

Representation

A discrete signal can represented:

- graphically
- ▶ in table form
- as a vector: x[n] = [..., 0, 0, 1, 3, 4, 5, 0, ...]
 - ▶ an **arrow** indicates the origin of time (n = 0). -if the arrow is missing, the origin of time is at the first element -the dots ... indicate that the value remains the same from that point onwards

Examples: at blackboard

Notation: x[4] represents the value of the fourth sample in the signal x[n]

Basic signals

Some elementary signals are presented below.

Unit impulse

Contains a single non-zero value of 1 located at time 0. It is denoted with $\delta[{\it n}].$

$$\delta[n] = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}.$$

Representation

Unit step

Unit step

It is denoted with u[n].

$$u[n] = \begin{cases} 1 & \text{if } n \ge 0 \\ 0 & \text{otherwise} \end{cases}.$$

Representation

Unit ramp

Unit ramp

It is denoted with $u_r[n]$.

$$u_r[n] = \begin{cases} n & \text{if } n \geq 0 \\ 0 & \text{otherwise} \end{cases}.$$

Representation

Exponential signal

Exponential signal

It does not have a special notation. It is defined by:

$$x[n] = a^n$$
.

a can be a real or a complex number. Here we consider only the case when a is real.

Depending on the value of a, we have four possible cases:

- 1. $a \ge 1$
- 2. 0 < a < 1
- 3. -1 < a < 0
- 4. $a \le 1$

Representation

Signals with finite energy

► The energy of a discrete signal is defined as

$$E = \sum_{n=-\infty}^{\infty} (x[n])^2.$$

- ▶ If *E* is finite, the signal is said to have finite energy.
- Examples:
 - unit impulse has finite energy
 - unit step does not

Signals with finite power

► The average power of a discrete signal is defined as

$$P = \lim_{N \to \infty} \frac{\sum_{n=-N}^{N} (x[n])^2}{2N+1}.$$

- ▶ In other words, the average power is the average energy per sample.
- ▶ If *P* is finite, the signal is said to have finite power.
- ▶ A signal with finite energy has finite power (P = 0 if the signal has infinite length). A signal with infinite energy can have finite or infinite power.
- **Example:** unit step has finite power $P = \frac{1}{2}$ (see proof at blackboard).

Periodic and non-periodic signals

▶ A signal is called **periodic** if its values repeat themselves after a certain time (known as **period**).

$$x[n] = x[n + N]), \forall t$$

- ▶ The **fundamental period** of a signal is the minimum value of *N*.
- Periodic signals have infinite energy, and finite power equal to the power of a single period.

Even and odd signals

▶ A real signal is **even** if it satisfies the following symmetry:

$$x[n] = x[-n], \forall n.$$

▶ A real signal is **odd** if it satisfies the following anti-symmetry:

$$-x[n]=x[-n], \forall n.$$

There exist signals which are neither even nor odd.

Even and odd signals: example

Even and odd parts of a signal

Every signal can be written as the sum of an even signal and an odd signal:

$$x[n] = x_e[n] + x_o[n]$$

▶ The even and the odd parts of the signal can be found as follows:

$$x_e[n] = \frac{x[n] + x[-n]}{2}.$$

$$x_o[n] = \frac{x[n] - x[-n]}{2}.$$

▶ Proof: check that $x_e[n]$ is even, $x_o[n]$ is odd, and their sum is x[n]

Even and odd parts: example

Time shifting

- ▶ The signal x[n-k] is x[n] delayed with k time units
 - ▶ Graphically, x[n-k] is shifted k units to the **right** compared to the original
- ▶ The signal x[n+k] is x[n] anticipated with k time units
 - ▶ Graphically, x[n + k] is shifted k units to the **left** compared to the original signal.

Time shifting: representation

Time reversal

▶ Changing the variable n to -n produces a signal x[-n] which mirrors x[n].

Subsampling

- ▶ $x_{M\downarrow}[n] = x[Mn]$ is a **subsampled** version of x[n] with a factor of M
 - \blacktriangleright Keep only 1 sample out of M samples from the original signal $\times [n]$

Interpolation

▶ **Interpolation** by a factor of *L* adds *L* of zeros between two samples in the original signal.

$$x_{L\uparrow} = egin{cases} x \left[rac{n}{L}
ight] & ext{if } rac{n}{L} \in \mathbb{N} \\ 0 & ext{otherwise} \end{cases}.$$

Mathematical operations

▶ A signal x[n] can be scaled by a constant A, i.e. each sample is multipled by A:

$$y[n] = Ax[n].$$

▶ Two signals $x_1[n]$ and $x_2[n]$ can be **summed** by summing the individual samples:

$$y[n] = x_1[n] + x_2[n]$$

▶ Two signals $x_1[n]$ and $x_2[n]$ can be **multiplied** by multipling the individual samples:

$$y[n] = x_1[n] \cdot x_2[n]$$

Definition

- System = a device or algorithm which produces an output signal based on an input signal
- ▶ We will only consider systems with a single input and a single output
- Figure here: blackboard.
- Common notation:
 - x[n] is the input
 - ▶ y[n] is the output
 - ► H is the system.

Notations

Notations:

$$y[n] = H[x[n]]$$

("the system H applied to the input x[n] produces the output y[n]")

$$x[n] \stackrel{H}{\rightarrow} y[n]$$

("the input x[n] is transformed by the system H into y[n]")

Equations

Usually, a system is described by the input-output equation (or difference equation) which expains how y[n] is defined in terms of x[n].

Examples:

- 1. y[n] = x[n] (the identity system)
- 2. y[n] = x[n-3]
- 3. y[n] = x[n+1]
- 4. $y[n] = \frac{1}{3}(x[n+1] + x[n] + x[n-1])$
- 5. $y[n] = \max(x[n+1], x[n], x[n-1])$
- 6. $y[n] = (x[n])^2 + \log_{10} x[n-1]$
- 7. $y[n] = \sum_{k=-\infty}^{n} x[k] = x[n] + x[n-1] + x[n-2] + ...$

$$y[n] = (x[n+1] + x[n] + x[n-1])/3$$

$$y[n] = \sum_{k=-\infty}^{n} x[k] = x[n] + x[n-1] + x[n-2] + \dots$$

Recursive systems

► The last system $y[n] = \sum_{k=-\infty}^{n} x[k] = x[n] + x[n-1] + x[n-2] + ...$ can be also written in **recursive form**

$$y[n] = y[n-1] + x[n],$$

Need to start from an initial condition

$$y[n_0] = \sum_{k=-\infty}^{n_0} x[k]$$

- Recursive systems always have one or more initial conditions.
- ► For recursive systems, the output signal depends on:
 - ▶ the input signal
 - and on initial conditions
- ▶ The initial conditions must always be specified for a recursive system
 - ▶ If not specified : implicitly assumed they are 0 (relaxed system)
- A recursive system with non-zero initial conditions can produce an output signal even in the absence of an input (x[n] = 0)

Representation of systems

- ► The operation of a system can be described graphically (see examples on blackboard):
 - summation of two signals
 - scaling of a signal with a constant
 - multiplication of two signals
 - delay element
 - anticipation element
 - other blocks for more complicated math operations

II.4 Classification of discrete systems

Memoryless / systems with memory

- ► Memoryless (or static): output at time n depends only on the input from the same moment n
- Otherwise, the system has memory (dynamic)
- Examples:
 - memoryless: $y[n] = (x[n])^3 + 5$
 - with memory: $y[n] = (x[n])^3 + x[n-1]$
- Memory of size N:
 - output at time n y[n] depends only up to the last N inputs, x[n-N], x[n-(N-1)], ... x[n],
 - ▶ if *N* is finite: the system has **finite memory**
 - if $N = \infty$, the system has infinite memory
- Examples:
 - ▶ finite memory of order 4: y[n] = x[n] + x[n-2] + x[n-4]
 - ▶ infinite memory: $y[n] = \sum_{k=-\infty}^{n} x[k] = x[n] + x[n-1] + x[n-2] + ...$

Time-Invariant and Time-Variant systems

▶ A relaxed system *H* is **time-invariant** if and only if:

$$x[n] \stackrel{H}{\to} y[n]$$

implies

$$x[n-k] \stackrel{H}{\to} y[n-k],$$

 $\forall x[n], \forall k.$

- ▶ Delaying the input signal with *k* will only delay the output with the same amount, otherwise the output is not affected
 - Must be true for all input signals, for all possible delays (positive or negative)
- Otherwise, the system is said to be time-variant
- Examples:
 - y[n] = x[n] x[n-1] is time-invariant
 - $y[n] = n \cdot x[n]$ is not time-invariant
- A system is time-invariant if it depends on n only through the input signal x[n]

Example

Time-invariant system y[n] = x[n] - x[n-1]

Another example

Time-variant system $y[n] = n \cdot x[n]$

Linear and nonlinear systems

► A system *H* is **linear** if it satisfies:

$$H[ax_1[n] + bx_2[n]] = aH[x_1[n]] + bH[x_2[n]].$$

- ► Applying the system to a sum of two signals = applying the system to each signal, and adding the results
- ► Scaling the input signal with a constant *a* is the same as scaling the output signal with *a*
- ▶ The same relation will be true for a sum of many signals, not just two
- Advantage of linear systems
 - Complicated input signals can be decomposed into a sum of smaller parts
 - ▶ The system can be applied to each part independently
 - ▶ Then the results are added back
- Examples:
 - ▶ linear system: y[n] = 3x[n] + 5x[n-2]
 - ▶ nonlinear system: $y[n] = 3(x[n])^2 + 5x[n-2]$

Linear and nonlinear systems

- For a system to be linear, the input samples x[n] must not undergo non-linear transformations.
- ► The only transformations of the input x[n] allowed to take place in a linear system are:
 - scaling (multiplication) with a constant
 - delaying
 - summing different delayed versions of the signal (not summing with a constant)
- Examples: at blackboard

Causal and non-causal systems

- ▶ Causal: the output y[n] depends only on the current input x[n] and the past values x[n-1], x[n-2]..., but not on the future samples x[n+1], x[n+2]...
- Otherwise the system is non-causal.
- A causal system can operate in real-time
 - we need only the input samples from the past
 - non-causal systems need samples from the future
- Examples:
 - y[n] = x[n] x[n-1] is causal
 - ▶ y[n] = x[n+1] x[n-1] is non-causal
 - y[n] = x[-n] is non-causal

Stable and unstable systems

▶ Bounded signal: if there exists a value M such that all the samples of the signal or smaller than M, in absolute values

$$x[n] \in [-M, M]$$

$$|x[n]| \leq M$$

- Stable system: if for any bounded input signal it produces a bounded output signal
 - not necessarily with the same M
 - known as BIBO (Bounded Input -> Bounded Output)
- In other words: when the input signal has bounded values, the output signal does not go towards ∞ or $-\infty$.
- Examples:

 - ▶ $y[n] = (x[n])^3 x[n+4]$ is stable
 ▶ $y[n] = \frac{1}{x[n] x[n-1]}$ is unstable
 ▶ $y[n] = \sum_{k=-\infty}^{n} x[k] = x[n] + x[n-1] + x[n-2] + ...$ is unstable

Linear Time-Invariant (LTI) systems

- ▶ Notation: An LTI system (Linear Time-Invariant) is a system which is simultaneously linear and time-invariant.
- ▶ LTI systems can be described via either (or both):
 - 1. the **impulse response** h[n]
 - 2. the difference equation

$$y[n] = -\sum_{k=1}^{N} a_k y[n-k] + -\sum_{k=1}^{M} b_k x[n-k]$$

= -a_1 y[n-1] - a_2 y[n-2] - ... - a_N y[n-N] + b_0 x[n] + b_1 x[n-1]

The impulse response

▶ **Impulse response** of a system = output (response) of when the input signal is the impulse $\delta[n]$:

$$h[n] = H(\delta[n])$$

- ► The impulse response of a LTI system fully characterizes the system:
 - \blacktriangleright based on h[n] we can compute the response of the system to **any** input signal
 - all the properties of LTI systems can be described via characteristics of the impulse response

Signals are a sum of impulses

- ▶ Any signal can be composed as **a sum of scaled and delayed impulses** $\delta[n]$.
- ► Example: $x[n] = \{3, 1, -5, 0, 2\} = 3\delta[n] + \delta[n-1] 5\delta[n-2] + 2\delta[n-2]$
- In general

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

i.e. a sum of impulses $\delta[n]$, delayed with k and scaled with the corresponding value x[k]

Convolution

- ▶ The response of a LTI system to a sum of impulses, delayed with k and scaled with x[k], is a sum of impulse responses, delayed with k and scaled with x[k].
 - ▶ The input signal is composed of a "bunch" of impulses
 - ► LTI system -> each impulse will generate its own response
 - output signal is the sum of impulse responses, delayed and scaled appropriately

$$y[n] = H(x[n])$$

$$= H\left(\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right)$$

$$= \sum_{k=-\infty}^{\infty} x[k]H(\delta[n-k])$$

$$= \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

Convolution

▶ This operation = the **convolution** of two signals x[n] and h[n]

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

► The response of a LTI system to an input signal x[n] is the convolution of x[n] with the system's impulse response h[n]

Example

Properties of convolution

Convolution is commutative (the order of the two signals doesn't matter):

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

Proof: make variable change $(n-k) \rightarrow I$, change all in equation

Convolution is associative

$$(a[n] * b[n]) * c[n] = a[n] * (b[n] * c[n])$$

(No proof)

▶ The unit impulse is neutral element for convolution

$$\mathbf{a}[\mathbf{n}] * \delta[\mathbf{n}] = \delta[\mathbf{n}] * \mathbf{a}[\mathbf{n}] = \mathbf{a}[\mathbf{n}]$$

1. Identity system

- A system with $h[n] = \delta[n]$ produces an response equal to the input, $y[n] = x[n], \forall x[n].$
- ▶ Proof: $\delta[n]$ is neutral element for convolution.

2. Series connection is commutative

- ▶ LTI systems connected in series can be interchanged in any order
- ▶ Proof: by commutativity of convolution.
- LTI systems connected in series are equivalent to a single system with

$$h_{equiv}[n] = h_1[n] * h_2[n] * ... * h_N[n]$$

3. Parallel connection means sum

LTI systems connected in parallel are equivalent to a single system with

$$h_{equiv}[n] = h_1[n] + h_2[n] + ... + h_N[n]$$

4. Response of LTI systems to unit step

▶ If the input signal is u[n], the response of the system is

$$s[n] = u[n] * h[n] = h[n] * u[n] = \sum_{k=-\infty}^{\infty} h[k]u[n-k] = \sum_{k=-\infty}^{n} h[k]$$

.

Proof:

- ▶ The signal $\sum_{k=-\infty}^{n} h[k]$ is a discrete-time integration of h[n]
- ▶ The unit step u[n] iteslf is the discrete-time integral of the unit impulse:

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

$$\delta[n] = u[n] - u[n-1]$$

- ► Therefore the system response to the integral of the impulse = the integral of the system response to the impulse
- ► The interchanging of the integration with the system is due to the linearity of the system and is valid for all signals:

$$H\left(\sum_{k=-\infty}^{n} x[k]\right) = \sum_{k=-\infty}^{n} H(x[k])$$

1. Causal LTI systems and their h[n]

If a LTI system is causal, then

$$h[n] = 0, \forall n < 0$$

- Proof:
 - $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k],$
 - \triangleright y[n] does not depend on x[n+1], x[n+2], ...
 - it means that these terms are multiplied with 0
 - ▶ the value x[n+1] is multiplied with h[n-(n+1)] = h[-1], x[n+2] is multiplied with h[n-(n+2)] = h[-2], and so on
 - ► Therefore:

$$h[n] = 0, \forall n < 0$$

.

