Solucionário

"Undergraduate Algebra: A Unified Approach" ${\it Matej~Bre\check{s}ar}$

Guilherme Garcia Nallin nallinguilherme@gmail.com

Sumário

1	Glossary of Basic Algebraic Structures	5
	1.1 Binary Operations	5

Capítulo 1

Glossary of Basic Algebraic Structures

1.1 Binary Operations

Exercício 1.17: Let $\mathcal{P}(x)$ be the power set of the nonempty set X. The union, intersection, and set difference are binary operations on P(X). Determine which among them are associative, commutative, and have a (left or right) identity element.

Solução: Sejam $A, B, C \in \mathcal{P}(X)$, assim, para a operação de união desses conjuntos, temos:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cup B) \cup C = A \cup (C \cup B)$
 $(A \cup B) \cup C = (A \cup C) \cup B$

O que mostra que a operação de união é associativa. Além disso, temos que: $A \cup B = B \cup A$, o que mostra que a operação de união é comutativa. Por fim, o conjunto vazio é o elemento identidade para a operação de união, pois $A \cup \emptyset = \emptyset \cup A = A$.

Para a operação de interseção, podemos verificar a associatividade:

$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$(A \cap B) \cap C = A \cap (C \cap B)$$

$$(A \cap B) \cap C = (A \cap C) \cap B$$

E o conjunto X é o elemento identidade para a interseção, uma vez que: $X \cap A = A \cap X = A$.

Por fim, a operação de diferença de conjuntos não é comutativa, tome o contraexemplo em que $A = \{1\}, B = \{1,2\}$ e $C = \{2\}$, assim: $A - B = \emptyset$

mas B-A=2. Para a associatividade, temos: (A-B)-C=A-(B-C), e o conjunto vazio é o elemento identidade para a diferença de conjuntos, pois: $A-\emptyset=A$.

Exercício 1.18: Determine which of the following binary operations on \mathbb{N} are associative, have a (left or right) identity element, and contain two different elements that commute:

- (a) m * 2n = m + 2n;
- (b) $m * n = m^2 n$;
- (c) m * n = m;
- (d) $m * n = m^n$.

Solução: Sejam $m, n, p \in \mathbb{N}$ então para o caso (a), a comutatividade é falsa, uma vez que $m*n = m + 2n \neq n + m = n + 2m$, já a associatividade falha em:

$$(m*n)*p = (m+2n)*p = m+2n+2p$$

 $\neq m*(n*p) = m*(n+2p) = m+2n+4p$

Vamos verificar se há elemento neutro da operação, para isso tome $e \in \mathbb{N},$ para e=1:

$$m * 1 = m + 2 \cdot 1 = m + 2$$

 $\neq 1 * m = 1 + 2m$

Se considerarmos $0 \notin \mathbb{N}$, acabou. Caso contrário, para e = 0:

$$m * 0 = m + 2 \cdot 0 = m$$

 $\neq 0 * m = 0 + 2m = 2m$

Assim, a operação admite elemento identidade à direita.

Para o item (b), vamos verificar a comutatividade: $m*n=m^2n\neq n*m=n^2m$, basta tomar $m=2,\,n=3$ que falha. Para a associatividade falha também, basta tomar $m=2,\,n=1,\,m=3$. Seja $e\in\mathbb{N}$ o elemento neutro, então $e*m=e^2m=em=m$, no entanto $m*e=m^2e=m^2$, o que demonstra que a operação admite identidade à esquerda.

Para o item (c), vamos verificar a comutatividade: $m * n = m \neq n * m = n$, basta que $m \neq n$ para que falhe a propriedade. Vamos verificar a associatividade:

$$m * (n * p) = m * n = m$$

= $(m * n) * p = m * p = m$

E a existência do elemento identidade segue por: $m * e = m \neq e * m = e$, porém isso implica que, sendo $e_1 = 2, e_2 = 3 \in \mathbb{N}$ temos $m * 2 = m = m * 3 \implies 2 = 3$, o que é falso, contradizendo o proposição de que, uma vez que existe elemento neutro, ele é único.

Para (d), vamos verificar a comutatividade: $m*n=m^n\neq n*m=n^m$, basta tomar m=2, n=3 que falha. Para a associatividade falha também, basta tomar m=2, n=1, p=3. Seja $e\in\mathbb{N}$ o elemento neutro, então $e*m=e^m=m$, no entanto $m*e=m^e=m$, o que demonstra que a operação admite identidade à esquerda.(d)

Exercício 1.19: Let S be a set with a binary operation *. If subsets T and T' of S are closed under *, then so is their intersection $T \cap T'$. Find an example showing that this does not always hold for the union $T \cup T'$.

Solução: