Exploiting AI-planning and NLP for Achieving Autonomous Network Reconfiguration

IETF 119 @ Brisbane March 20th, 2024

Angela María Rodríguez Comfacauca University Corporation, Colombia arodriguez@unicomfacauca.edu.co

Jéferson Campos Nobre Federal University of Rio Grande do Sul, Brazil jcnobre@inf.ufrgs.br

Outline

- Problem
- ATRAP
- NORA

Problem

RECONFIGURING NETWORK SLICES FROM THE TENANT-SIDE

- No in-depth knowledge on substrate network
- No prior knowledge on network configurations commands
- Minimal dependance on InP → Timely reconfigurations
 - Avoid service disruption → Respect SLAs

Problem

Given an undesired network state (s_o), how to compute reconfiguration management actions on-the-fly to turn the network into a desired state (S_g)?

 How to include the automated planning (AP) technique as decision maker for network reconfiguration?

 Can the AP based decision making for network reconfiguration be guided by high-level network management policies (intents)?

ATRAP

• An approach based on the monitor-analyze-plan-execute-knowledge method (MAPE-K loop) and AP for computing 5G/6G network reconfiguration plans autonomously.

ATRAP

• An approach based on the monitor-analyze-plan-execute-knowledge method (MAPE-K loop) and AP for computing 5G/6G network reconfiguration plans autonomously.

NORA

 NORA transforms network management policies expressed by the network slice tenants in pure natural language (NL) into the goals of an AP-problem (AP-goals) by using Natural Language Processing (NLP).

• NORA combines such AP-goals with both, the current network status and available reconfiguration actions (Σ), to come up with a reconfiguration plan that turns the network from a source -undesired- configuration (S_0) into a target configuration (S_0).

NORA - Architecture

NORA - Lexer

• Extracts representative terms for the network management domain (*tokens*) from input policy (*P*)

P = < Target (service / endpoint), Metric, Condition, Threshold >			
	Entity	Expression	
	Service	VoIP, Streaming, HTTP, FTP, SMTP, P2P	
	Endpoint	network slice, host node, gateway, database, VM, client, user	
	Metric	bandwidth, CPU, delay, packet loss, throughput, jitter, load, latency	
		more, high, higher, up, over, exceed, not under,	
	Condition	equal, like, even, same, similar	
		less, lower, not exceed, down, below, under	
	Threshold-unit	ms, s, kbps, GB, GHz, %	
	Connection	and, also, as well as, or	

Network management domain grammar

NORA - Lexer

Creates a T-matrix where each row is a token extracted from P

NORA – Criteria Analyser

• Compares tokens positions (rows of T(P)) to associate them as different atomic criteria $(c_1 \dots c_k)$.

NORA – Criteria Analyser

Forms a criteria set (C) from previous matrix T, i.e., C(T)

NORA – Converter

• Parses the elements of *C* to a target *AP-goal* notation.

NORA – Converter

• Selects from m parsing functions to come up with the AP-goal that represents the target network status (S_g)

NORA – Generator

Builds up an AP-problem instance in a target AP notation

NORA – Generator

Template filling

- 250 NL network management policies were collected from 20 researchers.
- Representative network management terms of each policy were labeled with its corresponding entity type

Entity	Expression		
Service	VoIP, Streaming, HTTP, FTP, SMTP, P2P		
Endpoint	network slice, host node, gateway, database, VM, client, user		
Metric	bandwidth, CPU, delay, packet loss, throughput, jitter, load, latency		
Condition	more, high, higher, up, over, exceed, not under,		
	equal, like, even, same, similar		
	less, lower, not exceed, down, below, under		
Threshold-unit	ms, s, kbps, GB, GHz, %		
Connection	and, also, as well as, or		

Network management domain grammar

```
## intent:policies
```

- A [network slice](<u>endpoint</u>) must all the time meet [latency](<u>metric</u>) [lower than](<u>condition</u>) [5 ms](<u>threshold</u>) and [packet loss](metric) rate [under](condition) [10-4](threshold)
- No [node](endpoint) in the substrate can be occupied in [more than](condition) [60%](threshold) of its [total capacity](metric)

- 1000 NL network management policies generated and labeled from random combinations of terms contained in the grammar + expressions as "NORA, the network must..." (base corpus)
- Cross-validation to tune up the Lexer
- P = "A network slice must all the time meet latency lower than 5 ms and packet loss rate under 10-4

```
"project": "NORA"
ENTITIES
    {
        "end": 15,
        "entity": "endpoint",
        "extractor": "Mitie",
        "start": 3.
        "value": "network slice"
   },
        "end": 46.
        "entity": "metric",
        "extractor": "Mitie",
        "start": 40,
        "value": "latency"
        "end": 52,
        "entity": "condition",
        "extractor": "Mitie",
        "start": 48.
        "value": "lower than"
        "end": 62.
        "entity": "threshold",
        "extractor": "Mitie",
        "start": 59,
        "value": "5 ms"
    },
```

Precision vs. Training Policies

- NORA's precision oscillates between 84% and 93%
- In the collected policies, less than 5% involved 5 atomic goals.
- Enriching grammar will improve precision ---> LLM!

End-to-end processing time by atomic goals

 NORA's processing time depends on the number of granular goals involved in the input policy.

End-to-end processing time by policy length

 The number of words contained in a policy sentence does not influence processing time.

References

- Angela Rodriguez-Vivas, Oscar Mauricio Caicedo, Armando Ordoñez, Lisandro Z. Graville and Jéferson Campos Nobre. "Bridging the Gap Between Network Management and Artificial Intelligence: A Natural Language Policies Translator" Extended Abstract and Poster. Latin America Students Workshop (LANCOMM19). Brazilian Symposium on Computer Networks and Distributed Systems (SBRC2019), May 7th, 2019, Gramado – Brazil.
- Rodriguez-Vivas, A., Caicedo, O. M., Ordoñez, A., Nobre, J. C., & Granville, L. Z. (2021). NORA: An Approach for Transforming Network Management Policies into Automated Planning Problems. Sensors, 21(5), 1790.
- Ordonez, A., Caicedo, O. M., Villota, W., Rodriguez-Vivas, A., & da Fonseca, N. L. (2022). Model-Based Reinforcement Learning with Automated Planning for Network Management. Sensors, 22(16), 6301.
- Rodriguez-Vivas, A., Caicedo, O. M., Nobre, J. C., Ordoñez, A., & Casilimas, K. (2024). On the feasibility of using an autonomic control loop and automated planning for tenant-oriented reconfiguration of network slices. Expert Systems with Applications, 238, 122360.

Policies Dataset: https://github.com/arodriguezvivas10/GoalPolicies

ATRAP PDDL AP-problems: https://github.com/arodriguezvivas10/ATRAP-AP-problems

Thank you!

arodriguez@unicomfacauca.edu.co

