Introduction to ATPDraw version 5

- Introduction to ATPDraw
- Layout and dialogs
- Main menu options
- Transformer modeling
- Machine modeling
- Multi-phase circuits
- Vector graphics
- Grouping
- Models
- Lines&Cables modeling

Introduction

- ATPDraw is a graphical, mouse-driven, dynamic preprocessor to ATP on the Windows platform
- Handles node names and creates the ATP input file based on "what you see is what you get"
- Freeware
- Supports
 - All types of editing operations
 - ~100 standard components
 - ~40 TACS components
 - MODELS
 - SINCLUDE and User Specified Components

Introduction- ATPDraw history

- Simple DOS version
 - Leuven EMTP Centre, fall meeting 1991, 1992
- Extended DOS versions, 1994-95
- Windows version 1.0, July 1997
 - Line/Cable modelling program ATP_LCC
 - User Manual
- Windows version 2.0, Sept. 1999
 - MODELS, more components (UM, SatTrafo ++)
 - Integrated line/cable support (Line Constants + Cable Parameters)

BPA Sponsored

Introduction- ATPDraw history

- Windows version 3, Dec. 2001
 - Grouping/Compress
 - Data Variables, \$Parameter + PCVP
 - LCC Verify + Cable Constants
 - BCTRAN
 - User Manual @ version 3.5
- Windows version 4, July 2004
 - Line Check
 - Hybrid Transformer model
 - Zigzag Saturable transformer
- Windows version 5, Sept. 2006
 - Vector graphics, multi-phase cirucits, new file handling

ATPDraw main windows

ATPDraw node naming

- "What you see is what you get"
- Connected nodes automatically get the same name
 - Direct node overlap
 - Positioned on connection
- Warnings in case of duplicates and disconnections
- 3-phase and *n*-phase nodes
 - Extensions A..Z added automatically
 - Objects for transposition and splitting
 - Connection between *n* and single phase

ATPDraw Component dialog

ATPDraw capability

- 30.000 nodes
- 10.000 components
- 10.000 connections
- 1.000 text strings
- Up to 64 data and 32 nodes per component
- Up to 26 phases per node (A..Z extension)
- 28 phases in LCC module
- Circuit world is 10.000x10.000 pixels (user; 25-400%)
- 100 UnDo/ReDo steps

Files in ATPDraw

- Project file (acp): Contains <u>all</u> circuit data.
- Support file (sup): Component <u>definitions</u>. Used only when a component is added to the project.
 - Standard components: ATPDraw.scl
 - User defined components: Optionally in global library
- Data file (alc/bct/xfm): Contain <u>special</u> data
 - Stored internally in data structure
 - Optionally in global library
- Help file (sup/txt): User specified help text
 - Global help stored in sup-file or /HLP directory (txt file)
 - Local help created under Edit definitions

All standard components:

ATPDraw File options

- Project stored in a single binary file (*.acp)
- Entire project stored in memory and ATP-files are written to disk on demand.
- Make ATP files under the ATP item.
- Sub-circuits can be imported/exported.

ATPDraw Edit options

- Multiple documents
 - several circuit windows
 - large circuit windows (map+scroll)
 - grid snapping
- Circuit editing
 - Copy/Paste, Export/Import, Rotate/Flip,
 - Undo/Redo (100),
 - Compress/Extract (multilevel):
 - Merge a collection into single icon, select nodes and data
 - Edit group
 - Dive down into the groups's content and inspect or edit
 - Edit circuit; go one level up
 - Windows Clipboard: Circuit drawings, icons, text, circuit data
 - Rubber bands

ATPDraw View options

- Turn on/off side bar and status bars
- Customize main tool bar
- Zooming
- Centre circuit in window
- Lock the circuit for moving («child» safety)
- Default view options:

ATPDraw ATP options

Settings (important!)

- Simulation; Time step, cap/ind units, frequency scan
- Output; printout control, auto-detect error messages
- Format; Sorting, ATP cards
- Univeral Machine, switch and Load flow settings
- Output control, variables (\$Parameters)
- Output manager (lists all outputs, Find and Edit)
- Inspect ATP and LIS file
- Optimization (writeminmax object function to optimize variables, GA, Gradient, Annealing methods)
- Line Check (calculate sequence parameters of multiple transmission line segments)
- User customized commands

ATPDraw Library options

New objects

- User specified
- MODELS (but this should better me made from Default Model in the Selection menu)

Edit objects

- Standard; Edit the ATPDraw.scl component selection. Not for the average user as the file becomes overwritten in a new installation. User defined help can instead be added as text files in the /HLP directory.
- User specified (requires an external DBM file) and Models

Synchronize

Reload standard icons from ATPDraw.scl (turn an old circuit into vector graphic)

ATPDraw Tools options

- Tools Windows

 Bitmap Editor

 Vector Editor

 Help Editor

 Text Editor

 Drawing tools

 Options

 Save Options
- Bitmap, vector graphic and help stand-alone editors.
- Text editor, embedded with line and column number.
- Drawing tools:

Options (important!)

- General
 - Autosave and backup
 - Save ini file on exit
- Preferences
 - Undo/redo steps
 - Link to ATP and plot
- Files&Folders
 - Default folders incl.
 - ATP folder

ATPDraw Windows options

- Arrange multiple document windows
- Show the Map windows
- List all circuit projects loads and select active project window

×

Map

ATPDraw Web options

Web Help

Nork off-line

State Edit account

Unregister
Download circuit

Moderate

- Register at <u>www.atpdraw.net</u> from ATPDraw
- Direct access to MySQL databases from ATPDraw
- Upload and download of circuits.
 - Direct support (one click + provide information)
 - Author cited both in ATPDraw and web-page.

www.ntnu.no

Upload active circuit	×
Topic:	Author:
General ▼	Hans Kr. Høidalen
Keywords:	
induction motor, pwm, groupin	g
Title:	
Exa_4gn	
Describe content (searchable):	
Illustrates the usage of induct machine approach) and primar mechanical load and the pulse In the PWM source the TFORT have a model independent on copy of group.	ily grouping of the width modulated source. RAN objects are used to
Upload	Help

Update your conta	ict information or chang	ge password
Name:	Company:	Country:
Hans Kr. Høidalen	NTNU	NORWAY
e-mail:		Telephone (+cc):
hans.hoidalen@elkraft.	ntnu.no	
New password: *******		door-opening password here! ted in database at atpdraw.ne
Confirm password:	but given in plain text in You need the password multiple computers and l	•

Hans Kr. Høidalen, NTNU-Norway

Download and contribute

- Download dialog with sorting and search options.
- Upload your own cases to assist other users
 - All cases are moderated.
 - Contributor cited both in ATPDraw and on www.atpdraw.net

ATPDraw Help options

- Show main help
- Local help inside every dialog
- About with web registration info

User's manual

- Documents version 5.6 of ATPDraw (269 pages), pdf
- Written by Laszlo Prikler and H. K. Høidalen
- Content
 - Intro: To ATP and ATPDraw + Installation
 - Introductory manual: Mouse+Edit, MyFirstCircuit
 - Reference manual: All menus and components
 - Advanced manual: Grouping/LCC/Models/BCTRAN + create new components
 - Application manual: 9 real examples

Output manager (F9)

- Gives an overview of all output requests in the circuit
- Stay on top window
- Lists output in same order as in pl4 file
 - Volt/Power Branch, Volt/Power Switch, Volt Node
 - Curr/Energy Switch, Curr/Energy Branch
 - SM,TACS, MODELS,UM

Goes into User Specified, Additional cards, and

Windsyn

Find+Edit

Statistical tabulation

Addition to output manager

Optimization module

- Gradient Method
- Genetic Algorithm
- Simplex Annealing
- Select variables (with limits) and cost function
- Loops ATP (serial/parallel)
- Writes back final variable values

Parameters=0: Nelder-Mead Simplex

www.ntnu.no

Example I: Resonance coil tuning

- How to set the coil to 10 % over-compensation?
- 1: Define reactance REACT of coil as variable
- 2: Define CURR as a local variable
- 3: Add cost function to neutral voltage
- 4: Run Optimization
- 5: Divide REACT by 1.1

Latest news version 5.9

- Power system tools
 - Phasors, power and RX calculation with DFT
 - Plot phasors
 - Distance and differential relay trajectories

Latest news version 5.9

- Internal parser (TbcParser)
 - Assign a global variable to component data. Can be a function of the simulation number; KNT in multiple runs.
 - Alternative to ATP's \$PARAMETERS. Almost transparent except for the logical operators.
 - Benefit; allows parameterization of all data also those involved in internal calculations (source amplitudes and phase shifts, line lengths etc.). Relaxed restrictions in the @FILE and @[] syntax.
- Sidebar shoutbox
 - Chat with all online users.
- Synchronous machine improvements
- Plot window enhancements

Latest news version 5.8

- Hybrid transformer further developed (4 windings, zigzag, enhanced core settings, new R(f) options)
- New synchronous machine 58/59 with multi-masses and output control.
- LCC template. Cross section in a template object, length in a new LCC section object referencing the template. Optional single phase view of LCC section.
- BCTRAN corrections.
- Grouping of MODELS. UseAs surfaced.
- Enhanced voltage probes.
- Web and MySQL connection. Upload/download, forum.
- Support of png images. Far better zooming of images.

Hybrid transformer

Hybrid transformer: XFMR

- Extended to 4 windings
- Y, D, Auto, <u>Zigzag</u>
- New winding sequence specifier
- Core node select
- Final slope enhancements

Copper loss
 enhancements
 Brantff
 Lrconst

L~F(R)

R~Cigre

www.ntnu.no

23

New synchronous machine

LCC template/section

- LCC object has property Template
 - If 'on' the object becomes a dummy component not written to the ATP-file
- New LCC section reference by Name.
 - Holds section length. Single phase option.

Template

Number of cables: 8

System type Name: KL

Enclosing Pipe

Complicated railway study where new approach is useful:

Web – page and forum

Embedded Windsyn

- Direct support of Windsyn features
 - ATPDraw has embedded induction machine fitting with extended user control (incl. Tmax fitting)
 - Convergent gradient method for fitting cost function
 - More flexible start-up, output control and T/ω plotting

Windsyn in ATPDraw

- Windsyn relaxes the fitting of the slip while ATPDraw now offers this as a part of the cost function
- Windsyn does the fitting iteratively without adjusting the stator resistance when slip, efficiency or power factor becomes different
- Bug fixes (hp conversion, round-off error, mechanical vs. electrical power, motor vs. generator efficiency)
- The TACS section made smoother with less variables (kVAR, kWAT, PUVT, PUTM, Slip)
- Only relevant nodes presented in the icon (no field voltage node, only rotor winding node for wound rotor)
- No need to rerun the fitting when the type of initialization or compensation/prediction change

Example

Create double-cage IM model

Tuning of weight factors required to get rated current.

Machines

- The following types are supported
 - Universal machine
 - Type 59/58 synchronous machine
 - Type 56 induction machine

- Embedded, adapted Windsyn support
 - Manufacturer data input
 - Start-up facilities
 - Embedded controls (exciter, governor)

Type 56 machine

- Initial support in ATPDraw
 - Improvements required (TACS control, combination with UM)
- Brand new versions of ATP and PlotXY required
- More numerically stable (phase domain)
- Limitations on the mechanical side and in rotor coils

Transformer modeling

- Saturable Transformer
- BCTRAN

Ideal

Saturable transformer

Zigzag supported

BCTRAN

Automatic inclusion of external magnetization characteristic

Hybrid Transformer model - XFMR

- Topologically correct
- The model includes:
 - an inverse inductance matrix for the leakage description,
 - frequency dependent winding resistance,
 - capacitive coupling,
 - and a topologically correct core model with individual saturation and losses in legs and yokes. Triplex, 3,5, shell-form cores.
 - Fitting to test report data, given relative core dimensions.
- The user can base the transformer model on three sources of data:
 - <u>Design parameter</u>: specify geometry and material parameters of the core and windings.
 - <u>Test report</u>: standard transformer tests.
 - Typical values: typical values based on the voltage and power ratings.

Core representation

- Attached to the fictitious N+1th winding
- Topologically "correct" core model, with nonlinear inductances representing each leg and limb
 - Triplex
 - 3- and 5-legged core
- Flux linkage-current relation by Frolich equation and relative lengths and areas.
- Fitting to Test Report

Snapshots

Line/Cable modeling

- Line/Cable Constants, Cable Parameters
 - Bergeron, PI, JMarti, Semlyen, Noda(?)
- View
 - Cross section, grounding
- Verify
 - Frequency response, power frequency params.
- Line Check
 - Power freq. test of line/cable sections

Bergeron

PI

C JMarti
C Semlyen

Noda

Line Check

- The user selects a group in the circuit
- ATPDraw identifies the inputs and outputs (user modifiable)

Line Check cont.

 ATPDraw reads the lis-file and calculates the series impedance and shunt admittance

Latest news, Version 5.0 available from October 2006

Sponsored by BPA & EEUG

Vector graphics

- Improved zoom
- Larger, dynamic icon; RLC, transformer, switch...
- Individual selection area

Multi-phase nodes

- 1..26 phases, A..Z extension
- MODELS input/output X[1..26]
- Connection between *n*-phase and single phase
- 21 phases in LCC components

New file management

- Project file follows the PKZIP 2 format.
 Improved compression. acp-extension.
- Sup-file only used when a component is created.
- External data moved from files to memory.
- Individual, editable help strings for all components.

6-phase

Vector graphic editor

- Shapes (line, rectangle, polyline, polygon, ellipse, arc, pie, bezier, arrow)
- Text
- Nodes and frame
- Inspect by element id or layer
- Edit point, drag, edit values and properties
- Arrange, rotate/flip
- Grouping for move/copy

Example 1

Single phase to 3-phase connection

 The Splitter carries Transpositions the single phase connection not.

Example 2

Multi-phase groups

New component: Collector

Extended probe capabilities

- Steady-state performance
- Reads the LIS file
 - Monitor 1-26 phases
 - Display scaled steady-state values

Grouping

- Select a group (components, connections, text)
- Click on Edit|Compress
- Select external data/nodes

View ATP Library Tool

Ctrl+Z

Ctrl+Y

Undo Gridsnap

Redo

- Data with the same name appear only once in the input dialog
- Double click on name to change
- Nonlinear characteristic supported

Example Create 3-phase MOV

Example – Induction motor

- Induction motor fed by a pulse width modulated voltage source
- External mechanical load
- TFORTRAN components in TACS \$11..9, \$D1..9 (group becomes transparent and possible to copy)

Models

- Select Models|Default model
- Edit the Models text

 ATPDraw reads the Model text and identifies the circuit components with input/output/data

Multi-phase nodes (26) and indexed data supported

Example

MODEL FOURIER

INPUT X --input signal to be transformed

DATA FREQ {DFLT:50} --power frequency

n {DFLT:26} --number of harmonics to calculate

OUTPUT absF[1..26], angF[1..26], F0 --DFT signals

VAR absF[1..26], angF[1..26], F0, reF[1..26], imF[1..26],

5 mF

i, NSAMPL, OMEGA, D, F1, F2, F3, F4

5 uH

Multi-phase Models

New Model probe

Example – Transformer tester

- Pocket calculator
- RMS and Power calculation
- TTester: Averaging, printout

1:1

www.ntnu.no

ResultDir\model.1

87.5003664 .17121764 131.434758 93.7503926 .220581306 151.751037 100.000419 .35109472 173.603833 106.250445 .743208151 196.896531 112.500471 2.85953651 221.288092

ans Kr. Høidalen, NTNU-Norway