

Test Report Page: 1 of 9 No.: KA/2020/60956R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

The following sample(s) was/were submitted and identified by/on behalf of the applicant as:

: NXP SEMICONDUCTORS Sample Submitted By

Sample Description : NXP WAFERS 2020 Style/Item No. : NIJMEGEN-200mm

Sample Receiving Date : 2020/06/12

Testing Period 2020/06/12 to 2020/06/19

(1) As specified by client, with reference to RoHS 2011/65/EU Annex II and amending **Test Requested**

Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs,

DBP, BBP, DEHP, DIBP contents in the submitted sample(s).

(2) Please refer to next pages for the other item(s).

Test Result(s) Please refer to next page(s).

(1) Based on the performed tests on submitted sample(s), the test results of Cadmium, Conclusion

Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP comply with the limits as

set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Ray Chang Ph.D. / Mar Signed for and on beh SGS Taiwan Limited Chemical Laboratory-K

Test Report Page: 2 of 9 No.: KA/2020/60956R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Test Result(s)

PART NAME NO.1 : MULTICOLORED WAFER

Test Item (s)	Unit	Method	MDL	Result No.1	Limit
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	100
Lead (Pb)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	1000
Mercury (Hg)	mg/kg	With reference to IEC 62321-4:2013+ AMD1:2017 and performed by ICP-OES.	2	n.d.	1000
Hexavalent Chromium Cr(VI)	mg/kg	With reference to IEC 62321-7-2:2017 and performed by UV-VIS.	8	n.d.	1000
Sum of PBBs	mg/kg		-	n.d.	1000
Monobromobiphenyl	mg/kg		5	n.d.	-
Dibromobiphenyl	mg/kg]	5	n.d.	-
Tribromobiphenyl	mg/kg	With reference to IEC 62321-6:2015 and performed by GC/MS.	5	n.d.	-
Tetrabromobiphenyl	mg/kg		5	n.d.	-
Pentabromobiphenyl	mg/kg		5	n.d.	-
Hexabromobiphenyl	mg/kg		5	n.d.	-
Heptabromobiphenyl	mg/kg		5	n.d.	-
Octabromobiphenyl	mg/kg		5	n.d.	-
Nonabromobiphenyl	mg/kg		5	n.d.	-
Decabromobiphenyl	mg/kg		5	n.d.	-
Sum of PBDEs	mg/kg		-	n.d.	1000
Monobromodiphenyl ether	mg/kg		5	n.d.	-
Dibromodiphenyl ether	mg/kg		5	n.d.	-
Tribromodiphenyl ether	mg/kg		5	n.d.	-
Tetrabromodiphenyl ether	mg/kg		5	n.d.	-
Pentabromodiphenyl ether	mg/kg		5	n.d.	-
Hexabromodiphenyl ether	mg/kg		5	n.d.	-
Heptabromodiphenyl ether	mg/kg		5	n.d.	-
Octabromodiphenyl ether	mg/kg		5	n.d.	-
Nonabromodiphenyl ether	mg/kg		5	n.d.	-
Decabromodiphenyl ether	mg/kg		5	n.d.	-

Test Report No.: KA/2020/60956R1 Page: 3 of 9 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Test Item (s)	Unit	Method	MDL	Result No.1	Limit
DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
DBP (Dibutyl phthalate) (CAS No.: 84-74-2)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
DEHP (Di- (2-ethylhexyl) phthalate) (CAS No.: 117-81-7)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
DNOP (Di-n-octyl phthalate) (CAS No.: 117-84-0)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
DINP (Di-isononyl phthalate) (CAS No.: 28553-12-0, 68515-48-0)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
DIDP (Di-isodecyl phthalate) (CAS No.: 26761-40-0, 68515-49-1)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
DNPP(Di-n-pentyl phthalate) (CAS No.: 131-18-0)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
Antimony (Sb)	mg/kg	With reference to US EPA 3052: 1996. Analysis was performed by ICP-OES.	2	n.d.	-
Arsenic (As)	mg/kg		2	n.d.	-
Beryllium (Be)	mg/kg		2	n.d.	-
Halogen					
Halogen-Fluorine (F) (CAS No.: 14762-94-8)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Chlorine (CI) (CAS No.: 22537-15-1)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Bromine (Br) (CAS No.: 10097-32-2)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Iodine (I) (CAS No.: 14362-44-8)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-

Note:

- 1. mg/kg = ppm; 0.1wt% = 1000ppm
- 2. n.d. = Not Detected
- 3. MDL = Method Detection Limit
- 4. " " = Not Regulated
- 5. The statement of compliance conformity is based on comparison of testing results and limits.
- 6. This test report supersedes the previous document bearing the report number KA/2020/60956, the report KA/2020/60956 was voided. The revised date is 2020/06/23.

Test Report No.: KA/2020/60956R1 Page: 4 of 9 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of Heavy Metal

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr6+ test method excluded)

Test Report Page: 5 of 9 No.: KA/2020/60956R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

PBB/PBDE analytical FLOW CHART

Test Report Page: 6 of 9 No.: KA/2020/60956R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of phthalate content

[Test method: IEC 62321-8]

Test Report

No.: KA/2020/60956R1

Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Flow Chart of digestion for the elements analysis performed by ICP-OES

These samples were dissolved totally by pre-conditioning method according to below flow chart.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://twap.sgs.com/Terms-and-Conditions.html and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://twap.sgs.com/Terms-and-Conditions.html. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Page: 7 of 9

Test Report Page: 8 of 9 No.: KA/2020/60956R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of Halogen

Test Report Page: 9 of 9 No.: KA/2020/60956R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

* The tested sample / part is marked by an arrow if it's shown on the photo. *

KA/2020/60956

KA/2020/60956

** End of Report **