AD		

Award Number: DAMD17-01-1-0056

TITLE: Hierarchical Nonlinear Mixed Effect Modeling: Defining

Post-radiation Therapy Relapse in Prostate Cancer Patients

PRINCIPAL INVESTIGATOR: Alexandra L. Hanlon, Ph.D.

CONTRACTING ORGANIZATION: Fox Chase Cancer Center

Philadelphia, Pennsylvania 19111

REPORT DATE: July 2004

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

20050505 071

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
July 2004

3. REPORT TYPE AND DATES COVERED

Final (1 July 2001 - 30 June 2004)

4. TITLE AND SUBTITLE

Hierarchical Nonlinear Mixed Effect Modeling: Defining Post-radiation Therapy Relapse in Prostate Cancer Patients

5. FUNDING NUMBERS

DAMD17-01-1-0056

6. AUTHOR(S)

Alexandra L. Hanlon, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Fox Chase Cancer Center Philadelphia, Pennsylvania 19111 8. PERFORMING ORGANIZATION REPORT NUMBER

E-Mail: alex.hanlon@fccc.edu

9. SPONSORING / MONITORING
AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. Abstract (Maximum 200 words) (abstract should contain no proprietary or conficential information)

The research accomplished and described here validates and extends a model to classify prostate cancer patients according to disease relapse following definitive radiation therapy. The original model was developed within a hierarchical nonlinear mixed effect modeling framework with likelihood based estimation incorporating the EM algorithm. The model was tested statistically using a subset of 35 patients with relatively homogenous tumor and treatment characteristics. The research described in this report successfully applied the methodology to a larger population of men (>600 patients) representing all stages of disease via the modeling of covariates, including tumor differentiation, stage, and pre-treatment PSA. The success of the modeling was dependent upon a Bayesian framework with Markov chain Monte Carlo methodology for estimating mixture distribution parameters. Poor mixing and slow convergence were encountered and required various re-parameterizations and creative initialization techniques. The analysis includes an assessment of predictors of post-nadir rise, as salvage therapy strategies are often designed around the rate of increase in PSA levels post-nadir, as well as an analysis of predictors of initial decline and its relationship to outcome. The modeling was compared to biochemical classification using a clinical definition of relapse and also to clinical results as obtained from imaging and/or biopsy.

14.	SUBJ	IECT	TERMS

prostate cancer

15. NUMBER OF PAGES

107

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

. .

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

16. PRICE CODE

298-102

Table of Contents

Front Cover	1
Standard Form 298	2
Table of Contents	3
Introduction	4
Body	
Key Research Accomplishments	14
Reportable Outcomes	15
Conclusions	16
References	17
Bibliography of Publications	17
Appendices	18

Introduction

كسائح مشكلتين الم

The definition of disease relapse following definitive radiation therapy for localized prostate cancer is a critical issue in the initial selection of salvage therapy as well as in the identification of patients in whom adjuvant therapy may be necessary. In September 1996, a panel of clinicians agreed on a definition of biochemical failure based on three consecutive rises in serial post-therapy serum prostatic antigen levels (Cox et al 1997). The validity of the consensus definition has been questioned since its inception, leading to confusion and anxiety for patients as well as their physicians.

The principal investigator of this research previously developed a model to classify prostate cancer patients according to disease relapse following definitive radiation therapy. The modeling methodology was applied to a subset of 35 patients with relatively homogenous tumor and treatment characteristics: men presenting with pretreatment PSA levels between 10 and 19.9 ng/mL and treated with three dimensional conformal radiation therapy. In order to evaluate the clinical utility of the original model, the model was applied to a much larger population of men representing all stages of presenting disease utilizing a Bayesian modeling approach. The specific aim of this research was to validate the classification model by applying it to an existent database of prostate cancer patients via the modeling of covariates, including tumor differentiation as defined by Gleason Score, palpation tumor stage, and pre-treatment PSA. An analysis of predictors of post-nadir rise is presented, as salvage therapy strategies are often designed around the rate of increase in PSA levels post-nadir. Similarly, an analysis of predictors of initial decline and its relationship to outcome is presented, as this may be useful in defining early intervention strategies for relapse. Comparing biochemical classification to clinical results obtained from imaging and/or biopsy was used to assess the validity of the modeling.

Background and Specification of the Problem:

Prostate Specific Antigen (PSA) is a glycoprotein serine protease specific to prostatic tissue; it has been established as a sensitive marker for the monitoring of the status of prostate cancer (Killian et al. 1985). The analysis of serial measurements of PSA has become a powerful tool in monitoring treatment outcome. More specifically, the longitudinal follow-up of patients using PSA levels after intervention, whether it is by radical prostatectomy or radiation treatment, has demonstrated a high sensitivity in predicting clinical failure; biochemical or PSA-based failure typically precedes clinical failure as defined by physical examination or imaging studies. Although it has been well established that PSA levels play an important role in the evaluation of treatment failure, controversy exists concerning the most appropriate definition of biochemical failure.

PSA levels drop rapidly following radical prostatectomy with a half-life of about 3 days (Oesterling et al. 1988). Levels remain undetectable in all men undergoing successful resections, while PSA levels reach detectable levels in virtually all men who experience disease relapse (Partin et al. 1994). The success of radiation therapy as a definitive treatment is less straightforward when measured by post-treatment serum PSA concentration. These levels fall to low but usually detectable levels following treatment, especially during the first 12 months post-therapy, and biochemical failure is measured by some definition of a post-nadir rise. Assuming that biochemical kinetics are highly predictive of clinical relapse, the knowledge of a failure early on would be invaluable to defining relapse treatment strategies. It follows that considerable attention has recently

been given to the validity of existing biochemical failure definitions, some of which include: two consecutive rises post-nadir; three consecutive rises post-nadir; two consecutive rises post-nadir above 1.0 ng/mL; two consecutive rises post-nadir above 1.5 ng/mL; and two consecutive rises post-nadir above 4.0 ng/mL. The choice of such a definition is important, in that the more stringent definition of two rises post-nadir certainly places some patients who remain disease-free into the biochemical failure group. Similarly, the more conservative definition of three post-nadir elevations captures virtually all of the biochemical failures, but researchers may have to wait years to classify slowly progressing tumors under this definition.

PSA profiles for biochemical failures and non-failures are quite different, as depicted in figures 1 and 2. These figures illustrate post-treatment PSA profiles under the transformation log(PSA+1) for patients in our data set considered biochemical non-failures and biochemical failures, respectively, as defined by a PSA above 1.5 ng/mL and rising on two consecutive occasions. As principal investigator for this post-doctoral traineeship award, I sought to validate a statistical model developed in my dissertation research that defines a non-clinical method for classifying patients into two distinct subgroups, failures and non-failures, on the basis of differing post-treatment PSA profiles. This methodology falls within the framework of nonlinear mixed effects modeling, with figures 1 and 2 demonstrating the nonlinearity between log(PSA+1) and time. Appendix I details the original grant proposal's description of the modeling framework, including the details of classification, along with the results of the pilot data classification. The following sections describe preliminary data modeling and the final approach implemented that generalizes the original doctoral work to account for patient specific characteristics in the model.

Figure 1. Expected Response for Clinical Non-failures

Figure 2. Expected Response for Clinical Failures

Body

Quadratic Linear Spline Modeling:

The initial six months of the training award period (beginning July 2001) was spent exploring an appropriate modeling strategy. As such, the initial progress report describes preliminary work on 533 prostate cancer patients (a subset of the 657 patients analyzed in the subsequent "Bayesian Model" Section having less mature PSA followup) treated with radiation therapy at the Fox Chase Cancer Center between 4/89 and 12/99. The objective of this initial work was to derive a non-linear random-effects model for the PSA profile of a patient following radiation therapy and to use this model to predict biochemical failure. The prediction method was then compared to the "three rises" (see below) method via a Receiver Operating Characteristic (ROC) analysis of sensitivity and specificity. The patients studied were required to have at least eight posttreatment PSA measurements, with the mean number of PSA observations per patient equal to 11.9. A quadratic-linear spline model with non-linear random effects was fitted to the 533 observed PSA profiles. To evaluate the predictive ability of the model, the following procedure was used. For each subject in turn, a prediction of time of biochemical failure was made using each of two definitions. The first definition was that defined under the American Society for Therapeutic Radiology and Oncology (ASTRO) consensus panel (Cox et al. 1997), and is widely accepted in clinical practice and the medical literature. To compute sensitivity and specificity, this definition was generalized to require three consecutive rises of a pre-specified amount. The second definition, which is derived from the spline model, is a rise of a specified amount above the postnadir predicted PSA level. The predictions were compared to the presence or absence of clinical failure.

The initial decline in PSA (log transformed) was modeled using a quadratic equation, and the post-nadir trajectory was modeled as a linear function. Spline methodology was used to smoothly match the two components of the model. The quadratic-linear spline contained four parameters, which were allowed to vary from subject to subject via a random-effects model. For each patient, a predicted PSA trajectory was computed after each successive PSA measurement. A "slope" biochemical failure was declared when the slope of the post-nadir trajectory first exceeded a prespecified constant c. The date of ASTRO failure was declared at the first occurrence of three successive rises which all exceed a pre-specified constant k.

Of the 533 patients analyzed, 178 subjects (33%) experienced biochemical failure as defined by the ASTRO definition; 167 subjects (31%) experienced a rise of 1.8 units of log PSA levels in the five years following PSA nadir. The critical value of 1.8 units was chosen to make the model-based predicted failure rate comparable to that produced by the ASTRO method. The two prediction methods produced the same prediction in 444/533 subjects (83%) and produced opposing predictions in the remaining 17% of subjects. In the 128 cases when both methods predicted biochemical failure, the model-based method predicted it earlier in 66 subjects, while the ASTRO method predicted it earlier in just 20 subjects. Both methods predicted failure at the same time in 42 subjects. The sensitivity and specificity of the two definitions were compared via an ROC analysis. For the "null" ASTRO definition, with k = 0, the slope-based definition exceeds the ASTRO definition for most of the range of sensitivity.

To summarize the initial analysis, 533 patients were used to develop a predictive model for future PSA levels, with the ability to update the prediction as new PSA

information is acquired. A critical value was defined in terms of a predicted rise of 1.8 units of log PSA level over five years, yielding a predicted biochemical failure rate of 31%. The ASTRO definition of biochemical failure has two important disadvantages when compared to the spline model prediction method: (1) A slow but steady increase in post-nadir PSA levels will be classified as a failure, but may not signify a clinically meaningful rise within a patient's expected lifetime, and (2) a patient with highly variable post-nadir PSA levels may experience a clinically significant rate of increase in PSA levels, but never experience three consecutive rises. The model-based approach has superior predictive ability to the ASTRO definition over a wide range of sensitivity and specificity.

Although the findings of the initial approach using a quadratic linear spline were useful for prediction, the incorporation of covariates in the modeling was computationally prohibitive given the magnitude of patients under analysis and the variability involved. Thus, a Bayesian approach was adopted.

Bayesian Model:

For i = 1,...,m, $j = 1,...,n_i$, let y_{ij} be the jth post treatment PSA level for patient i taken at time t_{ij} and z_i be the vector of observed covariates for patient i. Based on the model analyzed by Hanlon (1998), assume that

$$y_{ij} = \eta_{ij} + e_{ij},$$

$$\eta_{ij} = \alpha' z_i + \beta_1 \exp(-\beta_2 t_{ij}) + \beta_3 \exp(b_i t_{ij})$$

$$b_i \Box pN(\mu_1, \sigma_b^2) + (1 - p)N(\mu_2, \sigma_b^2),$$

$$e_i \Box N(0, \sigma^2 I_{n_i}),$$

$$b_1, \dots, b_m, e_1, \dots, e_m \text{ independent,}$$

where α is a k-dimensional vector of fixed covariate effects and $e_i = (e_{i1}, e_{i2}, ..., e_{in_i})$. The Bayesian approach consists of putting a prior distribution on

$$\theta = (\sigma^2, p, \alpha, \mu_1, \mu_2, \beta_1, \beta_2, \beta_3, \sigma^2_b)$$

and then estimate the joint posterior density of $(\theta,b_1,...,b_m)$ given the data $\{(y_{ij},t_{ij},z_i), i=1,...,m,j=1,...,n_i\}$. Latent allocation variables Li, i=1,...,m are introduced to estimate the posterior probability that patient i belongs to a given component of the mixture. The marginal posterior densities of Li, i=1,...,m and α are of particular interest for within sample classification and assessing the significance of patient specific characteristics in predicting PSA profiles or future levels. A directed acyclic graph (DAG) for the assumed model is provided in Figure 3.

Figure 3. Directed Acyclic Diagram for Assumed Model

Prior Distributions:

A proper prior distribution (close to being noninformative) for the parameter θ is specified. The priors chosen for this analysis are: $p \sim U(0,1)$

$$\mu_1, \mu_2, \beta_i, a_j, i = 1,2,3, j = 1,2,3,4 \text{ iid} \sim N(0,100)$$

 $\sigma^{-2}, \sigma_b^{-2} \text{ iid} \sim \text{gamma}(0.01,0.01).$

After experimenting with several choices of the hyperparameter values defining the above priors, it was concluded that the values are reasonable in the sense of having little influence in the final analysis. WinBUGS (1999) was used to fit this rather complex model.

Computational Issues:

It is well known that Markov chain Monte Carlo (MCMC) based methods for estimating the parameters in mixture distribution problems are unstable and generally result in slow mixing Markov chains. To alleviate these problems, Mengersen and Robert (1995) suggested re-parameterizing the location and scale parameters, and Richardson and Green (1997) argued for the use of reversible jump MCMC to escape the so-called traps.

The first step in implementing the Bayesian approach was to validate the methodology by comparing the results under the assumed Bayesian model to that obtained in the initial pilot study of 35 men. After experiencing poor mixing and slow convergence of the chain, the means of the components of the mixtures were reparameterized as $\mu_2 = \mu_1 + \delta$ where δ is a non-negative nuisance parameter following a Normal prior distribution with mean 0 and variance 100 truncated to the interval $(0,\infty)$. For convention, since $\mu_2 > \mu_1$ the second component of the mixture corresponds to the failure group. The Markov chain showed no sign of convergence for many b_i 's even after 5×10^5 iterations of the sampler. Upon requiring that each of the mixture components have

at least two observations, substantial improvements in mixing and convergence were achieved after ~15,000 iterations. The analysis was therefore conditioned on the event $D = \{L_9 = L_{22} = 1 \& L_{27} = L_{29} = 2\}.$

The rationale for this choice is that patients 9 and 22 show no increase in their last four PSA levels and these levels are all well below 1.0 ng/mL. On the other hand, patients 27 and 29 demonstrate at least three consecutive rises post-nadir, with the latest being more than 1.5 ng/mL. A similar trick has been used for univariate data where the minimum observation is allocated to the component of the mixture with the smallest mean and the maximum to the other component, see the "Eyes" example in WinBUGS (1999). All subsequent analyses are conditional on event D. To avoid overflow and underflow in the computational process, time measures were standardized by dividing by the maximum post-treatment time in the dataset (165.21 months). And lastly, the continuous covariates, dose and pretreatment PSA, were centered via subtraction by their observed mean value to avoid multi-collinearity in the MCMC samples.

Table 1 presents a comparison of maximum likelihood estimates obtained by Hanlon (1998) in the absence of covariates to the above Bayesian model estimates, excluding the four patient characteristics. The estimates of the parameters defining the nonlinear link function are essentially the same under both approaches.

Table 1.										
		Estimates								
Parameter	MLE	Bayes	SE	Posterior SD						
p	0.2568	0.4962	0.2427	0.2064						
μ_1	-0.0073	-0.0092	0.0059	0.0089						
μ_2	0.0164	0.0099	0.0073	0.0071						
β_1	1.8046	1.7990	0.0812	0.0873						
eta_2	0.1530	0.1503	0.0153	0.0143						
β_3	0.5652	0.5594	0.0350	0.0480						
$\sigma_{ m b}$	0.0100	0.0168	0.0100	0.0034						
σ	0.2733	0.2735	0.0529	0.0100						

Data Set:

The extended data set analyzed consists of 657 men who were treated at Fox Chase Cancer Center with three dimensional conformal radiation therapy alone between January 1990 and June 2001 for non-metastatic prostate cancer. All patients had at least 7 post-treatment PSA determinations with a total of 7,861 PSA levels; the median follow-up from start of treatment is 73 months (range 21-165 months). The analysis is based on log(PSA+1) and includes four covariates: pretreatment PSA level (continuous), Gleason Score (1 = GS 2-7 versus 2 = GS 8-10), radiation dose (continuous), and palpation tumor stage (1 = T1c/T2b versus 2 = T2c/T3).

As before, non-convergence occurred for many b_i 's. Analyses were therefore conditioned on approximately 6% of the patients being allocated with certainty to a mixture component as defined by the following event:

$$D = \{L_7 = L_{51} = L_{183} = L_{201} = L_{231} = L_{238} = L_{247} = L_{318} = L_{333} = L_{339} = L_{347} = L_{384} = L_{401} = L_{487} = L_{493} = L_{498} = L_{595} = L_{628} = L_{631} = L_{648} = 1 & L_6 = L_{24} = L_{32} = L_{33} = L_{36} = L_{44} = L_{60} = L_{65} = L_{71} = L_{79} = L_{96} = L_{120} = L_{123} = L_{131} = L_{163} = L_{185} = L_{243} = L_{248} = L_{435} = L_{501} = 2 \}.$$

As before, the rationale for the choice of patients allocated to the non-failure mixture component was based on the last PSA levels remaining well below 1.0 ng/mL. Similarly, patients allocated to the failure component of the mixture distribution demonstrated multiple consecutive rises post-nadir with the final value being more than 1.5 ng/mL.

Results:

The MCMC estimates of the posterior means and standard deviations for all parameters except the random effects are listed in Table 2. The program ran for a total of 100,000 iterations, with the first 60,000 iterations discarded to allow the sampling process to converge. All four patient specific parameter effects are statistically significant influences on the post-treatment PSA profile. Figure 4 displays the posterior densities of the four patient specific characteristics. Appendices II and III provide marginal posterior distribution mean and standard deviation estimates for the patient latent allocation variable Li's and the random effects, respectively. Appendix IV provides individual patient PSA profiles, including the raw data and corresponding estimated function based on the Bayesian model. The model fitting of individual patients demonstrates good model fit for patients following the standard exponential (whether single or double component) function. Anomalous post-treatment PSA profiles appear to require a more flexible model.

Appendix V provides the results of stepwise linear regression modeling for predictors of response profile components. The outcome measure is the instantaneous rate of change, or slope of the curve, at various time points (months 0 to 96 in 6 month increments. The outcome is defined by:

$$\partial y_{ii} / \partial t_{ii} = -(\beta_2 / c)\beta_1 \exp(-\beta_2 t_{ii}) + (b_i / c)\beta_3 \exp(b_i t_{ii})$$

where c=165.21 as described above ("Computational Issues"). The results suggest that pretreatment PSA, Gleason Score, and dose are predictive of the rate of decline posttreatment (months 0, 6, 12, and 18), with higher pretreatment PSA levels, Gleason Scores 7-10, and lower dose levels predictive of a more rapid decline. The findings for pretreatment PSA and Gleason Score may be attributed to the fact that patients presenting with more severe prognosis disease factors start out at the higher end of the curve, and thus have a longer "drop", which in turn equates to a steeper slope. The association with dose is important, in that it suggests a dose effect with respect to early biochemical response. Modeling at month 0 within Gleason Score groups demonstrated that the dose effect was found in the Gleason Score 2-6 patient group, with the dose effect significant at the p=0.02 level. Post-treatment nadir generally occurs within 12-24 months posttreatment, and thus it is interesting that a change in predictive covariates occurred at 24 months: at months prior to 24 months, pretreatment PSA, dose and grade are influential; at months 24 through 60, pretreatment PSA and grade are predictive of the rate of change (higher pretreatment PSA and Gleason Score 8-10 associated with a steeper increase in PSA); and at months 60 through 96, pretreatment PSA, grade, and stage are predictive of the rate of change (higher pretreatment PSA, Gleason Score 8-10, and T2c/T3 associated with a steeper increase in PSA). Upon refinement of the Bayesian model to

accommodate more non-standard post-treatment profiles, a re-analysis of these predictors should be performed. At that point, model assumptions should be verified and necessary transformations performed where indicated.

	Table 2.	
Parameter	Posterior Mean	Posterior
		SD
p	0.8499	0.0479
μ_1	0.1137	0.1121
μ_2	3.1120	0.4800
$oldsymbol{eta_1}$	1.4100	0.0268
eta_2	23.6000	0.6935
β_3	0.7236	0.0214
α_1 (pretx psa)	0.3258	0.0086
$\alpha_2(GS)$	-0.0708	0.0141
α_3 (RT dose)	-1.33E-4	1.95E-5
α ₄ (stage)	-0.0827	0.0156
$\sigma_{\!\scriptscriptstyle m b}$	1.5320	0.0916
σ	0.3127	0.0026

Appendix VI provides 2x2 tables for comparisons in latent allocation variable dichotomization (cut-off values 1.05 through 1.16 in increments of .01) versus clinical failure as defined under the ASTRO consensus statement (Cox et al. 1997). Comparisons are also provided for clinical failure as defined by palpable nodule on digital rectal examination (DRE) and/or distant metastasis via imaging or biopsy. The kappa coefficient is provided to describe the pairwise agreement among the failure indicators (Carletta 1996). The kappa statistic is at its maximum for dichotomization of the latent allocation estimate at 1.11, suggesting that this may be the optimal cutpoint for classification purposes if the ASTRO definition is taken to be the gold standard. Agreement with local/distant clinical failure is maximized for the largest value evaluated, although the reliance on this analysis is suspect because of the confounding between rapid PSA rise and clinical assessment for distant failure. HIPAA regulations, anticipated IRB objections, and invasive techniques did not permit the exploration of pathology for all patients. If warranted, this type of an invasive analysis should be carried out under separate cover in conjunction with research objectives involving genomic and proteomic hypotheses.

Figure 4. Posterior Densities for Patient Specific Parameters

Key Research Accomplishments

- Initial analysis using a quadratic linear spline was used to develop a predictive model for future PSA levels of a given patient, with the ability to update the prediction as new PSA information is acquired. A critical value was defined in terms of a predicted rise of 1.8 units of log PSA level over 5 years and had superior predictive ability compared to the ASTRO definition over a wide range of sensitivity and specificity.
- The prostate cancer classification analysis was extended to the entire dataset of eligible patients (Radiation Oncology, Fox Chase Cancer Center) by incorporating covariates to account for heterogeneity in the response profile. Covariates included pretreatment PSA, Gleason Score, palpation stage, and radiation dose. The approach that ultimately accommodated this complex model was Bayesian and utilized Markov chain Monte Carlo sampling.
- Predictors of the response profile components, including the initial PSA decline post-treatment, post-nadir rise, were evaluated using stepwise multivariate techniques.
- The patient classification as determined from the modeling was compared to that of clinical results as demonstrated by clinical evaluation as measured by imaging or biopsy.

Reportable Outcomes

The quadratic linear spline modeling performed in the first six months of the funding period was presented in poster format at the 2002 ASTRO annual meeting (Appendix VII and Moore et al. 2002).

The initial results of the Markov chain Monte Carlo based Bayesian approach were described and presented at the CapCure Scientific Retreat, October 2003, NYC (Appendix VIII and Hanlon et al. 2003). The final results will be submitted for presentation at the American Statistical Association 2005 annual meeting and for publication in Statistics in Medicine.

Conclusions

An initial analysis of 533 patients was used to develop a predictive model for future PSA levels of a given patient, with the ability to update the prediction as new PSA information is acquired. A critical value was defined in terms of a predicted rise of 1.8 units of log PSA level over five years, yielding a predicted biochemical failure rate of 31%. The ASTRO definition of biochemical failure has two important disadvantages when compared to the spline model prediction method: (1) A slow but steady increase in post-nadir PSA levels will be classified as a failure, but may not signify a clinically meaningful rise within a patient's expected lifetime, and (2) a patient with highly variable post-nadir PSA levels may experience a clinically significant rate of increase in PSA levels, but never experience three consecutive rises. The model-based approach demonstrated superior predictive ability over the ASTRO definition over a wide range of sensitivity and specificity.

Although the findings of the initial approach using a quadratic linear spline were useful for prediction, the incorporation of covariates in the modeling was computationally prohibitive given the magnitude of patients under analysis and the variability involved. Thus, a Bayesian approach was adopted.

The subsequent hierarchical Bayesian nonlinear mixed effects modeling was successful in estimating complex post-treatment PSA profiles with covariates. It was used to identify important patient specific characteristics for classification according to disease relapse. It involved complex modeling and was computationally intensive, with results extending to a large database of nearly 700 patients. The results were impressive, but suggest the need to introduce a more flexible model structure to accommodate anomalous PSA profiles. From a statistical perspective, the choice of prior distributions and the conditional inference on set D is an area of open investigation. Within this funding period, several choices of the hyperparameters were considered and it was concluded that their influence on the final analysis was minimal. Choices of prior variances equal to 104 led to overflow causing WinBUGS to crash; it was therefore concluded that the choice of normal distributions with mean 0 and variance 100 results in vague prior knowledge of the parameters. Conditioning on set D enabled convergence of the Markov chain in a reasonable amount of time. While the choice of the patients allocated to the different components of the mixture appears reasonable and is based on clinical classification of the subjects, it would be useful to examine the unconditional posterior distribution of θ using a reversible jump MCMC sampler by treating the number of components of the mixture as random. The results provided in Table 1, however, suggest that both analyses might result in similar conclusions.

In summary, the methodology presented herein is complex and may be applied to real data. Further investigation of more flexible modeling is warranted, with future work re-visiting the classification problem under a more flexible framework. Novel findings herein include the suggestion that dose and grade are the most predictive of post-treatment PSA decline, that grade combined with PSA are influential on the profile between two and five years post radiotherapy, and that tumor stage is a predictor of the long-term profile (beyond five years). Once an optimal model is found to fit a mature dataset, these findings should be validated and published in the medical literature. The results are useful and have never been described with detail specific to time post-treatment.

References

- Cox, J., Grignon, D., Kaplan, R., Parsons, J., Schellhammer, P (1997), "Consensus Statement: Guidelines for PSA Following Radiation Therapy," *International Journal Radiation Oncology, Biology, Physics*, 37, 1035-1041.
- Killian, C. S., Yang, N., Emrich, L. J., Vargas, F. P., Kuriyama, M., Wang, M. C., Slack, N. H., Papsidero, L. D., Murphy, G. P., and Chu, T. M. (1985), "Prognostic Importance of Prostate-Specific Antigen for Monitoring Patients With Stages B2 to D1 Prostate Cancer," *Cancer Research*, 45, 886-891.
- Oesterling, J. E., Chan, D. W., Epstein, J. I., Kimball, A. W., Bruzek, D. J., Rock, R. C., Brendler, C. B., and Walsh, P. C. (1988), "Prostate Specific Antigen in the Preoperative and Postoperative Evaluation of Localized Prostatic Cancer Treated With Radical Prostatectomy," *The Journal of Urology*, 139, 766-772.
- Partin, A. W., Pound, C. R., Pearson, J. D., Clemens, J. Q., Landis, P. K., Epstein, J. I., Carter, H. B., and Walsh, P. C. (1994), "Evaluation of Serum Prostate Specific Antigen Velocity After Radical Prostatectomy to Distinguish Local Recurrence From Distant Metastases," *Urology*, 43, 649-659.
- Hanlon, A. L. (1998), "Hierarchical Nonlinear Mixed Effects Modeling: Inference and classification using a fully parametric model," Unpublished Ph.D. dissertation, Temple University.
- Mengersen, K. L. and Robert, C. P. (1995), "Testing for mixture via entropy distance and Gibbs sampling," *In Bayesian Statistics* 5 (eds J. O. Berger, J. M Bernardo, A. P. Dawid, D. V. Lindley and A. F. M. Smith). Oxford: Oxford University Press.
- Richardson, S. and Green, P. J. (1997), "On Bayesian analysis of mixtures with an unknown number of components (with discussion)," *Journal of the Royal Statistical Society, series B*, 59, 731-792.
- Spiegelhalter, D. J. and Thomas, A. Best, N. G. (1999), "WinBUGS version 1.2 user manual," MRC Biostatistics Unit.
- Carletta J. (1996), "Assessing agreement on classification tasks: the kappa statistic," *Computational Linguistics*, 22, 1-6.

Bibliography of Publications

- Hanlon, A. L., Tighiouart, M., and Hanks, G. E. (2003), "A Bayesian approach to hierarchical nonlinear mixed effect modeling: Defining post-radiation therapy relapse in prostate cancer patients," *Proceedings from the 2003 CaP CURE Scientific Retreat*.
- Moore, D. F., Hanlon, A. L., Hanks, G. E., Pollack, A. (2002), "Model-Based Prediction of Biochemical Failure in Prostate Cancer Patients Following Radiation Therapy," *Int J Radiat Oncol Biol Phys*, 54(2), 260.

List of Personnel Paid from the Grant

Alexandra Hanlon, Ph.D., Principal Investigator

Appendix I. Research Proposal Modeling Framework and Results from the Pilot Classification Analysis

Body of DOD Research Proposal

(Submitted 1/2000)

Background and Specification of the Problem: Prostate Specific Antigen (PSA) is a glycoprotein serine protease specific to prostatic tissue; it has been established as a sensitive marker for the monitoring of the status of prostate cancer (Killian et al. 1985). The analysis of serial measurements of PSA has become a powerful tool in monitoring treatment outcome. More specifically, the longitudinal follow-up of patients using PSA levels after intervention, whether it be by radical prostatectomy or radiation treatment, has demonstrated a high sensitivity in predicting clinical failure and biochemical or PSA-based failure typically precedes clinical failure as defined by physical examination or imaging studies. Although it has been well established that PSA levels play an important role in the evaluation of treatment failure, controversy exists concerning the most appropriate definition of biochemical failure.

PSA levels drop rapidly following radical prostatectomy with a half-life of about 3 days (Oesterling et al. 1988). Levels remain undetectable in all men undergoing successful resections, while PSA levels reach detectable levels in virtually all men who experience disease relapse (Partin et al. 1994). The success of radiation therapy as a definitive treatment is less straightforward when measured by post-treatment serum PSA concentration. These levels fall to low but usually detectable levels following treatment, especially during the first 12 months post-therapy, and biochemical failure is measured by some definition of a post-nadir rise. Assuming that biochemical kinetics are highly predictive of clinical relapse, the knowledge of a failure early on would be invaluable to defining relapse treatment strategies. It follows that considerable attention has recently been given to the validity of existing biochemical failure definitions, some of which include: two consecutive rises post-nadir; three consecutive rises post-nadir; two consecutive rises post-nadir above 1.0 ng/ml; two consecutive rises post-nadir above 1.5 ng/ml; and two consecutive rises post-nadir above 4.0 ng/ml. The choice of such a definition is important, in that the more stringent definition of two rises post-nadir certainly places some patients who remain disease-free into the biochemical failure group. Similarly, the more conservative definition of three post-nadir elevations captures virtually all of the biochemical failures, but researchers may have to wait years to classify slowly progressing tumors under this definition.

PSA profiles for biochemical failures and non-failures are quite different, as depicted in figures 1 and 2. These figures illustrate post-treatment PSA profiles under the transformation log(PSA+1) for patients in our data set considered biochemical non-failures and biochemical failures, respectively, as defined by a PSA above 1.5 ng/ml and rising on two consecutive occasions. As proposed principal investigator for a post-doctoral traineeship award, I plan to continue and extend my dissertation research which defines a non-clinical method for classifying patients into two distinct subgroups, failures and non-failures, on the basis of differing post-treatment PSA profiles. This methodology falls within the framework of nonlinear mixed effects modeling, with figures 1 and 2 demonstrating the nonlinearity between log(PSA+1) and time.

Appendix I. Research Proposal Modeling Framework and Results from the Pilot Classification Analysis

Pilot Data: The pilot data set for this classification scheme consists of 35 men who were treated at Fox Chase Cancer Center (FCCC) in Philadelphia, Pennsylvania with three dimensional conformal radiation therapy alone between January 1990 and November 1994 for nonmetastatic prostate cancer (Hanlon 1998). For mathematical and programming simplicity, the data set was been restricted to those patients with pretreatment PSA levels between 10 and 19.9 ng/ml. Defining biochemical failure by two consecutive elevations to a level exceeding 1.5 ng/ml, the patient population consisted of 13 failures and 22 non-failures. None of the patients received hormonal manipulation at any time during the initial management of their disease or for disease relapse. All patients had at least ten post-treatment PSA determinations. All patients were evaluated for staging with a pertinent history and physical examination, routine blood studies including a pretreatment PSA, and a radio-isotopic bone scan. All patients were continuously followed at six-month intervals and all times were measured from the start of radiation therapy. The median follow-up time was 62 months, ranging from 32 to 89 months. A total of 417 PSA levels were used to model the 35 men, yielding an average of 12 values per patient. The immunoenzymatic Tandem-E PSA assay (Hybritech, San Diego, CA) was used to measure serum PSA levels and all blood is drawn prior to digital rectal examination.

Modeling Framework: Davidian and Giltinan (1995) explain the concept of hierarchical nonlinear modeling within the framework of a two-stage model. At the first stage, intra-individual variation is characterized by a nonlinear regression model with a model specified for the individual covariance structure. In the second stage, interindividual variability is represented through patient-specific regression parameters, which may incorporate both systematic and subject-specific effects. The systematic and subjectspecific effects are often referred to as fixed and random effects, respectively. It is often assumed that the random effects are independently and identically distributed random variables. The random effects are usually assumed to follow a Gaussian distribution because they reflect natural heterogeneity in the population and can be interpreted as the deviation of the evolution of a specific subject from the overall population average evolution (Verbeke 1995). Their mean reflects the average evolution in the population and constitutes the vector of fixed effects. In the linear setting, assuming a Gaussian distribution for the random effects is not only intuitive, but also mathematically convenient because it implies both a Gaussian marginal distribution of the data and a Gaussian posterior distribution of the random effects, resulting in considerable simplification of the estimation procedures. In the nonlinear case, a standard approach to inference is based on full distributional assumptions for both the intra- and interindividual random components. As described above, the assumption of normality in the random effects is intuitive and supports the most common assumption in the distributional form of the inter-individual errors.

Nonlinearity in the mean response function introduces complications not encountered in the linear case. Davidian and Giltinan (1995) discuss the fundamental difference between the linear and nonlinear versions of the hierarchical model in terms of the ability/inability to derive explicitly the marginal distribution of the response y_i (post-treatment PSA levels). To illustrate, assume a fully parametric model where both the

Appendix I. Research Proposal Modeling Framework and Results from the Pilot Classification Analysis

intra-individual errors and the random effects are normally distributed. The conditional density of y_i given b_i , the vector of random effects for patient i, can be expressed as

$$p_{y|b}(y_i|x_{i1},...,x_{in_i},a_i,\beta,\xi,b_i)$$

where x_{ij} represents a vector of covariates summarizing the experimental conditions for response vector y_i , taken to be time for purposes of this research, β is an unknown vector of fixed effects, a_i is a covariate vector corresponding to individual attributes for patient i (e.g. pretreatment PSA level, Gleason score, stage, dose), and ξ is the intra-individual covariance parameter vector. This conditional density is written such that the dependence on all patient-specific information and the fixed effects is emphasized. Similarly, expressing the density of b_i as $p_b(b_i|D)$ emphasizes the dependence on fixed parameters through the elements of D, the covariance matrix for the random effects. Then the marginal distribution of y_i (PSA response) is given by

$$p_{y}(y_{i}) = \sum_{y_{b}} (y_{i}|x_{i1},...,x_{in_{i}},a_{i},\beta,\xi,b_{i})p_{b}(b|D)db.$$

For the hierarchical linear model, assuming $p_{y|b}$ and p_b are normal and that the intra-individual covariance matrix is independent of b_i , the above integral may be evaluated explicitly to obtain the form of a normal marginal distribution. Conversely, for the hierarchical nonlinear model under similar conditions, it is generally not possible to evaluate the integral. Specifically, for most nonlinear functions, it is impossible to complete the square or find a general transformation to allow analytic evaluation of the integral. This difficulty arises even in the most simple of cases. Even in the case of a linear response function, when the intra-individual covariance structure is dependent upon β_i , and thus upon b_i , the integral is generally intractable. Similar problems arise when β_i is a nonlinear function of the b_i . To avoid complex numerical integration, existing software and literature for inferential strategies in the nonlinear framework are therefore based upon large sample theory results or approximations to the marginal distribution under the assumption of normality in both error components.

Model: Combining the biochemical failures and non-failures in the prostate cancer data set, it is obvious that a general model describing the data requires an assumption of multi-modality in its random effects distribution to properly identify the two groups of patients. As stated previously, none of the existing theory and software developed for fully parametric nonlinear mixed effects modeling allows for a non-Gaussian assumption in the random effects distribution. The proposed research extends my recent development of an inferential strategy within the fully parametric framework for identifying and classifying patients into subgroups (Hanlon 1998). This is accomplished by assuming a mixture of normal distributions in the random effects. Applying the EM algorithm, one can estimate subject-specific mixing proportions as well as fixed effects and variance components jointly by maximizing a full exact likelihood. This approach relies on the computation of the marginal response distribution using integration, as opposed to the traditional reliance on an approximation to the marginal

Appendix I. Research Proposal Modeling Framework and Results from the Pilot Classification Analysis

response distribution via linearization. Empirical Bayes estimates of the random effects are obtained by maximizing the posterior mean of b_i .

Visuals of the two clinically defined failure groups give us no reason to doubt that the variability within the two groups is different. Accordingly, it is assumed that the random effects are sampled from a mixture of two normal distributions,

$$b_i \sim pN(\mu_1, \sigma_b^2) + (1 - p)N(\mu_2, \sigma_b^2)$$
 (1)

in which μ_1 , μ_2 and σ_b^2 denote the means and variance of the b_i in the failure and non-failure groups, respectively, and where p is the proportion of patients in the data set which belong to the first component of the mixture, i.e., the failure component. Note that we have defined only one random effect per patient for simplicity in applying the underlying theory of classification.

The density function of (1) is given by

$$p\frac{1}{\sqrt{2\pi\sigma_b^2}}\exp\{-\frac{1}{2\sigma_b^2}(b_i-\mu_1)^2\}+(1-p)\frac{1}{\sqrt{2\pi\sigma_b^2}}\exp\{-\frac{1}{2\sigma_b^2}(b_i-\mu_2)^2\}.$$

On the basis of the individual PSA patient profiles in figures 1 and 2, define the general nonlinear relationship between post-treatment PSA level and time as

$$\mathbf{y}_i = \beta_1 \exp(-\beta_2 \mathbf{t}_i) + \beta_3 \exp(b_i \mathbf{t}_i) + \mathbf{e}_i.$$

This general model is specified as an empirical descriptor of the data to accommodate functional relationships for both patient profiles. Note that this analysis is based upon the transformed response measures log(PSA+1).

The extended model for the prostate cancer example is now fully determined by

$$y_i = \beta_1 \exp(-\beta_2 t_i) + \beta_3 \exp(b_i t_i) + e_i ,$$

$$b_i \sim pN(\mu_1, \sigma_b^2) + (1 - p)N(\mu_2, \sigma_b^2) ,$$

$$e_i \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_{n_i}) ,$$

$$b_1, \dots, b_m, e_1, \dots, e_m \text{ independent.}$$

$$(2)$$

Results of Modeling Pilot Data: Figures 1 and 2 graphically display the model fit for the clinically defined biochemical non-failures and failures, respectively. Individual patient profiles are obtained using the posterior Bayes estimates of the random effects. The distribution of these estimates is non-normal and supports the use of a mixture of two normal distributions in the modeling procedure. Figures 3 and 4 provide visuals of the

Appendix I. Research Proposal Modeling Framework and Results from the Pilot Classification Analysis

individual patient modeling based upon these estimates. Further, estimates of the individual-specific mixing parameters, p_i , may be used to classify the patients into different response profiles, where a patient is classified into the failure component of the mixture if his mixing parameter exceeds one half. Table 1 compares the statistical classification of patients versus the clinical classification based upon two consecutive rises in post-treatment PSA determinations to a level exceeding 1.5 ng/ml. It should be noted that all three discrepant cases (patients 24, 26, and 35) had individual-specific mixing parameters of magnitude between 0.45 and 0.55. Note that the model fitting for patients 24 and 26 is excellent, and that they do appear to be on the verge of failing as specified under the statistical classification. Patient 35 was statistically classified as a non-failure, and the observed levels, although they do meet the clinical definition of a failure, do not indicate a clear rise. In fact, this patient's response is really atypical and does not follow the general model (2) very closely.

Table 1. Clinical Classification Versus Statistical Classification

Clinical Classification	Statistical Classification		
	Failure	Non-failure	
Failure	12	1	
Non-failure	2	20	

Figure 1. Expected Response for Clinical Non-failures Under Model (2)

Figure 2. Expected Response for Clinical Failures Under Model (2)

References

- Davidian, M., and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data, London: Chapman and Hall.
- Hanlon, A. (1998), "Hierarchical Nonlinear Mixed Effects Modeling: Inference and Classification Using a Fully Parametric Model", unpublished Ph.D. dissertation, Temple University.
- Killian, C. S., Yang, N., Emrich, L. J., Vargas, F. P., Kuriyama, M., Wang, M. C., Slack, N. H., Papsidero, L. D., Murphy, G. P., and Chu, T. M. (1985), "Prognostic Importance of Prostate-Specific Antigen for Monitoring Patients With Stages B2 to D1 Prostate Cancer," *Cancer Research*, 45, 886-891.
- Oesterling, J. E., Chan, D. W., Epstein, J. I., Kimball, A. W., Bruzek, D. J., Rock, R. C., Brendler, C. B., and Walsh, P. C. (1988), "Prostate Specific Antigen in the Preoperative and Postoperative Evaluation of Localized Prostatic Cancer Treated With Radical Prostatectomy," *The Journal of Urology*, 139, 766-772.
- Partin, A. W., Pound, C. R., Pearson, J. D., Clemens, J. Q., Landis, P. K., Epstein, J. I., Carter, H. B., and Walsh, P. C. (1994), "Evaluation of Serum Prostate Specific Antigen Velocity After Radical Prostatectomy to Distinguish Local Recurrence From Distant Metastases," *Urology*, 43, 649-659.
- Verbeke, G. (1995), "The Linear Mixed Model. A Critical Investigation in the Context of Longitudinal Data", unpublished Ph.D. dissertation, Catholic University of Leuven.

Hanlon, Alexandra Appendix II. Latent Allocation Estimates by Patient: Mean and Standard Deviations of Posterior Distributions

Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
1	1.375	0.484	0.003646	54	1.017	0.1311	0.001553
2	1.038	0.1916	0.00219	55	1.151	0.1511	0.001533
3	1.067	0.2508	0.00213	56	1.104	0.3058	0.003087
4	1.03	0.1697	0.00186	57	1.021	0.3038	0.003149
5	1.012	0.11	0.00100	58	1.021	0.1538	0.001049
8	1.034	0.1806	0.001222	59	1.051	0.1338	0.001740
9	1.039	0.1926	0.002100	61	1.031	0.2197	0.002562
10	2	0.009999	0.00024962	62	1.996	0.06429	0.002143
11	1.015	0.1231	0.001251	63	1.074	0.06429	0.000409
12	1.071	0.1231	0.001201	64	1.083	0.2766	0.002799
13	1.014	0.1168	0.002703	66	1.003	0.2766	0.003161
14	1.065	0.2472	0.00171	67	1.049	0.13	0.001304
15	1.017	0.1282	0.002713	68	1.043	0.09838	0.002595
16	1.145	0.3519	0.001311	69	1.876	0.09030	0.001123
17	1.302	0.4589	0.003875	70	1.426	0.4944	0.002201
18	1.02	0.1391	0.003673	70 72	1.927	0.4544	0.004023
19	1.022	0.1458	0.001772	73	1.02	0.2398	0.001381
20	1.008	0.08783	0.0008665	73 74	1.034	0.1300	0.001303
21	1.068	0.2524	0.002678	75	1.115	0.102	0.002312
22	1.224	0.4166	0.004055	76	1.059	0.2362	0.003037
23	1.086	0.281	0.003191	77	1.008	0.0914	0.002798
25	1.128	0.3339	0.003348	78	1.005	0.06839	0.0006897
26	1.062	0.2417	0.002621	80	1.04	0.1959	0.002451
27	1.099	0.2982	0.003333	81	1.186	0.3894	0.003859
28	1.026	0.1581	0.00177	82	1.044	0.2051	0.00228
29	1.026	0.1591	0.001705	83	1.179	0.3837	0.003875
30	1.013	0.1128	0.001382	84	1.053	0.225	0.00253
31	1.012	0.1087	0.001236	85	1.252	0.434	0.003871
34	1.035	0.1848	0.002101	86	1.092	0.2884	0.003398
35	1.975	0.1554	0.001004	87	1.908	0.289	0.001818
37	1.854	0.3531	0.00201	88	1.108	0.3108	0.003362
38	1.016	0.1272	0.001312	89	1.334	0.4717	0.003711
39	1.136	0.3431	0.00375	90	1.04	0.196	0.002057
40	1.065	0.2463	0.00286	91	1.032	0.1763	0.002263
41	1.059	0.2364	0.002525	92	1.068	0.251	0.002863
42	1.111	0.3144	0.003336	93	1.046	0.2085	0.002426
43	1.075	0.2636	0.003001	94	1.474	0.4993	0.00333
45	1.017	0.1304	0.001495	95	1.323	0.4677	0.003729
46	1.022	0.1466	0.001799	97	1.003	0.05423	0.0004555
47	1.162	0.3684	0.00357	98	1.012	0.1107	0.001342
48	1.075	0.2627	0.003073	99	1.339	0.4733	0.004042
49	1.02	0.1388	0.001686	100	1.087	0.2822	0.00304
50	1.231	0.4216	0.003907	101	1.023	0.1502	0.001957
52	1.016	0.1246	0.00151	102	1.122	0.3267	0.003224
53	1.062	0.2417	0.002656	103	1.502	0.5	0.003449

Hanlon, Alexandra Appendix II. Latent Allocation Estimates by Patient: Mean and Standard Deviations of Posterior Distributions

Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
104	1.07	0.2543	0.002707	152	1.006	0.07818	0.0007899
105	1.014	0.1173	0.001347	153	1.329	0.4697	0.003828
106	1.017	0.1304	0.001607	154	1.202	0.4016	0.003686
107	1.36	0.4799	0.00359	155	1.012	0.1071	0.001313
108	1.103	0.3038	0.003413	156	1.003	0.05626	0.0005706
109	1.043	0.2035	0.002307	157	1.666	0.4716	0.002755
110	1.177	0.3817	0.003848	158	1.033	0.1778	0.002068
111	1.011	0.1049	0.001063	159	1.025	0.1562	0.001789
112	1.278	0.448	0.003659	160	1.971	0.1665	0.001244
113	1.011	0.103	0.001148	161	1.715	0.4516	0.003401
114	1.003	0.05377	0.0005128	162	1.027	0.1623	0.001869
115	1.248	0.4317	0.004213	164	1.036	0.186	0.002262
116	1.001	0.03352	0.0002733	165	1.389	0.4876	0.00373
117	1.032	0.1759	0.002219	166	1.099	0.2992	0.003246
118	1.947	0.2243	0.001427	167	1.007	0.08628	0.0008469
119	1.026	0.1585	0.001841	168	1.032	0.1761	0.001948
121	1.009	0.09675	0.0011	169	1.057	0.2324	0.002589
122	1.193	0.3948	0.003805	170	1.975	0.1557	0.001091
124	1.035	0.183	0.00206	171	1.006	0.07412	0.0008634
125	1.012	0.1083	0.001171	172	1.083	0.2755	0.003255
126	1.242	0.4283	0.003577	173	1.039	0.1925	0.002242
127	1.089	0.2845	0.003225	174	1.005	0.06894	0.0007249
128	1.081	0.2723	0.002794	175	1.057	0.2323	0.002693
129	1.058	0.2342	0.002569	176	1.011	0.1022	0.001159
130	1.045	0.2083	0.002336	177	1.028	0.1653	0.001891
132	1.013	0.1147	0.00138	178	1.019	0.1361	0.001526
133	1.135	0.3412	0.00344	. 179	1.117	0.322	0.003451
134	1.035	0.1826	0.001978	180	1.298	0.4576	0.003955
135	1.027	0.1619	0.001947	181	1.177	0.3814	0.00401
136	1.043	0.2026	0.002406	182	1.02	0.1386	0.001704
137	1.012	0.1107	0.001397	184	1.11	0.3135	0.003176
138	1.013	0.1119	0.001289	186	1.013	0.1133	0.001384
139	1.016	0.1269	0.001609	187	1.02	0.1385	0.00174
140	1.097	0.2962	0.003223	188	1.052	0.2219	0.002353
141	1.005	0.07396	0.0007246	189	1.016	0.1245	0.001566
142	1.03	0.1718	0.001887	190	1.018	0.1335	0.001576
143	1.012	0.1094	0.001229	191	1.89	0.3128	0.00193
144	1.079	0.2702	0.00295	192	1.048	0.2128	0.002278
145	1.015	0.1222	0.001443	193	1.021	0.142	0.001727
146	1.074	0.2611	0.002927	194	1.013	0.1131	0.001257
147	1.007	0.08051	0.0006893	195	1.182	0.3862	0.003833
148	1.023	0.1505	0.001868	196	1.018	0.1324	0.001479
149	1.101	0.3016	0.003191	197	1.008	0.08811	0.001068
150	1.004	0.06543	0.0007124	198	1.006	0.07658	0.0007715
151	1.007	0.08469	0.0008759	199	1.228	0.4194	0.003912

Hanlon, Alexandra Appendix II. Latent Allocation Estimates by Patient: Mean and Standard Deviations of Posterior Distributions

			idard Deviation				
Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
200	1.028	0.1656	0.001901	251	1.728	0.4451	0.002518
202	1.131	0.3372	0.003453	252	1.31	0.4624	0.003878
203	1.24	0.4272	0.003831	253	1.037	0.1892	0.002043
204	1.993	0.0844	0.0005819	254	1.012	0.1075	0.001184
205	1.057	0.231	0.002578	255	1.096	0.2943	0.003146
206	1.003	0.05537	0.000497	256	1.036	0.1854	0.00233
207	1.033	0.178	0.002001	257	1.042	0.2002	0.002365
208	1.008	0.08867	0.001012	258	1.015	0.1226	0.001346
209	1.055	0.2273	0.00245	259	1.049	0.2152	0.002517
210	1.921	0.2695	0.001736	260	1.096	0.2951	0.003087
211	1.026	0.1587	0.001975	261	1.009	0.09366	0.001191
212	1.044	0.2046	0.002437	262	1.101	0.3008	0.003234
213	1.007	0.08628	0.0009497	263	1.055	0.2286	0.002855
214	1.027	0.1622	0.001918	264	1.108	0.3102	0.003376
215	1.03	0.1715	0.001881	265	1.069	0.2538	0.002992
216	1.343	0.4746	0.003727	266	1.15	0.3566	0.00388
217	1.712	0.4527	0.002745	267	1.418	0.4933	0.003801
218	1.093	0.291	0.003131	268	1.326	0.4688	0.004148
219	1.006	0.07561	0.0008585	269	1.054	0.2251	0.002404
220	1.281	0.4496	0.00378	270	1.028	0.1637	0.00196
221	1.058	0.2336	0.002669	271	1.018	0.1315	0.00163
222	1.029	0.1677	0.001899	272	1.097	0.2963	0.003184
223	1.141	0.3479	0.003529	273	1.049	0.215	0.002376
224	1.026	0.1602	0.00196	274	1.052	0.2227	0.002277
225	1.645	0.4785	0.002795	275	1.045	0.2063	0.002273
226	1.048	0.2143	0.002343	276	1.003	0.05863	0.0005686
227	1.029	0.1665	0.002028	277	1.126	0.332	0.003518
228	1.032	0.1749	0.001992	278	1.123	0.3285	0.003329
229	1.196	0.3967	0.00389	279	1.044	0.2048	0.002398
230	1.011	0.1024	0.001039	280	1.06	0.2379	0.002747
232	1.946	0.2259	0.001388	281	1.022	0.1483	0.001925
233	1.091	0.2882	0.003066	282	1.02	0.1394	0.001561
234	1.073	0.2608	0.00284	283	1.074	0.2617	0.003046
235	1.005	0.0714	0.0006174	284	1.089	0.2846	0.003286
236	1.022	0.1466	0.001828	285	1.058	0.2339	0.00264
237	1.278	0.4478	0.003856	286	1.018	0.1325	0.001624
239	1.006	0.0761	0.0008745	287	1.013	0.1125	0.001269
240	1.043	0.2025	0.002416	288	1.25	0.4328	0.003595
241	1.01	0.1005	0.001168	289	1.08	0.2719	0.002973
242	1.066	0.248	0.002703	290	1.039	0.1929	0.002331
244	1.027	0.1617	0.001903	291	1.067	0.2498	0.002898
245	1.011	0.1037	0.001135	292	1.035	0.1842	0.002235
246	1.139	0.3461	0.003901	293	1.242	0.4286	0.003936
249	1.013	0.1133	0.00121	294	1.576	0.4941	0.003096
250	1.022	0.1479	0.001767	295	1.001	0.03498	0.0003372
							-

Hanlon, Alexandra Appendix II. Latent Allocation Estimates by Patient: Mean and Standard Deviations of Posterior Distributions

Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
296	1.032	0.1761	0.00193	344	1.054	0.2257	0.002635
297	1.03	0.1694	0.001969	345	1.038	0.1909	0.002457
298	1.055	0.2273	0.002769	346	1.054	0.2255	0.002466
299	1.013	0.1141	0.001223	348	1.082	0.274	0.002882
300	1.456	0.498	0.003991	349	1.149	0.3561	0.003388
301	1.129	0.3352	0.003381	350	1.199	0.3995	0.003674
302	1.064	0.2439	0.002853	351	1.02	0.1412	0.001646
303	1.052	0.2226	0.002342	352	1.189	0.3918	0.003998
304	1.025	0.1564	0.001875	353	1.069	0.2538	0.003029
305	1.005	0.07175	0.0008413	354	1.299	0.458	0.003962
306	1.428	0.4948	0.003788	355	1.041	0.1983	0.002469
307	1.499	0.5	0.00352	356	1.456	0.4981	0.003682
308	1.326	0.4687	0.004045	357	1.139	0.3456	0.003619
309	1.045	0.2083	0.002459	358	1.126	0.3318	0.003492
310	1.036	0.1852	0.002169	359	1.509	0.4999	0.003187
311	1.141	0.3483	0.003662	360	1.01	0.1006	0.001165
312	1.026	0.1579	0.001871	361	1.393	0.4884	0.003859
313	1.023	0.1486	0.001694	362	1.368	0.4824	0.003858
314	1.191	0.3929	0.00419	363	1.017	0.1296	0.001448
315	1.026	0.1583	0.001892	364	1.033	0.178	0.002116
316	1.056	0.2306	0.002685	365	1.04	0.1958	0.002198
317	1.155	0.3621	0.003585	366	1.041	0.1973	0.002206
319	1.099	0.2989	0.003188	367	1.018	0.1326	0.001607
320	1.011	0.1023	0.0009951	368	1.05	0.2178	0.002563
321	1.063	0.2429	0.002972	369	1.277	0.4474	0.003931
322	1.069	0.2538	0.002925	370	1.039	0.1934	0.002209
323	1.034	0.1823	0.002016	371	1.049	0.2163	0.002425
324	1.599	0.4901	0.003341	372	1.016	0.1248	0.001348
325	1.052	0.2227	0.002585	373	1.02	0.1387	0.001632
326	1.026	0.1604	0.001761	374	1.024	0.1517	0.001711
327	1.818	0.3863	0.002024	375	1.153	0.3598	0.003592
328	1.114	0.3176	0.003414	376	1.026	0.1579	0.002053
329	1.045	0.2077	0.002444	377	1.106	0.308	0.003321
330	1.008	0.08963	0.0008864	378	1.029	0.1675	0.002007
331	1.063	0.2421	0.00281	379	1.062	0.2412	0.002753
332	1.12	0.3253	0.003423	380	1.004	0.06637	0.0006698
334	1.163	0.3691	0.003691	381	1.007	0.08127	0.0008869
335	1.35	0.477	0.003942	382	1.041	0.1992	0.002303
336	1.089	0.2852	0.00319	383	1.046	0.2089	0.002261
337	1.877	0.3286	0.002026	385	1.108	0.3107	0.003479
338	1.047	0.2109	0.002372	386	1.216	0.4118	0.004004
340	1.038	0.1917	0.002218	387	1.014	0.1174	0.001273
341	1.141	0.3484	0.003532	388	1.245	0.4299	0.003536
342	1.039	0.1938	0.002283	389	1.457	0.4981	0.003554
343	1.194	0.3953	0.004113	390	1.009	0.09339	0.001059

Hanlon, Alexandra Appendix II. Latent Allocation Estimates by Patient:
Mean and Standard Deviations of Posterior Distributions

SD Patient ID Patient ID Mean MC Error Mean SD **MC Error** 0.2857 391 1.09 0.003209 438 1.019 0.138 0.001458 392 1.093 0.2901 0.003294 439 1.019 0.1372 0.001564 393 1.066 440 0.2484 0.002574 1.011 0.1066 0.001244 394 1.041 0.1973 0.002297 441 1.023 0.1493 0.001891 395 1.043 0.2022 442 0.002291 1.031 0.1737 0.002123 396 1.044 0.205 443 0.002382 1.023 0.1488 0.001703 397 1.012 0.107 0.001129 444 1.038 0.1912 0.002157 398 445 1.183 0.3867 0.004098 1.134 0.3408 0.003424 399 1.182 0.3855 446 0.003836 1.015 0.1206 0.001367 400 1.038 0.1903 0.002241 447 1.274 0.4459 0.003867 402 1.049 0.216 0.002375 448 1.062 0.2414 0.002682 403 0.1864 449 1.036 0.002259 1.039 0.1931 0.002024 404 1.068 0.2518 0.002572 450 1.01 0.09876 0.001067 405 451 1.07 1.019 0.1349 0.00154 0.2545 0.002762 452 406 1.044 0.2041 0.002216 1.011 0.1043 0.001025 407 1.133 0.3397 0.003506 453 1.053 0.2248 0.002479 408 0.1114 454 1.021 1.013 0.001256 0.1439 0.001586 409 1.135 0.342 455 1.02 0.1408 0.003777 0.001686 410 0.341 456 1.018 0.1332 1.134 0.003553 0.001513 0.2293 457 411 1.056 0.002316 1.063 0.2433 0.002627 412 1.095 0.2929 0.003115 458 1.038 0.1906 0.002136 413 1.15 0.3569 0.003613 459 1.05 0.218 0.002393 414 1.012 0.1079 0.00124 460 1.117 0.3214 0.003466 415 1.105 0.3067 461 1.179 0.3833 0.003305 0.00375 416 0.4941 462 1.018 0.1331 1.577 0.002933 0.001794 417 1.127 0.3325 0.003373 463 1.036 0.1854 0.002044 464 1.012 418 1.011 0.1031 0.001093 0.108 0.001142 419 1.101 0.3013 0.003266 465 1.142 0.3495 0.00375 420 1.005 0.06911 0.0007306 466 1.125 0.331 0.003292 421 0.1312 467 1.047 0.2123 1.018 0.001345 0.002201 422 1.046 0.2089 0.002679 468 1.033 0.1777 0.002082 423 0.2309 469 1.017 0.1285 1.057 0.002397 0.001476 424 470 1.154 1.031 0.1742 0.001968 0.3614 0.003582 425 471 1.107 0.3092 0.003447 1.02 0.1396 0.001489 472 426 1.005 0.07106 1.016 0.1266 0.0006841 0.001434 427 1.085 0.2796 473 1.084 0.2774 0.003027 0.002889 474 428 1.119 0.324 0.003515 1.022 0.146 0.001691 475 429 1.048 0.2137 0.002343 1.007 0.08127 0.0008897 430 1.037 0.1889 0.002053 476 1.091 0.2878 0.0032 431 1.048 0.2144 0.002475 477 1.05 0.2175 0.002591 432 1.148 0.3554 478 1.059 0.2359 0.003631 0.002597 433 1.06 0.2382 0.002699 479 1.024 0.1532 0.001665 434 1.026 480 1.034 0.1578 0.00168 0.1803 0.00205 436 1.019 0.1355 0.001635 481 1.022 0.1457 0.001692 437 1.06 0.2379 0.002547 482 1.023 0.1498 0.001587

			idard Deviation				
Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
483	1.032	0.1749	0.002052	532	1.274	0.4459	0.003769
484	1.021	0.1441	0.001765	533	1.081	0.2724	0.002983
485	1.365	0.4814	0.003948	534	1.033	0.1775	0.002079
486	1.369	0.4824	0.003964	535	1.027	0.1624	0.001788
488	1.072	0.2578	0.002817	536	1.076	0.2656	0.003201
489	1.391	0.4879	0.003582	537	1.012	0.1096	0.001224
490	1.039	0.1944	0.002188	538	1.19	0.3924	0.003721
491	1.07	0.2548	0.002901	539	1.006	0.07912	0.0008276
492	1.007	0.08097	0.0009062	540	1.013	0.1118	0.001269
494	1.078	0.2675	0.003137	541	1.072	0.2578	0.002842
495	1.056	0.2297	0.002571	542	1.586	0.4925	0.003216
496	1.029	0.1675	0.002024	543	1.092	0.2884	0.003222
497	1.081	0.2731	0.003099	544	1.061	0.2391	0.002702
499	1.28	0.4488	0.004127	545	1.23	0.421	0.004059
500	1.002	0.04712	0.0004549	546	1.004	0.06213	0.0005298
502	1.014	0.1169	0.00127	547	1.738	0.4397	0.002499
503	1.041	0.198	0.002115	548	1.149	0.3563	0.003434
504	1.415	0.4927	0.003742	549	1.161	0.3672	0.00345
505	1.008	0.08894	0.0009093	550	1.177	0.3818	0.003952
506	1.036	0.1873	0.001947	551	1.046	0.2086	0.002252
507	1.017	0.129	0.001415	552	1.104	0.3054	0.003198
508	1.98	0.1397	0.0009334	553	1.011	0.1052	0.001217
509	1.016	0.1265	0.001347	554	1.062	0.2417	0.002566
510	1.006	0.08036	0.0008896	555	1.129	0.3353	0.003546
511	1.31	0.4623	0.004327	556	1.035	0.1833	0.002105
512	1.068	0.2526	0.002893	557	1.03	0.1711	0.001874
513	1.305	0.4605	0.004119	558	1.098	0.2974	0.003158
514	1.078	0.2677	0.003191	559	1.058	0.2333	0.002688
515	1.019	0.1371	0.001724	560	1.146	0.3526	0.003688
516	1.023	0.1487	0.001733	561	1.032	0.177	0.001731
517	1.023	0.1513	0.001712	562	1.003	0.05469	0.0005269
518	1.027	0.162	0.001894	563	1.193	0.3945	0.003801
519	1.129	0.3347	0.003302	564	1.027	0.1619	0.002124
520	1.016	0.1263	0.001515	565	1.075	0.2635	0.002713
521	1.062	0.2413	0.002834	566	1.042	0.2009	0.00236
522	1.095	0.2938	0.003078	567	1.078	0.2677	0.00292
523	1.08	0.2717	0.003022	568	1.017	0.1291	0.001464
524	1.009	0.09496	0.001032	569	1.658	0.4743	0.002616
525	1.028	0.165	0.001921	570	1.02	0.1394	0.001592
526	1.004	0.06448	0.0006934	571	1.016	0.1269	0.001287
527	1.028	0.1648	0.001926	572	1.333	0.4713	0.003878
528	1.135	0.3415	0.003659	573	1.008	0.09099	0.0009564
529	1.258	0.4374	0.003891	574	1.04	0.1962	0.002285
530	1.02	0.1409	0.001472	575	1.069	0.2529	0.002943
531	1.033	0.1786	0.001833	576	1.018	0.1339	0.001607

Hanlon, Alexandra Appendix II. Latent Allocation Estimates by Patient: Mean and Standard Deviations of Posterior Distributions

Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
577	1.021	0.1435	0.001662	623	1.026	0.1603	0.001783
578	1.012	0.1104	0.001316	624	1.026	0.1003	0.001765
579	1.516	0.4997	0.001510	625	1.939	0.239	0.002000
580	1.33	0.4703	0.004062	626	1.016	0.239	0.001438
581	1.086	0.4703	0.003033	627	1.010	0.1231	0.001107
582	1.037	0.2797	0.003033	629	1.039	0.1936	0.002103
583	1.037	0.1884	0.002263	630	1.033	0.2861	0.002974
584	1.695	0.4604	0.002932	632	1.033	0.1790	0.001954
585	1.997	0.4604	0.00273	633	1.175	0.3801	0.001461
586	1.054	0.03423	0.0003934	634	1.011	0.3001	
587							0.0009585
588	1.014	0.1166	0.001321	635	1.085	0.2792	0.002943
	1.048	0.213	0.002481	636	1.244	0.4296	0.003955
589 500	1.013	0.1114	0.001142	637	1.258	0.4378	0.004052
590 504	1.146	0.3534	0.003663	638	1.324	0.4681	0.004163
591 500	1.227	0.4186	0.003898	639	1.016	0.1265	0.001317
592 503	1.112	0.3159	0.003224	640	1.054	0.2267	0.002434
593 504	1.02	0.1399	0.001683	641	1.23	0.421	0.004124
594	1.12	0.3244	0.003388	642	1.384	0.4863	0.003742
596	1.129	0.3352	0.003549	643	1.09	0.2866	0.003075
597	1.118	0.3222	0.003501	644	1.26	0.4388	0.00463
598	1.06	0.2372	0.002762	645	1.114	0.3176	0.003327
599	1.031	0.1722	0.001877	646	1.028	0.1655	0.001792
600	1.011	0.1051	0.001228	647	1.343	0.4748	0.004257
601	1.075	0.2635	0.002648	649	1.008	0.08741	0.001022
602	1.052	0.2222	0.002528	650	1.006	0.07462	0.0008591
603	1.015	0.122	0.001424	651	1.037	0.1883	0.002087
604	1.137	0.3442	0.00356	652	1.165	0.3715	0.003698
605	1.015	0.1208	0.001233	653	1.037	0.1886	0.002076
606	1.018	0.1323	0.001523	654	1.932	0.252	0.001697
607	1.128	0.3343	0.003471	655	1.322	0.4671	0.004383
608	1.021	0.1425	0.001566	656	1.553	0.4971	0.004462
609	1.077	0.267	0.002915	657	1.799	0.4011	0.002518
610	1.02	0.1414	0.0015				
611	1.016	0.1245	0.001455				
612	1.059	0.2362	0.002469				
613	1.222	0.4156	0.003801				
614	1.018	0.1317	0.001585				
615	1.018	0.1321	0.001505				
616	1.261	0.4389	0.004005				
617	1.142	0.349	0.003395				
618	1.024	0.1544	0.001804				
619	1.031	0.1735	0.001929				
620	1.046	0.2098	0.002317				
621	1.063	0.2425	0.002669				
622	1.008	0.0914	0.0008751				

Hanlon, Alexandra
Appendix III. Random Effect Estimates by Patient:
Posterior Distribution Mean and Standard Deviation Estimates

Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
1	2.607	0.147	0.00318	46	-0.4144	0.2318	0.002874
2	0.03762	0.581	0.007613	47	1.68	0.07734	0.001856
3	0.5734	0.6576	0.007794	48	0.8962	0.06519	0.001464
4	-0.2296	0.6246	0.007683	49	-0.7593	0.7366	0.009166
5	-1.266	0.841	0.01148	50	2.043	0.1926	0.00365
6	2.559	0.06743	0.002289	51	0.007098	0.2305	0.002902
7	-1.275	0.4062	0.005254	52	-0.799	0.4352	0.004927
8	-0.02483	0.4467	0.006325	53	0.4842	0.6343	0.007593
9	0.08798	0.5065	0.00633	54	-0.8912	0.703	0.008411
10	12.46	0.4937	0.01024	55	1.558	0.2425	0.004139
11	-1.098	0.8815	0.01328	56	1.207	0.1413	0.002299
12	0.7251	0.4676	0.005857	57	-0.5479	0.5716	0.007325
13	-1.024	0.5858	0.006811	58	-0.5127	0.6875	0.007882
14	0.723	0.2942	0.003762	59	0.4746	0.168	0.002239
15	-0.8084	0.6098	0.007179	60	2.323	0.0549	0.001991
16	1.502	0.3383	0.004179	61	-0.07252	0.2581	0.00328
17	2.331	0.2022	0.003085	62	8.082	0.4994	0.0107
18	-0.6835	0.6334	0.00758	63	0.8162	0.3477	0.004264
19	-0.5026	0.471	0.005298	64	0.9879	0.1321	0.002243
20	-1.892	0.9853	0.01299	65	1.665	0.07053	0.001887
21	0.7784	0.2961	0.004284	66	-0.8406	0.6593	0.007764
22	1.888	0.6042	0.008321	67	0.3598	0.49	0.006327
23	0.9737	0.3942	0.004997	68	-1.401	0.6063	0.008134
24	2.917	0.1587	0.003555	69	4.704	0.492	0.007157
25	1.353	0.4297	0.006345	70	2.784	0.2955	0.004787
26	0.5266	0.6134	0.007457	71	1.955	0.05351	0.001778
27	0.9796	0.6364	0.007754	72	5.182	0.4179	0.007091
28	-0.4187	0.6838	0.008323	73	-0.5469	0.467	0.005834
29	-0.4251	0.6744	0.008329	74	0.08482	0.1939	0.002665
30	-1.021	0.4603	0.005586	75	1.109	0.7416	0.009599
31	-1.354	0.7401	0.008874	76	0.5044	0.4903	0.006162
32	6.33	0.1327	0.005007	77	-1.607	0.7757	0.01091
33	3.069	0.06936	0.002594	78	-2.326	0.8044	0.01182
34	0.08086	0.3424	0.00477	79	1.646	0.09791	0.002303
35	6.155	0.3568	0.007363	80	0.2392	0.2448	0.00298
36	3.033	0.1135	0.002991	81	1.794	0.1439	0.00272
37	4.505	0.3611	0.007357	82	0.3132	0.1726	0.00243
38	-0.8888	0.7121	0.008733	83	1.785	0.1651	0.002652
39	1.479	0.09073	0.002197	84	0.4223	0.5242	0.005803
40	0.7124	0.2388	0.003042	85	2.127	0.1688	0.003352
41	0.6512	0.1009	0.001741	86	1.061	0.1043	0.001691
42	1.269	0.1198	0.00239	87	4.887	0.302	0.005811
43	0.7209	0.5795	0.007579	88	1.245	0.2682	0.003343
44	3.374	0.0828	0.002889	89	2.461	0.2038	0.003839
45	-0.8346	0.634	0.007868	90	-0.296	1.096	0.01416

				Standard Dev			
Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
91	-0.09156	0.323	0.003998	136	0.122	0.6046	0.007639
92	0.7797	0.2403	0.003363	137	-1.114	0.5602	0.006969
93	0.2793	0.51	0.006289	138	-1.054	0.4507	0.006166
94	2.944	0.1558	0.003464	139	-0.7751	0.3743	0.004723
95	2.438	0.1048	0.002722	140	1.096	0.3643	0.004696
96	0.6351	0.2195	0.003586	141	-2.159	0.9252	0.01084
97	-2.962	0.9864	0.01619	142	-0.07099	0.2285	0.002783
98	-1.239	0.7439	0.009143	143	-1.265	0.7529	0.009399
99	2.495	0.08894	0.002396	144	0.9141	0.1506	0.002253
100	0.9434	0.4145	0.005406	145	-0.8697	0.4132	0.005716
101	-0.4319	0.4604	0.005924	146	0.8842	0.1619	0.002367
102	1.378	0.1737	0.002991	147	-1.922	0.8165	0.01104
103	3.032	0.1645	0.003627	148	-0.3701	0.3834	0.004699
104	0.687	0.494	0.005777	149	1.192	0.2223	0.003382
105	-1.077	0.6518	0.008385	150	-2.425	0.7248	0.01026
106	-0.6541	0.2943	0.004452	151	-1.998	0.8467	0.01046
107	2.571	0.1223	0.003068	152	-2.033	0.753	0.01148
108	0.633	1.184	0.01639	153	2.446	0.1494	0.002496
109	0.236	0.3593	0.004325	154	1.899	0.08967	0.001862
110	1.748	0.05772	0.001794	155	-1.389	0.8088	0.01019
111	-1.261	0.692	0.00944	156	-2.811	0.781	0.01136
112	2.22	0.3239	0.004484	157	3.584	0.2312	0.00423
113	-1.281	0.5616	0.007013	158	0.06022	0.2804	0.003642
114	-3.211	0.8661	0.01255	159	-0.3791	0.4575	0.005697
115	2.111	0.2222	0.003454	160	6.164	0.581	0.008727
116	-4.186	1.097	0.01683	161	3.846	0.668	0.009889
117	-0.09269	0.4979	0.006142	162	-0.1497	0.2605	0.002948
118	5.409	0.1685	0.004872	163	2.656	0.1369	0.003217
119	-0.3261	0.6341	0.007416	164	-0.01016	0.5515	0.006901
120	2.268	0.09249	0.002172	165	2.653	0.197	0.003787
121	-1.594	0.6853	0.009599	166	1.14	0.1597	0.00257
122	1.842	0.1631	0.002756	167	-1.686	0.7001	0.01045
123	2.391	0.08007	0.002447	168	-0.1419	0.6015	0.006882
124	0.04588	0.4289	0.004858	169	0.5701	0.3737	0.004605
125	-1.209	0.68	0.0103	170	6.253	0.536	0.009663
126	2.064	0.3663	0.005093	171	-2.23	0.7011	0.008952
127	0.9815	0.4353	0.005683	172	0.9082	0.3546	0.004828
128	0.9551	0.1153	0.001503	173	0.09923	0.4095	0.005477
129	0.5631	0.4433	0.005522	174	-2.41	0.976	0.01468
130	0.3692	0.1687	0.002365	175	0.5163	0.3535	0.005034
131	4.661	0.1896	0.004487	176	-1.527	0.7881	0.009642
132	-1.051	0.4908	0.005796	177	-0.1239	0.2937	0.003951
133	1.463	0.2015	0.002802	178	-0.6017	0.3754	0.004406
134	-0.0895	0.6062	0.007127	179	1.194	0.6445	0.008885
135	-0.4004	0.7134	0.008686	180	2.247	0.592	0.008171
		·• ·	2.22200	. • •	··	J.JUL	3.000111

Hanlon, Alexandra Appendix III. Random Effect Estimates by Patient: Posterior Distribution Mean and Standard Deviation Estimates

181 1.73 0.1736 0.003132 226 0.2879 0.5366 0.0069 182 -0.5579 0.3667 0.005077 227 -0.1457 0.3255 0.0037 183 -2.641 0.8653 0.01142 228 -0.1089 0.4627 0.006 184 1.195 0.4173 0.005758 229 1.882 0.09359 0.0021 185 1.956 0.1112 0.002472 230 -1.322 0.6374 0.0080	08 84 02 78 23
183 -2.641 0.8653 0.01142 228 -0.1089 0.4627 0.006 184 1.195 0.4173 0.005758 229 1.882 0.09359 0.0021	6 84 02 78 23
184 1.195 0.4173 0.005758 229 1.882 0.09359 0.0021	84 02 78 23
)2 78 23
185 1956 0.1112 0.002472 230 -1.322 0.6374 0.0096	78 23
100 1.000 0.1112 0.002712 200 -1.022 0.0074 0.0000	23
186 -1.089 0.5025 0.006629 231 -0.9393 0.5055 0.0060	
187 -0.6406 0.5484 0.006595 232 5.472 0.4038 0.0068	77
188 0.379 0.5051 0.006091 233 1.044 0.1974 0.0030	
189 -0.9947 0.6903 0.008537 234 0.7611 0.4147 0.0050	71
190 -0.7846 0.543 0.006178 235 -2.463 1.026 0.0136	35
191 4.733 0.2385 0.00452 236 -0.5494 0.6356 0.0074	65
192 0.3738 0.3021 0.003596 237 2.251 0.1744 0.0030	28
193 -0.4992 0.4198 0.005237 238 -0.07074 0.5439 0.0067	77
194 -0.9556 0.4668 0.007187 239 -2.2 0.7776 0.0098	64
195 1.793 0.1227 0.002624 240 0.2654 0.2796 0.0038	92
196 -0.7626 0.608 0.008173 241 -1.755 1.078 0.013	5
197 -2.06 0.8105 0.01014 242 0.716 0.3557 0.0046	64
198 -1.957 0.5941 0.00888 243 4.257 0.1782 0.0043	31
199 1.946 0.544 0.007111 244 -0.2338 0.4437 0.0058	37
200 -0.4455 0.8908 0.01022 245 -1.219 0.5419 0.0069	79
201 -1.026 0.5988 0.007512 246 1.501 0.09992 0.0020	13
202 1.342 0.4992 0.006316 247 -1.79 0.7078 0.0093	43
203 2.091 0.1983 0.003551 248 3.953 0.0634 0.0026	5
204 7.264 0.1795 0.005728 249 -1.056 0.5997 0.0080	17
205 0.5945 0.1745 0.002541 250 -0.4498 0.5174 0.00678	37
206 -2.958 0.9183 0.01094 251 3.803 0.1508 0.00403	33
207 -0.06001 0.311 0.003539 252 2.377 0.1505 0.00309	94
208 -1.739 0.7713 0.01007 253 -0.04214 0.6635 0.00836	38
209 0.556 0.1826 0.002672 254 -1.158 0.5647 0.00638	31
210 5.186 0.5847 0.009277 255 1 0.5134 0.00639	€2
211 -0.2257 0.2613 0.00328 256 0.05374 0.4271 0.0048	78
212 0.1954 0.6145 0.007859 257 0.2536 0.3582 0.00459	€
213 -1.853 0.8814 0.01122 258 -0.8594 0.4645 0.00567	76
214 -0.1741 0.343 0.004223 259 0.4077 0.2225 0.00312	29
215 -0.1166 0.3977 0.004914 260 0.9646 0.5648 0.00673	38
216 2.496 0.2028 0.003449 261 -1.532 0.6967 0.00847	72
217 3.748 0.2242 0.004433 262 1.077 0.4509 0.00585	57
218 1.098 0.1646 0.002869 263 0.551 0.1819 0.00248	33
219 -2.028 0.7254 0.0112 264 1.258 0.1473 0.00235	55
220 2.257 0.1969 0.003736 265 0.7752 0.2172 0.00326	35
221	
222 -0.1376 0.4472 0.005539 267 2.715 0.5819 0.00873	
223 1.53 0.1086 0.002285 268 2.416 0.1357 0.00228	
224 -0.5463 0.9016 0.0114 269 0.1599 0.9429 0.0109	
225 3.506 0.1542 0.003661 270 -0.2964 0.6627 0.00786	31

Appendix III. Random Effect Estimates by Patient: Posterior Distribution Mean and Standard Deviation Estimates

Posterior Distribution Mean and Standard Deviation Estimates							
Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
271	-0.8267	0.7606	0.009789	316	0.4148	0.5577	0.007126
272	1.002	0.5871	0.007766	317	1.599	0.2295	0.003421
273	0.4112	0.2386	0.003364	318	0.5246	0.1827	0.002515
274	0.4178	0.4429	0.005474	319	1.005	0.6079	0.007549
275	0.1645	0.6148	0.007178	320	-1.316	0.6997	0.009167
276	-2.838	0.91	0.01186	321	0.6752	0.2591	0.003599
277	1.333	0.4895	0.006923	322	0.765	0.2649	0.003121
278	1.353	0.314	0.003839	323	-0.1885	0.7557	0.009282
279	0.1739	0.6009	0.007342	324	3.361	0.1628	0.003234
280	0.6016	0.3238	0.004239	325	0.4755	0.255	0.003513
281	-0.4517	0.4467	0.005328	326	-0.6165	0.9152	0.01113
282	-0.5655	0.4145	0.005745	327	4.236	0.1438	0.004082
283	0.838	0.1954	0.002768	328	1.271	0.2053	0.003106
284	1.08	0.1205	0.0021	329	0.233	0.5165	0.006114
285	0.6069	0.2171	0.002793	330	-1.827	0.8156	0.0092
286	-0.7945	0.6408	0.007807	331	0.512	0.6145	0.007832
287	-1.087	0.6096	0.00742	332	1.36	0.193	0.003057
288	2.132	0.0824	0.002049	333	-0.01644	0.3925	0.0054
289	0.9538	0.1548	0.002637	334	1.662	0.1849	0.002713
290	0.1278	0.3309	0.004256	335	2.501	0.2224	0.004138
291	0.7368	0.2193	0.002979	336	1.09	0.179	0.002877
292	0.04591	0.3141	0.00413	337	4.671	0.3748	0.006801
293	2.07	0.2513	0.003892	338	0.3028	0.4857	0.006085
294	3.271	0.1629	0.003015	339	-0.5154	0.5002	0.005867
295	-4.337	0.868	0.01267	340	0.1521	0.3434	0.004276
296	-0.1459	0.5065	0.006368	341	1.477	0.2299	0.003097
297	-0.1468	0.5259	0.006423	342	0.1668	0.3392	0.004115
298	0.513	0.2802	0.003658	343	1.717	0.6001	0.007538
299	-1.186	0.721	0.01015	344	0.5203	0.2155	0.003213
300	2.867	0.4449	0.006408	345	0.1295	0.3394	0.004149
301	1.459	0.1738	0.00277	346	0.4854	0.2936	0.003633
302	0.6804	0.1768	0.002424	347	-0.5573	0.4561	0.005415
303	0.5048	0.2533	0.003461	348	0.8291	0.57	0.007554
304	-0.3297	0.3946	0.005144	349	1.591	0.1604	0.002647
305	-2.305	0.7722	0.01006	350	1.868	0.2309	0.003246
306	2.796	0.2057	0.003999	351	-0.6475	0.5106	0.006627
307	3.005	0.3696	0.005507	352	1.815	0.1359	0.002816
308	2.426	0.3069	0.00441 0.004434	353 354	0.6596	0.56	0.007138
309 310	0.3148	0.372		354 355	2.328	0.2186	0.003953
310 311	0.05691 1.514	0.3737 0.1392	0.004513 0.002148	355 356	0.233	0.268	0.003301
311	-0.3218	0.1392 0.4845	0.002148	356 357	2.897 1.493	0.258 0.1696	0.004841
312	-0.3216 -0.4263	0.4019	0.005916	357 358	1.493	0.1696	0.002985 0.009259
314	1.697	0.4019	0.003086	359	3.065	0.7157	0.009259
315	-0.3104	0.5455	0.006847	360	-1.376	0.6603	0.002184
313	-0.5104	0.0400	0.000047	300	-1.370	0.0003	0.000313

Appendix III. Random Effect Estimates by Patient:
Posterior Distribution Mean and Standard Deviation Estimates

Posterior Distribution Mean and Standard Deviation Estimates							
Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
361	2.681	0.111	0.002629	406	0.2017	0.5561	0.007174
362	2.59	0.1776	0.003938	407	1.416	0.3031	0.004549
363	-0.7972	0.611	0.009146	408	-1.161	0.5625	0.006847
364	-0.00365	0.3305	0.003861	409	1.458	0.1974	0.002945
365	0.136	0.4867	0.006545	410	1.44	0.3353	0.00461
366	0.03165	0.7072	0.008967	411	0.3896	0.6536	0.008301
367	-0.7283	0.5243	0.007156	412	0.984	0.5635	0.00604
368	0.4673	0.2768	0.004007	413	1.549	0.363	0.005489
369	2.231	0.103	0.002011	414	-1.297	0.7336	0.008644
370	0.1455	0.3632	0.004893	415	1.198	0.1973	0.002938
371	0.3414	0.5078	0.007163	416	3.296	0.1308	0.003157
372	-0.894	0.6181	0.008735	417	1.364	0.3593	0.005672
373	-0.6671	0.6062	0.00724	418	-1.376	0.7891	0.009983
374	-0.3251	0.3598	0.005072	419	1.172	0.1522	0.002414
375	1.574	0.1877	0.003242	420	-2.314	1.015	0.01537
376	-0.4696	0.7669	0.0104	421	-0.8298	0.6447	0.007787
377	1.212	0.217	0.003044	422	0.3202	0.3339	0.004064
378	-0.2439	0.5079	0.007014	423	0.5507	0.2751	0.003742
379	0.6198	0.3684	0.004869	424	-0.1196	0.4823	0.005732
380	-2.47	0.925	0.01308	425	1.21	0.2646	0.004034
381	-2.01	0.9203	0.01163	426	-2.391	0.9016	0.01294
382	0.1157	0.5129	0.006167	427	0.9583	0.3951	0.005368
383	0.2149	0.552	0.00712	428	1.303	0.2605	0.003385
384	-0.7114	0.7445	0.008902	429	0.2928	0.5446	0.007552
385	1.2	0.3712	0.005014	430	0.04642	0.4847	0.006133
386	1.967	0.133	0.002916	431	0.3044	0.4882	0.006107
387	-1.078	0.6253	0.008018	432	1.403	0.6286	0.008282
388	2.098	0.1958	0.003094	433	0.4835	0.5866	0.006962
389	2.874	0.2767	0.004265	434	-0.5428	0.8177	0.009845
390 301	-1.48 4.03	0.5805	0.008031 0.003048	435 436	3.947	0.2568	0.005607
391 303	1.03 1.029	0.2161 0.404		436	-0.7268	0.5106	0.006411
392 393	0.694	0.404	0.005382 0.004856	437 438	0.5939	0.3986	0.005178
393 394	0.094	0.3625	0.004836	430 439	-1.052 -0.7146	1.036 0.7065	0.01258 0.007801
39 4 395	0.1517	0.3995	0.004279	439 440	-1.305	0.7065	0.007801
396	0.3637	0.3108	0.004933	441	-0.4588	0.4813	0.006797
397	-1.266	0.7248	0.01073	442	-0.1613	0.5017	0.006258
398	1.764	0.7240	0.004846	443	-0.6042	0.7599	0.008238
399	1.759	0.2009	0.003448	444	0.1096	0.7333	0.003024
400	0.1129	0.3885	0.004628	445	1.187	0.8497	0.01067
401	-2.21	0.7728	0.01041	446	-0.8411	0.4501	0.005726
402	0.1253	0.8146	0.01082	447	2.226	0.1366	0.003031
403	0.03271	0.4791	0.006007	448	0.6299	0.346	0.004346
404	0.7385	0.3184	0.004003	449	0.1377	0.4759	0.005065
405	-0.6882	0.561	0.007504	450	-1.476	0.725	0.008901

		fean and Standa			
Mean S	SD MC	Error Pat	ient ID N	<i>l</i> lean	SD

Posterior Distribution Mean and Standard Deviation Estimates							
Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
451	0.6971	0.5227	0.006486	496	-0.2949	0.6154	0.00777
452	-1.294	0.6713	0.007976	497	0.9159	0.2243	0.00319
453	0.4715	0.3925	0.005335	498	-0.7376	0.6046	0.008103
454	-0.6426	0.6333	0.007897	499	2.249	0.207	0.003882
455	-0.6932	0.6738	0.008652	500	-3.409	1.025	0.01608
456	-0.6735	0.6608	0.008606	501	4.027	0.3825	0.006971
457	0.6462	0.3223	0.004262	502	-1.086	0.7579	0.01063
458	0.03865	0.5317	0.007035	503	-0.02512	0.8073	0.00889
459	0.4284	0.3444	0.004524	504	2.753	0.272	0.004661
460	1.32	0.275	0.003911	505	-1.747	0.851	0.01182
461	1.772	0.1928	0.003192	506	0.07038	0.4465	0.005623
462	-0.7086	0.5575	0.007171	507	-0.8157	0.6237	0.008067
463	0.08443	0.387	0.00521	508	6.286	0.2619	0.00672
464	-1.359	0.7916	0.008988	509	-1.013	0.7362	0.009503
465	1.525	0.1595	0.002286	510	-2.144	0.9841	0.01413
466	1.366	0.2671	0.003901	511	2.282	0.6226	0.008874
467	0.3549	0.4305	0.005738	512	0.7458	0.3763	0.004785
468	-0.0291	0.4394	0.005753	513	2.29	0.5196	0.006587
469	-0.871	0.6785	0.008577	514	0.6657	0.7302	0.008907
470	1.595	0.2459	0.003671	515	-0.6926	0.5985	0.00715
471	-0.7961	0.8545	0.01091	516	-0.4728	0.649	0.007216
472	-0.8686	0.6718	0.008224	517	-0.5008	0.746	0.009415
473	0.7651	0.7232	0.009961	518	-0.3645	0.6545	0.008493
474	-0.5473	0.6148	0.007618	519	1.34	0.4605	0.005273
475	-2.077	0.7634	0.0108	520	-0.9437	0.7018	0.009285
476	1.015	0.4579	0.006226	521	0.614	0.3565	0.004465
477	0.3299	0.5049	0.006202	522	1.091	0.3781	0.004912
478	0.4067	0.7214	0.008714	523	0.8294	0.4824	0.006339
479	-0.3884	0.513	0.006804	524	-1.634	0.8401	0.01036
480	-0.06238	0.5264	0.00579	525	-0.2954	0.6267	0.008703
481	-0.5694	0.6099	0.006805	526	-2.509	0.9536	0.01316
482	-0.4652	0.5195	0.006032	527	-0.3118	0.583	0.006848
483	-0.1088	0.5506	0.00718	528	1.417	0.3852	0.005556
484	-0.5602	0.504	0.006173	529	2.136	0.3146	0.004564
485	2.558	0.3921	0.006073	530	-0.7019	0.7223	0.008203
486	2.594	0.1208	0.003208	531	-0.06356	0.5936	0.00792
487	0.3788	0.4684	0.00587	532	2.169	0.4099	0.00542
488	0.7641	0.394	0.005252	533	0.8872	0.4121	0.005261
489	2.656	0.3814	0.005201	534	-0.0943	0.5954	0.007115
490	0.1578	0.4027	0.004881	535	-0.3728	0.6521	0.008065
491	0.7491	0.3688	0.004595	536	0.7712	0.5088	0.006943
492	-1.841	0.7535	0.01184	537	-1.154	0.7388	0.009058
493	-2.124	0.8706	0.011	538	1.806	0.258	0.004232
494	0.8094	0.4639	0.005812	539	-2.008	0.8768	0.01141
495	0.4765	0.5173	0.006614	540	-1.184	0.7832	0.01075

Appendix III. Random Effect Estimates by Patient: Posterior Distribution Mean and Standard Deviation Estimates

Posterior Distribution Mean and Standard Deviation Estimates							
Patient ID	Mean	SD	MC Error	Patient ID	Mean	SD	MC Error
541	0.733	0.5029	0.005821	586	0.4531	0.5093	0.006848
542	3.331	0.5631	0.007744	587	-1.095	0.781	0.009907
543	1	0.4463	0.005874	588	0.1775	0.7286	0.009263
544	0.5395	0.509	0.00629	589	-1.212	0.7402	0.009324
545	2.028	0.2864	0.004503	590	1.49	0.3711	0.004953
546	-2.861	1.02	0.01432	591	1.982	0.3803	0.006025
547	3.869	0.204	0.004564	592	1.172	0.4924	0.006242
548	1.531	0.311	0.004767	593	-0.9205	0.984	0.01211
549	1.607	0.3733	0.004948	594	1.3	0.4377	0.005943
550	1.597	0.6129	0.008006	595	-1.281	0.8517	0.01077
551	0.07894	0.8487	0.01174	596	1.314	0.5192	0.00638
552	0.8508	0.9328	0.01176	597	1.246	0.4364	0.006364
553	-1.301	0.7678	0.008605	598	0.5245	0.4766	0.006484
554	0.5869	0.5405	0.006601	599	-0.2947	0.7527	0.008906
555	1.399	0.3085	0.004754	600	-1.545	0.8457	0.009517
556	-0.09466	0.7058	0.008651	601	0.7559	0.5073	0.006841
557	-0.3556	0.8397	0.009035	602	0.2998	0.6397	0.007633
558	1.039	0.5041	0.00715	603	-1.157	0.8975	0.01108
559	0.4303	0.659	0.007878	604	1.43	0.4463	0.005619
560	1.489	0.4125	0.006213	605	-1.044	0.7491	0.009154
561	-0.0961	0.5603	0.006967	606	-0.8247	0.7534	0.009405
562	-2.763	0.8883	0.01514	607	1.32	0.4926	0.006138
563	1.821	0.378	0.005266	608	-0.7954	0.8853	0.01048
564	-0.4719	0.8015	0.0106	609	0.8046	0.5012	0.006075
565	0.7826	0.5394	0.007162	610	-0.6943	0.7191	0.009042
566	0.2183	0.5454	0.006265	611	-0.9889	0.663	0.009335
567	0.8592	0.415	0.005763	612	0.4417	0.7451	0.009338
568	-0.9119	0.7778	0.01017	613	1.923	0.5066	0.007017
569	3.567	0.1497	0.00411	614	-0.9525	0.836	0.009979
570	-0.5427	0.5663	0.007555	615	-0.898	0.8139	0.009419
571	-1.03	0.9488	0.01089	616	2.122	0.5197	0.007396
572	2.438	0.3492	0.005526	617	1.288	0.8148	0.01005
573	-1.796	0.9505	0.0118	618	-0.5787	0.8383	0.0115
574	0.03615	0.6875	0.007292	619	-0.261	0.7348	0.009977
575	0.7197	0.4466	0.005901	620	-0.01962	0.9647	0.01194
576	-1.007	0.8647	0.01223	621	0.5414	0.6017	0.007291
577	-0.6193	0.7209	0.008973	622	-1.824	0.8922	0.01032
578	-1.237	0.8666	0.01105	623	-0.5013	0.8339	0.01133
579 500	3.055	0.8751	0.0122	624	0.1218	0.7114	0.008451
580 584	2.416	0.4024	0.005951	625	5.433	0.5825	0.008735
581	0.8946	0.5779	0.007571	626	-1.019	0.8779	0.01043
582	-0.03292	0.6367	0.007106	627	-0.01778	0.7154	0.008784
583	0.8294	0.4923	0.006507	628 620	0.3937	0.8412	0.0107
584 595	3.712	0.3282	0.005771	629	0.9257	0.6187	0.007701
585	8.227	0.3606	0.007892	630	-0.1175	0.6605	0.008417

Hanlon, Alexandra
Appendix III. Random Effect Estimates by Patient:
Posterior Distribution Mean and Standard Deviation Estimates

Patient ID	Mean	SD	MC Error
631	-1.109	1.012	0.01307
632	-0.695	0.8086	0.01013
633	1.556	0.7215	0.009589
634	-1.691	1.081	0.01245
635	0.8469	0.5797	0.007827
636	2.024	0.4918	0.007418
637	2.085	0.5218	0.007198
638	2.373	0.5057	0.007449
639	-0.9266	0.814	0.009148
640	0.3544	0.7276	0.008888
641	1.826	0.8617	0.01086
642	2.595	0.5854	0.007684
643	0.865	0.6845	0.007892
644	2.053	0.6517	0.009392
645	1.168	0.5748	0.006731
646	-0.2449	0.5903	0.006749
647	2.461	0.4592	0.006975
648	-0.6252	0.8422	0.01038
649	-1.939	0.9455	0.01337
650	-2.289	0.9694	0.0115
651	-0.1341	0.82	0.01157
652	1.551	0.645	0.007681
653	-0.1913	0.907	0.01154
654	5.222	0.4086	0.007046
655	2.276	0.8244	0.01119
656	3.217	0.8432	0.01249
657	4.277	0.6397	0.009066

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Appendix IV. Individual Patient Model Fitting (solid line) with Actual Data (dots): Time in months (x-axis) versus log(PSA)+1 (y-axis)

Hanlon, Alexander

Appendix V. Stepwise Multiple Regression Models	of Response Predictors at Months 0 through
96 (in 6 month increments)	•

------ MONTHS=0 ------

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	0.00079665	0.00039832	6.74	0.0013
Error	654	0.03866	0.00005912		
Corrected Total	656	0.03946			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-0.18593	0.00697	0.04213	712.62	<.0001
GleasonScore	0.00238	0.00073923	0.00061512	10.41	0.0013
Dose -	0.00000227	0.00000100	0.00030417	5.15	0.0236

Bounds on condition number: 1.0289, 4.1157

----- MONTHS=6 ------

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	3 653 656	0.00131 0.05077 0.05207	0.00043543 0.00007775	5.60	0.0009
	Parameter	Standard			

Variable	Estimate	Error	Type II SS	F Value	Pr > F
Intercept Pretx PSA	-0.06898 0.00004322	0.00799 0.00002300	0.00579 0.00027450	74.49 3.53	<.0001 0.0607
GleasonScor		0.00084828 0.00000115	0.00082341 0.00035961		0.0012

Bounds on condition number: 1.0336, 9.2121

A56

-	MONTHS=12	-	 	-	 	-	-	-	-	-	-	-	-	-	 	 	-	-	-	 	-	-	-	-	-	 -	-	-	 	-

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error	3 653	0.00203 0.07390	0.00067736 0.00011316	5.99	0.0005
Corrected Total	656	0.07593			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-0.01896	0.00964	0.00043754	3.87	0.0497
Pretx PSA	0.00006363	0.00002775	0.00059495	5.26	0.0222
GleasonScor	e 0.00335	0.00102	0.00121	10.70	0.0011
Dose	-0.00000263	0.00000139	0.00040733	3.60	0.0582

Bounds on condition number: 1.0336, 9.2121

----- MONTHS=18 ------

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	0.00338	0.00113	6.13	0.0004
Error	653	0.11984	0.00018352		
Corrected Total	656	0.12322			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	0.00297	0.01228	0.00001075	0.06	0.8089
Pretx PSA	0.00009076	0.00003534	0.00121	6.60	0.0104
GleasonScor	e 0.00420	0.00130	0.00190	10.37	0.0013
Dose	-0.00000287	0.00000177	0.00048214	2.63	0.1055

Bounds on condition number: 1.0336, 9.2121

Appendix V. Stepwise Multiple Regression Models of Response Predictors at Months 0 through 96 (in 6 month increments)

MONTHS=24	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	0.00534	0.00267	8.06	0.0003
Error	654	0.21656	0.00033113		
Corrected Total	656	0.22190			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-0.00884	0.00227	0.00502	15.16	0.0001
Pretx PSA	0.00012363	0.00004736	0.00226	6.81	0.0093
GleasonScor	e 0.00505	0.00173	0.00283	8,55	0.0036

Bounds on condition number: 1.0023, 4.009

----- MONTHS=30 ------

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	0.01019	0.00509	7.80	0.0005
Error	654	0.42728	0.00065333		
Corrected Total	656	0.43747			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-0.00670	0.00319	0.00288	4.41	0.0360
Pretx PSA	0.00017528	0.00006653	0.00454	6.94	0.0086
GleasonScor	e 0.00682	0.00243	0.00517	7.92	0.0050

Bounds on condition number: 1.0023, 4.009

 MONTHS=36	***************************************	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	0.02011	0.01005	7.26	0.0008
Error	654	0.90577	0.00138		
Corrected Total	656	0.92588			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-0.00776	0.00464	0.00386	2.79	0.0954
Pretx PSA	0.00024950	0.00009686	0.00919	6.63	0.0102
GleasonScor	e 0.00947	0.00353	0.00996	7.19	0.0075

Bounds on condition number: 1.0023, 4.009

----- MONTHS=42 -----

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	0.04098	0.02049	6.63	0.0014
Error	654	2.02181	0.00309		
Corrected Total	656	2.06280			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-0.01134	0.00694	0.00825	2.67	0.1028
Pretx PSA	0.00035807	0.00014471	0.01893	6.12	0.0136
GleasonScor	e 0.01346	0.00528	0.02012	6.51	0.0110

Bounds on condition number: 1.0023, 4.009

Appendix V.	Stepwise Multiple Regression Models of Response Predictors at Months 0 that	rough
96 (in 6 mont	th increments)	

96 (in 6 month increments))				
		MONTHS=48			
		Analysis of Va	riance		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	0.08612	0.04306	6.02	0.0026
Error	654	4.67427	0.00715		
Corrected Total	656	4.76039			
	Parameter	Standard			
Variable	Estimate		Type II SS F	Value Pr > F	
Intercept	-0.01783	0.01055	0.02040	2.85 0.0916	
		0.00022004	0.03980	5.57 0.0186	
GleasonScore		0.00802	0.04224	5.91 0.0153	
	Bounds on c	ondition numbe	r: 1.0023, 4.00	09	
		MONTHS=54		• • • • • • • • • • • • • • • • • • • •	
		Analysis of Va	riance		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	0.18598	0.09299	5.50	0.0043
Error	654	11.05983	0.01691		
Corrected Total	656	11.24581			
	Parameter	Standard			
Variable	Estimate		Type II SS F	Value Pr > F	
Intercept	-0.02842	0.01623	0.05186	3.07 0.0804	
	0.00076140		0.08558	5.06 0.0248	
GleasonScore		0.01234	0.09159	5.42 0.0203	

Bounds on condition number: 1.0023, 4.009

Appendix V. Stepwise Multiple Regression Models of Response Predictors at Months 0 through 96 (in 6 month increments)

------ MONTHS=60 ------

Analysis of Variance

Source	DF	Sum of Squares	Mean Square		/alue	Pr > F
Model Error Corrected Total	3 653 656	0.49764 26.47999 26.97762	0.16588 0.04055		4.09	0.0068
Variable Intercept Pretx PSA Stage GleasonScor	Parameter Estimate -0.07530 0.00097205 0.03156 e 0.03886	Standard Error 0.03250 0.00053500 0.02164 0.01930	Type II SS F 0.21772 0.13387 0.08625 0.16435	Value 5.37 3.30 2.13 4.05	Pr > F 0.0208 0.0697 0.1452 0.0445	

Bounds on condition number: 1.0653, 9.3971

----- MONTHS=66 -----

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	3 653 656	1.14575 64.22360 65.36936	0.38192 0.09835	3.88	0.0091
Variable	Parameter Estimate	Standard Error	Type II SS F V	/alue Pr >	F

0.05061 0.54761 5.57 0.0186 Intercept -0.11943 0.00144 0.00083319 Pretx PSA 0.29436 2.99 0.0841 0.21695 Stage 0.05005 0.03370 2.21 0.1380 GleasonScore 0.03006 0.05827 0.36956 3.76 0.0530

Bounds on condition number: 1.0653, 9.3971

Appendix V. Stepwise Multiple Regression Models of Response Predictors at Months 0 through 96 (in 6 month increments)

 MONTHS=72	 	 	 	 	

3.52 0.0610

3.34 0.0682

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	FV	/alue	Pr > F
Model Error Corrected Total	3 653 656	2.67935 156.76290 159.44225	0.89312 0.24007		3.72	0.0113
Variable	Parameter Estimate	Standard Error	Type II SS F	Value	Pr > F	
Intercept Pretx PSA Stage	-0.18904 0.00216 0.07942	0.07908 0.00130 0.05265	1.37194 0.66001 0.54611	5.71 2.75 2.27	0.0171 0.0978 0.1320	

Bounds on condition number: 1.0653, 9.3971

0.04697

0.84581

1.96343

0.08816

0.13432

GleasonScore

GleasonScore

------ MONTHS=78 ------

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F۷	F Value	
Model Error Corrected Total	3 653 656	6.34339 384.24570 390.58909	2.11446 0.58843	3.59		0.0135
Variable	Parameter Estimate	Standard Error	Type II SS F	Value	Pr > F	
Intercept Pretx PSA Stage	-0.29872 0.00326 0.12598	0.12380 0.00204 0.08244	3.42576 1.50554 1.37421	5.82 2.56 2.34	0.0161 0.1102 0.1269	

Bounds on condition number: 1.0653, 9.3971

0.07353

Appendix V. Stepwise Multiple Regression Models of Response Predictors at Months 0 through 96 (in 6 month increments)

	MONTHS=84	***************************************
• •	110111113-04	

2.39 0.1227

3.19 0.0747

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	15.16371	5.05457	3.49	0.0154
Error	653	944.44235	1.44631		
Corrected Total	656	959.60606			
	Parameter	Standard			
Variable	Estimate	Error	Type II SS F	Value Pr > F	=
Intercept	-0.47142	0.19409	8.53214	5.90 0.0154	1
Pretx PSA	0.00496	0.00320	3.48547	2.41 0.121	l

0.11528 Bounds on condition number: 1.0653, 9.3971

0.12924

0.19974

0.20581

Stage

GleasonScore

------ MONTHS=90 ------

3.45447

4.60992

Analysis of Variance

		Sum of	Mean			
Source	DF	Squares	Square	F '	Value	Pr > F
Model	3	36.52149	12.17383		3.42	0.0171
Error	653	2325.63575	3.56146			
Corrected Total	656	2362.15724				
	Parameter	Standard				
Variable	Estimate	Error	Type II SS F	Value	Pr > F	
Intercept	-0.74325	0.30457	21.20870	5.96	0.0149	
Pretx PSA	0.00759	0.00501	8.17044	2.29	0.1303	
Stage	0.31647	0.20281	8.67207	2.43	0.1191	
GleasonScore	0.31680	0.18090	10.92284	3.07	0.0804	

Bounds on condition number: 1.0653, 9.3971

------ MONTHS=96 ------

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model Error Corrected Total	3 653 656	88.47374 5733.82966 5822.30340	29.49125 8.78075	3.36	0.0185	
Variable	Parameter Estimate	Standard Error	Type II SS F	Value Pr > F		
Intercept Pretx PSA Stage GleasonScore	-1.17098 0.01169 0.50104 0.48945	0.47824 0.00787 0.31844 0.28404	52.64296 19.35189 21.73784 26.07208	6.00 0.0146 2.20 0.1381 2.48 0.1161 2.97 0.0853		

Bounds on condition number: 1.0653, 9.3971

```
Table of "Li >= 1.05" by FAIL
```

```
Li >= 1.05
                   FAIL
Frequency,
Percent
Row Pct
Col Pct , no , yes , ffffffffffffffffffffff
Col Pct
                                Total
             287 ,
43.68 ,
                                   328
     no
                          41,
                       6.24 ,
                                49.92
             87.50 , 12.50 ,
             65.53 ,
                      18.72 ,
ffffffff^ffffffffffffffff
                                   329
             22.98 ,
                       27.09 ,
                                50.08
             45.90 ,
                      54.10 ,
, 34.47 , 81.28 , ffffffffffffffffff
                                   657
Total
               438
                         219
             66.67
                       33.33
                             100.00
```

Statistics for Table of Li >= 1.05 by FAIL

McNemar's Test fffffffffffffffffffffffff Statistic (S) 63.0208 DF 1 Pr > S <.0001

The FREQ Procedure

```
Table of Li >= 1.06 by FAIL
```

```
Li >= 1.06
                FAIL
Frequency,
Percent
Row Pct
Col Pct
           no
                 yes
                          Total
ૠૠૣઌ૾ઌઌઌઌઌઌૺ
            313 ,
                     49 ,
                            362
    no
          47.64 ,
                   7.46 ,
                          55.10
          86.46 , 13.54 ,
          71.46 ,
                  22.37
170 ,
                            295
          19.03 , 25.88 ,
                          44.90
          42.37 , 57.63 ,
          28.54 ,
                  77.63
fffffffff^ffffffffffffffffffffffff
Total
            438
                    219
                            657
          66.67
                  33.33
                         100.00
```

Statistics for Table of Li >= 1.06 by FAIL

The FREQ Procedure

```
Table of Li >= 1.07 by FAIL
```

```
Li >= 1.07
                 FAIL
Frequency,
Percent
Row Pct
Col Pct
                             Total
            no
                    yes
ffffffff, ffffff, fffffft,
             334 ,
                       58 ,
                               392
                     8.83 ,
           50.84 ,
                             59.67
           85.20 ,
                    14.80 ,
           76.26 ,
                    26.48
104 ,
                      161 ,
                               265
    yes ,
            15.83 , 24.51 ,
                             40.33
, 39.25 , 60.75 ,
23.74 , 73.52 ,
ffffffffffffffffffffff
Total
              438
                      219
                               657
            66.67
                    33.33
                            100.00
```

Statistics for Table of Li >= 1.07 by FAIL

McNemar's Test fffffffffffffffffffffff Statistic (S) 13.0617 DF 1 Pr > S 0.0003

The FREQ Procedure

```
Table of Li >= 1.08 by FAIL
```

```
Li >= 1.08
                FAIL
Frequency,
Percent
Row Pct
Col Pct
           no
                    yes
                           Total
ffffffff, ffffff, tffffff,
             349 ,
                      64 ,
                             413
   no
           53.12 ,
                    9.74 ,
                           62.86
           84.50 , 15.50 ,
           79.68 ,
                   29.22
155 ,
             89 ,
                             244
    yes ,
           13.55 , 23.59 ,
                           37.14
          36.48 , 63.52 ,
, 20.32 , 70.78 , fffffffffffffffffff
            438
                             657
Total
                     219
           66.67
                   33.33
                          100.00
```

Statistics for Table of Li >= 1.08 by FAIL

The FREQ Procedure

```
Table of Li >= 1.09 by FAIL
```

```
Li >= 1.09
                FAIL
Frequency,
Percent
Row Pct
Col Pct
            no
                    yes
                           Total
ŦŦŦŢŢŦŦŦŶŦŦŦŢŢŢŶŶŦŦĬŦĬŢŶ
             361 ,
                      69 ,
                              430
           54.95 , 10.50 ,
                            65.45
           83.95 , 16.05 ,
           82.42 , 31.51 ,
150 ,
                             227
                   22.83 ,
                           34.55
           33.92 , 66.08 ,
           17.58 ,
                  68.49 ,
fffffffff^fffffffffffffff
Total 438 219
                     219
                              657
Total
           66.67
                   33.33
                          100.00
```

Statistics for Table of Li >= 1.09 by FAIL

The FREQ Procedure

```
Table of Li >= 1.10 by FAIL
```

```
Li >= 1.10
             FAIL
Frequency,
Percent
Row Pct
Col Pct
          no
              , yes
                       Total
ŦŦŦŦŦŦŦŦŶŦŦŦŦŦŦŦŦŶŶŦĬŦŦŦŦŶ
           374 ,
         56.93 , 11.42 ,
                       68.34
         83.30 , 16.70 ,
208
          9.74 , 21.92 ,
                       31.66
         30.77 , 69.23 ,
Total
           438
                 219
                         657
         66.67
                33.33
                      100.00
```

Statistics for Table of Li >= 1.10 by FAIL

McNemar's Test ffffffffffffffffffffff Statistic (S) 0.8705 DF 1 Pr > S 0.3508

The FREQ Procedure

```
Table of Li >= 1.11 by FAIL
```

```
Li >= 1.11
                  FAIL
Frequency,
Percent
Row Pct
Col Pct
              no
                     yes
                                Total
ffffffff^fffffff^ffff
                                  461
            58.30 , 11.87 ,
                               70.17
            83.08 , 16.92 ,
                      35.62 ,
            87.44 ,
ffffffff<sup>^</sup>fffffff<sup>^</sup>fffffff
               55 ,
                                  196
    yes
             8.37 ,
                     21.46 ,
                               29.83
            28.06 , 71.94 ,
            12.56 ,
                     64.38 ,
fffffffff^fffffffffffff
Total 438 219
                                  657
            66.67
                      33.33
                              100.00
```

Statistics for Table of Li >= 1.11 by FAIL

The FREQ Procedure

```
Table of Li >= 1.12 by FAIL
```

```
Li >= 1.12
                FAIL
Frequency,
Percent
Row Pct
Col Pct
Total
             388 ,
                      83 ,
                              471
           59.06 , 12.63 ,
                            71.69
           82.38 , 17.62 ,
88.58 , 37.90
           88.58 ,
                    37.90 ,
ffffffff*ffffffff*fffff
              50 ,
  yes
                     136 ,
                              186
                   20.70 ,
            7.61 ,
                            28.31
           26.88 ,
11.42 ,
                   73.12 ,
                   62.10
ffffffff*fffffffff*ffff
             438
                              657
Total
                     219
           66.67
                    33.33
                           100.00
```

Statistics for Table of Li >= 1.12 by FAIL

The FREQ Procedure

```
Table of Li >= 1.13 by FAIL
```

```
Li >= 1.13
                 FAIL
Frequency,
Percent
Row Pct
Col Pct
             no
                      yes
                              Total
fffffffff^fffffffffffffffffff
              395 ,
                        90 ,
                                485
           60.12 , 13.70 ,
                             73.82
            81.44 , 18.56 ,
            90.18 ,
                     41.10
ffffffff^fffffff^ffff
              43 ,
                       129 ,
                                172
            6.54 , 19.63 ,
                             26.18
           25.00 , 75.00 ,
9.82 , 58.90 ,
fffffffff*ffffffff*fff
Total
              438
                      219
                                657
            66.67
                     33.33
                            100.00
```

Statistics for Table of Li >= 1.13 by FAIL

The FREQ Procedure

```
Table of Li >= 1.14 by FAIL
```

```
Li >= 1.14
              FAIL
Frequency,
Percent
Row Pct
Col Pct
         no
                   yes
                          Total
ŦŦŦŦŦŦŦŦ^ŦŦŦŦŦŦŦŶ
            400 ,
                    96 ,
                           496
          60.88 , 14.61 ,
                         75.49
          80.65 , 19.35 ,
, 91.32 , 43.84
ffffffff^fffffffff
            38 ,
                   123 ,
   yes ,
                           161
           5.78 , 18.72 ,
                          24.51
Total
            438
                   219
                           657
          66.67
                  33.33
                         100.00
```

Statistics for Table of Li >= 1.14 by FAIL

The FREQ Procedure

```
Table of Li >= 1.15 by FAIL
```

```
Li >= 1.15
               FAIL
Frequency,
Percent
Row Pct
Col Pct
                           Total
         no
                    yes
ffffffff^fffffffffffffffff
                             507
            405 ,
                     102 ,
           61.64 ,
                   15.53 ,
                           77.17
          79.88 , 20.12 , 92.47 , 46.58 ,
fffffffff^ffffffff^fffff
             33 ,
                     117 ,
                             150
                   17.81 ,
            5.02 ,
                           22.83
           22.00 ,
                   78.00 ,
657
```

Statistics for Table of Li >= 1.15 by FAIL

33.33

100.00

McNemar's Test fffffffffffffffffffffffffffffffffffstatistic (S) 35.2667 DF 1 Pr > S <.0001

66.67

The FREQ Procedure

```
Table of Li >= 1.16 by FAIL
```

```
Li >= 1.16
                  FAIL
Frequency,
Percent
Row Pct
Col Pct
            no
                      yes
                               Total
ŦŦŦŦŦŦŦŦŶŦŦŦŦŦŦŦŶŦŦŦŦŦŦŦŶ
              408 ,
                        105 ,
                                  513
            62.10 ,
                      15.98 ,
                               78.08
            79.53 ,
                      20.47 ,
            93.15 ,
                      47.95
ffffffff<sup>^</sup>fffffff<sup>^</sup>ffffff
               30 ,
                        114 ,
    yes
                                 144
             4.57 ,
                      17.35 ,
                               21.92
            20.83 ,
                      79.17 ,
             6.85 ,
                      52.05
ֈֈֈֈֈֈֈֈֈֈֈ^ֈֈֈֈֈֈֈֈ^ֈֈֈֈֈ
Total
              438
                        219
                                  657
            66.67
                      33.33
                              100.00
```

Statistics for Table of Li >= 1.16 by FAIL

The FREQ Procedure

```
Table of Li >= 1.05 by CLIN
```

```
Li >= 1.05
                  CLIN
Frequency,
Percent
Row Pct
Col Pct
             no
                      yes
                              Total
ffffffff*fffffff*ffff*
              324 ,
                                328
                      0.61 ,
            49.32 ,
                              49.92
            98.78 ,
                      1.22 ,
            54.55 ,
                      6.35
ffffffff<sup>^</sup>fffffff<sup>^</sup>ffffff<sup>^</sup>
              270 ,
   yes
                                329
                      8.98 ,
            41.10 ,
                              50.08
            82.07 ,
                     17.93 ,
            45.45 ,
                     93.65
Total
              594
                        63
                                657
            90.41
                      9.59
                             100.00
```

Statistics for Table of Li >= 1.05 by CLIN

The FREQ Procedure

```
Table of Li >= 1.06 by CLIN
```

```
Li >= 1.06
                      CLIN
Frequency,
Percent
Row Pct
Col Pct
                                     Total
                      , yes
                no
362
                 358 ,
   no
               54.49 ,
                           0.61 ,
                                     55.10
               98.90 ,
                           1.10 ,
               60.27 ,
                           6.35
fffffffff<sup>^</sup>ffffffff<sup>^</sup>ffffffff<sup>^</sup>
yes , 236 , 59 ,
                             59 ,
                                       295
                           8.98 ,
               35.92 ,
                                     44.90
               80.00 ,
                          20.00 ,
               39.73 ,
                          93.65
fffffffff<sup>^</sup>ffffffff<sup>^</sup>fffffff<sup>^</sup>Total 594 63
                                        657
Total
               90.41
                           9.59
                                    100.00
```

Statistics for Table of Li >= 1.06 by CLIN

The FREQ Procedure

```
Table of Li >= 1.07 by CLIN
```

```
Li >= 1.07
                CLIN
Frequency,
Percent
Row Pct
Col Pct
            no ,
                   yes
                          Total
fffffffff^fffffffffffffffff
            387 ,
                     5,
                            392
                   0.76 ,
          58.90 ,
                          59.67
          98.72 ,
                   1.28 ,
          65.15 ,
                   7.94
ffffffff^fffffffffffffffffff
            207 ,
                     58 ,
                            265
   yes ,
          31.51 ,
                   8.83 ,
                          40.33
          78.11 , 21.89 ,
Total
            594
                     63
                            657
                   9.59
                         100.00
          90.41
```

Statistics for Table of Li >= 1.07 by CLIN

The FREQ Procedure

```
Table of Li >= 1.08 by CLIN
```

```
Li >= 1.08
                   CLIN
Frequency,
Percent
Row Pct
Col Pct
              no
                       yes
                                 Total
COL Pct , no , yes ,
fffffffffffffffffffffffffff
               408 ,
                                   413
    no
             62.10 ,
                        0.76 ,
                                 62.86
             98.79 ,
                        1.21 ,
             68.69 ,
, 68.69 , 7.94 , fffffffff^ffffffff
               186 ,
                          58 ,
                                   244
    yes ,
             28.31 ,
                       8.83 ,
                                37.14
             76.23 , 23.77 ,
31.31 , 92.06 ,
fffffffff^fffffffffffffff
                                   657
Total
               594
                          63
```

Statistics for Table of Li >= 1.08 by CLIN

9.59

100.00

90.41

The FREQ Procedure

```
Table of Li >= 1.09 by CLIN
```

Li >= 1.09 CLIN Frequency, Percent Row Pct Col Pct no yes Total fffffffff[^]fffffff[^]ffffff[^] 423 , 430 no 64.38 , 1.07 , 65.45 98.37 , 1.63 , 71.21 , 11.11 fffffffff^ffffffffffffffffffff 171 , 56 , yes , 227 8.52 , 26.03 , 34.55 75.33 , 24.67 , , 28.79 , 88.89 , fffffffff^ffffffffff Total 594 63 657 9.59 90.41 100.00

Statistics for Table of Li >= 1.09 by CLIN

The FREQ Procedure

```
Table of Li >= 1.10 by CLIN
```

```
Li >= 1.10
                  CLIN
Frequency,
Percent
Row Pct
Col Pct
              no
                        yes
                                 Total
fffffffff^fffffff<sup>^</sup>fffffff<sup>^</sup>
               438 ,
                          11 ,
                                   449
             66.67 ,
                        1.67 ,
                                 68.34
             97.55 ,
                        2.45 ,
             73.74 ,
                       17.46
ffffffff^ffffffff^fffffff
               156 ,
    yes ,
                                   208
                        7.91 ,
             23.74 ,
                                 31.66
             75.00 ,
                       25.00 ,
, 26.26 , 82.54 , fffffffff^ffffffff
Total
               594
                          63
                                   657
             90.41
                        9.59
                               100.00
```

Statistics for Table of Li >= 1.10 by CLIN

The FREQ Procedure

```
Table of Li >= 1.11 by CLIN
```

```
Li >= 1.11
                 CLIN
Frequency,
Percent
Row Pct
Col Pct
             no
                      yes
                              Total
fffffffff^fffffffffffffffffff
              449 ,
                        12 ,
                                 461
    no
            68.34 ,
                      1.83 ,
                               70.17
            97.40 ,
                      2.60 ,
            75.59 ,
                     19.05
ffffffff^fffffffffffffffff
              145 ,
    yes
                        51 ,
                                 196
            22.07 ,
                      7.76 ,
                              29.83
            73.98 ,
                     26.02 ,
, 24.41 , 80.95 , fffffffff^ffffffff
Total
              594
                        63
                                 657
            90.41
                      9.59
                             100.00
```

Statistics for Table of Li >= 1.11 by CLIN

The FREQ Procedure

```
Table of Li >= 1.12 by CLIN
```

Li >= 1.12 CLIN Frequency, Percent Row Pct Col Pct no yes Total *ſſſſſſſſſŶſſſſſſſŶŶſĬſſſſŶ* 459 , 12 , 471 69.86 , 1.83 , 71.69 97.45 , 2.55 , , 77.27 , 19.05 , fffffffff^ffffffff 135 , yes , 186 20.55 , 7.76 , 28.31 72.58 , 27.42 , , 22.73 , 80.95 , fffffffff^fffffff^ Total 594 63 657

Statistics for Table of Li >= 1.12 by CLIN

9.59

100.00

90.41

The FREQ Procedure

Table of Li >= 1.13 by CLIN

Li >= 1.13 CLIN

Frequency, Percent Row Pct Col Pct no Total yes *เหน้าแน*น เกเบ้ากัน เกเบ้ากา 472 , 485 13 , no 71.84 , 1.98 , 73.82 97.32 , 2.68 , 79.46 , 20.63 ffffffff^fffffffff^fffff 122 , 50 , yes 172 7.61 , 18.57 , 26.18 70.93 , 29.07 , 20.54 , 79.37 *ffffffff*^ffffff^ffff Total 594 63 657 90.41 9.59 100.00

Statistics for Table of Li >= 1.13 by CLIN

McNemar's Test ffffffffffffffffffffffff Statistic (S) 88.0074 DF 1 Pr > S <.0001

· Will

The FREQ Procedure

```
Table of Li >= 1.14 by CLIN
```

```
Li >= 1.14
                 CLIN
Frequency,
Percent
Row Pct
Col Pct
             no
                       yes
                               Total
ŦŦŦŦŦŦŦŦŶŦŦŦŦŦŦŦŶŦŦĬŤŦŦŶ
              480 ,
                                 496
            73.06 ,
                       2.44 ,
                               75.49
            96.77 ,
                       3.23 ,
            80.81
                     25.40
ffffffff^fffffffff
              114 ,
                                  161
            17.35 ,
                      7.15 ,
                               24.51
, 70.81 , 29.19 ,
, 19.19 , 74.60 ,
ffffffffffffffffffff
Total
              594
                         63
                                 657
```

Statistics for Table of Li >= 1.14 by CLIN

9.59

100.00

McNemar's Test ffffffffffffffffffffffff Statistic (S) 73.8769 DF 1 Pr > S <.0001

90.41

The FREQ Procedure

```
Table of Li >= 1.15 by CLIN
```

Li >= 1.15 CLIN Frequency, Percent Row Pct Col Pct no yes Total fffffffff, ffffff, fffffffff 490 , 507 2.59 , 74.58 , 77.17 96.65 , 3.35 , 82.49 , 26.98 ffffffff^ffffffff^fffff 104 , 46 , 150 yes , 7.00 , 15.83 , 22.83 69.33 , 30.67 , , 17.51 , 73.02 , fffffffff^fffffffff Total 594 63 657

Statistics for Table of Li >= 1.15 by CLIN

9.59

100.00

90.41

The FREQ Procedure

```
Table of Li >= 1.16 by CLIN
```

```
Li >= 1.16
                 CLIN
Frequency,
Percent
Row Pct
Total
              496 ,
                       17,
                               513
           75.49 ,
                     2.59 ,
                             78.08
                     3.31 ,
            96.69 ,
, 83.50 , 26.98 ,
fffffffff^fffffffff^fffffffff
              98 ,
                       46 ,
                               144
   yes ,
                     7.00 ,
            14.92 ,
                             21.92
           68.06 , 31.94 ,
, 16.50 , 73.02
fffffffff^ffffffffff
Total
             594
                       63
                               657
            90.41
                     9.59
                            100.00
```

Statistics for Table of Li >= 1.16 by CLIN

McNemar's Test ffffffffffffffffffffffff Statistic (S) 57.0522 DF 1 Pr > S <.0001

Appendix VII. ASTRO 2002 Annual Meeting Poster Presentation (Moore et al. 2002)

MODEL-BASED PREDICTION OF BIOCHEMICAL FAILURE IN PROSTATE CANCER PATIENTS FOLLOWING RADIATION THERAPY DF Moore¹, AL Hanlon², G Hanks², and A Pollack³⁴

Funded under DOD Grant DAMD17-01-0056 and Presented at the ASTRO 2002 Annaul Meeting

NTRODUCTION: Following external beam radiation for prostate cancer, a patient's serum prostate-specific antigen (PSA) level maintained or rises. Since a rise in PSA levels (i.e., biochemical failure) may indicate progression of the discuse, it is of interest to the status of the disease. Typically, following radiation therapy, PSA levels drop to a low level, which is either identify biochemical failure as soon as possible, while minimizing the chance of a false positive. A commonly used definition of niochemical fuilure is three successive rises in post-nadir PSA. In order to develop an alternative definition, we have developed a random-effects quadratic-linear spline model that allows one to predict the future PSA profile for a patient. We excepare the sensitivity and specificity of this model-based definition to the "three rises" definition as assed to encourtor

compare this prediction method to the three rises method threagh an OBJECTIVES: The objectives are to derive a non-linear random effects model for the PSA profile of a patient following radiation thorapy, to use this model to predict biochemical failure, and to ROC analysis of sensitivity and specificity.

