Background/Review on Integers and Bases (lecture)

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

Numbers and Computers

- Throughout this course we will
 - use binary and hexadecimal representations of numbers
 - need to be aware of the ways in which the computer stores numbers
- So let us go through a simple review before we start learning how to write assembly code
 - Numbers in different bases (these slides)
 - Number representation in computers and basic arithmetic (next set of slides)
 - More to come later on arithmetic

Numbers and bases

We are used to thinking of numbers as written in decimal, that is, in base 10

$$25 = 2*10^{1} + 5*10^{0}$$

$$136 = 1*10^{2} + 3*10^{1} + 6*10^{0}$$

- Each number is decomposed into a sum of terms
- Each term is the product of two factors
 - □ A digit (from 0 to 9)
 - The base (10) raised to a power corresponding to the digit's position in the number

$$136 = \dots + 0*10^4 + 0*10^3 + 1*10^2 + 3*10^1 + 6*10^0$$
$$= \dots 00000136$$

We typically don't write (an infinite number of) leading 0's

.

Numbers and Bases

- Any number can be written in base b, using b digits
 - If b = 10 we have "decimal" with 10 digits [0-9]
 - If b = 2 we have "binary" with 2 digits [0,1], which are also called bits
 - □ If b = 8 we have "octal" with 8 digits [0-7]
 - If b = 16 we have "hexadecimal" with 16 digits [0-9,A,B,C,D,E,F]
- Computers use binary internally
 - It's easy to associate two states to an electrical current
 - Low voltage = 0, high voltage = 1
 - Associating 16 states to a current is more complicated and error-prone
- However, binary is cumbersome
 - □ The lower the base the longer the numbers!
 - It's really difficult for a human to remember binary
- Therefore we, as humans, like to use higher bases
- Bases that are powers of 2 make for easy translation to binary, and thus are particularly useful, and in particular hexadecimal

Binary Numbers

Counting in binary:

0 ₁₀
1 ₁₀
2 ₁₀
3 ₁₀
4 ₁₀
5 ₁₀
6 ₁₀
7 ₁₀
8 ₁₀

 A binary number with d bits corresponds to integer values between 0 and 2d-1

$$\sum_{k=0}^{d-1} 2^k = 2^d - 1$$

Example:

- An integer stored in 8 bits has values between 0 and 255
- □ 128+64+32+16+8+4+ 2+1 = 255

. . .

Converting from Binary to Decimal

- We denote by XXXX₂ a binary representation of a number and by XXXX₁₀ a decimal representation
- Converting from binary to decimal is straightforward:

```
10010110_{2} = 1*2^{7} + 1*2^{4} + 1*2^{2} + 1*2^{1}= 1*128 + 1*16 + 1*4 + 1*2= 150_{10}
```

- The rightmost bit of a binary number is called the least significant bit (smallest power of 2)
- The leftmost non-zero bit of a binary number is called the most significant bit (largest power of 2)
- If the least significant bit is 0, then the number is even, otherwise it's odd

Converting from Decimal to Binary

- The conversion proceeds by a series of integer divisions by 2, and by recording the remainder of the division
 - □ Integer division a/b: a = b* q + remainder, where all are integers
- Example: converting 37₁₀ into binary

```
Divide 37 by 2: 37 = 2*18 + 1
```

- Divide 18 by 2: 18 = 2*9 + 0
- Divide 9 by 2: 9 = 2*4 + 1
- Divide 4 by 2: 4 = 2*2 + 0
- Divide 2 by 2: 2 = 2*1 + 0
- Divide 1 by 2: 1 = 2*0 + 1
- Result: 100101₂
- The least significant bit is computed first
- The most significant bit is computed last
- Note that if we continue dividing, we get extraneous leading 0s
 - ...00000100101₂

Binary Arithmetic

Appending a 0 to the right of a binary number multiplies it by 2

$$\square$$
 10101₂ = 16₁₀ + 4₁₀ + 1₁₀ = 21₁₀

$$\square$$
 101010₂ = 32₁₀ + 8₁₀ + 2₁₀ = 42₁₀

Adding two binary numbers is just like adding decimal numbers: using a carry

With no previous carry			With a previous carry				
0	0	1	1	0	0	1	1
+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
= 0	= 1	= 1	= 0	= 1	= 0	= 0	= 1
			С		С	С	С

Binary Addition

Counting in Hexadecimal

Converting from hex to decimal

This is again straightforward

A203DE₁₆ =
$$10*16^5 + 2*16^4 + 3*16^2 + 13*16^1 + 14*16^0 = 10,617,822_{10}$$

м.

Converting from decimal to hex

- Use the same idea as for binary
- Example: convert 1237₁₀

```
\Box 1237 = 77*16 + 5
```

$$\Box$$
 77 = 4*16 + 13

$$\Box 4 = 0*16 + 4$$

□ Result: 4D5₁₆

Hexadecimal addition

C

A 2 3 F

+ 3D13

= DF52

41535₁₀

+ 15635₁₀

 $= 57170_{10}$

c cc

D1FF

+ A4DF

= 176DE

53759₁₀

+ 42207₁₀

 $= 95966_{10}$

Why is hexadecimal useful?

- We need to think in binary because computers operate on binary quantities
- But binary is cumbersome
- However, hexadecimal makes it possible to represent binary quantities in a compact form
- Conversions back and forth from binary to hex are straightforward
 - Just convert hex digits into 4-bit numbers
 - Just convert 4-bit binary numbers into hex digits

M

Converting from hex to binary

- Consider A43FE2₁₆
- We convert each hex digit into a 4-bit binary number:
 - \Box A₁₆: 1010₂
 - □ 4₁₆: 0100₂
 - □ 3₁₆: 0011₂
 - □ F₁₆: 1111₂
 - □ E₁₆: 1110₂
 - □ 2₁₆: 0010₂
- We "glue" them all together:
 - \square A43FE2₁₆ = 1010010000111111111100010₂
- Important:
 - You must have the leading 0's for the 4-bit numbers, which is what a computer would store anyway
 - It all works because $F_{16} = 15_{10}$, and a 4-bit number has maximum value of 2^4 -1 = 15_{10}

Converting from binary to hex

- Let's convert 1001010101111₂ into hex
- We split it in 4-bit numbers, which we convert separately
- First we add leading 0's to have a number of bits that's a multiple of 4:

0001 0010 1010 1111

- Then we convert
 - \square 0001₂: 1₁₆
 - \square 0010₂: 2₁₆
 - □ 1010₂: A₁₆
 - □ 1111₂: F₁₆
- And the result: $1001010101111_2 = 12AF_{16}$

Conclusion

- Hopefully, what we just went through was already solid knowledge for many of you
- But if it wasn't, no worries, just make sure you practice this until it is solid
 - You'd be surprised how many job interviews have a "convert this from/to hex" questions!

Onward to how computers store numbers...