信号解析の数理

線型代数で信号を理解するために

calamari_dev

はじめに

準備中.

2022 年〇月

calamari_dev

目次

はじめに		iii
記号につ	οιιτ	vii
第1章	数ベクトル空間	1
1.1	行列とベクトル空間 ベクトル空間/基底/線型写像と表現行列/核と像/固有値と固有空 間/対角化	1
1.2	直交射影 直交射影/直交補空間/スペクトル定理	9
1.3	最小二乗問題 最小二乗問題/特異値分解/擬似逆行列	10
1.4	離散フーリエ変換	10
1.5	多重解像度解析	10
1.A	主成分分析	
1.B	低ランク近似	11
1.C	窓関数	11
	演習問題	11
第2章	ヒルベルト空間	13
2.1	無限次元の線型空間 距離空間/ノルム線型空間/内積空間/ヒルベルト空間	15
2.2	直交射影/直交補空間/正規直交列	15
2.3	フーリエ級数展開 フーリエ級数展開/フーリエ変換	15
2.4	多重解像度解析	15

vi 目次

2.A	半ノルムと IP 空間	15
	演習問題	15
第3章	確率空間	17
3.1	確率空間	17
	ウィナーフィルタ	
3.3	カルマンフィルタ	17
3.A	カルーネン・レーベ変換	17
	演習問題	17
付録 A	プログラム例	19
A.1	C 言語	19
索引		23

記号について

書籍ごとに異なることが多い記号について、記号と定義の組を示す.表にない記号については、巻末の索引を参照のこと.

記号	定義				
N	自然数の全体集合 {1,2,}				
\mathbb{Z}	整数の全体集合 {, -2, -1, 0, 1, 2,}				
K	実数の全体集合 ℝ か複素数の全体集合 ℂ				
S^{c}	集合Sの補集合				
$\operatorname{cl} S$	集合 S の閉包				
δ_{ij}	クロネッカーのデルタ				
$\langle u, v \rangle$	ベクトル u, v の内積				
$\ v\ $	ベクトルυのノルム				
I	単位行列				
0	零行列				
$m{M}^{T}$	行列 M の転置行列				
M^{H}	行列 M のエルミート転置				
$\ oldsymbol{M}\ _{ ext{F}}$	行列 M のフロベニウスノルム				
$\mathcal{F}_{\mathbb{Z}_n} x$	信号 x の離散フーリエ変換				
$\mathcal{F}_{\mathbb{Z}} x$	信号 x の離散時間フーリエ変換				
$\hat{f_n}$	関数 f のフーリエ係数				
$\mathcal{F}f$	関数 f のフーリエ変換				

第1章 数ベクトル空間

第1章で書く予定のことを並べておく.

1.1 行列とベクトル空間

信号解析に関連する議論へと移る前に、有限次元の線型代数について大まかに説明しておく.以下の解説はかなり大雑把なので、必要に応じて線型代数の教科書を参照してほしい.

1.1.1 ベクトル空間

以下,集合 K は実数の全体集合 R か,複素数の全体集合 C であるとする. K 上のベクトル空間とは次のように定義される,加法とスカラー乗法が備わった集合のことである.

定義 1.1.1 (ベクトル空間) V を空でない集合とする。また、任意の $x, y \in V$, $s \in \mathbb{K}$ について、和 $x + y \in V$ とスカラー倍 $sx \in V$ が定義されているとする。任意の $x, y, z \in V$, $s, t \in \mathbb{K}$ に対する以下の条件を満たすとき、V は \mathbb{K} 上のベクトル空間(vector space)であるという。

- 1. (x + y) + z = x + (y + z)
- 2. x + y = y + x
- 3. ある $\mathbf{0} \in V$ が存在し、任意の $\mathbf{v} \in V$ に対して $\mathbf{v} + \mathbf{0} = \mathbf{v}$ を満たす
- 4. 各 $v \in V$ に対し、ある $w \in V$ が一意に存在してv + w = 0を満たす
- 5. (s+t)x = sx + tx
- $6. \ s(\mathbf{x} + \mathbf{y}) = s\mathbf{x} + s\mathbf{y}$
- 7. (st)x = s(tx)
- 8. 1x = x

定義 1.1.1 の $\mathbf{0}$ を**零ベクトル** (zero vector), \mathbf{w} を \mathbf{v} の加法逆元 (additive inverse) という. 通常、 \mathbf{v} の加法逆元は $-\mathbf{v}$ と表される.

