Probability Space

The sample space Ω contains all outcomes $\omega \in \Omega$ of an experiment.

Sigma-Algebra

 $\mathcal{F}\subseteq\mathcal{P}(\Omega)$ defines a sigma-algebra on Ω if and only if

- i) $\Omega \in \mathcal{F}$
- ii) $A \in \mathcal{F} \implies A^C \in \mathcal{F}$ (complements included)
- iii) $A_1, \ldots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (ORs included)

P1.6 Consequently,

- iv) $\emptyset \in \mathcal{F}$
- v) $A_1, \ldots \in \mathcal{F} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$
- vi) $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$
- vii) $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$

Probability Measure

For a sigma-algebra \mathcal{F} on Ω , a probability measure on (Ω, \mathcal{F}) is a map of form

$$\mathbb{P}: \mathcal{F} \to [0, 1]$$
$$A \mapsto \mathbb{P}[A]$$

that satisfies

- i) $\mathbb{P}[\Omega] = 1$
- ii) $A = \bigcup_{i=1}^{\infty} A_i \implies \mathbb{P}[A] = \sum_{i=1}^{\infty} \mathbb{P}[A_i]$ (countable additivity)

P1.7 Consequently,

- iii) $\mathbb{P}[\emptyset] = 0$
- iv) (Additivity) For finitely many pairwise disjoint events $A_1, \ldots, A_k \in \mathcal{F}$, $\mathbb{P}\big[\biguplus_{i \in [k]} A_k\big] = \sum_{i \in [k]} \mathbb{P}[A_i]$
- v) For any $A \in \mathcal{F}$, $\mathbb{P}[A^C] = 1 \mathbb{P}[A]$
- vi) For arbitrary $A, B \in \mathcal{F}$, $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] \mathbb{P}[A \cap B]$

Probability Space. The tuple $(\Omega, \mathcal{F}, \mathbb{P})$ defines a probability space.

Monotonicity. For $A, B \in \mathcal{F}$, $A \subset B \implies \mathbb{P}[A] < \mathbb{P}[B]$.

Almost Sure Events. $A \in \mathcal{P}(\Omega)$ is said to occur almost surely (a.s.) if $\exists A' \in \mathcal{F}$, $A' \subseteq A : \mathbb{P}[A'] = 1$.

Union Bound. Generally,

$$A_1, \ldots \in \mathcal{F} \implies \mathbb{P}\big[\bigcup_{i=1}^{\infty} A_i\big] \leq \sum_{i=1}^{\infty} \mathbb{P}[A_i]$$

Continuity Properties. For $A_1, \ldots \in \mathcal{F}$,

- $\begin{array}{ll} \text{i)} \ A_k \ \subseteq \ A_{k+1} \ \text{for all} \ k \in \mathbb{N}^+ \quad \Longrightarrow \\ \lim_{n \to \infty} \mathbb{P}[A_n] = \mathbb{P}\big[\bigcup_{n=1}^{\infty} A_n\big] \end{array}$
- $\begin{array}{ccc} \text{ii)} \ A_k \ \supseteq \ A_{k+1} \ \text{for all} \ k \in \mathbb{N}^+ & \Longrightarrow \\ \lim_{n \to \infty} \mathbb{P}[A_n] = \mathbb{P}\big[\bigcap_{n=1}^{\infty} A_n\big] \end{array}$

Conditional Probability

For events $A,B\in\mathcal{F}$ on a probability space $(\Omega,\mathcal{F},\mathbb{P})$ with $\mathbb{P}[B]>0,$

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

defines the probability of A given B.

P1.15 If $\mathbb{P}[B] \neq 0$, then the function $A \mapsto \mathbb{P}[A|B]$ is a probability measure on Ω .

Total Probability

For any partition $B_1 \uplus \ldots \uplus B_n = \Omega$ with $\mathbb{P}[B_i] > 0$ for all $i \in [n]$,

$$\forall A \in \mathcal{F} : \mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i] \mathbb{P}[B_i]$$

Bayes Formula

For any partition $B_1 \uplus \ldots \uplus B_n = \Omega$ with $\mathbb{P}[B_i] > 0$ for all $i \in [n]$ and event A with $\mathbb{P}[A] > 0$,

$$\forall i \in [n] : \mathbb{P}[B_i|A] = \frac{\mathbb{P}[A|B_i] \mathbb{P}[B_i]}{\sum_{j=1}^{n} \mathbb{P}[A|B_j] \mathbb{P}[B_j]}$$

Applying the total probability formula yields

$$\mathbb{P}[B|A] = \frac{\mathbb{P}[A|B] \, \mathbb{P}[B]}{\mathbb{P}[A]}$$

Event Independence

Two events $A, B \in \mathcal{F}$ are said to be independent if

$$\mathbb{P}[A\cap B] = \mathbb{P}[A]\ \mathbb{P}[B]$$

A collection of events $A_i \in \mathcal{F}, \ i \in I$ is said to be independent if

$$\forall J\subseteq I,\; |J|<\infty: \mathbb{P}\big[\bigcap_{j\in J}A_j\big]=\prod_{j\in J}\mathbb{P}[A_j]$$

Remark 1.19 An event $A \in \mathcal{F}$ is independent of

- i) every event in $\mathcal{F} \Leftrightarrow \mathbb{P}[A] \in \{0,1\}$
- ii) $B \in \mathcal{F} \Leftrightarrow A$ is independent of B^C

P1.20 Two events $A, B \in \mathcal{F}$ with $\mathbb{P}[A], \mathbb{P}[B] > 0$ are independent $\Leftrightarrow \mathbb{P}[A|B] = \mathbb{P}[A] \Leftrightarrow \mathbb{P}[B|A] = \mathbb{P}[B]$

Random Variables and Distribution Functions

A random variable X on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a map of signature $\Omega \to \mathbb{R}$ such that for all $\alpha \in \mathbb{R}$,

$$\{\omega \in \Omega \mid X(\omega) < \alpha\} \in \mathcal{F}$$

Its distribution function is defined as

$$\begin{aligned} F_X : \mathbb{R} &\to [0,1] \\ \alpha &\mapsto \mathbb{P}[X \leq \alpha] \end{aligned}$$

Theorem 2.4. F_X

- i) is nondecreasing
- ii) is right continuous, i.e. for all $a \in \mathbb{R}$, $F_X(a) = \lim_{h \downarrow 0} F_X(a+h)$
- iii) satisfies $\lim_{\alpha \to -\infty} F(\alpha) = 0$ and $\lim_{\alpha \to \infty} F(\alpha) = 1$

Variable Independence (I)

A set of variables X_1, \ldots, X_n is said to be independent if

$$\forall x_1, \dots, x_n \in \mathbb{R} :$$

$$\mathbb{P}[X_1 \le x_1, \dots, X_n \le x_n] = \prod_{i \in [n]} F_{X_i}(x_i)$$

An infinite sequence of variables X_1, \ldots is said to be

- i) independent if X_1, \dots, X_m is independent for all $m \in \mathbb{N}^+$
- ii) independent and identically distributed (iid) if it is independent and $\forall i,j \in \mathbb{N}^+: F_{X_i} = F_{X_i}$

Indicator Function. For an event $A \in \mathcal{F}$, the shorthand $\mathbb{1}_A$ describes its indicator function, i.e.

$$\begin{split} \mathbb{1}_A: \omega &\mapsto \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{otherwise} \end{cases} \\ F_{\mathbb{1}_A}: \alpha &\mapsto \begin{cases} 0 & \text{if } \alpha < 0 \\ 1 - \mathbb{P}[A] & \text{if } 0 \leq \alpha < 1 \\ 1 & \text{otherwise} \end{cases} \end{split}$$

Discrete Random Variables

X is said to be discrete if a finite or countable set $W \subset \mathbb{R}$ exists such that $X \in W$ a.s.

The distribution of X is defined as

$$p_X: W \to [0, 1]$$
$$x \mapsto \mathbb{P}[X = x]$$

and satisfies

$$\sum_{x \in W} p_X(x) = 1$$

The distribution function can be derived through

$$F_X(\alpha) = \sum_{y \in W \cap]-\infty, \alpha]} p_X(y)$$

The distribution can be determined by splitting F_X into piecewise constant functions at the locations x_1, \ldots, x_n of missing left continuity:

$$p_X(x) = \begin{cases} 0 & \text{for } x < x_1 \\ F_X(x_1) & \text{for } x_1 \le x < x_2 \\ F_X(x_m) - F_X(x_{m-1}) & \text{otherwise} \end{cases}$$
$$= F_X(x) - \underbrace{F_X(x_m)}_{\substack{h \downarrow 0 \\ h \downarrow 0}} \underbrace{F(x_m)}_{\substack{f \in X \\ h \downarrow 0}} \underbrace{F(x_m$$

Bernoulli

For $\mathfrak{p} \in [0,1], \: X \sim \text{Ber}(\mathfrak{p}) \text{ defines}$

$$p_X:\{0,1\}\to [0,1]$$

$$a \mapsto \begin{cases} 1 - p & \text{for } a = 0 \\ p & \text{for } a = 1 \end{cases}$$

$$\mathbb{E}[X] = \mathfrak{p}, \ \operatorname{Var}[X] = \mathfrak{p}(1 - \mathfrak{p})$$

Existence Theorem of Kolmogorov. There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with an infinite sequence of random variables X_1, \ldots that are iid as $\operatorname{Ber}(\frac{1}{2})$.

Binomial

For $n \in \mathbb{N}_0$ and $p \in [0, 1]$, $X \sim Bin(n, p)$ defines

$$p_X : \{0, \dots, n\} \to [0, 1]$$

$$a \mapsto \binom{n}{a} p^a (1-p)^{n-a}$$

$$\mathbb{E}[X] = np, \ Var[X] = np(1-p)$$

P3.13 Sum of Bernoulli. For iid $X_1, \ldots, X_n \sim \text{Ber}(p), \sum_{i=1}^n X_i \sim \text{Bin}(n, p).$

Remark 3.14 Binomial Sum. For independent $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$, $X + Y \sim Bin(n + m, p)$.

Geometric

For
$$p \in]0,1]$$
, $X \sim \text{Geom}(p)$ defines
$$p_X: \mathbb{N}^+ \to [0,1]$$

$$\alpha \mapsto (1-p)^{\alpha-1}p$$

$$\mathbb{E}[X] = {}^1/_p \,, \; \text{Var}[X] = \frac{1-p}{p^2}$$

P3.18 Tries to success. For an infinite sequence of iid $X_1, \ldots \sim \text{Ber}(p)$, $\min\{n \in \mathbb{N}^+ \mid X_n = 1\} \sim \text{Geom}(p)$.

P3.20 Absence of memory. For $n \ge 0$, $k \ge 1$, and $X \sim \text{Geom}(p)$,

$$\mathbb{P}[X > n + k \mid X > n] = \mathbb{P}[X > k]$$

Negative Binomial

For $r \in \mathbb{N}^+$ and $p \in]0,1], \, X \sim \text{NB}(r,p)$ defines

$$\begin{array}{c} p_X: \mathbb{N}^+ \setminus [r-1] \to [0,1] \\ a \mapsto {\alpha-1 \choose r-1} (1-p)^{\alpha-r} p^r \\ \\ \mathbb{E}[X] = {r/p} \,, \; Var[X] = \frac{r(1-p)}{n^2} \end{array}$$

Sum of Geometric. For iid $X_1, \ldots, X_n \sim \text{Geom}(s), \sum_{i=1}^n X_i \sim \text{NB}(n, p).$

Poisson

For
$$\lambda \in]0,\infty[$$
, $X \sim \text{Poisson}(\lambda)$ defines
$$p_X: \mathbb{N}_0 \to [0,1]$$

$$a \mapsto \frac{\lambda^k}{k!} e^{-\lambda}$$

$$\mathbb{E}[X] = \lambda, \ \text{Var}[X] = \lambda$$

P3.23 Approximating Binomial. For $\lambda > 0$ and $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$, $N \sim \text{Poisson}(\lambda)$ satisfies $p_N = \lim_{n \to \infty} p_{X_n}$.

Continuous Random Variables

X is said to be continuous if its distribution function can be written as $F_X(\alpha)=\int_{-\infty}^\alpha f_X(x)\,dx$ for all $\alpha\in\mathbb{R}$ with $f_X\geq 0.$ The density of X is the above function of signature

$$f_x: \mathbb{R} \to [0, \infty[$$

and satisfies

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$

The distribution function can be constructed from its definition.

The density can often be determined by splitting F_X into piecewise \mathcal{C}^1 -functions at the locations x_1, \ldots, x_n of missing left-continuity:

$$f_X = \begin{cases} \frac{\partial f_X}{\partial x} & \text{for } x \in \]a,b[\ \text{where} \\ (a,b) \in \{(-\infty,x_1),(x_n,\infty)\} \\ \cup \{(x_i,x_{i+1}) \mid i \in [n-1]\} \\ \text{arbitrary} \in \mathbb{R} & \text{otherwise} \end{cases}$$

Uniform

For $a,b \in \mathbb{R}, \ a < b, \ X \sim \mathcal{U}([a,b])$ defines

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

$$F_X(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } x \in [a,b] \\ 1 & \text{for } x > b \end{cases}$$

$$\mathbb{E}[X] = \frac{a+b}{2}, \, \text{Var}[X] = \frac{(b-a)^2}{12}$$

Construction from Bernoulli. Using iid $X_1, \ldots \sim \text{Ber}(1/2)$, one can construct $\sum_{i=1}^{\infty} 2^{-i} X_i \sim \mathcal{U}([0,1])$.

Constructing Random Variables

For the target distribution function F, construct the **generalized inverse**

$$F^{-1}: \]0,1[\ \rightarrow \mathbb{R}$$

$$\alpha \mapsto \inf \left\{ x \in \mathbb{R} \mid F(x) \geq \alpha \right\}$$

Then, Theorem 2.13 guarantees that $X := F^{-1}(\mathcal{U}([0,1]))$ is a random variable with $F_X = F$

Exponential

For $\lambda \in \ensuremath{]0,\infty[}$, $X \sim \text{Exp}(\lambda)$ defines

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$F_X(x) = egin{cases} 1 - e^{-\lambda x} & \text{for } x \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{E}[X] = 1/\lambda$$
, $Var[X] = 1/\lambda^2$

Absence of memory. For $t,s\geq 0$ and $X\sim \text{Exp}(\lambda),$

$$\mathbb{P}[X > t + s \mid X > t] = \mathbb{P}[T > s]$$

Normal

For mean $\mu \in \mathbb{R}$ and variance $\sigma^2 \in]0, \infty[$, $X \sim \mathcal{N}(\mu, \sigma^2)$ defines

