S. Luego, su intersección es vacía.

Pauta (3 pts.)

- (a) 1.0 por demostrar que ambos elementos de \mathcal{X} son no vacíos.
 - 1.0 por demostrar que su unión es A.
 - 1.0 por demostrar que son disjuntos.
- (b) Debido a un error en el enunciado, se decidió anular este inciso.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2

Parte (a)

Sea S el conjunto de todos los subconjuntos finitos de \mathbb{N} , es decir $S = \{A \subset \mathbb{N} : A \text{ es finito}\}$. Consideremos la función

$$f: S \to \mathbb{Q}$$

 $A \mapsto 0.x_1x_2x_3x_4\dots$

donde

$$f(A) = 0.x_1x_2x_3x_4 \cdots = \begin{cases} 1 & i \in A \\ 0 & i \notin A. \end{cases}$$

Es claro que, para dos subconjuntos finitos naturales distintos A, B se tendrá que su expansión decimal asociada será disntinta. Por lo tanto, f es inyectiva y de esta forma S es numerable.

Parte (b)

Sea S(n) el conjunto de todos los subconjuntos finitos de \mathbb{N} con cardinalidad n. Sabemos por la parte anterior que S(n) es numerable y que

$$\bigcup_{n\geq 0} S(n)$$

es numerable. Es fácil ver que podemos definir al conjunto de todos los subconjuntos infinitos de $\mathbb N$ como

$$\mathcal{P}(\mathbb{N})\setminus\bigcup_{n\geq 0}S(n).$$

Como sabemos que $\mathcal{P}(\mathbb{N})$ tiene cardinalidad infinita, y en particular no es numerable, entonces necesariamente el conjunto de todos los subconjuntos infinitos de los naturales es no numerable.

Puntaje:

• 3pts por cada inciso.

Puntajes parciales y soluciones alternativas a criterio del corrector.