Satz 1.4 (a) $P(\emptyset) = 0$,

- (b) $P(A) \leq 1$ für alle $A \in \mathcal{A}$,
- (c) $P(A^c) = 1 P(A)$ für alle $A \in \mathcal{A}$,
- (d) $A \subset B \Rightarrow P(A) \leq P(B)$ für alle $A, B \in \mathcal{A}$,
- (e) $P(A_1 + \ldots + A_k) = P(A_1) + \ldots + P(A_k)$ für alle paarweise disjunkten $A_1, \ldots, A_k \in \mathcal{A}$.

Beweis: (a) Verwendet man die σ -Additivität (A2) mit $A_j=\emptyset$ für alle $j\in\mathbb{N},$ so erhält man

$$P(\emptyset) = \sum_{j=1}^{\infty} P(\emptyset),$$

woraus wegen $P(\emptyset) \in \mathbb{R}$ die gewünschte Aussage $P(\emptyset) = 0$ folgt.

- (e) Verwendet man (A2) mit $A_j := \emptyset$ für j > k, so folgt wegen (a) die Behauptung.
- (c) Wir benutzen die erste Hälfte von (A1) sowie die endliche Additivität (e) mit $A_1=A,$ $A_2=A^c$ und erhalten

$$1 = P(\Omega) = P(A + A^c) = P(A) + P(A^c),$$

also (c).

(d) Mit dem zweiten Teil von (A1) und der endlichen Additivität folgt

$$P(B) = P(A + B \cap A^{c}) = P(A) + P(B \cap A^{c}) \ge P(A)$$

also die gewünschte Monotonieeigenschaft.

(b) Dies folgt aus der Monotonieeigenschaft (d) und der ersten Hälfte von (A1). □