Washington & Jefferson College Math 420

Constant Transversal Matrices

Author: Frances Sinclair
April 30, 2019

Contents

1	Introduction	1
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2 2 3 3 4
3	Constant Transversal Matrices3.1 Definitions3.2 Special CT Matrices3.3 Properties of CT matrices	4
4	V_n is a subspace of $M_{n imes n}$	7
5	Dimension of V_n	8
6	How to fill in 3×3 and 4×4 CT matrices: 6.1 Filling in a 3×3 CT matrix:	
7	Conclusion	13
8	References	13

1 Introduction

Choose exactly 1 entry from each row and column from the matrix below (note that you will choose exactly 3 numbers):

$$\begin{bmatrix} 1 & 15 & 14 \\ 10 & 24 & 23 \\ 7 & 21 & 20 \end{bmatrix}$$

I can guarantee that no matter what combinations of numbers you choose, the sum of all of them is 45. Try for example 1+24+20 or 14+10+21. This fun matrix here brings up a couple of questions: Is this matrix unique? How can I make a matrix like this? What are the properties of a matrix like this?

2 Background

In this section of the paper we will provide some background that will become relevant later in the paper.

2.1 Vector Space

2.1.1 Axioms of a vector space

First, let V be a nonempty set, and let $u, v \in V$ and $c, d \in \mathbb{R}$. As you may recall the axioms for a vector space are as follows:

- 1. u + v is in V
- **2.** u + v = v + u
- 3. (u+v)+w=u+(v+w)
- 4. There is a zero vector, 0, such that u + 0 = u.

- 5. For each u in V there exists some -u such that u + (-u) = 0.
- 6. cu is in V
- 7. c(u+v) = cu + cv
- 8. (c+d)u = cu + cd
- 9. (cd)u = c(du)
- 10. 1u = u

2.1.2 Definition of a subspace $U \subseteq V$

Secondly, let V be a vector space and $U \subseteq V$ be a nonempty subset. U is a vector space if the following are true

- 1. *U* is closed under addition (Axiom 1).
- 2. *U* is closed under scalar multiplication (Axiom 6).

2.1.3 Spanning Set

A subset of S of V is a spanning set of V if every element of V can be written as a linear combination of the elements of S.

2.1.4 Linear Independence

A set $S \subseteq V$ is linearly independent if for any linear combination

$$a_1v_1 + a_2v_2 + \dots + a_xv_x = 0$$

of all the elements in S the only way to get the zero vector is if every coefficient in the linear combination is zero. That is, if every $a_i = 0$.

2.1.5 Basis and Dimension

A basis B of a vector space V is a linearly independent spanning set of V. The dimension of a vector space V is the number of elements in a basis for V.

2.1.6 Definition of R_k and C_l

 $R_k = [r_{ij}]$ is the $n \times n$ matrix such that all entries in R_k are zeros expect for the k^{th} row which contains all ones. That is $r_{ij} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$

Example for a 4×4 matrix:

$$R_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Similarly for $C_l = [c_{ij}]$ is a $n \times n$ matrix such that all entries in C_l are zeros except for the l^{th} column which contains all ones. That is $c_{ij} = \begin{cases} 1 & \text{if } j = l \\ 0 & \text{if } j \neq l \end{cases}$

Example for a 4×4 matrix:

$$C_3 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

It is important to note that the set $\{R_1, R_2, ..., R_n, C_1, C_2, ..., C_n\}$ is a linearly dependent set, but will be a linearly independent set if one element of the set is removed.

2.2 Permutations

2.2.1 Definition of Permutations on the set $\{1, 2, 3, ..., n\}$

A permutation of a set $\{1, 2, ..., n\}$ is a bijection on $\{1, 2, 3, ..., n\}$. That is, a permutation is a rearrangement of all the elements 1 through n.

Let S_n be the set of all permutations on $\{1, 2, 3, ..., n\}$.

3 Constant Transversal Matrices

3.1 Definitions

Let us begin by defining some essential terms.

Let $A = [a_{ij}]$ be a $n \times n$ matrix, and let $\sigma \in S_n$ be a permutation.

A transversal, T_{σ} of A, is defined as

$$T_{\sigma} = \{a_{i\sigma(i)}|i=1,2,3,...,n\}$$

Thus a transversal of A is a set of n numbers from A with exactly one from each row and column on A.

