

PROJEKT INŻYNIERSKI

System zarządzania personelem

Piotr MARCOL Nr albumu: 300463

Kierunek: Informatyka

Specjalność: Informatyczne Systemy Mobilne i Przemysłowe

PROWADZĄCY PRACĘ

Dr inż. Marcin Połomski

KATEDRA Algorytmiki i Oprogramowania

Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2025

Tytuł pracy

System zarządzania personelem

Streszczenie

Słowa kluczowe

Thesis title

Workforce management system

Abstract

Key words

Spis treści

1	Wst	ŧęр		1
	1.1	Wprov	vadzenie do problematyki	1
	1.2	Cel pr	acy	2
	1.3	Zakres	s pracy	3
	1.4	Chara	kterystyka rozdziałów	3
2	Ana	aliza te	ematu	5
	2.1	Przegl	ąd dostępnych sposobów kontroli czasu	5
		2.1.1	Metody tradycyjne	5
		2.1.2	Systemy zarządzania kapitałem ludzkim	6
		2.1.3	Systemy kontroli dostępu	7
		2.1.4	Podsumowanie	7
	2.2	Najwa	żniejsze funkcjonalności systemu	8
3	$\mathbf{W}\mathbf{y}$	magan	ia i narzędzia	9
	3.1	Założe	enia projektowe	9
		3.1.1	Wymagania funkcjonalne	9
		3.1.2	Wymagania niefunkcjonalne	9
	3.2	Projek	kt systemu	9
		3.2.1	Technologie	9
		3.2.2	Narzędzia	13
		3.2.3	Metodyka pracy	13
	3.3	Przypa	adki użycia	13
4	Spe	cyfikac	cja zewnętrzna	15
	4.1	Wyglą	d interfejsu użytkownika	15
	4.2	Użytk	ownicy i ich role	15
		4.2.1	Użytkownik	16
		4.2.2	Manager	16
		4.2.3	Administrator	16
	43	Doster	oność	17

		4.3.1 Dostępność cyfrowa	17
		4.3.2 Dostępność językowa	17
5	Spe	cyfikacja wewnętrzna	19
	5.1	Architektura systemu	19
		5.1.1 Frontend	19
		5.1.2 Backend	19
		5.1.3 Aplikacja mobilna	20
		5.1.4 Układ mikroprocesorowy	20
	5.2	Modele i struktury danych	20
		5.2.1 Model użytkownika	20
	5.3	Struktura bazy danych	20
	5.4	Algorytmy	22
		5.4.1 Rejestracja	22
		5.4.2 Logowanie	22
		5.4.3 Harmonogramowanie	22
		5.4.4 Przypisanie nowej karty dostępowej	22
	5.5	Użyte biblioteki i frameworki	22
6	Wei	ryfikacja i walidacja	23
	6.1	Testy	23
	6.2	Walidacja danych	
7	Pod	lsumowanie i wnioski	25
	7.1	Wnioski	25
		7.1.1 Problemy napotkane podczas pracy	25
		7.1.2 Ocena dobranych technologii po zakończeniu pracy	25
	7.2	Podsumowanie	25
	7.3	Możliwości rozwoju	25
Bi	bliog	grafia	29
Sp	ois sk	crótów i symboli	33
Źr	Źródła		
Li	sta d	lodatkowych plików, uzupełniających tekst pracy	37
Sp	ois ry	rsunków	39
Sn	ois ta	bel	41

Wstęp

1.1 Wprowadzenie do problematyki

W każdym przedsiębiorstwie zatrudniającym pracowników musi zostać ustalona wewnętrzna hierarchia nazywana strukturą organizacyjną. Jest ona oficjalnym podziałem jednostek, komórek, stanowisk i pracowników w organizacji. W nowych przedsiębiorstwach często występuje nieformalny podział obowiązków, ale z czasem zaczyna klarować się jasny zakres działań poszczególnych osób. Następnie zaczyna się tworzyć struktura organizacyjna, która w pierwszym okresie działania firmy jest spłycona do dwóch poziomów: kierownictwa oraz działów. Niestety, taka hierarchia uniemożliwia skuteczne zarządzanie, ponieważ występują w niej zbyt duże obszary odpowiedzialności i skorelowanie działów. [4] W takiej sytuacji konieczne jest wprowadzenie bardziej skomplikowanej struktury organizacyjnej, która pozwoli na lepsze zarządzanie firmą. Poniżej wymieniono najczęściej spotykane struktury organizacyjne. [36]

- Struktura płaska występuje w niej centralizacja władzy, w której wszyscy pracownicy podlegają jednemu kierownikowi. Najczęściej występuje w małych lub nowych firmach. Zapewnia szybki przepływ informacji i jest elastyczna.
- Struktura liniowa (prosta) charakteryzuje się występowaniem trzech rodzajów stanowisk: kierowników, pracowników oraz dyrektorów. Każdy pracownik ma przydzielonego jednego przełożonego, który odpowiada przed swoim dyrektorem. W tej strukturze informacje są przekazywane tzw. drogą służbową. Aby pracownik mógł przekazać informacje do dyrekcji, muszą one przejść przez wszystkie szczeble zarządzania. Ten rodzaj struktury jest najbardziej popularny w przedsiębiorstwach franczyzowych.
- Struktura funkcjonalna w tej strukturze każdy z pracowników odpowiada przed kilkoma przełożonymi. Pozwala ona zmniejszyć ilość obowiązków pojedynczego kierownika dzieląc je na kilka osób, które są specjalistami w danej dziedzinie. Każdy

specjalista odpowiada przed dyrektorem lub menedżerem, który jest odpowiedzialny za całość działu.

- Struktura sztabowo-liniowa jest połączeniem struktury liniowej oraz funkcjonalnej.
 Zespół składa się z jednego kierownika wspieranego przez kilku specjalistów oraz pracowników. Nie istnieje pojedynczy sposób budowy tej struktury, ponieważ każdy z zespołów może mieć inną strukturę wewnętrzną.
- Struktura macierzowa (problemowa) struktura rozdziela kierowników na dwa rodzaje: kierowników projektów oraz kierowników działów. Pracownicy podlegają jednocześnie kilku przełożonym, co zwiększa elastyczność firmy. W zespołach mogą
 wytworzyć się podgrupy pracowników pracujących nad jednym zadaniem.
- Struktura dywizjonalna struktura określająca dokładną hierarchię w firmie. Najczęściej spotyka się ją w dużych firmach i korporacjach. Charakteryzuje się wyodrębnieniem działów, które są niemal samodzielne. Każdy z działów może mieć własną strukturę organizacyjną, odpowiednią do swoich potrzeb.

Struktura organizacyjna, jaką należy przyjąć w danym przedsiębiorstwie zależy ściśle od jego specyfiki oraz wielkości, jednakże w każdym przypadku powinna być ona jasno określona, aby umożliwić skuteczne zarządzanie firmą.

Kolejną krytyczną kwestią w zarządzaniu firmą jest kontrola czasu pracy pracowników. Wpływa ona na efektywność pracy, a także na zadowolenie pracowników. W zależności od wielkości firmy oraz od jej specyfiki, metody kontroli czasu pracy mogą się różnić. W firmach, gdzie liczba pracowników jest niewielka, kontrola czasu pracy może być prowadzona w sposób tradycyjny; z kolei duże firmy mogą zastosować bardziej zaawansowane systemy informatyczne. Niezależnie od wybranego podejścia, celem jest zapewnienie, aby pracownicy byli obecni w miejscu pracy, w określonym czasie. Prowadzenie kontroli czasu pracy jest obowiązkowe dla pracodawców, a nieprzestrzeganie przepisów jest uznawane za naruszenie praw pracowniczych, co może skutkować karą finansową wysokości zgodnej z art. 281 pkt 6 Kodeksu Pracy. [38]

1.2 Cel pracy

W tej części pracy należy **jasno** opisać, jaki jest jej cel. Należy zaznaczyć, jakie cele zostaną osiągnięte po zakończeniu pracy.

Celem pracy jest analiza dziedziny, stwierdzenie zasadności wprowadzenia systemu, jego projekt oraz implementacja. Docelowo system ma składać się z czterech głównych części:

serwera odpowiadającego za część biznesową,

- aplikacji webowej do zarządzania systemem,
- systemu mikroprocesorowego do autoryzacji i przyznania dostępu poprzez odczyt kart zbliżeniowych,
- aplikacji mobilnej umożliwiającej przypisywanie nowych kart dostępowych.

1.3 Zakres pracy

W tej części pracy należy opisać, jakie zagadnienia zostaną poruszone w pracy. Należy zaznaczyć, jakie aspekty problemu zostaną omówione, a jakie nie.

1.4 Charakterystyka rozdziałów

TODO: W tej części pracy należy zwięźle opisać, co znajduje się w poszczególnych rozdziałach.

Analiza tematu

2.1 Przegląd dostępnych sposobów kontroli czasu

2.1.1 Metody tradycyjne

Wiele małych przedsiębiorstw nie potrzebuje wprowadzenia zaawansowanych systemów kontroli pracowników i wciąż korzysta z metod tradycyjnych. Polegają one w większości na ręcznym wypełnianiu papierowych dokumentów, które następnie wymagają przetworzenia. Przykłady takich metod wymieniono poniżej.

- Indywidualne karty czasu pracy pracownik zaznacza swoją obecność na kartce papieru, a następnie podpisuje ją. Zaletą tej metody jest jej prostota i niski koszt, jednakże jest ona mało efektywna i podatna na błędy. Dodatkowo wymagane jest przechowywanie dużej ilości papierowych dokumentów oraz ich archiwizacji.
- Arkusz kalkulacyjny metoda polegająca na prowadzeniu arkusza kalkulacyjnego, w którym podobnie jak w przypadku kart czasu pracy zapisywane są godziny pracy pracowników oraz zadania jakie wykonali. Arkusze pozwalają na jednoczesną kontrolę obecności pracowników oraz na monitorowanie ich postępów w pracy. Niestety, brak automatyzacji procesu skutkuje koniecznością ręcznego wypełniania arkuszy, co zwiększa ryzyko popełnienia błędów. Podobnie jak w przypadku kart pracy, konieczne jest przechowywanie i archiwizacja dokumentów.
- Harmonogram pracy pozwala przełożonym na ustalenie grafiku pracy pracowników. Jest on następnie przekazywany podwładnym, którzy muszą przestrzegać ustalonych godzin pracy. Ta metoda wymaga wykorzystania dodatkowych narzędzi, takich jak karty pracy. Największą wadą tej metody jest brak możliwości przekazania informacji o zmianach w grafiku w czasie rzeczywistym, co może prowadzić do nieporozumień i konfliktów.

Połączenie kilku tradycyjnych metod pozwala na skuteczną kontrolę czasu pracy, lecz bez wykorzystania systemów informatycznych, proces ten jest bardzo czasochłonny i podatny na błędy. Korzystanie z papierowych dokumentów jest obarczone bardzo dużym ryzykiem utraty danych, nieautoryzowanego dostępu oraz błędów ludzkich.

2.1.2 Systemy zarządzania kapitałem ludzkim

Wraz z rozwojem technologii informatycznych wiele firm zdecydowało się na wprowadzenie rozwiązań HCM (ang. Human Capital Management). Pozwalają one na pełną automatyzację procesów związanych z działaniem kadr i płac. Oferują szereg funkcji związanych z zarządzaniem czasem pracy, rekrutacją, szkoleniami, wynagrodzeniami oraz rozwojem pracowników. Ich główną częścią jest moduł Workforce Management. Zazwyczaj dostęp do systemu odbywa się poprzez aplikację internetową, co umożliwia łatwy dostęp z dowolnego miejsca na świecie. Przykłady dostępnych systemów HCM wymieniono poniżej.

- Oracle HCM Cloud[24] kompletne rozwiązanie chmurowe firmy Oracle, które łączy w sobie funkcje zarządzania personelem, procesami kadrowymi, rekrutacyjnymi i płacowymi. Jest używany m. in. przez FUJIFILM, Deutsche Bahn, czy Fujitsu.
- SAP SuccessFactors HCM[31] rozwiązanie chmurowe firmy SAP, które oferuje szereg funkcji w zakresie HR (ang. *Human Resources*). Zawiera w sobie moduły do zarządzania procesami kadrowymi, rekrutacyjnymi, szkoleniowymi, płacowymi i analitycznymi. Jest używany m. in. przez Microsoft, Nestle, Allianz.
- MintHCM[19] oprogramowanie firmy eVolpe oparte o otwartoźródłowe systemy CRM (ang. Customer Relationship Management). Oferuje szereg funkcji związanych z zarządzaniem personelem, takich jak: rekrutacja, szkolenia, oceny pracownicze, czy zarządzanie czasem pracy i urlopami. Korzystają z niego m. in. Empik, Poczta Polska, czy Asseco.

Głównym powodem, dla którego firmy decydują się wdrożyć systemy HCM jest ich pozytywny wpływ na efektywność pracy, a co za tym idzie - zwiększenie przychodów. Dobrze zaprojektowany system, który pozwala na załatwienie wielu spraw formalnych oraz administracyjnych w jednym miejscu ułatwia pracownikom codzienną pracę, pozwala na szybsze reagowanie na zmiany w organizacji i daje jasny wgląd do danych dotyczących ich wydajności. Dla kadry, system umożliwia monitorowanie działań i wyników pracowników, co może przełożyć się na premie i awanse.

Często w rozwiązaniach HCM brakuje funkcji związanej z przyznawaniem dostępów oraz kontrolą wejść i wyjść pracowników z firmy. W takich przypadkach konieczne jest zintegrowanie systemu HCM z systemem kontroli dostępu, co zwiększa koszty i skomplikowanie systemu. Dodatkowo, systemy HCM są zazwyczaj dostępne jedynie w formie

chmurowej, co może być problemem dla firm, które chcą mieć pełną kontrolę nad danymi swoich pracowników.

2.1.3 Systemy kontroli dostępu

Celem systemów kontroli dostępu jest zapewnienie bezpieczeństwa w firmie poprzez kontrolę wejść i wyjść pracowników oraz gości. Ich głównym zadaniem jest zapewnienie bezpieczeństwa pracownikom oraz ochrona mienia firmy. Pozwalają one na identyfikację osób przemieszczających się po budynku oraz na kontrolę dostępu do poszczególnych pomieszczeń. Zdarza się, że systemy są zintegrowane z alarmami oraz monitoringiem. Zazwyczaj spotyka się je w dużych firmach, w których kontrola dostępu jest kluczowym elementem bezpieczeństwa. Takie systemy dostarczają m. in. firmy:

- Satel polska firma zajmująca się produkcją systemów alarmowych, monitoringowych i kontroli dostępu, której rozwiązania opierają się o technologię RFID. Możliwe jest ich wdrożenie lokalne oraz rozproszone,
- Avigilon firma zajmująca się produkcją systemów monitoringu i kontroli dostępu.
 Ich rozwiązania opierają się głównie na technologiach bezprzewodowych oraz pin-padach.

Systemy kontroli dostępu są zazwyczaj stosowane w firmach, w których bezpieczeństwo jest kluczowym elementem. Dla pracowników ich użytkowanie jest proste i intuicyjne, a dostęp do poszczególnych pomieszczeń jest szybki i wygodny. Niestety, systemy te nie oferują funkcji związanych z zarządzaniem personelem i czasem pracy. W takich przypadkach konieczne jest zintegrowanie systemu kontroli dostępu z systemem HCM, co zwiększa koszty i skomplikowanie systemu.

2.1.4 Podsumowanie

Analiza dziedziny pozwala na stwierdzenia, że istnieje zapotrzebowanie na system łączący w sobie funkcje zarządzania personelem, kontroli czasu pracy oraz kontroli dostępu. Obecne rozwiązania są albo nieefektywne i przestarzałe, albo nie zawierają w sobie wszystkich funkcjonalności. W związku z tym zaprojektowanie i wdrożenie nowego systemu, który pozwoli na automatyzację wymienionych procesów, może przynieść wymierne korzyści dla firm. Taki system pozwoli na zwiększenie efektywności pracy, bezpieczeństwa oraz ułatwi pracownikom codzienną pracę. Dodatkowo, wykluczy on koszty ponoszone na utrzymanie kilku systemów oraz zintegrowanie ich ze sobą.

2.2 Najważniejsze funkcjonalności systemu

Dobrze zaprojektowany system zarządzania personelem powinien zawierać szereg modułów związanych z jego kluczowymi częściami. Poniżej wymieniono najważniejsze z nich.

- Zarządzanie pracownikami pozwala na przechowywanie danych pracowników i zarządzanie nimi. W systemie powinna być możliwość dodawania, edycji oraz usuwania pracowników, a także przypisywania im odpowiednich ról i uprawnień.
- Zarządzanie czasem pracy pozwala na kontrolę czasu pracy pracowników. System powinien umożliwiać zarządzanie grafikami pracy, kontrolę obecności pracowników oraz monitorowanie ich postępów w pracy.
- Zarządzanie dostępem pozwala na kontrolę dostępu pracowników do budynku.
 Moduł powinien umożliwiać zarządzanie kartami dostępowymi, kontrolować wejścia i wyjścia pracowników, a także umożliwiać nadawanie uprawnień dostępu do poszczególnych pomieszczeń.

Wymagania i narzędzia

3.1 Założenia projektowe

W tej części pracy należy opisać, jakie założenia przyjęto podczas tworzenia systemu. Należy zaznaczyć, jakie funkcje systemu są najważniejsze, a które mogą być pominięte.

3.1.1 Wymagania funkcjonalne

3.1.2 Wymagania niefunkcjonalne

3.2 Projekt systemu

3.2.1 Technologie

Poniżej przedstawiono główne technologie wraz z uzasadnieniem ich wyboru oraz spis pozostałych technologii.

MySQL

MySQL to relacyjna baza danych rozwijana aktualnie przez firmę Oracle. Jej najważniejszymi cechami są: popularność, szybkość, niezawodność oraz łatwość w obsłudze. Najnowsze wersje wspierają transakcje, widoki, procedury składowane i wiele innych funkcji, które zbliżają ją do baz danych typu Enterprise. Dodatkowo oferuje lepsze prędkości odczytu danych, niż konkurencyjne rozwiązania takie jak PostgreSQL. [21]

Baza danych MySQL została wybrana ze względu na możliwości jakie oferuje, a także jej przejrzystość, co może ułatwić migrację na inne rozwiązanie w przyszłości.

Spring Framework

Spring to platforma, która dostarcza rozwiązania do tworzenia aplikacji typu Enterprise w języku Java. Jego asynchroniczna, nieblokująca architektura umożliwia tworzenie

rozwiązań, obsługujących duże ilości danych, przy jednoczesnym zachowaniu wysokiej wydajności. Składa się z wielu modułów obsługujących kluczowe aspekty działania systemu, takie jak: transakcje, bezpieczeństwo, obsługa danych, integracja z bazami danych, obsługa REST API, itp. [33]

Spring Framework został wybrany ze względu na swoją popularność, wsparcie społeczności oraz bogatą dokumentację, co ułatwiło pracę nad projektem.

Vue.js

Vue.js jest progresywnym frameworkiem JavaScript przeznaczonym do budowania interfejsów użytkownika. Charakteryzuje się lekkością, prostotą oraz wydajnością. Jego architektura oparta na komponentach umożliwia tworzenie skomplikowanych interfejsów, które są łatwe w utrzymaniu i rozbudowie. Dodatkowo oferuje udostępnienie aplikacji w formie SPA (ang. Single Page Application), dzięki któremu użytkownik widzi ją jako pojedynczą stronę internetową. Reakcje na interakcje użytkownika są szybkie i płynne, co zwiększa komfort korzystania z aplikacji przypominając niejako aplikacje desktopowe. [40]

Vue.js został wybrany ze względu na chęć poznania tej technologii, względnie niski próg wejścia oraz dużą popularność wśród programistów i firm.

Expo

Expo to platforma, która umożliwia tworzenie wieloplatformowych aplikacji mobilnych w językach JavaScript i TypeScript. Została stworzona na bazie **React Native** i oferuje wiele gotowych rozwiązań dotyczących zarówno interfejsu użytkownika, jak i ustawień aplikacji. Projekt umożliwia również szybkie wdrożenie aplikacji dzięki wbudowanemu serwerowi deweloperskiemu oraz narzędziom do kompilacji i publikacji aplikacji na platformach Android i iOS. [5]

Expo zostało wybrane ze względu na język programowania, który jest znany autorowi pracy, a także na możliwość szybkiego utworzenia i wdrożenia aplikacji na platformy mobilne.

Raspberry Pi Pico W

Raspberry Pi Pico W jest najmniejszym modułem z rodziny Raspberry Pi, który może łączyć się z siecią. Posiada wbudowany kontroler Raspberry RP4020 oparty na architekturze ARM, co czyni go idealnym wyborem do zastosowań IoT. Układ wyposażony jest w 264 KB pamięci RAM, 2 MB pamięci flash oraz 26 pinów GPIO, dzięki którym bez problemu można podłączyć do niego wiele różnych czujników i urządzeń. Pico W posiada wbudowany moduł Wi-Fi oraz Bluetooth, co pozwala na łatwe łączenie się z siecią oraz innymi urządzeniami.

Raspberry Pi Pico W został wybrany ze względu na możliwość połączenia z siecią oraz duże możliwości rozbudowy. [26]

MicroPython

MicroPython jest implementacją języka Python przeznaczona dla mikrokontrolerów i systemów wbudowanych, zoptymalizowaną pod kątem niskiego zużycia zasobów - co czyni ją idealnym wyborem dla urządzeń o ograniczonej mocy obliczeniowej i pamięci. MicroPython oferuje większość funkcji standardowego Pythona, co pozwala na szybkie i efektywne tworzenie oprogramowania dla mikrokontrolerów. Dzięki temu istnieje możliwość korzystania z dobrze znanych narzędzi i bibliotek, co znacząco przyspiesza proces tworzenia i testowania programu. [17]

MicroPython został wybrany ze względu na jego prostotę, elastyczność oraz możliwość szybkiego wdrożenia mikrokontrolera do systemu.

Inne technologie

W projekcie wykorzystano również mniej znaczące technologie, które przedstawiono w tabelach 3.1, 3.2 oraz 3.3.

Tabela 3.1: Biblioteki i frameworki wykorzystane w części backend

Technologia	Opis	Autor	Licencja
Spring Boot	Framework do tworze-	Spring	Apache License
	nia aplikacji w języku		2.0
	Java [32]		
Spring Security	Framework do zarzą-	Spring	Apache License
	dzania bezpieczeństwem		2.0
	aplikacji [34]		
Springdoc OpenAPI	Biblioteka do genero-	Springdoc	Apache License
	wania dokumentacji		2.0
	API oraz dostępu do		
	Swagger-ui [35]		
MySQL Connector	Sterownik do łączenia	Oracle	GPL 2.0
	się z bazą danych My-		
	SQL [22]		
Lombok	Biblioteka do generowa-	Project Lombok	MIT
	nia kodu Java [15]		
JJWT	Biblioteka do obsługi	jwtk	Apache License
	tokenów JWT [12]		2.0

Tabela 3.2: Biblioteki i frameworki wykorzystane w części frontend oraz aplikacji mobilnej

Technologia	Opis	Autor	Licencja
Axios	Biblioteka do wykonywania zapy-	Axios	MIT
	tań HTTP [1]		
Heroicons	Zestaw ikon SVG [13]	Tailwind Labs	MIT
PrimeVue	Biblioteka komponentów do Vue.js	PrimeTek	MIT
	[28]		
Luxon	Biblioteka do obsługi dat i czasu	Moment.js	MIT
	[20]		
Valibot	Biblioteka do walidacji formularzy	Fabian Hiller	MIT
	[9]		
Vue i18n	Biblioteka do obsługi wielojęzycz-	Intlify	MIT
	ności [10]		
Vue Router	Biblioteka do zarządzania trasami	Vue	MIT
	w aplikacji Vue.js [39]		
TailwindCSS	Biblioteka do stylowania aplikacji	Tailwind Labs	MIT
	internetowych [14]		
Nativewind	Biblioteka umożliwiająca używanie	Nativewind	MIT
	TailwindCSS w aplikacjach opar-		
	tych o React Native [23]		
React Native	Biblioteka do obsługi gestów w apli-	Software Mansion	MIT
Gesture Handler	kacjach opartych o React Native		
	[16]		
react native nfc	Biblioteka do obsługi NFC w apli-	RevtelTech	MIT
manager	kacjach opartych o React Native		
	[30]		

Tabela 3.3: Biblioteki wykorzystane w programie układu mikroprocesorowego

Technologia	Opis	Autor	Licencja
mfrc522	Biblioteka do obsługi modułu	Daniel Perron	MIT
	RFID [25]		
picozero	Biblioteka do obsługi modułów	Raspberry Pi	MIT
	peryferyjnych z Raspberry Pi	Foundation	
	Pico [7]		
Requests	Biblioteka do wykonywania za-	Python Software	Apache License
	pytań HTTP w Python [29]	Foundation	2.0

3.2.2 Narzędzia

Podczas tworzenia systemu wykorzystano narzędzia, które przedstawiono w tabeli 3.4.

Tabela 3.4: Narzędzia wykorzystane podczas tworzenia systemu

Narzędzie	Opis	Producent
Docker	Narzędzie do uruchamiania kontenerów, w pro-	Docker Inc.
	jekcie wykorzystane do uruchomienia serwera	
	bazy danych [3]	
Git	System kontroli wersji [8]	Linus Torvalds
Visual Studio Code	Edytor kodu wykorzystany przy tworzeniu czę-	Microsoft
	ści frontend oraz aplikacji mobilnej [18]	
IntelliJ IDEA	Zintegrowane środowisko programistyczne do	JetBrains
	języków Java oraz Kotlin, wykorzystane przy	
	tworzeniu części backend [11]	
Figma	Narzędzie do projektowania interfejsów użyt-	Figma
	kownika [6]	
Zeplin	Narzędzie do współpracy nad projektami inter-	Zeplin
	fejsów użytkownika, umożliwiające generowanie	
	stylów CSS [41]	
Thonny	Zintegrowane środowisko programistyczne dla	Thonny
	języka Python na mikrokontrolery [37]	

3.2.3 Metodyka pracy

3.3 Przypadki użycia

W tej części pracy należy przedstawić diagramy UML przypadków użycia systemu oraz je opisać.

Specyfikacja zewnętrzna

4.1 Wygląd interfejsu użytkownika

Ta część powinna zawierać screeny z interfejsem użytkownika wraz z porównaniem do projektu graficznego.

Rysunek 4.1: Panel główny

4.2 Użytkownicy i ich role

W systemie zostały zdefiniowane 3 role użytkowników:

- Użytkownik,
- Manager,
- Administrator.

Dodatkowo każde konto użytkownika może zostać zarchiwizowane, co oznacza, że użytkownik nie ma dostępu do systemu, ale jego dane pozostają w bazie danych.

Każda rola posiada inne uprawnienia i możliwości w systemie. Role można bardzo łatwo od siebie odróżnić, ponieważ każda z nich posiada inny kolor widoczny na pasku nawigacyjnym. Poniżej zostały przedstawione informacje na temat każdej z nich.

4.2.1 Użytkownik

Użytkownik jest podstawową rolą w systemie. Posiada możliwość przeglądania swoich danych, harmonogramu pracy, oraz dodawania wpisów do timesheetu. Użytkownik nie ma możliwości zarządzania innymi użytkownikami, ani zmiany ustawień systemu.

Kolorem przypisanym do użytkownika jest kolor pomarańczowy:

```
    #FCAB10,
```

- rgb(252, 171, 16),
- hsl(39, 98%, 53%).

4.2.2 Manager

Manager jest rolą posiadającą większe uprawnienia niż użytkownik. Oprócz możliwości przeglądania swoich danych, harmonogramu pracy, oraz dodawania wpisów do timesheetu, manager może również zarządzać przypisanym do siebie zespołem, harmonogramem pracy zespołu oraz przeglądać i akceptować timesheety swoich pracowników. Manager nie ma możliwości zarządzania innymi managerami.

Kolorem przypisanym do managera jest kolor zielony:

- #ACE849,
- rgb(172, 232, 73),
- hsl(79, 73%, 61%).

4.2.3 Administrator

Administrator jest użytkownikiem o największych uprawnieniach w systemie. Rozszerza możliwości managera o możliwość zarządzania poszczególnymi użytkownikami i ich rolami, strukturą organizacyjną firmy - dodawanie, edycję i usuwanie działów oraz stanowisk - oraz konfigurację systemu. Administrator ma dostęp do wszystkich danych w systemie.

Kolorem przypisanym do administratora jest kolor niebieski:

• #3772FF,

- rgb(55, 114, 255),
- hsl(219, 79%, 59%).

Ta część mogła by być opisana przy projektowaniu systemu.

4.3 Dostępność

4.3.1 Dostępność cyfrowa

Aplikacja została zaprojektowana w taki sposób, aby możliwe było korzystanie z niej wyłącznie przy użyciu klawiatury. Użycie biblioteki komponentów PrimeVue pozwoliło na zapewnienie dostępności dla osób o ograniczonych możliwościach ruchowych. Komponenty umieszczone na stronie internetowej są zgodne z wytycznymi WCAG 2.1. [2]

4.3.2 Dostępność językowa

W celu zapewnienia dostępności systemu użytkownikom z różnych krajów i regionów, aplikacja dostarcza możliwość zmiany języka interfejsu użytkownika. W chwili obecnej dostępne są 2 języki: polski i angielski, jednakże dodanie kolejnego nie wymaga od programisty dużego nakładu pracy. Każdy z języków jest przechowywany w oddzielnym pliku .json, co pozwala na jego łatwą modyfikację lub dodanie nowego. Część pliku zawierającego tłumaczenia na język polski została przedstawiona na rysunku 4.2.

```
"form": {
          "save": "Zapisz",
          "cancel": "Anuluj",
          "fieldRequired": "To pole jest wymagane",
          "invalidFormat": "Nieprawidłowy format"
          },
```

Rysunek 4.2: Fragment pliku z tłumaczeniami na język polski

Specyfikacja wewnętrzna

5.1 Architektura systemu

W tej części pracy należy opisać, jakie komponenty składają się na system. Należy zaznaczyć, jakie są relacje między nimi. Można również opisać, jakie wzorce projektowe zostały zastosowane. Głównie chodzi o to, aby czytelnik mógł zrozumieć, jak działa system.

Kompletny system składa się z czterech głównych komponentów, które komunikują się ze sobą w celu zapewnienia pełnej funkcjonalności. Poniżej zostały przedstawione opisy każdego z nich.

5.1.1 Frontend

Głównym interfejsem użytkownika jest aplikacja webowa stworzona przy użyciu frameworka Vue.js. Zapewnia użytkownikowi dostęp do większości funkcji systemu, a w zależności od roli użytkownika, pozwala na wykonanie innych czynności. Aplikacja została zaprojektowana w taki sposób, aby była przejrzysta i intuicyjna w obsłudze. Dzięki temu, użytkownik może szybko i sprawnie wykonywać swoje codzienne obowiązki. Odrębne od siebie panele zostały umieszczone w kartach pojawiających się na widoku, dzięki czemu użytkownik wie dokładnie w którym miejscu aplikacji się znajduje i jakie ma możliwości.

5.1.2 Backend

Serwer aplikacyjny został stworzony przy użyciu frameworka Spring Boot. Zapewnia on komunikację między bazą danych, a pozostałymi komponentami systemu. Jest odpowiedzialny za przetwarzanie żądań klienckich oraz zwracanie odpowiedzi w postaci danych, w formacie JSON. Serwer aplikacyjny jest również odpowiedzialny za autoryzację i autentykację użytkowników oraz zarządzanie sesjami. Użytkownicy nie mają bezpośredniego dostępu do serwera.

5.1.3 Aplikacja mobilna

Głównym zadaniem aplikacji mobilnej jest możliwość dodawania kart dostępowych dla poszczególnych użytkowników. Odbywa się to poprzez przyłożenie tagu NFC (ang. Near Field Communication) do telefonu z zainstalowaną aplikacją, a następnie przypisanie go do konkretnego użytkownika. Szczegółowy opis tego procesu został opisany w rozdziale ??.

5.1.4 Układ mikroprocesorowy

Układ mikroprocesorowy jest odpowiedzialny za odczytywanie tagów NFC oraz przesyłanie informacji do serwera aplikacyjnego. Następnie serwer zwraca informację o przyznaniu dostępu do systemu. Układ mikroprocesorowy jest zasilany z wbudowanego portu Micro USB, co umożliwia bardzo proste podłączenie go do źródła zasilania. Dokumentacja techniczna mikrokontrolera [27] precyzuje również podłączenie innego źródła zasilania bez użycia wbudowanego portu.

5.2 Modele i struktury danych

W tej części pracy należy opisać, jakie modele danych zostały zastosowane w systemie. Należy zaznaczyć, jakie są relacje między nimi.

5.2.1 Model użytkownika

5.3 Struktura bazy danych

W tej części pracy należy opisać, jakie tabele i relacje między nimi występują w bazie danych. Można dodać diagramy ERD.

Rysunek 5.1: Diagram bazy danych

5.4 Algorytmy

5.4.1 Rejestracja

5.4.2 Logowanie

Rysunek 5.2: Diagram czynności logowania

5.4.3 Harmonogramowanie

5.4.4 Przypisanie nowej karty dostępowej

5.5 Użyte biblioteki i frameworki

Ta część może się znaleźć przy przeglądzie technologii.

Weryfikacja i walidacja

- 6.1 Testy
- 6.2 Walidacja danych

Podsumowanie i wnioski

- 7.1 Wnioski
- 7.1.1 Problemy napotkane podczas pracy
- 7.1.2 Ocena dobranych technologii po zakończeniu pracy
- 7.2 Podsumowanie
- 7.3 Możliwości rozwoju

Bibliografia

- [1] Axios. Axios. URL: https://axios-http.com/ (term. wiz. 04. 10. 2024).
- [2] Ministerstwo Cyfryzacji. WCAG 2.1 w skrócie. URL: https://www.gov.pl/web/dostepnosc-cyfrowa/wcag-21-w-skrocie (term. wiz. 07. 10. 2024).
- [3] Docker. Docker. URL: https://www.docker.com/ (term. wiz. 25.09.2024).
- [4] Stefan Trzcieliński Edmund Pawłowski. Zarządzanie przedsiębiorstwem, Funkcje i struktury. Poznań: Wydawnictwo Politechniki Poznańskiej, 2011. ISBN: 978-83-7143-968-1.
- [5] Expo. Expo. URL: https://expo.dev/ (term. wiz. 25.10.2024).
- [6] Figma. Figma. URL: https://www.figma.com/ (term. wiz. 23.09.2024).
- [7] Raspberry Pi Foundation. *PicoZero*. URL: https://github.com/RaspberryPiFoundation/picozero (term. wiz. 08.11.2024).
- [8] Git. Git Distributed Version Control System. URL: https://git-scm.com/ (term. wiz. 25.09.2024).
- [9] Fabian Hiller. Valibot. URL: https://valibot.dev/ (term. wiz. 04.11.2024).
- [10] Intlify. Vue I18n. URL: https://vue-i18n.intlify.dev/(term. wiz. 04.10.2024).
- [11] JetBrains. IntelliJ IDEA. URL: https://www.jetbrains.com/idea/ (term. wiz. 23.09.2024).
- [12] jwtk. Java JWT: JSON Web Token for Java and Android. URL: https://github.com/jwtk/jjwt (term. wiz. 09. 09. 2024).
- [13] Tailwind Labs. Heroicons. URL: https://heroicons.com/ (term. wiz. 04. 10. 2024).
- [14] Tailwind Labs. Tailwind CSS. URL: https://tailwindcss.com/ (term. wiz. 26.11.2024).
- [15] Project Lombok. Project Lombok. URL: https://projectlombok.org/ (term. wiz. 25.09.2024).
- [16] Software Mansion. React Native Gesture Handler. URL: https://docs.swmansion.com/react-native-gesture-handler/ (term. wiz. 25. 10. 2024).
- [17] MicroPython. MicroPython. URL: https://micropython.org/(term. wiz. 10. 11. 2024).

- [18] Microsoft. Visual Studio Code. URL: https://code.visualstudio.com/ (term. wiz. 04.10.2024).
- [19] MintHCM. MintHCM. URL: https://minthcm.org/ (term. wiz. 30.09.2024).
- [20] Moment.js. *Luxon*. URL: https://moment.github.io/luxon/#/ (term. wiz. 03.12.2024).
- [21] MySQL. MySQL. URL: https://www.mysql.com/ (term. wiz. 25.09.2024).
- [22] MySQL. MySQL Connector. URL: https://www.mysql.com/products/connector/ (term. wiz. 25.09.2024).
- [23] Nativewind. Nativewind. URL: https://www.nativewind.dev/(term.wiz. 25.11.2024).
- [24] Oracle. Oracle Human Capital Management (HCM). URL: https://www.oracle.com/human-capital-management/(term. wiz. 30.09.2024).
- [25] Daniel Perron. *MicroPython MFRC522*. URL: https://github.com/danjperron/micropython-mfrc522/tree/master?tab=readme-ov-file (term. wiz. 11. 11. 2024).
- [26] Raspberry Pi. *Pico-series Microcontrollers*. URL: https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html (term. wiz. 08.11.2024).
- [27] Raspberry Pi. *Pico W Datasheet*. 2023. URL: https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf (term. wiz. 08.11.2024).
- [28] PrimeTek. PrimeVue. URL: https://primevue.org/ (term. wiz. 04. 10. 2024).
- [29] Kenneth Reitz. Requests: HTTP for Humans. URL: https://requests.readthedocs.io/en/latest/ (term. wiz. 12.11.2024).
- [30] RevTelTech. React Native NFC Manager. URL: https://github.com/revtel/react-native-nfc-manager (term. wiz. 25.10.2024).
- [31] SAP. Human capital management (HCM). URL: https://www.sap.com/products/hcm.html (term. wiz. 30.09.2024).
- [32] Spring. Spring Boot. URL: https://spring.io/projects/spring-boot (term. wiz. 09.09.2024).
- [33] Spring. Spring Framework. URL: https://spring.io/ (term. wiz. 25.09.2024).
- [34] Spring. Spring Security. URL: https://spring.io/projects/spring-security (term. wiz. 09.09.2024).
- [35] SpringDoc. SpringDoc. URL: https://springdoc.org/ (term. wiz. 09. 09. 2024).
- [36] Struktura organizacyjna firmy jak może wyglądać? Rodzaje i przykłady. URL: https://tomhrm.com/struktura-organizacyjna-firmy-rodzaje-przyklady/ (term. wiz. 26.11.2024).

- [37] Thonny. Thonny, Python IDE for beginners. URL: https://thonny.org/ (term. wiz. 03.12.2024).
- [38] Ustawa z dnia 26 czerwca 1974 r. Kodeks pracy. 1974. URL: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU19740240141/U/D19740141Lj.pdf (term. wiz. 27.11.2024).
- [39] Vue. Vue Router. URL: https://router.vuejs.org/ (term. wiz. 04.10.2024).
- [40] Vue.js. Vue.js. URL: https://vuejs.org/ (term. wiz. 04. 10. 2024).
- [41] Zeplin. Zeplin. URL: https://zeplin.io/ (term. wiz. 23.09.2024).

Dodatki

Spis skrótów i symboli

HCM System Zarządzania Kapitałem Ludzkim (ang. Human Capital Management)

HR Zarządzanie Zasobami Ludzkimi (ang. Human Resources)

CRM Zarządzanie Relacjami z Klientami (ang. Customer Relationship Management)

SPA Aplikacja jednostronicowa (ang. Single Page Application)

Źródła

Lista dodatkowych plików, uzupełniających tekst pracy

Spis rysunków

4.1	Panel główny	15
4.2	Fragment pliku z tłumaczeniami na język polski	17
5.1	Diagram bazy danych	21
5.2	Diagram czynności logowania	22

Spis tabel

3.1	Biblioteki i frameworki wykorzystane w części backend	11
3.2	Biblioteki i frameworki wykorzystane w części frontend oraz aplikacji mo-	
	$\label{eq:bilnej} bilnej \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	12
3.3	Biblioteki wykorzystane w programie układu mikroprocesorowego	12
3.4	Narzędzia wykorzystane podczas tworzenia systemu	13