

Index

Ur	nit – 1 \Rightarrow Sets and Functions	3
Pa	ırt - I> Sets	3
1)	Method − 1 → Basic Definitions	3
2)	Method − 2 → Set Operations and its Properties	14
3)	Method − 3 → Venn Diagram	28
4)	Method − 4 → Cardinality of a Set	35
5)	Method – 5 → Power Set and Cartesian Product	39
Pa	nrt - II> Function	44
6)	Method – 6 ↔ Definitions	46
7)	Method − 7 → Types of Functions	51
8)	Method − 8 → Algebra of Real Functions	57
9)	Method − 9 → One–One, Onto & Bijective Functions	61
10)) Method – 10 → Composition of Functions	66
11) Method – 11 → Inverse Function	70

Unit - 1 ---> Sets and Functions

Part - I ---> Sets

Method - 1 ---> Basic Definitions

Introduction

- → Set theory was developed by German mathematician Georg Cantor (1845 1918).
- → He first encountered sets while working on problems on trigonometric series.
- → The concept of set serves as a fundamental part of the present-day mathematics. Now a days, this concept is being used in almost every branch of mathematics.
- → Set is used to define the concepts of relation, function, geometry, sequences, probability, etc.

1.1 – Set and Its Representation

<u>Set</u>

- → Collection of well-defined objects is known as a Set.
 - Here, well-defined means there is no confusion regarding inclusion and exclusion of an object.
- → Set is denoted by upper case letters A, B, C, etc.
- \rightarrow For example:
 - (1) The collection of all the uppercase alphabets up to G is a Set.
 - (2) The collection of rivers of India is a Set.
 - (3) The collection of five most renowned mathematician is **not** a Set.
 - (4) The collection of beautiful songs is **not** a Set.

Element of Set

- → Each object in the set is known as an element or member of the set.
- → Elements of set is denoted by lower case letter a, b, c, etc.
- \rightarrow If any object is present in a set, we use symbol \in (belongs to).
- \rightarrow If any object is **not** present in a set, we use symbol \notin (does not belong to).

- → For Example:
 - (1) Apple \in The collection of fruits
 - (2) Apple ∉ The collection of vegetables

Methods to Represent a Set

- → There are two methods to represent any set.
 - (1) Listing Method
 - (2) Property Method

→ Listing Method

- In Listing Method, elements of the set are
 - (1) Written as a list,
 - (2) Separated by the comma,
 - (3) Enclosed within the curly braces { }.
- This method is also known as Tabular Form or Roster From.
- It may be noted that while writing the set in roster form an element is not generally repeated.
- Sequence of elements is not important while arranging elements of set.
- For example:
 - (1) Statement: The set of prime numbers less than 10.

$$A = \{ 2, 3, 5, 7 \}$$

(2) Statement: The set of letters forming the word "mathematics".

$$B = \{ m, a, t, h, e, i, c, s \}$$
$$= \{ a, c, e, h, i, m, s, t \}$$

\rightarrow Property Method

- In Property Method, elements of the set are
 - (1) Follow a single common property,
 - (2) Enclosed within the curly braces { }.
- This method is also known as Set-Builder from.

- For example:
 - (1) Statement: The set of all vowels in English alphabets.

Using Listing Method : $B = \{a, e, i, o, u\}$

Using Property Method : $B = \{x : x \text{ is a vowel in English alphabets}\}$

(2) Using Property Method : $A = \{x \mid x < 6\}$

Standard Sets

 \rightarrow N = The set of natural numbers

 $= \{ 1, 2, 3, \dots \}$

 \rightarrow \mathbb{Z} = The set of integers

 $= \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$

 \rightarrow \mathbb{Q} = The set of rational numbers

$$= \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$$

 \rightarrow T = The set of irrational numbers

=
$$\{ ..., \sqrt{2}, ..., \sqrt[3]{2}, ..., \sqrt[4]{3}, ..., e, \pi, ... \}$$

- \rightarrow \mathbb{R} = The set of real numbers
- \rightarrow \mathbb{Z}^+ = The set of positive integers

$$= \{ 1, 2, 3, \dots \} = \mathbb{N}$$

- \rightarrow \mathbb{Q}^+ = The set of positive rational numbers
- \rightarrow \mathbb{R}^+ = The set of positive real numbers

Examples of Method-1.1: Set and Its Representation

Н	1	Let A = { 1, 2, 3, 4, a, x, 6 }. Fill the appropriate symbol ∈ or ∉ in the blank
		spaces:
		(1) 3 _ A (2) 5 _ A (3) 1 _ A (4) a _ A
		(5) c _ A (6) y _ A (7) 2 _ A (8) 4 _ A
		Answer : (1) ∈, (2) \notin , (3) ∈, (4) ∈,
		(5) ∉, (6) ∉, (7) ∈, (8) ∈.
С	2	Write the following sets in set-builder form:
		$A = \{ 2, 4, 6, 8, \}$
		Answer: $A = \{ x : x \text{ is an even number } \& x \in \mathbb{N} \} = \{ 2x : x \in \mathbb{N} \}$
Н	3	Give another description of the following sets:
		A = { 6, 12, 18, 24, 30, 36, 42, 48 }
		B = { 1, 3, 5, 7, 9 }
		C = { 1, 8, 27, 64, 125, 216 }
		Answer: $A = \{ x : x \text{ is multiple of six less than 50} \}$
		$B = \{ x : x \text{ is an odd natural number less than 10} \}$
		$\mathbf{C} = \{ \mathbf{x}^3 : \mathbf{x} \in \mathbb{N} \& \mathbf{x} \le 6 \}$
Т	4	Give another description of the following sets:
		A = { red, orange, yellow, green, blue, indigo, violet }
		$B = \{ (1, 1), (2, 4), (3, 9), (4, 16), (5, 25) \}$
		Answer: $A = \{ x : x \text{ is color in a rainbow } \}$
		$B = \{ (x, x^2) : x = 1, 2, 3, 4, 5 \}$

Write the following sets in roster form: $C = \{ (x, y) : x, y \in \mathbb{N}, x \text{ divides } y \& y \le 6 \}$ Answer: C = $\begin{cases} (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), \\ (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), \\ (3, 6), (4, 4), (5, 5), (6, 6) \end{cases}$ Give another description of the following sets: Η $A = \{ x : x \text{ is a letter in the word "TRIGONOMETRY" } \}$ $B = \{ x : x \text{ is a prime number between } 50 \text{ and } 70 \}$ $C = \{ a : a \in \mathbb{N}, a \text{ is perfect square number, } a \le 100 \}$ Answer: $A = \{ T, R, I, G, O, N, M, E, Y \}$ $B = \{ 53, 59, 61, 67 \}$ $C = \{ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 \}$ Т Give another description of the following sets: 7 $A = \{ x : x \text{ is an integer } \& 5 \le x \le 12 \}$ $B = \{ x : x \text{ is a divisor of } 36 \& x \in \mathbb{N} \}$ $C = \{(x, y) : x, y \in \mathbb{N}, |x - y| \text{ is even number } \& x, y \le 6\}$ Answer: $A = \{ 5, 6, 7, 8, 9, 10, 11, 12 \}$ $B = \{ 1, 2, 3, 4, 6, 9, 12, 18, 36 \}$ $C = \left\{ (1,1), (1,3), (1,5), (2,2), (2,4), (2,6), \\ (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), \\ (5,1), (5,3), (5,5), (6,2), (6,4), (6,6) \right\}$

Т	8	Give another description of the following sets:
		$A = \{ x : x \in \mathbb{N}, \ 4 < x^2 < 40 \}$
		$B = \{ a : a \in \mathbb{N}, a \text{ is a multiple of } 7 \& a \leq 49 \}$
		$C = \{(x, y) : x, y \in \mathbb{N}, \text{ both are even numbers and } x + y = 18\}$
		Answer: $A = \{ 3, 4, 5, 6 \}$
		$B = \{ 7, 14, 21, 28, 35, 42, 49 \}$
		$C = \left\{ \begin{array}{l} (2, 16), & (4, 14), & (6, 12), & (8, 10), \\ (10, 8), & (12, 6), & (14, 4), & (16, 2) \end{array} \right\}$
		$ \left(\begin{array}{c} \textbf{(10, 8)}, \ (\textbf{12, 6}), \ (\textbf{14, 4}), \ (\textbf{16, 2}) \end{array} \right) $
С	9	Write the following sets in roster form:
		$A = \{ x : x \in \mathbb{N}, x \text{ is divisor of } 70 \}$
		Angreen: A = (1, 2, 5, 7, 10, 14, 25, 70)
11	10	Answer: A = { 1, 2, 5, 7, 10, 14, 35, 70 }
Н	10	Write the following sets in roster form:
		$A = \{ x : x \in \mathbb{N}, x \text{ is divisor of } 50 \}$
		Answer: A = { 1, 2, 5, 10, 25, 50 }
Т	11	Write the following sets in roster form: $A = \{x : x \in \mathbb{Z}, x \text{ is divisor of } 45\}$
<u> </u>	12	Answer: $A = \{-45, -15, -9, -5, -3, -1, 1, 3, 5, 9, 15, 45\}$
С	12	Write the following sets in roster form:
		$B = \{ x : x^2 - 60x - 256 = 0, x \in \mathbb{Z} \}$
		Answer: $B = \{ -4, 64 \}$
Н	13	Write the following sets in roster form:
		$B = \{ x : x^3 - x = 0, x \in \mathbb{Z} \}$
		Answer: $B = \{ -1, 0, 1 \}$
Т	14	Write the following sets in roster form:
1	11	B = { $x : x^3 + x - 2 = 0$, $x \in \mathbb{Z}$ }
		$\begin{bmatrix} D & (A \cdot A + A - B - 0) & A \cdot B \end{bmatrix}$
		Answer: $B = \{ -2, 1 \}$

T | 15 | Give another description of the following sets:

A =
$$\{x : x \in \mathbb{R}, x^2 - 1 = 0\}$$

B = $\{x : x \in \mathbb{N}, (x - 1)(x + 2) = 0\}$
C = $\{(x, y) : x, y \in \mathbb{N}, x + y = 4\}$
Answer: A = $\{-1, 1\}$
B = $\{1\}$
C = $\{(1, 3), (2, 2), (3, 1)\}$

1.2 - Types of Sets

\rightarrow Finite Set

- A set which contains finite number of elements is known as a finite set.
- For example:

$$A = \{-2, -1, 0\} = \{x : -3 < x < 1, x \in \mathbb{Z}\}\$$

→ Infinite Set

- A set which contains infinite number of elements is known as an infinite set.
- For example:

A =
$$\{ ..., -2, -1, 0 \} = \{ x : x < 1, x \in \mathbb{Z} \},$$

N, \mathbb{Z} , \mathbb{Q} , \mathbb{R} & \mathbb{C} .

→ Empty Set or Null Set

- A set which contains no element is known as an empty set.
- It is denoted as { } or φ.
- For example:

$$A = \{ x : x < 1, x \in \mathbb{N} \} = \phi.$$

→ Non-empty Set

- A set which contains at least one element is known as a non-empty set.
- For example:

$$A = \{ \dots , -2, -1, 0 \} = \{ x : x < 1, x \in \mathbb{Z} \}.$$

→ Singleton Set

- A set which contains exactly one element is known as a singleton set.
- For example:

$$A = \{1\} = \{x : x \le 1, x \in \mathbb{N}\}.$$

→ Equal Sets

- If elements of set A and set B are exactly same then set A and set B are known as equal sets.
- It is denoted by A = B and read as "A equal B".
- If elements of set A and B are not exactly same then set A and set B are known as unequal sets.
- It is denoted by $A \neq B$ and read as "A is not equal B".
- For example:

For,
$$A = \{ x : x \le 1, x \in \mathbb{N} \}$$
, $B = \{ x : x \le 1, x \in \mathbb{Z} \}$, $C = \{ 1 \}$
 $A = C$ and $A \ne B$.

\rightarrow Universal Set

- A set which has elements of all the related sets, without any repetition of elements is known as a universal set.
- It is denoted by **U**.
- For example:
 - (1) For the set of all integers \mathbb{Z} , universal set can be \mathbb{Q} or \mathbb{R} or \mathbb{C} .
 - (2) In human population studies, the universal set consists of all the people in the world.

1.3 – Subset

- → If all elements of set A are present in set B, then set A is known as subset of B.
- \rightarrow It is denoted by $\mathbf{A} \subseteq \mathbf{B}$ and read as "A is subset of B".
- \rightarrow If set A is **not** subset of set B, then it is denoted by **A** \nsubseteq **B** and read as "A is not subset of B".
- \rightarrow For example:

Let
$$X = \{ 2, 1, 0 \}$$
, $Y = \{ 0, 1, 2, 3, 4, 5 \}$ & $Z = \{ 0, 3, 5 \}$
For above sets, $X \subseteq Y$, $Z \subseteq Y$ & $X \nsubseteq Z$.

- \rightarrow For any set A,
 - $\varphi \subseteq A$,
 - $A \subseteq A$.
- \rightarrow If A \subseteq B and B \subseteq C, then A \subseteq C.
- \rightarrow If A \subseteq B and B \subseteq A, then A = B.
- \rightarrow Number of subsets of the **empty set** = **1** (itself).
- \rightarrow Number of subsets of a **non-empty set** with n elements = 2^n ; $n \in \mathbb{N}$.
- \rightarrow For example:

Let
$$X = \{ 2, 1, 0 \}$$

Number of subsets of $X = 2^n = 2^3 = 8$.

Subsets of X are: ϕ , {2}, {1}, {0}, {2, 1}, {2, 0}, {1, 0}, X.

Types of Subsets

- → Let a non-empty set A with n elements.
 - Improper Subset
 - Subset A (set itself) is known as an improper subset of set A.
 - Number of improper subsets of the empty set = 1 (itself).
 - Number of improper subsets of a **non-empty set** with n elements = 1; $n \in \mathbb{N}$.

- Proper Subset
 - Subsets other than set A (set itself) are known as proper subsets of set A.
 - Let X be a proper subset of A, then

It is denoted by $X \subset A$ and read as "X is proper subset of A",

- Number of proper subsets of the **empty set** = 0.
- Number of proper subsets of a **non-empty set** with n elements = $2^n 1$; $n \in \mathbb{N}$.
- For example:

Let
$$X = \{ 2, 1, 0 \}$$

Improper subsets of X are: X

Number of proper subsets of $X = 2^n - 1$

$$= 2^3 - 1 = 7$$

Proper subsets of X are as follow:

$$\phi$$
, {2}, {1}, {0}, {2, 1}, {2, 0}, {1, 0}

Super Set

- \rightarrow If A is a subset of B, then B is known as super set of A.
- \rightarrow It is denoted by **B** \supset **A** and read as "B is super set of A".
- \rightarrow For example:

Let
$$X = \{2, 1, 0\}, Y = \{0, 1, 2, 3, 4, 5\} & Z = \{0, 3, 5\}$$

For above sets, $Y \supset X$, $Y \supset Z$, $Y \supseteq Y \& Z \supset X$.

 \rightarrow For example:

Let
$$W = \{0, 3, 5\}, X = \{2, 1, 0\}, Y = \{0, 1, 2, 3, 4, 5\}$$

&
$$Z = \{3, 5, 0\}$$

For above sets, $X \subset Y$, $Z \subset Y$, $X \not\subset Z \& Y \supset W$.

 $Z \subseteq W$ and Z = W are true, but $Z \subseteq W$ is not true.

Examples of Method-1.2: Subset

С	1	Write down all the subsets of the set $B = \{a, \{b, c\}, d\}$. Also find number of proper subsets.
		Answer: φ, {a}, {{b, c}}, {d}, {a, {b, c}}, {a, d},
		{{b, c}, d}, B
		Number of proper subsets = 7
С	2	Find number of elements of set which has 1023 proper subsets, if possible.
		Answer: 10
Н	3	Find number of elements of set which has 514 proper subsets, if possible.
		Answer: Such set is not possible.
Т	4	Find number of elements of set which has 2047 proper subsets, if possible.
		Answer: 11
С	5	Let $A = \{ 1, 2, \{ 3, 4 \}, 5 \}$. Which of the following are incorrect?
		(1) $\{3, 4\} \subset A$ (2) $\{3, 4\} \in A$ (3) $\{\{3, 4\}\} \subset A$
		(4) $1 \in A$ (5) $1 \subset A$ (6) $\{1, 2, 5\} \in A$
		(7) $\{1, 2, 5\} \subset A$ (8) $\{1, 2, 3\} \subset A$ (9) $\phi \in A$
		(10) $\phi \subset A$ (11) $\{\phi\} \subset A$ (12) $A \supset \{1, 5\}$
		Answer: (1), (5), (6), (8), (9), (11).
Н	6	Consider the sets ϕ , $A = \{1,3\}$, $B = \{1,5,9\}$, $C = \{1,3,5,7,9\}$. Insert the
		symbol ⊂ or ⊄ between each of the following pair of set.
		(i) ф B (ii) A B (iii) A C (iv) B C
		Answer: (i) \subset (ii) $\not\subset$ (iii) \subset (iv) \subset
Т	7	Let $A = \{a, e, i, o, u\}$ and $B = \{a, b, c, d\}$. Is A a subset of B? If not why?
		Answer: No; Reason: i ∉ B

Method - 2 --> Set Operations and its Properties

2.1 - Union of Sets

- → A set that contains all elements of set A and set B, in which common elements are written once only, is known as union of sets A and B.
- \rightarrow It is denoted by $\mathbf{A} \cup \mathbf{B}$ and read as "A union B".
- \rightarrow For example:

For,
$$A = \{1, 2, 3, 4, 5\} \& B = \{3, 4, 5, 6, 7\}$$

 $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$

→ Using Property Method:

$$A \cup B = \{ x : x \in A \text{ or } x \in B \}.$$

→ Properties of union of sets:

(1) Commutative Law : $A \cup B = B \cup A$

(2) Associative Law : $(A \cup B) \cup C = A \cup (B \cup C)$

(3) Identity Law : $A \cup \phi = A$

(4) Idempotent Law : $A \cup A = A$

(5) Domination Law : $A \cup U = U$

Examples of Method-2.1: Union of Sets

С	1	Let $A = \{ x : x \in \mathbb{R} ; x^2 - 3x - 4 = 0 \},$
		$B = \{ x : x \in \mathbb{Z} ; x^2 = x \}.$
		Find A ∪ B.
		Answer : $A \cup B = \{ -1, 0, 1, 4 \}$
Н	2	Let $A = \{ 2, 3, 4, 5, 6, 9 \},$
		$B = \{ 1, 4, 5, 6, 7, 8 \}.$
		Find A ∪ B.
		Answer: $A \cup B = \{ 1, 2, 3,, 9 \}$

Н	3	Find the union of the following sets:
		$X = \{1, 3, 5\}, Y = \{1, 2, 3\}$
		A
		Answer: $X \cup Y = \{ 1, 2, 3, 5 \}$
Н	4	Find the union of the following sets:
		$A = \{ a, e, i, o, u \}, B = \{ a, b, c \}$
		Answer: $A \cup B = \{ a, b, c, e, i, o, u \}$
Т	5	Find the union of the following sets:
		$A = \{ 1, 2, 3 \}, B = \emptyset$
		A P (4. 2. 2.)
		Answer: $A \cup B = \{1, 2, 3\}$
T	6	Find the union of the following sets:
		$A = \{x : x \text{ is a natural number and multiple of 3}\}$
		$B = \{x : x \text{ is a natural number less than 6}\}$
		Answer: $A \cup B = \{ x : x = 1, 2, 4, 5 \text{ or a multiple of } 3 \}$
Т	7	Find the union of the following sets:
		$A = \{x : x \text{ is a natural number and } 1 < x \le 6 \}$
		$B = \{x : x \text{ is a natural number and } 6 < x < 10 \}$
		Answer: $A \cup B = \{ 2, 3, 4, 5, 6, 7, 8, 9 \}$
Т	8	Let $A = \{x : x \text{ is a divisor of } 24 \}$,
1	0	B = $\{x : x \text{ is a divisor of } 18\},$
		$C = \{x : x \text{ is a divisor of 6}\}.$
		Verify the identity: $(A \cup B) \cup C = A \cup (B \cup C)$
		verify the facility. (11 0 b) 0 0 - 11 0 (b 0 c)
		Hint: $A \cup (B \cup C) = \{ 1, 2, 3, 4, 6, 8, 9, 12, 18, 24 \}$
Т	9	Let $A = \{ 1, 3, 5, 7, 9 \}$
		$B = \{ 1, 5, 6, 8 \},$
		$C = \{ 1, 4, 6, 7 \}.$
		Verify the identity: $(A \cup B) \cup C = A \cup (B \cup C)$
		Hint: $(A \cup B) \cup C = \{ 1, 3, 4, 5, 6, 7, 8, 9 \}$

2.2 – Intersection of Sets

- → A set that contains all common elements of set A and set B, is known as intersection of sets A and B.
- \rightarrow It is denoted by $\mathbf{A} \cap \mathbf{B}$ and read as "A intersection B".
- \rightarrow For example:

For, A =
$$\{ 1, 2, 3, 4, 5 \}$$
 & B = $\{ 3, 4, 5, 6, 7 \}$
 $\mathbf{A} \cap \mathbf{B} = \{ 3, 4, 5 \}$

→ Using Property Method:

$$A \cap B = \{ x : x \in A \text{ and } x \in B \}.$$

Disjoint Sets

→ Let A and B be two distinct sets.

If $A \cap B = \phi$, then set A and B are known as disjoint sets.

 \rightarrow For example:

For,
$$A = \{ 1, 2, 3, 4, 5 \}$$
, $B = \{ a, b, c, d, f \}$
 $A \cap B = \phi$

Here, A & B are disjoint sets.

→ Properties of intersection of sets:

(1) Commutative Law : $A \cap B = B \cap A$

(2) Associative Law : $(A \cap B) \cap C = A \cap (B \cap C)$

(3) Identity Law : $A \cap U = A$

(4) Idempotent Law : $A \cap A = A$

(5) Domination Law : $A \cap \phi = \phi$

(6) Distributive Laws : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Examples of Method-2.2: Intersection of Sets

С	1	$[Lot A - \{1, 2, 5, 7, 0\}]$ $[R - \{1, 5, 6, 9\}]$ $[C - \{1, 4, 6, 7\}]$
C	1	Let $A = \{1, 3, 5, 7, 9\}, B = \{1, 5, 6, 8\}, C = \{1, 4, 6, 7\}.$
		Which of the following pairs of sets are disjoint?
		(1) A and B (2) B and C (3) A and C
		Answer: None of the pairs is disjoint.
Н	2	Let $A = \{ x : x \in \mathbb{R} ; x^2 - 4 = 0 \},$
		$B = \{ x : x \in \mathbb{Z} ; x^3 = -x \}.$
		Show that A and B are disjoint sets.
Т	3	Which of the following pairs of sets are disjoint?
		(1) $X = \{ 1, 2, 3, 4 \}, Y = \{ x : x \text{ is a natural number and } 4 < x \le 6 \}$
		(2) $A = \{ a, e, i, o, u \}, B = \{ c, d, e, f \}$
		(3) $P = \{x : x \text{ is an even integer}\}, Q = \{x : x \text{ is an odd integer}\}$
		Angway (1) (2)
	4	Answer: (1), (3)
H	4	Let $A = \{ 2, 3, 4, 5, 6, 9 \},$
		$B = \{ 1, 4, 5, 6, 7, 8 \}.$
		Find A ∩ B.
		Answer : $A \cap B = \{ 4, 5, 6 \}$
С	5	Let $A = \{ x : x \text{ is a divisor of 24} \}$
		$B = \{ x : x \text{ is a divisor of } 18 \}$
		$C = \{ x : x \text{ is a divisor of } 6 \}$
		Verify the following identities:
		(1) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
		(2) $(A \cap B) \cap C = A \cap (B \cap C)$
		Hint: (1) $A \cap (B \cup C) = \{ 1, 2, 3, 6 \}$
		$(2) (A \cap B) \cap C = \{ 1, 2, 3, 6 \}$

