Miscellaneous

Statistical or mathematical method for identifying structure in data

Sample dataset

MedQueryID	TermID
MQ1	Т1
MQ1	T2
MQ2	Т2
MQ2	Т3
MQ3	T1
MQ3	Т3
MQ4	Т1
MQ4	Т2
MQ5	Т4
MQ5	Т5
MQ6	Т4
MQ6	Т6
MQ7	Т5
MQ7	Т6
MQ8	T1
MQ8	Т3
MQ9	Т2
MQ9	Т3
MQ10	Т6
MQ10	т7

1 Step 1: Create binary incidence matrix

```
      T1
      T2
      T3
      T4
      T5
      T6
      T7

      MQ1
      1
      1
      0
      0
      0
      0
      0

      MQ2
      0
      1
      1
      0
      0
      0
      0

      MQ3
      1
      0
      1
      0
      0
      0
      0

      MQ4
      1
      1
      0
      0
      0
      0
      0

      MQ5
      0
      0
      0
      1
      1
      0
      0

      MQ6
      0
      0
      0
      1
      1
      0
      0

      MQ7
      0
      0
      0
      0
      1
      1
      0

      MQ8
      1
      0
      1
      0
      0
      0
      0

      MQ9
      0
      1
      1
      0
      0
      0
      0

      MQ10
      0
      0
      0
      0
      0
      1
      1
```

2 Step 2: Cosine Distance Calculation

Dot products and distances:

```
MQ4-MQ5: dot=0 \rightarrow d=1
MQ1-MQ2: dot=1 \rightarrow d=1-1/2=0.5
                                                 MQ4-MQ6: dot=0 \rightarrow d=1
MQ1-MQ3: dot=1 \rightarrow d=0.5
                                                 MQ4-MQ7: dot=0 \rightarrow d=1
MQ1-MQ4: dot=2 \rightarrow d=1-2/2=0
                                                 MQ4-MQ8: dot=1 \rightarrow d=0.5
MQ1-MQ5: dot=0 \rightarrow d=1
                                                 MQ4-MQ9: dot=1 \rightarrow d=0.5
MQ1-MQ6: dot=0 \rightarrow d=1
                                                 MQ4-MQ10: dot=0 \rightarrow d=1
MQ1-MQ7: dot=0 \rightarrow d=1
MQ1-MQ8: dot=1 \rightarrow d=0.5
MQ1-MQ9: dot=1 \rightarrow d=0.5
                                                 MQ5-MQ6: dot=1 \rightarrow d=0.5
MQ1-MQ10: dot=0 \rightarrow d=1
                                                 MQ5-MQ7: dot=1 \rightarrow d=0.5
                                                 MQ5-MQ8: dot=0 \rightarrow d=1
MQ2-MQ3: dot=1 \rightarrow d=0.5
                                                 MQ5-MQ9: dot=0 \rightarrow d=1
MQ2-MQ4: dot=1 \rightarrow d=0.5
                                                 MQ5-MQ10: dot=0 \rightarrow d=1
MQ2-MQ5: dot=0 \rightarrow d=1
MQ2-MQ6: dot=0 \rightarrow d=1
                                                 MQ6-MQ7: dot=1 \rightarrow d=0.5
MQ2-MQ7: dot=0 \rightarrow d=1
                                                 MQ6-MQ8: dot=0 \rightarrow d=1
MQ2-MQ8: dot=1 \rightarrow d=0.5
                                                 MQ6-MQ9: dot=0 \rightarrow d=1
MQ2-MQ9: dot=2 \rightarrow d=0
                                                 MQ6-MQ10: dot=1 \rightarrow d=0.5
MQ2-MQ10: dot=0 \rightarrow d=1
                                                 MQ7-MQ8: dot=0 \rightarrow d=1
MQ3-MQ4: dot=1 \rightarrow d=0.5
                                                 MQ7-MQ9: dot=0 \rightarrow d=1
MQ3-MQ5: dot=0 \rightarrow d=1
                                                 MQ7-MQ10: dot=1 \rightarrow d=0.5
MQ3-MQ6: dot=0 \rightarrow d=1
MQ3-MQ7: dot=0 \rightarrow d=1
                                                 MQ8-MQ9: dot=1 \rightarrow d=0.5
MQ3-MQ8: dot=2 \rightarrow d=0
                                                 MQ8-MQ10: dot=0 \rightarrow d=1
MQ3-MQ9: dot=1 \rightarrow d=0.5
MQ3-MQ10: dot=0 \rightarrow d=1
                                                 MQ9-MQ10: dot=0 \rightarrow d=1
```

3. Step 3: Hierarchical Clustering (Average Linkage)

```
# Step 3a: Merge closest pairs (distance=0)
MQ1 + MQ4 → C1={MQ1,MQ4} height=0
MQ2 + MQ9 → C2={MQ2,MQ9} height=0
MQ3 + MQ8 → C3={MQ3,MQ8} height=0

# Step 3b: Merge MQ5-MQ6 → C4={MQ5,MQ6} height=0.5
# Step 3c: Merge MQ7-MQ10 → C5={MQ7,MQ10} height=0.5
# Step 3d: Merge C4-C5 → C6={MQ5,MQ6,MQ7,MQ10} height=0.625

# Step 3e: Merge C1-C2-C3 → C7={MQ1,MQ2,MQ3,MQ4,MQ8,MQ9} height=0.75
# Step 3f: Merge C7-C6 → Final cluster {all MQs} height=1.0
```

4. Step 4: Naapkin-Ready Dendrogram

```
Height
1.0 |
                                                All MQs
                        C1-C2-C3
0.75
0.5
             C1-C2
                        C3
0.0
         MQ1
              MQ4
                    MQ2
                        MQ9
0.625|
                     C 6
            C4
                      C5
0.5
```