Linguaggi

8: I connettivi della logica proposizionale classica

Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

10/11/2020

Outline

Connettivi

Wikipedia: "Un connettivo logico, o operatore logico, è quell'operazione che instaura fra due proposizioni A e B una qualche relazione che dia origine ad una terza proposizione C con un valore vero o falso, in base ai valori delle due proposizioni fattori ed al carattere del connettivo utilizzato.

Ovvero, come complicarsi la vita in una definizione senza dire nulla...

Connettivi e tabelle di verità

Ogni connettivo n-ario viene definito da una tabella di verità con 2^n righe.

Equivalentemente, un connettivo n-ario è una funzione $f: \{0,1\}^n \to \{0,1\}$

Viceversa ogni tabella di verità con 2ⁿ righe definisce un connettivo.

Quanti connettivi n-ari distinti esistono? 22n

Solo per alcuni di questi è stata data una connotazione.

- Perchè proprio quelli?
- Perchè non altri?

Connettivi e tabelle di verità

Ogni connettivo n-ario viene definito da una tabella di verità con 2^n righe.

Equivalentemente, un connettivo n-ario è una funzione $f: \{0,1\}^n \to \{0,1\}$

Viceversa ogni tabella di verità con 2ⁿ righe definisce un connettivo.

Quanti connettivi n-ari distinti esistono? 22n

Solo per alcuni di questi è stata data una connotazione.

- Perchè proprio quelli?
- Perchè non altri?

Connettivi 0-ari

$\llbracket \bot \rrbracket^{v}$	$\llbracket \top rbracket^{ u}$
0	1

Tutti i $2^{2^0} = 2^1 = 2$ connettivi 0-ario hanno una connotazione.

Connettivi 1-ari

<i>v</i> (<i>F</i>)			$\llbracket \neg F rbracket^v$	
0	0	0	1	1
1	0	1	0	1

Dei $2^{2^1}=2^2=4$ connettivi 1-ari, solo il \neg ha una connotazione. I rimanenti, non particolarmente utili, sono:

- Il connettivo costante falso
- Il connettivo identità
- Il connettivo costante vero

Connettivi 2-ari

F_1	F ₂		Λ					\oplus	V	V	\iff				\Rightarrow	Ñ	
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Dei 2^{2^2} = 16 connettivi 2-ari, solo alcuni hanno una connotazione e solo alcune sono state incluse nella sintassi.

- Il connettivo ⊕ è noto come XOR o "o esclusivo"
- Il connettivo ∨ è noto come NOR
- Il connettivo ∧ è noto come NAND
- Il connettivo
 ⇔ si legge "se e solamente se" o doppia implicazione
- Fra gli anonimi ce ne sono di inutili (costanti, identità) e di (potenzialmente) utili

Altri connettivi

A nessun altro connettivo è stata data una connotazione.

Riduzione fra connettivi

Talvolta è possibile esprimere un connettivo logico usandone altri e l'equivalenza logica.

Esempi:

$$A \Rightarrow B \equiv \neg A \lor B$$

 $\neg A \equiv A \Rightarrow \bot$
 $A \iff B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

ovvero:

- l'implicazione è riducibile alla negazione e alla disgiunzione
- la negazione è riducibile all'implicazione e al bottom
- la doppia implicazione è riducibile all'implicazione e alla congiunzione

Riduzione fra connettivi

Definizione: un insieme di connettivi è ridondante se contiene un connettivo riducibile ai restanti

Definizione: un insieme di connettivi è funzionalmente completo se ogni altro connettivo è riducibile a questi

Notazione: siano $S \in T$ insiemi di connettivi; scriviamo $S \triangleright T$ quando ogni connettivo di $S \ni riducibile ai connettivi di <math>T$.

Teorema: se S è funzionalmente completo e $S \triangleright T$, allora T è funzionalmente completo.

Dimostrazione: ogni connettivo è riducibile a S poichè S è funzionalmente completo. Poichè ogni connettivo di S è esprimibile solo con connettivi di T, allora ogni connettivo è riducibile a T. Quindi T è funzionalmente completo.

Insiemi funzionalmente completi

Domande:

- Esistono insiemi funzionalmente completi di connettivi?
 Risposta: sì, {∧, ∨, ⊥, ⊤, ¬} lo è (dimostrazione omessa)
- Quali sono gli insiemi funzionalmente completi di cardinalità minima?

Innanzi tutto $\{\land,\lor,\bot,\top,\neg\}$ è ridondante:

- $\perp \equiv A \land \neg A$ quindi \perp è ridondante
- $\top \equiv A \lor \neg A$ quindi \top è ridondante
- $A \wedge B \equiv \neg(\neg A \vee \neg B)$ quindi \wedge è ridondante
- Teorema: l'insieme {∨, ¬} è funzionalmente completo non ridondante.

Dim.: senza il \vee si possono esprimere solo A, $\neg A$, $\neg \neg A \equiv A$, $\neg \neg \neg A \equiv \neg A$, Quindi \bot non si esprime. Senza il \neg si possono esprimere solo A, $A \vee B$, $A \vee B \vee C$, . . . e quindi il \bot non si esprime.

Insiemi funzionalmente completi

Analogamente si dimostra che:

- anche $\{\land, \neg\}$ è funzionalmente completo non ridondante
- anche {⇒,¬} è funzionalmente completo non ridondante

Esistono anche insiemi singoletto funzionalmente completi: $\{\tilde{\vee}\}\$ e $\{\tilde{\wedge}\}\$. Esempio: dimostriamo che $\{\tilde{\vee}\}\$ lo è.

- $\neg A \equiv A \tilde{\vee} A$
- $\bullet \ \ A \lor A \equiv \neg (A \widetilde{\lor} A) \equiv (A \widetilde{\lor} A) \widetilde{\lor} (A \widetilde{\lor} A)$
- Abbiamo già dimostrato che {∨, ¬} è funzionalmente completo.

Scelta dei connettivi

Riassumendo:

- È possibile esprimere tutti i connettivi a partire da un insieme funzionalmente completo
- Esistono insiemi funzionalmente completi di cardinalità 1

Ma allora perchè abbiamo scelto i connettivi $\land, \lor, \bot, \top, \neg, \Rightarrow$?

- La scelta è un compromesso fra l'esigenza di considerare un insieme piccolo (ma funzionalmente completo) e un insieme che permetta di catturare naturalmente, direttamente espressioni del linguaggio naturale.
- 2 La nozione di riduzione fra connettivi è dipendente dalla semantica: per esempio nella semantica intuizionista (che vedremo) l'insieme $\{\lor, \Rightarrow, \neg\}$ non sarà ridondante.
- I connettivi scelti hanno una rilevanza matematica/informatica. P.e.: $(\land, \lor, \bot, \top, \neg, \Rightarrow)$ vengono usati direttamente per definire $(\cap, \cup, \emptyset, \cdot, \overline{\cdot}, \subseteq)$.

Equivalenze logiche notevoli (1/2)

Commutatività':

$$A \lor B \equiv B \lor A$$
, $A \land B \equiv B \land A$

Associatività':

$$A \lor (B \lor C) \equiv (A \lor B) \lor C, \quad A \land (B \land C) \equiv (A \land B) \land C$$

Idempotenza:

$$A \lor A \equiv A$$
, $A \land A \equiv A$

Distributività:

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C), \quad A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

Assorbimento:

$$A \lor (A \land B) \equiv A, \quad A \land (A \lor B) \equiv A$$

Elemento neutro:

$$A \lor \bot \equiv A$$
, $A \land \top \equiv A$

Annichilamento:

$$A \lor \top \equiv \top$$
, $A \land \bot \equiv \bot$

Equivalenze logiche notevoli (2/2)

Doppia negazione:

$$\neg \neg A \equiv A$$

De Morgan:

$$\neg (A \lor B) \equiv \neg A \land \neg B, \quad \neg (A \land B) \equiv \neg A \lor \neg B$$

Nota: quelle in rosso non varranno per la semantica intuizionista che vedremo in seguito!

Teorema (completezza): siano P e Q due formule della logica proposizionale. $P \equiv Q$ (usando la definizione di equivalenza logica) sse posso dimostrare $P \equiv Q$ usando solamente le equivalenze notevoli appena elencate.

Dimostrazione: interessante, ma lunga e complessa.

Equivalenze logiche notevoli

Osservazioni: quando si cerca di dimostrare $P \equiv Q$

- Le regole di commutatività e associatività ci dicono che possiamo ignorare l'associatività e l'ordine nelle disgiunzioni e congiunzioni
- Le regole di idempotenza, elemento neutro, e annichilamento sono regole di semplificazione (si usando quasi sempre da sx a dx)
- Le regole di distributività e assorbimento sono quelle difficili da usare in quanto
 - a volte vanno usate in senso contrario alla "semplificazione" (da dx a sx)
 - possono portare a cicli Esempio: $A \lor (A \land B) \equiv (A \land A) \lor (A \land B) \equiv A \lor (A \land B) \equiv (A \lor A) \land (A \lor B) \equiv A \land (A \lor B)$
 - Non vi è un semplice algoritmo basato su queste regole per dimostrare P ≡ Q

Problemi aperti

I seguenti problemi restano quindi aperti:

- Dimostrare che {∧, ∨, ⊥, ⊤, ¬} è funzionalmente completo DIMOSTRAZIONE OMESSA PER QUEST'ANNO: basata sulle mappe di Karnaugh / metodo di Queen Mc Cluskey Grande rilevanza in elettronica
- Trovare un algoritmo efficiente per decidere se P = Q Le tabelle di verità non sono efficienti Con le equivalenze notevoli non si riesce a dare semplicemente un algoritmo