Н	6	Let $A = \{ 1, 3, 5, 7, 9 \},$
		$B = \{ 1, 5, 6, 8 \},$
		$C = \{ 1, 4, 6, 7 \}.$
		Verify the following identities:
		(1) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
		(2) $(A \cap B) \cap C = A \cap (B \cap C)$
		Hint: (1) $A \cup (B \cap C) = \{1, 3, 5, 6, 7, 9\}$
		$(2) A \cap (B \cap C) = \{1\}$
T	7	If $A = \{3, 5, 7, 9, 11\}, B = \{7, 9, 11, 13\}, C = \{11, 13, 15\}$
		and $D = \{ 15, 17 \}$, then find the following:
		(1) A ∩ B (2) B ∩ C (3) A ∩ C ∩ D
		Answer : (1) $A \cap B = \{ 7, 9, 11 \}$
		(2) $B \cap C = \{ 11, 13 \}$
		$(3) A \cap C \cap D = \phi$
Т	8	If A = { 3, 5, 7, 9, 11 }, B = { 7, 9, 11, 13 }, C = { 11, 13, 15 }
		and $D = \{ 15, 17 \}$, then find the following:
		(1) A∩C (2) B∩D (3) A∩(B∪C)
		(2) 11116 (2) (3)
		Answer : (1) $A \cap C = \{ 11 \}$
		$(2) B \cap D = \phi$
		$(3) A \cap (B \cup C) = \{7, 9, 11\}$


```
A = \{3, 5, 7, 9, 11\}, B = \{7, 9, 11, 13\}, C = \{11, 13, 15\}
           and D = \{ 15, 17 \}, then find the following:
              (1) A \cap (B \cup D)
                                                                        (3) A∩B∩C
                                           (2) C∩D
              (4) (A \cup D) \cap (B \cup C)
           Answer: (1) A \cap (B \cup D) = \{7, 9, 11\}
                      (2) C \cap D = \{ 15 \}
                      (3) A \cap B \cap C = \{ 11 \}
                      (4) (A \cup D) \cap (B \cup C) = \{7, 9, 11, 15\}
T
     10
           Let A = \{ x : x \text{ is a divisor of } 24 \}
                B = \{ x : x \text{ is a divisor of } 18 \}
                C = \{ x : x \text{ is a divisor of } 6 \}
           Verify the following identities:
           (3) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
           (4) (A \cap B) \cap C = A \cap (B \cap C)
           Hint: (1) A \cap (B \cup C) = \{ 1, 2, 3, 6 \}
                  (2) (A \cap B) \cap C = \{1, 2, 3, 6\}
```


2.3 - Difference of Sets

- → A set that contains elements of set A which are not present in B, is known as difference of sets A and B.
- \rightarrow It is denoted by A B and read as "A minus B".
- \rightarrow For example:

For,
$$A = \{ 1, 2, 3, 4, 5 \} \& B = \{ 3, 4, 5, 6, 7 \}$$

 $A - B = \{ 1, 2 \}$
 $B - A = \{ 6, 7 \}$

→ Using Property Method:

$$A - B = \{ x : x \in A \text{ and } x \notin B \}$$
$$B - A = \{ x : x \in B \text{ and } x \notin A \}$$

- \rightarrow A B \neq B A.
- → Properties of difference of sets:
 - (1) $A B \neq B A$
 - (2) $A B = A (A \cap B)$
 - (3) $B A = B (A \cap B)$
 - (4) $A (B \cup C) = (A B) \cap (A C)$
 - (5) $A (B \cap C) = (A B) \cup (A C)$

Examples of Method-2.3: Difference of Sets

C 1 Let
$$A = \{2, 4, 6, 7, 8, 9\},\$$
 $B = \{1, 3, 4, 5, 7\},\$
 $C = \{1, 4, 7, 9, 10\}.\$
Find $B - C & A - (B \cup C)$

Answer: $A - B = \{2, 6, 8, 9\},\$
 $B - C = \{3, 5\},\$
 $A - (B \cup C) = \{2, 6, 8\}.$

Н	2	Let A = { 2, 3, 4, 5, 6, 9 },
		$B = \{ 1, 4, 5, 6, 7, 8 \}.$
		Find $A - B$, $B - A$.
		Answer: $A - B = \{ 2, 3, 9 \}, B - A = \{ 1, 7, 8 \}$
Н	3	Let $A = \{ x : x \in \mathbb{R} ; x^2 - 7x + 10 = 0 \},$
		$B = \{ x : x \in \mathbb{Z} ; \ x^2 - 3x - 10 = 0 \}.$
		Find $A - B$, $B - A$.
		Answer : $A - B = \{ 2 \}, B - A = \{ -2 \}$
Н	4	Let A = { 1, 2, 3, 4, 5 },
		$B = \{ 1, 3, 5, 6 \},$
		$C = \{ 1, 2, 3 \}.$
		Verify the following identities:
		(1) $A - (B \cup C) = (A - B) \cap (A - C)$
		(2) $A - (B \cap C) = (A - B) \cup (A - C)$
		(3) $A - (B - C) = (A - B) \cup (A \cap C)$
		Hint: (1) $A - (B \cup C) = \{4\}$
		(2) $A - (B \cap C) = \{ 2, 4, 5 \}$
		$(3) A - (B - C) = \{ 1, 2, 3, 4 \}$
Н	5	If A = { 3, 6, 9, 12, 15, 18, 21 }, B = { 4, 8, 12, 16, 20 },
		$C = \{ 2, 4, 6, 8, 10, 12, 14, 16 \}, D = \{ 5, 10, 15, 20 \}, $ then find
		(1) A – B (2) A – C (3) A – D
		Answer: (1) A – B = { 3, 6, 9, 15, 18, 21 }
		$(2) A - C = \{ 3, 9, 15, 18, 21 \}$
		$(3) A - D = \{ 3, 6, 9, 12, 18, 21 \}$

Т	6	If A = { 3, 6, 9, 12, 15, 18, 21 }, B = { 4, 8, 12, 16, 20 },
		$C = \{ 2, 4, 6, 8, 10, 12, 14, 16 \}, D = \{ 5, 10, 15, 20 \}, \text{ then find }$
		(1) B – A (2) C – A (3) D – A
		Answer: (1) $B - A = \{ 4, 8, 16, 20 \}$
		$(2) C-A=\{2, 4, 8, 10, 14, 16\}$
		$(3) D-A=\{5, 10, 20\}$
Т	7	If A = { 3, 6, 9, 12, 15, 18, 21 }, B = { 4, 8, 12, 16, 20 },
		$C = \{ 2, 4, 6, 8, 10, 12, 14, 16 \}, D = \{ 5, 10, 15, 20 \}, $ then find
		(1) B – C (2) B – D (3) C – B
		Answer: (1) $B - C = \{ 20 \}$
		$(2) B-D=\{4, 8, 12, 16\}$
		$(3) C-B = \{ 2, 6, 10, 14 \}$
Т	8	If A = { 3, 6, 9, 12, 15, 18, 21 }, B = { 4, 8, 12, 16, 20 },
		$C = \{ 2, 4, 6, 8, 10, 12, 14, 16 \}, D = \{ 5, 10, 15, 20 \}, \text{ then find}$
		(1) D – B (2) C – D (3) D – C
		Answer: (1) $D - B = \{ 5, 10, 15 \}$
		$(2) C-D=\{2, 4, 6, 8, 12, 14, 16\}$
		$(3) D-C=\{5, 15, 20\}$
		I .

2.4 – Symmetric Difference of Sets

- \rightarrow A set that contains elements of set A \cup B which are not present in A \cap B, is known as symmetric difference of sets A and B.
- \rightarrow It is denoted by **A** \triangle **B** and read as "A delta B".
- $A \Delta B = (\mathbf{A} \cup \mathbf{B}) (\mathbf{A} \cap \mathbf{B})$ or $A \Delta B = (\mathbf{A} \mathbf{B}) \cup (\mathbf{B} \mathbf{A})$
- \rightarrow For example:

For,
$$A = \{1, 2, 3, 4, 5\}$$
, $B = \{3, 4, 5, 6, 7\}$
 $A \Delta B = (A \cup B) - (A \cap B)$
 $= \{1, 2, 3, 4, 5, 6, 7\} - \{3, 4, 5\}$
 $= \{1, 2, 6, 7\}$
 $A \Delta B = (A - B) \cup (B - A)$
 $= \{1, 2\} \cup \{6, 7\}$
 $= \{1, 2, 6, 7\}$

→ Using Property Method:

$$A \Delta B = \{ x : x \in A \cup B \text{ and } x \notin A \cap B \}$$

 $A \Delta B = \{ x : x \in A - B \text{ or } x \in B - A \}$

- → Properties of symmetric difference of sets:
 - (1) Commutative Law : $A \Delta B = B \Delta A$
 - (2) Associative Law : $(A \triangle B) \triangle C = A \triangle (B \triangle C)$
 - (3) $A \Delta A = \phi$
 - (4) $A \Delta \phi = A$

Examples of Method-2.4: Symmetric Difference of Sets

С	1	Let $A = \{ 1, 2, 3, 4, 5 \}$. Verify the identity: $A \Delta \varphi = A$.
Н	2	Let A = { 2, 3, 4, 5, 6, 9 },
		$B = \{ 1, 4, 5, 6, 7, 8 \}.$
		Find A Δ B.
		Answer: $A \triangle B = \{ 1, 2, 3, 7, 8, 9 \}$
Н	3	Let $A = \{ x : x \in \mathbb{R} ; x^2 - 3x - 4 = 0 \},$
		$B = \{ x : x \in \mathbb{Z} ; x^2 = x \}.$
		Find A Δ B.
		Answer : $A \triangle B = \{ -1, 0, 1, 4 \}$
Т	4	Let $A = \{ 1, 2, 3, 4, 5 \},$
		$B = \{ 1, 3, 5, 6 \},$
		$C = \{ 1, 2, 3 \}.$
		Verify the following identities:
		(1) $A \Delta B = B \Delta A$
		(2) $(A \Delta B) \Delta C = A \Delta (B \Delta C)$
		Hint: (1) $A \Delta B = \{ 2, 4, 6 \}$
		(2) $(A \Delta B) \Delta C = \{1, 3, 4, 6\}$

2.5 – Complement of Set

- → A set that contains elements of universal set U which are not present in A, is known as complement of set A.
- \rightarrow It is denoted by A' or \overline{A} and read as "A complement" or "A bar" respectively.
- \rightarrow For example:

For,
$$U = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$$
, $A = \{ 3, 4, 5, 6, 7 \}$.
 $A' = \{ 1, 2, 8, 9, 10 \}$

→ Using Property Method:

$$A' = \{x : x \in U \text{ and } x \notin A\} = U - A$$

- → Properties of complement of set:
 - (1) (A')' = A
 - (2) $(U)' = \phi$
 - (3) $(\phi)' = U$
 - (4) $A \cap A' = \phi$
 - (5) $A \cup A' = U$
 - (6) $A \Delta U = A'$
 - (7) $A B = A (A \cap B) = A \cap B'$
 - (8) $B A = B (A \cap B) = B \cap A'$
 - (9) De Morgen's Law: $(A \cup B)' = A' \cap B'$
 - (10) De Morgen's Law: $(A \cap B)' = A' \cup B'$

Examples of Method-2.5: Complement of Sets

	<u> </u>		
С	1	Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $A = \{1, 3, 5, 7, 9\}$ $B = \{1, 5, 6, 8\}$ Verify the following identities: (1) $(A \cup B)' = A' \cap B'$ (2) $(A \cap B)' = A' \cup B'$ Hint: (1) $(A \cup B)' = \{2, 4, 10\}$ (2) $(A \cap B)' = \{2, 3, 4, 6, 7, 8, 9, 10\}$	
Н	2	Let $U = \{ 2, 4, 6, 8, 10 \}$, $A = \{ 2, 4, 6 \}$, $B = \{ 8, 10 \}$. Verify De Morgan's laws for given sets.	
Н	3	Let $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3\},$ $B = \{3, 4, 5\}.$ Find A', B', A' \cap B'. Answer: A' = \{1, 4, 5, 6\}, B' = \{1, 2, 6\}, $A' \cap B' = \{1, 6\}$	
T	4	Let $U = \{1, 2, 3,, 20\}$ $A = \{x : x \text{ is a multiple of 3, } x \le 20\}$ $B = \{x : x \text{ is a multiple of 2, } x \le 20\}$ Verify the following identities: (1) $(A \cup B)' = A' \cap B'$ (2) $(A \cap B)' = A' \cup B'$ (3) $A - B = A \cap B'$ (4) $B - A = B \cap A'$ Hint: (1) $(A \cup B)' = \{1, 5, 7, 11, 13, 17, 19\}$ $(2) (A \cap B)' = \{x : x \text{ is not a multiple of 6, } x \le 20\}$ $(3) A - B = \{3, 9, 15\}$ $(4) B - A = \{2, 4, 8, 10, 14, 16, 20\}$	

T | 5 | Let U = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, $A = { 1, 2, 3 },$ $B = { 3, 4, 5 },$ $C = { 1, 3, 5, 6, 7 }.$ Find A', B', C', A \cap B' Answer: A' = { 4, 5, 6, 7, 8, 9, 10 }, B' = { 1, 2, 6, 7, 8, 9, 10 }, $C' = { 2, 4, 8, 9, 10 },$ A \cap B' = { 1, 2 }

Method - 3 → Venn Diagram

Venn Diagram

- → The relationship between sets can be represented using diagrams are known as Venn diagram.
- → Venn diagram is named after the English logician, John Venn.
- → In Venn diagram, the universal set is represented by rectangle and its subsets usually by circles.

