Data Mining

Module 1

Introduction to Data Mining

Dr. Jason T.L. Wang, Professor Department of Computer Science New Jersey Institute of Technology

1

Data Management: Its Evolution

- 1960s:
 - File management and network DBMS
- 1970s:
 - Relational DBMS
- 1980s:
 - Non-first normal form, extended-relational, OO,
 deductive databases and application-oriented DBMS (spatial, scientific, CAD/CAM, etc.)
- 1990s present:
 - Data mining, digital library, and Web databases
 - Cloud databases, data science, and Big Data

Data Mining: Its Definition

- Data mining (knowledge discovery in databases):
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) information or patterns from data in large databases
- Alternative names:
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, etc.

Data Mining: A Multidisciplinary Field

- Pattern Recognition
- Machine Learning
- Databases
- Statistics
- Information Visualization

Data to be mined

- Text databases
- Web databases
- Scientific and biological databases
- Transactional databases

Knowledge to be discovered

- Association (correlation)
 - Multi-dimensional vs. single-dimensional association
 - age(X, "20..29") ^ income(X, "20..29K") → buys(X, "PC")
 [support = 2%, confidence = 60%]
 - contains(X, "computer") → contains(X, "software") [1%, 75%]

Knowledge to be discovered (cont.)

Classification

- Finding models (functions) that describe and distinguish classes or concepts for future prediction
- E.g., classify countries based on climate, or classify cars based on gas mileage

Clustering

Class label is unknown: Group data to form clusters

Interesting patterns

- Many patterns can be discovered.
- Interestingness measures: A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm.
- Objective vs. subjective interestingness measures:
 - Objective: based on support, confidence, etc.
 - Subjective: based on user's judgement

Data Mining: Its Applications

- Market analysis and management
- Risk analysis and forecasting
- Fraud detection and management
- Text mining (news group, email, documents) and Web analysis
- Bioinformatics data mining
- Security informatics data mining

Market Analysis and Management

- Credit card transactions Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
- Data mining can tell you what types of customers buy what products (clustering or classification).
- Data mining can identify the best products for different customers.

Risk Analysis and Management

- Summarize and compare the resources and spending
- Monitor competitors and market directions
- Set pricing strategy in a highly competitive market

Fraud Detection and Management

- Use historical data to build models of fraudulent behavior and use data mining to help identify similar instances
- Example: detect a group of people who stage accidents to collect on auto insurance

Other Applications

Astronomy

 JPL and the Palomar Observatory discovered 22 quasars with the help of data mining techniques.

Bioinformatics

 Many bioinformatics companies use data mining techniques to find genes in DNA and to classify protein sequences.

Security informatics

-- RPI researchers use data mining to find hidden groups on the Internet.

A Summary of Data Mining

Databases to be mined

Knowledge to be discovered

Techniques to be utilized

Domains to be applied

End of Module 1