Stochastic Processes, Brownian Motion, and Time Series

1. Formal Definitions

- A **stochastic process** is a collection of random variables \${X_t}_{t \in \mathbb{T}}\$ indexed by time or space, representing the evolution of a system with inherent randomness.
- A process \${X_t}_{t \in \mathbb{Z}}\$ is **weakly stationary** (or covariance stationary) if:

 - \$\text{Var}(X_t) < \infty\$ (finite, constant variance),
 - 3. $\text{Cov}(X_t, X_{t+h}) = \gamma (h)$ depends only on lag h, not on t.

2. Brownian Motion

A **Brownian motion** (or **Wiener process**) $\{B_t\}_{t \neq 0}$ satisfies:

1. Initial Condition:

```
$ B_0 = 0 \quad \text{(almost surely)} $$
```

2. **Independent Increments**: For $0 \le t_0 < t_1 < dots < t_n$, the increments:

$$\ B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}} \$$
 are independent.

3. Stationary Increments: For \$s < t\$,

```
$ B_t - B_s \sim \mathcal{N}(0, t - s) $$
```

4. **Continuity**: Paths $t \rightarrow B_t(\omega)$ are continuous almost surely.

Summary Notation:

\$ B_t \sim \mathcal{N}(0, t), \quad \mathbb{E}[B_t] = 0, \quad \text{Var}(B_t) = t \$\$

The sample paths are continuous but almost surely nowhere differentiable.

3. Example: Black-Scholes Price Dynamics

Consider the Black-Scholes stochastic differential equation:

```
$ frac{d S_t}{S_t} = \mu dt + sigma, dW_t $
```

Here, the return \$dS_t\$ follows:

\$\$ dS_t \sim \mathcal{N}(\mu, dt, \sigma^2, dt) \$\$

This implies that **log-returns** over fixed intervals (e.g. 1 hour) are normally distributed:

Time (\$T\$)	Price (\$S_T\$)	Change (\$dS_T\$)
\$t_0\$	1.20	-
\$2t_0\$	1.32	0.12
\$3t_0\$	1.94	0.62
\$4t_0\$	1.50	-0.44
\$5t_0\$	1.76	0.26

Visualization:

We observe log-price and log-return distributions for:

Upper: \$T = 30\$ days, \$\Delta t = 1\$ hour
Middle: \$T = 30\$ days, \$\Delta t = 4\$ hours
Lower: \$T = 90\$ days, \$\Delta t = 1\$ hour

Observations:

- Larger total period (\$T\$) yields better approximation of the true (population) distribution.
- Doubling \$\Delta t\$ (timeframe) roughly doubles the return volatility.

4. Stationarity of Log-Returns

• Log-return \$d $\log S_t$ \$ follows \$\mathcal{N}(\mu t_0, \sigma^2 t_0)\$ for fixed timeframe \$\Delta t = t_0\$.

- Mean and variance do not change with absolute time \$T\$, making the process covariance stationary.
- Returns at each \$\Delta t\$ are i.i.d., so volatility scales with \$\sqrt{\Delta t}\$, not \$T\$.

Illustration:

Suppose a price process \$S_t\$ has log-values:

```
\ \log S_t = {f(t_0), f(2t_0), f(3t_0), f(4t_0), \dots, f(T)}, \quad $$ $$ \text{ \text{where } f(t) \sim \mathbb{N}(\mu_t \log S_0 + (\mu -\sigma^2/2) t , \sigma_t^2=\sigma^2 t) $$
```

```
\ [\log S_t] = \log S_0 + (\mu -\sigma^2/2) t = \Mu_t $$ $\text{Var}[\log S_t] = \sigma^2 t = \sigma_t $$
```

This means that the **mean and variance depend on both** the timeframe $\Delta t = t_0$ and the **total time** T.

• In contrast, the log-returns (modeled as \$dW_t\$) are:

```
$$ \log\left(\frac{S_t}{S_{t-t_0}}\right) = {f(t_0), f(t_0), f(t_0), f(t_0), dots} $$ where each term is i.i.d. $\sum_{n=0}^{\infty} \frac{1}{N}(\mu t_0, \sigma^2 t_0)$-independent of $T$.
```

This shows:

- Log-prices evolve over time and are non-stationary (variance increases with \$T\$),
- Log-returns are stationary—their distribution depends on \$\Delta t\$, but not on \$T\$.

4. Stationarity of Log-Returns

- Log-return \$d \log S_t\$ follows $\mathcal{N}(\mu t_0, \sigma^2 t_0)$ for time frame \$\Delta t = t_0\$.
- The **mean** and **variance** are time-independent, hence the process is **covariance stationary**.
- Even though returns scale with \$\Delta t\$, they do **not** depend on absolute time \$T\$.
- The scaling of volatility follows: \$\sigma_{\Delta t} \propto \sqrt{\Delta t}\$.

Clarification:

- Stationarity implies that properties do not evolve with time.
- Timeframe \$\Delta t\$ determines variance, not the dataset duration \$T\$.

Is log-return an \$I(0)\$ process?

• Yes, by definition. A stationary process is an \$1(0)\$ process.

What ARIMA model fits log-return?

• Log-return under Black-Scholes is **white noise**, modeled by **ARIMA(0,0,0)**.

5. Discrete vs Continuous Processes

b. Discrete vs continuous i ro

Continuous Counterpart

Random Walk: $X_t = X_{t-1} + \epsilon_t$	Brownian motion: \$W_t\$
White Noise: \$Y_t = dX_t = \epsilon_t\$	\$Y_t = dW_t\$ (stationary increments)

Random Walk vs First Difference:

• Random walk accumulates white noise:

$$\ X_t = \sum_{i=1}^t \exp_i, \quad t\in X_t = \sum_{i=1}^t \exp_i, \quad t\in X_t = t\simeq X_t = t$$

- → Not stationary
- First difference:

Discrete Model

$$$$$
 Y_t = X_t - X_{t-1} = \epsilon_t \$\$

→ Stationary

6. Brownian Motion vs Log-Price

- Brownian motion: \$\text{Var}(W_t) = t\$ → not stationary
- Log-price also follows a non-stationary path:

```
\ \mathbb{E}[\log S_t] = \log S_0 + (\mu - \sigma^2/2)t \\text{Var}[\log S_t] = \sigma^2 t $$
```

So, log-prices evolve with time. But **log-returns**, defined over fixed \$\Delta t\$, are i.i.d. and **stationary**.

7. Cointegration and Statistical Arbitrage

- Let \$X_t, Y_t\$ be two \$I(1)\$ processes.
- If there exists a linear combination:

$$$$$
 $S_t = Y_t - \alpha - \beta X_t $$

such that \$S_t\$ is **stationary**, then \$X_t\$ and \$Y_t\$ are **cointegrated**.

Is the spread \$S_t\$ affected by the timeframe \$\Delta t\$?

- No.
- Here, the \$I(0)\$ process is **constructed** via linear combination, not by differencing.
- Therefore, its distribution is independent of \$\Delta t\$ (unlike log-return, which depends on \$\Delta t\$).