

Synthèse d'images par lancer de rayons

BENKORT Matthias, DOLOU Clément, GABORIT Nicolas, HERVE Maxime

Groupe 23

Présentation de l'application

Les éléments

Les formes

- la sphère
- le plan
- le cube

Les méthodes

- getIntersection
- getNormale
- getReflected
- getRefracted

Matériaux

Les éléments : le cube

Construction

Utilisation de 12 facettes Construction du cube à partir de 3 points :

Fonctionnement

Les méthodes getIntersected et getNormal

Optimisation

Les points de vue

Construction classique

Personnalisable mais peu pratique

Construction intuitive

- Un point de vue
- Angle de vue
- Direction du regard
- Orientation de l'écran
- Résolution

La classe Color

Modélise:

- Les éclairements
- Les intensités lumineuses
- Les coefficients (absorption, réflection ...)

$$E = K x I$$

$$E_{total} = E_1 + E_2$$

Le traceur de rayon

Fonctionnement:

Calcule les 3 valeurs RVB d'une composante donnée

Le traceur de rayon

Calculs des composantes simples

- Détermination de l'intersection
- Détermination des sources de lumière visibles

Le traceur de rayon

Calculs des composantes complexes

- Détermination de l'intersection
- Calcul des rayons réfléchi et réfracté
- Calcul des composantes simples depuis ces rayons, puis itération

L'interface graphique

Objectifs

- Interface ergonomique et sobre
- Robustesse à toutes épreuves

Fonctionnalités

- Ajout / modification / suppression d'objets
- Gestion de plusieurs vues (onglets)
- Exportation de l'une des vues

Conclusion

Objectifs atteints

Rendus réalistes

Optimisations possibles

Merci pour votre attention