# 건강한 라이프 스타일과 건강

융합소프트웨어학부

60192344 박찬규

60192346 서장호

60221353 윤지원

### 목차

- 문제 정의
  - 주제 변경 이유
  - 주제 선정 및 목표

- 데이터 수집 및 설명
  - 활용 데이터 소개
  - 데이터 전처리

### • 데이터 분석

- 1. Happiness levels에 가장 큰 영향을 미치는 요인 분석
- 2. 비만율과 라이프 스타일 요소들의 관계
- 3. 비만율과 섭취하는 음식 종류의 관계
- 4. 영양결핍률과 섭취하는 음식 종류의 관계
- 5. Lifestlyle과 영양결핍률의 관계
- 6. COVID-19 확진과 비만율의 관계
- 7. 영양결핍률과 COVID-19 치명률, 사망률의 관계
- 데이터 분석 결과

## 문제 정의 – 주제 변경 이유

- 1. 데이터셋 표본의 크기가 너무 작아 유의미한 검정 결과 도출 불가
- 2. 숫자형 데이터를 가진 Column의 수 부족



### 문제 정의 – 주제 선정 및 목표

### '행복수준에 영향을 주는 요인'

### • 문제 정의

: 어떤 요인들이 행복수준에 영향을 주는지 알아보고자 한다. 행복수준을 포함한 다른 수치들에 근거해 도시별 건강한 라이프스타일을 수치로 나열한 healthy\_lifestyle\_city\_2021의 데이터를 바탕으로 행복의 근거들을 예측하고자 한다. 또한 행복에서 우리가 가장 중요하다고 예측한 건강에서 식단, 질병, 영양상태 등의 요소들의 중요성과 다른 생활모습과의 연관성을 찾고자 한다.

### 데이터 수집 방법

: Kaggle을 통해서 두 가지 데이터셋을 수집

- Healthy Lifestyle Cities Report 2021 healthy\_lifestyle\_city\_2021.csv
   https://www.kaggle.com/datasets/prasertk/healthy-lifestyle-cities-report-2021
- 2. COVID-19 Healthy Diet Dataset Food\_Supply\_kcal\_Data.csv https://www.kaggle.com/datasets/mariaren/covid19-healthy-diet-dataset



# 데이터 소개 - life

: 상위 44개 도시의 건강한 라이프스타일 지표를 나타내는 데이터셋

총 45개의 row, 12개의 column으로 구성

1.City (도시): 각 행의 도시 이름.

2.Rank (순위): 도시의 순위(예: 가장 낮은 순위일수록 높은 등급)

3.Sunshine hours (도시의 일조 시간): 해당 도시의 연간 평균 일조 시간

4.Cost of a bottle of water (도시에서의 물 병 가격): 해당 도시에서 물 병의 가격

5.Obesity levels (Country) (비만 수준 - 국가): 해당 도시가 속한 국가의 비만 수준

6.Life expectancy (years) (Country) (평균 수명 - 국가): 해당 도시가 속한 국가의 평균 수명

7.Pollution (Index score) (City) (대기 오염 지수 - 도시): 해당 도시의 대기 오염 지수 점수

8.Annual avg. hours worked (연평균 근로 시간): 근로자들의 연간 평균 근로 시간

9.Happiness levels (Country) (행복 수준 - 국가): 해당 도시가 속한 국가의 행복 수준

10.Outdoor activities (도시에서의 야외 활동): 해당 도시에서 즐길 수 있는 야외 활동의 다양성 수준.

11. Number of take out places (도시의 테이크아웃 장소 수): 해당 도시 내의 테이크아웃 장소의 수

12.Cost of a monthly gym membership (도시에서의 월간 체육관 회원비): 해당 도시에서의 월간 체육관 회원비용.

