

=====

Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Wed Sep 05 14:37:02 EDT 2007

=====

Application No: 10050000 Version No: 4.0

Input Set:

Output Set:

Started: 2007-08-23 14:28:59.704
Finished: 2007-08-23 14:29:00.664
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 960 ms
Total Warnings: 9
Total Errors: 3
No. of SeqIDs Defined: 9
Actual SeqID Count: 9

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
E 257	Invalid sequence data feature in <221> in SEQ ID (2)
E 257	Invalid sequence data feature in <221> in SEQ ID (2)
E 257	Invalid sequence data feature in <221> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)

SEQUENCE LISTING

<110> NAKARI-SETALA, Tiina et al.

<120> A METHOD FOR DECREASING THE FOAM FORMATION DURING CULTIVATION OF A MICROORGANISM

<130> 0365-0529P

<140> 10050000

<141> 2002-05-03

<160> 9

<170> PatentIn Ver. 2.1

<210> 1

<211> 2868

<212> DNA

<213> Trichoderma reesei

<220>

<221> gene

<222> (1523)..(1950)

<223> hfb1

<400> 1

tttgtatggc tggatctcg aaggcccttg tcatacgccaa gcgtggctaa tatcgaatga 60
gggacaccga gttgcataatc tcctgatcat tcaaacgaca agtgtgaggt aggcaatct 120
cgtatcccat tgctggctg aaagcttcac acgtatcgca taagcgtctc caaccagtgc 180
ttaggtgacc cttaggata cttagtataa gactgtatta agtcagtac tcttcactc 240
gggcttgaa tacgatccctc aataactcccg ataacagtaa gaggatgata cagcctgcag 300
ttggcaaatg taagcgtaat taaaactcagc tgaacggccc ttgttgaag tctctctcga 360
tcaaagcaaa gctatccaca gacaagggtt aagcaggctc actcttccta cgccctggat 420
atgcagcttgc ccagcatcg cgcatggcca atgatgcacc cttcagggcc caacggatct 480
cccgtaaac tccccgtaa ctggcatca ctcatctgt atcccaacag actgagttgg 540
gggctgcggc tggcgatgt cggagcaaag gatcacttca agagccaga tccgggttgt 600
ccattgccaa tggatctaga ttccggcacct tgatctcgat cactgagaca tggtgagttg 660
cccgacgc ccacaactcc ccctgtgtca ttgagttccc atatgcgtct tctcagcgtg 720
caactctgag acggattagt cctcacgtat aaattaactt ccagcttaag ttctgatgcct 780
tgaatgagtg aagaatttc aaaaacaaac tgtagtaggg tcttgagcag ctgggggttgt 840
acgcccctcc tcgactcttgc ggacatcgta cggcagagaa tcaacggatt cacacctttg 900
ggtcgagatg agctgatctc gacagatacg tgcttacca cagctgcagc tacctttgcc 960
caaccattgc gttccaggat ctgtatctac atcaccgcag caccggagcc aggacggaga 1020
gaacaatccg gccacagagc agcaccgcct tccaactctg ctcctggcaa cgtcacacaa 1080
cctgatattt gatatccacc tgggtgattt ccattgcaga gaggtggcag ttggtgatac 1140
cgactggcca tgcaagacgc ggccgggcta gctgaaatgt ccccgagagg acaattggga 1200
gcgtctatga cggcgtggag acgacggaa aggactcagc cgtcatgtt tggcgcataat 1260
ttgagattgt tgaccggaa agggggggacg aagaggatgg ctgggtgagg tggatttggg 1320
aggatgcattt attcgactca gtgagcgtatg tagagctcca agaatataaa tatccctct 1380
ctgtcttctc aaaatctctt tccatcttgc cttcatcag caccagagcc agcctgaaca 1440
cctccagtca actccctta ccagtagatc tgaatcaaca tccattctt gaaatctcac 1500
cacaaccacc atcttctca aatgaagtt cttcgccatc gccgctctt ttgccgcggc 1560
tgccgttgcc cagcctctcg aggacccgacg caacggcaac ggcaatgttt gcccctccgg 1620
cctcttcagc aaccccccagt gctgtgccac ccaagtcctt ggccctcatcg gccttgactg 1680
caaagtccgt aagttgagcc ataacataag aatcccttttgc acggaaatat gccttctcac 1740

