	$A = egin{bmatrix} 3 & 3 & -5 \ 3 & 2 & -10 \ 1 & 1 & -7 \ -4 & -4 & 11 \end{bmatrix}, b = egin{bmatrix} 2 & 7 & 2 & -3 & -4 \end{bmatrix}$
In []:	(1) Generate arrays for A matrix and b vector using NumPy library A = np.array([[1, 1, -2],[3, 3, -5],[3, 2, -10], [1,1,-7], [-4,-4,11]]) b = np.array([2, 7, 2, -3, -4]) print('\n','1. A is')
	<pre>print(\n , 1. A is) print(\n', '2. b is') print(b) 1. A is [[1 1 -2]</pre>
	[3 3 -5] [3 2 -10] [1 1 -7] [-4 -4 11]] 2. b is [2 7 2 -3 -4]
In []:	(2) Transpose A and apply matrix multiplication with the original matrix(A^TA)
	ATA = np.dot(transA,A) print('\n','2. Trans(A) * A is') print(ATA) 1. Transpose A is [[1 3 3 1 -4]
	<pre>[1 3 2 1 -4] [-2 -5 -10 -7 11]] 2. Trans(A) * A is [[36 33 -98] [33 31 -88] [-98 -88 299]]</pre>
	(3) Calculate x as the solution of $A^TAx = A^Tb$ $x = (A^TA)^{-1}A^Tb$
TU []:	<pre>ATAinv = np.linalg.inv(ATA) print('\n','1. inverse(trans(A)*A) is') print(ATAinv) B = np.dot(transA,b) print('\n','2. trans(A)*b is') print(B)</pre>
	<pre>x = np.dot(ATAinv,B) print('\n','3. the solution x is') print(x) 1. inverse(trans(A)*A) is [[2.03604806 -1.65954606 0.17890521] [-1.65954606 1.54873164 -0.08811749]</pre>
	[0.17890521 -0.08811749 0.03604806]] 2. trans(A)*b is [42 40 -82] 3. the solution x is [4.46194927 -0.52603471 1.03337784]
	(4) Calculate the norm of Ax –b with line-by-line coding and using NumPy library. Let $X=Ax-b$, $L_p=(\Sigma_i^n X(i) ^p)^{1/p}$
In []:	<pre>print('\n 1. Line-by-Line coding') diff_mat = np.dot(A, x) - b print(' (1) Ax - b is') print(diff_mat) # L1 norm</pre>
	<pre>norm1 = sum(abs(diff_mat)) print('\n (2)-1. 1-norm :', norm1) # L2 norm normsq = np.dot(diff_mat, diff_mat) print(' (2)-2. (Ax - b)*(Ax - b) = ', normsq) norm2 = np.sqrt(normsq)</pre>
	<pre>print(' 2-norm :', norm2) # infinity-norm norminf = abs(max(diff_mat)) print(' (2)-3. infinity-norm :', norminf) # Using Numpy Library</pre>
	<pre>print('\n 2. Using numpy norm') norm1_ = np.linalg.norm(diff_mat,1) norm2_ = np.linalg.norm(diff_mat,2) norminf_ = np.linalg.norm(diff_mat,np.inf) print(' (1) 1-norm is',norm1_) print(' (2) 2-norm is',norm2_)</pre>
	<pre>print(' (3) infinity-norm is',norminf) 1. Line-by-Line coding (1) Ax - b is [-1.30841121e-01 -3.59145527e-01 3.55271368e-14 -2.97730307e-01 -3.76502003e-01] (2)-1. 1-norm : 1.16421895861152</pre>
	(2)-2. (Ax - b)*(Ax - b) = 0.37650200267022654 2-norm : 0.6135975901763521 (2)-3. infinity-norm : 3.552713678800501e-14 2. Using numpy norm (1) 1-norm is 1.16421895861152 (2) 2-norm is 0.6135975901763521
	(3) infinity-norm is 3.552713678800501e-14 2. (Drawing Graps) A two-dimensional Ackley function, $f(x,y)$, has many local minima and one global minimum in the domain, $(x,y) \in [-4,4] \times [-4,4]$.
	$f(x,y)=-a\exp{(-b\sqrt{0.5(x^2+y^2)})}-\exp{(0.5(cos(cx)+cos(cy)))}+a+\exp{(1)}$ where $a=20,b=0.2,$ and $c=2\pi.$
In []:	<pre>def Ackley(x, y): a = 20 b = 0.2</pre>
In []:	<pre>c = 2*np.pi f1 = -a * np.exp(-b * np.sqrt(0.5 * (x**2 + y**2))) f2 = np.exp(0.5 * np.cos(c*x) + np.cos(c*y)) f = f1 - f2 + a + np.exp(1) return f</pre> lb = -4 ub = 4
	<pre>ub = 4 N = 1001 x = np.linspace(lb,ub,N) y = np.linspace(lb,ub,N) X, Y = np.meshgrid(x, y) Z = Ackley(X, Y)</pre>
