Stochastic (random) variables

Definition

A random variable X is a function that takes its values from the sample space.

$$X: S \to \mathbb{R} \tag{1}$$

For a set A we note

$$P(X \in A) = P(\lbrace s < inS, X(s) \in A \rbrace) \tag{2}$$

Comulative distribution function

Let X be a random variable with cumulative distribution function F. Then F verifies the following properties:

- 1. For $a, b \in \mathbb{R}$ with a < b $F(b) = P(x \le a) + P(a < X \le b) = F(a) + P(a < x \le b)$
- 2. F(x) = 1 P(X > x), for $x \in \mathbb{R}$
- 3. F is cadlag: right-continuous with limits from the left
- 4. $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

The cumulative distribution funtion (cdf) F_x characterizes X completely.

Probability mass function

Let $\{x_1, x_2, ...\}$ be the values of the discrete random variable X. The function $p(x_k) = P(X = x_k)$, k = 1, 2, ... is called the probability mass function.

Let X be a random variable with cdf F and pdf p. Then we have the following properties:

1. $F(x_k) = \sum$ Nåede ikke mere. Lårt.

Står i bogen.

Continuous variable

If F_x is continuously differentiable, X is called a continuous random variable. The function $f = F'_x$ is called the qualitatively density function of X.

Let X be a continuous random variable with cdf F and pdf f. Then

1.
$$F(x) = \int_{-\infty}^{x} f(t)dt$$

2.
$$f(x) = F'_x(x)$$

3.
$$P(x \in B) = \int_B f(x)dt$$

f characterizes X completely.

The uniform distribution

X is a unform distribution on [a,b] for a < b if $f(x) = \frac{1}{b-a}$ if $x \in [a,b]$. We write $X \sim Unif([a,b])$

Let $X \sim Unif([0,1])$ and Y = a + (b-a)X.

Then $Y \sim Unif([a,b])$

Proof For $y \in \mathbb{R}$

$$F_Y(y) = P(Y \le y) = P(a + (b - a)X \le y) = P(X \le \frac{y - a}{b - a})$$

A X in Unif([0,1]); we have

1.
$$F_X(x) = x$$
 if $f \in [0, 1]$

2.
$$F_X(x) = 0 \text{ if } x \le 0$$

3.
$$F_X(x) = 1 \text{ if } x \ge 1$$

Hence

1.
$$F_Y(y) = \frac{y-a}{b-a}$$
 if $y \in [a, b]$

2.
$$F_X(y) = 0 \text{ if } y \le a$$

3.
$$F_Y(y) = 1 \text{ if } y \ge 1$$

Therefore $f_y(y) = F_Y'(y) = \frac{1}{b-a}$ if $y \in [a, b]$.

Let X be a random variable, $a, c \in \mathbb{R}$ Then