

SET THEORY

Dr. Isaac Griffith

IDAHO STATE UNIVERSITY

Set Theory

- Set Theory: One of the fundamental branches of mathematics
- Has a deep connection to Logic, as we'll see
- The notation and terminology is quite useful for describing both data types and algorithms

Outline

The lecture if structured as follows:

- Set Notation
- Set Operations
- Finite Sets with Equality
- Set Laws (Identities)
- · Proofs with Sets
- Advanced Concepts

- A set is a collection of objects called members or elements
- We can describe a set simply by listing all of its elements between branches $\{\ldots\}$, this is called the roster method
 - Example:
 A = {dog, cat, horse}
 C = {0,1,2,3,4}
 E = {}
 N = {0,1,2,3,...}
- An element may only occur once in a given set
 - Thus, we can test membership using the membership operator ∈ which returns True or False
 - ullet Similarly, we can test lack of membership with the not a member operator otin
 - Examples:

```
dog \in A = True

dog \notin A = False
```


- Sets can have any number of elements
 - A has 3 elements
 - C has 5 elements
 - E has 0 elements
 - N has infinite elements
- The empty set, {}, is special and is denoted as Ø
- Sets tend to be denoted using a capital letter or as block font (i.e., S)

Some Important Sets

- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$, the set of natural numbers
- $\mathbb{Z} = \{\dots, -2, -1, 0, -1, -2, \dots\}$, the set of all integers
- $\mathbb{Z}^+ = \{1,2,3,\ldots\}$, the set of all positive integers
- $\mathbb{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$, the set of all rational numbers
- \mathbb{R} = the set of real numbers
- $\mathbb{Q}^+\{x\in\mathbb{R}^+\mid x=rac{p}{q}, ext{ for some positive integers } p,q\}$, the set of positive rational numbers
- R⁺, the set of positive real numbers

- Another standard method of set notation is the set comprehension or set builder notation
 - In its simplest form, it is written as:

$$\{x \mid p \mid x\}$$

Where:

- px is a predicate, which defines those items to be included
- Read as: "The set of x such that px"
- General Form:

$$\{f \mid x \mid p \mid x\}$$

- Set contains values of the results of applying f to those values which satisfy p x
- Example:
 - Set of even numbers $\{x \mid x \in \mathbb{N} \land even x\}$

- In calculus, we study sets called **intervals**, which are sets of real numbers between two numbers a and b, and may include/exclude a and b.
- If $a, b \in \mathbb{R} \land a \leq b$, we denote these intervals by:

$$\begin{array}{lcl} [a,b] &=& \{x\mid a\leq x\leq b\} &\Rightarrow & \text{closed interval} \\ [a,b) &=& \{x\mid a\leq x< b\} \\ (a,b] &=& \{x\mid a< x\leq b\} \\ (a,b) &=& \{x\mid z< x< b\} &\Rightarrow & \text{open interval} \end{array}$$

- In CS, the concept of a data type or type is based on the set concept
 - Data type or type is the name of a set, together with a set of operations that can be performed on objects of that set.
 - Example: Boolean = {True, False} together with the operators $\land, \lor, \rightarrow, \leftrightarrow, \neg$

Venn Diagrams

- A graphic notation for sets named after John Venn who introduced these diagrams in 1881
- Starts with a rectangle labeled *U*, which represents the **universal set** that contains all objects under consideration
- Inside the rectangle we use shapes, typically circles or ellipses, to represent sets
- Inside sets, we can use points to show specific members

Subsets

• Subset: the set A is a subset of B, and B is a superset of A, iff every element of A is also an element of B

$$A \subseteq B$$
 — A is a subset of B
 $B \supseteq A$ — B is a superset of A
 $A \subseteq B$ \equiv $B \supseteq A$
 $A \subseteq B$ \leftrightarrow $\forall x. (x \in A \rightarrow x \in B)$

- To show that A is a subset of B
 - Show that if x belongs to A, then x also belongs to B
- To show that A is not a subset of B
 - To show $A \nsubseteq B$, find a single $x \in A$ such that $x \notin B$
- For every set *S*:
 - Ø ⊂ S
 - $S \subset S$

Set Equality

- Set Equality: To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$
- If we have two sets A and B, where A is a subset of B but where A ≠ B, then we call A a proper subset of B, denoted as:

$$A \subset B$$

For $A \subset B$ to be true, then

$$\forall x. (x \in A \rightarrow x \in B) \land \exists x. (x \in B \land x \notin A)$$

• Note: Sets may also contain other sets as members $A = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $B = \{x \mid x \subseteq \{a,b\}\}$ A = B

