

Lab 1 Grade Distribution

Year	λ
1	1.12
2	1.535714
3	1.581395
4	1.397059
5	0.978947
6	1.107527
7	1.533981
8	1.075949
9	1.6
10	1.327206
11	1.091413
12	1.532995
13	1.508278
14	1.299671
15	1.559966

Arctic Tern (Sterna paradisaea)

Black-crowned Night-Heron (Nycticorax nycticorax)

How do we manage to avoid stochastic extinction of populations?

- Keep lambda high
 - Habitat quality, predator management, etc.
- Maintain high population sizes
- Allow immigration to reestablish populations
 - Population connectivity

Lab 2 - Projecting Population Growth Using Exponential and Logistic Growth Models

Erik Blomberg (edited by Matt Mensinger and Liam Berigan)

09/15/2023

Contents

1	Lab Overview	2
	1.1 Learning objectives	2
2	Getting Started	2
3	Lab Part 1 - Exponential Growth	3
	3.1 Model system - invasive nutria	3