

Use case: medical data

- Medical data sensitive and a valuable asset to the hospital
 - The owner wants to share data with researchers
 - The owner wants to have a claim of the ownership and trace the source of an unauthorised publishing
- Idea: hide a piece of information in the data before the distribution

Fingerprinting

Age	BloodPress.	Diabetes	Age	BloodPress.
32	64	1	33	64
31	66	0	31	68
50	72	1	50	72
48	70	0	47	70

Diabetes

0

Fingerprinting

FINGERPRINT - string of bits containing information about the owner and the recipient of the specific data copy

FINGERPRINTING - an information hiding technique that embeds the fingerprint into the data

Fingerprinting

Requirements of the fingerprint:

- 1) recognizable by the owner
- not detectable and consequently removable by the recipients
- 3) robust to attacks
- does not change the utility of the data too much

Fingerprinting Schemes: workflow

Fingerprinting Schemes: Numerical data

AK (Agrawal and Kiernan) Scheme:

 Pseudorandom choice of a row, a column and a least significant bit of a value to be marked

Age	BloodPress.	Diabetes
33	64	1
31	66	0
50	71	1
48	70	0

Block Scheme:

- The data is first divided into blocks
- Pseudorandom choice of the value to be marked within every block

Age	BloodPress.	Diabetes				
32	64	1				
33	66	0				
49	72	1				
48	70	0				

Two-level Scheme:

- 1st layer: Pseudorandomly selects the values to be marked; this pattern identifies the owner
- 2nd layer: Pseudorandomly selects the values to be marked; this pattern identifies the recipient

Age	BloodPress.	Diabetes
31	64	1
31	69	0
50	72	1
45	70	0

Numerical vs. Categorical Data

• Decimal: 32.3 → 32.7 ⓒ • Integer: 32 → 34 ⓒ

• Non-numerical: France ———— Germany ?

Fingerprinting categorical data: Approach #1

Insertion

- London, Paris, Vienna
- Encoding: 0,1,2 (00,01,**10**)
- Fingerprinting: 10 -> 11
- Decoding: 11 -> ??

- Correction: 11 mod 3 = 00
- Decoding: 00 -> London

Fingerprinting categorical data: Approach #2

Pseudorandomly choose a value to fingerprint - target Find a neighbourhood based on all but the target value Calculate the frequencies of target attribute values Choose randomly a mark value (weighted by the friequencies)

- Addressing the problem of semantic relations between categorical attributes that can be disturbed by fingerprinting
- gender: male, pregnant: yes
- The fingerprinted value will be a value that is likely to occur in a combination with other values from the row

Robustness Evaluation: Attacks

- Malicious operations on the fingerprinted dataset with the goal of
 - disabling the extraction of the correct fingerprint or
 - disabling association of a fingerprint with the correct recipient
- Subset Attack
- Superset Attack
- Bit-flipping Attack
- Additive Attack

 Misdiagnosis False Hit Rate: measures the likelihood of extracting a valid fingerprint from non-fingerprinted data

Robustness Evaluation

Misdiagnosis false hit

Robustness Evaluation

Subset Attack

Utility Evaluation

Mean and Variance

		Less marks More marks									
	β		30	:	25		15		10		
	ξ	4	8	4	8	4	8	4	(8)		Number of
Attribute	Variance										Least Significant
Elevation	78391	0	+13	+1	+15	+1	+48	+1	+178		Bits being
Aspect	12525	0	+7	0	+12	0	+35	0	+127		marked
Slope	56	0	+12	0	+18	0	+48	0	0		
HD-Hydrology	45177	0	+6	+1	+4	+1	+13	+2	0		
VD-Hydrology	3398	0	+10	0	+15	0	+38	0	+87		
HD-Roadways	2431276	0	+3	0	+3	0	+44	-2	0		
Hillshade-9am	717	0	+11	0	+15	0	+41	0	+8		
Hillshade-noon	391	0	+11	0	+16	0	+45	0	+200		
Hillshade-3pm	1465	0	0	0	+13	0	+35	0	+160		
HD-Fire-Points	1753493	0	0	0	-4	0	+54	0	+68		

Utility Evaluation

ML Classification

Conclusion and Future Work

Number of marks

\uparrow	ω	ξ	L
Misdiagnosis false hit	↑		↑
Subset Attack	↑		+
Bit-flipping Attack	↑	1	+
Additive Attack	↑	\	
Utility	+		

 Trade-off: robustness of the scheme and the utility of fingerprinted data

Future work

- Fingerprinting scheme for categorical data
 - Further analysis on robustnes of the neighbourhood-search approach
 - Blind scheme for fingerprinting relational data with categorical values

