Cálculo Avanzado

Segundo Parcial - 06/07/21

Sea X un espacio métrico y sea $\mathscr U$ un cubrimento por abiertos de X. Dado $x \in X$ sea A_x el conjunto de todos los puntos $y \in X$ para los cuales existen $n \in \mathbb{N}$ y abiertos $U_1, \ldots, U_n \in \mathscr U$ tales que

$$x \in U_1, \quad y \in U_n, \quad U_i \cap U_{i+1} \neq \emptyset \text{ para todo } i < n.$$
 (*)

- a) Probar que A_x es cerrado.
- b) Probar que si X es conexo entonces para cualesquiera $x, y \in X$ existen $n \in \mathbb{N}$ y abiertos $U_1, \ldots, U_n \in \mathcal{U}$ que cumplen la condición (*).
- Sea X un espacio métrico y sean $A, B \subset X$ **cerrados** tales que $A \cup B$ y $A \cap B$ son arcoconexos. Probar que A es arcoconexo.
- Sean X un espacio métrico y $x_0 \in X$. Consideramos una sucesión de funciones $(f_n)_{n \in \mathbb{N}} \subset \mathbb{R}^X$ tal que:
 - existe M > 0 tal que $|f_n(x)| \le M$ para todos $n \in \mathbb{N}$ y $x \in X$;
 - para todo $\delta > 0$, $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $X B(x_0, \delta)$.

Sea $g: X \to \mathbb{R}$ una función acotada, continua en x_0 , tal que $g(x_0) = 0$. Probar que la sucesión $(f_n \cdot g)_{n \in \mathbb{N}}$ converge uniformemente en X.

Sea C[0,1] el espacio de las funciones continuas del intervalo [0,1] en \mathbb{R} , provisto de la norma $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Consideramos el operador lineal $T: C[0,1] \to c_0$ definido por $T(f) = \left(f\left(\frac{1}{n}\right) - f\left(\frac{1}{n+1}\right)\right)_{n \in \mathbb{N}} = \left(f(1) - f\left(\frac{1}{2}\right), f\left(\frac{1}{2}\right) - f\left(\frac{1}{3}\right), f\left(\frac{1}{3}\right) - f\left(\frac{1}{4}\right), \ldots\right)$. Calcular ||T||:

- a) si en c_0 se usa la norma usual $\|(x_n)\| = \sup_{n \in \mathbb{N}} |x_n|$;
- b) si en c_0 se usa la norma $||(x_n)|| = \sum_{n=1}^{\infty} \frac{|x_n|}{2^n}$.
- Consideramos la función $\phi: \ell^{\infty} \to C\left[-\frac{1}{2}, \frac{1}{2}\right]$ que a cada sucesión $a = (a_n)_{n \in \mathbb{N}}$ le asigna la función $\phi(a)$ definida por

$$(\phi(a))(x) = \sum_{n=1}^{\infty} a_n^3 \cdot x^n.$$

- a) Probar que ϕ está bien definida.
- b) Probar que ϕ es diferenciable en todo punto $a \in \ell^{\infty}$ y calcular su diferencial.

Nota. En ambos espacios se usa la norma infinito.