

单纯形表与初始解 Simple Tableau and Initial Solution

电信学院·自动化科学与技术系 系统工程研究所 翟桥柱 吴江

Outline

- 单纯形表及算法
- 》初始可行解
- ▶ 单纯形法总结

标准LP问题的等价问题

min
$$z = z_0 - \zeta^T x$$

$$s.t. \quad x_B + B^{-1}Nx_N = \overline{b}$$

$$x \ge 0$$

最优性准则?

检验数

更新基本可行解?

基变换

$$\begin{cases} \min & z = c^T x \\ s.t. & Ax = b \Leftrightarrow \\ x \ge 0 \end{cases} \begin{cases} \min & z = c_B^T \overline{b} - \zeta_N^T x_N \\ s.t. & x_B = \overline{b} - B^{-1} N x_N \\ x_B \ge 0, x_N \ge 0 \end{cases}$$
 几何意义 $\frac{\partial z}{\partial x_{N_j}} = -\zeta_{N_j}$

$$\begin{array}{ll}
 \text{min} & z = c^T x \\
 \text{s.t.} & Ax = b \Leftrightarrow \begin{cases}
 \text{s.t.} \\
 x \ge 0
\end{cases}$$

$$\begin{pmatrix} x_{B_1} \\ \vdots \\ x_{B_i} \\ \vdots \\ x_{B_m} \end{pmatrix} = \begin{pmatrix} b_1 - x_{N_k} \overline{a}_{1,N_k} \\ \vdots \\ \overline{b}_i - x_{N_k} \overline{a}_{i,N_k} \\ \vdots \\ \overline{b}_m - x_{N_k} \overline{a}_{m,N_k} \end{pmatrix}$$

$$z = c_B^T \overline{b} - \zeta_N^T x_N$$
$$x_B = \overline{b} - B^{-1} N x_N$$

$$x_B \ge 0$$
, $x_N \ge 0$

几何意义
$$\frac{\partial z}{\partial x_{N_j}} = -\zeta_{N_j}$$

若有多个
$$\zeta_N$$
 > 0时,选哪一个?

若有多个
$$\overline{a}_{i,N_k} > 0$$
时,选哪一个?

$$x_{N_k} \to \theta = \min \left\{ \frac{\overline{b_i}}{\overline{a_{i,N_k}}} \middle| \overline{a_{i,N_k}} > 0 \right\}$$

设最小比在i = r 处取得, 则 $x_{B_r} \to 0$, $x_{N_k} \to \theta$

单纯形法步骤

- ▶ 获取初始可行基。
- ▶ 计算检验数向量 $\zeta^T = c_B^T B^{-1} A c^T$
- ,求 $\zeta_k = \max\{\zeta_j \mid 1 \le j \le n\}$
- ▶ 若 $\zeta_k \leq 0$,停止,已找到最优解
- \rightarrow 若 $\overline{A}_k \leq 0$,停止,原问题无界
- 以 A_k 代替 A_{Br} 得到新基,转第2步

线性规划标准形式的变换

min
$$c^T x$$
 min $z = C_B^T x_B + C_N^T x_N$
 $s.t.$ $Ax = b$ \iff $s.t.$ $Bx_B + Nx_N = b$
 $x \ge 0$ $x \ge 0$

$$\min \quad z = C_B^T x_B + C_N^T x_N$$

$$s.t. \quad z - C_B^T x_B - C_N^T x_N = 0$$

$$0 \cdot z + Bx_B + Nx_N = b$$

$$x > 0$$

单纯形表
$$z-C_B^Tx_B-C_N^Tx_N=0$$

$$0 \cdot z + Bx_B + Nx_N = b$$

基变量		系数					
	Z						
Z	1	$-C_B^T$	$-C_N^T$	0			
$X_{\mathcal{B}}$	0	В	N	b			

$$\zeta_N^T = c_B^T B^{-1} N - c_N^T$$
$$z_0 = c_B^T B^{-1} b$$

基变量		系数					
	Z						
Z	1	$-C_B^T$	$-C_N^T$	0			
X_B	0	В	N	b			

$$\zeta_N^T = c_B^T B^{-1} N - c_N^T$$
$$z_0 = c_B^T B^{-1} b$$

基变量		系数					
	Z	Z					
Z	1	$-C_B^T$	$-C_N^T$	0			
$X_{\mathcal{B}}$	0	/	<i>B</i> ⁻¹ <i>N</i>	$B^{-1}b$			

$$\zeta_N^T = c_B^T B^{-1} N - c_N^T$$
$$z_0 = c_B^T B^{-1} b$$

基变量		系数					
	Z						
Z	1	0	$C_B^T B^{-1} N - C_N^T$	$C_B^T B^{-1} b$			
X_{B}	0	/	<i>B</i> ⁻¹ <i>N</i>	$B^{-1}b$			

$$B - > 1$$
; $-C^{T}_{B} - > 0$

基变换

正检验数中最大者 对应的列

基变量	系数					右端项
	Z		X			
Z	1	0	$C_B^T B^{-1}$	N	$-C_N^T$	$C_B^T B^{-1} b$
$X_{\mathcal{B}}$	0		В	1	V	$B^{-1}b$

比值最小的值对应的行(a'>0)

例题求解

min
$$z = -6x_1 + 3x_2 - 3x_3$$

s.t.: $2x_1 + x_2 \le 8$
 $-4x_1 - 2x_2 + 3x_3 \le 14$
 $x_1 - 2x_2 + x_3 \le 18$
 $x_i \ge 0, i = 1, 2, 3$

\overline{z}	6	-3	3	0	0	0	0
x_4	2*	1	0	1	0	0	8
x_5	-4	-2	3	0	1	0	14
x_6	1	$ \begin{array}{c} 1 \\ -2 \\ -2 \end{array} $	1	0	0	1	18

$$\min z = -6x_1 + 3x_2 - 3x_3
s.t.: 2x_1 + x_2 + x_4 = 8
-4x_1 - 2x_2 + 3x_3 + x_5 = 14
x_1 - 2x_2 + x_3 + x_6 = 18
x_i \ge 0, i = 1, 2, ..., 6$$

例题求解(续)

z	0	-6	3	- 3	0	0	-24
x_1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	4
x_3	0	0	3	2	1	0	30
x_6	0	$-\frac{5}{2}$	1	$-\frac{1}{2}$	0	1	14

\overline{z}	6	-3	3	0	0	0	0
x_4	2*	1	0	1	0	0	8
x_5	-4	$ \begin{array}{c} 1 \\ -2 \\ -2 \end{array} $	3	0	1	0	14
x_6	1	-2	1	0	0	1	18

z	0	-6	3	-3	0	0	-24 化为	— 宗准_	z	6	-3	3	0	0	0	0
x_1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	4 单纯	形表 <i>x</i>	c_1	2						
x_5	0	0	3 *	2	1	0	30	x	5	- 4	-2	3	0	1	0	14
x_6	0	$-\frac{5}{2}$	1	$-\frac{1}{2}$	0	1	14	x	6	1	-2	1	0	0	1	18

例题求解(续)

z	0	-6	3 -3 0 0	$\frac{1}{1-24}$ 化为标 $\frac{z}{z}$	0	-6	0 - 5	-1 0	-54
x_1	1	$\frac{1}{2}$	$\frac{1}{2} 0 0$	4 准单纯 x ₁	1	$\frac{1}{2}$	$\frac{1}{2}$	0 0	4
x_3	0	0	3 2 1 0	30 形表 x_3	0	0	$\frac{1}{3}$	$\frac{1}{3}$ 0	10
			$1 - \frac{1}{2} 0 1$					$-\frac{1}{3}$ 1	

