Gestion des processus métiers

Daniela Grigori Professeur, Université Paris Dauphine daniela.grigori@dauphine.fr

Pourquoi modéliser les processus?

- Une meilleure compréhension du système
- Analyse
 - Validation et vérification
- Spécification
 - Support pour le développement

9

Modèle de processus versus modèle de données

Modèle de procédé

Modèle d' un système = modèle de données
+ modèle de processus

Exemple d'un modèle de données (Diagramme de classe UML)

11

Exemple d'un modèle de processus (Réseaux de Petri)

Plan

- Introduction
 - Motivations et historique
- Définitions et concepts de base
- Système de gestion de workflow
- Produits
- Groupware et workflow
- Avantages des systèmes de Workflow
- Conclusion

13

Plan-suite

- Modélisation des processus : Réseaux de Petri, diagrammes (UML, EPC), la notation BPMN
- - Processus Web:
 - architecture orientée services, modèles pour la composition et l'orchestration des services web, processus inter-organisationnels

Liens utiles

- http://www.wfmc.org/
 - Workflow Management Coalition (WfMC):
 - Organisation internationale non-profit des vendeurs, utilisateurs et analystes de systèmes de Workflow
 - définit de standards pour le modèle et l'architecture des systèmes de workflow
 - Modèle de référence
 - 180 Membres: Microsoft, Oracle, Action Technology, DCE consultants, IBM, SAP AG, NEC

15

Bibliographie

Livres

- C. Godart, O.Perrin (editeurs), "Les processus métiers : concepts, modèles et systèmes ", Traité IC2, série informatique et systèmes d'information, Lavoisier, mai 2009
- Production Workflow: Concepts and techniques, F. Leymann (IBM) and D. Roller (IBM), Prentice Hall.
- "Workflow Mangement: models, methods and systems", Wil van der Aalst, Kees van Hee, MIT Press
- « Process-Aware Information Systems », Marlon Dumas, Wil van der Aalst, Arthur ter Hostede, Wiley
- « Business Process Management : concepts, langages, architectures », Mathias Weske, Springer

Workflow

- Motivations:
 - Gains de production de plus en plus difficile dans les procédés industriels
 - Besoin d' adaptation de plus en plus rapide au changement
- Objectif:
 - Permettre l' optimisation et l' automatisation des procédés

17

Workflow

• Principale catalyseur:

BPR (Business Process Reengineering): reconception fondamentale des procédures d'entreprises ayant comme objectif l'amélioration des mesures de performance critiques comme le coût, la qualité, la vitesse d'exécution

Autres catalyseurs

- Commerce électronique (B2B)
- Entreprises virtuelles
- Le développement à base de composants permet l'intégration facile des applications nouvelles et existantes via WFMS
- Environnements hardware et software hétérogènes

19

Évolution et utilisations des workflows

- Traitement des images
- Gestion des documents
- Messagerie électronique
- Groupware
- Applications basées sur les transactions
- Gestion des projets
- BPR

Procédé (Business Process)

- Procédure dans une organisation...
- Une séquence d'activités réalisées par plusieurs personnes, le résultat visible étant des différents formulaires papiers
- Exemple:
 - Gestion de prêts dans une banque
 - Gestion de remboursements dans une société d'assurance

21

Exemple de procédé

Workflow

- L'automatisation complète ou partielle des procédés durant lesquels des informations sont passées et des tâches sont affectées par un participant à un autre, en accord avec des procédures [WFMC].
 - Assure que le bon travail est fait au bon moment par la bonne personne et dans le bon ordre.

Workflow

 On appelle « workflow » les aspects opérationnels d' un procédé : la séquence des tâches et qui le réalise, le flot de données qui supporte ces tâches, et les mécanismes qui permettent de mesurer, suivre et contrôler ces tâches.

