

BAKALÁŘSKÁ PRÁCE

David Weber

Stručný úvod do teorie množin pro středoškoláky

Katedra didaktiky matematiky

Vedoucí bakalářské práce: RNDr. Martin Rmoutil, Ph.D.

Studijní program: Matematika se zaměřením na

vzdělávání

Studijní obor: Matematika se zaměřením na

vzdělávání se sdruženým studiem informatika se zaměřením na

vzdělávání

Praha (TODO: doplnit rok odevzdání.)

Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Tato práce nebyla využita k získání jiného nebo stejného titulu.
Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona.
V dne

(TODO: Doplnit poděkování.)

Název práce: Stručný úvod do teorie množin pro středoškoláky

Autor: David Weber

Katedra: Katedra didaktiky matematiky

Vedoucí bakalářské práce: RNDr. Martin Rmoutil, Ph.D., Katedra didaktiky ma-

tematiky

Abstrakt: (TODO: Doplnit abstrakt.)

Klíčová slova: klíčová slova

Title: A Brief Introduction to Set Theory for Highschools

Author: David Weber

Department: Department of Mathematics Education

Supervisor: RNDr. Martin Rmoutil, Ph.D., Department of Mathematics Edu-

cation

Abstract: (TODO: Doplnit abstrakt (EN).)

Keywords: key words

Obsah

1	Hist	torický	úvod k teorii množin	2			
	1.1	Potenc	iální versus aktuální nekonečno	2			
		1.1.1	Galileova úvaha o velikosti	3			
		1.1.2	Grandiho řada	3			
		1.1.3	Paradox lomené čáry	5			
		1.1.4	Nekonečno v matematické analýze	5			
	1.2	Počátk	xy teorie množin a současnost	8			
		1.2.1	Bernard Bolzano	8			
		1.2.2	Georg Cantor	9			
		1.2.3	Teorie množin v současnosti	11			
2	Zák	ladní p	pojmy a značení	15			
	2.1	Výroko	ová logika	15			
Se	znan	n obráz	zků	21			
Se	znan	n tabul	lek	22			
Se	znan	n použ	itých zkratek	23			
\mathbf{A}	Přílohy						
	A.1	První 1	příloha	24			

Kapitola 1

Historický úvod k teorii množin

Čtenář se s pojmem *množina* již jistě setkal. Často se o množině hovoří jako o "celku", "souboru" nebo "souhrnu" obsahujícím jisté prvky. Na střední škole jsme si s tímto chápáním uvedeného pojmu nejspíše vystačili, když jsme se např. učili o Vennových diagramech. To nám poskytovalo poměrně názorný způsob, jak si představit množiny a vztahy mezi nimi. Většinou jsme se dotazovali např. na velikost množiny či zda jí nějaký zvolený prvek náleží či nikoliv. Pojem "náležení" jsme stejně jako množinu též nejspíše nikterak formálně nedefinovali, přesto ale intuitivně tušíme, co to znamená, když se řekne, že "prvek náleží množině". Jak byste ale formálně definovali množinu? Nebo co teprve "býti prvkem množiny"?

Zkusme ještě otázku jiného charakteru. Jak by čtenář odpověděl na následující otázku, jestli je více čísel v intervalu (0,1) nebo všech přirozených čísel? A jak by svou odpověď zdůvodnil? Odpověď **stejně**, neboť jich je nekonečně mnoho zní velmi intuitivně, ale jak se později dozvíme, tak odpověď na tuto otázku je daleko složitější, než se může zdát.

Důvod proč se najednou místo množin zabýváme *nekonečnem* je ten, že ve skutečnosti tento termín je hlavním důvodem, proč teorie množin vznikla (nikoliv definice pojmu "množina", jak by se mohlo zdát). V následujících sekcích se proto podíváme na to, jak se na pojem nekonečna nahlíželo v historii a jaké problémy způsobovalo.

1.1 Potenciální versus aktuální nekonečno

Co je vlastně nekonečno? Čtenáři toho může připadat jako absurdní dotaz, ale tento zdánlivě jednoduše pochopitelný pojem způsoboval ve své době řady problémů.

Fakt, že přirozených čísel je nekonečně mnoho byl znám již ve starověku.

1,2,3,...

I žáci na základních školách toto již znají a pravděpodobně se nad tím nikdo z nich nepozastaví. Jak ale toto můžeme chápat? Existují dva způsoby.

Pokud začneme postupně vypisovat všechna přirozená čísla, jistě je nikdy nevypíšeme všechna, protože bez ohledu na to, jakou si zvolíme mez, vždy ji nakonec

přesáhneme. Takovémuto nekonečnému **procesu** pak říkáme *potenciální neko-nečno*.

Druhou možností ale je, že se na množinu přirozených čísel budeme dívat již jako na "hotovou". To znamená, že nebudeme řešit, jak všechna přirozená čísla vypíšeme, ale budeme na tuto množinu nahlížet již jako na celek, tedy nekonečno budeme chápat v uzavřené formě. V takovém případě mluvíme o tzv. aktuálním nekonečnu.

Starým Řekům se však jak z důvodů matematických, tak filozofických, zdálo, že lidskému myšlení je přístupné pouze nekonečno **potenciální**. O tom se lze přesvědčit už ze samotných *Eukleidových axiómů*. K axiomatice čtenář bude mít možnost blíže nahlédnout v kapitole (TODO: doplnit odkaz na kapitolu.) v sekci (TODO: doplnit odkaz na sekci.). EUKLEIDÉS právě z důvodu nemyslitelnosti aktuálního nekonečna mluvil o *přímce* jako o úsečce, kterou může libovolně prodlužovat, nikoliv, že ji lze prodloužit "do nekonečna", jak říkáme dnes.

1.1.1 Galileova úvaha o velikosti

S problémem nekonečna se však pojili i další problémy. Při zrodu samotné teorie množin v 70. letech 19. století se totiž nabízela otázka, zdali *má vůbec smysl porovnávat nekonečné množiny*. Nad tímto se pozastavil už jeden z géniů 16. a 17. století Galileo Galilei (1564–1642). Ten si vypsal dvě posloupnosti čísel:

$$1, 2, 3, \ldots, n, \ldots$$
 a $1, 4, 9, \ldots, n^2, \ldots$

tzn. přirozená čísla a jejich druhé mocniny. Avšak při pohledu na tyto dvě posloupnosti si Galileo uvědomil, že každý prvek množiny přirozených čísel lze "spárovat" s jeho druhou mocninou (v dnešní terminologii bychom řekli, že existuje *bijekce*; na tu se blíže podíváme v kapitole (TODO: doplnit odkaz na kapitolu s bijekcí.)).

