

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

• BLACK BORDERS

- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

⑨ 日本国特許庁 (JP)
⑩ 公開特許公報 (A)

⑪ 特許出願公開

昭58-145930

⑫ Int. Cl.³
G 03 B 17/12

識別記号
厅内整理番号

7256-2H

⑬ 公開 昭和58年(1983)8月31日

発明の数 1
審査請求 未請求

(全 8 頁)

⑭ レンズ系切替式カメラの切替機構

⑮ 特願 昭57-29572
⑯ 出願 昭57(1982)2月24日
⑰ 発明者 大橋左一郎

⑪ 出願人 富士写真フィルム株式会社
南足柄市中沼210番地
⑫ 代理人 弁理士 青山保 外2名

西宮市宮西町10番29号株式会社
甲南カメラ研究所内

明細書

1.発明の名称

レンズ系切替式カメラの切替機構

2.特許請求の範囲

(1) 主光学レンズ系と、副光学レンズ系を備え、
副光学レンズ系を撮影光軸外の退避位置と撮影光
軸上の所定位置との間で切替可能とする作動手段
を設け、主光学レンズ系により第1の撮影光学系
を構成するとともに、主光学レンズ系と副光学レ
ンズ系とを組合せて第2の撮影光学系を構成する
ようにしたレンズ系切替式カメラの切替機構にお
いて。

前記主光学レンズ系を前記副光学レンズ系とは
独立して繰り込み繰り出し自在に構成する一方、
前記副光学レンズ系を前記主光学レンズ系の後方
で該主光学レンズ系から所定間隔をおいて定位し
たまま一体として前後動させる切替リンクを設け
るとともに、該切替リンクと一体に回動するカム
を設け、該カムにより前記作動手段を作動させ、
前記切替リンクの回動に応動して後退していく副

光学レンズ系を撮影光軸上から撮影光軸外の退避
位置へ退避させ、第2の撮影光学系から第1の撮
影光学系へ自動的に切り替えるようにしたことを
特徴とするレンズ切替式カメラの切替機構。

3.発明の詳細な説明

この発明は、レンズ鏡胴を交換することなく、
標準レンズ系と望遠レンズ系の両方を任意に選択
して使用することができるカメラに係り、特に、
レンズ系の切り替え動作を行う切替機構に関する。

従来より、標準レンズ系に対して、リヤコンバ
ータレンズを設け、切替操作部材を外部操作する
ことにより、リヤコンバータレンズを撮影光軸上
の所定位置に定位させ、標準レンズ系とリヤコン
バータレンズとにエクスパンダレンズ系を構成するよ
うにしたカメラが知られている。しかしながら、
従来のこの種切替機構では、切替操作フォーカシ
ングとは別個の操作として行なわなければならな
いため、予めいずれのレンズ系を使用するか選択
する必要があり、フォーカシングの途中で、望遠
の方が好ましいと判断したときには、フォーカシ

ングを一旦中断して、切替操作をしなければならないといった操作上の難点があつた。

この難点を解決するため、本願出願人は、先に、特開昭53-149319号公報（発明の名称：レンズ切替式カメラ）において、切替の操作性を向上させたカメラを開示した。すなわち、フォーカシングリングの回動範囲を第1撮影光学系の距離調節のための第1範囲と、第2撮影光学系（望遠系）の距離調節のための第2範囲とに渡って設定し、この一つのフォーカシングリングの回動により両光学系の距離調整を可能とするとともに、フォーカシングリングと一緒に回動するカムを設け、フォーカシングリングを第2レンジに回動したときに、該カムにより副光学レンズ系（コンバータレンズ）を撮影光路上に移動させる手段を作動させ、その位置に定位させるようにしたことを見本的な特徴とするものである。

しかしながら、上記開示発明において切替の操作性を向上させたものの、コンバータレンズをフレーム面に対して一定位置に固定すると、望遠系

る。

即ち、切替リングの回動に応じてカメラボディ側へ移動していくリヤコンバータ等より構成する副光学レンズ系を、切替リングと一緒に回動するカムにより、撮影光軸上から撮影光軸外の退避位置へ移動させる手段を作動させ、第2の撮影光学系から自動的に第1の撮影光学系に切り替えるものである。

以下、図示の実施例について、本発明を具体的に説明する。

第1図は、レンズ系切替式カメラの鏡頭部の軸方向垂直断面図である。

図において、1は主光学レンズ系としての標準レンズ系、2は標準レンズ系1の周囲を支持し、外周にネジ部2'を複数した支持筒、3は標準レンズ系1と後述する副光学レンズ系とを一体として光軸方向に前後自在に案内する内ヘリコイドリングで、支持筒2のネジ部2'に複数するネジ部3'を備える。図中下方の4はカメラ本体フレーム5に接続が固定され、内ヘリコイドリング3

での倍率やレンズ収差が問題となり、光学設計上の難点を含むとともに、良好な像を得にくい欠点があつた。

本発明は、かかる従来の欠点を解消するとともに、撮影光学系の切替リングの回動に応動させて2種のレンズ系を自動的に切替えることができるカメラの切替機構を提供することを目的としている。

この目的を達成するため、本発明においては、主光学レンズ系を副光学レンズ系とは独立して取り込み取り出し自在に構成する一方、副光学レンズ系を主光学レンズ系の後方で該主光学レンズ系から所定間隔を置いて定位したまま一体として前後進させる切替リングを設けるとともに、該切替リングと一緒に回動するカムを設け、該カムにより前記切替リングの回動に応動して後退していく副光学レンズ系を撮影光軸上から撮影光軸外の退避位置へ退避させ、第2の撮影光学系（望遠系）から第1の撮影光学系（標準系又は広角系）へ自動的に切り替えるようにしたことを特徴としている。

を回転させることなく光軸方向にガイドするガイドピン、6は内ヘリコイドリング3の外周に複数した外周ネジ部3'に複数するネジ部6'を備える中間ヘリコイドリング、7は該中間ヘリコイドリング6にネジ部6'により一体に取付けたカムリング、9は上記中間ヘリコイドリング6の外周ネジ部6'に複数するネジ部9'を備える外ヘリコイドリング、10はカメラ本体フレーム5に基部が固定され、先端側内周部にネジ11'により外ヘリコイドリング9を固定支持した固定リングである。これらリングは、固定リング10に相対してカムリング7を回動することにより、切り替えリングとしての中間ヘリコイド6を外ヘリコイド9に相対して回動させ、この切り替えリングとしての中間ヘリコイドリング6（以下、切替リング6という）の回動により、ガイドピン4によってガイドされた内ヘリコイドリング3を光軸方向に前後動させ、標準レンズ系1と後述する副光学レンズ系とを一体として取り出し、取り込みを行う切り替え機構の一部を構成している。

一方、前記標準レンズ系1を支持する支持筒2には、カメラ前端方向に延びる延設リング部2bを備え、この延設リング2bの前端部は、ネジ12により板状リング13と固定されている。14は、この板状リングの切欠凹部に嵌合しているピン状部材14で、このピン状部材14が板状リング14を周方向に押すように作用する。板状リング13が押されて周方向に回動すると、延設リング部2bを介して支持筒2が回動する。このとき、内ヘリコイドリング3は固定状態にあるので、内ヘリコイドリング3（特に、そのネジ部3a）は、標準レンズ系1を回動させながら光軸方向に前後進自在に案内する。この標準レンズ系1を回動させながら光軸方向に前後進自在に案内する様様は、図中一点鎖線で示す望遠撮影系の初期位置から当該標準レンズ系1を前方へ繰り出し（または前方位置から戻り込み）望遠撮影を行うときにも同様である。

なお、15は外ヘリコイドリング9に一端を蝶合した内側カバー、16は内側カバー15の外側

シーパータレンズ21は標準レンズ系1と一緒にとつて前後動する。

次に、このリヤコンバータレンズ21の切替機構について説明する。

第3図は切替リング6と一緒に回転するカムリング7の形状を示す。C点は撮影光軸に相当し、カムリング7はC点から半径Rの外周部25と、該外周部25の一端から第1の段部26を介して半径r ($r < R$) の円弧部27と、この円弧部27の端点Aから左めらかに連続する漸高カム部28とからなり、漸高カム部28の最も高くなつた位置からは第2の段部29を介して前記外周部25の他端とが連続する構成である。このカムリング7の外周部25は、後述する如く、標準撮影から望遠撮影へ又は望遠撮影から標準撮影への切替時（以下、切替時という）において、該カムリング7を回動させる回動駆動力を付与する部分である。円弧部27（およびこの例では漸高カム部28のB点まで及ぶ）は、後述する如く、作動手段30のローラ37が当接しないようにながれ部に

を覆う化粧カバー、17は化粧カバー16の前端部に固定された化粧用のカバー、また18はレンズ1の押えリングである。

一方、図中一点鎖線で示される21は副光学レンズ系としてのリヤコンバータレンズで、実線で示される標準レンズ系1だけを用いる標準撮影時には、撮影光軸外のカメラボディ側の退避位置（図示せず）に退避され、望遠撮影をするときは、まず退避位置から撮影光軸上の所定位置に繰り出すとともに、標準レンズ系1に対し所定間隔をもいて定位したまま当該標準レンズ系1と一緒に前進され、第1図中一点鎖線で示す望遠撮影の初期位置にまで繰り出される。すなわち、第2図に示すように、22はリヤコンバータレンズ21を支持するホールドで、該ホールド22は、内ヘリコイドリング3後部の環状部23において光軸方向に沿つて複数したビン24に搖動可能に枢支され、標準レンズ系1に対し常時一定距離を保持するよう構成している。したがつて、切替リング6に上り内ヘリコイドリング3が前後動すると、リヤコ

相当し、第1段部26は標準レンズ系1とコンバータレンズ21と一緒にとつて繰り出す限界位置をなす。望遠撮影時の初期位置（第1図の一点鎖線の位置）に対応する。一方、漸高カム部28は、後述する作動手段30を作動させうる領域であり、B点から第2段部29に至るにつれてコンバータレンズ21を光軸上から徐々に退避位置に退避させる。また、第2段部29は、望遠系から標準系への切替時の繰り込み限界位置に対応する。

このカムリング7と協働する作動手段30は、第4図及び第5図に示すように、カメラ本体内部においてボディフレーム5に光軸方向に固定したビン31により搖動可能に枢支され、該ビン31のまわりに巻きしたワイヤバネ32により第4図の反時計回りに付勢されている。

作動手段30は、枢支部31'から回動の半径方向に延びる2つのアーム部33、34を備える。任は光軸に向つて延びるアーム部33の先端部には、光軸方向に平行でカメラ前方に向くビン35が複数され、このビン35は、標準系への切替時、

コンバータレンズ21が後進してきたとき、ホルダ22の軸状部22aに当接して、光軸上の位置HICに定位保持されていた該ホルダ22をすくい上げ、第4図に示すカメラ本体フレーム5に切り欠いた弓形切欠部38に対応する退進位置Hへ移行させる。一方、アーム部33に対し成る角度（この例では、圧圧90°）をして延びるアーム部34の先端部には、光軸方向に平行でカメラ前方に向くビン35を設け、該ビン35にローブ37を回転自在に支持している。このローブ37は、カムリング7のカム部と係合し、漸高カム部28が入点からB点を経て第2段部29に回動すると、その作動手段30を第4図中時計回りに回動させる。

なお、40はホルダ22の軸状部22aに設けたストップバインであり、切替え途中お入り望遠撮影時、バネ39により第4図中反時計回りに當時付勢されているホルダ22を、ストップ41に当て止める。このストップ41は、内ヘリコイドリング3後端の環状部23に設けられている。そして、ストップ41は長穴42、42に設けたヒ

い望遠フォーカシングをする。ここで、望遠系から標準系に切り替えるため、支持筒2を最も繰り込んだ望遠撮影の初期位置（第1図の一点鎖線示す位置）にする。次に、カムリング7の外周部25に駆動力を与え、該カムリング7を第4図中時計回りに回動させる。切替リング6が回転し、この切替リング6により内ヘリコイドリング3は、第6図で示すように後進する。このとき、作動手段30のローブ37はカムリング7の円弧部27からは逃げている。さらにカムリング7を回動させると、ローブ37は円弧部27のA点付近で接触し、このA点から漸高カム部28へ乗り上げる。作動手段30はビン31のまわりに回動し、第7図に示すように、アーム部33のビン35がホルダ22の軸状部22aの側面に当接する。カムリング7をさらに回動させると、作動手段30はさらに回動し、ビン35が軸状部22aの側面ですべりながら押圧し、それと同時に、該ホルダ22をビン24のまわりに徐々に回動させる。ローブ37の位置へ漸高カム部28の第2段部29が接

ス42、42'によって微調整しうるようになつており、リヤコンバータレンズ21の光軸を標準レンズ系1の光軸に正確に一致させることができるように構造としている。

また、上記アーム部33の基部外周から山型に突出させたカム43は、標準撮影と望遠撮影との切り替え時に、作動レバー44を運動させて、カメラのファインダの視野枠45を切り替えるためのものである。さらに、内ヘリコイドリング3後部の環状部23に固定され、切替時の前後動に追従して運動する略I字状部材46は、第1図にも示すように、光軸方向に滑動可能に支持されたファインダの交換レンズ47を前後進させためのものである。これらファインダの視野枠45および交換レンズ47については公知であるので説明を略す。

次に、本発明に係る切替機構の動作を、第6図、第7図および第8図を参考として説明する。

望遠撮影時には、標準レンズ系1を保持する支持筒2を単独で回転させて繰り出し繰り込みを行

近してくると、作動手段30の回動速度は速くなり、ビン35はホルダ22を押圧したままで急にすくいあげる。最終的には、ホルダ22に支持されたコンバータレンズ21はカメラボディ側に形成した弓形切欠部38（第4図）に嵌り込む。第8図はコンバータレンズ21が退進位置に完全に退進した状態を示す。

なお、カムリング7に回転駆動力を付与する手段は、モータでも、入手によるものでも、いずれでもよい。前者の場合、カムリング7の外周部25にギヤを形成し、適当なギヤ列を介してモータの回転力を伝達する。後者の場合には、カムリング7に鏡胴から突出する操作ビンを設け、人手に上つて操作する。

以上詳細に説明したことから明らかをようやく、本発明は、副光学レンズ系を主光学レンズ系の後方に所定間隔をおいて定位したまま一体として前後進させる切替リングを設けるとともに、この切替リングと一体に回動するカムにより、切替リングの回動に応動して後進してくる副光学レンズ系

特開昭58-145930(5)

の関係を説明するための説明図であり、実際にはこの図の状態は存在しない。第6図、第7図は切替機構の動作を説明するための部分斜視図、第8図は、コンバータレンズが退避した状態の鏡頭部の縦断面図である。

1……標準レンズ系、3……内ヘリコイドリング、6……切替リング、7……カムリング、21……リヤコンバータレンズ、22……ホルダ、28……漸高カム部、30……作動手段、35……ピン、37……ローラ。

特許出願人 富士写真フィルム株式会社
代理人 弁理士 青山 碩ほか2名

を撮影光路上から撮影光路外の退避位置へ移動させる手段を作動させるようにして、第2の撮影光学系を構成するとき副光学レンズ系を単に撮影光軸上の定位位置に固定する従来例と比べ、倍率やレンズ収差がそれほど問題とならず、光学設計を簡単化する効果があり、さらに、切替リングの回動に応じて自動的に第2の撮影光学系から第1の撮影光学系に切り替えることができ、カメラの操作性を著しく向上させることができる。また、切替操作手段を特別に設ける必要がなくなるので、カメラをコンパクトなものとすることができる利点もある。

4. 図面の簡単な説明

第1図は本発明の一実施例に係るカメラの鏡頭部の光軸方向垂直断面図、第2図はリヤコンバータレンズを配置した望遠レンズ系の縦断面説明図、第3図はカムリングの形状を説明するための正面説明図、第4図はリヤコンバータレンズの動きを説明するための正面説明図、第5図は作動手段の構造を示すとともに、リヤコンバータのホルダと

第2図

第3図

第4図

第5図

第6図

第7図

第8図

Date: September 18, 2003

Declaration

I, Michihiko Matsuba, President of Fukuyama Sangyo Honyaku Center, Ltd. of 16-3, 2-chōme; Nogami-cho, Fukuyama, Japan, do solemnly and sincerely declare that I understand well both the Japanese and English languages and that the attached document in English is a full and faithful translation, of the copy of Japanese Unexamined Utility Model No. Sho-64-34623 laid open on March 2, 1989.

Michihiko Matsuba

Fukuyama Sangyo Honyaku Center, Ltd.

WATERPROOF CAMERA

Japanese Unexamined Utility Model No. Sho-64-34623

Laid-open on: March 2, 1989

Application No. Sho-62-128088

Filed on: August 25, 1987

Inventor: Keitaro Kasahara

Inventor: Atsuro Yajima

Applicant: Nitto Kogaku Co., Ltd.

SPECIFICATION

1. TITLE OF THE UTILITY MODEL

WATERPROOF CAMERA

2. WHAT IS CLAIMED IS:

A waterproof camera, wherein a front lightproof ring having a plurality of spring bearing claws on a rear end surface is fitted movably forward or backward to a bull's-eye-like front lightproof plate fixed to a front end surface of a lens-barrel-guiding cylindrical body of a camera body in which the lens-barrel-guiding cylindrical body concentrically protrudes through a diameter-widening stepped portion to a front end of a lightproof barrel; whereas a lens-barrel-holding ring in which an outer ring having an engagement collar engaged with

a rear end surface of the front lightproof ring and a slit to which the spring bearing claw is loosely fitted and an inner ring holding a lens barrel are integrally formed with an interval therebetween on a rear side of a disk having a light guiding opening at a central part is fitted movably forward or backward into the front lightproof ring while interposing a spring caught by the spring bearing claw between the outer ring and the inner ring; and a camera main body to which a focus-switching lightproof member is fixed in which a bull's-eye-like rear lightproof plate fitted movably forward or backward into the lens-barrel-guiding cylindrical body and a rear lightproof ring fitted movably forward or backward into the lightproof barrel are integrally formed at a rear end of the lens barrel is contained in an outer hull body to which a rear lid is water-tightly screwed at a rear face part of a front cover in which a lens-barrel-guiding-cylindrical-body-protecting cylindrical portion on which a lightproof windowpane is water-tightly mounted is formed at a front face part.

3. DETAILED DESCRIPTION OF THE UTILITY MODEL

[Field of the Utility Model]

This invention relates to a waterproof camera.

[Description of Related Art]

Conventionally, there is a waterproof camera in which a camera main body is contained in an outer hull body in which a rear lid is water-tightly and closably screwed to a rear face part of a front cover having a lens-barrel-guiding-cylindrical-body-protecting cylindrical portion on which a light-penetrating windowpane is water-tightly mounted at a front face part.

[Object]

Furthermore, in this conventional waterproof camera, there is a need to enlarge a moving range of a photographic lens in order to raise a focal-length changing magnification, and a light-blocking range where light is blocked is expanded proportionally with the enlargement of the moving range of the photographic lens, and a protraction degree occurring when the photographic lens is drawn out increases proportionally therewith, and therefore it is inevitable that the front face part of the outer hull body with which the drawn photographic lens is covered will assume a more protruding shape. Disadvantageously, an increase in the protraction degree leads to an enlargement of the waterproof camera.

This invention has been made in consideration of these circumstances and aims to provide a waterproof camera capable of restricting the size enlargement although a focal-length

changing magnification is raised.

[Means for solving the object]

In order to achieve the aim, this invention is a waterproof camera characterized in that a front lightproof ring having a plurality of spring bearing claws on a rear end surface is fitted movably forward or backward to a bull's-eye-like front lightproof plate fixed to a front end surface of a lens-barrel-guiding cylindrical body of a camera body in which the lens-barrel-guiding cylindrical body concentrically protrudes through a diameter-widening stepped portion to a front end of a lightproof barrel, whereas a lens-barrel-holding ring in which an outer ring having an engagement collar engaged with a rear end surface of the front lightproof ring and a slit to which the spring bearing claw is loosely fitted and an inner ring holding a lens barrel are integrally formed with an interval therebetween on a rear side of a disk having a light guiding opening at a central part is fitted movably forward or backward into the front lightproof ring while interposing a spring caught by the spring bearing claw between the outer ring and the inner ring, and a camera main body to which a focus-switching lightproof member is fixed in which a bull's-eye-like rear lightproof plate fitted movably forward or backward into the lens-barrel-guiding cylindrical body and

a rear lightproof ring fitted movably forward or backward into the lightproof cylindrical body are integrally formed at a rear end of the lens barrel is contained in an outer hull body to which a rear lid is water-tightly screwed at a rear face part of a front cover in which a lens-barrel-guiding-cylindrical-body-protecting cylindrical portion on which a lightproof windowpane is water-tightly mounted is formed at a front face part.

[Operation]

The waterproof camera according to this invention has the aforementioned structure, and, in switching from an ordinary photographic state in which the front lightproof ring, the lens-barrel-holding ring, and the lens barrel have been retracted to a telephotographic state, the lens-barrel-holding ring and the lens barrel are protracted together initially, and a spring interposed between an outer ring and an inner ring that constitute the lens-barrel-holding ring extends at this time, and, although the front lightproof ring is prevented from moving forward together with the lens-barrel-holding ring and the lens barrel because of the urging of this spring, the front lightproof ring is protracted together with the lens-barrel-holding ring and the lens barrel when an engagement collar of the lens-barrel-holding ring is

engaged with the rear end surface of the front lightproof ring, and a telephotographic state is reached.

As mentioned above, since the front lightproof ring being in the telephotographic state in which the lens barrel has been protracted reaches the state of being retracted by an interval between the rear end surface of the front lightproof ring and the engagement collar of the lens-barrel-holding ring in the ordinary photographic state with respect to the lens-barrel-holding ring in comparison with the ordinary photographic state in which the lens barrel has been retracted, a front-end opening edge on which a light-penetrating windowpane of an outer hull body has been mounted can be retracted to the extent of this interval.

Further, when the lens barrel is protracted, the blocking in a state in which a range to be blocked has been enlarged can be achieved by drawing the rear lightproof ring that constitutes the focus-switching lightproof member fixed to the lens barrel from the lightproof barrel.

Further, when the lens barrel is protracted or retracted, the lens barrel is smoothly guided by the lens-barrel-guiding cylindrical body because the rear lightproof plate that constitutes the focus-switching lightproof member fixed to the lens barrel is protracted or retracted in the state of being

fitted in the lens-barrel-guiding cylindrical body.

[Embodiment]

A detailed description will be hereinafter given of an embodiment of the waterproof camera according to this invention with reference to the drawings shown herein.

In FIG. 1, X is the waterproof camera, which is made up chiefly of a camera main body Y and an outer hull body Z watertightly including and holding the camera main body Y.

The camera main body Y is made up of a camera body 10, a front lightproof plate 20, a front lightproof ring 30, a lens-barrel-holding ring 40, a lens barrel 50 on which a photographic lens 100 is mounted, a focus-switching lightproof member 60, a shutter member 70, an auxiliary lens 101, and other elements, which are not shown and are not described, i.e., a focus-switching mechanism, a shutter operation activating mechanism, an auxiliary-lens advancing/retracting operating mechanism, and a driving motor. The outer hull body Z is made up of a front cover 80 and a back lid 90.

Furthermore, the camera body 10 is almost the same as the conventional one and has a lens-barrel-guiding cylindrical body 12 enclosing an optical-path-forming portion through a diameter-widening stepped portion 11 on the front surface side, a lightproof barrel 13 concentric with and smaller in diameter

than the lens-barrel-guiding cylindrical body 12 on the rear surface side, a spool chamber 14 opened backward on one side of the lightproof barrel 13, a cartridge chamber 15 opened backward on the other side of the lightproof barrel 13, and a battery chamber 16 outside the cartridge chamber 15. A spool 17 is mounted in the spool chamber 14 so as to be rotated by a driving mechanism not shown.

The front lightproof plate 20 is formed by applying antireflection processing onto a bull's-eye-like disk having a through-hole 21 at the central part. This front lightproof plate 20 is fixed to be concentric with the front end surface of the lens-barrel-guiding cylindrical body 12 of the camera body 10. As shown especially in FIG. 3 and FIG. 4, the front lightproof ring 30 is formed by a collar 31 engaged with the front surface of the front lightproof plate 20 at the front end part consisting mainly of a ring fitted movably forward or backward to or from the through-hole 21 of the front lightproof plate 20 and by several spring bearing claws 34, . . . to engage the rear end of a spring 33 interposed between an outer ring 42 and an inner ring 43 that constitute the lens-barrel-holding ring 40 described later which are caused to protrude inward at substantially equal intervals at the rear end surface 32.

In the lens-barrel-holding ring 40, an outer ring 42 having an outer diameter equal to that of a disk 41 is integrally formed with an elastic material at an outer edge of the rear side of the disk 41 that is fitted to the front end opening 35 of the front lightproof ring 30 and that has a funnel-like light guiding opening 44 at the central part, and an inner ring 43 that is fitted to the inner end face of the spring bearing claws 34, . . . of the front lightproof ring 30 is integrally formed with an elastic material in the vicinity of the light guiding opening 44 of the rear side of the disk 41. An engagement collar 45 is formed to protrude outward at the rear end edge of the outer ring 42, and slits 46, . . . to which the spring bearing claws 34, . . . of the front lightproof ring 30 are loosely fitted are formed at the rear end of the outer ring 42, and the lens barrel 50 is held in the inner ring 43.

The focus-switching lightproof member 60 is formed by integrally forming an annular projection 62 fixed to the rear end surface of the lens barrel 50 on the front side of a bull's-eye-like rear lightproof plate 61 fitted movably forward or backward in the lens-barrel-guiding cylindrical body 12 of the camera body 10 and a rear lightproof ring 63 fitted movably forward or backward in the lightproof barrel 13 of the camera body 10 on the rear side thereof, and the

shutter member 70 is disposed on the rear lightproof plate 61.

The focus-switching lightproof member 60, the lens-barrel-holding ring 40, and the lens barrel 50 on which the photographic lens 100 is mounted are protracted or retracted together, and a range to be protracted or retracted is restricted by the rear lightproof plate 61, the front lightproof plate 20, and the diameter-widening stepped portion 11.

101 is an auxiliary lens that cooperates with the photographic lens 100 in telephotography. This auxiliary lens 101 is retracted out of the optical path of the photographic lens 100 in usual photography and is protracted backward from the photographic lens 100 in telephotography by an auxiliary-lens advancing/retracting operating mechanism, not shown, that responds to a focus-switching mechanism not shown, so that the optical axis of the photographic lens 100 coincides with the optical axis of the auxiliary lens 101.

Further, at the front cover 80, a truncated-cone-like lens-barrel-guiding-cylindrical-body-protecting cylindrical portion 81 having a central axis line that coincides with the central axis line shared between the lightproof barrel 13 and the lens-barrel-guiding cylindrical body 12 is formed at the front face part with which the front

surface of the camera main body Y is covered, and a light-penetrating windowpane 83 is water-tightly mounted on the front-end opening edge 82 by an O ring 84 and by an annular pressing member 86 having a funnel-like light guiding opening 86' fixed to the interior part of the front-end opening edge 82 with a bis-screw 85, whereas an elastic body 89 for waterproofing is inserted into a groove 88 for waterproofing that is formed by hollowing a rear-end opening edge 87 of the part covering the side face of the camera main body Y.

Further, at the back lid 90, a projection 91 that is engaged with the inner surface 18 of the outer wall part of the spool chamber 14 of the camera body 10 and a projection 92 that is engaged with the inner surface 19 of the outer wall part of the cartridge chamber 15 are formed on the inner surface of the lid plate, and a protruding bar 94 for waterproofing that cooperates with the elastic body 89 for waterproofing of the front cover 80 is erected on a rim portion 93 formed to fit the rear-end opening edge 87 of the front cover 80, and a pressure plate 95 by which a film is pressed against the rear-end opening edge 13' of the lightproof barrel 13 is attached between the projections 91 and 92. The outer hull body Z is formed by openably and closably attaching the back lid 90 to the front cover 80 by means of a hinge not shown,

and the interior of the outer hull body Z is kept watertight when the back lid 90 is closed.

In order to contain the camera main body Y in the outer hull body Z, the peripheral edge part of the front lightproof plate 20 is fixed to the inner surface of the lens-barrel-guiding-cylindrical-body-protecting cylindrical portion 81, and the funnel-like light guiding opening 86' of the annular pressing member 86 is fixed to the front surface of the front lightproof plate 20, and the camera main body Y is fixed to the front cover 80 by fitting the side face of the camera body 10 to the front cover 80, and then the back lid 90 is closed to become watertight.

Since the waterproof camera according to this invention is structured as mentioned above, the protruding bar 94 for waterproofing that has been erected on the rim portion 93 of the back lid 90 bites into the elastic body 89 for waterproofing that has been inserted in the groove 88 for waterproofing that has been formed by hollowing the rear end opening edge 87 of the front cover 80 when the back lid 90 is opened, a film is then loaded, and the back lid 90 is closed. Thereby, the interior of the outer hull body Z becomes watertight, and a photographable state is reached.

