Modelos score-driven não-Gaussianos para séries temporais com combinação não linear das componentes de tendência e sazonalidade

Matheus Carneiro Nogueira

Relatório de Projeto Final de Graduação

Centro Técnico Cienctífico - CTC

Departamento Engenharia Elétrica e

Departamento de Informática

Curso de Graduação em Engenharia de

Computação

Matheus Carneiro Nogueira

Modelos score-driven não-Gaussianos para séries temporais com combinação não linear das componentes de tendência e sazonalidade

Relatório de Projeto Final de Graduação

Relatório de Projeto Final de Graduação, apresentado ao Curso de Graduação em Engenharia de Computação, do Departamento de Informática da PUC-Rio.

Orientador: Prof. Cristiano Augusto Coelho Fernandes

 $Fazer\ previs\~oes\ \'e\ muito\ dif\'icil,\ especialmente\\ se\ forem\ sobre\ o\ futuro.$

Niels Bohr, .

Agradecimentos

É com grande carinho que gostaria de agradecer a todos aqueles envolvidos neste projeto final de graduação. Primeiramente, agradeço à PUC-Rio por toda a caminhada durante a graduação em Engenharia da Computação, em especial aos departamentos de Informática e de Engenharia Elétrica, responsáveis por promover um curso de excelência, que me fez crescer tanto pessoal quanto academicamente e que cuja caminhada da graduação se encerra com a apresentação deste projeto final.

Agradeço, em especial, ao meu orientador e professor, Cristiano Fernandes, por todo o conhecimento e extensa experiência repassados, primeiramente, durante suas aulas da graduação e, em além disso, nos inúmeros encontros e reuniões durante o desenvolvimento deste projeto. Sou eternamente grato pela disponibilidade e paciência que foram sempre presentes ao longo do último ano.

Também gostaria de destacar a importância de meus companheiros do LAMPS, agradecendo, principalmente, ao meu colega Matheus Alves, sem o qual este projeto não seria possível, tanto pelo pacote que faz parte de sua dissertação de mestrado, quanto pelos vários pedidos de socorro gentilmente respondidos. Além dele, agradeço à recorrente ajuda dos meus colegas Marina Dietze e Arthur Brigatto, que diversas vezes auxiliaram com ideias, sugestões, revisões de contas e apoio emocional.

Por fim, mas jamais menos importante, agradeço à minha família por todo o apoio incondicional prestado no decorrer de todos esses 6 anos de graduação. Ao meu pai, Reinaldo, pelas inúmeras trocas de experiências, à minha mãe, Valéria, pela recorrente preocupação deu estar fazendo coisas demais ao mesmo tempo, ao meu irmão Pedro por sempre me ouvir contando casos do dia a dia, à minha namorada Fernanda, que ouviu mais que ninguém "não posso, estou fazendo o TCC" e aos meus avós, que são sempre a maior torcida e os que mais se orgulham de ver seus netos avançando na vida.

Embora individual, este trabalho é resultado de um esforço coletivo, no qual cada pessoa aqui citada, além de outras não mencionadas, possuiu um papel importante. A todos os envolvidos neste projeto, e em todas as etapas percorridas durante minha graduação, deixo meu mais sincero e profundo obrigado.

Resumo

Nogueira, Matheus; Fernandes, Cristiano. Modelos score-driven não-Gaussianos para séries temporais com combinação não linear das componentes de tendência e sazonalidade. Rio de Janeiro, 2023. 83p. Projeto Final de Graduação – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Uma técnica comum em modelagem de séries temporais é a decomposição da série de interesse em componentes de tendência e sazonalidade. Dentro da classe de modelos Score-Driven, essa decomposição é usualmente realizada de forma aditiva, de tal modo que a série temporal de interesse é expressa como a componente de tendência somada à componente de sazonalidade. Entretanto, não é raro que, mesmo contabilizando a componente sazonal, os resíduos do modelo implementado ainda indiquem dependência sazonal não capturada pelo modelo. Dito isso, o principal objetivo desse projeto é estudar se diferentes combinações não lineares dessas componentes são capazes de gerar modelos score-driven adequados e bem especificados para séries temporais.

Palavras-chave

Séries Temporais; Modelos Score Driven; Decomposição em Tendência e Sazonalidade.

Abstract

Nogueira, Matheus; Fernandes, Cristiano (Advisor). Non-Gaussian score driven models for time series with non-linear combination of trend and seasonality components. Rio de Janeiro, 2023. 83p. Projeto Final de Graduação – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

A common technique in time series modeling is to decompose the time series into it's trend and seasonal components. Inside the Score-Driven Models class, this decomposition is usually made in an additive form, so that the series is expressed as the sum of its trend and seasonal components. However, it is not unusual that, even with the seasonal component being considered into the model, the residuals still show signs of seasonal dependency that was not captured by the model. With that said, the main objective of this project is to study if different non-linear combinations of those components are able to improve forecast accuracy in score driven models.

Keywords

Time Series; Score Driven Models; Trend and Seasonality Decomposition.

Sumário

1	Introdução	13
2	Situação Atual	15
2.1	Softwares que implementam modelos score-driven	16
3	Objetivos	30
4	Metodologia	33
4.1	Fundamentação Teórica	33
4.2	Implementação Computacional	44
5	Resultados	55
5.1	Série de carga	56
5.2	Série de ENA	61
5.3	Série de viagens	66
6	Conclusão	71
7	Referências bibliográficas	73
\mathbf{A}	Desenvolvimento GAS	76
A.1	GAS gama	76
В	Sazonalidade em modelos de espaço de estados	78

Lista de figuras

Figura 2.1	Série temporal mensal de precipitação e seu histograma.	16
Figura 2.2	Tela inicial do TSL Score Edition.	18
Figura 2.3	Telas de especificação do modelo e análise de resíduos no TSL	
Score Edition.		18
Figura 2.4	Telas do TSL Score Edition com o fit in sample do modelo	
GAS estimado).	19
Figura 2.5	Tela do TSL-Score Edition de previsão do modelo GAS.	19
Figura 2.6	Especificação de modelo GAS estrutural no Time Series Lab.	20
Figura 2.7	Fit in sample do GAS estrutural estimado e gráfico das	
componentes		20
Figura 2.8	Gráfico e FAC dos resíduos do modelo GAS estimado no TSL.	21
Figura 2.9	Previsão 12 passos à frente do modelo GAS estimado no TSL.	21
Figura 2.10	Fit in sample do modelo GAS para a série de precipitação	
utilizando Sco	oreDrivenModels.jl.	23
Figura 2.11	Resíduos e FAC dos resíduos do modelo GAS para a série de	
precipitação u	tilizando ScoreDrivenModels.jl.	23
Figura 2.12	Previsão pontual e simulações 12 passos à frente do modelo	
GAS utilizand	o ScoreDrivenModels.jl.	23
Figura 2.13	Fit in Sample do modelo GAS(1,1) gama estimado no pacote	
GAS R.	• • • • • • • • • • • • • • • • • • • •	25
Figura 2.14	Resíduos e FAC dos resíduos do modelo GAS(1,1) gama	
estimado no p	pacote GAS R.	25
Figura 2.15	Previsão do modelos GAS(1,1) estimado no pacote GAS R.	25
Figura 2.16	Fit in Sample do modelo GAS-CNO normal estimado no	
pacote Unobs	ervedComponentsGAS.jl.	28
Figura 2.17	Resíduos e FAC dos resíduos do modelo GAS-CNO normal	
estimado no p	pacote UnobservedComponentsGAS.jl.	28
Figura 2.18	Previsão do modelo GAS-CNO normal estimado no pacote	
UnobservedCo	omponentsGAS.jl.	28
F: 0.1	5 4: 1	0.1
Figura 3.1	Família de modelos ETS.	31
	Fit in sample de um modelo GAS-CNO log-normal com	
combinação a	ditiva das componentes de tendência e sazonalidade.	32
Figura 4.1	Série mensal de carga.	45
Figura 4.2	Série mensal de ENA.	46
Figura 4.3	Série mensal de viagens internacionais de residentes do Reino	
Unido.	Serie mensar de viagens internacionais de residentes do riemo	46
omao.		10
Figura 5.1	Valores estimados para o Valores estimados para o período de	
treino série de	e carga.	56
Figura 5.2	Resíduos quantílicos série de carga.	57
Figura 5.3	FAC dos resíduos quantílicos série de carga.	58
Figura 5.4	Previsão 12 passos à frente para série de carga.	59
Figura 5.5	Valores estimados para o período de treino série de ENA.	61

Resíduos quantílicos série de ENA.	62
FAC dos resíduos quantílicos série de ENA	63
Previsão 12 passos à frente para série de ENA.	64
Valores estimados para o período de treino série de viagens.	66
Resíduos quantílicos série de viagens.	67
FAC dos resíduos quantílicos série de viagens.	68
Previsão 12 passos à frente para série de viagens.	69
	FAC dos resíduos quantílicos série de ENA Previsão 12 passos à frente para série de ENA. Valores estimados para o período de treino série de viagens. Resíduos quantílicos série de viagens. FAC dos resíduos quantílicos série de viagens.

Lista de tabelas

Tabela 2 softwares	,	29
Tabela 4	.1 Divisão das séries temporais em períodos de treino e de teste.	47
Tabela 4	4.2 Tabela com o resumo das séries temporais, distribuições,	
combina	ções e valores de d utilizados nos testes.	54
Tabela 5	Valores de eta estimados para série de carga na combinação	
mult2.		56
Tabela 5	.2 pvalores do teste Jarque Bera para série de carga.	58
Tabela 5	.3 pvalores do teste H para série de carga.	58
Tabela 5	.4 pvalores do teste de Ljung Box para série de carga.	59
Tabela 5	.5 MAPEs de treino e teste para a série de carga.	60
Tabela 5	.6 Valores de β estimados para série de ENA na combinação mult2.	61
Tabela 5	.7 pvalores do teste de Jarque Bera para série de ENA.	63
Tabela 5	.8 pvalores do teste H para série de ENA.	63
Tabela 5	.9 pvalores do teste de Ljung Box para série de ENA.	64
Tabela 5	.10 MAPEs de treino e teste para a série de ENA.	65
Tabela 5	β .11 Valores de β estimados para série de viagens na combinação	
mult2.		66
Tabela 5	.12 pvalores do teste de Jarque Bera para série de viagens.	68
Tabela 5	.13 pvalores do teste H para série de viagens.	68
Tabela 5	.14 pvalores do teste de Ljung Box para série de viagens.	69
Tabela 5	.15 MAPEs de treino e teste para a série de viagens.	70
	·	

Lista de algoritmos

Algoritmo 1 Previsão k passos à frente para modelos GAS(p,q).

37

Lista de Códigos

Código	1	Script ScoreDrivenModels.jl	22
Código	2	Script GAS package R	24
Código	3	Script UnobservedComponentsGAS.jl	27

Lista de Abreviaturas e Notação

GAS - Generalized Autoregressive Score ARMA - Auto Regressive Moving

Average

CNO – Componentes não observáveis

FAC – Função de Autocorrelação

QQPlot – Quantile-Quantile Plot

MV - Máxima Verossimilhança

TSL - Time Series Lab

OD – Observation driven models

PD - Parameter driven models

 $s-Score\ padronizado$

 ∇ – Score

I – Matriz de informação de Fisher

S – Período sazonal de uma série

 α e λ – parâmetros da distribuição Gama

 μ e σ^2 – parâmetros das distribuições Normal e Lognormal

 $m_{t+1|t}$ – Componente de tendência

 $b_{t+1|t}$ – componente de inclinação

 $\gamma_{t+1|t}$ – Componente de sazonalidade

1 Introdução

Modelos score driven são uma classe geral e flexível de modelos de série temporal desenvolvida simultaneamente por [Harvey 2013] e [Creal, Koopman e Lucas 2013]. Essa classe é reconhecida por diferentes nomenclaturas: generalized autoregressive score (GAS), dynamic conditional score models, ou, simplesmente, modelos score-driven. Eles introduzem diversas vantagens de modelagem de séries temporais, descritas a seguir.

Primeiramente, essa classe de modelo traz a flexibilidade de modelar séries temporais não-Gaussianas, isto é, séries cuja distribuição de probabilidade condicional não é a distribuição normal. Essa vantagem torna o modelo GAS uma poderosa ferramenta de modelagem, uma vez que há diversas situações nas quais a distribuição normal é, por definição, inadequada. Como exemplo, tome as séries de velocidade de vento, que assumem apenas valores positivos, fazendo com que a distribuição de probabilidade associada ao problema deva ser definida apenas para os reais positivos. As séries de retornos financeiros, por sua vez, possuem como fato estilizado excesso de curtose em relação à distribuição normal, tornando-a também inadequada. Além disso, séries temporais associadas à contagem, como por exemplo, quantidade de itens vendidos em uma determinada loja, necessitam de distribuições para variáveis aleatórias discretas. Sendo assim, a inexistência da restrição de normalidade da série a ser modelada torna os modelos GAS extremamente úteis em diversas aplicações.

Além dessa flexibilidade, os modelos GAS também permitem estimação de parâmetros variantes no tempo com diferentes processos de atualização. Isso os torna capazes de generalizar diferentes modelos clássicos de séries temporais, como, por exemplo, os modelos GARCH [Bollerslev 1986] e modelos de duração condicional [Engle e Russell 1998].

Dada a relevância dos modelos score-driven e a vasta aplicabilidade desse arcabouço de modelagem, diversas ferramentas computacionais vêm sendo desenvolvidas a fim de implementar essa classe de modelos. Podemos citar, por exemplo, o pacote GAS desenvolvido em R [Ardia, Boudt e Catania 2016], o pacote PyFlux, implementado em Python [Taylor 2016] e o pacote ScoreDrivenModels implementado em Julia [Bodin et al. 2020]. Somado a isso, existe o software livre Time Series Lab no qual também está implementada a classe de modelos GAS em sua versão Time Series Lab - Score Edition [Lit, Koopman e Harvey 2021]. No entanto, como será apresentado no decorrer deste relatório, todos esses softwares possuem a limitação de combinar

componentes não observáveis de forma aditiva, o que gera a relavância deste projeto.

Como resposta ao dinamismo com o qual os modelos GAS são estudados, foi criado um repositório dedicado exclusivamente a artigos e implementação de código sobre essa classe de modelos, que pode ser acessado em http://www.gasmodel.com/ [Andre e Koopman].

Dito isso, para fins de organização, este relatório está estruturado da seguinte forma. No Capítulo 2 está apresentada a situação atual de modelos score-driven, tanto em termos de desenvolvimento teórico quanto aplicações práticas e desenvolvimento de ferramentas computacionais. No Capítulo 3 são apresentados os principais objetivos a serem alcançados com esse trabalho. O Capítulo 4 discorre sobre o desenvolvimento teórico realizado no projeto e apresenta toda a metodologia utilizada nos testes implementados. Por fim, o Capítulo 5 exibe os resultados obtidos a partir da implementação dos modelos propostos no capítulo 4 e o capítulo 6 as conclusões deste projeto.

2 Situação Atual

Dada a flexibilidade trazida pela modelagem *score-driven* para séries temporais não Gaussianas, esses modelos estão sendo utilizados nas mais diversas áreas de aplicação, como finanças, varejo, energia e clima.

No contexto de finanças, eles têm se mostrado especialmente úteis para modelar a volatilidade de ativos financeiros. Por exemplo, um estudo recente de [Xu e Lien 2022] explorou o uso de modelos GAS na previsão da volatilidade de ativos de óleo e gás, comparando a qualidade de previsão com os modelos GARCH e EGARCH e constatando que, para os ativos de óleo, a modelagem GAS se mostrou superior em todos os cenários enquanto que, para ativos de gás natural, mostrou-se superior para previsões de 1 e 5 passos à frente, considerando séries diárias. Além disso, [Fuentes, Herrera e Clements 2023] utilizaram modelos score-driven para previsão de eventos extremos em séries de retornos financeiros, o que, dada a flexibilidade de adicionar medidas de volatilidade realizada, melhorou a acurácia da previsão quando comparada com outros modelos de benchmark.

Embora uma grande parte das publicações relacionadas a modelos score driven sejam dentro do contexto financeiro, há outras áreas que também estão utilizando essa classe de modelos de séries temporais. No varejo, [Hoeltgebaum et al. 2021] utilizaram modelos GAS com distribuição lognormal para realizar previsões de demanda diária em centros de distribuição, constatando que essa metodologia é competitiva quando comparada com benchmarks usuais, além de trazer a vantagem de produzir uma densidade preditiva de forma fechada.

No contexto de clima e energia, modelos score driven também são largamente utilizados. Por exemplo, [Blazsek e Escribano 2023] utilizaram modelos GAS para modelar e medir efeitos climáticos não lineares de longo prazo resultados de alterações em variáveis climáticas como volume de gelo global, nível de dióxido de carbono (CO2) na atmosfera e temperatura da superfície da Antártida. Além disso, [Kushwah e Wadhvani 2019] utilizaram modelos GAS, GAS com explicativas e GAS Não Lineares para previsão de séries de poder de vento, para monitorar a performance de turbinas eólicas, além de combinar a metodologia dos modelos GAS não lineares com explicativas com funções de ativação típicas de modelos de redes neurais (NLGASX).

