ฉบับแปลไทย (Thai Translations)

Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin

https://discordapp.com/channels/@me/876807291582705674/929283477571002429

พยาธิวิทยาที่เรื้อรังของโปรตีนที่เป็นปัจจัยสำหรับการแข็งตัวของเลือดในภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ใน ระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 มาพร้อมกับระดับที่เพิ่มสูงขึ้นของแอนติพลาสมิน

บทคัดย่อ (Abstract)

ภูมิหลัง (Background)

การติดเชื้อซึ่งได้รับการกระตุ้นจากไวรัสโคโรนาสายพันธุ์กลุ่มอาการทางเดินหายใจเฉียบพลันรุนแรง (SARS-CoV-2) ซึ่งเป็นสาเหตุของของโรคติดเชื้อไวรัสโคโรนาสาย พันธุ์ใหม่ 2019 (COVID-19) มีลักษณะเด่นคือพยาธิวิทยาคลินิกที่เฉียบพลัน (acute clinical pathologies) ซึ่งรวมถึงความผิดปกติต่าง ๆ ของการแข็งตัวของ เลือด (coagulopathies) ซึ่งอาจจะมีภาวะของการแข็งตัวของเลือดง่ายกว่าปกติ (hypercoagulation) และการกระตุ้นที่มากผิดปกติของเกล็ดเลือด (platelet hyperactivation) ร่วมด้วย เมื่อไม่นานมานี้มีการสังเกตพบฟิโนไทป์ชนิดใหม่ของโควิด 19 ในผู้ป่วยภายหลังจากที่ผู้ป่วยเหล่านี้ได้มีการฟื้นตัวอย่างเห็นได้ ชัดจากอาการโควิด 19 เฉียบพลัน กลุ่มอาการใหม่ที่ว่านี้เป็นที่รู้จักกันโดยทั่วไปว่าเป็นภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว (long COVID)/ผล ตามหลังระยะเฉียบพลันของโควิด 19 (Post-Acute Sequelae of COVID-19 หรือ PASC) ในที่นี้เราขอเรียกมันว่าภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลัน ซึ่งผู้ป่วยที่รอดชีวิตจากโรคโควิด 19 เโดญ COVID/PASC) อาการที่ยังค้างอยู่นี้จังคงอยู่ขาวนานได้มากถึง 6 เดือน (หรือนานกว่านั้น) หลังจาก การติดเชื้อเฉียบพลัน ซึ่งผู้ป่วยที่รอดชีวิตจากโรคโควิด 19 มักจะบนว่ามีอาการเหนื่อยล้า กล้ามเนื้อย่อนแรง หายใจเร็วและแรง หลับยาก และกระวนกระวายวิตกกังวล หรือหด หูขึ้มเคร้าอยู่น้ำ ๆ จากการที่มีเล่มเลือดสามารถจุดตันเส้นเลือดฝอยขนาดเล็ก ซึ่งทำให้เกิดการยับยั้งขัดขวางการแลกเปลี่ยนออกซิเจน ในการศึกษาวิจัยนี้เราจึงได้ศึกษาว่าอาการ ต่าง ๆ ที่ยังค้างอยู่นี้ซึ่งมีการแสดงจอกในผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) อาจจะมีสาเหตุมาจากการที่มีลิ่มเลือดแข็งตัวขนาดเล็กในพลาสมา (plasma microclots) ในกระแสเลือดซึ่งยับยั้งขัดขวางกระบวนการการสลายลิ่มเลือด (fibrinolysis) อยู่หรือไม่

วิธีการ (Methods)

เราได้ใช้เทคนิควิธีการต่าง ๆ รวมถึงโปรตีโอมิกส์และ fluorescence microscopy เพื่อศึกษาตัวอย่างพลาสมาจากผู้ที่มีสุขภาพดี ผู้ที่มีภาวะโรคเบาหวานชนิดที่ 2 (T2DM) ผู้ป่วยโควิด 19 เฉียบพลัน และผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC)

ผลที่ได้จากการศึกษาวิจัย (Results)

COVID/PASC) ยังคงมีลิ่งตกค้างสะสมที่ผิดปกติขนาดใหญ่หรืออะไมลอยด์ (amyloid) หรือลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) อยู่ นอกจากนี้เรายังแสดงให้ เห็นว่าลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) อยู่ นอกจากนี้เรายังแสดงให้ เห็นว่าลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) อยู่ นอกจากนี้เรายังแสดงให้ เห็นว่าลิ่มเลือดแข็งตัวขนาดเล็ก เหล่านี้ทั้งในตัวอย่างพลาสมาของผู้ป่วยโควิด 19 ใน ระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 ล้วนมีการยับยั้งขัดขวางกระบวนการการสลายลิ่มเลือด (เมื่อเปรียบเทียบกับพลาสมาจากกลุ่ม controls และจากผู้ที่มี ภาวะโรคเบาหวานชนิดที่ 2) แม้แต่หลังจากกระบวนการ trypsinisation แล้วก็ตาม หลังจากกระบวนการ trypsinization ครั้งที่ 2 สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (ลิ่มเลือดแข็งตัวขนาดเล็ก) ใด้ถูกทำให้ละลาย (solubilized) เราได้ตรวจพบโมเลกุลต่าง ๆ ที่ทำให้เกิดการอักเสบ (inflammatory molecules) ซึ่งมีการเพิ่มขึ้น เป็นอย่างมากทั้งใน supernatant และที่ติดอยู่ในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกทำให้ละลายของผู้ป่วยโควิด 19 เฉียบพลันและของผู้ที่มี ภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เมื่อเปรียบเทียบกับในปริมาตรที่ เทียบเท่ากันของของเหลวที่ได้รับการย่อยอย่างเด็มที่ (fully digested fluid) ของตัวอย่างจากกลุ่ม control และตัวอย่างจากผู้ที่มีภาวะโรคเบาหวานชนิดที่ 2 (T2DM) ที่น่าสนใงเป็นพิเศษก็จือการเพิ่มสูงขึ้นเป็นอย่างมากของ α(2)-antiplasmin (α2AP) และ fibrinogen chains ต่าง ๆ รวมทั้ง Serum Amyloid A (SAA) ซึ่งติดตัวงอยู่ในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกทำให้ละลายซึ่งยัยขั้งขัดขวางกระบวนการการสลายของลิ่มเลือด (fibrinolysis)

สรุปผลการศึกษาวิจัย (Conclusions)

พยาธิวิทยาของการแข็งตัวของเลือดทั้งในการติดเชื้อโควิด 19 เฉียบพลันและในภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโค วิด 19 (Long COVID/PASC) อาจจะได้รับประโยชน์จากการทำตามวิธีการในการบำบัดรักษาด้วยการยับยั้งการแข็งตัวของเลือด (anticlotting therapy) ที่ ต่อเนื่อง ในการส่งเสริมสนับสนุนการทำงานของระบบกระบวนการการสลายลิ่มเลือด

บทนำ (Introduction)

การติดเชื้อที่ได้รับการกระตุ้นจากไวรัสโคโรนาสายพันธุ์กลุ่มอาการทางเดินหายใจเขียบพลันรุนแรง (SARS-CoV-2) ซึ่งเป็นสาเหตุของของโรคติดเชื้อไวรัสโคโรนาสาย พันธุ์ใหม่ 2019 (โควิด 19) มีลักษณะเค่นคือพยาธิวิทยาลลินิกที่เฉียบพลัน (acute clinical pathologies) ซึ่งรวมถึงความผิดปกติต่าง ๆ ของการแจ็งตัวของเลือด (coagulopathies) ซึ่งอาจจะส่งผลให้เกิดภาวะเลือดออก (bleeding) และภาวะเกล็ดเลือดต่ำ (thrombocytopenia) การแข็งตัวของเลือดง่ายผิดปกติ (hypercoagulation) ภาวะสิ่มเลือดอุดตันในหลอดเลือดปอด (pulmonary intravascular coagulation) ภาวะสิ่มเลือดอุดตันในหลอดเลือดตำขนาดเล็ก (microangiopathy venous thromboembolism) หรือภาวะสิ่มเลือดอุดตันในหลอดเลือดแดงขนาดเล็ก (microangiopaphy arterial thrombosis) [1,2,3,4,5,6,7,8,9] นอกจากนี้การติดชื่อโควิด เจ เฉียบพลันยังมีลักษณะเค่นคือ inflammatory biomarkers ที่ผิดปกติในกระแผเลือด แกล็ด เลือดที่ได้รับการกระตุ้นมากเกินไป เซลส์เม็ดเลือดแดงที่ได้รับความเสียหาย และแนวโน้มที่มากมายของการเกิดภาวะสิ่มเลือดแข็งตัวขนาดเล็กในปอด [6, 8,9,10,11,12,13,14,15,16] ผู้ป่วงโควิด เจ เฉียบพลันอาจจะประสบกับภาวะเกล็ดเลือดต่ำ (thrombocytopenia) ซึ่งอาจจะนำไปผู่ภาวะเลือดแข็งตัวใน หลอดเลือดแบบแพร่กระจาย (disseminated intravascular coagulation [DIC]) ซึ่งอันตรายถึงแก้ชีวิดได้ [17] ปัจจับความเสี่ยงที่สนับสนุนให้เกิดภาวะ เหล่านี้ได้ง่ายขึ้นหรือโรคร่วม (co-morbidities) ซึ่งก็อาจจะนำไปผู่การพยากรณิเรคที่ไม่ดี (poor prognosis) ของโควิด เจ เฉียบพลันได้เช่นกันได้แก่ การมีการะโรคตัวน [3, 8, 9, 18,19,20,21] รวมทั้งโรคมะเร็ง [22] การะแทรกลัยนก่าง ๆ อย่างเช่น การบาดเจ็บของกล้ามเนื้อห้าใจ (myocardial injury) ใดวาด (renal insufficiency) และกลุ่มอาการการทำหน้าที่ผิดปกติของหลายอวัยวะ (Multiple Organ Dysfunction Syndrome [MODS)) เป็นอาการที่พบได้ทั่งไปเป็นกิดในผู้ป่วยโลกลายะเร็งที่ดิดการพยากรณิเรคที่ไม่ดี (poor prognosis)

เมื่อไม่นานมานี้มีการสังเกตพบฟิโนไทป์ชนิดใหม่ของโควิด 19 ในผู้ป่วยภาย หลังจากที่ผู้ป่วยเหล่านี้ได้มีการฟื้นตัวอย่างเห็นได้ชัดจากอาการโควิด 19 เฉียบพลัน กลุ่มอาการ ใหม่นี้เรียกขานกันปกติทั่วไปว่าภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว (Long COVID)/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Post-Acute Sequelae of COVID-19 [PASC]) [23] เราใช้คำสัพท์ว่าภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ซึ่งอาจจะสามารถเกี่ยวโยงไปถึงผลสืบเนื่องและภาวะแทรกซ้อนทางการแพทย์อื่น ๆ ที่คงอยู่ได้นานนับสัปดาห์หรือเป็นเดือน ๆ หลังจากการ ฟื้นตัวจากการเจ็บป่วยเบื้องต้น (initial recovery) และอาจจะรวมถึงผลกระทบระยะยาวมากกว่า 50 อย่าง [24] ข้อมูลเบื้องต้นเกี่ยวกับอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) แสดงให้เห็นถึงความคล้ายคลึงกันเป็นอย่างมากกับการเจ็บป่วยเรื้อรัง [23, 25,26,27] ซึ่งเป็นที่ทราบกันว่ามีความเกี่ยวข้องสัมพันธ์กันกับการติดเชื้อจากไวรัส อย่างเช่น กลุ่มอาการความล้าเรื้อรัง (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome [ME/CFS]) [28, 29] กลุ่มอาการหวิจเต้นเร็วระหว่างเปลี่ยนท่า (postural orthostatic

tachycardia syndrome) [30] และกลุ่มอาการภูมิแพ้จากระบบภูมิต้านทานโรคในร่างกายบกพร่อง (Mast Cell Activation Syndrome) [31, 32] มี การซี้ให้เห็นว่าการกระตุ้นของ mast cell ก็มีบทบาทสำคัญในภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ด้วยเช่นกัน อันเนื่องมาจากปฏิกิริยาการตอบสนองที่ผิดปกติ (atypical responses) ต่อไวรัสโคโรนา SARS-CoV-2 โดย mast cells ที่ทำหน้าที่ผิดปกติ [31]

