Liorny, N. V. Pde.

DEC 4 1950

Reference book not to be taken from the Library.

# IONOSPHERIC DATA

ISSUED
NOVEMBER 1950

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.



# IONOSPHERIC DATA

# **CONTENTS**

| •                                              | Page            |
|------------------------------------------------|-----------------|
| Symbols, Terminology, Conventions              | . 2             |
| World-Wide Sources of Ionospheric Data         | • 5             |
| Hourly Ionospheric Data at Washington, D. C    | . 7. 12. 21. 46 |
| Ionospheric Storminess at Washington, D. C     | . 7. 33         |
| Radio Propagation Quality Figures              | • 7. 34         |
| Relative Sunspot Numbers                       | . 8. 35         |
| Observations of the Solar Corona               | . 9. 36         |
| Observations of Solar Flares                   | . 10, 42        |
| Indices of Geomagnetic Activity                | . 10. 44        |
| Sudden Ionosphere Disturbances                 | . 11. 45        |
| Tables of Ionospheric Data                     | . 12            |
| Graphs of Ionospheric Data                     | . 46            |
| Index of Tables and Graphs of Ionospheric Data | . 71            |

# SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

Values missing because of W are counted:

- For foF2, as equal to or less than the median when it is apparent that h'F2 is unusually high; otherwise, values missing because of W are omitted from the median count.
- 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

# c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

# d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1. leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were asscussed on pages 6 and 7 of the previous F-zeries report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

| Month     |      | Predic | cted Suns | pot Numbe: | r    |      |
|-----------|------|--------|-----------|------------|------|------|
|           | 1950 | 1949   | 1948      | 1947       | 1946 | 1945 |
|           |      |        | m.m.t.    |            |      |      |
| December  |      | 108    | 114       | 126        | 85   | 38   |
| November  |      | 112    | 115       | 124        | 83   | 36   |
| October   | 90   | 114    | 116       | 119        | 81   | 23   |
| September | 91   | 115    | 117       | 121        | 79   | 22   |
| August    | 96   | 111    | 123       | 122        | 77   | 20   |
| July      | 101  | 108    | 125       | 116        | 73   |      |
| June      | 103  | 108    | 129       | 112        | 67   |      |
| May       | 102  | 108    | 130       | 109        | 67   |      |
| April     | 101  | 109    | 133       | 107        | 62   |      |
| March     | 103  | 111    | 133       | 105        | 51   |      |
| February  | 103  | 113    | 133       | 90         | 46   |      |
| January   | 105  | 112    | 130       | 88         | 42   |      |
|           |      |        |           |            |      |      |

#### WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 51 and figures 1 to 100 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hobart, Tasmania

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:

Watheroo, West Australia

French Ministry of Maval Armaments (Section for Scientific Research):
Dakar, French West Africa
Fribourg, Germany

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Domont, France
Poitiers, France

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt. Holland

All India Radic (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy (Tiruchirapalli), India

Radio Regulatory Commission, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yanagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research;

Campbell I. Christchurch, New Zealand Earctonga I.

Norwegian Defense Research Establishment, Kjeller per Lillestrom, Morway: Oslo. Norway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

United States Army Signal Corps: Okinawa I.

National Bureau of Standards (Central Radio Propagation Laboratory):

Baton Rouge, Louisiana (Louisiana State University)

Boston, Massachusetts (Harvard University)

Guam I.

Huancayo, Peru (Institute Geofisico de Huancayo)

Maui, Hawaii

San Francisco, California (Stanford University)

San Juan, Puerto Rico (University of Puerto Rico)

Trinidad, British West Indies

Washington, D. C.

White Sands. New Mexico

### HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 52 to 63 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at a new location, Ft. Belvoir, Virginia.

### IONOSPHERIC STORMINESS AT WASHINGTON, D. C.

Table 64 presents ionosphere character figures for Washington, D. C., during October 1950, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

# RADIO PROPAGATION QUALITY FIGURES

Table 65 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, September 1950, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal

of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, amroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

#### RELATIVE SUNSPOT NUMBERS

Table 66 presents the daily American relative sunspot number, RA, computed from observations communicated to CRPL by observers in America and abroad. Beginning with the observations for January 1948, a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zurich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Publication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled \*Reduction of Sunspot-Number Observations. The American relative sunspot number computed in this way is designated RA. It is noted that a number of observatories abroad, including the Zurich observatory, are included in RA. The scale of RA was referred specifically to that of the Zurich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zurich observations only in that Zurich proves to be a consistent observer and receives a high statistical weight. In addition this table lists the daily provisional Zurich sunspot numbers, R7.

#### OBSERVATIONS OF THE SOLAR CORONA

Tables 67 through 69 give the observations of the solar corona during October 1950 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 70 through 72 list the coronal observations obtained at Sacramento Peak, New Mexico, during October 1950, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command research and development contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 67 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 68 gives similarly the intensities of the first red (6374A) coronal line; and table 69, the intensities of the second red (6702A) coronal line; all observed at Climax in October 1950.

Table 70 gives the intensities of the green (5303A) coronal line; table 71, the intensities of the first red (6374A) coronal line; and table 72, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in October 1950.

The following symbols are used in tables 67 through 72: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

#### OBSERVATIONS OF SOLAR FLARES.

Table 73 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U.S. Naval, Wendelstein, Kanzel, and High Altitude at Boulder, Colorado. The remainder report to Meudon (Paris), and the data are taken from the Paris URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Boulder, Colorado are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

#### INDICES OF GEOMAGNETIC ACTIVITY

Table 74 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale 0 (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of

each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Kw, C and selected days. The Chairman of the Committee computes the planetary index.

#### SUDDEN IONOSPHERE DISTURBANCES

Table 75 lists the sudden ionosphere disturbances observed at Fort Belvoir, Virginia, October 1950.

|         | Table 1 |           |           |             |       |     |     |             |  |  |  |  |
|---------|---------|-----------|-----------|-------------|-------|-----|-----|-------------|--|--|--|--|
| Washing | ton, D. | c. (38.7° | II, 77.19 | ) W )       |       |     | 0   | ctober 1950 |  |  |  |  |
| Time    | h'F2    | foF2      | h'Fl      | foFl        | h¹E   | foE | fEs | (M3000)F2   |  |  |  |  |
| 00      | 290     | (3.7)     |           |             |       |     |     | 2.8         |  |  |  |  |
| 01      | 290     | (3.6)     |           |             |       |     |     | (2.9)       |  |  |  |  |
| 02      | 280     | 3.4       |           |             |       |     |     | 2.9         |  |  |  |  |
| 03      | 280     | 3.2       |           |             |       |     |     | 3.0         |  |  |  |  |
| Off     | 280     | 2.7       |           |             |       |     |     | 3.0         |  |  |  |  |
| 05      | 280     | 2.4       |           |             |       |     |     | 2.9         |  |  |  |  |
| 06      | 280     | 3.0       |           |             |       |     |     | 3.0         |  |  |  |  |
| 07      | 240     | 5.6       |           |             | (120) | 2.0 |     | 3.3         |  |  |  |  |
| 98      | 240     | 7.0       | 230       |             | 110   | 2.5 |     | 3.3         |  |  |  |  |
| 09      | 260     | 7.7       | 220       | 4.1         | 110   | 2.8 |     | 3.2         |  |  |  |  |
| 10      | 260     | 7.8       | 210       | 4.3         | 100   | 3.0 |     | 3.2         |  |  |  |  |
| 11      | 270     | 8,2       | 200       | 4.4         | 100   | 3.0 |     | 3.1         |  |  |  |  |
| 12      | 270     | 9.2       | 210       | 4.6         | 100   | 3.1 |     | 3.1         |  |  |  |  |
| 13      | 270     | 9.2       | 210       | 4.4         | (100) | 3.1 |     | 3.0         |  |  |  |  |
| 14-     | 270     | 9.1       | 220       | 4.4         | 100   | 3.0 |     | 3.0         |  |  |  |  |
| 15      | 260     | 9.2       | 230       | 4.1         | 110   | 2.7 |     | 3.1         |  |  |  |  |
| 16      | 240     | 8.8       | 240       | -           | 110   | 2.4 |     | 3.2         |  |  |  |  |
| 17      | 230     | (8.1)     | -         | and-resount | (120) | 1.8 |     | (3.2)       |  |  |  |  |
| 18      | 220     | (7.1)     |           |             | -     | -   |     | (3.2)       |  |  |  |  |
| 19      | 230     | 5.7       |           |             |       |     |     | 3.1         |  |  |  |  |
| 20      | 250     | 4.8       |           |             |       |     |     | 3.0         |  |  |  |  |
| 21      | 280     | 4.2       |           |             |       |     |     | 2.9         |  |  |  |  |
| 22      | 300     | (3.9)     |           |             |       |     |     | (2.8)       |  |  |  |  |
| 23      | 300     | (3.8)     |           |             |       |     |     | (2,8)       |  |  |  |  |

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

| Boston, Massachusetts (42,4°E, 71,2°M)         September 1950           Time         h°F2         f°F2         h°F1         f°F1         h°E         f°E         fEg         (MZ000)F2           00         290         3.3         2,9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         3.0         2.9         3.0         2.9         3.0         2.9         3.0         2.9         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.1         3.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |        |          | Table 3 |     |     |      |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------|----------|---------|-----|-----|------|------------|
| 00         290         3,3         2,9           01         280         3,2         2,9           02         290         2,8         2,9           03         280         (2,7)         (2,9)           04         280         (2,4)         (2,9)           05         300         2,3         3,0           06         240         4,2           125         1,9         3,2           07         240         5,1         230         3,4         120         2,4         3,3           08         270         5,6         220         3,8         120         2,7         3,3           09         280         6,1         210         4,0         120         2,9         3,3           10         300         6,6         500         4,3         120         3,1         3,2           11         300         6,6         200         4,4         120         3,2         3,2           12         300         6,6         200         4,4         120         3,1         3,1           13         300         6,6         220         4,4         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boston, | Massach | usetts | (42.4°N, | 71,2°W) |     |     | Sept | ember 1950 |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time    | P, LS   | foF2   | h'Fl     | foFl    | h1E | foE | fBs  | (M3000) F2 |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00      | 290     | 3.3    |          |         |     |     |      | 2.9        |
| 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01      | 280     | 3,2    |          |         |     |     |      |            |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02      | 290     | 2.8    |          |         |     |     |      |            |
| 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03      | 280     | (2.7)  |          |         |     |     |      |            |
| 05   300   2,3   3,0   3,2   3,2   3,2   3,2   3,2   3,2   3,3   3,4   120   2,4   3,3   3,3   3,4   120   2,4   3,3   3,3   3,4   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3,5   3 | 04      | 280     | (2.4)  |          |         |     |     |      |            |
| 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05      | 300     | 2.3    |          |         |     |     |      |            |
| 07         240         5, 1         230         3, 4         120         2, 4         3, 3           08         270         5, 6         220         3, 8         120         2, 7         3, 3           09         280         6, 1         210         4, 0         120         2, 9         3, 3           10         300         6, 6         200         4, 3         120         3, 1         3, 2           11         300         6, 6         200         4, 4         120         3, 1         3, 1           13         300         6, 6         200         4, 5         120         3, 1         3, 1           14         300         6, 8         220         4, 4         120         3, 1         3, 1           15         280         6, 8         220         4, 0         120         2, 8         3, 1           18         270         6, 7         230         3, 8         120         2, 7         3, 1           18         230         8, 8          3, 1         3, 2          3, 1           19         230         6, 5          3, 1         3, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06      | 240     | 4.2    |          |         | 125 | 1.9 |      |            |
| 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07      | 240     | 5.1    | 230      | 3.4     | 120 | 2.4 |      |            |
| 09         280         6,1         210         4,0         120         2,9         3,3           10         300         6,6         5         200         4,3         120         3,1         3,2           11         300         6,6         200         4,4         120         3,2         3,2           13         300         6,6         220         4,4         120         3,1         3,1           14         300         6,8         220         4,3         120         3,0         3,2           15         280         6,8         220         4,0         120         2,8         3,1           18         270         6,7         230         3,8         120         2,7         3,1           17         240         6,7         240         3,3         130         2,3         3,2           18         230         8,8            3,1           19         230         6,5           3,1           20         240         5,5         3,0         3,0           21         260         4,7         3,8         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 270     | 5.6    | 220      | 3.8     | 120 | 2,7 |      |            |
| 10     300     6,5     200     4,3     120     3,1     3,2       11     300     6,4     200     4,4     120     3,2     3,2       12     300     6,6     200     4,5     120     3,1     3,1       13     300     6,6     220     4,4     120     3,1     3,1       14     300     6,8     220     4,3     120     3,0     3,2       15     280     6,8     220     4,0     120     2,8     3,1       18     270     6,7     230     3,8     120     2,7     3,1       17     240     6,7     240     3,3     130     2,3     3,2       18     230     8,8       3,1       19     230     6,5      3,1       20     240     5,5     3,0       21     260     4,7     3,0       22     280     3,8     2,9       23     230     3,8     2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 280     | 6.1    | 510      | 4.0     |     |     |      |            |
| 11     300     6,4     200     4,4     120     3,2     3,2       12     300     6,6     200     4,5     120     3,1     3,1       13     300     6,6     220     4,4     120     3,1     3,1       15     280     6,8     220     4,0     120     3,0     3,2       15     280     6,8     220     4,0     120     2,8     3,1       18     270     6,7     230     3,8     120     2,7     3,1       17     240     6,7     240     3,3     130     2,3     3,2       18     230     8,8       3,1       19     230     6,5     3,1       20     240     5,5     3,1       21     260     4,7     3,0       22     280     3,8     2,9       23     230     3,8     2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 300     | 6.5    | 500      | 4.3     | 120 |     |      |            |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 300     | 6.4    | 500      | 4.4     | 120 |     |      |            |
| 13     300     6,6     220     4,4     120     3,1     3,1       14     300     6,8     220     4,3     120     3,0     3,2       15     280     6,8     220     4,0     120     2,8     3,1       18     270     6,7     230     3,8     120     2,7     3,1       17     240     6,7     240     3,3     130     2,3     3,2       18     230     8,8       3,1       19     230     6,5      3,1       20     240     5,5     3,0       21     260     4,7     3,0       22     280     3,8     2,9       23     290     3,8     2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         | 6.6    | 200      | 4.5     | 120 |     |      |            |
| 14     300     6,8     220     4,3     120     3,0     3,2       15     280     6,8     220     4,0     120     2,8     3,1       18     270     6,7     230     3,8     120     2,7     3,1       17     240     6,7     240     3,3     130     2,3     3,2       18     230     8,8       3,1       19     230     6,5      3,1       20     240     5,5     3,1       21     260     4,7     3,0       22     280     3,8     2,9       23     230     3,8     2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         | 6.6    | \$30     | 4.4     | 120 |     |      |            |
| 15     280     6,8     220     4,0     120     2,8     3,1       17     240     6,7     230     3,8     120     2,7     3,1       17     240     6,7     240     3,3     130     2,3     3,2       18     230     6,8       3,1       20     240     5,5     3,1       20     240     5,5     3,0       21     260     4,7     3,0       22     280     3,8     2,9       23     230     3,8     2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         | 6.8    | 250      | 4.3     | 120 |     |      |            |
| 18     270     6.7     230     3.8     120     2.7     3.1       17     240     6.7     240     3.3     130     2.3     3.2       18     230     8.8       3.1       19     230     6.5      3.1       20     240     5.5     3.0       21     260     4.7     3.0       22     280     3.8     2.9       23     290     3.8     2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         | 6.8    | SS0      | 4.0     | 120 | 2.8 |      |            |
| 17     240     6,7     240     3.3     130     2,3     3.2       18     230     8.8       3.1       19     230     6.5     3.1       20     240     5.5     3.1       21     260     4.7     3.0       22     280     3.8     2.9       23     290     3.8     2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         | 6.7    | 230      | 3.8     | 120 |     |      |            |
| 18     230     6.8      3.1       19     230     6.5     3.1       20     240     5.5     3.0       21     260     4.7     3.0       22     280     3.8     2.9       23     230     3.8     2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         |        | 240      | 3.3     | 130 |     |      |            |
| 19 250 6.5 3.1<br>20 240 5.5 3.0<br>21 260 4.7 3.0<br>22 280 3.8 2.9<br>23 290 3.8 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         | 8.8    |          |         |     |     |      |            |
| 20 240 5.5<br>21 260 4.7 3.0<br>22 280 3.8 2.9<br>23 290 3.8 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 230     | 6.5    |          |         |     |     |      |            |
| 21 280 4.7 3.0<br>22 280 3.8 2.9<br>23 290 3.8 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         | 5.5    |          |         |     |     |      |            |
| 22 280 3.8 2.9<br>23 290 3.8 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         | 4.7    |          |         |     |     |      |            |
| 23 290 3.8 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |         | 3.8    |          |         |     |     |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | 3.8    |          |         |     |     |      | 2.9        |

23 290 3.8
Time: 75.0°W.
Sweep: 0.5 Mc to 18.0 Mc in 1 minute.

| Table 5 |        |     |        |          |        |     |               |       |           |  |
|---------|--------|-----|--------|----------|--------|-----|---------------|-------|-----------|--|
| White   | Sande, | New | Mexico | (32.3°N. | 106.50 | W)  |               | Septe | mber 1950 |  |
| Time    | h 1 F  | S   | foF2   | h'F1     | foF1   | h'E | foll          | fEs   | (M3000)F2 |  |
| OC      | 29     | 0   | 3.9    |          |        |     |               | 2.0   | 2.7       |  |
| 01      | 300    |     | 3.9    |          |        |     |               |       | 2.7       |  |
| 0.2     | 286    |     | 3.9    |          |        |     |               |       | 2.7       |  |
| 03      | 270    | 0   | 3.9    |          |        |     |               | 2.2   | 2.8       |  |
| 04      | 38     | 0   | 3.9    |          |        |     |               | 2.3   | 2.8       |  |
| 05      | 27     | 0   | 3.8    |          |        |     |               | 2.5   | 2.8       |  |
| 08      | 26     | 0   | 4.8    |          |        | 120 | Pro- plan 400 | 3.4   | 3.1       |  |
| 07      | 25     | 0   | 8.4    | 230      |        | 110 | (2.4)         | 4.6   | 3,2       |  |
| 08      | 26     | 0   | 6.8    | 220      | 4.3    | 110 | (2.8)         | 4.7   | 3.2       |  |
| 09      | 29     | 0   | 8.9    | 220      | (4.6)  | 110 | (3.2)         | 4.8   | 3.1       |  |
| 10      | 32     | 0   | 7.1    | 310      | (4.8)  | 110 | (3.4)         | 4.9   | 2.9       |  |
| 11      | 32     | 0   | 7.4    | 210      | (4.9)  | 110 | (3.6)         | 5.0   | 2.8       |  |
| 12      | 35     |     | 8.1    | 210      | 5.0    | 110 | 3.6           |       | 2.8       |  |
| 13      | 32     | 0   | 8.7    | 220      | 4.9    | 110 | 3.8           | 4.5   | 8.8       |  |
| 14      | 30     | 0   | 8.9    | \$50     | 4.8    | 110 | 3,4           |       | 3.0       |  |
| 15      | 29     | 0   | 9.0    | 230      | 4.6    | 110 | 3.2           | 3.8   | 3.0       |  |
| 18      | 58     | 0   | 8.8    | 230      |        | 110 | 2,8           | 3.5   | 3.1       |  |
| 17      | 25     | 0   | 8.7    | 240      | -      | 110 | 2.4           | 3.3   | 3.2       |  |
| 18      | 23     | 0   | 7.4    |          |        |     |               | 2.6   | 3,2       |  |
| 19      | 22     |     | 6.1    |          |        |     |               | 2.2   | 3.1       |  |
| 50      | 2.3    |     | 5.3    |          |        |     |               | 2.2   | 3.0       |  |
| 21      | 56     |     | 4.3    |          |        |     |               |       | 2.8       |  |
| 22      | 28     | 0   | 4.0    |          |        |     |               |       | 2.8       |  |
| 53      | 28     | 0   | 3.9    |          |        |     |               | 2.3   | 2.7       |  |

Time: 105.0°W. Sweep: 0.8 Mc to 14.0 Mc in 2 minutes.

|       |           |          |        | Table 2 |       |     |      |            |
|-------|-----------|----------|--------|---------|-------|-----|------|------------|
| Oelo, | Morway (6 | 0.0°N, 1 | 1.0°E) |         |       |     | Sept | ember 1950 |
| Time  | P.LS      | foF2     | h'Fl   | foFl    | P # E | foE | fEs  | (M3000)F2  |
| 00    | 320       | 2.8      |        |         |       |     |      | 8.8        |
| 01    | 310       | (2.6)    |        |         |       |     | 2.0  | (2.7)      |
| 0.5   | 320       | 2.4      |        |         |       |     | 2.0  | 2.8        |
| 03    | 310       | 2.4      |        |         |       |     | 1.7  | 2.8        |
| 04    | 300       | 2.3      |        |         |       |     | 2.0  | 8.8        |
| 05    | 290       | 2.5      |        |         |       |     |      | 3.0        |
| 08    | 250       | 3.4      |        |         | 130   | 1.8 | 1.7  | 3.2        |
| 07    | 260       | 4.0      | 230    | 3.2     | 115   | 2.1 | 2.1  | 3.2        |
| 08    | 300       | 4.4      | 220    | 3.7     | 115   | 2.4 | 2.5  | 3.2        |
| 09    | 335       | 4.9      | 215    | 4.0     | 110   | 2.6 | 8.5  | 3.1        |
| 10    | 330       | 5.2      | 210    | 4.1     | 105   | 2.8 | 3.0  | 3.1        |
| 11    | 310       | 5.8      | 205    | 4.2     | 105   | 2.9 | 3.0  | 3.2        |
| 12    | 300       | 6.1      | 205    | 4.2     | 105   | 3.0 | 3.1  | 3.2        |
| 13    | 300       | 5.9      | 205    | 4.2     | 105   | 2.9 | 2.9  | 3.2        |
| 14    | 295       | 6.0      | 510    | 4.1     | 105   | 2.9 | 3.0  | 3.2        |
| 15    | 280       | 5.9      | 215    | 4.0     | 110   | 2.7 | 2.9  | 3.2        |
| 16    | 265       | .5.8     | 225    | 3.8     | 110   | 2.5 | 2.6  | 3.2        |
| 17    | 260       | 5.8      | 235    | 3.3     | 115   | 2.2 | 2.5  | 3.1        |
| 18    | 255       | 6.0      | 240    | 2.8     | 140   | 2.0 | 2.4  | 3.2        |
| 19    | 250       | (5.8)    |        |         |       |     | 2.4  | 3.0        |
| 50    | 250       | (5.4)    |        |         |       |     |      | 3.1        |
| 21    | 255       | (4.3)    |        |         |       |     |      | 3.1        |
| 55    | 270       | 3.2      |        |         |       |     | 2.1  | 3.0        |
| 23    | 295       | (2.8)    |        |         |       |     |      | 2.8        |

Time: 15.0°E.
Sweep: 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation.

|        |          |          |          | Table 4  | <u>.</u> |     |       |           |
|--------|----------|----------|----------|----------|----------|-----|-------|-----------|
| San Fr | ancieco. | Californ | le (37.4 | °N, 122. | soM)     |     | Septe | mber 1950 |
| Time.  | P.ES     | foF2     | h'Fl     | foF1     | h ! E    | foE | fEp   | (M3000)F2 |
| 00     | 300      | 3.6      |          |          |          |     |       | 2.7       |
| 01     | 350      | 3.6      |          |          |          |     |       | 2.7       |
| 02     | 320      | 3.5      |          |          |          |     |       | 8.8       |
| 03     | 300      | 3.6      |          |          |          |     |       | 2.8       |
| 04     | 300      | 3.6      |          |          |          |     |       | 2.8       |
| 05     | 290      | 3.5      |          |          |          |     | 2.2   | 2.9       |
| 06     | 270      | 4.1      |          |          |          |     | 2.6   | 3.0       |
| 07     | 270      | 5.6      | 240      | 3.6      | 120      | 2.4 | 2.2   | 3.2       |
| 08     | 290      | 6.4      | 550      | 4.1      | 120      | 2.8 |       | 3.1       |
| 09     | 280      | 6.6      | 210      | 4.4      | 110      | 3.1 | 3.7   | 3.2       |
| 10     | 300      | 6.6      | 200      | 4.6      | 110      | 3.4 |       | 3.0       |
| 11     | 330      | 7.4      | 200      | 4.7      | 110      | 3.6 |       | 2.9       |
| 12     | 310      | 7.5      | 200      | 4.8      | 120      | 3.6 |       | 2.9       |
| 13     | 310      | 7.6      | 550      | 4.8      | 110      | 3.7 |       | 3.0       |
| 14     | 300      | 7.8      | SSO      | 4.7      | 110      |     |       | 3.0       |
| 15     | 280      | 7.7      | 230      | 4.5      | 120      |     |       | 3.1       |
| 16     | 270      | 7.4      | 240      | 4.2      | 120      | 2.8 |       | 3.2       |
| 17     | 250      | 7.3      | 240      | 3.3      | 120      | 2.4 |       | 3.2       |
| 18     | 240      | 6.2      |          |          |          |     |       | 3,3       |
| 19     | 240      | 5.8      |          |          |          |     | 2.2   | 3.2       |
| 50     | 240      | 4.9      |          |          |          |     |       | 3.1       |
| 21     | 260      | 4.2      |          |          |          |     |       | 2.9       |
| 22     | 280      | 3.8      |          |          |          |     |       | 2.8       |
| 53     | 300      | 3.8      |          |          |          |     |       | 2.8       |

Time: 120.0°W. Sweep: 1.3 Mc to 18.0 Mc in 4 minutes.

|       |        |           |          | TEOLS O |     |       |       |            |
|-------|--------|-----------|----------|---------|-----|-------|-------|------------|
| Baton | Rouge, | Louisiana | (30.5°N, | 91.2°W) |     |       | Septe | mber 1950  |
| Time  | h'F    | S. folks  | h'Fl     | foFl    | h'E | foB   | fEq   | (M3000) F2 |
| 00    | 33     | 0 4.0     |          |         |     |       |       | 8.8        |
| 01    | 33     | 0 4.0     |          |         |     |       |       | 2.8        |
| 02    | 33     | 0 4.0     |          |         |     |       |       | 2.9        |
| 03    | 32     | 0 4.0     |          |         |     |       |       | 2.9        |
| 04    | 32     | 0 3.Я     |          |         |     |       |       | 2.9        |
| 05    | 30     |           |          |         |     |       |       | 2.9        |
| 06    | 29     |           |          |         |     |       |       | 3.2        |
| 07    | 27     |           | 250      |         | 120 | 2.6   |       | 3.2        |
| 08    | 28     |           | 230      |         | 120 | 2.9   |       | 3.2        |
| 09    | 29     |           | 230      | 4.1     | 120 | (3.2) |       | 3.0        |
| 10    | 32     | 0 7.3     | 230      | 4.6     | 120 | (3.5) |       | 3.0        |
| 11    | 33     |           | 230      | 4.9     |     | (3.5) |       | 2.9        |
| 12    | 34     | 0 8.4     | 240      | 4.8     |     | ~     |       | 2.9        |
| 13    | 33     | 0 8.7     | 250      | 4.9     |     | (3.5) |       | 8.5        |
| 14    | 33     | 0 9.2     | \$60     | 4.8     |     | (3.5) |       | 2.9        |
| 15    | 32     | 0 9.4     | 250      |         | 120 | (3.3) |       | 2.9        |
| 16    | 30     | 0 9.0     | 250      |         | 120 | (3.0) |       | 3.0        |
| 17    | 27     | 0 9.0     | 270      |         | 130 | (2.5) |       | 3.1        |
| 18    | 25     | 0 8.4     |          |         |     |       |       | 3.1        |
| 19    | 25     | 0 7.0     |          |         |     |       |       | 3.1        |
| 20    | 27     | 0 5.5     |          |         |     |       |       | 3.0        |
| 21    | 30     | 0 4.6     |          |         |     |       |       | 2.9        |
| 22    | 31     | 0 4.1     |          |         |     |       |       | 2.9        |
| 23    | 32     | 0 4.0     |          |         |     |       |       | 2.8        |

Time: 90.0°W.
Sweep: 2.12 Mc to 14.1 Mc in 5 minutee, automatic operation.

|         |           |          |       | Table | 7     |     |      |            |
|---------|-----------|----------|-------|-------|-------|-----|------|------------|
| Okinawa | a I. (26. | 3°N, 127 | .7°E) |       |       |     | Sept | ember 1950 |
| Time    | F, LS     | foF2     | h'F1  | fo Fl | h * E | foE | fE3  | (M3000)F2  |
| 00      | 300       | 5.9      |       |       |       |     | 2.2  | 2.8        |
| 01      | 290       | 5.6      |       |       |       |     | 2.0  | 2.9        |
| 02      | 260       | 6.4      |       |       |       |     |      | 2.9        |
| 03      | 250       | 4.8      |       |       |       |     |      | 3.0        |
| 04      | 220       | 4.2      |       |       |       |     |      | 3.3        |
| 05      | 230       | 3.2      |       |       |       |     |      | 3.1        |
| 06      | 260       | 3.7      |       |       |       |     | 2.1  | 3.0        |
| 07      | 240       | 6.8      |       |       | 120   | 2.2 | 2.9  | 3.5        |
| 08      | 240       | 7.5      | 230   |       | 110   | 2.5 | 4.0  | 3.4        |
| 09      | 260       | 7.8      | 220   |       | 110   | 3.0 | 4.1  | 3.4        |
| 10      | 270       | 7.9      | 210   | 5.0   | 110   | 3.4 | 4.2  | 3.2        |
| 11      | 310       | 9.0      | 200   |       | 110   | 3.5 | 4.3  | 2.9        |
| 12      | 310       | 10.5     | 210   | 5.1   | 110   | 3.7 | 4.9  | 2.9        |
| 13      | 310       | 11.4     | 220   | 5.0   | 120   | 3.6 | 4.2  | 3.0        |
| 14      | 300       | 12.2     | 550   | 4.9   | 120   | 3.5 | 4.2  | 3.0        |
| 16      | 300       | 11.8     | 230   | 4.8   | 110   | 3.4 | 2.6  | 3.1        |
| 16      | 380       | 11.8     | 230   |       | 110   | 3.0 | 3.9  | 3.1        |
| 17      | 270       | 11.6     | 230   |       | 110   | 2.6 | 3.8  | 3.2        |
| 18      | 240       | 10.9     |       |       | 120   |     | 3.7  | 3.3        |
| 19      | 230       | 10.3     |       |       |       |     | 4.0  | 3.3        |
| 20      | 550       | 8.4      |       |       |       |     | 3.3  | 3.1        |
| 21      | 240       | 7.0      |       |       |       |     | 2.8  | 2.9        |
| 22      | 280       | 6.2      |       |       |       |     |      | 2.8        |
| 23      | 300       | 6.2      |       |       |       |     | 2.1  | 2,8        |

Time: 135.0°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds, automatic operation.

|         |           |       |          | Table   | 2   |       |       |            |
|---------|-----------|-------|----------|---------|-----|-------|-------|------------|
| San Jus | m. Puerto | Rico  | (18.4°N, | 66.0°W) |     |       | Septe | mber 1950  |
| Time    | P, LS     | foF2  | h'F1     | foFl    | h E | foE   | fEs   | (M3000) 12 |
| 00      | 270       | 4.9   |          |         |     |       |       | 2.7        |
| 01      | 250       | 5.2   |          |         |     |       |       | 2.7        |
| 02      | 240       | 5.2   |          |         |     |       |       | 2.8        |
| 03      | 230       | 4.9   |          |         |     |       |       | 2.8        |
| 04      | (240)     | 4.2   |          |         |     |       |       | 2.9        |
| 05      |           | 4.0   |          |         |     |       |       | 2.8        |
| 06      | (240)     | 4.1   |          |         |     |       |       | 2.7        |
| 07      | 230       | 6.6   |          |         |     |       |       | 3.0        |
| 08      | 250       | 7.0   |          |         |     | 3.2   |       | 3.0        |
| 09      | 260       | 7.6   |          | 4.9     |     |       |       | 2.9        |
| 10      | 290       | 8.3   |          | 4.9     |     | 3.6   |       | 2.8        |
| 11      | 290       | 9.3   |          | 5.0     |     | (3.7) | 3.8   | 2.8        |
| 12      | 290       | 10.0  |          | 5.0     |     | AL    |       | 2.8        |
| 13      | 290       | 10.7  |          | 4.9     |     | (3.7) |       | 2.8        |
| 14      | 280       | 10.8  |          | 4.9     |     | (3.6) | 3.7   | 2.8        |
| 15      | 280       | 10.8  |          | 4.8     |     | 3,5   | 4.4   | 2.9        |
| 16      | 270       | 10.7  |          | 4.7     |     | (3.3) | 4.5   | 2.9        |
| 17      | 240       | 10.1  |          |         |     |       | 3.9   | 2.9        |
| 18      | 230       | (9.2) | )        |         |     |       |       | (2.9)      |
| 19      | 230       | (8.2  | )        |         |     |       |       | (2.8)      |
| 20      | 240       | (7.1  | )        |         |     |       |       | (2.8)      |
| 21      | 240       | (5.8) | )        |         |     |       |       | (2.8)      |
| 22      | 260       | (5.0) | )        |         |     |       |       | (2.7)      |
| 23      | 260       | (4.8) | )        |         |     |       |       | (2.7)      |

23 260 (4.8)

Time: 60.0°W.
Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, antomatic operation; supplemented by manual operation.

| Table 11   |           |         |          |          |       |     |      |            |  |  |
|------------|-----------|---------|----------|----------|-------|-----|------|------------|--|--|
| Trinida    | ad, Brit. | West In | iies (10 | .6°N, 61 | .2°W) |     | Sept | ember 1950 |  |  |
| Time       | F.LS      | foF2    | h'Fl     | foFl     | h'E   | foE | fEs  | (M3000)F2  |  |  |
| 00         | 250       | 6.6     |          |          |       |     |      | 3.2        |  |  |
| 01         | 240       | 6.0     |          |          |       |     |      | 3.2        |  |  |
| 02         | 230       | 5.5     |          |          |       |     |      | 3.3        |  |  |
| 03         | 240       | 4.6     |          |          |       |     |      | 3.2        |  |  |
| 04         | 240       | 4.6     |          |          |       |     |      | 3.3        |  |  |
| 0.5        | 250       | 4.0     |          |          |       |     |      | 3.2        |  |  |
| 80         | 240       | 4.6     |          |          |       |     |      | 3.4        |  |  |
| 07         | 550       | 6.8 _   |          |          | 100   | 2.5 | 3.0  | 3.6        |  |  |
| 08         | 230       | 7.3     | 200      | 4.6      | 100   | 3.0 | 3.6  | 3.5        |  |  |
| 09         | 270       | 8.2     | 200      | 4.9      | 100   | 3.4 | 4.3  | 3.3        |  |  |
| 10         | 280       | 9.4     | 500      | 5.0      | 100   | 3.6 | 4.6  | 3.1        |  |  |
| 11         | 300       | 10.2    | 200      | 5.1      | 100   | 3.7 | 4.8  | 3.1        |  |  |
| 12         | 280       | 11.4    | 200      | 5.0      | 100   | 3.8 | 4.8  | 3.2        |  |  |
| 13         | 280       | 11.8    | 500      | 6.0      | 100   | 3.7 | 4.9  | 3.1        |  |  |
| 14         | 280       | 12.2    | 200      | 5.0      | 100   | 3.6 | 4.8  | 3.2        |  |  |
| 15         | 260       | 12.1    | 210      | 4.8      | 100   | 3.4 | 5.0  | 3.3        |  |  |
| 16         | 260       | 12.0    | 220      | 4.5      | 100   | 3.0 | 5.0  | 3.3        |  |  |
| 17         | 240       | 11.2    | 550      |          | 100   | 2.5 | 4.4  | 3.4        |  |  |
| 18         | 220       | 10.3    |          |          |       |     | 3.6  | 3.3        |  |  |
| 19         | 220       | 9.0     |          |          |       |     | 3.0  | 3.2        |  |  |
| 20         | 230       | 8.6     |          |          |       |     |      | 3.2        |  |  |
| 21         | 240       | 7.7     |          |          |       |     |      | 3.1        |  |  |
| 2 <b>2</b> | 260       | 7.2     |          |          |       |     |      | 3.0        |  |  |
| 23         | 260       | 6.8     |          |          |       |     |      | 3.0        |  |  |

Time: 60,0°W.
Swsep: 1.2 Mc to 19.5 Mc, manual operation.

|       |        |          |          | Table 8 |     |     |      |             |
|-------|--------|----------|----------|---------|-----|-----|------|-------------|
| Maui, | Hava11 | (20.8°E, | 156.5°₩) |         |     |     | Sep  | tember 1950 |
| Time  | h'F2   | foF2     | h'F1     | foFl    | h E | fol | file | (M2000) F2  |
| 00    | 270    | 5.0      |          |         |     |     |      | 2.8         |
| 01    | 260    | 5.2      |          |         |     |     |      | 3.0         |
| 0.2   | 230    | 4.8      |          |         |     |     |      | 5.2         |
| 03    | 230    | 4.0      |          |         |     |     |      | 3.2         |
| 04    | 250    | 3.0      |          |         |     |     |      | 3.0         |
| 05    | 270    | 2.8      |          |         |     |     |      | 3.0         |
| 06    | 270    | 3.4      |          |         |     |     | 1.6  | 3.1         |
| 07    | 230    | 6.4      |          |         | 110 | 2.3 | 4.0  | 3.4         |
| 08    | 250    | 7.4      | 220      |         | 110 | 2.8 | 6.6  | 3.3         |
| 09    | 290    | 8.0      | 210      | 4.8     | 110 | 3.2 | 6.4  | 2.9         |
| 10    | 320    | 9.2      | 210      | 5.0     | 110 | 3.4 | 4.8  | 2.8         |
| 11    | 340    | 10.1     | 200      | 5.0     | 110 | 3.5 | 4.5  | 2.8         |
| 12    | 340    | 11.0     | 200      | 5.0     | 110 | 3.6 | 4.8  | 2.8         |
| 13    | 330    | 12.0     | 210      | 6.0     | 110 | 3.6 | 4.6  | 2.9         |
| 14    | 310    | 12.6     | 210      | 5.0     | 100 | 3.5 | 4.6  | 3.0         |
| 15    | 290    |          | 220      | 4.8     | 110 | 3.3 | 4.4  | 3.1         |
| 16    | 270    | 13.2     | 220      | 4.5     | 100 | 3.0 | 4.4  | 3.2         |
| 17    | 240    | 12.4     | 230      |         | 110 | 2.4 | 4.0  | 3.3         |
| 18    | 550    | 11.2     |          |         |     |     | 3.9  | 3.4         |
| 19    | 550    | 8.4      |          |         |     |     | 3.9  | 3.2         |
| 50    | 230    | 7.2      |          |         |     |     | 3.8  | 3.0         |
| 21    | 250    | (6.3)    |          |         |     |     | 2.4  | (2,7)       |
| 22    | 290    | 5.2      |          |         |     |     | 2.3  | 2.7         |
| 23    | 280    | 5.2      |          |         |     |     | 7 0  | 2 8         |

23 | 280 5.2 Time: 150,0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 esconde.

|         |          |        |      | Table : | 10  |       |            |            |
|---------|----------|--------|------|---------|-----|-------|------------|------------|
| Guam I. | (13.6°N, | 144.90 | 3)   | 20010   |     | Sept  | ember 1950 |            |
| fine    | P, LS    | foF2   | h'71 | foFl    | h'E | foB   | fEp        | (MZ000) F2 |
| 00      | 280      | 9.0    |      |         |     |       | 1.7        | 3.0        |
| 01      | 250      | (9.5)  |      |         |     |       |            | (3.2)      |
| 02      | 230      | (7.6)  |      |         |     |       |            | (3.3)      |
| 03      | 220      | (5.4)  |      |         |     |       |            | (3.2)      |
| 04      | 240      | 4.3    |      |         |     |       | 1.4        | 3.2        |
| 06      | 250      | 3.4    |      |         |     |       | 1.7        | 3.3        |
| 06      | 260      | 3.5    |      |         |     |       | 2.0        | 3.0        |
| 07      | 240      | 7.1    |      |         | 120 | 2.3   | 3.9        | 3.2        |
| 08      | 280      | 8.6    | 220  |         | 110 | (2.8) | 4.2        | 3.0        |
| 09      | 300      | 9.8    | 210  |         | 110 | (3,2) | 4.7        | 2.8        |
| 10      | 320      | 10.0   | 200  |         | 110 | (3.4) | 4.4        | 2.6        |
| 11      | 340      | 10.2   | 210  | 4.9     | 110 | 3.5   | 4.6        | 2.4        |
| 12      | 340      | 10.4   | 200  | (4.9)   | 110 | (3.6) | 4.0        | 2.4        |
| 13      | 340      | 11.1   | 210  | (4.9)   | 110 | (3.6) | 4.4        | 2.5        |
| 14      | 340      | 11.8   | 220  | (4.8)   | 120 | (3.6) | 3,9        | 2.6        |
| 15      | 320      | 12.2   | 230  |         | 120 | (3.3) | 4.2        | 2.8        |
| 18      | 300      | 13.0   | 230  |         | 120 | (3.1) | 4.3        | 2.9        |
| 17      | 280      | 12.7   | 230  |         | 120 |       | 4.3        | 2.9        |
| 18      | 260      | 12.4   |      |         |     |       | 4.1        | 2.8        |
| 19      | 290      | 11.8   |      |         |     |       | 3.6        | 2.7        |
| 20      | 280      | 11.5   |      |         |     |       | 2.9        | 2.8        |
| 21      | 260      | (11.0) |      |         |     |       | 3.5        | (2.9)      |
| 22      | 250      | (10.2) |      |         |     |       | 2.1        | (8.8)      |
| 22      | 260      | (10.1) |      |         |     |       | 2 2        | (2 9)      |

23 260 (10.1) Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 16 seconds.

|         |          |          |         | Table 12 |     |               |      |           |
|---------|----------|----------|---------|----------|-----|---------------|------|-----------|
| Huancay | 70, Peru | (12.0°S, | 75.3°W) |          |     | September 195 |      |           |
| Time    | P.LS     | foF2     | h'Fl    | foFl     | h B | foE           | LEs  | (M3000)F2 |
| 00      | 220      | 8.3      |         |          |     |               | 3.1  | 3.1       |
| 01      | 230      | 7.2      |         |          |     |               | 2.9  | 3.2       |
| 0.2     | 240      | 5.8      |         |          |     |               | 3.1  | 3.2       |
| 03      | 240      | 6.2      |         |          |     |               | 3.1  | 3.2       |
| 04      | 260      | 4.6      |         |          |     |               | 3.1  | 3.2       |
| 05      | 280      | 3.8      |         |          |     |               | 3.3  | 3.1       |
| 06      | 270      | 5.6      |         |          | 110 | 1.7           | 4.3  | 3.0       |
| 07      | 240      | 8.0      | 230     |          | 100 | 2.6           | 7.9  | 3.1       |
| 08      | 300      | 9.3      | 350     | 4.8      | 110 | (3.0)         | 12.0 | 2.8       |
| 09      | 310      | 9.7      | 210     | 4.8      | 110 |               | 12.0 | 2.6       |
| 10      | 320      | 9.0      | 210     | 4.8      | 110 |               | 12.0 | 2.6       |
| 11      | 340      | 8.5      | 210     | 4.9      | 110 |               | 12.2 | 2.6       |
| 12      | 350      | 8.6      | 210     | 5.0      | 110 |               | 12.0 | 2.6       |
| 13      | 330      | 8.9      | 200     | 4.8      | 110 |               | 12.1 | 2.6       |
| 14      | 320      | 9.0      | 200     | 4.7      | 110 |               | 12.0 | 2.6       |
| 15      | 310      | 9.0      | 210     | 4.6      | 110 |               | 12.0 | 2.4       |
| 16      | 300      | 9.2      | 220     |          | 110 | 2.7           | 11.9 | 3.6       |
| 17      | 260      | 9.3      |         |          | 110 | 2.2           | 8.4  | 2.5       |
| 18      | 290      | 9.0      |         |          | 110 |               | 3.0  | 2.6       |
| 19      | 330      | 8.5      |         |          |     |               | 2.6  | 2.5       |
| 20      | 300      | 8.7      |         |          |     |               | 2,8  | 2.6       |
| 21      | 240      | 8.9      |         |          |     |               | 3.1  | 8.8       |
| 22      | 230      | 8.9      |         |          |     |               | 3.2  | 3.0       |
| 23      | 220      | 8 8      |         |          |     |               | 72 7 | 2.2       |

23 220 8.8 3.1

Time: 75.0°W.
Sweep: 16.0 Mc to 0.6 Mc in 15 minutem, automatic operation.

|         |         |          |        | Table 1 | 13         |     |     |            |  |
|---------|---------|----------|--------|---------|------------|-----|-----|------------|--|
| DeBilt, | Holland | (52,1°W, | 5.2°E) |         |            |     | A   | igust 1950 |  |
| Time    | P.LS    | foF2     | h'FI   | foFl    | h'E        | foE | fEs | (M3000)F2  |  |
| 00      | 280     | 4.4      |        |         |            |     | 2.6 | 2.9        |  |
| 01      | 270     | 4.0      |        |         |            |     | 2.7 | 2.9        |  |
| 03      | 270     | 3.9      |        |         |            |     | 2.9 | 3.0        |  |
| 03      | 260     | 3,5      |        |         |            |     | 2.9 | 2.9        |  |
| 04      | 260     | 3.2      |        |         |            |     | 3.0 | 3.0        |  |
| 05      | 550     | 4.3      |        | -       | 100        | 1.7 | 3.4 | 3.2        |  |
| 08      | 280     | 5.3      | 200    | 3.6     | 100        | 2.3 | 4.3 | 3.2        |  |
| 07      | 290     | 5.9      | 200    | 3.9     | 100        | 2.6 | 4.3 | 3.2        |  |
| 08      | 280     | 6.2      | 200    | 4.3     | 100        | 3.0 | 4.4 | 3.3        |  |
| 09      | 290     | 6.3      | 200    | 4.5     | 100        | 3.2 | 4.8 | 3.2        |  |
| 10      | 300     | 8.1      | 200    | 4.6     | 100        | 3.3 | 4.5 | 3.2        |  |
| 11      | 300     | 6.2      | 500    | 4.7     | 95         | 3.3 | 4.6 | 3.2        |  |
| 13      | 300     | 6.2      | 200    | 4.7     | 100        | 3.4 | 4.6 | 3.2        |  |
| 13      | 300     | 6.3      | 200    | 4.7     | 100        | 3.4 | 3.6 | 3.2        |  |
| 14      | 300     | 6.3      | 200    | 4.6     | 100        | 3.2 | 3.8 | 3.2        |  |
| 15      | 290     | 8.4      | 900    | 4.5     | 100        | 3.1 | 3.4 | 3.8        |  |
| 16      | 280     | 6.4      | 200    | 4.1     | 100        | 2.8 | 3.5 | 3.2        |  |
| 17      | 260     | 6.9      | 210    | 3.8     | 160        | 2.4 | 3.6 | 3.2        |  |
| 18      | 240     | 6.8      | 220    | 2.9     | 105        | 2.0 | 3.4 | 3.2        |  |
| 19      | 220     | 7.5      |        |         | Stranger P |     | 3.2 | 3,2        |  |
| 50      | 210     | 7.3      |        |         |            |     | 8.8 | 3.2        |  |
| 51      | 210     | 8.6      |        |         |            |     | 2.7 | 3,2        |  |
| 22      | 230     | 5.9      |        |         |            |     | 2.9 | 3.0        |  |
| 23      | 230     | 4.8      |        |         |            |     | 2 8 | 3.0        |  |

Time: 0.0°. Sweep: 1.4 Mc to 16.0 Mo in 7 minutes, automatic operation.

|         |          |          |          | Table | 15  |     |      |           |
|---------|----------|----------|----------|-------|-----|-----|------|-----------|
| Wakkana | l, Japan | (45.4°H. | 141.7°E) |       |     |     | .Ala | gust 1950 |
| Time    | h'F2     | foF2     | h'Fl     | foFl  | h'E | foE | fla  | (M3000)F2 |
| 00      | 300      | 5,6      |          |       |     |     | 3.6  | 2.8       |
| 01      | 300      | 5.4      |          |       |     |     | 3,4  | 2.8       |
| 0.5     | 290      | 5,1      |          |       |     |     | 3.2  | 2.8       |
| 03      | 290      | 5.1      |          |       |     |     | 3.0  | 2.9       |
| 04      | 280      | 4.8      |          |       |     |     | 2.9  | 3.9       |
| 05      | 280      | 5.1      | ****     | -     | 100 | 1.7 | 3.0  | 3.0       |
| 08      | 290      | 8.0      | 230      | 3.8   | 100 | 2.2 | 4.4  | 3.0       |
| 07      | 290      | 8.6      | 260      | 4.3   | 100 | 2.7 | 5.2  | 3.1       |
| 08      | 300      | 6.7      | 250      | 4.4   | 100 | 3.0 | 6.6  | 3.2       |
| 09      | 300      | 6.5      | 240      | 4.8   | 100 | 3.2 | 5.6  | 3.1       |
| 10      | 310      | 6.7      | 550      | 4.8   | 100 | 3.4 | 5.0  | 3.0       |
| 11      | 360      | 6.4      | 220      | 4.9   | 100 | 3.3 | 5.0  | 2.8       |
| 12      | 330      | 6.6      | 230      | 5,0   | 100 | 3.4 | 5.1  | 2.9       |
| 13      | 340      | 6.6      | 550      | 4.8   | 100 | 3.6 | 4.7  | 2.9       |
| 14      | 310      | 6.8      | 230      | 4.8   | 100 | 3.4 | 5.4  | 3.1       |
| 15      | 320      | 6.7      | 250      | 4.6   | 100 | 3.2 | 5.2  | 3.0       |
| 16      | 300      | 6.6      | 240      | 4.5   | 100 | 3.0 | 4.9  | 3.0       |
| 17      | 300      | 7.0      | 240      | 4.1   | 100 | 2.6 | 4.7  | 3.1       |
| 18      | 290      | 6.8      | 260      |       | 100 | 2.0 | 4,4  | 3.0       |
| 19      | 260      | 6.9      |          |       |     |     | 4.4  | 3.0       |
| 20      | 270      | 7.0      |          |       |     |     | 4.5  | 3.0       |
| 51      | 280      | 6.7      |          |       |     |     | 4.3  | 2.9       |
| 22      | 270      | 6.2      |          |       |     |     | 3.2  | 2.9       |
| 23      | 280      | 5.7      |          |       |     |     | 7 4  | 2 0       |

23 280 5,7 3.4

Time: 135.0°E.

Sweep: 1.0 Mc to 14.0 Mo in 15 minutes, manual operation.

|        |          |          |         | Table 1 | 7   |      |     |            |
|--------|----------|----------|---------|---------|-----|------|-----|------------|
| Tokyo. | Japan (3 | 5.7°N, 1 | 39.5°E) |         | _   |      | A   | ngust 1950 |
| Time   | h'F2     | foF2     | h'Fl    | foFl    | h'E | foll | 1Be | (M3000)F2  |
| 00     | 290      | 5.9      |         |         |     |      | 3.5 | 2.7        |
| 01     | 300      | 5.6      |         |         |     |      | 3.4 | 8,8        |
| 0.5    | 300      | 5.6      |         |         |     |      | 3.6 | 2.9        |
| 03     | 280      | 5.5      |         |         |     |      | 3.1 | 2.9        |
| 04     | 280      | 4.8      |         |         |     |      | 3.0 | 3.0        |
| 05     | 270      | 4.4      | -       |         |     |      | 2.9 | 3.0        |
| 06     | 240      | 6.0      | 260     |         | 100 | 2.2  | 3.6 | 3.1        |
| 07     | 260      | 7.2      | 230     |         | 100 | 2.8  | 4.2 | 3.2        |
| 08     | 270      | 7.6      | 550     | 4.4     | 100 | 3.0  | 5.0 | 3.2        |
| 09     | 300      | 8.9      | 550     | 4.6     | 100 | 3.2  | 5.4 | 3.2        |
| 10     | 320      | 6.9      | 500     | 4.8     | 100 | 3.4  | 5.3 | 3.0        |
| 11     | 330      | 7.0      | 220     | 4.9     | 100 | 3.6  | 5.0 | 3.0        |
| 12     | 340      | 7.6      | 230     | 5.0     | 100 | 3.7  | 5.5 | 2.9        |
| 13     | 320      | 7.4      | 550     | 5.0     | 100 | 3.6  | 5.0 | 3.0        |
| 14     | 320      | 7.7      | 220     | 5.0     | 100 | 3.6  | 5.0 | 3.0        |
| 15     | 300      | 7.7      | 230     | 4.7     | 100 | 3.4  | 4.6 | 3.0        |
| 16     | 300      | 8.0      | 230     | 4.5     | 100 | 3.1  | 5.1 | 3.1        |
| 17     | 290      | 7.9      | 240     |         | 100 | 2.6  | 5.6 | 3.1        |
| 18     | 270      | 8.2      | 270     |         | 110 | 2.0  | 4.4 | 3.0        |
| 19     | 250      | 7.8      |         |         |     |      | 4.3 | 3,1        |
| 50     | 250      | 7.0      |         |         |     |      | 3.8 | 3.0        |
| 21     | 270      | 6.6      |         |         |     |      | 3.6 | 2.9        |
| 55     | 580      | 6.0      |         |         |     |      | 3.6 | S.9        |
| 23     | 300      | 5,8      |         |         |     |      | 3,5 | 2.8        |

Time: 135,0°E, Sweep: 1.0 Mc to 17,0 Mc in 15 minutes, manual operation.

| Table 14 |          |          |      |        |     |     |      |            |
|----------|----------|----------|------|--------|-----|-----|------|------------|
| Lindau   | Harz, Ge | rmany (5 |      | 0.10E) |     |     | Aı   | gust 1950  |
| Time     | P, LS    | foF2     | h'Fl | foFl   | h'E | foE | fEg  | (MZQOO) FZ |
| 00       | 290      | 5.0      |      |        |     |     | 2.5  | 2.7        |
| 01       | 290      | 4.6      |      |        |     |     | 2.6  | 2.7        |
| 02       | 280      | 4.5      |      |        |     |     | 2.8  | 2.7        |
| 03       | 580      | 3.9      |      |        |     |     | 2.7  | 2.8        |
| 04       | 280      | 3.8      |      |        |     | E   | 2.8  | 2.8        |
| 05       | 270      | 3.8      |      |        |     | E   | 3.0  | 3.0        |
| 06       | 260      | 4.8      | 240  | -      | 100 | 2.0 | 3.4  | 3.0        |
| 07       | 300      | 5.6      | 230  | 3.9    | 100 | 2.4 | 4.3  | 3.1        |
| 08       | 310      | 6.1      | 550  | 4.3    | 100 | 2.8 | 5.0  | 3.0        |
| 09       | 300      | 8.2      | 210  | 4.4    | 100 | 3.1 | 5.3  | 3.1        |
| 10       | 320      | 6.3      | 500  | 4.6    | 100 | 3.2 | 5.3  | 3.0        |
| 11       | 310      | 6.0      | 510  | 4.7    | 100 | 3.4 | 5,4  | 2.9        |
| 12       | 310      | 6.1      | 500  | 4.7    | 100 | 3.4 | 5.5  | 3.0        |
| 13       | 350      | 6.0      | 200  | 4.8    | 100 | 3.3 | 5.3  | 3.0        |
| 14       | 310      | 6.1      | 200  | 4.7    | 100 | 3.3 | 4.7  | 3.0        |
| 15       | 300      | 6.3      | 510  | 4.6    | 100 | 3.2 | 4.4  | 3.0        |
| 16       | 310      | 6.2      | 210  | 4.4    | 100 | 3.0 | 3.8  | 3.0        |
| 17       | 290      | 6.2      | 5.50 | 4.2    | 100 | 2.8 | 4.1  | 3.0        |
| 18       | 280      | 6.6      | 230  |        | 100 | 2.4 | 3.8  | 3.0        |
| 19       | 260      | 6.8      |      |        | 100 | 1.7 | 3.9  | <b>3.0</b> |
| 50       | 250      | 7.0      |      |        |     |     | 4.6  | 3.0        |
| 51       | 250      | 6.8      |      |        |     |     | 3.4  | 3.0        |
| 22       | 250      | 6.1      |      |        |     |     | 3,2  | 2.9        |
| 23       | 260      | 5,5      |      |        |     |     | 2.8_ | 2.8        |

Time: 15.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

|        |          |        |          | Table 1 | 6    |     |     |            |
|--------|----------|--------|----------|---------|------|-----|-----|------------|
| Akita, | Japan (3 | 9.7°N, | 140.1°E) |         |      |     | A   | ugust 1950 |
| Time_  | h'F2     | foF2   | h'Fl     | foFl    | h! E | foE | fEs | (M3000)F2  |
| 00     | 300      | 5.8    |          |         |      |     | 3.8 | 8.8        |
| 01     | 300      | 5.5    |          |         |      |     | 3.4 | 2.7        |
| 0.5    | 300      | 5.6    |          |         |      |     | 3.6 | 2.7        |
| 03     | 280      | 5.2    |          |         |      |     | 3.0 | 2.8        |
| 04     | 280      | 5.2    |          |         |      |     | 3.0 | 2.9        |
| 05     | 270      | 5.2    |          |         | 120  | 1.7 | 2.8 | 2.9        |
| 06     | 260      | 6.0    | 240      |         | 110  | 2.3 | 3.6 | 3.1        |
| 07     | 270      | 7.5    | 230      | 4.0     | 110  | 8.8 | 4.1 | 3.2        |
| 08     | 280      | 7.9    | 220      | 4.2     | 110  | 3.1 | 4.4 | 3.2        |
| 09     | 280      | 7.0    | 210      | 4.5     | 110  | 3.2 | 5.0 | 3.1        |
| 10     | 310      | 7.2    | 230      | 5.0     | 110  | 3.2 | 5.4 | 3.0        |
| 11     | 330      | 7.2    | 550      | 5.0     | 110  | 3.5 | 5.4 | 3.0        |
| 12     | 340      | 7.8    | SS0      | 5,1     | 110  | 3.6 | 5.9 | 3.0        |
| 13     | 340      | 7.6    | 550      | 5.0     | 110  | 3.6 | 6.2 | 2.9        |
| 14     | 320      | 7.9    | 240      | 5.0     | 110  | 3.5 | 5.2 | 2.9        |
| 15     | 300      | 7.6    | 240      | 4.7     | 110  | 3.4 | 4.2 | 3.1        |
| 16     | 300      | 7.2    | 250      | 4.5     | 110  | 3.2 | 4.7 | 3.0        |
| 17     | 290      | 7.6    | 240      | 4.2     | 110  | 2.7 | 4.7 | 3.0        |
| 18     | 270      | 7.7    | 250      | -       | 120  | 2.1 | 4.2 | 3.0        |
| 19     | 260      | 8.0    |          |         |      |     | 4,2 | 3.0        |
| 20     | 250      | 7.7    |          |         |      |     | 3,8 | 2.9        |
| 21     | 270      | 6.7    |          |         |      |     | 3.6 | 2.9        |
| 55     | 280      | 6.2    |          |         |      |     | 4.3 | 2.9        |
| 23     | 300      | 5.8    |          |         |      |     | 4.0 | 2.8        |

23 300 5.8 4.0

Time: 135,0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutee, manual operation.

|         |          |          |       | Table 1 | .8    |     |           |           |
|---------|----------|----------|-------|---------|-------|-----|-----------|-----------|
| Yamagaw | a, Japan | (31,2°H, | 130.6 | E)      | _     | Au. | gust 1950 |           |
| Time    | P.LS     | foF2     | h'Fl  | foFl    | h ! E | foE | fEe       | (M3000)F2 |
| 00      | 300      | 6.2      |       |         |       |     | 3.8       | 2.7       |
| 01      | 300      | 6.3      |       |         |       |     | 3.6       | 2.7       |
| 0.5     | 300      | 6.0      |       |         |       |     | 3.6       | 2.7       |
| 03      | 280      | 5.7      |       |         |       |     | 3,3       | 2.9       |
| 04      | 280      | 5.3      |       |         |       |     | 3.2       | 2.9       |
| 05      | 280      | 4.9      |       |         |       |     | 3.3       | 3.0       |
| 06      | 270      | 5.5      | -     |         | 110   | 2.0 | 3.2       | 3.0       |
| 07      | 250      | 7.1      | 230   |         | 110   | 2.4 | 3.8       | 3.2       |
| C8      | 260      | 7.0      | 220   | 4.2     | 110   | 3.0 | 4.2       | 3,2       |
| 09      | 290      | 7.4      | 550   | 4.6     | 110   | 3,2 | 5.7       | 3,3       |
| 10      | 310      | 7.2      | 550   | 4.8     | 110   | 3.5 | 6.4       | 2.9       |
| 11      | 330      | 7.7      | 550   | 5.0     | 110   | 3.6 | 5.8       | 2.9       |
| 13      | 330      | 8.3      | 220   | 5.0     | 110   | 3.6 | 6.5       | 2.8       |
| 13      | 340      | 9.0      | 550   | 5.0     | 110   | 3.8 | 6.1       | 2.8       |
| 14      | 340      | 9.1      | 230   | 5.0     | 110   | 3.7 | 5.4       | 2.9       |
| 15      | 330      | 9.2      | 240   | 5.0     | 110   | 3.5 | 5.5       | 2.8       |
| 16      | 310      | 9.5      | 250   | 4.6     | 110   | 3.4 | 5.6       | 2.9       |
| 17      | 300      | 9.4      | 240   | 4.3     | 100   | 3.0 | 5.0       | 3.0       |
| 18      | 280      | 9.0      | 250   |         | 110   | 2.4 | 4.6       | 3.1       |
| 19      | 260      | 8.9      |       |         |       | 1.6 | 4.6       | 3.1       |
| 20      | 250      | 8.1      |       |         |       |     | 4.4       | 3,1       |
| 21      | 270      | 7.0      |       |         |       |     | 4.1       | 2.8       |
| SS      | \$90     | 6.5      |       |         |       |     | 3.7       | 2.8       |
| 23      | 300      | 6,4      |       |         |       |     | 3.8       | 2.7       |

Time: 135.0°E. Sweep: 1.2 Mc to 18.5 Mc in 15 minutes, manual operation.

|        |          |          |         | Table | 19  |     |      |            |
|--------|----------|----------|---------|-------|-----|-----|------|------------|
| Huanca | yo. Paru | (12.0°S. | 75.3°W) |       |     |     | Au,  | guet 1950  |
| Time   | P.LS     | foF2     | h'Fl    | foF1  | h'E | foE | fEq  | (M3000) IS |
| 00     | 230      | 7.4      |         |       |     |     | 3.2  | 3.1        |
| 01     | 230      | 7.0      |         |       |     |     | 3.1  | 3.2        |
| 02     | 240      | 6.2      |         |       |     |     | 2.8  | 3.1        |
| 03     | 240      | 6.3      |         |       |     |     | 2.7  | 3.2        |
| 04     | 250      | 4.4      |         |       |     |     | 2.7  | 3.0        |
| 06     | 270      | 3.7      |         |       |     |     | 2.8  | 3.1        |
| 06     | 290      | 4.2      |         |       | 100 | 1.4 | 3.7  | 2.9        |
| 07     | 250      | 6.8      |         |       | 100 | 2.4 | 6.8  | 3.1        |
| 90     | 300      | 8.5      | 220     | 4.6   | 100 | 3.0 | 10.4 | 2.8        |
| 09     | 320      | 8.9      | 220     | 4.8   | 100 | 3.1 | 11.6 | 2.5        |
| 10     | 340      | 8.6      | 210     | 4.9   | 100 |     | 11.9 | 2.5        |
| 11     | 360      | 8.2      | 210     | 4.9   | 100 |     | 12.0 | 2.4        |
| 12     | 380      | 8.2      | 200     | 4.9   | 100 |     | 12.0 | 2.4        |
| 13     | 380      | 8.5      | 200     | 4.9   | 100 |     | 11.9 | 2.4        |
| 14     | 360      | 8.4      | 210     | 4.8   | 100 |     | 12.0 | 2.4        |
| 15     | 340      | 8.6      | 210     | 4.8   | 100 | 3.1 | 12.0 | 2.4        |
| 16     | 240      | 8.6      | 230     | 4.6   | 100 | 2.7 | 11.0 | 2.4        |
| 17     | 260      | 8.8      |         |       | 100 | 2.3 | 8.4  | 2.6        |
| 18     | 290      | 8.8      |         |       | 100 | 1.4 | 3.6  | 2.5        |
| 19     | 320      | 8.1      |         |       |     |     | 2.8  | 2.4        |
| 20     | 300      | 7.8      |         |       |     |     | 2.8  | 2.6        |
| 21     | 270      | 8.3      |         |       |     |     | 2.8  | 2.8        |
| 22     | 230      | 8.0      |         |       |     |     | 3.0  | 3.0        |
| 23     | 2:30     | 7.5      |         |       |     |     | 2,8  | 3,1        |
| M4     | BE ODIE  |          |         |       |     |     |      |            |

Time: 75.00%. Sweep: 16.0 Mc to 0.5 Mc in 15 minutee, automatic operation.

| Table 21 Capetown, Union of S.Africa (34,2°S, 18.3°E) August 1950 |           |         |      |          |        |       |     |            |  |  |
|-------------------------------------------------------------------|-----------|---------|------|----------|--------|-------|-----|------------|--|--|
| Capeto                                                            | wn, Union | or S.AI |      | .205, 18 | .3'16) |       | A   | ugust 1950 |  |  |
| Time                                                              | P.LS      | foF2    | h'Fl | foFl     | h'E    | foE   | fEq | (M3000) F2 |  |  |
| 00                                                                | (280)     | 2.7     |      |          |        |       |     | 2.9        |  |  |
| 01                                                                | (280)     | (2.8)   |      |          |        |       |     | (2.8)      |  |  |
| 02                                                                | (280)     | 2.9     |      |          |        |       |     | 2.9        |  |  |
| 03                                                                | (270)     | (2.9)   |      |          |        |       |     | (2.9)      |  |  |
| 04                                                                | (260)     | 2.9     |      |          |        |       |     | 3.0        |  |  |
| 05                                                                | (260)     | 2.6     |      |          |        |       |     | 2.9        |  |  |
| 06                                                                | (260)     | 2.6     |      |          |        |       |     | 3.0        |  |  |
| 07                                                                | (250)     | 3.0     |      |          |        |       |     | 3.0        |  |  |
| 08                                                                | 220       | 5.6     |      |          | (120)  | 2.1   |     | 3.4        |  |  |
| 09                                                                | 240       | 6.6     | 220  |          | 110    | (2.6) |     | 3.4        |  |  |
| 10                                                                | 250       | 7.2     | 220  | (3.7)    | 110    | 3.0   |     | 3.2        |  |  |
| 11                                                                | 270       | 8.0     | 250  | 4.6      | 110    | (3.2) |     | 3.2        |  |  |
| 12                                                                | 280       | 8.3     | 220  | 4.7      | 110    | (3.4) |     | 3.1        |  |  |
| 13                                                                | 270       | 8.6     | 220  | 4.7      | 110    | (3.5) |     | 3.1        |  |  |
| 14                                                                | 270       | 8.9     | 550  | 4.6      | 110    | (3.4) |     | 3.1        |  |  |
| 15                                                                | 260       | 9.0     | 550  | 4.2      | 110    | (3,3) | 3.2 | 3.1        |  |  |
| 16                                                                | 250       | 8.6     | 550  |          | 110    | 3.1   |     | 3.2        |  |  |
| 17                                                                | 240       | 8.0     | 240  |          | 120    | 2.6   |     | 3.2        |  |  |
| 18                                                                | 220       | 7.4     |      |          |        | 2.1   |     | 3.3        |  |  |
| 19                                                                | 210       | 5.5     |      |          |        |       |     | 3.3        |  |  |
| 20                                                                | (220)     | 3.8     |      |          |        |       |     | 3.3        |  |  |
| 21                                                                | (230)     | 2.9     |      |          |        |       |     | 3.2        |  |  |
| 22                                                                | (240)     | 2.8     |      |          |        |       |     | 3.1        |  |  |
| . 23                                                              | (250)     | 2.6     |      |          |        |       |     | 3.0        |  |  |

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

|        |           |         |          | Table | 23  |       |     |           |
|--------|-----------|---------|----------|-------|-----|-------|-----|-----------|
| Wather | 00, W. Au | stralia | (30.3°s, |       |     |       |     | July 1950 |
| Time   | h'F2      | foF2    | h'F1     | foF1  | h'E | . foB | fEs | (M3000)F2 |
| 00     | 250       | 3.3     |          |       |     |       | 2.8 | 2.9       |
| 01     | 250       | 3.5     |          |       |     |       | 3.0 | 2.9       |
| 02     | 250       | 3.5     |          |       |     |       | 3.0 | 2.9       |
| 03     | 250       | 3.7     |          |       |     |       | 3.0 | 3.0       |
| 04     | 240       | 3.7     |          |       |     |       | 3.1 | 3.0       |
| 05     | 230       | 3.3     |          |       |     |       | 2.8 | 3.0       |
| 06     | 230       | 3.0     |          |       |     |       | 2.6 | 3.1       |
| 07     | 220       | 4.3     |          |       |     | 1.8   | 2.4 | 3,6       |
| 08     | 230       | 6.3     | 220      | 3.0   |     | 2.3   | 3.2 | 3.6       |
| 09     | 240       | 7.3     | 220      | 4.2   |     | 2.8   | 3.2 | 3.5       |
| 10     | 250       | 8.0     | 550      | 4.4   |     | 3.1   | 3.2 | 3.4       |
| 11     | 250       | 8.2     | 550      | 4.4   |     | 3.3   |     | 3.4       |
| 12     | 250       | 7.8     | 220      | 4.5   |     | 3.3   | 3.5 | 3.4       |
| 13     | 260       | 8.2     | 210      | 4.5   |     | 3.3   | 3.5 | 3.3       |
| 14     | 250       | 8.2     | 200      | 4.3   |     | 3.2   | 3.5 | 3.3       |
| 15     | 250       | 8.0     | 220      | 4.2   |     | 3.0   | 3.4 | 3.3       |
| 16     | 230       | 8.0     | 220      | 3.4   |     | 2.7   | 3.2 | 3.4       |
| 17     | 220       | 7.1     |          |       |     | 2.0   | 2.8 | 3.4       |
| 18     | 210       | 5.6     |          |       |     | /     | 3.1 | 3.8       |
| 19     | 220       | 4.0     |          |       |     |       | 2.8 | 3.3       |
| 50     | 220       | 3.7     |          |       |     |       | 3.0 | 3.2       |
| 21     | 230       | 3.3     |          |       |     |       | 2.5 | 3.0       |
| 22     | 240       | 3.4     |          |       |     |       | 2.9 | 3.0       |
| 23     | 250       | 3.5     |          |       |     |       | 2,8 | 2,9       |

Time: 120.0°E.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

| Table 20 |           |         |          |        |          |       |       |           |  |
|----------|-----------|---------|----------|--------|----------|-------|-------|-----------|--|
| Johann   | esburg. U | nion of | S.Africa | (26.2° | 28.0     | °E)   | Azz   | gust 1950 |  |
| Time     | h'T2      | foF2    | h'F1     | foF1   | h'E      | foB   | fEg   | SE(OUORN) |  |
| 00       | (260)     | 2.9     |          |        |          |       |       | 3.0       |  |
| 01       | 260       | 2.9     |          |        |          |       |       | 2.8       |  |
| 02       | 270       | 3.0     |          |        |          |       |       | 3.0       |  |
| 03       | 260       | 2.8     |          |        |          |       |       | 3.0       |  |
| 04       | (250)     | 2.7     |          |        |          |       |       | 2.9       |  |
| 06       | 250       | 2.4     |          |        |          |       |       | 2.9       |  |
| 06       | (250)     | 2.7     |          |        |          |       |       | 3.0       |  |
| 07       | 230       | 5.6     |          |        | 70 to 10 | 2.1   |       | 3.4       |  |
| 08       | 240       | 6.8     | 550      |        | 120      | 2.6   |       | 3.4       |  |
| 09       | 260       | 7.5     | 220      |        | 110      | 3.0   |       | 3.3       |  |
| 10       | 270       | 8.4     | 550      | 4.7    | 110      | 3.4   |       | 3,3       |  |
| 11       | 270       | 8.7     | 210      | 4.8    | 110      | 3.6   |       | 3.2       |  |
| 12       | 270       | 8.7     | 500      | 4.8    | 110      | 3.6   |       | 3.2       |  |
| 13       | 280       | 8.8     | 200      | 4.8    | 110      | (3.5) | 3.7   | 3.1       |  |
| 14       | 270       | 8.4     | 200      | 4.6    | 110      | 3.4   | 3.6   | 3.1       |  |
| 15       | 260       | 8.5     | 210      | 4.3    | 110      | (3.2) | 3.0   | 3,1       |  |
| 16       | 250       | 8.2     | 230      |        | 110      | 2.8   | - • • | 3.2       |  |
| 17       | 230       | 7.8     |          |        | 120      | 2.4   |       | 3.2       |  |
| 18       | 220       | 7.1     |          |        | -        |       |       | 3.3       |  |
| 19       | 220       | 5.2     |          |        |          |       |       | 3.3       |  |
| 20       | 230       | 3.7     |          |        |          |       |       | 3.3       |  |
| 21       | 240       | 3.1     |          |        |          |       |       | 3.2       |  |
| 22       | 250       | 3.1     |          |        |          |       |       | 3.1       |  |
| 23       | 250       | 2,9     |          |        |          |       |       | 3.0       |  |

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconde.

| Johann | esburg, U | 100 07 5 | 5 49=40 | Tabls | 22<br>S. 28. | 010   |     | T3 3050                 |
|--------|-----------|----------|---------|-------|--------------|-------|-----|-------------------------|
| Time   | h'F2      | foF2     | h'Fl    | foF1  | h'E          | foll  | fEs | July 1950<br>(M3000) T2 |
| 00     | (250)     | 2.8      |         |       |              |       | 1.5 | 3.0                     |
| 01     | (260)     | 2.6      |         |       |              |       | 1.0 | 2.8                     |
| 0.8    | (280)     | 2.8      |         |       |              |       | 2.3 | 2.9                     |
| 03     | (260)     | 2.9      |         |       |              |       | 2.0 | 3,0                     |
| 04     | (250)     | 2.7      |         |       |              |       | 1.7 | 3.0                     |
| 05     | (250)     | 2,6      |         |       |              |       | 2.4 | 3.0                     |
| 06     | (240)     | 2.6      |         |       |              |       | 3.2 | 3.0                     |
| 07     | 230       | 5.0      |         |       | -            | 1.8   | -,- | 3,3                     |
| 08     | 230       | 6.7      | 550     |       | 120          | 2.5   |     | 3,4                     |
| 09     | 240       | 7.8      | 220     | 3,6   | 110          | (2,9) |     | 3,3                     |
| 10     | 260       | 8.4      | 220     | 4.4   | 110          | (3,2) |     | 3.2                     |
| 11     | 260       | 8.5      | 210     | 4.7   | 110          | 3.4   |     | 3.2                     |
| 12     | 260       | 8.0      | 500     | 4.7   | 110          | (3.5) |     | 3.2                     |
| 13     | 260       | 8.4      | 200     | 4.6   | 110          | 3.4   | 4.0 | 3.1                     |
| 14     | 260       | 8.2      | 210     | 4, 6  | 110          | (3,3) | 3.8 | 3.1                     |
| 15     | 260       | 8.5      | 220     | 4.4   | 110          | 3.1   | 3.7 | 3.1                     |
| 16     | 250       | 8.4      | 230     |       | 110          | 2.7   | 3,1 | 3.2                     |
| 17     | 230       | 7.9      |         |       | 110          | (2.1) | 2.6 | 3.3                     |
| 18     | 210       | 5.9      |         |       |              |       | 2,5 | 3.3                     |
| 19     | (220)     | 3.6      |         |       |              |       | 2.3 | 3.2                     |
| 50     | (240)     | 3.0      |         |       |              |       | 3.0 | 3.2                     |
| 21     | 240       | 3.0      |         |       |              |       | 1.9 | 3.1                     |
| 22     | 250       | 3.1      |         |       |              |       | 1.7 | 3.2                     |
| 23     | (250)     | 3.0      |         |       |              |       |     | 3.0                     |

23 (250) 3.0 Time: 30.0°E. Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

| Table 24 |           |         |          |          |        |       |     |           |  |  |
|----------|-----------|---------|----------|----------|--------|-------|-----|-----------|--|--|
| Capeto   | wn, Union | of S. A | Mrica (3 | 4.2°S, 1 | 8.3°E) |       |     | July 1950 |  |  |
| Time     | P.LS      | foF2    | h'Fl     | foFl     | h'E    | fol   | fEs | SE(COOCH) |  |  |
| 00       | (260)     | (2.8)   |          |          |        |       |     | (8.8)     |  |  |
| 01       | (270)     | (2.7)   |          |          |        |       |     | (2.9)     |  |  |
| 02       | (280)     | 2.8     |          |          |        |       |     | 3.0       |  |  |
| 03       | (270)     | (2.8)   |          |          |        |       |     | (2,9)     |  |  |
| 04       | (260)     | 2.9     |          |          |        |       |     | 3.0       |  |  |
| 05       | (250)     | 2.8     |          |          |        |       |     | 3,1       |  |  |
| 06       | (250)     | 2.6     |          |          |        |       | 2.0 | 3.0       |  |  |
| 07       | (250)     | 2.6     |          |          |        |       |     | 3.1       |  |  |
| 08       | 220       | (5,2)   |          |          | -      | (2.0) |     | (3,3)     |  |  |
| 09       | 230       | 8.6     |          |          | 110    | 2.6   |     | 3.4       |  |  |
| 10       | 240       | (7.3)   | 230      |          | 110    | (3.0) |     | (3.3)     |  |  |
| 11       | 250       | (7.6)   | 230      |          | 110    | (3.3) |     | (3.2)     |  |  |
| 12       | 260       | (7.9)   | 550      |          | 110    | (3.5) |     | (3.2)     |  |  |
| 13       | 270       | 8.2     | 220      | 4.6      | 110    | (3.4) |     | 3.1       |  |  |
| 14       | 260       | 8.4     | 220      | 4.6      | 110    | (3,4) |     | 3.1       |  |  |
| 15       | 260       | 8.6     | 240      |          | 110    | (3.1) | 3.6 | 3,1       |  |  |
| 16       | 250       | 8.5     | 240      |          | 110    | (2.9) | 3.0 | 3.2       |  |  |
| 17       | 230       | 8.0     |          |          | 110    | (2.4) | 2.6 | 3.3       |  |  |
| 18       | 220       | 6.4     |          |          |        | (1.7) | 2.1 | 3.4       |  |  |
| 19       | 220       | 4.0     |          |          |        |       |     | 3.3       |  |  |
| 50       | (240)     | 3.0     |          |          |        |       | 2.1 | 3.2       |  |  |
| 21       | 240       | 2.8     |          |          |        |       |     | 3.2       |  |  |
| 22       | (240)     | 2.5     |          |          |        |       |     | 3.2       |  |  |
| 23       | (260)     | (2.4)   |          |          |        |       |     | (3.0)     |  |  |

23 (280) (2,4)
Time: 30.0°E.
8weep: 1.0 Mc to 15.0 Mc in 7 seconds.

|         |          |           |           | Table : | 25    |     |      |           |
|---------|----------|-----------|-----------|---------|-------|-----|------|-----------|
| Christo | church M | ew Zealar | ad (43.5° | S, 172. | 7°E)  |     |      | July 1950 |
| Time    | P. ES    | foF2      | h'Fl      | foFl    | h I E | foE | L'En | (M3000)F2 |
| 00      | 290      | 3.1       |           |         |       |     | 3.0  | 2.9       |
| 01      | 290      | 2.8       |           |         |       |     | 3.4  | 2.9       |
| 02      | 290      | 2.6       |           |         |       |     | 3.3  | 2.9       |
| 03      | 280      | 2.6       |           |         |       |     | 3.2  | 2.9       |
| 04      | 250      | 2.6       |           |         |       |     | 3.3  | 3.1       |
| 05      | 250      | 2.5       |           |         |       |     | 4.0  | 3.2       |
| 06      | 250      | 2.2       |           |         |       |     | 3.9  | 3.0       |
| 07      | 270      | 2.8       |           |         |       |     | 3.0  | 3.1       |
| 08      | 240      | 5.2       |           |         |       | 1.6 | 3.1  | 3.4       |
| 09      | 240      | 6.7       | 240       | 3.3     |       | 2.4 | 3.2  | 3.5       |
| 10      | 250      | 7.1       | 240       | 3.9     |       | 2.7 | 3.8  | 3.4       |
| 11      | 250      | 7.4       | 240       | 4.0     |       | 2.9 | 4.4  | 3.3       |
| 12      | 250      | 7.7       | 230       | 4.3     |       | 3.0 | 4.4  | 3.3       |
| 13      | 260      | 7.8       | 240       | 4.2     |       | 2.9 | 4.9  | 3.3       |
| 14      | 250      | 7.7       | 240       | 4.0     |       | 2.7 | 4.9  | 3.4       |
| 15      | 240      | 7.3       | 240       | 3.5     |       | 2.4 | 3.7  | 3.4       |
| 16      | 240      | 7.0       | -         |         |       | 1.8 | 3.5  | 3.4       |
| 17      | 230      | 6.9       |           |         |       | 1.3 | 3.5  | 3.2       |
| 18      | 240      | 5.2       |           |         |       |     | 3.7  | 3.0       |
| 19      | 240      | 4.7       |           |         |       |     | 2.8  | 3.1       |
| 20      | 250      | 4.0       |           |         |       |     | 3.0  | 3.1       |
| 21      | 250      | 3.5       |           |         |       |     | 2.7  | 2.9       |
| 22      | 280      | 3.2       |           |         |       |     | 3.1  | 2.9       |
| 23      | 290      | 3,2       |           |         |       |     | 2.6  | 2.8       |

Time: 172.5°E. Sweep: 1.0 Mc to 13.0 Mc.

|        |           |          |          | Table  | 27  |     |     |            |
|--------|-----------|----------|----------|--------|-----|-----|-----|------------|
| Brisba | ne, austr | alia (27 | .6°S, 15 | 3.0°E) |     |     |     | June 1950  |
| Time   | h112      | foF2     | h'Fl     | foFl   | h'E | foE | fEs | (M3000) F2 |
| 00     | 260       | 4.2      |          |        |     |     |     | 2.9        |
| 01     | 260       | 4.4      |          |        |     |     |     | 2.9        |
| 02     | 260       | 4.4      |          |        |     |     | 2.2 | 2.9        |
| 03     | 250       | 4.6      |          |        |     |     | 3.6 | 2.9        |
| 04     | 240       | 4.4      |          |        |     |     | 3.C | 3.0        |
| 05     | 240       | 4.1      |          |        |     |     | 3.0 | 3.0        |
| 06     | 240       | 4.2      |          |        |     |     | 2.6 | 3.1        |
| 07     | 220       | 6.6      |          |        | 170 | 2.2 |     | 3.4        |
| 08     | 550       | 8.4      |          |        | 110 | 2.7 | 2.4 | 3.4        |
| 09     | 240       | 9.0      | 220      | 4.4    | 100 | 3.0 | 3.7 | 3.3        |
| 10     | 240       | 9.4      | 210      | 4.6    | 100 | 3.2 | 3.6 | 3.4        |
| 11     | 240       | 8.6      | 200      | 4.6    | 100 | 3.4 | 3.8 | 3.2        |
| 12     | 240       | 8.7      | 200      | 4.7    | 100 | 3.4 | 3.9 | 3.2        |
| 13     | 240       | 8.4      | 200      | 4.5    | 106 | 3.3 | 4.2 | 3.2        |
| 14     | 240       | 9.1      | 200      | 4.5    | 105 | 3.2 | 4.1 | 3.1        |
| 15     | 240       | 8.8      | 200      | 4.0    | 105 | 3.0 | 4.1 | 3.2        |
| 16     | 550       | 8.4      |          |        | 110 | 2.4 | 4.2 | 3.3        |
| 17     | 210       | 7.7      |          |        |     |     | 4.2 | 3.3        |
| 18     | 500       | 6.1      |          |        |     |     | 3.8 | 3.2        |
| 19     | 230       | 4.8      |          |        |     |     | 3.5 | 3.0        |
| 20     | 240       | 4.4      |          |        |     |     | 8.9 | 3.0        |
| 21     | 250       | 4.5      |          |        |     |     | 3.2 | 2.9        |
| 22     | 250       | 4.3      |          |        |     |     |     | 2.9        |
| 27     | 240       | 4 2      |          |        |     |     |     | 2 8        |

23 240 4.2

Time: 150.0 S.

Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

|         |        |          |          | Table | 29  |     |       |            |
|---------|--------|----------|----------|-------|-----|-----|-------|------------|
| Hobart, | Tasmat | ia (42.8 | °S, 147. | 4°E)  |     |     |       | June 1950  |
| Time    | P.LS   | foF2     | h'771    | foF1  | h.E | fol | fEs   | (M3000) F2 |
| 00      | 270    | (2.3)    |          |       |     |     | 2.1   | (2.9)      |
| 01      | 260    | (2.5)    |          |       |     |     | 2.1   | (2.9)      |
| 02      | (270)  | (2.6)    |          |       |     |     | 2.0   | (2.8)      |
| 03      | 290    | 2.4      |          |       |     |     | 2.0   | 2.9        |
| 04      | 270    | (2.5)    |          |       |     |     | 2.2   | (2.9)      |
| 05      | 260    | 2.4      |          |       |     |     | 2.0   | (3.0)      |
| 06      | 250    | 2.4      |          |       |     |     | 1.8   | 3.0        |
| 07      | 250    | 2.9      |          |       |     |     | 2.0   | 3.0        |
| 08      | 230    | 6.8      |          |       |     | 1.8 | (2.2) | 3.3        |
| 09      | 230    | 7.0      |          |       | 110 | 2.1 | (2.1) | 3.4        |
| 10      | 230    | (8.5)    |          |       | 110 | 2.7 |       | (3.2)      |
| 11      | 240    | (8.5)    | 550      | 4.2   | 110 | 2.9 | (1.9) | (3.2)      |
| 12      | 250    | (9.3)    | 220      | 4.4   | 110 | 3.0 |       | (3.1)      |
| 13      | (250)  | (10.5)   | 220      | 4.2   | 110 | 3.1 |       | (3.1)      |
| 14      | 240    | (9.5)    | 2        | 4.0   |     | -   | 3.0   | (3.2)      |
| 15      | 230    | (10.3)   | 230      |       |     |     | (2.1) | (3.2)      |
| 16      | (230)  | (9.2)    |          |       |     | 2.0 | (2.2) | (3.3)      |
| 17      | 220    | 7.8      |          |       |     | E   | 2.1   | (3.1)      |
| 18      | 550    | 6.6      |          |       |     |     | 2.0   | 3.0        |
| 19      | 220    | 5.8      |          |       |     |     | 2.1   | 3.2        |
| 20      | 230    | 4.4      |          |       |     |     | 2.0   | 3.2        |
| 21      | 240    | (3.3)    |          |       |     |     |       | (3.1)      |
| 22      | 240    | (2.8)    |          |       |     |     | 3.0   | (2.9)      |
| 23      | 260    | (2.7)    |          |       |     |     |       | (2.9)      |

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 65 seconds.

|         |           |          |         | Table | 26  |     |     |            |
|---------|-----------|----------|---------|-------|-----|-----|-----|------------|
| Rarotor | ngn I. (2 | 1.3°S, 1 | 59.8°W) |       |     |     |     | June 1950  |
| Time    | h'F2      | foF2     | h'Fl    | foF1  | h1E | foE | fEs | (M3000) F2 |
| 00      | 590       | 5.8      |         |       |     |     |     | 2.7        |
| 01      | 300       | 5.5      |         |       |     |     |     | 2.8        |
| 02      | 290       | 5.2      |         |       |     |     |     | 2.9        |
| 03      | 280       | 5.2      |         |       |     |     |     | 2.9        |
| 04      | 270       | 4.5      |         |       |     |     |     | 2.9        |
| 05      | 300       | 4.3      |         |       |     |     |     | 2.8        |
| 06      | 300       | 4.3      |         |       |     |     |     | 2.8        |
| 07      | 250       | 7.1      |         | ~~~   |     | -   |     | 3.0        |
| 08      | 250       | 9.6      | 250     | 4.2   | 110 | 3.2 | 3.6 | 3.1        |
| 09      | 250       | 11.4     | 240     | 4.9   | 110 | 3.1 | 4.0 | 3.1        |
| 10      | 250       | 11.5     | 230     | 4.8   | 110 | 3.3 | 4.3 | 3.1        |
| 11      | 250       | 10.8     | 230     | 4.9   | 110 | 3.4 | 4.3 | 3.1        |
| 12      | 260       | 9.8      | 220     | 5.0   | 110 | 3.5 | 4.5 | 3.0        |
| 13      | 290       | 11.1     | 220     | 5.6   | 110 | 3.5 | 4.6 | 2.9        |
| 14      | 260       | 9.8      | 210     | 5.6   | 110 | 3.3 | 4.4 | 2.9        |
| 15      | 260       | 10.0     | 250     | 5.6   | 110 | 3.2 | 4.6 | 2.9        |
| 16      | 250       | 10.8     | 250     | 5.3   | 110 | 2.9 | 4.5 | 2.9        |
| 17      | 250       | 10.2     |         |       | 110 | 3.1 | 4.0 | 2.9        |
| 16      | 240       | 10.1     |         |       |     |     | 4.3 | 3.0        |
| 19      | 230       | 9.8      |         |       |     |     | 4.0 | 3.0        |
| 20      | 240       | 9.3      |         |       |     |     | 3.6 | 2.9        |
| SJ      | 250       | 8.9      |         |       |     |     | 3.4 | 3.0        |
| 22      | 260       | 8.4      |         |       |     |     | 2.8 | 2.8        |
| 23      | 250       | 7,1      |         |       |     |     |     | 2,9        |

23 250 7,1

Time: 157.5°W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

| Table 28 |           |           |      |        |     |       |     |           |  |
|----------|-----------|-----------|------|--------|-----|-------|-----|-----------|--|
| Camber   | ra, Austr | alia (35. |      | 9.0°E) |     |       |     | June 1950 |  |
| Time     | h'F2      | foF2      | h'Fl | foFl   | h'E | foE   | fEs | (M3000)F2 |  |
| 00       | 250       | 4.0       |      |        |     |       | 2.7 | 2.9       |  |
| 01       | 260       | 4.0       |      |        |     |       | 2.8 | 2.9       |  |
| 02       | 250       | (4.0)     |      |        |     |       | 2.8 | 8.8       |  |
| 03       | 260       | 4.0       |      |        |     |       | 2.6 | 5.9       |  |
| 04       | 250       | 4.2       |      |        |     |       | 2.6 | 3.0       |  |
| 05       | 230       | 3.9       |      |        |     |       | 2.7 | 3.1       |  |
| 06       | 230       | 3.5       |      |        |     |       | 2.5 | 3.1       |  |
| 07       | 230       | 4.6       |      |        |     | (1.5) | 2.9 | 3.2       |  |
| 08       | 210       | 7.1       |      |        | 100 | 2.3   | 2.7 | 3.6       |  |
| 09       | 550       | 8.4       | 220  |        | 100 | 2.8   | 2.7 | 3.5       |  |
| 10       | 550       | 8.5       | 210  |        | 100 | 3.0   | 2.7 | 3.5       |  |
| 11       | 230       | 8.6       | 200  | (4.4)  | 100 | 3.1   | 2.6 | 3.5       |  |
| 12       | 240       | 8.5       | 200  | 4.3    | 100 | 3.2   | 2.8 | 3.3       |  |
| 13       | 240       | 9.2       | 200  | 4.3    | 100 | 3.1   | 2.9 | 3.3       |  |
| 14       | 240       | 9.3       | 210  | (4.2)  | 100 | 3.1   | 3.0 | 3.3       |  |
| 15       | 230       | 9.2       | 220  | 3.3    | 100 | 2.8   | 3.0 | 3.3       |  |
| 16       | 550       | 8.4       | -    |        | 100 | 2.3   | 2.9 | 3.3       |  |
| 17       | 210       | 7.6       |      |        |     | 1.6   | 2.7 | 3.4       |  |
| 18       | 210       | 6.2       |      |        |     |       | 2.7 | 3.2       |  |
| 19       | 220       | (5.5)     |      |        |     |       | 2.6 | 3.2       |  |
| 50       | 550       | 4.6       |      |        |     |       | 2.5 | 3.2       |  |
| 21       | (240)     | (4.0)     |      |        |     |       | 2.6 | 3.0       |  |
| 22       | 240       | 4.0       |      |        |     |       | 2.5 | 3.0       |  |
| _23      | 250       | 4.0       |      |        |     |       | 2.5 | 3.0       |  |

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

| Hobart |      | ia (42.8° |      |      |       |       |     | May 1950  |
|--------|------|-----------|------|------|-------|-------|-----|-----------|
| Time   | P.LS | foF2      | h'Fl | foFl | h t E | foE   | fEs | (M3000)F2 |
| 00     | 260  | 3.7       |      |      |       |       | 2.0 | 2.9       |
| 01     | 280  | 3.6       |      |      |       |       | 2.0 | 2.8       |
| 02     | 280  | 3.3       |      |      |       |       | 1.9 | 2.7       |
| 03     | 280  | 3.2       |      |      |       |       | 1.9 | 2.8       |
| 04     | 270  | 3.0       |      |      |       |       | 2.0 | 2.8       |
| 05     | 250  | 2.8       |      |      |       |       | 1.8 | 3.0       |
| 06     | 260  | 2.6       |      |      |       |       | 1.8 | 3.0       |
| 07     | 250  | 4.2       |      |      |       |       | 1.9 | 3.1       |
| 08     | 240  | 6.4       |      |      | 110   | 1.9   | 1.9 | 3.3       |
| 09     | 230  | (7.5)     | 240  | 3.8  | 100   | 2.7   |     | (3.3)     |
| 10     | 240  | (8.0)     | 230  | 4.4  | 100   | 2.9   |     | (3.2)     |
| 11     | 250  | (7.8)     | 220  | 4.4  | 100   | 3.2   |     | (3.0)     |
| 12     | 250  | (9.8)     | 220  | 4.4  | 100   | 3.3   | 2.4 | (3.1)     |
| 13     | 250  | (9.9)     | 220  | 4.4  | 100   | 3.2   | 2.2 | (3.1)     |
| 14     | 240  | (10.8)    | 230  | 4.2  | 95    | 3.1   | 2.0 | (3.0)     |
| 15     | 240  | (10.6)    | 220  | 3.3  | 95    | (2.8) | 2.1 | (3.2)     |
| 16     | 530  | (10.0)    |      |      | 100   | 2.1   | 2.0 | (3.2)     |
| 17     | 220  | (8.7)     |      |      |       |       | 2.0 | (3.1)     |
| 18     | 220  | 7.3       |      |      |       |       | 2.0 | 3.0       |
| 19     | 550  | 6.9       |      |      |       |       | 1.9 | 3.0       |
| 20     | 240  | 5.0       |      |      |       |       |     | 3.0       |
| 21     | 250  | 4.4       |      |      |       |       |     | 2.9       |
| 22     | 250  | 4.3       |      |      |       |       |     | 2.9       |
| 23     | 260  | 3.7       |      |      |       |       | 2.0 | 2.8       |

Time: 150.0°E.
Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

3.1 3.0 2.9 2.8

| Delhi. | India (2 | 8.6°N, 7 | 7.1°E) |      |     |     | Ар  | ri1_1950   |
|--------|----------|----------|--------|------|-----|-----|-----|------------|
| Time   |          | foF2     | h'Fl   | foFl | h E | foE | fEg | (M3000) P2 |
| 00     | 360      | 7.2      |        |      |     |     |     | 3.0        |
| 01     | 360      | 7.0      |        |      |     |     |     |            |
| 02     |          |          |        |      |     |     |     |            |
| 03     |          |          |        |      |     |     |     |            |
| 04     |          |          |        |      |     |     |     | 3.3        |
| 05     | 320      | 6.8      |        |      |     |     |     |            |
| 06     | 300      | 7.7      |        |      |     |     |     |            |
| 07     | 280      | 9.4      |        |      |     |     |     |            |
| 08     | 300      | 10.6     |        |      |     |     |     | 3.1        |
| 09     | 320      | 11.5     |        |      |     |     |     |            |
| 10     | 340      | 12.3     |        |      |     |     |     |            |
| 11     | 350      | 13.1     |        |      |     |     |     |            |
| .12    | 360      | 13.8     |        |      |     |     |     | 2.8        |
| 13     | (360)    | 14.0     |        |      |     |     |     |            |
| 14     | (340)    | (14.2)   |        |      |     |     |     |            |
| 15     | (340)    | (14.2)   |        |      |     |     |     |            |
| 16     | (330)    | (14.2)   |        |      |     |     |     | 2.7        |
| 37     | 340      | 13.9     |        |      |     |     |     |            |
| 18     | 330      | 13.2     |        |      |     |     |     |            |
| 19     | 320      | 12.0     |        |      |     |     |     |            |
| 50     | 330      | 10.1     |        |      |     |     |     | 2.9        |
| 21     | 340      | 9.0      |        |      |     |     |     |            |
| 25     | 360      | 8.4      |        |      |     |     |     |            |
| 23     | 360      | 8.0      |        |      |     |     |     |            |
| m.i.   |          |          |        |      |     |     |     |            |

Table 31

23 Time:

23 ; 050 5.0 Time: Local, Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation. "Height at 0.83 foFZ. "Averace valuee; other columns, moiian valuee.

Madras, India (13.0°N, 80.2°E)

| Time | • | foF2 | h'F1 | foFl | h E | foE | LEs | SK(OOOSM) |  |
|------|---|------|------|------|-----|-----|-----|-----------|--|
| co   |   |      |      |      |     |     |     |           |  |
| 01   |   |      |      |      |     |     |     |           |  |
| 0.8  |   |      |      |      |     |     |     |           |  |
| 0.3  |   |      |      |      |     |     |     |           |  |
| 04   |   |      |      |      |     |     |     |           |  |
| 05   |   |      |      |      |     |     |     |           |  |
|      |   |      |      |      |     |     |     |           |  |

| 04  |     |        |     |
|-----|-----|--------|-----|
| 05  |     |        |     |
| 06  | Ì   |        |     |
| 07  | 360 | 9.7    |     |
| 08  | 420 | 11.2   | 2.6 |
| 09  | 450 | 11.8   |     |
| 10  | 480 | 12.0   |     |
| 11  | 540 | 11.6   |     |
| 12  | 510 | 11.4   | 2,4 |
| 3.3 | 540 | 12.2   |     |
| 14  | 540 | 12.7   |     |
| 15  | 540 | 13.2   |     |
| 16  | 540 | 13.4   | 2.4 |
| 17  | 540 | 13.5   | -   |
| 18  | 540 | 13.4   |     |
| 10  | 540 | 13.0   |     |
| 20  |     | (12.5) | 2.3 |
| 51  |     | (12.0) |     |
| 88  |     | (12.0) |     |

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutee, manual operation.

"Height at 0.83 for2.

\*\*Average values: other columne, median values.

|         |        |          |        | Table | 35  |     |     |             |
|---------|--------|----------|--------|-------|-----|-----|-----|-------------|
| Domont, | France | (49.0°N, | 2.3°E) |       | _   |     | Н   | arch 1950 _ |
| Time    | h'F2   | foF2     | h'Fl   | foFl  | h*E | foE | fEs | (M3000) F2  |
| 00      | 300    | 5.0      |        |       |     |     |     | 2.7         |
| 01      | 290    | 5.0      |        |       |     |     |     | 2.6         |
| 02      | 300    | 5.0      |        |       |     |     |     | 2.6         |
| 03      | 300    | 5.0      |        |       |     |     |     | 2.7         |
| 04      | 290    | 4.4      |        |       |     |     |     | 2.6         |
| 05      | 280    | (3.7)    |        |       |     | E   |     | (8.8)       |
| 06      | 250    | (5.2)    |        | 1.9   |     | E   |     | 3.2         |
| 07      | (220)  | (7.0)    | 220    |       | 100 | 2.1 |     | (3.2)       |
| 08      | (550)  | (7.6)    | 210    |       | 100 | 2.7 |     | (3.2)       |
| 09      | (240)  | (9.6)    | 200    |       | 100 | 3.0 |     | (3.2)       |
| 10      | (290)  | 8.7      | 200    |       | 100 | 3.2 |     | 3,2         |
| 11      | 260    | 9.9      | 200    |       | 100 | 3.1 |     | 3.1         |
| 12      | 270    | 10.1     | 200    |       | 100 | 3.3 |     | 3.2         |
| 13      | 280    | 10.6     | 200    |       | 100 | 3.3 |     | 3.1         |
| 14      | 270    | 10.0     | 200    |       | 100 | 3.2 |     | 3.1         |
| 15      | (280)  | 10.2     | 220    |       | 100 | 3.1 |     | 3.2         |
| 16      | (260)  | 10.2     | 220    |       | 100 | 2.8 | 3.1 | 3.2         |
| 17      | (230)  | 9.6      | 230    |       | 100 | 2.3 | 3.0 | 3.1         |
| 18      | 220    | 9.7      | 220    |       | 110 | 1.9 | 2.4 | 3.2         |
| 19      | (230)  | (8.4)    | 210    |       |     | E   |     | (3.0)       |
| 20      | 220    | (6.8)    |        |       |     |     |     | 3.1         |
| 21      | 240    | 6.2      |        |       |     |     |     | 2.9         |
| 22      | 270    | (5.5)    |        |       |     |     |     | 2.8         |
| 23      | 085    | 5.6      |        |       |     |     |     | 2.8         |

Time: 0.0°.
Sweep: 1.5 Mc to 15.2 Mc in 1 minute 30 seconds.

| Table | 32 |
|-------|----|
|-------|----|

| Bombay, | Indie ( | 19.0°N, | 73.0° <b>E</b> ) | 1000 |     |     |     | April 1950 |
|---------|---------|---------|------------------|------|-----|-----|-----|------------|
| Time    | 0       | foF2    | h'Fl             | foF1 | h'E | foB | fEq | (M3000) IS |
| 00      |         |         |                  |      |     |     |     |            |
| 01      |         |         |                  |      |     |     |     |            |
| US      |         |         |                  |      |     |     |     |            |
| 03      |         |         |                  |      |     |     |     |            |
| 04      |         |         |                  |      |     |     |     |            |
| 05.     |         |         |                  |      |     |     |     |            |
| 06      |         |         |                  |      |     |     |     |            |
| 07      | 330     | 8.6     |                  |      |     |     |     |            |
| 08      | 420     | 11.0    |                  |      |     |     |     | 2.6        |
| 09      | 480     | 11.9    |                  |      |     |     |     |            |
| 10      | 480     | 13.2    |                  |      |     |     |     |            |
| 11      | 570     | 14.2    |                  |      |     |     |     |            |
| 12      | (540)   | (14.7)  |                  |      |     |     |     | 2.3        |
| 13      | (540)   | (15.0)  |                  |      |     |     |     |            |
| 14      |         | (15.0)  |                  |      |     |     |     |            |
| 15      |         | (15.2)  |                  |      |     |     |     |            |
| 16      |         | (15.3)  |                  |      |     |     |     |            |
| 17      | (460)   | (15.1)  |                  |      |     |     |     |            |
| 18      | 510     | (15.0)  |                  |      |     |     |     |            |
| 19      | 520     | 14.5    |                  |      |     |     |     |            |
| 20      | 510     | 14.1    |                  |      |     |     |     | 2.5        |
| 21      | 480     | 13.8    |                  |      |     |     |     |            |
| 22      | 450     | 13.0    |                  |      |     |     |     | 2.6        |
| 23      | 450     | 12.7    |                  |      |     |     |     |            |

April 1950

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

\*Height at 0.83 foF2.

\*\*Average values; other columns, median values.

|          |       |          |         | Table | 3/4 |     |     |            |
|----------|-------|----------|---------|-------|-----|-----|-----|------------|
| Tiruchy. | India | (10.8°M, | 78.8°E) |       |     |     |     | April 1950 |
| Time     |       | foF2     | h'F1    | foF1  | h'E | foE | LE6 | (M3000)F2  |
| 00       |       |          |         |       |     |     |     |            |
| 01       |       |          |         |       |     |     |     |            |
| 0.2      |       |          |         |       |     |     |     |            |
| 0.3      |       |          |         |       |     |     |     |            |
| 04       |       |          |         |       |     |     |     |            |
| 05       |       |          |         |       |     |     |     |            |
| 06       |       |          |         |       |     |     |     |            |
| 07       | 360   | 9.4      |         |       |     |     |     |            |
| 08       | 420   | 10.9     |         |       |     |     |     |            |
| 09       | 480   | 11.3     |         |       |     |     |     |            |
| 10       | 540   | 11.5     |         |       |     |     |     |            |
| 11       | 540   | 11.5     |         |       |     |     |     |            |
| 12       | 600   | 11.0     |         |       |     |     |     |            |
| 13       | 600   | 11.2     |         |       |     |     |     |            |
| 14       | 600   | 11.5     |         |       |     |     |     |            |
| 15       | (800) | 12.2     |         |       |     |     |     |            |
| 16       | 570   | 12.5     |         |       |     |     |     |            |
| 17       | 570   | 12.5     |         |       |     |     |     |            |
| 18       | 600   | 12.2     |         |       |     |     |     |            |
| 19       | 600   | 11.8     |         |       |     |     |     |            |
| 20       | 600   | 11.6     |         |       |     |     |     |            |
| 21       | 600   | 11.0     |         |       |     |     |     |            |
| 55       |       |          |         |       |     |     |     |            |

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

\*Height at 0.83 foF2.

|      | rg, Germa |      |      |       |     |     |                 | March 1950 |
|------|-----------|------|------|-------|-----|-----|-----------------|------------|
| Time | h'F2      | foF2 | h'F2 | foFl  | h'E | foE | ₹E <sub>B</sub> | (MZONO) PZ |
| 00   | 290       | 5.5  |      |       |     |     |                 | 2.7        |
| 01   | 285       | 5.4  |      |       |     |     |                 | 2.7        |
| 02   | 285       | 5.2  |      |       |     |     |                 | 3.7        |
| 03   | 290       | 5.2  |      |       |     |     |                 | 2.7        |
| 04   | 280       | 5.0  |      |       |     |     |                 | 2.8        |
| 05   | 255       | 4.7  |      |       |     |     |                 | 2.9        |
| 06   | 250       | 5.0  |      |       |     | E   |                 | 3.0        |
| 07   | 230       | 6.8  |      |       | 119 | 1.9 |                 | 3.3        |
| 08   | 225       | 8.4  | 230  |       | 109 | 2.6 | 2.3             | 3.2        |
| 09   | 220       | 9.4  | 220  | 4.5   | 107 | 3.0 |                 | 3.2        |
| 10   | 255       | 10.2 | 210  | 4.6   | 107 | 3.2 | 3.9             | 3.1        |
| 11   | 250       | 10.6 | 210  | 4.8   | 107 | 3.3 | 3.7             | 3.1        |
| 12   | 260       | 11.0 | 210  | 4.8   | 107 | 3.4 |                 | 3.1        |
| 13   | 255       | 10.8 | 215  | 4.9   | 108 | 3.3 |                 | 3,1        |
| 14   | 240       | 10.5 | 220  |       | 109 | 3.3 |                 | 3.1        |
| 15   | 230       | 10.4 | 220  |       | 106 | 3.1 |                 | 3.1        |
| 16   | 235       | 9.9  | 230  |       | 109 | 2.8 |                 | 3.1        |
| 17   | 235       | 9.8  |      |       | 113 | 2.3 | 2.1             | (3.2)      |
| 18   | 230       | 9.3  |      | ~ ~ ~ |     |     | 2.4             | (3.2)      |
| 19   | 225       | 8.2  |      |       |     |     | 2.2             | 3.1        |
| 20   | 230       | 7.3  |      |       |     |     |                 | 3.0        |
| 21   | 235       | 6.5  |      |       |     |     |                 | 2.9        |
| 22   | 250       | 6.0  |      |       |     |     |                 | 2 0        |

235 250

6.0 5.6

20 20 19

Time: Local.
Sweep: 1.4 Mc to 20.0 Mc in 10 minutes, automatic operation.

|        |            |        |           | Table | 37    |     |     |            |  |
|--------|------------|--------|-----------|-------|-------|-----|-----|------------|--|
| Poitie | rs, France | (46.6° | N. 0.30E) |       |       |     |     | March 1950 |  |
| Time   | h'F2       | foF2   | h'Fl      | foFl  | h · E | fol | LE3 | (M3000)F2  |  |
| 00     | (320)      | 5.8    |           |       |       |     |     | 2.6        |  |
| 01     | (320)      | 5.6    |           |       |       |     |     | (2.7)      |  |
| 02     | 320        | 5.4    |           |       |       |     |     | (2,6)      |  |
| 03     | (310)      | 5.4    |           |       |       |     |     | 2.6        |  |
| 04     |            | 5.0    |           |       |       |     |     | 2.8        |  |
| 05     |            | 4.4    |           |       |       | E   |     | (2.8)      |  |
| 06     | 270        | 5.1    |           |       |       | F   |     | 2.8        |  |
| 07     | 240        | 6.8    |           |       |       |     |     | 3.1        |  |
| 08     | 540        | 7.9    | 230       |       |       | 2.7 |     | 3.2        |  |
| 09     | 250        | 8.8    | 225       | 4.3   |       | 2.7 |     | 3.2        |  |
| 10     | 250        | 9.5    | 225       | 4.4   |       | 3.2 |     | (3.2)      |  |
| 11     | 255        | 9.9    | 215       | 4.4   | 150   | 3.3 |     | 3.0        |  |
| 12     | 260        | 10.2   | 220       |       | 110   | 3.3 |     | 3.0        |  |
| 13     | 260        | 10.1   | 225       |       | 110   | 3.3 |     | 3.0        |  |
| 14     | 260        | 9.9    | 230       |       | 120   | 3.3 |     | 3.0        |  |
| 15     | 255        | 9.8    | 230       |       |       | 3,2 |     | 3.0        |  |
| 16     | 250        | 9.9    | 230       |       |       | 2.7 |     | (3.1)      |  |
| 17     | 250        | 9.7    | 240       |       |       | 2.7 |     | 3.1        |  |
| 18     | 240        | 9.5    |           |       |       | E   |     | 3.0        |  |
| 19     | 240        | 8.4    |           |       |       | E   |     | 3.0        |  |
| 50     | 250        | 7.6    |           |       |       |     |     | 2.9        |  |
| 21     | 270        | 6.7    |           |       |       |     |     | 2.8        |  |
| 22     | 280        | 6.2    |           |       |       |     |     | 2.8        |  |
| 27     | (200)      | E 0    |           |       |       |     |     | 2.6        |  |

23 (300) 6.0 Time: 0.0°. Sweep: 3.1 Mc to 11.8 Mc in 1 minute 15 ecconds.

| Time | P.ES | Anetralia<br>foF2 | h'F1 | foF1 | h'E | foE | IE. | (M3000)F2 |  |
|------|------|-------------------|------|------|-----|-----|-----|-----------|--|
| 00   |      |                   |      |      |     |     |     |           |  |
| 01   |      |                   |      |      |     |     |     |           |  |
| 02   |      |                   |      |      |     |     |     |           |  |
| 03   |      |                   |      |      |     |     |     |           |  |
| 04   |      |                   |      |      |     |     |     |           |  |
| 05   |      |                   |      |      |     |     |     |           |  |
| 06   |      |                   |      |      |     |     |     |           |  |
| 07   |      |                   |      |      |     |     |     |           |  |
| 08   |      |                   | 230  |      |     |     |     |           |  |
| 09   |      |                   | 220  |      |     |     |     |           |  |
| 10   |      |                   | 550  |      |     |     |     |           |  |
| 11   |      |                   | 550  |      |     |     |     |           |  |
| 12   |      |                   | 550  |      |     |     |     |           |  |
| 13   |      |                   | 230  |      |     |     |     |           |  |
| 14   |      |                   | 230  |      |     |     |     |           |  |
| 15   |      |                   | 230  |      |     |     |     |           |  |
| 16   |      |                   | 240  |      |     |     |     |           |  |
| 17   |      |                   | 240  |      |     |     |     |           |  |
| 18   |      |                   |      |      |     |     |     |           |  |
| 19   |      |                   |      |      |     |     |     |           |  |
| 50   |      |                   |      |      |     |     |     |           |  |
| 21   |      |                   |      |      |     |     |     |           |  |
| SS   |      |                   |      |      |     |     |     |           |  |

73 Time: 120.0°E.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

| Dakar. | French ' | est Afric | a (14.6 | N, 17.4 | 0W) |     | Feb | February 1950 |  |  |
|--------|----------|-----------|---------|---------|-----|-----|-----|---------------|--|--|
| Time   | P. LS    | foF2      | h'Fl    | foFl    | P.E | foE | fEs | (M3000)F2     |  |  |
| 00     | 225      | (>14.9)   |         |         |     |     |     |               |  |  |
| 01     | 230      | (14.4)    |         |         |     |     |     |               |  |  |
| 0.2    | 215      |           |         |         |     |     |     |               |  |  |
| 03     | 210      | (7.9)     |         |         |     |     |     |               |  |  |
| 04     | 550      | 5.9       |         |         |     |     |     |               |  |  |
| 05     | 240      | 4.5       |         |         |     |     |     |               |  |  |
| 06     | 250      | 5.4       |         |         |     |     |     |               |  |  |
| 07     | 240      | 9.6       |         |         | 125 | 2.5 | 3,8 |               |  |  |
| 08     | 240      | 11.8      | 230     |         | 115 | 2.8 | 4.1 |               |  |  |
| 09     | 255      | 13.2      | 250     |         | 110 | 3.4 | 4.0 |               |  |  |
| 10     | 275      | 14.4      | 215     |         | 105 | 3.6 | 4.5 |               |  |  |
| 11     | 305      | 15.1      | 215     | 5.4     | 105 | 3.9 |     |               |  |  |
| 12     | 340      | 15.0      | 210     | -       | 110 | 4.0 |     |               |  |  |
| 13     | (375)    | 15.1      | 200     |         | 105 | 4.0 |     |               |  |  |
| 14     | (365)    | 14.7      | 210     |         | 110 | 3.7 |     |               |  |  |
| 15     | (330)    | 14.7      | 220     |         | 110 | 3.5 | 4.0 |               |  |  |
| 16     | (310)    | 15.0      | 225     |         | 115 | 3.0 | 4.0 |               |  |  |
| 17     | 240      | 14.7      | 250     |         | 120 | 2.5 | 3.5 |               |  |  |
| 18     | 260      | 14.6      |         |         |     |     | 3.9 |               |  |  |
| 19     | 305      | 14.7      |         |         |     |     | 3.6 |               |  |  |
| 20     | 285      |           |         |         |     |     | 3.4 |               |  |  |
| 21     | 250      | -         |         |         |     |     | 3.5 |               |  |  |
| 22     | 240      | ~~~       |         |         |     |     |     |               |  |  |
| 23     | 230      |           |         |         |     |     |     |               |  |  |

Time: Local
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

| <u>Table 38</u> Dakar, French West Africa (14,6°F, 17.4°W) March 1950 |       |         |         |      |     |     |     |           |  |  |  |
|-----------------------------------------------------------------------|-------|---------|---------|------|-----|-----|-----|-----------|--|--|--|
| Time                                                                  | P. LS | foF2    | h'Fl    | foFl | h'E | foE | 1Na | (M3000)F2 |  |  |  |
| 00                                                                    | 260   |         |         |      |     |     |     | 1         |  |  |  |
| 01                                                                    | 235   |         |         |      |     |     |     |           |  |  |  |
| 02                                                                    | 530   |         |         |      |     |     |     |           |  |  |  |
| 03                                                                    | 550   | (7.2)   |         |      |     |     |     |           |  |  |  |
| 04                                                                    | 240   | 6.4     |         |      |     |     |     |           |  |  |  |
| 05                                                                    | 250   | 5.8     |         |      |     |     |     |           |  |  |  |
| 06                                                                    | 250   | 6.2     |         |      |     |     | 3.6 |           |  |  |  |
| 07                                                                    | 240   | 9.6     |         |      | 130 | 2.5 | 3.8 |           |  |  |  |
| 08                                                                    | 250   | 11.6    | 230     |      | 115 | 3.1 | 4.0 |           |  |  |  |
|                                                                       |       |         | 225     |      | 110 | 3.5 | 4.2 |           |  |  |  |
| 09                                                                    | 255   | 13.0    | 223     |      |     | 0.5 |     |           |  |  |  |
| 10                                                                    | (280) | 13.8    |         |      | 110 |     | 6.4 |           |  |  |  |
| 11                                                                    | (305) | 14.7    |         |      | 110 |     |     |           |  |  |  |
| 12                                                                    |       | 15.2    |         |      | 105 | -   |     |           |  |  |  |
| 13                                                                    |       | 15.2    | ( 00 0) |      | 110 |     |     |           |  |  |  |
| 14                                                                    | ()    | 15.7    | (210)   |      | 110 | 4.0 |     |           |  |  |  |
| 15                                                                    | (335) | 15.2    | 225     |      | 110 |     | 3.9 |           |  |  |  |
| 16                                                                    | (275) | 15.3    | 235     |      | 115 | 3.2 | 3.7 |           |  |  |  |
| 17                                                                    | 310   | 14.7    | 240     |      | 125 | 2.7 | 3.8 |           |  |  |  |
| 18                                                                    | 255   | (>14.7) |         |      |     |     | 3.8 |           |  |  |  |
| 19                                                                    | 340   | (15.0)  |         |      |     |     | 3.2 |           |  |  |  |
| 20                                                                    | 340   | (15.2)  |         |      |     |     |     |           |  |  |  |
| 21                                                                    | 340   | (16.2)  |         |      |     |     |     |           |  |  |  |
| 55                                                                    | 305   | (>13.6) |         |      |     |     |     |           |  |  |  |
| 23                                                                    | 285   |         |         |      |     |     |     |           |  |  |  |

23 285 --Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

|        |           |          |          | Table | 40  |     |     |            |
|--------|-----------|----------|----------|-------|-----|-----|-----|------------|
| Fribou | rg. Germa | ny (48.1 | °N. 7.8° | E)    |     |     | Feb | ruary 1950 |
| Time   | P, LS     | foF2     | h'Fl     | foFl  | h E | foE | fEs | (M3000) F2 |
| 00     | 285       | 4.4      |          |       |     |     |     | 2.7        |
| 01     | 285       | 4.3      |          |       |     |     |     | 2.8        |
| 02     | 290       | 4.3      |          |       |     |     |     | 2.7        |
| 03     | 280       | 4.2      |          |       |     |     |     | 2.7        |
| 04     | 280       | 4.2      |          |       |     |     |     | 2.8        |
| 05     | 260       | 3.7      |          |       |     |     |     | 3.0        |
| 06     | 250       | 3.4      |          |       |     |     |     | 2.9        |
| 07     | 240       | 5.0      |          |       |     | E   |     | 3.1        |
| 08     | 225       | 7.6      |          |       | 119 | 2.0 |     | 3.4        |
| 09     | 225       | 8.7      |          |       | 111 | 2.6 |     | 3.3        |
| 10     | 225       | 10.3     | 550      |       | 111 | 3.0 |     | 3.3        |
| 11     | 220       | 10.4     | 210      |       | 111 | 3,2 |     | 3.3        |
| 12     | 230       | 10.7     | 550      | 4.4   | 110 | 3.3 |     | 3.2        |
| 13     | 225       | 10.4     | 225      |       | 111 | 3.2 |     | 3.2        |
| 14     | 225       | 9.8      | 225      |       | 113 | 3.1 |     | 3.2        |
| 15     | 230       | 9.8      |          |       | 113 | 2.8 |     | 3.2        |
| 16     | 230       | 9.7      |          |       | 117 | 2.2 |     | 3.2        |
| 17     | 220       | 8.5      |          |       | 129 | 1.8 | 2.6 | 3.3        |
| 18     | 550       | 7.1      |          |       |     |     | 1.9 | 3.1        |
| 19     | 230       | 6.8      |          |       |     |     |     | 3.1        |
| 20     | 235       | 5.6      |          |       |     |     |     | 3.1        |
| 21     | 240       | 4.8      |          |       |     |     |     | 2.9        |
| 55     | 250       | 4.6      |          |       |     |     |     | 2.8        |
| 23     | 270       | 4.6      |          |       |     |     |     | 2.8        |

23 270 4.6

Time: Local.
Sweep: 1.4 Mc to 20.0 Mc in 10 minutee, automatic operation.

| Table 42 |           |          |          |      |     |     |     |            |  |  |
|----------|-----------|----------|----------|------|-----|-----|-----|------------|--|--|
| Fribou   | rg, Germa | my (48.1 | °N, 7.8° | E)   | _   |     | Ja  | nuary 1950 |  |  |
| Time     | P, LS     | foF2     | h'F1     | foFl | h'E | foB | fEs | (M3000) IS |  |  |
| 00       | 290       | 3.8      |          |      |     |     |     | 2.8        |  |  |
| 01       | 290       | 3.9      |          |      |     |     |     | 2.7        |  |  |
| 02       | 295       | 3.8      |          |      |     |     |     | 2.7        |  |  |
| 03       | 290       | 3.8      |          |      |     |     |     | 2.8        |  |  |
| 04       | 280       | 3.5      |          |      |     |     |     | 2.8        |  |  |
| 05       | 270       | 3.2      |          |      |     |     |     | S. ë       |  |  |
| 06       | 260       | 3.0      |          |      |     |     |     | 2,9        |  |  |
| 07       | 250       | 3.6      |          |      |     |     |     | 2.9        |  |  |
| 08       | 220       | 6.8      |          |      |     | 1.6 | 1.9 | 3,3        |  |  |
| 09       | 215       | 8.6      |          |      | 113 | 2.4 | 2.2 | 3.4        |  |  |
| 10       | 220       | (10.0)   |          |      | 110 | 2.7 |     | (3,3)      |  |  |
| 11       | 225       | 10.4     | 230      |      | 110 | 2.9 |     | 3,3        |  |  |
| 12       | 550       | 10.5     |          |      | 109 | 2.9 |     | 3,3        |  |  |
| 13       | 550       | 10.2     |          |      | 111 | 2.8 | 3.2 | 3.2        |  |  |
| 14       | 230       | 10.4     |          |      | 114 | 2.6 | 1.9 | 3.2        |  |  |
| 15       | 230       | 10.2     |          |      | 119 | 2.3 | 1.9 | 3,3        |  |  |
| 16       | 220       | 8.7      |          |      | 127 | 1.8 | 2.0 | 3,3        |  |  |
| 17       | 215       | 7.5      |          |      |     |     | 2,2 | 3,2        |  |  |
| 18       | 550       | (6.4)    |          |      |     |     |     | 3.2        |  |  |
| 19       | 225       | 5.2      |          |      |     |     | 2.1 | (3.2)      |  |  |
| 20       | 230       | 4.3      |          |      |     |     |     | 3.1        |  |  |
| 21       | 275       | 3.9      |          |      |     |     |     | 2.8        |  |  |
| 32       | 290       | 3.9      |          |      |     |     |     | 2.8        |  |  |
| 23       | 295       | 3.9      |          |      |     |     |     | 2,7        |  |  |

Time: Local, Sweep: 1.4 Mc to 20.0 Mc in 10 minutes, automatic operation.

|        |        |           |          | Table 4  | 3   |     |     |            |
|--------|--------|-----------|----------|----------|-----|-----|-----|------------|
| Dakar, | French | West Afri | ca (14.6 | °N, 17.4 | oM) |     | Ja  | nuary 1950 |
| Time   | F.LS   | foF2      | h'Fl     | foFl     | h'E | foB | fEs | (M3000)12  |
| 00     | 230    |           |          |          |     |     |     |            |
| 01     | 225    |           |          |          |     |     |     |            |
| 02     | 225    | (8.5)     |          |          |     |     |     |            |
| 0.3    | 220    | 6.8       |          |          |     |     |     |            |
| 04     | 250    | 5.1       |          |          |     |     |     |            |
| 05     | 260    | 4.7       |          |          |     |     |     |            |
| 06     | 260    | 4.3       |          |          |     |     |     |            |
| 07     | 250    | 8.9       |          |          | 150 |     | 2.8 |            |
| 08     | 260    | 12.2      | 240      |          | 115 | 2.8 | 3.1 |            |
| 09     | 265    | 14.0      | 225      |          | 110 | 3.3 | 3.4 |            |
| 10     | 275    | (>14.0)   | 225      |          | 110 | 3.7 |     |            |
| 11     | 295    | (>14.0)   | 210      |          | 110 | 3.8 |     |            |
| 12     | 330    | (>14.3)   | 200      | 5.4      | 110 | 3.8 |     |            |
| 13     | 355    | (>14.2)   | 550      | (6.0)    | 115 | 3.8 |     |            |
| 14     | 320    | (>14.2)   | 230      | -        | 115 | 3.6 |     |            |
| 15     | (310)  | 14.1      | 225      |          | 115 | 3.5 |     |            |
| 16     | 305    | (>13.8)   | 235      |          | 115 | 3.0 | 3.4 |            |
| 17     | 250    | (>13.8)   | 250      |          | 125 | 2.4 | 3.5 |            |
| 18     | 275    | (>14.0)   |          |          |     |     | 3.4 |            |
| 19     | 325    | (>14.6)   |          |          |     |     | 2.9 |            |
| 50     | 270    |           |          |          |     |     |     |            |
| 51     | 250    | -         |          |          |     |     |     |            |
| 33     | 250    |           |          |          |     |     |     |            |
|        |        |           |          |          |     |     |     |            |

Time: Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

245

| Сатръе | 11 1. (52 |       | March 1949 |      |     |     |     |           |
|--------|-----------|-------|------------|------|-----|-----|-----|-----------|
| Time   | F.LS      | foF2  | h'Fl       | foF1 | h'E | foE | ?Es | (M3000)#2 |
| 00     |           |       |            |      |     |     |     |           |
| 01     |           |       |            |      |     |     |     |           |
| 02     |           |       |            |      |     |     |     |           |
| 03     |           |       |            |      |     |     |     |           |
| 04     |           |       |            |      |     |     |     |           |
| 05     | 280       | (5.3) |            |      |     |     | 1.9 | ·(2.7)    |
| 06     |           |       |            |      |     |     |     |           |
| 07     | 250       | 6.7   |            |      | 120 | 2.5 |     | 3.0       |
| 08     | 240       | 7.1   | 250        | 4.3  | 110 | 2.8 |     | 2,9       |
| 09     | 250       | 7.6   | 240        | 4.8  | 110 | 3.1 | 1.9 | 2.9       |
| 10     | 300       | 7.8   | 230        | 5.2  | 110 | 3.3 |     | 2.8       |
| 11     | 300       | 8.0   | 240        | 5.1  | 100 | 3.4 |     | 2.7       |
| 12     | 340       | 8.2   | 240        | 5.1  | 100 | 3.5 |     | 2.7       |
| 13     | 300       | 8.3   | 240        | 5.2  | 100 | 3.5 |     | 2.7       |
| 14     | 300       | 8.5   | 230        | 5.0  | 100 | 3.4 |     | 2.7       |
| 15     | 240       | 8.8   | 240        | 5.0  | 110 | 3.2 |     | 2.7       |
| 18     | 250       | 8.7   | 250        |      | 120 | 2.9 |     | 2.7       |
| 17     | 250       | 9.0   |            |      | 120 | 2.2 | 1.7 | 2.7       |
| 18     | 250       | 8.9   |            |      | 150 | 1.8 | 2.2 | 2.7       |
| 19     | 250       | 9.2   |            |      |     |     | 1.7 | 2.7       |
| 20     |           |       |            |      |     |     |     |           |
| 21     | 270       | 7.4   |            |      |     |     | 2.6 | (2.6)     |
| 22     |           |       |            |      |     |     |     |           |
| 23     | 290       | (6.7) |            |      |     |     | 4,3 | (2.5)     |

Time: 165.0°E. Sweep: 1.0 Mc to 15.0 Mc, manual operation. "Observations taken on a 16-hour working schedule.

| Campbe | 11 1. (52. | 5°S, 169 | 9.2°E) | Table 47 | 70  |     |     | March 1948 |
|--------|------------|----------|--------|----------|-----|-----|-----|------------|
| Time   | h'F2       | foF2     | h'Fl   | foF1     | h'E | fol | fEs | (M3000) F2 |
| 00     |            |          |        |          |     |     |     |            |
| 01     |            |          |        |          |     |     |     |            |
| 02     |            |          |        |          |     |     |     |            |
| 03     |            |          |        |          |     |     |     |            |
| 04     |            |          |        |          |     |     |     |            |
| 0.5    | 260        | (4.2)    |        |          |     |     | 2.2 |            |
| 06     |            |          |        |          |     |     |     |            |
| 07     | 240        | 6.4      |        |          | 120 | 2.4 | 2.8 | 3.1        |
| 80     | 240        | 7.4      |        |          | 110 | 2.8 | 3.2 | 3.1        |
| 09     | 240        | 8.0      | 550    | 4.5      | 110 | 3.1 | 3.5 | 3.0        |
| 10     | 240        | 8.1      | 550    | 4.7      | 110 | 3.2 | 3.5 | 3.0        |
| 11     | 250        | 8.6      | 550    | 4.7      | 110 | 3.3 |     | 2.9        |
| 12     | 240        | 8.8      | 210    | 4.9      | 110 | 3.3 | 3.6 | 2.9        |
| 13     | 230        | 8.8      | 210    | 5.0      | 110 | 3.3 | 2.8 | 2.9        |
| 14     | 240        | 9.0      | 220    | 4.6      | 110 | 3.2 |     | 2.9        |
| 15     | 240        | 9.2      | 230    | 4.3      | 110 | 3.1 |     | 2.9        |
| 16     | 250        | 9.1      |        |          | 110 | 2.8 |     | 2.9        |
| 17     | 250        | 9.3      |        |          | 120 | 2,2 |     | 2.8        |
| 18     | 250        | 9.3      |        |          |     | 1.7 | 2.2 | 2.9        |
| 19     | 250        | 8.8      |        |          |     |     | 1.9 | 2,8        |
| 20     |            |          |        |          |     |     |     |            |
| 21     | 250        | 6.8      |        |          |     |     | 2.1 | (2.7)      |
| 22     |            |          |        |          |     |     |     |            |
| 23     | (290)      | (6.1)    |        |          |     |     | 2.3 |            |
| D4 4   | 1.0F COB   |          |        |          |     |     |     |            |

Time: 165.0°E.
Sweep: 1.0 Mo to 15.0 Mc, manual operation.
°Coervatione taken on a 16-hour working echednie.

Table 44°

|        |           |          |        | 18016 | 44" |     |     |            |
|--------|-----------|----------|--------|-------|-----|-----|-----|------------|
| Сатръе | 11 I. (52 | .5°S, 16 | 9.2°E) |       |     |     |     | April 1949 |
| Time   | P115      | foF2     | h'Fl   | fo Fl | h'E | fol | TEO | SI(OUORM)  |
| 00     |           |          |        |       |     |     |     |            |
| 01     |           |          |        |       |     |     |     |            |
| 02     |           |          |        |       |     |     |     |            |
| 03     |           |          |        |       |     |     |     |            |
| 04     |           |          |        |       |     |     |     |            |
| 0.5    | 260       | 4.8      |        |       |     |     |     | (2.8)      |
| 06     |           |          |        |       |     |     |     |            |
| 07     | 250       | 7.1      |        |       | 140 | 2.0 | 1.7 | 3.1        |
| 08     | 240       | 8.7      |        |       | 120 | 2.4 |     | 3.1        |
| 09     | 230       | 10.5     |        |       | 110 | 2.8 |     | 3.1        |
| 10     | 230       | 10.9     |        |       | 110 | 3.0 | 2.0 | 3.0        |
| 11     | 230       | 12.0     |        |       | 110 | 3.1 |     | 3.0        |
| 12     | 230       | 11.7     |        |       | 110 | 3.2 | 1.8 | 3.0        |
| 13     | 240       | 11.9     |        |       | 110 | 3.1 |     | 2.9        |
| 14     | 240       | 11.7     |        |       | 110 | 3.0 |     | 2.9        |
| 15     | 240       | 12.6     |        |       | 110 | 2.6 | 1.9 | 2.9        |
| 16     | 240       | 11.7     |        |       | 130 | 2.2 | 2.0 | 2.9        |
| 17     | 230       | 11.3     |        |       |     | E   |     | 3.0        |
| 18     | 230       | 10.2     |        |       |     |     | 2.0 | 2.9        |
| 19     | 230       | 8.7      |        |       |     |     |     | 2.9        |
| 20     |           |          |        |       |     |     |     |            |
| 21     | 250       | 7.3      |        |       |     |     |     | 2.8        |
| 22     |           |          |        |       |     |     |     |            |
| _23    | 260       | (6.6)    |        |       |     |     | 2,7 |            |

Time: 165.0°E.
Sweep: 1.C Mc to 15.0 Mc. manual operation.
\*Observations taken on a 16-hour working echedule.

Table 46°

| Campbe: | 11 1. (52 | .5°S, 16 | 9.2°E) |      |       |     |     | April 1948 |
|---------|-----------|----------|--------|------|-------|-----|-----|------------|
| Time    | h'F2      | foF2     | h'F1   | foF1 | h, E  | foE | 1Es | (M3000)F2  |
| 00      |           |          |        |      |       |     |     |            |
| 01      |           |          |        |      |       |     |     |            |
| 02      |           |          |        |      |       |     |     |            |
| 03      |           |          |        |      |       |     |     |            |
| 04      |           |          |        |      |       |     |     |            |
| 05      | 260       | 4.9      |        |      |       |     |     |            |
| 06      |           |          |        |      |       |     |     |            |
| 07      | 250       | 7.0      |        |      | (150) | 2.0 | 2.2 | 3.0        |
| 08      | 240       | 8.9      |        |      | 110   | 2.5 | 2.4 | 3.1        |
| 09      | 230       | 10.4     |        |      | 110   | 2.9 | 2.6 | 3.0        |
| 10      | 230       | 10.8     |        |      | 110   | 3.1 |     | 3.0        |
| 11      | 240       | 11.5     |        |      | 130   | 3.2 |     | 2.9        |
| 12      | 230       | 11.9     |        |      | 110   | 3.2 |     | 2.9        |
| 13      | 240       | 11:7     |        |      | 110   | 3.2 |     | 2.9        |
| 14      | 230       | 11.7     |        |      | 110   | 3.1 |     | 2.9        |
| 15      | 240       | 11.7     |        |      | )10   | 2.8 |     | 2.9        |
| 16      | 250       | 11.5     |        |      | 120   | 2.3 |     | 2.9        |
| 17      | 240       | 11.0     |        |      |       | 1.8 | 1.8 | 2.9        |
| 18      | 240       | 10.2     |        |      |       |     |     | 2.8        |
| 19      | 240       | 8.0      |        |      |       |     |     | 8.8        |
| 20      |           |          |        |      |       |     |     |            |
| 21      | 250       | 7.6      |        |      |       |     |     | (2.7)      |
| 22      | (200)     |          |        |      |       |     |     |            |
| _23     | (270)     | 6.6      |        |      |       |     |     |            |

Time: 165.0°E.
Sweep: 1.0 Mc to 15.0 Mc, manual operation.
\*Observations taken on a 16-bour working schedule.

| Campbe | 11 I. (52 | .5°s, 169 | 2°E)  | TRDIE | 40  |     | Á   | pril 1947 |
|--------|-----------|-----------|-------|-------|-----|-----|-----|-----------|
| Time   | h'F2      | foF2      | h*F). | fo Fl | h'E | foB | fEs | (M3000)F2 |
| 00     |           |           |       |       |     |     |     |           |
| 01     | 1         |           |       |       |     |     |     |           |
| 02     |           |           |       |       |     |     |     |           |
| 03     |           |           |       |       |     |     |     |           |
| 04     |           |           |       |       |     |     |     |           |
| 05     | 250       | (5.0)     |       |       |     |     | 2.6 | (2.7)     |
| 06     | 1         |           |       |       |     |     |     | (,        |
| 07     | 250       | 7.1       |       |       |     | 2.2 | 2.5 | 3.0       |
| 08     | 250       | 8.3       |       |       | 120 | 2.5 |     | 3.0       |
| 09     | 250       | 9.4       |       |       | 120 | 2.9 |     | 3.0       |
| 10     | 250       | 10.4      | 240   | 5.4   | 120 | 3.0 |     | 3.0       |
| 11     | 250       | 11.4      |       |       | 110 | 3.1 |     | 2.9       |
| 12     | 240       | 12.0      |       |       | 110 | 3.1 |     | 2.9       |
| 13     | 250       | 12.0      |       |       | 120 | 3.1 |     | 2.9       |
| 14     | 250       | 12.2      |       |       | 120 | 3.0 |     | 2.9       |
| 15     | 250       | 12.0      |       |       | 120 | 2.8 |     | 2.9       |
| 16     | 240       | 11.9      |       |       | 120 | 2.4 |     | 2.9       |
| 17     | 240       | 11.2      |       |       |     | 1.8 |     | 2.9       |
| 18     | 250       | 10.0      |       |       |     |     | 2.1 | 2.8       |
| 19     | 250       | 9.0       |       |       |     |     | 2.4 | 2.8       |
| 20     |           |           |       |       |     |     |     |           |
| 21     | 260       | 7.7       |       |       |     |     | 2.3 | 2.8       |
| 22     |           |           |       |       |     |     |     |           |
| _23    | 300       | (6,8)     |       |       |     |     | 2.5 | (2,6)     |

Time: 165.0°E.

Sweep: 1.0 Mc to 15.0 Mc, manual operation.

\*Observations taken on a 16-hour working schedule.

| Camphal | 1 1. (62 | .5°S. 16 | 9.2°E) | Table | 49* (a | upersed | es table | e 36, CEPL-F34)<br>March 1947 |
|---------|----------|----------|--------|-------|--------|---------|----------|-------------------------------|
| Time    | p.ES     | foF2     | h¹F1   | foF1  | h, E   | foE     | fBa      | (M3000) 1/2                   |
| 00      |          |          |        |       |        |         |          |                               |
| 01      |          |          |        |       |        |         |          |                               |
| 02      |          |          |        |       |        |         |          |                               |
| 03      |          |          |        |       |        |         |          |                               |
| 04      |          |          |        |       |        |         |          |                               |
| 05      | 300      |          |        |       |        |         | 3.2      |                               |
| 06      |          |          |        |       |        |         |          |                               |
| 07      | 250      | 6.6      |        |       | 120    | 2.5     | 2.9      | 2.9                           |
| 08      | 300      | 7.3      | 250    | 4.8   | 110    | 2.9     | 2.7      | 2.9                           |
| 09      | 300      | 7.8      | 250    | 5.3   | 110    | 3.0     |          | 2.9                           |
| 10      | 300      | 8.2      | 240    | 5.1   | 110    | 3.1     |          | 2.8                           |
| 11      | 310      | 8.6      | 250    | 5.4   | 110    | 3.2     |          | 2.7                           |
| 12      | 330      | 8.8      | 250    | 5.6   | 110    | 3.3     |          | 2.7                           |
| 13      | 300      | 8.9      | 240    | 5.6   | 110    | 3.4     |          | 2.6                           |
| 14      | 330      | 9.2      | 240    | 6.0   | 110    | 3.0     |          | 2.6                           |
| 15      | 340      | 9.2      | 250    | 5.4   | 110    | 3.0     |          | 2.7                           |
| 16      | 300      | 8.6      | 250    | 5.0   | 110    | 2.9     |          | 2.7                           |
| 17      | 300      | 8.8      | 260    | 5.0   | 120    | 2.6     |          | 2.7                           |
| 18      | 270      | 9.3      |        |       | 120    | 2.2     | 3.1      | 2.7                           |
| 19      | 260      | 9.3      |        |       |        |         | 3.1      | 2.8                           |
| 20      |          |          |        |       |        |         |          |                               |
| 21      | 310      | 7.8      |        |       |        |         | 3.2      |                               |
| 22      |          |          |        |       |        |         |          |                               |
| 23      | 350      |          |        |       |        |         | 5.4      |                               |

Time: 165.0°E.
Sweep: 1.0 Mc to 15.0 Mc, manual operation.
°Observations taken on a 16-hour working echedule.

| Campbe | 11 I. (52 | 2.5°S, 16 | 9.2°E) | Table | <u>51</u> * (eu | persedes |     | 25, CRPL |    |
|--------|-----------|-----------|--------|-------|-----------------|----------|-----|----------|----|
| Time   | h'F2      | foF2      | h'Fl   | foFl  | h'E             | foE      | fEs | (M3000)  | 15 |
| 00     |           |           |        |       |                 |          |     |          |    |
| 01     |           |           |        |       |                 |          |     |          |    |
| 02     | 1         |           |        |       |                 |          |     |          |    |
| 0.3    |           |           |        |       |                 |          |     |          |    |
| 04     |           |           |        |       |                 |          |     |          |    |
| 0.5    | 290       | 4.0       |        |       |                 |          |     | (2.5)    |    |
| 06     |           |           |        |       |                 |          |     | ,        |    |
| 07     | 250       | 6.2       | 350    | 4.0   | 130             | 2.5      |     | 2.9      |    |
| 08     | 290       | 7.1       | 250    | 4.5   | 125             | 2.9      |     | 2.9      |    |
| 09     | 300       | 7.7       | 240    | 4.4   | 125             | 3.1      |     | 2.9      |    |
| 10     | 290       | 8.4       | 240    | 4.6   | 125             | 3.2      |     | 2.9      |    |
| 13     | 300       | 8.6       | 245    | 4.7   | 125             | 3,3      |     | 2.9      |    |
| 12     | 290       | 8.8       | 240    | 4.7   | 130             | 3.3      |     | 2.9      |    |
| 13     | 300       | 9.0       | 240    | 4.6   | 125             | 3.3      |     | 2.9      |    |
| 14     | 300       | 8.4       | 250    | 4.6   | 130             | 3.3      |     | 2.9      |    |
| 15     | 286       | 8.6       | 250    | 4.5   | 130             | 3.1      |     | 2.9      |    |
| 16     | 276       | 8.8       | 250    | 4.4   | 130             | 2.9      |     | 2.9      |    |
| 17     | 250       | 8.8       | 250    | 4.5   | 130             | 2.4      |     | 2.9      |    |
| 18     | 250       | 8.6       | -      |       | 150             | 2.3      |     | 2.9      |    |
| 19     | 250       | 8.5       |        |       |                 |          |     | 2.8      |    |
| 50     |           |           |        |       |                 |          |     | 2.0      |    |
| 21     | 285       | 7.1       |        |       |                 |          |     | 2,5      |    |
| 22     |           |           |        |       |                 |          |     | 2.5      |    |
| 23     | 310       | (6.0)     |        |       |                 |          | 3.6 | (2.5)    |    |

Time: 165.0°B.
Sweep: 1.0 Mc to 15.0 Mc, manual operation.
°Observatione taken on a 16-hour working schedule.

|        |           |           |        | Table | 50° |     |     |            |
|--------|-----------|-----------|--------|-------|-----|-----|-----|------------|
| Campbe | 11 I. (52 | .5°S, 169 | 9.2°E) |       |     |     |     | April 1946 |
| Time   | p.LS      | foF2      | h'Fl   | foF]  | h'E | foB | fEs | (M3000) F2 |
| 00     |           |           |        |       |     |     |     |            |
| 01     |           |           |        |       |     |     |     |            |
| 02     |           |           |        |       |     |     |     |            |
| 03     |           |           |        |       |     |     |     |            |
| 04     |           |           |        |       |     |     |     |            |
| 05     | 300       | (4.4)     |        |       |     |     |     |            |
| 06     |           |           |        |       |     |     |     |            |
| 07     | 250       | 5.7       |        |       |     |     | 2.6 | 2.9        |
| 80     | 245       | 6.8       |        |       | 120 | 2.4 | 2.7 | 3.0        |
| 09     | 250       | 7.7       | 230    | 3.8   | 120 | 2.6 | 2.9 | 3.0        |
| 10     | 270       | 8.5       | 240    | 4.3   | 120 | 2.9 | 2.8 | 3.0        |
| 11     | 265       | 8.7       | 250    | 4.2   | 120 | 3.0 | ,   | 3.0        |
| 12     | 270       | 9.2       | 245    | 4.4   | 120 | 3.0 |     | 3.0        |
| 13     | 260       | 9.2       | 240    | 4.3   | 120 | 2.9 |     | 3.0        |
| 14     | 250       | 9.4       | 245    | 4.0   | 125 | 2.9 |     | 3.0        |
| 15     | 250       | 9.4       |        |       | 125 | 2.6 | 2.7 | 3.0        |
| 16     | 250       | 9.0       |        |       | 125 | 2.3 | 2.2 | 2.9        |
| 17     | 250       | 8.8       |        |       | 140 | 2.0 | 2.2 | 2.9        |
| 18     | 245       | 7.9       |        |       |     |     | 2.4 | 2.9        |
| 19     | 250       | 7.5       |        |       |     |     | 2.7 | 2.7        |
| 50     |           |           |        |       |     |     |     |            |
| 21     | 280       | 6.4       |        |       |     |     | 2,7 | 2.5        |
| 22     | _         |           |        |       |     |     |     |            |
| _23    | 300       | (5.5)     |        |       |     |     | 3,0 | 2,4        |

Sweep: 1.0 Mc to 15.0 Mc, manual operation.
\*Observations taken on a 16-hour working schedule.

TABLE 52
Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC DATA

(3/0)x [390]x

[380] x (340)x

S (410)

(330) (300)

390)

400 K

09%

(330)K

O

1300Jx

o8 ℃ 

(350)4

(400) X

0.5

Day

, Long 77.1°W 

Lot 38.7°N

Washington, D.C.

October

ΚB

(Characteristic)

Observed at \_\_

(060)

- 80

しゃい

2 70

(310) 

(310)

Ø

 (340)

[300] 

~

Φ 

National Bureau of Standards R.F.B. M<sub>C</sub>C Scoled by: B.E.B. R.F.B. B.E.B. Colculated by:

Form adopted June 1946

[340]x (310)K (340)K (400)K (300) (350) [300] η 00 (300) X (330) (340) x (310)x (300) (060) V. (320)x (060) (090) 000 (0200) 330 (260) (060) (300) (450)K (230) (0000) (220) (05C) 02 20 (220) (080) ñ 10000) (250)x (090) (0240) 03 80 (0000) (080) 02 60 0/0 0/0 07/00 0/00 <u>~</u> × 06 % 04 00 07.0 ñ 500 K 08 % 08 80 3/0 'n 0.50 08.20 08 E 04.00 2 70 (3 70)K 2 70 06€ 2 70 75°W 08 % 02 60 230 250 0/9 =

[08 6]

(080)

\_\_\_\_

(0900) (0820)

(300)

-220 08 50

(290) 5

(310)

(3/0)

230 [270]

(090)

300) (096)

0.50 

 weep 1.0 Mc to 25 0 Mc in 0.25 min

07.00

Medion Count

do G

(b)

9.0

m

230K

(200)x (300)x

(300)4

290 4

(310) (03CO) x

(350)

[280]

[570]

(260) 5

310,4

(020)

{

(080)

(040)

(050)

(080)

[080]

(080)

 Q

Q

Ø

(300)

2 20 

Manual 

Automotic 

Manual

ture adoute June 1946

National Bureau of Standards

Scaled by: B.E.B. R.F.B. McC.

 $\mbox{TABLE 53} \label{table} \mbox{Central Radia Prapagatian Labarotory, Notional Bureau of Standards, Washington 25, D.C.}$ 

IONOSPHERIC DATA

Mc October , 1950

foF2

| McC.          | RFB        | 23  | 30%       | (2.1)K      | (3.0)Z   | (2.5)5   | (2.8)A    | 32F     | 3.9 %    | 3.8)3  | 4.0)5    | (4.0)\$ | 4.9       | (3.9) 3 | 5.0        | 47     | 425    | 3915     | 4.5F      | 418    | 3(3.5)   | 3(8.5)   | 5(04)    | 5(2:2)   | d(1h)   | 34            | 37       | 3.4     | 42      | 2.5)F                            | [2+]F            | 18)5           | Cr.               |      | 13.81  | 7,    |
|---------------|------------|-----|-----------|-------------|----------|----------|-----------|---------|----------|--------|----------|---------|-----------|---------|------------|--------|--------|----------|-----------|--------|----------|----------|----------|----------|---------|---------------|----------|---------|---------|----------------------------------|------------------|----------------|-------------------|------|--------|-------|
| F.B.          |            | 22  |           | 7) 5        | 30F (    | 3.0      | 3.0)5     | 335     | 17       | 3.9,3  | 38) \$ ( | 435 (   | 47)3      | 43 (    | (5.3)      | 45     | 42F    | 39,5     | 4.7       | 43F    | (40)\$   |          | (4.0)5   | 5(4:5)   | (4.2)J  | ري<br>ري<br>ا | 3.7)5    | 3.6     | 4.5     | 24)E                             |                  | )" = (05)      | (22) FK(0)        | 6    | 1/     | 3/    |
| B, R          | B E B      | 21  | 27KK      | 3.8) × K(2. | (37) 5   | 37F      | 3.1 F (   | 345     | 45       | 42 (   | +4F (    | 45F     | 5.35 (    | (48)3   | 5.2 (      | 4.7    | 45     | 4.1      | 5 (8.7    | 44     | 44) \$ ( | (42)E    | _        | (62)5 (  | 43)8 (  | 33            | 3.4 (    | 3.6     | 54      | 30x                              | _                | ×              |                   |      | 7 7    | - 5   |
| В             | ed by:     | 20  | (3.2) X   | 48) \$ K    | (50)\$   | 3(8 4)   | 1+        | 445     | 1.5      | 5.2    | 18h      | 5.05    | 8 5       | 54 (    | 5.73       | 4.7    | 84     | 4.5      | 5:0       | 4.76   | (4.8)    | -        | 1        | 5(59)    | (8/8)   | (3.5)         | 38)5     | w<br>00 | 5.2     | x<br>LL                          | (3.1) 5          | (37)\$         | (40)×             |      | 4.8    | 30    |
| Scaled by     | Calculated | 6]  | 41x (     | 5.3 F K     | 7.0)5    | 5.7      | 8.5       | 4.6F    | 5.78     | 5(49)  | 6.0F     | 265     | 6.0 5     | 65      | ) 99       | 5.5    | 58.5   | 5.0      | 6.3 F     | 5.5    | (5:4)6   | 5(45)    | (0)      | (72)\$   | 5.2     | 46            | ) h+     | 47      | 6.0)5   | T                                | 38)5 K           | 43)K           | 5,0               | 7    | 7      | 30    |
|               |            | 8   | 47K       | 8.0)\$      | 80)5 (   | 5(1.7)   | (18)5     | (6.2)5  | 6.3      | 7.5 (  | (7.6)5   | 8.0)3   | 8008      | 83      | (7.3)5     | 68     | (7.5)  | 5(9.5)   | (42)      | (6.9)  |          | ) 4(8.7) | (6.1)F   | (7.5)2 ( |         | 5.8 5         | 07       | 6.0     | ) 5(2 ) | 82)5                             | MKK              | 70 FK          | (7.8)\$ (6        |      | 7.77   | 30    |
|               |            | 17  | 4.6 K     | 8.2) 8 "    | 8.8)\$ ( | ) 89     | 8215 (    | 14/5    | 7.6      | 4.8    | 8.6F     | 8.8     | 9.3       | 9.6)3   | (9.5) \$ ( | (7.5)5 | 8.0    | 63)5K    | (6.3)8    | 8.15   | 8.7)5    | 2(8.3)   | (8.0)5   | 8.03     | (8.1)2  | (4.6)8        | 8.0      | (2.6)   | (7.4)5  | K(78)\$ K                        | M×               |                | 9.1)5             | (10  | ) (18  | 30    |
|               |            | 91  | 46 K      | ) 498       | 8.8)\$ ( | 7715     | 8.8) \$ ( | 865     | 7.2      | 18     | 8(0.6    | 86      | 5(8.6)    | 9.7 (   | (0.2)5     | 7.8 (  | 5(8.8) | 6.6 K    | ) 5(0 01) | 3(4.6  | 9.3)5 (  | 96)5 (   | \$(5.8)  | 85)5     | 8.6     | 06            | 83       | 88      | 8.8     | 70F K                            | 8.7K             | 11.515 1       | K(10.6)3 (        |      | ر<br>م | 31    |
|               |            | 15  | + + X     | 9.3)\$      | 9.0      | 8.8      | 8.5       | 8.815   | 8.3      | 8.5    | 9.0 (    | 4.6     | ) 001     | 4.6     | 1) 8(8:01) | 8.2    | 9.2 (  | 6.6 %    | 10.7 (    | 9.42   | 9.5)5 (4 | (9.6)    | (9.0)5   | (10.01)  | 5(9.6   | 5(5.6)        | 8.5      | 5/16    | 9.7     | 5.6 *                            | (10.1)\$         | ), 49:11       | 88 HK             |      | 72     | ٦,    |
| 1<br>-<br>[   | 9          | 4   | 4.3 ×     | 7.7) \$ (   | 8.5)5    | 8.4      | 4.8       | 8.5     | 8.8      | N 4.8  | 98       | 5(1.6)  | 4.4       | 4.7     | 11.3 (     | 10.1   | 3,6    | 6.6.)5   | (10:4)8   | 22     | 9        | (9.0) (  | 9        | (101) 8  | 0115    | 95)5          | 8.0      | 9.3     | 9.0     | 5.1 %                            | 11.5K            | 0.6 K          | 9.7 ×             | -    | +      | 3.    |
| ב             | Mean Time  | 13  | 41 ¢      | 7.4 E K     | 8.7F (   | 8.3      | 98        | 0 8     | 8.7      | 9.0    | 200      | ) 06    | 9.7       | 8.6     | 6.0        | 0      | 9.7    | 6.4 FK   | à         | 9.3F 1 | 9.2      | 9.4 (    | 9.115    | 9.0)5 (  | 9.7)5 ( | 9.3 (         | 9.6      | 9.2     | 9.5     | 40 t                             | 11.9)\$ /        | 11.3 4         | 8 g x             |      | 7.7    | 18    |
|               | 2° W       | 12  | 434 <     | 6.4F        | 8.5      | 7.9      | 8.0       | 18      | 8.3      | 8.3    | 2.00     | 6.3     | 9.2       | 8.6     | 8.01       | 6.3    | 4.6    | 7.0 F    | 0.01      | 9.6    | 9.25     | 9.1)5    | 9.2)5 (  | (6.4)    | 0       | 9.2           | 8.9      | 3/9.6   | 9.0     | 77E <                            | ) *8.0,          | 11.18          | 9.68              | <    |        | 31    |
| 5             | 75         | =   | 43 E      | 6.3 K K     | 7.8      | 7.8      | 4(4.6)    | 70      | 1.91     | [8.1]  | H 08     | 8.3     | 88        | 8.6     | 4.6        | 0      | 06     | 6.18     | 0.01      | 9.2 F  | 8.75     | (82)5    | 8.3,51   | (8.2)5 ( | 9.0     | 9.0           | 8.3      | 7.8 (   | 7.9     | 42)5                             | 9 2 K            | 9.8 K          | 80x               | ,    | XX     | - PS  |
|               |            | 0   |           | 54 K        | 79H      | 99       | 7.0 (     | 6.015   | 7.4      | 8.0    | 0 8      | 1:8     | 4.8       | 0.01    | 8.0        | 4.6    | 8.7    | 3(6:5)   | 7.45 F    | 7.8r   | 7.8      | 7.32     | 8.235    | (2.8)    | (4.3)8  | Σ             | 1.8      | J. 8 JR | 91E     | 39 K (                           | 925              | 924            | 6.7F              | 0    | 7.0    | 30    |
|               |            | 60  | 4.6 F     | 45 H        | 8.0      | 63F      | 722       | 5.9F (  | H 1-9    | (72)4  | (7.6)3   | 8.5     | 87        | 88      | 5(98)      | 188    | 8.3    | 5.2 F KI | 7.4       | 79 E   | 2.8      | 7.5      | (7.5)5 ( | (8.0)5   | ) +8    | Z             | 7.2      | 8.2 (   | 1.91    | (4 2)B                           | 8.9×             | 8.7×           | S. S. Y.          |      |        | 30    |
|               |            | 90  | 4.7 F     | < (3.8) ¢   | 7.0      | 5.8 F    | 6.25      | 5.56    | 60F      | 7.4    | 7.8      | 7.0     | 7.7       | 822     | 4.7        | 7.8    | 811    | S.4K     | 7.0 F     | 7.75   | Z 8 9    | 6 6F     | (6.5)    |          | 5       | 17.1)8        | 7.3      | 2.9     | 7.4     | K (3.9)\$                        | 7.7#             | -              | x(5.3) x          | 10   | 0 :    | 3.1   |
|               |            |     | 4 4 F     | 3.5 K <     | (5.3)    | 5.18     | 475       | 3 to to | S.0F     | (5.8)  | (5.6) F  | 6.3     | 3(0.9)    | 69      | 51         | 9:5    | 6.7    | 445      | 5.65      | 5.25   | 29.5     | 6.25     | J(9:5)   | (6.0)5   |         |               | (5.2)    | 5:1     | (6.6) T |                                  | S.1 F.           | 3),5           | 41x               | 2 (  | 9 .    | 31    |
|               |            | 90  | 2.8 7     | 2.6x        | 32F (    | 29       | 3.0 F     | 375     | (32)     | 34F (  | 3 0 F    | 375     | 38        | 3.4     | 4.)        | (2.9)3 | 33     | 3(9 2)   |           | ц      | 3.8 €    | 3.15     |          |          | 3.5F    | ·             | و        | (€€)    | 7       | 3.1 F K                          | 225              | (2.1)F         | 1.8)5             |      | +      | 31    |
|               |            | H   | 4) F      | S x x       | × ×      | 2.3 F    | 1.95      | 1.7 F   | (20) 5 ( | 215    | 1.76     | 3.0 5   | 335       | (2.4)5  | 32F        |        | (47)   | ŭ,       | 1.8 F     | 2 1 2  | 246      | (2.6)\$  |          | 24       | 32F     | _             | W 20     | _       | 33      | (2.5)F                           | (1.7)F           | K (1.8)\$ (    | K(1.5)} K         |      | × 100  | 200   |
|               | M∘I        | 4   | x(20)\$ ( | F ×         | B        | (22)8    | 80        | 7(L.1)F | (2.0)\$  | 2,3 €  | 2.7      | 315     | 365       | 7       | 3.3        | 2.8    | 22F (  | 2.6F     | (1.9)     | (2.7)3 | (2.9)5   |          | p2 ed    |          | 3.75    |               | 3.3      | 3       | 7       | 20<br>00<br>10<br>10<br>10<br>10 | 11.00            | (2.0) F K      | -1<br>7<br>7<br>7 | 1.   | 7      | 3 %   |
| C. C. (Month) | Long 77    |     | 2.5 KK    | 2.0 F       | (19) 5   | [23] F   | B         | 2.0.2   | 2,3 €    | 2.9, € | 2.5      | 3.15    | 3.8 F     | 4.6     | 3.6        | 3.6    |        | u        | u         | L.     | ыц       |          | [3.5]8 ( | В        | 4.1 F   | ξ             | ري<br>اي | 3.4     |         | 3.8<br>X                         | (1.6)F           | 2.418          | 7.5)              | 3.3  | 4 6    | ۲,%   |
| _             |            | 0.5 | 25 F      | 2.1 F       |          | 348      | B         | 24      | 2.4.5    | 11     | (38)3    | 3.5 F   | (40)      | 7.4     | 6          | 8.4    | 26F    | u.       | 3.5 F     | (40)2  | u        |          | (3.718   | $\dashv$ | T.      | 3.8) P        | 3.4      | 3.6     | 3.3     |                                  | (2.2) B (        | (2.4) FK[2.4]E | S<br>XX<br>XX     | +    | 0.0    | * *   |
| Washington,   | Lot 38.    | ō   | 3.4) F    | N. TX       | 3 (6.1)  | (29) } ( | 00        | u,      | (26) \$  |        |          | 3.6 5   | (4.0)\$ ( | 7 6     | 0.4        | (5.2)  | (° F   | 4.0 F    |           | - 1    | (3.8) \$ |          |          | (3.1)7   | - 1     | 0(1           | 3.5      | 36      | - 1     | 4.7 K                            | (2.5) K K 2.2] B | (C)            | C2<br>M.X         | (36) | , 0.   | 5     |
|               |            | 00  | 40) x     | 1.9)\$      | N for    | [30] [   | (2.3)5    | 80      | [29]     | 3.5    | $\sim$   | 38)\$   | 40 F      | 47      | 4.0        | -      | 48 F   |          | \$(%      | 3      | - 1      |          | (3.8)    | 135)     | 5       | -             | (3.5) 5  | 3.7     | 3.2     |                                  | - 1              | - 1            | K (1.7)3          | (37) | +      | 5     |
| (Character    | open o     | Day | 1         | 2           | _        | -        | _         | _       |          | 80     | _        | Н       | =         | 12      | 13         | 41     | 15     | 91       | 17        | 8      | 6        | 20       | 21       | 22 (     | 23 (    | 24            | 25 (     | 26      | 27      | 28                               | 59               | 30             | 31                | _    | +      | Count |

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Monual 

Automatic 

Manual

TABLE 54

Central Radia Propagation Labaratory, Natianol Bureau of Standords, Washington 25, D.C.

ONOSPHERIC DATA

Mc October ,950

Washington, D. C.

Observed at

National Bureau of Standards McC. Scaled by: B.E.B., R.F.B

Form adopted June 1946

R.F.B. Е В Calculated by:

(28) C(0 +) (3.8) 3 2230 2330 7 (42) 7 (4.0) 7 (38)5 (40)3 (39)3 (4.0) × (3.8) × (4.4) (2.6) 5.0 4.7 o-4.18 (42) (4.0) (3.8) 1.7 J 3.6 20 (49) (4.2)F (20) \$ 1++ (40) 3 (3.9) 3 07 1:4 6. 3, 40 F 3.3) 5 2130 (3.3) 4 6(44) 4.2 F (47) 7 (44) (47) s (4x) 3 (6.6)5 (57)3 (4.7) 2.67 4.4 (23) 7 0 + 1 7 0.5 5.2 4.7 7.7 3 3, 45F 15 (6 +) (39) 5 (3 P) F 35 \* 2030 (34)3 7 (2.4) 7 7 45 20.4 30x 5 2 (3.1) 5 4.5 55 4.8 8 # 4:4 43 34 31 (0.0) (4 6) F (0 9) 625 (50)3 1.8 4 52 F (84)5 (7.2)5 (6.0)F (55)5 X 9.4 7 7 (70) 5 (69) 5 295 10.3) P 8 6 K K(5.4) FK(48) F 1930 4.7 153)5 5.2 3 (56) 79 7 7 5 / (8.8) 5,2 43 'n (54) 5 3(8-7) 162)5 8.4 F K(1.9) F (101) \$ (89) \$ (62) \$ 8.4 (7.1) 5 68F 65F (2.5) (9.2) 8 (84) 8 (6.6) 5 100 (8.8) ° (8.8) (1.9) 655 (66) × (6.0) × (50) × (58) 3 (5.6) × × (62) (54) 1630 | 1730 | 1830 (6.5) (5.7) 30 5(22) 82 K (7.7) 5 K (2.5) 5 (7.0) 5 (83) 5 (7.3) 3 8.6 F (9.5) (6.6) (8.9) (8.0) 5(89) (27) 2 (6.9) 3 (24) × 7.6 4 (8%) 29 7.6 6.8 6.2 2.0 e e (9.5)8 8.9 30 1.1 (77)5 (8.1)5 (9.0) 5 7 8.8 F (66) (6.1) 5 (8.7) 5 × x4.7 (83) 5 75 9.0 (8.4) 8.2 86 18 8 # 8 7.3 8 30 (8.6) S (63) 4 7.9 4.5 K 5(4.6) (4.6) 5 (9.4) 3 6.0 F (9.1) \$ 11.8 K £ (7 6) (9.6) 5 (10.0) (9.5) 8 (9.5) (10.7) (8-6)3 (9.2) 5 (9.4) 5 (9.9)5 (9.2) 5 (90) 5 (8.6) 5 5(06) 8(201) 8(86) 8(26) (9.2) 5 (.3) 2 (9.3) 5 100x (9.8) 8 8.9 x (10.1) x (16) 1230 | 1330 | 1430 | 1530 7.7 10.6 1.6 3 8.7 0.0 89 (6.6) 8.0 9.3 7.7 8.4 7.0.F 8.8 K (9.0) 53 K 45K 8.9) 96 (9.3)5 11.4 1 110.4)3 92 0:// 10.8 K 11.4 x 60 9.5 86 9.3 801 7 8 95 8 95 0.6 0.6 8 31 Mean Time K 9.9 9.2 11 4.8 4.6 × 14.0 ° (4 4) B (4.0 G 0.01 9.2 7.8 76 64 K 80 F 9.2 4.6 0.11 10.7 1.6 7 8 8 8 92 8.3 9.0 9.7 1.1 3.6 00 11.9K 6.6 7 (6 4) (60) 11.7 K . 92 16 9.5 2 % 10.2 9 801 87 7.7 00 7.8 7 % 8.2 16 92 9.1 801 8.6 4.6 1.6 9.3 1.6 75°W 3 X(88) (10.4) 5 (8.8) 8 (8.9) 8 5 (2.8) 5 (08) 2 (08) 8 (6.5) 9.9 x (52) x 52 x 16(58) 5 66 x ナセンナ 7.17 5.6 x 6.4 x 96 × 10.3 K 7 7 7 0.01 10,3 0 9.2 18 0930 | 1030 | 1130 101 (7.2) 5 (82) 8 (87) 8 8.7 2.8 8 2.9 28 06 93 90 3, 40x 96 (20) 6.5 F 60 KK69 Z 90F 9.7 0.6 8 6 F 4.3 1 [4.3] 4 75 28 2 0 18 82 7.6 83 3.6 7.00 11 8 7 8.0 31 [6.4] (7.5) R 5.0 K (8.8) H 2 (08) 2 (80) A 1.6 6.1 F (8.3) 7.6 F 00 (6.9) 100 4.1 × 43.6 × 7.6 7 8.0 8.2 82 9.7 6.0 30 ٤ 2.8 8.0 2 9.3 6.7 F 7.3 (53) 5 2 (9.9) 4.7 K られて × 17 7.6 + 7.2 F 477 8.3 9 70 F 7.4 0830 7.9 20 2.6 6.0 1.4 69 1.4 Ę 00 1.1 30 2 5 (07) (68) x 5 (1.7) 8 (24) 636 K(1.P) 5 34 K (4.1) 8 (5.6) 5 "(77) (5 t) 477 ((1)) 0730 (43) \$ (68)5 45 477 (57) (22) (4.3)2 (59)5 e e 70 0 5 9 7.2 7.2 3.6 e 9 (39) 5 7.0 3, (4 x)F 34 F 0130 0230 0330 0430 0530 0630 397 (4.5)3 1 +. 7 50F \* \* \* (50)5 414 (45)3 5.0 427 5 2 43 1 4 67 15 8 + 4.3 イオ 4.7 3, (31) } (20) 5 32 F [20]B (19) (1.7) (2.2) (31) 1.8 F (1.9) (3 2) 5 (29) (1.5) x (17) (30) 30 4 イと 2.5 20 25 [20] イヤ マイ 23 81 2.3 3.1 3./ 3, (4.5) (2 2) F 3233 1.7 F (20) F 34 F 2.1 F [17] 4 32 F 30 F 1.8 F 277 (35) 12.0) 6 (1.7) 1.9 x 202 Lat 38.7°N , Lang 77.1°W (20) 7 ~ 0 ° ٤ 3.0 ŕ PA Pa 3.0 F (3.2) 3 (1.7) x (2.4) F [20] [ (1.8) F (22) 3.7 F (2.1) ] (39) 5 3.2 0 7 (31) 34 3 7 75 3 3.2 77 3 35 33 3 24 20 Q Z E 30 € 2.4 K (38) 38F (37) (43)<sup>f</sup> (27) 1/2 K[1.9] 1/2 42 3 4 9 37 3.3 7 8 3/ P PQ Σ 77 (49)3 (35) 5 416 (36) (39)3 (3.5) 34 4.1 F 1(+) (37)3 (37) 50 (25) 35 67 3 36 47 8 (3 P) × (2,1) 4.3 K (2 S) F 0030 (39)3 (39) 5 (3.8) (3.5) } (3.2) y (7 7) (3.8) 7.7 4.0 (38) 5 (51) 40 (38) (37) 2.1 3 4 2 4.5 3 3 6 3.3 v 8 Doy 2 ю 4 9 8 0 Count 6 15 1 5 4 18 6 20 = 5 91 2 22 23 24 56 27 29 25 28 30 3

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

National Bureau of Standords by: B.E.B. R.F.B. McC.

Scaled by:

TABLE 55

Central Rodia Prapagatian Labaratary, National Bureau of Standords, Washington 25, D C.

DATA IONOSPHERIC

90

05

0 4

03

02

0

00

Day

0

5 9 00

4

0

Ξ

2 4

<u>m</u>

Lot 38.7°N , Long 77.1°W

Observed at Washington, D. C. (Characteristic) Km

056

October (Month)

Sweep 1.0 Mc to 25.0 Mc in 0 25 min

Median Count

30 5

22 23 24 24

25 27 28 59

1.7 80

5 9| Monual 

Automatic 

Manual

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min Monual 

Automatic 

Manual

Form adopted June 1946

| ol Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.  National Bureau of Standards  IONOSPHFRIC DATA | Scaled      | 75°W Mean Time Calculated by: B.E.B , R.F.B. | 09 10 11 12 13 14 15 | 4.1 x (3.6) x (40) x 4.1 x 4.1 x 4.0 x 4.0 x 3.9 x L | 72x 46x | $(a_1)^p + 40  [\psi_4]^L (\psi_4)^p + \psi_4  \psi_4  \psi_1  L$ | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | +3 L L (46) +3 L L Q | 7 7 7 44 14 24 24 7 | 7 42 46 5.0 46 4.54 7 | . 1 1 6 1 2 2 2 | (43) 45 44H L L L L L L | 7 7 7 3.8 3.6 7 7 7 | 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | $\Gamma$ | 2) 1 (4 <i>th</i> ) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | K L K 46K 44K 44K 45K 45K 41K | Q Q Q 4.8 (48) L L L Q | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7  |    | 7 7 7 7 7 7 7 | B L L L L L L L Q |    | 7 7 7 W W | 0 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 | 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 6) x 3.7x 3.6x 3.7x (40) x 4.0x 4.0x 40x 3.6x | LK LK BK LK | LK LK LK LK 39K LK | LX LR LR U4K LK LK LK QK QR |   | - 41 47 46 47 41 | 6 12 15 14 13 8 6 2 |
|------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|----------------------|------------------------------------------------------|---------|-------------------------------------------------------------------|-----------------------------------------|----------------------|---------------------|-----------------------|-----------------|-------------------------|---------------------|---------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|------------------------|-----------------------------------------|----|----|---------------|-------------------|----|-----------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------------|-------------|--------------------|-----------------------------|---|------------------|---------------------|
|                                                                                                                                    | 2           |                                              | 60                   | 4.1 K                                                | 4.1 X   | (41) b                                                            | 7                                       | 4.3                  | 7                   | 7                     | 7               | (43)P                   | 7                   | 7             | 7                                       | 7                                       | 7                                                                                         | 7                                                         | -1<br>×                       | Ø                      | 7                                       | 7  | 7  | _1            | 8                 | _1 | Σ         | 7                                       | 7             | _1                                      | 3.7 K                                         | X L X L     | X L X L            | 1 H 1                       | - | 7 17             | 9                   |
| Central                                                                                                                            |             |                                              | 06 07 08             | a                                                    | (3.     | 7                                                                 | 7                                       | 7                    | 7                   | 7                     | 7               | 7                       | 7                   | 7             | a                                       | Q                                       | 7                                                                                         | a                                                         | 7                             | 9                      | a                                       | 7  | 7  | 3             | 7                 | G  | 7         | 0                                       | 3             | 0                                       | (9.8)                                         |             | 7                  |                             |   | 1                | 7                   |
| October 1950                                                                                                                       | G.          | , Lang 77.1°W                                | 03 04 05             |                                                      |         |                                                                   |                                         |                      |                     |                       |                 |                         |                     |               |                                         |                                         |                                                                                           |                                                           |                               |                        |                                         |    |    |               |                   |    |           |                                         |               |                                         |                                               |             |                    |                             |   |                  |                     |
| Mc                                                                                                                                 | Washington, | Lat 38.7°N                                   | 00 01 02             |                                                      |         |                                                                   |                                         |                      |                     |                       |                 |                         |                     |               |                                         |                                         |                                                                                           |                                                           |                               |                        |                                         |    |    |               |                   |    |           |                                         |               |                                         |                                               |             |                    |                             |   |                  |                     |
| foFI                                                                                                                               | Observed at |                                              | Day                  | -                                                    | 2       | ю                                                                 | 4                                       | 2                    | 9                   | 7                     | 80              | 6                       | . 01                | =             | 12                                      | 13                                      | 41                                                                                        | 15                                                        | 91                            | 17                     | 81                                      | 19 | 20 | 21            | 22                | 23 | 24        | 25                                      | 26            | 27                                      | 28                                            | 59          | 30                 | 3.                          |   | Median           | Cannt               |

Notional Bureau of Standards by B.E.B. R.F.B. McC.

Scaled by:

TABLE 57

Central Radia Prapagation Labaratory, National Bureau of Standards, Washington 25, D.C

October 1950

Woshington, D.C.

Observed at

(Charocteristic) (Unit)

IONOSPHERIC DATA

R.F.B. 23 22 B.E.B. 2 Calculated by: 20 <u>ග</u> <u>∞</u> (120)x (120) 9 (120) 5 (120)B (100)4 (110) A × × A(011) (100) A R(001) B(001) (130)x (07/) (110) A F(001) B[00/] (120) 120 (120) (130) 0// 120 120 2 7 A(001) 1204 110014 1104 10001 8(011) \$(011) 1104 X(0/1) 1001 3 K 120 1201 011 0/1 100 120 9 011 011 011 0/1 011 011 011 011 011 0// 011 011 23 PQ (110) B 1001 (110) B 110 X A(00) (110) B (110) B (100)3 1104 (120)7 1001 100)A 100 (110) B (110) B (111) A (100) A (100) B (100) 011 011 110 011 5 100 x 100 110 011 011 140 011 0// 001 (100) 110 011 110 011 011 30 ξ 17,007 8 (011) (100PA (100)A (100) A (100) A (100) A 1104 1104 (110) \$ 110 \$ (10) \$ 3 4 (1001) (1/0) 4 1100/4 11001 011 001 011 011 (100) A 100 001 100 011 110 100 100 011 110 8 ξ ξ . Mean Time B (0/1) B(0/1) 1001 100) 4 No11) 110)4 100 (100) A A(001) A (001) 1001 001 1/10)5 2 001 00. 011 B 100 0// (001) 001 100 100 011 50 ₹ 5 (100)4 [110] B × 0// A(001) (120) A 00/ 8 (011) (100/7 100 001 001 K 110,3 100 011 00/ 011 011 75°W 001 011 110 ξ ٤ 78 2 011 00/ 100) 110 X 1000 110014 1001 100 x [100]B 110 X 1001 [110] B 1007 110 4 A(00/1 A(011) 011 P(001) A(001) (100)B (110)B (100) 4 (110) P(001) A (100) A (100) 100 110) 001 011 1107 0// 29 = 001 011 001 100 100 011 0// ξ 100 Ź (110) B & (0/1) 4(011) (1001A 1001) A (011) 100 X A(001) P(001) 110 4 (1/0) B H 001 1001 +001 100 1104 001 0// or. 011 100 001 0 001 011 011 011 ξ ξ ₹ H 011 110 + A(001) 8(001) A(001) [10]B (001) A(001) 1001 110 4 (110) 8 1104 (120)# (110) A 110 4 00/ 011 60 001 001 001 110 011 ξ 011 011 011 011 ξ Ź 28 100) 4 (120)A A (011) (100) (100/A A(011) (110) A 110 K 1120)5 (110) A 1104 0// 120 0 // 011 110 011 001 011 100 100 49 08 011 0// 011 110 110 011 011 100 ٤ 1 (120)B (130) 5 (120)B (110) A A(011) A(011) (120)x (120)B (120)5 (110) (130)3 R(011) (120) 120" 120 120 110 A(011) 120 120 120 011 130 110 110 25 07 ξ pa PQ Σ 110 X 90 ŀ 05 , Lang 77.1°W 0 03 Lat 38.7°N 02 ō 00 Day N 4 9 ω Median Caunt M 5 7 6 0 2 -3 -5 91 24

4

\_

6 20

21 22 23

1 8 26

25

27 28 29 30 3 Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Manual 

Autamatic 

Manual

TABLE 58

Form adopted June 1946

National Bureau of Standards

McC.

BEB, REB

Scaled by: \_

Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

`~ ~₹

1.5 \* 90

7.7 7.7

9 5

~ ω 6 0 = 2 <u>m</u> 4 5 9 | \_

~

100

20

0.5

0 4

03

02

5

00

Day

N ĸ 4

Lat 38.7°N , Long 77.1°W

Observed at Washington, D. C.

October

Mc (Unit)

IONOSPHERIC DATA

RFB 23 22 B.E.B. 5 Calculated by:\_ 20 6 (1.3) x 8 (1.5) 1 24 4 (2.0) 7 (1.7) B X 194 0 0.8 00/ 7 4 Ą 9 T PO T PQ T 234 (2.3)B (2 4)B (x.4) F 234 (22)4 4.4 [2.2] 7 7.4 23 7 4 カマ 7 7 9 3 S 4.5 2 ッペ T [26] (27) B (2.7) 2.7 (2.7) 3.0 30 30 8 2.3 (2.7) 4.9 6 8 8 8.8 2 83 8 29 7 % 8.8 2.7 *→ γ* 2 ξ (28)B 28 F (30)A 304 (3.0)B 3.0 K 3.0 × 2.9 K 2.9 x 2.8 x (3.0) B (2.8)B 3.0 (3.1)A (3.0)A 3.1 3.0 3.0 3.0 K 2.9 A 30 3.0 3.2 3.1 3.0 3.1 30 30 4 3.1 3.1 3./ 1 8 29 1 \_ Mean Time B(1.8) B(2.1)B (30) [3,]B (3,) B 3 0 K (3.0) A 3.2 [3.1]A 3.0 3 2 3 3 3,3 3.1 3 3.1 3.0 3.1 32 3. 3.1 ξ \$ T T [3.0] (3 /)B (3.2)B (3.0)4 (3.0) B 30 K (3.1) 3 3.3 3 3.1 3 3 3.1 3.0 3.0 75°W 2 3. 14 ∢ Ź ξ < [30]A (3 o)B (3.1)A [30] (30)P [3.1]B (3.0) 3 (31) 3 2.7 x (3.0) B (2.P)B (3.0)B (30) A [3.1] A 2 pt [3.0] B (2.7)\$ 3.0 K (2.8) B [30] B (3.1) 30K 3.0K 3.0 30 3 / 32 H 33 [28]4 3.1 30 J. . 30 3.0 30 = ξ ξ Ţ T (3.0)A (30)4 30 4 30 0.0 3.0 30 (3.0) 2.9 38 8 0 27 ₹ Ţ ₹ T ₹ ξ Ţ ₹ 281 (2 9)B (25) B (2.9) A 30 H 29 F 2.5 K (25) B [25]3 A.8 K (2 4)B (2.6)B 29 3 9 30 27 29 7 9 2.7 200 60 8 8 2.5 T T 2  $\leq$ Z ∢ (25) 2.54 [22]B (23)B (2 5)B 2 5 H (2 x)B (2.0) 224 2.5 8 2 36 2.5 4.4 7 6 8 25 2.5 08 T ξ T ₹ T

204

00

609

6 20 2 22 23 24

8

Z

Z V

0

PO ₹ 4

26

25 27 28

59 30

0 8

61

Sweep 1.0 Mc to 250 Mc in 0.25 min Monual 

Automatic 

Monual

7

40

30

49

47

3

3%

43

Ę

7

7

0 %

ſ

Median Count

(1.7) \$

National Bureau of Standards

TABLE 59
Central Rodio Propogation Laboratory, Notional Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Mc, Km October 1950 (Month)

| (0)    | (Characteristic) | 1 (3      |            | (Month)  |            | 2          |        |          |         |                   | 0           | IOSP       | IONOSPHERIC |                | DATA        |           |                 |                   |            | 2          | וסווסו      |              | nstitution | (Institution) |  |
|--------|------------------|-----------|------------|----------|------------|------------|--------|----------|---------|-------------------|-------------|------------|-------------|----------------|-------------|-----------|-----------------|-------------------|------------|------------|-------------|--------------|------------|---------------|--|
| Observ | Observed of      | 2         |            | D.C.     |            |            |        |          |         |                   |             |            |             |                |             |           |                 |                   |            | Scaled by: | ני<br>מ     |              | 'n         | MCC.          |  |
|        |                  | Lat i     | Lat 38.7°N | , Long 7 | Mo! 22     |            |        |          |         |                   |             | 7.5        | 75°W        | Mean Time      | ie          |           |                 |                   |            | Colculated | by.         | B.E.B.       | ,          | R.F.B.        |  |
| Day    | 00               | 10        | 02         | 03       | 0.4        | 0.5        | 90     | 07       | 0.8     | 60                | 01          | =          | 12          | 13             | 14          | 15        | 91              | 17                | 18         | 61         | 20 2        | 21 22        | 23         |               |  |
| -      | 9                | 9         | 20130      | 16,50    | 9          | 32 110     |        | 9        | 29 110  | 9                 | G           | 9          | 62,100      | 9 9            | 3,20        | 6         | B               | 9                 | 9          | 9          | 6           | 6            | - 6        |               |  |
| 23     | 9                | 6         | 9          | 9        | B          | 8          | 6      | 9        | 9       | 9                 | 9           | 98 /20 1   | 12,100      | 5              | 6           | 6         | 9               | 9                 | 6          | 5          | G 47        | 180 30,      | 160 27     | 70            |  |
| ю      | 33/70            | 9         | 9          | 4.0120   | 42110      | B          | 18 50  | 9        | 78/20   | ß                 | b           | (b)        |             |                | 001/89      | 6         | 6 3             | 3/20              | 6          | 5          |             | 6 6          | 9          |               |  |
| 4      | 5                | 9         | 9          |          | 061 69     | 9          | 9      | 9        | 110,00  | b                 | 6           |            | 100         | 01/19          | 9           | 6         | 6               | 10                | 0110       | 6 5        | 3/100       | 6            | 9          |               |  |
| 2      | 9                | В         | B          | 60/20    | В          | 9          | 9      | 9        | B       | b                 | 66710       | 30/10      | 72/00       | 9              | 120         | 3         | 9130 4          | 2                 | 5 /20      | 6          |             | 6 6          | 4          | 9120          |  |
| 9      | 60,20            | 9         | 25130      | 1.3 120  | 011 + 11   | 2.3 110    | 31/10  | ß        | 9       | 9                 | 9           | 5          | 9           | 7100 3         | 5/00        | Ŋ         | J               | 6                 | 9          | 5          | G 34        | 4/10 6       | 2          | 0//           |  |
| 7      | C                | 9         | 9          | 24/10    | 28 110     | 50 110     | 9      | 9        | 9       | 9                 | 9           | G          | 9           | 5              | 9           | 5         | 9               | 9                 | 9          | Ŀ          | 9           | 9            | 9          |               |  |
| 8      | 9                | 6         | 9          | 25/110   | 30         | 9          | b      | 9        | B       | 9                 | 9           | U          | b           | b              | 9           | 6         | 5               | 9                 | 1 5        | 0118       | 9           | 5            | P          |               |  |
| 6      | 9                | 6         | 25 100     | 3.5 100  | +          | 01/(51)001 | 6      | 9        | 2.7 100 | 54 100            | 9           | 9          | 6           | P              | 9           | 6         | (5)             | 10                | 01/9       | 9          | 9           | 6            | 6          |               |  |
| 10     | 9                | 9         | 9          | Э        | 9          | Ь          | 9      | G        | 9       | 5                 | 9           | 9          | 9           | 9              | 9           | J.        | 4               | 20/10             | 1          | 9          | 6           | 9            | 9          |               |  |
| =      | 9                | G         | 9          | 011 #1   | 6          | G          | (5)    | 21100    |         | ß                 | 9           | b          | 6 3         | 31,10 9        | 90/30       | 9         | 9               | 6                 | 9          | 9          | 9           | 9 9          | 6          |               |  |
| 12     | 9                | Э         | G          | 6        | G          | b          | B      | 9        |         | 9                 | 9           | 5          | 6 5         | 57110          | 6           | 9         | 9               | 9                 | 9          | J          | 9           | 6            | 5          |               |  |
| -3     | 9                | G         | 9          | 9        | G          | G          | 9      | G        | b       | 00/(1.5)          | 9           |            | 6           | b              | 5           | 6 3       | 38,30           | 6 19              | 0116       | 9          |             | 9            | 9          |               |  |
| 4      | B                | 9         | 9          | 9        | 9          | P          | 51 170 | 35/10    | 9       | 0110.4            | 0010.4      | 26,000     | 4.3,100 5   | 59 100 6.0 100 | 4 00% 0     | 4.3,120 5 | 58130 50        | 50110             | 6          | 8          | 8.3/10 6    | 9            | 9          |               |  |
| 15     | 20110            | 9         | 9          | 13 110   | 1.3,100    | 9          | 9      | 4.0110   | '       | 0 %               | 100 3 6 100 | 27100      | 56/00 2     | 2.5 100 23 100 | 3/00/8      |           | 3.5 5,20 19100  | 9,00              | 30/08      | 6 3        | 33/10 30/10 | 110 31 100   | 100 (38) 5 | 50/10         |  |
| 16     | 72/10            | 35110     | G          | G        | P          | 38 110     | B      | 01181    | 1.7     | 100 60 130        | B           | 9          | 6 3         | 38110 33/20    | 3/20        |           | 3.4 /20 4.7 110 | 7110              | b          | 9          | 6           | 9            | 9          |               |  |
| 17     | b                | 9         | Ġ          | G        | P          | G          | 6      | 9        | 22 110  | 5                 | 9           | 9          | 9           | 9              | 5           |           | 6               | 17,0017           | 100        | 6          | 3           | 6            | 9          |               |  |
| 18     | 9                | 6         | Ф          | P        | P          | 9          | 9      | ß        | b       | 5                 | 30/10       | 26,000     | 9           | 4              | 46120 4     | 48/20 4   | 2,20 3          | 42/20 37/20 30/20 |            | 32/204     | 3/10        | 6 37 110     | 9 01       |               |  |
| 61     | 9                | P         | 16100      |          |            | P          | P      | 6        | P       | 5                 | 3/100       | 33/10      | 30,000 9    | 98 100         | 6 39        |           | 9               | 400102            | 46/10 32   |            | 3.7 110 33  | 33/10 (4 0/5 | 10         | 4,000         |  |
| 20     | Ð                | 25,100    | 3.7 /100   | 29 1,00  | 30/00      | 62/160     | Ь      | 2.1 110  | 9       | 3.1 110           | 33,000      | 31 100     | 6 28        | 100            | 0           | 0         | 2.7100          | 9                 | 0          | 6          | 6 32        | 3.2 /100 G   | 6          |               |  |
| 21     | 9                | 9         | 9          | В        | P          | 9          | P      | 9        | G       | 9                 | 9           | 9          | 6           | B              | Ŀ           | 7 5       | 4/00            | 9                 | 9          | <u>(b)</u> | 9           | 6            | 9.         |               |  |
| 22     | 9                | 9         | 8          | В        | 80         | Ь          | 9      | G        | 9       | 9                 | P           | G          | 5           | 0              | 6           | 9         | 3               | 4 1/00            | 9          | 9          | 9           | 6            | 4          |               |  |
| 23     | 9                | 6         | P          | P        | Ъ          | G.         | 9      | 6        | 9       | 2.1100            | 28100       | G          | 6 3         | 30/00          | 6           | 5         | P               | B                 | 9          | 6          | 9           | 6 4.7100     | 00         |               |  |
| 24     | S                | 9         | Ŋ          | ξ        | £          | K          | B      | Ь        |         | E                 | K           | 5          | 9           | 9              |             | 9         | 9               | 5                 | P          | 6          | 9           | 9 9          | P          |               |  |
| 25     | 9                | - 1       | G          | .p       | Ġ          | P          | Ġ      | 5.8 1/80 | 24      | 1,10 35 1,00      | 72/100      | 9          | 28,00 5.7   | 100            | 1.8 100 3.  | 3.7 110   | 5               | 6                 | (b)        | 9          | 9 9         | 6            | 9          |               |  |
| 26     | 9                | b.        | 59 1,00    | 56 1110  | 34110      | (5.5)      |        |          | 7.2     | 1110 34/10 29 110 | 110         |            | 10/100 4.1  | 1100 35        | 100         | 3 1/00 3  | 7100 4          | 0010              | 9          | b          | 6 2.5       | 1,00 G       | 9          |               |  |
| 27     | 6                | 26/00     | 00/ 21     | S        | 01/88      | 3.3 110    | 44,70  | 31/110   |         | 36/11068/11063    | 200         | 100 60 100 | 2.3,000 7.  | 7.2 110 2      | 24,00145    |           | 00104           | b                 | 9          | 9          | 9           | 6 6          | 9          |               |  |
| 28     | 0                | 6         | 9          | P        | 9          | P          | P      | P        | G       | G                 | 9           | 011/08     | 56/20       | 6.1            | 1.8 100 8.1 | 8.7 110   | P               | Ġ                 | 9          | 9          | 9           | 6            | P          |               |  |
| 29     | O                | b         | Ъ          | b        | 9          | G          | G      | G        | P       | 6                 | 9           | 9          | 102/201     | 6              | 9           | P         | 5               | W W               | ξ          | 9          | 9           | 6 6          | 9          |               |  |
| 30     | B                | 9         | 28,100     | 22/00    | P          | 9          | G      | G        | P       | Э                 | 6           | 9          | 102/201     | B              | 6 19        | 9 100     | 9               | G 1.3             | 1.3 1,30 2 | 150 (6:    | 3) 50       | (+ r) 9      | 4/80 G     |               |  |
| 31     | B                | B         | B          | P        | 13 100 /   | 10.7 1/30  | B      | G        | P       | 67 /120           | 9           | 65/20      | 9 5         | 0/20           | 9           | b         | 6               | 6                 |            | 6          | 9           | 9            | 9          |               |  |
|        |                  |           |            |          |            |            |        |          |         |                   |             |            |             |                |             |           |                 |                   |            | _          |             |              |            |               |  |
| Medion | *                | *         | *          | *        | *          | *          | *      | *        | *       | *                 | *           | *          | *           | *              | *           | *         | *               | *                 | *          | *          | *           | **           | * *        | *             |  |
| Count  | 30               | 30        | 29         | 29       | 700        | 29         | 31     | 31       | 31      | 30                | 30          | 29         | 31          | 31             | 31          | 31        | 31              | 30                | 30         | 31         | 31 3        | 31 31        | 3/         |               |  |
|        | ** ME            | FOLANI FE | 0000       | TUANI NA | AACDIANI A | 100        | 200    |          |         |                   |             |            | 0 30        |                | -           |           |                 |                   |            |            |             |              | -          |               |  |

\*\* MEDIAN fES LESS THAN MEDIAN 10E, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER.

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manuol 

Automatic 

Manuel TABLE 60

Form adopted June 1946

National Bureau of Standards (Institution)

McC

R F B

œ

B.E.

Scoled by: \_\_

Centrol Rodio Propogation Laboratory, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

056

October

D.C.

Washington,

Day

N

4

ťΩ 2

~ 8 σ = 2 5 4 5 9 17 8 6 20 2 22 23

0

(Unit)

(MI500)F2

RFB (2.0)5 1.8)th 1.8)4 1.9 F 1.6) 9 (0) 7 7 17 7 E(8,1) K (1.7) 5 (1.9) (3.0) (8%) 23 (6.1) J 1.915 5 (6.1) 5(81) 1.8 F (8.8) (1.7) (2.0) S (2.0) J (1.95 (2.0)5 V(8.1) (2.0) F (2.1) F X(8.1) 1.8) 6. 6.1 6.1 (6.1) 30 6.1 22 J B 1.9F 6(8.1) ш S X(8.1) 1200 1.8 K (20)3 (2.1)5 1.8 h (2.1/5 (1.1)] (1.8)K 000 œ 6.1 1.7 00 00: 6.1 0.0 30 0.0 1.8. 6.1 00 2 6.1 6. 17 (20)5 1.9F (2.2)Z 5(1.9)E (2.2) F (2.0) S (2/) (2.0)E S(0:0) (22) F (2.1) Satculoted by: 2.0 0.0 1.7 6.1 6.1 20 7 2.0 30 (31)51 (2.3)5 (2.0)F 2.26 (2.2) 1.9 h 2.07 (2.1) 5 (2.1) 8 X(8.1) 1.9× 2.0 1.0 0.0 <u>6</u> 1.9 2. 3 80 2.1 7.8 30 (2.2) 5 (2.1) 5 (2.0) 7 (2.0) 7 (3.0) 7 (2.0) 7 (4.2) (22)5 (4.1)5 2.1F (2.3)5 (2.2)5 (2.2) g (2.1) S (2.0) 5 (2.2) 5 (2.0) F (2.2) F (2.1) F (21)5 (22)5 (23) 5 (2.2) 5 (2.0) × (2.0) × (22) 8 (2.1)5 (2.3) 5 (2.3) F (23)8 (2.3)8 (2.2)F (2.2) 8 (2.3) S (2.1)3 (2.2) 6.3 £.3, 7.6 2.2 0.0 7. 2.1 K (2.0) K (2.1) 2.2 K 2.2 2 8 1.8 x 5/2, (2.3) 12235 (x.4)S (2.3) 1.9 × (2.0) (22)5 (22)5 (2.2) 8 7 7 1 (4.2)5 (2.1)5 8.0 X (4.1)5 1.8 X (2.1) x (2.2)5 (2.1)5 12.3)x 2.3 S. S. 3 (2 2) 2.8 0. J. 7.8 2 2 2.1 9 7 (2.2) S (2.2) S (2.1)5 (3.1) (3.2)5 1.5 K (2.0)5 1.9 E (2.3) 1.9 K 8(1.7K (2.1) 5 2.0 (22) 2.3 × (2.3) × (22)8 (2.2)8 23 2.0 x 2.1x · Y 2.0 0.8 8.3 2.0 2.2 0.0 3 7.7 7.6 2 31 13(1.10) 1.5 K 1.5 K (2.0)5 2.0 H 2.12 (2.0) 5 (0.0) 22 (2.2)# 1.98 41.97 7. 2 2 0.8 3.0 2.0 2.0 6.50 6.1 8.0 7 4 7.8 7.7 Meon Time (2.2)8 (2.1)8 (2.0)5 S X 2.0 % (2.3) 0 2.3 2.0 2.0 Ġ 2.0 0.0 2.0 83.33 2.0 0 8 3 7.00 7.7 2. 10 (2.1)5 (2.2)3 1.9 E 2.1 2.0 2.3 2.2 2.2 2.0 2.0 2.0 7.7 6.1 0.0 2.1 7 75°W 2.0 7.7 7.8 7: 20 7.8 7 2 4 (2.2) S (2.2) S 1.9 K 2(1.5) 2.0 % 1.8 h 2.3x 2.1x 2.0 2.3 s, 2.0 0.0 0.00 6 1.8 7.8 3 1.4 K (1.5) 3 7.7 = C 28.8 (2.4)5 x #-1 2.1 K 1.9 X 2.0 K S (1.8) K cs cs 2.3 8.8 is is 8.3 2.4 6 a 18 80 2.1 1 N 0 (2.4)5 (A.1)A (2.3) 5 (2.1)5 1.5 K (2.4)J 8.12 1.0 x 8.3 7 2.5 T) 2.2 3. 2.3 7.4 18 2.0 7. 60 7 222 2.0 F 2.3 F 8(1.6)5 2.3 F A:3.7 20% (2.2) X 2.15 2.42 (2.4) (2.5)K 2.0x 8.2 3 7.4 3 3. 3.3 33 08 23 O 1.9 x 2.2 x 1.9 x 2.1 x A. F (2.3)F (23)5 (2.4)5 232 2.3F (25) 2.2K 75 F 2.1F (2.3)5 (1.9) 3 (2.0) 5 (2.1) 5 (2.3) F (2.1) & (25) (E. C.) 4 (2.4)S ンナメ 3 33 2.4 23 8 33 30 07 U 3.1 2.2 2.0 × 2.0 F (1.9)P 5(8.1) 12.0 KI 5/1.8/ 1.8 7 2.0 2.0 2.0 2.0 2.0 90 20 8. K 6. 000 30 O (2.0)5 1.8 F (2.1) 5 SFX 1.8 7 2.0 F 2.0 F 1.9 F 3(8.1) 1.9 F 5(6.1) 2.0 F 2.0 F 23 A 12.2) S (2.1) S 1.9 F 1.9)x 1.7 20.0 27 ,6: 6. 05 O (1:1) Q (6.1) 6.1 (1.9) F. (2.0)} 1.9 F 1(8.1) (1.8) S 01.78 1.9F (2.2)7 (2.1) 2.2 Long 77.1°W 1.20 2.0 04 BF J 7.8 33 6.1 (22) Q Q 3. 0 ų 1.8 F (1.9)\$ 5(6.1) FB \* 1.98 2.0 K 18F 19F 2.0 (2.0)F X(P.1) & X(X.1) 199 7 1.95 8.0 S 2.1 3.0 03 2.0 2.1 5.0 Q D 18 2.1 % (3.1) 5 1.9 K 2.05 (1.6)5 E(6.1) (1.8)6 1.9 6 (2.0) 1.95 Lot 38.7°N (1.8) = (2.0) = (2.0) 2.1 B 8. 2.0 1.9' 2.72 02 6.1 0.1 (8.1) O Q S (2.0) 5 2(0.8) (1.9)3 (2.0)5 200% (2.1) 5 S 1.7) F (1.7) \$ (1.9)3 8.2 F 1.95 (2.0) 2.0 X (2 2)x (22)K X(7.1) \$ (7.1) 1.8 F 1.9 € 1.8F (2.0) ] (0.2) 7.7 1.7 7:8 1.8 8 ō C 18(6.1) 1.95 7(6.7) (2.0) 1.73 (1.7)x 1.8)x 0.8 1.8 8.1 00 O 6.1 0 6.1 3 Observed of

Mc to 250 Mc In 0.25 Monuol 

Automatic 

M

Median Count

m

25 27 28 29 30

24

National Bureau of Standards

McC

Scoled by BEB RFB

Central Radia Prapagatian Laboratory, National Bureau of Standards, Washington 25, D.C

IONOSPHERIC DATA

056

October

Observed at Washington, D.C.

(Unit)

(M3000)F2

RFB (2.9)A (28)K (27)5 (27)5 (31) 1 (4 C) (2.8) (60) 27 (17) (30) 23 (3.0) A 28F (2.8)5 (29) E (31)8 (30) (30) p (29) 5 (30)E (29)E (38) (26)5 1288 KC 78 30 3.0 20 22 30 B.E.B. K(27) F (2.8) K (3 O)3 30 5 (30)5 (30)3 (31) 200 30 30 30 50 27 (27) 30 2 25 2 7 31 (32)F (3.0)3 (32) FI (30)3 13015 295 (3.0)5 32)5 x (2.9)5 (3 1) s Calculated by: 30 26 30)5 3.0 0 0 29 0 30 3.3 K K(27) F (34)3 3.0 F (3 1) 5 (32)5 M K K(31) 5 300 (32)3 30 3.05 5 <u>6</u> 30 (31) 5 3.0 x (3.1) 5 (29) × (30) 5 (3.2)3 (31)3 (32)F (31)2 130) × 130) 5 2 (32) (32) 00 30 89 (31)5 (32)x (30)x (32) 8 (32)2 (32) (31)3 32 31 (29) (30)5 (33)5 3 4) 0 (35) ξ 30 (30)F (32)# (32)3 XXX (3.2)5 (31)3 (31)5 (32)3 3.2 (31)5 30)3 29 (3.2)5 (3.3)5 34 32 (32) 0 29 3 9 31 25x (34)5 3-x 295 326 2 (31)3 (31) 30 30 3 0.0 (31)5 (32) (32) (33) 3 5 3 30 33 31 2 (30)5 (32)# 34× 34× 29 KK(26)5 30# 23x (30)3 312 (32)5 (32)3 30 x (30)5 30 30 (28) 30 31 30 30 30 31 31 4 3/ (32)× 30 30 300 (30)3 30 (31)5 2.9 3.0 30 30 30 30 (33) 30 2. 3 30 30 32 2 5 b 31 2.9 x (30)5 31 X (32)5 (32)5 2 C w -x 0 2 30 30 30 30 3 3.2 3. 30 30 3/ 4 2 75°W 2 29x 32F 2 2 17 315 (32)5 24x (31)# (32)5 30 30 2 30 00 3.0 34 32 3/ 31 U 30 = 3 332 3.2 (32)3 32 34 5 3 34 3 30 33 30 3 £ 3/2 32 H (31)" 33. (35)2 (33)5 294 29 K 317 32 6 (2.3) B 34 K (33) FK27 F (34)2 32 34 32 30 33 5 34 33 30 60 E 30 K (25)5 34 5 (35)3 (3 t) E 322 (35)A 34 345 (32) 3 345 2 34 3-6 315 34 32 30 36 3 35 3.0 30 Ú (34) (35)4 (33)3 (345) (29)5 2 3 34 (35)5 34 x (33) K 34 31 36 (34) 32 (33) 3 4 34 33 30 07 2 gr (28)P 30 F 30F (30)E 32 F (27)3 (31) 5 200 30 + 3 -(30) 5 (30)5 29 (2 8) N 30 30 5 30 30 50 30 90 30 (28)5 (27)5 (C C) X (31) KK(30) F 305 (29)5 K(28) 5 775 30 F N 30 F 53 30 52 0.5 Θ 7 27 Ę 27 127/8 29F (28)F 315 (33) ] (31) (29)3 2 C 3.2 (33) } (3.1) 8 0 Lot 38.7°N , Long 77.1°W 0.4 3 / 30 30  $\alpha$ 20 25 U ξ  $\alpha$ (30) 29x TT BA B [ (33) ] 31 30 30 30 30 (23) 31 30 30 30 03 77 30 24 E Ø 0 8 200 X (28)r K(26) F (28) K (29) F (25) F (28) s (31)5 8(62) (26) F (27) B (29) F 30 5 295 (31) 30 5.9 30 (29) 30 76 02  $\alpha$ U 8  $\omega$ (29) g (29)5 29 K (32); (67) (29)3 (30) (30) (29)K (31)K (30) (31)5 30 0 3/ 29 2 00 0 200 8 28x (3.0) [ (28)F 12 8 S 2.9 5 (31) (26) (30)5 30)5 30 00 N U 30 28 U Median Count 22 Day S 9 Φ σ 0 2 9 6 20 23 24 25 56 27 59 = 2 4 2 1 80 2 28 30 5

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

National Bureau of Standards

McC.

TABLE 62
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

056

October (Month)

(Unit)

(M3000)FI (Chorocteristic)

2 ы 9

2

89

\_

12

Ξ

5 9

17

6 20 2 | 22 24 25

26

28 29 30 <u>س</u>

R.F.B. 23 R. F.B. 22 B.E.B. Scaled by: B.E.B. 2 Colculoted by: \_\_ 20 <u>6</u> 8 1 1 1 0 0 Ø Q 9 Ø 0 F 0 0 0 0 Q 0 0 0 (3.3) 5 0 (3.4) A 50.5 4 6.5 3.4 (n) 0 C \_ Mean Time . √ √ 10 (n) (3.7) lo mj 36 (3.3) (s) 3.6 ر ان ان (3.5) (3.5) (3.4) K 3.3 30 5 (3.7) ki rj 3.7 75°W 12 (3.6)x (3.8)x 6 3.6 ξς. η) (1) 5 (A) 3 3.6 3.7\* (3.9) 3.7 4.0 3.4 3.6 3.9 2 Q 3.6 \* (3.7) (3.7) 30 3.6 60 3 0 3 (32)4 90 a 1 0 0 Q Q Ø Q Ø Q 07 90 0 5 Lot 38.7°N , Long 77.1°W 0 4 03 Observed at Washington, D. C. 02 0 00 Day Median 6 Count 4 0 3 4 18

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual 

Automatic 

Manual

ď

National Bureau of Standards

R.F.B.

R.F.B. McC

23

22  $\alpha$ B.E. B.E.B.

2

<u>თ</u>

<u>∞</u>

\_

9

5

4

2

2

=

0

08

07

0.5

40

02

ō

00

Day

4

N ٣ 9

C) ~ 00 6 0

Lat 38.7°N , Lang 77.1°W 03

Observed of Washington, D.C.

October 1950

(M1500)E

x / x

422 4.3 ×

4.2 90

4/X

406

1 + 1 1

43

43

U

8

45

42 40

8

44 43

7 4 40

1 7 4.3

\_ Mean Time

75°W

Calculated by: 20

Scaled by:

TABLE 63

Central Radia Propagatian Laboratary, Natianal Bureau of Standards, Washington 25, D.C.

IONOSPHERIC

(4 1) S 4.1K (39)K 39 K 40x (42)8 (4.2)5 1+ 36 44 4.1 42 1 42 3 ₹ K K K < T  $\omega$ Θ 4 / K (4 3)B (4.2)A (40)F 9(14) 0 4 44 4.2 - + 42 40 42 4 1 4 5 4 42 1 4 42 1 + K 54  $\alpha$  $\Theta$ ⋖ (4.2)A 404 x/t 4/K 4.2 K 44× (42) 42 (41)4 (42) 42 43 42 40 # 3 (++)E 4.2 4.3 40 1 + 4.1 4.1 43 1 # 1 4 £ 7 T (42)8 (41)8 (42)A 4./x (42)8 42 1 17 43 42 42 4.2 40 (41)8 (40)8 40 40 4.3 4.3 43 4.1 4.1 44 1 + / # ξ £ (4.2)<sup>A</sup> マセセ (43)F (4 3)A 42x 9 7 43K 4.3 4.0 44 42 1 1 42 42 43 ₹ 1 4 1+ 42 K 44 47 ξ E ⋖ (42)R (42)2 4.3 K g(+ +) 43× 44 40 4.2 1+ 42 44 43 1 + 1 42 1+ Ц  $\alpha$ K ξ E ₹  $\omega$ T 42K (43)B (4.3)A 446 4.3 M 42 4 4.4 (6 A)B 44 43 43 5 7 (+ h) 42 1 + 43 1-4 ξ ξ U K B U 8  $\forall$ T 43x g(7+7) (42)P 424 (4.3)8 4 X (42)A 44 1 1 (43)A 5 / (41)B (42)F 4.3 45 44 1+ K ξ ξ T ¥ ₹ ξ ⋖ V 4 \_x 7 X 43 # (4.3)A (4 H)B

4.3F

4.3 30

2 5 4 15 91 \_ 8 <u>6</u> 20 22 23 24 25 26 27 28 29

=

4.

40

43 42

P(1 t)

8 04 04 40 42

g(0 t)

4.2F

04

42

42

44

(43)B

39

₹

T

40

40x

40 X

43 K

40

 $\theta$ 

4.14

¥

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

1+ 4

42

42

4.2

42

42

1 +

27

29

29

2

22

70

22

42

20

Caunt Median

× (3.5) x

> 42K (43)E (45)8

43 K

(44) R (42) R

(4 4) x

43 K

40x

B K (45)8

42×

40)

44

42 K

43 K 42×

(42)B 4.1×

(43)B

(43)B (44)

(40)g

S A

30

5

B

4.3

4.3K

1 / X

40 K

40 K

4/K

40x 4(1/2)

42 K (40) B

4 / K

40x

42 K B x

4.3

42

1 +

42

4.1

≺

(4 th)

T

T

4.3

 $\alpha$ 

1 #

5 8

E ξ

E ξ Ę

(4 5)8

 $\alpha$ 

K ⋖ K

⋖

44

(4.4)A

V

Manual 

Autamatic 

Manual

Table 64

Ionospheric Storminess at Washington, D. C.

# October 1950

| 1<br>2<br>3<br>4 | 4<br>5<br>5<br>3 | 7           | ###        |      | _                |             |
|------------------|------------------|-------------|------------|------|------------------|-------------|
| 3                |                  | ·           |            |      | 5                | £¢.         |
| 3                |                  |             |            |      | 5                | 5           |
|                  |                  | 3 2         | 49 4949 40 | 1100 | 5                | 4           |
|                  | 中中中              |             |            |      | 5                | 4           |
| 5                |                  | 2           |            |      | 5<br>5<br>5<br>5 | 4           |
| 0                | 3                | 3<br>2<br>2 |            |      |                  | 3<br>3<br>2 |
| 7 8              | 3                | 2           |            |      | 4                | 3           |
| 9                | i                | 2           |            |      | 3                | 2           |
| 10               | ı                | 1           |            |      | 3 2              | 1           |
| 11               | i                | Ō           |            |      | 1                | 2           |
| 12               | 2                | ì           |            |      | 3                | 2           |
| 13               | ĩ                |             |            |      | 3                | 2           |
| 14               | ì                | 3 2         |            |      | 4                | 4           |
| 15               | 1                | 0           |            |      | 4                | 2           |
| 16               | 2                | 5           | 1200       | 2400 | 4                | 4           |
| 17               | 1                | 2           |            |      | 3                | 3           |
| 18               | 1                | 0           |            |      | 4                | 2           |
| 19               | 2                | 1           |            |      | 2                | 1           |
| 20               | 1                | 2           |            |      | 2                | 2           |
| 21               | 2                | 1           |            |      | 1                | 2           |
| 22               | 2                | 1           |            |      | 1                | 2           |
| 23               | 3                | 1           |            |      | 3                | 3           |
| 24               | 0                | 1           |            |      | 3                | 2           |
| 25<br>26         | 1                | 2           |            |      | 1 2              | 1           |
|                  | 1                | 2           |            |      | 1                | i           |
| 27<br>28         | 1<br>4           | 2<br>7      | 0 500      |      | _                | 6           |
| 29               | 4                | 4           | 0,500      |      | 5                | 5           |
| 30               | 4                | 4           | 9000       |      | I .              | 4           |
| 31               | 6                | 4           |            |      | 5                | Žį.         |

<sup>\*</sup>Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

<sup>\*\*</sup>Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

<sup>\*\*\*</sup> Ho readable record. Refer to table 53 for detailed explanation.

<sup>----</sup> Dashes indicate continuing storm.

<sup>##</sup>Storm began at 2000 GCT on September 30, 1950.

Table 65

Provisional Radio Propagation Quality Figures
(Including Comparisons with CEPL Warnings and Forecasts)
September 1950

|            | ,        |           |             |          |                 |                                                             |
|------------|----------|-----------|-------------|----------|-----------------|-------------------------------------------------------------|
|            | North    | CRPL*     | CRPL        | North    | Geo-            |                                                             |
|            | Atlantic | Warning   | Forecasts   |          | mag-            | ,                                                           |
|            | quality  |           | (J-reports) | quality  | netic           |                                                             |
| Day        | figure   |           |             | figure   | K <sub>Ch</sub> |                                                             |
|            | Half day | Half day  |             | Half day | Half day        | Scales:                                                     |
|            | GCT      | GCT       |             | GCT      | GCT             | Quality Figures                                             |
|            | (1) (2)  | (1) (2)   |             | (1) (2)  | (1) (2)         | (1)- Useless                                                |
|            | (1) (2)  | (1) (2)   |             |          | 11/16/          | (2)- Very poor                                              |
|            |          |           |             | 2 0      |                 | (3) - Poor<br>(4) - Poor to fair                            |
| 1          | 5 7      |           |             | 7 7      | 2 1             | 5 - Fair                                                    |
| S          | 6 6      |           |             | 5 6      | 1 1             | 6 - Fair to good                                            |
| 3          | (4) (4)  | U         |             | 5 (4)    | 3 (5)           | 7 - Good<br>8 - Very good                                   |
| 4          | (5) (5)  | A A       | X           | (4) (3)  | (5) (4)         | 9 - Excellent                                               |
| 5          | (2) (3)  | W W       | X           | (3) (3)  | (5) (4)         |                                                             |
|            |          |           |             |          |                 | Geomagnetic Kch - 0 to 9,                                   |
| 6          | (S) (3)  | M M       | X           | (3) (2)  | (5) (4)         | 9 representing the greatest disturbance; Kch >> 4 indicates |
| 7          | (2) (4)  | W         | X           | (3) (4)  | (4) 3           | significant disturbance,                                    |
| 8          | (2) (4)  |           |             | (4) (3)  | (5) (4)         | enclosed in ( ) for emphasis.                               |
| 9          | (3) (4)  | w U       |             | (3) (4)  | (4) 2           |                                                             |
|            | 1 1 1 1  | W         |             | 5 5      | 3 3             | Symbols:                                                    |
| 10         | (3) (4)  | W         |             | ס ס      | 3 3             | W Disturbed conditions                                      |
|            | (-) (-)  | (**)      |             |          |                 | expected                                                    |
| 11         | (2) (4)  | W (U)     |             | (3) 5    | (5) 2           | U Unstable conditions                                       |
| 12         | (4) 5    |           |             | 5 6      | 3 2             | expected                                                    |
| 13         | 6 5      |           |             | 6 5      | 5 5             | •                                                           |
| 14         | 5 6      | Ū         |             | 6 5      | 1 1             | N No disturbance expected                                   |
| 15         | 6 6      |           | X           | 6 5      | 1 1 1           | X Probable disturbed date                                   |
|            |          |           |             |          |                 | A 1100able distance date                                    |
| 16         | 6 6      |           | Х           | 6 (4)    | 2 (4)           | a                                                           |
| 17         | 5 5      |           |             | 7 (4)    | 3 (4)           | Scoring:<br>B Storm (Q ← 4) hit                             |
| 18         | (3) (4)  | W U       |             | (4) (4)  | (5) 3           | H DOOLE (44 +) HIC                                          |
| 19         | (4) (4)  | w         |             | (4) (4)  | 3 3             | (M) Storm severer than                                      |
|            | , , , ,  | ט ט       |             |          | 1               | predicted                                                   |
| 20         | (3) 5    | 0 0       |             | (3) (4)  | (5) 3           | M Storm missed                                              |
|            | (5)      |           |             |          |                 |                                                             |
| 21         | (3) 6    |           |             | 6 5      | 3 1             | G Good day forecast                                         |
| 55         | 5 6      |           |             | 6 6      | 1 1             | 0 Overwarning                                               |
| 23         | 5 5      |           |             | 6 (4)    | 3 (4)           | O OVOI MAINING                                              |
| 24         | 5 5      | M A       |             | 6 (4)    | 3 (4)           | Scoring by half day according                               |
| 25         | (3) (4)  | U U       |             | 5 (4)    | (4) (4)         | to following table:                                         |
|            |          |           |             |          |                 | Quality Figure                                              |
| 26         | (4) 5    | U (U)     |             | 6 5      | 3 3             | •                                                           |
| 27         | (4) 5    | . (-/     |             | 5 (4)    | 3 2             | W H H O O                                                   |
| 28         | 5 5      |           |             | 5 6      | 2 2             | U (M) H H O                                                 |
| 29         | 5 6      |           |             | 5 6      |                 |                                                             |
| 30         | 7 5      |           | X           | 5 6      | 2 2             | N M G G                                                     |
| <i>8</i> 0 | ( 5      |           | Α           | D D      | 6 6             | х н н о о                                                   |
| Score:     |          | Warning   | Forecast    |          |                 |                                                             |
| 9C01.6!    |          | 9         |             |          |                 |                                                             |
| 17         |          | N.A. N.P. | N.A. N.P.   |          |                 |                                                             |
| H          |          | 55 50     | 8 9         |          |                 |                                                             |
| (M)        |          | 2 1       | 0 0         |          |                 |                                                             |
| М          |          | 9 8       | 21 17       |          |                 |                                                             |
| G          |          | 26 27     | 25 29       |          |                 |                                                             |
| 0          |          | 1 4       | 6 5         |          |                 |                                                             |

<sup>\*</sup>Broadcast on WWV, Washington, D. C. Times of warnings recorded to nearest half day as broadcast.

<sup>()</sup> broadcast for one-quarter day. Blanks signify N.

\*\*In addition to dates marked X, the following was designated as a probable disturbed day on forecasts more than eight days in advance of said date: September 3.

Table 66

American and Zürich Provisional Relative Sunspot Numbers

October 1950

| Date | R <sub>A</sub> * | RZ** | Date  | R <sub>A</sub> * | E Z** |
|------|------------------|------|-------|------------------|-------|
| 1    | 54               | 41   | 17    | 115              | 99    |
| 2    | 56               | 41   | 18    | 93               | 74    |
| 3    | 64               | 41   | 19    | 56               | 50    |
| 4    | 73               | 50   | 20    | 42               | 48    |
| 5    | 73               | 50   | 21    | 27               | 27    |
| 6    | 56               | 45   | 22    | 21               | 20    |
| 7    | 76               | 54   | 23    | 34               | 53    |
| 8    | 109              | 78   | 24    | 43               | 32    |
| 9    | 122              | 84   | 25    | 40               | 30    |
| 10   | 99               | 79   | 26    | 61               | 37    |
| 11   | 108              | 68   | 27    | 55               | 51    |
| 13   | 94               | 88   | 28    | 77               | 55    |
| 13   | 94               | 75   | 29    | 132              | 95    |
| 14   | 81               | 72   | 30    | 124              | 107   |
| 15   | 104              | 106  | 31    | 93               | 74    |
| 16   | 115              | 103  | Mean: | 77.1             | 61.2  |

<sup>\*</sup>Combination of reports from 50 observers; see page 8.
\*\*Dependent on observations at Zurich Observatory and its
stations at Locarno and Arosa.

Table 67a

Coronal observations at Climax, Colorado (5303A), east limb

| Date         |    |        |    | Deg | ree   | s   | ort | th ( | of : | the | so. | lar | θď | ua t | $\sigma$ |     |     |        | 10      | o  |          |     | De | gree   | es :   | 30U1 | th ( | 01 1 | the | SO | Lar    | equ    | 1a to | or  | 40  | ~- | 90     |
|--------------|----|--------|----|-----|-------|-----|-----|------|------|-----|-----|-----|----|------|----------|-----|-----|--------|---------|----|----------|-----|----|--------|--------|------|------|------|-----|----|--------|--------|-------|-----|-----|----|--------|
| GCT '        | 90 | 85     | 80 | 75  | 70    | 65  | 60  | 55   | 50   | 45  | 40  | 35  | 30 | 25   | 20       | 15  | 10  | 5      | L       | 5  | 10       | 15  | 20 | 25     | 30     | 35   | 40   | 45   | 50  | 55 | 60     | 65     | .70   | -75 | -80 | 85 | 90     |
| 1950         |    |        |    |     |       |     |     |      |      |     |     |     |    |      |          |     |     |        |         |    |          |     |    |        |        |      |      |      |     |    |        |        |       |     |     |    |        |
| oct. 2.6     | -  | -      | -  | -   | -     | -   | -   | -    | -    | -   | -   | -   | -  | 3    | 8        |     |     |        | 10      |    |          | 5   | 3  | -      | -      | -    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 3-7          | -  | -      | -  | -   | -     | -   | -   | -    | -    | -   | -   | -   | 3  | 8    | - 8      | 10  |     |        | 12      |    | 10<br>12 | 8   | 5  | 5      | 3      | -    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 1.7          | -  | -      | -  | -   | -     | -   | -   | -    | -    | _   | -   | -   | 5  | 8    | 12       | 13  | 18  |        | 25<br>8 | 8  | 8        | 2   | 7  | -      | _      | -    | -    | _    | -   | -  | -      | -      | _     | -   | -   | -  | -      |
| 5.69         | -  | -      | -  | -   | <br>v | -   | -   | - v  | ~    | ~   | _   | v   | 7  | v    | 2        | 2   | 2   | 5<br>X | X       | X  | v        | ソ   | Š  | -<br>v | -<br>v | - v  | v    | v    | 7   | x  | _<br>X | _<br>X | X     | x   | x   | x  | _<br>X |
| 7.8<br>8.7   | X  | A      | A  | Λ   | Λ     | A   | Λ.  | Λ    | Λ    | _   |     | 'n  | 'n | 7    | 5        | 8   | g   |        | 12      |    | 12       | 13  | 13 | 10     | 5      | 7    | _    | _    | _   | _  | _      | _      | _     | _   | _   | _  | _      |
| 9.6a         | _  | _      | _  | _   | _     | _   | _   | _    | _    | _   | _   | _   | 3  | 5    | 8        | 10  |     | ii     | 12      |    | _        | - ) | 15 | 10     | 5      | 3    | _    | _    | _   | _  | _      | _      | _     | _   | _   | _  | _      |
| 10.6         | _  | _      | _  | _   | _     | _   | -   | _    | _    | _   | _   | _   | _  | -    | 3        | -3  | -5  | 5      | 5       | 5  | 5        | 5   | 5  | -5     | _      | _    | _    | _    | _   | _  | _      | _      | -     | -   | _   | _  | _      |
| 11.7         | _  | _      | _  | _   | _     | _   | _   | -    | _    | -   | _   | _   | _  | _    | _        | _   | _   | _      | -       | _  | _        | _   | _  | _      | _      | _    | _    | -    | _   | _  | _      | _      | _     | _   | _   | _  | _      |
| 12,5         | -  | _      | _  | _   | -     | -   | -   | _    | _    | -   | _   | -   | 3  | 5    | 5        | 10  | 5   | 5      | g       | 10 | 12       | 3   | 1  | 3      | 3      | 3    | _    | _    | _   | _  | -      | _      | -     | _   | -   | _  | -      |
| 13.7         | -  | _      | -  | _   | _     | _   | _   | -    | -    | _   | -   | -   | _  | 3    | 5        | g   | 3   | 3      | 3       | 5  | 5        | 5   | -  | _      | _      | -    | _    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 14.6         | _  | -      | -  | -   | -     | _   | -   | -    | -    | -   | -   | 5   | g  | 12   | 15       | 20  | 5   | 3      | 3       | Jì | 5        | 3   | -  | -      | -      | -    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 15.7         | -  | _      | _  | -   | -     | -   | -   | _    | -    | _   | -   | 3   | 5  | 8    | 12       | ΙĿ  | g   | 3      | 1       | 1  | 3        | -   | -  | -      | -      |      | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 16.6         | -  | -      | -  | -   | -     | -   | -   | -    | -    | -   | 3   | 3   | 3  | 8    | 9        | 10  | 5   | 3      | 3       | 3  | 5        | 3   | 1  | -      | -      | -    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 17.7         | -  | -      | -  | 2   | 3     | 3   | 5   | 3    | 3    | 2   | 2   | 5   | g  | 10   | 10       | 17  | 12  | 5      | 3       | 5  | 5        | 8   | 5  | 3      | 3      | 3    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 18.9         | -  | -      | -  | *** | -     | -   | -   | -    | -    | -   | -   | -   | -  | _    | _        | 3   | 5   | 3      | 3       | 3  | 2        | 5   | 3  | 2      | 2      | -    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 19.7         | -  | -      | -  | -   | _     | *** | -   | -    | -    | -   | •   | -   | -  | 3    | 3        | 3   | 3   | _      | 3       | 5  | 5        | 8   | 5  | 3      | 3      | 1    | -    | _    | -   | -  | -      | -      | -     | -   | -   | -  | 449    |
| 20.6         | -  | -      | -  | -   | -     | -   | -   | -    | -    | -   | -   | -   | _  | -    | 2        | - 5 | - 5 | 2      | 1       | -  | -        | -   | _  | -      | -      | _    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 21.7         | -  | -      | -  | -   | -     | -   | -   | -    | -    | _   | -   | _   | _  | -    | 3        | 3   | - 3 | -      | -       | -  | -        | -   | -  | -      | -      | -    | -    | -    | -   | -  | -      | -      | -     | -   | -   | -  | -      |
| 22.7         | -  | _      | _  | -   | -     | _   | ~   | -    | _    | ~   | ٥   | 5   | 5  | 7    | 5        | 5   | 7   | -      | 7       | 7  | -        | -   | -  | _      | _      | -    | -    | -    | -   | -  | -      | _      | -     | -   | -   | ~  | -      |
| 23.7<br>24.6 | X  | X.     | A  | X.  | λ.    | A   | Α.  | Α.   | A.   | A 3 | 7   | 5   | 7  | 3    | 2        | 8   | 6   | 5      | 3       | 13 | 13       | 5   | -  | 2      | _      | _    | _    | _    | _   | _  | -      | _      | _     | _   | _   | Α  |        |
| 26.8         | X  | -<br>Y | 7  | _   | _     | _   | _   | _    | _    | _   | _   | _   | _  | 3    | 10       | 10  | 8   | 5      | 3       | -  | -        | _   | _  | _      | Ξ      | _    | _    | _    | _   | _  | _      | _      | _     | Ξ   | Y   | T  | x      |
| 27.7         | _  | _      | _  | _   | _     | _   | _   | _    | _    | 3   | 3   | 5   | 5  | 8    | 10       | 12  |     |        | 10      | 5  | 3        | 3   | 3  | _      | _      | _    | _    | _    | _   | _  | _      | _      | _     | _   | _   | _  | -      |
| 29.8         | _  | _      | _  | _   | _     | _   | _   | _    | 3    | 3   | _   | _   | 3  | 3    | g        | 10  |     |        |         |    | 10       | 5   | 3  | _      | _      | _    | _    | _    | _   | _  | _      | _      | _     | _   | _   | _  | _      |
| 30.9         | _  | _      | _  | _   | _     | -   | _   | _    | _    | _   | _   | _   | _  | _    | -        | 2   | 2   | 3      | 3       | 2  | 1        | _   | _  | _      | _      | _    | _    | _    | _   | -  | -      | -      | _     | -   | X   | X  | X      |
| 31.6         | _  | -      | -  | _   | _     | -   | _   | _    | _    | -   | _   | -   | 3  | 3    | 3        | 5   | 3   | 5      | 5       | 5  | 3        | 3   | 3  | 3      | _      | _    | _    | _    | -   | _  | -      | -      | -     | _   | -   | _  | -      |

Note: Observation low weight: Oct. 16.6 at N45 - N90 and S10 - S45.

Table 68a

Coronal observations at Climax, Colorado (6374A), east limb

| Date             |        |        |        | Des            | ree    | 9S 1        | nor         | th o   | of : | the         | 30       | lar    | 901          | uat               | or     |         |         |        | ] 0     |         |             |          | Dea               | ere.   | es s   | sou    | th (   | of '   | the      | so.    | lar    | 801    | ua t   | or     |        |    |        |
|------------------|--------|--------|--------|----------------|--------|-------------|-------------|--------|------|-------------|----------|--------|--------------|-------------------|--------|---------|---------|--------|---------|---------|-------------|----------|-------------------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|----|--------|
| GCT              | 90     | 85     | 80     | 75             | 70     | 65          | 60          | 55     | 50   | 45          | 40       | 35     | 30           | 25                | 20     | 15      | 10      | 5      | 1_0     | 5       | 10          | 15       |                   |        |        |        |        |        |          |        |        |        |        |        | 80     | 85 | 90     |
| 1950<br>Oct. 2.6 | -      | _      | _      | _              | _      | _           | _           | _      | _    | _           | _        | -      | 1            | 1                 | 1      | 1       | 1       | 1      | 1       | 1       | 1           | 1        | 1                 | 1      | 1      | 1      | 1      | 1      | 1        | 1      | 1      | 1      | _      | _      | _      | _  | _      |
| 3.7<br>4.7       | _      | _      | _      | _              | -      | _           | _           | _      | 2    | 2           | 2        | 2      | _            | _                 | _      | _       | 3<br>5  | 3      | 3<br>18 | 3<br>8  | 3           | -<br>3   | <del>-</del><br>5 | 1      | 1      | 1      | 3      | 3      | 3        | 5      | 3      | 2      | 2      | 2      | 2      | 2  | 2      |
| 5.6a<br>7.8      | _<br>X | -      | X      | _<br>X         | _<br>x | x           | x           | -<br>X | ×    | -<br>x      | _<br>X   | -<br>X | _<br>x       | _<br>x            | -<br>X | -<br>X  | _<br>X  | 3<br>X | -<br>x  | 10<br>X | ų<br>X      | _<br>X   | _<br>X            | _<br>X | _<br>X | -<br>x | _<br>x | _<br>X | <u>-</u> | -<br>x | -<br>x | _<br>X | -<br>x | _<br>X | -<br>x | x  | -<br>X |
| 8.7<br>9.6a      | _      | _      | _      | _              | _      | -           |             | _      | 2    | 1           | 1 2      | 1      | 2            | <del>-</del><br>2 | -      | 10      | 10      | 8      | 10      | 8       | 12          | 12<br>12 | 10<br>10          | 3<br>8 | -      | -      | -      | -      | -        | -      | -      | -      | -      | -      | -      | -  | -      |
| 10.6             | _      | _      | _      | -              | _      | _           | _           | -      | -    | -           | -        | -      | -            | -                 | _      | -       | -       | _      | _       | _       | -           | -        | 3                 | 3      | 3      | -      | -      | -      | -        | -      | -      | -      | -      | -      | -      | -  | -      |
| 12.8             | -      | _      | _      | -              | _      | -           | -           | -      | -    | -           | _        | -      | -            | -                 | -      | - 3     | 5       | -<br>3 | 3       | 8       | 13<br>10    | 3        | -                 | -      | -      | -      | 1      | 1      | 1        | 1      | 1      | 1      | 1      | 1      | 1      | 1  | 1      |
| 15.6<br>15.7     | -      | _      |        |                | _      | -           | _           | _      | -    | _           | -        | -      | _            | -                 | 3      | 12      | 3<br>12 | 3      | 1       | 15      | 8           | 3        | 3                 | 3      | 3      | 3      | 3      | 3      | 3        | 3      | 3      | 3      | 3      | 3      | 3      | 3  | -      |
| 16.6<br>17.7     | -<br>1 | -<br>1 | -<br>3 | <del>-</del> 3 | _      | -           | _           | 1      | 1    | 1           | -        | -      | <del>-</del> | 2                 | 2      | 3       | 3       | 2      | 2       | 2       | 2           | _        | =                 | -      | Ξ      | =      | 2      | 2      | 2        | 2      | 2      | -      | -      | -      | -      | -  | -      |
| 18.9             | _      | -      | _      | 2              | 2      | <u>-</u>    | 2           | - 2    | - 2  | _           | <u>-</u> | -      | - 3          | 1 2               | 1      | 1       | 1       | 3      | 3       | 1       | 1           | - 2      | - 2               | _      | -      | - 2    | - 2    | - 2    | - 2      | - 2    | -      | -      | -      | -      | -      | -  | -      |
| 20.6             | -      | _      | -      | -              | _      | _           | _           | _      | -    | -           | =        | -      | 2            | 2                 | 2      | 2       | 3       | 2      | 3 3     | 14      | 3           | 2        | 3                 | 1      | 3      | ī      | -      | -      | -        | -      | -      | -      | 2      | 2      | 2      | 2  | 2      |
| 22.7             | -<br>X | -<br>X | -<br>x | _<br>Y         | -<br>Y | -<br>Y      |             | _<br>x | _    | -<br>Y      | -<br>T   | -<br>Y | _<br>_       | - 2               | 2      | 2       | 2       | آ<br>1 | 2       | 2       | - 2         |          | -                 | -      | _      | -      | _      | _      | -        | =      | =      | -      | -      | _      | _      | -  | 2      |
| 24.6             | 2<br>X | 2<br>X | 2      | 2              | 2      | 2           | 2           | 2      | 2    | 2           | -        | -      | 1            | 3                 | - 2    | _       | 10      | 5      | 10      | 9       | 10          | 8 2      | 3                 | 5      | 2      | 3      | 5      | 3      | 3        | 3      | 5      | 5      | 3      | 3      | 3      | 3  | 3      |
| 27.7             | -      | _      | _      | _              | - 2    | -<br>-<br>3 | -<br>-<br>3 | - 2    | - 2  | -<br>-<br>3 | - 2      | - 2    | -            | -                 | _      | 3<br>10 | - "     | 12 2   | 3       | 5 5 2   | 5<br>8<br>2 | 3        | 3                 | 3 2    | 3      | 3      | 3      | 3      | 3        | 3      | _      | _      | =      | -      | X      | X  | X      |
| 30.9<br>31.6     | _      | -      | _      | -              | -      | -           | -           | -      | _    | -           | -        | -      | _            | _                 | -      | -       | -       | -      | 3       | - 5     | -           | -        | -                 | -      | _      | _      | _      | -      | _        | _      | _      | _      | _      | -      | X      | X  | X      |

\*On 26 October a slight suggestion of Doppler shift in the 6374A line at NO5. Note: Observation low weight: Oct. 16.6 at N45 - N90 and S10 - S45; Oct. 24.6 at N10 - S10.

Table 67b

Coronal observations at Climax, Colorado (5303A), west limb

| ate                  |    |    |    | Deg | ree | 8 8 | out | h o | f t | he | sol | ar | equ | ato | r  |            |    |     | 00 |     |            |     | Deg | ree | s n | ort | h o | r t | he | SOL | ar  | equ | ato | r  |    |    |    |
|----------------------|----|----|----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|-----|----|------------|----|-----|----|-----|------------|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|----|----|----|----|
| GCT                  | 90 | 85 | 80 | 75  | 70  | 65  | 60  | 55  | 50  | 45 | 40  | 35 | 30  | 25  | 20 | 15         | 10 | 5   | Ľ, | 5   | 10         | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50 | 55  | 60_ | 65  | 70  | 75 | 80 | 85 | 90 |
| 1950                 |    |    |    |     |     |     |     |     |     |    |     |    |     |     |    |            |    |     | 1  |     |            |     |     |     |     |     |     |     |    |     |     |     |     |    |    |    |    |
| ct. 2.6              | -  | _  | -  | -   | -,  | -   | -   | -   | -   | -  | -   | -  | -   | -   | 3  | 5          | 5  | 8   | 8  |     |            |     |     | 13  | -   | - 8 | 3   | _   | _  | _   | -   | -   | -   | -  | -  | -  |    |
| 3.7                  | -  | -  | -  | -   | -   | -   | -   | -   | -   | -  | 3   | 3  | 3   | 5   | 8  | 12         | 10 | 8.  | 8  |     | 12         | 14  | 20  | 15  |     | 12  | 8   | 5   | 5  | 5   | -   | -   | -   | -  | _  | -  |    |
| 4.7                  | -  | -  | -  | -   | -   | -   | -   | _   | -   | -  | -   | _  | 3   | 3   | 5  | 8          | 15 | 10  | 8  | 5   | 8          | 11  | 20  | 10  | 12  | 10  | 5   | 5   | 5  | 3   | -   | -   | -   | -  | -  | -  |    |
| 5.6                  | -  | -  | -  |     | -   | _   | -   | -   |     | -  | -   | -  | -   | 3   | 3  | 5          | 5  | 5   | 5  | 3   | 3          | 8   | 8   | 8   | 3   | 3   | _   | _   | -  | _   |     | _   | _   | _  | _  | -  |    |
| 7.8                  | X  | X  | X  | X   | X   | X   | X   | Х   | X   | X  | X   | X  | Х   | Х   | Х  | X          | Х  | X   | X  | X   | X          | X   | X   | X   | X.  | Х   | X   | X   | Х  | X   | X.  | Х   | X   | Х  | A  | X  |    |
| 8.7                  | -  | -  | -  | -   | 3   | 3   | 3   | 3   | 3   | 3  | 3   | 3  | - 3 | 3   | 3  | 5          | 3  | 3   | 3  | 3   | 3          | . 3 | 8   | 5   | -   | -   | 3   | -   | -  | -   | -   | _   | -   | -  | -  | _  |    |
| 9.62                 |    | _  | -  | -   | -   | -   | 3   | 3   | 3   | 3  | 3   | 3  | 5   | 5   | 5  | 5          | 5  | 5   | 5  | 5   | 8          | 10  | 5   | 5   |     | -   | _   | -   | _  | -   | -   | -   | -   | _  | -  | _  |    |
| 10.6                 | -  | -  | -  | -   | -   | -   | -   | -   | -   | -  | -   | -  | -   | -   | -  | -          | 3  | _5, | 3  | 3   | 3          | 5   | 5   | 3   | -   | -   | 3   | 3   | -  | -   | -   | -   | -   | -  | -  | -  |    |
| 11.7                 | -  | -  | 40 | -   | -   | -   | -   | -   | -   | -  | -   | -  | _   | _   | _  | 5          | 8  | 10  | 5  | 3   | 3          | _ 3 | . 5 | 3   | _   | _   | _   | -   | _  | _   | -   | _   | -   | -  | -  | -  |    |
| 12.8                 | -  | -  | -  | -   | -   | -   | -   | -   | -   | -  | -   | -  | 3   | 3   | 5  | 8          | 8  | 8   | 5  | 3   | 5          | 10  | 13  | 8   | 5   | 3   | 3   | 5   | 5  | 3   | _   | -   | -   | -  | -  | -  |    |
| 13.7                 | -  | -  | -  | -   | -   | -   | -   | -   | -   | -  | -   | -  | -   | -   | 3  | - 3        | 5  | 8   | 5  | 3   | 3          | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3  | 3   | 3   | _   | -   | _  | -  | -  |    |
| 14.6                 | -  | -  | -  | -   | -   | -   | -   | -   | -   | -  | -   | -  | -   | -   | -  | 5          | 10 | 12  | 8  | - 6 | 8          | 12  | 10  | 8   | 6   | 5   | 3   | 3   | 3  | 3   | 5   | 3   | -   | -  | -  | -  |    |
| 15.72                | -  | -  | _  | -   | -   | -   | -   | -   | 3   | 3  | 3   | 3  | 3   | 3   | 3  | 5          | 8  | 10  | 12 | 10  | 10         | 10  | 8   | 5   | 5   | 3   | Х   | Х   | Х  | Х   | X   | -   | -   | -  | -  | -  |    |
| 16.6<br>17.7         | -  | -  | _  | -   | -   | -   | -   | -   | -   | -  | -   | _  | -   | -   | 3  | 3          | 5  | 8   | 12 | 12  | 13         | 10  | 6   | - 5 | 14  | 2   | 1   | 1   | -  | -   | -   | -   | -   | -  | -  | -  |    |
| 17.7                 | -  | ~  | -  | -   | -   | -   | -   | -   | 1   | 1  | 3   | 3  | 3   | 5   | 5  | 5          | 8  | 12  | 15 | 17  | <b>1</b> 5 | 14  | 12  | 12  | 10  | 3   | 1   | -   | -  | -   | -   | -   | -   | -  | -  | -  |    |
| 18.9                 | -  | -  | -  | -   | -   | -   | -   | -   | -   | -  | -   | -  | 5   | 5   | 5  | 5          | 5  | 5   | 8  | 8   | g          | 8   | 5   | 5   | 5   | 5   | 3   | -   | -  | -   | -   | -   | _   | -  | -  | -  |    |
| 19.7                 | -  | -  | -  | _   | -   | -   | -   | -   | 3   | 3  | 5   | 10 | 12  | 13  | 15 | 13         | 12 | 10  | 12 | 12  |            | 12  | 12  | 10  | 10  | 8   | 3   | -   | -  | -   | -   | -   | -   | _  | -  | _  |    |
| 20.6                 | -  | -  | -  | -   | -   | -   | -   | -   | -   | 3  | 5   | 8  | 10  | 12  | 15 | <b>1</b> 5 | 20 | 13  |    | 10  |            | 14  | -   | 10  | 8   | 10  | 6   | 3   | 3  | -   | -   | -   | -   | -  | -  | -  |    |
| 21.7                 | -  | -  | -  | _   | -   | -   | -   | _   | -   | -  | -   | -  | 3   | g   | 10 | 12         | 12 | 10  | 10 | 12  | 10         | 10  | 8   | 5   | - 5 | -   | -   | -   | -  | -   | -   | -   | -   | -  | -  | -  |    |
| 22.7                 | -  | _  | -  | -   | -   | -   | -   | -   | _   | -  | -   | 3  | 5   | 8   | 12 | 12         | 12 | 12  |    | 10  | 12         | 12  | 10  | 8   | 5   | 3   | 3   | -   | -  | -   | -   | -   | -   | -  | -  | -  |    |
| 23.7                 | X  | X  | X  | X   | -   | -   | -   | -   | -   | -  | -   | 3  | 3   | 5   | 8  | 10         |    | 12  | 10 | 5   | 3          | 3   | -   | -   | **  | -   | -   | -   | -  | _   | -   | -   | X   | X  | X  | X  |    |
| 24.6                 | -  | -  | _  | _   | _   | -   | -   | -   | -   | 3  | 3   | 3  | 5   | 8   | 10 | 10         | 8  | 8   | 5  | 8   | 5          | 8   | 10  | 10  | g   | 5   | 5   | 3   | 3  | 3   | -   | -   | -   | -  | -  | -  |    |
| 26.8                 | X  | X  | X  | X   | X   | X   | X   | Х   | X   | X  | X   | X  | X   | Х   | Х  | X          | Х  | X   | X  | X   | X          | Х   | X   | X   | Х   | Х   | X   | Х   | λ  | X   | X   | Х   | Х   | Х  | X  | X  |    |
| 27.7                 | -  | _  | _  | -   | _   | -   | _   | _   | -   | -  | -   | -  | -   | 3   | 3  | 5          | g  | 8   | 12 | 10  | 8          | 5   | 3   | X   | X   | X   | Х   | X   | Х  | X   | X   | X   | X   | X  | -  | -  |    |
| 29.8                 | -  | _  | _  | _   | -   | -   | -   | -   | 3   | 3  | 3   | 3  | 3   | 3   | 5  | 8          | 8  | 10  | 8  | 8   | 10         | 10  | 12  | 12  | 8   | 5   | 5   | 3   | 3  | 3   | 3   | 3   | 3   | -  | -  | -  |    |
| 30.9                 | X  | X  | X  | X   | _   | -   | -   | -   | -   |    | -   | -  | _   | _   | -  | 8          | 8  | 8   | 8  | 8   | 8          | 8   | 5   | X   | I   | X   | X   | X   | X  | X   | X   | X   | X   | X  | -  | -  |    |
| 30.9<br><b>31.</b> 6 | -  | _  | -  | -   | -   | -   | -   | -   | -   | -  | -   | 3  | 3   | 3   | 5  | 5          | 5  | 8   | 8  | 8   | 10         | 10  | 8   | 5   | 5   | 3   | 3   | 3   | -  | -   | -   | -   | -   | -  | ~  | -  |    |

 $\underline{\text{Table 68b}}$  Coronal observations at Climax, Colorado (6374A), west  $\underline{\text{limb}}$ 

| Date          |    |    |    | Deg | ree | s s | out | h c | of t | he | so] | ar | equ | ato | r   |          |    |    | 00 |     |        |          |     | gree |    |    |    |          |    |    |    |    |    |          |    |    |     |
|---------------|----|----|----|-----|-----|-----|-----|-----|------|----|-----|----|-----|-----|-----|----------|----|----|----|-----|--------|----------|-----|------|----|----|----|----------|----|----|----|----|----|----------|----|----|-----|
| GCT           | 90 | 85 | 80 | 75  | 70  | 65  | 60  | 55  | 50   | 45 | 40  | 35 | 30  | 25  | 20  | 15       | 10 | 5  | Ľ  | 5   | 10     | 15       | 20  | 25   | 30 | 35 | 40 | 45       | 50 | 55 | 60 | 65 | 70 | 75       | 80 | 85 | 90  |
| <b>1</b> 950  |    |    |    |     |     |     |     |     |      |    |     |    |     |     |     |          |    |    |    |     |        |          |     |      |    |    |    |          |    |    |    |    |    |          |    |    |     |
| Oct. 2.6      | _  | _  | _  | _   | -   | _   | _   | _   | _    | 2  | 2   | 2  | 2   | 2   | 2   | 2        | 2  | 2  | _  | _   | _      | 3        | 10  | 3    | 3  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 3-7           | _  | _  | _  | _   | -   | _   | -   | -   | _    | _  | _   | _  | _   | _   | _   | _        | 5  | 3  | -  | -   | _      | _        | 15  |      | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 1.7           | 2  | 2  | 2  | 2   | 2   | 2   | 2   | 2   | 3    | 3  | _   | _  | _   | -   | _   | -        | _  | 3  | 3  | l - | 1      | _        | 12  | 15   | _  | 3  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  |     |
| 5.6           | _  | -  | -  | _   | -   | _   | -   | _   | _    | _  | _   | _  | _   | _   | _   | -        | -  | _  | _  | 3   | 3      | 3        | - 3 | -5   | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 7.8           | X  | X  | X  | X   | X   | X   | Х   | X   | X    | Х  | X   | X  | X   | X   | X   | X        | Х  | X  | X  | x   | X      | X        | x   | x    | X  | X  | X  | X        | X  | X  | X  | ×  | ×  | Y        | Y  | Y  | - Y |
| 8.7           | _  | _  | _  | -   | _   | _   | _   | _   | _    | _  | _   | _  | 2   | 2   | 2   | 2        | 2  | 2  | 2  | 2   | 2      | _        | _   | _    | _  | _  | _  | _        | _  | _  | -  | -  | -  | _        | _  | _  | _   |
| 9.62          | _  | -  | -  | -   | _   | _   | _   | _   | -    | _  | -   | _  | -   | _   | -   | 3        | 3  | 5  | 3  | 3   | 1      | _        | -   | _    | _  | _  | -  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 10.6          | -  | _  | _  | _   | _   | -   | -   | _   | _    | _  | _   | _  | _   | -   | _   | 3        | 10 | 3  | 15 | ĺí  | _      | _        | _   | _    | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 11.7          | -  | -  | -  | _   | _   | _   | _   | _   | _    | _  | -   | -  | _   | _   | -   | 3        | g  | 3  | 5  | 7   | _      | - 4      | _   | _    | _  | _  | _  | _        | _  | _  | _  |    | -  | _        | _  | _  | _   |
| 12.8          | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1    | 1  | 1   | 1  | 1   | 1   | 1   | í        | 3  | g  | 5  | 3   | 5      | 3        | 3   | 3    | _  | _  | _  | _        |    | _  | _  | _  | _  | _        | _  | _  | _   |
| 13.7<br>11.6  | -  | -  | -  | _   | _   | -   | -   |     | _    | _  | _   | _  | _   | _   | _   | _        | í  | 1  | ĺí | ĺí  | 3      | í        | ·í  | -    | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  |     |
| 14.6          | -  | -  | _  | -   | _   | _   | 1   | 1   | 1    | 1  | 1   | -  | _   | _   | _   | _        | _  | -  | _  | 3   | 5      | 10       | _   | _    | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 15.7a<br>16.6 |    | -  | -  | _   | _   | _   | -   | -   | 2    | 2  | -   | -  | -   | -   | _   |          | _  | _  | 2  | 3   | 11     | g        | 5   | 3    | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 16.6          |    | _  | -  | _   | _   | -   | _   | _   | 1    | 1  | 3   | 1  | 1   | _   | _   | _        | -  | 8  | 10 | g   | 12     | 5        | _   | _    | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        | _  | _  | _   |
| 17.7          | _  | _  | _  | _   | _   | _   | _   | 3   | 3    | 3  | _   | _  | _   |     | 3   | 3        | _  | 3  | 10 | 3   | 3      | 3        | _   | _    | ٦  | 1  | 1  | 1        | 1  | 1  | 1  | _  | _  | _        | _  | _  | 1   |
| 18.9          |    | -  | -  | -   | _   | _   | _   | _   | _    | _  | _   | •  | _   | _   | _   | _        | _  | _  | _  | _   | _      | _        | _   | _    | _  | _  | _  | _        | _  | _  | _  | _  | _  | _        |    | -  | Т   |
| 19.7          | _  | _  | _  | _   | _   | -   | _   | 2   | 3    | _  | _   | -  | -   | _   | 2   | 8        | 10 | 14 | 10 | 3   | 3      | _        | _   | _    | _  | _  | 7  | 3        | ī  | 1  | _  | _  | _  | _        | -  | -  | -   |
| 20.6          | 2  | 3  | 2  | 2   | 2   | 2   | 2   | 3   | 5    | 5  | 3   | _  | _   | 3   | 10  | 3        | g  | 10 | -5 | 1 3 | _      | _        | _   | _    |    |    | -  | -        | -  | -  | _  | _  | _  | _        | _  | _  | -   |
| 21.7          | _  | -  | _  | _   | _   | _   | _   | _   | _    | _  | _   | _  | _   | ź   | - 3 | <u> </u> | 3  |    | 1_ | 1 _ | _      |          |     |      | _  | _  | _  | _        | _  | _  | _  | _  | -  | -        | -  | -  | -   |
| 22.7          | 2  | 2  | 2  | _   | _   | 1   | 7   | ٦   | _    | _  | _   | 2  | Б   | 7   | 7   | 5        | 7  | 2  | 2  | 2   | _      | _        | _   | _    | _  | _  | _  | _        | -  | _  | -  | -  | -  | _        | -  | -  | -   |
| 23.7          | X  | x  | X  | X   | _   | _   | _   | _   | _    | _  | _   | _  | 2   | 2   | 7   | 5        | 5  | 3  | 2  | -   | _      | -        | -   | -    | -  | -  | -  | -        | -  | -  | -  | -  | =  | -        | _  | _  | _   |
| 24.6          | 3  | 3  | 3  | 3   | 3   | 3   | 3   | 3   | 3    | 3  | 3   | 3  | 2   | 3   | 2   | 3        | 5  | 3  | 2  | 2   | _      | -        | 7   | -    | -  | -  | -  | -        | _  | -  | -  | -  | X  | X        | Х  | X  | X   |
| 24.6<br>26.8  | x  | x  | X  | x   | x   | X   | X   | X   | x    | ×  | X   | X  | x   | Y   | Y   | 7        | 7  | X  | x  | X   | -<br>v | ~        | 2   | _    | _  | -  | ~  | ~        | 2  | _  | -  | -  | _  | 2        | 2  | 2  | 2   |
| 27.7          | X  | X  | X  | X   | X   | X   | X   |     | _    |    | _   | _  | 7   | 7   | 5   | 7.       | g  | 10 | g  | 5   | Λ.     | -n       | ^   | Λ.   | Α. | Α. | Λ. | <u> </u> | Α. | Α. | Α. | X. | X  | <u> </u> | X  | Х  | X   |
| 29.8          | 3  | 2  | 2  | 2   | 2   | 2   | 2   | 3   | 2    | 2  | 3   | 2  | 2   | 2   | 2   | 2        | 2  | 3  | 2  | 2   | _      | 2        | 3:  | 7    | 2  | ^  | Λ. | Y        | A  | X  | X  | X  | X  | X        | -  | -  | -   |
| 30.9          | x  | X  | X  | X   | X   | X   | X   | x   | X    | X  | X   | X  | X   | X   | ×   | X        | X  | X  | x  | ¥   | Y      | <u>T</u> | ¥   | 2    | Α. | ~  | ~  | _        | _  | -  | -  | _  | -  | -        | -  | -  | -   |
| 31.6          | _  | _  | _  | _   | _   | 3   | 3   | 3   | 3    | 3  | 2   | 2  | 2   | 2   | 2   | 2        | 3  | 3  | 3  | 2   | 8      | 11       | g   | 7    | 2  | Λ  | Λ  | A        | Λ  | X  | Х  | A  | X  | X        | -  |    | -   |
| )_0           |    |    |    |     |     | -   | ,   | ,   | ,    | ,  | _   | _  | _   | -   | -   | _        | )  | )  | )  | 1 - | 0      | 14       | 0   | )    | <  | -  | -  | -        | -  | -  | -  | -  | -  | -        | -  | -  | -   |

Table 69a

Coronal observations at Climax, Colorado (6702A), east limb

| Date                 |    |     |    | Dec | ree | 9 8 1 | ort | th ( | of . | the | 30. | lar | eq | uat | or |    |    |   | 00  |     |    |    | Deg | ree           | 8 8 | out | h c | of t | he | so. | Lar | eq | ua to | or |    |    | 90 |
|----------------------|----|-----|----|-----|-----|-------|-----|------|------|-----|-----|-----|----|-----|----|----|----|---|-----|-----|----|----|-----|---------------|-----|-----|-----|------|----|-----|-----|----|-------|----|----|----|----|
| GCT                  | 90 | 85  | 80 | 75  | 70  | 65    | 60  | 55   | 50   | 45  | 40  | 35  | 30 | 25  | 20 | 15 | 10 | 5 | ١٠  | 5   | 10 | 15 | 20  | 25            | 30  | 35  | 40  | 45   | 50 | 55  | 60  | 65 | 70    | 75 | 80 | 85 | 90 |
|                      | /- |     |    |     |     |       |     |      |      |     |     |     |    |     |    |    |    |   |     |     |    |    |     |               |     |     |     |      |    |     |     |    |       |    |    |    |    |
| 1950                 |    |     |    |     |     | _     | _   |      | _    | _   | _   | _   | _  | _   | _  | _  | _  | _ | _   | _   | _  | _  | _   | _             | _   | _   | _   | _    | ′  | _   | -   | _  | _     | _  | _  | _  | _  |
| Oct. 2.6             | -  | -   | _  | _   | _   | _     | _   | _    | _    | _   | _   | _   | _  | _   | _  | _  | _  | _ | _   | 1_  | _  | _  | _   | _             | _   | _   | _   | _    | _  | _   | _   | _  | _     | _  | _  | _  | _  |
| 3.7<br>4.7           | _  | -   |    | _   | _   | _     | _   | _    | _    | _   | _   | _   | _  | _   | _  | _  | _  | _ | _   |     | _  | _  | _   | _             | _   | _   | _   | _    | _  | _   | _   | _  | _     | _  | _  | _  | _  |
| 4.1                  | _  | _   | _  | _   | _   | _     | _   | _    | _    | _   | _   | _   | _  | _   | _  | _  | _  | _ | _   | l_  | _  | _  | _   | _             | _   | _   | _   | _    | -  | _   | _   | _  | _     | _  | _  | _  | _  |
| 5.6<br><b>7.</b> 8   | v  | - Y |    | v   | X   | Y     | x   | Y    | x    | x   | x   | X   | X  | Х   | X  | X  | х  | Х | X   | . x | Х  | X  | Х   | Х             | Х   | X   | X   | х    | х  | X   | X   | Х  | х     | х  | х  | х  | Х  |
| 8.7                  | Α. | Α.  | 24 |     |     | -     |     | -    | _    | -   |     |     |    |     | _  | _  | _  | _ | _   | _   | _  | _  | _   | _             |     | _   | _   | _    | _  | _   | _   | _  | _     | _  | _  | _  | _  |
| 9.6a                 | _  | _   | _  | _   | _   | _     | _   | _    | -    | _   | _   | _   | _  | _   | _  |    | -  | _ | _   | _   | _  | _  | _   | _             | _   | _   | _   | _    | _  | _   | _   | _  | _     | _  | _  | _  | -  |
| 10.6                 |    | _   | _  | _   | _   | _     | _   | _    | _    | _   | _   |     | _  | _   | _  | _  | _  | _ | _   | _   | _  | _  | _   | _             | _   | _   | _   | _    | _  | _   | _   | _  | -     | _  | _  | _  | -  |
| 11.7                 | _  | _   | _  | _   | _   | _     | _   | _    | _    | _   | -   | _   | _  | _   | _  | _  | _  | _ | -   | -   | _  | _  | _   | _             | -   | -   | _   | _    | -  | _   | -   | _  | _     | _  | _  | _  | _  |
| 12.8                 | _  |     | _  | _   |     |       | _   | _    | _    | _   | -   | _   | _  | _   | _  | _  | _  | _ | _   | -   | _  | _  | _   | -             | _   | _   | _   | _    | _  | _   | _   | _  | _     | _  | _  | _  | -  |
| 13.7                 | _  | _   | _  | _   | -   | _     | _   | _    | _    | _   | _   | _   | -  | _   | _  | -  | -  | _ | _   | -   | _  | _  | -   | _             | _   | _   | _   | _    | _  | _   | _   | _  | -     | _  | _  | -  | -  |
| 13.7<br>14.6         | _  | _   | _  | _   | _   | _     | _   | _    | _    | _   | _   | _   | _  | _   | -  | _  | _  | _ | -   | _   | _  | _  | -   | _             | -   | _   | _   | _    | _  | _   | _   | -  | _     | _  | _  | _  | -  |
| 15.7                 | _  | -   | _  | -   | _   | _     | _   | _    | _    | -   | -   | 1   | 1  | 1   | 2  | 1  | 1  | _ | -   | -   | _  | _  | _   | _             | _   | _   | _   | _    | _  | _   | _   | _  | _     | _  | _  | _  | -  |
| 15.7<br>16.6         | _  | _   | _  | _   | -   | _     | _   | _    | _    | _   | _   | -   | -  | _   | -  | _  | _  | _ | -   | -   | -  | -  | -   | _             | -   | -   | -   | _    | _  | _   | -   | _  | -     | _  | _  | _  | -  |
| 17.7                 | _  | _   | _  | -   | _   | -     | _   | _    | _    | _   | _   | -   | _  | _   | _  | _  | _  | - | _   | -   | _  | -  | _   | _             | _   | _   | -   | _    | -  | -   | -   | -  | _     | _  | _  | _  | -  |
| 17.7<br>18.9         | -  | _   | _  | _   | _   | -     | _   | -    | _    | -   | _   | _   | _  | -   | _  | _  | _  | - | -   | -   | _  | -  | -   | -             | -   | _   | -   | -    | _  | _   | -   | _  | -     | _  | -  | _  | -  |
| 19.7<br>20.6         | _  | _   | -  | -   | _   | _     | _   | _    | _    | _   | -   | -   | -  | _   | _  | -  | -  | - | -   | -   | -  | _  | _   | _             | _   | -   | _   | -    | -  | _   | _   | _  | _     | _  | _  | _  | _  |
| 20.6                 | -  | _   | _  | -   | _   | _     | -   | _    | _    | _   | _   | -   | _  | _   | _  | _  | -  | _ | -   | _   | -  | -  | _   | $\rightarrow$ | -   | _   | -   | -    | _  | -   | -   | -  | -     | _  | _  | _  | -  |
| 21.7                 | _  | _   | _  | _   | _   | _     | _   | _    | _    | _   | _   | _   | _  | _   | _  | -  | -  | _ | -   | -   | _  | _  | _   | _             | _   | _   | _   | _    | _  | _   | _   | _  | _     | _  | -  | _  | -  |
| 22.7                 | -  | -   | -  | _   | _   | _     | -   | _    | _    | _   | _   | -   | -  | _   | -  | -  | _  | - | -   | -   | _  | -  | -   | _             | -   | -   | -   | -    | _  | _   | -   | _  | -     | -  | _  | _  | -  |
| 23.7<br>24.6<br>26.8 | X  | X   | X  | X   | X   | X     | X   | X    | X    | X   | X   | X   | X  | -   | -  | -  | -  | 2 | -   | -   | _  | _  | -   | -             | -   | -   | -   | -    | -  | -   | -   | X  | X     | X  | X  | X  | X  |
| 24.6                 | -  |     | -  | -   | -   | -     | _   | -    | -    | -   | -   | -   | -  | -   | -  | -  | -  | - | -   | -   | -  | -  | -   | -             | -   | -   | -   | -    | -  |     | -   | -  | -     | -  | -  | -  | -  |
| 26.8                 | X  | X   | X  | -   | -   | -     | -   | -    | -    | -   | -   | -   | -  | -   | -  | -  | -  | - | -   | -   | -  | -  | -   | -             | _   | -   | -   | -    | -  | -   | -   | -  | -     | -  | X  | X  | X  |
| 27.7<br>29.8         | -  | _   | -  | -   | -   | -     | -   | _    | _    | _   | _   | 2   | 2  | -   | 3  | 3  | 3  | 3 | 3 2 | 2   | 2  | 2  | -   | _             | -   | -   | _   | -    | -  | -   | -   | -  | _     | -  | X  | X  | X  |
| 29.8                 | -  | _   | _  | -   | -   | -     | -   | _    | -    | _   | _   | -   | _  | _   | 2  | 2  | 2  | 2 | 2   | 2   | 3  | _  | -   | -             | -   | _   | -   | -    | -  | -   | -   | -  | -     | -  | _  | -  | -  |
| 30.9                 | -  | _   | -  | -   | -   |       | -   | -    | -    | _   | _   | -   | _  | -   | -  | -  | -  | - | -   | -   | -  | -  | -   |               | -   | -   | -   | -    | -  | -   | -   | -  | -     | -  | X  | X  | X  |
| 31.6                 | -  | -   | -  | -   | _   | -     | -   | -    | -    | _   | -   | -   | -  | -   | -  | -  | -  | - | -   | -   | -  | -  | -   | -             | -   | -   | -   | -    | -  | -   | -   | -  | -     | -  | -  | -  | -  |

Note: Observation low weight: Oct. 16.6 at N45 - N90 and S10 - S45.

