

Plan na dzisiaj

- ♦ Funkcja kosztu (loss function)
- Regularyzacja
- Backpropagation czyli w jaki sposób sieci się uczą
- ♦ Optymalizacje
- ♦ Hiperparametry sieci
- ♦ Przeuczenie
- ♦ Strojenie modelu

Forward propagation

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$

Identity	f(x) = x	f'(x) = 1
Binary step	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)	$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH	$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
årcTan	$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]	$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Perceptron

Neuron

Target = 33

Prediction	Actual	Error
10	20	-10
8	3	5
6	1	5

Prediction	Actual	Error	Squared Error
10	20	-10	100
8	3	5	25
6	1	5	25

1. Squared Loss = $(\hat{y} - y)^2$

1. Squared Loss = $(\hat{y} - y)^2$

2. Absolute Loss = $|\hat{y} - y|$

Л

Squared Loss

y

Absolute Loss

3. Pseudo-Huber Loss = $\begin{cases} (y - \hat{y})^2 ; |y - \hat{y}| \le \alpha \\ |y - \hat{y}| ; otherwise \end{cases}$

x

Pseudo-Huber (a.k.a. Charbonnier, Smooth L₁)

Huber, 1964 Charbonnier et al., 1994

$$\rho(x,\alpha) = \frac{|2-\alpha|}{\alpha} \left(\left(\frac{x^2}{|2-\alpha|} + 1 \right)^{\frac{\alpha}{2}} - 1 \right)$$

shot_clock	dribbles	touch_time	shot_dis	close_def_ dis	shot_result
10.8	2	1.9	7.7	1.3	1
3.4	0	0.8	28.2	6.1	0
0	3	2.7	10.1	0.9	0
10.3	2	1.9	17.2	3.4	0

shot_result Outcome 0 Outcome 1

Hidden Layers	Nodes Per Layer	Mean Squared Error	Next Step
1	100	5.4	Increase Capacity
1	250	4.8	Increase Capacity
2	250	4.4	Increase Capacity
3	250	4.5	Decrease Capacity
3	200	4.3	Done