Glycolysis Network

John Santiago

2023-12-06

0-	1		
Co	${f nt}$	er	$\mathbf{u}\mathbf{s}$

•

•

•

•

•

•

•

•

_

.

•

•

GR.F vs WT.F

Figure 1: G85R relative to WT. Transcriptomic data is from females and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max $-\log 10(4)$); edge color is relative to fold change (range: -2 to 2)

GR.M vs WT.M

Figure 2: G85R relative to WT. Transcriptomic data is from males and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max $-\log 10(4)$); edge color is relative to fold change (range: -2 to 2)

TktDfGR.F vs TktDfWT.F

Figure 3: G85R TKT-Df relative to WT TKT-Df. Transcriptomic data is from females and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)

TktDfGR.M vs TktDfWT.M

Figure 4: G85R TKT-Df relative to WT TKT-Df. Transcriptomic data is from males and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)

TktOEGR.F vs TktOEWT.F

Figure 5: G85R TKT-OE relative to WT TKT-OE. Transcriptomic data is from females and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max $-\log 10(4)$); edge color is relative to fold change (range: -2 to 2)

TktOEGR.M vs TktOEWT.M

Figure 6: G85R TKT-OE relative to WT TKT-OE. Transcriptomic data is from males and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)

TktDfGR.F vs GR.F

Figure 7: G85R control relative to G85R TKT-Df. Transcriptomic data is from females and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max $-\log 10(4)$); edge color is relative to fold change (range: -2 to 2)

TktDfGR.M vs GR.M

Figure 8: G85R control relative to G85R TKT-Df. Transcriptomic data is from males and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max $-\log 10(4)$); edge color is relative to fold change (range: -2 to 2)

TktDfWT.F vs WT.F

Figure 9: WT control relative to WT TKT-Df. Transcriptomic data is from females and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)

TktDfWT.M vs WT.M

Figure 10: WT control relative to WT TKT-Df. Transcriptomic data is from males and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)

TktOEGR.F vs GR.F

Figure 11: G85R control relative to G85R TKT-OE. Transcriptomic data is from females and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)

TktOEGR.M vs GR.M

Figure 12: G85R control relative to G85R TKT-OE. Transcriptomic data is from males and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max $-\log 10(4)$); edge color is relative to fold change (range: -2 to 2)

TktOEWT.F vs WT.F

Figure 13: WT control relative to WT TKT-OE. Transcriptomic data is from females and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)

TktOEWT.M vs WT.M

Figure 14: WT control relative to WT TKT-OE. Transcriptomic data is from males and metabolomic data is from both sexes. Grey is no data; Red is increase; Blue is decreae; Node size is relative to pval; Node color is relative to fold change (range: -1 to 1); Edge width is relative to FDR (max -log10(4)); edge color is relative to fold change (range: -2 to 2)