Phenotyping via Bayesian Nonparametric Tensor Factorization using Markov Chain Monte Carlo

Hanjun Dai Yiting Xiao Yue Peng

- Problem Definition
- Challenges
- Model & Solution
- Data
- Preliminary Results
- Future Work

Do phenotyping via tensor factorization

- Do phenotyping via tensor factorization
 - R: number of phenotypes
 - Each vector: multinomial distribution

Automatically learn 'R' from data

Automatically learn 'R' from data

Treat parameters in a Bayesian way

Possible Advantages:

- Possible Advantages:
 - Find 'R' which fits the data best
 - Averaging over all the possibilities
 - Prevent over fitting

Challenges

- How to model the problem in a probabilistic way
- How to solve the model efficiently
- How to deal with large scale tensor data (future work)

How to model the problem in a probabilistic way

 How to model the problem in a probabilistic way Inspired by LDA:

 How to model the problem in a probabilistic way Inspired by LDA:

Topic-Words Distribution ↔ Phenotype-Medication Distribution

topic of med

Dirichlet Process over λ

$$\lambda_k = \beta_k \prod_{i=1}^{k-1} (1 - \beta_i)$$

$$\beta_i \sim Beta(1,\alpha)$$

• Dirichlet Process over λ

 $\beta_i \sim Beta(1,\alpha)$

Dirichlet Prior over each multinomial distribution

Patient Column ~ $Dir(\gamma_p = 1 / \# patients)$

 $Medicine\ Column \sim Dir(\gamma_m = 1/\#medicine)$

Diagnosis $\overline{Column \sim Dir(\gamma_d = 1 / \# diagnosis)}$

• Dirichlet Process over λ

$$\lambda_k = \beta_k \prod_{i=1}^{k-1} (1 - \beta_i)$$

$$\beta_i \sim Beta(1,\alpha)$$

Dirichlet Prior over each multinomial distribution

Patient Column ~ $Dir(\gamma_p = 1 / \# patients)$

Medicine Column ~ $Dir(\gamma_m = 1 / \# medicine)$

Diagnosis Column ~ $Dir(\gamma_d = 1 / \# diagnosis)$

· Likelihood:

$$p(T_{i,j,k} \mid \alpha, \gamma_p, \gamma_m, \gamma_d) = \sum_{r=1}^{\infty} p(r \mid \alpha) p(patient_i \mid r, \gamma_p) p(med_j \mid r, \gamma_m) p(diag_k \mid r, \gamma_d)$$

How to solve the model efficiently

- How to solve the model efficiently
 - Truncation technique:
 - The CP-rank of tensor is limited
 - Inference: Sampling from posterior distribution
 - $p(patient_i | r, \gamma_p)$
 - $p(med_i | r, \gamma_m)$
 - $p(diag_i | r, \gamma_d)$

- Sequential MC:
 - Do sampling in an online (stochastic) way

- Data set: MIMIC2
- Total number of diagnostics records: 314,648
- Total number of medication records: 4,206,941
- 5675 distinct ICD9 code, 63 distinct medicines

- Data set: MIMIC2
- Total number of diagnostics records: 314,648
- Total number of medication records: 4,206,941
- 5675 distinct ICD9 code, 63 distinct medicines

Diagnostics

Medications

subject_id	code	date	binary
7	V30.01	2666-06-2 2 00:00:00	1

subject_id	med_name	date	boolean
6	Heperin	3389-07-0 8 09:43:00	1

How to pair up diagnosis with medicine?

How to pair up diagnosis with medicine?

- Most recent diagnosis prior to medication record
- Set threshold to 7

How to pair up diagnosis with medicine?

- Most recent diagnosis prior to medication record
- Set threshold to 7

How to pair up diagnosis with medicine?

- Most recent diagnosis prior to medication record
- Set threshold to 7

Result tensor:

- 16619 patients;
- 4729 ICD9 code;
- 61 medicines;

• Phenotype Study: MIMIC2

Phenotype Study: MIMIC2

Phenotype #1:

Top 5 medcine:	diagnosis:
Neosynephrine-k	414.01
Propofol	272.4
Insulin	413.9

Precedex 401.9 Epinephrine-k 410.71 Phenotype #2:

Top 5	med	cin	e: d	liag	nosi	s:
ALTERNATION OF THE PERSON NAMED IN				_		

Propofol	414.01
Levophed-k	410.71
Fentanyl	412
Nitroprusside	428.0
Donamine	272 0

Phenotype Study: MIMIC2

Phenotype #1:

Name and Address of the Owner, where				
lop 5	med	cine:	dia	gnosis:
. Op o			on on	

Neosynephrine-k 414.01 Propofol 272.4

Insulin 413.9

Precedex 401.9

Epinephrine-k 410.71

Phenotype #2:

Top 5 medcine: diagnosis:

Propofol 414.01

Levophed-k 410.71

Fentanyl 412

Nitroprusside 428.0

Dopamine 272.0

anesthetic related

pain reliever related

• Synthetic experiment: factorizing black-white image

• Synthetic experiment: factorizing black-white image

Original Binary

• Synthetic experiment: factorizing black-white image

Original Binary

Recovered Prob

Recovered Binary

Future Work

Deploy the algorithm in Spark system

Future Work

- Deploy the algorithm in Spark system
- In the future:
 - using stochastic variational inference (more efficient)
 - using data parallelism (downpour SGD)

Thanks!

Q&A