北京林业大学

数据库原理与应用

北京林业大学信息学院

函数依赖

北京林业大学 信息学院

· 函数依赖的定义

关系模式中的各属性之间相互依赖、相互制约的联系称为数据依赖。

函数依赖

多值依赖

函数依赖 (FD, Functional Dependency) 是关系模式中属性之间的一种逻辑依赖关系。

SCD (SNo, SN, Age, Dept, MN, CNo, Score)

SNo决定函数 (SN, Age, Dept) (SN, Age, Dept) 函数依赖于SNo

定义

设关系模式R(U, F), U是属性全集, F是 U上的函数依赖所构成的集合, X和Y是U的子集, 如果对于R(U)的任意一个可能的关系r, 对于X的每一个具体值, Y都有唯一的具体值与之对应, 则称X决定函数Y, 或Y函数依赖于X, 记作 $X \rightarrow Y$ 。我们称X为决定因素, Y为依赖因素。当Y不函数依赖于X时, 记作: $X \not \to Y$ 。当 $X \rightarrow Y$ 目 $Y \rightarrow X$ 时, 则记作: $X \leftrightarrow Y$ 。

北京林业大学 信息学院

U={SNo, SN, Age, Dept, MN, CNo, Score} F={SNo→SN, SNo→Age, SNo→Dept, (SNo, CNo)→Score}

Sno→Score

Sno→CNo

11101010001010101

函数依赖的逻辑蕴涵定义

定义

设F是在关系模式R(U)上成立的函数依赖集合,X, Y是属性集U的子集, $X \rightarrow Y$ 是一个函数依赖。如果从F中能够推导出 $X \rightarrow Y$,即如果对于R的每个满足F的关系r也满足 $X \rightarrow Y$,则称 $X \rightarrow Y$ 为F的逻辑蕴涵(或F逻辑蕴涵 $X \rightarrow Y$),记为 $F|=X \rightarrow Y$ 。

定义

设F 是函数依赖集,被F 逻辑蕴涵的函数依赖的全体构成的集合,称为函数依赖集F 的闭包(Closure),记为 F^+ 。即:

$$F + = \{ X \rightarrow Y \mid F \mid = X \rightarrow Y \}$$

101010001010101

函数依赖的推理规则及正确性

设有关系模式R(U), U是关系模式R 的属性集, F 是R上成立的只涉及U 中属性的函数依赖集。X, Y, Z, W 均是U 的子集, r是R的一个实例。

Armstrong 公理及正确性

A1: 自反律(Reflexivity)

如果 $Y \subseteq X \subseteq U$,则 $X \rightarrow Y$ 在R上成立。

即一组属性函数决定它的所有子集。

如: (SNo, CNo) →SNo

一多数依赖的推理规则及正确性

A2: 增广律(Augmentation)

如: $SNo \rightarrow Age$, $(Sno, SN) \rightarrow (Age, SN)$

A3: 传递律(Transitivity)

如: $SNo \rightarrow Dept$, $Dept \rightarrow MN$, $SNo \rightarrow MN$

0101000101010

定理: 如果 $X \to Y$ 是从F用Armstrong公理推理导出,那么 $X \to Y$ 在F+中。

Armstrong 公理推论及正确性

函数依赖的推理规则及正确性

伪传递律 (Pseudotransitivity rule)

若X→Y和Z ⊆ Y在R上成立,则X→Z在R上也成立。

函数依赖的推理规则及正确性

定理: 如果 $A_1A_2...A_n$ 是关系模式R的属性集, 那么 $X \rightarrow A_1A_2...A_n$ 成立的充分必要条件是 $X \rightarrow A_i$ (i=1,2,...n) 成立。

复合律 (Composition)

若X→Y和W→Z在R上成立,则XW→YZ在R上也成立

正确性:

从函数依赖集F使用推理规则推出的函数依赖必定在F+中

完备性:

 F^+ 中的函数依赖都能从F集使用推理规则集推出

完全函数依赖与部分函数依赖

② 定义

设有关系模式R(U), U 是属性全集, X 和Y 是U 的子集

- ◆ 如果 $X \rightarrow Y$,并且对于X的任何一个真子集X',都有 $X' \longleftrightarrow Y$,则称Y对X完全函数依赖,记作 $X \xrightarrow{f} Y$ 。
- ◆ 如果对X的某个真子集X', 有 $X' \rightarrow Y$, 则称Y对X部分函数 依赖, 记作 $X \stackrel{p}{\rightarrow} Y$ 。
- ◆ 关系模式SCD中,因为SNo → Score, 且CNo→ Score, 所以有: (SNo, CNo) → Score。而SNo→ Age, 所以(SNo, CNo) → Age。

完全函数依赖与部分函数依赖

只有当决定因素是组合属性时,讨论部分 函数依赖才有意义;

当决定因素是单属性时,只能是完全函数依赖。

北京林业大学 信息学院

传递函数依赖

② 定义

设有关系模式R(U), U是属性全集, X, Y, Z是 U的子集

传递函数依赖

例如,在关系模式SCD中,SNo → Dept,但Dept →SNo,而Dept →MN,则有SNo →MN 当学生不存在重名的情况下,有SNo → SN,SN→SNo,SNo →SN,SN→Dept,这时Dept对SNo是直接函数依赖,而不是传递函数依赖。

属性集的闭包及其算法

设有关系模式 R(U), U是属性集, F是 R上的函数依赖集, X是 U的子集($X \subseteq U$),用函数依赖推理规则可从 F推出函数依赖 $X \rightarrow A$ 中所有A的集合,称为属性集 X关于 F的闭包,记为 X⁺。

定理

 $X \rightarrow Y$ 能用函数依赖推理规则推出的充分必要条件是 $Y \subseteq X^+$ 中

属性集的闭包及其算法

设有关系模式 R(U) , U 是属性集 , F 是 R 上的函数依赖集 , X 是 U的子集 ($X \subseteq U$)

算法

```
result=X
do

{
    if F中有某个函数依赖 Y→ Z满足
        Y⊆ result
        then result=result ∪ Z
    }
while (result有所改变);
```

属性集的闭包及其算法

- ◆ 根据 $X \rightarrow Y$, $X^+ = \{XY\}$; 根据 $Y \subseteq \{XY\}$, $Y \rightarrow Z$, $X^+ = \{XYZ\}$
- ◆ 根据 $X \rightarrow Y$, $W \rightarrow Y$, $(XW) + = \{XWY\}$; 根据 $Y \subseteq \{XWY\}$, 且 $Y \rightarrow Z$, $(XW) + = \{XWYZ\}$
- ◆ 根据 $Y \rightarrow Z$ 和 $W \rightarrow Y$, $(YW)^+ = \{WYZ\}$;

0101000101010

候选码的定义

- ◆ 设关系模式R的属性集是U, X是U的一个 子集, F是在R上成立的函数依赖集。
- ◆ 如果X→U在R上成立(即X→U在F+中), 那么称X是R的一个超码。
- ◆ 如果 $X \rightarrow U$ 在R上成立,但对X的任一真子 集X'都有 $X' \rightarrow U$ 不成立(即 $X' \rightarrow U$ 不在 F^+ 中, 或者 $X \xrightarrow{f} U$),那么称X是R上的一个候选码。

候选码的求解理论和算法

快速求解候选码的一个充分条件

对于给定的关系模式 $R(A_1..., A_n)$ 和函数依赖集F,可将其属性分为以下四类:

扩候选码的求解理论和算法

定理

- 若X (X∈R) 是L类属性,则X必为R的任一候选码的成员。
- 若X (X∈R) 是L类属性,且X+包含了R的全部属性,则X必为R的唯一候选码。
- (3) 若X (X∈R) 是R类属性,则X不在任何候选码中。

候选码的求解理论和算法

- (4)
- 若X (X∈R) 是N类属性,则X必为R的任一候选码的成员。
- 若X (X∈R) 是R的N类和L类属性组成的属性集, 且X+包含了R的全部属性,则X是R的唯一候选码。
- 若X (X∈R) 是LR类属性,则X可能为R的任一 候选码的成员,也可能不为R的任一候选码的成 员。

例:设有关系模式R (A,B,C,D) 与它的函数依赖集F={D \rightarrow B, B \rightarrow D, AD \rightarrow B, AC \rightarrow D}, 求R的所有候选码。

多属性函数依赖集候选码的求解算法

设有关系模式R,F是R上的函数依赖集,求R的所有候选码

输入: 关系模式R及其函数依赖集F

输出: 关系模式R的所有候选码

- 属性分类(L、R、N和LR),X代表L类和N类属性,Y代表LR类属性。
- (2) 若X+包含了R的全部属性, 转(5); 否则, 转(3)。

候选码的求解理论和算法

- 在Y中取一个属性A, 求(XA)+, 若它包含了R的全部属性, 则转(4); 否则, 调换一属性反复进行这一过程, 直到试完所有Y中的属性。
- 如果已找出所有候选码,则转(5);否则在Y中依次取两个属性、三个属性、...,求它们的属性集的闭包,直到其闭包包含R的全部属性。
- (5) 停止,输出结果。

候选码的求解理论和算法

例:设有关系模式R (A,B,C,D,E) 与它的函数依赖集F={A \rightarrow BC, $CD \rightarrow E$, $B \rightarrow D$, $E \rightarrow A$ }, 求R的所有候选码。

- ◆ 属性A、B、C、D、E都是LR类属性
- ◆ 依次取一个属性求解属性集闭包

$$A^+ = ABCDE$$
, $B^+ = BD$, $C^+ = C$, $D^+ = D$,

$$E^+ = ABCDE$$

◆ 取出两个属性计算属性集闭包

$$(BC)^{+}=ABCDE$$
, $(CD)^{+}=ABCDE$, $(BD)^{+}=BD$

◆ R的候选码为A、E、BC和CD

北京林业大学 信息学院

定义

关系模式R(U)的两个函数依赖集F和G,如果满足 $F^{+}=G^{+}$,则称F和G是等价的函数依赖集。记作: $F\equiv G$ 。如果F和G等价,就说F覆盖G,或G覆盖F。

定义

设F是属性集U上的函数依赖集, $X \rightarrow Y$ 是F中的函数依赖。 函数依赖中无关属性、无关函数依赖的定义如下:

- (1) 如果 $A \in X$,且F逻辑蕴涵($F \{X \rightarrow Y\}$) $\cup \{(X A) \rightarrow Y\}$,则称属性 $A \not= X \rightarrow Y$ 左部的无关属性。
- (2) 如果 $A \in X$,且 $(F \{X \rightarrow Y\}) \cup \{X \rightarrow (Y A)\}$ 逻辑蕴涵F,则称属性 $A \not\in X \rightarrow Y$ 右部的无关属性。
- (3) 如果 $X \rightarrow Y$ 的左右两边的属性都是无关属性,则函数依赖 $X \rightarrow Y$ 称为无关函数依赖。

定义

设F是属性集U上的函数依赖集。如果 F_{\min} 是F的一个最小函数依赖集,那么 F_{\min} 应满足下列四个条件:

$$(1) F_{\min}^{+} = F^{+}$$

(2) 每个函数依赖的右边都是单属性;

 F_{\min} 中没有冗余的函数依赖(即在 F_{\min} 中不存在这样的函数依赖 $X \rightarrow Y$,使得 F_{\min} 与 F_{\min} -{ $X \rightarrow Y$ }等价),即减少任何一个函数依赖都将与原来的F不等价;

每个函数依赖的左边没有冗余的属性(即 F_{min} 中不存在这样的函数依赖 $X \rightarrow Y$,X有真子集W使得 F_{min} - $\{X \rightarrow Y\}$ \cup $\{W \rightarrow Y\}$ 与 F_{min} 等价),减少任何一个函数依赖左部的属性后,都将与原来的F不等价。

北京林业大学 信息学院

111111010101010

- (1) $F_1 = \{AB \rightarrow CD, BE \rightarrow C, C \rightarrow G\}$
- (2) $F_2 = \{A \rightarrow D, B \rightarrow A, A \rightarrow C, B \rightarrow D, D \rightarrow C\}$

算法——计算函数依赖集F的最小函数依赖集G

对F中的任一函数依赖 $X \rightarrow Y$,如果 $Y = Y_1, Y_2, \cdots$, Y_k ($k \ge 2$)多于一个属性,就用分解律,分解为 $X \rightarrow Y_1$, $X \rightarrow Y_2$, \cdots , $X \rightarrow Y_k$,替换 $X \rightarrow Y$,得到一个与F等价的函数依赖集G,G中每个函数依赖的右边均为单属性。

(2)

去掉G中各函数依赖左部多余的属性。即一个一个检查G左边是非单属性的依赖。如, $XY \rightarrow A$,现在要判断Y是否为多余的,则以 $X \rightarrow A$ 代替 $XY \rightarrow A$ 是否等价?只要在G中求 X^+ ,若 X^+ 包含A,则说明 $X \rightarrow A$ 可以代替 $XY \rightarrow A$,即Y是多余的属性;否则,Y不是多余的属性。

算法——计算函数依赖集F的最小函数依赖集G

(3)

在G中消除冗余的函数依赖。具体做法是:从第一个函数依赖开始,在G中去掉它(假设该函数依赖是 $X \rightarrow Y$),然后在剩下的函数依赖中求 X^+ ,看 X^+ 是否包含Y,若是,则去掉 $X \rightarrow Y$;若不包含Y,则不能去掉 $X \rightarrow Y$ 。依次进行下去。

[例] 设F是关系模式R(A, B, C)的 函数 依赖集, $F=\{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$,求其最小函数依赖集 F_{min}

(1) 右边单属性

将F中每个函数依赖的右部变成单属性。 $F=\{A\rightarrow B, A\rightarrow C, B\rightarrow C, AB\rightarrow C\}$

[例] 设F是关系模式R(A, B, C)的 函数 依赖集, $F=\{A\rightarrow BC, B\rightarrow C, A\rightarrow B, AB\rightarrow C\}$,求其最小函数依赖集 F_{\min}

(2) 左部多余属性

在 $AB \rightarrow C$, 验证属性B是不是多余属性。计算 $A^{+}=(ABC)$, A^{+} 包含属性C, 因此,B是左部多余的属性可以去掉。 $AB \rightarrow C$ 简化为 $A \rightarrow C$, $F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C\}$

[例] 设F是关系模式R(A, B, C)的 函数 依赖集, $F=\{A\rightarrow BC, B\rightarrow C, A\rightarrow B, AB\rightarrow C\}$,求其最小函数依赖集 F_{\min}

(3)

冗余函数依赖

 $A \rightarrow C$ 可以通过 $A \rightarrow B$ 和 $B \rightarrow C$ 推出, 因此可以去掉 $A \rightarrow C$ 。

所以
$$F_{min} = \{A \rightarrow B, B \rightarrow C\}$$