[Mohan1999] Workflow Management in the Internet Age, C. Mohan (IBM Almaden Research Center), école d'été objets répartis, Grenoble

25

Objectif

- Séparer la description de la logique des procédés de leur mis en œuvre dans les programmes
- Dans le même esprit que le concept de « base de données » met en œuvre l' indépendance entre les programmes et des données

Les procédés :

- deviennent plus importants (BPR)
- · nécessitent des changements fréquents
- · deviennent plus complexes
- sont de plus en plus nombreux

27

Flexibilité des processus

- La même activité peut être :
 - sous la responsabilité de participants différents,
 - mise en oeuvre par des solutions techniques différentes
- dans des organisations diff屍entes
- ou dans la même organisation à des
- · moments différents

Example d'applications

- Contrats d'assurance
- Gestion de demandes de prêts
- Administration système (e.g. activités BDA)
- · Remboursements assurances santé
- Gestion des factures
- Approbation des frais de déplacements (missions)
- Création de documentation technique
- Ingénierie concurrente
- Mise en place de services de télécommunication
- Gestion du cycle de vie de produits

31

Classification de workflow

Valeur ajoutée des processus

Collaboratif Document technique	Production dossier de prêt contrats d'assurance
Rapport de recherche Ex: Lotus Notes	Ex: FlowMark, FileNet, InConcert
Ad hoc gestion de personnel, processus d'achat Ex: Action, KeyFile	Administration facturation suivi de dossier Ex: JetForm, StaffWare

Fréquence des processus

Ex: gestion de prêts

• Activités

- Collecter Information sur le crédit
- Évaluation risque (montant <= 2000 €)
- Demander approbation (montant > 2000 € ou Risque)
- Accepter prêt
- Refuser prêt

33

Dimensions des procédés

- Dimension logique
 - Quelles activités
 - Dans quel ordre
- Dimension organisationnelle
 - Qui exécute
 - Les rôles, les agents, les fonctions
- Dimension informationnelle
 - Avec quoi
 - Les programmes, les ressources

35

Dimensions du Workflow

Dimension logique

- Procédé
- Activité
- Flot de contrôle
- Flot de données
- Containeur d'entrée
- Containeur de sortie
- Conditions

37

Dimension logique

Procédé

- Une description de la séquence des étapes à réaliser pour accomplir un objectif
- Un procédé est constitué d'un ensemble d'activités et de données relevantes

Activité

- Une étape d'un procédé
- A un nom, un type, une pre- et une post-condition, des contraintes temporelles
- Chaque activité a un conteneur d'entrée et un conteneur de sortie

Dimension logique

• Flot de contrôle

- Défini par les connecteurs de contrôle entre activités, ordre dans lequel les activités doivent s' exécuter
- Défini par les conditions de transition attachées aux connecteurs de contrôle

• Containeur d'entrée

 Une liste de variables typées et de structures qui sont utilisées en entrée de l'activité invoquée

• Conteneur de sortie

 Une liste de variables typées et de structures qui sont stockées en sortie de l'activité invoquée

39

Dimension logique

Conditions

- Spécifient les circonstances dans lesquelles certains événements vont apparaître
- Les conditions de transition sont associées aux connecteurs de contrôle et spécifient quand le connecteur est évalué à faux ou vrai
- Les conditions de départ spécifient quand une activité peut démarrer : tous les connecteurs d'entrée sont évalué à vrai (condition et) ou l'un d'entre eux est évalué à vrai (condition ou)
- Les conditions de sortie spécifient quand une activité est considérée comme terminée (si non, elle est réactivée)

Dimension organisationnelle

- Modélisation de la structure organisationnelle
 - BD organisationnelle interne ou accès à une BD externe
 - ou partage de la BD d'un autre outil
- Une requête de personnel associée à chaque activité
 - Spécifie les utilisateurs qui sont affectés à l'activité (ont les compétences et les droits d'exécuter l'activité)
 - Requête sur la BD organisationnelle

43

Gestion des Ressources

Ressource

(participant, acteur, utilisateur, agent)

Une ressource peut exécuter certaines activités pour certaines

Humaines et/ou non-humaines (printer, modem): capacité limitée

Classe de ressources

Un ensemble de ressources ayant des caractéristiques similaires.

Une classification de ressources est basée en général sur :

(compétence, qualification) Classification basée sur le travail qu' une ressource peut faire.

(département, équipe, bureau, unité organisationnelle) Classification basée sur l'organisation.

Exemple: 8 classes de ressources

47

Dimension informationnelle

- Les programmes qui implémentent les activités
 - nom du programme, propriétés spécifiques au système d'exploitation, mécanisme d'invocation
- L'implémentation de l'activité peut utiliser les API fournies pour avoir accès aux conteneurs de l'activité

Système de gestion de workflow

49

Système de gestion de workflow

• Un système qui définit, gère et exécute complètement un workflow grâce à un logiciel dont l'exécution est dirigée par une représentation informatique de la logique du workflow.

Modules d'un système de Workflow

- Module de définition (build time system)
 - Fonctionnalités pour définir, tester et gérer toute les informations nécessaires:
 - Les modèles des procédés
 - Structure de l' organisation
 - Les programmes utilisés
 - Information est stockée dans la base de données
- 2 possibilités
 - GUI ou langage de définition de workflow

Modules d'un système de Workflow

- Module d'exécution (run-time system):
 - Interprète au moment de l'exécution le modèle de procédé
- Le module principal moteur workflow
 - Création et suppression des instances de procédés
 - Coordination des activités
 - Interaction avec les participants humains ou les applications

Workflow – les concepts

Workflow – les concepts

- Procédé
- Activité
- Instance de procédé (job)
- Rôle
- Participant
- Sous-procédé

63

Procédé

- La partie automatisée de la procédure d'entreprise
- Un ensemble d'activités avec un but commun
- Une activité va d'un programme informatique à une activité humaine comme une réunion, une prise de décision ...
- Exemple de procédés : gestion des factures, gestion des remboursements

Activité

- Une étape d'un procédé
 - Activité élémentaire : unité de travail exécuté par un participant
 - Activité composée : implémentée par un procédé ..
- A un nom, un type, une pre- et une post-condition, des contraintes temporelles
- Chaque activité a un conteneur d'entrée et un conteneur de sortie
- 2 modes: automatique, manuel

Activité et Flot de Contrôle

- **AND Join** activités parallèles convergent dans une seule activité **avec** synchronisation ..
- **OR join** activités parallèles convergent dans une seule activité **sans** synchronisation ..
- AND Split une activité est suivie par plusieurs activités parallèles
- **Or Split** une activité prend une décision concernant la branche qui doit être exécutée dans le cas de branches multiples
- start, end...

Modélisation du flot de contrôle

- Basée sur les graphes/Réseaux de Petri
 - Standardisée par la WFMC
- Autres approches
 - Règles actives, diagramme état transitions...

Modélisation à base de graphes

Modélisation à base de règles

Spécification en Meteor [kri95]

[A, done] enables [B, start]

[A, failed] enables [C, start]

 $[\mathsf{B}, \mathsf{failed} \mid \mathsf{C}, \mathsf{failed}] \; \mathsf{enables} \; [\mathsf{WF}, \; \mathsf{abort}]$

69

....

Instance de procédé (job)

- Une instance de procédé a ses données spécifiques
- Exemple:
 - 2 demandes de prêt pour Michael, Jean
 - => 2 work cases:
 - Demande de prêt de Michael
 - Demande de prêt de Jean

Rôle

- Constitue la base pour le contrôle d'accès et le contrôle d'exécution
- L'exécution des activités n'est pas associée à un utilisateur, mais à un rôle => flexibilité, gestion des exceptions (hiérarchie de notification), distribution du travail
- Ex: "saisie de la facture" est exécutée par un employé du service de facturation
- Rôle: associé à un acteur, un groupe d'acteurs..

71

Participant

- Une personne, programme, groupe ou entité qui peut avoir des rôles
- Participant humain est un acteur...

