Lineare Differentialgleichungen mit konstanten Koeffizienten

Zu einer homogenen linearen Differentialgleichung mit konstanten Koeffizienten

$$Ly = y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0$$

gehört das charakteristische Polynom

$$\operatorname{ch}_L(\lambda) := \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0.$$

Seine Nullstellen heissen Eigenwerte der Gleichung oder des Differentialoperators L.

Zu jedem Eigenwert λ der Multiplizität $m \geq 1$ gehören die Fundamentallösungen $x^{\ell}e^{\lambda x}$ für $0 \leq \ell \leq m-1$. Die Linearkombination dieser Fundamentallösungen zu allen Eigenwerten, mit beliebigen konstanten Koeffizienten, ist die allgemeine Lösung von Ly=0.

Hat L reelle Koeffizienten und möchte man reelle Fundamentallösungen, so muss man dies für nicht-reelle Eigenwerte modifizieren. Dann ordnet man jedem Paar komplex konjugierter Eigenwerte $\mu \pm i\nu \notin \mathbb{R}$ der Multiplizität $m \geq 1$ statt der obigen die reellen Fundamentallösungen $x^{\ell}e^{\mu x}\cos\nu x$ und $x^{\ell}e^{\mu x}\sin\nu x$ für $0\leq\ell\leq m-1$ zu.

Haben alle Eigenwerte die Multiplizität 1, so vereinfacht sich die Situation. Dann gehört zu jedem Eigenwert λ die Fundamentallösung $e^{\lambda x}$, bzw. zu jedem Paar komplex konjugierter Eigenwerte $\mu \pm i\nu \notin \mathbb{R}$ die reellen Fundamentallösungen $e^{\mu x} \cos \nu x$ und $e^{\mu x} \sin \nu x$.

Für die inhomogene lineare Differentialgleichung mit konstanten Koeffizienten Ly = g(x) sucht man zuerst eine partikuläre Lösung y_p . Ihre allgemeine Lösung hat dann die Form $y_h + y_p$, wobei y_h die allgemeine Lösung der zugehörigen homogenen Gleichung Ly = 0 ist.

Sind $y_{p,j}$ partikuläre Lösungen von $Ly = g_j(x)$ und c_j Konstanten für $1 \le j \le k$, so ist $c_1y_{p,1} + \ldots + c_ky_{p,k}$ eine partikuläre Lösung von $Ly = c_1g_1(x) + \ldots + c_kg_k(x)$. Für gewisse g(x) findet man eine partikuläre Lösung durch Ansatz.

Ist λ kein Eigenwert von L, so hat die Gleichung $Ly=e^{\lambda x}$ eine partikuläre Lösung der Form $Be^{\lambda x}$. Die Konstante B bestimmt man durch Einsetzen und Koeffizientenvergleich.

Ist λ kein Eigenwert von L und p(x) ein Polynom vom Grad r, so hat die Gleichung $Ly = p(x)e^{\lambda x}$ eine partikuläre Lösung der Form $q(x)e^{\lambda x}$ für ein Polynom q(x) vom Grad r. Die Koeffizienten von q(x) bestimmt man durch Einsetzen und Koeffizientenvergleich.

Ist λ ein Eigenwert der Multiplizität m und p(x) ein Polynom vom Grad r, so hat die Gleichung $Ly = p(x)e^{\lambda x}$ eine partikuläre Lösung der Form $q(x)e^{\lambda x}$ für ein Polynom q(x) vom Grad r + m.

Hat L reelle Koeffizienten und nicht die Eigenwerte $\mu \pm i\nu$, so hat die Gleichung $Ly = A_1 e^{\mu x} \cos \nu x + A_2 e^{\mu x} \sin \nu x$ eine partikuläre Lösung der Form $B_1 e^{\mu x} \cos \nu x + B_2 e^{\mu x} \sin \nu x$ für Konstanten B_1 und B_2 .

Hat L reelle Koeffizienten und Nullstellen $\mu \pm i\nu$ der Ordnung m, und sind $p_1(x)$ und $p_2(x)$ Polynome vom Grad $\leq r$, so hat die Gleichung $Ly = p_1(x)e^{\mu x}\cos\nu x + p_2(x)e^{\mu x}\sin\nu x$ eine partikuläre Lösung der Form $q_1(x)e^{\mu x}\cos\nu x + q_2(x)e^{\mu x}\sin\nu x$ für Polynome $q_1(x)$ und $q_2(x)$ vom Grad $\leq r + m$.

Für Anfangs-, Rand-, oder sonstige Nebenbedingungen stellt man zuerst die allgemeine Lösung auf und bestimmt dann deren Koeffizienten.