Algorithms Associated with Factorization Machines

Yanyu Liang Xin Lu Xupeng Tong

Carnegie Mellon University {yanyul,xlu2,xtong}@andrew.cmu.edu

December 13, 2016

Overview

- 1 Our Problem
 - Factorization Machines
 - Other Formulation
 - Our Work
- 2 ADMM for sparse

convexFMs

- ConvexFMs with I₁ constraint
- ADMM Formulation
- ADMM Subproblem

- ADMM Results
- ADMM Results (con'd)
- 3 Generalized Factorization Machine
 - Problem formulation
 - generalized Factorization
 Machine formulation con'd
 - One pass algorithm solving generalized Factorization Machine

Factorization Machines

■ Factorization machines [?] models $y \in \mathbb{R}$ given $x \in \mathbb{R}^p$ using the following expression:

$$\hat{y} = w_0 + w^T x + \sum_{i,j} (V_i x_i)^T (V_j x_j)$$

= $w_0 + w^T x + x^T V^T V x$

- , where V_i is $k \times 1$ vector.
- FMs is widely used in recommendation system, since it implicitly regularizes the model complexity by setting a *k* which is much smaller than *p*.

Other Formulation

- $\sum_{i,j} (V_i x_i)^T (V_j x_j)$ makes FMs nonconvex, and researcher has proposed convex FMs [?] by replacing low rank constraint by trace norm (replace $V^T V$ with W).
- Also, by replacing one V in V^TV with U, [?] proposed generalized FMs with an online learning algorithm

Our Goal

- Propose ADMM method to sovle convexFMs with element-wise *l*₁ constraint
- Overview optimization algorithm to solve classic FMs problems

ConvexFMs with I_1 constraint

- I₁ penalty is widely used and it is potential helpful in many applications beyond recommendation systems.
- Consider the regression problem in convexFMs with l_1 penalty:

$$\min_{w_0, w, W} \sum_{i=1}^{n} \underbrace{(y_i - w_0 - w^T x_i - x_i^T W x_i)^2}_{f(w_0, w, W)} + \lambda_1 \|W\|_{tr} + \lambda_2 \|W\|_1 + \lambda_3 \|w\|_2^2$$

ADMM Formulation

By introduing axilluary variable U, it can be fit into ADMM framework and the augmented Lagrangian is:

$$\mathcal{L}(w_0, w, W) = f(w_0, w, W) + \lambda_1 \|U\|_{tr} + \lambda_2 \|W\|_1 + \lambda_3 \|w\|_2^2 + \langle W - U, u \rangle + m \|W - U\|_2^2$$

- Then the ADMM loop is:
 - 1 Update w_0, w, W :

$$\begin{aligned} w_0^k, w^k, W^k &= \arg\min_{w_0, w, W} f(w_0, w, W) + \lambda_2 \|W\|_1 \\ &+ \frac{\rho}{2} \|W - U^{k-1} + u^{k-1}\|_2^2 \end{aligned}$$

2 Update *U*:

$$U^k = \arg\min_{U} \lambda_1 \|U\|_{\mathrm{tr}} + \frac{\rho}{2} \|W^k - U + u^{k-1}\|_2^2$$

3 Update u:

$$u^k = u^{k-1} + W^k - U^k$$

ADMM Subproblem

- The second step can be solve exactly with proximal operator of trace norm.
- We explored two approaches to solve the first subprobelm:
 - proximal graident descent on w_0, w, W (proximal)
 - blockwise coordinate descent on w_0 , w and W respectively, where we applied coordinate descent on the first block and tried proximal gradient (coor-proximal) and Quasi-Newton (coor-newton) method on the second block

ADMM Results

- Quasi-Newton method performs better than proximal graident descent in solving $\arg \min_W g(W)$ subproblem (as we expected)
- proximal gradient descent performs better and stable than blockwise coordinate descent

ADMM Results (con'd)

- ADMM converges and it achieves feasiblity along the path
- with the same number of updates (consider inner loop),
 ADMM outperforms sub-gradient method

generalized Factorization Machine formulation

gFM proposed by [?] removes several redundant constraints compared to the original FM, while its learning ability is kept. Reforming \hat{y} in gFMs as follow:

$$\hat{y} = X^T w^* + \mathcal{A}(U^T V) + \xi$$

generalized Factorization Machine formulation con'd

- When w = 0, gFM is equal to the symmetric rank-one matrix sensing problem
- When $w \neq 0$, the gFM has an extra perturbation term $X^T w$.

One pass algorithm solving generalized Factorization Machine

Algorithm 1 One pass algorithm solving

Ensure:
$$w^{(T)}, U^{(T)}, V^{(T)}$$

1: Initialize: $w^{(0)} = 0, V^{(0)} = 0.U^{(0)} = \text{SVD}\left(H_1^0 - \frac{1}{2}h_2^{(0)}I, k\right)$
2: **for** $t = 1, 2, \dots, T$ **do**
3: Retrieve $x^{(T)} = [x_{(t-1)n+1}, \dots, x_{(t-1)n+n}]$. Define $\mathcal{A}(M) \triangleq \begin{bmatrix} x_i^{(t)^T} M X_i^{(t)} \end{bmatrix}$
4: $\hat{U}^{(t)} = \left(H_1^{(t-1)} - \frac{1}{2}h_2^{(t-1)}I + M^{(t-1)^T}U^{(t-1)}\right)$
5: Orthogonalize $\hat{U}^{(t)}$ via QR decomposition: $U^{(t)} = QR(\hat{U}^{(t)})$
6: $w^{(t)} = h_3^{(t-1)} + w^{(t-1)}$
7: $V^t = (H_1^{(t-1)} - \frac{1}{2}h_2^{(t-1)}I + M^{(t-1)})U^{(t)}$
8: **end for**
9: **Output:** $w^{(T)}, U^{(T)}, V^{(T)}$

Result

- Fine tune the rank *k* in order to have a better convergence rate
- Higher learning rate might cause the algorithm unable to learn or even increased error rate

References I

The End