Fig 1. A Quadratic Linear Spline

these patients were used to construct a training set for the model. The nodel, the following procedure was used. For each subject in turn, a rediction of time of bischemical failure was made using each of two with radiation therapy at the Fox Chase Cancer Center between 4:89 lefinitions. One definition, which is widely used in clinical practice, MATERIALS & METHODS: 533 prostute cancer patients treates observed PSA profiles. To evaluate the predictive ability of the and 12/99 had at least eight post-treatment PSA mensurements, and spline model with non-linear random effects was fitted to the atients had a mean of 11.9 PSA observations each. A quadraticensitivity and specificity, we generalize this definition to require redictions were compared to the presence or absence of clinical definition, which is derived from the spline medel, is a rise of a is three consecutive rises in post-radir PSA levels. To compute pecified amount of the past-nadir predicted PSA level. The three consecutive rises of a pre-specified amount. The other

via a random-effects model. The PSA values and litted values for one linear function. Spline methodology was used to smoothly match the four parameters, which were allowed to vary from subject to subject patient are shown in Figure 2: penfiles of this type were fitted for all two parts of the model (Fig. 1). The quadratic-finear spline contains

lailure was declared at the liest occurrence of three successive rises Mochemical failure: For each patient, a predicted PSA trajectory was computed after each successive PSA measurement. A "slope" biochemical failure was declared when the stope of the post-nadir trajectory first exceeded a pre-specified constant c. A "three-rise" which all exceed a pre-specified constant &.

prediction in 444/533 subjects (83%) and produced opposing predictions in (31%) experienced a rise of 1.8 units of log PSA levels in 5 years following in 66 subjects, while the "three rises" method predicted it earlier in just 20 successive rises" method. The two prediction methods produced the same defined by time successive rises in post-nudir PSA, and 167:533 subjects predicted biochemical failure, the model-baxed method predicted it enriver 2SA nudic. The critical value of 1.8 units was chasen to make the model-RESULTS: 178/533 subjects (33%) experienced blochemical failure as subjects. Both methods predicted failure at the same time in 42 subjects. The sensitivity and specificity of the two definitions are compared in a nexed predicted ballure rate comparable to that produced by the "three the remaining 17% of subjects. In the 128 cases when both methods definition, with k = 0, is shown. Note that the slope-based definition Receiver Operator Curve (ROC) in Figure 4. The "null" three-rises exceeds the three-rise definition for most of the range of sensitivity.

censecutive rises in the PSA levels. The model-based approach has superior predictive ability to the three-rises definition over a wide Insjectory for a new patient, and the prediction may be updated as new PSA information is acquired. A critical value may be defined range of sensitivity and specificity. Model-based prediction methods such as the one presented here hold promise as enhanced bools CONCLUSIONS: Our database of the PSA profiles of 533 patients may be used to develop a predictive model for the future PSA experience a clinically significant rate of increase in PSA levels, but never experience three consecutive rises. For example, Figure 2 "three successive tises" method has two important disadvantages when compared to the spline model prediction method: (1) A slo presents a putient with clear bissebernical future, as shown by the predicted penfile (solid line). But there are never more than two in terms of a predicted rise of 1.8 units of log PSA level over 5 years, yielding a predicted biochemical failure rate of 31%. The and steady increase in post-andir PSA levels will be classified as a failure under the "lbree rises" method, but may not signify a chinically meaningful rise within a patient's expected hietime, and (2) a patient with highly variable post-nadir PSA levels may for predicting biochemical failure

Appendix VIII. Cap CURE 2003 Scientific Retreat Poster Presentation (Hanlon et al. 2003)

A Bayesian Approach to Hierarchical Nonlinear Mixed Effects Modeling: Defining Post-Radiation Therapy Relapse in Prostate Cancer Patients Funded under DOD Grant DAMD17-01-0056 and Presented at the 2003 Annual Scientific Retreat for the Prostate Cancer Foundation, NYC Alexandra L. Hanlon, Mourad Tighiount, Gerald E. Hanks, Fox Chase Cancer Center, Philadelphia, Pennsylvania

Purpose: decode a Daysian approach to descriping practes coront patients according to disease rates wing a dans of his medical nothiness mixed effects models. The goal is to generally the work of Histian (1998) by according for points's specific description as demondal.

Raysolam Modeli. from 4 = 1,..., re, 1,..., re, 1, sp. be storyth pen temperat PSA brad for pointed tuben at from 4 = 1 for the vector of descented coverations for praires 4. Ben at on the south analyzed by Hankey (1998), we assume that

M. w. M. + M.; M. = W. A. + M. SERFE, M. A. + M. SERFE, M. M. - PREMIA, M.) + G. - PREMIA, M.A. M. - M.M. M. ¹A. A.

Street or Section of

The rangem posserior durations of $L_{s,t}$ is $L_{s,m}$ and as well specially induced for within sample classification and assembly the significance of patients demonstrates in producing PSA, specially one first and several large the significance of patients of force levels A directed serptic graph (DA,0) for the searched result is and sucher of found comprises affacts and a ... (a

rediction thangs alone bathwest January 1980 and the correst. My particular bathwest 10 per-lemans of St. Ares Is Pertualizated 25th leads respect between and on Agi(F4.8.1) and includes four corresponding The chair and you arrangest furne consists of 35 ment with spens trusted at First Classe Carrar nher 1994 for rean-metantistic prostete cencer, All pai sementantisme with a tated of 417 PSA breats Prates

10 and 1929 regimel. The armifred produced mand PSA terrals, Ulesson

Prior Distributions: We specify proper prior distributions for the parameter θ let class to being seminformation. The prior channel of this analysis are prime, we correlated that they are seasonable in the stree of hering Ettle and fined analysis. We used WirthUCS (1929) to the feet medien complex resolut. Fr. 14, B. 4, 1 = 1,23, f = 1,23,4 mi - MQ100) or 4, og 4 mid - granton (1601, 150) with moveral chances of the hypurpe (1/0/17-7 After experi

Hurban, A. L. (1938) Harmerlines Northmen Moved Effects Markeling, Inference as Jacolifection twing a fully parametric erested. Unpublished Ph.D. draw teting. Temple

Mergeren, K. L. and Robert, C. P. (1995) Testing for machine ris estroyy distance and GMs sampling. In Baycons Statusier 5 (eab 1.0. Degen., J. M. Barcarda, A. P. Dewell, D. V. Limlley and A. P. M. Sardik, Catient Oxford University From Relations, as and Deser, P. f. (1997) Co. Bayconian analysis of instrume with an extreme marker of compensately (with discountered, Commet of the Royal Statushical Society, 2011). publisher, D. J. and Thoram, A. Bant, M. G. (1999) Winfill MS versions 1.2 user

Comparational lanears:

E in well traver the MCMC based medical for outmining the pursuators is mintan
destitution problem are not unsubsit, and result in show mining Methor claims in general
destitution problems. Mergensen and Schort (1995) suggested representationg the
location and so the parameters, and Richardson and Orron (1997) segued for the now
reversible jump MCMC to scange fine co-called trape.

(

(3)

Q

consistent or the second (X_c(c)). Since $\chi_c > \mu_c$ the second component of the sain respectable following the Nathawar demindent designed of Corregonal for an ψ_c over the Self institute of the sample. Then requiring that each of the sinite components here at least two observations, advantage expressments in mixing a component series achieved that ~15,000 invalves. We fundless conditional one sample of the series After experienting power metring and above corresponse of the cheirs, we require the number of the compounds of the institutes as $x_1 = x_2 + \delta$ where δ is a real number of the compounds of the institute as $x_1 = x_2 + \delta$ where δ is a number of the compounds to find the second temperature of the institute of δ . As the second temperature of the

D = 44, "44 = 1, Lp = 4, -24.

The reticonds for this retain is that praients 9 and 12 throw an increase in that is less 4 ft and these breath are all well before 10 they for the other hand, presents 12 and must have determined for the breath being more flam 1.5 opping our at least three corrections result provided with the least being more flam 1.5 opping interior the breath being more flam 1.5 opping interior the breath and the section of the companies of the mixture with the mixture will be the mixture with the mixture will be mixtured with the mixture wi

1111

In the absence of coveriene, Henber (1995) chained for maximum likelithred estimates of the study caracters using the EM algorithm. For companies a persons, we fined the shortest model mechanical for the principal properties and when the shortest means and anchor deviations of the reference promoters. The method are limit in table 1. The estimate of the parameters of the restriction in the function are essentially the sense water both.

яругансфен.			Table 1.	*	
The second secon	Permission		Estimates	attes	
Permitse		MLE	Bayes	3K	Pusterior SD
The MCMC mitmates of the prestation means and attendent deviations for all parameters	ď	0.2568	29650	0.2427	0.2364
energy the marken effects are lineed in Table I. Figures I through 5 store the pertender	ıø	120000	-0.0092	650000	0.0089
emportune to which the transfer to the transfer of the transfer and the emportunit of tradition does habe	Z/f	0.0164	0.0099	0.0073	0.0071
prevent high levels of past treatment PSA levels as expected. While the Chouse some in	ß	970871	1.7990	0.0812	6780.0
probably act an expectant president, it is not close whether the machains of the pulpation stage	Æ	0.1530	0.1503	0.0153	0.0143
L. and sending the standard from the Niethern potential and will be used for within sending	ß	TS95 *0	N655-0	0.0350	0.0480
chassification of parimete. In all owner, variable assertion mothers abread he mad to justify the	G,	00100	89100	0.010.0	0.0034
eardinates of the yearship Ulimpon series, and promitty palpubon stage.	ь	0.2733	0.2735	675070	0.0100

	1	A rest flore	of all pages at the	noer patients. Wa	are from cellur.	strate on such 11.	Wat Plans to comb.	~	e héarkur chain in		Section that	Table I, we find	
	Parameter	ď	in the	W.	W	Ġ.	A.	a) (pretx past)	(52	ch (KT dose)	a, (stage)	a,	a
Table 2	Posterior Mese	94250	-0.9235	N60070	8187	0.1533	£115'0	0.2223	\$6100	9.379E.5	62400	20202	120
	Posterior SD	0.2265	6,6273	0.0084	0.0970	6,0165	6.2303	0.0917	0.0593	\$,044E-5	18950/0	GANR7	6,4103

f ors and C. budgaed on architerus como organicas E tha patientia we a Bancaland to the Efforward

Appendix VIII. Cap CURE 2003 Scientific Retreat Poster Presentation (Hanlon et al. 2003)

A Bayesian Approach to Hierarchical Nonlinear Mixed Effects Modeling; Defining Post-Radiation Therapy Relapse in Prostate Cancer Patients Funded under DOD Grant DAMD17-01-0056 and Presented at the 2003 Annual Scientific Retreat for the Prostate Cancer Foundation, NYC Alexandra L. Hanlon, Mourad Tighiouart, Gerald E. Hanks, Fox Chase Cancer Center, Philadelphia, Pennsylvania remaissure in serent. In this atomic of coverator, timber (1998) chained the maximum likelihood estimates of the enoish parameters using the EM digardies. For comparator, paramer, we fined the above mostle excluding in the reptient entimateriness and estimates to prepare any estimates that there are above the prepare of the prepared of the services. importari produtate of the great treatment even processes of While the Obsauce across in prevent their breats of great sections of the scale and of the scale and of the scale of the scale and other whether the medical of the special probability and other whether the medical scale and other scale and other scale and other scale of the scale and other scale and othe ment and will be used for within sample election medicals almost be used to partify the After experimenty power mexicay and show convengence of the clear, we represent the mexica of the conveniench of the mirrors on $\mu_{ij} + \mu_{ij} + \nu_{ij}$ where h_{ij} is a convenient to the mirrors of the conveniench of the mirrors of mirrors of the convenience of the mirror of is the parameters children, the received firk function we enemately the mene under lade ansarvaganza vorm mikiernel after 182,000 (termices. We dienelisve emiliformel eur aunipe ar die event The enticends for this choice is that guidents 9 and 22 show as increase an desir has 4 Fel. In each those levels are all well before 3.0 regimt. On the other hand, presents 27 and 2 dantitution proteins we say unrebit, and routh in staw mining Marker china in passent for allerated stone personant. The above and Schott (1995) supported reprinatestrating of leavest and a seal personates, and Richardson and Orean (1993) argued for the use rowerist jump 1953/Lit to easing the se-called impao et kont iftvos comencentira cesas genebrandir weth des latent beings more d'ann 1. S'uniter. Les ekse tem bour moscol des conferencies deba se bore des miximens observation to allocado une neachly seralable from So Windburg History Car We describe a Raymina approach to descriptus produce curson polonius according to distanse relative veing a describe vice de benearched neutrons mixed effects metable. The part is no generation the work of firmina (1998) by according for patient's apositic cheardering on For $i=1,...,m,\ell=1,...,n_k$ (e. 1), by the 7th post transport SSA bard for potient index at time I_k and I_k be for exert of classered concentre for patient i. Band on the resist weekpand by fluids (i) SSE, we see uses that subsequently estimating the joint posterior sharely of $(th_1,...,h_n)$ given the driving $(1-h_1,...,h_n)$ given the driving $(1-h_1,...,h_n)$ given the physical to restrict the general relative to the initial contraction of the mixture of the mixture. We assertly proper prior distribution for the parameter θ first close to being emistermative. The priors channel for this analysis are s, we correlated that they has an accessible in the sense of lawing little influence in the analysis. We used Wirelt.03 (1999) to fit this referencement an exclet. unyfini posivice deminisa of L., J. = 1,..., yn und o mer se postociali inkaret fer wildin yde chanification and messuing the nignificance of positest channelswide in postociting profilos ce fairer brets. A cheated sarptic graph (DAD) for the sourced madel in na arrâyar kere cominê af 35 nen who were tronsak al Far Cless Cores nemika of congeneris (with decomma). Journal of the Royal Mannatus Bosses Spingoluby, D. L. and Therms, A. Ban, N. Q. (1999) Well-USS version 1.2 nor norm, MIC Bineshints Urit. Harken, A. L. (1998) Hármethrað Norðinson kólval Effarir kfadeling. Informos a etsonifistisen ming a fally persenethe snakel. Uspráhelsed Ph.D. deser beisen, Temfól indley und A. P. M. Smith, Cationt Oxford University Fram. Richambers, S. seal Orean, F. J. (1997): On Beyonian sealysis of unichases with an $A_{ij} = a^{i} x_{ij} + f_{ij} \exp(-i \beta x_{ij}) + f_{ij} \exp(\beta x_{ij})$ $A_{ij} = p(\lambda) (a^{i} x_{ij}) + f_{ij} = p(\lambda) (a^{i} x_{ij}) + f_{ij}$ $A_{ij} = \lambda (a^{i} x_{ij}) + f_{ij} = p(\lambda) (a^{i} x_{ij}) + f_{ij}$ $A_{ij} = \lambda (a^{i} x_{ij}) + f_{ij}$ Fr. Hr. B. 4., 1 = 3,2.3, f = 3,2.3,4 ind ~ MOLOO. 4. 2, 4. 2,4 ind - gramm(MOL) NOD After experimenting with several chaines of the hyperys rhere is in a Assistantional success of finest coversions Constant with those chromosomel conformal reduction than November 1994 for non-matastatic provints consent. All PSA, descriminations with a total of 417 FSA, keyels. Pre-Preor Distributions and 1929 natital. The

1220 18 1