

SUBJECT: Linear Algebra - TOPIC: Some Special Matrices

Symmetric Matrices:

- 1. Let $A \in M_n(\mathbb{R})$, A is said to be symmetric if $A^T = A$.
- 2. Let $A, B \in M_n(\mathbb{R})$ such that A and B are symmetric, then A + B, A B, kA, AB + BA A^n are symmetric.

 $(AB \text{ is not always symmetric. Eg: } A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$

Here $AB = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ which is not symmetric). 3. AB is symmetric iff AB = BA.

Necessary Condition: AB is symmetric

 $AB = (AB)^T = B^T A^T = BA$ (Since A, B are symmetric)

Sufficient Condition: AB = BA

 $AB = B^T A^T$ (Since A, B are symmetric)

 $AB = (AB)^T \Rightarrow AB$ is symmetric

4. If A is symmetric and invertible, then A^{-1} is also symmetric.

 $AA^{-1} = I \implies (A^{-1})^T A^T = I$ (reversal law)

 $\Rightarrow (A^{-1})^T A = I$ (Since A is symmetric)

 $\Rightarrow (A^{-1})^T = A^{-1}$ (ie., A^{-1} is symmetric)

5. For any square matrix A, $A + A^T$, AA^T , A^TA are symmetric.

6. $\det \begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix} = abc + 2fgh - af^2 - bg^2 - ch^2.$ 7. $\det \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} = 3abc - a^3 - b^3 - c^3.$

Skew- Symmetric Matrices:

- 1. Let $A \in M_n(\mathbb{R})$, A is said to be skew-symmetric if $A^T = -A$.
- 2. Let Let $A, B \in M_n(\mathbb{R})$ such that A and B are skew-symmetric, then A + B, A B, kA, AB BA are skew-symmetric.

AB need not skew symmetric. Eg: $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

 $AB = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ which not skew symmetric

- 3. A^n is symmetric if n is even and skew-symmetric if n is odd.
- 4. For any square matrix A, $A A^{T}$ is always sew-symmetric.
- 5. The diagonal elements of a skew-symmetric matrices are all zeroes.

 $A^T = A \quad \Rightarrow \ a_{ij} = -a_{ji}$

for diagonal element $a_{ii} = -a_{ii} \implies 2a_{ii} = 0 \implies a_{ii} = 0$.

- 6. If A is skew symmetric, then I A is invertible.
- 7. Determinent of odd order skew-symmetric matrix are 0.

We know
$$|A^T| = |A|$$

Here $A^T = -A$. So, $|A^T| = (-1)^n |A|$
if *n* is odd, $|A| = -|A| \Rightarrow |A| = 0$.

- 8. Determinent of even order skew-symmetric matrix is non negative.
- 9. Determinent of even order skew-symmetric matrix with integer entries is a perfect square.
- 10. Any square matrix A of order n can be uniquely expressed as the sum of symmetric and skew-symmetric matrices. That is, $A = \left(\frac{A+A^T}{2}\right) + \left(\frac{A-A^T}{2}\right)$

The vector space $M_n(\mathbb{R})$ can be expressed as the direct sum of the set of all symmetric matrices and set of all skew-symmetric matrices.

Hermitian Matrices(Self adjoint Matrices):

1. Let $A \in M_n(\mathbb{C})$, A is said to be hermitian if $A^* = A$, where $A^* = (\overline{A})^T = \overline{(A^T)}$.

Eg:
$$\begin{bmatrix} 1 & 1+2i & 5i \\ 1-2i & 2 & 6 \\ -5i & 6 & 3 \end{bmatrix}.$$

2. Real symmetric matrices are hermitian matrices.

For real symmetric matrix A, $\bar{A} = A$, so, $A^* = A^T$.