| City  | Rank | Sunshine<br>hours(City) | Cost of a bottle of water(City) | Obesity<br>levels(Country) | Life<br>expectancy(years)<br>(Country) | Pollution(Index score) (City) | Annual<br>avg.<br>hours<br>worked | Happiness<br>levels(Country) | Outdoor<br>activities(City) | Number of<br>take out<br>places(City) | Cost of a monthly<br>gym<br>membership(City) |
|-------|------|-------------------------|---------------------------------|----------------------------|----------------------------------------|-------------------------------|-----------------------------------|------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|
| dam   | 1    | 1858                    | £1.92                           | 20.40%                     | 81.2                                   | 30.93                         | 1434                              | 7.44                         | 422                         | 1048                                  | £34.90                                       |
| dney  | 2    | 2636                    | £1.48                           | 29.00%                     | 82.1                                   | 26.86                         | 1712                              | 7.22                         | 406                         | 1103                                  | £41.66                                       |
| enna  | 3    | 1884                    | £1.94                           | 20.10%                     | 81.0                                   | 17.33                         | 1501                              | 7.29                         | 132                         | 1008                                  | £25.74                                       |
| nolm  | 4    | 1821                    | £1.72                           | 20.60%                     | 81.8                                   | 19.63                         | 1452                              | 7.35                         | 129                         | 598                                   | £37.31                                       |
| agen  | 5    | 1630                    | £2.19                           | 19.70%                     | 79.8                                   | 21.24                         | 1380                              | 7.64                         | 154                         | 523                                   | £32.53                                       |
| sinki | 6    | 1662                    | £1.60                           | 22.20%                     | 80.4                                   | 13.08                         | 1540                              | 7.80                         | 113                         | 309                                   | £35.23                                       |
| Joka  | 7    | 2769                    | £0.78                           | 4.30%                      | 83.2                                   | -                             | 1644                              | 5.87                         | 35                          | 539                                   | £55.87                                       |
| erlin | 8    | 1626                    | £1.55                           | 22.30%                     | 80.6                                   | 39.41                         | 1386                              | 7.07                         | 254                         | 1729                                  | £26.11                                       |
| lona  | 9    | 2591                    | £1.19                           | 23.80%                     | 82.2                                   | 65.19                         | 1686                              | 6.40                         | 585                         | 2344                                  | £37.80                                       |
| uver  | 10   | 1938                    | £1.08                           | 29.40%                     | 81.7                                   | 24.26                         | 1670                              | 7.23                         | 218                         | 788                                   | £31.04                                       |
| urne  | 11   | 2363                    | £1.57                           | 29.00%                     | 82.1                                   | 25.90                         | 1712                              | 7.22                         | 243                         | 813                                   | £36.89                                       |
| ijing | 12   | 2671                    | £0.26                           | 6.20%                      | 75.4                                   | 85.43                         | -                                 | 5.12                         | 223                         | 261                                   | £38.62                                       |
| gkok  | 13   | 2624                    | £0.22                           | 10.00%                     | 74.1                                   | 76.64                         | -                                 | 5.99                         | 377                         | 1796                                  | £50.03                                       |
| Aires | 14   | 2525                    | £0.57                           | 28.30%                     | 75.9                                   | 52.64                         | -                                 | 5.97                         | 246                         | 1435                                  | £22.45                                       |
| onto  | 15   | 2066                    | £1.09                           | 29.40%                     | 81.7                                   | 37.83                         | 1670                              | 7.23                         | 174                         | 1656                                  | £32.64                                       |
| ıdrid | 16   | 2769                    | £1.30                           | 23.80%                     | 82.2                                   | 52.68                         | 1686                              | 6.40                         | 216                         | 2491                                  | £34.54                                       |
| carta | 17   | 2983                    | £0.21                           | 6.90%                      | 68.5                                   | 84.39                         | -                                 | 5.28                         | 114                         | 833                                   | £29.94                                       |
|       |      |                         |                                 |                            |                                        |                               |                                   |                              |                             |                                       |                                              |

Healthy Lifestyle Cities Report 2021 - healthy\_lifestyle\_city\_2021.csv

# 데이터 전처리 - life

### • 열 이름 변경

: 'City' 열을 'Country'로, 그리고 다른 열 이름들도 주어진 dictionary에 따라 변경

### • 결측치 정제

: 'Sunshine hours', 'Pollution(Index score)', 'Annual avg. hours worked' 열의 결측치를 각각 해당 열의 평균값으로 대체

#### • 단위 기호 제거

: 'Obesity levels', 'Cost of a bottle of water', 'Cost of a monthly gym membership' 열의 값에서 단위 기호를 제거하고 숫자형으로 변환

### • 도시를 국가로 변환

: 'Country' 열의 값 중 일부 도시를 해당 국가로 mapping

# 데이터 소개 - food

- 1. Country (국가): 각 행의 국가 이름
- 2. Alcoholic Beverages (주류 소비): 주류 소비량
- 3. Animal Products (동물성 제품 소비): 동물성 식품의 총 소비량
- 4. Animal Fats (동물성 지방 소비): 동물성 지방의 소비량
- 5. Aquatic Products, Other (수산물 및 기타 수산물 소비): 수산물 및 기타 수산물의 소비량
- 6. Cereals Excluding Beer (곡물 맥주 제외): 맥주를 제외한 곡물의 소비량
- 7. Eggs (계란 소비): 계란의 소비량
- 8. Fish, Seafood (어류, 해산물 소비): 어류 및 해산물의 소비량
- 9. Fruits Excluding Wine (과일 와인 제외): 와인을 제외한 과일의 소비량
- 10. Meat (육류 소비): 총 육류 소비량
- 11. Vegetable Oils (식물성 오일 소비): 식물성 오일의 소비량
- 12. Vegetables (채소 소비): 채소의 소비량
- 13. Obesity (비만율): 국가별 비만율
- 14. Undernourished (국가 내 영양실조율): 국가 내 영양실조율
- 15. Confirmed (확인된 COVID-19 확진자 수): 국가별 확인된 COVID-19 확진자 수
- 16. Deaths (COVID-19 사망자 수): 국가별 COVID-19 사망자 수
- 17. Recovered (COVID-19 회복자 수): 국가별 COVID-19 회복자 수
- 18. Active (활성 COVID-19 환자 수): 현재 활성 상태인 COVID-19 환자 수
- 19. Population (인구): 국가별 인구 수
- 20. Unit (all except Population).

|     | Country                                     | Alcoholic<br>Beverages | Animal<br>Products | Animal<br>fats | Aquatic<br>Products,<br>Other | Cereals -<br>Excluding<br>Beer | Eggs   | Fish,<br>Seafood | Fruits -<br>Excluding<br>Wine | Meat   | <br>Vegetable<br>Oils | Vegetables | Obesity | Undernourished |
|-----|---------------------------------------------|------------------------|--------------------|----------------|-------------------------------|--------------------------------|--------|------------------|-------------------------------|--------|-----------------------|------------|---------|----------------|
| 0   | Afghanistan                                 | 0.0000                 | 4.7774             | 0.8504         | 0.0                           | 37.1186                        | 0.1501 | 0.0000           | 1.4757                        | 1.2006 | <br>2.3012            | 0.7504     | 4.5     | 29.8           |
| 1   | Albania                                     | 0.9120                 | 16.0930            | 1.0591         | 0.0                           | 16.2107                        | 0.8091 | 0.1471           | 3.8982                        | 3.8688 | <br>2.8244            | 2.7508     | 22.3    | 6.2            |
| 2   | Algeria                                     | 0.0896                 | 6.0326             | 0.1941         | 0.0                           | 25.0112                        | 0.4181 | 0.1195           | 3.1805                        | 1.2543 | <br>5.7638            | 2.0457     | 26.6    | 3.9            |
| 3   | Angola                                      | 1.9388                 | 4.6927             | 0.2644         | 0.0                           | 18.3521                        | 0.0441 | 0.8372           | 2.3133                        | 2.9302 | <br>4.2741            | 0.3525     | 6.8     | 25             |
| 4   | Antigua<br>and<br>Barbuda                   | 2.3041                 | 15.3672            | 1.5429         | 0.0                           | 13.7215                        | 0.2057 | 1.7280           | 3.6824                        | 7.0356 | <br>4.6904            | 1.2960     | 19.1    | NaN            |
| ••• |                                             |                        |                    |                |                               |                                |        |                  |                               |        | <br>                  |            |         |                |
| 165 | Venezuela<br>(Bolivarian<br>Republic<br>of) | 0.8454                 | 7.2303             | 0.6007         | 0.0                           | 21.3126                        | 0.2892 | 0.4449           | 2.3804                        | 3.1368 | <br>7.5417            | 0.6674     | 25.2    | 21.2           |
| 166 | Vietnam                                     | 0.7150                 | 10.9806            | 0.9363         | 0.0                           | 26.9833                        | 0.2894 | 1.0385           | 1.8046                        | 7.8311 | <br>1.3279            | 1.9578     | 2.1     | 9.3            |
| 167 | Yemen                                       | 0.0000                 | 3.4667             | 0.3394         | 0.0                           | 32.0727                        | 0.1455 | 0.1697           | 1.1879                        | 2.0121 | <br>3.9515            | 0.3636     | 14.1    | 38.9           |
| 168 | Zambia                                      | 1.1925                 | 3.3043             | 0.3230         | 0.0                           | 31.5528                        | 0.1988 | 0.5714           | 0.2236                        | 1.5155 | <br>3.0062            | 0.4472     | 6.5     | 46.7           |
| 169 | Zimbabwe                                    | 1.4269                 | 3.9356             | 0.6904         | 0.0                           | 29.8044                        | 0.1381 | 0.1611           | 0.4373                        | 1.7491 | <br>6.2601            | 0.2532     | 12.3    | 51.3           |

170 rows × 32 columns

COVID-19 Healthy Diet Dataset - Food\_Supply\_kcal\_Data.csv

: 각 나라 사람들이 어떤 종류의 음식들로부터 어느 정도의 energy(kcal)을 섭취하는지에 대한 퍼센트를 나타낸 자료

총 12개의 row, 45개의 column으로 구성

## 데이터 전처리 - food

```
# 1. 'Undernourished' 열의 값 중 '<2.5'를 '1.0'으로 변환하고, 모든 값을 float64 자료형으로 변환합니다.
food['Undernourished'] = food['Undernourished'].map(lambda x: '1.0' if x == '<2.5' else x).astype('float64')
# 2. 'Unit (all except Population)' 열을 데이터프레임에서 삭제합니다.
food = food.drop('Unit (all except Population)', axis=1)
# 3. 결축치가 있는 행을 삭제합니다.
food = food.dropna()
```

## 데이터 전처리

- merge; food and life

```
import pandas as pd
# 'Country'를 기준으로 두 데이터셋 merge
food_and_life = pd.merge(food, life, on='Country', how='inner')
food_and_life
```

# 01

Happiness levels에 가장 큰 영향을 미치는 요인 분석

### Happiness levels과 라이프 스타일 요소 간 관계

```
# 각 열에 대해 분석 수행
for col in cols:
   # 데이터 추춬
   a = life[dependent variable]
   b = life[col]
   # 정규성 검정 - Shapiro-Wilk test
   stat_a, p_a = shapiro(a)
   stat_b, p_b = shapiro(b)
   print(f'정규성 검정 결과 ({dependent variable}): Statistic={stat a:.4f}, p-value={p a:.20f}')
   print(f'정규성 검정 결과 ({col}): Statistic={stat_b:.4f}, p-value={p_b:.20f}')
   # 등분산성 검정 - Levene
   stat levene, p value levene = levene(a, b)
   print(f'Levene 등분산성 검정 결과 ({col}): Statistic={stat_levene:.4f}, p-value={p_value_levene:.20f}')
   # 등분산성 검정 - Fligner
   stat fligner, p value fligner = fligner(a, b)
   print(f'Fligner 등분산성 검정 결과 ({col}): Statistic={stat fligner:.4f}, p-value={p value fligner:.20f}')
   # 스피어만 검정 또는 피어슨 검정 선택
   if p_a < 0.05 or p_b < 0.05 or stat_levene < 0.05 or stat_fligner < 0.05:</pre>
       # 정규성 또는 등분산성 가정이 깨질 경우 스피어만 검정 수행
       correlation, p value = spearmanr(a, b)
       print(f'Spearman 검정 결과 ({col}): 상관계수={correlation:.4f}, p-value={p_value:.20f}')
   else:
       # 가정이 만족할 경우 피어슨 검정 수행
       correlation, p_value = pearsonr(a, b)
       print(f'Pearson 검정 결과 ({col}): 상관계수={correlation:.4f}, p-value={p value:.20f}')
   # 절대값이 0.3보다 클 경우 스캐터플롯 출력
   if abs(correlation) > 0.5:
       sns.regplot(x=a, y=b, scatter_kws={'alpha': 0.5, 'color': 'red' if correlation < 0 else 'blue'})</pre>
       plt.xlabel(dependent_variable)
       plt.vlabel(col)
       plt.show()
   print("\n")
```

