This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) <u>SU (11)</u> 1790366 A3

(51)5 A 01 M 7/00

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ ВЕДОМСТВО СССР (ГОСПАТЕНТ СССР)

RANGOUGUS BANGSPURKST - ON THETAN AMETONNENS

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К ПАТЕНТУ

(21) 4881490/15

(22) 11.11.90

(46) 23.01.93. Бюл. № 3

(71) Опытно-конструкторское бюро тонкого биологического машиностроения и Всесоюзный научно-исследовательский институт особочистых биопрепаратов

(72) В.М. Глущенко, С.Н. Бизунок, А.В. Григорьев и Е.Н. Свентицкий

(73) В.М. Глущенко, С.Н. Бизунок, А.В. Григорьев и Е.Н. Свентицкий

(56) Цуга К. Опыление теплицы небольшим количеством ядохимиката с помощью распылителей, работающих при обычной температуре. Всесоюзный центр переводов ВЦП-№КМ-82.395. с. 9.

(54) СПОСОБ АЭРОЗОЛЬНОЙ ОБРАБОТКИ ТЕПЛИЦ

(57) Изобретение относится к технологии обработки теплиц путем распыливания жид-

2

ких сред в стационарных условиях и может быть использовано для ультрамалообъемного опрыскивания растений, дезинфекции помещений и закрытого грунта, а также для поддержания оптимальной влажности во внутреннем объеме. Цель изобретения - повышение качества обработки и экономия рабочей жидкости путем обеспечения тонкодисперсного распыления в режиме увлажнения. Согласно способу воздух и жидкость распределяют по трубопроводам вдоль кровельных лотков в виде спутных потоков. По ходу потоков осуществляют отбор жидкости и воздуха в виде попарно совмещенных струй. С помощью струй формируют факелы, направленные в зону подкровельного пространства. В качестве примеров приведены варианты пневмогидравлических систем с внешним и внутренним смешением струй воздуха и жидкости. 2 з.п. ф-лы, 6 ил.

Изобретение относится к технологии обработки теплиц путем распыливания жидких сред в стационарных условиях и может быть использовано для осуществления процессов ультрамалообъемного опоыскивания растений, дезинфекции помещений и закрытого грунта, а также для поддержания оптимальной относительной влажности воздуха во внутреннем объеме.

Известен способ обработки теплиц, включающий подачу жидкостей по трубопроводам и ее последующее гидравлическое распыление по внутреннему пространству теплицы.

Недостатком этого способа является низкая эффективность обработки, т.к. гидравлическое распыление не обеспечивает достаточной длины факела и необходимой степени дисперсности. Это приводит к необходимости установки большого количества распылителей (19000 шт./га) и большому расходу жидкости (100 л/с га).

Известен способ аэрозольной обработки теплиц, включающий подвод жидкости, ее распыление и распространение между растениями высокоскоростной струей воздуха, а затем распределение воздушно-жид-

(iii) SU (iii) 1790366 A

костной смеси по объему под действием разности температур.

Этот способ достаточно эффективен при обработке теплиц небольшой площади до 0.1 га. Однако он не пригоден для исполь- 5 зования в современных крупногабаритных теплицах, в которых площадь одного блока не менее 1 га. Указанные недостатки вызваны тем, что известный способ не предусматривает единой системы распределения 10 воздуха и рабочей жидкости, обеспечивающей их эффективное взаимодействие на больших площадях. Кроме того, процесс распределения аэрозоля под действием разности температур протекает медленно и 15 будет зависеть от равномерности исходного распределения, погодных условий и микроклимата в теплице.

Кроме того, по вышеуказанным причинам процесс недостаточно эффективен при 20 регулировании влажности в широком диапазоне, что накладывает определенные ограничения при использовании известного способа для создания заданной относительной влажности.

Целью изобретения является повышение качества обработки и экономия рабочей жидкости путем обеспечения тонкодисперсного распыления в режиме увлажнения.

