Chapitre 1 : Eléments de théorie générale

I Séries de Fourier

- A) Développement d'une fonction périodique en série de Fourier

 1) Série d'exponentielles imaginaires
 - Théorème de Fourier :

Soit $f: \mathbb{R} \to \mathbb{C}$ périodique de période L, de pulsation $k = \frac{2\pi}{L}$. Si f est de

carré sommable sur [0,L], alors $f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{ik_n x}$ où, pour $n \in \mathbb{Z}$:

$$k_n = n \times \frac{2\pi}{L}$$

Et $c_n = \frac{1}{L} \int_{x_0}^{x_0 + L} f(x) e^{-ik_n x} dx$

• Spectre de Fourier :

C'est $\{c_n|, n \in \mathbb{Z}\}$:

(En général, $|c_n|$ décroît quand |n| augmente)

2) Série de sinus et de cosinus

• Cas général :

$$f(x) = a_0 + \sum_{n=1}^{+\infty} a_n \cos k_n x + \sum_{n=1}^{+\infty} b_n \sin k_n x \text{ avec } a_0 = \frac{1}{L} \int_{x_0}^{x_0 + L} f(x) dx,$$

$$a_n = \frac{2}{L} \int_{x_0}^{x_0 + L} f(x) \cos(k_n x) dx \text{ et } b_n = \frac{2}{L} \int_{x_0}^{x_0 + L} f(x) \sin(k_n x) dx$$

Parité

Si f(x) est paire, on aura $\forall n \in \mathbb{N}, b_n = 0$

Si f(x) est impaire, on aura $\forall n \in \mathbb{N}, a_n = 0$

• Cas d'une fonction réelle :

Si
$$a_n, b_n \in \mathbb{R}$$
, $a_n \cos(k_n x) + b_n \sin(k_n x) = a'_n \cos(k_n x + \varphi_n)$

Et donc
$$f(x) = a_0 + \sum_{n=1}^{+\infty} a'_n \cos(k_n x + \varphi_n)$$

Le terme pour n=1 s'appelle le fondamental ou la première harmonique. Celui pour n=2 s'appelle deuxième harmonique, etc.

3) Egalité de Bessel–Parseval

$$\frac{1}{L} \int_{x_0}^{x_0 + L} |f(x)|^2 dx = \sum_{n = -\infty}^{+\infty} |c_n|^2 = |a_0|^2 + \frac{1}{2} \sum_{n = 1}^{+\infty} |a_n|^2 + |b_n|^2$$

B) Développement d'une fonction de support fermé

1) Principe

On peut ensuite reproduire le motif en une fonction périodique (éventuellement en ajoutant autre chose pour un raccordement continu...)

2) Exemple

On a $k_n = 2n\frac{\pi}{L} = n\frac{\pi}{l}$, et la fonction est impaire :

On trouve alors $f(x) = \frac{8d}{\pi^2} \left(\sin \frac{\pi . x}{l} - \frac{1}{9} \sin \frac{3\pi . x}{l} + \frac{1}{25} \sin \frac{5\pi . x}{l} + \dots \right)$

C) Fonction spatiale et temporelle

1) Fonctions spatiales

x : abscisse, L : longueur (ou longueur d'onde), $k = \frac{2\pi}{L}$: pulsation spatiale.

On a
$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{ik_n x}$$
.

2) Fonctions temporelles

$$x \to t$$
, $L \to T$, $\omega = \frac{2\pi}{T}$: pulsation temporelle; $f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{i\omega_n t}$.

II Transformation de Fourier

A) Intégrale de Fourier

1) L'intégrale de Fourier comme limite d'une série de Fourier

On considère f définie sur \mathbb{R} , non périodique à priori.

