

Jan 08, 2020

Lipoxygenase activity determination

Neilier Junior¹, Camilo Elber Vital¹, Rafael de Almeida Barros¹, Samuel Lessa Barbosa¹, João Vitor Aguilar de Oliveira¹, Wellington Souto Ribeiro², Cauê Neves Oliveira¹, Gabriele Corrêa da Rocha¹, João Victor Marques Gonçalves Assis¹, Maria Goreti de Almeida Oliveira¹

¹Universidade Federal de Viçosa, ²Universidade Federal de Campina Grande

ABSTRACT

Lipoxygenase activity on linoleic acid was determined according to the method described by Axelrod et al. (1981). This method determines the increase in absorbance at 234 nm, resulting from the formation of a conjugated double bond system in the formed hydroperoxide.

MATERIALS

NAME ~	CATALOG #	VENDOR ~
Sodium phosphate monobasic monohydrate	S9638	Sigma Aldrich
Sodium phosphate dibasic	S3264	Sigma Aldrich
Tween 20	P1379-500ml	Sigma-aldrich
Sodium hydroxide	S8045	Sigma – Aldrich
Linoleic acid	L1012	

SAFETY WARNINGS

Wear personal protective equipment: gloves, lab coat and mask.

BEFORE STARTING
Organize your workspace

Make sure all solutions and equipment are available.

Reagent Preparation

1 /

10 mM sodium linoleate stock solution

In a 150 mL Erlenmeyer add:

10 mL distilled water (previously boiled) 78 μ L linoleic acid 90 μ L of tween 20

Keep the solution protected from light by wrapping the Erlenmeyer in aluminum foil.

Mix the solution with the aid of a pipette, taking care not to form bubbles.

Add $0.5\,M$ NaOH until the solution is clarified (approximately $100\,\mu L$).

Transfer the solution to a 25 mL volumetric flask protected from light. Make up the volume to 25 mL.

Divide the stock solution of sodium linoleate into 1.5 mL amber microtubes and store at -20 ° C.

2 50.0 mM phosphate buffer, pH 6.0

Mix sodium phosphate monobasic and dibasic solutions in the proportions indicated below, and dilute to 200 mL with deionized water.

- 6.15 mL of 0.2 M sodium phosphate, dibasic dihydrate (Na₂HPO₄•2H₂O FW = 178.05)
- 43.85 mL of 0.2M sodium phosphate, monobasic, monohydrate (NaH₂PO₄•H₂O FW = 138.01)

Note: The dibasic stock sodium phosphate may be somewhat harder to dissolve; adding a little heat may help.

Complete the final volume to 200 mL with deionized water.

Adjust the final pH to 6.0.

Procedure

3 Pipette (in microliters) the following reagents into 1.5 mL microtubes

	Blank	Test
Phosphate Buffer	1002 μL	1000 μL
Sodium Linoleate Stock Solution	10.0 μL	10.0 μL
Enzymatic Extract (sample)	-	2.0 μL

Mix by inversion

4 Zero the spectrophotometer with Blank content at A234 nm.

5 Immediately after enzyme addition (Test), mark the time and pour the contents into a suitable cuvette.

After 30 s of reaction onset, monitor readings at A234 nm for 120 s.

Calculations

6 Calculate velocity from absorbance values obtained

 $V_0 = \Delta A_{234 \text{ nm}} (\epsilon | \Delta t)^{-1}$

- V₀: enzymatic activity
- ΔA_{234 nm}: absorbance variation at 234 nm
- ε: molar extinction coefficient of linoleic acid hydroperoxides at 234 nm
- I: optical path
- ∆t: time (120 s)

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited