

PM_{2.5} on the London Underground

Dr James David Smith 8 January 2020

Introduction

About me

- MSc in GIS at UCL
- PhD / Researcher at King's College London
- · The London Hybrid Exposure Model / Air quality GIS 'stuff'

Now at Guy Carpenter (Model development, Re-insurance)

Why measure air on the tube

- Exposure to particles on subway systems > important
- · Seaton et al 2005, but ...
 - Tox. mechanisms
 - Susceptible populations
 - Analytical techniques

Aims

What we tried to do

- Measure variations in PM_{2.5} between lines and stations
- · Characterise the chemical composition
- Calculate calibration factors for optical instruments
- Provide a spatially resolved dataset for future analysis

Method

Mobile Measurement campaign

- TSI AM510 SidePak (PM2.5)
- Philips Aerasense (numbers and size of particles)
- · 31 hours
- · All lines
- 89% of stations (NE Central, SW Piccadilly)

Geo-tagging data

- Need to link air quality measurements to locations
- No GPS signal on large sections of the network
- · Considered using timetables / interpolating between known locations
- Ended up using a notepad

Characterisation & Calibration

- Tricky installation at Hampstead
- Particles collected on filters over 5 days measuring composition & amount
- · High time resolution equipment installed
 - Aethalometer / TSI Dustrak / 2 TSI Sidepaks / Micro-aethalometer

Passenger-weighted stations

- · 2015 tap in/tap out, Underground performance report
- Annual in/out for each station
- Mean PM_{2.5} measured at each station
- Passenger rank * air quality rank = passenger-weighted ranking

Spatial representation of the tube

Results

Calibration factors

- · Linear model to calculate correction factors for mobile monitoring equipment
- · Mobile monitoring equipment co-located in tube station v. outdoor

The Victoria Line

Line averages

Station depth 1

Station depth 2

Depth on the Central Line

PM_{2.5} Map

PM_{2.5} online map

Online

London Underground PM_{2.5}

The following is an interactive map of the London Underground transportation network. The stations are coloured based upon their measured PM_{2.5} value and where they fall on our colour scale (right).

- · Use the mouse wheel to control the zoom
- You can click on any Tube Line or Station to enable/display their colouring
- Hovering over a station will display the raw PM_{2.5} values for each line at a station

The full paper can be found at https://www.sciencedirect.com/science/article/pii/S0160412019313649?via%3Dihub.

The dataset is available at https://data.mendeley.com/datasets/tv56txbpcw/1.

Please note: Data was recorded over 31 hours of travel in 2015 with each station measured on 2-5 occasions, this data may not reflect current concentrations.

Passenger-weighted stations

Origin-Destination matrix

Characterisation

Conclusions

Conclusions

- Particles tend to be larger in diameter than those at background or roadside environments
- More particles
- PM_{2.5} varied between lines & locations
 - lowest Hammersmith & City (Mean 25 μg/m3), similar to roadside
 - highest Victoria (381 μg/m3), 15 x higher than roadside

Conclusions 2

- · General relationship between 'depth' and air quality
- Oxford Circus, Waterloo, London Bridge, Victoria and Vauxhall at top of passenger-exposure ranking
- 79% of PM_{2.5} characterised
 - 47% iron oxide, 7% elemental carbon, 11% organic carbon, 14% metallic and mineral oxides
- Previous studies using light-scattering may under-report PM

What next

What was planned

- Characterise the remaining 11%
- More measurements accross the network to improve understanding
 - train frequency
 - passenger numbers
 - time of year
- · Interventions?
- · Develop inclusion in exposure modelling

What happened

The end

Publication, Contact & Data

Environment International

Volume 134, January 2020, 105188

PM_{2.5} on the London Underground

J.D. Smith ^a, B.M. Barratt ^{a, b}, G.W. Fuller ^a, F.J. Kelly ^{a, b}, M. Loxham ^{c, d}, E. Nicolosi ^a, M. Priestman ^a, A.H. Tremper ^a. D.C. Green ^a ≥ ⊠

⊞ Show more

https://doi.org/10.1016/j.envint.2019.105188

Under a Creative Commons license

Get rights and content

open access

CSV of data

available at: https://data.mendeley.com/datasets/tv56txbpcw/1

- ☑ james.d.smith@gmail.com ☑ james.d.smith@guycarp.com
- TheRealJimShady