Информатика

Лабораторная работа 3. Логические основы информатики

Для описания логики функционирования аппаратных и программных средств ЭВМ используется алгебра логики или, как ее часто называют, булева алгебра (по имени основоположника этого раздела математики – Дж. Буля).

Алгебра логики — это раздел математической логики, который изучает логические высказывания. Логические высказывания рассматриваются со стороны их логических значений — истинности или ложности — и логических операций над ними.

Логические основы ВМ – это схемная реализация процесса обработки информации в ЭВМ на основе логических функций.

Целью разработки алгебры логики было создание приёмов решения традиционных логических задач алгебраическими методами.

Алгебра логики оперирует логическими высказываниями — это любое предложение, в котором содержится смысл утверждения, т.е. истинности (англ. TRUE), или отрицания, т.е. ложности (англ. FALSE). Одно и то же высказывание не может быть одновременно истинным и ложным или одновременно не истинным и не ложным. Отдельные высказывания обозначают заглавными буквами латинского алфавита (A, B, C и т.д.) Если высказывание А истинно (англ. TRUE), то записывают A = 1. Если высказывание В ложно (англ. FALSE), то записывают B = 0.

Логический	Условные графические обозначения			Функция, запись	Таблица истинности
вентиль	FOCT 2.743-91 IEC 60617-12 : 1997 US ANSI 91-1984				
НЕ (англ. <i>NOT gate</i>)	A	A — 1	A—out	Отрицание $Y = \overline{A}$ $Y = \neg A$ $Y = ilde{A}$	A Y 0 1 1 0
И (англ. <i>AND gate</i>)	A— & B— Y	A — & B — Y	A out	$egin{aligned} K$ ОНБИНИНИЯ $Y = A \wedge B \\ Y = A \cdot B \\ Y = A \& B \\ Y = AB \end{aligned}$	A B Y 0 0 0 0 1 0 1 0 0 1 1 1 1
или (англ. <i>OR gate</i>)	A—1 B—1	A — ≥1 B — Y	Aout	Дизъюнкция $Y=A \lor B$ $Y=A+B$	A B Y 0 0 0 0 1 1 1 0 1 1 1 1
НЕ И (И-НЕ) (англ. <i>NAND gate</i>) Элемент Шеффера	A — & — Y	A &	A — out	$Y = \overline{A \wedge B}$ $Y = \overline{A \wedge B}$ $Y = \overline{A \cdot B}$ $Y = \overline{AB}$ $Y = A B$	A B Y 0 0 1 0 1 1 1 0 1 1 1 0
НЕ ИЛИ (ИЛИ-НЕ) (англ. <i>NOR gate</i>) Элемент Пирса	A— 1 B———Y	A — ≥1 B — O—Y	Aout	$egin{aligned} Y &= \overline{A ee B} \ Y &= A \overline{ee} B \ Y &= \overline{A + B} \ Y &= A - B \end{aligned}$	A B Y 0 0 1 0 1 0 1 0 0 1 1 0 0
Исключающее ИЛИ (англ. XOR gate) сложение по модулю 2	A =1 B = Y	A — =1 B — Y	Aout	Строгая $Y = A \ \underline{\lor} \ B$ $Y = A \ \oplus \ B$	A B Y 0 0 0 0 1 1 1 0 1 1 1 0
Исключающее ИЛИ с инверсией (англ. XNOR gate) равнозначность	A =1 B = Y	A ==1 O-Y	Ao_out	Эквиваленция $Y=\overline{A ee B}$ $Y=\overline{A ee B}$ $Y=\overline{A \oplus B}$ $Y=A\odot B$	A B Y 0 0 1 0 1 0 1 0 0 1 1 1 1

Аудиторные задачи с примерами:

Пример:

Найти значение логического выражения $AVB\&\overline{C}$ при A=0 (False), B=1 (True), C=0(False).

Решение: подставим значения переменных в выражение и вычислим его согласно приоритету выполнения операций:

A V B &
$$\overline{C} = 0$$
 V 1& $\overline{0} = 0$ V 1&1 = 0 V 1 = 1 (True).

Ответ: заданное логическое выражение принимает значение True.

1. Найти значение логического выражения

a)

$$A \& B V \overline{C}$$

при
$$A = False$$
, $B = True$, $C = False$.

б)

$$\overline{A \vee B}$$
 & C

при
$$A = False$$
, $B = False$, $C = True$.

2. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Пример:

Решение. Разбиваем логическую схему на ярусы. Запишем все функции, начиная с 1-го яруса:

$$f_1=f_{21}\wedge f_{22}$$

$$f_{21} = \bar{x}$$

$$f_{22} = y$$

Получаем функцию, которую реализует на выходе логическая схема:

$$f_1 = \overline{x} \wedge y$$

Таблица истинности для данной логической схемы:

x	y	f_{21}	f_{22}	f
1	1	0	1	0
1	0	0	0	0
0	1	1	1	1
0	0	1	0	0

б)

B)

3.

По заданным логическим выражениям составить логические схемы и заполнить таблицы истинности.

$$\overline{X\&\overline{Y}}\lor Z = F;$$

$$X \vee \overline{\overline{Y} \& Z} = F;$$

$$\overline{\overline{X} \vee Y \& \overline{Z}} = F.$$

4. Датчики системы срабатывают следующим образом: датчики D1 и D3 срабатывают из 0 в 1, а датчики D2 и D4 — из 1 в 0. Разработать схему, которая «отследит» срабатывание всех четырех датчиков одновременно и выдаст сигнал логической 1. Подумайте сами, решение на следующей странице.

Если бы все четыре датчика срабатывали одинаково, то достаточно было бы просто выполнить операцию логического умножения, использовав 4 элемента И. На его выходе появляется логическая 1 тогда, когда на всех его входах - логическая 1.

Однако датчики D2 и D4 выдают при срабатывании логические 0. Изменим логику работы датчиков таким образом, чтобы при срабатывании появлялись не логические 0, а логические 1. Для этого сигналы с датчиков достаточно проинвертировать.

5. Обозначим датчики дверей D1, D2,D3,D4. Выработать сигнал логической 1 в случае открывания одной из четырех дверей автомобиля. Состояние двери определяют датчики следующим образом: если дверь закрыта, то датчик выдает логический 0, если открыта – логическую 1.