tcctttaccc ctgaacagcc tcccagaacg tttacgacgg caccgacttc cgcaacgtct 1800
gcgccaaaac cggcgccccag cctctctgtc gcgtggcccc cgtttaagt tgatgcccc 1860
gctcaagctc cagtctttgg caaaaccatt ctgacaccca gactgcaggc cggccaggct 1920
cttctgtgcc agaccggcgt cggtgcttga gatgcccggc cggggtcaag gtgtgcccgt 1980
gagaaagccc acaaagtgtt gatgaggacc atttccggta ctggaaaagt tggctccacg 2040
tgtttggca ggtttggca agtttgttagt atattccatt cgtacccat tcttattctc 2100
caatatttca gtacactttt cttcataaat caaaaagact gctattctct ttgtgacatg 2160
ccggaaggga acaattgctc ttggctctgt ttatttgc当地 gtaggagtgg gagattcgcc 2220
ttagagaaaag tagagaagct gtgttgc当地 gtgggtgtgac tcgacgagga tggactgaga 2280
gtgttaggat taggtc当地 ac gttgaagtgt atacaggatc gtctggcaac ccacggatcc 2340
tatgacttga tgcaatggta aagatgaatg acagtgtaa aggaaaagga aatgtccgccc 2400
ttcagctgat atccacgcca atgatacagc gatatacctc caatatatctgt gggAACGAGA 2460
catgacatatt ttgtggaaac aacttcaaac agcgagccaa gacctaata tgcacatcca 2520
aagccaaaca ttggcaagac gagagacagt cacattgtcg tcgaaagatg gcatcgtacc 2580
caaatcatca gctctc当地 tgc当地aaac cacagattgt ttggc当地ccc ccaactccaa 2640
aacgttacta caaaaagacat gggc当地atgc aaagacctga aagcaaacc ttttgc当地 2700
tcaattccct ctttgc当地 cggaaatgtat atc当地tacc aagtaaaaaga aaaagaagat 2760
tgagataata catgaaaagc acaacggaaa cggaaagacc aggaaaagaa taaatctatc 2820
acgcacccctt tccccacact aaaagcaaca gggggggtaa aatgaaat 2868

<210> 2
<211> 3585
<212> DNA
<213> Trichoderma reesei

<220>
<221> gene
<222> (1191)..(1593)
<223> hfb2

<220>
<221> unknown
<222> (1917)..(1917)
<223> n = a, c, t, g, unknown, or other

<220>
<221> unknown
<222> (2160)..(2160)
<223> n = a, c, t, g, unknown, or other

<220>
<221> unknown
<222> (3515)..(3515)
<223> n = a, c, t, g, unknown, or other

<400> 2
ctcgagcagc tgaagcttgc atgc当地tgc当地 cctttgtgag cgactgc当地tgc当地 cattttgc当地 60
acactgccc当地 cgacgtctct ct当地ccgacct tggcc当地ctg gacaagcaac acaccaatga 120
cgctttgtat tatttagt当地 tatgcaagtc tcaggactat cgactcaact ctacccaccc 180
aggacgatcg cggcacgata cggccctcg当地 ctc当地tggcc当地 caagcagacc aactgccc当地 240
ggagcaagat tcagccaaag ggagatggac ggc当地ggccac gccaggccccc caccaccaag 300
ccactccctt tggccaaatc agcttgc当地 tcaagagaca tc当地gactgtg cctt当地aaatt 360
actaacaacc agggatggga aacgaaggct gctttggaa agacaacaat gagagagaga 420
gagagagggaa gagagacaat gagtgc当地aca aacctggtagt tgctccgcca atgc当地tgc当地 480
aatgtc当地at cccgacttgc当地 gggccctgtg gagaatgtcc agagtaatac gtgtttgc当地 540
aatagtccctc tt当地cttgc当地 actggataacc tacgataacc ttttgc当地tttgc当地 600

