1 Minimal Spanning Tree Algorithm

1.1 Introduction

This project mainly contains

- Prim Algorithm
- Kruskal Algorithm

1.2 Prim Algorithm

1.2.1 Pseudo code

Algorithm 1 Prim algorithm

1: **function** PRIM(V, E)

 $\triangleright V$ denotes vertices, E denotes edges

Require: A weighted, connected map which vertices set as V and edges set as E.

Ensure: Using sets V_{new} and E_{new} which describe the minimal spanning tree.

2: $V_{new} \leftarrow \{x\}$

 $\triangleright x \in V$, x as the start vertex

3: $E_{new} \leftarrow \{\}$

 \triangleright set E_{new} as empty set

- 4: **while** $V_{new} \neq V$ **do**
- 5: Find the minimal edge $\langle u,v\rangle$ from E , s.t. $u\in V_{new}, v\notin V_{new}, v\in V$ \Rightarrow If there were multi answers, choose one randomly
- 6: Push v in V_{new} and push $\langle u, v \rangle$ in E_{new}
- 7: end while
- 8: end function

2

1.2.2 Flowchart

图 1: Prim algorithm flowchart

1.2.3 Analysis

Let v denotes the sum of vertices and e denotes the sum of edges, then, this algorithm's time complexity is:

- Adjacent matrix: $O\left(v^2\right)$
- Adjacent table: $O\left(e\log_2 v\right)$

1.3 Kruskal Algorithm

1.3.1 Pseudo Code

Code here

1.3.2 Flowchart

Flow chart here