PEMODELAN UML SISTEM INFORMASI MONITORING PENJUALAN DAN STOK BARANG (STUDI KASUS: DISTRO ZHEZHA PONTIANAK)

Ade Hendini

Program Studi Manajemen Informatika AMIK "BSI Pontianak" Jl. Abdurahman Saleh No.18A, Kota Pontianak, Indonesia *Email*: ade.aee@bsi.ac.id

ABSTRACT

In the business world, technology can be used as a tool to monitor the activities going on in the business including sales transaction and monitoring stock of merchandise available. This is done in an effort to determine the progress of a business. In design information systems monitoring sales and inventory used UML modeling to analyze what is needed and what will be built. Monitoring information system sales and inventory is expected to be a tool that can help businesses to be able to know the progress of his efforts in each branch.

Keyword: UML, Monitoring, Modeling

1. PENDAHULUAN

Perkembangan teknologi yang pesat memberikan pengaruh dari cara kerja personal maupun organisasi, terlebih dalam dunia bisnis, teknologi dapat bisnis membantu perkembangan dengan dikarenakan teknologi dapat memangkas pengeluaran yang cukup signifikan.

Dalam dunia bisnis, teknologi dapat digunakan sebagai alat untuk memonitor kegiatan-kegiatan yang terjadi dalam bisnis diantaranya transaksi penjualan dan monitoring stok barang dagangan yang tersedia.

Distro Zhezha merupakan salah satu pelaku bisnis yang sudah memiliki banyak cabang di Kalimantan Barat. Dengan semakin banyaknya cabang, maka pengelolaan dan monitoring tiap cabang akan semakin kompleks, pemantauan stok barang di setiap cabang, transaksi penjualan mengetahui terjadi serta penentuan harga jual barang di tiap-tiap cabang, dengan bantuan teknologi yaitu dibuatnya sebuah model sistem informasi monitoring penjualan dan stok barang, maka permasalahan-permasalahan tersebut akan dapat diminimalisir.

Pelaku bisnis dapat memonitoring penjualan dan stok barang di setiap cabang serta menentukan harga jual barang di tiaptiap cabangnya.

Dengan mengetahui proses monitoring penjualan dan stok barang pada distro Zhezha, maka dapat dirancang sebuah model dalam bentuk UML sistem informasi monitoring penjualan dan stok barang pada distro Zhezha

2. LANDASAN TEORI

2.1 Monitoring

Monitoring adalah proses pengumpulan dan analisis informasi berdasarkan indikator vang ditetapkan secara sistematis dan kontinu kegiatan program sehingga dapat dilakukan tindakan koreksi untuk penyempurnaan program itu kegiatan Pemantauan selanjutnya. yang dapat dijelaskan sebagai kesadaran (Awareness) tentang apa yang ingin diketahui, berkadar tingkat pemantauan tinggi dilakukan membuat agar dapat pengukuran melalui waktu yang menunjukan pergerakan ke arah tujuan atau menjauh dari itu.(Mardiani, Gentisya Tri:2013).

2.2 Database

Menurut Asrianda dalam Urva, Gellysa (2008) *Database* adalah sekumpulan tabel-

tabel yang saling berelasi, relasi tersebut bisa ditunjukkan dengan kunci dari tiap tabel yang ada. Satu *database* menunjukkan satu lingkup perusahaan atau instansi.

Database juga merupakan kumpulan data yang umumnya menggambarkan aktifitas-aktifitas dan pelakunya dalam suatu organisasi.Sistem database merupakan sistem komputer yang digunakan untuk menyimpan dan mengelola data tersebut (Nugroho, Yuliandri Priyo, 2012).

2.3 Website

Menurut Nugroho dalam Aprisa (2015) menjelaskan bahwa Website atau situs dapat diartikan sebagai kumpulan halaman-halaman yang berasal dari file-file berisi bahasa pemrograman yang saling berhubungan digunakan untuk menampilkan informasi, gambar bergerak dan tidak bergerak, suara dan atau gabungan dari semuanya itu baik yang bersifat statis maupun dinamis.