Différents types d'activités

- Activité de notification
 - Pas d'implémentation (Ex: appel d'un client)
- Activité programme
 - séparation entre le niveau conceptuel et implémentation
 - Différentes implémentations pour les SE (Windows NT, AIX,..)
- Activité procédé
 - activité implémentée par un sous-procédé.
- Activité « Bloc »
 - exécutée n fois, n déterminé dynamiquement (Ex: compilation).
 - Pour implanter les boucles

77

Sous-procédé

- · Sous-procédé local
- Sous-procédé *Remote*
 - Exécuté par un autre système de gestion workflow (même vendeur ou vendeur différent)
- Comportement du sous-procédé par rapport à son parent :
 - Modèle autonome
 - Modèle chaîné
 - Modèle hiérarchique

Modèle autonome

- Le sous- procédé a été défini indépendamment est peut être exécuté comme un procédé
- Règles d'autonomie définissent les droits du parent sur le sous-procédé
 - Complètement autonome -> complètement contrôlé
 - Si complètement autonome, alors la terminaison du parent n' affecte pas le sous-procédé

79

Modèle chaîné

- Deux procédés A, B..
- Une activité de A détermine la création et le démarrage de B
- A et B s' exécutent indépendamment, sans synchronisation
- Appelé aussi modèle connecté discret

Modèle Hiérarchique

- Deux procédés A, B..
- Une activité de A détermine la création et le démarrage de B
- A attend B
- Modèle Imbriqué

Comment les utilisateurs interagissent avec le système de gestion de WF?

Liste de tâches

- Utilisateurs peuvent gérer leurs tâches dans des listes de tâches
- Toutes les tâches ayant les mêmes caractéristiques:
 - Tâches prioritaires
 - Tâches dans les procédés de gestion de factures
- Listes de tâches associées à un groupe (basé sur un rôle)

83

Listes de travail

- Mode *pull*
 - Utilisateur demande que les nouvelles tâches soient accessibles dans les listes de travail correspondantes
- Mode *push*
 - Chaque nouvelle tâches est immédiatement transférée dans la liste de travail correspondante

Listes de travail 2/2

- Mode grab
 - Le système transfère les tâches si besoin
 - Dès qu' une tâche est finie, le système démarre la suivante
 - Utile pour les liste de travail pour les groupes

85

Fonctions utilisateur 1/2

- Liste de travail
 - Supprimer une tâche (si la tâche existe sur les autres listes de travail)
 - Transférer une tâche
- Activité
 - Démarrer, redémarrer (état = exécutable)
 - Re-exécuter
 - Suspendre, résumer le sous-procédé attaché
 - Terminer

Fonctions utilisateur 2/2

- Procédé
 - Démarrer
 - Suspendre
 - Résumer
 - Visualiser les données de procédé (description, nom du procédé)
 - Modifier les données de procédé (description du procédé)

87

Audit 1/2

- Tous les événements importants sont enregistrés dans l'historique
 - Date et moment
 - Identifiant du procédé
 - Identifiant de l'activité
 - Demandeur de l'action (utilisateur ou système)
 - Identifiant de l'événement

Audit 2/2

- Utilisations:
 - Spécifications légales qui demandent que les informations sur le cycle de vie d'un procédé soient gardées un nombre d'années (30 ans pour l'industrie aéronautique)
 - Informations statistiques
- Volume de données très grand
 - Possibilité de sélectionner les événements

89

Produits

Produits

- Bizflow 2000 (Handysoft)
- COSA Workflow (COSA Solutions)
- DOLPHIN (Fujitsu)
- Eastman Software Enterprise Workflow
- InTempo (JetForm)
- MQ/Series Workflow (IBM)
- SERfloware (SER)
- Staffware (Staffware Corp.)
- TeamWARE Flow (Fujitsu)
- TIB/InConcert (TIBCO)
- · Visual and Panagon Workflo Workflo (FileNet)
- W4 (W4)
- WFX (Eastman Software)

91

Critères de comparaison (WARIA) 1/3

- Efficacité du moteur d'exécution
 - Nombre d'instance de procédés exécutées simultanément, cluster de serveurs
- Complexité des procédés
 - Exprimer la complexité réelle des processus dans toutes les détails
- Programmation des activités
 - API, date-limite, événements
- Affectation des tâches et représentation de l'organisation
 - Droits d'accès, rôles

Critères de comparaison (WARIA) 2/3

- Opérations et statistiques
- Intégration des applications de l'entreprise (EAI)
- Distribution
 - Coopération entre plusieurs moteurs de workflow
- Support pour le web
- Changements dynamiques

93

Critères de comparaison (WARIA) 3/3

- Définition des procédés
 - Outil graphique
- Définition des activités
 - Librairies des activités, générateurs de formulaires ...

Fonctions avancées et problèmes ouverts

- Flexibilité, exceptions
 - Le système de Workflow ne doit pas empêcher la résolution créative des problèmes ..
 - Doit être accepté par les utilisateurs ..
 - Pas de succès dans les années 1970
 - · les aspects sociaux et organisationnels pas pris en compte
- Propriétés transactionnelles
- Résistance aux pannes
- Mining les données de l'historique, WF interorganisationnels, etc...

95

Approches pour la flexibilité des systèmes de Workflow

- Flexibilité du flot de contrôle
 - Modèle ressource pour l'action (Milano, CTRG,...)
 - Modèles qui peuvent être modifiés dynamiquement (AdeptFlex, WASA, WIDE, Chautauqua..)
 - Modèles sophistiqués incluant de nouveaux éléments de construction (Mobile, flow.net, COO, CMI..)

Cycle de vie d'un processus (2) : le cercle vertueux

Cycle de vie d'un processus

- Conception
 - Conception initiale, puis re-conception en fonction des diagnostiques de l'exécution ou des évolutions de l'application
- Configuration
 - Déploiement d' un modèle dans un contexte organisationnel et informationnel
- Exécution
 - Mise en oeuvre incluant l'historisation à des fins d'analyse et de diagnostique
- Diagnostique
 - Etude critique des cas terminés en vue de

99

Différents types de processus

- Les processus les plus automatiques et plus structurés (production automatisée ...) sont bien établis
- Aujourd' hui, l'enjeu est sur les processus moyennement créatifs (interactifs) et structurés (circulation de documents)
- Les perspectives concernent les processus les plus créatifs et moins structurés qui sont les moins bien supportés (processus de coconception ...)

Segment d'applications pour le workflow

Valeur ajoutée des processus

Collaboratif Document technique Rapport de recherche	Production dossier de prêt contrats d'assurance
Gestion de projet	Workflow de production
Ad hoc gestion de personnel, processus d'achat	Administration facturation suivi de dossier
Groupware	Formulaires e-mail

Fréquence des processus

Pourquoi utiliser les systèmes de Workflow?

- Pour coordonner, contrôler et exécuter des procédures d'entreprise qui impliquent des tâches manuelles et automatiques distribuées dans une ou plusieurs entreprises dans un environnement hétérogène
- Certains produits mettent l'accent sur un aspect particulier des technologies workflow, principalement pour réduire le travail sur documents papier ou pour la coordination des activités des participants :
 - Gestion de documents, systèmes basés sur la circulation des formulaires par e-mail, etc...

Avantages des systèmes de Workflow

- Pour les clients:
 - Information sur l'état du procédé
 - Temps de réponse,
 - Qualités de services
 - Disponibilité de l'agent
- Niveau de l'entreprise
 - Mesures de performance et de coût
 - Contrôle de la qualité
 - Contrôle de l'accès et de la confidentialité
 - Adhérence aux procédures d'entreprise
 - Workflow permet de former rapidement des acteurs nouveaux ou temporaires

10

Avantages des systèmes de Workflow

- Pour les employées de l'entreprise
 - L' employée a une vue claire de ses tâches
 - L'information nécessaire est accessible facilement
 - Information sur le contexte des tâches
 - Accès automatique aux outils
- Pour les managers (superviseurs)
 - Information en temps réel pour prendre des décisions pour améliorer les procédés, résoudre les exceptions..