Поставленная цель достигается тем, что 30 по способу аэрозольной обработки теплиц. включающему подвод жидкости, ее распыление и распределение по внутреннему пространству высокоскоростной струей воздуха, согласно изобретению, жидкость и 35 воздух распределяют вдоль кровельных лотков в виде спутных потоков, ограниченных трубопроводами, по ходу которых осуществляют отбор жидкости и воздуха в виде попарно совмещенных друг с другом 40 струй, посредством которых формируют соответствующий ряд факелов распыления, направленных в зону подкровельного пространства. Кроме того, относительный массовый расход воздуха и жидкости уста- 45 навливают в пределах 0,2-1, а давление подачи воздуха устанавливают не менее 0.2 МПа. Отбор струй и формирование факелов от противоположных потоков осуществляют со взаимным смещением в шахматном по- 50 рядке. Распределение воздуха и жидкости слутными потоками по трубопроводам позволяет обеспечить необходимый напор на выходных соплах для эффективного взаимодействия струй воздуха и жидкости незави- 55 симо от расположения насосной станции. В свою очередь попарное совмещение струй воздуха и жидкости позволяет с максимальной эффективностью использовать их гидродинамические свойства для организации

локальных процессов смещения и формирования на их основе идентичных факелов распыленной жидкости.

Экспериментально установлено, что при подаче воздуха под давлением не менее 0,2 МПа факела достаточно стабильны в сравнительно широком диапазоне массовых расходов воздуха и жидкости (относительный расход 0,2-1) как по дисперсности. так и по своей дальнобойности. Такой широкий диапазон устойчивости факелов позволяет на нижних пределах относительного расхода успешно проводить химическую обработку растений, т.к. в этом случае предпочтителен минимальный расход жидкости и максимальная степень дисперсности, а на верхних пределах - проводить обработку в режиме увлажнения, при котором предпочтителен существенно больший расход жидкости при менее жестких требованиях к дисперсности.

Направление факелов от трубопроводов, размещенных в подлоточной зоне, в зону подкровельного пространства позволяет выставить наиболее выгодную траекторию для формирования факелов максимальной длины и использовать при этом естественные уклоны кровли для циркуляции потоков и равномерного распределения аэрозоля по теплице в целом. Этому способствует также симметричное смещение встречных факелов относительно друг друга и минимальная занятость подкровельного пространства растениями и вспомогательными конструкциями. Кроме того, распределение жидкости и воздуха вдоль кровельных лотков позволяет использовать несущие опоры теплицы для монтажа трубопроводов и исключить тем самым загромождение внутреннего пространства каждой секции.

Указанные отличия способа обеспечивают получение тонкодисперсного распыла и равномерное распределение жидкости на больших площадях теплицы при небольшом количестве распылителей и расходуемой жидкости. Причем распыленная жидкость может быть использована как для аэрозольной обработки теплицы, так и для оптимизации влажности воздуха. При указанных соотношениях расхода воздуха и жидкости и давлении подачи воздуха достигается удовлетворительное качество обработки при минимальных энергетических затратах. Это обеспечивает повышение качества обработки растений и помещения, а также более экономный расход рабочей жидкости.

На фиг. 1 показана пневмогидравлическая система с внешним смешением струй воздуха и жидкости (вариант 1); на фиг. 2 –

вид А на фиг. 1; на фиг. 3 — система с внутренним смешением струй воздуха и жидкости (вариант II); на фиг. 4 — вид Б на фиг. 3; на фиг. 5 — поперечный разрез тепличной секции, демонстрирующий распределение факелов в подкровельном пространстве; на фиг. 6 — график зависимости размера капель аэрозоля от соотношения массовых расходов воздуха и жидкости.