Por fim, com o intuito de apresentar a versatilidade de modelos scoredriven, [Koopman e Lit 2019] utilizou modelos baseados em score para prever o resultado de partidas de futebol de campeonatos nacionais. Para isso, foram utilizadas as distribuições de poisson, skellam e probit ordenada. A primeira foi utilizada para modelar o resultado de uma partida como uma observação pareada, a segunda para modelar a diferença do número de gols dos times de uma partida e a terceira para modelar diretamente a probabilidade de um time vencer, empatar ou perder a partida. Essa metodologia foi testada simulando apostas esportivas a partir da previsão dos modelos e concluiu-se que modelos score-driven performaram melhor que diversos modelos benchmarks, tanto em termos de precisão de previsão quanto em termos de minimizar a perda nas apostas.

Softwares que implementam modelos score-driven

Assim como foi comentado no Capítulo 1, já existem algumas ferramentas computacionais que implementam os modelos score-driven para séries temporais, sejam elas pacotes das principais linguagens utilizadas para ciência de dados e estatística, ou softwares específicos para modelagens de séries temporais. Nessa seção, estão apresentadas com maior profundidade essas ferramentas com o intuito de entender suas implementações, capacidades e limitações.

Somado a isso, nas seções seguintes será utilizada uma série temporal mensal de precipitação retirada do site do Centro de Previsão de Tempo e Estudos Climáticos https://clima.cptec.inpe.br/ para exemplificar o funcionamento das ferramentas explicadas. A série temporal possui 269 observações, entre Junho de 2000 e Outubro de 2022. A Figura 2.1 exibe a série e o seu histograma. Note que modelar essa série a partir de uma distribuição normal não seria adequado devido a assimetria positiva do histograma.

Figura 2.1: Série temporal mensal de precipitação e seu histograma.

2.1.1 TimeSeriesLab Score Edition

O TimeSeriesLab (TSL) é uma plataforma para análise, modelagem e previsão de séries temporais de forma interativa e repleta de suporte visual

[Lit]. Essa ferramenta possui uma grande seleção de modelos de séries temporais, como modelos ARIMA de Box-Jenkins, modelos de suavização exponencial, modelos *score-driven* e modelos estruturais básicos. Sendo assim, tudo que o usuário precisa fazer para realizar a sua modelagem é escolher o tipo de modelo que melhor se adequa aos seus dados.

Além disso, o TSL também permite que o usuário crie seu próprio modelo de séries temporais com base em componentes dinâmicas como tendência, sazonalidade e ciclos.

Como o foco desse projeto é a modelagem *score-driven*, essa seção se limita a comentar sobre esse tipo de modelo e não traz um extenso resumo do funcionamento da ferramenta. Para fins de aprofundamento no TSL, recomenda-se a leitura do manual disponível no site da ferramenta https://timeserieslab.com/ [Lit].

O TSL Score Edition fornece as seguintes distribuições de probabilidade para a implementação de seus modelos:

- Discretas: Poisson, Negativa Binomial, Bernoulli e Skellam
- Contínuas: Normal, t de Student, GED, Beta Generalizada Tipo 2,
 Exponencial e Weibull

O modelo score driven implementado no TSL Score Edition é o GAS-CNO que, assim como será visto no Capítulo 4, utiliza a formulação de um modelo de componentes não observáveis para a função de atualização dos seus parâmetros variantes no tempo. Esse software possui uma segunda versão denominada Time Series Lab que mistura o GAS com modelos estruturais. Essa versão está apresentada na seção 2.1.2.

Uma das principais qualidades do TSL é a sua usabilidade. Com interface simples e intuitiva, um usuário pode, rapidamente, estimar, avaliar e realizar previsões para diversos modelos de séries temporais sem a necessidade de conhecimento prévio sobre a teoria por detrás dos modelos ou o conhecimento de alguma linguagem de programação.

Por outro lado, uma vez sendo um *software* pronto, o TSL não possui a mesma flexibilidade de pacotes implementados para linguagens de programação como os outros que serão aqui apresentados.

A Figura 2.2 exibe a tela inicial do TSL, na qual o usuário pode visualizar a série temporal a ser modelada e realizar pré-processamentos como transformações na escala da série. Em seguida, a Figura 2.3 exibe as telas de especificação do modelo, onde o usuário define a distribuição desejada e as características dos parâmetros do modelo, e de análise dos resíduos, onde é possível ver a série de resíduos do modelo estimado, bem como dua FAC e

outras visualizações importantes. Junto da análise dos resíduos, é importante visualizar o *fit in sample* do modelo, que está exibido na Figura 2.4. Por fim, a Figura 2.5 exibe a tela de previsão do modelo estimado.

Figura 2.2: Tela inicial do TSL Score Edition.

Figura 2.3: Telas de especificação do modelo e análise de resíduos no TSL Score Edition.

Figura 2.4: Telas do TSL Score Edition com o *fit in sample* do modelo GAS estimado.

Figura 2.5: Tela do TSL-Score Edition de previsão do modelo GAS.

2.1.2 TimeSeriesLab

Além do software apresentado na seção anterior, existe um software, mais geral, que, dentre outros tipos, implementa modelos score-driven. Ele é o Time Series Lab. Existiu uma versão denominada Time Series Lab State Space Edition que foi descontinuada e substituída por essa versão.

Nela, o usuário é capaz tanto de utilizar modelos pré construídos quando criar seu próprio modelo, utilizando como base as componentes clássicas de um modelo estrutural: tendência, nível, sazonalidade e ciclos. Dentre os modelos pré construídos, estão:

- Métodos básicos: amortecimento exponencial simples (EWMA), Holt Winters e Holt Winters Sazonal;
- Modelos Estruturais: nível local (com tendência e com tendência e sazonalidade) e modelo estrutural básico;
- Modelos ARIMA;

- Modelos score-driven;
- Modelos de Machine Learning: XGBoost Regressor.

Importante ressaltar que essa versão engloba as funcionalidades do *Score Edition*. Ela possui modelos GAS(p,q) dentre as opções de modelos pré construídos e, além disso, permite ao usuário criar seu prório modelo *score-driven* a partir de componentes não observáveis (ver seção 4.1.2). Essa é, justamente, a classe de modelos a ser focada neste projeto. A Figura 2.6 exibe a tela na qual o usuário especifica o modelo GAS estrutural desejado. Em seguida, a Figura 2.7 exibe o modelo estimado, com seu *fit in sample* e o gráfico das componentes não observáveis estimadas.

Figura 2.6: Especificação de modelo GAS estrutural no Time Series Lab.

Figura 2.7: Fit in sample do GAS estrutural estimado e gráfico das componentes estimadas.

Como é usual, o usuário pode estudar os resíduos do modelo estimado, tanto com seu gráfico quanto com sua FAC, para avaliar a qualidade da estimação e, em seguida, seguir com a previsão *out of sample* do modelo. As Figuras 2.8 e 2.9 ilustram as janelas nas quais o usuário realiza essas operações.

Figura 2.8: Gráfico e FAC dos resíduos do modelo GAS estimado no TSL.

Figura 2.9: Previsão 12 passos à frente do modelo GAS estimado no TSL.

Certamente, dentre os softwares aqui apresentados, o TimeSeriesLab é aquele que melhor combina flexibilidade e usabilidade, fornecendo uma grande gama de modelos de séries temporais com uma interface simples e intuitiva, tornando-o de mais fácil acesso que pacotes implementados em linguagens de programação. Somado a isso, uma grande qualidade do software, especialmente para esse projeto, é a implementação de modelos score-driven tanto GAS(p,q) quando estruturais. Embora muito completo, há uma limitação no TSL: as componentes dos modelos estruturais são combinadas apenas aditivamente. O principal objetivo deste projeto é, justamente, implementar modelos score-driven estruturais que supram essa limitação. Sobre isso, ver seção. 4.1.3.

2.1.3 ScoreDrivenModels.jl - Julia

ScoreDrivenModels.jl é um pacote desenvolvido na linguagem Julia para modelar, prever e simular séries temporais a partir de modelos score-driven

[Bodin et al. 2020]. A API do pacote permite o usuário escolher entre diversas distribuições, estruturas de lag, métodos de otimização e valores de escala. Além disso, o pacote também traz a possibilidade do usuário adicionar novas distribuições de probabilidade caso sejam necessárias.

Para especificar um modelo, o usuário necessita especificar 4 informações: a distribuição desejada, a escala, a estrutura de lag (os valores de p e q) e especificar os parâmetros que serão variantes no tempo. Essas informações são passadas como parâmetros da função ScoreDrivenModel(). Em seguida, a função fit!() deve ser usada para estimar o modelo sendo por meio dela que o usuário indica a série temporal a ser modelada e qual o otimizador a ser utilizado. Por fim, uma vez identificado que o modelo estimado é satisfatório, o usuário pode realizar a previsão de sua série temporal por meio da função forecast() que recebe como parâmetros a série temporal usada para a estimação, o modelo estimado e a quantidade de passos à frente. O código 2.1.3 abaixo apresenta um script simples para a realização das etapas descritas.

Código 1: Script ScoreDrivenModels.jl

```
1 using ScoreDrivenModels
2
3 "Codigo para definição e estimação do modelo GAS(1,1) LogNormal"
4 gas = ScoreDrivenModel([1, 12], [1, 12], Gamma, 0.0) #definição do modelo
5 ScoreDrivenModels.fit!(gas,y_fit) #estimação do modelo
6 fit_in_sample = fitted_mean(gas, y_fit) #obtenção do fit in sample
7 residuals = y_fit .- fit_in_sample # obtenção dos resíduos
8 forecast = ScoreDrivenModels.forecast(y_fit, gas, 12) # obtenção das previsões
```

As Figuras 2.10 e 2.11 exibem o *fit in sample* e os resíduos do modelo estimado com sua FAC, enquanto que a Figura 2.12 exibe a previsão pontual 12 passos à frente e a simulação. Todos os resultados foram obtidos a partir da execução do *script* 2.1.3.

Figura 2.10: Fit in sample do modelo GAS para a série de precipitação utilizando ScoreDrivenModels.jl.

Figura 2.11: Resíduos e FAC dos resíduos do modelo GAS para a série de precipitação utilizando ScoreDrivenModels.jl.

Figura 2.12: Previsão pontual e simulações 12 passos à frente do modelo GAS utilizando ScoreDrivenModels.jl.

Algumas das principais qualidades desse pacote é sua integração com a linguagem Julia, que vem sendo cada vez mais utilizada para modelagem de problemas que exigem ferramentas de estatística, otimização, ciência de dados e áreas correlatas para a sua solução. Somado a isso, o pacote traz grande flexibilidade de modelagem, uma vez que permite ao usuário adicionar qualquer distribuição desejada. Por fim, sua sintaxe é simples e muito similar à diversos outros pacotes.

Uma desvantagem, no entanto, é o fato desse pacote implementar apenas

a dinâmica GAS(p,q) para modelos *score-driven*, não sendo possível optar pela dinâmica via componentes não observáveis.. Essa limitação impossibilita modelar a série temporal a partir de suas componentes de tendência e sazonalidade, algo que será fundamental para este projeto.

2.1.4 GAS Package - R

O pacote GAS, desenvolvido por [Ardia, Boudt e Catania 2016] na linguagem R foi o primeiro a ser implementado e, por isso, foi utilizado também como referência para os pacotes apresentados. Ele permite ao usuário realizar simulação, estimação e previsão de modelos GAS(1,1) tanto univariados quanto multivariados, o que é uma grande qualidade. No entanto, o pacote apresenta limitações para modelos GAS multivariados com mais de 4 séries temporais, uma vez que ele não reporta a atualização exata dos parâmetros de atualização de correlação nesses casos. Para entender melhor essa limitação, ver [Ardia, Boudt e Catania 2016]. A distribuições implementadar no pacote são:

- Univariadas: Gaussiana, Skew-Gaussiana, t de Student, Skew t de Student, t de Student Assimétrica, Laplace Assimétrica, Poisson, Bernoulli, Gamma, Exponencial, Beta, Negativa Binomial e Skellam
- Multivariadas: Gaussiana e t de Student.

A funcionalidade desse pacote é muito similar aos demais apresentados, com funções usuais de um pacote de modelagem de séries temporais. O usuário possui a capacidade de especificar o modelo GAS a ser implementado. Para isso, é necessário definir a distribuição de probabilidade, o tipo de parametrização (identidade, inversa ou raiz quadrada da inversa) e quais parâmetros da distribuição definida serão variantes no tempo. A partir do modelo especificado, existem funções próprias para estimar o modelo, obter os resíduos do modelo e realizar a previsão do modelo. O script abaixo traz um exemplo de código R para realizar essas instruções. Em seguida, as Figuras 2.13 e 2.14 exibem o fit in sample e os resíduos do modelo com sua FAC, e a Figura 2.15 exibe a previsão 12 passos à frente.

Código 2: Script GAS package R

8 forecast = UniGASFor(Fit, 12) # gera a previsao 12 passos a frente

Figura 2.13: Fit in Sample do modelo GAS(1,1) gama estimado no pacote GAS R.

Figura 2.14: Resíduos e FAC dos resíduos do modelo GAS(1,1) gama estimado no pacote GAS R.

Figura 2.15: Previsão do modelos GAS(1,1) estimado no pacote GAS R.

Tal qual os outros pacotes, é possível escolher uma dentre diversas distribuições de probabilidade, o que é fundamental em termos de implementação para que o usuário possa desfrutar da flexibilidade de modelagem que a teoria dos modelos fornece. Ademais, ele também permite a escolha de diferentes métodos de otimização para a estimação do modelo.

Um diferencial deste pacote é a existência de funções prontas para realizar previsão de vários passos à frente a partir de uma janela rolante de reestimação do modelo após uma previsão de um passo à frente. Além disso, também

estão implementadas funções específicas para realização de *backtests* do modelo estimado e para simulações de séries a partir de um processo GAS.

Poderíamos citar apenas duas limitações do pacote. Primeiramente, ele implementa apenas a dinâmica GAS(p,q) (ver Capítulo 4), tal qual o pacote ScoreDrivenModels.jl. Somado a isso, o pacote está limitado a modelos com estrutura de lag (1,1), isto é, apenas implementa o GAS(1,1). Essa é uma grande desvantagem do pacote pois limita muito a modelagem das séries temporais sazonais, visto que utilizar mais lags da série captura melhor a estrutura de dependência linear e, inclusive, a inclusão de lags sazonais pode melhorar consideravelmente a estimação dos modelos. Vale comentar que essa limitação é notada no exemplo dessa seção, uma vez que a FAC dos resíduos exibida na Figura 2.14 indica que o modelo não capturou a estrutura sazonal da série.

2.1.5 UnobservedComponentsGAS.jl - Julia

Por último, o pacote UnobservedComponentsGAS.jl, que está sendo desenvolvido como uma dissertação de mestrado de [Alves], no laboratório LAMPS PUC-Rio, implementa modelos GAS cuja dinâmica dos parâmetros variantes no tempo segue um modelo de componentes não observáveis.

O grande diferencial deste pacote é o fato de sua implementação ter sido inteiramente desenvolvida a partir do JuMP, que é um poderoso framework de otimização dentro da linguagem Julia. Uma das vantagens dessa implementação é a possibilidade de tratar as restrições de parâmetros positivos das distribuições não com o ferramental de funções de ligação, mas como simples restrições do problema de otimização. Isso traz simplicidade e flexibilidade para a implementação. Somado a isso, o pacote traz funcionalidades de otimização robusta e penalização nos κ s das componentes.

Até o momento, as distribuições implementadas são a distribuição $Normal(\mu, \sigma^2)$ e a distribuição $tLocationScale(\mu, \sigma^2, \nu)$, de média μ , variância σ^2 e ν graus de liberdade.

As componentes que podem ser adicionadas à dinâmica dos parâmetros variantes no tempo até o momento são:

- Random walk
- Random walk with slope
- -AR(p)
- Sazonalidade por funções trigonométricas

Além disso, o pacote também fornece ao usuário a opção de estimar um auto-gas, de forma a deixar para o otimizador escolher os melhores valores do

hiperparâmetro d, da matriz de informação de Fisher e do hiperparâmetro α , que é uma penalização da otimização.

O script abaixo exemplifica a utilização deste pacote para estimar um modelo GAS-CNO Gaussiano, com média variante no tempo e variância fixa. Note que o modelo a ser estimado é um modelo cuja média segue uma dinâmica com random walk with slope e sazonalidade com período sazonal igual a 12. Além disso, o usuário pode utilizar a função fit, caso deseje especificar os valores de d e α , ou a função $auto_gas$, caso queira que o otimizador escolha os melhores valores para esses hiperparâmetros.

