Lecture 7: Moments, inequalities, m.g.f. and ch.f.

If EX^k is finite, where k is a positive integer, EX^k is called the kth moment of X or P_X . If $E|X|^a < \infty$ for some real number a, $E|X|^a$ is called the ath absolute moment of X or P_X . If $\mu = EX$ and $E(X - \mu)^k$ are finite for a positive integer k, $E(X - \mu)^k$ is called the kth central moment of X or P_X .

Variance: $E(X - EX)^2$

$$X = (X_1, ..., X_k), EX = (EX_1, ..., EX_k)$$

$$M = (M_{ij}), EM = (EM_{ij})$$

Covariance matrix: $Var(X) = E(X - EX)(X - EX)^{\tau}$

The (i, j)th element of Var(X), $i \neq j$, is $E(X_i - EX_i)(X_j - EX_j)$, which is called the covariance of X_i and X_j and is denoted by $Cov(X_i, X_j)$.

Var(X) is nonnegative definite

$$[Cov(X_i, X_j)]^2 \le Var(X_i)Var(X_j), \quad i \ne j$$

If $Cov(X_i, X_i) = 0$, then X_i and X_i are uncorrelated

Independence implies uncorrelation, not converse

If
$$Y = c^{\tau}X$$
, $c \in \mathbb{R}^k$, and X is a random k-vector, $EY = c^{\tau}EX$ and $Var(Y) = c^{\tau}Var(X)c$.

Three useful inequalities

Cauchy-Schwartz inequality: $[E(XY)]^2 \leq EX^2EY^2$ for random variables X and Y Jensen's inequality: $f(EX) \leq Ef(X)$ for a random vector X and convex function $f(f'' \geq 0)$ Chebyshev's inequality: Let X be a random variable and φ a nonnegative and nondecreasing function on $[0, \infty)$ satisfying $\varphi(-t) = \varphi(t)$. Then, for each constant $t \geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| > t\}} \varphi(X)dP \le E\varphi(X)$$

Example 1.18. If X is a nonconstant positive random variable with finite mean, then

$$(EX)^{-1} < E(X^{-1}) \quad \text{ and } \quad E(\log X) < \log(EX),$$

since t^{-1} and $-\log t$ are convex functions on $(0,\infty)$. Let f and g be positive integrable functions on a measure space with a σ -finite measure ν . If $\int f d\nu \geq \int g d\nu > 0$, we want to show that

$$\int f \log \left(\frac{f}{g}\right) d\nu \ge 0.$$

Let $h = f/\int f d\nu$. Then h is a p.d.f. w.r.t. ν . Let Y = g/f be a random variable defined on the probability space with P being the probability with p.d.f. h. By Jensen's inequality, $E\log(g/f) \leq \log(E(g/f))$. Note that

$$\log(E(g/f)) = \log\left(\int \frac{g}{f}hd\nu\right) = \log\left(\frac{\int gd\nu}{\int fd\nu}\right) \le 0$$

and

$$E\log(g/f) = \int \log\left(\frac{g}{f}\right) h d\nu = \int \log\left(\frac{g}{f}\right) f d\nu / \int f d\nu$$

Moment generating and characteristic functions

Definition 1.5. Let X be a random k-vector.

(i) The moment generating function (m.g.f.) of X or P_X is defined as

$$\psi_X(t) = Ee^{t^{\tau}X}, \quad t \in \mathcal{R}^k.$$

(ii) The characteristic function (ch.f.) of X or P_X is defined as

$$\phi_X(t) = Ee^{\sqrt{-1}t^{\tau}X} = E[\cos(t^{\tau}X)] + \sqrt{-1}E[\sin(t^{\tau}X)], \quad t \in \mathcal{R}^k$$

If the m.g.f. is finite in a neighborhood of $0 \in \mathbb{R}^k$, then $\phi_X(t)$ can be obtained by replacing t in $\psi_X(t)$ by $\sqrt{-1}t$

If $Y = A^{\tau}X + c$, where A is a $k \times m$ matrix and $c \in \mathbb{R}^m$, it follows from Definition 1.5 that

$$\psi_Y(u) = e^{c^{\tau} u} \psi_X(Au)$$
 and $\phi_Y(u) = e^{\sqrt{-1}c^{\tau} u} \phi_X(Au)$, $u \in \mathbb{R}^m$

 $X = (X_1, ..., X_k)$ with m.g.f. ψ_X finite in a neighborhood of 0

$$\psi_X(t) = \sum_{(r_1, \dots, r_k)} \frac{\mu_{r_1, \dots, r_k} t_1^{r_1} \cdots t_k^{r_k}}{r_1! \cdots r_k!} \qquad \mu_{r_1, \dots, r_k} = E(X_1^{r_1} \cdots X_k^{r_k})$$

Special case of k = 1:

$$\psi_X(t) = \sum_{i=0}^{\infty} \frac{E(X^i)t^i}{i!}$$

Consequently,

$$E(X_1^{r_1} \cdots X_k^{r_k}) = \frac{\partial^{r_1 + \cdots + r_k} \psi_X(t)}{\partial t_1^{r_1} \cdots \partial t_k^{r_k}} \Big|_{t=0} \qquad E(X^i) = \psi^{(i)}(0) = \frac{d\psi_X^i(t)}{dt^i} \Big|_{t=0}$$
$$\frac{\partial \psi_X(t)}{\partial t} \Big|_{t=0} = EX, \qquad \frac{\partial^2 \psi_X(t)}{\partial t \partial t^\tau} \Big|_{t=0} = E(XX^\tau)$$

If $0 < \psi_X(t) < \infty$, then $\kappa_X(t) = \log \psi_X(t)$ is called the *cumulant generating function* of X or P_X .

