Modélisation et résolutions numérique et symbolique de problèmes via les logiciels Maple et MATLAB (MODEL)

Cours n°3: Codes cycliques

Stef Graillat & Mohab Safey El Din

Université Pierre et Marie Curie (Paris 6)

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours n°2)

1 / 17

• Codes correcteurs d'erreurs (définition)

- Distance de Hamming et poids de Hamming
- Capacité de détection/correction

Résumé du cours précédent

- Codes linéaires
- Matrice génératrice, mise sous forme systématique, matrice de contrôle
- Syndromes et erreurs
- Décodage (naif)

S. Graillat & M. Safev (Univ. Paris 6)

MODEL (cours n°2

Syndrome

Définition 1

Soit $\mathcal C$ un code $[n;k]_q$ et $H\in\mathbb F_q^{(n-k)\times n}$ sa matrice de contrôle. Le syndrome d'un mot $x\in\mathbb F_q^n$ est le mot de longueur n-k

$$s = x \cdot H^T$$
.

Nous avons

ayant même syndrome que r).

$$\mathcal{C} = \{ x \in \mathbb{F}_q^n \mid x \cdot H^T = 0 \}$$

Les mots du code sont donc les mots dont le syndrome est nul. Le syndrome définit un isomorphisme du quotient $\mathbb{F}_q^n/\mathcal{C}$ sur \mathbb{F}_q^{n-k} . Principe du décodage : Si un syndrome est non nul, on corrige le mot reçu r en appliquant le principe de vraisemblance : on soustrait à r un mot de poids minimum dans sa classe modulo \mathcal{C} (i.e. un mot de poids minimum

Décodage par syndrome

6. Graillat & M. Safey (Univ. Paris 6) MODEL (cours n°2) 3 / 17 S. Graillat & M. Safey (Univ. Paris 6) MODEL (cours n°2) 4 /

Décode par syndrome

Soit $\mathcal C$ un code $[n;k;d]_q$, et $H\in\mathbb F_q^{(n-k)\times k}$ une matrice de contrôle. On transmet c=u+e, avec $u\in\mathcal C$ et une erreur $e\in\mathbb F_q^n$

On calcule

$$s = c \cdot H^T = u \cdot H^T + e \cdot H^T = e \cdot H^T$$
.

ullet On cherche ensuite $e'\in\mathbb{F}_q^n$ de poids minimum tel que :

$$s = e' \cdot H^T$$
.

• On décode $c - e' \in \mathcal{C}$. Nous avons c - e' = u, si $w_H(e) \le t$, avec t la capacité de correction du code.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours n°2)

5 / 17

Contourner la barrière de complexité

codes de Reed-Muller, codes poinconnés, codes de Golay).

- Constructions spécifiques, ad hoc
- voir la bibliographie

→ rajouter un peu de structure algébrique

- la complexité exponentielle provient d'un facteur combinatoire
- idée : quotienter nos constructions de codes par un phénomène de nature combinatoire (par exemple : invariance par permutations de lettres)
- contrainte : garder une structure de codes linéaires (cadre agréable et efficace pour calculer, outils logiciels, etc.)

Décodage par syndrome

- Calculer les syndromes s_i des mots e_i de poids inférieurs à la capacité de correction t du code.
- On les stocke dans une table d'association $[(s_i, e_i)]_{i=1}^{i=t}$, les syndromes corrigeables.
- Si on reçoit un mot $c \in \mathbb{F}_q^n$ de syndrome $s = c \cdot H^T$ non nul, il faut regarder si s est corrigeable.
- soit $s \in \mathbb{F}_q^{n-k}$ un syndrome corrigeable et $e \in \mathbb{F}_q^n$ le mot de poids minimum produisant s. Décoder c = u e.

Complexité du décodage : exponentielle en n (c'est trop!) car nécessite de calculer a priori la distance minimale.

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours n°2)

6 / 17

Contourner la barrière de complexité

- Constructions spécifiques, ad hoc
- voir la bibliographie

→ rajouter un peu de structure algébrique

- la complexité exponentielle provient d'un facteur combinatoire
- idée : quotienter nos constructions de codes par un phénomène de nature combinatoire (par exemple : invariance par permutations de lettres)
- contrainte : garder une structure de codes linéaires (cadre agréable et efficace pour calculer, outils logiciels, etc.)

Codes de Hamming

Propriété 1

Un code linéaire $\mathcal C$ a une distance minimale d ssi sa matrice de parité H a d colonnes dépendantes et aucun ensemble d'au plus d-1 colonnes dépendantes.

Définition 2 (Code de Hamming)

Pour $r \in \mathbb{N}$, $r \neq 0$, on construit une matrice \mathcal{H}_r à $2^r - 1$ lignes et r colonnes, dont les lignes sont les éléments non nuls de \mathbb{F}_2^r . On appelle code de Hamming binaire d'ordre r le code admettant \mathcal{H}_r comme matrice de parité.

Propriété 2

Un code de Hamming binaire d'ordre r est de longueur $2^r - 1$, de dimension $2^r - r - 1$ et de distance minimale 3.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours n°2)

2 / 17

Codes de Reed-Muller (suite)

Propriété 3

Soit 0 < r < m deux entiers.

- Pour $0 \le i \le j \le m$, on a $\mathcal{R}(i, m) \subset \mathcal{R}(j, m)$.
- 2 La dimension de $\mathcal{R}(r,m)$ est $\sum_{i=0}^{r} {m \choose i}$
- **3** La distance minimale de $\mathcal{R}(r, m)$ est 2^{m-r} .

Codes de Reed-Muller

Les codes de Reed-Muller sont des codes binaires de longueur 2^m indicés par un paramètre $\leq r \leq m$. Un tel code est noté $\mathcal{R}(r,m)$.

Définition 3

Les codes de Reed-Muller sont définis par récurrence comme

$$\mathcal{R}(r,m) = \{(u|u+v) \mid u \in \mathcal{R}(r,m-1), v \in \mathcal{R}(r-1,m-1)\}$$

où
$$\mathcal{R}(0,m)=(1,\ldots,1)$$
 (longueur= 2^m) et $\mathcal{R}(m,m)=\mathbb{F}_2^{2^m}$.

Si on note G(r, m) une matrice génératrice de $\mathcal{R}(r, m)$ on a

$$G(r,m) = \begin{bmatrix} G(r,m-1) & G(r,m-1) \\ 0 & G(r-1,m-1) \end{bmatrix}$$

S. Graillat & M. Safey (Univ. Paris 6

MODEL (cours n°2)

0 / 17

Codes cycliques

Définition 4

Un code C est dit cyclique si pour tout mot $c = (c_0, \ldots, c_{n-1})$ de C, le mot $c' = (c_{n-1}, c_0, c_1, \ldots, c_{n-2})$ appartient à C.

On considérera dans la suite des codes cycliques linéaires.

Pour mieux appréhender les codes cycliques, on adopte un point de vue polynomial.

Si $c = (c_0, \ldots, c_{n-1})$ est un mot de \mathbb{F}_q^n , on lui associe $c(X) = c_0 + c_1 X + \cdots + c_{n-1} X^{n-1}$.

Propriété 4

Si \mathcal{C} est cyclique et $c \in \mathcal{C}$, alors $Xc(X) \mod (X^n - 1)$ est dans \mathcal{C} .

Codes cycliques

Définition 4

Un code C est dit cyclique si pour tout mot $c = (c_0, \ldots, c_{n-1})$ de C, le mot $c' = (c_{n-1}, c_0, c_1, \ldots, c_{n-2})$ appartient à C.

On considérera dans la suite des codes cycliques linéaires.

Pour mieux appréhender les codes cycliques, on adopte un point de vue polynomial.

Si $c = (c_0, \dots, c_{n-1})$ est un mot de \mathbb{F}_q^n , on lui associe $c(X) = c_0 + c_1 X + \dots + c_{n-1} X^{n-1}$.

Propriété 4

Si C est cyclique et $c \in C$, alors $Xc(X) \mod (X^n - 1)$ est dans C.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours n°2)

11 / 17

Polynôme générateur d'un code cyclique

 \leadsto on peut définir un polynôme générateur g pour les codes cycliques linéaires.

- **4** g(X) divise c(X) dans $\mathbb{F}_q[X]$ pour tout $c \in \mathcal{C}$
- ② g(X) divise dans $X^n 1$ dans $\mathbb{F}_q[X]$

 \leadsto étudier les codes cycliques, c'est étudier les diviseurs de X^n-1 dans $\mathbb{F}_q[X] \to \text{propriétés}$ des corps finis.

Rappels sur les idéaux

 \leadsto les codes cycliques linéaires sont des idéaux de $\mathbb{F}_q[X]/\langle X^n-1\rangle$. Soit A un anneau commutatif et $I\subset A$. On dit que I est un idéal de A ssi

- pour tout x, y dans $I, x + y \in I$
- 2 pour tout $a \in A$ et $x \in I$, $a.x \in I$

Un idéal I est principal si il existe $g \in I$ tel que $I = \{ag, a \in A\}$.

Propriété 5

Tous les idéaux de $\mathbb{F}_q[X]$ sont principaux. Tous les idéaux de $\mathbb{F}_q[X]/\langle X^n-1\rangle$ sont principaux.

