Error Backpropagation of Feedforward Networks

참고. Learning Internal Representations by Error Propagation in the book "Parallel Distributed Processing" 1986 by Rumelhart, Hinton, Williams

1. 그래디언트.

오류 역전파는 사실 합성 함수에서 그래디언트를 계산하는 것과 같다. 따라서 합성 함수의 그 래디언트를 이해한다면 오류 역전파에 대한 모든 것을 이해하게 된다.

다음 합성 함수를 생각해 보자.

$$\mathbb{R}^{p} \xrightarrow{F} \mathbb{R}^{q} \xrightarrow{g} \mathbb{R}$$

변수 $\mathbf{x} = (x_1, ..., x_p)$, $\mathbf{y} = (y_1, ..., y_q)$ 를 대입하여 적으면 다음과 같다.

$$\mathbf{y} = F(\mathbf{x}), \ z = g(\mathbf{y})$$

 $\mathbf{y}\!=F(\mathbf{x}),\ z=g(\mathbf{y})$ 함수 F는 q 개의 함수 $y_1=f_1(\mathbf{x}),\ ...,y_q=f_q(\mathbf{x})$ 로 이루어져 있으며

$$F(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_a(\mathbf{x}))$$

또는

$$F(\mathbf{x}) = [f_1(\mathbf{x}) \dots f_q(\mathbf{x})]^T$$

로 적을 수 있다.

두 함수 $z = g(\mathbf{y})$ 와 $z = (g \circ F)(\mathbf{x})$ 의 그래다

$$\nabla g(\mathbf{y}) = \begin{bmatrix} \frac{\partial z}{\partial y_1} \\ \vdots \\ \frac{\partial z}{\partial y_q} \end{bmatrix}, \ \nabla (g \circ F)(\mathbf{x}) = \begin{bmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_p} \end{bmatrix}$$

이다. 합성 함수의 미분법은 $\nabla (g \circ F)(\mathbf{x})$ 가

$$\begin{bmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_p} \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_q}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_p} & \dots & \frac{\partial y_q}{\partial x_p} \end{bmatrix} \begin{bmatrix} \frac{\partial z}{\partial y_1} \\ \vdots \\ \frac{\partial z}{\partial y_q} \end{bmatrix}$$
(1.1)

임을 말해준다. F의 야코비 행렬 J(F)를 써서 표현하면

$$\nabla (g \circ F)(\mathbf{x}) = J(F)(\mathbf{x})^T \nabla g(\mathbf{y})$$

이다. 간단히

$$\nabla (q \circ F) = J(F)^T \nabla q \tag{1.2}$$

로 나타내기도 한다.

일반적으로

$$\mathbb{R}^{p_1} \xrightarrow{F_1} \cdots \xrightarrow{F_{n-1}} \mathbb{R}^{p_n} \xrightarrow{F_n} \mathbb{R}^q \xrightarrow{g} \mathbb{R}$$
 (1.3)

에서 합성 함수 $g \circ F_n \circ \cdots \circ F_1$ 의 그래디언트는

$$\nabla (q \circ F_n \circ \cdots \circ F_1) = J(F_1)^T \cdots J(F_n)^T \nabla q$$

이다. \mathbb{R}^q 에서 정의된 q의 그래디언트 ∇q 를 한 단계씩 차례로 이동(역전파)시켜 각 단계의

그래디언트를 얻을 수 있다.

$$\nabla \left(g \circ F_n \circ \cdots \circ F_1\right) \stackrel{J(F_1)^T}{\longleftarrow} \cdots \stackrel{J(F_{n-1})^T}{\longleftarrow} \nabla \left(g \circ F_n\right) \stackrel{J(F_n)^T}{\longleftarrow} \nabla g \tag{1.4}$$

이 과정은 네트워크에서 오류 역전파의 그것과 일치한다.

2. Feedforward networks.

Internal layer가 하나인 경우 오류 역전파를 살펴보자. Internal layer가 없거나 둘 이상인 경우는 하나인 경우와 유사하다.

