CONTENTS

PREFACE ACKNOWLEDGMENTS NOTATION ABBREVIATIONS AND SYMBOLS							
				1	BAC	KGROUND AND PREVIEW	1
					1.1	Supervised, Sequential, and Active Learning / 1	
					1.2	Linear Adaptive Filters / 3	
	1.3	Nonlinear Adaptive Filters / 10					
	1.4	Reproducing Kernel Hilbert Spaces / 12					
	1.5	Kernel Adaptive Filters / 16					
	1.6	Summarizing Remarks / 20					
		Endnotes / 21					
2	KERI	NEL LEAST-MEAN-SQUARE ALGORITHM	27				
	2.1	Least-Mean-Square Algorithm / 28					
	2.2	Kernel Least-Mean-Square Algorithm / 31					
	2.3	Kernel and Parameter Selection / 34					
	2.4	Step-Size Parameter / 37					
	2.5	Novelty Criterion / 38					
	2.6	Self-Regularization Property of KLMS / 40					
	2.7	Leaky Kernel Least-Mean-Square Algorithm / 48					
	2.8	Normalized Kernel Least-Mean-Square Algorithm / 48					

	2.9	Kernel ADALINE / 49	
	2.10	Resource Allocating Networks / 53	
	2.11	Computer Experiments / 55	
	2.12	Conclusion / 63	
		Endnotes / 65	
3	KERN	EL AFFINE PROJECTION ALGORITHMS	69
	3.1	Affine Projection Algorithms / 70	
	3.2	Kernel Affine Projection Algorithms / 72	
	3.3	Error Reusing / 77	
	3.4	Sliding Window Gram Matrix Inversion / 78	
	3.5	Taxonomy for Related Algorithms / 78	
	3.6	Computer Experiments / 80	
	3.7	Conclusion / 89	
		Endnotes / 91	
4	KERN	EL RECURSIVE LEAST-SQUARES ALGORITHM	94
	4.1	Recursive Least-Squares Algorithm / 94	
	4.2	Exponentially Weighted Recursive Least-Squares Algorithm / 97	
	4.3	Kernel Recursive Least-Squares Algorithm / 98	
	4.4	Approximate Linear Dependency / 102	
	4.5	Exponentially Weighted Kernel Recursive Least-Squares Algorithm / 103	
	4.6	Gaussian Processes for Linear Regression / 105	
	4.7	Gaussian Processes for Nonlinear Regression / 108	
	4.8	Bayesian Model Selection / 111	
	4.9	Computer Experiments / 114	
	4.10	Conclusion / 119	
		Endnotes / 120	

CONTENTS

viii

5		RITHM	124
	5.1	Extended Recursive Least Squares Algorithm / 125	
	5.2	Exponentially Weighted Extended Recursive Least Squares Algorithm / 128	
	5.3	Extended Kernel Recursive Least Squares Algorithm / 129	
	5.4	EX-KRLS for Tracking Models / 131	
	5.5	EX-KRLS with Finite Rank Assumption / 137	
	5.6	Computer Experiments / 141	
	5.7	Conclusion / 150	
		Endnotes / 151	
6	DESIG	NING SPARSE KERNEL ADAPTIVE FILTERS	152
	6.1	Definition of Surprise / 152	
	6.2	A Review of Gaussian Process Regression / 154	
	6.3	Computing Surprise / 156	
	6.4	Kernel Recursive Least Squares with Surprise Criterion / 15	59
	6.5	Kernel Least Mean Square with Surprise Criterion / 160	
	6.6	Kernel Affine Projection Algorithms with Surprise Criterion / 161	
	6.7	Computer Experiments / 162	
	6.8	Conclusion / 173	
		Endnotes / 174	
EP	ILOGU	E	175
AF	PENDI	x	177
A	MATH	EMATICAL BACKGROUND	177
	A.1	Singular Value Decomposition / 177	
	A.2	Positive-Definite Matrix / 179	
	A.3	Eigenvalue Decomposition / 179	
	A.4	Schur Complement / 181	

x CONTENTS

INDEX						
REFERENCES						
В		OXIMATE LINEAR DEPENDENCY AND M STABILITY	186			
	A.10	Newton's Method / 184				
	A.9	Gradient Descent / 184				
	A.8	Normal Distribution / 183				
	A.7	Joint, Marginal, and Conditional Probability / 182				
	A.6	Matrix Inversion Lemma / 182				
	A.5	Block Matrix Inverse / 181				