



### For robust matching: literature

Yuji Oyamada





# **Quick comparison**

|                 | Detector                           | Descriptor             | Matching      |
|-----------------|------------------------------------|------------------------|---------------|
| corner detector | local extreme on gradient/saliency |                        | NN            |
| gradient based  | local texture                      |                        | NN            |
| neighborhood    | any                                | points<br>distribution | hashing       |
| robust matching | any                                | local texture          | cool matching |





Papers on corner detector





#### Papers on corner detector

- A corner = The intersection of two edges.
- A point of local extreme.

|                 | Detector                          |
|-----------------|-----------------------------------|
| Moravec1980     | low self-similarity               |
| Harris1988      | det. and trace of autocorrelation |
| Shi1994         | use eigenvalue decomposition      |
| Lindeberg1998   | LoG ( = saliency)                 |
| Mikolajczyk2004 | multi-scale + LoG                 |
| Smith1997       | SUSAN                             |
| Rosten2010      | FAST                              |





Papers on feature descriptor





### Papers on feature descriptor

- 1. A feature descriptor for both detector and descriptor.
  - Normal papers proposing a feature descriptor.
- 2. Combination of different detector and descriptor.
  - Survey papers evaluating which descriptor is the best.





# A feature descriptor for both detector and descriptor

local gradient

|                        | Detector                            |
|------------------------|-------------------------------------|
| Matas2002              | MSER                                |
| Forssen2007            | multi-scale MSER + shape descriptor |
| Lowe2004               | SIFT                                |
| Chandrasekhar2009,2012 | CHoG                                |
| Tacks2010              | RIFF                                |
| Wagner2008             | Phony-SIFT                          |
| Tola2010               | DAISY                               |





# A feature descriptor for both detector and descriptor

binary descriptors

|                 | Detector                       |
|-----------------|--------------------------------|
| Calonder2011    | BRIEF                          |
| Rublee2011      | ORB                            |
| Leutenegger2011 | BRISK                          |
| Trzcinski2012   | D-Brief (Discriminative BRIEF) |
| Strecha2012     | LDAHash                        |





## Combination of different detector and descriptor

|                 | Detector                                                                                             |
|-----------------|------------------------------------------------------------------------------------------------------|
| Mikolajczyk2005 | Harris is the best detector                                                                          |
| Moreels2007     | Hessian-affine and Harris-affine detector+SIFT                                                       |
| Gauglitz2011    | concluded it is difficult to derive universally valid recommendations or proclaim a single "winner." |
| Dalh2011        | combination of DoF/MSER + SIFT/DAISY is best<br>Harris is superior if scale change is low            |
| Aanaes2012*     | Harris, Hessian blob, and DoG.                                                                       |





Papers on neighborhood feature descriptor





# Papers on neighborhood feature descriptor

- Nakai2005: use cross ratio of key-points
- Uchiyama

|               | Detector         | Descriptor                              | Matching             |
|---------------|------------------|-----------------------------------------|----------------------|
| someone       |                  | neighborhood                            | Geometric<br>Hashing |
| star tracker+ |                  | neighborhood                            |                      |
| Nakai2005     | local<br>extreme | a set of cross ratio                    | LLAH                 |
| Uchiyama2011a | local<br>extreme | a set of area ratio of<br>two triangles | LLAH                 |
| Uchiyama2011b | many*            | a set of area ratio of<br>two triangles | LLAH                 |

+Their matching algorithm is robust for false positive detection.

<sup>\*</sup>They tried many detectors and concluded that Harris is the best.





Papers on robust matching





### Papers on robust matching

- They focus on matching two sets of key-points.
- Matching algorithms use the following components inside the alg.:
  - Feature vector of key-points.
  - Local appearance around key-points.

- ...

 The matching algorithm should handle deformation and falsepositive and false-negative detection.





# Papers on robust matching

|                 | Detector                          | Descriptor | Matching                                                                  |
|-----------------|-----------------------------------|------------|---------------------------------------------------------------------------|
| <u>Cho2009</u>  | MSER                              | SIFT       | Agglomerative Correspondence<br>Clustering                                |
| <u>Cho2010a</u> | MSER                              | SIFT       | Reweighted random walks on graph                                          |
| <u>Cho2010b</u> | MSER+Har<br>Aff                   | SIFT       | multi-layer match-growing +<br>Bayesian model for inter/intra<br>matching |
| <u>Lee2011</u>  | MSER                              | SIFT       | Reweighted random walks on hyper-graph                                    |
| <u>Cho2012</u>  | MSER or<br>MSER+Har<br>Aff+HesAff |            | Progressive graph matching                                                |
| Zhou2012        |                                   |            | Factorized graph matching                                                 |





- Bottom-up approach aggregation strategy: merge reliable matching neighbors.
- Connectedness between parts: deformed objects are locally connected by some mediating parts.

Calculate the similarity between all possible combinations of two clusters

Two most similar clusters are grouped together to form a

Calculate the similarity between the new cluster and all remaining clusters.

new cluster







Find known object in cluttered scene.







Match objects in 2 unknown cluttered images.







Match objects in 2 unknown cluttered images.







- robust to deformation and outliers by reweighted random walks.
  - Affinity-preserving Random Walks
  - Reweighting Random Walks







Matching on ideal images



A test pair example



RRWM (30/30)



SM (20/30)



GAGM (27/30)





- Matching in cluttered scene.
- Comparison with state-of-the-art (RRWM is the proposed)







Matching in cluttered scene.

More matching examples (Input pair / Initial Matches / Our Result)





### Cho2010b: inter/intra object matching

 UNSUPERVISED detection, segmentation, and grouping of identical objects from a single or multiple images





- Direct object discovery from images
  - 'Object Correspondence Networks'
  - Each network represents a set of identical objects





# Feature Matching by Hyper-graph Matching

- Establishing feature correspondence is essential task for vision problem
- Well formulated as graph matching problem: Represent object or image features as nodes, features' relations as edges
- Why hyper-graph? Exploiting higher-order relations Ex. Distances are varying Angles are not varying





Find the solution which best preserves graph attributes

# Challenges & Motivations

**Outlier Noise** 



Challenging NP-hard Problem

Due to background clutters Imperfect feature detector **Deformation Noise** 

Object motion View-point change

4/4/2013





### Our Contribution

- Generalization the hyper-graph matching formulation to mixed orders
- A state-of-the-art hyper-graph matching method robust to deformation & outliers
- Extensive comparison with recent hyper-graph matching methods









Triplet distance: differences of angles of two triangles



Input pair



HGM: (10/15)



Our method: (30/30)



TM: (27/30)





#### Matching examples















4/4/2013













input images

initial active graphs (43/1000)

active graphs 1-step progression (102/1000)









detected features (MSER: 486 × 921)

one-shot graph matching (39/43)

1-step progressive graph matching (94/102)













Figure 8. Example results on the benchmark dataset of 30 pairs.