Causal signals and causal systems

- ▶ A signal which is 0 for n < 0 is called a *causal signal*
- ▶ Otherwise the signal is *non-causal*
- ▶ We can say that a system is causal if and only if it has a causal impulse response
- Further definitions:
 - ightharpoonup a signal which 0 for n > 0 is called an *anti-causal* signal
 - ▶ a signal which has non-zero values both for some n > 0 and for some n < 0 (and thus is neither causal nor non-causal) is called *bilateral*.

Example

2. Stable systems and their h[n]

▶ Considering a bounded input signal, $|x[n]| \le A$, the absolute value of the output is:

$$|y[n]| = |\sum_{k=-\infty}^{\infty} x[k]h[n-k]|$$

$$\leq \sum_{k=-\infty}^{\infty} |x[k]h[n-k]|$$

$$= \sum_{k=-\infty}^{\infty} |x[k]||h[n-k]|$$

$$\leq A \sum_{k=-\infty}^{\infty} |h[n-k]|$$

► Therefore a LTI system is stable if

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

3. Memoryless systems and their h[n] (Exercise)

Exercises:

- ▶ What can we say about the impulse response h[n] of a memoryless system?
- ▶ What about a system with finite memory *M*?

Support

- ► The **support** of a discrete signal = the smallest interval of *n* such that the signal is 0 everywhere outside the interval.
- Examples: at whiteboard
- Depending on the support of the impulse response, discrete LTI systems can be FIR or IIR systems.

FIR systems

- A Finite Impulse Response (FIR) system has an impulse response with finite support
 - ▶ i.e. the impulse response is 0 outside a certain interval.
- ► For a causal system:
 - ▶ h[n] = 0 for n < 0
 - ▶ therefore h[n] = 0 for n < 0 or $n \ge M$, for some M
 - ▶ The convolution becomes:

$$y[n] = \sum_{k=0}^{M} h[k] \times [n-k] = h[0] \cdot \times [n] + h[1] \cdot \times [n-1] + \dots + h[M] \cdot \times [n-M]$$

► For a causal FIR system, the output is a linear combination of the last *M* input samples (has finite memory *M*)

IIR systems

- ► An Infinite Impulse Response (FIR) system has an impulse response with infinite support
 - ▶ i.e. the impulse response never becomes completely 0 forever.
- ► Causal system: the output *y*[*n*] potentially depends on all the preceding input samples
 - from the convolution equation
- ▶ An IIR system has infinite memory

Recursive / non-recursive implementations

- ▶ **Recursive** implementation: compute y[n] based partly on the previous output samples y[n-1], y[n-2], ...
- ▶ Every LTI system can be expressed only based on the input samples x[n], x[n-1], ...
 - but sometimes we need an infinite amount of memory
 - recursive expression may be more efficient
- Example:

$$y[n] = \frac{1}{n+1} \sum_{0}^{n} x[n]$$

can be rewritten in recursive form:

$$y[n] = n \cdot y[n-1] + x[n]$$

Recursive / non-recursive implementations

- ▶ In general, the output y[n] of a recursive system depends on:
 - ▶ the last N samples of the output, y[n-1], . . . y[n-N]
 - ▶ and the current and the last M samples of the input, x[0], x[1], ... x[n-M].
- Non-recursive system: the output y[n] is computed based on last M samples of the input, $x[0], x[1], \ldots x[n-M]$.
- ► FIR systems can always be implemented non-recursively, but may also be implemented in a recursive way
- ► IIR systems can only be implemented recursively!
 - otherwise they would need infinite memory

Initial conditions for recursive systems

- Recursive systems rely on previous outputs -> the previous values must be always available
- We need some starting values at the start moment (the initial conditions of the system)
- Notes:
 - Output signal depends on the input and on the initial conditions
 - ► A system with non-zero initial conditions produces an output even when the input signal is zero
 - ▶ This output is called zero-input response, $y_{zi}[n]$
 - ▶ A system with initial conditions equal to 0 is called *relaxed*
 - ▶ The output of a relaxed system to an input signal is called *zero-state* response, $y_{zs}[n]$ (also called *forced response*)
- ► For linear systems, the output of a system is always the sum of the forced response and the natural response:

$$y[n] = y_{zs}[n] + y_{zi}[n]$$