Devoir surveillé n° 4 – v2

Durée: 4 heures, calculatrices et documents interdits

X-ENS PC 2017

Dans le problème, n est un nombre entier naturel supérieur ou égal à 2 et [1, n] désigne l'ensemble des nombres entiers compris entre 1 et n.

 $\mathbb C$ désigne le corps des nombres complexes. Le module d'un nombre complexe z est noté |z|.

 $\mathcal{M}_{n,m}(\mathbb{C})$ (resp. $\mathcal{M}_{n,m}(\mathbb{R})$) désigne l'espace des matrices à n lignes et m colonnes, à coefficients dans \mathbb{C} (resp. dans \mathbb{R}). La matrice transposée d'une matrice $M \in \mathcal{M}_{n,m}(\mathbb{C})$ est notée M^{\top} .

 \mathbb{C}^n est identifié à l'espace $\mathcal{M}_{n,1}(\mathbb{C})$ des matrices colonnes à n lignes et à coefficients dans \mathbb{C} . Les coefficients d'un vecteur $x \in \mathbb{C}^n$ sont notés x_1, \ldots, x_n . Dans tout le problème, \mathbb{C}^n est muni de la norme $\|\cdot\|_1$ définie par

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

Pour tous $x \in \mathbb{C}^n$ et $y \in \mathbb{C}^n$, la matrice $x^\top y \in \mathscr{M}_1(\mathbb{C})$ est identifiée au nombre complexe $\sum_{i=1}^n x_i y_i$.

Le sous-espace vectoriel de \mathbb{C}^n engendré par un vecteur $v \in \mathbb{C}^n \setminus \{0\}$ est noté $\mathbb{C}v$.

Une matrice $M \in \mathcal{M}_{n,m}(\mathbb{R})$ est dite positive (resp. strictement positive) lorsque tous ses coefficients sont des réels positifs (resp. strictement positifs). Cette propriété est notée $M \ge 0$ (resp. M > 0). Si A et B sont deux matrices de $\mathcal{M}_{n,m}(\mathbb{R})$, on notera $A \ge B$ (resp. A > B) la propriété $A - B \ge 0$ (resp. A - B > 0). Ainsi, pour x et y dans \mathbb{R}^n ,

$$x \leqslant y \quad \Leftrightarrow \quad \forall i \in [1, n], \ x_i \geqslant y_i.$$

Lorsque m = n, on utilisera la notation $\mathcal{M}_n(\mathbb{C})$ (resp $\mathcal{M}_n(\mathbb{R})$) pour $\mathcal{M}_{n,m}(\mathbb{C})$ (resp $\mathcal{M}_{n,m}(\mathbb{R})$). La matrice diagonale

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

sera notée diag $(\lambda_1, \ldots, \lambda_n)$. On note $I_n = \text{diag}(1, \ldots, 1)$ la matrice identité d'ordre n. Pour $M \in \mathscr{M}_n(\mathbb{C})$, on pose

$$||M|| = \sup_{x \in \mathbb{C}^n, ||x||_1 = 1} ||Mx||_1$$

et on admettra que cette borne supérieure existe et que

$$||M|| = \sup_{x \in \mathbb{C}^n, ||x||_1 = 1} ||Mx||_1 = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{||Mx||_1}{||x||_1}.$$
 (1)

Une matrice $M \in \mathcal{M}_n(\mathbb{C})$ sera en général identifiée à l'endomorphisme φ_M de \mathbb{C}^n représenté par M dans la base canonique de \mathbb{C}^n : pour $x \in \mathbb{C}^n$, $\varphi_M(x) = Mx$. On appelle spectre d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$, et on note $\operatorname{Sp}(M)$, l'ensemble des valeurs propres de M. Le rayon spectral de M, noté $\rho(M)$, est défini comme le maximum des modules des valeurs propres de M:

$$\rho(M) = \max\{|\lambda|; \ \lambda \in \operatorname{Sp}(M)\}.$$

Première partie

1) a) Pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$ et tout nombre réel C > 0, montrer l'équivalence

$$||M|| \leqslant C \Leftrightarrow \forall x \in \mathbb{C}^n : ||Mx||_1 \leqslant C||x||_1.$$

- **b)** Montrer que l'application $M \mapsto ||M||$ est une norme sur $\mathcal{M}_n(\mathbb{C})$. On se souviendra qu'alors pour tout $A, B \in \mathcal{M}_n(\mathbb{C})$, $\Big| ||A|| - ||B|| \Big| \leqslant ||A - B||$, c'est à dire que cette norme est 1-lipschitzienne.
- **2)** Montrer que pour $A, B \in \mathcal{M}_n(\mathbb{C}), \quad ||AB|| \leq ||A|| \, ||B||.$
- 3) Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $a_{i,j}$ le coefficient de A d'indice de ligne i et d'indice de colonne j. Montrer que

$$||A|| = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} |a_{i,j}| \right).$$

4) On dit qu'une suite $(A^{(k)})_{k\in\mathbb{N}}$ de matrices de $\mathscr{M}_n(\mathbb{C})$ converge vers une matrice $B\in\mathscr{M}_n(\mathbb{C})$ lorsque

$$\forall i \in [1, n], \ \forall j \in [1, n], \quad \lim_{k \to +\infty} (a_{i,j})^{(k)} = b_{i,j}.$$

Montrer que la suite $(A^{(k)})$ converge vers B si et seulement si $\lim_{k \to +\infty} ||A^{(k)} - B|| = 0$.

5) On considère dans cette question une matrice $A \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure,

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & \cdots & a_{2,n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{n,n} \end{pmatrix}.$$

On suppose que

$$\forall i \in [1, n], |a_{i,i}| < 1.$$

Pour tout réel b > 0, on pose $P_b = \text{diag}(1, b, b^2, \dots, b^{n-1}) \in \mathcal{M}_n(\mathbb{R})$.

- a) Calculer $P_b^{-1}AP_b$. Que se passe-t-il lorsqu'on fait tendre b vers 0?
- **b)** Montrer qu'il existe b > 0 tel que

$$||P_b^{-1}AP_b|| < 1.$$

c) En déduire que la suite $(A^k)_{k\in\mathbb{N}^*}$ converge vers 0.

Deuxième partie

6) Déterminer le rayon spectral des matrices suivantes

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}, \quad \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}.$$

7) Dire, en justifiant brièvement la réponse, si les assertions suivantes sont exactes quels que soient $A, B \in \mathcal{M}_n(\mathbb{C}), \mu \in \mathbb{C}$.

(i)
$$\rho(\mu A) = |\mu| \rho(A)$$

- (ii) $\rho(A+B) \leq \rho(A) + \rho(B)$.
- (iii) $\rho(AB) \leqslant \rho(A)\rho(B)$.
- (iv) Pour $P \in \mathcal{M}_n(\mathbb{C})$ inversible, $\rho(P^{-1}AP) = \rho(A)$.
- (v) $\rho(A^{\top}) = \rho(A)$.
- 8) Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$,

$$\rho(A) \leqslant ||A||.$$

Dans les questions 9) à 11), on considère une matrice $A \in \mathcal{M}_n(\mathbb{C})$.

- 9) Montrer que si $\rho(A) < 1$, alors la suite $(A^k)_{k \in \mathbb{N}^*}$ converge vers 0.
- **10)** a) Montrer que, pour tout $k \in \mathbb{N}^*$, $||A^k|| \ge \rho(A)^k$.
 - **b)** On définit la partie de \mathbb{R}_+

$$E_A = \left\{ \alpha > 0 \mid \lim_{k \to +\infty} \left(\frac{A}{\alpha} \right)^k = 0 \right\}.$$

Montrer que $E_A =]\rho(A), +\infty[$.

11) Montrer la formule

$$\lim_{k \to +\infty} ||A^k||^{1/k} = \rho(A).$$

12) Pour $A \in \mathcal{M}_n(\mathbb{C})$ de coefficients $a_{i,j}$, on pose $A_+ = (b_{i,j})_{1 \leq i,j \leq n}$, où $b_{i,j} = |a_{i,j}|$. Montrer l'inégalité

$$\rho(A) \leqslant \rho(A_+).$$

Troisième partie

Dans toute cette partie, A est une matrice **strictement positive** de $\mathcal{M}_n(\mathbb{R})$. On se propose de démontrer les propriétés suivantes.

- (i) $\rho(A) > 0$, $\rho(A)$ est une valeur propre de A et toute autre valeur propre $\lambda \in \mathbb{C}$ de A vérifie $|\lambda| < \rho(A)$.
- (ii) $\rho(A)$ est une racine simple du polynôme caractéristique de A et $\operatorname{Ker}(A-\rho(A)I_n)$ est engendré par un vecteur v_0 dont toutes les composantes sont strictement positives.
- (iii) Si v est un vecteur propre de A dont toutes les composantes sont positives, alors $v \in \text{Ker}(A \rho(A)I_n)$.
- (iv) Pour tout vecteur positif non nul x, il existe $c \in \mathbb{R}_+^*$ tel que $\lim_{k \to +\infty} \frac{A^k x}{\rho(A)^k} = cv_0$.
- 13) Soient z_1, \ldots, z_n des nombres complexes. Montrer que si

$$|z_1 + \dots + z_n| = |z_1| + \dots + |z_n|,$$

alors le vecteur $\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ est colinéaire au vecteur $\begin{pmatrix} |z_1| \\ \vdots \\ |z_n| \end{pmatrix}$.

14) Soient $x, y \in \mathbb{C}^n$, $\lambda, \mu \in \mathbb{C}$. Montrer que si $\lambda \neq \mu$, alors on a l'implication suivante

$$(Ax = \lambda x \text{ et } A^{\top} y = \mu y) \Rightarrow x^{\top} y = 0.$$

15) On suppose qu'il existe un réel positif μ et un vecteur positif non nul w tels que $Aw \geqslant \mu w$.

- a) Montrer que pour tout entier naturel $k, A^k w \geqslant \mu^k w$. En déduire que $\rho(A) \geqslant \mu$.
- **b)** Montrer que si $Aw > \mu w$, alors $\rho(A) > \mu$.
- c) On suppose à présent que dans le système d'inégalités $Aw \geqslant \mu w$, la k-ième inégalité est stricte, c'est-à-dire

$$\sum_{j=1}^{n} a_{k,j} w_j > \mu w_k.$$

Montrer qu'il existe $\varepsilon > 0$ tel que, en posant $w'_j = w_j$ si $j \neq k$ et $w'_k = w_k + \varepsilon$, on a $Aw' > \mu w'$. En déduire que $\rho(A) > \mu$.

- **16)** Soit λ une valeur propre de A de module $\rho(A)$ et soit $x \in \mathbb{C}^n \setminus \{0\}$ un vecteur propre de A associé à λ . On définit le vecteur positif non nul v_0 par $(v_0)_i = |x_i|$ pour $1 \leq i \leq n$.
 - a) Montrer que $Av_0 \ge \rho(A)v_0$, puis que $Av_0 = \rho(A)v_0$.
 - **b)** En déduire que $\rho(A) > 0$ et $\forall i \in [1, n], (v_0)_i > 0$.
 - c) Montrer que x est colinéaire à v_0 . En déduire que $\lambda = \rho(A)$.

La propriété (i) est démontrée.

17) En appliquant les résultats précédents à la matrice A^{\top} , on obtient l'existence de $w_0 \in \mathbb{R}^n$, dont toutes les composantes sont strictement positives, tel que $A^{\top}w_0 = \rho(A)w_0$. On pose

$$F = \{ x \in \mathbb{C}^n \mid x^\top w_0 = 0 \}.$$

a) Montrer que F est un sous-espace vectoriel de \mathbb{C}^n stable par φ_A , et que

$$\mathbb{C}^n = F \oplus \mathbb{C}v_0.$$

- b) Montrer que si v est un vecteur propre de A associé à une valeur propre $\mu \neq \rho(A)$, alors $v \in F$. En déduire la propriété (iii).
- **18)** a) On note ψ l'endomorphisme de F défini comme la restriction de φ_A à F. Montrer que toutes les valeurs propres de ψ sont de module strictement inférieur à $\rho(A)$. En déduire que $\rho(A)$ est une racine simple du polynôme caractéristique de A et que

$$\operatorname{Ker}(A - \rho(A)I_n) = \mathbb{C}v_0.$$

La propriété (ii) est démontrée.

- **b)** Montrer que si $x \in F$, $\lim_{k \to +\infty} \frac{A^k x}{\rho(A)^k} = 0$.
- c) Soit x un vecteur positif non-nul. Déterminer la limite de $\frac{A^k x}{\rho(A)^k}$ lorsque k tend vers $+\infty$.

La propriété (iv) est démontrée.