MATH4302, Algebra II

Jiang-Hua Lu

The University of Hong Kong

Monday April 22, 2022

Outline

Today

§3.1.2: Artin's Theorem and Characterizations of Galois extensions.

- Artin's Theorem;
- 2 Characterizations of Galois extensions.

Recall

• Definition: For a field extension $K \subset L$,

$$\operatorname{Aut}_{K}(L) \stackrel{\operatorname{def}}{=} \{ \sigma \in \operatorname{Aut}(L) : \ \sigma(k) = k, \ \forall \ k \in K \}.$$

• Lemma. For any finite extension $K \subset L$, $\operatorname{Aut}_K(L)$ is a finite group.

New for today:

<u>Definition.</u> A finite field extension $K \subset L$ is called a Galois extension if

$$|\mathrm{Aut}_K(L)| = |L:K|.$$

For Galois extensions $K \subset L$, more common to denote $\operatorname{Aut}_K(L)$ by $\operatorname{Gal}(L/K)$ or $\operatorname{Gal}_K(L)$.

What we have proved:

Theorem: If K has characteristic 0 or is a finite field, then every splitting field over K is Galois. QC Q(記) is not Galois

Examples: Let G denote the Galois group.

 \blacksquare $\mathbb{R} \subset \mathbb{C}$ with $G \cong \mathbb{Z}/2\mathbb{Z}$;

$$\bigcirc \mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3}) \text{ with } G \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z});$$

$$\bigcirc \mathbb{Q} \subset \mathbb{Q}\left(e^{\frac{2\pi i}{n}}\right) \text{ with } G \cong (\mathbb{Z}/n\mathbb{Z})^{\times};$$

$$\bigcirc \mathbb{F}_{p} \subset \mathbb{F}_{p^{n}} \text{ with } G \cong \mathbb{Z}/n\mathbb{Z}.$$

- **5** $\mathbb{Q}(\sqrt[3]{2})$ is not a Galois extension of \mathbb{Q} .

Goal of this section:

- To explain Artin's construction of Galois extensions;
- To give three more equivalent definitions of finite Galois extensions.

Notation-Lemma. For any field L and any subgroup H of Aut(L),

$$L^{H} \stackrel{\text{def}}{=} \{ a \in L : \sigma(a) = a, \forall \sigma \in H \}$$

is a subfield field of L, called the fixed field of H.

Proof: Direct check:
$$\exists a,b \in L^H$$
, then $\exists \sigma \in H$
 $\sigma(a+b) = \sigma(a) + \sigma(b) = a+b$
 $\sigma(ab) = \sigma(a) + \sigma(b) = ab$
When $b \neq 0$ $\sigma(b^{-1}) = \sigma(b)^{-1} = b^{-1}$

Artin's Theorem: For any field
$$L$$
 and any finite group H of $Aut(L)$,

• L is a Galois extension of L^H ;

(Aut_{LH}(L)) = [L:L^H]

$$2 \operatorname{Aut}_{I^H}(L) = H.$$

$$f(x) = \prod^{n} (x - \alpha_i) \in L[x].$$

• The coefficients of
$$f(x)$$
, expressed as symmetric polynomials of $\alpha_1, \ldots, \alpha_n$, are in L^H . $n = 3$ (x_0, α_1) (x_0, α_2)

The coefficients of
$$f(x)$$
, expressed as symmetric polynomials of $\alpha_1, \ldots, \alpha_n$, are in L^H . $n=3$ $(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)$

Thus $f(x) \in L^H[x]$. $= \chi^3 - (\alpha_1 + \alpha_2 + \alpha_3) \chi^2$
 $f(\alpha) = 0$ $= 1$ $(\alpha_1 + \alpha_2 + \alpha_3) \chi^2$
 $f(\alpha) = 0$ $= 1$ $(\alpha_1 + \alpha_2 + \alpha_3) \chi^2$
 $f(\alpha) = 0$ $= 1$ $(\alpha_1 + \alpha_2 + \alpha_3) \chi^2$
 $f(\alpha) = 0$ $= 1$ $(\alpha_1 + \alpha_2 + \alpha_3) \chi^2$
 $f(\alpha) = 0$ $= 1$ $(\alpha_1 + \alpha_2 + \alpha_3) \chi^2$

Proof of Artin's Theorem continued:

- $f(\alpha) = 0$, so $\alpha \in L$ is algebraic over L^H .
- Let $p \in L^H[x]$ be the minimal polynomial of α in $L^H[x]$. Thus p|f.
- Since f has no repeated roots in L, p completely splits over L and has no repeated roots in L. Moreover,

$$|L^H(\alpha): L^H| = \deg(p) \le \deg f = n = |H\alpha| \le |H|.$$

- Since $\alpha \in L$ is arbitrary, we conclude that L is an algebraic extension of L^H that is normal and separable.
- Choose $\alpha \in L$ such that $|L^H(\alpha): L^H|$ is the largest.

<u>Proof of Artin's Theorem continued:</u>

- We now prove that $L^H(\alpha) = L$, which implies in particular that L is a finite extension of L^H :
 - Suppose that $L^H(\alpha) \neq L$. Choose $\beta \in L \setminus L^H(\alpha)$. Then $L^H(\alpha, \beta)$ is a finite separable extension of L^H .
 - By the Primitive Element Theorem (finite separable extensions are simple), $L^H(\alpha, \beta) = L^H(\gamma)$ for some $\gamma \in L$, contradicting the assumption on α . Thus $L^H(\alpha) = L$.
- By Basic Lemma on automorphism groups of finite simple extensions, we have

$$|\operatorname{Aut}_{L^H}(L)| \le |L:L^H| \le |H|.$$

• As $H \subset \operatorname{Aut}_{L^H}(L)$ by definition, one thus has $\operatorname{Aut}_{L^H}(L) = H$ and

$$|\mathrm{Aut}_{L^H}(L)| = |L:L^H|.$$

Q.E.D.

Example: Let K be any field. For any integer $n \ge 1$, let $L = K(x_1, \ldots, x_n)$, \exists

the fraction field of the polynomial ring $K[x_1, \ldots, x_n]$. The symmetric group S_n embeds into Aut(L) as a subgroup via action on L

$$(\sigma \cdot f)(x_1,\ldots,x_n) = f(x_{\sigma(1)},\ldots,x_{\sigma(n)}), \quad \sigma \in S_n.$$

Applying Artin's Theorem, we conclude
$$\frac{\chi_1 + \chi_2}{\chi_1 \chi_2} \subset L^{S_2}$$
• L is a (finite) Galois extension of L^{S_n} with Galois group S_n .

For any subgroup $G \subset S_n$, L is a (finite) Galois extension of L^{G} with Galois group G .

Every finite group is the Galois group of some finite Galois extension!

Consequence of Artin's Theorem:

Corollary. Let $K \subset L$ be a finite field extension and let $G = \operatorname{Aut}_K(L)$.

- **1** |G| divides [L:K]; In particular, $|G| \leq [K:L]$;
- $C ext{$K \subset L$ is Galois if and only if $K = L^G$.} \begin{cases} \text{$A \in L$: } \text{$\sigma(a) = a$} \end{cases}$ $\text{$\sigma(a) = a$} \begin{cases} \text{$\sigma(a) = a$} \end{cases}$ $\text{$\sigma(a) = a$} \begin{cases} \text{$\sigma(a) = a$} \end{cases}$ $\text{$\sigma(a) = a$} \end{cases}$ Proof. Applying Artin's Theorem to $G = Aut_K(L)$, we see that

$$G|=[L:L^G].$$

By the Tower Theorem,

$$[L:K] = [L:L^G][L^G:K] = |G|[L^G:K],$$

so |G| divides [L:K]. In particular, $|G| \leq [L:K]$, and |G| = [L:K] if and only if $[L^G:K] = 1$ which is the same as $L^G = K$.

Q.E.D.

Recap.

<u>Definition</u>. A finite field extension $K \subset L$ is called a Galois extension if

$$|\operatorname{Aut}_K(L)| = |L:K|.$$

First characterization of finite Galois extensions:

A finite field extension
$$K \subset L$$
 is Galois if and only if $K = L^G$, where

We will give:

 $K \subset L^G$
 $G = Aut_K(L)$

• two more equivalent characterizations of finite Galois extensions.

$$\frac{Eq}{K}: \mathcal{Q} \subset \mathcal{Q}(\frac{3\sqrt{2}}{2}), G = \{e\}$$

Recall definitions: Let $K \subset L$ be an algebraic extension.

- $K \subset L$ is said to be normal if the minimal polynomial of every $\alpha \in L$ over K completely splits in L[x];
- $K \subset L$ is said to be separable if the minimal polynomial of every $\alpha \in L$ over K has no repeated roots in its splitting field over K.
- Thus $K \subset L$ is both normal and separable iff the minimal polynomial of every $\alpha \in L$ over K completely splits in L[x] and has no repeated roots in L.

Next: to prove a third characterization of finite Galois extensions:

• A finite extension is Galois if and only if it is normal and separable.

Need to look at minimal polynomials of elements in Galois extensions

Consider again
$$Q = Q(372)$$

$$\lambda = 372, \quad \rho(x) = \chi^3 - 2$$
does not split in $L(x)$,
$$SO \quad Q = Q(372)$$
is not normal

2)
$$K = \mathbb{F}_{2}(t)$$
, $L = K(Jt)$
 $A = Jt$, $P(x) = x^{2} - t$
 $= (x - Jt)(x + Jt)$
 $= (x - Jt)^{2}$
 $X + X + t$

Lemma. Let $K \subset L$ be a finite Galois extension and $G = \operatorname{Aut}_K(L)$. Let $\alpha \in L$ and p(x) the minimal polynomial of α in K[x]. Let

$$G\alpha = \{\sigma(\alpha) : \sigma \in G\} = \{\alpha, \alpha_2, \dots, \alpha_r\}$$

- **1** $G\alpha = \{\text{all roots of } p \text{ in } L\}, \text{ and } p(x) = (x \alpha)(x \alpha_2) \cdots (x \alpha_r).$
- ② In particular, p(x) splits completely in L[x] with no repeated roots;

Proof. Let
$$q(x) = (x - \alpha)(x - \alpha_2) \cdots (x - \alpha_r) \in L[x]$$
.

- All coefficients of q(x) are in $L^G = K$, so $q(x) \in K[x]$.
- By Lemma 0, every element in $G\alpha$ is a root of p.
- Thus $\deg(q) \leq \deg(p)$.

Then

• Since $q(\alpha) = 0$, must have q(x)|p(x). Thus q(x) = p(x).

Q.E.D.

r ≤ deg P

<u>Corollary:</u> A finite Galois extension is normal and separable.

To prove the converse of the above, recall

• A finite extension $K \subset L$ is normal iff L is a splitting field over K.

Construction Lemma of Automorphisms of Splitting Fields

Lemma. Let L be a splitting field over K. If α and β are two roots of an irreducible polynomial $p(x) \in K[x]$, then there exists $\sigma \in \operatorname{Aut}_K(L)$ such that $\alpha(\sigma) = \beta$.

6(et)

Proof. We have field isomorphisms

$$K(\alpha) \xrightarrow{\sim} K[x]/\langle p \rangle \xrightarrow{\sim} K(\beta) \subset L.$$

- Note that L is also a splitting field over $K(\alpha)$.
- By Extension Lemma, there exists $\sigma \in \operatorname{Aut}_K(L)$ such that $\sigma(\alpha) = \beta$.

Q.E.D.

16 / 25

Theorem: A finite extension $K \subset L$ is Galois iff it is normal and separable.

Proof. We have proved that Galois \Rightarrow normal and separable.

- X-46K[x]
- Assume finite extension $K \subset L$ is normal and separable.
- Let $G = \operatorname{Aut}_K(L)$. Need to show $L^G \subset K$.
- Let $\alpha \in L^G$ and $p(x) \in K[x]$ the minimal polynomial of α .
- Let $\beta \in L$ be any root of p. Then $\exists \sigma \in G$ such that $\sigma(\alpha) = \beta$. Since $\alpha \in L^G$, have $\alpha = \beta$. Thus α is the only root of p in L.
- By assumption, p splits completely over L and has no repeated roots in L.
 p has only & as a root in L
- So $p \in K[x]$ is linear, and thus $\alpha \in K$.

$$p(x) = x - \alpha$$
.

Q.E.D.

Recap:

Let $K \subset L$ be a finite extension and let $G = \operatorname{Aut}_K(L)$. The following three statements are equivalent:

- **2** $L^G = K$;
- \odot L is a normal and separable extension of K.

For a fourth characterization, recall

• $f(x) \in K[x]$ is said to be separable if f has no repeated roots in its splitting field. (=) f has no repeated roots in every extension of K (=) f and f' are f and f are f

Theorem: A finite extension L of K is a normal and separable if and only if L is the splitting field of a separable polynomial over K.

Proof. Assume first that $K \subset L$ is a normal and separable.