In []:	<pre># Set plot params plt.rcParams['figure.figsize'] = [10,10] plt.rcParams['font.size'] = 15 plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['axes.linewidth'] = 2 plt.rcParams['lines.linewidth'] = 2 plt.rcParams['xtick.direction'] = 'out'</pre>
	<pre>plt.rcParams['ytick.direction'] = 'out' plt.rcParams['xtick.minor.visible'] = True plt.rcParams['ytick.minor.visible'] = True plt.rcParams['xtick.major.size'] = 7 plt.rcParams['ytick.major.size'] = 7 plt.rcParams['xtick.minor.size'] = 3.5 plt.rcParams['ytick.minor.size'] = 3.5</pre>
	<pre>plt.rcParams['xtick.major.width'] = 1.5 plt.rcParams['ytick.major.width'] = 1.5 plt.rcParams['xtick.minor.width'] = 1.5 plt.rcParams['ytick.minor.width'] = 1.5 plt.rcParams['xtick.top'] = True plt.rcParams['ytick.right'] = True</pre>
In []:	<pre>from mpl_toolkits.axes_grid1 import make_axes_locatable fig = plt.figure() cont = plt.contourf(X,Y,Z, cmap='magma') plt.xlabel('X') plt.ylabel('Y') cs=plt.contour(X,Y,Z,colors='k')</pre>
Out[]:	
	2D contour of the Ackley function
	1 8 8
	-1 -1 -10 -10 -10 -10 -10 -10 -10 -10 -1
	$-4 \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$-4 \qquad -3 \qquad -2 \qquad -1 \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4$ (2) Plot a 3D graph of the Ackley function on $(x,y) \in [-4,4] \times [-4,4]$.
In []:	<pre>from mpl_toolkits.mplot3d import Axes3D fig= plt.figure() ax=fig.add_subplot(111, projection='3d') surf=ax.plot_surface(X,Y,Z, cmap='magma') plt.xlabel('X') plt.ylabel('Y')</pre>
<pre>In []: Out[]:</pre>	<pre>from mpl_toolkits.mplot3d import Axes3D fig= plt.figure() ax=fig.add_subplot(111, projection='3d') surf=ax.plot_surface(X,Y,Z, cmap='magma') plt.xlabel('X') plt.ylabel('Y') plt.title('3D graph of the Ackley function') fig.colorbar(surf, shrink=0.5, aspect=10)</pre>
	<pre>from mpl_toolkits.mplot3d import Axes3D fig= plt.figure() ax=fig.add_subplot(111, projection='3d') surf=ax.plot_surface(X,Y,Z, cmap='magma') plt.xlabel('X') plt.ylabel('X') plt.ylabel('Y') plt.title('3D graph of the Ackley function') fig.colorbar(surf, shrink=0.5, aspect=10) <matplotlib.colorbar.colorbar 0x7f9ba5713c90="" at=""></matplotlib.colorbar.colorbar></pre>
	<pre>from mpl_toolkits.mplot3d import Axes3D fig= plt.figure() ax=fig.add_subplot(111, projection='3d') surf=ax.plot_surface(X,Y,Z, cmap='magma') plt.xlabel('X') plt.ylabel('X') plt.ylabel('Y') plt.title('3D graph of the Ackley function') fig.colorbar(surf, shrink=0.5, aspect=10) <matplotlib.colorbar.colorbar 0x7f9ba5713c90="" at=""></matplotlib.colorbar.colorbar></pre>
	from mpl_toolkits.mplot3d import Axes3D fig= plt.figure() ax=fig.add_subplot(111, projection='3d') surf=ax.plot_surface(X,Y,Z, cmap='magma') plt.xlabel('X') plt.ylabel('Y') plt.vitle('3D graph of the Ackley function') fig.colorbar(surf, shrink=0.5, aspect=10) <matplotlib.colorbar.colorbar 0x7f9ba5713c90="" at=""> 3D graph of the Ackley function</matplotlib.colorbar.colorbar>
	from mpl_toolkits.mplot3d import Axes3D fig= plt.figure()
	from mpl_toolkits.mplot3d import Axes3D (ig= plt.figure() ax=fig.add subplot(ill, projection='3d') ax=fig.add subplot(ill, projection='3d') ax=fig.add subplot(ill, projection='ad') plt.ylabel('X') plt.ylabel('Y') plt.titlo('3D graph of the Ackley function') fig.colorbar(surf. shrink=0.5, aspect=10) cmatplot1lb.colorbar.Colorbar at 0x7f9ba5713c9q> 3D graph of the Ackley function 3D graph of the Ackley function
Out[]:	from mpl_toolkits.mplot3d import Axea3D figs pts.figure()
Out[]:	True mpi_too_kita.mpiot3d import Ames30 True pli_fiqure() cartin_add_subploc(11), projection=3d') cartin_add_subploc(11), projection=3d') cartin_add_subploc(11), projection=3d') pli_fi_add_subploc(11), projection=3d') pli_fi_add_subploc(12) graph of the Ackley function') fig.culacbar(sucf_subrind=0.5, supect=10) Cartin_add_subploc(11) projection defended d
Out[]: In []:	From mpl. totalkits.mplotld import Axemido figs plt.figure() ax-lip.acd_aumpoid(lll, projection='3d') ax-lip.acd_aumpoid(lll, projection='3d') plt.xishell(N') plt.xishell(N') plt.xishell(N') plt.xishell(N') plt.xishell(N') plt.xishell(N') plt.xishell(N') plt.xishell(N') approximate a starffont for acking function 3D graph of the Ackley function 3D graph of the Ackley function (a) Find the global minimum and its position. global min = rp.min(N)
Out[]: In []:	### from mp1 toolstita.mpiolota tapoes Annain #### six sizement ### si
Out[]: In []:	### From mpl_colition.mptolaid impact known in the product of the
Out[]: In []:	### (### #
Out[]: In []:	### (### 1906)
Out[]: In []:	From mp.1 toolattis.copools import hereals (and info.liques() (and info.liques() (blood info.liques() (colored) (col
Out[]: In []:	Case
Out[]: In []:	from not vertilent anythold appear anish. ### Committee of the Committee
Out[]: In []:	The state of the state 1
Out[]: In []:	the statistics of the statisti
Out[]: In []:	(3) First the splatna rinimum and its position. (3) First the splatna rinimum and its position. (4) I amount of the splatna rinimum and its position. (5) I amount of the splatna rinimum and its position. (6) I amount of the splatna rinimum and its position. (7) First the splatna rinimum and its position. (8) First the splatna rinimum and its position. (8) First the splatna rinimum and its position. (9) First the splatna rinimum and its position. (10) First the splatna rinimum and its position. (11) First the splatna rinimum and its position. (12) First the splatna rinimum and its position. (13) First the splatna rinimum and its position. (14) First the splatna rinimum and its position. (15) First the splatna rinimum and its position.
Out[]: In []:	The first the global minimum and to position (1) and the global minimum and the global
Out[]: In []:	Text
Out[]: In []:	Size of the product o
Out[]: In []:	Section of the sectio
Out[]: In []:	Fig. 19th the actional account of the control of
<pre>In []:</pre>	Fig. 19th the actional account of the control of
<pre>In []:</pre>	Superior Designation (Control of Section 1997) The state of the state
<pre>In []:</pre>	Commence of the control of the contr
<pre>In []:</pre>	CE Pled the gloss minutes and to peace to the control of the contr
<pre>In []:</pre>	Commence of the control of the contr
<pre>In []:</pre>	Equivalence of the second seco

HW1. NumPy and Matplotlib

2022313047 Boyeon,Kim

import matplotlib.pyplot as plt

Let consider a matrix \boldsymbol{A} and a vector \boldsymbol{b} ,

import numpy as np

1. (Matrix Arithmetic)

In []: # Library