

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Projektowanie Algorytmów i Metody Sztucznej Inteligencji

Projekt 2

Zadanie na ocenę bdb

Prowadzący:
Dr inż. Łukasz Jeleń

Wykonała:

Zuzanna Mejer, 259382

Spis treści

1	Wprowadzenie	2 2 2 wych wybranych algorytmów 2 trowanie danych 3 3 4 ortowań 4 4 <td< th=""></td<>			
2	Opis badanych algorytmów i ich złożoność obliczeniowa 2.1 Sortowanie przez scalanie 2.2 Sortowanie szybkie 2.3 Sortowanie introspektywne 2.4 Porównanie złożoności obliczeniowych wybranych algorytmów	$2 \\ 2 \\ 2$			
3	Zadanie 1 - przeszukanie i przefiltrowanie danych3.1 Krótki opis3.2 Analiza złożoności3.3 Czas przeszukiwania	3 4			
4	Analiza złożoności algorytmów sortowań 4.1 Przebieg eksperymentów	4			
5	Podsumowanie i wnioski				
6	Bibliografia	4			

1. Wprowadzenie

Zadanie miało na celu zapoznanie się z algorytmami sortowania oraz przeprowadzenie analizy efektywności wybranych i zaimplementowanych sortowań. Z wymienionych algorytmów wybrałam sortowania: przez scalanie, szybkie oraz introspektywne.

2. Opis badanych algorytmów i ich złożoność obliczeniowa

2.1. Sortowanie przez scalanie

Jest to rekurencyjny algorytm sortowania danych, stosujący metodę "dziel i zwyciężaj". W algorytmie wyróżnia się trzy podstawowe kroki: podział danych wejściowych na 2 rozłączne podzbiory; rekurencyjnie zastosowanie sortowania dla każdego podzbioru, aż do uzyskania struktur jednoelementowych; scalenie posortowanych podzbiorów w jeden zbiór. Całkowita złożoność obliczeniowa dla sortowania przez scalanie wynosi $O(n \cdot logn)$, w związku z czym zastosowanie tego sortowania okaże się wydajniejsze dla bardzo dużych tablic.

2.2. Sortowanie szybkie

Również jest to algorytm sortowania danych stosujący metodę "dziel i zwyciężaj", nie wykorzystuje on jednak dodatkowych podtablic. Istnieje wiele implementacji sortowania szybkiego, jednak generalna idea jest taka, że wybierany jest jeden element w sortowanej strukturze, który nazywany jest piwotem. Może być to element środkowy, pierwszy, ostatni bądź losowy, przy czym należy pamiętać, że w przypadkach, kiedy piwot jest ciągle maksymalny lub minimalny, występuje najgorsza złożoność obliczeniowa $O(n^2)$. Przy optymalnych wyborach piwotu, złożoność wynosi $O(n \cdot logn)$.

2.3. Sortowanie introspektywne

Jest to odmiana sortowania hybrydowego, które opiera się na spostrzeżeniu, że niewydajne jest wywoływanie ogromnej liczby rekurencji dla małych tablic w algorytmie sortowania szybkiego. Głównym założeniem algorytmu sortowania introspektywnego jest zatem wyeliminowanie problemu złożoności $O(n^2)$ występującej w najgorszym przypadku sortowania szybkiego. Sortowanie introspektywne jest połączeniem sortowania szybkiego i sortowania przez kopcowanie, które jest traktowane jako pomocnicze. Tym samym złożoność obliczeniowa wynosi $O(n \cdot logn)$.

2.4. Porównanie złożoności obliczeniowych wybranych algorytmów

Poniższa tabela zestawia oczekiwane i najgorsze przypadki złożoności wybranych algorytmów sortowania. Poniżej dodano także poglądowy wykres funkcji, na którym widać, że dla małej liczby danych sortowanie o złożoności kwadratowej będzie wydajniejsze niż dla logarytmicznej i przeciwnie dla dużej liczby elementów do posortowania.

Tab. 1: Porównanie oczekiwanych i najgorszych przypadków złożoności obliczeniowej dla wybranych algorytmów sortowania

	sortowanie		
	przez scalanie	szybkie	introspektywne
typowa złożoność	O(nlong)	O(nlogn)	O(nlogn)
najgorszy przypadek złożoności	O(nlogn)	$O(n^2)$	O(nlogn)

3. Zadanie 1 - przeszukanie i przefiltrowanie danych

3.1. Krótki opis

Plik udostępniony do sortowania był okrojoną bazą filmów "IMDb Largest Review Dataset" ze strony kaggle.com. Plik zawierał tytuły filmów oraz przypisane im oceny. Niektóre pola z ocenami były puste, zatem przed wykonaniem zadań związanych z sortowaniem, należało wykonać przeszukanie i usunięcie wpisów bez ocen. Do wykonania tego zadania, zastosowano gotową strukturę z biblioteki STL: std::vector. Mimo chęci wykonania sortowań na strukturze dwuelementowej: std::vector < std::pair < std::string, float > >, przechowującej i tytuł filmu, i ocenę, komputery, na których wykonywałam testy złożoności obliczeniowej, nie były w stanie wykonać sortowań dla maksymalnej liczby elementów z pliku. Podsumowując, wykonane zostało przeszukiwanie, wykorzystujące strukturę jednoelementową, a następnie sortowane były jedynie oceny filmów.

- 3.2. Analiza złożoności
- 3.3. Czas przeszukiwania
- 4. Analiza złożoności algorytmów sortowań
- 4.1. Przebieg eksperymentów
- 4.2. Sortowanie przez scalanie
- 4.3. Sortowanie szybkie
- 4.4. Sortowanie introspektywne
- 5. Podsumowanie i wnioski
- 6. Bibliografia