Lecture 4. Set Theoretic IR Models

Alternative Set Theoretic Models

- Set-Based Model
- Extended Boolean Model
- Fuzzy Set Model

Set-Based Model

Set-Based Model

- This is a more recent approach (2005) that combines set theory with a vectorial ranking
- The fundamental idea is to use mutual dependencies among index terms to improve results
- Term dependencies are captured through termsets, which are sets of correlated terms
- The approach, which leads to improved results with various collections, constitutes the first IR model that effectively took advantage of term dependence with general collections

- Termset is a concept used in place of the index terms
- A termset $S_i = \{k_a, k_b, ..., k_n\}$ is a subset of the terms in the collection
- If all index terms in S_i occur in a document d_j then we say that the termset S_i occurs in d_j
- There are 2^t termsets that might occur in the documents of a collection, where t is the vocabulary size
 - However, most combinations of terms have no semantic meaning
 - Thus, the actual number of termsets in a collection is far smaller than 2^t

- Let t be the number of terms of the collection
- Then, the set $V_S = \{S_1, S_2, ..., S_{2^t}\}$ is the **vocabulary-set** of the collection
- To illustrate, consider the document collection below

To simplify notation, let us define

$$k_a$$
 = to k_d = be k_g = I k_j = think k_m = let k_b = do k_e = or k_h = am k_k = therefore k_n = it k_c = is k_f = not k_i = what k_l = da

Further, let the letters a...n refer to the index terms $k_a...k_n$, respectively

- Consider the query q as "to do be it", i.e. $q = \{a, b, d, n\}$
- For this query, the vocabulary-set is as below

Termset	Set of Terms	Documents
S_a	$\{a\}$	$\{d_1, d_2\}$
S_b	$\{b\}$	$\{d_1, d_3, d_4\}$
S_d	$\{d\}$	$\{d_1, d_2, d_3, d_4\}$
S_n	$\{n\}$	$\{d_4\}$
S_{ab}	$\{a,b\}$	$\{d_1\}$
S_{ad}	$\{a,d\}$	$\{d_1,d_2\}$
S_{bd}	$\{b,d\}$	$\{d_1, d_3, d_4\}$
S_{bn}	$\{b,n\}$	$\{d_4\}$
S_{abd}	$\{a,b,d\}$	$\{d_1\}$
S_{bdn}	$\{b,d,n\}$	$\{d_4\}$

Notice that there are 11 termsets that occur in our collection, out of the maximum of 15 termsets that can be formed with the terms in q

- At query processing time, only the termsets generated by the query need to be considered
- \blacksquare A termset composed of n terms is called an n-termset
- \blacksquare Let \mathcal{N}_i be the number of documents in which S_i occurs
- An n-termset S_i is said to be **frequent** if \mathcal{N}_i is greater than or equal to a given threshold
 - This implies that an n-termset is frequent if and only if all of its (n-1)-termsets are also frequent
 - Frequent termsets can be used to reduce the number of termsets to consider with long queries

- Let the threshold on the frequency of termsets be 2
- To compute all frequent termsets for the query $q = \{a, b, d, n\}$ we proceed as follows

	Termset	Set of Terms	Documents		
-	S_a	{a}	$\{d_1, d_2\}$		
	S_b	{b}	$\{d_1, d_3, d_4\}$		
	S_d	{d}	$\{d_1, d_2, d_3, d_4\}$		
	S_n	{n}	$\{d_4\}$		
	S_{ab}	$\{a,b\}$	$\{d_1\}$		
	S_{ad}	$\{a,d\}$	$\{d_1, d_2\}$		
	S_{bd}	$\{b,d\}$	$\{d_1, d_3, d_4\}$		
	S_{bn}	$\{b, n\}$	$\{d_4\}$		
	S_{abd}	$\{a,b,d\}$	$\{d_1\}$		
	S_{bdn}	$\{b,d,n\}$	$\{d_4\}$		

1. Compute the frequent 1-termsets and their inverted lists:

$$S_a = \{d_1, d_2\}$$

$$S_b = \{d_1, d_3, d_4\}$$

$$S_d = \{d_1, d_2, d_3, d_4\}$$

2. Combine the inverted lists to compute frequent 2-termsets:

$$S_{ad} = \{d_1, d_2\}$$

$$S_{bd} = \{d_1, d_3, d_4\}$$

3. Since there are no frequent 3-termsets, stop

- Notice that there are only 5 frequent termsets in our collection
- Inverted lists for frequent *n*-termsets can be computed by starting with the inverted lists of frequent 1-termsets
 - Thus, the only indice that is required are the standard inverted lists used by any IR system
- This is reasonably fast for short queries up to 4-5 terms

- The ranking computation is based on the vector model, but adopts termsets instead of index terms
- \blacksquare Given a query q, let
 - $[S_1, S_2, \ldots]$ be the set of all termsets originated from q
 - lacksquare \mathcal{N}_i be the number of documents in which termset S_i occurs
 - N be the total number of documents in the collection
 - \blacksquare $\mathcal{F}_{i,j}$ be the frequency of termset S_i in document d_j
- For each pair $[S_i, d_j]$ we compute a weight $\mathcal{W}_{i,j}$ given by

$$\mathcal{W}_{i,j} = \begin{cases} (1 + \log \mathcal{F}_{i,j}) \log(1 + \frac{N}{N_i}) & \text{if } \mathcal{F}_{i,j} > 0 \\ 0 & \mathcal{F}_{i,j} = 0 \end{cases}$$

lacksquare We also compute a $\mathcal{W}_{i,q}$ value for each pair $[S_i,q]$

- Consider

 - **document** d_1 = ''a b c a d a d c a b''

			Termset		Weight
		•	S_a	$\mathcal{W}_{a,1}$	$(1 + \log 4) * \log(1 + 4/2) = 4.75$
			S_b	$\mathcal{W}_{b,1}$	$(1 + \log 2) * \log(1 + 4/3) = 2.44$
Termset S_a	Set of Terms {a}	Documents $\{d_1, d_2\}$	S_d	$igwedge \mathcal{W}_{d,1}$	$(1 + \log 2) * \log(1 + 4/4) = 2.00$
S_b S_d	{b} {d}	$\{d_1, d_3, d_4\}$ $\{d_1, d_2, d_3, d_4\}$	S_n	$igwedge \mathcal{W}_{n,1}$	$0 * \log(1 + 4/1) = 0.00$
S_n S_{ab}	$\{n\}$ $\{a,b\}$	$\{d_4\}$ $\{d_1\}$	S_{ab}	$ig _{\mathcal{W}_{ab,1}}$	$(1 + \log 2) * \log(1 + 4/1) = 4.64$
S_{ad} S_{bd}	$\{a,d\}$ $\{b,d\}$	$\{d_1, d_2\}$ $\{d_1, d_3, d_4\}$	S_{ad}	$igwedge \mathcal{W}_{ad,1}$	$(1 + \log 2) * \log(1 + 4/2) = 3.17$
S_{bn}	$\{b,n\}$	$\{d_4\}$	S_{bd}	$ig _{\mathcal{W}_{bd,1}}$	$(1 + \log 2) * \log(1 + 4/3) = 2.44$
S_{abd} S_{bdn}	$ \begin{cases} a, b, d \\ b, d, n \end{cases} $		S_{bn}	$ig _{\mathcal{W}_{bn,1}}$	$0 * \log(1 + 4/1) = 0.00$
			S_{dn}	$ig _{\mathcal{W}_{dn,1}}$	$0 * \log(1 + 4/1) = 0.00$
			S_{abd}	$ig _{\mathcal{W}_{abd,1}}$	$(1 + \log 2) * \log(1 + 4/1) = 4.64$
			S_{bdn}	$\mathcal{W}_{bdn,1}$	$0 * \log(1 + 4/1) = 0.00$

