

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑰ Patentschrift
DE 196 13 547 C 2

⑯ Int. Cl. 6:
C 09 D 5/46
C 09 D 5/03
C 09 D 163/00
C 09 D 133/14
C 09 D 7/02
C 09 D 5/02

⑲ Aktenzeichen: 196 13 547.8-43
⑳ Anmeldetag: 4. 4. 96
㉑ Offenlegungstag: 7. 11. 96
㉒ Veröffentlichungstag
der Patenterteilung: 17. 9. 98

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

㉓ Unionspriorität: 419296 10. 04. 95 US	㉔ Erfinder: Sacharski, Lawrence, Eastpointe, Mich., US; Clark, Peter, Hartland, Mich., US; Woltering, Joachim, 48145 Münster, DE; Wonnemann, Heinrich, 48291 Telgte, DE
㉕ Patentinhaber: BASF Coatings AG, 48165 Münster, DE	㉖ Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften: US 42 68 542
㉗ Vertreter: Dres. Fitzner, Münch & Jungblut, Rechts- und Patentanwälte, Ratingen-Berlin, 40878 Ratingen	

㉘ Wässrige Pulverklarlack-Dispersion

㉙ Wässrige Pulverklarlackdispersion, bestehend aus einer festen, pulverförmigen Komponente A und einer wässrigen Komponente B, wobei Komponente A ein Pulverklarlack ist, enthaltend
a) wenigstens ein epoxidhaltiges Bindemittel mit einem Gehalt von 30 bis 45 Gew.-%, vorzugsweise 30 bis 35 Gew.-% an glycidylhaltigen Monomeren ggf. mit einem Gehalt an vinylaromatischen Verbindungen, vorzugsweise Styrol,
b) wenigstens ein Vernetzungsmittel, vorzugsweise geradkettige, aliphatische Dicarbonsäuren und/oder carboxyfunktionelle Polyester und
c) ggf. Katalysatoren, Hilfsstoffe, pulverklarlacktypische Additive wie Entgasungsmittel, Verlaufsmittel, UV-Absorber, Radikalfänger, Antioxidantien und
Komponente B, eine wässrige Dispersion ist, enthaltend
a) wenigstens einen nicht-ionischen Verdicker und
b) ggf. Katalysatoren, Hilfsstoffe, Entschäumungsmittel, Netzmittel, Dispersionshilfsmittel, vorzugsweise carboxyfunktionelle Dispergiermittel, Antioxidantien, UV-Absorber, Radikalfänger, Biozide, geringe Mengen Lösemittel, Verlaufsmittel, Neutralisierungsmittel, vorzugsweise Amine und/oder Wasserrückhaltemittel, und wobei der pH-Wert der Dispersion zwischen 4,0 und 7,0, vorzugsweise 5,5 und 6,5, liegt.

DE 196 13 547 C 2

DE 196 13 547 C 2

Beschreibung

Die vorliegende Erfindung betrifft eine wäßrige Pulverklarlack-Dispersion, die sich insbesondere als Überzug für mit Wasserbasislack beschichtete Automobilkarosserien eignet.

Für die Beschichtung von Automobilkarosserien werden heute vorzugsweise Flüssiglacke verwendet. Diese verursachen zahlreiche Umweltprobleme aufgrund ihres Lösemittelgehaltes. Dies gilt auch für die Fälle des Einsatzes von Wasserlacken.

Aus diesem Grund sind in den letzten Jahren vermehrte Anstrengungen unternommen worden, für die Beschichtung Pulverlacke zu verwenden. Die Ergebnisse sind jedoch bisher nicht zufriedenstellend, insbesondere sind zur Erzielung eines gleichmäßigen Aussehens erhöhte Schichtdicken erforderlich. Auf der anderen Seite bedingt der Einsatz von pulverförmigen Lacken eine andere Applikationstechnologie. Die für Flüssiglacke ausgelegten Anlagen können daher hierfür nicht verwendet werden. Daher ist man bestrebt, Pulverlacke in Form wäßriger Dispersionen zu entwickeln, die sich mit Flüssiglacktechnologien verarbeiten lassen.

Aus der US-Patentschrift 4268542 ist beispielsweise ein Verfahren bekannt, bei dem eine Pulverlack-Slurry verwendet wird, die sich für die Beschichtung von Automobilen eignet. Hierbei wird zunächst eine herkömmliche Pulverschicht auf die Karosserie aufgetragen und als zweite Schicht die Klarlack-Slurry. Bei dieser Klarlack-Slurry auf Basis von Acrylatharzen werden ionische Verdicker verwendet, welche zu einer relativ hohen Empfindlichkeit der applizierten Lackschicht gegen Feuchtigkeit, insbesondere gegen Schwitzwasser, führen. Ferner weisen diese in einem der Beispiele einen Gehalt von 0,5 bis 30% an glycidylhaltigen Monomeren auf. Zudem muß mit hohen Einbrenntemperaturen (über 160°) gearbeitet werden.

Im folgenden wird der Begriff Pulverklarlack-Dispersion als Synonym für Pulverklarlack verwendet.

Die vorliegende Erfindung hat sich nunmehr die Aufgabe gestellt, eine wäßrige Pulverklarlack-Dispersion zur Verfügung zu stellen, die sich mit der bisherigen Flüssiglacktechnologie auf Automobilkarosserien auftragen läßt und insbesondere bereits bei Temperaturen von 130°C einbrennbar ist sowie zu einer hohen Resistenz gegen Feuchtigkeit, insbesondere gegen Schwitzwasser, bei der applizierten Lackschicht führt.

Diese Aufgabe wird gelöst durch eine wäßrige Pulverklarlackdispersion, bestehend aus einer festen, pulverförmigen Komponente A und einer wässrigen Komponente B, wobei Komponente A ein Pulverklarlack ist, enthaltend

- wenigstens ein epoxidhaltiges Bindemittel mit einem Gehalt von 30 bis 45%, vorzugsweise 30 bis 35% an glycidylhaltigen Monomeren ggf. mit einem Gehalt an vinylaromatischen Verbindungen, vorzugsweise Styrol,
- wenigstens ein Vernetzungsmittel, vorzugsweise geradkettige, aliphatische Dicarbonsäuren und/oder carboxyfunktionelle Polyester und
- ggf. Katalysatoren, Hilfsstoffe, pulverklarlacktypische Additive, wie Entgasungsmittel, Verlaufsmittel, UV-Absorber, Radikalfänger, Antioxidantien

und Komponente B. eine wässrige Dispersion ist, enthaltend

- wenigstens einen nicht-ionischen Verdicker und
- ggf. Katalysatoren, Hilfsstoffe, Entschäumungsmittel

tel, Dispersionshilfsmittel, Netzmittel, vorzugsweise carboxyfunktionelle Dispergiermittel, Antioxidantien, UV-Absorber, Radikalfänger, geringe Mengen Lösemittel, Verlaufsmittel, Biozide und/oder Wasserrückhaltemittel, wobei der pH-Wert der Dispersion zwischen 4,0 und 7,0, vorzugsweise 5,5 und 6,5 liegt.

Als epoxidfunktionelles Bindemittel für den festen Pulverklarlack, der zur Herstellung der Dispersion verwendet wird, sind beispielsweise epoxidgruppenhaltige Polyacrylatharze geeignet, die durch Copolymerisation von mindestens einem ethylenisch ungesättigten Monomer, das mindestens eine Epoxidgruppe im Molekül enthält, mit mindestens einem weiteren ethylenisch ungesättigten Monomer, das keine Epoxidgruppe im Molekül enthält, herstellbar sind, wobei mindestens eines der Monomere ein Ester der Acrylsäure oder Methacrylsäure ist. Derartige epoxidgruppenhaltige Polyacrylatharze sind z. B. bekannt aus EP-A-299 420, DE-B-22 14 650, DE-B-27 49 576, US-A-4,091,048 und US-A-3,781,379.

Als Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppe im Molekül enthalten, werden Alkylerster der Acryl- und Methacrylsäure, die 1 bis 20 Kohlenstoffatome im Alkylrest enthalten, insbesondere Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, Butylacrylat, Butylmethacrylat, 2-Ethylhexylacrylat und 2-Ethylhexylmethacrylat genannt. Weitere Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppen im Molekül enthalten sind, Säuramide, wie z. B. Acrylsäure- und Methacrylsäureamid, vinylaromatische Verbindungen, wie Styrol, Methylstyrol und Vinyltoluol, Nitrile, wie Acrylnitril und Methacrylnitril, Vinyl- und Vinylidenhalogenide, wie Vinylchlorid und Vinylidenfluorid, Vinylester, wie z. B. Vinylacetat und hydroxylgruppenhaltige Monomere, wie z. B. Hydroxyethylacrylat und Hydroxyethylmethacrylat.

Die in den epoxidfunktionellen Bindemitteln eingesetzten epoxidfunktionellen Monomere sind vorzugsweise Glycidylacrylat, Glycidylmethacrylat und Allylglycidylether.

Das epoxidgruppenhaltige Polyacrylatharz weist üblicherweise ein Epoxidäquivalentgewicht von 400 bis 2500, vorzugsweise 420 bis 700, ein zahlenmittleres Molekulargewicht (gelpermeationschromatographisch unter Verwendung eines Polystyrolstandards bestimmt) von 2.000 bis 20.000, vorzugsweise von 3.000 bis 10.000, und eine Gläsertübergangstemperatur (T_g) von 30 bis 80, vorzugsweise von 40 bis 70, besonders bevorzugt von 40 bis 60°C auf (gemessen mit Hilfe der Differential Scanning Calorimetrie (DSC)). Ganz besonders bevorzugt werden ca. 50°C. Zum Einsatz können auch Gemische aus zwei oder mehr Acrylatharzen kommen.

Das epoxidgruppenhaltige Polyacrylatharz kann nach allgemein gut bekannten Methoden durch Polymerisation hergestellt werden.

Als Vernetzer sind Carbonsäuren, insbesondere gesättigte, geradkettige, aliphatische Dicarbonsäuren mit 3 bis 20 C-Atomen im Molekül geeignet. Ganz besonders bevorzugt wird Dodecan-1,12-dicarbonsäure eingesetzt. Zur Modifizierung der Eigenschaften der fertigen Pulverklarläcke können ggf. noch andere Carboxylgruppen enthaltende Vernetzer eingesetzt werden. Als Beispiele hierfür seien gesättigte verzweigte oder ungesättigte geradkettige Di- und Polycarbonsäuren sowie Polymere mit Carboxylgruppen genannt.

Ferner sind auch Pulverklarläcke geeignet, die einen epoxidfunktionellen Vernetzer und ein säurefunktionelles Bindemittel enthalten.

Als säurefunktionelles Bindemittel sind beispielsweise

saure Polyacrylatharze geeignet, durch Copolymerisation von mindestens einem ethylenisch ungesättigten Monomer, das mindestens eine Säuregruppe im Molekül enthält, mit mindestens einem weiteren ethylenisch ungesättigten Monomer, das keine Säuregruppe im Molekül enthält, herstellbar sind.

Das epoxidgruppenhaltige Bindemittel bzw. der carboxylgruppenhaltige Vernetzer und das Carboxyl- bzw. das Bindemittel werden üblicherweise in einer solchen Menge eingesetzt, daß pro Äquivalent Epoxidgruppen 0,5 bis 1,5, vorzugsweise 0,75 bis 1,25 Äquivalente Carboxylgruppen vorliegen. Die Menge an vorliegenden Carboxylgruppen kann durch Titration mit einer alkoholischen KOH-Lösung ermittelt werden.

