Pontifícia Universidade Católica do Paraná

Disciplina: Resolução de Problemas com Lógica Matemática (RPLM) Lista de Exercícios 7

ome:

Regras de Inferência:

Adição: $B \vee A$ $A \vee B$ Simplificação: $A \wedge B$ $A \wedge B$ В Α Conjunção: Α A $A \wedge B$ $B \wedge A$

Modus Ponens: Α $A \rightarrow B$ В Modus Tollens: $A \rightarrow B$

 $A \vee B$ $A \vee B$ $\neg B$ В Silogismo Hipotético: $A \rightarrow B$ $\neg B$ $B \rightarrow C$ $A \rightarrow C$

Silogismo Disjuntivo:

Dilema Construtivo:

 $A \rightarrow B$ $C \rightarrow D$ $A \lor C$ $B \vee D$

Dilema Destrutivo: $A \rightarrow B$ $C \rightarrow D$

 $\neg B \lor \neg D$ $\neg A \lor \neg C$

Exercícios:

1. Indique a regra de inferência que justifica a validade de:

a)
$$\{(p \rightarrow q)\} \models (p \rightarrow q) \lor \neg r$$

b)
$$\{ \neg p \land (q \rightarrow r) \} \models \neg p$$

c)
$$\{ (p \rightarrow q), (q \rightarrow \neg r) \} \vDash (p \rightarrow \neg r)$$

d)
$$\{p \rightarrow (q \rightarrow r), p\} \vDash q \rightarrow r$$

e)
$$\{ (q \lor r) \rightarrow \neg p, \neg \neg p \} \vDash \neg (q \lor r)$$

f)
$$\{(p \rightarrow q), (r \rightarrow \neg s)\} \models (p \rightarrow q) \land (r \rightarrow \neg s)$$

g)
$$\{(p \land q) \lor (\neg p \land r), \neg (\neg p \land r)\} \models (p \land q)$$

- 2. Indique uma possível conclusão para:
- a) $\{(s \lor t) \rightarrow (r \land q), (r \land q) \rightarrow \neg p\}$
- b) $\{(p \leftrightarrow q) \rightarrow \neg (r \land s), \neg \neg (r \land s)\}$
- c) $\{ s \lor (r \land t), \neg s \}$
- d) $\{p \rightarrow (r \lor \neg s), (r \lor \neg s) \rightarrow t\}$
- e) $\{ p \rightarrow r, \neg q \rightarrow \neg s, p \lor \neg q \}$
- f) $\{ \neg p \lor \neg q, \neg \neg q \}$
- g) $\{p \rightarrow (\neg r \land q), \neg (\neg r \land q) \lor \neg s, \neg q \rightarrow s\}$
- 3. Construa as deduções:
- a) $\{(p \land q) \rightarrow s, p, q\} \models s$
- b) $\{p \rightarrow q, \neg p \rightarrow r, \neg q\} \models r$
- c) $\{p \rightarrow q, q \rightarrow \neg \neg r, s \rightarrow \neg r, p\} \vDash \neg s$
- d) $\{p \land q, p \rightarrow r, q \rightarrow s\} \models r \land s$
- e) $\{p \rightarrow (\neg q \land r), p, s \rightarrow q, s \lor t\} \models t$
- f) $\{(p \lor q) \rightarrow (p \rightarrow (s \land t)), p \land r\} \models t \lor u$
- g) $\{p \rightarrow q, \neg q, (\neg p \lor \neg r) \rightarrow s\} \models s$
- h) $\{p \rightarrow \neg r, p, s \rightarrow r\} \vDash \neg s$
- i) $\{p \rightarrow q, p \rightarrow \neg r, p\} \models q \land \neg r$
- $j) \quad \{ \neg p \lor \neg \neg q, \neg \neg p, \neg r \to \neg q \} \vDash \neg \neg r$
- k) { $p \land \neg q, q \lor \neg r, s \rightarrow r$ } $\vDash p \land \neg s$

4. Verificar se é um teorema. Fazer a prova através da **Negação do Teorema** e demonstrar utilizando a **Árvore de Resolução** (utilizar manipulação sintática):

Dicas:

- 1. Transformar a fórmula em argumento: conjunção de cláusulas com implicação em uma TESE
- 2. Chegar a uma cláusula vazia □, por derivação.

a)
$$(\neg p \land (\neg p \rightarrow (q \lor r)) \land \neg r) \rightarrow q$$

b)
$$\neg ((p \lor \neg q) \land \neg \neg q \land (p \rightarrow (r \land s))) \lor s$$

c)
$$\neg r \rightarrow \neg ((p \rightarrow q) \land \neg q \land (p \lor r))$$

d)
$$(u \lor \neg r) \lor \neg (((p \lor q) \rightarrow \neg r) \land (s \rightarrow p) \land (t \rightarrow q) \land (s \lor t))$$

5. Verificar se é um teorema. Fazer a prova através da **Negação da Tese** e demonstrar utilizando a **Árvore de Resolução** (utilizar manipulação sintática):

Dicas:

- 1. Transformar a fórmula em argumento: conjunção de cláusulas com implicação em uma TESE
- 2. Chegar a uma cláusula vazia □, por derivação.

a)
$$(\neg(\neg(p\rightarrow q)\lor\neg(r\rightarrow s))\land(t\rightarrow u)\land(u\rightarrow v)\land(\neg q\lor\neg v))\rightarrow(\neg p\lor\neg t)$$

b)
$$((p \land q) \land (p \rightarrow r)) \rightarrow (p \land r)$$

c)
$$(\neg p \land \neg r) \lor \neg ((\neg p \land q) \land (r \rightarrow p))$$

d)
$$((\neg p \rightarrow q) \land \neg (r \land s) \land (p \rightarrow (r \land s))) \rightarrow \neg p \land q$$