

$ \frac{\sigma_{1}^{\#1}a}{0} \qquad \frac{\sigma_{1}^{\#2}a}{\sigma_{1}^{\#2}a} \qquad \frac{\tau_{1}^{\#2}a}{\tau_{1}^{\#1}a} \qquad \tau_{1}^{\#2}a $ $ 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 $ $ 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 $ $ \frac{6}{(3+4k^{2})^{2}t_{1}} \qquad \frac{6\sqrt{2}}{(3+4k^{2})^{2}t_{1}} \qquad 0 \qquad \frac{12ik}{(3+4k^{2})^{2}t_{1}} $ $ \frac{6\sqrt{2}}{(3+4k^{2})^{2}t_{1}} \qquad \frac{6\sqrt{2}}{(3+4k^{2})^{2}t_{1}} \qquad 0 \qquad \frac{12i\sqrt{2}k}{(3+4k^{2})^{2}t_{1}} $ $ 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 $	0 (3
$ \frac{\sigma_{1}^{\#2}\alpha}{0} $ 0 0 0 0 \[\left(\frac{6\sqrt{2}}{(3+4\k^2)^2t_1}\right)} \] \[\left(\frac{12}{(3+4\k^2)^2t_1}\right) 0 0 0 0	$-\frac{125 \sqrt{25 \kappa}}{(3+4 k^2)^2 t_1} 0$
	$-\frac{127 \sqrt{2 \chi}}{(3+4 k^2)^2 t_1}$
$ \frac{\sigma_{1}^{\#1}\alpha}{0} \\ 0 \\ \frac{6}{(3+4k^{2})^{2}t_{1}} \\ \frac{6}{(3+4k^{2})^{2}t_{1}} \\ 0 \\ 0 \\ 0 $	
	$-\frac{122x}{(3+4k^2)^2t_1}$
	0
$ \frac{\sigma_{1}^{\#2}}{\sigma_{1}^{\#4} \alpha \beta} - \frac{\sqrt{2}}{t_{1} + k^{2} t_{1}} - \frac{1}{(1 + k^{2})^{2} t_{1}} $ $ 0 $ $ 0 $	0
$ \begin{array}{c c} \sigma_{1}^{\#1} & \sigma_{1}^{\#1} \\ \hline 0 & 0 \\ \hline \frac{i\sqrt{2} k}{t_{1} + k^{2} t_{1}} \\ \hline 0 & 0 \\ 0 & 0 \end{array} $	0
$ \frac{\sigma_{1}^{\#1} + \alpha \beta}{\sigma_{1}^{\#2} + \alpha} $ $ \frac{\sigma_{1}^{\#2} + \alpha \beta}{\sigma_{1}^{\#1} + \alpha} $ $ \frac{\sigma_{1}^{\#2} + \alpha}{\sigma_{1}^{\#1} + \alpha} $ $ \frac{\sigma_{1}^{\#2} + \alpha}{\sigma_{1}^{\#1} + \alpha} $ $ \frac{\sigma_{1}^{\#2} + \alpha}{\sigma_{1}^{\#1} + \alpha} $	#2 + a

0	0	0	<u>i kt1</u> 3	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
0	0	0	0	0	0	0
0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
_ <u>t1</u> _ 2	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\int_{1}^{\#1} + \alpha \beta$	$a_1^{\#2} + \alpha \beta$	$a_1^{*1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$
	$-\frac{t_1}{2} - \frac{t_1}{\sqrt{2}} - \frac{t_1}{\sqrt{2}} = 0$ 0	$+^{\alpha\beta} = -\frac{t_1}{2} - \frac{t_1}{\sqrt{2}} = -\frac{t_1t_1}{\sqrt{2}} = 0 = 0 = 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	$\frac{2}{t_1}$

Source constraints

SO(3) irreps

30(3) ITEPS	#				#1	, αβ
$\tau_{0^{+}}^{\#2} == 0$	1				ω_2^{n-1}	$^{\perp}$ † $^{\alpha\beta}$
$\tau_{0^{+}}^{\#1} == 0$	1			ı		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#1\alpha} == 0$	3	$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	1
$\tau_1^{\#1\alpha} == 0$	3	r#2	0	0	0	0
$\sigma_{1}^{\#1\alpha} == \sigma_{1}^{\#2\alpha}$	3	$\tau_{0}^{\#1}$		0	0	0
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3	$\sigma_{0}^{\#1}$	1/2 /3	0	0	0
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5	١	9			
Total #:	19		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}$ \dagger
	•		9			0

 $\omega_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#2}$

0

0

0

0

0

0

0

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{ikt_1}{\sqrt{2}}$

0

 $k^2 r_2 - t_1$

<u>t</u>1 2

Lac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		m
	Massive particle	l
? ? \ 1P = 0 -/	Pole residue: -	$\frac{1}{r_2}$
3 -0	Polarisations: 1	-
\vec{k}^{μ}	Square mass: $\frac{t}{r}$	1 2

0
)

O
ma
nassless
SSe
pa
tic
les)

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$

_
\supset
\supset
a
S
ıass
less
ìŏ
• •
ഗ
О
parti
particl
parti