CS:4980:0004 MINING AND LEARNING ON LARGE NETWORKS

Joyce Yang

Lecture 17: E-Commerce

Fall 2020

Outline

• B. Adhikari et al. <u>Mining E-Commerce Query Relations using Customer Interaction Networks.</u> (Links to an external site.) WWW 2018.

• D. Xu et al. <u>Product Knowledge Graph Embedding for E-Commerce (Links to an external site.</u>). WSDM 2020

Mining E-Commerce Query Relations using

Customer Interaction Networks

User Engagement

• Useful information behind the search engine logs.

"sweater"

- Begin with query submission
- List of results are produced
- Based on the result
 - Click satisfied
 - Reformulate the query not satisfied

"red sweater"

Engagement Data

Engagement log

	Query	Item	Time	Query	Item	Time
	Q1	I1	07:00	Q2	13	09:00
	Q2	12	07:15	Q3	14	09:15
	Q3	13	07:20	Q4	13	09:30
-						
	Query	Item	Time	Query	Item	Time
	Query Q2	Item I3	Time 17:00	Query Q4	Item I3	Time 17:00
				-		
	Q2	13	17:00	Q4	13	17:00

APPLICATION 1:
INTENT BASED
QUERY CLUSTERIN
FTEM
RECOMMENDATIO
N. CRITICAL
QUERIES

Customer Interaction Networks (CIN)

- Query Reformulation Network (QRN)
 - Query-to-Query relations
 - Nodes: Queries string
 - Egde: Reformulation
- Item Clicked Network (ICN)
 - Query-to-Item relations
 - Nodes:Queries/Items
 - Edges:Click
- Composite Click Network (CCN)
 - Item Click + Query Reformulation = Compo^(Q1)
- Cover Network(CN)

Engagement log

Query	Item	Time	Query	Item	Time
Q1	I1	07:00	Q2	13	09:00
Q2	12	07:15	Q3	14	09:15
Q3	13	07:20	Q4	13	09:30
Onemi	Item	Time	0	Técono	rent.
Query	Item	11me	Query	Item	Time
Query Q2	I3	17:00	Query Q4	I3	17:00
			-		

Query Reformulation Network

Cover Network

Properties of CIN

Network	# Nodes	# Edges	Degree Dist.	Assortativit y	Diamete r	Average CC	GCC
QRN	2.11 M	2.14 M	PL/LN	None	94	0.05	No
ICN	5.4 M	18.4 M	LN	None	37	0.12	No
CCN	6.3 M	20.5 M	PL	None	36	0.17	No
CN	785 K	71 M	LN	Positive	13	0.76	Yes

Application 1: Intent Based Query Clustering

Informal Problem 1. Query Clustering

GIVEN: A Query Reformulation network G(Q, E, W), and an integer $k \in \mathbb{Z}$.

FIND: A k partition of Q, such that each partition contains queries with the same intent.

- i) How is intent defined in term of graph structure?
- i) High in-degree nodes \rightarrow general queries
- ii) How to measure 'closeness' between two queries in terms of intent?
- i) Shortest paths \rightarrow closer relationship

"Mobile"

Define Problem

PROBLEM 1. Given a query reformulation network G(Q, E) and an integer k, identify a set $S^* = \{S_1, S_2, ..., S_k\}$ of the general query nodes and set of partitions $C^* = \{C_1, C_2, ..., C_k\}$, such that $S_i \in C_i$ and

Our Method: HubQExpansion

- Idea: Leverage newly discovered properties of QRN.
- 1. Detect Communities in each component(No GCC)
- 2. Assign 'hubs' to each Community (Heavy Tailed Distributions)
- 3. Use BFS to expand communities (Low Density)

Algorithm 1 HubQExpansion

```
Require: Query Reformulation network G(Q, E, W), number of communities k
```

Ensure: k disjoint partitions of Q

- 1: Partition $P = \emptyset$
- 2: for each connected component $G_i(Q_i, E_i, W_i)$ in G do
- 3: $k_i = \frac{|Q_i|}{|Q_i|}$
- 4: Temp set $S = \emptyset$
- for node v in k_i nodes in Q_i with highest in-degree do
- $6: S = S \cup \{v\}$
- Assign nodes in Q_i to nodes in S using BFS
- B: $P = P \cup S$
- 9: return P

Baseline Methods

- **BigClam**[Yang+, 2013]: Leverage latent relevance to find overlapping clusters
- Louvian [Blondel+, 2008]: Modularity based community detection method
- LouvSmall: Modify Louvian to generate smaller communities
- Star: Generate Star Shaped Communities

Evaluation

- AIH: Average Intent Homogeneity
 - Intuitively measures category-based precision

$$CIH(C) = 2 * \frac{\sum_{q_i, q_j \in C} \delta(PC(q_i), PC(q_j))}{|C| \times |C-1|} \qquad \Longrightarrow \qquad AIH_{cat} = \frac{\sum_{C \in P} CIH(C)}{|P|}$$

- AIS: Average Inverse Spread
 - Intuitively measures category-based recall
- F1: Harmonic mean of AIH and AIS

$$H = rac{n}{rac{1}{x_1} + rac{1}{x_2} + \cdots + rac{1}{x_n}} = rac{n}{\sum\limits_{i=1}^{n}rac{1}{x_i}} = \left(rac{\sum\limits_{i=1}^{n}x_i^{-1}}{n}
ight)^{-1}.$$

Performance

Method	AIH_{cat}	AIS_{cat}	$F1_{cat}$	$J(\times 10^6)$
Louvian	0.26	0.11	0.15	19.7
ComLouvian	0.07	0.33	0.12	118.7
LouvianSmall	0.39	0.08	0.13	0.73
Star	0.38	0.12	0.18	3.01
BIGCLAM	0.14	0.21	0.17	17.7
HubQExpansion	0.37	0.14	0.20	0.54

HubQExpansion outperforms the baselines

Application 2: Item Recommendation

• How to recommend items for queries with no/little engagement data?

Idea

- Composite Click Network
- Leverage Random Walk
 - Treat a query (eg Q4) as a source node
 - Items as sink nodes
 - Start multiple random walks from Q4
 - Recommend the products where most of the random walks end
- Edge weight (unnormalized)
 - Query q_1 to q_2 edge: $w(q_1, q_2) = \frac{c(q_1, q_2)}{c(q_1)}$
 - Query q to product i edge: $w(q, i) = \frac{c(q, i)}{c(q)}$,

Experiments and Results

- Experiment:
 - A/B test

- Result:
 - 34% improvement in NDGC over current Walmart.com search engine!

Application 3: Critical Queries

Which queries have the highest cumulative impact on others?

Leverage Query Reformulation Network.

RUN: Randomized User Navigation model

- Starts from arbitrary Node
 - (1) With probability p_t , the process terminates
 - (2) With probability $1 p_t$, we jump from current node v to a query node u, such that $(v, u) \in E$, with probability $p_j = \frac{w(v, u)}{\sum_{(v, a) \in E} w(v, a)}$

Define Problem

• $\phi(T)$: the expected number of ti

PROBLEM 2. CRITICAL QUERIES

refo GIVEN: A Query Reformulation network G(Q, E, W), and budget

FIND: a set of nodes $\mathcal{T}^* = \{q | q \in Q\}$, such that $|\mathcal{T}^*| = k$ and

$$\mathcal{T}^* = \underset{\mathcal{T}}{\operatorname{arg\,max}} \phi(\mathcal{T})$$

Lemma 7.1. $\phi(\cdot)$ is sub-modular and monotonous.

$$\phi(\mathcal{A} \cup \{v\}) - \phi(\mathcal{A}) \ge \phi(\mathcal{B} \cup \{v\}) - \phi(\mathcal{B})$$

Our Method: CriticalQueries

Algorithm 2 Critical-Queries (GR)

```
Require: Query Reformulation network G(Q, E, W), termination proba-
     bility p_t, number of iterations of RUN l, and budget k
Ensure: Best set of nodes \mathcal{T}
 1: T = 0
 2: for i = 1 to k do
          q_{v} = 0 for all v \in V \setminus \mathcal{T}
          for i = 1 to R do
               Sample G' based on p_t and l
 5:
               compute \phi_{G'}(\mathcal{T})
 6:
               for v \in V \setminus \mathcal{T} do
                    q_v + = \phi_{C'}(\{v\})
               g_{\upsilon} = g_{\upsilon}/R for all \upsilon \in V \setminus \mathcal{T}
 9:
               \mathcal{T} = \mathcal{T} \cup \{\arg\max_{v}(g_v)\}
10:
11: return \mathcal{T}
```

