

- BUNDESREPUBLIK **DEUTSCHLAND**
- Offenlegungsschrift

DEUTSCHES PATENTAMT DE 44 25 649 A 1

Aktenzeichen:

P 44 25 649.3

Anmeldetag:

20. 7.94

Offenlegungstag:

25. 1.96

(51) Int. Cl.⁶:

C 07 D 215/56

C 07 D 471/04 C 07 D 401/12

A 61 K 31/535

A 61 K 31/495 A 61 K 31/47

C 07 C 229/14 // C07D 521/00

(C07D 471/04,221:00 (C07D 401/12, 215:56)C07D 213:72,

295/135 (C07D 401/12,215:56)C07D

239:24,241:10, C12N

7/06

(71) Anmelder:

Bayer AG, 51373 Leverkusen, DE

② Erfinder:

Bender, Wolfgang, Dr., 42113 Wuppertal, DE; Roeben, Wolfgang, Dr., 51467 Bergisch Gladbach, DE; Paeßens, Arnold, Dr., 42781 Haan, DE; Bartel, Stephan, Dr., 51465 Bergisch Gladbach, DE

- (54) Neue 1-[4-(Aminomethyl)phenyl] substituierte Chinoloncarbonsäuren
- Die Erfindung stellt neue Verbindungen der allgemeinen Formel (I)

$$\begin{array}{c|c}
R^2 & CO_2H \\
\hline
NR^3R^4
\end{array}$$
(I)

zur Verfügung, in der die Symbole die in der Beschreibung angegebenen Bedeutungen haben, sowie Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel.

Beschreibung

Die vorliegende Erfindung betrifft neue 1-[4-(Aminomethyl)phenyl] substituierte Chinoloncarbonsäuren, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel, insbesondere als antivirale Mittel.

Aus der Publikation EP 422 485 sind bereits antiviral wirksame Chinoloncarbonsäurederivate bekannt. Die vorliegende Erfindung betrifft jetzt neue 1-[4-Aminomethyl)phenyl] substituierte Chinoloncarbonsäuren der allgemeinen Formel (I),

in welcher

5

A für Wasserstoff oder Methyl steht,

X für ein Stickstoffatom oder für eine Gruppe der Formel -CH, C-F oder C-Cl steht,

R¹ für Phenyl, Naphthyl, Pyridyl, Pyrimidyl oder Pyrazinyl steht, die gegebenenfalls bis zu 3fach gleich oder verschieden durch Nitro, Trifluormethyl, Halogen, Cyano, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl, Alkoxy oder Alkylthio mit jeweils bis zu 8 Kohlenstoffatomen substituiert sind,

R² für Wasserstoff oder Fluor steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, eine Aminoschutzgruppe oder für geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Acyl mit jeweils bis zu 8 Kohlenstoffatomen stehen, oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen 6gliedrigen gesättigten Heterocyclus bilden, der außerdem noch ein weiteres Heteroatom aus der Reihe N, S oder O enthalten kann

und deren Hydrate und Salze, gegebenenfalls in einer isomeren Form.

Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z. B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.

Physiologisch unbedenkliche Salze können ebenso Alkali-, Erdalkali, Silber- und Guanidiniumsalze der erfindungsgemäßen Verbindungen sein.

Aminoschutzgruppe im Rahmen der Erfindung sind die üblichen in der Peptid-Chemie verwendeten Amino-

45 schutzgruppen.

60

Hierzu gehören bevorzugt: Benzyloxycarbonyl, 2,4-Dimethoxybenzyloxycarbonyl, 4-Methoxybenzyloxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert.Butoxycarbonyl, Allyloxycarbonyl, Phthaloyl, 2,2,2-Trichlorethoxycarbonyl, Fluorenyl-9-methoxycarbonyl, Formyl, Acetyl, 2-Chloracetyl, 2,2,2-Trifluoracetyl, 2,2,2-Trichloracetyl, Benzoyl, 4-Chlorbenzoyl, 4-Brombenzoyl, 4-Nitrobenzoyl, Phthalimido, Isovaleroyl oder Benzyloxymethylen, 4-Nitrobenzyl, 2,4-Dinitrobenzyl, 4-Nitrophenyl, 4-Methoxyphenyl oder Triphenylmethyl.

Bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

A für Wasserstoff oder Methyl steht,

X für ein Stickstoffatom oder für eine Gruppe der Formel -CH, C-F oder C-Cl steht,

R¹ für Phenyl, Pyridyl, Pyrimidyl oder Pyrazinyl steht, die gegebenenfalls bis zu 3fach gleich oder verschieden durch Nitro, Trifluormethyl, Fluor, Chlor, Brom, Cyano, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl, Alkoxy oder Alkylthio mit jeweils bis zu 6 Kohlenstoffatomen substituiert sind.

R2 für Wasserstoff oder Fluor steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, tert.Butoxycarbonyl, Benzyloxycarbonyl oder für geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen stehen, oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholin- oder Piperidinring bilden, und deren Hydrate und Salze, gegebenenfalls in einer isomeren Form.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

A für Wasserstoff oder Methyl steht,

X für ein Stickstoffatom oder für eine Gruppe der Formel -CH, C-F oder C-Cl steht,

R¹ für Phenyl oder Pyridyl steht, die gegebenenfalls bis zu 2fach gleich oder verschieden durch Nitro, Trifluormethyl, Fluor, Chlor, Brom, Cyano, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl, Alkoxy oder Alkylthio mit jeweils bis zu 4 Kohlenstoffatomen substituiert sind,

DE 44 25 649

R2 für Wasserstoff oder Fluor steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, tert.Butoxycarbonyl, Benzyloxycarbonyl oder für geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen stehen,

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinring bilden, und deren Hydrate und Salze, gegebenenfalls in einer isomeren Form.

Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, daß man

Verbindungen der allgemeinen Formel (II)

$$R^2$$
 CO_2H
 R^5
 X
 NR^3R^4
(II)

in welcher R², R³, R⁴ und X die oben angegebene Bedeutung haben und R5 für Halogen, vorzugsweise für Fluor oder Chlor steht, mit Verbindungen der allgemeinen Formel (III)

$$R^{1}-N$$
 $N-H$ (III)

in welcher A und R1 die oben angegebene Bedeutung haben,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit von Säurefängern umsetzt.

Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

5

10

30

40

45

50

55

Als Lösemittel eignen sich für alle Verfahrensschritte die üblichen inerten Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt organische Lösemittel wie Ether z. B. Diethylether, Dioxan oder Tetrahydrofuran, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Cyclohexan oder Erdölfraktionen oder Halogenkohlenwasserstoffe wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, oder Dimethylsulfoxid, N,N-Dimethylformamid, Hexamethylphosphorsäuretriamid, Sulfolan, Essigester, Pyridin, Acetonitril, Triethylamin, N-Methylpyrrolidon, Anisol oder Picolin. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Bevorzugt sind Dimethylsulfoxid und Acetonitril.

Als Basen für einzelne Reaktionsschritte eignen sich die üblichen basischen Verbindungen. Hierzu gehören beispielsweise Alkali- oder Erdalkalihydroxide, Pyridin, Triethylamin, Diisopropylethylamin oder N-Methylpiperidin, oder bicyclische Amidine wie Diazabicyclo[2,2,3]octan, 1,5-Diazabicyclo[3,4,0]-nonene-5 (DBN) oder 1,5-Diazabicyclo[3,4,0]undecene-5 (DBU). Bevorzugt ist Diisopropylethylamin.

Die Basen werden im allgemeinen in einer Menge von 1 bis 3 mol, bevorzugt von 1 bis 1,5 mol, bezogen auf 1 mol der entsprechenden Carbonsäure, eingesetzt.

Das Verfahren wird im allgemeinen in einem Temperaturbereich von +0°C bis +160°C, bevorzugt von +0°C bis +140°C, durchgeführt.

Im allgemeinen wird bei Normaldruck gearbeitet. Es ist aber auch möglich, das Verfahren bei Unterdruck oder bei Überdruck durchzuführen (z. B. in einem Bereich von 0,5 bis 5 bar).

Die Verbindungen der allgemeinen Formel (II) sind teilweise bekannt oder neu und können hergestellt werden, indem man zunächst Verbindungen der allgemeinen Formel (IV)

in welcher

55

30

X, R^2 und R^5 die oben angegebene Bedeutung haben, R^6 für C_1 — C_4 -Alkyl steht,

 R^7 für $C_1 - C_4$ -Alkoxy oder $C_1 - C_4$ -Dialkylamino steht, und Y für Halogen, vorzugsweise für Chlor oder Fluor steht,

durch Umsetzung mit Aminen der allgemeinen Formel (V)

$$\begin{array}{c}
NH_2 \\
\downarrow \\
NR^3R^4
\end{array}$$
(V)

50

in welcher

R³ und R⁴ die oben angegebene Bedeutung haben, einem der oben aufgeführten Lösemittel, vorzugsweise Ethanol, in die Verbindungen der allgemeinen Formel (VI)

$$R^2$$
 CO_2R^6
 NH
 V
 NR^3R^4

in welcher

R², R³, R⁴, R⁵, R und Y die oben angegebene Bedeutung haben,

überführt, und in einem letzten Schritt in einem der oben aufgeführten Lösemittel und einer dort genannten Base, vorzugsweise DMF und K₂CO₃ cyclisiert, und die Ester verseift.

Das Verfahren wird im allgemeinen in einem Temperaturbereich von +0°C bis +150°C, bevorzugt von +0°C bis +120°C, durchgeführt.

Im allgemeinen wird bei Normaldruck gearbeitet. Es ist aber auch möglich, das Verfahren bei Unterdruck oder bei Überdruck durchzuführen (z. B. in einem Bereich von 0,5 bis 5 bar).

Die Verseifung erfolgt im allgemeinen in einem Gemisch Eisessig/Wasser und in Anwesenheit einer anorganischen Säure, vorzugsweise Schwefelsäure oder Salzsäure, in einem Temperaturbereich von 50—100°C, vorzugsweise bei 100°C.

Die Verbindungen der allgemeinen Formel (IV) und (V) sind an sich bekannt oder können nach publizierten Methoden hergestellt werden.

Die Verbindungen der allgemeinen Formel (VI) sind neu und können dann beispielsweise wie oben beschrieben hergestellt werden.

Überraschenderweise zeigten die erfindungsgemäßen Verbindungen Wirkung in Lentivirus infizierten Zellkulturen. Dies konnte am Beispiel des HIV-Virus gezeigt werden.

HIV-Infektion in Zellkultur

Der HIV-Test wurde mit geringen Modifikationen nach der Methode von Pauwels et al. (vgl. Journal of Virological Methods 20 [1988], 309 – 321) durchgetührt.

Normale menschliche Blutlymphozyten (PBL's) wurden über Ficoll-Hypaque angereichert und im RPMI 1640, 20% fötales Kälberserum mit Phythaemagglutinin (90 µg/ml) und Interleukin-2 (40 U/ml) stimuliert. Zur Infektion mit dem infektiösen HIV wurden PBL's pelletiert und das Zellpellet wurde anschließend im 1 ml HIV-Virusadsorptionslösung suspendiert und 1 Stunde bei 37°C inkubiert.

Die Virusadsorptionslösung wurde zentrifugiert und das infizierte Zellpellet in Wachstumsmedium aufgenommen, so daß 1×10^5 Zellen pro ml eingestellt waren. Die derart infizierten Zellen wurden zu 1×10^4 Zellen/Napf in die Näpfe von 96er Mikrotiterplatten pipettiert.

Die erste vertikale Reihe der Mikrotiterplatte enthielt nur Wachstumsmedium und Zellen, die nicht infiziert, aber ansonsten genauso wie oben beschrieben, behandelt worden waren (Zellkontrolle). Die zweite vertikale Reihe der Mikrotiterplatte erhielt nur HIV-infizierte Zellen (Viruskontrolle) in Wachstumsmedium. Die übrigen Näpfe enthielten die erfindungsgemäßen Verbindungen in unterschiedlichen Konzentrationen, ausgehend von

den Näpfen der 3. vertikalen Reihe der Mikrotiterplatte, von der die Prüfsubstanzen in 2er Schritten 2¹⁰fach verdinnt werden.

Die Testansätze wurden so lange bei 37°C inkubiert, bis in der unbehandelten Viruskontrolle die für das HIV typische Syncytienbildung auftrat (zwischen Tag 3 und 6 nach Infektion), die dann mikroskopisch ausgewertet wurde. In der unbehandelten Viruskontrolle resultierten unter diesen Testbedingungen etwa 20 Syncytien, während die unbehandelte Zellkontrolle keine Syncytien aufwies.

Die IC₅₀-Werte wurden als die Konzentration der behandelten und infizierten Zellen ermittelt, bei der 50% (ca. 10 Syncytien) der virusinduzierten Syncytien durch die Behandlung mit der erfindungsgemäßen Verbindung unterdrückt waren.

Es wurde nun gefunden, daß die erfindungsgemäßen Verbindungen HIV infizierte Zellen vor der virusinduzierten Zellzerstörungen schützen.

BspNr. IC ₅₀	(μΜ)
15 5 0,3	
61 0,3	
189 0,00	2
204 0,3	
213 0.03	í
20 214 0,01	5
215 0,03	
216 0,3	

Die erfindungsgemäße Verbindungen stellen wertvolle Wirkstoffe zur Behandlung und Prophylaxe von Erkrankungen, hervorgerufen durch Retroviren, in der Human- und Tiermedizin dar.

Als Indikationsgebiete in der Humanmedizin können beispielsweise genannt werden:

- 1.) Die Behandlung und Prophylaxe von menschlichen Retrovirusinfektionen.
- 2.) Für die Behandlung oder Prophylaxe von HIV I (Virus der humanen Immundefizienz; früher HTLV III/LAV genannt) und HIV II verursachten Erkrankungen (AIDS) und den damit assoziierten Stadien wie ARC (AIDS related complex) und LAS (Lymphadenopathie-Syndrom) sowie der durch dieses Virus verursachten Immunschwäche und Encephalopathie.
- 3.) Für die Behandlung oder die Prophylaxe einer HTLV-I oder HTLV-II Infektion.
- 4.) Für die Behandlung oder die Prophylaxe des AIDS-carrier Zustandes (AIDS-Überträger-Zustand).

Als Indikationen in der Tiermedizin können beispielsweise angeführt werden: Infektionen mit

a) Maedivisna (bei Schafen und Ziegen)

30

35

40

45

- b) progressivem Pneumonievirus (PPV) (bei Schafen und Ziegen)
- c) caprine arthritis encephalitis Virus (bei Schafen und Ziegen)
- d) Zwoegerziekte Virus (bei Schafen)
- e) infektiösem Virus der Anämie (des Pferdes)
- f) Infektionen verursacht durch das Katzenleukämievirus
- g) Infektionen verursacht durch das Virus der Katzen-Immundifizienz (FIV)
- h) Infektionen verursacht durch das Virus der Affen-Immundefizienz (SIV)

Bevorzugt werden aus dem Indikationsgebiet in der Humanmedizin die oben aufgeführten Punkte 2,3 und 4. Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nicht-toxischen, inerten pharmazeutisch geeigneten Trägerstoffen eine oder mehrere Verbindungen der Formel (I) enthalten oder die aus einem oder mehreren Wirkstoffen der Formel (I) bestehen, sowie Verfahren zur Herstellung dieser Zubereitungen.

Die Wirkstoffe der Formel (I) sollen in den oben aufgeführten pharmazeutischen Zubereitungen, vorzugsweise in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew.-% der Gesamtmischung vorhanden sein.

Die oben aufgeführten pharmazeutischen Zubereitungen können außer den Verbindungen der Formel (I) auch weitere pharmazeutische Wirkstoffe enthalten.

Die Herstellung der oben aufgeführten pharmazeutischen Zubereitungen erfolgt in üblicher Weise nach bekannten Methoden, z. B. durch Mischen des oder der Wirkstoffe mit dem oder den Trägerstoffen.

Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 0,5 bis etwa 500, vorzugsweise 1 bis 100 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Ergebnisse zu verabreichen. Eine Einzelgabe enthält den oder die Wirkstoffe vorzugsweise in Mengen von etwa 1 bis etwa 80, insbesondere 1 bis 30 mg/kg Körpergewicht. Es kann jedoch erforderlich sein, von den genannten Dosierungen abzuweichen, und zwar in Abhängigkeit von der Art und dem Körpergewicht des zu behandelnden Objekts, der Art und der Schwere der Erkrankung, der Art der Zubereitung und der Applikation des Arzneimittels sowie dem Zeitraum bzw. Intervall, innerhalb welchem die Verabreichung erfolgt.

Erläuterungen zum experimentellen Teil:

DC-Systeme

Stationäre Phase

5

10

15

20

25

30

35

45

Merck DC-Fertigplatten Kieselgel 60 F-254, 5 × 10 cm, Schichtdicke 0,25 mm, Art-Nr. 5719.

Mobile Phasen (im Test als "DC-System")

I: CH₂CL₂/MeOH 9: 1 II: CH₂Cl₂/MeOH 95: 5

III: NH₃/CH₂Cl₂/MeOH 0,2:9:1 IV: Essigsäure/CH₂Cl₂/MeOH 0,2:9:1

V: CH₂Cl₂/MeOH 10:1

VI: Toluol/Ethanol 5:1

VII: Petrolether/Essigester 6:1 VIII: NH₃/CH₂Cl₂/MeOH 2:80:20 IX: HOAc/CH₂Cl₂/MeOH 0,1:10:1

X: Toluol/Aceton 2:1

XI: CH₂Cl₂/MeOH/NH₃ 95:5:0,2

XII: CH₂Cl₂

XIII: CH2Cl2/MeOH80:20

XIV: Chloroform/MeOH/Wasser/Essigsäure 100:50:2:2

XV: Eisessig/n-Butanol/Wasser 1:3:1

XVI: Toluol/Ethanol 1:1

HPLC-System

Säule Nucleosil 102-5 C 18,5 μ m, 125 \times 4 mm Eluens;

 $A = 0.01 M H_3 PO_4$, B = Acetonitril

Eluentenprogramm.

0-1 min: 10% B

1-9 min: Gradient mit 10% B/min

9-13 min: 90% B

Fluß: 2 ml/min, Raumtemperatur

5 μl, Probenmenge ca. 1 mg/ml

Detektion: UV-Diodenarray bei 210 nm

Die Retentionsindices beziehen sich auf eine Reihe homologer 2-Alkanone (Methyl-n-alkylketone): C3 = 300, 46 C4 = 400, C16 = 1600

Ausgangsverbindungen

Beispiel I

4-(N-tert.-Butyloxycarbonylaminomethyl)-nitrobenzol

50 g (0,265 mol) 4-Nitrobenzylamin Hydrochlorid (Aldrich) und 73,5 ml (0,53 mol) Triethylamin werden in 600 ml Dioxan suspendiert und 30 Minuten bei Raumtemperatur gerührt. Unter Eiskühlung und Rühren tropft man 63,5 ml (0,291 mol) Di-tert. Butyldicarbonat (Boc₂O) hinzu und läßt über Nacht auf Raumtemperatur kommen. Der Niederschlag wird abgesaugt und das Filtrat zur Trockene eingeengt. Der Rückstand wird in 500 ml Diethylether aufgenommen und die organische Phase dreimal mit 300 ml Wasser ausgeschüttelt. Die organische Phase wird über Natriumsulfat getrocknet und am Rotationsverdampfer vom Lösemittel befreit. Der Rückstand wird in 300 ml n-Hexan gründlich verrührt, abgesaugt, mit n-Hexan nachgewaschen und bei 30°C im Hochvakuum getrocknet.

Ausbeute: 51,8 g (77,5% d. Th.) DC-System XI: $R_f = 0.91$

MS (DCI): m/z 253 (M+H); m/z 197; m/z 153 (Basepeak)

 1 H-NMR (CDCl₃): $\delta = 1,47$ (s, 9H); 4,41 (d, 2H); 5,05 (s, (broad) 1H); 7,45 (m, 2H) und 8,20 (m, 2H), AB-System.

Beispiel II

4-(T-tert.Butoxycarbonylaminomethyl)anilin-Hydrochlorid

14 g (55,5 mmol) der Verbindung aus Beispiel I werden in 150 ml Methanol gelöst und mit 55,5 ml (55,5 mmol) 1 normale wäßrige Salzsäure versetzt. Nach Zugabe von 2 g Palladium auf Kohle (10%ig) wird bei Normaldruck bis zur Beendigung der Wasserstoffaufnahme hydriert. Der Ansatz wird zum Entfernen des Katalysators über eine Kieselgurschicht filtriert. Man wäscht mit Methanol nach und engt die vereinigte organische Phase am Rotationsverdampfer bei einer Badtemperatur von 35°C zur Trockene ein. Der Rückstand wird mit 200 ml Diethylether verrieben, abgesaugt, mit Diethylether nachgewaschen und bei 30°C im Hochvakuum getrocknet.

Ausbeute: 13,3 g (92,9% d. Th.)

DC-System XI: $R_f = 0.64$

MS-DCI: m/z 223 (M+H); m/z 106 (Basepeak)

Hydrochlorid H-NMR ($\dot{C}D_3OD$): $\dot{\delta} = 1.41$ (s, 9H); 4.25 (s, 2H), 4.88 (s, broad, 3 + 1H); 7.31 - 7.47 (m, 4H)

Freie Base ¹H-NMR (CDCl₃): δ = 1,46 (s, 9H); 3,64 (s, broad, 2H); 4,18 (d, 2H); 4,74 (s, broad, 1H); 6,64 und 7,06 (je 2 H, arom. AB-System)

Beispiel III

4-(Morpholinomethyl)-anilin-Hydrochlorid

40

30

35

5

10

10,6 g (47,7 mmol) 4-(Morpholinomethyl)-nitrobenzol (erhältlich durch Umsetzen von 4-Nitro-benzylchlorid mit Morpholin) werden in 50 ml Dimethylformamid gelöst. Man versetzt die Mischung mit 25 μl 1 normale wäßrige Salzsäure und hydriert nach Zugabe von 1 g Palladium auf Kohle (10%ig) 2 Tage bei 3 bar. Der Katalysator wird über ein Kieselgurbett abgetrennt und das Filtrat am Hochvakuum zur Trockene eingeengt. Der Rückstand wird in 200 ml Dichlormethan aufgenommen und die Lösung viermal mit Wasser extrahiert, das während jeder Extraktion mit 1 normaler Salzsäure auf pH 5 eingestellt wird. Die vereinigten wäßrigen Phasen werden bei pH 5 mit Dichlormethan gewaschen und am Hochvakuum zur Trockene einrotiert. Der gelbe Rückstand wird mit 300 ml Diethylether verrieben, abgesaugt und nach dem Nachwaschen mit Diethylether bei 30°C im Hochvakuum getrocknet.

Ausbeute: 5,3 g (48,5% d. Th.) DC-System IV: $R_f = 0,20$ DC-System I: $R_f = 0,49$

MS-EI: m/z 192 (M+); m/z 106 (Basepeak)

 1 H-NMR (DMSO): δ = 2,88-3,22 (m, 8H); 4,12 (s, 2H); 6,78 (2H) nd 7,34 (2H); AB-System (3,82 (broad, H₂O + NH₂× HCl-Gruppe)

60

Beispiel IV

7-Fluor-1,4-dihydro-4-oxo-1-[4-(N-tert.butoxycarbonyl-methyl)phenyl]-3-chinolincarbonsäure

25

35

40

55

60

65

a) 2-(2,4-Difluorbenzoyl)-3-[4-(N-tert-Butoxycarbonyl-methyl)phenylamino]acrylsäureethylester

13 g (50 mmol) der Verbindung aus Beispiel II werden mit 6,9 ml (50 mmol) Triethylamin in 100 ml Ethanol 15 Minuten verrührt. Unter Eiskühlung tropft man zu der Suspension eine Lösung von 14,8 g (52 mmol) 3-Ethoxy-2-(2,4-Difluorbenzoyl)-arylsäureethylester in 100 ml Ethanol. Man rührt drei Stunden im Eisbad und läßt über Nacht auf Raumtemperataur kommen. Das Lösemittel wird abgezogen und der Rückstand wird mit 300 ml Diethylether verrieben, abfiltriert und getrocknet. Das Rohprodukt (22,7 g) wird direkt zur nächsten Stufe umgesetzt. DC-System VI: R_f = 0,38

b)7-Fluor-1,4-dihydro-4-oxo-1-[4-(N-tert.butoxycarbonyl-methyl)phenyl]-3-chinolincarbonsäureethylester

22,6 g des Rohproduktes aus a) werden mit 34 g (0,346 mol) Kaliumcarbonat in 100 ml Dimethylformamid 8 Stunden bei Raumtemperatur gerührt. Man saugt vom Ungelösten ab und wäscht den Rückstand mit Ethanol nach. Die vereinigten Filtrate werden am Hochvakuum zur Trockene eingeengt. Der Rückstand wird mit Diethylether verrieben, abgesaugt und am Hochvakuum getrocknet.

Ausbeute: 16,2 g (73,6% d. Th. bzgl. Beispiel II)

DC-System VI: $R_f = 0.46$ MS-DCI: m/z 441 (M + H)

2,3 g (5 mmol) des Esters aus b) werden in 15 ml Dioxan gelöst und mit 7,5 ml (15 mmol) einer 2 normalen wäßrigen Lösung von Lithiumhydroxid versetzt. Man rührt die Suspension 4 Stunden bei Raumtemperatur (DC). Die Mischung wird durch Zugabe von 1 normaler wäßriger Salzsäure auf pH 3 gestellt und 10 Minuten nachgerührt. Man saugt ab und wäscht den Rückstand zuerst mit Wasser, dann mit n-Pentan und trocknet schließlich bei 30°C im Hochvakuum.

Ausbeute: 1,76 g (85,4% d. Th.)

DC-System III: $R_f = 0.16$

MS-DCI: m/z 413 (M+H)+; m/z 368 (M-CO₂); m/z 313 (+)FAB-MS; m/z 413 (M+H); m/z 435 (M+Na); m/z 50 519 (M+Ag)

¹H-NMR (DCOOD): $\delta = 1,52$ (s, 9H); 4,68 (s, 2H); 7,06 (m, H); 7,57 (m, 1H); 7,78 (m, 2H) und 7,96 (m, 2H); AB-System; 8,28 (s, 1H); 8,66 (m, 1H); 9,13 (s, H)

44 25 649 DE

Beispiel V

6.7.8-Trifluor-1,4-Dihydro-4-oxo-1-[4-(N-tert.butoxycarbonyl-methyl)phenyl]-3-chinolincarbonsäure

5 OH 10 15 NH-Boc 20

Die Titelverbindung wird analog Beispiel IV ausgehend von 3-Ethoxy-2-(2,3,4,5-Tetrafluorbenzoyl)-acrylsäureethylester und der Verbindung aus dem Beispiel II hergestellt.

DC-System III: Rf = 0,31

HPLC-System I: Rf = 6,956 min

(+)FAB-MS: m/z 475 (M+H)

 $^{1}H-NMR$ (CF₃COOD): $\delta = 1,66$ (s, 9H); 4,64 (d, 2H); 7,70-7,95 (m, 4+1H); 8,45 (m, 1H); 9,30 (s, 1H)

Analytische Daten der Vorstufen:

Va) 2-(2,3,4,5-Tetrafluorbenzoyl)-3-[4-(N-tert.Butoxycarbonyl-methyl)-phenylamino]acrylsäureethylester DC-System XII: $R_f = 0.21$

(+) FAB-MS: m/z 497 (M+H)
Vb) 6,7,8-Trifluor-1,4-dihydro-4-oxo-1-[4-(N-tert.butoxycarbonylamino-methyl)-phenyl-3-chinolincarbonsäureethylester

DC-System II: R_f = 0,81

(+)FAB-MS: m/z 477 (M+H); m/z 499 (M+Na) ¹H-NMR (DMSO): $\delta = 1,22$ (t, 3H); 4,15-4,30 (m, 2+2H); 7,41 (2H); und 7,65 (2H) AB-System; 7,52 (m, 1H); 8,02 (m, 1H); 8,31 (s, 1H)

40

45

50

55

60

65

30

35

Beispiel VI

6,7-Difluor-1,4-dihydro-4-oxo-1[4-(N-tert.Butyloxycarbonyl-aminomethyl)phenyl]-3-chinolincarbonsäure

NH-Boc

Die Titelverbindung wird analog Beispiel IV ausgehend von 3-Ethoxy-2-(2,4,5-Trifluorbenzoyl)-acrylsäureethylester und der Verbindung aus dem Beispiel II hergestellt.

Beispiel VII

8-Chlor-6,7-difluor-1,4-dihydro-4-oxo-1-[4-(N-tert.butyloxycarbonylamino-methyl)-phenyl]-3-chinolincarbon-säure

FOH 10 NH-Boc 20

Die Titelverbindung wird analog Beispiel IV ausgehend von 3-Ethoxy-2-(3-chlor-2,4,5-trifluorbenzoyl)-acrylsäureethylester und der Verbindung aus Beispiel II hergestellt.

Beispiel VIII

7-Chlor-1,4-dihydro-4-oxo-1-[4-(N-tert.butoxycarbonylamino-methyl)-phenyl]-1,8-naphthyridin-3-carbonsäure

Die Titelverbindung wird analog Beispiel IV ausgehend von 2-(2,6-Dichlornicotinoyl)-3-ethoxyacrylsäureethylester und der Verbindung aus Beispiel II hergestellt.

60

55

50

5

25

30

Beispiel IX

7-Chlor-6-fluor-1,4-dihydro-4-oxo-1-[4-(N-tert.butoxycarbonylamino-methyl)-phenyl]-1,8-naphthyridin-3-carbonsäure

F OH

Die Titelverbindung wird analog Beispiel IV ausgehend von 3-Ethoxy-2-(2,5-dichlor-4-fluor-nicotinoyl)-acrylsäureethylester und der Verbindung aus dem Beispiel II hergestellt.

Beispiel X

7-Fluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylamino-methyl)-phenyl]-chinolin-3-carbonsäure Hydrochlorid

P(CH₃)₂

a) 2-(2,4-Difluorbenzoyl)-3-[4-(N,N-dimethylamino-methyl)-phenylamino]-acrylsäureethylester

44,8 g (0,158 mol) 3-Ethoxy-(2,4-difluorbenzoyl)acrylsäureethylester werden in 100 ml Ethanol gelöst und unter Eiskühlung und Rühren mit einer Lösung von 23,88 g (0,158 mmol) 4-(N,N-Dimethylaminomethyl)anilin (BAYER) gelöst in 50 ml Ethanol versetzt. Man läßt 3 Stunden bei Raumtemperatur nachrühren, entfernt das Lösemittel im Vakuum und setzt das ölige Rohprodukt direkt zur nächsten Stufe um. Ausbeute: 67 g Öl

DC-System I: $R_f = 0.50$

5

10

15

20

30

35

40

45

50

b) 7-Fluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylamino-methyl)phenyl]-3-chinolincarbonsäureethylester

67 g (angenommen 0,158 mol) des Rohproduktes aus a) werden mit 88 g (0,158 mol × 4,03) Kaliumcarbonat in 180 ml Dimethoxyethan 7 Stunden bei Raumtemperatur gerührt. Man filtriert vom Ungelösten ab und wäscht den Rückstand mehrmals mit Dichlormethan nach. Die vereinigten organischen Phasen werden im Vakuum zur Trockene eingeengt und das erhaltene, ölige Rohprodukt am Hochvakuum bis zur Gewichtskonstanz nachgetrocknet. Das Rohprodukt wird direkt zur nächsten Stufe umgesetzt.

Ausbeute: 65 g Öl DC-System IV: R_f 0,33

65 g (angenommen 0,158 mol) des rohen Esters aus b) werden 1,5 Stunden mit 180 ml 4 normale wäßrige Salzsäure bei 110°C am Rückfluß gerührt. Man läßt auf Raumtemperatur kommen und saugt ab. Der Filterku-

chen wird zuerst zweimal mit dem Filtrat nachgewaschen, dann mit wenig Wasser (30 ml). Der Feststoff wird mit 50 ml Diethylether nachgewaschen und dann auf der Nutsche mit 100 ml Diethylether durchgearbeitet. Man saugt ab und wäscht dreimal mit je 100 ml Diethylether nach. Das Produkt wird bei 35°C im Vakuum über Calciumchlorid getrocknet.

Ausbeute: 39,2 g (62,5% d. Th.) DC-System III: $R_1 = 0.33$

DC-System XIII: R_f = 0,64 (+)FAB-MS: m/z 341 (M+H); m/z 447 (M+Ag)

1H-NMR (CDOOD): 8 = 3,15 (s, 6H), 4,67 (s, 2H); 7,19 (dd, 1H); 7,65 (m, 1H); 7,82 - 8,08 (m, 4H); 8,71 (dd, 1H); 9,27 (s, 1H)

Beispiel XI

6,7-Difluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylamino-methyl)phenyl]-3-chinolincarbonsäure hydrochlorid

Die Titelverbindung wird analog Beispiel X ausgehend von 3-Ethoxy-(2,4,5-trifluorbenzoyl)-acrylsäureethylester und 4-(N,N-dimethylamino-methyl)-anilin hergestellt. DC-System VIII: 0,32

(+)FAB-MS: m/z 359 (M+H) ¹H-NMR (DCOOD): $\delta = 3,10$ (s, 6H); 4,62 (s, 2H); 7,32 (m, 1H); 7,88 – 8,02 (m, 4H); 8,40 (m, 1H); 9,19 (s, 1H); [8,24] und 10,60 DCOODL

Beispiel XII

6,7,8-Trifluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylamino-methyl)phenyl]-3-chinolin-carbonsäure Hydrochlorid

Die Titelverbindung wird analog Beispiel X ausgehend von 3-Ethoxy-(2,3,4,5-tetrafluorbenzoyl)-acrylsäureethylester und 4-(N,N-Dimethylaminomethyl)anilin hergestellt.

65

5

10

15

35

Beispiel XIII

8-Chlor-6,7-difluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylaminomethyl)-phenyl]-3-chinolin-carbonsäureethylester

F OC₂F

a) 2-(3-Chlor-2,4,5-trifluorbenzoyl)-3-[4-(N,N-dimethylamino-methyl)-phenylamino]acrylsäureethylester

6,4 g (19 mmol) 3-Ethoxy-2-(3-chlor-2,4,5-trifluorbenzoyl)acrylsäureethylester werden in 11 ml Ethanol gelöst. Dazu tropft man unter Rühren eine Lösung von 2,86 g (19 mmol) 4-(N,N-Dimethylaminomethyl)anilin in 6 ml Ethanol. Man rührt 3 Stunden bei Raumtemperatur nach, dampft das Lösemittel im Vakuum ab und trocknet das ölige Rohprodukt an der Hochvakuumpumpe nach. Der erhaltene Rückstand (9,1 g) wird direkt zur Titelverbindung umgesetzt.

DC-System I: $R_f = 0.54$

5

10

15

20

50

55

60

65

DC-System XIII: $R_f = 0.84$

9,1 g (19 mmol) des Rohproduktes aus a) werden mit 11 g (19 mmol × 4,2) Kaliumcarbonat in 60 ml Dichlormethan und 25 ml Dimethylformamid 21 Stunden bei Raumtemperatur gerührt. Man saugt vom Ungelösten ab und wäscht den Rückstand zweimal mit je 10 ml Dimethylformamid und dreimal mit je 30 ml Dichlormethan nach. Die Filtrate werden vereinigt und am Vakuum zur Trockene eingeengt. Der Abdampfrückstand wird im Hochvakuum getrocknet und dann mit 50 ml n-Pentan verrührt. Die erhaltenen Kristalle werden abgesaugt und im Vakuum getrocknet.

Ausbeute: 7,46 g (93,2% d. Th.)

DC-System IV: $R_f = 0.37$

 $MS-EI: m/z 420 (M^+)$

¹H-NMR (CDCl₃, TMS): $\delta = 1,38$ (t, 3H); 2,26 (s, 6H); 3,49 (s, 2H); 4,38 (q, 2H); 7,22-7,52 (m, 4H); 8,35 (m, 1H); 8,48 (s, 1H)

Beispiel XIV

8-Chlor-6,7-difluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylaminomethyl)phenyl]-3-chinolincarbonsäure-Hydro-chlorid

7,15 g (17 mmol) des Ethylesters aus dem Beispiel XII werden in 21 ml 4 normaler wäßriger Salzsäure 2¹/₄ Stunden bei 105°C gerührt. Man läßt auf Raumtemperatur kommen und saugt die Kristalle ab. Das Produkt wird

44 25 649 DE

zuerst mit 10 ml Wasser, dann dreimal mit je 30 ml Diethylether nachgewaschen und schließlich am Vakuum über Calciumchlorid getrocknet.

Ausbeute: 7,11 g (97,4% d. Th.) DC-System III: $R_f = 0.22$

DC-System XIII: R_f = 0,46

(+)FAB-MS: m/z 393 (M+H)

 1 H-NMR (DCOOD/TMS): $\delta = 3,05$ (m, 6H), 4,56 (m, 2H); 7,22—7,91 (m, 4H); 8,46 (m, 1H); 9,13 (s, 1H)

Beispiel XV

7-Chlor-6-fluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylaminomkethyl)phenyl]-1,8-naphthyridin-3-carbonsäureethylester

5

10

30

40

45

50

55

60

65

a) 2-(2,5-Dichlor-4-fluor-nicotinoyl)-3-[4-(N,N-dimethylaminomethyl)-phenylamino]-acrylsäureethylester

2,42 g (7,17 mmol) 3-Ethoxy-2-(2,5-dichlor-4-fluor-nicotinoyl)-acrylsäureethylester werden in 20 ml Ethanol gelöst und bei 0°C unter Rühren mit einer Lösung von 1 ml einer 1 molaren Lösung von 4-(N,N-dimethylmethyl)-anilin in Ethanol versetzt. Man läßt auf Raumtemperatur kommen und rührt 2 Stunden nach. Alle flüchtigen Bestandteile werden am Hochvakuum abdestilliert und der Rückstand wird mehrmals mit Ethylacetat azeotropiert. Das Rohprodukt wird ohne weitere Reinigung in die Folgereaktion eingebracht. DC-System VI: $R_f = 0.42$

Das Rohprodukt aus a) wird mit 3 g (43 mmol) Kaliumcarbonat in 60 ml Dimethoxyethan 20 Stunden bei Raumtemperatur gerührt. Vom Ungelösten wird abfiltriert und das Filtrat wird im Vakuum zur Trockene eingeengt. Der Rückstand wird mit 100 ml Ethylacetat zum Sieden erhitzt, heiß filtriert und das Filtrat zur Trockene eingeengt. Das erhaltene Produkt wird mit 30 ml Essigsäureethylester verrieben und die Suspension mit 30 ml Petrolether versetzt. Man saugt ab, wäscht mit Petrolether nach und trocknet im Vakuum.

Ausbeute: 1,3 g (45% d. Th.) DC-System XVI: $R_f = 0,43$

 1 H-NMR (CDCl₃/TMS): $\delta = 1,41$ (t, 3H); 2,30 (s, 6H); 3,52 (s, 2H); 4,40 (q, 2H); 7,25—7,58 (m, 4H); 8,49 (d, 1H); 8,67 (s, 1H)

Beispiel XVI

7-Chlor-6-fluor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylaminomethyl)phenyl]-1,8-naphthyridin-3-carbonsäure Hydrochlorid

15 F OH N N N HCI

5

30

35

40

45

55

60

65

Die Titelverbindung wird analog Beispiel XIV durch saure Verseifung des Ethylesters aus dem Beispiel XV hergestellt.

Beispiel XVII

7-Chlor-1,4-dihydro-4-oxo-1-[4-(N,N-dimethylaminomethyl)phenyl]-1,8-naphthyridincarbonsäureethylester

Die Titelverbindung wird analog Beispiel XV ausgehend von 2-(2,6-Dichlornicotinoyl)-3-ethoxyacrylsäureethylester und 4-(N,N-Dimethylaminomethyl)-anilin erhalten.

Beispiel XVIII

7-Clor-1,4-dihydro-4-oxo-1-[4-N,N-dimethylaminomethyl)-phenyl]-1,8-naphthyridincarbonsäure Hydrochlorid

Die Titelverbindung wird analog Beispiel XIV durch saure Verseifung des Ethylesters aus dem Beispiel XVII hergestellt.

Beispiel XIX

7-Fluor-1,4-dihydro-4-oxo-1-[4-(morpholinomethyl)-phenyl]-3-chinolincarbonsäure-Hydrochlorid

Die Titelverbindung wird analog Beispiel XX ausgehend von 3-Ethoxy-(2,4-difluorbenzoyl)acrylsäureethylester und der Verbindung aus Beispiel III hergestellt.

60

55

25

Beispiel XX

6.7-Difluor-1,4-dihydro-4-oxo-1-[4-(morpholino-methyl)phenyl]-3-chinolincarbonsäure-Hydrochlorid

a) 2-(2,4,5-Trifluorbenzoyl)-3-[4-(morpholinomethyl)phenylamino]-acrylsäureethylester

2,5 g (11 mmol) der Verbindung aus Beispiel III werden mit 2,3 ml (13,2 mmol) N,N-Diisopropylethylamin in 8 ml Ethanol 10 Minuten bei Raumtemperatur gerührt. Zu der Suspension tropft man unter Rührung und Eiskühlung eine Lösung von 3,22 g (11 mmol) 3-Ethoxy-2-(2,4,5-trifluorbenzoyl)-acrylsäureethylester in 7 ml Ethanol. Man rührt eine Stunde bei Raumtemperatur nach, saugt ab und wäscht den Rückstand zweimal mit je 15 ml eiskaltem Ethanol und dreimal mit je 20 ml Pentan nach. Das Produkt wird an der Ölpumpe getrocknet. Ausbeute: 4,58 g (92,9% d. Th.)

DC-System I: $R_f = 0.61$ DC-System II: $R_f = 0.34$

5

10

15

20

25

35

55

60

65

b) 6,7-Difluor-1,4-dihydro-4-oxo-1-[4-(morpholino-methyl)-phenyl]-3-chinolincarbonsäureethylester

4,5 g (10 mmol) des Produktes aus a) werden mit 6 g (43,4 mmol) Kaliumcarbonat in 35 ml Dichlormethan und 15 ml Dimethylformamid 26 Stunden bei Raumtemperatur gerührt. Die Suspension wird auf 45°C erwärmt (Wasserbad) und abgesaugt. Der Rückstand wird dreimal mit je 50 ml warmen Dichlormethan (45°C) nachgewaschen. Die vereinigten Filtrate werden im Vakuum zur Trockene eingeengt. Der Abdampfrückstand wird mit 30 ml Diethylether verrieben, abgesaugt, mit Diethylether und n-Pentan nachgewaschen und im Vakuum getrocknet.

Ausbeute: 4,17 g (97,3% d. Th.) DC-System II: $R_f = 0,26$ DC-System VIII: $R_f = 0,87$

4 g (9,34 mmol) des Ethylesters aus b) werden in 20 ml 4 normaler wäßriger Salzsäure 4 Stunden bei 110°C bis 115°C gerührt. Zum Verdünnen fügt man direkt 5 ml Wasser, nach 3 Stunden weitere 5 ml Wasser hinzu. Man läßt auf Raumtemperatur kommen und saugt ab. Der Rückstand wird zuerst mit Ethanol, dann mit Diethylether gründlich nachgewaschen und im Vakuum über Kaliumhydroxid getrocknet.

Ausbeute: 3,88 g (95,1 d. Th.) DC-System VIII: $R_f = 0,56$

 1 H-NMR (DCOOD/TMS): $\delta = 3,52$ (m, 2H); 3,78 (m, 2H); 4,03 (m, 2H); 4,81 (m, 2H); 4,77 (s, 2H); 7,35 (m, 1H); 7,88 (2H) und 8,04 (2H); para-aromat. AB-System; 8,45 (m, 1H); 9,18 (s, 1H)

44 25 649

Beispiel XXI

 $6.7.8 - Trifluor - 1.4 - dihydro - 4 - oxo - 1 - [4 - (morpholinomethyl) phenyl] - 3 - chinolinear bons \"{a}ure - Hydrochloride - (morpholinomethyl) phenyl] - 3 - chinolinear bons \ddot{a}ure - Hydrochloride - (morpholinomethyl) phenyl] - 3 - chinolinear bons \ddot{a}ure - Hydrochloride - (morpholinomethyl) phenyl] - 3 - chinolinear bons \ddot{a}ure - Hydrochloride - (morpholinomethyl) phenyl] - 3 - chinolinear bons \ddot{a}ure - Hydrochloride - (morpholinomethyl) phenyl] - 3 - chinolinear bons \ddot{a}ure - (morpholinomethyl) phenyll phe$

Die Titelverbindung wird analog Beispiel XX ausgehend von 3-Ethoxy-(2,3,4,5-tetrafluorbenzoyl)-acrylsäureethylester und der Verbindung aus Beispiel III hergestellt.

Beispiel XXII

 $8-Chlor-6, 7-difluor-1, 4-dihydro-4-oxo-1-[4-(morpholinomethyl) phenyl]-3-chinolinear bons \"{a}ure-Hydrochlorid and all the statements of the statement of th$

30

50

55

60

65

Die Titelverbindung wird analog Beispiel XX ausgehend von 3-Ethoxy-2-(3-chlor-2,4,5-trifluorbenzoyl)-acrylsäureethylester und 4-(Morpholinomethyl)anilin-Hydrochlorid (Beispiel III) hergestellt DC-System VIII: Rf = 0,67

(+)FAB-MS: m/z 435/437 (M+H)

1H-NMR (DCOOD/TMS): $\delta = 3,52$ (m, 2H); 3,75 (m, 2H); 4,03 (m, 2H); 4,33 (m, 2H); 4,71 (s, 2H); 7,75—7,95 (m, 4H; p-arom. AB-System); 8,48 (m, 1H); 9,04 (s, 1H)

Beispiel XXIII

7-Chlor-1,4-dihydro-4-oxo-[4-(morpholinomethyl)phenyl]-1,8-naphthyridincarbonsäure-Hydrochlorid

5 10 CI N N X HCI 15

35

40

45

50

55

60

65

25 Die Titelverbindung wird analog Beispiel XX ausgehend von 2-(2,6-Dichlornicotinoyl)-3-ethoxy-acrylsäureethylester und der Verbindung aus Beispiel III hergestellt.

Beispiel XXIV

7-Chlor-6-fluor-1,4-dihydro-4-oxo-1-[4-(morpholino-methyl)-phenyl]-1,8-naphthyridincarbonsäure-Hydrochlorid

Die Titelverbindung wird analog Beispiel XX ausgehend von 3-Ethoxy-(2,5-dichlor-4-fluornicotinoyl)acrylsäureethylester und der Verbindung aus Beispiel III hergestellt.

Herstellungsbeispiele

Beispiel 1

1,4-Dihydro-4-oxo-7-(4-phenylpiperazin-1-yl)-1-[4-(N,N-dimethylaminomethyl)-phenyl]-3-chinolincarbonsäure

30

1,51 g (4 mmol) der Verbindung aus Beispiel X werden mit 1 g (6 mmol) N-Phenylpiperazin und 3,6 ml (20 mmol) N,N-Diisopropylethylamin in 8 ml Dimethylsulfoxid 3 Stunden bei 110°C gerührt. Man läßt auf Raumtemperatur kommen und versetzt den Ansatz mit 4 ml Ether und 2 ml 1,2-Dimethoxyethan. Die gebildeten Kristalle werden abgesaugt und mit 1,2-Dimethoxyethan/Diethylether 1:1 nachgewaschen. Der Rückstand wird kurz getrocknet und mit 10 ml Wasser verrührt. Man filtriert ab und wäscht das Produkt dreimal mit wenig Wasser (je 3 ml), sodann dreimal mit je 30 ml Diethylether nach und trocknet es schließlich im Vakuum über Calciumchlorid.

Ausbeute: 1,25 g (64,5% d. Th.) DC-System VIII: R_f = 0,54 HPLC-System I: Rt = 5,199 min

MS-EI: m/z 482 (M+)

1H-NMR (CDCl₃/TMS): δ: 2,27 (s, 6H); 3,20-3,42 (m, 8H); 3,53 (s, 2H); 6,25 (dd, 1H); 6,90 (m, 3H); 7,15 (dd, 1H); 7,22-7,65 (m, 6H); 8,37 (d, 1H); 8,65 (s, 1H); 15,32 (s, breit, 1H)

Beispiel 2

6-Fluor-1,4-dihydro-4-oxo-7-[4-(2-thiomethylphenyl)piperazin-1-yl]-1-[4-(N,N-dimethylaminomethyl)phenyl]-3-chinolincarbonsäure

290 mg (736 µmmol) der Verbindung aus Beispiel XI werden mit 229 mg (1,1 mmol) 1-(2-Methylmercaptophenyl)piperazin und 0,9 ml (5,15 mmol) N,N-Diisopropylethylamin in 3,7 ml Dimethylsulfoxid 3 Stunden bei 100°C gerührt. Alle flüchtigen Komponenten werden im Vakuum entfernt. Der Abdampfrückstand wird in 100 ml Dichlormethan gelöst und zweimal mit je 50 ml 0,1 normaler wäßriger Salzsäure ausgeschüttelt. Die organische Phase wird über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Der Rückstand wird mit 5 ml Isopropanol verrieben, abgesaugt, mit Diethylether nachgewaschen und im Vakuum getrocknet. Ausbeute: 320 mg (79,6% d. Th.)

DC-System VIII: $R_f = 0.41$ HPLC-System I: $R_f = 7.155$ min

(+)FAB-MS: m/z 547 (M+H)

10

15

20

45

50

55

60

Beispiel 3

5 8-Chlor-6-fluor-1,4-dihydro-4-oxo-7[4-(2-methoxyphenyl)piperazin1-yl]-1-[4-(N,N-dimethylaminomethyl)phenyl]-3-chinolincarbonsäure

150 mg (350 μmol) der Verbindung aus Beispiel XIV werden mit 160 mg (700 μmol) o-Methoxyphenylpiperazin-Hydrochlorid und 304 μl (1,75 mol) N,N-Diisopropylethylamin in 3 ml Dimethylsulfoxid 3 Stunden bei 100°C gerührt. Der Ansatz wird auf Raumtemperatur kommen gelassen und mit 30 ml Wasser verdünnt. Die wäßrige Phase wird dreimal mit je 30 ml Toluol extrahiert. Die organische Phase wird mit Citratpuffer pH 4 (Merck Artikel Nr. 9435.1000) gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt (144 mg) wird über Kieselgel mit dem Laufmittelgemische Chloroform/Methanol/Wasser/Essigsäure 100:50:2:2 chromatographiert. Die produktenthaltenden Fraktionen werden vereinigt, am Rotationsverdampfer eingeengt, mit Toluol azeotropiert und im Hochvakuum über Kaliumhydroxid getrocknet.

Ausbeute: 135 mg (68% d. Th.) DC-System XIV: $R_f = 0.20$ HPLC-System I: $R_f = 5.605$ min (+)FAB-MS: m/z 565 (M+H)

Beispiel 4

6-Fluor-1,4-dihydro-4-oxo-7-[4-(4-fluorphenyl)-piperazin-1-yl]-1-[4-(morpholinomethyl)-phenyl]-3-chinolincarbonsäure

218 mg (0,5 mmol) der Verbindung aus Beispiel XX werden mit 135 mg (0,75 mmol) 1-(4-Fluorphenyl)piperazin und 0,88 ml (5 mmol) N,N-Diisopropylethylamin in 3 ml Dimethylsulfoxid 3 Stunden bei 100°C gerührt. Alle flüchtigen Komponenten werden im Hochvakuum entfernt und der Rückstand mit 5 ml Ethanol verrührt. Man saugt ab und verreibt die gebildeten Kristalle mit 5 ml Wasser. Das Produkt wird filtriert, sukzessive mit Wasser, Ethanol und Diethylether gewaschen und im Vakuum getrocknet

Ausbeute: 215 mg (76,8% d. Th.) DC-System VIII: $R_f = 0.64$

HPLC-System I: Rt = 6,225 min(+)FAB-MS: m/z 561 (M+H)

Beispiel 5

6-Fluor-1,4-dihydro-4-oxo-7-[4-(4-fluorphenyl)-piperazin-1-yl]-1-[4-(N,N-dimethylaminomethyl)-phenyl]-1,8-naphthyridin-3-carbonsäure-Trihydrochlorid

5

30

40

45

50

55

60

65

6-Fluor-1,4-dihydro-4-oxo-7-[4-(4-fluorphenyl)piperazin-1-yl]-1-[4-(N,N-dimethylaminomethyl)phenyl]-1,8-naphthyridin-3-carbonsäureethylester

150 m (372 µmol) der Verbindung aus Beispiel XV werden mit 134 mg (741 mol) 1-(4-Flurophenyl)piperazin und 194 µl (1,1 mmol) N,N-Diisopropylethylamin in 2 ml Dimethylsulfoxid 4 Stunden bei 100°C gerührt. Man läßt auf Raumtemperatur kommen und gibt 8 ml Wasser zu dem Ansatz. Der gebildete Niederschlag wird abfiltriert, in 2 ml Dichlormethan aufgenommen und die Lösung mit 8 ml Diethylether versetzt. Man filtriert vom Ungelösten ab, engt das Filtrat zur Trockene ein und chromatographiert den Rückstand an Kieselgel mit dem Laufmittelgemisch Dichlormethan/Methanol 10:1. Die produktenthaltenden Fraktionen werden zusammengefaßt und im Vakuum zur Trockene eingeengt.

Ausbeute: 114 mg (55,8% d. Th.) DC-System V: $R_f = 0.59$

(+)FAB-MS: m/z 548 (M+H)

60 mg (109,2 µmol) des Ethylesters aus a) werden mit 2 ml 6 N wäßrige Salzsäure und 2 ml Wasser 3 Stunden bei 100°C erhitzt. Man engt zur Trockene ein und azeotropiert zweimal mit Toluol. Der Rückstand wird in Diethylether suspendiert, abgesaugt und im Vakuum über Kaliumhydroxid getrocknet.

Ausbeute: 41,3 mg (73% d. Th.)

DC-System XIV: $R_f = 0.45$ HPLC-System I: $R_t = 5.921$ min (+)FAB-MS: m/z 520 (M+H)

Beispiel 6

1,4-Dihydro-4-oxo-7-[4-(4-fluorphenyl)piperazin-1-yl]-1-[4-(N-tert.butoxycarbonylamino-methyl)-phenyl]-3-chinolincarbonsaure

1,2 g (2,9 mmol) der Verbindung aus Beispiel IV werden mit 821 mg (4,36 mmol) 4-Fluorphenylpiperazin und 5 ml (29,1 mmol) N,N-Diisopropylethylamin in 10 ml Acetonitril und 5 ml Dimethylformamid 11 Stunden bei 110°C gerührt. Man läßt unter Rühren auf Raumtemperatur kommen, rührt zwei Stunden nach und saugt ab. Der Rückstand wird mit 50 ml Diethylether verrieben und filtriert. Die Prozedur wird noch zweimal wiederholt, das gereinigte Produkt wird schließlich im Vakuum getrocknet. Ausbeute: 1,11 g (66,8% d. Th.)

DC-System I: $R_f = 0.84$ HPLC-System I: Rt = 7,548 min (+)FAB-MS: m/z 573 (M+H)

Beispiel 7

35

40

45

5

10

15

20

1,4-Dihydro-4-oxo-7-[4-(4-fluorphenyl)piperazin-1-yl]-1-[4-aminomethyl)phenyl]-3-chinolincarbonsäure-Trihydrochlorid

55

0,8 g (1,7 mmol) der Verbindung aus Beispiel 6 werden in 1 ml Ethanol gelöst und mit 7 ml einer 4 molaren Lösung von Chlorwasserstoffgas in Dioxan versetzt. Man rührt 5 Stunden bei Raumtemperatur und verdünnt den Ansatz mit 8 ml Diethylether. Der gebildete Niederschlag wird abgesaugt und mit Diethylether verrieben. Nach erneutem Absaugen und Nachwaschen des Rückstands mit Diethylether und n-Pentan trocknet man im Hochvakuum bei 30°C über Kaliumhydroxid.

Ausbeute: 810 mg (99,4% d. Th.)

DC-System III: $R_f = 0.23$

DC-System XV: $R_f = 0.33$

(+)FAB-MS: m/z 473 (M+H); m/z 495 (M+H); m/z 579 (M+Ag)

Beispiel 8

1,4-Dihydro-4-oxo-7-[4-(4-fluorphenyl)piperazin-1-yl]-1-[4-(N-acetylaminomethyl)phenyl]-3-chinolincarbonsäure

F OH 10

25

35

40

45

50

55

60

65

200 mg (344 μmol) der Verbindung aus Beispiel 7 werden mit 598 μl (3,43 mmol) N,N-Diisopropylethylamin und 65 μl (687 μmol) Essigsäureanhydrid 14 Stunden bei Raumtemperatur gerührt. Der gebildete Niederschlag wird abgesaugt, gründlich mit Diethylether nachgewaschen und im Hochvakuum bei 30°C getrocknet. Ausbeute: 106 mg (59,9% d. Th.)

DC-System I: Rf = 0,44 HPLC-System I: Rt 6,016 min (+)FAB-MS: m/z 515 (M+H)

Die in den nachfolgenden Tabellen aufgeführten Beispiele werden analog der Beispiele 1—4,6 durch Umsetzen der jeweiligen Carbonsäuren mit den entsprechenden Piperazinderivaten hergestellt. Alternativ kann analog Beispiel 5 die Umsetzung auch mit den jeweiligen Carbonsäureestern durchgeführt werden, die nach Zwischenisolierung oder direkt zu den Titelverbindungen verseift werden können. Die verwendeten Piperazinderivate sind käuflich (Aldrich, Emka, Janssen) oder können nach bekannten Methoden hergestellt werden.

Die tert.Butoxycarbonylaminomethyl-Verbindungen der Tabellen 12, 15, 18 und 21 können analog Beispiel 7 zu den Titelverbindungen der Tabellen 13, 16, 19 und 22 und weiterhin analog Beispiel 8 zu den Titelverbindungen der Tabellen 14, 17, 20 und 23 acyliert werden.

DE 44 25 649 A1

Tabelle	Allgemeine Formel	Edukt / Bsp-Nr.
1	N(CH ₃) ₂	X
2	F. ~]	XI
•	ROH	
	N(CH ₃) ₂	

DE 44 25 649 A1

Tabelle	Allgemeine Formel	Edukt / Bsp-Nr.	
3	F OH OH N(CH ₃) ₂	XII	10 15
4	. 0 0	XIII, XIV	25
	P OH	·	30
			35
	N(CH ₃) ₂		40
			45

DE 44 25 649 A1

Tabelle	Allgemeine Formel	Edukt / Bsp-Nr.
5	O O O O O O O O O O O O O O O O O O O	XVII, XVIII
	N(CH ₃) ₂	
6	F OH	XV, XVI
	RNNN	
	N(CH ₃) ₂	
	N(O) 13/2	

DE 44 25 649 A1

Tabelle	Allgemeine Formel	Edukt / Bsp-Nr.	
7	O O OH	XIX	10
			20
			25
8	F OH	xx	30
	R		35
	N N		40
	ó		45
			50

DE 44 25 649 A1

Tabelle	Allgemeine Formel	Edukt / Bsp-Nr.
	F OH N	XXI
10	F OH	XXII
·	R CI	
	, , ,	

DE 44 25 649 A1

Tabelle	Allgemeine Formel	Edukt / Bsp-Nr.	
11	O O O O O O O O O O O O O O O O O O O	XXIII	10
			1:
			20
	·		2:
12	ОН	IV	30
	R		33
			40
	NH-Boc		45
			50

DE 44 25 649 A1

	Tabelle	Allgemeine Formel	Edukt / Bsp-Nr.
5		F OH OH NH-Boc	V
20		·	
25	18	F OH	VII
30 35		RCI	
10		NH-Boc	
15			

DE 44 25 649 A1

Tabelle Allgemeine Formel	Edukt / Bsp-Nr.
21 O O O O O O O O O O O O O O O O O O O	VIII

5		HPLC-System/Rt-Wert		I: 4,444 min.	I: 5,039 min.	I: 4,780 min.
15		Wert				
20 25		DC-System/RrWert		VII I: 0,54	VIII: 0,56	VIII: 0,55
30		MS		MS-EI: m/z 500 (M) ⁺	MS-EI: m/z 512 (M) ⁺	м+н)
35	OH.	(+) FAB-MS		MS-EI: ¤	MS-EI: n	m/z 513 (M+H)
40	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
45	,z-,		_			ر ہے۔
50		\mathbb{R}^1		F	—о °но	HOO SHOW
55	rabelle 1a:	BspNr.	6	10	11	12

DE 44 25 649 A1

BspNr.	\mathbb{R}^1		(+) FAB-MS	DC-System/R-Wert	HPLC-System/Rt-Wert
13	CI		MS-EI: m/z 516 (M) ⁺	VIII: 0,58	I: 5,790 min.
14	F		·	VIII: 0,62	I: 6,201 min.
15	<u>0</u>		m/z 551/553 (M+H)	VIII: 0,58	I: 5,646 min.
16	H ₃ C		m/z 497 (M+H)	VIII: 0,62	I: 5,951 min.
17	C ₂ H _s	 	m/z 511 (M+H)	∨ш: 0,59	I: 6,992 min.
18)cc,H ₅	m/z 527 (M+H)	VIII: 0,64	I: 5,580 min.
60	55	45 50	30 35	20 25	5

5	HPLC-System/Rt-Wert				
10	HPLC-Syste	I: 5,957 min.	I: 5,793 min.	I: 6,408 min.	I: 3,215 min.
15					
20	DC-System/RrWert	45	33	4	75
25	DC-Sys	VIII: 0,64	VIII: 0,63	VIII: 0,64	VШ: 0,52
30					
35	(+) FAB-MS	m/z 541 (M+H)	m/z 508 (M+H)	m/z 529 (M+H)	m/z 484 (M+H)
40	(÷)	m/z	z/m	m/z ;	, z/w
45					
50			No	SCH	
55	\mathbb{R}^1				N
60	BspNr.	61	20	21	22

DE 44 25 649 A1

HPLC-System / Rt-Wert I: 4,891 min. I: 4,981 min. DC-System / Rr-Wert **VIII**: 0,64 VШ: 0,65 m/z 497 (M+H) m/z 511 (M+H) (+)FAB-MS Ŕ Ę, Ľ, 2 Tabelle 1b Bsp.-Nr. 24 23

10

15

20

25

30

35

40

45

50

55

60

	•					
5		HPLC-System/Rt-Wert	I: 5,957 min.	I: 5,660 min.	I: 6,816 min.	I: 6,547 min.
15		Vert				
20		DC-System/R-Wert	I: 0,45	I: 0,16	I: 0,54	III: 0,31
30	·					
35	I	(+) FAB-MS	m/z 501 (M+H)	m/z 531 (M+H)	m/z 535 (M+H)	m/z 537 (M+H)
40						
45						1
50	π	Rl		A POPULATION OF THE POPULATION		
55	Tabelle 2a:	BspNr.	25	26	27	28
60	<u> </u>	<u> </u>	<u> </u>	<u> </u>		

DE 44 25 649 A1

BspNr.	${f R}^1$	(+) FAB-MS	DC-System/R _r -Wert	HPLC-System/Rt-Wert
29	5	m/z 569/571 (M+H)	I: 0,44	I: 7,791 min.
30	H ₃ C	m/z 515 (M+H)	I: 0,47	I: 6,405 min.
ć		- 1- SOO AKITA	1. 0.45	1. 7 505 min
ī	¥.5	(11TM) 626 2/III	1. 0,42	1. 1,550 mm.
	•			
32	oc ₂ H ₅	m/z 545 (M+H)	I: 0,48	I: 6,342 min.
60	45 50 55	30 35 40	15 20 25	5

5	HPLC-System/Rt-Wert	I: 6,844 min.	I: 6,142 min.	I: 3,440 min.
15				
20	DC-System/R-Wert			
25	DC-Syst	I: 0,54	I: 0,46	Щ: 0,28
30				
35	(+) FAB-MS	m/z 559 (M+H)	m/z 526 (M+H)	m/z 502 (M+H)
40	(+)		z/œ	z/m
45				
50		}— осн(сн ₃₎₂		ī
55	R1	S S S S S S S S S S S S S S S S S S S	No No	N N
60	BspNr.	33	34	35

DE 44 25 649 A1

Tabelle 2b

BspNr.	R	(+)FAB-MS	DC-System / R _f -Wert	HPLC-System / Rt- Wert
36	H ₃ C	m/z 515 (M+H)	I: 0,53	I: 5,477 min.
37	H_3C H_3C H_3C	m/z 529 (M+H)	I: 0,46	I: 5,653 min.

DE 44 25 649 A1

	·				
5		HPLC-System / Rt- Wert			
15		/ert			
20		DC-System / R _f -Wert			
25		DC-S			
30 35	N(CH ₃) ₂	(+)-FAB-MS	-		
40	т <u>я</u>)	_F		OCH ₃
45		R	-N-	N-	N-
50	Tabelle 3	BspNr.	38	39	40
55			(1)	(41	4

DE 44 25 649 A1

BspNr.	æ	(+)-FAB-MS	DC-System / R _f -Wert	HPLC-System / Rt- Wert	
41	Z Z				T
42	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-				
50	40	30 35	20	10	

15 6,317 min. I: 6,854 min. I: 8,354 min.	··
i i i i i i i i i i i i i i i i i i i	
DC-System/R _r Wert XIV: 0,37 XIV: 0,32	
30 F F	
OH (+) FAB-MS m/z 535 (M+H) m/z 559 (M+H)	
45	1
50 Z ₁ Z ₂ Z ₂ Z ₃ Z ₄ Z ₄ Z ₅ Z ₄ Z ₅	ō
Tabelle 4a: BspNr. 43	

DE 44 25 649 A1

BspNr.	\mathbb{R}^{1}	(+) FAB-MS	DC-System/Rr-Wert	HPLC-System/Rt-Wert
46	5	m/z 569 (M+H)	XIV: 0,26	I: 7,934 min.
47	CI-	m/z 569 (M+H)	XIV: 0,26	I: 7,995 min.
60	45 50 55	30 35	20	10

DE 44 25 649 A1

5		HPLC-System / Rt- Wert			
15		R _f -Wert			
20		DC-System / R _f -Wert			
25		Q		:	
30		(+)-FAB-MS			
35		+		, Fo	\sim
40	п. <u>а</u> с				
45		æ	Į,	(پ	۲
50	Tabelle 4b:	BspNr.	48	49	50

DE 44 25 649 A1

BspNr.	æ	(+)-FAB-MS	DC-System / R _f -Wert	HPLC-System / Rt-
51			,	Wer
52	N-N-N-			
·				
50 55	40 45	30 35	20	5

Tabelle 5: 95 57 72 72 72 72 72 72 72 72 72 72 72 72 72		•				
25 30 V V V V V V V V V V V V V V V V V V	5		tem / Rt-			
25 30 V V V V V V V V V V V V V V V V V V	10		HPLC-Syst Wert			
30 OH N(CH ₃) ₂ 40 45 45						
30 OH N(CH ₃) ₂ 40 45 45			C-System / F			
40 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	30	H ₂)2				
40	35		(+)-FAJ			
50	40	\=<				
50	45		R			
Tabe	50	ile 5:	pNr.			
	55	Tab	BS	53	54	55

DE 44 25 649 A1

BspNr.	R	(+)-FAB-MS	DC-System / Rr-Wert	HPLC-System / Rt- Wert
99	N-N-N-			
57	N-			
58				
59	N N			
09	N-			

DE 44 25 649 A1

5	·	HPLC-System / Rt- Wert	I: 5,921 min.	I: 5,870 min.
15				
20		DC-System / R _f -Wert	XIV: 0,45	IV: 0,48
	~	Q		×
30 35	N(CH ₃) ₂	(+)-FAB-MS	m/z 520 (M+H)	m/z 502 (M+H) XIV: 0,48
40				
45		R	ا ا	N- N- N- N- N- N-
50	Tabelle 6:	BspNr.	61	62
55	2	lt	1	L

DE 44 25 649 A1

			5
HPLC-System / Rt- Wert		I: 7,361 min.	
DC-System / Rr-Wert		XII: 0,51	
(+)-FAB-MS		m/z 530 (M+H)	
	~	CH ₃	
BspNr. R	N	- N-	

5		tem / Rt-			
10		HPLC-System / Rt- Wert	·		
15	·	R _r -Wert		į	
20	·	DC-System / R _r Wert			
30		(+)-FAB-MS			
35 40	©	<u>+</u>			
45		R	Z Z	N-	,oo,H,3co
50 55	Tabelle 7:	BspNr.	65	99	29

DE 44 25 649 A1

BspNr. R	Я	(+)-FAB-MS	DC-System / RrWert	HPLC-System / Rt- Wert	
	Z Z				
	N- OH ₃				
50	40	35	25	.	
)			:0	5	

DE 44 25 649 A1

5		HPLC-System / Rt- Wert	I: 5,952 min.	I: 5,784 min.	I: 7,519 min.
15		-Wert			
20 25		DC-System / R _C Wert	I: 0,60	VШ: 0,59	VIII: 0,64
30		(+)-FAB-MS	m/z 543 (M+H)	m/z 573 (M+H)	m/z 571 (M+H)
35				1	
40 45	т <u>к</u>			OD ^F H	
	•	×	`z'	, ż,	`z´
50	Tabelle 8:	BspNr.	70	17	27

DE 44 25 649 A1

BspNr.	R	(+)-FAB-MS	DC-System / Rr-Wert	HPLC-System / Rt- Wert
73	O. P.	m/z 557 (M+H)	VIII: 0,62	I: 5,480
74	Z Z			
75	Z-			
76	N-			
50 55	40	30 35	20	10

5		HPLC-System / Rt- Wert			
15		-Wert			
20		DC-System / R _f -Wert			
25		DC-9			
30		(+)-FAB-MS			
35	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(+)	<u>IL</u>		
40	пт — цд				N OO H
45		æ	Z	\(\frac{1}{z}\)	الم الم
50	Tabelle 9:	BspNr.			
55	Tab	Ř	77	78	79

DE 44 25 649 A1

BspNr. R	R	(+)-FAB-MS	DC-System / R _f -Wert	HPLC-System / Rt-	
	Z Z				
	N- N-				
· ·					
50	40 45	30 35	20 25	10	

DE 44 25 649 A1

	,				
5		HPLC-System / Rt- Wert	I: 6,682 min.	I: 6,329 min.	I: 5,583 min.
15			E	I.	1
20	·	DC-System / R _f -Wert	I: 0,49	I: 0,46	I: 0,60
30 35		(+)-FAB-MS	m/z 595 (M+H)	m/z 577 (M+H)	m/z 607 (M+H)
40	m m m		N-(-)-F	N-N-	N N H ₃ CO
		R	N-	L _z	N-
50	le 10:	BspNr.			
55	Tabelle 10:	Bsp.	82	83	84

DE 44 25 649 A1

BspNr. R	R	(+)-FAB-MS	DC-System / R _f -Wert	HPLC-System / Rt- Wert
85	N-N-	m/z 605 (M+H)	I: 0,54	I: 6,190 min.
98	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	m/z 591 (M+H)	VШ: 0,56	I: 4,875 min.
87	N-N-N-			
88	N-N-			
68	N-N-N-			
50 55	40 45	30 35	15 20 25	5

DE 44 25 649 A1

5		tem / Rt-			
10		HPLC-System / Rt- Wert			
15		-Wert			
20		DC-System / R _f -Wert			
25		DC-S			
30		(+)-FAB-MS			
35		(+)	L		
40	<u> </u>				S. S.
45		R	Z	Z Z	z I
50	Tabelle 11:	BspNr.	0	1	2
55	Tal	Ħ	8	22	92

DE 44 25 649 A1

+				
HPLC-System / Rt- Wert				
PLC-Sys				
/ Rr-We				
DC-System / R _f Wert				
(+)-FAB-MS				
(+)-F				
			(8)	•
	Z	Z JO		•
R	Z,	ż		:
BspNr.		_		•
ğ	8	92		;

DE 44 25 649 A1

5		/ Rt-			
10		HPLC-System / Rt- Wert			
15					
20		DC-System / R _f -Wert			
25	1	DC-S			
30		(+)-FAB-MS	•		
35	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	t)			
40					
45	·	R	N-	N- N- N-	Z Z
50	Tabelle 12:	BspNr.	95	96	97
55	Ä	<u> </u>			· ·

DE 44 25 649 A1

BspNr.	R	(+)-FAB-MS	DC-System / Rr-Wert	HPLC-System / Rt-	
86	N- N-				
66					
100	N-				
101	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-				
50 55	40	30 35	20 25	10	

-

5		HPLC-System / Rt- Wert			
10		HPLC-Sy. Wert			
15		-Wert			,
20	·	DC-System / R _f -Wert			
25	<u>ত</u>	DC-S			
30	NH ₂ × 3 HCl	(+)-FAB-MS			
35		(±)			
40				N N N N N N N N N N N N N N N N N N N	
45		R	Ž Z	Ž Ž	ż
50	Tabelle 13:	BspNr.	102	103	104
55	64			-	

DE 44 25 649 A1

BspNr.	x	(+)-FAB-MS	DC-System / R _f -Wert	HPLC-System / Rt- Wert
105	N-			
106	N-			
107	N-			
108	N-N-N-			

5		stem / Rt-			
10		HPLC-System / Rt- Wert			
15		^t rWert			
20		DC-System / R _f -Wert			
		DC			
30	OH OH	(+)-FAB-MS			
35	0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(÷)			
40	°€ (N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	
45		R	Ž,	N- T	Z Z
50	Tabelle 14:	BspNr.	6	0	-
55	Tab	Ä	109	110	Ξ

•

DE 44 25 649 A1

BspNr. R	R	(+)-FAB-MS	DC-System / Rr-Wert	HPLC-System / Rt- Wert
112	Z TO		·	
113	Z Z			
114	Z-			
115	N-			
	N.			

5		HPLC-System / Rt- Wert			
10		HPLC-Sy Wert			
15	·	RrWert			
25		DC-System / R _f -Wert			
30					
35		(+)-FAB-MS			
40	т — ф				
45		R	, v	N-	-N -N -N -N -N -N -N -N -N -N -N -N -N -
50	Tabelle 15:	BspNr.	116	117	118
55	a	I		1	

DE 44 25 649 A1

(+)-FAB-MS DC-System / R _f -Wert Wert Wert						
(+)-F		N. HO			N N	
R	ż	جُ کُو	z z	Ż	رغ ا	
BspNr.	119 ;	120	121	122	123	

5		HPLC-System / Rt- Wert				
15		k-Wert				
20 25		DC-System / R _f -Wert				
30	× 3 HCI × 3 HCI	(+)-FAB-MS				
35		(+)	<u>u.</u>			
40	т <u>к</u>				H,CO	
45		æ	\z/	\ _z /	\ _z \	, z
50	Tabelle 16:	BspNr.	124	125	126	127

DE 44 25 649 A1

5	·	HPLC-System / Rt- Wert				
10		HPLC-Sy Wert				
15	٠.	R _r -Wert				
20 25		DC-System / R _f -Wert				
30	#5 #5 ⇔ ⇔					
35		(+)-FAB-MS				
40	т — — т				OO H	
45		æ	٢	٢	٢	ر ا
50	Tabelle 17:	BspNr.	132	133	134	135

DE 44 25 649 A1

BspNr.	R	(+)-FAB-MS	DC-System / R _f -Wert	HPLC-System / Rt- Wert	
136	N- N- N- N- N- N- N- N- N- N- N- N- N- N				
137	N-N-				
138	N-			·	
139	N-N-				
) V				

DE 44 25 649 A1

5		HPLC-System / Rt- Wert				
15		ر-Wert				
20 25		DC-System / R _f -Wert				
30	OH NHBoc	(+)-FAB-MS				
35			_F			
40	щ <u>«</u>		2	Z	H,CO	
45		æ	رې	(غ)	(z	Z,
50	Tabelle 18:	BspNr.	140	141	142	143

DE 44 25 649 A1

BspNr.	R	(+)-FAB-MS	DC-System / ReWert	HPI C. System / Bt.
			The second of	Wert
144	Z.			
) - -	٠		
145	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
146	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
147	Z-			

	fi	r				
5		HPLC-System / Rt- Wert				
10		HPLC- Wert				
15		r-Wert				
20		DC-System / R _f -Wert				
25		<u> </u>				
30	× 3 HCI OH × OH	(+)-FAB-MS				
35)—F	~	~	^
40	п п		, , , , , , , , , , , , , , , , , , ,	Z	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	
45		ж	(z)	۲	٦	بّ
50	Tabelle 19:	BspNr.	148	149	150	151

DE 44 25 649 A1

BspNr. R	×	(+)-FAB-MS	DC-System / R _f Wert	HPLC-System / Rt- Wert
152	N- N- F-D			
153	Z Z			
154	N-			
155	N-N-N-			
55	40 45	30 35	20	5 10

DE 44 25 649 A1

	i i	1		T		
5		item / Rt-				
10	•	HPLC-System / Rt- Wert				
15		_r -Wert			·	
20 25		DC-System / R _r -Wert				
23		7				
30		(+)-FAB-MS				
35 40						
45		R	ر کے	٢	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	ر کا
50	Tabelle 20:	BspNr.	156	157	158	159

DE 44 25 649 A1

BspNr.	R .	(+)-FAB-MS	DC-System / R _r -Wert	HPLC-System / Rt- Wert
160	N-N-N-			
161	N-			
162	N-			
163	N-			

5		HPLC-System / Rt- Wert				
10		HPLC-Sy Wert				
15		R _r -Wert				
20		DC-System / R _r Wert				
30	NHBoc NHBoc	(+)-FAB-MS				·
35	Z		1			
40	<u>~</u>		2	Z	Z I	Z
45		×	ż	z	Į,	Z,
50	Tabelle 21:	BspNr.	164	165	166	167

DE 44 25 649 A1

BspNr.	R	(+)-FAB-MS	DC-System / RrWert	HPLC-System / Rt- Wert
168	Z TO			
169	Z Z			
170	Z-			
171	N-			
50	40 45	30 35	15 20 25	1.
	;		0	5

5		HPLC-System / Rt- Wert				
15						
20		DC-System / R _r Wert				
30	OH X 3 HCI	(+)-FAB-MS				
35 40	Z					
45		R	N N	Z Z)-N N-	N-N-N-
50	Tabelle 22:	BspNr.	172	173	174	175

DE 44 25 649 A1

BspNr.	R	(+)-FAB-MS	DC-System / R _r Wert	HPLC-System / Rt- Wert
176	-N-CH ₃			
771	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	·		
178	N-			
179	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-			

DE 44 25 649 A1

5	•	ıtem / Rt-				
10		HPLC-System / Rt- Wert				
15		rWert				
20		DC-System / R _f -Wert				
30	NHCOCH ₃					
35		(+)-FAB-MS				
40	α					
45			Z	Z	N H,CO	Z Z
		R	`z´	`z′	`z´	`z´
50	rabelle 23:	BspNr.	180	181	182	183

DE 44 25 649 A1

HPLC-System / Rt- Wert					
DC-System / R _f Wert					
(+)-FAB-MS					
+)					-
R	N- N- N- N- N- N- N- N- N- N- N- N- N- N	Z Z	Z Z	Z Z	
BspNr.	184	185	186	187	

DE 44 25 649 A1

Beispiel 188

6-Fluor-1,4-dihydro-4-oxo-7-(4-phenyl-2-methyl-piperazin-1-yl)-1-[4-(N,N-dimethylaminomethyl)phenyl]-3-chi-nolincarbonsäure-Trihydrochlorid

F OH OH OH CH₃)₂

100 mg (195 µmol) der Verbindung aus Beispiel 36 werden in 1 ml Dichlormethan gelöst und mit 1 ml einer 4 molaren Lösung von Chlorwasserstoffgas in Dioxan versetzt und 10 Minuten bei Raumtemperatur gerührt. Alle flüchtigen Komponenten werden im Vakuum entfernt. Der Rückstand wird zwei Stunden mit 5 ml Diethylether verrührt, abgesaugt, mit Diethylether nachgewaschen und im Vakuum über Kaliumhydroxid getrocknet. Ausbeute: 90 mg (74% d. Th.)
(+)FAB-MS: m/z 515 (M+H)

Beispiel 189

6-Fluor-1,4-dihydro-4-oxo-7-(4-phenyl-2-methyl-piperazin-1-yl)-1-[4-N,N-dimethylaminomethyl)phenyl]-3-chinolincarbonsäure-Trimethansulfonat

100 mg (195 μ mol) der Verbindung aus dem Beispiel 36 werden in 1 ml Dichlormethan gelöst und mit 0,58 ml (580 μ mol) einer 1 molaren Lösung von Methansulfonsäure in Dichlormethan versetzt. Der Ansatz wird eingengt und der Abdampfrückstand 2 Stunden in 5 ml Diethylether verrührt. Das Produkt wird abgesaugt, mit Diethylether nachgewaschen und im Vakuum über Kaliumhydroxid getrocknet. Ausbeute: 95 mg (60,7% d. Th.)

(+)FAB-MS: m/z 515 (M+H)

5

10

15

20

30

35

40

45

50

60

65

Tabelle 24:

BspNr.	R¹	Bx	(+)FAB-MS	Edukt aus Bsp	Summenformel/Molgewicht
190	H _O	нсі			C ₃₀ H ₂₁ FN ₄ O ₃ × 3 HCl MW 623,9
191	OCH,	HCI			C3,H30FN4O4 × 3 HCl MW 639,9
192		HCI			C ₃₁ H ₃₃ FN ₄ O ₃ × 3 HCl MW 638

5	Molgewicht.	3 HCI	3 HCl	3 HCI
10	amenformel/.	C ₂₉ H ₂₇ F ₃ N ₄ O ₃ x 3 HCl MW 646	C3H38FN3O3 × 3 HCI MW 611	C ₃₀ H ₃₁ FN ₄ O ₃ x 3 HCl MW 656,1
15	Sur	WW.	گٌگ	Ű\$
20	Edukt aus Bsp Summenformel/Molgewicht.			
25	Edu Nr.			
30	(+)FAB-MS			
35)			
40	Вх	HCI	HCI	HCI
45				
50				SCH ₃
55	\mathbb{R}^1	The state of the s	N N	
60	BspNr.	193	194	195

Fabelle 25:

x 3 Hx

BspNr.	\mathbb{R}^{1}	Bx	(+)FAB-MS	Edukt aus Bsp Nr.	Summenformel/Molgewicht
196		нсі			C ₂ H ₃₀ N ₄ O ₃ × 3 HCl MW 591
197		СН3SO3H			C ₂₀ H ₃₀ N ₄ O ₃ × 3 CH ₃ SO ₃ H MW 770
198	F	нсі			C ₂₉ H ₂₉ FN ₄ O ₃ x 3 HCl MW 609,9
199	OCH,	HCI			C ₃₀ H ₃₂ N ₄ O ₄ x 3 HCl MW 621,9
60	50 55	40	30	20 25	10

65

5	el/Molgewicht.	3 HCI	x 3 HCl	3 HCI	3 HCI
10	Summenformel/Molgewicht .	C ₃₁ H ₃₄ N ₄ O ₃ x 3 HCl MW 622	C ₃₀ H ₃₂ N ₄ O ₃ S x 3 HCl MW 601,6	C ₃₁ H ₃₄ N ₄ O ₄ x 3 HCl MW 636,0	C ₃₂ H ₃₆ N ₄ O ₄ x 3 HCl MW 540,6
15					
20	Edukt aus Bsp Nr.		•		
25					
30	(+)FAB-MS				
35					
40	Æ	HCI	HCI	HCI	HCI
40					
45			·	10	сңу
50	R¹ .		SCH.3	OC, H, SOC, H,	OCH(CH ₃) ₂
55					
60	BspNr.	200	201	202	203
60					

DE 44 25 649 A1

BspNr.	\mathbb{R}^1	Нх	(+)FAB-MS	Edukt aus Bsp	Summenformel/Molgewicht
204	N N	HCI			C ₂₈ H ₂₉ N ₅ O ₃ × 3 HCl MW 592,2
205	H ₃ C	HCI	·		C ₃₀ H ₃₂ N ₄ O ₃ × 3 HCl MW 605
		·	·		
60	45 50 55	40	30 35	20 25	10

DE 44 25 649 A1

5 10		Summenformel/Molgewicht	C ₃₀ H ₃₂ N ₄ O ₃ × 3 HCl MW 605	C ₃₁ H ₃₄ N ₄ O ₃ x 3 HCl MW 620
20		Edukt aus Bsp Nr.		
30	·	(+)FAB-MS	٠.	4
35 40	^он ×3 нх ц ₂ ,	Hx	HCI	HCI
45				
50 55	~	\mathbb{R}^{1}	J. N.	D. N.
60	Tabelle 26:	BspNr.	206	207

Tabelle 27:

BspNr.	\mathbb{R}^{1}	Ηx	(+)FAB-MS	Edukt aus Bsp Nr.	Summenformel/Molgewicht
208	F-(N-\N-	HCI	4		C ₃₁ H ₃₀ F ₂ N ₄ O ₄ × 3 HCl MW 669,9
209	-N N	нсі			C ₃₁ H ₃₁ FN ₄ O ₄ x 3 HCl MW 651,9
210	$\left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle$	нсі			C3,H3,FN ₄ O ₅ x 3 HCl MW 682,9

_				
5	Summenformel/Molgewicht	3 HCI		
10	menforme	C ₃₃ H ₃₅ FN ₄ O ₄ × 3 HCl MW 680,1		
15	Sum	¥ ZZ		
20	Edukt aus Bsp Nr.			
25	HZ	-		
30 35	(+)FAB-MS			
~				
40	H×	HCI	HCI	z (
45				
50			/	
55	R ₁			
60	BspNr.	211	212	

DE 44 25 649 A1

Tabelle 28:

BspNr.	\mathbb{R}^1	Hx	(+)FAB-MS	Edukt aus Bsp Nr.	Summenformel/Molgewicht
213	F-()-N-()-	нсі			
214	-N N	HCI			
215	OCH ₃	HCI			

5	Molgewicht.		
10	Summenformel/Molgewicht.		
15	Ñ		
20	Edukt aus Bsp Nr.		
25	H 2		
30 35	(+)FAB-MS		
40	Hx	HCI	HCI
45			
50			H ₃ C _N
55	R ₁		
60	BspNr.	216	217

Patentansprüche

1. Verbindungen der allgemeinen Formel (I),

in welcher

A für Wasserstoff oder Methyl steht,

X für ein Stickstoffatom oder für eine Gruppe der Formel -CH, C-F oder C-Cl steht,

R¹ für Phenyl, Naphthyl, Pyridyl, Pyrimidyl oder Pyrazinyl steht, die gegebenenfalls bis zu 3fach gleich oder verschieden durch Nitro, Trifluormethyl, Halogen, Cyano, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl, Alkoxy oder Alkylthio mit jeweils bis zu 8 Kohlenstoffatomen substituiert sind, R² für Wasserstoff oder Fluor steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, eine Aminoschutzgruppe oder für geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Acyl mit jeweils bis zu 8 Kohlenstoffatomen stehen, oder R³ und R⁴ gemeinsam mit dem Stickstoffatom einen 6gliedrigen gesättigten Heterocyclus bilden, der außerdem noch ein weiteres Heteroatom aus der Reihe N, S oder O enthalten kann und deren Hydrate und Salze, gegebenenfalls in einer isomeren Form.

2. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1, in welcher

A für Wasserstoff oder Methyl steht,

X für ein Stickstoffatom oder für eine Gruppe der Formel -CH, C-Foder C-Cl steht,

R¹ für Phenyl, Pyridyl, Pyrimidyl oder Pyrazinyl steht, die gegebenenfalls bis zu 3fach gleich oder verschieden durch Nitro, Trifluormethyl, Fluor, Chlor, Brom, Cyano, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl, Alkoxy oder Alkylthio mit jeweils bis zu 6 Kohlenstoffatomen substituiert sind, R² für Wasserstoff oder Fluor steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, tert.Butoxycarbonyl, Benzyloxycarbonyl oder für geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen stehen, oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholin- oder Piperidinring bilden, und deren Hydrate und Salze, gegebenenfalls in einer isomeren Form.

3. Verbindungen der allgemeinen Formel (I) gemäß den Ansprüchen 1 oder 2, in welchen

A für Wasserstoff oder Methyl steht,

X für ein Stickstoffatom oder für eine Gruppe der Formel - CH, C-F oder C-Cl steht,

R¹ für Phenyl oder Pyridyl steht, die gegebenenfalls bis zu 2fach gleich oder verschieden durch Nitro, Trifluormethyl, Fluor, Chlor, Brom, Cyano, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl, Alkoxy oder Alkylthio mit jeweils bis zu 4 Kohlenstoffatomen substituiert sind, R² für Wasserstoff oder Fluor steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, tert.Butoxycarbonyl, Benzyloxycarbonyl oder für geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen stehen oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinring bilden, und deren Hydrate und Salze, gegebenenfalls in einer isomeren Form.

4. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man

Verbindungen der allgemeinen Formel (II)

60

55

10

15

30

35

40

DE 44 25 649 A1

in welcher

R², R³, R⁴ und X die in Anspruch 1 angegebene Bedeutung haben und R⁵ für Halogen, vorzugsweise für Fluor oder Chlor steht, mit Verbindungen der allgemeinen Formel (III)

mit verbindungen der angementen Pormer

$$R^{1}-N$$
 $N-H$ (III)

in welcher

A und R¹ die in Anspruch 1 angegebene Bedeutung haben, in inerten Lösemitteln, gegebenenfalls in Anwesenheit von Säurefängern umsetzt. 5. Arzneimittel enthaltend mindestens eine Verbindung der Formel (I) gemäß Anspruch 1. 6. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 bei der Bekämpfung von Krankheiten.