Discrete Mathematical Models

Lecture 11

Kane Townsend Semester 2, 2024

Section B: Digital Information (cont.)

Section B2: Sequences, Induction, Sorting

Text Reference (Epp)

3ed: Sections 4.1-4, 8.1-3 (Sequences and induction),

9.3,5 (Sorting)

4ed: Sections 5.1-4,6-8, (Sequences and induction),

11.3,5 (Sorting)

5ed: Sections 5.1-4,6-7, (Sequences and induction),

11.3,5 (Sorting)

Let S be a set and $I \subseteq \mathbb{Z}_{\geq 0} = \mathbb{N}^*$. A function $a \colon I \to S$ is called a **sequence in** S.

Let S be a set and $I \subseteq \mathbb{Z}_{\geq 0} = \mathbb{N}^*$. A function $a \colon I \to S$ is called a **sequence in** S. Special sequence notation is often used:

Function notation	Sequence notation
$a: I \rightarrow S, n \mapsto a(n)$	$(a_n)_{n\in I}\subseteq S$

Let S be a set and $I \subseteq \mathbb{Z}_{\geq 0} = \mathbb{N}^*$. A function $a \colon I \to S$ is called a **sequence in** S. Special sequence notation is often used:

Function notation	Sequence notation
$a: I \rightarrow S, n \mapsto a(n)$	$(a_n)_{n\in I}\subseteq S$

The notation $(a_n)_{n\in I}$ indicates that the function can be represented as an ordered -tuple (possibly infinite -tuple).

Let S be a set and $I \subseteq \mathbb{Z}_{\geq 0} = \mathbb{N}^*$. A function $a \colon I \to S$ is called a **sequence in** S. Special sequence notation is often used:

Function notation	Sequence notation
$a: I \rightarrow S, n \mapsto a(n)$	$(a_n)_{n\in I}\subseteq S$

The notation $(a_n)_{n\in I}$ indicates that the function can be represented as an ordered -tuple (possibly infinite -tuple).

Examples:

•
$$I = \{1, 2, 3\}$$
: $(a_n)_{n \in I} = (a_1, a_2, a_3)$.

Let S be a set and $I \subseteq \mathbb{Z}_{\geq 0} = \mathbb{N}^*$. A function $a \colon I \to S$ is called a **sequence in** S. Special sequence notation is often used:

Function notation	Sequence notation
$a: I \rightarrow S, n \mapsto a(n)$	$(a_n)_{n\in I}\subseteq S$

The notation $(a_n)_{n\in I}$ indicates that the function can be represented as an ordered -tuple (possibly infinite -tuple).

Examples:

- $I = \{1, 2, 3\}$: $(a_n)_{n \in I} = (a_1, a_2, a_3)$.
- $I = \mathbb{N}^*$: $(a_n)_{n \in I} = (a_0, a_1, a_2, \ldots)$.

Let S be a set and $I \subseteq \mathbb{Z}_{\geq 0} = \mathbb{N}^*$. A function $a \colon I \to S$ is called a **sequence in** S. Special sequence notation is often used:

Function notation	Sequence notation
$a: I \rightarrow S, n \mapsto a(n)$	$(a_n)_{n\in I}\subseteq S$

The notation $(a_n)_{n\in I}$ indicates that the function can be represented as an ordered -tuple (possibly infinite -tuple).

Examples:

- $I = \{1, 2, 3\}$: $(a_n)_{n \in I} = (a_1, a_2, a_3)$.
- $I = \mathbb{N}^*$: $(a_n)_{n \in I} = (a_0, a_1, a_2, \ldots)$.

In practice we sometimes leave out the parentheses and speak of "the sequence a_1, a_2, a_3 " or "the sequence a_0, a_1, a_2, \ldots "

The " \subseteq S" part of the sequence notation $(a_n)_{n\in I}\subseteq S$ indicates that the sequence members belong to S;

The " $\subseteq S$ " part of the sequence notation $(a_n)_{n\in I}\subseteq S$ indicates that the sequence members belong to S; *i.e.* that the range of the sequence function $a:I\to S$ is a subset of its codomain S.

The " $\subseteq S$ " part of the sequence notation $(a_n)_{n\in I}\subseteq S$ indicates that the sequence members belong to S; *i.e.* that the range of the sequence function $a:I\to S$ is a subset of its codomain S.

The sequence *itself* is **not** a subset of *S*, since it is not a *set*.

The " $\subseteq S$ " part of the sequence notation $(a_n)_{n\in I}\subseteq S$ indicates that the sequence members belong to S; *i.e.* that the range of the sequence function $a:I\to S$ is a subset of its codomain S.

The sequence *itself* is **not** a subset of *S*, since it is not a *set*.

Examples:

1. $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ sequence of interests rates. a_n is interest rate at time n.

The " \subseteq S" part of the sequence notation $(a_n)_{n\in I}\subseteq S$ indicates that the sequence members belong to S; *i.e.* that the range of the sequence function $a:I\to S$ is a subset of its codomain S.

The sequence *itself* is **not** a subset of *S*, since it is not a *set*.

Examples:

- 1. $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ sequence of interests rates. a_n is interest rate at time n.
- 2. $(p_n)_{n\in\mathbb{N}}\subseteq\mathbb{N}^\star\times\mathbb{N}^\star\times\mathbb{N}^\star$ sequence of states of an ecosystem. $p_n=(r_n,s_n,t_n)$: population of species r,s,t at time n.

The " $\subseteq S$ " part of the sequence notation $(a_n)_{n\in I}\subseteq S$ indicates that the sequence members belong to S; *i.e.* that the range of the sequence function $a:I\to S$ is a subset of its codomain S.

The sequence *itself* is **not** a subset of *S*, since it is not a *set*.

Examples:

- 1. $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ sequence of interests rates. a_n is interest rate at time n.
- 2. $(p_n)_{n\in\mathbb{N}}\subseteq\mathbb{N}^*\times\mathbb{N}^*\times\mathbb{N}^*$ sequence of states of an ecosystem. $p_n=(r_n,s_n,t_n)$: population of species r,s,t at time n.
- 3. U set of users. $(u_n)_{n \in \{1,2,3,4,5\}} \subseteq U$: a list of 5 users.

An **explicit definition** of a sequence is a formula for a_n .

An **explicit definition** of a sequence is a formula for a_n . Examples:

1.
$$\forall n \in \mathbb{N} \ a_n = 2^n$$
.

An **explicit definition** of a sequence is a formula for a_n . Examples:

1.
$$\forall n \in \mathbb{N} \ a_n = 2^n$$
. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, ...$,

An **explicit definition** of a sequence is a formula for a_n . Examples:

- 1. $\forall n \in \mathbb{N} \ a_n = 2^n$. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, ...,$
- 2. a_1 = Pierre, a_2 = Julie, a_3 = Paul. $(a_n)_{n \in \{1,2,3\}}$ = (Pierre, Julie, Paul).

An **explicit definition** of a sequence is a formula for a_n . Examples:

- 1. $\forall n \in \mathbb{N} \ a_n = 2^n$. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, ...,$
- 2. a_1 = Pierre, a_2 = Julie, a_3 = Paul. $(a_n)_{n \in \{1,2,3\}}$ = (Pierre, Julie, Paul).

An **implicit definition** of a sequence comprises starting value(s) and a relationship between the a_n 's.

An **explicit definition** of a sequence is a formula for a_n . Examples:

- 1. $\forall n \in \mathbb{N} \ a_n = 2^n$. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, ...$
- 2. a_1 = Pierre, a_2 = Julie, a_3 = Paul. $(a_n)_{n \in \{1,2,3\}}$ = (Pierre, Julie, Paul).

An **implicit definition** of a sequence comprises starting value(s) and a relationship between the a_n 's.

Examples:

$$1. \begin{cases} a_{n+1} = 2a_n, \\ a_1 = 2. \end{cases}$$

An **explicit definition** of a sequence is a formula for a_n . Examples:

- 1. $\forall n \in \mathbb{N} \ a_n = 2^n$. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, ...,$
- 2. a_1 = Pierre, a_2 = Julie, a_3 = Paul. $(a_n)_{n \in \{1,2,3\}}$ = (Pierre, Julie, Paul).

An **implicit definition** of a sequence comprises starting value(s) and a relationship between the a_n 's.

1.
$$\begin{cases} a_{n+1} = 2a_n, & a_2 = 2(2) = 4 \\ a_1 = 2. & a_3 = 2(4) = 8 \end{cases}$$

An **explicit definition** of a sequence is a formula for a_n . Examples:

- 1. $\forall n \in \mathbb{N}$ $a_n = 2^n$. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, \ldots$,
- 2. a_1 = Pierre, a_2 = Julie, a_3 = Paul. $(a_n)_{n \in \{1,2,3\}}$ = (Pierre, Julie, Paul).

An **implicit definition** of a sequence comprises starting value(s) and a relationship between the a_n 's.

1.
$$\begin{cases} a_{n+1} = 2a_n, & a_2 = 2(2) = 4 \\ a_1 = 2. & a_3 = 2(4) = 8 \end{cases} (a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, \dots,$$

$$\dots \dots$$

An **explicit definition** of a sequence is a formula for a_n . Examples:

- 1. $\forall n \in \mathbb{N} \ a_n = 2^n$. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, ...$
- 2. a_1 = Pierre, a_2 = Julie, a_3 = Paul. $(a_n)_{n \in \{1,2,3\}}$ = (Pierre, Julie, Paul).

An **implicit definition** of a sequence comprises starting value(s) and a relationship between the a_n 's.

Examples:

1.
$$\begin{cases} a_{n+1} = 2a_n, & a_2 = 2(2) = 4 \\ a_1 = 2. & a_3 = 2(4) = 8 \end{cases} (a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, \dots,$$

2.
$$\begin{cases} a_{n+1} = -a_n + a_{n-1}, \\ a_2 = 1, \\ a_1 = 0. \end{cases}$$

An **explicit definition** of a sequence is a formula for a_n . Examples:

- 1. $\forall n \in \mathbb{N} \ a_n = 2^n$. $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, ...$
- 2. a_1 = Pierre, a_2 = Julie, a_3 = Paul. $(a_n)_{n \in \{1,2,3\}}$ = (Pierre, Julie, Paul).

An **implicit definition** of a sequence comprises starting value(s) and a relationship between the a_n 's.

Examples:

1.
$$\begin{cases} a_{n+1} = 2a_n, & a_2 = 2(2) = 4 \\ a_1 = 2. & a_3 = 2(4) = 8 \end{cases} (a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, \dots,$$

2.
$$\begin{cases} a_{n+1} = -a_n + a_{n-1}, & a_1 = 0 \\ a_2 = 1, & a_2 = 1 \\ a_1 = 0. & a_5 = -2 + (-1) = -3 \end{cases}$$

Proofs about sequences

Let P(n) be a predicate with variable $n \in \mathbb{N}$.

Let P(n) be a predicate with variable $n \in \mathbb{N}$. How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Let P(n) be a predicate with variable $n \in \mathbb{N}$. How to prove that $\forall n \in \mathbb{N} \ P(n)$? **Proof of** $\forall n \in \mathbb{N} \ P(n)$ by mathematical induction:

• Prove *P*(1).

Let P(n) be a predicate with variable $n \in \mathbb{N}$. How to prove that $\forall n \in \mathbb{N} \ P(n)$? **Proof of** $\forall n \in \mathbb{N} \ P(n)$ by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then:

Let P(n) be a predicate with variable $n \in \mathbb{N}$. How to prove that $\forall n \in \mathbb{N} \ P(n)$? **Proof of** $\forall n \in \mathbb{N} \ P(n)$ by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.

Let P(n) be a predicate with variable $n \in \mathbb{N}$. How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Proof of $\forall n \in \mathbb{N}$ P(n) by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.
- Prove P(n+1).

Let P(n) be a predicate with variable $n \in \mathbb{N}$. How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Proof of $\forall n \in \mathbb{N} \ P(n)$ by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.
- Prove P(n+1).

This is also known as **strong** mathematical induction.

Let P(n) be a predicate with variable $n \in \mathbb{N}$.

How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Proof of $\forall n \in \mathbb{N}$ P(n) by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.
- Prove P(n+1).

This is also known as **strong** mathematical induction.

This works because:

P(1) is true.

Let P(n) be a predicate with variable $n \in \mathbb{N}$.

How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Proof of $\forall n \in \mathbb{N}$ P(n) by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.
- Prove P(n+1).

This is also known as **strong** mathematical induction.

This works because:

P(1) is true.

 $P(1) \implies P(2)$, so P(2) is true.

Let P(n) be a predicate with variable $n \in \mathbb{N}$.

How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Proof of $\forall n \in \mathbb{N}$ P(n) by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.
- Prove P(n+1).

This is also known as **strong** mathematical induction.

This works because:

P(1) is true.

 $P(1) \implies P(2)$, so P(2) is true.

 $P(1) \wedge P(2) \implies P(3)$, so P(3) is true.

Let P(n) be a predicate with variable $n \in \mathbb{N}$.

How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Proof of $\forall n \in \mathbb{N}$ P(n) by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.
- Prove P(n+1).

This is also known as **strong** mathematical induction.

This works because:

P(1) is true.

 $P(1) \implies P(2)$, so P(2) is true.

 $P(1) \wedge P(2) \implies P(3)$, so P(3) is true.

 $P(1) \wedge P(2) \wedge P(3) \implies P(4)$, so P(4) is true too.

Let P(n) be a predicate with variable $n \in \mathbb{N}$.

How to prove that $\forall n \in \mathbb{N} \ P(n)$?

Proof of $\forall n \in \mathbb{N}$ P(n) by mathematical induction:

- Prove *P*(1).
- Let $n \in \mathbb{N}$. Treat n as temporarily fixed and then: Assume $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n)$.
- Prove P(n+1).

This is also known as **strong** mathematical induction.

This works because:

P(1) is true.

 $P(1) \implies P(2)$, so P(2) is true.

 $P(1) \wedge P(2) \implies P(3)$, so P(3) is true.

 $P(1) \wedge P(2) \wedge P(3) \implies P(4)$, so P(4) is true too.

Continuing to argue in this manner gives P(n) for all $n \in \mathbb{N}$.

A sequence is defined implicitly by
$$\begin{cases} a_{n+1}=3a_n & \forall n\in\mathbb{N},\\ a_1=3. \end{cases}$$

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition?

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

$$a_1 = 3$$
,

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

$$a_1 = 3$$
, $a_2 = 9$,

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$,

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim:
$$\forall n \in \mathbb{N} \ a_n = 3^n$$
.

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim: $\forall n \in \mathbb{N} \ a_n = 3^n$.

Proof by mathematical induction that the claim is correct:

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim:
$$\forall n \in \mathbb{N} \ a_n = 3^n$$
.

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $a_1=3^1=3$, agreeing with the implicit definition.

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim: $\forall n \in \mathbb{N} \ a_n = 3^n$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $a_1=3^1=3$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n.

6

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim: $\forall n \in \mathbb{N} \ a_n = 3^n$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $a_1=3^1=3$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$a_{n+1} = 3a_n$$
 (from the implicit definition)

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim: $\forall n \in \mathbb{N} \ a_n = 3^n$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $a_1=3^1=3$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$a_{n+1} = 3a_n$$
 (from the implicit definition)
= $3(3^n)$ (by the inductive assumption)

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim: $\forall n \in \mathbb{N} \ a_n = 3^n$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $a_1=3^1=3$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$a_{n+1} = 3a_n$$
 (from the implicit definition)
= $3(3^n)$ (by the inductive assumption)
= 3^{n+1}

A sequence is defined implicitly by
$$\begin{cases} a_{n+1} = 3a_n & \forall n \in \mathbb{N}, \\ a_1 = 3. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Claim:
$$\forall n \in \mathbb{N} \ a_n = 3^n$$
.

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $a_1=3^1=3$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$a_{n+1} = 3a_n$$
 (from the implicit definition)
= $3(3^n)$ (by the inductive assumption)
= 3^{n+1}

and so the formula is also correct for n+1.

Terms of a sequence can be summed: $a_1+a_2+a_3+...$

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times ...$

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times ...$. We use the special notation

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + a_3 + \dots + a_k,$$

7

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times$ We use the special notation

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + a_3 + \dots + a_k, \qquad \prod_{n=1}^{k} a_n = a_1 \times a_2 \times a_3 \times \dots \times a_k.$$

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times ...$ We use the special notation

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + a_3 + \dots + a_k, \qquad \prod_{n=1}^{k} a_n = a_1 \times a_2 \times a_3 \times \dots \times a_k.$$

Examples: (1)
$$\sum_{n=1}^{10} n = 1 + 2 + 3 + 4 + ... + 9 + 10 = 55$$
.

7

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times \dots$ We use the special notation

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + a_3 + \dots + a_k, \qquad \prod_{n=1}^{k} a_n = a_1 \times a_2 \times a_3 \times \dots \times a_k.$$

Examples: (1)
$$\sum_{n=1}^{10} n = 1 + 2 + 3 + 4 + ... + 9 + 10 = 55$$
.
(2) $\sum_{n=0}^{7} 2^n = 1 + 2 + 4 + 8 + ... + 128 = 255$.

(2)
$$\sum_{n=0}^{\ell} 2^n = 1 + 2 + 4 + 8 + \dots + 128 = 255.$$

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times \dots$ We use the special notation

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + a_3 + \dots + a_k, \qquad \prod_{n=1}^{k} a_n = a_1 \times a_2 \times a_3 \times \dots \times a_k.$$

Examples: (1)
$$\sum_{n=1}^{10} n = 1 + 2 + 3 + 4 + ... + 9 + 10 = 55$$
.
(2) $\sum_{n=0}^{7} 2^n = 1 + 2 + 4 + 8 + ... + 128 = 255$.
(3) $\prod_{n=1}^{5} n = 1 \times 2 \times 3 \times 4 \times 5 = 5! = 120$.

(2)
$$\sum_{n=0}^{7} 2^n = 1 + 2 + 4 + 8 + \dots + 128 = 255$$

(3)
$$\prod_{n=1}^{3} n = 1 \times 2 \times 3 \times 4 \times 5 = 5! = 120.$$

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times \dots$ We use the special notation

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + a_3 + \dots + a_k, \qquad \prod_{n=1}^{k} a_n = a_1 \times a_2 \times a_3 \times \dots \times a_k.$$

Examples: (1)
$$\sum_{n=1}^{10} n = 1 + 2 + 3 + 4 + ... + 9 + 10 = 55$$
.
(2) $\sum_{n=0}^{7} 2^n = 1 + 2 + 4 + 8 + ... + 128 = 255$.
(3) $\prod_{n=1}^{5} n = 1 \times 2 \times 3 \times 4 \times 5 = 5! = 120$.

(2)
$$\sum_{n=0}^{7} 2^n = 1 + 2 + 4 + 8 + \dots + 128 = 255.$$

3)
$$\prod_{n=1}^{3} n = 1 \times 2 \times 3 \times 4 \times 5 = 5! = 120.$$

(4)
$$\prod_{n=1}^{n=1} n^2 = 4 \times 9 \times 16 \times ... \times 64 = 1625702400.$$

Series

Given a sequence $(a_n)_{n\in I}\subseteq \mathbb{Q}$, we define a **series** as $\sum_{n\in I}a_n$.

Given a sequence we can also consider **partial sums** of the series, which is just a series associated to some 'subsequence'.

We will now consider a few important examples of sequences and series:

- Geometric Sequence and Series
- Arithmetic Sequence and Series
- Mixed Geometric-Arithmetic Sequence

how we can calculate their terms and their associated series.

Slide 6 is a special case of a

Geometric Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term)	$\forall n > k$
$a_{n+1} = ra_n, \ \forall n \geq k$	$a_n = ar^{n-k}$
(r is the common ratio)	

Slide 6 is a special case of a

Geometric Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term)	$\forall n > k$
$a_{n+1} = ra_n, \ \forall n \geq k$	$a_n = ar^{n-k}$
(r is the common ratio)	211 2.

When terms or a sequence are summed, we get a series. In particular

Geometric Series	
Series of N terms	Sum of N terms
$\sum_{n=k}^{k+(N-1)} ar^{n-k} = a+ar+\cdots+ar^{N-1}$ [Usually $k=0$ or $k=1$.]	$\begin{cases} \frac{a(1-r^N)}{(1-r)} & \text{if } r \neq 1\\ Na & \text{if } r = 1 \end{cases}$

Slide 6 is a special case of a

Geometric Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term) $a_{n+1} = ra_n, \forall n \ge k$	$\forall n \ge k$ $a_n = ar^{n-k}$
(r is the common ratio)	an — ai

When terms or a sequence are summed, we get a series. In particular

Geometric Series	
Series of N terms	Sum of N terms
$\sum_{n=k}^{k+(N-1)} ar^{n-k} = a+ar+\cdots+ar^{N-1}$ [Usually $k=0$ or $k=1$.]	$\begin{cases} \frac{a(1-r^N)}{(1-r)} & \text{if } r \neq 1\\ Na & \text{if } r = 1 \end{cases}$

Example: k = 0, a = 6, $r = \frac{1}{2}$, N = 5:

Slide 6 is a special case of a

Geometric Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term)	$\forall n \geq k$
$a_{n+1} = ra_n, \forall n \geq k$	$a_n = ar^{n-k}$
(r is the common ratio)	-11

When terms or a sequence are summed, we get a series. In particular

Geometric Series	
Series of N terms	Sum of N terms
$\sum_{n=k}^{k+(N-1)} ar^{n-k} = a+ar+\cdots+ar^{N-1}$ [Usually $k=0$ or $k=1$.]	$\begin{cases} \frac{a(1-r^N)}{(1-r)} & \text{if } r \neq 1 \\ Na & \text{if } r = 1 \end{cases}$

Example: k = 0, a = 6, $r = \frac{1}{2}$, N = 5:

$$6+3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}=\sum_{n=0}^{4}6(\frac{1}{2})^n$$

Slide 6 is a special case of a

Geometric Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term)	$\forall n \geq k$
$a_{n+1} = ra_n, \forall n \geq k$	$a_n = ar^{n-k}$
(r is the common ratio)	-11

When terms or a sequence are summed, we get a series. In particular

Geometric Series	
Series of N terms	Sum of N terms
$\sum_{n=k}^{k+(N-1)} ar^{n-k} = a+ar+\cdots+ar^{N-1}$ [Usually $k=0$ or $k=1$.]	$\begin{cases} \frac{a(1-r^N)}{(1-r)} & \text{if } r \neq 1 \\ Na & \text{if } r = 1 \end{cases}$

Example:
$$k = 0, a = 6, r = \frac{1}{2}, N = 5$$
:

$$6+3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}=\sum_{n=0}^{4}6(\frac{1}{2})^n=\frac{6(1-2^{-5})}{1-2^{-1}}$$

Slide 6 is a special case of a

Geometric Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term)	$\forall n > k$
$a_{n+1}=ra_n, \forall n\geq k$	$a_n = ar^{n-k}$
(r is the common ratio)	-11

When terms or a sequence are summed, we get a series. In particular

Geometric Series	
Series of N terms	Sum of N terms
$\sum_{n=k}^{k+(N-1)} ar^{n-k} = a+ar+\cdots+ar^{N-1}$ [Usually $k=0$ or $k=1$.]	$\begin{cases} \frac{a(1-r^N)}{(1-r)} & \text{if } r \neq 1\\ Na & \text{if } r = 1 \end{cases}$

Example:
$$k = 0$$
, $a = 6$, $r = \frac{1}{2}$, $N = 5$:

$$6+3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}=\sum_{n=0}^{4}6(\frac{1}{2})^{n}=\frac{6(1-2^{-5})}{1-2^{-1}}=\frac{6(32-1)}{32}\cdot\frac{2}{1}=\frac{93}{8}=11\frac{5}{8}$$

A sequence is defined implicitly by
$$\begin{cases} b_{n+1}=b_n+5 & \forall n\in\mathbb{N},\\ b_1=0. \end{cases}$$

A sequence is defined implicitly by
$$\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$$

Can we get an explicit definition?

A sequence is defined implicitly by $\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$

$$b_1 = 0$$
, $b_2 = 5$, $b_3 = 10$, $b_4 = 15$,...

A sequence is defined implicitly by
$$\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

A sequence is defined implicitly by
$$\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

A sequence is defined implicitly by
$$\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $b_1=0$, agreeing with the definition.

A sequence is defined implicitly by
$$\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $b_1=0$, agreeing with the definition.

A sequence is defined implicitly by
$$\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $b_1=0$, agreeing with the definition.

$$b_{n+1} = b_n + 5$$
 (from the implicit definition)

A sequence is defined implicitly by
$$\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, \ b_2 = 5, \ b_3 = 10, \ b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $b_1=0$, agreeing with the definition.

$$b_{n+1} = b_n + 5$$
 (from the implicit definition)
= $5(n-1) + 5$ (by the inductive assumption)

A sequence is defined implicitly by $\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $b_1=0$, agreeing with the definition.

$$b_{n+1} = b_n + 5$$
 (from the implicit definition)
= $5(n-1) + 5$ (by the inductive assumption)
= $5n$

A sequence is defined implicitly by $\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $b_1=0$, agreeing with the definition.

$$b_{n+1} = b_n + 5$$
 (from the implicit definition)
= $5(n-1) + 5$ (by the inductive assumption)
= $5n = 5((n+1) - 1)$

A sequence is defined implicitly by $\begin{cases} b_{n+1} = b_n + 5 & \forall n \in \mathbb{N}, \\ b_1 = 0. \end{cases}$

Can we get an explicit definition? First generate some values:

$$b_1 = 0, b_2 = 5, b_3 = 10, b_4 = 15,..$$
 Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1).$

Proof by mathematical induction that the claim is correct:

Basis step: For n=1, formula gives $b_1=0$, agreeing with the definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$b_{n+1} = b_n + 5$$
 (from the implicit definition)
= $5(n-1) + 5$ (by the inductive assumption)
= $5n = 5((n+1) - 1)$

and so the formula is also correct for n+1.

Example 2 is a special case of

Arithmetic Sequence		
Implicit Definition	Explicit Definition	
$a_k = a$ (a is the first term) $a_{n+1} = a_n + d$, $\forall n \ge k$ (d is the common difference)	$\forall n \ge k$ $a_n = a + (n - k)d$	

Example 2 is a special case of

Arithmetic Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term) $a_{n+1} = a_n + d$, $\forall n \ge k$ (d is the common difference)	$\forall n \ge k$ $a_n = a + (n - k)d$

When the terms or an arithmetic sequence are summed, we get:

Arithmetic Series		
Series of <i>N</i> terms	Sum of N terms	
$\sum_{n=k}^{k+(N-1)} [a+(n-k)d] = a+(a+d)+\cdots+(a+(N-1)d)$ [Usually $k=0$ or $k=1$.]	$\frac{N}{2} [2a+(N-1)d]$ $=$ $N \left[\frac{a+(a+(N-1)d)}{2} \right]$	

Example 2 is a special case of

Arithmetic Sequence	
Implicit Definition	Explicit Definition
$a_k = a$ (a is the first term) $a_{n+1} = a_n + d$, $\forall n \ge k$ (d is the common difference)	$\forall n \ge k$ $a_n = a + (n - k)d$

When the terms or an arithmetic sequence are summed, we get:

·		
Arithmetic Series		
Series of N terms	Sum of N terms	
$\sum_{n=k}^{k+(N-1)} [a+(n-k)d] = a+(a+d)+\cdots+(a+(N-1)d)$ [Usually $k=0$ or $k=1$.]	$\frac{N}{2} [2a+(N-1)d]$ $=$ $N \left[\frac{a+(a+(N-1)d)}{2} \right]$	

sum = number of terms times average of first and last

Example 2 is a special case of

Arithmetic Sequence		
Implicit Definition	Explicit Definition	
$a_k = a$ (a is the first term) $a_{n+1} = a_n + d$, $\forall n \ge k$ (d is the common difference)	$\forall n \ge k$ $a_n = a + (n - k)d$	

When the terms or an arithmetic sequence are summed, we get:

<u> </u>	
Arithmetic Series	
Series of N terms	Sum of N terms
k+(N-1)	$\frac{N}{2} [2a + (N-1)d]$
$\sum [a + (n-k)d] = a + (a+d) + \dots + (a+(N-1)d)$	=_
$\overline{n=k}$ [Usually $k=0$ or $k=1$.]	$N\left[\frac{a+(a+(N-1)d)}{2}\right]$

sum = number of terms times average of first and last

Example:
$$1 + 3 + 5 + 7 + \dots + 99 = 50 \left(\frac{1+99}{2}\right) = 2500$$
. In this example $a = 1, d = 2, k = 0, N = 50$, check yourself!

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year,

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^{\star}$ $p_{n+1} = 2p_n$.

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million.

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0=5\times 10^6.$

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

Questions: 1. What will the population size be in 10 years time?

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

- Questions: 1. What will the population size be in 10 years time?
 - 2. When will the population size reach 10^9 ?

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

- Questions: 1. What will the population size be in 10 years time?
 - 2. When will the population size reach 10^9 ?

We have a geometric sequence with k = 0, $a = 5 \times 10^6$, r = 2.

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

- Questions: 1. What will the population size be in 10 years time?
 - 2. When will the population size reach 10^9 ?

We have a geometric sequence with k=0, $a=5\times10^6$, r=2. Hence:

Answers: 1.
$$a_{10} = 5 \times 10^6 \times 2^{10} = 5.12 \times 10^9$$

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^{\star} \ p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

- Questions: 1. What will the population size be in 10 years time?
 - 2. When will the population size reach 10^9 ?

We have a geometric sequence with k = 0, $a = 5 \times 10^6$, r = 2. Hence:

- Answers: 1. $a_{10} = 5 \times 10^6 \times 2^{10} = 5.12 \times 10^9$
 - 2. We need *N* so that $a_N \ge 10^9 > a_{N-1}$.

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

- Questions: 1. What will the population size be in 10 years time?
 - 2. When will the population size reach 10^9 ?

We have a geometric sequence with k=0, $a=5\times10^6$, r=2. Hence:

Answers: 1.
$$a_{10} = 5 \times 10^6 \times 2^{10} = 5.12 \times 10^9$$

2. We need N so that
$$a_N \ge 10^9 > a_{N-1}$$
.
Note that $a_8 = \frac{1}{4}(5 \cdot 12 \times 10^9) = 1 \cdot 28 \times 10^9$

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^{\star} \ p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

- Questions: 1. What will the population size be in 10 years time?
 - 2. When will the population size reach 10^9 ?

We have a geometric sequence with k = 0, $a = 5 \times 10^6$, r = 2. Hence:

Answers: 1.
$$a_{10} = 5 \times 10^6 \times 2^{10} = 5 \cdot 12 \times 10^9$$

2. We need N so that
$$a_N \ge 10^9 > a_{N-1}$$
.
Note that $a_8 = \frac{1}{4}(5 \cdot 12 \times 10^9) = 1 \cdot 28 \times 10^9$ and $a_7 = \frac{1}{8}(5 \cdot 12 \times 10^9) = 0 \cdot 64 \times 10^9$.

Exponential Growth:

Let p_n be number of individuals in a population after n years.

Assume the population doubles every year, i.e. $\forall n \in \mathbb{N}^*$ $p_{n+1} = 2p_n$.

Assume the current population is five million. i.e. $p_0 = 5 \times 10^6$.

- Questions: 1. What will the population size be in 10 years time?
 - 2. When will the population size reach 10^9 ?

We have a geometric sequence with k=0, $a=5\times10^6$, r=2. Hence:

Answers: 1.
$$a_{10} = 5 \times 10^6 \times 2^{10} = 5.12 \times 10^9$$

2. We need
$$N$$
 so that $a_N \ge 10^9 > a_{N-1}$.
Note that $a_8 = \frac{1}{4}(5 \cdot 12 \times 10^9) = 1 \cdot 28 \times 10^9$
and $a_7 = \frac{1}{8}(5 \cdot 12 \times 10^9) = 0 \cdot 64 \times 10^9$.
So $N = 8$ *i.e.* eight years.

Let c_n be the capital (in \$) after n years.

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year,

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1 \cdot 03c_n.$$

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1 \cdot 03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1 \cdot 03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1 \cdot 03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer: $\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$.

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1 \cdot 03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer:
$$\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$$
.

$$c_{10} = 2 \times 10^4 \times 1.03^{10} = $2687833.$$

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1.03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer:
$$\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$$
.
 $c_{10} = 2 \times 10^4 \times 1.03^{10} = \$26\,87833$.

Monthly compounding:

Now suppose the capital yields $\frac{3}{12} = 0.25\%$ interest per *month*.

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^* \ c_{n+1} = c_n + 0.03c_n = 1.03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer:
$$\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$$
.
 $c_{10} = 2 \times 10^4 \times 1.03^{10} = \$26\,87833$.

Monthly compounding:

Now suppose the capital yields $\frac{3}{12} = 0.25\%$ interest per *month*.

Question: Is it the same as 3% per year?

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1 \cdot 03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer:
$$\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$$
.
 $c_{10} = 2 \times 10^4 \times 1.03^{10} = \$26\,87833$.

Monthly compounding:

Now suppose the capital yields $\frac{3}{12} = 0.25\%$ interest per month.

Question: Is it the same as 3% per year?

Answer: Now n is time in months and d_n capital at time n.

Compound Interest

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^{\star} \ c_{n+1} = c_n + 0.03c_n = 1 \cdot 03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer:
$$\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$$
.
 $c_{10} = 2 \times 10^4 \times 1.03^{10} = \$26\,87833$.

Monthly compounding:

Now suppose the capital yields $\frac{3}{12} = 0.25\%$ interest per month.

Question: Is it the same as 3% per year?

Answer: Now n is time in months and d_n capital at time n.

$$d_0 = 2 \times 10^4$$
, $\forall n \in \mathbb{N}$ $d_{n+1} = d_n + 0.0025 d_n = 1.0025 d_n$.

Compound Interest

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^* \ c_{n+1} = c_n + 0.03c_n = 1.03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer:
$$\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$$
. $c_{10} = 2 \times 10^4 \times 1.03^{10} = \$26\,87833$.

Monthly compounding:

Now suppose the capital yields $\frac{3}{12} = 0.25\%$ interest per *month*.

Question: Is it the same as 3% per year?

Answer: Now n is time in months and d_n capital at time n.

$$d_0 = 2 \times 10^4$$
, $\forall n \in \mathbb{N}$ $d_{n+1} = d_n + 0.0025 d_n = 1.0025 d_n$.
 $d_{120} = 2 \times 10^4 \times 1.0025^{120} = 2698771 .

Compound Interest

Let c_n be the capital (in \$) after n years.

Assume the capital yields 3% interest every year, i.e.

$$\forall n \in \mathbb{N}^* \ c_{n+1} = c_n + 0.03c_n = 1.03c_n.$$

Assume the current capital is \$20K, i.e. $c_0 = 2 \times 10^4$.

Question: What will the capital be in 10 years?

Answer:
$$\forall n \in \mathbb{N}^* \ c_n = 2 \times 10^4 \times 1.03^n$$
.
 $c_{10} = 2 \times 10^4 \times 1.03^{10} = \$26\,87833$.

Monthly compounding:

Now suppose the capital yields $\frac{3}{12} = 0.25\%$ interest per *month*.

Question: Is it the same as 3% per year?

Answer: Now n is time in months and d_n capital at time n.

$$d_0 = 2 \times 10^4, \ \forall n \in \mathbb{N} \ d_{n+1} = d_n + 0.0025 d_n = 1.0025 d_n.$$

 $d_{120} = 2 \times 10^4 \times 1.0025^{120} = \$26\,98771.$ Slightly better!

More applications of sequences

Compound Interest: If the bank is charging a fee of \$10 per year, the compound interest model becomes

$$\begin{cases} c_{n+1} = 1.03c_n - 10 & \forall n \in \mathbb{N}^*, \\ c_0 = 2 \times 10^4. \end{cases}$$

Compound Interest: If the bank is charging a fee of \$10 per year, the compound interest model becomes

$$\begin{cases} c_{n+1} = 1.03c_n - 10 & \forall n \in \mathbb{N}^*, \\ c_0 = 2 \times 10^4. \end{cases}$$

Population growth: If there is some immigration, bringing 10^3 new individuals to the population each year, the population dynamics model becomes

$$\begin{cases} p_{n+1} = 2p_n + 10^3 & \forall n \in \mathbb{N}^*, \\ p_0 = 5 \times 10^6. \end{cases}$$

Compound Interest: If the bank is charging a fee of \$10 per year, the compound interest model becomes

$$\begin{cases} c_{n+1} = 1.03c_n - 10 & \forall n \in \mathbb{N}^*, \\ c_0 = 2 \times 10^4. \end{cases}$$

Population growth: If there is some immigration, bringing 10^3 new individuals to the population each year, the population dynamics model becomes

$$\begin{cases} p_{n+1} = 2p_n + 10^3 & \forall n \in \mathbb{N}^*, \\ p_0 = 5 \times 10^6. \end{cases}$$

The sequences defined by these models are neither geometric nor arithmetic, but are a generalisation of both.

Compound Interest: If the bank is charging a fee of \$10 per year, the compound interest model becomes

$$\begin{cases} c_{n+1} = 1.03c_n - 10 & \forall n \in \mathbb{N}^*, \\ c_0 = 2 \times 10^4. \end{cases}$$

Population growth: If there is some immigration, bringing 10^3 new individuals to the population each year, the population dynamics model becomes

$$\begin{cases} p_{n+1} = 2p_n + 10^3 & \forall n \in \mathbb{N}^*, \\ p_0 = 5 \times 10^6. \end{cases}$$

The sequences defined by these models are neither geometric nor arithmetic, but are a generalisation of both.

We need to start again from scratch.

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^{\star}, \\ p_0 = p. \end{cases}$ shorthand for 10^3 and 5×10^6 .

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^*, \\ p_0 = p. \end{cases}$ Shorthand for 10^3 and 5×10^6 . $\begin{cases} p_0 = p. \end{cases}$ We start by generating the first few terms of the sequence: $p_0 = p.$

```
We seek an explicit formula for the population given by the implicit formula at right, where d and p are \begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases} shorthand for 10^3 and 5 \times 10^6.
```

$$p_0 = p$$
, $p_1 = 2p + d$,

```
We seek an explicit formula for the population given by the implicit formula at right, where d and p are \begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases} shorthand for 10^3 and 5 \times 10^6.
```

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d =$

```
We seek an explicit formula for the population given by the implicit formula at right, where d and p are \begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases} shorthand for 10^3 and 5 \times 10^6.
```

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$,

 $p_3 =$

```
We seek an explicit formula for the population given by the implicit formula at right, where d and p are \begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^*, \\ p_0 = p. \end{cases} shorthand for 10^3 and 5 \times 10^6. \begin{cases} p_0 = p. \\ p_0 = p. \end{cases} We start by generating the first few terms of the sequence: p_0 = p, \quad p_1 = 2p + d, \quad p_2 = 2(2p + d) + d = 4p + 3d.
```

```
We seek an explicit formula for the population given by the implicit formula at right, where d and p are \begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases} We start by generating the first few terms of the sequence:
```

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$,

```
We seek an explicit formula for the population given by the implicit formula at right, where d and p are \begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases} shorthand for 10^3 and 5 \times 10^6.
```

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

```
We seek an explicit formula for the population given by the implicit formula at right, where d and p are \begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases} shorthand for 10^3 and 5 \times 10^6.
```

We start by generating the first few terms of the sequence:

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

Proof by mathematical induction that the claim is correct:

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases}$ shorthand for 10^3 and 5×10^6 .

We start by generating the first few terms of the sequence:

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=0, formula gives $p_0=2^0p+(2^0-1)d=p$, agreeing with the implicit definition.

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases}$ shorthand for 10^3 and 5×10^6 .

We start by generating the first few terms of the sequence:

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=0, formula gives $p_0=2^0p+(2^0-1)d=p$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n.

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases}$ shorthand for 10^3 and 5×10^6 .

We start by generating the first few terms of the sequence:

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=0, formula gives $p_0=2^0p+(2^0-1)d=p$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$p_{n+1} = 2p_n + d$$
 (from the implicit definition)

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases}$ shorthand for 10^3 and 5×10^6 .

We start by generating the first few terms of the sequence:

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=0, formula gives $p_0=2^0p+(2^0-1)d=p$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$p_{n+1} = 2p_n + d$$
 (from the implicit definition)
= $2(2^n p + (2^n - 1)d) + d$ (by the inductive assumption)

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases}$ shorthand for 10^3 and 5×10^6 .

We start by generating the first few terms of the sequence:

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=0, formula gives $p_0=2^0p+(2^0-1)d=p$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$p_{n+1} = 2p_n + d$$
 (from the implicit definition)
= $2(2^n p + (2^n - 1)d) + d$ (by the inductive assumption)
= $2^{n+1} p + (2^{n+1} - 1)d$ (by algebraic simplification)

We seek an explicit formula for the population given by the implicit formula at right, where d and p are $\begin{cases} p_{n+1} = 2p_n + d \ \forall n \in \mathbb{N}^\star, \\ p_0 = p. \end{cases}$ shorthand for 10^3 and 5×10^6 .

We start by generating the first few terms of the sequence:

$$p_0 = p$$
, $p_1 = 2p + d$, $p_2 = 2(2p + d) + d = 4p + 3d$, $p_3 = 8p + 7d$, Claim: $\forall n \in \mathbb{N}^*$ $p_n = 2^n p + (2^n - 1)d$.

Proof by mathematical induction that the claim is correct:

Basis step: For n=0, formula gives $p_0=2^0p+(2^0-1)d=p$, agreeing with the implicit definition.

Inductive step: Assume the formula is correct for up to and including some fixed n. Then

$$p_{n+1} = 2p_n + d$$
 (from the implicit definition)
= $2(2^n p + (2^n - 1)d) + d$ (by the inductive assumption)
= $2^{n+1} p + (2^{n+1} - 1)d$ (by algebraic simplification)

and so the formula is also correct for n+1.