ПРИЛОЖЕНИЕ 2 МЕТОДИКА ИНДИВИДУАЛЬНОГО ПРОГНОЗИРОВАНИЯ НАДЁЖНОСТИ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ ПО ПОСТЕПЕННЫМ ОТКАЗАМ

1. Область применения методики

1.1. Методика определяет порядок (процедуру) решения задачи индивидуального прогнозирования надёжности на заданный будущий момент времени для биполярных транзисторов (далее БТ) после этапа их изготовления.

Методика позволяет применительно к конкретному экземпляру и заданной наработке t спрогнозировать значение функционального параметра P (далее параметр P) и принять решение о надёжности этого экземпляра с учётом постепенного отказа для этой наработки. Соответствие рассматриваемого экземпляра требованию надёжности для заданной наработки t определяется сравнением прогнозного значения P с нормой, приведённой в технических условиях (ТУ) на биполярные транзисторы интересующего типа, или со значением, указанным потребителем.

В общем случае при работе транзисторов в усилительном режиме в качестве контролируемого функционального параметра(ов) P рекомендуется выбирать статический коэффициент передачи тока базы в схеме с общим эмиттером h_{219} (коэффициент усиления) и (или) обратные токи p-n-переходов, при работе в ключевом режиме — напряжение насыщения коллектор—эмиттер $U_{\rm K9-nac}$, пробивное напряжение коллектор-эмиттер $U_{\rm K9-npo6}$ и др.

- 1.2. Индивидуальное прогнозирование применительно к испытываемому экземпляру выполняют методом имитационных воздействий, в основе которого лежит установление и использование статистических связей между изменениями параметров, вызываемыми, с одной стороны, имитационным воздействием, не приводящим к уменьшению их рабочего ресурса БТ, и, с другой стороны, длительной наработкой (временем работы) БТ.
- 1.3. Применение метода имитационных воздействий для решения задачи прогнозирования надёжности БТ по постепенным отказам включает следующие этапы:
- экспериментальные исследования определённой выборки БТ рассматриваемого типа вначале на воздействие имитационного фактора (здесь изменения параметров носят обратимый характер), а затем на длительную наработку (здесь изменения параметров носят необратимый характер);
 - получение имитационной модели (функции пересчёта);
 - определение ошибок прогнозирования;
- индивидуальное прогнозирование значения параметра P и, следовательно, надёжности (с учётом постепенного отказа) однотипных экземпляров, не принимавших участие в экспериментальных исследованиях.
- 1.4. Экспериментальные исследования определенной выборки БТ рассматриваемого типа проводят с целью установления функциональных зависимостей параметра P транзисторов от имитационного фактора F, а также от значения наработки t. Для этого предварительно выбирают параметр P и фактор F, используемый в качестве имитационного.

В экспериментальных исследованиях участвуют обучающая и контрольная выборки БТ рассматриваемого типа. Результаты исследования обучающей выборки используются для получения имитационной модели, а результаты исследования контрольной выборки — для определения ошибки прогнозирования.

1.5. Имитационная модель представляет собой уравнение, устанавливающее соответствие между наработкой БТ t и уровнем имитационного фактора F. Это уравнение будем называть функцией пересчёта. Оно показывает, какое значение имитационного фактора F соответствует той или иной наработке t. Для его нахождения выполняется обработка экспериментальных данных, полученных при исследовании обучающей выборки.

Вначале находят математические выражения (модели), показывающие, как среднее значение выбранного параметра P рассматриваемого типа $\mathsf{F}\mathsf{T}$ изменяется от уровня имитационного фактора F и от значения наработки t:

$$P = \varphi_1(F), \tag{\Pi2.1}$$

$$P = \varphi_2(t) \tag{\Pi2.2}$$

где φ_1 – функция, описывающая изменение параметра P от имитационного фактора F; φ_2 – функция, описывающая изменение параметра P от наработки t.

