

Optimization of Machine Learning Models

Leor Seal, Elena Tarassenko, Ziye Jin, David Gamarra

Group Delegation

- David Data Exploration & Database Access
- Ziye Data Cleaning
- Leor Model Development
- Elena Model Optimization

CONTENTS

- 1. Business Case
- 2. Backend: Sourcing, Data Wrangling
- 3. Visualization
- **4.** Frontend: Integrated Machine Learning, Decision Tree
- 5. Summary and Impact

CASE

Credit Worthiness

Case

As data scientists employed by a global finance corporation, our responsibilities involve handling a vast repository of essential banking data, particularly a substantial collection of credit-related information. Leadership has expressed an interest in developing an intelligent system that can categorize individuals into specific credit score categories, thereby streamlining and minimizing manual workload. The modeling techniques are significant in real world scenarios, as credit scores help determine mortgage rates offered by banks, among other financial rates.

Backend

Sourcing, Data Wrangling

Database Access

- Database was created from dataset to simulated real-world scenario.
- Once access to database is obtained via sqlalchemy, we can then create dataframe using pandas
- Data is then onboarded to the cleaning phase

Credit Score Classification Dataset Information

Given a person's credit-related information, build a machine learning model that can classify the credit score.

Credit-related information:

Train.csv: 27 columns and 100,000 Unique Values

Test.csv: 27 columns and 50,000 Unique Values

<class 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999 RangeIndex: 50000 entries, 0 to 49999 Data columns (total 28 columns): Data columns (total 27 columns): Non-Null Count Dtype 100000 non-null 100000 non-null Customer TD Customer ID 90015 non-null 50000 non-null object Occupation Occupation 50000 non-null object Annual Income Annual Income Monthly_Inhand_Salary float64 Monthly Inhand Salary 42502 non-null float64 Num Bank Accounts Num Bank Accounts 10 Num Credit Card Interest Rate 100000 non-null Interest Rate Num of Loan 100000 non-null Num of Loan Type_of_Loan Type_of_Loan Delay from due date Delay_from_due_date Num of Delayed Payment Changed_Credit_Limit 100000 non-null Num_Credit_Inquiries Changed Credit Limit Credit Mix Num Credit Inquiries float64 Credit_Mix Credit_History_Age Credit Utilization Ratio Payment of Min Amount 100000 non-null Credit History Age 45530 non-null 100000 non-null 50000 non-null object 95521 non-null Amount invested monthly Total EMI per month 50000 non-null float64 Monthly_Balance 98800 non-null Payment Behaviour 50000 non-null object 27 Credit Score 100000 non-null Monthly Balance 49438 non-null object dtypes: float64(4), int64(4), object(20) dtypes: float64(4), int64(4), object(19) memory usage: 21.4+ MB

memory usage: 10.3+ MB

Data Cleaning Procedure

Dataset includes various financial parameters relevant to credit scoring

Packages: Numpy, Pandas, Spicy.stats, Regular expressions

- Checked the head of data set and the overall data structure
- Checked the shape and data types of features to understand dataset dimensions and feature characteristics
- Fixed data types to numeric in Pandas: value_counts(), astype(), infer_objects(), convert_dtypes()

	ss 'pandas.core.frame.DataF			
	eIndex: 150000 entries, 0 t		9	
Data	columns (total 32 columns)			
#	Column	Non-Nu	ll Count	Dtype
0	ID	150000	non-null	int64
1	Customer_ID	150000	non-null	int64
2	Month	150000	non-null	int64
3	Name	149988	non-null	object
4	Age	150000	non-null	int64
5	SSN	141600	non-null	float64
6	Occupation	149994	non-null	object
7	Annual_Income	150000	non-null	float64
8	Monthly_Inhand_Salary	127500	non-null	float64
9	Num_Bank_Accounts	150000	non-null	int64
10	Num_Credit_Card	150000	non-null	int64
11	Interest_Rate	150000	non-null	int64
12	Num_of_Loan	150000	non-null	int64
13	Type_of_Loan	150000	non-null	object
14	Delay_from_due_date	150000	non-null	int64
15	Num_of_Delayed_Payment	139500	non-null	float64
16	Changed Credit Limit	146850	non-null	float64
17	Num Credit Inquiries	147000	non-null	float64
18	Credit_Mix	149092	non-null	object
19	Outstanding Debt	150000	non-null	float64
20	Credit_Utilization_Ratio	150000	non-null	float64
21	Credit_History_Age	136500	non-null	float64
22	Payment_of_Min_Amount	150000	non-null	object
23	Total_EMI_per_month	150000	non-null	float64
24	Amount_invested_monthly	143250	non-null	float64
25	Payment Behaviour	149196	non-null	object
26	Monthly_Balance	148238	non-null	float64
27	Credit_Score	100000	non-null	object
28	Occupation Num	150000	non-null	int8
29	Credit Mix Num	150000	non-null	int8
30	Payment of Min Amount Num	150000	non-null	int8
31	Payment Behaviour Num		non-null	int8
	es: float64(12), int64(9),		object(7	
	rv usage: 32.6+ MB		, , , , , ,	ē

Data Cleaning Procedure

- Assigned categorical types to numeric types
- For object columns, detected missing values, identifies
 NaN values in a given column and replaces them with the mode (most frequent value) within a specific group.
- For numeric columns, identified the minimum and maximum acceptable values for each group.
- Numeric values outside this range are considered outliers and are set to NaN.
- Then, these NaN values are filled with the mode of their respective groups, similar to the first method.
- Others include: transforming 'Month' to numerical month format; standardizing 'Credit_History_Age' to represent the age in months, and more

	- 7	•				
df['Credit_M df['Payment_	<pre>('Occupation Num') = df.Occupation.astype('category').cat.codes ('Credit Mix Num') = df.Credit Mix astype('category').cat.codes ('Payment_of_Min_Amount_Num') = df.Payment_of_Min_Amount.astype('category').cat.codes ('Payment_Behaviour_Num') = df.Payment_Behaviour.astype('category').cat.codes</pre>					
Credit_Score	Occupation_Num	Credit_Mix_Num	Payment_of_Min_Amount_Num	Payment_Behaviour_Num		
Good	12	-1	1	2		
Good	12	1	1	3	۰	
Good	12	1	1	4	•	
Good	12	1	1	5		
Good	12	1	1	1	•	
NaN	1	-1	2	5		
NaN	9	1	0	5		
NaN	9	1	1	3	ļ	
NaN	9	1	1	2		
MaN	0	-1	1	4		

Visualization

Data Exploration

Exploratory Data Analysis (EDA) (1)

Credit Score

- Standard
- Good
- Poor

Payment of Minimum Amount

	Paymen	t of Min An	nount
Credit Score	NM	No	Yes
Good	1,661	2,744	742
Poor	2,557	1,084	4,099
Standard	4,699	4,308	6,528

Exploratory Data Analysis (EDA) (4)

Credit Score

- Standard
- Good
- Poor

Heat Map

Color Scale: The colors represent the strength and direction of the correlation between variables. The scale goes from -1 to 1:

- 1 (warmer colors): A perfect positive correlation, meaning that as one variable increases, the other variable also increases.
- 0 (neutral colors): No linear correlation between the variables.
- -1 (cooler color): A perfect negative correlation

Help with feature selection

Frontend

Integrated Machine Learning, Decision Tree

First Model

	precision	recall	f1-score	support
9	0.70	0.68	0.69	12361
1	0.78	0.78	0.78	36697
2	0.76	0.77	0.76	20091
accuracy			0.76	69149
macro avg	0.75	0.74	0.75	69149
eighted avg	0.76	0.76	0.76	69149

Feature Selection:

```
X = Num_Bank_Accounts, Num_Credit_Card, Interest_Rate,
Delay_from_due_date, Num_Credit_Inquiries,
Credit_Mix, Outstanding_Debt
Y = Credit_Score
```

Modeling Improvements

Utilized DecisionTreeClassifier and RandomForestClassifier for the modeling techniques, which build a tree or map of the significant variables and determine feature importances in the case of RandomForestClassifier.

	Variable	Value
12	Outstanding_Debt	0.168829
5	Interest_Rate	0.094328
7	Delay_from_due_date	0.088565
9	Changed_Credit_Limit	0.069864
11	Credit_Mix	0.057873
15	Monthly_Balance	0.057710
13	Credit_Utilization_Ratio	0.056466
8	Num_of_Delayed_Payment	0.055630
2	Monthly_Inhand_Salary	0.053600
1	Annual_Income	0.052900
10	Num_Credit_Inquiries	0.050391
0	Age	0.047743
3	Num_Bank_Accounts	0.046424
4	Num_Credit_Card	0.042566
6	Num_of_Loan	0.032386
14	Payment_Behaviour	0.024725

Synthetic Minority Over-sampling Technique

Utilized RandomOverSampler to oversample minority class to ensure balance among the classes by generating synthetic samples

Highest Accuracy on SMOTE

Highest Accuracy achieved on SMOTE Model followed by RandomForestClassifier and then by DecisionTreeClassifier.

		precision	recall	f1-score	support
	0	0.90	0.93	0.91	5254
	1	0.90	0.81	0.85	5254
	2	0.82	0.92	0.87	2868
accui	racy			0.88	13376
macro	avg	0.87	0.88	0.88	13376
eighted	avg	0.88	0.88	0.88	13376

Summary and Impact

Accuracy and Risk Profile

Risk Profile

- Our latest model perform well, with high precision, recall, and F1-scores.
- With an accuracy score of 88%, our model had overall good performance with the dataset.
- Prospective businesses will need to assess of this model is within risk tolerances

0 - Good 1 - Standard

2 - Poor

	pro	ecision	recall	f1-score	support
e)	0.90	0.93	0.91	5254
1		0.90	0.81	0.85	5254
2		0.82	0.92	0.87	2868
accuracy				0.88	13376
macro ave	;	0.87	0.88	0.88	13376
weighted ave	:	0.88	0.88	0.88	13376

Strengths, Weaknesses and Impact for Stakeholders

Model Strengths:

• The model demonstrates strong predictive capabilities for identifying good and poor credit scores, suggesting that it can be trusted to flag individuals at either end of the credit spectrum effectively.

Model Weaknesses

- The model has room for improvement in correctly classifying individuals with standard credit scores. Strategies to improve recall in this category could enhance overall model performance.
- The model shows a tendency to incorrectly classify actual standard and poor credit scores as good (as seen by the non-diagonal cells in the confusion matrix). Focusing on reducing these types of misclassifications could be beneficial.

Potential Impact

 The model could be used as a screening tool to identify individuals who may need credit counseling or financial advice, as it effectively identifies poor credit scores.

Potential for the Future

- Further tuning of the model's hyperparameters could potentially improve accuracy, especially for the standard credit score class.
- Additional feature engineering or the inclusion of more relevant data could provide the model with better discriminative power.
- Exploring other algorithms or ensemble methods might yield better recall for standard credit scores without compromising precision for other classes.