3. The diagonal entries of a hermitian matrix are real.

Let $a_{ii} + ib_{ii}$ be diagonal element.

$$A^* = A \implies (a_{ii} + ib_{ii})^* = a_{ii} + ib_{ii}$$

$$a_{ii} - ib_{ii} = a_{ii} + ib_{ii} \implies b_{ii} = -b_i \implies b_{ii} = 0$$

4. Trace and determinant of hermitian matrix are real.

All eigen values are real

The result those are true for real symmetric matrices are also true for hermitian matrices.

Skew-Hermitian Matrices:

1. Let $A \in M_n(\mathbb{C})$, A is said to be skew-hermitian if $A^* = -A$, where $A^* = (\overline{A})^T = \overline{(A^T)}$.

Eg:
$$\begin{bmatrix} 0 & 1+2i \\ -1+2i & 5i \end{bmatrix}$$

- 2. Real skew-symmetric matrices are skew-hermitian matrices.
- 3. Diagonal entries of a skew-hermitian matrix are either zero or purely imaginary.

Let $a_{ii} + ib_{ii}$ be diagonal element.

$$A^* = -A \implies a_{ii} - ib_{ii} = -a_{ii} - ib_{ii}$$

$$\therefore a_{ii} = -a_{ii} \implies a_{ii} = 0.$$

4. $A \in M_n(\mathbb{C})$ is skew-hermitian iff iA is hermitian

Necessary Condition: $A^* = -A$, A is skew hermitian

Multiply
$$-i$$
, $-iA^* = iA$. $\Rightarrow (iA)^* = iA$.

Sufficient Condition: iA is hermitian ie., $(iA)^* = iA$.

$$-iA^* = iA...$$

Multiply $i, A^* = -A, A$ is skew hermitian

The result those are true for real skew-symmetric matrices are also true for skew-hermitian matrices.

Cartisean decomposition of a square matrix: Let $A \in M_n(\mathbb{C})$, then A can be expressed as A = B + iC, where B and C are hermitian matrices given by $B = \left(\frac{A + A^*}{2}\right)$ and $C = \left(\frac{A - A^*}{2i}\right)$.

Orthogonal matrices:

- 1. Let $A \in M_n(\mathbb{R})$, A is said to be orthogonal if $AA^T = A^TA = I$.
- 2. If A is orthogonal, then $det(A) \in \{\pm 1\}$.

$$|AA^T|$$
 \Rightarrow $|A||A^T| = 1$ \Rightarrow $|A|^2 = 1$ \Rightarrow $|A| = \pm 1$.

Converse not true. Eg: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

3. If A is orthogonal, then $A^{-1} = A^{T}$

$$AA^T = I \quad \Rightarrow \quad A^T = A^{-1}$$

4. If A is orthogonal, then rows of A are orthonormal.

- 5. If A is orthogonal, then columns of A are orthonormal.
- 6. The rows of A or columns of A forms an orthonormal basis for \mathbb{R}^n .
- 7. If A and B are two orthogonal matrices of same order, then A^{-1} , A^{T} , A^{n} , AB are also orthogonal.
- 8. kA and A + B need not be orthogonal.

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Here 5A is not orthogonal $|5A| \neq 1$

A + B is not orthogonal $|A + B| \neq 1$

- 9. The set of all orthogonal matrices of order n is a group under matrix multiplication, denoted by $OL_n(\mathbb{R})$.
- 10. The general form of orthogonal matrix is given by $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \theta \in [0, 2\pi).$

Here
$$A^n = \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix}$$
.

check for n = 2 and use induction

- 11. An orthogonal matrix of order n can be expressed as the direct sum of 2×2 orthogonal matrix and [1]. Unitary matrices:
 - 1. Let $A \in M_n(\mathbb{C})$, A is said to be orthogonal if $AA^* = A^*A = I$.

Eg:
$$\frac{1}{2} \begin{bmatrix} 1-i & 1+i \\ 1+i & 1-i \end{bmatrix}$$

2. Real orthogonal matrices are unitary.

The result those are true for real orthogonal matrices are also true for unitary matrices.