Let $S(T_{\sigma})$ be the sum of all numbers in the transversal T_{σ} of A. That is,

$$S(T_{\sigma}) = \sum_{i=1}^{n} a_{i\sigma(i)}.$$

A matrix A is a constant transversal matrix, denoted CT, if there is a constant k such that $S(T_{\sigma}) = k$ for every $\sigma \in S_n$. In this case, the constant transversal sum of A is denoted S(A).

Let V_n be the set of all $n \times n$ CT matrices. We shall see that V_n is indeed a (2n-1)-dimensional subspace of $M_{n \times n}$.

3.2 Special CT Matrices

1. Constant Matrices

A constant matrix is a $n \times n$ matrix, $A = [a_{ij}]$ such that all entries in the matrix

are the same number, e. That is $a_{ij} = e$ for some constant e, for every i, j. For example,

is a constant matrix. We can see that no matter what transversal σ gives, you will always end up with a transversal sum of S(A) = ne. Thus the transversal is always a constant, and a constant matrix is a CT matrix.

2. Constant row matrices

A constant row matrix is a $n \times n$ matrix with constant rows. For example,

$$\begin{bmatrix}
1 & 1 & 1 \\
3 & 3 & 3 \\
5 & 5 & 5
\end{bmatrix}$$

is a constant row matrix. Let $A = [a_{ij}]$ be a matrix with constant rows. Let $a_{ij} = k_i$ for every j. Regardless of the transversal, one number is chosen from each row, and hence $T_{\sigma} = \{k_1, k_2, ..., k_n\}$ for every σ . Thus we can see that $S(A) = \sum_{i=1}^{n} k_i$ which will always be the same constant regardless of the transversal you choose. Thus a matrix with constant rows is a CT matrix.

3. Constant Column Matrix

The explanation is almost identical to the explanation of a constant column matrix.

4. Counting Matrices

A counting matrix is a $n \times n$ matrix, A, consisting of $1, 2,, n^2$ in natural order. They are of the form

$$A = \begin{bmatrix} 1 & 2 & 3 & \dots & n \\ n+1 & n+2 & n+3 & \dots & 2n \\ 2n+1 & 2n+2 & 2n+3 & \dots & 3n \\ \dots & & & & & \\ (n-1)n+1 & (n-1)n+2 & (n-1)n+3 & \dots & n^2 \end{bmatrix}.$$

For example,

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

is a counting matrix. Consider a transversal of $T_{\sigma} = \{a_{i\sigma(i)} | i = 1, 2, 3, ..., n\}$. Note that the element in row i and column j is (i-1)n+j. Thus

$$S(T_{\sigma}) = \sum_{i=1}^{n} a_{i\sigma(i)}$$

$$= \sum_{i=1}^{n} ((i-1)n + \sigma(i))$$

$$= n \sum_{i=1}^{n} (i-1) + \sum_{i=1}^{n} \sigma(i)$$

$$= n(0+1+2+...+n-1) + \sum_{i=1}^{n} i$$

$$= n \frac{(n-1)n}{2} + \frac{n(n+1)}{2}$$

$$= \frac{n^{2}(n-1) + n(n+1)}{2}$$

$$= \frac{n(n^{2}+1)}{2},$$

which is a constant. Thus we can conclude that A is a constant transversal matrix and $S(A) = \frac{n(n^2+1)}{2}$.

Let us consider the 3×3 matrix above. According to the formula S(B)=15. We can see that this is true for 1+5+9, 2+6+7 and so on.

3.3 Properties of CT matrices

1. Property 1: If one row of a CT matrix is a constant row, they all must be constant rows.

Proof: Let $A \in V_n$, and let row k be a constant row, let $l \neq k$ be any row of A, and let i, j be any columns of A such that $i \neq j$. Let us consider a transversal of A, T_{σ_1} , and let $a_{ki}, a_{lj} \in T_{\sigma_1}$. Now let us define T_{σ_2} such that it is the same as T_{σ_1} , expect $a_{ki}, a_{lj} \notin T_{\sigma_2}$, and $a_{li}, a_{kj} \in T_{\sigma_2}$. Since A is CT we know that the sum of all the elements of T_{σ_1} must be equal to the sum of $T_{\sigma_{12}}$. From this we can see that

$$a_{ki} + a_{lj} = a_{kj} + a_{li}$$

since all other elements of T_{σ_1} and T_{σ_1} are the same. Now since we know that row k is a constant row we also know that $a_{ki} = a_{kj}$ and we can see that $a_{lj} = a_{li}$ and thus if any row in A is a constant row we can conclude that every row in A must be a constant row.

2. The same can be said for constant column matrices and the proof is similar.

4 V_n is a subspace of $M_{n \times n}$

Let $A, B \in V_n$, where $A = [a_{ij}]$ and $B = [b_{ij}]$ with S(A) = q and S(B) = r. Let $\sigma \in S_n$. The following proofs will demonstrate that V_n is a subspace:

 V_n is closed under addition.

Proof. Consider $A+B=[a_{ij}+b_{ij}]$ so any T_{σ} of A+B is equal to $\{a_{i\sigma(i)}+b_{i\sigma(i)}|i=1,2,...,n\}$.

So then we have

$$S(A+B) = \sum_{i=1}^{n} a_{i\sigma(i)} + b_{i\sigma(i)}$$
$$= \sum_{i=1}^{n} a_{i\sigma(i)} + \sum_{i=1}^{n} b_{i\sigma(i)}$$
$$= S(A) + S(B)$$
$$= q + r.$$

As we can see $S(T_{\sigma})$ of A + B is a constant number and so we can conclude that A + B is a CT matrix. Thus CT matrices are closed under addition.

 V_n closed under scalar multiplication.

Proof. Since A is a constant transversal matrix we know that $S(T_A) = \sum_{i=1}^n a_{i\sigma(i)} = q$ where q is a constant. Now multiply A by $c \in \mathbb{R}$ to get $cA = [ca_{ij}]$. So a transversal of cA would be $T_{\sigma} = \{ca_{i\sigma(i)}|i=1,2,...,n\}$, and $S(cA) = \sum_{i=1}^n ca_{i\sigma(i)} = c\sum_{i=1}^n a_{i\sigma(i)} = cq$ which is a constant for every e S_n . Thus we can conclude that e is a constant transversal matrix, and constant transversal matrices are closed under scalar multiplication.

Thus since V_n is closed under addition and scalar multiplication we know that V_n is a subspace of $M_{n\times n}$

5 Dimension of V_n

We will prove that you can find a basis with (2n-1) elements for V_n .

Let
$$A = [a_{ij}] \in V_n$$
.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Let B be the CT matrix consisting of constant columns using the values from the first row of A. That is,

$$B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{11} & a_{12} & \dots & a_{1n} \\ \dots & & & & \\ a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}$$

Then the matrix A - B has a constant row of 0 in row 1. That is,

$$A - B = \begin{bmatrix} 0 & 0 & \dots & 0 \\ (a_{21} - a_{11}) & (a_{22} - a_{12}) & \dots & (a_{2n} - a_{1n}) \\ (a_{31} - a_{11}) & (a_{32} - a_{12}) & \dots & (a_{3n} - a_{1n}) \\ \dots & & & & \\ (a_{n1} - a_{11}) & (a_{n2} - a_{12}) & \dots & (a_{nn} - a_{1n}) \end{bmatrix}$$

By Property 1, since row 1 is a constant row, all rows in A_B are constant rows, so

$$A - B = \begin{bmatrix} 0 & 0 & \dots & 0 \\ (a_{21} - a_{11}) & (a_{21} - a_{11}) & \dots & (a_{21} - a_{11}) \\ (a_{31} - a_{11}) & (a_{31} - a_{11}) & \dots & (a_{31} - a_{11}) \\ \dots & & & & \\ (a_{n1} - a_{11}) & (a_{n1} - a_{11}) & \dots & (a_{n1} - a_{11}) \end{bmatrix}$$

Note that

$$A = (A - B) + B$$

$$= \begin{bmatrix} 0 & 0 & \dots & 0 \\ (a_{21} - a_{11}) & (a_{21} - a_{11}) & \dots & (a_{21} - a_{11}) \\ (a_{31} - a_{11}) & (a_{31} - a_{11}) & \dots & (a_{31} - a_{11}) \\ \dots & & & & \\ (a_{n1} - a_{11}) & (a_{n1} - a_{11}) & \dots & (a_{n1} - a_{11}) \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{11} & a_{12} & \dots & a_{1n} \\ \dots & & & & \\ a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}$$

$$(\mathbf{a}_{21} - a_{11}) \begin{bmatrix} 0 & 0 & \dots & 0 \\ 1 & 1 & \dots & 1 \\ \dots & & & \\ 0 & 0 & \dots & 0 \end{bmatrix} + (a_{31} - a_{11}) \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 1 & 1 & \dots & 1 \\ \dots & & & \\ 0 & 0 & \dots & 0 \end{bmatrix} + \dots + (a_{n1} - a_{11}) \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & & & \\ 1 & 1 & \dots & 1 \end{bmatrix} + \dots$$

$$\mathbf{a}_{11}\begin{bmatrix}1 & 0 & \dots & 0\\1 & 0 & \dots & 0\\\dots & & & \\1 & 0 & \dots & 0\end{bmatrix} + a_{12}\begin{bmatrix}0 & 1 & \dots & 0\\0 & 1 & \dots & 0\\\dots & & & \\0 & 1 & \dots & 0\end{bmatrix} + \dots + a_{1n}\begin{bmatrix}0 & \dots & 1\\0 & \dots & 1\\\dots & & \\0 & \dots & 1\end{bmatrix}$$

$$= (\mathbf{a}_{21} - a_{11})R_2 + (a_{31} - a_{11})R_3 + \dots + (a_{n1} - a_{11})R_n + a_{11}C_1 + a_{12}C_2 + \dots + a_{1n}C_n$$

Thus A can be written as a linear combination of R_2 through R_n and C_1 through C_n . Hence $\{R_2, R_3, ..., R_n, C_1, C_2, ..., C_n\}$ spans V_n , and since we already know that the set $\{R_2, R_3, ..., R_n, C_1, C_2, ..., C_n\}$ is linearly independent, since R_1 is missing, we can conclude that $\{R_2, R_3, ..., R_n, C_1, C_2, ..., C_n\}$ is a basis for V_n , and V_n has dimension 2n-1.

6 How to fill in 3×3 and 4×4 CT matrices:

Given the first row and column of a matrix, you can generate a CT matrix yourself by following these simple steps:

6.1 Filling in a 3×3 CT matrix:

Given:

5	1	13
1		
7		

Step 1 fill in the 2nd row using the difference a_{12} – a_{11} and add it to the entry above:

5	1	13		5	1	13		5	1	13
1			$\rightarrow (1-5) = -4 \rightarrow$	1	1-4	13-4	\rightarrow	1	-3	9
7				7		-		7		

Step 2 repeat for row 3:

5	1	13		5	1	13		5	1	13
1	-3	9	$\rightarrow (7-1) = 6 \rightarrow$	1	-3	9	\rightarrow	1	-3	9
7				7	-3+6	9+6		7	3	15

DONE!! Looking at the matrix above we see that it's constant transversal sum is 17. We see this is true from the transversal sum 5-3+15 or 1+9+7. Feel free to try other possible transversals to test that this is true.

6.2 Filling in a 4×4 CT matrix:

Given:

1	2	5	9
3			
4			
2			

Step 1 fill in the 2nd row using the difference a_{12} – a_{11} and add it to the entry above:

1	2	5	9		1	2	5	9		1	2	5	9
3				$\rightarrow (3-1) = 2 \rightarrow$	3	2 + 2	5 + 2	9 + 2	\rightarrow	3	4	7	11
4				$\rightarrow (3-1)-2 \rightarrow$	4					4			
2					2					2			

Step 2 repeat for row 3:

1	2	5	9		1	2	5	9		1	2	5	9	
3	4	7	11	$\rightarrow (4-3) = 1 \rightarrow$	3	4	7	11		3	4	7	11	
4					4	4+1	7 + 1	11 + 1	 →	4	5	8	12	
2					2					2				

Step 3 repeat for row 4:

1	2	5	9		1	2	5	9	1	2	5	9
3	4	7	11	(2 4) - 2 x	3	4	7	11	3	4	7	11
4	5	8	12	$\rightarrow (2-4) = -2 \rightarrow$	4	5	8	12	4	5	8	12
2					2	5 – 2	8 – 2	12 – 2	2	3	6	10

DONE!! Looking at the matrix above we see that it's constant transversal sum is 23. We see this is true from the transversal sum 3+2+8+10 or 3+2+6+12. Feel free to try other possible transversals to test that this is true.

12

At this point I would like to encourage the reader to practice this fun trick on their own to impress and baffle your friends at a later time.

7 Conclusion

As seen in this paper we explained what CT matrices are. We looked at a couple different CT matrices and explained why they are CT. We explained the reasoning behind a couple different properties of CT matrices, and showed how to create a basis for V_n , also discovering the dimension of V_n and proving that it is indeed a subspace of $M_{n\times n}$. Finally we looked over a neat little trick for generating CT matrices when given the first row and column of a matrix.

8 References

Beezer, Robert A. A First Course in Linear Algebra. Congruent Press, 2012. Sprows, David. "A Tricky Linear Algebra Example." The College Mathematics Journal, vol. 39, 1 Jan. 2008.