MANUFACTURE OF CERAMIC PISTON PIN

Patent number:

JP8061499

Publication date:

1996-03-08

Inventor:

KOJIMA TAKIO

Applicant:

NGK SPARK PLUG CO LTD

Classification:

- international:

F16J1/16; F02F3/00; F02F3/00

- european:

Application number:

JP19940303240 19941110

Priority number(s):

Abstract of JP8061499

PURPOSE: To provide a piston pin which is lightweight and highly strong and reliable in the practical use at a low cost by fitting a nonsintered rib to a non-sintered piston pin body. and sintering the fitted one in manufacturing a ceramic piston pin wherein a rib is provided in the radial direction of an inner wall of the

piston pin body.

CONSTITUTION: A ceramic piston pin 1 is provided with a rib 4 to support the stress which is radially exerted on the position corresponding to an edge 12 of a boss part of a piston 9 and an edge 13 of a small end part of a connecting rod. In manufacturing this piston pin 1, a non-sintered rib 4 is fitted to a non-sintered piston pin body, and then sintered. A plate body 5 which supports a circumferential wall 3 from the inside, is provided with an air hole 6 to discharge the air during the sintering, and is approximately as large in diameter as an inner wall of the piston pin 1 is fitted to the position opposite to the rib 4. In this piston pin 1, the thickness corresponding to the edge 12 of the boss part of the piston 9 and the edge 13 of the small end part of the connecting rod is larger than that of other parts.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出願公開番号

特開平8-61499

(43)公開日 平成8年(1996)3月8日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示箇所

F16J 1/16

F02F 3/00 Z

302 A

請求項の数3 FD (全 5 頁) 審査請求 有

(21)出願番号

特願平6-303240

実願平1-32160の変更

(22)出顧日

平成1年(1989)3月23日

(71)出願人 000004547

日本特殊陶業株式会社

爱知県名古屋市瑞穂区高辻町14番18号

(72)発明者 小島 多喜男

爱知県名古屋市瑞穂区高辻町14番18号 日

本特殊陶業株式会社内

(54) 【発明の名称】 セラミック製ピストンピンの製造方法

(57)【要約】

【目的】 本願発明の目的は、軽量で、しかも実使用時 の強度、信頼性の高いピストンピンを安価に得ようとす るものである。

【構成】 ピストンのボス部エッジ及びコンロッド小端 部エッジに対応する位置のビストンピン本体の内壁に径 方向にリブを設けてなるセラミック製ピストンピンの製 造方法であって、未焼成の前記ピストンピン本体に未焼 成の前記リブを嵌合後、焼成するセラミック製ピストン ピンの製造方法である。

【特許請求の範囲】

【請求項1】 ピストンのボス部エッジ及びコンロッド 小端部エッジに対応する位置のピストンピン本体の内壁 に径方向にリブを設けてなるセラミック製ピストンピン の製造方法であって、未焼成の前記ピストンピン本体に 未焼成の前記リブを嵌合後、焼成することを特徴とする セラミック製ビストンピンの製造方法。

【請求項2】 ピストンのボス部エッジ及びコンロッド 小端部エッジに対応する位置のピストンピン本体の内壁 に径方向にリブを設けてなるセラミック製ピストンピン の製造方法であって、未焼成の前記ピストンピン本体に 未焼成の前記リブを嵌合し、静水圧プレス後、焼成する ことを特徴とするセラミック製ビストンビンの製造方

【請求項3】 ピストンのボス部エッジ及びコンロッド 小端部エッジに対応する位置のピストンピン本体の内壁 に径方向にリブを設けてなるセラミック製ビストンピン であって、前記ピストンピン本体に前記リブが焼結によ り一体に固定されていることを特徴とするセラミック製 ピストンピン。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、内燃機関のピストン とコンロッドを一体に連結するピストンピンの製造方法 に関する。

[0002]

【従来の技術】近年、内燃機関の高出力化に伴って、高 回転域における出力の消費となるピストンのフリクショ ンを低減することが行われてきており、このため、内燃 機関から発生する出力を伝達するコンロッドとの連結に 使用されるピストンピン等においても材質をセラミック (例えば、Si,N,等)とすることによって軽量化を図 り、更には中空体としたピストンピンにおいて、コンロ ッド軸受部に対応する位置の内周を他部分よりも厚くす ることによって強度の向上を図ること(実開昭63-4 465号)が試みられている。

[0003]

【発明が解決しようとする課題】しかしながら、上記従 来のものにおいて、セラミックによるピストンピンは、 軽量化するために薄肉化した中空体のものを用いていた 40 が、内燃機関によって発生する出力をコンロッドを介し てタイヤ等の伝達部に伝えるにあたっては、過大な負荷 がピストンやピストンピンに加わるものであり、その結 果コンロッドとの連結部であるピストンピンには破壊が 起こり易いものである。そのため、内燃機関によって発 生する出力を伝達するにあたって最も負荷が加わりやす いピストンピンのコンロッドとの軸受部の内周を他の部 分よりも肉厚とし、更に内面を研磨することによって、 強度を向上させようとするもの(実開昭63-4465

ず、複雑な研磨工程を施さなければならず、コストが著 しく上昇する欠点がある。そこで、この発明は上記従来 のものの持つ欠点を改善するものであり、軽量で、しか も実使用時の強度、信頼性の高いピストンピンを安価に 得ようとするものである。

2

[0004]

【課題を解決するための手段】その手段は、ピストンの - ボス部エッジ及びコンロッド小端部エッジに対応する位 置のピストンピン本体の内壁に径方向にリブを設けてな るセラミック製ピストンピンの製造方法であって、未焼 成の前記ピストンピン本体に未焼成の前記リフを嵌合 後、焼成するセラミック製ビストンピンの製造方法であ る。その他の手段は、ピストンのボス部エッジ及びコン ロッド小端部エッジに対応する位置のピストンピン本体 の内壁に径方向にリブを設けてなるセラミック製ビスト ンピンの製造方法であって、未焼成の前記ピストンピン 本体に未焼成の前記リブを嵌合し、静水圧プレス後、焼 成するセラミック製ビストンピンの製造方法である。そ の他の手段は、ピストンのボス部エッジ及びコンロッド 20 小端部エッジに対応する位置のピストンピン本体の内壁 に径方向にリブを設けてなるセラミック製ビストンビン であって、前記ピストンピン本体に前記リブが焼結によ り一体に固定されているセラミック製ピストンピンであ る。

[0005]

【作用】燃焼室内での爆発をコンロッドに伝達する時に は、ピストンピンはピストンの変形に伴ってピストンピ ン外周中央に発生する応力とピストン及びコンロッド小 端部から受けるせん断力によって複雑に変化するもので あり、特にこのせん断力は、ボス部エッジ及びコンロッ ド小端部エッジにおいて急激に大きくなるものである が、上記構成を具えるので、せん断力の大きくなるボス 部エッジ及びコンロッド小端部エッジにおいて、せん断 力に起因する曲げ応力に対する強度が高められ、重量の 増加を殆ど伴うことなく破損を防止することができる。 更に、板体に対して穿設される孔部の直径を薄肉部の内 径に対して最大1/3以下のものとすることによって、 板体の真空中での焼結においての破損を防ぎ、強度の低 下を防ぐことが可能となる。また、安価にセラミック製 ピストンピンを得ることができる。

[0006]

【実施例】との発明を図に示す実施例により更に説明す る。第1図は、ピストンピンの組み込み図であり、この セラミック製ピストンピン(1)は、出力をクランクシ ャフトに伝達するコンロッド(10)とピストン(9) を一体に連接するものである。第2図は、この発明の第 1 実施例であり、このセラミック製ピストンピン(1) は、ピストンのボス部エッジ(12)及びコンロッド小 端部エッジ(13)に対応する位置に径方向に働く応力 号)があるが、強度的には十分なものとすることができ 50 を指示するようにリブ(4)を設け、更に上記リフ

(4)に対向する位置に内方から周壁(3)を支持し、 焼結時の空気の排出を可能とする空気孔(6)を有する ピストンピンの内壁とほぼ同径の板体(5)を嵌合さ せ、ピストンのボス部エッジ(12)及びコンロッド小 端部エッジ(13)に対応するピストンピン(1)の肉 厚を周壁(3)の他の部分より肉厚としてなるものであ る。このため、燃焼室内での爆発をコンロッドに伝達す る時に、ピストンピン(1)は、ピストンの変形に伴っ てピストンピン周壁(3)中央に発生する応力とピスト ン及びコンロッド小端部エッジ(12)(13)から受 10 けるせん断力によって複雑に変化するものであるが、特 にこのせん断力は、ボス部エッジ(12)及びコンロッ ド小端部エッジ(13)において急激に大きくなるもの であるが、上記せん断力の大きくなるボス部エッジ(1 2) 及びコンロッド小端部エッジ(13) に対応する部 分にリブ(4)を設けて肉厚としているから、せん断力 に起因する曲げ応力に対する強度が高められ、破損を防 止することができる。なお、このピストンピン本体 (2)は、Si,N₄の未焼成体をプレス圧1500Hg /cm2 で成形し、更に板体(5)はプレス圧1700 Kg/cm2 で成形したものであり、このピストンピン 本体(2)に板体(5)を嵌合させた後、焼成すること によって、ピストンピン本体(2)及び板体(5)の焼 成収縮率が各々17%及び16%であることから、空隙 を生じることなく一体に固定されるものである。 【0007】また、焼結前の嵌合部の寸法は、外筒が1 8mm、円板は17.9mmであり、焼結後の各寸法す なわち軸方向の全長(1)60mm、外径(D)20m m、内径(d1) 15mm、内径(d2) 12mmであ って、端部よりリブまでの距離 (t1)(t2)とリブ 30 間の長さ(t3)は、それぞれ5mm、16mm、18 mmとなって嵌入時の間隔がなくなり密嵌するものとな る(第4図参照)。このセラミック製ピストンピン (1) について軸方向に対して5000Gで加振試験を 行ったが、損傷は見られなかった。第4図は、この発明 の第2実施例であり、各部寸法は第1実施例と同一であ って、との第2実施例であるセラミック製ビストンビン (1)は、中空体のピストンピン本体(2)の周壁中央 部(11)を肉厚とすると共に、この中央部(11)の 両端に、段部(14)を設け、これに当接して内方から 40 周壁(3)を支持する板体(5)を嵌合させてなるもの である。この板体(5)の嵌合方法には、CIPによる

一体化する法や加熱、圧入法があるが、製品の安定性や作業効率の点からも焼結時に予め板体(5)を挿嵌し焼結することによって、中空体であるピストンピン本体(2)に一体的に固定されるものである。この様に、出力をコンロッドに伝達する時に、曲げ応力のかかる中央部(11)を肉厚とし、更に内方から外周部(3)を支持する板体(5)を嵌合させてなるものであることか

【0008】なお、ピストンピン本体(2)と板体 (5)の未焼結体をプレス圧1500Kg/cm2で成 形し、板体(5)を上記ピストンピン本体(2)の内径 よりも0、02mm小さくなるように切削加工を施し、 両者を嵌合させ、プレス圧2000Kg/cm2の静水

に対する強度を向上させることができる。

両者を嵌合させ、プレス圧2000Kg/cm2の静水 圧により両者を一体に固定させてもよいものである。第 5図は、この発明の第3実施例であり、この第3実施例 であるセラミック製ピストンピン(1)は、ピストンの ボス部エッジ(12)及びコンロッド小端部エッジ(1 3)に対応する位置にリブ(4)を有し、更に上記リブ (4)に対向する位置に内方から外周部(3)を支持 し、空気孔(6)を有する板体(5)を嵌合させるピストンピン本体(2)において、本体を構成する周壁

(3)の肉厚を開口部(7)から中央部(11)方向にかけて、漸次肉厚なものとするものである。このピストンピン本体(2)を構成する外周部(3)の肉厚の漸次的変化は、セラミック製ピストンピン(1)に応力が加わった時に、円滑な屈曲とし、上記セラミック製ピストンピン(1)のエッジに加わるせん断力を検和することができる。

【0009】第6図は、更に第2実施例であるセラミック製ピストンピン(1)に嵌合する板体(5)の中央に穿設される空気孔(6)の代わりに、板体(5)の偏向した位置に焼結時に空気の排出を可能とする切り欠き部(8)を設けてなるものである。なお、板体(5)にきされる空気孔(6)は、あくまでも焼結時において、熱による空気によって破壊が起こらないように、空気に排出を可能とするものであることから、強度を低下させないように直径をピストンピン本体(2)の薄肉部の内径に対して最大1/3以下とするとよいものである。この発明の実施例(第1実施例~第3実施例)について、ピストンとコンロッドに連結した状態において、オートグラフにより荷重を印加することによって、その破壊する。

【表1】

		重量 (g)	破壞荷重	破壊荷重(トン)	
実施例	1	3 6	8. 5	9	
実施例	2	3 6	8	8. 5	
実施例	3	3 6	8	9	
從來例	1	3 9	4. 5.	5. 5	
従来例	2	4 6	6	7. 5	
從来例	3	6 1	1 0	1 1	

持する板体(5)を篏合させてなるものであることか なお、従来例1は内径12mm、従来例2は内径10m ら、変形を最小限に抑制することができると共に、破損 50 mの各々中空体のピストンピンであり、従来例3は中実

体のピストンピンである。 この表 1 からも明らかなよう に、ピストンピン(1)自体の重量を著しく軽減させ、 その破壊強度を向上させることができる効果が確認でき るものである。

[0010]

【発明の効果】以上のとおり、ピストンピンの重量を軽 減しても、その破壊強度を低下させることがないもので あるから、十分に内燃機関の高性能化に対応することが できる優れた効果を有するものである。また、安価にセ ラミック製ピストンピンを得ることができる。

【図面の簡単な説明】

【図1】との発明の実施例を具えるピストンの全体斜視 図である。

【図2】この発明の第1実施例の拡大断面図である。

【図3】 ヒストン取付時における要部拡大断面図であ

【図4】(イ)は、この発明の第2実施例の拡大断面

*図、(ロ)は、板体の拡大斜視図である。

【図5】この発明の第3実施例の拡大断面図である。

【図6】(イ)は、第4実施例の拡大断面図、(ロ)

は、その側方からの正面図である。

【符号の説明】

- 1 セラミック製ピストンピン
- 2 ピストンピン本体
- 周壁
- リブ
- 10 5 板体
 - 6 空気孔
 - 9 ピストン
 - 10 コンロッド
 - 11 中央部
 - 12 ピストンのボス部エッジ
 - 13 コンロッド小端部エッジ

【図1】

[図2]

【図4】

(0)

【図5】