2.4 UML

Menurut Windu Gata, Grace (2013:4), Unified Modeling Language (UML) adalah bahasa spesifikasi standar yang dipergunakan untuk mendokumentasikan, menspesifikasikan dan membanngun perangkat lunak. UML merupakan metodologi dalam mengembangkan sistem berorientasi objek dan juga merupakan alat untuk mendukung pengembangan sistem.

Alat bantu yang digunakan dalam perancangan berorientasi objek berbasiskan UML adalah sebagai berikut:

a. Use Case Diagram

Use case diagram merupakan pemodelan untuk kelakuakn (behavior) sistem informasi yang akan dibuat. Use case digunakan untuk mengetahui fungsi apa saja yang ada di dalam sistem informasi dan siapa saja yang berhak menggunakan fungsi-fungsi tersebut. Simbol-simbol yang digunakan dalam Use Case Diagram yaitu:

Tabel 1
Use Case Diagram

Use Case Di Gambar	Keterangan
Junioui	Use Case
	menggambarka
	n fungsionalitas
	Ü
	yang disediakan
	sistem sebagai
	unit-unit yang
	bertukar pesan antar unit
	dengan aktir,
	yang
	dinyatakan
	dengan
	menggunakan
	kata kerja
	Actor atau
	Aktor adalah
	Abstraction dari
	orang atau
	sistem yang
	lain yang
	mengaktifkan
	fungsi dari
	target sistem.
	Untuk
	mengidentifika
	sikan aktir,
	harus
	ditentukan
	pembagian
<u></u>	tenaga kerja
	dan tugas-tugas
/ \	yang berkaitan
	dengan peran
	pada konteks
	target sistem.
	Orang atau
	sistem bisa
	muncul dalam
	beberapa peran.
	Perlu dicatat
	bahwa aktor
	berinteraksi
	dengan <i>Use</i>
	Case, tetapi
	tidak memiliki

	ı
	kontrol
	terhadap <i>use</i>
	case
	Asosiasi antara
	aktor dan <i>use</i>
	case,
	digambarkan
	dengan garis
	tanpa panah
	yang
	mengindikasika
	-
	n siapa atau
	apa yang
	meminta
	interaksi secara
	langsung dan
	bukannya
	mengindikasika
	n data.
	Asosiasi antara
	aktor dan <i>use</i>
	case yang
	menggunakan
	panah terbuka
→	untuk
	mengindikasika
	n bila aktor
	berinteraksi
	secara pasif
	dengan sistem
	Include,
	· ·
	merupakan di
	dalam use case
	lain (required)
	atau
	_pemanggilan
< <include>></include>	use case oleh use
VIIICIUUE >>	case lain,
	contohnya
	adalah
	pemanggilan
	sebuah fungsi
	program
	Extend,
< < <extends>></extends>	merupakan
	- perluasan dari
	use case lain jika
	kondisi atau
	syarat

terpenuhi

b. Diagram Aktivitas (*Activity Diagram*) *Activity Diagram* menggambarkan *workflow* (aliran kerja) atau aktivitas

dari sebuah sistem atau proses bisnis.

Simbol-simbol yang digunakan dalam *activity Diagram* yaitu:

Tabel 2
Activity Diagram

Activity Diag	gram
Gambar	Keterangan
	Start Point,
	diletakkan
	pada pojok
	kiri atas dan
	merupakan
	awal aktivitas
	End Point,
	akhir aktivitas
	Activities,
	menggambar
	kan suatu
	proses/kegiat
	an bisnis
	Fork/percaban
	gan,
	digunakan
	untuk
	menunjukkan
	kegiatan yang
	dilakukan
	secara paralel
	atau untuk
	menggabung
	kan dua
	kegiatan
	paralel
	menjadi satu
	Join
	(penggabung
	an) atau <i>rake,</i>
	digunakan
	untuk
	menunjukkan
	adanya
<u> </u>	dekomposisi

c. Diagram Urutan (Sequence Diagram)
Sequence Diagram menggambarkan kelakuan objek pada use case dengan mendeskripsikan waktu hidup objek dan pesan yang dikirimkan dan diterima antar objek. Simbol-simbol yang digunakan dalam Sequence Diagram yaitu:

Tabel 3
Sequence Diagram

Gambar	Keterangan
	Entity Class,
	merupakan
	bagian dari
	sistem yang
	berisi kumpulan
	kelas berupa
	entitas-entitas
	yang
	membentuk
	gambaran awal
	sistem dan
	menjadi
	landasan untuk
	menyusun basis
	data
	Boundary Class,
	berisi kumpulan

	11
	kelas yang
	menjadi
	<i>interfaces</i> atau
	interaksi antara
	satu atau lebih
	aktor dengan
	sistem, seperti
	tampilan form
	entry dan form
	cetak
	Control class,
	suatu objek
	,
	5 0
	logika aplikasi
	yang tidak
_	memiliki
	tanggung jawab
	kepada entitas,
	contohnya
	adalah kalkulasi
	dan aturan
	bisnis yang
	melibatkan
	berbagai objek
	Message, simbol
	mengirim pesan
	antar <i>class</i>
	Recursive,
	menggambarka
	n pengiriman
	pesan yang
ļ Ļ	dikirim untuk
I	
	dirinya sendiri
	Activation, mewa
	kili sebuah
<u> </u>	eksekusi operasi
	dari objek,
	panjang kotak
	ini berbanding
T I	lurus dengan
,	durasi aktivasi
	sebuah operasi
ļ.	Lifeline, garis
	titik-titik yang
!	terhubung
	dengan objek,
l l	sepanjang <i>lifeline</i>
	1 1 1 0 1
į	terdapat
	terdapat activation

d. Diagram Kelas (Class Diagram)

Merupakan hubungan antar kelas dan penjelasan detail tiap-tiap kelas di dalam model desain dari suatu sistem, juga memperlihatkan aturan-aturan dan tanggung jawab entitas yang menentukan perilaku sistem.

Class Diagram juga menunjukkan atribut-atribut dan operasi-operasi dari sebuah kelas dan constraint yang berhubungan dengan objek yang dikoneksikan.

Class Diagram secara khas meliputi: Kelas (Class), Relasi Assosiations, Generalitation dan Aggregation, attribut (Attributes), operasi (operation/method) dan visibility, tingkat akses objek eksternal kepada suatu operasi atau attribut. Hubungan antar kelas mempunyai keterangan yang disebut dengan Multiplicity atau Cardinality.

Tabel 4

Multiplicity Class Diagram

Multiplicity Cluss Dingram	
Multiplicity	Penjelasan
1	Satu dan hanya satu
0*	Boleh tidak ada atau 1
	atau lebih
1*	1 atau lebih
01	Boleh tidak ada,
	maksimal 1
nn	Batasan antara. Contoh
	24 mempunyai arti
	minimal 2 maksimal 4

e. Deployment Diagram

Deployment Diagram digunakan untuk menggambarkan detail bagaimana komponen disusun di infrastruktur sistem.

Tabel II.5 Deployment Diagram

Gambar	Keterangan
	Pada deployment
	diagram,
Component	komponenkompone
	n yang ada
	diletakkan didalam
	node untuk

	memastikan
	keberadaan posisi
	mereka
	Node
	menggambarkan
Node Name	bagian-bagian
	hardware dalam
	sebuah sistem.
	Notasi untuk node
	digambarkan
	sebagai sebuah
	kubus 3 dimensi.
	Sebuah association
	digambarkan
	sebagai sebuah garis
	yang
	menghubungkan
	dua node yang
	mengindikasikan
	jalur komunikasi
	antara element-
	elemen hardware.
	creation and arraic.

3. METODOLOGI PENELITIAN

Metode penelitian yang dilakukan yaitu dengan melakukan analisis terhadap sistem yang sedang berjalan, mengidentifikasi kebutuhan. Adapun alat bantu yang digunakan adalah UML yang digunakan

4. PEMBAHASAN

a. Use Case Diagram

Gambaran fungsional dari suatu sistem yang akan dibangun sehingga dapat dipelajari oleh pengguna. Berikut merupakan *Use Case Diagram* Sistem informasi monitoring stok barang dan penjualan pada Distro Zhezha

Gambar 1. *Use Case Diagram* Sistem Informasi Monitoring Penjualan dan Stok Barang