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}\,e^{-\frac{(x-\mu)^2}{2\,\sigma^2}}$$

$$F_X = \Phi\left(\tfrac{x-m}{\sigma}\right)$$

where
$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

$$\mathbb{E}[X] = \mu, \ Var[X] = \sigma^2$$

Combining Normal. For independent $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), \ldots, X_n \sim \mathcal{N}(\mu_n, \sigma_n^2), \lambda_1, \ldots, \lambda_n \in \mathbb{R}$, and $m \in \mathbb{R}$,

$$m + \sum_{i=1}^n \lambda_i \, X_i \sim \mathcal{N} \big(m + \sum_{i=1}^n \lambda_i \, \mu_i, \, \sum_{i=1}^n \lambda_i^2 \, \sigma_i^2 \big)$$

Chi²

For degree of freedom $k\in\mathbb{N}^+$, $X\sim\chi^2(k)$ defines

$$f_X(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

$$\mathbb{E}[X] = k$$
, $Var[X] = 2k$

Sum of Standard Normal. For iid $X_1, \ldots, X_n \sim \mathcal{N}(0,1), \; \sum_{i=1}^n X_i^2 \sim \chi^2(n)$

Student's t

For degree of freedom $\nu \in \]0,\infty[$, $X \sim t(\nu)$ defines

$$f_X(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi}\Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-\frac{v+1}{2}}$$

$$\mathbb{E}[X] = \begin{cases} 0 & \text{for } \nu > 0 \\ \text{undef.} & \text{otherwise} \end{cases}$$

$$Var[X] = \begin{cases} \frac{v}{v-2} & \text{for } v > 2\\ \text{undef.} / \infty & \text{otherwise} \end{cases}$$

P2.6 For independent $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(m), \ \frac{\chi}{\sqrt{\frac{1}{m}Y}} \sim t(m)$

Normal is t's limit. For $(Z_n)_{n\geq 1} \sim t(n)$ and $Z \sim \mathcal{N}(0,1)$, $\lim_{n\to\infty} F_{Z_n} = F_Z$.

Expectation

The **expected value** of a nonnegative random variable $Y: \Omega \to]0, \infty[$ is defined as

$$\mathbb{E}[Y] = \int_0^\infty (1 - F_Y(x)) \, dx$$

More generally, for $X:\Omega\to\mathbb{R}$ with $\mathbb{E}[|X|]<\infty,$ one defines

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{1}_{X>0} X] - \mathbb{E}[-\mathbb{1}_{X<0} X]$$

Expectation of a Discrete RV

For an arbitrary function $\phi: \mathbb{R} \to \mathbb{R}$ and discrete random variable $X: \Omega \to \mathbb{R}$ with $X \in W \subset \mathbb{R}$ a.s.,

$$\mathbb{E}[\varphi(X)] = \sum_{x \in W} \varphi(x) \, p_X(x)$$

if defined.

Expectation of a Continuous RV

For a function $\phi: \mathbb{R} \to \mathbb{R}$ and continuous random variable $X: \Omega \to \mathbb{R}$ that guarantee that $\phi(X)$ is a random variable too,

$$\mathbb{E}[\phi(X)] = \int_{-\infty}^{\infty} \phi(x) \, f_X(x) \, dx$$

if defined.

Theorem 4.10 Linearity For arbitrary random variables $X,Y:\Omega\to\mathbb{R}$ and $\lambda\in\mathbb{R},$ if defined,

i)
$$\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$$

ii)
$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Theorem 4.13

 $X, Y \text{ independent } \Longrightarrow \mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$

Tailsum Formulas. For any random variable X with $X \ge 0$ a.s.,

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X > x] \, \mathrm{d}x$$

If X is discrete with $W = \mathbb{N}_0$, then

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{P}[X \ge n]$$

Theorem 4.17 Random variables $X_1, ..., X_n$ are independent \Leftrightarrow For all bounded piecewise \mathcal{C}^0 functions $\phi_1, ..., \phi_n : \mathbb{R} \to \mathbb{R}$

$$\mathbb{E}\big[\prod_{i=1}^n \varphi_n(X_n)\big] = \prod_{i=1}^n \mathbb{E}[\varphi_n(X_n)]$$

P4.19 For random variables X, Y,

$$X < Y \text{ a.s.} \implies \mathbb{E}[X] < \mathbb{E}[Y]$$

Markov's Inequality

For any random variable X with $X \ge 0$ a.s.,

$$\forall \alpha \in]0, \infty[B : \mathbb{P}[X \ge \alpha] \le \frac{\mathbb{E}[X]}{\alpha}$$

Jensen's Inequality

For any random variable X and convex function $\phi : \mathbb{R} \to \mathbb{R}$, if defined,

$$\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$$

More Inequalities. Consequently,

- i) $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
- ii) $\mathbb{E}[|X|] \leq \sqrt{\mathbb{E}[X^2]}$

Variance

The variance of a random variable X with $\mathbb{E}[X^2] < \infty$ is defined as

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sigma_X^2$$

The square root σ_X is its standard deviation.

Chebyshev's Inequality

For any random variable X satisfying $\mathbb{E}[X^2] < \infty$,

$$\forall \alpha \in [0, \infty[: \mathbb{P}[|X - \mathbb{E}[X]| \ge \alpha] \le \frac{\operatorname{Var}[X]}{\alpha^2}$$

P4.25 For pairwise independent random variables X, X_1, \ldots, X_n with defined variances,

- i) $Var[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- ii) $\forall \lambda \in \mathbb{R} : Var[\lambda X] = \lambda^2 Var[X]$
- iii) $Var\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} Var[X_i]$

Covariance. For random variables X,Y with with $\mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty$, the covariance is defined as $\text{Cov}[X,Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$. To disprove independence, one might make use of the fact that

$$X, Y \text{ independent } \Longrightarrow Cov(X, Y) = 0$$

Joint Distributions

The joint distribution of discrete random variables $X_1, ..., X_n$ with $X_i \in W_i$ a.s. for $i \in [n]$ and $W = \sum_{i=1}^n W_i$ is defined as

$$\begin{split} p: W &\rightarrow [0,1] \\ x_{1:n} &\mapsto \mathbb{P}[X_{i:n} = x_{1:n}] \end{split}$$

and satisfies $\sum_{x_{1:n} \in W} p(x_{1:n}) = 1$.

The joint density of continuous random variables $X_1, ..., X_n$ is (if existent) the function $f: \mathbb{R}^n \to [0, \infty[$ such that

$$\mathbb{P}[X_1 \le a_1, \dots, X_n \le a_n]$$

$$= \int_{-\infty}^{a_1} \dots \int_{-\infty}^{a_n} f(x_{1:n}) dx_n \dots dx_1$$

holds for all $a_{1:n} \in \mathbb{R}^n$. For $a_{1:n} = \infty$, the above expression evaluates to 1.

Variable Independence (II)

A set of discrete / continuous random variables X_1, \ldots, X_n with a joint distribution p / density f are independent \iff $p(x_{1:n}) = \prod_{i=1}^n p_{X_i}(x_i)$ / $f(x_{1:n}) = \prod_{i=1}^n f_{X_i}(x_i)$ for all $x_{i:n} \in W / \mathbb{R}^n$

Asymptotic Behavior

Law of Large Numbers

For iid $X_1, ..., X_n$ with $\mathbb{E}[|X_1|] < \infty$, $\lim \quad \frac{\sum_{i=1}^n X_i}{\sum_{i=1}^n X_i} = \mathbb{E}[X_1]$

$$\lim_{n\to\infty} \underbrace{\frac{\sum_{i=1}^{n} X_i}{n}}_{\text{empirical average}} = \mathbb{E}[X_1]$$

Convergence in Distribution. A sequence of random variables X_1, \ldots is said to satisfy " $X_n \stackrel{approx}{\approx} X$ as $n \to \infty$ " if

$$\forall x \in \mathbb{R}: \lim_{n \to \infty} \mathbb{P}[X_n \leq x] = \mathbb{P}[X \leq x]$$

Central Limit Theorem

For iid X_1, \ldots, X_n with $\mathbb{E}[X_1^2] < \infty$, the random variable

$$Z_{n} = \frac{\sum_{i=1}^{n} X_{i} - \mathbb{E}[X_{1}] n}{\sqrt{\operatorname{Var}[X_{1}] n}}$$

satisfies

$$Z_n \overset{approx}{pprox} Z$$
 as $n \to \infty$

with $Z \sim \mathcal{N}(0, 1)$.

Consequently,

$$\forall \alpha \in \mathbb{R} : \lim_{n \to \infty} \mathbb{P} \big[Z_n \le \alpha \big] = \Phi(\alpha)$$

Inductive Statistics

- ightarrow On a fixed base space (Ω, \mathcal{F}) , observe the
- \rightarrow realization x_1, \dots, x_n (i.e. empirical data points) of

- \rightarrow samples X_1,\dots,X_n to determine an optimal
- \rightarrow model parameter $\theta \in \Theta$ and
- ightarrow confidence interval $I\subset \Theta$ for chosing from a suitable
- \rightarrow model family \mathbb{P}_{θ} . Check the validity of one's assumptions using
- \rightarrow statistical tests.

Estimator

A random variable of form

$$T = t(X_{1:n}), \quad t : \mathbb{R}^n \to \mathbb{R}$$

attempting to estimate θ is referred to as an estimator.

Bias

An estimator T under the model \mathbb{P}_{θ} shows a

- $\circ \ \ \text{bias of} \ \mathbb{E}_{\theta}[T] \theta$
- $\label{eq:mean squared error of} \text{MSE}_{\theta}[T] = \mathbb{E}_{\theta}[(T-\theta)^2]$

It is said to be unbiased ("erwartungstreu") if $\forall \theta \in \Theta : \mathbb{E}_{\theta}[T] = \theta$.

MSE Decomposition. One can show that $MSE_{\theta}[T] = Var_{\theta}[T] + (\mathbb{E}_{\theta}[T] - \theta)^2$.

Likelihood Function. For samples $X_{1:n}$, define

$$L(x_{1:n};\theta) = \begin{cases} p_{X_{1:n}}(x_{1:n};\theta) \\ \text{if } \forall i \in [n] : X_i \text{ discrete} \\ f_{X_{1:n}}(x_{1:n};\theta) \text{ otherwise} \end{cases}$$

Working with log L is often more convenient since for iid variables, products turn into sums.

