PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-265902

(43) Date of publication of application: 28.09.2001

(51)Int.Cl.

G06F 17/60

G06F 17/40

(21)Application number: 2000-078936

(71)Applicant: NIPPON TELEGRAPH & TELEPHONE

EAST CORP

(22)Date of filing:

21.03.2000

(72)Inventor: KOHAMA TAKETAKA

MATSUMOTO TOSHIYUKI

KAWADA KYOKO

(54) SYSTEM FOR EVALUATING ENVIRONMENTAL CONTRIBUTION

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an environmental contribution evaluation system in which a tenant himself/herself can expedite a positive energy saving action in an environment evaluation area such as a tenant building and a database can also be acquired when the tenant himself/herself states an environment report.

SOLUTION: The PC use information of each client PC 7 used by each user, the environmental action marks of each user, energy consumption relevant information of a prescribed electric power equipment installation area unit and garbage discard quantity of a prescribed garbage collection area unit are acquired and transmitted to a server 11, and the server 11 files each piece of information in every correspondence, preserves the information in a database server 13, also digitizes the PC use information, the environmental action marks, the energy consumption relevant information and the garbage discard quantity information as environmental contribution and presents them to the user.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-265902 (P2001-265902A)

(43)公開日 平成13年9月28日(2001.9.28)

(51) Int.Cl.⁷

識別記号

F I

テーマコード(参考)

G06F 17/60 17/40 150

G06F 17/60

150

5B049

15/74

3 1 0 Z

3 3 0 Z

審査請求 未請求 請求項の数7 OL (全 11 頁)

(21)出願番号

特願2000-78936(P2000-78936)

(71)出願人 399040405

東日本電信電話株式会社

(22)出顧日

平成12年3月21日(2000.3.21)

東京都新宿区西新宿三丁目19番2号 (72)発明者 小濱 剛孝

東京都新宿区西新宿三丁目19番2号 東日

本電信電話株式会社内

(72)発明者 松本 利幸

東京都新宿区西新宿三丁目19番2号 東日

本電信電話株式会社内

(74)代理人 100083806

弁理士 三好 秀和 (外4名)

最終頁に続く

(54) 【発明の名称】 環境貢献度評価システム

(57)【要約】

【課題】 テナントビルのような環境評価エリアにおいてテナント自らの積極的な省エネ行動を促進し得るとともに、テナント自身が環境報告書などを公表する上でのデータベース取得も併せて可能となる環境貢献度評価システムを提供する。

【解決手段】 各ユーザによって使用される各クライアントPC7のPC使用情報、各ユーザの環境行動点数、所定の電力機器設置エリア単位のエネルギ消費関連情報、所定のごみ収集エリア単位のごみ廃棄量を取得してサーバ11に送信し、サーバ11で各情報をそれぞれの対応毎に整理し、データベースサーバ13に保存するとともに、PC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報を環境貢献度として数値化して、ユーザに提示する。

1

【特許請求の範囲】

【請求項1】 所定の環境評価エリアに存在するテナントに属する各ユーザによって使用される各クライアントPCの電力使用情報、各ユーザの環境に関する行動および考えを数値化した環境行動点数、エネルギ消費情報およびごみ廃棄情報を収集し、この収集した各情報を環境貢献度として数値化して評価し、ユーザに提示する環境貢献度評価システムであって、

各クライアントPCにネットワークを介して接続される サーバと、

該サーバに接続され、サーバから供給される各種データ を管理するデータベースと、

各クライアントPCに設けられ、クライアントPCの電力使用量を含む情報をPC使用情報として検出し、前記サーバにネットワークを介して送信するPC使用情報送信手段と、

各クライアントPCを介して各ユーザに対する質問形式で環境に関する各ユーザの行動および考えを取得し、この取得した情報に対して重み付けを行って、環境行動点数として数値化し、各クライアントPCからネットワー 20 クを介して前記サーバに送信する環境行動点数送信手段と、

所定の電力機器設置エリア単位において空調機器を含む電力機器を制御、監視して、電力機器のエネルギ消費関連情報を取得し、このエネルギ消費関連情報を前記サーバに送信するエネルギ消費関連情報送信手段と、

所定のごみ収集エリア単位において廃棄されるごみ廃棄量を取得し、このごみ廃棄量情報を前記サーバに送信するごみ廃棄量情報送信手段と、

前記サーバに設けられ、前記PC使用情報、前記環境行 30 動点数、前記エネルギ消費関連情報、前記ごみ廃棄量情報を受信し、前記PC使用情報については各クライアントPCに対応して、前記環境行動点数については各ユーザに対応して、前記エネルギ消費関連情報については各電力機器設置エリア単位に対応して、前記ごみ廃棄量情報について各ごみ収集エリア単位に対応して整理し、この整理された各情報を前記データベースにおいて保存管理すべくデータベースに送信する整理送信手段と、

前記データベースに保存管理されている前記PC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量 40情報をデータベースから取得し、この取得した各情報をそれぞれ環境貢献度として数値化して、ユーザに提示する環境貢献度提示手段とを有することを特徴とする環境貢献度評価システム。

【請求項2】 前記サーバは、特定のユーザからの I D およびパスワードを使用したアクセスに応答し、該 I D およびパスワードの認証結果に基づき特定のユーザの所属するテナントのエネルギ消費関連情報、ごみ廃棄量情報を含む環境貢献度情報を提示する特定ユーザ提示手段を有することを特徴とする請求項 1 記載の環境貢献度評

価システム。

【請求項3】 前記PC使用情報は、クライアントPCのタイプ、省電力機能設定の有無、PCの起動時間、ハードディスクドライブの停止時間、モニタ電源の断時間、使用OS、使用IPアドレス、PCの最終終了日時を含むことを特徴とする請求項1記載の環境貢献度評価システム。

【請求項4】 前記エネルギ消費関連情報は、消費電力量、空調用電力量、もしくは空調用冷温水量、外気温湿10 度、室内温度、ビル全体の受電量、ビル全体の冷温水量を含むことを特徴とする請求項1記載の環境貢献度評価システム。

【請求項5】 前記PC使用情報送信手段は、各クライアントPCにインストールされるソフトウェアで構成されることを特徴とする請求項1記載の環境貢献度評価システム。

【請求項6】 前記環境貢献度提示手段は、前記環境貢献度をユーザに対してWebページを使用して視覚的に提示する視覚提示手段を有することを特徴とする請求項1記載の環境貢献度評価システム。

【請求項7】 前記環境貢献度提示手段は、前記PC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報をそれぞれ環境貢献度として数値化して、全体的にまとめるとともに、それぞれの平均値を算出し、この全体的環境貢献度および平均的環境貢献度と比較し得るようにユーザに関連する環境貢献度情報を全体的環境貢献度および平均的環境貢献度とともにユーザに提示する手段を有することを特徴とする請求項1記載の環境貢献度評価システム。

) 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オフィスビル、テナントビルなどの各種ビル、複数のビル、地域を含む所定の環境評価エリアに存在するテナントに属する各ユーザによって使用される各クライアントPCの電力使用情報、各ユーザの環境に関する行動および考えを数値化した環境行動点数、エネルギ消費情報およびごみ廃棄情報を収集し、この収集した各情報を環境貢献度として数値化して評価し、ユーザに提示する環境貢献度評価システムに関し、具体的には、環境貢献度をユーザに提示することにより環境意識を目覚めさせるとともに、間接自荷制御によりテナントとして省エネ化によるエネルギコストの削減、ごみの減量化を図り得るだけでなく、全体としてのエネルギ使用量やごみの排出量を取得し、環境会計、ISO14000などのデータ構築に寄与し得る環境貢献度評価システムに関する。

[0002]

属するテナントのエネルギ消費関連情報、ごみ廃棄量情 【従来の技術】我が国は、1997年京都で行われたC 報を含む環境貢献度情報を提示する特定ユーザ提示手段 OP3(国連気候変動枠組条約第3回締約国会議)にお を有することを特徴とする請求項1記載の環境貢献度評 50 いて2010年には1990年レベルと比較してCO2

換算で6%減を世界的に公約している。しかしながら、

近年エネルギ使用量は、産業部門が1975年以来ほぼ 横ばいであるのに対して、民生部門、運輸部門を中心と して毎年数%程度の伸びで増大している。特に民生部門 はここ近年、家電の複数化および大型化、エアコンディ ショナーの普及により景気動向にもかかわらずエネルギ 使用量が伸びている。

【0003】しかも最近では更に、マルチメディアの進 展、インターネットなどの普及によりオフィスにおいて クへ常時接続の形態をも急速に普及しつつあるため、個 人の所有するPCのみならずノードに設置しているサー バ、ルータなどがすべて24時間稼動している状況であ る。最近では、これらを勘案すると、いわゆるIT革命 により2010年には1990年レベルの3倍になると いう予測も出ている。

【0004】このように民生部門、特に多量の電力を消 費するオフィスにおける省エネは急務であるが、産業部 門とは異なり大きな壁が存在する。すなわち、工場など の産業部門ではエネルギコストが支出のかなりの部分を 20 占めるため、省エネをすることで自らの経費も節減でき るので大きなインセンティブが働くようになっている。

【0005】一方、テナントビルに代表されるオフィス ではエネルギコストが不動産賃料あるいは共益費に含ま れることが多く、またエネルギコストの占める割合も産 業部門と比較して小さいため、テナントはエネルギコス トを削減しても見返りが少なく、また快適に過ごしたい 欲求が強いため、PC、空調、照明などをつけっぱなし にする、いわゆる責任者不在状態になっている。これに 対して、ビルオーナーはエネルギ管理をしっかり行いた 30 いというニーズはあるが、それによってテナントへの賃 料アップに繋がることは敬遠しがちである。

【0006】また、テナントとして入っている企業自身 の動きとして、近年環境会計、環境報告書の公開、IS 〇14000の取得などを自主的に行う動きが始まりつ つある。これらの動きに対してエネルギ使用量、ごみ排 出量を把握することに対して大きなニーズが出てきてい る。

[0007]

【発明が解決しようとする課題】上述したように、民生 40 部門である特にオフィスなどでは、マルチメディアの進 展、インターネットなどの普及によりPCがほぼ一人一 台となりつつあり、またネットワークへ常時接続の形態 をも急速に普及し、その電力消費量は増大する傾向にあ り、オフィスにおける省エネ化を行うことが急務となっ ているが、民生部門の中心であるオフィスビル、特にそ の象徴的な存在であるテナントビルに関しては、テナン ト居住者に対してインセンティブが沸くような省エネな どの環境行動の実践および環境関連のデータベースの提 供などは今だ行われていないという問題がある。

【0008】また、環境会計、環境報告書の公開、IS 014000の取得などを自主的に行う企業の動きにお いてエネルギ使用量、ごみ排出量を把握することに対す る大きなニーズがあるが、テナントビルなどにおいては ビルオーナーがビル管理会社に日常業務の一貫として行 わせているだけで、テナントへフィードバックするよう にシステム的にこれを行うものは従来存在しないという 問題があり、テナントにおいてもこのようなエネルギ使 用量やごみ廃棄量を把握し、これをテナントにフィード はPCがほぼ一人一台となりつつあり、またネットワー 10 バックさせ、環境意識を目覚めさせ、ひいては省エネ化 を促進し得ることが必要であるという課題がある。

> 【0009】本発明は、上記に鑑みてなされたもので、 その目的とするところは、例えばテナントビルのような 環境評価エリアにおいてテナント自らの積極的な省エネ 行動を促進し得るとともに、テナント自身が環境報告書 などを公表する上でのデータベース取得も併せて可能と なる環境貢献度評価システムを提供することにある。 [0010]

【課題を解決するための手段】上記目的を達成するた め、請求項1記載の本発明は、所定の環境評価エリアに 存在するテナントに属する各ユーザによって使用される 各クライアントPCの電力使用情報、各ユーザの環境に 関する行動および考えを数値化した環境行動点数、エネ ルギ消費情報およびごみ廃棄情報を収集し、この収集し た各情報を環境貢献度として数値化して評価し、ユーザ に提示する環境貢献度評価システムであって、各クライ アントPCにネットワークを介して接続されるサーバ と、該サーバに接続され、サーバから供給される各種デ ータを管理するデータベースと、各クライアントPCに 設けられ、クライアントPCの電力使用量を含む情報を P C 使用情報として検出し、前記サーバにネットワーク を介して送信する P C 使用情報送信手段と、各クライア ントPCを介して各ユーザに対する質問形式で環境に関 する各ユーザの行動および考えを取得し、この取得した 情報に対して重み付けを行って、環境行動点数として数 値化し、各クライアントPCからネットワークを介して 前記サーバに送信する環境行動点数送信手段と、所定の 電力機器設置エリア単位において空調機器を含む電力機 器を制御、監視して、電力機器のエネルギ消費関連情報 を取得し、このエネルギ消費関連情報を前記サーバに送 信するエネルギ消費関連情報送信手段と、所定のごみ収 集エリア単位において廃棄されるごみ廃棄量を取得し、 このごみ廃棄量情報を前記サーバに送信するごみ廃棄量 情報送信手段と、前記サーバに設けられ、前記PC使用 情報、前記環境行動点数、前記エネルギ消費関連情報、 前記ごみ廃棄量情報を受信し、前記PC使用情報につい ては各クライアントPCに対応して、前記環境行動点数 については各ユーザに対応して、前記エネルギ消費関連 情報については各電力機器設置エリア単位に対応して、 50 前記ごみ廃棄量情報について各ごみ収集エリア単位に対

5

応して整理し、この整理された各情報を前記データベースにおいて保存管理すべくデータベースに送信する整理送信手段と、前記データベースに保存管理されている前記PC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報をデータベースから取得し、この取得した各情報をそれぞれ環境貢献度として数値化して、ユーザに提示する環境貢献度提示手段とを有することを要旨とする。

【0011】請求項1記載の本発明にあっては、所定の 環境評価エリアに存在するテナントに属する各ユーザに 10 よって使用される各クライアントPCの電力使用量を含 む情報をPC使用情報として検出してサーバに送信し、 各クライアントPCを介して環境に関する各ユーザの行 動および考えを取得して重み付けを行い、環境行動点数 として数値化してサーバに送信し、所定の電力機器設置 エリア単位において電力機器のエネルギ消費関連情報を 取得してサーバに送信し、所定のごみ収集エリア単位に おけるごみ廃棄量を取得してサーバに送信し、サーバで はPC使用情報、環境行動点数、エネルギ消費関連情 報、ごみ廃棄量情報を受信すると、各情報をそれぞれの 20 対応毎に整理し、データベースに送信して保存管理する とともに、この保存管理したPC使用情報、環境行動点 数、エネルギ消費関連情報、ごみ廃棄量情報をデータベ ースから取得し、環境貢献度として数値化して、ユーザ に提示するため、各ユーザはこの提示された自己の環境 貢献度に基づき積極的な省エネ行動を図ることができる ようになるとともに、またテナントや事務所などの所定 の電力機器設置エリア単位や所定のごみ収集エリア単位 において電力機器などのエネルギ消費関連情報やごみ廃 棄量を取得し、データベース化を行うことにより総務担 30 当者などの特定のユーザに対して環境会計などのデータ 提供を可能にする。

【0012】また、請求項2記載の本発明は、請求項1 記載の発明において、前記サーバが、特定のユーザからのIDおよびパスワードを使用したアクセスに応答し、該IDおよびパスワードの認証結果に基づき特定のユーザの所属するテナントのエネルギ消費関連情報、ごみ廃棄量情報を含む環境貢献度情報を提示する特定ユーザ提示手段を有することを要旨とする。

【0013】請求項2記載の本発明にあっては、サーバ 40 は特定のユーザからのIDおよびパスワードを使用したアクセスに応答し、該IDおよびパスワードの認証結果に基づき特定のユーザの所属するテナントのエネルギ消費関連情報、ごみ廃棄量情報を含む環境貢献度情報を提示するため、特定のユーザである総務担当者において提示されたデータに基づき環境会計などのデータ構築を容易に行うことができる。

【0014】更に、請求項3記載の本発明は、請求項1 的環境員 記載の発明において、前記PC使用情報が、クライアン 基づき更 トPCのタイプ、省電力機能設定の有無、PCの起動時 50 になる。

間、ハードディスクドライブの停止時間、モニタ電源の 断時間、使用OS、使用IPアドレス、PCの最終終了 日時を含むことを要旨とする。

【0015】請求項4記載の本発明は、請求項1記載の発明において、前記エネルギ消費関連情報が、消費電力量、空調用電力量、もしくは空調用冷温水量、外気温湿度、室内温度、ビル全体の受電量、ビル全体の冷温水量を含むことを要旨とする。

【0016】また、請求項5記載の本発明は、請求項1 記載の発明において、前記PC使用情報送信手段が、各 クライアントPCにインストールされるソフトウェアで 構成されることを要旨とする。

【0017】請求項5記載の本発明にあっては、各クライアントPCにインストールされるソフトウェアで各クライアントPCの電力使用量を含む情報をPC使用情報として検出してサーバに送信するため、該ソフトウェアを初期に各クライアントPCにインストールするだけで、テナントに既設のクライアントPCやサーバを利用でき、少ない設備投資でエネルギ削減効果を図ることができる。

【0018】更に、請求項6記載の本発明は、請求項1 記載の発明において、前記環境貢献度提示手段が、前記 環境貢献度をユーザに対してWebページを使用して視 覚的に提示する視覚提示手段を有することを要旨とす る。

【0019】請求項6記載の本発明にあっては、環境貢献度をユーザに対してWebページを使用して視覚的に提示するため、各ユーザはWebページにビジュアルに提示された各自の環境貢献度を見て、省エネ行動を積極的に行うことができるようになる。

【0020】請求項7記載の本発明は、請求項1記載の発明において、前記環境貢献度提示手段が、前記PC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報をそれぞれ環境貢献度として数値化して、全体的にまとめるとともに、それぞれの平均値を算出し、この全体的環境貢献度および平均的環境貢献度と比較し得るようにユーザに関連する環境貢献度とともにユーザに提示する手段を有することを要旨とする。

【0021】請求項7記載の本発明にあっては、サーバではPC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報をそれぞれ環境貢献度として数値化して、全体的にまとめるとともに、それぞれの平均値を算出し、この全体的環境貢献度および平均的環境貢献度情報を全体的環境貢献度および平均的環境貢献度とともにユーザに提示するため、各ユーザは全体的環境貢献度や平均的環境貢献度と比較して提示される自己の環境貢献度に基づき更に積極的な省エネ行動を図ることができるようになる。

[0022]

【発明の実施の形態】以下、図面を用いて本発明の実施 の形態を説明する。図1は、本発明の一実施形態に係る 環境貢献度評価システムの構成を示す図である。同図に 示す環境貢献度評価システムは、ネットワーク化が進ん でいるオフィスなどの民生部門に対してクライアントP Cの詳細な電力使用状況、クライアントPCを保有する ユーザの省エネ行動チェック、すなわちユーザの環境に 関する行動および考えを数値化した環境行動点数である エコポイントなどをネットワークを通じて集計し、環境 10 貢献度として数値化して他者と比較し得るようにユーザ に提示することによりユーザに対するインセンティブに より省エネ行動などの環境意識を目覚めさせるととも に、間接負荷制御によりテナントとして省エネ化による エネルギコストの削減、ごみの減量化を図れるようにす るだけでなく、事務所全体のエネルギ使用量およびごみ の廃棄量を定期的にユーザに提示し、環境会計、ISO 14000などのデータ構築に寄与し得るシステムであ る。

【0023】図1に示すように、本実施形態の環境貢献 20 度評価システムは、所定の環境評価エリアとしてオフィ スビルの象徴的な存在であるテナントビル1に一例とし て適用されている。このテナントビル1内に存在する複 数のテナント3のユーザが所有する複数のクライアント PC7は、インターネットなどの接続サービスを可能に するためにLAN5に接続され、このLAN5を介して ネットワークにTCP/IP接続されている。そして、 これらのクライアント Р С 7 にはネットワークおよびハ ブ9を介してサーバ11が接続され、サーバ11はこの 接続経路を介して各クライアントPC7の電力使用量情 30 報などを収集するとともに、またこの収集した電力使用 量情報等の情報を各ユーザに対してネットワークを通じ てWebによりビジュアルに提示し得るようになってい る。なお、各クライアントPC7とその所有者である各 ユーザとの対応関係は、例えばクライアントPC固有の MACアドレスおよびユーザが初期登録する際に入力さ れるIDにより判断することができる。

【0024】また、サーバ11にはハブ9を介してデー タベースサーバ13が接続されていて、サーバ11が各 クライアントPC7などから収集したデータをデータベ 40 ースサーバ13に保存して管理し得るようになってい る。更に、サーバ11にはIP/シリアル変換機15お よびシリアルケーブル17を介してバスオートメーショ ンシステム(BAS) 19が接続され、このバスオート メーションシステム19には更に各種センサ21および 空調装置23が接続されている。

【0025】バスオートメーションシステム19は、テ ナントビル1全体の空調や電力を制御するコンピュータ システムであり、空調装置23などの電力機器を制御し

し、このエネルギ消費関連情報をシリアルケーブル1 7、IP/シリアル変換機15を介してサーバ11に送 信するようになっている。また、バスオートメーション システム19に接続されている各種センサ21は図示し ない各種電力機器の動作状態を監視して、そのエネルギ 消費量などを検出し、この検出したエネルギ消費量など の情報をバスオートメーションシステム19に供給する ようになっている。バスオートメーションシステム19 は、これらの各センサ21で検出した各エネルギ消費量 などの情報を受け取ると、この情報をシリアルケーブル 17、IP/シリアル変換機15を介してサーバ11に 送信するようになっている。

【0026】各クライアントPC7は、クライアントP C7自身の使用状況や設定状態を監視して、その電力使 用量を含む情報を検出するためのPC使用情報送信手段 を構成するソフトウェアであるエコウェアをインストー ルされている。このエコウェアは、クライアントPC7 の使用状況や設定状態などをオンラインで所定の周期毎 に検出し、この検出した情報を一旦自分自身のクライア ントPC7に蓄積しておき、クライアントPC7がシャ ットダウンする時にもしくは継続して動かす場合には動 作日の翌日2:00にサーバ11に一括して送信するよ うになっている。

【0027】また、クライアントPC7を使用する各ユ ーザに対しては、各クライアント P C 7 から質問形式で 環境に関する各ユーザの行動および考えを取得し得るよ うに各クライアントPC7から環境に関する複数項目の クリッカブルな質問がクライアントPC7のディスプレ イ画面に表示されるようになっている。ユーザがこの表 示された環境に関する質問に対して所望の答をクリック して答えると、このクリックした答がクライアントPC 7に取り込まれる。クライアントPC7は、この答に対 して重み付けを行って、ユーザの環境行動点数として数 値化し、クライアントPC7からネットワークを介して サーバ11に送信する。サーバ11は、この数値化され た環境行動点数を受信すると、この環境行動点数を各ユ ーザに対応してデータベースサーバ13に保存するよう になっている。なお、上述したようにユーザの環境行動 をエコポイントとして数値化してサーバ11に送信する 機能である環境行動点数送信手段は、例えばクライアン トPC7にインストールされたエコウェアでも実現し得 るものである。

【0028】また、サーバ11は、IP/シリアル変換 機15、シリアルケーブル17を介して接続されている バスオートメーションシステム19から所定の電力機器 設置エリア単位毎、具体的には各テナント毎などにおけ る空調装置23やその他の各種電力機器のエネルギ消費 量などの情報をエネルギ消費関連情報として毎時間毎に 受け取って収集し、この収集したエネルギ消費関連情報 て、その電力消費量を含むエネルギ消費関連情報を取得 50 を各テナントのような所定の電力機器設置エリア単位に

対応してデータベースサーバ13に蓄積する。なお、バスオートメーションシステム19はエネルギ消費関連情報送信手段を構成しているものである。

【0029】更に、サーバ11は、例えばビル管理会社から一ヶ月に一回報告されるテナント別のような所定のごみ収集エリア毎のごみ廃棄量をセキュリティのかかった専用の入力ページから入力されるようになっている。サーバ11は、ごみ廃棄量情報を受け取ると、このごみ廃棄量情報を各ごみ収集エリア単位に対応してデータベースサーバ13に蓄積するようになっている。

【0030】サーバ11は、上述したように各クライアントPC7からネットワークを介して送信されるPC使用情報、各ユーザの環境行動点数、バスオートメーションシステム19から送信されるエネルギ消費関連情報および専用入力ページから入力されるごみ廃棄量情報を受け取ると、PC使用情報については各クライアントPCに対応して、環境行動点数については各ユーザに対応して、エネルギ消費関連情報については各電力機器設置エリア単位に対応して、ごみ廃棄量情報について各ごみ収集エリア単位に対応して整理し、この整理された各情報をデータベースサーバ13に送信して保存管理する。

【0031】そして、サーバ11は、このようにデータベースサーバ13に保存管理したPC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報を適宜データベースサーバ13から取得し、この取得した各情報をそれぞれ環境貢献度として数値化して、全体的にまとめるとともに、それぞれの平均値を算出し、この算出した全体的環境貢献度および平均的環境貢献度情報およびその全体における順位などを全体的環境貢献度および平均 30的環境貢献度とともにユーザに視覚的に提示し得るようにWebページに設定する。

【0032】クライアントPC7を所有する各ユーザ は、自分の環境貢献度を確認するために、指定されたU RLを通じてWebページにアクセスすると、サーバ1 1から提示されている各ユーザの関連する環境行動点数 を含む環境貢献度およびその全体における順位を全体的 環境貢献度および平均的環境貢献度とともにビジュアル 的に確認することができる。具体的には、各ユーザは、 図4に示すように表示されるWebページを閲覧するこ とにより、自分の環境貢献度である総ポイント数、自分 の順位、自分の所属するテナントの順位、自分の所属す るテナントの総電力使用量、ごみ廃棄量などをビジュア ルに確認することができる。この結果、テナントに居住 するユーザは環境貢献度として目に見える形で数値化さ れたポイントを獲得するというインセンティブを図るこ とができるとともに、テナントとしても間接負荷制御に より省エネが図られ、エネルギコストの削減が可能とな る。また、テナント自身が環境報告書を公表する上でデ ータベース構築も併せて可能となる。

【0033】なお、ユーザの環境行動点数であるエコポイントを含む環境貢献度は、最終的にはテナントおよびビルオーナーなどから広告費の一部として出資された基金から換金され、これによりユーザ自身の省エネ行動などに金銭的インセンティブが働くようになる。

【0034】図2は、図1に示した環境貢献度評価システムの機能をわかりやすく図示したものであるが、図2に示すように、各ユーザにおいてはクライアントPC7にインストールされたエコウェア23でクライアントPC7の消費電力や使用状況などが検出されると、このクライアントPC7の消費電力、使用状況などがエコウェア23の制御によりクライアントPC7からサーバ11に対して自動的に毎日転送されるとともに、各ユーザの環境に関する行動および考えを質問形式で答えて数値化して環境行動点数であるエコポイントなどの環境貢献度がWebを使用してサーバ11に対して送信され、この結果として各ユーザはWebでエコポイント、エネルギ使用状況などを把握することができる。

【0036】そして、サーバ11は、上述したように受け取ったPC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報をそれぞれ環境貢献度として数値化して、全体的にまとめるとともに、それぞれの平均値算出し、この算出した全体的環境貢献度および平均的環境貢献度と比較し得るように各ユーザに関連する環境貢献度および平均的環境貢献度とともにユーザに視覚的に提示し得るようにWebページに設定し、各ユーザはこのWebページにアクセスして、サーバ11から提示されている各自の環境行動点数を他との比較の形でビジュアル的に確認することができる。

【0037】また、テナントの例えば総務担当者や総務管理者などのような特定のユーザは、ID、パスワードを使用してサーバ11を介してデータベースサーバ13にアクセスすることにより、自分が所属するテナントのエネルギ消費量やごみ廃棄量などをWebで確認して取得することもできる。

【0038】図3は、上述したようにサーバ11で収集されてデータベースサーバ13に格納される各データの項目、収集方法、収集周期などを示す表である。同図に示すように、まずクライアントPC7にインストールされたエコウェア23によって検出され収集されるクライアントPCの消費電力データとしては、PCタイプ、省電力タイプセット、省電力プロパティの各項目、メール50サーバ名、ユーザ名(メールアドレス)、PC起動時

間、HDD停止時間、モニタ電源断時間、使用OS、IPアドレス、最終終了日時などのデータ項目があり、各クライアントPC毎にオンラインでクライアントPCのシャットダウン時、もしくは連続運転の場合、翌朝2:00に収集されるようになっている。

【0039】また、各ユーザの環境行動点数であるエコポイントを取得するためのエコチェックでは、エコチェックを行う日時がデータとして収集されるとともに、最大20問程度の設問によるユーザ個人の環境行動チェックがWebを介して質問形式でユーザ自らで一日に一回 10程度行われるようになっている。

【0040】更に、バスオートメーションシステム(BAS)19からのエネルギ消費データには、データ項目として収集日時、消費電力量、空調用冷温水量、外気温湿度、室内温度、ビル全体の受電量および地域冷暖房の流量などがあり、これらのデータがビル内のポイントアドレス毎にオンラインで毎時間バスオートメーションシステム19で収集されてサーバ11に送信されるようになっている。

【0041】また、ごみ排出量では、データ項目として 20 ごみ廃棄の月、ごみ種別毎の廃棄量があり、これらのデータ管理表をビル管理会社から月に一回受け取って、手入力されるようになっている。

【0042】次に、図5を参照して、本発明の他の実施 形態に係る環境貢献度評価システムについて説明する。 【0043】図5に示す実施形態の環境貢献度評価システムは、所定の環境評価エリア内に光ファイバなどを使 用した高速エリアネットワーク31を構成し、この高速 エリアネットワーク31で複数のビル33を接続すると ともに、高速エリアネットワーク31にエリア内の情報 30 を管轄するサーバ41およびデータベース43を接続 し、このサーバ41およびデータベース43により図1 に示した実施形態の環境貢献度評価システムと同様に各 ビル33およびをピル33内に存在する複数のデナント

に示した実施形態の環境貢献度評価システムと同様に各 ビル33および各ビル33内に存在する複数のテナント における各ユーザの所有する各クライアントPCの電力 使用情報、各ユーザの環境行動点数、エネルギ消費情報 およびごみ廃棄情報などの環境貢献度を収集し、この環 境貢献度を数値化して、全体的にまとめるとともに、そ れぞれの平均値を算出し、この算出した全体的環境貢献 度および平均的環境貢献度と比較し得るように各ユーザ 40 に関連する環境貢献度情報およびその全体における順位 などを全体的環境貢献度および平均的環境貢献度ととも にユーザに視覚的に提示し得るようにWebページに設 定する。そして、各ユーザは、指定のURLを通じてW e bページにアクセスすることにより、各ユーザの環境 貢献度およびその全体における順位を全体的環境貢献度 および平均的環境貢献度とともにビジュアル的に確認す ることができる。

【0044】また、各ビル33内には、図1で示したと 理会社から一ヶ月に一回報告されるテナント別廃棄量と 同様に、各ユーザのクライアントPCを接続するLAN 50 してセキュリティのかかった専用入力ページから入力さ

35が各テナント毎に構築され、このLAN35にはネットワークセキュリティのためにhttpなどの一部のプロトコルのみを通すことができるファイヤオール37が設けられ、このファイヤオール37を介して外部情報を入手し得るようになっている。また、ビル33内にはオフィスに設置されているバスオートメーションシステム(BAS)39からの上述したと同様なエネルギ消費情報などのデータを収集するためのモニタPC47が設けられ、このモニタPC47は、シリアルケーブル45を介してバスオートメーションシステム39に接続されるとともに、またLAN35にも接続されている。

【0045】各ビル33内の各テナントのすべてのクラ イアントPCには、各クライアントPC自身の電力使用 量、使用状況や設定状態などを監視して、その電力使用 量を含む情報を検出するためのソフトウェアであるエコ ウェアがインストールされている。このエコウェアは、 クライアントPCの電力使用量、使用状況、設定状態な どの情報として使用PCの機種を初めとしてPC、ハー ドディスクおよびディスプレイの使用電力量などの情報 を数十分毎等の所定の周期でオンラインで検出し、この 検出した情報を一旦自分自身のクライアントPCに蓄積 しておき、クライアントPCがシャットダウンする時に 高速エリアネットワーク31を介してサーバ41に一括 して送信するようになっている。また、サーバ41は各 クライアントPCから受け取ったクライアントPCの電 力使用量、使用状況、設定状態などの情報をPC使用情 報として各クライアントPCに対応してデータベース4 3に蓄積する。更に、クライアントPCを使用する各ユ ーザに対しては、各クライアントPCから質問形式で環 境に関する各ユーザの行動および考えを取得し得るよう に各クライアントPCから環境に関する複数項目のクリ ッカブルな質問がクライアントPCのディスプレイ画面 に表示され、ユーザがこの質問に対して所望の答をクリ ックして答えると、このクリックした答がクライアント PCに取り込まれる。クライアントPCは、この答に対 して重み付けを行って、ユーザの環境行動点数として数 値化し、クライアントPCから高速エリアネットワーク 31を介してサーバ41に送信する。サーバ41は、こ の数値化された環境行動点数を受信すると、この環境行 動点数を各ユーザに対応してデータベース43に保存す るようになっている。なお、各クライアントPCと所有 者である各ユーザとの対応関係は、クライアントPC固 有のMACアドレスおよびユーザが初期登録した際に入 力したIDにより判断されるようになっている。

【0046】各ビル33のモニタPC47はシリアルケーブル45を介してバスオートメーションシステム39に接続され、毎時間ごとにテナントとしての電力消費量を収集する。また、ごみ廃棄量に関する情報は、ビル管理会社から一ヶ月に一回報告されるテナント別廃棄量としてセキュリティのかかった専用入力ページから入力さ

れ、各モニタPC47から高速エリアネットワーク31 を介してサーバ41に転送される。

【0047】サーバ41は、各クライアントPCから高速エリアネットワーク31を介して送信されるPC使用情報、各ユーザの環境行動点数、バスオートメーションシステム39から送信されるエネルギ消費関連情報および専用入力ページから入力されるごみ廃棄量情報を受け取ると、PC使用情報については各クライアントPCに対応して、環境行動点数については各ユーザに対応して、エネルギ消費関連情報については各ユーザに対応して、エネルギ消費関連情報については各電力機器設置エリア単位に対応して、ごみ廃棄量情報については各ごみ収集エリア単位に対応して整理し、この整理された各情報をデータベース43に送信して保存管理する。

【0048】そして、サーバ41は、このようにデータベース43に保存管理したPC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報を適宜データベース43から取得し、この取得した各情報をそれぞれ環境貢献度として数値化して、全体的にまとめるとともに、それぞれの平均値を算出し、この算出した全体的環境貢献度および平均的環境貢献度と比較し得るように20各ユーザに関連する環境貢献度および平均的環境貢献度とはもにコーザに視覚的に提示し得るようにWebページに設定する。

【0049】クライアントPCを所有する各ユーザは、 自分の環境貢献度を確認するために、指定されたURL を通じてWebページにアクセスし、サーバ41から提 示される各ユーザの関連する環境行動点数を含む環境貢 献度およびその全体における順位を全体的環境貢献度お よび平均的環境貢献度とともにビジュアル的に確認する 30 ことができる。すなわち、各ユーザは、Webページを 閲覧することにより、自分の環境貢献度である総ポイン ト数、自分の順位、自分の所属するテナントの順位、自 分の所属するテナントの総電力使用量、ごみ廃棄量など をビジュアルに確認することができる。この結果、テナ ントに居住するユーザは環境貢献度として目に見える形 で数値化されたポイントを獲得するというインセンティ ブを図ることができるとともに、テナントとしても間接 負荷制御により省エネが図られ、エネルギコストの削減 が可能となる。また、テナント自身が環境報告書を公表 40 する上でのデータベース構築も併せて可能となる。

【0050】なお、エコポイントは、最終的にはテナントおよびビル群におけるビルオーナーから広告費の一部として出資された基金から換金され、これによりユーザ自身の省エネ行動などに金銭的インセンティブが働くようになる。

[0051]

【発明の効果】以上説明したように、本発明によれば、 各ユーザによって使用される各クライアントPCのPC 使用情報、各ユーザの環境行動点数、所定の電力機器設 50 置エリア単位のエネルギ消費関連情報、所定のごみ収集 エリア単位のごみ廃棄量を取得してサーバに送信し、サ ーバで各情報をそれぞれの対応毎に整理し、データベー スに保存管理するとともに、PC使用情報、環境行動点 数、エネルギ消費関連情報、ごみ廃棄量情報を環境貢献 度として数値化して、ユーザに提示するので、各ユーザ はこの提示された自己の環境貢献度に基づき積極的な省 エネ行動を図ることができるようになるとともに、また

14

エネ行動を図ることができるようになることもに、また テナントや事務所などの所定の電力機器設置エリア単位 や所定のごみ収集エリア単位においては電力機器などの エネルギ消費関連情報やごみ廃棄量を取得し、データベ ース化を行うことにより総務担当者などの特定のユーザ に対して環境会計などのデータ提供を可能にする。

【0052】また、本発明によれば、サーバは特定のユーザからのIDおよびパスワードを使用したアクセスに応答し、該IDおよびパスワードの認証結果に基づき特定のユーザの所属するテナントのエネルギ消費関連情報、ごみ廃棄量情報を含む環境貢献度情報を提示するので、特定のユーザである総務担当者において提示されたデータに基づき環境会計などのデータ構築を容易に行うことができる。

【0053】更に、本発明によれば、各クライアントPCにインストールされるソフトウェアで各クライアントPCの電力使用量を含む情報をPC使用情報として検出してサーバに送信するので、該ソフトウェアを各クライアントPCにインストールするだけで、テナントに既設のクライアントPCやサーバを利用でき、少ない設備投資でエネルギ削減効果を図ることができる。

【0054】本発明によれば、環境貢献度をユーザに対してWebページを使用して視覚的に提示するので、各ユーザはWebページにビジュアルに提示された各自の環境貢献度を見て、省エネ行動を積極的に行うことができるようになる。

【0055】また、本発明によれば、サーバではPC使用情報、環境行動点数、エネルギ消費関連情報、ごみ廃棄量情報をそれぞれ環境貢献度として数値化して、全体的にまとめるとともに、それぞれの平均値を算出し、この全体的環境貢献度および平均的環境貢献度と比較し得るようにユーザに関連する環境貢献度特とともにユーザに提示するので、各ユーザは全体的環境貢献度や平均的環境貢献度と比較して提示される自己の環境貢献度に基づき更に積極的な省エネ行動を図ることができるようになる。

【図面の簡単な説明】

【図1】本発明の一実施形態に係る環境貢献度評価システムの構成を示す図である。

【図2】図1に示した環境貢献度評価システムの機能を わかりやすく示した説明図である。

【図3】図1に示した実施形態の環境貢献度評価システムにおいてサーバで収集されてデータベースサーバに格

16

15

納される各データの項目、収集方法、収集周期などを示す表である。

【図4】図1に示した実施形態の環境貢献度評価システムにおいて表示されるWebページを示す図である。

【図5】本発明の他の実施形態に係る環境貢献度評価システムの構成を示す図である。

【符号の説明】

- 1 テナントビル
- 3 テナント

*5,35 LAN

7 クライアントPC

11, 41 サーバ

13 データベースサーバ

19, 39 バスオートメーションシステム

31 高速エリアネットワーク

43 データベース

47 ELSPC

【図1】

【図3】

表1	: 林納	される	データ	9 9 1

表1:格納されるナーダ的				
収集データ	データ項目	収集方法	収集周期など	
エコウェアによる PCの消費電力 データ	 PCタイプインセット 含電力プログライの 各項目 メールサーバ名 ユーザ 等は レス) PC起動時間 HDD停止時間 使用OS IPアドレス 最終終了日時 	PCの毎に オンライン	もしくは 連続運転の 場合、翌朝 2:00	
エコチェック	エコチェック 個人環境行動チェック (設問は最大20間)	wwwを 介して 利用者自ら チェック	1回/日	
BASからエネルギー 演費データ	 収集日時 消費電力量 空間沿水水景 外気温度 室内温度 ビル全体の受電量 ビル全体の地域冷暖房の流量 	ビル内 ポイント アドレス毎 にオンライン	100/時間	
ゴミ排出量	月・ゴミ糖類別等の廣楽量	ビル管理 会社から 管理表を 受け取り 手入力	1回/月	

【図4】

フロントページの続き

(72)発明者 河田 恭子 東京都新宿区西新宿三丁目19番2号 東日 本電信電話株式会社内 F ターム(参考) 5B049 AA02 CC45 DD00 EE00 EE02 FF03 GC04 GC07