- Then *L* is the splitting field of some $f(x) \in K[x]$ over *K*.
- Let $f = cp_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$, where $c \in K\setminus\{0\}$, and $p_1,\ldots,p_k \in K[x]$ are monic irreducible and pairwise distinct.
- Let $\tilde{f} = p_1 p_2 \cdots p_k \in K[x]$. Then \tilde{f} and f have same roots in L.
- Each p_i splits completely in L[x] with no repeated roots.
- Two different p_i and p_j have no common roots.
- Thus $\tilde{f} \in K[x]$ is separable and L is a splitting field of \tilde{f} .

Proof Continued:

Assume *L* is the splitting field of a separable $f(x) \in K[x]$ over *K*. We prove |G| = [L : K] by induction on [L : K].

- If [L:K]=1, nothing to prove.
- Assume that $[L:K] \geq 2$.
- Let $p(x) \in K[x]$ be an irreducible factor of f in K[x].
- Then p and f share a common root $\alpha \in L$. Let R_p be the set of all the roots of p in L.
- Since f completely splits in L with no repeated roots, the same holds for p(x).
- Thus $|R_p| = \deg(p) = [K(\alpha) : K]$.

Proof Continued:

- By Construction Lemma of Automorphisms of Splitting Fields, G acts on R_p transitively.
- $\operatorname{Aut}_{K(\alpha)}(L)$ is the stabilizer subgroup at $\alpha \in R_p$.
- Thus $G/\operatorname{Aut}_{K(\alpha)}(L) \cong R_p$.
- Hence $|G| = |\operatorname{Aut}_{K(\alpha)}(L)||R_{\rho}| = |\operatorname{Aut}_{K(\alpha)}(L)|[K(\alpha) : K].$
- Applying induction assumption to L being splitting field of f over $K(\alpha)$ and f separable over $K(\alpha)$, have $|\operatorname{Aut}_{K(\alpha)}(L)| = [L : K(\alpha)]$.
- By the Tower Theorem, $|G| = [L : K(\alpha)][K(\alpha) : K] = [L : K]$.

Q.E.D.

s of Galois extension

<u>Summary</u>: Four characterizations of Galois extensions:

Theorem

For a finite extension $K \subset L$ with $G = \operatorname{Aut}_K(L)$, the following are equivalent:

- **1** $K \subset L$ is Galois, i.e., |G| = [L : K];
- **2** $K = L^G$;
- **3** The extension $K \subset L$ is normal and separable;
- **4** L is a splitting field over K of some separable polynomial in K[x].

Corollary: For a perfect field K, for example, K has characteristic 0 or is a finite field, a finite extension $K \subset L$ is Galois if and only if L is a splitting field over K.

A non-example: Let $K = \mathbb{F}_2(t)$ and let $L = K(\sqrt{t})$, a splitting field of $L = K(\sqrt{t})$, a splitting field of

The extension is not separable:

$$f(x) = (x - \sqrt{t})^2.$$

Thus the extension $K \subset L$ is normal but not Galois.

Example.
$$\mathbb{Q} \subset L = \mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$$
: \mathbb{Z} \mathbb{Q} \mathbb{Z} \mathbb{Z}

- $Gal_{\mathbb{Q}}(L)$ is isomorphic to a subgroup of S_3 because f has three roots.
- Know $|L:\mathbb{Q}|=6$, so $|\mathrm{Gal}_{\mathbb{Q}}(L)|=6$.
- Thus $\operatorname{Gal}_{\mathbb{Q}}(L) \cong S_3$.

Example. Let L be the splitting field of $f(x) = x^5 - 4x + 2 \in \mathbb{Q}[x]$.

- L is a Galois extension of \mathbb{Q} .
- As f is irreducible over $\mathbb Q$ by Eisenstein's criterion, f has no repeated roots L. Thus $\operatorname{Gal}_{\mathbb Q}(L)$ is isomorphic to a subgroup of S_5 .
- Calculus shows that f has three real roots and two complex roots.
- The complex conjugation $z \to \overline{z}$ is one element of order 2 in $\operatorname{Gal}_{\mathbb{Q}}(L)$.
 - rea
- A root root r of f gives $L_1 = \mathbb{Q}(r)$ with $[L_1 : \mathbb{Q}] = 5$. Thus $|\operatorname{Gal}_{\mathbb{Q}}(L)| = |L : Q|$ is divisible by 5.
- Cauchy's theorem implies that $Gal_{\mathbb{Q}}(L)$ has an element of order 5.
- Conclude that $\operatorname{Gal}_{\mathbb{Q}}(L) \cong S_5$. not solvable