Spatial-Temporal-Decoupled Masked Pretraining for Spatiotemporal Forecasting

Haotian Gao^{1,2}, Renhe Jiang^{1*}, Zheng Dong², Jinliang Deng³, Yuxin Ma², Xuan Song²

¹The University of Tokyo, ²Southern University of Science and Technology, ³University of Technology Sydney

TL;DR

We propose a novel self-supervised pre-training framework, STD-MAE, which captures clear and comprehensive spatiotemporal heterogeneity through masked pre-training that decouples spatial and temporal dimensions, achieving state-of-the-art performance on multiple spatiotemporal forecasting benchmarks.

Two kinds of spatiotemporal mirages that may mislead prediction results:

- i) dissimilar input time series followed by similar future values;
- ii) similar input time series followed by dissimilar future values.

Introduction 1. Spatial-temporal Heterogeneity 500 Tue@Sensor 7 PEMS04 Wed@Sensor 7 PEMS04 Sat@Sensor 7 PEMS04 ≥ 300 Sun@Sensor 7 PEMS04 **=** 200 ⋅ 100+ 00:00 03:00 09:00 12:00 15:00 18:00 00:00 (a) Temporal Heterogeneity Sensor 5@PEMS04 350+ Sensor 86@PEMS04 Sensor 155@PEMS04 ≥ 250 + 150 Sensor 177@PEMS04 2018-01-07 02:00 2018-01-07 10:00 2018-01-07 20:00

(b) Spatial Heterogeneity

Methodology

Spatial-Temporal-Decoupled Masked AutoEncoder

1. Pre-training Phase

Two decoupled masked autoencoders are trained to reconstruct the masked part via temporal masking strategy and spatial masking strategy, respectively.

Temporal Representation MLP Layer Short Input T Steps Spatial Representation MLP Layer Prediction T Steps MLP Layer Truncate N Truncate N Truncate N Truncate Truncate N Truncate N Truncate N Truncate

Downstream Spatiotemporal Predictor

2. Forecasting Phase

The learned spatial and temporal representations through pre-training are fed to downstream predictors without modifying original architecture.

Experiments

1. Benchmarks Summary

Datasets	#Sensors	#Time Steps	Time Interval
PEMS03	358	26208	5min
PEMS04	307	16992	5min
PEMS07	883	28224	5min
PEMS08	170	17856	5min

- The benchmarks record traffic flow data collected from the California Transportation Performance Management System (PEMS).
- The flow data is aggregated to 5 minutes, which means there are 12 points for each hour.
- The datasets involve hundreds of sensors and cover several months of data in total.
- We use data from the past hour to forecast the next hour.

2. Forecasting Performance

Model	PEMS03		PEMS04		PEMS07			PEMS08				
Model	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
ARIMA [Fang et al., 2021]	35.31	47.59	33.78	33.73	48.80	24.18	38.17	59.27	19.46	31.09	44.32	22.73
VAR [Song et al., 2020]	23.65	38.26	24.51	23.75	36.66	18.09	75.63	115.24	32.22	23.46	36.33	15.42
SVR [Song et al., 2020]	21.97	35.29	21.51	28.70	44.56	19.20	32.49	50.22	14.26	23.25	36.16	14.64
LSTM [Song et al., 2020]	21.33	35.11	23.33	27.14	41.59	18.20	29.98	45.84	13.20	22.20	34.06	14.20
TCN [Lan et al., 2022]	19.31	33.24	19.86	31.11	37.25	15.48	32.68	42.23	14.22	22.69	35.79	14.04
Transformer [Vaswani et al., 2017]	17.50	30.24	16.80	23.83	37.19	15.57	26.80	42.95	12.11	18.52	28.68	13.66
DCRNN [Li et al., 2018]	18.18	30.31	18.91	24.70	38.12	17.12	25.30	38.58	11.66	17.86	27.83	11.45
STGCN [Yu et al., 2018]	17.49	30.12	17.15	22.70	35.55	14.59	25.38	38.78	11.08	18.02	27.83	11.40
GWNet [Wu et al., 2019]	19.85	32.94	19.31	25.45	39.70	17.29	26.85	42.78	12.12	19.13	31.05	12.68
STGODE [Fang et al., 2021]	16.50	27.84	16.69	20.84	32.82	13.77	22.99	37.54	10.14	16.81	25.97	10.62
AGCRN [Bai et al., 2020]	16.06	28.49	15.85	19.83	32.26	12.97	21.29	35.12	8.97	15.95	25.22	10.09
STNorm [Deng et al., 2021]	15.32	25.93	14.37	19.21	32.30	13.05	20.59	34.86	8.61	15.39	24.80	9.91
STEP [Shao et al., 2022]	14.22	24.55	14.42	18.20	29.71	12.48	19.32	32.19	8.12	14.00	23.41	9.50
PDFormer [Jiang et al., 2023]	14.94	25.39	15.82	18.32	29.97	12.10	19.83	32.87	8.53	13.58	23.51	9.05
STAEformer [Liu et al., 2023]	15.35	27.55	15.18	18.22	30.18	11.98	19.14	32.60	8.01	13.46	23.25	8.88
STD-MAE (Ours)	13.80	24.43	13.96	17.80	29.25	11.97	18.65	31.44	7.84	13.44	22.47	8.76

STD-MAE has sustained state-of-the-art performance on three out of these four spatiotemporal forecasting benchmarks for over six months.

3. Masking Mechanism Ablation

- STD-MAE: Using spatial-temporal-decoupled masking.
- T-MAE: Only masking on the temporal dimension.
- S-MAE: Only masking on the spatial dimension.
- STM-MAE: Using spatial-temporal-mixed masking.
- w/o Mask: Without applying any masked pre-training.

6. Masking Ratio Exploration

While an exact optimal is datasetdependent, our results nonetheless show that relatively lower masking ratio (i.e. 25%) is preferable for spatiotemporal time series.

7. Case Study

QR Code QR Code for GitHub: Grant Gr

Prediction under Spatiotemporal Mirages:

- GWNet: Without pre-training
- STD-MAE: With spatial-temporal-decoupled masked pre-training

GWNet exhibits a limitation under spatiotemporal mirages, which can make erroneous predictions about future trends. In contrast, STDMAE performs a significant accuracy in these situations.

QR Code for WeCha

