

Transition Systems

Giuseppe De Giacomo

Transition Systems

Concentrating on behaviors: Vending Machine

Concentrating on behaviors: Another Vending Machine

Concentrating on behaviors: Vending Machine with Tilt

TS may describe (legal) nonterminating processes

Nondeterministic transitions express **choice** that is **not** under the **control** of clients

Example (Vending Machine - Variant 1)

Example (Vending Machine - Variant 2)

Transition Systems

- A transition system TS is a tuple $T = \langle A, S, S^0, \delta, F \rangle$ where:
 - A is the set of actions
 - S is the set of states
 - $S^0 \subseteq S$ is the set of initial states
 - $\delta \subseteq S \times A \times S$ is the transition relation
 - $F \subseteq S$ is the set of final states

(c.f. Kripke Structure)

- Variants:
 - No initial states
 - Single initial state
 - Deterministic actions
 - States labeled by propositions other than Final/¬Final

Bisimulation and Bisimilarity

Bisimulation

Intuition:

Two (states of two) transition systems are bisimilar if they have the same behavior.

In the sense that:

- Locally they (the two **states**) look indistinguishable
- Every **action** that can be done on one of them can also be done on the other remaining indistinguishable

Bisimulation

A binary relation R is a bisimulation iff:

```
(s,t) ∈ R implies that
s is final iff t is final
for all actions a
if s →<sub>a</sub> s' then ∃ t' . t →<sub>a</sub> t' and (s',t')∈ R
if t →<sub>a</sub> t' then ∃ s' . s →<sub>a</sub> s' and (s',t')∈ R
```

- A state s_0 of transition system S is **bisimilar**, or simply **equivalent**, to a state t_0 of transition system T iff there **exists** a **bisimulation** between the initial states s_0 and t_0 .
- Notably
 - bisimilarity is a bisimulation
 - bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Computing Bisimulation on Finite Transition Systems


```
Algorithm ComputingBisimulation
```

Input: transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$

Output: the **bisimilarity** relation (the largest bisimulation)

```
Body
```

Ydob

```
\begin{array}{l} R = S \times T \\ R' = R - \{(s,t) \mid \neg (s \in F_S \ ' \ t \in F_T)\} \\ \text{while } (R \neq R') \ \{ \\ R := R' \\ R' := R' - (\{(s,t) \mid \exists \ s',a.\ s \rightarrow_a \ s' \ \land \neg \exists \ t' \ . \ t \rightarrow_a \ t' \ \land (s',t') \in R' \ \} \\ \{(s,t) \mid \exists \ t',a.\ t \rightarrow_a \ t' \ \land \neg \exists \ s' \ . \ s \rightarrow_a \ s' \ \land (s',t') \in R' \ \} \} \\ \text{return } R' \end{array}
```

This algorithm is based on computing iteratively fixpoint approximates for the **greatest fixpoint**, starting from the total set (SxT).

Example of Bisimulation

Example of Bisimulation

Automata vs. Transition Systems

Automata

 define sets of runs (or traces or strings): (finite) length sequences of actions

TSs

- ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"

