

INF 1771 – Inteligência Artificial

Aula 02 - AGENTES INTELIGENTES

O que são Agentes?

 Um agente é algo capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores.

- Agente humano
 - Sensores?
 - Atuadores?
- Agente robótico
 - Sensores?
 - Atuadores?
- Agente de software
 - Sensores?
 - Atuadores?

Agente humano

- Sensores: Olhos, ouvidos e outros órgãos.
- Atuadores: Mãos, pernas, boca e outras partes do corpo.

Agente robótico

- Sensores?
- Atuadores?

Agente de software

- Sensores?
- Atuadores?

Agente humano

- Sensores: Olhos, ouvidos e outros órgãos.
- Atuadores: Mãos, pernas, boca e outras partes do corpo.

Agente robótico

- Sensores: câmeras e outros sensores.
- Atuadores: vários motores.

Agente de software

- Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede.
- Atuadores: tela, HD, envio de pacotes pela rede.

Agentes Inteligentes

 Agentes são diferentes de meros programas, pois operam sob controle autônomo, percebem seu ambiente, adaptam-se a mudanças e são capazes de assumir metas.

Percepção e Função do Agente

- Percepção: entrada para o agente.
 - Sequência de percepções: histórico de entradas.

 Função do agente: define o comportamento de um agente, dado por:

$$f = P^* \rightarrow A$$

onde **P** é uma sequência de percepções e **A** é uma ação.

Mapeando Percepções em Ações

- Robótica:
 - Percepção: medidas de sensores (câmeras, microfones, sonar, GPS).
 - Ações: mover, dar a volta, pegar um objeto, etc.
- Visão Computacional:
 - Percepções:pixels de imagem.
 - Ações: produzir descrições de objetos em uma imagem.

Mapeando Percepções em Ações

- Linguagem Natural:
 - Percepção: Requisições de um texto (Qual é o aeroporto mais próximo?).
 - Ação: resposta (Galeão).
- Jogos:
 - Percepções: estado de um tabuleiro de xadrez.
 - Ação: executar um movimento legal.

Exemplo: O Mundo do Aspirador de Pó

Percepções: Local e conteúdo.

- Exemplo: [A, sujo]

• Ações: Esquerda, Direita, Aspirar, NoOp

Exemplo: O Mundo do Aspirador de Pó

 Tabulação que indica qual ação o agente faz em relação a uma sequência de percepções

Sequência de percepções	Ação
[a,limpo]	direita
[a,sujo]	aspirar
[b,limpo]	esquerda
[b,sujo]	aspirar
[a,limpo], [a,limpo]	direita
[a,limpo], [a,sujo]	aspirar

Comportamento do Agente: Se o quadrado atual estiver sujo, então aspirar, caso contrário mover para o outro lado.

Racionalidade

• O que faz de um agente ser bom ou não ?

Racionalidade

- O que faz de um agente ser bom ou não ?
 - Toda entrada da tabela possui uma ação correta.
- Agente racional:
 - É o agente que faz tudo certo, em termos conceituais.
 - Para isso é necessário ter uma medida de desempenho.

Medida de Desempenho

- É o critério para medir o sucesso do comportamento do agente.
 - Exemplos: quantidade de sujeira aspirada, gasto de energia, gasto de tempo, quantidade de barulho gerado..
 - A medida de desempenho deve refletir o resultado realmente desejado.

Não é fácil definir uma medida de desempenho.

Agentes Racionais

Definição - Agente racional:

-Para cada sequência de percepções possíveis deve-se selecionar uma ação que espera-se que venha a maximizar sua medida de desempenho, dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente.

Racionalidade X Onisciência

- Racionalidade é diferente de Onisciência.
- Ser racional consiste em utilizar racionalmente a sequência de percepções.

Modelagem de um Agente

- O processo de modelagem de um agente envolve a definição de (PEAS – Perfomance, Environment, Actuators, Sensors):
 - Medida de Desempenho
 - -Ambiente
 - -Atuadores
 - -Sensores

Exemplo - Motorista de Táxi Automatizado

- Medida de desempenho: viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, maximizando os lucros.
- **Ambiente:** ruas, estradas, outros veículos, pedestres, clientes.
- **Atuadores:** direção, acelerador, freio, embreagem, marcha, seta, buzina.
- Sensores: câmera, sonar, velocímetro, GPS, acelerômetro, sensores do motor, teclado ou microfone.

Exemplo – Sistema de Diagnóstico Médico

- Medida de desempenho?
- Ambiente?
- Atuadores?
- Sensores?

Exemplo - Sistema de Diagnóstico Médico

- Medida de desempenho: paciente saudável, minimizar custos, processos judiciais.
- Ambiente: paciente, hospital, equipe.
- Atuadores: exibir perguntas na tela, testes, diagnósticos, tratamentos.
- **Sensores:** entrada pelo teclado para sintomas, respostas do paciente.

Exemplo - Robô de seleção de peças

- Medida de desempenho: porcentagem de peças em bandejas corretas.
- Ambiente: correia transportadora com peças; bandejas.
- Atuadores: braço e mão articulados.
- Sensores: câmera, sensores angulares articulados.

Propriedades do Ambiente

Completamente Observável:

-Agente possui a informação completa do estado.

Parcialmente Observável:

 Não há acesso a informação completa do ambiente. Necessidade de sensores que podem ser imprecisos ou não há informação.

Propriedades do Ambiente

Determinístico:

 O próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente.

Não-Determinístico (ou estocástico):

 O próximo estado do ambiente é desconhecido.
 Não se tem certeza do que pode acontecer com o ambiente ao executar uma ação.

Propriedades do Ambiente

Estático:

O ambiente n\u00e3o muda enquanto o agente pensa.

Dinâmico:

 O ambiente pode mudar enquanto o agente pensa ou está executando uma ação.

Propriedades do Ambientes

Episódico:

- -episódios atômicos de percepção e ação.
- Próximos episódios (percepção-ação) não dependem de ações anteriores.

Sequencial:

- -decisão atual afeta decisões futuras.
- -acontece frequentemente em jogos.
 - Ex. xadrez.

Propriedades do Ambientes

Discreto:

 Um número limitado e claramente definido de percepções, ações e estados.

Contínuo:

 Um número possivelmente infinito de percepções, ações e estados.

Propriedades do Ambientes

Agente Único:

-Um único agente operando sozinho no ambiente.

Multi-Agente

- -Vários agentes interagindo ambiente.
- -Multi-agente cooperativo
- -Multi-agente competitivo

- Informação do carro.
- Informação do ambiente
- Ações
- Sensores

- Informação do carro: posição, orientação, velocidade, aceleração, ...
- Informação do ambiente: mapas das estradas, ruas, rodovias, sinais (semáforo e paradas), outros veículos, pedestres, ciclistas, ...
- Ações: velocidade, frear, mudança de direção, ...
- Sensores: camêras, GPS, sonar.

- Parcialmente ou completamente observável?
- Determinístico ou estocástico?
- Estático ou dinâmico?
- Discreto ou contínuo?
- Multi-agente ou único agente?

- Parcialmente observável
- Estocástico
- Dinâmico
- Contínuo
- Multi-agente

	Palavras Cruzadas	Taxista Automático	Poker	Diagnóstico Médico
Completamente observável	Sim	Não	Não	Não
Determinístico	Sim	Não	Não	Não
Episódico	Não	Não	Não	Não
Estático	Sim	Não	Sim	Não
Discreto	Sim	Não	Sim	Não
Agente único	Sim	Não	Não	Sim

Completamente Observável x Parcialmente Observável
Determinístico x Estocástico
Episódico x Sequencial
Estático x Dinâmico
Discreto x Contínuo
Agente único x Multi-Agente

Estrutura dos Agentes

- Depois de definir o PEAS, é necessário construir o agente.
- Agente = arquitetura + programa.
- O trabalho de IA é projetar o programa do agente que implementa a função que mapeia percepções em ações.

Tipos Básicos de Agentes

Existem quatro tipos básicos de agentes:

- Agentes reativos simples.
- Agentes reativos baseados em modelos.
- Agentes baseados em objetivos.
- Agentes baseados na utilidade.
- Agentes com aprendizagem.

Agente Reativo Simples

- Agentes reativos selecionam ações com base somente na percepção atual.
 - Exemplo: agente aspirador de pó

Agente Reativo Simples

- Agentes reativos selecionam ações com base somente na percepção atual.
 - Exemplo: agente aspirador de pó

```
Função AGENTE-ASPIRADOR-REATIVO ([posição, estado])
retorna ação
Inicio
se estado = sujo então
    retorna aspirar
senão se posição = A então
    retorna direita
senão se posição = B então
    retorna esquerda
Fim
```


Agente Reativo Simples

Agente Reativo Simples

 De uma forma mais genérica, podemos definir o comportamento de um agente reativo simples da seguinte forma:

função AGENTE-REATIVO-SIMPLES(percepção) retorna ação Variáveis estáticas: regras //um conj. de regras se-então

```
estado ← INTERPRETAR-ENTRADA(percepção)
regra ← REGRA-CORRESPONDENTE(estado, regras)
ação ← AÇÃO-DA-REGRA(regra)
```

retornar ação

Agente Reativo Simples

- O funcionamento do agente reativo é baseado em regras de condição-ação: if condição then ação.
- São simples, porém limitados:
 - -Funcionará somente se a decisão correta puder ser tomada com base apenas na percepção atual.
 - A tabela de regras se-então pode se tornar muito grande em problemas complexos.
 - -Ambiente completamente observável.

Agentes Reativos Baseados em Modelos

- Um agente reativo baseado em modelo pode lidar com ambientes parcialmente observáveis.
 - O agente deve controlar as partes do mundo que ele n\u00e3o pode ver em um determinado instante.
 - Exemplo: Um agente motorista precisa saber quando o carro a sua frente está freando.

• O agente deve manter um estado interno que dependa do histórico de percepções e reflita os aspectos não observados no estado atual.

Agentes Reativos Baseados em Modelos

- Agente baseado em modelo é um agente que usa um modelo de mundo.
 - Como o ambiente evoluí independente do agente?
 - -Como as ações do próprio agente afetam o mundo?

Agentes Reativos Baseados em Modelos

Agentes Reativos Baseados em Modelos

 De uma forma mais genérica, podemos definir o comportamento de um agente reativo baseado em modelo da seguinte forma:

retorna ação

Agentes Reativos Baseados em Objetivos

 Conhecer um modelo do mundo nem sempre é suficiente para tomar uma boa decisão.

• Exemplo:

- -Um agente Motorista de Táxi chega a um cruzamento com três caminhos, qual direção tomar?
 - Simplesmente reagir? mas existem três reações possíveis.
 - Examinar o modelo de mundo? n\u00e3o ajuda a decidir qual o caminho.
 - A decisão depende de onde o táxi está tentando chegar.

Agentes Baseados em Objetivos

- Agentes baseados em objetivos expandem as capacidades dos agentes baseados em modelos através de um "objetivo".
- O objetivos descreve situações desejáveis.
 - Exemplo: estar no destino
- A seleção da ação baseada em objetivo podem
 - Usar algoritmos de Busca e Planejamento.

Agentes Baseados em Objetivos

Agentes Baseados em Objetivos

- O objetivo não garante o melhor comportamento para o agente.
 - ¹ Velocidade X segurança.

Agentes Baseados na Utilidade

- Agentes baseados na utilidade buscam definir um grau de satisfação com os estados. O quanto "bom" é para o agente um determinado estado.
- Se um estado do mundo é mais desejável que outro, então ele terá maior utilidade para o agente.
- Utilidade é uma função que mapeia um estado para um número real que representa o grau de satisfação com este estado.
 - Exemplo: Uma empresa apresenta uma função de lucro(x,y) que depende das quantidades x e y dos produtos gerados.

Agentes Baseados na <u>Utilidade</u>

Agentes com Aprendizagem

- Agentes com aprendizado podem atuar em ambientes totalmente desconhecidos e se tornar mais eficientes do que o seu conhecimento inicial poderia permitir.
- Em agentes sem aprendizagem, tudo o que o agente sabe foi colocado nele pelo projetista.

Agentes com Aprendizagem

- Agentes com aprendizagem são capazes de agir a partir de exemplos anteriores utilizados em seu aprendizado.
- Um agente que possui ações com a finalidade de coletar informações. Isso faz com que o agente seja capaz de explorar o meio.
- O processo de aprendizagem consiste em alterar configurações do agente de acordo com informações coletadas.
- O objetivo é adquirir autonomia.

Agentes com Aprendizagem

Leitura Complementar

 Russell, S. and Norvig, P. Artificial Intelligence: a Modern Approach, 3nd Edition, Prentice-Hall, 2009.

Capítulo 2: Intelligent Agents