Для получения имитационной модели (функции пересчёта) необходимо выражения (П2.1) и (П2.2) приравнять друг к другу, а затем решить полученное уравнение относительно имитационного фактора F:

$$F_{\text{HM}} = f(t), \tag{\Pi2.3}$$

где f – символ функциональной связи.

1.6. Определение ошибок прогнозирования выполняют с целью проверки пригодности полученной функции пересчёта для прогнозирования значений параметра P тех экземпляров рассматриваемого типа БТ, которые не принимали участие в экспериментальных исследованиях (в обучающей и контрольной выборках).

Об ошибках прогнозирования судят по средней ошибке прогнозирования, которую находят, используя контрольную выборку. Рекомендуется испытывать контрольную выборку одновременно с обучающей с целью сокращения времени решения задачи прогнозирования и экономии средств. Если известно значение наработки БТ в составе аппаратуры, то средняя ошибка прогнозирования определяется для этой наработки. В других случаях её следует определять для наработки $t_{\rm H}$, указываемой в ТУ на БТ рассматриваемого типа. Функцией пересчёта можно пользоваться на практике, если средняя ошибка прогнозирования не превышает допустимого значения.

1.7. Индивидуальное прогнозирование параметра P конкретного, будем прогнозируемого экземпляра, не принимавшего называть экспериментальных исследованиях, позволяет сделать оценку его надёжности по постепенному отказу для заданной наработки *t*. Для этого, пользуясь полученной функцией пересчёта (Π 2.3), для наработки t определяют значение имитационного прогнозируемого экземпляра обеспечивают $F_{\text{\tiny MM}}$. Для имитационного фактора, равный значению $F_{\text{им}}$, при этом значении $F_{\text{им}}$ измеряют параметр P этого экземпляра. Прогноз получают по такому правилу: считают, что для наработки t параметр P прогнозируемого экземпляра будет иметь такое же значение, как полученное при измерении в условиях наличия имитационного воздействия, равного рассчитанному уровню $F_{\rm им}$.

Путём сравнения измеренного значения P с нормой (требованиями ТУ) делают заключение о надёжности прогнозируемого экземпляра по постепенному отказу для заданной наработки t.

2. Экспериментальные исследования

2.1. Для проведения экспериментальных исследований формируется выборка БТ рассматриваемого типа. Её общий объём N включает обучающую выборку размером n и контрольную размером m. Выборку объёмом N, включающую обучающую и контрольную выборку, будем называть объединённой. Результаты испытаний обучающей выборки используют для получения функции пересчёта, результаты испытаний контрольной выборки — для определения ошибок прогнозирования. Экспериментальные исследования обеих выборок экономически целесообразно проводить одновременно.

Отбор N экземпляров объединённой выборки должен выполняться случайным образом из одной и той же партии FT .

2.2. Проводят эксперимент с использованием имитационного воздействия. В качестве имитационного фактора F рекомендуется выбирать ток коллектора $I_{\rm K}$ или температуру T. Дальнейшие действия описываются применительно к случаю использования $I_{\rm K}$ в качестве F.

При различных значениях тока $I_{\rm K}$ (примерно в 5...7 точках) у каждого экземпляра объединённой выборки объёмом N, включающей обучающую и контрольную выборки, измеряют интересующий параметр P (первые два столбца табл. $\Pi 2.1$).

Таблица П2.1 Форма записи данных о зависимости параметра P i-го экземпляра объединённой выборки от имитационного фактора F (1- и 2-й столбцы) и наработки t (3- и 4-й столбцы)

Значение $I_{\rm K}$	Значение параметра <i>P</i> для <i>i</i> -го экземпляра объединённой выборки	Значение <i>t</i> , час	Значение параметра <i>Р</i> для <i>i</i> -го экземпляра объединённой выборки
$I_{ m K1}$	$P_i(I_{K 1})$	t_1	$P_i(t_1)$
$I_{ m K2}$	$P_i(I_{K2})$	t_2	$P_i(t_2)$
$I_{\mathrm{K}l}$	$P_i(I_{K l})$	$t_{\scriptscriptstyle m H}$	$P_i(t_{\scriptscriptstyle m H})$

В табл. П
2.1 число точек имитационного фактора обозначено символом
 $l~(l\approx5...7).$

2.3. Используя данные табл. П2.1 и прикладные программы для ЭВМ, для каждого экземпляра контрольной выборки получают математическую модель вида

$$P_i = \varphi(I_K); i = 1, 2, ..., m,$$
 ($\Pi 2.4$)

где ϕ — символ функциональной связи, вид которой определяется прикладной программой.

2.4. Для каждой точки $I_{\rm K}$ экземпляров обучающей выборки объёмом n находят среднее значение P. Полученные данные рекомендуется свести в табл. П2.2.

Таблица П2.2 Зависимость среднего значения параметра P экземпляров обучающей выборки от имитационного фактора $I_{\rm K}$

Значение $I_{\rm K}$, А	Среднее значение параметра P экземпляров обучающей выборки
$I_{ m K1}$	$P(I_{K 1})$
$I_{ m K2}$	$P(I_{ ext{K 2}})$
•••••	

Используя данные таблицы П2.2 и прикладные программы для ЭВМ, получают математическую модель зависимости среднего значения параметра P от тока коллектора $I_{\rm K}$

$$P = f_1(I_K), \tag{\Pi2.5}$$

где f_1 — символ функциональной связи, вид которой определяется прикладной программой для ЭВМ.

2.5. Проводят испытания объединённой выборки объёмом N на долговечность (длительную наработку). В процессе испытаний в нескольких точках наработки (t_1 , t_2 , ..., t_H) контролируют параметр P. Используют ускоренные испытания, позволяющие за относительно короткое время t_{yck} получить о параметре P ту же информацию, что и за длительную наработку t_H в обычных условиях.

Вначале планируют проведение ускоренных чисто высокотемпературных испытаний. В случае, если действие только повышенной температуры окажется недостаточным для существенного уменьшения общей продолжительности испытаний, то дополнительно следует использовать электрическую нагрузку.

Результаты испытаний рекомендуется свести в табл. П2.1 (3- и 4-й столбцы).

Далее оценивают влияние наработки t на среднее значение параметра P экземпляров обучающей выборки. Для этого, используя результаты испытаний обучающей выборки объёмом n, для точек наработки $(t_1, t_2, ..., t_H)$ определяют среднее значение P и информацию заносят в табл. $\Pi 2.3$.

Таблица П2.3 Зависимость среднего значения P экземпляров обучающей выборки от наработки t

Значение <i>t</i> , час	Среднее значение параметра P экземпляров обучающей выборки
t_1	$P(t_1)$
t_2	$P(t_2)$
$t_{\scriptscriptstyle \mathrm{H}}$	$P(t_{\scriptscriptstyle m H})$

Используя данные табл. П2.3 и прикладные программы для ЭВМ, получают математическую модель вида

$$P = f_2(t), \tag{\Pi2.6}$$

где f_2 — символ функциональной зависимости, конкретный вид которой выбирается с помощью прикладной программы для ЭВМ.

3. Получение функции пересчёта

3.1. Для получения функции пересчёта (имитационной модели) наработки на значение имитационного тока коллектора необходимо приравнять друг к другу математические выражения (П2.2) и (П2.3), а затем, решить полученное уравнение относительно тока коллектора $I_{\rm K}$. В итоге будет найдена функция для расчёта имитационных значений тока коллектора $I_{\rm K}$ в зависимости от задаваемой наработки (имитационная модель):

$$I_{\text{KHM}} = f(t), \tag{\Pi2.7}$$

где f — символ функциональной связи, вид которой определяется прикладной программой.