Thereafter, when a focus-changing switch of the focus-

switching mechanism not shown is operated, the lens barrel of the waterproof camera is switched from the ordinary photographic state of FIG. 1 to the telephotographic state of FIG. 2 or vice versa, and, when it is switched to telephotography, the lens barrel 50 on which the photographic lens 100 has been mounted is protracted as shown in FIG. 2, and the auxiliary lens 101 is protracted backward from the photographic lens 100, the optical axis of the photographic lens 100 is caused to coincide with the optical axis of the auxiliary lens 101. If the lens-barrel-holding ring 40 and the lens barrel 50 are protracted together by the focus-switching mechanism not shown at this time, the spring 33 interposed between the outer ring 42 and the inner ring 43 that constitute the lens-barrel-holding ring 40 extends, and the front lightproof ring 30 is prevented from moving forward together with the lens-barrel-holding ring 40 and the lens barrel 50 because of the urging of the spring 33. However, when the engagement collar 45 of the lens-barrel-holding ring 40 is engaged with the rear end surface 32 of the front lightproof ring 30, the front lightproof ring 30 is protracted together with the lens-barrel-holding ring 40 and the lens barrel 50, and a telephotographic state shown in FIG. 2 is reached.

As mentioned above, the front lightproof ring 30 placed in the telephotographic state (see FIG. 2) in which the lens barrel 50 on which the photographic lens 100 has been mounted is protracted is retracted by an interval ℓ between the engagement collar 45 of the lens-barrel-holding ring 40 and the rear end surface 32 of the front lightproof ring 30 in the ordinary photographic state with respect to the lens-barrel-holding ring 40 in comparison with the ordinary photographic state (see FIG. 1 and FIG. 3), the front-end opening edge 82 on which the light-penetrating windowpane 83 of the outer hull body 2 has been mounted can be retracted to the extent of this interval ℓ .

Additionally, when the lens barrel 50 is protracted, the focus-switching lightproof member 60 is protracted together with the lens barrel 50, and the rear lightproof ring 63 that is a constituent element of the lightproof member 60 is drawn from the lightproof barrel 13, and hence blocking in a state where a range to be blocked is enlarged can be achieved.

Additionally, when the lens barrel 50 is protracted or retracted, the bull's-eye-like rear lightproof plate 61 that is a constituent element of the focus-switching lightproof member 60 fixed to the lens barrel 50 is protracted or retracted in the state of being fitted in the lens-barrel-guiding

cylindrical body 12, and hence the lens barrel 50 can be smoothly protracted or retracted.

[Effect of the invention]

As is apparent from the foregoing description, according to this invention, even if the focal-length changing magnification of the waterproof camera is enlarged, blocking in a state where a range to be blocked has been enlarged can be achieved, and the lens barrel can be smoothly protracted or retracted, and the front-end opening edge to which the light-penetrating windowpane of the outer hull body has been attached can be retracted, and it becomes possible to provide a waterproof camera capable of restricting size enlargement of the waterproof camera by reducing a protraction degree of the outer hull body to the extent of the retraction.

4. BRIEF DESCRIPTION OF THE DRAWINGS

The drawings show the embodiment of this invention, in which FIG. 1 is a longitudinal sectional side view showing an ordinary photographic state, FIG. 2 is a longitudinal sectional side view showing a telephotographic state, FIG. 3 is a partially cutaway side view of a main part, and FIG. 4 is a rear view of a part of the main part.

X: Waterproof camera

Y: Camera main body
10: Camera body
12: Lens-barrel-guiding cylindrical body
20: Front lightproof plate
32: Rear end surface
34: Spring bearing claw
41: Disk
43: Inner ring
45: Engagement collar
11: Diameter-widening stepped portion
13: Lightproof barrel
30: Front lightproof ring
33: Spring
40: Lens-barrel-holding ring
42: Outer ring
44: Light guiding opening
46: Slit
50: Lens barrel
60: Focus-switching lightproof member
61: Rear lightproof plate
Z: Outer hull body
63: Rear lightproof ring
80: Front cover

- 81: Lens-barrel-guiding-cylindrical-body-protecting
cylindrical portion
- 83: Light-penetrating windowpane
- 90: Back lid

Applicant for registration of utility model

Nitto Kougaku Co., Ltd.

Representative Oshima Michio

Representative Okino Saichi

Fig.1