Erfundungsgemäß enthält das Bindemittel vinylaromatische Verbindungen, insbesondere Styrol. Um die Gefahr der Rißbildung zu begrenzen, liegt der Gehalt jedoch nicht über 35 Gew.-%. Bevorzugt werden 10 bis 25 Gew.-%. Die festen Pulverlacke enthalten ggf. einen oder mehrere geeignete Katalysatoren für die Epoxidharz-Aushärtung. Geeignete Katalysatoren sind Phosphoniumsalze organischer oder anorganischer Säuren, quarternäre Ammoniumverbindungen Amine, Imidazol und Imidazolderivate. Die Katalysatoren werden im allgemeinen in Anteilen von 0,001 Gew.-% bis etwa 2 Gew.-%, bezogen auf das Gesamtgewicht des Epoxidharzes und des Vernetzungsmittels, eingesetzt.

Beispiele für geeignete Phosphonium-Katalysatoren sind Ethyltriphenylphosphoniumiodid, Ethyltriphenylphosphoniumchlorid, Ethyltriphenylphosphoniumthiocyanat, Ethyltriphenylphosphonium-Acetat-Essigsäurekomplex, Tetrabutylphosphoniumiodid, Tetrabutylphosphoniumbromid und Tetrabutylphosphonium-Acetat-Essigsäurekomplex. Diese sowie weitere geeignete Phosphonium-Katalysatoren sind z. B. beschrieben in US-PS 3,477,990 und US-PS 3,341,580.

Eigene Imidazol-Katalysatoren sind beispielsweise 2-Styrylimidazol, 1-Benzyl-2-methylimidazol, 2-Methylimidazol und 2-Butylimidazol. Diese sowie weitere Imidazol-Katalysatoren sind z. B. beschrieben in dem belgischen Patent Nr. 756.693.

Außerdem können die festen Pulverlacke ggf. noch Hilfsmittel und Additive enthalten. Beispiele hierfür sind Verlaufsmittel, Antioxidantien, UV-Absorber, Radikalfänger, Rieselhilfen und Entgasungsmittel, wie beispielsweise Benzoin.

Die Herstellung der festen Pulverlacke erfolgt nach bekannten Methoden (vgl. z. B. Produkt-Information der Firma BASF Lacke + Farben AG, "Pulverlacke", 1990) durch Homogenisieren und Dispergieren, beispielsweise mittels eines Extruders, Schneckenkneters u. ä. Nach Herstellung der Pulverlacke werden diese durch Vermahlen und ggf. durch Sichten und Sieben für die Dispergierung vorbereitet.

Aus dem Pulver kann anschließend durch Naßvermahlung oder durch Einröhren von trocken vermahlemem Pulverlack die wässrige Pulverklarlackdispersion hergestellt werden. Besonders bevorzugt wird die Naßvermahlung.

Die vorliegende Erfindung betrifft demgemäß auch ein Verfahren zur Herstellung einer wässrigen Pulverlackdispersion auf der Basis der beschriebenen Komponente A, die erfindungsgemäß in einer Komponente B dispergiert wird. Letztere besteht aus einer wässrigen Dispersion von Katalysatoren, Hilfsstoffen, Antischäummitteln, Antioxidantien, Netzmitteln, UV-Absorbern, Radikalfängern, Bioziden, Wasserrückhaltemitteln geringe Mengen Lösemitteln und/oder Dispergierhilfsmitteln, vorzugsweise carboxyfunktionalen Dispergierhilfsmitteln.

Als weiteren wesentlichen Bestandteil enthält die wäss-

rige Komponente B der Lackdispersion wenigstens einen nicht-
ionischen Verdickungsmittel a). Bevorzugt werden nicht-
ionische Assoziativ-Verdicker a) eingesetzt.

Strukturmerkmale solcher Assoziativ-Verdicker a) sind:

5 aa) ein hydrophiles Gerüst, das eine ausreichende Wasserlöslichkeit sicherstellt und
 ab) hydrophobe Gruppen, die zu einer assoziativen Wechselwirkung im wässrigen Medium fähig sind.

Als hydrophobe Gruppen werden beispielsweise langketige Alkylreste, wie z. B. Dodecyl-, Hexadecyl- oder Octadecyl-Reste, oder Alkarylreste, wie z. B. Octylphenyl- oder Nonylphenyl-Reste eingesetzt.

15 Als hydrophile Gerüste werden vorzugsweise Polyacrylate, Celluloseether oder besonders bevorzugt Polyurethane eingesetzt, die die hydrophoben Gruppen als Polymerbausteine enthalten.

Ganz besonders bevorzugt sind als hydrophile Gerüste

20 Polyurethane, die Polyetherketten als Bausteine enthalten, vorzugsweise aus Polyethylenoxid. Bei der Synthese solcher Polyetherpolyurethane dienen die Di- und oder Polyisocyanate, bevorzugt aliphatische Diisocyanate, besonders bevorzugt ggf. alkylsubstituiertes 1,6-Hexamethylendiiso-

25 cyanat, zur Verknüpfung der Hydroxylgruppen-terminierten Polyetherbausteine untereinander und zur Verknüpfung der Polyetherbausteine mit den hydrophoben Endgruppenbausteinen, die beispielsweise monofunktionelle Alkohole und/oder Amine mit den schon genannten langkettigen Al-

30 kylresten oder Aralkylresten sein können.

Nach der Dispersionierung der Komponente A in der Komponente B wird ggf. vermahlen, der pH-Wert auf 4,0 bis 7,0, vorzugsweise 5,5 bis 6,5 eingestellt und filtriert.

Die mittlere KorngröÙe liegt zwischen 1 und 25 µm, vorzugsweise unter 20 µm, besonders bevorzugt bei 3 bis 10 µm. Der Festkörpergehalt der wäßrigen Pulverklarlackdispersion liegt zwischen 15 und 50%.

Der Dispersion können vor oder nach der Naßvermahlung

bzw. dem Eintragen des trockenen Pulverlackes in das Wasser 40 bis 5 Gew.-% eines Entschäumergemisches, eines Ammonium- und/oder Alkalialzes, eines carboxylfunktionellen oder nichtionischen Dispergierhilfsmittels, Netzmitteln und/oder Verdickergemisches sowie der anderen Additive 45 zugesetzt werden. Vorzugsweise werden erfundungsgemäß Entschäumer, Dispergierhilfs-, Netz- und/oder Verdickungsmittel zunächst in Wasser dispergiert. Dann werden kleine Portionen des Pulverklarlackes eingerührt. Anschließend werden noch einmal Entschäumer, Dispergierhilfs-, Verdickungs- und Netzmittel eindispergiert. Abschließend werden 50 nochmals in kleinen Portionen Pulverklarlacke eingerührt.

Die Einstellung des pH-Wertes erfolgt erfahrungsgemäß vorzugsweise mit Ammoniak oder Aminen. Der pH-Wert kann hierbei zunächst ansteigen, daß eine stark basische Dispersion entsteht. Der pH-Wert fällt jedoch innerhalb mehrerer Stunden oder Tage wieder auf die oben angeführten Werte.

Die erfundungsgemäße Pulverklarlackdispersion lässt sich als Überzug von Basislacken, vorzugsweise in der Automobilindustrie, verwenden. Besonders geeignet ist die Klarlackdispersion für Wasserbasislacke auf Basis eines Polyesters, Polyurethanharzes und eines Aminoplastharzes.

Die erfundsgemäßen Pulverklarlackdispersionen lassen sich mit den aus der Flüssiglacktechnologie bekannten Methoden aufbringen. Insbesondere können sie mittels Spritzverfahren aufgebracht werden. Ebenso kommen elektrostatisch unterstützte Hochrotation oder pneumatische Applikation in Betracht.

Die auf die Basislackschicht aufgebrachten Pulverklar-

lackdispersionen werden abgelüftet. Dies geschieht zumeistigerweise zunächst bei Raumtemperatur und anschließend bei leicht erhöhter Temperatur. In der Regel beträgt die erhöhte Temperatur 40 bis 70°C, vorzugsweise 50 bis 65°C. Das Ablüften wird für 2 bis 10 Minuten, vorzugsweise 4 bis 8 Minuten bei Raumtemperatur durchgeführt. Bei erhöhter Temperatur wird nochmals während derselben Zeitspanne abgelüftet.

Das Einbrennen kann bereits bei Temperaturen von 130°C durchgeführt werden. Durchführbar ist das Einbrennen bei 130 bis 180° vorzugsweise 135 bis 155°C. 10

Mit dem erfindungsgemäßen Verfahren können Schichtdicken von 30 bis 50, vorzugsweise 35 bis 45 µm erreicht werden. Klarlacke mit vergleichbarer Qualität konnten bisher nach dem Stand der Technik unter Einsatz von Pulverklarläcken nur durch Auftrag von Schichtdicken von 65 bis 15 80 µm erreicht werden.

Im folgenden wird die Erfindung unter Bezugnahme auf die Beispiele näher beschrieben:

1. Herstellung des Acrylatharzes

21,1 Teile Xylo werden vorgelegt und auf 130°C erwärmt. Zu der Vorlage werden bei 130°C binnen 4 h über zwei getrennte Zulaufbehälter Initiator: 4,5 Teile TBPEH 25 (tert.-Butylperethoxyhexanoat) gemischt mit 4,86 Teilen Xylo und Monomere: 10,78 Teile Methylmethacrylat, 25,5 Teile Butylmethacrylat, 17,39 Teile Styrol und 23,95 Teile Glycidylmethacrylat zudosiert. Anschließend wird auf 180°C erwärmt und im Vakuum < 100 mbar das Lösemittel 30 abgezogen.

2. Herstellung des Pulverklarläcks

77,5 Teile Acrylatharz, 18,8 Teile Dodecandicarbonsäure 35 (s. Härter), 2 Teile Tinuvin 1130 (UV-Absorber), 0,9 Teile Tinuvin 144 (HALS), 0,4 Teile Additol XL 490 (Verlauffmittel) und 0,4 Teile Benzoin (Entgasungsmittel) werden in einem Henschel-Fluidmischer vermischt, auf einem BUSS PLK 46 Extruder extrudiert, auf einer Hosohawa 40 ACM 2-Mühle vermahlen und über ein 125 µm Sieb abgesiebt.

3. Herstellung der Dispersion

In 400 Teile entsalztes Wasser werden 0,6 Teile Troykyd D777 (Entschäumer), 0,6 Teile Orotan 731 K (Dispergierhilfsmittel), 0,06 Teile Surfinol TMN 6 (Netzmittel) und 16,5 Teile RM8 (Rohm & Haas, nichtionischer Assoziativ-Verdicker auf Polyurethanbasis) dispergiert. Dann werden 50 in kleinen Portionen 94 Teile des Pulverklarläckes eingerührt. Anschließend werden noch einmal 0,6 Teile Troykyd D777, 0,6 Teile Orotan 731 K, 0,06 Teile Surfinol TMN 6 und 16,5 Teile RM8 eindispergiert. Abschließend werden in kleinen Portionen 94 Teile des Pulverklarläckes eingerührt. Das Material wird in einer Sandmühle 3,5 h gemahlen. Die abschließend gemessene durchschnittliche Teilchengröße 55 beträgt 4 µm. Das Material wird durch einen 50 µm Filter filtriert und abschließend werden 0,05% Byk 345 (Verlauffmittel) zugesetzt. 60

4. Applikation der Dispersion

Die Slurry wird auf mit Wasserbasislack beschichteten Stahltafeln mittels einer Becherpistole appliziert. Das Blech wird 5 min bei Raumtemperatur und 5 min bei 60°C abgeküsst. Anschließend wird bei einer Temperatur von 140°C das Blech 30 min. eingearbeitet.

Bei 40 µm Schichtdicke wird ein hochglänzender Klarlack-Film mit MP-Ständigkeit (> 100 Doppelhübe) hergestellt.

Der Klarlack-Film weist eine gute Schwitzwasserbeständigkeit auf.

