University of Saskatchewan Department of Mathematics & Statistics Mathematics 110.3

Time: 3 hours

Final Examination

2pm, December 9, 1999

CLOSED BOOK EXAMINATION - NO CALCULATORS ALLOWED

Name:	Student #:	Math 110 section #	- 6
		180	

PART I

Questions in this part will be marked right or wrong. Please carefully write your answers in the spaces provided.

[7] 1. (a)
$$\lim_{\pi \to 2} \pi =$$

(b)
$$\lim_{t \to -1} \frac{t+1}{2t^3 + 7t^2 + 7t + 2} = \underline{\hspace{1cm}}$$

(c)
$$\lim_{s \to 0} (s^2 + 1)e^s =$$

(d)
$$\lim_{h \to 0} \frac{(x+h)^{10} - x^{10}}{h} = \underline{\hspace{1cm}}$$

(e)
$$\lim_{\theta \to 0} \theta \csc(2\theta) = \underline{\hspace{1cm}}$$

(f)
$$\lim_{x \to 1^-} \frac{x-1}{|x-1|} = \underline{\hspace{1cm}}$$

(g)
$$\lim_{x \to -2^+} \frac{x}{x^2 - 4} = \underline{\hspace{1cm}}$$

[3] 2. (a) At what x-value(s) does the graph of
$$y = \frac{x-3}{x^2-4x+3}$$
 have a vertical asymptote?

(b) Find
$$\lim_{x \to \infty} \frac{3x^2 - 7x + 22}{1 - x^2}$$
.

(c) Find
$$\lim_{x \to -\infty} \frac{x+2}{\sqrt{4x^2+2x+10}}$$
.

Name: _____ Math 110 section #____

[20] 3. Carry out the indicated differentiations. It is not necessary to simplify your answers.

(a) If
$$p(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4$$
, then $p'(x) =$

(b) If
$$y = \cos(3x)$$
, then $\frac{dy}{dx} =$

(c) If
$$w = 2^{(t+2)}$$
, then $\frac{dw}{dt} =$ ______

(d) If
$$f(t) = \frac{1}{\sqrt{2\pi}} e^{\frac{-t^2}{2}}$$
, then $f'(t) =$ _____

(e) If
$$g(x) = \frac{1}{1+x^2}$$
, then $g'(x) = \underline{\hspace{1cm}}$

(f) If
$$u = \frac{t^2 + 1}{t^2 + t + 1}$$
, then $\frac{du}{dt} = \frac{1}{t^2 + t + 1}$

(g) If
$$f(t) = te^t \sin t$$
, then $f'(t) =$

(h) If
$$y = \ln \left[\frac{x^2 - 1}{x^2 + 1} \right]$$
, then $\frac{dy}{dx} =$

(i) If
$$h(s) = s^{\tan s}$$
, then $h'(s) = \underline{\hspace{1cm}}$

(j) If
$$V = \frac{4}{3}\pi r^3$$
, then $\frac{dV}{dr} =$

	Name:	Student #:	Math 110 section #	
[10]	4. (a) What is the don	main of the function $\log_{10}(4-x^2)$?	
	(b) Find an antide	rivative $F(x)$ of $f(x) = x^2 + \sqrt{x}$ the	at satisfies $F(1) = 1$.	
		ollowing definition. A function f is whenever $x_1 < x_2$ in I .	s called <u>increasing</u> on an interval	
		following statement: If $f'(x) = 0$ for on (a, b) .	or all x in an interval (a, b) , then	
	(e) Complete the fand if $f'(c)$ exists	Following statement: If f has a local sts, then	cal maximum or minimum at c ,	
		PART II		
	Please provide carefully	written answers to questions 5 th	rough 14 in an answer booklet.	
[6]	5. Use the formal definition of the derivative (that is; work from first principles) to find the slope of the tangent line to the graph of $y = 1 - x^2$ at the point $(2, -3)$. (No marks will be given for using the rules of differentiation.)			
[6]	6. An oil pipeline under a large lake starts to leak. The oil comes to the surface and forms a growing circular shaped slick with a uniform thickness of 2 cm. At a given time the slick is observed to have a radius of 50 meters and the radius is increasing at a rate of 2 meters per minute. At what rate is the oil leaking from the pipe?			
[6]	(b) Identify the int(c) Identify the int	main of $f(x)$? At what point(s) x ervals where $f(x)$ is increasing or ervals where $f(x)$ is concave up or cal maxima or minima of $f(x)$.	decreasing.	

(f) Based on your graph, what do you think $\lim_{x\to 0^+} x \ln x$ might be?

Name: _____ Math 110 section #____

- [6] 8. A cylindrical can without a top is required to hold 8π cm³ of liquid. What is the smallest possible area of material that can be used in making this can? (Assume there is no wastage in constructing the can.)
- [6] 9. Find the equation of the tangent line to the graph of $x^{2/3} + y^{2/3} = 5$ at the point (8,1).
- [6] 10. (a) Let $f(\theta) = \cos(2\theta)$. Find $f'(\theta)$, $f''(\theta)$, $f^{(3)}(\theta)$ and $f^{(4)}(\theta)$. (b) What is $f^{(8)}(0)$?
- [6] 11. Use one step of Newton's method to estimate the cube root of 10. That is, let $f(x) = x^3 10$ and estimate the root of f(x) by starting with an initial guess of $x_1 = 2$ and applying one step of Newton's method. Leave your answer in fractional form.
- [6] 12. Let $f(x) = \frac{x}{1+x^2}$ for $x \in [-2, 2]$.
 - (a) Find all points $x \in [-2, 2]$ that are critical numbers for f.
 - (b) What are the absolute maximum value and absolute minimum value of f(x) for $x \in [-2, 2]$.
- [6] 13. (a) Differentiate the function $G(x) = \frac{|x|-1}{x}$.
 - (b) Find an antiderivative F(x) of $f(x) = x^{-2}$ that satisfies F(-1) = 1 and F(1) = 1.
- [6] 14. Let c be a constant and $f(x) = x^3 + 3cx^2 + 3x + 2$. Find those values of c for which f(x) has no local maximum. Verify your claim.