Lecture 4

k-Tape TM

A structure M = (K, Σ, δ, s) with transition function: $\delta: K \times \Sigma^k \to K \cup \{y, n, h\} \times \Sigma^k \times \{\leftarrow, \rightarrow, -\}^k$

<u>Def</u>: Let $F: \mathbb{N}^k \to \mathbb{N}$ be a function, such that a k-tape TM M exists, which on inputs $<(n_1, \ldots, n_k)>$, where $|<(n_1, \ldots, n_k)>|=l$, terminates after at most f(l) steps with output $M(n_1, \ldots, n_k)=< F(n_1, \ldots, n_k)>$ then we say $F \in TIME(f(l))$

Proposition: Let $F \in TIME_k(f(l))$ then $F \in TIME_1(O(f^2(l)))$. Whatever can be computed with k-tapes can also be computed with a single tape machine.