Introdução à Análise de dados em FAE

(20/06)

Exercício 8

Professores: Mapse Name: Dalmo da Silva Dalto

EXERCICIO 1.1

Artigo: https://lume.ufrgs.br/bitstream/handle/10183/181535/001048680.pdf?sequence=1 A seção de choque determinada pelo trabalho é:

$$\sigma_{pp,TTeV}^{promptD^0} = 4.28 \pm 0.31(stat) \pm 0.33(syst)_{-0.24}^{+1.26}(extr.) \pm 0.15(lumi) \ pm0.04(BR)mb \ (0.1)$$

EXERCICIO 1.2

A seção de choque do D^* é maior do que o $\psi(2S)$, porque o D^* pode ser produzido por diversos canais e dacaimentos secundários, enquanto o $\psi(2S)$ é um estado mais específico e mais improvável de ser produzido.

EXERCICIO 1.3

No espalhamento partônico simples, há um único par de partonios que interagem fortemente, produzindo uma quantidade relativamente menor de partículas secundárias. Agora o espalhamento partônico duplo, dois pares de partônicos interagem independentemente e ocorrem simultaneamente, resultando em subprocessos diferentes, produzindo uma quantidade maior de partículas secundárias.

EXERCICIO 1.4

Artigo: https://inspirehep.net/files/7e1388b33e7f8d42e540c71423a108d4

A a porcentagem de contribuição é mostrada na Figura 3.

Process:	3 prompt	2 prompt+1 nonprompt	1 prompt+2 nonprompt	3 nonprompt	Total
$\sigma_{\rm SPS}^{3{\rm J}/\psi}$ (fb)	< 0.005	5.7	0.014	12	18
$N_{ m SPS}^{3{ m J}/\psi}$	0.0	0.10	0.0	0.22	0.32
$\sigma_{\mathrm{DPS}}^{\mathrm{3J/\psi}}$ (fb)	8.4	8.9	90	95	202
$N_{ m DPS}^{3{ m J}/\psi}$	0.15	0.16	1.65	1.75	3.7
$\sigma_{\mathrm{TPS}}^{\mathrm{3J/\psi}}$ (fb)	6.1	19.4	20.4	7.2	53
$N_{ ext{TPS}}^{3 ext{J/}\psi}$	0.11	0.36	0.38	0.13	1.0
$\sigma_{\rm tot}^{3J/\psi}$ (fb)	15	34	110	114	272
$N_{ m tot}^{3{ m J}/\psi}$	0.3	0.6	2.0	2.1	5.0

Figura 1

EXERCICIO 2.1

A crystal ball é um função de probabilidade utilizada para modelar distribuições que possuem cauda longa ou assimétrica. Principalmente quando os dados estão concentrados em torno de um valor médio. O parâmetro μ representa o valor médio em torno da distribuição; σ é o desvio padrão da parte da gaussiana; α é o parâmetro que controla a transição da parte gaussiana e da cauda longa da distribuição; e por último, n que controla a forma da cauda da distribuição. A crystal ball permite um modelagem de cauda longa, com mais flexibilidade

no ajuste dos parâmetros, permitindo um ajuste em distribuições assimétricas. Por isso uma crystal ball é mais ajustavel do que um gaussiana.

```
import numpy as np
   import ROOT
2
   # Criar uma canvas para visualiza o
4
   canvas = ROOT.TCanvas("canvas", "Crystal Ball Generated Data", 800, 600)
5
   # Definir vari vel observ vel (x) e seu intervalo
   x = ROOT.RooRealVar("x", "x", -10, 10)
8
   # Definir par metros da distribui o Crystal Ball
10
   mean = ROOT.RooRealVar("mean", "mean", 0, -10, 10)
11
   sigma = ROOT.RooRealVar("sigma", "sigma", 1, 0.1, 10)
12
   alpha = ROOT.RooRealVar("alpha", "alpha", 9, 0.1, 10)
   n = ROOT.RooRealVar("n", "n", 8, 0.1, 10)
14
15
   # Criar a Crystal Ball PDF
16
   crystalBall = ROOT.RooCBShape("crystalBall", "Crystal Ball PDF", x, mean, sigma,
17
      alpha, n)
18
   # Gerar dados usando a Crystal Ball PDF
19
   data = crystalBall.generate(ROOT.RooArgSet(x), 1000)
20
22
   # Criar um frame para plotagem
   frame = x.frame(ROOT.RooFit.Title("Crystal Ball Fit"))
23
24
   # Plotar os dados no frame
25
   data.plotOn(frame)
26
27
   # Fazer o fit da Crystal Ball PDF nos dados
28
   result = crystalBall.fitTo(data, ROOT.RooFit.Save())
29
30
   # Plotar a distribui o ajustada sobre os dados
31
   crystalBall.plotOn(frame)
32
33
   # Imprimir os par metros do ajuste no frame
34
35
   crystalBall.paramOn(frame)
36
   # Desenhar o frame na canvas
37
   frame.Draw()
38
   canvas.Draw()
39
```

EXERCICIO 2.2

O parâmetros da PDF Johnson são: γ , δ , μ , ν . O γ controla o fator de escala a distribuição; o parâmetro δ controla a forma da distribuição, influenciando na cauda da distribuição; o parâmetro μ define o centro ao longo da distribuição; e por último ν , definindo o tipo da distribuição johnson.

```
import numpy as np
4
   import ROOT
   canvas = ROOT.TCanvas("canvas", "Crystal Ball Generated Data", 800, 600)
7
   data = np.random.normal(0, 1, 10000)
   x_j = ROOT.RooRealVar("x_j", "x", -10, 10)
9
   gamma = ROOT.RooRealVar("gamma", "gamma", 1, 0.1, 10)
10
   delta = ROOT.RooRealVar("delta", "delta", 0.5, 0.1, 10)
11
   mu = ROOT.RooRealVar("mu", "mu", 0, -10, 10)
12
   nu = ROOT.RooRealVar("nu", "nu", 1, 0.1, 10)
13
14
```

Crystal Ball Fit

Figura 2: exercício 2.1

```
johnson = ROOT.RooJohnson("johnson", "Johnson PDF", x_j, gamma, delta, mu, nu)
15
16
   # Gerar dados usando a Crystal Ball PDF
17
   data = johnson.generate(ROOT.RooArgSet(x_j), 1000)
18
   frame = x_j.frame(ROOT.RooFit.Title("Crystal Ball Fit"))
19
   # Imprimir os resultados do ajuste
21
   frame == x_j.frame()
22
   frame.SetTitle("Johnson Fit")
23
   data.plotOn(frame)
24
   johnson.plotOn(frame)
25
   johnson.paramOn(frame)
26
27
   frame.Draw()
28
   canvas.Draw()
```

EXERCICIO 2.3

Eu fiz a seguinte modificação no código $dl_fit.py$:

```
file = ROOT.TFile.Open("data_root_files/RunB_HLT_Dimuon25_vtx0p05_sigma_eff.root")
```

Tendo com saida do código 5 figuras em p
ng: Figura 4,
mostrando a medida do δD^* e o seu respectivo pull na Figura 5, mostrando a qualidade do ajuste ponto a ponto; A Figura 6 mostra a taxa de deca
imento em milímetros do J/Ψ , onde contém vários fits mostrando regiões prompt e não prompt, logo em seguida temos o seu respectivo pull Figura 7; e por último, Figura 8 mostrando a contribuição de cada fit para a massa invariante do $\mu\bar{\mu}$ do $\mu\bar{\mu}$, analisando o seu sinal e background, variando o prompt e o não prompt do J/Ψ e do D*, e seu respectivo pull Figura 9.

EXERCICIO 2.4

Johnson Fit

Figura 3: exercício 2.2

Figura 4: exercício 2.3

Figura 5: exercício 2.3

Figura 6: exercício 2.3

Figura 7: exercício 2.3

Figura 8: exercício 2.3

Figura 9: exercício 2.3

O prompt Fit se enquadraria no sinal e a região fora do prompt se enquadraria no background, englobando o decaimento exponencial da distribuição.

EXERCICIO 2.5

A maior contribuição é do J/Ψ porque a maior contribuição para o fit mostra que é maior quando o J/Ψ é prompt.

EXERCICIO 2.6

Fazem sentido pois os testes do χ^2 estão próximo de 1, e observando os plots de pull, pode-se constatar que os pontos tem um compatibilidade com 0 em 2 sigma.

EXERCICIO 2.7

Particle	Mean Value (GeV/c^2)	PDG Value (GeV/c^2)
J/ψ	3.09425 ± 0.000887915	3.096900 ± 0.000006
δD^*	$0.145465 \pm 0.0000255609$	2.01026 ± 0.05

Tabela 1: Comparison of measured mean values and PDG values for J/ψ and D^* .

EXERCICIO 2.8

 J/Ψ está compatível a 3 sigmas. Como é medido o delta do D^* , foi verificado o valor da massa o D^0 (1.86484 \pm 0.00005GeV). Portanto o valor de D^* é :2.01049 \pm 0.000056, estando compatível com 2σ .

EXERCICIO 2.9

```
[dalmo@lxplus978 fit] $ python3 fit3D_JpsiDstar.py -y
ccppyy.gbl.RooRealVar object at 0x(nil)>
Params
Summary:
Nevt total = 951.00
Nevt signal = 344.70 +- 18.57
Nevt bg = 606.30 +- 24.62
Nevt non-prompt = 51.85 +- 7.20
```

Nevtsignal: é o número de eventos de sinal e Nevtbg é o número de eventos do background.

EXERCICIO 2.10

Seria os dois $NP_{J/\Psi}$ no $M^{3D}_{J/\Psi D^*}$