平成 29 年度 学期末試験問題・解答

試験実施日 平成 29 年 8 月 1 日 2,3 時限

出題者記入欄

解析演習 試 験 科 目 名 解析基礎		出題者名佐藤弘康
試 験 時 間 <u>60</u> 分	平常授業	美日<u>火</u>曜日<u>2,3</u>時限
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	メ・コピーも可) ・電卓 ・辞書)
本紙以外に必要とする用紙	解答用紙_	0 枚 計算用紙 0 枚
通信欄		

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

採点欄	評価

科 目 名 解析基礎

出題者名

佐藤	ᅶ	康

1 次の各空欄に当てはまる適切な数, 式, 記号または言葉を書きなさい. なお, 各設間間の空白は計算のために使ってよい.

(1) 2017° は、別	瓜度法で表すと		ラジアン
であり, 第	1	象限の角である).

- (2) 角 θ を $\tan \theta = -\frac{1}{3}$ を満たす第 2 象限の角とすると、 $\cos \theta$ の符号は であるから、 $\cos \theta =$ である
- (3) 余弦関数に関する加法定理

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta \boxed{ \sin\alpha \sin\beta}$$

に三角関数の相互関係式

$$\sin x = \cos \left(\begin{array}{c} \\ \\ \\ \end{array} \right),$$

$$\cos x = \sin \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

を適用するにより正弦関数に関する加法定理

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \boxed{\times \sin\beta}$$

が得られる. 差 $\alpha - \beta$ についての加法定理の式は

$$\sin(-x) = \boxed{ \sin x,}$$

$$\cos(-x) = \boxed{ \cos x}$$

を用いて導くことができる.

(4) 加法定理を用いると, $\cos \frac{7\pi}{12} =$ 算できる.

(5) 2 倍角の公式とは、加法定理の式に $\beta=\alpha$ を代入して得られる

のことである.2 つ目の式の α を $\frac{\alpha}{2}$ に置き換えると

を得る. これが半角の公式である.

(6) θ を $\frac{\pi}{2}$ < θ < π かつ $\sin\theta = \frac{1}{3}$ を満たす数とする。このとき, $\cos\theta$ の符号は であるから, $\cos\theta =$ である。 2 倍角の公式から, $\sin 2\theta =$ が得られる。また,(*) $\cos\frac{\theta}{2}$ の符号は正である から,半角の公式より, $\cos\frac{\theta}{2} =$ が得られる。

2 1(6)の下線(*)の理由を説明しなさい.

3 正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

と余弦定理

$$a^2 = b^2 + c^2 - 2bc\cos A$$

を活用して,次の間に答えなさい.

(1) 2 辺の長さが 3 と 5 で, その 2 辺の挟角が 60°の 三角形がある. 残る 1 辺の長さを求めなさい.

(2) 3 辺の長さが 5,6,7 の三角形の外接円の半径を 求めなさい. 5 次の式を簡単にしなさい.

$$\sin\left(\theta + \frac{\pi}{2}\right) + \cos(\theta - \pi)$$

- **6** 関数 $f(x) = \sin x \sqrt{3}\cos x$ について次の各間に答えなさい.
 - (1) 三角関数の合成によって、 $f(x) = r \sin(x + \alpha)$ の形に したときの r と α の値を求めなさい.

- (2) f(x) の最小値と最大値を求めなさい.
- (3) f(x) = 0 を満たす x を 1 つ答えなさい.
- (4) y = f(x) のグラフを描きなさい.

7 不等式

 $\sin x \leqq \cos 2x$

を満たす x の範囲を求めなさい. ただし, $0 \le x \le 2\pi$ とする.