Digital Logic Design (EL-1005)

LABORATORY MANUAL SPRING 2024

LAB 09

Binary Comparator

Instructor: Engr. Misbah Malik

STUDENT NAME	ROLL NO SEC	
_	FACULTY'S SIGNATU	RE & DATE
	MARKS AWARDED:	/02
NATIONAL UNIVERSITY OF COMPUTER AND EM	IERGING SCIENCES (FAST-NUCES), KARACHI	

Lab Session 09: Binary Comparator

OBJECTIVES:

> To learn and understand how to design a multiple output combinational circuit.

> To learn and understand the working of 2-bit binary comparator.

> To learn and understand the working and usage of Exclusive-OR and Exclusive-NOR gates.

APPARATUS: Logic trainer, Logic probe

COMPONENTS: ICs 74LS08, 74LS32, 74LS04, 74LS86, 74LS02

THEORY:

Binary comparator is a combinational circuit that compares magnitude of two binary data signals A & B and generates the results of comparison in the form of three output signals A>B, A=B, A<B. Binary comparator is a multiple input and multiple output combinational circuit. When a combinational circuit has two or more than two outputs then each output is expressed separately as a function of all inputs. Separate K-map is made for each output.

One-bit comparator:

One-bit comparator compares magnitude of two numbers A and B, 1 bit each, and generates the comparison result. The result consists of three outputs let us say L, E, G, so that.

$$L = 1 if A < B$$

$$E = 1 if A = B$$

Truth Table:

$$G = 1 if A > B$$

Inputs	5	Outpu	ıts	
Α	В	L	E	G
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

K-Maps for Outputs:

K-Map for Output L

K-Map for Output E

K-Map for Output G

Boolean Expressions of Outputs:

L: $\bar{A}B$

E: $AB + \bar{A}\bar{B}_{-}$

G: $A\bar{B}_{-}$

Exclusive-OR & Exclusive-NOR gates:

The figure given below shows the symbol of Exclusive-OR (XOR) and Exclusive-NOR (XNOR) gates.

Boolean expression of XNOR gate is $AB + \overline{AB}$ and Boolean expression of XOR is $\overline{AB} + \overline{AB}$. Boolean expression of XNOR gate can be implemented using XOR gate as shown in figure below:

Circuit Diagram for one-bit comparator:

In this experiment 74LS86 IC will be used for implementation of XOR gate function. 74LS86 IC contains four 2-input XOR gates. The function table and connection diagram for this IC are shown below:

Function Table:

Inputs		Output
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L
·		

H= Logic High, L= Logic Low

Connection Diagram:

LAB TASKS

Name	Student ID	Section		
Exercise # 1 Write a truth table of a combinational circuit that compares two 2-bit numbers and generates the comparison result. The result consists of three outputs let us say L, E, G, so that.				
L = 1	if $A < B$			
E = 1	if A = B			
G = 1	if $A > B$			
1. Write truth table				

Exercise # 2 Find minimal SOP expressions for the outputs L, E, and G using K-map. Draw separate K-map for each output in the space given below.	

Exercise # 3

Implement the combinational circuit of 2-Bit Binary comparator.