Algorithm parameter: small $\varepsilon > 0$

Initialize:

$$\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$$

 $Q(s, a) \in \mathbb{R} \text{ (arbitrarily), for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$

 $Returns(s, a) \leftarrow \text{empty list, for all } s \in S, a \in \mathcal{A}(s)$

Repeat forever (for each episode):

Generate an episode following
$$\pi$$
: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$

 $G \leftarrow 0$

$$G \leftarrow 0$$

Loop for each step of episode, $t = T-1, T-2, \ldots, 0$:

$$G \leftarrow G + R_{t+1}$$

Append G to $Returns(S_t, A_t)$

 $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$

$$G + R_{t+1}$$

end G to $Returns(S_t, A_t)$

$$Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$$

 $A^* \leftarrow \arg \max_a Q(S_t, a)$
For all $a \in \mathcal{A}(S_t)$:

On-policy MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

$$Q(S_t, A_t) \leftarrow \text{average}(Return A^* \leftarrow \text{arg} \max_a Q(S_t, a))$$

$$(\text{wit}$$

$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}$$