戴维南定理例题

例1 计算电桥中 R_x 分别等于 0Ω 、 0.4Ω 、 0.8Ω 、 1.2Ω 、 1.6Ω 、 2.0Ω 时,该支路的电流和功率。

解:(1) 求开路电压 U_{OC} 。将 R_x 支路断开。

$$I_1 = \frac{(2+1)\Omega}{(2+1)\Omega + (1+1)\Omega} \times 5A = 3A$$

$$I_2 = 5A - I_1 = 2A$$

$$U_{\text{OC}} = (1\Omega \times I_1 - 1\Omega \times I_2) = 1\text{V}$$

戴维南定理例题

- (2) 求等效电阻 R_i 。 $R_i = [(1+2)//(1+1)]\Omega = 1.2\Omega$
- (3) 戴维南等效电路如图所示。

$$I = U_{\rm OC}/(R_{\rm i} + R_{\rm x}) = 1 \text{V}/(1.2\Omega + R_{\rm x})$$

 $P = I^2 R_{\rm x}$

(4) R_x 的电流和功率。

$R_{\mathrm{X}}(\Omega)$	0	0.4	0.8	1.2	1.6	2.0
I(A)	0.83	0.63	0.5	0.42	0.36	0.31
P(W)	0	0.6	0.2	0.21	0.207	0.18

