CALCOLO NUMERICO CORSO B

Corso di Laurea in Informatica A.A. 2022/2023 – Prova Scritta – 13/03/2023

NOME COGNOME MATRICOLA

Esercizio 1

Sia $A = (a_{i,j}) \in \mathbb{R}^{n \times n}, n \geq 3$, la matrice definita da

$$a_{i,j} = \begin{cases} 1 \text{ se } i = j = 1; \\ 5 \text{ se } i = j > 1; \\ 2 \text{ se } i = j + 1 \text{ o } i = j - 1; \\ 0 \text{ altrimenti.} \end{cases}$$

- 1. Si determini la matrice $A^{(1)}$ generata dopo un passo del processo di eliminazione gaussiana applicato ad A.
- 2. Si mostri che A ammette fattorizzazione LU. Si determini la fattorizzazione A = LU e se ne valuti il costo computazionale.
- 3. Si determini la soluzione del sistema lineare $Ux = e_n$. Si mostri che $\mathcal{K}_{\infty}(U) \geq 2^n$.

Esercizio 2 Si consideri l'equazione

$$f(x) = x^3 + x^2 - 3x - 3 = 0.$$

- 1. Determinare il numero di soluzioni reali dell'equazione. Per ogni soluzione determinare un intervallo di separazione.
- 2. Si determini x_0 tale per cui il metodo delle tangenti applicato ad f(x) con punto iniziale x_0 genera una successione convergente alla radice minima dell'equazione. Si determini y_0 tale per cui il metodo delle tangenti applicato ad f(x) con punto iniziale y_0 genera una successione convergente alla radice massima dell'equazione. Motivare le risposte.
- 3. Si scriva una funzione MatLab che dato in ingresso x_0, y_0, tol restituisce un'approssimazione della radice minima e massima dell'equazione implementando il metodo delle tangenti applicato ad f(x) e arrestato quando $\max\{|x_{k+1}-x_k|, |y_{k+1}-y_k|\} \leq tol$.