Fault-tolerant architecture design for flow-based biochips

Morten Chabert Eskesen

Kongens Lyngby 2015

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The goal of the thesis is to \dots

Summary (Danish)

Målet for denne afhandling er at \dots

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for acquiring an M.Sc. in Engineering.

The thesis deals with ...

The thesis consists of \dots

Lyngby, 26-June-2015

Morten Chabert Eskesen

Acknowledgements

I would like to thank my....

Contents

Sı	ımm	ary (English)	1				
Sı	ımm	ary (Danish)	iii				
P	refac	е	\mathbf{v}				
A	ckno	wledgements	vii				
1	Inti	roduction	1				
	1.1	Flow-based mVLSI biochips	1				
		1.1.1 Application areas	1				
	1.2	Motivation	1				
		1.2.1 Related work	1				
	1.3	Thesis Objectives and Contributions	1				
	1.4	Thesis Overview	1				
2	Faults in Flow-Based Biochips						
	2.1	Possible Faults and Causes	3				
	2.2	Defects	3				
	2.3	Fault Modeling	3				
	2.4	Testing Strategy	3				
	2.5	Summary	3				
3	\mathbf{Sys}	tem Models	5				
	3.1	Biochip Architecture Model	6				
		3.1.1 Component Model	6				
		3.1.2 Architecture Model	6				
		3.1.3 Fault Model	6				
	3.2	Riochemical Application Model	6				

x CONTENTS

	3.3	Application Mapping	6					
	3.4	Benchmarks	6					
	3.5	Summary	6					
4	Architectural Synthesis							
	4.1	Problem Formulation	8					
	4.2	Alternative Architecture Generation	8					
	4.3	Simulated Annealing Architecture Synthesis	8					
		4.3.1 Concept	8					
		4.3.2 Design Transformations	8					
		4.3.3 Implementation	8					
	4.4	GRASP Architecture Synthesis	8					
		4.4.1 Concept	8					
		4.4.2 Implementation	8					
	4.5	Summary	8					
5	Architecture Evaluation							
	5.1	Cost Function	9					
	5.2	Generation of Fault Scenarios	9					
	5.3	Connectivity	9					
	5.4	Scheduling	9					
	5.5	Summary	9					
6	Experimental Evaluation 1							
	6.1	Benchmarks	11					
	6.2	Solution Quality	11					
	6.3	Performance	11					
	6.4	Summary	11					
7	Conclusions and Future Work 13							
	7.1	Conclusions	13					
	7.2	Future Work	13					
\mathbf{A}	Stu	ff	15					
Bibliography								

Introduction

- 1.1 Flow-based mVLSI biochips
- 1.1.1 Application areas
- 1.2 Motivation
- 1.2.1 Related work
- 1.3 Thesis Objectives and Contributions
- 1.4 Thesis Overview

2 Introduction

Faults in Flow-Based Biochips

- 2.1 Possible Faults and Causes
- 2.2 Defects
- 2.3 Fault Modeling
- 2.4 Testing Strategy
- 2.5 Summary

System Models

6 System Models

3.1	Biochip	Architecture	Model

- 3.1.1 Component Model
- 3.1.2 Architecture Model
- 3.1.3 Fault Model
- 3.2 Biochemical Application Model
- 3.3 Application Mapping
- 3.4 Benchmarks
- 3.5 Summary

Architectural Synthesis

- 4.1 Problem Formulation
- 4.2 Alternative Architecture Generation
- 4.3 Simulated Annealing Architecture Synthesis
- 4.3.1 Concept
- 4.3.2 Design Transformations
- 4.3.3 Implementation
- 4.4 GRASP Architecture Synthesis
- 4.4.1 Concept
- 4.4.2 Implementation
- 4.5 Summary

Architecture Evaluation

- 5.1 Cost Function
- 5.2 Generation of Fault Scenarios
- 5.3 Connectivity
- 5.4 Scheduling
- 5.5 Summary

Experimental Evaluation

- 6.1 Benchmarks
- 6.2 Solution Quality
- 6.3 Performance
- 6.4 Summary

Conclusions and Future Work

- 7.1 Conclusions
- 7.2 Future Work

Appendix A

Stuff

This appendix is full of stuff \dots

16 Stuff

Bibliography