To by však znamenalo, že přirozených čísel a jejich druhých mocnin je **stejně mnoho!** Avšak jeden z Eukleidových logických axiomů říká, že *celek je větší část*. Proto se tehdy Galileovi zdál tento závěr jako naprostý nesmysl a tak usoudil, že porovnávat nekonečné množiny podle velikosti zkrátka nemá žádný smysl. Jinak řečeno, tvrdil, že **aktuální nekonečno** je sporné a tedy nemůže existovat. [?]

1.1.2 Grandiho řada

Dalším typickým problémem týkající se nekonečna je tzv. *Grandiho řada*. Čtenář se nejspíše již řadami setkal na střední škole, specificky s řadou aritmetickou a geometrickou. Řadou v matematice rozumíme zápis

$$a_1+a_2+a_3+\cdots+a_n\;,$$

kde pro všechna přirozená i byl a_i člen nějaké posloupnosti. U řad nás celkem pochopitelně zajímal jejich součet. To nebyl většinou problém, neboť jsme se převážně zajímali o řady konečné (a speciálně pro aritmetickou a geometrickou posloupnost jsme měli i elegantní vzorce), ale uvážíme-li řady nekonečné, mohou nastat potíže.

Takového problému si všiml italský matematik GILDO GRANDI (1671–1742). Uvažme následující rovnost:

$$0 = 0 + 0 + 0 + \cdots$$

To nejspíše nevypadá nikterak zajímavě. Přeci jen nekonečným sčítáním nul celkem přirozeně nemohu dostat jiný výsledek než opět nulu. Nulu si však můžeme vyjádřit jako 1-1. Aplikací na rovnost výše dostaneme

$$0 = (1-1) + (1-1) + (1-1) + \cdots (1.1)$$

Podle asociativního zákona pro sčítání můžeme změnit uzávorkování. Změníme jej proto takto

$$0 = 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + \cdots$$

a nakonec z každé závorky vytkneme znaménko "-"

$$0 = 1 - (1 - 1) - (1 - 1) - (1 - 1) - \cdots$$

Tedy dostáváme, že

$$0 = (1-1) + (1-1) + (1-1) + \cdots$$

$$= 1 + (-1+1) + (-1+1) + (-1+1) + \cdots$$

$$= 1 - (1-1) - (1-1) - (1-1) - \cdots$$

$$= 1 + 0 + 0 + 0 + \cdots = 1.$$

Aplikací jednoduchých aritmetických pravidel jsme dospěli k závěru, že 0=1. To je samozřejmě nesmysl, ale kde je tedy chyba? (Zde poprosím čtenáře, aby se zkusil zamyslet.)

Grandiho řadou nazýváme zápis

$$1-1+1-1+1-1+\cdots$$

kterou jsme obdrželi u "rovnosti" 1.1 (až na uzávorkování). Není těžké si všimnout, že postupným sčítáním jednotlivých členů se budou mezisoučty opakovat

$$\begin{aligned} 1 &= 1 \;, \\ 0 &= 1 - 1 \;, \\ 1 &= 1 - 1 + 1 \;, \\ 0 &= 1 - 1 + 1 - 1 \;, \\ \vdots \end{aligned}$$

Zkusme k této řadě přistoupit ještě jedním způsobem. Uvažujme, že řada má součet, který si označíme S. Pak

$$S = 1 - 1 + 1 - 1 + \cdots$$

Opět využitím asociativního zákona a vytknutím znaménka "—" si upravíme řadu na pravé straně takto:

$$S = 1 - (1 - 1 + 1 - 1 + \cdots) .$$

Čtenář si však již možná všiml, že výraz v závorce na pravé straně je opět námi vyšetřovaná řada se součtem S, tedy z toho vyplývá

$$S = 1 - S$$
$$S = \frac{1}{2}.$$

Toto je však také zarážející výsledek, neboť jak jsme se sami přesvědčili, tak částečné součty pouze oscilují mezi 0 a 1.

Všimněme si, že rovnosti uvedené výše jsme obdrželi pouhou aplikací základních početních pravidel; přesto jsou však sporné. Tyto výsledky později vedly k novým poznatkům v aritmetice a to sice faktu, že asociativita a komutativita definitivně

1.1.3 Paradox lomené čáry

platí pouze u konečných součtů.

(TODO: doplnit.)

1.1.4 Nekonečno v matematické analýze

Velká část matematické analýzy je založená na úvahách s nekonečně malými veličinami; často se mluví o tzv. infinitezimálním počtu. Čtenář se s těmito pojmy již možná setkal, ačkoliv nemusí mít nutně představu o jeho přesném významu. Asi nejznámějším příkladem je integrální počet, specificky výpočet "plochy pod křivkou".

Obrázek 1.1 výše a obrázky jemu podobné se často uvádí ve spojitosti s tzv. určitým integrálem. Zde bychom mohli psát

$$S = \int_a^b f(x) \, dx \; .$$

Výpočet takové složitě vypadající plochy, jako na obrázku 1.1, se může zdát bez znalosti integrálního počtu takřka nemožným úkolem. Pokusme se ale na danou problematiku podívat právě optikou infinitezimálního počtu. (Znalý čtenář snad promine, že se zatím zdržím formalismů a pouze jednoduše naznačím myšlenku.)

Pro začátek zkusíme plochu pouze aproximovat. K tomu využijeme tvaru, jehož obsah jsme schopni triviálně vypočítat – obdélník. Pro začátek zkusíme plochu aproximovat pomocí 4 obdélníků (viz obrázek 1.2). Všechny 4 obdélníky jsme zvolili tak, aby měly stejnou šířku a jejich výška odpovídala minimální hodnotě v daném dílčím intervalu. Obecně obsah i-tého obdélníku S_i bychom zapsali jako

$$S_i = (x_i - x_{i-1}) \cdot \min_{x_{i-1} \le x \le x_i} f(x) ,$$

Obrázek 1.1: Příklad určitého integrálu funkce f na uzavřeném intervalu $\langle a,b\rangle$.

kde $\min_{x_{i-1} \le x \le x_i} f(x)$ je minimální hodnota funkce f na intervalu $\langle x_{i-1}, x_i \rangle$ (předpokládáme pro jednoduchost, že f je spojitá, tzn. nabývá svého minima na každém z daných intervalů). Rozdíl $x_i - x_{i-1}$ odpovídá šířce obdélníku a $\min_{x_{i-1} \le x \le x_i} f(x)$ jeho výšce.

Pokud bychom si však interval $\langle a,b \rangle$ rozdělili ještě "jemněji", není těžké vidět, že se náš odhad zpřesní (viz obrázek 1.3). Volbou stále "jemnějšího" dělení intervalu $\langle a,b \rangle$ se náš odhad bude zpřesňovat. Budeme-li mít tedy plochu aproximovanou n obdélníky, pak¹

$$S \approx (x_1 - x_0) \cdot \min_{x_0 \le x \le x_1} f(x) + \dots + (x_n - x_{n-1}) \cdot \min_{x_{n-1} \le x \le x_n} f(x) . \tag{1.2}$$

Pro rostoucí n, tedy počet dílčích intervalů $\langle x_{i-1}, x_i \rangle$, se bude rozdíl $x_i - x_{i-1}$ blížit nule (obdélníky se budou "zužovat"). V konečném důsledku bude rozdíl $x_i - x_{i-1}$ "nekonečně malý" a součet uvedený výše u aproximace v obrázku 1.2 přejde v integrál

$$S = \int_a^b f(x) \, \mathrm{d}x \; ,$$

kde rozdíl $x_i - x_{i-1}$ přešel v diferenciál dx a minimum $\min_{x_{n-1} \le x \le x_n} f(x)$ přešlo přímo ve funkční hodnotu f(x).

V matematice značíme součty pomocí řeckého symbolu Σ (písmeno sigma). (Podrobněji toto značení zavedeme v kapitole (TODO: doplnit odkaz na kapitolu.) v sekci (TODO: doplnit odkaz na sekci.).) Proto se čtenář může často setkat v jiných publikacích se zápisem

$$S \approx \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot \min_{x_{i-1} \le x \le x_i} f(x)$$
.

 $^{^{1}}$ Symbolem ≈ značíme přibližnou rovnost (ve starších textech lze najít i symbol \doteq).

Obrázek 1.2: Aproximace plochy pod grafem funkce f na intervalu $\langle a,b \rangle$ pomocí 4 obdélníků.

Prohodíme-li činitele v součinu, pak už je o něco jednodušeji vidět přechod v integrál, který jsme popsali výše

$$\sum_{i=0}^{n} \underbrace{\min_{x_{i-1} \le x \le x_i} f(x)}_{x_{i-1} \le x \le x_i} \underbrace{f(x)} \cdot \underbrace{(x_i - x_{i-1})}_{dx} \longrightarrow \int_a^b f(x) \, dx .$$

Toto je velmi zjednodušené vysvětlení určitého integrálu, avšak hlavní myšlenkou bylo právě ono "nekonečné dělení", které bylo jednou z příkladů **nekonečně** malých veličin.

Na podobných úvahách jsou založeny různé další pojmy v matematické analýze, jako například derivace nebo i limita. Je však nutno si uvědomit, že co je nám známo dnes, nebylo zcela známo matematikům v 17. století. V této době se začal integrální a diferenciální počet pořádně rozvíjet. Jejich tvůrci GOTTF-RIED WILHELM LEIBNIZ (1646–1716) a ISAAC NEWTON (1642–1726/27) základy své tehdejší úvahy o infinitezimálním počtu postavili právě na nekonečně malých veličinách. Problémem tehdy však bylo, že tento pojem nebyl pořádně definován a pravidla pro počítání s nekonečně malými veličinami byla definována pouze velmi vágně. I přesto se však integrální a diferenciální počet ukázal být velmi mocným nástrojem (hlavně ve fyzice). Postupně se ale začaly nejasnosti v jejich samotných základech vyhrocovat, což nakonec vyústilo v období, které dnes nazýváme druhou krizí matematiky².

Problémy v matematické analýze se začaly odstraňovat až na počátku 19. století, kdy významnou roli sehrál ve dvacátých letech AUGUSTIN LOUIS CAUCHY zavedením limity. Její formální definici však podal později KARL THEODOR WILHELM WEIERSTRASS. [?]

²První krize matematiky nastala v dobách antického Řecka a souvisela s objevem iracionálních čísel (TODO: případně doplnit do přílohy.).

Obrázek 1.3: Aproximace plochy pod grafem funkce f na intervalu $\langle a,b \rangle$ pomocí 8 obdélníků.

1.2 Počátky teorie množin a současnost

V matematika se přibližně až do poloviny 19. století uvažovalo pouze **potenciální nekonečno**. Myšlenka pohlížet na množiny jako na nekonečné byla silně odmítána, neboť na nekonečno **aktuální** se v té době pohlíželo jako na koncept nedostupný lidskému myšlení. Ačkoliv v matematické analýze již existovaly metody k odstranění problémů s "nekonečně malými" veličinami, přesto se v matematické literatuře nacházely spousty postupů s nekonečnem, které často vedly k nesprávným výsledkům.

1.2.1 Bernard Bolzano

Problémů s nekonečnem a s jeho vnímáním si všiml i český matematik, filozof a kněz BERNARD PLACIDUS JOHANN NEPOMUK BOLZANO³ (1781–1848). Byl jedním z matematiků, kteří prosazovali existenci aktuálního nekonečna, o čemž později píše i ve svém díle *Paradoxy nekonečna*⁴ (v německém originále *Paradoxien des Unendlichen*). Bolzanovo dílo však není až tak úplně dílem ryze matematickým, jako spíše matematicko-filozofickým. Kromě nekonečna je zde věnována pozornost i fyzice a jejímu náhledu na svět.

Ve svém díle se Bolzano snaží (mimo jiné) ukázat, proč je zapotřebí pracovat v matematice s aktuálním nekonečnem a také se zaměřuje na některé chyby, kterých s vědci dopouštějí při úvahách o nekonečnu. Je nutné však dodat, že ačkoliv svými úvahami byl Bolzano svými úvahami blízko úvahám, s nimiž dneska v teorii

³Ačkoliv byl B. Bolzano čech, publikoval své práce v němčině a latině.

⁴Dílo vyšlo až 3 roky po Bolzanově smrti, tj. v roce 1851, kdy se jeho publikace ujal Bolzanův žák František Příhonský. Českého překladu se však dílo dočkalo až roku 1963 v překladu Otakara Zicha (viz seznam použité literatury).

množin pracujeme, přesto se v některých záležitostech pletl. Např. dospěl k závěru, že pokud je jedna množina obsažena v druhé (tzn. je její podmnožinou), pak musí být jedna menší a druhá větší nebo pokud existuje "párování" mezi prvky dvou množin (viz podsekce 1.1.1 o Galileově úvaze o velikosti), neznamená to nutně, že mají stejnou velikost (blíže nahlédneme v sekci (TODO: doplnit odkaz na sekci.)). To však nic nemění na faktu, že Padadoxy nekonečna jsou pozoruhodným dílem, které nám dává skvělý vhled do vědeckého myšlení v Bolzanově době. Pozornost si zaslouží parafráze myšlenky, pomocí které se Bolzano pokusil existenci aktuálního nekonečna zdůvodnit.

Množina pravd o sobě

Představme si, že máme nějaký libovolný **pravdivý** výrok, který si označíme A. O tomto výroku můžeme určitě vyslovit výrok: "A je pravdivé", který si označíme B. Jsou tyto výroky stejné? Z čistě matematického pohledu jsou si tato tvrzení ekvivalentní, co do jejich pravdivostní hodnoty, neboť i kdyby neplatilo A, pak jistě neplatí ani B. Avšak zněním si stejná již tato tvrzení nejsou. Ať už si za výrok A dosadíme jakékoliv tvrzení, je třeba si uvědomit, že subjektem B a samotný výrok A (což pro výrok A samotný již neplatí). Pokud zkonstruujeme další výrok C stejným způsobem, jeho znění bude "Je pravdivé, že je pravdivé A", což je opět odlišný výrok od B. Takto můžeme pokračovat libovolně dlouho. Množina těchto výroků by svou velikostí jistě musela převyšovat jakékoliv přirozené číslo, tedy je $nekonečné \ velikosti$.

Bolzano zde však uznává, že tento myšlenkový konstrukt je svou povahou stále záležitostí nekonečna potenciálního. Reagoval tak na námitky tehdejší matematické společnosti, že je nesmysl se bavit o nekonečných množinách, neboť taková množina nemůže být nikdy sjednocena v celek a být celá obsáhnuta naším myšlením. Zkusme se na chvilku vrátit ke konečným množinám. Uvážíme-li množinu všech obyvatel Prahy, málokdo z nás nejspíše zná každého z nich. Přesto však hovoříme o každém z nich, když řekneme např. "všichni obyvatelé Prahy". Tuto myšlenku se Bolzano snažil aplikovat i na množiny nekonečné. Uvážíme-li množinu přirozených čísel, také jistě neznáme všechna přirozená čísla, ale i přesto nám nedělá problém hovořit o nich jako o celku.

Teologicky zdůvodňoval Bolzano existenci aktuálního nekonečna ve své knize tak, že je-li Bůh považován za **vševědoucího**, tedy zná všechny pravdy, pak jistě vidí i ty, které jsme zkonstruovali v prvním odstavci. Množina pravd o sobě je tak podle Bolzana nekonečná, neboť **Bůh je všechny zná**.[?]

1.2.2 Georg Cantor

Bolzano byl vskutku velmi blízko k odhalení a pochopení vlastností nekonečných množin, avšak v jeho práci bylo vidět, že stále nebyl schopen se plně dostat za hranici myšlenky, že "celek je větší než část". To se podařilo až GEORGU CANTOROVI⁵ (1845–1918) nebo, kterému se podařilo učinit při úvahách s nekonečnými množinami velký myšlenkový posun. Cantor je dodnes považován a zaslouženě

⁵Celým jménem se jmenoval GEORG FERDINAND LUDWIG PHILIPP CANTOR.

uznáván za zakladatele teorie množin, která výrazně ovlivnila soudobou matematiku. Svou prací navázal na Bolzanovy Paradoxy nekonečna, neboť též zastával názor existence aktuálního nekonečna. Konkrétně se zabýval otázkou, zdali je mohutnější množina přirozených čísel nebo reálných. (Všimněte si, že oproti otázce v úvodu této kapitoly zde již používáme termín mohutnost. Blíže nahlédneme v kapitole (TODO: doplnit odkaz na kapitolu.) v sekci (TODO: doplnit odkaz na sekci.)) Cantor došel k překvapivému závěru, a to sice, že množina reálných čísel je mohutnější než množina přirozených čísel. Tyto výsledky Cantora dovedly postupně k samotnému zadefinování pojmu mohutnosti množiny a také vybudování teorie tzv. kardinálních a ordinálních čísel.

Cantor tehdy považoval za množinu libovolný souhrn objektů, kdy o každém prvku lze (v principu) rozhodnout, zdali dané množině náleží, či nikoliv. Tedy při výstavbě své teorie vnímal Cantor pojem množiny velmi intuitivně. Dnes tuto teorii proto označujeme jako naivní teorii množin.

Cantorova teorie byla ve své době neuznávána a velmi znevažována, což mu velmi ztížilo činnost publikování. Práce byla hodně kritizována za to, jak Cantor zachází s aktuálně nekonečnými množinami. Problém s Cantorovou teorií však nastal tehdy, když se zjistilo, jak silné dopady má ono intuitivní chápání pojmu množina.

Russelův paradox

V roce 1902 objevil BERTRAND ARTHUR WILLIAM RUSSELL (1872–1970) problém v samotném Cantorově zavedení pojmu množina. Cantor považoval za množinu jakýkoliv souhrn objektů, kde o každém prvku je možné (alespoň v principu) rozhodnout, zdali je či není jejím prvkem. S tímto chápáním množiny jsme většinou pracovali na střední škole, neboť nám nejspíše znělo poměrně rozumně, ale Russell si v tomto pojetí množiny všiml problému.

Uvažujme, že je dána množina S, která obsahuje všechny množiny, takové, že dané množiny nejsou samy sobě prvkem.

Jak si takovou množinu ale představit? Co to znamená, že je množina sama sobě prvkem? Zkusme se nejdříve podívat na několik příkladů.

- Uvažujme množinu všech obyvatel Prahy. Je taková množina sama obyvatelem Prahy? Nejspíše není, taková množina tedy není prvkem sebe sama.
- Mějme množinu všech možných ideí. Je taková množina sama ideou? Ale jistě, že je. Taková množina tedy naopak je sama sobě prvkem.
- Je množina všech států sama sobě prvkem? (Tj. je sama státem?) Ne, není.
- Množina všech objektů popsatelných méně než deseti slovy je sama sobě prvkem. (Popsali jsme ji pomocí osmi slov.)

Takové množiny tedy skutečně existují a má smysl si klást tuto otázku. Russell tedy uvážil právě takovou množinu, která obsahuje množiny, jenž samy sebe neobsahují.

Symbolicky bychom množinu S zapsali

$$S = \{X \mid X \notin X\} .$$

Množina S je dobře definovaná v Cantorově pojetí (jedná se o souhrn objektů). Pokud bychom si vzali např. množiny

$$A = \{X, Y, Z, A\}$$
 a $B = \{X, Y, W\}$,

kde X,Y,Z,W jsou libovolně zvolené prvky, pak podle definice S platí, že $A \notin S$ a $B \in S$. Podle takto zvolené definice S, patří do ní sama množina S?

Postupujme podle dané logiky. Pokud množina S neobsahuje sebe sama, pak by ale podle své definice sama sebe obsahovat měla. A naopak pokud množina sama sebe obsahuje, pak je to spor s její definicí a sama sebe by obsahovat neměla. Tím jsme však v obou případech došli ke sporu, neboť z tohoto plyne závěr, že množina S je sama sobě prvkem právě tehdy, když není sama sobě prvkem. Symbolicky

$$S \in S \Leftrightarrow S \notin S$$
.

Tento paradox se uvádí v mnoha analogiích. Asi nejtypičtější a nejčastěji uváděný je tzv. paradox holiče.

"Holič holí všechny lidi, kteří se neholí sami. Podle uvedeného pravidla, holí holič sám sebe?"

I zde bychom došli ke sporu stejným způsobem. Pokud by se holič holil, pak by se podle pravidla holit neměl a pokud by se neholil, pak by se naopak holit měl. Zkuste si sami rozmyslet souvislost s originálním zněním Russelova paradoxu.

V teorii množin se postupně začalo objevovat více paradoxů⁶ a nesrovnalostí. Překvapivě některé z nich byly objeveny již před samotným Russellovým paradoxem. Za jedny z nejdůležitějších lze považovat ještě

- Burali-Fortiův paradox objeven roku 1897 Cesarem Burali-Fortim (1861–1931),
- Cantorův paradox objeven roku 1899.

K vysvětlení těchto paradoxů však zatím nemáme vyvinutý dostatečný matematický aparát, nicméně ještě se k nim později vrátíme pro doplnění (TODO: dopsat např. do přílohy.).

1.2.3 Teorie množin v současnosti

Cantorova tehdejší naivní teorie množin začala být nakonec ke konci 19. století uznávána. Začalo se ukazovat, že teorie množin je skutečně mocným nástrojem k vybudování samotných základů matematiky. Chvíli se zdálo, že matematici mají dostupný skutečně pevný základ pro výstavbu dalších teorií. Avšak postupné objevování antinomií v teorii množin je však vyvedlo z jejich mylného zdání a

 $^{^6\}mathrm{Přesnějším}$ termínem je antinomie,tj. sporné tvrzení vyvozené z korektně vyvozených závěrů.

bylo jasné, že pro spolehlivé vybudování základů bude třeba daleko více práce. Toto období proto nazýváme 3. krizí matematiky.

Jak se ukázalo, tak dosavadní způsob budování matematiky byl neudržitelný, a tak se matematici snažili přijít s řešením. Ta se však svou povahou velmi lišila podle matematického a filozofického uvažování každého z nich. Hrubě bychom mohli tehdy rozlišit dva hlavní myšlenkové proudy: *intuicionismus* a *formalismus*.

Intuicionismus byl svým přístupem velmi omezený, neboť v jeho duchu bylo možné pracovat pouze s omezenou částí matematiky, která byla "přípustná". Aktuální nekonečno s existenčními důkazy⁷ jsou odmítány. Uznávány jsou pouze objekty, které lze přímo zkonstruovat (tzv. konstruktivní důkazy). Proto byl tehdy např. kritizován Cantorův důkaz existence tzv. transcendentních čísel⁸ (blíže v kapitole (TODO: doplnit odkaz na kapitolu.) v sekci (TODO: doplnit odkaz na sekci.)). Zajímavostí jeho důkazu byl fakt, že při tehdejším dokázání jejich existence neuvedl příklad ani jednoho nich.

Formalismus naopak dále pracoval s aktuálními znalostmi. Matematici se snažili vybudovat matematiku na množinách tak, jak zamýšlel Cantor, avšak byl kladen silný důraz na eliminování dosavadně známých antinomií. Objevují se dva rozdílné přístupy, přičemž prvním z nich byla tzv. teorie typů⁹ a axiomatická výstavba.

Protože axiomatická výstavba pro nás jako koncept bude dále podstatným stavebním kamenem, zaměříme se právě na ni. Axiomatická výstavba je dnes asi nejrozšířenějším způsobem budování různých teorií. At už budujeme jakoukoliv teorii, v principu není možné definovat všechny pojmy a dokázat všechna možná tvrzení. Dříve nebo později bychom došli k závěru, že abychom mohli dojít k různým tvrzením, je třeba zavést nějaké "primitivní pojmy", na nichž budeme stavět další definice, a tzv. axiómy neboli tvrzení, která implicitně považujeme za pravdivá a nedokazujeme jejich platnost. Ve skutečnosti však axiomatika nebyla nikterak novou záležitostí; byla známa již od starověku.

Jedním z nejstarších děl jsou v tomto ohledu Eukleidovy Základy. Eukleidés se pokusil tehdejší rovinou geometrii (dnes nazývanou eukleidovskou geometrií) vybudovat na celkem pěti základních postulátech. Čtenář si nejspíše všiml, že jsme použili termín postulát (též "předpoklad" či "prvotný úkol"), nikoliv axióm, avšak není mezi nimi významný rozdíl. Většinou se tyto termíny uvádí vzhledem k historickému kontextu. Uveďme si zde pro představu několik Eukleidových základních pojmů (citováno z českého překladu Základů z roku 1907 od Františka Servíta [?]):

- Bod jest, co nemá dílu.
- Čára pak délka bez šířky.
- Plocha jest, co jen délku a šířku má.

 $^{^7} Existenční důkazy jsou takové důkazy, které prokáží existenci nějakého objektu, ale není možno z nich obdržet žádný příklad daného objektu.$

 $^{^8}$ Tak nazýváme čísla, která nejsou kořeny žádné algebraické rovnice s racionálními koeficienty (např. Ludolfovo číslo π nebo Eulerovo číslo e).

⁹O té se zmiňuje Russell v knize *Principia Mathematica*, na které se s ním podílel anglický matematik Alfred North Whitehead. Kniha vyšla v letech 1910–1913.

- Hranicemi plochy jsou čáry.
- Tupý jest úhel pravého větší.

Eukleidovy postuláty:

- (i) Budiž úkolem od kteréhokoliv bodu ke kterémukoliv bodu vésti přímku.
- (ii) A přímku omezenou nepřetržitě rovně prodloužiti.
- (iii) A z jakéhokoli středu a jakýmkoli poloměrem narýsovati kruh.
- (iv) A že všecky pravé úhly sobě rovny jsou.
- (v) A když přímka protínajíc dvě přímky tvoří na téže (přilehlé) straně úhly menších dvou pravých, ty dvě přímky prodlouženy jsouce do nekonečna že se sbíhají na straně, kde jsou úhly menších dvou pravých.

Toto je první historicky známé dílo, kde byla teorie takto deduktivně budována. Dnešním axiomatickým systémům je však celkem pochopitelně vzdálená, neboť tehdy byly základní pojmy a axiomy, resp. postuláty, psány běžnou řečí a odvozování tvrzení na jejich základě probíhalo intuitivně. Dnešní axiomatika je v těchto směrech formálnější, neboť se využívá formálního jazyka a též jsou dána přesná odvozovací pravidla. Co však matematiky tehdy zajímalo na axiomaticky budovaných systémech byla jejich:

- nezávislost (tzn. zdali žádný z axiómů nelze odvodit ze zbylých axiómů; takové tvrzení pak již není axióm, nýbrž věta);
- úplnost (tzn. zdali je dána taková soustava axiómů, abychom každé tvrzení mohli dokázat, nebo dokázat jeho negaci);
- bezespornost (tzn. zdali není možné z daných axiómů odvodit tvrzení a současně jeho negaci).

Čtenáře možná napadne, že pokud jde o nezávislost, jedná se v podstatě jen o "vadu na kráse", neboť pokud nějaký axióm lze v teorii odvodit z ostatních, pak jej stačí odstranit. Není-li systém úplný, je to již poměrně nepříjemné, neboť by to znamenalo, že v teorii existují tvrzení, která nelze dokázat, ani vyvrátit. Nejhorší je však pochopitelně, pokud je teorie sporná.

První úspěšnou axiomaticky vybudovanou teorii množin vybudoval v letech 1904–1908 německý matematik ERNST FRIEDRICH FERDINAND ZERMELO (1871–1953), které se v tomto textu budeme dále věnovat. Základní Zermelovou myšlenkou při budování jeho teorie bylo, že ne každý souhrn objektů je možné považovat za množinu (blíže si jednotlivé axiómy vysvětlíme v kapitole (TODO: doplnit odkaz na kapitolu.)). Pojem množina a býti prvkem jsou zde považovány za primitivní (nedefinované) pojmy, s nimiž se dále pracuje. Zermelovu teorii později upravil izraelský matematik ADOLF ABRAHAM HA-LEVI FRAENKEL (1891–1965), čímž vznikla tzv. Zermelova-Fraenkelova teorie množin. Dodnes se jedná o nejrozšířenější variantu.

Později vyšla i tzv. *Gödelova-Bernaysova teorie množin*, jíž dal základ švýcarský matematik ISSAK PAUL BERNAYS (1888–1977) v letech 1937–1954 a rakouský matematik KURT FRIEDRICH GÖDEL (1906–1978) v reakci na omezení, která se objevovala v Zermelově-Fraenkelově teorii množin.

Bohužel se nikdy nikomu nepodařilo dokázat, zdali jsou budované axiomatické teorie bezesporné a úplné (což se pro srovnání podařilo např. u varianty zmíněné eukleidovské geometrie). Jak ukázal Kurt Gödel (viz tzv. *Gödelovy věty o neúplnosti*), tak ve skutečnosti takovou teorii není ani možné sestrojit, neboť v libovolném "dostatečně bohatém" axiomatickém systému teorie množin budou vždy existovat tvrzení, která nelze dokázat a ani nelze dokázat jejich negaci, což tehdy odhalilo výraznou omezenost axiomatických metod.

Kapitola 2

Základní pojmy a značení

V této kapitole zavedeme některá základní značení a pojmy, které dále v tomto textu využijeme. Je dosti možné, že některé záležitosti již čtenář dobře zná nebo o nich slyšel. Proto některé sekce věnující se konkrétním pojmům jsou formulovány spíše jako připomenutí než zavádění něčeho nového. I přesto však považuji jejich zmínku za nezbytnou, neboť se jedná o základní stavební kameny, na nichž budeme stavět další teorii.

2.1 Výroková logika

Tato část je čtenáři pravděpodobně již z části známa ze střední školy. Řadu vět (matematických i nematematických) lze matematicky chápat jako *výrok*, tj. tvrzení, o kterém lze jednoznačně prohlásit, zdali je či není pravdivé. Výrokům přiřazujeme tzv. *pravdivostní hodnotu*, která je buď 1 pro *pravdivý* výrok nebo 0 pro *nepravdivý* výrok.

V matematice za výroky považujeme např. tvrzení:

- "5 je sudé číslo a zároveň liché",
- " $\sqrt{2}$ je racionální číslo",
- "je-li x reálné číslo, pak je x i komplexní číslo",
- "každé reálné číslo je kladné právě tehdy, když není záporné a rovno nule",
- "každá množina je prázdná, nebo neprázdná"
- "existuje přirozené číslo n takové, že všechna čísla od něj různá jsou větší než n"

a mnohé jiné (u každého z nich jsme schopni jednoznačně určit jeho pravdivostní hodnotu). K formálnímu zápisu tvrzení v matematice vyžíváme tzv. logické spojky a kvantifikátory.

Logické spojky

Mezi logické spojky řadíme $negaci \neg, konjunkci \land, disjunkci \lor, implikaci \Rightarrow$ a ekvivalenci \Leftrightarrow . Připomeňme si stručně jejich významy. Uvažujme libovolné výroky A a B.

