FGD1 ν_{μ} CC 0π data: 2636.70

FGD1 ν_{μ} CC 0π MC: 2587.91

FGD1 ν_{μ} CC 0π ratio

FGD1 ν_{μ} CC 1 π data: 569.39

FGD1 v_{μ} **CC** 1π **MC**: 570.922

FGD1 v_{μ} CC 1π ratio

FGD1 ν_{μ} CC other data: 542.14

FGD1 ν_{μ} CC other MC: 491.755

FGD1 v_{μ} CC other ratio

FGD2 ν_{μ} CC 0π data: 2609.25

FGD2 v_{μ} **CC** 0π **MC**: 2535.22

FGD2 v_{μ} CC 0π ratio

FGD2 ν_{μ} CC 1π data: 479.30

FGD2 v_{μ} **CC** 1π **MC**: 464.601

FGD2 v_{μ} CC 1π ratio

FGD2 v_{μ} CC other data: 569.43

FGD2 v_{μ} CC other MC: 459.467

FGD2 v_{μ} CC other ratio

FGD1 anti- v_{μ} CC 1 track data: 889.46

FGD1 anti- ν_{μ} CC 1 track MC: 953.889

FGD1 anti- v_{μ} CC 1 track ratio

FGD1 anti- v_{μ} CC N tracks data: 107.21

FGD1 anti- v_{μ} CC N tracks MC: 111.115

FGD1 anti- v_{μ} CC N tracks ratio

FGD2 anti- ν_{μ} CC 1 track data: 1017.05

FGD2 anti- ν_{μ} CC 1 track MC: 951.224

FGD2 anti- v_{μ} CC 1 track ratio

FGD2 anti- v_{μ} CC N tracks data: 111.10

FGD2 anti- ν_{μ} CC N tracks MC: 117.964

FGD2 anti- ν_{μ} CC N tracks ratio

FGD1 ν_{μ} RHC CC 1 track data: 96.11

FGD1 ν_{μ} RHC CC 1 track MC: 86.203

FGD1 ν_{μ} RHC CC 1 track $\,$ ratio

FGD1 ν_{μ} RHC CC N tracks data: 119.81

FGD1 ν_{μ} RHC CC N tracks MC: 112.799

FGD1 ν_{μ} RHC CC N tracks ratio

FGD2 ν_{μ} RHC CC 1 track data: 93.49 $\cos \theta_{\mu}$ Data/MeV/1 0.95 3 0.9 2.5 0.85 2 1.5 8.0 0.75 0.5 0.7 400 600 800 100012001400160018002000

 p_{μ} (MeV)

FGD2 ν_{μ} RHC CC 1 track MC: 90.2373

FGD2 ν_{μ} RHC CC 1 track ratio

FGD2 ν_{μ} RHC CC N tracks data: 114.89

FGD2 ν_{μ} RHC CC N tracks MC: 105.945

FGD2 ν_{μ} RHC CC N tracks ratio

FGD1 ν_{μ} CC 0π data 1.3 0.9 0.8 0.7 p_{μ} (MeV)

FGD1 ν_{μ} CC 1 π data 45000 40000 35000 30000 25000 20000 15000 10000 5000 Data/MC 1.3 1.2 0.9 0.8 0.7 $0.\overline{6}$ 0.65 0.75 0.8 0.85 0.9 0.95 0.7 $\text{cos }\theta_{\mu}$

FGD1 $\nu_{\mu}\text{CC}$ other data 50000 40000 30000 20000 10000 Data/MC 1.3 1.2 0.9 8.0 0.7 $0.\overline{6}$ 0.65 0.75 0.8 0.85 0.9 0.95 0.7 $\text{cos }\theta_{\mu}$

FGD2 ν_{μ} CC 0π data Data/MC 1.3 1.2 0.9 0.8 0.7 p_{μ} (MeV)

FGD2 anti- ν_{μ} CC 1 track data 35000 30000 25000 20000 15000 10000 5000 Data/MC 1.3 1.2 0.9 0.8 0.7 $0.\overline{6}$ 0.65 0.75 0.8 0.85 0.9 0.95 0.7 $\text{cos }\theta_{\mu}$

FGD2 anti- ν_{μ} CC N tracks data 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 Data/MC 1.3 1.2 0.9 0.8 0.7 0.750.95 8.0 0.85 0.9 $\cos\,\theta_\mu$

FGD2 ν_{μ} RHC CC N tracks data 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 Data/MC 1.3 1.2 0.9 0.8 0.7 0.75 8.0 0.85 0.95 0.7 0.9 $\text{cos }\theta_{\mu}$