

Model Optimization and Tuning Phase Template

Date	15 March 2024
Team ID	LTVIP2024TMID25001
Project Title	Customer Segmentation Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
KNN	<pre>knn = KNeighborsClassifier() # K-Nearest Neighbors knn_params = { 'n_neighbors': [3, 5, 7, 9], 'weights': ['uniform', 'distance'], 'metric': ['euclidean', 'manhattan'] }</pre>	Best parameters for VMI: {'metric'; 'euclidean', 'n_neighbors'; 3, 'weights'; 'distance'} KNN Accuracy: 1.0


```
dt = DecisionTreeClassifier()
            # Decision Tree
                                                       Best parameters for Decision Tree: { max depth !: None, 'min samples leaf' : 1, 'min samples split
Decision
           dt_params = {
                'max depth': [None, 10, 20, 30],
Tree
                'min_samples_split': [2, 5, 10],
                'min_samples_leaf': [1, 2, 4]
                                                        Decision Tree Accuracy: 0.9975
            rf = RandomForestClassifier()
            # Random Forest
            rf params = {
Random
                'n_estimators': [100, 200, 300],
Forest
                'max_depth': [None, 10, 20, 30],
                'min_samples_split': [2, 5, 10],
                'min samples leaf': [1, 2, 4]
                                                       Random Forest Accuracy: 0.9975
           xg = XGBClassifier()
XGBoost
            xg_params = {
                'learning_rate': [0.01, 0.1, 0.2],
                'max_depth': [3, 5, 7],
                'n_estimators': [100, 200, 300],
                                                        XGBoost Accuracy: 0.9975
                'colsample bytree': [0.3, 0.7]
```


Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric	
KNN	KNN Confusion Matrix: [[85 0 0] [0 208 0] [0 0 107]] KNN Classification Report:	
Decision Tree	Decision Tree Confusion Matrix: [[84	

	Random Forest Confusion Matrix: [[84
Random Forest	Random Forest Classification Report:
XGBoost	XGBoost Confusion Matrix: [[84

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	The Random Forest model was selected for its robust performance and strong generalization capabilities. Its ability to handle a large number of features, mitigate overfitting through bagging, and provide feature importance metrics made it a top contender. Random Forest demonstrated competitive accuracy during hyperparameter tuning, and its ensemble nature ensures better stability and resilience to noise in the dataset. These factors align with the project's objectives, making it an excellent choice as the final model.