- 1. Definitions: make sure you know the terms for radius, diameter, area, volume, rim speed etc.
- 2. How much will it cost to put hardwood flooring in a room that is 12ft x 16'-8" when the flooring cost \$4.50/sqft?

3.
$$\frac{1}{2} + \frac{15}{32} =$$

4.
$$\frac{2}{3} \div \frac{3}{4} =$$

5.
$$\frac{3}{4} \div \frac{1}{5} =$$

- 6. Convert 625mm to m
- 7. Convert 55cm to m
- 8. Divide \$275.00 between two people at a ratio of 3:4
- 9. What is the optimum rim speed for most woodworking cutterheads?
- 10. What is the diameter of a pulley if it revolves at 345 rpm if it is driven by a 5" pulley running at 1,035 rpm?
- 11.If a motor (3600 rpm) with a 6" pulley drives an arbor at 7200 rpm. What is the diameter of the driven pulley?
- 12. What is the rim speed of a 3" cutterhead running at 9000 rpm?
- 13. What length of bandsaw blade is needed if the 2 wheel bandsaw has 18" dia. Wheels and a center to center measurement of 52"?
- 14. What length of sanding belt is needed if the edge sander has a 8" dia. Driving wheel and 3" dia. Idle wheel, the center to center measurement is 72"?
- 15. What is the length of a rafter if the width of a building is 28ft and the height of the roof is 14'?
- 16. How many sheets of 12mm thick sheets are in a lift that is 3.12m high?
- 17. If 1 inch = 25.4mm, what does 15.875mm equal?

18. Calculate the total glue requirements for a veneered panel run for the following:

Quantity: 38 pcs of 5 ply panels finished size: 24" x 24" Glue ratio: 2:1 (resin: water) Coverage: 20 g /sqft

Waste: 10%

Calculate:

- a) total sqft to cover
- b) Total grams of glue with waste
- c) Total grams of resin
- d) Total grams of water
- 19. Calculate the board footage for the following:

241 boards 42" x 6-1/2" x 4/4

20. Calculate the cost of the following:

25 – 3ply panels (consisting of)

1-	Core 11/16" pb	20" x 18"	20% waste	\$0.45/sf
1-	Face veneer	20" x 18"	100%waste	\$0.85/sf
1-	Back veneer	20" x 18"	100%waste	\$0.35/sf
4-	Headers	26" x 2-1/2"	60% waste	\$2.85/bf

- 21.344 panels 18 ¾" x 20 ½" x 5/4 = ? BF
- 22. Sarah and Kyle "thought once and cut twice" too many times. As a result, we need to reproduce:

A total of 47 pieces, 3-ply tops (consisting of):

1 -	Particle core $(\frac{11}{16})$	") 23" x 17"	add 20% waste	@ \$0.32/sqft
1 -	Face veneer	23" x 17"	add 100% waste	@\$0.45/sqft
1 -	Back veneer	23" x 17"	add 100% waste	@\$0.16/sqft
4 -	Headers 33"	x 2 ½" x 4/4	add 60% waste	@\$2.92/bf

What is the cost of their mistake?

- Fill in the cost of each part for the whole job. Ie. Particle core cost x 47 pcs for the "core cost".
- (Note: Calculate the sizes as is, do not change to rough sizes.)

23. Based on the drawing shown, identify the points listed. Work counter clockwise. (1/2 mark per co-ordinate) (7 marks total)

Absolute Coordinates		Incremental Coordinates		
А	X0, Y0	А	X0, Y0	
В		В		
С		С		
D		D		
E		E		
F		F		
G		G		
Α		А		

Answer Key

- 1) See Power points for Definitions.
- 2) $12' \times 16.67' (8''/12=.67) = 200.04 \times $4.50 = 900.18
- 3) $\frac{1}{2} + \frac{15}{32} = \text{ (find the common denominator) } \frac{16}{32} + \frac{15}{32} = \frac{31}{32}$
- 4) $2/3 \div \% = (reciprocal then multiply) <math>2/3 \times 4/3 = 8/9$
- 5) $\frac{3}{4} \div \frac{1}{5} = \text{(reciprocal then multiply)} \frac{3}{4} \times \frac{5}{1} = \frac{15}{4} = \text{(reduce)} \frac{3-3}{4}$
- 6) 625 mm to m (1000mm in 1 m) = 625÷ 1000 = **.625 m**
- 7) 55 cm to m (100cm in 1 m) = $55 \div 100 = .55$ m
- 8) \$275 at a ratio 3:4. Add the total # of parts (3+4=7), divide the \$275 by the total # of parts to get 1 part = $$275 \div 7 = 39.2857 per part. Now multiply 1 part against the ratio values. **3 parts x \$39.2857 per part = \$117.86**,

4 parts x \$39.2857 per part = \$157.14

- 9) 14,000 lfm
- 10) Pulley ratio = drive/driven, 1035/345 = 3. Since the arbor is slowing down, the driven pulley is (pulley ratio) 3 x's larger than the drive. **3x 5" = 15" pulley on the arbor.**
- 11) Pulley ratio = drive/driven, 3600÷7200 = 0.5. Since the arbor is speeding up, the driven pulley is smaller than the drive by a factor of 0.5. Therefore 0.5 (pulley factor) x 6" drive pulley = 3" driven pulley.
- 12) Rim speed = $\frac{\pi \times D}{12}$ x rpm = $\frac{\pi \times 3}{12}$ x 9000 = **7068.5834715** rpm
- 13) Bandsaw blade length = (πxd) + (2 x center to center)

