Оглавление

1. ОСНОВНЫЕ ПОНЯТИЯ	4
2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА	
2.1. Уравнения с разделяющимися переменными (Задача №1)	5
2.2. Уравнения с однородными функциями (Задача №2)	6
2.3. Уравнения, приводящиеся к виду «с однородными функциями»	9
(Задача №3)	
2.4. Линейные уравнения. Решение задачи Коши. (Задача №4)	11
2.5. Уравнения Бернулли. (Задача №5)	14
2.6. Уравнения в полных дифференциалах (Задача №6)	16
3. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ, ДОПУСКАЮЩИЕ	
ПОНИЖЕНИЕ ПОРЯДКА	19
3.1. Уравнения вида $f(x, y^{(n-1)}, y^{(n)}) = 0$ (Задача №7)	19
3.2. Уравнения вида $f(y'', y) = 0$ (Задача №8)	21
4. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ	
4.1. Основные понятия	22
4.2. Общее решение однородных уравнений	
4.3. Линейные неоднородные уравнения	
4.3.1. Линейные уравнения с правой частью вида: $f(x) = P_m(x)$ (Задача №9)	25
4.3.2. Линейные уравнения с правой частью вида: $f(x) = e^{\alpha x} P_m(x)$ (Задача №10)	27
4.3.4. Линейные уравнения с правой частью вида: $f(x) = f_1(x) + f_2(x)$ (Задача №12)	
ВАРИАНТЫ ЗАДАНИЙ ДЛЯ ТИПОВОГО РАСЧЕТА ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬН	ЫЕ
УРАВНЕНИЯ»	34
Список литературы	
Сведения об авторах	52

1. ОСНОВНЫЕ ПОНЯТИЯ

Дифференциальные уравнения — это уравнения, в которые входят переменная, неизвестная функция этой переменной, и производные неизвестной функции:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

Порядок уравнения определяется порядком старшей производной.

<u>Определение1</u>: **Решением**, **интегралом** или **интегральной кривой** дифференциального уравнения называется n раз дифференцируемая функция $y = \varphi(x)$, удовлетворяющая этому уравнению, т.е. такая, что

$$F(x,\varphi(x),\varphi'(x),...,\varphi^{(n)}(x)) \equiv 0$$
 (1)

тождественно по x на некотором участке изменения x.

Определение2: Общим решением называют функцию

$$y = \Phi(x, C_1, C_2, ..., C_n),$$
 (2)

зависящую от аргумента x и констант $C_1, C_2, ..., C_n$ (количество констант определяется порядком уравнения), такую, что:

- а) при произвольном выборе констант является решением заданного уравнения;
- б) какие бы ни были заданы начальные условия

$$y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)}$$
 (3)

существует единственный набор констант C_1 = C_{10} , C_2 = C_{20} , ..., C_n = C_{n0} такой, что функция

$$y = \Phi(x, C_{10}, C_{20}, \dots, C_{n0})$$
(4)

удовлетворяет начальным условиям (3).

Если в результате интегрирования дифференциального уравнения решение найдено в неявном виде $\Phi(x, y, C_1, C_2, ..., C_n) = 0$, говорят, что найден *общий интеграл* дифференциального уравнения.

Определение 3: **Частным решением** дифференциального уравнения называют функцию $y = \Phi(x, C_{10}, C_{20}, ..., C_{n0})$, которая получается из общего решения (2) при определенном значении констант $C_1 = C_{10}$, $C_2 = C_{20}$, ..., $C_n = C_{n0}$

Геометрически общее решение (2) представляет собой семейство кривых на плоскости ОХУ, зависящее от п произвольных постоянных $C_1, C_2, ..., C_n$, а частное решение (4) — одну интегральную кривую этого семейства,

проходящую через точку (x_0, y_0) и удовлетворяющую условиям (3), наложенным на производные функции у.

<u>Определение 4</u>: *Задачей Коши* называется задача отыскания решения уравнения (1), удовлетворяющего начальным условиям (3).

2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

2.1. Уравнения с разделяющимися переменными (Задача №1)

Уравнение вида
$$y' = f(x) \cdot g(y)$$
, (5)

где f(x) и g(y) - непрерывные функции, называется дифференциальным уравнением с разделяющимися переменными.

Для отыскания решения уравнения (5) надо разделить в нем переменные. Для этого заменяют в (5) y' на $\frac{dy}{dx}$, обе части уравнения (5) делят на g(y) (предполагая $g(y) \neq 0$) и умножают на dx. Тогда уравнение (5) принимает вид:

$$\frac{dy}{g(y)} = f(x)dx. ag{6}$$

В этом уравнении переменная x входит только в правую часть, а переменная y - только в левую (т.е переменные разделены). Интегрируя (6), получаем:

$$\int \frac{dy}{g(y)} + C_1 = \int f(x)dx + C_2, \text{ или } \int \frac{dy}{g(y)} = \int f(x)dx + C,$$
 где $C = C_2 - C_1$ — произвольная постоянная. (7)

Соотношение (7) определяет неявным образом общее решение уравнения (5) Возможна другая форма записи уравнения с разделяющимися переменными. А именно:

$$f_1(x) \cdot g_1(y) dx + f_2(x) \cdot g_2(y) dy = 0.$$
 (8)

Здесь дифференциалы переменных записаны отдельно, и каждый из них умножен на произведение функций, зависящих *только от одной* переменной. В этом случае все уравнение делят на «посторонние» сомножители каждого слагаемого (в том слагаемом, где есть дифференциал переменной x, «посторонним» будет множитель, зависящий от y, и наоборот, там где есть dy, «посторонним» является множитель, зависящий от x), т.е. уравнение (8) делят

на $g_1(y)$ и $f_2(x)$ (предполагая $f_2(x) \neq 0$ и $g_1(y) \neq 0$). Уравнение принимает вид:

$$\frac{f_1(x)}{f_2(x)}dx + \frac{g_2(y)}{g_1(y)}dy = 0. (9)$$

Интегрируя это равенство, получим:

$$\int \frac{f_1(x)}{f_2(x)} dx + \int \frac{g_2(y)}{g_1(y)} dy = C$$
 (10)

ПРИМЕР1. $20xdx-3ydy=3x^2ydy-5xy^2dx$

В этом уравнении дифференциалы переменных представлены в явном виде. Будем разделять переменные. Для этого перенесем все слагаемые, содержащие dy в правую часть, а dx - в левую часть уравнения:

$$20xdx + 5xy^2dx = 3x^2ydy + 3ydy$$

Вынесем общие множители в левой и правой частях уравнения:

$$5x(4+y^2)dx = 3y(x^2+1)dy$$
.

Разделим левую и правую части уравнения на множители, являющиеся «посторонними» в каждом произведении. Для части, содержащей dx, «посторонним» будет множитель, зависящий от y, т.е. $4+y^2$, а для части, содержащей dy- множитель, зависящий от x, т.е. x^2+1 .

Получим:
$$\frac{5xdx}{x^2+1} = \frac{3ydy}{y^2+4}$$
 . Интегрируем полученное равенство:

$$\int \frac{5xdx}{x^2+1} + \tilde{C} = \int \frac{3ydy}{y^2+4}$$
, учитывая, что $tdt = \frac{1}{2}d(t^2 \pm a)$, перепишем:

$$\frac{5}{2} \int \frac{d(x^2+1)}{x^2+1} + \tilde{C} = \frac{3}{2} \int \frac{d(y^2+4)}{y^2+4}, \text{т.к.} \int \frac{du}{u} = \ln|u| + C, \text{получим}$$

$$\frac{5}{2}\ln |x^2+1| + \tilde{C} = \frac{3}{2}\ln |y^2+4|$$
 или окончательно:

$$5\ln|x^2+1|+C=3\ln|y^2+4|$$
.

Решение получено в неявном виде, т.е. в виде общего интеграла.

2.2. Уравнения с однородными функциями (Задача №2)

Определение 5: Функция двух переменных f(x, y) называется **однородной функцией измерения** k, если при любом значении λ справедливо равенство

$$f(\lambda x, \lambda y) = \lambda^k f(x, y). \tag{11}$$

В частности, функция является *однородной функцией нулевого измерения*, если при любом значении λ справедливо

$$f(\lambda x, \lambda y) = f(x, y). \tag{12}$$

Т.к. λ выбирается произвольно, можно взять $\lambda = \frac{1}{x}$. Но тогда равенство (12)

принимает вид: $f(1, \frac{y}{x}) = f(x, y)$.

Таким образом, однородная функция нулевого измерения зависит только от отношения $\frac{y}{x}$.

Например, функция $f(x,y) = 5y^3 - 2xy^2 + 3x^3 -$ однородная функция третьего измерения, т.к.

$$f(\lambda x, \lambda y) = 5(\lambda y)^3 - 2\lambda x(\lambda y)^2 + 3(\lambda x)^3 = \lambda^3 (5y^3 - 2xy^2 + 3x^3) = \lambda^3 \cdot f(x, y).$$

А функция $f(x,y) = \frac{\sqrt{x^2 - 2y^2} + x}{2x - y}$ — однородная функция нулевого измерения,

т.к. числитель и знаменатель дроби представляют собой однородные функции первого измерения (убедиться самостоятельно). Покажем, что данная функция может быть представлена как функция отношения $\frac{y}{x}$. Для этого вынесем переменную x за скобки под корнем, затем за скобки в числителе и знаменателе:

$$f(x,y) = \frac{\sqrt{x^2 \left(1 - 2\frac{y^2}{x^2}\right)} + x}{2x - y} = \frac{x \cdot \sqrt{1 - 2\frac{y^2}{x^2}} + x}{2x - y} = \frac{x \cdot \left(\sqrt{1 - 2\frac{y^2}{x^2}} + 1\right)}{x \cdot \left(2 - \frac{y}{x}\right)} = \frac{\sqrt{1 - 2\left(\frac{y}{x}\right)^2} + 1}{2 - \frac{y}{x}} = \widetilde{f}\left(\frac{y}{x}\right)$$

$$\mathbf{Уравнение} \ \mathbf{suda} \ \ \mathbf{y}' = f(x,y) \tag{13}$$

colonical de f(x,y) - odнopodная функция нулевого измерения, называется <math>colonical de f(x,y) - odhopodным уравнением <math>colonical de f(x,y) - odhopodным (y)

Решение уравнений такого вида основано на том факте, что однородная функция нулевого измерения зависит только от отношения $\frac{y}{x}$. Такие уравнения приводят к виду уравнений с разделяющимися переменными, вводя новую функцию по формуле

$$\frac{y}{x} = t \tag{14}$$

и учитывая, что $y = x \cdot t$, а значит

$$y' = t + x \cdot t' \,. \tag{15}.$$

Подставляя (14) и (15) в (13), получим уравнение с разделяющимися переменными:

$$t + x \cdot t' = \widetilde{f}(t).$$

Перенося t в правую часть и заменяя t' на $\frac{dt}{dx}$, получаем

$$x \cdot \frac{dt}{dx} = \widetilde{f}(t) - t$$
.

Разделяя переменные, окончательно получим:

$$\frac{dt}{\widetilde{f}(t) - t} = \frac{dx}{x}. (16)$$

После интегрирования уравнения (16) выполняют обратную подстановку по формуле (14).

Еще одна форма уравнений с однородными функциями имеет вид:

$$y' \cdot F(x, y) = G(x, y), \tag{17}$$

где F(x,y),G(x,y) — однородные функции одинакового измерения. Разделив такое уравнение на $F(x,y)\neq 0$, получают уравнение вида (13).

ПРИМЕР 2.
$$y' = \frac{x^2 + 2xy - 5y^2}{2x^2 - 6xy}$$

Убедившись, что функция в правой части является однородной функцией нулевого измерения (самостоятельно), вводим новую функцию по формулам: $y' = t + x \cdot t'$, $y = x \cdot t$, $y' = t + x \cdot t'$.

Получаем уравнение с новой функцией: $t + x \cdot t' = \frac{x^2 + 2x \cdot xt - 5 \cdot (xt)^2}{2x^2 - 6x \cdot xt}$. Вынесем в числителе и знаменателе правой части x^2 за скобки и сократим дробь.

Уравнение примет вид:
$$t+x\cdot t'=\frac{x^2(1+2t-5t^2)}{x^2(2-6t)}$$
 или $t+x\cdot t'=\frac{1+2t-5t^2}{2-6t}$. В

полученном уравнении перенесем t в правую часть и приведем выражение в

правой части к общему знаменателю: $x \cdot t' = \frac{1 + 2t - 5t^2}{2 - 6t} - t$, или

$$x \cdot t' = \frac{1 + 2t - 5t^2 - 2t + 6t^2}{2 - 6t}$$
, T.e. $x \cdot t' = \frac{t^2 + 1}{2 - 6t}$.

Заменим t' на $\frac{dt}{dx}$ и разделим переменные: $x \cdot \frac{dt}{dx} = \frac{t^2 + 1}{2 - 6t}$, тогда $\frac{(2 - 6t)dt}{t^2 + 1} = \frac{dx}{x}$.

