Nanyang Technological University, SPMS, MAS

MH4501 Multivariate Analysis, Semester 2 AY 2022-23

Assignment 3 (Due date: 4:30pm, 23 March 2023)

Remark: NTU places very high importance on honesty in academic work submitted by students, and adopts a policy of **ZERO** tolerance on cheating and plagiarism.

1. Suppose that $X = (X_1, X_2, X_3, X_4)^{\top}$ is a random vector with the covariance matrix

$$\Sigma = \begin{pmatrix} 5 & 3 & 2 & 1 \\ 3 & 5 & 1 & 2 \\ 2 & 1 & 5 & 3 \\ 1 & 2 & 3 & 5 \end{pmatrix}.$$

(a) Without the computer's aid, verify that the principal components for this covariance matrix are

$$Y_1 = \frac{1}{2}(X_1 + X_2 + X_3 + X_4), \quad Y_2 = \frac{1}{2}(X_1 + X_2 - X_3 - X_4),$$

 $Y_3 = \frac{1}{2}(X_1 - X_2 + X_3 - X_4), \quad Y_4 = \frac{1}{2}(X_1 - X_2 - X_3 + X_4).$

- (b) Determine the least number of principal components that can account for at least 85% of the total variance.
- (c) Compute the correlation coefficients between Y_3 and $X_k, k = 1, 2, 3, 4$.
- 2. The eigenvalues and eigenvectors of the covariance matrix for three standardized random variables Z_1 , Z_2 , and Z_3 are

$$\lambda_1 = 1.96$$
 $e'_1 = (0.625, 0.593, 0.507),$
 $\lambda_2 = 0.68$ $e'_2 = (-0.219, -0.491, 0.843),$
 $\lambda_3 = 0.36$ $e'_3 = (0.749, -0.638, -0.177).$

- (a) Assuming an m=1 factor model for (Z_1,Z_2,Z_3) , calculate the loading matrix L and matrix of specific variances Ψ using the principal component solution method.
- (b) Calculate communalities h_i^2 , i = 1, 2, 3.
- (c) What proportion of the total population variance is explained by the first common factor?
- (d) Calculate $Corr(Z_i, F_1)$ for i = 1, 2, 3. Which variable might carry the greatest weight in "naming" the common factor?

1

3. The following table shows the estimates of factor loadings and specific variances before and after rotation, based on the correlation matrix of the stock return data. Assume that l_{32} , l_{52} , and l_{ij}^* are positive and two-factor model is assumed. Calculate the unknown values in the table.

	Fac	ctor loading \tilde{l}_{ij}	Communalities	Specific variances
Variable	F_1	F_2	$ ilde{h}_i^2$	$ ilde{\psi}_i$
1. J.P. Morgan	0.115	0.755	$ ilde{h}_1^2$	$ ilde{\psi}_1$
2. Citibank	0.322	0.788	$ ilde{h}_2^2$	$ ilde{\psi}_2$
3. Wells Fargo	0.182	l_{32}	$ ilde{h}_3^2$	$ ilde{\psi}_3$
4. Toyal Dutch Shell	1.000	0	$egin{array}{c} ilde{h}_2^2 \ ilde{h}_3^2 \ ilde{h}_4^2 \ ilde{h}_5^2 \end{array}$	$egin{array}{c} \psi_2 \ ilde{\psi}_3 \ ilde{\psi}_4 \ ilde{\psi}_5 \end{array}$
5. ExonMobil	0.683	l_{52}	$ ilde{h}_5^2$	$ ilde{\psi}_5$
Cumulative Proportion	p_1	p_2		
of total sample variance explained				
	Rotate	d factor loading \tilde{l}_{ij}^*	Communalities	Specific variances
Variable	Rotate F_1^*	d factor loading \tilde{l}_{ij}^* F_2^*	Communalities \tilde{h}_i^{*2}	Specific variances $\tilde{\psi}_i^*$
Variable 1. J.P. Morgan	1	-7	$ ilde{h}_i^{*2}$	$ ilde{\psi}_i^*$
	F_1^*	F_2^*	$ ilde{h}_i^{*2}$	$ ilde{\psi}_i^*$
1. J.P. Morgan	$\begin{array}{c c} F_1^* \\ \hline l_{11}^* \end{array}$	F_2^* 0.024	$ ilde{h}_i^{*2}$	$ ilde{\psi}_i^*$
1. J.P. Morgan 2. Citibank	F_1^* l_{11}^* l_{21}^*	F_2^* 0.024 0.227	$ ilde{h}_i^{*2}$	$ ilde{\psi}_i^*$
 J.P. Morgan Citibank Wells Fargo 	$\begin{array}{c c} F_1^* \\ l_{11}^* \\ l_{21}^* \\ l_{31}^* \end{array}$	F_2^* 0.024 0.227 0.104		~
 J.P. Morgan Citibank Wells Fargo Toyal Dutch Shell 	$ \begin{array}{c c} F_1^* \\ l_{11}^* \\ l_{21}^* \\ l_{31}^* \\ 0.118 \end{array} $	F_{2}^{*} 0.024 0.227 0.104 l_{42}^{*}	$ ilde{h}_i^{*2}$	$ ilde{\psi}_i^*$

- 4. Use R and the dataset "iris" (attached with this assignment) to do the following principal component analysis step by step. For part (a) and (b), just need to write down the R codes. For part (c) and (d), answer based on the R results.
 - (a) Delete the column containing the species type and use "**newiris**" for this new dataset.
 - (b) Perform a principal component analysis on the dataset **newiris** created above with "scale=TRUE". Save your PCA results in "**irpc**". Print "**irpc**" to see the output.
 - (c) Compare output in "**irpc**" with "**eigen(cor(newiris))**". What do you notice?
 - (d) Write down the first two PCs and calculate the proportion of variance explained by PC1 and PC2, respectively according to the output in "**irpc**".

[Optional Survey] How do you rate the difficulty of this assignment (1=easy, 5=hard)? Any feedback about lectures, assignments, tutorials, and labs so far?