离散数学-第 18 次作业

Problem 1

对以下各小题给定的群 G_1 和 G_2 ,以及 $f:G_1 \to G_2$,说明 f 是否为群 G_1 到 G_2 的同态,如果是,说明是否为单同态、满同态和同构。求同态像 $f(G_1)$ 。

(1) $G_1 = \langle Z, + \rangle$, $G_2 = \langle R^*, \cdot \rangle$, 其中 R^* 为非零实数集合,+ 和·分别表示数的加法和乘法。

$$f: Z \to R^*, f(x) = \begin{cases} 1 & x$$
 是偶数
$$-1 & x$$
 是奇数

(2) $G_1 = \langle Z, + \rangle$, $G_2 = \langle A, \cdot \rangle$, 其中 + 和 · 分别表示数的加法和乘法, $A = \{x | x \in C \land |x| = 1\}$, 其中 C 为复数集合。

$$f: Z \to A, f(x) = \cos x + i \sin x$$

Problem 2

证明循环群一定是阿贝尔群,说明阿贝尔群是否一定是循环群,并证明你的结论。

Problem 3

设 G_1 为循环群, f 是群 G_1 到 G_2 的同态, 证明 $f(G_1)$ 也是循环群。

Problem 4

设 G = < a > 是 15 阶循环群。

- (1) 求出 G 的所有生成元;
- (2) 求出 G 的所有子群。

Problem 5

证明: 三阶群必为循环群.

Problem 6

设群 < G, *> 除单位元外每个元素的阶均为 2, 则 < G, *> 是阿贝尔群。

Problem 7

设 G 为群, 试证明: G 为阿贝尔群 $\Leftrightarrow \forall a,b \in G, (ab)^2 = a^2b^2$