Figure 8.5



Exponential and other nonlinear discrete least squares approximations can be obtain in the *Statistics* package by using the commands *ExponentialFit* and *NonlinearFit*.

For example, the approximation in the Illustration can be obtained by first defining the data with

$$X := Vector([1, 1.25, 1.5, 1.75, 2]): Y := Vector([5.1, 5.79, 6.53, 7.45, 8.46]):$$

and then issuing the command

ExponentialFit(X, Y, x)

gives the result, rounded to 5 decimal places,

$$3.07249e^{0.50572x}$$

If instead the *NonlinearFit* command is issued, the approximation produced uses methods of Chapter 10 for solving a system of nonlinear equations. The approximation that Maple gives in this case is

$$3.06658(1.66023)^x \approx 3.06658e^{0.50695}$$
.

## **EXERCISE SET 8.1**

- 1. Compute the linear least squares polynomial for the data of Example 2.
- 2. Compute the least squares polynomial of degree 2 for the data of Example 1, and compare the total error *E* for the two polynomials.
- **3.** Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute the error *E* in each case. Graph the data and the polynomials.

| $x_i$ | 1.0  | 1.1  | 1.3  | 1.5  | 1.9  | 2.1  |
|-------|------|------|------|------|------|------|
| $y_i$ | 1.84 | 1.96 | 2.21 | 2.45 | 2.94 | 3.18 |

**4.** Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute the error *E* in each case. Graph the data and the polynomials.

| $x_i$ | 0   | 0.15  | 0.31  | 0.5   | 0.6   | 0.75  |
|-------|-----|-------|-------|-------|-------|-------|
| $y_i$ | 1.0 | 1.004 | 1.031 | 1.117 | 1.223 | 1.422 |

**5.** Given the data:

| $x_i$ | 4.0    | 4.2    | 4.5    | 4.7    | 5.1    | 5.5    | 5.9    | 6.3    | 6.8    | 7.1    |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $y_i$ | 102.56 | 113.18 | 130.11 | 142.05 | 167.53 | 195.14 | 224.87 | 256.73 | 299.50 | 326.72 |

- **a.** Construct the least squares polynomial of degree 1, and compute the error.
- **b.** Construct the least squares polynomial of degree 2, and compute the error.
- **c.** Construct the least squares polynomial of degree 3, and compute the error.
- **d.** Construct the least squares approximation of the form  $be^{ax}$ , and compute the error.
- **e.** Construct the least squares approximation of the form  $bx^a$ , and compute the error.
- **6.** Repeat Exercise 5 for the following data.

| $x_i$ | 0.2      | 0.3      | 0.6     | 0.9     | 1.1    | 1.3    | 1.4    | 1.6    |
|-------|----------|----------|---------|---------|--------|--------|--------|--------|
| $y_i$ | 0.050446 | 0.098426 | 0.33277 | 0.72660 | 1.0972 | 1.5697 | 1.8487 | 2.5015 |

7. In the lead example of this chapter, an experiment was described to determine the spring constant *k* in Hooke's law:

$$F(l) = k(l - E).$$

The function F is the force required to stretch the spring l units, where the constant E = 5.3 in. is the length of the unstretched spring.

a. Suppose measurements are made of the length l, in inches, for applied weights F(l), in pounds, as given in the following table.

| F(l) | l    |
|------|------|
| 2    | 7.0  |
| 4    | 9.4  |
| 6    | 12.3 |

Find the least squares approximation for k.

**b.** Additional measurements are made, giving more data:

| F(l) | l    |
|------|------|
| 3    | 8.3  |
| 5    | 11.3 |
| 8    | 14.4 |
| 10   | 15.9 |

Compute the new least squares approximation for k. Which of (a) or (b) best fits the total experimental data?

**8.** The following list contains homework grades and the final-examination grades for 30 numerical analysis students. Find the equation of the least squares line for this data, and use this line to determine the homework grade required to predict minimal A (90%) and D (60%) grades on the final.