CSCI3230 (ESTR3108) Fundamentals of Artificial Intelligence

Tutorial 6

Yuehao Wang

Email: yhwang21@cse.cuhk.edu.hk Office: Room 1024, 10/F, SHB

Dept. of Computer Science & Engineering
The Chinese University of Hong Kong

Outline

Part 1. Change of basis

Part 2. Spectral theory

Part 3. Robust PCA

Part 1. Change of basis

Independence of vectors

- Suppose we have vectors $u_1 \dots u_n \in \mathbb{R}^n$
- If $u_1 \dots u_n$ are independent then:

$$c_1u_1 + \cdots + c_nu_n = 0$$
, $c_i \in \mathbb{R}, i = 1 \dots n$

iff
$$c_1 = \cdots = c_n = 0$$

• Alternatively, we can write this statement in matrix-vector multiplication: Let $A=[u_1\dots u_n],\ c\in\mathbb{R}^n$:

$$Ac = 0$$

iff c = 0, which also implies A is full-rank.

Quiz

Given $u_1 \dots u_n \in \mathbb{R}^n$, for any pair (u_i, u_j) , $i \neq j$, u_i and u_j are independent. Can we say $u_1 \dots u_n$ are independent to each other?

Basis

- Basis is a set of independent vectors, which can span the vector space by linear combination.
- Denote basis as $B = \{u_1, \dots, u_n\}$, where $u_1 \dots u_n$ are independent.
- Let $U = [u_1 \dots u_n]$. The subspace spanned by B is exactly the range space (column space) of U.
- If S is spanned by B, then any vector $v \in S$, we can find scalars c_1, \ldots, c_n such that:

$$v = c_1 u_1 + \dots + c_n u_n$$

• The number of vectors in the basis = dimension: dim(S) = n.

Basis

Typical basis:

- Canonical basis: $\{e_1, \ldots, e_n\}$, a very useful and common basis of \mathbb{R}^n . For any i, e_i is a vector where only the i-th element equal to 1 and others are zeros.
 - For example, in \mathbb{R}^2 space, $e_1 = [1,0]$ and $e_2 = [0,1]$ are the two canoical basis vectors.
 - ② Coordinates like (x_1, \ldots, x_n) without other context is actually the shorthand of $x_1e_1 + \cdots + x_ne_n$.
- Orthonormal basis: a basis $[u_1, \ldots, u_n]$ is orthonormal iff $u_j^T u_i = 0$ when $i \neq j$ and $u_i^T u_i = 1$.
 - For example, canoical basis is orthonormal.
 - 2 Basis $\{[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}], [\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}]\}$ is orthonormal.

Basis

- Note that basis of a subspace is not unique.
 - ① Besides of the canonical basis e_1,e_2,e_3 , $u_1=(1,1,1)^T,u_2=(0,1,0)^T,u_3=(1,2,2)^T$ can also be a basis for 3-D Euclidean space.
 - ② Basis for a plane in \mathbb{R}^3 is not unique as well. Spanning of $(0,1,0)^T,(1,0,0)^T$ and $(1,1,0)^T,(1,0,0)^T$ are the same plane.
- Different basis may have different use.
 - In computer graphics, we often need to transform a point from the world coordinate system to the camera coordinate system.
 - ② Discrete signals are generally recorded in time domain. But we usually do Fourier transform to get the frequency domain information. Fourier transform: canonical basis => fourier basis.
- This is the reason why we need change of basis.

Change of basis

Change of basis transformation

Given a basis $B = \{u_1, \dots, u_n\}$, let $A = [u_1 \dots u_n]$, the change of basis transformation from canonical basis to B is A^{-1} .

- ullet Convsersely, A is the change of basis transformation from B to canonical basis.
- ullet For example: Suppose we have basis [1,0,0] and [0,0,1]. A coordinate p=[2,3] represented by this basis is actually the coordinate [2,0,3] under the canoical basis. By applying the theorem,

$$Ap = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}.$$

Part 2. Spectral theory

Eigenvalues and eigenvectors

 $\forall A \in \mathbb{R}^{n \times n}$, if we have the equation below for some λ and v,

$$Av = \lambda v$$

- λ is called eigenvalue and the corresponding non-zero v is called eigenvector associated with the λ .
- Eigenvalues are solutions to $det(A-\lambda I)=0$, which is a n-order polynomial.
- \bullet When there are n independent eigenvectors, A can be diagonalizable.

$$A = U\Lambda U^{-1}$$

where Λ is a diagonal matrix with eigenvalues $\lambda_1\dots\lambda_n$ on its diagonal, U's i-th column is the eigenvector associated with λ_i

Spectral theory for symmetric matrix

• For symmetric A (i.e., $A^T = A$), A must have n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and the associated orthonormal eigenvectors v_1, v_2, \ldots, v_n :

$$Av_i = \lambda_i v_i$$

A can be diagonalized as

$$A = U\Lambda U^T$$

where $U = [v_1 \dots v_n]$ and $\Lambda = diag(\lambda_1, \dots, \lambda_n)$

- Spectral resolution: $A = \sum_{i=1}^{n} \lambda_i v_i v_i^T$
- Courant-Fischer theorem:

$$\lambda_i = \max_{\dim V = i} \min_{x \in V, ||x||_2 = 1} x^T A x$$

Quiz

Let this quiz help with recapping spectral theory. Which statement below about eigenvalues and eigenvectors is correct?

- A Eigenvectors of $A \in \mathbb{R}^{n \times n}$ need not to be independent.
- B Any matrix $A \in \mathbb{R}^{n \times n}$ must have n eigenvalues.
- C Symmetric matrix $A \in \mathbb{R}^{n \times n}$ must have n non-repeated eigenvalues.
- D Any matrix $A \in \mathbb{R}^{n \times n}$ is NOT invertible iff 0 is an eigenvalue of A.

Quiz

Let this quiz help with recapping spectral theory. Which statement below about eigenvalues and eigenvectors is correct?

- A Eigenvectors of $A \in \mathbb{R}^{n \times n}$ need not to be independent.
- B Any matrix $A \in \mathbb{R}^{n \times n}$ must have n eigenvalues.
- C Symmetric matrix $A \in \mathbb{R}^{n \times n}$ must have n non-repeated eigenvalues.
- D Any matrix $A \in \mathbb{R}^{n \times n}$ is NOT invertible iff 0 is an eigenvalue of A.

Correct Answer: D

Part 3. Robust PCA

Dense noise

Suppose data matrix $X^* \in \mathbb{R}^{D \times N}$, $rank(X^*) = d, d < \min\{D, N\}$. \tilde{X} is a corruption of X^* . Problem:

$$\tilde{X} = X^* + E$$

where E is a dense noise matrix (suppose Gaussian noise). Solve this problem through optimization:

$$\min_{rank(X)=d} \lVert \tilde{X} - X \rVert_F$$

Sparse noise

Problem:

$$\tilde{X} = X^* + E$$

where E is a sparse noise matrix, i.e., $\|E\|_0$ is small. Solve this problem through optimization:

$$\min_{X \in \mathbb{R}^{D \times N}} rank(X) + \|\tilde{X} - X\|_0$$

The objective function is not convex. Solution: convex envelope. The convex envelope of $\|\cdot\|_0$ is $\|\cdot\|_1$. The convex envelope of $rank(\cdot)$ is the nuclear norm $\|\cdot\|_*$.

Missing entries (Matrix completion)

Problem:

$$\tilde{X} = X^* \otimes E_{\Omega}$$
, given $\Omega \subset [D] \times [N]$
 $E_{\Omega}(i,j) = 1$, if $(i,j) \in \Omega$
 $E_{\Omega}(i,j) = 0$, otherwise

Application: Netflix recommendation systems.

This problem can be solved via optimization if E_{Ω} is not dense and $rank(X^*)$ is small:

$$\min_{X} \ rank(X)$$