Machine Learning Workshop

Nicolas Känzig

Email: nkaenzig@gmail.com

Workshop Repository: https://github.com/nkaenzig/ml-workshop

Contenido

Modulo 1

Introducción MLPython

Modulo 2

- Análisis de datos
- Preprocesamiento de datos

Modulo 3

- Modelos de ML
- Técnicas de evaluación

Machine Learning – Modelos

SVM (Support Vector Machine)

- Supervised Classification
- Scikit-Learn:
 - sklearn.svm.SVC()
- Time Complexity (Training):
 - Linear SVM: O(n)
 - Non-Linear SVM: O(n²) O(n³)

K-NN (K-Nearest Neighbors)

- Supervised Classification
- Scikit-Learn:

sklearn.neighbors.KNeighborsClassifier()

- Time Complexity (Training):
 - O(n)

Random Forest

- Supervised Classification & Regression
- Scikit-Learn:
 - sklearn.ensemble.RandomForestClassifier
- Time Complexity (Training):
 - O(nlog(n))

Ridge Regression

- Supervised Regression
- Scikit-Learn:
 - sklearn.linear_model.Ridge
- Time Complexity (Training):
 - O(n)

$$f(x,\theta) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p$$

$$\theta^* = \underset{\theta}{\operatorname{argmin}} |f(x, \theta) - y|^2 + \alpha \sum_{i=0}^p \theta_i^2$$

Regularización

K-Means

- Unsupervised Clustering
- Scikit-Learn:
 - sklearn.cluster.KMeans()
- Time Complexity (Training):
 - O(n)

Artificial Neural Networks (Deep Learning)

Como funciona el Entrenamiento?

• **Objetivo:**
$$\theta^* = \underset{\theta}{\operatorname{argmin}} L(x, y, \theta)$$

Gradient Descent

Machine Learning Frameworks

Los modelos y algoritmos de optimización ya están implementados!

Machine Learning:

Deep Learning

Criterios para seleccionar un modelo

Preguntas:

- ¿Es difícil configurar el modelo?
- ¿El modelo hace una suposición sobre la distribución de los datos?
- ¿El modelo funciona con features categoricos?
- ¿El modelo funciona con columnas correlacionadas?
- ¿El entrenamiento funciona con "imbalanced" datasets?
- ¿Que es la complejidad del modelo?
- ¿Qué rápido son las predicciones?

Consejo: Siempre empieza con el modelo mas simple / fácil de usar

Criterios para seleccionar un modelo

Model	Feature Selection	Class Balancing	One-Hot Encoding	Non-Linear	Complexity
LinearSVM	no	yes	yes	no	O(n)
SVM('rbf')	yes	yes	yes	yes	O(n^2) - O(n^3)
K-NN	yes	yes	yes	yes	O(n)
Random Forest	no	no	no	yes	O(nlog(n))

- Empezar con Random Forest siempre es una buena idea!
 - Muy fácil para configurar
 - Muy poco preprocesamiento necesario
 - Rápido (Entrenamiento & Prediccion)
 - No hace ninguna suposición sobre la distribución de los datos
 - ≈50% de los modelos ganadoros en Kaggle usan Random Forest

Machine Learning – Evaluación

Como medir la calidad de las predicciones?

Clasificación:

$$Accuracy = \frac{\# Correct \ predictions}{\# Predictions}$$

$$Precision = \frac{\# \ True \ positives}{\# \ True \ positives \ + \# \ False \ Positives} \qquad Recall = \frac{\# \ True \ positives}{\# \ True \ positives \ + \# \ False \ Negatives}$$

Problemas con accuracy

- Dataset:
 - 1000 samples de pacientes sin cancer (N)
 - 5 samples de pacientes con cancer (P)
- Modelo solamente diagnostica 1 de los 5 pacientes con cancer

$$Accuracy = \frac{\# \ Correct \ predictions}{\# \ Predictions} = ?$$

$$Precision = \frac{\# \ True \ positives}{\# \ True \ positives} + \# \ False \ Positives} = ?$$

$$Recall = \frac{\# \ True \ positives}{\# \ True \ positives} + \# \ False \ Negatives} = ?$$

Problemas con accuracy

- Dataset:
 - 1000 samples de pacientes sin cancer (N)
 - 5 samples de pacientes con cancer (P)
- Modelo solamente diagnostica 1 de los 5 pacientes con cancer

$$Accuracy = \frac{\# Correct \ predictions}{\# Predictions} = \frac{1001}{1005}\% = 99.6\%$$

$$Precision = \frac{\text{# True positives}}{\text{# True positives} + \text{# False Positives}} = \frac{1}{1+0}\% = 100\%$$

$$Recall = \frac{\# True \ positives}{\# True \ positives + \# False \ Negatives} = \frac{1}{1+4}\% = 20\%$$

Como medir la calidad de las predicciones?

- Regresión:
 - Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

Training vs. Validation

- División de los datos en 3 partes:
 - Training set (70%)
 - Validation set (20%)
 - Test set (10%)

Cross-Validation


```
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# Data loading & preprocessing
# ...
# Define the model
model = SVC(kernel='linear');
# Train the model
model.fit(x_train, y_train)
# Make predictions
y_predicted = model.predict(x_test, y_test)
# Evaluate
accuracy_score(y_test, y_predicted)
```