SeqyClean User Manual Sofware Version 1.10.08

Ilya Y. Zhbannikov

October 16, 2018

1 Introduction

We developed SeqyClean [ZHFS18, ZHFS17] – a bioinformatics software pipeline for next-generation sequence cleaning. The first purpose of SeqyClean is to incorporate all aspects of NGS cleaning: adapter, contaminant, poly A/T and quality trimming into a single bioinformatics pipeline. SeqyClean successfully recognizes and removes technological components (adapters, primers, barcodes), contaminants and vector. SeqyClean provides a comprehensive flexible quality trimming by incorporation the LUCY© quality trimming algorithm to remove bad-quality and poly-A/T erroneous data. In addition, SeqyClean has more features: compressing output files into gzip (.gz) file format, extension paired-end reads by overlap and duplicates removal, which we consider important for genome assembly because it reduces data space by discarding duplicated reads.

2 Installation

2.1 How to download

SeqyClean is an open-source software application available from the Bitbucket for free under this link: https://github.com/ibest/seqyclean. Save the file under some name you wish, unzip and compile:

```
$cd path_to_SeqyClean_directory
$make
```

2.2 Usage

SeqyClean works on SFF files (454, Ion Torrent) and FASTQ Illumina (paired- and single-end reads).

```
Roche 454 libraries:
```

```
./seqyclean [options] -454 reads.sff -o output_prefix
Paired-end Illumina libraries:
./seqyclean [options] -1 R1.fastq -2 R2.fastq -o output_prefix
Single-end libraries:
./seqyclean [options] -U reads.fastq -o output_prefix
```

2.3 Options across different technology types

The options that can be used for all library types are shown in Table 1. See library-specific options in the following tables Table 2 (paired-end reads), Table 3 (Roche 454 pyrosequence reads) and Table 4 (single-end FASTQ libraries).

Table 1: Options for all libraries

-v <filenme></filenme>	This option does vector trimming. If you choose this option, the program			
	assumes the file of vector sequences provided in <filename>. This file must be</filename>			
	given in FASTA format.			
	Examples:			
	./seqyclean -v vectors.fa -1 R1.fastq -2 R2.fastq -0 Test			
	./seqyclean -v vectors.fa -U R1.fastq -o Test			
	./seqyclean -v vectors.fa -454 in.sff -o Test			
-c <filename></filename>	This option is used for contaminants screening. If you choose this option, the			
	program assumes the reference genome provided in <filename>. This file must</filename>			
	be given in FASTA format. When SeqyClean recognizes contaminants in the			
	sequence, the whole sequence gets discarded. Note: contaminant reference			
	sequences must be provided!			
	Examples:			
	./seqyclean -v contaminants.fa -1 R1.fastq -2 R2.fastq -o Test			
	./seqyclean -v contaminants.fa -U R1.fastq -o Test			
	./seqyclean -c contaminants.fa -454 in.sff -o Test			
-k <value></value>	Use this option in order to specify a size of k-mer. Default k-mer size is 15			
	bases.			
-kc <value></value>	Special k-mer size for contaminant screening. Use this option only if you want			
	to have different k-mer sizes for contaminant dictionary.			
-qual [mae mee -w0 <value></value>	Quality trimming. Default values for mae (maximum average error) and mee			
-w1 <value>]</value>	(maximum error at ends) are [20 20]. "w0" and "w1" are window parameters.			
	Examples:			
	./seqyclean -1 R1.fastq -2 R2.fastq -o Test -qual			
	./seqyclean -qual 21 -w0 40 -w1 5 -U R1.fastq -o Test			
	./seqyclean -qual 25 33 -454 in.sff -o Test			
-bracket [bracket length]	Bracket parameters: minimum length (default=10) and maximum average er-			
[max avg error]	ror (default=0.794 or 1 phred) - these maximum average error values means			
	that checking for bracket error is OFF)			
-window window_size	Parameters for window trimming. By default two windows are used: large			
max_avg_error [window_size	window, 50 bp long, with maximum average error of 0.794 and small window,			
max_avg_error]	10 bp long, with maximum average error of 0.794. By default checking for error			
	at this stage of quality trimming algorithm is OFF.			
-minlen value	Use this option -minlen in order to define the minimum number of base pairs			
	when read is still considered as acceptable. If after the cleaning process the read			
	has a length which is less than -minlen parameter, the read will be discarded.			
	By default, the -minlen is set to 100 base pairs.			
	Example:			
	./seqyclean -minlen 10 -454 in.sff -o Test			
-polyat [cdna] [cerr]	This option provides trimming of poly A/T tails from nucleotide sequences.			
[crng]				
	cdna - tail length (10 by default); cerr - maximum number of errors per			
	tail (3 by default); crng - range to search poly A/T tails (50 by default)			
	Examples:			
	./seqyclean -polyat -1 R1.fastq -2 R2.fastq -o Test			
	./seqyclean -polyat 12 5 120 -U R1.fastq -o Test			
	./seqyclean -polyat -454 in.sff -o Test			
-dup [startdw] [sizedw] [maxdup]	This option provides duplicates screening.			
	startdw - search starting position (10 by default); sizedw - size of window			
	(35 by default); maxdup — maximum number of duplicates (3 by default)			
	Examples:			
	./seqyclean -dup -1 R1.fastq -2 R2.fastq -0 Test			
	./seqyclean -dup -sizedw 50 -U R1.fastq -o Test			
	./seqyclean -dup -startdw 5 -sizedw 30 -maxdup 12 -454 in.sff -o			
	Test			
-verbose	Verbose output, default=off.			

