

Principal Component Analysis (PCA) for Outlier Detection

Week 02 – Advanced Topic 3

Agenda

- Purpose
- Method
- Results
 - Continuous variable
 - Categorical variable
- Conclusion

Why outlier detection?

- Data Quality Improvement: Outlier detection helps identify data errors and ensures data integrity.
- **Better Model Performance:** In machine learning, outliers can have a significant impact on model training and prediction. If outliers are causing the model to perform poorly, removing them might be necessary to improve model accuracy and generalization.
- Anomaly Discovery: Outliers often represent unique events or behaviours, providing valuable insights.

Methods: Python PCA package

Hotelling's T-Square:

Hotelling's T2 is a multivariate extension of the T-test, used to measure the statistical distance of each data point from the centroid of the PCA model, which can identify outliers in the principal components space. A lower p-value T2 indicates that the observation is an outlier in terms of the principal components.

SPE/DmodX (Squared Prediction Error or Distance to Model):

SPE/DmodX measures the squared difference between the original data points and their reconstructed values from the PCA model, focusing on the residuals not captured by the principal components. A high SPE value indicates that the data point lies far from the PCA model, suggesting it may be an outlier that doesn't fit well within the identified components.

Dataset: Continuous variable

- Wine dataset from sklearn by Forina, M. et al, as part of the PARVUS project.
- Contains the results of a chemical analysis of wines grown in three different regions in Italy.

Number of Instances:	178
Number of Attributes:	13 numeric, predictive attributes and the class
Attribute Information:	 Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue OD280/OD315 of diluted wines Proline

alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \ 0											
0 14.23 1.71 2.43 15.6 127.0 2.80 0 13.20 1.78 2.14 11.2 100.0 2.65 0 13.16 2.36 2.67 18.6 101.0 2.80 0 14.37 1.95 2.50 16.8 113.0 3.85 0 13.24 2.59 2.87 21.0 118.0 2.80 13.27 2 13.71 5.65 2.45 20.5 95.0 1.68 2 13.40 3.91 2.48 23.0 102.0 1.80 2 13.27 4.28 2.26 20.0 120.0 1.59 2 13.17 2.59 2.37 20.0 120.0 1.65 2 14.13 4.10 2.74 24.5 96.0 2.05 flavanoids nonflavanoid_phenols proanthocyanin		alcohol	malic acid	ash a	alcali	nity of ash	magne	esium	total phen	ols \	\
0 13.16 2.36 2.67 18.6 101.0 2.80 14.37 1.95 2.50 16.8 113.0 3.85 0 13.24 2.59 2.87 21.0 118.0 2.80 2 13.71 5.65 2.45 20.5 95.0 1.68 2 13.40 3.91 2.48 23.0 102.0 1.80 2 13.27 4.28 2.26 20.0 120.0 1.80 2 13.17 2.59 2.37 20.0 120.0 1.65 2 13.17 2.59 2.37 20.0 120.0 1.65 2 14.13 4.10 2.74 24.5 96.0 2.05	0	14.23	1.71	2.43		15.6	- :	127.0			
0 14.37 1.95 2.50 16.8 113.0 3.85 0 13.24 2.59 2.87 21.0 118.0 2.80	0	13.20	1.78	2.14		11.2	:	100.0	2	.65	
0 13.24 2.59 2.87 21.0 118.0 2.80	0	13.16	2.36	2.67		18.6		101.0	2	.80	
2 13.71 5.65 2.45 20.5 95.0 1.68 2 13.40 3.91 2.48 23.0 102.0 1.80 2 13.27 4.28 2.26 20.0 120.0 1.59 2 13.17 2.59 2.37 20.0 120.0 1.65 2 14.13 4.10 2.74 24.5 96.0 2.05 flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \ 0 3.06 0.28 2.29 5.64 1.04 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 4.32 0.66 0 2.69 0.39 1.82 0.66 0.66 2 0.69 0.43 1.41 7.30 0.70 2 0.69 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.66	0	14.37	1.95	2.50		16.8		113.0	3	.85	
2 13.71 5.65 2.45 20.5 95.0 1.68 2 13.40 3.91 2.48 23.0 102.0 1.80 2 13.27 4.28 2.26 20.0 120.0 1.59 2 13.17 2.59 2.37 20.0 120.0 1.65 2 14.13 4.10 2.74 24.5 96.0 2.05 flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \ 0 3.06 0.28 2.29 5.64 1.04 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 0. 0.269 0.39 1.82 4.32 1.04 0. 0.269 0.39 1.82 4.32 1.04 0. 0.269 0.39 1.82 0.30 0.60 0 2.69 0.39 1.82 0.30 0.66 0 2.69 0.39 1.82 0.30 0.60	0	13.24	2.59	2.87		21.0		118.0	2	.80	
2 13.40 3.91 2.48 23.0 102.0 1.80 2 13.27 4.28 2.26 20.0 120.0 1.59 2 13.17 2.59 2.37 20.0 120.0 1.65 2 14.13 4.10 2.74 24.5 96.0 2.05 flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \ 0 3.06 0.28 2.29 5.64 1.04 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 0.30 0.66 0 2.69 0.39 1.82 0.30 0.60											
2 13.27 4.28 2.26 20.0 120.0 1.59 2 13.17 2.59 2.37 20.0 120.0 1.65 2 14.13 4.10 2.74 24.5 96.0 2.05 flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \ 0 3.06 0.28 2.29 5.64 1.04 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
2 13.17 2.59 2.37 20.0 120.0 1.65 2 14.13 4.10 2.74 24.5 96.0 2.05 flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 4.32 1.04 0 2.69 0.39 1.82 7.70 0.64 1 0.52 1.06 7.70 0.64 2 0.69 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59											
2 14.13 4.10 2.74 24.5 96.0 2.05 flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \ 0 3.06 0.28 2.29 5.64 1.04 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 0 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \ 0 3.06 0.28 2.29 5.64 1.04 \ 0 2.76 0.26 1.28 4.38 1.05 \ 0 3.24 0.30 2.81 5.68 1.03 \ 0 3.49 0.24 2.18 7.80 0.86 \ 0 2.69 0.39 1.82 4.32 1.04 \ \tau \tau \tau \tau \tau \tau \tau \tau											
0 3.06 0.28 2.29 5.64 1.04 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.79 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60	2	14.13	4.10	2.74		24.5		96.0	2	.05	
0 3.06 0.28 2.29 5.64 1.04 0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.79 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60		flavanci	de nonflava	noid nh	00015	nroon+book	nine	color	intoncitu	buo	,
0 2.76 0.26 1.28 4.38 1.05 0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.79 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60				mora_bn		productiocya		COLOI			\
0 3.24 0.30 2.81 5.68 1.03 0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
0 3.49 0.24 2.18 7.80 0.86 0 2.69 0.39 1.82 4.32 1.04 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
0 2.69 0.39 1.82 4.32 1.04 2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
2 0.61 0.52 1.06 7.70 0.64 2 0.75 0.43 1.41 7.30 0.79 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
2 0.75 0.43 1.41 7.30 0.70 2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
2 0.69 0.43 1.35 10.20 0.59 2 0.68 0.53 1.46 9.30 0.60											
2 0.68 0.53 1.46 9.30 0.60											
2 2 3.20 0.01	2	0.	76		0.50		1.35		9.20	0.61	
od280/od315 of diluted wines proline		od280/od	315 of dilut	ed wine	s pro	line					
0 3.92 1065.0	0			3.9	2 10	65.0					
0 3.40 1050.0	Θ			3.40	0 10	50.0					
0 3.17 1185.0	Θ			3.1	7 11	85.0					
0 3.45 1480.0	Θ			3.4	5 14	80.0					
0 2.93 735.0	Θ			2.93	3 7	35.0					
2 1.74 740.0											
2 1.56 750.0											
2 1.56 835.0											
2 1.62 840.0				1.6	2 8	40.0					
2 1.60 560.0	2			1.60	0 5	60.0					

Result: Continuous variable

Hotelling T2

SPE/DmodX

	y proba	p raw	y score	y bool	y bool spe	y score spe
0	0.982875	0.376726	21.351215	False	False	3.617239
0	0.982875	0.624371	17.438087	False	False	2.234477
0	0.982875	0.589438	17.969195	False	False	2.719789
0	0.982875	0.134454	27.028857	False	True	4.659735
0	0.982875	0.883264	12.861094	False	False	1.332104
2	0.982875	0.147396	26.583414	False	True	4.033903
2	0.982875	0.771408	15.087004	False	False	3.139750
2	0.982875	0.244157	23.959708	False	True	3.846217
2	0.982875	0.333600	22.128104	False	False	3.312952
2	0.982875	0.138437	26.888278	False	True	4.238283

SPE Results:

- Y_score_spe = SPE score.
 Higher value → larger error → outlier
- Y_bool_spe = SPE outlier flag.
 True = Outlier

HT2 Results:

- Y_proba = Probability of each observation being an inlier. Close to 1 → low likelihood to be outlier
- **P_raw** = P-value associated with outlier detection. P-value < 0.05 more likely to be an outlier
- Y_score = Distance to PCA centroid. Higher values → further from center →outlier
- **Y_bool** = HT2 outlier flag. True = Outlier

Result: PCA plot

alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue
14.37	1.95	2.5	16.8	113.0	3.85	3.49	0.24	2.18	7.8	0.86
14.38	1.87	2.38	12.0	102.0	3.3	3.64	0.29	2.96	7.5	1.2
14.19	1.59	2.48	16.5	108.0	3.3	3.93	0.32	1.86	8.7	1.23
12.0	0.92	2.0	19.0	86.0	2.42	2.26	0.3	1.43	2.5	1.38
11.03	1.51	2.2	21.5	85.0	2.46	2.17	0.52	2.01	1.9	1.71
13.88	5.04	2.23	20.0	80.0	0.98	0.34	0.4	0.68	4.9	0.58
13.17	5.19	2.32	22.0	93.0	1.74	0.63	0.61	1.55	7.9	0.6
14.34	1.68	2.7	25.0	98.0	2.8	1.31	0.53	2.7	13.0	0.57
13.71	5.65	2.45	20.5	95.0	1.68	0.61	0.52	1.06	7.7	0.64
13.27	4.28	2.26	20.0	120.0	1.59	0.69	0.43	1.35	10.2	0.59
14.13	4.1	2.74	24.5	96.0	2.05	0.76	0.56	1.35	9.2	0.61

11 outliers

Dataset: Categorical variable

- Student performance data set, contains 649 samples and 33 variables
- Source:
 Using Data Mining to
 Predict Secondary School
 ISBN: 978–9077381–39–7

```
school sex
                age address famsize Pstatus
                                                                 Miob
                                                                           Fjob \
                                                      Fedu
                  18
                           U
                                  GT3
                                                             at home
                                                                        teacher
                  17
                                                             at home
                                                                          other
                                                              at home
                                  LE3
                                                                           other
                                                               health
                                                                      services
                                                                other
                                                                           other
644
                                  GT3
                                                             services
                                                                           other
645
                  18
                                  LE3
                                                              teacher
                                                                       services
                                  GT3
                                                                other
646
                                                                           other
647
                  17
                                  LE3
                                                             services
                                                                       services
648
                                  LE3
                                                             services
                                                                           other
                freetime
                                   Dalc
                                         Walc health absences
                           goout
0
644
645
                                                                     15
646
647
648
```

[649 rows x 33 columns]


```
school MS sex F sex M age 15.0 age 16.0 age 17.0 \
     school GP
0
          True
                    False
                            True False
                                             False
                                                       False
                                                                 False
1
          True
                    False
                            True False
                                             False
                                                       False
                                                                  True
          True
                    False
                            True False
                                              True
                                                       False
                                                                 False
          True
                    False
                            True
                                  False
                                              True
                                                       False
                                                                 False
          True
                    False
                            True
                                  False
                                             False
                                                        True
                                                                 False
644
         False
                     True
                            True False
                                             False
                                                       False
                                                                 False
645
         False
                     True
                            True
                                  False
                                             False
                                                       False
                                                                 False
         False
646
                     True
                            True
                                  False
                                             False
                                                       False
                                                                 False
647
         False
                           False
                                   True
                                             False
                                                       False
                                                                  True
648
         False
                     True False
                                             False
                                                       False
                                                                 False
                                   True
     age 18.0 age 19.0 age 20.0 ... G3 14.0 G3 15.0 G3 16.0
                                                                   G3 17.0 \
0
         True
                  False
                            False ...
                                           False
                                                    False
                                                             False
                                                                      False
        False
                  False
                            False ...
                                           False
                                                    False
                                                             False
                                                                      False
        False
                  False
                            False ...
                                           False
                                                    False
                                                             False
                                                                      False
        False
                  False
                            False ...
                                           True
                                                    False
                                                             False
                                                                      False
        False
                                                                      False
                  False
                            False ...
                                           False
                                                    False
                                                             False
                    . . .
                              . . . . . . . .
                                                               . . .
                                           False
644
        False
                   True
                            False ...
                                                    False
                                                             False
                                                                      False
645
         True
                  False
                            False ...
                                           False
                                                    False
                                                              True
                                                                      False
646
                  False
                            False ...
                                           False
                                                    False
                                                                      False
         True
                                                             False
647
        False
                  False
                                                                      False
                            False ...
                                           False
                                                    False
                                                             False
648
                  False
                            False ...
                                           False
                                                    False
                                                             False
                                                                      False
         True
     G3 18.0
              G3 19.0 G3 6.0 G3 7.0 G3 8.0
                                               G3 9.0
0
       False
                False
                        False
                                False
                                        False
                                                False
       False
                False
                        False
                                False
                                         False
                                                False
                        False
       False
                False
                                False
                                        False
                                                False
       False
                False
                        False
                                False
                                        False
                                                False
       False
                False
                        False
                                False
                                         False
                                                 False
                                   . . .
       False
                False
                        False
                                False
                                         False
                                                 False
                        False
645
       False
                False
                                False
                                         False
                                                 False
646
       False
                False
                        False
                                False
                                         False
                                                  True
647
       False
                        False
                                         False
                                                 False
                False
                                False
648
       False
                False
                        False
                                False
                                        False
                                                False
```