Maximum Likelihood Estimator

A random variable

$$T_{ML} = t_{ML}(X_{1:n})$$

with

$$t_{\mathsf{ML}}:\mathbb{R}^n\to\mathbb{R}$$

$$x_{1:n} \mapsto \underset{\theta \in \Theta}{\operatorname{arg max}} L(x_{1:n}; \theta)$$

is a maximum likelihood estimator for θ using samples $X_{1:n}$.

Empirical Mean. An ML-Estimator for θ assuming iid $X_{1:n} \sim \text{Ber}(\theta)$ is

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Empirical Variance. An ML-Estimator for σ_{θ}^2 assuming iid $X_{1:n} \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2)$ is

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$$

P2.7 For iid $X_{1:n} \sim \mathcal{N}(\mu, \sigma^2), \ \bar{X}_n$ and S^2 are independent.

Confidence Interval

A confidence interval I = [A, B] for θ of level $1 - \alpha$, $\alpha \in \mathbb{R}$ satisfies

$$\forall \theta \in \Theta : \mathbb{P}_{\theta}[A < \theta < B] > 1 - \alpha$$

with derived random variables $A=a(X_{1:n})$ and $B=b(X_{1:n})$ using $a,b:\mathbb{R}^n\to\mathbb{R}.$

Statistical Tests

A statistical test is a pair (T,K) of a derived test statistic $T=t(X_{1:n}),\ t:\mathbb{R}^n\to\mathbb{R}$ and a critical region ("Verwerfungsbereich") $K\subseteq\mathbb{R}$.

One rejects the null hypothesis $H_0: "\theta \in \Theta_0 \subseteq \Theta"$ if and only if $T(\omega) \in K$.

Since rejection is harder than acceptance, one should choose the negation of what one intends to show for H_0 and an similar alternative $H_A : "\theta \in \Theta_A \subseteq \Theta \setminus \Theta_0$ ".

Significance Level

A test (T,K) possesses a significance level $\alpha \in [0,1]$ if the probability of Type 1 errors, i.e. erroneously rejecting H_0 , satisfies

$$\forall \theta \in \Theta_0 : \mathbb{P}_{\theta}[T \in K] \leq \alpha$$

Power

A test (T, K)'s power is defined as the function

$$\begin{split} \beta: \Theta_A &\to [0,1] \\ \theta &\mapsto \mathbb{P}_{\theta}[T \in K] \end{split}$$

It is *inversely* tied to the Type 2 error, i.e. erroneously *not* rejecting H_0 .

Neyman-Pearson Construction

A good test can usually be constructed systematically:

For T, choose the generalized Likelihood-Quotient

$$R(x_{1:n}) = \frac{\sup_{\theta_A \in \Theta_A} L(x_{1:n}; \theta_A)}{\sup_{\theta_A \in \Theta_A} L(x_{1:n}; \theta_0)}$$

For K, choose an interval $]c_0, \infty[$ with c_0 set to suit α .

p-value

For a simple $H_0:\theta=\theta_0$ and ordered family of tests $(T,(K_t)_{t\geq 1}),$ i.e. $s\leq t\Rightarrow K_s\supseteq K_t,$ the p-value is the random variable G(T) derived using

$$\begin{aligned} G: \]0,\infty[\ \rightarrow [0,1] \\ t \mapsto \mathbb{P}_{\theta_0}[T \in K_t] \end{aligned}$$

All tests with $\alpha > G(T(\omega))$ reject H_0 .

Quantile

The lower α -quantile of a random variable X is defined as

$$\inf \left\{ x \mid \mathbb{P}[X \leq x] \geq \alpha \right\}$$

For T $\sim t(n),$ one often denotes the lower $\alpha\text{-quantile}$ as $t_{n,\alpha}.$

For $Z \sim \mathcal{N}(0,1)$, one often denotes the lower α -quantile as $z_{\alpha} := t_{\infty,\alpha} = \Phi^{-1}(\alpha)$.

Symmetry. For $n\in\mathbb{N}_{\infty}^{+}$ and $\alpha\in[0,1],$ $t_{n,\alpha}=1-t_{n,1-\alpha}.$

Guides

Approximate Confidence Intervals

Bernoulli - Interval for p

Assuming iid $X_1,\ldots,X_n\sim \text{Ber}(\theta)$, estimate $\theta\in[0,1]$ using \bar{X}_n . For $n\to\infty$, the Central Limit Theorem guarantees that

$$\frac{n(\bar{X}_n - \theta)}{\sqrt{\theta(1 - \theta)n}} \overset{\text{approx}}{\approx} Z$$

where $Z \sim \mathcal{N}(0, 1)$. Consequently, one can approximate

$$\mathbb{P}[\bar{X}_n - c_\theta \le \theta \le \bar{X}_n + c_\theta] \ge 1 - \alpha$$

for

$$c_{\theta} = \frac{z_{1-\alpha/2}\sqrt{\theta(1-\theta)n}}{n} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}} = \tilde{c}$$

which leads to

$$I = [\bar{X}_n - \tilde{c}, X_n + \tilde{c}]$$

Geometric - Interval for p

Assuming iid $X_1, \dots, X_n \sim \text{Geom}(\theta)$, estimate $\theta \in [m, 1], m \in [0, 1[$, using

$$T_{ML} = \frac{n}{\sum_{i=1}^{n} X_i}$$

For $n \to \infty$, the Central Limit Theorem guarantees that

$$\frac{n(1/T_{\text{ML}} - 1/\theta)}{\sqrt{\frac{1-\theta}{\theta^2}n}} \stackrel{\text{approx}}{\approx} Z$$

where $Z \sim \mathcal{N}(0,1).$ Consequently, one can approximate

$$\mathbb{P}[(T_{ML}^{-1} + c_{\theta})^{-1} \le \theta \le (T_{ML}^{-1} - c_{\theta})^{-1}] \ge 1 - \alpha$$

for

$$c_{\theta} = \frac{z_{1-\alpha/2}}{\sqrt{n}} \frac{\sqrt{1-\theta}}{\theta} \leq \frac{z_{1-\alpha/2}}{\sqrt{n}} \frac{\sqrt{1-m}}{m} = \tilde{c}$$

which leads to

$$I = [(T_{ML}^{-1} + \tilde{c})^{-1}, (T_{ML}^{-1} - \tilde{c})^{-1}]$$

Tests

Normal – Test for μ

Assuming iid $X_1, \ldots, X_n \sim \mathcal{N}(\theta, \sigma^2)$, test $H_0: \theta = \theta_0$ for some $\theta_0 \in \mathbb{R}$ with $H_A: \theta > \theta_0$ using

$$T = \frac{\bar{X}_n - \theta_0}{\sigma / \sqrt{n}}$$

If H_0 holds, $T \sim \mathcal{N}(0, 1)$. Build

$$K =]z_{1-\alpha}, \infty[$$

Choosing $H_A: \theta < \theta_0$ requires

$$K =]-\infty, \underbrace{-z_{1-\alpha}}_{z_{\alpha}}[$$

Choosing $H_A: \theta \neq \theta_0$ requires

$$K =]-\infty, -z_{1-\alpha/2}[\cup] z_{1-\alpha/2}, \infty[$$

Normal – Test for μ without σ^2

Assuming iid $X_1, \dots, X_n \sim \mathcal{N}(\mu_\theta, \sigma_\theta^2)$, test $H_0 : \mu_\theta = \mu_0$ for some $\theta \in \mathbb{R}^2$ with $H_A : \mu_\theta > \mu_0$ using

$$T = \frac{\bar{X}_n - \mu_0}{s / \sqrt{n}}$$

If H_0 holds, $T \sim t(n-1)$. Build

$$K=]t_{n-1,1-\alpha},\infty[$$

Choosing $H_A: \mu_{\theta} < \mu_0$ requires

$$K =]-\infty, \underbrace{-t_{n-1,1-\alpha}}_{t_{n-1,\alpha}}[$$

Choosing $H_A: \theta \neq \theta_0$ requires

$$K =]-\infty, -t_{n-1,1-\alpha/2}[\cup t_{n-1,1-\alpha/2}, \infty[$$

Bernoulli - Test for p

Assuming iid $X_1, \dots, X_n \sim \text{Ber}(\theta)$, test $H_0 : \theta = \theta_0$ for some $\theta_0 \in [0, 1]$ with $H_A : \theta > \theta_0$ using

$$T = \sum_{i=1}^{n} X_i$$

If H_0 holds, $T \sim Bin(n, \theta_0)$. Build

$$K = \{k_0+1, \dots, n\} \quad \text{using} \quad$$

$$k_0 = \min \left\{ k \in \mathbb{N}_0 \mid \mathbb{P}[T \le k] > 1 - \alpha \right\}$$

Graphs

Diverses

Summensätze.

$$i) \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

ii)
$$\sum_{i=0}^{n} k^i = \frac{1-k^{n+1}}{1-k}$$

iii)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Binomialsatz. $\forall x,y \in \mathbb{C} \ \forall n \geq 1$:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Binomialkoeffizient. Mit "n choose k" bezeichnet man

$$\binom{n}{k} := \frac{n!}{(n-k)! \ k!}$$

Differentiations regeln. $\forall f, g \in \mathbb{R}^D$, $D \subseteq \mathbb{R}$, in x_0 differenzier bar,

i)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

ii)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

iii)
$$(f/g)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$
,
$$= \int_0^{2\pi} \int_0^R f\begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix} r dr d\theta$$

Partielle Integration. Für stetig differenzierbare $f, g \in \mathbb{R}^{[a,b]}$ gilt

$$\int_{a}^{b} (fg')(x) dx$$

$$= \underbrace{\left[(fg)(x) \right]_{a}^{b}}_{(fg)(b)-(fg)(g)} - \int_{a}^{b} (f'g)(x) dx$$

Substitution. Für stetige $f \in \mathbb{R}^I$ auf dem Intervall $I \subseteq \mathbb{R}$ und stetig differenzierbarer $\varphi \in D^{[\alpha,b]}$ auf $D \subseteq I$ gilt

$$\int_{\Phi(\alpha)}^{\Phi(b)} f(x) dx = \int_{\alpha}^{b} (f \circ \phi)(t) \phi'(t) dt$$

Angewandt heisst dies z.B.

i)
$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$$

ii)
$$\int_a^b f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$$

Variablensubstitution. Für eine geeignete $\varphi \in C^1(U,\mathbb{R}^2), U \subset \mathbb{R}^2$ offen, mit $\varphi(B) = A$ und $f \in C^0(A,\mathbb{R})$, wobei A,B kompakt, $\partial A, \partial B$ Nullmengen, $\varphi|_{B \setminus N \to A}$ injektiv für Nullmengen $N \subset B$ gilt

$$\int_A f(s) \, ds = \int_B (f \circ \varphi)(s) \, |\det J_{\varphi}(s)| \, ds$$

Polarkoordinaten. Verwendet man

$$\begin{split} \varphi: \]0,\infty[\times]0,2\pi[\ \to \mathbb{R}^2 \\ \begin{pmatrix} r \\ \theta \end{pmatrix} \mapsto \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix} \end{split}$$

ist wegen $\text{det}(J_{\varphi}) = r$ beispielsweise

$$\int_{x^2+y^2 < R^2} f(s) ds$$

$$= \int_0^{2\pi} \int_0^R f \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix} r dr d\theta$$

Sphärische Koordinaten. Verwendet man

$$\begin{split} \varphi: \mathbb{S} \times]0, \pi[& \to \mathbb{R}^3 \\ \begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix} & \mapsto \begin{pmatrix} r\cos(\theta)\sin(\phi) \\ r\sin(\theta)\cos(\phi) \\ r\cos(\phi) \end{pmatrix} \end{split}$$

ist $\det(J_{\Phi}) = r^2 \sin(\theta)$.

deg	χ	sin(x)	cos(x)	tan(x)
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	

Die trigonometrischen Funktionen

S3.41 sin: $\mathbb{C} \to \mathbb{C}$

$$z \mapsto \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$
 und

 $\cos \colon \mathbb{C} \to \mathbb{C}$

$$z \mapsto \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

sind in \mathbb{R} stetige Funktionen. Es gelten

S3.42 $\forall z, w \in \mathbb{C}, \ \forall x \in \mathbb{R},$

i)
$$\exp(iz) = \cos(z) + i\sin(z)$$

ii)
$$\sin(-z) = -\sin(z)$$
,
 $\cos(-z) = \cos(z)$

iii)
$$\sin(z) = \frac{\exp(iz) - \exp(-iz)}{2i}$$

 $\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2}$

iv)
$$\sin(z+w)$$

 $=\sin(z)\cos(w)+\cos(z)\sin(w)$,
 $\cos(z+w)$
 $=\cos(z)\cos(w)-\sin(z)\sin(w)$

v)
$$\cos^2(z) + \sin^2(z) = 1$$

vi)
$$\sin(2z) = 2\sin(z)\cos(z)$$

vii)
$$\cos(2z) = \cos^2(z) - \sin^2(z)$$

viii)
$$\sin (x + \pi/2) = \cos(x)$$
,
 $\cos (x + \pi/2) = -\sin(x)$

ix)
$$\sin(x + \pi) = -\sin(x)$$
,
 $\sin(x + 2\pi) = \sin(x)$

x)
$$cos(x + \pi) = -cos(x)$$
,
 $cos(x + 2\pi) = cos(x)$

xi) $\{k\pi : k \in \mathbb{Z}\}$ Nullstellen von sin

xii) $\{\pi/2 + k\pi : k \in \mathbb{Z}\}$ Nullstellen von cos

Tangens. Für $z \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ ist

 $\tan(z) := \frac{\sin(z)}{\cos(z)}$ und für $z \notin \pi \cdot \mathbb{Z}$ ist

 $\cot(z) := \frac{\cos(z)}{\sin(z)}$ definiert.

Die reelle Exponentialfunktion

$$\mid$$
 S3.24 exp: $\mathbb{R} \rightarrow]0,\infty[$

$$\chi \longmapsto \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

ist streng monoton wachsend, stetig und surjektiv (also bijektiv). Es gelten

i)
$$exp(x + y) = exp(x) exp(y)$$

ii)
$$\exp(x) > 0 \ \forall x \in \mathbb{R}$$

iii)
$$\exp(x) \ge 1 + x \ \forall x \in \mathbb{R}$$

iv)
$$\exp(i\pi) = -1$$
, $\exp(2i\pi) = 1$

Der natürliche Logarithmus

K3.28 Die Umkehrabbildung von exp, ln: $]0,\infty[\to \mathbb{R}, \text{ ist streng monoton}]$ wachsend, stetig und bijektiv. Ferner gilt

$$ln(ab) = ln(a) + ln(b) \ \forall a, b \in]0, \infty[$$

