```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   import warnings
   warnings.filterwarnings("ignore")
```

```
In [2]: df = pd.read_csv("cars.csv")
    df.head()
```

Out[2]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	eng !
0	3	?	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc	
1	3	?	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc	
2	1	?	alfa- romero	gas	hatchback	rwd	front	65.5	52.4	ohcv	
3	2	164	audi	gas	sedan	fwd	front	66.2	54.3	ohc	
4	2	164	audi	gas	sedan	4wd	front	66.4	54.3	ohc	
4											•

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	normalized-losses	205 non-null	object
2	make	205 non-null	object
3	fuel-type	205 non-null	object
4	body-style	205 non-null	object
5	drive-wheels	205 non-null	object
6	engine-location	205 non-null	object
7	width	205 non-null	float64
8	height	205 non-null	float64
9	engine-type	205 non-null	object
10	engine-size	205 non-null	int64
11	horsepower	205 non-null	object
12	city-mpg	205 non-null	int64
13	highway-mpg	205 non-null	int64
14	price	205 non-null	int64
dtyp	es: float64(2), int	64(5), object(8)	

memory usage: 24.1+ KB

In [4]: df.isna().sum() Out[4]: symboling 0 normalized-losses 0 make 0 0 fuel-type body-style 0 drive-wheels 0 engine-location 0 width 0 height 0 0 engine-type engine-size 0 0 horsepower city-mpg 0 highway-mpg 0 0 price dtype: int64

```
In [5]: df["normalized-losses"].value_counts()
Out[5]: ?
                 41
         161
                 11
         91
                  8
                  7
         150
         128
                  6
         104
                  6
         134
                  6
                  5
         65
                  5
         103
                  5
         94
                  5
         74
                  5
         168
         102
                  5
                  5
         95
                  5
         85
                  4
         118
         122
                  4
         93
                  4
         106
                  4
         148
                  4
                  3
         125
                  3
         154
                  3
         83
         101
                  3
         137
                  3
                  3
         115
                  2
         164
                  2
         153
                  2
         129
                  2
         81
                  2
         145
                  2
         194
                  2
         192
                  2
         188
         89
                  2
                  2
         108
                  2
         87
                  2
         197
                  2
         110
                  2
         158
         113
                  2
                  2
         119
         256
                  1
         77
                  1
                  1
         231
         107
                  1
         121
                  1
         90
                  1
         98
                  1
         78
                  1
                  1
         142
         186
         Name: normalized-losses, dtype: int64
```

```
In [6]: df["horsepower"].value_counts()
Out[6]: 68
                 19
         70
                 11
         69
                 10
                  9
         116
         110
                  8
         95
                   7
                   6
         101
                   6
         62
         114
                   6
         88
                   6
         160
                   6
                   5
         102
                   5
         97
         145
                   5
                   5
         82
                   5
         84
                   5
         76
                   4
         111
         123
                   4
         92
                   4
         86
                   4
         121
                   3
                   3
         90
                   3
         182
                   3
         85
                   3
         152
         207
                   3
         73
                   3
                   2
         155
                   2
         161
                   2
         162
                   2
         176
                   2
         56
                   2
         ?
                   2
         94
                   2
         156
                   2
         112
                   2
         52
                   2
         100
                   2
         184
         60
                   1
                   1
         262
                   1
         106
         143
                   1
         120
                   1
         134
                   1
         72
                   1
                   1
         55
         48
                   1
         58
                   1
         115
                   1
         78
                   1
                   1
         154
```

135

140

142

1

1

1

```
175
                 1
        288
                 1
        200
                 1
        Name: horsepower, dtype: int64
In [7]: #replacing the missing values with (np.nan)
        df["normalized-losses"].replace("?", np.nan, inplace=True)
        df["horsepower"].replace("?", np.nan, inplace=True)
        #changing the datatype
        df["normalized-losses"] = df["normalized-losses"].astype("float")
        df["horsepower"] = df["horsepower"].astype("float")
        #get Mean
        nlmean = df["normalized-losses"].mean()
        hpmean = df["horsepower"].mean()
        #using Fillna
        df["normalized-losses"].fillna(nlmean, inplace=True)
        df["horsepower"].fillna(hpmean, inplace=True)
In [8]: |df["normalized-losses"].value_counts
Out[8]: <bound method IndexOpsMixin.value_counts of 0</pre>
                                                              122.0
                122.0
        1
        2
                122.0
        3
                164.0
        4
                164.0
                . . .
        200
                 95.0
        201
                 95.0
        202
                 95.0
        203
                 95.0
        204
                 95.0
        Name: normalized-losses, Length: 205, dtype: float64>
In [9]: | df["horsepower"].value_counts
Out[9]: <bound method IndexOpsMixin.value_counts of 0</pre>
                                                              111.0
        1
                111.0
        2
                154.0
        3
                102.0
        4
                115.0
                . . .
        200
                114.0
        201
                160.0
        202
                134.0
        203
                106.0
        204
                114.0
        Name: horsepower, Length: 205, dtype: float64>
```

Clearing all the OutLiers

```
In [10]: #searching for all the outliers that are present in the dataset
```

```
In [11]: sns.boxplot(data=df, x="price", y="make")
plt.grid(True)
```



```
In [12]: #selecting the particular data which has outliers present in them
```

```
In [13]: df[(df["make"]=="dodge") & (df["price"]>11000)]
```

Out[13]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	engi s
29	3	145.0	dodge	gas	hatchback	fwd	front	66.3	50.2	ohc	

In [14]: #dropping the outliers using drop function

In [15]: df.drop(29, inplace=True)

In [16]: |df[(df["make"]=="honda") & (df["price"]>11000)]

Out[16]:

		symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	engine- size	
•	41	0	85.0	honda	gas	sedan	fwd	front	65.2	54.1	ohc	110	

In [17]: df.drop(41, inplace=True)

```
In [18]: |df[(df["make"]=="isuzu") & (df["price"]>20000)]
Out[18]:
                                                                                             engine- engine-
                            normalized-
                                                     body-
                                                              drive-
                                               fuel-
                                                                      engine-
                symboling
                                         make
                                                                              width height
                                 losses
                                                      style
                                                                     location
                                               type
                                                             wheels
                                                                                                type
                                                                                                         size
                         0
            45
                                  122.0
                                                                                63.6
                                                                                       52.0
                                                                                                          90
                                                                fwd
                                                                         front
                                                                                                 ohc
                                         isuzu
                                                gas
                                                     sedan
In [19]:
          df.drop(45, inplace=True)
           df[(df["make"]=="mitsubishi") & (df["price"]>13000)]
Out[20]:
                                                                                                    engine-
                            normalized-
                                                   fuel-
                                                             body-
                                                                     drive-
                                                                             engine-
                symboling
                                            make
                                                                                      width height
                                 losses
                                                   type
                                                             style
                                                                    wheels
                                                                            location
                                                                                                       type
                                                                                               50.2
            83
                         3
                                  122.0
                                        mitsubishi
                                                    gas
                                                         hatchback
                                                                       fwd
                                                                                front
                                                                                       66.3
                                                                                                        ohc
            84
                         3
                                  122.0
                                        mitsubishi
                                                         hatchback
                                                                       fwd
                                                                                front
                                                                                       66.3
                                                                                               50.2
                                                                                                        ohc
                                                    gas
In [21]: | df.drop([83,84], inplace=True)
           df[(df["make"]=="plymouth") & (df["price"]>10000)]
Out[22]:
                             normalized-
                                                             body-
                                                                     drive-
                                                                             engine-
                                                                                                     engine-
                                                   fuel-
                  symboling
                                             make
                                                                                      width
                                                                                             height
                                  losses
                                                    type
                                                              style
                                                                    wheels
                                                                             location
                                                                                                       type
            124
                          3
                                   122.0 plymouth
                                                                                               50.2
                                                                                       66.3
                                                                                                        ohc
                                                    gas hatchback
                                                                       rwd
                                                                                front
In [23]:
          df.drop(124, inplace=True)
          df[(df["make"]=="toyota") & (df["price"]>12000)]
In [24]:
Out[24]:
                             normalized-
                                                 fuel-
                                                           body-
                                                                   drive-
                                                                           engine-
                                                                                                   engine-
                  symboling
                                          make
                                                                                    width height
                                  losses
                                                 type
                                                            style
                                                                  wheels
                                                                           location
                                                                                                      type
            172
                          2
                                                                                     65.6
                                                                                             53.0
                                   134.0
                                          toyota
                                                  gas
                                                       convertible
                                                                     rwd
                                                                              front
                                                                                                      ohc
            178
                                                                                     67.7
                                                                                             52.0
                                   197.0
                                          toyota
                                                  gas
                                                        hatchback
                                                                     rwd
                                                                              front
                                                                                                     dohc
            179
                          3
                                   197.0
                                                        hatchback
                                                                                     67.7
                                                                                             52.0
                                                                                                     dohc
                                         toyota
                                                                              front
                                                  gas
                                                                     rwd
            180
                                    90.0
                                         toyota
                                                           sedan
                                                                              front
                                                                                     66.5
                                                                                             54.1
                                                                                                     dohc
                                                  gas
                                                                     rwd
                                   122.0 toyota
            181
                         -1
                                                                              front
                                                                                     66.5
                                                                                             54.1
                                                                                                     dohc
                                                  gas
                                                           wagon
                                                                     rwd
          df.drop([172,178,179,180,181], inplace=True)
In [26]:
          #by this process of cleaning the outliers we get a clear dataset shown below
```

In [27]: sns.boxplot(data=df, x="price", y="make")
plt.grid(True)

Label Encoding

In [28]: df.head()

Out[28]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	eng !
0	3	122.0	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc	
1	3	122.0	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc	
2	1	122.0	alfa- romero	gas	hatchback	rwd	front	65.5	52.4	ohcv	
3	2	164.0	audi	gas	sedan	fwd	front	66.2	54.3	ohc	
4	2	164.0	audi	gas	sedan	4wd	front	66.4	54.3	ohc	
4											•

```
In [29]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 194 entries, 0 to 204
         Data columns (total 15 columns):
          #
              Column
                                  Non-Null Count Dtype
                                                  ----
          0
              symboling
                                  194 non-null
                                                  int64
              normalized-losses 194 non-null
                                                  float64
          1
          2
              make
                                  194 non-null
                                                  object
          3
              fuel-type
                                  194 non-null
                                                  object
          4
              body-style
                                 194 non-null
                                                  object
          5
              drive-wheels
                                  194 non-null
                                                  object
          6
              engine-location
                                  194 non-null
                                                  object
          7
              width
                                  194 non-null
                                                  float64
          8
              height
                                  194 non-null
                                                  float64
          9
              engine-type
                                 194 non-null
                                                  object
          10 engine-size
                                  194 non-null
                                                  int64
          11 horsepower
                                  194 non-null
                                                  float64
          12 city-mpg
                                  194 non-null
                                                  int64
          13 highway-mpg
                                  194 non-null
                                                  int64
          14 price
                                  194 non-null
                                                  int64
         dtypes: float64(4), int64(5), object(6)
         memory usage: 28.3+ KB
```

```
In [30]: #dividing the dataset into two parts i.e, df_cat(catagorical), df_num(numerical)
```

```
In [31]: df_cat = df.select_dtypes(object)
    df_num = df.select_dtypes(["float64", "int64"])
```

In [32]: df_cat

Out[32]:

	make	fuel-type	body-style	drive-wheels	engine-location	engine-type
0	alfa-romero	gas	convertible	rwd	front	dohc
1	alfa-romero	gas	convertible	rwd	front	dohc
2	alfa-romero	gas	hatchback	rwd	front	ohcv
3	audi	gas	sedan	fwd	front	ohc
4	audi	gas	sedan	4wd	front	ohc
200	volvo	gas	sedan	rwd	front	ohc
201	volvo	gas	sedan	rwd	front	ohc
202	volvo	gas	sedan	rwd	front	ohcv
203	volvo	diesel	sedan	rwd	front	ohc
204	volvo	gas	sedan	rwd	front	ohc

194 rows × 6 columns

In [33]: df_num

Out[33]:

	symboling	normalized- losses	width	height	engine- size	horsepower	city- mpg	highway- mpg	price
0	3	122.0	64.1	48.8	130	111.0	21	27	13495
1	3	122.0	64.1	48.8	130	111.0	21	27	16500
2	1	122.0	65.5	52.4	152	154.0	19	26	16500
3	2	164.0	66.2	54.3	109	102.0	24	30	13950
4	2	164.0	66.4	54.3	136	115.0	18	22	17450
200	-1	95.0	68.9	55.5	141	114.0	23	28	16845
201	-1	95.0	68.8	55.5	141	160.0	19	25	19045
202	-1	95.0	68.9	55.5	173	134.0	18	23	21485
203	-1	95.0	68.9	55.5	145	106.0	26	27	22470
204	-1	95.0	68.9	55.5	141	114.0	19	25	22625

194 rows × 9 columns

```
In [34]: df_cat["fuel-type"].value_counts()
Out[34]: gas
                    174
          diesel
                     20
          Name: fuel-type, dtype: int64
In [35]: df_cat["fuel-type"].value_counts
Out[35]: <bound method IndexOpsMixin.value_counts of 0</pre>
                                                                  gas
                    gas
          2
                    gas
          3
                    gas
          4
                    gas
          200
                    gas
          201
                    gas
          202
                    gas
          203
                 diesel
          204
                    gas
          Name: fuel-type, Length: 194, dtype: object>
```

```
In [36]: pd.get_dummies(df_cat["fuel-type"])
```

Out[36]:

	diesel	gas
0	0	1
1	0	1
2	0	1
3	0	1
4	0	1
200	0	1
201	0	1
202	0	1
203	1	0
204	0	1

194 rows × 2 columns

```
In [37]: df["make"].nunique()
Out[37]: 22
    Type Markdown and LaTeX: \alpha^2
In [ ]:
In [38]: #now by using LabelEncoder we change the df_cat dataset from catagricat to numeri
In [39]: | from sklearn.preprocessing import LabelEncoder
In [40]: #first we chage the (fuel-type) data into numerical form
In [41]: le = LabelEncoder()
    le.fit_transform(df_cat["fuel-type"])
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1,
        0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1])
```

In [42]: #by using for loop now we change the whole dataset into numerical form

In [43]: for col in df_cat:
 le = LabelEncoder()
 df_cat[col] = le.fit_transform(df_cat[col])

In [44]: df_cat

Out[44]:

		make	fuel-type	body-style	drive-wheels	engine-location	engine-type
	0	0	1	0	2	0	0
	1	0	1	0	2	0	0
	2	0	1	2	2	0	5
	3	1	1	3	1	0	3
	4	1	1	3	0	0	3
20	00	21	1	3	2	0	3
20	01	21	1	3	2	0	3
2	02	21	1	3	2	0	5
20	03	21	0	3	2	0	3
20	04	21	1	3	2	0	3

194 rows × 6 columns

In [45]: df = pd.concat([df_cat, df_num],axis=1)

In [46]: df.head()

Out[46]:

	make	fuel- type	body- style	drive- wheels	engine- location	engine- type	symboling	normalized- losses	width	height	engine- size
0	0	1	0	2	0	0	3	122.0	64.1	48.8	130
1	0	1	0	2	0	0	3	122.0	64.1	48.8	130
2	0	1	2	2	0	5	1	122.0	65.5	52.4	152
3	1	1	3	1	0	3	2	164.0	66.2	54.3	109
4	1	1	3	0	0	3	2	164.0	66.4	54.3	136
4											

```
In [47]: sns.pairplot(data=df, hue="price")
```

Out[47]: <seaborn.axisgrid.PairGrid at 0x8f5aabd6a0>

Creating the model

```
In [48]: x = df.iloc[:,:-1]
y = df.iloc[:,-1]
```

In [49]: x

Out[49]:

	make	fuel- type	body- style	drive- wheels	engine- location	engine- type	symboling	normalized- losses	width	height	engine- size
0	0	1	0	2	0	0	3	122.0	64.1	48.8	130
1	0	1	0	2	0	0	3	122.0	64.1	48.8	130
2	0	1	2	2	0	5	1	122.0	65.5	52.4	152
3	1	1	3	1	0	3	2	164.0	66.2	54.3	109
4	1	1	3	0	0	3	2	164.0	66.4	54.3	136
200	21	1	3	2	0	3	-1	95.0	68.9	55.5	141
201	21	1	3	2	0	3	-1	95.0	68.8	55.5	141
202	21	1	3	2	0	5	-1	95.0	68.9	55.5	173
203	21	0	3	2	0	3	-1	95.0	68.9	55.5	145
204	21	1	3	2	0	3	-1	95.0	68.9	55.5	141