2.1 네트워크

Internal layer가 하나이고 bias가 없는 네트워크는 다음과 같다.

$$\begin{bmatrix} x_1^0 \\ \vdots \\ x_p^0 \end{bmatrix} \xrightarrow{W^1} \begin{bmatrix} z_1^1 \\ \vdots \\ z_q^1 \end{bmatrix} \xrightarrow{F^1} \begin{bmatrix} x_1^1 \\ \vdots \\ x_q^1 \end{bmatrix} \xrightarrow{W^2} \begin{bmatrix} z_1^2 \\ \vdots \\ z_r^2 \end{bmatrix} \xrightarrow{F^2} \begin{bmatrix} x_1^2 \\ \vdots \\ x_r^2 \end{bmatrix}$$
(2.1)

 x_i^0 는 input, x_i^2 는 output, W^k 는 가중치 행렬, F^k 는 활성 함수이다. 이 네트워크에 손실 함수 g를 붙여 적으면

$$\mathbb{R}^{p} \xrightarrow{W^{1}} \mathbb{R}^{q} \xrightarrow{F^{1}} \mathbb{R}^{q} \xrightarrow{W^{2}} \mathbb{R}^{r} \xrightarrow{F^{2}} \mathbb{R}^{r} \xrightarrow{g} \mathbb{R}$$
 (2.2)

가 된다.

기호를 단순화하기 위하여

$$\mathbf{x}^{0} = [x_1^0 \cdots x_p^0]^T$$
$$\mathbf{z}^{1} = [z_1^1 \cdots z_q^1]^T$$

등으로 적기로 한다. 그러면

$$\mathbf{z}^{1} = W^{1}\mathbf{x}^{0}$$
$$\mathbf{x}^{1} = F^{1}(\mathbf{z}^{1})$$

이 된다. target은

$$\mathbf{t} = [t_1 \cdots t_r]^T$$

로 적는다. 손실 함수의 값, 곧 오류는

$$E = q(\mathbf{x}^2)$$

로 나타낸다.

가중치 행렬의 성분은

$$W^1 = \begin{bmatrix} w_{11}^1 & \cdots & w_{1p}^1 \\ \vdots & \ddots & \vdots \\ w_{q1}^1 & \cdots & w_{qp}^1 \end{bmatrix}$$

로 적는다.

2.2 그래디언트

(2.2)의 각 단계에서의 그래디언트를 (1.4)와 같이 구한다.

$$\nabla (g \circ F^2 \circ W^2 \circ F^1) \stackrel{\mathcal{J}(F^1)^T}{\longleftarrow} \nabla (g \circ F^2 \circ W^2) \stackrel{\mathcal{J}(W^2)^T}{\longleftarrow} \nabla (g \circ F^2) \stackrel{\mathcal{J}(F^2)^T}{\longleftarrow} \nabla g \quad (2.3)$$

이것이 오류 역전파를 계산하기 쉽게 해준다. 각 단계의 그래디언트를 바로 전 단계의 그래디 언트로부터 구할 수 있기 때문이다.

그런데 여기서 생각해 볼 것은 그래디언트를 구할 때에는 네트워크의 독립 변수가 W^1 과 W^2 라는 것이다. (2.3)에서는 W^1 과 W^2 가 함수이기 때문에 그것을 직접 적용할 수 없다.

먼저 E를 W^2 로 미분하기 위하여 함수 ϕ^2 를

$$\phi^2(W^2) = W^2 \mathbf{x}^1$$

이라 정의하자. 오류는

$$E = (g \circ F^2 \circ \phi^2)(W^2) \tag{2.4}$$

가 된다. 합성 함수로 표현하면

$$\mathbb{R}^{qr} \xrightarrow{\phi^2} \mathbb{R}^r \xrightarrow{F^2} \mathbb{R}^r \xrightarrow{g} \mathbb{R}^r$$

이다. W^2 는 $r \times q$ 행렬이므로 \mathbb{R}^q 의 원소로 간주할 수 있다.

결국 (2.4)의 그래디언트 $\nabla (g \circ F^2 \circ \phi^2)$ 를 구하는 것이 목표가 된다. 이것을 W^2 에 대한 E의 그래디언트라 하고 $\nabla_{W^2}E$ 로 쓰기로 하자.

$$\nabla_{W^2} E = \nabla \left(g \circ F^2 \circ \phi^2 \right) (W^2)$$

이것을 계산해 보자. $z_k^2 = \sum_{l=1}^q w_{kl}^2 x_l^1$ 에서

$$\frac{\partial E}{\partial w_{ij}^2} = \frac{\partial E}{\partial z_i^2} \frac{\partial z_i^2}{\partial w_{ij}^2}$$
$$= \frac{\partial E}{\partial z_i^2} x_j^1$$

