See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310492015

Matematik Olimpiyatlarına Hazırlık Cilt 3, SAYILAR TEORİSİ, Mustafa Özdemir

Book · N	· November 2014	
CITATIONS 0	ONS READS 23,099	
1 author	thor:	
	Mustafa Özdemir Akdeniz University 82 PUBLICATIONS 1,224 CITATIONS	

Çözümler Kitabın Orjinalindedir

Matematik Olimpiyatlarına Hazırlık 3 Bölünebilme Asal Savılar

Asal Sayılar
OBEB-- OKEK
Modüler Aritmetik
Fermat - Euler - Wilson
Çin Kalan Teoremleri
Denklikler
Denklemler
Tamdeğer

Sayılar Teorisi

SAYILAR TEORİSİ

Bu kitap üniversitelerimizin Matematik ve Matematik Eğitimi bölümlerinde okutulmakta olan **Sayılar Teorisi** derslerine de yardımcı olacaktır. Bunun yanında, sayılarla ilgili sıradışı ve kısmen zor problemler çözmek isteyen öğretmen ve öğrenciler için de, güzel bir kaynak olarak kullanılmaktadır. Lise Matematik yarışmalarında sorulan sorular, kitaba ilave edilmiştir.

BU KİTAPTA MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULUNAN SORULAR BULUNMAKTADIR.

KİTAPTA BULUNAN, TEOREM İSPATLARI, KONU ANLATIMI ve ÇÖZÜMLERİN OLDUĞU KISIMLAR, BU DÖKÜMANA KONULMAMIŞTIR.

Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman hazırlanmıştır.

Konuların içeriğini ve soruların çözümlerini

MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi)

<u>ALTIN NOKTA YAYINLARI</u>

kitabında bulabilirsiniz.

Kitabın içeriğindeki konuları, Aşağıdaki İÇİNDEKİLER bölümünden inceleyebilirsiniz

Mustafa Özdemir

İrtibat İçin: mozdemir07@gmail.com veya Altın Nokta Yayınevi

İçindekiler

BIRINCI BOLUM	
Bölünebilme ve Bölme Algoritması	
Bölme Algoritması	12
Bölünebilme Kuralları	15
Bölünebilme Problemlerinde En Çok Kullanılan Yöntemler	22
Çözümlü Test	25
Çözümler	28
Problemler (Bölünebilme)	34
Problemlerin Çözümleri	36
TÜBİTAK SORULARI (Bölünebilme)	43
TÜBİTAK SORULARININ ÇÖZÜMLERİ	46
ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI	51
İKİNCİ BÖLÜM	
Asal Sayılar ve Çarpım Fonksiyonları	
De Polignac Formülü	57
Bir Tam Sayının Pozitif Bölenlerinin Sayısı	59
Bir Tam Sayının Pozitif Bölenlerinin Toplamı	61
Euler Fonksiyonu	63
Çarpım Fonksiyonu	65
Karışık Örnekler	69
Çözümlü Test	74
Çözümler	81
Problemler	95
Problemlerin Çözümleri	97
TÜBİTAK SORULARI (Asal Sayılar)	103
TÜBİTAK SORULARININ ÇÖZÜMLERİ	106
III JISAL ANTALYA MATEMATİK OLİMPİYATI SORULARI	112

••	••	••	••	••
TIC	'TINI	TIT	M	ÜΜ
υç	,0110	~ U I	$\mathbf{O}_{\mathbf{I}}$	701VI

U	ÇUNCU BOLUM	
O]	BEB - OKEK	
	OBEB (Ortak Bölenlerin En Büyüğü)	115
	OKEK (Ortak Katların En Küçüğü)	116
	Öklid Algoritması ve OBEB'in Kullanılması	118
	OBEB ve Tam Sayı Katsayılı İki Bilinmeyenli Lineer Denklemler	123
	Karışık Örnekler	125
	Çözümlü Test	127
	Çözümler	130
	Problemler (OBEB - OKEK)	135
	Problemlerin Çözümleri	137
	TÜBİTAK SORULARI (OBEB - OKEK)	142
	TÜBİTAK SORULARININ ÇÖZÜMLERİ	143
	ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI	145
D	ÖRDÜNCÜ BÖLÜM	
M	odüler Aritmetik	
	Mod Kavramı	147
	Denklikler	149
	Bölünebilirlik Testlerinin Modüler Aritmetik Yardımıyla Yapılması	153
	Karışık Örnekler	158
	Çözümlü Test	162
	Çözümler	165
	Problemler (Modüler Aritmetik)	171
	Problemlerin Çözümleri	173
	TÜBİTAK SORULARI (Modüler Aritmetik)	181
	TÜBİTAK SORULARININ ÇÖZÜMLERİ	185
	ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI	192
Bl	EŞİNCİ BÖLÜM	
Fe	rmat - Euler -Wilson - Çin Kalan Teoremleri	
	Fermat - Euler Teoremi	193
	Bir Tam Sayının Mertebesi	196
	Wilson Teoremi	198
	Çin Kalan Teoremi	201
	Karışık Örnekler	203

Çözümlü Test	207
Çözümler	212
Problemler (Fermat - Euler)	222
Problemlerin Çözümleri	224
TÜBİTAK SORULARI (Fermat - Euler)	231
TÜBİTAK SORULARININ ÇÖZÜMLERİ	234
ALTINCI BÖLÜM	
Denklikler (Kongruanslar)	
Doğrusal Denklikler	241
İki Bilinmeyenli Doğrusal Denklikler	244
Denklik Sistemleri	246
Yüksek Mertebeden Denklikler	248
M Bileşik Sayısı için $\mathrm{Mod} M$ de Yüksek Mertebeden Denkliler	250
p Asal Sayısı İçin $\operatorname{mod} p^n$ de Denklikler	253
Çözümlü Test	258
Çözümler	260
TÜBİTAK SORULARI (Denklikler)	263
TÜBİTAK SORULARININ ÇÖZÜMLERİ	266
YEDİNCİ BÖLÜM	
Tam Sayılar Kümesinde Denklem Çözümü	
Lineer Diofan Denklemleri	275
Basit Bölünebilme Özellikleri ile Çözülebilen Denklemler	280
Çarpanlara Ayırma Kuralları Kullanılarak Çözülen Denklemler	281
Modüler Aritmetik Yardımıyla Çözülebilen Denklemler	283
Bilinmeyenleri Sınırlayarak Çözülebilen Denklemler	287
Simetriklik Kullanılarak Çözülebilen Denklemler	288
Tahmini Çözümden Genel Çözüme Ulaşma	291
Diskriminant Kullanılarak Çözülen Denklemler	292
Tam kare ve Tam küp Soruları	294
Karışık Örnekler	299
Çözümlü Test	308
Çözümler	315
TÜBİTAK SORULARI (Tam Sayılar Kümesinde Denklem Çözümü)	330

TÜBİTAK SORULARININ ÇÖZÜMLERİ	335
ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI	345
SEKİZİNCİ BÖLÜM	
Bir Reel Sayının Tam değeri	
Bir Reel Sayının Tam değeri	347
Problemler	358
Problemlerin Çözümleri	359
Çözümlü Test	363
Çözümler	365
TÜBİTAK SORULARI (Tam değer)	370
TÜBİTAK SORULARININ ÇÖZÜMLERİ	372
ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI	376
Çalışma Soruları	379
YANIT ANAHTARI	396

Bölünebilme ve Bölme Algoritması

Örnek 1 $a-c \mid ab+cd$ ise $a-c \mid ad+bc$ olduğunu gösteriniz.

Örnek 2 $n^2 + 18n - 22$ ifadesi 103'e tam bölünecek şekildeki 1000'den küçük en büyük n tamsayısı kaçtır?

Örnek 3 3n-5 sayısı 7n-2 sayısını bölecek şekilde kaç tane n tamsayısı bulunabilir?

1.1 Bölme Algoritması

Örnek 4 5'in katı olmayan herhangi n tamsayısının karesinin bir fazlasının 5'e bölümünden elde edilebilecek kaç farklı kalan vardır?

Örnek 5 a) Bir tamsayının karesinin 4'e bölümünden hangi kalan elde edilemez? b) Bir tamsayının karesinin 8'e bölümünden hangi kalanlar elde edilebilir.

Örnek 6 x, 3'e bölünmeyen bir tek sayı olmak üzere,

$$x^5 + x^3 + x^2 + 4x - 1$$

sayısının daima 6'ya bölünebildiğini gösteriniz.

Örnek 7 n, 1'den büyük bir tamsayı olmak üzere, 3^n sayısının ardışık üç tek sayının toplamı olarak yazılabileceğini gösteriniz.

Örnek 8 6'dan büyük her tamsayının aralarında asal olan iki tamsayının toplamı olarak yazılabileceğini gösteriniz.

Örnek 9 x, y ve z tamsayılar olmak üzere, her tamsayının $x^2 + y^2 - 5z^2$ formunda yazılabileceğini gösteriniz.

Örnek 10 U_{ζ} elemanlı tüm altkümelerinin elemanları toplamı asal olan ve asal sayılardan oluşan bir kümenin;

- a) Beş elemanlı kaç tane altkümesi vardır?
- $m{b})$ İçinde 3 asal sayısını bulunduran dört elemanlı kaç altkümesi vardır?

Örnek 11 100'den küçük pozitif sayılardan kaç tanesi, m ve n tamsayılar olmak üzere $n^2 - m^2$ formunda yazılamaz?

1.2 Bölünebilme Kuralları

101 tane

Örnek 12 101, 1001, 10001, 100001, ..., 1 00...00 1 sayılarından kaç tanesi 11'e bölünebilir?

- Örnek 13 Aşağıdaki 6 basamaklı sayılardan hangisi 7'ye bölünmez?
 - A) aaaaaa
- B) abcabc
- C) ababab
- D) aabbaa
- E) a1a1a1

Örnek 14 $\overline{a679b}$ beş basamaklı sayısının, 72'ye bölünebilmesi için, a+b kaç olmalıdır? (Kanada M.O.- 1980)

Örnek 15 x, y, z, n ve m rakamları için, $\overline{xyz1n} \times 234 = \overline{332m842}$ çarpma işlemi sağlanıyorsa, x + y + z + n + m = ?

Örnek 16 İlk 99 pozitif tamsayının art arda yazılmasıyla oluşan, 12345...979899 sayısının 45'e bölümünden kalan kaçtır?

Örnek 17 En az 100 basamaklı a2007a2007a...a2007a sayısının 72 ile tam bölünebilmesi için en az kaç basamaklı olması gerekir.

Örnek 18 1320 ve 1452 sayıları istenildiği kadar kullanılarak toplama, çıkarma ve çarpma işlemleriyle aşağıdaki sayılardan hangisi elde edilemez?

- A) 137 676
- B) 1256676
- C) 170 676
- D) 10956
- E) 1917 960

Örnek 19 $a_1 = 1$ ve $a_n = 10a_{n-1} + 1$ olmak üzere, n = 2, 3, ..., 1000 için a_n sayılarından kaç tanesi 37'ye bölünür?

Örnek 20 1, 2, 3, ..., 100 sayılarından hiçbir sayı diğerinin üç katı olmayacak şekilde bir grup sayı seçilecektir. Bu seçilecek sayı grubunun maksimum eleman sayısı kaçtır?

Örnek 21 15n'in her rakamı 0 veya 8 olacak şekilde en küçük pozitif n sayısı kaçtır? (AIME 1984)

Örnek 22 $x^2 + 3y = 200$ sayısının tamsayılarda kaç tane çözümü vardır?

Örnek 23 7 sayısının $a^2 + b^2$ sayısını bölmesi için gerek ve yeter şart $7 \mid a$ ve $7 \mid b$

olmasıdır. Gösteriniz.

Örnek 24 n pozitif tamsayısı için,

$$3n-1$$
, $5n+2$, $4n+3$, $8n+3$, $7n+5$

sayılarının kaç tanesi bir tamkare olabilir.

Örnek 25 $x^2 + 4y - 12z = 122$ denklemini sağlayan kaç tane (x, y, z) tamsayı üçlüsü vardır?

Örnek 26 $a, b, c, d, e \in \mathbb{Z}$ icin, $a^4 + b^4 + c^4 + d^4 + e^4 = 87$ denkleminin cözümlerini bulunuz.

Örnek 27 $n^3 + 5n$ sayısının her n pozitif tamsayısı için 6'ya bölünebildiğini ispatlayınız.

Örnek 28 n pozitif tamsayı olmak üzere, $n^5 - 5n^3 + 4n$ sayısının daima 120 ile bölüneceğini gösteriniz.

Örnek 29 $(n+127)(n+128)\cdots(n+141)$ sayısı aşağıdakilerden hangisiyle bölünmeyebilir?

A)
$$2^{10}$$

B)
$$3^7$$
 C) 5^3 D) 7^2

$$(C) 5^{-1}$$

$$D) 7^{2}$$

Örnek 30 Her n pozitif bir tamsayısı için $n+3n^2+2n^3$ ifadesinin 6'ya bölündüğünü gösteriniz.

Örnek 31 $x, y, z \in \mathbb{Z}$ için, x + y + z sayısı 6'ya bölünüyor ise, $x^3 + y^3 + z^3$ sayısı da 6'ya bölünür. İspatlayınız.

Örnek 32 $m \in \mathbb{Z}^+$ olmak üzere, her n pozitif bir tamsayısı için

$$R = (n+1)^{2m} - (n^{2m} + 2n + 1)$$

ifadesinin 6'ya bölündüğünü gösteriniz.

Örnek 33 n pozitif tamsayısı için, n sayısının rakamları toplamı S(n) olsun. Buna göre, n + S(n) = 2008 eşitliğini sağlayan kaç n sayısı vardır?

1.3 Bölünebilme Problemlerinde En Cok Kullanılan Yöntemler

1.3.1 Carpanlara Ayırma Kurallarının Kullanılması

Örnek 34 $2009^n - 209^n - 839^n + 92^n$ sayısının tüm n pozitif tamsayıları için 117'ye bölünebildiğini gösteriniz?

Örnek 35 118¹³ – 1 sayısının 169'a bölümünden kalan kaçtır?

Örnek 36 $3^{21} - 2^{24} - 6^8 - 1$ sayısının 1930 ile bölünebildiğini gösteriniz.

1.3.2 Binom Açılımının Kullanılması

Örnek 37 3^{100} sayısının 100'e tam bölünebilmesi için en küçük hangi pozitif tamsayı çıkarılmalıdır?

Örnek 38 n pozitif tamsayısı için, $3^{2^n} + 1$ sayısının 2'ye bölünebildiğini fakat 4'e bölünemediğini ispatlayınız.

Örnek 39 2^n sayısı $3^{128}-1$ sayısını bölecek şekildeki en büyük n pozitif tamsayısını bulunuz.

1.3.3 Tümevarımın Kullanılması

Örnek 40 Her $n \ge 1$ için, $3^{3n+3} - 26n - 27$ sayısının 169'a bölünebildiğini gösteriniz.

1.3.4 Güvercin Yuvası İlkesinin Kullanılması

Örnek 41 n tane 1997 sayısının yan yana yazılmasıyla elde edilen, 4n basamaklı 199719971997...1997 sayısı 1999'a tam bölünecek şekilde bir n sayısının bulunduğunu gösteriniz.

Örnek 42 $a,b,c,d \in \mathbb{Z}$ olmak üzere, (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) çarpımının 12'ye tam bölündüğünü gösteriniz.

Örnek 43 Herhangi <u>üç tamsayıdan</u> $a^3b - ab^3$ sayısı 10'a bölünebilecek şekilde iki a ve b sayısı seçilebileceğini gösteriniz.

Örnek 44 1, 2, 3, ..., 1000 sayıları arasından seçilecek 501 sayı arasında biri diğerine bölünen iki sayının mutlaka olduğunu gösteriniz.

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

1.4 Çözümlü Test

	sayılarından ka	ç tanesi için, 3	3n-2 sayısı 7	1n + 49 sayısı	99'dan küçük pozitif <i>n</i> nı bölmez?
	A) 19	B) 16	C) 14	D) 20	E) 21
2. 1	1, 111, 1111, 1	1111, sayıl	arının kaç tane	si bir tamsayın	ın karesidir?
	A) 1				E) Sonsuz sayıda
	.000'den küçül nebilir?	k kaç tane n j	pozitif tamsayı	sı için, $n^2 + 3$	33 sayısı 34'e kalansız
	A) 50	B) 56	C) 64	D) 54	E) 59
	(2n-1) sayıs sı vardır?	ının tüm rakaı	mlarının toplan	nı 911 olacak ş	ekilde kaç tane n doğal
	A) 6!	B) 16	C) 64	D) 0	E) 114
5. K	(aç tane n pozit				tam bölünür? E) Sonsuz sayıda
elen	•				a_{15} seçiliyor. Bu a_{15} seçiliyor. Bu a_{15} i için, a_{15} en küçük kaç
	A) 32	B) 33	C) 34	D) 35	E) 37
sınıı		olamı da b ve	b sayısının rak		plamı a olsun. a sayıda c olsun. c sayısını
	A) 27	B) 18	C) 9	E) 12	E) 3
8. 10) rakamlı bütü	n pozitif tamsa	avıların toplam	ının 81'e bölür	nünden kalan kaçtır?
	A) 63	В) 28	C) 45		E) 40

eşitliğini sağlayan kaç $\,n$ sayısı vardır?

B) 2

A) 1

C) 3

 $\mathbf{D}) 0$

E) 4

9. $S = 5 + 55 +$	$-555 + 5555 + \cdots$	$\cdots + 55555$ top	lamının 9'a	bölümünden k	calan kaçtır'
A) 3	B) 0	C) 5	D) 4	E) 7	
	c ² sayısı 26 sayı RO Amerikan M.C	sını bölecek şek) 2000)	ilde, kaç tar	ne üç basamak	lı \overline{abc} sayısı
A) 6	B) 12	C) 11	D) 17	E) 3	
	.! sayısını bölem SSCB M.O. 1964	neyecek şekilde)	50'den küçi	ik kaç tane n	pozitif tam-
A) 16	B) 15	C) 19	D) 7	E) 23	
12. n sayısı rak	_	2009 olan bir say $+2+3+\cdots+$	_	göre,	
olacak şekilde l	kaç tane m sayıs	ı vardır?			
A) 6	B) 2	C) 5	D) 0	E) 1	
	n ve 1'den farklı ne n bileşik sayı	her bir pozitif d is vardır?	böleni, $n-2$	$20 \le d \le n -$	12 koşulunu
A) 6	B) 2	C) 5	D) 0	E) 4	
	ndüğünde 9 kala ıç tane pozitif ta	nnını veren ve ik msayı vardır?	i asal sayın	ın toplamı vey	⁄a farkı şek-
A) 1	B) 2	C) 3	D) 0	E) 4	
	ığında 3'e tam a 'nın en küçük	bölündüğü hald değeri kaçtır?	e 7'ye tam	bölünemeyen	30 tamsayı
A) 144	B) 139	C) 135	D)	140	E) Hiçbiri
16. n pozitif tan	msayısı için, n s	ayısının rakamla	arı toplamı S	S(n) olsun.	
	n +	S(n) + S(S(n))	(2)) = 2007		

100 tane

17. 1 ile 1000 arasındaki tamsayılardan kaç tanesi negatif olmayan iki tamsayının kareleri farkı olarak yazılabilir? (AIME 1997)					
A) 400	B) 750	C) 500	D) 250	E) Hiçbiri	
18. 3, 15, 24, 4	8, şeklinde t	amkarelerin 1 e	ksiği 3'e bölü	nen sayıların sıralan-	
masıyla elde edil (AIME 1994)	en sayılardan 19	994'üncü terimir	n 1000 ile bölü	münden kalan kaçtır?	
A) 63	B) 45	C) 143	D) 240	E) 992	
19. Rakamlarından biri 3 olan, ve sadece iki rakamı sıfırdan farklı olan, 10^7 sayısından küçük kaç tane tamkare vardır? (CENTRO Amerikan M.O. 2001) A) 16 B) 3 C) 5 D) 0 E) 14					
20. $n \cdot 2^{n-1}$ tamk	are olacak şekild	de 100'den küçül	k kaç tane n po	zitif tamsayısı vardır?	
		C) 15			
21. $5^n + n$ sayısı 31'e bölünecek şekildeki 31'den büyük en küçük pozitif n tamsayısı kaçtır? A) 48 B) 58 C) 68 D) 78 E) 88					
BU <mark>SORULARIN ÇÖZÜMLERİNİ</mark> MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ. Mustafa Özdemir					
		iviustata OZUCII	ш		

1.5 Problemler (Bölünebilme)

- **1.** 6 ile aralarında asal olan bir tamsayının karesinin 1 eksiğinin daima 24'e bölünebildiğini gösteriniz.
- **2.** n pozitif tamsayısı için, $n^4 n^2$ sayısının daima 12'ye bölünebildiğini gösteriniz.
- **3.** 3n+1 bir tamkare ise n+1 sayısının üç tamkarenin toplamı olarak yazılabileceğini gösteriniz.
- **4.** 3^n basamaklı 111...11 sayısının 3^n ile bölündüğünü gösteriniz.
- **5.** k tek sayı ise, $1^k+2^k+\cdots+n^k$ sayısının $1+2+\cdots+n$ sayısına tam bölündüğünü gösteriniz. (Kanada M.O.- 1986)
- **6**. 10'un katı olmayan iki basamaklı bir n sayısı veriliyor. n sayısı rakamları toplamına bölünebilmektedir. Bu sayının 3'ün bir katı olması gerektiğini gösteriniz.
- **7.** Her n pozitif tamsayısı için, $n^5 n$ sayısının 5'e bölündüğünü gösteriniz.
- **8.** n pozitif tamsayısı için, 2n+1 ve 3n+1 sayıları tamkare olduğuna göre n sayısının 40'a bölünebildiğini gösteriniz.
- **9.** 19'dan 80'e kadar tüm iki basamaklı sayılar arka arkaya yazılarak, 19202122...77787980

sayısı elde ediliyor. Bu sayının 1980'e tam bölünebildiğini gösteriniz. (SSCB 1980)

- **10.** Verilen 5 tamsayıdan, toplamı 3'e bölünebilecek şekilde üç tamsayının seçilebileceğini gösteriniz. (Kanada M. O. 1970)
- **11.** 6'ya bölünen her sayının dört tane tamsayının küpleri toplamı olarak yazılabileceğini gösteriniz.
- 12. Her tamsayı, 5 tane, sayının küpleri toplamı olarak yazılabildiğini gösteriniz.
- **13.** Herhangi ardışık üç tamsayının toplamının bu sayıların küpleri toplamını böldüğünü gösteriniz.
- **14.** m pozitif tamsayı olmak üzere, $(1000^m 1) \nmid (2000^m 1)$ olduğunu gösteriniz.

- **15.** $a, b \in \mathbb{Z}$ olmak üzere, $13 \mid a + 4b$ ise $13 \mid 10a + b$ olduğunu gösteriniz.
- **16.** $a,b \in \mathbb{Z}$ olmak üzere, $a^2 + ab + b^2$ sayısı 9 ile bölünüyor ise, hem a hem de b sayısının 3'e bölüneceğini ispatlayınız.
- **17.** n bir pozitif tamsayı olmak üzere, n(n+1) sayısının 1'den büyük tamsayının kuvveti olamayacağını ispatlayınız.
- **18.** Herhangi biri sıfır olmayan üç tane ardışık sayının çarpımının bir tamsayının bir kuvveti olamayacağını gösteriniz.
- **19.** n > 2 pozitif tamsayısı için, $2^n 1$ 'in 3'ün bir kuvveti olamayacağını ispatlayınız.
- **20.** n pozitif tamsayısı için, 2n+1 ve 3n+1 sayıları tamkare ise, 5n+3 asal değildir. Gösteriniz.
- **21.** S kümesi üç elemanlı ve herhangi iki elemanın toplamı tamkare olan bir küme ise, kümenin elemanlarından en çok birinin tek sayı olabileceğini ispatlayınız. Örneğin, $\{5,20,44\}$.
- **22.** $a,b,c \in \mathbb{Z}$ olmak üzere, $a^2+b^2+c^2$ sayısı 16'ya tam bölünüyorsa $a^3+b^3+c^3$ sayısı da 64'e tam bölünür. Gösteriniz.

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

B) 2

A) 1

E) Sonsuz çoklukta

UİMO - 2007

1.6 TÜBİTAK Olimpiyat Soruları (Bölünebilme)

D) 4

1. Kaç n tamsayısı için, n^3+4 sayısı n^2-n+1 sayısı ile bölünür?

C) 3

2. <i>n</i> 'nin kaç o	leğişik tamsayı d	eğeri için $\frac{n^2}{n+1}$	e tamsayı olur?	,
A) 3	B) 7	C) 8	D) 10	E) 12
				UİMO - 1997
	n tamsayısı için,			
A) 0	B) 1	C) 2	D) 3	E) 4
				UİMO - 2007
4. 1000'den k	üçük kaç n doğa	l sayısı için n^2	2+8n-85 ifad	lesi 101'e bölünür?
A) 0	B) 2	C) 6	D) 9	E) Hiçbiri
				UİMO - 2008
işlemleriyle a	3 sayılarını isted şağıdaki sayılard 40 B) 21800	an hangisini e	lde edemeyiz?	nma, çıkarma ve çarpma 704 E) 566500 UİMO - 1997
	na göre $\overline{a627b}$ şe or. Buna göre, a		5 basamaklı say	n 56'ya bölündüğünde 4
A) 11	B) 12	C) 13	D) 14	E) Hiçbiri UİMO - 1999
) sayısının onda n pozitif tamsayı		ı basamakları to	plamının 2000 olmasını
A) 0	B) 1 C) 2	D) So	onsuz Çoklukta	E) Hiçbiri UİMO - 2001
	$\{0,1,,9\}$ olmak sağlayan kaç $\{x,y\}$			$\overline{y3}$ olan bir sayının 33'e
A) 0	B) 1	C) 2	D) 3	E) Hiçbiri
				UİMO - 2002

		789 rakamlarında ağıdakilerden har		rasına + işareti koyu-
A) 144	B) 153	C) 189	D) 37	75 E) 486
,	,	,	,	UİMO - 2008
10. n ve n + bölünüyorsa, n	-	•	isinin de rakan	nlarının toplamı 53'e
A) 6	B) 7	C) 12	D) 13	E) 17
				UİMO - 2008
üçünün 3'e, döre bölündüğünü sö	dünün 4'e, beşi ylüyor. Betül e	nin 5'e, altısının n az kaç hata yap	6'ya, yedisinin omıştır?	yılardan ikisinin 2'ye, 7'ye, ve sekizinin 8'e
A) 0	B) 1	C) 2	D) 3	E) 4
				UİMO - 2008
	ılarının oluştur			i de istenilen herhangi eşit olan kaç tane dört
A) 6	B) 3	C) 12	D) 0	E) 1
				UİMO - 2004
13. 7 sayısı 2, 2	2, 222,, dizi	sinin kaç terimin	i böler?	
A) 0	B) 1	C) 2	D) 7	E) Sonsuz sayıda
				UMO - 2005
14. Tüm basam basamaklı kaç ta		amlar birbirinde	n farklı olan ve	11111 ile bölünen on
A) 0	B) 1264	C) 2842	D) 345	6 E) 11111
				UMO - 2000

15. Bir n doğal sayısı 48'e bölündüğünde kalan 47 oluyor. Aynı sayı 49'a bölündüğünde ise kalan yine 47'dir. Bu n sayısı 42'ye bölününce kalan ne olur?

A) 5 B) 7 C) 13 D) 24 E) 41

UMO - 1995

16. d tamsayısır 49 pozitif tamsa	-		ri d ile bölünen	ve toplamları 999 ola	ın
A) 2	B) 3	C) 4	D) 6	E) 8	
				UMO - 200)6
				tamlar nasıl sıralanır altı basamaklı pozit	
A) 11	B) 77	C) 133	D) 166	E) 255	
				UMO - 200)5
	•		•	aklarının yerleri nas sayı diyelim. Kaç i	
A) 3	B) 4	C) 6	D) 12	E) Sonsuz Sayıd	a
				UMO - 200)8
•	•	naklı bir sayının yüzler basamağ	_	1 3 olup, bu sayı 37 v	ve
A) 0	B) 2	C) 4	D) 6	E) 8	
				UMO - 200)2
20. $n!(2n+1)$ tamsayısı vardır		arının aralarında	asal olmasını s	ağlayan kaç n pozit	tif
A) 10	B) 11	C) 12	D) 13	E) Hiçbiri UMO - 200	07
21. $5^{256} - 1$ say	yısı 2^n 'e bölüni	üyorsa, n en çok	kaç olabilir?		
A) 8	B) 10	C) 11	D) 12	E) Hiçbiri	
				UMO - 200)2
basamağı dışınd	laki bütün basa		kamı bulunuyor	ayısının soldan 26 'n 've N sayısı 13 'e ta	
A) 1 B	3) 3 C) 6 D) 8	E) Veriler yete	ersizdir	
				UMO - 200)0

23. Ondalık yazılımında 0'dan farklı olan tüm rakamlarına bölünen pozitif bir tam-

D) 13

C) 12

sayıya "özel sayı" diyelim. En fazla kaç ardışık özel sayı vardır?

B) 10

A) 9

UMO - 2008

E) 14

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ. Mustafa Özdemir

A) 5

A) 30416

B) 6

B) 20164

kaç tane (x, y) tamsayı ikilisi vardır?

1.7 Ulusal Antalya Matematik Olimpiyat Soruları (Bölünebilme)

1. n sayısının kaç tane tamsayı değeri için $n^3 + 3$ sayısı $n^2 - n - 1$ 'e tam bölünür?

2. $1 \le x \le 1000, 1 \le y \le 1000$ olmak üzere, $x^2 + y^2$ sayısı 49'a bölünecek biçimde

3. $A=2^{1998}$ sayısının onluk sayı sistemindeki yazılışında en baştaki rakam silinip en sona yazılarak B sayısı elde ediliyor. |A-B|'nin rakamlar toplamına a, a'nın rakamlar toplamına b ve b'nin rakamlar toplamına da c denirse, c'nin rakamlar toplamı

C) 10153

D) 8

D) 400

E) Sonsuz

E) 142

Antalya M.O.- 1997

Antalya M.O.- 1997

C) 7

aşagıdakilerden	hangisidir?			
A) 3	B) 18	C) 9	D) 19	E) $1+9+9+8$
				Antalya M.O 1998
4. $n^{1998} - 1$ says	ısının 10'a tam	bölünmesini sağ	layan, 2000'den	küçük kaç tane pozitif
n tamsayısı varo			•	, , ,
A) 200	B) 300	C) 400	D) 600	E) 800
				Antalya M.O 1999
5. $3^3 + 5^3 + 7^3$	$3 + \dots + 1999$	³ sayısı 999000 :	sayısına bölündi	iğünde kalan aşağıda-
kilerden hangisi	dir?			
A) 1997	B) 998	C) 1998	D) 999	E) 0
				Antalya M.O 1999
6. $\frac{17x - 5}{6}$ ve sayısı vardır?	$\frac{14x+5}{9}$ sayıla	arının ikisi de tar	nsayı olacak biç	gimde kaç tane x tam-
A) 0	B) 1	C) 2	D) 3	E) Sonsuz çoklukta
				Antalya M.O 2003
				e, $a-25=c\cdot d$ ve 5'e bölümünden kalan
A) 0	B) 1	C) 2	D) 3	E) 4
				Antalya M.O 2007

Asal Sayılar ve Çarpım Fonksiyonları

Örnek 45 $n^5 + n^4 + 1$ sayısı asal olacak şekilde kaç n pozitif tamsayısı vardır?

Örnek 46 Eğer p asal değilse $2^p - 1$ sayısının da asal olamayacağını gösteriniz.

Örnek 47 p sayısı 2'nin bir kuvveti değilse, $2^p + 1$ sayısının asal olamayacağını gösteriniz.

Örnek 48 $\frac{2^{58}+1}{5}$ sayısının asal olmadığını gösteriniz.

Örnek 49 3n-10, 6n-13 ve 5n-13 sayılarının üçü de asal sayı olacak şekilde kaç tane n pozitif tamsayısı vardır?

Örnek 50 27000001 sayısı 4 tane asal sayının çarpımı olduğu bilindiğine göre, bu asal sayıların en büyüğü kaçtır?

Örnek 51 p-4 sayısı bir tamsayının dördüncü kuvveti olacak şekilde kaç tane p asal sayısı vardır?

Örnek 52 3'ten büyük her asal sayının 6n+1 veya 6n-1 şeklinde yazılabileceğini gösteriniz.

Örnek 53 3'ten büyük bir asal sayının karesinin 12'ye bölümünden kalanın 1 olduğunu gösteriniz.

Örnek 54 Kaç tane p asal sayısı için, $p^2 + 21p - 1$ sayısı da asaldır?

★ Teorem 2.1. Sonsuz sayıda asal sayı vardır.

İspat:

★ Teorem 2.2. 3'e bölündüğünde 2 kalanını veren sonsuz sayıda asal sayı vardır? İspat:

★ Teorem 2.3. 4k - 1 formunda sonsuz sayıda asal sayı vardır? İspat:

Teorem 2.4. (Dirichlet) a ve b aralarında asal iki pozitif tamsayı olmak üzere, ax + b biçiminde yazılan sonsuz sayıda asal sayı vardır.

Teorem 2.5. a, b ve c, herhangi ikisi aralarında asal olan pozitif tamsayılar olmak üzere, $ax^2 + bxy + cy^2$ biçiminde yazılan sonsuz sayıda asal vardır.

Örnek 55 Sonsuz sayıda p asal sayısı için, $n^2 + n + 1 = mp$ denklemini sağlayan (m, n) tamsayı ciftinin bulunduğunu gösteriniz.

Örnek 56 Tamamı asal olmayan en fazla kaç tane ardışık sayı bulunabilir? Örneğin, hiçbiri asal olmayan ardışık 100000000 sayı bulmak mümkün müdür?

- ★ Teorem 2.6. Her hangi k sayısı için ardışık k tane bileşik sayı daima bulunabilir. **İspat**: (k+1)! + 2, (k+1)! + 3,..., (k+1)! + k + 1 sayıları k tanedir ve tümü bileşik sayıdır.
- ★ Teorem 2.7. (Aritmetiğin Temel Teoremi) 1'den büyük her tamsayı asal sayıların çarpımı olarak yazılabilir ve bu yazılış tek türlüdür.

Yani, 1'den büyük her n tamsayısı, $p_1, p_2, ..., p_k$ farklı asal sayılar ve $r_1, r_2, ..., r_k$ sayıları pozitif tamsayılar olmak üzere,

$$n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$$

şeklinde yazılabilir. Bu yazılışa, n sayısının asal çarpanlarına göre yazılmış hali denir. Bu yazılışı tek türlüdür. Bu yazılışı,

$$n = \prod_{i=1}^{k} p_i^{r_i} = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$$

şeklinde yazabiliriz.

De Polignac Formülü 2.1

Örnek 57 1000! sayısının sonunda kaç tane 0 vardır?

Örnek 58 $\frac{50!}{25!}$ sayısı aşağıdakilerden hangisiyle bölünemez? A) 2^{25} B) 3^{12} C) 5^7 D) 7^5 E) 1517

A)
$$2^{25}$$

B)
$$3^{12}$$

$$C)$$
 5

$$D) 7^{5}$$

Örnek 59 İlk 100 tek sayının çarpımı P olsun. P sayısı, 3^k ile bölünecek şekildeki en büyük k sayısı kaçtır? (AIME 2006)

2.2 Bir Tamsayının Pozitif Bölenlerinin Sayısı

Örnek 60 Pozitif bölenlerinin sayısı 6 olan 100'den küçük olan kaç sayı vardır?

Örnek 61 a ve b sayılarının pozitif bölenlerinin sayısı sırasıyla 9 ve 15'dir. a-b=101 olduğuna göre a+b=?

Örnek 62 p_1 ve p_2 asal sayılar olduğuna göre, $n=p_1^{n_1}p_2^{n_2}$, $n_1\neq n_2$ ve $n_1,n_2\geq 1$ olmak üzere, n^2 sayısının pozitif bölenlerinin sayısı $\tau\left(n^2\right)=81$ olduğuna göre, $\tau\left(n^3\right)$ kaçtır.

Örnek 63 60⁴ sayısının farklı pozitif bölenlerinin çarpımını bulunuz.

Örnek 64 2010'u böldüğünde 10 kalanı elde edilen kaç tane pozitif tamsayı vardır?

Örnek 65 xyz = 4000 olacak şekilde kaç tane (x, y, z) pozitif tamsayı üçlüsü vardır?

2.3 Bir Tamsayının Pozitif Bölenlerinin Toplamı

Örnek 66 Pozitif bölenlerinin toplamı 30 olan kaç tamsayı vardır?

Örnek 67 Pozitif bölenlerinin toplamı 45 olan kaç tamsayı vardır?

Örnek 68 Pozitif bölenlerinin toplamı 12 olan sayıları bulunuz.

Örnek 69 10^4 sayısının pozitif bölenlerinden çift olanlarının toplamını bulunuz.

Örnek 70 S(n), n sayısının pozitif bölenlerinin kümesi olmak üzere,

$$A(n) = \sum_{k \in \tau(n)} \frac{1}{k}$$

olarak tanımlanıyor. Buna göre, A (2009) toplamını bulunuz.

2.4 Euler Fonksiyonu

Örnek 71 1 ile 100 arasında (100 dahil), 100'den küçük 100 ile aralarında asal olan kaç pozitif tamsayı vardır?

Örnek 72 1 ile 360 arasında 2, 3 veya 5'e bölünemeyen kaç tamsayı vardır?

Örnek 73 $\varphi(n)$, n sayısının Euler fonksiyonunu göstermek üzere, herhangi p asal sayısı için, $1 + \varphi(p) + \varphi(p^2) + \cdots + \varphi(p^n) = p^n$ olduğunu gösteriniz.

★ Teorem 2.8.
$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_k}\right)$$
'dir.

İspat :

Örnek 74 $\varphi(n)$, n sayısının Euler fonksiyonunu göstermek üzere, $\varphi(n) = n/2$ olacak şekilde 100'den küçük kaç tane n sayısı vardır?

Örnek 75 60'dan küçük olan ve 60 ile aralarında asal olan pozitif tamsayıların toplamı kaçtır?

2.5 Carpım Fonksiyonu

★ Teorem 2.9. Bir tamsayının pozitif bölenlerinin sayısı $\tau(n)$ fonksiyonu ve bir tamsayının pozitif bölenlerinin toplamı $\sigma(n)$ fonksiyonu çarpımsal fonksiyonlardır. **İspat :**

Örnek 76 Bir n sayısının asal çarpanları ile yazılımı $n=p_1^{r_1}\cdot p_2^{r_2}\cdot p_3^{r_3}\cdots p_k^{r_k}$ olsun. Bu durumda n sayısının pozitif bölenlerinin sayısının

$$\tau(n) = (r_1 + 1)(r_2 + 1)(r_3 + 1)\cdots(r_k + 1)$$

olduğunu gösteriniz.

Örnek 77 Bir n sayısının asal çarpanları ile yazılımı $n = p_1^{r_1} \cdot p_2^{r_2} \cdot p_3^{r_3} \cdots p_k^{r_k}$ olsun. Bu durumda n sayısının pozitif bölenlerinin toplamının,

$$\sigma\left(n\right) = \frac{p_1^{r_1+1}-1}{p_1-1} \frac{p_2^{r_2+1}-1}{p_2-1} \frac{p_3^{r_3+1}-1}{p_3-1} \cdots \frac{p_k^{r_k+1}-1}{p_k-1}$$

olduğunu gösteriniz.

★ Teorem 2.10. f bir çarpım fonksiyonu ise

$$F(n) = \sum_{d|n} f(d)$$

fonksiyonu da çarpım fonksiyonudur.

İspat:

Teorem 2.11. φ Euler fonksiyonu da bir çarpım fonksiyonudur. Yani, m ve n aralarında asal sayılar olmak üzere, $\varphi(mn) = \varphi(m) \varphi(n)$ eşitliği sağlanır.

Örnek 78 $\varphi\left(n\right)$, Euler fonksiyonunu göstermek üzere, $\sum\limits_{d\mid n} \varphi\left(d\right) = n$ olduğunu gösteriniz.

Örnek 79 $\varphi(n)$, Euler fonksiyonunu göstermek üzere, $d \neq 100$ için

$$\sum_{d|100} \varphi(d)$$

toplamını hesaplayınız.

Örnek 80 $\varphi(n)$, n sayısının Euler fonksiyonunu göstermek üzere, her bir m tamsayısı için, $\varphi(n) = m$ olacak şekildeki n tamsayılarının sayısının sonlu olduğunu gösteriniz.

2.6 Karışık Örnekler

Örnek 81 $a,b\in\mathbb{Z}^+$ olmak üzere, çarpmaya göre tersi $\frac{1}{a^2}+\frac{1}{b^2}$ şeklinde yazılabilen kaç tane asal sayı vardır? (Wisconsin M. Talent Search 1998)

Örnek 82 Farklı asal sayılardan oluşan bir sayı kümesinin aritmetik ortalaması 27'dir. Bu özelliği sağlayan sayı kümelerindeki asal sayılardan en büyük asal sayı kaç olabilir? (Çek ve Slovak M.O. 1999)

Örnek 83 x ve y en az biri tamkare olan pozitif iki tamsayı olmak üzere, $\frac{1}{x} + \frac{1}{y} = \frac{1}{p}$ eşitliğini sağlayan kaç tane p asal sayısı vardır?

Örnek 84 İki tane asal olmayan tek sayının toplamı şeklinde yazılamayan en büyük çift sayı kaçtır? (AIME 1984)

Örnek 85 p, q asal sayılar ve $m \in \mathbb{Z}$ olmak üzere,

$$n = \frac{p}{q} + \frac{q}{p} - \frac{m^2}{pq}$$

 $ifadesi\ ka\c tane\ pozitif\ tamsayı\ de\c geri\ olabilir?\ (USA\ Talent\ Search)$

Örnek 86 $\frac{2^{p-1}-1}{p}$ sayısı tamkare olacak şekilde kaç tane p asal sayısı vardır?

Örnek 87 $n \in \mathbb{Z}^+$ için p(p+1) + q(q+1) = n(n+1) eşitliğini sağlayan kaç tane (p,q) asal sayı çifti vardır? (Avusturya-Polonya M.O. 1983)

Örnek 88 n pozitif tamsayısının pozitif bölenlerinin sayısını $\tau(n)$ ile gösterelim.

$$S(n) = \tau(1) + \tau(2) + \dots + \tau(n)$$

olmak üzere, a sayısı $n \leq 2005$ için, S(n) sayısı tek olacak şekilde n sayılarının sayısını ve b sayısı da $n \leq 2005$ için, S(n) çift sayı olacak şekildeki n sayılarının sayısını gösterdiğine göre, |a-b| kaçtır? (AIME 2005)

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ. Mustafa Özdemir

E) Hiçbiri

2.7 Çözümlü Test

1. $p, p + 10$ ve $p + 14$ sayıları asal olacak şekilde kaç tane p sayısı vardır?							
	A) 1	B) Sonsuz sayıda	C) 0	D) 2	E) 5		
2. 8	2. $8p-1$ ve $8p+1$ sayıları asal olacak şekilde kaç p asal sayısı vardır?						
	A) 1	B) Sonsuz sayıda	C) 0	D) 2	E) 5		
		+1,10'dan büyük isine daima bölünür		olduğur	na göre, r	$n^3 - 4n$ sayı	sı aşağıda-
	A) 240	B) 100	C) 32		D) 45	E) 1	Hiçbiri
4. 1	0101 sayı:	sı 1'den büyük kaç t	ane tabanda	bir asal	sayıdır?	(Kanada M.O	D. 1972)
	A) 1	B) 0	C) 2	D) 3		E) 4	
5. n	$a^4 + 4^n$ sa	yısı asal sayı olacak	şekilde kaç	farklı n	doğal sa	ıyısı vardır?	
	A) 1		C) 2				E) 6
6. 2 vard		ir katı olan ve 1111	tane poziti	f tamsay	ı böleni	kaç n poziti	f tamsayısı
	A) 0	B) 1	C) 2	D) 3		E) 4	
		e pozitif çarpanı ola kamları toplamı kaç		anlarını	n çarpım	$1.256 \cdot 10^4$ (olan pozitif
	A) 4			D)	8 (E) 6	
8. Dikdörtgenler prizması şeklinde bir kutunun boyutları asal sayıdır. Kenarlardan en az biri iki basamaklı olmak üzere, bu kutunun alanı bir asal sayının kuvveti ise, bu kutunun haçmi en fazla kaç olabilir?							

B) 124 C) 117 D) 388

A) 186

	e basamağı sıfır	dır?			l sayısının, sondan kaç
	A) 15	B) 17	C) 21	D) 20	E) 24
10.	A) $(1 \cdot 3 \cdot 5 \cdot 6)$	2^{99} sayısına bö $\cdots 101)$ B) $5 \cdots 101)$	$(1 \cdot 3 \cdot 5 \cdots 19)$	9) C) (1 ·	lerden hangisidir? 3 · 5 · · · 99)
11.	$\frac{(33)!}{(11)!}$ sayısını	kalansız bölen B) 19	2^n sayısında n	en çok kaç ola	abilir?
	A) 23	B) 19	C) 27	D) 24	E) 29
	A) 0	B) 1	C) 2	D) 3	kaç asal sayı vardır? E) Sonsuz sayıda
			$e, 2^{p^2+1}+1$ for	ormunda yazıla	abilen 1000'den küçük
kaç	asal sayı vardı		> -	->	
	A) 0	B) 1	C) 2	D) 11	E) 9
		azla kaç sayı se	eçilebilir?	ılardan, herhan D) 15	gi ikisi aralarında asal E) 14
	nin sayısı tek sa	ayıdır?			anesinin pozitif bölen-
	A) 0	B) 8	C) 9	D) 10	E) 25
16.		rinin sayısı 10 (=	-	arı toplamını bulunuz. E) 10

	Pozitif bölenle gisidir?	rinin sayısı 20	2 olan en küçü	k sayının son ı	rakamı aşağıdakilerden	
	A) 2	B) 4	C) 6	D) 8	E) 0	
18.]	Pozitif bölenle	rinin toplamı 1	.8 olan kaç tam	ısayı vardır?		
	A) 1	B) 0	C) 2	D) 3	E) 4	
	19. p bir asal olmak üzere, $p(x+y) = xy$ denklemini sağlayan kaç tane (x,y) tamsayı ikilisi vardır?					
	A) 0	B) 1	C) 6	D) 3	E) 5	
	iğine göre x bi	leşik sayısının	rakamları topl	amı kaçtır?	aydanın toplamı 120'yi	
	A) 12	D) 13	C) 14	D) 15	E) 11	
	amı kaçtır? (Av	vusturya-Polony	a M.O. 1989)		ndaki tüm bölenlerinin 4 E) 724	
	tane (p, n) ikil	isi vardır?	•		= 1 eşitliğini sağlayan klukta E) Hiçbiri	
	11) 0	2) 1	0) 2	2) 2011342 30		
	Pozitif bölenler . 1999)	rinin sayısının	karesine eşit ka	ıç tane pozitif t	amsayı vardır? (Kanada	
	A) 1	B) 0	C) 2	D) 3	E) 4	
sayı	lar $a\cdot b$ sayısır va Pasifik M.O. 1	n bölecek şeki 1994)	$\text{lde tüm } n = \epsilon$	$a^2 + b^2$ pozitif	ısından küçük tüm asal tamsayılarını bulunuz. E) Sonsuz sayıda	

D) 196

E) Hiçbiri

A) 148

B) 218

25. <i>i</i>	25. p ve q arasında asal olmak üzere,					
		$\frac{p}{q} = 1 - \frac{1}{2}$	$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} +$	$\cdots - \frac{1}{66} + \frac{1}{67}$		
ico	ogočidalsilarin 1	9 -		00 01		
ise,	aşağıdakilerin l			_	E) 67	
	A) 59	B) 43	C) 61	D) 101	E) 67	
26	$\varphi\left(n\right),n$ sayısı	nın Fuler fonk	eivonunu gös	termek jizere		
20.	$\varphi(n), n$ sayisi	iiii Luici iolik.				
			$\frac{\varphi\left(n\right)}{n}$ <	$\frac{1}{4}$		
olac sidir	-	küçük $n \ \mathrm{doğa}$	l sayısının so	ıldan ilk rakamı	aşağıdakilerden hangi	
	A) 5	B) 7	C) 9	D) 1	E) 2	
	Kendisinden ve amını bulunuz. A) 201	(AIME 1987)			eşit olan ilk 10 sayını 6 E) 194	
	, -	, -	- / -	, -	, ,	
28.	500'den küçük	olup 250 ile ar	ralarında asal	olan sayıların s	ayısı kaçtır?	
					E) 250	
	,	,	,	,	,	
	$\varphi(n)$, n sayısınecek şekilde l			östermek üzere	, $\varphi\left(n\right)$ sayısı 18'e tan	
	-	-		Sonsuz Sayıda	E) Hiçbiri	
	$arphi\left(n ight),\ n$ sayıs			göstermek üzere	$e, \varphi(n)$ sayısı tamkar	
	A) 1	B) 8	C) 9 D)	Sonsuz Sayıda	E) Hiçbiri	
	$\varphi\left(n ight),n$ sayısılde 100 'den kü				$e, \varphi(n) = n/3 \text{ olacal}$	
				D) 9	E) Hiçbiri	
	,	,	,	,	, -	
32.	Euler fonksivo	nu 24'e eşit ola	an ve üç fark	lı asal sayının ç	arpımı şeklinde yazıla	
	n sayıların topla		,	, ,	- ,	

C) 324

33. n pozitif tamsayısı için, $\varphi\left(n\right)$, n sayısının Euler fonksiyonunu göstermek üzere, $\varphi\left(2n\right)=\varphi\left(n\right)$ olacak şekilde $100\leq n\leq 200$ şartını sağlayan kaç tane pozitif tamsayı vardır?						
A) 49	B) 50	C) 51	D) 26	E) 25		
34. p bir asal sayı ve $x,y\in\mathbb{Z}^+$ olmak üzere, $x^2+x+1=py$ eşitliğini sağlayan kaç tane p asal sayısı vardır? (SSCB M.O. 1968)						
A) 0	B) 1	C) 2	D) 3	E) Sonsuz sayıda		
35. İki asal sayın vardır?	ıın beşinci ku	vvetlerinin fark	ına eşit olacak ş	şekilde kaç tane asal sayı		
A) 0	B) 1	C) 2	D) 3	E) Sonsuz Sayıda		
36. 100'den kü sayının toplamı o			1'den büyük	iki tane aralarında asal		
A) 4	B) 6	C) 11	D) 13	E) 5		
37. n ve $n + 100$ tane n pozitif tan	•		ölenlerinin sayı	ısı tek olacak şekilde kaç		
=	-		D) 3	E) Hiçbiri		
38. $2^p + p^2$ says:	sı asal olacak	şekilde kaç tan	e p asal sayısı v	vardır?		
A) 0	B) 1	C) 2	D) 3	E) Hiçbiri		
39. $n(173 + n)$ sayısı tamkare olacak şekilde kaç tane n pozitif tamsayısı vardır?						
A) 0	B) 1	C) 2	D) 3	E) Hiçbiri		
40. İki pozitif x ve y tamsayılarının harmonik ortalaması,						
-	-	$\frac{2}{1/x+1}$				
	_	, .	7.0			
şeklinde tanımla kaç tane (x, y) p				onik ortalaması 6 ²⁰ olan		

C) 799

D) 689

E) Hiçbiri

B) 788

A) 688

41. $1!2!3!\cdots 99!100!$ sayısının sonundaki 0 ların sayısı N olsun. N sayısının 1000 ile bölümünden kalan kaçtır? (AIME 2006)					
A) 124	B) 128	C) 234	D) 213	E) Hiçbiri	
12 — cover	75'in last, alan va	tom 75 monitif	häloni olon on la	ii aiile manitif tamaay	
	e, $\frac{n}{75}$ kaçtır? (AIM		bolem olan en k	üçük pozitif tamsayı	
A) 134	B) 432	C) 346	D) 412	E) Hiçbiri	
	ozitif böleni olan po eri 50'den küçüktür B) 111	? (AIME 2005		in kendisinden başka E) Hiçbiri	
,	,	,	,	, ,	
nebilir. (AIM)	E 2004)			zitif tamsayıya bölü-	
A) 45	B) 48	C) 56	D) 52	E) Hiçbiri	
	g ¹⁹ olmak üzere, n^2 gildir? (AIME 1995)		n küçük kaç tane	e pozitif böleni n 'nin	
A) 546	B) 624	C) 589	D) 486	E) Hiçbiri	
	tamsayının rakaml	arı toplamı kaç		nsayı böleni olan en E) Hiçbiri	
47. <i>n</i> bir tam vardır?	sayı olmak üzere, p	$p^2 = n^3 + 1 \text{ ess}$	itliğini sağlayan l	kaç tane p asal sayısı	
A) 1	B) 2	C) 3	D) 4	E) Hiçbiri	
${\bf 48.}\ 6p+1\ {\rm sayısı}\ {\rm bir}\ {\rm tamsayının}\ {\rm beşinci}\ {\rm kuvveti}\ {\rm olacak}\ {\rm şekildeki}\ {\rm kaç}\ {\rm tane}\ p\ {\rm asal}\ {\rm sayısı}\ {\rm vardır?}\ ({\rm USA}\ {\rm Talent}\ {\rm Search})$					

A) 0 B) 1 C) 2 D) 3 E) Hiçbiri

49. $3k+1$ formundaki pozitif bölenlerinin sayısı, $3k+2$ formundaki pozitif bölenlerinin sayısına eşit olacak şekilde kaç tane tamkare vardır?							
A) 0	B) 2	C) 1	D) 3	E) Hiçbiri			
	50. p^2+11 sayısının tam 6 tane pozitif böleni olacak şekilde kaç tane p asal sayısı vardır? (Rusya M.O. 1995)						
A) 1	B) 0	C) 2	D) 3	E) Hiçbiri			
toplamının son il	51. 2005, 2006, 2007,, 4012 sayılarının her birinin en büyük tek sayı bölenlerinin toplamının son iki rakamını hesaplayınız.						
A) 41	B) 42	C) 43	D) 46	E) Hiçbiri			
52. φ Euler fonk	siyonunu gös	stermek üzere,					
•		$n^2) = n + p_1 p$	p_2 ve $p_1 < p_2$				
koşullarını sağlay	`	,		ı cifti vardır?			
			D) 4				
/	_ /	-) -	_ / -	-) •			
53. n bir pozitif tamsayı olacak şekilde kaç tane asal sayı $\sqrt{24n+1}$ formunda yazılamaz?							
A) 7	B) 8	C) 1	D) 2	E) Sonsuz sayıda			
BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ. Mustafa Özdemir							

2.8 Problemler

- **1.** p ve q iki ardışık tek asal sayı olsunlar. p+q sayısının birbirinden farklı olması gerekmeyen en az üç 1'den farklı pozitif tamsayının çarpımına eşit olduğunu gösteriniz. (Baltık Way M.O. 1992)
- **2.** p ve p+2 sayıları asal sayı ise, p=3 veya $6\mid p+1$ olduğunu gösteriniz. (Kanada M.O.- 1973)
- **3.** n! sayısının $1+2+3+\cdots+n$ sayısı ile bölünebilmesi için gerek ve yeter şart n+1 sayısının bir tek asal sayı olmamasıdır. Gösteriniz. (Kanada M.O.- 1992)
- **4.** $2^n + n^{2004}$ sayısı asal olacak şekilde sadece bir tane n pozitif tamsayısı olduğunu gösteriniz. (Kanada O.Komitesi Şubat Problemleri)
- **5.** a, ve b pozitif tamsayılar olmak üzere p tek asal sayısı için,

$$p^4 \mid a^2 + b^2 \text{ ve } p^4 \mid a(a+b)^2$$

olduğuna göre $p^4 \mid a(a+b)$ olduğunu gösteriniz.

- **6.** 1 ve kendisi dahil tüm farklı pozitif bölenlerinin toplamı $(\sqrt{n}+1)^2$ sayısından fazla olmayan n pozitif tamsayılarının asal olması gerektiğini gösteriniz.
- **7.** x, y pozitif tamsayılar olmak üzere, $A = x^2 + y^2$ olduğuna göre, A sayısının $k \ge 2$ olmak üzere $x^k y^k$ formunda pozitif böleninin olmadığını gösteriniz.
- **8.** İlk n asal sayının toplamını S_n ile gösterelim. S_n ile S_{n+1} arasında bir tamkare olduğunu ispatlayınız.
- **9.** [104, 208] aralığında seçilen 28 sayıdan ortak asal bölene sahip olacak iki tane sayının olduğunu ispatlayınız.
- **10.** a ve b, 900 sayısının aralarında asal olan iki pozitif böleni olmak üzere, a/b formundaki tüm sayıların toplamını bulunuz.
- 11. Bir tamkarenin ve bir asal sayının toplamına eşit olmayacak şekilde sonsuz sayıda pozitif tamsayı olduğunu ispatlayınız.
- **12.** Her tek p asal sayısı için, n(n+p) sayısı tamkare olacak şekilde bir n pozitif tamsayının bulunacağını gösteriniz. (Wisconsin M. Talent Search 2005)

- **13.** $A=1+2+3+\cdots+n$ sayısının son dört rakamı 1008 olacak şekilde, n sayısının olamayacağını gösteriniz.
- **14.** Her k negatif olmayan tamsayısı için, $k+a_1, k+a_2, \dots$ sayı dizisinin sonlu elemanı asal sayı olacak şekilde artan bir a_1, a_2, a_3, \dots dizisinin bulunduğunu ispatlayınız. (Çek ve Slovak M.O. 1997)
- **15.** p asal sayısı iki tamsayının küplerinin farkına eşit olsun. 4p = 3k + r, $0 \le r < 3$ olarak yazılırsa, k sayısının bir tamkare olacağını ispatlayınız. (Wisconsin Math. Talent Search)
- **16.** a,b,c,d pozitif tamsayılar için olduğuna göre, ab=cd olduğuna göre, $a^2+b^2+c^2+d^2$ sayısının asal olmadığını gösteriniz.
- 17. p tek bir asal sayı olmak üzere,

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1}$$

toplamının en sadeleşmiş hali a/b ise, p sayısının a sayısını böldüğünü ispatlayınız.

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

E) 211

UMO - 2000

D) 151

A) 3

B) 67

2.9 TÜBİTAK Olimpiyat Soruları (Asal Sayılar)

1. $\sqrt{17p+625}$ sayısının bir tamsayı olmasını sağlayan en büyük p asal sayısı nedir?

C) 101

2. 72000 sayı	sının pozitif bölen	lerinden kaç ta	ınesi 8'e bölür	nüp 9'a bölüne	mez?
A) 24	B) 32	C) 36	D) 48	E) 84	
				U	İMO - 1998
	oölünebilen bir sa e kalan ne olur?	yının tam olara	ak 15 pozitif	böleni varsa, l	ou sayı 5'e
A) 0	B) 1	C) 2	D) 3	E) 4	
				U	İMO - 1998
	sayıları asal sayı bölenlerinin sayısı			ni olsun. $p +$	q sayısının
A) 6	B) 5	C) 4	D) 3	E) 2	
				Ţ	J MO - 1998
5. 72 tane pozitif böleni olan en küçük tamsayının on tabanına göre yazılımında rakamların karelerinin toplamı nedir?					
A) 41	B) 110	C) 123	D) 6	5 E) l	Hiçbiri
					JMO - 1999
6. $p^{q} + q^{p}$ say	yısının asal olması	nı sağlayan ka	$\varsigma(p,q)$ asal sa	ayı sıralı ikilisi	vardır?
	B) 1 C) 2			E) Hiçbiri	
,	, ,	,		, ,	İMO - 2001
7. 10^{999} sayıs olasılığı nedir	ının rastgele seçil ?	miş bir pozitif	böleninin 10^1	00 'ün bir tam	katı olması
A) $\frac{11}{111}$	B) $\frac{1}{11}$	C) $\frac{9}{10}$	D)		E) $\frac{1}{10}$ İMO - 2000
	pozitif tamsayı ol ılı ikilisi vardır?	mak üzere, (1 -	$(p)^n = 1 + p$	$n+n^p$ eşitliği	ni sağlayan
	B) 5	C) 1	D) 0	E) Hiçbiri	
,	•	,	•	, -	JMO - 2001

9. $x_1 \le x_2 \le x_3$ asal sayıları,

A) 7

 $\mathbf{A}) 0$

eşitliklerini sağlıyorsa, x_2 kaçtır?

B) 13

B) 1

10. 39p + 1 sayısını tamkare yapan kaç p asal sayısı vardır?

11. p sağlay	$q,\ q$ asal sayı q	lar olmak üzeı ikilisi vardır?	re, $p(p^2 + 3q^2)$	$(-1) = q(q^2)$	$p^2 + 3p^2 + 1$) eşitliğini
A	A) 0	B) 1	C) 2	D) 4	,	çoklukta UMO - 2006
		rına ayrıldığın ı oluşturduğu k		•		k sayı olan
A	A) 3	B) 7	C) 8	D) 10	E) 15	UMO - 2004
13. <i>p</i> ² buluni		ının pozitif böl	lenlerinin sayıs	sı 14 olacak şe	kilde kaç p	asal sayısı
A	A) 0	B) 1	C) 2	D) 3	,	UMO - 2004
14. 13	$8! + 1$	13! + 13 koşu	lunu sağlayan	kaç p asal sayı	sı vardır?	
A	A) 0	B) 5	C) 3	D) 1	E) 2	U MO - 1993
15. p ve q farklı asal sayılar, a ve b farklı pozitif tamsayılar ve $n=p^a\cdot q^b$ olmak üzere, n^2 sayısının pozitif bölenlerinin sayısı 81 ise, n^3 sayısının pozitif bölenlerinin sayısı kaçtır?						
A	A) 169 B) 160 C) 1	17 D) 84	E) Hiçbiri	1	U MO - 1996
	ir n tamsayıs si olamaz?	n için, $n^2 + 1$	sayısının pozit	if bölenlerinin	sayısı aşağ	ıdakilerden
A	A) 2	B) 4	C) 6	D) 8	, -	iri UMO - 2005

 $x_1 + x_2 + x_3 = 68$ ve $x_1x_2 + x_2x_3 + x_1x_3 = 1121$

C) 19

C) 2

D) 23

D) 3

E) 29

E) Hiçbiri

UİMO - 2002

UMO - 2002

18. n^3+8 sayısının en çok üç pozitif böleninin bulunmasını sağlayan kaç n tams vardır? A) 4 B) 3 C) 2 D) 1 E) Hiçbiri UMO - 19. Üç bileşik tek sayının toplamı olarak yazılabilen tüm tamkarelerin kümesi a dakilerden hangisidir? A) $\{(2k+1)^2:k\geq 0\}$ B) $\{(4k+3)^2:k\geq 1\}$ C) $\{(2k+1)^2:k\geq 0\}$ d) $\{(4k+1)^2:k\geq 2\}$ E) Hiçbiri UMO - 20. $\frac{2^{p-1}-1}{p}$ sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır? A) 4 B) 2 C) 1 D) 8 E) Sonsuz Çoklu	
vardır? A) 4 B) 3 C) 2 D) 1 E) Hiçbiri UMO - 19. Üç bileşik tek sayının toplamı olarak yazılabilen tüm tamkarelerin kümesi a dakilerden hangisidir? A) $\{(2k+1)^2:k\geq 0\}$ B) $\{(4k+3)^2:k\geq 1\}$ C) $\{(2k+1)^2:k\geq d\}$ d) $\{(4k+1)^2:k\geq 2\}$ E) Hiçbiri UMO - 20. $\frac{2^{p-1}-1}{p}$ sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?	2006
19. Üç bileşik tek sayının toplamı olarak yazılabilen tüm tamkarelerin kümesi a dakilerden hangisidir? A) $\{(2k+1)^2:k\geq 0\}$ B) $\{(4k+3)^2:k\geq 1\}$ C) $\{(2k+1)^2:k\geq 0\}$ d) $\{(4k+1)^2:k\geq 2\}$ E) Hiçbiri UMO - 20. $\frac{2^{p-1}-1}{p}$ sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?	ayısı
dakilerden hangisidir? $ A) \ \{(2k+1)^2: k \geq 0\} \qquad B) \ \{(4k+3)^2: k \geq 1\} \ C) \{(2k+1)^2: k \geq 0\} $ $ d) \ \{(4k+1)^2: k \geq 2\} \qquad E) \ Hiçbiri $ $ UMO-20. \ \frac{2^{p-1}-1}{p} \ sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?$	2007
d) $\{(4k+1)^2:k\geq 2\}$ E) Hiçbiri UMO - 20. $\frac{2^{p-1}-1}{p}$ sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?	şağı-
UMO - $ {\bf 2}^{p-1} - \frac{1}{p} \mbox{ sayısının tamkare olmasını sağlayan kaç } p \mbox{ asal sayısı vardır} ? $	3}
20. $\frac{2^{p-1}-1}{p}$ sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?	
20. $\frac{2^{p-1}-1}{p}$ sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır? A) 4 B) 2 C) 1 D) 8 E) Sonsuz Coklu	2002
A) 4 B) 2 C) 1 D) 8 E) Sonsuz Coklu	
UMO -	
21. $2p^4 - 7p^2 + 1$ sayısının, bir tamsayının karesine eşit olmasını sağlayan kaç p sayısı vardır?	asal
A) 0 B) 1 C) 4 D) Sonsuz Çoklukta E) Hiçbiri $\label{eq:constraint} \text{UMO} -$	2001
22. Aşağıdakilerden hangisi $b > 1$ doğal sayısı ne olursa olsun asal değildir?	
A) $(11)_b$ B) $(111)_b$ C) $(1111)_b$ C) $(11111)_b$ D) Hiçbiri UMO -	1995
23. p asal sayısının n 'yi bölmesinin, $p-1$ 'in $n-1$ sayısını bölmesini gerektir ondalık yazımı iki basamaklı olan kaç n çift pozitif tamsayısı vardır?	diği,
A) 1 B) 2 C) 3 D) 4 E) 5	
UİMO -	2002
24. 101, 10101, 1010101,, 10101101 dizisinde kaç tane asal sayı vardır?	
A) 0 B) 49 C) 1 D) 12 E) 33	

17. p ve $p^2 + 2$ asal sayılarsa, $p^3 + 3$ sayısının en çok kaç asal böleni olabilir?

