Random projections in mathematical programming

Leo Liberti, CNRS LIX Ecole Polytechnique with: P.L. Poirion, Ky Vu, B. Manca, C. D'Ambrosio, A. Oustry

Danniversary @ MIP22

Section 1

Random projections

The gist of random projections

- Let A be a $m \times n$ data matrix (n col. vectors $\in \mathbb{R}^m$, $m \gg 1$)
- lacksquare $T=(T_{ij})$ with density $\sigma,$ with $T_{ij}\sim \mathsf{N}(0,rac{1}{\sqrt{k\sigma}})$ and $k=O(\ln n)$

columnwise:
$$\underbrace{\left(\begin{array}{ccc} \cdots & \cdots \\ \cdots & \cdots \\ T \text{ is } k \times m \end{array}\right)}_{A \text{ is } m \times n} = \underbrace{\left(\begin{array}{ccc} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \end{array}\right)}_{TA \text{ is } k \times n}$$

row-wise:
$$\forall i \leq m$$
 $\sum\limits_{j \leq n} T_{ij} \mathsf{row}_j(A) = \mathsf{row}_i(TA)$

- We have $\forall i, j \leq n \quad ||A_i A_j||_2 \approx ||\mathbf{T}A_i \mathbf{T}A_j||_2$ "WAHP"
- Notation: $k \times m$ random projection matrix $T \sim \mathsf{RP}(k,m)$

"WAHP" = "with arbitrarily high probability"

the probability of E_k (depending on some parameter k) approaches 1 "exponentially fast" as k increases

$$\mathbf{P}(E_k) \ge 1 - O(e^{-k})$$

Johnson-Lindenstrauss Lemma

Existence of RPs

Thm.

Given
$$\epsilon>0$$
, $A\subseteq\mathbb{R}^m$ with $|A|=n$, $\exists k=O(\frac{1}{\epsilon^2}\ln n)$ and $T\sim\mathsf{RP}(k,m)$ s.t. $\forall i< j\leq n \quad (1-\epsilon)\|A_i-A_j\|_2 \leq \|TA_i-TA_j\|_2 \leq (1+\epsilon)\|A_i-A_j\|_2$ WAHP

Equivalently:
$$\epsilon$$
-distortion $(1 - \epsilon) \le \frac{\|TA_i - TA_j\|_2}{\|A_i - A_j\|_2} \le (1 + \epsilon)$

Remarks

- ▶ JLL Proof implies:
 - (i) $\forall i < j \le n$ $\mathbb{E}_{\mathbf{T}}(\|\mathbf{T}A_i \mathbf{T}A_j\|) = \|A_i A_j\|$
 - (ii) large discrepancy from the mean is unlikely
- ► Empirically, sample T very few times (e.g. once will do!) error will only significantly impact few pairs
- ightharpoonup Surprising fact: k is independent of number of dimensions m
- ▶ JLL $\Rightarrow \exists O(e^k)$ almost orthogonal vectors in \mathbb{R}^k Pf.: approx. congruences almost preserve angles, apply T to std basis of \mathbb{R}^m

Example: clustering data

k-means without random projections

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]

Out[29]= {0.405908, {1, 2, 2, 2, 2, 3, 2, 2, 3}}

k-means with random projections
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Projecting formulations

- ► The set-up
 - Given MP formulation F(p, x) and a RP T consider F(Tp, x)
 - Aim at proving $val(F(p, x)) \approx val(F(Tp, x))$ WAHP
- Difficulties:
 - ► JLL only applies to finite sets, decision vars represent infinite sets
 - ▶ Need to prove approximate congruence ⇒ approx. feasibility/optimality
 - Often need a solution retrieval method

- \triangleright For now, \mathscr{C} is...
 - ► LP, SOCP, SDP

[Vu et al. MOR 2018; L. et al. LAA 2021]

▶ QP, QP over a ball constraint [Vu et al. IPCO 2019; D'Ambrosio et al. MPB 2020]

► MIN SUM-OF-SQUARES CLUSTERING MINLP [L. & Manca JOGO 2021]

- ► In preparation:

Section 2

Projected formulations: survey

Linear Programming: formulations

► Standard form LP

$$\begin{vmatrix}
\min_{x \in \mathbb{R}^n} & c \cdot x \\
Ax & = b \\
x & \ge 0
\end{vmatrix} (\mathsf{LP})$$

Projected standard form LP (projecting the constraints)

$$\begin{array}{ccc}
\min_{x \in \mathbb{R}^n} & c \cdot x & \\
& TAx & = & Tb \\
& x & \geq & 0
\end{array} \right\} (TLP)$$

- ▶ LP has $k = O(\epsilon^{-2} \ln n) \ll m$ constraints, can be solved faster reducing the constraint number from m to k
- Constraint projection: $\forall h \leq k \ (TAx Tb)_h = \sum_{i \leq m} T_{hi} (A_i \cdot x b_i)$

Linear Programming: theory

- Approximate feasibility:
 - we prove LP feasible \Leftrightarrow *TLP* feasible WAHP
 - (A, b) feasible $\Rightarrow (TA, Tb)$ feasible by linearity of T
 - converse is harder and WAHP (e.g. by projected separating hyperplane)
- ► Approximate optimality:
 - let: x^* opt. of LP, \bar{x} opt. of TLP
 - boundedness assumption: $\mathbf{1} \cdot x^* \leq \theta$
 - "sandwich theorem":

```
\exists \delta \text{ s.t. } \mathsf{val}(\mathsf{LP}) - \delta \leq \mathsf{val}(T\mathsf{LP}) \leq \mathsf{val}(\mathsf{LP}) \quad \text{WAHP}
```

- \triangleright δ depends on ϵ , θ and a lot of other quantities e.g. opt. dual soln y^* (!!)
- Solution retrieval: $\tilde{x} = \bar{x} + A^{\top} (AA^{\top})^{-1} (b A\bar{x})$ projection of \bar{x} on subspace Ax = b \tilde{x} satisfies Ax = b by construction, has small error $x \not\geq 0$ WAHP
- ► See [Vu et al. MOR 2018]

Semidefinite Programming: formulations

Standard form SDP

$$\begin{cases} \min\limits_{X \in \mathbb{S}^n} & \langle C, X \rangle \\ \forall i \leq m & \langle A_i, X \rangle & = & b_i \\ & X & \succeq & 0 \end{cases}$$
 (SDP)

- ▶ Denote $A \odot X = (\langle A_i, X \rangle \mid i \leq m)$ where $A = (\text{vec}(A_i) \mid i \leq m)$
- ► SDP equivalent to:

$$\left. \begin{array}{lll} \min \limits_{X \in \mathbb{S}^n} & \langle C, X \rangle & & \\ & A \odot X & = & b \\ & X & \succeq & 0 \end{array} \right\}$$

▶ Projected SDP (projecting the constraints)

$$\begin{array}{cccc} \min & \langle C, X \rangle & & \\ & TA \odot X & = & Tb \\ & X & \succeq & 0 \end{array} \right\} (T \text{SDP})$$

Semidefinite programming: theory

- Approximate feasibility: similar to projecting constraints in LP, but in a Jordan Algebra
- ► Approximate optimality:
 - let: X^* opt. of SDP, \bar{X} opt. of TSDP
 - $lackbox{ based on boundedness assumption } \langle \mathbf{1}, X^* \rangle \leq heta$
 - ► "sandwich theorem": $val(SDP) E \le val(TSDP) \le val(SDP)$ WAHP
 - \blacktriangleright E depends on A, b, ϵ, θ and soln of SDP dual (!!)
- Solution retrieval: $\tilde{X} = \bar{X} + A^{\top} (AA^{\top})^{-1} \odot (b A \odot \bar{X})$ projection of \bar{X} on subspace $A \odot X = b$ \tilde{X} satisfies $A \odot X = b$ by construction, has small error $\tilde{X} \not\succeq 0$ WAHP
- ► Proof techniques different from LP case cones modelled with formally real Jordan algebras
- ► See [L. et al. LAA 2021]

Projecting variables: an idea from duality

Consider the dual LP in canonical form

► Consider the dual of $TLP \equiv \min\{c \cdot x \mid TAx = Tb \land x \ge 0\}$

$$\max_{u \in \mathbb{R}^k} u \cdot \mathbf{T}b \\
 u \mathbf{T}A \leq c$$
 $\left\{ (\mathbf{T}dLP) \right\}$

LP has $k = O(\epsilon^{-2} \ln n) \ll m$ vars, can be solved faster reducing the number of variables from n to k projecting the variables instead of the constraints

Projecting variables: constructing the formulation

- Approximate Exact feasibility: $c \ge u(TA) = (uT)A$, hence uT feasible in dLP
- Solution retrieval: let y = uT (*)
- ► What happens in the original variables:
 - ► $TT^{\top} \approx I_k$ WAHP [Zhang et al. COLT 2013]
 - ▶ by (*) we have $yT^{\top} = uTT^{\top} \approx uI_k = u$ WAHP
 - $\Rightarrow \max\{y \cdot T^{\top}Tb \mid yT^{\top}TA \le c\} \approx \max\{u \cdot Tb \mid uTA \le c\}$ $= \mathsf{val}(T\mathsf{dLP}) \quad \mathsf{WAHP}$
 - Gives us an idea for projecting variables

(i)
$$u = Ty$$
 (ii) $A \to TA$ and $b \to Tb$

Canonical form LP: formulations

► Original LP (canonical form)

$$\begin{array}{ccc}
\max_{x \in \mathbb{R}^n} & c \cdot x \\
& Ax & \leq & b
\end{array} \right\} (\mathsf{cLP})$$

► Projecting the variables

Projected LP (canonical form)

$$\left. \begin{array}{ll} \max & \overline{c} \cdot u \\ u \in \mathbb{R}^k & \\ & \bar{A}u & \leq & b \end{array} \right\} \left(\underline{T} \mathsf{cLP} \right)$$

where
$$\bar{c} = Tc$$
, $\bar{A} = AT^{\top}$ and $u = Tx$

Canonical form LP: theory

- Feasibility: uT feasible in original problem Solution retrieval: $x = T^{T}u$ (as shown above)
- ► Approximate optimality:
 - "sandwich theorem": for radius r of ball containing $Ax \leq b$ val $(TcLP) \leq val(cLP) \leq \mu_{\epsilon}^r val(TcLP) + r\epsilon \|c\|_2$ WAHP for a certain $\mu_{\epsilon}^r < 1$ depending on many other quantities
- Proved using additive distortions:
 - Notation: $x \in y \pm \alpha \Leftrightarrow x \in [y \alpha, y + \alpha]$
 - ▶ Given $\epsilon \in (0,1) \exists$ constant \mathcal{C} and $T \sim \mathsf{RP}(k,n)$ s.t.
 - 1. $\forall x,y \in \mathbb{R}^n \quad (Tx)^\top Ty \in x^\top y \pm \epsilon ||x||_2 ||y||_2$ WAHP
 - 2. $\forall x \in \mathbb{R}^n \quad AT^{\top}Tx \in Ax \pm \epsilon ||x|| \mathbf{1}$ WAHP

Quadratic Programming: formulations

Original QP

$$\max_{x \in \mathbb{R}^n} x^\top Q x + c \cdot x
Ax \le b$$
(QP)

► Projected reformulation (projecting variables)

$$\max_{x \in \mathbb{R}^n} x^{\top} T^{\top} T Q T^{\top} T x + T c \cdot T x
A T^{\top} (T x) \leq b$$

Projected QP

$$\max_{u \in \mathbb{R}^k} u^{\top} \overline{Q} u + \overline{c} \cdot u
\overline{A} u \leq b$$

$$(TQP)$$

where
$$\bar{Q} = TQT^{\top}$$
, $\bar{c} = Tc$, $\bar{A} = AT^{\top}$ and $u = Tx$

