Estimating success of (own) and competitor's new products with pre-release buzz

Oliver Schaer Nikolaos Kourentzes Robert Fildes

39th International Symposium on Forecasting 17th of June 2019

Marketing Analytics and Forecasting

Do you know your competitor?

... they might know you already!

Google Trends data vs actual sales

→ Search traffic information available public!

Do you know your competitor?

- User-generated information about competitor products can provide vital information to your business (e.g. He et al. 2015; Kim et al. 2016)
 - Studies that include competitor intelligence from usergenerated content only descriptive
- One important event is the introduction of a own or competitor new product
 - pre-launch forecasting challenging (Goodwin et al. 2014)
 - Research suggests pre-release buzz (PRB) to be helpful
- → Interesting for competitor intelligence?

Forecasting with pre-release buzz

Study	Target variable	online source*	Measure	Brand variable	Intra-brand estimation	hold-out sample	Horizon [†]
Liu (2006)	Box office sales	FOM	Vol.; Val.			-	1 w
Dhar and Chang (2009)	Music album sales	BLG	Vol.			-	3 w
Foutz and Jank (2010)	Box office sales	VSX	_	X		x-brands	$1 \mathrm{w}$
Asur and Huberman (2010)	Box office sales	TWR	Vol.; Val.			-	1 d
Wang et al. (2010)	Box office sales	FOM	Vol.			x-brands	$2 \mathrm{w}$
Hann et al. (2011)	Music album sales	P2P	_			x-brands	$1 \mathrm{w}$
Mülbacher et al. (2011)	Ski sales	FOM	Vol.; Val.			-	1 y
Kulkarni et al. (2012)	Box office sales	GTD	Vol.			x-brands	1 w
Onishi and Manchanda (2012)	Box office sales	BLG	Vol.; Val.	X		x-brands	1 d
,	Cell phone service	BLG	Vol.; Val.	X		x-brands	1 d
Tian et al. (2014)	Box office sales	BAU	Vol.			x-brands	1 d
Xiong and Bharadwaj (2014)	Video game sales	BLG;	Vol.			x-brands	$3 \mathrm{w}$
• • • • • • • • • • • • • • • • • • • •		FOM;					
		GTD					
Craig et al. (2015)	Box office sales	FOM	Vol.			-	$1 \mathrm{w}$
Gelper et al. (2015)	Box office sales	TWR	Vol.; Val.			x-brands	1 d
Kim et al. (2015)	Box office sales	BLG	Vol.			x-brands	$1 \mathrm{w}$
Ding et al. (2017)	Box office sales	FBK	Vol.			-	$1 \mathrm{w}$
Divakaran et al. (2017)	Box office sales	BLG	Vol.			x-brands	$1 \mathrm{w}$
Kim and Hanssens (2017)	Box office sales	GTD;	Vol.; Vol.			x-brands	$1 \mathrm{w}$
. ,		BLG					
Schaer et al. (2019)	Video game sales	GTD	Vol.		X	i-brand	52 w
This study	Video game sales	GTD	Vol.	X	X	competitor	52 w

^{*} BAU = Baidu, BLG = Blog, FBK = Facebook, FOM = Forum, GTD = Google Trends, P2P = Peer-to-Peer Network, TWR = Twitter, VSX = Virtual Stock Exchange;

 $^{^{\}dagger}$ d = days, w = weeks, m = months, y = year.

Different ways of splitting sample

Randomised sample

Training Test

Different ways of splitting sample

Randomised sample

Training Test

Leave one brand out (cross-brand estimation)

Training Test

Brand	Brand	Brand	Brand	Brand
A	U	D	Е	F

Different ways of splitting sample

Possible ways to generate forecasts

Does Pre-release buzz add predictive value on estimating the product of competitor products?

Empirical evaluation

Dataset

 Global physical video game sales of 240 popular video games from VGChartz consisting of 23 publishers

Training & testing		Testing only		
Publisher	# Games	Publisher	# Games	
Capcom	16	Level 5	1	
Nintendo	18	Codemasters	2	
Ubisoft	30	Bethesda Softworks	3	
Electronic Arts	61	Eidos Interactive	1	
Take-Two Interactive	24	Square Enix	1	
Activision	23	Valve	1	
Microsoft Game Studios	13	Spike	2	
Sega	8	Konami Digital Entertainment	6	
Sony	7	MTV Games	1	
$\widetilde{\mathrm{THQ}}$	14	Deep Silver	1	
•		Namco Bandai Games	2	
		From Software	1	
		WB Games	4	

- Re-scaled weekly Google Trends data
 - Topic search on game title

Features overview

	Prediction models				
	Regression			Clus	tering
Features class	Prb	Pct		Classifier	Clustering
PRB features					
Volume	X	-		X	X
Buzz start	X	-		X	X
Trend	X	-		X	X
Bass par.	X	-		X	X
PCA	X	-		X	X
Product features					
Sales	-	-		-	X
Adoption	-	-		-	X
Gompertz par.	-	-		-	X
Reviews	-	-		-	X
Release November	X	X		X	X
Genre	X	X		X	X
# Sequel	X	X		X	X

we consider PRB from 1 to 26 weeks prior to release

Model estimation and benchmarking

Regression (Rg)	Clustering (CI)
Cross-validated Random Forest	Gower dissimilarity measure
Point forecasts	K-Medoids clustering (PAM)
	CV Random Forest classification
	Forecasts from cluster centroids

Benchmarks for intra-brand (i) and cross-brand (x)

- Product features only (iPctRg & xPctRg)
- Median of sample sales (iSlsMd & xSlsMd)

Geometric Relative Absolute Error (GMRAE) against iPctRG

GMRAE_{i,h} =
$$\sqrt[n]{\prod_{i=1}^{n} \left(\frac{AE_{i,r}}{AE_{i,b}}\right)}$$
, \checkmark Direct comparison against benchmark \checkmark Scale independent \checkmark Relatively robust against outliers

- ✓ Relatively robust against outliers

Performance against intra-brand benchmark (iPct)

	Modeltype		Forecast horizon		
S	d	е	First Week (FW)	End-of-Life (EoL)	
i	Prb	Rg	0.766	0.810	
i	Pct	Rg	1.000	1.000	
i	Sls	Md	1.083	1.026	
X	Prb	Rg	$\boldsymbol{0.562}$	$\boldsymbol{0.567}$	
X	Prb	$\overline{\text{Cl}}$	1.474	1.056	
\mathbf{X}	Pct	Rg	0.830	0.884	
X	Sls	$\overline{\mathrm{Md}}$	0.931	0.869	

 $^{^{}s}$ i = intra-brand, x = cross-brands

^d Prb = PRB feat., Pct = Product feat., Sls = Sales only

^e Rg = Regression, Cl = Clustering, Md = Median

Friedman Nemenyi test

→ competitor PRB significantly improves over any internal source

Sample size impact (against xPrbRg)

→ No direct impact of sample size visible if compared against Prb with cross- brands (full sample)

Conclusion

Competitor PRB signals add value:

- when combined with internal sales information
- no performance impact from sample size
- on video games data clustering does not add value

Free and easy to access source of competitive intelligence that allows to take protective actions against new product launches prior to launch!

Since there is predictive value further research

- to test suitability for market response model
- explore different markets if predictive value holds

Thank you!

o.schaer@lancaster.ac.uk

@oliverschaer
github.com/mamut86