1. Random effects model for one-factor study vs. Fixed effects study:

$$Y_{ij} = \mu_{\cdot} + \tau_i + \epsilon_{ij} \qquad (25.38)$$

where

• μ is the constant (population mean)

ullet au_i are independent $N(0,\sigma_\mu^2)$ (with a mean of zero), representing the effect of the ith factor levels

ullet ϵ_{ij} are are independent $N(0,\sigma^2)$

ullet au_i and ϵ_{ij} are independent random variables, $i=1,\ldots,r$, and $j=1,\ldots,n$.

Parameters	Random effects model	Fixed effects model
Variance of Y _{ij}	$\sigma_{\mu}^2 + \sigma^2$	σ^2
Observations	Correlated when from same level w. correlation= $\frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2} + \sigma^{2}}$	other
Descript H ₀ in terms fixed parameter	$H_0: \sigma_\mu^2 = 0$	$\tau_1 = \tau_2 = = \tau_r$

2. Random effects models for 2-factor study vs. Fixed effects study:

$$Y_{ijk} = \mu.. + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$
 (25.39)

where

μ_{..} is a constant

• α_i , β_j and $(\alpha\beta)_{ij}$ are **independent** zero-mean normal random variables $N(0, \sigma_{\alpha}^2)$, $N(0, \sigma_{\beta}^2)$, and $N(0, \sigma_{\alpha\beta}^2)$

• ϵ_{ijk} are independent $N(0, \sigma^2)$.

• α_i , β_j , $(\alpha\beta)_{ij}$ and ϵ_{ijk} are pairwise independent

• i = 1, ..., a, j = 1, ..., b and k = 1, ..., n.

Parameters	Random effects model A,B are both random	Fixed effects model
Variance of Y _{ij}	$\sigma_{\alpha}^2 + \sigma_{\beta}^2 + \sigma_{\alpha\beta}^2 + \sigma^2$	σ^2
Observations	Independent when they are from different levels	Independent with each other

3. For balanced two factor study with 1-2 factors are random, the ANOVA table (SS, MS, df) are the same but the F-test statistics and their distributions depend on the type of the model. *Need to look Table 25.5 to compare EMS to set the F-test correctly.*

a) ANOVA model II:

Source of variation	df	MS	F-test statistics (in terms of MS)	Distribution F(df1, df2)
Factor A (random)	3	MSA	MSA <mark>/MSAB</mark>	F(3, 12)
Factor B (random)	4	MSB	MSB <mark>/MSAB</mark>	F(4, 12)
AB interaction	12	MSAB	MSAB/MSE	F(12, 60)
Error	60	MSE		

b)ANOVA model III:

Source of variation	df	MS	F-test statistics (in terms of MS)	Distribution F(df1, df2)
Factor A (random)	3	MSA	MSA/MSE	F(3, 60)
Factor B (fixed)	4	MSB	MSB/MSAB	F(4,12)
AB interaction	12	MSAB	MSAB/MSE	F(12, 60)
Error	60	MSE		

4. Balanced Three-factor ANOVA Model II (all three factors are random):

TABLE 25.11 ANOVA Table for Random Three-Factor Study (a = 3, b = 2, c = 5, n = 3).

Source of Variation	SS	df	MS
Factor A (operators)	17.3	2	8.65
Factor B (machines)	4.2	1	4.20
Factor C (batches)	24.8	4	6.20
AB interactions	4.8	2	2.40
AC interactions	31.7	8	3.96
BC interactions	12.5	4	3.13
ABC interactions	11.9	8	1.49
Error	137.7	60	2.30
		_	
Total	244.9	89	

Test for the effects	F-test statistics (in terms of MS)	Distribution F(df1, df2)
ABC interaction	F= MSABC/MSE	F(8, 60)
AC interaction	F= MSAC/MSABC	F(8,8)
Factor C	F*= MSC/MS* MS*=MSAC+MSBC-MSABC	F(2, df), where $df = \frac{(MS^*)^2}{\frac{MSAC^2}{8} + \frac{MSBC^2}{4} + \frac{MSABC^2}{8}}$