Machine Learning - Exercise 4 Companion Slides (adapted from Lucas Beyer)

Paul Voigtlaender Sabarinath Mahadevan

December 6, 2018

What's the plan?

- Exercise overview
- ► Deep learning in a nutshell
- Backprop in detail

Overview

- ► Goal: implement a simple DL framework from scratch
- ► Tasks:
 - Compute derivatives (Jacobians)
 - ► Write code

Given:

- ► Training data $X = \{x_i\}_{i=1...N}$ with $x_i \in \mathbb{I}$, usually as $X \in \mathbb{R}^{N \times N_i}$
- ► Training labels $T = \{t_i\}_{i=1...N}$ with $t_i \in \mathbb{O}$

- Parameterized, (sub-)differentiable function $F(X,\theta): \mathbb{I} \times \mathbb{P} \to \mathbb{O}$, with
 - typically, input-space $\mathbb{I} = \mathbb{R}^{N_l}$ (generic data), $\mathbb{I} = \mathbb{R}^{3 \times H \times W}$
 - ▶ typically, output-space $\mathbb{O} = \mathbb{R}^{N_O}$ (regression), $\mathbb{O} = [0,1]^{N_O}$
 - typically, parameter-space $\mathbb{P} = \mathbb{R}^{N_P}$
- (Sub-)differentiable criterion/loss $\mathcal{L}(T, F(X, \theta)) : \mathbb{O} \times \mathbb{O} \to \mathbb{R}$

$$\theta^* = \operatorname*{argmin}_{\Omega \subset \mathbb{T}} \mathscr{L}(T, F(X, \theta))$$

$$\mathcal{L}(T, F(X, \theta)) = \frac{1}{N} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta))$$
Visual Computing Institute

Given:

- ► Training data $X = \{x_i\}_{i=1...N}$ with $x_i \in \mathbb{I}$, usually as $X \in \mathbb{R}^{N \times N_i}$
- ► Training labels $T = \{t_i\}_{i=1...N}$ with $t_i \in \mathbb{O}$

Choose

- ▶ Parameterized, (sub-)differentiable function $F(X, \theta) : \mathbb{I} \times \mathbb{P} \to \mathbb{O}$, with
 - ▶ typically, input-space $\mathbb{I} = \mathbb{R}^{N_l}$ (generic data), $\mathbb{I} = \mathbb{R}^{3 \times H \times W}$ (images), ...
 - typically, output-space $\mathbb{O} = \mathbb{R}^{N_O}$ (regression), $\mathbb{O} = [0,1]^{N_O}$ (probabilistic classification), ...
 - typically, parameter-space $\mathbb{P} = \mathbb{R}^{N_P}$
- ► (Sub-)differentiable criterion/loss $\mathscr{L}(T, F(X, \theta)) : \mathbb{O} \times \mathbb{O} \to \mathbb{R}$

RGB*Height*Width

Find

$$\theta^* = \operatorname*{argmin}_{\theta \in \mathbb{P}} \mathscr{L}(T, F(X, \theta))$$

Assumption:

$$\mathcal{L}(T, F(X, \theta)) = \frac{1}{N} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta))$$
Value Computing | RV

Given:

- ► Training data $X = \{x_i\}_{i=1...N}$ with $x_i \in \mathbb{I}$, usually as $X \in \mathbb{R}^{N \times N_i}$
- ► Training labels $T = \{t_i\}_{i=1...N}$ with $t_i \in \mathbb{O}$

Choose

- ▶ Parameterized, (sub-)differentiable function $F(X, \theta) : \mathbb{I} \times \mathbb{P} \to \mathbb{O}$, with
 - ▶ typically, input-space $\mathbb{I} = \mathbb{R}^{N_l}$ (generic data), $\mathbb{I} = \mathbb{R}^{3 \times H \times W}$ (images), ...
 - typically, output-space $\mathbb{O} = \mathbb{R}^{N_O}$ (regression), $\mathbb{O} = [0,1]^{N_O}$ (probabilistic classification), ...
 - typically, parameter-space $\mathbb{P} = \mathbb{R}^{N_P}$
- ► (Sub-)differentiable criterion/loss $\mathscr{L}(T, F(X, \theta)) : \mathbb{O} \times \mathbb{O} \to \mathbb{R}$

Find:

$$\theta^* = \operatorname*{argmin}_{\theta \in \mathbb{P}} \mathscr{L}(T, F(X, \theta))$$

Assumption:

$$\mathcal{L}(T, F(X, \theta)) = \frac{1}{N} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta))$$
Visial Computing Visial Computing

RGB*Height*Width

Given:

- ► Training data $X = \{x_i\}_{i=1...N}$ with $x_i \in \mathbb{I}$, usually as $X \in \mathbb{R}^{N \times N_i}$
- ► Training labels $T = \{t_i\}_{i=1...N}$ with $t_i \in \mathbb{O}$

Choose

- Parameterized, (sub-)differentiable function $F(X, \theta) : \mathbb{I} \times \mathbb{P} \to \mathbb{O}$, with
 - ▶ typically, input-space $\mathbb{I} = \mathbb{R}^{N_l}$ (generic data), $\mathbb{I} = \mathbb{R}^{3 \times H \times W}$ (images), ...
 - typically, output-space $\mathbb{O} = \mathbb{R}^{N_O}$ (regression), $\mathbb{O} = [0,1]^{N_O}$ (probabilistic classification), ...
 - typically, parameter-space $\mathbb{P} = \mathbb{R}^{N_P}$
- ► (Sub-)differentiable criterion/loss $\mathcal{L}(T, F(X, \theta)) : \mathbb{O} \times \mathbb{O} \to \mathbb{R}$

Find:

$$\theta^* = \operatorname*{argmin}_{\theta \in \mathbb{P}} \mathscr{L}(T, F(X, \theta))$$

Assumption:

$$\mathscr{L}(T, F(X, \theta)) = \frac{1}{N} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta))$$
Visual Computing limitation

RGB*Height*Width

Take derivative with respect to θ

$$\stackrel{\int}{D_{\theta}} \frac{1}{N} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta)) = \frac{1}{N} D_{\theta} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta))$$

$$= \frac{1}{N} \sum_{i=1}^{N} D_{\theta} F(x_i, \theta) \cdot D_{F} \ell(t_i, F(x_i, \theta))$$

Chain rule

Assumption

F is hierarchical:
$$F(x_i, \theta) = f_1(f_2(f_3(...x_i..., \theta_3), \theta_2), \theta_1)$$

 $D_{\theta_1}F(x_i, \theta) = D_{\theta_1}f_1(f_2, \theta_1)$
 $D_{\theta_2}F(x_i, \theta) = D_{\theta_2}f_2(f_3, \theta_2) \cdot D_{f_2}f_1(f_2, \theta_1)$
 $D_{\theta_3}F(x_i, \theta) = D_{\theta_3}f_3(..., \theta_3) \cdot D_{f_3}f_2(f_3, \theta_2) \cdot D_{f_2}f_1(f_2, \theta_1)$

Take derivative with respect to θ

$$\stackrel{\int}{D_{\theta}} \frac{1}{N} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta)) = \frac{1}{N} D_{\theta} \sum_{i=1}^{N} \ell(t_i, F(x_i, \theta))$$

$$= \frac{1}{N} \sum_{i=1}^{N} D_{\theta} F(x_i, \theta) \cdot D_{F} \ell(t_i, F(x_i, \theta)) \quad (1)$$

Chain rule

Assumption:

$$F$$
 is hierarchical: $F(x_i, \theta) = f_1(f_2(f_3(\dots x_i \dots, \theta_3), \theta_2), \theta_1)$

$$D_{\theta_1}F(x_i,\theta)=D_{\theta_1}f_1(f_2,\theta_1)$$

$$D_{\theta_2}F(x_i,\theta) = D_{\theta_2}f_2(f_3,\theta_2) \cdot D_{f_2}f_1(f_2,\theta_1)$$

$$D_{\theta_3}F(x_i,\theta) = D_{\theta_3}f_3(\dots,\theta_3) \cdot D_{f_3}f_2(f_3,\theta_2) \cdot D_{f_2}f_1(f_2,\theta_1)$$

Where $f_2 = f_2(f_3(...x_i...,\theta_3),\theta_2)$ etc.

Jacobians

The loss:

$$D_{F}\ell(t_{i},F(x_{i},\theta)) = \begin{pmatrix} \partial_{F_{1}}\ell \\ \vdots \\ \partial_{F_{N_{F}}}\ell \end{pmatrix} \in \mathbb{R}^{N_{F}\times 1}$$

The functions (modules):

$$f(z,\theta) = \begin{pmatrix} f_1(z_1, \dots, z_{N_z}; \theta) & \dots & f_{N_f}(z_1, \dots, z_{N_z}; \theta) \end{pmatrix} \in \mathbb{R}^{1 \times N_f}$$

$$D_z f(z,\theta) = \begin{pmatrix} \partial_{z_1} f_1 & \dots & \partial_{z_1} f_{N_f} \\ \vdots & \ddots & \vdots \\ \partial_{z_{N_z}} f_1 & \dots & \partial_{z_{N_z}} f_{N_f} \end{pmatrix} \in \mathbb{R}^{N_z \times N_f}$$

Jacobians

The loss:

$$D_{F}\ell(t_{i},F(x_{i},\theta)) = \begin{pmatrix} \partial_{F_{1}}\ell \\ \vdots \\ \partial_{F_{N_{F}}}\ell \end{pmatrix} \in \mathbb{R}^{N_{F}\times 1}$$

The functions (modules):

$$f(z,\theta) = (f_1(z_1,\ldots,z_{N_z};\theta) \quad \ldots \quad f_{N_f}(z_1,\ldots,z_{N_z};\theta)) \in \mathbb{R}^{1 \times N_f}$$

$$D_{z}f(z,\theta) = \begin{pmatrix} \partial_{z_{1}}f_{1} & \cdots & \partial_{z_{1}}f_{N_{f}} \\ \vdots & \ddots & \vdots \\ \partial_{z_{N_{z}}}f_{1} & \cdots & \partial_{z_{N_{z}}}f_{N_{f}} \end{pmatrix} \in \mathbb{R}^{N_{z} \times N_{f}}$$

Modules

Looking at module f_2 :

$$D_{\theta_3}F(x_i,\theta) = [D_{\theta_3}f_3(\dots,\theta_3)]\underbrace{[D_{f_3}f_2(f_3,\theta_2)]}_{\text{Jacobian wrt. input grad_output}} \underbrace{[D_{f_2}f_1(f_2,\theta_1)]}_{\text{grad input}}$$

Three (core) functions per module:

fprop: compute the output $f_i(z,\theta_i)$ given the input z and current parameters θ_i grad_input: compute $D_z f_i(z,\theta_i) \cdot \operatorname{grad}$ _output grad_param: compute $\nabla_{\theta_i} = D_{\theta_i} f_i(z,\theta_i) \cdot \operatorname{grad}$ _output^T

Typically:

fprop caches its input and/or output for later reuse grad_input and grad_param are combined into single bprop function to share computation

Usage/Training

```
1: net = [f1, f2, ..., f_{N_f}], \ell = criterion
 2: for Xb, Tb in batched X, T do
 3:
      z = Xb
     for module in net do
             z = module.fprop(z)
 5:
       end for
 6:
 7:
         costs = \ell.fprop(z, Tb)
         \partial z = \ell.bprop([\frac{1}{N_B} \dots \frac{1}{N_B}])
 8:
         for module in reversed(net) do
 9:
              \partial z = module.bprop(\partial z)
10:
         end for
11:
12:
      for module in net do
              \theta, \partial\theta = module.params(), module.grads()
13:
              \theta = \theta - \lambda \cdot \partial \theta
14:
         end for
15:
16: end for
```


Example: Linear aka. Fully-connected module

$$f(z, W, b) = z \cdot W + b \in \mathbb{R}^{1 \times N_f}$$

Where $z \in \mathbb{R}^{1 \times N_z}$, $W \in \mathbb{R}^{N_z \times N_f}$, $b \in \mathbb{R}^{1 \times N_f}$, and grad_output = $D_f \ell(f(z, W, b))^T \in \mathbb{R}^{N_f \times 1}$ The gradients are

- $ightharpoonup \mathbb{R}^{N_f \times 1} \ni \operatorname{grad}_b = \operatorname{grad}_\operatorname{output}$
- ▶ $\mathbb{R}^{N_z \times 1}$ ∋ grad_input = $W \cdot \text{grad_output}$

Gradient Checking

Crucial debugging method!

Compare Jacobian computed by finite differences using the fprop function to Jacobian computed by the bprop function.

Advice: Use (small) random input x, and $h_i = \sqrt{eps} \max(x_i, 1)$.

Finite-difference: first column of Jacobian as:

$$x_{-} = \begin{pmatrix} x_1 - h_1 & x_2 & x_3 & \dots & x_{N_x} \end{pmatrix}$$

$$x_{+} = \begin{pmatrix} x_1 + h_1 & x_2 & x_3 & \dots & x_{N_x} \end{pmatrix}$$

$$J_{\bullet,1} = \frac{\text{fprop}(x_{+}) - \text{fprop}(x_{-})}{2h_1}$$

Backprop: first row of Jacobian as:

$$J_{1,\bullet} = \operatorname{bprop} \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Mini-Batching

Linear layer (without mini-batching)

$$f(z, W, b) = z \cdot W + b$$

 $z \in \mathbb{R}^{1 \times N_z}, W \in \mathbb{R}^{N_z \times N_f}, b \in \mathbb{R}^{1 \times N_f}$

Stack z into mini-batch matrix with batch size $N\Rightarrow z\in\mathbb{R}^{N\times N_z}$ Now the multiplication $z\cdot W$ can be performed for all examples in one pass and b can be added by broadcasting (repeating) b to \hat{b}

$$f(z, W, b) = \begin{pmatrix} \overline{} & f_1 & \overline{} \\ \vdots & \vdots & \vdots \\ \overline{} & f_N & \overline{} \end{pmatrix} = \begin{pmatrix} z_{1,1} & \cdots & z_{1,N_z} \\ \vdots & \ddots & \vdots \\ z_{N,1} & \cdots & z_{N,N_z} \end{pmatrix}$$

$$\cdot \begin{pmatrix} W_{1,1} & \cdots & W_{1,N_f} \\ \vdots & \ddots & \vdots \\ W_{N_z,1} & \cdots & W_{N_z,N_f} \end{pmatrix} + \begin{pmatrix} \overline{} & b & \overline{} \\ \vdots & \vdots & \vdots \\ \overline{} & b & \overline{} \end{pmatrix}$$

Rule-of-thumb result on MNIST

(max pixel value).

Linear($28 \times 28, 10$), Softmax should give ± 750 errors. Linear($28 \times 28, 200$), tanh, Linear(200, 10), SoftMax should give ± 250 errors. Typical learning rates $\lambda \in [0.1, 0.01]$ Typical batch-sizes $N_B \in [100, 1000]$ Initialize weights as $\mathbb{R}^{M \times N} \ni W \sim \mathcal{N}(0, \sigma = \sqrt{\frac{2}{M+N}})$ and b = 0

Don't forget data pre-processing, here at least divide values by 255

