

Untersuchung, Implementierungen und Bewertung von Graph-Metriken

Studienarbeit

im Studiengang Informatik

an der Dualen Hochschule Baden-Württemberg Stuttgart, Campus Horb am Neckar

von

Benedict Weichselbaum

18. November 2020

Bearbeitungszeitraum Matrikelnummer, Kurs Betreuer & Gutachter 28.09.2020 - 31.05.2021 6275457, TINF2018 Prof. Dr. ing. Olaf Herden

Erklärung

Ich versichere hiermit, dass ich meine Studienarbeit mit dem Thema *Graphen: Metriken und Ähnlichkeit* selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Nürnberg, 18. November 2020

Benedict Martin Weichselbaum

Inhaltsverzeichnis

Abbildungsverzeichnis Tabellenverzeichnis			
1	Einleitung		
	1.1	Motivation für die Studienarbeit	1
	1.2	Fragestellungen	1
2	Graph-Metriken		
	2.1	Grundlegende Metriken	3
	2.2	Distanzmetriken	5
	2.3	Kreis-basierte Metriken	7
	2.4	Zusammenhangsmetriken (Connectivity)	7
	2.5	Zentralitätsmetriken	7
	2.6	Arborizität	7
	2.7	Chromatische Zahl und chromatischer Index	7
	2.8	Weitere Metriken	7
	2.9	Übersicht der vorgestellten Graphmetriken	7
3	Ähn	lichkeit von Graphen	8
4	Implementierung und Umsetzung der Metriken		
	4.1	Implementierung in verschiedenen Graphdatenbanken	9
	4.2	Vergleich der Implementierungen	9
5	Graphmetriken und Ähnlichkeit in Anwendung		10
6	Fazit und Zusammenfassung		
	6.1	Zusammenfassung der Ergebnisse	11
	6.2	Fazit	11
GI	Glossar		
Lit	Literatur		

Abbildungsverzeichnis

Tabellenverzeichnis

Abkürzungsverzeichnis

1 Einleitung

1.1 Motivation für die Studienarbeit

Graphen sind einer der wichtigsten Datenstrukturen der Informatik. Warum kann man das sagen? In seinem Buch "Algorithmische Graphentheorie" nennt Volker Turau, Professor an der Universität Hamburg-Harburg, den Grund dafür:

Graphen sind die in der Informatik am häufigsten verwendete Abstraktion. Jedes System, welches aus diskreten Zuständen oder Objekten und Beziehungen zwischen diesen besteht, kann als Graph modelliert werden. [Tur04]

Diese netzartigen Strukturen können dabei die verschiedensten Konstrukte repräsentieren. Dazu zählen Straßennetze, Computernetzwerke, elektrische Schaltungen aber auch zum Beispiel chemische Moleküle. [Tit19]

Um Graphen zu beschreiben und zu charakterisieren, haben sich über die Zeit zahlreiche Metriken, bzw. Eigenschaften für diese herausgebildet ("graph properties" [Lov12]). Das heißt, einem Graphen können gewisse Kennzahlen zugeordnet werden, die ihn auszeichnen. Auch diese Metriken sind, wie die Graphen selbst, meist praktisch anwendbar. Zum Beispiel in der Untersuchung von Netzwerken [EK13].

Diese Studienarbeit soll nun diese Metriken genauer untersuchen. Hierbei ist es zunächst wichtig die verschiedenste Metriken vorzustellen und zu erläutern. Dabei ist es auch wichtig herauszufinden, wie verbreitet diese Metriken sind und inwieweit die jeweiligen Kennzahlen zu bewerten sind. Des Weiteren soll auf Basis der Metriken auch der Begriff der Ähnlichkeit von Graphen aufgegriffen werden.

Neben einer theoretischen Betrachtung der Graphmetriken soll auch eine Implementierung stattfinden. Es ist dabei das Ziel, mithilfe von Graphdatenbanken die jeweiligen Metriken umzusetzen und diese miteinander zu Vergleichen.

In einem Weiteren Teil ist außerdem noch darauf einzugehen, welche Anwendung die gezeigten Metriken haben, um den praktischen Nutzen der Thematik aufzuzeigen.

