QUESTION 1

There are drawbacks of having consistent demand. Consistent demand is when a product sells at a uniform rate throughout the year, meaning it is independent of the season. As a result, the production of the product needs to be consistent throughout the year. This could cause problems for the firm if the product is more easily made during a specific time, or similarly, harder to produce during a certain season. For example, assume the COVID-19 vaccines such as ones developed by Pfizer and Moderna will be in consistent demand throughout the year. In this case, issues arise in the transportation of these vaccines throughout the world, as factors such as environmental extremes, i.e., harsh winters, and clashes between countries, affect its ability to be distributed evenly and appropriately to different places.

QUESTION 2

Single period model is a model where goods typically cannot be held over to the next period, and when they can they incur significant price reductions. Therefore, the objective is to choose an order quantity that will minimize shortage and excess costs. The service level (SL) is the probability that demand will not be greater than the quantity of goods on hand:

$$SL = \frac{C_S}{C_E + C_S}$$

Where C_S is shortage costs and C_E is excess costs. A higher service level affects the optimal stocking policy in single period inventory model because since goods cannot be held over to the next period, then there will be more shortage costs to account for. In the case of a lower service level, there is less shortage costs, and thus, more revenue for the company.

QUESTION 3

The bullwhip effect is when demand/order variability gets progressively larger the further back in a supply chain is the company. This effect is caused by the isolation of manufacturing from the retail sector, errors in forecasting, promotional pricing, and the trade show effect. The implications include a strain on manufacturing capacity, rescheduling, increased inventory holdings, and shelf-life issues. Therefore, two remedies to the bullwhip effect are:

- 1. Make product to order.
- 2. Increase inventories.

QUESTION 4

$$\overline{d} = 20 \ canisters/day$$

$$\sigma_d = 4 \ canisters/day$$

$$\overline{LT} = 8 \ days$$

$$\sigma_{LT} = 2 \ days$$

$$E(z) = 2\%$$

$$ROP = ?$$

$$E(z) = 2\% \rightarrow E(z) = 0.02$$

Using Table 12-3, given that E(z) = 0.02, then this means that $z \approx 1.66 = 1.66$.

Now, calculate *ROP*, using the equation where both demand and lead time are variable:

$$ROP = \overline{d} \cdot \overline{LT} + z \sqrt{\overline{LT}\sigma_d^2 + \overline{d}^2\sigma_{LT}^2}$$

$$ROP = 20 \cdot 8 + 1.66\sqrt{8(4)^2 + (20)^2(2)^2}$$

$$ROP = 229$$

The reorder point for these canisters is 229.

QUESTION 5

a) Critical path and slack times.

Note: All paths go from left to right.

Path	Length (weeks)	Path Slack (weeks)
1-2-4-7-8-9	4+9+5+3+2+1=24	28 - 24 = 4
1-2-5-8-9	4+9+3+2+1=19	28 - 19 = 9
1-3-6-7-8-9	4 + 11 + 7 + 3 + 2 + 1 = 28	28 - 28 - 0

Critical path: 1 - 3 - 6 - 7 - 8 - 9.

b) If activity 2 and 4 took 5 extra weeks.

Path	Length (weeks)	Path Slack (weeks)		
1 - 2 - 4 - 7 - 8 - 9	4 + 14 + 10 + 3 + 2 + 1 = 34	34 - 34 = 0		
1-2-5-8-9	4 + 14 + 3 + 2 + 1 = 24	34 - 24 = 10		
1 - 3 - 6 - 7 - 8 - 9	4 + 11 + 7 + 3 + 2 + 1 = 28	34 - 28 - 6		

Critical path: 1 - 2 - 4 - 7 - 8 - 9.

The critical path changes to 1 - 2 - 4 - 7 - 8 - 9.

QUESTION 6

$$D = 90 units/year$$

$$H = 1.5R$$

$$S = $3$$

$$EOQ_{R=\$5} = \sqrt{\frac{2DS}{iR}} = \sqrt{\frac{2(90)(3)}{1.5(5)}} = 8.49 \text{ or } 9 \text{ units. } 9 < 100, EOQ \text{ is not feasible.}$$

$$EOQ_{R=\$5.5} = \sqrt{\frac{2(90)(3)}{1.5(5.5)}} = 8.09 \text{ or } 8 \text{ units. } 8 < 50, EOQ \text{ is not feasible.}$$

$$EOQ_{R=\$6} = \sqrt{\frac{2(90)(3)}{1.5(6)}} = 7.75 \text{ or } 8 \text{ units. } 0 < 8 < 100, EOQ \text{ is feasible.}$$

Next, need to compare total cost of Q = 8 units with those of Q = 50 and Q = 100.

$$TC_8 = \frac{Q}{2}H + \frac{D}{Q}S + RD = \frac{8}{2}(1.5)(6) + \frac{90}{8}(3) + 6(90) = \$609.75$$

$$TC_{50} = \frac{50}{2}(1.5)(5.5) + \frac{90}{50}(3) + 5.5(90) = \$706.65$$

$$TC_{100} = \frac{100}{2}(1.5)(5) + \frac{90}{100}(3) + 5(90) = \$827.70$$

Therefore, the order quantity that will minimize total cost is indeed 8 units.

As shown in the conceptual graph, the optimal order quantities on the \$5.5 and \$5 lines are infeasible, thus, the quantity on the \$6 line is used.

QUESTION 7

4 hours to produce a unit \rightarrow 40 hours per week per worker \rightarrow 100 workers \rightarrow 1,000 regular.

Month		1	2	3	4	5	6	7	8	9	10	11	12	Total
Forecast		9,000	7,000	5,000	4,000	2,000	1,500	1,000	1,200	1,600	3,000	5,700	7,000	48,000
							Output							
Regular		0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	12,000
Part Time														0
Overtime		0	1,000	1,000	1,000	1,000	500	0	200	600	1,000	1,000	1,000	9,300
Subcontract		0	5,000	3,000	2,000	0	0	0	0	0	1,000	3,700	5,000	26,700
Output - Forecast		-9,000	0	0	0	0	0	0	0	0	0	0	0	0
	<u>I</u>					I	nventory	<u> </u>					l	
Beginning		9,000	0	0	0	0	0	0	0	0	0	0	0	
Ending		0	0	0	0	0	0	0	0	0	0	0	0	
Average		4,500	0	0	0	0	0	0	0	0	0	0	0	4,500
Backorder		0	0	0	0	0	0	0	0	0	0	0	0	0
	I			l .			Costs	<u>I</u>	l.				l.	
Regular	\$300	\$0	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$360,000
Part Time														
Overtime	\$360	\$0	\$36,000	\$36,000	\$36,000	\$36,000	\$18,000	\$0	\$7,200	\$21,600	\$36,000	\$36,000	\$36,000	\$298,800
Subcontract	\$420		\$210,000	\$126,000	\$84,000						\$42,000	\$155,400	\$210,000	\$827,400
Hire/Layoff	\$500													\$0
Inventory	\$10	\$45,000												\$45,000
Backorders														
														\$1,531,200

Total cost = \$1,521,200.

QUESTION 8

P:

Week	Beginning	1	2	3	4	5	6	7	8
	Inventory								
Quantity								400	

P:

Item P	Beginning	1	2	3	4	5	6	7	8
LT = 1 week	Inventory								
Gross								400	
Requirements									
Schedule									
Receipts									
Projected									
On-Hand									
Net								400	
Requirements									
Planned-								400	
Order									
Receipts									
Planned-							400		
Order									
Releases									

B:

Item B	Beginning	1	2	3	4	5	6	7	8
LT = 1 week	Inventory								
Gross							400		
Requirements									
Schedule									
Receipts									

Projected				0	
On-Hand					
Net				400	
Requirements					
Planned-				450	
Order					
Receipts					
•					
Planned-			450		
Order					
Releases					

D:

Item D	Beginning	1	2	3	4	5	6	7	8
LT = 2 weeks	Inventory								
Gross Requirements						900			
Schedule Receipts			80						
Projected On-Hand	50				130	130			
Net Requirements						770			
Planned- Order Receipts						770			
Planned- Order Releases				770					

The amount for the planned-order releases of D in Week 3 is 770.