tttcgaagta ttatctggag gatagaagac gtcttagttaa ctacacaaaa ggcctatact 660
ttggggagta gcccacgaa aggttaactcc tacggcctct tagagccgtc atagatccta 720
cagcctctt gaggcgcat agatcacatc tgtgttagacc gacattctat gaataatcat 780
ctcatcatgg ccacatacta ctacatacgt gtctctgcct acctgacatg tagcagtggc 840
caagacacca aggccccagc atcaagcctc cctacctatc cttccattt tacagcggca 900
gagagattgc gatgagccct ctccctaccc acagacggct gacaatgtcc gtataaccacc 960
agccaacgtg atgaaaacaa ggacatgagg aacagcctgc gagagctgga agatgaagag 1020
ggccagaaaa aaaagtataa agaagaccc gattccgccc atccaacaat cttttccatc 1080
ctcatcagca cactcatcta caaccatcac cacattcact caactcctct ttctcaactc 1140
tccaaacaca aacattctt gttgaataacc aaccatcacc acctttcaag atgcagttct 1200
tcgcccgtc accagcgtcc tggctgtgt ctgcccattt ggcctcttct 1260
ccaaccctct gtgctgtgcc accaacgtcc tcgacccatc tggcggttgc tgcaagaccc 1320
gtatgttcaa ttccaatctc tgggcattt gacattggac gatacagttt acttacacga 1380
tgctttacag ctaccatcgc cgtcgacact ggcgcattt tccaggctca ctgtgccagc 1440
aagggttcca agccttttgc ctgcgttgc cccgtggtaa gtatgtctg caatggcaaa 1500
gaagtaaaaaa gacatttggg cctgggatcg ctaactctt atatcaaggc cgaccaggct 1560
ctcctgtgcc agaaggccat cggcacccatc taaagcaatg gtttgcattt ctgcggcag 1620
tctttgagaa ctctgggctc acaaaaagacg acttgcattt atcatggggg ctgcacaatg 1680
ggaggatttg gaggggatttggg aggctgggtt tggcctatta gaggatttgc taatggaa 1740
tttgcgagca ggacatagac gtatcttagt ttcttagtcaa tacattatttggaa 1800
gtatacctat cgctggcact ggtatcttgc agatatcttctc tcttcttgc aggttatgtt 1860
tggcaatcag tcgaaatctc tttgaagaca gagctcaagc ttccaaacattt caccctngaa 1920
ttgaccatt tggcgatc gttgcgttgc tgggggttca cttctgcaat catgtacgag 1980
cacaagtata gcagtttcc atctgtatgc catctggta aatgtgcgc ctctacccat 2040
gtgctctgtc caattcttgc cttgtcaatg gtttgcgttgc gtgataaaacc ttggagctan 2160
cataacttac cttacaataa atccaactgc cggcacccatc ttcccttccatc ccaaccactc 2220
gcaaaatca cgcaacccatc ctgcatttttcc tggccggaaat ctgcgttgc acgtatcattc 2280
acaatcata cacacagaca aaaaggagcc aaagcagcaaa tggcaagaca ccgaggccgg 2340
cagcgcggcc gtcgcgttt ttaaaaagcg aagcgcaag ggcaaaagcca acctgcgca 2400
acgaacaacg aaggccctccccc cccgcgcga ggcacacgc cagcgacacgc gacttttctt 2460
cgctggaaaga cgaaggccggg cacagatgc agaggcgcaaa gaggacggcc gtcgttccatc 2520
ccgcccggca gggccggccgc gcccagcaac cgggacacgc gggccggccgc aacagccgccc 2580
ttcacggcca acagaagcgccc cccgatttgc gacagcaacgc acgcgacccaa gcacagcaac 2640
tggtacgacg aggacgcaaa ggacgcgtcc tcggcaaaaga accttcttgcg atcttcgaga 2700
gcgttccaagg acgcgcagcc agacggcagc tacaaggcc tggcgaaacca gacgttccctt 2760
atacaaaaaga atccggatgc gccccggaaag acagttggc cctgtcaaggc gccttaccaac 2820
atccgcaccc tcaccatttac agattatgc cggacacgt gtaaaagatgt agtttgcattc 2880
aatagccaga atcccccccccc cccgataccgt acatttgcgatc tatgtctact cgtcataatc 2940
tttcttagtta tcgcataacc ggcttatataa gtactccctt tttccatgtat tattccagtc 3000
gcgttactgac atttcttagga gccttactg tggtttggc gacaatttgc acgtatcttca 3060
cgcgagagaaa gacccatcaagg caggctggca gctggatcaa gaggatggaaa aggttccacca 3120
gggcaagaag aacctggggg gaaacggtagt ggccagcgcc aaccggaaaca aggccaaggt 3180
ggacgaggggc gacgacgcacg acgacgaaaga ggcgttgc gagaacatttgc gtttgcctt 3240
catcatctgc agggaaatcgta acaaggagcc gattgttgc acgttgcggcc actacttttgc 3300
cctgcgttgc gctctgtcc ggttacaagaa ggttccgttgc tggcggttgc gtttgcgttgc 3360
cacgaatggc gtgtttaattt cggcgacccatc gtttgcgttgc gtttgcgttgc 3420
gaggggcgccaggaggagac aggaggccat agagaggggc gaggaaatgtca gtatgttgc 3480
ggaggaggagaggaggact gatgtatgttgc gggcnaatgtt acgttgcagg tcgactctat 3540
agatccccggg taccgagctc gaatttcatcg atgtatcatc atccc 3585

<210> 3
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 5' primer

<400> 3
actacacgga ggagctcgac gacttcgagc agcccgagct gcacgcagag caacggcaac 60
ggc 63

<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 3'primer

<400> 4
tcgtacggat cctcaaggcac cgacggcggt 30

<210> 5
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: linker

<400> 5
Pro Gly Ala Ser Thr Ser Thr Gly Met Gly Pro Gly Gly
1 5 10

<210> 6
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: linker

<400> 6
Gly Thr Leu Val Pro Arg Gly Pro Ala Glu Val Asn Leu Val
1 5 10

<210> 7
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 5' primer

<400> 7
gaattcggta ccctcggtccc tcgcgggtccc gccgaagtga acctggtg 48

<210> 8
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 3'primer

<400> 8
tgaattccat atgctaaccc cgtttcatct ccag

34

<210> 9
<211> 157
<212> PRT
<213> Artificial Sequence

<220>
<223> Hydrophobin protein derived from fungi

<220>
<221> misc_feature
<222> (1)..(38)
<223> Xaa can be any naturally occurring amino acid and at least 2 and up to 38 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (40)..(48)
<223> Xaa can be any naturally occurring amino acid and at least 5 and up to 9 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (51)..(89)
<223> Xaa can be any naturally occurring amino acid and at least 11 and up to 39 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (91)..(113)
<223> Xaa can be any naturally occurring amino acid and at least 8 and up to 23 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (115)..(123)
<223> Xaa can be any naturally occurring amino acid and at least 5 and up to 9 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (126)..(143)
<223> Xaa can be any naturally occurring amino acid and at least 6 and up to 18 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (145)..(157)
<223> Xaa can be any naturally occurring amino acid and at least
2 and up to 13 amino acids can either be present or absent

<400> 9

Xaa
1 5 10 15

Xaa
20 25 30

Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45

Cys Cys Xaa
50 55 60

Xaa
65 70 75 80

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
85 90 95

Xaa
100 105 110

Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Cys Xaa Xaa Xaa
115 120 125

Xaa Cys
130 135 140

Xaa
145 150 155