를 얻을 수 있다. 이 식을 행렬로 나타내면

$$\begin{bmatrix} \frac{\partial E}{\partial w_{11}^2} & \cdots & \frac{\partial E}{\partial w_{1q}^2} \\ \vdots & \ddots & \vdots \\ \frac{\partial E}{\partial w_{r1}^2} & \cdots & \frac{\partial E}{\partial w_{rq}^2} \end{bmatrix} = \begin{bmatrix} \frac{\partial E}{\partial z_1^2} \\ \vdots \\ \frac{\partial E}{\partial z_r^2} \end{bmatrix} \begin{bmatrix} x_1^1 \cdots x_q^1 \end{bmatrix} = \nabla \left(g \, \circ \, F^2 \right) \mathbf{x}^{1T}$$

가 된다. 야코비 행렬과 \mathbf{x}^1 으로 표현하면

$$\nabla_{W^2} E = J(F^2)^T \nabla g \mathbf{x}^{1T} \tag{2.5}$$

이다.

 \diamondsuit W^2 를 벡터로 표현하여 계산할 때는

$$\nabla_{W^2} E = J(\phi^2) J(F^2)^T \nabla g$$

가 된다. 식 (2.5)는 W^2 를 행렬로 표현했을 때의 식이다.

같은 방법으로 W^1 에 대한 E의 그래디언트를 구한다.

$$\mathbb{R}^{qp} \xrightarrow{\phi^1} \mathbb{R}^q \xrightarrow{F^1} \mathbb{R}^q \xrightarrow{W^2} \mathbb{R}^r \xrightarrow{F^2} \mathbb{R}^r \xrightarrow{g} \mathbb{R}^q \xrightarrow{g} \mathbb{R}^$$

이 때에는 W^2 가 함수로 작용하므로

$$\nabla_{W^{1}}E = J(F^{1})^{T} W^{2T} J(F^{2})^{T} \nabla g \mathbf{x}^{0T}$$
(2.6)

를 얻는다. W^2 가 행렬이므로 $J(W^2) = W^2$ 이다.

training은 W^k 를 $W^k - \eta \nabla_{W^k} E$ 로 반복하여 바꾸는 것으로 이루어진다. 이렇게 행렬로 계산하기 위하여 $\nabla_{W^k} E$ 를 행렬로 표현하였다. η 는 learning rate이다.

2.3 bias

네트워크 (2.1), (2.2)에 bias를 추가하면

$$\begin{bmatrix} x_1^0 \\ \vdots \\ x_p^0 \end{bmatrix} \xrightarrow{(b^1, W^1)} \begin{bmatrix} z_1^1 \\ \vdots \\ z_q^1 \end{bmatrix} \xrightarrow{F^1} \begin{bmatrix} x_1^1 \\ \vdots \\ x_q^1 \end{bmatrix} \xrightarrow{(b^2, W^2)} \begin{bmatrix} z_1^2 \\ \vdots \\ z_r^2 \end{bmatrix} \xrightarrow{F^2} \begin{bmatrix} x_1^2 \\ \vdots \\ x_r^2 \end{bmatrix}$$
(2.7)

$$\mathbb{R}^{p} \xrightarrow{(b^{1}, W^{1})} \mathbb{R}^{q} \xrightarrow{F^{1}} \mathbb{R}^{q} \xrightarrow{(b^{2}, W^{2})} \mathbb{R}^{r} \xrightarrow{F^{2}} \mathbb{R}^{r} \xrightarrow{g} \mathbb{R}$$
 (2.8)

이 된다. bias는

$$b^1 = \begin{bmatrix} b_1^1 \\ \vdots \\ b_q^1 \end{bmatrix}, b^2 = \begin{bmatrix} b_1^2 \\ \vdots \\ b_r^2 \end{bmatrix}$$

이고, 두 함수 (b^1, W^1) 과 (b^2, W^2) 는 각각

$$(b^1, W^1)(\mathbf{x}^0) = b^1 + W^1 \mathbf{x}^0$$

 $(b^2, W^2)(\mathbf{x}^1) = b^2 + W^2 \mathbf{x}^1$

로 정의된다.

bias가 있는 경우 그래디언트를 계산해보자. W^k 에 대한 E의 그래디언트는 식 (2.5), (2.6) 과 일치한다. b^k 에 대한 E의 그래디언트 $\nabla_{\iota k} E$ 를 구해보자.

먼저 $\nabla_{b^2} E$ 를 구한다. $z_i^2 = b_i^2 + \sum_{j=1}^q w_{ij}^2 x_j^1$ 이므로

$$\frac{\partial E}{\partial b_i^2} = \frac{\partial E}{\partial z_i^2} \frac{\partial z_i^2}{\partial b_i^2}$$
$$= \frac{\partial E}{\partial z_i^2}$$

임을 알 수 있다. 따라서

$$\begin{bmatrix} \frac{\partial E}{\partial b_1^2} \\ \vdots \\ \frac{\partial E}{\partial b_r^2} \end{bmatrix} = \begin{bmatrix} \frac{\partial E}{\partial z_1^2} \\ \vdots \\ \frac{\partial E}{\partial z_r^2} \end{bmatrix}$$

이고 야코비 행렬을 써서

$$\nabla_{h^2} E = J(F^2)^T \nabla g \tag{2.9}$$

를 얻는다. 마찬가지 방법으로

$$\nabla_{b^1} E = J(F^1)^T W^{2T} J(F^2)^T \nabla g \tag{2.10}$$

를 얻을 수 있다. 함수 (b^2, W^2) 의 야코비 행렬은 bias가 없을 때와 일치한다. 곧

$$J(b^2, W^2) = J(W^2) = W^2$$

이다.

3. 활성 함수와 손실 함수

training에서는 네 식 (2.5), (2.6), (2.9), (2.10)을 계산한다. 이 식들은 활성 함수와 손실 함수에 따라 간단하게 줄일 수도 있다.

3.1 활성 함수

활성 함수 F^1 과 F^2 는 각 성분별로 정의되고 각 성분의 함수가 같은 경우가 대부분이다. 곧,

$$F^{1}(\mathbf{z}^{1}) = (f^{1}(z_{1}^{1}), ..., f^{1}(z_{q}^{1}))$$

$$F^{2}(\mathbf{z}^{2}) = (f^{2}(z_{1}^{2}), ..., f^{2}(z_{r}^{2}))$$
(3.1)

와 같은 형태로 정의된다. 이것은 빠른 계산을 위한 현실적인 선택이다. 이론적으로는 야코비 행렬을 구할 수 있는, 미분 가능한 함수이면 충분하다.

식 (3.1)과 같이 정의된 두 활성 함수 F^1 과 F^2 의 야코비 행렬은 대각행렬이다. 예를 들어 F^2 의 야코비 행렬은 다음과 같다.

$$J(F^2) = \begin{bmatrix} f^{2\prime}(z_1^2) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f^{2\prime}(z_r^2) \end{bmatrix}$$

대각행렬과 벡터의 곱은 Hadamard product로 고쳐 쓸 수 있으므로 $\nabla (g \circ F^2)$ 는

$$J(F^{2})^{T} \nabla g = \begin{bmatrix} f^{2'}(z_{1}^{2}) \\ \vdots \\ f^{2'}(z_{r}^{2}) \end{bmatrix} * \nabla g$$
(3.2)

- 로 계산할 수 있다. *는 Hadamard product이다.
- ◇ 식 (3.2)는 (3.1)과 같이 각 성분별로 정의된 함수에만 적용할 수 있다. 일반적인 활성 함수, 예를 들어 softmax에는 이 식을 적용할 수 없다.
- 3.1.1 logistic sigmoid. logistic sigmoid는 $\sigma(x)=\frac{1}{1+e^{-x}}$ 로 정의된다. 이 함수의 도함수는

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

를 만족한다. 따라서 f^k 가 logistic sigmoid이면

$$f^{k'}(z_i^k) = x_i^k (1 - x_i^k) \tag{3.3}$$

가 성립한다.

3.1.2 hyperbolic tangent. hyperbolic tangent는 $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ 로 정의된다. 이 함수의 도함수는

$$\tanh'(x) = 1 - \tanh(x)^2$$

를 만족한다. 따라서 f^k 가 hyperbolic tangent이면

$$f^{k'}(z_i^k) = 1 - (x_i^k)^2$$

이 성립한다.

3.1.3 softmax. 함수 F^2 가 softmax이면

$$F^{2}(z_{1}^{2}, ..., z_{r}^{2}) = \left(\frac{e^{z_{1}^{2}}}{e^{z_{1}^{2}} + ... + e^{z_{r}^{2}}}, ..., \frac{e^{z_{r}^{2}}}{e^{z_{1}^{2}} + ... + e^{z_{r}^{2}}}\right)$$
(3.4)

이다. 각 성분

$$x_i^2 = \frac{e^{z_i^2}}{e^{z_1^2} + \dots + e^{z_r^2}}, \ k = 1, \dots, r$$

를 미분하여 야코비 행렬

$$J(F^{2}) = \begin{bmatrix} x_{1}^{2}(1-x_{1}^{2}) & \cdots & -x_{1}^{2}x_{r}^{2} \\ \vdots & \ddots & \vdots \\ -x_{r}^{2}x_{1}^{2} & \cdots & x_{r}^{2}(1-x_{r}^{2}) \end{bmatrix}$$
(3.5)

를 얻을 수 있다.

3.2 손실 함수

이 보고서에서 g로 나타낸 손실 함수는 mean squared error와 cross entropy가 있다. 전자는 유클리드 거리를 제곱한 것이다. 후자는 r=1인 경우 binary cross entropy라 불리는 형태로 사용되며, r>1인 경우 categorical cross entropy라 불리는 형태가 사용된다.

3.2.1 mean squared error

Mean squared error ≒

$$g(\mathbf{x}^{2}) = \frac{1}{2} ||\mathbf{t} - \mathbf{x}^{2}||^{2} = \frac{1}{2} \sum_{i=1}^{r} (t_{i} - x_{i}^{2})^{2}$$

로 정의된다. 계산을 줄이기 위하여 $\frac{1}{2}$ 을 곱하였다. 이 함수의 그래디언트는

$$\nabla g\left(\mathbf{x}^{\;2}\right) = \mathbf{x}^{2} - \mathbf{t} = \begin{bmatrix} x_{1}^{2} - t_{1} \\ \vdots \\ x_{r}^{2} - t_{r} \end{bmatrix}$$

이다.

3.2.2 binary cross entropy와 logistic sigmoid. 각 target t_i 가 베르누이 분포를 따르는 확률이거나 그렇게 이해되는 경우 손실 함수로 binary cross entropy를 사용할 수 있다.

$$g(\mathbf{x}^{\,2}) = -\sum_{i=1}^{r} (t_i \log x_i^2 + (1-t_i) \log (1-x_i^2))$$

이 때 g의 그래디언트는

$$\nabla g(\mathbf{x}^{2}) = \begin{bmatrix} \frac{x_{1}^{2} - t_{1}}{x_{1}^{2}(1 - x_{1}^{2})} \\ \vdots \\ \frac{x_{r}^{2} - t_{r}}{x_{r}^{2}(1 - x_{r}^{2})} \end{bmatrix}$$
(3.6)

이다.

이 형태에서 logistic sigmoid를 활성함수로 사용하면 그래디언트의 식이 매우 단순하다. F^2 가 식 (3.1)과 같이 주어지고 각 성분 f^2 가 logistic sigmoid이면, 식 (3.2), (3.3), (3.6)으로부터

$$\nabla (q \circ F^2)(\mathbf{z}^2) = \mathbf{x}^2 - \mathbf{t}$$
 (3.7)

를 얻을 수 있다.

3.2.3 categorical cross entropy와 softmax. target $t_1, ..., t_r$ 가 $t_i \geq 0$, $\sum t_i = 1$ 을 만족할 경우, 곧 확률인 경우에는 손실 함수 q를

$$g(\mathbf{x}^2) = -\sum_{k=1}^{c} t_k \log x_k^2$$

로 정의할 수 있다. 이것을 categorical cross entropy라 한다. 이 때 g의 그래디언트는

$$\nabla g(\mathbf{x}^2) = -\begin{bmatrix} t_1/x_1^2 \\ \vdots \\ t_r/x_r^2 \end{bmatrix}$$
(3.8)

이다. 이 형태에서는 softmax를 활성 함수로 사용하면 그래디언트를 쉽게 계산할 수 있다. F^2 가 (3.4)와 같이 주어지면, 식 (3.5), (3.8)로부터

$$\nabla (g \circ F^2)(\mathbf{z}^2) = \mathbf{x}^2 - \mathbf{t}$$
 (3.9)

를 얻을 수 있다. 식 (3.7)과 동일한 결과이다.

