SKRIPSI

OLEH ARDI MULIAWAN NIM. 15610124

PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2022

SKRIPSI

Diajukan Kepada Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Matematika (S.Mat)

> Oleh Ardi Muliawan NIM. 15610124

PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2022

SKRIPSI

Oleh Ardi Muliawan NIM. 15610124

Telah Diperiksa dan Disetujui untuk Diuji

Tanggal 16 Juni 2022

Dosen Pembimbing I

Evawati Alisah, M.Pd NIP. 19720604 199903 2 001. Dosen Pembinabing II

Juhari, M.Si

NIDT. 19840209 20160801 1 055

Mengetahui, Saans Day Mengetahui, Ketua Program Studi Matematika

Dr. Elly Susanti, M.Sc

NIP. 19741129 200012 2 005

SKRIPSI

Oleh Ardi Muliawan NIM. 15610124

Telah Dipertahankan di Depan Dewan Penguji Skripsi dan Dinyatakan Diterima sebagai salah satu Persyaratan untuk Memperoleh Gelar Sarjana Matematika (S.Mat) Tanggal 23 Juni 2022

Ketua Penguji

: Muhammad Khudzaifah, M.Si

Anggota Penguji 1

: Hisyam Fahmi, M.Kom.

Anggota Penguji 2

: Evawati Alisah, M.Pd

Anggota Penguji 3

: Juhari, M.Si

Mengetahui,

Ketua Program Studi Matematika

Dr. Hlly Susanti, M.Sc

NIP. 19741129 200012 2 005

PERNYATAN KEASLIAN TULISAN

Saya yang bertanda tangan di bawah ini:

Nama

: Ardi Muliawan

NIM

: 15610124

Program Studi

: Matematika

Fakultas

: Sains dan Teknologi

Judul Skripsi

: Penerapan Algoritma Ant Colony untuk Menentukan

Jalur Terpendek di Bank Sampah Malang

menyatakan dengan sebenarnya bahwa skripsi yang saya tulis benar-benar merupakan hasil karya saya sendiri, bukan merupakan pengambilan data, tulisan, atau pikiran orang lain yang saya akui sebagai hasil tulisan atau pikiran saya sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar rujukan. Apabila di kemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Malang, 24 Mei 2022 Yang membuat pernyataan

Ardi Muliawan NIM. 15610124

MOTO

"Hanya dengan mengingat Allah Swt., hati menjadi tenang"

PERSEMBAHAN

Dengan rasa syukur penulis persembahkan skripsi ini kepada

Bapak Abdul Halik dan ibu Arinah yang tiada henti memberikan dukungan dan doa kepada penulis agar dimudahkan dalam mencari ilmu.

Untuk adik-adikku Dendi Ikhsan Pratama, Raudatil Jannah, Suci Ramadhani,

Anna Puspita Ramadhani serta si kembar Rini dan Rani yang turut memberikan

doa dan dukungan kepada penulis.

KATA PENGANTAR

Assalamu'alaikum Warahmatullahi Wabarakatuh

Alhamdulillahi rabbil 'aalamiin, segala puji dan syukur bagi Allah Swt. atas rahmat dan hidayah-Nya. Sehingga peyusunan skripsi sebagai syarat untuk memperoleh gelar sarjana pada Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang, dapat terselesaikan dengan baik. Shalawat serta salam tak lupa pula kita haturkan kepada Baginda Nabi Muhammad Saw. yang telah menuntun manusia menuju Islam, seperti yang kita rasakan sekarang ini.

Dalam proses penyusunan skripsi ini tidak lepas dari bantuan berbagai pihak. Untuk itu ucapan terimakasih penulis sampaikan kepada:

- Prof. Dr. H. M. Zainuddin, M.A., selaku Rektor Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Dr. Sri Harini, M.Si, selaku Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- 3. Dr. Elly Susanti, M.Sc, selaku Ketua Program Studi Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- 4. Evawati Alisah, M.Pd, selaku Dosen Pembimbing I yang selalu sabar memberikan arahan dan bimbingan kepada penulis.
- 5. Juhari, M.Si, selaku Dosen Pembimbing II yang telah memberikan arahan dan bimbingan kepada penulis dengan baik.
- 6. Hisyam Fahmi, M.Kom., selaku Anggota Penguji 1 dalam Ujian Skripsi.
- 7. Muhammad Khudzaifah, M.Si, selaku Ketua Penguji dalam Ujian Skripsi.
- 8. Seluruh Dosen Program Studi Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim
- 9. Ayah dan Ibu serta enam adik tercinta yang telah mencurahkan kasih sayang, doa, bimbingan dan motivasi.
- 10. Seluruh Mahasiswa Angkatan 2015 Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim.
- 11. Semua pihak yang ikut terlibat dalam penyelesaian skripsi ini.

Dengan mengharapkan ridha dari Allah Swt., semoga amal baik dari semua pihak yang telah disebutkan diterima di sisi Allah. Penulis juga berharap semoga skripsi ini bermanfaat kepada orang yang membacanya.

Wassalamu'alaikum Warahmatullahi Wabarakatuh

Malang, 14 Maret 2022

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGAJUAN	ii
HALAMAN PERSETUJUAN	iii
HALAMAN PENGESAHAN	iv
PERNYATAN KEASLIAN TULISAN	V
HALAMAN_MOTO	vi
HALAMAN PERSEMBAHAN	vii
KATA PENGANTAR	
DAFTAR ISI	X
DAFTAR TABEL	xii
DAFTAR GAMBAR	xiii
DAFTAR SIMBOL	xiv
DAFTAR LAMPIRAN	XV
ABSTRAK	xvi
ABSTRACT	xvii
مستخلص البحث	xviii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	4
1.3 Tujuan Penelitian	4
1.4 Manfaat Penelitian	4
1.5 Batasan Masalah	4
BAB II KAJIAN TEORI	5
2.1 Graf	5
2.1.1 Derajat Titik	6
2.1.2 Graf Terhubung	9
2.1.3 Macam-Macam Graf	12
2.2 Optimisasi	13
2.2.1 Definisi Nilai Optimal	
2.2.2 Macam-Macam Permasalahan Optimasi	14
2.2.3 Permasalahan Lintasan Terpendek	14
2.2.4 Solusi Masalah Optimasi	
2.3 Travelling Salesman Problem (TSP)	17
2.4 Ant Colony Optimization (ACO)	19
2.4.1 Ant System (AS)	20
2.4.2 Elitist Ant System (EAS)	27
2.4.3 Rank-based version of Ant System (AS _{Rank})	28
2.4.4 MAX-MIN Ant System (MMAS)	29
2.4.5 Ant Colony System (ACS)	30
2.5 Kajian Integrasi Topik Dengan Al-Quran/Hadits	33
2.6 Kajian Topik Dengan Teori Pendukung	34
2.6.1 Proses Koloni Semut Dalam Menemukan Jalur Terpendek .	34
2.6.2 Metode Ant Colony Dalam Penentuan Jalur Terpendek	35
BAB III METODE PENELITIAN	37
3.1 Jenis Penelitian	37

3.2 Data dan Sumber Data	38
3.3 Lokasi Penelitian	38
3.4 Langkah-Langkah Analisis Data	39
BAB IV HASIL DAN PEMBAHASAN	40
4.1 Menentukan Bobot Graf Dari Tempat Penelitian	40
4.2 Pembobotan jarak (d_{rs})	41
4.3 Jalur Perjalanan (C)	54
4.4 Panjang Jalur (C_k)	56
4.5 Perubahan Harga Intensitas <i>Pheromone</i> ($\Delta \tau_{rs}$)	68
4.6 Analisis Hasil Perhitungan Dan Pembobotan	72
BAB V PENUTUP	74
5.1 Kesimpulan	74
5.2 Saran untuk Penelitian Lanjutan	75
DAFTAR PUSTAKA	76
LAMPIRAN	78

DAFTAR TABEL

Tabel 4.1 Nilai Jarak Awal	41
Tabel 4.2 Nilai Titik Bantuan	42
Tabel 4.3 Pembobotan Jarak (d_{rs})	54
Tabel 4.4 Panjang Rute C_k	66

DAFTAR GAMBAR

Gambar 2.1 Graf Tripartisi Lengkap $K_{2,3,5}$	8
Gambar 2.2 Graf Berarah dan Berbobot	
Gambar 2.3 Graf Tidak Berarah dan Berbobot	13
Gambar 2.4 Graf Berarah dan Tidak Berbobot	13
Gambar 2.5 Graf Tak Berarah dan Tak Berbobot	13
Gambar 2.6 Gambar Jalur Titik ABCDEFG	15
Gambar 2.7 Ilustrasi Masalah TSP	17
Gambar 2.8 Gambar Jalur Titik ABCD	18
Gambar 2.9 Sirkuit Hamilton	18
Gambar 2.10 Perjalanan Semut Menuju Sumber Makanan	34
Gambar 3.1 Peta Lokasi BSM Induk ke BSM Binaan	

DAFTAR SIMBOL

 τ_{ij} : Intensitas *pheromone* tiap titik $\Delta \tau_{ij}$: Perubahan intensitas jejak semut

Q: Tetapan siklus semuth

 α : Tetapan intensitas *pheromone* ($\alpha \ge 0$) β : Tetapan pengendali visibilitas ($\beta \ge 0$)

 η_{ij} : Visibilitas antar kota. Nilai η_{ij} merupakan hasil dari $\frac{1}{d_{ii}}$

m : Banyaknya semut

ρ: Tetapan penguapan *pheromone* (ρ), dengan 0 < ρ < 1

V : Himpunan tak kosong yang memiliki elemen yang disebut titik

(verticles/node) atau v

E : Kumpulan dari dua elemen subsets V yang disebut sisi (edges

atau arcs) atau e

G: Graf, sebagai pasangan himpunan (V(G), E(G))V(G): Himpunan tak kosong dan berhingga dari objek-objek

E(G): Himpunan pasangan tak berurutan dari titik-titik berbeda yang

mungkin kosong di V(G)

p(G): Banyaknya unsur di V(G) atau order dari G banyaknya unsur di

E(G)

q(G): Banyaknya ukuran dari G

 $N_G(v)$: Lingkungan dari v $deg_G(v)$: Derajat dari titik v di G D(G) : Derajat maksimum titik di G d(G) : Derajat minimum titik di G

w(e): Bilangan real positif yang diikat oleh e

 $egin{array}{lll} v_0 & : & & : & Titik & awal \\ v_n & : & & : & Titik & akhir \\ \end{array}$

 P_n : Graf yang berupa lintasan dengan n simpul atau graf lintasan orde

ke n

 \bar{G} : Graf dengan himpunan simpul $V(\bar{G}) = V(G)$

 $egin{array}{lll} n & : & {
m Jumlah \ titik} \ d_{rs} & : & {
m Jarak \ antar \ titik} \end{array}$

r : Titik awal atau BSM Induk

s : Titik pengambilan atau BSM Binaan

NCmaks : Jumlah siklus tertinggi

DAFTAR LAMPIRAN

Lampiran 1 Pembobotan Jarak (d_{rs})	78
Lampiran 2 Panjang Rute (C_k)	79
Lampiran 3 Nilai <i>Pheromone</i> ($\Delta \tau_{rs}$)	81
Lampiran 4 Jadwal Pengambilan BSM	83
Lampiran 5 Jadwal Pengambilan BSM	

ABSTRAK

Muliawan, Ardi. 2022. **Penerapan Algoritma** *Ant Colony* **untuk Menentukan Jalur Terpendek di Bank Sampah Malang**. Skripsi. Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing: (I) Evawati Alisah, M.Pd. (II) Juhari, M.Si.

Kata Kunci: Ant Colony Optimization, Jalur Terpendek

Bank Sampah Malang (BSM) merupakan badan pengelola sampah di Kota Malang. Dalam hal pengelolaannya, truk pengangkut membutuhkan jalur yang tepat demi tercapainya proses pengangkutan yang efisien. Metode yang digunakan pada penelitian ini adalah *Ant Colony Optimization* untuk menentukan jalur terpendek berupa rute dan total jarak dari Bank Sampah Malang (BSM) Induk ke Bank Sampah Malang Binaan terpilih berupa 5 titik pengambilan atau titik pengangkutan.

Metode *Ant Colony Optimization* merupakan algoritma yang mampu menyelesaikan masalah komputasi dengan menemukan optimasi jalur melalui grafik. Algoritma ini terinspirasi dari perilaku semut dalam menemukan jalur terbaik dari sarang menuju sumber makanan. Koloni semut menghasilkan zat *pheromone* pada setiap jalur yang telah dilalui. Sehingga dengan zat *pheromone* tersebut, koloni semut mampu mendapatkan jalur terpendek dari sarang menuju sumber makanannya.