ノート 定義 1.1.1 はごてごてしているように見えるが、それは和とスカラー倍について、 \mathbb{K}^n と同様に計算できるよう、ルールをつけ加えていった結果といえる. \diamondsuit

ついで、ベクトル空間にかかわる概念を2つ定義する(これらの関係については、すぐ後で説明する).

定義 1.1.2 (線型結合) V を \mathbb{K} 上のベクトル空間, $v_1, ..., v_n$ を V の元 とする. $c_1v_1 + \cdots + c_nv_n$ ($c_1, ..., c_n \in \mathbb{K}$) という形をした V の元を, $v_1, ..., v_n$ の線型結合 (linear combination) という.

定義 1.1.3 (部分空間) Vを K 上のベクトル空間, Wを V の空でない部分集合とする. W が V の加法とスカラー乗法について定義 1.1.1 の条件をすべて満たすとき, W は V の部分ベクトル空間 (vector subspace), あるいは単に部分空間 (subspace) であるという.

ある部分集合 $W \subset V$ が V の部分空間かどうか調べるには、命題 1.1.4 を使うとよい.

命題 1.1.4 V を K 上のベクトル空間, W を V の空でない部分集合とする. このとき、次の命題は同値である.

- 1. W は V の部分空間である
- 2. 任意の $s \in \mathbb{K}$, $\mathbf{w}_1, \mathbf{w}_2 \in W$ に対して $s\mathbf{w}_1, \mathbf{w}_1 + \mathbf{w}_2 \in W$ である

例 1.1.5 *V* が № 上のベクトル空間なら, *V* 自身と **{0**} は *V* の部分空間である.

例 1.1.6 集合 $\{[t \ 2t \ 3t]^{\mathsf{T}} \mid t \in \mathbb{R}\}$ は \mathbb{R}^3 の部分空間である.

1.1.2 基底

任意のベクトル $\mathbf{x} = [x_1 \cdots x_n]^\mathsf{T} \in \mathbb{K}^n$ は,第 i 成分が 1,他の成分が 0 のベクトル \mathbf{e}_i を用いて $\mathbf{x} = x_1\mathbf{e}_1 + \cdots + x_n\mathbf{e}_n$ と表せる.すなわち,集合 $S_n = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ は「 \mathbb{K}^n のすべての元を S_n の元の線型結合で書ける」という 性質を持つ.

一般に、ベクトル空間 V の部分集合 S に対して、S の元の線型結合で書けるベクトルの全体集合を S が**生成する部分空間**(generated subspace)といい、 $\mathrm{span}\,S$ と表記する.この記法を使えば、先述した S_n が持つ性質を「 $\mathrm{span}\,S_n = \mathbb{K}^n$ が成り立つ」と言い換えられる.

 $\operatorname{span} S = \mathbb{K}^n$ を満たす集合 $S \subset \mathbb{K}^n$ は、 S_n 以外にも無数にある。たとえば $\mathbb{K}^n = \mathbb{R}^2$ のとき、集合 $T = \{[1 \quad 1]^\mathsf{T}, [2 \quad -1]^\mathsf{T}, [-1 \quad 0]^\mathsf{T}\}$ が生成する部分空間 は \mathbb{R}^2 である。しかし、 $S_2 = \{[1 \quad 0]^\mathsf{T}, [0 \quad 1]^\mathsf{T}\}$ の元の線型結合で \mathbb{R}^2 の元を表す方法はただ 1 通りであるのに対して、T はこの性質を持たない(図 1.1).

図 1.1 $v_1, v_2, v_3 \in T$ の線型結合で $x = \begin{bmatrix} 3/2 & 0 \end{bmatrix}^\mathsf{T}$ を表した様子. 明らかに $x = (-3/2)v_3$ である一方, $x = (v_1 + v_2)/2 = (1/2)v_1 + (1/2)v_2$ も成り立つ.

S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき,任意の $a_i,b_i\in\mathbb{K}$, $v_i\in S$ について

$$\sum_{i=1}^{k} a_i \mathbf{v}_i = \sum_{i=1}^{k} b_i \mathbf{v}_i \implies \begin{bmatrix} a_1 & \cdots & a_k \end{bmatrix} = \begin{bmatrix} b_1 & \cdots & b_k \end{bmatrix}$$

が成立する. $b_1 = \cdots = b_k = 0$ とすると

$$\sum_{i=1}^{k} a_i \mathbf{v}_i = \mathbf{0} \implies a_1 = \dots = a_k = 0 \tag{1.1}$$

が得られる.

任意の $a_1, ..., a_k \in \mathbb{K}$ に対して式 (1.1) が成立するとき, $v_1, ..., v_k$ は**線型独立**であるという.特に, $V = \operatorname{span} S$ かつ,S の元からなる有限個のベクトルの組が常に線型独立であるとき,S は V の基底であるという.以上を定義 1.1.7,1.1.8 にまとめておく.

定義 1.1.7 (生成系・線型独立・線型従属) V を \mathbb{K} 上のベクトル空間, S を V の部分集合とする. また, $\boldsymbol{v}_1,\dots,\boldsymbol{v}_k$ を V の元とする.

- 1. V = span S であるとき、S を V の生成系(generating set)という
- 2. $\sum_{i=1}^k c_i \mathbf{v}_i = \mathbf{0}$ を満たす $c_1, \dots, c_k \in \mathbb{K}$ の組が $c_1 = \dots = c_k = 0$ しかな いとき, $\mathbf{v}_1, \dots, \mathbf{v}_k$ は**線型独立**(linearly independent)であるという
- 3. $v_1, ..., v_k$ が線型独立でないとき、 $v_1, ..., v_k$ は**線型従属** (linearly dependent) であるという

定義 1.1.8 (基底) V を \mathbb{K} 上のベクトル空間, \mathcal{B} を V の部分集合とする。 \mathcal{B} が V の生成系かつ, \mathcal{B} に属する有限個のベクトル $\mathbf{v}_1, \dots, \mathbf{v}_k$ が常に線型独立であるとき, \mathcal{B} は V の基底(basis)であるという.

例1.1.9 (標準基底) S_n は \mathbb{K}^n の基底である. S_n を \mathbb{K}^n の標準基底 (standard basis) という.

さきほどの議論によれば、S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき、任意の $c_1,\dots,c_k\in\mathbb{K}$ について式(1.1) が成立する。すなわち、S は $\operatorname{span} S$ の基底である。実はこの逆も示せるので、次の命題が成立する.

命題 1.1.10 V を \mathbb{K} 上のベクトル空間, S を V の部分集合とする. このとき, 次の命題は同値である.

1. S の元の線型結合で span S の元を一意に表せる

2. S は span S の基底である

Vの基底で有限集合のものがあるとき,Vは**有限次元**(finite-dimensional)であるという。Vが有限次元なら,Vの基底はすべて有限集合で,その元の個数は等しい。すなわち,元の個数 #B は基底 B のとりかたによらず定まる。#B を V の次元(dimension)といい, $\dim V$ と表記する¹⁾。

1.1.3 線型写像と表現行列

以下, V は有限次元であるとする. 命題 1.1.10 によれば, V の基底 $\mathcal{B}=\{\pmb{v}_1,\dots,\pmb{v}_m\}$ $(m=\dim V)$ をとることで, 任意の $\pmb{x}\in V$ を

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m \quad (c_1, \dots, c_m \in \mathbb{K})$$
 (1.2)

の形で一意に表せる.言い換えると,V の各元 x に式(1.2)の $[c_1 \cdots c_m]^\mathsf{T}$ を割り当てる写像 $\phi:V\to\mathbb{K}^m$ を定義でき,それは単射 2)である.この写像 ϕ は,次に定義する「線型写像」の 1 例である.

