Рубежный контроль №1

Вариант 14

Тислюк Дмитрий ИУ5-22М

Задача 14

Для набора данных проведите нормализацию для одного (произвольного) числового признака с использованием функции "квадратный корень".

Задача 34

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте метод вложений (embedded method). Используйте подход на основе линейной или логистической регрессии (в зависимости от того, на решение какой задачи ориентирован выбранный Вами набор данных - задачи регрессии или задачи классификации).

Дополнительные требовния

Для студентов групп ИУ5-22М, ИУ5И-22М - для произвольной колонки данных построить гистограмму.

B [81]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import scipy.stats as stats
import seaborn as sns
from sklearn.linear_model import Lasso
from sklearn.feature_selection import SelectFromModel
import sklearn
```

B [128]:

```
data = pd.read_excel('CARSEX.xlsx')
data.head()
```

Out[128]:

	Make	Model	Type	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower
0	Acura	MDX	SUV	Asia	All	36.945	33.337	3.5	6	265
1	Acura	RSX Type S 2dr	Sedan	Asia	Front	23.820	21.761	2.0	4	200
2	Acura	TSX 4dr	Sedan	Asia	Front	26.990	24.647	2.4	4	200
3	Acura	TL 4dr	Sedan	Asia	Front	33.195	30.299	3.2	6	270
4	Acura	3.5 RL 4dr	Sedan	Asia	Front	43.755	39.014	3.5	6	225
4										•

B [129]:

Out[129]:

```
[('Make', ('object', 0)),
    ('Model', ('object', 0)),
    ('Type', ('object', 0)),
    ('Origin', ('object', 0)),
    ('DriveTrain', ('object', 0)),
    ('MSRP', ('float64', 0)),
    ('Invoice', ('float64', 0)),
    ('EngineSize', ('float64', 0)),
    ('Cylinders', ('int64', 0)),
    ('Horsepower', ('int64', 0)),
    ('MPG_City', ('int64', 0)),
    ('MPG_Highway', ('int64', 0)),
    ('Weight', ('int64', 0)),
    ('Wheelbase', ('int64', 0))]
```

B [130]:

```
def diagnostic_plots(df, variable):
   plt.figure(figsize=(15,6))
   # zucmozpamma
   plt.subplot(1, 2, 1)
   df[variable].hist(bins=30)
   ## Q-Q plot
   plt.subplot(1, 2, 2)
   stats.probplot(df[variable], dist="norm", plot=plt)
   plt.show()
```

B [131]:

data.hist(figsize=(10,10));

Нормализация числового признака Horsepower

B [132]:

diagnostic_plots(data, 'Horsepower')

B [133]:

```
data['Horsepower_sqrt'] = data['Horsepower']**(1/2)
diagnostic_plots(data, 'Horsepower_sqrt')
```


Отбор признаков (feature selection) через метод вложений (embedded method), используя подход на основе линейной регрессии

B [134]:

```
X = data.drop(columns = ['Make','Model','Type','Origin','DriveTrain', 'Horsepower_sqrt', 'I
y = data['MSRP']
```

```
B [135]:
feature_names = [i for i in X.columns]
feature_names
Out[135]:
['EngineSize',
 'Cylinders',
 'Horsepower',
 'MPG_City',
 'MPG_Highway',
 'Weight',
 'Wheelbase',
 'Length']
B [136]:
# Используем L1-регуляризацию
e_ls1 = Lasso(random_state=1)
e_ls1.fit(X, y)
# Коэффициенты регрессии
list(zip(feature_names, e_ls1.coef_))
Out[136]:
[('EngineSize', -0.0),
 ('Cylinders', 0.0),
 ('Horsepower', 0.24415225302933974),
 ('MPG_City', 0.0),
 ('MPG_Highway', 0.5363301683331865),
 ('Weight', 0.005249089816929752),
```

Гистограмма

('Wheelbase', -0.5988269486900966), ('Length', -0.012828573484294595)]

B [137]:

```
fig = plt.figure()
ax = fig.add_subplot(111)
ax.title.set_text('Поле - ' + str('Horsepower'))
data['Horsepower'].hist(bins=50, ax=ax, color='blue', alpha=0.5)
plt.show
```

Out[137]:

<function matplotlib.pyplot.show(close=None, block=None)>

B []: