Minimization of DFA

Why is this important?

Say you have a DFA of 5 states, you can minimize it and it would have 4 states by the end.

How?

By combining

Step 1: Draw the DFA table if not provided

Step 2: Cite the equivalences, always start from 0

NOTE:

In every O equivalence, always group each state except the final state together

0 cq.:

{A,B,C,O}{E}

{A,C}{B}{D}{E}

1st eq.:

{A,B,C}{D}{E}

4A,C}{B}{D}{E}

Stop when the current equivalence

Step 3: Construct the minimized DFA table based on the last equivalence

Bonus Step

Step 4: If asked, construct the newly minimized DFA diagram

is the same as the last one

Construct a minimum DFA equivalent to the DFA described by

	0	1
<u> </u>	9,	95
9,	96	92
93	90	92
93	92	96
94	97	95
95	92	96
96	96	94
97	96	92

O equivalence:

1st equivalence:

2nd equivalence:

3rd equivalence:

	0	1
→ 40 94	9197	9395
9197	96	92
9395	92	96
96	96	4094
4 92	4094	92

Minimize the following DFA:

NOTE:

If there are multiple final states, combine them

O equivalence:

1st equivalence:

2nd equivalence:

When there are Unreachable States involved

A state is said to be Unreachable if there is no way it can be reached from the Initial State

In a nutshell, unreachable states only have outward edges but no inward edges

Whenever there's an unreachable state, just remove that unreachable state then proceed to usual minimization

O equivalence:

{A.D.E} { B.C.G }

1st equivalence:

Remember this:

Just because they're final states, doesn't mean they have the same equivalence. So, don't forget to always check

2nd equivalence:

{A} {D.E} {B,C} {G}

3rd equivalence:

{A}{D.E}{B,C}{G}

	0	ı
→ A	BC	BC
DE	G	G
#BC	DE	DE
*G	G	G

EXAMPLE

1.)

	0	1
→ A	8	A
8	8	D
D	B	E
#E	В	A

O-equiv.:

1-equiv.:

2-equiv:

3-equiv:

	0	1
A¢	В	A
B	8	D
D	B	E
#E	В	A

I guess the diagram was already minimized?

MORE EXAMPLE

2.)

	а	b
→1	2	6
2	7	3
* 3	1	3
4	3	7
5	8	6
6	3	7
7	7	5
8	7	3

0-equiv.:

{1,2,4,5,6,7,8} {3}

1-equiv.:

{1,5,7}{4,6}{2.8}{3}

2-equiv.:

£1,5}{7}{4,6}{2.8}{3}

3-equiv.:

{1,5}{7}{4.6}{1.8}{3}

	a	Ь	.
→15	18	46	å
7	7	15	(15) * (18) * ((3)
46	3	7	6 6 9
18	7	3	(46) b (7) Da
*3	15	3	

MORE EXAMPLE

3.) multiple final states

	0	ı
→A	В	C
8	A	D
*(E	F
*D	E	F
AE	E	F
F	F	F

	0	1
→A8	AB	CDE
F	F	F
*CDE	CDE	F

MORE EXAMPLE

4.) unreachable state

