Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 125.08

Figure 1: Outline of path 1

2.1.1 Steglich Esterification

Substrates:

- 1. 1,3-dithiane-2-carboxylic acid available at Sigma-Aldrich
- 2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)C1SCCCS1

Typical conditions: alcohol.DCC.DMAP.DCM or thiol.DCC.DMAP.DCM

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.1.2 Corey-Seebach

Substrates:

- $1. \ CC{=}CC{=}CCOC({=}O)C1SCCCS1$
- 2. Ethanal available at Sigma-Aldrich

Products:

1. CC=CC=CCOC(=O)C(=O)C(C)O

Typical conditions: BuLi.THF.-30C.HgO.H2O.THF

Protections: none

Reference: 10.1055/s-1977-24412

2.1.3 Aldol Condensation

Substrates:

- 1. CC=CC=CCOC(=O)C(=O)C(C)O
- 2. Acetanisole available at Sigma-Aldrich

Products:

 $1. \ CC = CC = CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)O$

Typical conditions: NaOEt.base

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1080/00397911.2016.1206938

2.1.4 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

2.1.5 Swern Oxidation

Substrates:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)O)cc1$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: oxalyl chloride.DMSO.DCM.NMe3.-40C

Protections: none

Reference: 10.1055/s-1990-27036

Retrosynthesis ID: 11163

2.2 Path 2

Score: 145.10

Figure 2: Outline of path 2

2.2.1 Synthesis of haloacetals

Substrates:

1. Ethoxyethylene - available at Sigma-Aldrich

2. sorbic alcohol

Products:

1. CC=CC=CCOC(CBr)OCC

 $\textbf{Typical conditions:} \ \operatorname{NIS/NBS.DCM} \ \operatorname{or} \ \operatorname{MeCN}$

Protections: none

Reference: 10.1021/j000073a032 and 10.1016/j.tet.2016.08.039 and 10.1055/s-0036-1588440 and 10.1055/s-0037-1611810 and 10.1016/0040-4039(94)02412-5 and 10.1016/S0040-4020(97)00658-3

Retrosynthesis ID: 31013574

2.2.2 Corey-Seebach

Substrates:

 $1. \ \mathrm{CC}{=}\mathrm{CC}{=}\mathrm{CCOC}(\mathrm{CBr})\mathrm{OCC}$

2. 2-Methyl-1,3-dithiane - available at Sigma-Aldrich

Products:

1. CC=CC=CCOC(CC(C)=O)OCC

Typical conditions: 1.BuLi.TMEDA.2.TCCA

Protections: none

Reference: 10.1039/P19860000183 AND 10.1016/S0040-4020(01)85646-5 AND

10.1039/c5ob00638d deprotection: 10.1016/j.tetlet.2006.06.131

Retrosynthesis ID: 15272

2.2.3 Aldol Condensation

Substrates:

1. 2-(4-Methoxyphenyl)acetaldehyde - available at Sigma-Aldrich

2. CC = CC = CCOC(CC(C) = O)OCC

Products:

 $1. \ CC = CC = CCOC(OCC)C(=CCc1ccc(OC)cc1)C(C) = O$

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

2.2.4 Allylic Oxidation of Alkenes

Substrates:

 $1. \ CC = CC = CCOC(OCC)C(=CCc1ccc(OC)cc1)C(C) = O$

Products:

 $1. \ \ CC=CC=CCOC(OCC)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and 10.1016/j.tetlet.2016.05.063 (Scheme 2)

Retrosynthesis ID: 2583

2.2.5 Diels-Alder

Substrates:

1. CC=CC=CCOC(OCC)C(=CC(=O)c1ccc(OC)cc1)C(C)=O

Products:

 $1. \ CCOC1OCC2C = CC(C)C(C(=O)c3ccc(OC)cc3)C21C(C) = O$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

 $ANIE1668{>}3.0.CO; 2\text{-}Z\ \textbf{AND}10.1021/ja062508t$

2.2.6 Oxidation of acetals to lactones

Substrates:

 $1. \ \ CCOC1OCC2C = CC(C)C(C(=O)c3ccc(OC)cc3)C21C(C) = O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

 $\textbf{Typical conditions:} \ CrO3.H2SO4.acetone.H2O.rt$

Protections: none

Reference: DOI: 10.1021/ja108642s

Retrosynthesis ID: 14516

2.3 Path 3

Score: 154.86

Figure 3: Outline of path 3

2.3.1 Reduction of nitriles to aldehydes

Substrates:

1. 2-hydroxy-2-(4-methoxyphenyl)acetonitrile - available at Sigma-Aldrich

Products:

1. p-methoxymandelaldehyd

 ${\bf Typical\ conditions:\ DIBALH.DCM}$

Protections: none

Reference: 10.1016/j.bmc.2006.01.061 and 10.1016/j.tet.2012.07.022 and 10.1016/j.bmcl.2009.01.075 and 10.1016/j.bmcl.2007.09.081 and 10.1021/jo000502v

2.3.2 Aldol Condensation

Substrates:

1. 4-Hydroxy-2-butanone - available at Sigma-Aldrich

 $2. \ \, \hbox{p-methoxymandelaldehyd}$

Products:

 $1. \ COc1ccc(C(O)C=C(CO)C(C)=O)cc1$

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

2.3.3 Oxidation of allylic alcohols

Substrates:

1. COc1ccc(C(O)C=C(CO)C(C)=O)cc1

Products:

