Suppose that the state of a quantum harmonic oscillator at time t = 0 is

$$|\Psi_0\rangle = c_m |m\rangle + c_n |n\rangle.$$

Assume that the state is normalized so that $|c_m|^2 + |c_n|^2 = 1$.

- (1) Find $|\Psi(t)\rangle$.
- (2) If you measure the energy at time t, what values can you measure and with what probabilities?
- (3) Calculate $\langle X \rangle$ and $\langle P \rangle$ as functions of time for this state. How do your results depend on the relative values of m and n? For this part you'll probably want to use

$$X = \frac{d_0}{\sqrt{2}} \left(a + a^{\dagger} \right), \quad P = \frac{-\mathrm{i}\hbar}{\sqrt{2}d_0} \left(a - a^{\dagger} \right).$$

(4) Discuss how the values of c_m and c_n affect $\langle X \rangle$ and $\langle P \rangle$ at time t = 0. How would you pick c_m and c_n to force $\langle P \rangle$ or $\langle X \rangle$ to be zero when t = 0? How would you pick c_m and c_n to force $\langle X \rangle$ or $\langle P \rangle$ to be nonzero at t = 0?