Université Hassan II casablanca Ecole nationale supérieure d'éléctricité & de mécanique

$\label{eq:condition} Travaux \ dirigés \ N^\circ 1\text{-} \ Correction$ Théorie de langage de programmation

Filière Génie logiciel & Digitalisation

Professeur MOUSSAID LAILA

Année universitaire 2023 - 2024

Université Hassan II casablanca Ecole nationale supérieure d'éléctricité & de mécanique

Correction d'exercice 1:

- 1. uv = aabab, (uv)2 = aababaabab et u3v = aaaaaabab.
- 2. Mots de longueur $2 = \{aa,ab,ba,bb\}$
- 3. E1 = { $u \in \sum^*/l\mu l \ge 2$ } = ensemble des mots d'au moins 2 symboles

$$E2 = \Sigma +$$

$$E3 = \Sigma^*$$

Correction d'exercice 2:

- $L_1 . L_2 = L_2$;
- $L_1 . L_3 = \{ab, b, aaab, aab\}$;
- $L_1 \cup L_2 = L_2$;
- $L_2 \cap L_3 = L_3$;
- $L^{10} = \{a^{2n} / 10 >= n >= 0\}$;
- $L^* = L^+ = \{a^{2n} \mid n > = 0\}$;
- $\bullet L_2^R = \{b^i a^j / i, j > = 0\}.$

Correction d'exercice 3:

- 1-En appliquant les règles de R on peut arriver à la phrase « le garçon écrit une lettre » donc la phrase appartient au langage L(G).
- 2-le mot « salle » de la phrase " le garçon quitte la salle " appartient à T mais aucune règle dans le R ne peut y arriver .donc la phrase n'appartient pas au langage.

Correction d'exercice 4:

1-

 $0\in \sum \mbox{ et }1\in \sum$. Donc $\{1\}$ et $\{0\}$ sont des langages réguliers.

La fermeture de Kleene d'un langage régulier est un langage régulier. Donc {1}* et {0}* sont des langages réguliers.

Université Hassan II casablanca Ecole nationale supérieure d'éléctricité & de mécanique

La concaténation de langages réguliers est un langage régulier. Donc $\{1\}^* \cdot \{0\} \cdot \{1\} \cdot \{0\}^*$ est un langage régulier.

2-

Un nombre binaire impair se termine nécessairement par 1.

- {1} et {0} sont des langages réguliers.
- $\{1\} \cup \{0\}$ est régulier.
- $(\{1\} \cup \{0\})$ *est régulier.
- $(\{1\} \cup \{0\})*\cdot\{1\}$ est régulier.

<u>Correction d'exercice 5</u>:

Soit $L = \{w1, w2, \dots wn\}$ un langage fini.

Comme chaque mot wi est une concaténation finie de caractères de \sum , il est clair que $\{wi\}$ est régulier pour tout $1 \le i \le n$.

Donc, $\{w1\} \cup \{w2\} \cup \cdots \cup \{wn\}$ est régulier.

Correction d'exercice 6:

Après l'application des règles de R on arrive à :

$$L(G) = \{b^n \operatorname{cc/n} \in N\}$$

Correction d'exercice7:

Après l'application des règles de R on arrive à : $L(G) = \{u0/u \in \{0, 1\}^*\}$

Correction d'exercice8:

On définit la grammaire G = (T, N, S, R) où

$$T = \{0, 1\}$$

$$N=\{S\}$$

$$R = \{S \rightarrow 00S1 \mid \}$$