חדו"א 1 סמסטר א' תשפד עבודת בית 7: חקירת פונקציות

שאלה 1

הגדר מהי אסימפטוטה משופעת של פונקציה ומצא את האסימפטוטות המשופעות של הפונקציות הבאות:

$$f(x) = x + \sqrt{x^2 + 1} \qquad (8)$$

$$f(x) = \frac{x^2}{x-1} \qquad \text{(a)}$$

$$f(x) = x - e^x \qquad (x)$$

$$f(x) = -(x+2)^2$$
 שאלה 2 שרטטו את הפונקציה 2

$$f(x) = x^2(x-2)^2$$
 שאלה 3 שרטטו את הפונקציה

$$f(x)=rac{x}{x^2+9}$$
 שאלה 4 שרטטו את הפונקציה 4

שאלה 5

$$f(x)=rac{x-1}{(x+1)^2}$$
 חקרו באופן מלא את הפונקציה

שאלה 6

$$f(x)=rac{2x^3}{r^2-4}$$
 חקרו באופן מלא את הפונקציה

שאלה 7

$$f(x)=x^2e^{1-x}$$
 חקרו באופן מלא את הפונקציה

שאלה 8

$$f(x) = rac{e^x}{x+1}$$
 חקרו באופן מלא את הפונקציה

שאלה 9

$$f(x) = (x+2)e^{1/x}$$
 חקרו באופן מלא את הפונקציה

$$f(x) = rac{\sqrt{x^2-9}}{x}$$
 חקרו באופן מלא את הפונקציה

שאלה 11

$$f(x) = \frac{\ln x}{\sqrt{x}}$$
 חקרו באופן מלא את הפונקציה

.
$$f(x) = \frac{x^4 - x^3 - 2x^2}{(x-3)^2}$$
 שרטטו את הגרף של הפונקציה שאלה 12

שאלה 13 (סמסטר ב תשע"ח מועד ב שאלה 1

חקרו באופן מלא את הפונקציה

$$f(x) = \frac{x^2}{x+1}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

שאלה 14 (סמסטר א תשע"ח מועד א שאלה 1

חקרו באופן מלא את הפונקציה

$$f(x) = \frac{(x+2)^2}{x-2}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

שאלה 15 (סמסטר א תשע"ט מועד ב שאלה 1) חקור באופן מלא את הפונקציה

$$f(x) = \frac{2 - x^2}{e^x}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

$$f(x) = rac{x^4}{x^2 + 9}$$
 שרטטו את הפונקציה 16 שרטטו

$$f(x)=rac{2-x}{x-1}$$
 שאלה 17 שרטטו את הפונקציה

$$a>0$$
 באשר $f(x)=rac{x^2}{\sqrt{x^2-a^2}}$ שאלה שרטטו את הפונקציה

$$a>0$$
 כאשר $f(x)=rac{x^4}{\sqrt{x^2-a^2}}$ שאלה שרטטו את הפונקציה

$$a>0$$
 כאשר $f(x)=rac{x^2}{\sqrt{x^2-3a^2}}$ שרטטו את הפונקציה שאלה 20

$$a>0$$
 כאשר $f(x)=rac{4}{x^2-4a^2}$ שאלה 21 שרטטו את הפונקציה

חקרו באופן מלא את הפונקציה הפונקציה (תחום הגדרה, נקודות חיתוך עם הצירים, סימני הפונקציה, $f(x)=\dfrac{(x+2)^2}{x^2+4x}$ (תחום הגדרה, נקודות פיתול) וציירו את סקיצת הגרף של אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וציירו את סקיצת הגרף של הפונקציה.

$$a>0$$
 כאשר $f(x)=\sqrt{x^2-a^2}$ שאלה שאלה שרטטו את שרטטו את שאלה

שאלה 24

חקרו באופן מלא את הפונקציה הפונקציה (תחום הגדרה, נקודות חיתוך עם הצירים, סימני הפונקציה, $f(x)=\dfrac{(x+4)^2}{x-3}$ אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וציירו את סקיצת הגרף של הפונקציה.

$$a>0$$
 באשר ער $y=rac{x^2}{x^2-a^2}$ שרטטו את הפונקציה שאלה 25

שאלה 26 (סמסטר א תש"ף מועד א שאלה 1) חקור באופן מלא את הפונקציה

$$f(x) = \frac{x^2 - 2x + 1}{x - 2}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וצייר את סקיצת הגרף של הפונקציה.

