TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

PARITY (P) INVARIANCE

$$\begin{array}{lll} \mbox{e electric dipole moment} & & & & & & <0.11\times 10^{-28} \ \mbox{e cm, CL = 90\%} \\ \mu \mbox{ electric dipole moment} \mbox{$|d$} \mbox{$| d$} \mbo$$

$$\begin{split} &\Gamma(\eta'(958)\to \pi^0\pi^0)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \pi^+\pi^-)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \pi^0\pi^0)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \kappa^0\pi^0)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \kappa^0_S\kappa^0_S)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \kappa^0_S\kappa^0_S)/\Gamma_{\text{total}} \\ &\rho \text{ electric dipole moment} \\$$

https://pdg.lbl.gov

$$<4 \times 10^{-4}$$
, CL = 90%
 $<1.1 \times 10^{-4}$, CL = 90%
 $<4 \times 10^{-5}$, CL = 90%
 $<6 \times 10^{-4}$, CL = 90%
 $<3.1 \times 10^{-4}$, CL = 90%
 $<0.021 \times 10^{-23}$ ecm
 $<0.18 \times 10^{-25}$ ecm, CL = 90%
 $<1.5 \times 10^{-16}$ ecm, CL = 95%
 $(-4.0 \pm 0.7)\%$
 $(-0.6 \pm 0.9)\%$
 $(4 \pm 5)\%$
 $(-1.6 \pm 1.5)\%$
 $(-5 \pm 5)\%$

Created: 5/31/2023 09:09

TIME REVERSAL (T) INVARIANCE

```
< 0.11 \times 10^{-28} \text{ ecm, CL} = 90\%
e electric dipole moment
                                                                                             <1.8 \times 10^{-19} \text{ ecm, CL} = 95\%
\mu electric dipole moment |d|
\mu decay parameters
                                                                                             (-2 \pm 8) \times 10^{-3}
        transverse e^+ polarization normal to plane of \mu
                spin, e^+ momentum
                                                                                             (-10 \pm 20) \times 10^{-3}
        \alpha'/A
                                                                                             (2 \pm 7) \times 10^{-3}
        \beta'/A
                                                                                             -0.185 to 0.061 \times 10^{-16} ecm, CL = 95%
Re(d_{\tau} = \tau \text{ electric dipole moment})
P_T in K^+ \rightarrow \pi^0 \mu^+ \nu_\mu
                                                                                             (-1.7 \pm 2.5) \times 10^{-3}
P_T \text{ in } K^+ \rightarrow \mu^+ \nu_\mu \gamma
                                                                                             (-0.6 \pm 1.9) \times 10^{-2}
{\rm Im}(\xi) \ {\rm in} \ K^+ 
ightarrow \ \pi^0 \mu^+ 
u_\mu \ {\rm decay} \ ({\rm from \ transverse} \ \mu
                                                                                             -0.006\pm0.008
asymmetry A_T in K^0 - \overline{K}^0 mixing
                                                                                             (6.6 \pm 1.6) \times 10^{-3}
{
m Im}(\xi) in K^0_{\mu 3} decay (from transverse \mu pol.)
                                                                                             -0.007 \pm 0.026
A_T(D^{\pm} \rightarrow \kappa_S^0 \kappa^{\pm} \pi^+ \pi^-)
                                                                                      [c] (-12 \pm 11) \times 10^{-3}
                                                                                      [c] (2.9 \pm 2.2) \times 10^{-3}
A_T(D^0 \to K^+ K^- \pi^+ \pi^-)
A_T(D_s^{\pm} \rightarrow K_S^0 K^{\pm} \pi^+ \pi^-)
                                                                                      [c] (-14 \pm 8) \times 10^{-3}
\Delta S_T^+ (S_{\ell^-, K_S^0}^- - S_{\ell^+, K_S^0}^+)
                                                                                             -1.37 \pm 0.15
\Delta S_T^- (S_{\ell^-, K_S^0}^+ - S_{\ell^+, K_S^0}^-)
                                                                                             1.17 \pm 0.21
\Delta C_T^+ (C_{\ell^-, K_S^0}^- - C_{\ell^+, K_S^0}^+)
                                                                                             0.10\,\pm\,0.16
\Delta C_T^- (C_{\ell^-, K_S^0}^+ - C_{\ell^+, K_S^0}^-)
                                                                                             0.04 \pm 0.16
                                                                                             < 0.021 \times 10^{-23} \ e\, cm
p electric dipole moment
                                                                                             < 0.18 \times 10^{-25} \text{ ecm, CL} = 90\%
n electric dipole moment
```

Page 2

 $n
ightarrow p \, e^- \overline{
u}_e$ decay parameters ϕ_{AV} , phase of g_A relative to g_V triple correlation coefficient D triple correlation coefficient R Λ electric dipole moment triple correlation coefficient D for $\Sigma^-
ightarrow n \, e^- \overline{
u}_e$

https://pdg.lbl.gov

[d] $(180.017 \pm 0.026)^{\circ}$ [e] $(-1.2 \pm 2.0) \times 10^{-4}$ [e] 0.004 ± 0.013 $< 1.5 \times 10^{-16}$ e cm, CL = 95% 0.11 ± 0.10

Created: 5/31/2023 09:09

CP INVARIANCE

 $< 0.50 \times 10^{-17}$ ecm. CL = 95% $Re(d_{\tau}^{W})$ $< 1.1 \times 10^{-17}$ ecm. CL = 95% $\operatorname{Im}(d_{\tau}^{W})$ $1.23\pm0.21~\pi$ rad (S =1.3) δ (CP violating phase in neutrino mixing) $\eta \to \pi^+ \pi^- e^+ e^-$ decay-plane asymmetry $(-0.6 \pm 3.1) \times 10^{-2}$ $\Gamma(\eta \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ $<4.4 \times 10^{-6}$, CL = 90% $<3.5 \times 10^{-4}$, CL = 90% $\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{\text{total}}$ $<6.9 \times 10^{-7}$, CL = 90% $\Gamma(\eta'(958) \rightarrow \pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $<1.8 \times 10^{-5}$, CL = 90% $\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}$ $<4 \times 10^{-4}$, CL = 90% $\kappa^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ rate difference/sum $(-2.2 \pm 1.6) \times 10^{-2}$ ${\it K}^{\pm}
ightarrow ~\pi^{\pm} \mu^{+} \mu^{-}$ rate difference/sum 0.010 ± 0.023 ${\it K}^{\pm}
ightarrow \, \pi^{\pm} \pi^{0} \, \gamma$ rate difference/sum $(0.0 \pm 1.2) \times 10^{-3}$ ${\it K}^{\pm}
ightarrow ~\pi^{\pm}\pi^{+}\pi^{-}$ rate difference/sum $(0.04 \pm 0.06)\%$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ rate difference/sum $(-0.02 \pm 0.28)\%$ $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} (g_{+} - g_{-}) / (g_{+} + g_{-})$ $(-1.5 \pm 2.2) \times 10^{-4}$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} (g_{+} - g_{-}) / (g_{+} + g_{-})$ $(1.8 \pm 1.8) \times 10^{-4}$ $A_S = [\Gamma(K_S^0 \rightarrow \pi^- e^+ \nu_e) - \Gamma(K_S^0 \rightarrow \pi^+ e^- \overline{\nu}_e)]$ $(-4 \pm 6) \times 10^{-3}$ $\operatorname{Im}(\eta_{+-0}) = \operatorname{Im}(\mathsf{A}(\mathsf{K}^0_\mathsf{S} \to \pi^+\pi^-\pi^0, \mathit{CP}\text{-violating})$ -0.002 ± 0.009 $/ A(K_L^0 \rightarrow \pi^+ \pi^- \pi^0))$ $Im(\eta_{000}) = Im(A(K_S^0 \to \pi^0 \pi^0 \pi^0)/A(K_L^0 \to \pi^0 \pi^0 \pi^0))$ -0.001 ± 0.016 $|\eta_{000}| = |A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)|$ < 0.0088, CL = 90%*CP* asymmetry *A* in $K_S^0 \rightarrow \pi^+\pi^-e^+e^ (-0.4 \pm 0.8)\%$ $\Gamma(K_S^0 \rightarrow 3\pi^0)/\Gamma_{\text{total}}$ $< 2.6 \times 10^{-8}$, CL = 90% linear coefficient j for $K_I^0 \to \pi^+\pi^-\pi^0$ 0.0012 ± 0.0008 quadratic coefficient f for $K_I^0
ightarrow \pi^+\pi^-\pi^0$ 0.004 ± 0.006 $|\epsilon'_{+-\gamma}|/\epsilon$ for $K_I^0 \to \pi^+\pi^-\gamma$ < 0.3, CL = 90% $|\mathbf{g}_{E1}|$ for $K_I^0 \to \pi^+\pi^-\gamma$ < 0.21, CL = 90% $\Gamma(K_I^0 \rightarrow \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$ [f] $<3.8 \times 10^{-10}$, CL = 90% $\Gamma(K_I^0 \rightarrow \pi^0 e^+ e^-)/\Gamma_{total}$ [f] $<2.8 \times 10^{-10}$, CL = 90% $\Gamma(K_I^0 \to \pi^0 \nu \overline{\nu})/\Gamma_{\text{total}}$ [g] $<3.0 \times 10^{-9}$, CL = 90%

Page 3

$A_{CP}(D^{\pm} ightarrow \mu^{\pm} u)$		(8 ± 8)%
$A_{CP}(D^{\pm} \rightarrow K_{I}^{I} e^{\pm} \nu)$		$(-0.6 \pm 1.6)\%$
<u>_</u>		,
$egin{aligned} A_{CP}(D^\pm ightarrow & K_{S}^0 \pi^\pm) \ A_{CP}(D^\pm ightarrow & K^\mp 2\pi^\pm) \end{aligned}$		$(-0.41 \pm 0.09)\%$
$A_{CP}(D^{\pm} \rightarrow K^{\mp}2\pi^{\pm})$ $A_{CP}(D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0})$		$(-0.18 \pm 0.16)\%$
		$(-0.3 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow K_{S}^{0} \pi^{\pm} \pi^{0})$		$(-0.1 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow K_{S}^{0} \pi^{\pm} \pi^{+} \pi^{-})$		$(0.0 \pm 1.2)\%$
$A_{CP}(D^{\pm} \rightarrow \pi^{\pm}\pi^{0})$		$(0.4 \pm 1.3)\% (S = 1.7)$
$A_{CP}(D^{\pm} ightarrow \pi^{\pm} \eta)$		$(0.3 \pm 0.8)\% (S = 1.2)$
$A_{CP}(D^{\pm} \rightarrow \pi^{\pm} \eta'(958))$		$(-0.6 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow \overline{K}^0/K^0K^{\pm})$		$(0.11 \pm 0.17)\%$
$A_{CP}(D^{\pm} ightarrow\ K_{S}^{0}K^{\pm})$		$(-0.01 \pm 0.07)\%$
$A_{CP}(D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm})$		$(0.37 \pm 0.29)\%$
$A_{CP}(D^{\pm} ightarrow \kappa^{\pm} \kappa^{*0})$		$(-0.3 \pm 0.4)\%$
$A_{CP}(D^{\pm} o \phi \pi^{\pm})$		$(0.01 \pm 0.09)\%~(S = 1.8)$
$A_{CP}(D^{\pm} \to K^{\pm} K_0^* (1430)^0)$		$(8^{+7}_{-6})\%$
$A_{CP}(D^{\pm} \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		$(43^{+20}_{-26})\%$
$A_{CP}(D^{\pm} \rightarrow \ \kappa^{\pm} \ \kappa_{0}^{*}(700))$		$(-12^{+18}_{-13})\%$
$A_{CP}(D^{\pm} ightarrow \ a_0(1450)^0 \pi^{\pm})$		$(-19^{+14}_{-16})\%$
$A_{CP}(D^{\pm} \rightarrow \phi(1680)\pi^{\pm})$		$(-9 \pm 26)\%$
$A_{CP}(D^{\pm} ightarrow \pi^{+}\pi^{-}\pi^{\pm})$		$(0.5 \pm 2.0)\%$
$A_{CP}(D^{\pm} \rightarrow K_S^0 K^{\pm} \pi^+ \pi^-)$		$(-4 \pm 7)\%$
$A_{CP}(D^{\pm} ightarrow K^{\pm}\pi^{0})$		$(-3 \pm 5)\%$
Local <i>CPV</i> in $D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$		78.1%
Local <i>CPV</i> in $D^\pm o K^+K^-\pi^\pm$		31%
$ q/p $ of $D^0-\overline{D}^0$ mixing		0.995 ± 0.016
A_{Γ} of $D^0 - \overline{D}{}^0$ mixing		$(0.089 \pm 0.113) \times 10^{-3}$
<i>CP</i> -even fraction in $D^0 ightarrow \ \pi^+\pi^-\pi^0$ decays		$(97.3 \pm 1.7)\%$
<i>CP</i> -even fraction in $D^0 ightarrow \ \pi^+\pi^-\pi^+\pi^-$ decays		$(74.6 \pm 1.6)\%~(S = 1.2)$
<i>CP</i> -even fraction in $D^0 ightarrow \ K^+ K^- \pi^0$ decays		$(73 \pm 6)\%$
Where there is ambiguity, the CP test is labelled by the D^0	deca	y mode.
$A_{CP}(D^0 \rightarrow K^+K^-)$		$(-0.07 \pm 0.11)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0 \kappa_S^0)$		$(-1.9 \pm 1.1)\% \ (S = 1.1)$
$A_{CP}(D^0 o \pi^+\pi^-)$		$(0.13 \pm 0.14)\%$
$A_{CP}(D^0 ightarrow \pi^0\pi^0)$		$(0.0 \pm 0.6)\%$
$A_{CP}(D^0 o ho\gamma)$		$(6 \pm 15) \times 10^{-2}$
$A_{CP}(D^0 o\phi\gamma)$		$(-9 \pm 7) \times 10^{-2}$
$A_{CP}(D^0 o \overline{K}^*(892)^0 \gamma)$		$(-0.3 \pm 2.0) \times 10^{-2}$
$A_{CP}(D^0 ightarrow \pi^+\pi^-\pi^0)$		$(0.4 \pm 0.4)\%$
$A_{CP}(D^0 \to \rho(770)^+\pi^- \to \pi^+\pi^-\pi^0)$	[<i>h</i>]	$(1.2 \pm 0.9)\%$
$A_{CP}(D^0 \to \rho(770)^0 \pi^0 \to \pi^+ \pi^- \pi^0)$	[<i>h</i>]	$(-3.1 \pm 3.0)\%$

4 (00) (7	(70) - + + + - 0	[4]	(10 17)0/
	$(70)^{-}\pi^{+} ightarrow \pi^{+}\pi^{-}\pi^{0})$ $(450)^{+}\pi^{-} ightarrow \pi^{+}\pi^{-}\pi^{0})$		$(-1.0 \pm 1.7)\%$
	$450)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0})$		$(0 \pm 70)\%$
	$450)^{-}\pi^{+} \rightarrow \pi^{+}\pi^{-}\pi^{0})$	[<i>h</i>]	$(-20 \pm 40)\%$
	$(700)^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$		$(6 \pm 9)\%$
	$(700)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	[h] [h]	$(-5 \pm 14)\%$ $(13 \pm 9)\%$
	$(700)^{-1}\pi^{+} \rightarrow \pi^{+}\pi^{-}\pi^{0}$		$(13 \pm 9)\%$ $(8 \pm 11)\%$
	$980)\pi^0 \to \pi^+\pi^-\pi^0$	[h]	
$A_{CP}(D^0 \rightarrow f_0(D^0))$	$1370)\pi^{0} \to \pi^{+}\pi^{-}\pi^{0})$	[<i>h</i>]	$(0 \pm 35)\%$
$A_{CP}(D^0 \rightarrow r_0)$	$1570)\pi^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$	[<i>h</i>]	$(25 \pm 18)\%$
$A_{CP}(D^0 \rightarrow I_0(D^0))$	$1710)\pi^0 \rightarrow \pi^+\pi^-\pi^0)$	[<i>h</i>]	$(0 \pm 18)\%$
$A_{CP}(D^0 \rightarrow f_0(D^0))$	$1710)\pi^{2} \rightarrow \pi^{2}\pi^{2}\pi^{3}$ $1270) 0 \rightarrow + - 0$	[<i>h</i>]	$(0 \pm 24)\%$
$A_{CP}(D^0 \rightarrow r_2)$	$1270) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0})$ $1270) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0})$	[<i>h</i>]	$(-4 \pm 6)\%$
$A_{CP}(D^{\circ} \rightarrow \sigma(2))$	$t D^0 \rightarrow \pi^+\pi^-\pi^0)$	[<i>h</i>]	$(6 \pm 8)\%$
		[<i>h</i>]	$(-13 \pm 23)\%$
$A_{CP}(D^0, \overline{D}^0 \rightarrow D^0)$			$(0.5 \pm 1.2)\%$
~	$(1260)^{+}\pi^{-} \rightarrow 2\pi^{+}2\pi^{-})$		$(5 \pm 6)\%$
	$(1260)^-\pi^+ o 2\pi^+2\pi^-)$		$(14 \pm 18)\%$
~ -	$(1300)^{+}\pi^{-} \rightarrow 2\pi^{+}2\pi^{-})$		$(-2 \pm 15)\%$
O -	$(300)^-\pi^+ \rightarrow 2\pi^+2\pi^-)$		$(-6 \pm 30)\%$
	$(1640)^{+}\pi^{-} \rightarrow 2\pi^{+}2\pi^{-})$		$(9 \pm 26)\%$
	$(1670)^+\pi^- \to 2\pi^+2\pi^-)$		$(7 \pm 18)\%$
	$_{0}(1370) \rightarrow 2\pi^{+}2\pi^{-})$		$(-15 \pm 19)\%$
	$(770)^0 \rightarrow 2\pi^+ 2\pi^-)$		(3 ± 27)%
	$(770)^0 \rightarrow 2\pi^+ 2\pi^-)$		$(-6 \pm 6)\%$
	$(1270) \rightarrow 2\pi^{+}2\pi^{-})$		$(-28 \pm 24)\%$
$A_{CP}(D^0 \rightarrow K^+)$			$(-1.0 \pm 1.7)\%$
	$(892)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{0}$	[<i>h</i>]	$(-0.9 \pm 1.3)\%$
O 1	$(1410)^+ K^- \to K^+ K^- \pi^0$	[<i>h</i>]	$(-21 \pm 24)\%$
	$^{+}\pi^{0})_{S}K^{-} \rightarrow K^{+}K^{-}\pi^{0})$	[<i>h</i>]	$(7 \pm 15)\%$
	$1020)\pi^{0} \rightarrow K^{+}K^{-}\pi^{0})$		$(1.1 \pm 2.2)\%$
	$980)\pi^{0} \to K^{+}K^{-}\pi^{0}$		$(-3 \pm 19)\%$
	$(980)^0 \pi^0 \to K^+ K^- \pi^0$		$(-5 \pm 16)\%$
	$(1525) \pi^0 \to K^+ K^- \pi^0$	[<i>h</i>]	$(0\pm160)\%$
	$(892)^- K^+ \rightarrow K^+ K^- \pi^0)$	[<i>h</i>]	$(-5 \pm 4)\%$
	$(1410)^- K^+ \rightarrow K^+ K^- \pi^0)$	[<i>h</i>]	$(-17\pm29)\%$
	$^{-}\pi^{0})_{S-wave}K^{+} \rightarrow K^{+}K^{-}\pi^{0})$	[<i>h</i>]	$(-10 \pm 40)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$	(π^0)		$(-0.20\pm0.17)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$			$(0.5 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$			$(1.0 \pm 0.7)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$			$(-3 \pm 9)\%$
$A_{CP}(D^0 \rightarrow \kappa^{-1})$			$(0.2 \pm 0.5)\%$

$A_{CP}(D^0 o K^+\pi^-)$	$(-0.9 \pm 1.4)\%$
$A_{CP}(D_{CP(\pm 1)} \rightarrow K^{\mp}\pi^{\pm})$	$(13.1 \pm 1.0)\%$
$A_{CP}(D^0 \rightarrow K^-\pi^+\pi^0)$	$(0.1 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow K^+\pi^-\pi^0)$	(0 ± 5)%
$A_{CP}(D^0 \to K_S^0 \pi^+ \pi^-)$	$(-0.1 \pm 0.8)\%$
$A_{CP}(D^0 \to K^*(892)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(0.4 \pm 0.5)\%$
$A_{CP}(D^0 \to K^*(892)^+\pi^- \to K_5^0\pi^+\pi^-)$	$(1\pm6)\%$
$A_{CP}(D^0 \to K_S^0 \rho^0 \to K_S^0 \pi^+ \pi^-)$	$(-0.1 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0 \omega \rightarrow \kappa_S^0 \pi^+ \pi^-)$	$(-13 \pm 7)\%$
$A_{CP}(D^0 \to K_S^0 f_0(980) \to K_S^0 \pi^+ \pi^-)$	$(-0.4 \pm 2.7)\%$
$A_{CP}(D^0 \to K_S^0 f_2(1270) \to K_S^0 \pi^+ \pi^-)$	$(-4 \pm 5)\%$
$A_{CP}(D^0 \to K_S^0 f_0(1370) \to K_S^0 \pi^+ \pi^-)$	$(-1 \pm 9)\%$
$A_{CP}(D^0 \to \overline{K}^0 \rho^0 (1450) \to K_S^0 \pi^+ \pi^-)$	$(-4 \pm 10)\%$
$A_{CP}(D^0 \to \overline{K}^0 f_0(600) \to K_5^0 \pi^+ \pi^-)$	$(-3 \pm 5)\%$
$A_{CP}(D^0 \to K^*(1410)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(-2 \pm 9)\%$
$A_{CP}(D^0 \to K_0^*(1430)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(4 \pm 4)\%$
$A_{CP}(D^0 \to \kappa_0^*(1430)^-\pi^+ \to \kappa_5^0\pi^+\pi^-)$	$(12\pm15)\%$
$A_{CP}(D^0 \to K_2^*(1430)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(3\pm6)\%$
$A_{CP}(D^0 \to \kappa_2^*(1430)^+\pi^- \to \kappa_S^0\pi^+\pi^-)$	$(-10 \pm 32)\%$
$A_{CP}(D^0 \to K^-\pi^+\pi^+\pi^-)$	$(0.2 \pm 0.5)\%$
$A_{CP}(D^0 \to K^+\pi^-\pi^+\pi^-)$	$(-2 \pm 4)\%$
$A_{CP}(D^0 \rightarrow K^+K^-\pi^+\pi^-)$	$(1.3 \pm 1.7)\%$
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to K^+ K^- \pi^+ \pi^-)$	$(-2.3 \pm 1.7)\%$
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to K^{*0} \pi^+ K^-)$	$(-1\pm10)\%$
$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to \overline{K}^{*0} \pi^- K^+)$	$(-10 \pm 32)\%$
$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to K^+ K^- \pi^+ \pi^-)$	$(1.7 \pm 3.5)\%$
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to \rho^0 K^+ K^-)$	$(-7 \pm 17)\%$
$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to \rho^0 K^- K^+)$	$(10\pm13)\%$
$A_{CP}(D^0 \to K_1(1400)^+ K^- \to K^+ K^- \pi^+ \pi^-)$	$(-4.4 \pm 2.1)\%$
$A_{CP}(D^0 \to K^*(1410)^+ K^- \to K^{*0} \pi^+ K^-)$	$(-20 \pm 17)\%$
$A_{CP}(D^0 \rightarrow K^*(1410)^- K^+ \rightarrow \overline{K}^{*0} \pi^- K^+)$	$(-1 \pm 14)\%$
$A_{CP}(D^0 \to K^*(1680)^+ K^- \to K^+ K^- \pi^+ \pi^-)$	$(-17 \pm 29)\%$
$A_{CP}(K^{*0}\overline{K}^{*0})$ in D^0 , $\overline{D}^0 \to K^{*0}\overline{K}^{*0}$ $A_{CP}(D^0 \to K^{*0}\overline{K}^{*0}$ S-wave)	$(-5 \pm 14)\%$
$A_{CP}(D^0 o K^{**} \circ K^{**} \circ S$ -wave) $A_{CP}(\phi ho^0)$ in D^0 , $\overline{D}{}^0 o \phi ho^0$	$(-3.9 \pm 2.2)\%$
$A_{CP}(\phi ho^{0})$ in D^{0} , $D^{0} ightarrow \phi ho^{0}$ $A_{CP}(D^{0} ightarrow \phi ho^{0}$ S-wave)	$(1 \pm 9)\%$ $(-3 \pm 5)\%$
$A_{CP}(D^0 o \phi \rho^0 D$ -wave)	$(-3 \pm 3)\%$ $(-37 \pm 19)\%$
$A_{CP}(D^0 \rightarrow \phi(\pi^+\pi^-)_{S-wave})$	$(6 \pm 6)\%$
$A_{CP}(D^0 \to K^*(892)^0 (K^-\pi^+)_{S-wave})$	$(-10 \pm 40)\%$
O1 () () J-wwwe	, , , , ,

$A_{CP}(D^0 o K^+ K^- \pi^+ \pi^- \text{non-resonant})$	(8 ± 20)%
$A_{CP}((K^-\pi^+)_{P-wave} (K^+\pi^-)_{S-wave})$	$(3\pm11)\%$
Local <i>CPV</i> p-value in D^0 , $\overline{D}^0 \to \pi^+\pi^-\pi^0$	4.9%
Local <i>CPV</i> p-value in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$	$(0.6 \pm 0.2)\%$
Local <i>CPV</i> p-value in D^0 , $\overline{D}^0 o extit{K}^0_{\mathcal{S}} \pi^+ \pi^-$	96%
Local <i>CPV</i> p-value in D^0 , $\overline{D}^0 \rightarrow K^+K^-\pi^0$	16.6%
Local <i>CPV</i> p-value in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^+\pi^-$	9.1%
$A_{CP}(D_s^{\pm} \rightarrow \mu^{\pm} \nu)$	$(-0.2 \pm 2.5)\%$
$A_{CP}(D_S^{\pm} \rightarrow K^{\pm}K_S^0)$	$(0.09 \pm 0.26)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^+K^-\pi^{\pm})$	$(-0.5 \pm 0.9)\%$
$A_{CP}(D_s^{\pm} \rightarrow \phi \pi^{\pm})$	$(-0.38 \pm 0.27)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm}K_S^0\pi^0)$	$(-2 \pm 6)\%$
$A_{CP}(D_s^{\pm} \rightarrow 2K_S^0\pi^{\pm})$	$(3\pm5)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^+ K^- \pi^{\pm} \pi^0)$	$(0.0 \pm 3.0)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm} K_S^0 \pi^+ \pi^-)$	$(-6 \pm 5)\%$
$A_{CP}(D_s^{\pm} \rightarrow K_S^0 K^{\mp} 2\pi^{\pm})$	$(4.1 \pm 2.8)\%$
$A_{CP}(D_s^{\pm} ightarrow \pi^+\pi^-\pi^{\pm})$	$(-0.7\pm3.1)\%$
$A_{CP}(D_s^{\pm} ightarrow \pi^{\pm} \eta)$	$(0.3 \pm 0.4)\%$
$A_{CP}(D_s^{\pm} ightarrow \pi^{\pm} \eta')$	$(-0.9 \pm 0.5)\%$
$A_{CP}(D_s^{\pm} \rightarrow \eta \pi^{\pm} \pi^{0})$	$(-1 \pm 4)\%$
$A_{CP}(D_s^{\pm} \rightarrow \eta' \pi^{\pm} \pi^{0})$	$(0 \pm 8)\%$
$A_{CP}(D_s^{\pm} \rightarrow \kappa^{\pm} \pi^{0})$	$(2 \pm 4)\%~(S = 1.2)$
$A_{CP}(D_s^{\pm} \rightarrow \overline{K}^0/K^0\pi^{\pm})$	$(0.4 \pm 0.5)\%$
$A_{CP}(D_s^{\pm} ightarrow \ K_S^0 \pi^{\pm})$	$(0.20\pm0.18)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-})$	$(3.7 \pm 2.7)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm} \eta)$	$(1.8 \pm 1.9)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm} \eta'(958))$	$(6\pm19)\%$
$A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$	$(1.8 \pm 3.0) \times 10^{-3} \text{ (S} = 1.5)$
$A_{CP}(B^+ \rightarrow J/\psi(1S)\pi^+)$	$(1.8 \pm 1.2) \times 10^{-2} \text{ (S} = 1.3)$
$A_{CP}(B^+ o J/\psi \rho^+)$	-0.05 ± 0.05
$A_{CP}(B^+ \to J/\psi K^*(892)^+)$	-0.048 ± 0.033
$A_{CP}(B^+ \rightarrow \eta_c K^+)$	$0.01 \pm 0.07 \; (S=2.2)$
$A_{CP}(B^+ \to \psi(2S)\pi^+)$	0.03 ± 0.06
$A_{CP}(B^+ \rightarrow \psi(2S)K^+)$	$0.012 \pm 0.020 \; (S = 1.5)$
$A_{CP}(B^+ \to \psi(2S)K^*(892)^+)$	0.08 ± 0.21
$A_{CP}(B^+ \to \chi_{c1}(1P)\pi^+)$	0.07 ± 0.18
$A_{CP}(B^+ \rightarrow \chi_{c0} K^+)$	$-0.20 \pm 0.18 \text{ (S} = 1.5)$
$A_{CP}(B^+ \to \chi_{c1}K^+)$	-0.009 ± 0.033
$A_{CP}(B^+ \to \chi_{c1} K^*(892)^+)$ $A_{CP}(B^+ \to \overline{D}{}^0 \pi^+)$	0.5 ± 0.5 $(-3 \pm 5) \times 10^{-3}$
$ACD(p_+ \rightarrow p_+ \pi_+)$	$(-2 \pm 2) \times 10^{-2}$

$A_{CP}(B^+ \rightarrow D_{CP(+1)}\pi^+)$	-0.0080 ± 0.0024
$A_{CP}(B^+ \rightarrow D_{CP(-1)}\pi^+)$	0.017 ± 0.026
$A_{CP}([\kappa^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}\pi^{+})$	0.02 ± 0.05
$A_{CP}(B^+ \to [\pi^+ \pi^+ \pi^- \pi^-]_D K^+)$	0.10 ± 0.04
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^+\pi^-]_D^-K^*(892)^+)$	0.02 ± 0.11
$A_{CP}(B^+ o \overline{D}{}^0K^+)$	-0.017 ± 0.005
$A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+})$	-0.31 ± 0.11
$A_{CP}(B^+ \to [\pi^+ \pi^+ \pi^- \pi^-]_D \pi^+)$	$(-4 \pm 8) \times 10^{-3}$
$A_{CP}(B^+ \to [K^-\pi^+]_D K^+)$	-0.58 ± 0.21
$A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D K^+)$	$-0.27 \pm 0.27 \; (S=2.4)$
$A_{CP}(B^+ \to [K^+\pi^-\pi^0]_D K^+)$	-0.024 ± 0.013
$A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+)$	0.07 ± 0.07
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)$	0.11 ± 0.04
$A_{CP}(B^+ \rightarrow \overline{D}^0 K^*(892)^+)$	-0.007 ± 0.019
$A_{CP}(B^+ \to [K^- \pi^+ \pi^- \pi^+]_{\overline{D}} K^*(892)^+)$	-0.45 ± 0.25
$A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+)$	0.00 ± 0.09
$A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D \pi^+)$	0.08 ± 0.09
$A_{CP}(B^+ \rightarrow [K^+ K^- \pi^0]_D \pi^+)$	-0.001 ± 0.019
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+)$	0.001 ± 0.010
$A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+)$	-0.09 ± 0.27
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}\pi^+)$	-0.7 ± 0.6
$A_{CP}(B^+ \to [K^- \pi^+]_{(D\pi)} K^+)$	0.8 ± 0.4
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}K^+)$	0.4 ± 1.0
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)$	-0.02 ± 0.15
$A_{CP}(B^+ \rightarrow [K_S^0 K^+ \pi^-]_D K^+)$	0.10 ± 0.09
$A_{CP}(B^+ \rightarrow [\kappa_S^{0} \kappa^- \pi^+]_D \kappa^+)$	-0.04 ± 0.08
$A_{CP}(B^+ \rightarrow [\kappa_S^0 \kappa^- \pi^+]_D \pi^+)$	0.003 ± 0.015
$A_{CP}(B^+ \rightarrow [\kappa_S^{0} \kappa^+ \pi^-]_D \pi^+)$	-0.034 ± 0.020
$A_{CP}(B^+ \to [K^*(892)^- K^+]_D K^+)$	0.08 ± 0.05
$A_{CP}(B^+ \to [K^*(892)^+ K^-]_D K^+)$	0.02 ± 0.10
$A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+)$	0.007 ± 0.017
$A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+)$	-0.020 ± 0.011
$A_{ADS}(B^+ \rightarrow DK^+)$	-0.451 ± 0.026
$A_{ADS}(B^+ \to D\pi^+)$	0.129 ± 0.014
$A_{ADS}(B^+ \rightarrow D^*(D\gamma)K^+)$	-0.6 ± 1.3
$A_{ADS}(B^+ \rightarrow D^*(D\pi^0)K^+)$	0.72 ± 0.29
$A_{ADS}(B^+ \rightarrow D^*(D\gamma)\pi^+)$	0.08 ± 0.13
$A_{ADS}(B^+ \rightarrow D^*(D\pi^0)\pi^+)$	-0.14 ± 0.06
$A_{ADS}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$	-0.33 ± 0.35
$A_{ADS}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$	-0.01 ± 0.09

$A_{CP}(B^+ \rightarrow D_{CP(-1)}K^+)$	-0.10 ± 0.07
$A_{CP}(B^+ \to [K^+ K^-]_D K^+ \pi^- \pi^+)$	-0.04 ± 0.06
$A_{CP}(B^+ \to [\pi^+\pi^-]_D K^+\pi^-\pi^+)$	-0.05 ± 0.10
$A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$	0.013 ± 0.023
$A_{CP}(B^+ \to [K^+K^-]_D \pi^+ \pi^- \pi^+)$	-0.019 ± 0.015
$A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+)$	-0.013 ± 0.019
$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$	-0.002 ± 0.011
$A_{CP}(B^+ o \overline{D}^{*0}\pi^+)$	$-0.0004\pm0.0021\;(S=1.1)$
$A_{CP}(B^+ o D_{CP(+1)}^{*0}\pi^+)$	0.010 ± 0.007
$A_{CP}(B^+ \to D_{CP(-1)}^{*0}\pi^+)$	-0.09 ± 0.05
$A_{CP}(B^+ \rightarrow D^{*0}K^+)$	$0.012 \pm 0.010 \; (S = 1.5)$
$A_{CP}(B^+ \to D_{CP(+1)}^{*0}K^+)$	$-0.09 \pm 0.05 \; (S=2.6)$
$A_{CP}(B^+ \rightarrow D_{CP(-1)}^*K^+)$	0.07 ± 0.10
$A_{CP}(B^+ \to D_{CP(+1)}K^*(892)^+)$	0.08 ± 0.06
$A_{CP}(B^+ \to D_{CP(-1)}K^*(892)^+)$	-0.23 ± 0.22
$A_{CP}(B^+ \rightarrow D_s^+ \phi)$	0.0 ± 0.4
$A_{CP}(B^+ \rightarrow D_s^+ \overline{D}^0)$	$(-0.4 \pm 0.7)\%$
$A_{CP}(B^+ \rightarrow D^{*+}\overline{D}^{*0})$	-0.15 ± 0.11
$A_{CP}(B^+ \rightarrow D^{*+}\overline{D}^0)$	-0.06 ± 0.13
$A_{CP}(B^+ \rightarrow D^+ \overline{D}^{*0})$	0.13 ± 0.18
$A_{CP}(B^+ \rightarrow D^+ \overline{D}{}^0)$	0.016 ± 0.025
$A_{CP}(B^+ \rightarrow K_S^0 \pi^+)$	-0.017 ± 0.016
$A_{CP}(B^+ \rightarrow K^+\pi^0)$	0.030 ± 0.013
$A_{CP}(B^+ \rightarrow \eta' K^+)$	0.004 ± 0.011
$A_{CP}(B^+ \rightarrow \eta' K^*(892)^+)$	-0.26 ± 0.27
$A_{CP}(B^+ \to \eta' K_0^*(1430)^+)$	0.06 ± 0.20
$A_{CP}(B^+ \to \eta' K_2^*(1430)^+)$	0.15 ± 0.13
$A_{CP}(B^+ \to \eta K^*(892)^+)$	0.02 ± 0.06
$A_{CP}(B^+ \to \eta K_0^*(1430)^+)$	0.05 ± 0.13
$A_{CP}(B^+ \to \eta K_2^*(1430)^+)$	-0.45 ± 0.30
$A_{CP}(B^+ o\ \omegaK^+)$	-0.02 ± 0.04
$A_{CP}(B^+ o\ \omegaK^{*+})$	0.29 ± 0.35
$A_{CP}(B^+ \rightarrow \omega(K\pi)_0^{*+})$	-0.10 ± 0.09
$A_{CP}(B^+ \to \omega K_2^*(1430)^+)$	0.14 ± 0.15
$A_{CP}(B^+ o \kappa^{*0}\pi^+)$	$-0.04 \pm 0.09 \; (S=2.1)$
$A_{CP}(B^+ \to K^*(892)^+ \pi^0)$	$-0.39 \pm 0.21 \ (S=1.6)$
$A_{CP}(B^+ \rightarrow K^+\pi^-\pi^+)$	0.027 ± 0.008
$A_{CP}(B^+ \rightarrow K^+K^-K^+ \text{ nonresonant})$	0.06 ± 0.05
$A_{CP}(B^+ \to f(980)^0 K^+)$	-0.08 ± 0.09

$A_{CD}(B^+ \rightarrow$	$f_0(1500)K^+)$	0.28 ± 0.30
	$f_2'(1525)^0 K^+)$	$-0.08^{+0.05}_{-0.04}$
$A_{CP}(B^+ \rightarrow$	_	0.07 ± 0.06
01	$\kappa_0^*(1430)^0\pi^+)$	0.061 ± 0.032
	$\kappa_0^*(1430)^+\pi^0$	$0.26^{+0.18}_{-0.14}$
	$\kappa_{2}^{*}(1430)^{0}\pi^{+})$	$0.05 + 0.29 \\ -0.24$
$A_{CP}(B^+ \rightarrow$	$\kappa^{+}\pi^{0}\pi^{0}$)	-0.06 ± 0.07
$A_{CP}(B^+ \rightarrow$		-0.03 ± 0.15
$A_{CP}(B^+ \rightarrow$	$K^{*+}\pi^{+}\pi^{-})$	0.07 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\rho^0 K^*(892)^+)$	0.31 ± 0.13
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+ f_0(980))$	-0.15 ± 0.12
$A_{CP}(B^+ \rightarrow$	$a_1^+ K^0$)	0.12 ± 0.11
$A_{CP}(B^+ \rightarrow$	$b_1^+ K^0$)	-0.03 ± 0.15
$A_{CP}(B^+ \rightarrow$	$\kappa^*(892)^0 \rho^+)$	-0.01 ± 0.16
$A_{CP}(B^+ \rightarrow$	$b_1^0 K^+)$	-0.46 ± 0.20
$A_{CP}(B^+ \rightarrow$	-	0.04 ± 0.14
$A_{CP}(B^+ \rightarrow$	$\kappa_{S}^{0} \kappa^{+})$	-0.21 ± 0.14
$A_{CP}(B^+ \rightarrow$	9	0.025 ± 0.031
$A_{CP}(B^+ \rightarrow$	$K^+K^-\pi^+$ nonresonant)	-0.11 ± 0.06
$A_{CP}(B^+ \rightarrow$	$K^+\overline{K}^*(892)^0)$	0.12 ± 0.10
$A_{CP}(B^+ \rightarrow$	$K^{+}\overline{K}_{0}^{*}(1430)^{0})$	0.10 ± 0.17
$A_{CP}(B^+ \rightarrow$	$\phi\pi^+)$	0.1 ± 0.5
$A_{CP}(B^+ \rightarrow$	ϕK^+)	$0.024 \pm 0.028 \; (S=2.3)$
01 \	$X_0(1550)K^+)$	-0.04 ± 0.07
$A_{CP}(B^+ \rightarrow$	$K^{*+}K^+K^-$)	0.11 ± 0.09
$A_{CP}(B^+ \rightarrow$		-0.01 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\phi(\kappa\pi)_0^{*+})$	0.04 ± 0.16
$A_{CP}(B^+ \rightarrow$	$\phi K_1(1270)^+)$	0.15 ± 0.20
$A_{CP}(B^+ \rightarrow$	$\phi K_2^*(1430)^+)$	-0.23 ± 0.20
$A_{CP}(B^+ \rightarrow$	$K^+\phi\phi$)	-0.08 ± 0.07
$A_{CP}(B^+ \rightarrow$	$K^+[\phi\phi]_{\eta_c}$	0.10 ± 0.08
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+\gamma)$	0.014 ± 0.018
$A_{CP}(B^+ \rightarrow$	$X_{s}\gamma)$	0.028 ± 0.019
$A_{CP}(B^+ \rightarrow$	$\eta K^+ \gamma$)	-0.12 ± 0.07
$A_{CP}(B^+ \rightarrow$		$-0.13\pm0.11\;(S=1.1)$
$A_{CP}(B^+ \rightarrow$		-0.11 ± 0.33
$A_{CP}(B^+ \rightarrow$,	0.03 ± 0.04
$A_{CP}(B^+ \rightarrow$		0.009 ± 0.019
	$\rho^0(1450)\pi^+)$	-0.11 ± 0.05
$A_{CP}(B^+ \rightarrow$	$\pi^+\pi^-\pi^+$ nonresonant)	$-0.14^{igoplus 0.23}_{igoplus 0.16}$

. (54 + 0)	
$A_{CP}(B^+ \rightarrow \rho^+ \pi^0)$	0.02 ± 0.11
$A_{CP}(B^+ \rightarrow \rho^+ \rho^0)$	-0.05 ± 0.05
$A_{CP}(B^+ \to \omega \pi^+)$	-0.04 ± 0.05
$A_{CP}(B^+ \to \omega \rho^+)$	-0.20 ± 0.09
$A_{CP}(B^+ \to \eta \pi^+)$	$-0.14 \pm 0.07 \text{ (S} = 1.4)$
$A_{CP}(B^+ \rightarrow \eta \rho^+)$	0.11 ± 0.11
$A_{CP}(B^+ \rightarrow \eta' \pi^+)$	0.06 ± 0.16
$A_{CP}(B^+ \rightarrow \eta' \rho^+)$	0.26 ± 0.17
$A_{CP}(B^+ o b_1^0 \pi^+)$	0.05 ± 0.16
$A_{CP}(B^+ \to p\overline{p}\pi^+)$	0.00 ± 0.04
$A_{CP}(B^+ \to p\overline{p}K^+)$	$0.00 \pm 0.04 \; (S=2.2)$
$A_{CP}(B^+ \rightarrow p\overline{p}K^*(892)^+)$	$0.21 \pm 0.16 \; (S = 1.4)$
$A_{CP}(B^+ \to p\overline{\Lambda}\gamma)$	0.17 ± 0.17
$A_{CP}(B^+ \to p \overline{\Lambda} \pi^0)$	0.01 ± 0.17
$A_{CP}(B^+ \rightarrow K^+ \ell^+ \ell^-)$	-0.02 ± 0.08
$A_{CP}(B^+ \rightarrow K^+e^+e^-)$	0.14 ± 0.14
$A_{CP}(B^+ \rightarrow K^+ \mu^+ \mu^-)$	0.011 ± 0.017
$A_{CP}(B^+ \rightarrow \pi^+ \mu^+ \mu^-)$	-0.11 ± 0.12
$A_{CP}(B^+ o K^{*+}\ell^+\ell^-)$	-0.09 ± 0.14
$A_{CP}(B^+ \rightarrow K^* e^+ e^-)$	-0.14 ± 0.23
$A_{CP}(B^+ \rightarrow K^* \mu^+ \mu^-)$	-0.12 ± 0.24
$\operatorname{Re}(\epsilon_{B^0})/(1+ \epsilon_{B^0} ^2)$	$(-0.5 \pm 0.4) \times 10^{-3}$
$A_{T/CP}(B^0 \leftrightarrow \overline{B}{}^0)$	0.005 ± 0.018
$A_{CP}(B^0 \to D^*(2010)^+D^-)$	0.013 ± 0.014
$A_{CP}(B^0 \rightarrow \overline{D}{}^0\pi^0)$	$(0.4 \pm 2.4) \times 10^{-2}$
$A_{CP}(B^0 \to [K^+ K^-]_D K^*(892)^0)$	-0.05 ± 0.10
$A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0)$	0.047 ± 0.029
$A_{CP}(B^0 \to [K^+\pi^-\pi^+\pi^-]_D K^*(892)^0)$	0.037 ± 0.034
$A_{CP}(B^0 \to [K^-\pi^+]_D K^*(892)^0)$	0.19 ± 0.19
$A_{CP}(B^0 \to [K^-\pi^+\pi^+\pi^-]_D K^*(892)^0)$	-0.01 ± 0.24
$R_d^+(B^0 \to [\pi^{\pm} K^{\mp}]_D K^{*0})$	0.064 ± 0.021
$R_d^{-}(\overline{B}^0 \rightarrow [\pi^{\mp} K^{\pm}]_D K^{*0})$	0.095 ± 0.021
$A_{CP}(B^0 \to [\pi^+\pi^-]_D K^*(892)^0)$	-0.18 ± 0.14
$A_{CP}(B^0 \to [\pi^+\pi^-\pi^+\pi^-]_D K^*(892)^0)$	-0.03 ± 0.15
$R_d^+(B^0 \to [\pi^{\pm} K^{\mp} \pi^{\pm} \pi^{\mp}]_D K^{*0})$	0.074 ± 0.026
$R_{d}^{-}(\overline{B}^{0} \rightarrow [\pi^{\mp} K^{\pm} \pi^{\pm} \pi^{\mp}]_{D} K^{*0})$	0.072 ± 0.025
$A_{CP}(B^0 \to \eta' K^*(892)^0)$	-0.07 ± 0.18
$A_{CP}(B^0 \to \eta' K_0^*(1430)^0)$	-0.19 ± 0.17
$A_{CP}(B^0 \to \eta' K_2^*(1430)^0)$	0.14 ± 0.18
$A_{CP}(B^0 \to \eta K_2^*(1430)^0)$ $A_{CP}(B^0 \to \eta K_0^*(1430)^0)$	
$ACD(p_z \rightarrow \mu \nu^0(1430)_z)$	0.06 ± 0.13

$A_{CP}(B^0 \rightarrow$	$\eta K_2^*(1430)^0$	-0.07 ± 0.19
$A_{CP}(B^0 \rightarrow$	$b_1 \overset{-}{K^+})$	-0.07 ± 0.12
$A_{CP}(B^0 \rightarrow$	ωK^{*0})	0.45 ± 0.25
$A_{CP}(B^0 \rightarrow$	$\omega(\kappa\pi)^{*0}_0$	-0.07 ± 0.09
$A_{CP}(B^0 \rightarrow$	$\omega K_2^*(1430)^0$	-0.37 ± 0.17
$A_{CP}(B^0 \rightarrow$	$\kappa^{+}\pi^{-}\pi^{0}$	$(0 \pm 6) \times 10^{-2}$
$A_{CP}(B^0 \rightarrow$	$ ho^- K^+)$	0.20 ± 0.11
$A_{CP}(B^0 \rightarrow$	$ ho$ (1450) $^{-}$ K $^{+}$)	-0.10 ± 0.33
$A_{CP}(B^0 \rightarrow$	$\rho(1700)^- K^+)$	-0.4 ± 0.6
01.	$K^+\pi^-\pi^0$ nonresonant)	0.10 ± 0.18
$A_{CP}(B^0 \rightarrow$	$\kappa^0 \pi^+ \pi^-)$	-0.01 ± 0.05
$A_{CP}(B^0 \rightarrow$	$(\kappa\pi)_0^{*+}\pi^-)$	0.02 ± 0.04
$A_{CP}(B^0 \rightarrow$	$\kappa_2^*(1430)^+\pi^-)$	-0.29 ± 0.24
$A_{CP}(B^0 \rightarrow$	$\kappa^{*}(1680)^{+}\pi^{-})$	-0.07 ± 0.14
$A_{CP}(B^0 \rightarrow$	$f_0(980)K_S^0$	0.28 ± 0.31
$A_{CP}(B^0 \rightarrow$	$(\kappa_{\pi})^{*0}_{0}\pi^{0}_{0}$	-0.15 ± 0.11
$A_{CP}(B^0 \rightarrow$	$\kappa^{*0} \pi^{0}$)	-0.15 ± 0.13
$A_{CP}(B^0 \rightarrow$	$\kappa^*(892)^0\pi^+\pi^-)$	0.07 ± 0.05
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 \rho^0$	-0.06 ± 0.09
$A_{CP}(B^0 \rightarrow$	$K^{*0} f_0(980)$	0.07 ± 0.10
$A_{CP}(B^0 \rightarrow$	$\kappa^{*+}\rho^{-}$)	0.21 ± 0.15
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 K^+ K^-)$	0.01 ± 0.05
$A_{CP}(B^0 \rightarrow$	$a_1^- K^+$)	-0.16 ± 0.12
$A_{CP}(B^0 \rightarrow$	$\kappa^0 \kappa^0$)	-0.6 ± 0.7
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 \phi)$	0.00 ± 0.04
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 K^- \pi^+)$	0.2 ± 0.4
$A_{CP}(B^0 \rightarrow$	$\phi(\kappa\pi)^{*0}_0$	0.12 ± 0.08
$A_{CP}(B^0 \rightarrow$	$\phi K_2^*(1430)^0$	-0.11 ± 0.10
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 \gamma)$	-0.006 ± 0.011
$A_{CP}(B^0 \rightarrow$	$K_2^*(1430)^0 \gamma)$	-0.08 ± 0.15
$A_{CP}(B^0 \rightarrow$	$X_{S}\gamma$)	-0.009 ± 0.018
$A_{CP}(B^0 \rightarrow$	$ ho^+\pi^-)$	$0.13 \pm 0.06 \; (S = 1.1)$
$A_{CP}(B^0 \rightarrow$	$\rho^-\pi^+$)	-0.08 ± 0.08
$A_{CP}(B^0 \rightarrow$	$a_1(1260)^{\pm}\pi^{\mp})$	-0.07 ± 0.06
$A_{CP}(B^0 \rightarrow$	$b_1^- \pi^+)$	-0.05 ± 0.10
$A_{CP}(B^0 \rightarrow$	$p \overline{p} K^*(892)^0$	0.05 ± 0.12
$A_{CP}(B^0 \rightarrow$		0.04 ± 0.07
$A_{CP}(B^0 \rightarrow$		-0.05 ± 0.10
$A_{CP}(B^0 \rightarrow$	$K^{*0} e^+ e^-)$	-0.21 ± 0.19
$A_{CP}(B^0 \rightarrow$	$\kappa^{*0} \mu^+ \mu^-$)	-0.034 ± 0.024

$C_{D^*(2010)^-D^+}(B^0 \to D^*(2010)^-D^+)$	-0.02 ± 0.08
$C_{D^*(2010)^+D^-}(B^0 \to D^*(2010)^+D^-)$	$-0.03 \pm 0.09 \; (S=1.1)$
$C_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-})$	$0.01 \pm 0.09 \; (S = 1.6)$
$C_{+} (B^{0} \rightarrow D^{*+}D^{*-})$	$0.00 \pm 0.10 \; (S = 1.6)$
$C_{-}(B^{0} \rightarrow D^{*+}D^{*-})$	0.19 ± 0.31
$S_{-}(B^{0} \rightarrow D^{*+}D^{*-})$	$0.1 \pm 1.6 \; (S = 3.5)$
$C(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0)$	0.01 ± 0.29
$S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0)$	0.1 ± 0.4
$C_{D^+D^-} (B^0 \to D^+D^-)$	$-0.22 \pm 0.24 \text{ (S} = 2.5)$
$C_{J/\psi(1S)\pi^0} \; (B^0 o \; J/\psi(1S)\pi^0)$	$0.03 \pm 0.17 \; (S = 1.5)$
$C(B^0 \rightarrow J/\psi(1S)\rho^0)$	-0.06 ± 0.06
$C_{D_{CP}^{(*)}h^0}^{(*)} (B^0 \to D_{CP}^{(*)}h^0)$	-0.02 ± 0.08
$S_{D_{CP}^{(*)}h^0}^{(*)}(B^0 \to D_{CP}^{(*)}h^0)$	-0.66 ± 0.12
$C_{K^0\pi^0}(B^0 \to K^0\pi^0)$	$0.00 \pm 0.13 \; (S = 1.4)$
$C_{\eta'(958)K_S^0}(B^0 \to \eta'(958)K_S^0)$	$-0.04 \pm 0.20 \; (S=2.5)$
$S_{\eta'(958)K_S^0}(B^0 \to \eta'(958)K_S^0)$	$0.43 \pm 0.17 \; (S = 1.5)$
$C_{\eta' K^0} (B^{0} \rightarrow \eta' K^0)$	-0.06 ± 0.04
$C_{\omega K_S^0}(B^0 \rightarrow \omega K_S^0)$	$0.0 \pm 0.4 \; (S=3.0)$
$S_{\omega K_S^0}(B^0 \rightarrow \omega K_S^0)$	0.70 ± 0.21
$C(B^{0} \rightarrow \kappa_{S}^{0} \pi^{0} \pi^{0})$	-0.21 ± 0.20
$S(B^0 \rightarrow \kappa_S^0 \pi^0 \pi^0)$	$0.89^{+0.27}_{-0.30}$
$C_{\rho^0 K_S^0} (B^0 \rightarrow \rho^0 K_S^0)$	-0.04 ± 0.20
$S_{ ho^0 \kappa_S^0} (B^0 \rightarrow \rho^0 \kappa_S^0)$	$0.50 {}^{+ 0.17}_{- 0.21}$
$C_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$	0.29 ± 0.20
$S_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$	-0.50 ± 0.16
$S_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$	-0.5 ± 0.5
$C_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$	0.3 ± 0.4
$S_{f_X(1300)K_S^0}(B^0 \to f_X(1300)K_S^0)$	-0.2 ± 0.5
$C_{f_{\chi}(1300)K_{S}^{0}}(B^{0} \rightarrow f_{\chi}(1300)K_{S}^{0})$	0.13 ± 0.35
$S_{K^0\pi^+\pi^-}(B^0 \to K^0\pi^+\pi^-)$ nonresonant)	-0.01 ± 0.33
$C_{K^0\pi^+\pi^-}^{}$ ($B^0 ightarrow~K^0\pi^+\pi^-$ nonresonant)	0.01 ± 0.26
$C_{\mathcal{K}^0_{\mathcal{S}}\mathcal{K}^0_{\mathcal{S}}}(B^0 \to \mathcal{K}^0_{\mathcal{S}}\mathcal{K}^0_{\mathcal{S}})$	$0.0 \pm 0.4 \; (S = 1.4)$

$S_{\mathcal{K}^0_S\mathcal{K}^0_S}(B^0 o\mathcal{K}^0_S\mathcal{K}^0_S)$	-0.8 ± 0.5
$C_{K^+K^-K^0_S}^{(B^0 o K^+K^-K^0_S)}$ nonresonant)	0.06 ± 0.08
$C_{K^+K^-K^0_S}^{S}$ ($B^0 \rightarrow K^+K^-K^0_S$ inclusive)	0.01 ± 0.09
$C_{\phi K_S^0} (B^0 \rightarrow \phi K_S^0)$	0.01 ± 0.14
$S_{\phi K_S^0}(B^0 \rightarrow \phi K_S^0)$	0.59 ± 0.14
$C_{K_SK_SK_S}(B^0 \to K_SK_SK_S)$	-0.14 ± 0.12
$S_{K_SK_SK_S}(B^0 \rightarrow K_SK_SK_S)$	-0.82 ± 0.17
$C_{K_S^0\pi^0\gamma}(B^0 \to K_S^0\pi^0\gamma)$	0.36 ± 0.33
$S_{K_S^0\pi^0\gamma}(B^0 \to K_S^0\pi^0\gamma)$	-0.8 ± 0.6
$C_{K^*(892)^0\gamma}(B^0 \rightarrow K^*(892)^0\gamma)$	$-0.04 \pm 0.16 \; (S=1.2)$
$S_{K^*(892)^0\gamma}(B^0 \to K^*(892)^0\gamma)$	-0.15 ± 0.22
$C_{\eta K^0 \gamma} (B^0 \to \eta K^0 \gamma)$	$0.1 \pm 0.4 \; (S = 1.4)$
$S_{\eta K^0 \gamma} (B^0 \rightarrow \eta K^0 \gamma)$	$-0.5 \pm 0.5 \; (S=1.2)$
$C_{K^0\phi\gamma}(B^0 o K^0\phi\gamma)$	-0.3 ± 0.6
$S_{K^0\phi\gamma}^{}(B^0 o K^0\phi\gamma)$	$0.7^{+0.7}_{-1.1}$
$C(B^0 \to K_S^0 \rho^0 \gamma)$	-0.05 ± 0.19
$S(B^0 \rightarrow \kappa_S^0 \rho^0 \gamma)$	-0.04 ± 0.23
$C(B^0 \rightarrow \rho^{0} \gamma)$	0.4 ± 0.5
$S(B^0 \to \rho^0 \gamma)$	-0.8 ± 0.7
$C_{\pi^0 \pi^0}(B^0 \to \pi^0 \pi^0)$	-0.33 ± 0.22
$C_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	$-0.03 \pm 0.07 \; (S=1.2)$
$S_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	0.05 ± 0.07
$\Delta S_{ ho\pi}~(B^0 o ho^+\pi^-)$	0.01 ± 0.08
$C_{ ho^0 \pi^0} \ (B^0 o \ ho^0 \pi^0)$	0.27 ± 0.24
$S_{ ho^0 \pi^0} (B^0 \to \rho^0 \pi^0)$	-0.23 ± 0.34
$C_{a_1 \pi} (B^0 \to a_1(1260)^+ \pi^-)$	-0.05 ± 0.11
$S_{a_1 \pi}^{-} (B^0 \to a_1(1260)^+ \pi^-)$	$-0.2 \pm 0.4 \; (S = 3.2)$
$\Delta C_{a_1 \pi} (B^0 \to a_1 (1260)^+ \pi^-)$	$0.43 \pm 0.14 \; (S = 1.3)$
$\Delta S_{a_1 \pi} (B^0 \to a_1 (1260)^+ \pi^-)$	-0.11 ± 0.12
$C(B^0 \rightarrow b_1^- K^+)$	-0.22 ± 0.24
$\Delta C (B^0 \rightarrow b_1^- \pi^+)$	-1.04 ± 0.24
$C_{\rho^0\rho^0} (B^0 \to \rho^0\rho^0)$	0.2 ± 0.9
$S_{\rho^0\rho^0}(B^0 \rightarrow \rho^0\rho^0)$	0.3 ± 0.7
$C_{\rho\rho} (B^0 \rightarrow \rho^+ \rho^-)$	0.00 ± 0.09
$\rho \rho \sim r r r$	

$S_{ ho ho}~(B^0 ightarrow~ ho^+ ho^-)$	-0.14 ± 0.13
$ \lambda (B^0 \rightarrow J/\psi K^*(892)^0)$	<0.25, CL $=$ 95%
$\cos 2\beta \ (B^0 \to J/\psi K^*(892)^0)$	$1.7^{+0.7}_{-0.9} (S = 1.6)$
$\cos 2\beta \ (B^0 \to \ [K_S^0 \pi^+ \pi^-]_{D^{(*)}} \ h^0)$	0.91 ± 0.25
$(S_+ + S)/2 (B^0 \rightarrow D^{*-}\pi^+)$	-0.039 ± 0.011
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{*-} \pi^{+})$	-0.009 ± 0.015
$(S_+ + S)/2 (B^0 \rightarrow D^- \pi^+)$	-0.046 ± 0.023
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \pi^{+})$	-0.022 ± 0.021
$S_+ (B^0 \rightarrow D^- \pi^+)$	0.058 ± 0.023
$S_{-}(B^0 \rightarrow D^+\pi^-)$	0.038 ± 0.021
$(S_+ + S)/2 (B^0 \rightarrow D^- \rho^+)$	-0.024 ± 0.032
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \rho^{+})$	-0.10 ± 0.06
$C_{\eta_c K_S^0} (B^0 \to \eta_c K_S^0)$	0.08 ± 0.13
$C_{c \overline{c} K(*)0} (B^0 \rightarrow c \overline{c} K(*)0)$	$(-0.5 \pm 1.5) \times 10^{-2}$
$C_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0)$	$(-0.8 \pm 1.7) \times 10^{-2}$
$C_{J/\psi K^{*0}} (B^0 \rightarrow J/\psi K^{*0})$	0.03 ± 0.10
$S_{J/\psi K^{*0}} (B^0 \rightarrow J/\psi K^{*0})$	0.60 ± 0.25
$C_{\chi_{c0}\kappa_S^0}(B^0 \to \chi_{c0}\kappa_S^0)$	$-0.3^{+0.5}_{-0.4}$
$S_{\chi_{c0}\kappa_S^0}(B^0 \to \chi_{c0}\kappa_S^0)$	-0.7 ± 0.5
$C_{\chi_{c1}\kappa_S^0}(B^0 \to \chi_{c1}\kappa_S^0)$	0.06 ± 0.07
$\sin(2\beta_{\rm eff})(B^0 \to \phi K^0)$	0.22 ± 0.30
$\sin(2\beta_{\text{eff}})(B^0 \to \phi K_0^*(1430)^0)$	$0.97^{+0.03}_{-0.52}$
$\sin(2\beta_{\rm eff})(B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} h^0)$	0.80 ± 0.16
$ \lambda (B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} h^0)$	1.01 ± 0.08
$ \sin(2\beta+\gamma) $	>0.40, CL $= 90%$
$2 \beta + \gamma$	$(83\pm60)^{\circ}$
$x_{+}(B^{0} \rightarrow DK^{*0})$	0.04 ± 0.17
$\times_{-}(B^0 \rightarrow DK^{*0})$	-0.16 ± 0.14
$y_{-}(B^0 \rightarrow DK^{*0})$	$0.20\pm0.25\;(S=1.2)$
$A_{CP}(B \rightarrow K^*(892)\gamma)$	-0.003 ± 0.011
$A_{CP}(extit{B} ightarrow extit{s}\gamma)$	0.015 ± 0.011
$A_{CP}(B \to (s+d)\gamma)$	0.010 ± 0.031
$A_{CP}(B \rightarrow X_{s}\ell^{+}\ell^{-})$	0.04 ± 0.11
$A_{CP}(B \rightarrow K^* e^+ e^-)$	-0.18 ± 0.15
$A_{CP}(B \rightarrow K^* \mu^+ \mu^-)$	-0.03 ± 0.13
$A_{CP}(B \to K^* \ell^+ \ell^-)$	-0.04 ± 0.07
$A_{CP}(extbf{B} ightarrow \eta$ anything)	$-0.13^{+0.04}_{-0.05}$

$\Delta A_{CP}(X_s \gamma) = A_{CP}(B^{\pm} \rightarrow X_s \gamma) - A_{CP}(B^0 \rightarrow X_s \gamma)$	0.041 ± 0.023
$X_{s}\gamma$)	0.011 ± 0.025
$\overline{A}_{CP}(B \to X_{s} \gamma) = (A_{CP}(B^{+} \to X_{s} \gamma) + A_{CP}(B^{0} \to X_{s} \gamma))/2$	0.009 ± 0.012
$\overline{A}_{CP}(B \to K^* \gamma) = (A_{CP}(B^+ \to K^{*+} \gamma) + A_{CP}(B^0 \to K^{*0} \gamma))/2$	-0.001 ± 0.014
$Re(\epsilon_{B_s^0}) \ / \ (1 + \epsilon_{B_s^0} ^2)$	$(-0.15 \pm 0.70) \times 10^{-3}$
$S_{KK}(B_s^0 \rightarrow K^+K^-)$	$0.14 \pm 0.05 \; (S=1.3)$
$\delta_B(B_s^0 \to D_s^{\pm} K^{\mp} \pi^{\pm} \pi^{\mp})$	$(-6^{+10}_{-13})^{\circ}$
CP Violation phase $\beta_{\mathcal{S}}$	$(2.5 \pm 1.0) imes 10^{-2} \; rad$
$A_{CP}^L(B_s o J/\psi \overline{K}^*(892)^0)$	-0.05 ± 0.06
$A_{CP}^{\parallel}(B_{s} \rightarrow J/\psi \overline{K}^{*}(892)^{0})$	0.17 ± 0.15
$A_{CP}^{\perp}(B_s \rightarrow J/\psi \overline{K}^*(892)^0)$	-0.05 ± 0.10
$A_{CP}(B_s^0 \to [K^+ K^-]_D \overline{K}^*(892)^0)$	-0.04 ± 0.07
$A_{CP}(B_s^0 \to [\pi^+ K^-]_D K^*(892)^0)$	-0.01 ± 0.04
$A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0)$	0.06 ± 0.13
$S(B_s^0 o \phi \gamma)$	0.43 ± 0.32
$C(B_s^0 \to \phi \gamma)$	0.11 ± 0.31
$\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$	$<1.1 \times 10^{-4}$, CL = 90%
$\Gamma(\eta_{c}(1S) ightarrow \pi^{0}\pi^{0})/\Gamma_{total}$	$<$ 4 \times 10 $^{-5}$, CL $=$ 90%
$\Gamma(\eta_{c}(1S) ightarrow K^{+}K^{-})/\Gamma_{total}$	$<$ 6 \times 10 $^{-4}$, CL $=$ 90%
$\Gamma(\eta_c(1S) ightarrow \ \kappa_S^0 \kappa_S^0) / \Gamma_{total}$	$<3.1 \times 10^{-4}, CL = 90\%$
n electric dipole moment	$< 0.18 \times 10^{-25} \ e \text{cm}, \ \text{CL} = 90\%$
$(\alpha_{-} + \alpha_{+})/(\alpha_{-} - \alpha_{+}) \text{ in } \Lambda \to p\pi^{-}, \overline{\Lambda} \to \overline{p}\pi^{+}$	-0.002 ± 0.004
$\frac{[\alpha(\Xi^{-})\alpha_{-}(\Lambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})]}{[\alpha(\Xi^{-})\alpha_{-}(\Lambda) + \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})]}$	$(0 \pm 7) \times 10^{-4}$
$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Omega^- \to \Lambda K^-$, $\overline{\Omega}{}^+ \to \overline{\Lambda} K^+$	-0.02 ± 0.13
$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda_c^+ \to \Lambda \pi^+$, $\overline{\Lambda}_c^- \to \overline{\Lambda} \pi^-$	-0.07 ± 0.31
$(\alpha + \overline{lpha})/(\alpha - \overline{lpha}) \text{ in } \Lambda_c^+ o \Lambda e^+ u_e, \overline{\Lambda}_c^- o \overline{\Lambda} e^- \overline{ u}_e$	0.00 ± 0.04
$A_{CP}(\Lambda_b o p\pi^-)$	$-0.025\pm0.029\;(S=1.2)$
$A_{CP}(\Lambda_b \to pK^-)$	-0.025 ± 0.022
$A_{CP}(\Lambda_b \rightarrow D_P K^-)$	0.12 ± 0.09
$\Delta A_{CP}(pK^-/\pi^-)$	0.014 ± 0.024
$A_{CP}(\Lambda_b \to p\overline{K}^0\pi^-)$	0.22 ± 0.13
$\Delta A_{CP}(J/\psi p\pi^-/K^-)$	$(5.7 \pm 2.7) \times 10^{-2}$
$A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-)$	-0.53 ± 0.25
$A_{CP}(\Lambda_b \to \Lambda K^+ K^-)$	-0.28 ± 0.12
$\Delta A_{CP}(\Lambda_b^0 \to p K^- \mu^+ \mu^-)$	$(-4 \pm 5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-)$	$(1.1 \pm 2.6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o (p\pi^-\pi^+\pi^-)_{LBM})$	$(4 \pm 4) \times 10^{-2}$

$\Delta A_{CP}(\Lambda_h^0 o pa_1(1260)^-)$	$(-1 \pm 4) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^{0} \to N(1520)^0 \rho(770)^0)$	$(2 \pm 5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^{0} \rightarrow \Delta(1232)^{++}\pi^{-}\pi^{-})$	$(0.1 \pm 3.3) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \to p K^- \pi^+ \pi^-)$	$(3.2 \pm 1.3) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o (ho K^- \pi^+ \pi^-)_{LBM})$	$(3.5 \pm 1.6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \to N(1520)^0 K^*(892)^0)$	$(5.5 \pm 2.5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^{0} \rightarrow \Lambda(1520) \rho(770)^{0})$	$(1 \pm 6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow \Delta(1232)^{++} K^- \pi^-)$	$(4.4 \pm 2.7) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow p K_1(1410)^-)$	$(5 \pm 4) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o p K^- K^+ \pi^-)$	$(-7 \pm 5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow pK^-K^+K^-)$	$(0.2 \pm 1.9) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow \Lambda(1520)\phi(1020))$	$(4 \pm 6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow (pK^-)_{highmass} \phi(1020))$	$(-0.7 \pm 3.4) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o (ho K^- K^+ K^-)_{LBM})$	$(2.7 \pm 2.4) \times 10^{-2}$
$A_c(\Lambda)$	-0.22 ± 0.13
$A_S(\Lambda)$	0.13 ± 0.13
$A_c(\phi)$	-0.01 ± 0.12
$A_s(\phi)$	-0.07 ± 0.12
$a_{CP}(\Lambda^{0}_{b} \to p\pi^{-}\pi^{+}\pi^{-})$	$(-0.7 \pm 0.7)\%$
$a_{CP}(\Lambda_{b}^{0} \rightarrow pK^{-}\pi^{+}\pi^{-})$	$(-0.8 \pm 0.9)\%$
$a_{CP}(\Lambda^0_{\ b} \to \ pK^-K^+\pi^-)$	$(-1\pm5)\%$
$a_{CP}(\Lambda_b^0 o pK^-K^+K^-)$	$(1.1 \pm 1.5)\%$
$a_{CP}(\Lambda^{0}_{b} o pK^{-}\mu^{+}\mu^{-})$	$(1\pm5)\%$

CP VIOLATION OBSERVED

$Re(\epsilon)$		$(1.596 \pm 0.013) \times 10^{-3}$
charge asymmetry in $\kappa^0_{\ell 3}$ decays		
$A_L=$ weighted average of $A_L(\mu)$ and μ	$A_L(e)$	$(0.332 \pm 0.006)\%$
$A_L(\mu) = [\Gamma(\pi^- \mu^+ \nu_\mu) - \Gamma(\pi^+ \mu^- \overline{\nu}_\mu)]$	$_{\iota})]/sum$	$(0.304 \pm 0.025)\%$
$A_L(e) = [\Gamma(\pi^- e^+ \nu_e) - \Gamma(\pi^+ e^- \overline{\nu}_e)]$)]/sum	$(0.334 \pm 0.007)\%$
parameters for $K_I^0 ightarrow 2\pi$ decay		
$ \eta_{00} = A(\kappa_I^0 o 2\pi^0) /$		$(2.220 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$A(\kappa_S^0 \stackrel{-}{ o} 2\pi^0) $		
$ \eta_{+-} = A(K_L^0 \to \pi^+\pi^-) / A(K_S^0) $	\rightarrow	$(2.232 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$\pi^+\pi^-) $		
$ \epsilon = (2 \eta_{+-} + \eta_{00})/3$		$(2.228 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$ \eta_{00}/\eta_{+-} $	[<i>i</i>]	$0.9950\pm0.0007\;(S=1.6)$
$Re(\epsilon'/\epsilon) = (1-ig \eta_{00}/\eta_{+-}ig)/3$	[i]	$(1.66 \pm 0.23) \times 10^{-3} \text{ (S} = 1.6)$
https://pdg.lbl.gov	Page 17	Created: 5/31/2023 09:09

Assuming CPT $(43.51 \pm 0.05)^{\circ} (S = 1.2)$ ϕ_{+-} , phase of η_{+-} $(43.52 \pm 0.05)^{\circ} (S = 1.3)$ ϕ_{00} , phase of η_{00} $(43.52 \pm 0.05)^{\circ} (S = 1.2)$ $\phi_{\epsilon} = (2\phi_{+-} + \phi_{00})/3$ Not assuming CPT $(43.4 \pm 0.5)^{\circ} (S = 1.2)$ ϕ_{\perp} , phase of η_{\perp} $(43.7 \pm 0.6)^{\circ} (S = 1.2)$ ϕ_{00} , phase of η_{00} $\phi_{\epsilon} = (2\phi_{+-} + \phi_{00})/3$ $(43.5 \pm 0.5)^{\circ} (S = 1.3)$ *CP* asymmetry *A* in $K_I^0 \rightarrow \pi^+\pi^-e^+e^ (13.7 \pm 1.5)\%$ β_{CP} from $K_I^0 \rightarrow e^+e^-e^+e^ -0.19\,\pm\,0.07$ γ_{CP} from $K_I^0 \rightarrow e^+e^-e^+e^ 0.01 \pm 0.11 \ (S = 1.6)$ parameters for $K_I^0 ightarrow \pi^+\pi^-\gamma$ decay $|\eta_{+-\gamma}| = |A(K_I^0 \rightarrow \pi^+\pi^-\gamma, CP)|$ $(2.35 \pm 0.07) \times 10^{-3}$ violating)/ $\bar{A}(K_S^0 \rightarrow \pi^+\pi^-\gamma)$ $(44 \pm 4)^{\circ}$ $\phi_{+-\gamma}=$ phase of $\eta_{+-\gamma}$ $\Gamma(K_L^0 ightarrow \pi^+\pi^-)/\Gamma_{total}$ [j] $(1.967 \pm 0.010) \times 10^{-3} (S = 1.5)$ $\Gamma(K_I^0 \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}$ $(8.64 \pm 0.06) \times 10^{-4} (S = 1.8)$ $\Delta A_{CP}^{D^0} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$ $(-0.154 \pm 0.029)\%$ $A_{CP}(B^+ \to [K^- \pi^+]_{\overline{D}} K^*(892)^+)$ -0.75 ± 0.16 $A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+)$ $0.132 \pm 0.015 \; (S = 1.8)$ $A_{ADS}(B^+ \rightarrow DK^+)$ -0.451 ± 0.026 $A_{CP}(B^+ \rightarrow \eta K^+)$ -0.37 ± 0.08 $A_{CP}(B^+ \rightarrow K^+\pi^-\pi^+)$ 0.027 ± 0.008 $-0.68^{+0.19}_{-0.17}$ $A_{CP}(B^+ \to f_2(1270)K^+)$ $A_{CP}(B^+ \rightarrow \rho^0 K^+)$ 0.37 ± 0.10 $A_{CP}(B^+ \rightarrow K^+K^-\pi^+)$ -0.122 ± 0.021 $A_{CP}(B^+ \rightarrow \pi^+ (K^+ K^-)_{S=wave})$ -0.66 ± 0.04 $A_{CP}(B^+ \rightarrow K^+K^-K^+)$ -0.033 ± 0.008 $A_{CP}(B^+ \to \pi^+\pi^-\pi^+)$ 0.057 ± 0.013 $A_{CP}(B^+ \to f_2(1270)\pi^+)$ $0.40\,\pm\,0.06$ $A_{CP}(B^+ \to f_0(1370)\pi^+)$ 0.72 ± 0.22 $(65.9^{+3.3}_{-3.5})^{\circ}$ $r_R(B^+ \rightarrow D^0 K^+)$ 0.0994 ± 0.0026 $(127.7^{+3.6}_{-3.9})^{\circ}$ $\delta_B(B^+ \rightarrow D^0 K^+)$ $0.101^{+0.016}_{-0.034}$ $r_{B}(B^{+} \rightarrow D^{0}K^{*+})$ $\delta_B(B^+ \rightarrow D^0 K^{*+})$ $(48^{+59}_{-16})^{\circ}$ $r_{B}(B^{+} \rightarrow D^{*0}K^{+})$ $0.104 ^{+0.013}_{-0.014}$ $\delta_B(B^+ \rightarrow D^{*0}K^+)$ $A_{CP} (B^0 \to K^+ \pi^-)$ -0.0834 ± 0.0032

$A_{CP}(B^0 \to \eta K^*(892)^0)$	0.19 ± 0.05
$A_{CP}(B^0 \to K^*(892)^+\pi^-)$	-0.27 ± 0.04
$S_{D^*(2010)^-D^+}(B^0 \to D^*(2010)^-D^+)$	-0.83 ± 0.09
$S_{D^*(2010)^+D^-}(B^0 \to D^*(2010)^+D^-)$	-0.80 ± 0.09
$S_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-})$	$-0.59 \pm 0.14 \; (S=1.8)$
$S_{+} (B^{0} \rightarrow D^{*+}D^{*-})$	-0.73 ± 0.09
$S_{D^+D^-}(B^0 \to D^+D^-)$	$-0.76^{+0.15}_{-0.13} (S = 1.2)$
$S_{J/\psi(1S)\pi^0} \; (B^0 o \; J/\psi(1S)\pi^0)$	$-0.88 \pm 0.32 \; (S=2.2)$
$S(B^0 o J/\psi(1S)\rho^0)$	$-0.66^{+0.16}_{-0.12}$
$S_{K^0\pi^0} (B^0 \to K^0\pi^0)$	0.58 ± 0.17
$S_{\eta'K^0}(B^0 \rightarrow \eta'K^0)$	0.63 ± 0.06
$S_{K^+K^-K^0_S}(B^0 o K^+K^-K^0_S ext{ nonresonant})$	-0.66 ± 0.11
$S_{K^+K^-K^0_S}(B^0 \to K^+K^-K^0_S \text{ inclusive})$	-0.65 ± 0.12
$C_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$	-0.314 ± 0.030
$S_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$	-0.670 ± 0.030
$\Delta C_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	0.27 ± 0.06
$S_{\eta_c K_S^0} (B^0 \rightarrow \eta_c K_S^0)$	0.93 ± 0.17
$\sin(2\beta) \ (B^0 \rightarrow J/\psi K_S^0)$	0.699 ± 0.017
$S_{J/\psi(nS)K^0} \; (B^0 o J/\psi(nS)K^0)$	0.701 ± 0.017
$S_{\chi_{c1}\kappa_S^0}(B^0 \to \chi_{c1}\kappa_S^0)$	0.63 ± 0.10
$\sin(2\beta_{\rm eff})(B^0 \to K^+K^-K^0_{S})$	$0.77^{+0.13}_{-0.12}$
α	$(85.2^{+4.8}_{-4.3})^{\circ}$
$r_{B^0}(B^0 o DK^{*0})$	$0.257 ^{+0.021}_{-0.023}$
$\delta_{B^0}(B^0 \to DK^{*0})$	$(194.1^{+9.6}_{-8.8})^{\circ}$
$C_{KK}(B_s^0 \to K^+K^-)$	0.162 ± 0.035
$r_B(B^0_s o D^{\mp}_sK^\pm)$	$0.37^{igoplus 0.10}_{-0.09}$
$r_B(B^0_S o D^\mp_S K^\pm \pi^\pm \pi^\mp)$	0.47 ± 0.08
$\delta_B(B_{_{\mathcal{S}}}^0 o D_{_{\mathcal{S}}}^\pm K^\mp)$	$(358\pm14)^\circ$
$A_{CP}(B_s \rightarrow \pi^+ K^-)$	0.224 ± 0.012

CPT INVARIANCE

$(m_{W^+}^{}-m_{W^-}^{})\ /\ m_{\sf average}^{}$	$(-3.7 \pm 3.5) \times 10^{-4}$
$(m_{e^+}^{}-m_{e^-}^{})\ /\ m_{ m average}$	$< 8 \times 10^{-9}$, CL = 90%
$ q_{e^{+}} + q_{e^{-}} /e$	$< 4 \times 10^{-8}$
$(g_{o^+} - g_{o^-}) / g_{average}$	$(-0.5 \pm 2.1) \times 10^{-12}$

https://pdg.lbl.gov

Page 19

$(au_{\mu^+} - au_{\mu^-}) / au_{ m average}$		$(2 \pm 8) \times 10^{-5}$
$(g_{\mu^+}^{}-g_{\mu^-}^{}) / g_{average}$		$(-0.11 \pm 0.12) \times 10^{-8}$
$(m_{ au^+} - m_{ au^-})/m_{ ext{average}}$		$< 2.8 \times 10^{-4}$, CL = 90%
$\langle \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \rangle$ in neutrino mixing		$<1.1 \times 10^{-4} \text{ eV}^2$, $CL = 99.7\%$
$\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \rangle$ in neutrino mixing		$(-0.12\pm0.25) imes 10^{-3}~\text{eV}^2$
$m_t - m_{\overline{t}}$		$-0.15 \pm 0.20~{ m GeV}~({ m S}=1.1)$
$(m_{\pi^+}-m_{\pi^-}) / m_{average}$		$(2 \pm 5) \times 10^{-4}$
$(\tau_{\pi^+} - \tau_{\pi^-}) / \tau_{\text{average}}$		$(6 \pm 7) \times 10^{-4}$
$(m_{K^+} - m_{K^-}) / m_{\text{average}}$		$(-0.6 \pm 1.8) \times 10^{-4}$
$(\tau_{K^+} - \tau_{K^-}) / \tau_{\text{average}}$		$(0.10 \pm 0.09)\% (S = 1.2)$
$\kappa^{\pm} ightarrow \mu^{\pm} u_{\mu}$ rate difference/sum		$(-0.27 \pm 0.21)\%$
$\kappa^{\pm} ightarrow \pi^{\pm} \pi^{0}$ rate difference/sum	[<i>k</i>]	$(0.4 \pm 0.6)\%$
δ in $K^0 - \overline{K}^0$ mixing		
real part of δ		$(2.5\pm2.3)\times10^{-4}$
imaginary part of δ		$(-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter		$(0.4 \pm 2.5) \times 10^{-3}$
$Re(x_{-})$, K_{e3} parameter		$(-2.9 \pm 2.0) \times 10^{-3}$
$\left m_{K^0} - m_{\overline{K}^0} \right / m_{\text{average}}$	[/]	$< 6 \times 10^{-19}$, $CL = 90\%$
$(\Gamma_{K^0} - \Gamma_{\overline{K}^0})/m_{\text{average}}$		$(8 \pm 8) \times 10^{-18}$
phase difference ϕ_{00} – ϕ_{+-}		$(0.34 \pm 0.32)^{\circ}$
$Re(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2}$		$(-3 \pm 35) \times 10^{-6}$
$A_{CPT}(D^0 \rightarrow K^-\pi^+)$		0.008 ± 0.008
$\Delta S_{CPT}^{+} (S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{-} - S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{+})$		0.16 ± 0.23
$\Delta S_{CPT}^{-} (S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{+} - S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{-})$		-0.03 ± 0.14
$\Delta C_{CPT}^{+} (C_{\ell^{+}, K_{S}^{0}}^{-} - C_{\ell^{+}, K_{S}^{0}}^{+})$		0.14 ± 0.17
$\Delta C_{CPT}^{-} (C_{\ell^{+}, K_{S}^{0}}^{+} - C_{\ell^{+}, K_{S}^{0}}^{-})$		0.03 ± 0.14
$ m_p - m_{\overline{p}} /m_p$	[<i>n</i>]	$<$ 7 $ imes$ 10 $^{-10}$, CL $=$ 90%
$(\frac{\dot{q}_{\overline{p}}}{m_{\overline{p}}} -\frac{\dot{q}_{p}}{m_{p}})/\frac{\dot{q}_{p}}{m_{p}}$		$(0.1 \pm 6.9) \times 10^{-11}$
$ q_{p}^{T}+q_{\overline{p}}^{T} /e$	[<i>n</i>]	$< 7 \times 10^{-10}$, CL = 90%
$(\mu_{D} + \mu_{\overline{D}}) / \mu_{D}$		$(0.002 \pm 0.004) \times 10^{-6}$
$(m_n - m_{\overline{n}})/m_n$		$(9 \pm 6) \times 10^{-5}$
$(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}$		$(-0.1 \pm 1.1) \times 10^{-5} \text{ (S} = 1.6)$
$(au_{\Lambda} - au_{\overline{\Lambda}}) / au_{\Lambda}$		-0.001 ± 0.009
$(\tau_{\Sigma^+} - \tau_{\overline{\Sigma}^-}) / \tau_{\Sigma^+}$		-0.0006 ± 0.0012
$(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+}$		0.014 ± 0.015
$(m_{=-} - m_{=+}) / m_{=-}$		$(-3 \pm 9) \times 10^{-5}$

$$\begin{array}{lll} \left(\tau_{\Xi^{-}} - \tau_{\overline{\Xi}^{+}}\right) / \tau_{\Xi^{-}} & -0.01 \pm 0.07 \\ \left(\mu_{\Xi^{-}} + \mu_{\overline{\Xi}^{+}}\right) / \left|\mu_{\Xi^{-}}\right| & +0.01 \pm 0.05 \\ \left(m_{\Omega^{-}} - m_{\overline{\Omega}^{+}}\right) / m_{\Omega^{-}} & \left(-1 \pm 8\right) \times 10^{-5} \\ \left(\tau_{\Omega^{-}} - \tau_{\overline{\Omega}^{+}}\right) / \tau_{\Omega^{-}} & 0.00 \pm 0.05 \end{array}$$

TESTS OF NUMBER CONSERVATION LAWS

LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation of each of $\it L_e$, $\it L_{\mu}$, $\it L_{ au}$.

$\Gamma(Z ightarrow e^{\pm}\mu^{\mp})/\Gamma_{\sf total}$	[0]	$< 7.5 \times 10^{-7}$, CL = 95%
$\Gamma(Z ightarrow~e^{\pm} au^{\mp})/\Gamma_{ ext{total}}$	[0]	$<$ 5.0 \times 10 ⁻⁶ , CL = 95%
$\Gamma(Z o \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	[0]	$< 6.5 \times 10^{-6}$, CL = 95%
$\Gamma(H o e \mu)/\Gamma_{total}$		$< 6.1 \times 10^{-5}, CL = 95\%$
$\Gamma(H \rightarrow e \tau)/\Gamma_{\text{total}}$		$< 2.2 \times 10^{-3}$, CL = 95%
$\Gamma(H \to \mu \tau)/\Gamma_{\text{total}}$		$<1.5 \times 10^{-3}$, CL = 95%
$\sigma(e^+e^- ightarrow e^{\pm} au^{\mp}) / \sigma(e^+e^- ightarrow \mu^+\mu^-)$		$< 8.9 \times 10^{-6}, CL = 95\%$
$\sigma(e^+e^- ightarrow \mu^{\pm} au^{\mp}) / \sigma(e^+e^- ightarrow \mu^+\mu^-)$		$<$ 4.0 \times 10 ⁻⁶ , CL = 95%
limit on $\mu^- ightarrow {\it e}^-$ conversion		
$\sigma(\mu^{-32}S \rightarrow e^{-32}S)$ /		$< 7 \times 10^{-11}$, CL = 90%
$\sigma(\mu^{-32}S o \ u_{\mu}^{32}P^*)$		
$\sigma(\mu^-{\sf Ti} ightarrowe^-{\sf Ti})$ /		$<$ 4.3 \times 10 ⁻¹² , CL = 90%
$\sigma(\mu^-{\sf Ti} o {\sf capture})$		
$\sigma(\mu^-{\sf Pb} o e^-{\sf Pb}) \; /$		$<4.6 \times 10^{-11}$, CL = 90%
$\sigma(\mu^-Pb ocapture)$		10
$\sigma(\mu^- Au \rightarrow e^- Au) /$		$< 7 \times 10^{-13}$, CL = 90%
$\sigma(\mu^- \operatorname{Au} o \operatorname{capture})$		
limit on muonium \rightarrow antimuonium conversion $R_g =$		< 0.0030, CL = 90%
G_{C} / G_{F}		2
$\Gamma(\mu^- o e^- u_e \overline{ u}_\mu) / \Gamma_{total}$	[<i>p</i>]	$<1.2 \times 10^{-2}$, CL = 90%
$\Gamma(\mu^- o e^- \gamma)/\Gamma_{\text{total}}$		$<4.2 \times 10^{-13}$, CL = 90%
$\Gamma(\mu^- ightarrow e^- e^+ e^-)/\Gamma_{ ext{total}}$		$<1.0 \times 10^{-12}$, CL = 90%
$\Gamma(\mu^- ightarrow e^- 2\gamma)/\Gamma_{\sf total}$		$< 7.2 \times 10^{-11}$, CL = 90%
$\Gamma(\tau^- \to e^- \gamma)/\Gamma_{\text{total}}$		$< 3.3 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \gamma)/\Gamma_{\text{total}}$		$< 4.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^0)/\Gamma_{ m total}$		$< 8.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \pi^0)/\Gamma_{\text{total}}$		$< 1.1 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- \to e^- K_S^0)/\Gamma_{\text{total}}$		$< 2.6 \times 10^{-8}, CL = 90\%$
S total		•

$\Gamma(au^- ightarrow \ \mu^- \kappa_S^0)/\Gamma_{total}$	$< 2.3 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- ightarrow e^- \eta)/\Gamma_{total}$	$<9.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^- \eta)/\Gamma_{total}$	$<6.5 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- o e^- ho^0)/\Gamma_{ ext{total}}$	$< 1.8 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- o \mu^- ho^0)/\Gamma_{ ext{total}}$	$<1.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \omega)/\Gamma_{\text{total}}$	$< 4.8 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- \to \mu^- \omega)/\Gamma_{\text{total}}$	$< 4.7 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- \to e^- K^*(892)^0)/\Gamma_{\text{total}}$	$<3.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- K^*(892)^0)/\Gamma_{\text{total}}$	$<5.9 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \overline{K}^*(892)^0)/\Gamma_{\text{total}}$	$<3.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \overline{K}^*(892)^0)/\Gamma_{\text{total}}$	$<7.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \eta'(958))/\Gamma_{\text{total}}$	$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \eta'(958))/\Gamma_{\text{total}}$	$<1.3 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- \rightarrow e^- f_0(980) \rightarrow e^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$<3.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- f_0(980) \to \mu^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$<3.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \phi)/\Gamma_{\text{total}}$	$<3.1 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \phi)/\Gamma_{\text{total}}$	$< 8.4 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- \rightarrow e^- e^+ e^-)/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^+ \mu^- \mu^-)/\Gamma_{\text{total}}$	$<1.7 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^- e^+ e^-)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^+ e^- e^-)/\Gamma_{\text{total}}$	$< 1.5 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 2.1 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o e^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$< 2.3 \times 10^{-8}$, $CL = 90\%$
$\Gamma(\tau^- o \mu^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$< 2.1 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- ightarrow e^- \pi^+ K^-)/\Gamma_{ ext{total}}$	$< 3.7 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^- K^+)/\Gamma_{ ext{total}}$	$< 3.1 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ e^- \kappa_S^0 \kappa_S^0)/\Gamma_{ ext{total}}$	$< 7.1 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- ightarrow e^- K^+ K^-)/\Gamma_{\text{total}}$	$< 3.4 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- o \mu^- \pi^+ K^-)/\Gamma_{total}$	$< 8.6 \times 10^{-8}$, $CL = 90\%$
$\Gamma(\tau^- o \mu^- \pi^- K^+)/\Gamma_{\text{total}}$	$<4.5 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- K_S^0 K_S^0) / \Gamma_{total}$	$< 8.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- K^+ K^-)/\Gamma_{\text{total}}$	$< 4.4 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^0 \pi^0) / \Gamma_{ ext{total}}$	$< 6.5 \times 10^{-6}$, $CL = 90\%$
$\Gamma(au^- ightarrow \ \mu^- \pi^0 \pi^0)/\Gamma_{total}$	$< 1.4 \times 10^{-5}$, $CL = 90\%$
$\Gamma(au^- ightarrow e^- \eta \eta)/\Gamma_{ ext{total}}$	$< 3.5 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- \eta \eta) / \Gamma_{total}$	$< 6.0 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^0 \eta) / \Gamma_{ ext{total}}$	$< 2.4 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- \pi^0 \eta) / \Gamma_{ ext{total}}$	$< 2.2 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow e^- ext{light boson})/\Gamma_{ ext{total}}$	$< 2.7 \times 10^{-3}$, CL = 95%
$\Gamma(au^- ightarrow \ \mu^- ext{light boson})/\Gamma_{ ext{total}}$	$<5 \times 10^{-3}$, CL = 95%

LEPTON FAMILY NUMBER VIOLATION IN NEUTRINOS

LEPTON FAMILY NUMBER VIOLATION IN NEU
$\sin^2(\theta_{12})$
$\Delta_{21}^{m_{21}^2}$
$sin^2(heta_{23})$ (Normal order)
Δm_{32}^2 (Inverted order)
Δm_{32}^{2} (Normal order)
$\sin^2(\theta_{13})$
$\Gamma(t ightarrow e^{\pm} \mu^{\mp} c) / \Gamma_{ ext{total}}$
$\Gamma(t ightarrow e^{\pm} \mu^{\mp} u) / \Gamma_{ ext{total}}$
$\Gamma(\pi^+ o \mu^+ \nu_e)/\Gamma_{total}$
$\Gamma(\pi^+ o \mu^- e^+ e^+ \nu)/\Gamma_{\text{total}}$
$\Gamma(\pi^0 ightarrow \ \mu^+ { m e}^-)/\Gamma_{ m total}$
$\Gamma(\pi^0 o \mu^- e^+)/\Gamma_{\text{total}}$
$\Gamma(\pi^0 ightarrow \ \mu^+ \mathrm{e}^- + \ \mu^- \mathrm{e}^+) / \Gamma_{total}$
$\Gamma(\eta ightarrow \mu^+ e^- + \mu^- e^+)/\Gamma_{total}$
$\Gamma(\eta'(958) \rightarrow e\mu)/\Gamma_{total}$
$\Gamma(\phi(1020) ightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$
$\Gamma(K^+ o \mu^- \nu e^+ e^+)/\Gamma_{\text{total}}$
$\Gamma(K^+ \to \mu^+ \nu_e)/\Gamma_{\text{total}}$
$\Gamma(K^+ \rightarrow \pi^+ \mu^+ e^-)/\Gamma_{\text{total}}$
$\Gamma(K^+ \to \pi^+ \mu^- e^+)/\Gamma_{\text{total}}$
$\Gamma(\kappa_L^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(K_L^0 o e^{\pm} e^{\pm} \mu^{\mp} \mu^{\mp})/\Gamma_{total}$
$\Gamma(K_L^{0} ightarrow \pi^0 \mu^{\pm} e^{\mp})/\Gamma_{\text{total}}$
$\Gamma(\kappa_L^{ar{0}} ightarrow~\pi^0\pi^0\mu^\pme^\mp)/\Gamma_{ ext{total}}$
$\Gamma(D^{+} \rightarrow \pi^{+} e^{+} \mu^{-})/\Gamma_{total}$
$\Gamma(D^+ o \pi^+ e^- \mu^+)/\Gamma_{\text{total}}$
$\Gamma(D^+ o K^+ e^+ \mu^-)/\Gamma_{\text{total}}$
$\Gamma(D^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \mu^{\pm} e^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \pi^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \eta e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \pi^+\pi^-e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \rho^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 ightarrow \omega e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$ $\Gamma(D^0 ightarrow K^- K^+ e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$
$\Gamma(D^0 o K K^+ e^{\pm} \mu^{+})/\Gamma_{ ext{total}}$ $\Gamma(D^0 o \phi e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$
$\Gamma(D^0 o \overline{K}^0 e^\pm \mu^\mp)/\Gamma_{ ext{total}}$
$\Gamma(D^0 o K^- e^\pm \mu^\mp)/\Gamma_{ ext{total}}$ $\Gamma(D^0 o K^- \pi^+ e^\pm \mu^\mp)/\Gamma_{ ext{total}}$
$\Gamma(D^0 \to \overline{K}^* \pi^+ e^{\pm} \mu^+)/\Gamma_{\text{total}}$ $\Gamma(D^0 \to \overline{K}^* (892)^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^+ \to \pi^+ e^+ \mu^-)/\Gamma_{\text{total}}$
$S = \frac{1}{2} $

$$0.307 \pm 0.013$$

 $(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$
 $0.547^{+0.018}_{-0.024}$
 $(-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2$
 $(2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2$
 $(2.20 \pm 0.07) \times 10^{-2}$
 $<8.9 \times 10^{-7}$
 $<7 \times 10^{-8}$
[q] $<8.0 \times 10^{-3}$, CL = 90%
 $<1.6 \times 10^{-6}$, CL = 90%
 $<3.8 \times 10^{-10}$, CL = 90%
 $<3.6 \times 10^{-10}$, CL = 90%
 $<4.7 \times 10^{-4}$, CL = 90%
 $<4.7 \times 10^{-4}$, CL = 90%
 $<2.1 \times 10^{-8}$, CL = 90%
 $<1.3 \times 10^{-11}$, CL = 90%
 $<1.3 \times 10^{-11}$, CL = 90%
 $<1.3 \times 10^{-11}$, CL = 90%
[o] $<4.7 \times 10^{-12}$, CL = 90%
[o] $<4.7 \times 10^{-12}$, CL = 90%
 $<1.7 \times 10^{-10}$, CL = 90%
 $<2.1 \times 10^{-7}$, CL = 90%
 $<2.1 \times 10^{-7}$, CL = 90%
 $<2.1 \times 10^{-7}$, CL = 90%
 $<1.0 \times 10^{-7}$, CL = 90%
 $<1.0 \times 10^{-7}$, CL = 90%
[o] $<1.3 \times 10^{-8}$, CL = 90%
[o] $<1.3 \times 10^{-8}$, CL = 90%
[o] $<1.3 \times 10^{-8}$, CL = 90%
[o] $<1.5 \times 10^{-8}$, CL = 90%
[o] $<1.71 \times 10^{-6}$, CL = 90%
[o] $<1.71 \times 10^{-6}$, CL = 90%
[o] $<1.00 \times 10^{-6}$, CL = 90%
[o] $<1.00 \times 10^{-6}$, CL = 90%
[o] $<1.74 \times 10^{-6}$, CL = 90%
[o] $<1.90 \times 10^{-6}$, CL = 90%
[o] $<1.90 \times 10^{-6}$, CL = 90%
[o] $<1.25 \times 10^{-6}$, CL = 90%
[o] $<1.25 \times 10^{-6}$, CL = 90%
[o] $<1.25 \times 10^{-6}$, CL = 90%
[o] $<1.00 \times 10^{-6}$, CL = 90%

$\Gamma(D_s^+ o \pi^+ e^- \mu^+)/\Gamma_{ ext{total}}$		$< 9.4 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$< 7.9 \times 10^{-7}, CL = 90\%$
$\Gamma(D_s^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<5.6 \times 10^{-7}$, CL = 90%
$\Gamma(D_s \to K + e^{-\mu x})/\Gamma \text{ total}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ o \pi^+ e^+ \mu^-)/\Gamma_{ ext{total}}$ $\Gamma(B^+ o \pi^+ e^- \mu^+)/\Gamma_{ ext{total}}$		$<6.4 \times 10^{-3}$, CL = 90% $<6.4 \times 10^{-3}$, CL = 90%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\Gamma(B^+ \to \pi^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<1.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^+ \tau^-)/\Gamma_{\text{total}}$		$<7.4 \times 10^{-5}$, CL = 90% $<2.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o \pi^+ e^- au^+)/\Gamma_{ ext{total}}$ $\Gamma(B^+ o \pi^+ e^\pm au^\mp)/\Gamma_{ ext{total}}$		$<2.0 \times 10^{-5}$, CL = 90% $<7.5 \times 10^{-5}$, CL = 90%
$\frac{\Gamma(B^+ \rightarrow \pi^+ e^+ \tau^+)}{\Gamma(B^+ \rightarrow \pi^+ e^+ \tau^-)}$ total		
$\Gamma(B^+ \to \pi^+ \mu^+ \tau^-)/\Gamma_{\text{total}}$		$<6.2 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to \pi^+ \mu^- \tau^+)/\Gamma_{\text{total}}$		$<4.5 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to \pi^+ \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$<7.2 \times 10^{-5}$, CL = 90% $<7.0 \times 10^{-9}$, CL = 90%
$\Gamma(B^+ \to K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$< 7.0 \times 10^{-3}$, CL = 90% $< 6.4 \times 10^{-9}$, CL = 90%
$\Gamma(B^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$< 6.4 \times 10^{-3}$, CL = 90% $< 9.1 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to K^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<9.1 \times 10^{-5}$, CL = 90% $<4.3 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ e^+ \tau^-)/\Gamma_{\text{total}}$		_ '
$\Gamma(B^+ \to K^+ e^- \tau^+)/\Gamma_{\text{total}}$		$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$<3.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^+ \tau^-)/\Gamma_{\text{total}}$		$<4.5 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^- \tau^+)/\Gamma_{\text{total}}$		$<2.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$<4.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^{+} \rightarrow K^{*}(892)^{+} e^{+} \mu^{-})/\Gamma_{\text{total}}$		$<1.3 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<9.9 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	r 1	$<1.4 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[0]	
$\Gamma(B^0 \to \pi^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<1.4 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to K^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<3.8 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 e^+ \mu^-)/\Gamma_{\text{total}}$		$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 e^- \mu^+)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<1.8 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	[0]	- ·
$\Gamma(B^0 \to \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	[0]	г
$\Gamma(B \to se^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$	[0]	
$\Gamma(B \to \pi e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<9.2 \times 10^{-8}$, CL = 90%
$\Gamma(B \to \rho e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<3.2 \times 10^{-6}$, CL = 90%
$\Gamma(B \to K e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<3.8 \times 10^{-8}$, CL = 90%
$\Gamma(B \to K^*(892)e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$		$<5.1 \times 10^{-7}$, CL = 90%
$\Gamma(B_s^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[0]	$<5.4 \times 10^{-9}$, CL = 90%
$\Gamma(B_s^0 o \mu^{\pm} au^{\mp})/\Gamma_{total}$		$<4.2 \times 10^{-5}$, CL = 95%
$\Gamma(J/\psi(1S) ightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$		$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(J/\psi(1S) ightarrow e^{\pm} au^{\mp})/\Gamma_{total}$		$< 7.5 \times 10^{-8}, CL = 90\%$

$\Gamma(J/\psi(1S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{\sf total}$	$<\!\!2.0\times10^{-6}$, CL $=90\%$
$\Gamma(\Upsilon(1S) ightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$	$< 3.9 \times 10^{-7}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{\sf total}$	$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow e^{\pm} au^{\mp})/\Gamma_{total}$	$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow \gamma e^{\pm} \mu^{\mp})/\Gamma_{total}$	$<$ 4.2 \times 10 ⁻⁷ , CL = 90%
$\Gamma(\Upsilon(1S) o \gamma \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	$<6.1 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow \gamma e^{\pm} \tau^{\mp})/\Gamma_{total}$	$<6.5 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(2S) ightarrow e^{\pm} au^{\mp})/\Gamma_{total}$	$< 3.2 \times 10^{-6}, CL = 90\%$
$\Gamma(\Upsilon(2S) \to \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	$< 3.3 \times 10^{-6}, CL = 90\%$
$\Gamma(\Upsilon(3S) \rightarrow e^{\pm} \tau^{\mp})/\Gamma_{total}$	$<4.2 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$	$< 3.6 \times 10^{-7}$, CL = 90%
$\Gamma(\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	$< 3.1 \times 10^{-6}, CL = 90\%$
$\Gamma(\Lambda_c^+ o pe^+\mu^-)/\Gamma_{\text{total}}$	$<9.9 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_c^+ \to pe^-\mu^+)/\Gamma_{\text{total}}$	$< \! 1.9 \times 10^{-5} \text{, CL} = 90\%$

TOTAL LEPTON NUMBER

Violation of total lepton number conservation also implies violation of lepton family number conservation.

$\Gamma(Z ightarrow pe)/\Gamma_{\sf total}$	$< 1.8 \times 10^{-6}$, CL $= 95\%$
$\Gamma(Z ightarrow p \mu)/\Gamma_{total}$	$< 1.8 \times 10^{-6}$, CL $= 95\%$
limit on $\mu^- ightarrow e^+$ conversion	
$\sigma(\mu^{-32}S \rightarrow e^{+32}Si^*)$	$< 9 \times 10^{-10}$, CL $= 90\%$
$\sigma(\mu^{-32}S o \ u_{\mu}^{32}P^*)$	
$\sigma(\mu^{-127}$ I $\rightarrow e^{+127}$ Sb*) /	$< 3 \times 10^{-10}$, CL $= 90\%$
$\sigma(\mu^{-127}$ l $ ightarrow$ anything)	
$\sigma(\mu^- {\rm Ti} ightarrow \ e^+ {\rm Ca}) \ /$	$<3.6 \times 10^{-11}$, CL = 90%
$\sigma(\mu^- {\sf Ti} o {\sf capture})$	0
$\Gamma(\tau^- \rightarrow e^+ \pi^- \pi^-)/\Gamma_{\text{total}}$	$<2.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^+ \pi^- \pi^-)/\Gamma_{\text{total}}$	$<3.9 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^+ \pi^- K^-)/\Gamma_{ ext{total}}$	$< 3.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^+ K^- K^-)/\Gamma_{total}$	$<3.3 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^+ \pi^- K^-)/\Gamma_{\text{total}}$	$<4.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \mu^+ K^- K^-)/\Gamma_{total}$	$< 4.7 \times 10^{-8}$, CL = 90%
$\Gamma(au^- o pe^-e^-)/\Gamma_{ ext{total}}$	$< 3.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} e^+ e^-)/\Gamma_{ ext{total}}$	$< 3.0 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- ightarrow \overline{p}e^+\mu^-)/\Gamma_{ ext{total}}$	$< 2.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}e^-\mu^+)/\Gamma_{total}$	$< 1.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- o p \mu^- \mu^-)/\Gamma_{total}$	$< 4.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}\mu^+\mu^-)/\Gamma_{total}$	$< 1.8 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \overline{p}\gamma)/\Gamma_{total}$	$< 3.5 \times 10^{-6}$, CL = 90%

0,		5
$\Gamma(au^- ightarrow \overline{p} \pi^0) / \Gamma_{ ext{total}}$		$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}2\pi^0)/\Gamma_{ ext{total}}$		$<3.3 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \eta) / \Gamma_{total}$		$< 8.9 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \pi^0 \eta) / \Gamma_{total}$		$< 2.7 \times 10^{-5}$, CL = 90%
$\Gamma(au^- o \Lambda \pi^-)/\Gamma_{total}$		$< 7.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{\Lambda}\pi^-)/\Gamma_{total}$		$< 1.4 \times 10^{-7}$, CL $= 90\%$
$t_{1/2}(^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2 e^{-})$		$>$ 9.0 $ imes$ 10 25 yr, CL $=$ 90%
$t_{1/2}^{/2}(^{136}\text{Xe} \rightarrow ^{136}\text{Ba} + ^{2}e^{-})$		${>}10.7\times10^{25}$ yr, CL $=90\%$
$t_{1/2}^{/2}(\ ^{130}{ m Te}\ ightarrow\ ^{130}{ m Xe}+2\ e^{-}\)$		$> \! 1.5 imes 10^{25}$ yr, CL $= 90\%$
$\Gamma(\pi^+ \to \mu^+ \overline{\nu}_e)/\Gamma_{\text{total}}$	[q]	$< 1.5 \times 10^{-3}$, CL = 90%
$\Gamma(K^+ o \pi^- \mu^+ e^+)/\Gamma_{\text{total}}$		$<$ 4.2 $ imes$ 10 $^{-11}$, CL $=$ 90%
$\Gamma(K^+ o \pi^- e^+ e^+)/\Gamma_{\text{total}}$		$<$ 5.3 $ imes$ 10 $^{-11}$, CL $=$ 90%
$\Gamma(K^+ \to \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$		$<$ 4.2 \times 10 ⁻¹¹ , CL = 90%
$\Gamma(K^+ \rightarrow \pi^- \pi^0 e^+ e^+)/\Gamma_{\text{total}}$		$< 8.5 \times 10^{-10}, CL = 90\%$
$\Gamma(K^+ \to \mu^+ \overline{\nu}_e)/\Gamma_{\text{total}}$	[q]	$< 3.3 \times 10^{-3}, CL = 90\%$
$\Gamma(K^+ \to \pi^0 e^{+\overline{\nu}}e)/\Gamma_{\text{total}}$		$< 3 \times 10^{-3}$, CL = 90%
$\Gamma(D^+ \to \pi^- 2e^+)/\Gamma_{\text{total}}$		$<$ 5.3 \times 10 ⁻⁷ , CL = 90%
$\Gamma(D^+ \to \pi^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.4 \times 10^{-8}$, CL = 90%
$\Gamma(D^+ o \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$< 1.3 \times 10^{-7}$, CL = 90%
$\Gamma(D^+ \to \rho^- 2\mu^+)/\Gamma_{\text{total}}$		$<$ 5.6 \times 10 ⁻⁴ , CL = 90%
$\Gamma(D^+ \to K^- 2e^+)/\Gamma_{\text{total}}$		$< 9 \times 10^{-7}$, CL = 90%
$\Gamma(D^+ \to K^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.0 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \to K^- e^+ \mu^+)/\Gamma_{\text{total}}$		$< 1.9 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ \to K^*(892)^- 2\mu^+)/\Gamma_{\text{total}}$		$< 8.5 \times 10^{-4}, CL = 90\%$
$\Gamma(D^+ \to \Lambda e^+)/\Gamma_{\text{total}}$		$<1.1 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ \to \overline{\Lambda}e^+)/\Gamma_{\text{total}}$		$<6.5 \times 10^{-7}$, CL = 90%
$\Gamma(D^+ \to \Sigma^0 e^+)/\Gamma_{\text{total}}$		$<1.7 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ \to \overline{\Sigma}^0 e^+)/\Gamma_{\text{total}}$		$<1.3 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \rightarrow 2\pi^- 2e^+)/\Gamma_{\text{total}}$		$<9.1 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \rightarrow 2\pi^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.52 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to K^-\pi^-2e^+)/\Gamma_{\text{total}}$		$<5.0 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to K^-\pi^- 2\mu^+)/\Gamma_{\text{total}}$		$<5.3 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to 2K^-2e^+)/\Gamma_{\text{total}}$		$<3.4 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to 2K^- 2\mu^+)/\Gamma_{\text{total}}$		$< 1.0 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to 2K^- 2\mu^+)/\Gamma_{\text{total}}$ $\Gamma(D^0 \to \pi^- \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$< 3.06 \times 10^{-6}, CL = 90\%$
$\Gamma(D^0 \to \pi^- \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$ $\Gamma(D^0 \to K^- \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$<3.00 \times 10^{-6}$, CL = 90% $<2.10 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to K \pi e^+ \mu^+)/\Gamma_{\text{total}}$		$<2.10 \times 10^{-7}$, CL = 90% $<5.8 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \rightarrow 2K^-e^+\mu^+)/\Gamma_{\text{total}}$		<i>'</i>
$\Gamma(D^0 \to pe^-)/\Gamma_{\text{total}}$		$<2.2 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \overline{p}e^+)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-6}$, CL = 90%
$\Gamma(D_s^+ \to \pi^- 2e^+)/\Gamma_{\text{total}}$		$<1.4 \times 10^{-6}$, CL = 90%
$\Gamma(D_s^+ o \pi^- 2\mu^+)/\Gamma_{\text{total}}$		$< 8.6 \times 10^{-8}, CL = 90\%$

r/p+ , - + +\/r	60 × 10-7 CL 2007
$\Gamma(D_s^+ \to \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<6.3 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^- 2e^+)/\Gamma_{\text{total}}$	$< 7.7 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^- 2\mu^+)/\Gamma_{total}$	$< 2.6 \times 10^{-8}, CL = 90\%$
$\Gamma(D_s^+ o K^- e^+ \mu^+)/\Gamma_{\text{total}}$	$< 2.6 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ o K^*(892)^- 2\mu^+)/\Gamma_{total}$	$<1.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ o \pi^- e^+ e^+)/\Gamma_{\text{total}}$	$< 2.3 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$< 4.0 \times 10^{-9}$, CL = 95%
$\Gamma(B^+ o \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$	$< 1.5 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o ho^- e^+ e^+)/\Gamma_{ ext{total}}$	$< 1.7 \times 10^{-7}$, $CL = 90\%$
$\Gamma(B^+ \to \rho^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<$ 4.2 \times 10 ⁻⁷ , CL = 90%
$\Gamma(B^+ o ho^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<$ 4.7 \times 10 ⁻⁷ , CL = 90%
$\Gamma(B^+ o K^- e^+ e^+)/\Gamma_{\text{total}}$	$< 3.0 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o K^- \mu^+ \mu^+)/\Gamma_{total}$	$<$ 4.1 \times 10 ⁻⁸ , CL = 90%
$\Gamma(B^+ o K^- e^+ \mu^+)/\Gamma_{\text{total}}$	$< 1.6 \times 10^{-7}$, $CL = 90\%$
$\Gamma(B^+ \rightarrow K^*(892)^- e^+ e^+)/\Gamma_{\text{total}}$	$<$ 4.0 \times 10 ⁻⁷ , CL = 90%
$\Gamma(B^+ \to K^*(892)^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<$ 5.9 \times 10 ⁻⁷ , CL = 90%
$\Gamma(B^+ \rightarrow K^*(892)^- e^+ \mu^+)/\Gamma_{\text{total}}$	$< 3.0 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o D^- e^+ e^+)/\Gamma_{\text{total}}$	$< 2.6 \times 10^{-6}$, $CL = 90\%$
$\Gamma(B^+ \to D^- e^+ \mu^+)/\Gamma_{\text{total}}$	$< 1.8 \times 10^{-6}$, $CL = 90\%$
$\Gamma(B^+ o D^- \mu^+ \mu^+)/\Gamma_{total}$	$< 6.9 \times 10^{-7}$, CL = 95%
$\Gamma(B^+ o D^{*-}\mu^+\mu^+)/\Gamma_{\text{total}}$	$< 2.4 \times 10^{-6}$, $CL = 95\%$
$\Gamma(B^+ \to D_s^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<$ 5.8 \times 10 ⁻⁷ , CL = 95%
$\Gamma(B^+ o \overline{D}^{0}\pi^-\mu^+\mu^+)/\Gamma_{total}$	$< 1.5 \times 10^{-6}$, CL = 95%
$\Gamma(B^+ \to \Lambda^0 \mu^+)/\Gamma_{\text{total}}$	$< 6 \times 10^{-8}$, $CL = 90\%$
$\Gamma(B^+ \to \Lambda^0 e^+)/\Gamma_{\text{total}}$	$< 3.2 \times 10^{-8}$, $CL = 90\%$
$\Gamma(B^+ o \overline{\Lambda}{}^0 \mu^+)/\Gamma_{\text{total}}$	$< 6 \times 10^{-8}$, $CL = 90\%$
$\Gamma(B^+ o \overline{\Lambda}{}^0 e^+)/\Gamma_{\text{total}}$	$< 8 \times 10^{-8}$, $CL = 90\%$
$\Gamma(B^0 \to \Lambda_c^+ \mu^-)/\Gamma_{\text{total}}$	$< 1.4 \times 10^{-6}$, $CL = 90\%$
$\Gamma(B^0 \to \Lambda_c^+ e^-)/\Gamma_{\text{total}}$	$< 4 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to \pi^+ e^-)/\Gamma_{\text{total}}$	$< 6 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda \to \pi^+ \mu^-)/\Gamma_{\text{total}}$	$<6 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda \rightarrow \pi^- e^+)/\Gamma_{\text{total}}$	$<4 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda \to \pi^- \mu^+)/\Gamma_{\text{total}}$	$<6 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda \to K^+ e^-)/\Gamma_{\text{total}}$	$<2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^+ \mu^-)/\Gamma_{\text{total}}$	$<3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^- e^+)/\Gamma_{\text{total}}$	$<2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\text{total}}$	$<3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to \kappa_S^0 \nu)/\Gamma_{\text{total}}$	$< 2 \times 10^{-5}$, CL = 90%
$\Gamma(\Sigma^- \to pe^-e^-)/\Gamma_{\text{total}}$	$<6.7 \times 10^{-5}$, CL = 90%
$\Gamma(\Xi^- \to p\mu^-\mu^-)/\Gamma_{\text{total}}$	$<4 \times 10^{-8}$, CL = 90%
$\Gamma(\Lambda_c^+ \to \overline{p}2e^+)/\Gamma_{\text{total}}$	$<2.7 \times 10^{-6}$, CL = 90%
C / // total	,

$$\begin{split} \Gamma(\Lambda_c^+ \to \ \overline{p}2\mu^+)/\Gamma_{\text{total}} & <9.4 \times 10^{-6}, \ \text{CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p}\,\text{e}^+\,\mu^+)/\Gamma_{\text{total}} & <1.6 \times 10^{-5}, \ \text{CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \Sigma^-\,\mu^+\,\mu^+)/\Gamma_{\text{total}} & <7.0 \times 10^{-4}, \ \text{CL} = 90\% \end{split}$$

BARYON NUMBER

$\Gamma(Z ightarrow pe)/\Gamma_{total}$	$< 1.8 \times 10^{-6}$, CL = 95%
$\Gamma(Z ightarrow p \mu)/\Gamma_{\sf total}$	$< 1.8 \times 10^{-6}$, CL = 95%
$\Gamma(au^- ightarrow ho e^- e^-)/\Gamma_{total}$	$<$ 3.0 $ imes$ 10 $^{-8}$, CL $=$ 90%
$\Gamma(au^- ightarrow \overline{ ho}e^+e^-)/\Gamma_{total}$	$< 3.0 \times 10^{-8}$, CL $= 90\%$
$\Gamma(au^- ightarrow \overline{p} e^+ \mu^-)/\Gamma_{total}$	$<$ 2.0 $ imes$ 10 $^{-8}$, CL $=$ 90%
$\Gamma(\tau^- o \overline{p}e^-\mu^+)/\Gamma_{total}$	$< 1.8 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o p \mu^- \mu^-)/\Gamma_{\text{total}}$	$<$ 4.0 $ imes$ 10 $^{-8}$, CL $=$ 90%
$\Gamma(au^- ightarrow \overline{p}\mu^+\mu^-)/\Gamma_{total}$	$< 1.8 \times 10^{-8}$, CL $= 90\%$
$\Gamma(\tau^- o \overline{p}\gamma)/\Gamma_{total}$	$< 3.5 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \pi^0) / \Gamma_{total}$	$< 1.5 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \overline{ ho}2\pi^0)/\Gamma_{total}$	$< 3.3 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \eta)/\Gamma_{total}$	$< 8.9 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \pi^0 \eta) / \Gamma_{ ext{total}}$	$< 2.7 \times 10^{-5}$, CL = 90%
$\Gamma(au^- o \Lambda \pi^-)/\Gamma_{total}$	$< 7.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{\Lambda} \pi^-)/\Gamma_{total}$	$< 1.4 \times 10^{-7}$, CL = 90%
$\Gamma(D^+ o \Lambda e^+)/\Gamma_{total}$	$< 1.1 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ o \overline{\Lambda} e^+)/\Gamma_{\text{total}}$	$<$ 6.5 \times 10 ⁻⁷ , CL = 90%
$\Gamma(D^+ o \Sigma^0 e^+)/\Gamma_{\text{total}}$	$<$ 1.7 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(D^+ ightarrow \ \overline{\Sigma}{}^0 \mathrm{e}^+)/\Gamma_{total}$	$< 1.3 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 ightarrow~pe^-)/\Gamma_{ m total}$	$< 2.2 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 ightarrow \overline{p}e^+)/\Gamma_{ m total}$	$< 1.2 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ o \Lambda^0 \mu^+)/\Gamma_{total}$	$<$ 6 $ imes$ 10 $^{-8}$, CL $=$ 90%
$\Gamma(B^+ o \Lambda^0 e^+)/\Gamma_{ m total}$	$< 3.2 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o ar{\Lambda}^0\mu^+)/\Gamma_{total}$	$<$ 6 $ imes$ 10 $^{-8}$, CL $=$ 90%
$\Gamma(B^+ ightarrow \overline{\Lambda}{}^0 e^+)/\Gamma_{ m total}$	$<$ 8 $ imes$ 10 $^{-8}$, CL $=$ 90%
$\Gamma(B^0 o \Lambda_c^+ \mu^-)/\Gamma_{total}$	$< 1.4 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 o \Lambda_c^+ e^-)/\Gamma_{total}$	$<$ 4 \times 10 ⁻⁶ , CL = 90%
p mean life	[r] $>9 imes 10^{29}$ years, CL $=90\%$

A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.

$$au(N
ightarrow e^{+}\pi)$$
 > 5300 (n) , > 16000 $(p) imes 10^{30}$ years, CL = 90%
 $au(N
ightarrow \mu^{+}\pi)$ > 3500 (n) , > 7700 $(p) imes 10^{30}$ years, CL = 90%
 $au(N
ightarrow e^{+}K)$ > 17 (n) , > 1000 $(p) imes 10^{30}$ years, CL = 90%

ELECTRIC CHARGE (Q)

$$\begin{array}{lll} \gamma \; {\rm charge} \; ({\rm mixed}) & <1 \times 10^{-46} \; e \\ \gamma \; {\rm charge} \; ({\rm single}) & <1 \times 10^{-35} \; e \\ e \to \; \nu_e \gamma \; {\rm and} \; {\rm astrophysical} \; {\rm limits} & [t] \; > \! 6.6 \times 10^{28} \; {\rm yr}, \; {\rm CL} = 90\% \\ \nu \; {\rm charge} & <4 \times 10^{-35} \; e, \; {\rm CL} = 95\% \\ |q_p + q_e|/e & [u] \; <1 \times 10^{-21} \\ n \; {\rm charge} & (-0.2 \pm 0.8) \times 10^{-21} \; e \\ \Gamma(n \to \; p\nu_e \overline{\nu}_e)/\Gamma_{\rm total} & <8 \times 10^{-27}, \; {\rm CL} = 68\% \end{array}$$

$\Delta S = \Delta Q RULE$

Violations allowed in second-order weak interactions.

$\Gamma(K^+ ightarrow \pi^+ \pi^+ e^- \overline{ u}_e) / \Gamma_{total}$	$< 1.3 \times 10^{-8}$, CL $= 90\%$
$\Gamma(K^+ o \pi^+ \pi^+ \mu^- \overline{ u}_\mu) / \Gamma_{total}$	$< 3.0 \times 10^{-6}, CL = 95\%$
$Re(x_+)$, K_{e3} parameter	$(-0.9 \pm 3.0) \times 10^{-3}$
$x = A(\overline{K}^0 \rightarrow \pi^- \ell^+ \nu)/A(K^0 \rightarrow \pi^- \ell^+ \nu) = A(\Delta S = -\Delta Q)/A(K^0 \rightarrow \pi^- \ell^+ \nu)$	$A(\Delta S = \Delta Q)$
real part of x	-0.002 ± 0.006
imaginary part of x	0.0012 ± 0.0021
$\Gamma(\Sigma^+ o n\ell^+ u)/\Gamma(\Sigma^- o n\ell^-\overline{ u}_\ell)$	< 0.043
$\Gamma(\Sigma^+ o ne^+ u_e)/\Gamma_{ ext{total}}$	$<$ 5 \times 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Sigma^+ o n \mu^+ u_\mu)/\Gamma_{total}$	$< 3.0 \times 10^{-5}, CL = 90\%$

https://pdg.lbl.gov

Page 29

$$\begin{array}{ll} \Gamma(\Xi^0 \rightarrow \ \Sigma^- \, e^+ \, \nu_e)/\Gamma_{total} & <1.6 \times 10^{-4}, \, \mathrm{CL} = 90\% \\ \Gamma(\Xi^0 \rightarrow \ \Sigma^- \, \mu^+ \, \nu_\mu)/\Gamma_{total} & <9 \times 10^{-4}, \, \mathrm{CL} = 90\% \end{array}$$

$\Delta S = 2$ FORBIDDEN

Allowed in second-order weak interactions.

$\Gamma(\Xi^0 o p\pi^-)/\Gamma_{total}$	$<$ 8 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Xi^0 ightarrow pe^-\overline{ u}_e)/\Gamma_{ ext{total}}$	$< 1.3 \times 10^{-3}$
$\Gamma(\Xi^0 o p\mu^-\overline{ u}_\mu)/\Gamma_{total}$	$< 1.3 \times 10^{-3}$
$\Gamma(\Xi^- o n\pi^-)/\Gamma_{total}$	$<1.9 \times 10^{-5}$, CL = 90%
$\Gamma(\Xi^- o ne^- \overline{ u}_e)/\Gamma_{total}$	$< 3.2 \times 10^{-3}$, CL = 90%
$\Gamma(\Xi^- o n\mu^-\overline{ u}_\mu)/\Gamma_{\sf total}$	$<1.5 \times 10^{-2}$, CL = 90%
$\Gamma(\Xi^- o p\pi^-\pi^-)/\Gamma_{total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Xi^- o p\pi^- e^- \overline{ u}_e)/\Gamma_{total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Xi^- o p\pi^-\mu^-\overline{ u}_\mu)/\Gamma_{\sf total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Omega^- o \Lambda\pi^-)/\Gamma_{total}$	$< 2.9 \times 10^{-6}$, CL $= 90\%$

$\Delta S = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}}$$
 $(0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ s^{-1} \ (S = 1.3)$ $m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}}$ $(3.484 \pm 0.006) \times 10^{-12} \ \text{MeV}$

$\Delta C = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$|m_{D_1^0} - m_{D_2^0}| = x\Gamma$$
 $(0.997 \pm 0.116) \times 10^{10} \ \hbar \ s^{-1}$ $(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma = 2y$ $(1.394 \pm 0.056) \times 10^{-2}$

$\Delta B = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$\chi_d~(B^0 \text{-}\overline{B}^0 \text{ mixing probability})$$
 0.1858 \pm 0.0011
$$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L}$$
 (0.5065 \pm 0.0019) \times 10¹² \hbar s⁻¹

https://pdg.lbl.gov Page 30 Created: 5/31/2023 09:09

$$\begin{array}{lll} x_d &= \Delta m_{B^0}/\Gamma_{B^0} & 0.769 \pm 0.004 \\ \Delta m_{B^0_s} &= m_{B^0_{sH}} - m_{B^0_{sL}} & (17.765 \pm 0.006) \times 10^{12} \ \hbar \ \mathrm{s}^{-1} \\ x_s &= \Delta m_{B^0_s}/\Gamma_{B^0_s} & 27.03 \pm 0.09 \\ \chi_s &(B^0_s - \overline{B}^0_s \ \mathrm{mixing \ parameter}) & 0.499319 \pm 0.000005 \end{array}$$

$\Delta S = 1$ Weak Neutral Current forbidden

Allowed by higher-order electroweak interactions.

$$\begin{array}{lll} \Gamma(K^{+} \to \pi^{+} e^{+} e^{-})/\Gamma_{\rm total} & (3.00 \pm 0.09) \times 10^{-7} \\ \Gamma(K^{+} \to \pi^{+} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.17 \pm 0.14) \times 10^{-8} \; (S = 1.8) \\ \Gamma(K^{+} \to \pi^{+} \nu^{-} \nu^{-})/\Gamma_{\rm total} & (1.14^{+} 0.40) \times 10^{-10} \\ \Gamma(K^{+} \to \pi^{+} \pi^{0} \nu^{-} \nu^{-})/\Gamma_{\rm total} & (2.1 \times 10^{-10}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} e^{+} e^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (2.69 \pm 0.27) \times 10^{-9} \\ \Gamma(K^{0}_{L} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (3.56 \pm 0.21) \times 10^{-8} \\ \Gamma(K^{0}_{L} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (3.0 \times 10^{-9}$$

$\Delta C = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$$\Gamma(D^{+} \to \pi^{+} e^{+} e^{-})/\Gamma_{\text{total}}$$
 <1.1 × 10⁻⁶, CL = 90%

$$\Gamma(D^{+} \to \pi^{+} \mu^{+} \mu^{-})/\Gamma_{\text{total}}$$
 <6.7 × 10⁻⁸, CL = 90%

$$\Gamma(D^{+} \to \rho^{+} \mu^{+} \mu^{-})/\Gamma_{\text{total}}$$
 <5.6 × 10⁻⁴, CL = 90%

$\Gamma(D^0 ightarrow \gamma \gamma)/\Gamma_{total}$	$< 8.5 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \rightarrow e^+e^-)/\Gamma_{\text{total}}$	$< 7.9 \times 10^{-8}$, $CL = 90\%$
$\Gamma(D^0 o \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<6.2 \times 10^{-9}$, $CL = 90\%$
$\Gamma(D^0 ightarrow \pi^0 e^+ e^-)/\Gamma_{ m total}$	$<$ 4 \times 10 $^{-6}$, CL $=$ 90%
$\Gamma(D^0 ightarrow \ \pi^0 \mu^+ \mu^-)/\Gamma_{ ext{total}}$	$<1.8 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 ightarrow \eta e^+ e^-)/\Gamma_{ ext{total}}$	$< 3 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 o \eta \mu^+ \mu^-)/\Gamma_{ ext{total}}$	$<$ 5.3 \times 10 ⁻⁴ , CL = 90%
$\Gamma(D^0 \rightarrow \pi^+\pi^-e^+e^-)/\Gamma_{\text{total}}$	$< 7 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \rho^0 e^+ e^-)/\Gamma_{\text{total}}$	$<1.0 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 o \pi^+ \pi^- \mu^+ \mu^-)/\Gamma_{\text{total}}$	$(9.6 \pm 1.2) \times 10^{-7}$
$\Gamma(D^0 ightarrow ho^0 \mu^+ \mu^-)/\Gamma_{ ext{total}}$	$< 2.2 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow \omegae^+e^-)/\Gamma_{ m total}$	$< 6 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 o \omega \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 8.3 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 \rightarrow K^- K^+ e^+ e^-)/\Gamma_{\text{total}}$	$<1.1 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow \phi{ m e}^+{ m e}^-)/\Gamma_{ m total}$	$<5.2 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 o K^- K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$(1.54 \pm 0.32) \times 10^{-7}$
$\Gamma(D^0 o \phi \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<3.1 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow K^- \pi^+ \mu^+ \mu^-)/\Gamma_{total}$	$<3.59 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 ightarrow \pi^+ \pi^- \pi^0 \mu^+ \mu^-)/\Gamma_{total}$	$< 8.1 \times 10^{-4}, CL = 90\%$
$\Gamma(D_s^+ o K^+ e^+ e^-)/\Gamma_{\text{total}}$	$<3.7 \times 10^{-6}$, CL = 90%
$\Gamma(D_s^+ o K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{total}$	$<1.4 \times 10^{-3}$, CL = 90%
$\Gamma(\Lambda_c^+ \to pe^+e^-)/\Gamma_{\text{total}}$	$< 5.5 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_c^+ \to p \mu^+ \mu^- \text{non-resonant})/\Gamma_{\text{total}}$	$< 7.7 \times 10^{-8}, CL = 90\%$
C ''' LOLAI	,

$\Delta B = 1$ Weak Neutral Current Forbidden

Allowed by higher-order electroweak interactions.

$\Gamma(B^+ o \pi^+ \ell^+ \ell^-)/\Gamma_{ ext{total}}$		$<$ 4.9 \times 10 ⁻⁸ , CL = 90%
$\Gamma(B^+ o \pi^+ e^+ e^-)/\Gamma_{\text{total}}$		$< 8.0 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o \pi^+ \mu^+ \mu^-)/\Gamma_{total}$		$(1.78 \pm 0.23) \times 10^{-8}$
$\Gamma(B^+ o \pi^+ u \overline{ u}) / \Gamma_{total}$		$<1.4 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o K^+ \ell^+ \ell^-)/\Gamma_{\text{total}}$	[y]	$(4.7 \pm 0.5) \times 10^{-7} \text{ (S} = 2.3)$
$\Gamma(B^+ ightarrow K^+ e^+ e^-)/\Gamma_{ ext{total}}$		$(5.6 \pm 0.6) \times 10^{-7}$
$\Gamma(B^+ o K^+ \mu^+ \mu^-)/\Gamma_{total}$		$(4.53 \pm 0.35) \times 10^{-7} \text{ (S} = 1.8)$
$\Gamma(B^+ o K^+\mu^+\mu^-$ nonresonant)/ $\Gamma_{ exttt{total}}$		$(4.37 \pm 0.27) \times 10^{-7}$
$\Gamma(B^+ o K^+ \tau^+ \tau^-)/\Gamma_{\text{total}}$		$< 2.25 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ o K^+ \overline{ u} u) / \Gamma_{total}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o ho^+ u \overline{ u})/\Gamma_{total}$		$< 3.0 \times 10^{-5}, CL = 90\%$
$\Gamma(B^+ o K^*(892)^+ \ell^+ \ell^-)/\Gamma_{total}$	[<i>y</i>]	$(1.01 \pm 0.11) \times 10^{-6} \text{ (S} = 1.1)$

		. 0.40
$\Gamma(B^+ \rightarrow K^*(892)^+ e^+ e^-)/\Gamma_{total}$		$(1.55^{+0.40}_{-0.31}) \times 10^{-6}$
$\Gamma(B^+ o K^*(892)^+ \mu^+ \mu^-)/\Gamma_{total}$		$(9.6 \pm 1.0) \times 10^{-7}$
$\Gamma(B^+ \to K^*(892)^+ \nu \overline{\nu})/\Gamma_{\text{total}}$		$<$ 4.0 \times 10 ⁻⁵ , CL = 90%
$\Gamma(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(4.3 \pm 0.4) \times 10^{-7}$
$\Gamma(B^+ \to \phi K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(7.9^{+2.1}_{-1.7}) \times 10^{-8}$
$\Gamma(B^0 o \gamma\gamma)/\Gamma_{total}$		$< 3.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 ightarrow~e^+e^-)/\Gamma_{ ext{total}}$		$< 2.5 \times 10^{-9}$, CL = 90%
$\Gamma(B^0 \rightarrow e^+e^-\gamma)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 o \mu^+\mu^-)/\Gamma_{\text{total}}$		$(7^{+13}_{-11}) \times 10^{-11} \text{ (S} = 1.8)$
$\Gamma(B^0 \to \mu^+ \mu^- \gamma)/\Gamma_{\text{total}}$		_
$\Gamma(B^0 \to \mu^+\mu^-\mu^+\mu^-)/\Gamma_{\text{total}}$		$< 1.8 \times 10^{-10}$, CL $= 95\%$
$\Gamma(B^0 \to SP, S \to \mu^+\mu^-, P \to \mu^+\mu^-)/\Gamma_{\text{total}}$	[z]	$<6.0 \times 10^{-10}$, CL = 95%
$\Gamma(B^0 \to \tau^+ \tau^-)/\Gamma_{\text{total}}$		$<2.1 \times 10^{-3}$, CL = 95%
$\Gamma(B^0 \to \pi^0 \ell^+ \ell^-)/\Gamma_{\text{total}}$		$<5.3 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$		$< 8.4 \times 10^{-8}, CL = 90\%$
$\Gamma(B^0 \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<6.9 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 o \eta \ell^+ \ell^-)/\Gamma_{ ext{total}}$		$<6.4 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \rightarrow \eta e^+ e^-)/\Gamma_{\text{total}}$		$<1.08 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to \eta \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<1.12 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 o \pi^0 u \overline{ u})/\Gamma_{\text{total}}$		$< 9 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 \to \kappa^0 \ell^+ \ell^-)/\Gamma_{\text{total}}$	[y]	$(3.3 \pm 0.6) \times 10^{-7}$
$\Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\text{total}}$		$(2.5^{+1.1}_{-0.9}) \times 10^{-7} \text{ (S} = 1.3)$
$\Gamma(B^0 o \kappa^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(3.39 \pm 0.35) \times 10^{-7} \text{ (S} = 1.1)$
$\Gamma(B^0 \to K^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<2.6 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to \rho^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<4.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 \ell^+ \ell^-)/\Gamma_{\text{total}}$	[y]	$(9.9^{+1.2}_{-1.1}) \times 10^{-7}$
$\Gamma(B^0 \rightarrow K^*(892)^0 e^+ e^-)/\Gamma_{\text{total}}$		$(1.03^{+0.19}_{-0.17}) \times 10^{-6}$
$\Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(9.4 \pm 0.5) \times 10^{-7}$
$\Gamma(B^0 \to \pi^+\pi^-\mu^+\mu^-)/\Gamma_{\text{total}}$		$(2.1 \pm 0.5) \times 10^{-8}$
$\Gamma(B^0 \to K^*(892)^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<1.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 o invisible)/\Gamma_{total}$		$< 2.4 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to \nu \overline{\nu} \gamma)/\Gamma_{\text{total}}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to \phi \nu \overline{\nu})/\Gamma_{\text{total}}$		$<1.27 \times 10^{-4}$, CL = 90%
$\Gamma(B \to se^+e^-)/\Gamma_{\text{total}}$		$(6.7 \pm 1.7) \times 10^{-6} \text{ (S} = 2.0)$
$\Gamma(B \to s\mu^+\mu^-)/\Gamma_{\text{total}}$		$(4.3 \pm 1.0) \times 10^{-6}$
$\Gamma(B \to s\ell^+\ell^-)/\Gamma_{\text{total}}$	[v]	$(5.8 \pm 1.3) \times 10^{-6} \text{ (S} = 1.8)$
$\Gamma(B \to \pi \ell^+ \ell^-)/\Gamma_{\text{total}}$	13 1	$<5.9 \times 10^{-8}$, CL = 90%
$\Gamma(B \to \pi e^+ e^-)/\Gamma_{\text{total}}$		$<1.10 \times 10^{-7}$, CL = 90%
$\Gamma(B \to \pi \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<5.0 \times 10^{-8}$, CL = 90%
$\Gamma(B \to Ke^+e^-)/\Gamma_{\text{total}}$		$(4.4 \pm 0.6) \times 10^{-7}$
$\Gamma(B \to K^*(892)e^+e^-)/\Gamma_{\text{total}}$		$(1.19 \pm 0.20) \times 10^{-6} \text{ (S} = 1.2)$
, , , , , total		, , ,

$\Gamma(B \to K \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(4.4 \pm 0.4) \times 10^{-7}$
$\Gamma(B \to K^*(892)\mu^+\mu^-)/\Gamma_{total}$		$(1.06 \pm 0.09) \times 10^{-6}$
$\Gamma(B o K\ell^+\ell^-)/\Gamma_{total}$		$(4.8 \pm 0.4) \times 10^{-7}$
$\Gamma(B \to K^*(892)\ell^+\ell^-)/\Gamma_{\text{total}}$		$(1.05 \pm 0.10) \times 10^{-6}$
$\Gamma(B ightarrow K u \overline{ u}) / \Gamma_{total}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(B \to K^* \nu \overline{\nu})/\Gamma_{total}$		$< 2.7 \times 10^{-5}$, CL = 90%
$\Gamma(B ightarrow \pi u \overline{ u}) / \Gamma_{total}$		$< 8 \times 10^{-6}$, CL = 90%
$\Gamma(B ightarrow ho u \overline{ u}) / \Gamma_{total}$		$< 2.8 \times 10^{-5}$, CL = 90%
$\Gamma(\overline{b} ightarrow \overline{s} \overline{ u} u) / \Gamma_{total}$		$<6.4 \times 10^{-4}, CL = 90\%$
$\Gamma(\overline{b} \to \mu^+ \mu^- \text{ anything})/\Gamma_{\text{total}}$		$< 3.2 \times 10^{-4}, CL = 90\%$
$\Gamma(B_s^0 \to \gamma \gamma)/\Gamma_{\text{total}}$		$< 3.1 \times 10^{-6}, CL = 90\%$
$\Gamma(B_s^0 \to \phi \gamma)/\Gamma_{\text{total}}$		$(3.4 \pm 0.4) \times 10^{-5}$
$\Gamma(B_s^0 \to \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(3.01 \pm 0.35) \times 10^{-9}$
$\Gamma(B_s^0 \to e^+e^-)/\Gamma_{\text{total}}$		$< 9.4 \times 10^{-9}$, $CL = 90\%$
$\Gamma(B_s^0 o au^+ au^-)/\Gamma_{ ext{total}}$		$<$ 6.8 \times 10 ⁻³ , CL $=$ 95%
$\Gamma(B_s^0 o \mu^+ \mu^- \mu^+ \mu^-)/\Gamma_{\text{total}}$		${<}8.6\times10^{-10}\text{, }\text{CL}=95\%$
$\Gamma(B_s^0 \to SP, S \to \mu^+\mu^-, P \to \mu^+\mu^-)/\Gamma_{\text{total}}$	[z]	$< 2.2 \times 10^{-9}$, $CL = 95\%$
$\Gamma(B_s^0 o \phi(1020)\mu^+\mu^-)/\Gamma_{total}$		$(8.4 \pm 0.4) \times 10^{-7}$
$\Gamma(B_s^0 o \overline{K}^*(892)^0 \mu^+ \mu^-)/\Gamma_{total}$		$(2.9 \pm 1.1) \times 10^{-8}$
$\Gamma(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)/\Gamma_{\text{total}}$		$(8.4 \pm 1.7) \times 10^{-8}$
$\Gamma(B_s^0 o \phi u \overline{ u}) / \Gamma_{total}$		$<$ 5.4 \times 10 ⁻³ , CL = 90%

$\Delta T = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$$\begin{array}{lll} \Gamma(t \to Z\,q\,(q=u,c))/\Gamma_{\rm total} & [aa] & <5\times 10^{-4}, \, {\rm CL} = 95\% \\ \Gamma(t \to H\,u)/\Gamma_{\rm total} & <1.9\times 10^{-4}, \, {\rm CL} = 95\% \\ \Gamma(t \to H\,c)/\Gamma_{\rm total} & <7.3\times 10^{-4}, \, {\rm CL} = 95\% \\ \Gamma(t \to \ell^+ \overline{q}\,\overline{q}'\,(q=d,s,b;\,q'=u,c))/\Gamma_{\rm total} & <1.6\times 10^{-3}, \, {\rm CL} = 95\% \end{array}$$

NOTES

- [a] Forbidden by angular momentum conservation.
- [b] C parity forbids this to occur as a single-photon process.
- [c] See the Particle Listings for the (complicated) definition of this quantity.
- [d] Time-reversal invariance requires this to be 0° or 180° .
- [e] This coefficient is zero if time invariance is not violated.
- [f] Allowed by higher-order electroweak interactions.
- [g] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed.
- [h] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [i] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [j] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [k] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [/] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [n] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [o] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [p] A test of additive vs. multiplicative lepton family number conservation.
- [q] Derived from an analysis of neutrino-oscillation experiments.
- [r] The first limit is for $p \to anything$ or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \overline{p} 's is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p}\to e^-\gamma) > 7\times 10^5$ yr.
- [s] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [t] This is the best limit for the mode $e^- \to \nu \gamma$.

- [u] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e$. See also the charge of the neutron.
- [v] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [x] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [y] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [z] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [aa] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.