Bartosz Antczak Instructor: Luke Postle March 3, 2017

Review of Last Lecture

A **composition** of n is an ordered sequence of positive integers whose sum in n. There is one composition of 0, the empty composition. We discussed a theorem:

If
$$n = 1$$
, then there are 2^{n-1} compositions of n

There is a bijective proof of it. Here is a different proof:

23.1 Alternate Proof of Composition Theorem

It's a recursive proof. If we can show that the number of compositions doubles from n-1 to n, we will have proven it:

- Base case: n = 1, there is $1 = 2^{1-1}$ compositions of n, as desired
- Inductive Case: let $S_{n,1}$ be the composition of n whose first part is 1. Let $S_{n,\geq 2}$ be the set of compositions whose first part is ≥ 2 . If we let S_n be the set of compositions of n, then observe that

$$S_n = S_{n,1} \sqcup S_{n,\geq 2}$$

because since $n \ge 1$, there is a first part and that part is either 1 or ≥ 2 . Thus $|S_n| = |S_{n,1}| + |S_{n,\ge 2}|$. For instance

n	$S_{n,1}$	$S_{n,\geq 2}$	S_{n-1}
2	1+1	2	1
3	1+2 $1+1+1$	3, 2+1	2, 1+1
4	1+3, 1+2+1, 1+1+2, 1+1+1+1	4, 3+1, 2+1+1, 2+2	3, 2+1, 1+1+1, 1+2

We claim that $S_{n,1}$ is in bijection with S_{n-1} :

$$f: S_{n,1} \to S_{n-1} \cdot f(1 + a_2 + \dots + a_k) = a_2 + a_3 + \dots + a_k$$

and note $a_2 + \cdots + a_k \in S_{n-1}$ because it's the ordered sequence of positive integers whose sum is n-1. The inverse is:

$$f^{-1}: S_{n-1} \to S_{n,1} \cdot f^{-1}(1 + a_2 + \dots + a_k) = 1 + a_1 + a_2 + \dots + a_k$$

Thus, $|S_{n,1}| = |S_{n-1}| = 2^{n-2}$ by induction.

We claim $S_{n,\geq 2}$ is also a bijection with S_{n-1} :

$$f: S_{n, \geq 2} \to S_{n-1}: f(a_1 + \dots + a_k) = (a_1 - 1) + a_2 + \dots + a_k$$

Note $(a_1 - 1) + \cdots + a_k \in S_{n-1}$ because it sums to n - 1 and it's an ordered sequence of positive integers since $a_1 \ge 2$, so $a_1 - 1 \ge 1$. The inverse is:

$$f^{-1}: S_{n-1} \to S_{n, \geq 2}: f^{-1}(a_1 + \dots + a_k) = (a_1 + 1) + a_2 + \dots + a_k$$

and it's in $S_{n,\geq 2}$ because $a_1+1\geq 2$ since $a_1\geq 1$.

• Conclusion: thus, $|S_{n,\geq 2}|=|S_{n-1}|=2^{n-2}$, by induction. So

$$|S_n| = |S_{n,1}| + |S_{n,\geq 2}| = 2^{n-2} + 2^{n-2} = 2^{n-1}$$

This proof shows that compositions can be built recursively by:

- adding a first part of size 1
- adding 1 to the first part

Thus, every composition of n ($n \ge 1$) can be obtained uniquely from a sequence of new part/ add 1's whose length is n-1 (i.e., these can be thought of as binary strings of length n-1).

You can use this to find the bijection from last time, and indeed there is a nice interpretation of the bijection::

$$\sum_{i=1}^{n} 1 = 1 + 1 + \dots + 1 \qquad (n \text{ times})$$

For each integer 1, we can either add a new part (leave the 1) to it, or add 1+1 together. This means that there are n-1 choices. For example, let n=4:

$$1 + 1 + 1 + 1$$

If, starting from the leftmost one, we apply the choices: new part, add together, new part, we get:

$$1 + 2 + 1$$

23.2 Permutations and Combinations

A **permutation** of $[n] = \{1, 2, \dots, n\}$ is an ordered sequence of distinct elements of [n]. The length of a permutation is the length of the sequence.

General Question

How many permutations are there of [n] of length k?

Observe that for a set [n], there are:

- ullet n choices for the 1st element
- ...
- n-k+1 choices for the kth element

When k = n, the length is equal to $n \times (n-1) \times \cdots \times 1 = n!$ A **combination** of [n] is an unordered sequence of distinct elements of [n]. It's size is the number of elements in the sequence.

General Question 2

How many combinations of [n] of size k are there?

We make a proposition:

23.2.1 Proposition 1

The number of permutations of [n] of length k is equal to k! multiplied by the number of combinations of size k

Proof of Proposition 1

A permutation of n of length k is just an ordering of a combination of n of size k. Since the combination has size k, there are k! orderings. \square

So the number of combinations of [n] of size k is:

$$\frac{n \times (n-1) \times \dots \times (n-k+1)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Set versus Sequence

A permutation of length k is a particular ordering of a combination of length k. From the combination, there are k! possible permutations.

A permutation can be though of as a particular sequence (or ordered list) of a set of length k (unordered elements), or what we formally call in MATH 239, a *combination*.