Delay Test

- Introduction and delay fault models
- Path Delay Fault
- Transition Delay Fault
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

HP Experiment [Maxwell 96]

- Delay testing = TDF + some PDF
- Delay testing detects detected unique CUTs
 - that escaped other testing

HP Experiment (Cont'd)

- Observations: How useful are path delay tests?
 - 2,000 longest paths chosen and only 148 paths have robust tests
 - Path delay fault tests only detect 18.5% of devices with delay faults

Stanford Experiment [EJM 00]

Center for Reliable Computing, Stanford

- Murphy Experiment
 - Goal: evaluate effectiveness of different test techniques
- Murphy Chip
 - LSI Logic 150k CMOS Gate Array
 - 25k Gates, all combinational CUTs
 - 120-Pin Ceramic PGA Package
 - L_{eff} = 0.7μm
 - 5 volt Nominal Supply Voltage
 - Total 5.5K tested
 - 116 defective chips found

SSF Test Results

				Escapes			
SSF	Fault	Cove-	Test	characte	slow	slow	
Tool	model	rage	length	rized	(1/3)	(1/30)	
1**	gate	100	427	4	7	9	
2*	gate	100	313	3	5	7	
3**	pin	100	857	3	6	7	
	gate	100	1,000	2	5	7	
4**	pin	100	456	6	8	9	
	gate	100	603	2	4	5	
5**	pin	100	466	6	9	9	
	gate	100	571	4	6	8	
6*	gate	100	547	3	7	7	
	gate	99	532	4	8	8	
	gate	98	490	6	9	10	
	gate	95	467	10	12	13	
	gate	90	427	15	17	18	
	gate	80	334	20	23	23	
Weighted random*	gate	100	62,921	2	7		
Weighted random**	gate	100	21,892	2	7		
Exhaustive				0	2	4	

^{*} academic ATPG tools

^{**} commercial ATPG tools

Non-SSF Test Results

- delay fault testing does not detect unique defective chips
 - Performance not particular impressive

			Escapes***		
Tool	Fault model	Test	Charact	Slow	# of CUTs
		length	erized	(1/3)	tested
	IDDQ	100	15		116
	VLV		3	4	116
1**	Transition	1,444	6	8	116
2*	Stuck open	1,610	4	9	116
3*	Gate delay fault		9	11	78§
	Gate delay fault, X->0		8	9	78§
4*	Robust path delay, X->0		5	5	60§
	Robust path delay, X->random		5	5	60§
5*	Robust path delay		3	5	60§
6**	Non-robust path delay		8	8	60§
	Non-robust path delay		2	5	60§
7	Verification		6	7	56§

^{*} academic ATPG tools **

^{**} commercial ATPG tools

^{***} Tests applied at characterized speed

[§] These patterns were not available for all of the CUT

Delay Test

- Introduction and delay fault models
- Path Delay Fault
- Transition Delay Fault
- Delay Test Application
- Circuit Model for Delay Test ATPG
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

Issues of Delay Tests

- Path selection is difficult
 - Too many paths in real circuits
 - e.g. 2x10²⁰ paths in 32-bit multiplier (ISCAS'85 benchmark C6288)
 - Usually choose timing critical paths
 - good to verify the speed, but not good for defect testing
- Need fast ATE to detect small delay faults
- Strobe time hard to determine
- Timing-aware ATPG is slow
- Many untestable paths
- Multi-cycle paths

Strobe Time Hard to Determine

- Strobe time hard to determine in advance
 - Fault size dependent
 - Process variation
- Example:

Delay Test

- Introduction and delay fault models
- Path Delay Fault
- Transition Delay Fault
- Delay Test Application
- Circuit Model for Delay Test ATPG
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

Many Untestable Paths

Difficulties in Delay Tests

- At-speed testing needs expensive ATE
- Path list hard to generate
 - Too many paths
- Small delay faults occur more frequent in nano-meter technologies
 - Need propagate fault through long paths
 - * Timing-aware ATPG is slow
- At-speed delay testing very difficult
 - How to apply high speed clock in test mode?
 - At-speed delay testing induces signal/power integrity problem
 - * IR drop, ground bounce, x-talk noise ...
- Overkill
 - Some IC fail delay testing but actually work in system
 - Test too many paths that never used in functional mode?

Delay Testing Recommendation

- Must do transition delay fault ATPG
- Then select some critical paths for PDF ATPG
 - Timing analyzer (STA) selected critical paths
 - e.g. >95% clock period
 - Designers' choice
 - * Remove special paths: e.g. multi-cycle paths
- If there are too many paths
 - Choose random samples that are not overlapped
- If they are not testable
 - Increase sample size or reduce threshold

Reference

- [Breuer 74] M.A. Breuer, "The effects of races, delays, and delay faults on test generation." IEEE Transactions on Computers 100.10 (1974): 1078-1092.
- [Barzilai 83] Z. Barzilai, "Comparison of AC self-testing procedures." International Test Conf., 1983.
- [lyengar 88] Iyengar, "Delay Test Generation: 1 Concepts And Coverage Metrics," IEEE International Test Conference, 1988.
- [Lin 87] C. J. Lin and S. M. Reddy, "On Delay Fault Testing in Logic Circuits, " IEEE Trans. on Computer-Aided Design, Vol. CAD-6, No. 5, September 1987, pp.694-703.
- [Levendel 87] Y. Levendel and P. R. Menon, "Transition Faults in Combinational Circuits: Input Transition Test Generation and Fault Simulation," Proceedings of International Fault Tolerant Computing Symposium, 1987.
- [Krstic 98] A Krstic, KT Cheng, *Delay Fault Testing for VLSI Circuits*, Kluwer Academic Publisher, 1998.
- [Pomeranz 94] I. Pomeranz, S.M. Reddy, "An Efficient nonenumerative Method to Estimate the Path Delay Fault Coverage in Combinational Circuits," TCAD VOL. 13, NO. 2, FEBRUARY 1994.
- [Smith 85] G. L. Smith, "Model for Delay Faults Based upon Paths," Proceedings of IEEE International Test Conference, 1985.