Pràctica 2 Classificació

Aprenentatge Computacional

Introdució al dataset

- Classificació per preu de mòbils
- 2000 mostres, 21 variables
- Distribucions binàries minoritàries
- El nostre atribut objectiu és el rang de preu del mòbil
- Dataset dividit en dos arxius: train.csv
 i test.csv
- Correlació lineal baixa per a qüasi totes les variables, moderada per al battery_power, px_height i px_width i alta per a la ram

- 0.4

- 0.2

battery_power

LinearSVC (linear kernel)

SVC with RBF kernel

SVC with polynomial (degree 3) kernel

Acuracy of SVC with linear kernel: 0.8257142857142857

Acuracy of LinearSVC (linear kernel): 0.7607142857142857

Acuracy of SVC with RBF kernel: 0.8214285714285714

Acuracy of SVC with polynomial (degree 3) kernel: 0.7864285714285715

Acuracy of Random Forest: 1.0

Acuracy of Gaussian Naive Bayes: 0.7664285714285715

Acuracy of KNN: 0.8721428571428571

Acuracy of KN Centroids: 0.7907142857142857

Acuracy of Logistic Regression: 0.8242857142857143

Acuracy of Decision Tree : 1.0

Anàlisi de les classificacions

Crossvalidation

- 2: 0.785625
- 3 : 0.7862428062482872
- 4: 0.7943749999999999
- 5: 0.791875
- 6: 0.7912125820168399
- 7: 0.7868388219456939
- 8: 0.78875000000000001
- 9: 0.7843444282217849
- 10: 0.784999999999999
- 11: 0.7868037961094174
- 12 : 0.7849427673661767
- 13: 0.7862272791462406
- 13 . 0./6022/2/91402400
- 14: 0.7874359812574916
- 15: 0.7848939046611416
- 16: 0.78625
- 17: 0.7850009880772016
- 18: 0.7861976506639426
- 19: 0.7855521155830754
- 20: 0.7825

- Avaluació dels models
- Utilitzem KFold com a estratègia
- K = 4
- LeaveOneOut massa costós en temps

Metric Analytics

	precision	recall	f1-score	support
0	0.91	1.00	0.95	93
1	0.92	0.86	0.89	122
2	0.85	0.82	0.83	88
3	0.93	0.95	0.94	97
accuracy			0.91	400
macro avg	0.90	0.91	0.90	400
weighted avg	0.90	0.91	0.90	400

Hyperparameter Search

Randomized Parameter Optimitzation vs Exhaustive Grid Search

Després d'aquest procés, hem trobat que els millor valors eren els següents:

- Gaussian Naive Bayes: {'var_smoothing': 0.43287612810830584}
- KNN: {'leaf_size': 1, 'n_neighbors': 38, 'p': 1}
- Logistic Regression: {'C': 0.0001, 'penalty': 'none'}
- Decision Tree: {'criterion': 'entropy', 'max_depth': 20, 'min_samples_leaf':

5}

Apartat B

Classificació amb tot el conjunt de dades

Classificació amb el conjunt de dades d'entrenament

Problemes + Conclusions

- No em vist gaire dificultat en el que se'ns demanava
- Trobar el millor valor per els hiperparàmetres
- Triar la millor mètrica de classificació