FICHE 06-01: Caractérisation des ouverts de R ALG? K-11-?

Yvann Le Fay

Juin 2019

Enoncé

Démontrer que tout ouvert \mathcal{U} de \mathbb{R} s'écrit comme l'union dénombrable d'intervalles ouverts disjoints. Pour cela, on démontrera avant l'existence pour tout $x \in \mathcal{U}$ d'un intervalle ouvert I_x maximale au sens de l'inclusion tel que $x \in I_x \subset \mathcal{U}$.

Solution

Soit $x \in \mathcal{U}$, posons \mathcal{U}_x l'union de tous les intervalles ouverts contenus dans \mathcal{U} et qui contiennent x, c'est un intervalle ouvert non vide car x est chacun des intervalles qui composent \mathcal{U}_x .

$$\mathcal{U} = \bigcup_{x \in \mathcal{U}} \mathcal{U}_x$$

Montrons que $\mathcal{U}_x \cap \mathcal{U}_y = \emptyset$ ou $\mathcal{U}_x = \mathcal{U}_y$. Pour cela, montrons que si $z \in \mathcal{U}_x$ alors $\mathcal{U}_z = \mathcal{U}_x$.

Soit $z \in \mathcal{U}_x$, il existe un intervalle I ouvert tel que $z, x \in I$, soit $x' \in \mathcal{U}_x$, alors il existe un intervalle J ouvert tel que $x', x \in J$, alors $I \cup J$ est un intervalle ouvert (intervalle car ils contiennent toutes les deux x) qui contient x' et z, donc $x' \in \mathcal{U}_z$. De même, soit $z' \in \mathcal{U}_z$, alors il existe un intervalle J ouvert tel que $z', z \in J$, alors $I \cup J$ est un intervalle ouvert qui contient z', x, donc $z' \in \mathcal{U}_x$. Ainsi s'il existe $z \in \mathcal{U}_x \cap \mathcal{U}_y$, alors $\mathcal{U}_x = \mathcal{U}_z = \mathcal{U}_y$.

Enfin, utilisons un argument de séparabilité de \mathbb{R} , en effet, il existe par la densité de \mathbb{Q} dans \mathbb{R} un rationnel q_x aussi proche de x, d'où $J_{q_x} = J_x$, l'inclusion suivante est bien évidemment dénombrable,

$$\mathcal{U} = \bigcup_{q \in \mathcal{U} \cap \mathbb{Q}} J_q$$