[Week5]_이원주

<u>신경망 학습 (딥러닝)</u>

흐름

	input	output
순전파	$a^{[l-1]}$ (+) output 계산을 위해 $w^{[l-1]}$, $b^{[l-1]}$ 도 이용	$a^{[l]}$ (+) 역전파 때 쓰려고 $z^{[l]}$ 도 저장
역전파	$da^{[l]}$ (+) 저장해둔 $z^{[l]}$ 도 input으로 이용 (+) 마찬가지로 $w^{[l-1]}$, $b^{[l-1]}$ 도 이용	$da^{[l-1]}$ (+) loss 계산을 위해 $dw^{[l-1]},db^{[l-1]}$ 도 계산

▼ 표 부연설명

- $a^{[l-1]}$: level (l-1) $\stackrel{ o}{=} a = \sigma(z)$
- 정전파 → a 계산
 역전파 →
 da 계산 (a를 미분한 것)
- 순전파/역전파 구현에서
 - ∘ 캐시(cache)는 순전파에서의 변수를 → 해당하는 역전파 단계에 전달한다.
 - \circ output인 a 말고도 z, w, b를 전달하면 미분값을 계산할 때 유용하기 때문이다.

디버깅 : 행렬 shape을 확인하자

▼ 추후 정리

그러나 z, a, x의 차원은 조금 달라집니다 (5.11)

$$(v_{13}, w)$$
 (v_{13}, v_{23}) (v_{13}, w) (v_{13}, v_{23}) (v_{13}, v_{23})

아래가 벡터화된 거.

• w, b는 모든 데이터에 대해 공통이므로 그대로, Z, X만 바뀜.

• b는 그대로긴 한데 (n^[1], m)으로 브로드캐스팅된 후 더해짐.

$$Z^{(a)}, Q^{(a)}: (n^{(a)}, 1)$$

$$Z^{(a)}, A^{(a)}: (n^{(a)}, m)$$

$$Z^{(a)}, A^{(a)}: (n^{(a)}, m)$$

변수(파라미터) vs. 하이퍼 파라미터(매개변수)

🍄 [요약]

- 변수 : 신경망에서 학습 대상
 - \circ w, b
- 하이퍼 파라미터 : 여러 번 시도해서 학습 알고리즘에게 우리가 정해줘야 하는 것
 - \circ learning rate α
 - 。 반복 iteration 횟수
 - 은닉층 hidden layer 개수 L
 - \circ 은닉유닛 hidden units 개수 $n^{[l]}$
 - \circ 활성화 함수 선택 $a^{[l]}$
 - 모멘텀 항 momentum term
 - 。 미니배치 크기 mini batch size

하이퍼 파라미터(매개변수) 초기화

- 방법
 - 。 매우 경험적임
 - \circ 하나로 정하고 ightarrow 여러 번 시도 ightarrow 비용함수 J값 보면서 조정
- 조언
 - 몇 년씩 하는 장기 프로젝트라면 → 몇 달마다 점검하기.
 - 왜냐면 지금 최적인 걸로 정했어도, 나중에 최적인 값이 바뀔 수도 있음. CPU. GPU. 네트워크, 데이터가 달라지니까.

learning rate

- learning rate 정하기
 - 。 일단 **0.01**로 시작 (?)

<u>심층 신경망</u>

얕은 신경망 vs. 심층 신경망

- 정의:
 - 。 층이 얕은지 vs 깊은지 (은닉층 多)
- 비교:
 - 。 심층 신경망이 더 잘 작동함.
- 이유:
 - 같은 성능을 내려면, 얕은 신경망의 경우 훨씬 많은 노드가 필요함. (기하급수적)

0

[Week5]_이원주

말소리 오디오 (말하고 있는지 백 색소음인지)	음소 (한 글자)	단어	문장
---------------------------------	--------------	----	----

[Week5]_이원주