Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: Компьютерные сети

Лабораторная работа № 3

по теме «Компьютерные сети с маршрутизаторами»

Выполнил:

Гурьянов Кирилл Алексеевич

Группа: Р33302

Преподаватель:

Алиев Тауфик Измайлович

Санкт-Петербург

Цель работы	3
Этап 1. Сеть с одним маршрутизатором	3
Построение и настройка сети с маршрутизатором	3
Таблица маршрутизации	4
Тестирование сети	4
С использованием протокола UDP	4
С использованием протокола ТСР	5
Этап 2. Сеть двумя маршрутизаторами	7
Построение сети	7
Таблицы маршрутизации	7
Тестирование сети	8
С использованием протокола UDP	9
С использованием протокола ТСР	9
Этап 3. Сеть тремя маршрутизаторами	10
Построение сети 3	10
Построение сети 4	12
Построение сети 5	13
Таблица маршрутизации	14
Тестирование сети	15
С использованием протокола UDP	15
С использованием протокола ТСР	15
Построение сети 6	16
Настройка динамической маршрутизации по протоколу RIP	17
Анализ таблиц маршрутизации	17
Настройка автоматического получения сетевых настроек по протоколу DHCP	18
Проверка работоспособности сети	19
Вывол	19

Цель работы

Изучение принципов конфигурирования и процессов функционирования компьютерных сетей, представляющих собой несколько подсетей, связанных с помощью маршрутизаторов, процессов автоматического распределения сетевых адресов, принципов статической маршрутизации и динамической маршрутизации, а также передачи данных на основе протоколов UDP и TCP.

Этап 1. Сеть с одним маршрутизатором

Построение и настройка сети с маршрутизатором

Таблица маршрутизации

Каждая строчка таблицы маршрутизации содержит следующую информацию:

- Адрес сети назначения
- Маску сети назначения
- Шлюз, показывающий адрес маршрутизатора в сети, на который необходимо отправить пакет, следующий по указанному адресу
- Интерфейс, через который доступен шлюз
- Метрика числовой показатель, задающий предпочтительность маршрута
- Состояние источника

В таблице маршрутизации маршрутизатора находятся адреса подсетей, с которыми связан маршрутизатор.

Запись в таблице формируется при назначении IP адресов выходным портам маршрутизатора.

Тестирование сети

С использованием протокола UDP

Т.к. мы пытаемся отправить сообщение в другую сеть, то компьютер 1 отправил сообщение на установленный шлюз по умолчанию, которым является маршрутизатор. В ARP таблице маршрутизатора отсутствовала запись о MAC адресе 2 компьютера во второй сети, поэтому он направил во вторую сеть ARP запрос, на который ответил 2 компьютер и послал

маршрутизатору свой MAC адрес. После этого маршрутизатор направил UDP пакеты во вторую сеть по указанному MAC адресу.

Дейтаграммы передается в том порядке, в котором они были отправлены, так как в нашей сети существует всего один маршрут, по которому передаются пакеты, хотя протокол UDP этого не гарантирует.

Дейтаграммы содержат информацию о порте отправителя, порте получателя. Программа NetEmul не показывает информацию о длине UDP-сегмента и контрольной сумме, но в реальности заголовки UDP-дейтаграммы содержат информацию о длине UDP-сегмента и контрольной сумме.

На данном примере мы пытаемся отправить сообщение в третью сеть. Маршрутизатор, аналогично примеру выше, не знает MAC адрес 7 компьютера в третьей сети, поэтому отправляет в третью сеть ARP запрос и только после получения ARP ответа, посылает пакеты.

С использованием протокола ТСР

При отправке сообщений через протокол TCP мы видим более сложную структуру запросов. Сначала узел отправителя формирует сегмент, заголовок которого содержит информацию о портах отправителя и получателя, порядковый номер, содержащий номер первого байта данных в сегменте, который определяет смещение сегмента относительно потока передаваемых данных, номер подтверждения, содержащий номер

следующего ожидаемого байта, который используется в качестве квитанции, подтверждающей правильный прием всех предыдущих байтов. При первом запросе отправляется флаг SYN, который используется для установки соединения и при этом ACK = 0, что означает, что поле подтверждения не используется.

