Simple 8-bit Processor

G Victor Swaroop

VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad July 18, 2022

Abstract

A Simple 8-bit processor is described and implemented in Verilog HDL. The design features 16 byte RAM (16 addresses each of 8 bit word length) and 2 general purpose registers. The Instruction Set is capable of supporting 16 possible instructions of which 11 instructions are implemented. Far from a practical use, the design is modular and Education centric.

1. Description

Processors are digital circuits which are capable of executing instructions, preserving their current state and making decisions based on their previous state. This design aims to implement a bare minimum, Turing complete processor to demonstrate what any modern processor does but at a large and complex scale.

The design can handle 8 bits of data each clock cycle with its two 8 bit GPRs and an 8 bit ALU. It is capable of addressing 16 addresses from the primary memory.

The instruction set can handle 16 instructions of which 11 instructions are implemented. Each instruction is a byte long, the upper half being used for opcode and the lower half for data. The architecture supports Immediate and Absolute data addressing modes.

2. Architecture and Timing Diagram

Architecture diagram tries to convey the entire design as a combination of smaller and modular units.

Timing Diagram is the depiction of different phases in which an instruction is executed. Each instruction starts with a fetch cycle to fetch the instruction from the memory to the instruction register. Each fetch takes 2 clock cycles. The rest of instruction execution takes 3 clock cycles making each instruction 5 cycles long. The design is implemented in Verilog HDL and gtkwave is used for Timing verification.

3. Architecture Block Diagram

4. Timing Diagram

References

[1] G.Victor Swaroop "simple-8bitComputer" https://github.com/GVictorsd/simple-8bitComputer

[2] Ben Eater "Building an 8 bit breadboard computer"