Código 3: Script UnobservedComponentsGAS.jl

```
1 using UnobservedComponentsGAS
3 "Codigo para definição e estimação do modelo GAS Normal"
4 dist = UnobservedComponentsGAS.NormalDistribution(missing, missing)
5 time_varying_params = [true, false]
6 random_walk = Dict(1=>false,2=>false)
7 random_walk_slope = Dict(1=>true,2=>false)
8 ar = Dict(1=>false,2=>false)
9 seasonality = Dict(1=>12)
10 robust = false
11 stochastic = false
12 d = 1.0
13 num_scenarious = 500
15 gas_model = UnobservedComponentsGAS.GASModel(dist,
      time_varying_params, d, random_walk, random_walk_slope, ar,
      seasonality, robust, stochastic)
16
17 fitted_model = UnobservedComponentsGAS.fit(gas_model, y_fit)
18 fitted_model = UnobservedComponentsGAS.auto_gas(gas_model, y_fit,
      steps_ahead)
19
20 residuals = fitted_model.residuals
21 forecast = UnobservedComponentsGAS.predict(gas_model, fitted_model,
      y_fit, steps_ahead, num_scenarious)
```

As figuras a seguir exibem os mesmos gráficos exibidos para os demais pacotes: a Figura 2.16 exibe o *fit in sample* do modelo para a série de vazão, a Figura 2.17 exibe os resíduos padronizados e a FAC desses resíduos e, por fim, a Figura 2.18 exibe a previsão 12 passos à frente deste modelo, em comparação com os valores reais da série temporal.

Figura 2.16: Fit in Sample do modelo GAS-CNO normal estimado no pacote UnobservedComponentsGAS.jl.

Figura 2.17: Resíduos e FAC dos resíduos do modelo GAS-CNO normal estimado no pacote UnobservedComponentsGAS.jl.

Figura 2.18: Previsão do modelo GAS-CNO normal estimado no pacote UnobservedComponentsGAS.jl.

2.1.6 Comparação dos softwares

Nesta seção, apresento uma tabela que resume a comparação dos diferentes softwares apresentados anteriormente. A Tabela 2.1 apresenta tanto se o software implementa GAS-CNO ou GAS(p,q), quanto as distribuições disponíveis.

Software/Pacote e Dinâmica	Distribuições Disponíveis	
TSL Score	Poisson, Negativa Binomial, Bernoulli e Skellam.	
GAS-CNO	Normal, t de Student, GED, Beta Generalizada Tipo 2,	
GAS-ONO	Exponencial e Weibull	
	Poisson, Negativa Binomial,	
TSL	Bernoulli e Skellam.	
GAS-CNO	Normal, t de Student, GED,	
GAS(p,q)	Beta Generalizada Tipo 2,	
	Exponencial e Weibull	
	Gaussiana, Skew-Gaussiana,	
GAS R	t de Student, Skew t de Student,	
GAS R $GAS(1,1)$	t de Student Assimétrica, Laplace Assimétrica,	
GAS(1,1)	Poisson, Bernoulli, Gamma, Exponencial, Beta,	
	Negativa Binomial e Skellam	
ScoreDrivenModels Julia	Todas do Distributions.jl	
GAS(p,q)		
UnobservedComponentsGAS Julia	Normal e t de Student	
GAS-CNO	Normal e t de Student	

Tabela 2.1: Tabela das distribuições e dinâmicas implementadas nos softwares apresentados.

3 Objetivos

O foco principal desse projeto são os modelos score-driven para séries temporais. Dentro deste escopo, a proposta consiste em aprofundar os estudos em modelos GAS cuja distribuição de probabilidade não é Gaussiana, e cuja dinâmica dos parâmetros variantes no tempo segue um modelo de componentes não observáveis (CNO), com o intuito de modelar séries temporais com restrições em seu domínio. Dois exemplos clássicos são séries ENA e séries de carga, ambas assumindo apenas valores positivos.

A partir desses modelos, um dos objetivos é estudar a decomposição das séries em componentes de tendência e sazonalidade, com um dos parâmetros variantes no tempo e com combinações não lineares dessas componentes. A principal decomposição, gerada a partir do modelo de espaço de estados [Harvey 2013] e [Caivano, Harvey e Luati 2016], na qual a série é decomposta como a soma de uma componente de tendência $\mu_{t|t-1}$ com uma componente sazonal $\gamma_{t|t-1}$, acrescida de um choque aleatório normal ϵ_t pode ser expressa como:

$$\hat{y}_{t|t-1} = \mu_{t|t-1} + \gamma_{t|t-1} + \epsilon_t \tag{3-1}$$

Partindo para a formulação de modelos score-driven seja $y_{t|t-1}$ uma série temporal que seja uma distribuição gama com a seguinte parametrização:

$$y_{t|t-1} \sim gama(\alpha, \lambda_{t|t-1})$$
 (3-2)

onde
$$\alpha > 0$$
, $\lambda_{t|t-1} > 0$, $E[y_t | \mathbf{y_{t-1}}] = \lambda_{t|t-1} \in Var[y_t | \mathbf{y_{t-1}}] = \lambda_{t|t-1}^2 / \alpha$.

Assuma, por exemplo, que o parâmetro da média seja uma dinâmica CNO com uma componente de tendência $m_{t|t-1}$ e uma de sazonalidade $\gamma_{t|t-1}$. Sendo assim, a combinação clássica dessas componentes é tal que:

$$\lambda_{t+1|t} = m_{t+t|t} + \gamma_{t+t|t} \tag{3-3}$$

A primeira prática em modelagem de séries temporais com o intuito de gerar modelos não lineares é transformar a série temporal para uma escala logarítmica que, segundo [Koopman e Lee 2009], usualmente reduz tanto a variabilidade sazonal crescente quanto a heterocedasticidade da componente sazonal. No entanto, de acordo com o mesmo autor, quando esses efeitos permanecem na série temporal em escala logarítmica, não é adequado aplicar novamente essa transformação, sendo necessário partir para modelos com interações não lineares das componentes de tendência e sazonalidade.

A inspiração para essas combinações são os modelos ETS de [Hyndman et al. 2008], que são uma classe de modelos baseada em componentes de tendência e sazonalidade que contam com diversas combinações possíveis, tanto dessas componentes quanto do termo de erro. A Figura 3.1, retirada de [Hyndman e Athanasopoulos 2021] exibe todas as combinações possíveis dentro dessa classe de modelo. Na Figura, \mathbf{N} significa a ausência da componente, \mathbf{A} significa combinação aditiva, \mathbf{M} significa combinação multiplicativa e A_d significa tendência aditiva e amortecida.

Trend	Seasonal			
	N	Α	M	
	$\hat{y}_{t+h t} = \ell_t$	$\hat{y}_{t+h t} = \ell_t + s_{t+h-m(k+1)}$	$\hat{y}_{t+h t} = \ell_t s_{t+h-m(k+1)}$	
N	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1} \\ s_t &= \gamma(y_t/\ell_{t-1}) + (1-\gamma)s_{t-m} \end{split}$	
	$\hat{y}_{t+h t} = \ell_t + hb_t$	$\hat{y}_{t+h t} = \ell_t + hb_t + s_{t+h-m(k+1)}$	$\hat{y}_{t+h t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$	
Α	$\begin{split} \ell_t &= \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$	
	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t$	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t + s_{t+h-m(k+1)}$	$\hat{y}_{t+h t} = (\ell_t + \phi_h b_t) s_{t+h-m(k+1)}$	
A_d	$\begin{split} \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)\phi b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + \phi b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$	

Figura 3.1: Família de modelos ETS.

Com base nessa inspiração e nas interações propostas para modelos CNO de [Koopman e Lee 2009], serão estudadas duas possibilidades de combinações não lineares dessas componentes. Essas combinações serão avaliadas de acordo com a aderência do modelo estimado à série real, a qualidade das estatísticas dos diagnósticos dos resíduos e da previsão fora da amostra. Mesmo que as novas interações não eliminem completamente a heterocedasticidade e a autocorrelação sazonal dos resíduos, estamos interessados em perceber se elas diminuem esses efeitos. Dito isso, as interações estudadas são:

$$\lambda_{t+1|t} = m_{t+t|t} \times (1 + \gamma_{t+t|t}) \tag{3-4}$$

$$\lambda_{t+1|t} = m_{t+t|t} + e^{\beta m_{t|t-1}} \times \gamma_{t+t|t} \quad \beta \in \mathbb{R}$$
 (3-5)

A motivação da implementação das combinações multiplicativas pode ser ilustrada pela Figura 3.2. Note que os valores estimados pelo modelo não conseguem alcançar os picos e vales da série temporal, o que indica que a componente sazonal não foi estimada com toda a amplitude necessária. A combinação multiplicativa das componentes, normalmente, se apresenta como uma solução para este problema de estimação.

Figura 3.2: Fit in sample de um modelo GAS-CNO log-normal com combinação aditiva das componentes de tendência e sazonalidade.

A fim de realizar esses experimentos, após o estudo e desenvolvimento teórico necessário, a proposta é implementar essas extensões do arcabouço de modelos GAS a partir do pacote *UnobservedComponentsGAS.jl*, escrito em Julia por [Alves]. Apenas com desenvolvimento dessa ferramenta computacional poderemos averiguar se essas alterações propostas conseguem resolver os problemas apresentados.

4 Metodologia

Fundamentação Teórica

Nesta seção apresentamos todos os desenvolvimentos teóricos relevantes para a implementação de modelos GAS-CNO, enquanto que a seção seguinte apresenta as questões relacionadas diretamente à implementação dos modelos em questão.

4.1.1 Modelos score-driven

Modelos para séries temporais podem ser classificados em duas classes: observation driven (OD) e parameter driven (PD), tal qual proposto em [Cox et al. 1981]. Modelos PD são aqueles cujos parâmetros variantes no tempo são função de seus valores passados e de inovações aleatórias. Ou seja, se f_t é o parâmetro variante no tempo e η_t é um ruído aleatório puro, temos que:

$$f_t = g(f_{t-1}, \eta_t) \tag{4-1}$$

onde g é uma função contínua e diferenciável.

Um exemplo clássico de modelos PD são os modelos de espaço de estados ou modelos de componentes não observáveis (CNO), onde, por exemplo

$$f_t = \phi f_{t-1} + \eta_t, \quad \eta_t \sim N(0, \sigma_\eta^2), \quad |\phi| < 1$$
 (4-2)

Os modelos score-driven, por sua vez, pertencem à classe OD, o que significa que eles são definidos a partir de uma distribuição condicional de probabilidade que depende dos valores passados da própria série temporal [Harvey 2022]. Em outras palavras,

$$f_{t|t-1} = g(f_{t-1|t-2}, s_t), \quad s_t = s_t(\mathbf{Y_{t-1}})$$
 (4-3)

onde s_t é chamado de score e $\mathbf{Y_{t-1}} = (y_{t-1}, ..., y_2, y_1)$.

Sendo assim, o primeiro passo da modelagem é definir qual é a distribuição de probabilidade seguida pela série a ser modelada. Ou seja, dada uma série $\mathbf{y_t}$ e o seu passado $\mathbf{Y_{t-1}} = (y_{t-1}, y_{t-2}, ..., y_2, y_1)$, preciso definir uma distribuição condicional tal que

$$y_t \sim p(y_t|f_{t|t-1}; \mathbf{Y_{t-1}}, \theta) \tag{4-4}$$

onde $f_{t|t-1}$ é o parâmetro variante no tempo estimado em t e θ é o vetor de parâmetros fixos a serem estimados.

Vale ressaltar que a distribuição pode ser de qualquer tipo: contínua, discreta, univariada, multivariada, etc.

Uma vez definida a distribuição condicional de probabilidade, o próximo passo é definir a função de atualização dos parâmetros variantes no tempo, ou *updating mechanism*. Existem duas possibilidades: a primeira é a função de atualização seguir um processo ARMA(p,q) e a segunda é desenvolver essa função a partir do arcabouço dos modelos observáveis (CNO). A seção 4.1.2 desenvolve a abordagem via CNO, que é a dinâmica utilizada neste projeto.

É importante definirmos alguns conceitos essenciais para modelos *scoredriven*, sendo o primeiro deles o *score*. É esse conceito que conduz a dinâmica do modelo de série temporal a cada instante de tempo, sendo definido como:

$$\nabla_t = \frac{\partial \ln p(y_t|f_{t|t-1}; \mathbf{Y_{t-1}}, \theta)}{\partial f_{t|t-1}}$$
(4-5)

Quando combinado com a matriz de informação de Fisher, $I_{t|t-1}$, obtemos o chamado *score* padronizado s_t que é quem irá guiar o desenvolvimento do modelo. Suas definições são:

$$I_{t|t-1} = E_{t-1}[\nabla_t \nabla_t'] = -E_{t-1} \left[\frac{\partial^2 \ln p(y_t | f_{t|t-1}; \theta, \mathbf{Y_{t-1}})}{\partial f_{t|t-1} f_{t|t-1}'} \right]$$
(4-6)

$$s_t = I_{t|t-1}^{-d} \nabla_t, d = 0, 1, 0.5$$
(4-7)

Vale comentar que, quando d=0.5, a definição de s_t é ligeiramente diferente, como mostra [Sarlo, Fernandes e Borenstein 2023].

Usualmente, modelos score-driven utilizam funções de ligação h(.) para restringir os parâmetros variantes no tempo ao seu domínio.

Assuma, por exemplo, uma distribuição Gama tal qual a apresentada na seção anterior: $y_t \sim Gama(\alpha_{t|t-1}, \lambda_{t|t-1})$, tal que $E[y_t|\mathbf{y_{|t-1}}] = \lambda_{t|t-1}$ e $V[y_t|\mathbf{y_{|t-1}}] = \lambda_{t|t-1}^2/\alpha_{t|t-1}$.

Por definição, ambos os parâmetros $\alpha_{t|t-1}$ e $\lambda_{t|t-1}$ devem ser positivos. Para garantir que essas restrições sejam atendidas, o usual seria utilizar a função logarítmica de tal modo que:

$$h_1(\alpha_t) = \tilde{f}_{1,t} \longrightarrow ln(\alpha_t) = \tilde{f}_{1,t} \longrightarrow \alpha_t = e^{\tilde{f}_{1,t}}, \quad \alpha_t = f_{1,t}$$

 $h_2(\lambda_t) = \tilde{f}_{2,t} \longrightarrow ln(\lambda_t) = \tilde{f}_{2,t} \longrightarrow \lambda_t = e^{\tilde{f}_{2,t}}, \quad \lambda_t = f_{2,t}$

A partir dessas novas expressões para os parâmetros variantes no tempo com função de ligação, seria necessário obter todas as novas expressões para $\tilde{\nabla}_t$, \tilde{s}_t e $\tilde{I}_{t|t-1}$.

Uma propriedade conveniente de modelos observation driven é que a estimação dos parâmetros pode ser realizada via máxima verossimilhança (MV) [Creal, Koopman e Lucas 2013]. A função verossimilhança, denotada por $L(\theta)$ é, simplesmente, a distribuição conjunta condicional de probabilidade escrita como função de θ , que é o vetor que aglutina todos os parâmetros fixos do modelo. É comum utilizar a função log da verossimilhança, representada por $l(\theta) = \ln L(\theta)$. Dito isso, seja $\mathbf{y_t}$ uma série temporal de observações $y_1, ..., y_T$. O problema de maximização da verossimilhança pode ser escrito como

$$\hat{\theta} = \arg\max_{\theta} \sum_{t=1}^{T} l_t$$

onde $l_t = \ln p(y_t|f_{t|t-1}, \mathbf{Y_{t-1}}; \theta)$ é a função log da verossimilhança para uma realização de y_t . Segundo [Creal, Koopman e Lucas 2013], estimar via MV para modelos GAS é particularmente simples, bastando implementar a função de atualização e avaliar a função l_t em um valor particular θ^* de θ .

Como é usual para modelos de séries temporais, a qualidade do modelo é avaliada a partir de diagnósticos dos resíduos do modelo estimado. No caso de GAS, há duas classes possíveis de resíduos: os resíduos de Pearson e os resíduos quantílicos.

Os resíduos de Pearson são definidos como:

$$r_t^P = \frac{y_t - E(y_t | f_{t|t-1}, \mathbf{Y_{t-1}}, \theta)}{\sqrt{Var(y_t | f_{t|t-1}, \mathbf{Y_{t-1}}, \theta)}} \quad \forall t = 1, ..., T$$
 (4-8)

onde $E(y_t|f_t, \mathbf{Y_{t-1}}, \theta)$ e $Var(y_t|f_t, \mathbf{Y_{t-1}}, \theta)$ são, respectivamente, a média e a variância do modelo probabilístico $p(y_t|f_t, \mathbf{Y_{t-1}}, \theta)$ [Fernandes 2020].

Os resíduos quantílicos, por sua vez, são definidos como:

$$r_t^q = \Phi^{-1}(F(y_t|f_{t|t-1}, \mathbf{Y_{t-1}}, \hat{\theta})) \ \forall t = 1, ..., T$$
 (4-9)

onde $\Phi^{-1}(.)$ é o quantil de uma distribuição normal padrão Z = N(0,1) e $F(y_t|f_t,\mathbf{Y_{t-1}},\hat{\theta})$ é a função de distribuição acumulada associada a $p(y_t|f_t,\mathbf{Y_{t-1}},\theta)$.

Ambos os resíduos devem ser submetidos aos testes usuais de diagnóstico para avaliar normalidade, autocorrelação nula e homocedasticidade [Jonathan e Kung-Sik 2008]. É importante comentar que, assim como mostrou [Kalliovirta 2012], se o modelo GAS foi bem especificado, os resíduos quantílicos são assintoticamente normais e independentemente distribuídos, mesmo que o modelo probabilístico não tenha sido Gaussiano. Com isso, os testes de normalidade dos resíduos podem ser mantidos como diagnóstico.

É importante ressaltar que os resíduos de Pearson são apropriados apenas

para modelos aditivos e Gaussianos. Assuma, por exemplo, que a estrutura de um modelo de série temporal aditivo segue a seguinte equação:

$$y_t = m_{t|t-1} + \gamma_{t|t-1} + \epsilon_t \tag{4-10}$$

onde $m_{t|t-1}$ é a componente de tendência e $\gamma_{t|t-1}$ a de sazonalidade, além de que ϵ_t $N(0, \sigma^2)$.

Podemos reescrever essa equação para isolar o termo de erro, dando origem ao resíduo de Pearson. Note que, por construção, o erro é homocedástico e normal. $v_{ij} = (m_{ij}, j_{ij} + \gamma_{ij}, j_{ij})$

 $\frac{\epsilon_t}{\sigma} = \frac{y_t - (m_{t|t-1} + \gamma_{t|t-1})}{\sigma} \sim N(0, 1)$ (4-11)

O mesmo seria verdade para um outro modelo com combinação multiplicativa das componentes mas ainda com o termo de erro aditivo.

$$y_t = m_{t|t-1} \times \gamma_{t|t-1} + \epsilon_t \tag{4-12}$$

$$\frac{\epsilon_t}{\sigma} = \frac{y_t - (m_{t|t-1} \times \gamma_{t|t-1})}{\sigma} \sim N(0, 1) \tag{4-13}$$

Por outro lado, caso fosse definido um modelo cujo termo de erro se combina de forma multiplicativa, esse tipo de resíduo deixaria de ser adequado. Tome, por exemplo, o modelo de equação

$$y_t = m_{t|t-1}(1 + \epsilon_t) \tag{4-14}$$

Desenvolvendo essa equação para obter a expressão para o termo de erro não obteríamos a expressão equivalente ao resíduo de Pearson, como mostrado a seguir $u = m_{\rm tho}$.

 $\epsilon_t = \frac{y_t - m_{t|t-1}}{m_{t|t-1}} \tag{4-15}$

Além disso, caso o modelo escolhido seja baseado em uma distribuição não Gaussiana, como a gama, por exemplo, não seria possível reescrever a equação em função do termo de erro, de tal modo que a definição do resíduo do modelo seria ambígua.

Devido a esses fatos, é aconselhável utilizar os resíduos quantílicos para modelos *score-driven*, dado que eles são bem definidos para todas as distribuições e combinações de componentes.

Por fim, uma vez constatado que o modelo foi bem estimado, o último passo é realizar a previsão do modelo para k passos à frente. Note que, se k=1, a previsão é obtida de forma imediata pela distribuição condicional de probabilidade. No entanto, para k>1, não existe forma analítica e deve ser realizada através de simulações de Monte Carlo. O algoritmo 1 descreve o pseudo-código para realizar essas simulações.

Algoritmo 1: Previsão k passos à frente para modelos GAS(p,q).

```
Entrada: f_{t,q} = \{f_t, f_{t-1}, ..., f_{t-q}\}, s_{t,p} = \{s_t, s_{t-1}, ..., s_{t-p}\}
   Saída: \hat{y_{t,k}} = \{y_{t+1}, ..., y_{t+k}\}
 1 \ k \leftarrow 1;
 2 m \leftarrow 1;
 з para m \leftarrow 1 até m \leftarrow 2000 faça
        k \leftarrow 1;
        para k \leftarrow 1 até k = K faça
 5
             Com base em \hat{\theta}, gere 1 valor da densidade preditiva de \hat{y}_{t+k|t}^{(m)};
            Calcule f_{t+k-1,q} e s_{t+k-1,p};
           Atualize f_{t+k,q} e s_{t+k,p};
 8
        se m = 2000 \ e \ k = K então
 9
             \hat{y}_{t+k|t} é obtido pela média das m trajetórias calculadas a cada
10
              instante de tempo k;
             Os intervalos de confiança são obtidos pelos quantis (\alpha/2) e
11
              (1 - \alpha/2) das m trajetórias;
        senão
12
13
            m = m + 1;
```

4.1.2 Modelos score-driven - CNO

Podemos especificar os modelos GAS a partir do arcabouço dos modelos de componentes não observáreis para a função de atualização de $f_{t|t-1}$. Essa formulação foi apresentada em [Harvey 2013] e [Caivano, Harvey e Luati 2016] e é especialmente útil para o problema que este trabalho vai endereçar, uma vez que, dentro desse arcabouço, as componentes de tendência e sazonalidade ficam explícitas.

Para explicitar essa formulação, devemos partir de um modelo estrutural básico onde a série temporal é decomposta em componentes de tendência linear estocástica m_t e sazonalidade estocástica γ_t por dummies, como dado a seguir:

$$y_{t} = m_{t} + \gamma_{t} + \epsilon_{t}, \epsilon_{t} \sim N(0, \sigma^{2})$$

$$m_{t+1} = m_{t} + b_{t} + \eta_{t}, \eta_{t} \sim N(0, \sigma_{\eta}^{2})$$

$$b_{t+1} = b_{t} + \xi_{t}, \xi_{t} \sim N(0, \sigma_{\xi}^{2})$$

$$\gamma_{t+1} = \sum_{j=0}^{S-2} \gamma_{t-j} + \nu_{t}, \nu_{t} \sim N(0, \sigma_{\nu}^{2})$$
(4-16)

Onde S é o período sazonal da série e $\epsilon_t, \eta_t, \xi_t, \nu_t$ são choques aleatórios normais de média zero e variância constante no tempo.

Neste momento, serão mostrados os passos para obter a formulação da componente sazonal via funções trigonométricas em um modelo CNO. O Apêndice B exibe, como complemento, a formulação via variáveis dummies e uma segunda formulação, mais geral, via funções trigonométricas.

É necessário, a partir dessa formulação, alterar os choques aleatórios de cada componente, isto é, $\epsilon_t, \eta_t, \xi_t$ e $\nu_t t$ para transformar esse modelo em um modelo GAS. A seguir estão os passos necessários para obter um modelo GAS estrutural, supondo que a distribuição de y_t é uma $gama(\alpha, \lambda_{t|t-1})$, com $\lambda_{t|t-1} > 0, \alpha > 0$.

Sabe-se que, utilizando essa parametrização, $E(y_t|f_{t|t-1}, \mathbf{Y_{t-1}}, \theta) = \lambda_{t|t-1}$ e $V(y_t|f_{t|t-1}, \mathbf{Y_{t-1}}, \theta) = \lambda_{t|t-1}^2/\alpha$. Note que decidi por apenas um parâmetro variante no tempo, o shape. Além disso, sabe-se que o score padronizado associado ao parâmetro shape, com d=1 e link function logarítmica, é $\nabla_t^{\lambda} = \frac{y_t}{\lambda_{t|t-1}-1}$ (ver Apêndice A.1). Chamarei, a partir desse momento, esse score de s_t e ele fará o papel dos choques aleatórios existentes em um modelo CNO ao ser transcrito para a modelagem score-driven.

Começamos a modelagem da componente sazonal a definindo como uma soma determinística de funções trigonométricas de diferentes períodos chamadas harmônicos, tal como:

$$\gamma_t = \sum_{j=1}^{[S/2]} (\gamma_j \cos(\omega_j t) + \gamma_j^* \sin(\omega_j t))$$
(4-17)

onde $\omega_j = 2\pi j/S$, j = 1, ..., [S/2] são os harmônicos, S é o período sazonal da série e [S/2] = S/2, s par ou [S/2] = (S-1)/2, S impar.

É importante ressaltar que $\gamma_j^* = 0$ se j = [S/2] e que os coeficientes sazonais são γ_j, γ_j^* , enquanto que o fator sazonal é γ_t .

Uma vez definida a versão determinística da sazonalidade por funções trigonométricas, falta obter sua versão estocástica. Para isso, primeiro vou obter uma forma recursiva da equação. Em seguida, adicionaríamos um choque aleatório, caso estivéssemos modelando um modelo CNO padrão. No entanto, para gerar um modelo score-driven, será adicionado o score padronizado apresentado anteriormente multiplicado por uma nova variável κ_{γ} .

Antes de começar esse desenvolvimento, atente-se para a notação possivelmente confusa, assumindo série mensal: γ_t é a sazonalidade do mês t, (γ_j, γ_j^*) são os coeficientes trigonométricos e $(\gamma_{j,t}, \gamma_{j,t}^*)$ são os coeficientes estocásticos.

O primeiro passo é reescrever a equação 4-17 como:

$$\gamma_t = \sum_{j=1}^{[S/2]} (\gamma_j \cos(\omega_j t) + \gamma_j^* \sin(\omega_j t)) = \sum_{j=1}^{[S/2]} \gamma_{j,t}$$
(4-18)

Note que:

$$\gamma_{j,t} = \begin{cases} \gamma_j \cos(\omega_j t) + \gamma_j^* \sin(\omega_j t), \text{ se } j = 1, ..., (S/2) - 1\\ \gamma_{S/2} \cos(\omega_{S/2} t), \text{ se } j = S/2 \end{cases}$$
(4-19)

Para obter a relação recursiva, trocaremos t por t+1 na expressão acima e desenvolveremos as contas.

$$\begin{split} \gamma_{j,t+1} &= \gamma_j \cos(\omega_j(t+1)) + \gamma_j^* \sin(\omega_j(t+1)) \\ \gamma_{j,t+1} &= \gamma_j \cos(\omega_j t + \lambda_j) + \gamma_j^* \sin(\omega_j t + \lambda_j) \\ \gamma_{j,t+1} &= \gamma_j [\cos(\omega_j t) \cos(\omega_j) - \sin(\omega_j t) \sin(\omega_j)] + \\ &+ \gamma_j^* [\sin(\omega_j t) \cos(\omega_j) + \cos(\omega_j t) \sin(\omega_j)] \\ \gamma_{j,t+1} &= \cos \lambda_j [\gamma_j \cos(\omega_j t) + \gamma_j^* \sin(\omega_j t)] + \\ &+ \sin \lambda_j [-\gamma_j \sin(\omega_j t) + \gamma_j^* \cos(\omega_j t)] \end{split}$$

Pode-se perceber que, dentro dos colchetes, obtivemos, justamente, as expressões para $\gamma_{j,t}$ e $\gamma_{j,t}^*$. Reescrevendo a equação acima em forma vetorial obtenho:

$$\gamma_{j,t+1} = \begin{bmatrix} \cos \omega_j & \sin \omega_j \end{bmatrix} \begin{bmatrix} \gamma_{j,t} \\ \gamma_{j,t}^* \end{bmatrix}$$

Com essa equação, temos a recursão de $\gamma_{j,t+1}$ com $\gamma_{j,t}$, mas falta ainda obter a recursão para $\gamma_{j,t}^*$. Para isso, basta seguir o mesmo procedimento:

$$\gamma_{j,t+1}^* = \gamma_j \cos^*(\lambda_j(t+1)) - \gamma_j \sin(\omega_j(t+1))$$

$$\gamma_{j,t+1}^* = -\gamma_j [\sin(\omega_j t) \cos(\omega_j) + \sin(\omega_j) \cos(\omega_j t)] +$$

$$+ \gamma_j^* [\cos(\omega_j t) \cos(\omega_j) - \sin(\omega_j t) \sin(\omega_j)]$$

$$\gamma_{j,t+1}^* = \begin{bmatrix} -\sin \omega_j & \cos \omega_j \end{bmatrix} \begin{bmatrix} \gamma_j \cos(\omega_j t) + \gamma_j^* \sin(\omega_j t) \\ \gamma_j^* \cos(\omega_j t) + \gamma_j \sin(\omega_j t) \end{bmatrix}$$

$$\gamma_{j,t+1}^* = \begin{bmatrix} -\sin \omega_j & \cos \omega_j \end{bmatrix} \begin{bmatrix} \gamma_{j,t} \\ \gamma_{j,t}^* \end{bmatrix}$$

Juntando as duas equações, obtenho finalmente a relação recursiva desejada:

$$\begin{bmatrix} \gamma_{j,t+1} \\ \gamma_{j,t+1}^* \end{bmatrix} = \begin{bmatrix} \cos \omega_j & \sin \omega_j \\ -\sin \omega_j & \cos \omega_j \end{bmatrix} \begin{bmatrix} \gamma_{j,t} \\ \gamma_{j,t}^* \end{bmatrix}$$

Neste momento, para tornar a expressão estocástica, adicionaremos o score padronizado s_t , multiplicado pelo parâmetro κ_{γ} , que é aquele que introduz

o efeito da variância do choque aleatório na modelagem CNO padrão.

$$\begin{bmatrix} \gamma_{j,t+1} \\ \gamma_{j,t+1}^* \end{bmatrix} = \begin{bmatrix} \cos \lambda_j & \sin \lambda_j \\ -\sin \lambda_j & \cos \lambda_j \end{bmatrix} \begin{bmatrix} \gamma_{j,t} \\ \gamma_{j,t}^* \end{bmatrix} + \begin{bmatrix} \kappa_{\gamma} s_t \\ \kappa_{\gamma} s_t \end{bmatrix}$$

Por fim, a componente sazonal será a soma dos harmônicos sazonais $\gamma_{j,t}$, como se segue:

 $\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t} \tag{4-20}$

Com isso, obtemos a versão GAS-CNO do modelo estrutural básico com componente sazonal via funções trigonométricas abaixo:

$$\lambda_{t+1|t} = m_{t+1|t} + \gamma_{t+1|t}$$

$$m_{t+1|t} = m_{t|t-1} + b_{t|t-1} + \kappa_m s_t$$

$$b_{t+1|t} = b_{t|t-1} + \kappa_b s_t$$

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t}$$

$$\gamma_{i,t} = \gamma_{i,t-1} \cos(\omega_{i,t}) + \gamma_{i,t-1}^* \sin(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$
(4-21)

.

A principal diferença entre a formulação de um modelo de espaço de estados descrito como 4-16 para um modelo score driven descrito como B-8 é o fato do primeiro possuir choques aleatórios em suas equações de componentes enquanto que o segundo substitui esses choque por uma função do score, tornando o modelo dependente das observações passadas da série temporal. Dada essa simplicidade, foram omitos os passos para a definição da componente de tendência e foram apenas substituídos os choques aleatórios pelo score padronizado. Com isso, agora temos a formulação de um modelo score-driven cujos parâmetros variantes no tempo seguem um processo CNO.

4.1.3 Combinação não linear de tendência e sazonalidade

A maneira mais usual de combinar as componentes de tendência e sazonalidade, tanto em modelos estruturais, quanto em modelos GAS-CNO, quando utilizadas distribuições Gaussianas e *t-student* é a combinação aditiva:

$$y_t = m_t + \gamma_t + \epsilon_t$$

No entanto, para distribuições não Gaussianas, é comum que utilizemos alguma forma multiplicativa de combinação de tendência e sazonalidade. Suponha o mesmo modelo GAS-CNO gama já definido anteriormente, decompondo essa média da distribuição em componentes de tendência e sazonalidade. Ao mesmo tempo, para garantir que a média seja sempre positiva, tal como manda a restrição desse parâmetro, podemos utilizar uma função de ligação logarítmica. Com isso, obtemos a seguinte expressão para a média:

$$\lambda_{t|t-1} = \exp(m_{t|t-1} + \gamma_{t|t-1})$$

$$= \exp(m_{t|t-1}) \cdot \exp(\gamma_{t|t-1})$$

$$= m_{t|t-1}^* \cdot \gamma_{t|t-1}^*$$

Note que, com essa formulação, o modelo final obtido foi um modelo multiplicativo entre as componentes.

Como este projeto não utilizou o ferramental de funções de ligação, essa formulação não foi a implementada.

As alterações propostas com o objetivo de generalizar a combinação de tendência e sazonalidade foi inspirada nas variações de modelos ETS, um outro modelo muito importante para séries temporais. A Figura 3.1, obtida de [Hyndman e Athanasopoulos 2021], apresentou diversas combinações possíveis em modelos ETS.

A principal referência de escolha de interações dentre as componentes veio de [Koopman e Lee 2009], que testou justamente o efeito de interações multiplicativas em modelos CNO na redução da autocorrelação e da heterocedasticidade nos resíduos dos modelos. Note que nenhuma combinação depende da dinâmica de cada uma das componentes, que não foram especificadas neste momento.

A primeira combinação não linear implementada, apresentada em [Koopman e Lee 2009] foi chamada de "multiplicativa 1":

$$\lambda_{t|t-1} = m_{t|t-1} \times (1 + \gamma_{t|t-1}) \tag{4-22}$$

onde $\lambda_{t|t-1}$ é um parâmetro variante no tempo que representa a média de uma distribuição de probabilidade, m_{tt-1} é a componente de tendência e $\gamma_{t|t-1}$ é a componente de sazonalidade.

Além dela, foi implementada a interação "multiplicativa 2", que foi a combinação implementada por [Koopman e Lee 2009].

$$\lambda_{t|t-1} = m_{t|t-1} + e^{\beta m_{t|t-1}} \times \gamma_{t|t-1} \tag{4-23}$$

onde $\beta \in \mathbb{R}$ é um parâmetro fixo e desconhecido a ser estimado pelo

modelo.

Essa interação foi proposta com o objetivo de alterar a amplitude da componente de sazonalidade via uma transformação exponencial da componente de tendência. O sinal do parâmetro b indica se a variação sazonal está crescendo ou decrescendo quando ocorre uma mudança positiva na componente de tendência, além de permitir que o modelo seja reduzido á interação aditiva padrão se b=0.

4.1.4 Definição das distribuições de probabilidade a serem utilizadas

Foram escolhidas 2 distribuições não Gaussianas: lognormal e gama.

Distribuição LogNormal

Seja Z uma variável aleatória normal padrão, $Z \sim N(0,1)$ e μ , σ dois números reais tal que $\sigma > 0$. Então, uma variável aleatória $X = e^{\mu + \sigma Z}$ segue uma distribuição LogNormal, tal que $E[ln(X)] = \mu$ e $V[ln(X)] = \sigma^2$.

Dado que o pacote UnobservedComponentsGAS já possui a distribuição normal implementada, ao invés de implementar a distribuição LogNormal, optou-se por estimar o GAS-CNO Normal no logaritmo da série temporal. Isto é, dado uma série temporal $\mathbf{Y_t}$, definiu-se:

$$p(ln(y_t)|\mathbf{Y_{t-1}}) \sim Normal\left(\mu, \sigma^2\right)$$

É importante ressaltar que, após estimado o modelo na escala logarítmica, com o intuito de recuperar o *fit in sample* e a previsão para a escala original, não basta exponenciar os valores estimados. O correto é seguir a expressão:

$$\hat{y}_{original} = e^{\hat{y}_{log}} e^{\frac{1}{2}\hat{\sigma}^2}$$

onde \hat{y}_{log} são os valores estimados na escala logarítmica, SSR é a soma dos quadrados dos resíduos do modelo estimado (sum of squared residuals), T é o tamanho da série estimada, K são os graus de liberdade do modelo, que equivalhe à quantidade de parâmetros estimados e $\hat{\sigma}^2 = \frac{SSR}{T-K}$ é um estimador da variância do modelo.

Por fim, vale definir o *score*, a matriz de informação de Fisher e o *score* padronizado para uma distribuição normal aplicada no log da série temporal. São eles:

$$\nabla_t = \begin{pmatrix} \nabla_t^{\mu} \\ \nabla_t^{\sigma^2} \end{pmatrix} = \begin{pmatrix} \frac{ln(y_t) - \mu_{t|t-1}}{\sigma_{t|t-1}^2} \\ \frac{-1}{2\sigma_{t|t-1}^2} + \frac{1}{2\sigma_{t|t-1}^4} (ln(y_t) - \mu_{t|t-1}) \end{pmatrix}$$

$$I_{t|t-1} = \begin{pmatrix} I_{t|t-1}^{\mu} & I_{t|t-1}^{\mu,\sigma^2} \\ I_{t|t-1}^{\mu,\sigma^2} & I_{t|t-1}^{\sigma^2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sigma_{t|t-1}^2} & 0 \\ 0 & \frac{1}{2\sigma_{t|t-1}^4} \end{pmatrix}$$

$$s_t = \begin{pmatrix} s_t^{\mu} \\ s_t^{\sigma^2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sigma_{t|t-1}^2} & 0 \\ 0 & \frac{1}{2\sigma_{t|t-1}^4} \end{pmatrix}^{-d} \begin{pmatrix} \frac{\ln(y_t) - \mu_{t|t-1}}{\sigma_{t|t-1}^2} \\ \frac{-1}{2\sigma_{t|t-1}^2} + \frac{1}{2\sigma_{t|t-1}^4} (\ln(y_t) - \mu_{t|t-1}) \end{pmatrix}$$

onde d é um parâmetro de escala que pode assumir valores 0, 0.5 ou 1.

Distribuição Gama

Como a distribuição gama não estava originalmente implementada no pacote UnobservedComponentsGAS, sua implementação fez parte desse projeto. Para tal, escolheu-se a parametrização $X \sim Gama(\alpha, \lambda)$, tal que $E[X] = \lambda$ e $V[X] = \lambda^2/\alpha$.

Dado que essa distribuição foi implementada dentro do escopo deste projeto, aqui estão expostos alguns resultados importantes para a distribuição gama em sua parametrização α e λ . Somado a isso, o desenvolvimento completo dos resultados mostrados a seguir encontram-se no apêndice A.1

A função densidade de probabilidade e o logaritmo natural dessa função são:

$$f(y_t | \alpha_{t|t-1}, \lambda_{t|t-1}; \mathbf{Y_{t-1}}) = \frac{1}{\Gamma(\alpha_{t|t-1})} \frac{1}{(\alpha_{t|t-1}^{-1} \lambda_{t|t-1})^{\alpha_{t|t-1}}} y_t^{\alpha_{t|t-1} - 1} e^{\frac{-\alpha_{t|t-1}}{\lambda_{t|t-1}} y_t}$$

$$lnf(y_t|\mathbf{Y_{t-1}};\alpha_{t|t-1},\lambda_{t|t-1}) = -ln(\Gamma(\alpha_{t|t-1})) - \alpha_{t|t-1}ln(1/\alpha_{t|t-1}) - \alpha_{t|t-1}ln(\lambda_{t|t-1}) + (\alpha_{t|t-1} + 1)ln(y_t) - (\alpha_{t|t-1}/\lambda_{t|t-1})y_t$$

O vetor score obtido para essa distribuição é:

$$\nabla_t = \begin{pmatrix} \nabla_t^{\alpha} \\ \nabla_t^{\lambda} \end{pmatrix} = \begin{pmatrix} ln(y_t) - \frac{y_t}{\lambda_{t|t-1}} + ln(\alpha_{t|t-1}) - \psi_1(\alpha_{t|t-1}) - ln(\lambda_{t|t-1}) + 1 \\ \frac{\alpha_{t|t-1}}{\lambda_{t|t-1}} \left(\frac{y_t}{\lambda_{t|t-1}} - 1 \right) \end{pmatrix}$$

onde a função $\psi_1(\alpha_{t|t-1})$ é a função digamma definida como $\psi_1(\alpha_t) = \frac{\Gamma'(\alpha_t)}{\Gamma(\alpha_t)}$.

Em seguida, é necessário definir a matrix de informação de Fisher $I_{t|t-1}$.

$$I_{t|t-1} = \begin{pmatrix} I_{t|t-1}^{\alpha} & I_{t|t-1}^{\alpha,\lambda} \\ I_{t|t-1}^{\alpha,\lambda} & I_{t|t-1}^{\lambda} \end{pmatrix} = \begin{pmatrix} \psi_2(\alpha_{t|t-1}) - \frac{1}{\alpha_{t|t-1}} & 0 \\ 0 & \frac{\alpha_{t|t-1}}{\lambda_{t|t-1}^2} \end{pmatrix}$$

onde a função $\psi_2(\alpha_t)$ é a função trigamma definida como $\psi_2(\alpha_t) = \frac{\psi_1'(\alpha_t)}{\psi_1(\alpha_t)}$.

É essa matriz que, combinada com o *score*, dará origem ao *score* padronizado, que é a estrutura responsável por guiar as dinâmicas de um modelo *score-driven*. Sua expressão para a distribuição gama é:

$$\begin{split} s_t &= I_{t|t-1}^{-d} \nabla_t \\ s_t &= \begin{pmatrix} s_t^{\alpha} \\ s_t^{\lambda} \end{pmatrix} = \\ &= \begin{pmatrix} \psi_2(\alpha_{t|t-1}) - \frac{1}{\alpha_{t|t-1}} & 0 \\ 0 & \frac{\alpha_{t|t-1}}{\lambda_{t|t-1}^2} \end{pmatrix}^{-d} \begin{pmatrix} ln(y_t) - \frac{y_t}{\lambda_{t|t-1}} + ln(\alpha_{t|t-1}) - \psi_1(\alpha_{t|t-1}) - ln(\lambda_{t|t-1}) + 1 \\ & \frac{\alpha_{t|t-1}}{\lambda_{t|t-1}} \left(\frac{y_t}{\lambda_{t|t-1}} - 1 \right) \end{pmatrix} \end{split}$$

onde d é um parâmetro de escala que pode assumir valores 0, 0.5 ou 1.

Implementação Computacional

Nesta seção, estão descritas as implementações e os testes realizados neste projeto. Na seção 4.2.1 estão definidas as séries temporais que foram utilizadas. Em seguida, na seção 4.1.4, apresento as distribuições de probabilidade escolhidas para modelar as séries temporais definidas. Nas sessões 4.2.3 e 4.2.4 apresento algumas questões de implementação dos modelo. Já na seção 4.2.2 explicito o modelo GAS utilizado nos testes, definindo quais foram as componentes não observáveis consideradas. As sessões 4.2.5 e 4.2.6 discorrem sobre os diagnósticos e avaliações do modelo estimado. Por fim, a seção 4.2.7 apresenta as formulações dos modelos testados para cada uma dessas alterações propostas.

É importante comentar que nenhum resultado é apresentado neste capítulo, dado que o objetivo seu objetivo é apenas formalizar a metodologia utilizada para os testes. Todos os resultados dos testes desenvolvidos encontram-se no capítulo 5.

4.2.1 Definição das séries temporais

Nesta seção está descrita a metodologia de testes utilizada neste projeto. Com o intuito de implementar e testar as alterações apresentadas para modelos GAS-CNO na seção 4.1.3 foram escolhidas 3 séries temporais mensais dentro do contexto de clima e energia e uma série temporal utilizada em [Koopman e Lee 2009].

A primeira é uma série temporal de carga mensal média, em MW, das regiões Sudeste e Centro Oeste do Brasil, obtida de https://www.snirh.gov.

br/hidroweb/serieshistoricas. A Figura 4.1 exibe o gráfico dessa série temporal. Optou-se por utilizar dados dessa série a partir de janeiro de 2002, até Junho de 2023 para evitar os *outliers* gerados pelo racionamento de junho e julho de 2001. Com isso, a série temporal possui 258 observações. Algumas características a se destacar sobre essa série é sua não estacionariedade, dada a existência de tendência, um visível aumento da variabilidade da série com o passar do tempo e, por fim, uma possível diminuição da inclinação da tendência nos últimos anos da série. A partir desse momento, essa série será sempre chamada de série de carga.

Figura 4.1: Série mensal de carga.

Em seguida, foi escolhida uma série mensal de ENA, isto é de Energia Natual Afluente, que corresponde à quantidade de água que chega a uma certa usina ou reservatório. A série escolhida foi obtida de https://www.ons.org.br/Paginas/resultados-da-operacao/historico-da-operacao/energia_afluente_subsistema.aspx e corresponde a ENA Bruta do Sudestre e Centro Oeste do país, com 284 observações, entre Janeiro de 2000 e Agosto de 2023. A Figura 4.2 exibe o gráfico da série e seu histograma. A primeira característica que chama a atenção sobre essa série é sue histograma indicar que não se trata de uma distribuição normal. Outro fato importante é a série apresentar estacionariedade na tendência e um padrão sazonal visualmente marcante. A partir desse momento, essa série será sempre chamada de série de ENA.

Figura 4.2: Série mensal de ENA.

Por fim, foi escolhida uma das séries discutidas em [Koopman e Lee 2009], que possui a quantidade mensal de viagens internacionais de residentes no Reino Unido, entre janeiro de 1980 e dezembro de 2006, contabilizando 324 observações. A série contabiliza todos os meios de transporte utilizados na entrega e saída do Reino Unido. Essa série foi retirada de https://www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/datasets/internationalpassengersurveytimeseriesspreadsheet. Sua escolha se deu pelo fato dela apresentar, além de tendência crescente e sazonalidade bem definida, um aumento na variação da sazonalidade. Esse aumento, como comentado pelo autor, não é resolvido utilizando a transformação logarítmica na série temporal, o que a torna um excelente exemplo para este trabalho. A Figura 4.3 exibe o seu gráfico. A partir desse momento, essa série será sempre chamada de série de viagens.

Figura 4.3: Série mensal de viagens internacionais de residentes do Reino Unido.

Todas as séries foram separadas em períodos de treino, ou in sample e de teste, ou out of sample. A Tabela 4.1 exibe, para cada série temporal, seu tamanho T, as datas separadas para a estimação dos modelos (treino) e as datas separadas para validação do modelo (teste). Note que, para todas as

séries, foram separadas as últimas 12 observação para servirem de dados $\it out$ of $\it sample$.

Série	Т	Treino	Teste
		01/2002	07/2022
Carga	258	a	a
		06/2022	06/2023
		01/2000	09/2022
ENA	284	a	a
		08/2022	08/2023
		01/1980	01/2006
Viagens	324	a	a
		12/2005	12/2006

Tabela 4.1: Divisão das séries temporais em períodos de treino e de teste.

4.2.2 Definição das componentes não observáveis

O próximo passo na definição da metodologia do projeto é especificar as componentes não observáveis dos modelos GAS a serem implementados e testados. Embora o pacote *UnobservedComponentsGAS* forneça diferentes possibilidades de especificação de componentes, por fins de simplicidade, o modelo GAS a ser utilizado será um modelo com tendência e sazonalidade estocásticas com apenas 1 parâmetro variando no tempo. Dito isso, para as distribuições listadas anteriormente, optei pelos seguintes modelos:

$$p(y_t|\mu_{t|t-1}, \sigma^2; \mathbf{Y_{t-1}}) \sim Lognormal(\mu_{t|t-1}, \sigma^2)$$
$$p(y_t|\alpha, \lambda_{t|t-1}; \mathbf{Y_{t-1}}) \sim Gama(\alpha, \lambda_{t|t-1})$$

A escolha de μ e λ como parâmetros variantes no tempo se deu pelo falo deles representarem as médias de suas respectivas distribuições.

Uma vez definidos os parâmetros variantes no tempo, define-se a dinâmica de atualização desses parâmetros. Essa escolha depende principalmente do comportamento da série temporal.

A seguir está descrito o modelo para a média μ_t variante no tempo. Note que é exatamente o mesmo que seria definido para média λ_t .

Para a série de carga e de viagens, dados seus perfis não estacionários, o parâmetro de média será modelado com um passeio aleatório amortecido com drift como componentes de tendência e com sazonalidade trigonométrica. As

equações abaixo descrevem este modelo:

$$\mu_{t+1|t} = m_{t+1|t} + \gamma_{t+1|t}$$

$$m_{t+1|t} = m_{t|t-1} + b_{t|t-1} + \kappa_m s_t$$

$$b_{t+1|t} = \phi b_{t|t-1} + \kappa_b s_t$$

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t}$$

$$\gamma_{i,t} = \gamma_{i,t-1} \cos(\omega_{i,t}) + \gamma_{i,t-1}^* \sin(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$
(4-24)

onde S é o período sazonal da série (12 para séries mensais), s_t é o vetor score, $m_{t+1|t}$ é a componente de tendência, $\gamma_{t+1|t}$ a componente de sazonalidade, $\omega_{i,t} = 2\pi i t/S$ e $s_t = I_{t|t-1}^{-d} \nabla_t$ é o score padronizado com função de ligação identidade.

A série de ENA, por sua vez, não apresenta tendência, o que torna o modelo acima inadequado. Sendo assim, será mantida a componente sazonal via funções trigonométricas, mas a componente de tendência será descrita por meio de um processo AR(p), com $p \leq 2$. As equações abaixo descrevem este modelo:

$$\mu_{t+1|t} = m_{t+1|t} + \gamma_{t+1|t}$$

$$m_{t+1|t} = \phi_0 + \sum_{i=1}^p \phi_i m_{t|t-i} + \kappa_m s_t$$

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t}$$

$$\gamma_{i,t} = \gamma_{i,t-1} \cos(\omega_{i,t}) + \gamma_{i,t-1}^* \sin(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$
(4-25)

.

A partir desse momento, os modelos combinação aditiva das componentes será denominado modelo aditivo ou, simplemente, "ad".

4.2.3 Restrições no domínio dos parâmetros variantes no tempo

Embora o ferramental de funções de ligação, apresentados na seção 4.1 seja muito utilizado em modelos score-driven, o pacote UnobservedComponentsGAS, utilizado como base deste trabalho, não as utiliza para garantir as restrições de domínio dos parâmetros variantes no tempo. Ele, uma vez

implementado inteiramente dentro do ambiente de otimização JuMP, da linguagem Julia, adiciona restrições de positividade diretamente no problema de otimização que estima o modelo GAS. Dito isso, está subentendido que toda a formulação dos modelos GAS neste projeto está utilizando a função de ligação identidade, não sendo necessário especificar novos valores de $\tilde{\nabla}_t$, \tilde{s}_t e $\tilde{I}_{t|t-1}$.

4.2.4 Questões de implementação

Além de não utilizar funções de ligação, três outras decisões foram tomadas com o intuito de facilitar a estimação dos modelos GAS, a partir do pacote *UnobservedComponentsGAS*.

A primeira delas é uma funcionalidade do próprio pacote, que possibilita penalização nos valores dos κ s de todas as componentes do modelo. Essa penalização é feita por meio de um hiper-parâmetro $\alpha^* \in [0,1]$ que, quando assume o valor 0, indica que não há penalização nos κ s. Todos os modelos foram inicialmente otimizados com $\alpha^* = 0$, no entanto, para alguns poucos casos, a otimização encontrou erros numéricos que foram resolvidos utilizando $\alpha^* = 0.1$.

A segunda questão relevante a ser comentada é sobre a inicialização dos modelos. Originalmente, o pacote estima um modelo CNO aditivo padrão para inicializar as componentes do modelo GAS-CNO. Embora essa abordagem seja adequada para modelos GAS-CNO aditivos, ela se mostrou inadequada para os modelos com combinações multiplicativas. Dito isso, utilizar uma heurística baseada na utilização de modelos ETS multiplicativos como inicialização para os modelos GAS-CNO multiplicativos.

Seguindo a notação de [Hyndman e Athanasopoulos 2021], foram escolhidos dois modelos ETS distintos. Para a série de ENA, foi estimado um modelo MNM, isto é, com erro e sazonalidade multiplicativas e sem componente de tendência. Esse modelo é descrito pelas equações

$$y_t = l_{t-1} s_{t-m} (1 + \epsilon_t) \tag{4-26}$$

$$l_t = l_{t-1}(1 + \alpha \epsilon_t) \tag{4-27}$$

$$s_t = s_{t-m}(1 + \gamma \epsilon_t) \tag{4-28}$$

onde y_t é a série temporal, l_t é a componente de nível, s_t é a componente de sazonalidade, m é o período sazonal da série, ϵ é o termo de erro e $\alpha e \gamma$ são parâmetros de amortecimento.

Para as séries de carga e de viagens, foi estimado um modelo ETS MAM, ou seja, com tendência aditiva e sazonalidade e erro multiplicativos. Esse

modelo é descrito pelas seguintes equações

$$y_t = (l_{t-1} + b_{t-1})s_{t-m}(1 + \epsilon_t) \tag{4-29}$$

$$l_t = (l_{t-1} + b_{t-1})(1 + \alpha \epsilon_t) \tag{4-30}$$

$$b_t = b_{t-1} + \beta(l_{t-1} + b_{t-1})\epsilon_t \tag{4-31}$$

$$s_t = s_{t-m}(1 + \gamma \epsilon_t) \tag{4-32}$$

onde y_t é a série temporal, l_t é a componente de nível, b_t é a componente de tendência, s_t é a componente de sazonalidade, m é o período sazonal da série, ϵ é o termo de erro e α , $\beta e \gamma$ são parâmetros de amortecimento.

Por fim, modelos com componente sazonal estocástica não se mostraram adequados, haja vista que geraram resíduos com FACs relevantes nos lags sazonais. Dito isso, os modelos foram estimados com sazonalidade determinística, o que significa fixar os $\kappa_{\gamma} = 0$. Com essa alteração, a componente sazonal pode ser reescrita como:

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_i \cos(\omega_i t) + \gamma_i^* \sin(\omega_i t)$$
 (4-33)

onde $\omega_i = \frac{2\pi i}{S}$.

4.2.5 Diagnósticos dos resíduos

Parte essencial da modelagem de séries temporais é realizar diagnósticos nos resíduos do modelo estimado, com o intuito e verificar a qualidade da estimação. De acordo com [Hyndman e Athanasopoulos 2021], os resíduos de um bom modelo de série temporal devem apresentar como principal característica ausência de autocorrelação. Além disso, também é desejável que eles sejam homocedásticos e que sejam oriundos de uma distribuição normal.

Como explicado na seção 4.1, os resíduos mais adequados para avaliar modelos GAS são os resíduos quantílicos.

Para compor o diagóstico dos resíduos e verificar se as características desejadas foram obtidas, é comum realizar testes de hipóteses. Em especial, os testes de Jarque-Bera, que avalia normalidade dos resíduos, o teste de Ljung-Box, que avaliar presença de autocorrelação nos resíduos e o teste H, que investigam presença de heterocedasticidade. As hipóteses nulas destes 3 testes são:

- Teste JarqueBera: H₀ supõe resíduos normalmente distribuídos;
- Teste H: H_0 supõe resíduos homocedásticos;
- Teste LjungBox: H_0 supõe resíduos descorrelatados.

Para fins de metodologia, será utilizado nível de significância $\alpha=5\%$ para esses testes. Além disso, vale comentar que o tamanho da amostra dos testes pode influenciar fortemente a rejeição da hipótese nula, de tal forma que um resultado, mesmo que seja estatisticamente significante, pode não ser relevante.

Para complementar o teste de hipótese para verificar a normalidade dos resíduos, é comum utilizar o QQ-Plot (quantile-quantile plot). Ele permite comparar os quantis dos nossos dados com os quantis de uma distribuição de probabilidade qualquer. Para fins de diagnóstico, comparamos os quantis dos resíduos com os quantis de uma distribuição normal padrão (média 0 e desvio padrão 1). Por fim, é essencial avaliar a função de autocorrelação (FAC) dos resíduos, para verificar se toda a dependência linear da série temporal foi capturada pelo modelo estimado.

4.2.6 Métrica de avaliação

Por fim, a última etapa da avaliação do modelo é o cálculo de uma métrica de aderência dos valores estimados ou previstos pelo modelo com os valores reais da série. Muitas são essas métricas de erro: erro quadrático médio (MSE), raiz quadrada do erro quadrático médio (RMSE), erro absoluto médio (MAE), dentre outros.

A métrica escolhida para avaliar a estimação e previsão do modelo neste trabalho é o erro médio percentual absoluto, ou *MAPE*, em inglês. Ele foi escolhido por sua interpretabilidade, uma vez que trata de um erro percentual. O MAPE é definido como:

$$MAPE = 100 \times \frac{1}{T} \sum_{t=1}^{T} \left| \frac{y_t - \hat{y}_{t|t-1}}{y_t} \right|, \quad y_t \neq 0$$

onde T é o tamanho da série, y_t é a série temporal e \hat{y}_t é o valor estimado ou previsto pelo modelo.

Esta métrica será utilizada em dois contextos: para avaliar a qualidade da estimação in sample e a qualidade da previsão out of sample.

4.2.7 Modelos com interação não linear de tendência e sazonalidade

Aqui estão apresentados os modelos GAS-CNO com combinação não linear de componentes de tendência e sazonalidade implementados para cada uma das séries, seguindo as interações apresentadas nas equações ??, 4-22 e 4-23.

Começando pelo modelo multiplicativo 1 para a série de carga e de viagens, suas equações são:

$$\lambda_{t+1|t} = m_{t+1|t} \times (1 + \gamma_{t+1|t})$$

$$m_{t+1|t} = m_{t|t-1} + b_{t|t-1} + \kappa_m s_t$$

$$b_{t+1|t} = \phi b_{t|t-1} + \kappa_b s_t$$

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t}$$

$$\gamma_{i,t} = \gamma_{i,t-1} \cos(\omega_{i,t}) + \gamma_{i,t-1}^* \sin(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$
(4-34)

e, para a série de ENA, são:

$$\lambda_{t+1|t} = m_{t+1|t} \times (1 + \gamma_{t+1|t})$$

$$m_{t+1|t} = \phi_0 + \sum_{i=1}^p \phi_i m_{t|t-i} + \kappa_m s_t$$

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t}$$

$$\gamma_{i,t} = \gamma_{i,t-1} \cos(\omega_{i,t}) + \gamma_{i,t-1}^* \sin(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$
(4-35)

onde S é o período sazonal da série (12 para séries mensais), $m_{t+1|t}$ é a componente de tendência, $\gamma_{t+1|t}$ a componente de sazonalidade e $\omega_{i,t} = 2\pi i t/S$ e s_t é o vetor score padronizado.

Em seguida, para o modelo multiplicativo 2, temos as seguintes equações para a série de carga e de viagens, temos as equações

$$\lambda_{t+1|t} = m_{t+1|t} + e^{\beta m_{t+1|t}} \times \gamma_{t+1|t}$$

$$m_{t+1|t} = m_{t|t-1} + b_{t|t-1} + \kappa_m s_t$$

$$b_{t+1|t} = \phi b_{t|t-1} + \kappa_b s_t$$

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t}$$

$$\gamma_{i,t} = \gamma_{i,t-1} \cos(\omega_{i,t}) + \gamma_{i,t-1}^* \sin(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$
(4-36)

e, para a série de ENA,

$$\lambda_{t+1|t} = m_{t+1|t} + e^{\beta m_{t+1|t}} \times \gamma_{t+1|t}$$

$$m_{t+1|t} = \phi_0 + \sum_{i=1}^p \phi_i m_{t|t-i} + \kappa_m s_t$$

$$\gamma_{t+1|t} = \sum_{i=1}^{S/2} \gamma_{i,t}$$

$$\gamma_{i,t} = \gamma_{i,t-1} \cos(\omega_{i,t}) + \gamma_{i,t-1}^* \sin(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$

$$\gamma_{i,t}^* = -\gamma_{i,t-1} \sin(\omega_{i,t}) + \gamma_{i,t-1}^* \cos(\omega_{i,t}) + \kappa_\gamma s_t$$
(4-37)

.

Vale relembrar que, para todos esses modelos, o $score\ padronizado$ é definido como

$$s_t = I_{t|t-1}^{-d} \nabla_t.$$

Para a distribuição gama, temos

$$s_{t} = \begin{pmatrix} \psi_{2}(\alpha_{t|t-1}) - \frac{1}{\alpha_{t|t-1}} & 0\\ 0 & \frac{\alpha_{t|t-1}}{\lambda_{t|t-1}^{2}} \end{pmatrix}^{-d} \begin{pmatrix} ln(y_{t}) - \frac{y_{t}}{\lambda_{t|t-1}} + ln(\alpha_{t|t-1}) - \psi_{1}(\alpha_{t|t-1}) - ln(\lambda_{t|t-1}) + 1\\ & \frac{\alpha_{t|t-1}}{\lambda_{t|t-1}} \left(\frac{y_{t}}{\lambda_{t|t-1}} - 1 \right) \end{pmatrix}.$$

Já para a distribuição normal no log da série, temos

$$s_t = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}^{-d} \begin{pmatrix} \frac{\ln(y_t) - \mu_t}{\sigma_t^2}\\ \frac{-1}{2\sigma_t^2} + \frac{1}{2\sigma_t^4} (\ln(y_t) - \mu_t) \end{pmatrix}$$

.

Embora d possa assumir todos os valores 0, 0.5 e 1, neste projeto foram estimados modelos GAS-CNO apenas com d=1.

4.2.8 Resumo dos testes

A Tabela ?? apresenta, de forma condensada, todos os testes que foram realizados, enumerando todas as séries temporais, distribuições, combinações e valores de d. Note que os nomes das combinações foram abrevidados da seguinte maneira: modelo aditivo é modelo "ad", multiplicativo 1 é "mult1", multiplicativo 2 é "mult2"e multiplicativo 3 é "mult3". Essas abreviações serão utilizadas no capítulo 5.

Resumo dos testes realizados			
Séries Temporais Carga, ENA e viagens			
Distribuições Lognormal e gama			
Combinações ad, mult1, mult2, mu			
d	1		

Tabela 4.2: Tabela com o resumo das séries temporais, distribuições, combinações e valores de d utilizados nos testes.

5 Resultados

Neste capítulo estão apresentados todos os resultados dos modelos descritos nas seções do capítulo 4.

A apresentação dos resultados segue o seguinte padrão: para cada série temporal, estão apresentados os gráficos comparativos do modelo GAS-CNO aditivo convencional para as distribuições lognormal e gama, seguido dos gráficos de cada modelo multiplicativo para cada distribuição. Os gráficos apresentados são: estimativa no período de treino (fit in sample), resíduos quantílicos, FAC dos resíduos quantílicos e previsão 12 passos à frente fora da amostra. Além disso, também há uma tabela com o resultado dos testes de hipóteses e com os MAPEs dentro e fora da amostra.

Importante comentar que todas as figuras seguem um mesmo padrão: a coluna da esquerda exibe os gráficos para a distribuição lognormal, enquanto que a da direita os resultados da distribuição gama. A primeira linha de cada figura exibe os gráficos dos modelos aditivos, enquanto que a segunda e a terceira exibem dos modelos multiplicativo 1 e multiplicativo 2. Todas as tabelas também possuem uma coluna para cada distribuição e uma linha para cada combinação.

Todos os comentários e conclusões encontram-se sempre ao final das sessões de cada série temporal.

Série de carga

Figura 5.1: Valores estimados para o Valores estimados para o período de treino série de carga.

eta estimado para Mult ${f 2}$			
Lognormal Gama			
Mult2 -0.3162 9.0e-5			

Tabela 5.1: Valores de β estimados para série de carga na combinação mult2.

Figura 5.2: Resíduos quantílicos série de carga.

Figura 5.3: FAC dos resíduos quantílicos série de carga.

pvalores do Teste de Jarque Bera			
Lognormal Gama			
Ad	9.0e-5	8.0e-5	
Mult1	0.02205	0.0	
Mult2	0.00012	0.0	

Tabela 5.2: pvalores do teste Jarque Bera para série de carga.

pvalores do Teste H				
	Lognormal Gama			
Ad	0.23441	0.15717		
Mult1	0.03145	0.01138		
Mult2	0.17833	0.11224		

Tabela 5.3: pvalores do teste H para série de carga.

pvalores do Teste de Ljung Box				
	Lognormal Gama			
Ad	0.00051	1.0e-5		
Mult1	0.0 4.0e-5			
Mult2	0.00013	0.00687		

Tabela 5.4: pvalores do teste de Ljung Box para série de carga.

Figura 5.4: Previsão 12 passos à frente para série de carga.

MAPES série de carga (%)					
	Trein	0	Teste)	
	Lognormal Gama Lognormal Gama				
Ad	2.06	2.19	2.39	2.42	
Mult1	2.37	2.11	3.31	4.77	
Mult2	2.11	1.97	2.27	3.45	

Tabela 5.5: MAPEs de treino e teste para a série de carga.

Para a série de carga, ambos os modelos aditivos já apresentaram resíduos com autocorrelação insignificante no lag sazonal, como mostra a Figura 5.3. Somado a isso, os resultados da Tabela 5.3 indicam que, para ambas as distribuições, não há evidências suficientes para rejeitar a hipótese nula de homocedasticidade do teste H a nível de 5%. Dito isso, o modelo aditivo mostrase adequado para essa série, de tal modo que há pouco a melhorar introduzindo os modelos multiplicativos. Importante comentar, no entanto, que os pvalores do teste H para todos os modelos multiplicativos foram menores que os dos modelos aditivos. No caso do multiplicativo 1, eles passaram a rejeitar, a nível de 5%, a hipótese de homocedasticidade, enquanto que, para o multiplicativo 2, embora menores, a hipótese permanece não rejeitada.

Note, inclusive, que o valor de β para o modelo Mult2 na Tabela 5.1 para a distribuição gama foi praticamente zero, o que significa que esse modelo se reduziu a um modelo aditivo.

Em termos de aderência à série temporal, os resultados foram mais diversos. A Tabela 5.5 nos mostra que, para a distribuição lognormal, o melhor modelo no período de treino foi o aditivo, mas o melhor na previsão fora da amostra foi o multiplicativo 2. Por outro lado, para a distribuição gama, houve uma inversão: o melhor modelo no período de treino foi o multiplicativo 2, enquanto o melhor fora da amostra foi o aditivo.

Como, para essa série temporal, o modelo aditivo já se mostrou adequado, é difícil concluir que os modelos multiplicativos trouxeram alguma melhora para a modelagem da série temporal de carga.

Série de ENA

Figura 5.5: Valores estimados para o período de treino série de ENA.

β estimado para Mult2				
	Lognormal Gama			
Mult2	-0.14805	3.0e-5		

Tabela 5.6: Valores de β estimados para série de ENA na combinação mult2.

Figura 5.6: Resíduos quantílicos série de ENA.

Figura 5.7: FAC dos resíduos quantílicos série de ENA..

pvalores do Teste de Jarque Bera			
Lognormal Gama			
Ad	0.00588	0.00036	
Mult1	0.01058	0.0	
Mult2	0.23432	0.0	

Tabela 5.7: pvalores do teste de Jarque Bera para série de ENA.

pvalores do Teste H				
	Lognormal Gama			
Ad	0.61466	0.98337		
Mult1	0.41516	0.34609		
Mult2 0.73154 0.79437				

Tabela 5.8: pvalores do teste H para série de ENA.

pvalores do Teste de Ljung Box				
	Lognormal Gama			
Ad	0.0199	0.00031		
Mult1	0.0			
Mult2	1.0e-5	1.0e-5		

Tabela 5.9: pvalores do teste de Ljung Box para série de ENA.

Figura 5.8: Previsão 12 passos à frente para série de ENA.

MAPES série de ENA (%)					
	Treino Teste				
	Lognormal Gama Lognormal Gama				
Ad	15.08	17.56	17.03	17.94	
Mult1	19.37	16.81	13.66	23.68	
Mult2	16.35	16.83	22.26	21.34	

Tabela 5.10: MAPEs de treino e teste para a série de ENA.

Tal como foi para a série de carga,
os modelos aditivos para a sére de ENA também apresentam FAC no
 lag sazonal abaixo do nível de significância na Figura 5.7. No entanto, podemos notar que, para os modelos multiplicativo 1 gama, e ambos os multiplicativos 2, o a FAC no
 lag sazonal é ainda menor, o que indica que esses modelos aditivos conseguiram capturar melhor a dependência sazonal da série. Note, porém, que, novamente, o valor de β do modelo multiplicativo 2 gama, indicado na Tabela 5.6 foi praticamente zero novamente.

Somado a isso, o teste H da Tabela 5.8 também indica que os resíduos de todos os modelos são são homocedásticos.

Por fim, analisando a Tabela 5.10, vemos que, mais uma vez, os resultados são divergentes. Para os modelos lognormais, a melhor combinação dentro da amostra foi a aditiva, enquanto que fora da amostra foi a multiplicativa 1. Já para os modelos gama, ambos os multiplicativos performaram melhor que o aditivo dentro da amostra, mas foram consideravelmente piores fora da amostra.

Série de viagens

Figura 5.9: Valores estimados para o período de treino série de viagens.

β estimado para Mult2			
Lognormal		Gama	
Mult2	-0.7794	0.00011	

Tabela 5.11: Valores de β estimados para série de viagens na combinação mult2.

Figura 5.10: Resíduos quantílicos série de viagens.

Figura 5.11: FAC dos resíduos quantílicos série de viagens.

pvalores do Teste de Jarque Bera			
	Lognormal	Gama	
Ad	0.54184	0.15455	
Mult1	0.9279	0.00199	
Mult2	0.67381	0.03195	

Tabela 5.12: pvalores do teste de Jarque Bera para série de viagens.

pvalores do Teste H				
	Lognormal	Gama		
Ad	0.66097	0.4695		
Mult1	0.03089	0.53103		
Mult2	0.54364	0.3648		

Tabela 5.13: pvalores do teste H para série de viagens.

pvalores do Teste de Ljung Box				
	Lognormal	Gama		
Ad	0.0	0.0		
Mult1	0.0	0.0		
Mult2	0.0	0.0		

Tabela 5.14: pvalores do teste de Ljung Box para série de viagens.

Figura 5.12: Previsão 12 passos à frente para série de viagens.

MAPES série de viagens (%)						
	Treino		Teste			
	Lognormal	Gama	Lognormal	Gama		
Ad	6.8	5.36	8.51	7.09		
Mult1	12.55	18.3	21.48	8864.01		
Mult2	5.14	5.2	6.06	6.76		

Tabela 5.15: MAPEs de treino e teste para a série de viagens.

A série de viagens é a que apresenta resultados mais interessantes de serem analisados. Como comentado na seção 4, [Koopman e Lee 2009] utiliza essa série por saber que modelos aditivos não são adequados. A Figura 5.11 exibe, perfeitamente, a motivação de se utilizar modelos multiplicativos: vemos um pico significativo no lag sazonal dos resíduos dos modelos aditivos. Dito isso, note que, embora o modelo multiplicativo 1 tenha gerado resíduos menos descorrelatados que o modelo aditivo para ambas as distribuiçoes, o modelo multiplicativo 2, cuja combinação foi proposta por [Koopman e Lee 2009], reduziu consideravelmente a FAC no lag sazonal.

Os pvalores do teste H da Tabela 5.13 não indicam uma melhora em termos de homocedasticidade dos resíduos, haja vista que, para os modelos aditivos, essa hipótese já não era rejeitada.

Por fim, para aumentar a confiança de que os modelos multiplicativos 2 fornecem a combinação mais adequada para essa série, a Tabela 5.15 nos mostra que, para ambas as distribuições e, tanto para treino quanto teste, esse modelo apresentou as melhores métricas de aderência.

6 Conclusão

O objetivo deste projeto final da graduação foi estudar se modelos score-driven com combinação não linear das componentes de tendência e sazonalidade seriam capazes de resultar em melhor acurácia preditiva para séries temporais não Gaussianas. Deste modo, mesmo que os modelos multiplicativos não eliminem completamente os efeitos de heterocedasticidade e autocrralação no lag sazonal, estamos interessados em estudar a melhora nessas características dos resíduos dos modelos aditivos. Para isso, foram escolhidas três séries temporais com características bem distintas com o intuito de realizar testes empíricos com os modelos multiplicativos sugeridos no projeto e duas distribuições não Gaussianas, log-normal e gama. Com isso, separamos as conclusões em 3 pontos:

- 1. Diminuição da FAC dos resíduos no lag sazonal;
- 2. Diminuição de heterocedasticidade dos resíduos, avaliada via teste H;
- 3. Aderência da série dentro e fora da amostra.

Primeiramente, para as séries de carga e ENA, mesmo a FAC dos resíduos dos modelos aditivos já indicando ausência de correlação no lag 12, notamos que, o modelo multiplicativo 2 foi capaz de diminuir ainda mais a magnitude do lag sazonal. Já para a série de viagens, os resultados foram mais expressivos. Mesmo que o lag sazonal ainda seja significante na FAC dos resíduos, é notável a diminuição de sua magnitude com a utilização do modelo multiplicativo 2. Este é, sem dúvidas, o resultado mais importante do projeto e que nos permite concluir que, para séries cujos modelos aditivos não são adequados, o modelo multiplicativo 2 é uma alternativa não só viável como aconselhável.

Em segundo lugar, em termos de heterocedasticidade, não vimos uma melhora expressiva de nenhum modelo multiplicativo quando comparado com os aditivos. Houve, inclusive, casos em que o modelo multiplicativo 1 diminuiu o pvalor do teste H ao ponto de passarmos a rejeitar a hipótese nula de homocedasticidade ao nível de 5%. Sendo assim, podemos concluir que os modelos multiplicativos, embora os aditivos já tenham gerado resíduos homocedásticos, não fam capazes de melhorar essa característica dos resíduos.

Por fim, avaliando a aderência dos modelos nos dados de treino e a acurácia preditiva, novamente o modelo multiplicativo 2 para a série de viagens foi capaz de melhorar as métricas tanto dentro quanto fora da amostra e para

ambas as distribuições sendo, mais uma vez, o resultado mais expressivo em comparação com as demais séries. Além disso, os resultados para as demais séries e para o modelo multiplicativo 1 foram mais inconclusivos.

Sendo assim, podemos concluir que modelos GAS-CNO com interações multiplicativas das componentes de tendência e sazonalidade são capazes de melhorar a autocorrelação os resíduos no lag sazonal, bem como melhorar a aderência do modelo à série de treino e a sua acurácia preditiva. No entanto, é crucial levantar duas questões que condicionam essa conclusão: primeiramente, utilizamos modelos GAS-CNO com apenas um parâmetro variante no tempo, a média, de tal modo que não sabemos se, para as séries escolhidas, as melhorias trazidas pelos modelos multiplicativos já seriam obtidas com o modelo aditivo com todos os parâmetros variantes no tempo. Além disso, para duas das séries temporais escolhidas, carga e ENA, não se sabia, a priori, qual classe de modelo era mais adequada, o aditivo ou o multiplicativo.

Alguns trabalhos futuros interessantes para dar prosseguimento a esta pesquisa seriam:

- Gerar, por simulações de Monte Carlo, séries temporais com combinações não lineares de componentes e função de ligação identidade e logarítmica, de forma a compreender melhor o padrão dessas séries via seu gráfico no tempo e suas FAC e FACP.
- Considerar normalização da componente sazonal multiplicativa nos modelos.
- Estender os testes para novas séries temporais que, conhecidamente, apresentem características que tornem modelos aditivos inadequados.
- Estender os testes para modelos GAS-CNO com todos os parâmetros variantes no tempo.

7 Referências bibliográficas

[Alves]ALVES, M. e. a. Unobservedcomponentsgas.jl:. Citado 2 vezes nas páginas 26 e 32.

[Andre e Koopman]ANDRE, L.; KOOPMAN, S. J. *Generalized autoregressive score models*. Disponível em: http://www.gasmodel.com/index.htm. Citado na página 14.

[Ardia, Boudt e Catania 2016]ARDIA, D.; BOUDT, K.; CATANIA, L. Generalized autoregressive score models in r: The gas package. *ar-Xiv preprint arXiv:1609.02354*, 2016. Disponível em: https://cran.r-project.org/web/packages/GAS/GAS.pdf. Citado 2 vezes nas páginas 13 e 24.

[Blazsek e Escribano 2023]BLAZSEK, S.; ESCRIBANO, Á. Score-driven threshold ice-age models: benchmark models for long-run climate forecasts. *Energy Economics*, Elsevier, p. 106522, 2023. Citado na página 15.

[Bodin et al. 2020]BODIN, G. et al. Scoredrivenmodels.jl: a julia package for generalized autoregressive score models. *arXiv preprint arXiv:2008.05506*, 2020. Citado 2 vezes nas páginas 13 e 22.

[Bollerslev 1986]BOLLERSLEV, T. Generalized autoregressive conditional heteroskedasticity. *Journal of econometrics*, Elsevier, v. 31, n. 3, p. 307–327, 1986. Citado na página 13.

[Caivano, Harvey e Luati 2016] CAIVANO, M.; HARVEY, A.; LUATI, A. Robust time series models with trend and seasonal components. *SERIEs*, Springer, v. 7, p. 99–120, 2016. Citado 2 vezes nas páginas 30 e 37.

[Cox et al. 1981]COX, D. R. et al. Statistical analysis of time series: Some recent developments [with discussion and reply]. *Scandinavian Journal of Statistics*, JSTOR, p. 93–115, 1981. Citado na página 33.

[Creal, Koopman e Lucas 2013] CREAL, D.; KOOPMAN, S. J.; LUCAS, A. Generalized autoregressive score models with applications. *Journal of Applied Econometrics*, Wiley Online Library, v. 28, n. 5, p. 777–795, 2013. Citado 2 vezes nas páginas 13 e 35.

- [Engle e Russell 1998] ENGLE, R. F.; RUSSELL, J. R. Autoregressive conditional duration: a new model for irregularly spaced transaction data. *Econometrica*, JSTOR, p. 1127–1162, 1998. Citado na página 13.
- [Fernandes 2020] FERNANDES, C. Notas de aula da disciplina Score Driven Models para Séries Temporais Não Gaussianas. [S.I.]: Departamento de Engenharia Elétrica da PUC-Rio, Grupo de Energia Elétrica do LAMPS, 2020. Citado na página 35.
- [Fernandes 2023] FERNANDES, C. Notas de aula IV Sazonalidade em em Modelos Estatísticos. [S.I.]: Departamento de Engenharia Elétrica da PUC-Rio, Grupo de Energia Elétrica do LAMPS, 2023. Citado na página 78.
- [Fuentes, Herrera e Clements 2023] FUENTES, F.; HERRERA, R.; CLEMENTS, A. Forecasting extreme financial risk: A score-driven approach. *International Journal of Forecasting*, Elsevier, v. 39, n. 2, p. 720–735, 2023. Citado na página 15.
- [Harvey 2013]HARVEY, A. C. Dynamic models for volatility and heavy tails: with applications to financial and economic time series. [S.I.]: Cambridge University Press, 2013. v. 52. Citado 4 vezes nas páginas 13, 30, 37 e 83.
- [Harvey 2022]HARVEY, A. C. Score-driven time series models. *Annual Review of Statistics and Its Application*, Annual Reviews, v. 9, p. 321–342, 2022. Citado na página 33.
- [Hoeltgebaum et al. 2021]HOELTGEBAUM, H. et al. A score-driven model of short-term demand forecasting for retail distribution centers. *Journal of Retailing*, Elsevier, v. 97, n. 4, p. 715–725, 2021. Citado na página 15.
- [Hyndman e Athanasopoulos 2021] HYNDMAN, R.; ATHANASOPOULOS, G. Forecasting: principles and practice. [S.I.]: OText, 2021. Citado 4 vezes nas páginas 31, 41, 49 e 50.
- [Hyndman et al. 2008] HYNDMAN, R. et al. Forecasting with exponential smoothing: the state space approach. [S.I.]: Springer Science & Business Media, 2008. Citado 2 vezes nas páginas 31 e 83.
- [Jonathan e Kung-Sik 2008] JONATHAN, D. C.; KUNG-SIK, C. *Time series analy-sis with applications in R.* [S.I.]: Spinger, 2008. Citado na página 35.
- [Kalliovirta 2012]KALLIOVIRTA, L. Misspecification tests based on quantile residuals. *The Econometrics Journal*, Oxford University Press Oxford, UK, v. 15, n. 2, p. 358–393, 2012. Citado na página 35.

- [Koopman e Lee 2009]KOOPMAN, S. J.; LEE, K. M. Seasonality with trend and cycle interactions in unobserved components models. *Journal of the Royal Statistical Society Series C: Applied Statistics*, Oxford University Press, v. 58, n. 4, p. 427–448, 2009. Citado 6 vezes nas páginas 30, 31, 41, 44, 46 e 70.
- [Koopman e Lit 2019]KOOPMAN, S. J.; LIT, R. Forecasting football match results in national league competitions using score-driven time series models. *International Journal of Forecasting*, Elsevier, v. 35, n. 2, p. 797–809, 2019. Citado na página 15.
- [Kushwah e Wadhvani 2019]KUSHWAH, A. K.; WADHVANI, R. Performance monitoring of wind turbines using advanced statistical methods. *Sādhanā*, Springer, v. 44, p. 1–11, 2019. Citado na página 15.
- [Lit]LIT, R. *Time Series Lab Manual*. Disponível em: https://timeserieslab.com. Citado na página 17.
- [Lit, Koopman e Harvey 2021]LIT, R.; KOOPMAN, S.; HARVEY, A. Time series lab dynamic score edition. 2021. Disponível em: https://timeserieslab.com. Citado na página 13.
- [Sarlo, Fernandes e Borenstein 2023]SARLO, R.; FERNANDES, C.; BORENS-TEIN, D. Lumpy and intermittent retail demand forecasts with score-driven models. *European Journal of Operational Research*, Elsevier, v. 307, n. 3, p. 1146–1160, 2023. Citado na página 34.
- [Taylor 2016] TAYLOR, R. Pyflux: A time-series analysis library for python. nov. 2016. Disponível em: https://pyflux.readthedocs.io/en/latest/index.html. Citado na página 13.
- [Xu e Lien 2022]XU, Y.; LIEN, D. Forecasting volatilities of oil and gas assets: A comparison of gas, garch, and egarch models. *Journal of Forecasting*, Wiley Online Library, v. 41, n. 2, p. 259–278, 2022. Citado na página 15.

Α

Desenvolvimento GAS

Neste capítulo são apresentadas todas as contas relacionadas ao modelo GAS para algumas distribuições de probabilidade.

GAS gama

Seja $(y_t|y_{t-1}) \sim Gama(\alpha_t, \lambda_t)$, ou seja, uma série cuja distribuição é uma gama com ambos os parâmetros variantes no tempo.

Vale que
$$E(y_t|y_{t-1}) = \lambda_t$$
 e $V(y_t|y_{t-1}) = \lambda_t^2/\alpha_t$.

Para essa parametrização escolhida, segue-se que a função densidade é

$$f(y_t|y_{t-1};\alpha_t,\lambda_t) = \frac{1}{\Gamma(\alpha_t)} \frac{1}{(\alpha_t^{-1}\lambda_t)^{\alpha_t}} y_t^{\alpha_t - 1} e^{\frac{-\alpha_t}{\lambda_t} y_t}$$

Tomando o logaritmo natural da densidade, obtenho:

$$lnf(y_t|y_{t-1};\alpha_t,\lambda_t) = -ln(\Gamma(\alpha_t)) - \alpha_t ln(1/\alpha_t) - \alpha_t ln(\lambda_t) + (\alpha_t + 1) ln(y_t) - (\alpha_t/\lambda_t) y_t$$

O próximo passo é obter o vetor $\nabla_t = egin{pmatrix} \nabla_t^{lpha} \\ \nabla_t^{\lambda} \end{pmatrix}$ onde

$$\nabla_t^{\alpha} = \frac{\partial lnf(y_t|y_{t-1})}{\partial \alpha_t} = ln(y_t) - \frac{y_t}{\lambda_t} + ln(\alpha_t) - \psi_1(\alpha_t) - ln(\lambda_t) + 1$$

$$\nabla_t^{\lambda} = \frac{\partial lnf(y_t|y_{t-1})}{\partial \lambda_t} = \frac{\alpha_t}{\lambda_t} \left(\frac{y_t}{\lambda_t} - 1\right)$$

Além disso, foi definido $\psi_1(\alpha)=\frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$, também conhecida como função digamma.

É importante ressaltar que $E_{t-1}(\nabla_t^{\alpha}) = E_{t-1}(\nabla_t^{\alpha}) = 0$

O próximo passa para a definição de um modelo GAS gama é a obtenção da matriz de informação de Fisher

$$I_{t|t-1} = \begin{pmatrix} I_{t|t-1}^{\alpha} & I_{t|t-1}^{\alpha,\lambda} \\ I_{t|t-1}^{\alpha,\lambda} & I_{t|t-1}^{\lambda} \end{pmatrix}$$

Onde, cada elemento dessa matriz, é definido como

$$I_{t|t-1}^{\alpha} = E_{t-1}(\nabla_t^{\alpha} \nabla_t'^{\alpha}) = E_{t-1}(\nabla_t^{\alpha})^2 = -E_{t-1} \frac{\partial}{\partial \alpha_t} (\nabla_t^{\alpha})$$

$$I_{t|t-1}^{\lambda} = E_{t-1}(\nabla_t^{\lambda} \nabla_t'^{\lambda}) = E_{t-1}(\nabla_t^{\lambda})^2 = -E_{t-1} \frac{\partial}{\partial \lambda} (\nabla_t^{\lambda})$$

$$I_{t|t-1}^{\alpha,\lambda} = E_{t-1}(\nabla_t^{\alpha} \nabla_t'^{\lambda}) = -E_{t-1} \frac{\partial}{\partial \lambda} (\nabla_t^{\alpha}) = -E_{t-1} \frac{\partial}{\partial \alpha} (\nabla_t^{\lambda})$$

Agora, desenvolvendo cada um desses termos individualmente, obtenho

$$\begin{split} I_{t|t-1}^{\alpha} = & E_{t-1} \frac{\partial}{\partial \alpha_t} \left[ln(y_t) - \frac{y_t}{\lambda_t} + ln(\alpha_t) - \psi_1(\alpha_t) - ln(\lambda_t) + 1 \right] = \dots = \\ = & \psi_2(\alpha_t) - \frac{1}{\alpha_t} \\ I_{t|t-1}^{\lambda} = & E_{t-1} \frac{\partial}{\partial \lambda_t} \left[\frac{\alpha_t y_t}{\lambda_t^2} - \frac{-\alpha_t}{\lambda_t} \right] = -E_{t-1} \left[\frac{-2\alpha_t y_t}{\lambda_t^3} + \frac{\alpha_t}{\lambda_t^2} \right] = \dots = \\ = & \frac{\alpha_t}{\lambda_t^2} \\ I_{t|t-1}^{\alpha,\lambda} = & -E_{t-1} \frac{\partial}{\partial \alpha_t} \left[\frac{\alpha_t y_t}{\lambda_t^2} - \frac{\alpha_t}{\lambda_t} \right] = -E_{t-1} \left[\frac{\alpha_t y_t}{\lambda_t^2} - \frac{\alpha_t}{\lambda_t} \right] = \dots = \\ = & 0 \end{split}$$

Portanto, a matriz de informação de Fisher $I_{t|t-1}$ para uma distribuição gama de parâmetros α_t e λ_t é

$$I_{t|t-1} = \begin{pmatrix} \psi_2(\alpha_t) - \frac{1}{\alpha_t} & 0\\ 0 & \frac{\alpha_t}{\lambda_t^2} \end{pmatrix}$$

onde a função $\psi_2(\alpha_t)$ é a função trigamma definida como $\psi_2(\alpha_t) = \frac{\psi_1'(\alpha_t)}{\psi_1(\alpha_t)}$ Com isso, estão definidos todos os resultados necessários para estimar um modelo GAS, tanto com dinâmica ARMA quanto CNO, cuja distribuição condicional é $gama(\alpha_t, \lambda_t)$.

B Sazonalidade em modelos de espaço de estados

Neste apêndice, está descrito o processo de modelagem de sazonalidade em modelos de espaço de estados, começando pelo tratamento de sazonalidade determinística até sua versão estocástica. O entendimento da modelagem da componente sazonal dentro dessa classe de modelos é fundamental para compreender a modelagem de sazonalidade em modelos *score-driven* cuja dinâmica é modelada via arcabouço CNO. A maior parte do desenvolvimento aqui apresentado encontra-se em [Fernandes 2023].

Primeiramente, é importante definir sazonalidade como a representação de flutuações periódicas associadas a eventos climáticos, como as estações do ano, eventos culturais, como feriados e festas, bem como datas administrativas, como períodos letivos. Vale comentar que a boa modelagem da sazonalidade é essencial para garantir a qualidade da estimação de um modelo de série temporal (quando esta apresenta sazonalidade), dado o seu caráter repetitivo.

Um conceito importante a ser definido é o período sazonal, que representa o tempo em que a flutuação periódica leva para se repetir e é descrito pela letra S. Além disso, sazonalidade é definida apenas para flutuações de, no máximo, 1 ano. Para períodos maiores que este existe o conceito de ciclo que não será abordado nesse apêndice. Exemplos de períodos sazonais seriam S=4 para séries trimestrais, S=12 para séries mensais e S=52 para séries semanais. Embora seja possível que uma série possua mais de uma componente sazonal, como é o caso de séries diárias que podem possuir sazonalidade semanal e anual, esse assunto também não será abordado nesse apêndice, dado que o escopo do projeto se limita a séries mensais.

Para começar o desenvolvimento da modelagem de sazonalidade em série temporais, suponha que uma dada série y_t possa ser decomposta em componentes de tendência μ_t e sazonalidade γ_t como se segue:

$$y_t = \mu_t + \gamma_t + \epsilon_t \quad \epsilon_t \sim N(0, \sigma^2) \tag{B-1}$$

A equação B-1 descreve um modelo cuja componente sazonal se combina de forma aditiva e é o padrão para modelos lineares. Também é possível haver sazonalidade multiplicativa em modelos lineares. Para isso, basta que o modelo seja ajustado para \log da série. Esse modelo seria descrito como:

$$y_t = \mu_t \cdot \gamma_t \cdot \epsilon_t \quad \epsilon_t \sim N(0, \sigma^2)$$
 (B-2)

Sabe-se que, dentro do arcabouço de modelos de espaço de estados, a

componente de tendência μ_t pode ser definida da seguinte maneira (modelo estrutural básico):

$$y_t = \mu_t + \gamma_t + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)$$
$$\mu_{t+1|t} = \mu_t + \beta_t + \eta_t, \quad \eta_t \sim N(0, \sigma_\eta^2)$$
$$\beta_{t+1|t} = \beta_t + \xi_t, \quad \xi_t \sim N(0, \sigma_\xi^2)$$

O objetivo desse apêndice é adicionar a formulação para a componente sazonal γ_t nesse modelo. Para isso, primeiramente será apresentada a componente sazonal determinística utilizando variáveis dummies e funções trigonométricas para, em seguida, apresentar a formulação da sazonalidade estocástica.

Sazonalidade por variáveis dummies

O tratamento da sazonalidade por variáveis *dummies* é o mais simples de ser implementado, além de trazer uma interpretação direta de cada coeficiente estimado.

Suponha uma série y_t estacionária trimetral, o que implica que S_4 . Poderíamos utilizar um modelo como:

$$y_t = \beta + \gamma_1 D_{1,t} + \gamma_2 D_{2,t} + \gamma_3 D_{3,t} + \gamma_4 D_{4,t} + \epsilon_t, \quad t = 1, ..., T$$

$$D_{i,t} = 1, \quad i = t, \quad i = 1, 2, 3, 4$$

$$D_{i,t} = 0 \quad c.c.$$

Note que cada variável dummie $D_{i,t}$ indica se a observação daquele trimestre t está no trimestre i. Embora esse modelo capture a periodicidade trimestral, ele apresenta o problema de multicolinearidade perfeita, dado que um dos regressores (D4, t, por exemplo) pode ser obtido a partir da combinação linear dos demais.

Para resolver esse problema, existem 3 parametrização possíveis.

A primeira baseia-se em abandonar uma das *dummies* do modelo. Suponha, por exemplo, que abandonemos a *dummie* associada ao quarto trimestre. O período que foi abandonado é chamado de período basal. Com isso, obteríamos o modelo:

$$y_t = \beta + \gamma_1 D_{1,t} + \gamma_2 D_{2,t} + \gamma_3 D_{3,t} + \epsilon_t, \quad t = 1, ..., T$$

$$D_{i,t} = 1, \quad t = i, i + s, i + 2s, ..., \quad i = 1, 2, 3$$

$$D_{i,t} = 0 \quad t \neq i, i + s, i + 2s, ...$$

Essa parametrização traz uma interpretação direta para os coeficientes do modelo, que advém do valor esperado de y_t para cada trimestre, como se segue

abaixo.

$$E(y_t|D_{i,t} = 0, i = 1, 2, 3) = \beta$$

$$E(y_t|D_{j,t} = 1, D_{i,t} = 0, j \neq i, i = 1, 2, 3) = \beta + \gamma_j$$

Portanto, $\hat{\beta}=\bar{y_4}$, ou seja, o intercepto representa a média do trimestre basal e $\gamma_j=\bar{y_j}-\bar{y_4}$, isto é, os coeficientes sazonais são o desvio da média de cada trimestre em relação ao trimestre basal.

A segunda parametrização opta, por sua vez, em abandonar o intercepto e manter todas as *dummies* sazonais, obtendo o modelo:

$$y_t = \delta_1 D_{1,t} + \delta_2 D_{2,t} + \delta_3 D_{3,t} + \delta_4 D_{4,t} + \epsilon_t, \quad t = 1, ..., T$$

$$D_{j,t} = 1, \quad t = j, i + s, i + 2s, ..., \quad j = 1, 2, 3$$

$$D_{j,t} = 0 \quad t \neq j, j + s, j + 2s, ...$$

Novamente, a interpretação de cada coeficiente sazonal é direta, mas, dessa vez, $\hat{\delta_j} = \bar{y_j}$, que significa que a estimativa de cada coeficiente é a média daquele trimestre. Essa interpretação vem do fato de que $E(y_t|D_{j,t}) = \delta_j$.

A terceira e última parametrização opta por manter todas as *dummies* no modelo, mas, para evitar a multicolinearidade, introduz uma restrição nos coeficientes sazonais de tal forma que a soma dos fatores sazonais deve ser zero no período sazonal. Isso significa que:

$$\sum_{j=1}^{s} \theta_j = 0 \implies \theta_s = -\sum_{j=1}^{s-1} \theta_j$$

A partir dessa restrição, obtemos o modelo:

$$y_t = \alpha + \sum_{j=1}^{s-1} \theta_j D_{j,t} + \epsilon_t, \quad t = 1, ..., T$$

$$D_{j,t} = 1, t = j, j + s, j + 2s, ...$$

$$D_{j,t} = 0, t \neq j, j + s, j + 2s, ...$$

$$D_{j,t} = -1, t = s, 2s, 3s, ...$$

Para conseguir obter uma interpretação útil dos coeficentes sazonais, note

que

$$E(y_t|D_{j,t}) = \alpha + \theta_j \implies \theta_j = E(y_t|D_{j,t}) - \alpha, \quad j = 1, 2, 3$$
$$E(y_t|D_{4,t}) = \alpha - (\theta_1 + \theta_2 + \theta_3) = \alpha + \theta_4 \implies \theta_4 = E(y_t|D_{4,t}) - \alpha$$

Dada a restrição imposta inicialmente, posso escrever que:

$$0 = \theta_1 + \theta_2 + \theta_3 + \theta_4 = \sum_{j=1}^{4} E(y_t|D_{j,t}) - 4\alpha$$

Logo,

$$\alpha = \frac{1}{4} \sum_{j=1}^{4} E(y_t | D_{j,t}) \implies \alpha = \frac{1}{4} \sum_{j=1}^{4} \bar{y_j}$$

Portanto, se os trimestres forem balanceados, $\hat{\alpha}=\bar{y}$, que é a média da série. Com isso, $\hat{\theta_j}$ serão os desvios das médias dos trimestres em relação à média da série.

A partir da modelagem por *dummies* com a parametrização 3, podemos completar a definição do modelo estrutural básico que foi apresentado no início desse apêndice. Mantendo as componentes de tendência e nível estocástica, mas a nova componente de sazonalidade determinística, obtenho:

$$y_t = \mu_t + \gamma_t + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1|t} = \mu_t + \beta_t + \eta_t, \quad \eta_t \sim N(0, \sigma_\eta^2)$$

$$\beta_{t+1|t} = \beta_t + \xi_t, \quad \xi_t \sim N(0, \sigma_\xi^2)$$

$$\gamma_t = -\sum_{j=1}^{s-1} \gamma_{t-j}$$

Note que a componente sazonal já está escrita em uma forma recursiva, então, para modificá-la para uma versão estocástica, basta somar um choque aleatório em sua equação de estado. Com isso, finalmente obtemos o modelo estrutural básico com sazonalidade modelada a partir de variáveis dummies.

$$y_t = \mu_t + \gamma_t + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1|t} = \mu_t + \beta_t + \eta_t, \quad \eta_t \sim N(0, \sigma_\eta^2)$$

$$\beta_{t+1|t} = \beta_t + \xi_t, \quad \xi_t \sim N(0, \sigma_\xi^2)$$

$$\gamma_t = -\sum_{j=1}^{s-1} \gamma_{t-j} + \omega_t, \quad \omega_t \sim N(0, \sigma_\omega^2)$$

É importante para o escopo deste projeto ressaltar que, normalmente, todos os trimestres da série temporal possuem uma mesma variância da componente

sazonal. Um dos objetivos deste projeto é, justamente, generalizar essa variância de forma que diferentes trimestres, ou épocas do ano de forma geral, possuam variâncias diferentes, ou seja $\sigma_\omega^2 \longrightarrow \sigma_{\omega,t}^2$

Sazonalidade por funções trigonométricas

Sazonalidade por funções trigonométricas - nome que eu nunca lembro

Agora vamos apresentar a especificação da componente sazonal γ_t através de um mecanismo um pouco mais geral do que aquele apresentado em 4-16. Diferente do que está descrito no Apêndice B, vamos começar assumindo que o fator sazonal $\gamma_{j,t}$ da estação j no mês t, assumindo uma série mensal, possui a dinâmica de um passeio aleatório sem drift. Ou seja:

$$\gamma_{j,t+1} = \gamma_{j,t} + \omega_{j,t} \quad \omega_{j,t} \sim N(0, \sigma_{\omega}^2) \quad j = 1, ..., s$$
 (B-3)

Estação pode significar a própria frequência mensal da série, ou outra divisão periódica qualquer, como as próprias estações do ano.

É possível colocar a equação anterior em forma vetorial, tal que:

$$\gamma_{t+1} = \gamma_t + \omega_t \tag{B-4}$$

onde $\gamma_t = [\gamma_{1,t},...,\gamma_{s,t}]^T$ e $\omega_t = [\omega_{1,t},...,\omega_{s,t}]^T$. Assim como foi feito na parametrização 3 apresentada no Apêndice B, é necessário adicionar a restrição de que a soma dos componentes sazonais de todos os j é igual a zero.

Até o momento, ainda estamos com a formulação dentro do escopo dos modelos de espaço de estados. Para alterar essa formulação para modelos scoredriven, o primeiro passo será substituir os choque aleatórios $\omega_{\mathbf{t}}$ por $\kappa_{\mathbf{t}}u_{t}$, obtendo uma nova equação vetorial. Note que u_{t} não está em negrito por não representar um vetor, e sim um escalar. A nova equação é que descreve a componente sazonal em um modelo GAS-CNO é:

$$\gamma_{t+1|t} = \gamma_{t|t-1} + \kappa_t u_t \tag{B-5}$$

onde u_t é o *score* e $\kappa_{\mathbf{t}} = [\kappa_{1,t}, ..., \kappa_{s,t}].$

É necessário definir um conjunto de variáveis binárias z_t para indicar se o fator sazonal $\gamma_{j,t}$ está ou não ativo em um dado mês t. Sendo assim,

$$z_t = \begin{cases} 1, \text{ se } t = j \\ 0, \text{ se } t \neq j \end{cases}$$
 (B-6)

A partir da definição dessas variáveis, temos que o fator sazonal de cada mês t será dado por

$$s_{t+1|t} = z_t \gamma_{t+1|t}$$
 (B-7)

Tal como apresentado para as componentes sazonais de modelos CNO, a soma dos fatores sazonais do modelo score-driven - CNO deve ser igual a zero, o que implica restrições nos κ_t 's ver [Harvey 2013]. Essa restrição, embora valha apenas para modelos aditivos, pode ser utilizada para modelos multiplicativos caso não seja do interesse analisar as componentes estimadas, uma vez que a previsão do modelo não é impactada [Hyndman et al. 2008].

Com isso, utilizando a equação B-7 junto das equações para descrever a dinâmica da tendência ao longo do tempo, obtemos o seguinte modelo GAS-CNO com distribuição gama.

$$\hat{y}_{t+1|t} = E[y_t|f_{t|t-1}, \mathbf{Y_t}, \theta] = \lambda_t = \exp(f_t)$$
(B-8)

$$f_{t+1|t} = \mu_{t+1|t} + s_{t+1|t} \tag{B-9}$$

$$\mu_{t+1|t} = \mu_{t|t-1} + \beta_{t|t-1} + k_1 u_t \tag{B-10}$$

$$\beta_{t+1|t} = \beta_{t|t-1} + k_2 u_t \tag{B-11}$$

$$s_{t+1|t} = \mathbf{z_t} \boldsymbol{\gamma_{t+1|t}} \tag{B-12}$$

$$\gamma_{\mathbf{t}+\mathbf{1}|\mathbf{t}} = \gamma_{\mathbf{t}|\mathbf{t}-\mathbf{1}} + \mathbf{k}_{\mathbf{t}} u_t \tag{B-13}$$

sendo $u_t=\nabla_t^\lambda$, o *score*, μ_t a componente de tendência, β_t a componente de inclinação e s_t a componente sazonal.