มีการพบว่าอาการต่าง ๆ ที่ยังค้างอยู่นี้คงอยู่ได้นานถึง 6 เดือน (หรือยาวนานกว่านั้น) หลังการติดเชื้อเฉียบพลัน ซึ่งผู้ป่วยที่รอดชีวิตจากโรคโควิด 19 มักจะบ่นว่ามีอาการเหนื่อย ล้า กล้ามเนื้ออ่อนแรง หายใจเร็วและแรง หลับยาก และกระวนกระวายวิตกกังวล หรือหดหู่ซึมเศร้าอยู่ซ้ำ ๆ [<u>32</u>] ผู้ป่วยที่มีอาการหนักรุนแรงในระหว่างที่เข้าพักรักษาตัวใน โรงพยาบาลมีแนวโน้มที่จะมีความสามารถในการซึมซ่านแก๊สของปอดบกพร่องรุนแรง (severe impaired pulmonary diffusion capacities) และภาพ วินิจฉัยทางรังสีวิทยาของทรวงอกที่ผิดปกติ (abnormal chest imaging manifestations) มากกว่า และเป็นประชากรกล่มเป้าหมายหลักในการทำ interventions เพื่อการฟื้นตัวในระยะยาว [32] แต่อย่างไรก็ตามมีการแสดงให้เห็นว่าประมาณ 32% ของผู้ป่วย (อาสาสมัคร) ที่รายงานว่ามีอาการเหล่านี้ในวันที่ 61 ขึ้น ไปหลังจากการติดเชื้อก็ไม่มีอาการในระหว่างที่มีการตรวจหาเชื้อไวรัสโคโรนา SARS-CoV-2 เบื้องต้น [32] มีผู้ป่วยจำนวนมากที่มีการพัฒนาอาการหลงเหลือหลังจาก ติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ด้วยเช่นกันหลังจากการติดเชื้อเล็กน้อย (mild infection) หรือติด เชื้อแต่ไม่มีอาการ (asymptomatic infection) ทั้ง ๆ ที่ไม่ได้รับการเข้าพักรักษาตัวในโรงพยาบาลแต่อย่างใด [33] บรรคานักวิจัยในประเทศอิตาลีได้พบว่า 87.4% ของผู้ป่วยโควิด 19 จำนวน 143 คนมีการรายงานอย่างน้อยหนึ่งอาการใน 60 วันหลังการติดเชื้อ และมีอยู่ 55% ที่มี 3 อาการหรือมากกว่านั้น ตามการศึกษาวิจัยของพวกเขา [25] อาการที่พบได้มากที่สุดโดยทั่วไปได้แก่ : เหนื่อยล้าอ่อนแรง (53.1%) หายใจลำบาก (43.4%) ปวดข้อ (27.3%) และเจ็บหน้าอก (21.7%) ใน สหราชอาณาจักรมีการศึกษาวิจัยในผู้ป่วยจำนวน 384 คน (อายุเฉลี่ยของผู้ป่วยเท่ากับ 59.9 ปี; 62% เป็นเพศชาย) ซึ่งได้รับการติดตามอาการเป็นเวลาเฉลี่ย (ค่ากลางมัธยฐาน) 54 วันหลังจากได้รับการปล่อยตัวออกจากโรงพยาบาล พบว่า 53% มีการรายงานว่ามีอาการหายใจลำบากเรื้อรัง (persistent breathlessness) 34% มีอาการใจ (cough) 69% มีอาการเหนื่อยล้าอ่อนแรง (fatigue) และ 14.6% มีอาการหคหู่ซึมเศร้า (depression) [34] ในบรรคาผู้ป่วยที่ได้รับการปล่อยตัวออกจากโรงพยาบาล ซึ่งเป็นผู้ที่มีคัชนีชี้วัดทางชีวภาพที่สูงขึ้น (elevated biomarkers) นี้ 30.1% และ 9.5% มีระดับของ D-dimer และ C reactive protein ตามลำดับสูงขึ้น อย่างต่อเนื่อง 38% ของภาพถ่ายรังสีทรวงอกยังคงมีความผิดปกติโดยที่ 9% มีการเสื่อมสภาพลง [34] ในการศึกษาวิจัยระดับ โลกที่มีขนาดใหญ่ที่สุดในปัจจุบันเกี่ยวกับ ประเด็นนี้ มีการสำรวจผู้ป่วยที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) จำนวน 3,762 คนจาก 56 ประเทศ พบว่าเกือบครึ่งหนึ่งยังคงไม่สามารถทำงานเต็มเวลาได้ หลังจากผ่านไป 6 เดือนนับตั้งแต่มีการติดเชื้อ ส่วนใหญ่เนื่องมาจากมีอาการเหนื่อยล้า อ่อนแรง (fatigue) อาการอ่อนเพลียหลังการออกกำลัง (post-exertional malaise) และการสูญเสียความสามารถในการเรียนรู้ (cognitive dysfunction) เป็นหลัก [35]

ในการศึกษาวิจัยนี้เราศึกษาว่าเราสามารถพบโมเลกุลที่มีความผิดปกติ (dysregulated molecules) ในกระแลเลือดที่อาจจะเป็นสาเหตุของอาการต่าง ๆ ที่ยังก้างอยู่ใน ผู้ที่มีกาวะอาการหลงเหลือหลังจากติดเชื้อใดวิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ได้หรือไม่ อาการเหล่านี้อาจจะมี สาเหตุมาจากการที่มีลิ่มเลือดแข็งตัวในพลาสมา (plasma clots) อยู่ในกระแสเลือดอย่างต่อเนื่องซึ่งยับยั้งขัดขวางกระบวนการการสลายของลิ่มเลือด (fibrinolysis) หรือไม่ ก่อนหน้านี้เราได้แสดงให้เห็นว่ามีสิ่งตกค้างสะสมของไฟบรินหรือไฟบริโนเจนที่ผิดปกติขนาดใหญ่หรืออะไมลอยด์ (amyloid) อยู่ในพลาสมาของผู้ป่วยโควิด 19 เขียบพลัน [8, 9] ในการศึกษาวิจัยนี้เราแสดงให้เห็นว่าตัวอย่างพลาสมาจากผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ยังคงมีสิ่งตกค้างสะสมที่ผิดปกติขนาดใหญ่หรืออะไมลอยด์ (amyloid) อยู่ และสิ่งตกค้างสะสมเหล่านี้ไปยับยั้งขัดขวางกระบวนการการสลายของลิ่มเลือด (fibrinolysis) ได้เป็นอย่างมาก แม้แต่มีการย่อยโดยใช้ trypsin ด้วยวิธี 2 ขั้นตอนแล้วก็ตาม เราได้ใช้โปรตีโอมิกส์เพื่อที่จะศึกษาการมีอยู่ของโปรตีนทั้งใน supernatant และในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ติดอยู่ซึ่งถูกย่อยแล้ว (หลังจากการย่อยโปรตีนด้วย trypsin) สิ่งที่น่าสนใจเป็นพิเศษก็คือการเพิ่มสูงขึ้นอย่างมากมาขของโมเลกุลที่ทำให้เกิดการอักเสบในระยะเฉียบพลัน Serum Amyloid A (SAA4) และ α(2)-antiplasmin (α2AP) ที่ติดค้างอยู่ในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ซึ่งยับยั้งขัดขวางกระบวนการการสลายลิ่มเลือด (fibrinolysis) ระบบ plasminantiplasmin มีบทบาทสำคัญเป็นอย่างมากในการแข็งตัวของเลือดและในกระบวนการการสลายลิ่มเลือด [36] Plasmin และ α2AP เป็นปัจจัยหลักเบื้องต้นในการสลาย fibrin polymers อย่างมีการควบคุมเป็นปกติไปเป็น fragments ที่สามารถละลายได้ (36, 37)

เครื่องมือและวิธีการ (Materials and methods)

การรับรองทางจริยธรรม

การศึกษาวิจัยนี้ได้รับการรับรองทางจริยธรรมจาก Health Research Ethics Committee(HREC) of Stellenbosch University (South Africa) (reference: N19/03/043, project ID: 9521) วัตถุประสงค์ของการทดลอง ความเสี่ยง ตลอดจนรายละเอียดต่าง ๆ ได้รับการอธิบายให้แก่อาสาสมัคร และได้รับการยินยอมโดยมีการบอกกล่าว (informed consent) ก่อนการเก็บตัวอย่างเลือด ทางคณะผู้วิจัยได้ปฏิบัติตามแนวทางปฏิบัติด้านจริยธรรมการวิจัยและหลักการ ของปฏิญญาเฮลซิงกิ (Declaration of Helsinki) แนวทางปฏิบัติสำหรับการปฏิบัติทางคลินิกที่ดีแห่งแอฟริกาใต้ (South African Guidelines for Good Clinical Practice) และแนวทางปฏิบัติด้านจริยธรรมการวิจัยของสภาการวิจัยด้านการแพทย์ (Medical Research Council Ethical Guidelines for Research) อย่างเคร่งครัดตลอดระยะเวลาของการศึกษาวิจัยและสำหรับทก ๆ โพรโตคอลในการศึกษาวิจัย

ข้อมูลทางด้านประชากรศาสตร์และข้อพิจารณาของกลุ่มตัวอย่าง

ตัวอย่างเลือดได้รับการจัดเก็บจากอาสาสมัครที่มีสุขภาพดี (N = 13; เพศชาย 6 คน เพศหญิง 7 คน; อายุเจลี่ยคือ 52.4 ± 4.8 ปี) เพื่อเป็นกลุ่ม controls อาสาสมัคร ที่มีสุขภาพดีเหล่านี้ต้องไม่เป็นผู้ที่สูบบุหรี่ หรือมีโรคหัวใจและหลอดเลือด หรือมีภาวะของการแข็งตัวของเลือด หรือเป็นผู้ที่อยู่ระหว่างการตั้งครรภ์ การให้นมบุตร หรือใช้ยาต้าน การแข็งตัวของเลือด [38] ผู้ป่วยในการศึกษาวิจัยนี้ได้แก่ผู้ป่วยที่ได้รับการตรวจวินิจจัยว่าเป็นโลวิด 19 (ก่อนการบำบัครักษา) (N = 15; เพศชาย 9 คนและเพศหญิง 6 คน; อายุเจลี่ยคือ 54.8 ± 15.3 ปี) และผู้ป่วยโรลเบาหวานชนิดที่ 2 (T2DM) (N = 10; เพศชาย 7 คนและเพศหญิง 3 คน; อายุเจลี่ยคือ 59.2 ± 15.9 ปี) นอกจากนี้ก็ ยังมีผู้ป่วยที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 เฉียบพลันรุนแรงและได้รับการเข้าพักรักษาตัวในโรงพยาบาลที่ซึ่งผู้ป่วยเหล่านี้ได้รับออกซิเจน หนึ่งรายที่ป่วยมีอาการของโควิด 19 ขึ้นปานกลางแต่ะได้รับการเข้าพักรักษาตัวในโรงพยาบาล สี่รายมีอาการของโควิด 19 ขึ้นปานกลางแต่ะได้รับการเข้าพักรักษาตัวในโรงพยาบาล สี่รายมีอาการของโควิด 19 ขึ้นปานกลางแต่ะได้ได้รับการเข้าพักรักษาตัวในโรงพยาบาล สี่รายมีอาการของโควิด 19 เฉียบพลันเล็กน้อยและไม่ได้รับการเข้าลักรักษาตัวในโรงพยาบาล สี่รายมีอาการของโควิด 19 เฉียบพลันเล็กน้อยและไม่ได้รับการเข้ากัรรักษาตัวในโรงพยาบาล ผู้ป่วยเหล่านี้มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 เดือนพลันจากติดเชื้อโควิด 19 เดือนพลันจากระหลงเหลือหลังจากติดเชื้อโควิด 19 ใน ระยะยาว/ผลตามหลังระยะเลียบพลันของโควิด 19 เดือนพลัน ในบรรดาผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในโคควิด 19 เดียบพลัน

การเก็บตัวอย่างเลือด

การเจาะเลือดและเก็บตัวอย่างเลือด (citrated blood samples) ทำโดยเจ้าหน้าที่ผู้เจาะเลือดที่มีคุณสมบัติเหมาะสมหรือโดยแพทย์ การเจาะเลือดทำโดยใช้ $4.5~\mathrm{mL}$ sodium citrate (3.2%) tubes (BD Vacutainer®, 369714) และปฏิบัติตามโพรโตคอลการปลอดเชื้อมาตรฐาน ตัวอย่างเลือด (whole blood) ได้รับ การปั่นแยก (centrifuged) ที่ $3000\times g$ เป็นเวลา $15~\mathrm{un}$ ที่ที่อุณหภูมิห้อง และตัวอย่างส่วนที่เป็น supernatant platelet poor plasma ได้รับการจัดเก็บ และรักษาไว้ในหลอดชนิด $1.5~\mathrm{mL}$ Eppendorf tubes ที่อุณหภูมิ $-80~\mathrm{cm}$

การวัดความหนืด

ความหนืดของพลาสมาได้รับการตรวจวัดโดยใช้เครื่อง microVISC micr

นี้ได้รับการทำความสะอาดโดยใช้สารละลายชนิด 1% Scienceware® Aquet® liquid detergent solution (Sigma-Aldrich, Z273260) เพื่อ อำรงไว้ซึ่งค่าการวัดความหนืดที่มีความเสถียร ค่าความหนืดของพลาสมาคำนวณตามกฎความหนืดนิวโตเนียน (Newton's law of viscosity):

$\mu = \tau Y app \mu = \tau Y app$

โดยที่ μ คือความหนืด (viscosity) , ττ คือความเค้นเฉือน (shear stress) และ Yapp Yapp คืออัตราเฉือน (apparent shear rate)

การตรวจวิเคราะห์ Serum Amyloid A โดยวิธี ELISA

เราได้ทำการตรวจวิเคราะห์ด้วยวิธี ELISA กับ platelet poor plasma (PPP) จำนวน 12 ตัวอย่างจากกลุ่ม controls จำนวน 11 ตัวอย่างจากผู้ป่วยโควิด 19 เฉียบพลัน และจำนวน 11 ตัวอย่างจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ชุดตรวจวิเคราะห์ชนิด Human SAA ELISA Kit (SAA1) (E-EL-H2183, Elabscience Biotechnology Inc.) ถูกใช้ในการตรวจวิเคราะห์นี้ โดยทำตามโพร โตคอลของบริษัทผู้ผลิต SAA1 เป็นหนึ่งในจำนวน 2 ชนิดของโปรตีน SAA ในระยะเฉียบพลัน [39]

พยาธิวิทยาของเกล็ดเลือด

ตัวอย่าง whole blood (haematocrit) จากอาสาสมัคร์ซึ่งเป็นผู้ที่มีสุขภาพดี ผู้ป่วยโควิด 19 และจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผล ตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ได้รับการ exposed กับ fluorescent markers 2 ชนิด คือ CD62P (PE-conjugated) (platelet surface P-selectin) (IM1759U, Beckman Coulter, Brea, CA, USA) และ PAC-1 (FITC-conjugated) (340507, BD Biosciences, San Jose, CA, USA) CD62P ถูกพบใน granules ของเกล็ดเลือดและต่อจากนั้น translocate ไปที่ผิวของเมมเบรนของเกล็ดเลือด กระบวนการ translocation เกิดขึ้นหลังจากที่ platelet P-selectin ถูกปลดปล่อยจาก cellular granules ในระหว่างการกระตุ้นของเกล็ดเลือด [6, 9] ปริมาณ 4 µL ของ CD62P และ PAC-1 ถูกเดิมลงไปใน 20 µL haematocrit หลังจากนั้น haematocrit ที่ได้รับการ exposed กับ markers ก็จะถูก incubated เป็นเวลา 30 นาที (ป้องกันไม่ให้โดนแลง) ที่อุณหภูมิห้อง ความยาวคลื่นสำหรับการดูดกลืนแลง (excitation wavelength) สำหรับ PAC-1 ถูกตั้ง ไว้ที่ช่วง 450 - 488 nm และความยาวคลื่นสำหรับการคายแลง (emission wavelength) ถูกตั้งไว้ที่ช่วง 499 - 529 nm และสำหรับ CD62P marker ความยาวคลื่นสำหรับการดูดกลืนแลง (excitation wavelength) ถูกตั้งไว้ที่ช่วง 540 - 570 nm และความยาวคลื่นสำหรับการคายแลงถูกตั้งไว้ที่ช่วง 577 - 607 nm ตัวอย่างที่ ได้รับการ processed แล้วนี้ถูกมองผ่านกล้องจุลทรรศน์ชนิด Zeiss Axio Observer 7 fluorescent microscope ซึ่งมีเลนส์ objective ชนิด Plan-Apochromat 63×/1.4 Oil DIC M27 (Carl Zeiss Microscopy, Munich, Germany)

Platelet poor plasma (PPP): โปรตีนอะไมลอยด์ (ไฟบรินหรือไฟบริโนเจน) และการแข็งตัวของเลือดที่ผิดปกติในตัวอย่าง platelet poor plasma ก่อน และหลังการย่อยด้วย trypsin 2 ขั้นตอน

ตัวอย่าง platelet poor plasma ทั้งหมดที่เป็น naïve จากผู้ป่วยโรคเบาหวานชนิดที่ 2 กลุ่ม controls ผู้ป่วยโควิด 19 เฉียบพลัน และจากผู้ที่มีอาการหลงเหลือ หลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ได้รับการตรวจวิเคราะห์โดยใช้เทคนิค florescence microscopy สำหรับการวิเคราะห์ทางโปรตีโอมิกส์เราใช้ตัวอย่างจากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดีจำนวน 5 ตัวอย่าง จากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) จำนวน 4 ตัวอย่าง และจากผู้ป่วยโควิด 19 เฉียบพลันจำนวน 9 ตัวอย่าง (รวมทั้งหนึ่ง ตัวอย่างจากผู้ป่วยโควิด 19 เฉียบพลันที่ตรวจซ้ำซึ่งเก็บตัวอย่างหลังจากครั้งแรก 2 วัน) ตัวอย่าง platelet poor plasma ได้รับการเตรียมสำหรับการวิเคราะห์ทางโปรตีโอมิกส์ ก่อนหน้านี้มีอาสาสมัครคนหนึ่งในกลุ่มผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ได้รับการเก็บตัวอย่างเลือด (ที่มีสุขภาพดี) ในการศึกษาวิจัยนี้เราก็ได้เปรียบเทียบตัวอย่าง (ที่มีสุขภาพดี) จากอาสาสมัครรายนี้กับตัวอย่างจากอาสาสมัคร รายอื่น ๆ ที่เป็นผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ก่อนและหลังการย่อย ด้วย trypsin ด้วยเช่นกัน

ตัวอย่าง platelet poor plasma ที่เป็น naïve: เทคนิค fluorescence microscopy เพื่อแสดงการแข็งตัวของเลือดที่ผิดปกติและการก่อตัวของลิ่ม เลือดขนาดเล็ก

เพื่อที่จะศึกษาการแข็งตัวของเลือดที่ผิดปกติของไฟบริน (ไฟบริโนเจน) และโปรตีนในพลาสมาในตัวอย่าง platelet poor plasma ที่เป็น naïve ตัวอย่าง platelet poor plasma จากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดี ผู้ป่วยโรคเบาหวานชนิดที่ 2 ผู้ป่วยโควิด 19 และจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผล ตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ได้รับการ exposed กับ fluorescent amyloid dye คือ Thioflavin T (ThT) (ความ เข้มข้นสุดท้ายเท่ากับ 0.005 mM) (Sigma-Aldrich, St. Louis, MO, USA) เป็นเวลา 30 นาทีที่อุณหภูมิห้อง วิธีการ ThT นี้ได้รับการพัฒนาขึ้นมา เพื่อที่จะทำให้มองเห็น (visualize) การแข็งตัวของเลือดที่ผิดปกติในสภาวะที่มีการอักเสบ [40,41,42,43] หลังจากการ incubation แล้วปริมาณ 4 uL ของ ตัวอย่าง platelet poor plasma ถูกวางบน glass slide และปิดด้วย coverslip ความยาวคลื่นสำหรับการดูดกลืนแสง (excitation wavelength) สำหรับ ThT ถูกตั้งไว้ที่ช่วง 450 - 488 nm และความยาวคลื่นสำหรับการคายแสง (emission wavelength) ถูกตั้งไว้ที่ช่วง 499 - 529 nm และตัวอย่างที่ ได้รับการ processed แล้วนี้ก็จะถูกมองผ่านกล้องจุลทรรศน์ขนิด Zeiss Axio Observer 7 fluorescent microscope ซึ่งมีเลนส์ objective ชนิด Plan-Apochromat 63×/1.4 Oil DIC M27 (Carl Zeiss Microscopy, Munich, Germany) [5, 8, 9]

โพรโตคอลการย่อยด้วย trypsin 2 ขั้นตอนของตัวอย่าง platelet poor plasma (PPP)

สารเคมีที่ใช้สำหรับการตรวจวิเคราะห์ทางโปรตีโอมิกส์

น้ำยาต่อไปนี้ได้รับการจัดซื้อจากบริษัท Sigma: ammonium bicarbonate, ammonium acetate, Sodium Chloride (NaCl), Tris, sodium duodecucyl sulphate (SDS), Triscarboxyethylphosphine (TCEP), methane methylthioslfonate, (MMTS), Trifluoroacetic acid (TFA) และ 3 M Empore C18 solid phase extraction discs ส่วน Trypsin ได้รับการจัดซื้อจากบริษัท New England Biosystems และ HILIC MagResyn functionalised particles จาก ReSynBiosciences สำหรับ Acetonitrile ได้รับการจัดซื้อจากบริษัท Romil และ Chloroform ได้รับจากบริษัท Merck

โพรโตคอลการย่อยด้วย trypsin จำนวน 2 โพรโตคอลได้รับการปฏิบัติตาม (ดูภาพประกอบที่ 1) เป็นที่ทราบกันดีว่าเอนไซม์ trypsin ย่อยโปรตีน อย่างไรก็ตามเราได้ ดัดแปลงขั้นตอนการย่อยด้วย trypsin สำหรับขั้นตอนการย่อยขั้นแรกในการทดลองนี้ วิธี non-denaturing digest (1 Trypsin method) เป็นวิธีการของเรา เอง สำหรับขั้น ตอนการย่อยขั้น ที่ 2 เราได้ทำตามขั้น ตอนปฏิบัติในเวปไซ ต์ https://resynbio.com/wp-content/uploads/2019/12/HILIC_RAPOBD.pdf โดยมีการดัดแปลงดังต่อไปนี้: DTT ถูกแทนที่ด้วย TCEP และ IAA ถูกแทนที่ด้วย MMTS ความเข้มข้นของ trypsin ถูกทำให้ต่ำลงเนื่องจากว่าเราไม่ทราบปริมาณของโปรตีน และระยะเวลาในการ incubation ถูกยืดขยายออกไปเป็น 18 ชั่วโมง

ภาพประกคบที่ 1

โพรโตคอลการย่อยด้วย trypsin จำนวน 2 โพรโตคอล ตามด้วยเทคนิค fluorescence microscopy และ โปรตีโอมิกส์ของ platelet poor plasma (PPP) จากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดี ผู้ป่วยโรคเบาหวานชนิดที่ 2 (T2DM) ผู้ป่วย โควิด 19 และจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC). (1) Citrated blood ได้รับการบั่นแยก (centrifuged) เพื่อให้ได้ platelet poor plasma. (2) platelet poor plasma ได้รับการ treated ด้วย trypsin เพื่อให้มีการย่อยกิปรดีนในพลาสมา. Platelet poor plasma จากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดีและ platelet poor plasma จากผู้ป่วยโรคเบาหวานชนิดที่ 2 (T2DM) ได้รับการย่อยสลาย (degraded) อย่างเด็มที่. ด้วอย่างจากผู้ป่วยโควิด 19 และจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) มีการก่อตัวเป็นสิ่งตกค้าง สะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ซึ่งไม่ถูกข่อยที่กันหลอดทดลอง. (3 และ 4) สำหรับเทคนิด fluorescence microscopy ส่วนที่เป็น supernatants ถูกนำเอา ออกไปและ supernatant ที่คงเหลืออยู่ปริมาณ 10 μL และ/หรือด้วอย่างที่เป็นเม็ดเล็ก ๆ ได้รับการ exposed กับ thioflavin T (ThT) และถูกมองผ่านกล้องจุลทรรสน์ชนิด fluorescence microscope. ก่อนการ วิเคราะห์ทางโปรตีโอมิกส์ที่อิงเทคนิด liquid chromatography-mass spectrometry (LC-MS) ส่วนที่เป็น supernatants ถูกลอดผ่านเครื่องมือสกัดด้วยตัวดูดซับของแข็ง (C18 solid phase extraction (SPE) device). (5) โพรโตคอลการย่อยด้วย trypsin ขั้นที่ 2 ได้รับการ

ปฏิบัติตามเพื่อที่จะ (6) ย่อยสลาย (degrade) สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ในตัวอย่างจากผู้ป่วยโควิด 19 และตัวอย่างจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC). วิธีเดียวกันนี้ได้รับการปฏิบัติตามสำหรับตัวอย่าง platelet poor plasma จากอาสาสมัครซึ่งเป็น ผู้ที่มีสุขภาพดีและจากผู้ป่วยโรกเบาหวานชนิดที่ 2 (T2DM) (ถึงแม้ว่าตัวอย่างเหล่านี้ไม่มีสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ ที่สามารถมองเห็นได้อยู่ก็ตาม). (7) ต่อจากนั้นตัวอย่างที่ได้รับการแยก เซลล์โดยใช้ trypsin 2 ขั้นตอน (double-trypsinized samples) จากกลุ่ม controls จากผู้ป่วยโควิด 19 และจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผล ตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ก็ได้รับการตรวจวิเคราะห์โดยใช้โปรตีโอมิกส์. (ภาพประกอบสร้างจาก BioRender.com)

โพรโตคอลการย่อยด้วย trypsin โพรโตคอลแรกได้รับการปฏิบัติตามโดยใช้ platelet poor plasma จากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดีจำนวน 5 คน จากผู้ที่มี อาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) จำนวน 4 คน และจากผู้ป่วยโควิด 19 เฉียบพลันจำนวน 9 คน (รวมทั้งหนึ่งตัวอย่างจากผู้ป่วยโควิด 19 เฉียบพลันที่ ตรวจซ้ำ ซึ่งเก็บตัวอย่างหลังจากครั้งแรก 2 วัน) ข้อมูล โปรตีโอมิกส์ของ supernatant ได้รับการเก็บรวบรวมจากตัวอย่างเหล่านี้ นอกจากนี้ยังมีการย่อยด้วย trypsin กับตัวอย่างจากอาสาสมัครที่มีภาวะโรคเบาหวานชนิดที่ 2 (T2DM) จำนวน 4 คนด้วย ในการศึกษาวิจัยนี้เรายังได้รวมตัวอย่างเพื่อตรวจซ้ำ (repeat sample) จากหนึ่งในอาสาสมัครเพื่อยืนยันผลการตรวจ โพรโตคอลการ แยกสลายเซลล์โดยใช้ trypsin ขั้นที่ 2 ได้รับการปฏิบัติกับสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ไม่ถูกย่อยจากตัวอย่างของผู้ป่วยโควิด 19 เฉียบพลัน จำนวน 5 ตัวอย่าง และจากตัวอย่างของผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) จำนวน 4 ตัวอย่าง การแยกสลายเซลล์โดยใช้ trypsin ขั้นที่ 2 นี้ยังได้รับการปฏิบัติกับคัวอย่างพลาสมาจากกลุ่ม control จำนวน 5 ตัวอย่างด้วย

โพรโตคอลการย่อยด้วย trypsin ขั้นที่ 1 ของ platelet poor plasma ที่เป็น naïve

ตัวอย่าง platelet poor plasma ทั้งหมดได้รับการ exposed กับการย่อยด้วย trypsin ขั้นที่ 1 สำหรับโปรตีนในพลาสมา ตัวอย่างเหล่านี้ถูกเจือจาง 10 ครั้งใน 10 mM ammonium bicarbonate และความเข้มข้นของโปรตีนได้รับการระบุ ตัวอย่างได้รับการทำให้เป็นมาตรฐาน (standardized) ที่ค่าโปรตีนทั้งหมด (total protein) เท่ากับ 1 mg/mL และ trypsin ปริมาณทั้งสิ้น 1 µg (New England Biosystems) ถูกเติมลงในพลาสมาในอัตราส่วนเอนไซม์ต่อ substrate เท่ากับ 1:50 ไม่มีการ reduction หรือการทำ alkylation หลังจากขั้นตอนการย่อยด้วย trypsin ขั้นที่ 1 นี้ตัวอย่างทั้งจากผู้ป่วยโควิด 19 และจากผู้ที่ มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) มีการก่อตัวของสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่สามารถมองเห็นได้ที่กันหลอดทดลองหลังจากที่ปั่นแยก (centrifuge) เป็นเวลา 30 นาทีที่ 13,000×g ตัวอย่าง platelet poor plasma จากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดีและจากผู้ป่วยที่มีภาวะเบาหวานชนิดที่ 2 (T2DM) ไม่มีการก่อตัวของสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ สามารถมองเห็นได้ที่กันหลอดทดลองแต่คย่างใด

