Analysis of Algorithms

Lecture 1:

Logistics, introduction, and multiplication!

Today

Why are you here?

- Course overview, logistics, and how to succeed in this course.
- Some actual computer science.

- You are better equipped to answer this question than I am, but I'll give it a go anyway...
- Algorithms are fundamental.
- Algorithms are useful.
- Algorithms are fun!
- CE 323 is a required course.

Why is CE 323 required?

- Algorithms are fundamental.
- Algorithms are useful.
- Algorithms are fun!

Algorithms are fundamental

Operating Systems

Machine learning

Cryptography

Compilers

Algorithms are useful

- All those things, without CE class numbers
- As we get more and more data and problem sizes get bigger and bigger, algorithms become more and more important.
- Will help you get a job.

Algorithms are fun!

- Algorithm design is both an art and a science.
- Many surprises!
- A young field, lots of exciting research questions!

Today

- Why are you here?
- Course overview, logistics, and how to succeed in this course.
- Some actual computer science.

Course goals

- The design and analysis of algorithms
 - These go hand-in-hand
- In this course you will:
 - Learn to think analytically about algorithms
 - Flesh out an "algorithmic toolkit"
 - Learn to communicate clearly about algorithms

The algorithm designer's question

Can I do better?

Algorithm designer

The algorithm designer's internal monologue...

What exactly do we mean by better? And what about that corner case? Shouldn't we be zero-indexing?

Can I do better?

Dude, this is just like that other time. If you do the thing and the stuff like you did then, it'll totally work real fast!

Plucky the Pedantic Penguin

Detail-oriented
Precise
Rigorous

Algorithm designer

Lucky the Lackadaisical Lemur

> Big-picture Intuitive Hand-wavey

Both sides are necessary!

Roadmap

Today

- Why are you here?
- Course overview, logistics, and how to succeed in this course.
- Some actual computer science.

Course goals

- Think analytically about algorithms
- Flesh out an "algorithmic toolkit"
- Learn to communicate clearly about algorithms

Today's goals

- Karatsuba Integer Multiplication
- Technique: Divide and conquer
- Meta points:
 - How do we measure the speed of an algorithm?

Let's start at the beginning

Etymology of "Algorithm"

- Al-Khwarizmi was a 9th-century scholar, born in present-day Uzbekistan, who studied and worked in Baghdad during the Abbassid Caliphate.
- Among many other contributions in mathematics, astronomy, and geography, he wrote a book about how to multiply with Arabic numerals.
- His ideas came to Europe in the 12th century.

Dixit algorizmi (so says Al-Khwarizmi)

• Originally, "Algorisme" [old French] referred to just the Arabic number system, but eventually it came to mean "Algorithm" as we know today.

This was kind of a big deal

 $XLIV \times XCVII = ?$

44 × 97

Integer Multiplication

44

× 97

Integer Multiplication

1234567895931413
4563823520395533

Integer Multiplication

1233925720752752384623764283568364918374523856298 4562323582342395285623467235019130750135350013753

How long would this take you?

???

About n^2 one-digit operations

At most n^2 multiplications, and then at most n^2 additions (for carries) and then I have to add n different 2n-digit numbers...

Is that a useful answer?

How do we measure the runtime of an algorithm?

• We measure how the runtime scales with the size of the input.

For grade school multiplication, with python, on your laptop...

I am a bit slower than my laptop

But the runtime scales like n² either way.

Asymptotic analysis

- How does the runtime scale with the size of the input?
 - Runtime of grade school multiplication scales like n²

We'll see a more formal definition on the next class

Is this a useful answer?

Hypothetically...

A magic algorithm that scales like n^{1.6}

Let n get bigger... the magic algorithm by hand than the grade school algorithm on a computer!

Asymptotic analysis

is a useful notion...

How does the runtime scale with the size of the input?

- This is our measure of how "fast" an algorithm is.
- We'll see a more formal definition Thursday

So the question is...

Can we do better?

Let's dig in to our algorithmic toolkit...

Divide and conquer

Break problem up into smaller (easier) sub-problems

Divide and conquer for multiplication

Break up an integer:

$$1234 = 12 \times 100 + 34$$

1234 × 5678
=
$$(12 \times 100 + 34) (56 \times 100 + 78)$$

= $(12 \times 56) 10000 + (34 \times 56 + 12 \times 78) 100 + (34 \times 78)$
One 4-digit multiply

Four 2-digit multiplies

Suppose n is even

More generally

Break up an n-digit integer:

$$[x_1x_2\cdots x_n] = [x_1x_2\cdots x_{n/2}] \times 10^{n/2} + [x_{n/2+1}x_{n/2+2}\cdots x_n]$$

$$x \times y = (a \times 10^{n/2} + b)(c \times 10^{n/2} + d)$$

$$= (a \times c)10^n + (a \times d + c \times b)10^{n/2} + (b \times d)$$
One n-digit multiply

Four (n/2)-digit multiplies

Divide and conquer algorithm

x,y are n-digit numbers

Multiply(x, y):

- If n=1:
 - Return xy
- Write $x = a \cdot 10^{\frac{n}{2}} + b$
- Write $y = c \ 10^{\frac{n}{2}} + d$

Base case: I've
memorized my
1-digit
multiplication
tables... Say n is even...

a, b, c, d are n/2-digit numbers

- Recursively compute ac, ad, bc, bd:
 - ac = **Multiply**(a, c), etc...
- Add them up to get xy:
 - $xy = ac 10^n + (ad + bc) 10^{n/2} + bd$

Make this pseudocode more detailed! How should we handle odd n? How should we implement "multiplication by 10"?

How long does this take?

- Better or worse than the grade school algorithm?
 - That is, does the number of operations grow like n²?
 - More or less than that?

Think-Pair-Share:

(2 min: try to think- how fast is our new algorithm?2 min: what does the person next to you think? why?)

- How do we answer this question?
 - 1. Try it.
 - 2. Try to understand it analytically.

1. Try it.

Conjectures about running time?

Doesn't look too good but hard to tell...

Concerns with the conclusiveness of this approach?

Maybe one implementation is slicker than the other?

Maybe if we were to run it to n=10000, things would look different.

Something funny is happening at powers of 2...

2. Try to understand the running time analytically

Proof by meta-reasoning:

It must be faster than the grade school algorithm, because we are learning it in an algorithms class.

Not sound logic!

2. Try to understand the running time analytically

• Claim:

The running time of this algorithm is AT LEAST n² operations.

How many one-digit multiplies?

Another way to see this*

*we will come back to this sort of analysis later and still more rigorously.

4 problems of size n/2

4^t problems of size n/2^t

- If you cut n in half log₂(n) times,
 you get down to 1.
- So we do this log₂(n) times and get...

$$4^{\log_2(n)} = n^2$$

problems of size 1.

 $\frac{n^2}{n}$ problems of size 1

This is just a lower bound – we're just counting the number of size-1 problems!

Another way to see this

This slide skipped in class, for reference only.

Ignore this

term for now...

- Let T(n) be the time to multiply two n-digit numbers.
- Recurrence relation:

• $T(n) = 4 \cdot T(\frac{n}{2}) + \text{(about n to add stuff up)}$

$$T(n) = 4 \cdot T(n/2)$$

$$= 4 \cdot (4 \cdot T(n/4)) \qquad 4^{2} \cdot T(n/2^{2})$$

$$= 4 \cdot (4 \cdot (4 \cdot T(n/8))) \qquad 4^{3} \cdot T(n/2^{3})$$

$$\vdots$$

$$= 2^{2t} \cdot T(n/2^{t}) \qquad 4^{t} \cdot T(n/2^{t})$$

$$\vdots$$

$$= n^{2} \cdot T(1). \qquad 4^{\log_{2}(n)} \cdot T(n/2^{\log_{2}(n)})$$

That's a bit disappointing

All that work and still (at least) n²...

Divide and conquer can actually make progress

Karatsuba figured out how to do this better!

$$xy = (a \cdot 10^{n/2} + b)(c \cdot 10^{n/2} + d)$$

$$= ac \cdot 10^{n} + (ad + bc)10^{n/2} + bd$$
Need these three things

If only we recurse three times instead of four...

Karatsuba integer multiplication

Recursively compute these THREE things:

Assemble the product:

$$xy = (a \cdot 10^{n/2} + b)(c \cdot 10^{n/2} + d)$$
$$= ac \cdot 10^{n} + (ad + bc)10^{n/2} + bd$$

What's the running time?

3 problems of size n/2

3^t problems of size n/2^t

- If you cut n in half log₂(n) times, you get down to 1.
- So we do this log₂(n) times and get...

 $3^{\log_2(n)} = n^{\log_2(3)} \approx n^{1.6}$ problems of size 1.

We still aren't accounting for the work at the higher levels! But we'll see later that this turns out to be okay.

 $\frac{n^{1.6}}{\text{of size 1}}$ problems

This is much better!

We can even see it in real life!

Can we do better?

- Toom-Cook (1963): instead of breaking into three n/2-sized problems, break into five n/3-sized problems.
 - This scales like n^{1.465}

Try to figure out how to break up an n-sized problem into five n/3-sized problems! (Hint: start with nine n/3-sized problems).

Given that you can break an n-sized problem into five n/3-sized problems, where does the 1.465 come from?

Ollie the Over-achieving Ostrich

Siggi the Studious Stork

- Schönhage–Strassen (1971):
 - Scales like n log(n) loglog(n)
- Furer (2007)
 - Scales like n log(n) ^{2log*(n)}

[This is just for fun, you don't need to know these algorithms!]

Course goals

- Think analytically about algorithms
- Flesh out an "algorithmic toolkit"
- Learn to communicate clearly about algorithms

Today's goals

- Karatsuba Integer Multiplication
- Technique: Divide and conquer
- Meta points:
 - How do we measure the speed of an algorithm?

Wrap up

Wrap up

- Algorithms are:
 - Fundamental, useful, and fun!
- In this course, we will develop both algorithmic intuition and algorithmic techniques
 - It might not be easy but it will be worth it!
- Karatsuba Integer Multiplication:
 - You can do better than grade school multiplication!
 - Example of divide-and-conquer in action
 - Informal demonstration of asymptotic analysis

Next time

- Sorting!
- Divide and Conquer some more
- Begin Asymptotics and Big-Oh notation

