EXERCICES D'ANALYSE FONCTIONNELLE – SÉANCE 13 DUAUX ET HAHN-BANACH

Exercice 1. Fixons $p, q \in (1, \infty)$. On muni l'espace $\ell^p(\mathbb{N}) \times \ell^q(\mathbb{N})$ de la norme

$$||(x,y)|| \doteq ||x||_{\ell^p(\mathbb{N})} + ||y||_{\ell^q(\mathbb{N})}$$

pour tout $(x,y) \in \ell^p(\mathbb{N}) \times \ell^q(\mathbb{N})$. Décrire son dual. Hint : le dual est $\mathcal{L}(\ell^p(\mathbb{N}) \times \ell^q(\mathbb{N}), \mathbb{R})$; pouvez-vous écrire un isomorphisme d'espace vectoriel normé entre cet espace un un espace plus simple qui ne fait pas apparaître \mathcal{L} .

Idée de solution de l'exercice 1. By definition $\mathcal{L}(\ell^p(\mathbb{N}) \times \ell^q(\mathbb{N}), \mathbb{R})$ consists in contionous linear functional acting on $\ell^p(\mathbb{N}) \times \ell^q(\mathbb{N})$, that is operators $A: \ell^p(\mathbb{N}) \times \ell^q(\mathbb{N}) \to \mathbb{R}$. $A = A \circ \pi_{\ell^p(\mathbb{N})} + A \circ \pi_{\ell^q(\mathbb{N})} = A_1 + A_2$.

Exercice 2. Fixons p = 3. Determiner tous les $\beta \in \mathbb{R}$ de sorte que

$$A(x_n)_n = \sum_{n=1}^{\infty} n^{\beta} x_n$$

définit un élément dans l'espace $\mathcal{L}(\ell^p(\mathbb{N}), \mathbb{R})$.

 $\mathit{Id\'ee}\ de\ \mathit{solution}\ de\ \mathit{l'exercice}\ 2.$ Si $\beta<-(p-1)/p$ par l'inégalité de Hölder,

$$\left| \sum_{n=1}^{\infty} n^{\beta} x_n \right| \le \left(\sum_{n=1}^{\infty} n^{\beta p/(p-1)} \right)^{\frac{p-1}{p}} \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{\frac{1}{p}}$$

car la suite n^{α} est sommable si et seulement si $\alpha < -1$. Inversément, par dualité si l'opérateur est bien un élément de $\mathcal{L}(\ell^p(\mathbb{N}), \mathbb{R})$ alors cela implique que $n^{\beta} \in \ell^p(\mathbb{N})$.

Exercice 3. (i) Fixons $u \in L^p(X)$, $p \in (1, \infty)$ telle que pour tout $f \in (L^p)'$, $\langle f, u \rangle = 0$. Montrez que u = 0 presque partout.

(ii) Fixons $u \in L^p(\mathbb{R}^d)$, $p \in (1, \infty)$ telle que pour tout $f \in C^\infty(\mathbb{R}^d)$, $\langle f, u \rangle = 0$. Montrez que u = 0 presque partout.

Idée de solution de l'exercice 3. (i) On remarque que $f = u|u|^{p-2} \in L^{\frac{p}{p-1}} = (L^p)'$ donc pour $||u||_{L^p} = \langle f, u \rangle = 0$.

(ii) Les fonctions lisses sont denses dans L^p . On trouve $f_n \to f$ dans $L^{p'}$ avec f comme au dessus.

Date: Automne 2022.

Exercice 4. Fixons $p \in (1, \infty)$. Montrez que pour chaque $f \in L^p(X, \mu)$

$$\int_{X} |f|^{p} d\mu = \sup \left\{ \int_{X} fg d\mu : g \in L^{p'}(X, \mu), ||g||_{p'} \le 1 \right\}$$
$$= \sup \left\{ \int_{X} f \frac{g}{||g||_{p'}} d\mu : g \in L^{p'}(X, \mu) \right\}.$$

Idée de solution de l'exercice 4. C'est la définition de norme d'opérateur de $L_f: L^p \to \mathbb{R}$ qui à u associe $\langle f, u \rangle$.

Exercice 5. Expliquez pourquoi $(L^1(0,1))^* = L^{\infty}(0,1)$ et l'identification est une isométrie c'est-à-dire pour tout $\langle f | \in (L^1(0,1))^*$ il existe un unique $v \in L^{\infty}(0,1)$ tel que

$$\langle f|u\rangle = \int_{(0,1)} vu \,\mathrm{d}x$$

pour tout $u \in L^1(0,1)$. De plus, $\|\langle f|\|_{(L^1(0,1))^*} = \|v\|_{L^{\infty}(0,1)}$.

Indication: Il y a deux inclusions à prouver. Pour l'une, vu que $L^2(0,1) \subset L^1(0,1)$, on obtient que $(L^1(0,1))^* \subset (L^2(0,1))^*$. On peut alors utliser la dualité $L^2(0,1)$ pour montrer que tout $\langle f | \in (L^1(0,1))^*$ se représente par un élément v de $L^2(0,1)$ qui satisfait pour tout $A \subset (0,1)$ mesurable

$$\int_{A} |v|^{2} dx \le \|\langle f|\|_{\left(L^{1}(0,1)\right)^{*}} \int_{A} |v| dx.$$

Un choix de A permet de conclure que $v \in L^{\infty}(0,1)$.

Exercice 6. Fixons p > 1. On definit $\ell^{1,p}(\mathbb{N})$ par la suites $x \in \ell^p(\mathbb{N})$ dont

$$||x||_{\ell^{1,p}(\mathbb{N})} \doteq \left(\sum_{n=1}^{\infty} (1+n^2)|x_n|^p\right)^{\frac{1}{p}}$$

est finie. L'espace $\ell^{1,p}(\mathbb{N})$ est un esapce vectoriel normé complet. Determiner son dual.

Idée de solution de l'exercice 6. On a que $\ell^p(\mathbb{N}) \subset \ell^{1,p}(\mathbb{N})$. Donc, $\ell^{p'}(\mathbb{N}) = (\ell^{p'}(\mathbb{N}))' \supset (\ell^{1,p}(\mathbb{N}))'$. Cela veut dire que pour tout $A \in (\ell^{1,p}(\mathbb{N}))'$ il existe $g \in \ell^{p'}$ de sorte que pour tout $x \in \ell^{1,p}$

$$Ax = \langle g, x \rangle$$

On observe que

$$|\langle g, x \rangle| \le ||A|| ||x||_{\ell^{1,p}}$$

pour tout $x \in \ell^{1,p}$ ou encore

$$\langle (g_n/(1+n^2)^{\frac{1}{p}}), (x_n(1+n^2))^{\frac{1}{p}} \rangle \le ||A|| ||(x_n(1+n^2)^{\frac{1}{p}})||_{\ell^p}$$

Vu que $(x_n) \mapsto (x_n(1+n^2)^{\frac{1}{p}})$ se surjecte on obtient $(\ell^{1,p}(\mathbb{N}))' = \{g_n/(1+n^2)^{\frac{1}{p}}\} \in \ell^{p'}(\mathbb{N})\}.$

EXERCICES D'ANALYSE FONCTIONNELLE – SÉANCE 13 DUAUX ET HAHN-BANACH

Exercice 7. Donnez le dual de \mathbb{R}^n c'est-à-dire $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$. Comment se compare-t-il avec son dual algébrique défini en algèbre linéaire?