Normal matrices:

1. Let $A \in M_n(\mathbb{C})$, A is said to be orthogonal if $AA^* = A^*A$.

Eg:
$$\begin{bmatrix} i & i \\ i & -i \end{bmatrix}$$

- 2. Real symmetric, real skew-symmetric and real orthogonal matrics are normal.
- 3. Hermitian, skew-hermitian and unitary matrices are normal.
- 4. Let A be a hermitian and let P(x) be a complex polynomial, then P(A) is normal.

Idempotent matrices (Projection)

- 1. Let $A \in M_n(\mathbb{C})$, A is said to be a idempotent matrix if $A^2 = A$.
- 2. A non-identity idempotent matrix is singular.

$$A^2 = A \Rightarrow |A||A| = |A| \Rightarrow |A|(|A| - 1) = 0$$

 $|A| = 0 \text{ or } 1.$

Determinant of idempotent metrix is zero or one

Let
$$A \neq I$$
, $|A| = 1$ be idempotent.

ie.,
$$A^2 = A \implies A^2 - A = 0$$
.

Using distributive law A(A - I) = 0.

Since
$$|A| = 1$$
, $|A - I| = 0$.

$$\Rightarrow A = I$$
 contradiction.

- \therefore I is only non-singular idempotent matrix.
- 3. If A is idempotent then $A^n = A$ and Rank(A) = Trace(A).
- 4. If A is idempotent, then A^T , A^n , $n \in \mathbb{N}$, I A, are also idempotent.
- 5. If A and B are two idempotent matrix of same order then A + B is idempotent iff AB + BA = 0.
- 6. AB is idempotent if AB = BA.

We have AB = BA.

$$(AB)^2 = ABAB$$

= $ABBA$ (using $AB = BA$)
= $AB^2A = ABA = AAB = A^2B = AB$

AB is idempotent

Periodic matrices: Let $A \in M_n(\mathbb{C})$, A is said to be a periodic, if there exist a $k \in \mathbb{N}$ and k > 1 such that $A^k = A$. The least such k is called the period of A.

Eg:
$$A = \begin{bmatrix} 2 & 5 & 14 \\ 1 & 3 & 8 \\ -1 & -2 & -6 \end{bmatrix}$$
 Here $A^4 = A$

Nilpotent matrices:

1. Let $A \in M_n(\mathbb{C})$, A is said to be a nilpotent if $A^k = 0$ for some $k \leq n$ and $k \in \mathbb{N}$. The least positive K is called the index_of A.

Eg:
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 $A^3 = 0$: Index of $A = 3$

2. If A is nilpotent, then det(A) = 0.

(All eigenvalues are zero)

3. If A is nilpotent, then (I - A) is invertible.

Involuntary matrices:

1. Let $A \in M_n(\mathbb{C})$, A is said to be a involuntary matrix if $A^2 = I$ or $A^{-1} = A$.

Eg:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Eg: $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ 2. If A is involuntary and $A \in M_n(\mathbb{R}, \text{ then } det(A) = \pm 1.$

$$|A|^2 = 1 \quad \Rightarrow \quad |A| = \pm 1$$

$$|A|^2 = 1 \implies |A| = \pm 1$$
3. If A is involuntary then $\frac{A+I}{2}$ is idempotent.
$$\left(\frac{A+I}{2}\right)^2 = \frac{(A+I)^2}{4} = \frac{A^2 + AI + IA + I^2}{4} = \frac{I+2A+I}{4} = \frac{2A+2I}{4} = \frac{A+I}{2}$$
andor Mondae matrix:

Validor Mondae matrix:
$$A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}, a, b, c \in \mathbb{R} \text{ and } det(A) = (a-b)(b-c)(c-a)$$

In general,
$$B = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix}$$
 and $det(B) = (a_1 - a_2)(a_2 - a_3) \cdots (a_n - a_1)$.