Patentansprüche

1. Wässrige Pulverklarlackdispersion, bestehend aus einer festen, pulverförmigen Komponente A und einer wässrigen Komponente B, wobei Komponente A ein Pulverklarlack ist, enthaltend

- wenigstens ein epoxidhaltiges Bindemittel mit einem Gehalt von 30 bis 45 Gew.-%, vorzugsweise 30 bis 35 Gew.-% an glycidylhaltigen Monomeren ggf. mit einem Gehalt an vinylaromatischen Verbindungen, vorzugsweise Styrol,
- wenigstens ein Vernetzungsmittel, vorzugsweise geradkettige, aliphatische Dicarbonsäuren und/oder carboxyfunktionelle Polyester und
- ggf. Katalysatoren, Hilfsstoffe, pulverklarlack-typische Additive wie Entgasungsmittel, Verlauffmittel, UV-Absorber, Radikalfänger, Antioxidantien

und Komponente B. eine wässrige Dispersion ist, enthaltend

- wenigstens einen nicht-ionischen Verdicker und
- ggf. Katalysatoren, Hilfsstoffe, Entschäumungsmittel, Netzmittel, Dispersionshilfsmittel, vorzugsweise carboxyfunktionelle Dispergiermittel, Antioxidantien, UV-Absorber, Radikalfänger, Biozide, geringe Mengen Lösemittel, Verlauffmittel, Neutralisierungsmittel, vorzugsweise Amine und/oder Wasserrückhaltemittel, und wobei der pH-Wert der Dispersion zwischen 4,0 und 7,0, vorzugsweise 5,5 und 6,5, liegt.

2. Wässrige Pulverklarlackdispersion nach Anspruch 1, dadurch gekennzeichnet, daß deren Gehalt an vinylaromatischen Verbindungen höchstens 35, vorzugsweise 10-25 Gew.-% beträgt, bezogen auf Komponente Aa).

3. Wässrige Pulverklarlackdispersion nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die epoxidfunktionellen Bindemittel epoxidgruppenhaltige Polycrylatharze sind, wobei die eingesetzten epoxidfunktionellen Monomere, vorzugsweise Glycidylacrylat, Glycidylmethacrylat und Allylglycidylester sind.

4. Wässrige Pulverklarlackdispersion nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die Korngröße höchstens 20 µm, vorzugsweise 3 bis 10 µm ist.

5. Wässrige Pulverklarlackdispersion nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die Komponente B als nicht-ionischen Verdicker a) mindestens einen nicht-ionischen Assoziativ-Verdicker enthält der als Strukturmerkmale:

- ein hydrophiles Gerüst und
- hydrophobe Gruppen, die zu einer assoziativen Wechselwirkung im wässrigen Medium fähig sind, enthält.

6. Wässrige Pulverklarlackdispersion nach Anspruch 5, dadurch gekennzeichnet, daß der nicht-ionische Assoziativ-Verdicker a) als hydrophiles Gerüst aa) Polyurethanketten enthält.

7. Wässrige Pulverklarlackdispersion nach Anspruch

6, dadurch gekennzeichnet, daß der nicht-ionische Assoziativ-Verdicker a) als hydrophiles Gerüst aa) Polyurethanketten mit Polyetherbausteinen enthält.

8. Verfahren zur Herstellung der wässrigen Pulverklarlackdispersion nach einem der Ansprüche 1-4, dadurch 5 gekennzeichnet, daß

I. aus der festen, pulverförmigen Komponente A und einer wässrigen Komponente B eine Dispersion hergestellt wird, wobei

II. die aus den Komponenten A und B hergestellte Dispersion ggf. vermahlen wird,

III. der pH-Wert der Dispersion auf 4,0 bis 7,0, vorzugsweise 5,5 bis 6,5 eingestellt und filtriert wird.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die wässrige Pulverklarlackdispersion aus den Komponenten A und B durch Naßvermahlung hergestellt wird.

10. Verwendung der wässrigen Pulverklarlackdispersion nach einem der Ansprüche 1-7 zur Beschichtung 20 von lackierten und nicht lackierten Automobilkarosserien aus Metallblech und/oder Kunststoff mittels elektrostatisch unterstützter Hochrotation oder pneumatischer Applikation.

25

30

35

40

45

50

55

60

65

- Leerseite -