Module 03: Groundwater Hydraulics

Unit 04: Unsteady Two-Dimensional Flow using Finite Volume Method

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

 To solve unsteady state two dimensional groundwater flow equation using Finite Volume Method.

Dr. Anirban Dhar NPTEL Computational Hydraulics

Problem Definition to Solution

Dr. Anirban Dhar NPTEL Computational Hydraulics 3 /

Problem Definition

Figure: Homogeneous Aquifer System

Problem Definition

Governing equation

A two-dimensional (in space) IBVP can be written as,

$$\Omega: \quad \frac{S}{T} \frac{\partial h}{\partial t} = \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2}$$

$$S = 5 \times 10^{-5}$$
$$T = 200 \ m^2/day$$

Problem Definition

subject to

Initial Condition

$$h(x, y, 0) = h_0(x, y)$$

and

Boundary Condition

$$\Gamma_D^1: \quad h(0,y,t) = h_1(y)$$

$$\Gamma_D^2$$
: $h(L_x, y, t) = h_2(y)$

$$\Gamma_N^3: \quad \frac{\partial h}{\partial y}\Big|_{(x,0,t)} = 0$$

$$\begin{split} & \Gamma_N^3: \quad \frac{\partial h}{\partial y}\Big|_{(x,0,t)} = 0 \\ & \Gamma_N^4: \quad \frac{\partial h}{\partial y}\Big|_{(x,L_y,t)} = 0 \end{split}$$

Domain Discretization

From Lecture 15,

$$\frac{S}{T}\frac{h_P^{l+1}-h_P^l}{\Delta t}\Delta x\Delta y = \left[\left(\frac{\partial h}{\partial x}\right)_e^{l+1} - \left(\frac{\partial h}{\partial x}\right)_w^{l+1}\right]\Delta y + \left[\left(\frac{\partial h}{\partial y}\right)_n^{l+1} - \left(\frac{\partial h}{\partial y}\right)_s^{l+1}\right]\Delta x$$

For interior points,

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_e^{l+1} &= \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \\ \left(\frac{\partial h}{\partial x}\right)_w^{l+1} &= \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \\ \left(\frac{\partial h}{\partial y}\right)_n^{l+1} &= \frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} \\ \left(\frac{\partial h}{\partial y}\right)_n^{l+1} &= \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \end{split}$$

$$\frac{S}{T}\frac{h_P^{l+1}-h_P^{l}}{\Delta t} = \frac{h_E^{l+1}-2h_P^{l+1}+h_W^{l+1}}{\Delta x^2} + \frac{h_N^{l+1}-2h_P^{l+1}+h_S^{l+1}}{\Delta y^2}$$

In simplified form, this can be written as

$$\alpha_y h_S^{l+1} + \alpha_x h_W^{l+1} - \left[1 + 2(\alpha_x + \alpha_y)\right] h_P^{l+1} + \alpha_x h_E^{l+1} + \alpha_y h_N^{l+1} = -h_P^l$$
 with $\alpha_x = \frac{T\Delta t}{S\Delta x^2}$ and $\alpha_y = \frac{T\Delta t}{S\Delta y^2}$.

®

Boundary Conditions Left and Right Boundary

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_e^{l+1} &= \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} = \frac{-8h_{BW}^{l+1} + 9h_P^{l+1} - h_E^{l+1}}{3\Delta x} \\ \left(\frac{\partial h}{\partial y}\right)_x^{l+1} &= \frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_x^{l+1} = \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \end{split}$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\left(\frac{\partial h}{\partial x} \right)_e^{l+1} - \left(\frac{\partial h}{\partial x} \right)_w^{l+1} \right] \Delta y + \left[\left(\frac{\partial h}{\partial y} \right)_n^{l+1} - \left(\frac{\partial h}{\partial y} \right)_s^{l+1} \right] \Delta x$$

$$\begin{split} \frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y &= \left[\frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} - \frac{-8h_{BW}^{l+1} + 9h_P^{l+1} - h_E^{l+1}}{3\Delta x} \right] \Delta y \\ &+ \left[\frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} - \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \right] \Delta x \end{split}$$

In simplified form, this can be written as

$$\alpha_{\mathcal{Y}}h_{S}^{l+1} - \left[1 + 2(2\alpha_{x} + \alpha_{\mathcal{Y}})\right]h_{P}^{l+1} + \frac{4}{3}\alpha_{x}h_{E}^{l+1} + \alpha_{\mathcal{Y}}h_{N}^{l+1} = -h_{P}^{l} - \frac{8}{3}\alpha_{x}h_{BW}^{l+1}$$

Dr. Anirban Dhar

NPTEL

Boundary Conditions Left and Right Boundary

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_e^{l+1} &= \frac{8h_{BE}^{l+1} - 9h_P^{l+1} + h_W^{l+1}}{3\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} &= \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \\ &\left(\frac{\partial h}{\partial y}\right)_p^{l+1} &= \frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} &= \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \end{split}$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\left(\frac{\partial h}{\partial x} \right)_e^{l+1} - \left(\frac{\partial h}{\partial x} \right)_w^{l+1} \right] \Delta y + \left[\left(\frac{\partial h}{\partial y} \right)_n^{l+1} - \left(\frac{\partial h}{\partial y} \right)_s^{l+1} \right] \Delta x$$

$$\begin{split} \frac{S}{T} \frac{h_P^{l+1} - h_P^{l}}{\Delta t} \Delta x \Delta y &= \left[\frac{8 h_{BE}^{l+1} - 9 h_P^{l+1} + h_W^{l+1}}{3 \Delta x} - \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \right] \Delta y \\ &+ \left[\frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} - \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \right] \Delta x \end{split}$$

In simplified form, this can be written as

$$\alpha_{y}h_{S}^{l+1} + \frac{4}{3}\alpha_{x}h_{W}^{l+1} - \left[1 + 2(2\alpha_{x} + \alpha_{y})\right]h_{P}^{l+1} + \alpha_{y}h_{N}^{l+1} = -h_{P}^{l} - \frac{8}{3}\alpha_{x}h_{BE}^{l+1}$$

Dr. Anirban Dhar

NPTEL

Boundary Conditions

Top and Bottom Boundary

	n		
W● w	● <i>P</i>	$e \bullet E$	
•	s • S	•	

$$\left(\frac{\partial h}{\partial x}\right)_e^{l+1} = \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} = \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x}$$

$$\left(\frac{\partial h}{\partial y}\right)_n^{l+1} = \frac{8h_{BN}^{l+1} - 9h_P^{l+1} + h_S^{l+1}}{3\Delta y} = 0 \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} = \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y}$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\left(\frac{\partial h}{\partial x} \right)_e^{l+1} - \left(\frac{\partial h}{\partial x} \right)_w^{l+1} \right] \Delta y + \left[\left(\frac{\partial h}{\partial y} \right)_n^{l+1} - \left(\frac{\partial h}{\partial y} \right)_s^{l+1} \right] \Delta x$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} - \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \right] \Delta y + \left[0 - \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \right] \Delta x$$

In simplified form, this can be written as

$$\alpha_y h_S^{l+1} + \alpha_x h_W^{l+1} - \left[1 + (2\alpha_x + \alpha_y)\right] h_P^{l+1} + \alpha_x h_E^{l+1} = -h_P^l$$

Dr. Anirban Dhar

NPTEL

Boundary Conditions

Top and Bottom Boundary

$$\begin{split} & \left(\frac{\partial h}{\partial x}\right)_e^{l+1} = \frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_w^{l+1} = \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \\ & \left(\frac{\partial h}{\partial y}\right)_n^{l+1} = \frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_s^{l+1} = \frac{-8h_{BS}^{l+1} + 9h_P^{l+1} - h_N^{l+1}}{3\Delta y} = 0 \end{split}$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\left(\frac{\partial h}{\partial x} \right)_e^{l+1} - \left(\frac{\partial h}{\partial x} \right)_w^{l+1} \right] \Delta y + \left[\left(\frac{\partial h}{\partial y} \right)_n^{l+1} - \left(\frac{\partial h}{\partial y} \right)_s^{l+1} \right] \Delta x$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} - \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \right] \Delta y + \left[\frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} - 0 \right] \Delta x$$

In simplified form, this can be written as

$$\alpha_x h_W^{l+1} - \left[1 + (2\alpha_x + \alpha_y)\right] h_P^{l+1} + \alpha_x h_E^{l+1} + \alpha_y h_N^{l+1} = -h_P^l$$