-detrep	Generate detailed report for each read, default=off.	
-no_adapter_trim	This option turns off adapter trimming. Default=off.	

Table 2: Illumina paired-end libraries

Table 2. Indiana panea and installed					
With this option SeqyClean will combine output paired-end libraries into					
one single file named <output_prefix>_shuffled.fastq. However, Se-</output_prefix>					
qyClean still does keep single-end reads (reads without corresponding					
pairs) in <output_prefix>_SE.fastq file.</output_prefix>					
Example:					
./seqyclean -shuffle -1 R1.fastq -2 R2.fastq -o Test					
This option sets the similarity threshold for adapter trimming by overlap					
(only in paired-end mode). By default its value is set to 0.75.					
This option turns on merging overlapping paired-end reads and <value></value>					
is the minimum overlap length. By default the minimum overlap length					
is 16 base pairs.					
Turns on 64-quality base, default = off.					
A switch to fix read IDs, default=off (As is detailed in:					
http://contig.wordpress.com/2011/09/01/newbler-input-iii-a-quick-					
fix-for-the-new-illumina-fastq-header/)					
A flag that indicates compressed (.gz) output, default=off.					
Maximum adapter length, default=30 bp.(only for paired-end mode).					

Table 3: Roche 454 pyrosequence libraries

$\mathbf{r}_{\mathcal{J}}$					
-t <value></value>	Number of threads (not yet applicable to Illumina mode), default=4.				
-fastq	Output in FASTQ format, default=off.				
-fasta	Output in FASTA format, default=off.				
-m <filename></filename>	Using custom barcodes, default=off. <filename> - a path to a FASTA-</filename>				
	file with custom barcodes.				
-d <value></value>	This option -d is intended to tweak an overlap between two consecutive				
	k-mers. By default the length of overlap it is set to 1 bp.				
	Example:				
	./seqyclean -d 10 -454 in.sff -o Test				

Table 4: Single-end FASTQ libraries

-U <filename></filename>	Turns on single-end mode.						
-i64	Turns on 64 -quality base, default = off.						
-new2old	A switch to fix read IDs, default=off (As is detailed in:						
	http://contig.wordpress.com/2011/09/01/newbler-input-iii-a-quick-fix-for-the-new-illumina-fast a-header/						
	fix-for-the-new-illumina-fastq-header/)						

For help please use: seqyclean -? or -help

2.4 Description of seqyclean output

Depending on the given parameters and the cleaning strategy, the name of output file can be different and has the formats described below.

2.4.1 SFF (454, Ion Torrent)

- Output_prefix.sff , .fastq (optionally)
- Output prefix Report.tsv if -detrep flag is on.
- Prefix SummaryStatistics.txt

• Prefix_SummaryStatistics.tsv

2.5 FASTQ

After processing FASTQ reads, SeqyClean generates PE1 and PE2 files that contain paired-end reads, SE file with single-end reads OR 'shuffled' file and file with single-end reads (SE) if -shuffle flag was set. output files in FASTQ format.

- Output prefix_PE1.fastq
- \bullet Output_prefix_PE2.fastq
- Output_prefix_shuffled.fastq (if -shuffle flag was set)
- Output prefix SE.fastq
- Output prefix PE1 Report.tsv (if -detrep flag was set)
- Output prefix PE2 Report.tsv (if -detrep flag is on)
- Prefix SummaryStatistics.txt
- Prefix SummaryStatistics.tsv

2.5.1 Please note

We call 'Adapter' for Illumina reads the thing, which contains: [Adapter P5/P7 + Index I5/I7 + Linker (primer hybridization)]. In other words 'Adapter' the total foreign sequence attached to 5' or 3' end of the piece of DNA.

2.6 Workflow

The general workflow diagram of SeqyClean is shown in Figure 1 and described below. The workflow consists of several atomic steps: (1) Input data pre-processing; (2) Trimming poly A/T tails; (3) Vector and contaminants trimming; (4) Adapter trimming; (5) Quality trimming; (6) Extension by overlap; (7) PCR duplicates removal; (8) Establishing clip points; (9) Generating output files and summary statistics. Stages 2, 3, 4, 5, 6, 7 are optional depending on chosen cleaning strategy.

Figure 1: The workflow diagram for SeqyClean.

3 Citing SeqyClean

3.1 BibText

```
title = {SeqyClean: A Pipeline for High-throughput Sequence Data Preprocessing},
booktitle = {Proceedings of the 8th ACM International Conference on
             Bioinformatics, Computational Biology,
             and Health Informatics},
series = {ACM-BCB '17},
year = {2017},
isbn = \{978-1-4503-4722-8\},\
location = {Boston, Massachusetts, USA},
pages = \{407 - 416\},
numpages = \{10\},
url = {http://doi.acm.org/10.1145/3107411.3107446},
doi = \{10.1145/3107411.3107446\},
acmid = {3107446},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {data preprocessing, high-throughput dna sequencing, sequence analysis},
```

3.2 Plain text (ACM Ref)

Ilya Y. Zhbannikov, Samuel S. Hunter, James A. Foster, and Matthew L. Settles. 2017. SeqyClean: A Pipeline for High-throughput Sequence Data Preprocessing. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB '17). ACM, New York, NY, USA, 407-416. DOI: https://doi.org/10.1145/3107411.3107446

3.3 EndNote

```
%0 Conference Paper
%1 3107446
%A Ilya Y. Zhbannikov
%A Samuel S. Hunter
%A James A. Foster
%A Matthew L. Settles
%T SeqyClean: A Pipeline for High-throughput Sequence Data Preprocessing
%B Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics
%@ 978-1-4503-4722-8
%C Boston, Massachusetts, USA
%P 407-416
%D 2017
%R 10.1145/3107411.3107446
%I ACM
```

3.3.1 Supported RLMIDs

The set of supported Roche 454 RL MIDs is shown in Table 5.

4 Acknowledgements

This work was supported by IBEST COBRE, grant NIH/NCRR P20RR16448 and the University Research Office at the University of Idaho.

References

[ZHFS17] Ilya Y. Zhbannikov, Samuel S. Hunter, James A. Foster, and Matthew L. Settles. Sequelean: A pipeline for high-throughput sequence data preprocessing. In *Proceedings of*

the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM-BCB '17, pages 407–416, New York, NY, USA, 2017. ACM.

[ZHFS18] Ilya Zhbannikov, Samuel Hunter, James Foster, and Matthew Settles. Seqyclean user manual. https://github.com/ibest/seqyclean, 2012–2018.

Table 5: Supported RLMIDs by default

#	Left MID	Right MID	#	Left MID	Right MID
RL1	ACACGACGACT	AGTCGTGGTGT	RL19	ATAGTATACGT	ACGTATAGTAT
RL2	ACACGTAGTAT	ATACTAGGTGT	RL20	CAGTACGTACT	AGTACGTGCTG
RL3	ACACTACTCGT	ACGAGTGGTGT	RL21	CGACGACGCGT	ACGCGTGGTCG
RL4	ACGACACGTAT	ATACGTGGCGT	RL22	CGACGAGTACT	AGTACTGGTCG
RL5	ACGAGTAGACT	AGTCTACGCGT	RL23	CGATACTACGT	ACGTAGTGTCG
RL6	ACGCGTCTAGT	ACTAGAGGCGT	RL24	CGTACGTCGAT	ATCGACGGACG
RL7	ACGTACACACT	AGTGTGTGCGT	RL25	CTACTCGTAGT	ACTACGGGTAG
RL8	ACGTACTGTGT	ACACAGTGCGT	RL26	GTACAGTACGT	ACGTACGGTAC
RL9	ACGTAGATCGT	ACGATCTGCGT	RL27	GTCGTACGTAT	ATACGTAGGAC
RL10	ACTACGTCTCT	AGAGACGGAGT	RL28	GTGTACGACGT	ACGTCGTGCAC
RL11	ACTATACGAGT	ACTCGTAGAGT	RL29	ACACAGTGAGT	ACTCACGGTGT
RL12	ACTCGCGTCGT	ACGACGGGAGT	RL30	ACACTCATACT	AGTATGGGTGT
RL13	AGACTCGACGT	ACGTCGGGTCT	RL31	ACAGACAGCGT	ACGCTGTGTGT
RL14	AGTACGAGAGT	ACTCTCGGACT	RL32	ACAGACTATAT	ATATAGTGTGT
RL15	AGTACTACTAT	ATAGTAGGACT	RL33	ACAGAGACTCT	AGAGTCTGTGT
RL16	AGTAGACGTCT	AGACGTCGACT	RL34	ACAGCTCGTGT	ACACGAGGTGT
RL17	AGTCGTACACT	AGTGTAGGACT	RL35	ACAGTGTCGAT	ATCGACAGTGT
RL18	AGTGTAGTAGT	ACTACTAGACT	RL36	ACGAGCGCGCT	AGCGCGCGCGT