

Knowledge-Based Systems

Description Logic Reasoning - Why and how did that happen (II).

Jeff Z. Pan

http://homepages.abdn.ac.uk/jeff.z.pan/pages/

Roadmap

- Foundation
 - KR, ontology and rule; set theory
- Knowledge capture
- Knowledge representation
 - Ontology: Semantic Web standards RDF and OWL, Description Logics
 - Rule: Jess
- Knowledge reasoning
 - Ontology: formal semantics, tableaux algorithm
 - Rule: forward chaining, backward chaining
- Knowledge reuse and evaluation
- Meeting the real world
 - Jess and Java, Uncertainty, Invited talk

Microsoft CEO: Chatbots will 'fundamentally

Application of chatbot QA based on massive KB merging

Jeff Z. Pan

Application of chatbot QA based on inconsistency checking in KB

Your friend Emily has just arrived

No, that's Emma, not Emily

Ah, that's Emma, but I remember Emma only has cats.

I see a dog with her now.

That's not her dog, but Lily's.

I see, the girl next to Emma is Lily.

Lecture Outline

- Motivation
- Introduction to tableaux algorithms
- Some detailed discussions on tableaux algorithms
- Practical

[Section: 9.3.2.1]

Motivations:

- How to perform DL reasoning based on formal semantics
 - The first sound and complete algorithm for expressive DLs
- So far
 - we only introduced one expansion rule
 - we only allows simply class axioms

Expansion Rule for Simple Axioms

- Simple axioms
 - A ⊆ C where A is a name class
 - No cycles involve A
 - × such as A ⊑∃R.A
- Expansion rule for simple axioms
 - If A is in L(x) and A ⊆ C is in O
 - Then add C into L(x)

How about Class Descriptions

- Given the following ontology
 - 1. MadCow⊑ Herbivore
 - 2. MadCow ⊑∃eat.SheepBrain
 - 3. Herbivore

 ∀eat.Plant
 - 4. SheepBrain □ ¬'lant
 - 5. MadCow(mc)

 Q: Can you use the tableaux algorithm to check if the above ontology is consistent

Lecture Outline

- Motivation
- Introduction to more expansion rules in tableaux algorithms
 - The big picture
- Some detailed discussions on tableaux algorithms
- Practical

$x \bullet \{C_1 \sqcap C_2, \ldots\}$	\rightarrow_{\sqcap}	$x \bullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$
$x \bullet \{C_1 \sqcup C_2, \ldots\}$	\rightarrow \sqcup	$x \bullet \{C_1 \sqcup C_2, \textcolor{red}{C}, \ldots\}$ for $C \in \{C_1, C_2\}$
$x \bullet \{\exists R.C, \ldots\}$	→∃	$x \bullet \{\exists R.C, \ldots\}$ R $y \bullet \{C\}$
$x \bullet \{ \forall R.C, \ldots \}$ $R \downarrow$ $y \bullet \{ \ldots \}$	$\longrightarrow \forall$	$x \bullet \{ \forall R.C, \ldots \}$ $R \downarrow$ $y \bullet \{C, \ldots \}$

$x \bullet \{C_1 \sqcap C_2, \ldots\}$	\rightarrow_{\sqcap}	$x \bullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$
$x \bullet \{C_1 \sqcup C_2, \ldots\}$	\rightarrow_{\sqcup}	$x \bullet \{C_1 \cup C_1 \cup C_2\}$ If x is an instance
$x \bullet \{\exists R.C, \ldots\}$	→∃	of C1 □C2, Then x must be an instance of C1, and x must be an instance of C2
$x \bullet \{ \forall R.C, \ldots \}$ $y \bullet \{ \ldots \}$	$\rightarrow \forall$	$x \bullet \{ \forall R.C, \ldots \}$ $y \bullet \{C, \ldots \}$

y

Then x must have an R relation to an instance y of C; hence, we create a new R-successor y that is labeled C

- Check if the following ontology is consistent

 - 2. MadCow <u>□</u>∃eat.SheepBrain
 - 3. Herbivore ⊑∀eat.Plant
 - 4. SheepBrain □ ¬ Plant
 - 5. MadCow(mc)

6. Initialise the tableau: L(x-mc1)={MadCow}

- Check if the following ontology is consistent

 - 2. MadCow <u>□</u>∃eat.SheepBrain
 - 3. Herbivore

 ∀eat.Plant
 - 4. SheepBrain ☐ ¬Plant
 - MadCow(mc)
 - 6. Initialise the tableau: L(x-mc)={MadCow}

X-mc L(x-mc)={MadCow, Herbivore, <u>Herbivore</u>, <u>Herbivore</u>, <u>Herbivore</u>, <u>Herbivore</u>, <u>Amade L(x-mc)</u>

7. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain} //simple expansion rule on axioms 1 and 2)

- Check if the following ontology is consistent

 - 2. MadCow <u>□</u>∃eat.SheepBrain
 - 3. Herbivore

 ∀eat.Plant
 - 4. SheepBrain □ ¬Plant
 - MadCow(mc)
 - 6. Initialise the tableau: L(x-mc)={MadCow}
 - Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain}

L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain, ∀eat.Plant}

8. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain, ∀eat.Plant} //simple expansion rule on axiom 3)

- Check if the following ontology is consistent
 - MadCow □Herbivore
 - 2. MadCow ☐∃eat.SheepBrain
 - 3. Herbivore ∀eat.Plant
 - 4. SheepBrain ☐ ¬ Plant
 - 5. MadCow(mc)
 - Initialise the tableau: L(x-mc)={MadCow}
 - 7. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain}
 - 8. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain, ∀eat.Plant}

9. Create node x1. $L(x-mc,x1)=\{eat\}$, $L(x1)=\{SheepBrain\}$ // \exists -expansion rule on x-mc

- Check if the following ontology is consistent
 - MadCow □Herbivore
 - 2. MadCow ☐∃eat.SheepBrain
 - 3. Herbivore ∀eat.Plant
 - 4. SheepBrain ☐ ¬ Plant
 - 5. MadCow(mc)
 - 6. Initialise the tableau: L(x-mc)={MadCow}
 - 7. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain}
 - 8. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain, ∀eat.Plant}
 - 9. Create node x1. $L(x-mc,x1)=\{eat\}$, $L(x1)=\{SheepBrain\}$

10. Expand L(x1). L(x1)={SheepBrain, Plant} //simple expansion rule on axiom 4

- Check if the following ontology is consistent
 - 1. MadCow _Herbivore
 - 2. MadCow ☐∃eat.SheepBrain
 - Herbivore ∀eat.Plant
 - 4. SheepBrain ☐ ¬ Plant
 - 5. MadCow(mc)
 - 6. Initialise the tableau: L(x-mc)={MadCow}
 - 7. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain}
 - 8. Expand L(x-mc): L(x-mc)={MadCow, Herbivore, ∃eat.SheepBrain, ∀eat.Plant}
 - 9. Create node x1. $L(x-mc,x1)=\{eat\}, L(x1)=\{SheepBrain\}$
 - 10. Expand L(x1). L(x1)={SheepBrain, ¬ Plant}

- 11. Expand L(x1). L(x1)={SheepBrain, ¬Plant, Plant} //∀-expansion rule on x-mc
- 12. There is a contradiction, so the ontology is inconsistent

Lecture Outline

- Motivation
- Introduction to tableaux algorithms
- Some detailed discussions on tableaux algorithms
- Practical

Blocking: Ensuring Termination

- Expansion can be applicable forever
 - We need to block the expansion on e.g. cyclic axioms

Blocking

- Condition: L(y) ⊆ L(x) for some ancestor x (blocking node) and predecessor y (blocked node)
- Intuitively, this means that the same constraints have been dealt with before

Example: Blocking

- Example:
 - Given the ontology
 - 1. Person

 ☐ ∃friend.Person
 - Check if Person is satisfiable
- Construct a tableau
 - 2. Initialise the tableau: $L(x0)=\{Person\}$

Example: Blocking

- Example:
 - Given the ontology
 - 1. Person

 ∃friend.Person
 - Check if Person is satisfiable
- Construct a tableau
 - 2. Initialise the tableau: $L(x0)=\{Person\}$
 - 3. L(x0)={Person, ∃friend.Person} //simple axiom expansion

L(x0)={Person, ∃friend.Person}

Example: Blocking

- Example:
 - Given the ontology
 - 1. Person

 ∃friend.Person
 - Check if Person is satisfiable
- Construct a tableau
 - 2. Initialise the tableau: L(x0)={Person}
 - 3. L(x0)={Person, ∃friend.Person} //simple axiom expansion
 - 4. $L(x1)=\{Person\}, L(x0,x1)=friend //\exists-expansion$

Tableau and Interpretation

Tableau

$$-L(x0)=\{Person, \exists friend.Person\}$$

$$- L(x0,x1)=\{friend\}, L(x1)=\{Person\}$$

 We can construct an interpretation: Note that blocked nodes are not included in the interpretation

$$-\Delta^{I} = \{x0\}$$

- Person^I =
$$\{x0\}$$

- friend
$$^{I} = \{ < x0, x0 > \}$$

- Question: Given the following ontology O,
 - Class (Chinese partial Person)
 - Class (English partial Person)
 - Class (Confucian partial Chinese)
 - Class (Confucian partial English)
- O |= Confucian
 □ Person?

- Check if Confucian

 Person
 - 1. Chinese

 □ Person
 - 2. English ☐ Person
 - 3. Confucian

 ☐ Chinese
 ☐ English

Can we simply build an interpretation?

No.

From Subsumption Checking to Class Unsatisfiability Checking

- Some reasoning services can be reduced to each other
- E.g. class subsumption checking to class (un)satisfiability checking
 - O |= C □ D iff C □ ¬D is unsatisfiable ?

From Subsumption Checking to Class Unsatisfiability Checking

- Some reasoning services can be reduced to each other
- E.g. class subsumption checking to class (un)satisfiability checking
 - O |= C □ D iff C □ ¬D is unsatisfiable ?

- Question: Given the following ontology O,
 - Class (Chinese partial Person)
 - Class (English partial Person)
 - Class (Confucian partial Chinese)
 - Class (Confucian partial English)
- To check O |= Confucian
 □ Person, we need to check if (Confucian □ ¬Person) is unsatisfiable

- Check if Confucian

 Person
 - 1. Chinese

 □ Person
 - 2. English ☐ Person
 - 3. Confucian

 Chinese

 English

4. Initialise the tableau: $L(x0)=\{Confucian \sqcap \neg Person\}$

- Check if Confucian
 □ Person
 - 1. Chinese

 □ Person
 - 2. English \sqsubseteq Person
 - 3. Confucian

 Chinese

 English
 - 4. Initialise the tableau: $L(x0)=\{Confucian \sqcap Person\}$

5. Expand L(x0): L(x0)={Confucian

¬Person, Confucian,

¬Person}//

¬Person}//

¬Person, Confucian,

¬Person,

¬Person,

- Check if Confucian

 Person
 - 1. Chinese

 □ Person
 - 2. English \sqsubseteq Person
 - 3. Confucian

 ☐ Chinese
 ☐ English
 - 4. Initialise the tableau: $L(x0)=\{Confucian \sqcap Person\}$
 - 5. Expand L(x0): L(x0)={Confucian □ ¬Person, Confucian, ¬Person}

```
↓ x0 L(x0)={Confucian ¬Person, Confucian, ¬Person, Chinese ¬English }
```

6. Expand L(x0): L(x0)={Confucian ¬ Person, Confucian, ¬Person, Chinese □ English }//simple expansion rule on axiom 3

- Check if Confucian Person
 - 1. Chinese

 □ Person
 - 2. English

 ☐ Person
 - 3. Confucian Chinese English
 - 4. Initialise the tableau: L(x0)={Confucian □¬Person}
 - 5. Expand L(x0): L(x0)={Confucian $\neg Person$, Confucian, $\neg Person$ }
 - 6. Expand L(x0): L(x0)={Confucian ¬ Person, Confucian, ¬Person, Chinese □ English }

7. Expand L(x0): L(x0)={Confucian ¬ Person, Confucian, ¬Person, Chinese □ English, **Chinese**, **English** }// □- expansion rule on axiom 3

- Check if Confucian Person
 - 1. Chinese Person
 - 2. English ☐ Person
 - 3. Confucian ☐Chinese☐English
 - 4. Initialise the tableau: L(x0)={Confucian □¬Person}
 - 5. Expand L(x0): L(x0)={Confucian \square ¬Person, Confucian, ¬Person}
 - 6. Expand L(x0): L(x0)={Confucian \bigcap ¬Person, Confucian,¬Person, Chinese \bigcap nglish}
 - 7. Expand L(x0): L(x0)={Confucian \neg Person, Confucian, \neg Person, Chinese \neg English, Chinese, English }

```
L(x0)={Confucian ☐¬Person, Confucian, ¬Person, Chinese ☐English, Chinese, English, Person }
```

- 7. Expand L(x0): L(x0)={Confucian □ ¬Person, Confucian, ¬Person, Chinese□ English, Chinese, English, Person }// simple expansion rule on axiom 3. There is a contradiction, so Confucian □ ¬Person is unsatisfiable.
- 8. So Confucian

 Person is true

- Check if Confucian
 □ Chinese □ English
 - 1. Chinese
 ☐ Person
 - 2. English ☐ Person
 - 3. Confucian

 ☐ Chinese
 ☐ English

```
x0 L(x0)={Confucian □¬(Chinese □English)}
```

Now the question is how do we handle ¬ (Chinese □ English)

NNF: Negated Normal Form

- Negated Normal Form (NNF)
 - If a class is in NNF, negations only appear in front of named classes
 - E.g., ¬Person is in NNF
 - However, ¬(Chinese □ English) is not in NNF
- In tableau algorithm, all the input classes should be in NNF
 - We can make use of the following table to transform inputs into NNF

$$\neg \exists r.C \equiv \forall r. \neg C$$

$$\neg \neg C \equiv C$$

$$\neg (C \sqcap D) \equiv \neg D \sqcup \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

- Check if Confucian

 □ Chinese
 □ English
 - 1. Chinese □ Person
 - 2. English ☐ Person
 - 3. Confucian

 ☐ Chinese
 ☐ English

```
x0 L(x0)={Confucian □¬(Chinese □Person)}
```

- Now the question is how do we handle ¬ (Chinese □ English)
- According to the table in the previous slide, it is equivalent to
 - ¬Chinese □ ¬Person
 - Q: Can you try to finish this subsumption checking?

Class Instance Checking

- Question: given the following ontology O,

 - OldLady(Minnie)
 - hasPet(Minnie, Tom)
- Does O entail Individual (Tom type (Cat))?

Practical

Ontology reasoning in tableau algorithm

Summary

- More expansion rules for the tableau algorithm
 - cyclic axioms
 - class descriptions
 - reasoning tasks reduction
 - class instance checking
 - class subsumption checking