$$\min_{s.t.:} z = -6x_1 + 3x_2 - 3x_3
s.t.: 2x_1 + x_2 + x_4 = 8
-4x_1 - 2x_2 + 3x_3 + x_5 = 14
x_1 - 2x_2 + x_3 + x_6 = 18
x_i \ge 0, i = 1, 2, ..., 6$$

$$x^* = (4, 0, 10, 0, 0, 4)^T
z^* = -54
+ x_6 = 18$$

例2:

min
$$z = -2x_1 - 4x_2 - 3x_3$$

s.t. $3x_1 + 4x_2 + 2x_3 \le 60$
 $2x_1 + x_2 + 2x_3 \le 40$
 $x_1 + 3x_2 + 2x_3 \le 80$
 $x_j \ge 0, j = 1, 2, 3$

$$\min \quad z = -2x_1 - 4x_2 - 3x_3$$

$$s.t. \quad 3x_1 + 4x_2 + 2x_3 \le 60$$

$$2x_1 + x_2 + 2x_3 \le 40$$

$$x_1 + 3x_2 + 2x_3 \le 80$$

$$x_j \ge 0, j = 1, 2, 3$$

\overline{z}	2	4	3	0	0	0	0
x_4			2				
x_5	2				1	0	40
x_6	1	3	2	0	0	1	80

min
$$z = -2x_1 - 4x_2 - 3x_3$$

$$s.t.$$
 $3x_1 + 4x_2 + 2x_3 + x_4$

$$= 60$$

$$2x_1 + x_2 + 2x_3 + x_5 = 40$$

$$+ x_5$$

$$x_1 + 3x_2 + 2x_3 + x_6 = 80$$

$$+x_6 = 80$$

$$x_j \ge 0, j = 1, 2, 3, 4, 5, 6$$

例题求解(续)

z	-11/6	0	0 -5/6 -2/3 0 -230/	/3
x_2	7/6	1	0 1/3 - 1//3 0 20/3 1 -1/6 2/3 0 50/3 0 -2/3 - 1/3 1 80/3	
x_3	5/6	0	1 -1/6 2/3 0 50/3	
x_6	-5/3	0	0 -2/3 -1/3 1 80/3	

\overline{z}	2	4	3	0	0	0	0
x_4		4*					
x_5	2	1	2	0	1	0	40
x_6	1	3	2	0	0	1	80

z		4	3	0	0	0	0
x_2	3	4* 1 3	2	1	0	0	60
x_5	2	1	2	0	1	0	40
x_6	1	3	2	0	0	1	80

例题求解(续)

\overline{z}	-11/6	0	0 -	-5/6 -	2/3 0	-230/.	3	
x_2	7/6	1	0	1/3 -	1//30	20/3		$x^* = (0, \frac{20}{3}, \frac{50}{3}, 0, 0, \frac{80}{3})^T$
x_3	5/6	0	1 .	-1/6	2/3 0	50/3		3 , 3 , 0, 0, 3
x_6	-5/3	0	0 -	-2/3 -	1/3 1	80/3		$z^* = -230/3$

min
$$z = -2x_1 - 4x_2 - 3x_3$$

s.t. $3x_1 + 4x_2 + 2x_3 + x_4 = 60$
 $2x_1 + x_2 + 2x_3 + x_5 = 40$
 $x_1 + 3x_2 + 2x_3 + x_6 = 80$
 $x_j \ge 0, j = 1, 2, 3, 4, 5, 6$

Outline

- 单纯形表及算法
- ▶初始可行解
- ▶ 单纯形法总结

初始解: 两阶段法的核心思想

单纯形法步骤中为什么没有出现问题无解的情况?

标准LP, 无 标准LP,有 辅助问题 原问题 明显的初始 明显的初始 顶点? 顶点,有最 优解 单纯形法 第二阶段 最优解 第一阶段 单纯形法 No 原问题有解? 结束 Yes

两阶段法

min
$$z = c^T x$$
 $x_a = (x_{n+1}, \dots, x_{n+m})^T$
s.t. $Ax = b(b \ge 0)$
 $x \ge 0$

min
$$g = x_{n+1} + x_{n+2} + ... + x_{n+m}$$

s.t. $Ax + x_a = b(b \ge 0)$
 $x \ge 0, x_a \ge 0$

两阶段法的基本原理

原问题

辅助问题

$$\begin{cases} \min & z = c^T x \\ s.t. & Ax = b \end{cases}$$

$$x \ge 0$$

$$\begin{cases} \min & g = x_{n+1} + x_{n+2} + \dots + x_{n+m} \\ s.t. & Ax + x^a = b \end{cases}$$

$$x \ge 0, x^a \ge 0$$

定理1. 原问题有可行解(有顶点)的充分必要条件是辅助问题最优目标函数值为0.

X 由辅助问题最 优顶点如何获 得原问题一个 顶点?

两阶段法的基本原理

原问题

$$\begin{cases} \min & z = c^T x \\ s.t. & Ax = b \\ x \ge 0 \end{cases}$$

$$\begin{cases} \min & g = x_{n+1} + x_{n+2} + \dots + x_{n+m} \\ s.t. & Ax + x^a = b \\ x \ge 0, x^a \ge 0 \end{cases}$$

辅助问题

$$\begin{cases} \min & g = x_{n+1} + x_{n+2} + \dots + x_{n+m} \\ s.t. & Ax + x^a = b \\ & x \ge 0, x^a \ge 0 \end{cases}$$

辅助问题最优解的可能情况:

- 1. 最优值 g*>0: 原问题无可行解
- 2. 最优值 g*=0, 且最优顶点(基本可行解)中人工变量 全部为非基变量:

已得原问题一个顶点, 进入第二阶段

3. 最优值 g*=0, 但最优顶点(基本可行解)中有些人工 变量为基变量:

构造(旋转变换)出原问题一个顶点,进入第二阶段

构造原问题顶点的旋转变换方法

辅助问题的最优单纯形表:设第r个基变量为人工变量 x_{n+k}

_ g	ζ_1	ζ_2	• • •	ζ_n	ζ_{n+1}	• • •	ζ_{n+k-1}	0	ζ_{n+k+1}	• • •	ζ_{n+m}	g*
•	•	•	•	:	:	•	•	•	•	•	•	•
\mathcal{X}_{B_r}	$\overline{a}_{r,1}$	$\overline{a}_{r,2}$	• • •	$\overline{a}_{r,n}$	$\overline{a}_{r,n+1}$	• • •	$\overline{a}_{r,n+k-1}$	1	$\overline{a}_{r,n+k+1}$	• • •	\overline{a}_{n+m}	$\overline{b}_{\!\scriptscriptstyle r}$
•	•	•	•	•	•	•••	•	•	•	•	•	•

①.
$$\overline{b}_r = ?$$
 0

重复执行直至人工变量全部出基

②. 若
$$\overline{a}_{r,1} = \overline{a}_{r,2} = \cdots = \overline{a}_{r,n} = 0$$
? 冗余约束,秩数问题

③. 若存在 $j(1 \le j \le n)$ 使得 $\overline{a}_{r,j} \ne 0$? x_{n+k} 出基, x_j 入基

两阶段法的几点技巧

- 1. 视问题需要,引入尽可能少的人工变量,且第一阶段目标函数中只有人工变量
- 2. 一个人工变量一旦出基,立即删除其所在的列不要保留,更不要在后续迭代中将其再次入基
- 3. 第一阶段结束后, 只需修改单纯形表第一行, 即可继续迭代

g	$ \zeta_1 $	• • •	ζ_n	8*	Z	$-c_1$	• • •	$-c_n$	0
•	•	•••	•	•	•	•	•	•	•
\mathcal{X}_{B_r}	$\overline{a}_{r,1}$	• • •	$\overline{a}_{r,n}$	\overline{b}_{r}	X_{B_r}	$\overline{a}_{r,1}$	• • •	$\overline{a}_{r,n}$	$\overline{b}_{\!\scriptscriptstyle r}$
<u>:</u>	•	•••	•	•	•	•	•	:	•