On considère f_L périodique de période L telle que $f_L(x) = f(x)$ pour

$$x \in \left] \frac{-L}{2}, \frac{L}{2} \right[$$

Ainsi,
$$f_L(x) = \sum_{n=-\infty}^{+\infty} \left(e^{ik_n x} \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} e^{-ik_n x'} f(x') dx' \right)$$

On a $k_{n+1} = \frac{2\pi}{L} (n+1), k_n = \frac{2\pi}{L} n$. Donc $\frac{1}{L} = \frac{k_{n+1} - k_n}{2\pi}$

Et
$$f_L(x) = \sum_{n=-\infty}^{+\infty} \left(e^{ik_n x} \frac{k_{n+1} - k_n}{2\pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} e^{-ik_n x'} f(x') dx' \right)$$

Ouand $L \to +\infty$

$$f_L(x) \to f(x), \ k_{n+1} - k_n \to dk, \ \sum_{n=-\infty}^{+\infty} \ \to \int_{-\infty}^{+\infty}$$

Et ainsi
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk e^{ikx} \int_{-\infty}^{+\infty} dx' e^{-ikx'} f(x')$$

2) Transformée de Fourier

• Définition :

La transformée de Fourier de f(x) est $\widetilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ikx} f(x) dx$

• Ainsi, on a le théorème (théorème de Fourier) :

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{ikx} \widetilde{f}(k) dk$$

3) Interprétation

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{ikx} \widetilde{f}(k) dk$$

f est donc la somme continue de fonctions sinusoïdales : $\widetilde{f}(k)dk \leftrightarrow c_n$ Si f est périodique :

$$\widetilde{f}(k) = \sqrt{2\pi} \sum_{n=-\infty}^{+\infty} c_n \delta(k - k_n)$$
 où $k_n = n \frac{2\pi}{L}$:

B) Propriétés

On note $\mathfrak{F}: f \mapsto \widetilde{f}$

Transposée:

$$f^*(x) \xrightarrow{\mathfrak{F}} \widetilde{f}^*(-k)$$

Translation:

$$f(x-x_0) \xrightarrow{\mathfrak{F}} e^{-ikx_0} \widetilde{f}(k)$$

$$f(x)e^{ik_0x} \xrightarrow{\mathfrak{F}} \widetilde{f}(k-k_0)$$

Dilatation :

$$f(ax) \xrightarrow{\mathfrak{F}} \frac{1}{|a|} \widetilde{f}\left(\frac{k}{a}\right)$$

Avec a = 1: \Re conserve la parité.

Dérivation:

$$f^{(n)}(x) \xrightarrow{\mathfrak{F}} (ik)^n \widetilde{f}(k)$$

$$\widetilde{f}^{(n)}(k) \xrightarrow{\mathfrak{R}} (-ix)^n f(x)$$

Egalité de Parseval-Plancherel:

$$\int_{-\infty}^{+\infty} |f(x)|^2 dx = \int_{-\infty}^{+\infty} |\widetilde{f}(k)|^2 dk$$

C) Exemples

1) Fonction porte

• Définition :

$$\pi(x) = \begin{cases} 1 \text{ si } |x| \le \frac{1}{2} \\ 0 \text{ si } |x| > \frac{1}{2} \end{cases}$$

• Transformation de Fourier de $\pi\left(\frac{x}{l}\right)$:

$$\widetilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx e^{-ikx} \pi \left(\frac{x}{l}\right) = \frac{1}{\sqrt{2\pi}} \int_{-/2}^{l/2} dx e^{-ikx}$$
$$= \frac{1}{\sqrt{2\pi}} \left(\frac{-1}{ik} \left(-2i\sin\frac{kl}{2}\right)\right) = \frac{l}{\sqrt{2\pi}} \frac{\sin\frac{kl}{2}}{\frac{kl}{2}} = \frac{l}{\sqrt{2\pi}} \operatorname{sinc}\left(\frac{kl}{2}\right)$$

$$(\operatorname{sinc}(x) = \frac{\sin x}{x})$$

• Analyse:

On a $\Delta x = l$, $\Delta k \approx 4\pi/l$, donc $\Delta x \Delta k \approx 4\pi$

2) Distribution delta de Dirac

• Transformée :

$$f(x) = \delta(x - x_0)$$

$$\widetilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ikx} \delta(x - x_0) dx = \frac{1}{\sqrt{2\pi}} e^{-ikx_0}$$

• Analyse:

$$\begin{array}{c|c}
 & |\widetilde{f}(k)| \\
\hline
 & |k| \\
\hline
\end{array}$$

• Cas particulier:

Si
$$x_0 = 0$$
, on a $\tilde{f}(k) = \frac{1}{\sqrt{2\pi}}$

3) Fonction sinusoïdale

$$f(x) = e^{ik_0x}$$

$$\widetilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx e^{-ikx} e^{ik_0 x} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx e^{-i(k-k_0)x}$$

On avait
$$\delta(x-x_0) \xrightarrow{\Re} \frac{1}{\sqrt{2\pi}} e^{-ikx_0} \xrightarrow{\Re^{-1}} \delta(x-x_0)$$

Donc
$$\delta(x-x_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk e^{ikx} e^{-ikx_0} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk e^{-ik(x_0-x)}$$

Et par identification :
$$\delta(k_0 - k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dx e^{-ix(k - k_0)}$$

(On a changé
$$k \to x$$
 , $x_0 \to k$, $x \to k_0$)

C'est-à-dire
$$\delta(k-k_0) = \frac{\widetilde{f}(k)}{\sqrt{2\pi}}$$

Donc
$$e^{ik_0x} \xrightarrow{\Re} \sqrt{2\pi} \times \delta(k-k_0)$$

Remarque:

$$\cos(k_0 x) = \frac{1}{2} (e^{ik_0 x} + e^{-ik_0 x})$$

On a donc un spectre:

$$\begin{array}{c|c} & \uparrow & \uparrow \\ \hline -k_0 & k_0 & k \end{array}$$

Et la transformée :
$$\widetilde{f}(k) = \frac{\sqrt{2\pi}}{2} (\delta(k - k_0) + \delta(k + k_0))$$

4) Peigne de Dirac

• Définition :

$$(x) = \sum_{n=-\infty}^{+\infty} \delta(x-n) . (: « cha », lettre cyrillique)$$

• Transformée :

$$\widetilde{\cup}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx e^{-ikx} \sum_{n=-\infty}^{+\infty} \delta(x-n) = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{+\infty} e^{-ikn}$$

On peut montrer que $\psi(x) = \sum_{n=-\infty}^{+\infty} e^{2i\pi \cdot n \cdot x}$

Ainsi,
$$\widetilde{\cup}(k) = \frac{1}{\sqrt{2\pi}} \cup (\frac{k}{2\pi})$$

5) Train sinusoïdal

• Définition :

$$f(x) = a\sin(k_0 x)$$

Période :
$$L = \frac{2\pi}{k_0}$$

On prend N périodes, réparties de part et d'autre de 0:

Ainsi,
$$f(x) = a \sin(k_0 x)$$
 si $x \in \left[\frac{-NL}{2}, \frac{NL}{2}\right]$, et 0 sinon.

Largeur du train : NL

Remarque:

$$f(x) = ae^{ik_0x}\pi\left(\frac{x}{NL}\right)$$

• Transformée :

$$\widetilde{f}(k) = \frac{2ak_0}{i\sqrt{2\pi}} \frac{\sin\left(N\pi \frac{k - k_0}{k_0}\right)}{k^2 - k_0^2}$$

(Vu après)

• Analyse :

Largeur: $\Delta x = NL$ pour f, $\Delta k = \frac{2k_0}{N} = \frac{4\pi}{NL}$ pour \tilde{f} . Ainsi, $\Delta x \Delta k = 4\pi$

6) Gaussienne

 $f(x) = e^{-x^2/a^2}$, où a = cte

Largeur : $\Delta x \sim a$

 $\widetilde{f}(k) = \frac{a}{\sqrt{2}} e^{-\frac{k^2 a^2}{4}}$; c'est aussi une Gaussienne, de largeur $\Delta k \sim \frac{2}{a}$, donc $\Delta x \Delta k \sim 2$

D) Transformée de Fourier dans l'espace à trois dimensions

$$f(x,y,z) \underset{\tilde{x}_{x}}{\longrightarrow} \widetilde{f}(k_{x},y,z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx. e^{-ik_{x}x} f(x,y,z)$$
$$\underset{\tilde{x}_{y}}{\longrightarrow} \widetilde{f}(k_{x},k_{y},z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dy. e^{-ik_{y}y} \int_{-\infty}^{+\infty} dx. e^{-ik_{x}x} f(x,y,z)$$

