Цифровая обработка сигналов

Лекция №6

Санкт-Петербург 2021

Классификация фильтров по целевому назначению

- Фильтры нижних частот (ФНЧ или loss-pass filter).
- Пропускают частоты, меньшие \mathcal{O}_0 частоты среза;
- Фильтры высоких частот (ФВЧ или high-pass filter).
- Пропускают частоты, большие \mathcal{O}_0 частоты среза;
- Полосовые фильтры (ПФ или band-pass filter).
- Пропускают частоты в некотором диапазоне $\omega_1 \dots \omega_2$.
- Характеризуются также средней частотой ω_0 и шириной полосы пропускания;
- **Режекторные фильтры** (фильтр-пробка, заграждающий фильтр, полосно-задерживающий фильтр или **band-stop filter**), пропускающий все частоты, кроме попадающих в некоторый диапазон $\omega_1 \dots \omega_2$. Также характеризуется средней частотой ω_0 и шириной полосы задерживания.

Классификация фильтров

по результату действия Идеальная форма ФЧХ названных фильтров

Синтез дискретных фильтров заключается в выборе таких коэффициентов фильтра, при которых его характеристики удовлетворяют заданным требованиям.

Можно привести, в частности, следующие классификации методов синтеза дискретных фильтров.

По типу синтезируемого фильтра:

- синтез нерекурсивных фильтров;
- синтез рекурсивных фильтров.

По наличию аналогового прототипа:

- методы с использованием аналогового прототипа;
- методы без использования аналогового прототипа или прямые методы.

Синтез рекурсивных фильтров по аналоговому прототипу:

- метод билинейного *Z*-преобразования;
- метод инвариантной импульсной характеристики.

Прямые методы синтеза фильтров:

- **оптимальные методы**. Заключаются в поиске минимума заданного критерия качества численными итерационными методами;
- субоптимальные методы. Не обеспечивают оптимального значения критерия качества, но упрощают вычислительные процессы по сравнению с оптимальными методами. При этом, как правило, используется та или иная специфика конкретной задачи

Оптимальные методы

Как правило, задается желаемая частотная характеристика метода — $H^*(\omega)$ или AЧХ - $D(\omega)$.

В качестве критерия используется *p*-норма *e* — ошибки, т.е. разности желаемой характеристики и соответствующей характеристики синтезируемого фильтра: ω_{π} $\|e\|_p = \int w(\omega) |H^*(\omega) - H(\omega)|^p d\omega \Rightarrow \min$ (6.1)

 $H(\omega)$ - частотная характеристика синтезируемого фильтра, $w(\omega)$ - весовая функция, p=2 или ∞.

Оптимальные методы

- При p=2 (решение в смысле МНК) задача (6.1) сводится к системе линейных уравнений. При единичной весовой функции коэффициенты фильтра будут равны коэффициентам разложения $H^*(\omega)$ в ряд Фурье, что приводит к возникновению эффекта Гиббса. Для снижения влияния этого эффекта применяются специальные приемы. В общем случае оптимизация осуществляется итерационными методами.
- При $p=\infty$ минимизируется максимальное отклонение (минимаксная аппроксимация).

Субоптимальные методы синтеза нерекурсивных фильтров

ФНЧ может представлен типовым сглаживающим фильтром с переходной зоной между полосами

пропускания и подавления: $y_n = \sum c_k x_{n-k}$, $(c_k = c_{-k})$

При интерполировании полагаем в (6.2) $c_0 = 0$.

ФВЧ может быть получен как разность x_n - ФНЧ.

Дифференцирующий фильтр можно представить в виде аналогичном (6.2) с тем отличием, что $c_k = -c_{-k}, c_0 = 0$.

Интегрирование с помощью нерекурсивных фильтров осуществить невозможно.

Субоптимальные методы синтеза нерекурсивных фильтров

Как известно, любую функцию можно представить как сумму четной и нечетной функций.

Так же и любой нерекурсивный фильтр можно представить как сумму четного (сглаживающего) и нечетного (дифференцирующего) фильтров:

$$c_k = \frac{c_k + c_{-k}}{2} + \frac{c_k - c_{-k}}{2} \tag{6.3}$$

Здесь первое и второе слагаемое можно трактовать, например, как косинусные и синусные коэффициенты разложения функции в ряд Фурье.

