

Outline

- Linear Classifier
- Support Vector Machines

Linear Regression vs. Linear Classifier

- ☐ Linear regression
 - Data modeled to fit a straight line
 - \Box Linear equation: Y = w X + b
 - Often uses the least-square method to fit the line
 - Used to predict continuous values
- Linear Classifier
 - Built a classification model using a straight line
 - Used for (categorical data) binary classification

Linear Classifier: General Ideas

- Binary Classification
 - \Box f(x) is a linear function based on the example's attribute values
 - \square The prediction is based on the value of f(x)
 - \square Data above the blue line belongs to class 'x' (i.e., f(x) > 0)
 - \square Data below the blue line belongs to class 'o' (i.e., f(x) < 0)
- Classical Linear Classifiers
 - Linear Discriminant Analysis (LDA) (not covered)
 - Logistic Regression
 - Perceptron
 - SVM

Linear Classifier: An Example

- ☐ A toy rule to determine whether a faculty member has tenure
 - Year >= 6 or Title = "Professor" ⇔ Tenure
- □ How to express the rule as a linear classifier?
 - Features
 - $\square x_1(x_1 \ge 0)$ is an integer denoting the year
 - □ x₂ is a Boolean denoting whether the title is "Professor"
 - □ A feasible linear classifier: $f(x) = (x_1 5) + 6 \cdot x_2$
 - □ When x_2 is True, because $x_1 \ge 0$, f(x) is always greater than 0
 - \square When x_2 is False, because $f(x) > 0 \Leftrightarrow x_1 \ge 6$
 - There are many more feasible classifiers
 - $\Box f(x) = (x_1 5.5) + 6 \cdot x_2$
 - $\Box f(x) = 2 \cdot (x_1 5) + 11 \cdot x_2$
 - **.....**

Key Question: Which Line Is Better?

- ☐ There might be many feasible linear functions X₂ ↑
 - Both H₁ and H₂ will work
- ☐ Key question: Which one is better?
 - □ H₂ looks "better" in the sense that it is also furthest from both groups
 - We will introduce more in the SVM section

Logistic Regression: General Ideas

- ☐ Key Idea: Turns linear predictions into probabilities
 - Sigmoid function:

$$\Box S(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{e^x+1}$$

- \square Projects $(-\infty, +\infty)$ to [0, 1]
- Compare to linear probability model
 - Smoother transition
- Logistic regression on our example
 - Only consider year as feature, we have

Logistic Regression: Maximum Likelihood

- ☐ The prediction function to learn
 - $p(Y = 1 | X = x; \mathbf{w}) = S(w_0 + \sum_{i=1}^n w_i \cdot x_i)$
 - $\mathbf{w} = (w_0, w_1, w_2, ..., w_n)$ are the parameters
- Maximum Likelihood
 - Log likelihood:

$$l(w) = \sum_{i=1}^{N} y_i \log p(Y = 1 | X = x_i; \mathbf{w}) + (1 - y_i) \log(1 - p(Y = 1 | X = x_i; \mathbf{w}))$$

- ☐ How to solve it effectively?
 - Gradient Descent
 - Update w based on training data
 - Chain-rule for the gradient

Gradient Descent

- ☐ Gradient Descent is an iterative optimization algorithm for finding the minimum of a function (e.g., the negative log likelihood)
- \Box For a function F(x) at a point **a**, F(x) decreases fastest if we go in the direction of the negative gradient of **a**

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma
abla F(\mathbf{a}_n)$$

When the gradient is zero, we arrive at the local minimum

Generative vs. Discriminative Classifiers

- ☐ X: Observed variables (features) Y: Target variables (class labels)
- □ A generative classifier models p(Y, X)
 - □ It models how the data was "generated," and what is the likelihood this or that class generated this instance, and pick the one with higher probability
 - Naïve Bayes
 - Bayesian Networks
- □ A discriminative classifier models p(Y|X)
 - ☐ It uses the data to create a decision boundary
 - Logistic Regression
 - Support Vector Machines

Further Comments on Discriminative Classifiers

- Strength
 - Prediction accuracy is generally high
 - As compared to generative models
 - Robust, works when training examples contain errors
 - Fast evaluation of the learned target function
 - Comparing to Bayesian networks (which are normally slow)
- Criticism
 - Long training time
 - Difficult to understand the learned function (weights)
 - Bayesian networks can be used easily for pattern discovery
 - Not easy to incorporate domain knowledge
 - Easy in the form of priors on the data or distributions

SVM - Support Vector Machines

- A popularly adopted classification method for both <u>linear and nonlinear</u> data
 - Proposed by Vapnik and colleagues (1992) groundwork from Vapnik &
 Chervonenkis' statistical learning theory in 1960s
- For nonlinear classifier, it uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension space
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training instances) and margins (defined by the support vectors)

SVM - General Philosophy

- □ The best hyperplane is the one that represents the largest separation, or margin, between the two classes
- Samples on the margin are called the support vectors

SVM - When Data Is Linearly Separable

Let data D be (X_1, y_1) , ..., $(X_{|D|}, y_{|D|})$, where X_i is the set of training instances associated with the class labels y_i

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find</u> the best one (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM - Linearly Separable

A separating hyperplane can be written as

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$$

where $\mathbf{W} = \{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias)

- □ For 2-D, it can be written as: $w_0 + w_1 x_1 + w_2 x_2 = 0$
 - ☐ The hyperplane defining the sides of the margin:

H₁:
$$w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and
H₂: $w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

- Any training tuples that fall on hyperplanes H_1 or H_2 (i.e., the sides defining the margin) are **support vectors**
- This becomes a constrained (convex) quadratic optimization problem:
 - Quadratic objective function and linear constraints → Quadratic Programming
 (QP) → Lagrangian multipliers

SVM - Linearly Inseparable

Transform the original input data into a higher dimensional space

Example 6.8 Nonlinear transformation of original input data into a higher dimensional space. Consider the following example. A 3D input vector $\mathbf{X} = (x_1, x_2, x_3)$ is mapped into a 6D space Z using the mappings $\phi_1(X) = x_1, \phi_2(X) = x_2, \phi_3(X) = x_3, \phi_4(X) = (x_1)^2, \phi_5(X) = x_1x_2$, and $\phi_6(X) = x_1x_3$. A decision hyperplane in the new space is $d(\mathbf{Z}) = \mathbf{WZ} + b$, where \mathbf{W} and \mathbf{Z} are vectors. This is linear. We solve for \mathbf{W} and \mathbf{b} and then substitute back so that we see that the linear decision hyperplane in the new (\mathbf{Z}) space corresponds to a nonlinear second order polynomial in the original 3-D input space,

$$d(Z) = w_1x_1 + w_2x_2 + w_3x_3 + w_4(x_1)^2 + w_5x_1x_2 + w_6x_1x_3 + b$$

= $w_1z_1 + w_2z_2 + w_3z_3 + w_4z_4 + w_5z_5 + w_6z_6 + b$

Search for a linear separating hyperplane in the new space

Kernel Functions for Nonlinear Classification

- SVMs can efficiently perform a non-linear classification using kernel functions, implicitly mapping their inputs into high-dimensional feature spaces
- Instead of computing the dot product on the transformed data, it is mathematically equivalent to applying a kernel function $K(X_i, X_j)$ to the original data, i.e.,
- Typical Kernel Functions

Polynomial kernel of degree $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

Is SVM Scalable on Massive Data?

- □ SVM is effective on high dimensional data
 - The complexity of trained classifier is characterized by the <u>number of support</u> <u>vectors</u> rather than the dimensionality of the data
 - ☐ The **support vectors** are the <u>essential or critical training examples</u> they lie closest to the decision boundary (MMH)
 - Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high
- SVM is not scalable to the number of data objects in terms of training time and memory usage
 - Scaling SVM by a hierarchical micro-clustering approach
 - □ Classifying Large Data Sets Using SVM with Hierarchical Clusters (Yu, Yang, & Han, 2003)

Scaling SVM by Hierarchical Micro-Clustering

- Construct two CF-trees (i.e., statistical summary of the data) from positive and negative data sets independently (with one scan of the data set)
- Micro-clustering: Hierarchical indexing structure
 - Provide finer samples closer to the boundary and coarser samples farther from the boundary

Selective Declustering: Ensure High Accuracy

- Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary
 - "Support cluster": The cluster whose centroid is a support vector
- □ De-cluster only the cluster E_i such that
 - $D_i R_i < D_s$, where D_i is the distance from the boundary to the center point of E_i and R_i is the radius of E_i

Accuracy and Scalability on Synthetic Dataset

Figure 6: Synthetic data set in a two-dimensional space. '|': positive data; '-': negative data

 Experiments on large synthetic data sets show better accuracy than random sampling approaches and far more scalable than the original SVM algorithm

11

SVM: Features and Applications

- Features and challenges
 - Training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
 - ☐ However, the parameters of a solved model are difficult to interpret
- SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)
- SVM has been used in many applications
 - Handwritten digit recognition, object recognition, speaker identification,
 benchmarking time-series prediction tests
 - Document classification, biomedical data analysis

SVM Related Links

- □ SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - **LIBSVM**: An efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: Simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - SVM-torch: Another recent implementation also written in C

Recommended Readings

- Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. *The American Statistician*, 46(3), 175-185. Retrieved from https://www.jstor.org/stable/2685209?seq=1#page_scan_tab_contents
- Cortes, C. & Vapnik, V. (1995). Support-vector networks. *Machine Learning*, 20(3), 273-297. Retrieved from https://link.springer.com/article/10.1023/A:1022627411411
- Hosmer Jr., D. W., Lemeshow, S., & Sturdivant, R. X. (2013). *Applied logistic regression*. Indianapolis, IN: John Wiley.
- □ Kleinbaum, D. G. & Klein, M. (2010). *Logistic regression: A self-learning text*. New York, NY: Springer.
- Ng, A. Y. & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naïve Bayes. *NIPS*. Retrieved from https://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes
- Scholkopf, B. & Smola, A.J. (2001). *Learning with kernels: Support vector machines, regularization, optimization, and beyond.* London, UK: The MIT Press.
- Tong, S. & Koller, D. (2001). Support vector machine active learning with applications to text classification. *Journal of Machine Learning Research*, 2, 45-66. Retrieved from https://dl.acm.org/citation.cfm?id=944793
- Yu, H., Yang, J., & Han, J. (2003). Classifying large data sets using SVM with hierarchical clusters. *KDD*, 306-315. Retrieved from https://dl.acm.org/citation.cfm?doid=956750.956786
- Yuan, G.-X., Ho, C.-H., & Lin, C.-J. (2012). Recent advances of large-scale linear classification. *Proc. IEEE, 100*(9), 2584-2603. Retrieved from http://ieeexplore.ieee.org/document/6177645/

References

- □ McDonald, Conor. (2017). Machine learning fundamentals (I): Cost functions and gradient descent [Online image]. Retrieved Feb 16, 2018 from https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220
- □ Onlinestatbook.com. (2013). *Gpa.jpg* [Online image]. Retrieved Feb 16, 2018 from http://onlinestatbook.com/2/regression/graphics/gpa.jpg
- □ All other multimedia elements belong to © 2018 University of Illinois Board of Trustees.