

IOE 373 Lecture 08

Topics

- Preparing a Data Analysis Table
- Date functions
- Recency, Longevity, Mean Time Between Purchases/Transactions

Data Preparation

- Just as manufacturing and refining are about transformation of raw materials into finished products...
- With analytics we need to extract, clean, transform our data to prepare for analysis...

What the Data Should Look Like

- All data in a single table (rows/columns)
- Each row corresponds to an entity (e.g. customer)
- Columns with single/unique value should be ignored (where the same value is observed for all rows)
- Target column identified for predictive analysis (e.g. output variable, what we want to predict)

What the Data Should Look Like

- Customer (Entity) Signature
 - Continuous "snapshot" of customer behavior

Each row represents
the customer and
whatever might be useful
to include in a model

What the Data Should Look Like

- Columns have important <u>Model Roles</u> in Data Modeling/Analysis:
 - Input columns input into the model
 - Target column(s) used only for predictive models – the values are created by the algorithm
 - <u>Ignored columns</u> not used in a particular data mining analysis

Case Study: Automotive Sales Data Analysis Table

- Need to generate a data set for analysis with various factors (inputs or predictors) and one response variable (target) per **Household id**.
 - Predictors:
 - NumCustomers per Household
 - ZipHHMedianIncome
 - NumOrders
 - Recency(days)
 - Longevity(days)
 - Mean Time between purchases (days)
 - NumOrders/Percentage (campaign 2173)
 - Target:
 - Indicator Variable (has the household ordered under campaign 2173, yes or no? (1 or 0)

Cleansing/Checking Duplicates

customerid -	householdid -	gender -	firstname -
5	18792705		J.
6	19842675	M	JERRY
7	20425541	F	GRETCHEN
8	24916819		
9	18467513	F	JOAN
10	19840635	F	HANNE
11	20680937		B.
12	18861747		ROMAN
13	19321406		P.
14	18701167	F	KATHLEEN
15	19793375		J.
16	18370825	M	FRANK
17	19334762	F	MADELINE
18	21298187		HENRY
19	19327075	F	ROBERTA
20	18158507	M	JOSEPH
21	19159162	M	BENEDICT
22	19613746	M	ARMAND
23	20634581	F	LINDA
24	19467302		E.
25	19467302		E.
26	19467302		E.

Removing duplicates

SELECT MIN([Copy Of Customer].customerid) AS customerid, [Copy Of Customer].householdid, [Copy Of Customer].gender, [Copy Of Customer].firstname, COUNT(*) as NumCopies **INTO Customer** FROM [Copy Of Customer] GROUP BY [Copy Of Customer].householdid, [Copy Of Customer].gender, [Copy Of Customer].firstname

Time related variables

DATEDIFF Function

- Calculates the difference between 2 dates.
- Syntax:
 - DateDiff (interval, date1, date2)

```
DateDiff ("yyyy", #15/10/1998#, #22/11/2003#)

Result: 5

DateDiff ("m", #15/10/2003#, #22/11/2003#)

Result: 1

DateDiff ("d", #15/10/2003#, #22/11/2003#)

Result: 38
```

Interval	Explanation
уууу	Year
q	Quarter
m	Month
у	Day of year
d	Day
w	Weekday
ww	Week
h	Hour
n	Minute
S	Second

DateValue Function

- Converts a string to a date.
- Sintax:
 - DateValue (string_date)

Recency

Select householdid, MAX(orderdate) as MaxDate, DATEDIFF("d", MaxDate, #10/2/2018#) as Recency_days FROM orders INNER JOIN customer ON orders.customerid=customer.customerid GROUP BY householdid

Recency

```
SELECT householdid, MAX(orderdate) as maxdate, DATEDIFF("d", maxdate, #10/2/2018#) as recency_days

FROM orders INNER JOIN customer ON orders.customerid = customer.customerid

WHERE orderdate < datevalue("10/02/2018")

GROUP BY householdid

ORDER BY householdid;
```


Longevity

ORDER BY householdid;

SELECT householdid, MIN(orderdate) as mindate,
DATEDIFF("d", mindate, datevalue("10/02/2018")) as
longevity_days
FROM orders INNER JOIN customer ON
orders.customerid = customer.customerid
WHERE orderdate < datevalue("10/02/2018")
GROUP BY householdid