תשובות

שאלה 1

במידה שn ו m ו m אז שטימפטוטה משופעת אסימפטוטה אסימפטוטה אז y=mx+n במידה ש

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
, $n = \lim_{x \to \infty} [f(x) - mx]$

(אותו דבר עבור $\infty \to \infty$). אם m,n מספרים סולפיים, אז קיימת אסימפטוטה משופעת.

$$f(x) = x + \sqrt{x^2 + 1} \qquad (x)$$

$$m = \lim_{x \to \pm \infty} \frac{x + \sqrt{x^2 + 1}}{x} = 2$$

$$n = \lim_{x \to \pm \infty} (f(x) - mx) = \lim_{x \to \pm \infty} \left(x + \sqrt{x^2 + 1} - 2x \right) = 0.$$

 $\pm\infty$ -ב אסימפטוט אסימפטוע y=2x לכן

$$f(x) = rac{x^2}{x-1}$$
 (2

$$m = \lim_{x \to \pm \infty} \frac{x^2}{x(x-1)} = 1$$

$$n = \lim_{x \to \pm \infty} (f(x) - mx) = \lim_{x \to \pm \infty} \left(\frac{x^2}{x - 1} - x \right) = 1.$$

 $\pm\infty$ -ב אסימפטוט אסימפטוע y=x+1 לכן

$$f(x) = x - e^x \qquad (x)$$

$$m = \lim_{x \to \infty} \frac{x - e^x}{x} = -\infty$$

 $+\infty$ -אין אסימפטוט המשופעת ב-

$$m = \lim_{x \to -\infty} \frac{x - e^x}{x} = 1$$

$$n = \lim_{x \to -\infty} (f(x) - mx) = \lim_{x \to -\infty} (x - e^x - x) = 0.$$

 $-\infty$ -ב אסימפטוט אסימפעת בy=x

שאלה 2

x שלב 1 תחום הגדרה: כל

x-מלב 2 נקודת חיתוך עם ציר ה-

. (-2,0) איר x באשר y=0 ולכן נקודת חיתוך עם איר x=-2 כאשר

y-נקודת חיתוך עם ציר ה

.(0,-4) היא yעם ציר חיתוך נקודת ולכן x=0היא y=-4

בכל מקום בתחום. $y \leq 0$

שלב 3 הפונקציה מוגדרת בכל נקודה בתחום.

<u>שלב 4</u>

$$\lim_{x\to +\infty} \left\{ -(x+2)^2 \right\} = -\infty \ , \qquad \lim_{x\to -\infty} \left\{ -(x+2)^2 \right\} = -\infty \ .$$

<u>שלב 5</u>

x כל תחום הגדרה: כל

x- נקודת חיתוך עם ציר ה

(2,0) ו- (0,0) ו- x=0 באשר x=0 באשר x=0 ולכן נקודות חיתוך עם y=0

y-מקודות חיתוך עם ציר ה

(0,0) איא y היא עם ציר חיתוך ולכן נקודת ולכן x=0 כאשר איז y=0

. בכל מקום בתחום $y \ge 0$

שלב 3 הפונקציה מוגדרת בכל נקודה בתחום.

<u>שלב 4</u>

$$\lim_{x\to +\infty} \left\{ x^2(x-2)^2 \right\} = +\infty \ , \qquad \lim_{x\to -\infty} \left\{ x^2(x-2)^2 \right\} = +\infty \ .$$

שלב 5

שאלה 4

x שלב 1 תחום הגדרה: כל

x-טלב x נקודת חיתוך עם ציר ה

(0,0) איר ה-x היא עם עיר חיתוך ולכן נקודת ולכן x=0

y-נקודות חיתוך עם ציר ה

(0,0) איא y-ה עם עיר חיתוך לכן נקודת היא y=0 לכן נקבל x=0 בפונקציה ונקבל

y	x
y > 0	x > 0
y < 0	x < 0
y = 0	x = 0

שלב 3 אינן נקודות בהן הפונקציה לא מוגדרת.

שלב 4

$$\lim_{x\to +\infty}\frac{x}{x^2+9}=\lim_{x\to +\infty}\frac{x}{x^2}=\lim_{x\to +\infty}\frac{1}{x}=0\ ,\qquad \lim_{x\to -\infty}\frac{x}{x^2+9}=\lim_{x\to -\infty}\frac{x}{x^2}=\lim_{x\to -\infty}\frac{1}{x}=0\ .$$

<u>שלב 5</u>

שאלה 5

$$f(x) = \frac{x-1}{(x+1)^2}$$

 $.x \neq -1$:תחום הגדרה תחום תחום

.(0,-1),(1,0) נקודות חיתוך וסימני הפונקציה: נקודות

x	x < -1	-1 < x < 1	x > 1
f(x)	_	_	+

x=-1 :שלב אסימפטוטה אנכית

 $\pm \infty$ ב y=0 ב אסימפטוטה אופקית:

שלב 5 אסימפטוטה משופעת: אין.

$$.igg(3,rac{1}{8}igg)$$
 -ב נקודות קריטית ב- $f'(x)=rac{3-x}{(1+x)^3}$ נקודות קריטית ב- $rac{6}{8}$

x	x < -1	x = -1	-1 < x < 3	x = 3	x > 3
f'(x)	_	∄	+	0	_
f(x)	¥	לא מוגדר	7	מקסימום	\searrow

$$.igg(5,rac{1}{9}igg)$$
 נקודות פיתול: $.f''(x)=rac{2(x-5)}{(x+1)^4}$:תחומי קמירות

x	x < -1	x = -1	-1 < x < 5	x = 5	x > 5
f''(x)	_	לא מוגדר	_	0	+
f(x)	↓ קמורה	לא מוגדר	↓ קמורה	נקודת פיתול	למורה ↑

שלב 8 שרטוט:

$$f(x) = \frac{2x^3}{x^2 - 4} \ .$$

 $x \neq \pm 2$:מחום הגדרה תחום שלב

שלב 2 נקודות חיתוך וסימני הפונקציה: (0,0).

	x	x < -2	-2 < x < 0	0 < x < 2	x > 2
ĺ	f(x)	_	+	_	+

x=2 -ו x=-2 ו- אסימפטוטה אנכית:

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m_2 = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{2x^3}{x^2 - 4} = 2 ,$$

$$n_2 = \lim_{x \to -\infty} (f(x) - m_2 \cdot x) = \lim_{x \to -\infty} \left(\frac{2x^3}{x^2 - 4} - 2x \right) = \lim_{x \to -\infty} \frac{2x^3 - 2x(x^2 - 4)}{x^2 - 4} = 0 .$$

 $x=-\infty$ - אסימפטוטה משופעת שסימפטוט y=2x

-ו $(-2\sqrt{3},-6\sqrt{3})$,(0,0) ב- תחומי עליה וירידה: $f'(x)=\frac{2x^2\left(x^2-12\right)}{\left(x^2-4\right)^2}$: וירידה: $(2,\sqrt{3},6\sqrt{3})$

x	$<-2\sqrt{3}$	$x = -2\sqrt{3}$	$\in (-2\sqrt{3}, -2)$	$\in (-2,0)$	x = 0	$\in (0,2)$	$\in (2, 2\sqrt{3})$	$x = 2\sqrt{3}$	$x > 2\sqrt{3}$
f'(x)	+	0	_	_	0	_	_	0	+
f(x)	7	מקס	>	7	פיתול	\searrow	7	מינימום	7

 $f''(x)=rac{16x\left(x^2+12
ight)}{\left(x^2-4
ight)^3}$ ביתול ב- $f''(x)=rac{16x\left(x^2+12
ight)}{\left(x^2-4
ight)^3}$

x	x < -2	$x \in (-2,0)$	$x \in (0,2)$	x > 2
f''(x)	_	+	_	+
f(x)	↓ קמורה	למורה ↑	↓ קמורה	למורה ↑

שלב 8 שרטוט:

שאלה 7

$$f(x) = x^2 e^{1-x} .$$

 $x \in (-\infty, \infty)$ בשלב 1 תחום הגדרה:

(0,0) נקודות חיתוך וסימני הפונקציה:

 $f(x) \geq 0$ לכל

שלב 3 אסימפטוטה אנכית: איו.

אין אסימפטוטה ב- ב- ב- ב- $x=+\infty$ אסימפטוטה אופקית: הישר y=0 אסימפטוטה אופקית: אסימפטוטה אופקית.

שלב 5 אסימפטוטה משופעת: אין.

ב- ישנו נקודות קריטיות ב- $f'(x) = -e^{1-x}(x-2)x$ ישנו נקודות קריטיות ב-

(2,4/e) -1 (0,0)

x	x < 0	x = 0	0 < x < 2	x = 2	x > 2
f'(x)	_	0	+	0	_
f(x)	\searrow	מינימום	7	מקסימום	\searrow

שלב 7 תחומי קמירות:

$$f''(x)=e^{1-x}\left(x^2-4x+2
ight)=e^{1-x}\left(x-2+\sqrt{2}
ight)\left(x-2-\sqrt{2}
ight)$$
יש נקודת פיתול ב- $x=2+\sqrt{2}$ ו- $x=2-\sqrt{2}$

x	$x < 2 - \sqrt{2}$	$x \in (2 - \sqrt{2}, 2 + \sqrt{2})$	$x > 2 + \sqrt{2}$
f''(x)	+	_	+
f(x)	ל קמורה	↓ קמורה	ל קמורה

:שלב 8 שרטוט

$$f(x) = \frac{e^x}{x+1} \ .$$

 $x \neq -1$:תחום הגדרה תחום תחום

(0,1) נקודות חיתוך וסימני הפונקציה:

x	x < -1	x > -1
f(x)	ı	+

x = -1 שלב 3 אסימפטוטה אנכית:

שלב y=0 אסימפטוטה אופקית: ב- אין אסימפטוטה אופקית: ב- אסימפטוטה אופקית: ב- אסימפטוטה אופקית: ב- $x=+\infty$

שלב 5 אסימפטוטה משופעת: אין.

