Exercice B

Principaux domaines abordés: Fonction logarithme; convexité

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par :

$$f(x) = x + 4 - 4\ln(x) - \frac{3}{x}$$

où ln désigne la fonction logarithme népérien.

On note $\mathscr C$ la représentation graphique de f dans un repère orthonormé.

- 1) Déterminer la limite de la fonction f en $+\infty$.
- 2) On admet que la fonction f est dérivable sur]0; $+\infty[$ et on note f' sa fonction dérivée.

Démontrer que, pour tout nombre réel x > 0, on a :

$$f'(x) = \frac{x^2 - 4x + 3}{x^2}.$$

3) a) Donner le tableau de variations de la fonction f sur l'intervalle]0; $+\infty[$.

On y fera figurer les valeurs exactes des extremums et les limites de f en 0 et en $+\infty$.

On admettra que $\lim_{x\to 0} f(x) = -\infty$.

- **b)** Par simple lecture du tableau de variations, préciser le nombre de solutions de l'équation $f(x) = \frac{5}{3}$.
- 4) Étudier la convexité de la fonction f c'est-à-dire préciser les parties de l'intervalle]0; $+\infty[$ sur lesquelles f est convexe, et celles sur lesquelles f est concave.

On justifiera que la courbe $\mathscr C$ admet un unique point d'inflexion, dont on précisera les coordonnées.

Correction

Exercice B

Principaux domaines abordés: Fonction logarithme; convexité

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par : $f(x) = x + 4 - 4\ln(x) - \frac{3}{x}$, où ln désigne la fonction logarithme népérien.

On note $\mathscr C$ la représentation graphique de f dans un repère orthonormé.

1) On détermine la limite de la fonction f en $+\infty$.

$$f(x) = x \left(1 - 4\frac{\ln(x)}{x}\right) + 4 - \frac{3}{x}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \implies \lim_{x \to +\infty} x \left(1 - 4 \frac{\ln(x)}{x} \right) + 4 = +\infty$$

$$\lim_{x \to +\infty} \frac{3}{x} = 0$$

$$\implies \lim_{x \to +\infty} f(x) = +\infty$$

2) On admet que la fonction f est dérivable sur]0; $+\infty[$ et on note f' sa fonction dérivée.

$$f'(x) = 1 + 0 - \frac{4}{x} + \frac{3}{x^2} = \frac{x^2 - 4x + 3}{x^2}$$

a) On cherche le signe de f'(x) sur]0; $+\infty[$:

$$x^2 - 4x + 3 = (x - 1)(x - 3)$$

x	0		1		3		+∞
$x^2 - 4x + 3$		+	•	-	ф	-	
x^2	0	+		+		+	
f'(x)		+	•	-	ф	+	

$$f(1) = 1 + 4 - 4\ln(1) - \frac{3}{1} = 2$$
; $f(3) = 3 + 4 - 4\ln(3) - \frac{3}{3} = 6 - 4\ln(3) \approx 1,69$

On établit le tableau des variations de f en admettant que que $\lim_{x\to 0} f(x) = -\infty$:

	х	0		1			3		+∞
f	f'(x)		+	•	-	()	+	
j	f(x)	_	×	1 ²		6-4ln(3) ≈ 1,6	1	+∞

- **b)** $\frac{5}{3} \in]-\infty$; 2] donc l'équation $f(x) = \frac{5}{3}$ admet une unique solution dans l'intervalle]0; 1].
 - $\frac{5}{3} \approx 1,67$ et $f(3) = 6 4\ln 3 \approx 1,61$ donc $\frac{5}{3} \in [6 4\ln 3; 2]$, donc l'équation $f(x) = \frac{5}{3}$ admet une solution unique dans l'intervalle]1; 3[.
 - $\frac{5}{3} \in [6-4\ln 3; +\infty[$, donc $f(x) = \frac{5}{3}$ admet une unique solution dans l'intervalle]0; 1].

Conclusion: l'équation $f(x) = \frac{5}{3}$ admet donc trois solutions dans]0; $+\infty[$.

Voir cidessus les valeurs approchées des solutions.

4) Pour étudier la convexité de f, on détermine le signe de f'', la dérivée seconde de f.

$$f'(x) = \frac{x^2 - 4x + 3}{x^2} \text{ donc}$$

$$f''(x) = \frac{(2x - 4) \times x^2 - (x^2 - 4x + 3) \times 2x}{x^4} = \frac{(2x^2 - 4x - 2x^2 + 8x - 6) \times x}{x^4} = \frac{4x - 6}{x^3}$$

x	•	0	<u>3</u> 2		$+\infty$
4x - 6		-	0	+	
x^3	(0 +		+	
f''(x)		_	0	+	
		f concave		f convexe	

La dérivée seconde s'annule et change de signe pour $x=\frac{3}{2}$ donc la courbe \mathcal{C}_f admet un unique point d'inflexion d'abscisse $\frac{3}{2}$.

$$f\left(\frac{3}{2}\right) = \frac{3}{2} + 4 - 4\ln\left(\frac{3}{2}\right) - \frac{3}{\frac{3}{2}} = \frac{11}{2} - 4\ln\left(\frac{3}{2}\right) - 2 = \frac{7}{2} - 4\ln\left(\frac{3}{2}\right)$$

La courbe $\mathscr C$ admet un unique point d'inflexion de coordonnées $\left(\frac{3}{2}; \frac{7}{2} - 4\ln\left(\frac{3}{2}\right)\right)$.