3.2. Значение имитационного тока коллектора $I_{\text{Ким}}$, которое вызывает такое же изменение параметра P, как и заданная наработка t, находят по модели (П2.7).

4. Определение ошибок прогнозирования

- 4.1. Ошибки прогнозирования определяют для такого значения наработки t, для которого интересуются надёжностью по постепенным отказам БТ исследуемого типа.
- 4.2. По найденной функции пересчёта (П2.7) рассчитывается значение имитационного тока коллектора $I_{\text{Ким}}$ для заданной наработки t.
- 4.3. Определяют прогнозное значение P i-го экземпляра контрольной выборки $P_{\text{пр}\,i}$ ($i=1,\ 2,\ ...,\ m$), соответствующее заданной наработке t. Скорее всего, его придётся определять по ранее полученным (см. п. 2.3) моделям (П2.4) или построенным графикам (рис. П2.1) с помощью интерполяции, принимая во внимание значения P, соответствующие точкам тока $I_{\text{Ким}}$, между которыми окажется имитационное значение $I_{\text{Ким}}$, рассчитанное для заданной наработки по функции пересчёта (П2.7).

Рис. П2.1. Определение прогнозного значения параметра P i-го экземпляра контрольной выборки с использованием расчётного значения $I_{\text{Ким}}$

4.4. Используя информацию табл. П2.1 (3- и 4-й столбцы) находят истинное значение P i-го экземпляра контрольной выборки $P_{\text{ист }i}$ ($i=1,\ 2,\ ...,\ m$), соответствующее заданной наработке t. Если ошибку прогнозирования $\Delta_{\text{ср}}$

определяют для наработки t, для которой во время испытаний на долговечность не проводился контроль параметра P, то значение $P_{\text{ист }i}(t)$ должно быть получено интерполяцией данных табл. П2.1 (3- и 4-й столбцы), используя соседние значения $P_{\text{ист }i}(t_q)$ и $P_{\text{ист }i}(t_{q+1})$, находящиеся соответственно слева и справа от точки $P_{\text{ист }i}(t)$, $t_q < t < t_{q+1}$. Допустимо, при этом, использование линейной интерполяции.

4.5. Данные, полученные в пунктах 4.3 и 4.4, рекомендуется свести в табл. П2.4.

Таблица П2.4 Значения $P_{\text{пр }i}, P_{\text{ист }i},$ соответствующие заданной наработке t для экземпляров контрольной выборки

Номер экземпляра контрольной выборки	Прогнозное значение параметра $P_{\text{пр}i}$	Истинное значение параметра $P_{\text{ист }i}$
1	$P_{\pi p \ 1}$	$P_{\text{\tiny{MCT}}}$ 1
2	$P_{ m np~2}$	Рист 2
m	$P_{\operatorname{np} m}$	P _{uct m}

Среднюю ошибку прогнозирования $\Delta_{\rm cp}$ для заданной наработки t определяют по формуле

$$\Delta_{\rm cp}(t) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(\frac{P_{\rm np}_i - P_{\rm ucr}_i}{P_{\rm ucr}_i} \right)^2} , \qquad (\Pi 2.8)$$

где m — объем контрольной выборки; $P_{\text{пр }i}$ — прогнозное значение параметра P, соответствующее i-му экземпляру контрольной выборки для заданной наработки t, найденное в п. 3; $P_{\text{ист }i}$ — истинное значение параметра P i-го экземпляра контрольной выборки для заданной наработки t, полученное в п. 4, его получают с использованием результатов испытаний контрольной выборки на длительную наработку.

4.6 Функцией пересчёта (П2.7) рекомендуется пользоваться на практике, если ошибка прогнозирования $\Delta_{cp}(t) \leq 5...7$ %.

