**Q1:** Find y(n) expression in the following block diagrams, (a) and (b). In (a), assume that  $\alpha$ 's are scalar values. In (b), assume  $\alpha$ ,  $\beta$ ,  $\gamma$  are all scalar values.

(a)



(b)



**Q2:** Find the expressions for the even digital sequence/signal,  $x_e$  (n), and the odd digital sequence/signal,  $x_o(n)$ , for the given digital sequence/signal, x(n). Plot each sequence/signal.



Q3: Determine which of the following signals are energy signals or power signals.

$$x(n) = 4, n > 0$$
 
$$x(n) = \left(\frac{1}{4}\right)^n u(n)$$
 
$$x(n) = \begin{cases} 3(-1)^n, n \ge 0 \\ 0, n < 0 \end{cases}$$

Use the following hints:





Q4: Express the following signal in terms of (a) unit impulse signal, and (b) unit step signal.



Use the mathematical definitions of unit impulse sequence and unit step sequence given below.



**Q5:** Find the fundamental period for the following digital signals:

$$\bar{x}_1(n) = 4\cos\left(\frac{2\pi n}{5}\right)$$
  $\bar{x}_2(n) = \sin(0.6\pi n + 0.6\pi)$ 

Note that a sinusoidal discrete signal is periodic if  $2\pi/\omega$  equals a rational number, as shown below:

$$\omega N = 2\pi r , r \rightarrow +ve \text{ inlight}$$

$$\frac{2\pi}{\omega} = \frac{N}{r}$$

In the above, both N and r are positive integers, where N is the period of the digital signal.

**Q6:** Find the fundamental period for the following digital signal:

$$\bar{x}(n) = \cos(1.2\pi n + 0.65\pi) - 4\sin(0.9\pi n) + 5\cos(0.5\pi n)$$

Use the following hint, where LCM is the Least Common Multiple. Note that the LCM is the smallest positive integer that is evenly divisible by two or more given numbers.

$$ar{x}_1(n)$$
  $ar{x}_2(n)$   $ar{x}_3(n)$   $N_1$   $N_2$   $N_3$   $ar{x}_4(n) = lpha ar{x}_1(n) + eta ar{x}_2(n) + \gamma ar{x}_3(n)$   $N_4 = LCM(N_1, N_2, N_3)$ 

You need to show the graphs of each digital signal using MATLAB. Also, plot the graph of the overall signal of  $x_4(n)$ .

Q7: Show whether the given digital signals are time-variant or time-invariant.

**Part 1:** y(n) = x(2n).

**Part 2:** y(n) = 2n + x(n).

**Part 3:** y(n) = n.x(n).

Use the given hints.



# For a system to be time-invariant:

- 1. It should not have time scaling property
- 2. Added/subtracted term in the system equation should be constant or zero
- 3. Coefficient of terms in the system equation should be constant

**Q8:** Show whether the given digital signals are causal or non-casual.

**Part 1:** y(n) = x(n) - x(n-1).

**Part 2:** y(n) = a.x(n).

**Part 3:**  $y(n) = \sum_{k=-\infty}^{n} x(k)$ .

**Part 4:** y(n) = x(n) + 3x(n + 4).

**Part 5:**  $y(n) = x(n^2)$ .

**Part 6:** y(n) = x(-n).

Use the given hints.

# Causal Systems | Property : Causality

A system is said to be causal if the output of the system at any time n depends only on the present and past inputs, but does not depend on future inputs.

For a causal system,

$$y(n) = F[x(n), x(n-1), x(n-2), ...]$$

The output of a non-causal system depends not only on the present and past inputs, but also on the future inputs.

Q9: Show whether the given digital systems are static system (memoryless) or dynamic (memory) system.

**Part 1:**  $y(n) = [2 + \sin(n - 1)].x(n)$ 

**Part 2:**  $y(n) = max[x(n), x(n-1), ..., x(-\infty)]$ 

**Part 3:** y(n) = x(-n).

Use the given hints.

## Memoryless Systems | Property : Memory

A discrete-time system is called memoryless if its output at any instant n depends at most on the input sample at the same time, but not on the past or future samples of the input.

Memoryless systems or Static systems

$$y(n) = ax(n)$$

$$y(n) = nx(n) + bx^3(n)$$

Memoryless systems are also called Static systems

Memory systems are systems whose outputs also depend on past values of input or output.

$$y(n)=\sum_{k=0}^N x(n-k)=x[n-N]+x[n-(N-1)]+\cdots+x[n-1]+x[n]$$
 Memory system

Dynami c System If  $0 < N < \infty$ , the system is said to have finite memory

If  $N=\infty$ , the system is said to have inifinite memory

**Q10:** Consider the following LTI system, y[k] - 0.8y[k - 1] = x[k].

### Part 1:

Find the frequency response of the system, i.e., both the amplitude response and the phase response. Only find the equations and no need to plot them.

#### Part 2:

Let x[k] = 1 be the input with the frequency response obtained in **Part 1**. Find the system response.

### Part 3:

Let  $x[k] = \cos(\frac{\pi}{6}k - 0.4)$  be the input with the frequency response obtained in **Part 1**. Find the system response.

#### Part 4:

Let  $x(t) = \cos(1500t)$  be the **continuous** input with the frequency response obtained in **Part 1**. Find the system response if we sample the continuous signal every 0.001 seconds.

Q11: Explain the general shapes of the amplitude response using the given pole/zero plots.

Part 1:



Part 2:



Use the following hints:

 The Transfer Function Of A DT LTI System Can Be Written As

$$H(z) = K \frac{(z-z_1)(z-z_2)\cdots(z-z_n)}{(z-\gamma_1)(z-\gamma_2)\cdots(z-\gamma_n)}$$

where  $z_i$  and  $\gamma_i$  are Zeros and Poles of the System.

Let  $z = e^{j\Omega}$  (i.e evaluate H(z) on the unit circle). This Gives The System Frequency Response

$$H(e^{j\Omega}) = H(\Omega) = K \frac{(e^{j\Omega} - z_1)(e^{j\Omega} - z_2) \cdots (e^{j\Omega} - z_n)}{(e^{j\Omega} - \gamma_1)(e^{j\Omega} - \gamma_2) \cdots (e^{j\Omega} - \gamma_n)}$$

- lacksquare The Quantity  $e^{j\Omega}$  Is A Point On the Unit Circle
- The Quantity  $e^{j\Omega} z_i$  Is A Vector From  $z_i$  to  $e^{j\Omega}$
- The Quantity  $e^{j\Omega} \gamma_i$  Is A Vector From  $\gamma_i$  to  $e^{j\Omega}$
- Use Polar Coordinates To Define

$$r_i e^{j\phi_i} = e^{j\Omega} - z_i$$

and

$$d_i e^{j\theta_i} = e^{j\Omega} - \gamma_i$$

■ The Frequency Response Can Now Be Written As

$$H(\Omega) = K \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \cdots (r_n e^{j\phi_n})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \cdots (d_n e^{j\theta_n})}$$

$$= K \frac{r_1 r_2 \cdots r_n}{d_1 d_2 \cdots d_n} e^{j[(\phi_1 + \phi_2 + \cdots + \phi_n) - (\theta_1 + \theta_2 + \cdots + \theta_n)]}$$

■ The Amplitude Response Is

$$|H(\Omega)| = \left| K \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \cdots (r_n e^{j\phi_n})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \cdots (d_n e^{j\theta_n})} \right|$$

$$= K \frac{r_1 r_2 \cdots r_n}{d_1 d_2 \cdots d_n}$$

$$= K \frac{\text{product of distances of zeros to } e^{j\Omega}}{\text{product of distances of poles to } e^{j\Omega}}$$

■ The Phase Response Is

$$\angle H(\Omega) = \angle \left( K \frac{(r_1 e^{j\phi_1})(r_2 e^{j\phi_2}) \cdots (r_n e^{j\phi_n})}{(d_1 e^{j\theta_1})(d_2 e^{j\theta_2}) \cdots (d_n e^{j\theta_n})} \right)$$

$$= (\phi_1 + \phi_2 + \cdots + \phi_n)$$

$$- (\theta_1 + \theta_2 + \cdots + \theta_n)$$

$$= \text{sum of zero angles to } e^{j\Omega}$$

$$- \text{sum of pole angles to } e^{j\Omega}$$

 The Amplitude and Phase Response Of A Filter Is Controlled By Its Pole and Zero Locations