Cardinality

- Cardinality: Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say S is a finite set and that n is the cardinality of S.
 - We denote the cardinality of a set S as: |S|
- Example:
 - The set, A, of odd positive integers < 10. |A| = 5
 - The set, S, of letters in the English alphabet. |S| = 26
 - The empty set. $|\varnothing| = 0$
- A set is said to be infinite if it is not finite.
 - \mathbb{Z}^+ is infinite

Power Sets

• Powerset: Let A be a set. The powerset, written $\mathcal{P}(A)$, is the set of all subsets of A:

$$\mathcal{P}(A) = \{ s \mid s \subseteq A \}$$

- Examples:
 - $\mathcal{P}(\emptyset) = \{\emptyset\}$
 - $\mathcal{P}(\{a\}) = \{\emptyset, \{a\}\}$
 - $\mathcal{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$
 - $\mathcal{P}(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$
- If |A| = n, then $|P(A)| = 2^n$

Cartesian Products

- Often order of elements is important, but sets are unordered, so we often need something else
- Ordered n-tuple: $(a_1, a_2, ..., a_n)$ is an ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its n^{th}
 - we say two ordered n-tuples are equal iff each corresponding pair is equal
 - Ordered 2-tuples are called ordered pairs
 - The ordered pairs (a, b) and (c, d) are equal iff a = b and c = d
- Cartesian Product: Let A and B be sets. The cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

• Example: $A = \{1, 2\}$, $B = \{a, b, c\}$ $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\} \Rightarrow$ The zip function comes to mind

Cartesian Products

• The cartesian product of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \dots, a_n) , where a_i belongs to A_i for $i = 1, 2, \dots, n$

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \ldots, n\}$$

- Example: $A = \{0,1\}$, $B = \{1,2\}$, $C = \{0,1,2\}$ $A \times B \times C = \{(0,1,0),(0,1,1),(0,1,2),(0,2,1),(0,2,1),(0,2,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2),\}$
- A subset R of the Cartesian product A × B is called a relation from the set A to the set B, where
 the elements of R are ordered pairs, with the first element belonging to A and the second to B.

Sets and Quantifiers

Often we restrict the domain of a quantified statement

```
\forall \ x \in S(P(x)), which is shorthand for \forall \ x.(x \in S \to P(x))
"Universal quantification of P(x) over all elements in S"
```

 $\exists x \in S(P(x))$, short hand for $\exists x.(x \in S \land P(x))$ "Existential quantification of P(x) over all elements in S"

• Truth Set: Given a predicate P, and a domain D, the truth set of P is the set of elements $x \in D$ for which P(x) is true.

That is the Truth Set of $P(x) = \{x \in D \mid P(x)\}$

- $\forall x.P(x)$ is true over the domain *U* iff the truth set of *P* is *U*
- $\exists x.P(x)$ is true over the domain *U* iff the truth set of *P* is not empty.

Union, Intersection, and Difference

• **Union** (\cup): The *union* of two sets *A* and *B*, written $A \cup B$, is the set that contains all elements that are in either *A* or *B*, or both

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

• Intersection (\cap): The *intersection* of two sets A and B, written $A \cap B$, is the set that contains all elements that are in *both* A and B.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

• **Difference** (—): The *difference* of two sets A and B, written A - B, is the set of all elements that are in A but not in B

$$A - B = \{x \mid x \in A \lor x \notin B\}$$

- $|A \cup B| = |A| + |B| |A \cap B|$
 - Note: |A| + |B| counts elements twice hence the need to subtract $|A \cap B|$

Union, Intersection, and Difference

• Example: $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{4, 5, 6\}$

• Example: Let

 $\mathbb{I} - \mathbb{W}$ is the set of integers not representable in a word

Symmetric Difference

• Symmetric Difference: The symmetric difference of two sets A and B, written $A \oplus B$ is the set containing those elements in either A or B, but not is both A and B

$$A \oplus B = \{x | (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$$

Identities:

- $A \oplus A = \emptyset$ $A \oplus B$
 - $A \oplus B = B \oplus A$
- $A \oplus U = \overline{A}$
- $(A \oplus B) \oplus B = A$
- $A \oplus \varnothing = A$
- $A \oplus B = (A \cup B) (A \cap B)$
- $A \oplus \overline{A} = U$
- $A \oplus B = (A B) \cup (B A)$

Venn Diagram:

Disjoint Sets

- **Disjoint Sets:** For any two sets A and B, if $A \cap B = \emptyset$ then A and B are disjoint sets
- Example: $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8, 10\}$ $A \cap B = \emptyset$, thus A and B are disjoint
- Venn Diagram:

Set Complement

• Complement: Let U be the *universal set* and A be a set. The *complement* of A, written A' or \overline{A} , is the set U - A

$$\overline{A} = \{x \in U | x \notin A\}$$

• Note: $A - B = A \cup \overline{B}$

Example:

$$D = \{0, 1, 2, \dots, 9\}$$

$$L = \{a, b, \ldots, z\}$$

$$U = L \cup D$$

$$\overline{D} = L$$

$$\overline{I} = D$$

Example:
$$U = \{1, 2, 3, 4, 5\}$$

$$\overline{\{1,2\}} = \{3,4,5\}$$

Venn Diagram:

CS 1187

Finite Sets with Equality

- Finite Set with Equality: a set with a finite number of elements and for which we have a function to test the equality of two elements from the universe
 - These are important in computation as they can ensure computation over finite sets may terminate
- We can represent sets using a list, but there are important differences between lists and sets:
 - 1. Lists can have duplicate items
 - 2. These is a fixed order to the elements of a list
 - 3. All elements in a list must be of the same type

Finite Sets with Equality

- To perform any useful computations involving sets, we must be able to determine if an element is in the set
 - This requires the ability to test if two values are the same (using ==)
 - Simple for elementary types, but difficult for compound types and functions
 - In Haskell, we can express the fact that it is possible to compare elements for equality, by using type restrictions:

```
Eq a => [a] -- as we use a list to represent a set
```

Additionally, we want the ability to print the set, so we add the following additional restriction:

```
(Eq, Show) a => [a]
```

Finite Sets with Equality

- Using lists to represent sets requires some care, specifically because
 - There is a possibility of duplicates
 - There is an ordering of the elements
- To ensure we do not allow duplicates, we need a means by which we can represent sets using a normal form, which contains no duplicates
 - All operations will then ensure their results are in normal form
- However, because order matters in lists, but not in sets the list [3, 2, 1] is different from the list [1, 2, 3], but as sets these are the same.
 - Thus, to alleviate this issue, we will ensure the sets are similarly ordered

Finite Sets With Equality

- An ordered list, requires that the contained elements are comparable using the (<, =, >)
 operators
 - This requires we add another type constraint:

- This says that there must be an ordering on the element type a, which can be used to determine the relations
 <, ≤, =, ≠, >, ≥
- The methods to define lists can also be used to define sets
 - Enumerated set: defined by simply listing the elements (roster method)
 - Sequence: when enumeration is too tedious: $\{0,1,2,\ldots,1000\}$ \Rightarrow [0,1..1000]
 - Set Comprehension: $\{x^2 \mid x \in \{0, 1, \dots, n\}\} \Rightarrow [x^2 \mid x \leftarrow [0 \dots n]]$

Computing with Sets

• We can define a set type as:

```
type Set a = [a]
```

The universe of discourse

```
universe -- global var
```

Operations:

 The following are functions we can use on finite sets with equality. Each of these functions always returns a set in normal form

```
normalForm :: (Eq a, Show a) => [a] -> Bool -- checks if in normal form
normalizeSet :: (Eq a, Show a) => [a] -> Bool -- normalizes a set
```

Computing with Sets

• Symbolic operators for set operations

```
A+++B = A \cup B
A***B = A \cap B
A\sim\sim B = A - B
```

```
(+++) :: (Eq a, Show a) => Set a -> Set a -> Set a (***) :: (Eq a, Show a) => Set a -> Set a -> Set a (~~~) :: (Eq a, Show a) => Set a -> Set a -> Set a
```

Other Operations

```
subset, properSubset :: (Eq a, Show a) => Set a -> Set a -> Bool
setEq :: (Eq a, Show a) => Set a -> Set a -> Bool
complement S = universe ~~~ S
powerset :: (Eq a, Show a) => Set a -> Set (Set a)
crossproduct :: (Eq a, Show a, Eq b, Show b) => Set a -> Set b -> Set (a, b)
```

Other Representations

- There are many ways to represent sets using computers.
 - For example, ti may be tempting to store a set in an ad hoc unordered way
 - However, this is inefficient due to the large number of searches required to perform the various basic set operations
- Another way is to use an arbitrary ordering of elements on the universal set
- This requires a few assumptions
 - 1. The universe is finite
 - 2. The $|{\it U}|<$ memory size of the computer

Other Representations

- We first specify the arbitrary ordering (i.e., ascending in value)
 - This creates the sequence in $U: a_1, a_2, \ldots, a_n$
- We then represent a subset A of U with a length n bit string
 - where the *ith* bit is 1 if a_i belongs to A and is 0 otherwise