Второй узел получает этот сегмент и формирует в качестве ответа квитанцию на принятый сегмент, в котором устанавливает флаги SYN и ACK, что означает, что поле "номер подтверждения" содержит осмысленные данные.

Первый узел получает данный сегмент и формирует свою квитанцию с установленным флагом АСК и отправляет второму узлу эту квитанцию и отправляет сегмент с данными, которые не содержат флагов и отправляет сегмент с флагом FIN, сигнализирующем о разрыве соединения. Получатель получает квитанцию, сегмент с данными и сегмент, сигнализирующий о разрыве соединения. В ответ он формирует сегмент с флагом АСК, являющийся квитанцией на полученные сегмент.

Порядок получения сегментов при использовании протокола ТСР такой же, каков порядок отправления сегментов.

Отличия при передачи сообщений по протоколам TCP/UDP при использовании маршрутизатора в отличии от передачи по сети без маршрутизатора, что при передачи пакетов из одной сети в другую, пакеты проходят через маршрутизатор, который направляет их в нужную сеть.

Этап 2. Сеть двумя маршрутизаторами

Построение сети

Таблицы маршрутизации

Первый маршрутизатор:

	*		Таблица марі	шртизации		v ^ x
	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	204.10.8.0	255.255.255.224	204.10.8.3	204.10.8.3	0	Подключена
2	204.10.8.32	255.255.255.224	204.10.8.36	204.10.8.36	0	Подключена

Второй маршрутизатор:

		*		Таблица мар	шртизации		v ^ x
		Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
	1	204.10.8.32	255.255.255.224	204.10.8.37	204.10.8.37	0	Подключена
	2	204.10.8.64	255.255.255.224	204.10.8.74	204.10.8.74	0	Подключена

В таблице маршрутизации маршрутизатора находятся адреса подсетей, с которыми связан маршрутизатор.

Запись в таблице формируется при назначении IP адресов выходным портам маршрутизатора.

Тестирование сети

При попытке отправки сообщений между первой и третьей сетью возникали проблемы, связанные с отсутствием записи в таблицах маршрутизации маршрутизаторов. Первый маршрутизатор не знал, как отправить сообщение от первой сети в третью сеть. В свою очередь второй маршрутизатор не знает, как отправить сообщение из третьей сети в первую сеть. Поэтому для решения данной проблемы были добавлены две статические записи в таблицы маршрутизации.

Первый маршрутизатор:

		0		Таблица марі	шртизации		v ^ x
		Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
	1	204.10.8.0	255.255.255.224	204.10.8.3	204.10.8.3	0	Подключена
ľ	2	204.10.8.32	255.255.255.224	204.10.8.36	204.10.8.36	0	Подключена
ſ	3	204.10.8.64	255.255.255.64	204.10.8.37	204.10.8.36	0	Статическая

Второй маршрутизатор:

	★		Таблица мар	шртизации		v ^ x
Γ	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	204.10.8.0	255.255.255.224	204.10.8.36	204.10.8.37	0	Статическая
2	204.10.8.32	255.255.255.224	204.10.8.37	204.10.8.37	0	Подключена
:	204.10.8.64	255.255.255.224	204.10.8.74	204.10.8.74	0	Подключена
-		1	I	1	1	

С использованием протокола **UDP**

Был проведен тест на отправку сообщения с первого компьютера первой сети восьмой компьютер третьей сети. При отправке сообщения, т.к. у первого компьютера уже была запись в ARP таблице с MAC адресом первого маршрутизатора, то он сразу отправил пакеты. Первый маршрутизатор, получив пакеты, отправил ARP запрос на поиск узла с IP = 204.10.8.37 (второй маршрутизатор). Получив от него ответ с MAC адресом, первый маршрутизатор направляет пакеты по указанному адресу на второй маршрутизатор. Второй маршрутизатор, получив пакеты, сформировал и отправил в третью сеть ARP запрос для поиска восьмого компьютера. Получив от него ответ, второй маршрутизатор направляет восьмому компьютеру UDP пакеты.

Дейтаграммы передается в том порядке, в котором они были отправлены, так как в нашей сети существует всего один маршрут, по которому передаются пакеты, хотя протокол UDP этого не гарантирует.

Дейтаграммы содержат информацию о порте отправителя, порте получателя. Программа NetEmul не показывает информацию о длине UDP-сегмента и контрольной сумме, но в реальности заголовки UDP-дейтаграммы содержат информацию о длине UDP-сегмента и контрольной сумме.

С использованием протокола ТСР

Передача служебных и пользовательских сегментов аналогична схеме с одним маршрутизатором.

Информация, которая содержится в пакетах и кадрах аналогична схеме с одним маршрутизатором.

Порядок получения сегментов при использовании протокола ТСР такой же, каков порядок отправления сегментов.

Мы можем передавать пакеты из любой сети в любую другую. Необычным является передача пакета из второй сети в первую. Выше приведено изображение с передачей пакетов от компьютера во второй сети на компьютер в первой сети. По умолчанию, все пакеты, которые имеют в качестве адреса получателя иную сеть, нежели вторая, направляются на второй маршрутизатор. Второй маршрутизатор при получении пакетов, которые предназначены для первой сети, отправляет их через вторую сеть на первый маршрутизатор, который в свою очередь уже доставляет сообщение до адресата в первой сети.

Этап 3. Сеть тремя маршрутизаторами

Построение сети 3

Шлюзом по умолчанию для компьютеров второй сети является третий маршрутизатор. Шлюзом по умолчанию для компьютеров третьей сети является второй маршрутизатор. Во таблицу маршрутизации третьего маршрутизатора добавлена статическая запись об информации о первой сети, благодаря которой он перенаправляет пакеты для первой сети на первый маршрутизатор. Во таблицу маршрутизации второго маршрутизатора добавлена статическая запись об информации о второй сети, благодаря которой он перенаправляет пакеты для второй сети на третий маршрутизатор.

В данной конфигурации сети есть 2 проблемы. При отправке пакетов из первой сети во вторую, из-за наличия концентратора в первой сети, пакеты приходят к адресатам по двум разным маршрутам. Т.е. получатель принимает 2 раза одно и тоже сообщение. Это создает дополнительную нагрузку на сеть, однако может служить способов обеспечения надежности сети. Что не сказать о следующей проблеме.

При попытке отправить пакеты из второй сети в первую происходит зацикливание между первым вторым маршрутизатором И из-за концентратора. Из-за ЭТОГО пакеты бесконечно переходят между указанными маршрутизаторами.

Построение сети 4

Данная сеть требовала существенной настройки, пришлось создать дополнительные сети, которые связывали собой три между Также В таблицы маршрутизаторы. маршрутизации каждого маршрутизатора были добавлены по 2 статические записи, которые позволяли направлять пакеты, предназначенные для определенной сети, на нужные маршрутизаторы. В целом данная сеть показала себя отлично, имеется возможность направлять пакеты из любой сети в любую другую.

К недостаткам данной сети можно отнести полную потерю связи с сетью в случае выхода из строя маршрутизатора, который к ней подсоединен.

Построение сети 5

требовала Данная сеть ЧУТЬ меньшей настройки, нежели предыдущая. Пришлось создать две дополнительные сети, которые связывали между собой первый и второй, а также первый и третий маршрутизаторы. Также В таблицу маршрутизации первого маршрутизатора были добавлены по 2 статические записи, позволяли направлять пакеты, предназначенные для определенной сети, на нужные маршрутизаторы. В таблицы маршрутизации второго и третьего маршрутизатора добавлены статические записи для отправки пакетов в первую сеть через первый маршрутизатор.

В целом данная сеть показала себя отлично, имеется возможность направлять пакеты из любой сети в любую другую.

Данная сеть частично избавилась от недостатка предыдущей. В случае выхода и строя второго или третьего маршрутизатора, у нас все еще есть способы доставить сообщения во вторую или третью сеть. Однако

при выходе из строя первого маршрутизатора, связь с первой сетью обрывается.

Таблица маршрутизации

Маршрутизатор 1:

Маршрутизатор 2:

Маршрутизатор 3:

В таблице маршрутизации маршрутизатора находятся адреса подсетей, с которыми связан маршрутизатор.

Запись в таблице формируется при назначении IP адресов выходным портам маршрутизатора. Статические записи добавлены в случае, если маршрутизаторы образовывали между собой сети.

Тестирование сети

С использованием протокола UDP

В таблицы маршрутизации маршрутизаторов пришлось внести несколько статических записей (описано выше).

Последовательность передачи дейтаграмм аналогична описанной в прошлых этапах работы.

Передать пакеты можно из любой сети в любую другую. Между первой и второй сетью существует 2 маршрута передачи. Между первой и третьей тоже 2 маршрута. Между второй и третьей сетью существует три маршрута передачи.

С использованием протокола ТСР

Последовательность передачи сегментов аналогична описанной в прошлых этапах работы. Содержащаяся в пакетах и кадрах информация аналогична описанным в прошлых этапах лабораторной работы.

Построение сети 6

Данная сеть требовала такое же количество настройки, как и предыдущая. Пришлось создать три дополнительные сети, которые связывали между собой первый и второй, первый и третий, второй и третий маршрутизаторы. Также в таблицу маршрутизации первого и второго маршрутизатора были добавлены по 2 статические записи, которые позволяли направлять пакеты, предназначенные для определенной сети, на нужные маршрутизаторы. В таблицу маршрутизации третьего маршрутизатора добавлена статическая запись для отправки пакетов в первую сеть через первый маршрутизатор.

В целом данная сеть показала себя отлично, имеется возможность направлять пакеты из любой сети в любую другую.

С точки зрения надежности данная сеть чуть хуже предыдущей. В случае выхода и строя третьего маршрутизатора, у нас полностью

пропадает возможность отправки сообщения в третью сеть. Проблему с отправкой сообщения в первую сеть, в случае выхода из строя первого маршрутизатора, данная сеть также не решает.

Настройка динамической маршрутизации по протоколу RIP

После включения симуляции маршрутизаторы начали обмениваться RIP пакетами, благодаря чего происходило динамическое обновление маршрутной информации, которая была получена из соседних маршрутизаторов.

Анализ таблиц маршрутизации

Маршрутизатор 1:

Маршрутизатор 2:

Маршрутизатор 3:

	*		Таблица мар	шртизации		V ^
	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	204.10.8.0	255.255.255.224	204.10.8.97	204.10.8.98	1	Статическая
2	204.10.8.32	255.255.255.224	204.10.8.37	204.10.8.37	0	Подключена
3	204.10.8.64	255.255.255.224	204.10.8.74	204.10.8.74	0	Подключена
4	204.10.8.96	255.255.255.224	204.10.8.36	204.10.8.37	2	RIP
5	204.10.8.128	255.255.255.224	204.10.8.97	204.10.8.98	1	RIP

Можно заметить, что в таблицах маршрутизации, благодаря протоколу RIP, произошли некоторые изменения. У статических записей появилась метрика, которая измеряется в хопах. Также добавились новые записи в таблицы маршрутизации первого и второго маршрутизатора, в которых также отмечена метрика.

Стоит отметить, что в таблицах также появились новые записи, соответствующие подсетям, с которыми не было прямой связи.

Периодичность отправки пакетов примерно 30 секунд.

Настройка автоматического получения сетевых настроек по протоколу DHCP

На данном изображении мы можем видеть, как DHCP-клиент и DHCP-сервер обменивались сообщениями. Клиент вначале не имел IP адреса. Для получения адреса, он направил всем компьютерам сети DHCP сообщение типа DISCOVER. После этого DHCP сервер вернул ему ответ типа OFFER, в котором предложил свободный IP адрес 204.10.8.1. После этого DHCP-клиент отправляет сообщение типо REQUEST, в котором происходит проверка, правильно ли он принял адрес, который ему выдал

сервер. После получения сообщения типа ACK, в котором сервер еще раз высылает выданный ранее адрес, клиент присваивает себе этот адрес и посылает ARP запрос для всех компьютеров в сети для проверки, не получил ли кто-то ранее уже этот адрес.

Проверка работоспособности сети

Попытка передать сообщение из первой сети в третью завершилась успехом. DHCP протокол работает корректно, адреса выдаются верно, сеть работает.

Вывод

В ходе выполнения лабораторной работы я практических примерах ознакомился c принципами конфигурирования процессами И сетей, функционирования компьютерных представляющих собой несколько подсетей, связанных с помощью маршрутизаторов. Кроме этого я освоил принципы автоматического распределения сетевых адресов, статической и динамической маршрутизации, а также передачи данных на основе протоколов UDP и TCP.