Algorítmos e Programação

Aula 2 Prof.Daniel Calife

Tópicos

- Tipos de Dados
- Variáveis e Constantes
- Aritmética e Operadores
- Comandos de Entrada e Saida
- Exercícios

Introdução

Programa = Estrutura de Dados + Algorítmos

Estruturas de Dados

- A unidade básica de dados é o bit
 - bit = 0 ou 1;

- Bits formam os Tipos de Dados
 - Conjunto de valores que uma constante, variável ou expressão podem assumir.

Tipos de Dados Primitivos

Tipo de dado	Algumas operações possíveis	Exemplo de utilização
Inteiro	Soma, subtração, multiplicação, divisão, igualdade, etc. Usado para representar valores que não podem ter casas decimais.	número de filhos
Real	Soma, subtração, multiplicação, divisão, igualdade, etc. Usado para representar valores que podem ser fracionados (com casas decimais).	peso, estatura, salário
Caracteres	Igualdade, concatenação, etc. Usado para informações armazenadas como uma seqüência de caracteres contáveis de objetos	
Lógico	E, OU, NÃO Valores verdadeiro ou falso.	Formado, solteiro.
Ponteiro	Igualdade, soma, subtração, etc. Armazenam um endereço da memória do computador.	•

Tipos de Dados Primitivos – Java

Tipo	Descrição	
boolean	Pode assumir o valor <u>true</u> ou o valor <u>false</u>	
char	Caractere em notação <u>Unicode</u> de 16 bits. Serve para a armazenagem de dados alfanuméricos. Também pode ser usado como um dado inteiro com valores na faixa entre 0 e 65535.	
byte	Inteiro de 8 bits em notação de complemento de dois. Pode assumir valores entre -2^7 =-128 e 2^7 -1=127.	
short	Inteiro de 16 bits em notação de complemento de dois. Os valores possívels cobrem a faixa de -2 ⁻¹⁵ =-32.768 a 2 ¹⁵ -1=32.767	
int	Inteiro de 32 bits em notação de complemento de dois. Pode assumir valores entre -2 ³¹ =2.147.483.648 e 2 ³¹ -1=2.147.483.647.	
long	Inteiro de 64 bits em notação de complemento de dois. Pode assumir valores entre - 2^{63} e 2^{63} -1.	
float	Representa números em notação de ponto flutuante normalizada em precisão simples de 32 bits em conformidade com a norma IEEE 754-1985. O menor valor positivo represntável por esse tipo é 1.40239846e-46 e o maior é 3.40282347e+38	
double	Representa números em notação de ponto flutuante normalizada em precisão dupla de 64 bits em conformidade com a norma IEEE 754-1985. O menor valor positivo representável é 4.94065645841246544e-324 e o maior é 1.7976931348623157e+308	

Tipos de Dados Primitivos (C#)

Tipo	Tamanho em Bits	Valores
bool	8	true ou false
char	16	\u0000' a '\uFFFF
byte	8	0 a 255
sbyte	8	-128 a 127
short	16	-32768 a 32767
ushort	16	0 a 65535
int	32	-2147483648 a 2147483647
uint	32	0 a 4294967296
		-9223372036854775808 a
long	64	9233372036854775807
ulong	64	0 a 18446744073709551615
decimal	128	1 X 10e-28 a 7,9 x 10e 28
float	32	1,5 X 10e-45 a 3,4 x10e38
double	64	5,0x10e-324 a 1,7x10e308

Variáveis e Constantes

Constante

- Valor fixo, numérico ou não, que deve permanecer inalterado no decorrer da execução do algoritmo.
- Exemplos: 5, "Não Fume", 2527, -0.58, "R\$ 1.00", Falso.

Variável

- Valor que pode sofrer alteração no decorrer da execução do algoritmo.
- Exemplos: a cotação do dólar, o peso de uma pessoa, o índice da inflação.

Identificadores

- Letras, números, underline
 - Não pode começar com um número
 - Case sensitive
 - Variáveis com primeira letra minúscula, constantes todas letras maíusculas e classes primeira letra maíuscula
- Exemplos:
 - nome, score, Carro, NALIENS, media

Definição de Variáveis

Exemplo:

- inteiro numero;
- inteiro idade, num2;
- real salario;

- caracter nome;
- logico resposta;

Inicialização de Variáveis

Existem várias maneiras de atribuir valores a variáveis:

Dizendo no algoritmo qual o valor a variável deve assumir;
 real preco

```
preco = 12.99
```

• Definir que uma variável assuma o valor de uma outra variável;

```
inteiro n1,n2
n1 = 10
n2 = n1
```

• Atribuir uma variável o resultado de uma expressão;

```
real a,b,c
a = 12.05
b = 5.20
c = a*b
```

Aritmética e Operadores

Operador	Operação	Prioridade
+	Soma	5°
_	Subtração	5°
*	Multiplicação	4 º
/	Divisão	4 º
% ou mod	Resto de uma divisão inteira	3°

- Desenvolver a lógica de um programa que efetue o cálculo da área de um círculo.
- (area = $pi * raio^2$)

Comandos de Entrada e Saída

- Entrada, Processamento e Saída
 - Leia, entrada
 - Escreva, saída

1 -Dada a entrada de 3 números calcule a média dos três.

- 2. Crie um programa que leia um número real (float) e imprima o seu triplo.
- 3. Crie um programa que calcule a área de um triângulo dados a base e altura reais, sendo A = b * h / 2
- 4. Crie um programa que converta horas e minutos somente em minutos. Ex: 01:30 = 90 minutos

- 5. Dado um número de três algarismos, construa outro número de quatro algarismos de acordo com as seguintes regras:
 - a) Os três primeiros algarismos são mantidos;
 - b) O quarto algarismo é um dígito de controle calculado a partir do número dado, da seguinte forma: soma-se o primeiro com o segundo algarismos, multiplica-se por dois e soma-se com o terceiro algarismo multiplicado por seis;
 - c) Finalmente, calcular o dígito de controle obtido com o resto da divisão da etapa B por nove.

Linguagem

Ambiente de programação e hello world