Mathematical Optimization Model for a SCRUM-Based Software Development Company

AI Analyst

September 5, 2025

Contents

1	Sets (Entities)	2
2	Indices	3
3	Goals	3
4	Conditions	4
5	Decision Variables	5

Introduction

This document presents a formal mathematical optimization model for resource allocation, scheduling, and process management in a software development company utilizing the SCRUM framework. The model is derived from a defined domain structure of entities, their relationships, and a set of business goals and constraints.

1 Sets (Entities)

- Project = $\{p|p \text{ is a project}\}$, with attributes id, name, project_start, project_end, description, but
- Team = $\{t|t \text{ is a team}\}$, with attributes id, name, team_size, team_start, team_status, location, team_start, team_status, location, team_start, team_start
- Worker = $\{w|w \text{ is a worker}\}$, with attributes id, name, first_name, email, start_date, status, available of the status of
- \bullet Feature = $\{f|f$ is a feature $\}$, with attributes id, title, description, status, priority, estimated_effort
- Skill = $\{s | s \text{ is a skill}\}$, with attributes id, label, description, level, certified, category
- Role = $\{r|r \text{ is a role}\}$, with attributes id, role _name, description, area _of _responsibility
- ProductOwner = $\{po|po \text{ is a product owner}\}$, with attributes id, name, email, availability
- ScrumMaster = $\{sm|sm \text{ is a scrum master}\}$, with attributes id, name, email, experience
- Sprint = $\{sp|sp \text{ is a sprint}\}$, with attributes id, sprint number, start _date, end _date, status, achieved

• ProductBacklog = $\{pb|pb \text{ is a product backlog}\}$, with attributes id, created_on, last_updated, nur

- SprintBacklog = $\{sbl|sbl \text{ is a sprint backlog}\}$, with attributes id, number_of_tasks, last_updated
- SprintGoal = $\{sg|sg \text{ is a sprint goal}\}$, with attributes id, objective_description, achievement_states
- Epic = $\{e|e \text{ is an epic}\}$, with attributes id, title, description, priority, status, estimated effort
- Task = $\{tsk|tsk \text{ is a task}\}$, with attributes id, title, description, status, effort, type
- Blocker = $\{bl|bl$ is a blocker $\}$, with attributes id, title, description, severity, status, detected on, re

• UserStory = $\{us|us \text{ is a user story}\}$, with attributes id, title, description, acceptance_criteria, prio

• Velocity = $\{vel|vel \text{ is a velocity record}\}$, with attributes id, number of sprints used, avg. story

2 Indices

- $p, p' \in \text{Project}$
- $t, t' \in \text{Team}$
- $w, w' \in Worker$
- $f, f' \in \text{Feature}$
- $sp, sp' \in Sprint$
- $sbl, sbl' \in SprintBacklog$
- $us, us' \in UserStory$
- $tsk, tsk' \in Task$
- $bl, bl' \in Blocker$

3 Goals

- **G0:** maximize team utilization Maximize the overall availability of the team members.
 - Mathematical Form: Maximize $Z_0 = \sum_{w \in \text{Worker}} \text{availability}(w)$
- G1: minimize_project_duration Minimize the total duration of the project.
 - Mathematical Form: Minimize $Z_1 = \text{project_end}(p) \text{project_start}(p)$
- G2: maximize _feature _delivery Maximize the number of highpriority features delivered.
 - Mathematical Form: Maximize $Z_2 = \sum_{f \in \text{Feature}} \text{priority}(f) \cdot x_f$ where $x_f = 1$ if feature f is delivered, 0 otherwise.
- **G3:** minimize_blocker_impact Minimize the severity and duration of blockers.
 - Mathematical Form: Minimize $Z_3 = \sum_{bl \in \text{Blocker}} \text{severity}(bl) \cdot (\text{resolved_on}(bl) \text{detected_on}(bl))$
- G4: maximize sprint goal achievement Maximize the rate of successfully achieved sprint goals.
 - Mathematical Form: Maximize $Z_4 = \sum_{sg \in \text{SprintGoal}} \mathbb{I}(\text{achievement_status}(sg) = \text{Done})$

• **G5:** minimize_task_effort - Minimize the total effort spent on tasks in a sprint.

Mathematical Form: Minimize $Z_5 = \sum_{tsk \in Task} effort(tsk)$

• **G6:** maximize_team_velocity - Maximize the average velocity of a team.

Mathematical Form: Maximize $Z_6 = \text{avg. story_points}(vel_t)$ for a given team t.

• G7: minimize_budget_variance - Minimize the difference between planned and actual budget.

Mathematical Form: Minimize $Z_7 = |\text{planned_budget}(p) - \text{actual_budget}(p)|$

4 Conditions

• C0: team_must_be_assigned - Ensure every team is assigned to exactly one project.

Logical Form: $\forall t \in \text{Team}, \exists ! p \in \text{Project such that is_assigned_to_project}(t, p)$

• C1: worker_belongs_to_team - Ensure every worker is assigned to a team.

Logical Form: $\forall w \in \text{Worker}, \exists t \in \text{Team such that belongs to team}(w, t)$

• C2: sprint_backlog_must_have_sprint - Every Sprint Backlog must be linked to one Sprint.

Logical Form: $\forall sbl \in \text{SprintBacklog}, \exists !sp \in \text{Sprint such that belongs to sprint}(sbl, sp)$

• C3: feature must have backlog - Every Feature must be part of the Product Backlog.

Logical Form: $\forall f \in \text{Feature}, \exists pb \in \text{ProductBacklog such that contains } \text{feature}(pb, f)$

• C4: user_story_must_have_epic - Every User Story must be part of an Epic.

Logical Form: $\forall us \in \text{UserStory}, \exists e \in \text{Epic such that contains}_\text{user}_\text{story}(e, us)$

• C5: task_must_have_story - Every Task must be part of a User Story.

Logical Form: $\forall tsk \in \text{Task}, \exists us \in \text{UserStory such that consists of } \text{tasks}(us, tsk)$

• C6: scrum_master_supports_team - Ensure every team has a Scrum Master.

Logical Form: $\forall t \in \text{Team}, \exists sm \in \text{ScrumMaster such that is supported by}(t, sm)$

- C7: po_manages_backlog Ensure the Product Backlog is managed by a Product Owner.
 - Logical Form: $\forall pb \in \text{ProductBacklog}, \exists po \in \text{ProductOwner such that manages} \quad \text{backlog}(po, pb)$
- C8: sprint_has_one_goal Each Sprint must have one defined goal.
 - Logical Form: $\forall sp \in \text{Sprint}, \exists !sg \in \text{SprintGoal such that pursues } \text{goal}(sp, sg)$
- C9: feature_doc_exists Critical features must have documentation
 - Logical Form: $\forall f \in \text{Feature where priority}(f) \geq \text{High}, \exists fed \in \text{FeatureDocumentation such that } d$

5 Decision Variables

- **DV0**: $x_{w,t} \in \{0,1\}$ Binary variable indicating if worker w is assigned to team t.
- **DV1**: $y_{f,sp} \in \{0,1\}$ Binary variable indicating if feature f is selected for sprint sp.
- **DV2**: $pts_{us} \in \mathbb{Z}^+$ Integer variable for the story points of user story us, with $1 \le pts_{us} \le 20$.
- **DV3**: $size_t \in \mathbb{Z}^+$ Integer variable for the size of team t, with $3 \le size_t \le 9$.
- **DV4**: $dur_{sp} \in \mathbb{Z}^+$ Integer variable for the duration of sprint sp in days, with $7 \le dur_{sp} \le 30$.
- **DV5**: $avail_w \in \mathbb{R}$ Continuous variable for the availability percentage of worker w, with $0.0 \le avail_w \le 1.0$.
- **DV6**: $seq_{tsk} \in \mathbb{Z}^+$ Integer variable representing the sequence/order of task tsk.
- **DV7**: $cost_f \in \mathbb{R}^+$ Continuous variable for the budget allocated to feature f, with $0 \le cost_f$.
- **DV8**: $prio_f \in \mathbb{Z}^+$ Integer variable for the priority level of feature f, with $1 \le prio_f \le 5$.
- **DV9**: $lvl_{tsk,s} \in \mathbb{Z}^+$ Integer variable for the required skill level s for task tsk.