1. COc1ccc(C(=O)C=C(CO)C(C)=O)cc1

Typical conditions: MnO2.DCM

Protections: none

Reference: 10.1016/j.ejmech.2017.01.036 p. 196, 199 and

10.1016/j.ejmech.2011.03.002 p. 2218, SI p. S-4

2.3.4 Tandem oxidation-esterification

Substrates:

1. COc1ccc(C(=O)C=C(CO)C(C)=O)cc1

Products:

1. COC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O

Typical conditions: Oxidant (eg. I2.K2CO3 or Ca(OCl)2).MeOH

Protections: none

Reference: 10.1016/S0040-4039(00)73550-7 and 10.1016/j.tet.2005.03.097 and

10.1021/ol062940f

2.3.5 Acid catalyzed transesterification

Substrates:

- 1. COC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O
- 2. sorbic alcohol

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Typical conditions: H+

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1021/cr00020a004

2.3.6 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.4 Path 4

Score: 156.72

Figure 4: Outline of path 4

2.4.1 Steglich Esterification

Substrates:

- 1. Na available at Sigma-Aldrich
- 2. sorbic alcohol

Products:

1. butyric acid hexa-2,4-dienyl ester

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

 $\textbf{Reference:}\ 10.1002/anie.197805221$

2.4.2 Formylation of dithianes

Substrates:

1. Dimethylformamide - available at Sigma-Aldrich

2. 2-(4-methoxyphenyl)-1,3-dithiane - available at Sigma-Aldrich

Products:

1. COc1ccc(C2(C=O)SCCCS2)cc1

Typical conditions: LDA.DMF

Protections: none

Reference: 10.1055/s-2006-950359 and 10.3987/COM-12-S(N)85 and

10.1021/acs.orglett.5b02662

Retrosynthesis ID: 34225

2.4.3 Condensation of esters with aldehydes/ketones

Substrates:

1. butyric acid hexa-2,4-dienyl ester

2. COc1ccc(C2(C=O)SCCCS2)cc1

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC1(c2ccc(OC)cc2)SCCCS1)CC$

 $\textbf{Typical conditions:} \ \mathrm{LDA.THF}$

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

Retrosynthesis ID: 14983

2.4.4 Synthesis of ketones from dithianes

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC1(c2ccc(OC)cc2)SCCCS1)CC$

Products:

1. CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)CC

 ${\bf Typical\ conditions:\ MeI. CaCO3}$

Protections: none

Reference: 10.1016/j.tet.2013.09.075 and 10.1021/jo00007a015 and 10.1021/jo0610412 and 10.1021/ol901024t and 10.1021/ol500553x and 10.1021/jo0626459

Retrosynthesis ID: 31724

2.4.5 Allylic Oxidation of Alkenes

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)CC$

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

Retrosynthesis ID: 2583

2.4.6 Diels-Alder

Substrates:

 $1. \ CC = CC = CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C) = O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

2.5 Path 5

Score: 168.93

Figure 5: Outline of path 5

Substrates:

- 1. 2-ethoxy-[1,3]dioxolane
- 2. 4-Methoxy-oxo-benzeneacetic acid Methyl ester available at Sigma-Aldrich

Products:

 $1. \ \mathrm{COC}(=\mathrm{O})\mathrm{C1}(\mathrm{c2ccc}(\mathrm{OC})\mathrm{cc2})\mathrm{OCCO1}$

Typical conditions: indium triflate. MeOH. CH2Cl2. 20C

Protections: none

Reference: DOI: 10.1016/j.tetlet.2006.10.111 or DOI: 10.1002/cber.19620950803

2.5.2 Aldehyde Formation

Substrates:

1. COC(=O)C1(c2ccc(OC)cc2)OCCO1

Products:

 $1. \ \mathrm{COc1ccc}(\mathrm{C2}(\mathrm{C=O})\mathrm{OCCO2})\mathrm{cc1}$

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and 10.1021/j000222a054 and 10.1021/ja9934908 and 10.1021/j0902426z

Retrosynthesis ID: 28551

2.5.3 Wittig olefination

Substrates:

- 1. butyryloxy-acetaldehyde
- 2. crotyl bromide

Products:

1. butyric acid hexa-2,4-dienyl ester

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

Reference: 10.1021/ja0015287 and 10.1021/ja404673s and 10.1021/ol901979x

Retrosynthesis ID: 9545

${\bf 2.5.4}\quad {\bf Condensation\ of\ esters\ with\ aldehydes/ketones}$

Substrates:

1. butyric acid hexa-2,4-dienyl ester

 $2. \ \, \mathrm{COc1ccc}(\mathrm{C2}(\mathrm{C=O})\mathrm{OCCO2})\mathrm{cc1}$

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC1(c2ccc(OC)cc2)OCCO1)CC$

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

${\bf 2.5.5}\quad {\bf Hydrolysis\ of\ ketals}$

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC1(c2ccc(OC)cc2)OCCO1)CC$

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)CC$

Typical conditions: H2O.HCl

Protections: none

Reference: 10.1021/jo0159035 and 10.1021/jo00194a003 and

2.5.6 Allylic Oxidation of Alkenes

Substrates:

$$1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)CC$$

Products:

 $1. \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

 $\textbf{Typical conditions:} \ tBuOOH.Pd(OH)2/C \ or \ PhI(OAc)2 \ or \ SeO2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.5.7 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=CC(=O)c1ccc(OC)cc1)C(C)=O$

Products:

 $1. \ \ COc1ccc(C(=O)C2C(C)C=CC3COC(=O)C32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

 $ANIE1668{>}3.0.CO; 2\text{-}Z\ \text{AND}\,10.1021/ja062508t$