- Choice of True or Inverting Outputs
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

'365A, '367A, 'LS365A, 'LS367A True Outputs '366A, '368A, 'LS366A, 'LS368A Inverting Outputs

description

These Hex buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus oriented receivers and transmitters. The designer has choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathbf{G}}$ (active-low control) inputs.

These devices feature high fan-out, improved fan-in, and can be used to drive terminated lines down to 133 ohms.

The SN54365A thru SN54368A and SN54LS365A thru SN54LS368A are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to 125 °C. The SN74365A thru SN74368A and SN74LS365A thru SN74LS368A are characterized for operation from 0 °C to 70 °C.

SN54365A, 366A, SN54LS365A, 366A . . . J PACKAGE SN74365A, 366A . . . N PACKAGE SN74LS365A, SN74LS366A . . . D OR N PACKAGE

SN54LS365A, SN54LS366A . . . FK PACKAGE (TOP VIEW)

SN54367A, 368A, SN54LS367A, 368A . . . J PACKAGE SN74367A, 368A . . . N PACKAGE SN74LS367A, SN74LS368A . . . D OR N PACKAGE (TOP VIEW)

SN54LS367A, SN54LS368A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

'LS365A thru 'LS368A

TTL Devices

logic diagrams (positive logic)

'365A, 'LS365A

'366A, 'LS366A

'367A, 'LS367A 1G (1)

1A1 (2) (3) 1Y1 (4) (5) 1Y2 1A2

'368A, 'LS368A

(3) 1Y1

(5) 1Y2

1G (1)

1A1

1A2 (4)

(2)

Pin numbers shown are for D, J, and N packages.

SN54365A THRU SN54368A, SN54LS365A THRU SN54LS368A SN74365A THRU SN74368A, SN74LS365A THRU SN74LS368A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note	1)	7 V
Input voltage: '365A, '366A, '3	367A, '368A	5.5 V
'LS365A, 'LS36	6A, 'LS367A, 'LS368A	7 V
	-state output	
Operating free-air temperature:	SN54'	-55° C to 125° C
	SN74'	\dots 0°C to 70°C
Storage temperature range		

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54365A SN54367A			SN74365A SN74367A			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
ІОН	High-level output current			– 2			- 5.2	mA	
IOL	Low-level output current			32			32	mA	
T_A	Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARA	AMETER		TEST CONDITION	st		N54365 N54367			N74365 N74367		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK		V _{CC} = MIN,	I _I = - 12 mA				- 1.5			- 1.5	V
V _O		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	2.2					
V 01	1	I _{OH} = MAX			2.4	3.3		2.4	3.1		\ \
Vol		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4		-	<u> </u>	
V 01	-	I _{OL} = 32 mA					0.4			0.4	V
		V _{CC} = MAX,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			**				
107		V _O = 2.4 V					40			40	
loz		V _{CC} = MAX,	V _{IH} = 2 V	V _{IL} = 0.8 V,							μΑ
		V _O = 0.4 V					- 40			– 40	
ΪĮ		V _{CC} = MAX,	V _I = 5.5 V			-	1			1	mA
ЧН		V _{CC} = MAX,	V ₁ = 2.4 V				40			40	μΑ
	A Inputs	V _{CC} = MAX,	V ₁ = 0.5 V,	Either \overline{G} input at 2 V			- 40			- 40	μА
IL	Amputs	V _{CC} = MAX,	V ₁ = 0.4 V,	Both \overline{G} inputs at 0.4 V			- 1.6			- 1.6	
	G Inputs	V _{CC} = MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	mA
los	§	V _{CC} = MAX			- 40	_	– 130	40		– 130	mA
lcc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V		65	85		65	85	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ Not more than one output should be shorted at a time. switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
^t PLH						16	ns
^t PHL			B. = 400 O	0 50 5		22	ns
^t PZH	Any	Y	$R_L = 400 \Omega$, $C_L = 50 pF$	CL = 50 pF		35	ns
[†] PZL	Olly	1				37	ns
^t PHZ		į	P 400 C	0 5 5		11	ns
^t PLZ			$R_L = 400 \Omega$, $C_L = 5 pF$			27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_{A} = 25 $^{o}C.$