-שלב
$$f'(x)=rac{e^xx}{(x+1)^2}$$
 :ישנו נקודות קריטיות ב תחומי עליה וירידה: $(0,1)$

x	x < -1	-1 < x < 0	x = 0	x > 0
f'(x)	_	_	0	+
f(x)	\searrow	7	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{e^x (x^2 + 1)}{(x+1)^3}$$

נקודת פיתול: אין.

x	x < -1	x < -1
f''(x)	_	+
f(x)	↓ קמורה	למורה ↑

:שלב <u>8</u> שרטוט

<u>שאלה 9</u>

$$f(x) = (x+2)e^{1/x} .$$

 $x \neq 0$:שלב תחום הגדרה

(0,1) נקודות חיתוך וסימני הפונקציה:

x	x < -2	x > -2
f(x)	_	+

x=0 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

 $x=-\infty$ -ב וב- $x=+\infty$ אסימפטוטה משופעת ב- אסימפטוטה הישר וב- y=x+3 וב-

-ב ישנו נקודות קריטיות ב- $f'(x)=rac{e^{1/x}\left(x^2-x-2
ight)}{x^2}$: ישנו נקודות קריטיות ב-

$$(2,4\sqrt{e})$$
 -۱ $\left(-1,rac{1}{e}
ight)$

x	x < -1	x = -1	-1 < x < 0	0 < x < 2	x = 2	x > 2
f'(x)	+	0	_	_	0	+
f(x)	7	מקסימום	>	¥	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x)=rac{e^{1/x}(5x+2)}{x^4}$$
נקודת פיתול ב- $\left(-rac{2}{5},rac{8}{5e^{5/2}}
ight)$ אין.

x	$x < -\frac{2}{5}$	$x = -\frac{2}{5}$	$x > -\frac{2}{5}$
f''(x)	_	0	+
f(x)	↓ קמורה	נקודת פיתול	למורה ↑

שלב 8 שרטוט:

$$f(x) = \frac{\sqrt{x^2 - 9}}{x} \ .$$

 $.(-\infty,-3]$ ו $[3,\infty)$ הגדרה: תחום הגדרה

(-3,0) ו (3,0) ו סימני הפונקציה: (3,0) ו

x	x < -3	-3 < x < 3	x > 3
f(x)	_	∄	+

שלב 3 אסימפטוטה אנכית: אין.

שלב 4 אסימפטוטה אופקית:

$$\lim_{x \to \infty} f(x) = 1$$

 $+\infty$ ב אסימפטוטה אופקית ב y=1

$$\lim_{x \to infty} f(x) = -1$$

 $-\infty$ ב אופקית אופקית אסימפטוטה y=-1ולפיו ולפיו

שלב 5 אסימפטוטה משופעת: אין.

. אינן נקודות קריטיות. $f'(x) = \frac{9}{x^2 \sqrt{x^2 - 9}}$ אינן נקודות קריטיות.

x	x < -3	-3 < x < 3	x > 3
f'(x)	+	#	+
f(x)	7		7

שלב 7 תחומי קמירות:

$$f''(x) = -\frac{27(x^2 - 6)}{x^3(x^2 - 9)^{3/2}}$$

אינו נקודות פיתול בתופ הגדרתה של הפונקציה.

x	x < -3	x > 3
f''(x)	+	_
f(x)	ל קמורה	↓ קמורה

שלב 8 שרטוט:

שאלה 11

$$f(x) = \frac{\ln x}{\sqrt{x}} \ .$$

x>0 :תחום הגדרה **1**

(1,0) נקודות חיתוך וסימני הפונקציה:

x	0 < x < 1	x = 1	x > 1
f(x)	_	0	+

x=0 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית:

$$\lim_{x \to \infty} f(x) = 0$$

ולפיו הקו אסימפטוטה y=0 ולפיו

שלב 5 אסימפטוטה משופעת: אין.

 $.ig(e^2,rac{2}{e}ig)$ -ם עליה (פיטית ב- $f'(x)=rac{2-\log(x)}{2x\cdot\sqrt{x}}$: יש נקודת קריטית הירידה.

x	$0 < x < e^2$	$x = e^2$	$x > e^2$
f'(x)	+	0	_
f(x)	7	מקסימום	\searrow

שלב 7 תחומי קמירות:

$$f''(x) = \frac{3\log(x) - 8}{4x^{5/2}}$$

 $.ig(e^{8/3}, rac{8}{3e^{4/3}}ig)$ -- יש נקודת פיתול

x	$0 < x < e^{8/3}$	$x = e^{8/3}$	$x > e^{8/3}$	
f''(x)	_	0	+	
f(x)	↓ קמורה	נקודת פיתול	למורה ↑	

שלב 8 שרטוט:

שלב 1) תחום הגדרה:

 $.x \neq 3$

שלב 2) נקודות חיתוך:

