

THE RISE OF GPU COMPUTING

APPLICATIONS

ALGORITHMS

SYSTEMS

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

THE EXPANDING UNIVERSE . OF MODERN AI

Big Data ĞPU **Algorithms**

DEEPMIND Massachuset Institute of Technology

OXFORD W NYU

OpenAl

Google

api.ai

BLUE RIVER

clarifai

deep

drive.ai

Morpho

nervana

Al-as-a-service

YSADAKO

SocialEves*

diabetic retinopath

charles SCHWAB

allalla CISCO

AstraZeneca 🕏

am

Bai db 百度

Bloomberg

ebay

FANUC

Ford

(ge)

gsk

O TAF

SIEM

T = 5

(D)

MASSACHUSETTS GENERAL HOSPITAL UB

Mercedes-Benz

MERCK

VOI

Walm

Pinterest YAH

Yand

3,000+ AI START-UPS

\$5B IN FUNDING

AI BREAKTHROUGHS

Recent Breakthroughs

AI IMPROVING AT AMAZING RATES

AI IS THE SOLUTION TO SELF DRIVING

DEEP LEARNING FOR AUTONOMOUS DRIVING

DEEP NEURAL NETWORK

MULTICLASS OBJECT DETECTION & CLASSIFICATION NETWORK

Description

Demonstrates NVIDIA's proprietary deep neural network (DNN) to perform object detection

Types
Detected/
Color Code

Red: Cars Cyan: Trucks

Green: Traffic Signs (Detection Only) Blue: Bicycles

Yellow: Pedestrians

LANE DETECTION NETWORK

Description

Demonstrates NVIDIA's proprietary deep neural network (DNN) to perform lane detection on the road

Detects ego-lane by showing the boundaries of the left and right lane, and in some cases, is able to show the left and right boundaries of adjacent lanes as well

Color Code

Red: Ego-lane left Green: Ego-lane right Yellow: Left adjacent lane Blue: Right adjacent lane

FREE SPACE DETECTION NETWORK

Description

Demonstrates NVIDIA's proprietary deep neural network (DNN) to detect free space in front of the vehicle.

Color Code

Red: cars Green: Curbs Blue: Pedestrians Yellow: Others

END-TO-END AUTONOMOUS DRIVING NETWORK

END-TO-END AUTONOMOUS DRIVING NETWORK

GPU DEEP LEARNING COMPUTING MODEL

A COMPLETE DEEP LEARNING PLATFORM

DEEP LEARNING PLATFORMS

From Training to Development and Production

Nvidia DGX-1 with Tesla V100 (DGX-1V)

DRIVE PX 2
2 PARKER + 2 PASCAL GPU
20 TOPS DL
120 SPECINT
80W

ARCHITECTURE 30 TOPS DL 160 SPECINT 30W

TENSOR CORE

CUDA TensorOp instructions & data formats

4x4 matrix processing array

D[FP32] = A[FP16] * B[FP16] + C[FP32]

Optimized for deep learning

PASCAL

VOLTA TENSOR CORES

DATASET CREATION

DATA ACQUISITION

DATASET CREATION

DATA CURATION

Filter and keep data of interest

DATA ANNOTATION

Bounding boxes, per pixel labeling

START FROM TRAINED NETWORK

May reduce required data size

TRAINING DEEP NEURAL NETWORKS

NVIDIA DIGITS

Interactive Deep Learning GPU Training System

NVIDIA DIGITS

Monitor Training

DNN TRAINING

Iterate and Innovate Faster

Workload: ResNet50, 90 epochs to solution | CPU Server: Dual Xeon E5-2699 v4, 2.6GHz

DNN INFERENCE OPTIMIZATIONS

DNN INFERENCE OPTIMIZATIONS

HARDWARE ACCELERATIONS

Specialized instructions for deep learning operations

PRUNING

Prune down the network size (neurons + connections) to reduce inference time

TensorRT

Accelerated neural network inference engine

HARDWARE ACCELERATIONS

Specialized Instruction for Deep Learning Operations

PRUNING

PRUNING

NETWORK	TOP-1 ERROR	TOP-5 ERROR	PARAMETERS	COMPRESSION RATE
LeNet-300-100 Ref	1.64%	-	262K	12x
LeNet-300-100 Pruned	1.59%	-	22K	
LeNet-5 Ref	0.80%	-	431K	12x
LeNet-5 Pruned	0.77%	-	36K	
AlexNet Ref	42.78%	19.73%	61M	9x
AlexNet Pruned	42.77%	19.67%	6.7M	
VGG-16 Ref	31.50%	11.32%	138M	13x
VGG-16 Pruned	31.34%	10.88%	10.3M	

TensorRT

High-performance framework makes it easy to develop GPU-accelerated inference

Production deployment solution for deep learning inference

Optimized inference for a given trained neural network and target GPU

Solutions for Hyperscale, ADAS, Embedded

Supports deployment of fp32,fp16,int8* inference

TensorRT for Data Center

Image Classification Object Detection

Image Segmentation

TensorRT for Automotive

Pedestrian Detection

Lane Tracking Traffic Sign Recognition

NVIDIA DRIVE PX 2

^{*} int8 support will be available from v2

TensorRT

Optimizations

Fuse network layers

Eliminate concatenation layers

Kernel specialization

Auto-tuning for target platform

Tuned for given batch size

OPTIMIZED
INFERENCE
RUNTIME

TensorRT — iGPU (FP16)

GoogleNet, AlexNet, VGG19

TensorRT — dGPU (INT8)

GoogleNet, AlexNet, VGG19

TensorRT

INT8 Workflow

TensorRT

8-bit Inference: Top-1 Accuracy

NETWORK	FP32 TOP1	INT8 TOP1	DIFFERENCE	PERF GAIN
AlexNet	57.22%	56.96%	0.26%	3.70x
GoogLeNet	68.87%	68.49%	0.38%	3.01x
VGG	68.56%	68.45%	0.11%	3.23x
Resnet-152	75.18%	74.56%	0.61%	3.42%

Unoptimized Network

Vertical Fusion

Horizontal Fusion

Concat Elision

AUTONOMOUS DRIVING CHALLENGES

AUTONOMOUS DRIVING

Challenges

AUTONOMOUS DRIVING

Challenges

PUTTING IT ALL TOGETHER

RESOURCES

NVIDIA DRIVE Platform https://developer.nvidia.com/drive

NVIDIA DGX-1 http://www.nvidia.com/object/volta-architecture-whitepaper.html

NVIDIA DIGITS https://www.nvidia.com/en-us/data-center/dgx-1/

Volta Architecture Whitepaper https://developer.nvidia.com/digits

TensorRT https://developer.nvidia.com/tensorrt

