1. Suppose a 6-sided die is rolled. The sample space, S, is $\{1, 2, 3, 4, 5, 6\}$. Consider the following events:

 $A = \{ \text{ the outcome is even } \},$

 $B = \{ \text{ the outcome is greater than } 3 \},$

a) List outcomes in A, B, A', $A \cap B$, $A \cup B$.

 $A = \{ \text{ the outcome is even } \} = \{ 2, 4, 6 \},$

 $B = \{ \text{ the outcome is greater than 3 } \} = \{ 4, 5, 6 \},$

 $A' = \{ 1, 3, 5 \},\$

 $A \cap B = \{4, 6\},\$

 $A \cup B = \{ 2, 4, 5, 6 \}.$

b) Find the probabilities P(A), P(B), P(A'), $P(A \cap B)$, $P(A \cup B)$ if the die is balanced (fair).

$$P(A) = P(2) + P(4) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}$$

$$P(B) = P(4) + P(5) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}$$

$$P(A') = 1 - P(A) = 1 - \frac{3}{6} = \frac{3}{6}$$

$$P(A \cap B) = P(4) + P(6) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{3}{6} + \frac{3}{6} - \frac{2}{6} = \frac{4}{6}$$

c) Suppose the die is loaded so that the probability of an outcome is proportional to the outcome, i.e.

$$P(1) = p$$
, $P(2) = 2p$, $P(3) = 3p$, $P(4) = 4p$, $P(5) = 5p$, $P(6) = 6p$.

i) Find the value of p that would make this a valid probability model.

$$P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1.$$

 $p + 2p + 3p + 4p + 5p + 6p = 21p = 1.$ $\Rightarrow p = \frac{1}{21}.$

ii) Find the probabilities P(A), P(B), P(A'), $P(A \cap B)$, $P(A \cup B)$.

$$P(A) = P(2) + P(4) + P(6) = \frac{2}{21} + \frac{4}{21} + \frac{6}{21} = \frac{12}{21}$$

$$P(B) = P(4) + P(5) + P(6) = \frac{4}{21} + \frac{5}{21} + \frac{6}{21} = \frac{15}{21}$$

$$P(A') = 1 - P(A) = 1 - \frac{12}{21} = \frac{9}{21}$$

OR

$$P(A') = P(1) + P(3) + P(5) = \frac{1}{21} + \frac{3}{21} + \frac{5}{21} = \frac{9}{21}$$

$$P(A \cap B) = P(4) + P(6) = \frac{4}{21} + \frac{6}{21} = \frac{10}{21}$$

$$P(A \cup B) = P(2) + P(4) + P(5) + P(6) = \frac{2}{21} + \frac{4}{21} + \frac{5}{21} + \frac{6}{21} = \frac{17}{21}$$

OR

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{12}{21} + \frac{15}{21} - \frac{10}{21} = \frac{17}{21}$$

2. Consider a "thick" coin with three possible outcomes of a toss (Heads, Tails, and Edge) for which Heads and Tails are equally likely, but Heads is five times as likely than Edge. What is the probability of Heads?

P(Heads) = P(Tails) =
$$p$$
 for some p . P(Edge) = $\frac{1}{5}p$.

$$P(Heads) + P(Tails) + P(Edge) = 1.$$

$$p + p + \frac{1}{5}p = 1.$$
 $\frac{11}{5}p = 1.$

P(Heads) =
$$p = \frac{5}{11}$$
.

3. The probability that a randomly selected student at Anytown College owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.

$$P(B) = 0.55,$$

$$P(C) = 0.30,$$

P(B
$$\cap$$
 C) = 0.10.

a) What is the probability that a student selected at random does not own a bicycle?

$$P(B') = 1 - P(B) = 1 - 0.55 = 0.45.$$

	C	C'	
В	0.10	0.45	0.55
B'	0.20	0.25	0.45
	0.30	0.70	1.00

b) What is the probability that a student selected at random owns either a car or a bicycle, or both?

$$P(B \cup C) = P(B) + P(C) - P(B \cap C) = 0.55 + 0.30 - 0.10 = 0.75$$
.

OR

$$P(B \cup C) = P(B \cap C) + P(B' \cap C) + P(B \cap C') = 0.10 + 0.20 + 0.45 = 0.75.$$

OR

$$P(B \cup C) = 1 - P(B' \cap C') = 1 - 0.25 = 0.75.$$

c) What is the probability that a student selected at random has neither a car nor a bicycle?

$$P(B' \cap C') = 1 - P(B \cup C) = 0.25.$$

4. During the first week of the semester, 80% of customers at a local convenience store bought either beer or potato chips (or both). 60% bought potato chips. 30% of the customers bought both beer and potato chips. What proportion of customers bought beer?

$$P(B \cup PC) = 0.80,$$

$$P(PC) = 0.60,$$

$$P(B \cap PC) = 0.30.$$

$$P(\ B \cup PC\) = P(\ B\) + P(\ PC\) - P(\ B \cap PC\).$$

$$0.80 = P(B) + 0.60 - 0.30.$$

$$\Rightarrow$$

$$P(B) = 0.50.$$

5. Suppose

$$P(A) = 0.22,$$

$$P(A \cap B) = 0.11$$
,

$$P(B \cap C) = 0.07$$
,

$$P(B) = 0.25,$$

$$P(C) = 0.28,$$

$$P(A \cap C) = 0.05$$
,

$$P(A \cap B \cap C) = 0.01.$$

Find the following:

- a) $P(A \cup B)$
- c) $P(A \cup B \cup C)$
- e) $P(A' \cap B' \cap C)$
- g) $P((A \cup B) \cap C)$
- a) $P(A \cup B) = 0.36$.
- b) $P(A' \cap B') = 0.64$.
- c) $P(A \cup B \cup C) = 0.53$.
- d) $P(A' \cap B' \cap C') = 0.47$.
- e) $P(A' \cap B' \cap C) = 0.17$.
- f) $P((A' \cap B') \cup C) = 0.75$.
- g) $P((A \cup B) \cap C) = 0.11$.
- h) $P((B \cap C') \cup A') = 0.88$.

- d) $P(A' \cap B' \cap C')$
- f) $P((A' \cap B') \cup C)$
- h) $P((B \cap C') \cup A')$

6. Let a > 2. Suppose $S = \{0, 1, 2, 3, ...\}$ and

$$P(0) = c,$$
 $P(k) = \frac{1}{a^k}, k = 1, 2, 3,$

a) Find the value of c (c will depend on a) that makes this is a valid probability distribution.

Must have
$$\sum_{\text{all } x} p(x) = 1$$
. $\Rightarrow c + \sum_{k=1}^{\infty} \frac{1}{a^k} = 1$.

$$\sum_{k=0}^{\infty} b^k = \frac{1}{1-b}, \quad |b| < 1.$$

$$\sum_{k=1}^{\infty} \frac{1}{a^k} = \left[\sum_{k=0}^{\infty} \frac{1}{a^k} \right] - 1 = \frac{1}{1 - \frac{1}{a}} - 1 = \frac{1}{a - 1}.$$

OR

$$\sum_{k=1}^{\infty} \frac{1}{a^k} = \frac{1}{a} \cdot \sum_{k=0}^{\infty} \frac{1}{a^k} = \frac{1}{a} \cdot \frac{1}{1 - \frac{1}{a}} = \frac{1}{a - 1}.$$

$$c + \frac{1}{a-1} = 1.$$
 $c = 1 - \frac{1}{a-1} = \frac{a-2}{a-1} = 2 - \frac{a}{a-1}.$

b) Find the probability of an odd outcome.

$$P(\text{odd}) = p(1) + p(3) + p(5) + \dots = \frac{1}{a^1} + \frac{1}{a^3} + \frac{1}{a^5} + \dots$$
$$= \frac{\text{first term}}{1 - \text{base}} = \frac{\frac{1}{a}}{1 - \frac{1}{a^2}} = \frac{a}{a^2 - 1}.$$

7. Suppose $S = \{0, 1, 2, 3, ...\}$ and

$$P(0) = p,$$
 $P(k) = \frac{1}{2^k \cdot k!}, k = 1, 2, 3,$

Find the value of p that would make this a valid probability model.

Must have
$$\sum_{\text{all } x} p(x) = 1.$$
 \Rightarrow $p + \sum_{k=1}^{\infty} \frac{1}{2^k \cdot k!} = 1.$

Since
$$\sum_{k=0}^{\infty} \frac{a^k}{k!} = e^a$$
, $\sum_{k=1}^{\infty} \frac{1}{2^k \cdot k!} = \sum_{k=0}^{\infty} \frac{1}{2^k \cdot k!} - 1 = e^{1/2} - 1$.

Therefore, $p + (e^{1/2} - 1) = 1$ and $p = 2 - e^{1/2}$.