

SISTEMAS INTELIGENTES

Prática 4 – Implementação de Redes PMC (Especificação Estrutural Usando Neural Networks Toolbox)

(Aplicação em Estimação de Parâmetros)

Ivan Nunes da Silva

TSP

Objetivos da Aula

- Fixar a teoria sobre redes PMC estudadas nas aulas anteriores, visando sua aplicação em estimação de parâmetros (aproximação de funções).
- ➤ Implementar exemplos aplicativos para realizar tarefas de estimação de parâmetros por meio do Toolbox de Redes Neurais do Matlab (Neural Networks Toolbox).

Problema de Estimação de Parâmetros

- 1. Consiste em estimar a saída desejada do processo em função de um conjunto específico de entradas.
 - As aplicações são as mais diversas possíveis, sendo que envolvem normalmente o mapeamento de processos cuja modelagem por técnicas convencionais são de difícil obtenção.
- Diferentemente dos problemas de classificação de padrões, as saídas agora são valores reais ao invés de valores discretos.

3

TST)

- Estudos relatam que a concentração de CO₂ (frente a uma referência) dentro de transformadores de potência pode ser estimado a partir da medição de três grandezas físicas (x₁, x₂, x₃) relacionadas ao óleo mineral isolante, ou sejam:
 - x₁ → tensão interfacial.
 - x₂ → fator de potência.
 - x₃ → quantidade de água.
- No entanto, em função da complexidade do sistema, sabese que este mapeamento é de difícil obtenção por técnicas convencionais, na qual o modelo matemático disponível para a sua representação não fornece resultados satisfatórios.

Problema de Aplicação Prática (Estimação de Parâmetros // Definição do Tipo de Rede)

- Neste contexto, a equipe de engenheiros pretende utilizar uma rede *Perceptron* Multicamadas (PMC) como um estimador de parâmetros (aproximador universal), tendo como objetivo final de que dado como entrada os valores de (x₁, x₂, x₃) a mesma possa estimar (após o treinamento) o respectivo valor da variável (y) que representa a concentração de CO₂.
- > O PMC deverá ter no máximo duas camadas escondidas.
- Os 10 primeiros registros da tabela de amostras de treinamento, contidos no arquivo "treinamento.txt", são representados a seguir.

5

Problema de Aplicação Prática (Estimação de Parâmetros // Tabela de Treinamento PMC)

Conjunto de treinamento referente às 10 primeiras amostras do arquivo "treinamento.txt".

Amostra	X ₁	X ₂	X ₃	d
1	0.1318	0.5704	0.2799	0.5849
2	-0.0365	0.2610	-0.4125	-0.7279
3	0.3952	0.1165	0.3601	0.1800
4	-0.9652	0.7845	0.7750	0.3973
5	0.4320	0.0684	0.8217	0.3008
6	0.1490	0.3721	0.7958	0.0190
7	0.1295	0.9079	-0.9618	0.3197
8	0.9890	0.4632	0.4644	-0.3275
9	-0.6249	-0.3263	0.6228	0.3045
10	-0.2408	-0.3801	-0.5591	-0.5344

ŝ

TST

Problema de Aplicação Prática (Estimação de Parâmetros // Topologia do PMC)

- Como existe três grandezas físicas que estão sendo medidas, o PMC terá então três entradas { x₁, x₂, x₃ }.
- Consequentemente, a saída { y } do PMC estará então estimando, baseado nas suas três entradas, a concentração de CO₂ dentro do transformador.

7

TSTP

<u>Problema de Aplicação Prática</u> (Estimação de Parâmetros // Atividades // Parte I)

- Construa o vetor de entrada (vet_entrada) do PMC e o vetor de saída desejada (vet_desejado), conforme a representação a seguir:

	Amostra	X ₁	x ₂	X ₃	d
	1	0.1318	0.5704	0.2799	0.5849
	2	-0.0365	0.2610	-0.4125	-0.7279
	3	0.3952	0.1165	0.3601	0.1800
' [4	-0.9652	0.7845	0.7750	0.3973
	()	()	()	()	()

<pre>vet_entrada = [</pre>	0.1318 0.5704		` '
(0.2799	-0.4125	()];
vet_desejado = [0.5849	-0.7279	()];

- Imprima os vetores para checar se os mesmos estão ok. Verifique também a dimensão de cada um deles.
- 3. Obtenha os valores mínimos e valores máximos para cada uma das variáveis de entrada.
 - ➤ Utilize os comandos "min" e "max".