Table 70a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

| Date         |    |    |          | De | gre | 8 : | nor | th ( | of ' | the           | 30  | lar | Θg | uat | or       |      |    |     | 10 | d  |         |    |    |    |    |    |    |    |    |    |    |    | uato |    |    |    |    |
|--------------|----|----|----------|----|-----|-----|-----|------|------|---------------|-----|-----|----|-----|----------|------|----|-----|----|----|---------|----|----|----|----|----|----|----|----|----|----|----|------|----|----|----|----|
| GCT          | 90 | 85 | 80       | 75 | 70  | 65  | 60  | 55   | 50   | 45            | 40  | 35  | 30 | 25  | 20       | 15   | 10 | 5   | ľ  | 5  | 10      | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70   | 75 | 80 | 85 | 90 |
| 1950         |    |    |          |    |     |     |     |      |      |               |     |     |    |     |          |      |    |     |    |    |         |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |    |
| Oct. 2.7     | -  | -  | -        | _  | -   | -   | -   | -    | 3    | 5             | 5   | 5   | 8  | 10  | 14       | . 12 |    | 17  |    |    |         |    |    | 5  | -  | -  | _  | -  | -  | -  | -  | -  | -    | -  | _  | -  | -  |
| 5.8<br>6.9   | -  | -  | -        | -  | -   |     | -   | -    |      | $\rightarrow$ | -   | 3   | 5  | 8   | 8        |      |    | 22  |    |    |         |    |    | 8  | 5  | 5  | 3  | -  | -  | -  | -  | -  | -    | -  | -  | -  | -  |
| 6.9          | _  | -  | -        | -  | -   | -   | _   | _    | -    | -             | 3   | 5   | 8  | 12  | 14       |      |    | 28  |    |    |         |    |    |    |    | 8  | 8  | 3  | -  | -  | -  | -  | -    | -  | -  | -  | -  |
| 7.7          | -  | -  | -        | -  | _   | -   | _   | _    | -    | 3             | 3   | 5   | 8  | 10  | 12       |      |    | 28  |    |    |         | 31 |    |    |    | 5  | 5  | 3  | 3  | 3  | -  | -  | -    | -  | -  | -  | _  |
| 8.7          | -  | -  | -        | _  | -   | -   | _   | _    | _    | 3             | 5   | 5   | 8  | 8   | 12       |      | 12 | 28  | 12 | 13 | 15      | 25 |    | 18 | 15 | 8  | 5  | 5  | 4  | -  | -  | -  | -    | _  | -  | -  | -  |
| 9-7          | -  | -  | <b>=</b> | 3  | 3   | 3   | 3   | 3    | 3    | 3             | 3   | 4   | 6  | 8   | 10       |      |    | 18  |    |    |         |    | 22 | 17 | 13 | 8  | 5  | 3  | 3  | 3  | 1  | -  | -    | -  | _  | -  | -  |
| 10.7         |    | -  | -        | _  | 3   | 3   | 3   | 3    | 3    | 3             | 5   | 5   | 8  | 8   | 10       |      |    | 10  |    |    |         |    |    |    | 10 | 8  | 3  | -  | _  | -  | -  | -  | -    | -  | _  | -  | -  |
| 11.7         | -  | _  | -        | _  | 3   | 3   | 3   | 3    | 3    | 3             | 3   | 3   | .5 | - 5 | 8        | 12   | 14 | 10  |    |    |         |    |    | 9  | 8  | 5  | 5  | 3  | 3  | -  | -  | -  | -    | -  | -  | -  | -  |
| 12.7         | -  | -  | _        | -  | 3   | 5   | 8   | 5    | 3    | 5             | 8   | 8   | 10 | 10  | 10       | 15   | 17 |     |    |    | 22      |    | g  | 10 | 10 | 5  | 3  | -  | -  | -  | -  | -  | -    | -  | _  | -  | -  |
| 13.7<br>14.8 | _  | -  | -        | )  | 2   | 2   | 2   | 25   | 5    | ő             | , 5 | 8   | 8  | 12  | 15       |      |    | 10  |    |    |         | 10 | 5  | 5  | 3  | 3  | 3  | -  | -  | -  | -  | -  | -    | -  | -  | -  | -  |
|              | _  | -  | -        | _  | )   | 7   | 0   | 10   | Ö    | Ö             | 10  | 10  | TO | 15  | 31<br>15 | 35   | 18 | 10  | 8  | 8  | .8      | 8  | 2  | -  | -  | -  | -  | _  | -  | -  | -  | -  | -    | -  | -  | -  | =  |
| 15.7<br>16.8 | _  | -  |          | -  | -   | 2   | 5   | 2    | 2    | _             | -   | 2   | 30 | 10  | 15       |      |    | 10  | g  | 8  | 10      | 8  | ٥  | _  | -  | -  | -  | -  | _  | _  | -  | -  | -    | -  |    | -  | X  |
| 18.7         | -  | -  | _        | -  | -   | 2   | 2   | 7    | 7    | 2             | -   | 3   | ΤŌ | 12  | 15       | 18   |    | 12  | 5  | 12 | 10      | 10 | 25 | 2  | =  | _  | =  | _  | -  | _  | -  | -  | -    | -  | -  | -  | -  |
| 19.7         | _  | -  | _        | _  | -   | 2   | 2   | 5    | 5    | 2             | 2   | 2   | 2  | 2   | Ö        | 8    | 10 | 8   | 5  | 8  | 8<br>10 | 30 | 10 | 5  | ٦  | 5  | 5  | 5  | 2  | 5  | _  | _  | _    | _  | _  | _  | _  |
| 21.7         | _  |    | _        | _  | )   | )   | )   | 2    | 2    | 2             | 2   | 2   | 2  | 2   | 0        | 10   | 10 | 10  | 9  | 10 | 10      | 10 | 10 | 2  | 2  | 2  | 2  | 2  | 2  | לַ | 2  | 3  | 3    | 3  | 3  | 3  | 3  |
| 22.7         | _  | _  | _        | _  | _   | Ξ   | - 3 | 2    | 5    | 5             | 7   | 5   | 5  | 0   | 0        | 10   | TO | 8   | 5  | 5  | 2       | 2  | 5  | 3  | 2  | 2  | 2  | 5  | 2  | 8  | בַ | 3  | 2    | 2  | -  | -  | -  |
| 23.7         | _  |    | _        | _  | 3   | 7   | 3   | 7    | 7    | 7             | 5   | 5   | 2  | ø   | 0        | 10   | g  | 8   | 5  | 5  | 5       | 2  | 2  | 2  | 2  | 2  | 2  | ۵. | 2  | 5  | 2  | -  | -    | -  | -  | _  | -  |
| 24.6         | _  | _  | _        | _  | _   | _   | 3   | 5    | 5    | g             | 10  | 7   | 7  | g   | g        | 10   | _  | - 1 |    |    |         | 10 | 2  | 2  | 7  | 7  | 2  | 2  | 7  | 2  | כ  | )  | -    | _  | -  | -  | -  |
| 25.7         | _  | _  | _        | _  | _   | _   | 3   | 3    | 5    | 5             | g   | າດໍ | 7  | 5   | 10       | 12   |    | 10  |    |    |         | 12 | 5  | 2  | 2  | 2  | 2  | 2  | 7  | -  | -  | 7  | -    | -  | -  | _  | -  |
| 26.7         | -  | _  | _        | _  | _   |     | _   | 3    | 3    | 5             | g   | 10  | 2  | 5   | 10       |      |    | 10  | 8  |    |         | 10 | 9  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | )  | )    | _  | -  | _  | -  |
| 27.9         | _  | _  | _        | _  |     | _   | _   | _    | 3    | g             | g   | 10  | g  | g   | 10       |      |    | - 1 | 18 | 8  | 8       | 10 | 8  | 2  | 2  | 2  | 2  | 2  | )  | )  | )  | -  | -    | -  | -  | -  | -  |
| 28.7         | _  | _  | _        | _  | _   | _   | _   | _    | 3    | 5             | 5   | -g  | g  | 12  |          |      |    | 20  |    |    | 12      | 8  | 5  | 2  | 2  | ر  | )  | )  | -  | _  | -  | _  | -    | -  | _  | -  | -  |
| 29.7         | _  | _  | _        | _  | _   | _   | _   | 3    | 5    | g             | g   | 5   | 8  |     |          |      |    | 25  |    |    | 12      | 8  | 9  | 7  | _  | _  | _  | _  | _  | _  | _  | _  | _    | _  | _  | _  | -  |
| 30.7         | _  | _  | _        | _  | _   | _   | _   | _    | 3    | 3             | 3   | 5   | g  |     |          |      |    | 15  |    |    |         | 5  | 5  | 5  | 7  | 7  | 7  | _  | _  | _  | _  | _  | -    | _  | _  | _  | -  |
| 31.6         | _  | _  | _        | -  | _   | -   |     | _    | _    | 3             | 3   | 8   |    | 10  | 12       | וֹצ  | 17 | 20  | 17 | 12 | 12      | 10 | 8  | g  | 5  | 7  | ۲  | _  | _  | _  | -  | _  | -    | -  | -  | _  | -  |

Table 69b

Coronal observations at Climax, Colorado (6702A), west limb

| ate           |     |    |    | Deg | ree | 3 5 | out | ch c | of t | he | sol | ar | equ | ato | or |    |    |   | 00 |     |     |    | Deg | ree           | s n           | ort | h c | of t | he | sol | ar | equ | ato | or |    |    |     |
|---------------|-----|----|----|-----|-----|-----|-----|------|------|----|-----|----|-----|-----|----|----|----|---|----|-----|-----|----|-----|---------------|---------------|-----|-----|------|----|-----|----|-----|-----|----|----|----|-----|
| GCT           | 90  | 85 | 80 | 75  | 70  | 65  | 60  | 55   | 50   | 45 | 40  | 35 | 30  | 25  | 20 | 15 | 10 | 5 | Ľ. | 5   | 10  | 15 | 20  | 25            | 30            | 35  | 40  | 45   | 50 | 55  | 60 | 65  | 70  | 75 | 80 | 85 | ġ0  |
| 1950          |     | 0- |    |     |     |     |     |      |      |    |     |    |     |     |    |    |    |   |    |     |     |    |     |               |               |     |     |      |    |     |    |     |     |    |    |    |     |
| ct. 2.6       | -   | _  | -  | _   | -   | -   | -   | _    | _    | -  | -   | -  | _   | -   | -  | -  | _  | - | -  | -   | -   | -  | -   | _             | -             | -   | -   | _    | -  | -   | _  | _   | -   | -  | -  | -  | -   |
| 3.7           | -   | -  | _  | _   | -   | _   | -   | -    | -    | -  | -   | -  | _   | -   | -  | -  | -  | - | -  | -   | *** | _  | -   | -             | -             | _   | -   | -    | -  | -   | _  | -   | -   | _  | -  | -  | -   |
| 4.7           | · - | _  | _  | _   | _   | -   | -   | -    | -    | -  | -   | _  | -   | -   | _  | -  | -  | - | -  | -   | -   | ~  | -   | _             | -             | _   | _   | -    | -  | -   | -  | _   | -   | -  | -  | _  | -   |
| 5.6           | -   | _  | _  | -   | _   | -   | _   | -    | _    | _  | -   | _  | -   | -   | _  | -  | -  | - | -  | -   | _   | -  | -   | $\rightarrow$ | _             | -   | -   | _    | -  | _   | -  | _   | -   | _  | -  | -  | -   |
| 7.8           | X   | X  | X  | X   | X   | X   | Х   | Х    | X    | X  | X   | X  | X   | X   | X  | X  | X  | X | X  | X   | X   | X  | X   | X             | X             | X   | X   | X    | X  | X   | X  | X   | X   | X  | X  | X  | X   |
| 8.7           | -   | _  | _  | -   | -   | -   | _   | -    | -    | _  | -   | -  | -   | -   | -  | -  | _  | - | -  | -   | -   | -  | -   | -             | -             | -   | -   | -    | _  | -   | -  | -   | -   | -  | -  | -  | -   |
| 9.6a          | -   | -  | -  | _   | -   | _   | _   | -    | -    | _  | -   | -  | -   | -   | _  | -  | -  | - | -  | -   | -   | -  | -   | -             | -             | _   | -   | _    | -  | -   | -  | -   | -   | -  | -  | -  | -   |
| 10.6          | -   | -  | -  | -   | _   | -   | -   | -    | _    | -  | -   | -  | -   | -   | -  | -  | _  | - | -  | -   | -   | -  | -   | -             | -             | -   | -   | -    | -  | -   | -  | -   | -   | -  | -  | -  | 440 |
| 11.7          | -   | _  | _  | -   | _   | -   | _   | -    | -    | -  | _   | _  | -   | -   | -  | -  | -  | _ | -  | -   | -   | -  | -   | -             | -             | -   | -   | -    | -  | -   | -  | -   | -   | -  | _  | -  | -   |
| 12.8          | -   | -  | _  | _   | -   | _   | _   | -    | _    | _  | _   | -  | -   | _   | _  | _  | -  | - | -  | -   | -   | _  | -   | -             | -             | _   | -   | -    | _  | -   | _  | -   | -   | _  | -  | -  | -   |
| 13.7          | -   | -  | _  | -   | _   | -   | -   | -    | -    | _  | _   | _  | -   | -   | _  | _  | _  | - | -  | -   | -   | -  | -   | -             | -             | -   | -   | -    | -  | -   | -  | -   | -   | -  | -  | -  | -   |
| 13.7<br>14.6  | -   | _  | -  | -   | -   | _   | _   | _    | _    | -  | _   | -  | -   | -   | -  | _  | _  | _ | -  | -   | -   | -  | -   | _             | -             | -   | _   | -    | -  | _   | -  | -   | -   | -  | -  | -  | -   |
| 15.7a         | -   | _  | -  | -   | -   | -   | -   | -    | -    | -  | _   | _  | -   | -   | _  | _  | -  | - | -  | -   | -   | _  | -   | _             | $\rightarrow$ | _   | _   | _    | -  | -   | -  | -   | _   | -  | -  | -  | 400 |
| 15.7a<br>16.6 | _   | _  | -  | _   | _   | _   | -   | -    | -    | _  | _   | _  | _   | _   | _  | -  | -  | - | -  | -   | -   | _  | -   | -             | _             | -   | _   | -    | -  | -   | -  | -   | -   | -  | _  | -  | -   |
| 17.7          | _   | -  | -  | _   | -   | _   | -   | _    | -    | -  | -   | -  | -   | -   | -  | -  | -  | 1 | 1  | 1   | 3   | 2  | 1   | 1             | _             | -   | -   | -    | -  | _   | _  | _   | -   | -  | -  | -  | -   |
| 17.7<br>18.9  | _   | _  | -  | -   | -   | -   | -   | -    | _    | -  | _   | _  | _   | _   | -  | _  | _  | _ | -  | -   | -   | _  | -   | -             | -             | -   | -   | _    | _  | -   | -  | -   | -   | _  | -  | -  | -   |
| 19.7          | -   | _  | _  | -   | -   | -   | _   | -    | -    | _  | _   | -  | 1   | 1   | 1  | 1  | 1  | - | -  | -   | 2   | 2  | 2   | 2             | 2             | _   | -   | -    | _  | -   | -  | _   | -   | -  | _  | -  | -   |
| 19.7<br>20.6  | _   | _  |    | _   | _   | _   | _   | _    | _    | _  | _   | _  | 2   | 2   | 2  | 3  | 3  | 2 | 2  | 2   | 2   | 2  | 2   | _             | _             | _   | -   | -    | _  | -   | _  | -   | -   | -  | -  | -  | -   |
| 21.7          |     | _  | _  | -   | _   | _   | _   | _    | _    | -  | -   | _  | _   | -   | -  | _  | _  | _ | -  | -   | -   | -  | _   | _             | _             | -   | _   | -    | -  | _   | _  | -   | -   | _  | _  | -  | -   |
| 22.7          | -   | -  | -  | _   | _   | -   | -   | -    | -    | _  | -   | -  | -   | 2   | 2  | 2  | 2  | 2 | 2  | 2   | 2   | 2  | 2   | 2             | 2             | 2   | _   | -    | -  | _   | -  | _   | -   | -  | -  | -  | _   |
|               | X   | X  | X  | X   | -   | _   | _   | -    | _    | _  | _   | -  | -   | -   | _  | _  | -  | _ | -  | -   | _   | -  | -   | -             | -             | _   | -   | -    | -  | -   | -  | -   | X   | X  | X  | X  | I   |
| 23.7<br>24.6  | -   | _  | -  | _   | -   | _   |     | -    | _    | _  | -   | -  | -   | -   | -  | -  | -  | - | -  | -   | -   | -  | 40  | -             | _             | _   | -   | -    | -  | -   | _  | -   | -   | -  | _  | -  | -   |
| 26.8          | X   | X  | X  | X   | X   | X   | X   | X    | X    | X  | X   | X  | X   | X   | X  | X  | X  | X | X  | . X | X   | X  | X   | X             | X             | X   | X   | X    | X  | X   | X  | X   | X   | X  | X  | X  | X   |
| 27.7          | X   | X  | X  | X   | X   | X   | X   | _    | -    | -  | -   | -  | 2   | 2   | 2  | 2  | 2  | 2 | 2  | 2   | 2   | 2  | 2   | X             | X             | X   | X   | X    | X  | X   | X  | X   | X   | X  | _  | _  | -   |
| 29.8          | _   |    | _  | -   | _   | _   | _   | _    | _    | -  | _   | -  | -   | 2   | 2  | 2  | -  | - | 2  | 2   | 2   | -  | -   | _             | _             | -   | _   | _    | -  | -   | -  | -   | -   | _  | -  | -  | -   |
| 30.9          | X   | Х  | X  | X   | Х   | X   | X   | X    | X    | X  | X   | X  | X   | X   | X  | X  | X  | X | X  | X   | X   | X  | X   | X             | X             | X   | X   | X    | X  | X   | X  | X   | Х   | X  | _  | -  | -   |
| 30.9<br>31.6  | -   | -  | _  | _   | -   | -   | _   | _    | -    | -  | -   | -  | -   | -   | -  |    | -  | - | -  | -   | -   | -  | -   | -             | -             | -   | -   | -    | -  | -   | -  | -   | -   | -  | -  | -  | -   |

Note: On October 17 Climax began taking coronal plates with a new slit.

Table 70b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

| Date         |    |        |    | Deg | ree | 8 8 | out | h  | f t | he | 30. | lar | equ      | nt | or |    |    |     | 00      |     |         |     | De  | gre | 68 1 | nort | h      | of t | the | so. | Lar | equ | nto | T  |    |    |    |
|--------------|----|--------|----|-----|-----|-----|-----|----|-----|----|-----|-----|----------|----|----|----|----|-----|---------|-----|---------|-----|-----|-----|------|------|--------|------|-----|-----|-----|-----|-----|----|----|----|----|
| GCT          | 90 | 85     | 80 | 75  | 70  | 65  | 60  | 55 | 50  | 45 | 40  | 35  | 30       | 25 | 20 | 15 | 10 | 5   | 10.     | 5   | 10      | 15  | 20  | 25  | 30   | 35   | 40     | 45   | 50  | 55  | 60  | 65  | 70  | 75 | 80 | 85 | 90 |
| 1950         |    |        |    |     |     |     |     |    |     |    |     |     |          |    |    |    |    |     |         | -   |         |     |     |     |      |      |        |      |     |     |     |     |     |    |    |    |    |
| Oct. 2.7     | -  | -      | _  | _   | -   | -   | -   | -  | -   | 3  | 3   | 3   | 3        | 5  | 8  | 10 | 10 | 12  | 10      | 13  | 20      | 33  | 28  | 28  | 25   | 13   | 10     | g    | g   | 8   | 5   | 5   | 3   | 3  | -  | -  | -  |
| 5.8          | _  | -      | -  | -   | -   | -   | -   | 3  | 5   | -  | -   | -   | <b>→</b> | 1  | 5  | 3  | 3  | 5   | X       | X   | X       | X   | _X  | X   | 10   | g    | 5      | g    | g   | - 5 | 5   | 3   | 3   | 2  | -  | -  | -  |
| 6.9          | -  | -      | -  | 3   | 3   | 5   | 3   | 3  | 5   | 5  | 5   | g   | 10       | g  | 10 | 10 | 13 | 8   | 5       | 5   | 5       | - g | 15  | 13  | - 5  | 3    | 5      | 8    | 10  | 10  | 5   | 4   | 3   | 3  | _  | -  | -  |
| 7.7          | -  | -      | -  | 3   | 3   | 3   | 3   | 5  | 5   | 5  | 5   | 5   | 8        | 8  | 10 | 13 | 10 | 5   | 5       | 5   | 8       | 12  | 13  | 15  | 5    | 5    | 5      | 5    | 5   | 5   | 3   | 3   | 3   | -  | -  | -  | -  |
| g. 7         | -  | -      | -  | 3   | 3   | 5   | 5   | 5  | 5   | 5  | 5   | 5   | 8        | 8  | 8  | 10 | 8  | g   | g       | 8   | 8       | 10  | 10  | 12  | g    | 6    | 5      | 2    | 2   | 5   | 3   | -   | -   | -  | -  | -  | -  |
| 9.7          | -  | -      | -  | ~   | -   | 3   | 5   | 5  | 5   | 5  | 5   | 8   | 8        | 5  | 5  | g  | 10 | - 1 | 5       | 8   | 10      | 12  | 13  | 15  | 8    | 8    | 8      | 5    | 2   | _   | _   | -   | -   | -  | -  | -  | -  |
| 10.7         | -  | -      | -  | -   | -   | 3   | 3   | 3  | 2   | 5  | 5   | 8   | 8        | R  | 5  | 8  | g  | 14  | 10      | 8   | 8       | TT  | 10  | 77  | ٥    | g    | 70     | , ,  | 2   | 2   | 2   | 7   | _   | _  | -  | _  | -  |
| 11.7         | -  | -      | -  | -   | -   | -   | -   | 3  | 2   | 3  | 2   | 2   | 5        | 2  | 8  | 10 | 12 | 17  | 14      | 8   | 2       | 70  | 10  | 10  | 71.  | 12   | 10     | 10   | 72  | 2   | 2   | )   | _   | -  | _  | -  | _  |
| 12.7         | -  | -      | -  | -   | -   | -   | -   | 5  | 5   | 5  | 5   | 3   | 5        | Ď  | g  | 10 | 15 | 12  | 10      | 5   | 8       | 15  | 18  | 15  | 13   |      | 10     | 0    | ΤO  | 0   | 2   | _   | -   | -  | -  | -  | _  |
| 13.7         | -  | -      | -  | _   | -   | _   | _   | -  | -   | -  | -   | _   | -        | )  | 2  | 8  | 18 | 15  | 5<br>15 | 12  | 8<br>12 | 17  | 20  | 12  | 10   | 10   | 10     | · E  | 0   | 6   | 2   | 7   | -   | _  | -  | _  | _  |
| 14.8         | _  | -<br>v | -  | _   | 7   | →   | _   | -  | -   | -  | -   | _   | -        | _  | ~  | 7  | -  | 13  |         | 20  | 17      |     | 17  |     |      | 10   | o<br>g | 5    | 2   | 2   | 0   | )   | _   | -  | _  | _  | _  |
| 15.7         | X  | Λ      | A  | Λ   | A   | A   | -   | -  | -   | -  | _   | _   | _        | -  | _  | )  | 0  | 10  | 12      | g   | - g     | 14  |     | 5   | 12   | 10   |        | 9    | _   | _   |     | _   |     | _  | _  | _  | _  |
| 16.8         | _  | -      | -  | _   | -   | _   | -   | -  | -   | 7  | _   | -   | -        | 10 | 12 | 10 | 10 | 12  | 15      | 20  | _       | 17  | 14  | -   | 12   | 10   | 7      | 3    | _   | _   | _   | _   | _   | _  | _  | _  | _  |
| 18.7         | -  | 7      | -  | -   | _   | -   | 7   | 7  | 7   | 2  | 2   | 0   | 10       | 10 | 15 | 15 |    | 12  | 12      | 15  | 12      | 15  |     | -   | 12   | 12   | 10     | 2    | 2   | 2   | _   | _   | _   | _  | _  | _  | _  |
| 19.7         | 3  | )      | ے  | -   | -   | -   | 2   | 2  | 2   | 2  | 6   | 0   | TO       | 10 | 15 | 18 |    | 15  | 13      |     |         | 15  | 1): | 10  |      | g    | 5      | _    | _   | _   | _   | _   | _   | _  | _  | _  | _  |
| 21.7<br>22.7 | _  | -      | _  | _   | -   | -   | 2   | 2  | 2   | 2  | 2   | 5   | 5        | TO | 12 | 15 | -  | 13  |         |     |         | 15  | 12  | 12  | 10   | g    | 5      | -    | _   | _   | _   | _   | _   | _  | _  | _  | _  |
|              | _  | -      | -  | -   | -   | -   |     | _  | 2   | 2  | 7   | 7   | 5        | Ø  | 12 | 15 |    |     |         | ió  |         | 12  |     | 10  |      | g    | g      | 5    | 3   | 3   | 3   | 3   | 3   | _  | _  | _  | _  |
| 23.7<br>24.6 | _  | _      | _  | _   | _   | _   | _   | 7  | 7   | 7  | 2   | 5   | 5        | g  | g  | 12 | 13 | g   | g       | g   |         | 10  | 11  |     |      | 10   | 5      | 3    | 3   | 3   | 3   | 3   | 2   | _  | _  | _  | _  |
| 25.7         | _  | _      | _  | _   | _   | _   | _   | _  | 7   | 7  | 7   | 7   | 5        | 5  | g  | 10 | g  | 10  | 13      | g   | -       | 10  |     | g   |      | g    | g      | 3    | _   | _   | _   | _   | _   | _  | _  | _  | _  |
| 26.7         | _  | _      | _  | _   | _   | _   | _   | _  | _   | 3  | 3   | 5   | 5        | 5  | 5  | g  | 15 | 17  | 22      | 15  | 12      | 10  |     | 12  | g    | g    | 5      | 5    | 3   | 3   | 3   | 3   | 3   | 3  | _  | _  | _  |
| 27.9         | _  | _      | _  | _   | _   | _   | _   | _  | _   | _  | _   | _   | 3        | _  |    | 3  |    | 20  | 17      | liú | g       | g   | 10  | 12  | g    | 5    | 5      | 5    | 5   | 5   | 5   | 5   | 5   | ヹ  | _  | _  | _  |
| 28.7         |    | _      | _  | _   | _   | _   | _   | _  | _   | _  | _   | _   | _        | _  | 3  | 3  | 5  | 12  | 18      | 11  | g       | g   | 15  | 15  | 10   | g    | g      | 3    | 3   | 3   | 3   | 3   | 3   | 3  | 3  | _  | _  |
| 29.7         |    | _      | _  | _   | _   | _   | _   | _  | _   | _  | _   | 3   | 3        | 3  | 8  | 5  | 12 | 10  | 12      | 13  | 12      | 12  |     | 20  | 10   | 10   | g      | 5    | 5   | 5   | 5   | 5   | g   | 5  | 3  | _  | _  |
| 30.7         | _  | _      | _  | _   | _   | _   | _   | _  | _   | _  | -   | 3   | 3        | 3  | 3  | 5  | 10 | g   | g       | 10  |         |     | 18  |     |      | 10   | 5      | 5    | 5   | 3   | 5   | 3   | 5   | 3  | 3. | _  | _  |
| 31.6         | -  | _      | _  | _   | -   | _   | _   | _  | _   | -  | 3   | 3   | 5        | .5 | 5  | 5  | g  | g   | 5       |     | 10      |     |     |     |      | -5   | 3      | 3    | 3   | 3   | 5   | 5   | 5   | 5  | 3  | _  | -  |

Table 7la

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

| Date                                                                                                                                                                                                                                                         | T |             | mm  |               | De                   | gre            | es i                 | nor    | th               | of t             | the                  | 30                  | lar                                             | <b>e</b> at              | na to       | or                     |                                                     |                                                          |                     | 100              | 7                                                                          |                                         |                                                     | De            | gre                         | 98 8                          | sout                    | th (                       | of t                       | the.                             | sol                | lar                    | <b>e</b> n1                  | na ta                                   | יונ                                            |           |    |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|-----|---------------|----------------------|----------------|----------------------|--------|------------------|------------------|----------------------|---------------------|-------------------------------------------------|--------------------------|-------------|------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------|------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------|-----------------------------|-------------------------------|-------------------------|----------------------------|----------------------------|----------------------------------|--------------------|------------------------|------------------------------|-----------------------------------------|------------------------------------------------|-----------|----|--------|
| GCT                                                                                                                                                                                                                                                          | ( | 90          | 85  | 80            | 75                   | 70             | 65                   | 60     | 55               | 50               | 45                   | 40                  | 35                                              | 30                       | 25          | 20                     | 15                                                  | 10                                                       | 5                   | 10,              | 5                                                                          | 10                                      | 15                                                  | 20            | 25                          | 30                            | 35                      | 40                         | 45                         | <i>5</i> 0                       | 55                 | 60                     | 65                           | 70                                      | 75                                             | 80        | 85 | 90     |
| 1950<br>Oct. 2.7<br>5.8<br>6.9<br>7.7<br>9.7<br>10.7<br>11.7<br>12.7<br>14.8<br>15.7<br>16.8<br>18.7<br>21.7<br>22.7<br>23.7<br>24.6<br>25.7<br>27.9<br>28.7<br>27.9<br>28.7<br>27.9<br>28.7<br>27.9<br>28.7<br>27.9<br>28.7<br>27.9<br>28.7<br>27.9<br>28.7 |   | -2212222223 | -22 | -221221222234 | 122 - 12 - 222 - 222 | 231122-2-22213 | -22 122 - 2 - 22 213 | 222213 | -221122222-12213 | 221 21 12222 213 | 231 2 2222 2 2 - 212 | 221 2 222 2 - 2 223 | 122 - 2 - 1 - 1 - 2 2 2 1 2 - 1 - 1 2 - 1 2 2 3 | 322 - 12 25 - 2 2 - 1223 | 22 2 2 32 - | 2 221 - 1 233 3 - 22 - | 2 - 3 - 2 5 3 1 8 8 3 2 2 3 - 2 - 2 3 8 3 3 3 3 3 - | 10 14 2 - 38 5 5 8 5 8 10 0 2 3 3 3 3 2 - 8 5 5 12 8 3 - | 38305635953322353-5 | 32 8 3 2 3 3 3 3 | 35<br>17<br>14<br>10<br>10<br>10<br>17<br>12<br>2<br>2<br>3<br>3<br>2<br>8 | 300 100 100 100 100 100 100 100 100 100 | 12 8 2 1 2 4 9 3 3 3 3 3 7 2 - 2 2 3 10 3 3 7 - 2 3 | 2<br>10<br>15 | 335558721221211221321321223 | 3222 - 1 - 2 - 2 322222 - 232 | 3221-1-232-23-222223332 | 32333-2-12-23-122233333322 | 3231122-32-2-33-1-22223222 | 3321122 - 33 - 2 - 332 2 2323232 | 3231322-3332222233 | 3221332-332222-222-232 | 232 - 122 - 32 22222222 22 - | 2 2 2 1 1 2 2 1 3 2 1 1 1 1 2 2 2 2 2 2 | 75 2 2 1 1 2 1 2 2 1 1 1 1 2 2 2 2 2 1 1 1 2 1 | 2222-3322 | 85 | 90<br> |

Table 72a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

| Date         | <u></u> |    |    | De | gre | 98 | nor | th | of | the | 40 | lar | eq  | uat | œ  |    |    |   | 00  |     |    |    | Deg | ree | 8 8 | out | th o | of · | the | 30 | lar | eq | ua t | or | 80 |    |    |
|--------------|---------|----|----|----|-----|----|-----|----|----|-----|----|-----|-----|-----|----|----|----|---|-----|-----|----|----|-----|-----|-----|-----|------|------|-----|----|-----|----|------|----|----|----|----|
| GCT          | 90      | 85 | 80 | 75 | 70  | 65 | 60  | 55 | 50 | 45  | 40 | 35  | 30  | 25  | 20 | 15 | 10 | 5 | Ľ   | 5   | 10 | 15 | 20  | 25  | 30  | 35  | 40   | 45   | 50  | 55 | 60  | 65 | 70   | 75 | 80 | 85 | 90 |
| 1950         | İ       |    |    |    |     |    |     |    |    |     |    |     |     |     | •  |    |    |   |     |     |    |    |     |     |     |     |      |      |     |    |     |    |      |    |    |    |    |
| Oct. 2.7     | _       | _  | _  | _  | _   | _  | _   | _  | _  | _   | _  | _   | _   | _   | _  | 2  | 2  | 2 | 2   | 2   | -  |    |     |     |     |     |      |      |     |    |     |    |      |    |    |    |    |
| 5.8          | _       | _  | _  | _  | _   | _  | _   | _  | _  |     | _  | _   | _   | _   | _  | ~  | ے  | 2 | ے ا | ء ا | 1  | _  | -   | -   | -   | _   | -    | -    | -   | -  | -   | -  | _    | -  | -  | -  | -  |
| 5.8<br>6.9   | _       | _  | _  | _  | _   | _  | _   | _  | _  |     | _  | _   | _   | _   | _  | _  | 2  | 2 | 2   | 2   | -  | -  | -   | _   | -   | -   | -    | -    | _   | -  | -   | _  | -    | _  | -  | -  | •  |
| 7.7          | _       | _  | _  | _  | _   | _  | _   | _  | _  | _   | _  |     | -   | _   | _  | 2  | 2  | 2 | 2   | 3   | 3  | 2  | 2   | 2   | 7   | _   | -    | -    | _   | -  | -   | -  | _    | -  | -  | _  | ٠  |
| 8.7          | _       | _  | _  | _  | _   | _  | _   | _  |    |     | _  | _   | _   | _   | _  | _  | ~  | ح | 1   | 2   | 2  | 2  | 2   | 2   | 2   | 2   | -    |      | -   | -  | -   | _  | -    | -  | -  | _  | •  |
| 9.7          | _       |    | _  | _  | _   | _  | _   | _  | -  | _   | -  | -   | _   | _   | -  | -  | _  | 2 | 2   | 2   | 2  | 2  | 2   | 3   | _   | _   | -    | _    | -   | -  | -   | -  | -    | -  | _  | -  | •  |
| 10.7         | _       | _  | _  | _  | _   | _  |     |    | _  | _   | -  | _   | _   | _   | -  | -  | -  | ے | ے ا | 2   | 2  | 2  | )   | 2   | 2   | _   | -    | _    | -   | -  | -   | -  | -    | _  | -  | -  | ٠  |
| 11.7         | _       | _  | _  | _  | _   | _  | _   | _  | _  | _   | _  | _   | _   | _   | _  | -  | -  | _ | -   | 1   | Т  | T  | _   | -   | -   | -   | _    | -    | _   |    | _   | -  | _    | -  | -  | _  | ٠  |
| 12.7         | 2       | 2  | 2  | 2  |     | _  | _   | -  | _  | -   | -  | _   | com | _   | _  | -  | -  | - | -   | -   | -  | -  | -   | -   | -   | _   | -    | -    | -   | -  | -   | _  | -    | -  | -  | -  | ٠  |
| 13.7         | -       | _  | _  | _  | _   | _  | _   | _  | _  | _   | _  | -   | -   | _   | -  | _  | _  | _ | -   | -   | _  | _  | -   | _   | -   | -   | -    | _    | _   | _  | -   | -  | -    | -  | -  | _  | -  |
| 14.8         | _       | _  | _  | _  | _   | _  | -   | -  | -  | _   | _  | _   | -   | _   | _  | _  | -  | - | -   | -   | -  | -  | -   | -   | _   | -   | _    | -    | -   | -  | -   | -  | -    | -  | -  | _  | •  |
| 15.7         | _       | _  | _  | -  | _   | -  | _   | _  | -  | -   | -  | -   | _   | -   | _  | -  | -  | _ | -   | -   | -  | -  | -   | -   | -   | -   | _    | -    | -   | -  | -   | -  | -    | -  | -  | -  | •  |
| 16.8         | _       | _  | _  | _  | _   | _  | -   | _  | _  | _   | -  | _   | -   | -   | -  | -  | _  | _ | -   | -   | -  | _  | -   | _   | -   | -   | -    | -    | -   | _  | -   | -  | _    | -  | -  | -  | :  |
| 18.7         | _       | _  | _  | -  | _   | _  | -   | _  | _  | -   | -  | _   | _   | -   | -  | _  | -  | - | -   | -   | _  | -  | -   | -   | -   | -   | -    | -    | -   | -  | -   | -  | -    | -  | -  | -  | -  |
| 19.7         | _       | _  | -  |    | -   | _  | _   | _  | -  | -   | -  | _   | _   | -   | -  | -  | -  | - | -   | -   | _  | -  | -   | -   | -   | -   | -    | _    | -   | -  | -   | -  | _    | -  | -  | -  | -  |
| 21.7         | -       | _  | -  | -  | -   | -  | _   | _  | -  | -   | _  | -   | -   | -   | -  | -  | -  | 7 | -   | -   | _  | -  | -   | _   | _   | -   | -    | -    | _   | -  | -   | -  | -    | -  | -  | -  | -  |
| 22.7         | _       | _  | _  | -  | _   | -  | -   | _  | -  | -   | -  | -   | -   | -   | -  | _  | -  | - | 2   | 2   | 2  | 2  | 2   | 2   | 2   | 2   | -    | -    | -   | -  | -   | -  | -    | -  | -  | -  | -  |
| 23.7         | _       | -  | _  | -  | -   | _  | ,== | _  | _  | _   | -  | -   | -   | -   | -  | -  | ~  | - | -   | -   | _  | -  | -   | -   | _   | -   | -    | _    | _   | -  | _   | _  | _    | -  | -  | -  | -  |
| 24.6         | _       | _  | -  | -  | _   | -  | _   | -  | -  | _   | -  | _   | _   | -   | -  | _  | -  | - | -   | -   | -  | _  | _   | -   | -   | -   | -    | -    | -   | -  | -   | -  | _    | -  | _  | -  | -  |
| 25.7         | -       | _  | -  | _  | _   | _  | _   | -  | _  | -   | _  | -   | -   | -   | -  | 40 | -  | - | -   | -   | -  | -  | -   | -   | 2   | 2   | 2    | 2    | 2   | 2  | 2   | -  | -    | -  | _  | -  | -  |
| 26.7         | _       | _  | -  | _  | -   | _  | _   | _  | _  | _   | -  | _   | -   | -   | _  | _  | _  | - | -   | -   | -  | -  | -   | -   | -   | -   | -    | -    | -   | -  | -   | -  | -    | -  | -  | _  | _  |
| 27.0         | -       | _  | _  | _  | -   | _  | _   | _  | _  | _   | _  | -   | -   | -   | -  | -  | -  | - | -   | -   | -  | -  | -   | _   | _   | -   | -    | _    | -   | -  | -   | _  | -    | _  | _  | _  | _  |
| 27.9         | _       | _  | _  | _  | -   | _  | _   | _  | _  | -   | -  | -   | -   | _   | -  | -  | -  | - | -   | -   | -  | -  | -   | -   | -   | -   | _    | -    | -   | -  | -   | -  | _    | _  | _  | _  | -  |
|              | -       | -  | _  | -  | -   | -  | -   | _  | -  | -   | _  | -   | _   | _   | -  | -  | -  | - | -   | -   | -  | -  | -   | -   | -   | _   | -    | -    | _   | -  | _   | _  | _    | -  | _  | _  | -  |
| 29.7         | _       | -  | _  | _  | -   | -  | -   | -  | -  | -   | _  | -   | 2   | 2   | 2  | 2  | 2  | 2 | 2   | 2   | -  | -  | -   | -   | -   | _   | -    | _    | _   | -  | -   | -  | _    | _  | _  | _  | _  |
| 30.7<br>31.6 | -       | -  | -  | -  | _   | -  | -   | -  | _  | -   | -  | -   | -   | -   | 2  | 2  | 2  | 2 | 2   | 2   | -  | _  | -   | _   | _   | _   | _    | _    | _   | _  | _   | _  | _    | _  | _  | _  | _  |
| 31.6         | _       | -  | _  | -  | -   | -  | -   | _  | -  | _   | -  | _   | -   | _   | _  | _  | -  | - | -   | -   | _  | _  | _   | _   | _   | _   | _    | _    | _   | _  | _   | _  | _    | _  | _  | _  | Ξ  |

Table 71b

Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

| ate          |    |    |    | De | gree | 3  | sout | th c | of t | he | 30] | lar | equ | uto | T  |    |    |          | 00  | د  |    |    | Deg | ree     | s n | ort | h c | of t | he | sol | ar | equ | u to          | r  |      |    |    |
|--------------|----|----|----|----|------|----|------|------|------|----|-----|-----|-----|-----|----|----|----|----------|-----|----|----|----|-----|---------|-----|-----|-----|------|----|-----|----|-----|---------------|----|------|----|----|
| GCT          | 90 | 85 | 80 | 75 | 70   | 65 | 60   | 55   | 50   | 45 | 40  | 35  | 30  | 25  | 20 | 15 | 10 | 5        | L   | 5  | 10 | 15 | 20  | 25      | 30  | 35  | 40  | 45   | 50 | 55  | 60 | 65  | 70            | 75 | 80 8 | 85 | 90 |
| 1950         |    |    |    |    |      |    |      |      |      |    |     |     |     |     |    |    |    |          |     | Ì  |    |    |     |         |     |     |     |      |    |     |    |     |               |    |      |    |    |
| ct. 2.7      | _  | _  | _  | _  | _    | 2  | 2    | 2    | 2    | 5  | 3   | 2   | 2   | 3   | 2  | 5  | 3  | -        | -   | 3  | 5  | 12 | 12  | 3       | 2   | -   | -   | 3    | _  | -   | _  | _   | 3             | 2  | -    | -  |    |
| 5.8          |    | -  | _  | _  | _    | -  | _    | -    | -    | _  | _   | -   | -   | ĺ   | 1  | 1  | X  | X        | X   | X  | X  | X  | X   | X       | X   | X   | 3   | 2    | _  | _   | _  | 2   | 2             | 2  | 2    | 2  | í  |
| 6.9          | -  | 1  | _  | -  | -    | -  | 1    | 1    | -    | _  | _   | _   | -   | 1   | 1  | 3  | 3  | 5        | 3   | 3  | 3  | 3  | 3   | 5       | 3   | 3   | 2   | 2    | 2  | 2   | 2  | 2   | 2             | 2  | 2    | 2  |    |
| 7.7          | -  | -  | _  | -  |      | -  | 3    | 3    | -    | -  | -   | -   | -   | -   | _  | -  | 1  | 3        | -   | 2  | 2  | 3  | 3   | 2       | _   | _   | -   | -    | _  | _   | _  | -   | _             | -  | -    | -  |    |
| 8.7          | -  | -  | -  | -  | -    | -  | _    | -    | -    | _  | -   | _   | -   | -   | -  | 1  | 3  | 3        | 1   | 1  | 1  | 1  | 3   | 3       | 1   | 1   | 1   | -    | _  | -   | -  | -   | -             | -  | _    | -  |    |
| 9.7          | -  | -  | -  | -  | -    | -  | -    | -    | -    | -  | -   | -   | -   | -   | -  | -  | 3  | 8        | 8   | 5  | 3  | 2  | -   | -       | -   | -   | -   | -    |    | _   | -  | _   | -             | -  | -    | -  |    |
| 10.7         | -  | -  | -  | _  | -    | -  | _    | -    | -    | _  | -   | -   | -   | -   | -  | 5  | 13 | 8        | 10  | 5  | 3  | 2  | -   | -       | -   | -   | -   | _    | _  | _   | -  | _   | $\rightarrow$ | -  | -    | -  |    |
| 11.7         | -  | _  | -  | -  | -    | -  | -    | -    | -    | _  | -   | -   | _   | -   | _  | -  | 5  | 10       | 10  | 5  | 3  | 3  | 10  | _       | -   | -   | -   | -    | -  | _   | -  | -   | -             | -  | -    | -  |    |
| 12.7         | 2  | 2  | -  | _  | -    | -  | 1    | 1    | 1    | 1  | 1   | 1   | 1   | 1   | 3  | 3  | 3  | 13       | 10  | 12 | 5  | 3  | 3   | 3       | 1   | 1   | 1   | 1    | 1  | 1   | 1  | 1   | 1             | 1  | 1    | 1  |    |
| 13.7         | 2  | 2  | -  | -  | -    | -  | 2    | 2    | 2    | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 5        | 3   | 3  | 8  | 13 | 6   | _       | 2   | _   | -   | 2    | 2  | 2   | 2  | 2   | 2             | 2  | 2    | 2  |    |
| 14.8         | -  | -  | -  | -  | -    | -  | -    | _    | _    | -  | _   | -   | -   | -   | -  | -  | -  | 3        | -   | 8  | 8  | 15 | 5   | 3       | 2   | 2   | 2   | 2    | 2  | 2   | 2  | 2   | 2             | 2  | 2    | 2  |    |
| 15.7         | X  | X  | X  | X  | Х    | X  | 2    | 3    | 2    | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 2  | 3        | 3   | 8  | 10 | 13 | 8   | 2       | 2   | 2   | 2   | -    | -  | -   | -  | -   | -             | -  | _    | -  |    |
| 16.8         | -  | -  | _  | _  | _    | -  | _    | _    | _    | _  | -   | _   | -   | -   | _  | -  | _  | -        | 5   | 5  | 5  | 5  | -   | -       | _   | -   | -   | _    | _  | -   | -  | _   | _             | -  | _    | -  |    |
| 18.7         | _  | _  | 2  | 2  | 3    | 2  | 2    | 2    | 3    | 3  | 2   | 2   | 3   | 3   | 2  | 2  | 2  | _        | -   | 10 | _  | 2  | -   | -       | 3   | 3   | 3   | 3    | 3  | 2   | 2  | 2   | 2             | 2  | 5    | _  |    |
| 19.7         | -2 | 2  | 2  | 2  | 2    | 2  | 2    | 2    | 2    | 2  | 2   | 3   | 2   | 2   | 2  | -  | 2  | 8        | 11  | 5  | 2  | 3  | -   | _       | _   | _   | -   | _    | _  | _   | -  | -   | -             | -  | 2    | 2  |    |
| 21.7         | 2  | 2  | 2  | 2  | 2    | 2  | 2    | _    | 2    | 2  | -   | 2   | -   | -   | _  | 8  | 10 | 2        | 2   | 2  | _  | -  | _   | 2       | 2   | 2   | 3   | 3    | 2  | 3   | -  | _   | _             | _  | _    | -  |    |
| 22.7         | -  | _  | -  | -  | -    | _  | 2    | 2    | 2    | -  | _   | -   | -   | -   | 2  | 2  | ٥  | 2        | -   | _  | _  | _  | -   | -       | _   | _   | 3   | 2    | 2  | 2   | 2  | 2   | 2             | 2  | 2    | 2  |    |
| 23.7<br>24.6 | -  | -  | _  | -  | -    | _  | 3    | 2    | 3    | _  | _   | -   | -   | -   | 2  | 2  | 5  | 2        | 2   | -  | -  | _  | -   | -       | _   | 2   | 2   | 2    | 2  | 2   | 2  | _   | -             | _  | _    | _  |    |
| 24.0         | -  | -  | -  | -  | -    | 2  | 2    | 2    | 2    | 2  | 2   | 2   | 2   | 2   | -  | -  | 2  | 5        | 2   | 5  | )  | 2  | 2   | -       | _   | -   | 5   | 2    | 2  | 3   | 2  | 2   | _             | _  | _    | _  |    |
| 25.7         | -  | -  | -  | _  | 2    | ے  | ~    | 2    | ~    | 2  | 2   | 7   | 2   | -   | 2  | 2  | 30 |          | 8   | _  | _  | 2  | 2   | 2       | _   | -   | _   | 2    | 3  | 2   | 2  | 2   | 2             | 2  | 2    | 2  |    |
| 26.7         | -  | -  | _  | _  | -    | _  | -    | -    | -    | 2  | -   | 2   | -   | 2   | 2  | 6  | 10 | 10<br>15 | 8   | 10 | -  | -  | 2   | 5       | 12  | 2   | _   | _    | 2  | 2   | 2  | 2   | 2             | 2  | 2    | 2  |    |
| 27.9         |    | _  | -  | -  | -    | -  | -    | 2    | -    | 2  | 2   | 2   | )   | 2   | 2  | 2  | 2  |          | 1 - |    | 7  | 2  | 2   | 2       | 12  | -   | _   | _    | -  | -   | _  | _   | _             | -  | -    | -  |    |
| 28.7         | 2  | 2  | -  | -  | _    | -  | ٥    | 2    | 3    | 2  | 2   | 7   | 2   | 7   | 7  | 7  | 8  | 12<br>5  | 3   | 2  | 5  | 7  | 10  | ან<br>ე | 7   | -   | -   | -    | -  | 7   | 7  | -   | 2             | -  | - 2  | _  |    |
| 29•7<br>30•7 | 2  | 3  | 2  | 2  | 2    | 2  | 2    | 2    | 2    | 2  | 2   | 2   | 2   | 2   | 2  | 2  | 3  | 3        | 2   | 2  | 2  | 2  | 10  | 7       | 2   | -   | 1   | 1    | 7  | 7   | 7  | 7   | 1             | 1  | 1    | 2  |    |
| 31.6         | -  | 2  | _  | _  | _    | _  | _    | 2    | 2    | 2  | 3   | _   | _   | 7   | 2  | 7  | 2  | 7        | 2   | -  | 7  | 15 | 12  | 7       | 2   | 7   | 2   | 2    | 2  | 2   | 2  | 2   | 7             | 7  | 3    | 3  |    |
| 21.0         | _  | -  | _  | -  | -    | _  | -    | 2    | 2    | 2  | )   | _   | _   | )   | 2  | )  | )  | )        | ے ا | -  | )  | 10 | 12  | )       | 2   | )   | 2   | 2    | 2  | 2   | 2  | 2   | )             | )  | )    | 5  | -  |

Table 72b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

| ate                  |    |    |     | Deg | ree | 5 5 | ou | th | of | the | 50 | lar | eqi | uat | or |    |    |    | 00  |     |    |    | Deg | ree | s n | ort! | h o  | f t | he | sol | ar | eqt | uato | r  |    |    |    |
|----------------------|----|----|-----|-----|-----|-----|----|----|----|-----|----|-----|-----|-----|----|----|----|----|-----|-----|----|----|-----|-----|-----|------|------|-----|----|-----|----|-----|------|----|----|----|----|
| GCT                  | 90 | 85 | 80  | 75  | 70  | 65  | 60 | 55 | 50 | 45  | 40 | 35  | 30  | 25  | 20 | 15 | 10 | 5  | 100 | 5   | 10 | 15 | 20  | 25  | 30  | 35 . | 40 . | 45  | 50 | 55  | 60 | 65  | 70   | 75 | 80 | 85 | 90 |
| 1950                 |    |    |     |     |     |     |    |    |    |     |    |     |     |     |    |    |    |    |     |     |    |    |     |     |     |      |      |     |    |     |    |     |      |    |    |    |    |
| ct. 2.7              | _  | _  | _   | _   | _   | _   | _  | _  | _  | _   | _  | _   | . – | _   | _  | -  | _  | _  | _   | l _ | _  | _  | _   | -   | _   | _    | _    | ~   | _  | _   | _  | _   | _    | _  | _  | _  |    |
|                      | -  | _  | -   | _   | _   | -   | _  | _  | _  | _   | _  | _   | _   | _   | _  | _  | _  | _  | X   | X   | X  | X  | X   | X   | _   | _    | _    | _   | -  | -   | _  | _   | _    | _  | _  | _  |    |
| 5.8<br>6.9           | _  | -  | -   | _   | -   | _   | _  | _  | _  | -   | _  | _   | _   | _   | _  | -  | _  | _  | -   | -   | -  | _  | -   | _   | _   | _    | _    | _   | _  | _   | _  | -   | -    | -  | _  |    |    |
| 7.7                  | _  | _  | _   | _   | _   | -   | _  | _  | _  | _   |    |     | -   | _   | -  | _  | _  | _  | -   | _   | -  | _  | _   | _   | -   | _    | _    | _   | _  | _   | _  | _   | -    | _  | _  | _  |    |
| 8.7                  | _  | _  | _   | -   | _   | _   | _  | _  | _  | _   | _  | _   | _   | _   | _  | _  | _  | _  | i – | _   | _  | _  | -   | _   | _   | _    | _    | _   | _  | umb | _  | _   | -    | _  |    | _  |    |
| 9.7                  | _  | _  | _   | _   | _   | _   | _  | _  | -  | _   | _  | _   | _   | _   | _  | _  | _  | _  | _   | -   | -  | _  | _   | _   | _   | -    | _    | _   | _  | _   | _  | _   | _    | _  | _  | -  |    |
| 10.7                 | _  | _  | _   | _   | _   | _   | _  | _  | _  | _   | _  | _   | _   | _   | _  | _  | _  | _  | -   | -   | _  | _  | _   | _   | _   | -    | _    | _   | -  | _   | _  | _   | _    | _  | _  | _  |    |
| 11.7                 | _  | _  | _   | _   | _   | -   | -  | _  | _  | -   | _  | _   | _   | _   | _  | _  | _  | -3 | 2   | 1   | -  | -  | _   | _   | _   | _    | _    | -   | -  | _   | _  | _   | -    | _  | _  | _  |    |
| 12.7                 | _  | _  | _   | _   | _   | _   | -  | -  | _  | _   | _  | _   | _   | _   | -  | -  | _  | _  | -   | -   | 1  | 1  | 1   | 3   | 3   | 1    | -    | _   | _  | -   | -  | -   | -    | -  | -  | 2  |    |
| 13.7<br>14.8         | _  | _  | _   | _   | -   | _   | -  | _  | _  | -   | _  | -   | _   | -   | _  | -  | _  | _  | -   | -   | -  | -  | _   | -   | _   | -    | _    | -   | _  | _   | _  | -   | -    | -  | -  | _  |    |
| 14.g                 | -  | -  | 676 | _   | -   | _   | -  | _  | _  | _   | _  | _   | -   | -   | _  | -  | _  | -  | -   | -   | -  | -  | _   | -   | -   | -    | -    | -   | -  | -   | -  | -   | -    | _  | -  | -  |    |
| 15.7<br>16.8         | X  | X  | X   | X   | X   | X   | -  | -  | -  | -   | _  | -   | _   | _   | -  | -  | -  | _  | -   | -   | -  | -  | -   | _   | -   | -    | -    | _   | -  | -   | _  | -   | -    | -  | -  | -  |    |
| 16.8                 | -  | -  | -   |     | -   | -   | -  | -  | -  | _   | -  | _   | -   | _   | -  | -  | _  | -  | -   | -   | -  | _  | -   | _   | -   | -    | -    | -   | -  | _   | _  | -   |      | -  | -  | -  |    |
| 18.7                 | -  | -  | _   | -   | -   |     | -  | -  | -  | _   | -  | _   | -   | -   | _  | -  | -  | _  | -   | -   | -  | -  | -   | -   | -   | -    | -    | -   | -  | -   | _  | -   | -    | -  | -  | -  |    |
| 19.7                 | -  | _  | _   | -   | _   | -   | -  | _  | _  | _   | -  | _   | _   | _   | -  | _  | _  | _  | -   | -   | -  | -  | -   | _   | -   | -    | -    | -   | -  | -   | _  | -   | _    | -  | -  | -  |    |
| 21.7                 | -  | -  | _   | _   | _   | -   | -  | -  | -  | _   | _  | -   | 2   | 3   | 3  | 2  | 3  | 3  | 2   | -   | -  | -  | _   | _   | _   | -    | _    | -   | -  | -   | _  | -   | -    | _  | -  | -  |    |
| 19.7<br>21.7<br>22.7 | -  | -  | _   | -   | _   | -   | -  | _  | -  | _   |    | _   | -   | -   | _  | -  | -  | _  | -   | -   | -  | -  | -   | -   | -   | -    | -    | -   | -  | -   | _  | -   | -    | -  | -  | -  |    |
| 23.7<br>24.6         | _  | -  | -   | -   | -   | -   | -  | -  | -  | -   | _  | -   | -   | _   | -  | 2  | 2  | 2  | 2   | -   | -  | -  | -   | -   | -   | -    | -    | -   | -  | -   | -  | -   | -    | -  | -  | -  |    |
| 24.6                 | -  | -  | 2   | 2   | 2   | 3   | 2  | _  | -  | _   | _  | -   | _   | _   | -  | -  | -  | _  | -   | -   | -  | _  | -   | -   | -   | -    | -    | -   | -  | -   | _  | -   | -    | -  | -  | -  |    |
| 25.7<br>26.7         | -  | -  | -   | -   | -   | -   | -  | -  | -  | -   | -  | -   | -   | -   | -  | -  | -  | -  | -   | -   | -  | -  | -   | -   | _   | -    | =    | -   | -  | -   | -  | -   | -    | -  | -  | -  |    |
| 26.7                 | -  | -  | -   | -   | -   | -   | -  | -  | -  | -   | -  | -   | -   | -   | -  | -  | -  | -  | -   | -   | -  | -  | -   | -   | -   | -    | -    | -   | -  | -   | -  | -   | -    | -  | -  | -  |    |
| 27.9                 | -  | -  | -   | -   | -   | -   | -  | -  | -  | -   | -  | -   | -   | 2   | 2  | 2  | 2  | 2  | 2   | -   | -  | _  | -   | -   | -   | -    | -    | -   | -  | -   | -  | -   | -    | -  | -  | -  |    |
| 28.7                 |    | _  | -   | _   | -   | -   | -  | -  | -  | _   | -  | -   | _   |     | -  |    | -  | _  | -   | -   | -  | -  | -   | _   | _   | -    | -    | _   | -  | _   | _  | _   | -    | -  | _  | _  |    |
| 29 <b>.7</b>         | -  | -  | -   | -   | -   | -   | -  | -  | -  | -   | -  | -   | -   | -   | -  | -  | -  | -  | -   | -   | -  | 2  | 2   | 3   | 3   | 3    | -    | -   | -  | -   | -  | -   | -    | -  | _  | -  |    |
| 30.7<br>31.6         | -  | -  | 2   | 3   | 2   | -   | _  | _  | _  | _   | _  | _   | _   | _   | _  | -  | _  | _  | _   | _   | _  | _  | _   | _   | _   | _    | 3    | 3   | _  | _   | _  | _   | _    | _  | -  | _  |    |
| 31.6                 | -  | _  | _   | _   | _   | _   | _  | _  | _  | -   |    | _   | _   | -   | _  | -  | _  | -  | -   | _   | _  | -  | _   | _   | _   | _    | _    | _   | _  | -   | _  |     | _    | _  | _  | -  |    |

Table 73
Outstanding Solar Flares, July, August and September 1950

| Observa-<br>tory  | 1950         | Ti.<br>Obser<br>Begin-<br>ning<br>(GCT) |              | Dura-<br>tion<br>(Min) | Arem (Mill) ( of ) (Visible) (Hemisph) |                                | Lati-        | Time of Maxi- mum (GCT) | Int.<br>of<br>Maxi-<br>mum | Rela-<br>tive<br>Area of<br>Maxi-<br>mum<br>(Tenths) | Import-<br>ance | SID<br>Obser-<br>ved |
|-------------------|--------------|-----------------------------------------|--------------|------------------------|----------------------------------------|--------------------------------|--------------|-------------------------|----------------------------|------------------------------------------------------|-----------------|----------------------|
| Boulder           | July 1       | 1615                                    | 1626<br>2055 | 11<br>125              |                                        | W53<br>W12                     | \$05<br>N16  | 1616                    | 10                         | 5                                                    | 2               |                      |
| 16                | 1 6          | 1850<br>2305                            | 2400         | 125                    | 575*<br>100 <b>8</b> *                 | M50                            | N16          | 1935                    | 15<br>35                   | 3                                                    | 2               |                      |
| McMath            | 11 g         | 185                                     |              |                        | 1008                                   | M10                            | N14          | 2)13                    | ))                         | O                                                    | ī               |                      |
| II                | # 12         | 153                                     |              |                        |                                        | W55**                          |              |                         |                            |                                                      | 2-              |                      |
| 11                | " 12         | 162                                     |              |                        |                                        | E50                            | N22          |                         |                            |                                                      | 1+              | Yes                  |
| 11                | " 15         | 182                                     |              |                        |                                        | E15                            | N20          |                         |                            |                                                      | 2               | Yes                  |
| Boulder           | 1 17         | 2131                                    |              |                        | 77                                     | <b>B</b> 32                    | N12          | 2136                    | 15                         | 7<br>6                                               |                 |                      |
|                   | " 17         | 2215                                    | 2230         |                        | 110                                    | E32                            | N12<br>N25   | 2226                    | 10                         | ь                                                    |                 | V                    |
| leudon<br>IcMath  | " 18         | 132<br>132                              |              |                        |                                        | ₩35<br>₩33                     | N25<br>N20   |                         |                            |                                                      | 1<br>2-         | Yes<br>Yes           |
| 10Math            | " 18         | 140                                     |              |                        |                                        | #33<br>E17**                   | N12**        |                         |                            |                                                      | 1               | 1687                 |
| 15                | " 19         | 150                                     |              |                        |                                        | W45                            | N20          |                         |                            |                                                      | i               |                      |
| Boulder           | II 20        | 1939                                    | 1955         |                        | 177                                    | E13                            | NOS          | 1942                    | 12                         | 5                                                    | _               |                      |
| Wendelste         |              | 0508                                    | 0536         |                        | 291                                    | <b>E09</b>                     | NOS          | ,                       |                            | -                                                    | 1               |                      |
| 1cMath            | " 21         | 131                                     |              |                        | 203                                    | E10                            | N12          | 2.700                   |                            |                                                      | 2+              | Yes                  |
| Wendelste         | in" 21       | 1329                                    | 1348         |                        | 291                                    | <b>№</b> 59                    | NO8<br>N23   | 1329                    |                            |                                                      | 1<br>2          |                      |
| McMath            | 1 21         | 211                                     |              |                        |                                        | ₩ <b>&gt;</b> 9<br><b>E</b> 50 | N23<br>N10   |                         |                            |                                                      | 2<br>1+         |                      |
| Boulder           | 11 22        | 1525                                    | 1630         | 65                     | 199                                    | W11                            | NO6          | 155կ                    | 25                         | 5                                                    | 2               | Yes                  |
| dcMath            | # 22         | 155                                     |              | -,                     | - , ,                                  | WO7                            | N06          | -,,                     | - /                        |                                                      | 1+              | Yes                  |
| 1cMath            | " 25         | 192                                     | ކ            |                        |                                        | E15                            | <b>S</b> 12  |                         |                            |                                                      | 1               |                      |
| Vendelstei        |              | 0626                                    |              |                        | 291                                    | E47                            | S11          | 0626                    |                            |                                                      | 1               |                      |
| McMath            | 1 26         | 125                                     |              | 15                     | 177                                    | W16                            | <b>\$</b> 16 | 2.020                   | _                          |                                                      | 1               |                      |
| Soulder<br>ScMath | 1 26         | 1825                                    | 1840         | 15                     | 177                                    | E41                            | S07<br>S12** | 1832                    | 6                          | 2                                                    | ,               |                      |
| icmath            | " 20<br>" 27 | 204                                     |              |                        |                                        | W30                            | S12**        |                         |                            |                                                      | 1-<br>1-        |                      |
| τı                | 1 27         | 205                                     |              |                        |                                        | E35                            | \$12         |                         |                            |                                                      | 1               |                      |
| Boulder           | 11 28        | 1415                                    | 1530         | 75                     | 364                                    | E24                            | \$12         | 1430                    | 10                         | 2                                                    | -               |                      |
| McMath            | 1 28         | 144                                     | 2            |                        |                                        | 1527                           | \$12         |                         |                            |                                                      | 1               |                      |
| Boulder           | # 2g         | 1800                                    | 1820         | 20                     | <b>9</b> 9                             | W18                            | NO7          | 1810                    | 8                          | 5                                                    |                 |                      |
| CoMath            | # 29         | 123                                     |              | 70                     | cr                                     | E85                            | S08          | 1448                    |                            | 7                                                    | 1               |                      |
| Boulder<br>McMath | 11 29        | 14110                                   | 1510<br>g    | 30                     | 55                                     | ES1<br>ES5                     | S07<br>S08   | 1448                    | 8                          | 3                                                    | 1               |                      |
| Boulder           | 1 29         | 1710                                    | 1820         | 70                     | 77                                     | ES1                            | S07          | 1720                    | 12                         | 3                                                    | 1               | Yes                  |
| 17                | " 31         | 2400                                    | 2422         | 22                     | 157                                    | E49                            | <b>s</b> 07  | 2418                    | 12                         | 5                                                    |                 | * 65                 |
| Boulder           | Aug J        | 1635                                    | 1710         | 35                     | 121                                    | E34                            | SOS          | 1645                    | 10                         | 14                                                   |                 |                      |
| 11                | u J          | 1725                                    | 1900         | 95                     | 121                                    | Ehn                            | <b>\$</b> 06 | 1817                    | 6                          | 3                                                    |                 |                      |
| 11                | " 1          | 1935                                    | 2015         | 140                    | 431                                    | <b>E</b> 32                    | SOS          | 1918                    | 10                         | 3                                                    |                 |                      |
| 11<br>(3          | # 1          | 2030                                    | 2145         | 75                     | 276                                    | W33                            | \$12         | 2047                    | 12                         | 3                                                    |                 |                      |
| (cMath            | n 5          | 2054                                    | 2115         | 21                     | 155                                    | E35<br>E24                     | <b>5</b> 09  | 2100                    | 12                         | 5                                                    | ,               |                      |
| Boulder           | 11 2         | 152                                     | 1615         | 30                     | 298                                    | E24<br>E21                     | \$10<br>\$08 | 1555                    | 15                         | )ı                                                   | 1               | Ves                  |
| eudon             | 11 2         | 15)2                                    |              | )0                     | £ 30                                   | E25                            | \$05         | 1777                    | 19                         | 4                                                    | 2               | Yes                  |
| Boulder           | 11 2         | 1645                                    | 1735         | 50                     | 232                                    | E24                            | <b>\$</b> 06 | 1705                    | 6                          | 1                                                    | -               | • • • • •            |
| 19                | в 2          | 1910                                    | 2020         |                        | 199                                    | E30                            | <b>S</b> 09  | 2005                    | 6                          | _                                                    |                 |                      |
| 11                | # 2          | 2100                                    | 2110         | 10                     | 55                                     | E31                            | <b>s</b> 06  | 2105                    | 6                          | 1                                                    |                 |                      |
| 11                | 11 2         | 2205                                    | 2215         | 10                     | 365                                    | E18                            | <b>s</b> 06  | 2206                    | 20                         | 3                                                    |                 | Yes                  |
| (eudon            |              | 2240                                    | 2340         |                        | 88                                     | E20                            | <b>\$</b> 05 |                         | 4 7                        |                                                      | ,               |                      |
| Boulder           | 11 3         | 1530                                    | 1555         | 25                     | 111                                    | E15<br>E12                     | \$05<br>\$07 | 1538                    | 14                         | 5                                                    | 1               |                      |
| u u               | # 3          | 1625                                    | 1630         | - <del>-</del>         | 221                                    | E12                            | \$07<br>\$07 | 1630                    | 20                         | 5<br>3                                               |                 | Tes                  |
| leudon            | 11 14        | 091                                     |              |                        |                                        | E05                            | \$05         | 10,00                   | 20                         | )                                                    | 1               | 1 68                 |
| Oulder            | u )†         | 1515                                    | 1535         | 20                     | 136                                    | E31                            | <b>s</b> 16  | 1522                    | 14                         | 14                                                   | -               |                      |
| ni.               | ո իլ         | 2250                                    | 2419         |                        | 742                                    | W06                            | \$08         | 2338                    | 32                         | 6                                                    |                 | Tes                  |

| Observa-<br>tory     | Date<br>1950 |                  | ime<br>erved<br>End-<br>ing<br>(GCT) | Dura-<br>tion<br>(Min) | Area<br>(Mill)<br>( of )<br>(Visible)<br>(Hemisph) | Long-<br>itude<br>Diff | tion Lati- tude (Deg) | Time<br>of<br>Maxi-<br>mum<br>(GCT) | Int.<br>of<br>Maxi-<br>mum | Rela-<br>tive<br>Area of<br>Maxi-<br>mum<br>(Tenths) | Import-<br>ance | SID<br>Observed |
|----------------------|--------------|------------------|--------------------------------------|------------------------|----------------------------------------------------|------------------------|-----------------------|-------------------------------------|----------------------------|------------------------------------------------------|-----------------|-----------------|
| McMath               | Aug 7        | 13               | 05                                   |                        |                                                    | W35                    | <b>\$</b> 08          |                                     |                            |                                                      | 1+              |                 |
| Boulder              | " 7          | 1650             | 1713                                 | 23                     | 113                                                | W45                    | S07                   | 1709<br>1806                        | 6                          | <u>1</u><br>կ                                        |                 |                 |
| 11                   | " 10<br>" 10 | 1758<br>2230     | 18 <b>1</b> 5<br>2249                |                        | 183<br>80                                          | E1.7                   | N15<br>N15            | 2235                                | 10<br>10                   | 7                                                    |                 |                 |
| 11                   | " 10         | 22119            | 2256                                 | 7                      | 34                                                 | W53                    | S10                   | 2252                                | 10                         | g                                                    |                 |                 |
| н                    | ո 1ր         | 1555             | 1618                                 | 23                     | 422                                                | ¥22                    | Nll                   | 1562                                | <b>1</b> 5                 | Ħ                                                    |                 |                 |
| 11                   | տ 1և         | 1620<br>1800     | 1715<br>18 <b>1</b> 0                | 55<br><b>1</b> 0       | 13 <b>7</b><br>34                                  | 1625<br>1806           | N10<br>S05            | 1639<br>1807                        | 10<br>8                    | 6<br>4                                               |                 |                 |
| 11                   | 11 14        | 2045             | 2100                                 | 15                     | 137                                                | Els                    | N16                   | 2052                                | 10                         | 2                                                    |                 |                 |
| eudon                | " 15         | 07               |                                      |                        | - >1                                               | E15                    | N15                   | ,-                                  |                            |                                                      | 1               |                 |
| bulder               | " 15         | 1745             | 1835                                 | 50                     | 263                                                | EO 1                   | N15                   | 1762                                | 18                         | 3                                                    | 2               | Yes             |
| 11                   | " 15         | 1925             | 1940                                 | 15                     | 34                                                 | <b>E</b> 05            | N16                   | 1933                                | 6                          | 8                                                    | ,               |                 |
| endelstei<br>Joulder | in" 16       | 0631             | 0657<br>1441                         |                        | 291<br>388                                         | EO1<br>WO8             | N17<br>N13            | 1437                                | <b>1</b> 5                 | 7                                                    | 1               |                 |
| cMath                | " 17         | 141)             |                                      | -                      | )50                                                | w09                    | NIZ                   | 2-51                                | -)                         | ,                                                    | 1               |                 |
| bulder               | # 18         | 1515             | 1538                                 |                        |                                                    | W30                    | N17                   |                                     |                            |                                                      |                 |                 |
| endelstei            |              | 1000             | 1018                                 |                        | 485                                                | E31                    | NIT                   | 1001                                |                            |                                                      | 1-2             |                 |
| oulder<br>cMath      | " 19<br>" 19 | 155 <sup>1</sup> | 1613                                 |                        |                                                    | W41<br>E17             | 210<br>MIji           |                                     | ~-                         |                                                      | 1               |                 |
| oulder               | 11 22        | 1725             | 1915                                 | 110                    | 575                                                | W14                    | N13                   | 1744                                | 17                         | 6                                                    | -               |                 |
| 11                   | 11 22        | 2035             | 2120                                 | 45                     | 100                                                | W17                    | N13                   | 2011                                | 12                         | 14                                                   |                 |                 |
| 11                   | 11 22        | 2240             | 2250                                 | 10                     | 66                                                 | W17                    | N13                   | 2245                                | 6                          | 8                                                    |                 |                 |
| endelste             |              | 1334             | 1349                                 | 15                     | 291                                                | W29                    | S12                   | 1336                                |                            |                                                      | 1               |                 |
| lcMath<br>Boulder *  | 1 23         | 1700             | 45<br>1711                           | 11                     | 66                                                 | W27<br>W26             | \$12<br>\$13          | 1704                                | <b>1</b> 5                 | 7                                                    | 1+              |                 |
| ii<br>outret         | 11 24        | 1453             | 1455                                 | 2                      | 22                                                 | W38                    | Sll                   | 1453                                | 6                          | í                                                    |                 |                 |
| leudon               | 11 25        | 10               | 27                                   |                        |                                                    | W55                    | \$15                  |                                     |                            |                                                      | 1               |                 |
| boulder              | 11 27        | 16115            | 1725                                 | 710                    | 100                                                | W311                   | \$20                  | 165 <sup>11</sup>                   | g                          | 8                                                    |                 |                 |
| lcMath<br>Boulder    | 1 29         | 1815             | 1845                                 | 30                     | 199                                                | E64**                  | N13**<br>N14          | 1826                                | 10                         | 7                                                    | 1 <b>1</b><br>2 | Yes             |
| II                   | 11 29        | 2105             | 2115                                 | 10                     | 55                                                 | w36                    | 500                   | 2110                                | 8                          | 3<br>6                                               | 2               | 1 48 1          |
| 11                   | 11 30        | 1455             | 1510                                 | <b>1</b> 5             | 188                                                | E57                    | N16                   | 1459                                | 8                          | 2                                                    |                 |                 |
| n                    | " 30         | 1735             | 1749                                 | 114                    | 33                                                 | <b>E</b> 56            | N16                   | 1738                                | 10                         | 7                                                    |                 | _               |
| "<br>endelstei       | in 30        | 1817<br>0838     | 1843<br>081;2                        | 26<br>- <del>-</del>   | 55<br><b>շ</b> ն2                                  | E53                    | N15<br>N16            | 1832<br>0842                        | 12                         | 3                                                    | 2               | Tes             |
| oulder               | 1 1 31       | 1423             | 1429                                 |                        | 22                                                 | E40                    | N13                   | 1123                                | 12                         | 7                                                    | 2               | 1               |
| 51                   | " 31         | 1610             | 1612                                 | 2                      | 22                                                 | E40                    | N13                   | 1611                                | <b>J</b> ‡                 | 5                                                    |                 | 1               |
| 18                   | " 31         | 1735             | 171/1                                | 9                      | jiji                                               | W27                    | MIS                   | 19140                               | 6                          | <b>并</b>                                             |                 |                 |
| bulder               | Sept 1       | 1633             | 1638                                 | 5<br>Կ                 | 18                                                 | E30                    | \$24                  | 1634                                | 6                          | 9                                                    |                 |                 |
| 11                   | " 1          | 1704<br>1750     | 1708<br>1755                         | 5                      | 12<br>24                                           | M712                   | N13<br>N11:           | 1705<br>1750                        | 12<br>8                    | 9                                                    |                 |                 |
| £\$                  | " 1          | 1904             | 1906                                 |                        | 8                                                  | MIS                    | N13                   | 1906                                | 12                         | 9<br>9<br>9<br>6                                     |                 |                 |
| ti<br>II             | " 1          | 1926             | 1935                                 | ~ ~                    | 100                                                | E27                    | N15                   | 1935                                | 12                         |                                                      |                 |                 |
| 11                   | 11 3         | 1635             | 1706                                 | 31                     | 77                                                 | W72                    | NSS                   | 1652                                | 10                         | 9                                                    |                 |                 |
| н                    | " 3          | 1855<br>1500     | 1910<br>1525                         | 15<br>                 | 60<br>35                                           | W72<br>W83             | NJ5<br>NS7            | 1855<br>1516                        | 6<br>6                     | 9<br>5<br>9<br>8                                     |                 |                 |
| 11                   | 11 7         | 1819             | 1856                                 |                        | 25                                                 | E70                    | 504                   | 1850                                | 12                         | 8                                                    |                 |                 |
| It                   | 11 7         | 2115             | 2136                                 | 21                     | 43                                                 | E70                    | S04                   | 2130                                | 12.                        | 7                                                    |                 |                 |
| 11                   | " 18<br>" 19 | 1920             | 1922                                 | 2                      | 20                                                 | W20                    | S12                   | 1920                                | 10                         | 9<br>14                                              | 0               | v               |
| cMath                | " 19<br>" 19 | 1709             | 1721:                                | 15                     | 1400                                               | W30<br>W22**           | \$11<br>\$13**        | 1711                                | 25                         | Ц.                                                   | 2<br>3          | Yes             |
| II EMBLUI            | 11 20        | 18               |                                      |                        |                                                    | W20                    | NO3                   |                                     |                            |                                                      | 1               | 162             |
| oulder               | 11 20        | 2135             |                                      | 65                     | 30                                                 | ₩39                    | s06                   | 2203                                | 12                         | 5                                                    | _               |                 |
| 11                   | 11 22        | 1908             | 1915                                 | 7                      | 150                                                | W17                    | N16                   | 1910                                | 12                         | 5                                                    |                 |                 |
| icMath               | 11 26        | 18               | πО                                   |                        |                                                    | E12                    | N15                   |                                     |                            |                                                      | 1               |                 |

<sup>\*</sup>Area not corrected for foreshortening; after this date all areas given in millionths of sun's visible hemisphere
\*\*Longitude and latitude of calcium area in which solar flare was observed.

#### Indices of Geomagnetic Activity for September 1950

Preliminary values of mean K-indices, Kw, from 36 observatories;
Preliminary values of international character-figures, C;
Geomagnetic planetary three-hour-range indices, Kp;
Magnetically selected quiet and disturbed days

| Gr.<br>Day<br>1950               | Values Kw                                                                                                                                                                                                                                                                                       | Sum C                                                                                                              | Values Kp                                                                                                                                                                                 | Sum Final<br>Sel.<br>Days                                                               |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 1.0 1.2 1.4 1.4 1.6 1.4 0.9 1.8 1.4 1.7 0.9 0.8 0.8 1.2 2.6 1.7 1.9 3.2 3.8 3.9 4.4 4.9 4.8 5.8 5.0 3.5 4.4 3.9 3.6 3.4 3.8 4.6 4.9 4.2 4.7 5.1 4.0 4.0 4.3 4.7 4.4 4.6 4.2 4.4 4.1 3.4 3.4 3.6 2.9 2.6 3.2 3.8 3.5 2.6 2.7 2.9 2.1 3.9 4.2 4.2 3.4 4.2 4.5 4.6 4.3 3.2 2.6 2.3 2.0 1.8 3.1 2.5 | 10.7   0.0   11.1   0.4   32.7   1.6   32.2   1.5   35.9   1.6   32.1   1.3   24.2   0.9   31.1   1.5   21.8   0.8 | 101+1+1+ 2-1+1-20<br>2-20100+ 101-2+2-<br>20405-5- 5+6-6070<br>60405+5- 4-405-50<br>605+606+ 5-505+5+<br>5+6-5+6- 50404-40<br>3+304040 40303030<br>2+4+5+5+ 4-5-6-50<br>503+3+3- 1+2-303- | 11- Five<br>11- Quiet<br>39+<br>37+ 1<br>440 14<br>15<br>39-<br>27+<br>29<br>36+<br>230 |
| 10<br>11<br>12<br>13<br>14<br>15 | 4.4 2.3 1.3 1.7 3.1 3.7 4.0 3.0  3.7 4.4 3.0 2.7 1.2 1.4 2.6 2.8  2.8 1.4 2.6 3.1 2.9 1.0 0.7 1.5  1.7 1.6 1.4 1.8 1.6 3.0 4.2 3.3  1.2 1.1 0.9 1.1 0.7 0.9 0.7 1.1  0.5 0.5 1.2 1.2 1.1 1.4 0.4 0.7                                                                                            | 23.5                                                                                                               | 5030lo2- 3+4+4+3+<br>4+5+4-30 lol+304-<br>3+1+3+3+ 3+lol-1+<br>202+2-2- 1+305-3+<br>1+1+lolo 1-lol-1+<br>0+001-lo lol+0+1-                                                                | 25+ Five<br>18- Dist<br>200 8+ 3<br>5+ 4                                                |
| 16<br>17<br>18<br>19<br>20       | 1.9 1.2 1.4 3.4 3.7 4.6 3.6 2.8 1.8 2.5 2.7 2.6 2.6 4.1 3.7 3.9 3.8 3.3 3.6 3.3 3.6 2.7 2.3 3.4 3.9 2.1 2.8 4.2 3.6 1.8 2.8 4.7 5.1 4.3 3.4 4.0 3.6 4.0 4.0 2.9                                                                                                                                 | 22.6   1.0<br>23.9   1.0<br>26.0   1.0<br>25.9   1.2<br>31.3   1.3                                                 | 2+1+2-4- 4-5+4-30<br>203+4-30 304+404+<br>5-405-40 40303-40<br>4+3-3+50 5-20305+<br>6-50405- 405-5-3+                                                                                     | 25- 6<br>28- 24<br>310<br>30+ 360 Ten<br>Quiet                                          |
| 21<br>22<br>23<br>24<br>25       | 3.0 2.9 1.3 1.7 0.7 1.1 2.2 0.9 0.5 1.1 0.5 0.8 1.3 1.9 1.8 1.0 0.9 1.0 2.4 3.9 3.3 3.9 4.4 4.6 4.5 2.4 1.8 2.8 3.6 4.6 4.8 5.3 4.0 3.3 3.8 2.7 3.3 4.9 3.7 4.5                                                                                                                                 | 13.8   0.4   8.9   0.0   24.4   1.2   29.8   1.4   30.2   1.3                                                      | 4-4-202- 1-1-2+1-<br>0+1+0+1- 102-2-1-<br>101+3-5- 404+5050<br>5+302-30 4+505+6+<br>4+405-4- 4-6-405+                                                                                     | 15+   1<br>280   2<br>340   12<br>35+   14<br>15                                        |
| 26<br>27<br>28<br>29<br>30       | 2.7 2.0 1.8 1.9 1.9 2.5 4.5 3.2<br>2.6 2.2 2.5 2.6 1.6 1.7 2.2 1.7<br>0.9 1.2 2.0 2.3 2.0 1.7 1.7 1.9<br>0.7 0.7 1.0 0.6 0.7 1.0 1.2 1.3<br>1.1 1.1 1.1 1.7 1.0 2.8 4.2 3.4                                                                                                                     | 20.5                                                                                                               | 3+2+2+20 2030504-<br>303-303+ 2-2-2+2-<br>1-1+2+3- 201+2+20<br>1-0+100+ 0+1-1010<br>101+1+20 1-304+4-                                                                                     | 24- 21<br>19+ 22<br>140 27<br>5+ 28<br>17+ 29                                           |
| Mean                             | 2.65 2.40 2.48 2.99<br>2.36 2.66 2.72 3.00                                                                                                                                                                                                                                                      | 2.66 0.82                                                                                                          |                                                                                                                                                                                           |                                                                                         |

Table 75
Sudden Ionosphere Disturbances Observed at Washington, D. C.

#### October 1950

| 1950<br>Day |      | GC:<br>Beginni |      | Location of transmitters | Relative<br>intensity<br>at<br>minimum* | Other phenomena       |
|-------------|------|----------------|------|--------------------------|-----------------------------------------|-----------------------|
| Octo        | ober |                |      |                          |                                         |                       |
| 13          | 1    | 1933           | 2010 | Ohio, D. C., Colombia    | 0.02                                    | Solar flare**<br>1920 |
| 25          | 9    | 1742           | 1830 | Ohio, D.C.               | 0.2                                     |                       |

<sup>\*</sup>Ratio of received field intensity during SID to average field intensity before and after, for station KQZXAU (formerly WBXAL), 6080 kilocycles, 600 kilometers distant.

<sup>\*\*</sup>Time of observation at the High Altitude Observatory, Boulder, Colorado.







































































































JUNE 1950

ig. 51. RAROTONGA I.

21.3°S, 159.8°W





































































Fig. 85. CAMPBELL I. 52.5°S, 169.2°E

APRIL 1949































## Index of Tables and Graphs of Ionospheric Data

## in CRPL-F75

| Table page                   | Figure page |
|------------------------------|-------------|
| Akita, Japan                 |             |
| August 1950 14               | 53          |
| Baton Rouge, Louisiana       |             |
| September 1950 12            | 48          |
| Bombay, India                |             |
| April 1950 17                | 61          |
| Boston, Massachusetts        |             |
| September 1950 12            | 47          |
| Brisbane, Australia          |             |
| June 1950 16                 | 59          |
| Campbell I.                  | 1-          |
| April 1949 19                | 67          |
| March 1949 19                | 67          |
| April 1948 19                | 68          |
| March 1948 19                | 68          |
| April 1947 19                | 69          |
| March 1947 20                | 69          |
| April 1946 20                | 70          |
| March 1946 20                | 70          |
| Canberra, Australia          |             |
| June 1950 16                 | <b>5</b> 9  |
| Capetown, Union of S. Africa |             |
| August 1950 15               | 56          |
| July 1950 15                 | 57          |
| Christchurch, New Zealand    |             |
| July 1950 16                 | <i>5</i> 8  |
| Dakar, French W. Africa      | 41          |
| March 1950                   | 64          |
| February 1950                | 65          |
| January 1950 19              | 66          |
| De Bilt, Holland             | 40          |
| August 1950 14               | 52          |
| Delhi, India                 | /=          |
| April 1950 17                | 61          |
| Domont, France               | 10          |
| March 1950                   | 63          |
| Fribourg, Germany            | /0          |
| March 1950                   | 63          |
| February 1950                | 65          |
| January 1950                 | 66          |

# Index (CRPI-F75, continued)

|                                  | Table page              | Figure page                             |
|----------------------------------|-------------------------|-----------------------------------------|
| Char I.                          |                         |                                         |
| September 1950                   | 13                      | 50                                      |
| Hobart, Tasmania                 | _,                      |                                         |
| June 1950                        | 16                      | 60                                      |
| May 1950                         |                         | 60                                      |
| Huancayo, Peru                   |                         |                                         |
| September 1950                   | 13                      | 51                                      |
| August 1950                      |                         | 55                                      |
| Johannesburg, Union of S. Africa |                         |                                         |
| August 1950                      | 15                      | 55                                      |
| July 1950                        |                         | 56                                      |
| Lindau/Harz, Germany             |                         | ,                                       |
| August 1950                      | 14                      | 52                                      |
| Madras. India                    |                         | )-                                      |
| April 1950                       | 17                      | 62                                      |
| Maui, Hawaii                     | -1                      |                                         |
| September 1950                   | 13                      | 49                                      |
| Okinawa I.                       | -,                      | • • • • • • • • • • • • • • • • • • • • |
| September 1950                   | 13                      | 49                                      |
| Oslo, Norway                     | -)                      | • /                                     |
| September 1950                   | 12                      | 46                                      |
| Poitiers, France                 |                         | •••                                     |
| March 1950                       | 18                      | 64                                      |
| Rarotonga I.                     | 20                      | •                                       |
| June 1950                        | 16                      | 58                                      |
| San Francisco, California        | 20                      | ,,,                                     |
| September 1950                   | 12                      | 47                                      |
| San Juan, Puerto Rico            |                         |                                         |
| September 1950                   | 13                      | 50                                      |
| Tiruchy, India                   | -2                      | 70                                      |
| April 1950                       | 17                      | 62                                      |
| Tokyo, Japan                     | <b>*</b> /              | O.C                                     |
| August 1950                      | 14                      | 54                                      |
| Trinidad, British West Indies    | ar-1                    | <i>J</i> ,                              |
| September 1950                   | 13                      | 51                                      |
| Wakkanai, Japan                  | ر ح                     | <i></i>                                 |
| August 1950                      | 14                      | 53                                      |
| Washington, D. C.                | • •                     | 72                                      |
| October 1950 ,                   | 12                      | 46                                      |
| Watheroo, W. Australia           | <i>≥ t</i> <sub>2</sub> |                                         |
| July 1950                        | 15                      | 57                                      |
| March 1950 (h'Fl only)           | 18                      |                                         |
| White Sands, New Mexico          | 20                      |                                         |
| September 1950                   | 12                      | 48                                      |
| Yamagawa, Japan                  |                         | .0                                      |
|                                  | 21.                     | poli.                                   |
| August 1950                      | 14                      | 54                                      |

#### CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Paily:
Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly: CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly: asic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 ( ) series.) CRPL-D. Basic Radio Propagation Predictions-Three months in advance. CRPL-F. Ionospheric Data.

Quarterly:
\*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. \*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation. NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past: IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports: Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

Criteria for Ionospheric Storminess. Experimental Studies of Ionospheric Propagation as Applied to the Loran System. R5. R6.

Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. An Automatic Instantaneous Indicator of Skip Distance and MUF. R9.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

\*\*R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics. \*\*R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients. \*\*R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

\*\*R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

\*\*R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

\*\*R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena. R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

\*\*R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena. R26. The Ionosphere as a Measure of Solar Activity.

R25. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
 \*\*R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
 R21. North Adaptic Padio Propagation Disturbance October 1043 Through October 1045

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

\*\*R33. Ionospheric Data on File at IRPL. \*\*R34. The Interpretation of Recorded Values of fEs.

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:

T1. Radar operation and weather. (Superseded by JANP 101.)

T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

<sup>\*</sup>Items bearing this symbol are distributed only by U.S. Navy. They are issued under one cover as the DNC 14 () series.
\*\*Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

