1.4 Exponential functions

- 1. exponent 指數 a^b
- 2. exponential function 指數函數 $f(x) = a^x$
- 3. number e 歐拉數

0.1 Exponent

Define: a 的 b 次方 ("a to the (power of) b", "a to the b-th power", or "the b-th power of a"), a 稱爲底數 (base), b 稱爲指數 (exponent). 2° (b 個 a 相加 (+) 等於 a 乘以 b ($a \times b$); b 個 a 相乘 (\times) 等於 a 的 b 次方 (a^b).)

	$2 \times n$	$2+\ldots+2$
\mathbb{N}	2×3	2+2+2=6
\mathbb{Z}	2×0	0(有加跟沒加一樣)
	$2 \times (-3)$	0 - 2 - 2 - 2 = -6
\mathbb{Q}	$2 \times \frac{1}{3}$	$\frac{2}{3} = 2/3$
\mathbb{R}	$2 \times \sqrt{3}$	$\approx 2 \times 1.732 = 3.464$

	2^n	$2 \times \ldots \times 2$	
\mathbb{N}	2^3	$2 \times 2 \times 2 = 8$	
\mathbb{Z}	2^{0}	1(有乘跟沒乘一樣)	
	2^{-3}	$1 \div 2 \div 2 \div 2 = \frac{1}{8} = \frac{1}{2^3}$	
\mathbb{Q}	$2^{\frac{1}{3}}$	$\sqrt[3]{2}$	
\mathbb{R}	$2^{\sqrt{3}}$	$\approx 2^{1.732} \approx 3.322$	

(存在無窮多的有理數逼近 $\pi \implies$ 無窮多的 $2^{\text{有理數}}$ 逼近 2^{π} .)

♦: Story of π : 劉徽: $\pi \approx 3.14$ 稱爲徽率; 祖沖之: $3.1415926 < \pi < 3.141927$; 以 $\frac{22}{7}$ 爲約率, $\frac{335}{113} \approx 3.1415929$ 爲密率, 稱爲祖率.

Note: $\sqrt{2} \times \sqrt{3} = \sqrt{6} \approx 2.449$, $\sqrt{2}^{\sqrt{3}} \approx 1.414^{1.732} \approx 1.823$. (Check by yourself: which is large: 2^3 v.s. 3^2 ? $\frac{1}{2}^{\frac{1}{3}}$ v.s. $\frac{1}{3}^{\frac{1}{2}}$? $\sqrt{2}^{\sqrt{3}}$ v.s. $\sqrt{3}^{\sqrt{2}}$?)

Law of exponents 指數律: $(a > 0, b, c \in \mathbb{R})$

1 加:
$$a^{b+c} = a^b \times a^c$$
; $(a \times \cdots \times a) \times (a \times \cdots \times a) = a^{b+c} = a^{b+c}$

2 滅:
$$a^{b-c} = a^b \div a^c$$
;
$$(\overbrace{a \times \cdots \times a}^b) \div (\overbrace{a \times \cdots \times a}^c) = a^{b-c}$$

$$3 \, \, \mathfrak{F} \colon \, a^{bc} = (a^b)^c; \qquad \qquad \underbrace{(\underbrace{a \times \cdots \times a}) \times \cdots \times (\underbrace{a \times \cdots \times a})}_{b} = a^{bc}$$

4 除:
$$a^{b/c} = \sqrt[c]{a^b} = (\sqrt[c]{a})^b$$
;
$$\sqrt[c]{a^b \times \cdots \times \sqrt[c]{a^b}} = a^b$$

5 分配:
$$(ab)^c = a^c b^c$$
; $\overbrace{ab \times \cdots \times ab}^c = (\overbrace{a \times \cdots \times a}^c) \times (\overbrace{b \times \cdots \times b}^c) = a^c b^c$

6 零:
$$a^0 := 1$$
, $0^b := 0$, 0^0 : undetermined(未定).

Ex:
$$2^{3+5} = 2^3 \times 2^5 = 2^8$$
,
 $2^{3-5} = 2^3 \div 2^5 = 2^{-2} = \frac{1}{2^2}$,
 $2^{3\times 5} = (2^3)^5 = 2^{15}$,
 $2^{3/5} = \sqrt[5]{2^3} = \sqrt[5]{2^3}$,
 $(2 \times 3)^5 = 2^5 \times 3^5 = 2^5 \cdot 3^5 = 2^5 3^5$.

Note: (方根唸法) For $0 < a \in \mathbb{R}$,

 $\sqrt{a} (= \sqrt[2]{a})$: a 的平方根 ("square root of a");

 $\sqrt[3]{a}$: a 的立方根 ("cube root of a");

 $\sqrt[n]{a}$: a 的 n 次方根 ("the n-th root of a").

Extend: For $0 < a \in \mathbb{R}$ and $n \in \mathbb{Z}$, $(-a)^n = \begin{cases} a^n & \text{if } n \text{ is even;} \\ -a^n & \text{if } n \text{ is odd.} \end{cases}$ Ex: $(-1)^0 = (-1)^2 = 1$, $(-1)^1 = (-1)^{-1} = -1$.

0.2 Exponential function

 $f(x) = x^n, n \in \mathbb{N}$ power function 冪次函數 $(x^{1/2} =? x^{\sqrt{2}} =? x^x =?)$ Define: The exponential function of base a(>0) 指數函數 (以 a 爲底)

$$f(x)=a^x$$
 $_{\leftarrow}^{\leftarrow}$ eby the second representation of $f(x)$

Question: Why a > 0?

Answer: $(-1)^{1/2} = \sqrt{-1} := i, 0^{-1}$ undefined, ∴ 只考慮正底數 a > 0.

Question: How to define a^x ?

1.
$$x = n \in \mathbb{N}, a^n := \overbrace{a \times \ldots \times a}^n$$
.

2.
$$x = 0, a^0 := 1.$$

3.
$$x = -n, a^{-n} := \frac{1}{a^n}$$
.

4.
$$x = \frac{p}{q} \in \mathbb{Q}, \ a^{p/q} := \sqrt[q]{a^p} = (\sqrt[q]{a})^p.$$

5.
$$x \in \mathbb{R} \setminus \mathbb{Q}$$
, $x \approx r \in \mathbb{Q}$, $a^x :\approx a^r$.

6. Domain 定義域: $(-\infty, \infty) = \mathbb{R}$. Range 值域: $(0, \infty)$.

(Practice by yourself: find $f(x) = 2^x$ for $x = 3, 0, -3, \frac{1}{3}, \sqrt{3}$.)

Note: Intervals 區間表示: ("(,)"不含端點小括號, "[,]"包含端點中括號.)

$$\Big(a,b\Big) \ = \ \{x: a \ < \ x \ < \ b\}, \ \ \Big(a,b\Big] \ = \ \{x: a \ < \ x \ \leq \ b\},$$

$$a,b$$
 = $\{x: a \le x < b\}, [a,b] = \{x: a \le x \le b\},$

 $\infty(-\infty)$:無限大 (小) 不是可確定的數, <u>必用</u>小括號 "…, ∞ " & " $\left(-\infty, \dots$ ".

區間的聯集 (union) U 與交集 (intersection) :

 $(a,b) \cup (c,d) = \{x : a < x < b \text{ or } c < x < d\}, (-\infty,0) \cup (0,\infty) = \{x \neq 0\}.$

 $(a,b) \cap (c,d) = \{x : a < x < b \text{ and } c < x < d\}, (-\infty,0) \cap (0,\infty) = \emptyset.$ 我找不到, 我到不了, 你所謂的, 無限大或小.

Three types of exponential functions:

$$f(x) = a^x, \, a > 1$$

$$f(x) = a^x, a = 1$$

$$f(x) = a^x, 0 < a < 1$$

Example 0.1 Range of $f(x) = 3 - 2^x = ?$

$$2^{x}: \mathbb{R} \to (0, \infty)$$
 (所有正數)
 $-2^{x}: \mathbb{R} \to (-\infty, 0)$ (所有負數)
 $3-2^{x}: \mathbb{R} \to (-\infty, 3)$ (所有比 3 小的數)
 $Range: (-\infty, 3)$ (or $\{x \in \mathbb{R}: x < 3\}$).

Example 0.2 How many intersection of 2^x & x^2 ?

$$2^4 = 16 = 4^2$$
, $2^2 = 4 = 2^2$. (只能從圖看出第三點) Three: $x = 4$, $x = 2$, $x \approx -0.7666$.

Application: Estimate population of human(人口), bacterial(細菌), radiometric dating(放射性定年) C14(C12:5730yr), U235(Pb207) or U238(Pb206). radiometric dating: (C14) 半衰期 t: $\frac{\text{C14}}{\text{C14} + \text{C12}} = (\frac{1}{2})^{x/t}, x = t \lg \frac{\text{C14} + \text{C12}}{\text{C14}};$

population: 起初 N 個, 每 t 時間變成 a 倍 (增加 a-1 倍): $P(x)=Na^{x/t}$.

$\mathbf{0.3}$ Number e

Let m_a be the slope of the tangent line of a^x at x=0.

a	1	2	e	3
m_a	0	0.693	1	1.098

Note: 找到 e 有什麼好處? $y = e^{rx}$ 在 (0,1) 的切線斜率就是 r.

Define: The *natural exponential function* 自然指數函數 ("e to the (power of) x", or "natural exponential of x")

$$f(x) = {\color{red} e^x}$$

(Find it out by yourself: What is the difference between e^x , ex and x^e ?)

Additional: (See §11)

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \sum_{n=0}^{\infty} \frac{1}{n!}, \ e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

 \blacklozenge : Euler's formula: $e^{ix} = \cos x + i \sin x$, Euler's identity: $e^{i\pi} + 1 = 0$.

Example 0.3 $Draw y = \frac{1}{2}e^{-x} - 1$. (Domain? Range?)

$$y = \frac{1}{2}e^{-x} y = \frac{1}{2}e^{-x} - 1$$

(Domain: $(-\infty, \infty) = \mathbb{R}$; range: $(-1, \infty)$.)