Escriba y justifique sus respuestas en el cuadernillo provisto.

Las primeras cinco preguntas valen 3 pts. cada una y debe responderlas seleccionando un único recuadro \square en el cuadernillo. Las últimas tres son de desarrollo.

1. (3 pts.)

Sean a y b constantes no nulas. Considere la función $f(x) = \frac{\sqrt{(ax)^2 + b^2x}}{bx}$. Diga cuál de las siguientes rectas es una asíntota horizontal de f(x).

2. (3pts.)

Halle la ecuación de la recta tangente a la elipse $\frac{x^2}{3} + \frac{y^2}{5} = 1$ en un punto (x_0, y_0) de esa elipse.

- 3. (3 pts.) Halle la derivada (con respecto a x) de la función $\arcsin(\sqrt{1-x^2})$ para 0 < |x| < 1.
- 4. (3 pts.) Si $f(x) = x^5 - x^3 + 5x + 1$, diga cuál de las afirmaciones acerca de $f^{-1}(x)$ es cierta.
- 5. (3 pts.)

Considere la función $h(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$. Encuentre una afirmación correcta acerca de h(x).

6. (7 pts.) Esta pregunta y las que siguen son de desarrollo.

Considere las funciones g y h de las cuales se saben que son derivables en los puntos x = 0, x = 1, x = 2 y x = 3. Halle la derivada f'(0) (si existe) de la función compuesta:

$$f(x) = h\left(\frac{5x + g(x)}{2\cos(x)}\right),\,$$

asumiendo conocida la siguiente tabla de valores de las funciones g y h y sus derivadas.

	x = 0	x = 1	x = 2	x = 3		
h(x)	2	-3	-3	6		
g(x)	4	-1	-4	3		

	x = 0	x = 1	x = 2	x = 3
h'(x)	5	2	-1	2
g'(x)	3	4	-2	3

7. (7 pts.)

Haga un dibujo detallado de la gráfica de la función $f:[-2,3] \to [-3,0]$, de la cual también se tiene la siguiente información: Se conoce una tabla de valores de f(x) y la gráfica de f'(x) tal como aparecen abajo.

ĺ		x = -2	x = -1	x = 0	x = 1	x = 2	x = 3
	f(x)	0	-8/3	-1	0	-2/3	0

Dpto. de MATEMATICAS MA-1111-A

8. (6 pts.)

Un globo esférico es inflado con aire a razón de 2 metros cúbicos por minuto. ¿Con qué rapidez aumenta el radio del globo cuando éste contenga un volumen igual a cuatro veces el radio? (el volumen es no nulo y medido en metros cúbicos mientras el radio es medido en metros). Recuerde que el volumen V de un globo esférico de radio r se expresa por la fórmula $V = 4\pi r^3/3$.

$\#1 - \#5 \rightarrow 1$	5 pts

$$\#6 \rightarrow 7 \text{ pts}$$

1. (a) No tiene asíntota horizontal.

(e)
$$\square$$
 $y = \frac{|a|}{b}$.

2. (a) $y - y_0 = -\frac{5x}{3y}(x - x_0)$

(b)
$$y - y_0 = \frac{3y_0}{5x_0}(x - x_0)$$

(c)
$$y - y_0 = -\frac{5x_0}{3y_0}(x - x_0)$$

(c)
$$\Box$$
 $-\frac{2x}{\sqrt{x^2}}$

(d)
$$\frac{1}{2\sqrt{x^2}\sqrt{1-x^2}}$$

(e)
$$\Box$$
 $-\frac{x}{\sqrt{x^2}\sqrt{1-x^2}}$

4. (a) $\prod f^{-1}(x)$ existe y $(f^{-1})'(8) = \frac{1}{13}$

(b)
$$\prod f^{-1}(x)$$
 existe y $(f^{-1})'(8) = 13$

(e) $\prod_{\text{calcular } f} f$ no es inyectiva y no se puede calcular f^{-1} .

5. (a) \square La función h(x) es derivable en x = 0, y h'(0) = 0.

(b) \square La función h(x) es derivable en x = 0, y h'(0) = 1.

(c) \square La función h(x) no es continua en x=0 pues no existe $\lim_{x\to 0} h(x)$.

(d) \square Existe $\lim_{x\to 0} h(x)$, pero no es igual a h(0).

(e) \square La función h(x) es continua en x=0, pero no es derivable en x=0.