1.2 Fragestellungen

Auf Basis dieser Motivation können nun auch die konkreten Fragestellungen formuliert werden, die diese Arbeit betrachten soll. Insgesamt sollen vier wissenschaftliche Fragen

beantwortet werden.

1. Welche Graph-Metriken gibt es und wie sind diese zu ermitteln und zu kategorisieren?

Hierzu gehört, wie bereits erwähnt die Vorstellung der einzelnen Metriken, aber auch eine Kategorisierung in Rubriken, um Metriken besser voneinander abzugrenzen, da diverse Metriken höchst unterschiedliche Aussagen über einen Graphen treffen. Es wird auch darauf eingegangen welche Motivation hinter den jeweiligen Metriken steht. Bei der Beantwortung dieser Frage soll außerdem auch darauf eingegangen werden, inwieweit die beschriebene Metrik in bestimmten Mathematikbibliotheken wie "Sage Math" oder "Wolfram" vorkommen.

2. Wie sind die vorgestellten Metriken zu bewerten?

In diesem Abschnitt soll es vor allem darum gehen, die vorgestellten Metriken dahingehend zu bewerten, wie "schwer" es ist, sie zu ermitteln. Außerdem soll bei der Bewertung auch auf die Verbreitung eingegangen werden.

3. Was beschreibt der Ähnlichkeitsbegriff bei Graphen?

Basierend auf Graph-Metriken lässt sich auch ermitteln, ob zwei Graphen Ähnlichkeiten aufweißen [WM19]. Auch auf diesen Aspekt soll die Arbeit bezug nehmen und dabei ein Anwendungs-Beispiel konstruieren.

4. Wie können die vorgestellten Metriken in Graphdatenbanken verwendet werden, bzw. implementiert werden?

Auf die theoretische Betrachtung der Graph-Metriken folgt dann ein praktischer Teil, der behandeln soll, wie sich die Metriken in bekannten Graphdatenbanken umsetzen lassen, bzw. umgesetzt wurden. Dabei ist es wichtig herauszufinden welche Graphkennzahlen bereits teil der Graphdatenbank-Lösungen sind, bzw. welche Metriken selbst umgesetzt werden müssen.

5. Wie sind die jeweiligen Implementierungen zwischen und innerhalb der Graphdatenbanken zu bewerten?

Folgend auf die Implementierung, ist es noch wichtig zu verstehen, wie diese Umsetzungen zu betrachten sind. Dabei wird vor allem ein Fokus auf das Thema Performance und Skalierung gelegt.

6. Welche Anwendungen gibt es für Graph-Metriken und den Vergleich von Graphen (Ähnlichkeit)?

Als letztes soll sich die Studienarbeit mit praktischen Beispielen beschäftigen. Es ist dabei wichtig zu verstehen, welchen konkreten Nutzen die gezeigten Kennzahlen für Graphen in modernen Anwendungsszenarien haben.

2 Graph-Metriken

Dieser erste Teil der Arbeit wird sich nun ausführlich mit einer weiten Reihe an Graph-Metriken beschäftigen. Hierbei sollen die ersten zwei Fragestellungen der Arbeit genau beantwortet werden. Zur jeweiligen Vorstellung einer Graph-Metrik sollen dabei die folgengen Punkte erläutert werden:

- Was drückt die Metrik aus (Definition)?
- Was ist die konkrete Motivation f
 ür die Metrik, falls diese auszumachen ist?
- Inwieweit ist die Metrik verbreitet? Zum Beispiel in der Literatur oder in Mathematikbibliotheken.
- Wie ist die Metrik im Bezug auf den Rechenaufwand zu bewerten?

Es ist noch zu erwähnen, dass alle im folgenden vorgestellten Metriken über die einzelnen Sektionen der Arbeit in Kategorien eingeteilt sind.

Darüber hinaus ist noch eine grundsätzliche Notationen während der Arbeit zu klären: Ein **Graph G** ist ein Paar bestehend aus **Knoten V** und **Kanten E**.

$$G = (V, E), wobei E \subseteq V \times V$$

Für V können wir auch V(G) schreiben, für E auch E(G). [Die00] V ist dabei Englisch und bedeutet "Vertices", E steht für "Edges". Wenn es um die Datenstrukturen von Graphen geht, kommen im Rahmen dieser Arbeit hauptsächlich Adjazenzmatrizen und Adjazenzlisten zum Einsatz. Allerdings können bei Bedarf auch Inzidenzen (Beziehung zwischen Knoten und Kanten) im Graphen eine Rolle spielen, wie Inzidenzmatrizen und Inzidenzlisten. [Kne19; Die00]

2.1 Grundlegende Metriken

Ein einem ersten Teil sollen grundlegende Graph-Kennzahlen vorgestellt werden. Diese beschreiben einen Graphen auf rudimentäre Art und Weise und zeigen die am einfachsten zu berechnenden Eigenschaften des Graphen.

Ordnung und Größe eines Graphen

Die Frage danach, wie viele Knoten ein Graph hat lässt sich mit der "**Ordnung**" eines Graphen beantworten. Die Ördnung"beschreibt dabei einfach die Anzahl der Elemente

in der Menge V. Man schreibt: |V| oder |V(G)| oder auch |G|. [Die00] Diese Eigenschaft ist essentiell zur allgemeinen Beschreibung und z.B. graphischen Darstellung eines Graphen. Sie lässt sich dabei in sämtlichen mathematischen Bibliotheken finden, wie SageMath, Matlab und Wolfram [Sag20; Mat20a; Wol20]. Die Komplexität zur Erfassung der Metrik gestaltet sich dabei äußerst einfach. Bei einer Adjazenzmatrix lässt sich die Anzahl der Knoten dadurch herausfinden, wie "lang" eine Dimension des zweidimensionalen Arrays bzw. der zweidimensionalen Liste. Dies kann man je nach Implementierung der jeweiligen Datenstruktur in einer Komplexität von O(n) oder O(1) herausfinden.

Eine weitere grundlegende Kennzahl von Graphen ist dessen "Größe". Die Größe beschreibt dabei die Anzahl der Kanten, die im Graphen vorkommen, also die Anzahl der Elemente in der Menge E. Man schreibt analog zur Größe des Graphen: |E| oder |E(G)| oder auch ||G||. [Bal97; Die00] Auch diese Metrik ist weit verbreitet. So lässt sie sich in vielen Büchern zur Graphentheorie finden, aber auch in den genannten Mathematikbibliotheken [Sag20; Mat20a; Wol20]. Die Anzahl der Kanten innerhalb eines Graphen herauszufinden, erweist sich nicht ganz so trivial wie das Herausfinden der Ordnung. Ist ein Graph nicht gerichtet, d.h. seine Kanten haben keine feste Richtung [Die00] so ist seine Adjazenzmatrix symmetrisch. Man kann also zählen wie viele Einträge es innerhalb der Matrix auf der Hauptdiagonalen und einer der Hälften gibt. Das ergäbe immer $\frac{1}{2}n^2$ Schritte, wenn n die Ordnung des Graphen ist. Die Komplexität beträge also $O(n^2)$. Bei der Darstellung durch eine Inzidenzliste wäre das anders. Hier könnte einfach die Größe der Liste gesucht werden und man wüsste die Größe des Graphen. Die Komplexität wäre hier, wie schon erwähnt, je nach Implementierung O(n) oder O(1).

Der Grad eines Knotens

Während die zwei ersten vorgestellten Metriken vor allem den Graphen als ganzes beschreiben, ist es auch noch wichtig zu wissen, was einen einzelnen Knoten auszeichnet, um einen Graphen besser zu beschreiben. Hierzu gibt es die grundlegende Metrik des **Grad** eines Knotens. Der Grad eines Knotens beschreibt die Anzahl der mit einem Knoten inzidenten Kanten [Die00]. D.h. es drückt aus, wie viele Kanten mit einem Knoten verbunden sind. Man kann dies z.B. durch eine Funktion ausdrücken, die einen Knoten v auf eine natürliche Zahl abbildet: d(v).

Auf Basis dieser Metrik lässt sich auch andere verwandte Metriken ableiten. Hierzu gehört der "Minimalgrad" und der "Maximalgrad". Der Minimalgrad ist der kleinste Knoten-Grad eines Graphen G: $\delta(G) := min\{d(v) \mid v \in V(G)\}$. Parallel dazu ist der Maximalgrad der größte Knoten-Grad eines Graphen G: $\Delta(G) := max\{d(v) \mid v \in V(G)\}$. Darüber hinaus kann man noch den "Durchschnittsgrad" eines Graphen bestimmen. Dieser bildet den Durchschnitt aller Knotengrade ab: $d(G) := \sum_{v \in V(G)} d(v)/|V|$. [Die00] Des Weiteren gibt es bei der Betrachtung eines gerichteten Graphen zusätzliche

Abwandlungen der Metrik. Da hier die Kanten immer zu einem Knoten gerichtet sind unterscheidet man speziell zwischen dem "**Eingangsgrad**" und dem "**Ausgangsgrad**". Der Eingangsgrad eines Knoten beschreibt dabei die Anzahl der Kanten, die auf einen Knoten "zeigen". Der Ausgangsgrad zeigt wie viele Kanten von einem Knoten "weggehen". [Bal97]

Auch der Grad eines Knotens und die meisten seiner verwandten Metriken sind weit verbreitet. So sind der allgemeine Grad, der Eingangsgrad, der Ausgangsgrad in allen drei betrachteten Mathematikbibliotheken vorhanden. SageMath unterstützt sogar nativ die Metrik "Durchschnittsgrad". [Sag20; Mat20a; Wol20]

Die Berechnung eines Grades über eine Adjazenzmatrix oder eine Adjazenzliste ist in linearer Zeit lösbar (O(n)). Bei der Adjazenzmatrix muss einfach nur die jeweilige Reihe des zugehörigen Knotens durchlaufen werden und gezählt werden, wie häufig ein Eintrag für eine Kante enthalten. Mit Hilfe der Adjazenzliste kann einfach die Größe der Liste als Grad genommen werden, die dem Knoten zugehörig ist.

2.2 Distanzmetriken

Innerhalb der Graphentheorie gibt es den Begriff des Wegs. Ein Weg beschreibt dabei einen Graphen, der Knoten in einer Reihe hinterander Verbindet. Somit hat der Anfangsund End-Knoten den Grad 1 und alle "mittleren" Knoten den Grad 2. Meist sucht man
aber einen bestimmten Weg innerhalb eines bestehenden Graphen. Der Weg ist hier
dann ein Teilgraph des ursprünglichen Graphen. Anschaulicher lässt sich ein Weg also
als eine Folge von Kanten beschreiben, in der kein Knoten zweimal besucht wird. Die
Länge eines Weges ist dabei die Anzahl der Kanten, die in einem Weg vorhanden sind.
[Die00] Auf Basis des Weges und seiner Längen-Eigenschaft lassen sich nun eine
Reihe von Metriken definiert werden.

Abstand/Distanz

Der "Abstand" ist eine Metrik, die auf Basis von zwei Knoten innerhalb eines Graphen definiert wird. Sie beschreibt die Länge des kürzesten Weges zwischen den zwei Knoten, von denen man den Abstand wissen will. Aufgeschrieben werden kann die Metrik mittels einer Funktion, die für den Graph G zwei Knoten x und y auf eine natürliche Zahl abbildet: $d_G(x,y)$ [Die00] Diese Metrik ist wichtig als Basis für andere Metriken. Wie die bisherigen Metriken ist auch diese in den jeweiligen Bibliotheken vertreten [Sag20; Mat20b; Wol20]. Zur Berechnung der Metrik kann auf verschiedene bekannte, graphtraversierende Algorithmen zurückgegriffen werden. Dazu zählen die Breitensuche, der Djikstra-Algorithmus oder der Bellman-Ford-Algorithmus [Sag20]. Somit ist auch die Komplexität zum Herausfinden der Metrik gleich mit der der Algorithmen. So wäre bei

einer Breitensuche eine Komplexität von O(|E|) zu erwarten, da jede Kante abgegangen wird. Der Djikstra-Algorithmus hingegen hat eine Komplexität von $O(|V|^2)$ [Jun13].

Extrenzität eines Knotens

Mit Hilfe des Abstandes lässt sich nun u.a. die "Extrenzität" eines Knotens bestimmen. Die "Extrenzität" ist dabei der maximale Abstand den ein Knoten von einem anderen Knoten in einem Graphen G haben kann. Eine einfache formale Notierung für den Knoten x wäre: $ecc(x,G) = max_{x,y}\{d_G(x,y)\}$, wobei x der gegebene Knoten ist. [Har01] Herauszufinden ist diese Kennzahl beispielsweise über den Djikstra-Algorithmus, der den kürzesten Abstand zu jedem anderen Knoten sucht und dann einfach der größte zu wählen ist. D.h. das die Metrik auch die Komplexität hat wie bei der Metrik "Abstand" erläutert wurde. Die Extrenzität eines Knotens ist anschließend noch für andere Metriken eine wichtige Basis und allgemein weit verbreitet in den genannten Bibliotheken [Sag20; Mat20b; Wol20].

Durchmesser

Wie schon erwähnt, ist es nun möglich auf Basis des Abstands weitere Metriken zu definieren. Hierzu zählt unter anderem der "Durchmesser" eines Graphen. Der Durchmesser beschreibt dabei den größten Abstand zweier Knoten im Graphen G. [Die00] D.h. es ist der Abstand von allen Knoten zu allen Knoten zu berechnen und davon die größte Zahl auszuwählen. Formal notiert lässt sich die Metrik folgendermaßen beschreiben: $Durchmesser(G) = max_{x,y}\{d_G(x,y)\}$. Nimmt man zur Ermittlung der Abstände dabei den Djikstra-Algorithmus und wendet diesen dann jeweils auf jeden einzelnen Knoten an, kann eine Komplexität von $O(|V|^3)$ angenommen werden, um die Metrik zu extrahieren. Auch diese Metrik lässt sich z.B. in SageMath oder Wolfram finden. In Matlab kann der Durchmesser über die Distanzmatrix ermittelt werden, die Matlab erstellen kann. [Sag20; Mat20b; Wol20] Die Anwendung für diese Metrik kann z.B. sein, rein topologische Eigenschaften des Graphen herausfinden zu wollen. Allerdings kann auch in realen Problemen der Durchmesser als Metrik auftauchen. So ist z.B. der Abstand und damit der Durchmesser auch mit gewichteteten Kanten berechenbar. [Sag20; GIT14] In einem Navigationssystem wäre der Durchmesser dann die längste fahrbare Strecke.

Radius

Parallel zum Durchmesser eines Graphen kann man auch dessen "Radius" bestimmten. Hierfür wird die Metrik der Extrenzität wichtig und der Begriff der Zentralität. Eine Kante ist dann zentral bzw. im Zentrum eines Graphen, wenn dessen Extrenzität minimal

ist. Dies kann nur einen Knoten, aber auch mehrere Knoten betreffen. Die minimale Extrenzität in einem Graphen, die die Knoten des Zentrums haben, nennt man dann auch den "Radius" des Graphen. Geschrieben wird $rad\ G = min_{x \in V(G)} max_{y \in V(G)} d_G(x,y)$. [Die00] Der Radius lässt sich grundsätzlich auf die gleiche Weise herausfinden, wie der Durchmesser und hat dementsprechend die gleiche Komplexität. Des Weiteren ist diese Metrik auch weit verbreitet und lässt sich in allen untersuchten Bibliotheken finden [Sag20; Wol20; Mat20b]

- 2.3 Kreis-basierte Metriken
- 2.4 Zusammenhangsmetriken (Connectivity)
- 2.5 Zentralitätsmetriken
- 2.6 Arborizität
- 2.7 Chromatische Zahl und chromatischer Index
- 2.8 Weitere Metriken
- 2.9 Übersicht der vorgestellten Graphmetriken

3 Ähnlichkeit von Graphen

4 Implementierung und Umsetzung der Metriken

- 4.1 Implementierung in verschiedenen Graphdatenbanken
- 4.2 Vergleich der Implementierungen

5 Graphmetriken und Ähnlichkeit in Anwendung

6 Fazit und Zusammenfassung

- 6.1 Zusammenfassung der Ergebnisse
- 6.2 Fazit

Glossar

Literatur

- [Aig15] Martin Aigner. *Graphentheorie: eine Einführung aus dem 4-Farben Problem.* 2., überarbeitete Auflage. Springer Studium Mathematik Bachelor. OCLC: 927721160. Wiesbaden: Springer Spektrum, 2015. 196 S. ISBN: 978-3-658-10322-4 978-3-658-10323-1.
- [Alo88] N. Alon. "The linear arboricity of graphs". In: *Israel Journal of Mathematics* 62.3 (Okt. 1988), S. 311–325. ISSN: 0021-2172, 1565-8511. DOI: 10. 1007/BF02783300. URL: http://link.springer.com/10.1007/BF02783300 (besucht am 24.10.2020).
- [And77] Lars Dovling Andersen. "On edge-colorings of graphs." In: *MATHEMATICA SCANDINAVICA* 40 (1. Dez. 1977), S. 161. ISSN: 1903-1807, 0025-5521.