定義 1.1.11 (線型写像) V と W を \mathbb{K} 上のベクトル空間とする. 写像 $f: V \to W$ が以下の条件を満たすとき, f は線型写像 (linear mapping) であるという.

- 1. 任意の $x, y \in V$ に対して f(x + y) = f(x) + f(y)
- 2. 任意の $\mathbf{x} \in V$, $c \in \mathbb{K}$ に対して $f(c\mathbf{x}) = cf(\mathbf{x})$

W を \mathbb{K} 上の有限次元ベクトル空間とする. W の基底 $\mathcal{B}'=\{\pmb{w}_1,\dots,\pmb{w}_n\}$ $(n=\dim W)$ をとると、 ϕ と同様

$$\mathbf{y} = d_1 \mathbf{w}_1 + \dots + d_n \mathbf{w}_n \iff \psi(\mathbf{y}) = \begin{bmatrix} d_1 & \dots & d_n \end{bmatrix}^\mathsf{T}$$

を満たす線型写像 $\psi:W\to\mathbb{K}^n$ が定義できる.

¹⁾ V が有限次元でないときも基底は存在し、濃度は基底の選び方に依存しない(証明は文献 [3]).

²⁾ 写像 f の定義域に属する任意の x,y について、命題「 $f(x)=f(y) \implies x=y$ 」が成立するとき、f は**単射**(injection)であるという.

 ϕ と ψ を利用すると、V から W への任意の線型写像 f を、対応する行列によって表現できる。 $\mathbf{x} \in V$ を任意にとる。 $\phi(\mathbf{x}) = [c_1 \cdots c_m]^\mathsf{T}$ とおくと

$$f(\mathbf{x}) = f\left(\sum_{i=1}^{m} c_i \mathbf{v}_i\right) = \sum_{i=1}^{m} c_i f(\mathbf{v}_i)$$

であるから

$$\psi(f(\boldsymbol{x})) = \sum_{i=1}^{m} c_i \psi(f(\boldsymbol{v}_i)) = \begin{bmatrix} \psi(f(\boldsymbol{v}_1)) & \cdots & \psi(f(\boldsymbol{v}_m)) \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}$$

となる. よって, $\mathbf{A} = [\psi(f(\mathbf{v}_1)) \cdots \psi(f(\mathbf{v}_m))]$ とおくと, 式

$$\psi(f(\mathbf{x})) = T(\phi(\mathbf{x})) \quad (T(\mathbf{x}) = A\mathbf{x})$$
(1.3)

が成り立つ.

$$V \xrightarrow{f} W$$
 の基底 \mathcal{B} と、 W の基底 \mathcal{B}' をとるごとに、 $n \times m$ 行 の基底 \mathcal{B} と、 W の基底 \mathcal{B}' をとるごとに、 $n \times m$ 行 列 $A = [\psi(f(\mathbf{v}_n)) \cdots \psi(f(\mathbf{v}_m))]$ を定義でき、 A は 式 (1.3) を満たす.この A を、基底 \mathcal{B} と \mathcal{B}' に関する f の表現行列(representation matrix)という.

なお、 \mathcal{B} の元を並べる順序に応じて、式(1.2) の c_1,\ldots,c_n の順序も変化するので、 ϕ は \mathcal{B} に対して一意ではない、 ϕ は \mathcal{B} の元を並べる順序を決めて初めて定まる。本書では、 $\mathcal{B}=\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ のような書き方をした場合、 \mathcal{B} の元を \boldsymbol{v}_i の添え字 i について昇順に並べると決めておく.

