(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-214847

(43)公開日 平成10年(1998)8月11日

(51) Int.Cl. ⁸		識別記号	FΙ			
H01L	21/331		H01L	29/72		
	29/73			21/28	301H	
	21/28	301		29/46	Н	
	29/43					

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号 特願平9-16100 (22)出願日 平成9年(1997)1月3	(71)出題人 000005049 シャープ株式会社 大阪府大阪市阿倍野区長池町22番22号	
(22)出願日 平成9年(1997)1月3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1,744 1 (1044) - 744		
	(72)発明者 江口 芳仁	
	大阪府大阪市阿倍野区長池町22番22号ャープ株式会社内	シ
	(72)発明者 岸本 克彦	
	大阪府大阪市阿倍野区長池町22番22号 ャープ株式会社内	シ
,	(74)代理人 弁理士 梅田 勝	

(54) 【発明の名称】 化合物半導体装置、及びその製造方法

(57)【要約】

【課題】 コンタクト抵抗が低く、かつ、熱安定性に 優れた信頼性の高いオーミック電極を有する高性能HB Tを提供し、また、その容易で低コストな作製方法を提 供する。

【解決手段】 オーミック電極としてNiとTiからなる金属間化合物を用い、HBTのオーミック電極を同時に、また、逆メサ構造上に自己整合的に、形成する。

【特許請求の範囲】

【請求項1】 半絶縁性半導体基板上に、コレクタ・コ ンタクト層、コレクタ層、ベース層、エミッタ層の主要 な半導体層が順次積層された縦型構造からなるヘテロ接 合型バイポーラトランジスタにおいて、オーミック電極 は少なくともニッケルとチタンからなる金属間化合物を 含む電極材料で構成されることを特徴とする化合物半導 体装置。

【請求項2】 前記オーミック電極が、逆メサ構造上に 自己整合的に同時に形成されたニッケルとチタンからな 10 ることを特徴とする、請求項1記載の化合物半導体装 置。

【請求項3】 GaAs基板上に整合するように半導体 層が積層された構造からなるヘテロ接合型トランジスタ であることを特徴とする、請求項1記載の化合物半導体 装置。

【請求項4】 請求項1記載の化合物半導体装置の製造 方法において、n層領域及びp層領域を有する化合物半 導体の該 n 層及び p 層領域上にニッケル薄膜を形成する 工程と、該ニッケル薄膜上にチタン薄膜を形成する工程 20 と、前記ニッケル薄膜及び前記チタン薄膜を熱処理によ って反応させニッケルとチタンとの金属間化合物を形成 程と、を含む化合物半導体装置の製造方法。

【請求項5】 請求項2記載の化合物半導体装置の製造 方法において化合物半導体多層の一部を逆メサ形状とな るように除去することによりn型、p型両方の導電形の 半導体層を露出させる工程と、該ニッケル薄膜上にチタ ン薄膜を形成する工程と、前記ニッケル薄膜及び前記チ タン薄膜を熱処理によって反応させニッケルとチタンと の金属間化合物を形成し、n層及びp層のオーミック電 極を同時に自己整合的に形成する工程と、を含む化合物 半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、化合物半導体装 置、特にGaAs系ヘテロ接合型トランジスタのオーミ ック電極の構造、および、その製造方法に関する。

[0002]

【従来の技術】従来、GaAs系のヘテロ接合型トラン 40 ジスタ (以下、HBTと略す)のオーミック電極材料と しては、エミッタ電極にはAuGe系の金属、タングス テン等の高融点金属、高融点珪化物、高融点窒化物が用 いられ、ベース電極にはPt、Pd、AuZnなどが、 また、コレクタ電極にはAuGe系の金属がそれぞれ用 いられる。

【0003】その一例として、文献K. Eda et al., IEEE Electron Devices Lett., vol. ED-34 (1987) 141 9の例を基に説明する。

【0004】図6はその断面構造図である。ここで用い られている電極材料は、エミッタ電極28にはAuG e、ベース電極30にはAuZn、コレクタ電極31に はエミッタ電極と同じAuGeが用いられている。

【0005】また、前記文献には、HBTの作製法が以 下のように記載され、その中で自己整合的に電極を形成 する方法についても述べられている。

【0006】まず、半絶縁性GaAs基板21上に、n *-GaAsコレクタ·コンタクト層22(濃度:5.

O×10¹⁸ c m⁻³、厚さ5000Å)、n-GaAsコ レクタ層23 (濃度:3.0×10¹⁷cm⁻³、厚さ:7 000Å)、p+-GaAsベース層24(濃度:1. 0×10¹⁹ c m⁻³、厚さ:1000Å)、n-Alo.3 Gao.7Asエミッタ層25 (濃度:5.0×10¹⁷c m⁻³、厚さ:2000Å)、n⁺-GaAsコンタクト 層26(濃度:5.0×10¹⁸cm⁻³、厚さ:1000 Å)を順に積層した上に、図7(a)に示すように、エ ミッタ電極用AuGe層28を蒸着形成し、さらにフォ トレジストパターン290を形成する。

【0007】次に図7(b)に示すように、フォトレジ ストパターン290をマスクにしてヨウ素系エッチャン ト (KI: I2: H2O=7:4:855)、硫酸系エッ チャント (H2SO4: H2O2: H2O=1:1:12~ 24)でエミッタメサを形成する。

【0008】次に図7(c)に示すように、ベース電極 用AuZn層30を蒸着形成する。その後、フォトレジ ストパターン290を除去すると、自己整合的にベース 電極30が形成される。

【0009】次に、再度フォトレジストパターン291 を形成し、これをマスクにして、先ほどと同様にAuZ n層30をエッチングすると、図7(d)に示すよう に、ベース電極パターンができる。

【0010】さらに、図7(e)に示すように、硫酸系 エッチャントで、ベース層24およびコレクタ層23を エッチングし、ベースメサを形成する。

【0011】次に、図7(f)に示すように、コレクタ 電極用AuGe層31を蒸着形成する。その後、フォト レジストパターン291を除去すると、自己整合的にコ レクタ電極31が形成される。

【0012】次に図7(g)に示すように、再度、フォ トレジストパターン292を形成する。そして、図7 (h) に示すように、ヨウ素系エッチャント、硫酸系エ ッチャントでコレクタメサを形成し、素子間分離を行っ た後、フォトレジストパターン292を除去するとHB Tが完成する。

[0013]

【発明が解決しようとする課題】しかしながら、従来よ り用いられているAuZn、AuGe等のAu系オーミ ック電極では、熱処理を行うと電極金属が不均一に反応 50 して島上の凝集を起こし、GaAsとのオーム性のコン

タクト部が電極領域内で不均一になる場合がある。この ため接触抵抗が十分低下しない、電極表面が平滑になら ない、といった問題点があり、素子の微細化を行うには 不十分である。

【0014】また、Au系オーミック電極は熱安定性が 悪いため、非常に薄いp型ベース層の電極として用いる と、熱処理を行った際に拡散してコレクタ層まで突き抜 けてしまい、p型オーミックにならない。したがって、 p型ベース層には、エミッタおよびコレクタのn型オー ミックと同材料の電極を用いることが出来ず、電極作製 10 の工程数が多くなり、電極作製時間、および材料費が多 くかかるという問題があった。

【0015】さらに、AuGe、AuZn等のAu系電極材料は段切れがしにくいために、オーミック電極を自己整合的に形成しようとすると、図5(a)に示すように、電極材料15が段差部16でつながってしまい、リーク電流の発生等の問題が生じる。

【0016】以上のように、従来の電極材料では、n型、p型のオーミック電極を自己整合的に、あるいは、同時に、形成することは困難であった。

【0017】本発明は、コンタクト抵抗が低く、かつ、 熱安定性に優れた信頼性の高いオーミック電極を有する 高性能HBTを提供すること、および、その容易で低コ ストな作製方法を提供することを目的とする。

[0018]

【課題を解決するための手段】本発明の化合物半導体装置は、半絶縁性半導体基板上に、コレクタ・コンタクト層、コレクタ層、ベース層、エミッタ層の主要な半導体層が順次積層された縦型構造からなるヘテロ接合型バイポーラトランジスタ(HBT)において、オーミック電 30 極は少なくともニッケルとチタンからなる金属間化合物を含む電極材料で構成されることを特徴とする。

【0019】また、本発明の化合物半導体装置は、前記オーミック電極が、逆メサ構造上に自己整合的に同時に 形成されたニッケルとチタンからなることを特徴とする

【0020】さらに、本発明の化合物半導体装置は、GaAs基板上に整合するように半導体層が積層された構造からなるHBTであることを特徴とする。

【0021】本発明の化合物半導体装置の製造方法は、 n層領域及びp層領域を有する化合物半導体の該 n層及 びp層領域上にニッケル薄膜を形成する工程と、該ニッケル薄膜上にチタン薄膜を形成する工程と、前記ニッケ ル薄膜及び前記チタン薄膜を熱処理によって反応させニッケルとチタンとの金属間化合物を形成し、n層及びp 層のオーミック電極を同時に形成する工程と、を含むことを特徴とする。

【0022】また、本発明の化合物半導体装置の製造方法は、化合物半導体多層の一部を逆メサ形状となるように除去することによりn型、p型両方の導電形の半導体 50

4

層を露出させる工程と、該ニッケル薄膜上にチタン薄膜を形成する工程と、前記ニッケル薄膜及び前記チタン薄膜を熱処理によって反応させニッケルとチタンとの金属間化合物を形成し、n層及びp層のオーミック電極を同時に自己整合的に形成する工程と、を含むことを特徴とする。

[0023]

【発明の実施の形態】以下、本発明の実施の形態を、図面を用いて具体的に説明する。

(実施の形態1)図1は、本発明の実施の形態を示し、Ti/Niオーミック電極を同時に作製したHBTである。21は半絶緑性GaAs基板、22はn+-GaAsコレクタ層、24はp+-GaAsベース層、25はn-Al0.3Ga0.7Asエミッタ層、26はn+-GaAsコンタクト層である。また、7はNi層、8はTi層で、エミッタ、ベース、コレクタのいずれの電極も同一材料で形成されている。

【0024】図2は、上記HBTの製造工程を示す断面 20 図であり、以下、図2を用いてその製造方法を説明する

【0025】まず、半絶縁性GaAs基板21上に、n+-GaAsコレクタ・コンタクト層22(濃度:5.0×10¹⁸ cm⁻³、厚さ5000Å)、n-GaAsコレクタ層23(濃度:3.0×10¹⁷ cm⁻³、厚さ:7000Å)、p+-GaAsベース層24(濃度:1.0×10¹⁹ cm⁻³、厚さ:1000Å)、n-Al_{0.3}Ga_{0.7}Asエミッタ層25(濃度:5.0×10¹⁷ cm⁻³、厚さ:2000Å)、n+-GaAsコンタクト層26(濃度:5.0×10¹⁸、厚さ:1000Å)を順に積層する。その上に、フォトレジストパターン100をエミッタメサの形に形成すると、図2(a)に示すようになる。

【0026】次に、図2(b)に示すように、フォトレジストパターン100をマスクにして硫酸系エッチャント($H_2SO_4:H_2O_2:H_2O=1:1:12\sim24$)で、コンタクト層26、および、エミッタ層25をエッチングしてエミッタメサを形成する。

【0027】次に、フォトレジストパターン100を一0 旦除去した後に、フォトレジストパターンを、図2 (c)に示すようなベースメサ用フォトレジストパターン101に形成し直し、このフォトレジストパターン101をマスクにして、硫酸系エッチャント(H2SO4: H2O2: H2O=1:1:12~24)で、ベース層24、および、コレクタ層23をエッチングしてベースメサを形成すると、図2(c)のようになる。この際、コレクタ・コンタクト層22の表面でエッチングを停止することは、実際上困難であるので、コレクタ・コンタクト層22の部分まで少しエッチングする方がよい。

【0028】次に、フォトレジストパターン101を一

旦除去した後、図2(d)に示すように、電極部以外の 部分にフォトレジストパターン102を形成する。

【0029】その上に、Ni薄膜7を抵抗加熱法により2004素着するのに続き、Ti薄膜8をEB素着法により10004素着すると、図2(e)のようになる。【0030】その後、フォトレジストパターン102を除去すると、電極部のみにNiとTiの薄膜が残る。さらに、窒素雰囲気下で600℃、1分間加熱処理を行うことにより、NiとTiを含むオーミック電極がエミッタ、ベース、コレクタに同時に形成される。このように、Ti/Ni電極を用いることにより、すべてのオーミック電極を同一材料で、また、同時に形成できる。

【0031】次に、図2(f)に示すように、コレクタメサ用フォトレジストパターン103を形成し、これをマスクに硫酸系エッチャントでコレクタ・コンタクト層22をエッチングしてコレクタメサを形成し、素子間分離を行う。

【0032】最後に、フォトレジスト103を除去すると、図2(g)に示すようになり、さらに、電極を引き出すと本発明のHBTが完成する。

【0033】(実施の形態2)本発明の別の実施の形態 について以下に説明する。

【0034】図3は、逆メサ構造上に、自己整合的に、かつ、同時にTi/Ni電極を作製したHBTである。図3(a)はその平面図、図3(b)はその斜視図である。1は半絶縁性GaAs基板であり、2はn+-GaAsコレクタ・コンタクト層、3はn-GaAsコレクタ層3、4はp+-GaAsベース層、5はn-InGaPエミッタ層、6はn+-GaAsコンタクト層である。

【0035】図4に、その形成工程を示す。図4において、(d)のみ平面図、他は断面図である。以下、図4を用いて、上記HBTの形成工程を説明する。

【0036】まず、図4(a)に示すように、半絶縁性 GaAs基板1上に、n*-GaAsコレクタ・コンタクト層2(濃度:5.0×10¹⁸ cm⁻³、厚さ5000 Å)、n-GaAsコレクタ層3(濃度:2.0×10 ¹⁶ cm⁻³、厚さ:7000Å)、p*-GaAsベース層4(濃度:2.0×10¹⁹ cm⁻³、厚さ:800 Å)、n-InGaPエミッタ層5(濃度:5.0×1 40 0¹⁷ cm⁻³、厚さ:700Å)、n*-GaAsコンタクト層6(濃度:5.0×10¹⁸、厚さ:2000Å)を順に積層する。

【0037】さらにその上に、SiN膜90を成膜し、フォトレジストパターン(図示せず)をマスクにフッ酸でエッチングし、SiN膜90のパターンを形成する。レジストを剥離した後、SiN膜90をマスクにしてクエン酸系エッチャント(クエン酸: H2O2:水=10:1:10)と、リン酸系エッチャン(HC1:リン酸=1:5)とで、コンタクト層6およびエミッタ層5をエ 50

ッチングし、図4 (b) に示すように、逆メサ形状からなるエミッタメサを形成する。エミッタメサの深さは、2700Åであった。

【0038】次に、SiN膜90を一旦除去した後、再びSiN膜91を成膜し、フォトレジストパターン(図示せず)をマスクにフッ酸でエッチングし、SiN膜91のパターンを形成する。レジストを剥離後、SiN膜91をマスクにしてクエン酸系エッチャントで、ベース層4およびコレクタ層3をエッチングし、図4(c)に示すように、逆メサ形状からなるベースメサを形成する。この際、サブコレクタ層2が少しエッチングされる程度の深さまでエッチングを行うのがよい。その理由は、もしもコレクタ層3が残っていると、オーミックが取れない場合があるから、少し多めにエッチングを行う。

【0039】次に、SiN膜91を一旦除去し、再度SiN92を成膜した後、フォトレジストパターン(図示せず)をマスクにフッ酸でエッチングし、レジストを除去して、平面図の図4(d)に示すように、素子周辺部にSiN92のパターンを形成する。

【0040】その上に、Ni薄膜7を抵抗加熱法により 2004蒸着、さらに、Ti薄膜8をEB蒸着法により 10004蒸着すると、図4(e)となる。

【0041】その後、SiN膜92を除去して電極パターンを形成すると、図4(f)となり、さらに、窒素雰囲気下で600℃、1分間加熱処理を行うことでNiとTiを含むオーミック電極が形成される。

【0042】本実施の形態のエミッタメサの深さは27 00Åであり、この段差部での段切れをよくするため

30 に、今回Ti/Ni電極の厚さは、エミッタメサの深さよりも十分小さな値の1200Åに決定した。しかし、別途、逆メサ形状上にTi/Ni電極の形成を試みたところ、エミッタ深さに対するTi/Ni電極の厚さが2/3程度に厚くても、自己整合的に容易に良好な電極パターン形成をすることができた。これは、図5(b)に示すように、Ti/Ni材料17は、段差部16、すなわち電極パターンエッジ部での、段切れが良いため、良好なパターンが得られることによる。

【0043】次に、図4(g)に示すように、SiN9 3を成膜、前記と同様の方法でSiN膜93のパターン を形成した後、SiN膜93をマスクにしてコレクタメ サエッチングを行い素子間分離を行う。

【0044】最後に、図4(h)に示すように、SiN膜93を剥離した後、電極を引き出してHBTが完成する

【0045】以上の実施の形態1および2では、Ti/Ni電極を用いたが、場合によっては、Ti/Ni電極の上に、メタルの抵抗を下げるためにインターレイアーメタル(Au/Pt/Ti)を蒸着してもよい。

50 [0046]

7

【発明の効果】オーミック電極材料としてTi/Niの 金属間化合物を用いることにより、エミッタ、ベース、 コレクタのオーミック電極を同時に形成することが可能 となるため、化合物半導体装置の製造工程が簡略化で き、さらに、作業工程の削減により、歩留りの向上が期 待できる。

【0047】オーミック電極材料としてTi/Niの金属間化合物を用いることにより、従来から用いられているAu系のオーミック材料より熱安定性に優れ、信頼性の高いオーミック電極を有する化合物半導体装置を得ることができる。

【0048】オーミック電極材料として、段切れが起こりやすい特性を有するTi/Niの金属間化合物を用いることにより、自己整合プロセスが容易になり、電極のさらなる微細化が可能となり、トランジスタ特性の向上を図ることができる。

【図面の簡単な説明】

- 【図1】本発明の実施例を示す断面図である。
- 【図2】図1の実施例の製造工程を示す断面図である。
- 【図3】本発明の別の実施例を示す平面図、および、斜 20 視図である。
- 【図4】図3の実施例の製造工程を示す図である。
- 【図5】段差部での電極材料膜の様子を示す断面図である。
- 【図6】従来のHBTを示す断面図である。

【図7】従来のHBTの製造工程を示す断面図である。 【符号の説明】

- 1 半絶縁性GaAs基板
- 2 n⁺-GaAsコレクタ・コンタクト層
- 3 n-GaAsコレクタ層
- 4 p⁺-GaAsベース層
- 5 n-InGaPエミッタ層
- 6 n+-GaAsコンタクト層
- 7 N i 薄膜
- 10 8 Ti薄膜
 - 90, 91, 92, 93 SiN薄膜
 - 15 電極材料
 - 16 段差部
 - 17 Ti/Ni電極
 - 21 半絶縁性GaAs基板
 - 22 n+-GaAsコレクタ・コンタクト層
 - 23 n-GaAsコレクタ層
 - 24 p+-GaAsベース層
 - 25 n-Alo.3Gao.7Asエミッタ層
- 20 26 n+-GaAsコンタクト層
 - 28 AuGeエミッタ電極
 - 290, 291, 292 レジスト
 - 30 AuZnベース電極
 - 31 AuGeコレクタ電極
 - 100, 101, 102, 103 レジスト

【図1】

【図2】

3/20/05, EAST Version: 2.0.1.4

[図7]

