

《中山大学授予学士学位工作细则》第六条 考 试 作 弊 不 授 予 学 士 学 位

计算机科学系 2012 第二学期

《操作系统原理》期末考试试题(A)

任课教师:凌应标&李才伟 考试形式:闭卷 考试时间:2小时	
年级: 11 班别: 1~3 专业: 计科 姓名: 学号: 成绩	_
一、单项选择题(本大题共 10 小题,每小题 1 分,共 10 分)	
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选过	或
未选均无分。	
1、在双处理机的机器中,若有4个用户进程,则处于就绪状态的用户进程的个数最多为()。	
A. 1 B. 2 C. 3 D. 4	
2、在动态分区的放置算法中,性能最差的算法通常是()。	
A. 首次适配 B. 邻近适配 C. 最佳适配 D. 其他适配	
3、竟态指一组并发执行的进程产生了不可预测的结果,它发生的最关键的原因是一组进程()。	
A. 共享内存的代码 B. 共享内存的变量 C. 共享CPU D. 共享系统总线	
4、在进程短程调度的下列算法中,可以实现的为()。	
A. 最短进程优先SPN B. 最短剩余时间SRT C. 最高响应比优先HRRN D. 时间片轮转RR	`
5、一组进程共享一批资源,资源按序分配法可以防止在这批资源上发生死锁,因为这种方法破坏了()。
A. 死锁的所有必要条件 B. 互斥条件 C. 占有且等待条件 D. 环路等待条件	
6、在请求页式存储管理中,如果采用()算法进行页替换,则可能产生系统抖动(或颠簸)现象。	
A. 最近最少使用 LRU B. 先进先出 FIFO C. 二次机会 CLOCK D. 最优替换 OPT	
7、在处理器调度中,如果采用()去选作业,则计算时间长的进程可能产生长时间等待。	
A. 先来先服务算法 B. 计算时间短优先算法 C. 最高响应比优先算法 D. 时间片轮转算法	
8、在磁盘调度算法中,如果采用()算法,完成一批磁盘读写操作的总移臂量最小。	
A. 先来先服务 B. 最小移臂优先 C. 电梯调度 D. 随机调度	
9、在I/O数据传输控制方式的发展过程中,如果采用(),则CPU利用率最差。	
A. 程序直接控制式I/O B. 中断方式I/O C. DMA式I/O D. 通道式式I/O	
10、如果采用()组织文件存储,则随机存取效率最差。	

A. 连续文件 B. 链接文件 C. 索引文件 D. 哈希文件

	多项选择题(本大题共5小品)	新 気小断 3 分	#: 10 公\
<u> </u>		凶, 耳小丛 4 刀;	, , , , , , , , , , , , , , , , , , ,

在每小题列出的五个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选、少选或未选均无分。

1, CDE 2, CD 3, BCDE 4, BCDE 5,	DE 2 BCE	RCDE	4、	BCDE	3.	CD	2、	CDE	1
---------------------------------	----------	------	----	------	----	----	----	-----	---

- 1、下面关于系统进程和用户进程的说法中正确的是()。
 - (A) 系统进程和用户进程是进程的两种不同结构;
 - (B) 调用操作系统功能的进程称为系统进程;
 - (C) 完成用户功能的进程称为用户进程;
 - (D) 系统进程实现操作系统功能;
 - (E) 系统进程可以运行在用户态。
- 2、关于操作系统结构,下列说法正确的有()。
 - (A) 单体内核易于扩展新功能
 - (B) 分层内核下层模块可以调用上层模块
 - (C) 微内核的系统进程之间不能互相调用
 - (D) 微内核具有更好的安全性
 - (E) 微内核具有更高的运行效率
- 3、关于有挂起状态的进程模型,下列说法正确的有()。
 - (A) 进程必定要经历就绪和阻塞状态
 - (B) 运行的进程可以转入阻塞状态
 - (C) 阻塞的进程可以转入挂起状态
 - (D) 挂起的进程不能转入执行状态
 - (E) 就绪的进程可以转入挂起状态
- 4、关于 I/O 的缓冲,下列说法正确的有()。
 - (A) 缓冲技术可提高设备利用率
 - (B) 缓冲技术不能减少 I/O 传输数据总量
 - (C) 缓冲技术允许进程处理数据与设备传输数据的并行
 - (D) 增加缓冲区有利于提高命中率
 - (E) 操作系统采用软件方法实现缓冲技术
- 5、关于虚拟存储器,下列说法正确的有()。
 - (A) 虚拟存储器大小取决于辅存的容量,与物理内存的大小无关
 - (B) 虚拟存储器必须采用动态地址转换
 - (C) 虚拟存储器必须采用部分加载方式
 - (D) 虚拟存储器必须采用不连续分配方式

