

Why solve this problem?

- Minimize financial loss of the company
- Improvement of company reputation in market
- ➤ Identifying the product & destination beneficial for the company while issuing the travel insurance
- > Stakeholders Risk Management, Underwriting and Product development teams.

Data

- Dataset Info: The data consists of roughly 52310 records and 11 features with 10 predictors and 1 target that describes whether the customer will claim or not.
- data would like to have:
- Date of travel

Feature	Feature Type	Description
ID	numeric	ID of customer
Agency	categorical	Name of agency
Agency Type	categorical	Type of travel insurance agencies
Distribution Channel	categorical	Distribution channel of travel insurance agencies
Product Name	categorical	Name of the travel insurance products
Duration	numeric	Duration of travel
Destination	categorical	Destination of travel
Net Sales	numeric	Amount of sales of travel insurance policies
Commision (in value)	numeric	The commission received for travel insurance agency
Age	numeric	Age of insured
<u>Claim</u>	<mark>Binary</mark>	Claim Status

Exploratory Data Analysis

Claim %

Distribution Channel %

Feature Selection - Exploratory Data Analysis

Top 15 Best Features

Claim For Top 15 Countries

Exploratory Data Analysis

Outliers - Duration

Outliers – Commission (in value)

Exploratory Data Analysis

Outliers – Net Sales

Outliers - Age

EDA

Features Correlation Matrix

ne_2 way Comprehens

Destination_UNITED

			112													
Net Sales	1	0.8	0.4	0.3	-0.2	0.7	-0.3	-0.08	-0.2	0.04	-0.04	-0.06	0.1	0.2	-0.09	0.3
Commision (in value)	0.8	1	0.3	0.2	-0.2	0.4	-0.5	-0.04	-0.3	0.03	-0.3	-0.08	0.1	0.4	-0.005	0.3
Agency_C2B	0.4	0.3	1	0.8	-0.7	0.4	-0.5	0.6	-0.3	0.5	-0.3	-0.1	-0.1	-0.06	-0.2	0.4
Destination_SINGAPORE	0.3	0.2	0.8	1	-0.6	0.4	-0.4	0.5	-0.2	0.4	-0.3	-0.2	-0.1	-0.08	-0.2	0.3
Agency Type_Travel Agency	-0.2	-0.2	-0.7	-0.6	1	-0.3	0.7	-0.4	0.4	-0.3	0.4	0.06	0.1	0.09	-0.4	-0.3
Product Name_Annual Silver Plan	0.7	0.4	0.4	0.4	-0.3	1	-0.2	-0.07	-0.1	-0.05	-0.1	-0.06	-0.05	-0.03	-0.07	0.3
Agency_EPX	-0.3	-0.5	-0.5	-0.4	0.7	-0.2	1	-0.3	0.6	-0.2	0.5	0.1	0.08	-0.1	-0.3	-0.3
Product Name_Bronze Plan	-0.08	-0.04	0.6	0.5	-0.4	-0.07	-0.3	1	-0.2	-0.08	-0.2	-0.09	-0.07	-0.04	-0.1	0.2
Product Name_Cancellation Plan	-0.2	-0.3	-0.3	-0.2	0.4	-0.1	0.6	-0.2	1	-0.1	-0.3	0.03	0.04	-0.07	-0.2	-0.2
Product Name_Silver Plan	0.04	0.03	0.5	0.4	-0.3	-0.05	-0.2	-0.08	-0.1	1	-0.1	-0.07	-0.05	-0.03	-0.07	0.2
Product Name_2 way Comprehensive Plan	-0.04	-0.3	-0.3	-0.3	0.4	-0.1	0.5	-0.2	-0.3	-0.1	1	0.1	0.05	-0.06	-0.2	-0.04
Destination_CHINA	-0.06	-0.08	-0.1	-0.2	0.06	-0.06	0.1	-0.09	0.03	-0.07	0.1	1	-0.06	0.02	0.1	-0.002
Destination_UNITED STATES	0.1	0.1	-0.1	-0.1	0.1	-0.05	0.08	-0.07	0.04	-0.05	0.05	-0.06	1	0.2	-0.04	0.02
Agency_LWC	0.2	0.4	-0.06	-0.08	0.09	-0.03	-0.1	-0.04	-0.07	-0.03	-0.06	0.02	0.2	1	-0.04	0.09
Agency_JZI	-0.09	-0.005	-0.2	-0.2	-0.4	-0.07	-0.3	-0.1	-0.2	-0.07	-0.2	0.1	-0.04	-0.04	1	-0.09
Claim	0.3	0.3	0.4	0.3	-0.3	0.3	-0.3	0.2	-0.2	0.2	-0.04	-0.002	0.02	0.09	-0.09	1
	et Sales	n value)	cy_C2B	APORE	Agency	ver Plan	cy_EPX	ze Plan	ion Plan	/er Plan	ive Plan	CHINA	STATES	3y_LWC	ncy_JZI	Claim

0.50 0.25 0.00 -0.25

Models and Approaches

Model Name	Precision
Random Forest Classifier	0.7752
Decision Tree Classifier	0.675
SGD Classifier	0.6534
Kneighbors Classifier	0.4729

Model Tuning

Model Parameters Used :

```
RandomForestClassifier(
n_estimators = 60,
max_depth = 40,
class_weight = {0:30,1:1}
)
```

Feature selection/ Feature engineering :

We have used ExtraTreeClassifier for best feature selection

> Precision score after tuning RFC: 0.9779

Evaluation & Results

> Evaluation matrix used :

Precision Score

Why precision score used ?:

Precision: It is implied as the measure of the correctly identified positive cases from all the predicted positive cases. Thus, it is useful when the costs of False Positives is high.

This will be helpful for not to loose out genuine customers and minimize the loss

Validation result Vs Test result:

Precision Score for train is: 0.99979983

Precision Score for test is: 0. 97791164

Final Results

From the above observations and plotting it can be inferred that the best performing model was Random Forest Classifier giving a precision score of 0.9779

Confusion Matrix:

	Predicted Positive	Predicted Negative
Actual Positive	449 (TP)	387 (FP)
Actual Negative	9 (FN)	4386 (TN)

Classification Report:

	precision	recall	f1-score	support
0	0.92	1.00	0.96	4395
1	0.98	0.54	0.70	836
accuracy			0.92	5231

Insights & Decisions

- Few countries like Singapore, China, Thailand are having very high claim ratios
- Age groups below 14 and above 90 are having less claim ratios
- Some agencies like C2B, LWC,TTW has more claims, around 43%. Such agencies should be verified for any fraud or not?
- > Online sale is very high compare to offline hence should be focused on how to increase/ improve processes for online sale.

Next Steps

If time permitted, we could have tried the following:

- Better feature engineering
- ➤ An ensemble of different models
- Reduced False Positive(FP)

References

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html</u>

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html</u>

https://www.dezyre.com/recipes/tune-hyper-parameters-using-grid-search-in-python

https://www.dezyre.com/recipes/select-model-using-grid-search-in-python