UMO - 1993

BU <mark>SORULARIN ÇÖZÜMLERİNİ</mark> MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ. Mustafa Özdemir

E) 1003

denklem sisteminin bir

Antalya M.O.- 1996

A) 893

2.10 Ulusal Antalya Matematik Olimpiyat Soruları (Asal Sayılar)

2. 1001 ile aralarında asal olan üç basamaklı bir sayının 12 pozitif böleni vardır. Bu sayının yan yana yazılmasıyla elde edilen altı basamaklı sayının kaç pozitif böleni

D) 989

1. x < y < z asal sayıları $\left\{ \begin{array}{l} x + y + z = 68 \\ x \cdot y + y \cdot z + z \cdot x = 1121 \end{array} \right.$ çözümü ise, $y \cdot z$ çarpımı aşağıdakilerden hangisidir?

C) 957

B) 919

olacaktır?					
A) 12	B) 24	C) 36	D) 72	E) 96	
				Antalya M.O 1997	
3 . 101 · 102 · 1 aşağıdakilerden		$n, (k, n \in \mathbb{N})$	eşitliğini sağlay	an en büyük k sayısı	
A) 26	B) 29	C) 30	D) 31	E) 32	
				Antalya M.O 1998	
			lenleri olmak üze 1sı m'yi tam böle	ere, (m, n) ikililerini er?	
A) 200	B) 150	C) 100	D) 60	E) 35	
				Antalya M.O 2000	
•	ikililerden kaç ta	nesi için n say	lenleri olmak üze rısı m'yi tam böle 455 E) 500		
				7 thaiya 141.0 2000	
6. $p^3 + p^2 + 11p + 2$ ifadesinin asal sayı olmasını sağlayan kaç tane p asal sayısı vardır?					
A) 1	B) 2	C) 11	D) Sonsuz	E) Hiçbiri Antalya M.O 2000	
7. $5, 10, 15,, 995, 1000$ aritmetik dizisinin tüm terimlerinin çarpımı olan sayının sondan kaç basamağında sıfır bulunur ?					
A) 200	=		197 E) 196		
,	,	,	,	Antalya M.O 2000	

8. Kaç tane p	asal sayısı için	$p^2 + 11$ sayıs	ının tam 6 tane	farklı pozitif böleni vardır?		
A) 1	B) 2	C) 3	D) 12	E) Sonsuz çoklukta		
				Antalya M.O 2002		
				österilebilen her sayıya "iyi		
	. $n,k\in\mathbb{N}$ olma ı fazla kaç olabi		$1, n+2, \ldots, n$	+ k sayılarının her biri "iyi		
A) 4	-		E) h join bir	: üst sınır yoktur		
A) 4	в) 5 С) .	2 D) 3	E) k içili bil	•		
				Antalya M.O 2002		
koşulunu sağl sayıları da a'ı	layan pozitif bö nın bölenleridir;	lenleri olmak $k n$ gösterim	üzere, (k, n) il ii " k, n 'yi böler	olsun. k ve n , a 'nın $k n$ kilileri kaç tanedir? (1 ve a anlamındadır.)		
A) 3^{6}	B) 4^{5}	C) 5^4	D) 4^{6}	E) 6^4		
				Antalya M.O 2003		
11. $\{1, 2, 3, 4,, 20, 21, 22\}$ kümesinden en az kaç eleman atılmalı ki, geriye kalan sayıların çarpımı bir tamkare olsun?						
A) 4	B) 5	C) 6	D) 7	E) 8		
				Antalya M.O 2003		
	-	_	-	mının oluşturduğu sayı, üç sayının son basamağı nedir?		
A) 0	B) 2	C) 5	D) 4	E) 6		
				Antalya M.O 2004		
13. $n(n+1)(n+2)(5n-1)5n$ sayısının 5^{86} ya bölünmesini sağlayan en küçük bözitif n tamsayısının rakamları toplamı aşağıdakilerden hangisidir?						
A) 13	B) 10	C) 12	D) 14	E) 11		
				Antalya M.O 2005		

OBEB - OKEK

Örnek 89 Aralarında asal olan iki sayının çarpımı ile toplamının OBEB'inin 1 olduğunu gösteriniz.

Örnek 90
$$x + y$$
 ile $x - y$ aralarında asal iki sayı ise, $OBEB(x^2 - y^2, 2x) = ?$

Örnek 91 2520 ve 3960 sayılarının her ikisini de bölen kaç pozitif tamsayı vardır?

Örnek 92
$$a+b$$
 ile $a-b$ sayıları aralarında asal sayılar olmak üzere, $M=2a+(1+2a)\left(a^2-b^2\right)$ ve $N=2a\left(a^2+2a-b^2\right)\left(a^2-b^2\right)$ ise, $OBEB(M,N)=?$

3.1 OKEK (Ortak Katların En Küçüğü)

★ Teorem 3.1. $A = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ ve $B = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$ sayılarını göz önüne alalım. i = 1, 2, ..., k için, r_i ve s_i sayı üslerinin minimumlarını m_i ve maksimumlarını ise M_i ile gösterelim. Bu durumda,

$$\textit{OBEB}(A,B) = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} \quad \textit{ve} \quad \textit{OKEK}(A,B) = p_1^{M_1} p_2^{M_2} \cdots p_k^{M_k}$$

olur.

Örnek 93 60⁵⁰ sayısı ile 50⁶⁰ sayılarının OBEB'ini ve OKEK'ini bulunuz.

Örnek 94 $OKEK(m,n) = 2^35^711^9$ olacak şekilde kaç tane (m,n) pozitif tamsayı ikilisi vardır?

Örnek 95 1519 sayısı 25 tane pozitif tamsayının toplamı olduğuna göre, bu 25 sayının OKEK'i en küçük kaç olabilir?

Örnek 96 Birincisi 3'e, ikincisi 5'e, üçüncüsü 7'ye, dördüncüsü 9'a ve beşincisi de 11'e tam bölünen en küçük beş ardışık doğal sayıdan en küçüğünün rakamları toplamı kaçtır?

Teorem 3.2.
$$OBEB(m, n) \cdot OKEK(m, n) = m \cdot n$$
'dir.

İspat :

Örnek 97 OBEB(A, B) = d ise $OBEB(A^n, B^n) = d^n$ olduğunu gösteriniz.

OBEB - OKEK 49

3.2 Öklid Algoritması ile OBEB'in Bulunması

Örnek 98 791 ve 12543 sayılarının OBEB'ini Öklid algoritmasını kullanarak bulunuz.

Teorem 3.3. Herhangi x ve y tamsayıları için,

$$OBEB(A, B) = OBEB(A, Ax + By)$$

eşitliği vardır.

İspat:

Örnek 99 $\frac{7n-3}{8n-5}$ ifadesi 100'den küçük kaç tane n doğal sayısı için sadeleştirilebilir?

Örnek 100 100'den küçük kaç tane k pozitif tamsayısı için 2k-1 ve 9k+4 sayıları aralarında asal değildir?

Örnek 101 $\frac{n^2+3n+1}{n^2+4n+3}$ denkleminin sadeleştirilemez olduğunu gösteriniz.

Örnek 102 n bir pozitif tamsayı olmak üzere, OBEB(n! + 1, (n + 1)! + 1) = ?

Örnek 103 $OBEB(2002 + 2, 2002^2 + 2, 2002^3 + 2, ...) = ? (Harvard MIT.Math Tournament 2002)$

Örnek 104 $OBEB\left(\binom{1680}{1},\binom{1680}{3},\binom{1680}{5},...,\binom{1680}{1679}\right)$ değeri kaça eşittir?

Örnek 105 $2^{19} + 1$ ve $2^{96} + 1$ sayılarının en büyük ortak böleni kaçtır?

Örnek 106 3118, 2007 ve 1300 sayılarının her birinin bir d > 1 sayısına bölümünden kalan r olsun. Buna göre, d - r sayısı kaçtır?

3.3 OBEB ve Tamsayı Katsayılı İki Bilinmeyenli Lineer Denklemler

★ Teorem 3.4. (Bezout Teoremi) Herhangi a, b pozitif tamsayısı için,

$$ax + by = OBEB(a, b)$$

olacak şekilde x, y tamsayıları vardır.

İspat:

\bigstar Sonuç: a ve b sayıları aralarında asal ise, ax + by = 1 olacak şekilde x, y tamsayıları vardır.

Teorem 3.5. a, b pozitif tamsayılar ve $n \in \mathbb{Z}$ olsun, ax + by = n denkleminin x, y tamsayı çözümlerinin olması için,

$$OBEB(a,b) \mid n$$

olmalıdır. Bu durumda, çözümler, (x_0, y_0) bir çözüm olmak üzere,

$$(x,y) = \left(x_0 + \frac{b}{d}t, y_0 - \frac{a}{d}t\right)$$

formunda olur.

İspat:

Örnek 107 12x + 15y = 10 denkleminin kaç tane pozitif tamsayı çözümü vardır?

3.4 Karışık Örnekler

Örnek 108 OBEB(x,y) = 5! ve OKEK(x,y) = 50! ve $x \le y$ olacak şekilde kaç tane (x,y) pozitif tamsayı çifti vardır? (Kanada M.O. 1997)

Örnek 109 $y < x \le 100$ olmak üzere,

$$\frac{x}{y}$$
 ve $\frac{x+1}{y+1}$

sayılarının her ikiside tamsayı olacak şekilde kaç (x,y) pozitif tamsayı ikilisi vardır? (AIME)

Örnek 110 $OKEK(6^6, 8^8, k) = 12^{12}$ olacak şekilde kaç tane k pozitif tamsayısı vardır? (AIME 1998)

Örnek 111 X ondalık yazılımında tekrar eden rakam bulunmayan tüm doğal sayıların kümesi olsun. $n \in X$ ve A_n de n sayısının rakamlarının permütasyonlarının oluşturduğu, n sayısı ile aynı basamağa sahip sayıların kümesi olsun. d_n sayısı, A_n 'deki sayıların en büyük ortak böleni ise d_n sayısının alabileceği en büyük değer kaçtır? (İTALYA M.O. 2006)

Örnek 112 $1 \le m < n \le 13$ olmak üzere, $OBEB(2^m - 1, 2^n - 1) = 1$ olacak şekilde kaç tane (m, n) tamsayı ikilisi vardır?

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

OBEB - OKEK

Çözümlü Test

- 1. $\frac{10n+3}{15n+4}$ ifadesi kaç tane n doğal sayısı için sadeleştirilebilir?
- **B**) 1
- C) Sonsuz Sayıda
- D) 11
- E) 12

51

- **2.** n pozitif bir tamsayı olmak üzere, $\frac{11n-6}{17n-12}$ ifadesi n sayısının aşağıdaki değerlerinden hangisi için sadeleştirilemez?
 - A) 2007
- B) 2013
- C) 2009 D) 2010
- E) 2011
- 3. $\frac{n^4+4n^2+3}{n^4+6n^2+8}$ ifadesi 100'den küçük kaç tane n pozitif tamsayısı için sadeleştiri-
 - **A**) 0
- B) 11 C) 12 D) 13
- E) 4
- **4.** $\frac{7}{n+9}, \frac{8}{n+10}, \frac{9}{n+11}, ..., \frac{31}{n+33}$ kesirlerinin sadeleştirilemez olması için n'nin alabileceği en küçük pozitif tamsayı kaçtır?
 - A) 35
- B) 54
- D) 34
- E) 13
- **5.** $(n+1)(n^4+2n)+3(n^3+57)$ sayısı n^2+2 ile bölünecek şekilde n pozitif tamsayısı en büyük kaç olabilir?
 - A) 13
- B) 19
- C) 17
- D) 11
- E) 16
- **6.** $\frac{a^2+30a+2}{a^2-3}$ ifadesi aşağıdaki hangi a değeri için sadeleşebilir?
 - A) 127
- B) 89
- C) 23
- D) 107
- E) 117
- 7. 1059, 1417 ve 2312 sayılarının her birinin bir d > 1 sayısına bölümünden kalan rolsun. Buna göre, d-r sayısı aşağıdakilerden hangisidir? (AHSME 1976)
 - A) 11
- B) 15
- C) 14
- D) 16
- E) 17

E) 6

F) 5

aralarında asal değildir?

B) 5

B) 2

A) 11

A) 3

10. $1,1,2,3,5,8,13,21,34,$ Fibonacci dizisini göz önüne alalım. Bu dizinin 2007 ve 2008'inci elemanlarının en büyük ortak böleni kaçtır?						
A) 1	B) 2	C) 3	D) 12	2 E) 11	L	
11. n pozitif bir tamsayı olmak üzere,						
		$\frac{n^4 + 1}{1}$	$\frac{8n^2 + 15}{10n^2 + 24}$			
:C- 4:			10.0	4 . 1	9	
-		_		n sadeleştirilem		
A) 1572	B) 2	001	C) 1451	D) 2007	E) 9876	
12. <i>n</i> pozitif tamsayısı için	-			den hangisi en a	az bir n pozitif	
A) $\frac{n-1}{n}$	$\frac{1}{2}$ B) $\frac{n}{2}$	C) -	2n+1	D) $\frac{2n-3}{3n+11}$	E) $\frac{3n+25}{n}$	
n	- n $ 2n$ $-$	+1 ²	$n^2 + 2n$	3n + 11	-72n + 17	
13. m ve n aralarında asal doğal sayılar olduğuna göre, $OBEB(m+n, m^2+n^2)$ kaç farklı sayı olabilir? (Sovyet M.O. 1963)						
=	•	· · · · · · · · · · · · · · · · · · ·	E) Sons	suz Savida		
11) 1	D) 2 C	, o D) .	1 1 1 3 5 5 1 1	suz Suy Ida		
14. n pozitif bir tamsayı olmak üzere						
$100 + n^2$ ve $100 + (n+1)^2$						
sayılarının en büyük ortak böleni $f(n)$ olsun. $f(n)$ sayısının maksimum değeri kaçtır? (AIME 1985)						
,	,	C) 400	D) 200	E) Hicbiri		
, , , ,	,	-,	,	/ 5		

8. 100'den küçük kaç tane k pozitif tamsayısı için (2k-9) ve (9k-31) sayıları

D) 8

E) 1

C) 9

9. [x,y] = 100 ve (x,y) = 25 olacak şekilde kaç x,y pozitif tamsayısı vardır? C) 4

OBEB - OKEK 53

15. $n+10$ sayısı n^3+100 sayısını bölecek şekildeki en büyük n pozitif tamsayısı kaçtır? (AIME 1986)						
,	,	C) 840	D) 900	E) Hiçbiri		
16. <i>OKEK</i> (<i>a</i> ,	b) = 1000, c	OKEK(b,c)	= 2000, OKR	$EK\left(c,a\right) = 2000$	0 olacak şekilde	
kaç tane $(a, b,$	c) üçlüsü var	dır? (AIME 1	1987)			
A) 100	B) 75	C) 120	D) 70	E) Hiçbiri		

17. 10^{10} , 15^7 ve 18^{11} sayılarının en az birinin böleni olan pozitif tamsayıların sayısını bulunuz. (AIME 2005)

sayısını bulunuz. (AIME 2005) A) 435 B) 440 C) 396 D) 460 E) Hiçbiri

18. n sayısı 2 ile, n+1 sayısı 3 ile, ..., n+8 sayısı 10'a bölünecek şekilde sayıları küçükten büyüğe doğru sıralayalım. Bu özelliği sağlayan ilk sayı 2'dir. Bu özelliği sağlayan beşinci sayının rakamları toplamı kaçtır?

layan beşinci sayının rakamları toplamı kaçtır?

A) 12 B) 10 C) 13 D) 11 E) Hiçbiri

19. 2401 sayısı 25 tane pozitif tamsayının toplamı olduğuna göre, bu 25 sayının OKEK'i en küçük kaç olabilir?

A) 100 B) 49 C) 97 D) 67 E) Hiçbiri

20. n tek sayı olmak üzere, $OBEB(3^3 - 3, 5^5 - 5, 7^7 - 7, ..., n^n - n, ...) =?$

A) 8 B) 12 C) 4 D) 6 E) Hiçbiri

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

3.6 Problemler

- 1. 1'den büyük beş tamsayı veriliyor. Bu beş sayı büyükten küçüğe sıralanıp herhangi komşu olan iki sayının OKEK'lerinin çarpmaya göre terslerin toplamı yazılıyor. Bu toplamın daima 15/16 sayısından küçük olduğunu gösteriniz. (Kanada M.O. 1979)
- **2.** n pozitif bir tamsayı olmak üzere, $OBEB\left(\binom{2n}{1},\binom{2n}{3},\binom{2n}{5},...,\binom{2n}{2n-1}\right)$ değeri kaça eşittir? (İrlanda M.O. 2006)
- **3.** Verilen m, n, k doğal sayıları için, rm + sn ifadesi k sayısıyla bölünebilecek şekilde aralarında asal r ve s doğal sayılarının bulunabileceğini gösteriniz. (SSCB M.O. 1961)
- **4.** x, y, z pozitif tamsayılar olmak üzere,

$$\frac{1}{x} - \frac{1}{y} = \frac{1}{z}$$
 ve $OBEB(x, y, z) = d$

ise, dxyz ve $d\left(y-x\right)$ sayılarının tamkare olacaklarını ispatlayınız. (BMO 1998)

- **5.** m ve n pozitif tamsayıları için, OBEB(m,n) + OKEK(m,n) = m + n ise, bu sayılardan birinin diğerini böldüğünü ispatlayınız. (Rusya M.O.)
- **6.** $m, n \in S$ olduğundan,

$$\frac{m+n}{OBEB\left(m,n\right)}\in S$$

olacak şekilde boş olmayan tüm sonlu pozitif sayı kümelerini bulunuz. (Avusturya-Polonya M.O. 2004)

- **7.** x ve y pozitif tamsayıları için, u = x + y ve v = OKEK(x, y) ile tanımlanıyor. OBEB(u, v) = OBEB(x, y) olduğunu ispatlayınız.
- **8.** $a, b \in \mathbb{Z}^+$ olmak üzere,

$$\frac{a+1}{b} + \frac{b+1}{a}$$

ifadesi tamsayı ise, $OBEB(a,b) \leq \sqrt{a+b}$ olduğunu ispatlayınız. (İspanya M.O. 1996)

OBEB - OKEK 55

9. $a, b, c \in \mathbb{Z}^+$ olmak üzere,

$$\frac{a+1}{b} + \frac{b+1}{c} + \frac{c+1}{a}$$

ifadesi bir tamsayı ise $OBEB(a,b,c) \leq \sqrt[3]{ab+bc+ca}$ olduğunu ispatlayınız.

10. $a,b,c\in\mathbb{Z}^+$ ve OBEB(a,b,c)=1 olmak üzere, bu sayıların herhangi ikisinin çarpımı üçüncüsüne bölünüyor ise,

- **a**) Bu sayıların her birinin diğer ikisinin en küçük ortak katının, en büyük ortak bölenine bölümünden elde edilen sayıya eşit olduğunu gösteriniz.
- \mathbf{b}) $a>1,\,b>1$ ve c>1 olacak şekilde bir örnek veriniz. (Estonya M.O. 2006)
- **11.** n pozitif tamsayısı için, 0 < i < j < n olmak üzere,

$$OBEB\left(\binom{n}{i},\binom{n}{j}\right) > 1$$

olduğunu gösteriniz.

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

TÜBİTAK Olimpiyat Soruları (OBEB - OKEK) **3.7**

1. $n>5$ bir tamsayı olmak üzere, $2n+13$ ve $2n+27$ sayılarının ortak bölenlerinin en büyüğü $n-4$ ise, bunların ortak katlarının en küçüğü nedir?					
A) 10	5 B) 245	C) 351	D) 851	E) 975	
				UİMO - 2004	
2. $k>1$ bir tamsayı ve $k\not\equiv 9\ (\mathrm{mod}\ 17)$ ise, $2k-1$ ve $9k+4$ tamsayılarının en büyük ortak böleni aşağıdakilerden hangisidir?					
A) 7	B) 17	C) 2k-1	D) 1	E) Hiçbiri	
				UMO - 1993	
3. c , a ve b 'nin pozitif ortak katlarının en küçüğünü ve d de, ortak bölenlerinin en					

büyüğünü göstermek üzere, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} = 1$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} = 1$$

eşitliğini sağlayan kaç tane (a, b) pozitif tamsayı ikilisi vardır?

- A) 6
- B) 5
- C) 4
- D) 3
- E) 2

UMO - 2007

- **4.** 210 ile en büyük ortak böleni 1'den büyük olan ve $1 \le n \le 25$ koşulunu sağlayan n tamsayılarının toplamı nedir?
 - A) 325
- B) 308
- C) 283
- D) 264
- E) 241

UMO - 1996

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

OBEB - OKEK 57

3.8 Ulusal Antalya Matematik Olimpiyat Soruları (OBEB - OKEK)

1. $\frac{11n+3}{23n+2}$, $(n\in\mathbb{N})$ kesrini kısaltan $k\neq 1$ doğal sayısının rakamlarının toplamı

 $\textbf{2.} \ \, \frac{3n+11+13}{11}, \frac{3n+12+14}{12}, \frac{3n+13+15}{13}, ..., \frac{3n+54+56}{54}, \frac{3n+55+57}{55}$ kesirlerinin hiçbiri sadeleşmeyecek biçimde alınmış n doğal sayılarının en küçüğünün

D) 11

E) 15

Antalya M.O.- 1999

B) 7 C) 9

kaçtır?

A) 5

rakamlar top	lamı aşağıdakilerd	len hangisidir?		
A) 7	B) 8	C) 9	D) 10	E) 11
				Antalya M.O 2003
	oöleni olup, 50 ⁶⁰ ı ile bölümünden ka		yan pozitif sayıla	arın sayısı n olsun. n
A) 40	B) 32	C) 35	D) 30	E) 48
				Antalya M.O 2004
4. $\frac{m(n+1)}{m(n+3)}$ vardır?	$\frac{3)-1}{+n+2}$ kesiri sa	deleşecek şeki	lde kaç tane $(m, \frac{1}{2})$	n) pozitif tamsayı çift
	B) 1 C)	2 D) 4	E) Sonsuz col	klukta
) •	_/-	/ -		Antalya M.O 2005
				·
5. $OBEB(x, y)$ tamsayı çifti		$=x+y+4 \operatorname{der}$	nklemini sağlayar	kaç tane (x,y) pozitin
• •	B) 2 C) 4	D) 6 E	2) 8	
				Antalya M.O 2005
				a_n ve a_{n+1} sayılarınır aşağıdakilerden hangi-
	B) 30	C) 25	D) 27	E) 21
,	•	,	,	Antalya M.O 2006

Modüler Aritmetik

4.1 Mod Kavramı

Örnek 113 1! + 2! + 3! + ... + 2009! sayısının birler basamağındaki rakam kaçtır?

Örnek 114 $11! \equiv 10! \pmod{m}$ denkliğini sağlayan m sayılarının sayısını bulunuz.

Örnek 115 $2^n + 27$ sayısı 7'ye bölünecek şekilde 100'den küçük kaç pozitif n tamsayısı vardır?

Örnek 116 m pozitif tamsayısı için, $125 \equiv 37 \pmod{m}$ ve $125 \equiv 70 \pmod{m}$ olduğuna göre, $125! \equiv 0 \pmod{m^n}$ denkliğini sağlayan en büyük n tamsayısı kaçtır?

Örnek 117 77⁷⁷ sayısının birler basamağı kaçtır?

Örnek 118 41³⁶² sayısının 61'e bölümünden kalan kaçtır?

Örnek 119 10²⁰⁰ sayısı 19 tabanında yazılırsa son basamağı kaç olur?

Örnek 120 $\frac{1}{13}$ sayısının virgülden sonraki 101-inci rakamı kaçtır?

4.2 Denklikler

- **★ Teorem 4.2.** $x \equiv y \pmod{m}$ ve $a \equiv b \pmod{m}$ ise,
 - $i) x + a \equiv y + b \pmod{m},$
 - $ii) x a \equiv y b \pmod{m},$
 - iii) $x \cdot a = y \cdot b \pmod{m}$,
 - (iv) $k \in \mathbb{Z}$ $(icin, k \cdot x \equiv k \cdot y \pmod{m})$,
 - v) $n \in \mathbb{Z}$ için, $x^n \equiv y^n \pmod{m}$ denklikleri sağlanır.

İspat:

★ Teorem 4.3. $ka \equiv kb \pmod{m}$ ise, $a \equiv b \pmod{\frac{m}{OBEB(k,m)}}$ olur.

İspat :

Modüler Aritmetik 59

Teorem 4.3. Bir a sayısının, $m_1, m_2, ..., m_r$ sayılarına bölümünden kalanlar eşitse, yani,

$$\begin{cases} a \equiv b \pmod{m_1} \\ a \equiv b \pmod{m_2} \\ \vdots \\ a \equiv b \pmod{m_r} \end{cases}$$

ise, $\mathbf{M} = OKEK(m_1, m_2, ..., m_r)$ olmak üzere, $a \equiv b \pmod{\mathbf{M}}$ denkliği sağlanır.

Örnek 121 $\left\{ \begin{array}{l} x\equiv 11\,(\mathrm{mod}\,12)\\ x\equiv 14\,(\mathrm{mod}\,15) \quad \textit{olduğuna göre }x \textit{ aşağıdakilerden hangisi olax}\\ x\equiv 17\,(\mathrm{mod}\,18) \end{array} \right.$

bilir?

Örnek 122 Alper, cevizlerini 5'er 5'er saydığında 3 ceviz, 7'şer 7'şer saydığında 5 ceviz ve 6'şar 6'şar saydığında da 4 ceviz artıyor. Buna göre, Alper'in en az kaç cevizi vardır?

Örnek 123 6'ya bölündüğünde 2 ve 7'ye bölündüğünde 5 kalanını veren en küçük 3 basamaklı sayı kaçtır?

Örnek 124 $11^n - 1$ sayısı 105'e tam bölünecek şekilde 100'den küçük kaç n pozitif tamsayısı vardır?

Örnek 125 17 sayısının mod 19'da tersini bulunuz.

Örnek 126 6 sayısının mod 10'da tersini bulunuz.

Örnek 127 mod 100'de tersi olan kaç eleman vardır?

★ Teorem 4.5. p bir asal sayı olmak üzere, $1 \le r \le p-1$ için $\binom{p}{r} \equiv 0 \pmod{p}$ 'dir. Hatta, $1 \le r \le p^k-1$ için,

$$\binom{p^k}{r} \equiv 0 \, (\bmod \, p)$$

'dir. Bunun bir sonucu olarak da $(1+x)^p \equiv 1+x^p \pmod{p}$ olduğu görülür.

Örnek 128 (x,19) = 1 olmak üzere $(2x+1)^{19}$ ifadesinin 19'a bölümünden kalan 4 olacak şekildeki en küçük üç basamaklı x sayısı kaçtır?

4.3 Bölünebilirlik Testlerinin Modüler Aritmetik Yardımıyla Yapılması

Örnek 129 9'a bölünebilme kuralını bulunuz.

Örnek 130 11'e bölünebilme kuralını bulunuz.

Örnek 131 7'ye bölünebilme kuralını bulunuz.

Örnek 132 13'e bölünebilme kuralını bulunuz

Problem : Benzer yöntem ile, bir 10A + B sayısının 19'a bölünebilmesi için, A + 2B'nin 19'a bölünebilmesi gerektiğini gösteriniz.

Örnek 133 5 tabanında 4'e bölünebilme kuralını bulunuz.

Örnek 134 8 tabanında verilen $(131612a425)_8$ sayısı 7'ye bölündüğüne göre, a=?

Örnek 135 $n^2 + m^2$ ifadesi 3'e bölünüyorsa 9'a da bölünür. Gösteriniz.

Örnek 136 $x^2 + y^2 = 8z + 6$ denklemini sağlayan kaç tane (x, y, z) tamsayı üçlüsü vardır? (Kanada M.O.- 1969)

Örnek 137 10n-1, 13n-1 ve 85n-1 sayılarının hepsi tamkare olacak şekilde kaç tane n tamsayısı vardır? (Avusturya - Polonya M.O. 2001)

Örnek 138 2²⁹ sayısının değeri, rakamları birbirinden farklı 9 basamaklı bir sayıdır. Bu sayının değerinde kullanılmayan rakam kaçtır?

Örnek 139 Beş tane ardışık tamsayının karelerinin toplamının bir tamkare olamayacağını ispatlayınız.

Örnek 140 $x^2 + 2y^2$ sayısı tek asal ise, 8n + 1 veya 8n + 3 formunda olduğunu ispatlayınız.

Teorem 4.6. m bir pozitif tamsayı ve a ve b ise m ile aralarında asal olan tamsayılar olsun. x, y tamsayıları için,

$$a^x \equiv b^x \pmod{m}$$
 ve $a^y \equiv b^y \pmod{m}$

ise, $a^{OBEB(x,y)} \equiv b^{OBEB(x,y)} \pmod{m}$ olur.

İspat:

Modüler Aritmetik 61

Örnek 141 a ve b pozitif tamsayıları için

$$OBEB(n^a - 1, n^b - 1) = n^{OBEB(a,b)} - 1$$

olduğunu gösteriniz.

4.4 Karışık Örnekler

Örnek 142 Bir A pozitif tamsayısının rakamları dört tane ardışık sayıdan oluştuğuna ve soldan sağa azalan sırada dizildiğine göre, A sayısının 37'ye bölümünden elde edilebilecek mümkün kalanların toplamını bulunuz. (AIME 2004)

Örnek 143 $p+q=\left(p-q\right)^3$ eşitliğini sağlayan tüm p ve q asal sayılarını bulunuz. (RUSYA M.O. 2001)

Örnek 144 6 tabanına göre yazılışı $n = (513451522153241)_6$ olan n sayısı için $25^{2n-1} + 36^n$ sayısının son iki rakamı nedir?

Örnek 145 $\left(\sqrt{2}+\sqrt{3}\right)^{2004}$ sayısının virgülden önceki ve sonraki ilk rakamlarını bulunuz.

Örnek 146 5'e bölündüğünde 2,7'ye bölündüğünde 3 ve 9'a bölündüğünde 4 kalanını veren en küçük pozitif tamsayının rakamları toplamı kaçtır?

Örnek 147 $S = \{n : n2^n + (n+1)2^{3n} \equiv 0 \pmod{11} \}$ olduğuna göre,

- ${\it a}) \; S$ kümesinin elemanlarının 55'e bölümünden hangi kalanlar elde edilebilir?
- ${\it b}$) Her $n \in S$ için, $n+k \in S$ olmasını sağlayan en küçük pozitif k tamsayısı nedir?

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

4.5 Çözümlü Test

1. m ve n tek sayılar olmak üzere m^2+n^2 sayısının 8'e bölümünden kaç farklı kalan

Cluc	culiculii :							
	A) 4	B) 2	C) 3	D) 1	E) 5			
2. k bir rakam, n pozitif bir tamsayı olmak üzere, $\sqrt{8n+k}$ ifadesi kesinlikle tamsayı olamayacak şekilde kaç farklı k rakamı vardır?								
	A) 5	B) 6	C) 7	D) 4	E) 8			
	amının birler b	$(1+2+2^2) +$ pasamağındaki	rakam aşağıda	kilerden hangi	sidir?			
	A) 0	B) 2	C) 1	D) 4	E) 0			
		vıları için, 15·3 münden elde ed			11, 3 ve 49 sayılarından ldir?			
	A) 0	B) 1	C) 2	D) 3	E) 4			
5. <i>n</i>		$^{+10} + 3^{6n+8}$ sag			farklı kalan elde edilir? E) 3			
6. n pozitif tamsayısı için, $101^{n!}$ sayısının 7'ye bölümünden kaç farklı kalan elde edilir?								
	A) 1	B) 2	C) 3	D) 4	E) 7			
7. n pozitif bir tamsayı olmak üzere, $\left(n^2+n+1\right)^{2007}$ ifadesinin son rakamı kaç farklı değer olabilir?								
	A) 1	B) 2	C) 3	D) 4	E) 9			

8. $m=1^3+2^3+3^3+\cdots+2007^3$ sayısının 7'ye bölümünden kalan kaçtır?

