О БЕСКВАНТОРНОЙ ВЫРАЗИМОСТИ ГРАФИКА ВОЗВЕДЕНИЯ В КВАДРАТ В СТРУКТУРЕ

 $\langle \mathbb{N}; 1, +, Sq, | \rangle$

Старчак М. Р., аспирант кафедры информатики СПбГУ, mikhstark@gmail.com

Аннотация

В работе доказывается бескванторная выразимость в структуре $\langle \mathbb{N}; 1, +, Sq, | \rangle$ отношения $x=y^2$. Двухместный предикатный символ | соответствует отношению делимости, а Sq — свойству «являться квадратом некоторого натурального числа». Следствием этого результата является неразрещимость экзистенциальной теории указанной структуры.

Введение

Разрешимость экзистенциальной теории натуральных чисел с единицей, сложением и делимостью была доказана независимо А.П. Бельтюковым [1] и Л. Липшицем [7]. Этот результат примечателен в том смысле, что всякое перечислимое множество выразимо в той же сигнатуре, но с кванторной приставкой вида ∃...∃∀ (см. [8]), и, кроме того, как до этого было показано Н.К. Косовским в [2], экзистенциальной выразимости перечислимых множеств можно добиться дополнением сигнатуры любым предикатом степенного роста. Появлению такого рода вопросов непосредственно предшествовало доказательство экзистенциальной выразимости перечислимых множеств с помощью сложения, умножения и равенства, полученное Ю.В. Матиясевичем [3, 4].

Обозначим Sq(x) одноместное отношение, истинное только для тех натуральных чисел x, которые являются квадратами некоторых натуральных чисел. В связи с экзистенциальной выразимостью отношения $x \neq y^2$ в структуре $\langle \mathbb{N}; 1, +, | \rangle$, показанной Л. Липшицем в [8], Л. ван ден Дрисом и А. Уилки [6] был задан вопрос об экзистенциальной выразимости в этой структуре отношения $\neg Sq(x)$. Хотя вопрос о неразрешимости экзистенциальной теории структуры $\langle \mathbb{N}; 1, +, Sq \rangle$ остаётся открытым (см.[9], положительный ответ следовал бы из истиности гипотезы Бюхи), ван ден Дрису и Уилки, по-видимому, было известно о неразрешимости $\exists \text{Th}\langle \mathbb{N}; 1, +, Sq, | \rangle$. Так как автору не

удалось найти ссылку на этот результат, в данной заметке мы покажем, что отношение $y=x^2$ выразимо формулой $y=x^2\Leftrightarrow Sq(y)\wedge Sq(y+2x+1)\wedge x\mid y\wedge 1+x\mid y+2x+1,$ из чего следует неразрешимость $\exists \mathrm{Th}\langle\mathbb{N};1,+,Sq,|\rangle$ и невозможность выразить отношение Sq(x) никакой экзистенциальной формулой с помощью только единицы, сложения и делимости.

Теорема и следствия

Теорема 1. Отношение $y=x^2$ выразимо бескванторной формулой в структуре $\langle \mathbb{N}; 1, +, Sq, | \rangle$, следовательно, экзистенциальная теория этой структуры неразрешима.

Доказательство. Покажем, что $y=x^2\Leftrightarrow Sq(y)\wedge Sq(y+2x+1)\wedge x\mid y\wedge 1+x\mid y+2x+1.$

Последнюю делимость можно переписать в виде $1+x\mid y-1$. Пусть $y=z^2$, тогда из того, что $x\mid y$ следует, что $z^2=x\cdot u$ для некоторого u>0 (если u=0, то y=0, поэтому из последней делимости $1+x\mid x$, из чего уже следует x=0).

Перепишем делимость $1+x\mid y-1$ в виде $1+x\mid x\cdot u-1$, что равносильно $1+x\mid u+1$. Пусть теперь $u+1=(x+1)\cdot v$ для некоторого v>0. Тогда получим цепочку равенств $y+2x+1=x\cdot u+2x+1=x((x+1)v-1)+2x+1=x(x+1)v+(x+1)=(x+1)(xv+1)$. Осталось показать, что невозможно v>1.

Предположим, что v>1 и выполняется $Sq((x+1)(xv+1)-2x-1)\wedge Sq((x+1)(xv+1))$. Пусть $t^2=(x+1)(xv+1)$ для некоторого t>0. Так как v>1, то t>x+1, но в этом случае ближайший квадрат, меньший t^2 есть $(t-1)^2$ и $t^2-(t-1)^2>2(x+1)-1=2x+1$, поэтому $\neg Sq(t^2-2x-1)$, значит предположение неверно, v=1, а $y=x^2$. \square

Выведем два следствия из полученного результата. Первый факт имеет место ввиду разрешимости $\exists \mathrm{Th}\langle \mathbb{N}; 1, +, | \rangle$.

Следствие 1.1. Отношение Sq(x) не является экзистенциально выразимым в структуре $\langle \mathbb{N}; 1, +, | \rangle$.

С другой стороны, для теории $\exists \mathrm{Th}\langle \mathbb{N}; 1, +, Sq \rangle$ получим следующее достаточное условие её неразрешимости.

Следствие 1.2. Если отношение делимости экзистенциально выразимо в структуре $\langle \mathbb{N}; 1, +, Sq \rangle$, то экзистенциальная теория этой структуры неразрешима.

Заключение

Данная заметка является, по существу, дополнением к работе автора [5] о некоторых вопросах выразимости и разрешимости для отношения $x(x+1) \mid y$. Решенный здесь вопрос был оставлен в указанной работе в качестве открытого и оказался не слишком трудным. Более любопытным мог бы оказаться аналогичный вопрос о выразимости отношения $y=x^2$ некоторой экзистенциальной формулой в структуре $\langle \mathbb{N}; 1, +, Sq, \bot \rangle$, где \bot соответствует двухместному отношению взаимной простоты двух натуральных чисел.

Литература

- [1] *Бельтноков А. П.* Разрешимость универсальной теории натуральных чисел со сложением и делимостью // Записки научных семинаров ЛОМИ. 1975. Т. 60. С. 15–28.
- [2] *Косовский Н. К.* О решении систем, состоящих одновременно из уравнений в словах и неравенств в длинах слов // Записки научных семинаров ЛОМИ. 1974. Т. 40. С. 24–29.
- [3] *Матиясевич Ю. В.* Диофантовость перечислимых множеств // Докл. АН СССР. 1970. Т. 191, № 2. С. 278–282.
- [4] Матиясевич Ю. В. Десятая проблема Гильберта. М.: Физматлит. 1993.
- [5] Старчак М. Р. Некоторые проблемы разрешимости и выразимости для предиката делимости на два последовательных числа // Компьютерные инструменты в образовании. 2018. № 6. С. 5-–15.
- [6] van den Dries L., Wilkie A.J. The laws of integer divisibility, and solution sets of linear divisibility conditions // The Journal of Symbolic Logic. 2003. Vol. 68, no. 2. P. 503–526.
- [7] Lipshitz L. The Diophantine problem for addition and divisibility // Transactions of the American Mathematical Society. 1976. Vol. 235. P. 271–283.
- [8] Lipshitz L. Some remarks on the Diophantine problem for addition and divisibility // Bull. Soc. Math. Belg. Ser. B. 1981. Vol. 33, no. 1. P. 41–52.

[9] Pasten H., Pheidas T., Vidaux X. A survey on Buchi's problem: new presentations and open problems // Zap. Nauchn. Sem. POMI. 2010. Vol. 377. P. 111–140.