6.15 1) (a)
$$a x^2 = 0 = 0 x^2 + 0 x + 0$$
 équivant au système $\{ a = 0 \text{ d'inconnues } a, b, c. \}$

Manifestement b et c sont des variables libres, d'où la solution géné-

$$rale: \begin{cases} a = 0 \\ b = b \\ c = c \end{cases}$$

Ainsi $\operatorname{Ker}(h) = \{b \, x + c : b, c \in \mathbb{R}\} = \Pi(x; 1)$

(b)
$$h(x^2) = x^2$$

 $h(x) = 0$
 $h(1) = 0$

Il en résulte $\operatorname{Im}(h) = \Delta(x^2) = \{a \, x^2 : a \in \mathbb{R}\}$.

2) (a)
$$c x^2 + b x + a = 0 = 0 x^2 + 0 x + 0$$
 équivaut au système
$$\begin{cases} c = 0 \\ b = 0 \text{ dont l'unique solution est } a = b = c = 0. \\ a = 0 \end{cases}$$

C'est pourquoi $Ker(h) = \{0\}$.

(b) Puisque h est un endomorphisme injectif, il est également, vu l'exercice 6.11, surjectif.

En d'autres termes $\operatorname{Im}(h) = \mathbb{R}_2[x]$.

3) (a)
$$x(2ax + b) + 2a = 2ax^2 + bx + 2a = 0 = 0x^2 + 0x + 0$$
 équivant au système
$$\begin{cases} 2a = 0 \\ b = 0 \text{ d'inconnues } a, b, c. \\ 2a = 0 \end{cases}$$

Manifestement c est une variable libre et la solution générale est $\begin{cases} a=0\\b=0\\c=c \end{cases}$

Par conséquent $Ker(h) = \{c : c \in \mathbb{R}\} = \Delta(1)$.

(b)
$$h(x^2) = x(2x+0) + 2 = 2x^2 + 2 = 2(x^2+1)$$

 $h(x) = x(2 \cdot 0x + 1) + 2 \cdot 0 = x$
 $h(1) = x(2 \cdot 0x + 0) + 2 \cdot 0 = 0$

On en déduit $Im(h) = \Pi(x^2 + 1; x) = \{a x^2 + b x + a : a, b \in \mathbb{R}\}$.