GEOMETRÍA II. Examen del Tema 2

 Doble Grado en Ingeniería Informática y Matemáticas – Curso 2014/15

Nombre:

- 1. En cada caso, probar la afirmación o dar un ejemplo de que es falsa
 - (a) Sea un espacio vectorial métrico (V, g) de dimensión 2 con $V = U \oplus W$. Si $g_{|U}$ y $g_{|W}$ son no degeneradas, entonces (V, g) es no degenerado.
 - (b) Si $W = \langle (2,1) \rangle$, existe una métrica en \mathbb{R}^2 donde $W = W^{\perp}$.
 - (c) Si g es una métrica definida negativa en un espacio vectorial V de dimensión 4, entonces $\det(M_B(g)) > 0$ para cualquier base B de V.
- 2. Según el parámetro a, hallar una base conjugada y signatura de la métrica de \mathbb{R}^3

$$M_{B_u}(g) = \left(\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 0 & a \\ 0 & a & 0 \end{array}\right)$$

- 3. Se considera la forma cuadrática de \mathbb{R}^3 dada por $\phi(x,y,z)=x^2-y^2+3z^2-4xz+2yz$. Hallar una base del subespacio ortogonal de $U=\{(x,y,z):x-2y=0\}$. Hallar la signatura y una base del radical de $g_{|U}$.
- 4. Sea U=<(1,0,1),(1,0,-1)>. Hallar $M_{B_u}(g)$ de una métrica g en \mathbb{R}^3 tal que $\sigma(g)=(0,2)$ y $R(g)\subset U$.

Importante: razonar todas las respuestas

Soluciones

- 1. En cada caso, probar la afirmación o dar un ejemplo de que es falsa
 - (a) FALSO. Sea \mathbb{R}^2 , U = <(1,0)>, W = <(0,1)>. Definitions

$$M_{B_u}(g) = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix},$$

donde $a \in \mathbb{R}$ es a determinar. Por un lado, $M_{B_U}(g_{|U|}) = M_{B_W}(g_{|W})(1)$, con $B_U = \{(1,0)\}$ y $B_W = \{(0,1)\}$, y obteniendo que las restricción de la métrica es no degenerada. Como queremos que g sea degenerada, sólo hay que imponer que el determinante de $M_{B_u}(g)$ sea cero, es decir, basta con tomar a = 1

(b) VERDADERO (primera manera, motivados por el plano de Lorentz-Minkowski). Tomamos $B = \{(2, 1), (0, 1)\}$ y definimos

$$M_{B_u}(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Respecto de la base B, en coordenadas, $(x, y) \in W^{\perp}$ si

$$\left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 1 \\ 0 \end{array}\right) = 0,$$

es decir, y = 0, luego $W \perp = <(1,0)_B> = <(2,1)> = W$.

(segunda manera) Sea B_u la base usual de \mathbb{R}^2 . Se está buscando una matriz (la de la métrica) tal que

$$\left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{cc} a & b \\ b & c \end{array}\right) \left(\begin{array}{c} 2 \\ 1 \end{array}\right) = 0,$$

tenga como única solución vectores proporcionales a (2,1). La ecuación es (2a+b)x+(2b+c)y=0. Por tanto, (2,1) es solución y el rango de la matriz de los coeficientes es 1. Queda pues 4a+4b+c=0 y $2a+b\neq 0$ (o $2b+c\neq 0$). Luego basta tomar $a=0,\ b=1,\ c=-4,$

(c) VERDADERO. (primera manera) Respecto de una base ortonormal B', $M_{B'}(g)$ tiene -1 en todos los elementos de la diagonal principal, luego su determinante es 1. La relación entre $M_{B'}(g)$ y $M_B(g)$ es que son conjugadas,

es decir, para cierta matriz regular P, $M_B(g) = P^t M_{B'}(g) P$. Por tanto, $det(M_B(g)) = det(P^t) \cdot 1 \cdot det(P) = det(P)^2 > 0$.

(segunda manera) Se probó en clase que los determinantes encajados obtenidos de una expresión matricial de una métrica definida negativa tienen signo alterno, empezando para n=1 por negativo. Luego para n=4 es positivo.

2. Haciendo ceros por conjugación, tenemos

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & a \\ 0 & a & 0 \end{pmatrix} \xrightarrow{F_{12}(1)} \begin{pmatrix} -2 & -1 & a \\ -1 & 0 & a \\ a & a & 0 \end{pmatrix} \xrightarrow{F_{21}(-1/2)} \begin{pmatrix} -2 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{a}{2} \\ 0 & \frac{a}{2} & 0 \end{pmatrix}$$

$$\xrightarrow{F_{31}(a/2)} \begin{pmatrix} -2 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{a}{2} \\ 0 & \frac{a}{2} & \frac{a^2}{2} \end{pmatrix}} \xrightarrow{F_{31}(a/2)} \begin{pmatrix} -2 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Por tanto la signatura es $\sigma(g) = (1,1)$. Las transformaciones de la identidad son:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{C_{12}(1)}
\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{C_{21}(-1/2)}
\begin{pmatrix}
1 & -\frac{1}{2} & 0 \\
1 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{C_{31}(a/2)}
\begin{pmatrix}
1 & -\frac{1}{2} & \frac{a}{2} \\
1 & \frac{1}{2} & \frac{a}{2} \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{C_{32}(-a)}
\begin{pmatrix}
1 & -\frac{1}{2} & a \\
1 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}.$$

Una base ortogonal es $B = \{(1, 1, 0), (-1/2, 1/2, 0), (a, 0, 1)\}$ y dividiendo por $\sqrt{2}$, $\sqrt{1/2}$ el primero y el segundo respectivamente, tenemos la base conjugada:

$$\{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (a, 0, a)\}.$$

3. Calculamos primero la expresión $M_{B_u}(g)$ de la métrica g asociada a ϕ , obteniendo

$$M_{B_u}(g) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{pmatrix}.$$

Hallamos una base de U resolviendo el sistema x-2y=0, obteniendo U=<(2,1,0),(0,0,1)>. Por tanto los vectores (x,y,z) de U^{\perp} son los que son ortogonales

a la base de U, luego

$$\begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = 0, \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0,$$

obteniendo 2x - y - 3z = 0 (las dos ecuaciones son las mismas). Resolviendo el sistema, concluimos $U^{\perp} = <(3,0,2), (1,2,0)>$.

Considerando la base anterior de U, $B_U = \{(2, 1, 0), (0, 0, 1)\}$, hallamos la expresión matrical de $g_{|U}$:

$$M_{B_u}(g_{|U}) = \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix}.$$

Diagonalizamos por congruencias, obteniendo

$$\begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix} \xrightarrow{F_{21}(1)} \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}.$$

Haciendo esta transformación a la base de U, tenemos:

$$\begin{pmatrix} 2 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{C_{21}(1)} \begin{pmatrix} 2 & 2 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

Esto nos dice que la signatura es $\sigma(g_{|U}) = (1,0)$ y que una base del radical de $g_{|U}$ es el segundo vector, es decir, $\{(2,1,1)\}$.

4. Tomamos un vector de U, por ejemplo, (1,0,1) y es el que va a generar el radical de g. Ampliamos a una base de \mathbb{R}^3 : $B = \{(1,0,0), (0,1,0), (1,0,1)\}$ y definimos

$$M_B(g) = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

Como esta base es cojungada, entonces la signatura es $\sigma(0,2)$ y el radical lo general el tercer vector de la base, es decir, $R(g) = <(1,0,1)> \subset U$. Para acabar, nos hace falta hallar $M_{B_n}(g)$. Sabemos que

$$M_{B_u}(g) = P^t M_B(g) P, \quad P = M(1_V, B, B_u).$$

Sabemos que

$$P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad |P^{-1}| = 1.$$

$$P = (P^*)^t = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Por tanto,

$$M_{B_u}(g) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$