Definujte pojem realizace jazyka predikátové logiky se signaturou $\langle \mathcal{F}, \mathcal{P} \rangle$ nad množinou proměnných X. Je to dvojice (D, α) kde D je neprázdná množina a

- pro každý f. symbol $f_{/n} \in \mathcal{F}$ je $\alpha(f) \colon D^n \to D$ funkce
- \bullet pro každý p. symbol $p_{/m} \in \mathcal{P}$ je $\alpha(p) \subseteq D^m$ relace
- pro každou proměnnou $x \in \mathbb{X}$ je $\alpha(x) \in D$.

Definujte, co to jsou term a formule predikátové logiky v jazyce se signaturou $\langle \mathcal{F}, \mathcal{P} \rangle$ a množinou proměnných \mathbb{X} .

- term $t ::= x \mid f(t_1, \dots, t_n)$ pro $x \in \mathbb{X}, f_{/n} \in \mathcal{F}$ a termy t_1, \dots, t_n
- $\varphi_{atom} ::= t_1 = t_2 \mid p(t_1, \dots, t_m) \text{ pro } p_{/m} \in \mathcal{P} \text{ a termy } t_1, \dots, t_m$
- formule $\varphi ::= \varphi_{atom} \mid \neg \varphi \mid \varphi \land \varphi \mid \dots \mid \exists x \varphi \mid \forall x \varphi \text{ pro } x \in \mathbb{X}$

Definujte pojem term predikátové logiky 1. řádu.

Řešení: Třeba: Proměnná je term, a pokud je t term arity n a t_1, \ldots, t_n jsou termy, potom je $t(t_1, \ldots, t_n)$ term. Nic jiného není term.

Formulujte první Gödelovu větu o neúplnosti. Řešení: Žádná efektivní a bezesporná teorie zahrnující Peanovu aritmetiku nemůže být úplná.

Formulujte první Gödelovu větu o neúplnosti.

Žádná efektivní bezesporná teorie PL zahrnující Peanovu aritm. nemůže být úplná.

Formulujte Gödelovu větu o úplnosti predikátové logiky.

Pro libovolnou formuli pred. logiky platí, že $\models \varphi \iff \vdash \varphi$. nebo

Pro libovolnou teorii T a formuli pred. logiky platí, že $T \models \varphi \iff T \vdash \varphi$.

Definujte $d\mathring{u}kaz$ formule φ ve výrokové logice (Hilbertovský).

Řešení: Sekvence formulí končící φ , kde každá formule je buď axiom nebo je z předchozích odvozena odvozovacím pravidlem.

Definujte pojmy korektnost a úplnost (sémantická) logického systému.

Řešení: Systém je korektní, pokud vše dokazatelné je platné, tedy, pro všechny formule φ platí, že $\vdash \varphi \implies \models \varphi$.

Systém je úplný, pokud vše platné je dokazatelné, tedy, pro všechny formule φ platí, že $\models \varphi \implies \vdash \varphi$.

Definujte, co to je důkaz formule φ z množiny předpokladů P v Hilbertovském důkazovém systému. Je to posloupnost formulí $\varphi_1, \ldots, \varphi_n$ taková, že $\varphi = \varphi_n$ a pro každou formuli φ_i platí jedno z následujících:

- je axiomem (přesněji: získána instanciací některého schématu axiomů),
- je předpoklad (tj. $\varphi_i \in P$) nebo
- je získána z formulí φ_k a φ_ℓ , pro $k,\ell < i$, pomocí pravidla modus ponens.

Definujte pojem interpretace jazyka predikátové logiky 1. řádu.

Řešení: Je to dvojice (D, α) , kde D je množina, zvaná doména, a α je zobrazení, která každé proměnné přiřazuje hodnotu z domény, každému predikátovému symbolu ze signatury jazyka přiřazuje n-arní relaci na D a každému funkčnímu symbolu ze signatury jazyka přiřazuje funkci z D^n do D, kde n je arita symbolu definovaná signaturou.