COL872 Problem Set 1

Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399) Satwik Jain (2019CS10398)

January 2023

Contents

1	Question 1	2
2	Question 2 2.1 Question 2.1 2.2 Question 2.2	
3	Question 3 3.1 Question 3.1 3.2 Question 3.2	
4	Question 4	5
5	Question 5 5.1 Question 5.1 5.2 Question 5.2 5.3 Question 5.3 5.4 Question 5.4	6 6 6 6
6	Question 6 6.1 Question 6.1 6.2 Question 6.2	
7	Question 7 7.1 Question 7.1 7.2 Question 7.2 7.3 Question 7.3	10

2.1 Question 2.1

Question 1	
Question. quess	
Proof.	

2.2 Question 2.2

Question 1	
Question. quess	
Proof.	

3.1 Question 3.1

Question 1	
Question. quess	
Proof.	

3.2 Question 3.2

Question 1	
Question. quess	
Proof.	

5.1 Question 5.1

Question 1	
Question. quess	
Proof.	

5.2 Question **5.2**

Question 1	
Question. quess	
Proof.	

5.3 Question 5.3

Question 1	
Question. quess	
Proof.	

5.4 Question **5.4**

Question 1	
Question. quess	
Proof.	

6.1 Question 6.1

Question 6.1

Question. Let ρ be the density matrix for a mixed state over n qubits. In class, we saw that there exists a pure state $|\psi\rangle$ over 2n qubits such that measuring the last n qubits results in the density matrix ρ . Using Schmidt decomposition, prove that if $|\psi_1\rangle$ and $|\psi_2\rangle$ are two purifications of ρ , then there exists a unitary matrix \mathbf{U} acting over n qubits such that $|\psi_2\rangle = (\mathbf{I}_n \otimes \mathbf{U}) |\psi_1\rangle$. Here \mathbf{I}_n is the identity operation over the first n qubits.

Proof. Let,

$$|\psi_1\rangle = \sum_{i} \lambda_{1i} |u_{1i}\rangle |v_{1i}\rangle$$

$$|\psi_2\rangle = \sum_{i} \lambda_{2i} |u_{2i}\rangle |v_{2i}\rangle$$
(1)

On measuring the last n qubits, we are left with,

$$\rho = \rho_1 = \sum_{i} \lambda_{1i}^2 |u_{1i}\rangle \langle u_{1i}|$$

$$= \rho_2 = \sum_{i} \lambda_{2i}^2 |u_{2i}\rangle \langle u_{2i}|$$
(2)

Since $\{|u_{1i}\rangle\}_i$ and $\{|u_{2i}\rangle\}_i$ are orthonormal vectors, the two multi-sets $\{\lambda_{1i}\}_i$ and $\{\lambda_{2i}\}_i$ should be the same and they form the eigenvalues of ρ . Therefore, we can assume the ordering of $\{|u_{1i}\rangle\}_i$ and $\{|u_{2i}\rangle\}_i$ such that $\lambda_{1i} = \lambda_{2i} = \lambda_i$ (direct equality holds since λ_{bi} are guaranteed to be positive by Schmidt decomposition).

Now, we represent $|\psi_2\rangle$ such that the first n qubits have the same orthonormal vectors as $|\psi_1\rangle$. It is guaranteed that $|u_{1i}\rangle = |u_{2i}\rangle$ if the multiplicity of λ_i^2 is 1. Consider λ_p^2 such that it has a multiplicity k > 1. The two sets of eigenvectors corresponding to this eigenvalue are $S_1 = \{|u_{1i}\rangle | \lambda_i = \lambda_p\}$ and $S_2 = \{|u_{2i}\rangle | \lambda_i = \lambda_p\}$. Now, these two sets span the same subspace of n qubits. Therefore, we can write $\sum_{|u_{2i}\rangle \in S_2} |u_{2i}\rangle |v_{2i}\rangle$ as,

$$\sum_{|u_{2i}\rangle \in S_2} |u_{2i}\rangle |v_{2i}\rangle = \sum_{|u_{2i}\rangle \in S_2} \left(\sum_{|u_{1j}\rangle \in S_1} \alpha_{ij} |u_{1j}\rangle \right) |v_{2i}\rangle$$

$$= \sum_{|u_{2i}\rangle \in S_2} \left(\sum_{|u_{1j}\rangle \in S_1} |u_{1j}\rangle \alpha_{ij} |v_{2i}\rangle \right)$$

$$= \sum_{|u_{1j}\rangle \in S_1} |u_{1j}\rangle \left(\sum_{|u_{2i}\rangle \in S_2} \alpha_{ij} |v_{2i}\rangle \right)$$

$$= \sum_{|u_{1j}\rangle \in S_1} |u_{1j}\rangle |v'_{2j}\rangle$$

$$= \sum_{|u_{1j}\rangle \in S_1} |u_{1j}\rangle |v'_{2j}\rangle$$
(3)

