Honey Bees Colonies in the US

dweorh

2023-02-23

Business requirement

A software company is interested in writing a software for beekeepers to help them manage colonies and apiaries.

The company needs to know how big and stable the market is.

Data source

For the analysis survey data collected by United States Department of Agriculture between 2012 and 2022 will be used.

Project setup

data file: USDA_NASS_honey_bees_2012_2022_survey.csv

```
# install.packages('tidyverse')
library(tidyverse)
# install.packages("dplyr")
library("dplyr")
# install.packages("janitor")
library("janitor")
# install.packages("scales")
library("scales")
# install.packages("RColorBrewer")
library("RColorBrewer")
# color pallete
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
expected_items <- c('ADDED & REPLACED',</pre>
                     'INVENTORY, MAX',
                     'LOSS, COLONY COLLAPSE DISORDER',
                     'LOSS, DEADOUT')
expected_periods <- c(1:4)</pre>
```

Data cleanup

```
survey <- read_csv('USDA_NASS_honey_bees_2012_2022_survey.csv')</pre>
# select only needed columns from the set
# normalize names
# remove redundant data
# convert text values to less bug prone and saving resources integer values
survey_reduced <- survey %>%
  clean_names() %>%
  select(year, period, state, data item, value) %>%
 mutate(data_item = str_replace(data_item, 'HONEY, BEE COLONIES - ', '')) %>%
  mutate(data_item = str_replace(data_item, ', MEASURED IN COLONIES', '')) %>%
  mutate(period = str_replace(period, 'JAN THRU MAR', '1')) %>%
  mutate(period = str_replace(period, 'APR THRU JUN', '2')) %>%
  mutate(period = str_replace(period, 'JUL THRU SEP', '3')) %>%
  mutate(period = str replace(period, 'OCT THRU DEC', '4')) %>%
  mutate(period = as.numeric(period))
# for further use save cleanup data
write_csv(survey_reduced, 'USDA_NASS_honey_bees_2012_2022_survey_reduced.csv')
# remove unused variables and release memory
rm(survey)
gc()
             used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1217789 65.1
                          2320864 124 2320864 124.0
## Vcells 2095971 16.0
                          8388608
                                    64 3423300 26.2
# check if there is correct number of periods (4) for every year and every state
survery_missing_periods <- survey_reduced %>%
  select(year,state,period) %>%
  group_by(year,state,period) %>%
  distinct() %>%
  group_by(year,state) %>%
  summarize(periods=n()) %>%
  filter(periods < length(expected_periods))</pre>
# if there are any missing periods for any year,
# we will exclude such a year from the further calculations
survey_missing_periods_years <- as.vector(t(survery_missing_periods %>% select(year) %>% distinct()))
Check if we have equal number of rows for each 'Data Item' type.
survey_reduced %>% group_by(data_item) %>% summarize(total_count=n())
## # A tibble: 4 x 2
##
    data_item
                                    total_count
     <chr>>
                                          <int>
## 1 ADDED & REPLACED
                                           1334
```

```
## 2 INVENTORY, MAX 1334
## 3 LOSS, COLONY COLLAPSE DISORDER 588
## 4 LOSS, DEADOUT 1334
```

Many 'LOSS, COLONY COLLAPSE DISORDER' data is missing.

Chart with totals, should show us if that's an issue.

As this is a survey, in some states in some years 'losses' might be merged into one category.

```
survey_totals_per_state <- survey_reduced %>%
  filter(!year %in% survey_missing_periods_years) %>%
  filter(data_item == 'INVENTORY, MAX') %>%
  group_by(year,state) %>%
  summarize(total=sum(value))
survey_totals <- survey_reduced %>% group_by(year,data_item) %>% summarize(total = sum(value))
# a function to calculate totals of certain type
add_loss_total <- function(type = 'add') {</pre>
  data <- pick(data_item, total)</pre>
  # data <- cur_data()</pre>
 if (type == 'add') {
   res <- sum(data[data$data_item == 'ADDED & REPLACED',]$total)
  } else if (type == 'loss') {
    sub_data <- data[data$data_item %in% c('LOSS, DEADOUT', 'LOSS, COLONY COLLAPSE DISORDER'),]</pre>
    res <- sum(sub data$total)</pre>
  } else if (type == 'inventory') {
    res <- sum(data[data$data_item == 'INVENTORY, MAX',]$total)
 return(res)
survey_totals_add_loss <- survey_totals %>%
  filter(!year %in% survey_missing_periods_years) %>%
  group_by(year) %>%
  summarize(
   loss = add_loss_total('loss') / 1000,
   add = add_loss_total('add') / 1000,
    inventory = add_loss_total('inventory') / 1000
  )
totals_pivot <- pivot_longer(survey_totals_add_loss, cols = c(loss,add,inventory))</pre>
survey_last_valid_year = max(survey_totals_add_loss$year)
last_year_data <- totals_pivot %% filter(year == survey_last_valid_year)</pre>
last_year_data_states <- survey_totals_per_state %>% filter(year == survey_last_valid_year)
```

A chart to present a general country level overview of 'add', 'loss', and 'inventory'.

```
labels <- list(add = "Added", loss = "Lost", inventory = "Total")
colors <- list(add = "green", loss = "red", inventory = "blue")</pre>
```

```
chart_title <- paste0("Honey Bees Colonies in The US (",min(survey_reduced['year']),"-",survey_last_val</pre>
chart_subtitle <- paste0("Missing years: ", paste(survey_missing_periods_years, collapse=", "))</pre>
ggplot(data=totals_pivot) +
  geom_smooth(mapping=aes(x=year, y=value, color=name)) +
  labs(title=chart_title,
       subtitle = chart_subtitle,
   caption="Data collected by https://www.nass.usda.gov/",
     x='Year', y='No. of Colonies (in K)') +
  expand_limits(y=0) +
  geom_text(
   data = last_year_data,
   aes(label = labels[name], x = year + 0.2, y = ifelse(last_year_data$name=='add', value*0.9, value),
   parse = TRUE
  ) +
  scale_color_manual(name="", labels = labels, values = colors) +
  theme_bw() +
  theme(legend.position = "none")
```

Honey Bees Colonies in The US (2015–2021)

Missing years: 2019, 2022

Data collected by https://www.nass.usda.gov/

On the country level the total inventory stays more or less stable in 10y period.

The same with adds and losses.

Detailed charts

To make charts more readable, states were divided, arbitrarily, into 4 categories:

- up to 50,000 colonies
- 50,000 100,000 colonies
- 100,000 500,000 colonies
- 500,000 colonies and more

```
v_small_states = as.vector(
 t(
    survey_totals_per_state %>%
      filter(year == 2021 & total < 50000) %>%
        ungroup() %>% select(state)
  )
small_states = as.vector(
 t(
   survey_totals_per_state %>%
      filter(year == 2021 & total >= 50000 & total < 100000) %>%
      ungroup() %>% select(state)
   )
mid_states = as.vector(
 t(
    survey_totals_per_state %>%
      filter(year == 2021 & total >= 100000 & total < 500000) %>%
      ungroup() %>% select(state)
   )
  )
big_states = as.vector(
 t(
   survey_totals_per_state %>%
      filter(year == 2021 & total >= 500000) %>%
      ungroup() %>% select(state)
   )
 )
```

```
chart_big_title <- paste0("H. Bees Col., 500,000+ colonies (",min(survey_reduced['year']),"-",survey_la</pre>
plot_data <- survey_totals_per_state %>% filter(state %in% big_states)
ggplot(data=plot_data) +
  geom_smooth(mapping=aes(x=year, y=total, color=state)) +
  labs(title=chart_big_title,
       subtitle = chart_subtitle,
       caption="Data collected by https://www.nass.usda.gov/",
       x='Year', y='No. of Colonies') +
  expand_limits(y=0) +
  theme_bw() +
  scale_color_manual(name="State",
                     values = col_vector,
                     labels = paste(plot_data$state,
                                     scales::comma(plot_data[plot_data$year == survey_last_valid_year,]$
                                     'K')
                     ) +
  scale_y_continuous(labels = scales::comma)
```

H. Bees Col., 500,000+ colonies (2015–2021)

Missing years: 2019, 2022

Data collected by https://www.nass.usda.gov/

```
chart_mid_title <- paste0("H. Bees Col., 100,000 - 500,000 colonies (",min(survey_reduced['year']),"-",</pre>
plot_data <- survey_totals_per_state %>% filter(state %in% mid_states)
ggplot(data=plot_data) +
  geom_smooth(mapping=aes(x=year, y=total, color=state)) +
  labs(title=chart_mid_title,
       subtitle = chart_subtitle,
       caption="Data collected by https://www.nass.usda.gov/",
       x='Year', y='No. of Colonies') +
  expand_limits(y=0) +
  theme bw() +
  scale_color_manual(name="State",
                     values = col_vector,
                     labels = paste(plot_data$state,
                                    scales::comma(plot_data[plot_data$year == survey_last_valid_year,]$
                                     'K')
  ) +
  scale_y_continuous(labels = scales::comma)
```

H. Bees Col., 100,000 – 500,000 colonies (2015–2021)

Data collected by https://www.nass.usda.gov/

```
chart_small_title <- paste0("H. Bees Col., 50,000 - 100,000 colonies (",min(survey_reduced['year']),"-"
plot_data <- survey_totals_per_state %>% filter(state %in% small_states)
ggplot(data=plot_data) +
  geom_smooth(mapping=aes(x=year, y=total, color=state)) +
  labs(title=chart_small_title,
       subtitle = chart_subtitle,
       caption="Data collected by https://www.nass.usda.gov/",
       x='Year', y='No. of Colonies') +
  expand_limits(y=0) +
  theme bw() +
  scale_color_manual(name="State",
                     values = col_vector,
                     labels = paste(plot_data$state,
                                    scales::comma(plot_data[plot_data$year == survey_last_valid_year,]$
                                    'K')
  ) +
  scale_y_continuous(labels = scales::comma)
```

H. Bees Col., 50,000 - 100,000 colonies (2015-2021)

Missing years: 2019, 2022

Data collected by https://www.nass.usda.gov/

```
chart_v_small_title <- paste0("H. Bees Col., 50,000 < colonies (",min(survey_reduced['year']),"-",surve</pre>
plot_data <- survey_totals_per_state %>% filter(state %in% v_small_states)
ggplot(data=plot_data) +
  geom_smooth(mapping=aes(x=year, y=total, color=state)) +
  labs(title=chart_v_small_title,
       subtitle = chart_subtitle,
       caption="Data collected by https://www.nass.usda.gov/",
       x='Year', y='No. of Colonies') +
  expand_limits(y=0) +
  theme bw() +
  scale_color_manual(name="State",
                     values = col_vector,
                     labels = paste(plot_data$state,
                                    scales::comma(plot_data[plot_data$year == survey_last_valid_year,]$
                                     'K')
  ) +
  scale_y_continuous(labels = scales::comma)
```

H. Bees Col., 50,000 < colonies (2015–2021)

Missing years: 2019, 2022

Data collected by https://www.nass.usda.gov/

Conclusions

- 1. Honey Bees market looks stable across 10y, according to surveys.
- 2. The biggest beekeeping market is in California with ca. 30% of total US H. Bees colonies.
- 3. That market neither grows nor shrinks, so competition can be hard.
- 4. Further research about already existing software for beekeepers is needed.