recommended operating conditions

			SN54366A SN54368A			SN74366A SN74368A			
		MIN	NOM	MAX	MIN	NOM	MAX		
_ [∨] cc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			8.0			8.0	V	
Іон	High-level output current			– 2			- 5.2	mA	
loL	Low-level output current			32			32	mA	
TA	Operating free-air temperature	– 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER		TEST CONDITION	s†	1 -	N54366 N54368			N74366 N74368		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	<	V _{CC} = MIN,	I _I = - 12 mA				- 1.5			- 1.5	V
\/-		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.3		0.4	2.1		V
٧o	Η	I _{OH} = MAX			2.4	3.3		2.4	3.1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V/0		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	V
٧o	L	I _{OL} = 32 mA					0.4			0.4	
		V _{CC} = MAX,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			40			40	
lo-		V _O = 2.4 V					40			40	μΑ
loz	-	V _{CC} = MAX,	V _{IH} = 2 V	V _{IL} = 0.8 V,			40			40	μΑ
	_	V _O = 0.4 V					- 40			- 40	
11		V _{CC} = MAX,	V _I = 5.5 V	-			1			1	mA
ΉΗ		V _{CC} = MAX,	V _I = 2.4 V				40			40	μА
	A Inputs	V _{CC} = MAX,	V _I = 0.5 V,	Either \overline{G} input at 2 V			- 40			- 40	μA
IIL.	Amputs	V _{CC} = MAX,	V ₁ = 0.4 V,	Both \overline{G} inputs at 0.4 V			- 1.6			- 1.6	.mA
	G Inputs	V _{CC} = MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	
los	§	V _{CC} = MAX			- 40		– 130	– 40		– 130	mΑ
Icc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V,		59	77		59	77	mA

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
^t PLH				17	ns
t _{PHL}			D 400 O	16	ns
^t PZH	Any	Y	$R_L = 400 \Omega$, $C_L = 50 pF$	35	ns
tPZL	Any	,		37	ns
^t PHZ		!	D = 400 0	11	ns
tPLZ			$R_L = 400 \Omega$, $C_L = 5 pF$	27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

			SN54LS365A SN54LS367A			SN74LS365A SN74LS367A			
		MIN	NOM	MAX	MIN	NOM	MAX		
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
ГОН	High-level output current			– 1			- 2.6	mA	
loL	Low-level output current			12			24	mA	
TA	Operating free-air temperature	- 55		125	0	<u>-</u>	70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR.	AMETER		TEST CONDITION	ıst		154LS36 154LS36			N74LS3 N74LS3		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	·	V _{CC} = MIN,	I _I = - 18 mA				- 1.5			- 1.5	V
		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,	2.4	3.3		2.4	3.1		v
۷o	H	IOH = MAX			2.4	3.3		2.4	3.1		ı v
		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,		0.25	0.4		0.25	0.4	
٧		I _{OL} = 12 mA				0.25	0.4		0.25	0.4	V
VOL		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,					0.25	0.5	ľ
		I _{OL} = 24 mA				_		0.35 0.		0.5	
		V _{CC} = MAX,	V _{IH} = 2 V,	VIL = MAX,			20			20	
١٥-		V _O = 2.4 V					20			20	μΑ
loz	•	V _{CC} = MAX,	V _{IH} = 2 V,	VIL = MAX,			– 20			- 20	"^
		V _O = 0.4 V					- 20			- 20	
Ч		V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ЧН		V _{CC} = MAX,	V _I = 2.7 V			,	20			20	μΑ
	A Inputs	V _{CC} = MAX,	V _I = 0.5 V,	Either \overline{G} input at 2 V			– 20			– 20	μΑ
IL		V _{CC} = MAX,	V _I = 0.4 V,	Both G inputs at 0.4 V			- 0.4			- 0.4	mA
	G Inputs	V _{CC} ≃ MAX,	V _I = 0.4 V				- 0.2			- 0.2	
los	§	V _{CC} = MAX			- 40		- 225	- 40		- 225	mA
Icc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V,		14	24		14	24	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
^t PLH			-		10	16	ns
^t PHL			D = 007.0	0 - 45 - 5	9	22	ns
^t PZH	Any	Y	R _L = 667 Ω,	C _L = 45 pF	19	35	ns
^t PZL .	Ady	, ,			24	40	ns
^t PHZ			D 667.0	0 -5-5		30	ns
^t PLZ			$R_L = 667 \Omega$,	C _L = 5 pF		35	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

			SN54LS366A SN54LS368A			SN74LS366A SN74LS368A			
		MIN	NOM	MAX	MIN	NOM	MAX		
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
ГОН	High-level output current			-1			– 2.6	mA	
loL	Low-level output current			12			24	mA	
TA	Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER		TEST CONDITION	st		154LS36 154LS36			174LS36		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
۷ıĸ		V _{CC} = MIN,	I _I = — 18 mA				– 1.5			– 1.5	V
\/ -		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,	2.4	3.3	-	2.4	3.1		V
VOI		IOH = MAX			2.4	3.3		2.4	3.1		*
		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,		0.25	0.4		0.25	0.4	
Va		I _{OL} = 12 mA				0.25	0.4		0.25	0.4	\ _\
VO	L .	V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,					0.35	0.5	ľ
		I _{OL} = 24 mA				_			0.33	0.5	
		V _{CC} = MAX,	$V_{IH} = 2 V$,	VIL = MAX,			20			20	
loz		V _O = 2.4 V					20				μA
102		V _{CC} = MAX,	$V_{IH} = 2 V$,	VIL = MAX,			– 20			- 20	"^
		V _O = 0.4 V	r		,		- 20			- 20	
Ц		V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
IН		V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μΑ
	A Inputs	V _{CC} = MAX,	V _I = 0.5 V,	Either G input at 2 V			– 20			- 20	uА
IIL	A liiputs,	V _{CC} = MAX,	V ₁ = 0.4 V,	Both G inputs at 0.4 V			- 0.4			- 0.4	mA
	G Inputs	V _{CC} = MAX,	V _I = 0.4 V				- 0.2			- 0.2	1117
los	§	V _{CC} = MAX			- 40		- 225	40		- 225	mA
Icc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V,		12	21		12	21	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]ddagger$ All typical values are at $V_{\mbox{\footnotesize CC}}$ = 5 V, $T_{\mbox{\footnotesize A}}$ = 25 $^{\mbox{\footnotesize OC}}.$

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
^t PLH					7	15	ns
^t PHL			P 667 O	$R_1 = 667 \Omega$, $C_1 = 45 pF$	12	18	ns
^t PZH	Any	Y	R _L = 667 Ω,	.CL - 49 PF	18	35	ns
^t PZL	Ally	l 'L			28	45	ns
^t PHZ	}		D 007.0	0 5 5		32	ns
^t PLZ			$R_L = 667 \Omega$,	C _L = 5 pF		35	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

9-Mar-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
JM38510/32201B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32201B2A	Sample
JM38510/32201BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32201BEA	Sample
JM38510/32201BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32201BEA	Sample
JM38510/32203B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203B2A	Sample
JM38510/32203B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203B2A	Sample
JM38510/32203BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BEA	Sample
JM38510/32203BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BEA	Sample
JM38510/32203BFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BFA	Sample
JM38510/32203BFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BFA	Sample
M38510/32201B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32201B2A	Sample
M38510/32201B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32201B2A	Sample
M38510/32201BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32201BEA	Sample
M38510/32201BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type -55 to 125		JM38510/ 32201BEA	Sample
M38510/32203B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203B2A	Sample
M38510/32203B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203B2A	Sample
M38510/32203BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BEA	Sample

www.ti.com

9-Mar-2021

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
M38510/32203BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BEA	Samples
M38510/32203BFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BFA	Samples
M38510/32203BFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32203BFA	Samples
SN54LS365AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS365AJ	Samples
SN54LS365AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS365AJ	Samples
SN54LS366AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS366AJ	Samples
SN54LS366AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS366AJ	Samples
SN54LS367AJ	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS367AJ	Samples
SN54LS367AJ	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS367AJ	Samples
SN54LS368AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS368AJ	Samples
SN54LS368AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS368AJ	Samples
SN74LS365AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS365A	Samples
SN74LS365AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS365A	Samples
SN74LS365ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS365A	Samples
SN74LS365ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS365A	Samples
SN74LS365AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS365AN	Samples
SN74LS365AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS365AN	Samples
SN74LS365ANSR	ACTIVE	so	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS365A	Samples
SN74LS365ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS365A	Samples

www.ti.com

9-Mar-2021

Orderable Device	Device Status Package Type Package Drawing		_	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LS367AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS367A	Samples
SN74LS367AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS367A	Samples
SN74LS367ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS367A	Samples
SN74LS367ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS367A	Samples
SN74LS367AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS367AN	Samples
SN74LS367AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS367AN	Samples
SN74LS367ANE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS367AN	Samples
SN74LS367ANE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS367AN	Samples
SN74LS367ANSR	ACTIVE	so	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS367A	Samples
SN74LS367ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS367A	Samples
SN74LS368AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS368A	Samples
SN74LS368AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS368A	Samples
SN74LS368AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS368AN	Samples
SN74LS368AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS368AN	Samples
SN74LS368ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS368A	Samples
SN74LS368ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS368A	Samples
SNJ54LS365AFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type -55 to 125		SNJ54LS 365AFK	Samples
SNJ54LS365AFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS 365AFK	Samples
SNJ54LS365AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type -55 to 125		SNJ54LS365AJ	Samples
SNJ54LS365AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS365AJ	Samples

9-Mar-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54LS366AFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS 366AFK	Samples
SNJ54LS366AFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS 366AFK	Sample
SNJ54LS366AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS366AJ	Sample
SNJ54LS366AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS366AJ	Sample
SNJ54LS367AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS367AJ	Sample
SNJ54LS367AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS367AJ	Sample
SNJ54LS368AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS368AJ	Sample
SNJ54LS368AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS368AJ	Sample
SNJ54LS368AW	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS368AW	Sample
SNJ54LS368AW	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS368AW	Sample

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

9-Mar-2021

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS365A, SN54LS367A, SN54LS368A, SN74LS365A, SN74LS367A, SN74LS368A:

- Catalog: SN74LS365A, SN74LS367A, SN74LS368A
- Military: SN54LS365A, SN54LS367A, SN54LS368A

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Dec-2020

TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

"All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS365ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS365ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS367ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS367ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS368ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 30-Dec-2020

*All dimensions are nominal

7 til diffictiolofio are floriffiai							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS365ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS365ANSR	SO	NS	16	2000	853.0	449.0	35.0
SN74LS367ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS367ANSR	SO	NS	16	2000	853.0	449.0	35.0
SN74LS368ANSR	SO	NS	16	2000	853.0	449.0	35.0

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated