CLAIMS

We Claim:

1	1. A system for absorbing energy from an impact, said system comprising
2	an energy absorbing member comprising first and second opposing
3	walls;
4	at least one rib disposed between said first and second opposing
5	walls;
6	said energy absorbing member comprising a thermoplastic, said
7	thermoplastic comprising a polyolefin based resin and 35-
8	75% by weight of an amorphous resin.
1	
1	2. The system according to claim 1, wherein said thermoplastic has a
2	flexural modulus of between about approximately 9,000 kg/cm ² and about
3	approximately 22,000 kg/cm ² .
1	
1	3. The system according to claim 1, wherein said thermoplastic has a 15
2	to 40 kg/cm ² Izod impact value at an ordinary temperature.
1	
1	4. The system according to claim 1, wherein said polyolefin based resin is
2	a polypropylene resin, and said amorphous resin is at least one resin
3	selected from the group of resins consisting of polystyrene resin, impact
4	resistant polystyrene resin, acrylonitrile-butadiene-styrene resin,
5	polyphenylene ether resin, and mixtures thereof.
1	
1	5. A system for absorbing energy from impacts, said system comprising:
2	a blow molded energy absorbing member comprising;
3	first and second opposing walls;

4	at least one fused pair of first and second recessed ribs disposed
5	between said first and second opposing walls;
6	said first recessed rib being integrally molded from said first wall
7	and having a first recessed rib end;
8	said second recessed rib is integrally molded from said second wall
9	and having a second recessed rib end;
10	said first and second recessed ribs being integrally fused at a
11	welded surface disposed between said first and second
12	recessed rib ends;
13	said energy absorbing member comprising a thermoplastic, said
14	thermoplastic comprising a polyolefin based resin and 35-
15	75% by weight of an amorphous resin, and having a 15 to 40
16	kg/cm ² Izod impact value at about approximately normal
17	temperature.
1	
1	6. The system according to claim 5, wherein said polyolefin based resin is
2	a polypropylene resin, and said amorphous resin is at least one resin
3	selected from the group consisting of polystyrene resin, impact resistant
4	polystyrene resin, acrylonitrile-butadiene-styrene resin, polyphenylene
5	ether resin, and mixtures thereof.
1	
1	7. A system for absorbing energy from an impact, said system comprising:
2	an energy absorbing member comprising first and second opposing
3	walls;
4	said energy absorbing member comprising blow molded
5	thermoplastic;
6	at least one rib disposed between said first and second opposing
7	walls; and

8 said thermoplastic comprising a first resin, having a flexural 9 modulus of not greater than about approximately 2,000 kg/cm², and a polyolefin based resin. 10 1 8. The system according to claim 7, wherein said first resin has a flexural 1 modulus not greater than 200 kg/cm². 2 1 1 9. The system according to claim 7, wherein said first resin is at least one 2 resin selected from the group of resins consisting of olefin based 3 elastomers, styrene based elastomers, low density polyethylene, straight 4 chain-like low density polyethylene, low density polyethylene, straight 5 chain-like low density polyethylene and mixtures thereof. 1 1 10. The system according to claim 7, wherein the polyolefin based resin is 2 at least one resin selected from the group consisting of a polyethylene, a 3 polypropylene and a mixture thereof. 1 1 11. The system according to claim 7, wherein said first resin comprises an 2 olefin based elastomer and said olefin based elastomer is at least one 3 elastomer selected from the group consisting of ethylene-propylene 4 copolymer rubber, ethylene-butene copolymer rubber, propylene-butene 5 copolymer rubber, hydrogenation product of butadiene-styrene copolymer rubber, and mixtures thereof. 6 1 1 12. The system according to claim 7, wherein said first resin is added to 2 said polyolefin based resin in a proportion of about approximately 3 between 3 to 20 parts by weight.

1

1	13. The system according to claim 7, wherein said first resin to be added
2	to the polyolefin based resin is a thermoplastics resin having a glass
. 3	transition temperature not higher than about approximately -30°C.
1	
1	14. A system for absorbing energy from an impact, said system
2	comprising:
3	a blow molded hollow energy absorbing member comprising;
4	first and second opposing walls;
5	at least one fused pair of first and second recessed ribs disposed
6	between said first and second opposing walls;
7	said first recessed rib is integrally molded from said first wall and
8	having a first recessed rib end;
9	said second recessed rib is integrally molded from said second wall
10	and having a second recessed rib end;
11	said first and second recessed ribs being integrally fused at a
12	welded surface disposed between said first and second
13	recessed rib ends;
14	said blow molded hollow impact absorbing member comprising a
15	polypropylene resin and about approximately 3 to 20 parts by
16	weight of an olefin based elastomer, said olefin based
17	elastomer having a flexural modulus of not greater than 200
18	kg/cm ² and a glass transition temperature not higher than
19	-30°C.