

ECASMUSHOGESCHOOL BRUSSEL

IT Essentials

Deel I: Getalrepresentaties en schakelingen

2: logische poorten en schakelingen

INHOUD

- Logische poorten
- Logische schakelingen
- Rekenregels

- Logische poorten
 - AND-poort (EN-poort)
 - OR-poort (OF-poort)
 - NOT-poort (NIET-poort)
- Logische voorstelling (interpreteren van bit-waarde)
 - 1: waar
 - 0: niet waar
- In computer werkt dit met elektrische schakelingen (bv. transistor), wij maken abstractie van deze zaken.

Schakelaar

AND- of EN- poort

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

- Voorgesteld door een .
- Vb.: A EN B: A.B = C of AB = C
- 0.0 = 0
- 1.0 = 0
- 0.1 = 0
- 1.1 = 1

OR- of OF-poort

А	В	С
0	0	0
0	1	1
1	0	1
1	1	1

- Voorgesteld door een +
- A OF B: A+B
- 0+0=0
- 0+1=1
- 1+0=1
- 1+1=1

NOT- of NIET-poort

 Het omgekeerde van een waarde wordt weergegeven door een streep boven die waarde: Ā.
 Voor de eenvoud wordt dit vaak ook als dusdanig weergegeven: A'.

- Poorten met meerdere ingangen ook mogelijk
- Bv.: OF A ______ D
- Hoe realiseren?

Dit is toegelaten door de associativiteit van de optelling:

$$A+B+C = (A+B)+C$$

- Combinaties van logische poorten
 - NAND-poort
 - NOR-poort
 - XOR-poort
- De NAND-poort: combinatie van AND en NOT poort

 De NOR-poort: combinatie van OR en NOT poort

Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

- De XOR-poort (of EXOR): exclusieve of
 - Invoer moet verschillend zijn om 1 te geven

Notatie:

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

- Productie van logische schakelingen:
 - NOR- en NAND-poorten zijn meestal goedkoper te fabriceren dan EN- en OFpoorten.
 - Deze logische poorten worden dan ook het meest gebruikt als basis
 - Vb.: OR-poort door middel van NANDs

NAND en NOR zijn computationeel compleet

 elke(!) schakeling kan gemaakt worden,
 enkel gebruikmakende van NOR of NAND poorten

- Oefening
 - construeer een schakeling die de volgende logische uitdrukking voorstelt:

$$A.B + \overline{A.C} + \overline{B+C}$$

REKENREGELS

- Logische rekenregels
 - Beschouw de vermenigvuldiging als "EN"
 - A EN B: A.B
 - Beschouw de optelling als "OF"
 - A OF B: A+B
 - Beschouw het complement als "NIET"
 - NIET A: Ā (ook geschreven als A')
 - Door gebruik te maken van Boolean algebra kunnen logische formules vereenvoudigd worden zodat minder poorten nodig zijn om hetzelfde resultaat te bekomen.
 - Zie ook voorbeeld hoofdstuk 4: adders
 - Cfr: https://www.electronics-tutorials.ws/boolean/bool-6.html

