Лабораторная работа №1 Методы нулевого и первого порядка

https://github.com/GooddiLK/met-opt-lab1

Пластинин Алексей М3237 t.me/plstnn Малков Александр М3237 $t.me/AlexM_37$

Цель работы:

Выяснить эффективность работы различных методов градиентного спуска в зависимости от выбора начальной точки, шага, значения гиперпараметров, числа обусловленности на различных функциях.

Используемые методы для планирования шага: • Постоянный / кусочно-постоянный

- Экспоненциальное и полиномиальное затухание
- Условие Армихо
- Условие Вольфа с бинпоиском

Рассматриваемые функции:

Исследование

• $x^2 + y^2$

- $3x^2-4xy+10y^2$ $(x^2+y-11)^2+\left(x+y^2-7\right)^2$ Функция Химмельблау
- Стоит также отметить, что в реализации градиент не нормировался.

Влияние числа обусловленности:

Для k=1 лучше всего работает константный шаг, он сходится за несколько

итераций, тем не менее все методы работают хорошо. Для $k \approx 10$ константный шаг не работает, эффективнее всего себя показал

полиномиальный шаг, Армихо и Вольфе работают, но требуют кратно больше рерсов для вычислений. Для функции Химмельблау работают только Армихо и Вольфе. Их эффективность

примерно равна. Влияние гиперпараметров:

У константного шага значение гиперпараметра очень велико. Если он слишком большой, можно "пролететь" точку минимума, если слишком маленький, медленная

сходимость. В зависимости от скорости сходимости функции требуется подбирать подходящее значение шага. У Армихо α_0 влияет на скорость схождения, чем ниже гиперпараметр, тем быстрее

работает метод. Стоит отметить что на F_2 слишком маленькое значение этого параметра снижает эффективность. Для F_3 же меньше - лучше. У параметра c_1 обратная зависимость с α_0 . Он также балансирует между скоростью сходимости и стабильностью.

У Вольфе α_0 и c_1 аналогичены Армихо. Чем выше c_2 , тем быстрее сходится метод, но также повышаются риски.

Выбор начальной точки:

постоянного шага. Меньшая занчимость на экспоненциальном.

Размер шага

Почти не влияет на геометрический и полиномиальный методы вычисления шага. Для функции Химмельблау разные начальные точки могут давать различные

Выбор начальной точки заметно влияет на скорость работы Армихо, Вольфа,

ответы. Данные:

Kол-во итераций F_1

Кол-во итераций F_2

Влияние размера постоянного шага на скорость сходимости из (2,2).

0.50.46

0.001

0.05

		0.3			9				-					
		0.2			13					-				
		0.1		25					-					
	0.05			48					22					
	(0.025			90					42				
Влияние параметров у Армихо из (10, 10):														
		$lpha_0$	q	ε	c_1	F_1	$oldsymbol{F_{1'}}$	F_2	$oldsymbol{F_{2'}}$	F_3	$oldsymbol{F_{3'}}$			
		0.01	0.5	0.001	0.05	282	281	129	128	25	22			
		0.1	0.5	0.001	0.05	33	32	18	14	67	16			

2

2

56

71

15

15

109

128

19

19

1 0.50.0010.05

0.5

0.5

	2	0.5	0.001		0.05	4	1	2	86	15	147	19
	3	0.5	0.001		0.05	20	6	12	54	9	110	12
	4	0.5	0.001		0.05	5 5	<u> </u>	2	101	15	166	19
	5	0.5	0.001		0.05	5 2	3	7	134	19	134	15
	10	0.5	0.001		0.05	3	0	7	153	19	149	15
	-	-	-		-	-		-	-	-	-	-
	1	0.5	0.001		0.1	3		2	71	15	128	19
	1	0.5	0.001 0.001 0.001		0.2	3	}	2 12	71	15	71	10
	1	0.5			0.5	20	6		79	16	95	12
	1	0.5			0.8	7'	7	25	5 134	25	303	34
	-	-	-		-	-		_	-	-	-	-
	1	0.05	0.001		0.05	12	25	62	55	27	132	45
	1	0.1	0.001		0.05	65		32	127	45	38	12
	1	0.2	0.001		0.05	3	1	15	26	9	44	11
	1	0.3	0.001		0.05	1	9	9	193	64	59	13
	1	0.4	0.001		0.05	1	3	6	54	14	66	12
	1	0.6			0.05	1	3	6	109	18	109	12
	1	0.7	0.001		0.05	1	9 9		201	25	434	33
	1	0.8	0.001		0.05	3	1	15	433	36	492	27
	ı	-	-		-	-		1	-	-	-	1
3		0.1	0.001		0.05	1	9 9		73	26	121	30
Влияние параметров у Вольфе из (10, 10):												
	$egin{array}{c c} \alpha_0 & c_1 \\ 1 & 0.001 \\ 1 & 0.01 \\ 1 & 0.05 \\ \hline - & - \\ \end{array}$		c_{2}		ε	$\overline{F_1}$	F	71'	F_2	$oldsymbol{F_{2'}}$	F_3	$oldsymbol{F_{3'}}$
			0.1 0.		.001	14	1	14	46	46	93	93
ļ					.001	14	1	4	55	55	93	93
					.001	14	1	4	55	55	78	78
İ					-	-		-	-	-	-	-
	1	0.001	0.1	0.	.001	14	1 14		46	46	93	93

квазиньютоновские методы.

2

Выводы:

0.001

0.001

1

0.2

0.3

0.001

0.001

14

14

14

14

74

74

74

74

163

163

400

300

200

100

0

1

0

Анализ показал, что нет универсальной стратегии выбора шага. Для простых функций лучше всего подходит постоянный шаг, в то время как для сложных, 4

стандартных алгоритмы вычисления шага вообще не работают. Армихо и Вольфе являются стабильными, они работают почти из любой точки и почти при любых гиперпараметрах, тем не менее эффективность методов на простых

функциях иногда низкая. Также они принимают несколько гиперпараметров, которые влияют на эффективность метода в совокупности, из-за этого очень труно подобрать оптимальные параметры, даже зная вид функции, на которой будет применяться

метод. В sciРу нет реализации стандартного градиентного спуска. Однако там есть подбор шага по условиям Вольфа. Он используется в методах BFGS, L-BFGS, CG, но это