Mathematica TD 1

Le texte écrit en police Typewriter correspond au langage mathématica

Les listes

A l'écriture mathématiques de liste (= uplet) L=(1,3,7,5,a) correspond l'écriture L={1,3,7,5,a} en mathématica. L'ordre des éléments intervient. L[[k]]: k° élément de L

First[L] ou L//First: premier élèment de L, Last: dernier

Q 1 Faire des essais

Les règles de substitution

expression/.x->a remplace le motif x par a dans expression mais x n'est pas affecté à la valeur a

Q2 On rentre a=2; $x^2 + x + 1$ /.x->a Que vaut a? Que vaut x?

On peut aussi rentrer une liste de règles :

Q3 Soit p un entier non nul, calculer avec mathématica $i = \int_0^{2\pi} x . \cos(px) \, dx$ et $j = \int_0^{2\pi} x . \sin(px) \, dx$ (note: $x . \cos(px)$ se note $x * \cos[p x]$, laisser un espace entre le p et le x sinon l'ordinateur croira que px est une variable)

Rentrer la liste de règles $R = \{ Cos[2 p \pi] ->1, Sin[2 p \pi] ->0 \}$ et simplifier le calcul de i et j à l'aide de R

Les équations

Q4 Lire et suivre pas à pas, avec mathématica, le texte suivant :

 $eq=x==x^2$

eq est le couple (x, x^2) (noté $\{x, x^2\}$ en mathématica), x vaut donc eq[[1]], x^2 vaut eq[[2]]. Pour résoudre eq, on utilise Solve :

sol=Solve[eq,x] qui signifie résoudre l'équation eq d'inconnue x

On obtient une liste de règles de substitution appelée sol, la première règle étant sol[[1]] . x n'est affecté ni à la valeur 0, ni à la valeur 1, ce dont on peut se convaincre en validant x.

Pour récuperer les solutions de eq, que l'on va noter α et β , on tape : $\alpha = x/.sol[[1]]$ (de même pour β)

En effet, schématiquement, α vaut x et le motif x est remplacé par 0 donc α vaut 0

Q5 Résoudre l'équation x 3 =1 et récupérer les solutions que l'on nommera α , β et γ

Q6 Résoudre l'équation x ^2+x-1=0, x étant positif et récupérer la solution que l'on nommera encore x

Système d'équations

Pour résoudre un système d'équations eq1, eq2, ... et d'inconnues x, y, ... on tape Solve[{eq1,eq2,...},{x,y,..}]

Q7 Résoudre le système linéaire :

$$\begin{cases} x+y+z=1\\ x+2y+3z=2\\ x+4y+9z=3 \end{cases}$$

Exercice 1

Soit une suite (u_n) satisfaisant : (E) $u_{n+2} = au_{n+1} + bu_n$

(l'équation (E) est bien entendu vérifiée pour tout $n \in \mathbb{N}$)

Q8 Rentrer l'équation (E) (pour u_n , utiliser la palette)

Q9 Ecrire une liste de règles, R : u_n remplacé par 1, u_{n+1} par r et u_{n+2} par r^2 .

Q10 Donner l'équation caractéristique de E. On suppose que a et b sont réels et que $\Delta > 0$. Résoudre l'équation caractéristique, on appellera α et β les deux solutions

Q11 Taper $u_{n_{\perp}} := A\alpha^{n_{\perp}} + B\beta^{n_{\perp}}$. Trouver, grâce à un Solve, A et B pour que $u_{0} = 0$ et $u_{1} = 1$

Q12 On prend a = 3 et b = -2. Que vaut u_n ? Faire une représentation graphique des 6 premiers termes de (u_n) en utilisant ListPlot

Exercice 2

Soit (v_n) la suite définie par : $\forall n \in N, v_n = (an^4 + bn^3 + cn^2)2^n$

Q 13 Rentrer la suite v comme une fonction de n, c'est à dire $v_n := ...$

Q14 Développer $eq = v_{n+2} - 4v_{n+1} + 4v_n$

Q15 Regrouper les termes en n dans eq en tapant Collect[eq,n]

Q16 Choisir a, b, c pour que : $\forall n \in N, v_{n+2} - 4v_{n+1} + 4v_n = n^2.2^n$

Q17 Trouver la suite (u_n) telle que $u_0 = u_1 = 1$ et $\forall n \in N, u_{n+2} - 4u_{n+1} + 4u_n = n^2.2^n$

Q18 Vérifier la réponse à la question précédente en utilisant RSolve

Exercice 3

Q 19 Reprendre point par point l'exercice 1 pour résoudre les équadifs linéaires d'ordre 2, homogènes : ay"+by'cy = 0 où a, b et c sont réels, a étant non nuls et $\Delta > 0$. On admet que la solution est dans ce cas $y(x) = Ae^{\alpha x} + Be^{\beta x}$, α et β étant les solutions de l'équation $ar^2 + br + c = 0$ d'inconnue r

Q 20 Résoudre y''-3y'+2y=0 avec les conditions initiales y(0)=0, y'(0)=1 avec votre méthode puis avec DSolve et comparer