→ Venn diagram of some fundamental operations between **two** sets are drawn below:

(1) Union of Sets

(2) Intersection of Sets

(3) Difference of Sets

(4) Symmetric Difference of Sets

(5) Complement of Set

→ Venn diagram of some fundamental operations between **three** sets are drawn below:

Examples of Method-3: Venn Diagram

H 2 Draw a combine Venn diagram for

$$U = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$$

$$A = \{ 2, 3, 4, 5, 6, 9 \}$$

$$B = \{ 1, 4, 5, 6, 7, 8 \}$$

Answer:

T 3 Draw a combine Venn diagram for

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\},\$$

$$A = \{ 1, 2, 3, 8 \},\$$

$$B = \{ 2, 3, 4, 5 \},\$$

$$C = \{ 1, 3, 5, 6, 7 \}.$$

Answer:

C | 4 | Prove below identity using Venn diagram.

$$(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

Answer:

Prove $(A \cap B) \cup (A - B) = A$ using Venn diagram. Н **Answer**: T Prove $B - A = B \cap A'$ using Venn diagram. **Answer**: Prove $(A \cup B)' = A' \cap B'$ using Venn diagram. C 7 **Answer**: Prove $(A \cap B)' = A' \cup B'$ using Venn diagram. Η 8 **Answer**:

T | 9 | Prove $\phi' \cap A = A$ using Venn diagram.

Answer:

C 10 Prove below identity using Venn diagram.

$$A - (B \cup C) = (A - B) \cap (A - C)$$

Answer:

H 11 Prove below identity using Venn diagram.

$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

Answer:

T 12 Prove below identity using Venn diagram. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Answer:

U

C

Method - 4 ---> Cardinality of a Set

Cardinality of Set

- \rightarrow The number of elements in a finite set A is known as cardinality of set A.
- \rightarrow Cardinality of set A is denoted by |A| or n(A) and read as "cardinality of A".
- \rightarrow For example:

Let
$$A = \{ 1, 2, 3, 5, x \}$$

No. of elements in set A are 5.

Therefore, |A| = 5.

→ Cardinality of set A is also known as Cardinal number of set A.

Important Results of Cardinality

- → Let A, B and C be finite sets in a finite universal set U.
 - (1) The Inclusion-Exclusion Principle for two sets A and B:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

(2) The Inclusion-Exclusion Principle for three sets A, B and C:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C|$$

 $+ | A \cap B \cap C |$

(3)
$$|A - B| = |A| - |A \cap B|$$

(4)
$$|A \Delta B| = |A| + |B| - 2 |A \cap B|$$

(5)
$$|A'| = |U| - |A|$$

(6)
$$|A' \cap B'| = |(A \cup B)'|$$
 { :: De Morgen's Law }
= $|U| - |A \cup B|$

(7)
$$|A' \cup B'| = |(A \cap B)'|$$
 { :: De Morgen's Law}
= $|U| - |A \cap B|$

(8)
$$|A' \cap B' \cap C'| = |(A \cup B \cup C)'|$$
 { :: De Morgen's Law }
= $|U| - |A \cup B \cup C|$

(9)
$$|A' \cup B' \cup C'| = |(A \cap B \cap C)'|$$
 { :: De Morgen's Law}
= $|U| - |A \cap B \cap C|$

Examples of Method-4: Cardinality of Set

С	1	Let A and B are two subsets of universal set U, such that
		$ A = 20$, $ B = 30$, $ U = 80$, $ A \cap B = 10$. Find $ A' \cap B' $.
		Answer: $ A' \cap B' = 40$
Н	2	Let A and B be sets, such that
		$ A = 50, B = 50, A \cup B = 75.$ Find $ A \cap B $.
		Answer: A ∩ B = 25
Т	3	Let A and B are sets, such that
		$ A = 12, A \cup B = 36, A \cap B = 8.$ Find $ B $.
		Answer: B = 32
С	4	Among 50 patients admitted to a hospital, 25 are diagnosed with pneumonia,
		30 with bronchitis and 10 with both pneumonia and bronchitis.
		(1) Calculate the number of patients diagnosed with pneumonia or
		bronchitis or both.
		(2) Calculate the number of patients not diagnosed with pneumonia or
		bronchitis.
		Answer: (1) 45 patients diagnosed with pneumonia or bronchitis
		or both.
		(2) 5 patients not diagnosed with pneumonia or bronchitis
Н	5	In a school there are 20 teachers who teach mathematics or physics. From
		which 12 teach mathematics and 4 teach both physics and mathematics. How
		many teach physics?
		Answer: 12 teachers teach physics
Т	6	• •
1	6	In a class of 35 students, 24 like to play cricket and 16 like to play football.
		Also, each student likes to play at least one of the two games. How many
		students like to play both cricket and football?
		Answer: 5 students like to play both cricket and football
	<u> </u>	7 7

Т	7	In a survey of 600 students in a school, 150 students were found to be taking
		tea and 225 taking coffee, 100 were taking both tea and coffee. Find how
		many students were taking neither tea nor coffee?
		Answer: 325 students were taking neither tea nor coffee
С	8	In a survey it was found that 21 people liked product A, 26 liked product B
		and 29 liked product C. If 14 people liked products A and B, 12 people liked
		products C and A, 14 people liked products B and C and 8 liked all the three
		products. Find how many liked product C only.
		Answer: 11 people liked product C only
Н	9	Among 18 students in a room, 7 study mathematics, 10 study science and 10
		study computer programming. Also, 3 study mathematics and science, 4
		study mathematics and computer programming, and 5 study science and
		computer programming. We know that 1 student studies all three subjects.
		How many students study none of the three subjects?
		Answer: 2 students study none of the three subjects
Н	10	A survey in a year 1986 asked households whether they had a VCR, a CD
		player or cable TV. 40 had a VCR, 60 had a CD player and 50 had cable TV. 25
		owned VCR and CD player. 30 owned a CD player and had cable TV. 35 owned
		a VCR and had cable TV. 25 households had all three. How many households
		had at least one of the three?
		Answer: 85 households had at least one of the three

Т	11	It was found that in the first-year computer science class of 80 students, 50
		knew COBOL, 55 C language and 46 PASCAL. It was also known that 37 knew
		C language & COBOL, 28 C language & PASCAL and 25 PASCAL & COBOL. 7
		students however knew none of the languages.
		(1) How many knew all the three languages?
		(2) How many knew exactly two languages?
		(3) How many knew exactly one language?
		Answer: (1) 12 students all the three languages
		Allswer. (1) 12 students an the three languages
		(2) 54 students knew exactly two languages
		(3) 7 students exactly one language
Т	12	An advertising agency finds that among its 170 clients, 115 use television,
		110 use radio and 130 use magazines. Also 85 use television and magazines,
		75 use television and radio, 95 use radio and magazines, 70 use all the three.
		(1) How many uses only radio?
		(2) How many uses only television?
		(3) How many uses television and magazine but not radio?
		Answer: (1) 10 clients uses only radio
		(2) 25 clients uses only television
		(3) 15 clients uses television and magazine but not radio

Method - 5 → Power Set and Cartesian Product

Power Set

- → Given a set A, the set of all the subsets of a set A is known as power set of set A.
- \rightarrow It is denoted by P(A) and read as "Power set of A".

i. e.,
$$P(A) = \{ X : X \subseteq A \}.$$

 \rightarrow For example:

Let
$$A = \{a, b, c\}$$
, then

$$P(A) = \left\{ \phi, A, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\} \right\}$$

- → Properties of power set:
 - For any set A,
 - (1) $\phi \in P(A) \& A \in P(A)$.
 - (2) $X \in P(A) \Leftrightarrow X \subseteq A$.
 - (3) If set A has **n** elements, then $| P(A) | = 2^n$

and
$$|P(P(A))| = 2^{(2^n)}$$

• For example:

Let
$$A = \{ a, b, c \}$$
.

Here, set A has 3 elements.

$$\Rightarrow$$
 | P(A) | = $2^3 = 8$

$$\Rightarrow |P(P(A))| = 2^{(2^3)} = 2^8 = 256$$

Cartesian product

- → Cartesian product of sets is set of ordered pair.
- → Cartesian product of sets A and B is denoted by **A** × **B** which is read as "A cross B" and defined as follow:

$$A \times B = \{ (a, b) : a \in A \text{ and } b \in B \}$$

→ Cartesian product of sets B and A is denoted by **B** × **A** which is read as "B cross A" and defined as follow:

$$B \times A = \{ (b, a) : b \in B \text{ and } a \in A \}$$

 \rightarrow For example:

Let
$$A = \{a, b\}$$
 and $B = \{1, 2\}$.

• Cartesian product of set A and B is

$$A \times B = \{a, b\} \times \{1, 2\}$$

= \{(a, 1), (a, 2), (b, 1), (b, 2)\}

Similarly, cartesian product of set B and A is

$$B \times A = \{1, 2\} \times \{a, b\}$$

= \{(1, a), (1, b), (2, a), (2, b)\}

- → Properties of Cartesian Product:
 - (1) If $A = \phi$ or $B = \phi$, then $A \times B = \phi$.
 - (2) If |A| = m and |B| = n, then $|A \times B| = m \cdot n$.
 - (3) $A \times B \neq B \times A$.
 - (4) $A \times B = B \times A$ if and only if A = B.
 - (5) Distributive properties:
 - $\bullet \quad A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - $\bullet \quad A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - $(A \cap B) \times C = (A \times C) \cap (B \times C)$
 - $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Examples of Method-5: Power Set and Cartesian Product

С	1	Give the power sets of following set:
		$B = \{x : x \text{ is a prime number, } x \in \mathbb{N} \text{ and } x < 8\}$
		Answer: $B = \{ 2, 3, 5, 7 \},$
		$P(B) = \left\{ \begin{array}{l} \varphi, \ \{2\}, \ \{3\}, \ \{5\}, \ \{7\}, \ \{2,3\}, \ \{2,5\}, \\ \{2,7\}, \ \{3,5\}, \ \{3,7\}, \ \{5,7\}, \ \{2,3,5\} \\ \{3,5,7\}, \ \{5,7,2\}, \ \{7,2,5\}, \ \{2,3,5,7\} \end{array} \right\}$
Н	2	Give the power set of following set:
		$A = \{ x : x \text{ is multiple of 3, } x \in \mathbb{N} \text{ and } x \le 12 \}$
		Answer: A = { 3, 6, 9, 12 }
		$P(A) = \left\{ \begin{array}{l} \varphi, \ \{3\}, \ \{6\}, \ \{9\}, \ \{12\}, \{3, 6\}, \ \{3, 9\}, \\ \{3, 12\}, \ \{6, 9\}, \ \{6, 12\}, \ \{9, 12\}, \ \{3, 6, 9\}, \\ \{6, 9, 12\}, \ \{9, 12, 3\}, \{12, 3, 6\}, \ \{3, 6, 9, 12\} \end{array} \right\}$
Т	3	Give the power set of $A = \{ 1, 2, 3 \}$.
		Answer: $P(A) = \left\{ \phi, A, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\} \right\}$
С	4	Let $A = \{ a, b, c, d, e \}$ be a set. What is cardinality of $P(A)$ and $P(P(A))$?
		A
		Answer: $ P(A) = 2^5 = 32$, $ P(P(A)) = 2^{32} = 4294967296$
Н	5	Let $A = \{ \alpha \mid \alpha \text{ is consonant of alphbets } \}$ be a set. What is cardinality of $P(A')$
		and $P(P(A'))$?
		Answer: $ P(A') = 2^5 = 32$, $ P(P(A')) = 2^{32} = 4294967296$
Т	6	Let $A = \{ 1, 2, 3, 4 \}$ be a set. What is cardinality of $P(A)$ and $P(P(A))$?
		Answer: $ P(A) = 2^4 = 16$, $ P(P(A)) = 2^{16} = 65,536$

C	7	Consider the sets $A = \{a, b, c\}, B = \{1, 2\} \text{ and } C = \{b, c, d, e\}.$
		Write $A \times B$, $(A \times B) \cap (C \times B)$.
		Anguaga Av. B. ((a.1), (a.2), (b.1), (b.2), (a.1), (a.2))
		Answer: $A \times B = \{ (a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2) \}$
		$(A \times B) \cap (C \times B) = \{ (b, 1), (b, 2), (c, 1), (c, 2) \}$
Н	8	Let $A = \{ x : x \text{ is vowel in English alphabates } \}$ be a set. Write $A \times A$.
		Answer: $A = \{ a, e, i, o, u \},$
		$\mathbf{A} \times \mathbf{A} = \{ (\mathbf{x}, \mathbf{y}) : \mathbf{x} \in \mathbf{A}, \mathbf{y} \in \mathbf{A} \}$ OR
		(a, a), (a, e), (a, i), (a, o), (a, u),
		(e, a), (e, e), (e, i), (e, o), (e, u),
		$\mathbf{A} \times \mathbf{A} = \left\{ (\mathbf{i}, \mathbf{a}), (\mathbf{i}, \mathbf{e}), (\mathbf{i}, \mathbf{i}), (\mathbf{i}, \mathbf{o}), (\mathbf{i}, \mathbf{u}), \right\}$
		(o, a), (o, e), (o, i), (o, o), (o, u),
		$A \times A = \left\{ \begin{array}{l} (a, a), \ (a, e), \ (a, i), \ (a, o), \ (a, u), \\ (e, a), \ (e, e), \ (e, i), \ (e, o), \ (e, u), \\ (i, a), \ (i, e), \ (i, i), \ (i, o), \ (i, u), \\ (o, a), \ (o, e), \ (o, i), \ (o, o), \ (o, u), \\ (u, a), \ (u, e), \ (u, i), \ (u, o), \ (u, u) \end{array} \right\}$
Т	9	Let $A = \{ \alpha, \beta \}$ and $B = \{ 1, 2, 3 \}$.
		Write $B \times B$, $A \times A$ and $(A \times B) \cap (B \times A)$.
		$ \begin{array}{c} (1, 1), (1, 2), (1, 3), \\ (2, 4), (2, 2), (2, 3) \end{array} $
		Answer: B × B = $\{(2, 1), (2, 2), (2, 3), (2,$
		Answer: B × B = $\begin{cases} (1, 1), & (1, 2), & (1, 3), \\ (2, 1), & (2, 2), & (2, 3), \\ (3, 1), & (3, 2), & (3, 3), \end{cases}$
		$\mathbf{A} \times \mathbf{A} = \{ (\alpha, \alpha), (\alpha, \beta), (\beta, \alpha), (\beta, \beta) \},$
		$(\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{A}) = \mathbf{\phi}$

T | 10 | Consider the following sets:

$$A = \{ 1, 3, 5 \},\$$

$$B = \{ 2, 4, 6, 8 \},$$

$$C = \{ b, c \}.$$

Verify the following statements.

(1)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(2)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(3)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

(4)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

 $Hint: (1) \ A \times (B \cap C) = \phi$

$$(2) \ \mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) = \left\{ \begin{aligned} &(1,\, 2), \ \ (1,\, 4), \ \ (1,\, 6), \ \ (1,\, 8), \ \ (1,\, \mathbf{b}), \\ &(1,\, \mathbf{c}), \ \ (3,\, 2), \ \ (3,\, 4), \ \ (3,\, 6), \ \ (3,\, 8), \\ &(3,\, \mathbf{b}), \ \ (3,\, \mathbf{c}), \ \ (5,\, 2), \ \ (5,\, 4), \ \ (5,\, 6), \\ &(5,\, 8), \ \ (5,\, \mathbf{b}), \ \ (5,\, \mathbf{c}) \end{aligned} \right.$$

(3) $(A \cap B) \times C = \phi$

$$(4) \ (A \cup B) \times C = \left\{ \begin{array}{l} (1, \, b), \ (2, \, b), \ (3, \, b), \ (4, \, b), \\ (5, \, b), \ (6, \, b), \ (8, \, b), \\ (1, \, c), \ (2, \, c), \ (3, \, c), \ (4, \, c), \\ (5, \, c), \ (6, \, c), \ (8, \, c) \end{array} \right\}$$

Part - II ---> Function

Introduction

- → One of the most important concepts in mathematics is function.
- → Function is a relation from one set to another set.
- → Let understand with it an example.
- → Consider different shapes with different color as follow:

→ Now, making pair of shape with its appropriate color.

→ Above example illustrates function that associate colored shape to its color.

→ We can view a function as machine that can take an object (Input) and turn it into a different object (Output).

 \rightarrow For example:

 $5 \cdot (2) + 6$

Output: 16

Method - 6 → Definitions

Function or Mapping

- \rightarrow Let A and B be two nonempty sets.
- → If **every element** of A is assigned **to unique** element of set B, then such assignment is known as function from A to B.
- \rightarrow Function is written as $\mathbf{f} : \mathbf{A} \rightarrow \mathbf{B}$ and read as "function f from A to B."
- \rightarrow For example:

Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d\}$ be two sets, consider following relations from set A to set B:

- Relation f₁ is a function because every element of set A are related to unique element of B.
- Relation f₂ is a function because every element of set A are related to unique element of B.
- Relation f₃ is **not** a function because one element of set A '3' is **not related** to any element of B.
- Relation f₄ is **not** a function because one element of set A '4' is related to **more** than one element of B.
- \rightarrow Let's operate function f on an element $a \in A$, it is denoted as f(a) and read as "f of a".
- \rightarrow If f(a) = b then it is read as "function f maps a to b".

 \rightarrow Let $f : A \rightarrow B$.

If |A| = m and |B| = n, then we can create n^m different functions from set A to B.

- For example:
 - Let f: A → B be a function such that | A | = 4 and | B | = 5.
 Number of different functions can be generated is (5)⁴ = 625.
 - Let f: B → A be a function such that | A | = 4 and | B | = 5.
 Number of different functions can be generated is (4)⁵ = 1024.

Domain of a Function

- \rightarrow Let $f : A \rightarrow B$ be a function.
- → Set A is known as domain of function f.
- \rightarrow Domain of function f is denoted by D_f and read as "domain of function f".

$$f: \mathbf{A} \to \mathbf{B}$$
Domain (D_f)

Codomain of a Function

- \rightarrow Let $f : A \rightarrow B$ be a function.
- → Set B is known as **codomain** of function f.
- \rightarrow Codomain of function f is denoted by C_f and read as "codomain of function f".

$$f: \mathbf{A} \to \mathbf{B}$$
Codomain (C_f)

Image of an element under function

- \rightarrow Let $f : A \rightarrow B$ be function from set A to B.
- \rightarrow Let $\mathbf{f}(\mathbf{a}) = \mathbf{b}$, where $\mathbf{a} \in A$ and $\mathbf{b} \in B$.
- → Here, the element "b" is known as image of an element "a" under the function f.
- → Furthermore, an element "a" is preimage of the element "b".

Range of function or Image of function

- \rightarrow The set of all images of the elements of set A under function $f: A \rightarrow B$ is known as range or image of function f.
- \rightarrow Range or image of function f is denoted by $\mathbf{R_f}$ or $\mathbf{Im(f)}$ or $\mathbf{f(A)}$ and read as "range of function f" or "image of A" or "function of A".
- \rightarrow i.e., Range of function f is $R_f = \{ b : b \in B \text{ such that } f(a) = b \text{ for some } a \in A \}.$
- \rightarrow For every function $f : A \rightarrow B$,

 $R_f \subseteq B$ (Codomain C_f).

 \rightarrow For example:

Consider function $f_1 : A \rightarrow B$ and $f_2 : A \rightarrow B$.

- For function f_1 :
 - Function f_1 can be written as follow:

$$f_1(1) = a$$
, $f_1(2) = b$, $f_1(3) = d$, $f_1(4) = c$

or

$$f_1 = \{ (1, a), (2, b), (3, d), (4, c) \}$$

- Domain of function $f_1 : D_{f_1} = \{ 1, 2, 3, 4 \}$
- Codomain of function $f_1 : C_{f_1} = \{ a, b, c, d \}$
- $\blacksquare \qquad \text{Range of function } f_1 \qquad : R_{f_1} = \{ \text{ a, b, c, d} \}$

- For function f₂:
 - Function f₂ can be written as follow:

$$f_2(1) = a$$
, $f_2(2) = c$, $f_2(3) = c$, $f_2(4) = d$

or

$$f_2 = \{ (1, a), (2, c), (3, c), (4, d) \}$$

- Domain of function f_2 : $D_{f_2} = \{ 1, 2, 3, 4 \}$
- Codomain of function $f_2 : C_{f_2} = \{ a, b, c, d \}$
- Range of function f_2 : $R_{f_2} = \{ a, c, d \}$
- → Following are some examples of function.
 - $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$
 - $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x$
 - $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \log x$

Examples of Method-6: Definitions

C | 1 | Which of the following relations are function? If it is, determine its domain and range.

(1)
$$f = \{(4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$$

(2)
$$g = \{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$$

(3)
$$h = \{ (1, 3), (1, 5), (2, 5) \}$$

Answer: (1) f is a function,

$$Domain \ D_f = \{\ 4,\ \ 6,\ \ 8,\ \ 10,\ \ 12,\ \ 14\ \},$$

Range
$$R_f = \{ 2, 3, 4, 5, 6, 7 \}$$

(2) g is a function,

$$Domain \ D_g = \{\ 2,\ \ 5,\ \ 8,\ \ 11,\ \ 14,\ \ 17\ \},$$

Range
$$R_g = \{ 1 \}$$

(3) h is not a function.

- H 2 Which of the following relations are function? If it is, determine its domain and range.
 - (1) $f = \{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$
 - (2) $g = \{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$
 - (3) $h = \{ (1, 3), (1, 5), (2, 5) \}$
 - Answer: (1) f is a function,

Domain
$$D_f = \{ 2, 5, 8, 11, 14, 17 \},$$

Range
$$R_f = \{ 1 \}$$

(2) g is a function,

$$Domain \ D_g = \{\ 2,\ \ 4,\ \ 6,\ \ 8,\ \ 10,\ \ 12,\ \ 14\ \},$$

Range
$$R_g = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

- (3) h is not a function.
- T 3 Which of the following relations are function? If it is, determine its domain and range.
 - (1) $f = \{(1, 2), (3, 2), (5, 2), (7, 2), (9, 2)\}$
 - (2) $g = \{(1, 1), (2, 7), (3, 3), (4, 5), (5, 4), (6, 6), (7, 2)\}$
 - (3) $h = \{(2,3), (2,5), (3,5)\}$
 - Answer: (1) f is a function,

Domain
$$D_f = \{ 1, 3, 5, 7, 9 \},\$$

Range
$$R_f = \{ 2 \}$$

(2) g is a function,

Domain
$$D_g = \{ 1, 2, 3, 4, 5, 6, 7 \},\$$

$$Range \ R_g = \{\ 1,\ \ 7,\ \ 3,\ \ 5,\ \ 4,\ \ 6,\ \ 2\ \}$$

(3) h is not a function.

Method - 7 → Types of Functions

(1) Real Function

- \rightarrow If **range** of any function is either \mathbb{R} or a subset of \mathbb{R} , then it is known as a **real valued** function
- \rightarrow For example:

$$f:\mathbb{N}\to\mathbb{N},\ f(x)=x^2$$
 is real valued function as $R_f=\mathbb{N}\subset\mathbb{R}$

- \rightarrow Further, if **domain** of any function f is either \mathbb{R} or a subset of \mathbb{R} , it is known as a **real** function.
- \rightarrow For example:

$$f: \mathbb{N} \to \mathbb{N}$$
, $f(x) = x^2$ is real function as $D_f = \mathbb{N} \subset \mathbb{R}$

(2) Identity function

- \rightarrow Let A be any nonempty set.
- \rightarrow The function $f: A \rightarrow A$, $f(\mathbf{x}) = \mathbf{x}$, $\forall x \in A$ is known as identity function on set A.
- \rightarrow Identity function on set A is denoted by I_A and read as "identity function on set A".
- → This function maps any element of A to itself.
- → Range of identity function f is its codomain.

i.e.
$$R_f = Codomain$$

 \rightarrow For example:

Let
$$A = \{ a, b, c \}.$$

Identity function on A is $I_A : A \rightarrow A$, which is defined as follow:

$$f(a) = a$$
, $f(b) = b$, $f(c) = c$.

(3) Constant function

- → A function whose range is singleton set is known as constant function.
- → Thus, a function $f : A \to B$, $f(\mathbf{x}) = \mathbf{c}$, $\forall \mathbf{x} \in A$ where $\mathbf{c} \in B$, is known as a constant function.
- \rightarrow For example:

Let
$$A = \{5, 6, 7, 8\}$$
 and $B = \{2, 3, 4\}$.

A function $f : A \rightarrow B$, which is defined as f(x) = 3

Range of function $f: R_f = \{3\}$

(4) Even function

- \rightarrow A function $f : A \rightarrow B$ is known as an even function if $f(-x) = f(x), \forall x \in A$.
- \rightarrow For example:

Let
$$f : \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$.

Now,
$$f(-x) = (-x)^2 = x^2 = f(x)$$

So,
$$f(-x) = f(x)$$

Thus, $f(x) = x^2$ is an even function.

(5) Odd function

- → A function $f : A \to B$ is known as an odd function if f(-x) = -f(x), $\forall x \in A$.
- \rightarrow For example:

Let
$$f : \mathbb{R} \to \mathbb{R} : f(x) = x^3$$
.

Now,
$$f(-x) = (-x)^3 = -x^3 = -f(x)$$

So,
$$f(-x) = -f(x)$$

Thus, $f(x) = x^3$ is an odd function.

(6) Modulus function

- $\rightarrow \quad \text{A function } f: \mathbb{R} \rightarrow \mathbb{R}, \ f(x) = \left\{ \begin{array}{c} x \, ; \, x \geq 0 \\ & \text{is known as a modulus function.} \\ -x \, ; \, x < 0 \end{array} \right.$
- \rightarrow It is denoted by |x| and read as "modulus of x" or "absolute value of x".
- \rightarrow For example:
 - Let x = 5, |5| = 5 {: 5 > 0}
 - Let x = -2.5 |-2.5| = -(-2.5) { : -2.5 < 0 } = 2.5
- \rightarrow The range of modulus function is $R_f = \mathbb{R}^+ \cup \{0\}$.

(7) Greatest integer function or Floor function

- \rightarrow A function $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = \max\{ n \in \mathbb{Z} : n \le x \}$, $\forall x \in \mathbb{R}$ is known as a greatest integer function or floor function.
- \rightarrow It is denoted by [x] and read as "floor value of x".
- \rightarrow For example:

$$[1.6] = 1,$$
 $[2] = 2,$ $[-1.4] = -2$

 \rightarrow The range of floor function is $R_f = \mathbb{Z}$.

(8) Least integer function or Ceiling function

- → A function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \min\{n \in \mathbb{Z} : n \ge x\}$, $\forall x \in \mathbb{R}$ is known as a least integer function or ceiling function.
- \rightarrow It is denoted by [x] and read as "ceiling value of x".

- \rightarrow For example:
- \rightarrow [1.2] = 2, [3] = 3, [-1.7] = -1

- $\rightarrow \quad \text{The range of this function is } R_f = \mathbb{Z}.$
- (9) Integer value function
- \to A function $f: \mathbb{R} \to \mathbb{R}$, f(x) = Integer value of x, $\forall x \in \mathbb{R}$ is known as integer value function.
- \rightarrow It is denoted by **INT**(x) and read as "integer value of x".
- \rightarrow This function converts any real number x into an integer by deleting the fractional part of the number.
- \rightarrow For example:

$$INT(\pi) = INT(3.14159) = 3, INT(7) = 7,$$

$$INT(\sqrt{5}) = INT(2.2361) = 2$$
, $INT(-8.5) = -8$,

Examples of Method-7: Types of Functions

С	1	Determine whether given real valued functions are even or odd.
		$f(x) = 2x^2$ and $h(x) = 2x - 1$.

Answer: f(x) is even function and

h(x) is neither even nor odd function..

H 2 Determine whether given real valued functions are even or odd.

$$f(x) = \frac{2x^2}{3}$$
 and $h(x) = \frac{2x-1}{3x+1}$.

Answer: f(x) is even function and

h(x) is neither even nor odd function..

Т	3	Determine whether given real valued functions are even or odd.
		$f(x) = 3x^4$ and $g(x) = 5x - 1$.
		Answer: $f(x)$ is even function and
		g(x) is neither even nor odd function.
С	4	Find value of [2.4], [-8.71], [4.5], [-7.23] & INT(3.2).
		Answer: $[2.4] = 3$, $[-8.71] = -8$, $[4.5] = 4$, $[-7.23] = -8$,
		INT(3.2) = 3
Н	5	Find value of [3.6], [-9.22], [6.6], [-7.23] & INT(6.6).
		Answer: $[3.6] = 4$, $[-9.22] = -9$, $[6.6] = 6$, $[-9.23] = -10$,
		INT(3.2) = 6
Т	6	Find value of [4.56], [-3.7], [6.4], [-9.10] & INT(4.5).
		Answer: $[4.56] = 5$, $[-3.7] = -3$, $[6.4] = 6$, $[-9.1] = -10$
		INT(4.5) = 4
С	7	Let $X = \{-1, 0, 2, 4, 7\}$. Find $f(X)$ if $f(x) = \left\lfloor \frac{x^2 + 1}{3} \right\rfloor$ for all $x \in X$.
		Answer: $f(X) = \{ 0, 1, 5, 16 \}$
Н	8	Let $X = \{-3, -2, -1, 0, 1\}$. Find $f(X)$ if $f(x) = \left\lfloor \frac{x^3 - 1}{2} \right\rfloor$ for all $x \in X$.
		Answer: $f(X) = \{-14, -5, -1, 0\}$
Т	9	Let S = { 0, 1, 3, 4, 5 }. Find f(S) if $f(x) = \left[\frac{x^2}{2}\right]$ for all $x \in S$
	10	Answer: $f(S) = \{0, 1, 5, 8, 13\}$
С	10	Let f, g: $\mathbb{R} \to \mathbb{R}$, f(x) = $x^2 - 2x + 1$, g(x) = $ 2x^3 - 3x $,
		then find $f(1) \& g(-3)$.
		Answer: $f(1) = 0$, $g(-3) = 45$

Н	11	If $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2 x - -x $, then find $f(3)$, $f\left(\frac{1}{2}\right) \& f(-3)$.
		Answer: $f(3) = 3$, $f(\frac{1}{2}) = \frac{1}{2}$, $f(-3) = 3$
Т	12	For the function $f(x) = \frac{ 3x^3 + 5x - 6 }{5x^2 + 1}$. Evaluate $f(-1)$ & $f(2)$.
		Answer: $f(-1) = \frac{7}{3}$, $f(2) = \frac{4}{3}$

Method - 8 --- Algebra of Real Functions

Addition of Functions

- \rightarrow Let f : A \rightarrow \mathbb{R} and g : B \rightarrow \mathbb{R} are two real functions with A \cap B \neq ϕ .
- → Then, addition of functions is

$$(f+g):(A\cap B)\to\mathbb{R}$$
 and defined as

$$(f+g)(x) = f(x) + g(x), \forall x \in A \cap B$$

 \rightarrow For example:

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are two real functions defined as

$$f(x) = x^2 + 2x + 1$$
, $g(x) = x + 2$.

$$(f+g)(x) = f(x) + g(x)$$

= $(x^2 + 2x + 1) + (x + 2)$
= $x^2 + 2x + 1 + x + 2$
= $x^2 + 3x + 3$

Subtraction of Functions

- \rightarrow Let $f : A \rightarrow \mathbb{R}$ and $g : B \rightarrow \mathbb{R}$ are two real functions with $A \cap B \neq \phi$.
- → Then, subtraction of functions is

$$(f-g):(A\cap B)\to\mathbb{R}$$
 and defined as

$$(f-g)(x) = f(x) - g(x), \forall x \in A \cap B$$

 \rightarrow For example:

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are two real functions defined as

$$f(x) = x^2 + 2x + 1$$
, $g(x) = x + 2$.

$$(f-g)(x) = f(x) - g(x)$$

= $(x^2 + 2x + 1) - (x + 2)$
= $x^2 + 2x + 1 - x - 2$
= $x^2 + x - 1$

Multiplication of Functions

- \rightarrow Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ are two real functions with $A \cap B \neq \phi$.
- → Then, multiplication of functions is

$$(f \cdot g) : (A \cap B) \to \mathbb{R}$$
 and defined as

$$(f \cdot g)(x) = f(x) \cdot g(x), \forall x \in A \cap B$$

 \rightarrow For example:

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are two real functions defined as

$$f(x) = 2x + 1$$
, $g(x) = x - 2$.

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

= $(2x + 1) \cdot (x - 2)$
= $2x^2 - 4x + x - 2$
= $2x^2 - 3x - 2$

Division of Functions

- \rightarrow Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ are two real functions with $A \cap B \neq \emptyset$. Then,
- → Division of functions is

$$\left(\frac{f}{g}\right): (A \cap B) - \{x: g(x) = 0\} \to \mathbb{R}$$
 and defined as

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \ \forall \ x \in A \cap B$$

 \rightarrow For example:

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are two real functions defined as

$$f(x) = x^2 + 1$$
, $g(x) = \frac{x^3 - 1}{1}$.

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
$$= \frac{x^2 + 1}{x^3 - 1}$$

Examples of Method-8: Algebra of Real Functions

С	1	Let $f(x) = x^2 + 2x$ and $g(x) = 5x - 7$ be real functions, then find
		c
		$(f+g)(x), (f \cdot g)(x), (f-g)(x), (\frac{f}{g})(x).$
		Answer: $(f+g)(x) = x^2 + 7x - 7$, $(f \cdot g)(x) = 5x^3 + 3x^2 - 14x$,
		$(f-g)(x) = x^2 - 3x + 7, \qquad \left(\frac{f}{g}\right)(x) = \frac{x^2 + 2x}{5x - 7}$
Н	2	Let $f(x) = x^2 \& g(x) = 2x + 1$ be the real functions,
		then find $(f \mid \sigma)(v)$ $(f \mid \sigma)(v)$ $(f \mid \sigma)(v)$
		then find $(f+g)(x)$, $(f-g)(x)$, $(f \cdot g)(x) & (\frac{f}{g})(x)$.
		Assume $(f + \sigma)(\sigma) = -\frac{2}{3} + 2\sigma + 4$ $(f + \sigma)(\sigma) = -\frac{2}{3} + 2\sigma + 4$
		Answer: $(f+g)(x) = x^2 + 2x + 1$, $(f-g)(x) = x^2 - 2x - 1$,
		$(f \cdot g)(x) = 2x^3 + x^2, \qquad \left(\frac{f}{g}\right)(x) = \frac{x^2}{2x + 1}$
		$(g)^{(2)}$ $2x+1$
Н	3	Let $f(x) = \sqrt{x} \& g(x) = x$ be the real functions,
		then find $(f+g)(x)$, $(f-g)(x)$, $(g \cdot f)(x) & \left(\frac{g}{f}\right)(x)$.
		Answer: $(f + g)(x) = \sqrt{x} + x$, $(f - g)(x) = \sqrt{x} - x$,
		$(\mathbf{g} \cdot \mathbf{f})(\mathbf{x}) = \mathbf{x} \cdot \sqrt{\mathbf{x}} = \mathbf{x}^{\frac{3}{2}}, \qquad \left(\frac{\mathbf{g}}{\mathbf{f}}\right)(\mathbf{x}) = \sqrt{\mathbf{x}}$
		$(\mathbf{g} \cdot \mathbf{f})(\mathbf{x}) \equiv \mathbf{x} \cdot \sqrt{\mathbf{x}} \equiv \mathbf{x}^2, \qquad (\frac{\mathbf{f}}{\mathbf{f}})(\mathbf{x}) \equiv \sqrt{\mathbf{x}}$
Н	4	Let $f(x) = x^3 - 3x^2 + 3x - 1$ & $g(x) = x^2 + 4x + 4$ be the real functions,
		then find $(f+g)(x)$, $(f-g)(x) & (g-f)(x)$.
		Answer: $(f + g)(x) = x^3 - 2x^2 + 7x + 3$
		$(f-g)(x) = x^3 - 4x^2 - x - 5$
		$(g-f)(x) = -x^3 + 4x^2 + x + 5$

Т	5	Let $f(x) = (x+4)(x-5)$ & $g(x) = (x-5)(x+2)$ be the real
		functions, then find the following:
		$(f+g)(x), (f-g)(x) & (\frac{f}{g})(x).$
		Answer: $(f + g)(x) = 2x^2 - 4x - 30$
		(f-g)(x) = 2x - 10
		$\left(\frac{f}{g}\right)(x) = \frac{x+4}{x+2}$
Т	6	Find $(f+g)(x)$, $(f \cdot g)(x)$, $(h \cdot g)(x)$ & $(f-h)(x)$ for the following
		functions:
		$f(x) = x^2 + 3$, $g(x) = \frac{1}{x}$ & $h(x) = \frac{2x + 3}{x}$.
		Answer: $(f + g)(x) = \frac{x^3 + 3x + 1}{x}$
		$(\mathbf{f} \cdot \mathbf{g})(\mathbf{x}) = \frac{\mathbf{x}^2 + 3}{\mathbf{x}}$
		$(\mathbf{h} \cdot \mathbf{g})(\mathbf{x}) = \frac{2\mathbf{x} + 3}{\mathbf{x}^2}$
		$(f-h)(x) = \frac{x^3 + x - 3}{x}$
Т	7	Let $f(x) = \frac{x+1}{x}$, $g(x) = x+1$ & $h(x) = \frac{x}{x+1}$ be the real functions,
		then find $(f+h)(x)$, $(g \cdot h)(x)$, $(f-g)(x)$, $(\frac{f}{h})(x)$.
		Answer: $(f + h)(x) = \frac{2x^2 + 2x + 1}{x^2 + x}$, $(g \cdot h)(x) = x$,
		$(f-g)(x) = \frac{-x^2+1}{x}, \qquad \left(\frac{f}{h}\right)(x) = \frac{x^2+2x+1}{x^2}$

Method - 9 → One-One, Onto & Bijective Functions

One-One Function

 \rightarrow Let $f: X \rightarrow Y$ be a function. If distinct elements of set X have distinct image in set Y, then, function f is known as a one-one function.

i.e., for every
$$x_1$$
, $x_2 \in X$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

or

$$f(\mathbf{x}_1) = f(\mathbf{x}_2) \Rightarrow \mathbf{x}_1 = \mathbf{x}_2$$

- \rightarrow A one one function is also known as **injection**.
- → If function f is not one-one then it is known as many-one function.
- → For example:
 - Determine whether the function $f : \mathbb{R} \to \mathbb{R}$ be a function defined as f(x) = x 3 is one-one or not.

Solution:

Let
$$x_1$$
, $x_2 \in \mathbb{R}$ with $f(x_1) = f(x_2)$

We have,

$$f(\mathbf{x_1}) = f(\mathbf{x_2})$$

$$\Rightarrow \mathbf{x_1} - 3 = \mathbf{x_2} - 3 \qquad \{ \because f(\mathbf{x}) = \mathbf{x} - 3 \}$$

$$\Rightarrow \qquad \mathbf{x_1} = \mathbf{x_2} - 3 + 3$$

$$\Rightarrow \qquad \mathbf{x_1} = \mathbf{x_2}$$

Here,
$$f(x_1) = f(x_2) \implies x_1 = x_2$$
.

Hence, f(x) = x - 3 is one-one function.

• Determine whether the function $f: \mathbb{Z} \to \mathbb{Z}^+$ be a function defined as $f(x) = x^2$ is one-one or not.

Solution:

$$f(-1) = (-1)^2 = 1$$
 and $f(1) = (1)^2 = 1$
Here, $f(-1) = f(1)$

but
$$-1 \neq 1$$

Hence, $f(x) = x^2$ is not one-one function.

Onto Function

- Let $f: X \to Y$ be a function. If every element of set Y has preimage in set X under function f, then function f is known as an onto function.
 - i.e., $y \in Y$ (codomain) there is $x \in X$ (domain) such that f(x) = y.
- An onto function is also known as **surjection**.
- If a given function is **not** an onto function, then it is known as an **into** function.
- For example: \rightarrow
 - Determine whether the function $f : \mathbb{R} \to \mathbb{R}$ be a function defined as

$$f(x) = 2x + 3$$
 is onto or not.

Solution:

Let $f(\mathbf{x}) = \mathbf{y}$, such that $\mathbf{y} \in \mathbb{R}$ (codomain).

Consider,

$$f(\mathbf{x}) = \mathbf{y}$$

$$\Rightarrow 2\mathbf{x} + 3 = \mathbf{v}$$

$$\{ :: f(x) = 2x + 3 \}$$

$$\Rightarrow$$
 $\mathbf{x} = \frac{y-3}{2}$

Since, $y \in \mathbb{R}$

Then
$$x = \frac{y-3}{2} \in \mathbb{R}$$
 (domian).

Therefore, for every $y \in \mathbb{R}$ there is $x \in \mathbb{R}$ such that f(x) = y.

Hence, f(x) = 2x + 3 is onto function.

Determine whether the function $f : \mathbb{N} \to \mathbb{N}$ be a function defined as

$$f(x) = 9x - 2$$
 is onto or not.

Solution:

Let $f(\mathbf{x}) = \mathbf{y}$, such that $y \in \mathbb{N}$ (codomain)

Consider,

$$f(\mathbf{x}) = \mathbf{v}$$

$$\Rightarrow 9\mathbf{x} - 2 = \mathbf{y}$$

$$\Rightarrow 9\mathbf{x} - 2 = \mathbf{y} \qquad \{ :: f(x) = 9x - 2 \}$$

$$\Rightarrow$$
 $\mathbf{x} = \frac{y+2}{9}$

Take
$$y = 5 \Rightarrow x = \frac{7}{9} \notin \mathbb{N}$$

Therefore, y = 5 has no preimage x in domain such that f(x) = y.

Hence, f(x) = 9x - 2 is not onto function.

Bijective Function

- \rightarrow Let $f: X \rightarrow Y$ be a function. If function f is both one-one and onto, then function f is known as bijective function.
- → A bijective function f is also known as bijection.
- \rightarrow For example:
 - Determine whether the function $f: \mathbb{Z} \to \mathbb{Z}^+$ be a function defined as $f(x) = x^2$ is bijective or not.

Solution:

• <u>one-one</u>:

$$f(-1) = (-1)^2 = 1$$
 and

$$f(1) = (1)^2 = 1$$

Here,
$$f(-1) = f(1)$$

but
$$-1 \neq 1$$

Hence, $f(x) = x^2$ is not one-one function.

Therefore, f is not bijective function.

• Determine whether the function $f : \mathbb{N} \to \mathbb{N}$ be a function defined as f(x) = 2x is bijective or not.

Solution:

one-one:

Let a,
$$b \in \mathbb{N}$$
 with $f(a) = f(b)$

We have,

$$f(\mathbf{x_1}) = f(\mathbf{x_2})$$

$$\Rightarrow 2\mathbf{x_1} = 2\mathbf{x_2}$$

$$\{ :: f(x) = 2x \}$$

$$\Rightarrow$$
 $x_1 = x_2$

Here,
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$
.

Hence, f(x) = 2x is one-one function.

• <u>onto</u>:

Let $f(\mathbf{x}) = \mathbf{y}$ such that $\mathbf{b} \in \mathbb{N}$ (codomain).

Consider,

$$f(\mathbf{x}) = \mathbf{y}$$

$$\Rightarrow$$
 2 $\mathbf{x} = \mathbf{y} \{ :: f(\mathbf{x}) = 2\mathbf{x} \}$

$$\Rightarrow$$
 $x = \frac{y}{2}$

Take
$$y = 1 \implies x = \frac{1}{2} \notin \mathbb{N}$$
 (domian)

Therefore, for $y = 1 \in \mathbb{N}$ there does not exist $x \in \mathbb{N}$ such that f(x) = y.

Hence, f(x) = 2x is not onto function from \mathbb{N} to \mathbb{N} .

Here, function f is one-one but not onto.

Therefore, f is not bijective function.

Examples of Method-9: One-One, Onto & Bijective Function

С	1	Let $A = \{ 1, 2, 3 \}$, $B = \{ 4, 5, 6, 7 \}$ and let $f = \{ (1, 4), (2, 5), (3, 6) \}$
		be a function from A to B. Show that f is one-one.
		Hint: Check images of distinct element.
Н	2	Let $f : \mathbb{R} \to \mathbb{R}$ defiend as $f(x) = 2x$ for all $x \in \mathbb{R}$.
		State whether the function f is one-one or not.
		Answer: function f is one — one.
Т	3	Let $f : \mathbb{R} \to \mathbb{R}$ defiend as $f(x) = \frac{x+2}{4}$ for all $x \in \mathbb{R}$.
		State whether the function f is one-one or not.
		Answer: function f is one — one.

С	4	Determine whether the function is one-one, onto or bijective. Justify your
		answer.
		(1) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 3 - 4x$
		(2) $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 1 + x^2$
		Answer: (1) f is bijective, (2) g is neither one – one nor onto
С	5	Prove that the function $f: \mathbb{R} - \{0\} \to \mathbb{R} - \{0\}$ defined by $f(x) = \frac{1}{x}$ is
		one-one and onto.
		Hint: Apply definition of any one and anto
		Hint: Apply definition of one — one and onto.
Н	6	Let $f : \mathbb{R} - \{4\} \to \mathbb{R} - \{0\}$ defiend as $f(x) = \frac{2}{x-4}$ for all $x \in \mathbb{R} - \{4\}$.
		State whether the function f is onto or not.
		Answer: function f is onto.
Т	7	Let $f : \mathbb{R} \to \mathbb{R}$ defiend as $f(x) = 2x - 5$ for all $x \in \mathbb{R}$.
		State whether the function f is one-one or onto or both.
		Answer: function f is one — one and onto both.
	_	
Т	8	Let $f : \mathbb{R} \to \mathbb{R}$ defiend as $f(x) = x^3$ for all $x \in \mathbb{R}$.
		State whether the function f is bijection or not.
		Answer: function f is bijection.
Т	9	Verify whether the function $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^3 - 3$ is bijection or not.
-		21, 8(1)
		Answer: g is bijection.

Method - 10 → Composition of Functions

Introduction

- → Let us understand composition of functions with an example.
- → We want to convert circular shape into triangular shape.
- \rightarrow We have two machines f and g.
- → Machine f convert shapes to a square and machine g convert shapes to a triangle.
- → Note that, f only takes circle as an input and g only takes square as an input.
- → So, the conversion process will be as follow:

→ Here, we put two machines together to get desired output. Where we used output of machine f as an input of machine g.

Composition of Two Functions

- \rightarrow Let $\mathbf{f} : \mathbf{A} \rightarrow \mathbf{B}$ and $\mathbf{g} : \mathbf{C} \rightarrow \mathbf{D}$ be two functions.
- \rightarrow Function $g \circ f : A \rightarrow D$ is defined if $f(A) \subseteq C$ and defined as

$$(g \circ f)(x) = g(f(x)), \forall x \in A$$

is known as composition of function g with f.

- \rightarrow A function $\mathbf{g} \circ \mathbf{f}$ is read as "g of f".
- → Function $\mathbf{f} \circ \mathbf{g} : \mathbf{C} \to \mathbf{B}$ is defined if $\mathbf{g}(\mathbf{C}) \subseteq \mathbf{A}$ and defined as

$$(f \circ g)(x) = f(g(x)), \forall x \in C$$

is known as composition of function f with g.

- \rightarrow A function $\mathbf{f} \circ \mathbf{g}$ is read as "f of g".
- \rightarrow For example:
 - Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + 2 and

$$g: \mathbb{R} \to \mathbb{R}$$
, $g(x) = 2x - 3$ then

$$(g \circ f)(x) = g(f(x))$$

$$= g(x + 2) \qquad \{ \because f(x) = x + 2 \}$$

$$= 2(x + 2) - 3 \qquad \{ \because g(x) = 2x - 3 \}$$

$$= 2x + 4 - 3$$

$$= 2x + 1$$

$$(f \circ g)(x) = f(g(x))$$

$$= f(2x - 3) \qquad \{ \because g(x) = 2x - 3 \}$$

$$= (2x - 3) + 2 \qquad \{ \because f(x) = x + 2 \}$$

$$= 2x - 1$$

Properties of Composition of Functions

- \rightarrow Let $f : A \rightarrow B$, then $f \circ I_A = f = I_B \circ f$.
- \rightarrow In general, $f \circ g \neq g \circ f$.
- → If f, g and h are three functions with suitably chosen domain and codomain, then
 - (1) If f and g are one one function, then $f \circ g$ and $g \circ f$ are one one function.
 - (2) If f and g are onto function, then $f \circ g$ and $g \circ f$ are onto function.
 - (3) If f and g are bijective function, then $f \circ g$ and $g \circ f$ are bijective function.

(4)
$$f^{n}(x) = \underbrace{(f \circ f \circ ... \circ f)}_{n \text{ times}}(x)$$

(5)
$$(f \circ h \circ g) = (f \circ h) \circ g = f \circ (h \circ g)$$

Examples of Method-10: Composition of Function

C | 1 | Find
$$g \circ f$$
 if $f : \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g : \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions defined as $f(2) = 3$, $f(3) = 4$, $f(4) = 5$, $f(5) = 5$, $g(3) = 7$, $g(4) = 7$, $g(5) = 11$, $g(9) = 11$.

Answer: $g \circ f = \{(2, 7), (3, 7), (4, 11), (5, 11)\}$

Н	2	Let $X = \{ 1, 2, 3 \}$. Let f, g, h, $s: X \to X$ as given below.
''		$f = \{(1, 2), (2, 3), (3, 1)\}, g = \{(1, 2), (2, 1), (3, 3)\},$
		$h = \{(1, 2), (2, 3), (3, 1)\}, g = \{(1, 2), (2, 1), (3, 3)\},$ $h = \{(1, 1), (2, 2), (3, 1)\}, g = \{(1, 1), (2, 2), (3, 3)\}.$
		Then find $(f \circ g)$, $(f \circ h \circ g)$, $(s \circ s)$ and $(f \circ s)$.
		Answer : $\mathbf{f} \circ \mathbf{g} = \{ (1, 3), (2, 2), (3, 1) \},$
		$s \circ s = \{ (1, 1), (2, 2), (3, 3) \},$
		$f \circ s = \{ (1, 2), (2, 3), (3, 1) \},$
		$f \circ h \circ g = \{ (1, 3), (2, 2), (3, 2) \}$
Т	3	Let $X = \{ 1, 2, 3 \}$. Let f, g, h, $s : X \rightarrow X$ as given below.
		$f = \{ (1, 2), (2, 3), (3, 1) \}, g = \{ (1, 2), (2, 1), (3, 3) \},$
		$h = \{ (1, 1), (2, 2), (3, 1) \}, s = \{ (1, 1), (2, 2), (3, 3) \}.$
		Find $(g \circ f)$, $(g \circ s)$, $(s \circ g) & (f \circ g \circ h)$.
		Answer: $g \circ f = \{ (1, 1), (2, 3), (3, 2) \},$
		$g \circ s = \{ (1, 2), (2, 1), (3, 3) \},$
		$s \circ g = \{ (1, 2), (2, 1), (3, 3) \},$
		$f \circ g \circ h = \{ (1, 3), (2, 2), (3, 3) \}$
С	4	Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2$ and $g : \mathbb{R}^+ \to \mathbb{R}^+$, $g(x) = \sqrt{x}$.
		If possible, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
		Anguage (f. g)(g)
11	_	Answer: $(f \circ g)(x) = -x \& g \circ f \text{ is not possible.}$
H	5	Let $f(x) = x + 2$, $g(x) = x - 2$, $h(x) = 3x$, where $x \in \mathbb{R}$.
		Find $(g \circ f)(x)$, $(g \circ g)(x)$, $(f \circ h)(x)$ and $(h \circ f)(x)$.
		Answer: $(g \circ f)(x) = x$, $(g \circ g)(x) = x - 4$,
		$(f \circ h)(x) = 3x + 2, (h \circ f)(x) = 3x + 6$
Н	6	Let functions f and g be defined by $f(x) = 3x + 2$ and $g(x) = x^2 + 1$.
		Find $(g \circ f)(5)$ and $(f \circ g)(3)$.
		A (- f)(F) 200 (f)(2) 22
		Answer: $(g \circ f)(5) = 290$, $(f \circ g)(3) = 32$

Т	7	If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given by $f(x) = \cos x \& g(x) = 3x^2$, then show that $g \circ f \neq f \circ g$.
Т	8	Let f and g be the functions from the set of integers to the set of integers defined by $f(x) = 2x + 3$ & $g(x) = 3x + 2$. (1) What is the composition of f and g?
		(2) What is the composition of g and f? Answer: $(g \circ f)(x) = 6x + 11$, $(f \circ g)(x) = 6x + 7$
Т	9	Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 2$ and $g : \mathbb{R} \to \mathbb{R}$, $g(x) = x + 4$. Find $f \circ g$ and $g \circ f$.
		Answer: $(f \circ g)(x) = x^2 + 8x + 14$, $(g \circ f)(x) = x^2 + 2$
Т	10	Let f and g be real valued functions defined as follow:
		$f(x) = 2x + 1$ and $g(x) = x^2 - 2$.
		Find $(g \circ f)(4)$ and $(f \circ g)(4)$.
		Answer: $(g \circ f)(4) = 79$, $(f \circ g)(4) = 29$

Method - 11 → Inverse Function

Invertible Function

 \rightarrow A function $f: X \rightarrow Y$ is invertible function if and only if it is bijection.

Inverse Function

- \rightarrow If a function $f: X \rightarrow Y$ is invertible, then there exists a function $g: Y \rightarrow X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$.
- \rightarrow Here, function g is known as inverse function of function f.
- \rightarrow Inverse function of function f is denoted by f^{-1} and read as "f inverse".

Properties of Inverse Functions

- → Let f and g be one-one and onto. Also, consider that composition of these functions is well defined.
 - (1) $(f^{-1})^{-1} = f$
 - (2) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
 - (3) $f^{-1} \circ f = f \circ f^{-1} = I$ i.e., $(f^{-1} \circ f)(x) = (f \circ f^{-1})(x) = x$
 - (4) In usual notation, $(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x)$.

- \rightarrow For example:
 - Let $f : \{ 1, 2, 3 \} \rightarrow \{ 1, 4, 9 \}$ defined as follow:

$$f(1) = 1$$
, $f(2) = 4$, $f(3) = 9$ or $f = \{ (1, 1), (2, 4), (3, 9) \}$

Solution:

Since, each element of domain has distinct image. So, function f is one-one.

Also, all the elements of codomain have distinct preimage. So, function f is onto.

Therefore, f^{-1} exist.

$$f^{-1}(1) = 1$$
, $f^{-1}(4) = 2$, $f^{-1}(9) = 3$ or $f^{-1} = \{ (1, 1), (4, 2), (9, 3) \}$

• Find inverse of a function $f : \mathbb{R} \to \mathbb{R}$, f(x) = 2x - 5 if possible.

Solution:

To find inverse first we have to check that function f is one-one and onto.

• <u>one-one</u>:

Let
$$x_1, x_2 \in \mathbb{R}$$
 such that $f(x_1) = f(x_2)$

We have,

$$f(\mathbf{x_1}) = f(\mathbf{x_2})$$

$$\Rightarrow 2\mathbf{x_1} - 5 = 2\mathbf{x_2} - 5 \qquad \{ \because f(\mathbf{x}) = 2\mathbf{x} - 5 \}$$

$$\Rightarrow 2\mathbf{x_1} = 2\mathbf{x_2} - 5 + 5$$

$$\Rightarrow 2\mathbf{x_1} = 2\mathbf{x_2}$$

$$\Rightarrow \mathbf{x_1} = \mathbf{x_2}$$

Here,
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$
.

Hence, f(x) = 2x - 5 is one-one function.

• <u>onto</u>:

Let $f(\mathbf{x}) = \mathbf{y}$ such that $\mathbf{y} \in \mathbb{R}$ (codomain).

Consider,

$$f(\mathbf{x}) = \mathbf{y}$$

$$\Rightarrow 2\mathbf{x} - 5 = \mathbf{y} \qquad \{ \because f(\mathbf{x}) = 2\mathbf{x} - 5 \}$$

$$\Rightarrow \qquad \mathbf{x} = \frac{\mathbf{y} + 5}{2}$$
Since, $\mathbf{y} \in \mathbb{R}$

Then
$$x = \frac{y+5}{2} \in \mathbb{R}$$
 (domian).

Therefore, for every $y \in \mathbb{R}$ there is $x \in \mathbb{R}$ such that f(x) = y.

Hence, f(x) = 2x - 5 is onto function.

Here, function f is one-one and onto both.

Therefore, f is bijection.

So, f^{-1} exists.

$$f^{-1}(x) = \frac{x+5}{2}.$$

Examples of Method-11: Inverse Function

С	1	Let $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \frac{x+2}{4}$ for all $x \in \mathbb{R}$.
		State whether the function f is bijective or not. If yes, then find f^{-1} .
		Answer: $f^{-1}(x) = 4x - 2$
Н	2	Let $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \frac{x+5}{7}$ for all $x \in \mathbb{R}$.
		State whether the function f is bijective or not. If yes, then find f^{-1} .
		Answer: function f is bijective, $f^{-1}(x) = 7x - 5$.
Т	3	Let $X = \{a, b, c\}, Y = \{1, 2, 3\}$ and let $f: X \rightarrow Y$ defined as follow:
		$f(a) = 2$, $f(b) = 1$, $f(c) = 3$. Find f^{-1} if exist.
		Answer: $f^{-1}(2) = a$, $f^{-1}(1) = b$, $f^{-1}(3) = c$.
С	4	Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 3 - 4x$ be a bijective function.
		Show that $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$.
		Hint: $f^{-1}(x) = \frac{3-x}{4}$


```
T Let X = \{1, 2, 3\} then find inverse of following functions.

(1) f: X \to X, f = \{(1, 2), (2, 3), (3, 1)\}

(2) g: X \to X, g = \{(1, 1), (2, 2), (3, 3)\}

(3) h: X \to X, h = \{(1, 3), (2, 2), (3, 1)\}

Also, verify that (h \circ f)^{-1} = f^{-1} \circ h^{-1}.

Answer: f^{-1} = \{(2, 1), (3, 2), (1, 3)\}, g^{-1} = \{(1, 1), (2, 2), (3, 3)\}, h^{-1} = \{(3, 1), (2, 2), (1, 3)\}, (h \circ f)^{-1} = \{(2, 1), (1, 2), (3, 3)\}
```

* * * * * End of the Unit * * * *