A document d_j and a query q are represented as vectors in a 2^t -dimensional space of termsets

$$\vec{d_j} = (\mathcal{W}_{1,j}, \mathcal{W}_{2,j}, \dots, \mathcal{W}_{2^t,j})$$
 $\vec{q} = (\mathcal{W}_{1,q}, \mathcal{W}_{2,q}, \dots, \mathcal{W}_{2^t,q})$

The rank of d_i to the query q is computed as follows:

$$sim(d_j, q) = \frac{\vec{d_j} \bullet \vec{q}}{|\vec{d_j}| \times |\vec{q}|} = \frac{\sum_{S_i} \mathcal{W}_{i,j} \times \mathcal{W}_{i,q}}{|\vec{d_j}| \times |\vec{q}|}$$

For termsets that are not in the query q, $\mathcal{W}_{i,q}=0$

- The document norm $|\vec{d_j}|$ is hard to compute in the space of termsets
- Thus, its computation is restricted to 1-termsets
- Let again $q = \{a, b, d, n\}$ and d_1
- The document norm in terms of 1-termsets is given by

$$|\vec{d_1}| = \sqrt{\mathcal{W}_{a,1}^2 + \mathcal{W}_{b,1}^2 + \mathcal{W}_{c,1}^2 + \mathcal{W}_{d,1}^2}$$

$$= \sqrt{4.75^2 + 2.44^2 + 4.64^2 + 2.00^2}$$

$$= 7.35$$

Termset	Weight		
S_a	$\mathcal{W}_{a,1}$	$(1 + \log 4) * \log(1 + 4/2) = 4.75$	
S_b	$\mathcal{W}_{b,1}$	$(1 + \log 2) * \log(1 + 4/3) = 2.44$	
S_d	$\mathcal{W}_{d,1}$	$(1 + \log 2) * \log(1 + 4/4) = 2.00$	

- To compute the rank of d_1 , we need to consider the seven termsets S_a , S_b , S_d , S_{ab} , S_{ad} , S_{bd} , and S_{abd}
- The rank of d_1 is then given by

 $W_{abd,1}$

 $(1 + \log 2) * \frac{\log(1 + 4/1)}{0 * \log(1 + 4/1)} = 4.64$ $0 * \log(1 + 4/1) = 0.00$

- The concept of frequent termsets allows simplifying the ranking computation
- Yet, there are many frequent termsets in a large collection
 - The number of termsets to consider might be prohibitively high with large queries
- To resolve this problem, we can further restrict the ranking computation to a smaller number of termsets
- This can be accomplished by observing some properties of termsets such as the notion of closure

- The closure of a termset S_i is the set of all frequent termsets that co-occur with S_i in the same set of docs
- Given the closure of S_i , the largest termset in it is called a **closed termset** and is referred to as Φ_i
- We formalize, as follows
 - Let $D_i \subseteq C$ be the subset of all documents in which termset S_i occurs and is frequent
 - Let $S(D_i)$ be a set composed of the frequent termsets that occur in all documents in D_i and only in those

Then, the closed termset S_{Φ_i} satisfies the following property

$$\not\exists S_j \in S(D_i) \mid S_{\Phi_i} \subset S_j$$

Frequent and closed termsets for our example collection, considering a minimum threshold equal to 2

$frequency(S_i)$	frequent termset	closed term	nset		
4	d	d	Termset	Set of Terms	Documents
			S_a S_b	{a} {b}	$\{d_1, d_2\}$ $\{d_1, d_3, d_4\}$
3	b, bd	bd	S_d	{d}	$\{d_1, d_2, d_3, d_4\}$
2	0 00	ad	S_n	{n}	$\{d_4\}$
2	a, ad	ad	$S_{ab} \ S_{ad}$	$ \begin{cases} a, b \\ a, d \end{cases} $	$\{d_1\}$
2	g, h, gh, ghd	ghd	S_{ad} S_{bd}	$\{b,d\}$	$\{d_1, d_2\}$ $\{d_1, d_3, d_4\}$
_	9, 11, 911, 9114	grid	S_{bn}	$\{b,n\}$	$\{d_4\}$
			S_{abd}	$\{a,b,d\}$	$\{d_1\}$
			S_{bdn}	$\{b,d,n\}$	$\{d_4\}$

- Closed termsets encapsulate smaller termsets occurring in the same set of documents
- The ranking $sim(d_1, q)$ of document d_1 with regard to query q is computed as follows:
 - lacksquare $d_1='$ 'abcadadcab''
 - $q = \{a, b, d, n\}$
 - minimum frequency threshold = 2

d d b, bd bd a, ad ad

delete

$$sim(d_1,q) = (\mathcal{W}_{d,1} * \mathcal{W}_{d,q} + \mathcal{W}_{ab,1} * \mathcal{W}_{ab,q} + \mathcal{W}_{ad,1} * \mathcal{W}_{ad,q} +$$

Termset		Weight		$\frac{1}{2}$	
S_a	$W_{a,1}$	$(1 + \log 4) * \log(1 + 4/2) = 4.75$		$\mathcal{W}_{bd,1} * \mathcal{W}_{bd,q} + \mathcal{W}_{abd,1} * \mathcal{W}_{abd,q})/ d_1 $	
S_b	$\mathcal{W}_{b,1}$	$(1 + \log 2) * \log(1 + 4/3) = 2.44$		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
S_b S_d S_n	$\mathcal{W}_{d,1}$	$(1 + \log 2) * \log(1 + 4/4) = 2.00$		delete	
S_n	$W_{n,1}$	$0 * \log(1 + 4/1) = 0.00$		(2.00 * 1.00 + 4.64 * 2.32 + 3.17 * 1.58)	\perp
S_{ab}	$W_{ab,1}$	$(1 + \log 2) * \log(1 + 4/1) = 4.64$	_	(2.00 * 1.00 4.04 * 2.02 0.11 * 1.00	ı
S_{ab} S_{ad} S_{bd}	$W_{ad,1}$	$(1 + \log 2) * \log(1 + 4/2) = 3.17$			
S_{bd}	$\mathcal{W}_{bd,1}$	$(1 + \log 2) * \log(1 + 4/3) = 2.44$		$0.44 \cdot 1.00 + 4.04 \cdot 0.20 $	$(W_{a,1})$
S_{bn}	$\mathcal{W}_{bn,1}$	$0 * \log(1 + 4/1) = 0.00$		2.44*1.22+4.64*2.32)/7.35	$W_{ab,1}$
S_{bn} S_{dn} S_{abd}	$\mathcal{W}_{dn,1}$	$0 * \log(1 + 4/1) = 0.00$		//	W_{abd}
S_{abd}	$W_{abd,1}$	$(1 + \log 2) * \log(1 + 4/1) = 4.64$,
S_{bdn}	$W_{bdn,1}$	$0 * \log(1 + 4/1) = 0.00$		A 28	

$$\begin{split} sim(d_1,q) &= & \left(\mathcal{W}_{a,1} * \mathcal{W}_{a,q} + \mathcal{W}_{b,1} * \mathcal{W}_{b,q} + \mathcal{W}_{d,1} * \mathcal{W}_{d,q} + \right. \\ & \left. \mathcal{W}_{ab,1} * \mathcal{W}_{ab,q} + \mathcal{W}_{ad,1} * \mathcal{W}_{ad,q} + \mathcal{W}_{bd,1} * \mathcal{W}_{bd,q} + \right. \\ & \left. \mathcal{W}_{abd,1} * \mathcal{W}_{abd,q} \right) / |\vec{d_1}| \end{split}$$

- Thus, if we restrict the ranking computation to closed termsets, we can expect a reduction in query time
- Smaller the number of closed termsets, sharper is the reduction in query processing time

Extended Boolean Model

Extended Boolean Model

- In the Boolean model, no **ranking** of the answer set is generated
- One alternative is to extend the Boolean model with the notions of partial matching and term weighting
- This strategy allows one to combine characteristics of the Vector model with properties of Boolean algebra

- Consider a conjunctive Boolean query given by $q = k_x \wedge k_y$
- For the boolean model, a doc that contains a single term of q is as irrelevant as a doc that contains none
- However, this binary decision criteria frequently is not in accordance with common sense
- An analogous reasoning applies when one considers purely disjunctive queries

A document containing K x and K y is as relevant as a document containing only one.

When only two terms x and y are considered, we can plot queries and docs in a two-dimensional space

A document d_j is positioned in this space through the adoption of weights $w_{x,j}$ and $w_{y,j}$

These weights can be computed as normalized tf-idf factors as follows

$$w_{x,j} = \frac{f_{x,j}}{max_x f_{x,j}} \times \frac{idf_x}{max_i idf_i}$$

- where
 - \blacksquare $f_{x,j}$ is the frequency of term k_x in document d_j
 - \blacksquare idf_i is the inverse document frequency of term k_i , as before
- To simplify notation, let
 - $lacksquare w_{x,j}=x ext{ and } w_{y,j}=y$
 - $\vec{d}_j = (w_{x,j}, w_{y,j})$ as the point $d_j = (x,y)$

- For a disjunctive query $q_{or}=k_x\vee k_y$, the point (0,0) is the least interesting one kight (0,0) kight (0
- This suggests taking the distance from (0,0) as a measure of similarity

$$sim(q_{or}, d) = \sqrt{\frac{x^2 + y^2}{2}}$$

$$ratio = \frac{\sqrt{x^2 + y^2}}{\sqrt{2}}$$

- For a conjunctive query $q_{and}=k_x\wedge k_y$, the point (1,1) is the most interesting one ML(1,1)MLF
- This suggests taking the complement of the distance from the point (1,1) as a measure of similarity

$$sim(q_{and}, d) = 1 - \sqrt{\frac{(1-x)^2 + (1-y)^2}{2}}$$

Generalizing the Idea

- We can extend the previous model to consider Euclidean distances in a t-dimensional space
- This can be done using *p-norms* which extend the notion of distance to include p-distances, where $1 \le p \le \infty$
- A generalized conjunctive query is given by

$$q_{and} = k_1 \wedge^p k_2 \wedge^p \dots \wedge^p k_m$$

A generalized disjunctive query is given by

$$q_{or} = k_1 \lor^p k_2 \lor^p \ldots \lor^p k_m$$

Generalizing the Idea

The query-document similarities are now given by

$$sim(q_{or}, d_j) = \left(\frac{x_1^p + x_2^p + \dots + x_m^p}{m}\right)^{\frac{1}{p}}$$

$$sim(q_{and}, d_j) = 1 - \left(\frac{(1 - x_1)^p + (1 - x_2)^p + \dots + (1 - x_m)^p}{m}\right)^{\frac{1}{p}}$$

where each x_i stands for a weight $w_{i,d}$

- If p = 1 then (vector-like)
 - $sim(q_{or}, d_j) = sim(q_{and}, d_j) = \frac{x_1 + \dots + x_m}{m}$
- If $p = \infty$ then (Fuzzy like)

 - \blacksquare $sim(q_{and}, d_j) = min(x_i)$

Properties

- By varying p, we can make the model behave as a vector, as a fuzzy, or as an intermediary model
- The processing of more general queries is done by grouping the operators in a predefined order
- For instance, consider the query $q = (k_1 \wedge^p k_2) \vee^p k_3$
 - k_1 and k_2 are to be used as in a vectorial retrieval while the presence of k_3 is required
- The similarity $sim(q,d_j)$ is computed as

$$sim(q,d) = \left(\frac{\left(1 - \left(\frac{(1-x_1)^p + (1-x_2)^p}{2}\right)^{\frac{1}{p}}\right)^p + x_3^p}{2}\right)^{\frac{1}{p}}$$

Conclusions

- Model is quite powerful
- Properties are interesting and might be useful
- Computation is somewhat complex
- However, distributivity operation does not hold for ranking computation:
 - $q_1 = (k_1 \lor k_2) \land k_3$
 - $q_2 = (k_1 \land k_3) \lor (k_2 \land k_3)$
 - \blacksquare $sim(q_1, d_j) \neq sim(q_2, d_j)$

Fuzzy Set Model

Fuzzy Set Model

- Matching of a document to a query terms is approximate or vague
- This vagueness can be modeled using a fuzzy framework, as follows:
 - each query term defines a fuzzy set
 - each doc has a degree of membership in this set
- This interpretation provides the foundation for many IR models based on fuzzy theory
- In here, we discuss the model proposed by Ogawa, Morita, and Kobayashi

Fuzzy Set Theory

- Fuzzy set theory deals with the representation of classes whose boundaries are not well defined
- Key idea is to introduce the notion of a degree of membership associated with the elements of the class
- This degree of membership varies from 0 to 1 and allows modelling the notion of marginal membership
- Thus, membership is now a gradual notion, contrary to the crispy notion enforced by classic Boolean logic

Fuzzy Set Theory

A fuzzy subset A of a universe of discourse U is characterized by a membership function

$$\mu_A:U\to[0,1]$$

- This function associates with each element u of U a number $\mu_A(u)$ in the interval [0,1]
- The three most commonly used operations on fuzzy sets are:
 - the complement of a fuzzy set
 - the union of two or more fuzzy sets
 - the intersection of two or more fuzzy sets

Fuzzy Set Theory

- Let,
 - U be the universe of discourse
 - \blacksquare A and B be two fuzzy subsets of U
 - \blacksquare \overline{A} be the complement of A relative to U
 - $\blacksquare u$ be an element of U
- Then,

$$\mu_{\overline{A}}(u) = 1 - \mu_A(u)$$

$$\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u))$$

$$\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$$

Fuzzy Information Retrieval

- Fuzzy sets are modeled based on a thesaurus, which defines term relationships
- A thesaurus can be constructed by defining a term-term correlation matrix C
- Each element of C defines a normalized correlation factor $c_{i,\ell}$ between two terms k_i and k_ℓ

$$c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}}$$

where

- lacksquare n_i : number of docs which contain k_i
- lacksquare n_l : number of docs which contain k_l
- \blacksquare $n_{i,l}$: number of docs which contain both k_i and k_l

Fuzzy Information Retrieval

- We can use the term correlation matrix C to associate a fuzzy set with each index term k_i
- In this fuzzy set, a document d_j has a degree of membership $\mu_{i,j}$ given by

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

- The above expression computes an algebraic sum over all terms in d_j
- A document d_j belongs to the fuzzy set associated with k_i , if its own terms are associated with k_i

Fuzzy Information Retrieval

- If d_j contains a term k_l which is closely related to k_i , we have
 - $c_{i,l} \sim 1$
 - \blacksquare $\mu_{i,j} \sim 1$
 - \blacksquare and k_i is a good fuzzy index for d_j

Fuzzy IR: An Example

- Consider the query $q = k_a \wedge (k_b \vee \neg k_c)$
- The disjunctive normal form of q is composed of 3 conjunctive components (cc), as follows: $\vec{q}_{dnf} = (1,1,1) + (1,1,0) + (1,0,0) = cc_1 + cc_2 + cc_3$
- Let D_a , D_b and D_c be the fuzzy sets associated with the terms k_a , k_b and k_c , respectively

Fuzzy IR: An Example

Let $\mu_{a,j}$, $\mu_{b,j}$, and $\mu_{c,j}$ be the degrees of memberships of document d_j in the fuzzy sets D_a , D_b , and D_c . Then,

$$cc_1 = \mu_{a,j}\mu_{b,j}\mu_{c,j}$$

$$cc_2 = \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})$$

$$cc_3 = \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j})$$

Fuzzy IR: An Example

$$\mu_{q,j} = \mu_{cc_1+cc_2+cc_3,j}$$

$$= 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i,j})$$

$$= 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times (1 - \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j}))$$

Conclusions

- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- They provide an interesting framework which naturally embodies the notion of term dependencies
- Experiments with standard test collections are not available