Physical Computing And Internet of Things (CM3040)

Course Notes

Felipe Balbi

September 23, 2021

Contents

Week 1	3
1.001 Introduction to the course	
1.101 Introduction to physical computing and IoT	4
1.103 Background to IoT, IoT stack and IoT architecture	4
1.105 IoT stack and IoT architecture	4
Week 2	8
1.301 Introduction to microcontrollers, their types and capabilities	8
1.501 Basics on breadboards, extension shields, wiring/pins and transistors	8
Week 3	9
2.001 - Introduction to electricity flows in sensors and transducers	9
2.003 - Understanding Digital & Analog input&output signals	10

Week 1

Key Concepts

- Should be able to explain what IoT is, IoT stack and IoT architecture
- Should understand what microcontrollers are, how they are used and why
- Should be able to install and set up Arduino IDE with drivers and relevant libraries

1.001 Introduction to the course

Course learning objectives:

- 1. Demonstrate understanding of electricity, electronics, and transducers
- 2. <u>Program microcontrollers</u> and understand how they <u>receive</u>, <u>interpret</u> and <u>send</u> data from/to transducers
- 3. Develop practical skills of building circuits
- 4. Use communication protocols for inter-computer and inter-device communication
- 5. Understand the principles of physical interaction design, including:
 - a) monitoring bodily movement
 - b) making mechanical movement
 - c) design of tactile physical interfaces
 - d) control of sound and light
- 6. Design and build complete physical computing systems

Course Topics:

- 1. Microcontrollers
- 2. Electricity and circuits
- 3. Sensors
- 4. Physical Interaction Design
- 5. Physical Computing Projects

- 6. Motors and actuators
- 7. Communications protocols
- 8. Networked Devices
- 9. Bodily Monitoring
- 10. Robots

1.101 Introduction to physical computing and IoT

Physical Computing refers to the creation and use of devices that sense, reason, and react to the world around them. Internet-of-Things (IoT) describes the network of physical objects.

1.103 Background to IoT, IoT stack and IoT architecture

As shown in Iot Building Block figure 1 below, the communication networks play a central role allowing all other nodes to communicate with each other.

A Typical IoT node is composed with several modules which are shown in figure 2 below.

Figure 3 describes how a set of IoT nodes form an ecosystem:

1.105 IoT stack and IoT architecture

- Cheruvu, S, A. Kumar, N. Smith and D.M. Wheeler Demystifying Internet of Things security: Successful IoT device/edge and platform security deployment. (New York, NY: Apress, 2019) Chapter 2.
- Tamboli, A. Build your own IoT platform: Develop a fully flexible and scalable Internet of Things platform in 24 hours. (New York, NY: Apress, 2019) Chapters 1, 2 and 3.
- Faiza, A., 'Evolution of the web: web 1.0, web 2.0, web 3.0, web 4.0, web 5.0 and beyond' ahmadfaiza.blog.

Figure 1: IoT Building Block

Figure 2: Typical IoT Node

Figure 3: IoT Ecosystem

Week 2

Key Concepts

- Should be able to explain what IoT is, IoT stack and IoT architecture
- Should understand what microcontrollers are, how they are used and why
- Should be able to install and set up Arduino IDE with drivers and relevant libraries

1.301 Introduction to microcontrollers, their types and capabilities

A microcontroller is a small *System-on-Chip* comprising of a small CPU, Memory (volatile and non-volatile), and I/O peripherals (I²C, SPI, GPIO, etc).

Some popular microcontroller platforms are:

- 1. Arduino Uno
- 2. Intel Galileo
- 3. ESP8266 and ESP32
- 4. STM32L/F
- 5. Raspberry Pi
- 6. Beaglebone
- 7. Pocketbeagle

1.501 Basics on breadboards, extension shields, wiring/pins and transistors

Breadboard a prototyping place where components can be inserted without any soldering requirements

Extension Shields a ready-made *extension* for a platform containing e.g. sensors, wireless connectivity modules (LoRa, ZigBee, etc), passive components, voltage regulators required for the sensors

(Dupont) Wires make it easier to wire things together in a breadboard

Transistors essentially, a voltage-controlled switch

Week 3

Key Concepts

- Understand the role of electricity, electronics and Transducers.
- Understand how electricity flow in the microcontroller circuit & breadboard
- Explain the difference between Arduino and PLC and how to read schema drawings

2.001 - Introduction to electricity flows in sensors and transducers

Current flow of electrons moving through a circuit. Measured in Amperes or Amps (A).

Resistance measure of a material's ability to oppose electrical flow. Measure in Ohms (Ω) .

Voltage difference in charge between two different points. Measured in Volts (V).

Capacitor stores a certain amount of electricity as potential energy. Capacitance is measured in Farads (F).

Inductor stores a certain amount of electricity as a magnetic field. Inductance is measured in Henries (H).

Transistors a voltage-controlled switch. Can work as an amplifier.

Ohm's Law gives a relationship between voltage, resistance, and current:

$$V = I \times R$$

Resistors come in 4, 5, or 6 color bands, we start reading from the side with higher concentration of color bands¹.

¹Y'all can Google for a color band table :-p

2.003 - Understanding Digital & Analog input&output signals

Analog continuous value between 0 and e.g. 3.3V.

Digital discrete value. Either 0 or 1.

Voltage divider is a simple technique to reduce the voltage with a linear transformation. Figure 4 shows a depiction of how it's implemented.

Figure 4: Voltage Divider

We can derive the voltage divider equation rather easily. Let's first redraw this circuit to make it easier to asee what's happening:

Figure 5: Voltage Divider: Redraw

The derivation is as follows:

$$V_{in} = (R_1 + R_2) \times I$$

$$I = \frac{V_{in}}{R_1 + R_2}$$

$$V_{R_1} = V_{in} - V_{out} = I \times R_1$$

$$V_{R_2} = V_{out} - 0 = I \times R_2$$

$$V_{out} = V_{R_2}$$

$$V_{out} = I \times R_2$$

$$V_{out} = \frac{V_{in}}{R_1 + R_2} \times R_2$$

$$V_{out} = \frac{R_2}{R_1 + R_2} \times V_{in}$$

Pulse Width Modulation is used for controlling voltage at each duty cycle.