שים לב,

$$f(x) = \frac{x^2(x+1)(x-2)}{(x-3)^3}$$

(2,0) ו- (-1,0), (0,0) ו- ולכן קל לראות שהנקודות חיתוך הן

סימני הפונקציה

y	x
y < 0	x < -1
y > 0	-1 < x < 0
y > 0	0 < x < 2
y < 0	2 < x < 3
y > 0	x > 3

שלב 3) אסימפטוטות אנכיות

$$.x = 3$$

$$\lim_{x\to 3^-} f(x) = -\infty \ , \qquad \lim_{x\to 3^+} f(x) = +\infty \ .$$

שלב 4) אסימפטוטות אופקיות

$$\lim_{x \to +\infty} f(x) = +\infty , \qquad \lim_{x \to -\infty} f(x) = -\infty .$$

שלב 5) אסימפטוטות משופעת

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$

$$a = \lim_{x \to \infty} (f(x) - mx) = 0$$

$$n = \lim_{x \to \infty} \left(f(x) - mx \right) = 8$$

 $-x o +\infty$ הישר משופעת משימפטוטה הוא אסימפטוט לכן הישר לכן הישר

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = 1$$

$$n = \lim_{x \to -\infty} \left(f(x) - mx \right) = 8$$

 $-\infty$ לכן הישר y=x+8 הוא אסימפטוטה שוועת כאשר

 $.x \neq -1$ מחום הגדרה: תחום ה

(0,0) נקודות חיתוך וסימני הפונקציה:

x	x < -1	-1 < x < 0	x > 0
f(x)	_	+	+

x=-1 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = -1$.

 $x o \infty$ אסימפטוטה אסימפטועה אסימפטועה אסימפטוער אסימפטוע אסימפטוער איינער אסימפטוער איינער אסימפטוער איינער אסימפטוער איינער אסימפטוער אסימפטוער איינער איינערער איינער איינער

ב-. אותו הדבר $x o -\infty$

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{x(x+2)}{(x+1)^2}$$

(0,0) ו- (-2,-4) :נקודות קריטיות

x	x < -2	x = -2	-2 < x < -1	-1 < x < 0	x = 0	x > 0
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	>	×	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{2}{(x+1)^3}$$

נקודות פיתול: אין.

\overline{x}	x < -1	x > -1
f''(x)	_	+
f(x)	↓ קמורה	למורה ↑

:שלב <u>8</u> שרטוט

שאלה 14

 $.x \neq 2$:תחום הגדרה תחום תחום

.(0,-2) ו- (-2,0) ו- (-2,0) ו- נקודות חיתוך וסימני הפונקציה:

x	x < -2	-2 < x < 2	x > 2
f(x)	_	_	+

x=2 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = 6$.

 $-x o \infty$ אסימפטוטה משופעת בתהליך אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה

בר. אותו הדבר $x o -\infty$

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{(x-6)(x+2)}{(x-2)^2}$$

.(6,16) -ו (-2,0) :נקודות קריטיות

x	x < -2	x = -2	-2 < x < 2	2 < x < 6	x = 6	x > 6
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	\searrow	Y	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{32}{(x-2)^3}$$

נקודות פיתול: אין.

x	x < 2	x > 2
f''(x)	_	+
f(x)	↓ קמורה	למורה ↑

:שלב <u>8</u> שרטוט

<u>שאלה 15</u>

x בלב תחום הגדרה: כל

.(0,2), $(-\sqrt{2},0)$, $(\sqrt{2},0)$: שלב ב נקודות חיתוך וסימני הפונקציה:

x	x < -1	-1 < x < 0	x > 0
f(x)	_	+	+

שלב 3 אסימפטוטה אנכית: אין.

y=0 :שלב אסימפטוטה אופקית

שלב 5 אסימפטוטה משופעת: אין.

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{x^2 - 2x - 2}{e^x}$$

נקודות קריטיות:

$$(1 - \sqrt{3}, 3.04437) = (-0.732051, 3.04437)$$

-1

$$(1+\sqrt{3},-0.355635)=(2.73205,-0.355635)$$
.

x	$x < 1 - \sqrt{3}$	$x = 1 - \sqrt{3}$	$1 - \sqrt{3} < x < 1 + \sqrt{3}$	$x = 1 + \sqrt{3}$	$x > 1 + \sqrt{3}$
f'(x)	+	0	_	0	+
f(x)	7	מקס	¥	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = -\frac{x(x-4)}{e^x}$$

.(4,-0.256419) -ו .(0,2) נקודות פיתול:

x	x < 0	x = 0	0 < x < 4	x = 4	x > 4
f''(x)	_	0	+	0	_
f(x)	↓ קמורה	פיתול	למורה ↑	פיתול	↓ קמורה

שלב 8 שרטוט:

שאלה 16

x כל תחום הגדרה: כל x

x- נקודת חיתוך עם ציר ה-x- נקודת

(0,0) איא x עם ציר חיתוך ולכן נקודת היא x=0 כאשר y=0

 \underline{y} נקודות חיתוך עם ציר ה

(0,0) איא y בפונקציה ונקבל y=0 לכן נקודת חיתוך עם ציר y=0 בפונקציה ונקבל

y	x
y > 0	x > 0
y > 0	x < 0
y = 0	x = 0

שלב 3 אינן נקודות בהן הפונקציה לא מוגדרת.