- Negace $\neg A$ mění pravdivostní hodnotu A z pravdy na nepravdu a naopak.
- Konjunkce A \(\lambda \) B je pravdivá, pokud je pravdivý výrok A a současně je pravdivý výrok B. Tedy má-li A nebo B pravdivostní hodnotu 0, pak i A \(\lambda \) B má pravdivostní hodnotu 0. Čteme "A a (zároveň) B".
- Disjunkce $A \vee B$ je pravdivá, pokud alespoň jeden z výroků A a B je pravdivý. Výrok $A \vee B$ je tedy nepravdivý pouze když jsou současně nepravdivé výroky A i B. Čteme "A nebo B"
- U implikace se často mluví o výroku A jako o předpokladu a o B jako o závěru. Výrok A ⇒ B pak říká, že pokud platí výrok A, pak nutně platí i výrok B. Čteme "Jestliže A, pak B", "z A vyplývá B" či "A implikuje B".
- Ekvivalence $A \Leftrightarrow B$ je pravdivá, pokud jsou výroky A a B současně pravdivé nebo současně nepravdivé. Čteme "A právě tehdy, když B".

Výroky uvedené výše obsahující dané logické spojky lze přehledně zapsat do tabulky pravdivostních hodnot (viz tabulka 2.1).

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Tabulka 2.1: Tabulka pravdivostních hodnot pro základní logické spojky

Vratme se nyní ještě ke zmíněné implikaci. Ve skutečnosti tato logická spojka je pravděpodobně tou nejsložitější na pochopení ze všech čtyř zmíněných, neboť při neobezřetnosti je často (a to i v běžné mluvě) zaměňována za ekvivalenci. Uvažme tvrzení "jestliže je libovolné číslo racionální, pak je i reálné". Takové tvrzení zřejmě platí. Platí ovšem i opačné tvrzení, tj. "jestliže je libovolné číslo reálné, pak je i racionální"? Nejspíše je vidět, že opačné tvrzení již neplatí a pro protipříklad nemusíme chodit daleko; stačí uvážit např. číslo π nebo e, která jsou obě reálná, avšak racionální již nejsou.

Pokud se ohlédneme za výroky, které jsem zatím uvažovali, vždy se jednalo o výroky složené. Např. výrok "číslo 2 je sudé nebo liché" lze rozdělit na dva "jednodušší" výroky, tj. "číslo 2 je sudé" a "číslo 2 je liché", přičemž dané výroky jsou spojeny disjunkcí \vee . Tyto výroky však již žádné logické spojky neobsahuje a tedy je nelze dále "rozložit". S tímto souvisí následující zavedená terminologie v definici 2.2.

Definice 2.2 (Logická a atomická formule).

- Výrokovou nebo též logickou formulí nazveme výrok obsahující libovolný počet logických spojek.
- Speciálně pokud výrok neobsahuje žádnou logickou spojku, pak jej nazýváme atomickým, resp. atomickou formulí.

Pro označení výrokových formulí budeme používat malá písmena řecké abecedy, tj. $\alpha, \beta, \gamma, \dots$

Pokud bychom měli např. logickou formuli

$$A \land \neg B \Leftrightarrow C \tag{2.1}$$

vyhodnotit pro konkrétní pravdivostní hodnoty výrokových proměnných A,B a C, museli bychom se vypořádat s pořadím daných logických operací. Které mají ale přednost vůči ostatním a které jsou na stejné úrovni? My se budeme držet následující definice

Definice 2.3.

- 1. Negace má přednost před všemi ostatními logickými spojkami.
- 2. Konjunkce a disjunkce \land, \lor jsou rovnocenné a mají přednost před implikací a ekvivalencí \Rightarrow , \Leftrightarrow , které jsou sobě rovnocenné.

S uvedenou terminologií v definici 2.2 souvisí čtenářovi pravděpodobně známý postup pro vyhodnocování logických formulí, a to sice *tabulková metoda*. Její myšlenkou bylo rozdělit danou formuli postupně na dílčí formule a takto postupovat u i daných dílčích formulí. Takto nakonec dojdeme až k samotným atomickým výrokům, kde zkoumáme všechny možné kombinace jejich pravdivostních hodnot.

Úmluva 2.4 ("Rovnost" logických formulí). Uvažujme, že máme libovolné logické formule φ a ψ . Pokud φ a ψ vyjadřují stejnou logickou formuli, tj. pro stejnou kombinaci pravdivostních hodnot výrokových proměnných mají φ, ψ stejnou pravdivostní hodnotu¹, pak budeme psát $\varphi \sim \psi$.

Příklad 2.5. Mějme logickou formuli

$$\varphi \sim A \land \neg B \Leftrightarrow A \lor B$$
.

Pro jaké pravdivostní hodnoty výroků A a B je logická formule φ pravdivá?

 $\check{R}e\check{s}en\acute{i}$. Postupujme podle postupu popsaného výše, tj. rozdělme nejdříve danou formuli na dílčí formule. V tomto případě dílčími formulemi φ jsou formule

$$\varphi_1 \sim A \wedge \neg B$$
 a $\varphi_2 \sim A \vee B$,

které jsou spojeny ekvivalencí ⇔, tj.

$$\varphi \sim \varphi_1 \Leftrightarrow \varphi_2$$
.

 $^{^1}$ Formálně vzato platí mezi výrokovými formulemi ekvivalence, tj. $\varphi \Leftrightarrow \psi,$ nicméně pak by nemuselo již být jednoznačné, které z jejich dílčích formulí jsou součástí φ a které jsou součástí ψ

Formule φ_1 obsahuje atomický výrok A a formuli $\neg B$ spojené konjunkcí \land . Označme tedy ještě

$$\omega \sim (\neg B)$$

 ω již obsahuje pouze atomický výrok B v negaci \neg .

Podívejme se nyní na dílčí formuli φ_2 . Ta obsahuje atomické výroky A a B spojené disjunkcí \vee . Zapišme nyní vše zmíněné po řadě do tabulky pravdivostních hodnot (viz tabulka 2.5).

A	B	$\omega \sim \neg B$	$\varphi_1 \sim A \wedge \neg B$	$\varphi_2 \sim A \vee B$	$\varphi \sim A \land \neg B \Leftrightarrow A \lor B$
1	1	0	0	1	0
1	0	1	1	1	1
0	1	0	0	1	0
0	0	1	0	0	1

Tabulka 2.2: Tabulka pravdivostních hodnot pro ω , φ_1 , φ_2 a φ

Z tabulky 2.5 můžeme již vidět, že logická formule φ je pravdivá pro $A\sim 1$ a $B\sim 0$, nebo pro $A\sim 0$ a $B\sim 0$.

Tento středoškolský postup je zcela jistě vždy funkční. Avšak ne vždy je moudré jej ihned aplikovat. Zkusme se podívat ještě na jeden příklad logické formule.

Příklad 2.6. Mějme logickou formuli

$$\psi \sim ((A \land \neg A) \Rightarrow B) \lor ((A \Leftrightarrow B) \land (C \lor (\neg C)))$$
.

Pro jaké pravdivostní hodnoty výroků A,B,C je formule ψ pravdivá?

 $\mathring{R}e\check{s}en\acute{i}$. V tuto chvíli bychom aplikací metody použité v příkladu 2.5 museli vyšetřit pravdivostní hodnotu formule ψ pro celkem $2^3=8$ různých kombinací pravdivostních hodnot A,B,C. Jistě bychom takto též došli k řešení, nicméně práci si můžeme značně ulehčit. (Prosím čtenáře, aby se zde pozorněji zaměřil na formuli ψ v zadání.)

Ve skutečnosti jsou některé dílčí formule zjednodušitelné. Zaměřme se pro začátek na formuli

$$A \wedge \neg A$$
.

Může tato formule být někdy pravdivá? Jistě, že nemůže. Libovolný výrok buď **platí a nebo platí jeho negace**, což nikdy nemůže nastat současně. Taková formule má pak vždy pravdivostní hodnotu 0 bez ohledu na pravdivostní hodnotu A. Tedy

$$A \wedge \neg A \sim 0$$
.

Z výše uvedeného také ovšem plyne, že formule

$$C \vee \neg C \sim 1$$
.

neboť opět platí buď C, nebo jeho negace $\neg C$.

Vyšetřovanou formuli ψ tedy můžeme zjednodušit

$$\begin{array}{l} \psi \sim (\overbrace{(A \land \neg A)}^{\sim 0} \Rightarrow B) \lor ((A \Leftrightarrow B) \land (\overbrace{C \lor \neg C}^{\sim 1})) \sim \\ \sim (0 \Rightarrow B) \lor ((A \Leftrightarrow B) \land 1) \; . \end{array}$$

Tento krok nám však umožňuje provést další úpravy. Podívejme se blíže na formuli

$$(A \Leftrightarrow B) \wedge 1$$
.

Výsledek této konjunkce vždy bude záviset na pouze na pravdivostní hodnotě $A \Leftrightarrow B$, tzn. konjunkce je zde nadbytečná. Tj.

$$(A \Leftrightarrow B) \wedge 1 \sim A \Leftrightarrow B$$
.

Čeho si lze dále všimnout je, že výrok

$$0 \Rightarrow B$$

je také vždy pravdivý (viz tabulka 2.1). Celkově se tedy logická formule ψ zjednoduší takto

$$\psi \sim \overbrace{(0 \Rightarrow B)}^{\sim 1} \vee \overbrace{((A \Leftrightarrow B) \land 1)}^{\sim A \Leftrightarrow B} \sim 1 \lor (A \Leftrightarrow B) \; .$$

Disjunkce je však pravdivá právě tehdy, když je alespoň jeden z výroků pravdivý, což zde platí. Z tohoto dostáváme výsledek, že

$$\psi \sim 1$$
.

Tedy bez ohledu na to, jaké pravdivostní hodnoty budou mít výroky A,B,C, formule ψ bude vždy pravdivá.

Takovým výrokům se říká tzv. *tautologie*, tj. logické formule, které jsou **vždy pravdivé** bez ohledu na pravdivostní hodnotu jejich výrokových proměnných. Některé jsme využili již pri samotném řešení příkladu 2.6. Uveďme si zde ještě několik dalších základních příkladů.

- $\neg (A \Leftrightarrow \neg A)$
- $A \vee \neg A$ $\triangleleft z\acute{a}kon vyloučeného třetího$
- $A \Leftrightarrow A$ $\triangleleft z\acute{a}kon identity$
- $\neg \neg A \Leftrightarrow A$ $\triangleleft z\acute{a}kon \ dvoj\acute{i} \ negace$
- $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$ $\triangleleft de Morganovo pravidlo$
- $\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$ $\triangleleft de Morganovo pravidlo$
- $(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))$

Čtenář si pravdivosti těchto výroků může ověřit prostým sestavením tabulek pravdivostních hodnot daných logických formulí. Poslední ekvivalence se hodně využívá při dokazování ekvivalentních tvrzení, kdy se ukáže zvlášť platnost implikace a následně implikace opačné mezi danými výroky (blíže nahlédneme v sekci (TODO: doplnit odkaz na sekci důkazů.)).

Kvantifikátory

Logické spojky se mohou ve výrokových formulích velmi kumulovat, pokud budeme chtít vyjádřit jistou vlastnost, kterou splňují prvky nějaké množiny. Např. jak bychom Výrokovou formulí vyjádřili, že přirozená čísla z množiny $X = \{1, 2, \ldots, n\}$ pro n libovolné jsou všechna menší nebo rovna n? Použitím čistě logických spojek bychom museli napsat

$$1 \le n \land 2 \le n \land 3 \le n \land \ldots \land (n-1) \le n \land n \le n$$
.

To je sice správné, ale poměrně těžkopádné vyjádření tak jednoduchého výroku. Čtenáři nejspíše tuší, že existuje jednodušší způsob vyjádření takové výrokové formule. K tomu složi právě takzvané kvantifikátory. Existují dva základní druhy.

- Univerzální kvantifikátor -
- Existenční kvatifikátor -

(TODO: doplnit cvičení.)

Seznam obrázků

1.1	Příklad určitého integrálu funkce f na uzavřeném intervalu $\langle a,b\rangle$.	6
1.2	Aproximace plochy pod grafem funkce f na intervalu $\langle a,b \rangle$ pomocí 4 obdélníků	7
1.3	Aproximace plochy pod grafem funkce f na intervalu $\langle a,b \rangle$ pomocí 8 obdélníků	8

Seznam tabulek

2.1	Tabulka pravdivostních hodnot pro základní logické spojky	16
2.2	Tabulka pravdivostních hodnot pro ω , φ_1 , φ_2 a φ	18

Seznam použitých zkratek

Příloha A

Přílohy

A.1 První příloha