EXERCISE 1(A) – DUAL-ISSUE SUPERSCALAR PIPELINE (4 points)

Given the following loop taken from a high-level program:

```
do {
    BASEC[i] = BASEA[i] + BASEB[i] + INC1 + INC2;
    i++;
}
while (i != N)
```

The program has been compiled in MIPS assembly code assuming that registers \$4 and \$7 have been initialized with values 0 and 4N respectively.

The symbols BASEA, BASEB and BASEC are 16-bit constant. The processor clock cycle is 2 ns.

```
L1: lw $2, BASEA ($4)
addi $2, $2, INC1
lw $3, BASEB ($4)
addi $3, $3, INC2
add $5, $2, $3
sw $5, BASEC ($4)
addi $4, $4, 4
bne $4, $7, L1
```

Consider the above program be executed on a **2-issue Superscalar MIPS** architecture with **Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN)** with Branch Target Buffer

Assume there are the following optimizations in the pipeline

- Consider for each instruction issue: 1 ALU/BRANCH and 1 LOAD/STORE
- Consider a Register File with **4 read ports**, **2 write** ports. A single read operation and a single write operation both at the same address can be executed;
- Forwarding
- Computation of PC and TARGET ADDRESS for branch & jump instructions anticipated in the ID stage

Complete the pipeline scheme **by inserting instructions in the proper issue line as well as the <u>stalls</u> needed to solve the given hazards and by adding an ARROW to indicate the Forwarding paths used**

	INSTRUCTION	C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C13	C14	C15	Forwarding Path
1 A/B	nop	IF	ID	EX	ME	WB											(CNTR hazard ok)
1 L/S	L1:lw \$2, BASEA(\$4)	IF	ID	EX	ME	WB											
2 A/B																	
2 L/S																	
3 A/B																	
3 L/S																	
4 A/B																	
4 L/S																	
5 A/B																	
5 L/S																	
6 A/B																	
6 L/S																	
7 A/B																	
7 L/S																	
8 A/B																	
8 L/S						_							_				

- Instruction Count per iteration (IC): IC =
- CPI $_{AS}$ =
- CPI $_{AS}$ =

SOLUTION:

Complete the pipeline scheme by inserting instructions in the proper issue line as well as the <u>stalls</u> needed to solve the given hazards and by adding an ARROW to indicate the Forwarding paths used

	INSTRUCTION	C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C13	C14	C15	Forwarding Path
1 A/B	nop	IF	ID	EX	ME	WB											(CNTR hazard ok)
1 L/S	L1:1w \$2, BASEA(\$4)	IF	ID	EX	ME	WB											
2 A/B	addi \$2, \$2, INC1		IF	ID	S	EX	ME	WB									ME-EX \$2
2 L/S	lw \$3, BASEB(\$4)		IF	ID	S	EX	ME	WB									
3 A/B	addi \$3, \$3, INC2			IF	S	ID	S	EX	ME	WB							ME-EX \$3
3 L/S	nop			IF	S	ID	S	EX	ME	WB							
4 A/B	add \$5, \$2, \$3					IF	S	ID	EX	ME	WB						EX-EX \$3
4 L/S	sw \$5, BASEC(\$4)					IF	S	ID	EX	ME	WB						EX-ME \$5
5 A/B	addi \$4, \$4, 4						S	IF	ID	EX,	ME	WB					
5 L/S	nop						S	IF	ID	EX	ME	WB					
6 A/B	bne \$4, \$7, L1								IF	S	ID	EX	ME	WB			EX-ID \$4
6 L/S	nop								IF	S	ID	EX	ME	WB			
7 A/B																	
7 L/S																	
8 A/B																	
8 L/S																	

- Instruction Count per iteration (IC): IC = 8
- CPI $_{AS}$ = (IC + NOPs + 2 * #stalls) / (2 *IC) = (8 + 4 + 2 * 3) / 16 = 18 / 16 = 1.125
- CPI $_{AS}$ = (#superscalar cycles + #stalls) / IC = (6 + 3) / 8 = 9 / 8 = 1.125

EXERCISE 1(B) – VLIW PIPELINE (4 points)

- Consider the same program be executed on a **2-issue VLIW MIPS** (Very Long Instruction Word) architecture with **Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN)** with Branch Target Buffer
- Consider for each instruction issue: 1 ALU/BRANCH and 1 LOAD/STORE
 - Complete the pipeline scheme **by inserting the <u>NOPS</u>** needed to solve the given hazards and by adding an ARROW to indicate the Forwarding paths used:

	INSTRUCTION	C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C13	C14	C15	Forwarding Path
1 A/B	nop	IF	ID	EX	ME	WB											(CNTR hazard ok)
1 L/S	L1 :lw \$2,BASEA(\$4)	IF	ID	EX	ME	WB											
2 A/B																	
2 L/S																	
3 A/B																	
3 L/S																	
4 A/B																	
4 L/S																	
5 A/B																	
5 L/S																	
6 A/B																	
6 L/S																	
7 A/B																	
7 L/S																	
8 A/B																	
8 L/S																	
9 A/B																	_
9 L/S																	
10 A/B																	
10 L/S																	

- Instruction Count per iteration (IC): IC =
- CPI AS=
- CPI AS=

SOLUTION:

- Consider the same program be executed on a 2-issue VLIW MIPS (Very Long Instruction Word) architecture with Static Branch Prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN) with Branch Target Buffer
- Consider for each instruction issue: 1 ALU/BRANCH and 1 LOAD/STORE
 - Complete the pipeline scheme **by inserting the <u>NOPS</u>** needed to solve the given hazards and by adding an ARROW to indicate the Forwarding paths used:

	INSTRUCTION	C1	C2	C3	C4	C5	C6	С7	C8	С9	C10	C11	C12	C13	C14	C15	Forwarding Path
1 A/B	nop	IF	ID	EX	ME	WB											(CNTR hazard ok)
1 L/S	L1 :lw \$2,BASEA(\$4)	IF	ID	EX	ΜĘ	WB											
2 A/B	nop		IF	ID	EX	ME	WB										
2 L/S	lw \$3,BASEB(\$4)		IF	ID	EX	ME	WB										
3 A/B	addi \$2, \$2, INC1			IF	ID	EX	ME	WB									ME-EX \$2
3 L/S	nop			IF	ID	EX	ME	WB									
4 A/B	addi \$3, \$3, INC2				IF	ID	EΧ	ME	WB								ME-EX \$3
4 L/S	nop				IF	ID	EX	ME	WB								
5 A/B	add \$5, \$2, \$3					IF	ID	EX	ME	WB							EX-EX \$3
5 L/S	sw \$5,BASEC(\$4)					IF	ID	EX	ME	WB							EX-ME \$5
6 A/B	addi \$4, \$4, 4						IF	ID	EX	ME	WB						
6 L/S	nop						IF	ID	EX	ME	WB						
7 A/B	nop							IF	ID	EX	ME	WB					
7 L/S	nop							IF	ID	EX	ME	WB					
8 A/B	bne \$4, \$7, L1								IF	ΊD	EX	ME	WB				EX-ID \$4
8 L/S	nop								IF	ID	EX	ME	WB				
9 A/B																	
9 L/S																	
10 A/B																	
10 L/S																	

- Instruction Count per iteration (IC): IC = 8
- CPI $_{AS}$ =(IC + #nops) / (2 *IC) = (8 + 8) / 16 = 1
- CPI $_{AS}$ =(#VLIW cycles) / IC = 8 / 8 = 1 (better than the CPI $_{AS}$ of the superscalar pipeline)