sliding hump method

December 25, 2019

命题 1. l^1 弱收敛等价于强收敛.

Proof. 反证, $f_n \to 0$ in l^1 , 但 $f_n \not\to 0$ in l^1 . $\text{ } \exists \varepsilon > 0, \, \forall N, \, \exists n > N, \, \text{s.t. } \|f_n\|_{l^1} > \varepsilon.$ $\mathfrak{R}N_1 = N, \, n_1 = n, \, \text{s.t.} \, \|f_{n_1}\|_{l^1} > \varepsilon.$ 因为 $f_{n_1} \in l^1$, 所以存在 k_1 , s.t.

$$\sum_{r=k_1+1}^{\infty} \left| f_{n_1}^{(r)} \right| < \frac{\varepsilon}{5},$$

定义 $g^{(r)} = \operatorname{sgn} f_{n_1}^{(r)}, 1 \le r \le k_1.$

由 l^1 中 f_n 弱收敛于0,有对于任意的 $r \in \mathbb{N}_+$, $\lim_{n \to \infty} f_n^{(r)} = 0$. 所以当 k_1 取定,便 $\exists N_2 > N_1$,s.t. $\forall n_2 > N_2, \, \hat{7}$

$$\sum_{r=1}^{k_1} \left| f_{n_2}^{(r)} \right| < \frac{\varepsilon}{5},$$

由于 $f_n \not\to 0$ in l^1 , 所以对于任意的 $N_2 > N_1$, 存在 $n_2 > N_2$ 使 $||f_{n_2}||_{l^1} > \varepsilon$. 由 $f_{n_2} \in l^1$, 故存在 $k_2 > k_1$, s.t.

$$\sum_{r=k_2+1}^{\infty} \left| f_{n_2}^{(r)} \right| < \frac{\varepsilon}{5},$$

定义 $g^{(r)} = \operatorname{sgn} f_{n_2}^{(r)}, k_1 < r \le k_2.$ 如此继续下去,则由 $n_i > N_i, k_i > k_{i-1}, \text{ s.t. } f_{n_i} \in l^1$ 且 $\|f_{n_i}\|_{l^1} > \varepsilon$,

$$\sum_{r=1}^{k_{i-1}} \left| f_{n_i}^{(r)} \right| < \frac{\varepsilon}{5}, \quad \sum_{r=k_i+1}^{\infty} \left| f_{n_i}^{(r)} \right| < \frac{\varepsilon}{5},$$

定义 $g^{(r)} = \operatorname{sgn} f_{n_i}^{(r)}, k_{i-1} < r \le k_i.$ 则 $g \in l^{\infty}$,于是 $\langle f_{n_i}, g \rangle \to 0, i \to \infty$,(因为 $f_n \to 0$ in l^1).

$$\begin{split} \langle f_{n_i}, g \rangle &= \sum_r f_{n_i}^{(r)} g^{(r)} \\ &= \sum_{r=k_{i-1}+1}^{k_i} f_{n_i}^{(r)} g^{(r)} + \sum_{r=k_i+1}^{\infty} f_{n_i}^{(r)} g^{(r)} + \sum_{r=1}^{k_{i-1}} f_{n_i}^{(r)} g^{(r)} \\ &\geq \sum_{r=k_{i-1}+1}^{k_i} \left| f_{n_i}^{(r)} \right| - \sum_{r=k_i+1}^{\infty} \left| f_{n_i}^{(r)} \right| - \sum_{r=1}^{k_{i-1}} \left| f_{n_i}^{(r)} \right| \\ &\geq \|f_{n_i}\|_{l^1} - 2 \left(\sum_{r=k_i+1}^{\infty} \left| f_{n_i}^{(r)} \right| + \sum_{r=1}^{k_{i-1}} \left| f_{n_i}^{(r)} \right| \right) \\ &\geq \varepsilon - 2 \cdot \frac{2\varepsilon}{5} = \frac{\varepsilon}{5}. \end{split}$$

矛盾.

命题 2. $\alpha \in A$, A是指标集, 可数或不可数, $T_{\alpha}: E \to E_1$, $E \to Banach$ 空间, E_1 为赋范线性空间, $\forall x \in E$,

$$\sup_{\alpha \in \mathcal{A}} \{ \|T_{\alpha}x\| \} < \infty,$$

则 $||T_{\alpha}||(\alpha \in A)$ 有界.

Proof. 用反证法, 设 $\{T_{\alpha}\}$ 为无界可数子列, 不妨设

$$||T_n|| > 10^n$$
,

则存在 $x_n \in E$ 使得 $\|x_n\|_E = 1$ 且

$$||T_n x_n||_{E_1} > \frac{1}{2} ||T_n||,$$

取 $x\coloneqq\sum_{n=1}^\infty\frac{\varepsilon_nx_n}{9^n}$,其中 $\varepsilon_n=0$ 或1定义如下,则 $\|x\|\le\sum\frac{\|x_n\|_E}{9^n}<\infty$. 此段定义 ε_n :

• $\mathfrak{P}\varepsilon_n = 1, \, \mathfrak{P}$

$$\left\| T_n \sum_{k=1}^{n-1} \frac{\varepsilon_k x_k}{9^k} \right\| \le \frac{\|T_n\|}{4 \cdot 9^n}.$$

• $\mathfrak{P}\varepsilon_n = 0$, 如果

$$\left\| T_n \sum_{k=1}^{n-1} \frac{\varepsilon_k x_k}{9^k} \right\| > \frac{\|T_n\|}{4 \cdot 9^n}.$$

最后只需证明 $\limsup_{n\to\infty} ||T_nx|| = \infty$.

• $\sharp \varepsilon_n = 0$ 时,

$$||T_n x|| \ge \left| \left| T_n \sum_{k=1}^{n-1} \frac{\varepsilon_k x_k}{9^k} \right| - \left| \left| T_n \sum_{k=n+1}^{\infty} \frac{\varepsilon_k x_k}{9^k} \right| \right|$$

$$> \frac{||T_n||}{4 \cdot 9^n} - \sum_{k=n+1}^{\infty} \frac{||T_n||}{9^k}$$

$$= \frac{||T_n||}{8 \cdot 9^n} > \frac{1}{8} \left(\frac{10}{9} \right)^n.$$

• $\sharp \varepsilon_n = 1$ \forall ,

$$||T_n x|| \ge ||T_n \frac{x_n}{9^n}|| - ||T_n \sum_{k=1}^{n-1} \frac{\varepsilon_k x_k}{9^k}|| - ||T_n \sum_{k=n+1}^{\infty} \frac{\varepsilon_k x_k}{9^k}||$$

$$> \frac{||T_n||}{2 \cdot 9^n} - \frac{||T_n||}{4 \cdot 9^n} - \frac{||T_n||}{8 \cdot 9^n}$$

$$= \frac{||T_n||}{8 \cdot 9^n} > \frac{1}{8} \left(\frac{10}{9}\right)^n.$$

导致矛盾, 即存在 $x \in E$ 使 T_nx 无界.