Puis:

$$\widetilde{f}(k_x, k_y, k_z) = \frac{1}{(2\pi)^{3/2}} \int_{-\infty}^{+\infty} dz \cdot e^{-ik_z z} \int_{-\infty}^{+\infty} dy \cdot e^{-ik_y y} \int_{-\infty}^{+\infty} dx \cdot e^{-ik_x x} f(x, y, z)$$

$$= \frac{1}{(2\pi)^{3/2}} \iiint dx dy dz e^{-i(k_x x + k_y y + k_z z)} f(x, y, z)$$

On introduit $\vec{r} = (x, y, z)$, $\vec{k} = (k_x, k_y, k_z)$

Ainsi,
$$\tilde{f}(\vec{k}) = \frac{1}{(2\pi)^{3/2}} \iiint d^3 r e^{-i\vec{k}\cdot\vec{r}} f(\vec{r})$$

Et
$$f(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \iiint d^3k e^{i\vec{k}\cdot\vec{r}} \widetilde{f}(\vec{k})$$

E) Transformée de Fourier spatiotemporelle

$$f(x, y, z, t) \to \widetilde{f}(k_x, k_y, k_z, \omega)$$
, ou $f(\vec{r}, t) \to \widetilde{f}(\vec{k}, \omega)$.

On a
$$\widetilde{f}(\vec{k}, \omega) = \frac{1}{4\pi^2} \iiint d^3r \cdot dt \exp(-i(\vec{k} \cdot \vec{r} - \omega \cdot t)) f(\vec{r}, t)$$

(On prend la convention inverse pour *t* dans le signe de l'exponentielle)

Et
$$f(\vec{r},t) = \frac{1}{4\pi^2} \iiint d^3r \cdot dt \exp(i(\vec{k} \cdot \vec{r} - \omega \cdot t)) \widetilde{f}(\vec{k},\omega)$$

III Produit de convolution

A) Définition

$$f_1, f_2 \to f = f_1 \otimes f_2$$
 défini par :

$$f(x) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(y) f_2(y') \delta(x - y - y') dy dy'$$

$$= \int_{-\infty}^{+\infty} f_1(y) f_2(x - y) dy = \int_{-\infty}^{+\infty} f_1(x - y) f_2(y) dy$$

B) Utilisation du produit de convolution

Montage 4*f* :

On considère l'objet constitué de l'axe x'.

On a une luminosité ponctuelle $f_1(x')$.

Selon l'optique géométrique, l'image est caractérisée par $f(x) = f_1(x)$

A cause de la diffraction, il n'en est pas ainsi :

L'image d'un point lumineux (un « Dirac » de lumière) n'est pas un point lumineux, mais une tache, avec un étalement $f_2(x-x_0)$

On décompose alors l'axe x en petites quantités :

$$\begin{array}{c}
P \\
\downarrow^{x} \\
\downarrow^{x} \\
\downarrow^{x} \\
\downarrow^{y}
\end{array}$$

Contribution de dy en P' à la luminosité en P: $f_2(x-y)f_1(y)dy$

Donc en sommant :
$$f(x) = \int_{-\infty}^{+\infty} f_2(x-y) f_1(y) dy$$

Ainsi, le produit de convolution permet « d'étaler » une fonction sur une autre.

C) Exemple : convolution d'une porte et d'un peigne :

D) Propriétés

- ⊗ est commutatif
- $oldsymbol{\delta}$ est l'élément neutre du produit de convolution :

$$(f \otimes \delta)(x) = \int_{-\infty}^{+\infty} f(y)\delta(x - y)dy = f(x)$$

• $\mathfrak{F}(f_1 \otimes f_2) = \sqrt{2\pi} \cdot \mathfrak{F}(f_1) \times \mathfrak{F}(f_2)$:

On note $f = f_1 \otimes f_2$:

$$\widetilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dx e^{-ikx} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(y) f_2(y') \delta(x - y - y') dy dy'$$

$$= \frac{1}{\sqrt{2\pi}} \iint dy dy' f_1(y) f_2(y') \underbrace{\int_{-\infty}^{+\infty} dx e^{-ikx} \delta(x - y - y')}_{e^{-ik(y+y')}}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dy e^{-iky} f_1(y) \int_{-\infty}^{+\infty} dy' e^{-iky'} f_1(y')$$

• De la même façon, $\mathfrak{F}(f_1 \times f_2) = \frac{1}{\sqrt{2\pi}} \mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2)$

E) Application au train sinusoïdal

On pose $f = f_1 \times f_2$, avec :

$$f_1(x) = a \sin(k_0 x), \text{ donc } \widetilde{f}_1(k) = \frac{a\sqrt{2\pi}}{2i} (\delta(k - k_0) - \delta(k + k_0))$$
Et $f_2(x) = \pi \left(\frac{x}{NL}\right)$, donc $\widetilde{f}_2(k) = \frac{NL}{\sqrt{2\pi}} \operatorname{sinc}\left(\frac{kNL}{2}\right)$
Ainsi, $\mathfrak{F}(f) = \frac{1}{\sqrt{2\pi}} \widetilde{f}_1 \otimes \widetilde{f}_2 = \frac{1}{\sqrt{2\pi}} \frac{a\sqrt{2\pi}}{2i} \frac{NL}{\sqrt{2\pi}} \operatorname{sinc}\left(\frac{(k - k_0)NL}{2}\right) - \dots$

IV Echantillonnage

A) Définition

T : pas d'échantillonnage.

A la fonction s(t) on associe $\{s_n, n \in \mathbb{Z}\}$ où $s_n = s(nT)$

B) Echantillonnage par un peigne de Dirac

1) Principe

$$e(t) = s(t) \times \cup \left(\frac{t}{T}\right)$$

$$e(t)$$

$$s(t)$$

$$t$$

2) Echantillonnage d'un signal sinusoïdal de pulsation ω_0 .

• Spectre de Fourier du signal échantillonné :

$$\widetilde{e}(\omega) = \sqrt{2\pi}\widetilde{s}(\omega) \otimes \widetilde{\cup} \left(\frac{\omega 2\pi}{\Omega}\right) (\Omega = \frac{2\pi}{T})$$

- $\widetilde{s}(\omega)$

On a
$$s = S \cos \omega_0 t = \frac{S}{2} (e^{i\omega_0 t} + e^{-i\omega_0 t})$$

Donc
$$\widetilde{s}(\omega) = \frac{S}{2} \sqrt{2\pi} (\delta(\omega - \omega_0) + \delta(\omega + \omega_0))$$

$$-\widetilde{U}\left(\frac{\omega 2\pi}{\Omega}\right) = \frac{1}{\sqrt{2\pi}} U\left(\frac{\omega}{\Omega}\right)$$

$$- \widetilde{e}(\omega) = \sqrt{2\pi} \frac{S}{2} (\delta(\omega - \omega_0) + \delta(\omega + \omega_0)) \otimes \cup \left(\frac{\omega}{\Omega}\right)$$

- Reconstitution du signal de départ :
- Filtre passe-bas idéal : c'est une fonction de transfert $\underline{H}(\omega) = He^{i\varphi}$ telle que :

- Condition de Shannon pour pouvoir reconstituer le signal :

Il faut trouver ω_c tel que $\omega_0 < \omega_c < \Omega - \omega_0$:

Il faut donc que $\omega_0 < \Omega - \omega_0$, c'est-à-dire que les fourches ne se croisent pas.

3) Echantillonnage d'un signal de spectre borné

• Spectre du signal échantillonné :

• Condition de Shannon :

Il faut ici que $\omega_{M} < \omega_{c} < \Omega - \omega_{M}$, soit $\Omega > 2\omega_{M}$.

• Théorème de Shannon:

Toute l'information d'un signal est contenue dans l'échantillonnage si l'échantillonnage a une pulsation $\Omega > 2\omega_{\scriptscriptstyle M}$ où $\omega_{\scriptscriptstyle M}$ est un majorant des pulsations du spectre de s.

C) Echantillonnage réel

• On fait les mesures sur un temps fini :

- On n'échantillonne pas indéfiniment : $e(t) = ... \times \pi$
- Le passe bas idéal n'existe pas.

(Le deuxième point nuit au théorème de Shannon, mais pas le premier)