שלב 4

$$\lim_{x \to +\infty} \frac{x^4}{x^2 + 9} = \lim_{x \to +\infty} \frac{x^4}{x^2} = \lim_{x \to +\infty} x^2 = +\infty \ , \qquad \lim_{x \to -\infty} \frac{x^4}{x^2 + 9} = \lim_{x \to -\infty} \frac{x^4}{x^2} = \lim_{x \to -\infty} x^2 = +\infty \ .$$

<u>שלב 5</u>

שאלה 17

 $x \neq 1$ שלב 1 תחום הגדרה: כל

x-טלב x נקודת חיתוך עם ציר ה

(2,0) איא x עם ציר חיתוך תחולן נקודת ולכן x=2 כאשר y=0

y-נקודות חיתוך עם ציר ה

.(0,-2) היא yעם עיר חיתוך לכן לכן .y=-2 היא ונקבל בפונקציה בפונקציה x=0

y	x
y > 0	1 < x < 2
y < 0	x > 2
y < 0	x < 1
.y = 0	x = 2

x=1 -שלב בנקודה x=1 הפונקציה לא מוגדרת ולכן קיימת אסימפטוטה אנכית בx=1

מצד ימין:

$$\lim_{x\to 1^+}\frac{2-x}{x-1}=+\infty\ .$$

מצד שמאל:

$$\lim_{x\to 1^-}\frac{2-x}{x-1}=-\infty\ .$$

שלב 4

$$\lim_{x\to +\infty}\frac{2-x}{x-1}=\lim_{x\to +\infty}\frac{-x}{x}=-1\ ,\qquad \lim_{x\to -\infty}\frac{2-x}{x-1}=\lim_{x\to -\infty}\frac{-x}{x}=-1\ .$$

x=-1 -לכן קיימת אסימפטוטה אופקית

<u>שלב 5</u>

שאלה 18

 $\{x>a\cap x<-a\}$:תחום הגדרה שלב 1

.(0,0):x נקודת חיתוך עם ציר ה-2 נקודת שלב 2

נקודת חיתוך עם ציר ה-y: אין

. חיובי בכל נקודה בתחום הגדרת הפונקציה. \boldsymbol{y}

x=-a ו- x=+a הפונקציה אסימפטוטות אסימפטוטות אסימפטוטות ולפיו הפונקציה לא מוגדרת ולפיו קיימות אסימפטוטות הפונקציה לא מוגדרת ולפיו קיימות אסימפטוטות אנכיות בשפות $-a \le x \le a$

x=-a מצד שמאל של

$$\lim_{x\to a^-}\frac{x^2}{\sqrt{x^2-a^2}}=+\infty\ .$$

x = +a מצד ימין של

$$\lim_{x \to a^+} \frac{x^2}{\sqrt{x^2 - a^2}} = +\infty .$$

שלב <u>4</u>

$$\lim_{x\to +\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ .$$

שלב 5

שאלה 19

. $\{x>a\cap x<-a\}$ מחום הגדרה: תחום תחום שלב 1

.(0,0):x- שלב 2 נקודת חיתוך עם ציר ה-2

נקודת חיתוך עם ציר ה-y: אין

. חיובי בכל נקודה בתחום הגדרת הפונקציה. y

x=-a ו- x=+a מצד שמאל של של x=-a

$$\lim_{x \to -a^{-}} \frac{x^{4}}{\sqrt{x^{2} - a^{2}}} = +\infty .$$

x = +a מצד ימין של

$$\lim_{x\to a^+}\frac{x^4}{\sqrt{x^2-a^2}}=+\infty\ .$$

שלב 4

$$\lim_{x\to +\infty} \frac{x^4}{\sqrt{x^2-a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^4}{\sqrt{x^2-a^2}} = +\infty \ .$$

שלב 5

 $\left\{x>\sqrt{a}\cap x<-\sqrt{3}a
ight\}$ מחום הגדרה: שלב 1

אין :x- אין עם איר היתוד מקודת אין :x- אין

אין y-מקודת חיתוך עם איר חיתוך אין

. בכל נקודה בתחום הגדרת הפונקציה. y>0

 $x=+\sqrt{3}a$ שלב בקטע אנכיות אפימפטוטות לא מוגדרת אמוגדרת הפונקציה אוגדרת בשפות - $\sqrt{3}a \leq x \leq \sqrt{3}a$ שלב בקטע הפונקציה איימות אמוגדרת ולפיו היימות איימות בשפות בשפות . $x=-\sqrt{3}a$