Example:

```
\begin{array}{lll} \textbf{U} & = & \{1,2,3,4,5,6,7,8,9,10\} \\ \textbf{O} & = & \text{the odd numbers in U} = \{1,3,5,7,9\} \\ \textbf{E} & = & \text{the even numbers in U} = \{2,4,6,8,10\} \end{array}
```

O is represented as: $10\ 1010\ 1010$

E is represented as: 01 0101 0101

Other Representations

Operations:

- Complement: of a set S is performed by taking the bitwise NOT of each bit in the bit string
- Union: of sets S and T is performed by taking the bitwise OR of S and T's' bit string representations
- Intersection: of sets S and T is performed by taking the bitwise AND of S and T's bit string representations

Example:

CS 1187

Set Laws

{Premise}

 $\{\mathsf{Def}.\ \subseteq\}$

{Premise}

 $\{\mathsf{Def}. \subset \}$

- Often in carrying out set operations or in describing the properties of algorithms, we often need to use several operators together
- Fortunately, set operations satisfy a number of basic laws that simplify their use
- The first of which is:

 $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

Proof: Let x be any element of the universe

- 1. $A \subseteq B$
- $2. x \in A \rightarrow x \in B$
- 3. $B \subseteq C$
- 4. $x \in B \rightarrow x \in C$
- 5. $x \in A \rightarrow x \in C$
- {2, 4, chain rule}
- 6. $\forall x. (x \in A \rightarrow x \in C) \{ \forall \text{ introduction} \}$
- 7. $A \subseteq C$ {Def. \subset }

Basic Laws

Laws: For any set A in universe U

Identity Laws

$$A \cap U = A$$

$$A \cup \varnothing = A$$

Idempotent Laws

$$A \cup A = A$$

$$A \cap A = \emptyset$$

Domination Laws

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

Double Complementation Law

$$\overline{(\overline{A})} = A$$

Commutative and Associative

{Premise}

{Comm. \wedge }

{**Def**. ∩}

{**Def**. ∩}

{{**/**}}} {Def. set eq.

Laws: For all sets A. B. and C

 $\overline{A - B} = \overline{A \cap \overline{B}}$

Set Theory Page 35/49

Dr. Isaac Griffith.

 $A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap (B \cap C) = (A \cap B) \cap C$

 $A \cup B = B \cup A$

1. $x \in A \cap B$

4. $x \in B \cap A$

2. $x \in A \land x \in B$

3. $x \in B \land x \in A$

6. $A \cap B = B \cap A$

Example: Prove $A \cap B = B \cap A$

5. $\forall x \in U.x \in A \cap B \leftrightarrow x \in B \cap A$

 $A \cap B = B \cap A$

Distribution and DeMorgan's

Laws: For any sets A, B, C and universe U

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}
\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

$$=$$
 A $=$ A

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

Proofs with Sets

CS 1187

Using Membership Tables

- We can prove set identities using set membership tables
 - Here, we consider each combination of atomic sets (original sets used to produce the sets on each side of an identity) that an element can belong to.
 - We then verify that elements on the same combinations belong to both the sets in the identity
 - To indicate an element is in a set we us a 1, otherwise a 0
- Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	$A\cap C$	$(A\cap B)\cup (A\cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Using Identities

- Once we have proved set identities (laws), we can use them to prove new identities through equational reasoning
- Example: Let A, B, and C be sets

Show that
$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

$$\overline{A \cup (B \cap C)}$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C}) \qquad \{\text{DeMorgan's law}\}$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A} \qquad \{\text{Commutative law}\}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A} \qquad \{\text{Commutative law}\}$$

CS 1187

Generalized Union and Intersection

- We can calculate the union of several sets using the ∪ operator.
 - Because it is associative, statements such as $A \cup B \cup C$ are unambiguous
- Similarly we can also find the intersection of multiple sets using a statement such as $A \cap B \cap C \cap D$
- However, attempting to visualize the union or intersection of 4+ sets starts to get difficult.

