Notes on Real Analysis

Sivmeng

November 5, 2021

Chapter 1

Real Numbers

1.1 Properties of Real Numbers

For now, let me just assume that the set \mathbb{N} , \mathbb{Z} and \mathbb{Q} are already exist. Just note that they're an "Order Field". The thing is, there must be some number system that is quite *larger* than \mathbb{Q} , because for example, there is no $q \in \mathbb{Q}$ such that $q^2 = 2$.

To extend from Q, we're going to make up a new number system (kinda cheat a little bit, dun you think?) denoted by \mathbb{R} , which has the addition operation (+) and multiplication (\cdot) such that for all $a,b\in\mathbb{R}$

$$a + b \in \mathbb{R}$$
 and $ab := a \cdot b \in \mathbb{R}$.

Since we extended from $\mathbb Q$, this new set $\mathbb R$ is going to inherit all the properties from $\mathbb Q$ listed below

- **[A1]** for any $a, b \in \mathbb{R}$, then a + b = b + a and ab = ba.
- **[A2]** for any $a, b, c \in \mathbb{R}$, then a + (b + c) = (a + b) + c and a(bc) = (ab)c
- **[A3]** there is a number (*indentity*) $\theta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$ such that $a + \theta = a\gamma = a$ for all $a \in \mathbb{R}$.
- **[A4]** for any $a \in \mathbb{R}$,
 - there exist an *additive inverse* α such that $a + \alpha = \theta$.
 - if $a \neq \theta$, there exist a *multiplicative inverse* β such that $a\beta = \gamma$.
- **[A5]** for any $a, b, c \in \mathbb{R}$, then a(b+c) = ab + ac.

Well because $\mathbb{Q} \subset \mathbb{R}$ (subspace), the indentity θ and γ are the same of those in \mathbb{Q} , which we already know they're simply the numbers 0, 1. Note also that, we must assume that $0 \neq 1$.

Theorem 1. *For any a, b, c* \in \mathbb{R} *, the following holds*

- the additive and the multiplicative indentity are unique. (later denoted them by 0 and 1 resp.)
- \circ the addition and multiplicative inverses are unique. (later denoted them by -a and a^{-1} resp.)
- \circ if $a + c = b + c \iff a = b$.
- $a \cdot 0 = 0$, -a = (-1)a and -(-a) = a.
- \circ if ab = 0 then a = 0 or b = 0.

The above theorem is not that hard to prove. However, I promise to come back to this point to provide a full proof about it.

What now? The set \mathbb{R} here behaves the same as \mathbb{Q} . How is it possible that \mathbb{R} is bigger that \mathbb{Q} ? Let's find the condition that \mathbb{Q} is lack of.

A long the way, we're introduced bounded sets.

Definition 1.1 (Maximum and Minimum). Let $S \subset \mathbb{R}$.

- ∘ if there exists M ∈ S such that M ≥ s for all s ∈ S, then M is said to be the maximum of S and is denoted by max S.
- ∘ if there exists m ∈ S such that m ≤ s for all s ∈ S, then m is said to be the minimum of S and is denoted by min S.

Definition 1.2 (Bounded Sets). The set $S \subseteq \mathbb{R}$ is called

- ∘ *bounded above* if $\exists M \in \mathbb{R}$ such that $s \leq M$ for all $s \in S$.
- ∘ bounded below if $\exists m \in \mathbb{R}$ such that $m \leq s$ for all $s \in S$.
- ∘ *bounded* if it is both bounded below and above, that is $\exists M > 0$ such that |s| < M for all $s \in S$.

Definition 1.3 (Upper and Lower bounds). Let $S \subseteq \mathbb{R}$ be a bounded set. We denote

- the set of all upper bounds of S by $\mathcal{U}(S) = \{M \in \mathbb{R} : M \ge s \text{ for all } s \in S\}$
- the set of all lower bounds of *S* by $\mathcal{L}(S) = \{m \in \mathbb{R} : m \leq s \text{ for all } s \in S\}$

Definition 1.4 (Infimum and Supremum). Let *S* be a bounded set. If

- the set $\mathcal{U}(S)$ has a minimum α , then the set S is said to have a *supremum*, that is $\sup S := \alpha$.
- the set $\mathcal{L}(S)$ has a maximum β , then the set S is said to have an *infimum*, that is inf $S := \beta$.

Axiom 1.5 (Axiom of Completeness). Every non-empty subset of $\mathbb R$ that is bounded above has a supremum.

5

Example 1. The function f(x) = 2x + 1 converges over \mathbb{R} . Note that $\forall x \in \mathbb{R}$

$$|f(x) - f(x_0)| = 2|x - x_0|$$

therefore we can choose $\delta = \frac{\epsilon}{2}$ which does not depend on the choise of x_0 .

Example 2. The function $f(x) = x^2$ converges over \mathbb{R} . Note that $\forall x_0 \in \mathbb{R}$

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |x - x_0| \cdot |x + x_0|$$

Suppose that $|x - x_0| < 1$ and hence

$$|x + x_0| < |x - x_0| + |2x_0| < 1 + |2x_0|$$

So we can choose $\delta = \min \left\{ 1, \frac{\epsilon}{1+2|x_0|} \right\}$ which depends on the choise of x_0 .

Definition 1.6 (Absolutely Convergent). The function $f: \mathcal{D} \to \mathbb{R}$ is said to be *Absolutely Convergent* iff for each $\epsilon > 0$ there exists $\delta > 0$ such that $\forall x, y \in \mathcal{D}$

$$|x - x_0| < \delta \implies |f(x) - f(y)| < \epsilon$$
.