(E) 虚拟存储器结构与物理内存结构无关

三、填空题(本大题共5小题,每空3分,共15分)

- 1、 如果一个在设备 A 上 I/O 均匀分布于进程的 CPU 占用率为 30%,另一个在设备 B 上 I/O 均匀分布于进程的 CPU 占用率为 20%,这两个进程在单个(单核)CPU 上并发执行,忽略 OS 执行占用的 CPU 时间,且设备 A 与 B 的控制器完全独立,则 CPU 利用为 %。
- 2、 如果进程 A 有 2 条顺序指行的指令,进程 B 有 3 条顺序指行的指令,那么在 SMP 结构两个 CPU 的机器 内并发执行这两个进程,不同的相对时序有 种。
- 3、 在基本的进程状态模型中,一个执行中的进程可能进入的下一状态有 种
- 4、 在分页管理中,如果页尺寸为 1K,逻辑地址是 4320 对应的页号为____。
- 5、 如果在 CPU 和内存之间设立了缓存,缓存命中率为 0.9,读缓存时间为 1,而读内存的时间为 100,则 CPU 访问内存的平均时间为 。

四、简答题(本大题共5小题,每小题4分,共20分)

- 1、中断技术在操作系统中的作用是什么?
- 2、进程切换的主要工作有哪些?
- 3、为什么多线程比多进程更有效率?
- 4、用 EXCH 指令如何实现互斥?
- 5、进程为什么不直接使用物理地址空间?

五、应用分析题(共4题,共45分)

1、(10 分)某操作系统中,支持信号量机制,且用系统调用 ccprint 实现向屏幕输出一个汉字,ccprint 是原语。例如进程或线程中调用 ccprint('汉')可在屏幕当前位置显示一个'汉'字。如果想利用 4 个进程,分别输出'爱'、'我'、'中'、'大'这四个汉字,协作完成在屏幕上输出"我爱中大"和"爱我中大"这样的信息,不要输出其它结果,如"我中大爱"或"中爱大我",诸如此类。请描述如何利用信号量实现这 4 个进程的同步,要求说明用到几个信号量,每个信号量的初值是什么,每个进程对应的程序中如何调用 P 操作(即 semWait 操作)或 V 操作(即 semSignal 操作)。可参考下面的程序框架来回答问题。

Program printAWZD;

Var

semaphore /*在这里信号量声明并初始化 */

Procedure printA();

Begin

/*可以在这里对信号量操作进行调用 */ ccprint('爱');

/*可以在这里对信号量操作进行调用 */

End

Procedure printW();

Begin

/*可以在这里对信号量操作进行调用 */ccprint('我');

/*可以在这里对信号量操作进行调用 */

End

Procedure printZ();

Begin

/*可以在这里对信号量操作进行调用 */ ccprint('中');

/*可以在这里对信号量操作进行调用 */

End

Procedure printD();

Begin

/*可以在这里对信号量操作进行调用 */ ccprint('大');

/*可以在这里对信号量操作进行调用 */

End

Begin

/*主程序 创建 4 个进程*/

Parbegin

printD();/*创建输出'大'字的进程*/ printZ();/*创建输出'中'字的进程*/ printW();/*创建输出'我'字的进程*/ printA();/*创建输出'爱'字的进程*/

End

Parend

While(1) {

- 2、(15分)中大东校区拟开发校园游,方案规定:
 - 1) 为了不影响教学,每天最多100个游客可以在校园内观光。
- 2) 统一在校门处设立触屏联网自助入口卡机和出口卡机各一个,每个游客在进入时自行操作,入口和 出口卡机在检验游客的有效证件后放行,一次一人,自觉排队。
- 3)有一辆 12 座新款电动观光车,规定游客必须坐车观光,司机在满座后才开车,车未停定,不准下车。在方案实施前,学校管理层要求编程模拟该方案。请你用进程模拟某一天宋江带领 108 条好汉来中大东校区观光及司机的活动,用信号量和相关操作实现它们的同步协作。可参考下面的程序框架回答问题。必要时,可以在程序的任意行增加对信号量的操作。

```
Program Solution;
Var
semaphore /*在这里信号量声明并初始化 */
Procedure Visitor(i);
Begin
ReadVisitorGuid();/*了解大屏幕上的观光说明*/
DIY_CheckIn(); /*检入*/
GetOnCar();/*上车等待*/
Visiting(); /*随车观光:自由拍照、吃小食* /
GetOffCar();/*观光结束,下车*/
DIY_CheckOut();/*检出*/
End

Procedure Driver();
Begin
```

```
/*等待座满*/
Start_Car();
VisitRouteDriving();
StopCar();
}
End

Begin
/*主程序 创建 108 个游客进程和 1 个司机进程*/
Parbegin
For(i=1;i<=108;i++)/*创建 108 个游客进程*/
Visitor(i);
Driver();
Parend
End
```

- 3、(10 分)在**请求分页**储存管理系统中,设一个作业访问页面的序列为 1、2、3、4、3(5)、2、1、4、3、5、4、3、2、1、5。设分配给该进程的存储页框有 4 块,且最初未装入任何页。试给出 LRU 算法和 Clock 算法的工作过程描述,并注明缺页情况和计算缺页率。
- 4、(10分)某 FAT12文件系统中每个文件控制块(目录项)信息有32字节,根目录最多224项,磁盘块大小512字节。回答下列问题:
 - 1) 在根目录中检索一个条目时,所读磁盘块的数量范围和平均值各是多少?
- 2) 如果采用 3 层的层次目录,且各目录中的文件目录项数量都是 224 个。在检索第三层目录中的一个条目时,所读磁盘块的数量范围和平均值各是多少?

参考答案

- 一、单项选择题(本大题共 10 小题,每小题 1 分,共 10 分)1、C(D) 2、C 3、B 4、D 5、D 6、B 7、B 8、B 9、A 10、A(B)
- 二、多项选择题(本大题共5小题,每小题2分,共10分)
- 1, CDE 2, CD 3, BCDE 4, BCDE 5, BCE
- 三、填空题(本大题共5小题,每空3分,共15分)
- 1, 44 = 30+20*0.7=20+30*0.8 2, 10 3, 3(2) 4, 4 5, 11(10.9)(1*0.9+(100*0.1+1*0.1)=11)

四、简答题(本大题共5小题,每小题4分,共20分)

- 1、提高 CPU 的利用率、OS 获取 CPU 的控制权(进程调度)、系统调用
- 2、保护处理器上下文环境、更新当前处于运行态进程 PCB 的控制信息并修改状态、将该进程 PCB 挂入相应 队列、选择一个就绪进程、更新所选进程 PCB(包括状态)、更新存储管理数据结构(涉及地址转换)、恢复被 选中进程的处理器上下文环境
- 3、线程不拥有资源,且与进程的其他有线程共享进程的代码和地址空间,进程切换的开销小
- 4、门闩 bolt=0:临界区无进程、bolt=1:只有 key=0 的进程在临界区。只有发现 bolt=0 的进程才能进入临界区。算法的本质:bolt+ Σ keyi = n。参考代码:

```
const int n= /* number of processes */
int bolt;
void p(int i) {
  int keyi=1;
  while (true) {
    do exchange(keyi, bolt);
    while (keyi!=0);
    /* critical section */

    5、程序重定位、虚拟内存管理
```

五、应用分析题(共4题,共45分)

```
1、
Program printAWZD;
Var
semaphore a=0, w=0, z=0;

Procedure printA();
Begin
ccprint('爱');
V(a);
End
```

```
Procedure printW();
Begin
    ccprint('我');
    V(w);
End

Procedure printZ();
Begin
    P(a); P(w);
    ccprint('中');
```

```
Begin
   V(z);
End
                                                    /*主程序 创建 4 个进程*/
                                                    Parbegin
Procedure printD();
                                                       printD();/*创建输出'大'字的进程*/
Begin
                                                       printZ();/*创建输出'中'字的进程*/
   P(z);
                                                       printW();/*创建输出'我'字的进程*/
   ccprint('大');
                                                       printA();/*创建输出'爱'字的进程*/
End
                                                    Parend
                                                 End
2、
Program SolutionA;
                                                    GetOffCar();/*观光结束,下车*/
Var
                                                    V(sSeatOnCar);
   semaphore sVisitorCount=100;
                                                    V(sVisitorCount);
                                                    DIY CheckOut();/*检出*/
   semaphore
             sSeatOnCar=12;
   semaphore sVisitorOnCar=0;
                                                 End
   semaphore sEndStop=0;
                                                 Procedure Driver();
Procedure Visitor(i);
                                                 Begin
Begin
                                                    while(1) {
   ReadVisitorGuid();/*了解大屏幕上的观光说明*/
                                                      /*等待座满*/
   P(sVisitorCount);
                                                       for(int i=0; i<12; i++) P(sVisitorOnCar);
   DIY CheckIn(); /*检入*/
                                                       Start Car();
   P(sSeatOnCar);
                                                       VisitRouteDriving();
   GetOnCar();/*上车等待*/
                                                       StopCar();
   V(sVisitorOnCar);
                                                       for(int i=0; i<12; i++) V(sEndStop);
   Visiting(); /*随车观光: 自由拍照、吃小食、说唱*
   P(sEndStop);
                                                 End
Begin
   /*主程序 创建 108 个游客进程和 1 个司机进程*/
   Parbegin
           for(int i=1; i<=108; i++)/*创建 108 个游客进程*/
                 Visitor(i);
           Driver();
   Parend
End
3、
LRU:
```

1	2	3	4	3	2	1	4	3	5	4	3	2	1	5
1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
	2	2	2	2	2	2	2	2	5	5	5	5	1	1
		3	3	3	3	3	3	3	3	3	3	3	3	3
			4	4	4	4	4	4	4	4	4	4	4	5
X	X	X	X						X			X	X	X

缺页率: 8/15 (4/15)

CLOCK:

1	2	3	4	3	2	1	4	3	5	4	3	2	1	5
1*	1*	1*	→1*	→ 1*	→ 1*	→1*	→1*	→ 1*	5*	5*	5*	5*	5	5*
→	2*	2*	2*	2*	2*	2*	2*	2*	→2	→2	→2	→ 2*	1*	1*
	→	3*	3*	3*	3*	3*	3*	3*	3	3	3*	3*	→3	→3
		→	4*	4*	4*	4*	4*	4*	4	4*	4*	4*	4	4
X	X	X	X						X				X	

缺页率: 6/15 (2/15)

4、

224*32/512=14

- 1) 范围 1~14 块,平均(1+14)/2 = 7.5 块
- 2) 范围 3*(1~14) = 3~42 块,平均(3+42)/2 = 3*7.5 = 22..5 块