SD-TSIA204 Properties and non uniqueness of Ordinary Least Squares

Ekhine Irurozki

Télécom Paris

Non uniqueness of the OLS solution

Singularity in High-Dimensional Design Matrices

Motivation

- ▶ Let $X \in \mathbb{R}^{n \times (p+1)}$ be a design matrix.
- ▶ Super-collinearity occurs if the columns of *X* are linearly dependent.
- ► Consequence :

$$\mathsf{rank}(X^\top X) < p+1 \quad \Rightarrow \quad X^\top X \text{ is singular (non-invertible)}.$$

Spectral Decomposition of Symmetric Matrices

Notations and preliminaries

- ▶ A square matrix A is singular iff det(A) = 0.
- ▶ For symmetric A, $det(A) = \prod_j \lambda_j$, with real eigenvalues λ_j .
- ▶ Hence, A is singular iff at least one $\lambda_j = 0$.
- Spectral theorem : if $A \in \mathbb{R}^{p \times p}$ is symmetric, then

$$A = V \Lambda V^{\top}, \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p),$$

with $V = [v_1 \dots v_p]$ orthogonal $(V^\top V = I)$.

► Equivalently :

$$A = \sum_{j=1}^{p} \lambda_j v_j v_j^{\top}.$$

▶ This expresses A as a sum of rank-1 matrices.

Inverse via Spectral Decomposition

▶ If all $\lambda_i \neq 0$, the inverse of A is

$$A^{-1} = \sum_{j=1}^{p} \lambda_j^{-1} v_j v_j^{\top}$$

• If any $\lambda_i = 0$, the inverse is undefined.

Moore-Penrose Inverse via Spectral Decomposition

► For symmetric *A* :

$$A^+ = \sum_{j: \lambda_j \neq 0} \lambda_j^{-1} v_j v_j^\top$$

- v_j are eigenvectors of A.
- ▶ Properties :

$$A^{+}AA^{+} = A^{+}, \quad AA^{+}A = A$$

▶ Provides the minimum-norm solution for rank-deficient systems.

Exercise: Show that $A^+AA^+ = A^+$

Solutions for the OLS using the normal equations and the generalized inverse

▶ A solution of the normal equations :

$$\widehat{\boldsymbol{\theta}} = (X^{\top}X)^{+}X^{\top}\mathbf{y}$$

- ▶ Let $\ker(X) = \{v \in \mathbb{R}^p : Xv = 0\}.$
- ▶ Then for any $v \in \ker(X)$, we have $X^{\top}Xv = 0$.
- ▶ The set of all solutions of the normal equations is :

$$\widehat{\boldsymbol{\theta}} = (X^{\top}X)^{+}X^{\top}\mathbf{y} + v, \quad \forall v \in \ker(X)$$

Properties of the OLS solution

Model I: The fixed design model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \varepsilon, \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0, \operatorname{Var}(\epsilon) = \sigma^{2}$$

- \triangleright x_i is deterministic
- σ^2 is called the noise level

Example:

- ▶ Physical experiment when the analyst is choosing the design *e.g.*,temperature of the experiment
- ► Some features are not random *e.g.*, time, location.

Model I with Gaussian noise: The fixed design Gaussian model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^{2}), \text{ for } i = 1, \dots, n$$

- Parametric model : specified by the two parameters (θ, σ)
- Strong assumption

Model II: The random design model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_{i}, x_{i}) \stackrel{i.i.d}{\sim} (\varepsilon, x), \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon | x) = 0, \operatorname{Var}(\varepsilon | x) = \sigma^{2}$$

Rem: here, the features are modelled as random (they might also suffer from some noise)

The ordinary least squares (OLS) estimator

$$\hat{\boldsymbol{\theta}} \in \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \sum_{i=1}^n \left(y_i - \theta_0 - \sum_{k=1}^p \theta_k x_{i,k} \right)^2$$

How to deal with these two models?