4. 프로그래밍

Feedforward network는 많은 양의 데이터를 다룬다. 따라서 벡터에 대하여 정의된 식 (2.5), (2.6), (2.9), (2.10)은 그대로 적용되지 않는다. 코딩에 사용할 수 있는 표현법을 알아보자.

4.1 열 벡터 표현

p 차원 input $x_1^0, ..., x_n^0$ 과 대응되는 r 차원 target $t_1, ..., t_n$ 이 주어졌다고 하자. 이 데이터를 식 (2.7). (2.8)의 네트워크에 적용해 보자.

먼저 input과 target을 결합하여 두 행렬

$$X^0 = \begin{bmatrix} x_{11}^0 \cdots x_{1n}^0 \\ \vdots & \ddots & \vdots \\ x_{n1}^0 \cdots x_{nn}^0 \end{bmatrix}, \quad T = \begin{bmatrix} t_{11} \cdots t_{1n} \\ \vdots & \ddots & \vdots \\ t_{r1} \cdots t_{rn} \end{bmatrix}$$

을 정의한다. 마찬가지 방법으로

$$Z^1 = \begin{bmatrix} z_{11}^1 \cdots z_{1n}^1 \\ \vdots & \ddots & \vdots \\ z_{q1}^1 \cdots z_{qn}^1 \end{bmatrix}, \quad X^1 = \begin{bmatrix} x_{11}^1 \cdots x_{1n}^1 \\ \vdots & \ddots & \vdots \\ x_{q1}^1 \cdots x_{qn}^1 \end{bmatrix}$$

 Z^2 . X^2 등을 정의한다. 이들은 다음 식을 만족한다.

$$Z^1 = b^1 + W^1 X^0$$
, $X^1 = F^1(Z^1)$, ...

 X^2 에 대한 q의 그래디언트를 $r \times n$ 행렬로 다음과 같이 나타낸다.

$$\nabla g = \nabla_{X^2} E = \begin{bmatrix} \frac{\partial E}{\partial x_{11}^2} & \dots & \frac{\partial E}{\partial x_{1n}^2} \\ \vdots & \ddots & \vdots \\ \frac{\partial E}{\partial x_{r1}^2} & \dots & \frac{\partial E}{\partial x_{rn}^2} \end{bmatrix}$$

그래디언트는 일반적으로 벡터로 표현되지만 여기서는 계산을 위하여 행렬로 나타낸다. $\nabla_{Z^2}E, \ \nabla_{X^1}E, \ \nabla_{Z^1}E$ 등도 유사하게 행렬로 나타내기로 한다. $F^1(Z^1)$ 은 행렬

$$F^{1}(Z^{1}) = \begin{bmatrix} f^{1}(z_{11}^{1}) \cdots f^{1}(z_{1n}^{1}) \\ \vdots & \ddots & \vdots \\ f^{1}(z_{q1}^{1}) \cdots f^{1}(z_{qn}^{1}) \end{bmatrix}$$

이며 $F^2(Z^2)$ 도 유사하다. 이 행렬의 각 성분의 도함수를 다시 행렬로 표현한다.

$$F^{1'}(Z^1) = \begin{bmatrix} f^{1'}(z_{11}^1) \cdots f^{1'}(z_{1n}^1) \\ \vdots & \ddots & \vdots \\ f^{1'}(z_{q1}^1) \cdots f^{1'}(z_{qn}^1) \end{bmatrix}$$

이 행렬은 F^1 의 야코비 행렬과 다름을 확인하기 바란다. 참고로 야코비 행렬 $J(F^1)$ 은 qn imes qn 행렬이다. $F^{2'}(Z^2)$ 도 마찬가지로 r imes n 행렬로 나타낸다.

주의를 기울여 계산하면 행렬 $\nabla_{Z^2}E$, $\nabla_{X^1}E$, $\nabla_{Z^1}E$ 가

$$\nabla_{Z^2}E = F^2{}'(Z^2) * \nabla g$$

$$\nabla_{X^1}E = W^2{}^T\nabla_{Z^2}E$$

$$\nabla_{Z^1}E = F^1{}'(Z^1) * \nabla_{X^1}E$$

임을 확인할 수 있다. 여기서 *는 hadamard product이다.