 DOI: 10.7146/math.scand.a-11685.URL: http://www.mscand.dk/article/view/11685 (besucht am 24.10.2020).
- [Bal97] V. K. Balakrishnan. *Schaum's outline of theory and problems of graph theory*. Schaum's outline series. New York: McGraw-Hill, 1997. 293 S. ISBN: 978-0-07-005489-9.
- [Ber01] Claude Berge. *The theory of graphs*. Dover books on mathematics. Mineola, N.Y: Dover, 2001. 247 S. ISBN: 978-0-486-41975-6.
- [BI19] José Bento und Stratis Ioannidis. "A family of tractable graph metrics". In: Applied Network Science 4.1 (Dez. 2019), S. 107. ISSN: 2364-8228. DOI: 10. 1007/s41109-019-0219-z. URL: https://appliednetsci.springeropen.com/articles/10.1007/s41109-019-0219-z (besucht am 22.10.2020).
- [BK79] Frank Bernhart und Paul C Kainen. "The book thickness of a graph". In: Journal of Combinatorial Theory, Series B 27.3 (Dez. 1979), S. 320–331. ISSN: 00958956. DOI: 10.1016/0095-8956(79)90021-2. URL: https://linkinghub.elsevier.com/retrieve/pii/0095895679900212 (besucht am 24.10.2020).
- [BM08] Raymond Bisdorf und Jean-Luc Marichal. *Counting non-isomorphic maximal independent setsof then-cycle graph*. Nov. 2008. URL: https://arxiv.org/abs/math/0701647v2 (besucht am 24. 10. 2020).

- [Dee+18] G. Deepa u. a. "Dijkstra Algorithm Application: Shortest Distance between Buildings". In: International Journal of Engineering & Technology 7.4 (2. Okt. 2018), S. 974. ISSN: 2227-524X. DOI: 10.14419/ijet.v7i4.10.26638. URL: https://www.sciencepubco.com/index.php/ijet/article/view/26638 (besucht am 17.11.2020).
- [Die00] Reinhard Diestel. *Graphentheorie*. 2., neu bearb. und erw. Aufl. Springer-Lehrbuch. OCLC: 247312585. Berlin: Springer, 2000. 314 S. ISBN: 978-3-540-67656-0.
- [EK13] W. Ellens und R. E. Kooij. *Graph measures and network robustness*. _eprint: 1311.5064. 2013.
- [GIT14] GITTA. Durchmesser eines Graphen. Durchmesser eines Graphen. 2014. URL: https://www.gitta.info/Accessibiliti/de/html/StructPropNetw_learningObject2.html (besucht am 18.11.2020).
- [Gus83] Dan Gusfield. "Connectivity and edge-disjoint spanning trees". In: *Information Processing Letters* 16.2 (Feb. 1983), S. 87–89. ISSN: 00200190. DOI: 10.1016/0020-0190(83)90031-5. URL: https://linkinghub.elsevier.com/retrieve/pii/0020019083900315 (besucht am 24.10.2020).
- [Har01] Frank Harary. *Graph theory*. 15. print. OCLC: 248770458. Cambridge, Mass: Perseus Books, 2001. 274 S. ISBN: 978-0-201-41033-4.
- [HM11] Javier Martin Hernandez und Piet Van Mieghem. *Classification of graph metrics*. 2011. URL: https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUDreport20111111_MetricList.pdf (besucht am 22.10.2020).
- [Hun14] Michael Hunger. *Neo4j 2.0 Eine Graphdatenbank für alle*. OCLC: 875609599. 2014. ISBN: 978-3-86802-315-2 978-3-86802-654-2. URL: https://nbn-resolving.org/urn:nbn:de:101:1-2014032620976 (besucht am 24. 10. 2020).
- [Jan20] JanusGraph. JanusGraph Dokumentation. 2020. URL: https://docs.janusgraph.org/ (besucht am 25.10.2020).
- [Jun13] Dieter Jungnickel. *Graphs, networks and algorithms*. 4th ed. Algorithms and computation in mathematics 5. OCLC: 821566132. Berlin: Springer, 2013. 675 S. ISBN: 978-3-642-32278-5 978-3-642-32277-8.
- [Kne19] Helmut Knebl. *Algorithmen und Datenstrukturen: Grundlagen und probabilistische Methoden für den Entwurf und die Analyse*. OCLC: 1123167896. 2019. ISBN: 978-3-658-26511-3.
- [Lov12] László Lovász. *Large networks and graph limits*. American Mathematical Society colloquium publications volume 60. Providence, Rhode Island: American Mathematical Society, 2012. 475 S. ISBN: 978-0-8218-9085-1.

- [Mat20a] Matlab. Directed and Undirected Graphs MATLAB & Simulink MathWorks Deutschland. Directed and Undirected Graphs. 2020. URL: https://de.mathworks.com/help/matlab/math/directed-and-undirected-graphs.html (besucht am 10.11.2020).
- [Mat20b] Matlab. Shortest path distances of all node pairs. Distances. 2020. URL: https://de.mathworks.com/help/matlab/ref/graph.distances.html (besucht am 18.11.2020).
- [Moh89] Bojan Mohar. "Isoperimetric numbers of graphs". In: *Journal of Combinatorial Theory, Series B* 47.3 (Dez. 1989), S. 274–291. ISSN: 00958956. DOI: 10.1016/0095-8956(89)90029-4. URL: https://linkinghub.elsevier.com/retrieve/pii/0095895689900294 (besucht am 24.10.2020).
- [Öst02] Patric R.J. Östergård. "A fast algorithm for the maximum clique problem". In: Discrete Applied Mathematics 120.1 (Aug. 2002), S. 197–207. ISSN: 0166218X. DOI: 10.1016/S0166-218X(01)00290-6. URL: https://linkinghub.elsevier.com/retrieve/pii/S0166218X01002906 (besucht am 24.10.2020).
- [RWE15] Ian Robinson, Jim Webber und Emil Eifrem. *Graph databases* [new opportunities for connected data. OCLC: 1028626678. Sebastopol, CA: O'Reilly, 2015. ISBN: 978-1-4919-3200-1. URL: https://neo4j.com/graph-databases-book/?ref=home (besucht am 24.10.2020).
- [Sag] SageMath. Generic graphs (common to directed/undirected) Sage 9.2 Reference Manual: Graph Theory. Sage Math Reference Manual. URL: https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/generic_graph.html (besucht am 10.11.2020).
- [Sag20] SageMath. *Graph Theory*. Sage Math Reference Manual. 2020. URL: https://doc.sagemath.org/html/en/reference/graphs/index.html (besucht am 25.10.2020).
- [SU11] Edward R. Scheinerman und Daniel H. Ullman. *Fractional graph theory: a rational approach to the theory of graphs*. Dover books on matehmatics. OCLC: ocn721885660. Minola, N.Y: Dover Publications, 2011. 211 S. ISBN: 978-0-486-48593-5.
- [Tig20] TigerGraph. *TigerGraph Documentation*. 2020. URL: https://docs.tigergraph.com/ (besucht am 25.10.2020).
- [Tit19] Peter Tittmann. *Graphentheorie: Eine anwendungsorientierte Einführung*. 3., aktualisierte Auflage. München: Hanser, Carl, 2019. 168 S. ISBN: 978-3-446-46052-2 978-3-446-46503-9.

- [Tur04] Volker Turau. *Algorithmische Graphentheorie*. Oldenbourg Wissenschaftsverlag, 1. Jan. 2004. ISBN: 978-3-486-59377-8. DOI: 10.1524/9783486593778. URL: https://www.degruyter.com/view/title/310250 (besucht am 24.10.2020).
- [WM19] Peter Wills und Francois G. Meyer. *Metrics for Graph Comparison: A Practitioner's Guide*. _eprint: 1904.07414. 2019.
- [Wol20] Wolfram. *Graph Measures & Metrics*. Wolfram Language Documentation. 2020. URL: https://reference.wolfram.com/language/guide/GraphMeasures.html (besucht am 25. 10. 2020).