- ▶ The estimator is the same for both models
- ▶ The mathematics involved are different for each case
- ▶ The study of the fixed design case is easier as many closed formulas are available
- The two models lead to the same estimators of the variance σ^2

Prediction

Prediction vector :
$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}}$$

Rem: $\hat{\mathbf{y}}$ depends linearly on the observation vector \mathbf{y}

Rem: an **orthogonal projector** is a matrix H such that

- 1. H is symmetric : $H^{\top} = H$
- 2. H is idempotent : $H^2 = H$

Proposition Writing H the orthogonal projector onto the space span by the columns of X, one gets $\hat{\mathbf{y}} = H\mathbf{y}$

If X is full (column) rank, then $H = X(X^TX)^{-1}X^T$ is called the **hat matrix**

See that $\hat{\mathbf{y}} = H\mathbf{y} = X(X^{\top}X)^{-1}X^{\top}\mathbf{y}$

Exercise: Show that H is an orthogonal projector

Prediction (continued)

If a new observation $x_{n+1}=(x_{n+1,1},\dots,x_{n+1,p})$ is provided, the associated prediction is :

$$\hat{y}_{n+1} = \langle \hat{\theta}, (1, x_{n+1,1}, \dots, x_{n+1,p})^{\top} \rangle$$

 $\hat{y}_{n+1} = \hat{\theta}_0 + \sum_{i=1}^{p} \hat{\theta}_j x_{n+1,j}$

<u>Rem</u>: the normal equation ensures **equi-correlation** between observations and features :

$$(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y} \Leftrightarrow X^{\top}\hat{\mathbf{y}} = X^{\top}\mathbf{y}$$

$$\Leftrightarrow \begin{pmatrix} \langle \mathbf{x}_{0}, \hat{\mathbf{y}} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \hat{\mathbf{y}} \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_{0}, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \mathbf{y} \rangle \end{pmatrix}$$

Properties of the OLS estimator, $\hat{\boldsymbol{\theta}} = (X^{\top}X)^{-1}X^{\top}\mathbf{y}$

Assuming full-rank X and the fixed design model with Gaussian noise,

- P1 : Equivalent expression : $\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}^* + (X^\top X)^{-1} X^\top \varepsilon$
- P2 : Unbiasedness : $\mathbb{E}(\hat{m{ heta}}) = m{ heta}$ because $\mathbb{E}(m{arepsilon}) = 0$
- P3 : Covariance : $Cov(\hat{\boldsymbol{\theta}}) = \sigma^2(X^\top X)^{-1}$
- ▶ P4 : Distribution : $\hat{\boldsymbol{\theta}} \sim N(\boldsymbol{\theta}, \sigma^2(X^\top X)^{-1})$
- ▶ P5 : BLUE : $\hat{\theta}$ is the Best Linear Unbiased Estimator
- $\,\blacktriangleright\,$ P6 : Invariance : $\hat{\boldsymbol{y}}$ is invariant under linear transformations of the design matrix

Exercise: Prove the above statements

The trace of a matrix

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by tr(A):

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

Several properties:

- ightharpoonup $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- ▶ For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $tr(\alpha A + B) = \alpha tr(A) + tr(B)$ (linearity)
- $ightharpoonup tr(A^{T}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := ||A||_{F}^{2}$
- ▶ For any $A, B \in \mathbb{R}^{n \times n}$, tr(AB) = tr(BA)
- ▶ $tr(PAP^{-1}) = tr(A)$, hence if A is diagonalisable, the trace is the sum of the eigenvalues
- ▶ If H is an orthogonal projector tr(H) = rank(H)

Estimation risk $R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2}\operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

Proof:

$$R(\theta^{\star}, \hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^{\top}(\hat{\theta} - \mathbb{E}\hat{\theta})\right] = \mathbb{E}\left[(\hat{\theta} - \theta^{\star})^{\top}(\hat{\theta} - \theta^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\theta^{\star} + \varepsilon) - \theta^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\theta^{\star} + \varepsilon) - \theta^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\varepsilon)^{\top}((X^{\top}X)^{-1}X^{\top}\varepsilon)\right] = \mathbb{E}(\varepsilon^{\top}X(X^{\top}X)^{-2}X^{\top}\varepsilon)$$

$$= \operatorname{tr}\left[\mathbb{E}(\varepsilon^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\varepsilon)\right] \text{ (thx to } \operatorname{tr}(u^{\top}u) = u^{\top}u)$$

$$= \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\varepsilon\varepsilon^{\top}X(X^{\top}X)^{-1}\right]\right)$$

$$= \operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\mathbb{E}(\varepsilon\varepsilon^{\top})X(X^{\top}X)^{-1}\right]$$

$$= \sigma^{2}\operatorname{tr}((X^{\top}X)^{-1})$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2 / n$ Under model I. whenever the matrix X has full rank, we have

$$R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} \left(\frac{X^{\top}X}{n}\right) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \frac{\text{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

Proof: As before

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} (X^{\top} X)(X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$

$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$

$$= \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H \boldsymbol{\varepsilon})] = \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H^{\top} H \boldsymbol{\varepsilon})]$$

$$= \text{tr}[\mathbb{E}(H \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top} H^{\top})] = \text{tr}(H \mathbb{E}(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top}) H^{\top})$$

$$= \sigma^{2} \text{tr}(H) = \sigma^{2} \text{rank}(H) = \sigma^{2} \text{rank}(X)$$

More Exercises

- Compute the variance and covariance of the OLS estimator for the one-dimensional model.
- Show that the predicted value $\hat{\mathbf{y}}$ is invariant under a full-rank linear transformation of the predictors X.
- ► Show that the hat matrix defined with the Moore—Penrose generalized inverse is an orthogonal projection matrix.

Maximum Likelihood Estimation (MLE)

Explanation of the principle of maximum likelihood :

- Maximum Likelihood Estimation (MLE) is a widely used method to estimate unknown parameters.
- ▶ It is based on the idea of finding the parameter values that make the observed data most probable under a given statistical model.

Illustration of Maximum Likelihood Estimation (MLE)

MLE as finding the parameter value that maximizes likelihood :

- Consider a statistical model with unknown parameter θ and observed data X.
- The likelihood function $L(\theta; X)$ measures how probable the data is under the parameter θ as a product of their densities, $L(\theta; X) = \prod_{k=1}^{n} p(X_k; \theta)$.
- ▶ MLE seeks to find $\hat{\theta}$ that maximizes $L(\theta; X)$: $\hat{\theta} = \arg\max_{\theta} L(\theta; X)$

Example: MLE for Coin Flip Model

Coin Flip Model: Probability of getting heads in a coin flip

- ► Model : Bernoulli
- ▶ Parameter : p_H (probability of getting heads, $0 \le p_H \le 1$)
- Fair coin : $p_H = 0.5$

Observations: "HH" (two heads in a row)

Likelihood for $p_H = 0.5$: $L(p_H = 0.5 \mid HH) = 0.5^2 = 0.25$

Likelihood for $p_H = 0.3$: $L(p_H = 0.3 \mid HH) = 0.3^2 = 0.09$

General Observation : For each observed value $s \in S$, we can calculate the corresponding likelihood as $\prod_{s \in S} p(s; \theta)$.

Note: Likelihoods need not integrate or sum to one over the parameter space.

 Figure – Likelihood function for different p_H values when we observe HHT

Definition of Likelihood Function and Log-Likelihood Function

Likelihood Function:

- Measures how well the observed data fit the model parameterized by θ .
- ▶ Denoted by $L(\theta; X)$, where θ is the parameter and X is the observed data.
- ▶ Provides a probability distribution for the observed data given the parameter.
- ► For independent and identically distributed random variables, it will be the product of univariate density functions :

$$L(\theta;X) = \prod_{k=1}^{n} p(X_k;\theta) .$$

Log-Likelihood Function:

- ▶ Definition : $\mathcal{L}(\theta; X) = \log L(\theta; X)$.
- ▶ Log-transform simplifies calculations and often leads to mathematical convenience.
- ▶ Useful for optimization techniques to find the MLE.
- ▶ The MLE can be found by maximizing the log-likelihood.

Log-Likelihood and Maximum

In practice, it is often convenient to work with the natural logarithm of the likelihood function, called the log-likelihood :

$$\mathcal{L}(\theta; \mathbf{y}) = \ln L_n(\theta; \mathbf{y}).$$

Since the logarithm is a monotonic function, the maximum of $\mathcal{L}(\theta; \mathbf{y})$ occurs at the same value of θ as does the maximum of \mathcal{L}_n . If $\mathcal{L}(\theta; \mathbf{y})$ is differentiable in Θ , the necessary conditions for the occurrence of a maximum (or a minimum) are :

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = 0, \quad \frac{\partial \mathcal{L}}{\partial \theta_2} = 0, \quad \dots, \quad \frac{\partial \mathcal{L}}{\partial \theta_k} = 0.$$

MLE for Different Distributions. Exercise : give the proofs

Bernoulli Distribution : MLE for success probability p:

$$\hat{p} = \frac{\text{number of successes}}{\text{total trials}}$$

Normal Distribution : MLE for mean μ and variance σ^2 :

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Poisson Distribution : MLE for rate parameter $\lambda: \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Exponential Distribution : MLE for rate parameter λ : $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i}$

Multinomial Distribution : MLE for probabilities $p_1, p_2, ..., p_k$ of k categories in n trials : $\hat{p}_i = \frac{n_i}{n}$, where n_i is the count of category i

Poisson and Exponential Distributions

Poisson Distribution

- Discrete probability distribution.
- Models the number of rare events in a fixed interval.
- Parameter : λ (average rate of events).
- ▶ Probability mass function (PMF) :

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- Mean : λ
- Variance : λ

Exponential Distribution

- Continuous probability distribution.
- Models the time between rare events.
- Parameter : λ (rate parameter).
- Probability density function (PDF) :

$$f(x|\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

- Mean : $\frac{1}{\lambda}$
- Variance : $\frac{1}{\lambda^2}$

Estimation of the noise level

• An estimator of the noise level σ^2 is given by

$$\boxed{\frac{1}{n}\|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2}$$

Another estimator which is unbiased is defined by

$$\hat{\sigma}^2 = \frac{1}{n - \text{rank}(X)} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$$

To show that this estimator is unbiased we need to give more properties of the Hat matrix and Cochran's lemma

Properties of the Hat matrix

Rem: the Hat matrix is defined as $H = X(X^{T}X)^{-1}X^{T}$

Proposition:

- 1. H is an orthogonal projection matrix
- 2. (I H) is an orthogonal projection matrix
- 3. HX = X
- 4. (I H)X = 0

Statistical background, χ_k^2 distribution

Let $Z \sim \mathcal{N}(0,1)$, then the sum of their squares, $Q = \sum_{i=1}^k Z_i^2$, is distributed according

to the chi-squared distribution with k degrees of freedom. This is denoted as $Q \sim \chi_k^2$. The chi-squared distribution has one parameter: a positive integer k that specifies the number of degrees of freedom (the number of random variables being summed, is).

If
$$a \sim \chi_k^2$$
 then $\mathbb{E}[a] = k$ and $Var(a) = 2k$

Cochran's lemma

Let
$$\varepsilon \sim N(0, \sigma^2 I)$$
 and $\hat{\sigma}^2 = \frac{1}{n-p-1} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$ and X full rank. Then $\hat{\theta}_n$ and $\hat{\sigma}_n^2$ are independent,
$$\hat{\theta}_n \sim N\left(\boldsymbol{\theta}^\star, \sigma^2 (X^T X)^{-1}\right),$$

$$(n-p-1)\left(\frac{\hat{\sigma}_n^2}{\sigma^2}\right) \sim \chi_{n-p-1}^2.$$
 (1)

Estimation of the noise level, $\hat{\sigma}^2$ is unbiased

Under model I, whenever the matrix X has full rank, we have

$$\mathbb{E}\hat{\sigma}^2 = \sigma^2$$

Proof sketch:

$$\|\mathbf{y} - \hat{\mathbf{y}}\|_2^2 = \mathbf{y}^{\top} (\mathrm{Id}_n - H) \mathbf{y} = \boldsymbol{\varepsilon}^{\top} (\mathrm{Id}_n - H) \boldsymbol{\varepsilon}$$

Gaussian case : if $\varepsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, then $\|\mathbf{y} - \hat{\mathbf{y}}\|_2^2 \sim \chi^2$ à $n - \operatorname{rank}(X)$ degrés de liberté

Exercise: Complete the proof

Heteroscedasticity

Model I and Model II are homoscedastic models, *i.e.*,we assume that the noise level σ^2 does not depend on x_i

<u>Heteroscedastic Model</u>: we allow σ^2 to change with the observation i, we denote by $\sigma_i^2 > 0$ the associated variance

$$\hat{\boldsymbol{\theta}} \in \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} \left(\frac{y_i - \langle \boldsymbol{\theta}, x_i \rangle}{\sigma_i} \right)^2 = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} (y - X\boldsymbol{\theta})^\top \Omega (y - X\boldsymbol{\theta})$$
 with $\Omega = \operatorname{diag}(\frac{1}{\sigma_i^2}, \dots, \frac{1}{\sigma_p^2})$

Exercise: give a closed formula for $\hat{\theta}$ when $X^{\top}\Omega X$ has full rank

Exercise: give a necessary and sufficient condition for $X^{T}\Omega X$ to be invertible

Bias and variance

Proposition: Under model II, whenever the matrix $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top}$ has full rank, we have

$$\mathbb{E}(\hat{\boldsymbol{\theta}} \mid X) = \boldsymbol{\theta}^*$$
$$\operatorname{Var}(\hat{\boldsymbol{\theta}} \mid X) = (X^\top X)^{-1} \sigma^2$$

Proof: The same as in the case of fixed design with the conditional expectation

Rem:We cannot compute the $\mathbb{E}(\hat{\boldsymbol{\theta}})$ nor $\mathrm{Var}(\hat{\boldsymbol{\theta}})$ because the matrix X has full rank is now random!

Rem: One solution is to rely on asymptotic convergence

Asymptotics of $\hat{\boldsymbol{\theta}}$

Under model II, whenever the covariance matrix cov(X) has full rank, we have

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma^2 S^{-1})$$

with $S = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]$

Outline of the proof : It could happen that $\hat{m{ heta}}$ is not uniquely defined, so we put

$$\hat{\boldsymbol{\theta}} = \left(X^{\top} X \right)^{+} X^{\top} Y$$

where A^+ is the generalized inverse of A

• With high probability, we have that $X^{\top}X$ is invertible because $\frac{X^{\top}X}{n} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}$ goes to S

Asymptotics

Outline of the proof:

▶ As a consequence, in the asymptotics we can replace $(X^TX)^+$ by $(X^TX)^{-1}$ (that we shall admit)

Then we use that

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) = \left(\frac{X^{\top}X}{n}\right)^{-1} \left(\frac{X^{\top}\epsilon}{\sqrt{n}}\right)$$

- ▶ The term on the right $\frac{X^{\top}\varepsilon}{\sqrt{n}}$ converges to $\mathcal{N}(0, \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]\sigma^2)$ in distribution
- ▶ The term on the left $\left(\frac{X^{\top}X}{n}\right)^{-1}$ goes to S^{-1} in probability

Asymptotics

In the random design model, since closed formulas for the bias and variance of θ are lacking; Asymptotics is used to validate the procedure and to build-up the variance estimator

By the previous Proposition, the **variance** to estimate is

$$\sigma^2 S^{-1}$$

a natural "Plug-in" estimator is

$$\hat{\sigma}^2 \hat{S}_n^+$$

with
$$\hat{\sigma}^2 = \frac{1}{n - \text{rank}(X)} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$$

Rem: It coincides with the estimator in the case of fixed design

Variance estimation

Noise level is conditionally unbiased : Under model II, whenever the matrix

$$X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top}$$
 has full rank, we have

$$\mathbb{E}(\hat{\sigma}^2 \mid X) = \sigma^2$$

Exercise: Write the proof

Convergence of the variance estimator : Under model ${\tt II}$, if the covariance matrix ${\tt cov}(X)$ has full rank, we have

$$\hat{\sigma}^2 \hat{S}_n^+ \to \sigma^2 S^{-1}$$

in probability

Qualitative variables

A variable is qualitative, when its state space is discrete (non-necessarily numeric)

Exemple: colors, gender, cities, etc.

 $\frac{\text{Classically}}{\text{several dummy variables}} \text{ (valued in } \{0,1\})$

If each x_i is valued in a_1, \ldots, a_K , we define the following K explanatory variables : $\forall k \in [\![1,K]\!], \mathbbm{1}_{a_k} \in \mathbb{R}^n$ is given by

$$\forall i \in \llbracket 1, n
rbracket, n
rbracket, = \begin{cases} 1, & \text{if } x_i = a_k \\ 0, & \text{else} \end{cases}$$

Examples

Binary case : M/F, yes/no, I like it/I don't.

Client	Gender
1	Н
2	F
3	Н
4	F
5	F

General case : colors, cities, etc.

Client	Colors
1	Blue
2	Blanc
3	Red
4	Red
5	Blue

Somme difficulties

<u>Correlations</u>: $\sum_{k=1}^{K} \mathbb{1}_{a_k} = \mathbf{1}_n!$ We can drop-off one modality (e.g.,drop_first=True dans get_dummies de pandas)

Without intercept, with all modalities
$$X = [\mathbb{1}_{a_1}, \dots, \mathbb{1}_{a_K}]$$
. If $x_{n+1} = a_k$ then $\hat{y}_{n+1} = \hat{\theta}_k$

With intercept, with one less modality : $X = [\mathbf{1}_n, \mathbb{1}_{a_2}, \dots, \mathbb{1}_{a_K}]$, dropping-off the first modality

If
$$x_{n+1}=a_k$$
 then $\hat{y}_{n+1}=egin{cases} \hat{m{ heta}}_0, & ext{if } k=1 \ \hat{m{ heta}}_0+\hat{m{ heta}}_k, & ext{else} \end{cases}$

Rem: might give null column in Cross-Validation (if a modality is not present in a CV-fold)

 $\underline{\mathsf{Rem}}$: penalization might help (e.g., Lasso, Ridge)

What if n < p?

Many of the things presented before need to be adapted

For instance : if rank(X) = n, then $H = Id_n$ and $\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}} = \mathbf{y}$!

The vector space generated by the columns $[\mathbf{x}_0, \dots, \mathbf{x}_p]$ is \mathbb{R}^n , making the observed signal and predicted signal are **identical**

Rem: typical kind of problem in large dimension (when p is large)

Possible solution: variable selection, cf.Lasso and greedy methods (coming soon)

Web sites and books

- Python Packages for OLS: statsmodels sklearn.linear_model.LinearRegression
- ▶ McKinney (2012) about python for statistics
- ► Lejeune (2010) about the Linear Model
- ► Delyon (2015) Advanced course on regression
 https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf