Fonctionnement des Ordinateurs

TP4 - Nombres flottants

B. QUOITIN Faculté des Sciences Université de Mons

Résumé

L'objectif de cette séance d'exercices est de renforcer votre compréhension de la représentation des nombres flottants et du standard IEEE 754.

Table des matières

1	Motivation	1
1.1	Erreur suite à une addition	1
1.2	Swamping lors de l'addition	1
1.3	Somme de fractions	1
2	Virgule flottante	3
2.1	Représentation IEEE754	3
2.2	Limites de la représentation IEEE754 (format réduit)	4
2.3	Normalisation d'un nombre	5
2.4	Conversion vers IEEE754 (format réduit)	5
2.5	Biais adéquat	6
2.6	Erreur absolue, erreur relative et epsilon machine	6
2.7	Arrondis	7
2.8	Addition	8
29	Soustraction	11

1 Motivation

1.1 Erreur suite à une addition

Ecrivez un programme en Python 3 qui stocke dans les variables x et y, les nombres 0,1 et 0,2 respectivement. Affichez les valeurs de ces variables à la console. Effectuez ensuite l'addition x+y et affichez la somme à la console. Que constatez-vous? Comment expliquez-vous ce phénomène?

Q1	,		~ ~	,		_	•	 	, -																																
					 			 	٠	 		 	٠	 	٠	 	 						 ٠		 						 ٠							 	 	٠	
					 			 		 		 	٠	 		 	 								 									 				 	 		
					 			 		 		 	٠	 	٠	 	 					٠			 									 				 	 		
					 			 		 		 	٠	 	٠	 	 					٠			 									 	 			 	 		
					 			 		 		 		 	٠	 	 		 	 					 	 							 	 	 				 		

1.2 Swamping lors de l'addition

Ecrivez un programme en langage C ou Java qui effectue l'addition des nombres x=2 et y=33554432 (2^{25}) placés dans des variables de type float (IEEE 754, en simple précision). Que constatez-vous?

Q2) Pro	Programme en C ou Java	

1.3 Somme de fractions

Ecrivez un programme en C ou Java qui ajoute 700 fois la fraction $\frac{1}{7}$ à une variable x valant initialement 0. Utilisez d'abord le type float et ensuite le type double. Que constatez-vous?

© 2020, B. QUOITIN 1/12

1.3 Somme de fractions 1 MOTIVATION

Q3) Programme en C ou Java	

Pouvez-vous écrire un programme donnant un comportement similaire en Python?

© 2020, B. Quoitin 2 / 12

2 Virgule flottante

2.1 Représentation IEEE754

Le standard IEEE 754 définit des représentations de nombres flottants. Cette représentation est composée d'un bit de signe, d'un exposant représenté sur E bits et d'une mantisse représentée sur M bits. Donnez les paramètres des représentations en simple et double précisions. La variable B est le biais.

Paramètres II	EEE 754			
Précision	Taille (bits)	E	M	$\mid B \mid$
simple	32	8	23	127
double	64	11	52	1023

Donnez les formules permettant d'interpréter un mot binaire de 32 bits (simple précision) selon ce format. Attention, par convention certaines valeurs spéciales sont encodées et il est important de distinguer les représentations normalisée et dénormalisée.

Q4) Interprétation nombre IEEE 754	4 simple précision
	<u></u>
Donnez les nombres représentés en IEEE	754 simple précision avec les mots binaires suivants.
Donnez les nombres représentés en IEEE Q5) 0 0000000 00000000000000000000000000	
Q5) 0 00000000 000000000000	000000000
	000000000
Q5) 0 00000000 000000000000	000000000
Q5) 0 00000000 000000000000	000000000

© 2020, B. QUOITIN 3 / 12

Q7) 0 10000000 11000000000000000000
Q8) 0 11111111 01111111111111111111111111
Q () V
Q9) 1 00000000 10000000000000000000000000
Donnez les plus grand et plus petit nombres positifs non nuls $\underline{\text{normalis\'es}}$ représentables avec les tailles de mantisse M , d'exposant
Donnez les plus grand et plus petit nombres positifs non nuls $\underline{\text{normalis\'es}}$ représentables avec les tailles de mantisse M , d'exposant
Donnez les plus grand et plus petit nombres positifs non nuls $\underline{\text{normalis\'es}}$ représentables avec les tailles de mantisse M , d'exposant
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants.
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants.
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants.
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants. $\mathbf{Q10}) M = 4, E = 3, B = 4$
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants.
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants. $\mathbf{Q10}) M = 4, E = 3, B = 4$
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants. $\mathbf{Q10}) M = 4, E = 3, B = 4$
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants. $\mathbf{Q10}) M = 4, E = 3, B = 4$
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants. Q10) $M=4$, $E=3$, $B=4$ Q11) $M=8$, $E=4$, $B=8$ Question identique pour les nombres <u>dénormalisés</u> .
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants. Q10) $M=4$, $E=3$, $B=4$ Q11) $M=8$, $E=4$, $B=8$
Donnez les plus grand et plus petit nombres positifs non nuls <u>normalisés</u> représentables avec les tailles de mantisse M , d'exposant E et les biais B suivants. Q10) $M=4$, $E=3$, $B=4$ Q11) $M=8$, $E=4$, $B=8$ Question identique pour les nombres <u>dénormalisés</u> .

© 2020, B. Quoitin 4 / 12

Normalisation	
	ume qui prend en argument un nombre réel x non nul et qui donne comme résultat la valeur x_{norm} normali que $x_{norm} \in [1, 2[$. Arrangez-vous également pour que votre algorithme fournisse l'exposant e de 2 tel
$x_{norm} \times 2^e$, avec e	
Q14) Programm	e de Normalisation
• • • • • • • • • • • • • •	
	ers IEEE754 (format réduit) contisse $M=4$ une taille d'exposent $E=3$ et un biais $B=4$. Donnez la représentation des nombres suivan
oit une taille de m	ers IEEE754 (format réduit) nantisse $M=4$, une taille d'exposant $E=3$ et un biais $B=4$. Donnez la représentation des nombres suivan
oit une taille de m	
Q15) 1,5	
Q15) 1,5 Q16) 0,625	

© 2020, B. QUOITIN 5 / 12

2.5 Biais adéquat 2 VIRGULE FLOTTANTE

Q18) 64, 17	
Q19) 0,03125	
Q19) 0,03123	
Q20) -0.015625	
Q21) $E = 3$	
Q22) $E = 8$	
Q22) $E = 8$	
Q22) $E = 8$	
Q22) $E=8$	
2.6 Erreur absolue, erreur relative et epsilon machine Soit une taille de mantisse $M=4$, une taille d'exposant $E=3$ et un biais $B=4$. Fournissez la formule donnant l'e	epsilon machine,
2.6 Erreur absolue, erreur relative et epsilon machine Soit une taille de mantisse $M=4$, une taille d'exposant $E=3$ et un biais $B=4$. Fournissez la formule donnant l'e	epsilon machine,
2.6 Erreur absolue, erreur relative et epsilon machine Soit une taille de mantisse $M=4$, une taille d'exposant $E=3$ et un biais $B=4$. Fournissez la formule donnant l'e M , la borne supérieure sur l'erreur relative. Donnez sa valeur pour $M=4$.	epsilon machine,

relative (ϵ_x) . Comparez cette dernière à l'epsilon machine. Note : les nombres ci-dessous sont identiques à ceux de la Section 2.4.

© 2020, B. Quoitin 6 / 12

2.7 Arrondis 2 VIRGULE FLOTTANTE

Q24)	
~ /	1,5
Q25)	0,625
Q26)	3,2
	······································
Q2 7)	64, 17
	······
220)	
Q28)	0,03125
(120)	0,015625
Q ₂ ,	0,015025

© 2020, B. Quoitin 7 / 12

2.8 Addition 2 VIRGULE FLOTTANTE

O32)	11.110000
,	
Q33)	0001.100001
Q34)	0.1
C - /	
025)	
Q35)	0.0111111111111111111111111111111111111
Q36)	11111.100000
0.25)	444 44444
Q37)	100.100000

2.8 Addition

Effectuez l'addition des nombres x et y dont les représentations sont données ci-dessous. Indiquez les différentes étapes de l'opération. Le format utilisé est similaire à IEEE 754 avec les tailles de mantisse M=6, d'exposant E=4 et un biais B=8. On ne considère pas le bit de signe. Afin de vérifier vos additions, donnez également les valeurs de x, de y et du résultat x+y de l'addition en décimal. Attention, x+y peut-être différent de x+y en raison d'arrondis ou de dépassements de capacité.

Attention, ne pas oublier le bit caché en représentation normalisée. Dans les solutions ci-dessous, il sera indiqué entre parenthèses avant la mantisse. Par exemple, pour une mantisse valant 0, encodée sur 6 bits, on affichera (1)000000.

Q38) $x = 1000$	000000; $y = 1000$ 000000

© 2020, B. QUOITIN 8 / 12

2.8 Addition 2 VIRGULE FLOTTANTE

Q39) $x = 1000$	000000; $y = 0110$ 000000
Q40) $x = 1000$	100000; $y = 1000$ 110000
Q41) $x = 1000$	000000; $y = 0001$ 000000

© 2020, B. QUOITIN 9 / 12

2.8 Addition 2 VIRGULE FLOTTANTE

242) $x = 1$	110 000000; $y =$ 1110 000000
(x) = 0	000 100000; y = 0000 110000
• • • • • • • • • • •	
	······ <u>······</u> ·······
Q44) $x = 1$	010 110000; $y =$ 1000 000100

© 2020, B. QUOITIN 10 / 12

2.9 Soustraction 2 VIRGULE FLOTTANTE

 		 			 	 ٠			
 		 			 	 ٠			

ci-dessous.

Q46)	x	=:	10	11	1	01	01	.0	; y	<i>i</i> =	:10	1	1	1(01	01	LO																	

11 / 12 © 2020, B. QUOITIN

2.9 Soustraction 2 VIRGULE FLOTTANTE

Q47)	$x = 1001 \ 010000; y = 1000 \ 100000$

© 2020, B. QUOITIN 12 / 12