=
$$(\pi \times 18) + (2 \times 52)$$

= $(56.55) + (104)$

= 160.5486678"

Sanding belt length = $(\frac{\pi x d \text{ wheel } 1}{2}) + (\frac{\pi x d \text{ wheel } 2}{2}) + (2 \text{ x cntr to cntr})$ = $(\frac{\pi x 8 \text{ wheel } 1}{2}) + (\frac{\pi x 3 \text{ wheel } 2}{2}) + (2 \text{ x } 72)$ = (12.56637061) + (4.71238898) + (144)= 161.2787596"

Total width of building is 28' – divide in half to form 2 right angle triangles

 $C^2 = A^2 + B^2$

15)

 $C^2 = (14^2) + (14^2)$

 $C^2 = (196) + (196)$

 $C^2 = 392$

C = square root of 392

C = 19.79898987'

- 3.12m = convert to mm (x 1000) = 3120mm 3120mm \div 12mm = **260** sheets
- 17) 1'' = 25.4mm (15.875mm $\div 25.4$ mm = 0.625'') = 5/8''

- 18) 38 pcs 5 ply panels, finished size (24" x 24") rough size (25" x 25") Glue ratio 2:1 (resin: water), covrage 20g/ sqft, waste 10%
 - A) Find the sqft of <u>1 glue line</u> 25" ÷ 12 = 2.083333333' (change to decimal feet) 2.083333333' x 2.083333333' = **4.340277778** sqft for **1** glue line
 - B) Find the total sqft for all glue lines in $\underline{1}$ panel. 4.340277778 sqft x 4 glue lines per panel = **17.36111111 sqft**
 - C) Find the total sqft of glue lines for <u>all panels</u>
 17.36111111 sqft x 38 panels = **659.7222222 sqft**
 - D) Find the amount of glue required in grams
 659.7222222sqft x 20g/sqft (coverage) = **13194.44444g**
 - E) Add the waste 13194.44444g + 10% = **14513.88889g**
 - F) Divide by the total number of parts (2+1 = 3) to find the weight of 1 part.

14513.88889g ÷ 3 = **4837.962963g per part**

G) Now multiply the single part weight times the number of parts per ingredient

Resin = 2 parts x 4837.962963g/part = **9675.925926g Water** = 1 part x 4837.962963g/part = **4837.962963g**

19) Bdft of 1 board = $\frac{\text{Length in inches x width in inche}}{144}$ Bdft of 1 board = $\frac{42 \times 6.5 \times 1}{144}$

Bdft of 1 board = 1.895833333

Since there are 241 boards - 1.895833333 x 241 = **456.8958333 bdft**

- 20) 25 3 ply panels
 - A) Core 20" x 18"

Convert to decimal foot - 1.6666667' x 1.5' = 2.5 sqft

Add waste -2.5 sqft + 20% = 3 sqft

Add cost of material – 3 sqft x 0.45/ sqft = 1.35

B) Face veneer 20" x 18"

Convert to decimal foot - $1.6666667' \times 1.5' = 2.5 \text{ sqft}$

Add waste -2.5 sqft + 100% = 5 sqft

Add cost of material – 5 sqft x 0.85/ sqft = 4.25

C) Back veneer 20" x 18"

Convert to decimal foot - $1.6666667' \times 1.5' = 2.5 \text{ sqft}$

Add waste -2.5 sqft + 100% = 5 sqft

Add cost of material -5 sqft x \$0.35/ sqft = \$1.75

D) Headers (4) 26" x 2-1/2"

Bdft of 1 board =
$$\frac{26 \times 2.5 \times 1}{144}$$

Bdft of 1 board = 0.451388888 bdft

Add waste -0.451388888 bdft +60% = 0.722222222 bdft for <u>1</u> header.

4 headers per panel, therefore 4 x 0.72222222 bdft =

2.88888889 bdft total for all 4 headers.

Add the cost. 2.888888889 bdft x \$2.85/ bdft = \$8.23

Now add up the total cost for 1 panel

Core = \$1.35

Face veneer = \$4.25

Back veneer = \$1.75

4 headers = \$8.23

Total for 1 panel = \$15.58 each

X's number of panels x25

Total cost = \$389.50

21. 1,147.7864583333 bdft

22.Panel cost

- a. Core = \$49.01
- b. Face veneer = \$114.86
- c. Back veneer = \$40.84
- d. Solid headers = \$503.21
- e. Total cost = \$707.91 (\$707.92 if using rounded cost)

23.Co-ordinates

Absolute Coordinates

Α	0, 0
В	5, 0
С	5, 2
D	3, 3
E F	3, 4
F	1, 5
G	0, 5
Α	0, 0

Incremental Coordinates

Α	X0, Y0
	5, 0
С	0, 2
D	-2, 1
E	0, 1
F	-2, 1
G	-1, 0
Α	0, -5