### Happiness levels VS Cost of bottle of water



⇒ 물의 가격과 행복 수준 간의 <mark>강한 양의 상관관계</mark>

물의 가격이 상승할수록 행복 수준도 상승하는 경향이 있음

- 정규성 검정 결과 (Happiness levels): Statistic=0.9092, p-value=0.00211808481253683567
- 정규성 검정 결과 (Cost of a bottle of water): Statistic=0.9534, p-value=0.07345357537269592285
- Levene 등분산성 검정 결과 (Cost of a bottle of water): Statistic=2.2526, p-value=0.13704853205147365935
- Fligner 등분산성 검정 결과 (Cost of a bottle of water): Statistic=1.0598, p-value=0.30326166871322102203
- Spearman 검정 결과 (Cost of a bottle of water): 상관계수=0.8242, p-value=0.00000000000621643408

### Happiness level VS Pollution



⇒ 오염정도와 행복 수준 간의 <mark>강한 음의 상관관계</mark>

오염도가 하락 할수록 행복 수준도 상승하는 경향이 있음

- 정규성 검정 결과 (Happiness levels): Statistic=0.9092, p-value=0.00211808481253683567
- 정규성 검정 결과 (Pollution(Index score)): Statistic=0.9667, p-value=0.23032510280609130859
- · Levene 등분산성 검정 결과 (Pollution(Index score)): Statistic=99.8831, p-value=0.00000000000000046802
- Fligner 등분산성 검정 결과 (Pollution(Index score)): Statistic=51.0477, p-value=0.000000000000090146762
- Spearman 검정 결과 (Pollution(Index score)): 상관계수=-0.8232, p-value=0.00000000000692489846

### Happiness levels VS Life expectancy



⇒ 기대 수명과 행복 수준 간의 <mark>강한 양의 상관관계</mark>

기대 수명이 증가할수록 행복 수준도 증가한다는 관찰을 뒷받침하며, 질병 예방 및 의료 서비스의 향상이 행복에 긍정적인 영향을 미칠 수 있다는 가설을 뒷받침함

- 정규성 검정 결과 (Happiness levels): Statistic=0.9092, p-value=0.00211808481253683567
- 정규성 검정 결과 (Life expectancy(years)): Statistic=0.7850, p-value=0.00000140098029532965
- Levene 등분산성 검정 결과 (Life expectancy(years)): Statistic=16.0644, p-value=0.00012985288526244973
- Fligner 등분산성 검정 결과 (Life expectancy(years)): Statistic=21.6059, p-value=0.00000334828816850522
- Spearman 검정 결과 (Life expectancy(years)): 상관계수=0.5725, p-value=0.00004893824159814498

# 02

비만율과 라이프 스타일 요소들의 관계

## 비만율과 라이프 스타일 요소 간 관계

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Sunshine hours): Statistic=0.9439, p-value=0.03266043588519096375 Levene 등분산성 검정 결과 (Sunshine hours): Statistic=114.1480, p-value=0.000000000000000001893 Fligner 등분산성 검정 결과 (Sunshine hours): Statistic=55.5190, p-value=0.000000000000000000055890 Spearman 검정 결과 (Sunshine hours): 상관계수=0.3346, p-value=0.02643802248436251737

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Cost of a bottle of water): Statistic=0.9534, p-value=0.07345357537269592285

Levene 등분산성 검정 결과 (Cost of a bottle of water): Statistic=57.7042,pvalue=0.0000000003441344446

Fligner 등분산성 검정 결과 (Cost of a bottle of water): Statistic=37.3796, pvalue=0.00000000097231435411

Spearman 검정 결과 (Cost of a bottle of water): 상관계수=0.1329, p-value=0.38991230829564726967

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Life expectancy(years)): Statistic=0.7850, p-value=0.0000140098029532965 Levene 등분산성 검정 결과 (Life expectancy(years)): Statistic=13.6262, p-value=0.00039067928112157302 Fligner 등분산성 검정 결과 (Life expectancy(years)): Statistic=12.3402, p-value=0.00044330354486013822 Spearman 검정 결과 (Life expectancy(years)): 상관계수=-0.0977, p-value=0.52810180226285252658

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Pollution(Index score)): Statistic=0.9667, p-value=0.23032510280609130859 Levene 등분산성 검정 결과 (Pollution(Index score)): Statistic=26.7047, p-value=0.00000151832257728926 Fligner 등분산성 검정 결과 (Pollution(Index score)): Statistic=18.1036, p-value=0.00002092107624157474 Spearman 검정 결과 (Pollution(Index score)): 상관계수=-0.1531, p-value=0.32098076912553197282

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Annual avg. hours worked): Statistic=0.9408, p-value=0.02517922781407833099 Levene 등분산성 검정 결과 (Annual avg. hours worked): Statistic=33.0273, p-value=0.00000013502312340704 Fligner 등분산성 검정 결과 (Annual avg. hours worked): Statistic=17.1226, p-value=0.00003504361941753612 Spearman 검정 결과 (Annual avg. hours worked): 상관계수=0.4358, p-value=0.00310950815783077317

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Happiness levels): Statistic=0.9092, p-value=0.00211808481253683567 Levene 등분산성 검정 결과 (Happiness levels): Statistic=54.0894, p-value=0.0000000010484684202 Fligner 등분산성 검정 결과 (Happiness levels): Statistic=34.7233, p-value=0.00000000380053059957 Spearman 검정 결과 (Happiness levels): 상관계수=0.2591, p-value=0.08949360359364867679

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Outdoor activities): Statistic=0.9444, p-value=0.03410947322845458984 Levene 등분산성 검정 결과 (Outdoor activities): Statistic=54.5332, p-value=0.00000000000129753103 Fligner 등분산성 검정 결과 (Outdoor activities): Statistic=47.4381, p-value=0.00000000000567676778 Spearman 검정 결과 (Outdoor activities): 상관계수=0.2476, p-value=0.10510926833665407143

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Number of take out places): Statistic=0.7449, p-value=0.00000022453011183643 Levene 등분산성 검정 결과 (Number of take out places): Statistic=23.6435, p-value=0.00000517979387231084 Fligner 등분산성 검정 결과 (Number of take out places): Statistic=52.6602, p-value=0.00000000000039655434 Spearman 검정 결과 (Number of take out places): 상관계수=0.1493, p-value=0.33354968548944485818

정규성 검정 결과 (Obesity levels): Statistic=0.9035, p-value=0.00140059425029903650 정규성 검정 결과 (Cost of a monthly gym membership): Statistic=0.9416, p-value=0.02694516256451606750 Levene 등분산성 검정 결과 (Cost of a monthly gym membership): Statistic=3.7645, p-value=0.05562676726684966794 Fligner 등분산성 검정 결과 (Cost of a monthly gym membership): Statistic=3.5666, p-value=0.05895428064855148809 Spearman 검정 결과 (Cost of a monthly gym membership): 상관계수=-0.1020, p-value=0.50990577533540415445

# 03

비만율과 섭취하는 음식 종류의 관계

#### 3. 비만율과 섭취하는 음식 종류의 관계(Animal Products)



정규성 검정 결과 (Obesity): Obesity Statistic=0.9333, p-value=0.00000127858925225155 정규성 검정 결과 (Animal Products): Animal Products Statistic=0.9575, p-value=0.00011729457037290558 등분산성 검정 결과: Statistic=61.0055, p-value=0.000000000000001630231081826332 Spearman검정 (Animal Products vs Obesity) -> 상관계수: 0.5662 p-value: 0.00000000000001960834

### 3. 비만율과 섭취하는 음식 종류의 관계(Animal fats)



### 3. 비만율과 섭취하는 음식 종류의 관계(Cereals - Excluding Beer)



정규성 검정 결과 (Obesity): Obesity Statistic=0.9333, p-value=0.00000127858925225155 정규성 검정 결과 (Cereals - Excluding Beer): Cereals - Excluding Beer Statistic=0.9698,

p-value=0.00183851050678640604

등분산성 검정 결과: Statistic=23.3997, p-value=0.000002088834491180852211237055 Spearman검정 (Cereals - Excluding Beer vs Obesity) -> 상관계수: -0.5047 p-value: 0.00000000002496821733

#### 3. 비만율과 섭취하는 음식 종류의 관계(Eggs)



#### 3. 비만율과 섭취하는 음식 종류의 관계(Meat)



### 3. 비만율과 섭취하는 음식 종류의 관계(Milk - Excluding Butter)



### 3. 비만율과 섭취하는 음식 종류의 관계(Stimulants)



### 3. 비만율과 섭취하는 음식 종류의 관계(Sugar & Sweeteners)



### 3. 비만율과 섭취하는 음식 종류의 관계(Vegetal Products)



정규성 검정 결과 (Obesity): Obesity Statistic=0.9333, p-value=0.00000127858925225155 정규성 검정 결과 (Vegetal Products): Vegetal Products Statistic=0.9575, p-value=0.00011614019604166970 등분산성 검정 결과: Statistic=61.0187, p-value=0.000000000000001122346615395480 Spearman검정 (Vegetal Products vs Obesity) -> 상관계수: -0.5660 p-value: 0.00000000000002027253

## 비만율과 섭취하는 음식 종류의 관계

### 1. 결론

- 파란 그래프(비만율과 양적 상관관계): 동물성 음식(동물성제품, 동물성 지방, 달걀, 고기, 우유), 각성제, 설탕과 감미료
- 빨간 그래프(비만율과 음적 상관관계): 식물성 음식(식물성 제품, 곡류)
- → 비만율이 높은 이유는 동물성 음식, 설탕&감미료, 각성제로부터의 kcal 섭취량이 많고, 식물성 음식의 kcal 섭취량은 비교적 적기 때문이라고 추측할 수 있음

### 2. 시사점

- 올바른 식습관 교육
- 인구에게 올바른 식습관 교육은 건강한 식단을 구성하는 데 중요하다.
- 동물성 음식과 설탕, 감미료, 각성제의 과도한 섭취를 줄이고, 식물성 음식을 적절히 섭취하는 교육이 필요하다.
- 공공 보건 정책 수립
- 공공 보건 정책은 지역사회에서의 식품 소비에 영향을 미칠 수 있다.
- 비만율이 높은 지역에서는 동물성 음식과 설탕 등의 제한 정책을 강화하고, 식물성 음식의 접근성을 증가시키는 노력이 필요하다.
- ⇒ 이러한 결론과 시사점들을 고려하여 건강한 식습관을 촉진하고, 비만 관리에 효과적인 정책 및 교육이 이루어져야 한다.

# 04

영양결핍률과 섭취하는 음식 종류의 관계

### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Animal Products)



#### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Animal fats)



정규성 검정 결과 (Undernourished): Undernourished Statistic=0.7893, p-value=0.0000000000000012983348 정규성 검정 결과 (Animal fats): Animal fats Statistic=0.8018, p-value=0.0000000000000036137038 등분산성 검정 결과: Statistic=90.4982, p-value=0.00000000000000000574578171530 Spearman검정 (Animal fats vs Undernourished) -> 상관계수: -0.6544 p-value: 0.00000000000000000000

### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Cereals - Excluding Beer)



정규성 검정 결과 (Undernourished): Undernourished Statistic=0.7893, p-value=0.000000000000012983348 정규성 검정 결과 (Cereals - Excluding Beer): Cereals - Excluding Beer Statistic=0.9698, p-value=0.00183851050678640604 등분산성 검정 결과: Statistic=12.6325, p-value=0.000438971915055249260750880325

Spearman검정 (Cereals - Excluding Beer vs Undernourished) -> 상관계수: 0.5967 p-value: 0.0000000000000031848

### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Eggs)



### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Meat)



정규성 검정 결과 (Undernourished): Undernourished Statistic=0.7893, p-value=0.0000000000000012983348 정규성 검정 결과 (Meat): Meat Statistic=0.9627, p-value=0.00035980451502837241 등분산성 검정 결과: Statistic=71.3593, p-value=0.000000000000001220068585978986 Spearman검정 (Meat vs Undernourished) -> 상관계수: -0.6527 p-value: 0.000000000000000000

### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Milk - Excluding Butter)



정규성 검정 결과 (Undernourished): Undernourished Statistic=0.7893, p-value=0.0000000000012983348 정규성 검정 결과 (Milk - Excluding Butter): Milk - Excluding Butter Statistic=0.9457,

p-value=0.00001141097891377285

등분산성 검정 결과: Statistic=71.6792, p-value=0.000000000000001069815745351464 Spearman검정 (Milk - Excluding Butter vs Undernourished) -> 상관계수: -0.6237 p-value: 0.000000000000000563

### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Stimulants)



### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Treenuts)



### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Vegetal Products)



### 4. 영양결핍률과 섭취하는 음식 종류의 관계(Vegetables)



정규성 검정 결과 (Undernourished): Undernourished Statistic=0.7893, p-value=0.0000000000000012983348 정규성 검정 결과 (Vegetables): Vegetables Statistic=0.9122, p-value=0.000000004967193945049 등분산성 검정 결과: Statistic=102.1801, p-value=0.0000000000000000000006462438515 Spearman검정 (Vegetables vs Undernourished) -> 상관계수: -0.5557 p-value: 0.0000000000007390179

# 영양결핍률과 섭취하는 음식 종류의 관계

#### 1. 결론

- 파란 그래프(영양결핍율과 양적 상관관계): 곡류, 식물성 제품
- 빨간 그래프(영양결핍율과 음적 상관관계): 동물성 음식(동물성 제품, 동물성 지방, 달걀, 고기, 우유, ), 각성제, 견과류, 야채
- → 영양결핍율이 낮은 이유는 동물성 음식(동물성 제품, 동물성 지방, 달걀, 고기, 우유, ), 각성제, 견과류, 야채로부터의 kcal 섭취량이 적고 곡류, 식물성 제품의 섭취량은 많기 때문이라 추측할 수 있음

### 2. 시사점

- <u>다양한 식품군의 중요성 강조</u>: 곡류와 식물성 제품 등의 과도한 섭취를 제한하고, 다양한 식품군의 균형 잡힌 섭취를 강조하는 정책 필요
- 지역적 특성 고려: 지역마다 음식 섭취 습관이 다르기 때문에 지역적 특성을 고려한 정책 및 교육 필요
- <u>영양 교육의 중요성 강조</u>: 교육 기관과 정부는 영양 교육을 강화하여 국민이 올바른 식생활 습관을 형성할 수 있도록 지원해야 함
- ⇒ 이러한 결론과 시사점들을 고려하여 지역 사회의 영양 상태를 향상시키기 위한 종합적인 정책 및 교육이 이루어져야 함

# 05

환경적 요인과 영양결핍률의 관계

### ① 환경적 요인과 영양결핍률의 상관관계 분석

```
# 영양결핍률의 관계가 더욱 돋보이도록 'Undernourished' 행만 선택
undernourished_corr = life_and_undernourished.corr()['Undernourished'].to_frame().T

plt.figure(figsize=(15, 1))
sns.heatmap(undernourished_corr, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation with Undernourished')
plt.show()
```

- 1.0 - 0.5

- 0.0 - -0.5



#### 5. 환경적 요인과 영양결핍률의 관계

### ① 환경적 요인과 영양결핍률의 상관관계 분석

| Significant Correlations: |                           |                        |                        |                  |                |
|---------------------------|---------------------------|------------------------|------------------------|------------------|----------------|
|                           | Cost of a bottle of water | Life expectancy(years) | Pollution(Index score) | Happiness levels | Undernourished |
| Undernourished            | -0.594109                 | -0.664252              | 0.58512                | -0.744896        | 1.0            |

'Undernourished'와의 상관관계가 0.5보다 크거나 -0.5보다 작은 변수들 즉, **상관관계가 높은 변수들만** 선택

- 'Cost of a bottle of water'
- 'Life expectancy(years)'
- 'Pollution(Index score)'
- 'Happiness levels'

### 5. 환경적 요인과 영양결핍률의 관계

## ② 'Undernourished'와 상관관계가 높은 변수들 간의 오차항의 가정

- 정규성 검사(Q-Q plot)





Column: Cost of a bottle of water, Shapiro-Wilk 테스트 통계량: 0.9464963674545288, p-value: 0.057488057762384415

Column: Pollution(Index score), Shapiro-Wilk 테스트 통계량: 0.9643104672431946, p-v alue: 0.2344880849123001

⇒ 직선을 기준으로 데이터가 모여 있음

## ② 'Undernourished'와 상관관계가 높은 변수들 간의 오차항의 가정

- 정규성 검사(Q-Q plot)





Column: Life expectancy(years), Shapiro-Wilk 테스트 통계량: 0.7791827321052551, p-v alue: 2.564572696428513e-06

Column: Happiness levels, Shapiro-Wilk 테스트 통계량: 0.9068970084190369, p-value: 0.0030534756369888783

⇒ 직선을 기준으로 데이터가 약간 벗어나 있음

→ 정확한 판단을 위해 Shapiro-Wilk 테스트를 통해 p-value 값 도출

- 5. 환경적 요인과 영양결핍률의 관계
  - ② 'Undernourished'와 상관관계가 높은 변수들 간의 오차항의 가정
    - Shapiro-Wilk 테스트

```
Column: Cost of a bottle of water, p-value: 0.057488057762384415, Normality: 정규 Column: Life expectancy(years), p-value: 2.564572696428513e-06, Normality: 비정규
```

Column: Pollution(Index score), p-value: 0.2344880849123001, Normality: 정규 Column: Happiness levels, p-value: 0.0030534756369888783, Normality: 비정규

'Cost of a bottle of water'

'Pollution(Index score)'

'Life expectancy(years)'

'Happiness levels'

**p-value**가 0.05보다 큼 ⇒ 정규성을 따름

**p-value**가 0.05보다 작음 ⇒ 정규성을 따르지 않음

⇒ 비모수 테스트 진행

### 5. 환경적 요인과 영양결핍률의 관계

## ② 'Undernourished'와 상관관계가 높은 변수들 간의 오차항의 가정

- 비모수 테스트(Mann-Whitney U 검정)

'Undernourished'와 'Life expectancy(years)', 'Undernourished'와 'Happiness levels'

Mann-Whitney U 검정(Life expectancy(years)): 통계량=0.0, p-value=2.202472491963789e-15 귀무가설을 기각하며, 'Undernourished'와 'Life expectancy(years)' 간에는 통계적으로 유의미한 차이가 있다.

Mann-Whitney U 검정(Happiness levels): 통계량=217.5, p-value=7.824605827737411e-09 귀무가설을 기각하며, 'Undernourished'와 'Happiness levels' 간에는 통계적으로 유의미한 차이가 있다.

두 p-value 모두 0.05보다 작음

⇒ 정규성을 따르지는 않지만 통계적으로 유의미한 차이가 있다고 할 수 있음

### 5. 환경적 요인과 영양결핍률의 관계

# ② 'Undernourished'와 상관관계가 높은 변수들 간의 오차항의 가정

- 등분산성 검사

등분산성 검정(Cost of a bottle of water): Statistic=2.8793, p-value=0.09371036753678681219 귀무가설을 기각하지 못하며, 'Undernourished'와 'Cost of a bottle of water' 간에는 등분산성이 있다고 할 수 있다.

등분산성 검정(Pollution(Index score)): Statistic=77.7544, p-value=0.000000000000024355064 귀무가설을 기각하며, 'Undernourished'와 'Pollution(Index score)' 간에는 등분산성이 없다고 할 수 있다.

등분산성 검정(Life expectancy(years)): Statistic=5.8280, p-value=0.01811651131310790253 귀무가설을 기각하며, 'Undernourished'와 'Life expectancy(years)' 간에는 등분산성이 없다고 할 수 있다.

등분산성 검정(Happiness levels): Statistic=1.8162, p-value=0.18166258330400680832 귀무가설을 기각하지 못하며, 'Undernourished'와 'Happiness levels' 간에는 등분산성이 있다고 할 수 있다.

⇒ p-value가 0.05보다 큰 'Cost of a bottle of water'와 'Happiness levels'은 등분산성이 있다고 할 수 있음 p-value가 0.05보다 작은 'Life expectancy(years)', 'Pollution(Index score)'은 등분산성이 없다고 할 수 있음

- 5. 환경적 요인과 영양결핍률의 관계
  - ③ 'Undernourished'과 'Cost of a bottle of water'의 분석
    - 1) 산점도 분포 확인

정규성과 등분산성을 모두 만족하는 변수 = Cost of a bottle of water



# ③ 'Undernourished'과 'Cost of a bottle of water'의 분석

1) 산점도 분포 확인



점들의 분포가 비교적 왼쪽 중반부에서 오른쪽 하단으로 하강하는 대각선 형태를 볼 수 있음 Cost of a bottle of water을 나타내는 x축의 0.0과 1.0 사이에는 2 이상의 Undernourished의 점들이 밀집

⇒ Scatter plot의 분포가 뚜렷하지 않아 상관계수 검정 진행

- 5. 환경적 요인과 영양결핍률의 관계
  - ③ 'Undernourished'과 'Cost of a bottle of water'의 분석 2) 피어슨 상관계수 검정

정규성과 등분산성을 모두 만족하는 변수 = Cost of a bottle of water



⇒ 'Undernourished'와 'Cost of a bottle of water' 간에는 유의미한 선형 관계가 있음

# ③ 'Undernourished'과 'Cost of a bottle of water'의 분석 3) 선형회귀분석



# 환경적 요인과 영양결핍률의 관계

### 1. 결론 및 시사점

- 'Cost of a bottle of water'와 영양결핍률은 음의 상관관계를 보이며, 물의 가격이 높을수록 영양결핍률이 감소하는 경향이 나타남.
- 물의 가격 인하는 영양결핍률을 낮추는 데 중요한 역할을 할 수 있음.
- 추가적인 연구에서는 다양한 변수를 고려하여 모델을 개선하고 결과의 신뢰성을 높일 필요가 있음.

### 2. 한계 및 주의사항

- 데이터 한계: 결과는 관측된 데이터에 기반하며 인과관계를 단정하기에는 한계가 있음.
- <u>검정 결과의 한계</u>: 정규성과 등분산성 검정 결과는 표본 크기 등에 영향을 받을 수 있음, 모델의 한계와 함께 정확한 해석이 요구됨.

# 06

COVID-19 확진과 비만율의 관계



# COVID-19 확진과 비만율의 관계

### 1. 통계적 유의성

- 상관계수와 P-value: 분석에서 사용된 상관계수 및 P-value 모두 유의수준에서 통계적으로 의미 있음.

### 2. 결론 및 시사점

비만율과 코로나 확진율 간에 양의 상관관계가 있음을 확인할 수 있다. 이는 비만과 코로나 간의 상호작용이 있을 수 있으며, 비만율이 높은 지역에서 코로나 확진율도 높을 수 있다는 가능성을 시사함.

이를 통해 정부는 비만율이 높은 지역에서의 예방 및 건강 교육을 강화해야 할 것임. 건강한 생활습관과 비만 관리는 코로나 및 기타 감염병의 예방에 중요한 역할을 할 수 있을 것으로 예측됨.

### 3. 한계 및 주의사항

- 데이터 한계: 결과는 관측된 데이터에 기반하며 다양한 요인들이 결과에 영향을 미칠 수 있음.
- 다양한 요인의 영향: 다양한 요인들이 결과에 영향을 미치므로, 향후 연구에서 이를 고려한 추가적인 분석이 필요.

# 07

영양결핍률과 COVID-19 치명률, 사망률의 관계

# 영양결핍률과 COVID-19 확진율의 관계



- 정규성 검정 결과 (Undernourished): Statistic=0.7893, p-value=0.0000000000012983348
- 정규성 검정 결과 (Confirmed): Statistic=0.8204, p-value=0.0000000000179627016
- Levene 등분산성 검정 결과 (Confirmed): Statistic=68.0083, p-value=0.00000000000000486757
- Spearman 검정 결과 (Confirmed): 상관계수=-0.6184, p-value=0.0000000000000001275

# 영양결핍률과 COVID-19 사망률의 관계



- 정규성 검정 결과 (Undernourished): Statistic=0.7893, p-value=0.0000000000012983348
- 정규성 검정 결과 (Deaths): Statistic=0.7873, p-value=0.000000000011030987
- Fligner 등분산성 검정 결과 (Deaths): Statistic=189.4837, p-value=0.00000000000000000000
- Spearman 검정 결과 (Deaths): 상관계수=-0.5689, p-value=0.000000000001384265

# 영양결핍률과 COVID-19 치명률의 관계



- 정규성 검정 결과 (Undernourished): Statistic=0.7893, p-value=0.0000000000012983348

- Spearman 검정 결과 (Active): 상관계수=-0.5488, p-value=0.0000000000017284293

### 영양결핍률과 비만율의 관계



- 정규성 검정 결과 (Undernourished): Statistic=0.7893, p-value=0.0000000000012983348
- 정규성 검정 결과 (Obesity): Statistic=0.9333, p-value=0.00000127858925225155
- Levene 등분산성 검정 결과 (Obesity): Statistic=0.0834, p-value=0.77287661809139818203
- Fligner 등분산성 검정 결과 (Obesity): Statistic=0.2724, p-value=0.60171574891311285782

# 데이터 분석 결과

### 1. 결론 및 시사점

영양결핍률과 비만율을 식사와 환경적 요인으로 해결하고, 질병에 적극 대응한다면 건강한 환경이라는 인식을 줄 수 있고, 이는 행복수준을 향상시키는데 영향을 끼칠 수 있을 것이다.

### 2. 한계

- <u>데이터 한계</u>: 결과는 관측된 데이터에 기반하며 다양한 요인들이 결과에 영향을 미칠 수 있음.
- <u>다양한 요인의 영향</u>: 다양한 요인들이 결과에 영향을 미치므로, 향후 연구에서 이를 고려한 추 가적인 분석이 필요.

# 참고문헌

- 1. <a href="https://www.kaggle.com/code/ydalat/work-life-balance-survey-eda">https://www.kaggle.com/code/ydalat/work-life-balance-survey-eda</a>
- 2. <a href="https://www.kaggle.com/code/yadhua/happiness-life-prediction-and-clustering">https://www.kaggle.com/code/yadhua/happiness-life-prediction-and-clustering</a>
- 3. <a href="https://www.kaggle.com/code/formeforu/team-4-eda-for-covid-19-health">https://www.kaggle.com/code/formeforu/team-4-eda-for-covid-19-health</a>