R

<u>Problema de Aplicação Prática</u> (Estimação de Parâmetros // Atividades // Parte II)

- 4. Crie o PMC com três camadas neurais (Toolbox, treinada com o algoritmo de "Levenberg-Marquardt", tendo a seguinte topologia:
 - → 1ª Camada → 10 neurônios (Tangente hiperbólica).
 - ≥ 2ª Camada → 20 neurônios (Tangente hiperbólica).
 - > 3ª Camada → 1 neurônio (Rampa).

Topologia: Perceptron Multicamadas $x_{2\square 4}$ (Feed-Forward). $x_{3\square 4}$

Função: newff

TSTP

Problema de Aplicação Prática (Estimação de Parâmetros // Atividades // Parte III)

Descrição de Parâmetros Internos (slide anterior):

```
% TIPOS DE FUNÇÃO DE ATIVAÇÃO
% ------
% purelin → Linear (Rampa)
% logsig → Logística (Sigmóide)
% tansig → Tangente hiperbólica
% satlin(s) → Linear com saturação
% ------
```

```
% TIPOS DE ALGORITMOS DE TREINAMENTO
% -----
% traingd → Backpropagation com Gradiente Descendente
% traingdm → Backpropagation com Gradiente Descendente e Momentum
% traingda → Backpropagation com Gradiente Descendente Adaptativo
% traingdx → Backpropagation com Gradiente Descendente Adaptativo
e Momentum
% trainlm → Backpropagation com Levenberg-Marquardt (Default)
% trainrp → Backpropagation com Resiliênica (Rprop)
```


Problema de Aplicação Prática (Estimação de Parâmetros // Atividades // Parte IV)

- 5. Especifique os parâmetros internos da rede considerando os seguintes valores:
 - > 500 épocas de treinamento (trainParam.epochs).
 - ➤ Precisão de 10-4 (trainParam.goal).
 - > Taxa de aprendizado de 0.01 (trainParam.lr).
 - > Refresh (atualização) de tela a cada 5 épocas (trainParam.show).

11

TSP

<u>Problema de Aplicação Prática</u> (Estimação de Parâmetros // Atividades // Parte V)

Efetue o treinamento da rede.

Procedimento de Treinamento do PMC

> Função: train

<u>Problema de Aplicação Prática</u> (Estimação de Parâmetros // Atividades // Parte VII)

7. Visando validar a rede, prepare os vetores de testes baseados nas amostras contidas no arquivo "teste.txt".

Amostra	x ₁	X ₂	X ₃	d
1	-0.8121	-0.6348	0.5123	-0.1413
2	-0.8290	-0.7158	-0.0089	0.3242
3	-0.6046	0.5158	-0.6853	0.4541
4	0.4994	-0.6433	0.2621	-0.0818
()	()	()	()	()

-0.6348 -0.7158 (...)

0.5123 -0.0089 (...)];

- Visualize os vetores para checar se estão ok.

Problema de Aplicação Prática (Estimação de Parâmetros // Atividades // Parte VIII)

8. Obtenha as saídas estimadas pela rede (já treinada) frente ao conjunto de teste.

Procedimento de Teste do PMC Treinado

➤ Função: sim

15

TSP

Problema de Aplicação Prática (Estimação de Parâmetros // Atividades // Parte IX)

9. Imprima lado a lado os valores de saída obtidos pela rede (vet_saida) com aqueles que seriam os valores desejados (vet_teste_desejado), assim como o erro relativo frente à cada amostra (conforme formato da tabela abaixo).

vet_saida	vet_teste_desejado	erro_relativo
0.3143	0.3242	0.0306
0.4499	0.4541	0.0093
-0.0823	-0.0818	0.0059
-0.7392	-0.7340	0.0070
-0.3562	-0.3675	0.0307
0.2269	0.2144	0.0584
-0.1272	-0.1219	0.0434
()	()	()

10. Obtenha o erro relativo médio frente a todas as amostras do conjunto de teste.

CSP

<u>Problema de Aplicação Prática</u> (Extraindo os Parâmetros do PMC Treinado // Parte II)

- 12. Utilizando agora somente os valores contidos nas matrizes W1, W2 e W3, assim como nos vetores b1, b2 e b3, implemente as instruções que nos permita utilizar a estrutura da rede (já treinada). Para tanto, implemente a seguinte função:
 - Faça uma função que receba como argumento um vetor x, constituído por [x₁, x₂, x₃], retornando como resposta o valor calculado pela rede (ver slide anterior), ou seja:

 $a^3 = f^3(W3 \cdot f^2(W2 \cdot f^1(W1 \cdot x + b1) + b2) + b3)$

- Obs. Utilize o comando "save" para salvar a workspace ou as suas variáveis de interesse. O comando "load" pode ser utilizado para recuperar os valores dessas variáveis.
- 13. Pegue a primeira amostra do Item 7 e verifique se a função (rede) está produzindo a mesma resposta que aquela obtida pela instrução "sim".