Mean Time Between Purchases

Mean Time Between Purchases

Mean Time Between Purchases

```
SELECT householdid, MIN(orderdate) as mindate,
MAX(orderdate) as maxdate, COUNT(*) as
numorders, round(DATEDIFF("d", mindate,
maxdate) / (numorders - 1), 0) as
MeanTimeBP_Days
```

FROM orders as o INNER JOIN customer as c ON o.customerid = c.customerid

WHERE orderdate < datevalue("10/02/2018")

GROUP BY householdid

HAVING COUNT(*) > 1

ORDER BY householdid

Full Table (Recency, Longevity, MTBP)

SELECT householdid, **count(*) as NumCustomersHH**, MIN(orderdate) as mindate,

MAX(orderdate) as maxdate, COUNT(*) as numorders, DATEDIFF("d", maxdate, datevalue("10/02/2018")) as recency_days, DATEDIFF("d", mindate, datevalue("10/02/2018")) as longevity_days, round(DATEDIFF("d", mindate, maxdate) / (numorders - 1), 0) as MeanTime_Days

FROM orders as o INNER JOIN customer as c ON o.customerid = c.customerid

WHERE orderdate < datevalue("10/02/2018")

GROUP BY householdid

HAVING COUNT(*) > 1

ORDER BY householdid

Full Table (ZipCensus Info)

```
SELECT householdid, count(c.customerid) as
NumCustomersHH, Max(z.hhmedincome) AS ZipHHMedIncome,
MIN(orderdate) as mindate, MAX(orderdate) as maxdate,
count(*) as numorders, DATEDIFF("d", maxdate,
datevalue("10/02/2018")) as recency_days,
DATEDIFF("d", mindate, datevalue("10/02/2018")) as
longevity_days, round(DATEDIFF("d", mindate, maxdate) /
(numorders - 1), 0) as MeanTime_Days
   FROM (orders AS o INNER JOIN customer AS c ON
o.customerid = c.customerid) INNER JOIN Zipcensus As z ON
o.zipcode=z.zipcode
   WHERE orderdate < datevalue("10/02/2018")
   GROUP BY householdid
   HAVING COUNT(*) > 1
ORDER BY householdid
```

Full Table (Create Final Table with target variable)

```
SELECT householdid, count(c.customerid) as NumCustomersHH,
Max(z.hhmedincome) AS ZipHHMedIncome, MIN(orderdate) as
mindate, MAX(orderdate) as maxdate, COUNT(*) as numorders,
DATEDIFF("d", maxdate, datevalue("09/30/2014")) as
recency_days, DATEDIFF("d", mindate,
datevalue("09/30/2014")) as longevity_days,
round(DATEDIFF("d", mindate, maxdate) / (numorders - 1), 0) as
MeanTime_Days, SUM(IIF(o.campaignid=2173, 1, 0)) as
NumCampaign2173, SUM(IIF(o.campaignid=2173, 1, 0))/Count(*)*100 AS
PercentCampaign2173, MAX(IIF(o.campaignid=2173, 1, 0)) as
Campaign2173IND INTO FinalTable
   FROM (orders AS o INNER JOIN customer AS c ON o.customerid =
c.customerid) INNER JOIN Zipcensus As z ON o.zipcode=z.zipcode
   WHERE orderdate < datevalue("10/02/2018")
   GROUP BY householdid
   HAVING COUNT(*) > 1 And Count(*)<=10
ORDER BY c.householdid;
```


Final Table

householdid -	Num +	ZipHHMedIn -	mindate -	maxdate 🛨	numc 🕶	recency_day -	longevity_da -	MeanTime_[-	Num(+	Percent -	Camr +
18122420	2	117487	11/26/2012	6/17/2014	2	105	673	568	0	0	0
18127110	2	73553	2/10/2011	11/14/2011	2	1051	1328	277	0	0	0
18132047	2	111492	11/5/2009	12/4/2011	2	1031	1790	759	1	50	1
18140431	2	93785	8/17/2010	4/17/2014	2	166	1505	1339	0	0	0
18141105	2	72165	5/29/2013	2/16/2014	2	226	489	263	0	0	0
18149246	2	74903	12/28/2011	12/12/2012	2	657	1007	350	0	0	0
18154604	2	44518	9/5/2011	6/11/2012	2	841	1121	280	0	0	0
18156898	2	57132	1/18/2011	2/7/2011	2	1331	1351	20	0	0	0
18166768	2	128524	3/12/2011	4/30/2014	2	153	1298	1145	0	0	0
18176069	2	60043	9/22/2010	12/12/2011	2	1023	1469	446	1	50	1
18180758	2	71295	12/2/2011	3/28/2014	2	186	1033	847	1	50	1
18181625	2	91527	11/19/2012	4/15/2013	2	533	680	147	0	0	0
18182422	2	68368	12/15/2012	12/3/2013	2	301	654	353	0	0	0
18185812	2	61472	12/6/2010	8/20/2014	2	41	1394	1353	0	0	0
18194342	2	60672	11/17/2009	12/14/2010	2	1386	1778	392	1	50	1
18194384	2	58379	6/26/2011	2/7/2012	2	966	1192	226	0	0	0
18198908	2	62932	3/29/2012	11/30/2012	2	669	915	246	0	0	0
18204124	2	105971	6/14/2010	12/14/2011	2	1021	1569	548	0	0	0
18211103	2	67285	11/17/2010	9/21/2011	2	1105	1413	308	2	100	1

Case Study: Car Sales A4 Model (ExampleDB.acccdb)

- Need to generate a data set for analysis with various factors (inputs or predictors) and one response variable (target) per ADDRESS_ID.
 - Predictors:
 - Total Audi Vehicles
 - Percent Audi Vehicles
 - Total VW Vehicles
 - Percent VW Vehicles
 - Total New
 - Percent New
 - Recency(months)
 - Longevity(months)
 - Mean Time between purchases (months)
 - Is the Address in an area with MedianIncome>\$30,000 (1 or 0)
 - Target:
 - A4 Indicator Variable (has the household purchased an A4, yes or no? (1 or 0)

Remove Duplicates

```
SELECT FORMAT(MIN(NEW HH AUD OLD.ADDRESS ID),"#") AS ADDRESS ID, NEW HH AUD OLD.VIN,
NEW HH AUD OLD.GENDER, NEW HH AUD OLD.Male Female Other, NEW HH AUD OLD.ZIP CODE,
NEW HH AUD OLD. VEHICLE SEGMENT, NEW HH AUD OLD. SALE DATE, NEW HH AUD OLD. SALE YEAR,
NEW_HH_AUD_OLD.DISPOSAL_DATE, NEW_HH_AUD_OLD.SALE_MDL_YEAR,
NEW HH AUD OLD.SALE BRAND, NEW HH AUD OLD.BODY NAME, NEW HH AUD OLD.BODY CATG,
NEW HH AUD OLD.KIND OF SALE, NEW HH AUD OLD.DEALER CODE,
NEW HH AUD OLD.DEALER REGION, NEW HH AUD OLD.DEALER CNTY,
NEW HH AUD OLD.BASIC WRNTY END DATE, NEW HH AUD OLD.ADDI WRNTY END DATE,
NEW_HH_AUD_OLD.LEASE_OR_PURCHASE, NEW_HH_AUD_OLD.CLAIM_COUNT,
NEW HH AUD OLD.RECALL COUNT, NEW HH AUD OLD.[Still Owned?],
NEW HH AUD OLD.MonthsSincePurchase, NEW HH AUD OLD.NewUsed,
NEW HH AUD OLD.ExtendedWarranty, COUNT(*) AS NUM COPIES INTO NEW HH AUD
FROM NEW HH AUD old
GROUP BY NEW HH AUD old.VIN, NEW HH AUD OLD.GENDER, NEW HH AUD OLD.Male Female Other,
NEW HH AUD OLD.ZIP CODE, NEW HH AUD OLD.VEHICLE SEGMENT, NEW HH AUD OLD.SALE DATE,
NEW HH AUD OLD.SALE YEAR, NEW HH AUD OLD.DISPOSAL DATE, NEW HH AUD OLD.SALE MDL YEAR,
NEW HH AUD OLD.SALE BRAND, NEW HH AUD OLD.BODY NAME, NEW HH AUD OLD.BODY CATG,
NEW HH AUD OLD.KIND OF SALE, NEW HH AUD OLD.DEALER CODE,
NEW HH AUD OLD.DEALER REGION, NEW HH AUD OLD.DEALER CNTY,
NEW_HH_AUD_OLD.BASIC_WRNTY_END_DATE, NEW_HH_AUD_OLD.ADDI_WRNTY_END_DATE,
NEW HH AUD OLD.LEASE OR PURCHASE, NEW HH AUD OLD.CLAIM COUNT,
NEW HH AUD OLD.RECALL COUNT, NEW HH AUD OLD.[Still Owned?],
NEW HH AUD OLD, Months Since Purchase, NEW HH AUD OLD, New Used,
NEW HH AUD OLD. Extended Warranty
ORDER BY COUNT(*) DESC:
```