Baseline Methods

One can leverage many methods/definitions

- MostFreq (MF) : Queries most frequent
- SessionFreq(MS): Queries Appearing in Most Sessions
- PageRank(PR): Queries with highest PageRank
- EigCentrality(EigC): Queries with highest Eigenvector Centrality

Evaluation

- INFluenced Queries (InfQ):
 - Number of related queries within some radius
- Sum of related Items (SumI)
 - Number of related items shared with other queries within some radius

Results

Our method has the best usability

Conclusion

CINs are useful

- They have useful properties
- A1: Intent Based Query Clustering
- A2: Item Recommendation
- A3: Critical Queries

Formulation and Methods

- exploit CINs properties
- scalable

Future Work

- Add content
- Add query attributes
- Other applications like type-ahead, query

Product Knowledge Graph Embedding for

E-Commerce

Background

- Product relations
 - Complement(co-buy), co-view and substitute ...
- Useful information:
 - Product description
 - Search activities
- Extension:
 - Complement : AddOn, AccessoryTo, part of.
 - Description: HasAttribute, Brand, Name

Knowledge Graph VS Product Knowledge Graph

	Knowledge Graph	Product Knowledge Graph
Data Source	Triplet form (head entity, relation, tail entity)	Multiple ways Product catalog info, raw user-product interaction records
Model Assumption	Well-established & plausible	X
Quantity of relation types	thousands	Complement, co-view, substitute, describe, search and IsA
Semantics of relation	Simple (1-to-N and 1-to-1)	Complex (N-toN)
Additional information	Yes	Yes
Logic rules	First order Horn clause	Propagation rules
Downstream tasks	KG completion tasks: Relation extraction and question-answering	Relation extraction and question- answering + Recommender system

Product Knowledge Graph Embedding for E-Commerce

Method: PKG embedding

Notation	Description
$d \in \mathbb{N}$	entity embedding dimension
l∈ N	the maximum sequence length for predicting
$t \in \mathbb{I}_d$	target entity
I,W,C	item (product), word and category label set
	customer session-based co-buy, co-view and
$\mathcal{B}, \mathcal{V}, \mathcal{S}$	substitution acceptance records, for instance,
	$\mathcal{B}_i = (I_{i_1}, I_{i_2}, \dots, I_{ \mathcal{B}_i }), \mathcal{S}_j = (I_{j_1}, I_{j_2})$
$Q, \mathcal{D}, \mathcal{L}$	query (search), description, category labels for
Q, D, \mathcal{L}	products, i.e. $Q_{I_j} \subset W$, $\mathcal{D}_{I_j} \subset W$, $\mathcal{L}_{I_j} \subset C$
	product "input" embedding similar to that of
$\mathbf{Z}^{I} \in \mathbb{R}^{ I imes d}$	word2vec, e.g. $\mathbf{Z}_{I_t}^I$ denotes product "input"
	embedding for item I_j
-BO-WO	product "output" embeddings for modelling
$\mathbf{Z}^{B,O},\mathbf{Z}^{V,O}\in$	co-buy and co-view records
$\mathbb{R}^{ I imes d}$	co buy and co view records
W ∈	word entity embeddings
$\mathbb{R}^{ \mathcal{W} \times d}$	word entity embeddings
$C \in \mathbb{R}^{ C \times d}$	category entity embeddings
$P \in \mathbb{R}^{l \times d}$	positional encoding matrix for self-attention

Table 1: Notation

Pre-Method: Relation translation

- The distributed representation of words are learnt under the hypothesis that words which appear in a similar context have a similar representation
 • word2vec: King is to men as queen is to women

THEOREM. If "entity y_1 is to entity x_1 as entity y_2 is to x_2 ", then:

$$\mathbf{z}_{y_1} = \mathbf{z}_{x_1} + (\mathbf{z}_{y_2} - \mathbf{z}_{x_2}) + \epsilon$$

$$z_{remote\ control} + z_{AccessoryTo} \approx z_{TV}$$
 $z_{AccessoryTo} \equiv z_{Xbox} - z_{handle}$

Pre-Method: word2vec

• Score function:

$$S = \sum_{i} \sum_{j \in \text{Context}(i,c)}^{i} \log p(e_i|e_j),$$

• Probability term:

1 11: . C :: T

$$p(e_i|e_j) = \frac{\exp\left((\mathbf{z}_i^O)^\intercal(\mathbf{z}_i^I)\right)}{\sum_k \exp\left((\mathbf{z}_k^O)^\intercal(\mathbf{z}_i^I)\right)},$$

 $Z^{B,O}, Z^{V,O} \in \begin{bmatrix} \text{product "output" embeddings for modelling co-buy and co-view recent} \end{bmatrix}$ $\mathbf{Z}^{I} \in \mathbb{R}^{|I| \times d} \quad \begin{array}{|l|l|l|} & \text{product "input" embedding similar to that of} \\ & word2vec, \, \text{e.g. } \mathbf{Z}^{I}_{I_{j}} \, \, \text{denotes product "input"} \end{array}$

Method: Modelling substitute Relation

- Propagation rule:
 - substitutable products are more likely to have similar relations with other entities.

$$S_{\text{sub}} = \sum_{(e_1, e_2) \in \mathcal{S}} \log p(e_1, e_2) \equiv \sum_{(e_1, e_2) \in \mathcal{S}} \log \frac{\exp\left((\mathbf{Z}_{e_1}^I)^{\mathsf{T}} \mathbf{Z}_{e_2}^I\right)}{\sum_{i \in I} \exp\left((\mathbf{Z}_{i}^I)^{\mathsf{T}} \mathbf{Z}_{e_2}^I\right)}.$$
(3)

$$\mathbf{Z}^I \in \mathbb{R}^{|I| imes d}$$
 product "input" embedding similar to that of $word2vec$, e.g. $\mathbf{Z}^I_{I_j}$ denotes product "input" embedding for item I_j

Pre- Method: Self-attention Mechanism

• To break down the **noise** issue

```
[..., soap, detergent, toothbrush, towel \rightarrow toothpaste, ...].
```

{The strawberry ice cream featured by Haagan-Dazs is the

↑

↑

marriage of sweet summer strawberries to cream and ...},

Method: Self-attention Mechanism

• Embedding layer for self-attention

$$\mathbf{E}_{\mathbf{e}}^{I} = [\mathbf{Z}_{e_1}^{I} + \mathbf{P}_1, \dots, \mathbf{Z}_{e_1}^{I} + \mathbf{P}_l]^{\mathsf{T}} \in \mathbb{R}^{l \times d} \qquad \mathbf{E}_{\mathbf{e}}^{O} = [\mathbf{Z}_{e_1}^{O} + \mathbf{P}_1, \dots, \mathbf{Z}_{e_1}^{O} + \mathbf{P}_l]^{\mathsf{T}} \in \mathbb{R}^{l \times d}.$$

Self-attention layer

$$Attn(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d}})V, \longrightarrow H = Attn(E^{I}, E^{O}, E^{I}).$$

$$\mathbf{H}_{i} = \sum_{i} \alpha_{ij} \times \mathbf{E}_{j}^{I}, \quad \alpha_{ij} \equiv (\mathbf{E}_{i}^{I})^{\mathsf{T}} \mathbf{E}_{i}^{O}$$

$$FFN(E_i) \equiv ReLU(E_i\Theta_1 + b_1)\Theta_2 + b_2,$$

$$F_i^I = FFN(E_i^I), \ F_i^O = FFN(E_i^O), \ \forall i \in \{1, \dots, l\}.$$

$$H = Attn(e) \equiv Attn(F_e^I, F_e^O, E_e^I), H \in \mathbb{R}^{l \times d}.$$

Method: Self-attention Mechanism

Word2vec probability $p(e_i|e_j) = \frac{\exp\left((\mathbf{z}_i^O)^{\mathsf{T}}(\mathbf{z}_i^I)\right)}{\sum_k \exp\left((\mathbf{z}_k^O)^{\mathsf{T}}(\mathbf{z}_i^I)\right)},$

Prediction layer
 purchase and

$$\begin{split} \log p(e_{l+1}|\mathbf{e}) &= (\mathbf{Z}_{e_{l+1}}^O)^\intercal \mathrm{Attn}(\mathbf{e}) - \log \sum_{i \in \mathcal{I}} \exp \left((\mathbf{Z}_i^O)^\intercal \mathrm{Attn}(\mathbf{e}) \right) \\ &= (\mathbf{Z}_{e_{l+1}}^O)^\intercal \sum_{i=1}^l \alpha_{ij} \mathbf{Z}_{e_j}^I - \log \sum_{i \in \mathcal{I}} \exp \left((\mathbf{Z}_i^O)^\intercal \sum_{i=1}^l \alpha_{ij} \mathbf{Z}_{e_j}^I \right) + C, \end{split}$$

view data

description and
$$\log p(e_{l+1}|\mathbf{e}) = (\mathbf{Z}_{e_{l+1}}^I)^\intercal \sum_{j=1}^l \alpha_{ij} \mathbf{W}_{e_j}^I - \log \sum_{i \in I} \exp \left((\mathbf{Z}_i^I)^\intercal \sum_{j=1}^l \alpha_{ij} \mathbf{W}_{e_j}^I \right) + C,$$
 search data

Score function

$$S_{\text{complement}} = \sum_{l} \log p(e_{l+1}|e).$$

 $\mathbf{w} \in \mathbb{R} |\mathcal{W}| \times d$

word entity embeddings

Method: Poincaré Embedding for Category Hierarchy and IsA Relation

$$p(c_1|c_2) = \frac{\exp(-d_{\text{Poincar\'e}}(c_1, c_2))}{\sum_{c \in C} \exp(-d_{\text{Poincar\'e}}(c, c_2))}.$$

$$S_{\text{IsA}} = \sum_{i \in |I|} \sum_{j \in \mathcal{L}_{i}} \log \frac{\exp \left(C_{j}^{\intercal} Z_{i}^{I}\right)}{\sum_{c \in C} \exp \left(C_{c}^{\intercal} Z_{i}^{I}\right)}.$$

Method: Multitask Training

• How to combine all these score functions into an overall score for

optimal results?

• Training epoch:

- Randomly select a task
- And a batch of dataset
- [weighted with proportional]
- Repeat until no improvement

Task	$p(t h) / p(t \mathbf{h})$
substitute	$\propto \exp\left((\mathbf{Z}_{t}^{I})^{\intercal}\mathbf{Z}_{h}^{I}\right), h, t \in I$
complement	$\propto \exp\left((\mathbf{Z}_{t}^{B,O})^{\intercal}\mathbf{Z}_{h}^{I}\right), h, t \in \mathcal{I}$
co-view	$\propto \exp\left((\mathbf{Z}_{t}^{V,O})^{\intercal}\mathbf{Z}_{h}^{I}\right), h, t \in I$
search	$\propto \exp((\mathbf{Z}_t^I)^{T} \operatorname{Attn}(\mathbf{h})), \mathbf{h} \subset \mathcal{W}, t \in \mathcal{I}$
describe	$\alpha \exp((Z_t) \cdot Attn(n)), n \subset W, t \in I$
Isa	$\propto \exp\left((\mathbf{Z}_t^I)^{\intercal} \mathbf{C}_h^I\right), h \in C, t \in I$
recommend	$\propto \exp\left((\mathbf{Z}_t^{B,O} + \mathbf{Z}_t^{V,O})^{T} \operatorname{Attn}(\mathbf{h})\right), \mathbf{h} \subset \mathcal{I}, t \in \mathcal{I}$

Table 2: Prediction for each task (relation) according to trained embeddings.

Experiments & Results

Q1: Is the proposed multi-task learning schema reasonable?

Q2: Other than knowledge completion, how does the PKG embedding benefit downstream e-commerce tasks?

Q3: Why KG embedding methods fail to work when directly applied to raw e-commerce dataset?

Q4: If a product relation graph is available for KG embedding methods, can the proposed approach still outperform the baselines?

Dataset

- Session data
- Substitution data
- Preprocess
- Product relation graph(PRG)

nrodusts	The dataset contains ~140,000 common
products	grocery products covering a broad range from food to appliances
	**
	Each product is provided with a short
description	description (containing name and brand) as
description	shown on the website. Usually the descriptions
	have 20 - 100 words.
	Each product is assigned to a cateogry
catagory	hierarchy in the form of {subcategory, category,
category hierarchy	department, super-department}, and there are
inerarchy	1,198 subcategories, 228 categories, 28
	departments and 9 super-departments.

Table 3: Summary of product catalog data.

Baseline Methods

KG completion tasks:

- TransF (No PPG & With PRG) $d_r(\mathbf{h}, \mathbf{t}) = \sum_{r} -\|\mathbf{h} + \mathbf{r} \mathbf{t}\|$
- Trans $d_r(\mathbf{h}, \mathbf{t}) = \sum_{r} \|\mathbf{h}_{\perp}^r + \mathbf{r} \mathbf{t}_{\perp}^r\|$
- TransR (With PRG)
- Trans $D \cap D \cap A$ With PRG
- RESCAL (With PRG)
- $D d_r(\mathbf{h}, \mathbf{t}) = \sum \text{Re}(\mathbf{h}^{\intercal} \text{diag}(\mathbf{r}) \bar{\mathbf{t}})$, ith PRG)
- ComplEx (With PRG)

Recommendation:

- Factorization Machine (FM)
- Bayesian Personalized Ranking (BPR)
- Prod2vec
- Triple2vec

Evaluation

- Knowledge completion:
 - Link prediction usefulness
 - HIT@10: top-10 hitting rate
 - NDCG@10: normalized discounted cumulative ga $IDCG_p = \sum_{i=1}^{|REL_p|} \frac{2^{rel_i} 1}{log_2(i+1)}$

Macro F1-score = $\frac{1}{N} \sum_{i=0}^{N} \text{F1-score}_i$

- Entity classi Micro F1-score = $2 * \frac{Micro-precision * Micro-recall}{Micro-precision + Micro-recall}$
 - Micro-F1
 - Macro-F1
- Search ranking:
 - R@10: top-10 recall
 - MAP@10: mean average precision
- Recommendation:
 - HIT@10, NDCG@10

$$nDCG_p = \frac{DCG_p}{IDCG_p} \quad DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log_2(i+1)}$$

Where

$$IDCG_p = \sum_{i=1}^{|REL_p|} \frac{2^{rel_i} - 1}{log_2(i+1)}$$

 $\text{Precision} = \frac{tp}{tp + fp}$

 $Recall = \frac{tp}{tn - fn}$

- Q1:Is the proposed multi-task learning schema reasonable?
- our approach is benefiting from the propagation rule

- **Q2**: Other than knowledge completion, how does the PKG embedding benefit downstream e-commerce tasks?
- the PKG embeddings learned by our approach can also benefit downstream tasks such as search ranking and recommendation

Model	FM	BPR	prod2vec	triple2vec	Our approach
Hit@10 (a11)	4.24	7.65	6.39	11.30	13.72
NDCG@10 (a12)	1.85	3.17	2.26	4.83	5.79

Task	Encount	tered queries	New queries			
Metric	R@10	MAP@10	R@10	MAP@10		
	(a13)	(a14)	(a15)	(a16)		
TransE	8.74	3.26	5.11	2.62		
TransH	10.43	4.28	6.85	2.79		
TransR	15.82	6.77	10.33	4.09		
TransD	13.69	6.17	9.50	4.24		
RESCAL	7.71	2.98	4.25	1.93		
DistMult	19.72	8.43	11.71	5.02		
ComplEx	21.58	10.04	12.46	5.15		
Our approach	30.99	14.46	22.71	9.53		

- Q3:Why KG embedding methods fail to work when directly applied to raw e-commerce dataset?
- The fact that KG embeddings have subpar results when not using PRG suggests they rely heavily on well-established facts which are absent in the raw dataset

Task		Link prediction						Product cla	assification		
Relation	comp	olement	co	co-view		substitute		IsA (category)		IsA (department)	
Metric	Hit@10	NDCG@10	Hit@10	NDCG@10	Hit@10	NDCG@10	micro-F1	macro-F1	micro-F1	macro-F1	
	(a1)	(a2)	(a3)	(a4)	(a5)	(a6)	(a7)	(a8)	(a9)	(a10)	
TransE (No PRG)	1.84	1.06	3.27	2.11	12.04	6.56	42.33	69.44	51.72	76.53	
TransD (No PRG)	1.97	1.08	3.51	2.24	13.69	6.90	41.82	67.65	50.29	75.45	
DistMult (No PRG)	3.47	1.88	6.58	3.41	20.64	9.96	53.75	74.69	61.42	80.73	
TransE (With PRG)	3.65	1.82	6.95	3.90	30.22	13.41	45.43	74.93	55.89	81.81	
TransH (With PRG)	4.13	1.79	6.88	2.89	30.37	13.56	41.94	64.09	50.12	72.95	
TransR (With PRG)	6.06	2.35	8.17	3.43	31.25	14.88	46.37	72.74	53.95	74.11	
TransD (With PRG)	4.26	1.95	7.03	2.97	20.71	9.86	50.36	71.02	59.62	82.43	
RESCAL (With PRG)	1.64	0.97	1.63	0.87	12.46	5.76	62.89	86.27	72.27	90.97	
DistMult (With PRG)	5.69	2.47	9.64	4.05	30.64	12.25	68.25	94.23	72.09	92.94	
ComplEx (With PRG)	7.81	3.36	12.38	5.77	31.25	12.60	67.46	94.02	72.54	<u>97.71</u>	
Our approach	14.53	7.67	20.84	10.26	34.58	14.77	68.62	95.17	74.61	99.60	

- Q4: If a product relation graph is available for KG embedding methods, can the proposed approach still outperform the baselines?
- the proposed approach outperforms all baselines in all tasks for knowledge completion, even when the KG embedding methods are enhanced with the pretrained product knowledge graph

Task		Link prediction						Product classification			
Relation	comp	lement	со	co-view		substitute		IsA (category)		IsA (department)	
Metric	Hit@10	NDCG@10	Hit@10	NDCG@10	Hit@10	NDCG@10	micro-F1	macro-F1	micro-F1	macro-F1	
	(a1)	(a2)	(a3)	(a4)	(a5)	(a6)	(a7)	(a8)	(a9)	(a10)	
TransE (No PRG)	1.84	1.06	3.27	2.11	12.04	6.56	42.33	69.44	51.72	76.53	
TransD (No PRG)	1.97	1.08	3.51	2.24	13.69	6.90	41.82	67.65	50.29	75.45	
DistMult (No PRG)	3.47	1.88	6.58	3.41	20.64	9.96	53.75	74.69	61.42	80.73	
TransE (With PRG)	3.65	1.82	6.95	3.90	30.22	13.41	45.43	74.93	55.89	81.81	
TransH (With PRG)	4.13	1.79	6.88	2.89	30.37	13.56	41.94	64.09	50.12	72.95	
TransR (With PRG)	6.06	2.35	8.17	3.43	31.25	14.88	46.37	72.74	53.95	74.11	
TransD (With PRG)	4.26	1.95	7.03	2.97	20.71	9.86	50.36	71.02	59.62	82.43	
RESCAL (With PRG)	1.64	0.97	1.63	0.87	12.46	5.76	62.89	86.27	72.27	90.97	
DistMult (With PRG)	5.69	2.47	9.64	4.05	30.64	12.25	68.25	94.23	72.09	92.94	
ComplEx (With PRG)	7.81	3.36	12.38	5.77	31.25	12.60	67.46	94.02	72.54	97.71	
Our approach	14.53	7.67	20.84	10.26	34.58	14.77	68.62	95.17	74.61	99.60	

Conclusion

- Product Knowledge Graph:
 - Self-attention-enhanced distributed representation learning model
 - Raw customer activity data
 - Multi-task
 - Complex entity structures
- Future work:
 - Incorporating customer and customer knowledge into PKG [customer-product knowledge graph]
 - Personalized e-commerce services

Summary Discussion

	Customer Interaction Network	Product Knowledge Graph
Strengths	 A method in E-commerce search Study on properties of CIN Improvement of performance in E-commerce 	 PKG fit the commerce relation better Lower noise Raw data usable Multiple feature included
Weakness	 Only tested on Walmart data Analyzing one graph at a time Only query and item relation ship & query-query 	 Only tested on Walmart data Multi-task summarization not good No relationship between query

Thanks!