синтеза нерекурсивных фильтров

Синтез с использованием окон (весовых функций).

- 1. Выбираем H(f) желаемую частотную функцию фильтра (симметричную).
- 2. Находим коэффициенты косинусного разложения $\tilde{H}(f)$ в ряд Фурье .
- 3. Формируем усеченный ряд Фурье для H(f), оставляя в нем только 2N+1 слагаемых, расположенных симметрично относительно слагаемого с нулевым номером, что порождает явление Гиббса.
- 4. Используя окно Ланцоша, умножаем коэффициенты усеченного ряда Фурье на сигма-факторы.

Субоптимальные методы синтеза нерекурсивных фильтров

синтеза нерекурсивных фильтров

Рассмотрим конкретный пример.

Выберем идеальную передаточную функцию:

$$\tilde{H}(f) = \begin{cases} 1, \ 0 < |f| < 0.2 \\ 0, \ 0.2|f| < 0.5 \end{cases}$$

Коэффициенты ряда Фурье: $b_{k}=0$,

$$a_k = 4 \int_0^{0.5} \tilde{H}(f) \cos 2\pi k f df = 4 \int_0^{0.2} \cos 2\pi k f df = \frac{2 \sin(0.4\pi k)}{\pi k}$$

Соответствующий ряд Фурье для идеальной передаточной функции: $\sin 0.4\pi kf$

$$\tilde{H}(f) = \frac{4}{10} + 2\sum_{k=1}^{\infty} \frac{\sin 0.4\pi kf}{\pi k} \cos 2\pi kf$$

синтеза нерекурсивных фильтров

После усечения ряда до 5-ти (N=4) слагаемых получаем:

$$\tilde{H}(f) = \frac{4}{10} + 2\sum_{1}^{4} \frac{\sin 0.4\pi kf}{\pi k} \cos 2\pi kf$$

и явление Гиббса

Сигма-факторы для случая N=4: $\sigma(5,k) = \frac{\sin 0.2\pi k}{0.2\pi k}$

В результате получаем модифицированную передаточную функцию в виде: $\tilde{H}(f) = \frac{4}{10} + 2\sum_{1}^{4} \frac{\sin 0.2\pi k}{0.2\pi k} \cdot \frac{\sin 0.4\pi kf}{\pi k} \cos 2\pi kf$

ИЛИ
$$H(\omega) = \frac{4}{10} + 2\sum_{1}^{4} \frac{\sin 0.2\pi k}{0.2\pi k} \cdot \frac{\sin 0.2k\omega}{\pi k} \cos k\omega \tag{6.4}$$

Коэффициенты (кроме C_0 -постоянного члена) дискретного симметричного фильтра (6.2) будут в два раза меньше чем в косинусном разложении.

синтеза нерекурсивных фильтров

Визуализация результата использования окна Ланцоша

Субоптимальные методы синтеза нерекурсивных фильтров

Для снижения уровня боковых лепестков могут быть использованы и другие весовые функции.

Тип окна	Уровень боковых лепестков, дБ
Прямоугольное	-21,0
Треугольное	-26,5
Бартлетта	-26,5
Ханна	-44,0
Хэмминга	-53,6
Блэкмена	-75,3
Кайзера при β = 4	-45,2
Кайзера при β = 9	-90,5
Чебышева при в = 40 дБ	-51,0
Чебышева при в = 60 дБ	-71,6
Чебышева при в = 80 дБ	-92,4

синтеза нерекурсивных фильтров

- Основной целью операции взвешивания является уменьшение уровня боковых лепестков частотной характеристики.
- Вместе с тем увеличивается ширина полосы пропускания. Поэтому выбор весовой функции должен учитывать это обстоятельство.
- Еще одним важным обстоятельством при взвешивании является задача получения модифицированной частотной характеристики, которая была непрерывной вместе со своими производными (хотя бы первой) в полосе пропускания.
- В последнем случае скорость убывания АЧХ частотной характеристики возрастает, что должно способствовать снижению влияния отрицательных эффектов вызываемых усечением рядов.

синтеза нерекурсивных фильтров

Фильтр с косинусоидальным сглаживанием.

Главной целью этого подхода является получение синтезируемой АЧХ не имеющей разрывов.

АЧХ фильтра представляет собой в аналоговом случае свертку АЧХ идеального прямоугольного окна с весовой функцией в виде половины периода косинуса:

$$W(\omega) = \begin{cases} \frac{\pi^2}{2\alpha\omega_0} \cos\left(\frac{\pi\omega}{2\alpha\omega_0}\right), |\omega| \le \alpha\omega_0 \\ 0, |\omega| > \alpha\omega_0 \end{cases}$$

$$(6.5)$$

 α - параметр сглаживания. Он равен половине ширины переходной зоны, нормированной к частоте среза ω_0 .

В результате такой свертки АЧХ фильтра и ее первая производная будут непрерывны, а импульсная характеристика фильтра будет убывать пропорционально t^3 .

синтеза нерекурсивных фильтров

Синтезируем дискретный фильтр с косинусоидальным сглаживанием. Пусть частота среза равна одной восьмой частоты дискретизации:

$$\omega_0 = \omega_{II} / 8$$

Узлы сетки:

$$t_k = kT = \frac{2\pi}{\omega_{I}}k = \frac{\pi k}{4\omega_0}$$

Импульсная характеристика фильтра запишется в виде:

$$h(k) = \frac{1}{4} \frac{\cos\left(\frac{\alpha\pi k}{4}\right)}{1 - \left(\frac{\alpha k}{2}\right)^2} \cdot \frac{\sin\left(\frac{\pi k}{4}\right)}{\frac{\pi k}{4}}$$

$$(6.6)$$

синтеза нерекурсивных фильтров

АЧХ: прямоугольного окна Дискретного фильтра с косинусоидальным сглаживанием при $\alpha = 0.25$

и *k* от -16 до 16.

Наблюдается ослабление боковых лепестков при очень незначительном расширении полосы пропускания.

синтеза нерекурсивных фильтров Гладкие фильтры.

Как известно, $\cos(n\theta)$ можно представить как полином степени n относительно $\cos(\theta)$. Ход рассуждений здесь следующий: $e^{in\theta} = \left[\cos(n\theta) + i\sin(n\theta)\right] = \left(e^{i\theta}\right)^n = \left[\cos(\theta) + i\sin(\theta)\right]^n \cos(n\theta)$ равен вещественной части $\left[\cos(\theta) + i\sin(\theta)\right]^n$.

$$\cos(n\theta) = \sum_{i=0}^{n} C(n, 2k) \left[\cos(\theta)\right]^{n-2k} \left[i\sin(\theta)\right]^{2k}$$

Здесь суммирование прекращается как только n-2k станет меньше нуля. $\left[\sin(\theta)\right]^{2k} = \left[\sin^2(\theta)\right]^k = \left[1-\cos^2(\theta)\right]^k$

Отсюда следует, что выражение для передаточной функции $\tilde{H}(f) = c_0 + \sum_{k=0}^{N} c_k \cos(2\pi k f) \tag{6.7}$

может быть представлено как полином по степеням $\cos(2\pi f)$

синтеза нерекурсивных фильтров

Гладкие фильтры.

$$\tilde{H}(f) = \sum_{k=0}^{N} b_k \left[\cos(2\pi f) \right]^k$$

Сделаем замену переменной: $t = cos(2\pi f)$

$$0 \le f < 0.5 \Longrightarrow 1 \ge t = \cos(2\pi f) > -1$$

$$\tilde{H}(f) = \sum_{k=0}^{N} b_k t^k$$

(6.8)

Передаточная функция теперь представлена в виде разложения по степеням $t = \cos(2\pi f)$. Переход к степеням t приводит к нелинейному растяжению и реверсированию оси частот (абсцисс).

Дальнейший ход рассуждений следующий:

1.Зададим функцию:

$$g(t) = (1+t)^{p} (1-t)^{q}$$
;

(6.9)

Субоптимальные методы синтеза нерекурсивных фильтров

Гладкие фильтры.

- **2.**Найдем неопределенный интеграл $\int g(t)dt = G(t) + C$;
- **3.**Константу C^* определим из условия: $G(-1) + C^* = 0$
- **4.**Вычислим значение $\lambda = G(1) + C^*$;
- 5.Определим функцию:

$$H(t) = \frac{1}{\lambda} \Big(G(t) + C^* \Big)$$

H(t) имеет корень p+1 кратности при t=-1 и равна единице при t=1 одновременно с q производными, равными нулю.

синтеза нерекурсивных фильтров

Гладкие фильтры.

6. Функцию H(t) считаем передаточной функцией синтезируемого фильтра, преобразованной в полином (6.8) по степеням t:

$$\tilde{H}(f) = \sum_{k=0}^{N} b_k t^k$$

Производим обратную замену переменной и записываем эту функцию в виде:

$$\tilde{H}(f) = \sum_{k=0}^{N} b_k \left[\cos(2\pi f) \right]^k \tag{6.9}$$

7. Завершая синтез фильтра, преобразовываем (6.9) к стандартному виду передаточной функции:

$$\tilde{H}(f) = \sum_{k=0}^{N} c_k \cos(2\pi k f)$$
 (6.10)

синтеза нерекурсивных фильтров

Гладкие фильтры.

Преобразование (6.9) в (6.10) может осуществляться по следующей рекуррентной схеме. $\sum_{k=0}^{N} b_{k} [\cos \theta]^{k}$ Пусть дан степенной ряд вида: $\sum_{k=0}^{N} b_{k} [\cos \theta]^{k}$

Запишем его в цепной форме
$$b_0 + \left\{\cos\theta(b_1 + \cos\theta)(... + \cos\theta[b_{N-2} + \cos\theta(b_{N-1} + b_N\cos\theta)]\right\}$$

Сначала берем последние два слагаемых $b_{N-1} + b_N \cos \theta$. Они уже представлены в форме ряда Фурье.

Умножаем эту сумму на $\cos \theta$ и прибавляем к этому произведению b_{N-2} . Результат преобразовываем к форме в виде ряда Фурье используя формулу:

$$\cos\theta\cos n\theta = 0.5\left(\cos\left[(n+1)\theta\right] + \cos\left[(n-1)\theta\right]\right)$$

Продолжая этот процесс, получим в конечном итоге эквивалентный исходному ряду ряд Фурье, коэффициенты которого c_{ι} будут коэффициентами искомого дискретного фильтра

Субоптимальные методы синтеза нерекурсивных фильтров

Гладкие фильтры.

Рассмотрим пример расчета гладкого фильтра.

Требуется рассчитать ФНЧ, пропускающий частоты в первой трети интервала Найквиста (от 0 до $\pi/3$) и подавляет частоты в верхней трети. $\cos(\pi/3) = 0.5$ поэтому выбираем p=3 и q=1 так, чтобы (p-q)/(p+q)=0.5.

Далее действуем по рассмотренной схеме.

- 1. $g(t) = (1+t)^3(1-t) = 1+2t-2t^3-t^4$
- 2. $\int g(t)dt = \int (1+2t-2t^3-t^4)dt = (t+t^2-0.5t^4-0.2t^5) + C = G(t) + C$
- 3. $G(-1) + C^* = 0 \Rightarrow C^* = 0.3$
- 4. $\lambda = G(1) + C* = 1.6$
- 5. $H(t) = (3+10t+10t^2-5t^4-2t^5)/16$

синтеза нерекурсивных фильтров Гладкие фильтры.

6.
$$\tilde{H}(f) = \sum_{k=0}^{N} b_k \left[\cos(2\pi f) \right]^k =$$

$$= \frac{3}{16} + \frac{10}{16} \cos(2\pi f) + \frac{10}{16} \left[\cos(2\pi f) \right]^2 - \frac{5}{16} \left[\cos(2\pi f) \right]^4 - \frac{2}{16} \left[\cos(2\pi f) \right]^5$$
(6.11)

7. Преобразование (6.11) к стандартному виду позволяет получить следующие коэффициенты дискретного фильтра

$$\frac{1}{16}$$
[-1,-5,-5,20,70,98,70,20,-5,-5,-1] и монотонный фильтр, график передаточной функции которого изображен на рисунке.

