Tema 5 - Física y colisiones. Efectos especiales.

5.6 Shaders de vértices y técnicas avanzadas.

Germán Arroyo, Juan Carlos Torres

20 de mayo de 2021

Germán Arroyo, Juan Carlos Torres Tema 5 - Física y colisiones. Efectos especiales 20 de mayo de 2021

5.6 Shaders de vértices y técnicas avanzadas.

Contenido del tema

Tema 5: Física y colisiones. Efectos especiales.

- 5.1 Introducción a los motores físicos.
- 5.2 Interacción con dispositivos de entrada y dispositivos há
- 5.3 Técnicas de optimización.
- 5.4 Personalización de fuerzas
- 5.5 Efectos especiales y técnicas volumétricas.
- 5.6 Shaders de vértices y técnicas avanzadas.

Germán Arroyo, Juan Carlos Torres Tema 5 - Física y colisiones. Efectos especiales 20 de mayo de 2021

Esquema general de la GPU (I)

Germán Arroyo, Juan Carlos Torres Tema 5 - Física y colisiones. Efectos especiales 20 de mayo de 2021 Germán Arroyo, Juan Carlos Torres

Esquema general de la GPU (II)

Effect Textures Parameters Vertex Colors, Data TexCoords Vertex Pixel Triangles Pixels Color Shader Shader Indices Position Function Render Target

Alto y bajo nivel

Germán Arroyo, Juan Carlos Torres Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021

Germán Arroyo, Juan Carlos Torres

Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021

Shaders a bajo nivel

Shaders a alto nivel

Distintos tipos:

Material.

Iluminación.

Viewport/Canvas.

Otros: partículas, propósito general, etc.

Germán Arroyo, Juan Carlos Torres Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021

Germán Arroyo, Juan Carlos Torres

Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021

Ámbito de variables

Distinto ámbito:

Variables por vértices: Variables que se pasan desde CPU al vertex shader.

uniform: Variables que se pasan desde CPU.

varying: Variables que se pasan desde el shader de vértices al de

fragmentos (interpolación lineal).

Variables locales: Variables que existen solamente en la función definida (típicas funciones estandar son vertex, fragment y light).

in: variables de solo-lectura de los shaders.

out: variables de solo-escritura de los shaders.

inout: variables de lectura y escritura intrínsecas a los algoritmos de shaders.

¡No hay variables de «salida» a CPU!

Germán Arroyo, Juan Carlos Torres Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021

Tipos de variables

Tipos comunes (y no tan comunes):

vec2,3,4: vectores, vec3 y vec4 también sirven como colores. Se puede acceder a sus componentes: vector.x, vector.rg, vector.xyzw

mat4: matrices 4x4 (transformaciones geométricas).

float,int,bool: $1 \neq 1.0$

sampler1D,2D,3D: un mapa o textura, se puede acceder a ella mediante la función texture(sample2d, uv), devuelve un color de 4 dimensiones (rgba).

Germán Arroyo, Juan Carlos Torres

Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021

Lenguaje

Los lenguajes varían pero suelen imitar a C.

¡Cuidado! Los procesadores son poco potentes:

for, if, switch-case, deberían ser evitados siempre que sea posible...

Procesadores vectoriales:

Usar vecX, matX, samplerXD, siempre que se pueda...

Ejemplo: terreno procedural

Una textura de ruido (Gris) nos indica la elevación.

Una segunda textura (RGB) de ruido sirve para obtener las normales, o calcularla?...

Una tercera textura (RGB) nos da el color del terreo, o la elevación?...

https://docs.godotengine.org/en/stable/tutorials/shading/shading_refer ence/shading_language.html

https://docs.godotengine.org/en/stable/tutorials/shading/shading_refer ence/spatial_shader.html

Obtener información de las texturas: múltiples pasadas

La única forma de capturar datos es leer la textura resultante (GPU \rightarrow CPU).

Es típico encadenar pasadas:

[PRIMERA PASADA] Preparar datos en CPU, transferir a GPU.

Hacer algoritmo GPU y visualizar textura.

Capturar textura (viewport) y transferir a CPU (o no).

[SEGUNDA PASADA] Utilizar textura como entrada para el nuevo algoritmo.

• • •

Germán Arroyo, Juan Carlos Torres

Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021

12 / 15

Ejemplo de shaders y partículas

GPU + partículas:

- ▶ https://godotengine.org/article/improvements-gpuparticles-godot-40
- ► https://docs.godotengine.org/es/stable/classes/class_particles.html

Mapas de elevación y colisiones:

▶ https:

//godotengine.org/storage/app/media/4.0/particles/window.mp4

Mapas de elevación y hierba:

- ► https://www.youtube.com/watch?v=uMB3-g8v1B0
- $\blacktriangleright \ \, \text{https://github.com/BastiaanOlij/godot-grass-tutorial}$

Sistemas de Partículas

Emisor: desde donde sale la partícula. Puede haber sub-emisores.

Función de actualización: donde se actualiza el

estado/comportamiento de la partícula.

Vida de la partícula: tiempo en el que la partícula es visible y tiene

comportamiento.

Dibujado: cada partícula puede ser cualquier objeto 3D con cualquier

material.

https://www.youtube.com/watch?v=4VDNBTF9mu0

https://www.youtube.com/watch?v=aNVviTECNM0

Germán Arroyo, Juan Carlos Torres

Tema 5 - Física y colisiones. Efectos especiales

20 de mayo de 2021