Progettazione di basi di dati

Monday, 27 March 2023 22:02

- Si inizia studiando il ciclo della vita:
 - Studio fattibilità
 Noi qui dobbiamo definire costi e priorità
 - Raccolta dei requisiti
 Si studiano le proprietà del sistema
 Questo è diviso in vari step:
 - Raccolta dei requisiti
 - Possiamo prenderlo da Utenti, documentazioni o simili
 - Analisi dei requisiti
 - Comprendere attività
 Le attività di sopra si susseguono e raffinano tra di loro
 Ogni raffinamento aggiunge dettagli, oppure corregge/modifica
 - Requisiti puliti
 - No argomenti troppo generici/specifici
 - □ Standardizzare struttura frasi → Stesso stile
 - □ Le frasi devono essere semplici
 - Usare posto per gli insegnanti, luogo per studenti
 Qui quindi è consigliato usare un glossario dei termini
 Termine → Descrizione → Sinonimi → Collegati
 Per aiutarsi è possibile costruire un glossario

Termine	Descrizione	Sinonimi	Collegamenti
Partecipante	Persona che	Studente	Corso,
	partecipa ai corsi		Società
Docente	Docente dei corsi. Può essere esterno	Insegnante	Corso
Corso	Corso organizzato	Seminario	Docente
	dalla società. Può avere più edizioni.		
Società	Ente presso cui i partecipanti lavorano o hanno lavorato	Posti	Partecipante

Traduzione schema ER

Per la traduzione usare strategie:

- □ Bottom-Up
 - Si sviluppano tanti piccoli semplici schemi parziali che poi uniamo
 - Ripartizione attività

◆ Integrazione

Quindi, noi avremo un qualcosa del genere:

- Step:
 - 1. Creare una entità relativa a una classe di oggetti con pro
 - 2. Trovare legame logico fra 2 entità

3. Cercare di generalizzare

- 4. Cercare di aggregare gli attributi in una entità
- 5. Cercare di aggregare gli attributi in una relazione
- □ Inside up
 - Iniziamo dal concetto core, e poi espandiamo questo core (me
 - No passi integrazione
 - ◆ Bisogna sempre controllare per concetti non implementati

- □ Hybrid
 - ◆ Suddivisione dei requisiti in componenti separati
 - Definizione di uno schema scheletro
 - ♦ Si individuano i concetti più importanti
 - ♦ Organizzano in uno schema concettuale
 - ♦ Si concentra sugli aspetti essenziali poi
- □ Top-Down
 - Si parte da una schema iniziale astratto, completo, e lo raffinia
 - Bisogna avere sin dall'inizio una visione globale
 Quindi è complesso quando abbiamo problemi complicati

Si seguono i seguenti step:

1. Una entità descrive 2 concetti diversi legati logicamente

2. Cercare di trovare sotto-entità di entità

3. Trasformare la relazione in 2 relazioni fra le due entità (

4. Trasformare la relazione in entità

E nota che questo si può trasformare in 2 modi:

Aggiungere gli attributi alle entità

6. Aggiungere attributi alle relazioni

7. Trasformare attributo composto in entità chiave compo

C'hai capito qualcosa? Nemmeno io

Progettazione di dati e funzioni

Si divide in:

- Progettazione dei dati, organizzazione struttura della base di dati
 Si fa prima la progettazione dei dati, dopo il software
- Progettazione delle applicazioni, si progetta software
- Implementazione
 - Inizia la realizzazione
- Validazione e collaudo Testing
- Funzionamento
 Public release

Essi si possono eseguire attraverso un modello a spirale

Oppure in maniera sequenziale ciclica

- Ogni progetto deve avere una metodologia, aka una serie di passi che guida un attività insieme di strumenti deve permettere:
 - Suddividere progettazioni in fasi
 - Fornire strategie da seguire
 - Fornire linguaggi per descrivere

E deve garantire:

- o Generalita
- Qualità in termini di correttezza, completezza ed efficienza
- Facilità d'uso

(Nota che, dopo, ognuna di queste fasi ha un proprio schema) Nella basi di dati noi ne abbiamo una che divide:

- Cosa rappresentare
 - Progettazione concettuale -> Schema concettuale (Modello E-R)
 Traduce requisiti del sistema in una descrizione delle esigenze aziendali
 - Linguaggio grafico semi-formale per la rappresentazione di schemi d
 - Abbiamo diversi costrutti:

◆ Entità

- Classi di oggetti dell'appliciazione
 Es. Impiegato, città, studente, conto corrente
- Si rappresenta con un quadrato
 (Sotto sotto in "Attributo semplice", i quadrati sono del
- ♦ Ogni entità ha un nome univoco che deve essere singola
- ♦ Citta="Milano" => istanza, quindi istanza è un insieme d
- Creare entità se le istanze sono concettualmente indipe
 Aka descrive classi di oggetti con esistenza autonoma
 - Se è importante per l'applicazione/Proprietà significativ

◆ Relazione

- ♦ Fatto che descrive un'azione/situazione che crea legami
- ♦ Esistono legami con più entità
- ♦ Quando nei requisiti compare un concetto che associa 2
- ♦ Rappresentati con un rombo (Sotto, ESAME) è una relaz
- Usare singolare e sostantivi anziché verbi
- ♦ Le entità possono essere collegate tra di loro da più rela
- Le entità possono essere in relazione con se stesse = Ass

Attributo semplice

- Descrizione di un'entità
- Anch'esso ha un nome
- Possono essere messi sia in entità che relazioni e rappre

- ♦ Ogni attributo può avere 1 ed 1 solo valore
- Scegliere se non ha senso considerare una sua istanza ir
- Se serve solo a rappresentare una proprietà locale di un

Attributo composto

- ♦ E' un raggruppamento di attributi
- Rappresentato con un cerchio obeso, no aspetta! Non c

◆ Cardinalità

- Associa a ogni entità che partecipa a una relazione
- Specificano min e massimo di occorrenze delle relazioni
- Abbiamo 3 simboli:
 - 0-1 minima (0 opzionale, 1 obbligatorio)
 - ▶ 1, N per massimo (N non può avere limite) [Si può E da questo nascono:
 - ▶ Uno a uno (1, 1) (0, 1)
 - ▶ Uno a molto (1, N) (0, N)
 - ▶ Molto a molti (N, M)

- min-card(Automobile, Proprietario) = 0: esistono automobili non possedute da alcuna persona
- min-card(Persona,Proprietario) = 0: esistono persone che non posseggono alcuna automobile
- max-card(Persona,Proprietario) = n. ogni persona può essere proprietaria di un numero arbitrario di automobili
- max-card(Automobile,Proprietario) = 1: ogni automobile può avere al più un proprietario

Cardinalità di un attributo

Anche gli attributi possono avere cardinalità!

- Identificatore interno
 - ♦ Identificare univocamente occorrenza di una identità, se
 - Possiamo avere raggruppamenti di attributi per fare 1 io In questo caso si identifica con una linea

- Identificatore esterno
 - Quando ci serve un'entità esterna per identificare la nos Questo significa che abbiamo un grado di dipendenza

- Generalizzazione
 - Si chiama relazione ISA, e questo quando Una entità è un istanza di un'altra Aka extends, e qui si eredita

- Si ereditano anche le relazioni
- ♦ La freccia è nera se la generalizzazione è completa
 E' bianca se non lo è
- Non esiste ereditarietà multipla

- A sinistra abbiamo is-a, a destra generalizzazione
- ♦ Uno o più concetti risultano un caso particolare di un al Es. Collaboratore, Interno → Docente

Drafaccionista dinandanta - Dartacinanta

Sottoinsieme

Esistono le documentazioni Che non sono altro che tabelle di essi Entità:

Dizionario dei dati: entità

Entità	Descrizione	Attributi	Identificatori
Impiegato	Dipendente dell'azienda	Codice Cognome Stipendio Anzianità	{ Codice }
Progetto	Progetti aziendali	Nome Budget	{ Nome }
Dipartimento	Struttura aziendale	Nome Telefono	{ Nome, Sede }
Sede	Sede dell'azienda	Città Indirizzo (Via, CAP)	{ Città, Indirizzo }

Relazioni:

Relazione	Descrizione	Componenti	Attributi
Direzione	Direzione di un dipartimento	Impiegato, Dipartimento	
Afferenza	Afferenza ad un dipartimento	Impiegato, Dipartimento	Data
Partecipazione	Partecipazione ad un progetto	Impiegato, Progetto	
Composizione	Composizione dell'Azienda	Dipartimento, Sede	

Attributi:

Attributo	Entità/Relazione	Dominio	Descrizione
Codice	Impiegato	Intero	Codice identificativo di impiegati
Cognome	Impiegato	Stringa	Cognome di impiegato
Stipendio	Impiegato	Reale	Stipendio di impiegato
Nome	Progetto	Stringa	Nome del progetto

Vicoli esterni:

Vincoli di integrità esterni

- (1) Il direttore di un dipartimento deve afferire a tale dipartimento da almeno 5 anni
- (2) Un impiegato non deve avere uno stipendio maggiore del direttore del dipartimento al quale afferisce
- (3) Un dipartimento con sede a Roma deve essere diretto da un impiegato con più di dieci anni di anzianità
- (4) Un impiegato non può partecipare ad un numero di progetti maggiore di due volte il numero di dipartimenti ai quali afferisce

Come farlo

- Progettazione logica -> Modello logico (Modello relazionale)
 Tradurre lo schema concettuale in un modello dei dati del DBMS
 -Giuro che un giorno scriverò DBSM anziché DBMS senza accorgermene E questa si articola in 2 fasi:
 - □ Ristrutturazione schema concettuale
 - □ Traduzione verso modello logico

In più questo permette una descrizione dei dati indipendenti Ed è utile per la documentazione

- Progettazione fisica
 Completa lo schema logico con le specifiche hw/sw
- Schema concettuale deve essere:
 - Corretto

Deve avere una semantica e sintassi come cristo (il prof) comanda

Completo

Tutti i dati devono essere presenti E da ogni dato è possibile arriva da qualcun altro

LeggibileDeve essere auto esplicativo

Minimale

No ridondanze, e per ridondanze si intendono anche Concetti che è possibile reperire da altre parti Es.