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours n°2)

12 / 17

Polynôme générateur d'un code cyclique

 \leadsto on peut définir un polynôme générateur g pour les codes cycliques linéaires.

- **1** g(X) divise c(X) dans $\mathbb{F}_q[X]$ pour tout $c \in \mathcal{C}$
- 2 g(X) divise dans $X^n 1$ dans $\mathbb{F}_q[X]$

 \leadsto étudier les codes cycliques, c'est étudier les diviseurs de X^n-1 dans $\mathbb{F}_q[X] \to$ propriétés des corps finis.

Matrice génératrice

Soit $g = g_0 + g_1 X + \cdots + g_{n-k} X^{n-k}$ le générateur d'un code cyclique linéaire C.

Propriété 6

L'ensemble des mots de C est l'ensemble $\{g(X)a(X) \mid \deg(a(X)) \leq k-1\}$. Le code C a pour dimension k et pour matrice génératrice la matrice

$$\begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ & & \cdots & & & \cdots & & \cdots \\ 0 & 0 & 0 & \cdots & 0 & g_0 & \cdots & g_{n-k} \end{bmatrix}$$

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours n°2)

14 / 17

Mise sous forme systématique

Propriété 7

Si \mathcal{C} est un code cyclique de \mathbb{F}_a^n , alors le code dual \mathcal{C}^{\perp} est aussi cyclique.

Théorème 1

Si $\mathcal C$ est un code de longueur n sur $\mathbb F_q$ de dimension k de polynôme générateur g, alors $\mathcal C^\perp$ est aussi un code cyclique de polynôme générateur $g^\perp = X^{n-k} \frac{h(1/X)}{h_0}$ où $h = \frac{X^n-1}{g}$.

→ on en déduit la matrice de contrôle!

Remarque: h est obtenu en étudiant le quotient de la division de $X^n - 1$ par g (rappel : g divise $X^n - 1$).

 \leadsto étudier les codes cycliques, c'est étudier les diviseurs de X^n-1 dans $\mathbb{F}_q[X] \to$ besoin d'en savoir plus sur les propriétés des corps finis et les racines de l'unité.

Mise sous forme systématique

Propriété 7

Si \mathcal{C} est un code cyclique de \mathbb{F}_q^n , alors le code dual \mathcal{C}^{\perp} est aussi cyclique.

Théorème 1

Si $\mathcal C$ est un code de longueur n sur $\mathbb F_q$ de dimension k de polynôme générateur g, alors $\mathcal C^\perp$ est aussi un code cyclique de polynôme générateur $g^\perp = X^{n-k} \frac{h(1/X)}{h_0}$ où $h = \frac{X^{n}-1}{g}$.

→ on en déduit la matrice de contrôle!

Remarque: h est obtenu en étudiant le quotient de la division de $X^n - 1$ par g (rappel : g divise $X^n - 1$).

 \leadsto étudier les codes cycliques, c'est étudier les diviseurs de X^n-1 dans $\mathbb{F}_q[X] \to$ besoin d'en savoir plus sur les propriétés des corps finis et les racines de l'unité

S. Graillat & M. Safey (Univ. Paris 6)

MODEL (cours n°2

15 / 17

16 / 17

Décodage

- Les codes cycliques sont linéaires, on peut donc appliquer une procédure de décodage standard → pas vraiment de meilleure complexité!
- On peut chercher à utiliser le caractère cyclique de ces codes. Calculatoirement, cela implique de tirer profit de la structure de la matrice génératrice (et de la matrice de contrôle).
- ☐ Propriétés structurelles des corps finis et racines de l'unité → propriétés sur la distance minimale
- □ contrôle de la distance minimale + structure des matrices → décodage en temps polynomial (basé sur l'algorithme d'Euclide étendu)

Exemple: Codes BCH (pas dans ce cours)

S. Graillat & M. Safey (Univ. Paris 6) MODEL (cours n°2) 15 / 17 S. Graillat & M. Safey (Univ. Paris 6) MODEL (cours n°2)

Conclusion

- Techniques de codage/décodage
- distance et poids de Hamming, capacité de détection et correction d'erreurs
- Codes linéaires, matrice génératrice, matrice de contrôle
- complexité du décodage
- construction de codes cycliques
- → Algèbre linéaire (dans un corps fini) joue un rôle essentiel (codage décodage mais aussi en cryptologie/sécurité)
- → Corps fini ⇒ Calcul Formel (expérimentations à faire en Maple)
- → Les streutures polynomiales semblent permettre d'aller plus loin...

Graillat &	', NA .'	Safey	(Hniv	Paris 61

MODEL (cours n°2)

17 / 17