Tutorato AFL

Linpeng Zhang

27 marzo 2019

Sommario

Per errori/dubbi/problemi: linpeng.zhang@studenti.unipd.it.

Indice

1	Lez	4															1
	1.1	Riassur	nto inform	ale													1
	1.2	Eserciz	i														2
		1.2.1	Esercizio	1.													2
		1.2.2	Esercizio	2.													2
		1.2.3	Esercizio	3.													2
	1.3	Soluzio	ni														2
		1.3.1	Esercizio	1.													2
		1.3.2	Esercizio	2.													2
		1.3.3	Esercizio	3.													3

1 Lez4

1.1 Riassunto informale

- le grammatiche libere dal contesto accettano tutti i linguaggi regolari e qualcosa in più: infatti a lezione avete visto linguaggi non regolari (dimostrabile con il PL) che però potevano essere accettati da qualche CFG;
- in genere, data una CFG G, per dimostrare che L = L(G) si dimostra sia che $L \subseteq L(G)$ e $L \supseteq L(G)$; spesso la prima parte si fa per induzione sulla lunghezza della stringa, mentre la seconda per induzione sul numero di passi di derivazione;

1.2 Esercizi

1.2.1 Esercizio 1

Minimizzare il seguente automa.

	a	b	
$\rightarrow q_0$	q_0	q_1	
q_1	q_2	q_3	
q_2	q_2	q_3	
q_3	q_2	q_4	F
q_4	q_0	q_1	

1.2.2 Esercizio 2

Definire il linguaggio che accetta la CFG: $S \to aS|Sb|a|b$ e dimostrare la propria asserzione.

1.2.3 Esercizio 3

Siano dati una serie di linguaggi:

1.
$$L = \{0^m 1^n, m \le n, n, m \in \mathbb{N}\}\$$

2.
$$L = \{0^m 1^n, n \neq m, n, m \in \mathbb{N}\}\$$

3.
$$L = \{x \in \{a, b\}^* | \text{ il numero di a è minore del numero di b } \}$$

Dire per ognuno di essi se:

- il linguaggio è regolare? Motivare la risposta;
- fornire, se esiste, una CFG che genera L e mostrarne la correttezza;

1.3 Soluzioni

1.3.1 Esercizio 1

	a	b	
$\rightarrow \{q_0, q_4\}$	$\{q_0, q_4\}$	$\{q_1,q_2\}$	
$\{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_3\}$	
$\{q_3\}$	$\{q_1,q_2\}$	$\{q_0,q_4\}$	F

1.3.2 Esercizio 2

Si ha $L(G)=\{a^nb^m|n,m\in\mathbb{N},n+m\geq 1\}=L$. L'asserzione va dimostrata per induzione in entrambi i versi. Una traccia alla dimostrazione è la seguente:

1. $("\Rightarrow")$

Caso base: 1 derivazione, cioè $S \Rightarrow a$ o $S \Rightarrow b$ entrambe apparte Snenti a L.

Caso induttivo: $S \Rightarrow aS \Rightarrow^n aw'$ o $S \Rightarrow bS \Rightarrow^n bw'$, ma $w' \in L$ per ipotesi induttiva. Aggiungendo una a all'inizio o una b alla fine rimane comunque una stringa in L;

("⇐")

Caso base: lunghezza 1, cioè w=a o w=b. Naturalmente L(G) contiene queste stringhe perché ci sono direttamente le produzioni che lo fanno.

Caso induttivo: |w| = n + 1. Allora w = w'b o w = aw'. Per ipotesi induttiva $S = >^* w'$. Quindi: $S \Rightarrow aS \Rightarrow aw' = w$ o $S \Rightarrow bS \Rightarrow bw' = w \Rightarrow w \in L(G)$.

1.3.3 Esercizio 3

Le asserzioni che seguono vanno dimostrate.

- 1. si può dimostrare con il PL che L non è regolare. Una possibile CFG è: $S \to \epsilon |0S1|S1$;
- 2. si può dimostrare con il PL che L non è regolare, utilizzando ad esempio $w = 0^h 1^{h+h!} \ y = 0^m$ e "pompando" con k = 1 + h/m (questi valori sono stati trovati utilizzando un k generico quando si va a "pompare" e imponendo di avere lo stesso numeri di 0 e di 1; il fattoriale garantisce che k sia intero). Notiamo che una parola o ha più zeri o ha più uni. Possiamo allora sfruttare la CFG precedente per scrivere la seguente:

$$S \to A|B$$

$$A \to \epsilon |0A1|A1$$

$$B \to \epsilon |0B1|0B$$

- 3. si può dimostrare con il PL che L non è regolare. Intuitivamente per trovare una CFG notiamo che data una stringa in L_2 che ha n_b occorrenze di b e n_a occorrenze di a, allora o $n_b = n_a + 1$ o $n_b > n_a + 1$. In particolare:
 - (a) nel primo caso, le stringhe saranno del tipo *ebe* dove e è una stringa con $n_a = n_b$;
 - (b) nel secondo caso, le stringhe saranno costituite dalla concatenazione di due stringhe entrambe appartenenti a L;

segue allora la seguente CFG:

provate voi, la soluzione sarà presentata la prossima settimana.