Chamblandes 2008 — Problème 6

a)
$$f(x) = \frac{x^3 - 2x^2}{x^2 + 2x + 1} = \frac{x^2(x-2)}{(x+1)^2}$$

b)
$$D_f = \mathbb{R} - \{-1\}$$

 $\lim_{x \to -1} \frac{x^3 - 2x^2}{x^2 + 2x + 1} = \frac{(-1)^3 - 2 \cdot (-1)^2}{(-1)^2 + 2 \cdot (-1) + 1} = \langle -3 \rangle = -\infty$
 $x = -1$ est asymptote verticale

$$\begin{array}{c|ccccc}
x^3 - 2x^2 & & & x^2 + 2x + 1 \\
-x^3 - 2x^2 - x & & & x - 4 \\
\hline
 & -4x^2 - x & & & x - 4 \\
\hline
 & 4x^2 + 8x + 4 & & & \\
\hline
 & 7x + 4 & & & & \\
\end{array}$$

y = x - 4 est asymptote oblique

$$\delta(x) = \frac{7x+4}{x^2+2x+1} = \frac{7x+4}{(x+1)^2}$$

c)
$$f'(x) = \frac{x^3 + 3x^2 - 4x}{(x+1)^3} = \frac{x(x^2 + 3x - 4)}{(x+1)^3} = \frac{x(x+4)(x-1)}{(x+1)^3}$$

-4 -1 0 1					
x	_	_	- (+	+
x+4	- (+	+	+	+
x-1	ı		_	- () +
$(x+1)^3$	-	_	+	+	+
f' f	+ () —	+ () + in /

$$f(-4) = \frac{(-4)^3 - 2 \cdot (-4)^2}{(-4)^2 + 2 \cdot (-4) + 1} = \frac{-96}{9} = -\frac{32}{3}$$

Le point $\left(-4; -\frac{32}{3}\right)$ est un maximum.

$$f(0) = \frac{0^3 - 2 \cdot 0^2}{0^2 + 2 \cdot 0 + 1} = \frac{0}{1} = 0$$

Le point (0;0) est un maximum.

$$f(1) = \frac{1^3 - 2 \cdot 1^2}{1^2 + 2 \cdot 1 + 1} = \frac{-1}{4}$$

Le point $(1; -\frac{1}{4})$ est un minimum.

e)
$$f'(x) = \left(\frac{x^3 - 2x^2}{(x+1)^2}\right)' = \frac{(x^3 - 2x^2)'(x+1)^2 - (x^3 - 2x^2)((x+1)^2)'}{((x+1)^2)^2}$$

$$= \frac{(3x^2 - 4x)(x+1)^2 - (x^3 - 2x^2)2(x+1)(x+1)'}{(x+1)^4}$$

$$= \frac{(3x^2 - 4x)(x+1)^2 - 2(x^3 - 2x^2)(x+1)}{(x+1)^4}$$

$$= \frac{(x+1)((3x^2 - 4x)(x+1) - 2(x^3 - 2x^2))}{(x+1)^4}$$

$$= \frac{(x+1)(3x^3 + 3x^2 - 4x^2 - 4x - 2x^3 + 4x^2)}{(x+1)^4} = \frac{(x+1)(x^3 + 3x^2 - 4x)}{(x+1)^4}$$

$$= \frac{x^3 + 3x^2 - 4x}{(x+1)^3}$$