Unhasked

MEETHERIERM

Mentor - Dr. Anurag Goswami

Anushka Shishodia - E22CSEU1014(Team Leader) Anurakta Dash - E22CSEU0996 Ishika Singhal - E22CSEU1542 Ridhim Dubey - E22CSEU1009

- Deepfakes: Advanced technology replacing faces in videos/images with remarkable accuracy.
- Implications: Potential for spreading false information and manipulating public perception.
- Example: A political deepfake could create confusion or sway opinions during an election.
- Impact: Raises ethical concerns about trust, authenticity, and media manipulation.

PROPOSED SOLUTION: UNMASKED

Our solution is a detection system that uses advanced computer vision algorithms by detecting inconsistencies in facial expressions, lighting, and audio quality.

Let's begin!

FUNCTIONALITIES

Our Homepage

Here we have an upload button where we upload the image and it predicts whether the image is fake or real.

Spot the fake!

We have added an extra functionality as a game to make the users aware about how a Deepfake image looks like and increase their knowledge about the same

TEGHNOLOGY STACK

- Python Programming Language- provides open extensive libraries.
- TensorFlow aids advanced machine learning and model development.
- Matplotlib, Plotly visualize data comprehensively for in-depth analysis.
- Flask web framework in python that handles HTTP requests.
- CNN and its architechtures like VGG16 and RESTful50 for image classification.

CHALLENGES IN DEEPFAKE DETECTION

Data Collection and Quality:
Acquiring a large dataset of high
quality images to train the deep
learning models is crucial. This
process can be time consuming
and expensive.

Hardware Requirement: GPUs or specialised hardware system to train and deploy. Finding a wide range of devices and hardware configurations was challenging.

Algorithmic complexity:
Developing a high end
algorithms capable of
accurately swapping faces while
it requires expertise in ML
,computer vision.

Building a CNN Model using VGG16

```
# Loading pre-trained ResNet50 model
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(150, 150, 3))
for layer in base_model.layers:
    layer.trainable = False
# Adding custom layers
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(1, activation='sigmoid')(x)
rn50 = Model(inputs=base_model.input, outputs=predictions)
rn50.compile(optimizer=Adam(lr=0.0001), loss='binary_crossentropy', metrics=['accuracy'])
```

Model **Training**

FUTURE ENHANCEMENTS

Deep Learning Models

Advanced deep learning architechtures like BERT or GPT which may offer improved performance in detecting subtle cues and patterns that indicates deepfake manipulation.

Multi-Modal fusion

Explore techniques for integrating information from multiple modalities (audio, text, video) to improve the robustness and accuracy of deepfake detection systems.

Continual Learning

Develop algorithms for continual learning to adapt to evolving deepfake generation techniques and maintain detection effectiveness over time.

THANK YOU!