If ψ_X is not finite and $E|X_1^{r_1}\cdots X_k^{r_k}|<\infty$ for some nonnegative integers $r_1,...,r_k$, then

$$\frac{\partial^{r_1+\dots+r_k}\phi_X(t)}{\partial t_1^{r_1}\dots\partial t_k^{r_k}}\bigg|_{t=0} = (-1)^{(r_1+\dots+r_k)/2}E(X_1^{r_1}\dots X_k^{r_k})$$

$$\frac{\partial\phi_X(t)}{\partial t}\bigg|_{t=0} = \sqrt{-1}EX, \qquad \frac{\partial^2\phi_X(t)}{\partial t\partial t^\tau}\bigg|_{t=0} = -E(XX^\tau), \qquad \phi_X^{(i)}(0) = (-1)^{i/2}E(X^i)$$

Example: a random variable X has finite $E(X^k)$ for k = 1, 2... but $\psi_X(t) = \infty, t \neq 0$ P_n : the probability measure for N(0, n) with p.d.f. $f_n, n = 1, 2, ...$

 $P = \sum_{n=1}^{\infty} 2^{-n} P_n$ is a probability measure with Lebesgue p.d.f. $\sum_{n=1}^{\infty} 2^{-n} f_n$ (Exercise 35) Let X be a random variable having distribution P.

It follows from Fubini's theorem that X has finite moments of any order; for even k,

$$E(X^k) = \int x^k dP = \int \sum_{n=1}^{\infty} x^k 2^{-n} dP_n = \sum_{n=1}^{\infty} 2^{-n} \int x^k dP_n = \sum_{n=1}^{\infty} 2^{-n} (k-1)(k-3) \cdots 1n^{k/2} < \infty$$

and $E(X^k) = 0$ for odd k.

By Fubini's theorem,

$$\psi_X(t) = \int e^{tx} dP = \sum_{n=1}^{\infty} 2^{-n} \int e^{tx} dP_n = \sum_{n=1}^{\infty} 2^{-n} e^{nt^2/2} = \infty \quad t \neq 0$$

Since the ch.f. of N(0, n) is $e^{-nt^2/2}$,

$$\phi_X(t) = \int e^{\sqrt{-1}tx} dP = \sum_{n=1}^{\infty} 2^{-n} \int e^{\sqrt{-1}tx} dP_n = \sum_{n=1}^{\infty} 2^{-n} e^{-nt^2/2} = (2e^{t^2/2} - 1)^{-1}$$

(Fubini's theorem)

Hence, the moments of X can be obtained by differentiating ϕ_X

For example, $\phi'_X(0) = 0$ and $\phi''_X(0) = -2$, which shows that EX = 0 and $EX^2 = 2$.

Theorem 1.6. (Uniqueness). Let X and Y be random k-vectors.

- (i) If $\phi_X(t) = \phi_Y(t)$ for all $t \in \mathbb{R}^k$, then $P_X = P_Y$.
- (ii) If $\psi_X(t) = \psi_Y(t) < \infty$ for all t in a neighborhood of 0, then $P_X = P_Y$.

Another useful result: For independent X and Y,

$$\psi_{X+Y}(t) = \psi_X(t)\psi_Y(t)$$
 and $\phi_{X+Y}(t) = \phi_X(t)\psi_Y(t), \quad t \in \mathbb{R}^k$

Example 1.20. Let X_i , i = 1, ..., k, be independent random variables and X_i have the gamma distribution $\Gamma(\alpha_i, \gamma)$ (Table 1.2), i = 1, ..., k. From Table 1.2, X_i has the m.g.f. $\psi_{X_i}(t) = (1 - \gamma t)^{-\alpha_i}$, $t < \gamma^{-1}$, i = 1, ..., k. Then, the m.g.f. of $Y = X_1 + \cdots + X_k$ is equal to $\psi_Y(t) = (1 - \gamma t)^{-(\alpha_1 + \cdots + \alpha_k)}$, $t < \gamma^{-1}$. From Table 1.2, the gamma distribution $\Gamma(\alpha_1 + \cdots + \alpha_k, \gamma)$ has the m.g.f. $\psi_Y(t)$ and, hence, is the distribution of Y (by Theorem 1.6).

A random vector X is symmetric about 0 iff X and -X have the same distribution

Show that: X is symmetric about 0 if and only if its ch.f. ϕ_X is real-valued.

If X and -X have the same distribution, then by Theorem 1.6, $\phi_X(t) = \phi_{-X}(t)$.

But $\phi_{-X}(t) = \phi_X(-t)$. Then $\phi_X(t) = \phi_X(-t)$.

Note that $\sin(-t^{\tau}X) = -\sin(t^{\tau}X)$ and $\cos(t^{\tau}X) = \cos(-t^{\tau}X)$

Hence $E[\sin(t^{\tau}X)] = 0$ and, thus, ϕ_X is real-valued.

Conversely, if ϕ_X is real-valued, then $\phi_X(t) = E[\cos(t^{\tau}X)]$ and $\phi_{-X}(t) = \phi_X(-t) = \phi_X(t)$.

By Theorem 1.6, X and -X must have the same distribution.