

KARATINA UNIVERSITY UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

FOURTH YEAR SPECIAL/SUPPLIMENTARY EXAMINATION

FOR THE DEGREE OF

BACHELOR OF SCIENCE WITH EDUCATION,
BACHELOR OF EDUCATION SCIENCE AND
BACHELOR OF SCIENCE

COURSE CODE: MAT 419

COURSE TITLE: PARTIAL DIFFERENTIAL

EQUATIONS II

DATE: 16th JULY 2024 TIME: 12.00noon-2.00pm

INSTRUCTION TO CANDIDATES

SEE INSIDE

MAT 419 Page 1 of 4

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

SECTION A

QUESTION ONE (30 marks)

a) Show that the equation below is satisfied by u = f(x+ct) + F(x-ct). (3marks)

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

- b) Solve the equation $\frac{\partial^2 u}{\partial x^2} = 12x^2(t+1)$ given that at $x = 0, u = \cos 2t$ and $\frac{\partial u}{\partial x} = \sin t$ (4marks)
- c) Find the general Solution of $2 \frac{\partial^2 u}{\partial x^2} 2 \frac{\partial^2 u}{\partial y \partial x} + 5 \frac{\partial^2 u}{\partial y^2} = 0$ (4marks)
- d) Transform the following differential equation into canonical form $5\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + 3u = 0 \quad \text{using the transformations } \xi = 2x y \text{ and } \eta = x + 2y \ . \tag{4marks}$
- e) Find the general solution of $\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial x} = 0$ by setting $\frac{\partial u}{\partial x} = v$. (4marks)
- f) By using the method of separation of variables form a set of two ODEs $x\frac{\partial u}{\partial x} \frac{\partial u}{\partial x} = 0 \tag{4marks}$
- g) Show that the transformation $\xi = y \frac{x^2}{2}$, $\eta = x$ reduces the equation $\frac{\partial^2 u}{\partial x^2} + 2x \frac{\partial^2 u}{\partial y \partial x} + x^2 \frac{\partial^2 u}{\partial y^2} = 0$, to $\frac{\partial^2 u}{\partial n^2} = \frac{\partial u}{\partial \xi}$ (7marks)

QUESTION TWO (20 marks)

- a) Consider a stretched string of length L fixed at the end points where u(x, t) is the position of the string at time t after an initial disturbance is given
 - i. State five assumptions that must be made for in derivation of onedimensional wave equation. (5marks)
 - ii. Show that the one-dimensional wave equation is given by $\frac{\rho}{T}u_{tt} = u_{xx}$ where ρ and T are density and tension of the string. (8marks)
- b) The solution of the wave equation below can be expressed in the form Y = X(x)T(t), in the process of constructing Y show why the value of k cannot be positive. (7marks)

MAT 419 Page 2 of 4

$$\frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial t^2} = 0$$

$$y(0,t) = 0, \quad 0 \le t < \infty$$

$$y(\pi,t) = 0, \quad 0 \le t < \infty$$

$$y(x,0) = f(x), \quad 0 \le x < \pi$$

$$\frac{\partial y(x,0)}{\partial t} = g(x), \quad 0 \le x < \pi$$

QUESTION THREE (20 marks)

- a) Determine the real characteristics of the function $8\frac{\partial^2 u}{\partial x^2} 2\frac{\partial^2 u}{\partial y \partial x} 3\frac{\partial^2 u}{\partial y^2} = 0$ and sketch these families of curves (8marks)
- b) Classify the following partial differential equation

$$2\frac{\partial^2 u}{\partial x^2} - x\frac{\partial^2 u}{\partial y \partial x} + y\frac{\partial^2 u}{\partial y^2} - xy\frac{\partial u}{\partial x} = 0$$
 (3marks)

c) Using the definition of the derivative of a function in two independent variables x and y determine the value of $x^2 \frac{\partial^2 u}{\partial x^2} - 2y \frac{\partial u}{\partial y} + u$ given that $u(x, y) = 4x^2y$ (9marks)

QUESTION FOUR (20 marks)

a) Consider the partial differential equation $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$

And the five real functions defined for all real t by

$$x(t) = t$$
, $y(t) = 0$, $u(t) = t^4 + t^2$
 $p(t) = 4t^3 + 2t$, $q(t) = 4t$

- i. Show that the five functions satisfy the strip condition. (2marks)
- ii. Show that the function \emptyset defined for all (x,y) by $\emptyset(x,y) = x^4 + 6x^2y^2 + y^4 + x^2 + y^2 + 4xy$ is a solution for the initial value problem in (ii) above.

(3marks)

- b) Transform the differential equation $\frac{d^2u}{\partial y^2} + \frac{\partial u}{\partial x} = 0$ into canonical form using the transformations $\xi = 2x$ and $\eta = y$ (6marks)
- c) The ends of an insulated rod AB, 10 units long are maintained at 0°c at t=0 the temperature within the rod rises uniformly from each end reaching 2°c at the midpoint of AB.

MAT 419 Page 3 of 4

- i. Write down an expression for the heat equation together with its boundary conditions. (2marks)
- ii. Determine an expression for the temperature at u(x,t) at any point in the rod, distant x from the left hand end at any subsequent time t. (7marks)

QUESTION FIVE (20 marks)

- a) Determine the general solution of $2\frac{\partial^2 u}{\partial y \partial x} + 3\frac{\partial^2 u}{\partial y^2} = 0$ (3marks)
- b) Use the method of separation of variables to find a formal solution u(x, y) of the Laplace equations (9marks)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

And the boundary conditions

$$u(0,y) = 0, \quad 0 \le y \le \pi$$
 $u(\pi,y) = 0, \quad 0 \le y \le \pi$
 $u(x,\pi) = 0, \quad 0 \le x \le \pi$
 $u(x,0) = f(x), \quad 0 \le x \le \pi$

Where *f* is a specified function of x, $0 \le x \le \pi$

c) Given the parabolic equation $\frac{\partial^2 u}{\partial x^2} = a \frac{\partial u}{\partial t} + b \frac{\partial u}{\partial x} + cu + f$ where the coefficients are constants. By the substitution $u = ve^{\frac{1}{2}bx}$ for the case $c = -(b^2/4)$, show that the given equation is reduced to the heat equation $v_{xx} = av_t + g$ where $g = fe^{\frac{-bx}{2}}$. (8marks)

MAT 419 Page 4 of 4