Интегрируем полученное уравнение:

$$\int \frac{(2-6t)dt}{t^2+1} = \int \frac{dx}{x} + C \text{ или} \qquad 2\int \frac{dt}{t^2+1} - \frac{6}{2} \int \frac{d(t^2+1)}{t^2+1} = \ln|x| + C,$$

T.e. $2 \arctan t - 3 \ln |t^2 + 1| = \ln |x| + C$.

В полученное решение подставляем значение t и окончательно получаем решение заданного уравнения в неявном виде: $2\arctan \frac{y}{x} - 3\ln \left(\frac{y}{x}\right)^2 + 1 = \ln |x| + C$.

2.3. Уравнения, приводящиеся к виду «с однородными функциями» (Задача №3)

Уравнения вида $y' = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$ не являются уравнениями с однородными функциями, если $c_1 \neq 0$ и $c_2 \neq 0$, но могут быть приведены к такому виду с помощью подстановки вида:

$$\begin{cases} x = x_1 + m \\ y = y_1 + k \end{cases}$$
 (18)

В этом случае $\frac{dy}{dx} = \frac{dy_1}{dx_1}$. Числа m и k подбираются таким образом, чтобы дробь

в правой части нового уравнения была однородной функцией нулевого измерения. Подставим равенства (18) в числитель и знаменатель правой части уравнения. Дробь примет вид $\frac{a_1(x_1+m)+b_1(y_1+k)+c_1}{a_2(x_1+m)+b_2(y_1+k)+c_2}$. Раскрывая скобки и

приводя подобные слагаемые, получим дробь аналогичную исходной: $\frac{a_1x_1+b_1y_1+(a_1m+b_1k+c_1)}{a_2x_1+b_2y_1+(a_2m+b_2k+c_2)}.$

Для того, чтобы эта дробь была однородной, приравняем свободные коэффициенты в числителе и знаменателе к нулю:

$$\begin{cases}
 a_1 m + b_1 k + c_1 = 0 \\
 a_2 m + b_2 k + c_2 = 0
\end{cases}$$
(19)

Полученные условия (19) служат для определения чисел m и k.

С новыми переменными исходное уравнение примет вид: $y_1' = \frac{a_1x_1 + b_1y_1}{a_2x_1 + b_2y_1}$.

Это уравнение с однородными функциями, решение которых рассмотрено выше.

ПРИМЕР 3.
$$y' = \frac{y+2}{2x+y-4}$$

Введем новые переменные по формулам (18) .Подставим эти выражения в исходное уравнение:

$$y_1' = \frac{y_1 + k + 2}{2(x_1 + m) + (y_1 + k) - 4}$$
 или $y_1' = \frac{y_1 + (k + 2)}{2x_1 + y_1 + (2m + k - 4)}$.

Приравняем свободные коэффициенты к нулю и определим т и k.

$$\begin{cases} k+2=0 \\ 2m+k-4=0 \end{cases} \text{ тогда } \begin{cases} k=-2 \\ m=-1/2k+2 \end{cases} \text{ т.e. } \begin{cases} k=-2 \\ m=3 \end{cases}.$$

В данном случае формулы (18) принимают вид: $\begin{cases} x = x_1 + 3 \\ y = y_1 - 2 \end{cases}$

При найденных значениях m и k уравнение примет вид: $y_1' = \frac{y_1}{2x_1 + y_1}$. Выносим

в знаменателе
$$x_1$$
 за скобки: $y_1' = \frac{y_1}{x_1(2+y_1/x_1)}$ или $y_1' = \frac{\frac{y_1}{x_1}}{2+\frac{y_1}{x_1}}$. Используя

подстановку $\frac{y_1}{x_1} = t$, $y_1 = tx_1$, $y_1' = t'x_1 + t$, преобразуем уравнение к виду:

 $t'x_1 + t = \frac{t}{2+t}$. Переносим t в правую часть, приводим правую часть к общему

знаменателю, получаем:
$$t'x_1 = \frac{t}{2+t} - t$$
 или $t'x_1 = \frac{-t-t^2}{2+t}$. Заменяем t' на $\frac{dt}{dx_1}$ и

разделяем переменные: $\frac{dt}{dx_1} \cdot x_1 = \frac{-t - t^2}{2 + t}$, тогда $\frac{(2 + t)dt}{-t - t^2} = \frac{dx_1}{x_1}$. Интегрируем полученное уравнение: $\int \frac{(2 + t)dt}{-t - t^2} = \int \frac{dx_1}{x_1} + C$.

Выполним преобразование первой подынтегральной функции:

$$\frac{t+2}{-t^2-t} = -\frac{t+2}{t^2+t} = -\frac{t+2}{t^2+2} = -\frac{t+2}{t^2+2\cdot t\cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4}} = -\frac{t+2}{\left(t + \frac{1}{2}\right)^2 - \frac{1}{4}} = \frac{3/2}{\left(t + \frac{1}{2}\right)^2} - \frac{t+1/2}{\left(t + \frac{1}{2}\right)^2 - \frac{1}{4}} \cdot \frac{1}{4} = -\frac{1}{4} \cdot \frac{1}{4} - \left(t + \frac{1}{2}\right)^2 - \frac{1}{4} \cdot \frac{1}{4} = -\frac{1}{4} \cdot \frac{1}{4} - \left(t + \frac{1}{2}\right)^2 - \frac{1}{4} \cdot \frac{1}{4} = -\frac{1}{4} \cdot \frac{1}{4} - \left(t + \frac{1}{2}\right)^2 - \frac{1}{4} \cdot \frac{1}{4} = -\frac{1}{4} \cdot \frac{1}{4} - \left(t + \frac{1}{2}\right)^2 - \frac{1}{4} \cdot \frac{1}{4} = -\frac{1}{4} \cdot \frac{1}{4} - \frac{1}{4} = -\frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = -\frac{1}{4} - \frac{1}{4} - \frac{1}{4}$$

Уравнение примет вид:

$$3/2\int \frac{dt}{1/4 - (t + 1/2)^2} - 1/2\int \frac{d(t + 1/2)^2 - 1/4}{(t + 1/2)^2 - 1/4} = \ln|x_1| + \tilde{C}.$$

Получаем:
$$\frac{3}{2} \cdot \frac{1}{2 \cdot 1/2} \ln \left| \frac{(t+1/2)+1/2}{(t+1/2)-1/2} \right| - \frac{1}{2} \ln \left| (t+1/2)^2 - 1/4 \right| = \ln \left| x_1 \right| + \widetilde{C}$$
. Запишем

постоянную интегрирования \widetilde{C} как $\ln \lvert C \rvert$ и, преобразовав, получим:

$$\frac{3}{2}\ln\left|\frac{t+1}{t}\right| - \frac{1}{2}\ln\left|t^2 + t\right| = \ln\left|x_1\right| + \ln\left|C\right|, \text{ или } \ln\left|\frac{t+1}{t^2}\right| = \ln\left|C \cdot x_1\right|.$$

Значит: $\frac{t+1}{t^2} = C \cdot x_1$ или $t+1 = C \cdot t^2 \cdot x_1$. Подставляем значение $t = \frac{y_1}{x_1}$, получим:

$$\frac{y_1}{x_1} + 1 = C \cdot \left(\frac{y_1}{x_1}\right)^2 \cdot x_1.$$

Умножая равенство на x_1 , получим $y_1 + x_1 = C \cdot y_1^2$. Вернемся к исходным обозначениям по формулам $\begin{cases} x_1 = x - 3 \\ y_1 = y + 2 \end{cases}$. Получим решение исходного

уравнения: $(y+2)+(x-3)=C\cdot(y+2)^2$.

Либо окончательно: $x + y = C \cdot (y + 2)^2 + 1$.

2.4. Линейные уравнения. Решение задачи Коши. (Задача №4)

Уравнение вида

$$y' + p(x) \cdot y = f(x), \tag{20}$$

где p(x) и f(x) — непрерывные функции, называется линейным уравнением первого порядка.

Один из методов решения таких уравнений — метод Бернулли. Он заключается в том, что решение ищут в виде произведения двух функций:

$$y = u(x) \cdot v(x) \tag{21}$$

B этом случае
$$y' = u'v + uv'$$
 (22)

Подставляя у и у' в исходное уравнение, получают уравнение:

$$u'v + uv' + p \cdot u \cdot v = f \tag{23}$$

Затем выполняют группировку слагаемых, содержащих одну из функций:

$$u \cdot (v' + pv) + u' \cdot v = f \tag{24}$$

Каждая функция из произведения (21) может быть выбрана произвольно, только все <u>произведение в целом</u> должно удовлетворять уравнению (20). Поэтому ту функцию, которая осталась в скобках, находят из условия - выражение в скобках приравнивается к нулю:

$$v' + p \cdot v = 0 \tag{25}$$

Полученное уравнение — с разделяющимися переменными. Его разрешают относительно неизвестной функции v. При этом находят только одну функцию, удовлетворяющую уравнению (25) (интегрируя уравнение (25), в решение не включают постоянную интегрирования).

Найденную функцию подставляют в уравнение (24), которое с учетом равенства (25), принимает вид:

$$u' \cdot v(x) = f(x) \tag{26}$$

Это уравнение также является уравнением с разделяющимися переменными. Его разрешают относительно неизвестной функции u(x). Найденные функции v=v(x) и u=u(x,C) подставляют в равенство (21).

ПРИМЕР 4.

Найти решение задачи Коши.
$$y'-y/x=-2/x^2$$
, $y(1)=1$. (27)

Для решения этой задачи сначала найдем общее решение заданного уравнения в виде $y=u\cdot v$, тогда y'=u'v+uv'. Уравнение принимает вид: $u'v+uv'-uv/x=-2/x^2$.

Группируем слагаемые, содержащие функцию v, функцию u выносим за скобки: $u \cdot (v' - v/x) + u'v = -2/x^2$. (28)

Находим функцию v, приравняв к нулю выражение в скобках: v' - v/x = 0.

Заменяем v' на $\frac{dv}{dx}$ и разделяем переменные: $\frac{dv}{dx} = \frac{v}{x}$, т.е. $\frac{dv}{v} = \frac{dx}{x}$. Интегрируя

это равенство, находим <u>одну</u> функцию v, удовлетворяющую уравнению: $\int \frac{dv}{v} = \int \frac{dx}{x}, \text{ значит } \ln |v| = \ln |x|, \text{ т.e. } v = x.$

Подставляем найденную функцию v в уравнение (28), с учетом равенства нулю выражения в скобках, получаем уравнение относительно неизвестной функции u:

 $u' \cdot x = -2/x^2$. Заменяем u' на $\frac{du}{dx}$ и разделяем переменные: $x \cdot \frac{du}{dx} = -\frac{2}{x^2}$, т.е.

$$du = -\frac{2dx}{x^3}$$
. Интегрируя, находим функцию u : $\int du = -2\int \frac{dx}{x^3} + C$ или

 $u = -2\int x^{-3} dx + C$, значит $u = \frac{1}{x^2} + C$. Подставляем найденные значения u и v,

находим общее решение уравнения (27): $y = \left(\frac{1}{x^2} + C\right) \cdot x$ или

$$y = \frac{1}{x} + Cx. \tag{29}$$

Т.к. поставлена задача Коши, необходимо из найденного семейства функций (29) выбрать такую функцию, которая удовлетворяет условию y(1)=1. Т.е. используя заданные начальные условия, надо определить конкретное значение постоянной С. Для этого в найденное общее решение подставим x=1 и y=1.

Получим уравнение для определения $C:1=\frac{1}{1}+C\cdot 1$. Откуда следует, что C=0.

Подставляем это значение в общее решение (29) и находим частное решение исходного дифференциального уравнения, удовлетворяющее заданным начальным условиям: $y = \frac{1}{r}$.

Другой метод решения уравнений (20) — метод Лагранжа, который заключается в том, что сначала решают однородное уравнение, соответствующее исходному:

$$y' + p(x) \cdot y = 0, \tag{30}$$

Общее решение уравнения (30) находят, разделяя переменные, в виде:

$$y = Ce^{-\int P(x)dx}, \tag{31}$$

где С – произвольная постоянная.

Общее решение уравнения (20) вариации ищут, вариацией произвольной постоянной в виде:

$$y = C(x) \cdot e^{-\int P(x)dx}, \tag{32}$$

где C(x) — неизвестная дифференцируемая функция от x, которую необходимо найти.

Для нахождения C(x) нужно подставить y в исходное уравнение, которое принимает вид уравнения с разделяющимися переменными.

ПРИМЕР.

Проинтегрировать уравнение
$$y' + \frac{xy}{1-x^2} = \arcsin x + x$$
. (33)

Однородное уравнение, соответствующее исходному, имеет вид:

$$y' + \frac{xy}{1 - x^2} = 0$$
.

