

Chemical Engineering 4H03

Nearest Neighbours Classification

Jake Nease McMaster University

Objectives for this Topic

- We would like to introduce a new form of classifiers based on supervised learning
 - This will be a short lesson outlining the basics (there is not much to it, to be honest)
- Introduction to Nearest Neighbours
 - How to use
 - Neighbour classifier versus radial classifier
 - Benefits and pitfalls
- Introduction to nearest centroids
- Quick example in MATLAB

4H03_KNN

NN In a Nutshell

- Neighbour-based classification is instance-based
 - Does not attempt to generate an internal model
 - Thus new points are not classified in the typical \hat{y} fashion
- Instead, NN stores instances of the training data as a comparative array
 - Can be updated as new data is (correctly) classified in the future
- Classification is quite simple: it is compute as a majority vote of the nearest neighbours of a query point
 - The query point is assigned to whichever class holds the most votes in the neighbourhood

Computing K-NN Classifications

Consider a set of training data:

$$\mathcal{T} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_i, y_i), \cdots, (x_N, y_N)\}$$

- Each point $x_i \in \mathbb{R}^{K \times 1}$ is a vector of independent data in a K-dimensional space belonging to class y_i
 - Here, y_i could belong to a set $\{1,2,3...\}$ or $\{Y,N\}$ or $\{GOOD,BAD,UGLY\}$ depending on the context
 - The set of possible y_i must be known *a-priori* (note this is **different than K-Means**, which did not know the class to which the data belonged beforehand*)
- Of special note: all entries x_i must be continuous values (no names, strings... binaries OK but not great)

Computing NN Classifications

- The easiest way to classify a query point \tilde{x} (with same dimensions as all $x \in \mathcal{T}$) is to use the **brute-force method** as follows:
- 1. Select the number of nearest-neighbours \mathcal{N} required for voting (must be decided before classification)
- 2. Compute the distance from \tilde{x} to x_i for all i as:

$$d_i = \|\widetilde{\mathbf{x}} - \mathbf{x}_i\| \ \forall i$$

- 3. Select the \mathcal{N} shortest distances and corresponding points x_i . Place x_i in the "voting set" \mathcal{V}
- 4. Query \tilde{x} belongs to class y_m , where y_m is the classifier corresponding to the majority votes from $x_i \in \mathcal{V}$

Comments

- This is definitely the easiest way to go
- Choosing $\mathcal N$ depends highly on the data
 - Higher \mathcal{N} tends to eliminate noise
 - However, higher $\mathcal N$ makes potential delineation between subsets less distinct
- Basic algorithm treats all points equally
 - Possible to weight different points to contribute more or less to the classification strength (i.e. higher weights for points closer to the query point)
- Able to classify points in data sets that overlap
 - Added information of which point belongs in which class helps here

4H03_KNN

Visual Example

How would you classify the three query points?

4H03 KNN

Radial NN Classifications

- Very similar to NN classification, but with a twist
- Instead of choosing ${\mathcal N}$ nearest neighbours, the user reports a radius r
 - Can be chosen by-dimension (leading to a hyper-ellipse of sorts) but is often not done that way
- All points within hypersphere of radius r are included in the voting set $\mathcal V$

Shortcomings of NN

- Requires the selection of $\mathcal N$ neighbours up front
 - Results may depend strongly on how many neighbours are used
- As the total number of points $N \to \infty$, NN becomes more accurate but suffers from long computation time
- As $K \gg 1$, randomly drawn points from a probabilistic distribution (the backbone of NN) become less and less similar to each other, leading to poor predictive power
 - However, if the data in X behave in correlated sub-spaces, we can use methods like PCA to dimensionally reduce the data OR use nonlinear partitioning methods like SVMs
- Is technically a "supervised learning" method, and thus not helpful if we don't know training classes ahead of time

Benefits of NN

- Very easy to use, relatively speaking
- Allows for classification of data with nonlinear separation (even if we require the true outcomes via the training set)
- Allows for classification of data sets with overlap
 - This is where that probabilistic distribution thing comes in!

4H03_KNN

What Will be Our Last Topic?

DECISION TREES and RANDOM FORESTS

- Used to classify binary outcomes based on entropy minimizations of data sets
- Supervised learning

SUPPORT VECTOR MACHINES

 Fitting a kernel to a set of data that delineates between known classes

Remaining Course Schedule

- Wrap up and overview April 06
- Mahir's ANN applications to research Apr 08
- Presentations following!

4H03 KNN