Лекция №4

осложнения в добычи нефти.

ОСЛОЖНЕНИЯ ПРИ ЭКСПЛУАТАЦИИ НЕФТЕГАЗОСБОРНЫХ СИСТЕМ И БОРЬБА С НИМИ

1. Осложнения в добычи нефти

Проблемы, вызываемые отложениями

- 1. Солеотложение на поверхности:
- кольматация ПЗП,
- перекрытие сечения лифта скважины,
- закупоривание перфорационных отверстий и гравийных фильтров,
- перекрытие сечения выкидных линий, трубопроводов
- износ насосного оборудования
- коррозия под отложениями
- 2. Соли во взвешенном состоянии:
- снижение проницаемости пласта
- повреждение оборудования для фильтрации
- снижение эффективности работы сепаратора для разделения нефти от воды

Примеры отложений

зерна кварца

кристаллы солей блокируют поровые каналы

Отложение барита в трубопроводах

Солевой налет на приемном Фильтре насоса ЦНС240х1900

Последствия интенсивного солеотложения на объектах Приобского региона

Трубопровод слива подтоварной воды ЦППН-7

Основные зоны солеотложения в скважине. Причины

Механизмы и условия образования отложений солей в процессе добычи нефти

- I. Карбонатные отложения (кальцит CaCO₃) (3.Сибирь)
 - 1. Изменение давления ∆Р (разгазирование нефти)

2. Увеличение температуры (напр. ПЭД, УЭЦН), (ООО РН-СтНГ, ООО РН-ПНГ, ООО РН-ЮНГ)

Расчет рисков солеотложения в процессе добычи

Диаграмма рисков солеотложения

Урс	Кальцит на насосе, г/т		
	0	низкий	< 20
	1	средний	20 - 100
	2	опасный	100 - 200
	3	очень опасный	> 200

Удаление отложений неорганических солей

Методы предотвращения солеотложения

Химические методы защиты являются самым эффективным способом предотвращения солеотложения. Химические методы сводятся к применению веществ – ингибиторов солеотложения.

Перспективы развития методов борьбы с солеотложением

Перспективы развития методов борьбы с солеотложением

Оптимизация существующих методов борьбы с солеотложением

- Усовершенствование составов для удаления осадков
- Усовершенствование состава ингибирующих композиций
- Снижение коррозионной активности
- Усовершенствование конструкций для подачи реагентов

Разработка новых методов борьбы с солеотложением

- Разработка новых ингибирующих солеотложение композиций
- Разработка комплексных ингибиторов солеотложения
- Разработка новых составов для удаления осадков солей

Асфальтеносмолопарафинистые отложения. Формирование в пласте, скважине и трубопроводах. Борьба с АСПО в добыче нефти

Последствия отложения парафина при добыче нефти

Наиболее распространенным случаем отложений парафинов это отложение в НКТ и нефтесборных трубопроводах (Приобское месторождение)
Есть случаи отложения парафина в пласте

Верхние 2 НКТ 09.10.09 клин - 6 сут

(Верхнечёнское месторождение)

Верхние 35 НКТ 09.10.09 клин - 30сут

Формирование парафина на стенках трубы

Отложение парафина – очень сложный и малоизученный процесс

- Нагретые флюиды поднимаются по скважине и вступают в контакт с холодной стенкой неизолированной трубы
- Для флюида характерны радиальные температурные градиенты
- У стенки трубы формируется низковязкий загустевший слой (отложение), который состоит из кристаллов парафина, формирующих порообразную структуру
- Происходит молекулярная диффузия: молекулы незагустевшей жидкости перемещаются к стенкам и присоединяются к кристаллизовавшимся компонентам
- Диффузия может идти и в обратном направлении, от загустевшей или уловленной нефти в основную массу жидкости – в результате отложение становится более твердым (меньше уловленной парафином нефти)
- Отложение действует как теплоизолятор: теплоперенос по отложению происходит радиально и зависит от теплопроводности и толщины отложения

Формирование парафина на стенках трубы

Отложения в ламинарном однофазном потоке очень мягкие: часто до 90% уловленной нефти;

Отложения в турбулентном однофазном потоке твердые: от 50 до 80% уловленной нефти, в зависимости числа Рейнольдса;

Отложения в двухфазном потоке зависят от структуры потока

- при расслоенном течении отложения в нижней части трубы, мягкие
- при кольцевом течении отложения по внутреннему диаметру трубы, твердые
- при перемежающемся потоке отложения относительно твердые и толще в верхней, чем в нижней части трубы – может зависеть от частоты появления пробок;

Отложения при совместном течении нефти и воды малоизученны;

Отложения при многофазном потоке (газ-нефть-вода) не изучены

Способы удаления АСПО

1. Промывка горячей нефтью

2. Механические методы (скребки, ручные лебедки)

- 3. Промывка растворителями и их композициями (бензин, легкий ароматический углеводород, ПАВ)
- 4. Греющий снаряд (удаление пробок в скважине), греющий кабель (W = 60 80 Ватт/м)
- 5. Термохимические методы (экзотермическая реакция, например нитрит Na + хлорид аммония)

Способы предупреждения АСПО

- 1. Использование ингибиторов парафиноотложения
- 2. Установка магнитных устройств
- 3. Введение деэмульгаторов для разрушения перекачиваемой водо-нефтяной эмульсии (гидрофилизации поверхности)
- 4. Установка путевых подогревателей

При эксплуатации промысловых нефтегазопроводов основные осложнения вызываются отложениями на внутренней поверхности труб (в т.ч. парафины, скопление воды, гидратообразование и.т.д) и коррозией трубопроводов.

Актуальность тематики исследования

Технологический трубопровод 250-PW-401023-25A01-T

Технологический трубопровод 300-PW-203022-25A01-T

- За 2018 2019 гг. на трубопроводах одного из ОГ произошло 249 отказов, из них:
- 24 на внутрикустовых трубопроводах;
- 225 на технологических трубопроводах.
- С целью определения причин разгерметизации был проведен комплекс исследований, включающий:
- -металлографические исследования и механические испытания металла трубопроводов с отказами;
- -лабораторные исследования состава коррозионных отложений,
- -определение коррозионно-агрессивных компонентов составе транспортируемой среды;
- -анализ режима эксплуатации трубопроводов,
 - -гидравлическое моделирование для определения мест застойных скопления и скорости течения жидкости

Внутрикустовой трубопровод КП №105

Результаты проведения металлографических исследований механических испытаний образцов трубной продукции

Nº п/п	Объект	Обозначение трубопровода согласно проекта	Материал трубопровода согласно сертификату	Типоразмер	Химический состав образца трубопровода	Загрязненность неметаллическими включениями	Микроструктура и размер зерна	Механические свойства
1	ЦПС	250-PW-401023-25A01-T	09Γ2C	273×8	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
2	ЦПС	300-PW-202022-25A01-T	09Γ2C	325×8	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
3	ЦПС	300-PW-203022-25A01-T	09Γ2C	325×8	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
4	ЦПС	300-PW-400009-16A01-T	09Г2С 13ХФА	325×8	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
5	ЦПС	100-PW-201054-25A01-T	09Γ2C	108×6	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
6	ЦПС	100-PW-202054-25A01-T	09Γ2C	108×6	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
7	ЦПС	100-PW-202052-16A02-T	09Γ2C	108×6	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
8	ЦПС	400-PO-101001-40	09F2C	426×11	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
9	ЦПС	400-PO-102001-40	09Г2С	426×11	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
10	ЦПС	400-PO-103001-40	09Γ2C	426×11	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
11	УПСВ- Север	WA37	13ХФА	720×9	Не соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
	УПСВ-		13ХФА	720×9	Не соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
12	Север	WA48	09ГСФ	Отвод 90° ОШС 720х9	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
13	УПСВ- Север	WA39	13ХФА	720×9	Не соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД
14	УПСВ- Север	WA03	X56	720×10	Соответствует НД	Соответствует НД	Соответствует НД	Соответствует НД

- Согласно результатам проведенных металлографических исследований и механических испытаний установлено, что металл труб технологических трубопроводов ЦПС **соответствует** требованиям направленной нормативной документации.
- Трубопроводы УПСВ Север, изготовленные из 13ХФА **не соответствуют** НД по содержанию кремния и никеля, что не является критичным с точки зрения выхода труб из строя.

Результаты лабораторных исследования состава отложений с трубопроводов

- Неорганическая часть отложений, отобранных с технологических трубопроводов, представлена преимущественно сидеритом, кальцитом, оксидом и гидроксидом железа, с внутрикустовых сидеритом и кварцем.
- Большое содержание карбоната железа в отложениях связано с интенсивным протеканием углекислотной коррозии на внутренней поверхности трубопроводов.
- Наличие кальцита в составе осадка свидетельствует о склонности транспортируемой ПДВ к солеотложению.

Результаты лабораторных исследований состава отложений с пескоотстойников РВС и водозаборных скважин

Внешний отложений с водозаборных скважин

Состав отложений (%, масс)	Неорганическая часть	Органическая часть	Вода
Отложения с РВС	86,9	6,1	7,0
Отложения с водозаборных скважин	81,7	8,8	9,5

Компонентный состав неорганической части отложений

Соединение	Отложения с РВС	Отложения с водозаборных скважин
Оксид кремния (кварц, SiO ₂)	91.4	59.6
Алюмосиликаты натрия и калия	8.0	40.4
Карбонат кальция (кальцит, PaPO ₃)	0.6	-

Результат гранулометрического состава осадков отложений

- Согласно анализу результатов проб отложений с пескоотстойников РВС и водозаборных скважин:
 - отложения представляют собой смесь органической (6,1 8,8%) и неорганической частей (81,7 86,9%);
 - неорганическая часть осадка представлена в основном оксидом кремния (59,6 91,4%) и алюмосиликаты натрия и калия (8,0 40,4%);
 - по гранулометрическому составу преобладают частицы диаметром от 125-500 мкм

Гидравлическое моделирование 3 технологических линии трубопровода от сепаратора первой ступени сепарации V-2010 до гидроциклонов

- Выполнено гидравлическое моделирование с использованием динамического симулятора многофазного потока OLGA 2018.
- Основная задача проводимого расчета моделирование фактического режима работы трубопроводов, определение участка скопления осадка.
- Гидравлические модели построены с учетом предоставленных Заказчиком исходных данных.
- В результате моделирования 3х технологических линии трубопроводов от сепаратора первой ступени (C-1/1, C-2/1, C-3/1) выявлен единый участок скопления осадка (первые 20 метров) для каждого трубопроводов, который способствует развитию коррозионных повреждений.

Бактериальное воздействие

- Разрушение металла при микробиологической коррозии при участии СВБ происходит за счет протекания следующих механизмов:
 - 1. Создание коррозионной среды за счет образования агрессивных по отношению к металлу продуктов метаболизма (H₂S);
 - 2. Осаждение сульфида железа в результате химической реакции взаимодействие сероводорода с металлом трубопровода;
 - 3. Формирование концентрационной гальванопары, что приводит к развитию глубоких язв.

Гидравлическое моделирование 3 технологических линии трубопровода от насосов P-2080 до трубопровода от сепаратора первой ступени

26

Гидравлическое моделирование трубопровода от насоса Р-4060 до установки X-9012

Гидравлическое моделирование 3 технологических линии трубопровода от насосов P-2040 до трубопровода от сепаратора первой ступени

• По результатам гидравлического моделирования 3х технологических линии трубопроводов от насосов P-2040 зон скопления осадка не выявлено. Скорость жидкости в трубопроводе равна 9 м/с.

Эрозионное воздействие

- Согласно гидродинамической теории эрозия проявляется при больших скоростях потока в присутствии механических примесей.
- В таких условиях возникают высокие местные давления, способные вызвать в микрообъемах металла пластическую деформацию, что в дальнейшем приводит к образованию отказов.
- Параллельно происходит неравномерное разрушение пассивационного слоя, что создает локальные очаги коррозии вследствие образования анодных и катодных зон.

Выводы по результатам лабораторных исследований

- 1. При определении соответствия металла трубопроводов требованиям НД установлено, что металл трубопроводов с ЦПС по химическому составу и механическим свойствам соответствует данным сертификатов качества; металл трубопроводов с УПСВ «Север» изготовленных из стали марки 13ХФА не соответствуют НД по содержанию кремния и никеля, что, тем не менее, не является критическим фактором при выходе труб из строя.
- 2. Жидкость, транспортируемая по технологическим трубопроводам характеризуется повышенной коррозионной активностью в соответствии с ГОСТ 9.502-82, а также подтверждена зараженность среды планктонной 10³ -10⁵ кл/мл и металла адгезированной 10³ кл/см² формами СВБ (допустимое содержание в соответствии с П1-01.05 Р-0339 «Применение химических реагентов на объектах добычи углеводородного сырья Компании» составляет не более 10 кл/мл). Наличие кислорода в товарной воде на объектах подготовки составляет 0,4 1,0 мг/л.
- 3. В результате гидравлических расчетов технологических трубопроводов установлено, что при фактическом режиме работы объектов подготовки нефти и воды на месторождении, существуют риски наличия в трубопроводах застойных зон (после выхода с сепараторов первой ступени), а также участки со скоростью течения от 4 до 14 м/с, что, при наличии КВЧ, что способствует развитию коррозионных повреждений по коррозионно-эрозионному механизму;

Выводы по причине возникновения коррозионных повреждений. Рекомендации

Выводы

1. Причиной отказов трубопроводов технологических линий объектов подготовки является комплекс факторов: структура и скорость потока газожидкостной смеси, наличие КВЧ и неэффективность технологии ингибиторной защиты. Негативное влияние механических примесей проявляется в коррозионно-эрозионном износе трубопроводов (на участках с высокими скоростями потока), а также в адсорбции ИК на механических примесях, которые уменьшают его эффективность, что подтверждается данными коррозионного мониторинга на ЦПС.

Рекомендации

- 1. Для предотвращения коррозионно-эрозионного износа технологических трубопроводов с целью снижения количества механических примесей, негативно влияющих как на процесс ингибиторной защиты, так и эрозионный процесс рассмотреть возможность установки пескоуловителей после сепараторов-пробпкоуловителей.
- 2. В программу исследований коррозионного мониторинга включить исследования по определению содержания кислорода. Локализовать источники поступления кислорода в систему. Провести ЛИ по подбору эффективного ингибитора коррозии для работы в условиях повышенного содержания кислорода и коррозионно-опасного биоценоза.

Анализ образования солеотложений в системе сбора НГДУ «Ишимбайнефть»

Исследование состава отложений

- Отложения, отобранные с фильтра отстойника на КССУ состоят из:
- а) неорганическая часть 95,1%;
- б) органическая часть (углеводороды) 4,9%
- Отложения, отобранные с УСТН УПС состоят из:
- а) неорганическая часть 95,2%
- б) органическая часть (углеводороды) 4,8%
- Отложения, отобранные с УСТН УПС (вход) состоят из:
- а) неорганическая часть 91,2%
- б) органическая часть (углеводороды) 8,8%
- Отложения, отобранные с УСТН УПС (выход) состоят из:
- а) неорганическая часть 92,9%
- б) органическая часть (углеводороды) 7,1%

Отложения, отобранные с УСТН на УПС (вход)

Отложения, отобранные с УСТН на УПС (выход)

Отложения, отобранные с КССУ

Отложения, отобранные с УСТН УПС

M	П	Компонентный состав неорганичесь	кой части отложений
Место отбора	Дата отбора	Соединение	Содержание, %
		Дигидрат сульфата кальция (гипс, $CaSO_4 \cdot 2H_2O$)	98,3
Отложения с УСТН УПС (вход)	05.04.2016	Оксид кремния (кварц, SiO_2)	0,4
		Натрий хлористый (NaCl)	1,3
		Дигидрат сульфата кальция (гипс, $CaSO_4 \cdot 2H_2O$)	99,2
Отложения с УСТН УПС (выход)	05.04.2016	Оксид кремния (кварц, SiO_2)	0,1
		Натрий хлористый (NaCl)	0,7
Осадок с КССУ	19.04.2016	Дигидрат сульфата кальция (гипс, $CaSO_4 \cdot 2H_2O$)	100
Осадок с УПС	19.04.2016	Дигидрат сульфата кальция (гипс, $CaSO_4 \cdot 2H_2O$)	100
Регламентирующий докуме	ент	рентгеновская дифрактометрия (SI	himadzu XRD-6000)

Исследования по отмывке отложений

Диспергирование отложений, отобранных с КССУ и УПС в 20%-ном водном растворе NaOH при температуре +10°C в соотношении проба:растворитель 1:4 через 96 часов:

- при периодической (каждые 24 часа) смене растворителя составит 80%
- без смены растворителя составит 40%

Результат диспергирования отложений, отобранных на КССУ в 20% растворе NaOH

 Время диспергирования
 Диспергирование, %

 Без замены растворителя
 С периодической заменой растворителя

 24
 20

 48
 40

 72
 60

 96
 40
 80

Результат диспергирования отложений, отобранных на УПС в 20% растворе NaOH

	Диспергир	ование, %
Время диспергирования	For samoul i pactronitoria	С периодической заменой
	Без замены растворителя	растворителя
24	-	20
48	-	40
72	-	60
96	40	80

Результаты ЛИ относительной эффективности ингибиторов солеотложений для «сульфатной» воды месторождения

- В лаборатории ООО «БашНИПИнефть» проводили лабораторные исследования 12шт. ИСО, допущенных к применению на объектах добычи ООО БНД. Исследования проводились на модели «сульфатной» воды.
- Ингибиторы ИСО для испытаний представлены в зашифрованном виде.
- Модельные воды Сергеевского, Бузовьязовского и Балкановского месторождений схожи по составу.
- Все 12шт ИСО показали низкую эффективность (менее 90%). Применение данных ИСО не рекомендуется на рассматриваемом месторождении
- Согласно СТ-07 1-00-00-04 эффективность ингибирования солеотложений должен обеспечивать степень снижения выпадения солей не менее 90%
- Рекомендуется направить запрос производителям ИСО с целью выбора эффективного реагента для предотвращения выпадения солеотложений месторождениях

Ионный состав модели «сульфатной» воды

	Motornius Born			Компонентный состав, мг/л							
	Источник воды		Pl ⁻	SO ₄ ²⁻	Pa ²⁺	Mg ²⁺	Na⁺+ K⁺				
Вода, отложен	моделирующая ния	гипсовые	20528,2	8788	8800	141,9	11602				
ПДВ месторождения			169397,8	201,3	9538,0	2589,5	98830,6				

Результаты определения относительной эффективности ИСО

	Manya wutufutana			Дозировка, мг/дм³		
	Марка ингибитора	10	30	50	70	100
	СОНСОЛ-2001А	1,4	4,2	17,2	30,2	46,4
	СОНСОЛ-2003	0,5	1,4	2,3	2,3	5,1
%,	СНПХ-5312-С	1,2	2,0	2,0	9,1	19,0
CF.	АЗОЛ 3010 марка А	1,2	1,2	3,6	7,9	11,9
Эффективность	АЗОЛ 3010 марка С	1,6	1,6	2,4	4,0	8,9
Ϋ́	ETK-203 S марка A	1,6	3,2	3,2	4,8	10,5
g e	Пральт 31 Б2	3,1	28,4	36,4	38,7	44,4
ဗိုင	Пральт 31 А2	6,2	12,9	15,1	16,0	37,8
	Descum 2D-3811 P	1,3	7,1	7,6	8,0	8,4
	Descum 2H-3111P	0	0,9	1,7	4,7	7,8
	EC 6080 (6244)	5,6	21,1	23,7	28,9	30,2
	Эфрил ИСО 72	5,6	19,0	28,0	31,5	37,1

Результаты ЛИ относительной эффективности ингибиторов солеотложений для «сульфатной» воды рассматриваемого месторождения

- Исследования проводили в статических условиях согласно стандарту ПАО АНК «Башнефть» СТ-07.1-00-00-04. Образцы ИСО представлены в зашифрованном виде. Акты кодировки и раскодировки приведены в приложении.
- Ингибиторы ИСО для испытаний представлены в зашифрованном виде.
- Попутно-добываемая вода месторождения аналогична по составу ПДВ соседнего месторождения.
- Была оценена относительная эффективность ингибиторов солеотложений на модели «сульфатной» воды, приготовленной согласно п.2.11.2 МУ-НИПИ1-00-4.4-01, в течение 6 часов при температуре 75°C в дозировках 10, 20, 30, 40 и 50 мг/дм³.
- СОНСОЛ-2001A, EC 6080 (6244) и Эфрил ИСО 7 ингибируют выпадение гипсовых отложений в дозировке 50 мг/дм³ с эффективностью 56,68%, 49,04% и 42,04% соответственно.
- Ингибиторы марок СОНСОЛ-2003, СНПХ-5312-С, АЗОЛ 3010 марка А, АЗОЛ 3010 марка С, ЕТК-203 S марка А, Пральт 31 Б2, Пральт 31 А2, Descum 2D-3811 P, Descum 2H-3111P при содержании в 50 мг/дм³ предупреждают выпадение гипсовых отложений с относительной эффективностью 9,4-38,3%.

Ионный состав модели «сульфатной» воды

Иотонник воли		Ко	мпонентный сос	тав, мг/дм ³	
Источник воды	Pl ⁻	SO ₄ ²⁻	Pa ²⁺	Mg ²⁺	Na⁺+ K⁺
Вода, моделирующая гипсовые отложения	20507	8792	4909	148	11623
ПДВ месторождения	147117.5	3555	4883.2	1559.2	92557.5

Результаты определения относительной эффективности ИСО

Hausananan aka ara	Отно	осительная эффективность	ИСО при концентрации в рас	створе в мг/дм³, %	
Наименование объекта	10	20	30	40	50
СОНСОЛ-2001А	3,69	6,45	16,13	45,62	56,68
СОНСОЛ-2003	3,75	6,6	8,9	9,4	9,4
СНПХ-5312-С	7,96	11,2	17,8	27,2	29,98
АЗОЛ 3010 марка А	4,08	6,12	9,18	11,22	14,29
АЗОЛ 3010 марка С	4,1	6,9	9,6	25,6	37,9
ЕТК-203 S марка A	6,9	11,4	13,7	14,2	31,05
Пральт 31 Б2	10,2	15,3	24,3	24,3	28,5
Пральт 31 А2	8,9	16,2	23,8	30,6	38,3
Descum 2D-3811 P	4,08	6,12	6,12	6,59	6,63
Descum 2H-3111P	3,1	5,4	6,2	15,6	19,6
EC 6080 (6244)	18,7	25,8	36,1	40,5	49,0
Эфрил ИСО 72	7,14	16,02	27,24	37,45	42,04

Исследование отложений с трубопровода

Отложения, отобранные с трубопровода УПС состоят из:

- а) неорганическая часть 69,2 %;
- б) органическая часть
- (углеводороды) 30,8 %

Отложения, отобранные с трубопровода

Неорганическая часть отложений, отобранных с трубопровода

Dosuger No	Μοστο στάρρο	Пото отборо	Компонентный состав неорганической части отложений		
Регистр. № Место отбора		Дата отбора	Соединение	Содержание, %	
	1012/16-О Отложения, отобранные с трубопровода		Гипс (PaSO ₄ · 2H ₂ O)	94,1	
1012/16-O		01.07.16	Натрий хлористый (NaPI)	4,6	
			Сульфид железа (FeS)	1,3	
Регламентирующий документ			рентгеновская дифрактометрия (Shimadzu	u XRD-6000)	

Рекомендации по удалению и мониторингу отложений гипса

Удаление отложений гипса

- Наибольшее применение для удаления гипсовых отложений получило использование растворов гидроокисей. Гидроокись натрия (натрий едкий) наиболее действенна при 20 %-ной концентрации. При концентрациях менее 20% и более 25% эффективность действия реагента снижается.
- Скорость реакции значительно повышается со снижением температуры раствора. Так, со снижением температуры раствора (от +20°C до +10°C) эффективность действия раствора NaOH увеличивается в 3-4 раза. Дальнейшее снижение температуры не приводит к заметному увеличению скорости реакции.
- Обработку рекомендуется проводить в следующей последовательности:
 - 1. Отмывка отложений ПАВом.
 - 2. Обработка полости трубопровода 20% NaOH с выдержкой не менее 8 часов (количество циклов не менее 3).
 - 3. Обработка 5 8% ингибированной соляной кислоты.
 - 4. Пропуск очистного устройства.

Мониторинг отложений гипса

- Контроль за технологией ингибирования проводить по следующим параметрам:
 - производительность дозировочного насоса. Периодичность контроля 1 раз в сутки;
- содержание ингибитора в попутно-добываемой воде в конечной точке участка (площадной объект сбора продукции) и контрольных точках. Периодичность контроля 1 раз в неделю. Определение содержания ингибитора проводится в соответствии с методами анализа, приведенными в соответствующих ТУ на реагент.

Определение причин разгерметизации газопровода

Анализ разрушения трубопровода

- Разрушение трубы произошло поперек трубы (кольцевое разрушение);
- Такое разрушение говорит о том, что продольные напряжения превышают кольцевые напряжения;
- Продольные напряжения в трубопроводе могут превышать напряжения только в случае предварительного напряжения трубопровода;
- Предварительное напряжение трубопровода могло возникнуть только в процессе строительномонтажных работ.

Анализ напряженно деформированного состояния трубопровода

- При разгерметизации трубопровода, в следствии стремления системы к стабильному состоянию, произошел перелом осей трубопровода;
- Произошла частичная релаксация напряжений;

- При вырезки дефектного участка произошла дальнейшая релаксация напряжений участка трубопровода;
- В следствии релаксации напряжений произошло смещение осей трубопровода в месте реза;
- Смещение осей составило 191 мм;
- По полученным перемещениям трубопровода возможно рассчитать напряженно-деформированнное состояние трубопровода, реализованное в процессе строительно-монтажных работ

Выводы по результатам расчета напряженно-деформированного состояния

- В соответствии с требованиями ГОСТ 55990 для трубопроводов транспортирующих среды с содержанием H_2 S σ_i/σ_v ≤0,45.
- Радиус упругого изгиба трубопровода в месте отказа составляет 30-50 м.

На трубопроводе наблюдаются механические повреждения заводского наружного покрытия (произведен ремонт изоляции в трассовых условиях) рядом с зоной сварного соединения, что свидетельствует о приложении дополнительных нагрузок для соединения трубопровода при строительно-монтажных работах.

Механические повреждения заводского наружного покрытия

Вывод: Нарушение НТД при строительно-монтажных работах

Исследования качества трубной продукции

Для строительства аварийного участка трубопровода была использована сварная труба типоразмером 530х8 мм по ТУ 1381-030-85736056 производства АО «Загорский трубный завод». Исследования поверхности разрушения показали, что разрушение было инициировано в области заводского сварного соединения в околошовной зоне. Разрушение носит характер сульфидного коррозионного растрескивания под напряжением.

Для исследования качества трубной продукции были выполнены следующие виды исследований:

- Определение химического состава основного металла разрушенной трубы;
- Механические испытания основного металла и заводского продольного сварного соединения:
- Испытания на растяжение (определение предела текучести и временного сопротивления);
- Испытания на ударный изгиб (определение ударной вязкости);
- Испытание на статический изгиб заводского сварного соединения;
- Коррозионные испытания:
- Испытание на стойкость к сульфидному коррозионному растрескиванию под напряжением (СКРН);
- Испытания на стойкость к водородному растрескиванию (ВР);
- Металлографические исследования

Определение химического состава основного металла

Анализ химического состава основного металла трубы выполняли силами ООО «СамИТЦ» с использованием оптического эмиссионного спектрометра «Q4 TASMAN» заводской №4629, свидетельство о поверке №425060, действительно до 21.06.2018.

	Массовая доля элементов, %														
С	Si	Mn	Р	S	Cr	Ni	Al	Cu	Мо	W	V	Nb	Со	Ti	N
0,17	0,195	0,473	<0,005	<0,005	0,009	0,014	0,057	0,026	<0,01	<0,01	<0,005	<0,010	0,012	<0,001	-
	Требования ТУ 1381-030-85736056-2015, сталь 09ГСФ														
0,13	0,7	0,7	0,015	0,005	0,030	0,30	0,02- 0,05	0,30	0,20	-	0,04-0,12	-	-	-	0,008
	ГОСТ 1050-2013, сталь 20														
0,17- 0,24	0,17- 0,37	0,35- 0,65	≤0,030	≤0,035	≤0,25	≤0,30	-	≤0,30	-	-	-	1	-	-	-

Вывод: Химический состав основного металла трубы не соответствует требованиям ТУ для стали 09ГСФ. Химический состав основного метала наиболее близок марке стали 20 по ГОСТ 1050-2013. Брак трубной продукции.

Механические испытания

Испытания на растяжение

Маркировка –		Временное сопротивление, $\sigma_{_{\rm B}}$	Предел текучести <i>,</i> σ _{0,2}	Относительное	Officer passylloung
номер образца		МПа	МПа	удлинение δ_5 , %	Область разрушения
БА14 Ом	1	570	452	25	
БА14 Ом	2	570	443	26	
БА14 Шов	1	610	Не определяется	Не определяется	OM
БА14 Шов	2	610	Не определяется	Не определяется	OM
Требования ТУ		350	510-630	20	

Испытания на ударный изгиб

Маркировка –		Тип	Область нанесения	Температура	Ударная вязкость	Theforeus TV	
номер образца		образца	надреза испытания, ⁰ С Дж/см ²		Дж/см²	Требования ТУ	
	1				77		
БА14ом	2	KCV	Основной металл	-20	99	39,3	
	3				95		
БА14ом	1	KCU	Основной металл	-60	138,8	39,2	
	2				116,3		
	3				125,8		
БА14шов	1	KCU	Центр шва	-60	181	39,2	
	2				175		
	3				139		
БА14шов	1		КСU Линия сплавления	-60	145		
	2	KCU			168		
	3				165		

Испытания на статический изгиб сварного соединения

Маркировка —номер образца		Участок шва в растянутой зоне	Угол статического загиба	Примечание	
БА14шов	1	Внутренний шов		Трещина по линии сплавления	
	2	Наружный шов	180°	Испытание выдержало. Трещины	
				отсутствуют	

Трещина по линии сплавления внутреннего шва

Вывод: Брак заводского сварного соединения

Коррозионные испытания

Испытание проводилось по стандарту NACE TM 0177-2005, тип сероводородсодержащей среды A, средняя температура испытания 22°C.

Маркировка	Диаметр рабочей части, мм	Предел текучести, кгс/мм²	Пороговое напряжение о _{† h} , %	Нагрузка, кгс	Примечание (время до разрушения, ч)
БА14-1 ом	6,27	36,0	72	800	720
БА14-2 ом	6,25	36,0	72	795	120
БА14-3 ом	6,30	36,0	72	808	720
БА14-1 с	6,31	36,0	72	811	120
БА14-2 с	6,18	36,0	72	777	720
БА14-3 с	6,28	36,0	72	803	48
	Требования ТУ				

Вывод: Основной металл труб и сварное соединение труб не выдержали испытание на стойкость. Трубы не соответствуют требованиям ТУ по стойкости. Брак трубной продукции

Выводы по результатам расследования причин отказа трубопровода

- Сульфидно-коррозионное растрескивание и разрушение трубопровода вызвано действием продольных напряжений, возникших в трубопроводе при строительно-монтажных работах;
- Критический уровень напряжений возник вследствие упругого изгиба трубопровода на стадии монтажа. Продольные напряжения, по результатам расчета, превышают нормативные значения. Радиус упругого изгиба трубопровода не соответствует требованиям;
- Основной металл трубы не соответствует требованиям ТУ 1381-030-85736056 по химическому составу для стали марки 09ГСФ;
- Заводской сварной шов не соответствует требованиям ТУ 1381-030-85736056 по параметру «угол загиба», при испытаниях возникли трещины в линии сплавления внутреннего шва;
- Основной металл и сварное соединение трубы не соответствует требованиям ТУ по стойкости к сульфидному коррозионному разрушению под напряжением.

Причины отказа трубопровода: Нарушение требований НТД при монтаже трубопровода, не соответствие качества трубной продукции ТУ.