UMA204: Introduction to Basic Analysis

Naman Mishra

January 2024

Contents

1 Number Systems

	1.2	Recap of the Naturals Relations Integers	. 2	
2	Rat	ionals	5	
Lecture 01				Mon 01 Jan '24

1

We assume the following.

- Basics of set theory
- Existence of $\mathbb{N} = \{0, 1, 2, \ldots\}$ with the usual operations + and \cdot

For a recap, refer lectures 1 to 3 of UMA101.

1 Number Systems

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$$

1.1 Recap of the Naturals

 \mathbb{N} is the unique minimal inductive set granted by the ZFC axioms. Addition and multiplication are defined by the recursion principle and showed that they

- are associative and commutative,
- admit identity elements 0 and 1 respectively,
- satisfy the distributive law,

- satisfy cancellation laws,
- but do not admit inverses.

1.2 Relations

(Recall) A relation on a set A is a subset $R \subseteq A \times A$. We write a R b to denote $(a, b) \in R$.

Definition 1.1 (Partial order). A relation R on A is called a partial order if it is

- reflexive, i.e. a R a for all $a \in A$;
- antisymmetric, *i.e.* if a R b and b R a then a = b for all $a, b \in A$;
- transitive, i.e. if a R b and b R c then a R c for all $a, b, c \in A$.

Additionally, if for all $x, y \in A$, x R y or y R, then R is called a total order.

A set A equipped with a partial order \leq is called a partially ordered set (or poset).

A set A equipped with a total order \leq is called a totally ordered set or simply an ordered set.

Examples.

- (\mathbb{N}, \leq) where we say that $a \leq b$ if $\exists c \in \mathbb{N}$ such that a + c = b.
- (\mathbb{N}, \mathbb{I}) where we say that $a \mid b$ if $\exists c \in \mathbb{N}$ such that $a \cdot c = b$.

In UMA101, we defined order slightly differently, where we said that either $a \le b$ or $b \le a$ but never both. This is a "strict order". We will denote a weak partial order by \le and a strict partial order by <. (the notation is suggestive of how to every order there is a corresponding strict order and vice versa).

Definition 1.2 (Equivalence). An equivalence relation on a set A is a relation R satisfying

- reflexivity;
- symmetry, *i.e.* if a R b then b R a for all $a, b \in A$;
- transitivity.

Notation. We write $[x]_R$ to denote the set $\{y \in A \mid x R y\}$.

Proposition 1.3. The collection $\mathscr{A} = \{[x]_R \mid x \in A\}$ partitions A.

Proof. For every $x \in A$, $x \in [x]_R$ and so $\bigcup \mathscr{A} = A$.

Let $[x]_R \cap [y]_R \neq \emptyset$, where $x, y \in A$. Then there exists $z \in A$ such that x R z and y R z, from which it follows that x R y and $[x]_R = [y]_R$. \square

1.3 Integers

We cannot solve 3 + x = 2 in \mathbb{N} . We introduce \mathbb{Z} to solve this problem.

Consider the relation R on $\mathbb{N} \times \mathbb{N}$ given by

$$(a,b) R(c,d) \iff a+d=b+c.$$

(check that this is an equivalence relation trivial).

Definition 1.4. We define \mathbb{Z} to be the set of equivalence classes of R, notated $\mathbb{N} \times \mathbb{N}/R$.

Further, define

- $[(a,b)] +_{\mathbb{Z}} [(c,d)] := [(a+c,b+d)];$
- $[(a,b)] \cdot_{\mathbb{Z}} [(c,d)] := [(ac+bd,ad+bc)].$
- $z_1 \leq_{\mathbb{Z}} z_2$ iff there exists $n \in \mathbb{N}$ such that $z_1 +_{\mathbb{Z}} [(n,0)] = z_2$ (alternatively, $[(a,b)] \leq_{\mathbb{Z}} [(c,d)]$ iff $a+d \leq b+c$).

We need to check that these are well-defined. What does this mean? Consider

$$[(1,2)] +_{\mathbb{Z}} [(3,4)] = [(4,6)]$$
$$[(3,4)] +_{\mathbb{Z}} [(3,4)] = [(6,8)]$$

Our definition must ensure that [(4,6)] = [(6,8)].

In general, the definitions are well-defined if they are independent of the choice of representatives.

Lecture 02

Tue 02 Jan '24

Proposition 1.5. The operations $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$ and the order $\leq_{\mathbb{Z}}$ are well-defined.

Proof. Suppose [(a,b)] = [(a',b')] and [(c,d)] = [(c',d')]. Then a+b'=a'+b c+d'=c'+d (a+c)+(b'+d')=(a'+c')+(b+d) [(a+c,b+d)]=[(a'+c',b'+d')]

Since $\leq_{\mathbb{Z}}$ is defined in terms of $+_{\mathbb{Z}}$, it is also well-defined.

Definition 1.6 (Ring). A ring is a set S with two binary operations + and \cdot such that for all $a, b, c \in S$,

- (i) addition is associative,
- (ii) addition is commutative,
- (iii) there exists an additive identity 0,
- (iv) there exists an additive inverse -a,
- (v) multiplication is associative,
- (vi) there exists a multiplicative identity 1,
- (vii) multiplication is distributive over addition (on both sides).

A ring in which multiplication is commutative is called a commutative ring.

Note that inverses are unique, since if a + b = 0 and a + b' = 0, then b = (b' + a) + b = b' + (a + b) = b'.

Definition 1.7 (Ordered Ring). An ordered ring is a ring S with a total order \leq such that for all $a, b, c \in S$,

- (i) $a \le b$ implies $a + c \le b + c$,
- (ii) $0 \le a$ and $0 \le b$ implies $0 \le ab$.

Theorem 1.8.

- $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$ is an ordered (commutative) ring.
- The map $f = n \mapsto [(n,0)]$ from \mathbb{N} to \mathbb{Z} is an injective map that respects +, \cdot and \leq . That is, for all $n, m \in \mathbb{N}$,
 - (i) $f(n+m) = f(n) +_{\mathbb{Z}} f(m)$,
 - (ii) $f(nm) = f(n) \cdot_{\mathbb{Z}} f(m)$,
 - (iii) $n \le m \iff f(n) \le_{\mathbb{Z}} f(m)$.

In other words, f is an ordered commutative ring isomorphism onto a subset of \mathbb{Z} .

Thus, we may view $(\mathbb{N}, +, \cdot, \leq)$ as a subset of $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$, denote [(n, 0)] as n and drop \mathbb{Z} in the subscript. We further define -[(a, b)] := [(b, a)] and $z_1 - z_2 := z_1 + (-z_2)$.

Moreover, we have the following properties.

Proposition 1.9.

- There are no zero divisors in \mathbb{Z} . That is, for all $a, b \in \mathbb{Z}$, ab = 0 implies a = 0 or b = 0.
- The cancellation laws hold: for all $a, b, c \in \mathbb{Z}$, a+b=a+c implies b=c, and ab=ac implies a=0 or b=c.
- (trichotomy) For all $z \in \mathbb{Z}$, z = n or z = -n for some $n \in \mathbb{N}$.

2 Rationals

We cannot solve 3x = 2 in \mathbb{Z} .

Proof. Suppose 3x = 2 for some $x = [(a, b)] \in \mathbb{Z}$. Then

$$3x = 2$$

$$[(3,0)] \cdot [(a,b)] = [(2,0)]$$

$$[(3a,3b)] = [(2,0)]$$

$$3a = 3b + 2$$

What now? \Box

We define \mathbb{Z}^* to be $\mathbb{Z}\setminus\{0\}$ and define the relation R on $\mathbb{Z}\times\mathbb{Z}^*$ by (a,b)R(c,d) if ad=bc. Then R is an equivalence relation on $\mathbb{Z}\times\mathbb{Z}^*$.

Definition 2.1. We define \mathbb{Q} to be the set of equivalence classes of R, notated $\mathbb{Z} \times \mathbb{Z}^*/R$.

We define operations $+_{\mathbb{Q}}$ and $\cdot_{\mathbb{Q}}$ on \mathbb{Q} by

$$\begin{split} [(a,b)] +_{\mathbb{Q}} [(c,d)] &\coloneqq [(ad+bc,bd)] \\ [(a,b)] \cdot_{\mathbb{Q}} [(c,d)] &\coloneqq [(ac,bd)] \end{split}$$

Since there are no zero divisors in \mathbb{Z} , $bd \neq 0$.

We define an order $\leq_{\mathbb{Q}}$ on \mathbb{Q} by

$$[(a,b)] \leq_{\mathbb{Q}} [(c,d)] \iff (ad-bc)bd \leq 0.$$