Automobile Body Control Module

L&T Technology Service Global Engineering Academy

Team Members:

Manikanta Suri (99005017)

Archana Arun (99005023)

Durga Prasad (99005028)

Module: Hardware in loop

INDEX

Table of Content:

1.Introduction	5
1.1 Objective	5
1.2 Architecture	5
1.3 Features	6
1.3.1 Power Window module	7
1.3.2 Led Rear Light module	8
1.3.3 HVAC Control Module	9
2. Requirements	10
2.1 High level Requirements	10
2.2 Low level Requirements	11
3. Design	13
3.1 Integrated V5 and V8 Model	13
3.2 Subsystems V5 and V8 Models	15
4. Compliance Check	19
4.1 Coverage Check	20
4.2 JMAAB and MAAB check	21
4.3 Metric Dashboard	21
4.4 Test Cases	22
4.4.1 High Level Test Cases	22
4.4.2 Low Level Test Cases	23
5. Evolution of Versions Summary	27

Table of Figures

Figure 1: Architecture of BCM	5
Figure 2: Functions of BCM	.6
Figure 3: Power window module	7
Figure 4: LED rear light module	8
Figure 5: HVAC Control module	9
Figure 6: Integrated Version_5 Model	.13
Figure 7: Integrated Version_8 Model	.14
Figure 8: Version_5 Model Input Blocks	14
Figure 9: Version_8 Model Input Blocks	15
Figure 10: Version_5 Model ECU Blocks	16
Figure 11: Version_8 Model ECU Blocks	17
Figure 12: Variant Subsystem for SIL and manual testing	.18
Figure 13: Version_5 Model Output Blocks	.18
Figure 14: Version 8 Model Output Blocks	.19

Reference:

• Car model:

NEXA S-CROSS

• User Manual:

User Manual For S-Cross

- Working Videos:
 - → For Power Window module
 - → For Led Rear Light module
 - → For HVAC module
- Car manufacturers:

Full Details

1.Introduction:

In automotive electronics, body control module or 'body computer' is a generic term for an electronic control unit responsible for monitoring and controlling various electronic accessories in a vehicle's body.

Typically, in a car the BCM controls the power windows, Led rear light, HVAC, immobilizer system, central locking, etc. The BCM communicates with other on-board computers via the car's vehicle bus, and its main application is controlling load drivers – actuating relays that in turn perform actions in the vehicle such as locking the doors

This module can be considered to be the brain controlling different body parts (different ECUs) by sending and receiving signals through the nerves (vehicle BUS).

1.1 Objective:

To develop some automated model of BCM

Car selected: NEXA S-CROSS

Platform: MATLAB includes State flow and Simulink.

1.2 Architecture:

Figure 1: Architecture of BCM [source: www.intellias.com]

The microcontrollers and connectors integrated into a BCM constitute the central structural unit of the system responsible for the controlling part. Operating data is

transmitted to the control module through input devices. These may include sensors, vehicle performance indicators, and variable reactors.

1.3 Features:

Figure 2: Functions of BCM [source: www.intellias.com]

Features are:

- > Power Window Model
- ➤ Led Rear Light Model
- > HVAC control Model

1.3.1 Power Window module:

Figure 3: Power window module [source: www.<u>Powerwindow</u>]

Smart windows or Power windows came on the scene in the 1940s when they were added as a luxury feature in the 1940 Packard 180 series. Although the name of the actual engineer who invented them is lost in the mists of time, we do know that Packard was the first company to use them in an automobile. The invention came about because of power-assist technology that was developed before World War II.

It was a hydro-electric system that was used to raise and lower vehicle tops. This was the inspiration for the first power window. These windows are automobile windows which can be raised and lowered by pressing a button or switch, as opposed to using a crank handle. Smart window lift controls enable easy and automatic control of window position for the drivers and passengers. The driver has additional control to all the windows with ease.

Objective:

To design and display Smart Window control working found in the **NEXA S-CROSS** series car using Matlab Simulink.

Architecture Philosophy:

- 1. The driver has controls over all the windows and can press push up window to open window, press pull down to close window and stop to pause the window at the position it is in.
- 2. The passenger seats can control the windows for their seat alone by pressing the buttons push up or pull down for opening or closing windows respectively.
- 3. When the passenger seats button is not pressed, the window stays at the position it was in after pressing any buttons.
- 4. If there is simultaneous press of say push up button both from driver and the passenger for the same window, then the driver is given control and passenger does not get control until drivers control is at stop.
- 5. Increasing value in display indicated window closing operation and decreasing value indicates window opening condition.

1.3.2 Led Rear Light module:

Figure 4: Led Rear Light module [source: <u>LRLM</u>]

Taillights are the red lights that activate when the front headlights are turned on. Because of this, they are typically inactive during the day. They shine less brightly than brake lights because they're only designed to be active in dim conditions, such as nighttime or heavy rain. These lights exist to indicate other drivers of your presence on the road when visibility is impaired.

Objective:

To design the logic, the model and functional logic for rear light assembly of an automobile.

Architecture Philosophy:

- 1. The rear taillights of both the sides, i.e., left and right, must glow once the lights are switched ON, and should also turn OFF when the lights are switched OFF.
- 2. If the driver presses the brake pedal, both the brake lights along with the center mounted stop light must glow instantly, to notify the drivers behind.
- 3. Once the driver switches the turn lever to the left side, the left indicator must turn ON to notify the drivers behind.
- 4. Once the driver switches the turn lever to the right side, the right indicator must turn ON to notify the drivers behind.

1.3.3 HVAC Control Module:

Figure 5: HVAC module [source: HVAC]

A heating, ventilation, and air conditioning (HVAC) system in a vehicle is used to control the internal temperature of the vehicle cabin. It includes three subsystems, namely, heating, cooling, and air conditioning, that work together to provide purified air to the vehicle cabin, ensuring thermal comfort for drivers and passengers.

It controls the air temperature, inspects the moisture content in the air, and eliminates excessive humidity from the circulating air.

Objective:

To design HVAC control working found in the **NEXA S-CROSS** series car using Matlab Simulink.

Architecture Philosophy:

- 1. Based on temperature in car HVAC comes into picture.
- 2. If the temperature is high then driver presses the AC button then AC will turn ON and we can regulate the speed of Blower.
- 3. If the temperature is low then driver presses the Heater button then Heater will turn ON

2. Requirements:

2.1 High Level and Low-Level Requirements:

2.1.1 High-Level Requirements:

HLR ID	Description	Status
HLR_ 01	LRLM shall have a key	Implemented
HLR_ 02	LRLM shall have a gear	Implemented
HLR_ 03	LRLM shall have a brake light and brake paddle	Implemented
HLR_ 04	LRLM shall have a hazard light and hazard switch	Implemented
HLR_ 05	LRLM shall have steering and left and right indicator lights	Implemented
HLR_ 06	LRLM shall have a parking light	Implemented
HLR_ 07	LRLM shall have a reversing light	Implemented
HLR_ 8	The driver shall have window controls for all windows.	Implemented
HLR_ 09	Passengers shall have control over their respective side window	Implemented
HLR_ 10	Driver shall be able to lock window control for the rest of the passengers	Implemented

HLR_	HVAC shall have a KEY	Implemented
11		
HLR_	The value temperature of Car should be find based on	Implemented
12	Inputs	_
HLR	HVAC shall have the status of Air conditioner based on	Implemented
13	value of Temperature	1
HLR	HVAC shall have the status of Heater based on value of	Implemented
14	Temperature	1
HLR	AC shall have the status of Blower based on value of	Implemented
15	Temperature	1
	-	

2.1.2 Low-Level Requirements:

HLR ID	LLR ID	Description	Status
HLR_01	LLR_01	Key shall have two modes: On, Off	Implemented
HLR_02	LLR_02	Gear shall have four modes: Neutral, Drive, Park, Reverse	Implemented
HLR_03	LLR_03	Brake paddle shall have two modes: pressed, not pressed	Implemented
HLR_03	LLR_04	Brake light shall have two modes: On, off	Implemented
HLR_03	LLR_05	Brake light shall activate according to logic of brake paddle	Implemented
HLR_04	LLR_06	Hazard switch shall have two modes: pressed, not pressed	Implemented
HLR_04	LLR_07	Hazard light shall have two modes: On, off	Implemented
HLR_04	LLR_08	Hazard light shall activate according to logic of hazard switch	Implemented
HLR_05	LLR_09	Steering shall about to rotate in both directions: right and left	Implemented
HLR_05	LLR_10	Right indicator light shall have two modes: On, off	Implemented

HLR_05	LLR_11	Right indicator light shall activate according to logic of steering	Implemented
HLR_05	LLR_12	Left indicator light shall have two modes: On, off	Implemented
HLR_06	LLR_13	Left indicator light shall activate according to logic of steering	Implemented
HLR_06	LLR_14	LLR_11 Parking light shall have two modes: On, off	Implemented
HLR_07	LLR_15	Parking light shall activate according to logic of key, gear	Implemented
HLR_07	LLR_16	Reverse light shall have two modes: On, off	Implemented
HLR_07	LLR_17	Reverse light shall activate according to logic of key, gear	Implemented
HLR_02	LLR_19	Each window except for the driver seat window shall have two button controls: push up window and pull-down window.	Implemented
HLR_01	LLR_20	The driver window shall have four sets of control for the window and an additional lock button.	Implemented
HLR_03	LLR_21	The lock button on the driver window shall disable the window controls for the passengers	Implemented
HLR_03	LLR_22	If the lock button is in ON position, the driver shall only be able to control all windows	Implemented
HLR_03	LLR_23	If the lock button is in OFF position, passengers can control their side window	Implemented
HLR_01	LLR_24	If driver and passenger both try to control the window position at the same time, the driver control shall be given priority.	Implemented
HLR_01	LLR_25	The positions of the windows status shall be displayed in the scope	Implemented
HLR_11	LLR_26	Key shall have two modes: HVAC On, HVAC Off	Implemented
HLR_11	LLR_27	Based on the key status the HVAC system works	Implemented

HLR_12	LLR_28	Based on the value of the engine speed and engine torque the temperature value changes	Implemented
HLR_12	LLR_29	The value of temperature depends on the Humidity in Atmosphere	Implemented
HLR_13	LLR_30	Based on the value of temperature the status of Air conditioner operates (ON or OFF)	Implemented
HLR_14	LLR_31	Based on the value of temperature the status of Heater operates (ON or OFF)	Implemented
HLR_15	LLR_32	Based on the ON status of Air conditioner the Blower operates (ON or OFF)	Implemented

3.BCM Design:

3.1 V5 and V8 Model Integrated:

Integrated_Version_5 Model:

Figure 6: Integrated Version_5 Model

Integrated Version_8 Model:

Figure 7: Integrated V8 model

Version_5 Model Input Blocks:

Figure 8: Version_5 Model Input Blocks

Version_8 Model Input Blocks:

Figure 9: V8 Input Subsystem

Version_5 Model ECU Blocks:

Figure 10: Version_5 Model ECU Blocks

Version_8 Model ECU Blocks:

Figure 11: V8 ECU Subsystem

Figure 12: V8 Variant subsystem for SIL testing and manual testing

Version_5 Model Output Blocks:

Figure 13: Version_5 Model Output Blocks

Version_8 Model Output Blocks:

Figure 14: V8 System and Impact Subsystem

4. Compliance Check

4.1 Coverage Check

- V6 Coverage Report 81%
- V8 Coverage Report 95%

Summary

Model Hierarchy/Complexity					
		Decision	Execution		
1. HILClimbers Integrated V8	55	95%	100%		
2 main ECU	36	93%	100%		
3 <u>HVAC_ECU</u>	3	50%	100%		
4 <u>heater status system</u>	1	50%	100%		
5 <u>LRLM_ECU</u>	12	100%	100%		
6 <u>Variant Subsystem</u>	3	100%	100%		
7 <u>reverse light system mil</u>	3	100%	100%		
8		NA	100%		
9		NA	100%		
10 <u>brake_system</u>	2	100%	100%		
11 <u>brake light output decider</u>	1	100%	100%		

4.2 JMAAB and MAAB Check

- V6 Model Advisor Report JMAAB warnings 39
- V8 Model Advisor Report JMAAB warnings 14

Simulink version: 10.3 System: HILClimbers_Integrated_V8 Treat as Referenced Model: off			Model Advisor Report	- HILClimbers_Integrated_V8.	six Model version: 1.61 Current run: 28-Aug-2021 19:22:08
Run Summary Pass 2 109	Fail 2	Warning 14	Not Run	Total 125	
□ Modeling Stand	dards for JM	AAB			
□ 1 Naming Co	onventions	⊘ 14 ⊗ 0 △ 0 □0)		

Warning	Fixed solution
Check character usage in block names	Remove spaces in block names
Check Implement logic signals as	Add Boolean block, check signal flow data type
Boolean data (vs. double)	and make changes
Check font formatting	All font size set to 10
Inport blocks are too far to the right and result in left-flowing signals.	Align input ports to extreme left uniformly
Check diagnostic settings for incorrect	modify the model configuration parameters to
calculation results	error from none and warning
Check for Simulink diagrams	Set the format options to the recommended value
using nonstandard display attributes	of on, off and none in information overlays
Check block colors	Set the block colors background to white
Check whether block names appear below blocks	All block names displayed at the bottom
Check the display attributes of block names	Names must be descriptive not default names
Identify blocks that use and fail	Changed the display of the nondefault value using
to display nondefault values.	the Block Annotation pane of the Block
	Properties dialog box.
Check definition of signal labels	Name the signals same as source block label

Check Signal name propagation for subsystems	Add the propagation signal name from properties/information overlays
Check block orientation	Remove reverse block orientation using Goto and From
Check for consistency in model element names	Signal name and port names were made same
Check position of signal labels	Signal names were set to center
Check signal line connections and intersections	Remove overlapping signals with Goto and From blocks
Check scope of From and Goto blocks	Goto and From blocks made only for local scope
Division by zero error	Set initial conditions for integrator block to 0.0001 and switch condition to eliminate 0 division
Check outports at the extreme right	Move all outports to extreme left

4.3 Metric Dashboard

4.4 Test Plan

4.5.1 High Level Test Plan

	Trigil Level Test Hall				Q
Test ID	Description	Expected Input	Expected Output	Actual Output	Status
H_01	Test the status of Brake Lights	Brake paddle	Indication of Brake lights		Passed
H_02	Test the status of right indicator light	Steering angle, Hazard switch	Indication of Right Indicator light		Passed
H_03	Test the status of left indicator light	Steering angle, Hazard Switch	Indication of I ligh		Passed
H_04	Test the status of Hazard Lights	Hazard Switch	Indication of I	Hazard lights	Passed
H_05	Test the status of parking lights	Key, Gear	Indication of P		Passed
H_06	Test the status of reversing lights	Key, Gear	Indication of Ligh	_	Passed
H_07	Test the window open	Push up: 1	Decreasing slope indicating closing window in scope		Passed
H_08	Test the window close	Push down: -1	Increasing slope indicating opening window in scope		Passed
H_09	Test the window stop when button not pressed/ at stop	Stop: 0	Straight like/ no increasing/decreasing signal in scope		Passed
H_10	Test the status of key	Key signal activation	Indication of HVAC System Operation		Passed
H_11	Test the status of temperature in a car	Internal Temperature, Engine speed and torque	Value of temperature is shown in display		Passed
H_12	Test the status of HVAC system	Temperature	Indication of HVAC system ON		Passed

4.5.2 Low Level Test Plan

Test	Description		Expected Input	Exporto Actual	Statu
	Description	Mappin	Expected Input	Expecte Actual	
ID		g to HL		d Output	S
		Test		Output	
		Plan			
L_0	Brake paddle not	H_01	Brake paddle	Brake lights are	Passe
1	pressed			OFF	d
	1				
L_0	Brake paddle pressed	H 01	Brake paddle	Brake lights are	Passe
2	Brake paddie pressed	11_01	Brake paddie	ON	d
				ON	u
T 0	G. 1 .	TT 00	Q	T 1' . 1' 1 .	D
L_0	Steering angle is zero,	H_02,	Steering angle, Hazard	Indicator lights	Passe
3	hazard switch is OFF	H_03	Switch	are OFF	d
L_0	Steering angle is greater	H_02	Steering angle,	Right Indicator	Passe
$\frac{-}{4}$	than zero, hazard switch	_	Hazard Switch	light is	d
	is OFF			ON (blinks), Left	
	15 011			Indicator light	
				is OFF (blinks)	
Ι. Ο	Ctanina anala is lass	11 02	Staning on all	` /	Dagge
L_0	Steering angle is less	H_03	Steering angle,	Right Indicator	Passe
5	than zero, hazard switch		Hazard Switch	light is	d
	is OFF			OFF (blinks),	
				Left Indicator	
				light is ON	
				(blinks)	
L_0	Steering angle is zero,	Н 02,	Steering angle, Hazard	Indicator lights	Passe
$\overline{6}$	hazard switch is ON	H 03	Switch	are ON (blinks)	d
Ü		11_00	2 11 10 11		G.
L 0	Steering angle is zero,	H 02	Steering angle,	Indicator lights	Passe
7	hazard switch is ON	11_02	Hazard Switch	are ON (blinks)	d
/	nazaru switch is ON		Hazard Switch	are ON (offices)	u
Τ 0	C. 1 .	11.00	G 1	T 1' , 1' 1	D
L_0	Steering angle is zero,	H_02,	Steering angle,	Indicator lights	Passe
8	hazard switch is ON	H_03	Hazard Switch	are ON (blinks)	d
L_0	Hazard switch is OFF	H_04	Hazard Switch	Hazard lights are	Passe
9		_		OFF	d
L 1	Hazard switch is ON	H 04	Hazard Switch	Hazard lights are	Passe
$\begin{bmatrix} \mathbf{L}_{-1} \\ 0 \end{bmatrix}$	Trazara Switch is OIV	11_04	Tazara Switch	ON	d
U				ON	u

	_				
L_1 1	Key not inserted; gear mode is either drive/neutral	H_05	Key, Gear	Parking lights are OFF	Passe d
L_1 2	Key not inserted; gear mode is park	H_05	Key, Gear	Parking lights are OFF	Passe d
L_1 3	Key inserted; gear mode is either drive/neutral	H_05	Key, Gear	Parking lights are OFF	Passe d
L_1 4	Key inserted; gear mode is park	H_05	Key, Gear	Parking lights are ON	Passe d
L_1 5	Key not inserted; gear mode is either drive/neutral	H_06	Key, Gear	Reverse lights are OFF	Passe d
L_1 6	Key not inserted; gear mode is reverse	H_06	Key, Gear	Reverse lights are OFF	Passe d
L_1 7	Key inserted; gear mode is either drive/neutral	H_06	Key, Gear	Reverse lights are OFF	Passe d
L_1 8	Key inserted; gear mode is reverse	H_06	Key, Gear	Reverse lights are ON	Passe d
L_1 9	Driver window control open: opening window	H_07	Driver window	Driver window decreasing slope in scope	Passe d
L_2 0	Driver window control close, lock OFF: closing window	H_08	Driver window	Driver window increasing slope in scope	Passe d
L_2 1	Driver window control stop, lock OFF: stop at same position	H_09	Driver window, lock OFF	Driver window straight signal indicating no change in position	Passe d

L_2 2	Passenger window control open, lock OFF: opening window	H_07	Passenger window, lock OFF	Passenger window decreasing slope in scope	Passe d
L_2 3	Passenger window control close, lock OFF: closing window	H_08	Passenger window, lock OFF	Passenger window increasing slope in scope	Passe d
L_2 4	Passenger window control stop, lock OFF: stop at same position	H_09	Passenger window, lock OFF	Passenger window straight signal indicating no change in position	Passe d
L_2 5	Passenger window control open, driver control stops, lock ON: opening window	H_7	Passenger window, lock ON	Passenger window straight signal indicating no change in position	Passe d
L_2 6	Passenger window control close, driver control stops, lock ON: closing window	H_08	Passenger window, lock ON	Passenger window straight signal indicating no change in position	Passe d
L_2 7	Passenger window control stop, driver control stops, lock ON: stop at same position	H_09	Passenger window, lock ON	Passenger window straight signal indicating no change in position	Passe d

close: closing passenger corresponding window	in scope	
L_2 Passenger window control close, driver control for same window open: opening passenger corresponding window	Passenger window increasing slope in scope	Passe d
L_3 Driver H_08 Driver window/Passenger wind	No further	Passe
	_	d
maximum signal level: ow	after reaching 10	
window fully closed L 3 Driver H 07 Driver	in y axis No further	Passe
	decrease in scope	
mum signal level: window	after reaching 0	
window fully open	in y axis	
L 3 Key not inserted Key signal	The whole	Passe
L_3 Key not inserted Key signal	HVAC system	d
	should not work	
L_3 Key inserted Key signal	The whole	Passe
3	HVAC system	d
L_3 Status of temperature in Key, Internal	should work	Passe
L_3 Status of temperature in 4 Key, Internal Temperature, Engine		d
speed and torque	Based on the	
	input values the	
	temperature obtai	
I 2 Air Condition or ON Towns and the	ns If the temperature	Dear
L_3 Air Conditioner ON Temperature value status	If the temperature greater than 25	d
Status	then AC is ON	u

L_3 6	Air Conditioner OFF status	Temperature value If the templess than 1 AC is C	
L_3 7	Blower Status	Air conditioner status If AC is C Blower also O	
L_3 9	Heater On Status	Temperature value If the templess than Heater is	
L_4 0	Heater OFF Status	Temperature value If the temperature value greater the then Header of the temperature value OFI	ater is

5. Summary of different versions

Version	Features
V5	 additional features from existing V4 versions three subsystems for inputs, ECU and system and impact individual subsystems made to reference subsystems
V6	 MIL testing with signal builders variant subsystem for manual and automated testing for input subsystems Enable subsystems for dependent features ran MAAB and JMAAB checks, model coverage and metric dashboard and tried to improve
V7	C code generated for LRLM ECU subsystem

	 S function block generated for subsystem reverse_light_system enabled variant subsystem to choose between manual testing and automated testing Set up projects from git repo Added startup file to add paths and set variant subsystems choice Reduce warnings Improve code coverage
V8	 Eliminate warnings further Final alignments and model arrangement