EXPERIMENT No. 9

Kinetic Study in a PFR and calculation of CSTR volume connected in series

Objective:

- (a) To find the rate constant of reaction between sodium hydroxide and ethyle acetate in study in a PFR and CSTR connected in series
- (b) Predict the final conversion from CSTR
- (c) Plot $\frac{1}{-r_A}$ versus conversion (X_A) and design the series reactors

Chemicals:

(i) Succinic Acid (N/50), (ii) NaOH (N/20), (iii) $CH_3COOC_2H_5$ (N/10) and (iv) Phenolphthalein indicator

Apparatus:

- (1) SS Reactors (PFR and CSTR)
- (2) Constant Temperature Water Bath
- (3) Stop Watch and
- (4) Conical flasks

Theory:

Rate Equation:
$$-r_A = k_1 C_{A_0}^2 (1 - X_A) (M - X_A)$$

Mole Balances:

In PFR,

$$\frac{V_1}{F_{A_0PFR}} = \int_0^{X_{A_1}} \frac{dX_{A_1}}{-r_{A_1}} = \frac{1}{k_1(M-1)C_{A_0}^2} \times ln \frac{(M-X_{A_1})}{(1-X_{A_1})}$$
(1)

In CSTR

$$\frac{V_2}{F_{A_0CSTR}} = \frac{X_{A_2} - X_{A_1}}{-r_{A_1}} \tag{2}$$

Procedure:

Reaction: Saponification of ethyle acetate with NaOH.

$$CH_{3}COOC_{2}H_{5}$$
 + $NaOH$ \rightarrow $CH_{3}COONa$ + $C_{2}H_{5}OH$ (88) (40) (82) (46)

- 1. Calibrate each rotameters with the respective fluid.
- 2. Fix a feed rate for inlet streams. $F_A = F_B$ (say 1-2 LPH).
- 3. Allow the two reactant streams NaOH (A) and Ethyle Acetate (B) to enter the PFR first CSTR at equal feed. Determine C_{A0} and C_{B0}.
- 4. Collect the samples from PFR and CSTR outlets.
- 5. Analyze the samples by N/50 Succinic Acid.
- 6. Change the flow rate of each stream maintaining $F_A = F_B$ and repeat the above steps for 3 flow rates
- Estimate the unreacted NaOH at the outlet of both the PFR and CSTR by titration or by measuring conductance of the solution
- 8. Determine the rate constant k₁ from the mole balance of PFR (Reactor 1)
- 9. Plot $\frac{1}{-r_A}$ versus conversion (X_A) and design the CSTR (Calculate Volume of CSTR) graphically by plotting

N.B.:

1.
$$C_{A_0} = \frac{v_A}{v_A + v_B} C'_{A_0}$$
 and $C_{B_0} = \frac{v_B}{v_A + v_B} C'_{B_0}$

2. Volume of CSTR = 2.4 L