Высшая школа общей и прикладной физики

Отчет по лабораторной работе

ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ДИОДОВ ШОТТКИ

Работу выполнили студенты

Поляков Андрей, Козлов Александр

Содержание

1	Вольт-амперная характеристика диода Шоттки	3
2	Определение эффективной постоянной Ричардсона, эффективной высоты потенциального барьера Шоттки и эффективной массы электрона	4
3	Определение фактора неидеальности диода Шоттки	5

1 Вольт-амперная характеристика диода Шоттки

Измерили вольт-амперную характеристику (ВАХ) диодов Шоттки при различных температурах. Первым делом обсудим температуру. Температура определялась по напряжению на термопаре "медь-константан" и постоянно менялась. Чтобы перевести напряжение термопары в температуру, надо было воспользоваться градуировочной таблицей из методички, что мы и сделали с помощью кусочно-линейной аппроксимации данных таблицы.

Изначально ток измерялся в Амперах, но для соотнесения с теорией необходимо было перейти к плотности тока. Для этого использовалось знание о том, что поперечная площадь образца $S=0.5\,\mathrm{mm}^2.$

На Рис. 1 представлены снятые ВАХ диода Шоттки. Видно, что все измерения снимались при условии V>kT/e. Из теории известно, что плотность тока зависит от напряжения следующим образом

$$j = j_0 \left(\exp\left\{ \frac{eV}{kT} \right\} - 1 \right),\tag{1}$$

где

$$j_0 = A^* T^2 \exp\left\{-\frac{e\varphi_b}{kT}\right\}. \tag{2}$$

Здесь $A^* = 4\pi m^* e k^2/h^3$ — эффективная постоянная Ричардсона, φ_b — высота потенциального барьера Шоттки.

Рис. 1: Семейство ВАХ диода Шоттки при различных температурах. Измерительная погрешность тока взята за 0.1 мА.

2 Определение эффективной постоянной Ричардсона, эффективной высоты потенциального барьера Шоттки и эффективной массы электрона

Для того, чтобы определить эффективную постоянную Ричардсона A^* и эффективную высоту потенциального барьера Шоттки $\varphi_0 = \varphi_{b0} - \Delta \varphi_{b0}$, была построена на основе экспериментальных данных зависимость $\ln\{j \, / \, [1 - \exp(-eV \, / \, kT)]\}$ от V (см. Рис. 2).

Рис. 2: Зависимость $\ln\{j \ / \ [1-\exp(-eV \ / \ kT)]\}$ от V при различных температурах. Погрешности рассчитаны стандартным образом.

Каждая из таких зависимостей аппроксимировалась прямой и находился свободный коэффициент линейной регрессии, который равен $\ln j_0$. Это позволило определить зависимость j_0 от температуры. Далее строилась зависимость $\ln\{j_0\,/\,T^2\}$ от $1\,/\,T$ и опять же делалась линейная регрессия (см. Рис. 3). Старший коэффициент в такой линейной регрессии равен $-e\varphi_0/kT$, а свободный — $\ln A^*$, откуда требуемые значения и находились.

Итоговые значения с учётом погрешностей метода наименьших квадратов, который использовался для линейной регрессии, получились следующими:

$$A^* = (7.3 \pm 10.3) \times 10^3 \,\mathrm{A \, m^{-2} \, \kappa^{-2}}; \quad \varphi_0 = 0.80 \pm 0.03 \,\mathrm{B}.$$
 (3)

Отсюда находим, что $m^*/m = 0.006 \pm 0.009$.

Рис. 3: Зависимость $\ln\{j_0 / T^2\}$ от 1 / T.

3 Определение фактора неидеальности диода Шоттки

Для определения фактора неидеальности диода Шоттки n была использована следующая формула

$$n = \frac{ej}{kT \, \mathrm{d}j / \mathrm{d}V}.\tag{4}$$

Данный фактор был рассчитан для каждой BAX. Все значения были собраны в один массив, затем было вычислено среднее значение по массиву, а так же стандартное отклонение, что дало ответ $n=1.24\pm0.51$.