Quadratic Programming: theory

- Feasibility: uT feasible in original problem Solution retrieval: $x = T^{\top}u$ (as for cLP)
- ► Approximate optimality
 - ** "sandwich theorem": for radius r of ball containing $Ax \leq b$, $\mathsf{val}(T\mathsf{QP}) \leq \mathsf{val}(\mathsf{QP}) \leq \mu_{\epsilon}^r \mathsf{val}(T\mathsf{QP})) + r\epsilon (3r\|Q\|_F + \|c\|_2) \quad \text{WAHP}$ for a certain $\mu_{\epsilon}^r < 1$ depending on many other quantities
- Proved using additive distortions:
 - Notation: $x \in y \pm \alpha \Leftrightarrow x \in [y \alpha, y + \alpha]$
 - ► Given $\epsilon \in (0,1) \exists$ constant \mathcal{C} and $T \sim \mathsf{RP}(k,n)$ s.t.
 - I. scalar products as for cLP
 - 2. linear forms as for cLP
 - 3. $\forall x,y \in \mathbb{R}^n \quad x^\top T^\top TQT^\top Ty \in x^\top Qy \pm 3\epsilon ||x|| \, ||y|| \, ||Q||_F$ WAHP
- ► See [D'Ambrosio et al. MPB 2020]

Section 3

Projected formulations: new directions

Improved solution retrieval for constraint projection

- RPs on conic programs (LP, SDP) project Ax = b to TAx = Tb
- Solution retrieval: $\tilde{x} = \bar{x} + A^{\top} (AA^{\top})^{-1} (b A\bar{x})$ geometric interpretation: project \bar{x} onto Ax = b subspace
- ► Issue: small negativity error $x \ge 0, X \ge 0$ WAHP
- ► Use alternating projection method (APM):
 - I. $\tilde{x} = \bar{x}$
 - 2. project \tilde{x} onto Ax = b
 - 3. project result onto $x \ge 0$
 - 4. if errors of updated \tilde{x} small w.r.t. $Ax = b, x \ge 0$, stop
 - 5. repeat a given number of times
 - 6. return \tilde{x} as retrieved solution

(respectively $X \succeq 0$ if SDP)

[L. et al., AIRO-ODS22]

- Convergence properties well-studied for projections on convex sets
- Projection on $x \ge 0$: $\tilde{x} = (\max(x_j, 0) \mid j \le n)$
- Projection on $X \succeq 0$: for eigenval vector λ and eigenvect matrix P of X,

$$\tilde{X} = P \operatorname{diag}(\max(\lambda_j, 0) \mid j \leq n) P^{\top}$$

Quadratically constrained sets

- ▶ Recall $A \odot X = (\langle A_i, X \rangle \mid i \leq m)$ where $A = (\text{vec}(A_i) \mid i \leq m)$
- Original pure-feasibility equality QCP

$$\mathsf{eQCP} \equiv \{(x, X) \mid A \odot X = b \land X = xx^{\top}\}\$$

Projected pure-feasibility equality QCP

$$\mathbf{T}\mathsf{eQCP} \equiv \{(x,X) \mid \mathbf{T}A \odot X = \mathbf{T}b \land X = xx^{\top}\}\$$

► Thm.: Let QCP be feasible and (\bar{x}, \bar{X}) soln of TQCP Then \exists const \mathcal{C} s.t. $\forall u > 0$

$$\|A\odot \bar{X} - b\|_2 \leq (\mathcal{C} \max_{j \leq n^2} \|A^j\|_2 \sqrt{\ln n} + 2u \|A\|_2) \theta^2 / \sqrt{k}$$

with probability $\geq 1 - 2e^{-u^2}$

 A^j is the j-th col. of A and θ s.t. $\|\bar{x}\|_1 \leq \theta$

[L. et al. DMD22]

A QCQP class: formulations

► Original QCQP

$$\begin{vmatrix} \min \limits_{x \in \mathbb{R}^n} & x^\top Q^0 x & + & c \cdot x \\ \forall i \leq m & x^\top Q^i x & = & a_i \\ & Ax & = & b \\ & x & \geq & 0 \end{vmatrix}$$
 (QCQP)

► Compact notation and linearization

$$\left. \begin{array}{llll} \min_{x \in \mathbb{R}^n} & \langle Q^0, X \rangle & + & c \cdot x \\ & & & \\ Q \odot X = a & \wedge & Ax = b \\ & & X = xx^\top & \wedge & x \geq 0 \end{array} \right\}$$

