华中科技大学答题纸

华中科技大学集成学院大学物理 (二) 2013 $^{\sim}$ 2014 (A)

卷

考试学期: 试卷类型: A 适用年级: 考试时间: 150 分钟 考试方式: 闭卷 所属院系: 专业班级: 姓名:

学号:

题目	_	1 1	111			总分	统分
得分							

得分	评卷人	复核

一、单选题(本题共10小题,满分30分)

1	2	3	4	5	6	7	8	9	10

得分	评卷人	复核

二、填空题(本题共10小题,满分30分)

1.			

2. _____

3. _____

4. _____

5.____

6. _____

7.

8. _____

9. _____

10. _____

得分	评卷人	复核

三、计算题(本题共4小题,满分40分)

1. 如图所示,电源电动势为 ϵ ,线圈电阻为零,自感系数为 L,和它串联的电阻阻值为 R,合上开关后,线圈中的电流由 O 开始增大。以合上开关的瞬间为计时起点,推导出电流随时间的变化关系 i(t)。(说明:要有具体推导过程,直接写出结果不得分)

2. 如图所示,S1、S2 为同一介质中沿两者连线方向发射平面简谐波的相干波源,两者相距 5/4 波长,两波在S1 和S2 连线上强度相同,都为 I_0 ,且不随距离变化。设S1 经过平衡 位置向负方向运动时,S2 恰处在正向最远端。求:(1) S1 和S2 连线上S1S2 外侧各点合成波的强度;(2) S1、S2 之间因干涉而静止的各点位置。

3. 波长为 λ =600nm 的平行光正入射到一光栅上,测得第四级主极大的衍射角为 30°,且 第三级缺级。求:(1)光栅常数 d;(2)透光缝所有可能的宽度 a;(3)单缝衍射中央包络 线内可能有几条主极大?(4)屏幕上可能观察到的全部主极大的级次。(10 分)

4. 本题包括两小题,各5分。

康普顿散射实验表明,散射 X 射线的波长偏移与散射角 ϕ 间的关系为: $\Delta \lambda = \lambda_c (1-cos\varphi)$ 。 式中 $\lambda_c = 2.43 \times 10^{-12}$ m. 已知入射 X 射线的波长 0 =0.02 nm,在散射角 ϕ =90°的方向观察,求反冲电子的动能。(普朗克常量 $\mathbf{h} = \mathbf{6.63} \times \mathbf{10^{-34}}_{\mathrm{Js}}$)(2)已知粒子在无限深势阱中运动,其波函数为:

$$\psi(x) = \sqrt{\frac{2}{a}} \sin(\frac{2\pi x}{a}) \qquad (0 \le x \le a)$$

求在 0° a/4 区域内发现粒子的概率. (10 分)