SEQUENCE LISTING

<110> Vinkemeier, Uwe Darnell Jr., James E.

<120> PURIFIED STAT PROTEINS AND METHODS OF PURIFYING THEREOF

<130> 600-1-182 N

<140> 08/951,130

<141> 1997-10-15

<150> 60/028,176

<151> 1996-10-15

<160> 16

<170> PatentIn Ver. 2.0

<210> 1

<211> 750

<212> PRT

<213> Homo sapiens

<400> 1

Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu Glu
1 5 10 15

Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg Gln 20 25 30

Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala Asn 35 40 45

Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln Leu 50 55 60

Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu Gln 65 70 75 80

His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln Glu 85 90 95

Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu Glu 100 105 110

Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser Gly
115 120 125

Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp Ser Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu Ile Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys Lys Thr Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser Asp Gln Lys Gln Glu Gln Leu Leu Lys Lys Met Tyr Leu Met Leu Asp Asn Lys Arg Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn Val Thr Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu Trp Lys Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala Cys Leu Asp Gln Leu Gln Asn Trp Phe Thr Ile Val Ala Glu Ser Leu Gln Gln Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys Tyr Thr Tyr Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp Asp Arg Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val Val Glu Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu Lys Thr Gly Val Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys Leu Gln Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys Asp Val

Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu Gly

Thr 385	His	Thr	Lys	Val	Met 390	Asn	Met	Glu	Glu	Ser 395	Thr	Asn	Gly	Ser	Leu 400
Ala	Ala	Glu	Phe	Arg 405	His	Leu	Gln	Leu	Lys 410	Glu	Gln	Lys	Asn	Ala 415	Gly
Thr	Arg	Thr	Asn 420	Glu	Gly	Pro	Leu	Ile 425	Val	Thr	Glu	Glu	Leu 430	His	Ser
Leu	Ser	Phe 435	Glu	Thr	Gln	Leu	Cys 440	Gln	Pro	Gly	Leu	Val 445	Ile	Asp	Leu
Glu	Thr 450	Thr	Ser	Leu	Pro	Val 455	Val	Val	Ile	Ser	Asn 460	Val	Ser	Gln	Leu
Pro 465	Ser	Gly	Trp	Ala	Ser 470	Ile	Leu	Trp	Tyr	Asn 475	Met	Leu	Val -	Ala	Glu 480
Pro	Arg	Asn	Leu	Ser 485	Phe	Phe	Leu	Thr	Pro 490	Pro	Cys	Ala	Arg	Trp 495	Ala
Gln	Leu	Ser	Glu 500	Val	Leu	Ser	Trp	Gln 505	Phe	Ser	Ser	Val	Thr 510	Lys	Arg
Gly	Leu	Asn 515	Val	Asp	Gln	Leu	Asn 520	Met	Leu	Gly	Glu	Lys 525	Leu	Leu	Gly
Pro	Asn 530	Ala	Ser	Pro	Asp	Gly 535	Leu	Ile	Pro	Trp	Thr 540	Arg	Phe	Cys	Lys
Glu 545	Asn	Ile	Asn	Asp	Lys 550	Asn	Phe	Pro	Phe	Trp 555	Leu	Trp	Ile	Glu	Ser 560
Ile	Leu	Glu	Leu	Ile 565	Lys	Lys	His	Leu	Leu 570	Pro	Leu	Trp	Asn	Asp 575	Gly
Cys	Ile	Met	Gly 580	Phe	Ile	Ser	Lys	Glu 585	Arg	Glu	Arg	Ala	Leu 590	Leu	Lys
Asp	Gln	Gln 595	Pro	Gly	Thr	Phe	Leu 600	Leu	Arg	Phe	Ser	Glu 605	Ser	Ser	Arg
Glu	Gly 610	Ala	Ile	Thr	Phe	Thr 615		Val	Glu	Arg	Ser 620	Gln	Asn	Gly	Gly
Glu 625	Pro	Asp	Phe	His	Ala 630	Val	Glu	Pro	Tyr	Thr 635	Lys	Lys	Glu	Leu	Ser 640

Ala Val Thr Phe Pro Asp Ile Tle Arg Asn Tyr Lys Val Met Ala Ala 650 645

Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile Asp 665 660

Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala Pro 630

Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile Lys Thr 695

Glu Leu Ile Ser Val Ser Glu Val His Pro Ser Arg Leu Gln Thr Thr 715 710

Asp Asn Leu Leu Pro Met Ser Pro Glu Glu Phe Asp Glu Val Ser Arg 730 .725

Ile Val Gly Ser Val Glu Phe Asp Ser Met Met Asn Thr Val 750 745 740

<210> 2

<211> 712

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu Glu 10 5

Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg Gln 25

Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala Asn 40

Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln Leu 50

Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu Gln 70 65

His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln Glu 90 85

Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu Glu

100 105 110

Arg	Lys	Ile 115	Leu	Glu	Asn .	Ala	Gln /	Arg	Phe A	Asn	Gln .	Ala 125	Gln	Ser (Gly
Asn	Ile 130	Gln	Ser	Thr	Val '	Met 135	Leu .	Asp	Lys	Gln	Lys 140	Glu	Leu	Asp	Ser
Lys 145	Val	Arg	Asn	Val	Lys 150	Asp	Lys	Val	Met	Cys 155	Ile	Glu	His	Glu	Ile 160
Lys	Ser	Leu	Glu	Asp 165	Leu	Gln	Asp	Glu	Tyr 170	Asp	Phe	Lys	Cys	Lys 175	Thr
Leu	Gln	Asn	Arg 180	Glu	His	Glu	Thr	Asn 185	Gly	Val	Ala	Lys	Ser 190	Asp	Gln
Lys	Gln	Glu 195	Gln	Leu	Leu	Leu	Lys 200	Lys	Met	Tyr	Leu	Met - 205	-Leu	Asp	Asn
Lys	Arg 210	Lys	Glu	Val	Val	His 215	Lys	Ile	Ile	Glu	Leu 220	Leu	Asn	Val	Thr
Glu 225	Leu	Thr	Gln	Asn	Ala 230	Leu	Ile	Asn	Asp	Glu 235	Leu	Val	Glu	Trp	Lys 240
Arg	Arg	Gln	Gln	Ser 245	Ala	Суѕ	Ile	Gly	Gly 250	Pro	Pro	Asn	Ala	Cys 255	Leu
Asp	Gln	Leu	Gln 260		Trp	Phe	Thr	Ile 265	Val	Ala	Glu	Ser	Leu 270	Gln	Gln
Val	Arg	Gln 275		. Leu	Lys	Lys	Leu 280	Glu	Glu	Leu	Glu	Gln 285	Lys	Tyr	Thr
Tyr	Glu 290		: Asp) Pro	Ile	Thr 295		Asn	Lys	Gln	Val 300	Leu	Trp	Asp	Arg
Thr 305		e Ser	: Leu	ı Phe	Gln 310		Leu	Ile	Gln	Ser 315		Phe	. Val	. Val	Glu 320
Arç	g Glr	n Pro	o Cys	325		Thr	His	Pro	330	n Arç	, Pro	Leu	ı Val	335	Lys
Th	r Gly	y Val	1 Glr 340		e Thr	· Val	Lys	345		g Lev	ı Lev	ı Val	350	s Leu)	ı Gln
Gl	u Le	u Ası	n Ty:	r Ası	n Lei	ı Lys	s Val	Lys	s Val	l Le	ı Phe	e Asp	p Ly:	s Asp	Val

355 360 365

Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu Gly Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr Asn Gly Ser Leu Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn Ala Gly Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu His Ser .430 Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu Val Ile Asp Leu Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser Gln Leu Pro Ser Gly Trp Ala Ser Ile Leu Trp Tyr Asn Met Leu Val Ala Glu Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg Trp Ala Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys Arg Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu Leu Gly Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe Cys Lys Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile Glu Ser Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn Asp Gly Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu Leu Lys Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser Arg Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn Gly Gly 610 615 620

Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu Leu Ser 625 630 635 640

Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met Ala Ala 645 650 655

Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile Asp 660 665 670

Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala Pro 675 680 685

Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile Lys Thr 690 695 700

Glu Leu Ile Ser Val Ser Glu Val 705 710

<210> 3

<211> 582

<212> PRT

<213> Homo sapiens

<400> 3

Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp Ser Lys Val Arg
1 5 10 15

Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu Ile Lys Ser Leu 20 25 30

Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys Lys Thr Leu Gln Asn 35 40 45

Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser Asp Gln Lys Gln Glu 50 55 60

Gln Leu Leu Lys Lys Met Tyr Leu Met Leu Asp Asn Lys Arg Lys
65 70 75 80

Glu Val Val His Lys Ile Ile Glu Leu Leu Asn Val Thr Glu Leu Thr 85 90 95

Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu Trp Lys Arg Arg Gln
100 105 110

Gln	Ser	Ala 115		Ile	Gly	Gly	Pro 120		Asn	Ala	Cys	Leu 125	Asp	Gln	Leu
Gln	Asn 130	Trp	Phe	Thr	Ile	Val 135	Ala	Glu	Ser	Leu	Gln 140	Gln	Val	Arg	Gln
Gln 145	Leu	Lys	Lys	Leu	Glu 150	Glu	Leu	Glu	Gln	Lys 155	Tyr	Thr	Tyr	Glu	His 160
Asp	Pro	Ile	Thr	Lys 165	Asn	Lys	Gln	Val	Leu 170	Trp	Asp	Arg	Thr	Phe 175	Ser
Leu	Phe	Gln	Gln 180	Leu	Ile	Gln	Ser	Ser 185	Phe	Val	Val	Glu	Arg 190	Gln	Pro
Cys	Met	Pro 195	Thr	His	Pro	Gln	Arg 200	Pro	Leu	Val	Leu	Lys 205	Thr	Gly	Val
Gln	Phe 210	Thr	Val	Lys	Leu	Arg 215	Leu	Leu	Val	Lys	Leu 220	Gln	Glu	Leu	Asn
Tyr 225	Asn	Leu	Lys	Val	Lys 230	Val	Leu	Phe	Asp	Lys 235	Asp	Val	Asn	Glu	Arg 240
Asn	Thr	Val	Lys	Gly 245	Phe	Arg	Lys	Phe	Asn 250	Ile	Leu	Gly	Thr	His 255	Thr
Lys	Val	Met	Asn 260	Met	Glu	Glu	Ser	Thr 265	Asn	Gly	Ser	Leu	Ala 270	Ala	Glu
Phe	Arg	His 275	Leu	Gln	Leu	Lys	Glu 280	Gln	Lys	Asn	Ala	Gly 285	Thr	Arg	Thr
Asn	Glu 290	Gly	Pro	Leu	Ile	Val 295	Thr	Glu	Glu	Leu	His 300	Ser	Leu	Ser	Phe
Glu 305	Thr	Gln	Leu	Cys	Gln 310	Pro	Gly	Leu	Val	Ile 315	Asp	Leu	Glu	Thr	Thr 320
Ser	Leu	Pro	Val	Val 325	Val	Ile	Ser	Asn	Val 330	Ser	Gln	Leu	Pro	Ser 335	Gly
Trp	Ala	Ser	Ile 340	Leu	Trp	Tyr	Asn	Met 345	Leu	Val	Ala	Glu	Pro 350	Arg	Asn
Leu	Ser	Phe 355	Phe	Leu	Thr		Pro 360	Cys	Ala	Arg	Trp	Ala 365	Gln	Leu	Ser

Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys Arg Gly Leu Asn 370 375 380

Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu Leu Gly Pro Asn Ala 385 390 395 400

Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe Cys Lys Glu Asn Ile 405 410 415

Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile Glu Ser Ile Leu Glu 420 425 430

Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn Asp Gly Cys Ile Met 435 440 445

Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu Leu Lys Asp Gln Gln 450 455 460

Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser Arg Glu Gly Ala 465 470 475 480

Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn Gly Glu Pro Asp 485 490 495

Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu Leu Ser Ala Val Thr 500 505 510

Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met Ala Ala Glu Asn Ile 515 520 525

Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile Asp Lys Asp His 530 540

Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala Pro Glu Pro Met 545 550 555 560

Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile Lys Thr Glu Leu Ile 565 570 575

Ser Val Ser Glu Val His 580

<210> 4

<211> 131

<212> PRT

<213> Homo sapiens

<100> 4

Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu Glu
1 5 10 15

Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg Gln 20 25 30

Tyr Leu Ala Gin Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala Asn 35 40 45

Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln Leu 50 55 60

Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Gln 65 70 75 80

His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln Glu 85 90 - 95

Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu Glu 100 105 110

Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser Gly
115 120 125

Asn Ile Gln 130

<210> 5

<211> 1746

<212> DNA

<213> Homo sapiens

<400> 5

agcacagtga tgttagacaa acagaaagag cttgacagta aagtcagaaa tgtgaaggac 60 aaggttatgt gtatagagca tgaaatcaag agcctggaag atttacaaga tgaatatgac 120 ttcaaatgca aaaccttgca gaacagagaa cacgagacca atggtgtgc aaaagagtgat 180 cagaaacaag aacagctgtt actcaagaag atgtatttaa tgcttgacaa taagagaaag 240 gaagtagttc acaaaataat agagttgctg aatgtcactg aacttaccca gaatgccctg 300 attaatgatg aactagtgga gtggaagcgg agacagcaga gcgcctgtat tggggggccg 360 cccaatgctt gcttggatca gctgcagaac tggttcacta tagttgcgga gagtctgcag 420 caagttcggc agcagcttaa aaagttggag gaattggaac agaaatacac ctacgaacat 480 gaccctatca caaaaaacaa acaagtgtta tgggaccgca ccttcagtct tttccagcag 540 ctcattcaga gctcgtttg ggtggaaaga cagccctgca tggcaacgca ccctcagagg 600 ccgctggtct tgaagacagg ggtccagttc actgtgaagt tgagactgtt ggtgaaattg 660 caagagctga attataattt gaaagtcaaa gtcttatttg ataaagatgt gaatgagaga 720 aatacagtaa aaggatttag gaagttcaac attttgggca cgcacacaa agtgatgaac 780

```
atggaggagt ccaccaatgg cagtctggcg gctgaatttc qqcacctqca attqaaaqaa 840
cagaaaaatg ctggcaccag aacgaatgag ggtcctctca tcgttactga agagcttcac 900
tecettagtt ttgaaaceca attgtgeeag eetggtttgg taattgaeet egagaegaee 960
tetetgeeeg ttgtggtgat etecaaegte ageeagetee egageggttg ggeeteeate 1020
ctttggtaca acatgctggt ggcggaaccc aggaatctgt ccttcttcct gactccacca 1080
tgtgcacgat gggctcagct ttcagaagtg ctgagttggc agttttcttc tgtcaccaaa 1140
agaggtetea atgtggaeca getgaacatg ttgggagaga agettettgg teetaaegee 1200
agccccgatg gtctcattcc gtggacgagg ttttgtaagg aaaatataaa tgataaaaat 1260
tttcccttct ggctttggat tgaaagcatc ctagaactca ttaaaaaaca cctgctccct 1320
ctctggaatg atgggtgcat catgggcttc atcagcaagg agcgagagcg tgccctgttg 1380
aaggaccage ageeggggae etteetgetg eggtteagtg agageteeeg ggaaggggee 1440
atcacattca catgggtgga gcggtcccag aacggaggcg aacctgactt ccatgcggtt 1500
gaaccetaca egaagaaaga aetttetget gttaetttee etgacateat tegeaattae 1560
aaagtcatgg ctgctgagaa tattcctgag aatcccctga agtatctgta tccaaatatt 1620
gacaaagacc atgcctttgg aaagtattac tccaggccaa aggaagcacc agagccaatg 1680
gaacttgatg gccctaaagg aactggatat atcaagactg agttgatttc tgtgtctgaa 1740
gttcac
                                                                   1746
<210> 6
<211> 393
<212> DNA
<213> Homo sapiens
<400> 6
atgtctcagt ggtacgaact tcagcagctt gactcaaaat tcctggagca ggttcaccag 60
ctttatgatg acagttttcc catggaaatc agacagtacc tggcacagtg gttagaaaag 120
caagactggg agcacgctgc caatgatgtt tcatttgcca ccatccgttt tcatgacctc 180
ctgtcacagc tggatgatca atatagtcgc ttttctttgg agaataactt cttgctacag 240
cataacataa ggaaaagcaa gcgtaatctt caggataatt ttcaggaaga cccaatccag 300
atgtctatga tcatttacag ctgtctgaag gaagaaagga aaattctgga aaacgcccag 360
agatttaatc aggctcagtc ggggaatatt cag
                                                                  393
<210> 7
<211> 36
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer
<400> 7
                                                                  36
gggaattcca tatgagcaca gtgatgttag acaaac
<210> 8
```

<211> 34 <212> DNA

<213> Artificial Sequence

<220>		
<223>	Description of Artificial Sequence:primer	
<400>	g.	
cggat	cctat tagtgaactt cagacacaga aatc	34
<210>	9	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence:primer	
<400>		
gtatt	cccgt caatgca	17
<210>	10	
<211>	17	
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence:primer	
<400>	10	
	cctgt aagatct	17
gcacci	ooge aagatet	1,
<210>	11	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220>		
<223>	Description of Artificial Sequence:primer	
<400>	11	
gattto	ccgt aaatcat	17
<210>		
<211>	17	
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Commence	
~2237	Description of Artificial Sequence:primer	
<100×	10	

grege	ceegg gaaaagg	17
<210>	• 13	
<211>	40	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer	
<400>	13	
agtca	gttcc cgtcaatgca tcaggttccc gtcaatgcat	40
<210>		
<211>	34	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer	
<400>		
agtca	gttcc cgtcaatgag ttcccgtcaa tgca	34
<210>	15	
<211>		
<212>	·	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer	
<400>		
agtcag	gttcc cgtcaatgat cgctacagag ttcccgtcaa gca	43
<210>	16	
<211>	40	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer	
<400>	16	
agticat	ttcc catcaataca tcaattaaca aaaaaataat	4.0