20104016

DEENA

Importing Libraries

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

Importing Datasets

In [2]: df=pd.read_csv("madrid_2012.csv")

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	ТСН	TOL
0	2011-11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN
1	2011-11-01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7
2	2011-11-01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2
3	2011-11-01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN
4	2011-11-01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN
209923	2011-09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN
209924	2011-09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN
209925	2011-09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN
209926	2011-09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN
209927	2011-09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN

209928 rows × 14 columns

Data Cleaning and Data Preprocessing

```
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25
                             'SO_2', 'TCH', 'TOL', 'station'],
                           dtype='object')
In [5]:
                <class 'pandas.core.frame.DataFrame'>
                Int64Index: 16460 entries, 1 to 209910
                Data columns (total 14 columns):
                         Column Non-Null Count Dtype
                --- ----- ------ -----
                 0 date 16460 non-null object
1 BEN 16460 non-null float64
2 CO 16460 non-null float64
3 EBE 16460 non-null float64
4 NMHC 16460 non-null float64
5 NO 16460 non-null float64
6 NO_2 16460 non-null float64
7 O_3 16460 non-null float64
7 O_3 16460 non-null float64
8 PM10 16460 non-null float64
9 PM25 16460 non-null float64
10 SO_2 16460 non-null float64
11 TCH 16460 non-null float64
11 TCH 16460 non-null float64
12 TOL 16460 non-null float64
13 station 16460 non-null int64
                 13 station 16460 non-null int64
                dtypes: float64(12), int64(1), object(1)
                memory usage: 1.9+ MB
```

```
In [6]: data=df[['CO' ,'station']]
```

Out[6]:

	СО	station
1	0.4	28079008
6	0.3	28079024
25	0.3	28079008
30	0.4	28079024
49	0.2	28079008
209862	0.1	28079024
209881	0.1	28079008
209886	0.1	28079024
209905	0.1	28079008
209910	0.1	28079024

16460 rows × 2 columns

Line chart

In [7]:

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

Out[8]: <AxesSubplot:>

Bar chart

Histogram

station

1.5

2.0

2.5

le7

Area chart

2000

0

0.0

0.5

1.0

150000

200000

Box chart

station

50000

100000

station

Pie chart

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

7 of 18

```
In [15]:
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 16460 entries, 1 to 209910
Data columns (total 14 columns):

		\	- / ·
#	Column	Non-Null Count	Dtype
0	date	16460 non-null	object
1	BEN	16460 non-null	float64
2	CO	16460 non-null	float64
3	EBE	16460 non-null	float64
4	NMHC	16460 non-null	float64
5	NO	16460 non-null	float64
6	NO_2	16460 non-null	float64
7	0_3	16460 non-null	float64
8	PM10	16460 non-null	float64
9	PM25	16460 non-null	float64
10	S0_2	16460 non-null	float64
11	TCH	16460 non-null	float64
12	TOL	16460 non-null	float64
13	station	16460 non-null	int64

In [17]:										
Out[17]:		BEN	со	EBE	NMHC	NO	NO_2			
	count	16460.000000	16460.000000	16460.000000	16460.000000	16460.000000	16460.000000	164		
	mean	0.900680	0.277758	1.471871	0.167043	23.671810	44.583961			
	std	0.768892	0.206143	1.051004	0.075068	44.362859	31.569185			
	min	0.100000	0.100000	0.200000	0.010000	1.000000	1.000000			
	25%	0.500000	0.200000	0.800000	0.120000	2.000000	19.000000			
	50%	0.700000	0.200000	1.200000	0.160000	7.000000	40.000000			
	75%	1.100000	0.300000	1.700000	0.200000	25.000000	63.000000			
	max	9.500000	3.200000	12.800000	0.840000	615.000000	289.000000	1		
	164 16									
In [19]:	df1=df[['BEN', 'CO', 'EBE','NMHC', 'NO_2', 'O_3',									

EDA AND VISUALIZATION

In [20]:

Out[20]: <seaborn.axisgrid.PairGrid at 0x2875c467610>


```
In [21]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[21]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [22]:

Out[22]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

11 of 18 03-08-2023, 10:44

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

Linear Regression

```
In [26]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[26]: LinearRegression()
In [27]: lr.intercept_
Out[27]: 28079017.449205846
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [28]:
Out[28]:
                 Co-efficient
            BEN
                    3.828395
             CO
                   32.621367
            EBE
                   -1.974801
           NMHC
                  -99.317516
           NO_2
                   -0.083379
            0_3
                   -0.016319
           PM10
                   0.001411
           SO_2
                   -0.498409
            TCH
                   10.613384
            TOL
                   -0.450018
```

```
In [29]: prediction =lr.predict(x_test)
```

Out[29]: <matplotlib.collections.PathCollection at 0x28765ff79a0>

ACCURACY

```
In [30]:
Out[30]: 0.6056543716808311
In [31]:
Out[31]: 0.6283925193702642
    Ridge and Lasso
In [32]:
In [33]: rr=Ridge(alpha=10)
Out[33]: Ridge(alpha=10)
    Accuracy(Ridge)
In [34]:
Out[34]: 0.5832993683437642
In [36]:
Out[36]: 0.5918893311823653
In [37]: la=Lasso(alpha=10)
Out[37]: Lasso(alpha=10)
Out[39]: 0.23193056355241382
    Accuracy(Lasso)
In [40]:
Out[40]: 0.2395064520519974
In [41]: from sklearn.linear_model import ElasticNet
    en=ElasticNet()
    en.fit(x_train,y_train)
Out[41]: ElasticNet()
```

Evaluation Metrics

Logistic Regression

```
In [62]:
In [63]:
      prediction=logr.predict(observation)
      [28079008]
In [58]:
Out[58]: array([28079008, 28079024], dtype=int64)
In [59]:
Out[59]: 0.9237545565006076
In [64]:
Out[64]: 0.99999999999966
In [66]:
Out[66]: array([[1.00000000e+00, 3.47334507e-15]])
      Random Forest
                   In [67]:
In [68]: rfc=RandomForestClassifier()
Out[68]: RandomForestClassifier()
In [69]: parameters={'max_depth':[1,2,3,4,5],
               'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [70]: from sklearn.model_selection import GridSearchCV
      grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="ac
Out[70]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
               param_grid={'max_depth': [1, 2, 3, 4, 5],
                        'min_samples_leaf': [5, 10, 15, 20, 25],
                        'n_estimators': [10, 20, 30, 40, 50]},
               scoring='accuracy')
In [71]:
Out[71]: 0.9336920673494185
In [72]:
```

```
In [73]: | from sklearn.tree import plot_tree
                   plt.figure(figsize=(80,40))
Out[73]: [Text(2103.230769230769, 1993.2, 'NMHC <= 0.145\ngini = 0.5\nsamples = 7260\n</pre>
                   value = [5701, 5821]\nclass = b'),
                      Text(1116.0, 1630.8000000000002, 'SO_2 <= 7.5 \cdot \text{lngini} = 0.21 \cdot \text{lnsamples} = 3011 \cdot \text{ln}
                    value = [566, 4191]\nclass = b'),
                      Text(686.7692307692307, 1268.4, 'TOL <= 1.35\ngini = 0.176\nsamples = 2927\n
                    value = [451, 4166]\nclass = b'),
                      Text(343.38461538461536, 906.0, 'SO_2 <= 1.5\ngini = 0.06\nsamples = 1963\nv
                    alue = [97, 3016]\nclass = b'),
                      Text(171.69230769230768, 543.599999999999, 'NO_2 <= 14.0\ngini = 0.431\nsam
                    ples = 36\nvalue = [16, 35]\nclass = b'),
                      Text(85.84615384615384, 181.1999999999992, 'gini = 0.0\nsamples = 21\nvalue
                    = [0, 26] \setminus (ass = b'),
                      lue = [16, 9] \setminus ass = a'),
                      ples = 1927\nvalue = [81, 2981]\nclass = b'),
                      Text(429.23076923076917, 181.19999999999982, 'gini = 0.022 \times 1532 
                    value = [27, 2390]\nclass = b'),
                      Text(600.9230769230769, 181.1999999999982, 'gini = 0.153\nsamples = 395\nva
                    lue = [54, 591]\nclass = b'),
                      Text(1030.1538461538462, 906.0, 'BEN <= 0.35\ngini = 0.36\nsamples = 964\nva
                    lue = [354, 1150]\nclass = b'),
                      Text(858.4615384615383, 543.599999999999, 'NMHC <= 0.105\ngini = 0.096\nsam
                    ples = 149\nvalue = [226, 12]\nclass = a'),
                      Text(772.6153846153845, 181.199999999999, 'gini = 0.337\nsamples = 10\nval
                    ue = [3, 11] \setminus class = b'),
                      Text(944.3076923076923, 181.1999999999992, 'gini = 0.009\nsamples = 139\nva
                    lue = [223, 1] \setminus ass = a'),
                      Text(1201.8461538461538, 543.599999999999, 'CO <= 0.15\ngini = 0.182\nsampl
                    es = 815\nvalue = [128, 1138]\nclass = b'),
                      Text(1116.0, 181.199999999999, 'gini = 0.478\nsamples = 71\nvalue = [41, 6
                    3] \nclass = b'),
                      Text(1287.6923076923076, 181.1999999999982, 'gini = 0.139\nsamples = 744\nv
                    alue = [87, 1075]\nclass = b'),
                      Text(1545.230769230769, 1268.4, 'TOL <= 0.95\ngini = 0.293\nsamples = 84\nva
                    lue = [115, 25] \setminus ass = a',
                      Text(1459.3846153846152, 906.0, 'gini = 0.498\nsamples = 11\nvalue = [7, 8]\
                    nclass = b'),
                      Text(1631.0769230769229, 906.0, 'TOL <= 3.2\ngini = 0.235\nsamples = 73\nval
                    ue = [108, 17] \setminus nclass = a'),
                      Text(1545.230769230769, 543.599999999999, 'NMHC <= 0.125\ngini = 0.312\nsam
                    ples = 53\nvalue = [71, 17]\nclass = a'),
                      Text(1459.3846153846152, 181.1999999999999, 'gini = 0.0\nsamples = 19\nvalu
                    e = [32, 0] \setminus ass = a'),
                      Text(1631.0769230769229, 181.199999999999, 'gini = 0.423\nsamples = 34\nva
                    lue = [39, 17] \setminus ass = a'),
                      Text(1716.9230769230767, 543.599999999999, 'gini = 0.0\nsamples = 20\nvalue
                    = [37, 0]\nclass = a'),
                      Text(3090.461538461538, 1630.8000000000002, '0_3 <= 7.5\ngini = 0.366\nsampl
                    es = 4249\nvalue = [5135, 1630]\nclass = a'),
                      Text(2403.6923076923076, 1268.4, 'EBE <= 1.85\ngini = 0.5\nsamples = 939\nva
                    lue = [728, 720] \setminus ass = a'),
```

```
Text(2060.3076923076924, 906.0, 'TOL <= 4.75\ngini = 0.31\nsamples = 478\nva
lue = [142, 598] \setminus class = b'),
 Text(1888.6153846153845, 543.599999999999, 'EBE <= 1.55\ngini = 0.157\nsamp
les = 327\nvalue = [44, 467]\nclass = b'),
 Text(1802.7692307692307, 181.1999999999982, 'gini = 0.108\nsamples = 306\nv
alue = [27, 445] \setminus class = b'),
 Text(1974.4615384615383, 181.199999999999, 'gini = 0.492\nsamples = 21\nva
lue = [17, 22] \setminus class = b'),
 Text(2232.0, 543.59999999999, 'PM10 <= 42.5\ngini = 0.49\nsamples = 151\nv
alue = [98, 131] \setminus class = b'),
 Text(2146.153846153846, 181.199999999999, 'gini = 0.474\nsamples = 132\nva
lue = [77, 123] \setminus class = b'),
 Text(2317.846153846154, 181.1999999999992, 'gini = 0.4\nsamples = 19\nvalue
= [21, 8] \setminus (ass = a'),
 Text(2747.076923076923, 906.0, 'SO_2 <= 9.5\ngini = 0.285\nsamples = 461\nva
lue = [586, 122] \setminus class = a'),
 Text(2575.3846153846152, 543.599999999999, 'BEN <= 2.05\ngini = 0.428\nsamp
les = 170\nvalue = [185, 83]\nclass = a'),
 Text(2489.5384615384614, 181.199999999999982, 'gini = 0.483\nsamples = 105\nv
alue = [94, 65] \setminus ass = a'),
 Text(2661.230769230769, 181.199999999999, 'gini = 0.276\nsamples = 65\nval
ue = [91, 18] \setminus class = a'),
 Text(2918.7692307692305, 543.599999999999, 'BEN <= 2.45\ngini = 0.162\nsamp
les = 291\nvalue = [401, 39]\nclass = a'),
 Text(2832.9230769230767, 181.1999999999982, 'gini = 0.346 \times 10^{-1} = 107 \times 10^{-1}
alue = [126, 36] \setminus ass = a'),
 Text(3004.6153846153843, 181.199999999999, 'gini = 0.021\nsamples = 184\nv
alue = [275, 3] \setminus ass = a'),
 Text(3777.230769230769, 1268.4, 'EBE <= 1.05 \cdot ini = 0.284 \cdot insamples = 3310 \cdot ins
value = [4407, 910]\nclass = a'),
 Text(3433.8461538461534, 906.0, 'NMHC <= 0.165\ngini = 0.488\nsamples = 773\
nvalue = [724, 527] \nclass = a'),
 Text(3262.1538461538457, 543.599999999999, 'BEN <= 0.35\ngini = 0.498\nsamp
les = 363\nvalue = [289, 326]\nclass = b'),
 Text(3176.307692307692, 181.1999999999992, 'gini = 0.157\nsamples = 152\nva
lue = [244, 23] \setminus ass = a',
 alue = [45, 303] \setminus class = b'),
 ples = 410\nvalue = [435, 201]\nclass = a'),
 Text(3519.6923076923076, 181.19999999999982, 'gini = 0.302\nsamples = 265\nv
alue = [342, 78] \setminus a = a',
 Text(3691.3846153846152, 181.199999999999, 'gini = 0.49\nsamples = 145\nva
lue = [93, 123] \setminus class = b'),
 Text(4120.615384615385, 906.0, 'CO <= 0.25\ngini = 0.171\nsamples = 2537\nva
lue = [3683, 383] \setminus class = a'),
 Text(3948.9230769230767, 543.59999999999, 'NMHC <= 0.155\ngini = 0.061\nsa
mples = 1183\nvalue = [1831, 60]\nclass = a'),
 Text(3863.076923076923, 181.1999999999992, 'gini = 0.294\nsamples = 125\nva
lue = [156, 34] \setminus ass = a'),
 Text(4034.7692307692305, 181.1999999999982, 'gini = 0.03\nsamples = 1058\nv
alue = [1675, 26] \setminus class = a'),
 Text(4292.307692307692, 543.59999999999, 'EBE <= 1.45\ngini = 0.253\nsampl
es = 1354\nvalue = [1852, 323]\nclass = a'),
 Text(4206.461538461538, 181.1999999999992, 'gini = 0.491\nsamples = 265\nva
lue = [241, 184] \setminus class = a'),
```

 $Text(4378.153846153846, 181.1999999999999999, 'gini = 0.146 \nsamples = 1089 \nvalue = [1611, 139] \nclass = a')]$

Conclusion

Accuracy

Linear Regression :0.6283925193702642

Ridge Regression :0.23193056355241382

Lasso Regression :0.2395064520519974

ElasticNet Regression: 0.3263204869423424

Logistic Regression: 0.9237545565006076

Random Forest : 0.9336920673494185

Random Forest is suitable for this dataset