- b. Activity Diagram
- 1) Activity Diagram Login

Gambar 2. Activity Diagram Login Admin/Karyawan Gudang

Gambar 3. Activity Diagram Login Kasir

2) Activity Diagram Logout

Gambar 4. Activity Diagram Logout

3) Activity Diagram Mengelola Data Cabang

Gambar 5. Activity Diagram Mengelola Data Cabang

4) Activity Diagram Mengelola Data Karyawan

Gambar 6. *Activity Diagram* Mengelola Data Karyawan

5) Activity Diagram Laporan Penjualan

Gambar 7. Activity Diagram Laporan Penjualan

6) Activity Diagram Mengelola Stok Gudang

Gambar 8. Activity Diagram Mengelola Stok Gudang

7) Activity Diagram Mutasi Barang

Gambar 9. Activity Diagram Mutasi Barang

8) Activity Diagram Mengelola Stok Barang Cabang

Gambar 10. Activity Diagram Mengelola Stok Barang Cabang

9) Activity Diagram Transaksi Penjualan

Gambar 11. Activity Diagram Transaksi Penjualan

- c. Sequence Diagram
- 1) Sequence Diagram Login

Gambar 12. Sequence Diagram Login Admin

Gambar 13. Sequence Diagram Login Karyawan Gudang

Gambar 14. Sequence Diagram Login Kasir

2) Sequence Diagram Logout

Gambar 15. Sequence Diagram Logout

3) Sequence Diagram Mengelola Data Cabang

Gambar 16. Sequence Diagram Mengelola Data Cabang

4) Sequence Diagram Mengelola Data Karyawan

Gambar 17. Sequence Diagram Mengelola Data Karyawan

5) Sequence Diagram Laporan Penjualan

Gambar 18. Sequence Diagram Laporan Penjualan

6) Sequence Diagram Mengelola Stok Gudang

Gambar 19. Sequence Diagram Mengelola Stok Gudang

7) Sequence Diagram Mutasi Barang

Gambar 20. Sequence Diagram Mutasi Barang

8) Sequence Diagram Transaksi Penjualan

Gambar 21. Sequence Diagram Transaksi Penjualan

9) Sequence Diagram Mengelola Stok Barang Cabang

Gambar 22. Sequence Diagram Mengelola Stok Barang Cabang

d. Class Diagram

Gambar 23. Class Diagram

e. Deployment Diagram

| Comparison of the Compa

Gambar 24. Deployment Diagram

5. PENUTUP

5.1 Kesimpulan

Dari hasil Pemodelan ini, penulis mengambil kesimpulan :

- Dengan adanya sistem informasi monitoring penjualan dan stok barang ini, mempermudah pelaku usaha dalam memantau atau mengetahui penjualan dan stok barang ditiap cabang.
- Melalui sistem informasi monitoring penjualan dan stok barang ini dapat membantu pelaku usaha dalam menentukan keputusan dari informasi-informasi yang didapat dari tiap-tiap cabang

5.2 Saran

Adapun saran yang dapat dikemukakan adalah sebagai berikut:

- Sebaiknya sistem ini dikembangkan pula dalam hal pendistribusian barang dan pengontrollan karyawan dalam hal presensi karyawan.
- Pengembangan selanjutnya dapat diterapkan ke aplikasi berbasis smartphone, dalam rangka mempermudah pemilik usaha untuk mengakses data dan informasi

DAFTAR PUSTAKA

- Aprisa dan Monalisa, Siti. (2015). Rancang Bangun Sistem Informasi Monitoring Perkembangan Proyek Berbasis Web (Studi Kasus: PT Inti Pratama Semesta). Jurnal Rekayasa dan Manajemen Sistem Informasi Vol 1 No 1.
- Gata, Windu dan Gata, Grace. (2013). Sukses Membangun Aplikasi Penjualan dengan Java. Jakarta : Elex Media Komputindo.
- Pressman, Roger S. .(2010). Software Engineering: A Practicioner's Approach, 7th Edition. New York: McGraw-Hill Inc
- Putra, Arie Setya dan Febriani, Ochi Mashella. (2013). Sistem Informasi Monitoring Inventori Barang Pada Balai Riset Standardisasi Industri Bandar Lampung. Jurnal Informatika Vol 13 No 1.
- Urva, Gellysa dan Siregar, Fauzi Helmi. (2015) Pemodelan UML E-Marketing Minyak Goreng. Jurnal Teknologi dan Sistem Informasi Vol 1 No 2.