

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-21161

(43)公開日 平成5年(1993)1月29日

(51)Int.Cl. ⁵	識別記号	序内整理番号	F I	技術表示箇所
H 05 B 33/14		8815-3K		
C 09 K 11/00	F	6917-4H		
	11/06	Z 6917-4H		
G 09 F 9/30	3 6 5	D 7926-5G		

審査請求 未請求 請求項の数3(全7頁)

(21)出願番号 特願平3-190953

(22)出願日 平成3年(1991)7月5日

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 大沼 照行

東京都大田区中馬込1丁目3番6号 株式
会社リコー内

(72)発明者 島田 知幸

東京都大田区中馬込1丁目3番6号 株式
会社リコー内

(72)発明者 太田 正文

東京都大田区中馬込1丁目3番6号 株式
会社リコー内

(74)代理人 弁理士 池浦 敏明 (外1名)

最終頁に続く

(54)【発明の名称】 電界発光素子

(57)【構成】 有機化合物層のうち少なくとも一層が、下記
一般式化1で表わされる有機化合物を構成成分とする層
であることを特徴とする電界発光素子。

【化1】

(式中、A¹及びA²は置換もしくは無置換のアルキル基、又は置換もしくは無置換のアリール基を表わし、それぞれ同一でも異なっていてもよい。)

【効果】 本発明の電界発光素子は、低い駆動電圧でも長期間にわたって輝度の高い発光を得ることが出来ると共に種々の色調を呈することが可能となり、また素子の作成も真空蒸着法等により容易に行なえるので安価で大面积の素子を効率よく生産できる等の利点を有する。

【特許請求の範囲】

【請求項1】陽極および陰極と、これらの間に挟持された一層または複数層の有機化合物層より構成される電界発光素子において、前記有機化合物層のうち少なくとも一層が、下記一般式化1で表わされる有機化合物を構成成分とする層であることを特徴とする電界発光素子。

【化1】

(式中、A¹及びA²は置換もしくは無置換のアルキル基、又は置換もしくは無置換のアリール基を表わし、それぞれ同一でも異なっていてもよい。)

【請求項2】一般式化1において、A₁及び／又はA₂が置換のアリール基である請求項1の電界発光素子。

【請求項3】一般式化1において、A₁及び／又はA₂がアルキル基又はアルコキシ基で置換されたアリール基である請求項1又は請求項2の電界発光素子。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は発光性物質からなる発光層を有し、電界を印加することにより電気エネルギーを直接光エネルギーに変換でき、従来の白熱灯、蛍光灯あるいは発光ダイオード等とは異なり大面積の面状発光体の実現を可能にする電界発光素子に関する。

【0002】

【従来の技術】電界発光素子はその発光励起機構の違いから、(1)発光層内の電子や正孔の局所的な移動により発光体を励起し、交流電界でのみ発光する真性電界発光素子と、(2)電極からの電子と正孔の注入とその発光層内での再結合により発光体を励起し、直流電界で作動するキャリア注入型電界発光素子の二つに分けられる。(1)の真性電界発光型の発光素子は一般にZnSにMn、Cu等を添加した無機化合物を発光体とするものであるが、駆動に200V以上の高い交流電界を必要とすること、製造コストが高いこと、輝度や耐久性も不十分である等の多くの問題点を有する。

【0003】(2)のキャリア注入型電界発光素子は発光層として薄膜状有機化合物を用いるようになってから高輝度のものが得られるようになった。たとえば、特開昭59-194393、米国特許4,539,507、特開昭63-2956695、米国特許4,720,432及び特開昭63-264692には、陽極、有機質ホール注入輸送層、有機質電子注入性発光体および陰極から成る電界発光素子が開示されており、これらに使用される材料としては、例えば、有機質ホール注入輸送用

材料としては芳香族三級アミンが、また、有機質電子注入性発光材料としては、アルミニウムトリスオキシン等が代表的な例としてあげられる。

【0004】また、Jpn. Journal of Applied Physics, vol. 27, p 713-715には陽極、有機質ホール輸送層、発光層、有機質電子輸送層および陰極から成る電界発光素子が報告されており、これらに使用される材料としては、有機質ホール輸送材料としてはN,N'-ジフェニル-N,

10 N'-ビス(3-メチルフェニル)-1,1'-ビフェニル-4,4'-ジアミンが、また、有機質電子輸送材料としては、3,4,9,10-ペリレンテトラカルボン酸ビスベンズイミダゾールがまた発光材料としてはフタロペリノンが例示されている。

【0005】これらの例は有機化合物を、ホール輸送材料、発光材料、電子輸送材料として用いるためには、これらの有機化合物の各種特性を探求し、かかる特性を効果的に組み合わせて電界発光素子とする必要性を意味し、換言すれば広い範囲の有機化合物の研究開発が必要であることを示している。

【0006】さらに、上記の例を含め有機化合物を発光体とするキャリア注入型電界発光素子はその研究の歴史も浅く、未だその材料研究やデバイス化への研究が充分になされているとは言えず、現状では更なる輝度の向上、フルカラーディスプレーへの応用を考えた場合の青、緑および赤の発光色相を精密に選択できるための発光波長の多様化あるいは耐久性の向上など多くの課題を抱えているのが実情である。

【0007】

30 【発明が解決しようとする課題】本発明は上記従来技術の実情に鑑みてなされたものであり、その目的は発光波長に多様性があり、種々の発光色相を呈すると共に耐久性に優れた電界発光素子を提供することにある。

【0008】

【課題を解決するための手段】本発明者らは、上記課題を解決するための発光層の構成要素について鋭意検討した結果、陽極および陰極と、これらの間に挟持された一層または複数層の有機化合物層より構成される電界発光素子において、前記有機化合物層のうち少なくとも一層が、下記一般式化1で表わされる有機化合物を構成成分とする層であることを特徴とする電界発光素子が、上記課題に対し、有効であることを見い出し、本発明を完成するに至った。

【化1】

(式中、A¹及びA²は置換もしくは無置換のアルキル基、又は置換もしくは無置換のアリール基を表わし、それぞれ同一でも異なっていてもよい。)

【0009】一般式(1)におけるA¹および／またはA²がアリール基である場合、それらは炭素環式の芳香族基、または複素環式の芳香族基であり、前者の例としては、フェニル基、ビフェニル基、ターフェニリル基等の非縮合炭素環式芳香族基および縮合多環式炭化水素基を挙げることができる。縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のものが挙げられる。例えばベンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、α-インダセニル基、フルオレニル基、β-インダセニル基、アセナフチレニル基、ブレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ビレニル基、クリセニル基、及びナフタセニル基等が挙げられる。

【0010】A¹および／またはA²が複素環式の芳香族基の例としては、次のような基が挙げられる。ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、フラニル基、ピロリ基、チオフェニル基、キノリル基、クマリニル基、ベンゾフラニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、インドリル基、カルバゾリル基、ピラゾリル基、イミダゾリル基、

R²

ルキル基、アセチル基、ベンゾイル基等のアシル基、またはアリール基を表わし、アリール基としては例えはフェニル基、ビフェニリル基、またはナフチル基が挙げられ、これらはC₁～C₁₂のアルコキシ基、C₁～C₁₂のアルキル基またはハロゲン原子を置換基として含有しても良い。またピペリジル基、モルホリル基のように、R²とR³が窒素原子と共同で環を形成しても良い。またユ

