Distribution Grid Search

This is the example vignette for function: snw_ds_main_grid_search from the PriOptiSNW Package. This function solves for vfi and gets distribution induced by policy functions and exogenous distributions. Grid Search for VFI and Grid Search also for Distribution. The results are illustrative of the differences between using grid search and exact solution. The grid search solution here is not fully vectorized but loops over the state-space.

Test SNW_DS_MAIN_GRID_SEARCH Defaults More Dense

Rather than solving for "docdense", this solves for "moredense", which has fewer shocks, in order to save time given the relatively slow speed of this algorithm.

```
mp_params = snw_mp_param('default_moredense');
mp_controls = snw_mp_control('default_test');
mp_controls('bl_print_vfi') = false;
mp_controls('bl_print_ds') = false;
mp_controls('bl_print_ds_verbose') = false;
[Phi_true,Phi_adj,A_agg,Y_inc_agg,it,mp_dsvfi_results] = snw_ds_main_grid_search(mp_params, mp_dspecific mp_params, mp_dspecific mp_dspecific mp_params, mp_dspecific mp_ds
```

Show All Info in mp_dsvfi_results More Dense

```
mp_cl_mt_xyz_of_s = mp_dsvfi_results('mp_cl_mt_xyz_of_s');
disp(mp_cl_mt_xyz_of_s('tb_outcomes'))
```

	mean	unweighted_sum	sd	coefofvar	gini	min	max	pYis0
a_ss	4.1966	5130.2	8.2211	1.959	0.74586	0	135	0.1847
ap_ss	33.417	11476	25.564	0.765	0.44091	1	151	
cons_ss	1.1837	1.59e+07	1.0186	0.86052	0.40734	0.035637	141.66	
V_SS	-19.282	-9.477e+06	35.18	-1.8245	-0.7793	-867.32	25.519	
n_ss	2.3554	21	1.4375	0.61029	0.3128	1	6	
y_all	1.6288	2.398e+07	1.8953	1.1636	0.49934	0.038108	50.873	
<pre>y_head_inc</pre>	1.2693	5.6172e+05	1.541	1.2141	0.50187	0.038108	24.357	
y_head_earn	1.0492	2628.2	1.4242	1.3574	0.60462	0	18.957	0.201
<pre>y_spouse_inc</pre>	0.35948	55577	0.96095	2.6732	0.85293	0	26.627	0.5249
yshr_interest	0.10937	1.0949e+06	0.1698	1.5525	0.711	0	0.99299	0.1847
yshr_wage	0.78519	2.3994e+06	0.34085	0.43409	0.19417	0	1	0.1058
yshr_SS	0.10544	70381	0.24571	2.3303	0.91374	0	1	0.798
yshr_tax	0.17729	7.7889e+05	0.040058	0.22594	0.12851	0.036506	0.2552	
yshr_nttxss	0.071855	7.0851e+05	0.26576	3.6986	1.5402	-0.89184	0.2552	

More Dense Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Probability mass matrixes, Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
```

```
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Probability Mass Along Age Dimensions

Where are the mass at? Analyze mass given state space components.

```
% Get the Joint distribution over all states
% Define Graph Inputs
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = false; % do not log
```

Exogenous Permanent States Mass: Life Cycle, Edu and Marraige

Tabulate value and policies along savings and shocks:

```
% NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
ar_permute = [2,3,6,1,5,4];
% Value Function
tb_prob_aem = ff_summ_nd_array("P(Age, EDU, MARRY))", Phi_true, true, ["sum"], 3, 1, cl_mp_data
group
           marry
                   edu
                         sum_age_18
                                     sum_age_19
                                                  sum_age_20
                                                              sum_age_21
                                                                           sum_age_22
                                                                                       sum_age_23
                                                                                                   sur
     1
             0
                    0
                         0.0085768
                                     0.0084866
                                                  0.0083969
                                                              0.0083078
                                                                           0.0082194
                                                                                       0.0081317
                                                                                                    0
                         0.0066438
     2
             1
                    0
                                     0.0065739
                                                  0.0065044
                                                              0.0064354
                                                                           0.0063669
                                                                                       0.006299
                                                                                                   0.6
     3
             0
                    1
                         0.0028875
                                     0.0028571
                                                  0.002827
                                                              0.002797
                                                                          0.0027672
                                                                                       0.0027377
                                                                                                   0.6
                         0.0037292
                                     0.0036899
                                                  0.0036509
                                                              0.0036122
                                                                          0.0035738
                                                                                       0.0035356
                                                                                                   0.6
mp_support_graph('cl_st_graph_title') = {'Pstationary(Age, Edu, Marry), age=x, marry/edu=color'
mp_support_graph('cl_st_ytitle') = {'Conditional Aggregate Mass'};
ar_row_grid = ["M0E0", "M1E0", "M0E1", "M1E1"];
mp_support_graph('cl_st_xtitle') = {'Age Groups'};
mp_support_graph('cl_scatter_shapes') = {'*', '*', 'p', 'p' };
mp_support_graph('cl_colors') = {'red', 'blue', 'red', 'blue'};
```

ff_graph_grid((tb_prob_aem{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);

Kids and Marry By Age Mass

'o', 'd' ,'s', 'x', '*', ...

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
tb_prob_amarrykids = ff_summ_nd_array("P(Age, Kids, Marry))", Phi_true, true, ["sum"], 3, 1, cl
group
           kids
                  marry
                         sum_age_18
                                     sum_age_19
                                                 sum_age_20
                                                              sum_age_21
                                                                          sum_age_22
                                                                                      sum_age_23
    1
                          0.0091249
                                    0.0080278
                                                  0.0071652
                                                              0.0064765
                                                                          0.0059205
                                                                                       0.0054683
           1
    2
            2
                   0
                          0.0013699
                                      0.0019743
                                                  0.0022187
                                                              0.0022858
                                                                          0.0022687
                                                                                       0.0022149
     3
           3
                         0.00071266
                                     0.00098425
                                                  0.0013537
                                                              0.0016929
                                                                          0.0019639
                                                                                       0.0021645
     4
                         0.00020622 0.00027865
                                                 0.00037326
                                                              0.00049476
                                                                          0.00062818
                                                                                      0.00075864
     5
            5
                   0
                         5.0761e-05 7.8715e-05
                                                   0.000113 0.00015485
                                                                          0.00020534
                                                                                      0.00026306
    6
           1
                   1
                          0.0055624
                                      0.0046679
                                                  0.0039774
                                                              0.0034368
                                                                          0.0030088
                                                                                       0.0026667
    7
           2
                   1
                          0.0027682
                                      0.0025539
                                                  0.0023005
                                                              0.0020611
                                                                          0.0018525
                                                                                       0.0016773
    8
           3
                          0.0014982
                   1
                                      0.0021823
                                                  0.0025943
                                                              0.0028096
                                                                           0.002896
                                                                                       0.0029031
    9
            4
                         0.00041197
                                     0.00064648
                                                                          0.0015009
                                                                                       0.0016975
                   1
                                                 0.00095224
                                                              0.0012491
    10
                                                              0.00049097
                   1
                         0.00013221
                                      0.0002132
                                                 0.00033097
                                                                          0.00068255
                                                                                       0.0008901
mp_support_graph('cl_st_graph_title') = {'Pstationary(Age, Kids, Marry), age=x, kids/marry=cole
mp_support_graph('cl_st_ytitle') = {'Conditional Aggregate Mass'};
ar_row_grid = [...
    "k0M0", "K1M0", "K2M0", "K3M0", "K4M0", ...
    "k0M1", "K1M1", "K2M1", "K3M1", "K4M1"];
mp_support_graph('cl_scatter_shapes') = {...
```

```
'o', 'd', 's', 'x', '*'};
mp_support_graph('cl_colors') = {...
    'red', 'red', 'red', 'red'...
    'blue', 'blue', 'blue', 'blue'};
mp_support_graph('cl_st_xtitle') = {'Age Groups'};
ff_graph_grid((tb_prob_amarrykids{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Probability Mass Asset and Shock Dimensions

Where are the mass at?

```
% Define Graph Inputs
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = false; % do not log
```

Asset and Shock Mass

1	0	1.7781e-05	0.00011464	0.00040781	0.00065248	0.00059124	0.00033667	0.000116
2	4e-05	2.8722e-07	1.1649e-06	3.9632e-06	1.1727e-06	9.1594e-06	8.6911e-07	1.9536e-
3	0.00032	8.5865e-07	2.0949e-06	1.3074e-05	9.3326e-06	1.8355e-05	2.7109e-06	1.4881e-
4	0.00108	2.4439e-06	7.4985e-06	7.825e-06	5.1658e-06	4.2511e-06	9.0564e-06	5.0327e-
5	0.00256	7.4917e-07	5.7803e-06	3.1919e-05	3.5332e-05	2.8844e-05	5.4161e-06	1.5346e-
6	0.005	1.6199e-07	5.684e-06	1.1553e-05	2.0567e-05	4.1715e-05	9.3727e-06	1.599e-
7	0.00864	2.9061e-07	1.562e-05	1.4073e-05	7.0288e-05	3.462e-05	1.6548e-05	3.2747e-
8	0.01372	9.5464e-08	2.3479e-06	1.7752e-05	2.4581e-05	9.4236e-05	2.0967e-05	3.8102e-
9	0.02048	1.4979e-07	5.1146e-06	2.195e-05	2.7505e-05	3.1649e-05	2.1267e-05	4.2213e-
10	0.02916	2.2894e-07	2.3319e-06	2.9711e-05	4.1965e-05	4.8965e-05	4.931e-05	9.1317e-
11	0.04	3.76e-07	3.6133e-06	5.9345e-05	4.0368e-05	4.4556e-05	7.3962e-05	7.943e-
12 13	0.05324 0.06912	2.756e-07 3.3888e-07	2.2346e-06 2.6932e-06	1.4966e-05 1.5812e-05	3.6227e-05 3.8986e-05	2.4755e-05 3.8211e-05	3.695e-05 1.648e-05	8.6828e-
14	0.08788	3.0263e-07	2.2683e-06	1.6049e-05	3.5262e-05	2.667e-05	2.515e-05	1.3703e- 4.7003e-
15	0.10976	2.6825e-07	2.1043e-06	2.4986e-05	3.6843e-05	3.4559e-05	1.5405e-05	5.4215e-
16	0.135	2.768e-07	1.8377e-06	9.0408e-06	3.5423e-05	3.2867e-05	2.4479e-05	1.3972e-
17	0.16384	2.8181e-07	1.9353e-06	9.257e-06	3.8786e-05	3.6177e-05	1.9607e-05	5.6747e-
18	0.19652	3.067e-07	2.0467e-06	9.1227e-06	3.8618e-05	3.0376e-05	2.7065e-05	8.0364e-
19	0.23328	3.3018e-07	2.1755e-06	1.0247e-05	4.2533e-05	4.2068e-05	1.8014e-05	1.2896e-
20	0.27436	3.6009e-07	2.3328e-06	1.0941e-05	4.3919e-05	3.3639e-05	2.5977e-05	1.1414e-
21	0.32	4.1186e-07	2.5895e-06	1.1659e-05	4.7371e-05	4.4252e-05	2.4973e-05	7.4152e-
22	0.37044	4.4759e-07	2.8965e-06	1.2583e-05	4.8243e-05	4.0516e-05	2.8508e-05	1.2102e-
23	0.42592	4.7723e-07	3.3135e-06	1.3374e-05	5.3569e-05	4.9866e-05	2.3551e-05	8.6802e-
24	0.48668	5.296e-07	3.4623e-06	1.4309e-05	5.3859e-05	5.1087e-05	3.5022e-05	1.3404e-
25	0.55296	5.459e-07	3.6382e-06	1.5329e-05	5.7267e-05	5.3924e-05	2.6534e-05	9.0603e-
26	0.625	5.615e-07	3.878e-06	1.5435e-05	5.7034e-05	5.5588e-05	3.3803e-05	1.2466e-
27	0.70304	5.616e-07	3.8405e-06	1.5148e-05	5.8804e-05	5.7189e-05	3.0223e-05	1.0521e-
28	0.78732	5.8141e-07	3.7688e-06	1.5044e-05	5.7591e-05	5.4784e-05	3.5161e-05	1.4966e-
29	0.87808	5.8397e-07	3.8463e-06	1.504e-05	5.6538e-05	5.6164e-05	2.6669e-05	8.6508e-
30	0.97556	5.7697e-07	3.9047e-06	1.4901e-05	5.5173e-05	5.4358e-05	3.4721e-05	1.2092e-
31	1.08	5.7655e-07	3.8874e-06	1.5177e-05	5.445e-05	5.7049e-05	2.7157e-05	8.8514e-
32	1.1916	5.6606e-07	3.778e-06	1.4865e-05	5.185e-05	5.5565e-05	3.2554e-05	1.2888e-
33	1.3107	5.5291e-07	3.7261e-06	1.43e-05	4.9523e-05	5.7531e-05	2.8096e-05	8.803e-
34	1.4375	5.3074e-07	3.574e-06	1.3682e-05	5.2445e-05	5.5479e-05	3.1707e-05	1.2033e-
35	1.5722	5.0996e-07	3.497e-06	1.3373e-05	3.5566e-05	5.7462e-05	2.7077e-05	8.732e-
36	1.715	5.0049e-07	3.3282e-06	1.3028e-05	3.4521e-05	5.6522e-05	3.2615e-05	1.2279e-
37	1.8662	4.7974e-07	3.329e-06	1.2601e-05	3.3434e-05	5.8509e-05	2.6878e-05	8.6252e-
38	2.0261	4.596e-07	3.1609e-06	1.2343e-05	3.178e-05	5.9485e-05	3.2101e-05	1.1267e-
39	2.1949	4.4954e-07	3.105e-06	1.2095e-05	3.1287e-05	5.9761e-05	2.7128e-05	8.4782e-
40	2.3728	4.1729e-07	3.0323e-06	1.186e-05	3.0175e-05	6.1927e-05	3.2379e-05	1.2107e-
41	2.56	3.9929e-07	2.924e-06 2.7951e-06	1.1544e-05	2.9921e-05	6.1827e-05	2.7425e-05	8.7221e-
42 43	2.7568 2.9635	3.8414e-07 3.616e-07	2.7931e-06 2.7007e-06	1.1251e-05 1.0868e-05	2.6814e-05 2.5813e-05	6.3135e-05 6.3482e-05	3.2763e-05 2.7626e-05	1.0976e- 9.8638e-
44	3.1803	3.3481e-07	2.5593e-06	1.0429e-05	2.5595e-05	6.3992e-05	3.3047e-05	1.0801e-
45	3.4074	3.131e-07	2.4198e-06	9.99e-06	2.4766e-05	6.3343e-05	2.858e-05	9.477e-
46	3.645	2.9457e-07	2.2754e-06	9.6582e-06	2.4476e-05	6.3967e-05	3.3608e-05	1.1984e-
47	3.8934	2.7703e-07	2.1293e-06	9.1931e-06	2.3981e-05	6.2378e-05	3.2136e-05	9.5584e-
48	4.1529	2.515e-07	2.018e-06	8.6923e-06	2.3738e-05	6.0398e-05	3.4717e-05	1.1182e-
49	4.4237	2.3412e-07	1.8599e-06	8.0926e-06	2.2417e-05	5.8532e-05	3.3219e-05	1.0914e-
50	4.706	2.1348e-07	1.7011e-06	7.6231e-06	2.1465e-05	5.6363e-05	3.5656e-05	1.1006e-
51	5	1.9593e-07	1.5641e-06	7.1764e-06	2.0854e-05	5.2743e-05	3.4502e-05	1.0412e-
52	5.306	1.7768e-07	1.4581e-06	6.7963e-06	2.007e-05	4.821e-05	3.7676e-05	1.2348e-
53	5.6243	1.5982e-07	1.3264e-06	6.2348e-06	1.9171e-05	4.3737e-05	3.5788e-05	1.0314e-
54	5.9551	1.4334e-07	1.204e-06	5.8483e-06	1.8296e-05	4.106e-05	3.8181e-05	1.1835e-
55	6.2986	1.3188e-07	1.1011e-06	5.4121e-06	1.7322e-05	3.901e-05	3.7324e-05	1.125e-
56	6.655	1.1797e-07	9.977e-07	4.9804e-06	1.6132e-05	3.7093e-05	4.0152e-05	1.1839e-
57	7.0246	1.0623e-07	9.1605e-07	4.7007e-06	1.5537e-05	3.4804e-05	4.0289e-05	1.1374e-
58	7.4077	9.4398e-08	8.3453e-07	4.3022e-06	1.4566e-05	3.2665e-05	4.1753e-05	1.2523e-
59	7.8045	8.2422e-08	7.5244e-07	3.9469e-06	1.3777e-05	3.0198e-05	4.183e-05	1.1428e-
60	8.2152	7.1784e-08	6.6939e-07	3.6212e-06	1.3091e-05	2.7445e-05	4.309e-05	1.2825e-
61	8.64	6.1804e-08	5.8987e-07	3.2784e-06	1.2179e-05	2.5843e-05	4.2847e-05	1.185e-
62	9.0792	5.3502e-08	5.1823e-07	2.9635e-06	1.1462e-05	2.4729e-05	4.4278e-05	1.2852e-
63	9.5331	4.5477e-08	4.5311e-07	2.6656e-06	1.0485e-05	2.3755e-05	4.4697e-05	1.2052e-
64	10.002	3.8449e-08	3.8904e-07	2.358e-06	9.5066e-06	2.227e-05	4.4247e-05	1.2916e-

```
65
        10.486
                  3.2576e-08
                                 3.3716e-07
                                                2.0726e-06
                                                               8.8323e-06
                                                                             2.1148e-05
                                                                                            4.3231e-05
                                                                                                           1.2318e-
66
        10.985
                  2.7144e-08
                                 2.8859e-07
                                                 1.805e-06
                                                               8.1101e-06
                                                                             1.9267e-05
                                                                                            4.0181e-05
                                                                                                           1.3095e-
                   2.234e-08
                                                               7.3458e-06
                                                                             1.7795e-05
                                                                                            3.8372e-05
                                                                                                           1.2575e-
67
          11.5
                                 2.4458e-07
                                                1.5627e-06
68
        12.031
                  1.8426e-08
                                 2.0804e-07
                                                1.3548e-06
                                                               6.7189e-06
                                                                             1.6482e-05
                                                                                            3.5562e-05
                                                                                                            1.316e-
69
        12.577
                  1.5109e-08
                                 1.7304e-07
                                                1.1665e-06
                                                                6.035e-06
                                                                             1.5039e-05
                                                                                            3.3252e-05
                                                                                                           1.2889e-
70
                                                9.8771e-07
                                                                             1.3797e-05
                                                                                            2.8982e-05
                                                                                                           1.3271e-
         13.14
                  1.2136e-08
                                 1.4416e-07
                                                               5.3216e-06
                  9.7439e-09
71
         13.72
                                 1.1717e-07
                                                8.4655e-07
                                                               4.7591e-06
                                                                             1.2593e-05
                                                                                            2.5621e-05
                                                                                                           1.3062e-
72
        14.316
                  7.6519e-09
                                 9.5696e-08
                                                7.1116e-07
                                                               4.1025e-06
                                                                             1.1341e-05
                                                                                            2.5829e-05
                                                                                                           1.3421e-
73
         14.93
                  6.0255e-09
                                   7.71e-08
                                                5.9381e-07
                                                               3.5724e-06
                                                                             1.0484e-05
                                                                                            2.4658e-05
                                                                                                           1.3262e-
                                 6.2213e-08
74
        15.561
                  4.7503e-09
                                                4.9108e-07
                                                               3.1215e-06
                                                                             9.5178e-06
                                                                                            2.3245e-05
                                                                                                           1.3664e-
75
        16.209
                   3.7139e-09
                                  4.928e-08
                                                4.0026e-07
                                                               2.6199e-06
                                                                              8.2935e-06
                                                                                            2.1991e-05
                                                                                                           1.4303e-
76
        16.875
                   2.945e-09
                                 3.8866e-08
                                                3.2717e-07
                                                                2.258e-06
                                                                             7.5498e-06
                                                                                            1.9996e-05
                                                                                                           1.4103e-
77
        17.559
                   2.3042e-09
                                  3.075e-08
                                                2.6267e-07
                                                               1.8986e-06
                                                                             6.5071e-06
                                                                                            1.9146e-05
                                                                                                           1.5081e-
78
        18.261
                   1.7888e-09
                                 2.4653e-08
                                                2.1261e-07
                                                               1.6083e-06
                                                                              5.7887e-06
                                                                                            1.8096e-05
                                                                                                           1.4606e-
79
        18.982
                   1.3465e-09
                                 1.9495e-08
                                                1.7008e-07
                                                               1.3129e-06
                                                                              5.0003e-06
                                                                                            1.5323e-05
                                                                                                           1.5298e-
80
        19.722
                   9.9583e-10
                                 1.5366e-08
                                                               1.0922e-06
                                                                             4.3544e-06
                                                                                            1.2912e-05
                                                                                                           1.5315e-
                                                1.3569e-07
                                                                                                            1.581e-
81
         20.48
                   7.1218e-10
                                 1.1848e-08
                                                1.0869e-07
                                                               9.0647e-07
                                                                              3.715e-06
                                                                                            1.1136e-05
82
        21.258
                   5.1489e-10
                                 8.9408e-09
                                                8.6675e-08
                                                               7.3075e-07
                                                                              3.2426e-06
                                                                                             1.018e-05
                                                                                                           1.6445e-
83
        22.055
                  3.7141e-10
                                 6.6969e-09
                                                6.8391e-08
                                                               5.9709e-07
                                                                              2.8121e-06
                                                                                            9.0229e-06
                                                                                                           1.6438e-
                                                                                             8.136e-06
84
        22.871
                   2.7136e-10
                                 4.8427e-09
                                                5.3798e-08
                                                               4.7428e-07
                                                                              2.4448e-06
                                                                                                           1.6423e-
                  1.9274e-10
85
        23.708
                                 3.4542e-09
                                                 4.184e-08
                                                               3.8443e-07
                                                                              2.0544e-06
                                                                                            7.4782e-06
                                                                                                           1.6384e-
                  1.3871e-10
                                 2.4987e-09
                                                3.1083e-08
                                                               3.0722e-07
                                                                              1.6959e-06
                                                                                                           1.6412e-
86
        24.565
                                                                                            6.7652e-06
87
                                                2.3394e-08
                                                                                                           1.5951e-
        25.442
                  9.9269e-11
                                 1.8401e-09
                                                               2.4072e-07
                                                                              1.4171e-06
                                                                                            6.0563e-06
88
         26.34
                  7.0282e-11
                                  1.338e-09
                                                1.7154e-08
                                                               1.9419e-07
                                                                              1.1731e-06
                                                                                            5.8143e-06
                                                                                                           1.4544e
```

```
mp_support_graph('cl_st_graph_title') = {'Pstationary(A,Z), asset=x, shock=color'};
mp_support_graph('cl_st_ytitle') = {'Conditional Aggregate Mass'};
mp_support_graph('cl_st_xtitle') = {'A (savings)'};
mp_support_graph('st_rowvar_name') = 'z=';
mp_support_graph('it_legend_select') = 5;
mp_support_graph('st_rounding') = '6.2f';
mp_support_graph('bl_graph_logy') = true;
mp_support_graph('cl_colors') = 'copper';
ff_graph_grid((tb_prob_az{1:end, 3:end}))', ar_st_eta_HS_grid, agrid, mp_support_graph);% Consur
```


Asset Mass by Age

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [3,4,5,6,1,2];
% Value Function
tb_prob_aage = ff_summ_nd_array("P(A,Z))", Phi_true, true, ["sum"], 4, 1, cl_mp_datasetdesc, ar
```

roup	savings 	sum_age_18 	sum_age_19 	sum_age_20 	sum_age_21 	sum_age_22 	sum_age_23 	SI —
1	0	0.021837	0.002388	0.0018389	0.006441	0.0087965	0.010537	
2	4e-05	0	2.3862e-06	2.8257e-06	1.5227e-05	0.0005064	7.0852e-07	2.
3	0.00032	0	3.749e-05	3.8393e-05	0.00067452	0.0013201	3.5849e-05	3.
4	0.00108	0	0.00031485	0.0003134	0.00007432	6.9704e-05	0.00011755	3.
5	0.00256	0	0.0012853	0.0003134	0.0015569	8.2105e-05	0.00011733	9.
6	0.005	0	0.00034215	0.00051426	0.0019303	0.00015795	0.00014559	7.
7	0.00864	0	0.0028722	0.0026464	0.00033471	0.00013733	0.00014333	0
8	0.01372	0	0.003431	0.003249	0.00033471	0.00033022	0.00018326	0.
9	0.02048	0	0.00028503	0.00067599	0.00025554	0.00030032	0.00032709	0.
10	0.02916	0	0.004274	0.0016076	0.00075151	0.00038657	0.00034427	0.
11	0.04	0	0.0024741	0.0016863	0.0015147	0.0012561	0.0011147	0.
12	0.05324	0	0.00012193	0.0010505	0.00015147	0.00012301	0.00029153	0
13	0.06912	0	0.00012155	0.00062939	0.00029300	0.00022371	0.00022198	0.
14	0.00312	0	2.7692e-05	0.00011258	0.00016217	0.00018796	0.00022238	0.
15	0.10976	0	6.2377e-05	8.9179e-06	7.302e-05	0.00018790	0.00019976	0.
16	0.135	0	0.00067668	0.00016485	0.00010669	0.00017801	0.00013370	0.
17	0.16384	0	5.8231e-06	5.1096e-05	0.00010009	0.000221	0.00021163	0.
18	0.19652	0	3.2338e-05	4.7486e-05	0.00019393	0.00024128	0.00027743	0.
19	0.13632	0	2.7827e-05	0.00062962	0.00032249	0.00035572	0.00027743	0.
20	0.23326	0	3.3098e-06	0.00012226	0.00032249	0.00035073	0.00032271	0.
21	0.32	0	4.0326e-05	0.00012228	0.00073141	0.00033073	0.00032271	0.
22	0.32	0	0.00023294	0.00034328	0.00038943	0.00074931	0.00032984	0.
23	0.42592	0	0.00023294	0.00034328	0.0003154	0.00074931	0.00035298	0.
24	0.42592	0	0.00029162	0.00049107	0.00051926	0.00034178	0.00035298	0.
24 25	0.48668	0	0.00034886	0.00054566	0.00036044	0.00041009	0.00040979	0.
26	0.55296	0	0.00050916	0.00043446	0.00028992	0.00033921	0.00039148	0.
26	0.70304	0	0.00039586	0.00037772	0.00035949	0.00035245	0.00039148	0.
28	0.78732	0	0.00039586	0.00037772	0.00037856	0.00035245	0.00032607	0.
28 29	0.78732	0	1.4297e-05	5.5411e-05	0.00037856	0.0003353	0.00036106	0.
	0.87808	0	1.4297e-05 1.5592e-05				0.00029405	
30 31				6.2891e-05 8.4112e-05	0.00029115 0.000141	0.00021838 0.00019198	0.00028827	0.
31	1.08	0	2.009e-06					0.
32	1.1916	0	2.1045e-05	0.00010104	0.00015492	0.00012578 0.0002098	0.00018109	0.
33	1.3107	0	1.4435e-06	6.9531e-05	5.1206e-05		0.00013935	0.
34	1.4375	0	5.1689e-07	4.651e-05	7.8499e-05	7.7448e-05	0.00011495	0.
35	1.5722	0	4.7793e-07	4.9348e-06	2.019e-05	8.9748e-05	0.00010189	0.
36 27	1.715	0	2.3446e-06	4.4093e-06	2.1355e-05	4.3825e-05	0.00017165	9.
37	1.8662	0	2.6545e-07	5.0217e-06	2.7683e-05	3.388e-05	5.2151e-05	0.
38	2.0261	0	5.4286e-07	3.5584e-06	1.9841e-05	3.2561e-05	4.6305e-05	7
39	2.1949	0	1.5332e-06	2.2585e-05	9.5902e-06	3.1168e-05	4.1488e-05	0.
40	2.3728	0	4.1159e-06	1.2545e-05	1.5104e-05	1.9972e-05	4.8064e-05	4.
41	2.56	0	4.9992e-06	9.9133e-06	2.4176e-05	2.6663e-05	3.4515e-05	5.
42	2.7568	0	7.7981e-06	1.537e-05	2.0404e-05	3.8764e-05	3.1904e-05	4.
43	2.9635	0	1.0694e-05	1.9867e-05	2.6641e-05	3.3667e-05	4.0931e-05	4.
44	3.1803	0	1.3309e-05	1.8778e-05	4.551e-05	3.4837e-05	4.3432e-05	4.
45	3.4074	0	1.3226e-05	2.3e-05	3.5495e-05	3.4352e-05	4.101e-05	4.
46	3.645	0	3.533e-06	2.5708e-05	3.2758e-05	4.0617e-05	3.8932e-05	4.
47	3.8934	0	1.8503e-05	2.4946e-05	2.607e-05	3.9121e-05	3.9913e-05	4.

```
mp_support_graph('cl_st_graph_title') = {'Pstationary(Asset,Age), asset=x, age=color'};
mp_support_graph('cl_st_ytitle') = {'Conditional Aggregate Mass'};
mp_support_graph('cl_st_xtitle') = {'A (savings)'};
mp_support_graph('st_rowvar_name') = 'age=';
mp_support_graph('it_legend_select') = 5;
```

```
mp_support_graph('st_rounding') = '6.0f';
mp_support_graph('bl_graph_logy') = true;
mp_support_graph('cl_colors') = 'copper';
ff_graph_grid((tb_prob_aage{1:end, 3:end})', age_grid, agrid, mp_support_graph);% Consumption (
```


Probability Statistics A, C and V Conditional on Ages

Where are the mass at?

```
ap ss = mp dsvfi results('ap ss');
c ss = mp_dsvfi_results('cons_ss');
v_ss = mp_dsvfi_results('v_ss');
n_ss = mp_dsvfi_results('n_ss');
y_head_inc = mp_dsvfi_results('y_head_inc_ss');
y_spouse_inc = mp_dsvfi_results('y_spouse_inc_ss');
yshr_wage = mp_dsvfi_results('yshr_wage_ss');
yshr SS = mp dsvfi results('yshr SS ss');
yshr_nttxss = mp_dsvfi_results('yshr_nttxss_ss');
for it ctr=1:size(ap ss, 1)
    if (ismember(it_ctr, round(linspace(1, size(ap_ss, 1), 3))))
        display(['age =' num2str(age grid(it ctr))]);
        % construct input data
        Phi_true_age = Phi_true(it_ctr, :, :, : ,: );
        ap_ss_age = ap_ss(it_ctr, :, :, : ,: );
        c_ss_age = c_ss(it_ctr, :, :, : ,: );
        v_ss_age = v_ss(it_ctr, :, :, : ,: );
        n_ss_age = n_ss(it_ctr, :, :, : ,: );
        y_head_inc_age = y_head_inc(it_ctr, :, :, : ,: );
```

```
y_spouse_inc_age = y_spouse_inc(it_ctr, :, :, : ,:);
       yshr_wage_age = yshr_wage(it_ctr, :, :, : ,: );
       yshr_SS_age = yshr_SS(it_ctr, :, :, :,:);
       yshr nttxss age = yshr nttxss(it ctr, :, :, : ,:);
       mp_cl_ar_xyz_of_s = containers.Map('KeyType','char', 'ValueType','any');
       mp_cl_ar_xyz_of_s('ap_ss') = {ap_ss_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('c_ss') = {c_ss_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('v_ss') = {v_ss_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('n_ss') = {n_ss_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('y_head_inc') = {y_head_inc_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('y_spouse') = {y_spouse_inc_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('yshr_wage') = {yshr_wage_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('yshr_SS') = {yshr_SS_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('yshr_nttxss') = {yshr_nttxss_age(:), zeros(1)};
       mp_cl_ar_xyz_of_s('ar_st_y_name') = ["ap_ss", "c_ss", "v_ss", "n_ss",...
            "y_head_inc", "y_spouse", "yshr_wage", "yshr_SS", "yshr_nttxss"];
       % controls
       mp_support = containers.Map('KeyType','char', 'ValueType','any');
       mp_support('ar_fl_percentiles') = [0.01 10 25 50 75 90 99.99];
       mp_support('bl_display_final') = true;
       mp_support('bl_display_detail') = false;
       mp_support('bl_display_drvm2outcomes') = false;
       mp_support('bl_display_drvstats') = false;
       mp support('bl display drvm2covcor') = false;
       % Call Function
       mp_cl_mt_xyz_of_s = ff_simu_stats(Phi_true_age(:)/sum(Phi_true_age,'all'), mp_cl_ar_xyz
   end
end
```

age =18
xxx tb_outcomes: all stats xxx

OriginalVariableNames		ap_ss	c_ss	v_ss	n_ss	y_head_inc y_s _l	
{'mean'	}	10.116	0.75737	-37.312	1.9854	0.84341	0.22902
{'unweighted_sum'	ź	11476	2.4434e+05	-7.8101e+05	21	4422.1	561.99
{'sd'	}	6.9537	0.67774	55.469	1.0848	0.90505	0.5733
{'coefofvar'	}	0.68742	0.89486	-1.4866	0.54639	1.0731	2.5032
{'gini'	}	0.32034	0.41117	-0.64451	0.268	0.41353	0.83721
{'min'	}	1	0.035637	-867.32	1	0.038108	0
{'max'	}	151	18.059	25.519	6	13.784	10.368
{'pYis0'	}	0	0	0	0	0	0.52499
{'pYls0'	}	0	0	0.8166	0	0	0
{'pYgr0'	}	1	1	0.1834	1	1	0.47501
{'pYisMINY'	}	0.11052	0.0014188	7.8342e-06	0.41786	0.0033703	0.52499
{'pYisMAXY'	}	0	0	0	0.0060544	0	5.3013e-06
{'p0_01'	}	1	0.035637	-745.16	1	0.038108	0
{'p10'	}	1	0.24578	-86.259	1	0.14676	0
{'p25'	}	7	0.3161	-50.56	1	0.28802	0
{'p50'	}	9	0.51551	-25.263	2	0.56523	0
{'p75'	}	11	0.88958	-5.3994	3	1.1092	0.23956
{'p90'	}	23	1.5797	6.1229	4	2.1768	0.8323
{'p99_99'	}	52	6.8857	23.695	6	8.3836	8.6488
{'fl_cov_ap_ss'	}	48.354	1.9167	115.84	0.29345	1.7747	3.1074
{'fl_cor_ap_ss'	}	1	0.4067	0.30034	0.038901	0.28199	0.77947
{'fl_cov_c_ss'	}	1.9167	0.45934	20.257	0.067217	0.59824	0.081697

{'fl_cor_c_ss' }	0.4067	1	0.53884	0.091423	0.9753	0.21026
{'fl_cov_v_ss' }	115.84	20.257	3076.8	2.8057	24.488	4.9077
{'fl_cor_v_ss' }	0.30034	0.53884	1	0.046626	0.48778	0.15433
{'fl_cov_n_ss' }	0.29345	0.067217	2.8057	1.1768	-1.236e-17	0.13364
{'fl_cor_n_ss' }	0.038901	0.091423	0.046626	1	-1.2589e-17	0.21488
{'fl_cov_y_head_inc' }	1.7747	0.59824	24.488	-1.236e-17	0.81911	0.021751
{'fl_cor_y_head_inc' }	0.28199	0.9753	0.48778	-1.2589e-17	1	0.04192
{'fl_cov_y_spouse' }	3.1074	0.081697	4.9077	0.13364	0.021751	0.32867
{'fl cor y spouse' }	0.77947	0.21026	0.15433	0.21488	0.04192	1
i = -7 = 1		2.4421e-31	-2.4036e-31	1.0754e-30	8.1847e-31	7.0393e-32
{'fl_cov_yshr_wage' } {'fl_cor_yshr_wage' }	4.0447e-16	2.7046e-16	-3.2525e-18	7.4411e-16	6.788e-16	9.2163e-17
{'fl_cov_yshr_SS' }	0	0	0	0	0	0
{'fl_cor_yshr_SS' }	NaN	NaN	NaN	NaN	NaN	NaN
{'fl_cov_yshr_nttxss'}		0.021334	1.8502	0.0077776	0.025219	0.0090401
{'fl_cor_yshr_nttxss'}		0.77071	0.81669	0.17554	0.68223	0.38607
{'fracByP0_01'}	0.010925	6.6761e-05	0.0030622	0.21046	0.00015228	0
{'fracByP10' }	0.010925	0.050401	0.44077	0.21046	0.019229	0
{'fracByP25'}	0.148	0.072459	0.71224	0.21046	0.096342	0
{'fracByP50' }	0.28531	0.21889	0.94749	0.53024	0.29663	0
{'fracByP75' }	0.60536	0.47077	1.0368	0.77109	0.59361	0.13003
{'fracByP90'}	0.758	0.70215	1.0326	0.92834	0.84502	0.34306
{'fracByP99_99' }	0.99975	0.99993	1	1	1	0.99814
age =59						
xxx tb_outcomes: all stats	XXX					
OriginalVariableNames	ap_ss	c_ss	v_ss	n_ss	y_head_inc	y_spouse y
{'mean' }	54.878	1.2923	-12.279	1.7239	1.8459	0.45057
{'unweighted_sum' }	11476	2.7092e+05	-80406	21	13268	1069.5
{'sd' }	23.415	1.0959	19.332	0.90777	2.0412	1.1205
{'coefofvar' }	0.42667	0.84801	-1.5745	0.52659	1.1058	2.4867
{'gini' }	0.23612	0.3991	-0.81005	0.23461	0.48077	0.83345
{'min' }	1	0.055882	-229.42	1	0.059541	0
{'max' }	151	32.48	14.764	6	23.47	20.112
{'pYis0' }	0	0	0	0	0	0.52499
{'pYls0' }	0	0	0.73941	0	0	0
{'pYgr0' }	1	1	0.26059	1	1	0.47501
{'pYisMINY' }	0.0042169	2.9508e-05	3.9539e-07	0.48835	9.9253e-05	0.52499
{'pYisMAXY' }	4.8703e-06	2.3072e-08	0	0.0036816	1.9995e-06	4.8438e-06
{'p0_01' }	1	0.05663	-132.27	1	0.059554	0
{'p10' }	26	0.31762	-39.004	1	0.38493	9
{'p25' }	40	0.59646	-18.282	1	0.63825	0
{'p50' }	54	1.0652	-7.1081	2	1.1351	0
{ 'p75' }	70	1.6718	0.46981	2	2.1332	0.48062
{'p90' }	85	2.4861	6.4893	3 6	4.1604	1.7443 16.777
{'p99_99' }	146	15.179	14.695		22.847	
{'fl_cov_ap_ss' }	548.26	22.158	403.41	3.0428	38.333	6.1095
{'fl_cor_ap_ss' }	1	0.86352	0.8912	0.14315	0.80205	0.23287
{'fl_cov_c_ss' }	22.158	1.201	13.858	0.23973	2.0792	0.27813
{'fl_cor_c_ss' }	0.86352	1	0.6541	0.24098	0.92951	0.22651
{'fl_cov_v_ss' }	403.41	13.858	373.74	3.5819	22.934	4.5119
{'fl_cor_v_ss' }	0.8912	0.6541	1	0.20411	0.58118	0.2083
{'fl_cov_n_ss' }	3.0428	0.23973	3.5819	0.82404	0.062213	0.2771 -
{'fl_cor_n_ss' }	0.14315	0.24098	0.20411	1	0.033576	0.27244
{'fl_cov_y_head_inc' }	38.333	2.0792	22.934	0.062213	4.1664	0.17233
{'fl_cor_y_head_inc' }	0.80205	0.92951	0.58118	0.033576	1	0.07535
{'fl_cov_y_spouse' }	6.1095	0.27813	4.5119	0.2771	0.17233	1.2554
{'fl_cor_y_spouse' }	0.23287	0.22651	0.2083	0.27244	0.07535	1
{'fl_cov_yshr_wage' }	-1.3956	-0.043321	-1.0776	-0.0071751	-0.056896	0.013069
{'fl_cor_yshr_wage' }	-0.66407	-0.44044	-0.62107	-0.088065	-0.31056	0.12996
{'fl_cov_yshr_SS' }	0	0	0	0	0	0
{'fl_cor_yshr_SS' }	NaN	NaN	NaN	NaN	NaN	NaN
{'fl_cov_yshr_nttxss'}		0.028412	0.68735	0.0085362	0.047811	0.014612
{'fl_cor_yshr_nttxss'}		0.69155	0.94837	0.25083	0.62479	0.34785
{'fracByP0_01' }		5.431e-06	0.001404	0.28329	4.1671e-06	0 3
` , _ ,						

{'fracByP10') 0.027337	0.019346	0.47531	0.28329	0.013211	0
{'fracByP25') 0.11727	0.077024	0.79795	0.28329	0.054199	0
{'fracByP50'	} 0.33388	0.22863	1.0581	0.72028	0.18178	0
{'fracByP75'	} 0.62869	0.48302	1.117	0.72028	0.41537	0.15283
{'fracByP90') 0.83409	0.72082	1.0748	0.85389	0.64728	0.3418
{'fracByP99_99') 0.9998	0.99882	1	1	0.99936	0.99834
age =100						
xxx tb_outcomes: all stat						
OriginalVariableNames	s ap_ss	c_ss	v_ss	n_ss	y_head_inc	y_spouse
{'mean'	} 1	0.35551	-2.9555	1.4797	0.26067	0.10125
{'unweighted_sum'	} 1	2.807e+05	1215	21	491.5	33.546
{'sd'	} 1.6986e-14	0.23928	1.0697	0.50567	0.023035	0.24772
{'coefofvar'	} 1.6986e-14	0.67307	-0.36194	0.34173	0.088367	2.4467
{'gini'	} 1.03000 14	0.28119	-0.18783	0.12034	0.041657	0.7872
{'min'	} 1	0.2179	-10.065	1	0.24433	0
{'max'	} 1	141.66	0.99282	6	5.6926	3.115
{'pYis0'	} 0	0	0	0	0	0.52499
{'pYls0'	} 0	0	0.99182	0	0	0
{'pYgr0'	} 1	1	0.0081757	1	1	0.47501
{'pYisMINY'	} 1	0.35002	1.5074e-10	0.5232	0.50379	0.52499
{'pYisMAXY'	} 1	0	0	4.2206e-08	0	1.0335e-08
{'p0_01') 1	0.2179	-6.3349	1	0.24433	0
{'p10') 1	0.2179	-3.6603	1	0.24433	0
{'p25') 1	0.2179	-3.5892	1	0.24433	0
{'p50'	}	0.25824	-3.5892	1	0.24433	0
{ 'p75 '	}	0.37165	-2.5873	2	0.29263	0.10311
{'p90'	}	0.6134	-1.2288	2	0.29283	0.49115
{'p99_99'	}	2.9509	0.52075	4	0.3403	2.9458
{'fl_cov_ap_ss'	} 2.8854e-28	1.5872e-30	7.1055e-30	2.9512e-29	-2.6493e-30	-3.9613e-31
{'fl_cor_ap_ss'	}	3.9051e-16	3.9105e-16	3.4358e-15	-6.771e-15	-9.4141e-17
{'fl_cov_c_ss'	} 1.5872e-30	0.057256	0.20779	0.059046	0.0016896	0.051708
{'fl_cor_c_ss'	3.9051e-16	1	0.81181	0.488	0.30655	0.87235
{'fl_cov_v_ss'	} 7.1055e-30	0.20779	1.1443	0.15982	0.010842	0.16183
{'fl_cor_v_ss'	} 3.9105e-16	0.81181	1	0.29547	0.44002	0.61072
{'fl_cov_n_ss'	} 2.9512e-29	0.059046	0.15982	0.2557	0.0018939	0.0533
{'fl_cor_n_ss'	} 3.4358e-15	0.488	0.29547	1	0.1626	0.4255
{'fl_cov_y_head_inc'	} -2.6493e-30	0.0016896	0.010842	0.0018939	0.00053059	0.00067244
{'fl_cor_y_head_inc'	} -6.771e-15	0.30655	0.44002	0.1626	1	0.11785
{'fl_cov_y_spouse'	} -3.9613e-31	0.051708	0.16183	0.0533	0.00067244	0.061365
{'fl_cor_y_spouse'	} -9.4141e-17	0.87235	0.61072	0.4255	0.11785	1
{'fl_cov_yshr_wage'	} 1.0195e-30	0.039337	0.15536	0.083876	0.00066872	0.042905
{'fl_cor_yshr_wage'	} 2.7165e-16	0.74409	0.65738	0.75078	0.1314	0.78395
{'fl_cov_yshr_SS'	} 4.2697e-30	-0.040637	-0.16221	-0.085115	-0.00073196	-0.042905
{'fl_cor_yshr_SS'	} 1.132e-15	-0.76482	-0.68289	-0.75803	-0.1431	-0.78001
{'fl_cov_yshr_nttxss'		0.044612	0.17828	0.091702	0.00088432	0.047166
{'fl_cor_yshr_nttxss'		0.77263	0.69067	0.75153	0.1591	0.78904
{'fracByP0_01' {'fracByP10'	} 1	0.21454	0.00051608	0.35357	0.47222	0
	} 1	0.21454	0.21323	0.35357	0.47222	0
{'fracByP25'	} 1	0.21454	0.64329	0.35357	0.47222	0
{'fracByP50'	} 1	0.32886	0.64329	0.35357	0.47222	0 0 19257
{'fracByP75'	} 1	0.54497	0.88331 0.97695	0.99419	0.87831	0.19257
{'fracByP90' {'fracByP99 99'	11	0.75075 0.99925	0.97695	0.99419 0.99999	0.88528 0.99987	0.62793 0.9996
[II acbyr33_33	, 1	0.33323	1	0.77777	0.3330/	סכככ.ט