Chain Rule (Section 3.4)

Intro

We use the chain rule to take the derivative of a composition of functions (one function is inside of another function). It lets us take the derivative of nearly any combination of functions.

Overview

The Chain Rule

Examples of the Chain Rule

Hard examples of the Chain Rule

Chain rule

To take the derivative of a composition of two functions, we use the chain rule.

lf

$$f(x)=u(v(x)),$$

then

$$f'(x) = u'(v(x)) \cdot v'(x)$$

$$f(x) = \sqrt{x^2 + 1}$$

$$f(x) = (x^2 - e^x)^6$$

$$f(x)=e^{x^3-\frac{1}{x}}$$

$$f(x) = \sin(4x^3 - e^x + 4)$$

$$f(x) = (x^2 + 2x - 1)^6$$

Combine derivative rules to find the derivative of f(x).

$$f(x) = \cot\left(\frac{x}{x^2 - 1}\right)$$

Combine derivative rules to find the derivative of f(x).

$$f(x) = e^{(x^2+1)(x^3-1)}$$

Combine derivative rules to find the derivative of f(x).

$$f(x) = \tan((3x+1)^4)$$

Pie chart

```
http://data.iwastesomuchtime.com/
November-19-2011-23-56-17-endlessorigami.jpg
```

Examples (Group work)

In groups, combine derivative rules to find the derivative of f(x). If you get stuck on one, try the next.

$$f(x) = e^{x}(x^{2} + 1(x^{5} - x)^{2})$$
$$f(x) = \frac{\csc(4x^{2})}{x^{2}}$$
$$f(x) = e^{(e^{2x})/(2x+1)}$$