Разделяя переменные, интегрируем это уравнение:

$$\frac{dy}{y} = -\frac{xdx}{1-x^2}; \ln y = \frac{1}{2}\ln(1-x^2) + \ln C, \text{ r.e. } y = C\sqrt{1-x^2}.$$
 (34)

Полагаем теперь
$$y = C(x)\sqrt{1-x^2}$$
; (35)

тогда
$$y' = C'(x)\sqrt{1-x^2} - \frac{xC(x)}{\sqrt{1-x^2}}$$
 (36)

Подставляя в уравнение (33) равенства (35) и (36), получим:

$$C'(x)\sqrt{1-x^2} - \frac{xC(x)}{\sqrt{1-x^2}} + \frac{x}{1-x^2}C(x)\sqrt{1-x^2} = \arcsin x + x,$$
 (37)

T.e.
$$C'(x) = \frac{\arcsin x}{\sqrt{1 - x^2}} + \frac{x}{\sqrt{1 - x^2}}$$
 (38)

Интегрируя, находим:

$$C(x) = \int \left(\frac{\arcsin x}{\sqrt{1 - x^2}} + \frac{x}{\sqrt{1 - x^2}} \right) dx = \frac{1}{2} (\arcsin x)^2 - \sqrt{1 - x^2} + C$$
 (39)

Найденное значение (39) подставляем в равенство (35) и окончательно получаем общее решение уравнения (33):

$$y = \sqrt{1 - x^2} \left(\frac{1}{2} (\arcsin x)^2 - \sqrt{1 - x^2} + C \right).$$

2.5. Уравнения Бернулли. (Задача №5)

Уравнение вида
$$y' + p(x) \cdot y = f(x) \cdot y^n$$
, (40)

где p(x) и f(x) - непрерывные функции, называется уравнением Бернулли.

Уравнения такого вида можно привести к виду линейных уравнений. Разделив уравнение на y^n , получают уравнение: $y' \cdot y^{-n} + p(x) \cdot y^{1-n} = f(x)$. Замена $z = y^{1-n}$; $z' = y' \cdot y^{-n}$ приводит к линейному уравнению $z' + p(x) \cdot z = f(x)$.

Кроме того, такие уравнения можно сразу решать методом Бернулли, так же как и линейные уравнения.

ПРИМЕР 5. Найти решение задачи Коши.

$$y' - y \cdot tgx = -(2/3)y^4 \sin x, \quad y(0) = 1.$$
 (41)

Будем искать решение сразу методом Бернулли: в виде произведения $y=u(x)\cdot v(x), \ y'=u'\cdot v+u\cdot v'$. Выполняя указанную подстановку, получаем уравнение: $u'v+uv'-u\cdot v\cdot tgx=-(2/3)\cdot u^4\cdot v^4\cdot \sin x$. Группируем слагаемые, содержащие функцию v, функцию u выносим за скобки:

$$u(v'-v \cdot tgx) + u'v = -(2/3) \cdot u^4 \cdot v^4 \cdot \sin x \tag{42}$$

Находим функцию v, приравняв к нулю выражение в скобках: $v' - v \cdot \operatorname{tg} x = 0$.

Заменяем
$$v'$$
 на $\frac{dv}{dx}$ и разделяем переменные: $\frac{dv}{dx} = v \cdot \operatorname{tg} x$, т.е. $\frac{dv}{v} = \frac{\sin x \cdot dx}{\cos x}$.

Интегрируя это равенство, находим <u>одну</u> функцию v, удовлетворяющую уравнению:

$$\int \frac{dv}{v} = \int \frac{\sin x \cdot dx}{\cos x}$$
или
$$\int \frac{dv}{v} = -\int \frac{d(\cos x)}{\cos x}.$$

Значит
$$\ln |v| = -\ln |\cos x|$$
, т.е. $\ln |v| = \ln |(\cos x)^{-1}|$, т.е. $v = \frac{1}{\cos x}$.

Подставляем найденную функцию v в уравнение (42), с учетом равенства нулю выражения в скобках, получаем уравнение относительно неизвестной функции u:

$$\frac{u'}{\cos x} = -\frac{2}{3} \cdot u^4 \cdot \frac{\sin x}{\cos^4 x}.$$
 Заменяем u' на $\frac{du}{dx}$ и разделяем переменные:
$$\frac{du}{dx} = -\frac{2}{3} \cdot u^4 \cdot \frac{\sin x}{\cos^3 x}, \text{ т.e. } u^{-4} du = -\frac{2}{3} \cdot u^4 \cdot \frac{\sin x}{\cos^3 x}.$$

Интегрируя, находим функцию u:

$$\int u^{-4} du = -\frac{2}{3} \int \cos^{-3} x \cdot \sin x \cdot dx + \tilde{C} \text{ или } \frac{u^{-3}}{-3} = \frac{2}{3} \int \cos^{-3} x \cdot d(\cos x) + \tilde{C}.$$

Тогда
$$\frac{-1}{u^3} = \frac{2\cos^{-2}x}{-2} + \widetilde{C}$$
, или $\frac{1}{u^3} = \frac{1}{\cos^2x} + C$, т.е. $\frac{1}{u^3} = \frac{1 + C\cos^2x}{\cos^2x}$.

Значит
$$u^3 = \frac{\cos^2 x}{1 + C\cos^2 x}$$
, а $u = \left(\frac{\cos^2 x}{1 + C\cos^2 x}\right)^{\frac{1}{3}}$.

Подставляем найденные значения u и v, находим общее решение уравнения (41):

$$y = \left(\frac{\cos^2 x}{1 + C\cos^2 x}\right)^{\frac{1}{3}} \cdot \frac{1}{\cos x},$$
Или
$$y = \frac{\cos^{2/3} x}{\left(1 + C\cos^2 x\right)^{1/3}} \cdot \frac{1}{\cos x}, \quad \text{T.e. } y = \frac{1}{\sqrt[3]{\cos x}\left(1 + C\cos^2 x\right)}$$
 (43)

Для решения задачи Коши необходимо найти функцию, удовлетворяющую начальным условиям y(0)=1. Определим значение постоянной C, подставляя x=0, y=1 в общее решение (43).

Получим:
$$1 = \frac{1}{\sqrt[3]{\cos 0(1 + C\cos^2 0)}}$$
 или $\frac{1}{\sqrt[3]{1 + C}} = 1$; $1 + C = 1$; $C = 0$. Таким

образом, решением поставленной задачи является функция $y = \frac{1}{\sqrt[3]{\cos x}}$.

2.6. Уравнения в полных дифференциалах (Задача №6)

<u>Определение 6</u>: **Полным дифференциалом функции двух переменных** F(x,y) называется выражение $dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy$.

Уравнение вида
$$M(x, y)dx+N(x, y)dy=0$$
, (44)

где левая часть представляет собой полный дифференциал некоторой функции двух переменных F(x,y) называется уравнением в полных дифференциалах.

Если уравнение (44) является уравнением в полных дифференциалах, то его можно записать следующим образом: dF(x,y)=0.

Отсюда следует, что общее решение уравнения (44) в неявном виде определяется равенством

$$F(x,y) = C, (45)$$

где C – произвольная постоянная.

Решая уравнения вида (44), необходимо сначала убедиться, что левая часть этого уравнения – действительно полный дифференциал некоторой

функции F(x,y). Т.е. проверить, что функции M(x,y) - частная производная по x, а N(x,y) — частная производная по y одной и той же функции:

$$M(x,y) = \frac{\partial F}{\partial x}; \quad N(x,y) = \frac{\partial F}{\partial y}$$
 (46)

Для этого используют следующее свойство частных производных: смешанные частные производные второго порядка функции двух переменных

$$\frac{\partial^2 F}{\partial x \partial y}$$
 и $\frac{\partial^2 F}{\partial y \partial x}$ не зависят от порядка дифференцирования и совпадают, т.е.

$$\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x} \right)$$
. Поэтому дифференцируют функцию $M(x,y)$ по y , а

функцию N(x,y) по x (чтобы получить смешанные частные производные второго порядка) и сравнивают полученные функции.

Если они совпали, значит, уравнение действительно является уравнением в полных дифференциалах.

После того, как проверка выполнена, решение уравнения сводится к определению функции F(x,y) для подстановки его в решение (45).

Для этого интегрируют функцию M(x,y) по переменной x (т.к. она является частной производной по этой переменной):

$$F(x,y) = \int M(x,y)dx + \varphi(y), \qquad (47)$$

где $\varphi(y)$ - постоянная интегрирования, которую считают зависящей от y. На этом этапе решения $\varphi(y)$ - ещё неопределенная. Для окончательного получения F(x,y) найденную функцию (47) дифференцируют по переменной у и приравнивают к уже известной частной производной функции F(x,y) по y, т.е. к функции N(x,y):

$$\frac{\partial}{\partial y} \left(\int M(x, y) dx \right) + \varphi'(y) = N(x, y).$$

Полученное дифференциальное уравнение решают относительно неизвестной функции φ по переменной y.

Найденную функцию $\varphi(y)$ подставляют в (47), а окончательно определенную функцию F(x,y) в решение (45).

ПРИМЕР 6.
$$xy^2 dx + y(x^2 + y^2) dy = 0$$
 (48)

Это уравнение имеет вид уравнения (44). Здесь $M(x,y) = xy^2$; $N(x,y) = y(x^2 + y^2)$.

Полагая, что $M(x,y) = \frac{\partial F}{\partial x}$; $N(x,y) = \frac{\partial F}{\partial y}$, проверим это. Вычислим смешанные

производные второго порядка функции F(x,y) по её частным производным первого порядка (при вычислении частной производной по переменной x, переменную y рассматриваем как константу, а при вычислении производной по переменной y, константой считаем переменную x).

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x} \right) = \frac{\partial}{\partial y} \left(M(x, y) \right) = \left(xy^2 \right)'_y = x \cdot \left(y^2 \right)'_y = x \cdot 2y = 2xy$$

$$\frac{\partial^2 F}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right) = \frac{\partial}{\partial x} \left(N(x, y) \right) = \left(y(x^2 + y^2) \right)'_x = y \cdot \left(x^2 + y^2 \right)'_x = y \cdot (2x + 0) = 2xy$$

Получили совпадение смешанных частных производных второго порядка. Будем определять функцию F(x,y), интегрируя функцию M(x,y) по переменной x. При этом полагаем y=const, и постоянную интегрирования (обозначаем $\varphi(y)$) считаем зависящей от y.

$$F(x,y) = \int xy^2 dx + \varphi(y) = y^2 \int x dx + \varphi(y)$$

$$F(x,y) = y^2 \cdot \frac{x^2}{2} + \varphi(y) = \frac{1}{2}x^2y^2 + \varphi(y). \tag{49}$$

Функция F(x,y) определена с точность до постоянной интегрирования $\varphi(y)$.

Для определения $\varphi(y)$ продифференцируем полученную функцию (49) по переменной y (x считаем постоянной величиной) и приравняем к известной частной производной функции F(x,y) по y, т.е. к функции N(x,y):

$$\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \left(\frac{1}{2} x^2 y^2 + \varphi(y) \right) = \frac{1}{2} x^2 (y^2)'_y + \varphi'(y) = \frac{1}{2} x^2 \cdot 2y + \varphi'(y) = x^2 y + \varphi';$$

с другой стороны,
$$\frac{\partial F}{\partial y} = N(x, y) = y(x^2 + y^2)$$
.

Приравнивая, получаем дифференциальное уравнение относительно неизвестной функции $\varphi(y)$: $x^2y + \varphi' = y(x^2 + y^2)$. В этом уравнении y — переменная величина, x = const.

Заменяем $\varphi'(y)$ на $\frac{\partial \varphi}{\partial y}$ и разделяем переменные:

$$x^2y + \frac{d\varphi}{dy} = x^2y + y^3; \quad \frac{d\varphi}{dy} = y^3; \quad d\varphi = y^3dy.$$

Интегрируем полученное уравнение и находим $\varphi(y)$:

$$\int d\varphi = \int y^3 dy + \hat{C}; \quad \varphi = \frac{y^4}{4} + \hat{C}.$$

Таким образом, окончательно найдена функция F(x,y):

$$F(x,y) = \frac{1}{2}x^2y^2 + \frac{1}{4}y^4 + \hat{C}$$
.

Так как решение уравнения в полных дифференциалах выражается формулой (45), решение данного уравнения имеет вид:

$$\frac{1}{2}x^2y^2 + \frac{1}{4}y^4 + \hat{C} = \tilde{C},$$

или окончательно: $\frac{1}{2}x^2y^2 + \frac{1}{4}y^4 = C$, где $C = \tilde{C} - \hat{C}$ - произвольная постоянная.

3. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

3.1. Уравнения вида $f(x, y^{(n-1)}, y^{(n)}) = 0$ (Задача №7)

Уравнения такого вида не содержат в явном виде неизвестной функции у и её производных до (n-2)-го порядка включительно. Для понижения порядка уравнения вводят новую функцию по формуле: $z(x) = y^{(n-1)}$. Тогда $z'(x) = y^{(n)}$, и уравнение превращается в уравнение первого порядка. Решая его, находят функцию z(x), которую затем интегрируют n-1 раз для получения функции y(x).

Так как при каждом интегрировании в решение включается постоянная интегрирования, окончательная функция зависит от аргумента x и n произвольных постоянных $C_1, C_2, ..., C_n$.

ПРИМЕР 7.
$$x \cdot y''' + y'' = \frac{1}{\sqrt{x}}$$
. (50)

В этом уравнении старшей производной является производная третьего порядка, кроме того в уравнении представлена производная второго порядка, а искомая функция и её первая производная в явном виде отсутствуют. Поэтому понижение порядка уравнения выполняем по формулам:

$$z(x) = y''; \ z'(x) = y'''.$$
 (51)

Уравнение принимает вид: $x \cdot z' + z = \frac{1}{\sqrt{x}}$ или $z' + z \cdot \frac{1}{x} = \frac{1}{x\sqrt{x}}$. Это линейное уравнение. Будем искать его решение в виде произведения двух функций: $z = u \cdot v$, тогда z' = u'v + uv'. Подставляем в уравнение: $u'v + uv' + uv \frac{1}{x} = \frac{1}{x\sqrt{x}}$.

Группируем слагаемые, содержащие функцию v, функцию и выносим за скобки:

$$u'v + u\left(v' + v\frac{1}{x}\right) = \frac{1}{x\sqrt{x}}\tag{52}$$

Функцию v находим, приравнивая к нулю выражение в скобках:

$$v' + v \cdot \frac{1}{x} = 0 \tag{53}$$

Заменяем v' на $\frac{dv}{dx}$ и разделяем переменные: $\frac{dv}{dx} = -\frac{v}{x}$; т.е. $\frac{dv}{v} = -\frac{dx}{x}$.

Интегрируя, находим только одну функцию v, удовлетворяющую условию (53):

$$\int \frac{dv}{v} = -\int \frac{dx}{x}$$
; значит $\ln |v| = -\ln |x|$ или $\ln |v| = \ln \left| \frac{1}{x} \right|$. Таким образом $v = \frac{1}{x}$.

Найденную функцию подставляем в уравнение (52) и, с учетом равенства (53), получаем: $u' \cdot \frac{1}{x} = \frac{1}{x} \cdot \frac{1}{\sqrt{x}}$.

Определяем функцию *u*, интегрируя уравнение $\frac{du}{dx} = x^{-\frac{1}{2}}$ или $du = x^{-\frac{1}{2}}dx$:

 $\int du = \int x^{-\frac{1}{2}} dx + C_1.$ Значит $u = 2\sqrt{x} + C_1.$ Подставляем найденные значения функций u и v, определяем функцию z: $z(x) = (2\sqrt{x} + C_1) \cdot \frac{1}{x}.$

Найденную функцию подставляем в равенство (51):

$$y'' = \frac{2}{\sqrt{x}} + \frac{C_1}{x}.$$
 (54)

Интегрируя равенство (54), находим y': $y' = \int \left(\frac{2}{\sqrt{x}} + \frac{C_1}{x}\right) dx + C_2$.

Получаем $y' = 2\int x^{-\frac{1}{2}} dx + C_1 \int \frac{dx}{x} + C_2$ или $y' = 4\sqrt{x} + C_1 \ln|x| + C_2$. Интегрируя последнее равенство, находим y: $y = \int \left(4\sqrt{x} + C_1 \ln|x| + C_2\right) dx + C_3$. Подробнее:

$$y = 4 \int x^{\frac{1}{2}} dx + C_1 \int \ln|x| dx + C_2 \int dx + C_3$$
 (55).

Вычислим $\int \ln x dx$, используя формулу интегрирования «По частям»:

$$\int \ln x dx = \begin{vmatrix} u = \ln x & du = \frac{1}{x} dx \\ dv = dx & v = x \end{vmatrix} = x \ln x - \int x \cdot \frac{1}{x} dx = x \ln x - x.$$

Окончательно получаем: $y = \frac{8}{3}\sqrt{x^3} + C_1(x \ln x - x) + C_2 x + C_3$.

3.2. Уравнения вида f(y'', y) = 0 (Задача №8)

Уравнения такого вида не содержат в явном виде аргумент x. Для понижения порядка уравнения вводят новую функцию по формуле:

$$z(y) = y'. (56)$$

Тогда $y'' = \frac{d(y')}{dx} = \frac{dy'}{dy} \cdot \frac{dy}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} = \frac{dz}{dy} \cdot z(y)$, и уравнение превращается в

уравнение первого порядка относительно неизвестной функции z(y). Решая его, находят функцию z(y), которую подставляют в (56). Полученное дифференциальное уравнение первого порядка решают относительно функции y(x).

ПРИМЕР 8. Решить задачу Коши

$$y^3y'' = y^4 - 16, \quad y(0) = 2\sqrt{2}, \quad y'(0) = \sqrt{2}.$$
 (57)

Т.к. данное уравнение не зависит явным образом от переменной x, понижаем порядок уравнения. Вводим новую функцию z(y) по формулам: y' = z(y); $y'' = z' \cdot z$.

Уравнение принимает вид: $y^3 \cdot z' \cdot z = y^4 - 16$. Заменяем z' на $\frac{dz}{dy}$ и разделяем

переменные: $y^3 \cdot \frac{dz}{dy} \cdot z = y^4 - 16$, т.е. $zdz = \frac{y^4 - 16}{y^3} dy$. Интегрируя, находим:

$$\int z dz = \int \frac{y^4 - 16}{y^3} dy + C_1 \text{ или } \frac{z^2}{2} = \int y dy - 16 \int y^{-3} dy + C_1 \text{ . T.e. } \frac{z^2}{2} = \frac{y^2}{2} + \frac{8}{y^2} + C_1 \text{ .}$$

Или: $z^2 = y^2 + \frac{16}{y^2} + 2C_1$. Окончательно, выражая z(y), получим:

$$z = \sqrt{y^2 + \frac{16}{y^2} + 2C_1}$$
. Подстановка этой функции приводит к уравнению:

$$y' = \sqrt{y^2 + \frac{16}{y^2} + 2C_1} \ .$$

Т.к. в данном случае требуется найти частное решение, можно воспользоваться начальными условиями уже на этом этапе решения задачи для

определения первой из двух констант, которые должны входить в общее решение дифференциального уравнения второго порядка. Это упростит следующий этап интегрирования.

Подставим в полученное выражение для производной начальное условие:

$$y_0=2\sqrt{2}$$
; $(y_0)^2=8$; $y_0'=\sqrt{2}$, получим $\sqrt{2}=\sqrt{8+\frac{16}{8}+2C_1}$, или $2C_1+10=2$.

Отсюда $C_1 = -4$. Подставив C_1 , получаем уравнение: $y' = \sqrt{y^2 + \frac{16}{y^2} - 8}$ или

$$y' = \sqrt{\frac{y^4 + 16 - 8y^2}{y^2}}$$
, T.e. $y' = \sqrt{\frac{(y^2 - 4)^2}{y^2}}$.

Таким образом, получаем: $\frac{dy}{dx} = \frac{y^2 - 4}{y}$. Разделяем переменные и интегрируем:

$$\int \frac{ydy}{y^2 - 4} + \ln \widetilde{C}_2 = \int dx$$

Тогда: $\frac{1}{2}\int \frac{d(y^2-4)}{y^2-4} + \ln \widetilde{C}_2 = x$ или: $\ln(y^2-4) + \ln C_2 = 2x$. Откуда, используя свойства логарифмов, получаем: $C_2 \cdot (y^2-4) = e^{2x}$. Для получения окончательного решения подставим начальные условия $x_0=0$; $y_0=2\sqrt{2}$ и определим C_2 : $C_2\Big(\big(2\sqrt{2}\big)^2-4\Big)=e^0$; $C_2 \cdot (8-4)=1$; $C_2=1/4$. Таким образом, решением задачи Коши является функция $\frac{1}{4}(y^2-4)=e^{2x}$; $y^2-4=4e^{2x}$ или $y=2\sqrt{e^{2x}+1}$.

4. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

4.1. Основные понятия

<u>Определение 7.</u> Линейным дифференциальным уравнением n-го порядка называют уравнение вида:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x)$$
(58)

<u>Определение 8</u>. Функции $y_1, y_2, ..., y_n$ называются линейно зависимыми, если существует такой набор чисел $\lambda_1, \lambda_2, ..., \lambda_n$ не равных нулю одновременно, что выполняется тождество:

$$\lambda_1 \cdot y_1 + \lambda_2 \cdot y_2 + \dots + \lambda_n \cdot y_n \equiv 0.$$

Если таких чисел подобрать нельзя, то указанные функции линейно независимы. Например, функции $y_1 = x$, $y_2 = x^2$, $y_3 = x^3$ - линейно независимы, т.к. алгебраическая сумма $\lambda_1 \cdot y_1 + \lambda_2 \cdot y_2 + \lambda_3 \cdot y_3 = \lambda_1 \cdot x + \lambda_2 \cdot x^2 + \lambda_3 \cdot x^3$ может быть тождественно равна нулю только при нулевых значениях коэффициентов. Функции $y_1 = x$, $y_2 = e^x$, $y_3 = 2e^x$ - линейно зависимы, т.к. при $\lambda_1 = 0$, $\lambda_2 = -2$ и $\lambda_3 = 1$ алгебраическая сумма $\lambda_1 \cdot y_1 + \lambda_2 \cdot y_2 + \lambda_3 \cdot y_3 = 0 \cdot x + (-2) \cdot e^x + 1 \cdot (2e^x)$ тождественно равна нулю.

Для случая двух функций понятие линейной независимости может быть сформулировано так: две функции $y_1(x)$ и $y_2(x)$ линейно независимы, если их отношение не является постоянной величиной: $y_1 / y_2 \neq const$.

<u>Определение 9</u>. Линейными дифференциальными уравнениями n-го порядка называются уравнения вида:

 $a_0 y^{(n)} + a_1 y^{(n-1)} + ... + a_{n-1} y' + a_n y = f(x)$, где $a_0, a_1, ..., a_n$ — коэффициенты, которые в общем случае являются функциями от x.

В данном расчетном задании представлены уравнения с постоянными коэффициентами.

Если правая часть уравнения тождественно равна нулю, уравнение называется однородным.

В случае, когда правая часть зависит от x или равна ненулевой константе, уравнение называется неоднородным.

4.2. Общее решение однородных уравнений

Теорема.

Если $y_1, y_2, ..., y_n$ – линейно независимые частные решения уравнения

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$
(59),

то общее решение уравнения (48) определяется равенством:

$$y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n \tag{60}$$

Для нахождения частных решений уравнений (59) составляют характеристическое уравнение

$$k^{n} + a_{1}k^{n-1} + a_{2}k^{n-2} + \dots + a_{n-1}k + a_{n} = 0$$
(61),

которое получается из уравнения (59) заменой в нем производных искомой функции соответствующими степенями k, причем сама функция заменяется единицей. Уравнение (61) имеет n корней — действительных или комплексных (среди которых могут быть и равные, т.е. кратные). В зависимости от характера корней характеристического уравнения составляются n частных решений уравнения (59), а именно:

- 1) каждому действительному простому корню $k=k_0$ соответствует частное решение $y=e^{k_0x}$;
- 2) каждому действительному корню $k_{1,...,r}=k_0$ кратности г соответствует г частных решений $y_1=e^{k_0x}$, $y_2=xe^{k_0x}$, $y_3=x^2e^{k_0x}$,..., $y_r=x^{r-1}e^{k_0x}$;
- 3) каждой паре комплексных сопряженных корней $k=\alpha+\beta i$ и $k=\alpha-\beta i$ соответствует пара частных решений $y_1=e^{\alpha x}\cos\beta x, y_2=e^{\alpha x}\sin\beta x$;
- 4) каждой паре комплексных сопряженных корней $k_{1,...,r} = \alpha + \beta i$ и $k_{r+1,...,2r} = \alpha \beta i$ кратности r соответствует r пар частных решений:
- 5) $y_1 = e^{\alpha x} \cos \beta x, y_2 = xe^{\alpha x} \cos \beta x, y_3 = x^2 e^{\alpha x} \cos \beta x, ..., y_r = x^{r-1} e^{\alpha x} \cos \beta x,$
- 6) $y_{r+1} = e^{\alpha x} \sin \beta x$, $y_{r+2} = xe^{\alpha x} \sin \beta x$, $y_{r+3} = x^2 e^{\alpha x} \sin \beta x$, ..., $y_{2r} = x^{r-1} e^{\alpha x} \sin \beta x$.

Согласно теореме общее решение однородного уравнения **п**-го порядка может быть получено как линейная комбинация **п** линейно независимых частных решений.

После получения этих решений на основании корней характеристического уравнения обще решение однородного уравнения записывают в виде:

$$y_{\text{o.o.}} = C_1 \cdot y_1 + C_2 \cdot y_2 + ... + C_n \cdot y_n$$

ПРИМЕР 9.

Найти общее решение уравнения y''' - 2y'' + y' = 0 (62)

Составляем характеристическое уравнение: $k^3-2k^2+k=0$. Раскладывая левую часть на множители: $k(k^2-2k+1)=0$ или $k(k-1)^2=0$, находим корни характеристического уравнения $k_1=0; k_2=k_3=1$. Корень k=0 — простой действительный корень, ему соответствует одно частное решение $y_1=e^{0\cdot x}=1$. Корень k=1 — действительный корень кратности 2, поэтому ему соответствуют

2 частных, линейно независимых решения $y_2 = e^{1 \cdot x} = e^x$, $y_3 = x \cdot e^{1 \cdot x} = x \cdot e^x$. Общее решение составляем как линейную комбинацию найденных трех частных решений по формуле (60):

$$y = C_1 y_1 + C_2 y_2 + C_3 y_3$$
, T.e. $y = C_1 + C_2 e^x + C_3 x e^x$.

4.3. Линейные неоднородные уравнения

Структура общего решения неоднородного линейного уравнения (58) определяется следующей теоремой:

Если u=u(x) — частное решение неоднородного уравнения, а $y_1, y_2, ... y_n$ — n линейно независимых частных решений соответствующего ему однородного уравнения, то общее решение линейного неоднородного уравнения имеет вид

$$y = u + C_1 y_1 + C_2 y_2 \dots + C_n y_n, (63)$$

т.е. общее решение неоднородного уравнения равно сумме любого его частного решения и общего решения соответствующего однородного уравнения

Метод получения общего решения однородного уравнения рассмотрен в предыдущем пункте.

Данный метод применим только к линейным уравнениям с постоянными коэффициентами, имеющими правую часть специального вида

4.3.1. Линейные уравнения с правой частью вида: $f(x) = P_m(x)$ (Задача №9)

Если правая часть линейного уравнения — многочлен m-ой степени, т.е. имеет вид: $f(x) = A_0 x^m + A_1 x^{m-1} + \ldots + A_{m-1} x + A_m$ (многочлен может быть неполным, т.е. среди коэффициентов A_1, A_2, \ldots, A_m могут быть нулевые, в том числе одновременно), то частное решение u(x) ищут в виде многочлена той же степени с неопределенными коэффициентами. При этом многочлен должен содержать все степени переменной x, вне зависимости от количества слагаемых в правой части.

Например, если $f(x)=2x^3+1$ или $f(x)=x^3-2x^2+3x$, т.е. многочлен третьей степени, то частное решение ищут в виде: $u(x)=Ax^3+Bx^2+Cx+D$.

Кроме того, необходимо учесть значение корней характеристического уравнения. А именно, если среди корней характеристического уравнения есть корень k=0 кратности r, то в частное решение добавляют множитель x^{r} .

Для определения коэффициентов частное решение подставляют в левую часть уравнения и приравнивают коэффициенты при равных степенях x в левой и правой части.

Пример 10.

$$y''' - 5y'' + 6y' = 6x^2 + 2x - 5 \tag{64}$$

Рассмотрим однородное дифференциальное уравнение, соответствующее заданному: y''' - 5y'' + 6y' = 0 (65)

Для получения общего решения уравнения (65) составим характеристическое уравнение: k^3 -5 k^2 +6k=0. (66)

Решим это уравнение, вынося за скобки множитель k и приравнивая k нулю каждый из полученных сомножителей: $k \cdot (k^2 - 5k + 6) = 0$;

$$k=0$$
 и $k^2-5k+6=0$.

Получаем 3 корня: k_1 =0, k_2 =2, k_3 =3. Им соответствуют 3 частных решения:

$$v_1 = e^{0.x} = 1$$
; $v_2 = e^{2.x}$; $v_3 = e^{3.x}$.

Общее решение однородного уравнения $y_{\text{o.o.}}=C_1 y_1+C_2 y_2+C_3 y_3$ т.е.

$$y_{\text{o.o.}} = C_1 + C_2 \, \mathcal{C}^{2 \cdot x} + C_3 \, \mathcal{C}^{3 \cdot x} \,. \tag{67}$$

Для получения частного решения неоднородного уравнения (64) - u(x) рассмотрим правую часть уравнения $6x^2 + 2x - 5$ и корни характеристического уравнения (66). Так как правая часть уравнения (64) — многочлен второй степени, то частное решение следует искать также в виде многочлена второй степени с неопределенными коэффициентами: $Ax^2 + Bx + C$. Но т.к. среди корней характеристического уравнения есть корень $k_1 = 0$, то этот многочлен необходимо домножить на x (корень характеристического уравнения $k_1 = 0$ — простой, поэтому домножать будем на x именно в первой степени). Таким образом, будем искать частное решение в виде

$$u(x) = (Ax^2 + Bx + C) \cdot x = Ax^3 + Bx^2 + C$$
 (68)

Для определения коэффициентов A, B и C вычислим три производные функции u(x) и подставим их в уравнение (64). Для удобства, за чертой справа будем указывать коэффициенты, с которыми следует подставлять соответствующее слагаемое в уравнение:

$$u = Ax^{3} + Bx^{2} + Cx$$

$$u' = 3Ax^{2} + 2Bx + C$$

$$u'' = 6Ax + 2B$$

$$u''' = 6A$$

$$\cdot (-5)$$

Подставляя найденные производные в уравнение с указанными коэффициентами, получим:

$$6A - 5(6Ax + 2B) + 6(3Ax^2 + 2Bx + C) = 6x^2 + 2x - 5$$
.

Или, раскрывая скобки и приводя подобные слагаемые:

$$18Ax^2 + (12B - 30A)x + (6A - 10B + 6C) = 6x^2 + 2x - 5.$$

Составим систему уравнений, приравнивая коэффициенты при одинаковых степенях x, и определим значения A, B и C:

$$\begin{cases} 18A = 6 \\ 12B - 30A = 2 \\ 6A - 10B + 6C = -5 \end{cases} \Rightarrow \begin{cases} A = 1/3 \\ 12B = 30A + 2 \\ 6C = 10B - 6A - 5 \end{cases} \Rightarrow \begin{cases} A = 1/3 \\ B = 1 \\ C = 1/2 \end{cases}$$

Подставим найденные значения коэффициентов в (57), получим частное решение

$$u(x) = 1/3 x^3 + x^2 + 1/2x (69)$$

неоднородного уравнения (64).

Общее решение этого уравнения определяется формулой (63). Значит, с учетом формул (67) и (69), общее решение неоднородного линейного уравнения (64) имеет вид:

$$\underline{y}_{\text{o.H.}} = \frac{1}{3} x^3 + x^2 + \frac{1}{2}x + C_1 + C_2 e^{2 \cdot x} + C_3 e^{3 \cdot x}$$
.

4.3.2. Линейные уравнения с правой частью вида: $f(x) = e^{\alpha x} P_m(x)$ (Задача $Noldsymbol{0}$ 10)

Если правая часть линейного уравнения — произведение экспоненты $e^{\alpha x}$ на многочлен m-ой степени, т.е. имеет вид: $f(x) = e^{\alpha x} \left(A_0 x^m + A_1 x^{m-1} + ... + A_{m-1} x + A_m \right)$ (и в этом случае среди коэффициентов $A_1, A_2, ..., A_m$ могут быть нулевые), то частное решение u(x) ищут в виде аналогичного произведения $e^{\alpha x}$ на многочлен той же степени с неопределенными коэффициентами. При этом многочлен должен содержать все степени переменной x, вне зависимости от количества слагаемых входящих в многочлен в правой части.

Кроме того, в этом случае также учитывают значение корней характеристического уравнения. А именно, если среди корней характеристического уравнения есть действительный корень $k=\alpha$ (корень,

совпадающий с числовым коэффициентом в степени экспоненты) кратности r, то в частное решение добавляют множитель x^r .

Для определения коэффициентов частное решение подставляют в левую часть уравнения и приравнивают коэффициенты при равных степенях x в левой и правой части.

Пример 10.
$$y''' + y'' - 6y' = (20x + 14) \cdot e^{2x}$$
 (70)

Для решения этого уравнения рассмотри однородное уравнение, ему соответствующее: y''' + y'' - 6y' = 0 (71)

и характеристическое уравнение : $k^3 + k^2 - 6k = 0$. Решением характеристического уравнения являются 3 действительных корня: k_1 =0; k_2 =2 и k_3 = -3 . Этим корням соответствуют частные решения уравнения (71):

$$y_1 = e^{0x} = 1; y_2 = e^{2x}; y_3 = e^{-3x}.$$

Общее решение уравнения (71) –
$$y_{o.o.} = C_1 + C_2 e^{2x} + C_3 e^{-3x}$$
. (72)

Для получения частного решения неоднородного уравнения (70) рассмотрим его правую часть — функцию $f(x) = (20x + 14) \cdot e^{2x}$. Это — произведение многочлена первой степени на e^{2x} (т.е. в этом случае $\alpha = 2$). Поэтому частное решение будем искать в виде произведения многочлена

Ax + B на e^{2x} . Кроме того, учтем, что значение простого корня k_2 =2 совпадает с числом α . Поэтому добавим в произведение еще один множитель x.

Таким образом
$$u(x) = e^{2x} (Ax + B) \cdot x = e^{2x} (Ax^2 + Bx)$$
 (73)

Вычислим производные до третьего порядка включительно от данной функции. На каждом этапе вычисления производных, для удобства подстановки в исходное уравнение будем выносить e^{2x} за скобки, и группировать слагаемые по степеням x.

$$u' = 2e^{2x}(Ax^{2} + Bx) + e^{2x}(2Ax + B) = e^{2x}(x^{2} \cdot 2A + x \cdot (2A + 2B) + B)$$

$$u'' = 2e^{2x}(2Ax^{2} + (2A + 2B)x + B) + e^{2x}(4Ax + 2A + 2B) = e^{2x}(x^{2} \cdot 4A + x \cdot (8A + 4B) + 2A + 4B)$$

$$u''' = 2e^{2x}(4Ax^{2} + (8A + 4B)x + 2A + 4B) + e^{2x}(8Ax + 8A + 4B) = e^{2x}(x^{2} \cdot 8A + x \cdot (24A + 8B) + 12A + 12B)$$

$$\cdot 1$$

Подставим найденные производные в уравнение (70):

$$(x^2 \cdot 0 + x \cdot 20A + 14A + 10B) = (20x + 14) \cdot e^{2x}$$
.

Для определения коэффициентов A и B составим систему двух уравнений, приравнивая коэффициенты при равных степенях x:

$$\begin{cases} 20A = 20 \\ 14A + 10B = 14 \end{cases} \Rightarrow \begin{cases} A = 1 \\ 10B = 14 - 14A \end{cases} \Rightarrow \begin{cases} A = 1 \\ B = 0 \end{cases}$$

После подстановки найденных коэффициентов в (73) получим частное решение неоднородного уравнения (70): $u(x) = e^{2x} \cdot x^2$. (74)

И окончательно, в соответствии с формулой (63), используя решения (72) и(74), запишем общее решение неоднородного уравнения (70):

$$y_{o.h.} = e^{2x} \cdot x^2 + C_1 + C_2 e^{2x} + C_3 e^{-3x}.$$

4.3.3. Линейные уравнения с правой частью вида:

$$f(x) = e^{\alpha x} (M \cdot \cos \beta x + N \cdot \sin \beta x)$$
 (3adaua No 11)

Правая часть линейного уравнения — произведение экспоненты $e^{\alpha x}$ на линейную комбинацию тригонометрических функций $sin\beta x$ и $cos\beta x$ (аргументы функций должны совпадать) может быть представлена разными способами:

а) один из коэффициентов М или N равен нулю, т.е.

$$f(x) = \mathbf{M} e^{\alpha x} \cdot \cos \beta x$$
 или $f(x) = \mathbf{N} e^{\alpha x} \cdot \sin \beta x$

- b) коэффициент α равен нулю, т.е. $f(x) = \mathbf{M} \cdot \cos \beta x + \mathbf{N} \cdot \sin \beta x$
- c) коэффициент α равен нулю одновременно с одним из коэффициентов M или N, т.е. $f(x) = M \cdot cos \beta x$ или $f(x) = N \cdot sin \beta x$.

Во всех этих случаях частное решение ищут в полном виде (т.е. в виде, содержащем обе тригонометрические функции) с неопределенными коэффициентами.

При составлении u(x) необходимо проверить значение корней характеристического уравнения. Если среди корней характеристического уравнения есть пара комплексный корней $k = \alpha + i\beta$ и $k = \alpha - i\beta$ (корни, содержащие в действительной части числовой коэффициент из степени экспоненты, а в мнимой части — числовой коэффициент из аргумента тригонометрических функций) кратности r, то в частное решение добавляют множитель x^r .

В частности, если правая часть не содержит экспоненты в явном виде, т.е. коэффициент α =0, то среди корней характеристического уравнения проверяют наличие чисто мнимых корней $k=i\beta$ и $k=-i\beta$.

Неопределенные коэффициенты можно найти из системы линейных уравнений, получаемых на основании равенства коэффициентов при подобных слагаемых в правой и левой части исходного уравнения после подстановки в него u(x) вместо y.

Пример 11.

$$y'' - 4y' + 8y = e^{x}(-\sin x + 2\cos x)$$
(75)

Для решения этого уравнения рассмотри однородное уравнение, ему соответствующее: y'' - 4y' + 8y = 0 (76)

и характеристическое уравнение : $k^2-4k+8=0$. Решая это квадратное уравнение, получаем отрицательный дискриминант: $D=(-4)^2-4\cdot 8=16-32=-16$. Значит корни характеристического уравнения — комплексные числа: $k_{1,2}=\frac{4\pm\sqrt{-16}}{2}=2\pm2i$. Этим корням соответствуют два частных

решения однородного уравнения (76): $y_1 = e^{2x} \cos 2x$; $y_2 = e^{2x} \sin 2x$. Общее решение уравнения (76)

$$y_{o.o.} = C_1 e^{2x} \cos 2x + C_2 e^{2x} \sin 2x. \tag{77}$$

Будем искать частное решение неоднородного уравнения (75) в соответствии с видом его правой части: $f(x) = e^x(-\sin x + 2\cos x)$. Здесь представлено произведение экспоненты на линейную комбинацию тригонометрических функций с одинаковыми аргументами, числовые коэффициенты в степени экспоненты и аргументах тригонометрических функций совпадают и равны единице, т.е. $\alpha = 1$ и $\beta = 1$. Т.к. пара комплексных корней характеристического уравнения не совпадает с числами $1 \pm i$, то частное решение u(x) будем искать в виде совпадающем с видом функции f(x):

$$u(x) = e^{x} (A\sin x + B\cos x). \tag{78}$$

Для подстановки в исходное уравнение вычислим первую и вторую производные функции u(x). Будем группировать слагаемые, содержащие одинаковые тригонометрические сомножители.

$$u = e^{x}(A\sin x + B\cos x)$$
 $u' = e^{x}(A\sin x + B\cos x) + e^{x}(A\cos x - B\sin x) = e^{x}(\sin x(A - B) + \cos x(A + B))$
 $u'' = e^{x}(\sin x(A - B) + \cos x(A + B)) + e^{x}(\cos x(A - B) - \sin x(A + B)) = e^{x}(\sin x \cdot (-2B) + \cos x \cdot (2A))$
Подставляем найденные производные в исходное уравнение (75):

$$e^{x}((4A+2B)\sin x + (4B-2A)\cos x) = e^{x}(-\sin x + 2\cos x).$$

Для определения коэффициентов A и B составим систему двух уравнений, приравнивая коэффициенты при одинаковых функциях:

$$\begin{cases} 4A + 2B = -1 \\ 4B - 2A = 2 \end{cases} \Rightarrow \begin{cases} 2B = -1 - 4A \\ -2 - 10A = 2 \end{cases} \Rightarrow \begin{cases} A = -0.4 \\ B = 0.6 \end{cases}$$

Подставляем найденные коэффициенты в (78), получаем частное решение уравнения (75):

$$u(x) = e^{x}(0.6\cos x - 0.4\sin x). \tag{79}$$

И окончательно, в соответствии с формулой (63), используя решения (77) и (79), получаем общее решение неоднородного уравнения (75):

$$y_{o.h.} = e^x (0.6\cos x - 0.4\sin x) + e^{2x} (C_1\cos 2x + C_2\sin 2x).$$

4.3.4. Линейные уравнения с правой частью вида: $f(x) = f_1(x) + f_2(x)$ (Задача $Noldsymbol{0}12$)

Правая часть линейного уравнения – суперпозиция двух функций может быть представлена разными способами:

a)
$$f_1(x) = M \cdot \cos \beta x + N \cdot \sin \beta x$$
, $f_2(x) = e^{\alpha x} P_m(x)$

b)
$$f_1(x) = M_1 \cdot \cos \beta_1 x + N_1 \cdot \sin \beta_1 x$$
, $f_2(x) = M_2 \cdot \cos \beta_2 x + N_2 \cdot \sin \beta_2 x$

c)
$$f_1(x) = e^{\alpha_1 x} P(x)$$
, $f_2(x) = e^{\alpha_2 x} Q(x)$.

Во всех этих случаях частное решение ищут также в виде суперпозиции двух функций с неопределенными коэффициентами.

При этом для каждой части f(x) при составлении u(x) необходимо проверить значение корней характеристического уравнения в соответствии со всеми вышеизложенными правилами.

Пример 12.

$$y''' - 100y' = 20e^{10x} + 100\cos 10x$$
 (80)

Для решения этого уравнения рассмотри однородное уравнение, ему соответствующее: y'''-100y'=0 (81)

и характеристическое уравнение : $k^3 - 100k = 0$. Решая это кубическое уравнение, получаем корни характеристического уравнения — действительные числа: $k_1 = 0$, $k_2 = 10$, $k_3 = -10$. Этим корням соответствуют три частных решения однородного уравнения (81): $y_1 = e^{0 \cdot x} = 1$; $y_2 = e^{10x}$; $y_3 = e^{-10 \cdot x}$.

Общее решение уравнения (81):

$$y_{\text{o.o.}} = C_1 + C_2 e^{10 \cdot x} + C_3 e^{-10 \cdot x}.$$
 (82)

Будем искать частное решение неоднородного уравнения (80) в соответствии с видом его правой части: $f(x) = 20e^{10x} + 100\cos 10x$. Здесь

представлена суперпозиция двух функций $f_I(x) = 20e^{10x}$ и $f_2(x) = 100cos10x$. При этом, для анализа корней характеристического уравнения необходимо рассмотреть $\alpha_I = 10, \beta_I = 0$ и $\alpha_2 = 0, \beta_2 = 10$.

Т.к. число α_I =10 совпадает с действительным корнем k_2 =10 характеристического уравнения , то частное решение $u_I(x)$ будем искать в виде совпадающем с видом функции $f_I(x)$, домноженном на x:

$$u_I(x) = A x e^{10x}$$
 (83)

Т.к. среди корней характеристического уравнения не совпадает с числами $\pm 10i$, то частное решение $u_2(x)$ будем искать в виде совпадающем с видом функции $f_2(x)$:

$$u_2(x) = B \sin 10 x + D \cos 10 x. \tag{84}$$

Таким образом, будем искать частное решение неоднородного уравнения (80) в виде:

$$u(x) = A xe^{10x} + B \sin 10 x + D \cos 10 x.$$
 (85)

Для подстановки в исходное уравнение вычислим первую, вторую и третью производные функции u(x). Будем группировать слагаемые, содержащие функции одного типа.

$$u = Axe^{10x} + B\sin 10x + D\cos 10x$$

$$u' = Ae^{10x} + 10Axe^{10x} + 10B\cos 10x - 10D\sin 10x = (10Ax + A)e^{10x} + (-10D)\sin 10x + 10B\cos 10x$$

$$u'' = 10Ae^{10x} + (100Ax + 10A)e^{10x} - 100D\cos 10x - 100B\sin 10x =$$

$$= (100Ax + 20A)e^{10x} + (-100B)\sin 10x + (-100D)\cos 10x$$

$$u''' = 100Ae^{10x} + (1000Ax + 200A)e^{10x} - 1000B\cos 10x + 1000D\sin 10x =$$

$$= (1000Ax + 300A)e^{10x} + 1000D\sin 10x + (-1000B)\cos 10x$$

Подставляем найденные производные в исходное уравнение (80):

$$(1000Ax + 300A)\mathcal{C}^{10x} + 1000D\sin 10x + (-1000B)\cos 10x - \\ -100((10Ax + A)\mathcal{C}^{10x} + (-10D)\sin 10x + 10B\cos 10x) = 20\mathcal{C}^{10x} + 100\cos 10x$$

или

$$200A\mathcal{C}^{10x} + 2000D\sin 10x + (-2000B)\cos 10x = 20\mathcal{C}^{10x} + 100\cos 10x$$

Для определения коэффициентов A, B и D составим систему трёх уравнений, приравнивая коэффициенты при одинаковых функциях:

$$200A = 20
2000D = 0
-2000B = 100
 A = 0,1
⇒ B = -0,05
D = 0$$

Подставляем найденные коэффициенты в (85), получаем частное решение уравнения (80):

$$u(x) = 0.1 xe^{10x} - 0.05 \sin 10 x.$$
 (86)

И окончательно, в соответствии с формулой (63), используя решения (82) и (86), получаем общее решение неоднородного уравнения (80):

$$y_{\text{O.H.}} = 0.1 \text{ x} e^{10x} - 0.05 \text{ sin} 10 \text{ x} C_1 + C_2 e^{10 \cdot x} + C_3 e^{-10 \cdot x}$$

ВАРИАНТЫ ЗАДАНИЙ ДЛЯ ТИПОВОГО РАСЧЕТА ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ»

Вариант № 1.

$$1. \quad 4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$

2.
$$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$$

3.
$$y' = \frac{x+2y-3}{2x-2}$$

4.
$$y' - \frac{y}{x} = x^2$$
, $y(1) = 0$

5.
$$y' + xy = (1+x)e^{-x}y^2$$
, $y(0) = 1$

6.
$$3x^2e^y dx + (x^3e^y - 1)dy = 0$$

7.
$$y'''x \ln x = y''$$

8.
$$4y^3y'' = y^4 - 1$$
; $y(0) = \sqrt{2}$; $y'(0) = \frac{\sqrt{2}}{4}$

9.
$$y''' + 3y'' + 2y' = 1 - x^2$$

10.
$$y''' - 4y'' + 5y' - 2y = (16 - 12x)e^{-x}$$

11.
$$y'' + 2y' = 4e^x(\sin x + \cos x)$$

12.
$$y'' - 2y' = 2 \cosh 2x$$

Вариант № 2.

$$1. \quad \sqrt{4+y^2} dx - y dy = x^2 y dy$$

$$2. \quad xy' = \frac{3y^3 + 2yx^2}{2y^2 + x^2}$$

3.
$$y' = \frac{x+y-2}{2x-2}$$

4.
$$y' - y \cot x = 2x \sin x$$
, $y \left(\frac{\pi}{2}\right) = 0$

5.
$$xy' + y = 2y^2 \ln x$$
, $y(1) = 1/2$

6.
$$\left(3x^2 + \frac{2}{y}\cos\frac{2x}{y}\right)dx - \frac{2x}{y^2}\cos\frac{2x}{y}dy = 0$$

7.
$$xy''' + y'' = 1$$

8.
$$y'' = 128y^3$$
; $y(0) = 1$; $y'(0) = 8$

9.
$$y''' - y'' = 6x^2 + 3x$$

10.
$$y''' - 3y'' + 2y' = (1 - 2x)e^x$$

11.
$$y'' - 4y' + 4y = -e^{2x} \sin 6x$$

12.
$$y'' + y = 2\sin x - 6\cos x + 2e^x$$

Вариант № 3.

1.
$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx$$

2.
$$y' = \frac{x+y}{x-y}$$

3.
$$y' = \frac{3y - x - 4}{3x + 3}$$

4.
$$y' + y\cos x = \frac{1}{2}\sin 2x$$
, $y(0) = 0$

5.
$$2(xy'+y)=xy^2$$
, $y(1)=2$

6.
$$(3x^2+4y^2)dx+(8xy+e^y)dy=0$$

7.
$$2xy''' = y''$$

8.
$$y^3y'' + 64 = 0$$
; $y(0) = 4$; $y'(0) = 2$

9.
$$y''' - y' = x^2 + x$$

10.
$$y''' - y'' - y' + y = (3x + 7)e^{2x}$$

11.
$$y'' + 2y' = -2e^x(\sin x + \cos x)$$

12.
$$y''' - y' = 2e^x + \cos x$$

Вариант № 4.

$$1. \quad \sqrt{3+y^2} \, dx - y \, dy = x^2 y \, dy$$

2.
$$xy' = \sqrt{x^2 + y^2} + y$$

3.
$$y' = \frac{2y-2}{x+y-2}$$

4.
$$y' + y \operatorname{tg} x = \cos^2 x$$
, $y\left(\frac{\pi}{4}\right) = \frac{1}{2}$

5.
$$y' + 4x^3y = 4(1+x^3)e^{-4x}y^2$$
, $y(0) = 1$

6.
$$\left(2x-1-\frac{y}{x^2}\right)dx - \left(2y-\frac{1}{x}\right)dy = 0$$

7.
$$xy''' + y'' = x + 1$$

8.
$$y'' + 2\sin y \cos^3 y = 0$$
; $y(0) = 0$; $y'(0) = 1$

9.
$$y^{IV} - 3y''' + 3y'' - y' = 2x$$

10.
$$y''' - 2y'' + y' = (2x + 5)e^{2x}$$

11.
$$y'' + y = 2\cos 7x + 3\sin 7x$$

12.
$$y'' - 3y' = 2 \cosh 3x$$

Вариант № 5.

1.
$$x\sqrt{3+y^2}dx + y\sqrt{2+x^2}dy = 0$$

2.
$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 3$$

3.
$$y' = \frac{x+y-2}{3x-y-2}$$

4.
$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = \frac{3}{2}$

5.
$$xy' - y = -y^2(\ln x + 2)\ln x$$
, $y(1) = 1$

6.
$$(y^2 + y\sec^2 x)dx + (2xy + tgx)dy = 0$$

7.
$$tg xy'' - y' + \frac{1}{\sin x} = 0$$

8.
$$y'' = 32\sin^3 y \cos y$$
; $y(1) = \frac{\pi}{2}$; $y'(1) = 4$

9.
$$y^{IV} - y''' = 5(x+2)^2$$

10.
$$y''' - 3y'' + 4y = (18x - 21)e^{-x}$$

11.
$$y'' + 2y' + 5y = -\sin 2x$$

12.
$$y'' + 4y = -8\sin 2x + 32\cos 2x + 4e^{2x}$$

Вариант № 6.

1.
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$

2.
$$xy' = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}$$

3.
$$y' = \frac{2x + y - 3}{x - 1}$$

4.
$$y' - \frac{1}{x+1}y = e^x(x+1), y(0) = 1$$

5.
$$2(y'+xy)=(1+x)e^{-x}y^2$$
, $y(0)=2$

6.
$$(3x^2y+2y+3)dx+(x^3+2x+3y^2)dy=0$$

7.
$$x^2 y'' + xy' = 1$$

8.
$$y'' = 98y^3$$
; $y(1) = 1$; $y'(1) = 7$

9.
$$y^{IV} - 2y''' + y'' = 2x(1-x)$$

10.
$$y''' - 5y'' + 8y' - 4y = (2x - 5)e^x$$

11.
$$y'' - 4y' + 8y = e^x (5\sin x - 3\cos x)$$

12.
$$y''' - y' = 10\sin x + 6\cos x + 4e^x$$

Вариант № 7.

1.
$$(e^{2x} + 5)dy + ye^{2x}dx = 0$$

$$2. \quad y' = \frac{x+2y}{2x-y}$$

3.
$$y' = \frac{x+y-8}{3x-y-8}$$

4.
$$y' - \frac{y}{x} = x \sin x$$
, $y(\frac{\pi}{2}) = 1$

5.
$$3(xy' + y) = y^2 \ln x$$
, $y(1) = 3$

6.
$$\left(\frac{x}{\sqrt{x^2+y^2}} + \frac{1}{x} + \frac{1}{y}\right) dx + \left(\frac{y}{\sqrt{x^2+y^2}} + \frac{1}{y} - \frac{x}{y^2}\right) dy = 0$$

7.
$$y''' \cot 2x + 2y'' = 0$$

8.
$$y^3y'' + 49 = 0$$
; $y(3) = -7$; $y'(3) = -1$

9.
$$v^{IV} + 2v''' + v'' = x^2 + x - 1$$

10.
$$y''' - 4y'' + 4y' = (x-1)e^x$$

11.
$$y'' + 2y' = e^x(\sin x + \cos x)$$

12.
$$y'' - 4y' = 16 \cosh 4x$$

Вариант № 8.

1.
$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx$$

2.
$$xy' = 2\sqrt{x^2 + y^2} + y$$

3.
$$y' = \frac{x+3y+4}{3x-6}$$

4.
$$y' + \frac{y}{x} = \sin x$$
, $y(\pi) = \frac{1}{\pi}$

5.
$$2y' + y\cos x = y^{-1}\cos x(1+\sin x), y(0) = 1$$

6.
$$(\sin 2x - 2\cos(x+y))dx - 2\cos(x+y)dy = 0$$

7.
$$x^3y''' + x^2y'' = 1$$

8.
$$4y^3y'' = 16y^4 - 1$$
; $y(0) = \frac{\sqrt{2}}{2}$; $y'(0) = \frac{1}{\sqrt{2}}$

9.
$$y^{V} - y^{IV} = 2x + 3$$

10.
$$y''' + 2y'' + y' = (18x + 21)e^{2x}$$

11.
$$y'' - 4y' + 4y = e^{2x} \sin 3x$$

12.
$$y'' + 9y = -18\sin 3x - 18e^{3x}$$

Вариант № 9.

1.
$$x\sqrt{5+y^2}dx + y\sqrt{4+x^2}dy = 0$$

$$2. \quad 3y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 4$$

3.
$$y' = \frac{3y+3}{2x+y-1}$$

4.
$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$

5.
$$y' + 4x^3y = 4y^2e^{4x}(1-x^3), y(0) = -1$$

6.
$$\left(xy^2 + \frac{x}{y^2}\right) dx + \left(x^2y - \frac{x^2}{y^3}\right) dy = 0$$

7.
$$y''' \operatorname{tg} x = 2y''$$

8.
$$y'' + 8\sin y \cos^3 y = 0$$
; $y(0) = 0$; $y'(0) = 2$

9.
$$3y^{IV} + y''' = 6x - 1$$

10.
$$y''' + y'' - y' - y = (8x + 4)e^x$$

11.
$$y'' + 6y' + 13y = e^{-3x} \cos 4x$$

12.
$$y''' - 4y' = 24e^{2x} - 4\cos 2x + 8\sin 2x$$

Вариант № 10.

1.
$$y(4+e^x)dy - e^x dx = 0$$

2.
$$xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}$$

3.
$$y' = \frac{x+2y-3}{4x-y-3}$$

4.
$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}$$
, $y(0) = \frac{2}{3}$

5.
$$3y' + 2xy = 2xy^{-2}e^{-2x^2}$$
, $y(0) = -1$

6.
$$\left(\frac{1}{x^2} + \frac{3y^2}{x^4}\right) dx - \frac{2y}{x^3} dy = 0$$

7.
$$y''' \operatorname{cth} 2x = 2y''$$

8.
$$y'' = 72y^3$$
; $y(2) = 1$; $y'(2) = 6$

9.
$$y^{IV} + 2y''' + y'' = 4x^2$$

10.
$$y''' - 3y' - 2y = -4xe^x$$

11.
$$y'' + y = 2\cos 3x - 3\sin 3x$$

$$y''-5y'=50\cosh 5x$$

Вариант № 11.

1.
$$\sqrt{4-x^2}y'+xy^2+x=0$$

2.
$$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}$$

3.
$$y' = \frac{x - 2y + 3}{-2x - 2}$$

4.
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$

5.
$$2xy' - 3y = -(5x^2 + 3)y^3$$
, $y(1) = \frac{1}{\sqrt{2}}$

6.
$$\left(\frac{x}{\sqrt{x^2 + y^2}} + y\right) dx + \left(x + \frac{y}{\sqrt{x^2 + y^2}}\right) dy = 0$$

7.
$$x^4y'' + x^3y' = 1$$

8.
$$y^3y'' + 36 = 0$$
; $y(0) = 3$; $y'(0) = 2$

9.
$$y''' + y'' = 5x^2 - 1$$

10.
$$y''' - 3y' + 2y = (4x + 9)e^{2x}$$

11.
$$y'' + 2y' + 5y = -2\sin x$$

12.
$$y'' + 16y = 16\cos 4x - 16e^{4x}$$

Вариант № 12.

1.
$$2xdx-2ydy=x^2ydy-2xy^2dx$$

2.
$$xy' = \sqrt{2x^2 + y^2} + y$$

3.
$$y' = \frac{x+8y-9}{10x-y-9}$$

4.
$$y' + \frac{y}{x} = \frac{x+1}{x}e^x$$
, $y(1) = e$

5.
$$3xy' + 5y = (4x - 5)y^4$$
, $y(1) = 1$

6.
$$\frac{y}{x^2}\cos\frac{y}{x}dx - \left(\frac{1}{x}\cos\frac{y}{x} + 2y\right)dy = 0$$

7.
$$xy''' + 2y'' = 0$$

8.
$$y'' = 18\sin^3 y \cos y$$
; $y(1) = \frac{\pi}{2}$; $y'(1) = 3$

9.
$$y^{IV} + 4y''' + 4y'' = x - x^2$$

10.
$$y''' + 4y'' + 5y' + 2y = (12x + 16)e^x$$

11.
$$y'' - 4y' + 8y = e^x(-3\sin x + 4\cos x)$$

12.
$$y''' - 9y' = -9e^{3x} - 9\cos 3x + 18\sin 3x$$

Вариант № 13.

1.
$$x\sqrt{4+y^2}dx + y\sqrt{1+x^2}dy = 0$$

2.
$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 6$$

3.
$$y' = \frac{2x+3y-5}{5x-5}$$

4.
$$y' - \frac{y}{x} = -2 \frac{\ln x}{x}$$
, $y(1) = 1$

5.
$$2y' + 3y \cos x = e^{2x} (2 + 3\cos x)y^{-1}$$
, $y(0) = 1$

6.
$$\frac{1+xy}{x^2y}dx + \frac{1-xy}{xy^2}dy = 0$$

7.
$$(1+x^2)y'' + 2xy' = x^3$$

8.
$$4y^3y'' = y^4 - 16$$
; $y(0) = 2\sqrt{2}$; $y'(0) = \frac{1}{\sqrt{2}}$

9.
$$7y''' - y'' = 12x$$

10.
$$y''' - y'' - 2y' = (6x - 11)e^{-x}$$

11.
$$y'' + 2y' = 10e^x(\sin x + \cos x)$$

12.
$$y'' - y' = 2 \cosh x$$

Вариант № 14.

1.
$$(e^x + 8)dy - ye^x dx = 0$$

$$2. \quad xy' = \frac{3y^3 + 8yx^2}{2y^2 + 4x^2}$$

3.
$$y' = \frac{4y-8}{3x+2y-7}$$

4.
$$y' - \frac{y}{x} = -\frac{12}{x^3}$$
, $y(1) = 4$

5.
$$3(xy'+y) = xy^2$$
, $y(1) = 3$

$$6. \quad \frac{dx}{y} - \frac{x+y^2}{y^2} dy = 0$$

7.
$$x^5y''' + x^4y'' = 1$$

8.
$$y'' = 50y^3$$
; $y(3) = 1$; $y'(3) = 5$

9.
$$y''' + 3y'' + 2y' = 3x^2 + 2x$$

10.
$$y''' + y'' - 2y' = (6x + 5)e^x$$

11.
$$y'' - 4y' + 4y = e^{2x} \sin 5x$$

12.
$$y'' + 25y = 20\cos 5x - 10\sin 5x + 50e^{5x}$$

Вариант № 15.

1.
$$\sqrt{5+y^2} + y'y\sqrt{1-x^2} = 0$$

2.
$$y' = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}$$

3.
$$y' = \frac{x+3y-4}{5x-y-4}$$

4.
$$y' + \frac{2y}{x} = x^3$$
, $y(1) = -\frac{5}{6}$

5.
$$y'-y=2xy^2$$
, $y(0)=\frac{1}{2}$

$$6. \quad \frac{y}{x^2} dx - \frac{xy+1}{x} dy = 0$$

7.
$$xy''' - y'' + \frac{1}{x} = 0$$

8.
$$y^3y'' + 25 = 0$$
; $y(2) = -5$; $y'(2) = -1$

9.
$$y''' - y' = 3x^2 - 2x + 1$$

10.
$$y''' + 4y'' + 4y' = (9x + 15)e^x$$

11.
$$y'' + y = 2\cos 5x + 3\sin 5x$$

12.
$$y'''-16y'=48e^{4x}+64\cos 4x-64\sin 4x$$

Вариант № 16.

1.
$$6xdx - ydy = yx^2dy - 3xy^2dx$$

2.
$$xy' = 3\sqrt{x^2 + y^2} + y$$

3.
$$y' = \frac{y - 2x + 3}{x - 1}$$

4.
$$y' + \frac{y}{x} = 3x$$
, $y(1) = 1$

5.
$$2xy'-3y=-(20x^2+12)y^3$$
, $y(1)=\frac{1}{2\sqrt{2}}$

$$6. \left(xe^x + \frac{y}{x^2}\right)dx - \frac{1}{x}dy = 0$$

7.
$$xy''' + y'' + x = 0$$

8.
$$y'' + 18\sin y \cos^3 y = 0$$
; $y(0) = 0$; $y'(0) = 3$

9.
$$y''' - y'' = 4x^2 - 3x + 2$$

10.
$$y''' - 3y'' - y' + 3y = (4 - 8x)e^x$$

11.
$$y'' + 2y' + 5y = -17\sin 2x$$

12.
$$y'' + 2y' = 2sh2x$$

Вариант № 17.

1.
$$y \ln y + xy' = 0$$

2.
$$2y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 8$$

3.
$$y' = \frac{x+2y-3}{x-1}$$

4.
$$y' - \frac{2xy}{1+x^2} = 1 + x^2$$
, $y(1) = 3$

5.
$$y' + 2xy = 2x^3y^3$$
, $y(0) = \sqrt{2}$

6.
$$\left(10xy - \frac{1}{\sin y}\right) dx + \left(5x^2 + \frac{x\cos y}{\sin^2 y} - y^2 \sin y^3\right) dy = 0$$

7. th
$$x \cdot y^{IV} = y'''$$

8.
$$y'' = 8\sin^3 y \cos y$$
; $y(1) = \pi/2$; $y'(1) = 2$

9.
$$y^{IV} - 3y''' + 3y'' - y' = x - 3$$

10.
$$y''' - y'' - 4y' + 4y = (7 - 6x)e^x$$

11.
$$y'' + 6y' + 13y = e^{-3x} \cos x$$

12.
$$y'' + 36y = 24\sin 6x - 12\cos 6x + 36e^{6x}$$

Вариант № 18.

1.
$$(1+e^x)y' = ye^x$$

2.
$$xy' = \frac{3y^3 + 10yx^2}{2y^2 + 5x^2}$$

3.
$$y' = \frac{3x + 2y - 1}{x + 1}$$

4.
$$y' + \frac{1-2x}{x^2}y = 1$$
, $y(1) = 1$

5.
$$xy' + y = y^2 \ln x$$
, $y(1) = 1$

6.
$$\left(\frac{y}{x^2 + y^2} + e^x\right) dx - \frac{xdy}{x^2 + y^2} = 0$$

7.
$$xy''' + y'' = \sqrt{x}$$

8.
$$y'' = 32y^3$$
; $y(4) = 1$; $y'(4) = 4$

9.
$$y^{IV} + 2y''' + y'' = 12x^2 - 6x$$

10.
$$y''' + 3y'' + 2y' = (1 - 2x)e^{-x}$$

11.
$$y'' - 4y' + 8y = e^x (3\sin x + 5\cos x)$$

12.
$$y''' - 25y' = 25(\sin 5x + \cos 5x) - 50e^{5x}$$

Вариант № 19.

1.
$$\sqrt{1-x^2}y' + xy^2 + x = 0$$

2.
$$y' = \frac{x^2 + 3xy - y^2}{3x^2 - 2xy}$$

3.
$$y' = \frac{5y+5}{4x+3y-1}$$

4.
$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
, $y(1) = 1$

5.
$$2y' + 3y\cos x = (8 + 12\cos x)e^{2x}y^{-1}, y(0) = 2$$

6.
$$e^y dx + (\cos y + xe^y) dy = 0$$
 7. $y''' \operatorname{tg} x = y'' + 1$

7.
$$y''' \operatorname{tg} x = y'' + 1$$

8.
$$y^3y'' + 16 = 0$$
; $y(1) = 2$; $y'(1) = 2$

9.
$$v''' - 4v'' = 32 - 384x^2$$

10.
$$y''' - 5y'' + 7y' - 3y = (20 - 16x)e^{-x}$$

11.
$$y'' + 2y' = 6e^x(\sin x + \cos x)$$

12.
$$y'' + 3y' = 2sh3x$$

Вариант № 20.

$$1. 6xdx-2ydy=2yx^2dy-3xy^2dx$$

2.
$$xy' = 3\sqrt{2x^2 + y^2} + y$$

3.
$$y' = \frac{x+4y-5}{6x-y-5}$$

4.
$$y' + 2xy = -2x^3$$
, $y(1) = e^{-1}$

5.
$$4y' + x^3y = (x^3 + 8)e^{-2x}y^2$$
, $y(0) = 1$

6.
$$(y^3 + \cos x)dx + (3xy^2 + e^y)dy = 0$$

7.
$$y''' \operatorname{tg} 5x = 5y''$$

8.
$$y'' + 32\sin y \cos^3 y = 0$$
; $y(0) = 0$; $y'(0) = 4$

9.
$$y^{IV} + 2y''' + y'' = 2 - 3x^2$$

10.
$$y''' - 4y'' + 3y' = -4xe^x$$

11.
$$y'' - 4y' + 4y = -e^{2x} \sin 4x$$

12.
$$y'' + 49y = 14\sin 7x + 7\cos 7x - 98e^{7x}$$

Вариант № 21.

1.
$$y(1+\ln y) + xy' = 0$$

2.
$$y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12$$

3.
$$y' = \frac{x+y+2}{x+1}$$

4.
$$y' + \frac{xy}{2(1-x^2)} = \frac{x}{2}$$
, $y(0) = \frac{2}{3}$

5.
$$8xy'-12y=-(5x^2+3)y^3$$
, $y(1)=\sqrt{2}$

6.
$$xe^{y^2}dx + (x^2ye^{y^2} + tg^2y)dy = 0$$

7.
$$y''' \tanh 7x = 7y''$$

8.
$$y'' = 50\sin^3 y \cos y$$
; $y(1) = \pi/2$; $y'(1) = 5$

9.
$$y''' + y'' = 49 - 24x^2$$

10.
$$y''' - 5y'' + 3y' + 9y = (32x - 32)e^{-x}$$

11.
$$y'' + 6y' + 13y = e^{-3x} \cos 5x$$

12.
$$y''' - 36y' = 36e^{6x} - 72(\cos 6x + \sin 6x)$$

Вариант № 22.

1.
$$(3+e^x)yy'=e^x$$

$$2. \quad xy' = \frac{3y^3 + 12yx^2}{2y^2 + 6x^2}$$

3.
$$y' = \frac{2x + y - 3}{4x - 4}$$

4.
$$y' + xy = -x^3$$
, $y(0) = 3$

5.
$$2(y'+y) = xy^2$$
, $y(0) = 2$

6.
$$(5xy^2 - x^3)dx + (5x^2y - y)dy = 0$$

7.
$$x^3y''' + x^2y'' = \sqrt{x}$$

8.
$$y'' = 18y^3; y(1) = 1; y'(1) = 3$$

9.
$$y''' - 2y'' = 3x^2 + x - 4$$

10.
$$y''' - 6y'' + 9y' = 4xe^x$$

11.
$$y'' + y = 2\cos 7x - 3\sin 7x$$

12.
$$y'' + 4y' = 16 \sinh 4x$$

Вариант № 23.

1.
$$\sqrt{3+y^2} + \sqrt{1-x^2}yy' = 0$$

2.
$$y' = \frac{x^2 + xy - 3y^2}{x^2 - 4xy}$$

3.
$$y' = \frac{2x + y - 3}{2x - 2}$$

4.
$$y' - \frac{2y}{x+1} = e^x (x+1)^2$$
, $y(0) = 1$

5.
$$y' + xy = (x-1)e^x y^2$$
, $y(0) = 1$

6.
$$(\cos(x+y^2) + \sin x)dx + 2y\cos(x+y^2)dy = 0$$

7.
$$\coth xy'' - y' + \frac{1}{\cosh x} = 0$$

8.
$$v^3v'' + 9 = 0$$
; $v(1) = 1$; $v'(1) = 3$

9.
$$y''' - 13y'' + 12y' = x - 1$$

10.
$$y''' - 7y'' + 15y' - 9y = (8x - 12)e^x$$

11.
$$y'' + 2y' + 5y = -\cos x$$

12.
$$y'' + 64y = 16\sin 8x - 16\cos 8x - 64e^{8x}$$

Вариант № 24.

$$1. \quad xdx - ydy = yx^2dy - xy^2dx$$

2.
$$xy' = 2\sqrt{3x^2 + y^2} + y$$

3.
$$y' = \frac{y}{2x + 2y - 2}$$

4.
$$y' + 2xy = xe^{-x^2} \cdot \sin x$$
, $y(0) = 1$

5.
$$2y' + 3y\cos x = -e^{-2x}(2 + 3\cos x)y^{-1}$$
, $y(0) = 1$

6.
$$(x^2-4xy-2y^2)dx+(y^2-4xy-2x^2)dy=0$$

7.
$$(x+1)y'''+y''=(x+1)$$

8.
$$y^3y'' = 4(y^4 - 1); y(0) = \sqrt{2}; y'(0) = \sqrt{2}$$

9.
$$y^{IV} + y''' = x$$

10.
$$y''' - y'' - 5y' - 3y = -(8x + 4)e^x$$

11.
$$y'' - 4y' + 8y = e^x (2\sin x - \cos x)$$

12.
$$y'''-49y'=14e^{7x}-49(\cos 7x+\sin 7x)$$

Вариант № 25.

1.
$$y'y\sqrt{\frac{1-x^2}{1-y^2}}+1=0$$

2.
$$4y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 5$$

3.
$$y' = \frac{x+5y-6}{7x-y-6}$$

4.
$$y' - \frac{2y}{x+1} = (x+1)^3, y(0) = 1/2$$

5.
$$y' - y = xy^2$$
, $y(0) = 1$

6.
$$\left(\sin y + y\sin x + \frac{1}{x}\right)dx + \left(x\cos y - \cos x + \frac{1}{y}\right)dy = 0$$

7.
$$(1+\sin x)y''' = \cos x \cdot y''$$

8.
$$y'' + 50\sin y \cos^3 y = 0$$
; $y(0) = 0$; $y'(0) = 5$

9.
$$y''' - y'' = 6x + 5$$

10.
$$y''' + 5y'' + 7y' + 3y = (16x + 20)e^x$$

11.
$$y'' + 2y' = 3e^x(\sin x + \cos x)$$

12.
$$y'' + 5y' = 50 \sinh 5x$$

Вариант № 26.

$$\int_{1}^{2} \sqrt{5 + y^2} dx + 4(x^2y + y) dy = 0$$

$$xy' = \frac{3y^3 + 14yx^2}{2y^2 + 7x^2}$$

3.
$$y' = \frac{x + y - 4}{x - 2}$$

3.
$$y - \frac{x-2}{x-2}$$

4.
$$y' - y\cos x = -\sin 2x$$
, $y(0) = 3$

$$2(xy'+y) = y^2 \ln x, \ y(1) = 2$$

$$6. \left(1 + \frac{1}{y}e^{x/y}\right)dx + \left(1 - \frac{x}{y^2}e^{x/y}\right)dy = 0$$

$$7 (1+x^2)y'' + 2xy' = 12x^3$$

8.
$$y'' = 8y^3$$
; $y(0) = 1$; $y'(0) = 2$

$$y''' + 3y'' + 2y' = x^2 + 2x + 3$$

10.
$$y''' - 2y'' - 3y' = (8x - 14)e^{-x}$$

$$11. y'' - 4y' + 4y = e^{2x} \sin 4x$$

12.
$$y'' + 81y = 9\sin 9x + 3\cos 9x + 162 \cdot e^{9x}$$

Вариант № 27.

1.
$$(1+e^x)yy'=e^x$$

2.
$$y' = \frac{x^2 + xy - 5y^2}{x^2 - 6xy}$$

3.
$$y' = \frac{2x + y - 1}{2x - 2}$$

4.
$$y'-4xy=-4x^3$$
, $y(0)=-1/2$

5.
$$y' + y = xy^2$$
, $y(0) = 1$

6.
$$\frac{(x-y)dx + (x+y)dy}{x^2 + y^2} = 0$$

7.
$$-xy''' + 2y'' = \frac{2}{x^2}$$

8.
$$y^3y''+4=0$$
; $y(0)=-1$; $y'(0)=-2$

9.
$$v''' - 5v'' + 6v' = (x-1)^2$$

10.
$$y''' + 2y'' - 3y' = (8x + 6)e^x$$

11.
$$y'' + 6y' + 13y = e^{-3x} \cos 8x$$

12.
$$y''' - 64y' = 128\cos 8x - 64e^{8x}$$

Вариант № 28.

1.
$$\sqrt{2+y^2}dx + 3(x^2y + y)dy = 0$$

2.
$$xy' = 4\sqrt{x^2 + y^2} + y$$

3.
$$y' = \frac{3y-2x+1}{3x+3}$$

4.
$$y' - \frac{y}{x} = -\frac{\ln x}{x}$$
, $y(1) = 1$

5.
$$y' + 2y \coth x = y^2 \cosh x$$
, $y(1) = \frac{1}{\sinh 1}$

6.
$$2(3xy^2 + 2x^3)dx + 3(2x^2y + y^2)dy = 0$$

7.
$$cth xy'' + y' = ch x$$

8.
$$y'' = 2\sin^3 y \cos y$$
; $y(1) = \pi/2$; $y'(1) = 1$

9.
$$y''' - 13y'' + 12y' = 18x^2 - 39$$

10.
$$y''' + 6y'' + 9y' = (16x + 24)e^x$$

11.
$$y'' + 2y' + 5y = 10\cos x$$

12.
$$y'' + y' = 2 \sinh x$$

Вариант № 29.

1.
$$2xdx - ydy = x^2ydy - xy^2dx$$

2.
$$3y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 10$$

3.
$$y' = \frac{6y-6}{5x+4y-9}$$

4.
$$y'-3x^2y=x^2(1+x^3)/3$$
, $y(0)=0$

5.
$$2(y'+xy)=(x-1)e^xy^2$$
, $y(0)=2$

6.
$$(3x^3 + 6x^2y + 3xy^2)dx + (2x^3 + 3x^2y)dy = 0$$

7.
$$x^4 y'' + x^3 y' = 4$$

8.
$$y^3y''+1=0$$
; $y(1)=-1$; $y'(1)=-1$

9.
$$y^{IV} - 6y''' + 9y'' = 3x - 1$$

10.
$$y''' - y'' - 9y' + 9y = (12 - 16x)e^x$$

11.
$$y'' + y = 2\cos 4x + 3\sin 4x$$

12.
$$y'' + 100y = 20\sin 10x - 30\cos 10x - 200e^{10x}$$

Вариант № 30.

1.
$$\sqrt{2-x^2}y'+2xy^2+2x=0$$

2.
$$xy' = 4\sqrt{2x^2 + y^2} + y$$

3.
$$y' = \frac{x+6y-7}{8x-y-7}$$

4.
$$y' - y \cos x = \sin 2x$$
, $y(0) = -1$

5.
$$xy' + y = xy^2$$
, $y(1) = 1$

6.
$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$$

7.
$$y'' + \frac{2x}{1+x^2}y' = 2x$$

8.
$$y'' = 2y^3$$
; $y(-1) = 1$; $y'(-1) = 1$

9.
$$y^{IV} + y''' = 12x + 6$$

10.
$$y''' + 4y'' + 3y' = 4(1-x)e^{-x}$$

11.
$$y'' - 4y' + 4y = e^{2x} \sin 6x$$

12.
$$y''' - 81y' = 162e^{9x} + 81\sin 9x$$

Список литературы

- 1. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 2. – М.: Интеграл-Пресс, 2010. - 544 с.
- 2. Бугров Я.С., Никольский С.М. Высшая математика. Т. 3. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. М.: Дрофа, 2005. 512 с.

Сведения об авторах

Ледовская Екатерина Валерьевна, кандидат технических наук, доцент кафедры, прикладная математика

Дзержинский Роман Игоревич, кандидат технических наук, заведующий кафедрой, пркикладная математика