Dr. Anirban Dhar

NPTEL

Boundary Conditions N-W Corner

$$\left(\frac{\partial h}{\partial x} \right)_{e}^{l+1} = \frac{h_{E}^{l+1} - h_{P}^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x} \right)_{w}^{l+1} = \frac{-8h_{BW}^{l+1} + 9h_{P}^{l+1} - h_{E}^{l+1}}{3\Delta x}$$

$$\left(\frac{\partial h}{\partial y} \right)_{n}^{l+1} = \frac{8h_{BN}^{l+1} - 9h_{P}^{l+1} + h_{S}^{l+1}}{3\Delta y} = 0 \quad \left(\frac{\partial h}{\partial y} \right)_{s}^{l+1} = \frac{h_{P}^{l+1} - h_{S}^{l+1}}{\Delta y}$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\left(\frac{\partial h}{\partial x} \right)_e^{l+1} - \left(\frac{\partial h}{\partial x} \right)_w^{l+1} \right] \Delta y + \left[\left(\frac{\partial h}{\partial y} \right)_n^{l+1} - \left(\frac{\partial h}{\partial y} \right)_s^{l+1} \right] \Delta x$$

$$\begin{split} \frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y &= \left[\frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} - \frac{-8h_{BW}^{l+1} + 9h_P^{l+1} - h_E^{l+1}}{3\Delta x} \right] \Delta y \\ &+ \left[0 - \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \right] \Delta x \end{split}$$

In simplified form, this can be written as

$$\alpha_{y}h_{S}^{l+1} - \left[1 + \left(4\alpha_{x} + \alpha_{y}\right)\right]h_{P}^{l+1} + \frac{4}{3}\alpha_{x}h_{E}^{l+1} = -h_{P}^{l} - \frac{8}{3}\alpha_{x}h_{BW}^{l+1}$$

Dr. Anirban Dhar

NPTEL

Boundary Conditions N-E Corner

		n	
•	W∙ w	P●	e
		S	
•	•	Š	
•	•	•	

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_{e}^{l+1} &= \frac{8h_{BE}^{l+1} - 9h_{P}^{l+1} + h_{W}^{l+1}}{3\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_{w}^{l+1} &= \frac{h_{P}^{l+1} - h_{W}^{l+1}}{\Delta x} \\ \left(\frac{\partial h}{\partial y}\right)_{n}^{l+1} &= \frac{8h_{BN}^{l+1} - 9h_{P}^{l+1} + h_{S}^{l+1}}{3\Delta y} &= 0 \quad \left(\frac{\partial h}{\partial y}\right)_{s}^{l+1} &= \frac{h_{P}^{l+1} - h_{S}^{l+1}}{\Delta y} \end{split}$$

$$\begin{split} \frac{S}{T} \frac{h_P^{l+1} - h_P^{l}}{\Delta t} \Delta x \Delta y &= \left[\frac{8 h_{BE}^{l+1} - 9 h_P^{l+1} + h_W^{l+1}}{3 \Delta x} - \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \right] \Delta y \\ &+ \left[0 - \frac{h_P^{l+1} - h_S^{l+1}}{\Delta y} \right] \Delta x \end{split}$$

In simplified form, this can be written as

$$\alpha_{y}h_{S}^{l+1} + \frac{4}{3}\alpha_{x}h_{W}^{l+1} - \left[1 + \left(4\alpha_{x} + \alpha_{y}\right)\right]h_{P}^{l+1} = -h_{P}^{l} - \frac{8}{3}\alpha_{x}h_{BE}^{l+1}$$

Dr. Anirban Dhar

NPTEL

Boundary Conditions S-E Corner

$$\begin{split} \left(\frac{\partial h}{\partial x}\right)_{e}^{l+1} &= \frac{8h_{BE}^{l+1} - 9h_{P}^{l+1} + h_{W}^{l+1}}{3\Delta x} \quad \left(\frac{\partial h}{\partial x}\right)_{w}^{l+1} = \frac{h_{P}^{l+1} - h_{W}^{l+1}}{\Delta x} \\ &\left(\frac{\partial h}{\partial y}\right)_{n}^{l+1} = \frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y}\right)_{s}^{l+1} = \frac{-8h_{BS}^{l+1} + 9h_{P}^{l+1} - h_{N}^{l+1}}{3\Delta y} = 0 \end{split}$$

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\left(\frac{\partial h}{\partial x} \right)_e^{l+1} - \left(\frac{\partial h}{\partial x} \right)_w^{l+1} \right] \Delta y + \left[\left(\frac{\partial h}{\partial y} \right)_n^{l+1} - \left(\frac{\partial h}{\partial y} \right)_s^{l+1} \right] \Delta x$$

$$\begin{split} \frac{S}{T} \frac{h_P^{l+1} - h_P^{l}}{\Delta t} \Delta x \Delta y &= \left[\frac{8 h_{BE}^{l+1} - 9 h_P^{l+1} + h_W^{l+1}}{3 \Delta x} - \frac{h_P^{l+1} - h_W^{l+1}}{\Delta x} \right] \Delta y \\ &+ \left[\frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} - 0 \right] \Delta x \end{split}$$

In simplified form, this can be written as

$$\frac{4}{3}\alpha_x h_W^{l+1} - \left[1 + \left(4\alpha_x + \alpha_y\right)\right] h_P^{l+1} + \alpha_y h_N^{l+1} = -h_P^l - \frac{8}{3}\alpha_x h_{BE}^{l+1}$$

Dr. Anirban Dhar

NPTEL

Boundary Conditions S-W Corner

$$\left(\frac{\partial h}{\partial x} \right)_{e}^{l+1} = \frac{h_{E}^{l+1} - h_{P}^{l+1}}{\Delta x} \quad \left(\frac{\partial h}{\partial x} \right)_{w}^{l+1} = \frac{-8h_{BW}^{l+1} + 9h_{P}^{l+1} - h_{E}^{l+1}}{3\Delta x}$$

$$\left(\frac{\partial h}{\partial y} \right)_{x}^{l+1} = \frac{h_{N}^{l+1} - h_{P}^{l+1}}{\Delta y} \quad \left(\frac{\partial h}{\partial y} \right)_{s}^{l+1} = \frac{-8h_{BS}^{l+1} + 9h_{P}^{l+1} - h_{N}^{l+1}}{3\Delta y} = 0$$

Dr. Anirban Dhar

NPTEL

$$\frac{S}{T} \frac{h_P^{l+1} - h_P^l}{\Delta t} \Delta x \Delta y = \left[\left(\frac{\partial h}{\partial x} \right)_e^{l+1} - \left(\frac{\partial h}{\partial x} \right)_w^{l+1} \right] \Delta y + \left[\left(\frac{\partial h}{\partial y} \right)_n^{l+1} - \left(\frac{\partial h}{\partial y} \right)_s^{l+1} \right] \Delta x$$

$$\begin{split} \frac{S}{T} \frac{h_P^{l+1} - h_P^{l}}{\Delta t} \Delta x \Delta y &= \left[\frac{h_E^{l+1} - h_P^{l+1}}{\Delta x} - \frac{-8h_{BW}^{l+1} + 9h_P^{l+1} - h_E^{l+1}}{3\Delta x} \right] \Delta y \\ &+ \left[\frac{h_N^{l+1} - h_P^{l+1}}{\Delta y} - 0 \right] \Delta x \end{split}$$

In simplified form, this can be written as

$$-\left[1+(4\alpha_{x}+\alpha_{y})\right]h_{P}^{l+1}+\frac{4}{3}\alpha_{x}h_{E}^{l+1}+\alpha_{y}h_{N}^{l+1}=-h_{P}^{l}-\frac{8}{3}\alpha_{x}h_{BW}^{l+1}$$

Dr. Anirban Dhar

NPTEL

General Form

In general form, the governing equation including boundary conditions can be written as,

$$a_S h_S^{l+1} + a_W h_W^{l+1} + a_P h_P^{l+1} + a_E h_E^{l+1} + a_N h_N^{l+1} = r_P$$

Source Code

Unsteady Two Dimensional Groundwater Flow with Finite Volume Method

- Without coefficient matrix using Gauss Seidel
 - unsteady_2D_fvm_conf_implicit_iterative.sci

Dr. Anirban Dhar

Thank You

Dr. Anirban Dhar

NPTEL