Projected QCQP

$$\begin{aligned} \min_{\substack{x \in \mathbb{R}^n \\ X \in \mathbb{S}^n}} & \langle Q^0, X \rangle & + & c \cdot x \\ & & SQ \odot X = \underbrace{Sa}_{X} & \wedge & \underbrace{TAx = Tb}_{X} \\ & & X = xx^\top & \wedge & x \geq 0 \end{aligned} \right\} (\underbrace{(S,T)}_{\text{QCQP}})$$

A QCQPs class: theory

- ► Theory: union bound lemma on previous probabilistic results on SDP and QCP we are working on this
- ► Solution retrieval:
 - on convex problems: APM
 - on nonconvex problems: use solution (\bar{x}, \bar{X}) of (S, T)QCQP as a starting point for a local solver deployed on QCQP

$$\operatorname{denoted}\left(\tilde{x},\tilde{X}\right) = \operatorname{locSlv}(\mathsf{QCQP},(\bar{x},\bar{X}))$$

A QCQPs class: projecting constraints and variables

- From RP₄QP theory, can bound the projected value error on $x^{\top}Qx$ \Rightarrow can replace Q with \overline{Q} , c with \overline{c} and x with u
- ► Obtain projected QCQP w.r.t. $R \sim \mathsf{RP}(r, n)$

where $\bar{Q}^e = RQ^eR^{\mathsf{T}}$ for $e \in E \cup \{0\}, \bar{A} = AR^{\mathsf{T}}, \bar{c} = cR^{\mathsf{T}}, u = Rx$

Now apply (S, T)QCQP projection, get

- Prevent linear infeas: choose $S \sim \mathsf{RP}(s, |E|), T \sim \mathsf{RP}(t, m)$ s.t. s, t < r
- ▶ Retrieval: $\underline{vars:} X = \mathbb{R}^{\top} U \mathbb{R}$, $\underline{constrs:} (x, X)$ start pt for locSlv(QCQP)

Section 4

Some computational results

LP: Maximum flow

Semidefinite programming: ACOPF instances

ACOPF: decide voltage, power s.t. Ohm's and Kirchhoff's laws + technical constr

ACOPF SDP formulation:

$$\min\{F = \langle C, X \rangle \mid A \odot X = b \wedge L \leq X \leq U \wedge X \succeq 0\}$$

Instance						Objective		Feasibility			CPU
name	σ	m	k	n	d	\bar{F}/F^*	\tilde{F}/F^*	infeas	rng	λ_{\min}	\tilde{t}/t^*
c57	0.00366	3363	3	114	6555	0.0002	0.9152	0.000	0.007	0.092	0.74
c73	0.00205	5475	5	146	10731	0.0028	0.8228	0.000	0.018	0.094	0.58
c89	0.00377	8099	8	178	15931	0.0001	0.0147	0.000	0.281	0.022	0.14
c118	0.00136	14160	14	236	27966	0.0006	0.8456	0.000	0.010	0.092	0.35
c162	0.00072	26568	27	324	52650	0.0015	0.8868	0.000	0.012	0.099	0.32
c179	0.00059	32399	32	358	64261	0.0010	0.0632	0.000	0.261	0.017	0.28

[L. et al. AIRO-ODS22]

improved retrieval

QP: Portfolio with short sells and investiment areas

Relative obj fun ratio
$$r = \frac{|f^* - \bar{f}|}{\max(|f^*|, |\bar{f}|)}$$

$$ightharpoonup$$
 CPU ratio c = \bar{t}/t^*

Sizes: $1000 \le n \le 4000$ $2300 \le m \le 8900$

	r	С
mean	0.478	0.83
stdev	0.242	0.42
min	0.065	0.30
max	0.744	1.66

bad news: error increases with size (pro

(probably $O(\sqrt{n})$

QP: Usefulness

Finding feasible solutions of huge QPs where solver fails cuberot, n = 3000, m = 7000, dens = 0.9 cuberot, n = 4000, m = 9000, dens = 0.9

ightharpoonup Solver speed-up with starting point given by TQP

Instance set	n	m	\hat{t}/t^*
cuberot	4000	8100	0.63
cuberot	4000	8100	0.78
cuberot	4000	8100	0.78
cuberot	4000	9000	0.80
cuberot	4000	9000	0.77
cuberot	4000	9000	0.56
pairs	4000	2000	0.68
pairs	4000	2000	0.63
pairs	4000	2000	0.71
random	4000	1000	0.70
random	4000	1000	0.55
random	4000	1000	0.72

$$\hat{t} = \bar{t} + \mathsf{cpu}(\mathsf{locSlv}(\mathsf{QP}, \bar{x}))$$

DGP: Projecting both variables and constraints

$$\min\{\|y^+ + y^-\|_1 \mid \forall \{i,j\} \in E \quad \|x_i - x_j\|_2 = d_{ij}^2 + y_{ij}^+ - y_{ij}^-\} \quad \text{(slack)}$$

$$\min\{\|Y^+ + Y^-\|_1 \mid \forall \{i,j\} \in E \ X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \land X - xx^\top = Y^+ - Y^-\} \quad \text{(org)}$$

$$\min\{\|Y^+ + Y^-\|_1 \mid S\bar{Q}^E \odot U = S \left(d_{ij}^2 \mid \{i,j\} \in E\right)^\top \land U - uu^\top = Y^+ - Y^-\} \quad \text{(prj)}$$

$$[\bar{Q}^E = RQ^E R^\top \text{ and } Q^E \odot xx^\top \text{ encodes the right-hand sides of the DGP constraints}]$$

Algorithms: locSlv based on ipopt local NLP solver

- $(org): X^* = locSlv(org, 0), x^* = PCA(X^*, K)$
- $\qquad \qquad \text{(prj): } \underline{\bar{U} = \text{locSlv}(\text{prj}, 0)}, \underline{\bar{X} = R^{\top} \bar{U} R}, \underline{\bar{x} = \text{PCA}(\bar{X}, K)}, \underline{\tilde{x} = \text{locSlv}(\text{slack}, \bar{x})}$

		solve	proj. prob	, , ,	dimensionality			y reduction	reduction constraint retrieval		
Instance	V	r	E	mde*	mde	\widetilde{mde}	lde*	lde	\widetilde{lde}	t^*	\widetilde{t}
names	87	9	849	1.707	3.486	3.486	4.582	4.999	4.999	58.36	1.68
1guu	150	12	955	2.456	2.805	0.081	4.936	4.979	1.186	502.66	4.81
1guu-1	150	12	959	2.411	2.437	0.065	4.904	5.851	1.942	65.75	15.48
2kxa	333	23	2711	2.203	2.422	0.224	4.707	15.274	4.033	619.00	79.64
100d	491	25	574I	2.917	2.268	0.290	4.970	16.198	4.736	1732.88	242.61
water	648	26	11939	3.221	2.354	0.461	4.969	12.256	4.512	3659.58	1246.65
3al1	68ı	20	17417	3.105	2.362	0.129	4.988	14.510	4.202	3820.72	560.31

The first successful projection of both variables and constraints!

Some references

- L. Liberti, B. Manca, P.-L. Poirion, Random projections for the distance geometry problem,
 Proceedings of Discrete Mathematics Days (DMD) 2022
- L. Liberti, B. Manca, A. Oustry, P.-L. Poirion, Random projections for semidefinite programming, Proceedings of AIRO-ODS, Springer, 2022
- L. Liberti, B. Manca, P.-L. Poirion, Practical performance of random projections in linear programming, Symposium of Experimental Algorithms (SEA), LIPICS, 2022
- L. Liberti, P.-L. Poirion, K. Vu, Random projections for conic programs, LAA 626:204-220, 2021
- C. D'Ambrosio, L. Liberti, P.-L. Poirion, K. Vu, Random projections for quadratic programs, MPB 183:619-647, 2020
- K. Vu, P.-L. Poirion, C. D'Ambrosio, L. Liberti, Random projections for quadratic programs over a Euclidean ball, in A. Lodi et al. (eds.), Integer Programming and Combinatorial Optimization (IPCO), LNCS 11480:442-452, 2019
- K. Vu, P.-L. Poirion, L. Liberti, Gaussian random projections for Euclidean membership problems, DAM 253:93-102, 2019
- K. Vu, P.-L. Poirion, L. Liberti, Random projections for linear programming, MOR 43(4):1051-1071, 2018