D) 0

E) 5

A) 1 B) 2 C) 3

Modüler Aritmetik	63

). :	. 3 ²⁰⁰⁷ sayısının 41'e bölümünden kalan kaçtır?							
	A) 14	B) 17	C) 11	D) 24	E)27			
	10. $1^1 + 2^2 + 3^3 + \cdots + k^k$ ifadesinin $k = 2007$, $k = 2008$ ve $k = 2009$ değerleri çin, 3'e bölümünden kalanların toplamı kaçtır?							
	A) 1	B) 4		D) 5	E) 2			
11.	aşağıdakilerde	en hangisi iki ta	amsayının kar	esinin toplamı	olarak yazılabilir?			
		B) 10101	-	_	D) 87654			
12. 2007, 2009, 2010, 2011 sayılarından kaç tanesi n ve m tamsayılar olmak üzere n^2+m^2 formunda yazılabilir.								
			C) 2	D) 3	E) 4			
	13. x pozitif tamsayılarından, x ve 2^x pozitif sayılarının son rakamı aynı olanları artan sırada yazılıyor, buna göre, 1000'inci sırada hangi sayı bulunur?							
	A) 4036	B) 4104	C) 9996 D) 1006 E)	2924			
14.	Asağıdaki sav	ulardan hangis	i iki tamsavını	n karesinin far	kı olarak yazılamaz.			
,					44 E) 2222222			
	,	,	,	,	,			
15	Acağıdaki cay	ulardan hangis	i iki tameazuni	n karasinin far	kı olarak yazılabilir.			
IJ.		B) 45454	-					
	,	,	-,	,	,			
	1, _	10 _	10)					
16.	$\frac{1}{2}\left(\left(3+\sqrt{2}\right)\right)$				nçtır?			
	A) 1	B) 3	C) 5	D) 7	E) 9			

17. Kendisinin rakamları toplamıyla, 3 katının rakamları toplamı birbirine eşit olan x sayısının 9'a bölümünden kalan kaçtır? (İsveç M.O. 1993)

A) 1 B) 3 C) 5 D) 0 E) 9

vardır? (Çekoslavakya M.O. 1993)

	A) 1	B) 2	C) 5	D) 0	E) Sonsuz sayıda			
sağl	19. $n_1, n_2,, n_{1998}$ pozitif tamsayıları $n_1^2 + n_2^2 + \cdots + n_{1997}^2 = n_{1998}^2$ eşitliğini sağladığına göre bu sayılardan en az kaç tanesi çift olmalıdır? (Junior Balkan M.O. 1997)							
	A) 1	B) 2	C) 5	D) 0	E) 3			
	20. $m,n\in\mathbb{Z}^+$ için, 36^m-5^n formunda yazılabilen en küçük pozitif tamsayı kaçtır? (Sovyet M.O. 1974)							
	A) 11	B) 2	C) 7	D) 1	E) 3			
21. $a_n=2^{3n}+3^{6n+2}+5^{6n+2}$ olduğuna göre, $OBEB(a_0,a_1,,a_{1999})$ ifadesinin değeri aşağıdakilerden hangisidir? (Junior Balkan M.O. 1999)								
	A) 1	B) 5	C) 7	D) 35	E) Hiçbiri			
	22. $1+2^n+3^n+4^n$ sayısı 5'e bölünecek şekilde 100'den küçük kaç tane n pozitif tamsayısı vardır?							
	A) 50	B) 1	C) 75	D) 51	E) Hiçbiri			
23.	•	=	_	oozitif tamsayıs D) 20	ını bulunuz. 0 E) Hiçbiri			
BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ. Mustafa Özdemir								

18. $7^n - 1$ sayısı $6^n - 1$ sayısının bir katı olacak şekilde kaç tane n pozitif tamsayısı

Modüler Aritmetik 65

4.6 Problemler

1. $n^2+2n+12$ sayısının hiç bir n tamsayısı için, 121'e bölünemeyeceğini gösteriniz. (Kanada M.O. 1971)

- **2.** $n^2 + 3n + 5$ ifadesinin 121'e bölünemeyeceğini gösteriniz.
- **3.** $a,b,c,d,e\in\mathbb{Z}$ olmak üzere, $25\mid a^5+b^5+c^5+d^5+e^5$ ise $5\mid abcde$ olduğunu gösteriniz.
- **4.** $A = 2^{2006} + 2^{2007} + 2^{2008}$ sayısının yüzler basamağının çift olduğunu ispatlayınız.
- **5.** n>3 tamsayısı için, $1!+2!+\cdots+n!$ sayısının bir tamsayının bir kuvveti olamayacağını gösteriniz.
- **6.** a bir tek sayı olmak üzere, birbirine eşit olmayan her m ve n pozitif tamsayıları için, $a^{2^n}+2^{2^n}$ ve $a^{2^m}+2^{2^m}$ sayılarının aralarında asal olduğunu gösteriniz. (BALTIK M.O. 2001)
- **7.** $p_1 < p_2 < \cdots < p_{31}$ asal sayıları için, $p_1^4 + p_2^4 + \cdots + p_{31}^4$ sayısı 30 ile bölünüyor ise, bu asal sayılardan üç tane ardışık asal sayı bulunacağını gösteriniz. (Romanya M.O. 2003)
- **8.** $1^1 + 2^2 + 3^3 + \cdots + 2011^{2011}$ toplamının bir tamsayının 1'den büyük bir kuvvetine eşit olamayacağını gösteriniz.
- **9.** $n \in \mathbb{N}$ olmak üzere, 2n+1 ve 3n+1 sayıları tamkare ise $40 \mid n$ olacağını ispatlayınız.
- **10.** $a_1, a_2, ..., a_n$ sayılarının her biri 1 veya -1 olmak üzere, $S = a_1 a_2 a_3 a_4 + a_2 a_3 a_4 a_5 + \cdots + a_{n-1} a_n a_1 a_2 + a_n a_1 a_2 a_3 = 0$

ise, n sayısının 4'e bölünebildiğini ispatlayınız.

11. $\{a_1, a_2, ..., a_m\}$ ve $\{b_1, b_2, ..., b_m\}$ kümelerinin her ikisi de $\operatorname{mod} m$ 'de tüm kalanların oluşturduğu kümeler olsunlar. $\{a_1 + b_1, a_2 + b_2, ..., a_m + b_m\}$ kümesinin de $\operatorname{mod} m$ 'de tüm kalanları göstermesi için, m sayısının tek olması gerektiğini gösteriniz.

- **12.** n sayısı 11'den küçük bir pozitif tamsayı ve $p_1, p_2 > 9$, p_3 ve p, asal sayıları için, $p_1 + p_3^n$ de bir asal sayı olsun. $p_1 + p_2 = 3p$ ve $p_2 + p_3 = p_1^n (p_1 + p_3)$ eşitlikleri sağlanıyor ise, $p_1p_2p_3^n$ çarpımı kaçtır? (Hubei Mat. Yar. 1997)
- **13.** n bir pozitif tamsayı olmak üzere, 2n+1 ve 3n+1 sayılarının her biri tamkare ise, $8 \mid n$ olduğunu gösteriniz.
- **14.** m ve n pozitif tamsayılar olmak üzere, m sayısı 3'e bölünmüyorsa,

$$a = (n+1)^m - n \text{ ve } b = (n+1)^{m+3} - n$$

sayılarının aralarında asal olduğunu gösteriniz.

- b) a ve b aralarında asal olmayacak şekilde tüm m ve n sayılarını bulunuz. (Municipal 98)
- **15.** Eğer, p_1 ve p_2 farklı tek asal sayılar olsunlar. Buna göre, $A = (p_1p_2 + 1)^4 1$ sayısının en az 4 farklı asal çarpanı olduğunu gösteriniz.
- **16.** p bir asal sayı olmak üzere x,y,z tamsayıları 0 < x < y < z < p eşitsizliğini sağlasınlar. x^3, y^3, z^3 sayıları p'ye bölündüklerinde aynı kalanı verdiklerine göre, $x^2 + y^2 + z^2$ sayısının x + y + z ile bölündüğünü ispatlayınız. (Polonya M.O. 2003)

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Modüler Aritmetik 67

$\textbf{4.7} \qquad \textbf{T\ddot{\textbf{U}}B\dot{\textbf{I}}TAK\ Olimpiyat\ Sorular1\ (Mod\"{\textbf{u}}ler\ Aritmetik)}$

1. <i>n</i> pozitif bir t olamaz?	tamsayı ise, 3^n	nin 32'ye bölü	münden kalan a	şağıdakilerden hangisi		
A) 1	B) 11	C) 15	D) 25	E) Hiçbiri		
,	,	,	,	UİMO - 2003		
2. Aşağıdaki a v	$\mathbf{e}\ b\ degerlerind$	en hangisi için,	5 tabanına göre	yazılımı,		
		(aaabbbaaabbaaabbbaaabbbaaabbbaaabbbaaabbbaaabbbaaabbbaaabbaaabbbaaaa	$(baaa)_5$			
olan sayı 4'e tan	n bölünemez?		, 0			
•		= 2, b = 3	C) $a = 0, b = 3$	2		
,	o = 1 E) a		, ,	UİMO - 1999		
_ ,, -	,	-,		CH.10 1000		
3. $14n-35$ sayıs kaç tane n tamsa		olarak bölünme	esini ve $1 \le n \le$	77 koşulunu sağlayan		
A) 77	B) 11	C) 7	D) 1 E	0 (
				UİMO - 1996		
4. $5^n + n^5$ sayısının 11'e bölünmesini sağlayan 2003'ten büyük en küçük n tamsayısı nedir?						
A) 2010	B) 2011	C) 2012 D) 2014 E) H	Iiçbiri		
				UMO - 2003		
5. $8^{26} \cdot 125^{48}$ sayısının yedi tabanına göre yazımının son iki basamağı nedir?						
A) 21	B) 31	C) 41	D) 51	E) 61		
				UİMO - 2007		
6. $2005^{2003^{2004}+3}$ sayısı 3 tabanına göre yazıldığında son iki basamak ne olur?						
A) 21		C) 11		E) 22		
				UMO - 2004		
7. $n < 2005$ pozitif bir tamsayı olmak üzere, n sayısının, hiçbiri 5'e bölünmeyen tüm $a_1, a_2,, a_n$ pozitif tamsayıları için, $a_1^4 + a_2^4 + \cdots + a_n^4$ sayısının 5'e bölünmesini sağlayan en büyük değeri nedir?						
A) 2000	B) 2001	C) 20	D)	2003 E) 2004		

UMO - 2005

UMO - 1994

8. Aşağıdaki sayıla için böler?	ardan hangisi 3	$3n+1+5^{3n+2}+$	-7^{3n+3} sayısını	her n pozitif tamsayısı		
A) 3	B) 5	C) 7	D) 11	E) 53		
,	,	,	,	UMO - 2005		
9. $3+3^2+3^{2^2}+3^{2^2}$ denktir?	$2^3 + \cdots + 3^{2^{2006}}$	toplamı, 11 m	oduna göre aşa	ığıdakilerden hangisine		
A) 0	B) 1	C) 2	D) 5	E) 10		
,	,	,	,	UMO - 2006		
	rının oluşturdu			ni de istenilen herhangi eşit olan kaç tane dört		
A) 0	B) 1	C) 3	D) 6	E) 12		
				UİMO - 2004		
11. $x^2+(x+1)^2+(x+2)^2=y^2$ denkleminin x,y tamsayı olacak şekilde kaç tane (x,y) çözüm takımı vardır?						
A) Sonsuz	B) 12	C) 2	D) 0	E) 3		
				UMO - 1993		
12. $5p(2^{p+1}-1)$ sayısını tamkare yapan kaç p asal sayısı vardır?						
A) 0	B) 1	C) 2	D) 3	E) Hiçbiri		
,	,	,	,	UMO - 2003		
13. $t_k(n)$ ile, n pozitif tamsayısının on tabanına göre yazılımındaki rakamların k 'ıncı kuvvetlerinin toplamını gösterelim. Aşağıdaki değerlerden, hangisi için, 3'ün $t_k(n)$ 'yi bölmesi 3'ün n 'yi bölmesini gerektirmez?						
A) 3	B) 6	C) 9	D) 15	E) Hiçbiri		
				UMO - 1999		
14. Aşağıdaki sayılardan hangisi $4n^2+1$ sayısının n 'nin sonsuz sayıda tamsayı değeri için böler?						
-	B) 7	C) 11	D) 13	E) Hiçbiri		

Modüler Aritmetik 69

15. m,n pozitif tamsayılar ve p>2 asal sayı olsun. $m\not\equiv 0\ (\mathrm{mod}\ p)$ olmak üzere, $m^n+n^m\equiv 0\ (\mathrm{mod}\ p)$ denkliğinin sağlayan (m,n) sıralı ikililerinin oluşturduğu kümede kaç eleman vardır?

D) Sonsuz sayıda

16. Aşağıdaki kümelerden hangisi; $\left\{a\in\mathbb{Z}:a^7\equiv a\,(\mathrm{mod}\,63)\right\}$ kümesinin alt kümesi

E) Hiçbiri

UMO - 1994

A) 0

B) 1

C) p

deği	ldir?					
	A) $\{a \in \mathbb{Z} : a\}$	$a \equiv 0 \pmod{21}$	$)\} \qquad \mathbf{B}) \ \{a \in$	$\mathbb{Z}: a \equiv 0$	(mod 9)	
	C) $\{a \in \mathbb{Z} : a\}$	$\equiv 2 \pmod{3}$	$D) \{a \in$	$\mathbb{Z}: a \equiv 1$ (1	mod 3)	
	E) Hiçbiri					UMO - 1995
	$P_1,P_2,,P_{12}$ ımda x aşağıda			$+\cdots+P_{1}$	$x \equiv x \pmod{1}$	2) olsun. Bu
	A) 0	B) 3	C) 7	D) 8	E) 11	
						UMO - 1994
18.	n sayısının aşa	ğıdaki değerle	rinden hangisi	için, $\sum_{i=1}^4 i^n$	sayısı 5'e bö	lünmez?
	A) 241	B) 240	C) 239	D)	238	E) 237
						UMO - 1996
için	,	B) 30	C) 32	D) 34	E) I	łiçbiri UİMO - 1993
	$2x^2 + ky^2 \equiv$ Sözümünün bul					
	$A) \{k : k \equiv 7$	$(\mod 16) $	$\mathbf{B})\ \{k:k\equiv7$	(mod 32)	C) $\{k: k \equiv$	$7 \pmod{8}$
		(mod 4)				UMO - 1997
	$S = \{n : n3$ asını sağlayan		,	, -	$n \in S$ için,	$n+k \in S$
	A) 6	B) 7	C) 14	D) 21	E) 42	
						UMO - 2006

22. $1 \le q \le 37$, $1 \le b \le 37$ koşullarını ve 37'nin 1+7a+8b+19ab ifadesini bölmesini sağlayan kaç (a,b) tamsayı ikilisi vardır?

A) 37

B) 63

C) 73

D) 36

E) Hiçbiri

UİMO - 2009

23. $11^2+13^2+17^2$, $24^2+25^2+26^2$, $12^2+24^2+36^2$, $11^2+12^2+132^2$ sayılarından kaçı bir tamsayının karesine eşittir?

A) 1

B) 2

C) 3

D) 4

E) 0

UMO - 2009

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

4.8 Ulusal Antalya Matematik Olimpiyat Soruları (Modüler Aritmetik)

		Aritmei	uk)		
1. $B = 10^{10^7}$	$+10^{10^6}+10^{10^5}$	$+ 10^{10^4}$ sayısı	ı 7'ye bölündüğ	ünde kalan nedir	?
A) 2	B) 1	C) 4	D) 3	E) 5	
				Antalya M.C) 1999
	$+73^{41}^{37}+69^{96}$ ıdakilerden hang		k sayı sistemin	deki yazılımında	son ik
A) 03	B) 69	C) 75	D) 73	E) 41	
				Antalya M.C	D 2001
3. $\sqrt{2000^{2002}}$ rakam nedir?	z sayısının onluk	sayı sistemin	de yazılışında s	ağdan sıfırdan fa	ırklı ilk
A) 4	B) 2	C) 8	D) 6	E) 5	

4. $a_1,a_2,...,a_{100}$ tamsayıları için $a_1+a_2+\cdots+a_{100}=1001^{1001}$ eşitliği sağlandığına göre, $a_1^3+a_2^3+\cdots+a_{100}^3$ sayısının 6'ya bölümünden kalan nedir?

A) 1

B) 2

C) 3

D) 4

E) 5

Antalya M.O.- 2004

Antalya M.O.- 2002

Fermat - Euler - Wilson - Çin Kalan Teoremleri

5.1 Euler - Fermat Teoremi

★ Teorem 5.1. (Euler Teoremi) (a, n) = 1 ise, φ , Euler fonksiyonu olmak üzere, $a^{\varphi(n)} \equiv 1 \pmod{n}$ 'dir.

İspat:

Örnek 148 11¹⁰⁰ sayısının 48'e bölümünden kalan kaçtır?

Örnek 149 $2^{2010 \cdot 2011} - 1$ sayısının 2011^2 'ne tam bölünebildiğini gösteriniz.

Örnek 150 $91^8 - 1$ sayısı aşağıdakilerden hangisine tam bölünemez?

A) 20

B) 24

C) 16

D) 23

E) 2'

Teorem 5.2. (Fermat Teoremi) p bir asal sayı olmak üzere, herhangi a tamsayısı için, $a^p \equiv a \pmod{p}$ 'dir.

İspat :

Örnek 151 6¹²⁷ sayısının 19'a bölümünden kalan kaçtır?

Örnek 152 $7^{128} + 5^{67}$ sayısının 13'e bölümünden kalan kaçtır?

Örnek 153 $p_1 < p_2 < ... < p_n$ sayıları $(50!)^2$ sayısının tüm asal çarpanları olsun. $(50!)^2$ sayısının en büyük tek çarpanına bölümünden elde edilen sayı m olmak üzere,

$$n \cdot p_1^{100!} + (n-1) \cdot p_2^{100!} + \dots + 2 \cdot p_{n-1}^{100!} + 1 \cdot p_n^{100!}$$

toplamının m ile bölümünden kalan kaçtır? (Antalya M.O.- 2007)

Örnek 154 n sayısı 1'den büyük bir tamsayı olmak üzere, n sayısının 2^n-1 sayısını bölemeyeceğini gösteriniz.

5.2 Bir Tamsayının Mertebesi

Teorem 5.3. m ve a aralarında asal sayıları için, $a^n \equiv 1 \pmod{m}$ olması için gerek ve yeter şart $o_m(a) \mid n$ olmasıdır.

İspat:

Örnek 155 $2^n \equiv 1 \pmod{101}$ denkliğini sağlayan en küçük n sayısı kaçtır? (Yani, mod 101'e göre, 2'nin mertebesi kaçtır?)

Örnek 156 $3^n - 1$ sayısının son iki basamağının 00 olması için n en küçük kaç olmalıdır?

Örnek 157 p bir asal sayı ise, $2^p - 1$ sayısının tüm asal bölenlerinin p'den büyük olacağını gösteriniz.

Örnek 158 n bir tamsayı olmak üzere p asal sayısı, $4n^2 + 1$ sayısını bölüyor ise, p = 4k + 1 olduğunu gösteriniz.

Örnek 159 Aşağıdaki p asal sayılarından hangisi için, p sayısı $4n^2 + 1$ sayısını bölecek şekilde bir n tamsayısı vardır?

A) 31

B) 43

C) 151

D) 157

E) Hiçbiri

5.3 Wilson Teoremi

Teorem 5.4. (Wilson) p bir asal sayı olmak üzere, $(p-1)! \equiv -1 \pmod{p}$ 'dir. **İspat :**

Örnek 160 11 · 22! sayısının 23'e bölümünden kalan kaçtır?

Örnek 161 20! sayısının 23'e bölümünden kalan kaçtır?

Örnek 162 $n \in \mathbb{Z}^+$ olmak üzere, OBEB(n! + 1, (n + 1)!) = ? (İrlanda M.O. 1996)

★ Teorem 5.5. $(p-1)! \equiv -1 \pmod{p}$ ise p bir asal sayıdır. **İspat :**

Örnek 163 Bir tamsayının karesinin bir p tek asal sayısı ile bölümünden kalanın -1 olması için gerek ve yeter şartın p sayısının 4k+1 formunda olması olduğunu gösteriniz.

Örnek 164 Aşağıdaki n tamsayılarından hangisi için $x^2 \equiv -1 \pmod{n}$ denkliğini sağlayan en az bir x tamsayısı vardır? (UMO - 2003)

A) 97

B) 98

C) 99

D) 100

E) Hiçbiri

Örnek 165 $x^2 + 1 \equiv \pmod{101}$ denkliğini aşağıdakilerden hangisi sağlar?

A) 25!

B) 37!

C) 14!

D) 50!

E) Hiçbiri

Örnek 166 p = 4k + 1 bir asal sayı olduğuna göre,

$$\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv -1 \, (\operatorname{mod} p)$$

olduğunu gösteriniz.

5.4 Çin Kalan Teoremi

 \bigstar Teorem 5.6. (Çin Kalan Teoremi) $p_1, p_2, p_3, ..., p_n$ sayıları ikişer ikişer aralarında asal sayılar olmak üzere,

$$\begin{cases} x \equiv k_1 \pmod{p_1} \\ x \equiv k_2 \pmod{p_2} \\ \vdots \\ x \equiv k_n \pmod{p_n} \end{cases}$$

denklik sistemi $\operatorname{mod}(p_1p_2\cdots p_n)$ 'ye göre bir tek çözüme sahiptir.

İspat:

Örnek 167 2'ye bölündüğünde 1 kalanını, 3'e bölündüğünde 1 kalanını ve 5'e bölündüğünde 3 kalanını veren en küçük 4 basamaklı tamsayı kaçtır?

Örnek 168
$$\begin{cases} x \equiv 1 \, (\text{mod} \, 2) \\ x \equiv 2 \, (\text{mod} \, 3) \quad \textit{denklik sistemini çözünüz.} \\ x \equiv 1 \, (\text{mod} \, 7) \end{cases}$$

5.5 Karışık Örnekler

Örnek 169 p^8-1 sayısı 240'a bölünecek şekilde kaç tane p asal sayısı vardır?

Örnek 170 2003^{2002²⁰⁰¹} sayısının son üç rakamını bulunuz. (Kanada M.O. 2003)

Örnek 171 $\sum_{k=1}^{10} k^{100!}$ toplamının son üç rakamını bulunuz.

Örnek 172 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{23}=\frac{a}{23!}$ denklemini sağlayan, a tamsayısının 13'e bölümünden kalan kaçtır? (ARML 2002)

Örnek 173 $\frac{1}{2009}$ sayısının ondalık yazılımında virgülden sonraki 841'inci rakamı kaçtır?

Örnek 174 1001 sayısının katlarından kaç tanesi, $0 \le m < n \le 99$ ve $m, n \in \mathbb{Z}$ olmak üzere, $10^n - 10^m$ formunda yazılabilir? (AIME 2001)

Örnek 175 pq sayısı $(5^p - 2^p)(5^q - 2^q)$ sayısını bölecek şekilde kaç tane (p,q) asal sayı çifti vardır? (Bulgaristan M.O. 1995)

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

5.6 Çözümlü Test

1. 7	⁹⁹⁹⁹ sayısının s	son üç rakamını	bulunuz.		
	A) 142	B) 124	C) 127	D) 004	E) Hiçbiri
2. 1 sidir		2 tabanına göre	e yazılışındaki	son 7 rakam a	ışağıdakilerden hangi-
	A) 0001011	B) 0101011	C) 00011	101 D) 101	1000 E) Hiçbiri
3. 10	6! sayısının 32	3'e bölümünder	n kalan asağıdı	akilerden hangi	sine esittir?
	A) 220	B) 81	C) 19	D) 10	E) 237
4. 9	•	n 43'e bölümün	,		
	A) 1	B) 2	C) 3	D) 4	E) Hiçbiri
5. 10	00! sayısının 1	03'e bölümünd	en kalan kaçtı	r?	
	A) 61	B) 31	C) 51	D) 41	E) Hiçbiri
6. 5	$\cdot 3^{4n+2} + 53 \cdot$	$2^{5n} + 6^{42n+1} $	sayısının 49'a	bölümünden ka	alan kaçtır?
			C) 31	D) 6	E) Hiçbiri
7. <i>x</i> vard		$\operatorname{pd} p)$ denkliğini	in 50'den küçi	ik kaç tane p as	sal sayısı için çözümü
	A) 11	B) 7	C) 6	D) 8	E) 5
8. 1 olan		$+3^n$ sayısı 100	'e tam bölünd	üğüne göre n aş	şağıdakilerden hangisi
	A) 39	B) 79	C) 119	D) 69	E) 199
9. 8 ⁵	$2008 - 9^7$ sayıs	sının 61'e bölün B) 18	nünden kalan a	aşağıdakilerden D) 0	n hangisine eşittir? E) 5

A) 11

B) 7

C) 19

D) 13

E) 31

10.	$100^{560} - 1$ say	ısı aşağıdakile	rden hangisine	tam bölüneme	ez?
	A) 29	B) 11	C) 17	D) 19	E) 41
11.	143 ¹⁰¹ sayısını	n son iki rakan	nı kaçtır?		
	A) 33	B) 00	C) 50	D) 23	E) 43
topl	$\begin{cases} x \equiv 1 \text{ (mod)} \\ x \equiv 2 \text{ (mod)} \\ x \equiv 3 \text{ (mod)} \\ \text{amily kaçtur?} \\ \text{A) 2} \end{cases}$				tamsayının rakamları E) 14
kala	$\begin{cases} x \equiv 3 \text{ (mo} \\ x \equiv 5 \text{ (mo} \\ x \equiv 2 \text{ (mo} \\ \text{anın rakamları t} \end{cases}$	oplamı kaçtır?			ölümünden elde edilen E) 14
14.		k kaç tane pozi B) 1207		-	sı 1000'e tam bölünür? 1000 E) 805
	n sayısı $10\mathrm{'a}$ amağının rakan				n^{20} sayısının son iki
	A) 7	B) 11	C) 9	D) 15	E) 13
16.		! + 17! + · · · + B) 4	-	-	nden kalan kaçtır? E) 16
	m ve n pozitifünmez?	tamsayıları içi	$\sin, m^{60} - n^{60}$	sayısı aşağıda	kilerden hangisine tam

18.	$\sum_{k=1}^{2008} 10^{10^k} \text{ sa}$	ıyısının 7'ye bö	lümünden kala	n aşağıdakilerd	len hangisine	e eşittir?
	A) 6	B) 5	C) 4	D) 0	E) 3	
19.		ayısının son iki				
	A) 10	B) 30	C) 40	D) 50	E) 00	
20. sidi		- 100 ¹⁰⁰ sayısır	nın 101^2 ile böl	ümünden kalar	ı aşağıdakile	rden hangi-
	A) 101^2 –	2 B 10	$01^2 - 1$	C) 2	D) 1	E) 0
21.	-	ının 105'e bölü			_	-
	A) 43	B) 65	C) 37	D) 46	E) 31	L
	9, 99, 999, dır?	9999, sayıla	rından sonsuz	tanesini bölme	eyen kaç tan	e asal sayı
	A) 4	B) 2	C) 3	D) 5	E) Sonsuz	sayıda
	$25^{25!}+27^{27}$ len hangisidir	$\frac{1}{1} + \dots + 47^{47!}$ r?	$+49^{49!}$ sayısın	ıın 50'ye bölün	nünden kalar	ı aşağıdaki-
	A) 25	B) 35	C) 45	D) 15	E) 5	
	içüyle tam bö	amından oluşar ölündüğüne gör B) 396	e n aşağıdakile	rden hangisi o	lamaz?	
	,	,	,	,		,
25.		ayısının 13'e b				
	A) 10	B) 7	C) 9	D) 11	E) 0	

A) 13

B) 17

26. 7^{2008} sayısın	ıın son üç basa	mağını bulunuz?			
A) 801	B) 401	C) 543	D) 64	9 E) 349	
27. Her n tamsay	yısı için, n^{13} –		_	isiyle tam bölünmez?	
A) 15	B) 35	C) 26	D) 65	E) 33	
28. Bir tamsayın	ın 2000'inci k	uvvetinin son rakaı	nı kaç farklı	sayı olabilir?	
A) 4	B) 2	C) 6	D) 5	E) 10	
arklı kalanların	toplamı kaçtır'	?		inden elde edilebilec	ek
A) 1	B) 7	C) 9	D) 19	E) 17	
	sayısının 17'ye B) 11		n aşağıdakile D) 3	rden hangisine eşittir E) 7	?
		n tamsayıları için b n is $n=5k\ (k\in\mathbb{Z})$		$7k\ (k\in\mathbb{Z})$	
D) 17		E) Hepsi			
	2! + 10! + 1 so B) 91	ayısı aşağıdakilerde C) 143	en hangisine D) 77	tam bölünür. E) 55	
33. $p \mid 2^n + 1$ sekilde kaç tane			ük asal böle	ni p 'den büyük olacı	ak
A) 1	B) 0	C) Sonsuz Sayı	da D) 2	E) Hiçbiri	
34. 176 ^{176!} say	usının 2000 ild	e bölümünden elde	e edilen kala	anın rakamları toplar	n

C) 19 D) 22

E) 21

D) Sonsuz sayıda

E) Hiçbiri

A) 1

ardışık üç sayının toplamını bulunuz.

B) 2

A) 346	B) 187	C) 429	D) 432	E) 483
36. $\underbrace{11111}_{n-1 \text{ tane}}$ says:	sı p 'ye bölünmey	recek şekilde kaç	tane p asal sayısı	vardır.

C) 3

35. En küçüğü 5'in, ortancası 7'nin ve en büyüğü 9'un katı olacak şekildeki en küçük

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

5.7 Problemler

- **1.** 242 tane 1 ve 242 tane 2'den oluşan, n=111...122...2 sayısının 23'e tam bölündüğünü ispatlayınız.
- 2. Tüm rakamları aynı olan bir sayı 2008'in bir katı olabilir mi?
- **3.** Toplamları 1492 olan bir miktar tamsayının yedinci kuvvetlerinin toplamı a) 1996 b) 1998 olabilir mi? (Çek Slovak M.O. 96)
- **4.** 1'den büyük a,n tamsayıları için, $n\mid a^n-1$ ise, OBEB(a-1,n)>1 olduğunu ispatlayınız.
- **5.** Her n pozitif çift sayısı için $n^2 1$ sayısının $2^{n!} 1$ sayısını böldüğünü ispatlayınız.
- **6.** n > 1 tamsayısı $2^n 1$ sayısını asla bölemez ispatlayınız.
- **7.** p asal sayı olmak üzere, $ab^p ba^p$ sayısının p'ye bölündüğünü ispatlayınız.
- **8.** $2^n n$ sayısı verilen bir asal sayının katı olacak şekilde, sonsuz sayıda n pozitif tamsayı bulunabileceğini gösteriniz. (Kanada M.O. 1983)
- **9.** p bir tek asal sayı olmak üzere, q ve r asal sayıları için, q^r+1 sayısı p'ye tam bölünüyor ise, $2r\mid p-1$ veya $p\mid q^2-1$ olduğunu ispatlayınız.
- **10.** n>1 bir tek sayı olduğuna göre, n sayısının 3^n+1 sayısını bölmediğini ispatlayınız.
- 11. Tüm rakamları aynı olan ve 2008'e bölünebilen bir sayının olduğunu gösteriniz.
- **12.** $p \geq 5$ bir asal sayı ve m ile n aralarında asal iki tamsayı olmak üzere,

$$\frac{m}{n} = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{(p-1)^2}$$

 $ise, p \mid m \ olduğunu \ ispatlayınız.$

- **13.** p asal sayısı $2^n n$ sayısını bölecek şekilde sonsuz sayıda n pozitif tamsayısı olduğunu ispatlayınız.
- **14.** 3k + 2 formunda bir p asal sayısı, $a, b \in \mathbb{Z}$ olmak üzere $a^2 + ab + b^2$ sayısını bölüyor ise, $p \mid a$ ve $p \mid b$ olduğunu ispatlayınız.

- **15.** Her n pozitif tamsayısı için $a_n = 2^n + 3^n + 6^n 1$ genel terimiyle verilen (a_n) dizisi veriliyor. Bu dizinin tüm elemanlarıyla aralarında asal olan tüm pozitif tamsayıları bulunuz. (IMO 2005)
- **16.** Her n pozitif tamsayısı için, hiçbiri bir asal sayının kuvveti olmayan n tane ardışık sayının bulunabileceğini ispatlayınız. (IMO 1989)
- 17. p bir asal sayı olmak üzere,

$$1^{p-2} + 2^{p-2} + 3^{p-2} + \dots + \left(\frac{p-1}{2}\right)^{p-2} \equiv \frac{2-2^p}{p} \pmod{p}$$

olduğunu ispatlayınız.

18. S(n), n sayısının rakamlarının toplamını göstermek üzere, $S(n) = 1996 \cdot S(3n)$ olacak şekilde n pozitif tamsayısının var olduğunu gösteriniz. (İRLANDA M.O. 1996)

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KÜTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

5.8 TUB	oriak Olimj	piyat Sorui	ari (Euler -	- wiison 1	eoremieri)
1. 11 modunda	a 3^{2002} aşağıdak	ilerden hangis	sine denktir?		
A) 1	B) 3	C) 4	D) 5	E) Hiçl	oiri
					UMO - 2002
2. Aşağıdaki sa için bölmez?	ayılardan hangis	$\sin n^{2225} - n^{20}$	n^{005} sayısını n'	nin bütün tar	nsayı değerleri
A) 3	B) 5	C) 7	D) 11	E) 23	UMO - 2005
3. $10 \cdot 3^{195} \cdot 4$ lerden hangisid	9^{49} sayısının dö dir?	rt tabanına gö	öre yazımının s	son üç basan	nağı aşağıdaki-
A) 112	B) 130	C)	132	D) 212	E) 232
					UMO - 2007
	$3^{202} \cdot 39^{606}$ sayı				
A) 001	B) 081	C) -	561	D) 721	E) 961
					UMO - 2008
	yısı aşağıdakiler				
A) 11	B) 19	C) 31	D) 41	E)	61
					UMO - 1994
6. $1 \le a \le$ tamsayısı vard	100 olmak üzei ır?	re, $a^{60} \equiv 1$ (2)	mod 77) bağıı	ntısını sağlay	yan kaç tane a
A) 79	B) 78	C) 77	D) 76	E)	75
					UMO - 1996
7. $1^{1!} + 2^{2!} +$ hangisidir?	$-3^{3!}+\cdots+13^{3!}$	3 ^{13!} sayısı 13	'e bölündüğüı	nden kalan a	şağıdakilerden
A) 3	B) 2	C) 1	D) 0	E) Hiçl	oiri
					UMO - 1996

8. $1+2+2^2+2^3+\cdots+2^n$ toplamının 77 ile bölünmesini sağlayan en küçük $n\geq 100$ tamsayısı nedir?

A) 101 B) 105 C) 111 D) 119 E) Hiçbiri UMO - 2000

E) 01

UMO - 2000

D) 21

A) 81

vardır?

B) 61

A) 2	B) 4	C) 5	D) 9	E) Hiçbiri	
				UİMO - 2001	
11. $p_1 < p_2 <$		$[00]$ aralığındaki $\sum_{i=1}^{24} p_i^{99!} \equiv a$ (1		gostermek uzere,	
		i=1			
denkliğini gerçe	-		-		
A) 99	B) 50	C) 48	D) 28	5 E) 24 UMO - 1998	
12. <i>n</i> 'nin tüm p pozitif tamsayı	-	değerleri için 5	$n^{11} - 2n^5 - 3$	3n sayısını bölen kaç tane	
A) 2	B) 5	C) 6	D) 12	E) 18	
				UMO - 2004	
13. 9, 99, 999,	, ,	•			
,	,	mini bölmeyen	•	•	
· · · · · · · · · · · · · · · · · · ·	-	-	_	kta terimini böler.	
C) Her n p bölünen bir terin		ısı için, bu dizi	nin n'den çok	sayıda farklı asal sayı ile	
D) Öyle bi çoklukta terimir		vardır ki, n'den	büyük her as	al sayı, bu dizinin sonsuz	
E) Hiçbiri					
, 3				UMO - 2001	
14. Aşağıdaki sayılardan hangisi (a^3-1) a^3 (a^3+1) sayısını a 'nın en az bir tamsayı değeri için bölmez?					
A) 6	B) 7	C) 8	D) 9	E) Hiçbiri	
				UMO - 1995	

sayısının on tabanına göre yazılımının son iki basamağı nedir?

10. $1 \leq n \leq 100$ ve $2^n + n^5 \equiv 1 \pmod{11}$ koşullarını sağlayan kaç n tamsayısı

C) 41

15. Aşağıdaki a sayılarından hangisi için,

$$n^a \equiv n \pmod{a}$$

bağıntısını sağlamayan en az bir n tamsayısı vardır?

- A) 667
- B) 561
- C) 547
- D) 503

E) 491

UMO - 1996

16. N sayısının ondalık yazımında birler basamağındaki rakam 2'dir. Bu rakamı bulunduğu yerden kaldırıp en başa yazdığımızda elde ettiğimiz sayı N sayısının iki katı ise, N'nin basamak sayısı en az kaçtır?

- A) 12
- B) 36
- C) 4
- D) 18
- E) 6

UMO - 1997

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

Denklikler (Kongruanslar)

6.1 Doğrusal Denklikler

Teorem 7.1. (Cözümün Varlığı) $ax \equiv b \pmod{m}$ denkliğinin tamsayılarda çözümünün olması için gerek ve yeter şart m ile a sayılarının OBEB'inin b sayısını bölmesidir.

İspat:

Örnek 176 $9x = 6 \pmod{12}$ denkliğinin (9,12) = 3 ve $3 \mid 6$ olduğundan çözümü vardır? Bu denkliğin birbirine denk olmayan kaç çözümü vardır?

Teorem 7.2. (Cözüm Sayısı) $ax \equiv b \pmod{m}$ denkliğinde, $OBEB(m, a) = d \mid b$ ise denkliğin tam d tane çözümü vardır.

İspat:

Örnek 177 Aşağıdaki denkliklerden hangisinin çözümü yoktur?

A) $25x + 19 \equiv 0 \pmod{34}$ B) $11x \equiv 21 \pmod{41}$

C) $27x + 1 \equiv 22 \pmod{33}$

D) $47x + 37 \equiv 0 \mod 57$

E) $24x + 19 \equiv 0 \pmod{45}$

Örnek 178 $27x + 18 \equiv 0 \pmod{36}$ denkliğinin birbirine denk olmayan kaç tane çözümü vardır?

Örnek 179 $ax \equiv 24 \pmod{72}$ denkleminin 3'ten fazla çözümünün olabilmesi için a yerine yazılabilecek mod 72'de birbirine denk olmayan kaç tane pozitif tamsayı vardır?

\star Teorem 7.3. (Cözümlerin Bulunması) $ax \equiv b \pmod{m}$ denkliğinin tamsayılarda bir çözümü x_0 ise, bu denkliğin çözüm kümesi

$$C.K. = \left\{ x_0 + \frac{m}{m-a}t : t \in \mathbb{Z} \right\}$$

olur. Yani, x_0 bir çözüm ve (m,a)=d ise, tüm çözümler, p=m/d olmak üzere,

$$x_0, x_0 + p, x_0 + 2p, ..., x_0 + (d-1)p$$

olur.

 $12x \equiv 9 \pmod{21}$ denkliğinin birbirine denk olmayan çözümlerini bulunuz.

★ Teorem 7.4. (Çözümlerin toplamı) $ax \equiv b \pmod{m}$ denkliğinin, m'den küçük pozitif çözümlerinin toplamı S ise, x_0 bir çözüm ve OBEB(m, a) = d olmak üzere, $S = d \cdot x_0 \pmod{m}$ olur.

Örnek 181 $105x \equiv 80 \pmod{550}$ denkliğinin birbirine denk olmayan 550'den küçük, pozitif tamsayı çözümlerinin toplamının 550 ile bölümünden kalan kaçtır?

6.2 İki Bilinmeyenli Doğrusal Denklikler

Teorem 7.5. (Çözümün Varlığı) $ax + by \equiv c \pmod{m}$ denkliğinin çözümü olması için gerek ve yeter şart $OBEB(a, b, m) \mid c$ olmasıdır.

İspat:

★ Teorem 7.6. (Çözüm Sayısı) OBEB(m, a) = 1 veya OBEB(m, b) = 1 olması durumunda $ax + by \equiv c \pmod{m}$ denkliğinin tam m tane birbirine denk olmayan çözümü vardır.

İspat:

Örnek 182 $21x + 34y = 15 \pmod{45}$ denkliğinin birbirine denk olmayan kaç tane tamsayı çözümü vardır?

Teorem 7.7. $OBEB(a, b, m) = d \text{ ve } d \mid c \text{ ise } ax + by \equiv c \pmod{m} \text{ denkliğinin,}$ $tam \ d \cdot m \text{ tane birbirine denk olmayan çözümü vardır.}$

Örnek 183 $231x + 429y = 132 \pmod{660}$ denkliğinin birbirine denk olmayan çözümlerinin sayısı bulunuz.

Örnek 184 $2x + 3y = 4 \pmod{6}$ denkliğini sağlayan ve birbirine denk olmayan farklı çözümlerini bulunuz.

Örnek 185 $2x + 3y + 4z \equiv 1 \pmod{5}$ denkliğinin birbirine denk olmayan kaç çözümü vardır.

6.3 Denklik Sistemleri

Örnek 186
$$\begin{cases} x \equiv 3 \pmod{12} \\ x \equiv 2 \pmod{4} \end{cases}$$
 denklik sistemini çözünüz.

Teorem 7.8. $\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$ sisteminin bir çözümünün olması için gerek ve yeter şart $OBEB(m,n) \mid (a-b)$ olmasıdır.

İspat:

\bigstar Teorem 7.9. x_0 sayısı

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

sisteminin bir çözümü ise, diğer çözümler $x \equiv x_0 \pmod{OKEK (m,n)}$ denkliğini sağlarlar ve bu denkliği sağlayan her x değeri bir çözümdür.

İspat:

Örnek 187 $\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 3 \pmod{5} \end{cases}$ denklik sistemini sağlayan 100'den küçük kaç tane pozitif tamsayı vardır?

6.4 Yüksek Mertebeden Denklikler

6.4.1 p Asal Sayısı İçin Modp'de Yüksek Mertebeden Denklikler

Örnek 189 $x^3 + 2x + 1 \equiv 0 \pmod{3}$ denkliğinin birbirine denk olmayan çözümlerini bulunuz.

Örnek 190 $x^{11} + 2x + 1 \equiv 0 \pmod{11}$ denkliğini sağlayan 100'den küçük en büyük tamsayı kaçtır?

Örnek 191 $x^4+6x^2-4\equiv 0\ (\mathrm{mod}\ 13)$ denkliğini sağlayan 100'den büyük en küçük tamsayı kaçtır?

Örnek 192 $x^3 + 107x^2 + 11x + 107 \equiv 0 \pmod{113}$ denkliğinin birbirine denk olmayan köklerini bulunuz.

6.4.2 M Bileşik Sayısı İçin ModM'de Yüksek Mertebeden Denklikler

★ Teorem 7.10. (Aralarında asal çarpanlara parçalayıp çözme) $m_1, m_2, ..., m_n$ pozitif tamsayıları ikişer ikişer aralarında asal ve $M = m_1 \cdot m_2 \cdot \cdot \cdot m_n$ olsun. Bu durumda, f(x) katsayıları tamsayılar olan bir polinom olmak üzere, a sayısının

$$f(x) \equiv 0 \pmod{m}$$

denkliğinin çözümünün olması için gerek ve yeter şart a tamsayısının

$$f(x) \equiv 0 \pmod{m_1}$$
$$f(x) \equiv 0 \pmod{m_2}$$
$$\vdots$$
$$f(x) \equiv 0 \pmod{m_n}$$

sisteminin bir çözümü olmasıdır

Örnek 193 $x^5 - 2x^2 + 6x + 11 \equiv 0 \pmod{30}$ denkliğinin birbirine denk olmayan kaç tane çözümü vardır?

Örnek 194 $x^5 + 3x^2 - 6x + 8 \equiv 0 \pmod{30}$ denkliğinin birbirine denk olmayan kaç tane çözümü vardır?

★ Teorem 7.11. f(x) tamsayı katsayılı bir n'inci dereceden polinom ve p bir asal sayı olmak üzere, eğer, $a_1, a_2, ..., a_r$ sayıları $f(x) \equiv 0 \pmod{p}$ denkliğinin birbirine denk olmayan çözümleri iseler,

$$f(x) \equiv (x - a_1)(x - a_1) \dots (x - a_1) g(x) \pmod{p}$$

olacak şekilde, (n-r)'inci dereceden tam katsayılı bir g(x) polinomu vardır.

 \bigstar Teorem 7.12. (Bir polinomun denk olmayan kök sayısı) f(x) tamsayı katsayılı n'inci dereceden bir polinom ve p bir asal sayı olsun. Eğer, f(x) polinomunun katsayıları p moduna göre her biri sıfıra denk değilse,

$$f\left(x\right) \equiv 0 \left(\operatorname{mod} p\right)$$

denkliğinin birbirine denk olmayan en çok n tane çözümü vardır.

Örnek 195 Aşağıdaki denkliklerden hangisinin birbirine denk olmayan çözüm sayısı 3'ten fazladır?

A)
$$x^3 + 2x \equiv 0 \pmod{37}$$

B) $2x^3 + 2x + 1 \equiv 0 \pmod{11}$
C) $x^2 + 3x + 9 \equiv 0 \pmod{12}$
D) $x^2 + x \equiv 0 \pmod{15}$
E) $x^3 + 5x^2 + 6x \equiv 0 \pmod{47}$

6.5 p asal sayısı için $mod p^n$ de Denklikler

Örnek 196 $x^3 + x + 2 \equiv 0 \pmod{3^3}$ denkliğinin kökünü bulunuz.

Örnek 197 $x^3 + x + 2 \equiv 0 \pmod{3^2}$ denkliğinin kökünü bulunuz.

Örnek 198 $x^2 \equiv -1 \pmod{5^3}$ denkliğinin köklerini bulunuz.

Örnek 199 $x^2 \equiv -5 \pmod{7^3}$ denkliğinin birbirine denk olmayan en küçük pozitif köklerinin toplamı kaçtır?

Teorem 7.13. f(x) tamsayı katsayılı bir polinom ve p bir asal sayı olsun. a tamsayısı $f(x) \equiv 0 \pmod{p^n}$ denkliğinin bir çözümü olsun. Bu durumda,

$$f\left(x\right)\equiv 0\left(\operatorname{mod}p^{n+1}\right)$$

denkliğinin

i) $p \nmid f'(a)$ ise sadece 1 çözümü vardır.

ii)
$$p\mid f'\left(a\right)$$
 ve $p^{n+1}\mid f\left(a\right)$ ise, p tane çözümü vardır.

$$(x \equiv a + p^n k, k = 0, 1, ..., p - 1)$$

Örnek 200 $x^3 + 5x^2 + x - 3 \equiv 0 \pmod{3^2}$ denkliğinin birbirine denk olmayan kaç tane çözümü vardır?

Örnek 201 $2x^4 - x^2 + 3x \equiv 0 \pmod{3^3}$ denkliğinin kaç tane birbirine denk olmayan kökü vardır?

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

B) 0

B) 100

vardır?

A) 1

m sayısı vardır?

A) 101

farklı kökü vardır?

E) Hiçbiri

6.6 Çözümlü Test

1. $105x \equiv 450 \pmod{1650}$ denkliğinin birbirine denk olmayan kaç tane çözümü

2. m^2+m-72 ifadesi 19'a tam bölünecek şekilde, 1000'den küçük kaç tane pozitif

C) 106

3. $2x^{31} + x^{21} + 5x^{11} + 3x + 2 \equiv 0 \pmod{11}$ denkliğinin birbirine denk olmayan kaç

D) 3

D) 107

E) 15

C) 13

A) 1	B) 2	C) 3	D) 0	E) 4					
4. $n^{27} + 5n^{25}$ tamsayı değeri i			desi, 100'den	küçük kaç tane	n pozitif				
A) 7	B) 10	C) 92	D) 93	E) 98					
5. $x^{19} + x^{14} - $ kökü vardır? A) 0	$5x^7 + 4 \equiv 0 ($ $\mathbf{B}) 1$,	_	·	kaç farklı				
	6. $x^3 + 3x^2 - x + 98 \equiv 0 \pmod{101}$ denkliğinin birbirine denk olmayan en küçük pozitif köklerinin toplamını bulunuz?								
A) 110	B) 100	C) 200	D) 1	199 E)	98				
7. $x^3 + ax + 1$ olabilir? A) 0 veya 3	, ,	_		mayan kaç tand eya 3 E) Hiçb					

A) 1	B) 0	C) 2	D) 3	E) Hiçbir	ri
9. $x^4 + 5x^2 - 6$ kaçtır?	$2 \equiv 0 (\text{mod} 11)$) denkliğini sa	ğlayan 100'dε	en küçük en bi	üyük tamsay
A) 93	B) 94	C) 95	D) 96	E) 9)7
	$+96x + 3 \equiv 0$ nin toplamını bu	*	diğinin birbiri	ne denk olma	yan en küçül
A) 110	B) 100	C) 14	.0 D)) 199	E) 98
11. $x^5 + 2x^2 - $ çözümü vardır?	$-4x + 5 \equiv 0 $ (?	$(\operatorname{mod} 42)$ denk	diğinin birbiri	ine denk olma	ıyan kaç tan
-	B) 1	C) 6	D) 4	E) 3	
12. $7x^5 + 3x^2$ çözümü vardır?	$-2x + 6 \equiv 0$?	$\pmod{42}$ denl	kliğinin birbir	ine denk olma	ıyan kaç tan
	B) 1	C) 6	D) 4	E) 2	
HAZII	LARIN ÇÖZÜ RLIK 3 (Sayıla	ar Teorisi) KİT	TABINDA BU		

8. $x^3 + 5x^2 + x + 3 \equiv (x - r)^3 \pmod{p}$ olacak şekilde kaç p asal sayısı vardır?

A) 224

 $\mathbf{A}) 0$

B) 1

C) 2

E) Hiçbiri

6.7 TÜBİTAK Olimpiyat Soruları (Denklikler)

1. m, n, k tamsayıları 221m + 247n + 323k = 2001 eşitliğini sağlıyorlarsa, k tam-

C) 101

D) 111

E) 4

UMO - 1999

D) 3

sayısının alabileceği 100'den büyük en küçük değer kaçtır?

B) 107

,	,	,	,		UMO - 2001
2. $x^3 + 3x^2 +$ vardır?	$x + 3 \equiv 0 (\text{mo})$	$\mathrm{d}25)$ denkliğin	in 25 moduna	göre fark	lı kaç çözümü
A) 0	B) 2	C) 4	D) 5	E) 6	UMO - 2001
3. $0 \le x \le 13$,		$\leq z \leq 13 \text{ olmal}$ $\pmod{13} \text{ ve } x$		od 13)	
denklik sistemir	nin sağlayan kaç	(x,y,z) tamsa	ıyı üçlüsü vard	ır?	
	B) 23				Hiçbiri UMO - 2006
4. $x^5 + 5x^2 +$ tamsayısı vardır	?				ağlayan kaç x
A) 0	B) 1	C) 2	D) 4	E) 5	UMO - 2005
5. Aşağıdaki <i>p</i> a az bir tamsayı ç		n hangisi için, x	$^2 + x + 1 \equiv 0$	\pmod{p}	denkliğinin en
A) 653	B) 647	C) 641	D) 6	17	E) Hiçbiri UMO - 1996
6. $0 < n < 9$ vardır?	$0.945 \text{ ve } \sum_{k=1}^{n} k^2 =$	$\equiv 0 \pmod{105}$	koşullarını sa	ğlayan ka	
A) 80	B) 89	C) 82	D) 90	E)	Hiçbiri UMO - 200?
7. Her $0 \le i \le a_9$ aşağıdakilere	9 için, $a_i \in \{0,$ len hangisidir?	$1,2,3,4\}$ olma	k üzere, $6\sum_{i=0}^{9}$	$a_i 5^i \equiv 1$ ($\mod 5^{10}$) ise,

UMO - 2000

8. Kaç p asal s tamsayıları tara					
A) 0	B) 1	C) 2	D) 3	E) Hiçbir	i UMO - 1999
9. p, q pozitif ta en küçük poziti				od 72) denkliğ	ini sağlayan
A) 2	B) 34	C) 70	D) 1		UMO - 1993
10. $x^3 + 3x^2 - $ toplamı 25 mod				rını sağlayan	tamsayıların
A) 3	B) 4	C) 17	D) 22	E) Hiçt	oiri UMO - 2003
11. $x^4 + 2x^3 + $ tane tamsayı va		$\equiv 0 \pmod{30}$	$ve 0 \le x \le 30$) koşullarını s	ağlayan kaç
A) 3	B) 4	C) 2	D) 0	E) 1	UMO - 1998
12. $x^3 - 5x^2$ - koşullarını sağl				ısal sayısı için	$0 \le x \le p$
A) 4	B) 3	C) 2	D) 0	E) 5	UMO - 1998
13. a, b, c tams	ayılar olmak üz	zere,			
	$x \equiv a \pmod{3}$	$14), x \equiv b (\mathrm{me}$	$\operatorname{od} 15), x \equiv c ($	$\mod 16$)	
denklik sistemi lerden hangisi		2000 koşulunu	ı sağlayan tamı	sayıların sayıs	ı aşağıdaki-
A) 0	B) 1 C)	2 D) 3	E) Hiçbiri		
					UMO - 1999
14. $0 \le x, y < (x, y)$ tamsayı i		re, $(x^2 - 18)^2$	$\equiv y^2 \pmod{31}$) denkliğini s	ağlayan kaç
• •	B) 60	C) 61	D) 62	E) H	içbiri

B) 1

tamsayısı vardır?

A) 0

lunur?

UMO - 2002

UMO - 2004

E) Hiçbiri

		$a^3 + 3m - 2 \equiv$ $amsayısı buluna$		$n^2 + 4m + 5$	$5 \equiv 0 \pmod{p}$
A) 1	B) 2	C) 3	D) 4	E) Sons	suz çoklukta
ŕ	ŕ	ŕ	,	,	UMO - 2006
		k üzere, $n \leq 20$ çük değer nedir		$\equiv -1 \equiv m^2$	$m \pmod{5}$ ise,
A) 4	B) 5	C) 6	D) 7	E) 8	
					UMO - 2007
19. 15'ten küç	ük kaç p asal s	sayısı için,			
m+n+	$k \equiv 0 (\text{mod} p$	(p), $mn + mk +$	$nk \equiv 1 \pmod{1}$	$p), mnk \equiv$	$2 \pmod{p}$
sistemini sağla	$\operatorname{ayan}\left(m,n,k\right)$	tamsayı üçlüsü	vardır?		
A) 2	B) 3	C) 4	D) 5	E) 6	
					UMO - 2007
20. $1 \le n \le 4$	$55 \text{ ve } n^3 \equiv 1$	$\pmod{455}$ koşı	ıllarını sağlaya	n kaç n tams	sayısı vardır?
A) 3	B) 1	C) 9 D)	6 E) Hi	çbiri	
					UMO - 2009
		ÜMLERİNİ M ılar Teorisi) Kİ Mustafa Ö	TABINDA BU		

15. $x^3 - 2x + 6 \equiv 0 \pmod{125}$ ve $0 \le x < 125$ koşullarını sağlayan kaç tane x

C) 2

16. Aşağıdaki ifadelerin hangisinin 25'e bölünmesini sağlayan bir x tamsayısı bu-

A) $x^3 - 3x^2 + 8x - 1$ B) $x^3 + 3x^2 - 2x + 1$ C) $x^3 + 14x^2 + 3x - 8$ D) $x^3 - 5x^2 + x + 1$ D) Hiçbiri

D) 3

Tamsayılar Kümesinde Denklem Çözümü

7.1 Lineer Diofan Denklemleri

Örnek 202 10x + 12y = 15 denklemini sağlayan kaç farklı (x, y) tamsayı çifti vardır?

Örnek 203 2x+3y=1000 eşitliğini sağlayan kaç tane (x,y) pozitif tamsayı ikilisi vardır?

Örnek 204 12x + 15y = 1203 eşitliğini sağlayan kaç tane (x, y) pozitif tamsayı ikilisi vardır?

Örnek 205 15x + 36y = 3 denklemini tamsayılarda sağlayan 36'dan küçük pozitif x tamsayıları bulunuz.

Örnek 206 Bir kitapçı tanesi 13 ve 23 TL olan iki çeşit kitapdan 1715 TL liralık kitap almak istiyor. 23 TL'lik kitaplardan kaç farklı sayıda kitap alabilir?

Örnek 207 Aşağıdaki açılardan hangisiyle sadece cetvel ve pergel kullanılarak 123 derecelik bir açı oluşturulamaz?

A) 24

B) 13

C) 19

D) 17

E) 21

Örnek 208 Bir karayolu üzerinde bir noktadan başlanarak yol kenarlarına 111'er metre arayla palmiye ağacı dikiliyor. Daha sonra aynı noktadan başlanarak, 78'er metre arayla çam ağacı dikiliyor. Hangi iki ağaç arasındaki mesafe ilk kez 42 metredir? (Başlangıç noktasına ağaç dikilmemektedir.)

Örnek 209 x ve y negatif olmayan tamsayılar olmak üzere, 8x+15y şeklinde yazılamayan en büyük n tamsayısı kaçtır? (Kanada M.O. - 1974)

Örnek 210 Biri 3, diğeri 11'e bölünebilen iki bileşik pozitif tam sayının toplamı şeklinde yazılamayan en büyük tamsayı kaçtır?

Örnek 211 2x + 3y = c denklemini sağlayan 1000 tane (x, y) pozitif tamsayı çiftinin olması için, c yerine yazılabilecek kaç tane pozitif tamsayı vardır.

Örnek 212 208 ile sona eren ve 209'a bölünen en küçük pozitif tamsayının rakamları toplamı kaçtır?

7.2 Basit Bölünebilme Özellikleri ile Çözülebilen Denklemler

- Örnek 213 2xy = 4x + y denklemini sağlayan kaç tane (x, y) tamsayı çifti vardır?
- Örnek 214 11x + 13y = 4xy denkleminin kaç tane tamsayı çözümü vardır?
- Örnek 215 $\frac{1}{x} \frac{1}{y} = \frac{1}{3}$ denkleminin <u>pozitif tamsayılarda</u> kaç tane çözümü vardır?

7.3 Çarpanlara Ayırma Kuralları Kullanılarak Çözülen Denklemler

Örnek 216 $x^2 = 210 + y^2$ denklemini sağlayan kaç tane (x, y) tamsayı ikilisi vardır?

Örnek 217 $x^4 = y^2 + 71$ denkleminin tamsayı çözümlerinin sayısını bulunuz.

Örnek 218 $x^3 - y^3 = xy + 61$ denkleminin <u>pozitif tamsayılarda</u> kaç tane kökü vardır?

Örnek 219 y bir asal sayı, ve x sayısı 3 ve y'ye tam bölünemeyen bir pozitif tamsayı ise, $x^3 - y^3 = z^2$ denkleminin kaç tane (x, y, z) pozitif tamsayı çözümü vardır?

Örnek 220 $y^2(x^2+1)+x^2(y^2+16)=448$ eşitliğini sağlayan kaç tane (x,y) tamsayı çifti vardır?

Örnek 221 $x^6 = y^2 + 60$ denklemini sağlayan kaç tane (x, y) tamsayı çifti vardır?

7.4 Modüler Aritmetik Yardımıyla Çözülebilen Denklemler

- Örnek 222 $5x^2 + 4y^2 = 27$ denkleminin tamsayılarda kaç tane çözümü vardır?
- Örnek 223 $5x^2 + 4y^2 = 61$ denkleminin tamsayılarda kaç tane çözümü vardır?
- Örnek 224 $6x^2 + 5y^2 = 230$ denkleminin tamsayılarda kaç tane çözümü vardır?

Örnek 225 $(x+m)^2 + (x+2m)^2 + (x+3m)^2 + (x+4m)^2 = 2009$ denkleminin çözümlerini bulunuz.

Örnek 226 $x^7 - x = 42y$ denklemini sağlayan kaç (x, y) tamsayı çifti vardır?

Örnek 227 $3 \cdot 5^{2x+1} + 2^{3x+1} + 17y = 1870$ denkleminin negatif olmayan tamsayılarda, kaç tane çözümü vardır?

Örnek 228 $6(x!+3) = y^2 + 5$ denklemini sağlayan kaç tane (x,y) tamsayı çifti vardır?

 $\ddot{\mathbf{O}}$ zellik : n^2+1 sayısınının 2 haricindeki tüm asal çarpanları 4k+1 formundadır. İspat :

Örnek 229 $y^2 = x^3 + 7$ denklemini sağlayan kaç (x, y) tamsayı ikilisi vardır?

Örnek 230 $k! + 48 = 48(k+1)^m$ olacak şekilde k ve m negatif olmayan tamsayılarının bulunmadığını gösteriniz. (Kanada M.O.)

Örnek 231 Bir n pozitif tamsayısı için, f(n), $n^2 + 2$ sayısının 4'e bölümünden kalanı göstersin. Buna göre, $x^2 + (-1)^y f(z) = 10y$ denkleminin kaç tane (x, y, z) tamsayı çözümü vardır?

Örnek 232 $2^m-3^n=7$ olacak şekildeki tüm pozitif tamsayıları bulunuz. (Avusturya Polonya M.O. 1993)

7.5 Bilinmeyenleri Sınırlayarak Çözülebilen Denklemler

Örnek 233 $2x^y - y = 2007$ denklemini sağlayan kaç tane (x, y) pozitif tamsayı çifti vardır?

Örnek 234 $2^x \cdot (4-x) = 2x + 4$ denkleminin kaç tane tamsayı çözümü vardır?

Örnek 235 $a^2 + b = b^{1999}$ denklemini sağlayan kaç tane (a,b) tamsayı ikilisi vardır? (Estonya M.O. 1999)

7.6 Simetriklik Kullanılarak Çözülebilen Denklemler

Örnek 236 $\frac{1}{x} + \frac{1}{y} = \frac{1}{3} + \frac{1}{xy}$ denkleminin pozitif tamsayılarda kaç tane çözümü vardır?

Örnek 237 $a^3+b^3+c^3=2001$ denklemini sağlayan kaç tane (a,b,c) pozitif tamsayı üçlüsü vardır? (Balkan Junior 2001)

Örnek 238 5(xy + yz + xz) = 4xyz denklemini sağlayan kaç tane (x, y, z) pozitif tamsayı üçlüsü vardır?

Örnek 239 m,n,k pozitif tamsayıları için, (36m+n) $(m+36n)=2^k$ denkleminin çözümünün olmadığını gösteriniz. (Asya Pasifik M.O. 1998)

7.7 Tahmini Çözümden Genel Çözüme Ulaşma

Örnek 240 $x^2+y^2=z^{2008}$ denklemini sağlayan kaç tane (x,y,z) pozitif tamsayı üçlüsü vardır?

Örnek 241 x, y, z tamsayıları için $xyz \neq 0$ ise $x^2 + y^5 = z^3$ denkleminin sonsuz çözümü olduğunu gösteriniz. (Kanada M.O. 1991)

Örnek 242 $x^3 + y^5 - z^4 = 0$ denkleminin pozitif tamsayılarda kaç tane çözümü vardır?

7.8 Diskriminant Kullanılarak Cözülen Denklemler

Örnek 243 $n^2 + 3n + 5 = 121m$ denklemini sağlayan kaç tane (n, m) pozitif tamsayı ikilisi vardır?

Örnek 244 $x^3 - y^3 = xy + 61$ denklemini sağlayan kaç tane (x, y) pozitif tamsayı ikilisi vardır? (Sovyet M.O. 1981)

Örnek 245 $x^3 + 9xy + 127 = y^3$ denklemini sağlayan kaç tane (x, y) tamsayı çifti vardır?

Örnek 246 $\frac{x \cdot y}{z} + \frac{x \cdot z}{y} + \frac{y \cdot z}{x} = \frac{9}{2}$ denkleminin tamsayılarda kaç tane çözümü vardır?

7.9 Tamkare ve Tamküp Soruları

Örnek 247 m,n pozitif tamsayılar olmak üzere, $2001m^2+m=2002n^2+n$ eşitliği sağlandığına göre, m-n sayısının bir tamkare olduğunu gösteriniz. (Avusturya Polonya M.O. 2002)

Örnek 248 11 tane 1 ile başlayan 20 basamaklı bir sayının tamkare olamayacağını ispatlayınız.

Örnek 249 x, y pozitif tamsayılar olmak üzere, $2x^2 + x = 3y^2 + y$ ise, x - y, 2x + 2y + 1, 3x + 3y + 1 ifadeleri tamkaredir ispatlayınız.

Örnek 250 $a, b, c \in \mathbb{Z}^+$ olmak üzere,

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$$
 ve $OBEB(a, c) = 1$

eşitliği sağlandığına göre, $a+b,\,a-c$ ve b-c'nin üçünün de tamkare olduğunu gösteriniz.

Örnek 251 OBEB(a, b, c) = 1 ve $a^2b^2 + b^2c^2 + c^2a^2$ sayısı tamkare olacak biçimde, sonsuz sayıda (a, b, c) pozitif tamsayı üçlüsü bulunduğunu ispatlayınız.

Örnek 252 Herhangi 9 tanesinin toplamı tamkare olan 10 farklı tamsayı var mıdır? (Rusya 1999)

Örnek 253 n pozitif tamsayısı için, $n^3+7n-133$ ifadesi pozitif bir tamsayının küpü oluyorsa, n sayısına "iyi sayı" diyelim. Tüm iyi sayıların toplamını bulunuz. (USC Math.Contest)

Örnek 254 $n^2-19n+99$ sayısı tamkare olacak şekilde tüm n pozitif tamsayılarının toplamını bulunuz. (AIME 1999)

Örnek 255 $n^2 + 2009n$ sayısı tamkare olacak şekilde en büyük n pozitif tamsayısı kaçtır?

Örnek 256 $n^4 + n^3 + 1$ ifadesi tamkare olacak şekilde tüm n pozitif tamsayılarını bulunuz.

Örnek 257 $n^2 + n$ ve $n^3 + 2n^2$ ifadelerinin ikisi de tamsayı olacak şekilde kaç tane rasyonel olmayan n reel sayısı vardır?

7.10 Karışık Örnekler

Örnek 258 $5n^2=36a^2+18b^2+6c^2$ denklemini sağlayan kaç tane (a,b,c,n) tamsayı dörtlüsü vardır? (Asya Pasifik M.O 1989)

Örnek 259 $x^n + (x+2)^n + (2-x)^n = 0$ denkleminin tamsayı çözümüne sahip olabilmesi için n pozitif tamsayısı kaç farklı sayı olabilir? (Asya Pasifik M.O 1993)

Örnek 260 m ve n sayıları her ikisi de pozitif yada negatif olan birbirinden farklı sayılar olmak üzere, $m^2 + 4n$ ve $n^2 + 4m$ sayılarının her ikisi de tamkare olacak şekilde kaç tane (m,n) tamsayı ikilisi vardır? (Asya Pasifik M.O.)

Örnek 261 $10x^3 + 20y^3 + 8xyz = 1999z^3$ denkleminin tamsayılarda kaç tane çözümü vardır? (Municipal 1999)

Örnek 262 $\frac{1}{2}(x+y)(y+z)(x+z)+(x+y+z)^3=1-xyz$ denklemini sağlayan kaç tane (x,y,z) tamsayı çifti vardır?

Örnek 263 $(m-n)^2 = \frac{4mn}{m+n-1}$ denklemini sağlayan 0 < m+n < 100 olacak şekilde kaç tane (m,n) tamsayı çifti vardır? (Estonya M.O. 1999)

Örnek 264 $\frac{1}{x} + \frac{1}{y} = \frac{3}{4} + \frac{1}{xy^2}$ denklemini sağlayan kaç tane (x, y) tamsayı ikilisi vardır?

Örnek 265 $(x^2+1)(y^2+1)=(axy+1)^2+1$ denkleminin sonsuz sayıda (x,y) pozitif tamsayı çözümünün olması için, a pozitif tamsayının olabileceği tüm değerleri bulunuz.

Örnek 266 $(4-x)^{4-x} + (5-x)^{5-x} + 10 = 4^x + 5^x$ denklemini sağlayan tüm x tamsayılarını bulunuz.

Örnek 267 Üçlülerdeki sayıların her biri bir asal sayının herhangi bir pozitif kuvveti olacak şekilde tüm ardışık tamsayı üçlülerini bulunuz.

Örnek 268 $\frac{x}{y} > \sqrt{2}$ olmak üzere, 5x - 7y = 1 eşitliğini sağlayan tüm (x, y) pozitif tamsayı ikililerini bulunuz.

Örnek 269 a < b < c olmak üzere, $(a+b+c)^2 = a^3+b^3+c^3$ denklemini sağlayan tüm (a,b,c) pozitif tamsayı üçlülerini bulunuz.

Örnek 270 $2x^2 + y^2 = 384$ olacak şekilde tüm (x, y) pozitif tamsayı ikililerini bulunuz.

Örnek 271 $x^2 - x - k = 0$ denkleminin tamsayı kökü olacak şekilde, 100'den küçük kaç k pozitif tamsayısı vardır?

Örnek 272 $x^3 - y^3 = 100$ olmak üzere, x - y ve xy ifadelerinin ikisi de pozitif tamsayı olacak şekilde kaç tane (x, y) reel sayı ikilisi vardır?

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ. Mustafa Özdemir

7.11 Çözümlü Test

1. Bir karayolu üzerinde bir noktadan başlanarak yol kenarlarına 111'er metre arayla palmiye ağacı dikiliyor. Daha sonra aynı noktadan başlanarak, 78'er metre arayla çam ağacı dikiliyor. Herhangi iki ağacın arasındaki mesafe aşağıdakilerden hangisi olamaz?							
	A) 42	B) 51	C) 37	D) 6	E) Hiçbiri		
	21x + 100y =tamsayı y çözi		ın 1000'den kü	içük kaç tane p	ozitif x tamsayı değeri		
	A) 12	B) 11	C) 100	D) 121	E) 10		
3. 5			ayan kaç tane C) 18		ımsayı ikilisi vardır? E) 25		
	itif tamsayısı v	ardır?)'den küçük kaç tane n		
	A) 22	B)1	C) 33	D) 6	E) Hiçbiri		
5. $a,b,x,y\in\mathbb{Z}$ olmak üzere, $25xa^2-5yb^2=1680$ denklemini sağlayan ve a ve b 'yi bölen en büyük tamsayı kaç olabilir?							
	A) 4	B) 1	C) 2	D) 6	E) Hiçbiri		
6. $3x + 5y = c$ denklemini sağlayan 100 tane (x, y) pozitif tamsayı çiftinin olması için, c yerine yazılabilecek kaç tane pozitif tamsayı vardır. A) 12 B) 15 C) 18 D) 9 E) Hiçbiri							
	A) 12	B) 15	C) 18	D) 9	E) Hiçbiri		
7. $x^2-3y^2=17$ denkleminin tamsayılar kümesinde kaç tane çözümü vardır?							
	A) 4	B) 1	C) 3 D) S	Sonsuz sayıda	E) Hiçbiri		
8. 2	8. $2xy + 3y^2 = 24$ denkleminin tamsayılar kümesinde kaç tane çözümü vardır?						
	A) 4	B) 8	C) 12	D) 6	E) Hiçbiri		

9. $x^2 + y^2 + z$	$x^2 = 2xyz$ denkle	eminin tan	nsayılar kümesinde k	xaç tane çözümü vardır?
A) 4	B) 1	C) 3	D) 6	E) Hiçbiri
10. $x^2 + xy + y$	$y^2 = x^2 y^2 \text{denkl}$	eminin tar	nsayılar kümesinde l	kaç tane çözümü vardır?
A) 3	B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri
11. $y \neq 1$ olmatamsayı çifti va		=y(x+	1) eşitliğini sağlaya	n kaç tane (x,y) pozitif
A) 4	B) 5	C) 3	D) Sonsuz sayıda	E) Hiçbiri
			if tamsayılarda kaç t	
A) 5	B) 9	C) 8	D) 10	E) Hiçbiri
13. $4m (m + 1)$ vardır? (Kanad		şitliğini sa	ığlayan kaç tane (m)	(n) pozitif tamsayı çifti
A) 0	B) 8 C) 10	D) 1	E) Sonsuz sayıda	ı.
_		-	ane tamsayı çözümü	
A) 4	B) 1	C) 2	D) Sonsuz sayıda	E) Hiçbiri
				kaç tane çözümü vardır?
A) 4	B) 1	C) 3	D) 6	E) Hiçbiri
ikilisi vardır?				ne (x,y) pozitif tamsayı
A) 4	B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri
17. n bir pozit	if tamsayı olmak	üzere, 2 -	$-2\sqrt{28n^2+1} = m$	denklemini sağlayan m

B) 1 C) 0 D) Sonsuz sayıda E) 3

tamsayılarından kaç tanesi tamkare değildir?

A) 4

- **18.** $x^3 + 3 = 4y(y+1)$ denklemini sağlayan kaç tane (x,y) tamsayı ikilisi vardır?

 - A) 4 B) 1
- C) 0 D) Sonsuz sayıda
- E) Hiçbiri
- 19. $999999 \cdot n = 111...1$ denklemini sağlayan en küçük n pozitif tamsayısını bulunuz.

$$\text{A)} \ \frac{\left(10^{27}-1\right)}{9\left(10^{6}-1\right)} \ \text{B)} \ \frac{\left(10^{9}-1\right)}{9\left(10^{3}-1\right)} \ \text{C)} \ \frac{\left(10^{54}-1\right)}{9\left(10^{6}-1\right)} \ \text{D)} \ \frac{\left(10^{18}-1\right)}{9\left(10^{6}-1\right)} \ \text{E)} \ \text{Hiçbiri}$$

- **20.** $n^2 19n + 89$ sayısı tamkare olacak şekilde kaç tane pozitif n tamsayısı vardır?
 - A) 1
- B) 2
- **C**) 0
- D) Sonsuz sayıda
- E) Hiçbiri
- **21.** $x^2 + 615 = 2^y$ denklemini sağlayan kaç tane (x, y) pozitif tamsayı çifti vardır?

 - A) 4 B) 1
- **C**) 0
- D) Sonsuz sayıda
- E) Hiçbiri
- **22.** $x^3 + y^3 = 8^{30}$ denklemini sağlayan kaç tane (x, y) tamsayı ikilisi vardır?

 - A) 2 B) 3
- C) 4 D) Sonsuz sayıda
- E) Hiçbiri
- 23. $x^3 + y^4 = 2^{2003}$ denkleminin pozitif tamsayılarda kaç tane çözümü vardır?
 - A) 5 B) 3
- C) 0 D) Sonsuz sayıda
- E) Hiçbiri
- 24. $\frac{1}{x} + \frac{1}{y} = \frac{1}{1999}$ denklemini sağlayan kaç tane pozitif tamsayı ikilisi vardır?
 - A) 5
- B) 3
- C) 10
- D) Sonsuz savıda
- E) Hicbiri
- **25.** $2x^y 3y = 194$ denklemini sağlayan kaç tane (x, y) pozitif tamsayı çifti vardır?
 - A) 2
- B) 1
- C) 0 D) Sonsuz sayıda
- E) Hicbiri
- **26.** $6x^2 + 2y^2 = z^2$ denklemini sağlayan kaç tane (x, y, z) pozitif tamsayı üçlüsü vardır?
 - A) 4

- B) 1 C) 0 D) Sonsuz sayıda
- E) Hicbiri

27. 2^a+2^b+1 sayısı 2^c-1 sayısına eşit olacak şekilde kaç tane (a,b,c) negatif olmayan tamsayı üçlüsü vardır? (Avusturya - Polonya M.O. 2002)								
				D) Sonsuz sayıda	E) Hiçbiri			
28. $n! + 5$ sayısı tamküp olacak şekilde kaç tane n pozitif tamsayısı vardır?								
	A) 4	B) 1	C) 0	D) 5) Hiçbiri			
(Juni	or Balkan M.O.	1998)		tane (x,y) pozitif ta				
	A) 2	B) 4	C) 0	D) Sonsuz sayıda	E) Hıçbırı			
(x, y)	,z) tamsayı üç	çlüsü vardır?		$+\frac{1}{y}=rac{1}{z}$ denklemin				
	A) 4	B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri			
vardı	ır?			c ⁴ denkleminin kaç ta D) Sonsuz sayıda				
) -		-) -	_	_)			
	32. $x^2+2y^2+98z^2=\underbrace{77777}_{2009 \text{ tane}}$ denkleminin tamsayılar kümesinde kaç tane (x,y,z) çözümü vardır?							
-		B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri			
vardı	ır?			sağlayan kaç tane $(x,$ D) Sonsuz sayıda	,			
				tane (x, y, z) pozitif ta				
	A) 4	B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri			

şekilde kaç farklı p asal sayısı vardır?

B) 1

A) 2

35. $\left(p^2+1\right)\left(q^2+1\right)=n^2+1$ denklemini sağlayan bir $n\in\mathbb{Z}$ olacak şekilde, kaç tane (p,q) asal sayı ikilisi vardır?									
	A) 3	B) 4	C) 1	D) Sonsuz sayıda	E) Hiçbiri				
	36. $x^3+11^3=y^3$ denklemini sağlayan kaç tane (x,y) pozitif tamsayı ikilisi vardır? (Kanada M.O. 1972)								
	A) 4	B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri				
				kuvveti olacak şekild lir? (Kanada M.O. 19	e en küçük n sayısının (77)				
	A) 9	B) 10	C) 11	D) 12	E) Hiçbiri				
38. 1969		denklemini sağ	layan tün	n x,y tamsayılarını l	bulunuz. (İSVEÇ M.O.				
	A) 4	B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri				
39. vard		+7)(x+8) =	y^2 denk	lemini sağlayan kaç	(x,y) tamsayı ikilisi				
	A) 7	B) 1	C) 3	D) 2	E) 10				
40. $m,n<100$ olmak üzere $2m^2=3n^3$ eşitliğini sağlayan kaç tane (m,n) pozitif tamsayısı ikilisi vardır?									
	A) 4	B) 12	C) 8	D) 16	E) Hiçbiri				
41. $z^2=\left(x^2-1\right)\left(y^2-1\right)+101$ denklemini sağlayan kaç tane (x,y,z) tamsayı üçlüsü vardır?									
	A) 4	B) 1	C) 0	D) Sonsuz sayıda	E) Hiçbiri				
	0	2							
42.	$p+1 = 2x^2$	ve $p^2 + 1 =$	$2y^2$ denk	lemlerini sağlayan x	x,y tamsayıları olacak				

C) 0 D) Sonsuz sayıda E) Hiçbiri

43. $n < 14$ içi çifti vardır? (Ka			i sağlayan kaç	tane (a,b) pozitif tamsa	ıyı
A) 2	B) 1	,	D) 4	E) Hiçbiri	

- **44.** $x-y=x^2+xy+y^2$ denklemini sağlayan kaç negatif olmayan tamsayı çifti vardır?
 - A) 3 B) 4 C) 1 D) Sonsuz sayıda E) Hiçbiri
- **45.** $\sqrt{x}+\sqrt{y}=\sqrt{1998}\,$ denklemini sağlayan kaç tane (x,y) doğal sayı ikilisi vardır? A) 4 B) 1 C) 0 D) Sonsuz sayıda E) Hiçbiri
- **46.** $3^n + 81 = m^2$ denklemini sağlayan kaç tane (m, n) pozitif tamsayı ikilisi vardır? A) 4 B) 1 C) 0 D) 3 E) Hiçbiri
- 47. $\frac{3^x+5^x}{3^{x-1}+5^{x-1}}=y$ denklemini sağlayan kaç tane (x,y) pozitif tamsayı ikilisi vardır? (St. Petersburg 1996)
 - A) 4 B) 1 C) 0 D) 3 E) Hiçbiri
- **48.** $3x^2 2y^2 = 1998$ denklemini sağlayan kaç tane (x, y) tamsayı çifti vardır? A) 4 B) 1 C) 0 D) Sonsuz sayıda E) Hiçbiri
- - A) 4 B) 1 C) 0 D) Sonsuz sayıda E) Hiçbiri
- **50.** $\begin{cases} x^2+y-z=100\\ x+y^2-z=124 \end{cases}$ denklem sistemini sağlayan kaç tane (x,y,z) pozitif tamsayı üçlüsü vardır?
 - A) 4 B) 1 C) 0 D) Sonsuz sayıda E) Hiçbiri

- **51.** $\left\{\begin{array}{ll} x^3-3xy-y^3=1\\ y^3+3yz+z^3=1 \end{array}\right. \ \ \text{denklem sisteminin sağlayan kaç tane } (x,y,z) \ \text{tamsayı}$ üclüsü vardır?
 - A) 4
- B) 1 C) 0
- D) Sonsuz sayıda
- E) Hiçbiri
- 52. $\begin{cases} z^x = y^{2x} \\ 2^z = 2 \cdot 4^x \\ x + y + z = 16 \end{cases}$ denklem sistemini sağlayan kaç tane (x,y,z) negatif olmayan tamsayı üçlüsü vardır?
 - A) 4
- **B**) 1
- **C**) 0
- D) Sonsuz sayıda E) Hiçbiri
- $\textbf{53.} \left\{ \begin{array}{ll} 2x+3y=185 \\ xy>x+y \end{array} \right. \text{sistemini sağlayan kaç tane } (x,y) \text{ tamsayı çifti vardır?} \\ \text{A) } 24 \qquad \text{B) } 26 \qquad \text{C) } 29 \qquad \text{D)} 18 \qquad \text{E) Hiçbiri}$

- **54.** $x^2 + 3y$ ve $y^2 + 3x$ ifadeleri tamkare olacak şekilde kaç tane (x,y) pozitif tamsayı ikilisi vardır?
 - A) 3

- B) 1 C) 2 D) Sonsuz sayıda E) Hiçbiri

E) Hiçbiri

UİMO - 2002

UMO - 1997

 $\mathbf{A}) 0$

7.12 TÜBİTAK Olimpiyat Soruları (Tamsayılar Kümesinde Denklemler)

D) 6

1. 5(x+y)=xy eşitliğini sağlayan kaç (x,y) sıralı tamsayı ikilisi vardır?

C) 4

B) 2

2. $n^2 - m^2 = 124$ eşitliğini sağlayan kaç (n, m) pozitif tamsayı ikilisi vardır?								
				E) Hiçbiri				
				UİMO - 2003				
3. $2x + 5y = xy - 1$ eşitliğini sağlayan kaç (x, y) tamsayı ikilisi vardır?								
A) 1	B) 3	C) 4	D) 6	E) 12				
				UMO - 2004				
4. $xy = 4(y^2 +$	x) eşitliğini	sağlayan kaç ta	ane (x, y) tam	nsayı ikilisi vardır?				
A) 0	B) 3	C) 7	D) 14	E) Hiçbiri				
				UMO - 1999				
5. $2n^2 + 5nm$ vardır?	$-12m^2 = 2$	28 eşitliğini sa	ğlayan kaç (<i>r</i>	(n,n) pozitif tamsayı ikilisi				
A) 0	B) 1	C) 2	D) 4	E) Sonsuz çoklukta				
				UMO - 2006				
6. $n^n + 1 = (n + 1)^n$	+1)(2n+1)) eşitliğinin tar	nsayılar küme	esinde kaç çözümü vardır?				
A) 0	B) 1	C) 2	D) 3	E) Sonsuz sayıda				
				UMO - 1995				
7. x ve y tamsayı olmak üzere, $x^2-y^2=1996$ eşitliğini sağlayan kaç (x,y) sıralı ikilisi vardır?								
A) 12	B) 6	C) 4	D) 0	E) Sonsuz sayıda				
				UMO - 1996				
8. m ve n pozitif tamsayılar olmak üzere, $2n^2-36=m^2-mn$ denklemini sağlayan kaç (m,n) sıralı ikilisi vardır?								
A) 2	B) 0	C) 4	D) 3	E) Sonsuz Çoklukta				

9. <i>x</i>	9. x, y, z tamsayıları,							
		{	$\begin{cases} x - 3y + 2z \\ 2x + y - 5z \end{cases}$	z = 1 z = 7				
den	klem sistemini	sağlıyorsa z a	` .şağıdakilerden	hangisi olabi	lir?			
	A) 3 ¹¹¹		C) 5 ¹¹	_		E) Hiçbiri UMO - 1999		
	$x^3 - 13y^3 = $ gıdakilerden ha			(x,y) tamsayı	ı sıralı iki	lilerinin sayısı		
	A) 2	B) 3	C) 5	D) 7	E) H	içbiri UMO - 2002		
	$2^n + 65$ sayı sayısı kaçtır?	sının, bir tamı	sayının karesir	ne eşit olması	nı sağlaya	nn en büyük n		
	A) 1024	B) 268	C) 10	D) 4	Į.	E) Hiçbiri UMO - 2001		
12. vard		denklemini s	ağlayan kaç ta	ne (m, n) pos	zitif tamsa	ıyı sıralı ikilisi		
	A) 0	B) 1	C) 2	D) 3	E) 3 ter	n çok UİMO - 2000		
13. n 'nin aşağıdaki değerlerinden hangisi için $a^2+ab-6b^2=n$ eşitliğini sağlayan a,b tamsayıları bulunur?								
	A) 17	B) 19	C) 29	D) 31	E)	37 UMO - 2004		
14. $2^x + 1 = 3^y$ eşitliğini sağlayan kaç (x, y) pozitif tamsayı ikilisi vardır?								
	A) 1	B) 2	C) 3	D) 4	E) Hiçl	oiri UİMO - 2003		
	15. $x^2 + (x+1)^2 + (x+2)^2 = y^2$ denkleminin x, y tamsayı olacak şekilde kaç tane (x, y) çözüm takımı vardır?							

B) 12 C) 2 D) 0

E) 3

UMO - 1993

A) Sonsuz

E) Sonsuz çoklukta

E) Sonsuz çoklukta

UİMO - 2001

UMO - 2001

sıralı dörtlüsü vardır?

B) 1

B) 1

A) 0

üçlüsü vardır? A) 0

18. Kaç <i>n</i>	tamsayısı için, {	2x + 3y = 7 $5x + ny = n$	denklem	sistemini sağla	yan en az bir	
(x,y) tams	ayı sıralı ikilisi va	rdır?				
A) 0	B) 3	C) 4	D) 8	E) Hiçbi	ri UMO - 2001	
19. $\begin{cases} 3x^2 \\ 5x^2 \end{cases}$ sıralı üçlüsi	$-2y^2 - 4z^2 + 5$ $-3y^2 - 7z^2 + 7$ i vardır?	4 = 0 4 = 0 sistem	ini sağlayan l	kaç (x,y,z) po	ozitif tamsayı	
A) 0	B) 2 C) 3	D) Sonsuz	çoklukta	E) Hiçbiri	UMO - 2000	
20. \sqrt{xy} – ikilisi vardı	$71\sqrt{x} + 30 = 0$ r?	denkleminin po	ozitif tamsayı	ılarda kaç tane	(x,y) çözüm	
A) 8	B) 18	C) 72	D) 2130	E) Sonsuz Say	ıda UMO - 2000	
21. $\begin{cases} x+y+z=19\\ xy+z=98 \end{cases}$ denklem sistemini sağlayan kaç (x,y,z) sıralı tamsayı üçlüsü vardır?						
A) 0	B) 5	C) 8	D) 10	E) 20	UMO - 1998	
22. a,b sıfırdan farklı ve c pozitif olmak üzere, a,b,c tamsayıları, $\frac{5}{663} = \frac{a}{17} + \frac{b}{c}$ denklemini sağlıyorsa b 'nin alabileceği en küçük pozitif değer nedir?						
A) 5	B) 44	C) 1	D) 76	E) Hig	ebiri UMO - 1997	
23. $3^{3a}+3^{4b}+3^{5c}=3^{7d}$ eşitliğini sağlayan a,b,c,d pozitif tamsayıları için $a+b+c+d$ toplamının alabileceği en küçük değer kaçtır?						
A) 278	B) 287	C) 78	82 I	O) 872	E) Hiçbiri	
					UİMO - 1999	

16. $a^{2000}+b^{2000}+c^{2000}=d^{2001}$ eşitliğini sağlayan kaç(a,b,c,d) pozitif tamsayı

17. $(2a+b)(2b+a) = 2^c$ eşitliğini sağlayan kaç (a,b,c) pozitif tamsayı sıralı

C) 3 D) 6

D) 6

C) 3

B) 11

A) 9

UMO - 1995

		$\begin{cases} x + 2y + 3 \\ 2x + y - 3 \\ 3x + y + 3 \end{cases}$	3z = a $2z = b$ $5z = c$		
	steminin x, y, z tams a pozitif tamsayısı ne	-	izere çözümünü	n bulunmasını sağlayan	
A) 7	B) 14	C) 28	D) 56	E) Hiçbiri UMO - 1999	
26. $\frac{2^{p-1}-1}{p}$	$\frac{-1}{2}$ sayısının tamkarı B) 2 C) 1	e olmasını sağl	ayan kaç p asal	sayısı vardır?	
A) 4	B) 2 C) 1	D) 8 E)	Sonsuz Çokluk	ta UMO - 1997	
A) 0	B) 1	C) 3	D) 7	oozitif tamsayısı vardır? E) Sonsuz çoklukta UMO - 2002	
uzere, kaç	tane (x, y, z, t) cozu	m takimi vardi	r?	nayan tamsayılar olmak	
A) 4	B) 2	C) 1	D) 0	UMO - 1993	
29. $a < b < c < d$ tamsayılar olmak üzere, $(x-a)(x-b)(x-c)(x-d)-9=0$ denkleminin bir kökü $x=7$ ise, $a+b+c+d$ kaçtır?					
A) 14	B) 21	C) 28	D) 42	E) 63 UMO - 2007	
	nsayının karesinin iki içük olan kaç pozitif			nün üç katına eşit olup,	
	B) 1			E) Hiçbiri UMO - 2007	

24. $n \leq 15$ olmak üzere, $t_1,t_2,...,t_n$ tek sayıları, $t_1^4+t_2^4+\cdots+t_n^4=1963$ eşitliğini sağlamaktadır. n kaç olmalıdır?

C) 12

25. En büyük ortak bölenleri n olan tüm a,b,c tamsayıları için,

D) 13

E) 15

denklemini sağlayan kaç tane (x, y) sıralı tamsayı ikilisi vardır?

- A) 3996
- B) 1998
- $\mathbf{C}) 0$
- D) 1
- E) Sonsuz çoklukta

UMO - 1999

32. $3m^2n=n^3+A$ denkleminin doğal sayılarda aşağıdaki A değerlerinden hangisi için çözümü vardır?

- A) 301
- B) 403
- C) 415
- D) 427
- E) 481

UMO - 2008

33. x! + y! + z! = u! denklemini sağlayan kaç tane (x, y, z) pozitif tamsayı üçlüsü vardır?

- A) 0
- B) 1
- C) 2
- D) 3
- E) Hiçbiri

UMO - 1997

34. Biri 5, diğeri 7 ile bölünebilen iki bileşik pozitif tam sayının toplamı şeklinde yazılamayan en büyük tamsayı kaçtır?

- A) 82
- B) 47
- C) 45
- D) 42

E) Hiçbiri

UMO - 2009

35. $a^2 + b^4 = 5^n$ eşitliğini sağlayan kaç (a, b, n) pozitif tamsayı üçlüsü vardır?

- **A**) 1
- B) 2
- C) 3
- D) 4
- E) Sonsuz çoklukta

UMO - 2009

36. $a^2b+ab^2=2009201020092010$ eşitliğini sağlayan kaç(a,b) tamsayı ikilisi vardır?

- A) 2
- B) 4
- $\mathbf{C}) 0$
- D) 1
- E) Hiçbiri

UMO - 2009

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

7.13 Ulusal Antalya Matematik Olimpiyat Soruları (Tamsayılar Kümesinde Denklemler)

				
				rinin sayısı kaçtır?
A) 1	B) 2 C) 4	D) Sonsuz	E) Hiçbiri	
				Antalya M.O 1998
2. $\sqrt{x} + \sqrt{y} =$	$\sqrt{2000}$ denkle	eminin tamsayılar	kümesinde ka	ç çözümü vardır?
•		C) 16		
				Antalya M.O 2000
		tamsayılar kümes		
A) 5	B) 2	C) 3	D) 1	E) Sonsuz çoklukta
				Antalya M.O 2001
4. m ve n pozi	tif tamsayılar o	lmak üzere,		
	(m	$+n)^3 = (m^2 + n)^3$	$n)(m+n^2)$	
eşitliğini sağlay	yan kaç tane $(n$	(n,n) ikilisi vardır	?	
A) 4	B) 6	C) 2	D) 10	E) 8
				Antalya M.O 2004
5. $x^3 - y^3 = 2$	$2y^2 + 1$ denkler	ninin tamsayılard	a kaç çözümü	vardır?
A) 4	B) 3 C)	2 D) 1	E) Sonsuz ç	oklukta
				Antalya M.O 2006

Bir Reel Sayının Tamdeğeri

Özellik 1. $[x] = n \in \mathbb{Z}$ ise, $n \le x < n + 1$ 'dir.

Özellik 2. $a \in \mathbb{Z}$ ise, [x + a] = [x] + a'dir.

İspat :

Özellik 4. $x,y \in \mathbb{R}$ için, $[\![x+y]\!] \geq [\![x]\!] + [\![y]\!]$ eşitsizliği sağlanır.

İspat:

Özellik 5. $n\in\mathbb{Z}$ ve $x\in\mathbb{R}$ için $\left\|\frac{\llbracket x\rrbracket}{n}\right\|=\left\|\frac{x}{n}\right\|$ eşitliği sağlanır.

İspat:

Örnek 273
$$\left\| \frac{2 \, \llbracket x \rrbracket}{3} \right\| = 6 \, denklemini \, çözünüz.$$

Örnek 274 $x = \left[\left[\frac{1}{3}x - 1 \right] \right] + \left[\left[x \right] \right]$ denklemini sağlayan kaç x reel sayısı vardır?

Örnek 275 [x] = -2x + 1 denkleminin çözümünü bulunuz.

Örnek 276
$$[2x] + \{2x - 3\} = [3 - x] + 1$$
 olduğuna göre, x kaçtır?

Örnek 277 $\left[\left[\frac{3x-7}{5} \right] \right] = \frac{x}{3}$ denklemini sağlayan kaç tane x tamsayısı vardır?

Örnek 278
$$x+4=2\left\{x\right\}+3\left[\!\left[x\right]\!\right]-\frac{\left[\!\left[x\right]\!\right]-1}{3}$$
 olduğuna göre $x=?$

Örnek 279
$$\begin{cases} x + [\![y]\!] + \{z\} = 300, 7 \\ y + [\![z]\!] + \{x\} = 500, 5 \quad olduğuna göre, x, y ve z'yi bulunuz. \\ z + [\![x]\!] + \{y\} = 400, 8 \end{cases}$$

Örnek 280 a negatif bir tamsayı olmak üzere, $[\![x]\!]=ax+1$ denkleminin çözümünü bulunuz.

Örnek 281 $[\![x]\!]$, x sayısından büyük olmayan en küçük tamsayıyı göstermek üzere, x^2-19 $[\![x]\!]+88=0$

denkleminin tamsayı olmayan çözümlerini bulunuz.

Örnek 282 [x], x sayısından büyük olmayan en küçük tamsayıyı göstermek üzere,

$$3x^3 - [\![x]\!] = 3$$

denkleminin tüm reel çözümlerini bulunuz.

Örnek 283 [x], x sayısından büyük olmayan en küçük tamsayıyı göstermek üzere, 1'den 100'e kadar olan sayılardan kaç tanesi,

$$[2x] + [4x] + [6x] + [8x]$$

formunda yazılabilir.

Örnek 284 $x = \left[\left[\frac{x}{2} \right] \right] + \left[\left[\frac{x}{3} \right] \right] + \left[\left[\frac{x}{5} \right] \right]$ denkleminin kaç tane kökü vardır? (Kanada M.O. 1998)

Örnek 285 $\left\| \frac{k}{5} \right\| = \left\| \frac{k}{6} \right\|$ eşitliğini sağlayan kaç pozitif k tamsayısı vardır?

Özellik:
$$m \in \mathbb{Z}^+$$
 için, $\llbracket x \rrbracket + \llbracket x + \frac{1}{m} \rrbracket + \dots + \llbracket x + \frac{m-1}{m} \rrbracket = \llbracket mx \rrbracket$ 'dir.

İspat:

Örnek 287 $\left[\left[\frac{2x+1}{3}\right]\right] + \left[\left[\frac{4x+5}{6}\right]\right] = \frac{3x-1}{2}$ denklemini sağlayan kaç tane reel sayı vardır?

Örnek 288 [x] $\left[x\right]$ $\left(\frac{7}{2} + \{x\}\right) = (x+2)$ denkleminin kaç tane çözümü vardır?

Örnek 289 $\frac{\llbracket x \rrbracket}{\{x\}} \left(x + \frac{1}{3} \{x\} \right) + x - \frac{1}{3} \llbracket x \rrbracket = 1$ denkleminin çözümü olması için x hangi aralıkta olmalıdır?

Örnek 290 [x] + [2x] + [4x] = 123 ise [x] kaç tamsayı değeri olabilir?

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

8.1 Problemler

- **1.** x ve y reel sayıları için, $||2x|| + ||2y|| \ge ||x|| + ||y|| + ||x+y||$ olduğunu gösteriniz.
- **2.** n pozitif bir tamsayı olmak üzere, $\left[\!\left[\sqrt{n}+\frac{1}{2}\right]\!\right]=\left[\!\left[\sqrt{n-\frac{3}{4}}+\frac{1}{2}\right]\!\right]$ olduğunu ispatlayınız.
- **3.** $x_1, x_2, ..., x_m$ pozitif rasyonel sayılar olmak üzere, $x_1 + x_2 + ... + x_m = 1$ ise, n pozitif tamsayısı için, $n [nx_1] [nx_2] ... [nx_m]$ ifadesinin alabileceği minimum ve maksimum değerlerin toplamını bulunuz. (Kanada M.O. 1996)
- **4.** p ve q aralarında asal sayılar olmak üzere,

$$\left\|\frac{p}{q}\right\| + \left\|\frac{2p}{q}\right\| + \dots + \left\|\frac{(q-1)p}{q}\right\| = \frac{(p-1)(q-1)}{2}$$

olduğunu ispatlayınız.