例:

求解:

min
$$z = 5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$
 $x_j \ge 0, j = 1, 2, 3, 4, 5$

例:

解:增加人工变量 x_6 , x_7 得到辅助LP问题:

min
$$g = x_6 + x_7$$
s.t.
$$x_1 - x_2 + 6x_3 - x_4 + x_6 = 2$$

$$x_1 + x_2 + 2x_3 - x_5 + x_7 = 1$$

$$x_j \ge 0, j = 1, 2, 3, 4, 5, 6, 7$$

$$z = 5x_1 + 21x_3$$

min

$$g = x_6 + x_7$$

$$s.t. \quad x_1 - x_2 + 6x_3 - x_4 = 2$$

$$x_1 + x_2 + 2x_3 - x_5 = 1$$

$$x_i \ge 0, j = 1, 2, 3, 4, 5$$

$$s.t. \quad x_1 - x_2 + 6x_3 - x_4 + x_6 = 2$$

$$x_1 + x_2 + 2x_3 - x_5 + x_7 = 1$$

$$x_{j} \ge 0, j = 1, 2, 3, 4, 5, 6, 7$$

$$min z = 5x_1 + 21x_3$$

$$s.t. \quad x_1 - x_2 + 6x_3 - x_4 = 2$$

$$x_i \ge 0, j = 1, 2, 3, 4, 5$$

 $x_1 + x_2 + 2x_3 - x_5 = 1$

$$g = x_6 + x_7$$

s.t.
$$x_1 - x_2 + 6x_3 - x_4 + x_6 = 2$$

 $x_1 + x_2 + 2x_3 - x_5 + x_7 = 1$
 $x_j \ge 0, j = 1, 2, 3, 4, 5, 6, 7$

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	RHS
Z	-5	0	-21	0	0	0	0	0
g	2	0	8	-1	-1	0	0	3
X_6	1	-1	6*	<u>-1</u>	0	1	0	2
X ₇	1	1	2	0	-1	0	1	1

min
$$z = 5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$

$$x_1 - x_2 + 6x_3 - x_4 = 2$$

$$x_1 + x_2 + 2x_3 - x_5 = 1$$

$$x_j \ge 0, j = 1, 2, 3, 4, 5$$

$$g = x_6 + x_7$$

s.t.
$$x_1 - x_2 + 6x_3 - x_4 + x_6 = 2$$

 $x_1 + x_2 + 2x_3 - x_5 + x_7 = 1$
 $x_j \ge 0, j = 1, 2, 3, 4, 5, 6, 7$

	X_1	X_2	X_3	X_4	X_5	X_6	X ₇	RHS
Z	-3/2	-7/2	0	-7/2	0	7/2	0	7
g	2/3	4/3	0	1/3	-1	-4/3	0	1/3
X_3	1/6	-1/6	1	-1/6	0	1/6	0	1/3
X ₇	2/3	4/3*	0	1/3	-1	-1/3	1	1/3

min
$$z = 5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$

$$x_j \ge 0, j = 1, 2, 3, 4, 5$$

min
$$g = x_6 + x_7$$

s.t. $x_1 - x_2 + 6x_3 - x_4 + x_6 = 2$
 $x_1 + x_2 + 2x_3 - x_5 + x_7 = 1$
 $x_j \ge 0, j = 1, 2, 3, 4, 5, 6, 7$