เทคนิค Fluorescence microscopy ของ supernatant ที่ได้รับการย่อยสลาย (degraded) จาก trypsin และสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่สามารถมองเห็นได้

หลังจากขั้นตอนการย่อยด้วย trypsin ครั้งแรก supernatants ก็ถูกนำออกไปและส่วนที่เหลืออยู่ 10 µL ได้รับการ exposed กับ ThT (ตามที่อธิบายมาแล้วก่อน หน้านี้) และ supernatants ส่วนที่เหลือได้รับการตรวจวิเคราะห์โดยใช้เทคนิค mass spectrometry (วิธีการแสดงไว้ข้างล่างนี้) ปริมาณ 10 µL ของตัวอย่าง platelet poor plasma จากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดีและจากผู้ป่วยที่มีภาวะเบาหวานชนิดที่ 2 (T2DM) ไม่มีสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ในขณะที่ปริมาณ 10 µL ของตัวอย่าง platelet poor plasma จากผู้ป่วยโควิด 19 และจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) มีสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่สามารถมองเห็นได้อยู่จริง ๆ ตัวอย่างเหล่านี้ ยังถูกทำให้เห็นได้ (visualized) โดยการใช้กล้องจุลทรรศน์ชนิด Zeiss Axio Observer 7 fluorescent microscope ซึ่งมีเลนส์ objective ชนิด Plan-Apochromat 63×/1.4 Oil DIC M27 (Carl Zeiss Microscopy, Munich, Germany)

การย่อยสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) โดยโพรโตคอลการย่อยด้วย trypsin ขั้นที่ 2

บริมาณ 60 µL ของคลอโรฟอร์มถูกเติมลงใน platelet poor plasma บริมาณ 10 µL ส่วนที่เหลือ ซึ่งมีสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) อยู่ และนำไปบันแยก (centrifuged) ที่ 13,000×g เป็นเวลา 30 นาที supernatant บริมาณ 50 µL ถูกนำออกไป และส่วนที่เหลือถูกทำให้แห้ง (airdried) ต่อจากนั้นสิ่งตกค้างสะสมนี้ได้รับการละลายใน 100 mM Tris (pH 8.5) ซึ่งมี 1% sodium dodecyl sulphate (SDS) (Sigma) และ 5 mM (tris(2-carboxyethyl) phosphine) (TCEP, Sigma) อยู่และถูก reduced ที่อุณหภูมิ 45 °C เป็นเวลา 1 ชั่วโมง ผลิตภัณฑ์ที่ได้นี้ถูกปล่อยไว้ให้เย็นจนมีอุณหภูมิ เท่ากับอุณหภูมิห้องและ Cysteine residues ได้รับการ blocked โดยใช้ methyl methanethiosulfonate (MMTS, Sigma) ตัวอย่างเหล่านี้ก็ได้รับการตรวจวิเคราะห์โดยใช้ mass spectrometry ด้วยเช่นกัน ตัวอย่างโปรตีนที่ได้รับการ reduced และการ thiomethylated ถูกเจือจางในอัตราล่วน 1:1 ด้วย 200 mM ammonium acetate (Sigma) ซึ่งมี 30% acetonitrile (ACN, Romil), pH 4.5 อ ฮู ตัวอย่าง ได้รับการ incubated ด้วยอนุภาคแม่เหล็ก HILIC ที่ได้รับการเพิ่มหมู่พึงก์ชัน (functionalized) (ResynBiosciences) ซึ่งได้รับการ equilibrated ด้วย 100 mM ammonium acetate ที่มี 15% ACN, pH 4.5 เป็นเวลา 30 min หลังการ binding ส่วนที่เป็น supernatant ถูกนำออกไปและอนุภาคได้รับการล้าง 2 ครั้งด้วย 95% ACN ปริมาณ 0.1 mg ของ trypsin ถูกเติมลงไปใน 10 mM ammonium bicarbonate สำหรับแต่ละตัวอย่าง ตัวอย่างเหล่านี้ได้รับการ incubated ข้ามคืนที่อุณหภูมิ 37 °C โดยมีการ agitation หลังจากผ่านไป 18 ชั่วโมงส่วนที่เป็น supernatant ถูกนำออกไปและอนุภาคได้รับการล้างด้วย 1% trifluoroacetic acid (TFA, Sigma) สิ่งที่ได้จากการล้างได้รับการผสมกับ supernatant ครั้งแรก และ applied เข้ากับเครื่อง C₁₈ SPE (3 M Emopore) ก่อนการตรวจจิเคราะห์

โปรตีโอมิกส์ของ platelet poor plasma

หลังจากการย่อยด้วย trypsin ขั้นตอนแรกแล้ว ส่วนที่เป็น supernatants ต้องได้รับการสกัดด้วยตัวดูดซับของแข็ง (C_{18} and solid phase extraction [SPE]) และการตรวจวิเคราะห์ทางโปรตีโอมิกส์ ภายหลังจากสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits)ได้รับการทำให้ละลาย (solubilized) ในขั้นตอนการ ย่อยด้วย trypsin ขั้นที่ 2 สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ ที่สามารถละลายได้แล้วในตอนนี้ก็ได้รับการตรวจวิเคราะห์ทางโปรตีโอมิกส์ด้วยเช่นกัน

เทคนิค liquid chromatography กับ supernatant ที่ได้รับการย่อยสลาย (degraded) และกับสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ได้รับการย่อย สลาย (degraded)

ระบบ Dionex nano-RSLC

เทคนิค liquid chromatography ได้รับการดำเนินการด้วยระบบ Thermo Scientific Ultimate 3000 RSLC [44] ซึ่งมีคอลัมน์สำหรับงานวิเคราะห์ (analytical column) ชนิค 20 mm × 100 μm C₁₈ trap column (Thermo Scientific) และชนิค CSH 25cm × 75μm 1.7 μm particle size C₁₈ column (Waters) ตัวทำละลาย (solvent system) ที่ใช้คือ loading: 2% acetonitrile:water; 0.1% FA; Solvent A: 2% acetonitrile:water; 0.1% FA และ Solvent B: 100% acetonitrile:water ตัวอย่างได้รับการ loaded ลงสู่ trap column โดยการใช้ loading solvent ที่อัตราการใหลเท่ากับ 2 μL/min จากส่วนฉีดสารตัวอย่างอัตโนมัติ (autosampler) ที่ควบคุมอุณหภูมิซึ่งตั้งอุณหภูมิไว้ที่ 7 °C การ loading ดำเนินการเป็นเวลา 5 นาทีก่อนที่ตัวอย่างจะได้รับการ eluted ลงสู่ลอลัมน์สำหรับงานวิเคราะห์ (analytical column) อัตราการใหลถูกตั้งไว้ที่ 300 nL/min และ gradient ได้รับการ generated ดังต่อไปนี้ : 5.0%–30%B เกิน 60 นาที และ 30–50%B เป็นเวลา 60 – 80 นาที วิธีการ chromatography ทำที่ อุณหภูมิ 45 °C และส่วนที่เป็น outflow ถูกส่งไปยังเครื่อง mass spectrometer

เทคนิค mass spectrometry ของ platelet poor plasma

เทคนิคการทำ mass spectrometry ดำเนินการโดยใช้เครื่อง Thermo Scientific Fusion mass spectrometer ที่มีแหล่งกำเนิดไอออนชนิด Nanospray Flex ตัวอย่างพลาสมาก่อนและหลังการเติมโปรตีนส่วนหนาม (ความเข้มข้นสุดท้ายของการสัมผัส (final exposure concentration) เท่ากับ 1 ng mL^{-1}) จากตัวอย่างในกลุ่ม control จำนวน 4 ตัวอย่างได้รับการวิเคราะห์โดยวิธีนี้ ตัวอย่างได้รับการนำเข้าสู่เครื่องผ่านทางตัวปล่อยชนิด stainless-steel nano-bore emitter ข้อมูลได้รับการเก็บรวบรวมใน positive mode ที่มี spray voltage ซึ่งตั้งไว้ที่ 1.8 kV และ ion transfer capillary ตั้งไว้ที่ 275 °C สเปกตรัมได้รับการ calibrated ภายใน โดยใช้ polysiloxane ions ที่ m/z = 445.12003 การสแกน MS1 ทำโดยใช้ orbitrap detector ซึ่งตั้งไว้ที่ 120,000 resolution ซึ่งครอบคลุมสำหรับช่วง scan range ระหว่าง 375-1500 ซึ่งมี AGC target อยู่ที่ 4 E5 และ injection time สูงสุดเท่ากับ 50 ms ข้อมูลได้มาใน profile mode การทำ MS2 acquisitions ทำโดยใช้การเลือก monoisotopic precursor สำหรับอิออนที่มี

ประจุ + 2 - + 7 และ error tolerance ตั้งไว้ที่ ± 10 ppm Precursor ions ได้รับการคัดเอาออกไปจาก fragmentation หนึ่งครั้งสำหรับช่วงระยะเวลา 60 วินาที Precursor ions ได้รับการคัดเลือกสำหรับ fragmentation ใน HCD mode โดยการใช้เครื่อง quadrupole mass analyser ที่มี HCD energy ตั้งไว้ที่ 30% Fragment ions ถูกตรวจพบในเครื่อง Orbitrap mass analyzer ที่ตั้งไว้ที่ 30,000 resolution AGC target ถูกตั้งไว้ที่ 5E4 และ injection time สูงสุดตั้งไว้ที่ 100 ms ข้อมูลได้มาใน centroid mode

การวิเคราะห์ข้อมูล mass spectrometry

Raw files ที่สร้างจาก mass spectrometer ได้รับการ imported ลงสู่ซอฟต์แวร์ Proteome Discoverer v1.4 (Thermo Scientific) และ ประมวลผลโดยใช้ Sequest HT algorithm การสืบค้นฐานข้อมูล (database interrogation) ได้รับการดำเนินการกับฐานข้อมูล 2019-nCOVpFASTA Semi-tryptic cleavage ที่มี 2 missed cleavages ได้รับการยอมรับให้มีได้ Precursor mass tolerance ถูกตั้งไว้ที่ 10 ppm และ fragment mass tolerance ถูกตั้งไว้ที่ 0.02 Da Demamidation (NQ) และ oxidation (M) ได้รับการยอมรับในฐานะที่เป็น dynamic modifications การตรวจสอบความถูกต้องของเปปไทด์ทำโดยใช้ Target-Decoy PSM validator node ผลที่ได้จากการสืบค้นได้รับการ imported ลงสู่ Scaffold Q+ เพื่อการตรวจสอบความถูกต้องเพิ่มเติม (www.proteomesoftware.com) และเพื่อการทดสอบทางสถิติ มีการทดสอบด้วยวิธี t-test กับชุดข้อมูล และเทคนิค total spectra quantitative method ถูกใช้ในการเปรียบเทียบชุดข้อมูล

สถิติ (Statistics)

การวิเคราะห์ทางสถิติทำโดยใช้ซอฟต์แวร์ Graphpad Prism 8 (version 8.4.3) ข้อมูลทั้งหมดต้องได้รับการทดสอบชนิด Shapiro-Wilks normality tests การทดสอบ T-test ที่ไม่มีการจับคู่ทำกับข้อมูลพาราเมตริก โดยที่ข้อมูลแสดงเป็นค่าเฉลี่ย (mean) ± ส่วนเบี่ยงเบนมาตรฐาน (standard deviation) ในขณะ ที่การทดสอบชนิด Mann-Whitney U test ถูกใช้กับข้อมูล non-parametric ที่ไม่จับคู่ และข้อมูลแสดงเป็นค่ากลางมัธยฐาน (median) [Q1-Q3] (ทั้งหมด เป็นการทดสอบแบบ two-tailed)

ผลที่ได้จากการศึกษาวิจัย (Results)

การวิเคราะห์ความหนืดของ platelet poor plasma (แสดงเป็น mPa/seconds)

ในการวิเคราะห์นี้เราได้ทำการวิเคราะห์ platelet poor plasma จากกลุ่ม controls จำนวน 13 คน จากผู้ป่วยที่มีภาวะเบาหวานชนิดที่ 2 (T2DM) จำนวน 10 คน จากผู้ป่วยโควิด 19 เฉียบพลันจำนวน 13 คน และจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) จำนวน 11 คน ข้อมูลมีการกระจายอย่างปกติ และผลการทดสอบชนิด unpaired T-tests แสดงให้เห็นว่าไม่มีความแตกต่างเรื่องความหนืดของ platelet poor plasma ระหว่างกลุ่ม controls กับกลุ่มผู้ป่วยที่มีภาวะเบาหวานชนิดที่ 2 (T2DM) (p = 0.3) และระหว่างกลุ่ม controls กับกลุ่มผู้ที่มี อาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) (p = 0.9) ความแตกต่างอย่างมีนัยสำคัญถูก สังเกตพบในระหว่างความหนืดของ platelet poor plasma จากกลุ่ม controls กับกลุ่มผู้ป่วยโควิด 19 เฉียบพลัน (p = 0.001) และระหว่างกลุ่มผู้ป่วยโควิด 19 เฉียบพลันกับกลุ่มผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) (p = 0.002) ผลที่ได้ เหล่านี้ทำให้น่าเชื่อได้ว่าเฉพาะในตัวอย่างของผู้ป่วยโควิด 19 เฉียบพลันเท่านั้นที่ความหนืดของ platelet poor plasma มีการเพิ่มสูงขึ้น ไฟล์ข้อมูลดิบและกราฟดูได้ จากลิงค์ข้อมูล (ดูลิงก์ข้อมูล (ดูลิงก์ข้อมูลดิบ)

