Riducibilità, Classe P

Tutorato 10: Problemi in P, Complessità e Riducibilità

Automi e Linguaggi Formali

Riassunto delle lezioni del Prof. Davide Bresolin

Corso di Laurea in Informatica - Università degli Studi di Padova

28 Maggio 2025

Contents

1	La (Classe P: Problemi Trattabili 3		
	1.1	Tempo Polinomiale e Equivalenza dei Modelli		
	1.2	Definizione della Classe P		
	1.3	Metodologia per Dimostrare che un Problema è in P		
	1.4	Esempi di Problemi in P		
2	Riducibilità: Trasformare Problemi			
	2.1	Concetto Fondamentale di Riduzione		
	2.2	Schema delle Dimostrazioni per Riduzione		
3	Problemi Classici Indecidibili			
	3.1	Il Problema della Fermata		
	3.2	Il Problema del Vuoto		
	3.3	Altri Problemi Indecidibili		
4	Rid	ucibilità mediante Funzione		
	4.1	Formalizzazione delle Riduzioni		
	4.2	Schema di Funzionamento delle Riduzioni		
	4.3	Proprietà delle Riduzioni mediante Funzione		
5	Esempi Dettagliati di Riduzioni			
	5.1	$\bar{A}_{TM} \leq_m \bar{\mathrm{HALT}}_{TM} \dots \dots$		
	5.2	$E_{TM} \leq_m \mathrm{EQ}_{TM} \ldots \ldots$		
		Una Riduzione Impossibile: $A_{TM} \not\leq_m E_{TM}$		

6	Gerarchia dei Problemi	8	
	6.1 Classificazione per Riconoscibilità	8	
	6.2 Il Problema dell'Equivalenza: Un Caso Speciale	8	
7	Implicazioni Teoriche e Pratiche	9	
	7.1 Utilità delle Riduzioni	9	
	7.2 Esempi di Funzioni Calcolabili	9	
8	Esercizi e Approfondimenti		
	8.1 Problemi Proposti	9	
	8.2 Connessioni con la Teoria della Complessità	10	
9	Conclusioni	10	

1 La Classe P: Problemi Trattabili

1.1 Tempo Polinomiale e Equivalenza dei Modelli

Concetto chiave

Il concetto di **tempo polinomiale** è fondamentale per distinguere tra algoritmi efficienti e non efficienti. Caratteristiche principali:

- Una differenza di tempo **polinomiale** tra TM a nastro singolo e multi-nastro è considerata piccola
- Une differenza di tempo **esponenziale** tra TM deterministiche e non deterministiche è considerata grande
- Tutti i modelli di calcolo deterministici "ragionevoli" sono polinomialmente equivalenti

Definizione

Un modello di calcolo è **ragionevole** se assomiglia molto ai computer reali. Questo include:

- Macchine di Turing deterministiche
- Linguaggi di programmazione concreti (Java, C++, Python)
- Macchine multi-nastro
- Computer con accesso ad array

1.2 Definizione della Classe P

Definizione

 ${f P}$ è la classe di linguaggi che sono decidibili in tempo polinomiale da una TM deterministica a singolo nastro:

$$P = \bigcup_k \mathrm{TIME}(n^k)$$

Concetto chiave

Proprietà fondamentali della classe P:

- P è **invariante** per i modelli di calcolo polinomialmente equivalenti ad una TM deterministica
- P corrisponde approssimativamente ai problemi che sono **realisticamente risolvibili** da un computer
- La differenza esponenziale rappresenta la complessità degli approcci "a forza bruta"

1.3 Metodologia per Dimostrare che un Problema è in P

Procedimento di risoluzione

Per dimostrare che un problema/algoritmo è in P:

- 1. Descrivi l'algoritmo per fasi numerate
- 2. Dai un limite superiore polinomiale al numero di fasi che l'algoritmo esegue per un input di lunghezza n
- 3. Assicurati che ogni fase possa essere completata in tempo polinomiale su un modello di calcolo deterministico ragionevole
- 4. L'input deve essere codificato in modo ragionevole

1.4 Esempi di Problemi in P

Raggiungibilità in un Grafo:

PATH = $\{\langle G, s, t \rangle \mid G \text{ è un grafo che contiene un cammino da } s \text{ a } t\}$

Numeri Relativamente Primi:

RELPRIME = $\{\langle x, y \rangle \mid 1 \text{ è il massimo comune divisore di } x \in y\}$

Teorema

Linguaggi Context-Free in P: Ogni linguaggio context-free è un elemento di P.

- Abbiamo già dimostrato che ogni CFL è decidibile, ma l'algoritmo nella dimostrazione è esponenziale
- La soluzione polinomiale usa la programmazione dinamica
- La complessità è $O(n^3)$

2 Riducibilità: Trasformare Problemi

2.1 Concetto Fondamentale di Riduzione

Definizione

Una **riduzione** è un modo per trasformare un problema in un altro problema tale che una soluzione al secondo problema può essere usata per risolvere il primo problema.

Concetto chiave

Principi fondamentali della riducibilità:

- Se A è riducibile a B, e B è decidibile, allora A è decidibile
- Se A è riducibile a B, e A è indecidibile, allora B è indecidibile

2.2 Schema delle Dimostrazioni per Riduzione

Procedimento di risoluzione

Le dimostrazioni per riduzione sono usate per dimostrare che un problema è indecidibile:

- 1. Assumi che B sia decidibile
- 2. Riduci A al problema B
 - Costruisci una TM che usa B per risolvere A
- 3. Se A è indecidibile, allora questa è una contraddizione
- 4. L'assunzione è sbagliata e B è indecidibile

3 Problemi Classici Indecidibili

3.1 Il Problema della Fermata

Definizione

 $\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M$ è una TM che si ferma su input $w \}$

Procedimento di risoluzione

Dimostrazione dell'indecidibilità di HALT $_{TM}$ per riduzione da A_{TM} :

- 1. Assumiamo che esista un deciditore R per HALT $_{TM}$
- 2. Costruiamo una TM S che decide A_{TM} usando R:
 - S su input $\langle M, w \rangle$ usa R per verificare se M si ferma su w
 - Se M si ferma, S simula M su w e risponde di conseguenza
 - Se M non si ferma, S rifiuta
- 3. Ma ${\cal A}_{TM}$ è indecidibile, quindi abbiamo una contraddizione

3.2 Il Problema del Vuoto

Definizione

 $E_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) = \emptyset \}$

La dimostrazione dell'indecidibilità di E_{TM} avviene per riduzione da A_{TM} . La costruzione richiede di creare una TM ausiliaria il cui linguaggio è vuoto se e solo se la TM originale non accetta l'input dato.

3.3 Altri Problemi Indecidibili

Regolarità:

 $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) \text{ è regolare} \}$

Equivalenza:

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

Suggerimento

Per REGULAR $_{TM}$, capire come usare il deciditore ipotetico per implementare una soluzione ad A_{TM} è meno ovvio rispetto ai casi precedenti. La dimostrazione richiede una costruzione più sofisticata che sfrutta le proprietà dei linguaggi regolari.

4 Riducibilità mediante Funzione

4.1 Formalizzazione delle Riduzioni

Definizione

Funzione Calcolabile: $f: \Sigma^* \to \Sigma^*$ è una funzione calcolabile se esiste una TM M che su input w, termina la computazione avendo solo f(w) sul nastro.

Definizione

Riduzione mediante Funzione: Un linguaggio A è riducibile mediante funzione al linguaggio B ($A \leq_m B$), se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che:

per ogni
$$w: w \in A$$
 se e solo se $f(w) \in B$

La funzione f è detta **riduzione** da A a B.

4.2 Schema di Funzionamento delle Riduzioni

TM per A

4.3 Proprietà delle Riduzioni mediante Funzione

Teorema

Proprietà di Decidibilità:

- Se $A \leq_m B$ e B è decidibile, allora A è decidibile
- Se $A \leq_m B$ e A è indecidibile, allora B è indecidibile

Teorema

Proprietà di Riconoscibilità:

- Se $A \leq_m B$ e B è Turing-riconoscibile, allora A è Turing-riconoscibile
- Se $A \leq_m B$ e A non è **Turing-riconoscibile**, allora B non è **Turing-riconoscibile**

5 Esempi Dettagliati di Riduzioni

5.1 $A_{TM} \leq_m \mathbf{HALT}_{TM}$

Procedimento di risoluzione

Costruzione della riduzione:

- 1. Input della riduzione: $\langle M, w \rangle$
- 2. Output della riduzione: $\langle M', w' \rangle$ dove:
 - M' è una TM che su input w' simula M su w
 - Se M accetta w, allora M' si ferma (accettando)
 - Se M rifiuta w, allora M' si ferma (rifiutando)
 - Se M non si ferma su w, allora M' non si ferma
- 3. Proprietà: M accetta w se e solo se M' si ferma su w'

5.2 $E_{TM} \leq_m \mathbf{E} \mathbf{Q}_{TM}$

Procedimento di risoluzione

Costruzione della riduzione:

- 1. Input della riduzione: $\langle M \rangle$
- 2. Output della riduzione: $\langle M_1, M_2 \rangle$ dove:
 - M_1 è una TM che rifiuta ogni input (quindi $L(M_1) = \emptyset$)
 - M_2 è la TM originale M
- 3. **Proprietà**: $L(M) = \emptyset$ se e solo se $L(M_1) = L(M_2)$

5.3 Una Riduzione Impossibile: $A_{TM} \nleq_m E_{TM}$

Errore comune

Non tutte le riduzioni sono possibili! Per esempio, non possiamo ridurre ${\cal A}_{TM}$ a ${\cal E}_{TM}$ perché:

- Avremmo bisogno che: M accetta w se e solo se $L(M') = \emptyset$
- Ma questo richiederebbe: M accetta w se e solo se $L(M') \neq \emptyset$
- La direzione corretta è: $A_{TM} \leq_m \overline{E_{TM}}$ (il complemento di E_{TM})

6 Gerarchia dei Problemi

6.1 Classificazione per Riconoscibilità

6.2 Il Problema dell'Equivalenza: Un Caso Speciale

Concetto chiave

 EQ_{TM} è un problema particolarmente interessante perché:

- Non è né Turing-riconoscibile né co-Turing-riconoscibile
- Questo può essere dimostrato mostrando riduzioni da entrambi A_{TM} e $\overline{A_{TM}}$
- Rappresenta una classe di problemi ancora più difficili dei normali problemi indecidibili

7 Implicazioni Teoriche e Pratiche

7.1 Utilità delle Riduzioni

Suggerimento

Le riduzioni sono strumenti potenti per:

- 1. Classificare la difficoltà dei problemi computazionali
- 2. Trasferire algoritmi da un problema ad un altro
- 3. Dimostrare limiti inferiori sulla complessità computazionale
- 4. Identificare famiglie di problemi con difficoltà equivalente

7.2 Esempi di Funzioni Calcolabili

Concetto chiave

Esempi importanti di funzioni calcolabili:

- Operazioni aritmetiche sugli interi (addizione, moltiplicazione, etc.)
- Trasformazioni di macchine di Turing (modificare stati, aggiungere transizioni)
- Manipolazioni di stringhe (concatenazione, sostituzione)
- Codifica e decodifica di strutture dati

8 Esercizi e Approfondimenti

8.1 Problemi Proposti

- 1. Linguaggio Universale: Dimostrare che $ALL_{TM} = \{\langle M \rangle \mid L(M) = \Sigma^*\}$ è indecidibile usando una riduzione mediante funzione.
- 2. **TM che non modificano l'input**: Sia $X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ è una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia <math>X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia X = \{\langle M, w \rangle \mid M \text{ e una TM a nastro singolo che non modificano l'input: Sia X = \{\langle M$
- 3. Riduzioni e linguaggi regolari: Se $A \leq_m B$ e B è un linguaggio regolare, ciò implica che A è un linguaggio regolare? Analizzare con controesempi.
- 4. **Impossibilità di riduzione**: Mostrare che A_{TM} non è riducibile mediante funzione a E_{TM} .
- 5. **Decidibilità tramite autoriduzione**: Mostrare che se A è Turing-riconoscibile e $A \leq_m \overline{A}$, allora A è decidibile.

8.2 Connessioni con la Teoria della Complessità

9 Conclusioni

La teoria della computabilità e delle riduzioni ci fornisce strumenti essenziali per comprendere i limiti fondamentali della computazione. Attraverso la classe P identifichiamo i problemi efficientemente risolvibili, mentre le riduzioni ci permettono di classificare sistematicamente la difficoltà dei problemi indecidibili.

Concetto chiave

Lezioni fondamentali:

- 1. Il **tempo polinomiale** è la soglia per l'efficienza computazionale
- 2. Le **riduzioni** permettono di trasferire difficoltà tra problemi
- 3. Esistono gerarchie di problemi con diversi gradi di indecidibilità
- 4. La formalizzazione mediante funzioni calcolabili rende rigorose le intuizioni

Questi concetti costituiscono la base teorica per comprendere sia i limiti intrinseci della computazione sia le tecniche per affrontare problemi computazionalmente difficili nella pratica.