

Introduction to Machine Learning (CS419M)

Lecture 13:

- Convolutional Neural Networks

- Fully connected (dense) layers have no awareness of spatial information
- Key concept behind convolutional layers is that of kernels or filters
- Filters slide across an input space to detect spatial patterns (translation invariance) in local regions (locality)

1 _{×1}	1 _{×0}	1 _{×1}	0	0
O _{×0}	1 _{×1}	1 _{×0}	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

32x32x3 image

5x5x3 filter

activation maps

Convolutional Neural Network

What do these layers learn?

Stride=1, No padding

Stride=1, No padding

Stride=1, Padding, P=1

Stride=1, No padding

Stride=1, Padding, P=1

Stride=1, Padding, P=2

Stride=1, Padding, P=2

Convolution Layers: Summary

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - \circ their spatial extent F,
 - \circ the stride S,
 - \circ the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $O D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.

Summary from: http://cs231n.github.io/convolutional-networks/

Receptive Field

Receptive Field

Pooling Layer

- Why pooling?
 Reduce the size of the representation, speed up the computations and make the features a little more robust.
- Max pooling is popularly used in CNNs.

Pooling Layer

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires two hyperparameters:
 - \circ their spatial extent F,
 - \circ the stride S,
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$D_2 = D_1$$

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$
 // scale and shift

- γ and β are learned parameters used across all batches
- At test time: Individual inputs, no mini-batch.
 - First, normalize inputs using training population statistics.

$$\hat{x} \leftarrow \frac{x - \mu_{\text{pop}}}{\sqrt{\sigma_{\text{pop}}^2 + \epsilon}}$$

• Then, scale and shift.

$$\hat{y} \leftarrow \gamma \hat{x} + \beta$$

Convolutional Architectures

- Block that can be repeated: Convolutional layer, followed by non-linearity (e.g. ReLU) + Max pooling
- Fully connected layers before classification

LeNet-5

- One of the first successful CNN architectures
- Used to classify images of hand-written digits

AlexNet

- Winner (by a large margin) of the ImageNet challenge in 2012.
- Much larger than previous architectures.