Chapter 3

Linear Algebra

3.1 Vector Space

3.1.1 Field

Definition 80. For 0 and 1 of a field F, the smallest n that $\sum_{i=1}^{n} 1 = 0$ is called the characteristic of F. If no such n exists, F is called characteristic zero.

Definition 81. The field \mathbb{Z}_2 has characteristic of 2 which consists of two elements 0 and 1:

- 0+0=0
- 0+1=1+0=1
- 1+1=0
- $0 \times 0 = 0$
- $0 \times 1 = 1 \times 0 = 0$
- $1 \times 1 = 1$

3.1.2 **Vector**

Algebra is concerned with how to manipulate symbolic combinations of object and how to equate one with another.

Definition 82. A vector space vector space V over a field field F has two operation $\{+, \times\}$ with $\vec{0}$ and 1.

Definition 83. A subspace is a subset W of vector space V that is closed under $\{+, \times\}$. When we say a subset is a subspace of a vector space, we mean it is a vector space as well.

Theorem 91. $\{0\}$ *is a subspace of all vector space.*

matrix is late Latin for womb. The idea is that a matri is a place for holding numbers.

Definition 84. a trace of an $n \times n$ matrix M, denoted tr(M), is the sum of diagonal entries:

$$tr(M) = \sum_{i=1}^{n} M_{ii}$$
 (3.1)

Definition 85. A span of a nonempty subset S of a vector space V is the set consisting of all linear combinations of the vectors in S. If span(S) = V, S generate (or span) V.

Definition 86. *The span of* \emptyset *is* $\{0\}$ *, not* \emptyset *.*

A span set is useful because it allow one to describe all vectors in terms of a much smaller space.

Definition 87. A subset S of V is linearly dependent if there exist a finite number of distinct vector u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n , not all 0, that:

$$\sum_{i=1}^{n} a_i u_i = 0 {(3.2)}$$

S is called linearly independent if it is not linearly dependent. \emptyset is linearly independent.

Theorem 92. Let S be linearly independent, v is not in S. Then $S \cup v$ is linearly dependent if $v \in span(S)$.

3.1.3 Basis

Basis tries to represent a infinite vector space using a finite set of vectors. So a complex structure could be understood using simplified structure. A linearly independent generating set has a very useful property that every vector has one and only one representation using basis.

Definition 88. A basis β for V is a linearly independent subset of V that generate V.

A vector space is usually infinite. It is desirable to describe this infinite set using a finite subset, which is the role of basis.

Theorem 93. \emptyset *is a basis for zero vector space* $\{0\}$ *, so every vector space has a basis.*

Definition 89. The standard basis for F^n is $e_1 = (1, 0, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, $e_n = (0, 0, ..., 1)$.

Definition 90. The standard basis for $P_n(F)$ is $\{1, x, x^2, \dots, x^n\}$.

3.1. VECTOR SPACE

Theorem 94. β is a basis of V if $\forall v \in V$, v has a unique representation as a linear combination of vectors of β .

Theorem 95. A finite spanning set for V can be reduced to a basis.

Theorem 96 (Replacement Theorem). Let V be generated by a set G with n vectors. Let L be a linearly independent subset of V with m vectors. Then m < n and $\exists H \subset G$ with n - m vectors such that $L \cup H$ generate V.

Theorem 97. Let V have a finite basis. Then every basis contains the same number of vectors. This number is an intrinsic property of V and called the <u>dimension</u> of V.

Theorem 98. Let V be a vector space with dimension n:

- any finite generating set for V contains at least n vectors. If they contains exactly n vectors, they are a basis.
- any linearly independent subset of n vectors is a basis.
- every linearly independent subset could be extended to a basis.

Definition 91 (Lagrange Interpolation Formula). *let* c_0, c_1, \ldots, c_n *be distinct scalars in field F. Define* n + 1 *function* $\{f_i\}$ *as:*

$$f_i(x) = \prod_{k=0, k \neq i}^{n} \frac{x - c_k}{c_i - c_k}$$
(3.3)

then $\beta = \{f_i\}$ is a basis of $\mathbb{P}_n(F)$, where $\mathbb{P}_n(F)$ is a set of all polynomials over F. For $\forall g \in \mathbb{P}_n(F)$, we have

$$g = \sum_{i=0}^{n} g(c_i) f_i \tag{3.4}$$

To generate a function g of degree n that passes n+1 points (x_i, y_i) , first use $\{x_i\}$ to generate $\{f_i\}$, then $g = \sum_{i=0}^n y_i f_i$.

Proof. since β is a basis of $\mathbb{P}_n(F)$, $\forall g \in \mathbb{P}_n(F)$,

$$g = \sum_{i=0}^{n} b_i f_i$$

it follows that

$$g(c_j) = \sum_{i=0}^n b_i f_i(c_j) = b_j$$

so
$$g = \sum_{i=0}^{n} g(c_i) f_i$$
.

Theorem 99. for any two subspace W_1 and W_2 of V, their dimension has a relation:

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$
(3.5)

Definition 92. *here are the definition of common terms:*

- 1. square matrix: a matrix $M_{i \times j}$ that i = j. It is usually denoted as M, not A.
- 2. zero vector: $\vec{0}$.
- 3. transpose: $(A^{\top})_{ij} = A_{ji}$.
- 4. symmetric matrix: $A^{\top} = A$.
- 5. diagonal matrix: for a $n \times n$ square matrix M that $M_{ij} = 0$ if $i \neq j$.
- 6. upper triangular: $A_{ij} = 0$ if i > j.

The following text discusses the result of infinite basis.

Definition 93. Let F be a family of sets. A member M of F is called maximal if M is contained in no member of F other than M itself.

Definition 94. A collection of set C is called a chain if for each pair of sets A and B in C, either $A \subseteq B$ or $B \subseteq A$.

Theorem 100. Let F be a family of sets. If for each chain $C \subseteq F$, there exists a member of F that contains each member of C, then F contains a maximal member.

Proof. use axiom of choice. Note that the maximal member may not be in *C*.

Definition 95. Let S be a subset of a vector space V. A maximal linearly independent subset of S is a subset B of S that:

- 1. *B* is linearly independent.
- **2**. The only linearly independent subset of S that contains B is B.

Theorem 101. *If* V *has a basis* β , β *is maximal linearly independent.*

Proof. A basis is linearly independent. Because a basis generate V, nothing could be added to it and still make it linearly independent.

Theorem 102. Let V be a vector space and S a subset that generate V. If β is a maximal linearly independent subset of S, then β is a basis V.

Proof. β is linearly independent, so only need to prove that β generate V. It is easy because β is maximal in S so nothing from S could be added to it.

Theorem 103. Let S be a linearly independent subset of a vector space V. There exists a maximal linearly independent subset of V that contains S.

Proof. Let F be a family of all linearly independent subsets of V that contains S. For a chain C in F, let U be the union of all its member. This U is linearly independent and belongs to F, so it is a maximal linearly independent subset of F, which is a basis of F.

Theorem 104. Every vector space has a basis.

3.2 Linear Transformation and Matrix

3.2.1 Linear Transformation

Definition 96. A linear transformation from V to W is a function $T: V \to W$ that:

- 1. T(x+y) = T(x) + T(y)
- 2. T(cx) = cT(x)

The two linear transformation verification criteria could be combined into one: prove that

$$T(cx+y) = cTx + Ty (3.6)$$

The identity transformation $I_v: V \to V$ is defined as $I_v(x) = x$.

The zero transformation $T_0: V \to W$ is defined as $T_0 = 0$.

Definition 97. Let $T: V \to W$ be linear. the null space $\mathcal{N}(T)$ of T is the set $\{x \in V: T(x) = 0\}$. It is also called the kernel of T. It measures how much information is lost by the transformation T.

Definition 98. The range of T is defined as $\mathcal{R}(T) = \{T(x) : x \in V\}$. It measures how much information is retained by the transformation T.

Theorem 105. Let $T: V \to W$ be linear. If $\beta = \{v_i\}$ is a basis for V, then

$$\mathcal{R}(T) = \operatorname{span}\left(T(\beta)\right) = \operatorname{span}\left(\left\{T(v_i)\right\}\right) \tag{3.7}$$

Definition 99. Let $T: V \to W$ be linear. the nullity of T is the dimension of $\mathcal{N}(T)$. The rank of T is the dimension of $\mathcal{R}(T)$.

Theorem 106 (Dimension Theorem). *If* V *is finite dimensional,* $T:V \to W$ *is linear, then*

$$\dim (\mathcal{N}(T)) + \dim (\mathcal{R}(T)) = \dim (T) \tag{3.8}$$

Proof. expand nullity set to a basis and prove the image of extra parameters are independent. \Box

Theorem 107. Let $V: \{v_i\}$ and $W: \{w_i\}$ be vector space over F, and their dimensions are the same. Then there exists a unique linear transformation $T: V \to W$ such that $T(v_i) = w_i$.

Proof. For
$$x = \sum_{i=1}^{n} a_i v_i$$
, define $T: V \to W$ that $T(x) = \sum_{i=1}^{n} a_i w_i$.

Theorem 107 is useful when proving two functions are the same.

Theorem 108. Let $T: V \to W$ be a linear transformation. T is one-to-one if and only if $\mathcal{N}(T) = \{0\}$.

3.2.2 Matrix Representation

Definition 100. A ordered basis for V is a basis for V with a specific order.

Definition 101. $\{e_1, e_2, \dots, e_n\}$ is the standard ordered basis for F^n . $\{1, x, \dots, x^n\}$ is the standard ordered basis for $P_n(F)$.

Definition 102. Let $\beta = \{u_1, u_2, \dots, u_n\}$ be an ordered basis for V. $\forall x \in V$, let $\{a_1, a_2, \dots, a_n\}$ be the unique scalar such that

$$x = \sum_{i=1}^{n} a_i u_i$$

the coordinate vector of x relative to β , is defined as

$$[x]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \tag{3.9}$$

Note that $[u_i]_{\beta} = e_i$.

Definition 103. Let V with ordered basis $\beta = \{v_i\}$, W with ordered basis $\gamma : \{w_i\}$, $T : V \to W$ be linear. There exists unique scala $a_{ij} \in F$ such that

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_j {(3.10)}$$

The $m \times n$ matrix¹ A defined by $A_{ij} = a_{ij}$ is the matrix representation of T in the ordered basis β and γ and write $A = [T]_{\beta}^{\gamma}$. If V = W and $\beta = \gamma$, we write $A = [T]_{\beta}$.

Note that the *j*-th column of *A* is $[T(v_j)]_{\gamma}$: $[T]_{\beta}^{\gamma} = [\ldots, [T(v_j)]_{\gamma}, \ldots]$.

Note that T is the relationship between two basis. The value of T might be the same as basis, for example when they are operators on F^n , but T and basis are different objects. It is easy to confuse them, especially on F^n .

Theorem 109. If $U, T : V \to W$ are linear transformation that $[U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta}$, then U = T.

Definition 104. $\mathcal{L}(V, W)$ contains all linear transformation from V to W.

Theorem 110. Let T, U be linear transformation over V and W,

- 1. $[T + \mathbf{U}]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [\mathbf{U}]^{\gamma}_{\beta}$
- 2. $[aT]^{\gamma}_{\beta} = a [T]^{\gamma}_{\beta}$ for all scalar a

Theorem 111. *let* $T: V \to W$ *and* $U: W \to Z$. *Then* $UT: V \to Z$ *is linear.*

Definition 105. Let $T: V \to W$ and $U: W \to Z$ be linear transformation. $A_{m \times n} = [U]_{\alpha}^{\beta}$ and $B_{n \times p} = [T]_{\beta}^{\gamma}$ where $\alpha = \{v_i\}, \beta = \{w_i\}, \gamma = \{z_i\}$. Define the product of matrix AB as:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \tag{3.11}$$

then

$$[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta} [T]^{\beta}_{\alpha} \tag{3.12}$$

Proof. For product $AB = [UT]^{\gamma}_{\alpha}$, we have

$$(UT)(v_{j}) = U(T(v_{j})) = U\left(\sum_{k=1}^{m} B_{kj} w_{k}\right) = \sum_{k=1}^{m} B_{kj} U(w_{k})$$

$$= \sum_{k=1}^{m} B_{kj} \left(\sum_{i=1}^{p} A_{ik} z_{i}\right) = \sum_{k=1}^{m} \left(\sum_{i=1}^{p} A_{ik} B_{kj}\right) z_{i}$$

$$= \sum_{i=1}^{p} C_{ij} z_{i}$$
(3.13)

Definition 106. the Kronecker delta δ_{ij} is defined as

$$\delta_{ij} = \begin{cases} 1 & \text{, if } i = j \\ 0 & \text{, if } i \neq j \end{cases}$$

$$(3.14)$$

Definition 107. The $n \times n$ identity matrix I_n is defined as $(I_n)_{ij} = \delta_{ij}$.

Theorem 112. Let u_j and v_j be the jth column of AB and B, then

1.
$$u_j=Av_j:AB=\begin{bmatrix}Av_1,Av_2,\ldots,Av_j,\ldots,Av_p\end{bmatrix}$$

2. $v_j=Be_j:B=B\times I_n$

Theorem 113. Let $T: V \to W$ be linear, we have

$$\left[T(u)\right]_{\gamma} = \left[T\right]_{\beta}^{\gamma} \left[u\right]_{\beta} \tag{3.15}$$

¹The word matrix is Latin for womb which is the same root as matrimony. The idea is that a matrix is a receptacle for holding numbers

Proof. Fix $u \in V$, and define linear transformation $f : F \to V$ by f(a) = au and $g : F \to W$ by g(a) = aT(u). Let $a = \{1\}$ be the standard basis of F. Notice that g = Tf. we have:

$$[T(u)]_{\gamma} = [g(1)]_{\gamma} = [g]_{\alpha}^{\gamma} = [Tf]_{\alpha}^{\gamma} = [T]_{\beta}^{\gamma} [f]_{\alpha}^{\beta} = [T]_{\beta}^{\gamma} [f(1)]_{\beta} = [T]_{\beta}^{\gamma} [u]_{\beta}$$
(3.16)

Note: in the above proof, a vector could be treated as a linear transformation from a field to vector space.

Definition 108. Let A be an $m \times n$ matrix. The mapping L_A that $L_A : F^n \to F^m$ defined by $L_A(x) = Ax$ is called left-multiplication transformation.

A linear transformation is different from matrix:

- 1. Matrix is finite dimensional, so it defines relation only in finite dimension space. A linear transformation could be of any dimension.
- 2. For a transformation, its matrix representation depends on the chosen basis.

Theorem 114.

$$\begin{cases}
[L_A]_{\alpha}^{\beta} = A \\
L_{[T]_{\alpha}^{\beta}} = T
\end{cases}$$
(3.17)

3.2.3 Inverse

Definition 109. Let $T: V \to W$ and $U: W \to V$ be linear. U is an inverse of T if $TU = I_W$ and $UT = I_V$. If T has an inverse, T is invertable, which is denoted as T^{-1} .

Theorem 115. $(UT)^{-1} = T^{-1}U^{-1}$.

Definition 110. Let A be $n \times n$ matrix. A is invertable if there is an $n \times n$ matrix B that AB = BA = I.

Theorem 116. *if* T *is invertible,*

$$\left[T^{-1}\right]_{\gamma}^{\beta} = \left([T]_{\beta}^{\gamma}\right)^{-1}$$

Proof.

$$I_n = [I_V]_{\beta} = \left[T^{-1}T\right]_{\beta} = \left[T^{-1}\right]_{\gamma}^{\beta} [T]_{\beta}^{\gamma}$$

Definition 111. V is isomorphic to W if there exists a linear transformation $T:V\to W$ that is invertible. T is called an isomorphism from V to W.

Theorem 117. V is isomorphic to W if $\dim(V) = \dim(W)$.

Proof. If the dimensions are the same, choose basis β of V and γ of W and create a linear mapping $T: \beta \to \gamma$ by Theorem 107.

Theorem 118. Let V be a vector space over F. Then V is isomorphic to $F^n \Leftrightarrow \dim(V) = n$.

Theorem 119. The function $\Phi: \mathcal{L}(V,M) \to M_{m \times n}(F)$ defined by $\Phi(T) = [T]_{\beta}^{\gamma}$, is an isomorphism. The dimension has relation that

$$\dim \left(\mathcal{L}(V, M) \right) = \dim \left(V \right) \times \dim \left(W \right) \tag{3.18}$$

3.2.4 Change of Coordinate Matrix

Theorem 120. Let β and β' be two ordered basis of V. Let $Q = [I_V]_{\beta'}^{\beta}$, then

- 1. *Q* is invertible.
- 2. $\forall \alpha \in V, [\alpha]_{\beta} = Q[\alpha]_{\beta'} = [I_V]_{\beta'}^{\beta} [\alpha]_{\beta'}$.

 $Q = [I_V]_{\beta'}^{\beta}$ is called change of coordinate matrix that changes from β' -coordinates to β -coordinates.

$$\textit{Proof.} \ \forall \alpha \in V, \left[\alpha\right]_{\beta} = \left[I_{V}(\alpha)\right]_{\beta} = \left[I_{V}\right]_{\beta'}^{\beta} \left[\alpha\right]_{\beta'} = Q\left[\alpha\right]_{\beta'}. \ \Box$$

If Q changes β' -coordinate into β -coordinate, Q^{-1} changes β -coordinate into β' -coordinate.

Definition 112. A linear operator is a linear transformation that map from V to itself.

Theorem 121. If T is a linear operator on V, then

$$[T]_{\beta'} = [I_V]_{\beta}^{\beta'} [T]_{\beta} [I_V]_{\beta'}^{\beta} = Q^{-1} [T]_{\beta} Q$$
 (3.19)

$$\textit{Proof.} \ \ Q\left[T\right]_{\beta'} = [I]_{\beta'}^{\beta} \left[T\right]_{\beta'}^{\beta'} = [IT]_{\beta'}^{\beta} = [TI]_{\beta'}^{\beta} = [T]_{\beta}^{\beta} \left[I\right]_{\beta'}^{\beta} = [T]_{\beta} \ Q. \qquad \qquad \Box$$

Theorem 122. Let $A \in M_{n \times n}(F)$, and $\gamma : \{a_i\}$ is an ordered basis for F^n . Then $[L_A]_{\gamma} = Q^{-1}AQ$, where $Q = [a_1, a_2, \ldots, a_n]$.

Proof. $[L_A]_I = A$, so

$$[L_A]_{\gamma} = [I_V]_I^{\gamma} \times [L_A]_I \times [I_V]_{\gamma}^I = [I_V]_I^{\gamma} \times A \times [I_V]_{\gamma}^I$$

A take aways is that Q is the change of coordinate matrix from γ to I.

Theorem 123. Let $T: V \to W$, β and β' are ordered basis of V, γ and γ' are ordered basis of W. Then

$$[T]_{\beta'}^{\gamma'} = [I_W]_{\gamma}^{\gamma'} [T]_{\beta}^{\gamma} [I_V]_{\beta'}^{\beta}$$
(3.20)

Example 7. There is an example of the usage of change of coordinate matrix: do reflection operation T against a line y = ax. Let β be the standard basis of R^2 and β' be the standard basis of R^2 after the rotation of y = ax. The operation T has a matrix representation in β'

$$[T]_{\beta'} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Then calculate $[T]_{\beta}$ based on $[T]_{\beta'}$.

Definition 113. B is similar to A if there is an invertible matrix Q that $B = Q^{-1}AQ$.

Theorem 124. If T is a linear operator on finite dimension vector space V, and if β and β' are any ordered basis of V, then $[T]_{\beta'}$ is similar to $[T]_{\beta}$.

3.2.5 Quotient Space

Definition 114. Let subspace $U \subset V$, The affine subset v + U of V is defined as:

$$v + U = \{v + u : u \in U\} \tag{3.21}$$

Definition 115. *Let subspace* $U \subset V$. *Then the quotient space* V/U *is defined as:*

$$V/U = \{v + U : v \in V\} \tag{3.22}$$

Definition 116. Let subspace $U \subset V$. The quotient map $\pi: V \to V/U$ is defined as:

$$\pi(v) = v + U \tag{3.23}$$

Theorem 125.

$$\dim (V/U) = \dim (V) - \dim (U) \tag{3.24}$$

Proof. Define $\pi: V \to V/U$. The null space is U.

Theorem 126. Define $\tilde{T}: V/\mathcal{N}(T) \to W$ by:

$$\tilde{T}(v + \mathcal{N}(T)) = Tv$$

Then \tilde{T} is an isomorphism between $V/\mathcal{N}(T)$ and T.

Proof. If $u + \mathcal{N}(T) = v + \mathcal{N}(T)$, then $u - v \in \mathcal{N}(T)$. So T(u - v) = T(u) - T(v) = 0 and T(u) = T(v).

3.2.6 Dual Space

Definition 117. A linear functional is a linear transformation that map from V into F.

Definition 118. An i-th coordinate function f_i with respect to basis β is defined as $f_i(x) = a_i$ where

$$[x]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_1(a) \\ f_2(a) \\ \vdots \\ f_n(a) \end{bmatrix}$$

Definition 119. The dual space of V is the vector space $V^* = \mathcal{L}(V, F)$. The double dual space V^{**} is the dual space of V^* .

The dimension of dual space is $\dim(V^*) = \dim(\mathcal{L}(V, F)) = \dim(V) \times \dim(F) = \dim(V)$.

Definition 120. Let $\beta = \{x_i\}$ be an ordered basis for finite dimensional vector space V. Define $f_i(x) = a_i$ where

$$[x]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

 f_i is the *i*-th coordinate function with respect to basis β . let $\beta^* = \{f_i\}$. Then β^* is an ordered basis for V^* , and $\forall f \in V^*$, we have

$$f = \sum_{i=1}^{n} f(x_i) f_i \tag{3.25}$$

 β^* is called the dual basis of β .

Proof. Let $g = \sum_{i=1}^{n} f(x_i) f_i$, we have

$$g(x_j) = \left(\sum_{i=1}^n f(x_i)f_i\right)(x_j) = \sum_{i=1}^n f(x_i)f_i(x_j) = \sum_{i=1}^n f(x_i)\delta_{ij} = f(x_j)$$

Theorem 127. Let V and W be vector space over F with ordered basis β and γ . For any linear transformation $T:V\to W$, the mapping $T^t:W^*\to V^*$ defined as $T^\top(g)=gT, \forall g\in W^*$ is a linear transformation with property that $\left[T^\top\right]_{\gamma^*}^{\beta^*}=\left([T]_{\beta}^{\gamma}\right)^\top$.

Proof. Let $\beta = \{x_i\}$ and $\gamma = \{y_i\}$ with dual basis $\beta^* = \{f_i\}$ and $\gamma^* = \{g_i\}$, $A = [T]_{\beta}^{\gamma}$. we have

$$T^{\top}(g_j) = g_j T = \sum_{s=1}^{n} (g_j T)(x_s) f_s$$

So the row i, column j entry of $[T^{\top}]_{\gamma^*}^{\beta^*}$ is

$$(g_j T)(x_i) = g_j(T(x_i)) = g_j\left(\sum_{k=1}^m A_{kj} y_k\right) = \sum_{k=1}^m A_{kj} g_j(y_k) = \sum_{k=1}^m A_{kj} \delta_{kj} = A_{ji}$$

Hence
$$\left[T^{\top}\right]_{\gamma^*}^{\beta^*} = A^{\top}$$
.

Definition 121. For $U \subset V$, the annihilator of U, denoted as U_V^0 , is defined as

$$U_V^0 = \{ \phi \in V^* : \phi(u) = 0, \forall u \in U \}$$

So the annihilator map U to 0. For vectors in V-U, the mapping could be any result. The annihilator is a subspace.

Theorem 128.

$$\dim\left(U\right) + \dim\left(U_{V}^{0}\right) = \dim\left(V\right) \tag{3.26}$$

Proof. Define $i \in \mathcal{L}(U, V)$ that $i(u) = u, \forall u \in U.$ $i^* \in \mathcal{L}(V^*, U^*).$ So

$$\dim\left(\mathcal{R}(i^*)\right) + \dim\left(\mathcal{N}(i^*)\right) = \dim\left(V^*\right)$$

By definition, $\mathcal{N}(i^*) = U_V^0$. Also $\mathcal{R}(i^*) = U^*$.

Theorem 129. Let V and W be two finite-dimentional vector space, and $T \in \mathcal{L}(V, W)$. Then:

- 1. $\mathcal{N}(T^*) = (\mathcal{R}(T))^0$
- 2. $\mathcal{R}(T^*) = (\mathcal{N}(T))^0$
- 3. $\dim (\mathcal{R}(T^*)) = \dim (range T)$
- 4. $\dim (\mathcal{N}(T^*)) = \dim (\mathcal{N}(T)) + \dim (W) \dim (V)$

Proof. Suppose $\varphi \in \text{null } T^*$. Then $0 = T^*(\varphi) = \varphi T$. Then

$$0 = (\varphi T)(v) = \varphi(Tv)$$

So $\varphi \in (\text{range } T)_W^0$.

$$\begin{split} \dim\left(\mathcal{R}(T^*)\right) &= \dim\left(W^*\right) - \dim\left(\mathcal{N}(T^*)\right) \\ &= \dim\left(W\right) - \dim\left(\mathcal{R}(T)^0\right) \\ &= \dim\left(\mathcal{R}(T)\right) \end{split}$$

$$\begin{split} \dim\left(\mathcal{N}(T^*)\right) &= \dim\left(\mathcal{R}(T)^0\right) \\ &= \dim\left(W\right) - \dim\left(\mathcal{R}(T)\right) \\ &= \dim\left(W\right) - \left(\dim\left(V\right) - \dim\left(\mathcal{N}(T)\right)\right) \\ &= \dim\left(W\right) + \dim\left(\mathcal{N}(T)\right) - \dim\left(V\right) \end{split}$$

Definition 122. For vector $x \in V$, define $\hat{x}: V^* \to F$ by $\hat{x}(f) = f(x)$. \hat{x} is a linear functional on V^* , so $\hat{x} \in V^{**}$.

Theorem 130. Define $\psi: V \to V^{**}$ by $\psi(x) = \hat{X}$. Then ψ is an isomorphism.

Theorem 131. Let V be a finite dimension vector space with dual space V^* . Every ordered basis for V^* is the dual basis for some basis for V.

3.3 Linear Equations

3.3.1 Elementary Operations

Definition 123. Let A be an $m \times n$ matrix. there are three elementary row operation:

- 1. interchange any two row of A.
- **2**. *multiply any row of A by nonzero scalar.*
- 3. add any scalar multiple of a row of A to another row.

Definition 124. An $n \times n$ elementary matrix is a matrix obtained by performing one elementary operation on I_n .

Definition 125. The rank of $A_{m \times n}$, denoted rank(A), is the rank² of linear transformation $L_A: F^n \to F^m$.

Theorem 132. *the rank of a matrix equals the maximum number of linearly independent columns.*

Proof. For any $A \in M_{m \times n}(F)$,

$$\begin{split} \operatorname{rank}(A) &= \operatorname{rank}(L_A) = \operatorname{dim}\left(R(L_A)\right) = \operatorname{span}\left(L_A(\beta)\right) \\ &= \operatorname{span}\left(\left\{L_A(e_1), L_A(e_2), \dots, L_A(e_n)\right\}\right) \end{split}$$

we have $L_A(e_j) = Ae_j = a_j$ where a_j is the *j*th column of A. Hence

$$R(L_A) = \operatorname{span} (\{a_1, a_2, \dots, a_n\})$$

Theorem 133. Let $A_{m \times n}$ has rank r. Then there exist invertible matrix $B_{m \times m}$ and $C_{n \times n}$ that D = BAC, where:

$$D = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$

Theorem 134. Every invertible matrix is a product of elementary matrices.

Definition 126. For system Ax = b, the matrix (A|b) is the augmented matrix.

Theorem 135. If A is an invertible matrix, it is possible to transform augmented matrix $(A|I_n)$ into matrix $(I_n|A^{-1})$ by means of a finite number of elementary row operations.

3.3.2 System of Equations

Definition 127. A system $A_{m \times n} x = b$ of m linear equation in n unknowns is homogeneous if b = 0. Otherwise the system is nonhomogeneous.

Definition 128. A system is consistent if its solution set is not empty, otherwise it is called inconsistent.

Theorem 136. Let K be the set of all solutions for Ax = 0. Then $K = \mathcal{N}(L_A)$ has dimension of $n - \text{rank}(L_A) = n - \text{rank}(A)$.

Theorem 137. if m < n, the system Ax = 0 has nonzero solution.

Proof.
$$\operatorname{rank}(A) \leq m < n$$
, so $\mathcal{N}(A) = n - \operatorname{rank}(A) > 0$.

Theorem 138. Let K be the solution set of Ax = b, K_H be the solution set of Ax = 0. Then for all solution s to Ax = b,

$$K = \{s\} + K_H = \{s + k : k \in K_H\}$$
(3.27)

Theorem 139. Let $A_{n \times n} x = b$ be a system of equations. If A is invertible, the solution is $A^{-1}b$. Conversely, if the system has exactly one solution, A is invertible.

Theorem 140. Let Ax = b be a system of linear equations. the system is consistent $\Leftrightarrow rank(A) = rank(A|b)$.

Proof.
$$R(L_A) = \text{span}(\{a_1, a_2, \dots, a_n\})$$
. Since $b \in R(L_A)$, the extended span is the same.

Definition 129. A matrix is in reduced row echelon form if:

- 1. any row containing a nonzero entry precedes any row in which all the entries are zero.
- 2. the first nonzero entry in each row is the only nonzero entry in its column.

²The rank of a linear transformation is defined in Definition (99) on page 33.

3. the first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row.

Theorem 141. For $A_{m \times n}$ and $B_{n \times p}$, we have:

$$rank(AB) = rank(B) - dim \left(\mathcal{N}(A) \cap \mathcal{R}(B) \right)$$
(3.28)

Proof. Let β_i be the basis of $\mathcal{N}(A) \cap \mathcal{R}(B)$, expand to the basis $\beta \cup \alpha$ of B. Prove α is a basis of $\mathcal{R}(AB)$. \square

Theorem 142. For $A_{m \times n}$, we have

- 1. $\operatorname{rank}(A^{\top}A) = \operatorname{rank}(A) = \operatorname{rank}(AA^{\top}).$
- 2. $\mathcal{R}(A^{\top}A) = \mathcal{R}(A^{\top}).$
- 3. $\mathcal{N}(A^{\top}A) = \mathcal{N}(A)$.

 A^{\top} could be replaced by A^* in C.

Proof. If
$$\exists x \neq 0$$
 $(x \in \mathcal{N}(A^{\top}) \cap \mathcal{R}(A))$. Then $(A^{\top}x = 0) \wedge (\exists y(x = Ay))$. So $x^{\top}x = y^{\top}A^{\top}x = y^{\top}(A^{\top}x) = 0$ and then $x = 0$. According to Theorem 141, $\operatorname{rank}(A^{\top}A) = \operatorname{rank}(A^{\top}) - \dim \left(\mathcal{N}(A^{\top}) \cap \mathcal{R}(A)\right) = \operatorname{rank}(A)$.

Theorem 143. For a system of linear equation Ax = b, the associated system of normal equations is defined as $n \times n$ system

$$A^{\top}Ax = A^{\top}b \tag{3.29}$$

 $A^{\top}Ax = A^{\top}b$ is always consistent and has unique solution when $\mathbf{rank}(A) = n$. If Ax = b is consistent, two solutions are the same.

3.4. DETERMINANTS 41

3.4 Determinants

Definition 130. Let $A \in M_{n \times n}(F)$. If n = 1, let $A = (A_{11})$ and we define $det(A) = A_{11}$. For $n \ge 2$, det(A) (or |A|) is defined as

$$|A| = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \times \left| \tilde{A}_{ij} \right|$$
 (3.30)

where \tilde{A}_{ij} is obtained from A by deleting row i and column j. This is called Laplace expansion.

Theorem 144. A function $\delta: M_{n \times n}(F) \to F$ is the same as |A| if it satisfies the following 3 properties:

1. It is n-linear function: for a scalar k,

$$\begin{bmatrix}
a_1 \\
\vdots \\
u + kv \\
\vdots \\
a_n
\end{bmatrix} = \begin{bmatrix}
a_1 \\
\vdots \\
u \\
\vdots \\
a_n
\end{bmatrix} + k \begin{bmatrix}
a_1 \\
\vdots \\
v \\
\vdots \\
a_n
\end{bmatrix}$$
(3.31)

- 2. It is alternating: $\delta(A) = 0$ if any two adjacent rows are identical.
- 3. $\delta(I) = 1$.

The determinate is linear on each row when the remaining rows are held fixed.

Theorem 145. The effect of elementary row operation on the determinant of a matrix A is:

- 1. interchange any two rows: |B| = -|A|.
- 2. multiply a row: |B| = k|A|.
- 3. add a multiple of a row to another: |B| = |A|.

Theorem 146. *If* $rank(A_{n \times n}) < n$, then |A| = 0.

Proof. If $rank(A_{n\times n}) < n$, one row is a linear combination of all other rows.

Theorem 147.

$$|AB| = |A| \times |B| \tag{3.32}$$

Theorem 148. A matrix $A \in M_{n \times n}(F)$ is invertible $\Leftrightarrow |A| \neq 0$. If it is invertible, $|A^{-1}| = \frac{1}{|A|}$.

Definition 131. *The cofactor of A is defined as*

$$\mathbf{cof} \ A_{ij} = (-1)^{i+j} \left| \tilde{A}_{ij} \right| \tag{3.33}$$

If the determinate is calculated using cofactor operation, the performance is n! multiplication. However if it is calculated using elementary row operation, the performance is $\frac{n^3+2n-3}{3}$ multiplication.

Definition 132. *The adjugate of A is defined as*

$$\mathbf{adj} \ A = (\mathbf{cof} \ A)^{\top} \tag{3.34}$$

Theorem 149. *The inverse of invertible square matrix A is:*

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A$$

Theorem 150 (Cramer's Rule). Let Ax = b be a system of n equation with n unknowns. If $|A| \neq 0$, the system has a unique solution:

$$x_k = \frac{|M_k|}{|A|} \tag{3.35}$$

where M_k is a $n \times n$ matrix obtained from A by replacing column k of A by b.

Proof. Let a_k be the kth column of A and X_k denote the matrix obtained from replacing the column k of identity matrix I_n by x. Then $AX_k = M_k$:

$$AX_{k} = A \begin{bmatrix} 1 & x & & & \\ & 1 & x & & \\ & & \ddots & \vdots & & \\ & & & x & & \\ & & \vdots & \ddots & \\ & & & x & & 1 \end{bmatrix}$$
$$= \begin{bmatrix} Ae_{1}, Ae_{2}, \dots, Ax, \dots, Ae_{n} \end{bmatrix}$$
$$= \begin{bmatrix} a_{1}, a_{2}, \dots, b, \dots, a_{n} \end{bmatrix}$$
$$= M_{k}$$

Evaluate X_k by cofactor expansion along row k produces

$$|X_k| = x_k \times |I_{n-1}| = x_k$$

Hence

$$|M_k| = |AX_k| = |A| \times |X_k| = |A| \times x_k$$

Therefore

$$x_k = \frac{|M_k|}{|A|}$$

Note: Cramer's Rule is too slow for real world calculation.

Theorem 151. In geometry, for a square matrix $A \in M_{n \times n}(F)$, $|\det A|$ is the *n*-dimensional volume of the parallelepiped having vector A_i , as adjacent sides.

3.5 Diagonalization

There are two questions for a linear operator *T*:

- 1. Is there an ordered basis β that $[T]_{\beta}$ is a diagonal matrix?
- 2. If such basis exists, how can it be found?

3.5.1 Eigenvalue and Eigenvectors

Definition 133. A linear operator T on V is diagonalizable if there is an ordered basis β of V that $[T]_{\beta}$ is a diagonal matrix. A matrix is diagonalizable if L_A is diagonalizable.

If an operator T is diagonalizable, for $\beta = \{v_i\}$, we have

$$T(v_j) = \sum_{i=1}^{n} D_{ij}v_j = D_{jj}v_j = \lambda_j v_j$$

So to prove a linear operator T is diagnolizable is to find a basis $\beta = \{v_i\}$ and $\{\lambda_j\}$ that $T(v_i) = \lambda_i v_i$.

Definition 134. A non-zero vector $v \in V$ is called an eigenvector of linear operator T if $\exists \lambda : T(v) = \lambda v$. λ is called eigenvalue corresponding to eigenvector v. Eigenvector is also called characteristic vector. Eigenvalue is also called characteristic value.

A eigenvalue could be 0, but eigenvector could not be $\vec{0}$. An eigenvector is an invariant subspace of dimension 1.

Theorem 152. A linear operator T is diagonalizable if there exists an ordered basis consisting of eigenvectors of T.

Theorem 153. λ is an eigenvalue of $A \iff |A - \lambda I_n| = 0$.

Proof. If λ is an eigenvalue of A, $\exists v \in F^n, v \neq 0$ that $Av = \lambda v$, which is $(A - \lambda I_n)(v) = 0$, which means $A - \lambda I_n$ is not invertible because $v \neq 0$, so $|A - \lambda I_n| = 0$.

Theorem 154. Every eigenvalue has at least one eigenvector.

Proof. Since $|A - \lambda I_n| = 0$, $(A - \lambda I_n)x = 0$ is a homogeneous equation with $\dim(A - \lambda I_n) < n$.

Definition 135. For $A = [T]_{\beta}$ the polynomial $f_A(t) = |A - tI_n|$ is called the characteristic polynomial of A and T.

Theorem 155. For all eigenvalues λ_i of A, define

$$S_k(A) = \sum_{1 \le j_1 \le j_2 \le \dots \le j_k} \prod_{j=1}^k \lambda_{i_j}$$
 (3.36)

that is $S_k(A)$ is the sum of the product of all k eigenvalues, which is the coefficient of characteristic polynomial of $f_A(t)$:

$$f_A(t) = (-1)^n t^n + (-1)^{n-1} S_1(\lambda) t^{n-1} + \dots + (-1)^{n-k} S_k t^{n-1} + \dots + S_n$$
(3.37)

Define the sum of all³ principal minor of size k of A as $E_k(A)$. We have

$$E_k(A) = S_k(A) \tag{3.38}$$

So

$$trA = \sum \lambda_i \tag{3.39}$$

and

$$|A| = \prod \lambda_i \tag{3.40}$$

Proof. calculate the coefficient by
$$\frac{1}{k!} \frac{d^k f_A(t)}{dt^k} \bigg|_{t=0}$$

Theorem 156. *The choice of basis* β *did not change the eigenvalue of* T.

Proof.

$$\left| \left[T \right]_{\beta} - \lambda I \right| = \left| Q^{-1} \left(\left[T \right]_{\alpha} - \lambda I \right) Q \right| = \left| Q^{-1} \right| \times \left| \left[T \right]_{\alpha} - \lambda I \right| \times \left| Q \right| = \left| \left[T \right]_{\alpha} - \lambda I \right|$$

³There are $\binom{n}{k}$ of them

Theorem 157. *Similar matrices have the same characteristic function.*

Proof. Assume *A* is similar to *B*: $A = P^{-1}BP$. We have

$$f_A(\lambda) = |Ax - \lambda I| = \left| P^{-1}BP - \lambda P^{-1}P \right| = \left| P^{-1} \right| \times |B - \lambda I| \times |P| = |B - \lambda I| = f_B(\lambda)$$

Theorem 158. if Q is a matrix with columns of eigenvectors of β , then according to Theorem 123, $Q^{-1}AQ$ is a diagonal matrix with eigenvalue.

3.5.2 Diagonalizability

Theorem 159. Let λ_i be distinct eigenvalue of T. If $\{v_i\}$ are eigenvector that corresponding to λ_i , then $\{v_i\}$ is linearly independent.

Proof. suppose it works for $k-1 \ge 1$ and we have k eigenvector $\{v_i\}$. Suppose

$$a_1v_1 + a_2v_2 + \dots + a_kv_k = 0$$

multiply $T - \lambda_k I$ to both sides, we have

$$a_1(\lambda_1 - \lambda_k)v_1 + a_1(\lambda_2 - \lambda_k)v_2 + \dots + a_1(\lambda_{k-1} - \lambda_k)v_{k-1} + = 0$$

because $\{v_1, v_2, \dots, v_{k-1}\}$ are linearly independent, we have

$$a_1(\lambda_1 - \lambda_k) = a_1(\lambda_2 - \lambda_k) = a_1(\lambda_{k-1} - \lambda_k) = 0$$

because λ_i are different, we have $a_i = 0$.

Theorem 160. if T has n distinct eigenvalues, then T is diagonalizable. If T is diagonalizable, it may not have n distinct eigenvalues, for example the identity matrix I_V .

Definition 136. A polynomial f(t) in P(F) split over F if there are scalars c, a_1, \ldots, a_n (not necessarily distinct) in F that

$$f(t) = c(t - a_1)(t - a_2)\dots(t - a_n)$$

the multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

Theorem 161. the characteristic polynomial of any diagonalizable linear operator splits.

Proof. choose a basis β of eigenvectors. $[T]_{\beta}$ is a diagonal matrix D. The characteristic polynomial of T is |D-tI| splits.

Be careful that the characteristic polynomial splits does not mean the matrix is diagonalizable. The eigenvectors need to form a basis.

Definition 137. *let* λ *be an eigenvalue of* T. *Let* $E_{\lambda} = \mathcal{N}(T - \lambda I_V)$. *the set* E_{λ} *is called the eigenspace of* T *corresponding to eigenvalue* λ . *So is it for matrix.*

Theorem 162. *let* λ *be an eigenvalue of* T *having multiplicity* m. *then* $1 \leq \dim(E_{\lambda}) \leq m$.

Proof. choose ordered basis $\{v_1, v_2, \dots, v_p\}$ for E_{λ} , and extend it to ordered basis $\beta = \{v_1, v_2, \dots, v_p, v_{p+1}, \dots, v_n\}$ for V, and let $A = [T]_{\beta}$. let $v_i (1 \le i \le q)$ be an eigenvector of T corresponding to λ , we have

$$A = \begin{pmatrix} \lambda I_p & B \\ 0 & C \end{pmatrix}$$

so

$$f(t) = |A - tI_n|$$

$$= \begin{vmatrix} (\lambda - t)I_p & B \\ 0 & C - tI_{n-p} \end{vmatrix}$$

$$= |(\lambda - t)I_p| \times |C - tI_{n-p}|$$

$$= (\lambda - t)^p q(t)$$

So $(\lambda - t)^p$ is a factor of f(t), and the multiplicity of λ is at least $p = \dim(E_\lambda)$, so $\dim(E_\lambda) \leq m$

Theorem 163. *let* $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ *be distinct eigenvalue of* T. *let* S_i *be a finite linearly independent subset of eigenspace* E_{λ_i} . *then* $S_1 \cup S_2 \cup \dots \cup S_k$ *is a linearly independent subset of* V.

Theorem 164. *let* $\lambda_1, \lambda_2, \dots, \lambda_k$ *be distinct eigenvalue of* T *, then*

- 1. *T* is diagonalizable \iff the multiplicity of λ_i is equal to $\dim(E_{\lambda_i})$ for all i.
- 2. If T is diagonalizable and β_i is an ordered basis for E_{λ_i} for each i, then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T.

Theorem 165. T is diagonalizable \iff both of the following holds:

- 1. the characteristic polynomial of T splits.
- **2.** for each eigenvalue λ of T, the multiplicity of λ equals $n \text{rank}(T \lambda I)$.

Definition 138. Let W_i be subspaces of a vector space V. The sum of these subspaces is defined as:

$$\sum_{i=1}^{k} W_i = \left\{ v_1 + v_2 + \dots + v_k : v_i \in W_i \text{ for } 1 \le i \le k \right\}$$
 (3.41)

Definition 139. *let* W_i *be subspace of* V. V *is the direct sum of subspace* $\{W_1, W_2, \dots, W_k\}$, or $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$ *if*

$$V = \sum_{i=1}^{k} W_i$$

and

$$W_j \cap \sum_{i \neq j} W_i = \emptyset, (1 \le j \le k)$$

Theorem 166. T is diagonalizable $\iff V$ is the direct sum of eigenspaces of T.

3.5.3 Invariant Subspaces

Definition 140. A subspace W of V is T-invariant subspace of V if $T(W) \subseteq W$. Common T-invariant subspaces are: \emptyset , V, R(T), N(T).

Theorem 167. A subspace W with basis $\alpha = \{v_1, v_2, \dots, v_k\}$ is T-invariant. Let $\beta = \alpha \cup \gamma$ as the expanded basis of V. Then

$$[T]_{\beta} = \begin{bmatrix} A_{k \times k} & B \\ 0 & C \end{bmatrix} \tag{3.42}$$

The reverse is true. If $[T]_{\beta}$ has such representation, the first k basis of β is T-invariant.

Definition 141. A T-cyclic subspace of V generated by x is defined as $W = span\left(\left\{x, T(x), T^2(x), \dots\right\}\right)$.

Theorem 168. Let T be a linear operator on finite-dimensional vector space V, and let W be a T-invariant subspace of V. Then the characteristic polynomial of T_W divides the characteristic polynomial of T.

Proof. Choose ordered basis γ for W and expand it to β for V. Calculate $[T]_{\beta}$ and $[T]_{\gamma}$.

Theorem 169. Let T be a linear operator on finiate-dimensional vector space V, and let W be a T-cyclic subspace of V generated by nonzero vector $v \in V$. Let $k = \dim(W)$. Then:

- 1. $\{v, T(v), T^2(v), \dots, T^{k-1}(v)\}\$ is a basis for W.
- 2. If $a_0v + a_1T(v) + a_2T^2(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0$, then the characteristic polynomial of T_W is $f(t) = (-1)^k \left(a_0 + a_1t + \cdots + a_{k-1}t^{k-1} + t^k\right)$.

Proof. Let $\beta = \{v, T(v), T^2(v), \dots, T^{k-1}(v)\}$, and let a_i be the scalars that

$$a_0v + a_1T(v) + a_2T^2(v) + \dots + a_{k-1}T^{k-1}(v) + T^k(v) = 0$$

For basis $\left\{v,T(v),T^2(v),\ldots,T^{k-1}(v)\right\}$, $\left[T(v)\right]_{\beta}=\left[0,1,\ldots,0\right]$, $T\left(T(v)\right)_{\beta}=\left[0,0,1,\ldots,0\right]$, etc., we have:

$$[T_W]_{\beta} = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{bmatrix}$$

which has characteristic polynomial

$$f(t) = (-1)^k (a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k)$$

Theorem 170 (Cayley-Hamilton). Let T be linear operator on a finite-dimensional vector space V, and let f(t) be the characteristic polynomial of T. Then f(T) = 0.

Proof. Suppose $v \neq 0$. Let W be the T-cyclic subspace generated by v, and suppose the $\dim(W) = k$. So there exists scalars $\{a_i\}$ that

$$a_0v + a_1T(v) + a_2T^2(v) + \dots + a_{k-1}T^{k-1}(v) + T^k(v) = 0$$

which implies the characteristic polynomial of T_W is

$$g(t) = (-1)^k \left(a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k \right)$$

We have

$$g(T)(v) = (-1)^k \left(a_0 I + a_1 T + \dots + a_{k-1} T^{k-1} + T^k \right) (v) = 0$$

Because g(t) divides f(t), $\exists q(t)$ that f(t) = g(t)q(t). So

$$f(T)(v)=q(T)g(T)(v)=q(T)\left(g(T)(v)\right)=q(T)(0)=0$$

Definition 142. Let $B_1 \in M_{m \times m}(F)$, and $B_2 \in M_{n \times n}(F)$. The direct sum of B_1 and B_2 , denoted as $B_1 \oplus B_2$, as the $(m+n) \times (m+n)$ matrix A that

$$A = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}$$

Theorem 171. Suppose $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$, where W_i is a T-invariant subspace of V. Suppose $f_i(t)$ is the characteristic polynomial of T_{W_i} , Then $\prod_{i=1}^k f_i$ is the characteristic polynomial of T. Let β_i be an ordered basis for W_i ,

and let
$$\beta = \bigcup_{i=1}^k \beta_i$$
. Let $A = [T]_{\beta}$, and $B_i = [T_{W_i}]_{\beta}$. Then $A = B_1 \oplus B_2 \oplus \cdots \oplus B_k$.

3.5.4 Limit of Markov Chain Matrix

Definition 143. A sequence $\{A_1, A_2, \dots\}$ converge to limit L if $\lim_{m \to \infty} (A_m)_{ij} = L_{ij}$.

Theorem 172. If $A_i \to L$, them for any P and Q, $\lim_{m \to \infty} PA_m = PL$ and $\lim_{m \to \infty} A_mQ = LQ$.

Theorem 173. Let Q be invertible and $A_i \to L$. Then $\lim_{m \to \infty} (QAQ^{-1})^m = QAQ^{-1}$.

Definition 144. *Define a set S which consists of the interior of unit disk and* 1:

$$S = \left\{ \lambda \in C : |\lambda| < 1 \lor \lambda = 1 \right\} \tag{3.43}$$

Theorem 174. Let A be square matrix in C. $\lim_{m\to\infty} A^m$ exists if and only if:

- 1. Every eigenvalue of A is in S.
- 2. If 1 is an eigenvalue of A, then the dimension of its eigenspace equals its multiplicity.

Proof. use Jordan canonical form.

Theorem 175. For square matrix A in C, if

- 1. Every eigenvalue of A is in S.
- 2. A is diagonalizable.

Then $\lim_{m\to\infty} A^m$ exists.

Proof. Since *A* is diagonalizable, $\exists Q: A = QDQ^{-1}$. So $A^m = QD^mQ^{-1}$. This is used to calculate A^m .

Definition 145. transition matrix or stochastic matrix is a square matrix A that $A_{ij} \geq 0 \land \forall j \ (\sum_i A_{ij} = 1)$.

Definition 146. *P is a probability vector if its entries are all non-negative and sum to* 1.

Definition 147. $\vec{1}_n$ is a column vector that each coordinate is 1.

Theorem 176. Let M be a square matrix with non-negative real entries, and v a column vector with real non-negative coordinates. Then

- 1. *M* is a transition matrix if and only if $M^{\top}\vec{\mathbf{1}_n} = \vec{\mathbf{1}_n}$.
- **2.** v is a probability vector if and only if $\vec{l_n}^{\dagger}v = 1$.
- 3. The product of two transition matrix is transition matrix.
- 4. The product of a transition matrix and probability vector is a probability vector.

Definition 148. A transition matrix is regular if some power of the matrix contains only positive entries. It may

Definition 149. For square matrix A, define $\rho_i(A) = \sum_i |A_{ij}|$ and $v_j(A) = \sum_i |A_{ij}|$. The row sum $\rho(A) = \max \rho_i$ and column sum $v(A) = \max v_i$.

Definition 150. For square matrix $A_{n\times n}$, the Gerschgorin disk C_i is defined as:

$$C_i = \{ z \in C : |z - A_{ii}| < \rho_i(A) - |A_{ii}| \}$$
(3.44)

So the disk center is the diagonal entry, and the radius is the sum of the absolute values of all rest row entries.

Theorem 177. Every eigenvalue of A is contained in a Gerschgorin disk.

Proof. Let λ be a eigenvalue with eigenvector v. So $\sum_{i=1}^{\infty} A_{ij}v_j = \lambda v_i$. Assume v_k is the coordinate of v that has the largest absolute value. Then $v_k \neq 0$ because $v \neq 0$. We have

$$|\lambda v_k - A_{kk}v_k| = \left| \sum_{j=1}^n A_k j v_j - A_{kk}v_k \right| = \left| \sum_{j \neq k} A_{kj}v_j \right| \le \sum_{j \neq k} |A_{kj}| |v_j| \le \sum_{j \neq k} |A_{kj}| |v_k| = |v_k| \left(\rho_i(A) - |A_{kk}| \right)$$

So
$$|v_k| \times |\lambda - A_{kk}| \le |v_k| \left(\rho_i(A) - |A_{kk}|\right)$$
 and $|\lambda - A_{kk}| \le \left(\rho_i(A) - |A_{kk}|\right)$.

Theorem 178. Let λ be any eigenvalue of A. Then $|\lambda| < \rho(A)$.

Proof.
$$|\lambda| = |(\lambda - A_{kk}) + A_{kk}| \le |\lambda - A_{kk}| + |A_{kk}| \le \rho_i(A) - |A_{kk}| + |A_{kk}| = \rho_i(A)$$

Theorem 179. Let λ be any eigenvalue of A. Then $|\lambda| \leq \min \{ \rho(A), v(A) \}$.

Proof.
$$\lambda$$
 is an eigenvalue of A^{\top} .

Theorem 180. *If* λ *is an eigenvalue of transition matrix, then* $|\lambda| \leq 1$.

Theorem 181. Every transition matrix has 1 as eigenvalue.

Proof.
$$A^{\top} \times \vec{\mathbf{1}_n} = \vec{\mathbf{1}_n}$$
.

Theorem 182. Let A be a matrix with positive entries, and let λ be an eigenvalue of A that $|\lambda| = \rho(A)$. Then $\lambda = \rho(A)$ and $\vec{1_n}$ is a basis for E_{λ} .

Proof. Let v be an eigenvector for λ , and v_k is the coordinate that has the largest absolute value $b = |v_k|$. Then

$$|\lambda| b = |\lambda v_k| = \left| \sum_{j=1}^n A_{kj} v_j \right| \le \sum_{j=1}^n |A_{kj} v_j| = \sum_{j=1}^n |A_{kj}| |v_j| \le \sum_{j=1}^n |A_{kj}| |b = \rho_k(A)b \le \rho(A)b$$

Since $|\lambda| = \rho(A)$, all inequalities are equalities, so

1.
$$\left| \sum_{j=1}^{n} A_{kj} v_j \right| = \sum_{j=1}^{n} |A_{kj} v_j|$$

2.
$$|A_{kj}||v_j| = \sum_{j=1}^{n} |A_{kj}| b$$

3. $\rho_k(A) \le \rho(A)$

3.
$$\rho_k(A) \leq \rho(A)$$

For Item 1 to hold, $A_{kj}v_j$ are non-negative multiplies of a common complex number z. Assume |z|=1. Then $\left(\exists\left\{c_j\right\}\subset R^+\right)(A_{kj}v_j=c_jz)$.

For item 2, since
$$b = \max |v_j|, |v_j| = b$$
. So $b = |v_j| = \left| \frac{c_j}{A_{kj}} z \right| = \frac{c_j}{A_{kj}}$, and $v_j = \frac{c_j}{A_{kj}} z = bz$, and $v = bz\vec{1_n}$. Since A and $\vec{1_n}$ are all positive, $A\vec{1_n} = \lambda\vec{1_n}$, so $\lambda > 0$.

Theorem 183. Let A be a transition matrix that each entry is positive, and let λ be any eigenvalue of A other than 1. Then $|\lambda| < 1$. Moreover, the eigenspace of eigenvalue 1 has dimension 1.

Theorem 184. Let A be a regular transition matrix, and λ be one of its eigenvalue, then

- 1. $|\lambda| \le 1$.
- **2.** If $|\lambda| = 1$, then $\lambda = 1$ and $\dim(E_{\lambda}) = 1$.

Theorem 185. Let A be a disagonalizable regular transition matrix, then $\lim_{m\to\infty} A^m$ exists.

Theorem 186. Let A be a regular transition matrix, then

- 1. the multiplicity of eigenvalue 1 is 1.
- 2. $\lim_{m\to\infty} A^m$ exists.
- 3. $L = \lim_{m \to \infty} A^m$ is a transition matrix.
- 4. $AL = \stackrel{m \to \infty}{LA} = L$.
- 5. The column of L are identical vector v which is the probability vector in E_1 .
- 6. For any probability vector w, $\lim_{m\to\infty} A^m w = v$.

Proof. Since AL = L, L are columns of eigenvector for eigenvalue 1. Let $y = \lim_{m \to \infty} A^m w = Lw$, Ay = ALw = Lw = y. So y is an eigenvector for eigenvalue 1, and y = v.

3.6 Inner Product Space

3.6.1 Inner Product and Norm

Definition 151. An inner product on V is a function $V \to V \to F$ (F is either C or R) that $\forall x, y, z \in V$ and $\forall c \in F$ that:

- 1. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$
- 2. $\langle cx, y \rangle = c \langle x, y \rangle$
- 3. $\overline{\langle x,y\rangle} = \langle y,x\rangle$
- 4. $\langle x, x \rangle > 0$ if $x \neq 0$

Item (1) *and* (2) *means the inner product is* linear in first component. *Please be noted that the result of inner product could be a complex value, but the result of* $\langle x, x \rangle$ *is a non-negative real number.*

Theorem 187. properties of inner product:

- 1. $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- 2. $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$
- 3. $\langle x, x \rangle = 0$ if and only if x = 0.
- 4. If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$, then y = z.

Item (1) and (2) means the inner product is conjugate linear in second component.

Definition 152. the standard inner product on F^n for $x = [a_1, a_2, \dots, a_n]$ and $y = [b_1, b_2, \dots, b_n]$ is:

$$\langle x, y \rangle = \sum_{i=1}^{n} a_i \overline{b_i} \tag{3.45}$$

when F = R, it is usually called dot product and denoted as $x \cdot y$.

Definition 153. For $A \in M_{m \times n}(F)$, the conjugate transpose or adjoint of A is $A^* \in M_{n \times m}(F)$ that $(A^*)_{ij} = \overline{A_{ji}}$. If A is complex, $A^* = \overline{A^\top}$. If A is real, A^* is A^\top .

Definition 154 (Forbenius Inner Product). Let $V = M_{n \times n}(F)$, the Forbenius Inner Product is defined as:

$$\langle A, B \rangle = \operatorname{tr}(B^*A) \tag{3.46}$$

Theorem 188. For square matrix $A_{n \times n}$, we have

$$\langle A, A \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} |A_{ij}|^2 \ge 0$$
 (3.47)

Definition 155. The continuous complex-valued function on interval $[0, 2\pi]$ is a inner product space H:

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$$
 (3.48)

Definition 156. the norm or length of x is:

$$||x|| = \sqrt{\langle x, x \rangle} \tag{3.49}$$

Theorem 189. *the property of norm*:

- $\bullet \|cx\| = |c| \cdot \|x\|$
- $||x|| = 0 \iff x = 0$
- Cauchy-Schwarz Inequality $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
- Triangle Inequality $||x + y|| \le ||x|| + ||y||$

Theorem 190. If $\forall x \in C, \langle T(x), x \rangle = 0$. Then T = 0.4

Proof.

$$\langle T(x+y), x+y \rangle = \langle T(x), y \rangle + \langle T(y), x \rangle = 0$$

$$\langle T(x+iy), x+iy \rangle = \langle T(x), y \rangle - \langle T(y), x \rangle = 0$$

So $\forall y \in V$, T(x) = 0. So $\forall x \in V$, T(x) = 0 and T = 0.

Theorem 191.

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$$
 (3.50)

⁴For it to work in all *V*, *T* needs to be self-adjoint. See Theorem 227 on page 56.

3.6.2 Orthogonal and Gram-Schmidt Process

Definition 157. x and y are orthogonal if $\langle x,y\rangle=0$. A subset S of V is orthogonal if any two vectors in S are orthogonal. A subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

Definition 158.

$$\langle x, y \rangle = \|x\| \cdot \|y\| \cos(\theta) \tag{3.51}$$

Definition 159. A vector is unit vector if ||x|| = 1. A normalizing to non-zero x is $\frac{1}{||x||}x$.

Theorem 192. Let $f_n(t) = e^{int}$ where $0 \le t \le 2\pi$. All f_i are orthogonal.

Proof.

$$\langle f_m, f_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{imt} \overline{e^{int}} \, dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} e^{i(m-n)t} \, dt$$

$$= \frac{1}{2\pi (m-n)} e^{i(m-n)t} \Big|_0^{2\pi}$$

$$= 0$$
(3.52)

Theorem 193 (Pythagorean Theorem). Suppose u and v are orthogonal in V, then

$$||u+v||^2 = ||u||^2 + ||v||^2$$
(3.53)

Theorem 194. For a finite dimensional subspace U of V, we have

$$V = U \oplus U^{\perp} \tag{3.54}$$

Definition 160. A orthonormal basis for V is an ordered basis that is orthonormal.

Theorem 195. Let $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal subset of V consisting of non-zero vectors. If $y \in \mathbf{span}(S)$, then

$$y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i \tag{3.55}$$

Define the projection of vector a onto vector u as $\mathbf{proj}_u a = \frac{\langle a, u \rangle}{\|u\|^2}$. So

$$y = \sum_{i=1}^{k} \left(\mathbf{proj}_{v_i} y \right) v_i \tag{3.56}$$

If S is orthonormal, *then*

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i \tag{3.57}$$

Proof. let $y = \sum_{i=1}^{k} a_i v_i$. we have

$$\langle y, v_i \rangle = \left\langle \sum_{i=1}^k a_i v_i, v_j \right\rangle = \sum_{i=1}^k a_i \left\langle v_i, v_j \right\rangle = a_j \left\| v_j \right\|^2$$

So
$$a_j = \frac{\left\langle y, v_j \right\rangle}{\left\| v_j \right\|^2}$$
.

Theorem 196. An orthogonal subset of V is linearly independent.

Definition 161 (Gram-Schmidt process). Let $S = \{w_1, w_2, \dots, w_n\}$ be linearly independent subset of V. Define $S' = \{v_1, v_2, \dots, v_n\}$, where $v_1 = w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j$$
 (3.58)

then S' is an orthogonal set of non-zero vectors that $\operatorname{span}(S') = \operatorname{span}(S)$. The process is that for the k-th basis w_k , first project it on top of the k-1 orthogonal vectors $\sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j$, and calculate the reciprocal vector w_k –

$$\sum_{j=1}^{k-1} \frac{\left\langle w_k, v_j \right\rangle}{\left\| v_j \right\|^2} v_j.$$

Theorem 197 (QR Decomposition). Let $A_{m \times n} = [a_1, a_2, \dots, a_n]$ with $\mathbf{rank}(A) = n$, so $\{a_i\}$ is linearly independent. Use Gram-Schmidt process to form n orthonomal basis:

$$u_1 = a_1$$
 , $e_1 = \frac{u_1}{\|u_1\|}$ $u_2 = a_2 - \mathbf{proj}_{u_1} a_2$, $e_2 = \frac{u_2}{\|u_2\|}$

 $u_n = a_n - \sum_{i=1}^{n-1} \mathbf{proj}_{u_j} a_n$, $e_n = \frac{u_n}{\|u_n\|}$

Then $\forall k, a_k = \sum_{k=1}^k \langle a_k, e_k \rangle e_k$. So

$$A = QR = [e_{1}, e_{2}, \dots, e_{n}] \times \begin{bmatrix} \langle a_{1}, e_{1} \rangle & \langle a_{2}, e_{1} \rangle & \langle a_{3}, e_{1} \rangle & \cdots & \langle a_{n}, e_{1} \rangle \\ 0 & \langle a_{2}, e_{2} \rangle & \langle a_{3}, e_{2} \rangle & \cdots & \langle a_{n}, e_{2} \rangle \\ 0 & 0 & \langle a_{3}, e_{3} \rangle & \cdots & \langle a_{n}, e_{3} \rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \langle a_{n}, e_{n} \rangle \end{bmatrix}$$
(3.59)

The Q is an orthonormal matrix. R could be calculated by:

$$R = Q^{\top} Q R = Q^{\top} A \tag{3.60}$$

Theorem 198. If V has an orthonormal basis $\beta = \{v_1, v_2, \dots, v_n\}$, then $\forall x \in V$,

$$x = \sum_{i=1}^{n} \langle x, v_j \rangle v_i \tag{3.61}$$

Definition 162. Let β be an orthonormal subset (not basis) of V. For $x \in V$, the Fourier coefficients of x relative to β are $\langle x, y_i \rangle$ for all $y_i \in \beta$.

Theorem 199. Let V with an orthonormal basis $\beta = \{v_1, v_2, \dots, v_n\}$. T is a linear operator on V and let $A = [T]_{\beta}$. then $A_{ij} = \langle T(v_j), v_i \rangle$.

Proof. From Theorem 198 we have

$$T(v_j) = \sum_{i=1}^{n} \langle T(v_j), v_i \rangle v_i$$

Definition 163. Let S be nonempty subset of V. The orthogonal complement of S is S^{\perp} that $\forall x \in S, \forall y \in S^{\perp}, \langle x, y \rangle = 0$

Theorem 200. Let W be a subspace of V. For $y \in V$, there is unique $u \in W$ and $z \in W^{\perp}$ that y = u + z. u is the orthogonal projection of y on W. If $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of W, then

$$u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

$$z = y - \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$
(3.62)

Theorem 201. For $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal subset of V. For $\forall y \in V$, the orthogonal projection of y on S is $u = \sum_{i=1}^k \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$. If S are orthonormal, $u = \sum_{i=1}^k \langle y, v_i \rangle v_i$. If y is in span of S, then y = u.

Theorem 202. Let y,u,z as defined in Theorem 200. u is the closest vector in W to y that is $\forall x \in W (||y-x|| \ge ||y-u||)$.

Proof.

$$||y - x||^2 = ||u + z - x||^2 = ||(u - x) + z||^2 = ||u - x||^2 + ||z||^2 \ge ||z||^2 = ||y - u||^2$$

3.6.3 Adjoint of Linear Operator

Theorem 203 (Riesz Representation Theorem). Let $g: V \to F$ be a linear transformation. Then there exist a unique $y \in V$ that $\forall x \in V$, $g(x) = \langle x, y \rangle$. The y is

$$y = \sum_{i=1}^{n} \overline{g(v_i)} v_i \tag{3.63}$$

So every vector in the dual space⁵ can be represented by an inner product.

Proof. Define $h(x) = \langle x, y \rangle$ with y defined above. So

$$h(v_j) = \left\langle v_j, y \right\rangle = \left\langle v_j, \sum_{i=1}^n \overline{g(v_i)} v_i \right\rangle = \sum_{i=1}^n \left\langle v_j, \overline{g(v_i)} v_i \right\rangle = \sum_{i=1}^n g(v_i) \left\langle v_j, v_i \right\rangle = g(v_j)$$

Theorem 204. Let T be a linear operator on V. Then there existing a unique linear operator $T^*:V\to V$ that $\langle T(x),y\rangle=\langle x,T^*(y)\rangle$ for all $x,y\in V$. T^* is called the adjoint of T.

Proof. For each y, $\langle T(x), y \rangle$ is a linear operator from V to F, so by Theorem 203, $\exists y'$ that $\langle T(x), y \rangle = \langle x, y' \rangle$. Define T^* as $T^*(y) = y'$.

Theorem 205.

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

$$\langle x, T(y) \rangle = \langle T^*(x), y \rangle$$
(3.64)

So * is added to T when change the location of T.

Proof.

$$\langle x, T(y) \rangle = \overline{\langle T(y), x \rangle} = \overline{\langle y, T^*(x) \rangle} = \langle T^*(x), y \rangle$$

Theorem 206. Let β be a orthonormal basis for V. If T is a linear operation on V then

$$[T^*]_{\beta} = ([T]_{\beta})^* \tag{3.65}$$

Let A be an $n \times n$ matrix. Then

$$L_{A^*} = (L_A)^* (3.66)$$

⁵Defined in Theorem 119 on page 37.

Proof. Let $A = [T]_{\beta}$, $B = [T^*]_{\beta}$, and $\beta = \{v_1, v_2, \dots, v_n\}$. Then according to Theorem 199:

$$B_{ij} = \langle T^*(v_j), v_i \rangle = \overline{\langle v_i, T^*(v_j) \rangle} = \overline{\langle T(v_i), v_j \rangle} = \overline{A_{ji}} = (A^*)_{ij}$$

Theorem 207. Let T and U be linear operator on V, then

- 1. $(aT + bU)^* = \overline{a}T^* + \overline{b}U^*$
- 2. $(UT)^* = T^*U^*$
- 3. $T^{**} = T$

Definition 164. Let $T:V \to W$ be a linear transformation where V and W are finite dimensional inner product space with inner product $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$. A function $T^*:W \to V$ is called adjoint of T if $\langle T(x), y \rangle_W = \langle x, T^*(y) \rangle_V$.

Theorem 208. Let T^* be an adjoint of $T: V \to W$. If β and γ are orthonormal basis for V and W, then

$$[T^*]^{\alpha}_{\beta} = \left([T]^{\alpha}_{\beta} \right)^* \tag{3.67}$$

Theorem 209. *Let* T^* *be an adjoint of* $T: V \to W$ *, we have:*

$$\langle T^*(x), y \rangle_V = \langle x, T(y) \rangle_W$$
 (3.68)

Theorem 210. If V is finite dimentional, let T be a linear operator on V, then

$$\mathcal{R}(T^*)^{\perp} = \mathcal{N}(T)$$

$$\mathcal{R}(T^*) = \mathcal{N}(T)^{\perp}$$

$$\mathcal{R}(T)^{\perp} = \mathcal{N}(T^*)$$

$$\mathcal{R}(T) = \mathcal{N}(T^*)^{\perp}$$

So $\mathcal{R}(T^*) \perp \mathcal{N}(T)$.

Proof. If
$$m \in R(T^*)^{\perp}$$
, $\forall x \in V$, $0 = \langle m, T^*x \rangle = \langle T(m), x \rangle$, so $m \in N(T)$.

3.6.4 Examples in Statistics

The following two examples show that for linear equation Ax - y = 0,

- 1. if it is consistent, that is there is solution, we want to find the solution with minimal norm.
- 2. If it is inconsistent, that is no solution, we want a result that has the least norm.

The same topic is discussed in pseudo inverse.

3.6.4.1 Least Square Approximation

Definition 165. The Least Square Approximation is a problem that for
$$A = \begin{bmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots & \vdots \\ t_m & 1 \end{bmatrix}$$
, $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$, find $x_0 = \begin{bmatrix} c \\ d \end{bmatrix}$

that minimize ||Ax - y||.

Definition 166. For $x, y \in F^n$, define $\langle x, y \rangle_n = y^* \times x$.

Theorem 211. Let $A \in M_{m \times n}(F)$, $x \in F^n$, $y \in F^m$, then

$$\langle Ax, y \rangle_m = \langle x, A^*y \rangle_n \tag{3.69}$$

Proof.
$$\langle Ax, y \rangle_m = y^* \times (Ax) = (y^* \times A)x = (A^*y)^*x = \langle x, A^*y \rangle_n$$

Theorem 212. Let $A \in M_{m \times n}(F)$. Then⁶

$$rank(A^*A) = rank(A) \tag{3.70}$$

So if rank(A) = n, A*A is invertible.

⁶See Theorem 142 for another proof.

Proof. For equation $A^*Ax = 0$ and Ax = 0. Ax = 0 implies that $A^*Ax = 0$. Then assume $A^*Ax = 0$, then

$$0 = \langle 0, x \rangle_n = \langle A^*Ax, x \rangle_n = \langle Ax, A^{**}x \rangle_m = \langle Ax, Ax \rangle_m$$

Theorem 213. Let $A \in M_{m \times n}(F)$, $y \in F^m$. Then there exists $x_0 \in F^n$ that $(A^*A)x_0 = A^*y$ and $\forall x \in F^n$, $||Ax_0 - y|| \le ||Ax - y||$. If $\operatorname{rank}(A) = n$, then $x_0 = (A^*A)^{-1}A^*y$.

Proof. Define $W = \mathcal{R}(L_A)$. There exists a x_0 that is closest to y that $Ax_0 - y \in W^{\perp}$, so $\langle Ax, Ax_0 - y \rangle_m = 0$. So $\langle x, A^*(Ax_0 - y) \rangle_n = 0$, so $A^*(Ax_0 - y) = 0$ and $(A^*A)x_0 = A^*y$.

3.6.4.2 Minimal Solution to Linear Equations

Definition 167. A solution s is minimal solution of Ax = b if $||s|| \le ||u||$ for any solution u.

Theorem 214. Let $A \in M_{m \times n}(F)$, $y \in F^m$. Suppose Ax = y is consistent. Then there exists unique minimal solution $s \in R(L_{A^*})$ of Ax = y. And s is the only solution in $R(L_{A^*})$. If u is a solution to $(AA^*)u = y$, then $s = A^*u$.

Proof. By Theorem 210 define $W=R(L_{A^*})$ and $W^{\perp}=N(L_A)$. $\forall x$ that Ax=y, we have $s\in W$ and $t\in W^{\perp}$ that x=s+t. So y=Ax=A(s+t)=As+At=As. So s is a solution to Ax=y. From Theorem 138, all solution to Ax=y has the form x'=s+t' where $t'\in W^{\perp}$. And $\left\|x'\right\|^2=\left\|s+t'\right\|^2=\left\|s\right\|^2+\left\|t'\right\|^2\geq \left\|s\right\|^2$. \square

3.7. OPERATOR 55

3.7 Operator

3.7.1 Normal

Theorem 215. If T has eigenvector, then T^* has eigenvector.

Proof.
$$0 = \langle 0, x \rangle = \langle (T - \lambda I)(v), x \rangle = \langle v, (T - \lambda I)^*(x) \rangle = \langle v, (T^* - \overline{\lambda}I)(x) \rangle$$
. Since $v \neq 0$ is reciprocal to the range of $T^* - \overline{\lambda}I$, $v \notin \mathcal{R}(T^* - \overline{\lambda}I)$, so $\mathcal{N}(T^* - \overline{\lambda}I) \neq \{0\}$.

Theorem 216 (Schur). Suppose the characteristic polynomial of T splits. Then there exists an orthonormal basis β for V that the $[T]_{\beta}$ is upper trianglar. Note:

- 1. β does not need to be eigenvectors of T.
- 2. It works in \mathcal{R} as long as T splits.

Proof. Use induction. Since T splits, it has a eigenvector. By Theorem 215 T^* has eigenvector, and make it a unit eigenvector z. Let $W = \text{span}\{z\}$. Then prove W^{\perp} is T-invariant: for $\forall y \in W^{\perp}$ and $x = cz \in W$:

$$\left\langle T(y),x\right\rangle =\left\langle T(y),cz\right\rangle =\left\langle y,T^*(cz)\right\rangle =\left\langle y,cT^*(z)\right\rangle =\left\langle y,c\lambda z\right\rangle =\overline{c\lambda}\left\langle y,z\right\rangle =0$$

According to induction, $\dim \left(W^{\perp}\right) = n-1$ and there exists an orthonormal basis γ that $[T_{W^{\perp}}]_{\gamma}$ is upper triangular. Take $\gamma \cup \{z\}$.

Theorem 217. If β is an orthonormal basis and $[T]_{\beta}$ is a diagonal matrix, $[T^*]_{\beta} = \left([T]_{\beta}\right)^*$ is also a diagonal matrix.

Theorem 218. *If an operator* T *has orthogonal eigenvectors* β *that are basis of the inner product space, then* $[T]_{\beta}$ *is a diagonal matrix.*

Definition 168. T is normal if $TT^* = T^*T$. A square matrix A is normal if $AA^* = A^*A$.

Theorem 219. T is normal if and only of $[T]_{\beta}$ is normal under orthonormal basis β .

Theorem 220. Properties of normal operator T on V:

- 1. $\forall x \in V, ||T(x)|| = ||T^*(x)||$
- 2. $\forall c \in F, T cI$ is normal.
- 3. If x is a eigenvector of eigenvalue λ for T, $T^*(x) = \overline{\lambda}x$, so x is also an eigenvector of eigenvalue $\overline{\lambda}$ for T^* .
- 4. If x_1 and x_2 are for eigenvalues λ_1 and λ_2 , $\langle x_1, x_2 \rangle = 0$

Proof.

$$||T(x)||^{2} = \langle T(x), T(x) \rangle = \langle T^{*}T(x), x \rangle = \langle TT^{*}(x), x \rangle = \langle T^{*}(x), T^{*}(x) \rangle = ||T^{*}(x)^{2}||$$

$$0 = ||(T - \lambda I)(x)|| = ||(T - \lambda I)^{*}(x)|| = ||(T^{*} - \overline{\lambda}I)(x)||$$

$$\lambda_{1} \langle x_{1}, x_{2} \rangle = \langle \lambda x_{1}, x_{2} \rangle = \langle T(x_{1}), x_{2} \rangle = \langle x_{1}, T^{*}(x_{2}) \rangle = \langle x_{1}, \overline{\lambda_{2}}x_{2} \rangle = \lambda_{2} \langle x_{1}, x_{2} \rangle$$

So
$$(\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = 0$$
. Since $\lambda_1 \neq \lambda_2, \langle x_1, x_2 \rangle = 0$

Theorem 221. If T is normal, $\mathcal{N}(T) = \mathcal{N}(T^*)$ and $\mathcal{R}(T) = \mathcal{R}(T^*)$. So being normal will refine Theorem 210.

Proof. If
$$x \in \mathcal{N}(T)$$
, $||T(x)|| = ||T^*|| = 0$, so $T^*(x) = 0$ and $x \in \mathcal{N}(T^*)$.

Theorem 222. In C, let V be finite dimensional inner product space. T is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Proof. in C the polynomial always splits. According to Theorem 216 there exists a orthonormal basis $\beta = \{v_1, v_2, \dots, v_n\}$ that $[T]_{\beta} = A$ is upper triangular. v_1 is an eigenvector because $T(v_1) = A_{1,1}v_1$. Assuming v_1, v_2, \dots, v_{k-1} are eigenvector of T, we prove that v_k is also an eigenvector of T. Because A is upper triangular,

$$T(v_k) = A_{1,k}v_1 + A_{2,k}v_2 + \dots + A_{j,k}v_j + \dots + A_{k,k}v_k$$

Because $\forall j < k$, $A_{j,k} = \langle T(v_k, v_j) \rangle = \langle v_k, T^*(v_j) \rangle = \langle v_k, \overline{\lambda} v_j \rangle = \lambda_j \langle v_k, v_j \rangle = 0$, we have $T(v_k) = A_{k,k} v_k$, so v_k is an eigenvector of T.

btw, it does not work in infinite dimensional complex inner product space.

3.7.2 Hermitian

Definition 169. T is self-adjoint (Hermitian) if $T = T^*$, or $A = A^*$. For real matrix, it means A is symmetric.

Theorem 223. Let T be a linear operator on complex inner product space. Then T is self-adjoint if and only if $\forall x \in V, \langle T(x), x \rangle \in \mathcal{R}$.

Proof. If
$$T$$
 is self-adjoint, $\overline{\left\langle T(x),x\right\rangle}=\left\langle x,T(x)\right\rangle=\left\langle T^*(x),x\right\rangle=\left\langle T(x),x\right\rangle.$ So $\left\langle T(x),x\right\rangle\in\mathcal{R}.$ If $\left\langle T(x),x\right\rangle\in\mathcal{R},$ $\left\langle T(x),x\right\rangle=\overline{\left\langle T(x),x\right\rangle}=\left\langle x,T(x)\right\rangle=\left\langle T^*(x),x\right\rangle.$ So $\forall x\in V,$ $\left\langle (T-T^*)(x),x\right\rangle=0.$ According to Theorem (190), $T-T^*=0.$

Theorem 224. Let T be a self-adjoint operator on finite dimensional inner product space V. Then:

- 1. every eigenvalue is real.
- **2.** If V is a real inner product space, the characteristic polynomial for T splits.

Proof. Because T is self-adjoint, T is also normal. So according to Theorem 220 if λ is an eigenvalue of T, $\overline{\lambda}$ is an eigenvalue of T^* . So:

$$\lambda x = T(x) = T^*(x) = \overline{\lambda}x$$

So $\lambda = \overline{\lambda}$, and λ is real.

For a orthonormal basis β , $A = [T]_{\beta}$ is self-adjoint because $A^* = ([T]_{\beta})^* = [T^*]_{\beta} = [T]_{\beta} = A$. Define $L_A(x) = Ax$ in \mathcal{C}^n . Here we create a function in \mathcal{C}^n from a function in \mathcal{R}^n . Let γ be the standard basis for \mathcal{C} which is orthonormal. $[L_A]_{\gamma} = A$ is self-adjoint, so L_A is self-adjoint in \mathcal{C}^n . The characteristic polynomial of L_A splits. Since L_A is self-adjoint, all eigenvalues are real, so the polynomial split in \mathcal{R} . But L_A , A and T has the same characteristic polynomial.

Theorem 225. Let T be a linear operator on finite dimensional real inner product space. T is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.

Proof. By Theorem 216 there exists orthonormal basis
$$\beta$$
 for V that $A = [T]_{\beta}$ is upper triangular. Because $A^* = ([T]_{\beta})^* = [T^*]_{\beta} = [T]_{\beta} = A$, A is diagonal matrix.

Theorem 226. For the orthonormal basis of eigenvector T problem we have:

- 1. If T splits, we have orthonormal basis that make T upper triangular in R or C. This basis may not be eigenvectors, or T may not have eigenvectors.
- 2. T is complex normal.
- 3. T is real symmetric.

Theorem 227. Let T be self-adjoint operator. If $\forall x \in V, \langle T(x), x \rangle = 0$. Then T = 0.7

Proof. Choose orthonormal basis β that consist of eigenvector of T. For $x \in \beta$, $T(x) = \lambda x$. So

$$0 = \langle x, T(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle$$

Hence $\overline{\lambda} = 0$ and $\forall x \in \beta, T(x) = 0$.

3.7.3 Positive Operator

Definition 170. An operator T is called positive operator if T is self-adjoint and $\forall x \in V$:

$$\langle Tx, x \rangle \ge 0 \tag{3.71}$$

Definition 171. An Operator R is called a square root of an operator T if

$$R^2 = T (3.72)$$

Theorem 228. All the following are equivalent:

- 1. T is positive.
- **2**. *T* is self-adjoint and all eigenvalue of *T* are non-negative.
- 3. T has positive square root.
- 4. T has self-adjoint square root.
- 5. $\exists R : T = R^*R$

⁷Self-adjoint is not needed of $V = \mathcal{C}$. See Theorem 190 on page 49.

3.7. OPERATOR 57

Proof. For 2, if T is positive, $0 \le \langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle$, so $\lambda \ge 0$.

For 3, if T is self-adjoint, by Theorem 225 there are orthonormal basis $\beta = \{v_i\}$ with eigenvalue λ_i . Define $R(v_i) = \sqrt{\lambda_i}v_i$. Then $\forall v_i \in \beta$, $R^2(v_i) = T(v_i)$.

For 1,
$$\langle Tv, v \rangle = \langle R^*Rv, v \rangle = \langle Rv, Rv \rangle \geq 0$$
.

Theorem 229. A positive operator has a unique positive square root.

Definition 172. *If* T *is a positive operator,* \sqrt{T} *is its positive square root.*

3.7.4 Isometry

Definition 173. Let T be a linear operator on finite dimensional inner product space V over F. If $\forall x \in V, ||T(x)|| = ||x||$, we call T unitary operator if $F = \mathcal{C}$ or orthogonal operator if $F = \mathcal{R}$. Unitary and orthogonal are also called isometry.

Definition 174. A square matrix A is called unitary matrix if $AA^* = A^*A = I$ and orthogonal matrix if $AA^{\top} = A^{\top}A = I$.

Theorem 230. *Let T be an linear operator. Then the following are equivalent:*

- 1. $TT^* = T^*T = I$.
- 2. $\langle T(x), T(y) \rangle = \langle x, y \rangle$.
- 3. If β is an orthonormal basis for V. Then $T(\beta)$ is an orthonormal basis.
- 4. ||T(x)|| = ||x||.

So unitary or orthogonal operator preserve inner product and norm.

```
Proof. \langle x, y \rangle = \langle T^*Tx, y \rangle = \langle T(x), T(y) \rangle.
```

If $\beta = \{v_1, v_2, \dots, v_n\}$ is an orthonormal basis. $\langle T(v_i), T(v_i) \rangle = \langle v_i, v_i \rangle = 0$.

If β and $T(\beta)$ are both orthonormal basis, expand ||T(x)|| and ||x|| to prove they are equal.

$$\langle x,x \rangle = \|x\|^2 = \|T(x)\|^2 = \langle T(x),T(x) \rangle = \langle x,T^*Tx \rangle.$$
 So $\forall x \in V, \langle x,(I-T^*T)(x) \rangle = 0.$ $I-T^*T$ is normal, so according to Theorem 227, $I-T^*T=0.$

Theorem 231. *Unitary operator is normal.*

Proof. See Theorem 230 property (1).

Theorem 232. Let T be a linear operator on real inner product space V. V has an orthonormal basis of eigenvectors of T with absolute value of all eigenvalues equal to 1 if and only if T is self-adjoint and orthogonal.

Proof. If T is self-adjoint, there is orthonormal basis β of eigenvectors. If T is orthogonal, $\forall v_i \in \beta, |\lambda_i| \times ||v_i|| = ||\lambda_i v_i|| = ||T(v_i)|| = ||v_i||$, so $|\lambda_i| = 1$.

```
If V has orthonormal basis \beta of eigenvectors, T is self-adjoint. \forall v_i \in \beta, we have TT^*(v_i) = T(\lambda_i v_i) = \lambda_i T(v_i) = \lambda_i^2 v_i. If |\lambda_i| = 1, TT^* = I.
```

Theorem 233. Let T be a linear operator on complex inner product space V. V has an orthonormal basis of eigenvectors of T with absolute value of all eigenvalues equal to 1 if and only if T is unitary.

Proof. If T is unitary, it is normal, so there is orthonormal basis β of eigenvectors. If T is unitary, $\forall v_i \in \beta$, $|\lambda_i| \times ||v_i|| = ||\lambda_i v_i|| = ||T(v_i)|| = ||v_i||$, so $|\lambda_i| = 1$.

```
If V has orthonormal basis \beta of eigenvectors, T is normal. If |\lambda_i|=1, \forall v_i\in\beta, |\lambda_i|\times ||v_i||=||\lambda_i v_i||=||T(v_i)||=||v_i||, so ||T(v_i)||=||v_i|| and it is unitary.
```

Theorem 234. T is isometry if $[T]_{\beta}$ is isometry for a orthonormal basis β of V.

Definition 175. A is unitarily equivalent or orthogonally equivalent to D if and only if there exists a unitary or orthogonal matrix P that $A = P^*DP$.

Theorem 235. Let A be a complex square matrix. A is normal if and only if it is unitarily equivalent to a diagonal matrix.

Theorem 236. Let A be a real square matrix. A is symmetric if and only if it is orthogonally equivalent to a diagonal matrix.

3.7.5 Rigid motion

Definition 176. Let V be real inner product space. $f: V \to V$ is a rigid motion if

$$||f(x) - f(y)|| = ||x - y|| \tag{3.73}$$

Definition 177. Let V be real inner product space. $g: V \to V$ is a translation by $v_0 \in V$ if

$$\exists v_0 \forall x \in V \left(g(x) = x + v_0 \right) \tag{3.74}$$

Theorem 237. A translation is a rigid motion. And a composite of rigid motion is rigid motion.

Theorem 238. Let f be a rigid motion. Then there exists a unique orthogonal operator T and unique translation g that $f = g \circ T$.

Proof. Define T(x) = f(x) - f(0). T is a composite of rigid motion, so it is a rigid motion. Therefore ||T(x)|| = ||f(x) - f(0)|| = ||x - 0|| = ||x||. Since

$$||T(x) - T(y)||^{2} = ||x||^{2} - 2\langle T(x), T(y) \rangle + ||y||^{2}$$
$$||x - y||^{2} = ||x||^{2} - 2\langle x, y \rangle + ||y||^{2}$$
$$||T(x) - T(y)||^{2} = ||x - y||^{2}$$

We have $\langle T(x), T(y) \rangle = \langle x, y \rangle$.

Then $\|T(ax+y)-aT(x)-T(y)\|^2=0$ after expansion, T is linear. So T is an orthogonal operator. So we have unique T and g that

$$T(x) = f(x) - f(0)$$

 $g(x) = x + f(0)$ (3.75)

Theorem 239. Let T be an orthogonal operator on R^2 , and let $A = [T]_\beta$ where β is the standard basis of R^2 . Then

one of the following is satisfied: 1. T is a rotation, so |T| = 1.

2. *T* is a reflection about a line through the origin, so |T| = -1.

Proof. Because T is orthogonal, $T(\beta) = \{T(e_1), T(e_2)\}$ is an orthonormal basis of R^1 . Since $T(e_1)$ is an unit vector, it has the form $T(e_1) = (\cos \theta, \sin \theta)$. Since $T(e_2)$ is orthogonal to $T(e_1)$, it has the form $T(e_2) = (-\sin \theta, \cos \theta)$ or $T(e_2) = (\sin \theta, -\cos \theta)$.

Theorem 240. For expression $f(x,y) = ax^2 + 2bxy + cy^2$, let $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \end{pmatrix}$, the formula is $f(X) = X^\top AX = \langle AX, X \rangle$. Since A is symmetric, there is an orthogonal matrix P and diagonal matrix P that $A = P^\top DP$. Define $X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ that $X = PX_0$. We have $f(X) = X^\top AX = (PX_0)^\top A(PX_0) = X_0^\top DX_0 = \lambda_1 x_1^2 + \lambda_2 x_2^2$. So the xy term could be removed by rotation.

3.7.6 Spectral Theorem

Definition 178. Let $V = W_1 \oplus W_2$. T is a projection on W_1 along W_2 if $\forall x = x_1 + x_2$ that $x_1 \in W_1$ and $x_2 \in W_2$, $T(x) = x_1$.

Theorem 241. T is a projection if and only if $T^2 = T$.

Definition 179. T is an orthogonal projection if $\mathcal{R}(T)^{\perp} = \mathcal{N}(T)$ and $\mathcal{R}(T) = \mathcal{N}(T)^{\perp 8}$.

Theorem 242. T is an orthogonal projection if and only if T has an adjoint T^* that $T^2 = T = T^*$.

Proof. $T^2 = T$ because T is a projection. Let $x = x_1 + x + 2$ and $y = y_1 + y_2$ where $x_1, y_1 \in \mathcal{R}(T)$ and $x_2, y_2 \in \mathcal{N}(T)$. So

$$\langle x, T(y) \rangle = \langle x_1 + x_2, y_1 \rangle = \langle x_1, y_1 \rangle$$

 $\langle T(x), y \rangle = \langle x_1, y_1 + y_2 \rangle = \langle x_1, y_1 \rangle$

So $T = T^*$ and $T^2 = T = T^*$.

For the reverse side, prove that $\mathcal{R}(T)^{\perp} = \mathcal{N}(T)$ and $\mathcal{R}(T) = \mathcal{N}(T)^{\perp}$.

⁸In finite dimensional space V, $\mathcal{R}(T)^{\perp} = \mathcal{N}(T) \leftrightarrow \mathcal{R}(T) = \mathcal{N}(T)^{\perp}$

3.7. OPERATOR 59

Theorem 243 (Spectral Theorem). Let T be real symmetric or complex normal with distinct eigenvalue λ_i and its corresponding eigenspace W_i . Let T_i be the orthogonal projection on W_i . We have:

1.
$$T_i T_j = \delta_{ij} T_i$$

2.
$$I = \sum_{i=1}^{k} T_i$$

3.
$$T = \sum_{i=1}^{k} \lambda_i T_i$$

 λ_i is the spectrum of T. I is the resolution of the identity operator induced by T. $T = \sum_{i=1}^k \lambda_i T_i$ is the spectral decomposition of T.

Proof. Let $x = \sum_{i=1}^{k} x_i$ where $x_i \in W_i$. Then

$$T(x) = \sum_{i=1}^{k} T(x_i) = \sum_{i=1}^{k} \lambda_i x_i = \sum_{i=1}^{k} \lambda_i T_i(x_i) = \sum_{i=1}^{k} \lambda_i T_i(x) = \left(\sum_{i=1}^{k} \lambda_i T_i\right) x$$

Theorem 244. Let $F = \mathcal{C}$. T is normal if and only if $\exists g \in P$, $T^* = g(T)$.

Proof. Let $T = \sum_{i=1}^{k} \lambda_i T_i$ be the spectral decomposition of T. Take the adjoint of both side and we have

$$T^* = \sum_{i=1}^k \overline{\lambda_i} T_i^* \tag{3.76}$$

According to Lagrange formula⁹, $\exists g, g(\lambda_i) = \overline{\lambda_i}$. So $g(T) = T^*$. The reverse is easy to prove.

Theorem 245. Let $F = \mathcal{C}$. T is unitary if and only if T is normal and $|\lambda| = 1$ for all eigenvalue λ of T.

Proof. Let $T = \sum_{i=1}^{k} \lambda_i T_i$ be the spectral decomposition of T. We have

$$TT^* = \left(\sum_{i=1}^k \lambda_i T_i\right) \times \left(\sum_{i=1}^k \overline{\lambda_i} T_i\right) = \sum_{i=1}^k |\lambda_i|^2 T_i^2 = \sum_{i=1}^k |\lambda_i|^2 T_i = \sum_{i=1}^k T_i = I$$

Theorem 246. Let F = C and T normal. T is self-adjoint if and only if every eigenvalue of T is real.

Proof.
$$T^* = \sum_{i=1}^k \overline{\lambda_i} T_i = \sum_{i=1}^k \lambda_i T_i = T$$
, so $\overline{\lambda_i} = \lambda_i$.

3.7.7 Single Value Decomposition

Theorem 247. Let $T: V \to W$ be a linear transformation with rank r. Then there exists orthonormal basis $\beta = \{v_1, v_2, \ldots, v_n\}$ for V and $\gamma = \{u_1, u_2, \ldots, u_m\}$ for W and positive scalars singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ such that

$$T(v_i) = \begin{cases} \sigma_i u_i & \text{if } 1 \le i \le r \\ 0 & \text{if } i > r \end{cases}$$
(3.77)

Conversely, for $1 \le i \le n$, v_i is an eigenvector of T^*T with corresponding eigenvalue σ_i^2 if $1 \le i \le r$ and 0 if i > r.

⁹Theorem (91) on page 31.

Proof. T^*T has rank r according to Theorem 142, and positive semidefinite by Theorem 228. So there is an orthonormal basis v_i for V consisting of eigenvectors of T^*T with corresponding eigenvalues λ_i where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$ and $\lambda_i = 0$ for i > r. For $1 \leq i \leq r$, define $\sigma_i = \sqrt{\lambda_i}$ and $u_i = \frac{1}{\sigma_i} T(v_i)$. We have:

$$\left\langle u_i, u_j \right\rangle = \left\langle \frac{1}{\sigma_i} T(v_i), \frac{1}{\sigma_j} T(v_j) \right\rangle = \frac{1}{\sigma_i \sigma_j} \left\langle T^* T(v_i), v_j \right\rangle = \frac{1}{\sigma_i \sigma_j} \left\langle \lambda_i v_i, v_j \right\rangle = \frac{\sigma_i^2}{\sigma_i \sigma_j} \left\langle v_i, v_j \right\rangle = \delta_{ij}$$

So $\{u_1, u_2, \dots, u_r\}$ are orthogonal. Because the choice of $\sqrt{\lambda_i}$, they are unitary and therefore orthonormal. Extend it to an orthonormal basis $\{u_1, u_2, \dots, u_m\}$.

Definition 180. The singular values of A is the singular value of L_A .

Theorem 248 (Singular Value Decomposition Theorem). Let $A_{m \times n}$ be of rank r with positive singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$, and let $\Sigma_{m \times n}$ be

$$\Sigma_{ij} = \begin{cases} \sigma_i & \text{if } i = j \le r \\ 0 & \end{cases} \tag{3.78}$$

Then there exists singular value decomposition that with $U_{m \times m}$ and $V_{n \times n}$, we have

$$A = U\Sigma V^* \tag{3.79}$$

The process to find singular value decomposition is:

- 1. find singular value of A by calculating the eigenvalue of A^*A .
- 2. sort the singular value from big to small.
- 3. for non-zero singular value σ_i , put $\sqrt{\sigma_i}$ to the *i*-th diagonal of Σ .
- 4. form U of normalized eigenvector of A^*A .
- 5. for non-zero singular value σ_i , calculate orthonormal vector $u_i = \frac{1}{\sigma_i} L_A(v_i)$.
- 6. expand the u_i to orthonormal basis and form V.

3.7.8 Polar Decomposition

Theorem 249 (Polar Decomposition). Any square matrix A, there exists a Polar Decomposition using unitary matrix W and a positive semidefinite matrix P that

$$A = WP (3.80)$$

If A is invertible, the Polar Decomposition is unique.

Proof. Use singular value decomposition on A and we get $A = U\Sigma V^* = UV^*V\Sigma V^* = (UV^*)(V\Sigma V^*) = WP$. So let $W = UV^*$ and $P = V\Sigma V^*$.

3.7.9 Pseudoinverse

Definition 181. Let $T:V\to W$ be a linear transformation. Let $L:\mathcal{N}(T)^\perp\to\mathcal{R}(T)$ be a linear transformation that $\forall x\in\mathcal{N}(T)^\perp$, L(x)=T(x). The pseudoinverse (or Moore-Penrose generalised inverse) of T is a unique linear transformation from W to V that

$$T^{\dagger}(y) = \begin{cases} L^{-1}(y) & \text{for } y \in \mathcal{R}(T) \\ 0 & \text{for } y \in \mathcal{R}(T)^{\perp} \end{cases}$$
 (3.81)

Let $\{v_1, v_2, \ldots, v_r\}$ be a basis for $\mathcal{N}(T)^{\perp}$, $\{v_{r+1}, v_{r+2}, \ldots, v_n\}$ be a basis for $\mathcal{N}(T)$, $\{u_1, u_2, \ldots, u_r\}$ be basis for $\mathcal{R}(T)$, $\{u_{r_1}, u_{r_{r+2}}, \ldots, u_m\}$ be a basis for $\mathcal{R}(T)^{\perp}$, then:

$$T^{\dagger}(u_i) = \begin{cases} \frac{1}{\sigma_i} v_i & \text{if } 1 \le i \le r \\ 0 & \end{cases}$$

So although not all T has inverse, the restriction $T|_{\mathcal{N}(T)^{\perp}}$ could have proper inverse.

Theorem 250. Let $A_{m \times n}$ be a square matrix of rank r with singular value decomposition $A = U \Sigma V^*$ and non-zero singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$. Let $\Sigma_{m \times n}^{\dagger}$ be a matrix that

$$\Sigma_{ij}^{\dagger} = \begin{cases} \frac{1}{\sigma_i} & \text{if } i = j \le r \\ 0 & \end{cases}$$
 (3.82)

Then $A^{\dagger} = V \Sigma^{\dagger} U^*$ is a singular value decomposition of A.

3.7. OPERATOR 61

Theorem 251. Let $T: V \to W$ be a linear transformation, then

- 1. $T^{\dagger}T$ is the orthogonal projection of V on $\mathcal{N}(T)^{\perp}$.
- **2.** TT^{\dagger} is the orthogonal projection of W on $\mathcal{R}(T)$.

Proof. Define $L: \mathcal{N}(T)^{\perp} \to W$ by L(x) = T(x). If $x \in \mathcal{N}(T)^{\perp}$, then $T^{\dagger}T(x) = L^{-1}L(x) = x$. If $x \in \mathcal{N}(T)$, then $T^{\dagger}T(x) = T^{\dagger}(0) = 0$.

Theorem 252. For a system of linear equations Ax = b. If $z = A^{\dagger}b$, then

- 1. If Ax = b is consistent, then z is the unique solution with minimal norm.
- 2. If Ax = b is inconsistent, then z is the best approximation: $\forall y, ||Ax b|| \le ||Ay b||$. Also if Az = Ay, then $||z|| \le ||y||$.

 $A^{\dagger}b$ is the optimal solution discussed in section 3.6.4 on page 53.

Proof. Let $z = A^{\dagger}b$. If the equation is consistent, then $b \in \mathcal{R}(T)$, then $Az = AA^{\dagger}b = TT^{\dagger}(b) = b$ because TT^{\dagger} is a orthogonal projection, so z is a solution to the linear system.

If y is any solution, then $T^{\dagger}T(y) = A^{\dagger}Ay = A^{\dagger}b = z$. So z is a orthogonal projection of y on $\mathcal{N}(T)^{\perp}$. So $\|z\| \leq \|y\|$.

If the equation is inconsistent, then $Az = AA^{\dagger}b$ is the orthogonal projection of b on $\mathcal{R}(T)$, so Az is the nearest vector to b.

3.7.10 Conditioning

Definition 182. For Ax = b, if a small change to A and b cause small change to x, the property is called well-conditioned. Otherwise the system is ill-conditioned.

Definition 183. The relative change in b is $\frac{\|db\|}{\|b\|}$ with $\|\cdot\|$ be the standard norm on C^n .

Definition 184. The Euclidean norm of square matrix A is

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} \tag{3.83}$$

Definition 185. Let B be a self-adjoint matrix. The Rayleigh quotient for $x \neq 0$ is $R(x) = \frac{\langle Bx, x \rangle}{\|x\|^2}$

Theorem 253. For a self-adjoint matrix B, the $\max_{x\neq 0} R(x)$ is the largest eigenvalue of B and $\min_{x\neq 0} R(x)$ is the smallest eigenvalue of B.

Proof. Choose the orthonormal basis v_i of B such that $Bv_i = \lambda_i v_i$ where $\lambda_1 \geq \lambda_2 \geq \lambda_n$. $\forall x \in F^n$, $\exists a_i$ that $x = \sum_{i=1}^n a_i v_i$. So

$$R(x) = \frac{\langle Bx, x \rangle}{\|x\|^2} = \frac{\left\langle \sum_{i=1}^n a_i \lambda_i v_i, \sum_{j=1}^n a_j v_j \right\rangle}{\|x\|^2} = \frac{\sum_{i=1}^n \lambda_i |a_i|^2}{\|x\|^2} \le \frac{\lambda_1 \sum_{i=1}^n |a_i|^2}{\|x\|^2} = \frac{\lambda_1 \|x\|^2}{\|x\|^2} = \lambda_1$$

Theorem 254. $||A|| = \sqrt{\lambda}$ where λ is the largest eigenvalue of A^*A .

Theorem 255. λ is an eigenvalue of A^*A if and only if λ is an eigenvalue of AA^* .

Theorem 256. Let A be invertible matrix. Then $||A^{-1}|| = \frac{1}{\sqrt{\lambda}}$ where λ is the smallest eigenvalue of A^*A .

Definition 186. $||A|| \times ||A^{-1}||$ is the condition number of A and denoted as cond(A).

Theorem 257. For system Ax = b where A is invertible and $b \neq 0$, we have:

- 1. For any norm $\|\cdot\|$, we have $\frac{1}{cond(A)} \frac{\|db\|}{\|b\|} \le \frac{\|dx\|}{\|x\|} \le cond(A) \frac{\|db\|}{\|b\|}$.
- 2. If $\|\cdot\|$ is the Euclidean norm, then $\operatorname{cond}(A) = \sqrt{\frac{\lambda_1}{\lambda_n}}$ where λ_1 and λ_n are the largest and smallest eigenvalue of A^*A .

So when $cond(b) \ge 1$. If cond(b) is close to 1, the relative error in x is small when relative error of b is small. However when cond(b) is large, the relative error in x could be large or small. cond(x) is seldom calculated because when calculating A^{-1} in computer, there are rounding errors which is related

to cond(A).

Matrix Calculus 3.8

3.8.1 Layout

There are two different layout:

• numerator layout:

$$\begin{bmatrix} \nabla f \\ \nabla g \end{bmatrix} \tag{3.84}$$

• denominator layout:

$$[\nabla f, \nabla g] \tag{3.85}$$

numerator layout is preferred.

3.8.2 Jacobian Matrix

for $\mathbf{y}_{1\times m} = \mathbf{f}(\mathbf{x}_{1\times n})$, its Jacobian matrix is:

$$\nabla_{\mathbf{x}}\mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \nabla f_{1}(\mathbf{x}) \\ \nabla f_{1}(\mathbf{x}) \\ \vdots \\ \nabla f_{m}(\mathbf{x}) \end{bmatrix} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x} \\ \frac{\partial f_{2}}{\partial x} \\ \vdots \\ \frac{\partial f_{m}}{\partial x} \end{pmatrix} = \begin{bmatrix} \frac{\partial f_{1}(\mathbf{x})}{\partial x} & \frac{\partial f_{1}(\mathbf{x})}{x_{1}} & \frac{\partial f_{1}(\mathbf{x})}{x_{2}} & \dots & \frac{\partial f_{1}(\mathbf{x})}{x_{n}} \\ \frac{\partial f_{2}(\mathbf{x})}{x_{1}} & \frac{\partial f_{2}(\mathbf{x})}{x_{2}} & \dots & \frac{\partial f_{2}(\mathbf{x})}{x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}(\mathbf{x})}{x_{1}} & \frac{\partial f_{m}(\mathbf{x})}{x_{2}} & \dots & \frac{\partial f_{m}(\mathbf{x})}{x_{n}} \end{bmatrix}$$
(3.86)

Element-wise binary operator 3.8.3

for element-wise binary operator

$$\mathbf{y} = \mathbf{f}(\mathbf{w}) \bigcirc \mathbf{g}(\mathbf{x}) \tag{3.87}$$

 \bigcirc could be $+, -, \times^{10}, \div, max$. The gradient is:

$$\nabla_{\mathbf{x}}\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} f_1(\mathbf{w}) \bigcirc g_1(\mathbf{x}) \\ f_2(\mathbf{w}) \bigcirc g_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{w}) \bigcirc g_n(\mathbf{x}) \end{bmatrix}$$
(3.88)

The expanded matrix could be differentiated using Jacobian matrix.

3.8.4 **Vector Sum**

Vector sum operation *sum* could be expressed as

$$y = \operatorname{sum}(\mathbf{f}(\mathbf{x})) = \sum_{i=1}^{n} f_i(\mathbf{x})$$
(3.89)

 ∇ **y** could be calculated as usual.

Chain Rules 3.8.5

In machine learning there are two ways of taking chain rules:

- forward differentiation: $\frac{dy}{dx} = \frac{du}{dx} \times \frac{dy}{du}$ backward differentiation: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Backward differentiation is preferred for matrix operation.

The full expression of $\mathbf{y} = \mathbf{f}(\mathbf{g}(\mathbf{x}))$ is:

¹⁰called hadamard product

$$\nabla_{\mathbf{x}} f = \frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{x}))}{\partial \mathbf{x}}$$

$$= \frac{\partial \mathbf{f}}{\partial \mathbf{g}} \times \frac{\partial \mathbf{g}}{\partial \mathbf{x}}$$

$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{g_1} & \frac{\partial f_1(\mathbf{x})}{g_2} & \cdots & \frac{\partial f_1(\mathbf{x})}{g_n} \\ \frac{\partial f_2(\mathbf{x})}{g_1} & \frac{\partial f_2(\mathbf{x})}{g_2} & \cdots & \frac{\partial f_2(\mathbf{x})}{g_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x})}{g_1} & \frac{\partial f_m(\mathbf{x})}{g_2} & \cdots & \frac{\partial f_m(\mathbf{x})}{g_n} \end{bmatrix}_{m \times n} \times \begin{bmatrix} \frac{\partial g_1(\mathbf{x})}{g_1} & \frac{\partial g_1(\mathbf{x})}{g_2} & \cdots & \frac{\partial g_1(\mathbf{x})}{g_n} \\ \frac{\partial g_2(\mathbf{x})}{g_2} & \frac{\partial g_2(\mathbf{x})}{g_2} & \cdots & \frac{\partial g_2(\mathbf{x})}{g_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_n(\mathbf{x})}{g_1} & \frac{\partial g_n(\mathbf{x})}{g_2} & \cdots & \frac{\partial g_n(\mathbf{x})}{g_n} \end{bmatrix}_{n \times r}$$

$$(3.90)$$