5. $a,b,c\in\mathbb{Z}^+$ olmak üzere, $\frac{1}{a}$ ve $\frac{1}{b}$ sayılarının küçük olanına k diyelim.

$$c \left[\left[\frac{c}{ab} \right] \right] - \left[\left[\frac{c}{a} \right] \right] \left[\left[\frac{c}{b} \right] \right] \le ck$$

olduğunu gösteriniz.

6.
$$[\![x]\!] + [\![10x]\!] + [\![100x]\!] = N$$

 $[\![y]\!] + [\![10y]\!] + [\![100y]\!] + [\![1000y]\!] = N + 11$
 $[\![z]\!] + [\![10z]\!] + [\![100z]\!] + [\![1000z]\!] = N + 111$

denklemleri veriliyor. Birinci denklem haricindeki denklemlerin çözümü olacak şekildeki 2003'ten küçük bir pozitif tamsayı bulunuz. (USA Math. Talent Search 2004)

7.
$$x \in \mathbb{R}$$
 olmak üzere, $\sum_{k=1}^{\infty} \left[\!\!\left[\frac{x+2^k}{2^{k+1}} \right]\!\!\right] = [\![x]\!]$ olduğunu ispatlayınız. (IMO 1968)

8. x,y reel sayıları için, $\{x\}=\{y\}$ ve $\{x^3\}=\{y^3\}$ eşitlikleri sağlandığına göre, x sayısının tamsayı katsayılı bir ikinci dereceden denklemin kökü olduğunu gösteriniz.

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

8.2 Çözümlü Test

- **1.** [x] + [2x] + [4x] + [8x] + [16x] + [32x] = 12345 denkleminin kaç tane kökü vardır? (Kanada M.O. 1982)
 - A) 1
- **B**) 0
- C) 13
- D) Sonsuz sayıda
- E) Hiçbiri
- **2.** $x_1, x_2, ..., x_{100}$ pozitif rasyonel sayılar olmak üzere, $x_1 + x_2 + \cdots + x_{100} = 1$ ise, n pozitif tamsayısı için, $n - [nx_1] - [nx_2] - \cdots - [nx_{100}]$ ifadesinin alabileceği maksimum değer kaçtır?
 - A) 100
- B) 110
- C) 101
- D) 95
- E) Hiçbiri
- 3. [x] $\left(\frac{5}{2} + \{x\}\right) = \frac{1}{2}(x+2)$ denkleminin kaç tane kökü vardır?
 - A) 1
- **B**) 0
- C) 13 D) Sonsuz sayıda
- E) Hiçbiri
- **4.** $\{x\}^2 (x + [x])^2 + [x]^2 (x + \{x\})^2 = 9 + 2 [x]^2 \{x\}^2$ denklemini sağlayan xreel sayılarının kareleri toplamı kaçtır?
 - A) $2\sqrt{6}$
- B) 6
- \mathbf{C}) 0
- D) 4
- E) Hicbiri
- 5. [x] $\left(\frac{7}{2} + \{x\}\right) = (x+2)$ denkleminin kaç tane çözümü vardır?
 - A) 1
- B) 0
- C) 2
- D) Sonsuz sayıda
- E) Hiçbiri
- **6.** $\left\| \frac{1}{1997} \right\| + \left\| \frac{2}{1997} \right\| + \left\| \frac{4}{1997} \right\| + \dots + \left\| \frac{2^{1995}}{1997} \right\|$ toplamını hesaplayınız.
- A) 998 B) $2^{1997} 1$ C) $\frac{2^{1997} 1}{1997}$ D) $2^{1997} 998$ E) Hiçbiri
- 7. $\left\|x + \frac{19}{100}\right\| + \left\|x + \frac{20}{100}\right\| + \left\|x + \frac{21}{100}\right\| + \dots + \left\|x + \frac{91}{100}\right\| = 546$ olduğuna göre, [100x] = ? (AIME 1991)
 - A) 751
- B) 841
- C) 744
- D) 741
- E) Hicbiri

- **8.** Bir k tamsayısı için, $k=[\![\sqrt[3]{n_1}]\!]=[\![\sqrt[3]{n_2}]\!]=\cdots=[\![\sqrt[3]{n_{70}}]\!]$ olacak şekilde tam 70 tamsayı var ve k sayısı tüm $n_i,\,(i=1,2,...,70)$ sayılarını bölmektedir. Buna göre, $\frac{n_i}{k}, \, (i=1,2,...,70)$ sayılarından en büyüğü kaçtır? (AIME 2007)
- B) 552 C) 553
- D) 554
- E) Hiçbiri
- 9. $4x^2 40 \|x\| + 51 = 0$ denkleminin kaç tane çözümü vardır? (Kanada M.O. 1999)
 - A) 0
- B) 1
- **C**) 3
- D) 4
- E) Hiçbiri
- **10.** x [x], [x], x geometrik dizi olduğuna göre, x = ? (Kanada M.O. 1975)
- A) $\frac{\sqrt{5}+1}{2}$ B) $\frac{\sqrt{5}-1}{2}$ C) $\frac{\sqrt{5}+2}{2}$ D) $\frac{\sqrt{5}-2}{2}$ E) Hiçbiri

BU SORULARIN ÇÖZÜMLERİNİ MATEMATİK OLİMPİYATLARINA HAZIRLIK 3 (Sayılar Teorisi) KİTABINDA BULABİLİRSİNİZ.

Mustafa Özdemir

1. $\sum_{n=1}^{100} \left[\!\left[\frac{2n}{3}\right]\!\right]$ toplamı kaçtır?

A) 3000

UMO - 1994

8.3 TÜBİTAK Olimpiyat Soruları (Tamdeğer)

B) 3267 C) 3300 D) 3330 E) 3333

			rük tamsayı gös gerçel köklerini		$x^2 - 18 [x] + 77 = 0$	
	A) 0	B) 1	C) 2	D) 3	E) Hiçbiri	
					UMO - 2001	
3.			ayan kaç pozitif		,	
	A) 44	B) 48	C) 52	D) 54	E) 56	
					UMO - 2006	
4.	$\left[\left[\frac{6x+5}{8} \right] \right] =$	$\frac{15x-7}{5} $ eşitl	iğini sağlayan g	erçel sayıların to	oplamı kaçtır?	
	A) 2	B) $\frac{81}{92}$	C) $\frac{7}{15}$	D) $\frac{4}{5}$	E) $\frac{19}{15}$ UMO - 2007	
	5. Tüm x gerçel sayıları için, $x^2 \geq C [\![x]\!] (x - [\![x]\!])$ eşitsizliğinin doğru olmasını sağlayan en büyük C gerçel sayısı nedir?					
	A) 0	B) 1	C) 4	D) 9	E) 25	
					UMO - 2004	
6.	$\llbracket a \rrbracket$ ile a gerç	el sayısını aşn	nayan en büyük	tamsayıyı göste	relim.	
	[x] + [3x] + [5x] + [7x] + [11x] + [13x] = 1994					
	$[\![x]\!] + [\![3x]\!]$	+ 5x + 7	x + 11x +	[13x] = 1995		
	$[\![x]\!] + [\![3x]\!]$	+ 5x + 7	x + 11x +	[13x] = 1996		
	$[\![x]\!] + [\![3x]\!]$	+ 5x + 7	x + 11x +	[13x] = 1997		
der	nklemlerinde	n kaç tanesinin	çözüm kümesi	boş değildir?		
	A) 4	B) 3	C) 2	D) 1	E) Hiçbiri	
	•	,	,	,	UMO - 1997	

E) 30

UMO - 1994

D) 20

A) 8

						UMO - 1994
	[a] ile a geryısı için,	rçel sayısını aş	şmayan en bi	iyük tamsayıy	n gösterelim.	Her x gerçel
		f(x)	$(x) = x - \left[\left[\frac{x}{2} \right] \right]$	$-\left[\!\left[\frac{x}{3}\right]\!\right]-\left[\!\left[\frac{x}{6}\right]\right]$		
ola	arak tanımlana	ın fonksiyonur	n değer küme	si aşağıdakileı	rden hangisidi	r?
	A) $[0,1)$	B) $[0, 2)$	C)[0,3)	D) $[0, 4)$	e) Hiçbiri	
						UMO - 1997
	$x^4 - 2^{-y^2}x$	$x^2 - [x^2] + 1$	1 = 0 eşitliğ	ini sağlayan k	$\operatorname{kac}(x,y)$ gere	çel sayı ikilisi
	A) 0	B) 1	C) 2	D) 4	E) Sons	uz sayıda UMO - 1999
11	4 4	$= \left[\sqrt[3]{7n+3} \right]$	•			
	A) 0 E	B) 1 C) 7	D) Sons	suz çoktukta	E) Hiçbiri	UMO - 2002
		ARIN ÇÖZÜ! LIK 3 (Sayıla		TABINDA B		

7. $||x^2 + 8x|| \le A$ denkleminin, tamsayılar kümesi içinde tam olarak 13 tane çözümü

8. $[\![x^2+4x]\!]=[\![x]\!]^2+4[\![x]\!]$ denkleminin reel sayılardaki çözüm kümesinde x=0 sayısını içine alan en geniş aralık aşağıdakilerden hangisidir?

A) $-1 \le x \le 1$ B) $0 \le x < \sqrt{5} - 2$ C) $-\frac{1}{2} \le x \le \sqrt{5} - 2$ D) x = 0 E) $0 \le x \le \sqrt{5} - 2$

C) 19

olması için, "A'nın alabileceği en küçük değer nedir?

B) 9

Antalya M.O.- 2005

8.4 Antalya Matematik Olimpiyatı Soruları (Tamdeğer)

	$[a]$ ile a reel substitution in reel \mathfrak{g}	-	-	diğine göre x –	$- [\![x]\!] = [\![(0,5)x - 2]\!]$
	A) 4	B) 3	C) 2	D) 1	E) Sonsuz
	,	·	ŕ	,	Antalya M.O 1998
He	$\frac{1}{x}$ reel sayısı ic $\frac{7}{x}$ noktasındaki		$+f(\lbrace x\rbrace)$ eşi	tliğini sağlayar	$[\![x]\!]$ olarak tanımlansın. A f fonksiyonunun $x=$
	A) $-\frac{31}{14}$	B) $-\frac{19}{7}$	C) -3	D) $-\frac{19}{14}$	E) $-\frac{31}{7}$ Antalya M.O 2001
	ш - ш			sayılarda çözü österilmektedir.	im kümesi kaç eleman-
	A) 0	B) 1	C) 2	D) 3	E) Sonsuz çoklukta
					Antalya M.O 2002
				aç tane n doğal smı gösterilmel	sayısı için $\llbracket \sqrt{n} rbracket$ sayısı ktedir.)
	A) 2	B) 3	C) 4	D) 5 E	$(\sqrt{2002})$
	,	,	,		Antalya M.O 2003
say	x_1 ve x_2 sayılar ısı aşağıdakiler x] ifadesi, a say	den hangisine	eşittir?		nin kökleri ise, $x_1^3 + x_2^3$
\ п	(A) - 7	B) 9	(C) -9	D)-1	9 E) 35
	,	,	,	,	Antalya M.O 2004
6. eşit	$5 \leq n \leq 2005$ liği sağlanmaz	5 aralığındaki ? (Burada, [a]	kaç tane n ta lie a sayısını	msayısı için <i>n</i> n tam kısmı gös	$-\left[\frac{n}{2}\right] = \left[\left[\frac{2n}{3}\right]\right] - \left[\left[\frac{n}{6}\right]\right]$ sterilmektedir.)
	A) 222	B) 266	C) 322	D) 334	E) 366

7. x reel sayısının tam kısmı $[\![x]\!]$ ve kesir kısmı da $\{x\}=x-[\![x]\!]$ olmak üzere, $f\left(x\right)=x^3-3x\cdot[\![x]\!]\cdot\{x\}$

fonksiyonu veriliyor.

$$S = f(1,2) + f(2,2) + f(3,2) + \cdots + f(m,2)$$

toplamının bir tamsayı olması için m'nin alabileceği en küçük değer nedir?

- A) 100
- B) 125
- C) 200
- D) 250
- E) 400

Antalya M.O.- 2006

ÇALIŞMA SORULARI

- 1. $a^2+b^2+c^2$ ifadesi 9'a bölünüyor ise, a^2-b^2 , b^2-c^2 veya a^2-c^2 ifadelerinden birinin 9'a bölüneceğini ispatlayınız.
- **2.** $p^2 + 2$ ve p asal ise, $p^3 + 2$ de asaldır gösteriniz.
- **3.** \overline{aabb} dört basamaklı sayısı bir tamkare ise, a + b = ?
- **4.** p, 2p + 1 ve 4p + 1 sayıları asal olacak şekilde kaç tane p asal sayısı vardır?
- **5.** p>5 asal sayısının karesinin 30 ile bölümünden kalan ya 1 ya da 19 dur ispatlayınız.
- **6.** İlk n tane asal sayının çarpımı p ise, p-1 ve p+1 sayılarının tamkare olamayacaklarını gösteriniz.
- **7.** n, 2'den büyük bir tamsayı ve p bir asal sayı olmak üzere, $\frac{2n}{3} ise <math>p \nmid \binom{2n}{n}$ olduğunu ispatlayınız.
- **8.** n pozitif tamsayısı için,

$$OBEB (2n + 3, n + 7) = \begin{cases} 1, & n \not\equiv 4 \pmod{11} \\ 11, & n \equiv 4 \pmod{11} \end{cases}$$

olduğunu ispatlayınız.

- **9. a**) $19 \mid 23a + 10b$ ise $19 \mid 3a + 55b$ olduğunu ispatlayınız.
- $\mathbf{b}) \ \frac{5n+26}{2n+3} \ \mathrm{tamsayı} \ \mathrm{olacak} \ \mathrm{şekilde} \ \mathrm{kaç} \ \mathrm{tam} \ n \ \mathrm{tamsayısı} \ \mathrm{vardır}?$
- **10.** $a_i \in \{-1, 1\}$ olmak üzere, $a_1 a_2 + a_2 a_3 + \cdots + a_{n-1} a_n + a_n a_1 = 0$ ise, $4 \mid n$ olduğunu ispatlayınız.
- 11. $m,n,a\in\mathbb{Z}^+$ olmak üzere, $a^m+1\mid a^n+1$ ise $m\mid n$ olduğunu ispatlayınız.
- **12.** Dört tane ardışık sayının çarpımının bir tamsayının bir kuvveti olamayacağını gösteriniz.

- 13. $\frac{2^{32}+1}{641}$ sayısının tamsayı olduğunu gösteriniz.
- **14.** $a,b \in \mathbb{Z}^+$ olmak üzere, $\mathit{OBEB} \big(n^a + 1, n^b + 1 \big) \mid n^{\mathit{OBEB}(a,b)} + 1$ olduğunu ispatlayınız.
- **15.** p > 3 asal sayı ve $a, b \in \mathbb{Z}$ olmak üzere, $6p \mid ab^p ba^p$ olduğunu ispatlayınız. (Fermat teoremini kullanınız)
- **16.** $n \in \mathbb{N}$ olmak üzere, $1^{2009} + 2^{2009} + \cdots + n^{2009}$ sayısının n+2 ile bölünemeyeceğini ispatlayınız.
- 17. $|12^m 5^m|$ formundaki en küçük tamsayının 7 olduğunu gösteriniz.
- **18.** n tane 9 ve 2 tane 1 rakamından oluşan 199...91 sayısı 1991'e tam bölünecek şekilde bir n>2 sayısının bulunduğunu ispatlayınız. (BREZİLYA M.O. 1991)
- **19.** $8p^4 3003$ sayısı pozitif olacak şekilde tüm p asal sayılarını bulunuz. (MEKSİKA M. O. 1997)
- **20.** 12345 sayısından küçük olan aritmetik olarak artan 1999 farklı pozitif asal sayının bulunamayacağını gösteriniz. (MEKSİKA M. O. 1999)
- **21.** Hiçbir rakamı 0 olmayan ve 2^{2009} ile bölünebilen bir pozitif tamsayının var olduğunu ispatlayınız.
- 22. $\frac{1}{1996}$ sayısının ondalık yazılımında virgülden sonraki 46-ıncı rakamı kaçtır? (Un. of South Carolina Math. Contest)
- **23.** $\left[\!\left[\frac{2006}{1}\right]\!\right]$, $\left[\!\left[\frac{2006}{2}\right]\!\right]$, $\left[\!\left[\frac{2006}{3}\right]\!\right]$, \cdots , $\left[\!\left[\frac{2006}{2006}\right]\!\right]$ sayılarının oluşturduğu küme kaç elemanlıdır?
- **24.** $OBEB(\binom{3232}{1}, \binom{3232}{3}, \binom{3232}{5}, ..., \binom{3232}{3231},) = ?$
- **25.** Rakamları 3 veya 7'den oluşan ve 21'in katı olan tüm 7 basamaklı sayıları bulunuz. (MEKSİKA M.O. 2001)
- **26.** 20! sayısının kaç tane pozitif tamsayı böleni vardır? (MEKSİKA M.O. 1987)
- 27. n sayısı, 100'den küçük olan ve tam 3 tane pozitif tamsayı böleni olan tüm pozitif tamsayıların çarpımı ise, n sayısını bulunuz ve tamkare olduğunu gösteriniz. (MEKSİKA M.O. 1987)

- **28.** Her $n\in\mathbb{Z}^+$ için, $(n^3-n)(5^{8n+4}+3^{4n+2})$ sayısının 3804 sayısı ile bölünebildiğini gösteriniz. (MEKSİKA M.O. 1987)
- **29.** n^2+n-1 ve n^2+2n sayılarının ortak çarpanı olamayacağını gösteriniz. (MEKSİKA M.O. 1987)
- **30.** $m, n \in \mathbb{Z}^+$ olmak üzere, 19 sayısının 11m+2n sayısını bölmesi için gerek ve yeter şart 18m+5n sayısını da bölmesidir. (MEKSİKA M.O. 1988)
- **31.** a ve b aralarında asal pozitif tamsayılar olmak üzere, n+2 sayısının

$$OBEB\left(a^2+b^2-nab,a+b\right)$$

ile tam bölündüğünü gösteriniz. (MEKSİKA M.O. 1988)

- **32.** n>2 olmak üzere, $n^{n-1}-1$ sayısının $(n-1)^2$ ile bölünebildiğini gösteriniz. (MEKSİKA M.O. 1990)
- **33.** Verilen bir p asal sayısı için, 0 < a, b, c, d < p-1 olmak üzere, $ad \equiv bc \pmod{p}$ olacak şekilde kaç tane (a,b,c,d) pozitif tamsayı dörtlüsü vardır? (MEKSİKA M.O. 1992)
- **35.** 100 ile 999 arasında rakamlarının küpüne eşit olan tüm sayıların bulunuz. (MEKSİKA M.O. 1993)
- **36.** p bir tek asal sayı olduğuna göre, bir n tamsayısı için

$$p \mid n(n+1)(n+2)(n+3)+1$$

olması için gerek ve yeter şart $p\mid m^2-5$ olacak şekilde bir mtamsayısının olmasıdır. (MEKSİKA M.O. 1993)

- 37. $n^a+n^b=n^c$ denkleminin pozitif tamsayılar kümesinde tüm çözümlerini bulunuz. (BREZİLYA M.O. 1992)
- **38.** $x^2+y^2+z^2=3xyz$ denkleminin pozitif tamsayılar kümesinde sonsuz sayıda çözümü olduğunu gösteriniz. (BREZİLYA M.O. 1996)
- **39.** 1998'den küçük ikişer olarak aralarında asal olan 15 pozitif tamsayıdan en az birinin asal olması gerektiğini gösteriniz. (BREZİLYA M.O. 1998)

- **40.** Bir n tamsayısı için $n^2+5n+23$ sayısını bölecek şekildeki en küçük asal sayıyı bulunuz. (BREZİLYA M.O. 2003)
- **41.** $\frac{1}{a} + \frac{1}{b} + \frac{1}{b} = \frac{1}{1983}$ denkleminin pozitif tamsayılar kümesinde sonlu sayıda çözümü olduğunu gösteriniz. (BREZİLYA M.O. 1983)
- **42.** $(n+1)^k-1=n!$ denkleminin pozitif tamsayılar kümesinde tüm çözümlerini bulunuz. (BREZİLYA M.O. 1984)
- **43.** $a,b,c,d\in\mathbb{Z}$ olmak üzere, $x^2+ax+b=y^2+cy+d$ denkleminin sonsuz sayıda tamsayı çözümünün olması için gerek ve yeter şart $a^2-4b=c^2-4d$ olmasıdır. Gösteriniz. (BREZİLYA M.O. 1985)
- **44.** Hem iki asal sayının farkı, hem de iki asal sayının toplamı olarak yazılabilen tüm asal sayıları bulunuz. (BREZİLYA M.O. 1988)
- **45.** $n \in \mathbb{Z}^+$ ve $\frac{n(n+1)}{3}$ ifadesi tamkare ise n sayısının 3'ün katı ve $n+1, \frac{n}{3}$ sayılarının da tamkare olduğunu gösteriniz. (BREZİLYA M.O. 1989)
- **46.** $a^3+1990b^3=c^4$ denkleminin pozitif tamsayılar kümesinde sonsuz sayıda çözümünün olduğunu gösteriniz. (BREZİLYA M.O. 1990)
- **47.** $n^2+(n+1)^2+(n+2)^2=m^2$ denkleminin tamsayılar kümesinde çözümü var mıdır? (İSVEÇ M.O. 2000)
- **48.** Hangi $n \geq 8$ tamsayıları için, $n^{\frac{1}{n-7}}$ ifadesi bir tamsayıdır? (İSVEÇ M.O. 2002)
- **49.** $[x^2 2] + 2 [x] = [x]^2$ denkleminin sağlayan x reel sayılarını bulunuz. (İSVEÇ M.O. 2003)
- **50.** $n^2-3mn+m-n=0$ denklemini sağlayan tüm (m,n) tamsayı ikililerini bulunuz. (İSVEÇ M.O. 1962)
- **51.** $1234^{567} + 89^{1011}$ sayısının 12'ye bölümünden kalan kaçtır? (İSVEC M.O. 1963)
- **52.** $n+(n+1)+(n+2)+\cdots+(n+m)=1000$ denklemini sağlayan tüm (m,n) pozitif tamsayı ikililerini bulunuz. (İSVEÇ M.O. 1964)

- **53.** $m^3-n^3=999$ denklemini sağlayan tüm (m,n) pozitif tamsayı ikililerini bulunuz.. (İSVEÇ M.O. 1965)
- **54.** $m^3=n^3+n$ denklemini sağlayan tüm (m,n) tamsayı ikililerini bulunuz.. (İSVEÇ M.O. 1969)
- **55.** Üç tane tamsayının dördüncü kuvvetlerinin toplamı olarak yazılamayan sonsuz sayıda pozitif tamsayının bulunduğunu ispatlayınız. (İSVEÇ M.O. 1970)
- **56.** $\begin{cases} x-4y=1\\ ax+3y=1 \end{cases}$ denklem sisteminin bir tamsayı çözümünün olması için a reel sayısının alabileceği en büyük değeri bulunuz. (İSVEÇ M.O. 1972)
- **57.** $a_1=1,\,a_2=2^{a_1},\,a_3=3^{a_2},\,a_4=4^{a_3},\,...,\,a_9=9^{a_8}$ olduğuna göre, a_9 sayısının son iki basamağını bulunuz. (İSVEÇ M.O. 1974)
- **58.** $n \mid 2^n + 1$ olacak şekilde sonsuz sayıda n pozitif tamsayısı olduğunu gösteriniz. (İSVEÇ M.O. 1975)
- **59.** $3^m-1=2^n$ denkleminin tamsayılar kümesinde sonlu sayıda çözümünün olduğunu gösteriniz. Çözümleri bulunuz. (İSVEÇ M.O. 1976)
- **60.** p bir asal sayı olmak üzere, $p^d \mid p^4!$ olacak şekildeki en büyük d tamsayısını bulunuz. (İSVEÇ M.O. 1977)
- **61.** $x \ge y \ge z$ olmak üzere,

$$\begin{cases} xy + yz + zx = 3n^2 - 1\\ x + y + z = 3n \end{cases}$$

sisteminin tamsayı çözümlerinin sadece, $x=n+1,\,y=n,\,z=n-1$ olduğunu gösteriniz. (İSVEÇ M.O. 1977)

62. $1 \le x \le n$ olmak üzere, $x^2 - [\![x^2]\!] = (x - [\![x]\!])^2$ denkleminin kaç tane çözümü vardır? (İSVEÇ M.O. 1982)

$$\textbf{63.} \left\{ \begin{array}{l} 2x_1-x_2=1 \\ -x_1+2x_2-x_3=1 \\ -x_2+2x_3-x_4=1 \\ -x_3+3x_4-x_5=1 \\ \vdots \\ -x_{n-2}+2x_{n-1}-x_n=1 \\ -x_{n-1}+2x_n=1 \end{array} \right. \text{ denklem sisteminin pozitif tamsayılarda bir çözümü}$$

olduğuna göre, n sayısının çift olması gerektiğini gösteriniz. (İSVEÇ M.O. 1983)

- 64. $\left\{ \begin{array}{ll} a^3-b^3-c^3=3abc \\ a^2=2(a+b+c) \end{array} \right. \ \, \text{denklem sisteminin pozitif tamsayılar kümesinde tüm çözümlerini bulunuz. (İSVEÇ M.O. 1984)}$
- **65.** $d_1,d_2,...,d_k$ sayıları, n=1990! sayısının bölenleri ise, $\sum_{i=1}^k \frac{d_i}{\sqrt{n}}=\sum_{i=1}^k \frac{\sqrt{n}}{d_i}$ olduğunu gösteriniz. (İSVEÇ M.O. 1990)
- **66.** $\frac{1}{m} + \frac{1}{n} \frac{1}{mn} = 2/5$ denklemini sağlayan tüm (m,n) pozitif tamsayı ikililerini bulunuz. .(İSVEÇ M.O. 1991)
- **67.** $\frac{19^{92}-91^{29}}{90}$ ifadesi tamsayı mıdır? (İSVEÇ M.O. 1992)
- **68.** $a,b\in\mathbb{Z}$ ve ab bir çift sayı ise, $a^2+b^2+x^2=y^2$ denklemini sağlayan x,y tamsayılarının bulunduğunu gösteriniz. (İSVEÇ M.O. 1993)
- **69.** $2n^3-m^3=mn^2+11$ denklemini sağlayan tüm (m,n) tamsayı ikililerini bulunuz. (İSVEÇ M.O. 1994)
- **70.** S(n) sayısı n sayısının rakamlarının toplamını göstermek üzere, 1'den büyük ve 10'dan farklı bir n tamsayısı için, her 0 < k < f(n) sayısı S(k) + S(f(n) k) = n eşitliğini sağlayacak şekilde bir tek $f(n) \geq 2$ tamsayısı bulunduğunu gösteriniz. (İSVEÇ M.O. 1997)
- **71.** $(8a-5b)^2+(3b-2c)^2+(3c-7a)^2=2$ denklemini sağlayan tüm (a,b,c) pozitif tamsayı üçlülerini bulunuz. (İSVEÇ M.O. 1998)
- 72. Herhangi n>5 pozitif tamsayısı için, $\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_n}=\frac{1997}{1998}$ denklemini sağlayan $x_1,x_2,...,x_n$ pozitif tamsayıları bulunabileceğini ispatlayınız. Böyle bir denklemi sağlayan bu n sayıdan OBEB leri 1'den büyük olacak şekilde iki sayı bulunacağını gösteriniz.
- 73. $a^2+b^2-8c=6$ denklemini sağlayan (a,b,c) tamsayı üçlüsünün bulunmadığını gösteriniz. (Kanada M.O. 1969)
- 74. $\frac{n^3+m}{n+2}$ sayısı tamsayı olacak şekilde, en az 11 tane tek ve en az 11 tane de çift pozitif n sayısının olmasını sağlayan en küçük m>8 pozitif tamsayısını bulunuz. (2006 Rice Math Tourn.)

