Sage 快速参考: 微积分

William Stein Sage Version 3.4

http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use

内置常数和函数

常数: $\pi=\mathrm{pi}$ $e=\mathrm{e}$ $i=\mathrm{I}=\mathrm{i}$ $\infty=\mathrm{oo}=\mathrm{infinity}$ $\mathrm{NaN=NaN}$ $\log(2)=\log 2$ $\phi=\mathrm{golden_ratio}$ $\gamma=\mathrm{euler_gamma}$ $0.915\approx\mathrm{catalan}$ $2.685\approx\mathrm{khinchin}$ $0.660\approx\mathrm{twinprime}$ $0.261\approx\mathrm{merten}$ $1.902\approx\mathrm{brun}$ 近似值: $\mathrm{pi}.\mathrm{n}(\mathrm{digits=18})=3.14159265358979324}$ 内置函数: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp ...

定义数学表达式

构造未定元:

var("t u theta") or var("t,u,theta") 丰二乖壮。

用 * 表示乘法, $^{\sim}$ 表示乘方: $2x^5 + \sqrt{2} = 2*x^5 + \text{sqrt}(2)$

排版: show(2*theta^5 + sqrt(2)) $\longrightarrow 2\theta^5 + \sqrt{2}$

数学函数

数学函数 (可以积分, 微分等):

 $f(a,b,theta) = a + b*theta^2$

theta 的"形式"函数:

f = function('f',theta)

分段函数:

Piecewise($[[(0,pi/2),sin(1/x)],[(pi/2,pi),x^2+1]]$)

Python 函数

定义:

def f(a, b, theta=1):
 c = a + b*theta^2
 return c

内联函数:

f = lambda a, b, theta = 1: a + b*theta^2

化简与展开

下述 f 均为数学 (符号) 函数 (**不是** Python 函数):

化简: f.simplify_exp(), f.simplify_full(),

f.simplify_log(), f.simplify_radical(),
f.simplify_rational(), f.simplify_trig()

展开: f.expand(), f.expand_rational()

方程

关系: f=g: f == g, $f\neq g$: f != g, $f\leq g$: f <= g, $f\geq g$: f >= g, f< g: f < g, f>g: f > g

求解 f = g: solve(f == g, x),和
solve([f == 0, g == 0], x,y)

solve($[x^2+y^2==1, (x-1)^2+y^2==1], x, y$)

解:

S = solve(x^2+x+1==0, x, solution_dict=True) S[0]["x"] S[1]["x"] 是解

精确根: (x^3+2*x+1).roots(x)

实根: (x^3+2*x+1).roots(x,ring=RR)

复根: (x^3+2*x+1).roots(x,ring=CC)

因式分解

分解因式: (x^3-y^3).factor() 列出 (因式, 幂指数) 对: (x^3-y^3).factor_list()

极限

 $\lim f(x) = \text{limit(f(x), x=a)}$

limit(sin(x)/x, x=0)

 $\lim_{x \to 0} f(x) = \text{limit(f(x), x=a, dir='plus')}$

limit(1/x, x=0, dir='plus')

 $\lim_{x \to a^-} f(x) = \text{limit(f(x), x=a, dir='minus')}$

limit(1/x, x=0, dir='minus')

微分

$$\begin{split} \frac{d}{dx}(f(x)) &= \mathrm{diff}(f(x),x) = \mathrm{f.diff}(x) \\ \frac{\partial}{\partial x}(f(x,y)) &= \mathrm{diff}(f(x,y),x) \\ \mathrm{diff} &= \mathrm{differentiate} = \mathrm{derivative} \\ \mathrm{diff}(x*y + \sin(x^2) + \mathrm{e}^*(-x), x) \end{split}$$

积分

 $\int f(x)dx = \text{integral}(f,x) = f.\text{integrate}(x)$ $\text{integral}(x*\cos(x^2), x)$ $\int_a^b f(x)dx = \text{integral}(f,x,a,b)$ $\text{integral}(x*\cos(x^2), x, 0, \text{sqrt}(pi))$ $\int_a^b f(x)dx \approx \text{numerical_integral}(f(x),a,b)[0]$ $\text{numerical_integral}(x*\cos(x^2),0,1)[0]$ assume(...): 当求积分被询问时使用 assume(x>0)

Taylor 和部分分式展式

a 点处 n 次 Taylor 多项式: taylor(f,x,a,n) $\approx c_0 + c_1(x-a) + \cdots + c_n(x-a)^n$ taylor(sqrt(x+1), x, 0, 5) 部分分式:

(x^2/(x+1)^3).partial_fraction()

数值解和最优化

数值解: f.find_root(a, b, x)
 ($x^2 - 2$).find_root(1,2,x)
最大化: 寻找 (m,x_0) 使 $f(x_0) = m$ 最大
 f.find_maximum_on_interval(a, b, x)
最小化: 寻找 (m,x_0) 使 $f(x_0) = m$ 最小
 f.find_minimum_on_interval(a, b, x)
最小化: minimize(f, $start_point$)
 minimize($x^2 + x * y^3 + (1-z)^2 - 1$, [1,1,1])

多变量微积分

梯度: f.gradient() or f.gradient(vars)
 (x^2+y^2).gradient([x,y])

Hessian: f.hessian()
 (x^2+y^2).hessian()

Jacobian 矩阵: jacobian(f, vars)
 jacobian(x^2 - 2*x*y, (x,y))

无穷级数求和

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

还未实现,但你可以使用 Maxima: $s = 'sum (1/n^2,n,1,inf), simpsum'$ $SR(sage.calculus.calculus.maxima(s)) \longrightarrow \pi^2/6$