	4.	H1 1			 - A
USN			*	, "	لبل

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

V Semester B. E. Examinations Jan/Feb-21

Electronics and Communication Engineering

DIGITAL SIGNAL PROCESSING AND MACHINE LEARNING

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

3. Use of Butterworth and Chebyshev tables is permitted

PART-A

200							
1 1.1	Find the cutoff frequency (rad/sec) of third order low pass						
10	Butterworth filter with 11.21 dB stop band attenuation at stop band						
Kir.	frequency of 2.198 rad/sec.						
1.2	For the given difference equation, find the required number of Delay	01					
1.2		01					
too F	elements for the realization of Direct form-1 and Direct-form-2						
	structure. 5, 3.						
	2 * Y[n] - 2 * y[n-1] + 3 * y[n-2] = x[n] + 2x[n-3]	1.2					
1.3	The Hamming window coefficient $w(4)$ of Type 1 (Symmetric Odd) FIR	01					
	filter whose slope is 3 is given by77, .68 The frequency response of an FIR filter is given by						
1.4		01					
	$H(w) = e^{-j3\omega}(1 + 1.8 * Cos3\omega + 1.2 * Cos2\omega + 0.5 * Cos\omega)$	6.					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Determine the coefficient $h(0)$ of the impulse response of the FIR	-					
	filter.						
1.5	If in the below logistic function, b_0 is -9.346 and b_1 is 0.014634 the	01					
	predicted value for $X_1 = 721$ would by	01					
, and a	$\widehat{\pi_l} = \frac{e^{b_0 + b_1 X_1}}{1 + e^{b_0 + b_1 X_1}}$						
1.6	The estimate of the Poisson model (data table as since 1.1.)	2 P					
1.6	The estimate of the Poisson model (data table as given below) using	01					
	the following equation is, with $n = 647$.						
1	$\widehat{\lambda_{ML}} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$						
gi ³	$x_{ML} - x - \frac{1}{n} \sum_{i} x_{i}$	e 8 " * *					
4	Number of accidents $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 \end{vmatrix}$						
n . ***	Frequency 447 132 42 21 3 2	1 7					
1.7	The classifier that contains hyperplane with a margin is	01					
9 1	more susceptible to over fitting model and tend to classify with weak	F-1					
77 mm 4	confidence on unseen data.	100 gr					
1.8	In support vector machine, a decision boundary is to	01					
	hyperplane and touches the class in one side of the						
	hyperplane.						

Welcome 123

0

PART-B

KN 2.245 H(2) → 2M

h(3)=-2 Design a linear phase FIR lowpass filter using rectangular window by 3 a taking 7 samples of window sequence and with cutoff frequency, $\omega_c = 0.2\pi \ rad/sample 5 M <math>\Rightarrow 2 + .2 \cos 3 \omega + .3 \cos 2 \omega + .3 \cos 2 \omega$ Derive the expression for the frequency response of a linear phase FIR filter if the b 06 filter if the order is even and impulse response is symmetrical. HUWJ-5M OR Determine the filter coefficients h(n) obtained by frequency sampling $h(0) = h(0) = -i H_d(e^{j\omega}) = \begin{cases} e^{-j(N-1)\omega/2} & 0 \le |\omega| \le \pi/2 \\ 0 & \pi/2 < |\omega| < \pi \end{cases}$ $\pi/2 \le |\omega| \le \pi$ For N = 7 h(2)=h(4)=321 h(3) = -428 2m -H(N)= C Draw the magnitude and phase response. Derive the expression for the frequency response of a linear phase FIR 06 filter if the order is odd and impulse response is symmetrical. In least square regressions problem, derive an expression for slope 'm' а and y intercept 'c' to minimize the squared error. Given the individual errors are Error1 = y1 - (mx1 + c)Error2 = y2 - (mx2 + c)06 Error = yn - (mxn + c)Calculate the regression coefficient and obtain the lines of regression for the following data 5 6 4 10 14 10 12 13 OR Define loss function and minimization of loss function using 6 а 06 stochastic gradient decent optimization method. We observe the independent variables x_1 and x_2 and the dependent b variable (or response variable) y along with it and is given by. x1x2 1 -14 2 8 2) 0 1 3 2 6 Implement the Gradient decent algorithm to find the weights w1, w2 and the bias b to minimize the error only for epoch = 1/1, Batch = 1/6. Initialize the weights w1 = -0.017, w2 = -0.048 and b=0, batch size = 1. learning rate = 0.5, epoch = 1/1, Batch = 1/610 Define Baye's Theorem, If E1, E2, E3..., En are a set of n mutually exclusive and collectively exhaustive events.

100									
b	From the data set given below, using Naïve Bayes Algorithm, Find the								
	probability	probability of playing when the weather is overcast							
			Whether	Play	1 2				
			Sunny	No	_ 20 0		100		
	E 11.5		Sunny	No					
			Overcast	Yes			A * _ * * *		
			Rainy	Yes	1				
			Rainy	Yes	=				
			Rainy	No	e 9 i				
			Overcast	Yes					
	readily eng		Sunny	No			1		
			Sunny	Yes					
			Rainy	Yes					
			Sunny	Yes					
			Overcast	Yes	*1	g e e	1 1		
	20		Overcast	Yes			-		
			Rainy	No			10		
	- 1					11 11 11			
8 a		Explain the steps involved in unsupervised k-means clustering							
						edefined distinct	06		
p = 4		clusters. Mention its advantages and disadvantages.							
b		Using the algorithm steps explained in question 8(a), Separate the							
	given data	given data into 2 clusters.							
		Sepal.Length		h Pet	al.Length	Petal.Width			
	1	5.1	3.5	V- 1	1.4	0.2			
	2	4.9	3		1.4	0.2			
	3	7	3.2		4.7	1.4			
7.	4	6.4	3.2		4.5	1.5	7		
	5	6.3 5.8	3.3	-	6	2.5			
		ne following	2.7		5.1	1.9			
			ster centers	00 310	and 6th at				
		 a) Consider initial cluster centers as 3rd and 6th observation. b) Use Rectilinear Distance measurement. 							
	,								
	d) Ren	c) Use Single linkage while finding the cluster.d) Repeat the procedure until there is no change in clustering							
	fron	from one iteration to next iteration.							
		e) Draw the pictorial representation of clustering of each iteration							
	on X, Y pane.								
							10		