Cats vs Dogs Detector (CaDoD) Phase 2

Group 19

Aishwarya Sinhasane, Himanshu Joshi Sreelaxmi Chakkadath, Sumitha Vellinalur Thattai

Agenda

- Past Phase 1
- Present Phase 2
 - OHomegrown CXE + MSE Loss
 - Multi Layered Perceptron (MLP)
 - Multi headed MLP
 - Results and Discussion
- Conclusion & Next Steps

Past - Phase 1

- Performed EDA and rescaled the data set
- Built various models for image classification for boundary detection
- Baseline model:
 - Image classification Gradient boosting
 - Boundary detection Linear regression

Phase 2 - Homegrown CXE + MSE

Homegrown Models

- We have implemented a logistic and linear regression from scratch
 - Elastic net (L1 and L2) was added to the homegrown model to decrease the MSE
- Implemented functions to find log loss for classification and MSE for regression

Complex function

 We have defined a function which will combine the log loss of the logistic regression and MSE of the linear regression

Multi-Layered Perceptron

- Built a neural network using sequential and OOP API in Pytorch
- Layers Used:
 - Input Layer
 - 2 hidden layers
 - Activation function ReLU for classification and tanh for regression
 - Dropout layer
 - Output layer
- Loss functions used:
 - Cross Entropy for classification; MSE for regression
- Optimizer Adam

Sequential Classifier For Image Detection

	exp_name	Train Acc	Valid Acc	Test Acc
0	Baseline Neural Network without Augmentation,	97.9	56.022	56.978
1	Neural Network without Augmentation and with R	96.325	56.467	57.106
2	Neural Network without Regularization and Dropout	70.702	57.511	59.923
3	Neural Network without Dropout	69.702	58.556	57.875
4	Neural Network with Dropout (p = 0.2)	63.83	57.644	58.259
5	Neural Network with Dropout (p = 0.1)	66.83	59.089	59.283

- NN without augmentation overfits the data; training accuracy is very high, whereas the validation accuracy dropped to almost half
- Validation accuracy was improved by: Augmenting data, Adding dropout layer, and Regularization
- Accuracy and Loss graph for neural network with dropout layer (p = 0.1)
- Optimizer Adam; Loss function Cross Entropy

Sequential Regressor For Boundary Detection

	exp_name	Train MSE	Valid MSE	Test MSE
2	Sequential Regression NN Dropout (p = 0.5)	0.009	0.011	0.011
0	Sequential Regression NN Dropout (p = 0.1)	0.009	0.011	0.011
1	Sequential Regression NN Dropout (p = 0.2)	0.01	0.012	0.012
3	Sequential Regression NN Dropout (p = 0.3)	0.01	0.013	0.013
4	Sequential Regression NN Dropout (p = 0.4)	0.01	0.012	0.012
5	Sequential Regression NN without dropout	0.01	0.012	0.012
6	Sequential Regression NN without dropout for w	0.009	0.011	0.01
7	Sequential Regression NN without dropout for w	0.01	0.022	0.022
8	Sequential Regression NN without dropout for w	0.011	0.013	0.013

- Graph for neural network with dropout layer (p = 0.1)
- We see that loss is decreasing after every epoch for training and validation set
 - Also, there was not a huge difference in the MSE value after adding a drop out layer
- Optimizer Adam; Loss function MSE

Complex Loss Function – CXE + MSE

- CXE from classifier model and MSE from regressor model was combined and sent as a feedback to optimize the model
- We see that both training and validation loss are decreasing at each epoch

Convolution Neural Network

- Used a maxpooling layer to reduce the number of feature maps
- Used a softmax function in the output layer as an activation function
- Learning rate= 0.01, momentum=0.3
- Mini batch size = 30
- Optimizer SGD; Loss function Cross entropy

Conclusion & Next Steps

Conclusion

- NN with augmentation, dropout layer and regularization helped us overcome overfitting and increase the accuracy to ~60%
 - Loss reduced at each epoch for both train and validation set

Next Steps

- Optimize the current CNN by experimenting with data augmentation, different optimizers, learning rates, and weight delays
- Building a Transfer learning model using EfficientDet
- Perform a t-test to compare the different models with this transfer learning model