A3SR Math Review

Properties of Logarithms

Relevant Courses:

- -Quantitative Methods
- -Generalized Linear Models

Notes

Definition

Logarithms are defined such that $log_b(A) = X$ is equivalent to $b^X = A$

Properties

Using properties of exponents and the definition above, we can derive the following:

- a. The Product Rule: $log_b(MN) = log_b(M) + log_b(N)$
- b. The Quotient Rule: $log_b(\frac{M}{N}) = log_b(M) log_b(N)$
- c. The Power Rule: $log_b(M^p) = plog_b(M)$
- d. $log_b(b^X) = X$
- e. $b^{log_b(X)} = X$
- f. $log_b b = 1$
- g. $log_b 1 = 0$

Example 1: Expanding logarithms

$$log_{e}(\frac{2x^{3}}{y})$$
= $log_{e}(2x^{3}) - log_{e}(y)$
= $log_{e}(2) + log_{e}(x^{3}) - log_{e}(y)$
= $log_{e}(2) + 3log_{e}(x) - log_{e}(y)$

Example 2: Condensing logarithms

$$\begin{aligned} &2log_3(x) + log_3(5) - log_3(2) \\ &= log_3(x^2) + log_3(5) - log_3(2) \\ &= log_3(5x^2) - log_3(2) \\ &= log_3(\frac{5x^2}{2}) \end{aligned}$$

- 1. Solve the following:
 - a. $log_e(e^x)$
 - b. $log_{10}(100)$
 - c. $log_{10}(\frac{1}{10})$ d. $log_{10}(0)$
- 2. Expand the following: a. $log_{10}(\frac{5y^3}{x})$ b. $log_2(\frac{4y^2}{3x})$ c. $log_e(2x^2y^3)$
- 3. Condense the following:
 - a. $4log_3(x) 2log_3(y)$
 - b. $log_2(x) + 5log_2(y) log_2(5)$
 - c. $log_{10}(5) + log_{10}(2)$

Answers

- 1. Solve:
 - a. *x*
 - b. 2
 - c. -1
 - d. There is no solution because there is no power of 10 that would equal 0
- 2. Expand:
 - a. $log_{10}(5) + 3log_{10}(y) log_{10}(x)$
 - b. $2 + 2log_2(y) log_2(3) log_2(x)$
 - c. $log_e(2) + 2log_e(x) + 3log_e(y)$
- 3. Condense
 - a. $log_3(\frac{x^4}{y^2})$
 - b. $log_2(\frac{xy^5}{5})$ c. 1

Matrix Algebra

Relevant Courses:

-Quantitative Methods

Notes

Note that these notes are a summary of relevant information from $https://www.math.psu.edu/bressan/PSPDF/M441-linalgebra_review.pdf$

Definitions

An $m \times n$ matrix A has m rows, n columns, and can be written as:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

The transpose of an $m \times n$ matrix, A is the $n \times m$ matrix (denoted A^T) such that every element a_{ij} in matrix A is moved to row j and column i. For example, if:

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 & 7 \end{bmatrix}$$

then,

$$A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 5 & 7 \end{bmatrix}$$

The $n \times n$ identity matrix I_n is a matrix with 1s on the diagonal and 0s everywhere else:

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

An $n \times n$ matrix is called "diagonal" if all elements not on the diagonal are zeros. For example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

An $n \times n$ matrix is called "upper triangular" if all elements below the diagonal are zeros. For example:

$$\begin{bmatrix}
 1 & 0 & 1 \\
 0 & 4 & 2 \\
 0 & 0 & 4
 \end{bmatrix}$$

An $n \times n$ matrix is called "lower triangular" if all elements above the diagonal are zeros. For example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 4 & 4 \end{bmatrix}$$

3

Suppose that an we have $2 n \times n$ matrices, A and B, such that $AB = I_n$ (note: this also implies $BA = I_n$). Then we say that B is the inverse of A (and vice versa) and we can write, $B = A^{-1}$. A matrix A has an inverse if and only if its determinant is not equal to zero. Note that the determinant of a 2×2 matrix can be calculated as follows (it is not important that you are able to calculate the determinant of a higher dimensional matrix by hand):

$$det(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = ad - bc$$

Operations with matrices

- a. Adding matrices (A + B = C): If we add 2 $m \times n$ matrices, A and B, we get another $m \times n$ matrix C such that $c_{ij} = a_{ij} + b_{ij}$
- b. Subtracting matrices (A B = C): If we subtract the $m \times n$ matrix B from the $m \times n$ matrix A, we get another $m \times n$ matrix C such that $c_{ij} = a_{ij} b_{ij}$
- c. Multiplying a matrix by a scalar (cA = B): If we multiply the $m \times n$ matrix A by a scalar, c, then we get another $m \times n$ matrix B such that $b_{ij} = c * a_{ij}$
- d. Matrix multiplication (AB = C): Note that it is only possible to compute AB if the number of columns in matrix A equals the number of rows in matrix B. If this is the case, then when we multiply an $m \times n$ matrix A by an $n \times k$ matrix B, we get an $m \times k$ matrix, C, such that $c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \cdots + a_{in}b_{nk}$

Example 1: Matrix Multiplication

$$\begin{bmatrix} 3 & 4 \\ 2 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 7 & 2 & 1 \\ 3 & 5 & 2 \end{bmatrix} = \begin{bmatrix} (3*7+4*3) & (3*2+4*5) & (3*1+4*2) \\ (2*7+5*3) & (2*2+5*5) & (2*1+5*2) \\ (1*7+2*3) & (1*2+2*5) & (1*1+2*2) \end{bmatrix} = \begin{bmatrix} 33 & 26 & 11 \\ 29 & 29 & 12 \\ 13 & 12 & 5 \end{bmatrix}$$

Properties of matrix operations

a.
$$A + B = B + A$$

b.
$$(A+B) + C = A + (B+C)$$

c.
$$(AB)C = A(BC)$$

$$d. (A+B)C = AC + BC$$

e. If A is an $m \times n$ matrix, then $I_m A = A$ and $AI_n = A$

Note that, in general $AB \neq BA$

Writing a system of equations using matrix notation

Note that, if we have a system of equations:

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

$$\dots$$

$$y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n$$

We can re-write these equations much more simply as:

Y = AX where Y is a $1 \times m$ matrix, A is an $m \times n$ matrix, and X is a $1 \times n$ matrix:

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ \cdot \\ y_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$

1. Solve the following:

a.
$$\begin{bmatrix} 2 & 4 & 2 \\ 1 & 3 & 0 \\ 1 & 6 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 0 \\ -2 & -3 & 0 \\ 1 & 9 & 5 \end{bmatrix}$$
b.
$$\begin{bmatrix} 2 & 1 \\ -2 & 2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 5 & 2 & -1 \\ 3 & 4 & 2 \end{bmatrix}$$
c. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ 4 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 4 \\ 1 & 2 \\ 7 & 0 \end{bmatrix}$ Calculate $A^T B$

- d. Using the same matrices as in part c, calculate $B^T A$
- 2. Show that A and B are inverses:

Show that A and B are
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0.5 & 1 \\ 1 & 0 & -1 \\ 0 & -0.5 & 1 \end{bmatrix}$$

- 3. Suppose that A is a 4x3 matrix and B is a 3x8 matrix.
 - a. Does AB exist? If so, what are the dimensions of AB?
 - b. Does BA exist? If so, what are the dimensions of BA?
- 4. What is the determinant of $\begin{bmatrix} 1 & -2 \\ 4 & 3 \end{bmatrix}$?

Answers

1. Solve:
$$\begin{bmatrix} 3 & 9 & 2 \\ -1 & 0 & 0 \\ 2 & 15 & 7 \end{bmatrix}$$
b.
$$\begin{bmatrix} 13 & 8 & 0 \\ -4 & 4 & 6 \\ 26 & 16 & 0 \end{bmatrix}$$
c.
$$\begin{bmatrix} 35 & 10 \\ 13 & 18 \end{bmatrix}$$
d.
$$\begin{bmatrix} 35 & 13 \\ 10 & 18 \end{bmatrix}$$

2. Show that
$$A$$
 and B are inverses:
$$\begin{bmatrix}
1 & 2 & 1 \\
2 & 2 & 0 \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
-1 & 0.5 & 1 \\
1 & 0 & -1 \\
0 & -0.5 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

- 3. Suppose that A is a 4x3 matrix and B is a 3x8 matrix.
 - a. AB exists and is 4x8
 - b. BA does not exist
- 4. The determinant is (1*3) (-2*4) = (3) (-8) = 11

Derivatives

Relevant Courses:

- -Probability
- -Quantitative Methods

Notes

Definition

The derivative of a function y = f(x) with respect to x is defined as a function giving the instantaneous slope of y = f(x) for any value x. Notationally, a derivative can be written in any of the following ways:

$$f'(x) = y' = \frac{df}{dx} = \frac{d}{dx}(f(x)) = \frac{dy}{dx} = \frac{d}{dx}(y)$$

Using derivatives to find local minima and maxima of a function

To find all local minima or maxima of a function y = f(x):

- 1) Take the first derivative of f(x) with respect to x (f'(x)).
- 2) Set this expression equal to zero and solve for x. These values of x are local maxima and minima.
- 3) Calculate the second derivative of f(x) with respect to x(f''(x))
- 4) Plug in the values of x calculated in part 2. If the second derivative is positive, this value of x represents a local minimum; if the second derivative is negative, it is a local maximum

Properties

Properties of derivatives:

- 1) Sum/Difference rule: $(f(x) \pm g(x))' = f'(x) \pm g'(x)$
- 2) Constant multiple rule: (cf(x))' = cf'(x) where c is a constant
- 3) Product rule: (f(x)g(x))' = f'(x)g(x) + g'(x)f(x)
- 4) Quotient rule (given g(x) != 0): $(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) g'(x)f(x)}{g^2(x)}$ 5) Chain rule: (f(g(x)))' = f'(g(x)) * g'(x)

1. Solve the following: a.

Answers

1. Solve:

a.

Integrals

Relevant Courses:

- -Probability -Quantitative Methods

Notes

1. Solve the following: a.

Answers

1. Solve:

a.

Summary Statistics

Relevant Courses:

- -Probability -Quantitative Methods -Statistical Computing

P-Values and T-Tests

Relevant Courses:

- -Quantitative Methods -Statistical Computing
- -Causal Inference

Correlation and Covariance

Relevant Courses:

- -Quantitative Methods -Probability

Notes

Ordinary Least Squares Regression

Relevant Courses:

-Quantitative Methods

Probability Density/Mass Functions

Relevant Courses:

- -Quantitative Methods
- -Probability -Causal Inference

Expectation

Relevant Courses:

-Probability