

MainPage/DataBase/Lab 2

Университет ИТМО

Факультет ФПИ и КТ

Отчёт по лабораторной работе 2

«Информационная система и база данных»

Вариант: 310930

Студент: Чжоу Хунсян

Группа: Р33131 Преподаватель:

- 1 Текст задания.
- 2 DataBase
 - Инфологическая модель
 - Даталогическая модель
- 3 Функциональные зависимости для отношений полученной схемы (минимальное множество)
 - charaters
 - events
 - locations
 - status
 - groups
 - group_member
 - relations
 - actions
 - movements
- 4 Отношения в 3NF.
- 5 Отношения в ВСПЕ
- 6 Денормализация
- 7 Выводы

1 Текст задания.

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

对于从 1 号实验室工作构建主题区域时获得的关系,执行以下步骤:

- опишите функциональные зависимости для отношений полученной схемы (минимальное множество);
 - 描述结果图(最小集)关系的函数依赖关系;
- приведите отношения в 3NF (как минимум). Постройте схему на основе NF (как минимум). Постройте схему на основе полученных отношений; 将关系带入 3NF(至少)。(至少)构建一个基于 NF 的电路。 根据产生的关系构

建图表;

- опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF (как минимум). Постройте схему на основе NF; 描述(至少)转换为 3NF 后功能依赖性发生的变化。基于NF构建电路;
- преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF;
 - 将关系转换为BCNF。 证明所得关系用 BCNF 表示;
- какие денормализации будут полезны для вашей схемы? Приведите подробное описание;

哪些非规范化对您的设计有用? 提供详细的描述;

2 DataBase

Инфологическая модель

Source

Даталогическая модель

Source

3 Функциональные зависимости для отношений полученной схемы (минимальное множество)

Условия чтобы множество функц. зависимостей были минимальными

- 1. У всех зависимостей один атрибут в правой части
- 2. $A_1 o A_2$ нельзя заменить на $A_3 o A_2 (A_3$ подмножество $A_1)$

3. При удалении любой функции. Зависимости из изначального множества не получается эквивалентное множество функции. Зависимостей

charaters

key: id

- id -> name
- name -> id

events

key: id

- id -> name
- name -> id

locations

key: id

- id -> name
- name -> id

status

key: id

- id -> name
- name -> id

groups

key: id

- id -> name
- name -> id

group_member

key: id

id -> group

id -> member

relations

key: id

id -> name

id -> subject

id -> object

actions

key: id

id -> event

id -> subject

id -> object

id -> location

id -> status

id -> process

movements

key: id

id -> character

id -> starting_location

4 Отношения в 3NF.

Приведение к 3NF можно разбить в 3 этапа:

- 1. Убедиться, что сущности приведены к 1NF (привести, если требуется)
 - В таблице не должно быть дублирующих строк
 - В каждой ячейке таблицы хранится атомарное значение (одно не составное значение)
 - В столбце хранятся данные одного типа
 - Отсутствуют массивы и списки в любом виде
- 2. Убедиться, что сущности приведены к 2NF (привести, если требуется)
 - Таблица должна находиться в первой нормальной форме
 - Таблица должна иметь ключ
 - Все не ключевые столбцы таблицы должны зависеть от полного ключа (в случае, если он составной)
- 3. Убедиться, что сущности приведены к 3NF (привести, если требуется)
 - Таблица находиться во второй нормальной форме
 - Отсутствие транзитивных зависимостей (зависимость не ключевых столбцов от значений других не ключевых столбцов)

Все имеющиеся таблицы приведены к 1NF. Отношение, на пересечении каждой строки и столбца — одно значение.

Все имеющиеся таблицы приведены к 2NF.

Все имеющиеся таблицы приведены к 3NF. Нет транзитивных зависимостей.

5 Отношения в BCNF

- Все имеющиеся таблицы приведены к 3NF.
- Все детерминанты первичные ключи то есть тоже потенциальные ключи.

6 Денормализация

• 3NF -> 2NF -> 1NF

actions	events	locations	status
id(PK)	id(PK)	id(PK)	id(PK)
event(FK)	name	name	name
subject(FK)			
object(FK)			
location(FK)			
status(FK)			
process			

actions	events	locations	status
id -> event	id -> name	id -> name	id -> name
id -> subject	name -> id	name -> id	name -> id
id -> object			
id -> location			
id -> status			
id -> process			

actions
id(PK)
event_id
event_name
subject(FK)

actions
object(FK)
location_id
location_name
status_id
status_name
process

actions
id -> event_id
id -> subject
id -> object
id -> location_id
id -> status_id
id -> process
id -> event_name
id -> location_name
id -> status_name
event_id -> event_name
location_id -> location_name
status_id -> status_name

actions
event_name
subject(FK)
object(FK)
location_id(key)
location_name
status_id(key)
status_name(key)
process

actions
event_id -> event_name
location_id -> location_name
status_id -> status_name

movements	locations
id(PK)	id(PK)
character(FK)	name
starting_location(FK)	
destination_location(FK)	

movements	locations
id -> character	id -> name

movements	locations
id -> starting_location	name -> id
id -> destination_location	

movements
id(PK)
character(FK)
starting_location_id
starting_location_name
destination_location_id
destination_location_name

movements
id -> character
id -> starting_location_id
id -> destination_location_id
id -> starting_location_name
id -> destination_location_name
starting_location_id -> starting_location_name
destination_location_id -> destination_location_name

Хунсян Чжоу | November 17, 2023

7 Выводы