식 (2.5), (2.6), (2.9), (2.10)로 주어진 오류 역전파는 다음과 같이 변형된다.

$$\nabla_{W^2} E = \nabla_{Z^2} E X^{1T}$$

$$\nabla_{b^2} E = \text{row_sum} (\nabla_{Z^2} E)$$

$$\nabla_{W^1} E = \nabla_{Z^1} E X^{0T}$$

$$\nabla_{b^1} E = \text{row_sum} (\nabla_{Z^1} E)$$

여기서 row_sum은 행렬의 row 성분의 합이다. 곧

$$\operatorname{row_sum} \begin{bmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdots a_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + \cdots + a_{1n} \\ \vdots \\ a_{m1} + \cdots + a_{mn} \end{bmatrix}$$

이다.

4.2 행 벡터 표현

프로그램을 작성하다 보면 때때로 열 벡터 대신 행 벡터를 사용하고 싶은 유혹이 생긴다. 주어진 데이터가 행 벡터 표현인 경우가 많을뿐더러 numpy의 행렬과도 잘 어울린다.

행 벡터 표현은 행렬을 전치(transpose)하여 표현하면 된다.

$$X^0 = \begin{bmatrix} x_{11}^0 \cdots x_{1p}^0 \\ \vdots & \ddots & \vdots \\ x_{n1}^0 \cdots x_{np}^0 \end{bmatrix}, \quad T = \begin{bmatrix} t_{11} \cdots t_{1r} \\ \vdots & \ddots & \vdots \\ t_{n1} \cdots t_{nr} \end{bmatrix}$$

$$Z^{1} = \begin{bmatrix} z_{11}^{1} \cdots z_{1q}^{1} \\ \vdots & \ddots & \vdots \\ z_{n1}^{1} \cdots z_{nq}^{1} \end{bmatrix}, \quad X^{1} = \begin{bmatrix} x_{11}^{1} \cdots x_{1q}^{1} \\ \vdots & \ddots & \vdots \\ x_{n1}^{1} \cdots x_{nq}^{1} \end{bmatrix}$$

bias와 가중치 행렬도 전치시킨다.

$$b^1 = \begin{bmatrix} b_1^1 \cdots b_q^1 \end{bmatrix}, \quad W^1 = \begin{bmatrix} w_{11}^1 \cdots w_{1q}^1 \\ \vdots & \ddots & \vdots \\ w_{p1}^1 \cdots w_{pq} \end{bmatrix}$$

행렬의 곱은 순서를 바꾼다.

$$Z^{1} = b^{1} + X^{0} W^{1}, X^{1} = F^{1}(Z^{1}), \dots$$

그래디언트를 계산해 보자.

$$\nabla g = \nabla_{X^2} E = \begin{bmatrix} \frac{\partial E}{\partial x_{11}^2} \cdots \frac{\partial E}{\partial x_{1r}^2} \\ \vdots & \ddots & \vdots \\ \frac{\partial E}{\partial x_{n1}^2} \cdots \frac{\partial E}{\partial x_{nr}^2} \end{bmatrix}, \quad F^{1'}(Z^1) = \begin{bmatrix} f'(z_{11}^1) \cdots f'(z_{1q}^1) \\ \vdots & \ddots & \vdots \\ f'(z_{n1}^1) \cdots f'(z_{nq}^1) \end{bmatrix}$$

Hadamard product는 영향을 받지 않는다.

$$\nabla_{Z^2} E = F^{2'}(Z^2) * \nabla g$$

행렬 곱은 순서를 바꾼다.

$$\nabla_{X^1} E = \nabla_{Z^2} E W^{2T}$$

이 식에서 W^2 가 아닌 W^{2T} 를 곱해야 한다. W^2 가 이미 전치된 행렬이기 때문이다.

$$\nabla_{Z^1} E = F^{1\prime}(Z^1) * \nabla_{X^1} E$$

 b^k 와 W^k 의 그래디언트는 다음과 같다.

$$\nabla_{W^2}E = X^{1T} \nabla_{Z^2}E$$

$$\nabla_{b^2}E = \text{column_sum}(\nabla_{Z^2}E)$$

$$\nabla_{W^1}E = X^{0T} \nabla_{Z^1}E$$

$$\nabla_{b^1}E = \text{column_sum}(\nabla_{Z^1}E)$$

column_sum은 열 성분의 합이다.