	X_1	X_2	X_3	X_4	X_5	X_6	X ₇	RHS
Z	-3/2	-7/2	0	-7/2	0	7/2	0	7
g	2/3	4/3	0	1/3	-1	-4/3	0	1/3
X_3	1/6	-1/6	1	-1/6	0	1/6	0	1/3
X_2	2/3	4/3*	0	1/3	-1	-1/3	1	1/3

min
$$z = 5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$

$$x_j \ge 0, j = 1, 2, 3, 4, 5$$

min
$$g = x_6 + x_7$$

s.t. $x_1 - x_2 + 6x_3 - x_4 + x_6 = 2$
 $x_1 + x_2 + 2x_3 - x_5 + x_7 = 1$

$$x_j \ge 0, j = 1, 2, 3, 4, 5, 6, 7$$

z 1/4 0	0			-21/8	21/8	21/8	6	53/8
a	Λ			i		-		
g	0	0	0	0	-1	-1		0
X ₃ 1/4	0	- 1	-1/8	-1/8	1/8	1/8		3/8
X ₂ 1/2	1	0	1/4	-3/4	-1/4	3/4		1/4

min
$$z = 5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$
 $x_i \ge 0, j = 1, 2, 3, 4, 5$

$$x_1$$
 x_2 x_3 x_4 x_5 RHS

 x_1 x_2 x_3 x_4 x_5 RHS

 x_3 x_4 x_5 x_5 x_6 x_8 x_8 x_8 x_8 x_8 x_8 x_8 x_9 x_9

min
$$z = 5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$
 $x_j \ge 0, j = 1, 2, 3, 4, 5$

Outline

- 单纯形表及算法
- 》初始可行解
- ▶ 单纯形法总结

几何原理

获取相邻顶点信息比其他顶点快沿之的增长率(max)最大的边寻找顶点所有边之的增长率为负,则为最优解

基本概念

$$\min \quad c^{T} x$$

$$s.t. \quad Ax = b \longrightarrow A = [B, M] \quad x = \begin{pmatrix} \overline{x}_{B} \\ \overline{x}_{N} \end{pmatrix}$$

$$x \ge 0$$

$$Ax = b \longleftarrow x_{B} = \overline{b} - B^{-1}Nx_{N}$$

$$z = c^{T} x \longleftarrow z = c_{B}^{T} \overline{b} - (c_{B}^{T} B^{-1} N - c_{N}^{T})x_{N}$$

$$\min \quad z = z_{0} - \zeta^{T} x$$

$$s.t. \quad x_{B} + B^{-1}Nx_{N} = \overline{b}$$

$$x \ge 0$$

最优性准则

- ullet 若可行基B对应的检验数向量 $\zeta \le 0$,则此可行基对应的基本可行解为最优解。且最优值为 $c_B^T b$
- ト 若向量 ζ 的第k个分量 $\zeta_k > 0$,而向量 $\overline{A}_k = B^{-1}A_k \le 0$ 则原问题**无界**。
- > 对于非退化的基本可行解 \bar{x} ,若向量 ζ 中 $\zeta_k > 0$,而 其相应的向量 \bar{A}_k **至少有一个正分量**,则有一个新的基本可行解 \hat{x} 使得 $c^T\hat{x} < c^T\bar{x}$

$$\zeta_N^T = c_B^T B^{-1} N - c_N^T$$
$$z_0 = c_B^T B^{-1} b$$

基变量		系数	右端项	
	Z		X	
Z	1	0	$C_B^T B^{-1} N - C_N^T$	$C_B^T B^{-1} b$
X_{B}	0	/	<i>B</i> ⁻¹ <i>N</i>	$B^{-1}b$

B - > I; $-C^{T}_{B} - > 0$; $\zeta < 0$; min(b/a)

两阶段法

目标函数 min
$$g = x_{n+1} + \dots + x_{n+m} + 0x_1 + 0x_2 + \dots + 0x_n$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n + x_{n+1} &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &+ x_{n+2} &= b_2 \\ & \cdots & \cdots & \cdots & \cdots \end{cases}$$
约束条件

$$\begin{vmatrix} a_{m1}x_1 + a_{m2}x_2 + \dots + a_mx_n & + x_{n+m} = b_m \\ x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_{n+m} \ge 0 \end{vmatrix}$$

作业

- ▶ P74 14
- ▶ P75 16(1)
- ▶ P76 17(1) (3)