MSA Challenge @ The 4th Pazhou Al Competition

Cross-Lingual Multimodal Sentiment Analysis System

CONTENTS

01 Cross-Lingual System

Predicts fine-grained sentiment scores from raw video inputs across languages

03 User Interface

Flexible execution modes for reproducibility, testing, and human-computer interaction

02 Dual Architecture

Upstream feature extraction and downstream multimodal fusion framework

04 Interpretability

Transparency modules provide insight into modality contributions for trustworthy results

01. Project Overview

- Objective: Predict fine-grained sentiment scores (SNEG/WNEG/NEUT/WPOS/SPOS) from raw video inputs.
- Architecture: Dual-architecture design with upstream feature extraction and downstream Transformer crossattention fusion.
- Capabilities: Bilingual (Chinese/English) processing, feature reuse, and user-friendly interaction.

02. Upstream Feature Extraction

Text Modality

A: XLM-R \rightarrow 768-D multilingual embeddings.

B: Whisper transcribes; language
BERTs → 768-D → per-language
projection → shared 256-D + lang
embedding.

Audio Modality

Extracts MFCCs, pitch, spectral properties, harmonic-to-noise ratio.

Aggregated into 40-D representation for prosodic cues.

MediaPipe face tracking + HoG texture analysis + Facial Action Units (AU1-AU20) (Resnet18) create 512-D facial expression descriptor.

All features standardized to fixed dimensions, stored in .pkl format with dataset metadata for seamless integration.

03. Downstream Fusion Framework

Transformer Encoding: Text features are encoded with a Transformer (256 dimensions, 4 layers, 8 heads). Audio and Visual features share a smaller Transformer (128 dimensions, 2 layers, 4 heads).

O2 Cross-Attention Fusion: A bidirectional cross-attention mechanism allows each modality to query and attend to the others, generating rich, context-aware joint vectors.

(SNEG/WNEG/NEUT/WPOS/SPOS).

04. Training Settings & Optimization

- Optimization: AdamW optimizer combined with CosineAnnealingLR learning rate scheduler for stable convergence.
- Training Control: 20 epochs total, with early stopping (patience=10) to prevent overfitting and gradient clipping (max norm 1.0) to stabilize training.
- Evaluation: Comprehensive metrics including Accuracy,
 Macro F1, Confusion Matrix analysis, and Ablation Studies to validate component contributions.

Key Hyperparameters

Parameter	Value
Learning Rate	1×10 ⁻⁴
Batch Size	32
Dropout Rate	0.3
Optimizer	AdamW
Scheduler	CosineAnnealingLR

05. Human-Computer Interaction

06. Model Interpretability

06. Model Interpretability

- Attention Visualization:
 - Records cross-attention layer weight matrices to show how the model focuses on different modalities.
- Heatmap Visualization:
 Intuitively displays the contribution of each modality (text, audio, visual) to the final prediction.
- Value:

Provides transparent integration logic, facilitating error analysis and guiding future model optimizations.

07. Performance Results & Analysis

Kaggle Score

0.4350
(baseline, CPU-trained)

Internal Accuracy >50%

Ablation Study

Cross-Attention

GPU expected to improve

Bottleneck

CPU Limits

1)

Ablation Study: Macro F1 Score

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Cross-Attention Early Fusion Late Fusion

08. Project Structure & Quick Start

https://github.com/19376357/Bilingual-Multimodal-Sentiment-Analysis

- 01 Install Dependencies:

 pip install -r requirements.txt
- One-Click Execution:

 python test_script.py
- Two-Step Workflow:
 Extract Features →Train/Evaluate

09. Problem Solving & Future Outlook

Troubleshooting

FFmpeg Installation: Resolve missing FFmpeg errors on Windows with the command:

winget install Gyan.FFmpeg

Model Files: Ensure pretrained weights are downloaded and placed in the correct directory:

best_models/

Future Plans

- GPU training for faster convergence and improved model performance.
- •Optimize cross-lingual transfer learning to better handle multilingual inputs.
- Expand to finer-grained tasks, such as emotion detection or sarcasm identification.

GPU vs CPU Training Efficiency

Acknowledgements

Special thanks to the organizing committee of The 4th Pazhou AI Competition.

Gratitude to team members for collaborative development.

Appreciation for open-source communities supporting Whisper, BERT, and MediaPipe.