Klausur zur Vorlesung Grundbegriffe der Informatik 7. März 2013

Klausur-		
nummer		

Name:	
Vorname:	
MatrNr.:	

Aufgabe	1	2	3	4	5	6	7
max. Punkte	9	7	7	11	6	10	10
tats. Punkte							

Gesamtpunktzahl:		Note:
------------------	--	-------

Aufgabe 1 (9 Punkte)

Kreuzen Sie für die folgenden Aussagen an, ob sie wahr oder falsch sind.

Hinweis: Für jede richtige Antwort gibt es einen Punkt, für jede falsche Antwort wird ein Punkt abgezogen. Wenn Sie kein Kreuz setzen, bekommen Sie weder Plus- noch Minuspunkt, für das Ankreuzen beider Möglichkeiten wird ein Punkt abgezogen. Die gesamte Aufgabe wird mit mindestens 0 Punkten bewertet.

a)	Für alle Relationen $R_1, R_2 \subseteq M \times M$ gilt: $R_1 \circ R_2 =$	$R_2 \circ R_1$.	
		wahr: □	falsch: □
b)	Gegeben seien zwei Relationen $R_1, R_2 \subseteq M \times M$. R_1 ist reflexiv $\Rightarrow R_1 \cup R_2$ ist reflexiv.		
		wahr: □	falsch: □
c)	Gegeben seien zwei Relationen $R_1, R_2 \subseteq M \times M$. Symmetrisch sind, dann ist $R_1 \cup R_2$ antisymmetrisch		R_2 anti-
		wahr: □	falsch: □
d)	$(\{a\} \cup \{b\})^* = \{a\}^* \cup \{b\}^*$		
		wahr: □	falsch: □
e)	Besitzt die Menge der oberen Schranken einer Tei Element, so heißt dies das Supremum von T .	lmenge T ei	n größtes
		wahr: □	falsch: □
f)	Für einen wie in der Vorlesung definierten Akzept mit $F=Z$ gilt: $L(A)=X^*$	$\operatorname{for} A = (Z, z)$	(0, X, f, F)
		wahr: □	falsch: □
g)	Es gibt 256 Sprachen L mit $L \subseteq \{w \in \{a,b\}^* \mid w = a\}$	= 3}	
		wahr: □	falsch: □
h)	$n^{\frac{42}{41}} \in O(n(\log n)^2)$		
		wahr: □	falsch: □
i)	Sei A die Adjazenzmatrix zu einem Graphen mit n $\forall m > n : \operatorname{sgn}(\sum_{i=1}^n A^i) = \operatorname{sgn}(\sum_{i=1}^m A^i)$	Knoten. Es	gilt:
		wahr: □	falsch: □

Weiterer Platz für Antworten zu Aufgabe 1:

Aufgabe 2 (7 Punkte)

In dieser Aufgabe geht es um Huffman-Codierungen.

Gegeben seien zwei Codierungen über dem Alphabet $A = \{a, b, c, d, e\}$

- a) Welche der beiden Codierungen ist eine gültige Huffman-Codierung c_g ? Eine gültige Huffman-Codierung ist eine Codierung zu einem wie in der Vorlesung konstruierten Huffman-Baum. Begründen Sie Ihre Entscheidung kurz. [2 *Punkte*]
- b) Zeichnen Sie zur gültigen Huffman-Codierung c_g aus Teilaufgabe a) den Huffman-Baum. [2 *Punkte*]
- c) Für alle $x \in A$ bezeichne f(x) die absolute Häufigkeit von x. Zu c_g seien folgende absoluten Häufigkeiten gegeben:

$$f(d) = 1,$$
 $f(e) = 2,$ $f(a) = 4$

Geben Sie alle möglichen Paare von absoluten Häufigkeiten $(f(b), f(c)) \in \mathbb{N}_+ \times \mathbb{N}_+$ an, so dass $\sum_{i \in A} f(i) \leq 15$ und die Huffman-Codierung c_g entsteht. [3 *Punkte*]

Hinweis: Falsche Paare geben Punktabzug.

Weiterer Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (7 Punkte)

1. Gegeben sei folgende Funktion $f : \{a, b\}^* \rightarrow \{a, b\}^*$:

$$\begin{split} f(\epsilon) &= \epsilon \\ \forall w \in \{\mathtt{a},\mathtt{b}\}^*: & f(\mathtt{a}w) = \mathtt{b}f(w) \\ \forall w \in \{\mathtt{a},\mathtt{b}\}^*: & f(\mathtt{b}w) = \mathtt{a}f(w) \end{split}$$

Beweisen Sie per Induktion, dass gilt:

$$\forall w_1, w_2 \in \{\mathtt{a},\mathtt{b}\}^* : f(w_1w_2) = f(w_1)f(w_2)$$

[4 Punkte]

2. Zu einem beliebigen Alphabet A sei folgende Funktion $g: A^* \times \mathbb{N}_0 \to A^*$ gegeben:

$$\forall k \in \mathbb{N}_+, \forall n \in \mathbb{N}_0 : \forall x_1, \dots, x_k \in A :$$

$$g(x_1 \dots x_k, n) = \begin{cases} x_{n+1} \dots x_k & \text{falls } k > n \\ \epsilon & \text{sonst} \end{cases}$$

Geben Sie eine rekursive Definition für g an.

[3 Punkte]

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (11 Punkte)

Gegeben sei folgender regulärer Ausdruck $R = (01 \mid 010 \mid 000)*$

- a) Geben Sie über dem Alphabet $X = \{0,1\}$ einen endlichen Akzeptor A (wie in der Vorlesung definiert) an, so dass $L(A) = \langle R \rangle$. [6 Punkte] Hinweis: Es genügen 7 Zustände. Akzeptoren mit mehr als 7 Zuständen geben Punktabzug.
- b) Zeichnen Sie einen Kantorowitsch-Baum zu R. [2 Punkte]
- c) Geben Sie drei Nerode-Äquivalenzklassen bzgl. $\langle R \rangle$ durch Nennung je eines Repräsentanten r_0, r_1, r_2 an, sowie drei Wörter $w_0, w_1, w_2 \in \{0, 1\}^*$, so dass $\forall i, j \in \mathbb{G}_3 \land i \neq j$ gilt: $r_i w_i \in \langle R \rangle$, aber $r_j w_i \notin \langle R \rangle$ [3 *Punkte*]

Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5 (6 Punkte)

Gegeben sei folgende formale Sprache $L\subseteq \{a,b\}^*$ für die gilt: Jedes Suffix hat höchstens ein a mehr als b und höchstens ein b mehr als a, also

$$L = \{w \in \{a,b\}^* \mid \text{ Für alle Suffixe } s \text{ von } w \text{ gilt} : |N_a(s) - N_b(s)| \le 1\}$$

- a) Geben Sie einen regulären Ausdruck R mit $\langle R \rangle = L$ an. [3 Punkte]
- b) Weiter sei folgende Relation $R \subseteq \{a,b\}^* \times \{a,b\}^*$ gegeben

$$R = \{(x,y) \mid (x \in L \land y \in L) \Rightarrow x \cdot y \in L\}$$

Überpüfen Sie *R* jeweils auf Reflexivität, Symmetrie und Transitivität und begründen Sie Ihre Entscheidung. [3 *Punkte*]

Name:	MatrNr.:
-------	----------

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (10 Punkte)

1. Zeichnen Sie alle nicht-isomorphen ungerichteten Bäume U = (V, E) mit 7 Knoten für die gilt:

$$\forall x \in V : d(x) \leq 3$$

Hinweis: Es gibt Punktabzug für Graphen, die nicht verlangt waren. Sie brauchen die Knoten nicht zu benennen. [5 Punkte]

2. Für $n \in \mathbb{N}_+$ sei folgender Graph $G_n = (V_n, E_n)$ definiert: $V_n = \{x \mid x \subseteq \mathbb{G}_n \land |x| = 2\},$

$$E_n = \{\{u,v\} \mid u \in V, v \in V, u \cap v = \varnothing\}.$$

- a) Zeichnen Sie G_4 . [2 Punkte]
- b) Wie viele Kanten hat G_5 ? [2 Punkte]
- c) Geben Sie die Wegematrix zu G_3 an. [1 Punkt]

Name:	MatrNr.:	
-------	----------	--

Weiterer Platz für Antworten zu Aufgabe 6:

Aufgabe 7 (10 Punkte)

Gegeben sei folgende Turingmaschine *T*:

- Zustandsmenge ist $Z = \{s, z_1, z_2, z_3, z_4\}.$
- Anfangszustand ist s.
- Bandalphabet ist $X = \{\Box, 1, X, \sharp\}$.
- Die Arbeitsweise ist wie folgt festgelegt:

	S	z_1	z_2	z_3	z_4
1	(s,1,R)	(z_2, X, R)	-	(z_4, X, L) (z_3, X, R)	-
X	_	(z_1, X, L)	(z_2, X, R)	(z_3, X, R)	(z_4, X, L)
#	(z_1,\sharp,L)	-	(z_3,\sharp,R)	-	(z_1,\sharp,L)
	-	-	-	-	-

(Darstellung als Graph auf der nächsten Seite)

Die Turingmaschine wird im folgenden für Eingaben $w \in \{1^n \sharp 1^m \mid n, m \in \mathbb{N}_+\}$ verwendet. Was T für andere Eingaben macht, muss nicht betrachtet werden. Der Kopf der Turingmaschine stehe anfangs auf dem ersten Zeichen von w.

- a) Geben Sie für die Eingabe 11#111 die Anfangskonfiguration, die Endkonfiguration und jede weitere Konfiguration an, die sich während der Berechnung nach einer Änderung der Bandbeschriftung ergibt.[3 Punkte]
- b) In welchen Zuständen kann T halten für eine Eingabe $w_0 \sharp w_1$, mit $w_0, w_1 \in \{1\}^+$ und
 - 1.) $|w_0| > |w_1|$

2.)
$$|w_0| \le |w_1|$$
? [1 Punkt]

c) Erweitern Sie T so zu T', dass L(T') = L gilt, mit

$$L = \{w_0 \sharp \dots \sharp w_n \mid n \in \mathbb{N}_+ \land w_n \in \{1\}^+ \land \forall i \in \mathbb{G}_n : w_i \in \{1\}^+ \land |w_i| \le |w_{i+1}|\}$$

T' soll dabei $\forall w \in L$ im akzeptierenden Zustand a halten. [4 Punkte]

d) Beschreiben Sie in maximal zwei Sätzen den Unterschied zwischen entscheidbaren und aufzählbaren Sprachen. [2 Punkte]

Darstellung der Turingmaschine als Graph:

Weiterer Platz für Antworten zu Aufgabe 7:

Weiterer Platz für Antworten zu Aufgabe 7:

Name:	MatrNr.:
value.	matt. 1 vi

Name:	MatrNr.:
value.	matt. 1 vi