Page numbers in italics are recommended to be consulted first. Page numbers in **bold** contain boxed algorithms.

k-armed bandits, 25–45	for Sarsa, 129
absorbing state, 57 access-control queuing example, 256 action preferences, 322, 329, 336, 455 in bandit problems, 37, 42 action-value function, see value function, action action-value methods, 321 for bandit problems, 27 actor-critic, 21, 239, 321, 331-332, 338, 406 one-step (episodic), 332 with eligibility traces (episodic), 332 with eligibility traces (continuing), 333 neural, 395-415 addiction, 409-410 advantage actor-critic methods, 338 afterstates, 137, 140, 181, 182, 191, 424, 430 agent-environment interface, 47-57, 467 all-actions algorithm, 326 AlphaGo, AlphaGo Zero, AlphaZero, 441-450 Andreae, John, 17, 21, 69, 89 ANN, see artificial neural networks applications and case studies, 421-457 approximate dynamic programming, 15 artificial intelligence, xvii, 1, 472, 475-478 artificial neural networks, 223-228, 238-239, 395-398, 423, 430, 436-450, 472 associative reinforcement learning, 45, 418	for Expected Sarsa, 134 for Sarsa(λ), 304 for TD(λ), 289 for Q(λ), 313 for Tree Backup(λ), 314 for truncated TD(λ), 296 for n -step $Q(\sigma)$, 155 for n -step Expected Sarsa, 146 for n -step Sarsa, 146 for n -step TD, 142 for n -step Tree Backup, 152 for Samuel's Checker Player, 428 compound, 288 half backups, 62 backward view of eligibility traces, 288, 293 Baird's counterexample, 261–264, 280, 283, 285 bandit algorithm, simple, 32 bandit problems, 25–45 basal ganglia, 386 baseline, 37–40, 329, 330, 331, 338 behavior policy, 103, 110, see off-policy learning Bellman equation, 14 for v_{π} , 59 for q_{π} , 78 for optimal value functions: v_{*} and q_{*} , 63 differential, 250
associative search, 41 asynchronous dynamic programming, 85, 88	for options, 463 Bellman error, 268, 270, 272, 273 learnability of, 274–277
Atari video game play, 436–441 auxiliary tasks, 460–461, 468, 474 average reward setting, 249–255, 258, 464	vector, 267–269 Bellman operator, 267–269, 286
averagers, 264	Bellman residual, 286, see Bellman error Bellman, Richard, 14, 71, 89, 241
backgammon, 11, 21, 182, 184, 421–426 backpropagation, 21, 225–227, 239, 407, 424,	binary features, 215, 222, 245, 304, 305 bioreactor example, 51
436, 439	blackjack example, 93–94, 99, 106
backup diagram, 60 , 139	blocking maze example, 166
for dynamic programming, 59, 61, 64, 172	bootstrapping, 89, 189, 308, 331
for Monte Carlo methods, 94	n-step, $141-158$, 255
for Q-learning, 134	and dynamic programming, 89
for $TD(0)$, 121	and function approximation, 208, 264–274

and Monte Carlo methods, 95	deadly triad, 264
and stability, 263–265	deep learning, 11, 223, 441, 472–474, 480
and TD learning, 120	deep reinforcement learning, 236
assessment of, 124–128, 248, 264, 291, 318	deep residual learning, 226
in psychology, 345, 349, 354, 355	delayed reinforcement, 361–363
parameter (λ or n), 291, 307, 399	delayed reward, 2, 47, 249
BOXES, 18, 71, 237	dimensions of reinforcement learning methods.
branching factor, 173–177, 422	189–191
breakfast example, 5, 22	direct and indirect RL, 162, 164, 192
bucket-brigade algorithm, 19, 21, 139	discounting, 55, 199, 243, 249, 282, 324, 328, 427, 459
catastrophic interference, 472	in pole balancing, 56
certainty-equivalence estimate, 128	state dependent, 307
chess, 4, 20, 54, 182, 450	deprecated, 253 , 256
classical conditioning, 20, 343–357	distribution models, 159, 185
blocking, 371	dopamine, 377, 381–387, 413–419
and higher-order conditioning, 345–355	and addiction, 409–410
delay and trace conditioning, 344	double learning, 134–136, 140
Rescorla-Wagner model, 346–349	DP, see dynamic programming
TD model, 349–357	driving-home example, 122–123
classifier systems, 19, 21	Dyna architecture, 164 , 161–170
cliff walking example, 132, 133	dynamic programming, 13-15, 73-90, 174, 262
CMAC, see tile coding	and artificial intelligence, 89
coarse coding, 215–220, 237	and function approximation, 241
cognitive maps, 363–364	and options, 463
collective reinforcement learning, 404–407	and the deadly triad, 264
complex backups, see compound update	computational efficiency of, 87
compound stimulus, 345, 346–356, 371, 382	
compound update/backup, 288, 319	eligibility traces, 287–320, 350, 362, 398–403
$conditioned/unconditioned\ stimulus,\ conditioned$	accumulating, 301, 306, 310
response (CS/US, CR), 343	replacing, 301, 306
constant- α MC, 120	dutch, 300–303
contextual bandits, 41	contingent/non-contingent, 399-403, 411
continuing tasks, 54, 57, 70, 124, 249, 294	off-policy, 309–316
continuous action, 73, 244, 335–336	with state-dependent λ and γ , 309–316
continuous state, 73, 223, 237	Emphatic-TD methods, 234–235, 315
continuous time, 11, 71	off-policy, 281–282
control and prediction, 342	environment, 47–57
control theory, 4, 70	episodes, episodic tasks, 11, 54–57, 91
control variates, 150–152, 155, 281	error reduction property, 144, 288
and eligibility traces, 309–312	evaluative feedback, 17, 25, 47
credit assignment, 11, 17, 19, 47, 294, 401	evolution, 7, 359, 374, 471
in psychology, 346, 361	evolutionary methods, 7, 8–10, 19
structural, 385, 405, 407	expected approximate value, 148, 155
critic, 18, 238, 346, 417, see actor–critic	Expected Sarsa, 133, see also Sarsa, Expected
cumulant, 459	expected update, 75, 172–181, 189
curiosity, 474	experience replay, 440–441
curse of dimensionality, 4, 14, 221, 231	explore/exploit dilemma, 3 , 103 , 472
cybernetics, xvii, 477	exploring starts, 96, 98–100, 178

feature construction, 210–223	n-step, 148–156
final time step (T) , 54	incremental implementation
Fourier basis, 211–214	of averages, 30–33
function approximation, 195–200	of weighted averages, 109
	instrumental conditioning, 357-361, see also
gambler's example, 84	Law of Effect
game theory, 19	and motivation, 360–361
gazelle calf example, 5	Thorndike's puzzle boxes, 358
general value functions (GVFs), 459–463, 474	interest and emphasis, 234–235, 282, 316
generalized policy iteration (GPI), 86–87, 92,	inverse reinforcement learning, 470
97, 138, 189	G,
genetic algorithms, 19	Jack's car rental example, 81–82, 137, 210
Gittins index, 43	• , , , ,
gliding/soaring case study, 453–457	kernel-based function approximation, 232–233
goal, see reward signal	Klopf, A. Harry, xv, xvii, 19–21, 402–404, 411
golf example, 61, 63, 66	
gradient, 201	latent learning, 192, 363, 366
gradient descent, see stochastic gradient de-	Law of Effect, 15–16, 45, 342, 358–361, 417
scent	learning automata, 18
Gradient-TD methods, 278–281, 314–315	Least Mean Square (LMS) algorithm, 279, 301
greedy or ε -greedy	Least-Squares TD (LSTD), 228–229
as exploiting, 26–28	linear function approx., 204–209, 266–269
as shortsighted, 64	linear programming, 87, 90
ε -greedy policies, 100	local and global optima, 200
gridworld examples, 60, 65, 76, 147	
cliff walking, 132	Markov decision process (MDP), 2, 14, 47–71
Dyna blocking maze, 166	Markov property, 49, 115, 465–468
Dyna maze, 164	Markov reward process (MRP), 125
Dyna shortcut maze, 167	maximization bias, 134–136
windy, 130, 131	maximum-likelihood estimate, 128
	MC, see Monte Carlo methods
habitual and goal-directed control, 364–368	Mean Squared
hedonistic neurons, 402–404	Bellman Error, $\overline{\text{BE}}$, 268
heuristic search, 181–183, 190	Projected Bellman Error, $\overline{\text{PBE}}$, 269
as sequences of backups, 183	Return Error, \overline{RE} , 275
in Samuel's checkers player, 426	TD Error, $\overline{\text{TDE}}$, 270
in TD-Gammon, 425	Value Error, $\overline{\text{VE}}$, 199–200
history of reinforcement learning, 13–21	memory-based function approx., 230–232
Holland, John, 19, 21, 44, 139, 241	Michie, Donald, 17, 71, 116
Hull, Clark, 16, 359, 360, 362–363	Minsky, Marvin, 16, 17, 20, 89
	model of the environment, 7, 159
importance sampling, $103-117$, 151 , 257	model-based and model-free methods, 7, 159
ratio, 104, 148, 258	in animal learning, 363–368
weighted and ordinary, 105, 106	model-based reinforcement learning, 159–193
and eligibility traces, 309–312	in neuroscience, 407–409
and infinite variance, 106	Monte Carlo methods, 91–117
discounting aware, 112–113	first- and every-visit MC, 92
incremental implementation, 109	first-visit MC control, 101
per-decision, 114–115	first-visit MC prediction, 92

gradient method for v_{π} , 202	approximate
Monte Carlo ES (Exploring Starts), 99	control, 244 , 247 , 251 , 255
off-policy control, 111 , 110–112	prediction, 202 , 203 , 209
off-policy prediction, 103–109, 110	Monte Carlo, 101 , 100–103, 328 , 330
Monte Carlo Tree Search (MCTS), 185–188	n-step, 144, 147
motivation, 360–361	Sarsa, 130 , 129–131
mountain car example, 244–248, 305, 306	TD(0), 120 , 119–128
multi-armed bandits, 25–45	with eligibility traces, 293 , 300 , 305 , 307
,	operant conditioning, see instrumental learning
n-step methods, $141-158$	optimal control, 2, 14–15, 21
$Q(\sigma),~156$	optimistic initial values, 34–35, 192
Sarsa, 147, 247	optimizing memory control, 432–436
differential, 255	options, 461–464
off-policy, 149	models of, 462
TD, 144	
Tree Backup, 154	pain and pleasure, 6, 16, 413
truncated λ -return, 295	Partially Observable MDPs (POMDPs), 466
naughts and crosses, see tic-tac-toe	Pavlov, Ivan, 16, 343–345, 362
neural networks, see artificial neural networks	Pavlovian
neurodynamic programming, 15	conditioning, see classical conditioning
neuroeconomics, 413, 419	control, 343, 371, 373, 479
neuroscience, 4, 21, 377–419	personalizing web services, 450–453
nonstationarity, 30, 32–36, 41, 44, 255	planning, 3, 5, 7, 11, 138, 159–193
inherent, 91, 198	in psychology, 363, 364, 366
notation, xiii, xix	with learned models, 161–168, 473
1100001011, 11111, 11111	with options, 461, 463
observations, 464	policy, 6, 41, 58
off-policy methods, 257–286	hierarchical, 462
vs on-policy methods, 100, 103	soft and ε -soft, 100–103, 110
Monte Carlo, 103–115	policy approximation, 321–324
Q-learning, 131	policy evaluation, 74–76, see also prediction
Expected Sarsa, 133–134	iterative, 75
<i>n</i> -step, 148–156	policy gradient methods, 321–338
n -step $Q(\sigma)$, 156	REINFORCE, 328 , 330
n-step Sarsa, 149	actor-critic, 332, 333
n-step Tree Backup, 154	policy gradient theorem, 324–326
and eligibility traces, 309–316	proof, episodic case, 325
Emphatic-TD(λ), 315	proof, continuing case, 334
$GQ(\lambda), 315$	policy improvement, 76–80
$GTD(\lambda)$, 314	theorem, 78, 101
$\mathrm{HTD}(\lambda),\ 315$	policy iteration, 14, 80 , 80–82
$Q(\lambda)$, 312–314	polynomial basis, 210–211
Tree Backup(λ), 312–314	prediction, 74–76, see also policy evaluation
reducing variance, 283–284	and control, 342
on-policy distribution, 175, 199, 208, 258, 262,	Monte Carlo, 92–97
281, 282	off-policy, 103–108
vs uniform distribution, 176	TD, 119–126
on-policy methods, 100	with approximation, 197–241
actor–critic, 332, 333	prior knowledge, 11, 34, 54, 137, 236, 324, 470

prioritized sweeping, 170, 168–171	and reinforcement, 373–375, 380–381
projected Bellman error, 285	design of, 469–472, 476
vector, 267, 269	intrinsic, 474
proximal TD methods, 286	sparse, 469–470
pseudo termination, 282, 308	rod maneuvering example, 171
psychology, 4, 13, 18, 20, 341–376	rollout algorithms, 183–185
	root mean-squared (RMS) error, 125
$Q(\lambda)$, Watkins's, 312–314	
Q-function, see action-value function	safety, 434, 475–478
Q-learning, 21, 131 , 131–135	sample and expected updates, 121, 170–174
double, 136	sample or simulation model, 115
Q-planning, 161	sample-average method, 27
$Q(\sigma)$, 156 , 154–156	Samuel's checkers player, 20, 241, 426–429
queuing example, 251	Sarsa, 130 , 129–131, 244
	vs Q-learning, 132
R-learning, 256	differential, one-step, 251
racetrack exercise, 111	Expected, 133–134, 140
radial basis functions (RBFs), 221–222	n-step, 148
random walk, 95	n-step off-policy, 150
5-state, 125, 126, 127	double, 136
19-state, 144, 291	<i>n</i> -step, 147 , <i>145–148</i> , 247
$TD(\lambda)$ results on, 294, 295, 299	differential, 255
1000-state, 203–209, 217, 218	off-policy, 149
Fourier and polynomial bases, 214	$Sarsa(\lambda), 305, 303-307$
real-time dynamic programming, 177–180	true online, 307
recycling robot example, 52	Schultz, Wolfram, 387–395, 410
REINFORCE, 328 , 326–331	search control, 163
with baseline, 330	secondary reinforcement, 20, 346, 354, 369
reinforcement learning, 1–21	selective bootstrap adaptation, 239
reinforcement signal, 380	semi-gradient methods, 202, 258–259
representation learning, 473	SGD, see stochastic gradient descent
residual-gradient algorithm, 272–274, 277	Shannon, Claude, 16, 20, 70, 71, 426
naive, 270, 271	shaping, 360, 470
return, 54–57	Skinner, B. F., 359–360, 375, 470, 480
n-step, 143	soap bubble example, 95
for $Q(\sigma)$, 155	soft and ε -soft policies, 100–103, 110
for action values, 146	soft-max, 322–323, 329, 336, 400, 445, 455
for Expected Sarsa, 148	for bandits, 37 , 45
for Tree Backup, 153	spike-timing-dependent plasticity (STDP), 401
with control variates, 150, 151	state, 7, 48, 49
with function approximation, 209	kth-order history approach, 468
differential, 250, 255, 334	and observations, 464–468
flat partial, 113	Markov property, 465–468
with state-dependent termination, 308	belief, 466
λ -return, 288–291	latent, 466
truncated, 296	observable operator models (OOMs), 467
reward prediction error hypothesis, 381–383,	partially observable MDPs, 14, 466
387–395	predictive state representations, 466
roward cional 1 6 /8 59 361 380 383 307	state undate function 166

state aggregation, 203–204	Thorndike, Edward, see Law of Effect
state-update function, 466	tic-tac-toe, 8–13, 17, 137
step-size parameter, 10, 31–33, 120, 125, 126	tile coding, 217–221, 223, 238, 246, 434, 435
automatic adaptation, 238	Tolman, Edward, 364, 408
in DQN, 439, 440	trace-decay parameter (λ) , 287, 289, 290, 292
in psychological models, 347, 348	state dependent, 307
selecting manually, 222–223	trajectory sampling, 174–177
with coarse coding, 216	transition probabilities, 49
with Fourier features, 213	Tree Backup
with tile coding, 217, 223	<i>n</i> -step, 152–153, 154
stochastic approx. convergence conditions, 33	Tree-Backup(λ), 312–314
stochastic gradient descent (SGD), 200–204	trial-and-error, 2, 7, 15-21, 403, 404, see also
in the Bellman error, 269–277	instrumental conditioning
strong and weak methods, 4	true online $TD(\lambda)$, 300 , 299–301
supervised learning, xvii, 2, 16–19, 198	Tsitsiklis and Van Roy's Counterexample, 263
sweeps, 75, 160, see also prioritized sweeping	
synaptic plasticity, 379	undiscounted continuing tasks, see average re-
Hebbian, 400	ward setting
two-factor and three factor, 400	unsupervised learning, 2, 226
system identification, 364	
	value, 6, 26, 47
tabular solution methods, 23	value function, 6, 58–67
target	for a given policy: v_{π} and q_{π} , 58
policy, 103, 110	for an optimal policy: v_* and q_* , 62
of update, 31, 143, 198	action, 58, 63, 64, 71, 129, 131
TD, see temporal-difference learning	approximate action values: $\hat{q}(s, a, \mathbf{w})$, 243
TD error, 121	approximate state values: $\hat{v}(s, \mathbf{w})$, 197
n-step, 255	differential, 243
differential, 250	vs evolutionary methods, 10
with function approximation, 270	value iteration, 83 , 82–85
$TD(\lambda)$, 293 , 292–295	value-function approximation, 198
truncated, 295–297	W.tl.: Ch.:- 1/ 21 20 220
true online, 300 , 299–301	Watkins, Chris, 14, 21, 89, 320
TD-Gammon, 21, 421–426	Wark of David 14, 21, 60, 80, 120, 228
temporal abstraction, 461–464	Werbos, Paul, 14, 21, 69, 89, 139, 238
temporal-difference learning, $10, 119-140$	Witten, Ian, 21, 69
history of, 20–21	
advantages of, 124–126	
optimality of, 126–128	
TD(0), 120 , 203	
TD(1), 294	
$TD(\lambda), 293, 292-295$	
true online, 300 , 299–301	
λ -return methods	
offline, 290	
online, 297–299	
<i>n</i> -step, 144 , <i>141</i> – <i>158</i> , 209	
termination function, 307, 459	

Thompson sampling, 43, 45

Adaptive Computation and Machine Learning

Francis Bach, Editor

Bioinformatics: The Machine Learning Approach, Pierre Baldi and Søren Brunak

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto

Graphical Models for Machine Learning and Digital Communication, Brendan J. Frey

Learning in Graphical Models, Michael I. Jordan

Causation, Prediction, and Search, second edition, Peter Spirtes, Clark Glymour, and Richard Scheines

Principles of Data Mining, David Hand, Heikki Mannila, and Padhraic Smyth

Bioinformatics: The Machine Learning Approach, second edition, Pierre Baldi and Søren Brunak

Learning Kernel Classifiers: Theory and Algorithms, Ralf Herbrich

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, Bernhard Schölkopf and Alexander J. Smola

Introduction to Machine Learning, Ethem Alpaydin

Gaussian Processes for Machine Learning, Carl Edward Rasmussen and Christopher K.I. Williams

Semi-Supervised Learning, Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, Eds.

The Minimum Description Length Principle, Peter D. Grünwald

Introduction to Statistical Relational Learning, Lise Getoor and Ben Taskar, Eds.

Probabilistic Graphical Models: Principles and Techniques, Daphne Koller and Nir Friedman

Introduction to Machine Learning, second edition, Ethem Alpaydin

Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation, Masashi Sugiyama and Motoaki Kawanabe

Boosting: Foundations and Algorithms, Robert E. Schapire and Yoav Freund

Machine Learning: A Probabilistic Perspective, Kevin P. Murphy

Foundations of Machine Learning, Mehryar Mohri, Afshin Rostami, and Ameet Talwalker

Introduction to Machine Learning, third edition, Ethem Alpaydin

Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville

Elements of Causal Inference, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf

Machine Learning for Data Streams, with Practical Examples in MOA, Albert Bifet, Ricard Gavaldà, Geoffrey Holmes, Bernhard Pfahringer