- Nanzhu Li Stephanie Daniella Hernandez Prado Serena Zhou
- Predicting Stock
 Movement with
 Neural Networks
 - —— A Data-Driven Approach
- Using AAPL Return Trends

Why Predict Stock Trends?

- Investors aim to anticipate market movements to reduce risk and improve timing.
- Can past returns help us forecast short-term trends?
- Our goal: We aim to develop a model that classifies short-term stock movement in Uptrend, Downtrend, and Neutral movement

Assumptions

- Future trends depend on past 15-day return patterns.
- Stock returns are assumed to follow a relatively stable distribution over time.
- These assumptions form the basis of our feature-label construction.

Data Processing

Data Sources

We collected historical stock price data for Apple Inc. (AAPL) from python library yfinance, covering the period from 2012 to 2025.

Daily Return Calculation

Daily return =
$$(P_t - P_{i-1}) / P_{i-1}$$

Sliding window: 15 consecutive daily returns

Labeling the Trend

- Look ahead 5 days after each window
- Using the sum of next 5 days to determine label:
 - \triangleright If the rolling sum $> 0.3 \times \text{std}$ Uptrend
 - > If the rolling sum < -0.3 × std Downtrend
 - > Otherwise, Neutral

Labels in Database

Change_1	Change_2	Change_3	Change_4	Change_5	Change_6	Change_7	Change_8	Change_9	Change_10	Change_11	Change_12	Change_13	Change_14	Change_15	Trend
0.005374	0.011102	0.010454	-0.001586	0.003581	-0.001630	-0.002745	-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	2.0
0.011102	0.010454	-0.001586	0.003581	-0.001630	-0.002745	-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	2.0
0.010454	-0.001586	0.003581	-0.001630	-0.002745	-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	1.0
-0.001586	0.003581	-0.001630	-0.002745	-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	2.0
0.003581	-0.001630	-0.002745	-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	0.007660	1.0
-0.001630	-0.002745	-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	0.007660	-0.000635	2.0
-0.002745	-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	0.007660	-0.000635	-0.002345	2.0
-0.003749	0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	0.007660	-0.000635	-0.002345	0.010019	2.0
0.011649	0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	0.007660	-0.000635	-0.002345	0.010019	0.009332	2.0
0.010383	-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	0.007660	-0.000635	-0.002345	0.010019	0.009332	0.010475	2.0
-0.003169	-0.017417	0.016917	-0.016378	0.062439	-0.004545	0.005960	0.012811	0.007660	-0.000635	-0.002345	0.010019	0.009332	0.010475	0.016744	2.0

This process generated 3,304 labeled samples, each with 15 input features.

Data Split Strategy

Training 80%

Testing 20%

We split the dataset **chronologically**:

- · 80% of the oldest data was used for training
- 20% of the newest data was used for testing

Reflects real-world forecasting: learning from the past, testing on the future

Neural Networks

Functions

Sparse Categorical Cross-Entropy

$$L = -\sum_{i=1}^{N} y_i \log(p_i)$$

- N is the number of samples (in a batch)
- y_i is the true class index for sample i
- p_i is the predicted probability for the true class corresponding to sample i

Softmax Function
$$\sigma(z_i) = \frac{e^{z_i}}{\sum_i e^{z_j}}$$

Leaky ReLU
$$f(x) = \begin{cases} x & if \ x > 0 \\ \alpha x & if \ x \le 0 \end{cases}$$

Optimizer: Adam

Batch size: 16

Epochs: 50

Visualizing Trends

How does this model useful in the real life?

- Neural network can detect short-term trend signals in return data
- Labeling method using thresholds is simple but powerful
- Model generalizes well to unseen data despite volatility