Notes on Generative Adversarial Nets

January 26, 2022

1 Related Work

- Undirected graphical models with latent variables
 - Restricted Boltzmann Machines
 - Deep Boltzmann Machines
- Deep Belief Networks
- Noise-Contrastive Estimation
- Generative Stochastic Network
- Variational Auto Encoders
- Stochastic Backpropagation

2 Adversarial Nets

- Goal: Learn distribution p_q over data x.
- Method:
 - Prior on input variables $p_z(z)$
 - Map $z \to G(z; \theta_q)$. G is differentiable.
 - Map $x \to D(x; \theta_d)$
 - Train:
 - * D to mazimize the probability of classifying correctly its inputs (real or fake).
 - * G to minimize $\log(1 D(G(z)))$
 - * In short: $\min_{G} \max_{D} V(G,D) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 D(G(z)))]$
 - * It is preferable to rain G by maximizing $\log(D(G(z)))$ to obtain stronger gradients at the beginning (by avoiding saturation).
 - After several steps, the equilibrium (point where neither can make improvements) will be reached and $p_g = p_{data}$ (given that both networks have enough capacity).

3 Theoretical Results

This assumes that models have infinite capacity in order to study convergen in the space of probability density functions.

For G fixed, the optimal discriminator D is
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_q(x)}$$

$$\begin{split} V(G,D) &= \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))] \\ &= \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{x \sim p_g(x)}[\log(1 - D(x))] \\ &= \int_x p_{data}(x) \log(D(x)) + p_g(x) \log(1 - D(x)) dx \end{split}$$

 $(a,b) \in \mathbb{R}^2 \setminus \{0,0\}, \ y \to a \log(y) + b \log(1-y)$ achieves its maximum in [0,1] at $\frac{a}{a+b}$ (derivative w.r.t. y and make it = 0). The discriminator does not need to be defined outside of $Supp(p_{data}) \cup Supp(p_g)$ i.e. when (a,b) = (0,0)

$$\begin{split} C(G) &= \max_{D} V(G, D) \\ &= \mathbb{E}_{x \sim p_{data}} [\log D_G^*(x)] + \mathbb{E}_{x \sim p_g} \left[\log (1 - D_G^*(x)) \right] \\ &= \mathbb{E}_{x \sim p_{data}} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right] + \mathbb{E}_{x \sim p_g} \left[\log \frac{p_g(x)}{p_{data}(x) + p_g(x)} \right] \end{split}$$

According to this last bit, D's training objective can be interpreted as maximizing the log-likelihood for estimating the conditional probability P(Y = y|x) where Y is the random variable that indicates whether x belongs to $p_{data}(y = 1)$ or to $p_g(y = 0)$.

The global minimum of the virtual training criterion C(G) is achieved if and only if $p_g = p_{data}$. At that point, C(G) achieves the value $-\log(4)$.

$$\begin{split} C(G) &= \mathbb{E}_{x \sim p_{data}} \left[\log p_{data}(x) - \log \frac{p_{data}(x) + p_g(x)}{2} - \log 2 \right] + \mathbb{E}_{x \sim p_g} \left[\log p_g(x) - \log \frac{p_{data}(x) + p_g(x)}{2} - \log 2 \right] \\ &= -\log(4) + \mathbb{E}_{x \sim p_{data}} \left[\log p_{data}(x) - \log \frac{p_{data}(x) + p_g(x)}{2} \right] + \mathbb{E}_{x \sim p_g} \left[\log p_g(x) - \log \frac{p_{data}(x) + p_g(x)}{2} \right] \\ &= -\log(4) + KL \left(p_{data} \left| \left| \frac{p_{data} + p_g}{2} \right| + KL \left(p_g \left| \left| \frac{p_{data} + p_g}{2} \right| \right) \right. \\ &= -\log(4) + 2JSD(p_{data} | p_g) \end{split}$$

If G and D have enough capacity, and at each step of the Algorithm 1, the discriminator is allowed to reach its optimum given G, and p_q is updated so as to improve the criterion

$$\mathbb{E}_{x \sim p_{data}}[\log D_G^*(x)] + \mathbb{E}_{x \sim p_g}\left[\log(1 - D_G^*(x))\right]$$

then p_q converges to p_{data} .

Let $V(G, D) = U(p_q, D)$.

- Note that $U(p_q, D)$ is convex in p_q . Why?
 - The subderivatives of a supremum of convex functions include the derivative of the function at the point where the maximum is attained.
 - * In other words: If $f(x) = \sup_{\alpha \in A} f_{\alpha}(x)$ and $f_{\alpha}(x)$ is convex in x for every α , then $\partial f_{\beta}(x) \in \partial f$ if $\beta = \arg \sup_{\alpha \in A} f_{\alpha}(x)$
 - Since $\sup_D U(p_g, D)$ is convex in p_g with a unique global optima, it converges to p_x with small enough updates.

References

[1] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.2661 [stat.ML].