- **75. a**) 10201 sayısının 2'den büyük herhangi bir tabanda asal olamayacağını gösteriniz.
- **b**) 10101 sayısının herhangi tabanda asal olmadığını gösteriniz. (Kanada M.O. 1972)
- 76. $x^3+11^3=y^3$ denkleminin sağlayan (x,y) pozitif tamsayı ikilisi bulunmadığını gösteriniz. (Kanada M.O. 1972)
- 77. p ve p+2 sayıları 3'ten büyük asal ise, $6\mid p+1$ olduğunu gösteriniz. (Kanada M.O. 1973)
- **78.** n sayısı b tabanında 777'ye eşit olduğuna göre, n sayısı bir tamsayının dördüncü kuvvetine eşit olacak şekilde en küçük b pozitif tamsayısını bulunuz. (Kanada M.O. 1977)
- **79.** $n\in\mathbb{Z}$ olmak üzere, n^2 sayısının onlar basamağı 7 ise, \mathbf{n}^2 sayısının birler basamağı kaçtır? (Kanada M.O. 1978)
- **80.** $2a^2=3b^3$ denklemini sağlayan, tüm (a,b) pozitif tamsayı ikililerini bulunuz. (Kanada M.O. 1978)
- 81. Her p asal sayısı için, $p\mid 2^n-n$ olacak şekilde, sonsuz sayıda pozitif n tamsayısı bulunduğunu gösteriniz. (Kanada M.O. 1983)
- **82.** 1984 tane ardışık sayının karelerinin toplamının bir tamkare olamayacağını ispatlayınız. (Kanada M.O. 1984)
- 83. $2^{n-1}\mid n!$ olması için gerek ve yeter şart $n=2^{k-1}$ olacak şekilde bir k pozitif tamsayısı vardır. İspatlayınız. (Kanada M.O. 1985)
- **84.** $a,b,n\in\mathbb{Z},$ $a\leq b$ ve n<14 olmak üzere, $a^2+b^2=n!$ denklemini sağlayan tüm (a,b,n) pozitif tamsayı üçlülerini bulunuz. (Kanada M.O. 1987)
- **85.** $[\![x]\!]$, x sayısından büyük olmayan en büyük tamsayıyı gösterdiğine göre, her $n\in\mathbb{Z}^+$ için,

$$\left[\!\left[\sqrt{n}+\sqrt{n+1}\right]\!\right] = \left[\!\left[\sqrt{4n+1}\right]\!\right] = \left[\!\left[\sqrt{4n+2}\right]\!\right] = \left[\!\left[\sqrt{4n+3}\right]\!\right]$$

olduğunu ispatlayınız. (Kanada M.O. 1987)

86. $a_1=1989^{1989}$, olmak üzere n>1 için a_n,a_{n-1} sayısının rakamlarının toplamını göstermektedir. Buna göre, a_5 kaçtır? (Kanada M.O. 1989)

- 87. $xyz \neq 0$ olmak üzere, $x^2+y^5=z^3$ denklemini sağlayan sonsuz sayıda (x,y,z) üçlüsü olduğunu gösteriniz. (Kanada M.O. 1991)
- 88. İlk n tane doğal sayının çarpımının, ilk n tane doğal sayının toplamıyla bölünebilmesi için gerek ve yeter şart n+1 sayısının asal olmamasıdır. Gösteriniz. (Kanada M.O. 1992)
- **89.** $x=\left[\!\left[\frac{x}{2}\right]\!\right]+\left[\!\left[\frac{x}{3}\right]\!\right]+\left[\!\left[\frac{x}{5}\right]\!\right]$ denklemini sağlayan kaç tane x reel sayısı vardır? (Kanada M.O. 1998)
- **90.** $m,n\in\mathbb{Z}^+$ olmak üzere, $83\mid 25m+3n$ olması için gerek ve yeter şart $83\mid 3m+7n$ olmasıdır. Gösteriniz. (Baltık Way M.O. 1990)
- **91.** $x^2 7y^2 = 1$ denklemini sağlayan sonsuz sayıda (x, y) doğal sayı ikilisi bulunduğunu ispatlayınız. (Baltık Way M.O. 1990)
- **92.** Herhangi ikisinin veya daha fazlasının toplamı asal olmayan 1990 tane aralarında asal sayı var mıdır? (Baltık Way M.O. 1990)
- 93. $F_n=2^{2^n}+1,\,n=0,1,2,...$ sayılarının hiçbirisi bir tamsayının küpü olamaz. Gösteriniz. (Baltık Way M.O. 1990)
- **94.** $a_1,a_2,...,a_n$ farklı tamsayıları için, i < j iken tüm $a_i a_j$ farkları 1991'e tam bölünecek şekildeki en küçük n pozitif tamsayısı kaçtır? (Baltık Way M.O. 1991)
- 95. $102^{1991}+103^{1991}=n^m$ olacak şekilde, m>1 ve n tamsayılarının bulunmadığını gösteriniz. (Baltık Way M.O. 1991)
- **96.** $[\![x]\!]$, x sayısının tam kısmını ve $\{x\}=x-[\![x]\!]$ kesir kısmını göstermek üzere, $[\![x]\!]\cdot\{x\}=1991x$ denkleminin çözümlerini bulunuz. (Baltık Way M.O. 1991)
- **97.** p ve q ardışık iki tek asal sayı olmak üzere, p+q sayısının, birbirinden farklı olması gerekmeyen en az üç tane 1'den büyük tamsayının çarpımı olarak yazılabileceğini gösteriniz. (Baltık Way M.O. 1992)
- **98.** d(n), n sayısının tüm pozitif bölenlerinin sayısını göstermek üzere, $\frac{n}{d(n)}$ tamsayı olacak şekilde sonsuz sayıda n tamsayısı bulunduğunu gösteriniz. (Baltık Way M.O. 1992)

- **99.** $2^x(4-x)=2x+4$ denklemini sağlayan tüm x tamsayılarını bulunuz. (Baltık Way M.O. 1992)
- **100.** $a_1a_2a_3$ ve $a_3a_2a_1$ üç basamaklı iki sayı olsun. a_1 ve a_3 rakamları sıfırdan farklıdır. Bu sayıların kareleri sırasıyla, $b_1b_2b_3b_4b_5$ ve $b_5b_4b_3b_2b_1$ olduğuna göre, bu şekildeki üç basamaklı tüm sayıları bulunuz. (Baltık Way M.O. 1993)
- **101.** Her k pozitif tamsayısı için, an+b ifadesi, bir tamsayının k-ıncı kuvveti olacak şekilde bir n pozitif tamsayısının var olmasını sağlayacak şekilde a>b>1 pozitif tamsayıları var mıdır? (Baltık Way M.O. 1993)
- **102.** Eğer bir pozitif sayı birbirinden farklı olması gerekmeyen iki asal sayının çarpımı ise ilginç sayı diyelim. En fazla kaç tane ardışık ilginç sayı vardır. (Baltık Way M.O. 1993)
- **103.** $\sqrt{\frac{25}{2}+\sqrt{\frac{625}{4}-n}}+\sqrt{\frac{25}{2}-\sqrt{\frac{625}{4}-n}}$ tamsayı olacak şekilde tüm n tamsayılarını bulunuz. (Baltık Way M.O. 1993)
- **104.** Tüm n tek pozitif tamsayıları için, $2^9 \mid n^{12}-n^8-n^4+1$ olduğunu gösteriniz. (Baltık Way M.O. 1993)
- 105. tamsayılar kümesinde $\begin{cases} z^x=y^{2x}\\ 2^z=4^x\\ x+y+z=20 \end{cases}$ denklem sistemini çözünüz. (Baltık x+y+z=20
- **106.** $a \circledast b = a + b ab$ olmak üzere,

$$(x\circledast y)\circledast z+(y\circledast z)\circledast x+(z\circledast x)\circledast y=0$$

eşitliğini sağlayan tüm (x,y,z) tamsayı üçlülerini bulunuz. (Baltık Way M.O. 1994)

- **107.** $\sqrt{n-1}+\sqrt{n+1}$ sayısı, rasyonel sayı olacak şekilde n tamsayısı var mıdır? (Baltık Way M.O. 1994)
- **108.** p bir tek asal sayı olmak üzere, m ve n aralarında asal sayıları için,

$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots + \frac{1}{(p-1)^3} = \frac{m}{n}$$

ise, $p \mid m$ olduğunu ispatlayınız. (Baltık Way M.O. 1994)

- **109.** 2^a+3^b ifadesi bir tamkare olacak şekilde tüm (a,b) pozitif tamsayı ikililerini bulunuz. (Baltık Way M.O. 1994)
- **110.** 1994 rakamlı, tüm rakamları $\{1, 2, 3, 4, 5\}$ kümesinden olan ve herhangi ardışık iki rakamı arasındaki farkının mutlak değeri 1 olan kaç tane pozitif tamsayı vardır? (Baltık Way M.O. 1994)
- **111.** $a,k\in\mathbb{Z}^+$ olmak üzere $a^2+k\mid (a-1)a(a+1)$ ise, $k\geq a$ olduğunu gösteriniz. (Baltık Way M.O. 1995)
- 112. a ve c sayıları tek sayı olmak üzere, a,b,c pozitif tamsayıları ikişerli olarak aralarında asal ve $a^2+b^2=c^2$ denklemini sağlıyorlar ise, b+c sayısının tamkare olacağını gösteriniz. (Baltık Way M.O. 1995)
- **113.** $a,b,c,d\in\mathbb{Z}^+$ olmak üzere, ab=cd ise, a+b+c+d toplamının asal olamayacağını gösteriniz. (Baltık Way M.O. 1996)
- **114.** $a \ge b \ge c$ koşulunu sağlayan ve $1a^3+9b^2+9c+7=1997$ denklemini sağlayan tüm (a,b,c) doğal sayı üçlülerini bulunuz. (Baltık Way M.O. 1997)
- **115.** 79 tane ardışık sayı içerisinde rakamları toplamı 13 ile bölünebilen bir pozitif tamsayının bulunduğunu gösteriniz. (Baltık Way M.O. 1997)
- **116.** $2x^2+5y^2=11(xy-11)$ denklemini sağlayan tüm (x,y) pozitif tamsayı ikililerini bulunuz. (Baltık Way M.O. 1998)
- 117. a bir tek rakam ve b bir çift rakam olmak üzere, her n pozitif tamsayısı için, rakamları sadece a ve b'den oluşan ve 2^n . (Baltık Way M.O. 1998)
- **118.** $m, n \in \mathbb{Z}^+$ olmak üzere, $19^n 5^m$ formunda yazılabilen en küçük pozitif tamsayı kaçtır? (Baltık Way M.O. 1999)
- **119.** Her p asal sayısı için, $p^2 + k$ sayısı asal olmayacak şekilde sonsuz sayıda çift k pozitif tamsayısı bulunabileceğini ispatlayınız. (Baltık Way M.O. 1999)
- **120.** a,b,c ve d asal sayıları için, a>3b>6c>12d ve $a^2-b^2+c^2-d^2=1749$ olduğuna göre, $a^2+b^2+c^2+d^2$ ifadesinin tüm mümkün olabilecek değerlerini bulunuz. (Baltık Way M.O. 1999)
- **121.** Pozitif bölenlerinin sayısının 100 katına eşit olan tüm n pozitif tamsayılarını bulunuz. (Baltık Way M.O. 2000)

- **122.** n pozitif tamsayısı 2 veya 3'e bölünemeyen bir sayı olmak üzere, her k tamsayısı için, $(k+1)^n-k^n-1$ sayısı k^2+k+1 sayısı ile tam bölündüğünü ispatlayınız. (Baltık Way M.O. 2000)
- **123.** $n \in \mathbb{Z}^+$ olmak üzere, $\{1,2,3,...,2^n\}$ kümesinden herhangi x,y ikilisinin x+y toplamı, xy çarpımını bölmeyecek şekilde en az $2^{n-1}+n$ sayının seçilebileceğini gösteriniz. (Baltık Way M.O. 2001)
- **124.** a bir tek sayı olmak üzere, her $m, n \in \mathbb{Z}^+, m \neq n$ için,

$$OBEB\left(a^{2^{n}} + 2^{2^{n}}, \ a^{2^{m}} + 2^{2^{m}}\right) = 1$$

olduğunu gösteriniz. (Baltık Way M.O. 2001)

- **125.** 360 tane pozitif bölene sahip olan en küçük pozitif tek sayı kaçtır? (Baltık Way M.O. 2001)
- **126.** $a_k = \left(2^{2k+1}\right)^2 + 1$ sayısı en fazla iki farklı asal sayıya bölünecek şekilde, tüm k doğal sayılarını bulunuz. (Baltık Way M.O. 2002)
- **127.** n^6-1 sayısının herhangi asal böleni $(n^3-1)(n^2-1)$ sayısının da böleni olacak şekilde tüm n>1 tamsayılarını bulunuz. (Baltık Way M.O. 2002)
- **128.** $n \in \mathbb{Z}^+$ olmak üzere, $x+y+\frac{1}{x}+\frac{1}{y}=3n$ denkleminin pozitif rasyonel sayılar kümesinde çözümünün olmadığını gösteriniz. (Baltık Way M.O. 2002)
- **129.** a-b asal sayı ve ab tamkare olacak şekilde tüm (a,b) pozitif tamsayı ikililerini bulunuz. (Baltık Way M.O. 2003)
- **130.** a, b pozitif tamsayılar olmak üzere, $a^3 + b^3$ bir tamkare ise, a + b sayısı iki farklı asal sayının çarpımı olarak yazılamayacağını gösteriniz. (Baltık Way M.O. 2003)
- 131. n pozitif tamsayısının kendisi haricindeki tüm pozitif bölenlerinin toplamı $\sigma\left(n\right)$ ve n sayısının pozitif bölenlerinin sayısı $\tau\left(n\right)$ olmak üzere, $\sigma\left(n\right)+\tau\left(n\right)=n$ ise, $n=2m^2\ (m\in\mathbb{Z})$ formunda yazılabileceğini gösteriniz. (Baltık Way M.O. 2003)
- **132.** Her $n \in \mathbb{N}$ için, $|p_{n+1} 2p_n| = 1$ olacak şekilde, $p_1, p_2, ...$ sonsuz elemanlı bir asal sayı dizisi var mıdır? (Baltık Way M.O. 2004)

- 133. $m=30030=2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13$ ve M kümesi, m sayısının tam iki tane asal çarpana sahip olan pozitif bölenlerinin kümesi olsun. M kümesinden seçilen herhangi n eleman arasında, abc=m olacak şekilde a,b,c sayılarının daima bulunmasını sağlayan en küçük n sayısı kaçtır? (Baltık Way M.O. 2005)
- **134.** p bir asal sayı ve n bir pozitif tamsayı olmak üzere, $(n+1)^p n^p$ sayısının bir pozitif böleni q olsun. $p \mid q-1$ olduğunu ispatlayınız. (Baltık Way M.O. 2005)
- **135.** $x,y\in\mathbb{Z}^+$ için $z=\frac{4xy}{(x+y)}$ bir tek sayı ise, z sayısının en az bir pozitif böleninin $4n-1\ (n\in\mathbb{Z}^+)$ formunda olduğunu gösteriniz. (Baltık Way M.O. 2005)
- **136.** Toplamları da tamkare olan 2005 tane farklı tamkare bulunabilir mi? (Baltık Way M.O. 2005)
- **137.** $p_1p_2\cdots p_k$, sayısı n sayısının farklı olması gerekmeyen asal çarpanlarına ayrılmış hali ise, $n=p_1p_2\cdots p_k\mid (p_1+1)(p_2+1)\cdots (p_k+1)$ olacak şekildeki tüm n pozitif tamsayılarını bulunuz. (Baltık Way M.O. 2005)
- **138.** Herhangi ikisinin çarpımı ile 2006 sayısının toplamı tamkare olan dört farklı pozitif tamsayı bulunabilir mi? (Baltık Way M.O. 2006)
- **139.** $n^2 \mid 3^n + 1$ olacak şekilde tümn pozitif tamsayılarını bulunuz. (Baltık Way M.O. 2006)
- **140.** n^{n^n} sayısının son rakamı a_n ise, (a_n) dizisinin periyodik olduğunu gösteriniz ve periyodunu bulunuz. (Baltık Way M.O. 2006)
- **141.** Sadece 1,5 ve 9 rakamlarından oluşan 12 basamaklı bir sayı 37'ye bölünüyor ise, bu sayının rakamları toplamının 76 olamayacağını ispatlayınız. (Baltık Way M.O. 2006)

142.
$$x,y,z\in\mathbb{Z}^+$$
 olmak üzere, $\frac{x+1}{y}+\frac{y+1}{z}+\frac{z+1}{x}$ bir tamsayı ve
$$OBEB~(x,y,z)=d~~{\rm ise}~d\leq\sqrt[3]{xy+yz+zx}$$

olduğunu gösteriniz. (Baltık Way M.O. 2007)

143. $a,b\in\mathbb{Z}^+,b< a$ olmak üzere, $ab(a-b)\mid a^3+b^3+ab$ ise, ab sayısının tamküp olduğunu gösteriniz. (Baltık Way M.O. 2007)

- **144.** $6n \mid 6+n$ olacak şekilde tüm n pozitif tamsayılarını bulunuz. (Estonya M.O. 1995)
- **145.** 1, 2, ..., 100 sayıları arasından 50 farklı sayı seçiliyor, bu 50 sayı arasından, toplamı tamkare olacak şekilde iki sayı seçilebileceğini gösteriniz. (Estonya M.O. 1995)
- **146.** n>5 tek sayısı için, $1^n+2^n+\cdots+15^n$ sayısının 480'e tam bölündüğünü gösteriniz. (Estonya M.O. 1995)
- **147.** p bir asal sayı olmak üzere, p(x-y)=xy denklemini sağlayan tüm (x,y) pozitif tamsayı ikililerini bulunuz. (Estonya M.O. 1995)
- **148.** x,y ve $\frac{x^2+y^2+6}{xy}$ sayıları tamsayı ise, $\frac{x^2+y^2+6}{xy}$ sayısının tamküp olduğunu gösteriniz. (Estonya M.O. 1995)
- **149.** 7 | $3^n + n^3$ olması için gerek ve yeter şart 7 | $3^n n^3 + 1$ olmasıdır, ispatlayınız. (Estonya M.O. 1995)
- **150.** $m,n,k\in\mathbb{N}$ olmak üzere, $m^n\mid n^m$ ve $n^k\mid k^n$ ise, $m^k\mid k^m$ olduğunu ispatlayınız. (Estonya M.O. 1993)
- **151.** OBEB(a,b)=OBEB(c,d) eşitliğini sağlayan, birbirinden farklı ve 1'den büyük ab=cd olacak şekilde (a,b,c,d) tamsayı dörtlüsü var mıdır? (Aynı soruyu ac=bd için de çözünüz) (Estonya M.O. 2007)
- **152.** Herhangi bir rakamı silindiğinde elde edilen 4 basamaklı sayı 7 ile tam bölünecek şekilde kaç tane 5 basamaklı sayı vardır? (Estonya M.O. 2007)
- **153.** $\overline{bca}=(a+b+c)^3$ ve $b\neq 0$ olmak üzere, $\overline{abc}\cdot(a+b+c)$ ifadesinin alabileceği tüm değerleri bulunuz. $(\overline{abc}$ ve \overline{bca} üç basamaklı sayıları göstermektedir. (Estonya M.O. 2007)
- **154.** *k* basamaklı bir pozitif tamsayının tüm tekli, ikili, üçlü,... ve k-lı kısımları asal ise bu sayıya hiperasal sayı diyelim. Tüm hiperasal sayıları bulunuz. Örneğin, 5323 sayısı hiper asal değildir. Çünkü, 32 ikili kısmı asal değildir. (Estonya M.O. 2006)
- **155.** n bir çift pozitif tamsayı olmak üzere, $\frac{n^m-1}{n-1}$ sayısı tamkare olacak şekilde bir m>1 doğal sayısı var ise, $8\mid n$ olduğunu gösteriniz. (Estonya M.O. 2006)

- **156.** $m^n-n^m=3$ denklemini sağlayan tüm (m,n) pozitif tamsayı ikilerini bulunuz. (Estonya M.O. 2006)
- **157.** k—ıncı kuvvetinin rakamları toplamı i) k=2004'e ; ii) k=2006'ya eşit olan bir doğal sayı var mıdır? (Estonya M.O. 2005)
- **158.** ab = OBEB(a, b) + OKEK(a, b) denklemini sağlayan tüm (a, b) pozitif tamsayı ikilerini bulunuz. (Estonya M.O. 2005)
- **159.** 3'ten büyük her n tamsayısı için, herhangi ikisinin çarpımı, geri kalan n-2 tanesinin toplamına tam bölünecek şekilde iki parçaya ayrılabilen n farklı sayının bulunduğunu ispatlayınız. (Estonya M.O. 2005)
- **160.** a ve b aralarında asal sayılar olmak üzere, (a+b)/(a-b) bir pozitif tamsayı ise, ab+1 ve 4ab+1 sayılarının en az birinin tamkare olması gerektiğini gösteriniz. (Estonya M.O. 2004)
- **161.** Öğretmen, $\frac{a}{b} \cdot \sqrt{a^2 + b^2}$ ifadesi tamsayı olacak şekilde a ve b tamsayıları seçiyor.
- a) Sam, a nın, b'nin her asal çarpanı ile bölünebileceğini iddia ediyor. Sam'in iddiasının doğru olduğunu gösteriniz.
- b) Sam, $b \le a$ olduğunu iddia ediyor. İddiası doğru mudur ? (Estonya M.O. 2004)
- **162.** $a,b,n\in\mathbb{Z}$ olmak üzere, $n\mid a+b$ ve $n^2\mid a^2+b^2$ ise, her m pozitif tamsayısı için $mn\mid a^m+b^m$ olduğunu gösteriniz. (Estonya M.O. 2004)
- **163.** $2^{2^n-1}-7$ ifadesi tamkare olacak şekilde n>1 tamsayısı bulunabilir mi? (Estonya M.O. 2004)
- **164.** $(x+y)^x=x^y$ denklemini sağlayan tüm (x,y) pozitif tamsayı ikililerini bulunuz. (Estonya M.O. 2004)
- **165.** $\frac{n^1}{1!} + \frac{n^2}{2!} + \dots + \frac{n^n}{n!}$ ifadesi tamsayı olacak şekilde tüm n pozitif tamsayılarını bulunuz. (Estonya M.O. 2003)
- **166.** x < y < z olmak üzere

$$\begin{cases} \textit{OBEB}\left(x,y\right) = 6\\ \textit{OBEB}\left(y,z\right) = 10\\ \textit{OBEB}\left(z,x\right) = 8\\ \textit{OKEK}\left(x,y,z\right) = 2400 \end{cases}$$

olacak şekilde tüm (x, y, z) pozitif tamsayı üçlülerini bulunuz. (Estonya M.O. 2003)

- **167.** $52^a \cdot 77^b \cdot 88^c \cdot 91^d = 2002$ denklemini sağlayan tüm (a,b,c,d) tamsayı dörtlülerini bulunuz. (Estonya M.O. 2002)
- **168.** $n \in \mathbb{Z}^+$ olmak üzere, $\underbrace{999...9}_{n \text{ tane}}$ sayısı n ile bölünebiliyor ise, $\underbrace{111...1}_{n \text{ tane}}$ sayısının da n ile bölünebildiğini ispatlayınız. (Estonya M.O. 2002)
- **169.** m,n tamsayılar olmak üzere, $\frac{m^2+n^2}{mn}$ ifadesinin alabileceği tüm tamsayı değerlerini bulunuz. (Estonya M.O. 2002)
- **170.** $1^{2001} + 2^{2001} + 3^{2001} + \cdots + 2000^{2001} + 2001^{2001}$ sayısının 13 ile bölümünden kalanı bulunuz. (Estonya M.O. 2001)
- 171. $[\![x]\!]$, x sayısının tam kısmını ve $\{x\}$ sayısı da kesir kısmını göstermek üzere, $(x=[\![x]\!]+\{x\})$

$$\begin{cases} x + [\![y]\!] + \{z\} = 200, 2 \\ y + [\![z]\!] + \{x\} = 200, 1 \\ z + [\![x]\!] + \{y\} = 200, 0 \end{cases}$$

sistemini sağlayan tüm (x, y, z) reel sayı üçlülerini bulunuz. (Estonya M.O. 2001)

- **172.** Rakamları birbirinde farklı 10 basamaklı bir sayı 99999'a bölünebiliyor ise, bu sayıya sihirli sayı diyelim. Kaç tane sihirli sayı vardır? (Estonya M.O. 2001)
- 173. \overline{ab} iki basamaklı sayısı c ile, \overline{bc} iki basamaklı sayısı a ile ve \overline{ca} iki basamaklı sayısı b ile bölünecek şekilde a,b,c sıfırdan farklı rakamları bulunabilir mi? (Estonya M.O. 2001)
- 174. $n \in \mathbb{Z}^+$ olmak üzere, $S\left(n\right)$, n sayısının pozitif bölenlerinin sayısını gösteriyor ise.
- a) $S\left(6n\right) \leq 12S\left(n\right)$ olduğunu ispatlayınız.
- b) $S\left(6n\right)=12S\left(n\right)$ eşitliği sağlanacak şekildeki n sayısını bulunuz. (Estonya M.O. 2001)
- **175.** Sadece 2 ve 0 rakamlarından oluşan ve bir pozitif tamsayının k-ıncı $(k \ge 2)$ kuvvetine eşit olan bir tamsayı var mıdır? (Estonya M.O. 2001)
- **176.** OBEB(m,n)=d ve OKEK(m,n)=r olmak üzere, 3m+n=3r+d ise, $m\mid n$ olduğunu ispatlayınız. (Estonya M.O. 2001)

- 177. $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$ denklemini sağlayan (a,b,c) pozitif tamsayı üçlüsüne harmonik üçlü diyelim. Herhangi verilen bir c pozitif tamsayısı için, (a,b,c) harmonik üçlülerinin sayısının c^2 sayısının pozitif bölenlerinin sayısına eşit olacağını gösteriniz. (Estonya M.O. 2000)
- **178.** 2,4,6,...,2000 sayılarının $\left\{\frac{1}{2},\frac{1}{3},...,\frac{1}{2000},\frac{1}{2001}\right\}$ kümesinin elemanları ile çarparak elde edilen tüm çarpımların toplamını bulunuz. (Estonya M.O. 2000)
- 179. 2 tabanında n tane 1 ve n tane 0 olan tüm pozitif tamsayıların toplamını bulunuz.
- **180.** $55^n + m32^n$ sayısı 2001 sayısının katı olacak şekilde en küçük pozitif tamsayıyı bulunuz. (İRLANDA M.O. 2001)
- **181.** $2x^2 + x = 3y^2 + y$ denkleminin kaç tane (x, y) pozitif tamsayı çözümü vardır?
- **182.** m ve $n,m\leq n$ koşulunu sağlayan pozitif tamsayılar ve d sayısı da m ve n'nin en büyük ortak bölenini göstermek üzere, $\frac{d}{n}\binom{n}{m}$ sayısının tamsayı olduğunu gösteriniz. (Putnam M.O. 2000)
- **183.** (a,b,...,z) ve [a,b,...,z] ifadeleri sırasıyla a,b,...,z sayılarının *OBEB* ve *OKEK*'ini göstermek üzere, $a,b,c\in\mathbb{Z}^+$ için,

$$\frac{(a,b,c)^2}{[a,b,c]^2} = \frac{(a,b)(b,c)(c,a)}{[a,b][b,c][c,a]}$$

olduğunu gösteriniz. (USAMO 1972)

- **184.** $6n^2+5$, $2n^2+3$ ve n^2+1 sayıları asal olacak şekilde tüm n pozitif tamsayılarını bulunuz. (Wisconsin M. Talent Search 1995)
- **185.** Tam 36 tane pozitif böleni olan ve 1, 2, 3, ..., 8, 9 sayıları ile bölünebilen tüm pozitif tamsayıları bulunuz. (Wisconsin M. Talent Search 1995)
- **186.** 6'dan farklı olan bir a pozitif tamsayısı için, $9p^2 + ap + 1$ ifadesi tamkare olacak şekilde bir p asal sayısının bulunabileceğini gösteriniz. (Wisconsin M. Talent Search 1995)
- **187.** $m,n\in\mathbb{Z}^+$ olmak üzere, $\frac{1997m}{m+1997^n}$ ifadesinin alabileceği tamsayı değerlerini bulunuz. (Wisconsin M. Talent Search 1997)

188. $n \mid 2^n+2$ ve $n-1 \mid 2^n+1$ olacak şekilde sonsuz sayıda n pozitif tamsayısı bulunduğunu ispatlayınız.

- **189.** $x,y,z\in\mathbb{Z}^+,$ OBEB(y,z)=1 ve $1000\mid y$ olmak üzere, $\frac{1997}{1998}+\frac{1999}{x}=\frac{y}{z}$ denklemini sağlayan en küçük x tamsayısı kaçtır?
- **190.** $\frac{m^{n+1}+2^{n+1}+1}{m^n+2^n+1}=k \text{ denklemini sağlayan, tüm } (m,n,k) \text{ pozitif tamsayı üçlülerini bulunuz.}$

KAYNAKLAR

- 1. Aliyev İ., Özdemir M., Şıhaliyeva D., *Ulusal Antalya Matematik Oimpiyatları Sorular ve Çözümler*, TÜBİTAK Yayınları, 2007.
- 2. Alizade R., Ufuktepe Ü., Sonlu Matematik, TÜBİTAK Yayınları, 2006.
- 3. Andreescu, T.; Feng, Z., 101 *Problems in Algebra from the Training of the USA IMO Team*, Australian Mathematics Trust, 2001.
- 4. Andreescu, T.; Feng, Z., 102 Combinatorial Problems from the Training of the USA IMO Team, Birkhäuser, 2002.
- 5. Andreescu, T.; Feng, Z., 103 Trigonometry Problems From The Training of the USA IMO Team, Birkhäuser, 2005.
- 6. Andrescu T, Andrica D., Feng Z. ,104 Number Theory Problems From The Training of the USA IMO Team, Birkhäuser 2007.
- 7. Andrescu T., Enescu B., Mathematical Olympiad Treasures, ,Birkhäuser 2006.
- 8. Andrescu T, Feng Z., *Mathematical Olympiads*, 1996-1997: *Problems and Solutions from Around the World*, The Math. Association of America, 1998.
- 9. Andrescu T, Feng Z., *Mathematical Olympiads*, 1997-1998: *Problems and Solutions from Around the World*, The Math. Association of America, 1999.
- 10. Andrescu T, Feng Z., *Mathematical Olympiads: Problems and Solutions from Around the World 1998-1999*, The Math. Association of America, 2000.
- 11. Andrescu T, Feng Z., George L., *Mathematical Olympiads*, 1999-2000: *Problems and Solutions from Around the World*, The Math. Association of America, 2002.
- 12. Andrescu T, Feng Z., George L., *Mathematical Olympiads*, 2000-2001: *Problems and Solutions from Around the World*, The Math. Association of America, 2003.
- 13. Arthur, E., *Problem-Solving Strategies*, 1999, Springer.
- 14. Balcı, M., Matematik Analiz, Cilt 1., Balcı Yayınları, 2008.
- 15. Bin X., Peng Yee L., *Mathematical Olympiad in China Problems and Solutions*, East China Normal University Press and World Scientific Publishing Co. Pte. Ltd., 2007.
- 16. Don R., Number Theory, An Introduction, Marcel Dekker, Newyork, 1996.
- 17. Dickson L. E., First Course in the Theory of Equations, J. Wiley & Sons, 1922.
- 18. Doob, M., *The Canadian Mathematical Olympiad 1969–1993*, University of Toronto Press, 1993.
- 19. Felda Darjo, (by Translated), *40 National Math. Olymp. in Slovenia*, Soc. of. Math., Phy. and Astr. of Slovenia, 1996.
- 20. Fomin, D.; Kirichenko, A., *Leningrad Mathematical Olympiads* 1987–1991, MathPro Press, 1994.

KAYNAKLAR 143

21. Fomin, D.; Genkin, S.; Itenberg, I., *Mathematical Circles*, American Mathematical Society, 1996.

- 22. Gerald L. A., Klosinski L., F., Larson L., C., *The William Lowell Putnam Mathematical Competition Problems and Solutions: 1965-1984*, 1985, The Mathematical Association of America.
- 23. Gözükızıl Ö. F., Yaman M., *Olasılık Problemleri*, Sakarya Kitabevi, 2005...
- 24. Greitzer S. L., *Uluslararası Matematik Olimpiyatları* 1959 1977, Tübitak Yayınları, 1984.
- 25. Gürlü Ö., Meraklısına Geometri, Zambak Yayınları, 2005.
- 26. Honsberger R., From Erdos to Kiev Problems of Olympiad Caliber, The Mathematical Association of America, 1996.
- 27. Honsberger R., *In Polya's Footsteps, Miscellaneous Problems and Essays*, The Mathematical Association of America, 1997.
- 28. *Mathematical Diamonds*, Ross Honsberger, 2003, he Mathematical Association of America.
- 29. *Problems in Elemantary Maths.*, V. Lidsky, L. Ovsyannikov, A. Tulaikov, M. Sahbunin, MIR Pub. 1973.
- 30. Karakaş H. İ., Aliyev İ., Sayılar teorisinde ilginç olimpiyat problemleri ve çözümleri, TÜBİTAK Yayınları 1999.
- 31. Karakaş H. İ., Aliyev İ., *Analiz ve Cebirde ilginç olimpiyat problemleri ve çözümleri*, TÜBİTAK Yayınları 1999.
- 32. Kazarinoff, N. D., *Geometric Inequalities*, New Mathematical Library, Vol. 4, Random House, 1961.
- 33. Klamkin M, USA Mathematical Olympiads 1972-1986 Problems and Solutions, Mathematical Association of America, 1989.
- Klamkin, M., International Mathematical Olympiads, 1978–1985,
 NewMathematical Library, Vol. 31, Mathematical Association of America, 1986.
- 35. Kızılırmak A., Akbulut F., *Cevdet Bilsay'dan Bir Demet*, Ege Ün. Yay., Bornova, 1975.
- 36. Kuczma, M., 144 Problems of the Austrian–Polish Mathematics Competition 1978–1993, The Academic Distribution Center, 1994.
- 37. Larson, L. C., Problem-Solving Through Problems, Springer Verlag, 1992.
- 38. Lidsky V., Ovsyannikov L., Tulaikov A., and Shabunin M., *Problems in Elementary Mathematics*, Mir, Moscow: 1973
- 39. Nesin A., Matematiğe Giriş III, Sayma, Nesin Yayıncılık, 2009.
- 40. Nesin A., Matematiğe Giriş 1, Sezgisel Kümeler Kuramı, Nesin Yayıncılık, 2008.
- 41. Salkind, C. T., The Contest Problem Book, Random Hause, 1961.
- 42. Shanks D., *Solved and Unsolved Problems in Number Theory*, 1978, Chelsea Pub. Company, New York.
- 43. Shklarsky D.O., Chentzov N. N., Yaglom I. M., *The USSR Olympiad Problem Book*, Dover Pub. 1994.

- 44. Yücesan R., Meraklısına Matematik, Zambak Yayınları, 2005.
- 45. Terzioğlu N., İçen, O., Saban, G., Şahinci, H., *Analiz Problemleri*, Şirketi Mürettibiye Basımevi, 1962.
- 46. Töngemen M., *Tübitak Ulusal Matematik Olimpiyat Soru ve Çözümleri* 1993-2006, Altın Nokta Yayınları, 2006.
- 47. Liselerarası Mat. Yarışması Soruları ve Çözümleri, 1969-1983, Tübitak Yayınları, 1983.
- 48. Türk Matematik Derneği, Matematik Dünyası Dergileri, 2000 2008.
- 49. Özdeğer, A., Özdeğer, N., *Çözümlü Analiz Problemleri Cilt 1*, Kuşak Ofset, 1995.
- 50. Öztunç, M. K., Trigonometri Problemleri, İrem Yayınevi, 1965.

WEB KAYNAKLARI

- 1. The art of problem solving, http://www.artofproblemsolving.com.
- 2. Estonian Math Competitions, http://www.math.olympiaadid.ut.ee/eng/html/index.php
- 3. Mathematical Excalibur Journal, http://www.math.ust.hk/excalibur/.
- 4. Crux Mathematicorum with Math. Mayhem, Canadian Math. Society, http://journals.cms.math.ca/CRUX/.
- 5. Bulgarian Competitions in Mathematics and Informatics, http://www.math.bas.bg/bcmi/index.html.
- 6. Problems from Olympiads, http://www.imomath.com/index.php?options=oth|other&p=0.
- 7. Wisconsin Math. Enginering and Science Talent Saerch Problem Page http://www.math.wisc.edu/~talent/problems.html.
- 8. Canadian Math. Olympiads, http://www.math.ca/Competitions/CMO/
- 9. Kalva Math.Problems , John Scholes, http://www.kalva.demon.co.uk/.
- 10. William Lowell Putnam Mathematics Competition Problems, http://www.unl.edu/amc/a-activities/a7-problems/putnamindex.shtml.
- 11. AMC USAMO/MOSP/IMO & Others Problems, http://www.unl.edu/amc/a-activities/a7-problems/problemUSAMO-IMOarchive.shtml.
- 12. Problems in Elemantary Number Theory, http://www.problem-solving.be/pen/.
- 13. Lecture Notes of Dr.David A. Santos, http://faculty.ccp.edu/faculty/dsantos/.
- 14. The Harvard MIT Mathematic Tournament, http://web.mit.edu/hmmt/www/.