In [1]:

```
import numpy as np
import linalg as la
```

Create 5 matrices with five different dimensions (1-D,2-D,...5-D)

```
In [2]:
a=np.arange(5)
print(a)
[0 1 2 3 4]
In [3]:
b=np.arange(4).reshape(2,2)
Out[3]:
array([[0, 1],
       [2, 3]])
In [4]:
x=np.arange(1,28)
c=x.reshape(3,3,3)
Out[4]:
array([[[ 1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]],
       [[10, 11, 12],
        [13, 14, 15],
        [16, 17, 18]],
       [[19, 20, 21],
        [22, 23, 24],
        [25, 26, 27]]])
```

In [5]:

```
y=np.arange(5,69)
d=y.reshape(4,4,4)
d
```

Out[5]:

```
array([[[ 5, 6, 7, 8],
        [ 9, 10, 11, 12],
        [13, 14, 15, 16],
        [17, 18, 19, 20]],
       [[21, 22, 23, 24],
        [25, 26, 27, 28],
        [29, 30, 31, 32],
        [33, 34, 35, 36]],
       [[37, 38, 39, 40],
        [41, 42, 43, 44],
        [45, 46, 47, 48],
        [49, 50, 51, 52]],
       [[53, 54, 55, 56],
        [57, 58, 59, 60],
        [61, 62, 63, 64],
        [65, 66, 67, 68]]])
```

```
In [6]:
z=np.arange(5,130)
e=z.reshape(5,5,5)
Out[6]:
                       7,
array([[[ 5,
                 6,
                            8,
                                  9],
                      12,
                                 14],
         [ 10,
                11,
                           13,
        [ 15,
                16,
                     17,
                           18,
                                 19],
          20,
                21,
                      22,
                           23,
                                 24],
        [ 25,
                26,
                      27,
                           28,
                                 29]],
       [[ 30,
                31,
                      32,
                           33,
                                 34],
          35,
                36,
                      37,
                           38,
                                 39],
                      42,
                           43,
          40,
                41,
                                 44],
        [ 45,
                46,
                      47,
                           48,
                                 49],
                      52,
                           53,
        [ 50,
                51,
                                 54]],
       [[ 55,
                56,
                      57,
                           58,
                                 59],
                                 64],
         [ 60,
                61,
                      62,
                           63,
                66,
                      67,
                           68,
         [65,
                                 69],
         [ 70,
                71,
                      72,
                           73,
                                 74],
        [ 75,
                76,
                      77,
                           78,
                                 79]],
       [[ 80,
                81,
                      82,
                           83,
                                 84],
                     87,
                           88,
        [ 85,
                86,
                                 89],
         [ 90,
                91,
                      92,
                           93,
         [ 95,
                96,
                      97,
                           98,
                                 99],
         [100, 101, 102, 103, 104]],
       [[105, 106, 107, 108, 109],
         [110, 111, 112, 113, 114],
         [115, 116, 117, 118, 119],
        [120, 121, 122, 123, 124],
         [125, 126, 127, 128, 129]]])
```

Find determinants of 5 matrices and display your output

```
In [7]:

print(np.linalg.det(b))
print(np.linalg.det(c))
print(np.linalg.det(d))
print(np.linalg.det(e))

-2.0
[ 0.000000000e+00  0.00000000e+00 -2.13162821e-14]
[ 0.00000000e+00  0.00000000e+00 -6.05845175e-28  0.00000000e+00]
[ 0.00000000e+00  -7.17464814e-42  0.00000000e+00  0.00000000e+00
  5.73971851e-41]
```

Find inverse of the above 5 matrices and display your

```
In [8]:
print(np.linalg.inv(b))

[[-1.5  0.5]
  [ 1.  0. ]]
```

Find the rank, diagonal and trace of the 5 matrices

Rank

```
In [9]:

print(np.linalg.matrix_rank(a))
print(np.linalg.matrix_rank(b))
print(np.linalg.matrix_rank(c))
print(np.linalg.matrix_rank(d))
print(np.linalg.matrix_rank(e))
1
2
```

```
2
[2 2 2]
[2 2 2 2]
[2 2 2 2 2]
```

Diagonal

```
In [10]:
```

```
print(np.diag(a))
print(np.diag(b))

[[0 0 0 0 0]
    [0 1 0 0 0]
    [0 0 2 0 0]
    [0 0 0 3 0]
    [0 0 0 0 4]]
[0 3]

In [11]:

dia=[np.diag(i) for i in c]
for j in dia:
    print(j)
```

```
[1 5 9]
[10 14 18]
[19 23 27]
```

```
In [12]:
dia=[np.diag(i) for i in d]
for j in dia:
  print(j)
[ 5 10 15 20]
[21 26 31 36]
[37 42 47 52]
[53 58 63 68]
In [13]:
dia=[np.diag(i) for i in e]
for j in dia:
  print(j)
[ 5 11 17 23 29]
[30 36 42 48 54]
[55 61 67 73 79]
[ 80 86 92 98 104]
```

Find Eigen value and eigen vector for 5 matrices

Eigen Values

[105 111 117 123 129]

```
In [14]:
```

```
print(np.linalg.eigvals(b))
print(np.linalg.eigvals(c))
print(np.linalg.eigvals(d))
print(np.linalg.eigvals(e))
[-0.56155281 3.56155281]
[[ 1.61168440e+01 -1.11684397e+00 -1.30367773e-15]
 [ 4.24242853e+01 -4.24285286e-01 -8.76087811e-16]
 [ 6.92598907e+01 -2.59890679e-01 3.45459719e-15]]
[[ 5.15518361e+01+0.00000000e+00j -1.55183609e+00+0.00000000e+00j
   1.14139605e-15+7.74891647e-16j 1.14139605e-15-7.74891647e-16j]
 [ 1.14697487e+02+0.00000000e+00j -6.97486947e-01+0.00000000e+00j
   4.04539332e-15+0.00000000e+00j 1.70279653e-15+0.00000000e+00j]
 [ 1.78448309e+02+0.00000000e+00j -4.48309095e-01+0.00000000e+00j
  -1.78612149e-14+0.00000000e+00j -1.48008554e-15+0.00000000e+00j]
 [ 2.42330128e+02+0.00000000e+00j -3.30128163e-01+0.00000000e+00j
   7.54701580e-15+0.00000000e+00j -4.43308381e-15+0.00000000e+00j]]
[[ 8.78458929e+01+0.00000000e+00j -2.84589287e+00+0.00000000e+00j
   2.73009873e-15+0.00000000e+00j -2.94436099e-15+0.00000000e+00j
  -1.40262056e-15+0.00000000e+00j]
 [ 2.11183803e+02+0.00000000e+00j -1.18380291e+00+0.00000000e+00j
   2.79017982e-15+0.00000000e+00j -5.26498327e-15+0.00000000e+00j
   5.70697559e-15+0.00000000e+00j]
 [ 3.35744614e+02+0.00000000e+00j -7.44613584e-01+0.00000000e+00j
  -8.45894330e-15+0.00000000e+00j -5.01414612e-15+1.52241436e-15j
  -5.01414612e-15-1.52241436e-15j]
 [ 4.60542838e+02+0.00000000e+00j -5.42837668e-01+0.00000000e+00j
  -1.38672957e-14+0.00000000e+00j 2.68436920e-15+8.79224795e-15j
   2.68436920e-15-8.79224795e-15j]
 [ 5.85427039e+02+0.00000000e+00j -4.27038697e-01+0.00000000e+00j
   1.21503441e-14+0.00000000e+00j -5.56406501e-15+0.00000000e+00j
   1.00681571e-14+0.00000000e+00j]]
```

Eigen Vector

In [15]:

```
print(np.linalg.eig(e))
print(np.linalg.eig(b))
print(np.linalg.eig(c))
print(np.linalg.eig(d))
EigResult(eigenvalues=array([[ 8.78458929e+01+0.00000000e+00j, -2.84589
287e+00+0.00000000e+00j,
         2.73009873e-15+0.00000000e+00j, -2.94436099e-15+0.00000000e+00
j,
        -1.40262056e-15+0.00000000e+00j],
       [ 2.11183803e+02+0.00000000e+00j, -1.18380291e+00+0.00000000e+00
j,
         2.79017982e-15+0.00000000e+00j, -5.26498327e-15+0.00000000e+00
j,
         5.70697559e-15+0.00000000e+00j],
       [ 3.35744614e+02+0.00000000e+00j, -7.44613584e-01+0.00000000e+00
j,
        -8.45894330e-15+0.00000000e+00j, -5.01414612e-15+1.52241436e-15
j,
        -5.01414612e-15-1.52241436e-15j],
       [ 4.60542838e+02+0.00000000e+00j, -5.42837668e-01+0.00000000e+00
j,
        -1.38672957e-14+0.00000000e+00j, 2.68436920e-15+8.79224795e-15
j,
```

EDA:

Frame a problem statement, clean, preprocess and visulaize the data and interpret your conclusion

Write a python program to visualize the breast cancer prediction dataset with the help of pandas and matplotlib library and understand the relationship between the parameters to define the tumor is malignant or benign

```
In [16]:
```

```
import pandas as pd
from matplotlib import pyplot as plt
```

In [17]:

```
df=pd.read_csv("8_BreastCancerPrediction.csv")
df
```

Out[17]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	M	20.29	14.34	135.10	1297.0	
564	926424	M	21.56	22.39	142.00	1479.0	
565	926682	M	20.13	28.25	131.20	1261.0	
566	926954	M	16.60	28.08	108.30	858.1	
567	927241	M	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	
		_					

569 rows × 33 columns

In [18]:

df.columns

Out[18]:

In [19]:

df.isna().sum()

Out[19]:

id	0
diagnosis	0
radius_mean	0
texture_mean	0
perimeter_mean	0
area_mean	0
smoothness_mean	0
compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
<pre>fractal_dimension_mean</pre>	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
<pre>fractal_dimension_se</pre>	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0
compactness_worst	0
concavity_worst	0
concave points_worst	0
symmetry_worst	0
<pre>fractal_dimension_worst</pre>	0
Unnamed: 32	569

localhost:8888/notebooks/Day5 EDA.ipynb

dtype: int64

In [20]:

```
dat=df[["diagnosis","radius_se"]]
dat.plot.bar()
```

Out[20]:

In [21]:

dat.plot.box()

Out[21]:

In [22]:

```
dat.plot.scatter("diagnosis", "radius_se")
```

Out[22]:

<Axes: xlabel='diagnosis', ylabel='radius_se'>

^{**} The malignant tumor has the highest radius_se values than benign

Bottle Dataset

In [23]:

```
df2=pd.read_csv("C:/Users/Gokul Jana/Downloads/9_bottle.csv")
df2
```

C:\Users\Gokul Jana\AppData\Local\Temp\ipykernel_8\3343413708.py:1: DtypeW arning: Columns (47,73) have mixed types. Specify dtype option on import o r set low_memory=False.

df2=pd.read_csv("C:/Users/Gokul Jana/Downloads/9_bottle.csv")

Out[23]:

```
In [26]:Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Salnty O2ml_L
                                                                       STheta
df2=df2.drop(df2.iloc[:,60:].colum20s,axis=1)
                               1611SR-
                        093.4
                               MX-310-
864862 34404 864863
                                           15 17.533 33.3880 5.774 24.15297
                                 2239-
                        026.4
                              09340264-
In [27]:
                               0015A-3
per=(df2.isna().sum()/len(df2)*100)
BB4BB3DBYGF rame (Blynd81umns=['values'])
per1=pr[pr['values']>=80].index
per1
Out[27]:
Index(['BtlNum', 'T_qual', 'S_qual', 'SThtaq', 'NH3uM', 'C14As1', 'C14A1
р',
       'C14As2', 'C14A2p', 'DarkAs', 'DarkAp', 'MeanAs', 'MeanAp', 'IncTi
m',
       'LightP'],
      dtype='object')
```

In [28]:

Out[28]:

Cst_Cnt	0.000000
Btl_Cnt	0.000000
Sta_ID	0.000000
Depth_ID	0.000000
Depthm	0.000000
T_degC	1.267600
Salnty	5.475318
02m1_L	19.501586
STheta	6.092179
02Sat	23.540029
Oxy_µmol/Kg	23.540723
RecInd	0.000000
	1.267600
T_prec	
S_prec	5.475318
P_qual	22.096910
O_qual	78.646791
02Satq	74.817168
ChlorA	73.952869
Chlqua	26.096272
Phaeop	73.952984
Phaqua	26.095809
PO4uM	52.210119
P04q	47.762131
SiO3uM	59.058140
SiO3qu	40.930991
NO2uM	60.967691
NO2q	38.779437
NO3uM	60.987694
NO3q	38.726365
NH3q	6.540227
C14A1q	1.879835
C14A2q	1.877754
DarkAq	2.823915
MeanAq	2.824031
R_Depth	0.000000
R_TEMP	1.267600
R POTEMP	5.324196
R SALINITY	5.475318
R SIGMA	6.111488
R SVA	6.101660
R DYNHT	5.394727
-	
R_02	19.501586
R_02Sat	22.941784
R_SI03	59.057215
R_P04	52.209194

localhost:8888/notebooks/Day5 EDA.ipynb

dtype: float64

```
In [29]:
```

df3=df2.iloc[:,:11]
df3

Out[29]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

```
Cst_Cnt Btl_Cnt Sta_ID
                               Depth_ID Depthm T_degC
                                                         Sainty O2ml_L
                                                                         STheta
                                    20-
                                1611SR-
                         093.4
                                MX-310-
864862
          34404
                864863
                                             15
                                                 17.533 33.3880
                                                                  5.774 24.15297
                         026.4
                                  2239-
In [30]:
                               09340264-
                                0015A-3
print(df3.columns)
df3.isna().sum()/len(df3)*100
864863 rows × 11 columns
Index(['Cst_Cnt', 'Btl_Cnt', 'Sta_ID', 'Depth_ID', 'Depthm', 'T_degC',
        'Salnty', 'O2ml_L', 'STheta', 'O2Sat', 'Oxy_umol/Kg'],
      dtype='object')
Out[30]:
Cst_Cnt
                 0.000000
Btl_Cnt
                 0.000000
Sta_ID
                 0.000000
Depth_ID
                 0.000000
Depthm
                 0.000000
T_degC
                 1.267600
Salnty
                 5.475318
02ml_L
                19.501586
STheta
                 6.092179
02Sat
                23.540029
Oxy_µmol/Kg
                23.540723
dtype: float64
In [31]:
df3=df3.fillna(df3['T_degC'].mean())
df3=df3.fillna(df3['Salnty'].mean())
df3=df3.fillna(df3['02ml_L'].mean())
df3=df3.fillna(df3['STheta'].mean())
df3=df3.fillna(df3['Oxy_\u00e4mol/Kg'].mean())
df3=df3.fillna(df3['02Sat'].median())
df3.isna().sum()
Out[31]:
Cst_Cnt
                0
Btl_Cnt
                0
Sta ID
                0
                0
Depth_ID
Depthm
                0
                0
T_degC
                0
Salnty
                0
02ml_L
                0
STheta
02Sat
                0
                0
Oxy_µmol/Kg
```

dtype: int64

In [32]:

df3

Out[32]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	10.799677	25.64900
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	10.799677	25.65600
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	10.799677	25.65400
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	10.799677	25.64300
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	10.799677	25.64300
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805000	23.87055
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805000	23.87072
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796000	23.88911
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816000	24.01426

Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Salnty O2ml_L **STheta** 20-1611SR-093.4 MX-310-864862 34404 864863 17.533 33.3880 5.774000 24.15297 15 026.4 2239-In [33]: 09340264ds=df3[["02Sat","0xy_μmol/Kg"]]^{0015A-3} ds=ds.iloc[:4000] 864863 rows × 11 columns

In [34]:

ds.plot.box()

Out[34]:

In [35]:

ds.plot.bar()

Out[35]:

In [36]:

ds.plot.line()

Out[36]:

