

Rens W. van der Heijden, Ala'a Al-Momani, Frank Kargl, Osama M.F. Abu-Sharkh

20.09.2016

18

Enhanced Position Verification for VANETs using Subjective Logic

Vehicular Technology Conference Fall 2016

Application scenario

Using signatures

Misbehavior with (valid) keys

Misbehavior with (valid) keys

Acceptance Range Threshold¹

¹T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer, "Decentralized position verification in geographic ad hoc routing," Security and Communication Networks, 2008.

Acceptance Range Threshold¹

¹T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer, "Decentralized position verification in geographic ad hoc routing," Security and Communication Networks, 2008.

Acceptance Range Threshold¹

¹T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer, "Decentralized position verification in geographic ad hoc routing," Security and Communication Networks, 2008.

Acceptance Range Threshold¹

¹T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer, "Decentralized position verification in geographic ad hoc routing," Security and Communication Networks, 2008.

Acceptance Range Threshold¹

¹T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer, "Decentralized position verification in geographic ad hoc routing," Security and Communication Networks, 2008.

Acceptance Range Threshold¹

¹T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer, "Decentralized position verification in geographic ad hoc routing," Security and Communication Networks, 2008.

Acceptance Range Threshold¹

¹T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer, "Decentralized position verification in geographic ad hoc routing," Security and Communication Networks, 2008.

Subjective logic

```
\omega = (belief, disbelief, uncertainty),
where belief, disbelief, uncertainty \in [0...1]
and belief + disbelief + uncertainty = 1
```

Subjective logic

```
\omega = (belief, disbelief, uncertainty),
where belief, disbelief, uncertainty \in [0...1]
and belief + disbelief + uncertainty = 1
Operators:
fusion, transitivity
```

Subjective logic

```
\omega = (belief, disbelief, uncertainty),
where belief, disbelief, uncertainty \in [0...1]
and belief + disbelief + uncertainty = 1
Operators:
fusion, transitivity
```

Decisions:

convert opinion to a result: $\theta > belief + \frac{uncertainty}{2}$, where θ is a configured threshold (0.5 in this work).

Questions addressed in this work

- How can opinions be generated effectively?
- Can fusion improve overall detection performance?

Generating opinions

enhanced Acceptance Range Threshold

$$\omega_{eART} = (rac{\delta}{2 heta}e^{-rac{|\delta- heta|^2}{2\sigma}},(1-rac{\delta}{2 heta})e^{-rac{|\delta- heta|^2}{2\sigma}},e^{-rac{|\delta- heta|^2}{2\sigma}})$$

Generating opinions

enhanced Acceptance Range Threshold

$$\omega_{\mathit{eART}} = (\frac{\delta}{2\theta} e^{-\frac{|\delta - \theta|^2}{2\sigma}}, (1 - \frac{\delta}{2\theta}) e^{-\frac{|\delta - \theta|^2}{2\sigma}}, e^{-\frac{|\delta - \theta|^2}{2\sigma}})$$

Neighbor Table Exchange

$$\omega_{NTE} = \left(\frac{\beta}{n}e^{-\frac{x}{10}}, \frac{n-\beta}{n}e^{-\frac{x}{10}}, e^{-\frac{x}{10}}\right)$$

Framework based on subjective logic

Maat: a new framework for misbehavior detection

Maat: a new framework for misbehavior detection

Maat: a new framework for misbehavior detection

Evaluation: methods

- **VEINS** simulation
- LuST scenario
- Various attacker models
 - Randomized
 - Randomized Vector
 - Fixed Vector

Evaluation: randomized attacker

Evaluation: randomized vector attacker

Conclusion

Contributions:

- show subjective fusion improves results
- opinion conversion
- Improvement of ART
- Stronger attacker model

Conclusion

Contributions:

- show subjective fusion improves results
- opinion conversion
- Improvement of ART
- Stronger attacker model

Future work:

- Rigorous analysis of fusion approaches
- Scalability
- Detection of misbehaving sensors

Questions?

W: http://namnatulco.eu

E: rens.vanderheijden@uni-ulm.de

T: @namnatulco

Acknowledgments & Licenses

These slides are licensed as CC4.0-BY-SA. The following lists resources used in these slides (ordered by license):

Public domain or CC0:

Laptop icon:

http://openclipart.org/detail/27651/a-gray-laptop-by-minduka-27651

Certificate icon:

http://openclipart.org/detail/36067/tango-application-certificate-by-warszawianka Signature icon:

http://pixabav.com/get/6f136d30c78ee9e68261/1402057324/ink-35510.svg

CC3.0-BY-SA-Unported:

Title image: (by Wikipedia user Dhanix) http://en.wikipedia.org/wiki/File:45intoI-10 2.ipg

Slide & TikZ templates are available here:

https://github.com/vs-uulm/latexslides-uulm https://github.com/vs-uulm/tikz-vanet