Karabük Üniversitesi, Mühendislik Fakültesi, Mekatronik Mühendisliği

MEM336 - Robot Teorisi Final Sınavı

Soru 1) Aşağıda eklem yapısı PPRRRR olan altı eklemli bir robot verilmiştir.

- 14 a. Robotun eklemlerine koordinat sistemleri yerleştiriniz.
- 9 b. D-H parametrelerini bir tablo halinde yazınız.
- 15 c. ${}^{0}_{1}T$, ${}^{1}_{2}T$, ${}^{2}_{3}T$ dönüşüm matrislerini bulunuz.
- 12 d. ${}_{3}^{0}T$ dönüşüm matrisini bulunuz.

$0.5 \mathrm{c.} $												CI	0 0	0	7	
12 d. 0_3T dönüşüm matrisini bulunuz.											1.	T = 0	0 -1	-{ ((,+	11)	
	414	9;~	ر ل	0;	۹) ۲/۶	A		- I ₁	1 N2 X2	. 5€. ¥03		T = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0		
1	0	0	ď,	0	$y_i \in I$	14.			一户	→	8 2, 23	<u> </u>				
2	3c'	0	1,+6	Q			*	d ₂	→			ſ	c 0 , -	s Øz	Q	07
3	O	0	0	03	•		r.S		a	d	l .	7 =	د گ	c0,	0	0
4	90	C	طر	90+04	d ₁		κ-≶.	ا چـا	~~ \	7	_	١ 'د	cθ ₃ - ₃ θ ₃ _Q	0	1	0
5	90	0	9	Ø _S	\downarrow	5.	3,		الم الموا			L	Q	Q	O	1
6	-300	10	, 0	0,	n°×	N N	2	J.	£6							
-		APT - Markey skil Alber de allengen skilleden			Ø.	四十		4)				_	,			
						************		م)	$\int e\theta_{j}$	-5 0 5	0	0				
								3T =	$\begin{cases} e\theta_3 \\ 0 \\ s\theta_3 \end{cases}$	0	- (-(1,td)				
					•			3/-	s ₱s	caz	0	4 9				
									0	0	0	, 1				

Sorunun görüntülenme zamanı: 21:00

Cevabın gönderilmesi gereken en geç zaman: 21:30

Cevap Gönderimi Bilgileri:

- Cevapların gönderileceği email adresi: kisikkbu@gmail.com
- Email konusu: mem336-öğrencinumaranız-cevap1
 - Email konusunda X yerine hangi cevabi gönderiyorsanız onu yazmanız gerekmektedir.
 - Örnek email konusu: mem336-190224633-cevap1
 - Konuda işaretinin önüne veya sonuna boşluk koymayınız ve işareti kullanmayınız.

Uvarılar!

- Koordinat sistemlerini oluştururken vektör yönü konusunda serbestliğiniz olduğunda SAĞ, YUKARI ve SAYFA İÇİ yönlerini seçiniz. Sol, aşağı ve sayfa dışı yönlerini seçmeyiniz. Euler bileğinde z eksenini aşağı doğru seçiniz. Sayfa içi doğrultusunu sol-yukarı (ikinci çeyrek veya kuzey-batı) yönünde bir ok ile, sayfa dışı doğrultusunu sağ-alt (dördüncü çeyrek veya güney-doğu) yönünde bir ok ile gösteriniz.
- Cevap kağıdınızın üstünde adınızın, soyadınızın ve öğrenci numaranızın olmasına ve çektiğiniz fotoğrafta bu bilgilerin görünüyor olmasına dikkat ediniz. Kâğıdın uygun bir yerine imzanızı atınız.
- Cevaplarınızda her adımı göstermeniz gerekmektedir. Eksik adımlar eksik puan anlamına gelmektedir. Direk sonuç yazdığınızda verebileceğim puan kısıtlı olacaktır.
- Aynı veya birbirine çok benzeyen cevaplar kopya muamelesi görecektir. (Aynı hatayı yapan öğrenci sayısı arttıkça o hatadan kırılan puan miktarı artırılacaktır.