การตรวจวิเคราะห์ Serum Amyloid A โดยวิธี ELISA สำหรับ platelet poor plasma

 ของโควิด 19 ($3.98\ mg\ L^{-1}$ (±0.43) มีความแตกต่างอย่างมีนัยสำคัญของระดับความเข้มข้นของ SAA1 ใน platelet poor plasma ระหว่างกลุ่ม controls กับกลุ่มผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลัน ของโควิด 19 (p=0.003) ไม่มีความแตกต่างอย่างมีนัยสำคัญของระดับความเข้มข้นของ SAA1 ใน platelet poor plasma ระหว่างกลุ่มผู้ป่วยโควิด 19 เฉียบพลัน กับกลุ่มผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (p=0.46) ไฟล์ข้อมูลดิบและกราฟดูได้จากลิงค์ข้อมูล (ดูลิงค์ ข้อมูลดิบด้านล่าง)

พยาธิวิทยาของเกล็ดเลือดจากการที่มองเห็นโดยใช้เทคนิค fluorescence microscopy

ก่อนหน้านี้ เรา (และผู้วิจัยคนอื่น ๆ) ได้สังเกตเห็นว่าเกล็ดเลือดได้รับการกระตุ้นมากผิดปกติ (hyperactivated) ในผู้ป่วยโรคเบาหวานชนิดที่ 2 (T2DM $_{\odot}$ เมื่อไม่นาน มานี้เราก็ยังได้ยืนยันสิ่งที่สังเกตพบเห็นนี้ในตัวอย่างจากผู้ป่วยโควิด 19 [9] ในการศึกษาวิจัยนี้เราได้แสดงให้เห็นว่าในตัวอย่างที่มีอยู่ในขณะนี้เกล็ดเลือดจากผู้ที่มีอาการ หลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC) ก็ได้รับการกระตุ้นมากผิดปกติ (hyperactivated) ด้วยเช่นกัน (ภาพประกอบที่ 2E, F) โดยที่มีลักษณะที่เพิ่มเติมเข้ามาคือเกล็ดเลือดมีการจับตัวเป็นกระจุก (clumped together platelets) (ภาพประกอบที่ 2G, H)

Fig. 2 Control В **COVID-19** Long COVID

10 μm

ภาพจากเทคนิก fluorescence microscopy ของตัวอย่าง haematocrit ซึ่งแสดง ให้เห็นถึง micrographs ที่เป็นตัวแทนของเกล็ดเลือด. A, B แสดงให้เห็นถึง micrographs ที่เป็นตัวแทนจากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพคื. C, D แสดงให้เห็นถึง เกล็ดเลือดที่ได้รับการกระตุ้นมากผิดปกติในผู้ป่วยโควิด 19 และ E-H แสดงให้เห็นถึง micrographs ที่เป็นตัวแทนจากเกล็ดเลือดของผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC). ลูกสรสีขาว แสดงถึงเกล็ดเลือดที่รวมตัวกัน (aggregated platelets). เกล็ดเลือดใน haematocrit ได้รับการ incubated ด้วย fluorescent markers PAC-1 (green fluorescence) และ CD62P-PE (purple fluorescence).

Platelet poor plasma (PPP): โปรตีนไฟบริน (หรือไฟบริโนเจน) หรืออะไมลอยค์ (amyloid) และการแข็งตัวของเลือคที่ผิดปกติในตัวอย่าง platelet poor plasma ก่อนและหลังการย่อยด้วย trypsin 2 ขั้นตอน

ก่อนหน้านี้เราได้แสดงให้เห็นว่า platelet poor plasma ที่เป็น naïve (ได้รับการ exposed กับ ThT) จากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดีและจากผู้ป่วย โรกเบาหวานชนิคที่ 2 (T2DM) มีลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ที่ผิดปกติในปริมาณที่น้อยกว่าอย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับใน platelet poor plasma จากผู้ป่วยโควิด 19 เฉียบพลัน [8] Marker thioflavin T (ThT) มีการจับยึดกับลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ที่ผิดปกติ (อะไมลอยค์) ใน platelet poor plasma นั้น [8] ในการศึกษาวิจัยนี้เราได้แสดงให้เห็นว่า platelet poor plasma จากตัวอย่างของผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC) ก็มีลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ที่ผิดปกติ (อะไมลอยค์) ในปริมาณมากด้วย เช่นเดียวกัน ซึ่งใกล้เกียงกับในตัวอย่าง platelet poor plasma จากผู้ป่วยโควิด 19 เฉียบพลัน ภาพประกอบที่ 3 แสดงตัวอย่างที่เป็น naïve ของอาสาสมัครก่อนหน้าที่ จะมีการติดเชื้อโควิด 19 และในระหว่างที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC) (ภาพประกอบ 3A, B) และภาพประกอบ 3C แสดงตัวอย่างที่มากขึ้นของลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ในตัวอย่าง platelet poor plasma อื่น ๆ จากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 ในระยะยาว/ผลตามหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC)

ภาพประกอบที่ 3

Micrographs ของ platelet poor plasma (PPP) (ก่อนหน้า การย่อยด้วย trypsin) ซึ่งมีการเติม thioflavin T (ThT). Marker thioflavin T (ThT) มีการจับ ยึดกับ ลิ่มเลือดแ ขึ่งตัวขนาดเล็ก (microclots) ที่ผิดปกติ (อะไมลอยด์) ใน platelet poor plasma. A ลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ในอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดี ก่อนการติดเชื้อโควิด 19 เฉียบพลัน และ B อาสาสมัครคนเดียวกันในระหว่างที่มี ภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะ เฉียบพลันของโควิด 19 (long COVID/PASC). C micrographs ที่เป็นตัวแทนของอาสาสมัครที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ใน ระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC) คนอื่น ๆ

หลังจากนั้นตัวอย่างพลาสมาจากอาสาสมัครซึ่งเป็นผู้ที่มีสุขภาพดี ผู้ป่วย เบาหวานชนิดที่ 2 (T2DM) ผู้ป่วยโควิด 19 และจากผู้ที่มีภาวะอาการ หลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะ เฉียบพลันของโควิด 19 (long COVID/PASC) ก็ได้รับการย่อย ด้วย trypsin ขั้นที่ 1 สำหรับในแต่ละตัวอย่างส่วนที่เป็น supernatant ถูกนำออกไปและ ThT ถูกเติมลงไปใน 10 μL ของตัวอย่างที่เหลือ และถูกมองผ่านด้วยเทคนิค fluorescence microscopy ตามภาพประกอบที่ 4 และ 5 ในส่วนที่เหลืออยู่ 10 μLนี้ มีเม็ดเล็ก ๆ ที่สามารถมองเห็นได้สำหรับตัวอย่าง platelet poor plasma จากผู้ป่วยโควิด 19 และจากผู้ที่มีภาวะอาการ หลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะ เฉียบพลันของโควิด 19 (long COVID/PASC)

ภาพประกอบที่ 4 **PPP from Controls** PPP from Type 2 Diabetes A В PPP from acute COVID-19 ■ 10 µm

Supernatant ของ platelet poor plasma ที่ถูกย่อย (หลังจาก การย่อยด้วย trypsin). Marker thioflavin T (ThT) มีการจับยึด กับลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ที่ผิดปกติ (อะไมลอยด์) ใน platelet poor plasma. A Micrographs ของ platelet poor plasma จากอาสาสมัครซึ่งเป็นผู้ ที่มีสุขภาพ ดี; B Micrographs ของ platelet poor plasma จากผู้ป่วย โรคเบาหวานชนิดที่ 2 (T2DM). ลูกสรสีขาวชี้ให้เห็นบริเวณเล็ก ๆ ที่มีการจับยึด ของ ThT ในตัวอย่างจากกลุ่ม controls และจากผู้ป่วยเบาหวานชนิดที่ 2 (T2DM). C ลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ที่มีนัยสำคัญ สามารถมองเห็นได้ในพลาสมาจากผู้ป่วยโควิด 19 ตามที่เห็นเป็นสัญญาณสีเขียวใน micrographs ของ platelet poor plasma จากผู้ป่วยโควิด 19

ภาพประกอบที่ 5

Micrographs ที่ เป็น ตัวแทนของผู้ที่ มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC). ส่วนที่เป็น supernatant ที่ถูกย่อย (platelet poor plasma) หลังจากการย่อยด้วย trypsin ขั้นที่ เ ซึ่งส่วนที่เป็น supernatant ถูกนำออกไป และ thioflavin T (ThT) ถูกเติมลงไปในส่วนที่เหลืออยู่ 10 μ L. Marker thioflavin T (ThT) มีการจับยึดกับลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ที่ผิดปกติใน platelet poor plasma

โปรตีโอมิกส์ของ platelet poor plasma หลังจากการย่อยด้วย trypsin 2 ขั้นตอน

ในเอกสารผลการศึกษาวิจัยนี้เราม่งความสนใจไปที่ผลที่ได้จากโปรตีโอมิกส์ที่ได้คัดเลือกแล้วซึ่งน่าสนใจสำหรับการแข็งตัวของเลือดเท่านั้น เช่น fibrinogen, von Willebrand Factor (VWF), SAA4, และ plasminogen กับ a2AP หลังจากการทำ trypsinization ครั้งแรกแล้ว platelet poor plasma ของกลุ่ม controls ถูกย่อยอย่างเต็มที่ ในขณะที่สิ่งตกค้างสะสมซึ่งยับยั้งขัดขวางกระบวนการการสลายลิ่มเลือด (fibrinolytic-resistant deposit) ถูกปล่อยทิ้ง ไว้ในตัวอย่างของผ้ป่วยโควิด 19 และ ในตัวอย่างของผ้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (**long** COVID/PASC) เฉพาะหลังจากการ trypsinization ครั้งที่ 2 เท่านั้นที่สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) เหล่านี้จากผู้ป่วยโควิด 19 และจากผู้ ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC) สามารถถูกย่อยได้อย่างเต็มที่ โปรตีโอ มิกส์ได้รับการดำเนินการและผลที่เราได้แสดงให้เห็นว่าโมเลกุลต่าง ๆ ที่ทำให้เกิดการอักเสบมีการเพิ่มสูงขึ้นเป็นอย่างมากใน supernatant (หลังจากกระบวนการ trypsinization ครั้งแรก) ของตัวอย่างจากผู้ป่วยโควิด 19 และจากผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC) เมื่อเปรียบเทียบ supernatant จากกลุ่ม controls หลังจากกระบวนการ trypsinization ขั้นที่ 2 แล้วโมเลกุลต่าง ๆ ที่ทำให้เกิด การอักเสบก็ยังคงมีการเพิ่มสูงขึ้นเป็นอย่างมากด้วยเช่นกันในสิ่งตกค้างสะสมที่เป็นเม็ด เล็ก ๆ ที่ได้รับการย่อยแล้วจากผู้ป่วยโควิด 19 และจากผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (long COVID/PASC) เมื่อเปรียบเทียบกับตัวอย่างจากกลุ่ม control เราได้นำเสนอผลที่ได้จากการศึกษาของเราในรูปของการเปลี่ยนแปลงเป็นเท่าตัว (fold changes) ของระดับโปรตีน ดูในตารางที่ <u>1</u> สำหรับผลที่ได้ที่น่าสนใจมากที่สุดจำนวนหนึ่งของสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ได้รับการย่อยแล้วนี้ ตามที่แสดงใน รูปของการเปลี่ยนแปลงเป็นเท่าตัว (fold changes) (ซึ่งมากกว่า 2) สำหรับโปรตีนที่มีนัยสำคัญมากที่สุดสำหรับการเปรียบเทียบเชิงคู่ (pair-wise comparisons) คู ในภาพประกอบที่ <u>6</u> สำหรับการพล็อตในภาพรวม (overview plots) ของการกระจายของโปรตีนระหว่างการเปรียบเทียบตัวอย่างเชิงคู่ (ระหว่างกลุ่ม controls กับกลุ่ม ผู้ป่วยโควิด 19; ระหว่างกลุ่ม controls กับกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC); ระหว่างกลุ่มผู้ป่วยโควิด 19 กับกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ข้อมูลดิบทั้งหมดสำหรับ supernatant และข้อมูลสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ได้รับการย่อยแสดงไว้ในส่วน Supplementary Material

ตารางที่ 1. การวิเคราะห์โปรตีโอมิกส์เชิงคู่ของสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้วจากผู้ป่วยโควิด 19 เฉียบพลันและผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด
19 (Long COVID/PASC) เปรียบเทียบกับตัวอย่างที่ถูกย่อยอย่างเต็มที่จากกลุ่ม controls และกลุ่มผู้ป่วยเบาหวานชนิดที่ 2

สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (ลิ่มเลือดแข็งตัวขนาดเล็ก) ที่ถูกย่อยจากตัวอย่างของผู้ป่วยโควิด 19 เฉียบพลันเปรียบเทียบกับพลาสมาที่ถูกย่อยจากตัวอย่างของกลุ่ม Control

โปรตีนเหล่านี้มีอยู่ในตัวอย่างทั้ง 2 ประเภท และค่าการเปลี่ยนแปลงเป็นเท่าตัว (fold change value) มากกว่า 1 หมายถึงเป็น โปรตีนที่มีความชุกมากกว่าภายในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้วจากตัวอย่าง ของผู้ป่วยโควิด 19 โปรตีนหล่านี้รวมตัวกับอย่างหนนน่นอยู่ภชในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ ที่ถูกย่อย

