

planetmath.org

Math for the people, by the people.

product of countable sets

Canonical name ProductOfCountableSets

Date of creation 2013-03-22 19:02:53 Last modified on 2013-03-22 19:02:53

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771)

Entry type Result Classification msc 03E10

Proposition 1. \mathbb{N}^2 is countable.

This is actually proved in http://planetmath.org/AlternativeDefinitionsOfCountablethis entry, by finding either a surjection $\mathbb{N} \to \mathbb{N}^2$, or an injection $\mathbb{N}^2 \to \mathbb{N}$. In the following proof, we are going to get a bijection.

Proof. There are many ways to prove this. One way is to place the integer pairs in a two-dimensional array indicated by the table on the left below:

$i \backslash j$	1	2	3	• • •	$i \backslash j$	1	2	3	• • •
1	(0,0)	(0,1)	(0,2)		 1	1	2	4	•••
2	(1,0)	(1, 1)	(1, 2)					8	
3	(2,0)	(2, 1)	(2, 2)	• • •	3	6	9	13	• • •
	1	:			÷	:	÷	÷	٠.,

Let C(i, j) be the content of cell (i, j), located in the *i*-th row and *j*-th column. For example, C(1, 1) = (0, 0), and C(3, 2) = (2, 1).

Now, let us construct a list of the pairs, which essentially amounts to constructing a bijection $h: \mathbb{N}^2 \to \mathbb{N}$ (the table on the right above). We start at cell (1,1). If cell (i,j) has been counted, the next cell to be counted is (i+1,j-1) if j>1, or (1,i+1) if j=1. Thus, the first several pairs on the list are

$$(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), \dots$$

We leave it to the reader to find the bijection h (hint: see the entry on pairing function). Therefore, \mathbb{N}^2 is countable.

Proposition 2. If A and B are countable, so is $A \times B$.

Proof. Suppose $f: A \to \mathbb{N}$ and $g: B \to \mathbb{N}$ are injections. Then $h:=(f,g): A \times B \to \mathbb{N}^2$ is an injection. Since \mathbb{N}^2 is countable, so is $A \times B$.

Proposition 3. Let n be a positive integer, and A_1, \ldots, A_n sets. Then $A_1 \times \cdots \times A_n$ is countable iff each A_i is.

Proof. Again, if one of A_i is empty, so is the product, and vice versa. The countability follows immediately. So we assume that none of A_i is empty. Set $A := A_1 \times \cdots A_n$.

Suppose first that A_1, \ldots, A_n are countable. We do induction on n. The case where n = 1 is clear. Suppose now that n = k is true. Then $A_1 \times \cdots \times A_n \times$

 $A_k \times A_{k+1}$ is just the product of two countable sets $A_1 \times \cdots \times A_k$ and A_{k+1} , which we know is countable by the proposition above.

Conversely, suppose A is countable. Let $g: A \to \mathbb{N}$ be an injection. Since $A_i \neq \emptyset$, fix $a_i \in A_i$ for each $i=1,\ldots,n$. Now, for any A_i , define a map $e_i: A_i \to A$ so that the i-th component of $e_i(a)$ is a, and the j-th component is the fixed element $a_j \in A_j$, if $j \neq i$. Clearly, $e_i: A_i \to A$ is an injection, so its composition with g is also an injection from A to \mathbb{N} , showing that A_i is countable.

Corollary 1. For any positive integer n, A is countable iff A^n is.

Remark. However, infinite products of sets are in general uncountable, even if each of the sets is finite. In particular, $\{0,1\}^{\mathbb{N}}$ is uncountable. The proof uses Cantor's diagonalization argument.