Dpto. de MATEMATICAS

MA-11111-

SOLUCIONES:

1.
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\sqrt{a^2 x^2 + b^2 x}}{bx} = \lim_{x \to \infty} \frac{\sqrt{a^2 + b^2 / x}}{b} = \frac{\sqrt{a^2}}{b}$$
. (Opción (e)).

2. Derivando implícitamente la ecuación de la elipse se obtiene

$$\frac{2}{3}x + \frac{2}{5}yy' = 0$$

Despejando y' y evaluando en (x_0, y_0) se obtiene la pendiente

$$m = -\frac{5x_0}{3y_0}$$

Entonces la ecuación es

$$y - y_0 = -\frac{5x_0}{3y_0}(x - x_0)$$
 (Opción (c)).

3.
$$D_x(\operatorname{arcsen}(\sqrt{1-x^2})) = \frac{1}{\sqrt{1-(\sqrt{1-x^2})^2}} \cdot \frac{1}{2\sqrt{1-x^2}} \cdot (-2x) = -\frac{x}{\sqrt{x^2}\sqrt{1-x^2}}$$
. (Opción (e)).

4. $f'(x) = 5x^4 + 3x^2 + 5$, la cual es positiva para todo x. Por lo tanto f es creciente en todo \mathbb{R} , lo que implica que es inyectiva.

Tenemos que $f(0) = 1 \Rightarrow f^{-1}(1) = 0$, mientras que $f(1) = 8 \Rightarrow f^{-1}(8) = 1$.

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Evaluando en x = 1 y en x = 8, obtenemos

$$(f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{5}$$
 $(f^{-1})'(8) = \frac{1}{f'(1)} = \frac{1}{13}$ (Opción (a)).

5.
$$h'(0) = \lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0} \frac{h(x)}{x} = \lim_{x \to 0} \frac{x^2 \operatorname{sen}(x)}{x} = \lim_{x \to 0} x \operatorname{sen}(x) = 0$$
. (Opción (a)).

Esto último se deduce usando el teorema del emparedado con $x_0 = 0$ y las funciones

$$-|x| \le x \operatorname{sen}(x) \le |x|.$$

6.
$$f'(x) = h'\left(\frac{5x + g(x)}{2\cos(0)}\right) \cdot \frac{(5 + g'(x))(2\cos(x)) - (5x - g(x))(-2\sin(x))}{(2\cos(x))^2}$$
$$f'(0) = h'\left(\frac{5(0) + g(0)}{2\cos(0)}\right) \cdot \frac{(5 + g'(0))(2\cos(0)) - (5(0) - g(0))(-2\sin(0))}{(2\cos(0))^2}$$
$$= h'\left(\frac{g(0)}{2}\right) \cdot \frac{(5 + g'(0))(2) - (-g(0))(-2(0))}{(2)^2}$$
$$= h'\left(\frac{4}{2}\right) \cdot \frac{(5 + 3)(2) - 0}{(2)^2} = h'(2) \cdot \frac{16}{4} = (-1) \cdot (4) = -4$$

Dpto. de MATEMATICAS

MA-11111-

7. Recordemos que el signo de f'(x) determina los intervalos de crecimiento de f(x), mientras que el crecimiento de f'(x) determina la concavidad. Demarcando los puntos a, b, c y d, donde se observan cambios de signo y/o de crecimiento de f'(x), expresamos las características de y = f(x) en la siguiente tabla:

x =	-2		a		b		1		c		d		3
Crecimiento		>		7		7		>		\		7	
Concavidad		()		(()		(

La gráfica de f entonces luce así:

Dpto. de MATEMATICAS

MA-11111-

Los puntos donde x = a, d son mínimos locales, mientras que los puntos en los que x = -2, 1, 3 son máximos locales (y globales) para f.

Los puntos donde x = b, c son puntos de inflexión para f.

8. Derivando con respecto al tiempo t la ecuación que relaciona el volumen V con el radio r resulta

$$\frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt}$$

En el momento en que V=4r, es decir $\frac{4}{3}\pi r^3=4r$, resulta r=0 ó $r^2=\frac{3}{\pi}$. Como $V\neq 0$, entonces $r\neq 0$. Sustituyendo entonces $r^2=\frac{3}{\pi}$ en la ecuación anterior, y despejando la rapidez de r, resulta

$$\frac{dr}{dt} = \frac{1}{12} \text{metros/minutos}.$$