Generalized Union and Intersection

- Sometimes it becomes necessary to compute the union or intersection of a collection of sets.
- The corresponding operations which handle this are often called big union and big intersection
- Let *C* be a non-empty collection of subsets of *U*. Let *I* be a non-empty set, and for each $i \in I$ let $A_i \subseteq C$, then

$$\bigcup_{i\in I} A_i = \{x \mid \exists i \in I. \ x \in A_i\} \qquad \bigcap_{i\in I} A_i = \{x \mid \forall i \in I. \ x \in A_i\}$$

- We could also consider writing these same definitions as follows: $\bigcup_{A \in \mathcal{C}} A = \{x \mid \exists \ A \in \mathcal{C}. \ x \in A\} \qquad \bigcap_{A \in \mathcal{C}} A = \{x \mid \forall \ A \in \mathcal{C}. \ x \in A\}$
- In either case

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$$
 $A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$

Multisets

- Multiset: An unordered collection of elements, where an element can occur as a member more than once
 - Notation: $\{m_1 \cdot a_1, m_2 \cdot a_2, \dots, m_r \cdot a_r\}$ denotes the multiset with element a_1 occurring m_1 times, element a_2 occurring m_2 times and so on.
 - The numbers m_i , i = 1, 2, ..., r are called multiplicities of the elements a_i , i = 1, 2, ..., r
 - Elements not in the multiset have a multiplicity of 0

Cardinality: The cardinality of a multiset is defined as the sum of the multiplicities of its elements

• Examples:

$$P = \{4 \cdot a, 1 \cdot b, 3 \cdot c\}$$

 $|P| = 4 + 1 + 3 = 8$

Multiset Operations

- **Union:** the *union* of multisets P and Q is the multiset in which the multiplicity of an element is the maximum of its multiplicities in P and Q. Written as $P \cup Q$
- Intersection: the *intersection* of multisets P and Q is the multiset in which the multiplicity of an element is the minimum of its multiplicities in P and Q. Written as $P \cap Q$
- **Difference:** the *difference* of multisets P and Q is the multiset in which the multiplicity of an element is the multiplicity of the element in P less its multiplicity in Q unless the difference is negative, in which case the multiplicity is 0. Written as P-Q
- Sum: the sum of multisets P and Q is the multiset in which the multiplicity of an element is the sum of the multiplicities in P and Q. Written as P + Q

Multiset Operation Examples

• Example: $P = \{4 \cdot a, 1 \cdot b, 3 \cdot c\}$ and $Q = \{3 \cdot a, 4 \cdot b, 2 \cdot d\}$ $P \cup Q = \{ \max(4,3)a, \max(1,4)b, \max(3,0)c, \max(0,2)d \}$ $= \{4 \cdot \mathbf{a}, 4 \cdot \mathbf{b}, 3 \cdot \mathbf{c}, 2 \cdot \mathbf{d}\}$ $P \cap Q = \{ \min(4,3)a, \min(1,4)b, \min(3,0)c, \min(0,2)d \}$ $= \{3 \cdot \mathbf{a}, 1 \cdot \mathbf{b}, 0 \cdot \mathbf{c}, 0 \cdot \mathbf{d}\}$ $P - Q = \{ \max(4-3,0)a, \max(1-4,0)b, \max(3-0,0)c, \max(0-2,0)d \}$ $= \{1 \cdot \mathbf{a}, 3 \cdot \mathbf{c}\}$ $P + Q = \{(4+3)a, (1+4)b, (3+0)c, (0+2)d\}$ $= \{7 \cdot \mathbf{a}, 5 \cdot \mathbf{b}, 3 \cdot \mathbf{c}, 2 \cdot \mathbf{d}\}$

Fuzzy Sets

- Fuzzy sets are a type of set typically used in AI and ML
- Each element in the universe U has a degree of membership, in fuzzy set S
 - Degree of membership is a real number [0, 1]
- A fuzzy set is denoted by listing the elements with their degree
 - elements with degree 0 are not listed
- Example: $\{0.6 \text{ Alice}, 0.9 \text{ Brian}, 0.4 \text{ Fred}, 0.1 \text{ Oscar}, 0.5 \text{ Rita}\} = F$
- A traditional, or crisp set, is a fuzzy set where all elements that are members have a degree of 1.0 and all other elements have a degree of 0.0

Fuzzy Set Operations

- Union (∪): The union of two fuzzy sets S and T is the fuzzy set S ∪ T where the degree of membership of an element in S ∪ T is the maximum of the degrees of membership of this element in S and T
- Intersection (\cap): The intersection of two fuzzy sets S and T is the set $S \cap T$, where the degree of membership of an element in $S \cap T$ is the minimum of the degrees of membership of this element in S and in T.
- Complement: The complement of a fuzzy set S is the set \overline{S} , with the degree of membership of an element in \overline{S} equal to 1.0 minus the degree of membership fo the element in S

For Next Time

Idaho State Computer University

- Review DMUC Chapter 8
- Review DMA Chapter 2.1 2.2
- · Review this Lecture
- Read DMUC Chapter 3

Are there any questions?