Analysis Table

```
SELECT NEW HH AUD.ADDRESS ID, count(*) AS TOT VEH,
SUM(IIF(NEW HH AUD.SALE BRAND="AUD",1,0)) AS TOT AUD,
SUM(IIF(NEW HH AUD.SALE BRAND="AUD",1,0))/count(*) AS PERCENT AUD,
SUM(IIF(NEW_HH_AUD.SALE_BRAND="VLK",1,0)) AS TOT_VLK,
SUM(IIF(NEW HH AUD.SALE BRAND="VLK",1,0))/count(*) AS PERCENT VLK,
SUM(IIF(NEW HH AUD.KIND OF SALE="New", 1,0)) AS Tot NEW,
SUM(IIF(NEW_HH_AUD.KIND_OF_SALE="New", 1,0))/count(*) AS Percent_New,
SUM(IIF(NEW HH AUD.BODY NAME="A4",1,0)) AS Tot A4,
SUM(IIF(NEW_HH_AUD.BODY_NAME="A4",1,0))/count(*) AS Percent_A4,
SUM(IIF(NEW HH AUD.BODY NAME="A6",1,0)) AS Tot A6,
SUM(IIF(NEW_HH_AUD.BODY_NAME="A6",1,0))/count(*) AS Percent_A6,
SUM(IIF(NEW HH AUD.BODY NAME="A3",1,0)) AS Tot A3,
SUM(IIF(NEW_HH_AUD.BODY_NAME="A3",1,0))/count(*) AS Percent_A3,
datediff("m",max(SALE_DATE),now()) AS RecencyMonths, datediff("m",min(SALE_DATE),
now()) AS LongevityMonths, round(DATEDIFF("m", min(SALE_DATE), max(SALE_DATE)) /
(TOT_VEH - 1), 0) AS MTBP, Max(IIF(Zipcensus.hhmedincome>30000,1,0)) AS
ZipMedIncome 30, MAX(IIF(BODY NAME="A4",1,0)) AS Target A4 Ind
FROM NEW HH AUD INNER JOIN Zipcensus ON NEW HH AUD.ZIP CODE=Zipcensus.zipcode
GROUP BY NEW HH AUD.ADDRESS ID
HAVING COUNT(*)>1 AND COUNT(*) <=10;
```


Final Table

ADD	RESS_ID -	TOT_V	ÆH →	TOT_	AUD -	PERCEI	NT_AUD +	TO	OT_VLK +	PE	ERCENT_VLK -	Tot_NEW -	Percent_Nev →	Tot_A4 →	
1001274	98986965000		2		1		0.5		1		0.5	1	. 0.5	1	
1001275	12834526000		2		2		1		0		() (0	1	
1001275	68209423000		7		1	0.14285	7142857143		6	0.8	357142857142857	7	1	1	
1001275	68480657000		2		2		1		0		() 2	1	1	
	68496640000		2		2		1		0		() 1	. 0.5	2	
	68519173000		2		2		1		0		() 2	1	2	
	69770182000		2		2		1		0		() 2	1	0	
1001275	reiteiit_A4	•	Tot_A6		Percent_	A6 -	Tot_A3	•	Percent_A3	•	RecencyMon -	LongevityMo -	MTBP -	ZipMedIncor -	Target_A4_Ir -
1001275		0.5		0		0		0		0	92	132	40) 1	1
1001275		0.5		0		0		0		0	113	150	37	7 1	1
1001275	0.14285714285	7143		0		0		0		0	102	131	. 5	5 1	1
		0.5		0		0		0		0	96	152			1
		1		0		0		0		0	122	148		5 1	1
		1		0		0		0		0	97	124			1
		0		0		0		0		0	95	145			L O
		1		0		0		0		0	137	137			1
		1		0		0		0		0	115	150			1
		0.5		1		0.5		0		0	99	135			1
		0		0		0		0		0	134	149			0
		0		0		0		0		0	99	135			0
		0.5		0		0		0		0	95	130	35		1