例 1.1.12 (形式的な微分) n 次以下の 1 変数多項式全体 $V_n = \{c_0 + c_1 x + \cdots + c_n x^n \mid c_0, \ldots, c_n \in \mathbb{R}\}$ は, \mathbb{R} 上の n+1 次元ベクトル空間である.また,写像 $D: V_i \to V_i$ を

$$D(c_0 + c_1 x + c_2 x^2) = c_1 + 2c_2 x \quad (c_0, c_1, c_2 \in \mathbb{R})$$

で定義すると、これは線型写像になる。 V_n の基底として $\mathcal{B}_n = \{1, x, ..., x^n\}$ を とったとき、基底 \mathcal{B}_3 と \mathcal{B}_2 に関する D の表現行列は $\begin{bmatrix} 0 & 1 & 9 \\ 0 & 0 & 7 \end{bmatrix}$ である. \diamondsuit

1.1.4 核と像

線型写像に付随して、重要なベクトル空間が2つ定まる.

定義 1.1.13 (核,像) $f: V \rightarrow W$ を線型写像とする.

- 1. 集合 $\{v \in V \mid f(v) = 0\}$ を f の核 (kernel) といい, Ker f と表す
- 2. 集合 $\{f(\mathbf{v}) | \mathbf{v} \in V\}$ を f の像 (image) といい, Im f と表す

一般に、 $\operatorname{Ker} f$ と $\operatorname{Im} f$ はそれぞれ V と W の部分空間になる。 $\operatorname{Ker} f$ について、次の命題が成立する。

命題 1.1.14 $f: V \to W$ を線型写像とする. このとき, f が単射であることと, Ker $f = \{\mathbf{0}\}$ が成立することは同値である.

証明 $f(\mathbf{0}) = f(\mathbf{0} + \mathbf{0}) = f(\mathbf{0}) + f(\mathbf{0})$ なので、 $f(\mathbf{0}) = \mathbf{0}$ である. よって、f が単射なら $f(\mathbf{v}) = \mathbf{0} \iff \mathbf{v} = \mathbf{0}$ だから、 $\operatorname{Ker} f = \{\mathbf{0}\}$ である.

また、 $\mathbf{v}_1, \mathbf{v}_2 \in V$ が $f(\mathbf{v}_1) = f(\mathbf{v}_2)$ を満たせば $f(\mathbf{v}_1 - \mathbf{v}_2) = f(\mathbf{v}_1) - f(\mathbf{v}_2) =$ $\mathbf{0}$ である.よって、 $\operatorname{Ker} f = \{\mathbf{0}\}$ なら $\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$ 、 $\mathbf{v}_1 = \mathbf{v}_2$ である.すなわち、 $\operatorname{Ker} f = \{\mathbf{0}\}$ なら f は単射である.

1.1.5 固有値と固有空間

定義 1.1.15 (固有値,固有ベクトル) A を n 次正方行列とする。 複素数 λ と 0 でないベクトル $x \in \mathbb{C}^n$ が式 $Ax = \lambda x$ を満たすとき, λ を A の固有値 (eigenvalue) という。 また,x を A の(固有値 λ に属する)固有ベクトル (eigenvector) という。

例 1.1.16 $x_1 = [1+i \ 2]^\mathsf{T}, \ x_2 = [1-i \ 2]^\mathsf{T}$ は $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ の固有ベクトル である.実際 $Ax_1 = \mathbf{i}x_1, \ Ax_2 = -\mathbf{i}x_2$ である.

定義 1.1.15 を満たす λ を見つけるには、次の命題 1.1.17 を利用するとよい.

命題 1.1.17 λ が正方行列 A の固有値であることと、 $\det(\lambda I - A) = 0$ であることは同値である. ただし、 $\det A$ は A の行列式である.

n 次多項式 $P(\lambda) = \det(\lambda I - A)$ を A の**固有多項式**(characteristic polynomial)という. 命題 1.1.17 から,集合 $\{\lambda \in \mathbb{C} \mid P(\lambda) = 0\}$ は A の固有値の全

体集合である.

系 1.1.18 任意の n 次正方行列 A は、相異なる固有値を少なくとも 1 個、多くとも n 個もつ.

証明 $\det(\lambda I - A) = 0$ は λ に関する n 次方程式なので,解は存在しても n 個以下である.また,代数学の基本定理より解は少なくとも 1 つ存在する. \square

定義 1.1.19 (固有空間) 定義 1.1.15 の A, λ について、集合

$$E_{\lambda}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{C}^n \mid \mathbf{A}\mathbf{x} = \lambda \mathbf{x} \}$$

は \mathbb{C}^n の部分空間になる. 部分空間 $E_{\lambda}(A)$ を、A の(固有値 λ に属する) **固有空間**(eigenspace)という.

固有空間は次の性質を持つ.

命題 1.1.20 λ_1 , λ_2 を正方行列 **A** の固有値とする. このとき, 次の命題が成立する.

- 1. $\mathbf{x} \in E_{\lambda_1}(\mathbf{A}) \implies \mathbf{A}\mathbf{x} \in E_{\lambda_1}(\mathbf{A})$
- 2. $\lambda_1 \neq \lambda_2 \implies E_{\lambda_1}(\mathbf{A}) \cap E_{\lambda_2}(\mathbf{A}) = \{\mathbf{0}\}\$

証明 後半のみ示す. $\mathbf{A0} = \lambda_1 \mathbf{0} = \lambda_2 \mathbf{0} = \mathbf{0}$ なので, $\mathbf{0} \in E_{\lambda_1}(\mathbf{A}) \cap E_{\lambda_2}(\mathbf{A})$ である. また, 任意に $\mathbf{x} \in E_{\lambda_1}(\mathbf{A}) \cap E_{\lambda_2}(\mathbf{A})$ をとると, $\mathbf{Ax} = \lambda_1 \mathbf{x} = \lambda_2 \mathbf{x}$ だから $(\lambda_1 - \lambda_2)\mathbf{x} = \mathbf{0}$ である. $\lambda_1 \neq \lambda_2$ なので $\mathbf{x} = \mathbf{0}$ である. よって, $E_{\lambda_1}(\mathbf{A}) \cap E_{\lambda_2}(\mathbf{A})$ は $\mathbf{0}$ 以外に元を持たない.

例 1.1.21 行列 $\mathbf{R} = \begin{bmatrix} 1/2 & -1/\sqrt{2} & 1/2 \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/2 & 1/\sqrt{2} & 1/2 \end{bmatrix}$ を各 $\mathbf{x} \in \mathbb{R}^3$ に左から掛けると, \mathbf{x} があるベクトル \mathbf{v} を軸に角度 θ だけ回転する. \mathbf{v} と θ を求めよう.

回転軸上にあるベクトルは R を掛けても回転しないから、v は Rv = v を満たす. よって、v を求めるには、連立 1 次方程式 (R-I)v = 0 を解けばよい. この解は不定であり、一般解は $v = t[1 \ 0 \ 1]^{\mathsf{T}}$ $(t \in \mathbb{R})$ となる.

以下では特に、 \boldsymbol{v} の長さが 1 となる $\boldsymbol{v}_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^\mathsf{T} / \sqrt{2}$ の場合について考

える. \boldsymbol{v}_1 と直交する 2 ベクトル $\boldsymbol{v}_2 = [0 \ 1 \ 0]^\mathsf{T}$, $\boldsymbol{v}_3 = [-1 \ 0 \ 1]^\mathsf{T}/\sqrt{2}$ をとると,集合 $\mathcal{B} = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$ は \mathbb{R}^3 の基底になる. \diamondsuit

1.1.6 対角化

1.2 直交射影

1.2.1 直交射影

1.2.2 直交補空間

1.2.3 スペクトル定理

1.3 最小二乗問題

- 1.3.1 最小二乗問題
- 1.3.2 特異値分解
- 1.3.3 擬似逆行列
- 1.4 離散フーリエ変換
- 1.5 多重解像度解析

1.A 主成分分析

1.B 低ランク近似

1.C 窓関数

演習問題

第2章 ヒルベルト空間

第2章で書く予定のことを並べておく.

2.1 無限次元の線型空間

- 2.1.1 距離空間
- 2.1.2 ノルム線型空間
- 2.1.3 内積空間
- 2.1.4 ヒルベルト空間
- 2.2 直交射影
- 2.2.1 直交射影
- 2.2.2 直交補空間
- 2.2.3 正規直交列
- 2.3 フーリエ級数展開
- 2.3.1 フーリエ級数展開
- 2.3.2 フーリエ変換
- 2.4 多重解像度解析
- 2.4.1 多重解像度解析
- 2.4.2 ウェーブレット変換

第3章 確率空間

第3章で書く予定のことを並べておく.

- 3.1 確率空間
- 3.2 ウィナーフィルタ
- 3.3 カルマンフィルタ
- 3.A カルーネン・レーベ変換

演習問題

付録 A プログラム例

A.1 C 言語

以下のプログラムは C11 に準拠している. まず,動作はするものの不作法 なプログラムを示す.

```
#include <math.h>
#include <sndfile.h>
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  int samplerate = 44100;
  int frames = 4 * samplerate;
  SF_INFO sfinfo = {.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16,
                    .channels = 1,
                    .samplerate = samplerate.
                    .frames = frames};
  SNDFILE *file = sf_open("charp.wav", SFM_WRITE, &sfinfo);
  double *buffer = malloc(sizeof(double) * frames);
  double pi = 3.141592653589793;
  double max_omega = 523.25 * 2.0 * pi / samplerate;
  for (int i = 0; i < frames; i++) {
    buffer[i] = sin(max_omega * i * i / frames);
  }
  sf_write_double(file, buffer, frames);
  sf_close(file);
  free(buffer);
 return 0;
7
```

```
gcc charp.c -lm -lsndfile -std=c11
```

手元でちょっとした実験をしたいだけなら、上のプログラムでも問題ない. しかし、誰かに使われる可能性があるのなら、次のように例外処理をきちんと 行うほうがよい.

```
#include <math.h>
#include <sndfile.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  const uint32_t samplerate = 44100;
  const uint32_t frames = 4 * samplerate;
  SNDFILE *const file =
      sf_open("charp.wav", SFM_WRITE,
              &(SF_INFO){.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16,
                          .channels = 1,
                           .samplerate = samplerate,
                           .frames = frames{);
  if (file == NULL) {
    fprintf(stderr, "failed to open \"charp.wav\".\n");
    return 1;
  }
  double *const buffer = malloc(sizeof(double) * frames);
  if (buffer == NULL) {
    fprintf(stderr, "malloc failed.\n");
   sf_close(file);
   return 1;
  }
  const double pi = 3.141592653589793;
  const double max_omega = 523.25 * 2.0 * pi / samplerate;
  for (uint32_t i = 0; i < frames; i++) {</pre>
    buffer[i] = sin(max_omega * i * i / frames);
  }
  if (sf_write_double(file, buffer, frames) != frames) {
    fprintf(stderr, "%s\n", sf_strerror(file));
    sf_close(file);
```

```
free(buffer);
  return 1;
}

sf_close(file);
  free(buffer);
  return 0;
}
```


22 参考文献

参考文献

- [1] 齋藤正彦. 線型代数入門. 東京大学出版会, 2020, 274p., (基礎数学, 1).
- [2] 松坂和夫. 集合·位相入門. 岩波書店, 2018, 329p.
- [3] 雪江明彦. 環と体とガロア理論. 日本評論社, 2019, 300p., (代数学, 2).

索引 23

索引

	【記号】		固有多項式	7	Ţ:	た 】
$\dim V$		5	固有值	7	単射	5
$\operatorname{Im} f$		7	固有ベクトル	7		
$\operatorname{Ker} f$		7				は 】
$\operatorname{span} S$		3	[さ]		表現行列	6
$E_{\lambda}(A)$		8	次元	5	標準基底	4
,,,,				3	部分空間	2
	【か】		零ベクトル	2	生成する―	3
核		7	線型結合	2	ベクトル空間	1
加法逆元		2	線型写像	5	部分—	→ 部分空間
基底		4	線型従属	4	HI- 73	H1-73 - 1-10
行列式		7	線型独立	4	[3	や】
固有空間		8	像	7	有限次元	5