Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 8 - Chapter 12

Started on	Tuesday, 21 March 2017, 1:32 PM
State	Finished
Completed on	Tuesday, 21 March 2017, 1:32 PM
Time taken	8 secs
Grade	100.00 out of 100.00

Correct

Mark 20.00 out of 20.00

P12.47_10ed

Given: $I_{DC} = 3$ Amps

The Laplace Transform of $v_0(t)$ and $i_0(t)$ are

$$V_{0}(s) = \frac{\frac{I_{DC}}{C}}{s^{2} + s\frac{1}{RC} + \frac{1}{LC}}$$

$$I_{0}(s) = \frac{sI_{DC}}{s^{2} + s\frac{1}{RC} + \frac{1}{LC}}$$

a) Use the initial-value theorem to find the initial value of $v_0 (t=0^+)$.

$$v_0(t=0^+) = \boxed{0}$$
 V

b) Use the final-value theorem to find the final value of $v_0(t = \infty)$. (∞ is infinity)

$$\mathbf{v}_0(\mathbf{t} = \infty) = \begin{bmatrix} \mathbf{0} & \mathbf{V} \end{bmatrix}$$

c) Use the initial-value theorem to find the initial value of $i_0(t = 0^+)$.

$$i_0(t=0^+)=3$$

d) Use the final-value theorem to find the final value of $i_0(t=\infty)$. (∞ is infinity)

$$i_0(t=\infty) = \boxed{0}$$
 \checkmark A

a)
$$v_0(t = 0^+) = 0 \text{ V}$$

b)
$$v_0(t = \infty) = 0 \text{ V}$$

c)
$$i_0(t = 0^+) = 3 A$$

d)
$$i_0(t = \infty) = 0 A$$

Correct

Correct

Mark 20.00 out of 20.00

P12.47a_8ed

Given
$$F(s) = \frac{18s^2 + 66s + 54}{(s+1)(s+2)(s+3)}$$

a) Find the initial value of f(t) for this F(s).

$$f(t=0^{-}) = 18$$

b) Find the final value of f(t) for this F(s).

$$f(t \rightarrow \infty) = 0$$

a)
$$f(t=0) = 18$$

b)
$$f(t -> \infty) = 0$$

Correct

Marks for this submission: 20.00/20.00.

Question 3

Correct

Mark 20.00 out of 20.00

P12.47b_8ed

Given
$$F(s) = \frac{8s^3 + 89s^2 + 311s + 300}{s(s+2)(s+3)(s+5)}$$

a) Find the initial value of f(t) for this F(s).

$$f(t=0^{-}) = 8$$

b) Find the final value of f(t) for this F(s).

a)
$$f(t=0) = 8$$

b)
$$f(t -> \infty) = 10$$

Correct

Correct

Mark 20.00 out of 20.00

Copyright C3515 Reason Education, At Rights Reserved

P13.03_10ed

Find the Norton Equivalent of this circuit.

Select one:

$$\bullet$$
 a. $I_N = I_{ab} = -I_0/s$ $Z_{Th} = sL \checkmark$

o b.
$$I_N = I_{ab} = I_0/s$$
 $Z_{Th} = sL$

o c.
$$I_N = I_{ab} = -I_0$$
 $Z_{Th} = sL$

Od.
$$I_N = I_{ab} = -I_0/s$$
 $Z_{Th} = 1/(sL)$

Your answer is correct.

Correct Answer

$$I_N = I_{ab} = -I_0/s$$
 $Z_{Th} = sL$

The correct answer is: $I_N = I_{ab} = -I_0/s$ $Z_{Th} = sL$

Correct

Correct

Mark 20.00 out of 20.00

Copyright © 2015 Peanson Education, All Rights Reserved

P13.02_10ed

Find the Thévenin Equivalent of this circuit.

Select one:

● b.
$$V_{Th} = V_{ab} = V_0/s$$
 $Z_{Th} = 1/(sC)$

o d.
$$V_{Th} = V_{ab} = 1/s$$
 $Z_{Th} = V_0/(sC)$

Your answer is correct.

Correct Answer

$$V_{Th} = V_{ab} = V_0/s$$
 $Z_{Th} = 1/(sC)$

The correct answer is: $V_{Th} = V_{ab} = V_0/s$ $Z_{Th} = 1/(sC)$

Correct