ชื่อโปรตีน	การเปลี่ยนแปลงเป็นเท่าตัว (Fold change)	p-value
von Willebrand Factor	4.5	0.02
Complement component C4b	4.2	0.05
C-reactive protein	18.7	0.003

สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยจากตัวอย่างลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ของผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เปรียบเทียบกับพลาสมาที่ถูกย่อยจากตัวอย่างของกลุ่ม Control

โปรตีนเหล่านี้มีอยู่ในตัวอย่างทั้ง 2 ประเภท และค่าการเปลี่ยนแปลงเป็นเท่าตัว (fold change value) มากกว่า 1 หมายถึงเป็นโปรตีนที่มีความชุกมากกว่าภายในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้วจากตัวอย่างของผู้ที่ มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิล 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิล 19 (Long COVID/PASC) โปตีนหล่านี้รวมตัวกันอย่ามหนาแน่นอยู่ภขในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อย

Coagulation factor XIII A chain	6.9	0.001
Plasminogen	3	0.001
Fibrinogen alpha chain	4.1	0.0001
$\alpha 2$ antiplasmin ($\alpha 2AP$)	7.98	0.0002
vonWillebrandFactor	10.2	0.001
C-reactive protein	11.2	0.007
Serum Amyloid A (SAA4)	17.5	0.01
Complement component C7	20	0.0002

สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยจากตัวอย่างลิ่มเลือดแข็งตัวขนาดเล็ก (microclots) ของผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เปรียบเทียบกับสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits ที่ถูกย่อย (ลิ่มเลือดแข็งตัวขนาดเล็ก) จากตัวอย่างของผู้ป่วยโควิด 19 เฉียบพลัน

โปรตีนเหล่านี้มีอยู่ในตัวอย่างทั้ง 2 ประเภท และค่าการเปลี่ยนแปลงเป็นเท่าตัว (fold change value) มากกว่า 1 หมายถึงเป็นโปรตีนที่มีความชุกมากกว่าภายในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้วจากตัวอย่างของผู้ที่ มีภาระอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของ

โควิด 19 (Long COVID/PASC) โปรดีนหล่านี้รวมตัวกันอย่างหนาณนนอย่างชนาดีเสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อย

Plasminogen	2.3	0.0007
Fibrinogen 8 chain	2.8	0.0007
Coagulation factor XIII B	2.7	0.01
Fibrinogen a chain	3.1	0.0002
Complement component C6	7.5	0.01
$\alpha 2$ antiplasmin ($\alpha 2AP$)	9.2	0.0003
Complement factor 1	25	0.0009

พลาสมาที่ถูกย่อยจากตัวอย่างของผู้ป่วยโรคเบาหวานชนิดที่ 2 (หลังจากการทำ trypsinization ขั้นที่ 1) เปรียบเทียบกับสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อย (ลิ่มเลือดแข็งตัวขนาดเล็ก) ของผู้ที่มีภาวะอาการหลงเหลือ หลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) (หลังจากการทำ trypsinization ขั้นที่ 2)

โปรตีนเหล่านี้มีอยู่ในตัวอย่างทั้ง 2 ประเภท และค่าการเปลี่ยนแปลงเป็นเท่าตัว (fold change value) มากกว่า 1 หมายถึงเป็นโปรตีนที่มีความชุกมากกว่าภายในพลาสมาที่ถูกย่อยจากตัวอย่างของผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ใน ระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC)

CytoskeletalKeratin, type I	24.7	0.01
Cytoskeletal Keratin, type II	14	0.02
C1q subcomponent subunit B	1	0.03

พลาสมาที่ถูกย่อยจากตัวอย่างพลาสมาของกลุ่ม control เปรียบเทียบกับตัวอย่างพลาสมาที่ถูกย่อยจากตัวอย่างของผู้ป่วยโรคเบาหวานชนิดที่ 2 (ตัวอย่างพลาสมาทั้ง 2 ประเภทได้รับ การตรวจวิเคราะห์หลังจากการทำ trypsinization ขั้นที่ 1)

โปรตีนเหล่านี้มีอยู่ในตัวอย่างทั้ง 2 ประเภท และค่าการเปลี่ยนแปลงเป็นเท่าตัว (fold change value) มากกว่า 1 หมายถึงเป็นโปรตีนที่มีความชุก มากกว่าภายในพลาสมาที่ถูกย่อยจากตัวอย่างของผู้ป่วยโรคเบาหวานชนิดที่ 2

Complement C1r subcomponent-like protein	1.5	0.04
SAA1	2.5	0.03

ตัวอย่างทุกประโภทได้รับการทำ trypsinization 2 ขั้นตอน. ระหว่างกลุ่ม controls กับกลุ่มผู้ป่วยโควิด 19 เฉียบพลัน; ระหว่างกลุ่ม controls กับกลุ่มผู้ที่มี
ภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC); ระหว่างกลุ่มผู้ป่วยโควิด 19 เฉียบพลันกับ
กลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC). โปรตีนที่แสดงไว้ในที่นี้มีอยู่ใน
ตัวอย่างทั้ง 2 ประเภท; และค่าการเปลี่ยนแปลงเป็นเท่าตัวที่มากกว่า 1 หมายถึงโปรตีนที่มีความชุกมากกว่าในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่เฉพาะเจาะจง
ซึ่งถูกย่อย. เรายังได้ทำการเปรียบเทียบการเปลี่ยนแปลงเป็นเท่าตัว (fold change) ระหว่างพลาสมาที่ถูกย่อย (หลังจากการทำ trypsinisation ขั้นที่ 1) ของตัวอย่าง
จากกลุ่ม Controls กับกลุ่มผู้ป่วยโรคเบาหวานชนิดที่ 2 (T2DM) และระหว่างตัวอย่างจากกลุ่มผู้ป่วยโรคเบาหวานชนิดที่ 2 กับกลุ่มผู้ที่มีภาวะอาการหลงเหลือ
หลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) (supernatant หลังจากการทำ trypsinization
ขั้นที่ 1 เท่านั้น) อีกด้วย

ภาพประกอบที่ 6

A: Acute COVID-19 vs Control

B: Long COVID vs Control

C: Long COVID vs Acute Covid-19

Volcano plots ของการกระจายของโปรตีนระหว่างการเปรียบเทียบตัวอย่างเชิงคู่ (ระหว่างกลุ่มcontrols กับกลุ่มผู้ป่วยโควิด 19 ระหว่าง กลุ่ม controls กับกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) และระหว่างกลุ่มผู้ป่วยโควิด 19 กับกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะ เฉียบพลันของโควิด 19 (Long COVID/PASC). จุดสีส้มแสดงถึงโปรตีนที่อยู่เหนือระดับนัยสำคัญ (significance levels) ตามที่ แสดงโดยเส้นประ. การเปลี่ยนแปลงเป็นเท่าตัว (foldchange) ได้รับการนำเสนอบนแกน X (ค่าลบหมายถึง down-regulation และ ค่าบวกหมายถึง upregulation). แกน Y แทน Log-(minus) 10 ของค่า p-values

Mass spectrometry ของ supernatants ที่มี platelet poor plasma ที่ผ่านการย่อยแล้ว

โปรตีโอมิกส์ที่อ้างอิงเทคนิค mass spectrometry ยืนยันว่าความเข้มข้นของ α-fibrinogen chain มีการเพิ่มขึ้นใน supernatant ของกลุ่มผู้ป่วยโควิด 19 เมื่อเปรียบเทียบกับกลุ่ม controls และกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ระดับของ γ chains และ β chains ไม่มีการเปลี่ยนแปลงใน supernatant ของตัวอย่าง ประเภทใด ๆ ระดับของ antiplasmin และ plasminogen ใกล้เคียงกันใน supernatant ของกลุ่ม controls กลุ่มผู้ป่วยโควิด 19 และกลุ่มที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะ เฉียบพลันของโควิด 19 (Long COVID/PASC)

Mass spectrometry ของสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้ว เปรียบเทียบกับกลุ่มที่ถูกย่อย (digested faction) ที่พบใน platelet poor plasma ของกลุ่ม control

โปรตีโอมิกส์ที่อ้างอิงเทคนิค mass spectrometry ยืนยันว่าระดับของปัจจัยในการแข็งตัวของเลือด (coagulation factor XIII) คือ fibrinogen chains ของ α fibrinogen และ β fibrinogen มีการเพิ่มสูงขึ้นในสิ่งตกค้าง สะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้วจากตัวอย่างของกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโค วิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เมื่อเปรียบเทียบกับพลาสมาที่ถูก ย่อยแล้วจากกลุ่ม control และสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้วจากผู้ป่วยโควิด 19 เมื่อเปรียบเทียบกับตัวอย่างจากกลุ่ม control และตัวอย่างจากกลุ่มผู้ป่วยโควิด 19 แล้วพบว่าระดับของ plasminogen มีการเพิ่มขึ้นเล็กน้อยในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) จากกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจาก ติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 ($Long\ COVID/PASC$) ไม่มี SAA4 อยู่ใน พลาสมาที่ถูกย่อยแล้วของกลุ่ม control แต่มีอยู่ในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ(pellet deposits) ที่ถูกย่อยแล้ว ของตัวอย่างจากกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ผลที่ได้ที่น่าประหลาดใจก็คือว่า SAA4 มีการเพิ่มสูงขึ้นเป็นอย่างมากในสิ่งตกค้างสะสมที่ เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ถูกย่อยแล้ว เราซื้ให้เห็นว่าโมเลกุลเหล่านี้มีการติดค้างและรวมตัวกันอย่างหนาแน่น ในลิ่มเลือดแข็งตัวขนาดเล็กที่ยับยั้งขัดขวางกระบวนการการสลายของลิ่มเลือด (fibrinolysis-resistant microclots) ซึ่งมีอยู่ในกระแสเลือด SAA4 เป็นโมเลกุลที่มีการแสดงออกของการสร้างโปรตีนอย่างสม่ำเสมอ (constitutively expressed) ซึ่งตรงกันข้ามกับ SAA1 และ SAA2 ที่ทั้งสองชนิดนี้ล้วนเป็นโปรตีนในระยะ เฉียบพลัน (acute phase proteins) เหมือนกัน

Mass spectrometry ของ supernatants ที่มี platelet poor plasma ที่ถูกย่อย เปรียบเทียบกันระหว่าง ตัวอย่างจากกลุ่ม controls กับตัวอย่างจากกลุ่มผู้ป่วยเบาหวานขนิดที่ 2 และระหว่างตัวอย่าง จากกลุ่มผู้ป่วยเบาหวานขนิดที่ 2 กับตัวอย่างจากกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติด เชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC)

Platelet poor plasma ของกลุ่มผู้ป่วยเบาหวานขนิดที่ 2 และของกลุ่ม controls ได้รับการย่อยอย่างเต็มที่หลังจาก การทำ trypsinization ขั้นแรก โปรตีโอมิกส์ของ supernatants แสดงให้เห็นถึงการเพิ่มสูงขึ้นเป็นเท่าตัวสำหรับ โปรตีนชนิด Complement C1r subcomponent-like protein และ SAA1 ในตัวอย่างที่ย่อยแล้วที่มาจาก กลุ่มผู้ป่วยโรคเบาหวานชนิดที่ 2 (T2DM) มากกว่าในตัวอย่างจากกลุ่ม control เป็นที่ทราบกันว่าโปรตีน SAA1 มี การเพิ่มสูงขึ้นในผู้ป่วยโรคเบาหวานชนิดที่ 2 [49] การกระตุ้นของ classical complement pathway เป็น multimolecular complex ซึ่งมี 3 องค์ประกอบย่อยอยู่ด้วยคือ C1q, C1r, และ C1s [50] หน่วยข่อย ๆ (subunit) เหล่านี้ก่อตัวเป็น recognition areas ของ complex และการจับยึดของมันกับเป้าหมายที่เฉพาะเจาะจง นำไปสู่ formation ของ active C1 ซึ่งในทางกลับกันจะกระตุ้น classical complement pathway ใน ลักษณะที่อาศัยหรือไม่อาศัย immunoglobulin [50]

เรายังได้เปรียบเทียบ supernatant หลังจากการทำ trypsinization ขั้นที่ 1 ของตัวอย่างจากกลุ่มผู้ป่วยโรคเบาหวาน ชนิดที่ 2 และจากกลุ่มผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ในครั้งนี้เราพบว่ามีการเปลี่ยนแปลงเป็นเท่าตัวอย่างมีนัยสำคัญใน C1q subcomponent subunit B และใน Keratin 2 ประเภทคือ ประเภทที่ 1 และประเภทที่ 2 (cytoskel และคณะ)

การอภิปราย (Discussion)

บ้จจุบันนี้เป็นที่ทราบกันดีว่าการเปลี่ยนแปลงต่าง ๆ ของหลอดเลือดและกลุ่มอาการของภาวะที่เซลล์เม็ดเลือดแดงถูกทำลาย โดยลิ่มเลือดในหลอดเลือดขนาดเล็ก (thrombotic microangiopathy) ภาวะลิ่มเลือดแพร่กระจายในหลอดเลือด (diffuse intravascular coagulation) ตลอดจนภาวะลิ่มเลือดอุดตันในหลอดเลือดขนาดใหญ่ (large-vessel thrombosis) เป็นสาเหตุหลัก ๆ สำหรับการพยากรณ์โรคที่ไม่ดี (poor prognosis) ในกรณีของโควิด 19 [51, 52] โรคประจำตัวเหล่านี้มีการเชื่อมโยงกับกลุ่มอาการการทำหน้าที่ผิดปกติของหลายอวัยวะ (multisystem organ failure) และโรค pulmonary vascular endothelialitis ด้วย [51, 53] โดยเฉพาะอย่างยิ่งการเกิดภาวะ endotheliopathy ซึ่งมีความเป็นไปได้ว่ามีความเกี่ยวข้องสัมพันธ์กับการเจ็บป่วยขั้นวิกฤตและการเสียชีวิต [54] มีการ ชี้แนะด้วยว่าความผิดปกติของเซลล์เยื่อบุผนังหลอดเลือด (endothelial dysfunction) มีส่วนทำให้เกิดภาวะการ อักเสบของหลอดเลือดที่สัมพันธ์กับโควิด 19 (COVID-19-associated vascular inflammation) ความ ผิดปกติในการแข็งตัวของเลือดที่สัมพันธ์กับโควิด 19 (COVID-19-associated coagulopathy) และภาวะ pulmonary fibrinous microthrombi ของเส้นเลือดฝอยในถุงลมปอด [53] ในบางกรณีผู้ป่วยมีการแสดงออก ของการเพิ่มสูงขึ้นอย่างมีนัยสำคัญของผลิตภัณฑ์จากการสลาย D-dimer/fibrin หรือ fibrinogen [55] ผลิดภัณฑ์จาก การสลาย D-dimer และ fibrin หรือ fibrinogen อาจจะบ่งบอกถึงความพยายามที่ล้มเหลวของระบบการสลายลิ่ม

เลือด (fibrinolytic system) ในการนำเอา fibrin และเนื้อเยื่อที่ตายแล้ว (necrotic tissue) ออกจากเนื้อเยื่อ parenchyma ของปอด (และออกจากกระแสเลือดด้วย) แต่ถูกกินหรือท่วมทันอยู่ในกระบวนการ [56]

สิ่งที่เป็นศูนย์กลางของพยาธิวิทยาของโควิด 19 ก็คือสภาพการณ์ทางพยาธิวิทยาที่มีการเปลี่ยนไปมาอย่างรุนแรงจากภาวะ เลือดแข็งตัวเร็วผิดปกติ (hypercoagulation) และภาวะการละลายลิ่มเลือดที่ต่ำผิดปกติ (hypofibrinolysis) ใน ปี พ.ศ. 2564 Bouck และคณะผู้วิจับได้พบว่าช่วงเวลาระหว่าง 2 เหตุการณ์ (lag times) ในการก่อตัว (formation) ของ thrombin, plasmin, และ fibrin ถูกทำให้ยืดเยื้อออกไปเมื่อความรุนแรงของโรคโควิด 19 เพิ่มมากขึ้น [57] ทางผู้เขียนผลงานการวิจัยยังได้อ้างเหตุผลว่าถึงแม้ว่าการที่มี D-dimer อยู่เป็นการซี้ให้เห็นว่า fibrinolytic pathways ยังสมบูรณ์ครบถ้วนและกำลังทำหน้าที่สลาย fibrin อยู่อย่างแข็งขันนั้น แต่การที่ค้นพบสิ่งตกค้างสะสม (deposits) ของ fibrin อยู่ในปอดและในอวัยวะอื่น ๆ ก็เป็นการชี้ให้เห็นว่าความผิดปกติ (dysregulation) ของ สมดุลของวิถี (pathways) ในการก่อตัวของไฟบริน (fibrin-forming) และในการสลายไฟบริน (fibrindissolving) (หรือการเกิดพลาสมิน [plasmin generation]) เป็นลักษณะที่สำคัญของการเกิดโรค (pathogenesis) โควิด 19 [57]

ผลที่ได้จากการศึกษาวิจัยที่นำเสนอในเอกสารผลงานการศึกษาวิจัยนี้ชี้ให้เห็นถึงความล้มเหลวที่มีนัยสำคัญในกระบวนการ สลายลิ่มเลือด (fibrinolytic process) ในระหว่างที่ป่วยเป็นโควิด 19 และในผู้ป่วยที่มีอาการหลงเหลือหลังจากติดเชื้อ โควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ด้วย ผลที่ได้จากการ ศึกษาวิจัยของเราแสดงให้เห็นว่าโปรตีนในพลาสมาในตัวอย่างพลาสมาทั้งจากผู้ป่วยโควิด 19 และจากผู้ที่มีอาการหลงเหลือ หลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) มีการยับยั้ง ขัดขวางการสลายลิ่มเลือดเป็นอย่างมากเมื่อมี trypsin ปรากฏการณ์นี้ได้รับการยืนยันจากการที่มองเห็นภาพโดยใช้เทคนิค fluorescence microscopy รวมทั้งเทคนิคโปรตีโอมิกส์ด้วย ความเปลี่ยนแปลงที่มีนัยสำคัญส่วนใหญ่ที่แสดงให้เห็น ในการตรวจวิเคราะห์ทางโปรตีโอมิกส์อยู่ในโปรตีนในกระแสเลือด (circulating proteins) ที่เกี่ยวข้องกับการแข็งตัว ของเลือด เราสังเกตเห็นการเพิ่มสูงขึ้นอย่างมีนัยสำคัญของ fibrinogen chains ตลอดจนโปรตีนในระยะเฉียบพลัน (acute phase proteins) อย่างเช่น SAA4 และ $\alpha 2AP$ ตามที่ได้แสดงไว้ในการตรวจวิเคราะห์ทาง โปรตีโอมิกส์ (ตารางที่ 1) ผลที่ได้จากการศึกษาวิจัยของเราชี้ให้เห็นถึงการเพิ่มสูงขึ้นอย่างมีนัยสำคัญของ lpha 2AP ในผู้ที่มี อาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เมื่อเปรียบเทียบกับในกลุ่ม controls และในผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะ ยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เมื่อเปรียบเทียบกับกลุ่มผู้ป่วยโควิด 19 สำหรับ สิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ ที่ถูกย่อย (digested pellet deposits) ในการศึกษาวิจัยนี้เรายังได้แสดงให้เห็นถึง ความแตกต่างระหว่าง SAA1 กับ SAA4 อีกด้วย SAA1 มีการเพิ่มขึ้นประมาณ 2 เท่าใน platelet poor plasma ทั้งจากผู้ป่วยโควิด 19 เฉียบพลันและจากผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลัง ระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ตามที่เห็นในการตรวจวิเคราะห์ SAA1 ด้วยเทคนิค ELISA โปรตีน SAA1 และโปรตีนที่เหมือนองค์ประกอบย่อย Complement C1r (Complement C1r subcomponent-like protein) ก็มีการเพิ่มสูงขึ้นเช่นเดียวกันใน supernatant ที่มีพลาสมาที่ถูกย่อยอย่างเต็มที่

ของตัวอย่างจากผู้ป่วยเบาหวานชนิดที่ 2 (หลังจากการทำ trypsinization ขั้นที่ 1) เมื่อเปรียบเทียบกับใน supernatant ที่มีพลาสมาที่ถูกย่อยอย่างเต็มที่ของตัวอย่างจากกลุ่ม controls เป็นที่ทราบกันว่ามีการเพิ่มสูงขึ้นของ โปรตีน SAA1 ในผู้ป่วยเบาหวานชนิดที่ 2 [49] และผลเสียต่อหลอดเลือดของ complement กระบวนการอักเสบ ตลอดจนสภาพแวดล้อมของการเกิดลิ่มเลือดอุดตันอาจจะมีบทบาทสำคัญในพยาธิวิทยาของผู้ป่วยโรคเบาหวานชนิดที่ 2 [58] ในอนากตลวรมีการสึกษาเกี่ยวกับบทบาทของ complement molecules อื่น ๆ เช่น C3, C6 และ C7 ใน ผู้ป่วยโควิด 19 เฉียบพลันและในผู้มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ต่อไป นอกจากนี้เรายังพบการเพิ่มสูงขึ้นของโปรตีน VWF ในตัวอย่างจากผู้ป่วยโควิด 1 9 เ ฉี ย บ พ ลั น แ ล ะ จ า ก ผู้ มี อ า ก า ร ห ล ง เ ห ลี อ ห ลั ง จ า ก ติ ด เ ชื้ อ โควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) อีกด้วย สิ่งนี้มีนัยสำคัญ สำหรับการขีดเกาะของเกล็ดเลือดกับเยื่อบุผนังหลอดเลือด (endothelium) [59] เมื่อโปรตีน VWF มีการเพิ่มสูงขึ้น เกล็ดเลือดจะได้รับการกระตุ้นมากขึ้นและมีแนวโน้มมากขึ้นในการขึดเกาะกับเยื่อบุผนังหลอดเลือด [60]

โปรตีน SAA4 (มีการพบเป็น apoliprotein ของ HDL ด้วย) มีการสังเคราะห์อย่างสม่ำเสมอ (synthesized constitutively) ในตับ [46] ในการศึกษาวิจัยนี้เรารายงานว่า SAA4 มีการเพิ่มสูงขึ้นอย่างมีนัยสำคัญในการวิเคราะห์ ทางโปรตีโอมิกส์ของสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ (pellet deposits) ที่ผ่านการย่อยด้วย trypsin 2 ขั้นตอนของเรา มีการเพิ่มสูงขึ้นถึง 17 เท่าตัวของ SAA4 ใน platelet poor plasma ของตัวอย่างจากกลุ่มผู้ที่มีอาการหลงเหลือ หลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เมื่อ เปรียบเทียบกับของตัวอย่างจากกลุ่ม controls เรารายงานการเปลี่ยนแปลงเป็นเท่าตัว (fold changes) ของโปรตีนที่อยู่ ในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ ที่ต่อต้านขัดขวางกระบวนการการสลายของลิ่มเลือด (fibrinolysis-resistant pellet deposits) ของผู้ป่วยโควิด 19 เฉียบพลันและผู้ที่มีอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผล ตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เมื่อเปรียบเทียบกับตัวอย่างของเหลวของกลุ่ม controls ซึ่งก็ได้รับการย่อยจากกระบวนการ trypsinization 2 ขั้นตอนเหมือนกัน ดังนั้นความเข้มข้นที่แท้จริงใน ตัวอย่างพลาสมาจึงอาจจะ ไม่สะท้อนถึงการเปลี่ยนแปลงเป็นเท่าตัว (fold changes) ที่เรารายงานในการศึกษาวิจัยนี้ สำหรับโปรตีนที่ติดค้างอยู่ในสิ่งตกค้างสะสมที่เป็นเม็ดเล็ก ๆ ที่ละลาย (solubilized pellet deposits) เมื่อเร็ว ๆ นี้มี การแสดงให้เห็นว่าผู้ป่วยที่มีคอเลสเตอรอลชนิด HDL ในระดับต่ำ ๆ ในระหว่างที่เข้าพักรักษาตัวในโรงพยาบาลมีความ เป็นไปได้มากกว่าในการที่จะพัฒนาไปสู่การเจ็บป่วยรุนแรง เมื่อเปรียบเทียบกับผู้ป่วยที่มีคอเลสเตอรอลชนิด HDL อยู่ใน ระดับสูง ๆ ls [61] และเมื่อเปรียบเทียบกับผู้ที่มีสุขภาพดีในกลุ่ม controls ผู้ป่วยเหล่านี้มีความเข้มข้นของคอเลสเตอรอล ทั้งหมด (คอเลสเตอรอลชนิด HDL และชนิด LDL) ลดลงอย่างรวดเร็ว [$\underline{62}$] จากการที่มีระดับของคอเลสเตอรอลชนิด HDL ในกระแสเลือคลดลง จึงมีความเป็นไปได้ว่าโปรตีน SAA4 จะได้รับการแยก (partitioned) น้อยลงใน คคเลสเตครคลชนิด HDL

ที่น่าสนใจเป็นพิเศษคือการปรากฏตัวในเวลาเดียวกันของสิ่งตกค้างสะสมที่ผิดปกติหรืออะ ไมลอยค์ (amyloid) หรือลิ่ม เลือดแข็งตัวขนาดเล็ก (microclots) และระบบการสลายลิ่มเลือดจากภาวะผิดปกติของโรค (pathological fibrinolytic system) สมดุลของ plasmin และ antiplasmin อาจจะเป็นศูนย์กลางต่อการเกิดปรากฏการณ์นี้

(ดูจากภาพประกอบที่ 7) องค์ประกอบสำคัญอย่างหนึ่งของระบบการสลายลิ่มเลือด (fibrinolytic system) คือการ เปลี่ยน zymogen plasminogen ในกระแสเลือดเป็น plasmin ซึ่งเป็นรูปแบบที่ active ของมัน [63, 64] ตัวกระตุ้นจากภายใน (endogenous activators) ของ plasminogen ได้แก่ tissue-type plasminogen activator (tPA) และ urokinase-type plasminogen activator (uPA) [65] ปฏิกิริยาเร่ง (catalytic activity) ของ tPA ส่วนใหญ่มีการพึ่งพาอาศัยการมีอยู่ของไฟบริน เพราะว่าทั้ง tPA และ substrate plasminogen ของมันล้วนมีการจับยึดกับ lysine residues บนไฟบรินและใช้มันเป็น cofactor สำหรับสร้าง plasmin [64] Plasmin เป็น effector protease ของระบบการสลายลิ่มเลือด (fibrinolytic system) ซึ่ง เป็นที่ทราบกันดีสำหรับการที่มันมีส่วนเกี่ยวข้องในการย่อยสลายไฟบริน (fibrin degradation) และนำเอาลิ่มเลือดออก ไป [63] Plasmin ยังได้รับการยอมรับว่าเป็น potent modulator ของกระบวนการทางภูมิคุ้มกันวิทยาต่าง ๆ โดย การมีปฏิสัมพันธ์โดยตรงกับเซลล์ชนิดต่าง ๆ รวมทั้งเซลล์ของหลอดเลือด (เซลล์เยื่อบุผนังหลอดเลือด เซลล์กล้ามเนื้อเรียบ) อีก ด้วย [63] จริง ๆ แล้วดูเหมือนว่าการนำเอาโปรตีนชนิดที่ถูกพับผิดปกติ (misfolded proteins) ออกไปและการธำรง รักษาไว้ซึ่งสภาวะสมดุลของเนื้อเยื่อ (tissue homeostasis) จะเป็นบทบาทหน้าที่หลักทางด้านสรีรวิทยาของ plasmin [63] นอกจากนี้ plasmin ยังถูกยับยั้งขัดขวางจาก actions ของ serine protease inhibitors ต่าง ๆ เช่น $\alpha 2AP$ อีกด้วย [64] ระดับที่สูงของ $\alpha 2AP$ ในเลือด [66] ซึ่งเป็น covalent inhibitor ที่มีความเร็วเป็นพิเศษ (untrafast) ของ plasmin มีความเชื่อมโยงกับความเสี่ยงที่เพิ่มขึ้นในการเกิดภาวะหลอดเลือดสมองตีบตันหรือภาวะ สมองขาดเลือด (ischemic stroke) และความล้มเหลวของการรักษาด้วยการให้ยาละลายลิ่มเลือด (tissue plasminogen activator therapy) ในมนุษย์ [67] นอกจากนี้แล้ว plasminogen activator inhibitor-1~(PAI-1) และ lpha 2AP ยังธำรงรักษาสภาวะสมดุลที่ละเอียดอ่อนในสภาวะทางสรีรวิทยาปกติอีกด้วย [68] lpha 2AP มี การเชื่อมโยงข้ามด้วยพันธะโควาเลนต์ (covalently cross-linked) กับไฟบรินในลิ่มเลือด (thrombus) โดย factor XIII (เอนไซม์ transglutaminase) ที่ได้รับการกระตุ้น [69, 70] ซึ่งเป็นแหล่งที่มาหลัก ๆ ของการยับยั้ง ขัดขวางของลิ่มเลือดในพลาสมาต่อการสลายลิ่มเลือดที่มีพลาสมินเป็นสื่อกลาง (plasmin-mediated fibrinolysis) ในหลอดทดลอง [66] ด้วยเหตุนี้จึงมีความเป็นไปได้อย่างสิ้นเชิงว่า อย่างเช่นที่เราสังเกตเห็นในตัวอย่างจากผู้ที่มีอาการ หลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ของ เรา ถ้าหากว่ามีสิ่งตกค้างสะสมที่ผิดปกติหรืออะไมลอยค์ (amyloid) หรือลิ่มเลือดขนาดเล็ก (microclots) ของ ไฟบรินหรือของไฟบริโนเจนในกระแสเลือดมากเกินพิกัดทั้งในผู้ป่วยโควิด 19 เฉียบพลันหรือในผู้ที่มีอาการหลงเหลือหลังจาก ติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 ($Long\,COVID$ /PASC) และ lpha 2AP มีการ เพิ่มสูงขึ้นเป็นเท่าตัวอย่างมีนัยสำคัญแล้ว จะทำให้ตัวกระตุ้นจากภายใน (endogenous activators) ของ plasminogen ตลอดจน cascade ของเหตุการณ์ต่าง ๆทางสรีรวิทยา (physiological events) ที่จะตามมาซึ่ง ได้รับการขับเคลื่อนจากการสร้างพลาสมิน (plasmin generation) ประสบความล้มเหลว นอกจากนี้พลาสมินยังช่วย ดำเนินการ (process) ให้โปรตีนส่วนหนามของไวรัส (viral S-protein) สามารถเข้าสู่ host cells [65] ที่ซึ่งพ ลาสมินและ proteases อื่น ๆ ได้ผ่า (cleave) บริเวณ furin site ที่เพิ่งได้รับการ inserted ใหม่ ๆ ในโปรตีนส่วน หนาม (S protein) ของไวรัสโคโรนา SARS-CoV-2 จากภายนอกเซลส์ (extracellularly) ซึ่งช่วยเพิ่ม ความสามารถในการติดเชื้อ (infectivity) และความรุนแรง (virulence) ของไวรัส [<u>56</u>] การเกี่ยวข้องของ

พลาสมินในการติดยึดกับโปรตีนส่วนหนาม (S protein) ของไวรัสนี้อาจจะมีส่วนเป็นเหตุให้ประสิทธิภาพของพลาสมินล ดน้อยลงในการจัดการกับการเพิ่มขึ้นของปริมาณไฟบรินหรือไฟบริโนเจนที่ผิดปกติต่อไป

Fig. 7

แผนภูมิอย่างง่ายของการแข็งตัวของเลือด (ซึ่งคัดแปลงจาก [37, 71, 72] แสดงให้เห็นถึงกระบวนการในผู้ที่มีสุขภาพดีและในระหว่างเกิดพยาธิ สภาพ. (1A) วิถีภายใน (intrinsic pathways) (1B) และวิถีภายนอก (extrinsic pathways) บรรจบกันเป็น (1C) วิถี ร่วม(common pathway). วิถีเหล่านี้นำไปสู่การเปลี่ยนไฟบริโนเจนที่ละลายได้ (soluble fibrinogen) ไปเป็นไฟบรินที่ละลายไม่ได้ (insoluble fibrin) ซึ่งได้รับการเร่ง (catalyzed) จากเอนไซม์ทรอมบิน (thrombin). (2) Tissue plasminogen activator [tPA]) หรือ urokinase-type plasminogen activator (uPA) เปลี่ยน plasminogen เป็น plasmin. ระบบการสลายลิ่มเลือดในผู้ที่มีสุขภาพดีเป็นตัวควบกุม (regulates) วิถีการแข็งตัวของเลือด (coagulation pathway) และช่วยในการสลายตัวที่ประสบผลสำเร็จ (successful lysis) ของลิ่มเลือดในไฟบรินที่ละลายไม่ได้ (insoluble fibrin clot). (3) Plasmin ผ่า (cleave) fibrin ไปเป็นผลิตภัณฑ์ของการย่อยสลายไฟบริน (fibrin degradation products [FDPs])

รวมทั้ง D-dimer. (4) โปรตีน C และ thrombomodulin ล้วนควบคุม (regulate) การแข็งตัวของเลือด: thrombin จับชืด กับ receptor ของมันคือ thrombomodulin ส่งผลให้เกิดโปรตีน C ที่ถูกกระตุ้น (activated protein C [APC]). หลังจาก นั้นโปรตีน C ที่ถูกกระตุ้น (APC) ก็จะขับขั้งขัดขวางทั้ง Va และ VIIIa. (5) โมเลกุลที่มีความผิดปกติซึ่งทำให้เกิดการอักเสบ (dysregulated inflammatory molecules) อาจจะไปรบกวนการแสดงออกของ tissue factor (TF). (6) โมเลกุลที่มีความผิดปกติซึ่งทำให้เกิดการอักเสบ (dysregulated inflammatory molecules) ขังอาจจะ down-regulate thrombomodulin อีกด้วย ซึ่งส่งผลให้เกิดภาวะเลือดแข็งตัวเร็วผิดปกติ (hypercoagulation) เพราะว่าในขณะนั้นปฏิกิริยาอาการ ของ Va และ VIIIa ไม่ได้รับการ modulated อย่างเพียงพอ. (7) โมเลกุลที่มีความผิดปกติซึ่งทำให้เกิดการอักเสบในกระแสเลือดสามารถ ขับขั้งขัดขวางระบบการสลายลิ่มเลือดโดยผ่านทางการ up-regulation ของ plasminogen activator inhibitor-1 (PAI-1) การ upregulation ของ PAI-1 ไปรบกวนการทำงานของ tissue plasminogen activator (TPA) และในที่สุดก็ นำไปสู่ระบบการแข็งตัวที่ผิดปกติ (dysregulated coagulation system). (8) α2-antiplasmin (α2AP) ขับขั้ง ขัดขวาง plasmin และในที่สุดก็จะป้องกันมิให้การละลายลิ่มเลือดที่เพียงพอ (sufficient fibrinolysis) เกิดขึ้นได้

สรุปผล (Conclusion)

ภาวะที่เกิดลิ่มเลือดได้ง่ายกว่าปกติ (hypercoagulability) เป็นภาวะที่ทราบกันดีว่าเกิดร่วมกันกับโรคเบาหวานชนิดที่ (120M) [49, 73] นอกจากนี้ยังเป็นที่ยอมรับเพิ่มมากขึ้นอีกด้วยว่าภาวะที่เกิดลิ่มเลือดได้ง่ายกว่าปกตินี้เป็น ภาวะแทรกซ้อนจากการติดเชื้อโควิด 19 และการต้านการแข็งตัวของเลือดได้กลายเป็นศูนย์กลางในการจัดการกับโควิด 19 ที่ ครอบคลุมรอบด้าน [65, 74] ดังนั้นการก่อตัวขึ้นมาของลิ่มเลือดแข็งตัวขนาดเล็กที่มีความผิดปกติอย่างมีนัยสำคัญ (อะไม ลอยด์) ซึ่งยับยั้งขัดขวางการละลายลิ่มเลือด (fibrinolysis) ระดับ $\alpha 2AP$ ที่เพิ่มสูงขึ้น และการขึ้น ๆ ลง ๆ (surge) ของ โมเลกุลต่าง ๆ ที่ทำให้เกิดการอักเสบในระยะเฉียบพลัน (acute phase inflammatory molecules) จึงอาจจะ เป็นตัวการหลัก (central contributors) ของพยาธิสรีรวิทยา (pathophysiology) ของการแข็งตัวของเลือด/การ ละลายลิ่มเลือดที่ซ้ำซ้อนหลายอย่างทั้งในการติดเชื้อโควิด 19 และในฟีโนไทป์ที่ยังตกค้างเหลืออยู่ (lingering phenotype) คือภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) การที่เราพบว่ามีการเพิ่มสูงขึ้นอย่างมีนัยสำคัญของ โมเลกุลที่ผิดปกติ (dysregulated molecules) เมื่อเปรียบเทียบตัวอย่างจากผู้ป่วยโควิด 19 เฉียบพลันกับตัวอย่างจากผู้ที่มีภาวะอาการหลงเหลือหลังจากติด เชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) เป็นสิ่งที่น่าสนใจ และเรา คาดว่ามันอาจจะเนื่องมาจากภาวะอักเสบที่ยืดเยื้อในผู้ที่มีภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผล ตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) และมีความเป็นไปได้ด้วยว่าอาจจะมีสาเหตุมาจากการ ติดเชื้อค้างนาน (persistent infection) จากไวรัส (ถึงแม้ว่าไม่ได้รับการยืนยันในการศึกษาวิจัยนี้) เรายอมรับว่าตอนนี้ สิ่งที่พบจากเทคนิคโปรตีโอมิกส์บางอย่างควรได้รับการยืนยันโดยการใช้กลุ่มตัวอย่างที่มีขนาดใหญ่ขึ้น เนื่องจากว่าอำนาจทาง สถิติ (statistical power) ของกลุ่มตัวอย่างในการศึกษาวิจัยนี้มีอยู่จำกัด เรายังแนะนำว่าวิธีการต่าง ๆ อย่างเช่นการ วิเคราะห์การวัดการเกาะกลุ่มของเกล็ดเลือด (platelet aggregometry analysis) และการวิเคราะห์ PT และ PTT ควรได้รับการพิจารณาด้วย ในการศึกษาวิจัยนี้เราสรุปว่า (i) ภาวะที่เกิดลิ่มเลือดได้ง่ายกว่าปกติ (hypercoagulability) มีสาเหตุเนื่องมาจากมีการเพิ่มสูงขึ้นอย่างมีนัยสำคัญของโมเลกุลที่ชักนำให้เกิดการอักเสบ (inflammatory molecules) (ii) ถิ่มเลือดแข็งตัวขนาดเล็กในกระแสเลือด (circulating microclots) และ เกล็ดเลือดที่ได้รับการกระตุ้นมากผิดปกติ (hyperactivated platelets) และ (iii) ระบบการละลายลิ่มเลือดที่ผิดปกติ

(aberrant fibrinolytic system) ทั้งหมดนี้ล้วนได้รับการขับเคลื่อนจากการทำหน้าที่ผิดปกติ (dysfunction) ของโปรตีนที่เป็นปัจจัยในการแข็งตัวของเลือด (clotting protein) รวมทั้งอุปสงค์และอุปทานของเอนไซม์ที่ใช้ย่อยสลาย (lytic enzyme) ที่เป็นศูนย์กลางของภาวะการละลายลิ่มเลือดที่ต่ำผิดปกติ (hypofibrinolysis) และลิ่มเลือด แข็งตัวขนาดเล็กตกค้างต่อเนื่อง (persistent microclots) ก็คือการที่มี α2AP เพิ่มสูงขึ้นอย่างมีนัยสำคัญ α2AP (iv) ความเกี่ยวข้องสัมพันธ์กันระหว่างโรคเบาหวานชนิดที่ 2 (T2DM) กับการพัฒนาของภาวะอาการหลงเหลือหลังจากติด เชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) จำเป็นจะต้องได้รับการใส่ ใจอย่างเร่งด่วนและจะต้องมีการศึกษาวิจัยต่อไป เพื่อที่จะค้นหาความสัมพันธ์กันระหว่างภาวะโรคเบาหวานชนิดที่ 2 กับภาวะ อาการหลงเหลือหลังจากติด เชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) ด้วยเหตุนี้พยาธิวิทยาในการแข็งตัวของเลือด (clotting pathologies) ทั้งในการดิดเชื้อโควิด 19 เฉียบพลันและในภาวะอาการหลงเหลือหลังจากติดเชื้อโควิด 19 ในระยะยาว/ผลตามหลังระยะเฉียบพลันของโควิด 19 (Long COVID/PASC) จึงอาจจะได้รับประโยชน์จากการทำตามวิธีการ ในการบำบัครักษาด้วยการยับยั้งการรวมตัว ของเกล็ดเลือดอย่างต่อเนื่อง (continued anticlotting therapy) เพื่อส่งเสริมสนับสนุนการทำงานของระบบการ ละลายลิ่มเลือด (fibrinolytic system function)