TAI PL1 Fonctions et Variations

Exercice 1

- 1) On considère la suite réelle définie par: $u_0 = \frac{2}{3}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{2} + \frac{n}{2\sqrt{2}} + \frac{1}{\sqrt{2}}$. Montrer que $v_n = \sqrt{2}u_n n$ est une suite géométrique dont on précisera la raison et le premier terme.
- 2) Calculer v_n puis u_n en fonction de n.
- 3) La suite (u_n) converge-t-elle?

Exercice 2

1) Montrer que la suite de terme général $u_n = \sqrt{n^4 + 1} - n^2$, $n \in \mathbb{N}$ est minorée par 0 et majorée par 1.

Exercice 3

1) La suite de terme général $u_n = \sqrt{n+1} - \sqrt{n}$ est-elle majorée? Minorée?

Exercice 4

1) Soient a>0, b>0 et $(u_n)_{n\geq 0}$ la suite définie par $u_n=\frac{a^n-b^n}{a^n+b^n}$, étudier la convergence de $(u_n)_{n\geq 0}$

Exercice 5

1) Soit $(u_n)_{n\geq 0}$ une suite réelle pour $n\geq 0$ on pose $\mathcal{V}_n=\frac{u_0+\ldots+u_n}{n+1}$, montrer que si $(u_n)_{n\geq 0}$ est monotone alors $(v_n)_{n\geq 0}$ est monotone.

Exercice 6

1) Montrer que pour tout réel x > 0, $\ln x < \sqrt{x}$.

Exercice 7

1) Vérifier que, pour tous réels x et x strictement positifs on a:

$$(x+y)\ln(x+y) \ge x \ln x + y \ln y$$

Exercice 8

1) Calculer la dérivée de f définie sur \mathbb{R} privé de 1 par $f(x) = \left(\frac{1+2x}{1-x}\right)^2$.

Exercice 9

1) Calculer la dérivée seconde de f définie par $f(x) = e^{x^2-3}$.

Exercice 10

1) Calculer la dérivée de f définie par $f(x) = \ln (3x^2 - 1)$.

Exercice 11

1) Montrer par récurrence que: $1 + 2 + \dots + n = \frac{n(n+1)}{2}$

Exercice 12

1) Montrer par récurrence que: $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$