4.3 softmax

함수 Softmax는 categorical cross entropy와 결합하여 사용할 때가 많다. 이 때에는 (3.9)와 같이 그래디언트 계산이 단순하다. 여기서는 일반적인 경우에 대하여 알아본다.

p 차원 Input 데이터 $x_1, ..., x_n$ 에 대하여

$$y_i = \operatorname{softmax}(x_i),$$

곧, $y_{ij} = e^{x_{ij}} / \sum_{k=1}^{p} e^{x_{kj}}$ 라 하자. 행렬로 나타내면

$$X = \begin{bmatrix} x_1 \cdots x_n \end{bmatrix} = \begin{bmatrix} x_{11} \cdots x_{1n} \\ \vdots & \ddots & \vdots \\ x_{p1} \cdots x_{pn} \end{bmatrix}$$

와

$$Y = \begin{bmatrix} y_1 \cdots y_n \end{bmatrix} = \begin{bmatrix} y_{11} \cdots y_{1n} \\ \vdots & \ddots & \vdots \\ y_{p1} \cdots y_{pn} \end{bmatrix}$$

이 된다. 식 (2.8)과 같은 일반적인 네트워크에서 X와 Y는 각각 Z^k 와 X^k 의 역할을 한다. i 열 x_i 에 대하여

$$\nabla_x E = J(\operatorname{softmax})(x_i) \nabla_w E$$

를 만족한다. 식 (3.5)를 적용하여 계산하면 다음과 같다.

$$\begin{bmatrix} \frac{\partial E}{\partial x_{1i}} \\ \vdots \\ \frac{\partial E}{\partial x_{pi}} \end{bmatrix} = \begin{bmatrix} y_{1i}(1-y_{1i}) & \dots & -y_{1i}y_{pi} \\ \vdots & \ddots & \vdots \\ -y_{pi}y_{1i} & \dots & y_{pi}(1-y_{pi}) \end{bmatrix} \begin{bmatrix} \frac{\partial E}{\partial y_{1i}} \\ \vdots \\ \frac{\partial E}{\partial y_{pi}} \end{bmatrix}$$

$$= \begin{bmatrix} y_{1i}(1-y_{1i}) \frac{\partial E}{\partial y_{1i}} - \dots - y_{1i}y_{pi} \frac{\partial E}{\partial y_{pi}} \\ \vdots \\ -y_{pi}y_{1i} \frac{\partial E}{\partial y_{1i}} - \dots + y_{pi}(1-y_{pi}) \frac{\partial E}{\partial y_{pi}} \end{bmatrix}$$

$$= y_i^* \begin{bmatrix} (1-y_{1i}) \frac{\partial E}{\partial y_{1i}} - \dots - y_{pi} \frac{\partial E}{\partial y_{pi}} \\ \vdots \\ -y_{1i} \frac{\partial E}{\partial y_{1i}} - \dots + (1-y_{pi}) \frac{\partial E}{\partial y_{pi}} \end{bmatrix}$$

$$= y_i^* \begin{bmatrix} y_{1i} \frac{\partial E}{\partial y_{1i}} + \dots + y_{pi} \frac{\partial E}{\partial y_{pi}} \\ \vdots \\ y_{1i} \frac{\partial E}{\partial y_{1i}} + \dots + y_{pi} \frac{\partial E}{\partial y_{pi}} \end{bmatrix}$$

$$= y_i^* \begin{bmatrix} \nabla_{y_i} E - \left(y_{1i} \frac{\partial E}{\partial y_{1i}} + \dots + y_{pi} \frac{\partial E}{\partial y_{pi}} \right) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right)$$

$$= y_i^* \begin{bmatrix} \nabla_{y_i} E - \left(y_{1i} \frac{\partial E}{\partial y_{1i}} + \dots + y_{pi} \frac{\partial E}{\partial y_{pi}} \right) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right)$$

$$= y_i^* \begin{bmatrix} \nabla_{y_i} E - \sup (y_i^* \nabla_{y_i} E) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right)$$

따라서

$$\nabla_X E = Y * \left(\nabla_Y E - \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \operatorname{column_sum} \left(Y * \nabla_Y E \right) \right)$$

를 얻는다.

numpy 코드로 쓰면

gradXE = Y * (gradYE - np.sum(Y * gradYE, axis=0))

이다. 이것은 열 벡터 표현법이다. 행 벡터 표현법은

gradXE = Y * (gradYE - np.sum(Y * gradYE, axis=1, keepdims=True)) 이다.