Pravděpodobnost a statistika - zkoušková písemka 27.5.2021

Jméno a příjmení	1	2	3	4	ústní	celkem	známka

Úloha 1. (celkem 36 bodů)

Obecní úřad sledoval provoz motorových vozidel na náměstí své obce během ranních hodin, přesněji od 7:00 do 9:30. Zjistil, že pozorovacím bodem projede v těchto hodinách průměrně 40 motorových vozidel, z nichž je průměrně 5 motorek, zbytek jsou automobily. Jak automobily, tak motorky projíždějí v danou dobu bodem rovnoměrně a nezávisle na sobě. Určete pravděpodobnost, že ve sledovaném čase

- a) na příští motorové vozidlo budeme v daném bodě čekat alespoň 10 minut, (7 bodů)
- b) na příští motorku budeme v daném bodě čekat alespoň 10 minut, (7 bodů)
- c) po 9:00 projedou daným bodem nejvýše tři automobily, (7 bodů)
- d) nejpozději sedmé projíždějící motorové vozidlo je motorka, (7 bodů)
- e) mezi 63 projíždějícími motorovými vozidly bude nejvýše 10 motorek. (Rešte pomocí CLV; 8 bodů).

Úloha 2. (celkem 14 bodů)

	X = -1	X = 0	X = 1
Y=1	1/6	1/12	1/6
Y = -1	1/6	1/4	1/6

- a) Spočtěte korelaci X a Y. (7 bodů)
- b) Rozhodněte, zda jsou X a Y nezávislé, a své tvrzení řádně matematicky zdůvodněte. (7 bodů)

Úloha 3. (celkem 25 bodů)

Paní Nováková pěstuje na balkóně mátu. 15 let sledovala, kolik rostlinek máty jí během léta v jednom konkrétním květináči vyrostlo, a zaznamenala:

19	29	27	32	30	32	27	16	33	24	27	27	23	36	23

a) Nakreslete empirickou distribuční funkci a odhadněte z ní a/nebo z povahy dat, jaké rozdělení má náhodná veličina popisující, kolik rostlinek máty vyroste v tomto květináči během příštího léta. (8 bodů)

- b) Odhadněte z dat střední hodnotu a rozptyl náhodné veličiny z otázky a). (5 bodů) (hint: $\sum x_i = 405$, $\sum (x_i \bar{x})^2 = 406$)
- c) Statisticky otestujte na hladině 5%, zda střední počet rostlinek máty v květináči je rovný 25. (8 bodů)
- d) Je test, který jste použili v otázce c), přesný nebo asymptotický? Proč jste jej mohli použít? (4 body)

Úloha 4. (celkem 25 bodů)

Cestovní kancelář dělala průzkum mezi svými stálými klienty, kteří mj. odpovídali na otázku, jaký typ dovolené by letos preferovali. Mezi respondenty zazněly následující odpovědi:

rodinný stav \downarrow dovolená \rightarrow	hory	moře	zážitková / s doplňkovým programem
svobodní nebo bezdětní	5	16	9
rodiny s nezletilými dětmi	10	25	15
důchodci	5	9	6

- a) Statisticky otestujte na hladině 1%, zda jsou uvedené tři typy dovolené přibližně stejně oblíbené. (8 bodů)
- b) Statisticky otestujte na hladině 5%, zda jsou uvedené tři typy dovolené závislé na rodinném stavu. (8 bodů)
- c) Odhadněte z dat pravděpodobnost, že náhodně vybraný klient z databáze respondentů není důchodce a zároveň chce jet k moři nebo na hory. (4 body)
- d) Odhadněte z dat pravděpodobnost, že náhodně vybraný důchodce z databáze respondentů chce jet k moři nebo na hory. (5 bodů)

Ústní část (celkem 10 bodů)

Mějme funkci

$$f(x) = \begin{cases} (\ln 5) \cdot 5^{-x} & \text{pro } x > 0, \\ 0 & \text{pro } x \le 0. \end{cases}$$

- (i) Rozhodněte, zda se jedná o hustotu pravděpodobnosti nějaké náhodné veličiny X.
- (ii) Pokud jste v bodě (i) rozhodli, že ano, určete distribuční funkci náhodné veličiny X. Pokud jste v bodě (i) rozhodli, že ne, najděte normalizační konstantu c (tj. hodnotu, jíž bychom museli funkci f vynásobit, aby se o hustotu pravděpodobnosti jednalo).
- (iii) Určete distribuční funkci náhodné veličiny Y = X 2 (kde X je náhodná veličina s hustotou f(x) nebo cf(x) dle Vašich odpovědí v bodech (i) a (ii)).