*基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、インダゾリル基、ベンゾチアゾリル基、ピリダジニル基、シンノリル基、キナゾリル基、キノキサリル基、フタラジニル基、フタラジンジオニル基、タルアミジル基、クロモニル基、ナフトラクタミル基、キノロニル基、オースルホ安息香酸イミジル基、マレイン酸イミジル基、ナフタリジニル基、ベンズイミダゾロニル基、ベンズオキサゾロニル基、ベンゾチアゾロニル基、ベンゾチアゾチオニル基、キナゾロニル基、キノキサロニル基、フタラゾニル基、ジオキソビリミジニル基、ピリドニル基、イソキノロニル基、イソキノリニル基、イソチアゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、インダジロニル基、アクリジニル基、アクリドニル基、キナゾリンジオニル基、キノキサリンジオニル基、ベンゾオキサジンジオニル基、ベンゾキサジノニル基、及びナフタルイミジル基。

【0011】またこれらアリール基は以下で定義される置換基(1)～(9)を有することができる。

(1) ハロゲン原子、トリフルオロメチル基、シアノ基、ニトロ基。

(2) アルキル基；好ましくはC₁～C₂₀とりわけC₁～C₁₂の直鎖または分岐鎖のアルキル基であり、これらのアルキル基は更に水酸基、シアノ基、C₁～C₁₂のアルコキシ基、フェニル基、またはハロゲン原子、C₁～C₁₂のアルキル基、若しくはC₁～C₁₂のアルコキシ基で置換されたフェニル基を含有しても良い。

(3) アルコキシ基(-OR¹)；R¹は(2)で定義したアルキル基を表わす。

(4) アリールオキシ基；アリール基としてフェニル基、ナフチル基が挙げられ、これらはC₁～C₁₂のアルコキシ基、C₁～C₁₂のアルキル基またはハロゲン原子を置換基として含有しても良い。

(5) アルキルチオ基(-SR¹)；R¹は(2)で定義したアルキル基を表わす。

40※ロリジル基のようにアリール基上の炭素原子と共同で環を形成しても良い。

(7) アルコキカルボニル基(-COOR⁴)；R⁴は(2)で定義したアルキル基、または(4)で定義したアリール基を表わす。

(8) アシル基(-COR⁴)、スルホニル基(-SO₂R⁴)、カルバモイル基

及びR₄は上記で定義した意味を表わす。但しR₂及びR₃においてアリール基上の炭素原子と共同で環を形成する場合を除く。

(9) メチレンジオキシ基またはメチレンジチオ基等のアルキレンジオキシ基またはアルキレンジチオ基。

またA₁, A₂が置換若しくは無置換のアルキル基である*

* 場合、それらは前記(2)で定義したアルキル基と同じである。

【0012】次に本発明で使用される一般式化1で表わされる化合物の具体例を表1に示すが、本発明はこれらに限定されるものではない。

【表1】

N o . 1		
N o . 2		
N o . 3		
N o . 4		
N o . 5		
N o . 6		
N o . 7		
N o . 8		
N o . 9		
N o . 1 0		
N o . 1 1		
N o . 1 2		
N o . 1 3		
N o . 1 4		
N o . 1 5		

【0013】本発明における電界発光素子は、以上で説明した有機化合物を真空蒸着法、溶液塗布等により、有機化合物全体で2μmより小さい厚み、さらに好ましくは、0.05μm～0.5μmの厚みに薄膜化することにより有機化合物層を形成し、陽極及び陰極で挟持することにより構成される。

【0014】以下、図面に沿って本発明を更に詳細に説明する。図1は本発明の電界発光素子の代表的な例であって、基板上に陽極、発光層及び陰極を順次設けた構成のものである。図1に係る電界発光素子は使用する化合

* 物が単一でホール輸送性、電子輸送性、発光性の特性を有する場合あるいは各々の特性を有する化合物を混合して使用する場合に特に有用である。

【0015】図2はホール輸送性化合物と電子輸送性化合物との組み合わせにより発光層を形成したものである。この構成は有機化合物の好ましい特性を組み合わせるものであり、ホール輸送性あるいは電子輸送性の優れた化合物を組み合わせることにより電極からのホールあるいは電子の注入を円滑に行ない発光特性の優れた素子を得ようとするものである。なお、このタイプの電界発

光素子の場合、組み合わせる有機化合物によって発光物質が異なるため、どちらの化合物が発光するかは一義的に定めることはできない。

【0016】図3は、ホール輸送性化合物、発光性化合物、電子輸送性化合物の組み合わせにより発光層を形成するものであり、これは上記の機能分離の考えをさらに進めたタイプのものと考えることができる。

【0017】このタイプの電界発光素子はホール輸送性、電子輸送性及び発光性の各特性を適合した化合物を適宜組み合わせることによって得ることができるので、化合物の対象範囲が極めて広くなるため、その選定が容易となるばかりでなく、発光波長を異にする種々の化合物が使用できるので、素子の発光色相が多様化するといった多くの利点を有する。

【0018】本発明の化合物はいずれも発光特性の優れた化合物であり、必要により、図1、図2及び図3の様な構成をとることができる。

【0019】また本発明においては、前記一般式化1におけるAr, R₁, R₂あるいは置換基の種類を適宜選定することによりホール輸送性の優れた化合物あるいは電子輸送性の優れた化合物の両者の提供を可能とする。

【0020】従って、図2及び図3の構成の場合、発光層形成成分として、前記一般式化1で示される化合物の2種類以上用いても良い。

【0021】本発明においては、発光層形成成分として前記一般式化1で示される化合物を用いるものであるが、必要に応じて、ホール輸送性化合物として芳香族第三級アミンあるいはN,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-1,1'-ビフェニル-4,4'-ジアミン等を、また電子輸送性化合物として、アルミニウムトリスオキシン、またはペリレンテトラカルボン酸誘導体等を用いることができる。

【0022】本発明の電界発光素子は発光層に電気的にバイアスを付与し発光させるものであるが、わずかなピンホールによって短絡をおこし素子として機能しなくなる場合もあるので、発光層の形成には皮膜形成性に優れた化合物を併用することが望ましい。更にこのような皮膜形成性に優れた化合物とたとえばポリマー結合剤を組み合わせて発光層を形成することもできる。この場合に使用できるポリマー結合剤としては、ポリスチレン、ポリビニルトルエン、ポリ-N-ビニルカルバゾール、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエステル、ポリカーボネート、ポリアミド等を挙げることができる。また、電極からの電荷注入効率を向上させるために、電荷注入輸送層を電極との間に別に設けることも可能である。

【0023】陽極材料としてはニッケル、金、白金、パラジウムやこれらの合金或いは酸化錫 (SnO_2)、酸化錫インジウム (ITO)、沃化銅などの仕事関数の大きな金属やこれらの合金、化合物、更にはポリ(3-メ

チルチオフェン)、ポリピロール等の導電性ポリマーなどを用いることができる。

【0024】一方、陰極材料としては、仕事関数の小さな銀、錫、鉛、マグネシウム、マンガン、アルミニウム、或いはこれらの合金が用いられる。陽極及び陰極として用いる材料のうち少なくとも一方は、素子の発光波長領域において十分透明であることが望ましい。具体的には%以上の光透過率を有することが望ましい。

【0025】本発明においては、透明陽極を透明基板上に形成し、図1～図3の様な構成とすることが好ましいが、場合によってはその逆の構成をとっても良い。また透明基板としてはガラス、プラスチックフィルム等が使用できる。

【0026】また、本発明においては、この様にして得られた電界発光素子の安定性の向上、特に大気性の水分に対する保護のために、別に保護層を設けたり、素子全体をセル中に入れ、シリコンオイル等を封入するようにしても良い。

〔0027〕

20 【実施例】以下実施例に基いて、本発明をより具体的に説明する。

実施例 1

ガラス基板上に大きさ3 mm×3 mm、厚さ1 000 Åの酸化錫インジウム(ITO)による陽極を形成し、その上に前記化合物No. 6からなるホール輸送層500 Å、下記構造式で示されるオキサジアゾール誘導体からなる電子輸送層500 Å、アルミニウムからなる陰極1 000 Åを各々真空蒸着により形成し、図2に示すような素子を作製した。蒸着時の真空度は約 6×10^{-6} Torr。

【化2】

40 【0028】実施例2

実施例1で用いた化合物N₀、6の代わりに化合物N₀、13を用いた以外は、実施例1と同様に操作し、図2に示すような素子を作製した。この素子の陽極及び陰極にリード線を介して直流電源を接続し、24Vの電圧を印加したところ電流密度8.25mA/cm²の電流が素子に流れ、緑色の明瞭な発光が長時間にわたって確認された。この時の輝度は77cd/m²であった。

〔0029〕

【発明の効果】本発明の電界発光素子は有機化合物層の構成材料として前記一般式化1で示される化合物を用い

11

たことから、低い駆動電圧でも長期間にわたって輝度の高い発光を得ることが出来ると共に種々の色調を呈することが可能となる。また素子の作成も真空蒸着法等により容易に行なえるので安価で大面積の素子を効率よく生産できる等の利点を有する。

【図面の簡単な説明】

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 左近 洋太

東京都大田区中馬込1丁目3番6号 株式
会社リコー内

(72)発明者 高橋 俊彦

東京都大田区中馬込1丁目3番6号 株式
会社リコー内

(72)発明者 山口 岳人

東京都大田区中馬込1丁目3番6号 株式
会社リコー内

DERWENT-ACC- 1993-072121

NO:

DERWENT-WEEK: 199309

COPYRIGHT 2008 DERWENT INFORMATION LTD

TITLE: Electroluminescent device having continuous high brightness comprises amino pyrene deriv. sandwiched between cathode and electrode

INVENTOR: ONUMA T; OTA M ; SAKON H ; SHIMADA T ; TAKAHASHI T ; YAMAGUCHI T

PATENT-ASSIGNEE: RICOH KK [RICO]

PRIORITY-DATA: 1991JP-190953 (July 5, 1991)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
JP 05021161 A	January 29, 1993	JA

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL- DATE
JP 05021161A	N/A	1991JP- 190953	July 5, 1991

INT-CL-CURRENT:

TYPE	IPC DATE
CIPP	C09K11/00 20060101
CIPS	C09K11/06 20060101
CIPS	G09F9/30 20060101
CIPS	H01L51/50 20060101
CIPS	H05B33/12 20060101
CIPS	H05B33/14 20060101
CIPS	H05B33/26 20060101

ABSTRACTED-PUB-NO: JP 05021161 A**BASIC-ABSTRACT:**

The electroluminescent device comprises an anode, a cathode, and an organic cpd. layer(s) sandwiched by the anode and the cathode. At least one layer of the organic cpd. layer comprises cpd. of formula (I). Where, A1 and A2 = opt. substd. alkyl gps. or opt. substd. aryl gps.

USE/ADVANTAGE - (I) allows luminescence of continuous high brightness even if a low driving voltage is used and provides various colour tones. The device is produced by vacuum evapn., efficiently providing the large-area device at low costs.

CHOSEN-DRAWING: Dwg.1/3

TITLE-TERMS: ELECTROLUMINESCENT DEVICE
CONTINUOUS HIGH BRIGHT COMPRIZE
AMINO PYRENE DERIVATIVE SANDWICH
CATHODE ELECTRODE

DERWENT-CLASS: E14 L03 P85 U11

CPI-CODES: E08-C01; L03-H04A;

EPI-CODES: U11-A15;

CHEMICAL-CODES: Chemical Indexing M3 *01*
Fragmentation Code M781 M782 Ring
Index Numbers 05262 Markush
Compounds U930

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 1993-032433

Non-CPI Secondary Accession Numbers: 1993-055132