Transforming dataset: One-hot package

```
from df2onehot import df2onehot

# One hot encoding
df_hot = df2onehot(df)['onehot']
print(df_hot)
```

[649 rows x 166 columns]

Hotelling T2

SPE/DmodX

	y_proba	p_raw	y_score	y_bool	y_bool_spe	y_score_spe
0	1.000000	0.977574	176.351770	False	False	2.474179
1	1.000000	0.999953	144.148118	False	False	1.626835
2	1.000000	0.958262	181.391445	False	False	1.441919
3	1.000000	0.995238	165.927401	False	False	3.799497
4	1.000000	0.999984	140.221797	False	False	2.975651
5	1.000000	0.999723	151.411072	False	False	4.056198
6	1.000000	0.999999	129.975245	False	False	2.236291
7	1.000000	0.707196	204.219328	False	False	3.594414
8	1.000000	0.841183	195.260585	False	False	3.609387
9	1.000000	0.999829	149.314240	False	False	2.970198
10	1.000000	0.946816	183.547297	False	False	4.538295
11	1.000000	0.996676	163.825436	False	False	2.690649
12	1.000000	0.999243	156.052035	False	False	4.046950
13	1.000000	0.999903	146.981384	False	False	2.750240

Result: Categorical variable

Result: PCA plot

scho	ol sex	age address	famsize	Pstatus	Medu	Fedu I	Mjob	Fjob	reason	guardian	traveltime	studytime	failures	schoolsup	famsup	paid	activities	nursery	higher	internet
GP	М	22 U	GT3	T	3	1 9	services	services	other	mother	1	1	L ;	3 no	no	no	no	no	no	yes
GP	М	18 U	GT3	T	2	1 5	services	services	other	mother	1	1	1 2	2 no	no	no	no	no	no	yes
MS	М	18 U	LE3	T	4	4 8	at_home	health	home	mother	1	4	1 () no	yes	no	yes	yes	no	yes
MS	F	19 U	GT3	T	1	1 8	at_home	services	other	father	2	1	1 :	1 no	no	no	no	yes	no	no
MS	F	19 R	GT3	Α	1	1 8	at_home	at_home	course	other	2	2	2 ;	3 no	yes	no	yes	yes	no	no

5 outliers

Conclusion

- The PCA package, utilizing both Hotelling's T2 (HT2) and Squared Prediction Error (SPE)
 methods, is an effective tool for detecting outliers in datasets containing continuous and
 categorical variables.
- For categorical variables, it is essential to first transform the data using one-hot encoding to make them compatible with PCA.
- Although HT2 and SPE are distinct methods, they can be used in tandem to enhance the robustness of outlier detection.
- The PCA package yields two significant outcomes: a separated dataset with identified outliers
 and visual plots that illustrate the extent to which these outliers deviate within the PCA model.

Pros and Cons:

- Hotelling's T2:
 - + Detecting outliers globally and consistent
 - Specific for normal distributed data, sensitive and bias for high-correlated variables
- SPE/DmodX:
 - + Strongly detect outlier than modelled conventional PCA, able to detect local outlier
 - Complex, sensitive at selected components

References

- 1. <u>Source: https://medium.com/dataman-in-ai/handbook-of-anomaly-detection-with-python-outlier-detection-5-pca-d1acbdba1b7e</u>
- 2. Abdi, Hervé, and Lynne J. Williams. "Principal component analysis." *Wiley interdisciplinary reviews: computational statistics* 2.4 (2010): 433-459.
- 3. Shlens, Jonathon. "A tutorial on principal component analysis." *arXiv preprint arXiv:1404.1100* (2014).
- 4. For our revised version of jupyter notebook see: https://github.com/tsaqifwismadi/PCA outliers/blob/main/PCA%20Outlier.ipynb