Mounier Corentin Note: 8/20 (score total: 8/20)

Nom et prénom, lisibles :

+129/1/16+

Identifiant (de haut en bas) :

QCM THLR 4

Countin	
MOUNIER	1 0 1 2 3 4 5 6 7 8 9
	1 0 1 2 3 4 5 6 7 8 9
	□0 □1 □2 □3 □4 □5 □6 □7 ■8 □9
	□0 □1 □2 □3 □4 □5 □6 ■7 □8 □9.
plutôt que cocher. Renseigner les champs d'identit sieurs réponses justes. Toutes les autres n'en ont qu plus restrictive (par exemple s'il est demandé si 0 e pas possible de corriger une erreur, mais vous pour incorrectes pénalisent; les blanches et réponses mu	dans les éventuels cadres grisés « ② ». Noircir les cases té. Les questions marquées par « ¾ » peuvent avoir plu- u'une; si plusieurs réponses sont valides, sélectionner la est nul, non nul, positif, ou négatif, cocher nul). Il n'est vez utiliser un crayon. Les réponses justes créditent; les ultiples valent 0. olet: les 2 entêtes sont +129/1/xx+···+129/2/xx+.
Q.2 Le langage $\{ \stackrel{w}{=}^n \stackrel{w}{=}^n \forall n \text{ premier, codable} \}$	en binaire sur 64 bits} est
non reconnaissable par automate	🍵 rationnel 🛛 fini 📋 vide
Q.3 Le langage $\{ \widehat{\mathcal{G}}^n \widehat{\mathcal{C}}^n \forall n \in \mathbb{N} \}$ est	
	nnaissable par automate fini
	nnaissable par automate fini
dont la n -ième lettre avant la fin est un a (i.e., (a +	té par une expression rationnelle onnel considéré par une expression rationnel construction de pas rationnel déterministe émondé qui accepte les mots sur $\Sigma = \{a,b\}$ $b)^*a(a+b)^{n-1}$:
\square 2 ⁿ \square Il n'existe pa	as. \square $n+1$ \square $\frac{n(n+1)}{2}$
Q.7 Si un automate de n états accepte a^n , alors i	il accepte
	$m \in \mathbb{N}^*$ \bigoplus $a^n a^m$ avec $m \in \mathbb{N}^*$ $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$
Q.8 Combien d'états au moins a un automate dét dont la n -ième lettre avant la fin est un a (i.e., $(a +$	terministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ $b+c+d$)* $a(a+b+c+d)^{n-1}$):
	\boxtimes 2 ⁿ \square Il n'existe pas.
Q.9 Déterminiser cet automate. $\xrightarrow{a,b}$ \xrightarrow{a}	

5.4

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

2/2

- \Box $T(Det(T(Det(\mathcal{A}))))$
- \Box $T(Det(T(Det(T(\mathcal{A})))))$

Fin de l'épreuve.