

Blockchain Solution to Healthcare Record System using Hyperledger Fabric Final Presentation

Jathin Sreenivas, Kshitj Yelpale, Varsha Vasudev Kamath

Agenda

Introduction

State of the art

The Solution

Security Mechanisms

Demo

Results

Conclusion

References

Introduction

Background

- Specialization in the health care services and patient's mobility.
- Patient's medical history can help healthcare providers make precise diagnosis and treatment.
- Ensuring data integrity, confidentiality and privacy of patients while sharing the clinical data.

Introduction

Existing Systems

- Electronic Health Record (EHR) is used to share patient's medical records across different health care providers.
- EHR consists of medical information of the patient in the form of Electronic Medical Record (EMR).
- EMR contains a patient's medical diagnoses, allergies, history, treatment, and laboratory reports.
- Healthcare IT standards are Health Level 7 (HL7), Fast Healthcare Interoperability Resources (FHIR).
- The other models used by health care providers are push, pull, and view.

Introduction

Motivation

- Medical data storing and sharing is an integral part in healthcare systems.
- Sharing personal data among various participants through unsecure means can lead to leakage of critical information
- The lack of the a client control over their personal information leads to harmful consequences such as unauthorized identities can access/edit the personal medical details.
- The critical issues in the electronic health/medical records (EHR/EMR) is maintaining the interoperability among various involved identities.
- Data security and privacy are also challenges in the current ways of data storing and sharing data through EHR/EMR systems.

State of the art

What is blockchain?

Block Structure [6]

State of the art

What is blockchain?

Blockchain core components [7]

State of the art

Types of blockchain

Public Blockchain (Permissionless)

- Everyone can access the public blockchain and participate in the transactions.
- Fully decentralized.
- Examples are Bitcoin, Litecoin, and Ethereum.

Private Blockchain (Permissioned)

- Restrictions on who can join the network and who can participate in the transactions.
- Used by organizations or companies for its internal usage.
- Centralized.
- Example, Hyperledger Fabric.

Scenario

- Map fabric components to EHR systems.
- Organizations in fabric mapped to hospitals
- Hospitals of same interest connected on same channel. New hospitals will be connected once approved by channel configuration owner hospitals.
- Assets in fabric are patient data accessible all over the network.
- Store all data in blockchain database
- Doctor should see history of a patient to understand condition and prescribe proper medication
- Patient should be responsible to make his data available to doctor.

Why blockchain and fabric?

- Blockchain stores data cryptographically secure
- Authentication and authorization fabric provides CA and MSP components which provide secure indetities like private key and certificates and validation done when make connection to network.
- Confidentiality fabric is a permisionned blockchain framework.
- Availability distributed nature of blockchain makes data available to all permissioned systems.
- Data integrity blockchain records are immutable
- pBFT consensus algorithm
- Fabric provides history API which helps doctors to analyse a patient's history.
- Scalablity New organization, peers and users with different roles.
- Pluggable modules

Use cases

Use cases

Use cases

Architecture

Activity diagram - Create Patient

Activity diagram - Create Doctor

Class diagram - Smart Contract

Security Mechanisms

Private Collections

Security Mechanisms

Data re-encryption

Security Mechanisms

Data re-encryption

```
"patientId": "p1",
     "password": hash (pwd),
     "pwdTemp": true
     "firstName": "abc",
5
     "lastName" "xyz",
     "data": encrypted patient data using symmetric
        key,
     "changedBy": "doctorId XX",
     "permissionGranted": [doctorId1: re-encrypted
        key for doctor 1, doctorId2: re-encrypted key
         for doctor 2, ...],
     "encryptedSymmetricKey" :"#####"
10
```


Demo

Results

Pros and Cons of using hyperledger Fabric

Pros

- Fabric architecture allows to add plugins for the identity management and consensus algorithm.
- Confidentiality and security of data can be achieved through MSP.
- Performance is optimized, since mining is not required.
- Creation of a private channel for only a few participants among a large blockchain network.

Cons

- The architecture of hyperledger fabric is quite complex.
- It is not a network fault tolerant.
- Limited database support.

Results

Issues in hyperledger

- getHistoryForKey Private Data Collection. [5]
- Create a user defined role instead of client. [4]
- Access user attributes using client

Results

Challenges in developing application

- Implementing security mechanism
- Re-encryption Nodejs lacks a decent re-encryption library, need to implement own library
- Tracking of public key of created user through fabric SDK
- Scaling of peers

Conclusion

- Hyperledger fabric is a promissing blockchain framework comes with policies, smart contracts and provision of secure identities.
- Enable the EHR scenario interoperable among multiple hospital organizartions
- A promissing framework for private and closed blockchain scenarios
- Provide reliable and secure solution in managing medical field records

Conclusion

Future Work

- Overcome security challenges
- Improve source code to make to provide scalable and pluggable solution in terms of increasing hospitals and peers
- Implement powerful ordering service on large scaling of fabric network
- Updation of consortium policies
- Wallet can be stored in distributed way with database storage machanism
- Bring REST network calls under HTTPS to make data transformation secure using TLS
- Integration of email functionality for temporary password of users
- Implement functionality of patients
- Kubernetes best tool to deploy and manage production grade application

References

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010942/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474412/
- https://www.sciencedirect.com/science/article/pii/S2214212-619306155
- https://jira.hyperledger.org/browse/FABC-548, Accessed-On:28/03/2020
- https://jira.hyperledger.org/browse/FAB-5094, Accessed-On:28/03/2020
- Dynamic Spectrum Management, Signals and Communication by Ying-Chang Liang
- https://www.mdpi.com/1099-4300/22/2/175