194 rows × 14 columns

```
In [50]: y
```

```
Out[50]: 0
```

Name: price, Length: 194, dtype: int64

In [51]: from scipy.stats import skew

In [52]: df_num

Out[52]:

	symboling	normalized- losses	width	height	engine- size	horsepower	city- mpg	highway- mpg	price
0	3	122.0	64.1	48.8	130	111.0	21	27	13495
1	3	122.0	64.1	48.8	130	111.0	21	27	16500
2	1	122.0	65.5	52.4	152	154.0	19	26	16500
3	2	164.0	66.2	54.3	109	102.0	24	30	13950
4	2	164.0	66.4	54.3	136	115.0	18	22	17450
200	-1	95.0	68.9	55.5	141	114.0	23	28	16845
201	-1	95.0	68.8	55.5	141	160.0	19	25	19045
202	-1	95.0	68.9	55.5	173	134.0	18	23	21485
203	-1	95.0	68.9	55.5	145	106.0	26	27	22470
204	-1	95.0	68.9	55.5	141	114.0	19	25	22625

194 rows × 9 columns

```
In [53]: for col in df_num:
    print(col)
    print(skew( df_num[col] ))

    plt.figure()
    sns.distplot(df_num[col])
    plt.show()
```

symboling 0.21386866184357742

In [54]: df.corr()

Out[54]:

	make	fuel-type	body- style	drive- wheels	engine- location	engine- type	symboling	normalize losse
make	1.000000	-0.119746	0.109203	-0.052044	0.057249	0.010788	-0.133413	-0.29237
fuel-type	-0.119746	1.000000	-0.146577	-0.143825	0.042490	0.112181	0.194923	0.0990
body-style	0.109203	-0.146577	1.000000	-0.149962	-0.291270	-0.033920	-0.584658	-0.23841
drive- wheels	-0.052044	-0.143825	-0.149962	1.000000	0.154729	-0.053643	-0.055088	0.30358
engine- location	0.057249	0.042490	-0.291270	0.154729	1.000000	0.116897	0.231375	0.00239
engine-type	0.010788	0.112181	-0.033920	-0.053643	0.116897	1.000000	0.070345	-0.03510
symboling	-0.133413	0.194923	-0.584658	-0.055088	0.231375	0.070345	1.000000	0.44792
normalized- losses	-0.292370	0.099052	-0.238410	0.303588	0.002392	-0.035104	0.447922	1.00000
width	-0.013582	-0.238744	0.145147	0.470463	-0.051210	0.048240	-0.272388	0.06662
height	0.243751	-0.279480	0.574268	-0.016925	-0.114057	-0.162899	-0.521495	-0.36854
engine-size	-0.100960	-0.081435	-0.057853	0.518208	0.204366	0.109809	-0.153671	0.0902
horsepower	-0.087388	0.155486	-0.143735	0.511362	0.334271	0.101747	0.027074	0.18338
city-mpg	0.079432	-0.253782	0.015181	-0.448046	-0.161467	-0.152574	0.007189	-0.21227
highway- mpg	0.075333	-0.185979	-0.024926	-0.450402	-0.109265	-0.152407	0.084238	-0.1689(
price	-0.173792	-0.115791	-0.065831	0.584485	0.333620	0.102758	-0.095905	0.12997
4								>

```
In [55]: sns.heatmap(df.corr(), annot=True)
Out[55]: <AxesSubplot:>
                                                                                      -1.0
                          make - 1 0.120.1-0.0502050701-0.1-0.29.0104240.40.087070907-9.1
                       fuel-type -0.1 1 0.150.14.042.110.19.099.240.28.081160.250.19.13
                                                                                      - 0.8
                     body-style -0.110.15 1 0.150.29.034.58.24.150.50.058.14.01502506
                   drive-wheels - .050.140.15 1 0.15.05340550.30.40.0107520.510.450.45
                                                                                      - 0.6
                 engine-location - 0507040.29.15 1 0.120.20004050.110.20.330.140.10.
                                                                                      - 0.4
                    engine-type -.010.1-0.0-334053412 1 0.007.0 85048.16.110.1-0.1-50.150.1
                     symboling -0.18.190.58.055230.07 1 0.450.240.520.16.02.00002089409
                                                                                      - 0.2
              normalized-losses -0.29099.240.800.00403545 1 0.060.30.090.180.240.1013
                          width -.014.24.150.40.051048.2006 1 0.30.740.640.640.63.73
                                                                                      - 0.0
                                0.240.28.540.0107.140.140.540.370.3 1 0.0906.04080749.14.15
                                                                                       -0.2
                                -0.-D.0801058520.20.130.15.090.70.09 1 0.80.640.60.87
                    engine-size -
                                .087160.14.510.330.10.027.180.60.070.8 1 -0.80.7
                    horsepower
                                                                                       -0.4
                                .07-9.205.01-9.4-50.1-60.10500702.2-10.644.07-9.640.8 1 0.970.66
                       city-mpg -
                                .07-9.1-9.02-5.4-50.1-10.105.08-0.1-70.6-20.1-40.6-70.7-0.97-1
                                                                                        -0.6
                  highway-mpg -
                                           580.330.40.090513<mark>0.73</mark>0
                                                              height
                                       body-style
                                          drive-wheels
                                             engine-location
                                                 engine-type
                                                    symboling
                                                       normalized-losses
                                                                 engine-size
                                                                    horsepower
                                                                       aty-mpg
                                                                           highway-mpc
In [56]: np.log(-3)
Out[56]: nan
In [57]: np.sqrt(-3)
Out[57]: nan
In [58]: | df_num["normalized-losses"] =np.sqrt(df_num["normalized-losses"])
In [59]: | skew(df num["normalized-losses"])
Out[59]: 0.4136415061835428
In [60]: from sklearn.model selection import train test split, cross val score
             xtrain, xtest, ytrain, ytest = train_test_split(x,y, test_size = 0.3, random_stat
In [61]: from sklearn.neighbors import KNeighborsRegressor
             from sklearn.linear model import LinearRegression
             from sklearn.svm import SVR
In [97]: from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
```

```
In [98]: def mymodel(model):
             model.fit(xtrain, ytrain)
             ypred = model.predict(xtest)
             ac = (r2 score(ytest, ypred))
             mse = mean squared error(ytest, ypred)
             mae = mean_absolute_error(ytest, ypred)
             rmse = np.sqrt(mse)
             print(f"Accuracy :- {ac}/n/nMSE :- {mse}/n/nRMSE :- {rmse}/n/nMAE :- {mae}")
In [99]: models = []
         -: ", KNeighborsRegressor()))
         models.append(("SVM-r -: ", SVR(kernel="rbf")))
         for name, model in models:
             print(name)
             mymodel(model)
             print("\n\n")
          Linreg
         Accuracy :- 0.7872533647503879/n/nMSE :- 14568791.32741768/n/nRMSE :- 3816.9086
         087326846/n/nMAE :- 2568.578977315566
         KNN
                       -:
         Accuracy :- 0.7266971249115963/n/nMSE :- 18715654.664406776/n/nRMSE :- 4326.159
         343390715/n/nMAE :- 2604.9016949152538
         SVM-1
         Accuracy :- 0.7187520141543107/n/nMSE :- 19259732.179711815/n/nRMSE :- 4388.591
         138362267/n/nMAE :- 2587.2902509163678
         SVM-r
         Accuracy :- -0.17748516694338834/n/nMSE :- 80633640.42491509/n/nRMSE :- 8979.62
         3623789312/n/nMAE :- 5394.447269864856
In [100]: linreg = LinearRegression()
         linreg.fit(xtrain, ytrain)
         ypred = linreg.predict(xtest)
```

```
In [101]: train = linreg.score(xtrain, ytrain)
          test = r2_score(ytest, ypred)
          print(f"Training Result -: {train}")
          print(f"Test Result -: {test}")
          Training Result -: 0.8746947367858329
          Test Result
                        -: 0.7872533647503879
In [102]: linreg.coef_
Out[102]: array([-1.88388809e+02, -1.35614579e+03,
                                                   9.60396622e+01, 2.31554489e+03,
                  1.07132919e+04, 8.96539296e+01,
                                                   2.81435900e+02, -1.51192911e+01,
                  8.88448341e+02, 2.20890197e+02,
                                                   7.49622351e+01, 4.11780705e+01,
                 -4.89978638e+00, -3.18332548e+01])
In [103]: from sklearn.linear model import Ridge, Lasso
In [104]: #Ridge
In [105]: | 12 = Ridge(alpha=10)
In [106]: | 12.fit(xtrain, ytrain)
          ypred = 12.predict(xtest)
In [107]: print(r2_score(ytest, ypred))
          0.7446755037448582
In [108]: 12.coef_
Out[108]: array([-162.36497185, -996.82774462, -220.92859501, 1845.47528303,
                 1300.29035686, 112.887593 , 356.37816602, -13.80861823,
                  680.56398422, 347.44073799, 79.53038111,
                                                               63.28044251,
                    2.62673725,
                                4.73681121])
```

```
In [109]: plt.scatter(ytest, ypred)
Out[109]: <matplotlib.collections.PathCollection at 0x8f53ce8b80>
            40000
            35000
            30000
            25000
            20000
            15000
            10000
            5000
                 5000 10000 15000 20000 25000 30000 35000 40000 45000
In [110]: #Lasso
In [111]: | 11 = Lasso(alpha=10)
In [112]: | 11.fit(xtrain, ytrain)
          ypred = l1.predict(xtest)
In [113]: print(r2_score(ytest, ypred))
          0.7845447689773163
In [114]: 11.coef_
Out[114]: array([-1.84907763e+02, -1.28035315e+03,
                                                      2.37417559e+01, 2.27849945e+03,
                                                      2.68105178e+02, -1.47775973e+01,
                   9.72464957e+03, 8.61808657e+01,
                   8.65335349e+02, 2.36756798e+02,
                                                      7.54992815e+01, 4.34037541e+01,
                  -2.99077374e+00, -2.81059070e+01])
```

In [115]: plt.scatter(ytest, ypred)

Out[115]: <matplotlib.collections.PathCollection at 0x8f64f3e250>


```
In [116]: for i in range(100):
              12 = Ridge(alpha=i)
              12.fit(xtrain, ytrain)
              print(f"{i} -: {12.score(xtest, ytest)}")
          0 -: 0.7872533647503897
          1 -: 0.767302806500241
          2 -: 0.7582177046817948
          3 -: 0.7533125714156794
          4 -: 0.7503556031941556
          5 -: 0.7484405699868022
          6 -: 0.7471368782034529
          7 -: 0.7462162055202609
          8 -: 0.7455474945883274
          9 -: 0.7450509055949546
          10 -: 0.7446755037448582
          11 -: 0.7443875782337195
          12 -: 0.7441641395087408
          13 -: 0.7439891142571227
          14 -: 0.7438510254378199
          15 -: 0.7437415281634403
          16 -: 0.7436544582832081
          17 -: 0.743585198420644
          18 -: 0.7435302462564803
          19 -: 0.7434869148951573
          20 -: 0.7434531213913576
          21 -: 0.7434272352621618
          22 -: 0.7434079685186195
          23 -: 0.7433942948783849
          24 -: 0.7433853897719231
          25 -: 0.743380585351132
          26 -: 0.7433793364450809
          27 -: 0.7433811945865134
          28 -: 0.7433857880449168
          29 -: 0.7433928063688346
          30 -: 0.743401988340527
          31 -: 0.7434131125320974
          32 -: 0.7434259898585334
          33 -: 0.7434404576734668
          34 -: 0.7434563750638734
          35 -: 0.743473619081783
          36 -: 0.743492081712139
          37 -: 0.7435116674218893
          38 -: 0.7435322911701185
          39 -: 0.7435538767855336
          40 -: 0.7435763556378825
          41 -: 0.7435996655454999
          42 -: 0.7436237498732815
          43 -: 0.7436485567848099
          44 -: 0.7436740386196952
          45 -: 0.743700151372995
          46 -: 0.7437268542581246
          47 -: 0.7437541093382882
          48 -: 0.7437818812143111
          49 -: 0.7438101367590783
          50 -: 0.7438388448905591
```

51 -: 0.7438679763769426

- 52 -: 0.7438975036685125
- 53 -: 0.7439274007519229
- 54 -: 0.7439576430232493
- 55 -: 0.7439882071768664
- 56 -: 0.7440190711076899
- 57 -: 0.7440502138247547
- 58 -: 0.7440816153744236
- 59 -: 0.744113256771842
- 60 -: 0.7441451199394373
- 61 -: 0.7441771876514977
- 62 -: 0.744209443483989
- 63 -: 0.7442418717689181
- 64 -: 0.7442744575526635
- 65 -: 0.7443071865577545
- 66 -: 0.7443400451477066
- 67 -: 0.7443730202945285
- 68 -: 0.7444060995486053
- 69 -: 0.7444392710107006
- 70 -: 0.7444725233058402
- 71 -: 0.7445058455588931
- 72 -: 0.744539227371684
- 73 -: 0.7445726588014745
- 74 -: 0.7446061303407194
- 75 -: 0.7446396328979472
- 76 -: 0.7446731577797072
- 77 -: 0.7447066966734659
- 78 -: 0.7447402416314038
- 79 -: 0.7447737850550248
- 80 -: 0.7448073196805303
- 81 -: 0.7448408385649135
- 82 -: 0.7448743350726974
- 83 -: 0.7449078028633038
- 84 -: 0.7449412358790084
- 85 -: 0.7449746283334276
- 86 -: 0.7450079747005297
- 87 -: 0.7450412697041273
- 88 -: 0.745074508307829
- 89 -: 0.7451076857054193
- 90 -: 0.7451407973116617
- 91 -: 0.7451738387534725
- 92 -: 0.7452068058614869
- 93 -: 0.7452396946619533
- 94 -: 0.7452725013689848
- 95 -: 0.7453052223771136
- 96 -: 0.7453378542541569
- 97 -: 0.7453703937343716
- 98 -: 0.7454028377118849 99 -: 0.7454351832343926

```
In [117]: | 12 = Ridge(alpha=0)
          12.fit(xtrain, ytrain)
          ypred = 12.predict(xtest)
          print(r2_score(ytest, ypred))
          0.7872533647503897
In [118]: | for i in range(0,1000,50):
              11 = Lasso(alpha=i)
              11.fit(xtrain, ytrain)
              print(f"{i} -: {l1.score(xtest, ytest)}")
          0 -: 0.78725336475039
          50 -: 0.7659283362102931
          100 -: 0.7397789106535343
          150 -: 0.7312865128312395
          200 -: 0.7333720072320571
          250 -: 0.7330361793350894
          300 -: 0.7321466777653632
          350 -: 0.731729076002716
          400 -: 0.731674552125494
          450 -: 0.7324943095892767
          500 -: 0.7322486638458842
          550 -: 0.7325708026281421
          600 -: 0.73353993479164
          650 -: 0.7344494557905592
          700 -: 0.735304724500026
          750 -: 0.7361072960479971
          800 -: 0.7368479400706667
          850 -: 0.7375354588157039
          900 -: 0.738165257991201
          950 -: 0.7387387724658839
In [119]: | 11 = Lasso(alpha=0)
          11.fit(xtrain, ytrain)
          ypred = 11.predict(xtest)
          print(r2_score(ytest, ypred))
```

0.78725336475039

Cross Validation

```
In [123]: cvs = cross_val_score(11, x,y, cv=4)
In [124]: cvs
Out[124]: array([0.75135279, 0.8578691 , 0.37303229, 0.38158495])
In [125]: cvs.mean()
Out[125]: 0.5909597821083946
```

In []: