

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

Mode of Exam
OFFLINE
SET-A

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023(ODD)

Test: CLAT-1
Course Code & Title: 18CSE351T - Computational Logic
Vear & Sem: III/V
Date: 12.09.2022
Duration: 50 minutes
Max. Marks: 25

Course Articulation Matrix: (to be placed)

	Part - A						
	$(5 \times 1 = 5 \text{ Marks})$						
Instructions: Choose the correct answer							
Q. No	Question	Marks	BL	CO	PO	*PI Code	
1	If $P=T, Q=F, R=T$, Then $P \rightarrow (Q \ V \ R)$ and $P \rightarrow (Q \ \Lambda \ R)$	1	3	1	1	1.3.1	
	A) TF						
	B) FT						
	C) TT						
	D) FF						
2	Let us consider the propositional logic formula S is in the forms	1	3	1	1	1.3.1	
	of p,q,r.If S is contingent means ,the valuation is						
	A) TTTTTTT						
	B) TTFT						
	C) FFFFFFT						
	D) FFFF					101	
3	"I'm tired" is an example of Sentence	1	1	1	1	1.3.1	
	A) Imperative						
	B) Interrogative						
	C) Exclamatory						
4	D) Declarative	1	1	1	1	1.2.1	
4	A truth table is a convenient format for displaying the	1	1	1	1	1.3.1	
	A) statement with symbols						
	B) Values C) semantics of a formula						
	D) variables						
5	PROPDET is used to	1	2	1	1	3.1.1	
3	A) Determine any proposition is tautology	1	2	1	1	3.1.1	
	B) Determine any proposition is invalid						
	C) Determine whether the given string is proposition or not						
	D) Determine the possibility of unique parse tree						
T4-	Part – B $(2 \times 10 = 20 \text{ Marks})$						
	Question Question	Marks	BL	СО	PO	*PI	
No	Anconon	1VIAI NS	DL			Code	
6	Check whether the given formula is valid, satisfiable or	10	3	1	1	1.3.1	
	contradiction and draw the parse tree.						
	$((P \rightarrow \neg Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$ Check the equivalence of given expression and justify your						
7		10	3	1	3	1.3.1	
	answer.						
	a. $(p \leftrightarrow q) \equiv (p \rightarrow q) \land (\neg P \rightarrow \neg q)$						
	b. $((XVY) \land \neg X) \equiv Y$						
8	For the given propositions list all possible prefix, proper prefix,	10	2				

sub-pro	position and draw the parse tree.			
a.	$(p \leftrightarrow q) \leftrightarrow (p \rightarrow q) \land (\neg P \rightarrow \neg q)$			
b.	$((XVY) \land \neg X) \leftrightarrow Y$			

 $^{{}^*}$ Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

-

Dapentment of compline Technologies

18 CSC 3517 - Comptational legic - Arguer buy

Set - A

Pant A

)

I.A. TF

2. c. FFFFFFT

3. d. Dechrative

4. C. sematics of a formula.

5. C. Determine whether the given string is poposition or rot

(P)70) (D-)R) /n Part 8 PJR 70 2 F F F F ٦ T F FTF FFT FFT ->not valid, satistiable, not contradiction

P B 4 marke

Subproposition: (P, 9, P609, P00, 7P, 72,

(P) 72), (P) 2) 1 (P) 72)

b. ((avy) 1 72) (3) y

Part Part

(3)

(3)

 $ρωρω : \{ Ε, ι, ιι, ιια, ιιαν, ιιανη, ιιανη), (ιανη) Ληχ) Ελη (ιανη) Ληχ) Ελη (ιανη) Ληχ) Ελη (ιανη) Ληχ) Ελη (ιανη) (ιανη) (ιανη) (ιανη) (ιανη) (ιανη) (ιανη) (ιανη) Ληχ) (ιανη) (ιανη) Ληχ) (ιανη) (ιανη)$

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

Mode of Exam
OFFLINE
SET-B

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023(ODD)

Test: CLAT-1

Course Code & Title: 18CSE351T – Computational Logic

Year & Sem: III/V

Date: 08.09.2022

Duration: 50 minutes

Max. Marks: 25

Course Articulation Matrix: (to be placed)

	Part - A						
	$(5 \times 1 = 5 \text{ Marks})$						
Instructions: Choose the correct answer							
Q. No	Question	Marks	BL	CO	РО	*PI Code	
1	If $P=T, Q=F, R=T$, Then $P \rightarrow (Q \rightarrow R)$ and $(P \land Q) \rightarrow R$	1	3	1	1	1.2.1	
	A) TF						
	B) FT						
	C) TT						
	D) FF						
2	Let us consider the propositional logic formula S is in the forms	1	3	1	1	1.2.1	
	of p,q,r.If S is valid means ,the valuation is						
	A) TTTTTTT						
	B) TTFT						
	C) FFFFFFT						
	D) FFFF						
3	Declarative statements are	1	1	1	1	1.2.1	
	A) statement with symbols						
	B) statement with true or false						
	C) statements with constants						
	D) Statements with connectives						
4	$(p \land q) \rightarrow \neg r \lor q \text{ means}?$	1	2	1	1	1.2.1	
	A) 'if p and q then not r or q'						
	B) 'if p or q then not r or q'						
	C) 'if p and q then not r and q'						
	D) 'if p and q then r or q'						
5	The condition for the well-formed propositional logic formula	1	1	1	1	1.2.1	
	A) The number of left brackets is equal to the number of right brackets						
	B) The number of left brackets should be Greater than the						
	number of right brackets						
	C) The number of left brackets should be Lesser than the						
	number of right brackets						
	D) The number of left brackets is not equal to the number of						
	right brackets Part – B				L		
T4	$(2 \times 10 = 20 \text{ Marks})$						
	octions: Answer any 2 questions	Monka	BL	CO	PO	*PI	
Q. No	Question	Marks			PU	Code	
6	Check whether the given formulas are valid, satisfiable or	10	3	1	1	1.2.1	
	contradiction and draw the parse tree.						
	$((P \to Q) \to R) \land (R \to (Q \to P))$						

7	Check whether the given equation holds semantically entailment	10	3	1	1	1.2.1
	a. $((XVY) \land \neg X) \models Y$					
	b. $(p \leftrightarrow q), (p \rightarrow q) \land (\neg P \rightarrow \neg q) \models T$					
8	Check whether the following formula is well formed using	10	2	1	1	1.2.1
	PROPDET function and draw parse tree.					
	a. $((P \land \neg Q) \rightarrow R) \lor (\neg P \rightarrow Q \land R)$					
	b. $((\neg P \rightarrow Q V R) \leftrightarrow \neg R)$					

^{*}Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

Department of Compting Technological 18 CZE3517. Completional boje- Angweitery CTI Set -B PORT A 1. C. TT 2. A. TTTTTTT 3. B. statement with the or falle A. 18 p and 2 tren not rac 5. A. The number of left brankets is equal to no of right brackels. 6. P B R P-1 Q (P-1Q-1P)) ンファアドトト 7 77 F 7 イテマ F 7 -mot valid, not contradiction assatistiable 5)3mails corrections

7 7

x / / / x (((((())))) (T) a. X ۴ ((x 13) 1 7x) F9 (7) Huco dpore suchijyydu semantic entitlement. b. (96991), (P39) 1 (7P379) FT p>9 7P>79 (P>9)∧(7P>79) 969 F above poposition volds senatic entitle ((PN 70) -> R) V (7P → Q18) POV 80 ((PNPO) -)R)V (7P -) QAR) valid (PO DR) V (TP - QAR) PO 1 (7P -) QNR) Po v (Po >QAR) POV (PONR)