Note that $\{|v'_{2j}\rangle | \lambda_j = \lambda_p\}$ is an orthonormal set since S_2 is also an orthonormal set. Therefore, $|\psi_2\rangle$ can be written as,

$$|\psi_2\rangle = \sum_i \lambda_i |u_{1i}\rangle |v'_{2i}\rangle = \sum_i \lambda_i |u_i\rangle |v'_{2i}\rangle \tag{4}$$

Now, since $\{|v_{1i}\rangle\}_i$ and $\{|v'_{2i}\rangle\}_i$ are both orthonormal sets, there exists a change of basis matrix (assuming that both sets span the entire set of n qubits, else, we can extend them to span the entire set), say **U**. Therefore, we can write $|\psi_2\rangle$ in terms of $|\psi_1\rangle$ as,

$$|\psi_2\rangle = (\mathbf{I}_n \otimes \mathbf{U}) |\psi_1\rangle$$
 (5)

This completes the proof.

6.2 Question 6.2

Question 6.2

Question. Let ρ_1 , ρ_2 be two density matrices, corresponding to mixed states over n qubits. Show that the following two statements are equivalent:

- ρ_1 and ρ_2 have the same set of eigenvalues (counting multiplicities).
- There exists a pure state $|\psi\rangle$ over 2n qubits such that when the first n qubits are measured, the state of the remaining qubits is described by density matrix ρ_2 . Similarly, when the last n qubits are measured, the state of the first n qubits is ρ_1 .

Proof. (\Longrightarrow) Let the eigenvalues of ρ_1 and ρ_2 be $\{\lambda_i^2\}_i$ and the eigenvectors be $\{|u_i\rangle\}_i$ and $\{|v_i\rangle\}_i$ respectively. Now, consider the pure state,

$$|\psi\rangle = \sum_{i} \lambda_i |u_i\rangle |v_i\rangle \tag{6}$$

Therefore, on measuring the first n qubits, we get $\rho_2 = \sum_i \lambda_i^2 |v_i\rangle \langle v_i|$ and on measuring the last n qubits, we get $\rho_1 = \sum_i \lambda_i^2 |u_i\rangle \langle u_i|$. Therefore, we have shown the existence of a pure state $|\psi\rangle$ over 2n qubits which yields ρ_1 on measuring the last n qubits and ρ_2 on measuring the first n qubits.

(\Leftarrow) Using Schmidt decomposition, we can represent $|\psi\rangle$ as $\sum_i \lambda_i |u_i\rangle \langle v_i|$. Now, on measuring the last n qubits, we get the density matrix $\rho_1 = \sum_i \lambda_i^2 |u_i\rangle \langle u_i|$ and on measuring the first n qubits, we get the density matrix as $\rho_2 = \sum_i \lambda_i |v_i\rangle \langle v_i|$. Now, since $\{|u_i\rangle\}_i$ and $\{|v_i\rangle\}_i$ are both orthonormal sets, the eigenvalues of ρ_1 and ρ_2 are both $\{\lambda_i\}_i$ (multi-set). Thus, ρ_1 and ρ_2 have the same set of eigenvalues.

7.1 Question 7.1

Question 7.1

Question. Consider the partial measurement of the first qubit in an n qubit system. Express this partial measurement is as projective measurement.

Proof. Consider the projective measurement,

$$\mathbf{P}_{0} = (|0\rangle \langle 0|) \otimes \mathbf{I}_{n-1}$$

$$\mathbf{P}_{1} = (|1\rangle \langle 1|) \otimes \mathbf{I}_{n-1}$$
(7)

This $\{\mathbf{P}_i\}_{i\in[2]}$ is the projective measurement that is equivalent to the partial measurement of the first qubit in an n qubit system. Clearly, it satisfies the idempotence property and $\mathbf{P}_0 + \mathbf{P}_1 = \mathbf{I}_n$. Consider any pure state $|\psi\rangle = \alpha_0 |0\rangle |\phi_0\rangle + \alpha_1 |1\rangle |\phi_1\rangle$. Now, applying \mathbf{P}_b on $|\psi\rangle$ gives,

Pr [first qubit = b] =
$$\langle \psi | \mathbf{P}_b | \psi \rangle$$

= $\alpha_0^2 \langle \phi_0 \langle 0 | \mathbf{P}_b | 0 \rangle \phi_0 \rangle + \alpha_1^2 \langle \phi_1 \langle 1 | \mathbf{P}_b | 1 \rangle \phi_1 \rangle$
= $\alpha_b^2 \langle \phi_b | \phi_b \rangle$
= α_b^2 (8)

The collapsed states are,

$$|\psi_{b}'\rangle = \frac{\mathbf{P}_{b} |\psi\rangle}{\sqrt{\langle \psi | \mathbf{P}_{b} | \psi\rangle}}$$

$$= \frac{((|b\rangle \langle b|) \otimes \mathbf{I}_{n-1}) (\alpha_{0} |0\rangle \otimes |\psi_{0}\rangle + \alpha_{1} |1\rangle \otimes |\psi_{1}\rangle)}{\alpha_{b}}$$

$$= \frac{1}{\alpha_{b}} \cdot ((\alpha_{0} |b\rangle \langle b| |0\rangle) \otimes |\psi_{0}\rangle + (\alpha_{1} |b\rangle \langle b| |1\rangle) \otimes |\psi_{1}\rangle)$$

$$= \frac{1}{\alpha_{b}} \cdot |b\rangle |\phi_{b}\rangle$$

$$= |b\rangle |\phi_{b}\rangle$$
(9)

These are exactly the same as the partial measurements. Therefore, the proposed $\{\mathbf{P}_i\}_{i\in[2]}$ is the projective measurement that corresponds to the partial measurement of the first qubit in an n qubit system.

7.2 Question 7.2

Question 7.2

Question. The measurements discussed in class have the following (collapsing) property: once the measurement is applied to an n-qubit system, the state collapses to one of $\{|x\rangle\}_{x\in\{0,1\}^n}$, and any further measurements produce the same measurement. Does this property hold true for projective measurements?

Proof. From the idempotence property of \mathcal{P} , we get that any further measurements will produce the same measurement. However, it need not be the case that the state will collapse to one of $\{|x\rangle\}_{x\in\{0,1\}^n}$. For instance, consider the following projective measurement on 1 qubit system,

$$\mathbf{P}_0 = |+\rangle \langle +|, \mathbf{P}_1 = |-\rangle \langle -| \tag{10}$$

This satisfies the idempotence property and the sum of the two projections is equal to I_1 . However, consider the collapsed state on input $|0\rangle$ with P_0 ,

$$\frac{\mathbf{P}_0 |0\rangle}{\sqrt{\langle 0|\mathbf{P}_0|0\rangle}} = \frac{\frac{1}{\sqrt{2}} \cdot |+\rangle}{\frac{1}{\sqrt{2}}} = |+\rangle \tag{11}$$

This is neither $|0\rangle$ nor $|1\rangle$. Therefore, the state does not necessarily collapse to one of the possible bit-strings in case of a projective measurement.

7.3 Question 7.3

Question 7.3

Question. Let $\mathcal{M} = \{\mathbf{M}_i\}_{i \in [t]}$ be a POVM applied to an n qubit pure state $|\psi\rangle$. Show that there exists a projective measurement $\mathcal{P} = \{\mathbf{P}_i\}_{i \in [t]}$ on a larger system over $n + \log t$ qubits, and a pure state $|\psi'\rangle$ on $n + \log t$ qubits such that $\langle \psi | \mathbf{M}_i | \psi \rangle = \langle \psi' | \mathbf{P}_i | \psi' \rangle$ for all $i \in [t]$.

Proof. We first show that each \mathbf{M}_i can be represented as a matrix of the form $|\alpha_i|^2 \mathbf{V}_i^{\dagger} \cdot \mathbf{V}_i$ for some matrix \mathbf{V}_i . Since all \mathbf{M}_i are Hermitian and psd, we can represent them as $|\alpha_i|^2 \sum_j \lambda_j |u_j\rangle \langle u_j|$ such that all $|u_j\rangle$ are orthonormal vectors and thus the previous representation follows (where $|\alpha_i|^2 = \text{Tr}(\mathbf{M}_i)$). Now consider the following state $|\psi'\rangle$,

$$|\psi'\rangle = \sum_{i \in [t]} \alpha_i \mathbf{V}_i |\psi\rangle |i\rangle$$
 (12)

Now, consider the following projective measurement \mathcal{P} ,

$$\mathbf{P}_i = \mathbf{I}_n \otimes (|i\rangle \langle i|) \tag{13}$$

Consider the probability of getting output i,

$$\langle \psi' | \mathbf{P}_{i} | \psi' \rangle = \sum_{j \in [t]} \langle \psi | \mathbf{V}_{j}^{\dagger} \alpha_{j}^{*} | \mathbf{I}_{n} | \alpha_{j} \mathbf{V}_{j} | \psi \rangle \cdot \langle j | (|i\rangle \langle i|) | j \rangle$$

$$= \langle \psi | \mathbf{V}_{i}^{\dagger} \alpha_{i}^{*} | \mathbf{I}_{n} | \alpha_{i} \mathbf{V}_{i} | \psi \rangle$$

$$= \langle \psi | |\alpha_{i}|^{2} \mathbf{V}_{i}^{\dagger} \mathbf{V}_{i} | \psi \rangle$$

$$= \langle \psi | \mathbf{M}_{i} | \psi \rangle$$
(14)

Therefore, the probability of getting output i via the projective and the POVM is the same. Additionally, we require $\log t$ registers to store the values of i. Therefore, a POVM is a projective measurement on a larger space.