Karabük Üniversitesi, Mühendislik Fakültesi, Mekatronik Mühendisliği MEM336 – Robot Teorisi Final Sınavı

Soru 2) Dönüşüm matrisleri aşağıdaki gibi verilen RPP robotun verilen bir uç işlevci dönüşüm matrisi için eklem değerlerini veren denklemleri bulunuz.

$$\frac{1}{1}T = \begin{bmatrix}
c\theta_{1} & -s\theta_{1} & 0 & 0 \\
s\theta_{1} & c\theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{2}T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{2} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{2}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{2}T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{2} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{2} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & -1 & -d_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3}T = \begin{bmatrix}
1 & 0 & 0 & l_{1} \\
0 & 0 & 0 & 1$$

Cevabın gönderilmesi gereken en geç zaman: 22:00

Sorunun görüntülenme zamanı: 21:35

Cevap Gönderimi Bilgileri:

- Cevapların gönderileceği email adresi: kisikkbu@gmail.com
- Email konusu: mem336-öğrencinumaranız-cevap2
 - Email konusunda X yerine hangi cevabı gönderiyorsanız onu yazmanız gerekmektedir.
 - Örnek email konusu: mem336-190224633-cevap2
 - Konuda işaretinin önüne veya sonuna boşluk koymayınız ve _ işareti kullanmayınız.

Uvarılar!

- Cevap kağıdınızın üstünde adınızın, soyadınızın ve öğrenci numaranızın olmasına ve çektiğiniz fotoğrafta bu bilgilerin görünüyor olmasına dikkat ediniz. Kâğıdın uygun bir yerine imzanızı atınız.
- Cevaplarınızda her adımı göstermeniz gerekmektedir. Eksik adımlar eksik puan anlamına gelmektedir. Direk sonuç yazdığınızda verebileceğim puan kısıtlı olacaktır.
- Aynı veya birbirine çok benzeyen cevaplar kopya muamelesi görecektir. (<u>Aynı hatayı yapan öğrenci sayısı arttıkça o</u>
 <u>hatadan kırılan puan miktarı artırılacaktır.</u>

Karabük Üniversitesi, Mühendislik Fakültesi, Mekatronik Mühendisliği MEM336 – Robot Teorisi Final Sınavı

Soru 3) Uç işlevci dönüşüm matrisi aşağıdaki gibi verilen üç eklemli bir RPP robotun uç işlevcisinin doğrusal hızları için Jakobiyen matrisini oluşturunuz.

$${}_{3}^{0}T = \begin{bmatrix} c\theta_{1} & 0 & s\theta_{1} & l_{1}c\theta_{1} + d_{3}s\theta_{1} \\ s\theta_{1} & 0 & -c\theta_{1} & l_{1}s\theta_{1} - d_{3}c\theta_{1} \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -l_1 s \theta_1 + d_3 c \theta_1 & 0 & s \theta_1 \\ l_1 c \theta_1 + d_3 s \theta_1 & 0 & c \theta_1 \\ 0 & 1 & 0 \end{bmatrix}$$

Sorunun görüntülenme zamanı: 22:05

Cevabın gönderilmesi gereken en geç zaman: 22:30

Cevap Gönderimi Bilgileri:

- Cevapların gönderileceği email adresi: kisikkbu@gmail.com
- Email konusu: mem336-öğrencinumaranız-cevap3
 - Email konusunda X yerine hangi cevabı gönderiyorsanız onu yazmanız gerekmektedir.
 - Örnek email konusu: mem336-190224633-cevap3
 - Konuda işaretinin önüne veya sonuna boşluk koymayınız ve _ işareti kullanmayınız.

Uyarılar!

- Cevap kağıdınızın üstünde adınızın, soyadınızın ve öğrenci numaranızın olmasına ve çektiğiniz fotoğrafta bu bilgilerin görünüyor olmasına dikkat ediniz. Kâğıdın uygun bir yerine imzanızı atınız.
- Cevaplarınızda her adımı göstermeniz gerekmektedir. Eksik adımlar eksik puan anlamına gelmektedir. Direk sonuç yazdığınızda verebileceğim puan kısıtlı olacaktır.
- Aynı veya birbirine çok benzeyen cevaplar kopya muamelesi görecektir. (<u>Aynı hatayı yapan öğrenci sayısı arttıkça o</u> hatadan kırılan puan miktarı artırılacaktır.