, $x=-\sqrt{3}a$ מצד שמאל של

$$\lim_{x \to -\sqrt{3}a^{-}} \frac{x^{2}}{\sqrt{x^{2} - 3a^{2}}} = +\infty .$$

 $x=+\sqrt{a}$ מצד ימין של

$$\lim_{x \to \sqrt{3}a^+} \frac{x^2}{\sqrt{x^2 - 3a^2}} = +\infty \ .$$

שלב 4

$$\lim_{x \to +\infty} \frac{x^2}{\sqrt{x^2 - 3a^2}} = +\infty , \qquad \lim_{x \to -\infty} \frac{x^2}{\sqrt{x^2 - 3a^2}} = +\infty .$$

<u>שלב 5</u>

 $\{x \neq 2a \cap x \neq -2a\}$:תחום הגדרה שלב 1

.אין. x- מיתוך עם איר ה-x- מקודת חיתוך עם אין.

 $.\left(0,-rac{1}{a^2}
ight):$ ינקודת חיתוך עם ציר ה- \underline{y}

y > 0	x < -2a
y < 0	-2a < x < 2a
y > 0	x > 2a

ו- $x=\pm 2a$ הפונקציה לא מוגדרת ולפיו קיימת אסימפטוטות אנכיות בנקודות $x=\pm 2a$ הפונקציה לא מוגדרת ולפיו היימת אסימפטוטות אנכיות בנקודות $x=\pm 2a$

x = -2a מצד שמאל של

$$\lim_{x \to -2a^-} \frac{4}{x^2 - 4a^2} = \lim_{x \to -2a^-} \frac{4}{(x+2a)(x-2a)} = \left(\lim_{x \to -2a^-} \frac{2}{x+2a}\right) \cdot \left(\lim_{x \to -2a^-} \frac{2}{x-2a}\right) = +\infty$$

x = -2a מצד ימין של

$$\lim_{x \to -2a^+} \frac{4}{x^2 - 4a^2} = \lim_{x \to -2a^+} \frac{4}{(x+2a)(x-2a)} = \left(\lim_{x \to -2a^+} \frac{2}{x+2a}\right) \cdot \left(\lim_{x \to -2a^+} \frac{2}{x-2a}\right) = -\infty$$

x=+2a מצד שמאל של

$$\lim_{x \to 2a^{-}} \frac{4}{x^{2} - 4a^{2}} = \lim_{x \to 2a^{-}} \frac{4}{(x + 2a)(x - 2a)} = \left(\lim_{x \to 2a^{-}} \frac{2}{x + 2a}\right) \cdot \left(\lim_{x \to 2a^{-}} \frac{2}{x - 2a}\right) = -\infty$$

ax = +2a מצד ימין של

$$\lim_{x \to 2a^+} \frac{4}{x^2 - 4a^2} = \lim_{x \to 2a^+} \frac{4}{(x + 2a)(x - 2a)} = \left(\lim_{x \to 2a^+} \frac{2}{x + 2a}\right) \cdot \left(\lim_{x \to 2a^+} \frac{2}{x - 2a}\right) = +\infty$$

שלב 4

$$\lim_{x \to +\infty} \frac{x^4}{\sqrt{x^2 - a^2}} = +\infty \ , \qquad \lim_{x \to -\infty} \frac{x^4}{\sqrt{x^2 - a^2}} = +\infty \ .$$

שלב 5

 $x \neq 0, -4$:מלב תחום הגדרה

(-2,0) נקודות חיתוך וסימני הפונקציה:

x	x < -4	-4 < x < 0	x > 0
f(x)	+	_	+

x=0 -ו x=-4 ו-x=0 שלב 3 אסימפטוטה אנכית:

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 0$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = 1$.

 $x o \infty$ אסימפטוטה משופעת בתהליך אסימפטוטה לכן לכן אסימפטוטה אסימפטוטה אסימפטוטה

ב-. $x o -\infty$ ב-

שלב 6 תחומי עליה וירידה:

$$f'(x) = -\frac{8(x+2)}{x^2(x+4)^2}$$

.(-2,0) נקודות קריטיות:

x	x < -4	$\boxed{-4 < x < -2}$	x = -2	-2 < x < 0	x > 0
f'(x)	+	+	0	_	_
f(x)	7	7	מקסימום	>	\searrow

שלב 7 תחומי קמירות:

$$f''(x) = \frac{8(3x^2 + 12x + 16)}{x^3(x+4)^3}$$

נקודות פיתול: אין.

x	x < -4	-4 < x < 0	x > 0
f''(x)	+	_	+
f(x)	ל קמורה	↓ קמורה	ל קמורה ל

שלב 8 שרטוט:

שאלה 23

 $\{x \leq -a \cap x \geq a\}$ מלב תחום הגדרה: $\{x \leq -a \cap x \geq a\}$

. נקודת חיתוך עם ציר הy-: אין

y > 0	x < -a
y > 0	x > a

שלב בקטע הפונקציה בשפות מוגדרת, אבל אינן אסימפטוטות הפונקציה כן מוגדרת הפונקציה לא מוגדרת, אבל אינן אסימפטוטות הפונקציה כן מוגדרת בקב בקטע ביקודות -a < x < aו ביקודות ב-a - aו ביקודות בשפות הפונקציה כן מוגדרת הפונקציה בי מוגדרת בי מוגדרת בי מוגדרת בי מוג

$$\lim_{x\to +\infty} \sqrt{x^2-a^2} = +\infty \ , \qquad \lim_{x\to -\infty} \sqrt{x^2-a^2} = +\infty \ .$$

<u>שלב 4</u>

שלב 5

 $.x \neq 3$ מחום הגדרה: 1

 $.ig(0,-rac{16}{3}ig)$ -ו (-4,0) ו- וסימני הפונקציה: נקודות חיתוך וסימני הפונקציה

x	x < -4	-4 < x < 3	x > 3
f(x)	_	_	+

x=3 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = 11$.

 $x o \infty$ אסימפטוטה משופעת בתהליך אסימפטוטה y = x + 11 לכן הקו

ב-. אותו הדבר $x o -\infty$

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{(x-10)(x+4)}{(x-3)^2}$$

.(10,28)ו- (-4,0) - נקודות קריטיות:

x	x < -4	x = -4	-4 < x < 3	3 < x < 10	x = 10	x > 10
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	7	\searrow	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{98}{(x-3)^3}$$

נקודות פיתול: אין.

x	x < 3	x > 3
f''(x)	_	+
f(x)	↓ קמורה	למורה ↑

:שלב 8 שרטוט

<u>שאלה 25</u>

. $\{x \le -a \cap x \ge a\}$ תחום הגדרה: 1 שלב 1

(0,0):x נקודת חיתוך עם ציר ה-2 נקודת

.(0,0):y- גיר היתוך עם איר חיתוך

y > 0	x < -a
y < 0	-a < x < a
y > 0	x > a

. מוגדרת לא הפונקציה $x=\pm a$ בנקודות שלב $\underline{3}$

$$\mathbf{x} = -a$$
 מצד שמאל של

$$\lim_{x \to -a^-} \frac{x^2}{x^2 - a^2} = +\infty$$

$$\mathbf{x} = -a^+$$
 מצד ימין של

$$\lim_{x \to -a^+} \frac{x^2}{x^2 - a^2} = -\infty$$

$$x=+a$$
 מצד שמאל

$$\lim_{x\to a^-}\frac{x^2}{x^2-a^2}=-\infty$$

$$x = +a$$
 מצד ימין של

$$\lim_{x\to a^+}\frac{x^2}{x^2-a^2}=+\infty$$

$$\lim_{x\to +\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ , \qquad \lim_{x\to -\infty} \frac{x^2}{\sqrt{x^2-a^2}} = +\infty \ .$$

<u>שלב 5</u>

שאלה 26 שים לב

$$f(x) = \frac{x^2 - 2x + 1}{x - 2} = f(x) = \frac{(x - 1)^2}{x - 2}$$

 $.x \neq 2$:תחום הגדרה תחום שלב

 $.(0,-\frac{1}{2})$,(1,0) נקודות חיתוך וסימני הפונקציה: (1,0)

x	x < 1	1 < x < 2	x > 2
f(x)	_	_	+

x=2 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(x-1)^2}{x(x-2)} = 1.$$

$$n = \lim_{x \to \infty} (f(x) - m \cdot x) = \lim_{x \to \infty} \left(\frac{(x-1)^2}{x-2} - x \right) = \lim_{x \to \infty} \frac{(x-1)^2 - x(x-2)}{x-2} = 0.$$

 $x=\infty$ -לכן y=x אסימפטוטה משופעת ש

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{(x-1)^2}{x(x-2)} = 1$$
.

$$n = \lim_{x \to -\infty} (f(x) - m \cdot x) = \lim_{x \to -\infty} \left(\frac{(x-1)^2}{x-2} - x \right) = \lim_{x \to -\infty} \frac{(x-1)^2 - x(x-2)}{x-2} = 0.$$

 $x=-\infty$ אסימפטוטה משופעת ב- y=x

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{(x-3)(x-1)}{(x-2)^2}$$

נקודות קריטיות:

$$(3,4) - 1(1,0)$$

x	x < 1	x = 1	1 < x < 2	2 < x < 3	x = 3	x > 3
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	7	7	מינימום	7

שלב 7 תחומי קמירות:

$$f''(x) = \frac{2}{(x-2)^3}$$

נקודות פיתול: אין.

x	x < 2	x > 2
f''(x)	_	+
f(x)	↓ קמורה	ל קמורה ל

שלב 8 שרטוט:

