

Unmanned Aerial Vehicles

MEAer - Spring Semester - 2020/2021

https://fenix.tecnico.ulisboa.pt/disciplinas/ARob46/2020-2021/2-semestre

Faculty:

Rita Cunha <u>rita@isr.tecnico.ulisboa.pt</u>

José Raul Azinheira <u>jraz@dem.ist.utl.pt</u>

General Guidelines

- Contact hours (remotely on zoom, link to be announced)
 - Lectures and Exercises (T): twice a week, 1h30

Wednesdays: 9h00 - 10h30

Thursdays: 14h30 - 15h00

Laboratory (L): every 2 weeks, 3h00, total: 5

Tuesdays: 15h00 - 18h00

Doubt clarification (by appointment)
 Schedule to be defined.

Course website

https://fenix.tecnico.ulisboa.pt/disciplinas/ARob46/2020-2021/2-semestre

General Guidelines

- Laboratory Sessions:
 - Groups of 3, organized in 2 shifts (5 groups per shift)
 - Enrolment through fenix from March 8 to March 11, 18h00.
 - 3 Assignments (L1, L2, L3)
 - Handouts published in the course website under 'Laboratories'
 - 1 lab session for L1
 - 2 lab sessions for L2 and L3 (every 2 weeks)
 - 1 Report per assignment
 - Submission typically 1 week after 2nd lab session (check schedule)
 - Use cover provided in website under 'Laboratories'

General Guidelines

Grading

2 Tests or Exam (40%)
 1st Test (T1): 20/04/2021, 19:00-21:00
 2nd Test (T2): 31/05/2021, 19:00-21:00

Exam (E) or 1st Test or 2nd Test: 12/07/2021, 18:30-21:30

- 3 Lab assignments (L1, L2, L3) (60%)
- Final grade

```
T = max(E, 0.5*max(T1, T1rep) + 0.5*max(T2, T2rep))
L = 0.2*L1 + 0.4*L2 + 0.4*L3
F = 0.4*T + 0.6*L
```


Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
March	1	. 2	3	4	5	6	7
Week 1			T1	T2			
	8	9	10	11	12	13	14
Week 2			T3	T4			
		Lab Enr	1				
,,,	15		17	18		20	21
Week 3		L1	T5	T6			
	22	23	24	25	26	27	28
Week 4		L1	T7	T8		2,	20
					Submit L1		
April	29	30	31	1	2	3	4
Week 5							
	5		7	8		10	11
Week 6		L2	Т9	T10			
		Submit L1					
	12		14	15	16	17	18
Week 7		L2	T11	T12			
	19	20	21	22	23	24	25
Week 8		L2	T13	T14		24	23
WEER		Test 1	113	117			
	26		28	29	30	1	2
Week 9		L2	T15	T16			
		Submit L2					
			·		·		,
	Lectures	Labs Shift 1		Lab Classes			
	Rita Cunha Labs Shift2 José Raul Azinheira			Group enrolment Shift 1 Shift 2			Holidays
							,
	JOSE Nati Azimiena			5,62			

Schedule

Lectures	Labs Shift 1	Lab Classes	
Rita Cunha		Group enrolment	Holidays
Labs Shift2		Shift 1	
José Raul Azinheira		Shift 2	

Test 1	20/04/2021	19:00-21:00
Test 2	31/05/2020	19:00-21:00
Exam	12/07/2021	18:30-21:30

Syllabus

Introduction to UAVs

System Architecture, types of UAV configurations, applications.

Modelling

- Rigid body dynamic modelling.
- Quadrotor dynamic modelling and design considerations.

Control Systems Design

- Quadrotor trajectory tracking control. Control design using root locus and loop shaping. Inner-outer loop control structure.
- Linear systems and state space models.
- Linear state feedback control and linear state observers. Duality and separation principle. LQR design example.

Syllabus

Sensors for UAVs

- Accelerometers. Rate gyros. Pressure sensors. Digital compasses.
 GNSS. Proximity sensors.
- State Observers and Kalman Filtering
 - Position, velocity, and attitude estimation including bias correction.
 - Use cases and connection to complementary filters
- Nonlinear Systems
 - Stability analysis and nonlinear control design.
 - Application to quadrotor trajectory tracking control.
- Path following and path planning for UAVs
 - Voronoi graphs, RRTs, Coverage algorithms
 - Dubin's paths, waypoint transitions, optimization-based methods.

Bibliography

Recommended:

- Small Unmanned Aircraft: Theory and Practice, Randal W. Beard & Timothy W. McLain, Princeton University Press, ISBN: 9781400840601, 2012.
- Feedback Systems An Introduction for Scientists and Engineers, Karl Astrom and Richard Murray, online version at http://www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition

Additional:

- Flying Robots. In: Handbook of Robotics, B. Siciliano, O. Khatib, Eds. S.
 Leutenegger, C. Hürzeler, A. K. Stowers, K. Alexis, M. W. Achtelik, D. Lentink, P.
 Y. Oh, R. Siegwart, 2016. Springer.
- Handbook of Unmanned Aerial Vehicles, K. Valavanis, G. Vachtsevanos, Editors. 2015. Springer.
- Introduction to UAV Systems, P. Fahlstrom, T. Gleason, 2012. Wiley.

Introduction

General Topics

- Modeling (L1)
- Estimation (L2)
- Control (L3)
- Guidance / Path Planning / Trajectory generation

TÉCNICO LISBOAStabilization with wind disturbance rejection

Trajectory Tracking

TÉCNICO LISBOS Distributed Consensus-based Formation Control