5. Индивидуальное прогнозирование

- 5.1. Используя функцию пересчёта (П2.7), для заданной наработки t_3 рассчитывается имитационное значение тока коллектора $I_{\text{Ким}}(t_3)$.
- 5.2. У прогнозируемого экземпляра (транзистора), надёжность по постепенному отказу которого прогнозируется, измеряют параметр P при токе коллектора, равном значению $I_{\text{Ким}}(t_3)$. Считается, что прогнозируемый экземпляр на момент окончания наработки t_3 будет иметь такое же значение параметра P, как и полученное в результате измерения при токе коллектора, равном рассчитанному уровню $I_{\text{Ким}}(t_3)$. Результат измерения является прогнозом значения параметра P для заданной наработки t_3 .
- 5.3. Сравнивая значение параметра P, полученное при измерении, со значением, приводимым в ТУ на БТ рассматриваемого типа или с нормой, установленной потребителем, принимают решение (получают прогноз) о

надёжности по постепенному отказу прогнозируемого экземпляра по параметру P для заданной наработки t_3 .

5.4. Если значение $I_{\text{Ким}}(t_3)$, рассчитанное по функции пересчёта (П2.7), превышает предельно допустимое значение, указываемое в ТУ, более чем в 2 раза, то для заданной наработки t_3 следует отказаться от прогнозирования значения параметра P, ибо существует заметный риск повреждения прогнозируемого экземпляра при таком токе коллектора.

6. Пример практического применения методики

6.1. В качестве параметра P, определяющего надёжность по постепенному отказу БТ типа КТ872A в электрической схеме электронного устройства, использовалось напряжение насыщения $U_{\text{K}\text{Энас}}$ при токе коллектора $I_{\text{K}}=7$ A, токе базы $I_{\text{Б}}=3,5$ A.

Выполнив пп. 2.1...2.4 раздела 2 для параметра $U_{\rm KЭнас}$, была получена следующая аналитическая зависимость от тока коллектора $I_{\rm K}$ как имитационного фактора при значении $I_{\rm K}/I_{\rm B}=2$:

$$U_{\text{K}\ni_{\text{Hac}}} = 75\exp(0.309I_{\text{K}}).$$
 (II2.9)

Выполнив исследования в соответствии с п. 2.5 раздела 2, получена зависимость $U_{\rm K3-Hac}$ от наработки t в диапазоне $0...t_{\rm H}$ для рабочего тока коллектора, равного $I_{\rm K}=7$ А при значении $I_{\rm K}/I_{\rm B}=2$ ($t_{\rm H}-$ наработка транзисторов, указанная в ТУ):

$$U_{\text{K}\text{3-Hac}} = 2.4t^{0.47} + 615.$$
 (\Pi2.10)

Размерность параметров выражений (П2.9) и (П2.10): $[U_{\text{КЭнас}}]$ – милливольты; $[I_{\text{K}}]$ – амперы; [t] – часы.

Функция пересчёта значения наработки t на имитационный ток $I_{\text{Ким}}$, полученное с использованием моделей (П2.9) и (П2.10), приняло вид

$$I_{\text{Kum}} = 3,24 \ln (0,032t^{0,47} + 8,2), \text{ A.}$$
 ($\Pi 2.11$)

6.2. По уравнению (П2.11) можно определить: например, для $t_3 = 20~000$ ч имитационный ток $I_{\text{Ким}}(t_3) = 7,93$ А.

Индивидуальное прогнозирование надёжности БТ по постепенному отказу по параметру $U_{\rm KЭнас}$ для новых однотипных экземпляров для наработки $t_3 = 20000$ ч состоит в измерении параметра $U_{\rm KЭнас}$ при этом токе коллектора при значении $I_{\rm K}/I_{\rm B} = 2$ и сравнении полученного результата с нормой. Предположим, что результат измерения составил 1068 мВ. Сравнивая это значение с нормой, приводимой в ТУ на БТ типа КТ872A (не более 1 В), делаем вывод о несоответствии этого экземпляра требованию надёжности по постепенному отказу по параметру $U_{\rm KЭнас}$ для наработки $t_3 = 20~000$ ч.