

FCC/IC TEST REPORT

FCC ID: 2ABNA-2455A

On Behalf of

Guangzhou Geoelectron Science & Technology Company Limited

Communication Module

Model No.: GEBW2455A

Prepared for : Guangzhou Geoelectron Science & Technology Company Limited

Address No.704, 7/F, Building C, No.7, Cai Pin Road, Science City, Luogang

District, Guangzhou, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : A1910152-C01-R06 Date of Receipt : October 23, 2019

Date of Test : October 23, 2019-December 06, 2019

Date of Report : December 11, 2019

Version Number : V0

TABLE OF CONTENTS

De	escrip	tion	Page
1.	Sum	mary of Standards And Results	6
	1.1.	Description of Standards and Results	
2.		eral Information	7
	2.1.	Description of Device (EUT)	7
	2.2.	Accessories of Device (EUT)	8
	2.3.	Tested Supporting System Details	8
	2.4.	Block Diagram of connection between EUT and simulators	8
	2.5.	Test Mode Description	8
	2.6.	Test Conditions	
	2.7.	Test Facility	9
	2.8.	Measurement Uncertainty	
	2.9.	Test Equipment List	
3.		ious Emission	
	3.1.	Test Limits	
	3.2.	Test Procedure	
	3.3.	Test Setup	14
	3.4.	Test Results	
4.	Pow	er Line Conducted Emission	20
	4.1.	Test Limits	
	4.2.	Test Procedure	
	4.3.	Test Setup	
	4.4.	Test Results	
5.		ducted Maximum Output Power	
٠.	5.1.	Test limits	
	5.2.	Test Procedure	
	5.3.	Test Setup	
	5.4.	Test Results	
6.		x Power Spectral Density	
υ.	6.1.	Test limits	
	6.2.	Test Procedure	
	6.3.	Test Setup	
	6.4.	Test Results	23
7.		lwidth	_
7•	7.1.	Test limits	
	7.1.	Test Procedure	
	7.2.	Test Setup	
	7.3. 7.4.	Test Results	
Q		d Edge Check	
8.	8.1.	Test limits	
		Test Procedure	
	8.2.		
	8.3.	Test Setup	
0	8.4.	Test Results	
9.	-	uency stability	
	9.1.	Test Procedure	
	9.2.	Test States	
	9.3.	Test Setup	
	9.4.	Test Results	34

10.	Antenna Requirement	35
	10.1. Standard Requirement	
	10.2. Antenna Connected Construction	
	10.3 Results	

TEST REPORT DECLARATION

Applicant : Guangzhou Geoelectron Science & Technology Company Limited

Address No.704, 7/F, Building C, No.7, Cai Pin Road, Science City, Luogang District,

Guangzhou, China

Manufacturer : Guangzhou Geoelectron Science & Technology Company Limited

Address No.704, 7/F, Building C, No.7, Cai Pin Road, Science City, Luogang District,

Guangzhou, China

EUT Description : Communication Module

(A) Model No. : GEBW2455A(B) Trademark : Geoelectron

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 RSS-247 Issue 2, RSS-Gen Issue 5, ANSI C63.10:2013, CISPR 16-1-4:2010

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Ella Liang
Project Engineer

Approved by (name + signature).....:

Simple Guan
Project Manager

Date of issue...... December 11, 2019

Revision History

Revision	Issue Date	Revisions	Revised By
V0	December 11, 2019	Initial released Issue	Simple Guan

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Page 6 of 35

Test Item	Standards Paragraph	Result
Conducted Emission	FCC Part 15: 15.207 RSS-GEN(8.8) ANSI C63.10 :2013	P
6dB Bandwidth	FCC PART 15:15.247(a)(2) RSS-247(5.2 a) ANSI C63.10 :2013	P
Output Power	FCC Part 15: 15.247(b)(3) RSS-247(5.4 d) ANSI C63.10:2013	P
Radiated Spurious Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) RSS-Gen(8.9), RSS-247(5.5) ANSI C63.10:2013	P
Conducted Spurious & Band Edge Emission	FCC Part 15: 15.247(d) RSS-Gen(8.9), RSS-247(5.5) ANSI C63.10 :2013	P
Power Spectral Density	FCC PART 15:15.247(e) RSS-247(5.2 b) ANSI C63.10:2013	P
Radiated Band Edge Emission	FCC Part 15: 15.247(d) RSS-GEN(6.13) ANSI C63.10 :2013	P
Frequency stability	RSS-GEN(6.11)	N/A
Antenna Requirement	FCC Part 15: 15.203 RSS-GEN(6.8)	P
Note: 1. P is an abbreviation for Pass.		
2. F is an abbreviation for Fail.3. N/A is an abbreviation for Not Applicable.		

Report No.: A1910152-C01-R06

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Description/PMN : Communication Module

Trademark : Geoelectron Model Number : GEBW2455A

DIFF. : N/A

Test Voltage : DC 3.35V from motherboard

Radio Technology : Bluetooth V5.0

Operation . 2402 248

frequency : 2402-2480MHz

Channel No. : 40 channels for Bluetooth V5.0 (BT LE)

Channel Spacing : 2MHz for Bluetooth V5.0 (BT LE)

Modulation type : GFSK for Bluetooth V5.0(BT LE)

Antenna Type : Integrated antenna, Maximum Gain is 3dBi

Software version : V1.0

Hardware version : GEBW2455A_V1_1

Note: The device does not support 2Mpbs for Bluetooth V5.0(BT LE).

2.2.Accessories of Device (EUT)

Accessories 1 : /

Manufacturer : /

Model : /

Input : /

Output : /

2.3.Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
1.	Notebook	ACER	ZQT	N/A	DOC

2.4.Block Diagram of connection between EUT and simulators

2.5.Test Mode Description

Tested mode, channel, and data rate information				
Mode	Channel	Frequency (MHz)		
GFSK	Low :CH1	2402		
(1MHz/2MHz)	Middle: CH20	2440		
(IMHZ/ZMHZ)	High: CH40	2480		

2.6.Test Conditions

Items	Required	Actual
Temperature range:	15-35℃	24℃
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	98kPa

2.7.Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961 Designation Number: CN1236

July 15, 2019 Certificated by IC Registration Number: 12135A

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.16dB(Polarize: H)
(1GHz to 25GHz)	4.13dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9.Test Equipment List

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
	1/20/20/20/20/20/20/20/20/20/20/20/20/20/		332.00		
9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2019.09.06	3Year
Spectrum analyzer	ROHDE&SCHW ARZ	FSV40-N	102137	2019.09.05	1 Year
Spectrum analyzer	Agilent	N9020A	MY499100060	2019.09.05	1Year
Receiver	ROHDE&SCHW ARZ	ESR	1316.3003K03-10208 2-Wa	2019.09.06	1 Year
Receiver	R&S	ESCI	101165	2019.09.05	1 Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2018.04.13	2Year
Horn Antenna	SCHWARZBEC K	BBHA 9120 D	BBHA 9120 D(1201)	2018.04.13	2Year
Active Loop Antenna	SCHWARZBEC K	FMZB 1519B	00059	2019.09.07	2Year
Cable	Resenberger	N/A	No.1	2019.09.05	1 Year
Cable	Resenberger	N/A	No.2	2019.09.05	1 Year
Cable	Resenberger	N/A	No.3	2019.09.05	1 Year
Pre-amplifier	НР	HP8347A	2834A00455	2019.09.05	1 Year
Pre-amplifier	Agilent	8449B	3008A02664	2019.09.05	1 Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2019.09.05	1Year
L.I.S.N.#2	ROHDE&SCHW ARZ	ENV216	101043	2019.09.05	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2019.08.26	1 Year
Horn Antenna	SCHWARZBEC K	BBHA9170	00946	2019.09.07	2 Year
Preamplifier	SKET	LNPA_1840-50	SK2018101801	2019.09.06	1 Year
Power Meter	Agilent	E9300A	MY41496625	2019.09.06	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000-40-8 80	100631	2019.09.06	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	20140927-6	2019.09.05	1 Year

3. SPURIOUS EMISSION

3.1.Test Limits

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

RSS-GEN Restricted frequency band

Table 7 – Restricted frequency bands ^{Note 1}				
MHz	MHz	GHz		
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2		
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5		
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7		
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4		
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5		
4.17725 - 4.17775	240 – 285	15.35 - 16.2		
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4		

5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 – 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

15.209 Limit

FREQUENCY	DISTANCE	FIELD STRENG	GTHS LIMIT	
MHz	Meters	μV/m	$dB(\mu V)/m$	
0.009-0.490	300	2400/F(KHz)	/	
0.490-1.705	30	24000/F(KHz)	/	
1.705-30	30	30	29.5	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500 54.0		
A boys 1000	2	$74.0 \mathrm{dB}(\mu\mathrm{V})$	/m (Peak)	
Above 1000	3	54.0 dB(µV)/m (Average)		

Note 1: The peak limit is 20 dB higher than the average limit

Note 2: Peak limit applies (AVG limit + 20 dB) as well as RSS-247 Section 5.5

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Table 5 – General field strength limits at frequencies above 30 MHz						
Frequency (MHz)	Field strength (µV/m at 3 m)					
30 - 88	100					
88 – 216	150					
216 – 960	200					
Above 960	500					

Table 6 – General field strength limits at frequencies below 30 MHz								
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)						
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300						
490 - 1705 kHz	63.7/F (F in kHz)	30						
1.705 - 30 MHz	0.08	30						

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

3.2.Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GH and above 1GHz. The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation.

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.

The initial step in collecting radiated emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Quasi Peak Detector mode premeasured.

If Peak value comply with QP limit Below 1GHz, the EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz. For the actual test configuration, please see the test setup photo.

3.3.Test Setup

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

3.4.Test Results

Test Condition

Continual Transmitting in maximum power.

9KHz~150KHz	RBW200Hz	VBW1KHz
150KHz~30MHz	RBW9KHz	VBW 30KHz
30MHZ~1GHz	RBW120KHz	VBW 300KHz
Above1GHz	RBW1MHz	VBW 3MHz

We have scanned from 9 kHz to the 10th harmonic of the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: 1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2.Only show the test data of the worst Channel in this report.

From 30MHz to 1000MHz: Conclusion: PASS **Vertical**:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	38.9048	21.30	14.44	35.74	40.00	-4.26	QP			
2		44.2751	19.30	14.18	33.48	40.00	-6.52	peak			
3		61.5617	18.29	12.87	31.16	40.00	-8.84	peak			
4		82.9748	17.44	9.95	27.39	40.00	-12.61	peak			
5		106.8991	15.04	11.52	26.56	43.50	-16.94	peak			
6		153.4692	13.17	14.99	28.16	43.50	-15.34	peak			

Note:1. *: Maximum data; x: Over limit; I:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal:

Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	38.3629	16.04	14.25	30.29	40.00	-9.71	peak			
	168,0449	16.82	14.25	31.07	43.50	-12.43	peak			
	239.0423	22.61	12.52	35.13	46.00	-10.87	peak			
- 3	264.0502	19.39	13.05	32.44	46.00	-13.56	peak			
	490.0998	14.23	18.05	32.28	46.00	-13.72	peak			
	770.0969	14.46	22.77	37.23	46.00	-8.77	peak			
	Mk	MHz 38.3629 168.0449 239.0423 264.0502 490.0998	MHz dBuV 38.3629 16.04 168.0449 16.82 239.0423 22.61 264.0502 19.39 490.0998 14.23	Level Factor MHz dBuV dB 38.3629 16.04 14.25 168.0449 16.82 14.25 239.0423 22.61 12.52 264.0502 19.39 13.05 490.0998 14.23 18.05	Level Factor ment MHz dBuV dB dBuV/m 38.3629 16.04 14.25 30.29 168.0449 16.82 14.25 31.07 239.0423 22.61 12.52 35.13 264.0502 19.39 13.05 32.44 490.0998 14.23 18.05 32.28	Level Factor ment MHz dBuV dB dBuV/m dBuV/m 38.3629 16.04 14.25 30.29 40.00 168.0449 16.82 14.25 31.07 43.50 239.0423 22.61 12.52 35.13 46.00 264.0502 19.39 13.05 32.44 46.00 490.0998 14.23 18.05 32.28 46.00	Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB 38.3629 16.04 14.25 30.29 40.00 -9.71 168.0449 16.82 14.25 31.07 43.50 -12.43 239.0423 22.61 12.52 35.13 46.00 -10.87 264.0502 19.39 13.05 32.44 46.00 -13.56 490.0998 14.23 18.05 32.28 46.00 -13.72	Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector 38.3629 16.04 14.25 30.29 40.00 -9.71 peak 168.0449 16.82 14.25 31.07 43.50 -12.43 peak 239.0423 22.61 12.52 35.13 46.00 -10.87 peak 264.0502 19.39 13.05 32.44 46.00 -13.56 peak 490.0998 14.23 18.05 32.28 46.00 -13.72 peak	Level Factor ment Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 38.3629 16.04 14.25 30.29 40.00 -9.71 peak 168.0449 16.82 14.25 31.07 43.50 -12.43 peak 239.0423 22.61 12.52 35.13 46.00 -10.87 peak 264.0502 19.39 13.05 32.44 46.00 -13.56 peak 490.0998 14.23 18.05 32.28 46.00 -13.72 peak	Level Factor ment Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 38.3629 16.04 14.25 30.29 40.00 -9.71 peak 168.0449 16.82 14.25 31.07 43.50 -12.43 peak 239.0423 22.61 12.52 35.13 46.00 -10.87 peak 264.0502 19.39 13.05 32.44 46.00 -13.56 peak 490.0998 14.23 18.05 32.28 46.00 -13.72 peak

Note:1. *:Maximum data; x:Over limit; I:over margin.

Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2440MHz.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

From 1G-25GHz

Test M	Test Mode: TX Low											
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark			
4804	48.12	V	33.95	10.18	34.26	57.99	74	16.01	PK			
4804	35.99	V	33.95	10.18	34.26	45.86	54	8.14	AV			
7206	/	/	/	/	/	/	/	/	/			
9608	/	/	/	/	/	/	/	/	/			
4804	45.62	Н	33.95	10.18	34.26	55.49	74	18.51	PK			
4804	35.27	Н	33.95	10.18	34.26	45.14	54	8.86	AV			
7206	/	/	/	/	/	/	/	/	/			
9608	/	/	/	/	/	/	/	/	/			
Test M	ode: TX M	id										
4880	42.47	V	33.93	10.2	34.29	52.31	74	21.69	PK			
4880	34.57	V	33.93	10.2	34.29	44.41	54	9.59	AV			
7320	/	/	/	/	/	/	/	/	/			
9760	/	/	/	/	/	/	/	/	/			
4880	43.74	Н	33.93	10.2	34.29	53.58	74	20.42	PK			
4880	36.74	Н	33.93	10.2	34.29	46.58	54	7.42	AV			
7320	/	/	/	/	/	/	/	/	/			
9760	/	/	/	/	/	/	/	/	/			
Test M	ode: TX Hi	igh										
4960	45.30	V	33.98	10.22	34.25	55.25	74	18.75	PK			
4960	35.59	V	33.98	10.22	34.25	45.54	54	8.46	AV			
7440	/	/	/	/	/	/	/	/	/			
9920	/	/	/	/	/	/	/	/	/			
4960	42.56	Н	33.98	10.22	34.25	52.51	74	21.49	PK			
4960	33.90	Н	33.98	10.22	34.25	43.85	54	10.15	AV			
7440	/	/	/	/	/	/	/	/	/			
9920	/	/	/	/	/	/	/	/	/			

Note:

^{1,} Result = Read level + Antenna factor + cable loss-Amp factor
2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4. POWER LINE CONDUCTED EMISSION

4.1. Test Limits

Frequency	Limits d	lB(μV)
MHz	Quasi-peak Level	Average Level
0.15 -0.50	66 -56*	56 - 46*
0.50 -5.00	56	46
5.00 -30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI ANSI C63.10:2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9 kHz.

4.3.Test Setup

Pol

EUT Description	Communication Module	Model No.	GEBW2455A
Temperature	24℃	Humidity	56%
Pol	Line	Test date	2019/11/8
Test Voltage	AC 120V/60Hz	Test mode	GFSK (2440MHz)

Page 21 of 35

						7.00				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margii	n		
		MHz	d9u//	diff	dbuv	dBuV	₫Ð	Detector	Comment	
1		0.1530	30.92	9.94	40.88	65.84	-24.98	peak		
2		0.2460	23.03	9.97	33.00	61.89	-28.89	peak		
3		0.5760	25.48	9.93	35.41	56.00	-20.59	peak		
4	2	1.9500	12.74	9.88	22.62	56.00	-33.38	peak		
5		4.6890	16.79	10.02	26.81	56.00	-29.19	peak.		
6		19.5570	32.45	10.46	42.91	60.00	-17.09	peak		
						4,174,17	And the state of the state of			

^{*:}Maximum data x:Over limit !:over margin

Neutral

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

5. CONDUCTED MAXIMUM OUTPUT POWER

5.1.Test limits

Please refer section RSS-247 & 15.247.

5.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

- 5.2.1 Place the EUT on the table and set it in transmitting mode.
- 5.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3.Test Setup

5.4.Test Results

Channel	Frequency (MHz)	PK Output Power (dBm)	Limit (dBm)
CH1	2402	0.023	30
CH20	2440	0.321	30
CH40	2480	0.303	30
Conclusion: PAS	S		

6. PEAK POWER SPECTRAL DENSITY

6.1.Test limits

- 6.1.1 Please refer section RSS-247 & 15.247.
- 6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

6.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: $3kHz \le RBW \le 100 kHz$.), VBW = 10kHz(Set the VBW $\ge 3 \times RBW$), span $\ge 1.5 \times DTS$ bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

6.4. Test Results

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-11.605	8	Pass
NVNT	BLE	2402	Total	-11.605	8	Pass
NVNT	BLE	2440	Ant 1	-11.417	8	Pass
NVNT	BLE	2440	Total	-11.417	8	Pass
NVNT	BLE	2480	Ant 1	-12.239	8	Pass
NVNT	BLE	2480	Total	-12.239	8	Pass

PSD NVLT BLE 2402MHz Ant1

Date: 5.DEC-2019 10:57:42

PSD NVLT BLE 2440MHz Ant1

Date: 5.DEC.2019 10:55:08

PSD NVLT BLE 2480MHz Ant1

Date: 5.DEC.2019 11:03:18

7. BANDWIDTH

7.1.Test limits

Please refer sectionRSS-247 & 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

7.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

- a) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 100kHz, VBW $\geq 3*RBW = 300kHz$, Sweep time set auto, detail see the test plot.

7.3.Test Setup

7.4.Test Results

Condition	Mode	Frequency	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	1.2725	0.6828	0.5	Pass
NVNT	BLE	2440	Ant 1	1.2853	0.6832	0.5	Pass
NVNT	BLE	2480	Ant 1	1.2673	0.6836	0.5	Pass

Span 2.0 MHz

OBW NVLT BLE 2402MHz Ant1 **W** Ref Level 20.00 dBm RBW 300 kHz 30 dB BWT 6.3 µs . VBW 1 MH2 Mode Auto FFT M1[1] 3.86 dBn 2,402233180 GHz 1.272472753 MHz Occ Bw

Date: 5.DEC-2019 11:24:54

Spectrum

SGL Count 100/100 • 1Pk Max

Att

10 dBm

0 dBm -10 dBm -20 dBm

40 d8m

-50 dBm -60 dBm -70 d8m

CF 2.402 GHz

-6 dB BW NVLT BLE 2402MHz Ant1 **₩** Spectrum Ref Level 20.00 dBm RBW 100 kHz Att 30 dB BWT 18.9 µs . VBW 300 kHz Mode Auto FFT SGL Count 100/100 • 1Pk Max M1[1] 4.48 dBm 2,401987000 GHz 0 dBm -10.46 dBm W2[1] M3 -2,401642000 GHz -20 dBm -40 d8m -60 dBm CF 2.402 GHz 10001 pts Span 2.0 MHz Marker Type | Ref | Trc | **Function Result** X-value Y-value Function 2.401987 GHz -4,48 dBm M2 2.401642 GHz -10.46 dBm 2.4023248 GHz -10.47 dBm

10001 pts

Date: 5.DEC.2019 11:24:58

OBW NVLT BLE 2440MHz Ant1

Date: 5.DEC-2019 10:56:58

-6 dB BW NVLT BLE 2440MHz Ant1

Date: 5.DEC.2019 10:55:01

OBW NVLT BLE 2480MHz Ant1

Date: 5.DEC.2019 11:03:09

-6 dB BW NVLT BLE 2480MHz Ant1

Date: 5.DEC.2019 11:03:11

8. BAND EDGE CHECK

8.1.Test limits

Please refer section RSS-GEN&15.247.

8.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance v05r02

- 8.2.1 Put the EUT on a 1.5m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 8.2.2 Check the spurious emissions out of band.
- 8.2.3 RBW 1MHz ,VBW 3MHz ,peak detector for peak value , RBW 1MHz ,VBW 3MHz ,RMS detector for AV value.

8.3.Test Setup

Same as 3.3 above 1GHz.

8.4.Test Results

Radiated Method:

Conducted Method:

1Hz for Bluetooth V5.0 (BT LE)

9. FREQUENCY STABILITY

9.1.Test limit

Please refer section RSS-Gen.

Regulation RSS-Gen If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation. In addition, its occupied bandwidth shall be entirely outside the restricted bands and the prohibited TV bands of 54-72 MHz, 76-88 MHz, 174-216 MHz, and 470-602 MHz, unless otherwise indicated.

9.2.Test Procedure

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.3.Test Setup

Temperature controller

9.4.Test Results

Not applicable.

10.ANTENNA REQUIREMENT

10.1.Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2. Antenna Connected Construction

The antenna is Integrated antenna and no consideration of replacement. Please see EUT photo for details.

10.3.Results

The EUT antenna is Integrated antenna. It comply with the standard requirement.

----THE END OF REPORT-----