Mathematical Experiments

微分方程

— 数值求解算法

重庆大学数学与统计学院

- ②复杂、大型分 微分 程。

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0$$

数值求解思想: (变量离散化)

引入自变量点列 $\{x_n\} \rightarrow \{y_n\}$,

在 $x_0 < x_1 < x_2 < \ldots < x_n < \ldots$ 上求 $y(x_n)$ 的近似值, x_n 通常

取等步长h, 即 $x_n = x_0 + n \times h$, 或 $x_n = x_{n-1} + h$, (

$$n=1,2,...$$
)

在小区间 $[x_n, x_{n+1}]$ 上用差商代替微商(近似),

$$\frac{y(x_{n+1}) - y(x_n)}{h} \Longrightarrow y'$$

1) 向前欧拉公式: (y'=f(x,y))

$$y(x_{n+1}) \approx y(x_n) + h f(x_n, y(x_n))$$
 (迭代式)

$$y_{n+1} \approx y_n + h f(x_n, y_n)$$
 (近似式)

特点: f(x,y)取值于区间[x_n, x_{n+1}]的左端点.

- 特点: ① f(x,y)取值于区间[x_n, x_{n+1}]的右端点.
 - ②非线性方程,称'隐式公式'。

观察向前欧拉、向后欧拉算法计算情况。与精确解进行比较。误差有多大?

解: 1) 解析解: $y = x + e^{-x}$

$$y' = f(x,y) = -y + x + 1;$$

2) 向前欧拉法:

$$y_{n+1} = y_n + h(-y_n + x_n + 1)$$

= (1-h) $y_n + h x_n + h$

3)向后欧拉法:

$$y_{n+1} = y_n + h(-y_{n+1} + x_{n+1} + 1)$$

转化 $y_{n+1} = (y_n + h x_{n+1} + h)/(1+h)$

```
x1(1)=0;y1(1)=1;y2(1)=1;h=0.1;
for k=1:10
   x1(k+1)=x1(k)+h;
   y1(k+1) = (1-h)*y1(k)+h*x1(k)+h;
   y2(k+1) = (y2(k) + h*x1(k+1) + h) / (1+h);
end
x1, y1, y2, % (y1—向前欧拉解, y2—向后欧拉解)
x=0:0.1:1:
y=x+exp(-x)% (解析解)
plot(x,y,x1,y1,'k:',x1,y2,'r--')
```


(1)步长h=0.1的数值解比较表

计算结果

X	精确解	向前欧拉	向后欧拉
0	1	1	1
0.1	1.0048	1	1.0091
0.2	1.0187	1.01	1.0264
0.3	1.0408	1.029	1.0513
0.4	1.0703	1.0561	1.0830
0.5	1.1065	1.0905	1.1209
0.6	1.1488	1.1314	1.1645
0.7	1.1966	1.1783	1.2132
0.8	1.2493	1.2305	1.2665
0.9	1.3066	1.2874	1.3241
1	1.3679	1.3487	1.3855

(2) 步长h=0.01的数值解比较表

计算结果

(と)シスローの・のエロン交入日か中ルロイスへと						
X	精确解	向前欧拉	向后欧拉			
0	1	1	1			
0.1	1.0048	1.0044	1.0053			
0.2	1.0187	1.0179	1.0195			
0.3	1.0408	1.0397	1.0419			
0.4	1.0703	1.0690	1.0717			
0.5	1.1065	1.1050	1.1080			
0.6	1.1488	1.1472	1.1504			
0.7	1.1966	1.1948	1.1983			
0.8	1.2493	1.2475	1.2511			
0.9	1.3066	1.3047	1.3084			
1	1.3679	1.3660	1.3697			

结论:显然迭代步长h 的选取对精度有影响。

有什么方法可以使精度提高?

様形公式
$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$
 $n = 0,1,2,...$ $\bullet y_n + hf(x_n, y_n)$

改进欧拉公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_{n+1}, y_n + hk_1) \end{cases}$$

改进欧拉公式

步长 h= 0.1 的数值解比较表

X	精确解	向前欧拉	向后欧拉	改进欧拉
0	1	1	1	1
0.1	1.0048	1	1.0091	1.005
0.2	1.0187	1.01	1.0264	1.019
0.3	1.0408	1.029	1.0513	1.0412
0.4	1.0703	1.0561	1.0830	1.0708
0.5	1.1065	1.0905	1.1209	1.1071
0.6	1.1488	1.1314	1.1645	1.1494
0.7	1.1966	1.1783	1.2132	1.1972
0.8	1.2493	1.2305	1.2665	1.2500
0.9	1.3066	1.2874	1.3241	1.3072
1	1.3679	1.3487	1.3855	1.3685

Thanks

