H3-2022: Extra Practice Question Set 3

- 1. A light source is directed onto an *n*-type Si sample, producing a uniform generation rate of 2.5×10^{19} cm⁻³s⁻¹. The minority carrier lifetime is 10 µs and the hole diffusion coefficient is 20 cm²/s.
 - (a) What is the steady state excess hole concentration in the sample?
 - (b) Determine the excess hole concentration 50 μ s after the light source is switched off at time t = 0.
 - (c) Sketch the decay profile of the hole concentration as a function of time t. Indicate, on your sketch, the time at which the excess hole concentration decays to $\frac{1}{e}$ times the steady state value at t = 0.

[Ans: (a)
$$2.5 \times 10^{14} \text{ cm}^{-3}$$
, (b) $1.685 \times 10^{12} \text{ cm}^{-3}$]

2. Minority carriers are electrically injected into one end of a p-type Si sample (x = 0) such that the electron diffusion current density in the sample is

$$J_{n,diff}(x) = -20.5 \exp\left(\frac{-x}{50 \ \mu \text{m}}\right) \text{ mA/cm}^2$$

Assume T = 300 K, $\tau_n = 0.6 \text{ }\mu\text{s}$ and $\tau_p = 2.2 \text{ }\mu\text{s}$.

- (a) What is the value of the minority carrier diffusion length?
- (b) Explain the meaning of the minority carrier diffusion length.
- (c) Determine the excess electron concentration at $x = 10 \mu m$.

[Ans: (a)
$$50 \, \mu \text{m}$$
, (c) $1.258 \times 10^{13} \, \text{cm}^{-3}$]

- 3. A bias voltage of V_s is applied across an n-type Si sample with a length of 0.6 cm and a cross-sectional area of 2×10^{-4} cm². The acceptor and donor impurity concentrations in the sample are $N_a = 3 \times 10^{16}$ cm⁻³ and $N_d = 6 \times 10^{16}$ cm⁻³, respectively. The sample is uniformly illuminated with light at time t < 0 to produce a steady-state excess carrier concentration of $\Delta p = 3 \times 10^{14}$ cm⁻³. The excitation light is removed at time t = 0. The current in the sample at time t = 0.1 µs is 1 mA. Assume that t = 0.0 K, t = 0.0 µm, t = 0.0 cm²/V-s, t = 0.0 cm²/V-s and t = 0.0 cm⁻³.
 - (a) Calculate the majority carrier concentration in the compensated semiconductor.
 - (b) Determine the lifetime of the minority carrier and the optical generation rate at time t < 0.
 - (c) Derive an expression for the conductivity of the Si sample as a function of time t after the excitation light is removed. Hence find the value of V_s .

[Ans: (a)
$$3 \times 10^{16}$$
 cm⁻³, (b) $1.174 \,\mu\text{s}$, 2.56×10^{20} cm⁻³/s, (c) $\sigma(t) = 0.111 \exp(-t/1.174 \,\mu\text{s}) + 0.9612$, $2.822 \,\text{V}$]

4. The donor and acceptor impurity concentrations in a compensated semiconductor sample at T=300 K are $N_d=8\times10^{15}$ cm⁻³ and $N_a=3\times10^{15}$ cm⁻³, respectively. The sample is uniformly illuminated with light at time t=0, producing an optical generation rate of 4×10^{19} cm⁻³ s⁻¹. The electron and hole minority carrier parameters in the semiconductor material are given in Table A. Assume that $n_i=2\times10^9$ cm⁻³ and $E_g=1.2$ eV.

Table A

	electron	hole
Minority carrier diffusion length (μm)	200	35
Minority carrier diffusion coefficient (cm ² /s)	40	15

- (a) Calculate the position of the thermal equilibrium Fermi level E_F relative to the intrinsic Fermi level E_i , i.e. before the semiconductor sample is illuminated with light.
- (b) Show that, for low injection condition, the excess electron and hole concentrations in the semiconductor sample at time t is given by

$$\Delta n(t) = \Delta p(t) = 3.27 \times 10^{13} \left[1 - \exp\left(-\frac{t}{\tau_0}\right) \right] \text{ cm}^{-3}$$

where τ_0 is the minority carrier lifetime. State the value of τ_0 and any assumptions made.

- (c) Calculate the time it takes for the excess carrier concentration to increase to half the steady state value.
- (d) Determine the position of the steady state electron and hole quasi Fermi energy levels, E_{Fnq} and E_{Fpq} , with respect to the thermal equilibrium Fermi level, E_F . Hence sketch the energy band diagram of the semiconductor sample and indicate clearly the positions of E_F , E_i , E_{Fnq} and E_{Fpq} .

[Ans: (a) 0.381 eV, (c) 0.566
$$\mu$$
s, (d) E_{Fnq} - $E_F = 0.0002$ eV, E_{Fpq} - $E_F = -0.631$ eV]