Exercia 1

2.
$$\Sigma_{i} = \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} \in _{i} : _{i} : _{i} \in _{i} \}$$

$$= \{ peht_{i} : _{i} : _{$$

3.
$$\Sigma_i = \langle \langle , \rangle, \text{ asoit}$$

anait; anait

 $\Sigma_o = \langle \text{ asoit}, \varepsilon \rangle$
 $\Sigma_o = \langle \text{ asoit}, \varepsilon \rangle$

Exercice 2

1. Les relations R_1 et R_2 sont régulière cour il existe un transducteur qui la reconaît. $R_1 = (a_1b)^*$ $R_2^* = (E,c)^*$

2. La relation S est également régulière pour la même rouion que pour la 1. $S(a,bc)^*$ $S = (R_1 \circ R_2) = (a^m, b^m c^*)$ pour $m \ge 0$

- 3. La relation T est régulière car l'alphabet de sortie de R_1 correspond à l'alphabet d'entrée de R_2 . Soit $T = R_1 \circ R_2$, $T = (E,c)^\#$
- 4. La relation U = R1 MAz n'est pos régulière cur les intersections re font pos sur des transducteurs.