Пневмогидравлическая система содер- 10 жит подсоединенные к насосной станции (на черт. не показана) напорные магистрали 1 и 2 для подачи воздуха и жидкости соответственно. Эти магистрали расположены вдоль центральной дорожки поперек теп- 15 личных секций и через вентили 3 и 4 сообщены с рабочими трубопроводами, которые расположены вдоль кровельных лотков 5 и имеют выходные сопла 6, направленные в подкровельное пространство. Причем по 20 первому варианту (фиг. 1,2) система имеет изолированные рабочие трубопроводы 7 и 8 с попарным расположением выходных сопел 9 и 10 для раздельного перемещения потоков воздуха и жидкости, а по второму 25 варианту, фиг. 3.4, система имеет смеситель 11. общий трубопровод 12 с рядом выходных сопел 13 для совместного перемещения потоков воздуха и жидкости. В процессе работы от насосной станции по магистрали 30 1 подают воздух под давлением 0.2-0.4 МПа, по магистрали 2 — жидкость, с помощью вентилей 3 и 4 устанавливают заданное соотношение расходов воздуха и жидкости на каждый трубопровод. По пер- 35 вому варианту воздух и жидкость поступают в отдельные трубопроводы 7 и 8, смешиваются на выходе из сопел 9 и 10, образуя аэрозольные факела, направленные в подкровельное пространство. По второму вари- 40 анту воздух и жидкость поступают через смеситель 11 в общий трубопровод 12. Внутри этого трубопровода жидкость отбрасывается воздухом к его стенкам и транспортируется в виде пленки. Истекающий из 45 сопел 13 воздух захватывает жидкость, разбивает ее на капли, которые в виде аэрозольных факелов также направляются в зону подкровельного пространства (фиг. 5).

Сформированные последовательно по 50 длине трубопроводов 7, 8, 12 факелы 14, взаимодействуя между собой и со склонами кровли, образуют мощные циркуляционные потоки, способствующие равномерному

распределению аэрозоля по всему объему тепличной секции как в горизонтальном, так и в вертикальном направлениях. При ограниченной мощности насосной станции теплицу обрабатывают путем поочередного подключения секций с помощью вентилей 3, 4 к магистралям 1, 2. Как показали испытания, удовлетворительное качество обработки крупногабаритных тепличных блоков размером 71х140 м достигается при соблюдении в системе следующих рабочих параметров.

$$0.2 \le \frac{G_B}{G_*} \le 1$$
 и $P_B > 0.2$ МПа,

где G_в - массовый расход воздуха; G_ж - массовый расход жидкости: Рв - давление воздуха. Из графика (фиг. 6) видно, что при $\frac{G_{B}}{C}$ <0.2 снижается качество распыла, т.е. резко увеличивается диаметр капель, а при дальнейшем увеличении расхода воздуха. за пределом $\frac{G_B}{G_W} > 1$ падает экономичность без существенного увеличения качества распыла. Ограничения давления воздуха по нижнему пределу в основном связано с дальнобойностью факелов, с помощью которых достигается распределение аэрозоля на ширину тепличной секции. Максимальное давление не ограничивается, т.к. оно определяется возможностями насосной установки и к снижению качества распыливания не приводит.

Испытания способа аэрозольной обработки, проведенные в ПО "Лето", показали, что для обработки теплицы площадью 1 га достаточно 264 выходных сопла, размещенных через 5 м друг от друга. Удовлетворительное качество обработки достигалось при расходе жидкости 0,2-0,5 л/с га. При этом наблюдэлся устойчивый туман, равномерно распределенный по всему объему теплицы.

По сравнению с типовой стационарной системой приготовления и подачи рабочей жидкости для химической защиты растений [1] предложенный способ позволяет уменьшить расход рабочей жидкости не менее чем в 10 раз.

Формула изобретения

1. Способ аэрозольной обработки теплиц, включающий подвод жидкости, ее распыление и распределение по внутреннему пространству высокоскоростной струей воздуха, о т л и ч а ю щ и й с я тем, что, с целью повышения качества обработки и экономии рабочей жидкости путем обеспечения тонкодисперсного распыления в режиме увлажнения, жидкость и воздух распределяют вдоль кровельных лотков в виде спутных потоков ограниченных трубопроводами, по ходу которых осуществляют отбор жидкости и воздуха в виде попарно совмещенных друг

с другом струй, посредством которых формируют соответствующий ряд факелов распыления, направленных в зону подкровельного пространства.

- 2. Способ по п. 1, о т л и ч а ю щ и й с я тем, что относительный весовой расход воздуха и жидкости устанавливают в пределах 0,2-1,0, а давление подачи воздуха устанавливают не менее 0,2 МПа.
- 3. Способ по п. 1, о т л и ч а ю щ и й с я тем, что отбор струй и формирование факелов от противоположных потоков осуществляют со взаимным смещением в шахматном порядке.

Puz. 4

Puz. 5

Редактор Т. Куркова

Составитель Т. Козлова Техред М.Моргентал

Корректор Л. Пилипенко

Заказ 355

Тираж

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101