Problem A. Group Assignments

Problem Description

There are n students in the class, if the i^{th} and j^{th} students are in the same group, there will be a *badness* of $c_{i,j}$.

KCW asks TAs to divide the students into several groups such that each group has at least 2 students, and he wants the sum of badness among each group be the smallest possible.

Please tell TAs the minimum possible sum of badness, and also provide any group assignment.

Input Format

- line 1: n
- line 1+i ($1 \leq i \leq n$): $c_{i,1}$ $c_{i,2}$... $c_{i,n}$

Output Format

- line 1: ans: minimum possible sum of badness.
- ullet line 2: $g_1 \ g_2 \ \dots \ g_n$: the group which $i^{
 m th}$ student belongs to.
 - Your output should satisfy $1 \le g_i \le n$ for i = 1, 2, ..., n.

Constraints

- $2 \le n \le 21$.
- $0 \le c_{i,j} \le 99$ for $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, n$.
- $c_{i,i} = 0$ for $i = 1, 2, \ldots, n$.
- ullet $c_{i,j}=c_{j,i}$ for $i=1,2,\ldots,n$ and $j=1,2,\ldots,n$.
- All input values are integers.

Subtasks

- 1. (20 points) $n \leq 9$.
- 2. (20 points) $n \le 12$.
- 3. (20 points) $n \le 15$.
- 4. (20 points) $n \le 18$.
- 5. (20 points) No additional constraints.
- \bullet If you output the minimum sum of badness correctly, you can get 50% of a subtask's score;
- furthermore, if you construct a group assignment that yields minimum sum of badness, you can get the other 50% score.
- If you can not construct the grouping, please still print any valid construction.

No.	Testdata Range	Time Limit (ms)	Memory Limit (KiB)
Samples	1-4	1500	262144
1	1-28	1500	262144
2	1-43	1500	262144
3	1-58	1500	262144
4	1-73	1500	262144
5	1-99	1500	262144

Samples

Sample Input 1

This sample input satisfies the constraints of all the subtasks.

Sample Output 1

```
6
1 1 1
```

Since there must be at least 2 students in each group, there is only one way to assign the students to groups. The total badness is $c_{1,2} + c_{1,3} + c_{2,3} = 1 + 2 + 3 = 6$.

Sample Input 2

```
4
0 1 2 4
1 0 3 5
2 3 0 6
4 5 6 0
```

This sample input satisfies the constraints of all the subtasks.

Sample Output 2

```
7
2 4 4 2
```

The total badness is $(c_{1,4}) + (c_{2,3}) = 4 + 3 = 7$.

Note that both $\{(1,3),(2,4)\}$ and $\{(1,2),(3,4)\}$ has total badness 7, these two group assignments are also considered correct.

Sample Input 3

```
5
0 2 7 1 8
2 0 2 8 1
7 2 0 8 2
1 8 8 0 8
8 1 2 8 0
```

This sample input satisfies the constraints of all the subtasks.

Sample Output 3

```
6
1 2 2 1 2
```

Sample Input 4

```
9
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
```

This sample input satisfies the constraints of all the subtasks.

Sample Output 4

```
0
2 1 4 7 4 7 1 2 1
```

You are not required to minimize the number of groups.