Proses pencarian jalur terpendek pada algoritma *Ant Colony* yaitu menentukan lokasi yang menjadi tempat penelitian dan simbolisasi, identifikasi nilai awal dan parameter, pembobotan jarak, menentukan jalur perjalanan semut, menentukan nilai rute perjalanan semut, serta analisis hasil akhir dan perhitungan perubahan harga intensitas *pheromone*.

Hasil yang diperoleh dari penelitian ini yaitu jalur terpendeknya terdapat pada pembobotan jalur ke-1 melalui jalur (A, B, C, D, E, F, A). Titik A merupakan titik tujuan atau Bank Sampah Malang, sedangkan 5 titik lainnya merupakan Bank Sampah Malang Binaan terpilih. Jalur ini merupakan rute yang paling efisien karena memiliki nilai jarak terkecil yaitu 20,78 km, dengan tingkat penguapan *pheromone* yang relatif kecil. Sehingga, harapan dari penelitian ini agar membantu pihak Bank Sampah Malang mendapatkan jalur yang efisien dalam proses pengambilan sampah.

ABSTRACT

Muliawan, Ardi. 2022. Application of the Ant Colony Algorithm to Determine the Shortest Path at the Malang Waste Bank. Thesis. Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Advisors: (I) Evawati Alisah, M.Pd, (II) Juhari, M.Si.

Keywords: Ant Colony Optimization, Shortest Path

Malang Waste Bank is a waste management agency in Malang City. In terms of management, transport trucks need the right path in order to achieve an efficient transportation process. The method used in this study is Ant Colony Optimization to determine the shortest path in the form of routes and the total distance from the main Malang Waste Bank to the selected fostered Malang Waste Bank in the form of five pick-up points or transportation points.

The Ant Colony Optimization method is an algorithm that is able to solve computational problems by finding path optimization through graphs. This algorithm is inspired by the behavior of ants in finding the best path from the nest to the food source. Ant colonies produce pheromone substances on every path that has been traversed. So with the pheromone substance, the ant colony is able to get the shortest path from the nest to the food source.

The process of finding the shortest path in the Ant Colony algorithm is determining the location for research and symbolization, identification of initial values and parameters, weighting distances, determining the ant's travel path, determining the value of the ant's travel route, as well as analyzing the final results and calculating changes in the price of pheromone intensity.

The results obtained from this study are that the shortest path is weighted on the 1st path through the path (A, B, C, D, E, F, A). Point A is the destination point or the Malang Waste Bank, while the other five points are the selected Malang Waste Banks. This route is the most efficient route because it has the smallest distance value of 20,78 km, with a relatively small evaporation rate of. Thus, the hope of this research is to help the Malang Waste Bank get an efficient path in the waste collection process.

مستخلص البحث

موليون، أرضي. ٢٠٢٢. تطبيق خوارزمية Ant Colony لتحديد أقصر مسار في بنك نفايات مالانج. البحث الجامعي. قسم الرياضيات، كلية العلوم والتكنولوجيا، جامعة مولانا مالك إبراهيم الإسلامية الحكومية بمالانج. المشرفة: (١) ايفاواتي أليسة، الماجستير.

الكلمات الرئيسية: تحسين مستعمرة النملة (Ant Colony Optimization)، أقصر مسار (Shortest Path)

بنك نفايات مالانج هي وكالة لإدارة النفايات في مدينة مالانج. من حيث الإدارة، تحتاج شاحنات النقل إلى المسار الصحيح لتحقيق عملية نقل فعالة. الطريقة المستخدمة في هذه الدراسة هي Ant Colony Optimization لتحديد أقصر مسار في شكل طرق والمسافة الإجمالية من بنك نفايات مالانج الرئيسي إلى بنك نفايات مالانج المعزز المختار في شكل خمس نقاط استلام أو نقاط نقل.

طريقة Ant Colony Optimization هي خوارزمية قادرة على حل المشكلات الحسابية من خلال إيجاد تحسين المسار من خلال الرسوم البيانية. هذه الخوارزمية مستوحاة من سلوك النمل في إيجاد أفضل طريق من العش إلى مصدر الطعام. تنتج مستعمرات النمل مواد pheromone على كل مسار تم اجتيازه. لذلك مع مادة pheromone فإن colony قادرة على الحصول على أقصر مسار من العش إلى مصدر الغذاء.

تتمثل عملية العثور على أقصر مسار في خوارزمية Ant Colony في تحديد موقع البحث والرمز، وتحديد القيم والمعلمات الأولية، وترجيح المسافات، وتحديد مسار سفر النملة، وتحديد قيمة مسار سفر النملة، وكذلك تحليل النتائج النهائية وحساب التغييرات في سعر شدة pheromone.

النتائج التي تم الحصول عليها من هذه الدراسة هي أن أقصر مسار يتم ترجيحه على المسار الأول عبر المسار (A,B,C,D,E,F,A). النقطة A هي نقطة الوجهة أو بنك نفايات مالانج، في حين أن النقاط الخمس الأخرى هي النقاط المختارة بنوك نفايات مالانج. هذا الطريق هو الطريق الأكثر كفاءة لأنه يحتوي على أصغر قيمة للمسافة تبلغ هي النقاط المختارة بنوك نفايات مالانج. وبالتالي، فإن الأمل في هذا البحث هو مساعدة بنك نفايات مالانج في الحصول على مسار فعال في عملية جمع النفايات.

BABI

PENDAHULUAN

1.1 Latar Belakang

Disiplin waktu dalam suatu pekerjaan adalah hal yang paling penting di zaman yg modern dan serba cepat sekarang. Apalagi ditambah banyaknya kendaraan di jalan, semakin berpotensi menimbulkan kemacetan serta kurang disiplinnya kita menuju kantor atau tempat kerja. Di Malang sendiri jika diamati, volume dan jumlah kendaraan semakin meningkat per tahunnya. Hal ini mengundang kemacetan di beberapa titik di Kota Malang. Truk-truk pada lembaga seperti pabrik, perusahaan dan semacamnya juga membutuhkan jalur terpendek dalam berjalannya proses pengiriman produk ke konsumen. Begitu pula truk pengangkut sampah yang kantornya adalah Bank Sampah Malang (BSM) juga membutuhkan jalur yang efisien dalam sistem pengangkutannya.

Bank Sampah Malang adalah lembaga yang berbadan hukum koperasi yang bekerjasama dengan pemerintahan kota Malang dan CSR PT. PLN Distribusi Jawa Timur, didirikan sebagai wadah untuk membina, melatih, mendampingi sekaligus membeli dan memasarkan hasil dari kegiatan pengelolaan sampah dari hulu atau sumber masyarakat kota Malang dalam rangka pengurangan sampah di TPS atau TPA dan pemberdayaan ekonomi masyarakat dengan memanfaatkan sampah dengan program 3R (*Reduce, Reuse* dan *Recycle*) serta perubahan perilaku masyarakat menuju lingkungan kota Malang yang ber BSM (Bersih, Sejuk dan Manfaat).

Berdasarkan data Dinas Kebersihan dan Pertamanan Kota Malang, jumlah TPS (Tempat Pembuangan Sementara) yang ada di Kota Malang berjumlah 68 TPS, yang terbagi atas beberapa wilayah yaitu, Kecamatan Klojen 9 TPS, Kecamatan Blimbing 17 TPS, Kecamatan Kedung Kandang 11 TPS, Kecamatan Sukun 16 TPS dan Kecamatan Lowokwaru 15 TPS dan 1 Tempat Pembuangan Akhir (TPA) yang berada di Kecamatan Sukun yaitu Bank Sampah Malang (https://dlh.malangkota.go.id/).

Ant Colony Optimization atau Algoritma Koloni Semut digunakan untuk menyelesaikan permasalahan ini. Pencarian solusi dimulai dengan melakukan pemilihan secara bertahap berdasarkan nilai fungsi pheromone trail dan informasi heuristik yang terbesar. Pheromone trail menunjukkan kualitas solusi yang telah dicapai oleh semut dari perjalanan sebelumnya, sedangkan informasi heuristik sesuai dengan input data dari suatu permasalahan. Kegiatan ini dilakukan oleh semua semut dalam satu koloni. Setelah satu koloni semut menyusun kombinasi solusi, maka dilakukan pemilihan semut terbaik yang akan dibandingkan dengan semut terbaik secara global sehingga menghasilkan solusi akhir (Dorigo, dkk, 2004).

Pada awalnya penerapan algoritma koloni semut untuk pencarian solusi travelling salesman problem. Seiring dengan perkembangan penelitian, algoritma ini digunakan untuk solusi vehicle routing problem. Bahkan sangat variatif, antara lain digunakan untuk mensimulasikan rute-rute jalan protokol. Bahkan juga telah diaplikasikan untuk sistem pencarian cepat. Selain itu, algoritma koloni semut digunakan untuk optimisasi perencanaan produksi. Berdasarkan penelitian-penelitian sebelumnya, Algoritma Koloni Semut digunakan untuk menyelesaikan

masalah sistem distribusi sampah dengan memilih rute-rute yang tepat dan cepat untuk sampai ke Bank Sampah Malang melalui Bank Sampah Binaan yang telah ditentukan. Pada penelitian ini, Bank Sampah Binaan yang dimaksud merupakan titik-titik pengambilan (pengangkutan) sampah.

Berbicara tentang algoritma untuk menemukan jalur yang paling efisien dan memanfaatkan waktu. Allah Swt. berfirman dalam Al-Qur'an surah Ar-Rum ayat 23 yang berbunyi:

"Dan di antara tanda-tanda (kebesaran)-Nya ialah tidurmu pada waktu malam dan siang hari dan usahamu mencari sebagian dari karunia-Nya. Sungguh, pada yang demikian itu benar-benar terdapat tanda-tanda bagi kaum yang mendengarkan." (QS. Ar-Rum/30:23).

Berdasarkan ayat ini, Allah Swt menegaskan bahwa Allah telah memberikan nikmat waktu untuk kita. Untuk itu, kita sebagai makhluk ciptaan-Nya, sudah sepatut nya untuk mensyukuri nikmat tersebut dengan memanfaatkan waktu dengan sebaik-baiknya. Waktu ini berkaitan dengan segala usaha yang dilakukan oleh manusia demi tercapainya efisiensi dan kinektifitas pekerjaan yang dilakukan. Hal ini sejalan dengan konsep algoritma *Ant Colony* dalam pencarian optimasi jalur. Semakin optimal jalur yang diperoleh, maka semakin akurat pula dengan waktu dan efektifitas pekerjaan.

Berdasarkan penjelasan tersebut, maka penulis akan fokus menganalisa algoritma *Ant Colony Optimization* untuk memperoleh jalur terpendek dengan mempertimbangkan parameter-parameter dan nilai jarak yang telah diberikan.

1.2 Rumusan Masalah

Bagaimanakah langkah-langkah algoritma *Ant Colony* dalam menentukan jalur terpendek pada rute pengambilan sampah dari BSM Induk ke BSM Binaan?

1.3 Tujuan Penelitian

Untuk mendeskripsikan hasil algoritma *Ant Colony* dalam menentukan jalur terpendek berupa rute dan total jarak dari BSM Induk dan BSM Binaan terpilih berupa 5 BSM.

1.4 Manfaat Penelitian

- Menambah wawasan keilmuan dan pengetahuan cara kerja algoritma Ant Colony beserta konsepnya.
- 2. Mengetahui jalur terpendek dari algoritma *Ant Colony* untuk pengangkutan sampah pada Bank Sampah Malang.

1.5 Batasan Masalah

- Fokus penelitian adalah algoritma Ant Colony untuk menentukan jalur terpendek yaitu semua titik yang sudah diperoleh selama proses pengangkutan sampah dilakukan dari titik awal menuju titik akhir yaitu Bank Sampah Malang (Bank Sampah Induk) dengan 5 titik pengangkutan sebagai Bank Sampah Binaan.
- Bank sampah yang dimaksud adalah Bank Sampah Malang (BSM) pusat yang berlokasi di Jl. S. Supriadi No. 38 A, Sukun, Kec. Sukun, Kota Malang, Jawa Timur.
- 3. Penelitian ini mengabaikan banyak jalur yang terdeteksi di *Google Maps* dan hanya memilih satu jalur bolak-balik (berpatokan pada jalur terbaik atau rute terbaik saja).

BAB II

KAJIAN TEORI

2.1 Graf

Graf didefinisikan sebagai kumpulan titik yang dihubungkan oleh garis. Secara matematis graf adalah pasangan himpunan (V, E), dimana V adalah himpunan tak kosong yang memiliki elemen yang disebut titik (*verticles* atau *node*), dan E yang merupakan kumpulan dari dua elemen subsets V yang disebut sisi (*edges* atau *arcs*). Biasanya, graf digunakan untuk memodelkan objek-objek diskrit serta hubungan antara objek-objek tersebut (Chartrand, Lesniak & Zhang, 2016).

Sebuah graf G didefinisikan sebagai pasangan himpunan (V(G), E(G)), dimana V(G) adalah himpunan tak kosong dan berhingga dari objek-objek. Sedangkan E(G) adalah himpunan pasangan tak berurutan dari titik-titik berbeda yang mungkin kosong di V(G) (Abdussakir, 2009). Banyaknya unsur di V(G) disebut order dari G dan dilambangkan dengan G0, dan banyaknya unsur di G1 disebut ukuran dari G2 dan dilambangkan dengan G3 (Chartrand dan Lesniak, 1986:4).

Sisi e = (u, v) dikatakan menghubungkan titik u dan v. Jika e = (u, v) adalah sisi dari graf G, maka u dan v disebut terhubung langsung (adjacent). v dan e serta u dan e disebut terkait langsung (incident), dan titik u dan v disebut ujung dari e. Dua sisi berbeda e_1 dan e_2 disebut terhubung langsung (adjacent), jika terhubung langsung pada satu titik yang sama. Sehingga dapat disimpulkan bahwa sebuah graf dimungkinkan tidak mempunyai sisi, akan tetapi harus memiliki

minimal satu titik. graf yang memiliki satu titik tanpa ada satu sisi pun disebut graf trivial (Bondy dan Murty, 2008).

Adapun bebarapa hal yang dapat dicermati, setelah mengacu pada definisi diatas adalah:

- Himpunan titik pada graf harus tidak kosong dan berhingga. Dengan demikian, maka definisi ini hanya terbatas pada graf berhingga, yaitu graf yang himpunan titiknya berhingga.
- 2. Himpunan sisi merupakan himpunan pasangan tak berurutan dari titik-titik yang berbeda. Kata "pasangan tak berurutan" berarti bahwa (a, b) dan (b, a) adalah sama. Sehingga berdasarkan definisi ini, maka graf tidak boleh memuat sisi rangkap atau sisi paralel. Sisi rangkap atau sisi paralel adalah dua sisi atau lebih yang menghubungkan pasangan titik yang sama. Sedangkan kata "berbeda" memiliki arti bahwa pasangan berurutan tersebut tidak boleh berbentuk (a, a) (Abdussakir, dkk, 2009:7-8).

2.1.1 Derajat Titik

Jika v adalah titik di G, maka himpunan semua titik G yang terhubung langsung dengan v disebut lingkungan dari v dan ditulis $N_G(v)$. $deg_G(v)$ melambangkan derajat dari titik v di G, yaitu banyaknya sisi di graf G yang terhubung langsung dengan v. Topik pada pembicaraan ini hanya terdapat satu graf G, maka penulisan $deg_G(v)$ disingkat menjadi deg(v) dan $N_G(v)$ menjadi N(v). Jika dikaitkan dengan konsep lingkungan, maka deg(v) merupakan banyaknya anggota dalam N(v) (Chartrand, Lesniak & Zhang, 2016).

Sehingga dapat ditulis:

$$deg(v) = |N(v)| \tag{2.1}$$

Penyebutan untuk titik terasing atau titik terisolasi yaitu titik yang berderajat 0. Sedangkan penyebutan untuk titik ujung atau titik akhir yaitu titik yang berderajat 1. Begitu pula untuk titik genap yaitu titik yang berderajat genap dan titik ganjil yaitu titik yang berderajat ganjil. D(G) melambangkan derajat maksimum titik di G dan d(G) melambangkan derajat minimum titik di G (Chartrand, Lesniak & Zhang, 2016).

Persamaan jumlah derajat semua titik di graf G dengan banyaknya sisi q adalah:

$$\sum_{v \in G} deg(v) = 2q \tag{2.2}$$

Graf G dikatakan beraturan dengan derajat r atau beraturan—r jika masingmasing titik v di dalam G, maka nilai untuk bilangan bulat tak negatif r adalah deg(v) = r. Suatu graf disebut beraturan jika untuk suatu bilangan bulat tak negatif r, graf tersebut beraturan dengan derajat r(Chartrand, Lesniak & Zhang, 2016).

Jika setiap dua titik yang berbeda saling terhubung langsung atau *adjacent*, maka graf G tersebut disebut graf komplit. K_n menyatakan graf komplit dengan order n. Sehingga, graf K_n merupakan graf beraturan dengan derajat (n-1) dimana ukuran $q = \frac{n(n-1)}{2} = \binom{n}{2}$ dan order p = n (Chartrand, Lesniak & Zhang, 2016).

Graf G dikatakan bipartisi jika himpunan titik pada G dapat dipartisi menjadi dua himpunan tak kosong V_1 dan V_2 , sehingga masing-masing sisi pada graf G tersebut menghubungkan satu titik di V_1 dengan satu titik di V_2 . Jika G adalah graf bipartisi beraturan-r dengan $r \geq 1$, maka $|V_1| = |V_2|$. Graf G dikatakan partisi-n

jika himpunan titiknya dapat dipartisi menjadi sebanyak n himpunan tak kosong $V_1, V_2, ..., V_n$. Sehingga masing-masing sisi pada graf G menghubungkan titik pada V_i dengan titik pada V_j untuk $i \neq j$ (Chartrand, Lesniak & Zhang, 2016).

Graf G disebut bipartisi lengkap, jika G adalah graf bipartisi dan semua node dalam suatu partisi terhubung langsung dengan semua node di partisi yang lainnya. Graf bipartisi lengkap dengan m simpul di satu partisi dan n simpul di partisi lain ditulis sebagai $K_{m,n}$. Graf bipartisi lengkap $K_{1,n}$ disebut graf bintang yang diwakili oleh S_n , dimana order (n-1) dan ukuran S_n adalah n (Chartrand, Lesniak & Zhang, 2016).

Graf G disebut partisi-n komplit, jika G merupakan graf partisi-n yang berisi himpunan partisi $V_1, V_2, ..., V_n$. Oleh karena itu, jika $u \in V_i$ dan $v \in V_j$ dimana $i \neq j$, maka $u, v \in E(G)$. Di sisi lain, jika $|V_i| = p$, maka graf ini diwakili oleh $K_{p_1,p_2,...,p_n}$ dan kurang memperhatikan urutan $p_1,p_2,...,p_n$. Graf partisi-n lengkap adalah graf lengkap K_n , hanya jika $p_i = 1$ untuk semua i. Jika $p_i = t$ untuk semua i dan $t \geq 1$, graf partisi-n lengkap ini adalah graf beraturan yang diwakili oleh $K_{n(t)}$. Oleh karena itu, $K_{n(1)}$ tidak lain adalah K_n (Chartrand, Lesniak & Zhang, 2016).

Di bawah ini adalah contoh graf lengkap tiga bagian $K_{2,3,5}$, dimana simpulsimpul dalam partisi tidak dapat dihubungkan secara langsung.

Gambar 2. 1 Graf Tripartisi Lengkap K_{2,3,5}

Graf berbobot adalah graf yang setiap sisinya dilabeli oleh bilangan real positif dan disebut sebagai bobot. Misalkan G adalah graf dan e merupakan rusuk G. Bobot dari e diwakili oleh w(e) dan merupakan bilangan real positif yang diikat oleh e. Panjang jalur pada graf berbobot merupakan jumlah bobot setiap sisi pada jalur tersebut. Untuk dua simpul yang terhubung u dan v pada graf berbobot G, jarak antara u dan v dilambangkan dengan d(u,v). Ini adalah panjang jalur terkecil untuk jalur u-v di G. Jika bobot setiap sisi adalah 1, maka G disebut graf. Dengan demikian, panjang dan jarak jalur G sama dengan definisi graf (Abdussakir, dkk, 2009).

2.1.2 Graf Terhubung

Misal G adalah graf dan u, v merupakan titik di G yang tak harus berbeda, lintasan u ke v di G merupakan barisan berhingga yang berulang (Chartrand, Lesniak & Zhang, 2016).

Maka, kita dapat menulis:

$$W: u = v_0, e_1, v_1, e_2, v_2, ..., e_n, v_n = v$$
 (2.3)

Untuk titik dan sisi, yang dimulai dan diakhiri oleh titik, dimana:

$$e_i = v_{i-1} \ 1v_i \ , \ i = 1,2,3,...,n$$
 (2.4)

Persamaan (2.4) adalah sisi dari G. Titik v_0 adalah titik awal, v_n adalah titik akhir, titik $v_1, v_2, ..., v_{i-1}$ adalah titik internal dan n adalah panjang dari W. Jika $v_0 = v_n$, W disebut lintasan terbuka. Sebaliknya, jika $v_0 \neq v_n$, W disebut lintasan tertutup. Dengan demikian, lintasan yang tidak memiliki sisi dinamakan jalur trivial (Chartrand, Lesniak & Zhang, 2016).

Oleh karena dua titik di graf dihubungkan oleh satu sisi, maka dengan persamaan (2.4) diperoleh:

$$W: u = v_0, v_1, v_2, ..., v_{n-1}, v_n = v$$
 (2.5)

Lintasan *W* yang semua sisinya berbeda dinamai dengan *trail*. Sedangkan jalan terbuka yang semua titiknya berbeda dinamakan lintasan. Oleh karena itu, kita dapat mengatakan bahwa tidak semua *trail* adalah lintasan , namun semua lintasan adalah *trail* (Chartrand, Lesniak & Zhang, 2016).

Graf yang berupa lintasan dengan n simpul disebut graf lintasan orde ke n dan dideskripsikan sebagai P_n . Jalan tertutup W non trivial dengan semua sisi berbeda disebut sirkuit. Sirkuit disebut juga trail tertutup yang non trivial. Jalan tertutup W non trivial yang setiap titiknya berbeda disebut sebagai sikel. Oleh karena itu, dapat dikatakan bahwa tidak semua sirkuit adalah sikel, namun semua sikel adalah sirkuit. Meneliti hubungan antara sikel dan sirkuit mengungkapkan bahwa trail tertutup, non trivial dari graf G disebut sirkuit G (Chartrand, Lesniak & Zhang, 2016).

Maka, sirkuit dapat ditulis sebagai:

$$v_1, v_2, v_3 \dots, v_n, v_i \quad (n \ge 3)$$
 (2.6)

Untuk v_i , dengan i=1,2,3,...,n berbeda dinamakan sikel. Sikel-k adalah sikel dengan panjang k. Sikel-k bisa genap atau ganjil, tergantung nilai k genap atau ganjil (Chartrand, Lesniak & Zhang, 2016).

Graf sikel dengan n simpul, $n \geq 3$ disebut sebagai graf sikel yang dideskripsikan sebagai C_n . Graf sikel disebut juga graf lingkaran, karena dapat dibentuk menjadi lingkaran. Akan tetapi, tidak selalu graf sikel digambarkan sebagai lingkaran. Graf sikel juga digambarkan sebagai poligon. C_3 sebagai segi-

tiga, C_4 sebagai segi-empat dan C_n sebagai segi-n. Sikel yang bersimpul ganjil disebut sebagai sikel ganjil, dan sikel yang bersimpul genap disebut sebagai sikel genap (Chartrand, Lesniak & Zhang, 2016).

Misal u, v adalah simpul terpisah dari graf G. Jika G memiliki lintasan u-v, maka titik u dan v dikatakan terhubung (connected). Graf G dikatakan terhubung ketika semua titik yang berbeda u dan v dari G digabungkan. Dengan kata lain, untuk semua titik u dan v di G, jika G memiliki lintasan u-v, maka graf G disebut terhubung. Graf G, sebaliknya dikatakan tidak terhubung (disconnected) jika G memiliki u dan v untuk semua simpul, tetapi tidak ada lintasan u-v di graf G (Chartrand, Lesniak & Zhang, 2016).

Untuk graf terhubung G, jarak d(u,v) antara dua titik u dan v dari G adalah panjang jalur optimasi yang menghubungkan titik u dan v dari G. Namun, jika tidak ada jalur dari titik u ke v, jaraknya didefinisikan sebagai $d(u,v)=\infty$. Eksentrisitas e(v) titik v pada graf terhubung G adalah jarak terjauh atau maksimum jalur optimasi dari titik v ke sembarang titik di G, dan $e(v)=\max\{d(u,v):u\in V(G)\}$. Titik v disebut eksentrisitas u, jika jarak u ke v sama dengan eksentrisitas u atau d(u,v)=e(u). Jari-jari G adalah eksentrisitas minimum di sembarang titik di G, atau kita dapat menulis $rad\ G=\min\{e(v),v\in V\}$. Diameter G, yang merupakan eksentrisitas maksimum pada sembarang titik di G, dapat ditulis sebagai $G=\max\{e(v),v(V)\}$ (Chartrand dan Lesniak, 1986:29).

Graf komplemen \bar{G} dari graf G adalah graf dengan himpunan simpul $V(\bar{G}) = V(G)$, dan hanya jika dua simpul G tidak terhubung langsung, kedua simpul G terhubung langsung. Artinya, jika $xy \in E(G)$, maka $xy \notin E(\bar{G})$, jika

 $xy \notin E(\bar{G})$ maka $xy \in E(G)$. Oleh karena itu, kombinasi \bar{G} dan G menghasilkan graf lengkap, yaitu $q + \bar{q} = \binom{n}{2}$ (Chartrand, Lesniak & Zhang, 2016).

2.1.3 Macam-Macam Graf

Dilihat dari bobot dan arahnya, graf terbagi menjadi empat bagian yaitu:

a. Graf berarah dan berbobot

Ini adalah graf dengan arah (yang ditunjukkan dengan anak panah) pada setiap sisi dan berbobot. Graf ini terdiri dari tujuh simpul yaitu simpul A, B, C, D, E, F dan G. Simpul A memiliki dua sisi, masing-masing bersesuaian dengan simpul B dan simpul C. Memimpin, simpul B memiliki tiga sisi, masing-masing menuju simpul C, D dan E. Bobot antara simpul A dan B juga diketahui.

Gambar 2. 2 Graf Berarah dan Berbobot

b. Graf tidak berarah dan berbobot

Merupakan graf yang memiliki bobot, namun setiap sisinya tidak memiliki arah. Graf ini terdiri dari tujuh simpul yaitu simpul: A, B, C, D, E, F dan G. Node A memiliki dua sisi yang sesuai dengan node B dan C, dan setiap sisi tidak memiliki arah. Sisi yang menghubungkan simpul A dan simpul B memiliki bobot yang diketahui seperti sisi lainnya.

Gambar 2. 3 Graf Tidak Berarah dan Berbobot

c. Graf berarah dan tidak berbobot

Merupakan graf yang tak memiliki bobot, namun semua sisinya memiliki arah. Graf ini terdiri dari tujuh simpul yaitu A, B, C, D, E, F dan G.

Gambar 2. 4 Graf Berarah dan Tidak Berbobot

d. Graf tidak berarah dan tidak berbobot

Merupakan graf yang tidak memiliki bobot serta sisinya yang tak memiliki arah. Graf ini terdiri dari tujuh simpul yaitu *A*, *B*, *C*, *D*, *E*, *F* dan *G*.

Gambar 2. 5 Graf Tak Berarah dan Tak Berbobot

2.2 Optimisasi

Optimisasi adalah suatu proses untuk mencapai hasil yang optimal (nilai efektif yang dapat dicapai). Dalam disiplin matematika optimisasi merujuk pada studi permasalahan yang mencoba untuk mencari nilai minimal atau maksimal dari

suatu fungsi riil. Untuk dapat mencapai nilai optimal baik minimal atau maksimal tersebut, secara sistematis dilakukan pemilihan nilai variabel integer atau riil yang akan memberikan solusi optimal (Wardy, 2007).

2.2.1 Definisi Nilai Optimal

Nilai optimal adalah nilai yang didapat melalui suatu proses dan dianggap menjadi solusi jawaban yang paling baik dari semua solusi yang ada (Wardy, 2007).

2.2.2 Macam-Macam Permasalahan Optimasi

Permasalahan yang berkaitan dengan optimisasi sangat kompleks dalam kehidupan sehari-hari. Nilai optimal yang didapat dalam optimisasi dapat berupa besaran panjang, waktu, jarak, dan lain-lain.

Berikut ini adalah termasuk beberapa persoalan optimisasi:

- 1. Menentukan lintasan terpendek dari suatu tempat ke tempat yang lain.
- Menentukan jumlah pekerja seminimal mungkin untuk melakukan suatu proses produksi agar pengeluaran biaya pekerja dapat diminimalkan dan hasil produksi tetap maksimal.
- 3. Mengatur jalur kendaraan umum agar semua lokasi dapat dijangkau.
- 4. Mengatur *routing* jaringan kabel telepon agar biaya pemasangan kabel tidak terlalu besar dan penggunaannya tidak boros.

2.2.3 Permasalahan Lintasan Terpendek

Jalur terpendek merupakan suatu pencarian nilai variabel yang dianggap dapat menghasilkan nilai yang maksimal. Jalur terpendek memiliki peranan penting dalam penyusunan *system*. Dengan jalur terpendek dapat diperoleh halhal yang memiliki nilai profit tinggi serta meminimalkan jarak. Banyak masalah

yang berhubungan dengan pencarian jalur. Berbagai pendekatan algoritma yang ditawarkan untuk mendapatkan solusi untuk pencarian jalur terpendek ini, salah satunya yaitu Algoritma *ACO*.

Masalah jalur terpendek merupakan masalah yang berkaitan dengan penentuan *edge-edge* dalam sebuah jaringan yang membentuk rute terdekat antara sumber dan tujuan. Tujuan dari permasalahan jalur terpendek adalah mencari jalur yang memiliki jarak terdekat antara titik asal dan titik tujuan. Gambar 2.6 merupakan suatu jalur titik *ABCDEFG*.

Gambar 2. 6 Gambar Jalur Titik ABCDEFG

Pada kasus Gambar 2.6 dimisalkan rute yang di ambil adalah dari kota A ingin menuju Kota G. Untuk menuju kota G, dapat dipilih beberapa rute yang tersedia sebagai berikut:

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow G$$

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow F \rightarrow G$$

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow G$$

$$A \rightarrow B \rightarrow C \rightarrow F \rightarrow G$$

$$A \rightarrow B \rightarrow D \rightarrow E \rightarrow G$$

$$A \rightarrow B \rightarrow D \rightarrow F \rightarrow G$$

$$A \rightarrow B \rightarrow D \rightarrow G$$

$$A \rightarrow B \rightarrow D \rightarrow G$$

$$A \rightarrow B \rightarrow E \rightarrow G$$

$$A \rightarrow C \rightarrow D \rightarrow E \rightarrow G$$

$$A \rightarrow C \rightarrow D \rightarrow F \rightarrow G$$

$$A \rightarrow C \rightarrow D \rightarrow G$$

$$A \rightarrow C \rightarrow D \rightarrow G$$

$$A \rightarrow C \rightarrow F \rightarrow G$$

Berdasarkan data persamaan (2.7), dapat dihitung rute terpendek dengan mencari jarak antara rute-rute tersebut. Apabila jarak antar rute belum diketahui,

jarak dapat dihitung berdasarkan koordinat kota-kota tersebut, kemudian menghitung jarak terpendek yang dapat dilalui.

2.2.4 Solusi Masalah Optimasi

Pencarian jalur terpendek dapat dilakukan dengan berbagai macam algoritma. Pencarian jalur terpendek terbagi menjadi dua metode yaitu metode konvensional dan metode heuristik. Perbedaannya, metode konvensional lebih mudah dipahami daripada metode heuristik. Namun jika dibandingkan, hasil metode heuristik lebih bervariasi serta waktu yang diperlukan lebih singkat. Metode heuristik terdiri dari berbagai macam algoritma, salah satunya algoritma *Ant Colony Optimization* (Mutakhiroh, dkk, 2007).

Secara umum, penyelesaian masalah pencarian rute terpendek dapat dilakukan dengan menggunakan dua metode, yaitu metode konvensional dan metode heuristik. Metode konvensional dihitung dengan perhitungan matematis biasa, sedangkan metode heuristik dihitung dengan menggunakan *system* pendekatan.

1. Metode Konvensional

Metode konvensional adalah metode yang menggunakan perhitungan matematika eksak. Ada beberapa metode konvensional yang biasa digunakan untuk melakukan pencarian rute terpendek, diantaranya: algoritma Djikstra, algoritma *Floyd-Warshall*, dan algoritma Bellman- Ford (Mutakhiroh, dkk, 2007).

2. Metode Heuristik

Metode Heuristik adalah suatu metode yang menggunakan *system* pendekatan dalam melakukan pencarian dalam optimasi. Ada beberapa

algoritma pada metode heuristik yang biasa digunakan dalam permasalahan optimasi, diantaranya Algoritma Genetika, *Ant colony optimization*, logika Fuzzy, jaringan syaraf tiruan, *Tabu Search*, *Simulated Annealing*, dan lain-lain (Mutakhiroh, dkk, 2007).

2.3 Travelling Salesman Problem (TSP)

Masalah *Travelling Salesman Problem (TSP)* adalah salah satu contoh yang paling banyak dipelajari dalam *combinatorial optimization*. Masalah ini mudah untuk dinyatakan tetapi sangat sulit untuk diselesaikan. *TSP* termasuk kelas *NP-Hard problem* dan tidak dapat diselesaikan secara optimal dalam *Polynomial computation time* dengan algoritma eksak. Bila diselesaikan secara eksak waktu komputasi yang diperlukan akan meningkat secara eksponensial seiring bertambah besarnya masalah.

TSP dapat dinyatakan sebagai permasalahan dalam mencari jarak minimal sebuah tour tertutup terhadap sejumlah n kota dimana kota-kota yang ada hanya dikunjungi sekali. TSP digambarkan seperti Gambar 2.7 berikut:

Diberikan contoh kasus *TSP* sebagai berikut: "Diberikan sejumlah kota dan jarak antar kota. Tentukan sirkuit terpendek yang harus dilalui oleh seorang pedagang bila pedagang itu berangkat dari sebuah kota asal dan menyinggahi setiap kota tepat satu kali dan kembali lagi ke kota asal keberangkatan."

Seperti diketahui, bahwa untuk mencari jumlah sirkuit Hamilton di dalam graf lengkap dengan n vertek adalah $\frac{(n-1)!}{2}$, sehingga:

Gambar 2. 8 Gambar Jalur Titik ABCD

Pada Gambar 2.8, graf memiliki $\frac{(4-1)!}{2} = 3$ sirkuit Hamilton sebagai berikut:

Gambar 2. 9 Sirkuit Hamilton

Dengan,

$$L1 = (A, B, C, D, A) = (A, B, C, D, A)$$

$$L2 = (A, C, D, B, A) = (A, B, D, C, A)$$

$$L3 = (A, C, B, D, A) = (A, D, B, C, A)$$
(2.8)

Maka diperoleh panjang sirkuit untuk L1, L2, dan L3 adalah:

$$L1 = 10 + 12 + 8 + 15 = 45$$

 $L2 = 12 + 5 + 9 + 15 = 41$
 $L3 = 10 + 5 + 9 + 8 = 32$ (2.9)

Pada Gambar 2.9 menunjukkan sirkuit Hamilton terpendek adalah L3=(A,C,B,D,A) atau (A,D,B,C,A) dengan panjang sirkuit 32. Jika jumlah *vertek* n=20 maka akan terdapat $\frac{(19!)}{2}$ sirkuit Hamilton atau sekitar 6×10^{16} penyelesaian.

Dalam kehidupan sehari-hari, kasus *TSP* ini dapat diaplikasikan untuk menyelesaikan kasus lain, diantaranya yaitu:

- Tukang Pos mengambil surat di kotak pos yang tersebar pada n buah lokasi di berbagai sudut kota.
- 2. Lengan robot mengencangkan n buah mur pada beberapa buah peralatan mesin dalam sebuah jalur perakitan.
- 3. Mobil pengangkut sampah mengambil sampah pada tempat-tempat pembuangan sampah yang berada pada n buah lokasi diberbagai sudut kota.
- 4. Petugas Bank melakukan pengisian uang pada sejumlah mesin ATM di *n* buah lokasi.

2.4 Ant Colony Optimization (ACO)

Algoritma Ant Colony Optimization (ACO) atau algoritma semut merupakan algoritma yang diadopsi dari perilaku semut dan dikenal sebagai sistem semut (Dorigo, dkk, 1996). Algoritma semut merupakan teknik probabilistik untuk menyelesaikan masalah komputasi dengan menemukan optimasi jalur melalui grafik.

Algoritma ini terinspirasi dari perilaku semut dalam menemukan jalur terbaik dari sarang menuju sumber makanan. Secara alamiah, koloni semut mampu mengindera lingkungannya yang kompleks dalam menemukan jalur terpendek dalam perjalanan menuju makanan dan kemudian kembali ke sarangnya dengan meninggalkan zat *pheromone* yang dihasilkan oleh jejak kakinya pada jalur - jalur yang mereka lalui. Zat *pheromone* yang di hasilkan akan semakin jelas jika terdapat banyak koloni semut yang melewati suatu lintasan. Sebaliknya, jika koloni semut yang melewati suatu lintasan sedikit, maka zat *pheromone* dihasilkan berkurang.

Secara definisi, *pheromone* merupakan zat kimia yang berasal dari kelenjar endokrin. Zat ini di gunakan oleh makhluk hidup untuk mengenali sesama jenis, individu lain atau kelompok dalam membantu sebuah proses reproduksi. Zat *pheromone* mampu memanipulasi perilaku hewan lain dari spesies yang sama. *pheromone* dapat mempengaruhi dan dikenali oleh individu lain yang sejenis (satu spesies), dengan cara kerja nya yang menyebar keluar tubuh.

Proses peninggalan *pheromone* ini dikenal sebagai *stigmeri*. *Stigmeri* merupakan sebuah proses memodifikasi lingkungan yang bertujuan untuk mengingat jalan pulang menuju sarang, serta memungkinkan semut untuk berkomunikasi dengan semut yang lain.

Jejak zat *pheromone* akan menguap dan kekuatan daya tariknya perlahan berkurang seiring berjalannya waktu. Semakin cepat koloni semut pulang pergi melalui jalur tersebut, maka penguapan *pheromone* akan lebih sedikit. Begitupun sebaliknya, penguapan *pheromone* akan lebih banyak jika semakin lama koloni semut melakukan perjalanan pulang pergi.

Peneliti memilih algoritma *Ant Colony Optimization (ACO)* sebagai metode pada penelitian ini, karena algoritma ini lebih efisien dalam menyelesaikan permasalahan optimasi jalur.

2.4.1 *Ant System (AS)*

Ant System adalah algoritma ACO pertama yang dirumuskan dan diuji untuk solusi kasus Traveling Salesman Problem (Dorigo, dkk, 1996). Algoritma ini tersusun atas sejumlah m semut yang bekerja sama dan berkomunikasi secara tidak langsung melalui zat pheromone.

Secara informal, cara kerja algoritma *Ant System* adalah sebagai berikut; Setiap semut memulai perjalanannya (*tour*) melalui sebuah titik awal yang dipilih secara acak. Setiap semut memiliki titik awal permulaan yang berbeda-beda. Secara berulang, setiap titik yang ada akan dikunjungi oleh tiap semut dengan tujuan untuk menghasilkan sebuah *tour*. Pemilihan titik-titik ini didasarkan pada suatu fungsi probabilitas, yang dinamai dengan aturan transisi status (*state transition rule*), dengan mempertimbangkan invers dari jarak (*visibility*) titik tersebut, serta jumlah zat *pheromone* yang terdapat pada ruas yang menghubungkan titik-titik tersebut.

Semut lebih dominan bergerak menuju ke titik-titik yang dihubungkan dengan ruas yang pendek serta memiliki tingkat zat *pheromone* yang tinggi (Dorigo dan Gambardella, 1997). Setiap semut memiliki sebuah ingatan yang dikenal dengan *tabulist*. *Tabulist* ini berisi semua titik yang telah dikunjungi oleh koloni semut pada setiap *tour*. *Tabulist* ini juga berfungsi mencegah semut untuk mengunjungi titik-titik yang telah dikunjungi sebelumnya. Hal ini menyebabkan solusi untuk mendapatkan optimasi jalur mendekati optimal.

Setelah koloni semut menyelesaikan *tour*, dan *tabulist* terisi penuh, kemudian diterapkanlah sebuah aturan pembaruan zat *pheromone* global (*global pheromone updating rule*) pada setiap semut. Penguapan zat *pheromone* pada semua ruas pun dilakukan. Kemudian setiap semut menghitung panjang *tour* yang telah mereka lakukan, lalu meninggalkan sejumlah zat *pheromone* pada *edgeedge* yang merupakan bagian dari *tour* mereka, yang sebanding dengan kualitas dari solusi yang dihasilkan oleh koloni semut. Semakin pendek sebuah *tour* yang dihasilkan oleh koloni semut, maka semakin tinggi jumlah zat *pheromone* yang

ditinggalkan pada edge-edge yang dilalui. Dengan kata lain, edge-edge yang merupakan bagian dari tour-tour optimasi adalah edge-edge yang menerima jumlah zat pheromone yang lebih tinggi. Hal ini menyebabkan edge-edge yang diberi zat pheromone lebih banyak disukai pada tour-tour selanjutnya. Sebaliknya, edge-edge yang tidak diberi zat pheromone menjadi kurang disukai. Optimasi jalur yang ditemukan oleh koloni semut ini kemudian disimpan, kemudian tabulist dikosongkan kembali.

Peranan utama dari penguapan zat *pheromone* ini adalah untuk mencegah *stagnasi*. *Stagnasi* yaitu dimana semua semut berakhir dengan melakukan *tour* yang sama. Proses diatas kemudian diulang lagi sampai *tour-tour* yang dilakukan mencapai jumlah maksimum. Yaitu ketika sistem memperoleh perilaku *stagnasi*, dimana sistem ini berhenti untuk mencari solusi alternatif.

Dalam algoritma semut, diperlukan beberapa variabel dan langkah-langkah untuk menentukan jalur terpendek, yaitu:

Langkah 1:

- Parameter-parameter yang digunakan dalam Algoritma Ant Colony antara lain:
 - a. Intensitas jejak semut (τ_{ij}) dan perubahannya $(\Delta \tau_{ij})$

Intensitas jejak semut (τ_{ij}) harus di inisialisasi sebelum memulai siklus. τ_{ij} digunakan dalam persamaan probabilitas node yang akan dikunjungi. $\Delta \tau_{ij}$ di inisialisasi setelah selesai satu siklus. $\Delta \tau_{ij}$ digunakan untuk menentukan τ_{ij} untuk siklus selanjutnya.

b. Tetapan siklus semut (Q)

Q merupakan konstanta yang digunakan dalam persamaan untuk menentukan Δau_{ij} . Nilai Q ditentukan oleh pengguna.

c. Tetapan pengendali intensitas jejak semut (α)

lpha digunakan dalam persamaan probabilitas node yang akan dikunjungi, dan berfungsi sebagai pengendali intensitas jejak semut . Nilai $lpha \geq 0$.

d. Tetapan pengendali visibilitas (β)

Nilai parameter β adalah ≥ 0 . Parameter ini berfungsi sebagai pengendali visibilitas dan digunakan dalam persamaan probabilitas node yang akan dikunjungi.

e. Visibilitas antar kota (η_{ij})

 η_{ij} digunakan dalam persamaan probabilitas node yang akan dikunjungi. Nilai η_{ij} merupakan hasil dari $\frac{1}{d_{ij}}$.

f. Banyak semut (m)

m merupakan banyak semut yang akan melakukan siklus dalam algoritma semut. Nilai *m* ditentukan oleh pengguna. Disini banyak semut di ibaratkan dengan banyak kota (titik) yang dilalui.

g. Tetapan penguapan jejak semut (ρ)

Parameter ρ digunakan untuk menentukan τ_{ij} untuk siklus selanjutnya. Demi mencegah jumlah jejak zat *pheromone* yang tak terhingga. Maka, nilai parameter ρ harus $0<\rho<1$.

Adapun langkah-langkah penyelesaian menggunakan algoritma *Ant Colony* adalah sebagai berikut:

- Dari sarang, semut berkeliling secara acak mencari sumber makanan kemudian dicatat jarak antar node yang semut lalui.
- 2) Ketika sampai ke sumber makanan, total jarak dari tiap node yang telah ditempuh oleh semut dijumlahkan, untuk mendapatkan nilai jarak yang dilalui oleh semut dari sarang ke sumber makanan.
- 3) Ketika kembali ke sarang, sejumlah zat *pheromone* ditambahkan pada jalur yang telah ditempuh berdasarkan total jarak jalur tersebut. Semakin kecil total jarak, maka semakin banyak kadar zat *pheromone* yang ditambahkan pada masing-masing busur di jalur tersebut.
- 4) Untuk memilih busur mana yang harus dilalui berikutnya, dihitung menggunakan rumus

$$p_{ij}^{k} = \frac{\left[\tau_{ij}\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in \mathcal{N}_{i}^{k}} \left[\tau_{il}\right]^{\alpha} \left[\eta_{il}\right]^{\beta}} \text{ untuk } j \in \mathcal{N}_{i}^{k}$$

Dengan,

$$\eta_{ij} = \frac{1}{d_{ij}}$$

- 5) Pada iterasi selanjutnya, busur-busur yang mengandung zat *pheromone* lebih tinggi akan dipilih sebagai busur yang harus ditempuh berikutnya berdasarkan probabilitas yang ada di langkah ke-4. Akhirnya diperoleh jalur optimal, yaitu jalur yang dibentuk oleh busur- busur dengan kadar zat *pheromone* tinggi.
- 2. Inisialisasi kota pertama setiap semut

Setelah inisialisasi τ_{ij} dilakukan, kemudian m semut ditempatkan pada kota pertama tertentu secara acak.

Langkah 2:

Pengisian kota pertama ke dalam $tabu\ list$. Hasil inisialisasi kota pertama setiap semut dalam langkah 1 harus diisikan sebagai elemen pertama $tabu\ list$. Hasil dari langkah ini adalah terisinya elemen pertama $tabu\ list$ setiap semut dengan indeks kota tertentu, yang berarti bahwa setiap $tabu_k$ (1) bisa berisi indeks kota antara 1 sampai n sebagaimana hasil inisialisasi pada langkah 1. Langkah 3:

Penyusunan rute kunjungan setiap semut ke setiap kota. Koloni semut yang sudah terdistribusi ke sejumlah atau setiap kota, akan mulai melakukan perjalanan dari kota pertama masing-masing sebagai kota asal dan salah satu kota lainnya sebagai kota tujuan. Kemudian dari kota kedua masing-masing, koloni semut akan melanjutkan perjalanan dengan memilih salah satu dari kota-kota yang tidak terdapat pada $tabu_k$ sebagai kota tujuan selanjutnya.

Perjalanan koloni semut berlangsung terus menerus sampai semua kota satu persatu dikunjungi atau telah menempati $tabu_k$. Jika s menyatakan indeks urutan kunjungan, kota asal dinyatakan sebagai $tabu_k$ (s) dan kota-kota lainnya dinyatakan sebagai $\{N-tabu_k\}$, maka untuk menentukan kota tujuan digunakan persamaan probabilitas kota untuk dikunjungi sebagai berikut:

$$P_{ij}^{k} = \begin{cases} \frac{\left[\tau_{ij}\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}{\sum_{u \in J_{i}^{k}} \left[\tau_{ij}\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}, & \text{untuk } s \in J_{i}^{k} \\ 0, & \text{untuk } s \text{ lainnya} \end{cases}$$
(2.10)

dengan i sebagai indeks kota asal dan j sebagai indeks kota tujuan.

Langkah 4:

1. Perhitungan panjang rute setiap semut.

Perhitungan panjang rute tertutup ($length\ closed\ tour$) atau c_k setiap semut dilakukan setelah satu siklus diselesaikan oleh semua semut. Perhitungan ini dilakukan berdasarkan tabuk masing-masing dengan persamaan berikut:

$$c_k = d_{tabu_k(n),tabu_k(1)} + \sum_{k=1}^{n-1} d_{tabu_k(s),tabu_k(s+1)}$$
 (2.11)

Dengan d_{ij} adalah jarak antara kota i ke kota j yang dihitung berdasarkan persamaan:

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
 (2.12)

2. Pencarian rute terpendek

Setelah L_k setiap semut dihitung, akan didapat harga minimal panjang rute tertutup setiap siklus atau L_{minNC} dan harga minimal panjang rute tertutup secara keseluruhan adalah L_{min} .

3. Perhitungan perubahan harga intensitas jejak kaki semut antar kota

Koloni semut akan meninggalkan jejak-jejak kaki pada lintasan antar kota yang dilaluinya. Adanya penguapan dan perbedaan jumlah semut yang lewat, menyebabkan kemungkinan terjadinya perubahan harga intensitas jejak kaki semut antar kota. Persamaan perubahan ini adalah:

$$\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k} \tag{2.13}$$

Dengan $\Delta \tau_{ij}^k$ adalah perubahan harga intensitas jejak kaki semut antar kota setiap semut yang dihitung berdasarkan persamaan:

$$\Delta \tau_{ij}^k = \frac{Q}{L_k} \tag{2.14}$$

untuk $(i,j) \in kota$ asal dan kota tujuan dalam $tabu_k$ dan

$$\Delta \tau_{ij}^k = 0 \tag{2.15}$$

untuk (i,j) lainnya.

Langkah 5:

1. Perhitungan harga intensitas jejak kaki semut antar kota untuk siklus selanjutnya. Harga intensitas jejak kaki semut antar kota pada semua lintasan antar kota ada kemungkinan berubah karena adanya penguapan dan perbedaan jumlah semut yang melewati. Untuk siklus selanjutnya, semut yang akan melewati lintasan tersebut harga intensitasnya telah berubah. Harga intensitas jejak kaki semut antar kota untuk siklus selanjutnya dihitung dengan persamaan:

$$\tau_{ij} = \rho.\tau_{ij} + \Delta\tau_{ij} \tag{2.16}$$

2. Atur ulang harga perubahan intensitas jejak kaki semut antar kota

Untuk siklus selanjutnya perubahan harga intensitas jejak semut antar kota perlu diatur kembali agar memiliki nilai sama dengan nol

Langkah 6:

Pengosongan *tabu list*, dan ulangi langkah 2 jika diperlukan. *Tabu list* perlu dikosongkan untuk diisi lagi dengan urutan kota yang baru pada siklus selanjutnya, jika jumlah siklus maksimum belum tercapai atau belum terjadi konvergensi. Algoritma diulang lagi dari langkah 2 dengan harga parameter intensitas jejak kaki semut antar kota yang sudah diperbaharui.

2.4.2 Elitist Ant System (EAS)

Pengembangan pertama dari AS adalah elitist strategy for Ant System (EAS), Ide ini berawal ketika adanya penguatan pheromone pada edge-edge yang

merupakan tour terbaik yang ditemukan sejak awal algoritma. Tour terbaik ini dinotasikan sebagai T^{bs} (best-so-far tour).

Penambahan intensitas *pheromone* dari *tour* T^{bs} adalah dengan memberi penambahan *quantity* $\frac{e}{C^{bs}}$ untuk setiap edge, dimana e parameter yang diberikan untuk mendefinisikan nilai *tour* terbaik (T^{bs}) dan C^{bs} adalah panjang *tour* terbaik. Perubahan *pheromone* didefinisikan sebagai berikut :

$$\tau_{rs} \leftarrow (1 - \rho).\tau_{rs} + \sum_{k=1}^{m} \Delta \tau_{rs}^{k} + e \, \Delta \tau_{rs}^{bs} \tag{2.17}$$

Dimana $\Delta \tau_{rs}^k$ didefinisikan pada pers. (2.10) dan $\Delta \tau_{rs}^{bs}$ didefinisikan sebagai berikut :

$$\Delta \tau_{rs}^{bs} = \begin{cases} \frac{1}{c^{bs}}, & \text{jIka } edge \ (r,s) \text{terdapat pada } T^{bs} \\ 0, & \text{yang lainnya} \end{cases}$$
 (2.18)

Sebagai catatan untuk *EAS*, bagian dari algoritma yang lain sama seperti pada *AS*, yang dibahas pada bagian sebelumnya.

2.4.3 Rank-based version of Ant System (AS_{Rank})

Rank-based version of Ant System (AS_{Rank}) merupakan pengembangan dari AS dan menerapkan elitist strategy. Pada setiap iterasi, metode ini lebih dahulu mengurutkan semut berdasarkan tingkat fluktuasi solusi (panjang/pendeknya tour) yang telah mereka temukan sebelumnya.

Saat melakukan *update pheromone* hanya (w-1) semut terbaik dan semut yang memiliki solusi *best-so-far* yang diperbolehkan meninggalkan *pheromone*. Semut yang ke-z terbaik memberikan kontribusi *pheromone* sebesar $max\{0, w-z\}$ sementara jalur *best-so-fartour* memberikan kontribusi *pheromone* paling besar yaitu sebanyak w, dimana w adalah parameter yang menyatakan adanya

tour terbaik dan z adalah peringkat semut. Dalam AS_{Rank} aturan pheromone update-nya diberikan sebagai berikut :

$$\tau_{rs} = (1 - \rho) \, \tau_{rs} + \sum_{z=1}^{w-1} (w - z) \, \Delta \tau_{rs}^z + w \, \Delta \tau_{rs}^{bs}$$
 (2.19)

Dimana $\Delta \tau_{rs} = \frac{1}{c^z}$ dan $\Delta \tau_{rs}^{bs} = \frac{1}{c^{bs}}$. C^z adalah panjang *tour* yang dilewati semut ke-z, C^{bs} adalah panjang *tour* terbaik. Hasil dari evaluasi eksperimen oleh Bullnheimer, dkk (1999). menunjukkan AS_{Rank} mempunyai hasil yang lebih baik dari pada EAS dan lebih signifikan daripada AS.

2.4.4 MAX-MIN Ant System (MMAS)

MAX-MIN Ant System (MMAS) merupakan pengembangan dari algoritma AS selanjutnya, dengan beberapa perubahan utama. Berikut empat perubahan utama di dalam MMAS terhadap AS:

- 1. Penambahan *pheromone* bisa dilakukan pada *edge-edge* yang merupakan bagian dari *tour* terbaik yang ditemukan sejak awal algoritma (*best so-fartour*) atau pada *tour* terbaik yang ditemukan pada iterasi tersebut (*iteration best-tour*). Bisa juga penambahan *pheromone* pada keduanya, *best so-fartour* dan *iteration best-tour* sekaligus. Tetapi, strategi ini memungkinkan terjadinya stagnasi yang menyebabkan semua semut melalui jalur yang sama, karena pemberian *pheromone* yang berlebihan pada *edge*, meskipun bagian dari *tour* yang terbaik.
- 2. Untuk mengatasi masalah pada perubahan pertama, maka *MMAS* memberikan batasan dalam pemberian nilai *pheromone* dengan interval $[\tau_{min}, \tau_{max}]$.

- 3. Menginisialisasi *pheromone* dengan batas atas nilai *pheromone*, yang mana bersama dengan tingkat *evaporasi pheromone* yang kecil, meningkatkan eksplorasi *tour* sejak dimulainya pencarian.
- 4. *Pheromone* di inisialisasi kembali pada saat terjadi stagnasi atau ketika tidak ditemukan *tour* yang sesuai dengan iterasi yang diinginkan.

Setelah semua semut membangun *tour*-nya, *pheromone* di-*update* menurut persamaan sebagai berikut :

$$\tau_{rs} \leftarrow (1 - \rho).\,\tau_{rs} + \Delta \tau_{rs}^{best} \tag{2.20}$$

Dimana,

$$\Delta \tau_{rs}^{best} = \begin{cases} \frac{1}{c^{best}}, & \text{jika semut menemukan } best \ so - far - tour \\ \frac{1}{c^{ib}}, & \text{jika semut menemukan } iteration \ best - tour \end{cases}$$
(2.21)

Dengan C^{best} merupakan panjang tour terbaik dan C^{ib} adalah panjang iterasi terbaik sebuah tour. Pada umumnya, MMAS mengimplementasikan keduanya baik iterasi terbaik maupun panjang tour terbaiknya.

2.4.5 Ant Colony System (ACS)

Algoritma *Ant Colony System (ACS)* merupakan pengembangan dari *AS* selanjutnya, setelah beberapa algoritma diatas. Algoritma ini tersusun atas sejumlah *m* semut yang bekerjasama dan berkomunikasi secara tidak langsung melalui komunikasi *pheromone*.

Secara informal, ACS bekerja sebagai berikut: pertama kali, sejumlah m semut ditempatkan pada sejumlah n titik berdasarkan beberapa aturan inisialisasi (misalnya, secara acak). Setiap semut membuat sebuah tour (yaitu, sebuah solusi TSP yang mungkin) dengan menerapkan sebuah aturan transisi

status secara berulang kali. Selagi membangun tour-nya, setiap semut juga memodifikasi jumlah pheromone pada edge-edge yang dikunjunginya dengan menerapkan aturan pembaruan pheromone lokal yang telah disebutkan tadi. Setelah semua semut mengakhiri tour mereka, jumlah pheromone yang ada pada edge-edge dimodifikasi kembali atau dengan menerapkan aturan pembaruan pheromone global. Seperti yang terjadi pada Ant system, dalam membuat tour, semut 'dipandu' oleh informasi heuristik (mereka lebih memilih edge-edge yang pendek) dan oleh informasi pheromone. Sebuah edge dengan jumlah pheromone yang tinggi merupakan pilihan yang sangat diinginkan. Kedua aturan pembaruan pheromone itu dirancang agar semut cenderung untuk memberi lebih banyak pheromone pada edge-edge yang harus mereka lewati. Berikutnya akan dibahas mengenai tiga karakteristik utama dari ACS, yaitu aturan transisi status, aturan pembaharuan pheromone global, dan aturan pembaharuan pheromone lokal.

Aturan transisi status yang berlaku pada ACS ditunjukkan pada persamaan (2.22). Semut k yang berada di titik r, akan memilih titik berikutnya s, menurut persamaan berikut :

$$s = \begin{cases} \arg\max\{\tau_{rs}[\eta_{rs}]^{\beta}\}, & \text{jika } q \leq q_0 \text{ (eksploitasi)} \\ u \in J_r^k \\ J, \text{jika tidak (eksplorasi)} \end{cases}$$
 (2.22)

Dimana q adalah bilangan random dalam [0,1], $q_0(0 \le q_0 \le 1)$ adalah sebuah parameter pembanding bilangan random, dan $J = P_{rs}^k$ probabilitas dari semut k pada titik r yang memilih untuk menuju ke titik s (persamaan 2.10).

Dengan kata lain, Jika $q \leq q_0$ maka semut tersebut akan memanfaatkan pengetahuan heuristik tentang jarak antara titik tersebut dengan titik-titik lainnya dan juga pengetahuan yang telah didapat dan disimpan dalam bentuk *pheromone*.

Hal ini mengakibatkan *edge* terbaik (berdasarkan persamaan (2.15) dipilih. Jika sebaliknya maka sebuah *edge* dipilih berdasarkan persamaan (2.10).

Setelah semua semut menyelesaikan sebuah *tour*, tingkat *pheromone* diupdate dengan mengaplikasikan global updating rule (Dorigodan Gambardella 1996) menurut persamaan berikut:

$$\tau_{rs} \leftarrow (1 - \rho).\,\tau_{rs} + \rho.\,\Delta\tau_{rs}^{bs} \tag{2.23}$$

Dengan,

$$\Delta \tau_{rs}^{bs} = \begin{cases} \frac{1}{C^{bs}}, & jika\ (r,s) \in lintasan\ terbaik\ keseluruhan \\ 0, & jika\ tidak \end{cases}$$
 (2.24)

Dimana ρ adalah parameter *evaporasi global*, yang mempunyai nilai $0<\rho<1.$ Δau_{rs}^{bs} adalah $\frac{1}{(\text{panjang lintasan terbaik keseluruhan})}$, jika (i,j) merupakan bagian panjang lintasan terbaik keseluruhan (C^{bs}) , dan 0 jika tidak.

Persamaan *update* jejak *pheromone* secara *offline* ini, dilakukan pada akhir sebuah iterasi algoritma, saat semua semut telah menyelesaikan sebuah *tour*. Persamaan diaplikasikan ke *edge* yang digunakan semut menemukan lintasan keseluruhan yang terbaik sejak awal percobaan. Tujuan pemberian nilai ini adalah memberi sejumlah jejak *pheromone* pada lintasan terpendek, dimana *tour* terbaik (lintasan dengan panjang terpendek) mendapat penguatan. Bersama dengan *pseudo-random proportional rule* dimaksudkan untuk membuat pencarian lebih terarah.

Ketika membangun solusi (*tour*) dari *TSP*, semut mengaplikasikan *local updating rule* (Dorigo dan Gambardella, 1996) menurut persamaan berikut:

$$\tau_{rs} \leftarrow (1 - \xi).\tau_{rs} + \xi.\tau_0 \tag{2.25}$$

 ξ adalah parameter evaporasi lokal $0 < \xi < 1$. τ_0 adalah nilai awal jejak pheromone, $\tau_0 = \frac{1}{nC^{nn}}$ dimana n adalah jumlah titik dan C^{nn} adalah panjang sebuah tour terbaik yang diperoleh dari metode nearest neighbourhood heuristic.

Persamaan update pheromone online ini diaplikasikan saat semut membangun tour TSP, yaitu ketika melewati edge dan mengubah tingkat pheromone pada edge (r,s). Tujuannya untuk membantu melewati sebuah edge, edge ini menjadi kurang diinginkan (karena berkurangnya jejak pheromone pada edge yang bersesuaian).

2.5 Kajian Integrasi Topik Dengan Al-Quran/Hadits

Islam adalah agama yang suci. Kesucian dalam islam sangat erat kaitannya dengan kebersihan. Bersih ialah bebas dari hal-hal yang kotor serta hal-hal yang dilarang oleh Allah Swt. Kebanyakan orang menganggap bahwa sampah adalah hal yang kotor, sebab dari bentuknya yang tidak enak dipandang serta mengganggu indra penciuman. Namun dibalik itu semua, sampah juga ternyata memberikan banyak manfaat untuk kehidupan manusia. Selain dapat didaur ulang menjadi kerajinan tangan, sampah ternyata juga dapat dijadikan sebagai sumber tenaga listrik.

Allah Swt. berfirman dalam Q.S. Ar-Rahman ayat 29:

"Apa yang di langit dan di bumi selalu meminta kepada-Nya. Setiap waktu Dia dalam kesibukan" (QS. Ar-Rahman/55:29).

Ayat tersebut menjelaskan bahwa, Tuhan saja selalu sibuk setiap waktu. Begitupun dengan manusia, selalu terlihat sibuk setiap waktu. Kesibukan dalam beraktivitas inilah yang menyebabkan volume kendaraan dijalan meningkat. Oleh karena itu, sebaik-baiknya kesibukan adalah kesibukan yang bermanfaat.

2.6 Kajian Topik Dengan Teori Pendukung

2.6.1 Proses Koloni Semut Dalam Menemukan Jalur Terpendek

Semut mampu menemukan jalur terpendek dalam perjalanan dari sarang menuju sumber makanannya. Koloni semut mampu menemukan jalur terpendek dikarenakan berdasar pada jejak kaki melalui lintasan yang telah dilewati. Jejak kaki yang dihasilkan akan semakin jelas jika terdapat banyak koloni semut yang melewati suatu lintasan. Sebaliknya, jika koloni semut yang melewati suatu lintasan sedikit, maka jejak kaki yang di hasilkan berkurang.

Hal ini menyebabkan lintasan yang dilalui koloni semut dalam jumlah sedikit, semakin lama akan semakin berkurang kepadatan semut yang melewatinya, bahkan tidak akan dilewati. Sebaliknya, lintasan yang dilewati koloni semut dalam jumlah banyak, semakin lama akan semakin bertambah pula kepadatan koloni semut yang melewatinya atau bahkan lintasan tersebut akan dilewati oleh semua semut (Dorigo, dkk, 1991).

Gambar 2. 10 Perjalanan Semut Menuju Sumber Makanan

Gambar 2.10 diatas menunjukkan bahwa ada dua kelompok semut yang akan melakukan perjalanan. Kelompok pertama bernama kelompok L, yaitu kelompok semut yang berangkat dari arah kiri yang merupakan sarang semut. Sedangkan kelompok kedua bernama kelompok R yang berangkat dari arah kanan

yang merupakan sumber makanan. Kedua kelompok semut ini berangkat dari titik awal keberangkatan, dan sedang dalam posisi pengambilan keputusan jalan sebelah mana yang akan diambil untuk dilewati.

Kelompok semut *L* membagi dua kelompok lagi. Sebagian melewati jalur atas dan sebagiannya lagi melewati jalur bawah. Hal ini pun juga berlaku untuk kelompok semut *R*. Pada gambar 2.10.b dan gambar 2.10.c menunjukkan bahwa koloni semut berjalan dengan kecepatan yang sama dengan meninggalkan *pheromone* lewat jejak kakinya, pada jalur yang telah dilalui. *Pheromone* yang ditinggalkan oleh koloni semut yang melalui jalur atas telah mengalami banyak penguapan karena koloni semut yang melalui jalur atas berjumlah lebih sedikit daripada koloni semut yang melalui jalur bawah. Sedangkan zat *pheromone* yang berada di jalur bawah, penguapannya cenderung lebih lama. Karena koloni semut yang melewati jalur bawah lebih banyak dibanding yang melewati jalur atas.

Gambar 2.10.d menunjukkan bahwa koloni semut yang lain akhirnya memutuskan untuk melalui jalur bawah, karena penguapan zat *pheromone* nya rendah. Koloni semut tidak memilih jalur atas karena penguapan zat *pheromone* nya tinggi. Alamiahnya, semut akan mengikuti koloni sejenis yang jumlahnya lebih banyak. Dengan demikian terpilihlah jalur terpendek dalam proses pencarian semut menuju sumber makanan.

2.6.2 Metode Ant Colony Dalam Penentuan Jalur Terpendek

Ant Colony Optimization diterapkan dalam penentuan banyaknya titik yang akan dilewati oleh semut serta pencarian jarak antar titik tersebut. Selanjutnya, penyusunan rute kunjungan pada tiap kota sehingga membuat satu kali kunjungan ke setiap titik yang ada. Disini titik awal sama dengan titik akhir, dan tujuannya

adalah untuk menemukan jalur terpendek ke titik n. Kemudian, setelah semut mengunjungi titik r, ketika semut mengunjungi titik s, lintasan semut atau nilai intensitas pheromone (τ_{rs}) ditetapkan. Informasi heuristik (η_{rs}) adalah informasi yang menggambarkan kualitas jarak antara titik r dan titik s. Dimana, jarak antara titik r dan titik s adalah (η_{rs}) = $\frac{1}{d_{rs}}$, d_{rs} .

Perjalanan semut diawali dari titik yang telah ditetapkan. Titik-titik yang ada dilalui satu per satu oleh semut, dengan untuk mempertimbangkan kebalikan jarak titik-titik dan jumlah *pheromone* yang terkandung dalam segmen-segmen yang menghubungkan titik-titik tersebut. Semut lebih suka bergerak ke titik-titik yang dihubungkan oleh segmen pendek, sehingga menghasilkan tingkat *pheromone* yang lebih tinggi (Dorigo dan Gambardella, 1997).

BAB III

METODE PENELITIAN

3.1 Jenis Penelitian

Penelitian ini bersifat penelitian kuantitatif dengan melakukan studi literatur, yakni dengan mengumpulkan data, informasi, mengkaji referensi dan buku-buku yang berkaitan dengan penelitian tersebut.

Literatur penelitian tentang penerapan algoritma *Ant Colony* sebelumnya pernah diteliti oleh Himmawati Puji Lestari dan Eminugroho Ratna Sari (2013), pada jurnal yang berjudul "*Penerapan Algoritma Koloni Semut untuk Optimisasi Rute Distribusi Pengangkutan Sampah di Kota Yogyakarta*". Pada penelitian tersebut, variabel yang diteliti adalah volume sampah dan rute jalur pengangkutan. Dengan mempertimbangkan kapasitas truk dan lain-lain, maka hasil akhir yang diperoleh pada jurnal tersebut merupakan total jarak tempuh yang lebih efisien dibandingkan dengan jalur yang biasanya digunakan oleh Badan Lingkungan Hidup Kota Yogyakarta.

Literatur selanjutnya yaitu pada jurnal yang diteliti oleh Yuliyani Siyamtining Tyas dan Widodo Prijodiprodjo yang berjudul "Aplikasi Pencarian Rute Terbaik dengan Metode Ant Colony Optimazation (ACO)". Penelitian ini menganalisa dan mengimplementasikan metode Simple Additive Weighting (SAW) dan ACO untuk mencari alternatif terbaik, dengan mengevaluasi alternatif terhadap sekumpulan atribut atau kriteria jarak, kepadatan arus lalu lintas, banyaknya tikungan dan banyaknya lubang pada sistem Pengawalan Lalu Lintas (Patwal). Hasil yang

diperoleh sudah efisien namun membutuhkan sistem yang cerdas pada proses pengaplikasiannya.

3.2 Data dan Sumber Data

Data sekunder berupa data jarak (km) antara Bank Sampah Induk di BSM Sukun dengan beberapa bank sampah binaan yang dipilih berdasarkan volume sampah dan frekuensi pengambilan sampah yang stabil. Ini berarti ada kecenderungan rutinitas pengambilan sampah dengan total volume sampah recycling yang stabil. Diperoleh sebanyak 32 data pada lampiran 4 dan lampiran 5.

3.3 Lokasi Penelitian

Lokasi pada penelitian adalah Bank Sampah Malang (BSM). Dengan bantuan Google Maps melalui Google Street View, maka diperoleh peta lokasi sebagai berikut:

Gambar 3. 1 Peta Lokasi BSM Induk ke BSM Binaan

3.4 Langkah-Langkah Analisis Data

Adapun langkah-langkah analisis data pada algoritma *Ant Colony*Optimization (ACO) adalah sebagai berikut:

- 1. Identifikasi parameter dan nilai awal.
- 2. Simbolisasi parameter-parameter algoritma yang terdiri dari:
 - a. Jumlah titik (n), dimana n = 6.
 - b. Jarak antar titik (d_{rs}) .
 - c. Tetapan siklus semut (Q), dimana Q = 1.
 - d. Tetapan pengendalian intensitas jejak semut (α) , dimana $\alpha \ge 0$.
 - e. Tetapan pengendali visibilitas (β).
 - f. Jumlah semut (m).
 - g. Tetapan penguapan jejak semut (ρ) , dimana $0 < \rho < 1$.
 - h. Jumlah siklus maksimum (NCmaks).
 - i. Intensitas jejak semut antar titik (τ_{rs}) .
- 3. Penyusunan dan pengisian daftar titik pengambilan (pengangkutan) ke dalam *tabu list*.
- 4. Penyusunan jalur perjalanan setiap semut dalam bentuk tabel.
- Perhitungan panjang jalur setiap semut dilakukan setelah satu siklus diselesaikan oleh semua semut.
- 6. Perhitungan jejak *pheromone* antar titik untuk siklus selanjutnya.
- 7. Analisa Hasil Perhitungan Metode *Ant Colony Optimization* dengan jarak terpendek dari hasil perhitungan.

BAB IV

HASIL DAN PEMBAHASAN

4.1 Menentukan Bobot Graf Dari Tempat Penelitian

Pembahasan mengenai bobot graf serta dari tempat penelitian adalah dengan pemberian nilai titik bantuan. Titik bantuan yang dimaksud merupakan gang, pertigaan, perempatan dan sebagainya yang bisa dijadikan jalur alternatif lainnya. Maka diperoleh peta lokasi sebagai berikut:

Gambar 4. 1 Peta Graf Jalur 6 Titik

Peta lokasi diatas termasuk dalam kategori graf berarah dan berbobot, dikarenakan peta lokasi tersebut memiliki arah dan nilai.

Pemilihan penelitian yang dilakukan penulis adalah titik-titik pengambilan sampah yang dilalui truk pengangkut. Pengambilan titik ini berdasar pada rutinitas serta sistem pengangkutan yang lebih tinggi dibandingkan titik yang lainnya. Oleh karena itu, penulis memilih 6 titik sebagai objek penelitian.

Berikut keterangan dari masing-masing variabel titik pengangkutan:

A: Bank Sampah Malang

B: Gading Kasri Gg. 2F No.39 (Gading Kasri Gg. 2F No.39)

C: Jl.Klampok Kasri (Jl. Klampok Kasri, Gading Kasri, Kec. Klojen, Kota Malang, Jawa Timur 65115)

D: Bareng Raya (Bareng, Kec. Klojen, Kota Malang, Jawa Timur)

E: Perum Tmn Permata Asri E/12 Sitirejo (Jl. Taman Permata Asri, Lemah Duwur, Sitirejo, Kec. Wagir, Malang, Jawa Timur 65158)

F: Jl.Keben II Timur (Jl. Keben II, Bandungrejosari, Kec. Sukun, Kota Malang, Jawa Timur 65148)

4.2 Pembobotan jarak (d_{rs})

Penentuan bobot jarak dari Bank Sampah Malang ke setiap titik angkut. Dimana, r merupakan titik awal (BSM Induk) dan s adalah titik-titik pengambilan (BSM Binaan). r berisi node A, sedangkan s berisi node B, C, D, E, F.

Adapun nilai jarak awal tiap titik (dalam satuan km) berdasarkan *Google*Maps adalah pada tabel berikut:

Tabel 4. 1 Nilai Jarak Awal

	Α	В	С	D	Ε	F
Α	0	2,5	3,8	2,6	6,5	1,9
В	2,5	0	1,9	2,2	8,1	4,9
С	3,8	1,9	0	2,6	8,9	6,3
D	2,6	2,2	2,6	0	7,8	6,3
Ε	6,5	8,1	8,9	7,8	0	5,7
F	1,9	4,9	6,3	6,3	5,7	0

Adapun nilai titik bantuannya sebagai berikut:

Tabel 4. 2 Nilai Titik Bantuan

Jarak	Nilai
	(km)
$A \rightarrow a$	1,1
$a \rightarrow b$	0,55
$b \rightarrow e$	0,45
$e \rightarrow B$	0,4
$A \rightarrow c$	1,3
$c \rightarrow d$	0,35
$d \rightarrow e$	0,65
$B \to f$	0,6
$f \rightarrow g$	0,3
$B \rightarrow g$	0,95
$g \rightarrow C$	0,75
$f \to C$ $C \to h$	1,2
$C \rightarrow h$	0,65
$h \rightarrow i$	0,28
$i \rightarrow j$	1,0
$h \rightarrow j$	1,1
$j \to D$	0,7
$j \rightarrow k$	0,28
$k \rightarrow d$	0,45
$k \rightarrow l$	3,9
$l \rightarrow m$	3,0
$l \rightarrow q$	2,3
$m \rightarrow n$	0,6
$m \rightarrow E$	0,25
$n \rightarrow o$	0,8
$n \rightarrow p$	2,7
$o \rightarrow p$	1,3
$p \rightarrow q$	1,1
$A \rightarrow q$	1,3
$F \rightarrow q$	0,35

Penentuan jarak dari titik A ke B dengan titik bantuan berupa:

$$d(A,a)=1,\!1$$

$$d(a,b)=0{,}55$$

$$d(b,e)=0,\!45$$

$$d(A,c)=1{,}3$$

$$d(c,d)=0{,}35$$

$$d(d,e)=0,\!65$$

$$d(e,B)=0,4$$

Rute
$$d(A, B) = d(B, A)$$
 pertama adalah:

$$= d(A,a) + d(a,b) + d(b,e) + d(e,B)$$

$$= 1.1 + 0.55 + 0.45 + 0.4$$

$$= 2.5$$

Rute d(A, B) = d(B, A) kedua adalah:

$$= d(A,c) + d(c,d) + d(d,e) + d(e,B)$$

$$= 1,3 + 0,35 + 0,65 + 0,4$$

$$= 2,7$$

Maka, jalur terpendek d(A, B) = d(B, A) yaitu:

$$d(A,B) = d(B,A) = 2.5$$
 (4.1)

Pencarian panjang titik A ke C sebagai berikut:

$$d(B,f) = 0.6$$

$$d(f,C) = 1.2$$

$$d(f,g) = 0.3$$

$$d(g,C) = 0.75$$

$$d(B,g) = 0.95$$

$$d(d,k) = 0.45$$

$$d(k,j) = 0.28$$

$$d(j,h) = 1.1$$

$$d(j,i) = 1.0$$

$$d(i,h) = 0.28$$

$$d(h,C) = 0.65$$

Rute d(A, C) = d(C, A) pertama adalah:

$$= d(A,a) + d(a,b) + d(b,e) + d(e,B) + d(B,f) + d(f,C)$$

$$= 1,1 + 0,55 + 0,45 + 0,4 + 0,6 + 1,2$$

$$= 4,3$$

Rute
$$d(A,C) = d(C,A)$$
 kedua adalah:
 $= d(A,a) + d(a,b) + d(b,e) + d(e,B) + d(B,f) + d(f,g) + d(g,C)$
 $= 1,1 + 0,55 + 0,45 + 0,4 + 0,6 + 0,3 + 0,75$
 $= 4,15$
Rute $d(A,C) = d(C,A)$ ketiga adalah:
 $= d(A,a) + d(a,b) + d(b,e) + d(e,B) + d(B,g) + d(g,C)$
 $= 1,1 + 0,55 + 0,45 + 0,4 + 0,95 + 0,75$
 $= 4,2$
Rute $d(A,C) = d(C,A)$ keempat adalah:
 $= d(A,a) + d(a,b) + d(b,e) + d(e,d) + d(d,k) + d(k,j) + d(j,h) + d(h,C)$
 $= 1,1 + 0,55 + 0,45 + 0,65 + 0,45 + 0,28 + 1,1 + 0,65$
 $= 5,23$
Rute $d(A,C) = d(C,A)$ kelima adalah:
 $= d(A,a) + d(a,b) + d(b,e) + d(e,d) + d(d,k) + d(k,j) + d(j,i) + d(j,h) + d(h,C)$
 $= 1,1 + 0,55 + 0,45 + 0,65 + 0,45 + 0,28 + 1,0 + 0,28 + 0,65$
 $= 5,41$
Rute $d(A,C) = d(C,A)$ keenam adalah:
 $= d(A,C) + d(C,A) + d(A,C) + d(C,A) + d(A,C) + d(C,A) +$

Rute
$$d(A,C) = d(C,A)$$
 ketujuh adalah:

$$= d(A,c) + d(c,d) + d(d,e) + d(e,B) + d(B,f) + d(f,g) + d(g,C)$$

$$= 1,3 + 0,35 + 0,65 + 0,4 + 0,6 + 0,3 + 0,75$$
$$= 4,35$$

Rute d(A, C) = d(C, A) kedelapan adalah:

$$= d(A,c) + d(c,d) + d(d,e) + d(e,B) + d(B,g) + d(g,C)$$

$$= 1,3 + 0,35 + 0,65 + 0,4 + 0,95 + 0,75$$

$$= 4,4$$

Rute d(A, C) = d(C, A) kesembilan adalah:

$$= d(A,c) + d(c,d) + d(d,k) + d(k,j) + d(j,h) + d(h,C)$$

$$= 1,3 + 0,35 + 0,45 + 0,28 + 1,1 + 0,65$$

$$= 4.13$$

Rute d(A, C) = d(C, A) kesepuluh adalah:

$$= d(A,c) + d(c,d) + d(d,k) + d(k,j) + d(j,k) + d(k,l) +$$

Maka, jalur terpendek d(A, C) = d(C, A) adalah:

$$d(A,C) = d(C,A) = 4.13$$
 (4.2)

Kemudian perhitungan panjang titik A ke D sebagai berikut:

$$d(j,D) = 0.7$$

Rute d(A, D) = d(D, A) pertama adalah:

$$= d(A,a) + d(a,b) + d(b,e) + d(e,d) + d(d,k) + d(k,j) + d(j,D)$$

$$= 1,1 + 0,55 + 0,45 + 0,65 + 0,45 + 0,28 + 0,7$$

$$= 4,18$$

Rute d(A, D) = d(D, A) kedua adalah :

$$= d(A,c) + d(c,d) + d(d,k) + d(k,j) + d(j,D)$$

$$= 1.3 + 0.35 + 0.45 + 0.28 + 0.7$$
$$= 3.08$$

Maka, jalur terpendek d(A, D) = d(D, A) adalah:

$$d(A, D) = d(D, A) = 3.08$$
 (4.3)

Pencarian panjang titik A ke E sebagai berikut:

$$d(A, q) = 1,3$$

$$d(q, l) = 2,3$$

$$d(l, m) = 3,0$$

$$d(q, p) = 1,1$$

$$d(p, n) = 2,7$$

$$d(m, n) = 0,6$$

$$d(o, n) = 0,8$$

$$d(o, p) = 1,3$$

$$d(m, E) = 0,25$$

Rute d(A, E) = d(E, A) pertama adalah:

$$= d(A,q) + d(q,l) + d(l,m) + d(m,E)$$

$$= 1,3 + 2,3 + 3,0 + 0,25$$

$$= 6,85$$

Rute d(A, E) = d(E, A) kedua adalah:

$$= d(A,q) + d(q,p) + d(p,n) + d(n,m) + d(m,E)$$

$$= 1,3 + 1,1 + 2,7 + 0,6 + 0,25$$

$$= 5,95$$

Rute d(A, E) = d(E, A) ketiga adalah:

$$= d(A,q) + d(q,p) + d(p,o) + d(o,n) + d(n,m) + d(m,E)$$

$$= 1,3 + 1,1 + 1,3 + 0,8 + 0,6 + 0,25$$

$$= 5,35$$

Maka, jalur terpendek d(A, E) = d(E, A) adalah:

$$d(A,E) = d(E,A) = 5.35 (4.4)$$

Pencarian panjang titik A ke F sebagai berikut:

$$d(q, F) = 0.35$$

Rute d(A, F) = d(F, A) adalah: = d(A, q) + d(q, F)= 1,3 + 0,35= 1,65

Maka, jalur terpendek d(A, F) = d(F, A) adalah:

$$d(A,F) = d(F,A) = 1,65$$
 (4.5)

Pencarian panjang titik B ke C sebagai berikut:

$$d(B, f) = 0.6$$

 $d(f, g) = 0.3$
 $d(B, g) = 0.95$
 $d(f, C) = 1.2$
 $d(g, C) = 0.75$

Rute d(B,C) = d(C,B) pertama adalah:

$$= d(B,f) + d(f,C)$$

$$= 0.6 + 1.2$$

$$= 1.8$$

Rute d(B,C) = d(C,B) kedua adalah :

$$= d(B,f) + d(f,g) + d(g,C)$$
$$= 0.6 + 0.3 + 0.75$$
$$= 1.65$$

Rute
$$d(B,C) = d(C,B)$$
 ketiga adalah :
$$= d(B,g) + d(g,C)$$

$$= 0.95 + 0.75$$

$$= 1.7$$

Maka, jalur terpendek d(B,C) = d(C,B) adalah:

$$d(B,C) = d(C,B) = 1,65 (4.6)$$

Pencarian panjang titik *B* ke *D* sebagai berikut:

Rute
$$d(B,D) = d(D,B)$$
 pertama adalah:

$$= d(B,f) + d(f,g) + d(g,C) + d(C,h) + d(h,j) + d(j,D)$$

$$= 0.6 + 0.3 + 0.75 + 0.65 + 1.1 + 0.7$$

$$= 4.1$$

Rute
$$d(B,D) = d(D,B)$$
 kedua adalah:

$$= d(B,e) + d(e,d) + d(d,k) + d(k,j) + d(j,D)$$

$$= 0.4 + 0.65 + 0.45 + 0.28 + 0.7$$

$$= 2.48$$

Maka, jalur terpendek d(B, D) = d(D, B) adalah:

$$d(B,D) = d(D,B) = 2,48 (4.7)$$

Pencarian panjang titik B ke E sebagai berikut:

Rute d(B, E) = d(E, B) pertama adalah:

$$= d(B,e) + d(e,b) + d(b,a) + d(a,A) + d(A,q) + d(q,p) + d(p,o) +$$

$$d(o,n) + d(n,m) + d(m,E)$$

$$= 0.4 + 0.45 + 0.55 + 1.1 + 1.3 + 1.1 + 1.3 + 0.8 + 0.6 + 0.25$$

$$= 7.85$$

Rute
$$d(B, E) = d(E, B)$$
 kedua adalah:

$$= d(B,e) + d(e,d) + d(d,c) + d(c,A) + d(A,q) + d(q,p) + d(p,o) +$$

$$d(o,n) + d(n,m) + d(m,E)$$

$$= 0.45 + 0.65 + 0.35 + 1.3 + 1.3 + 1.1 + 1.3 + 0.8 + 0.6 + 0.25$$

= 8,05

Rute
$$d(B, E) = d(E, B)$$
 ketiga adalah:

$$= d(B, e) + d(e, d) + d(d, k) + d(k, l) + d(l, m) + d(m, E)$$

$$= 0.4 + 0.65 + 0.45 + 3.9 + 3.0 + 0.25$$

Maka, jalur terpendek d(B, E) = d(E, B) adalah:

= 8,65

$$d(B,E) = d(E,B) = 7.85$$
 (4.8)

Pencarian panjang titik *B* ke *F* sebagai berikut:

Rute
$$d(B,F) = d(F,B)$$
 pertama adalah:

$$= d(B,e) + d(e,b) + d(b,a) + d(a,A) + d(A,q) + d(q,F)$$

$$= 0.4 + 0.45 + 0.55 + 1.1 + 1.3 + 0.35$$

$$= 4.15$$

Rute d(B,F) = d(F,B) kedua adalah:

$$= d(B,e) + d(e,d) + d(d,c) + d(c,A) + d(A,q) + d(q,F)$$

$$= 0.4 + 0.65 + 0.35 + 1.3 + 1.3 + 0.35$$

$$= 4.35$$

Maka, jalur terpendek d(B,F) = d(F,B) adalah:

$$d(B,F) = d(F,B) = 4.15 (4.9)$$

Pencarian panjang titik C ke D sebagai berikut:

Rute d(C, D) = d(D, C) pertama adalah:

$$= d(C,h) + d(h,i) + d(i,j) + d(j,D)$$
$$= 0.65 + 0.28 + 1.0 + 0.7$$
$$= 2.63$$

Rute
$$d(C, D) = d(D, C)$$
 kedua adalah:
= $d(C, h) + d(h, j) + d(j, D)$
= $0.65 + 1.1 + 0.7$
= 2.45

Maka, jalur terpendek d(C, D) = d(D, C) adalah :

$$d(C, D) = d(D, C) = 2,45$$
 (4.10)

Pencarian panjang titik C ke E sebagai berikut:

$$d(i,h)=0.28$$

$$d(C, h) = 0.65$$

Rute d(C, E) = d(E, C) pertama adalah:

$$= d(C,f) + d(f,B) + d(B,e) + d(e,b) + d(b,a) + d(a,A) + d(A,q) + d(q,p) + d(p,o) + d(o,n) + d(n,m) + d(m,E)$$

$$= 1,2 + 0,6 + 0,4 + 0,45 + 0,55 + 1,1 + 1,3 + 1,1 + 1,3 + 0,8 + 0,6 + 0,25$$

$$= 9,65$$

Rute d(C, E) = d(E, C) kedua adalah :

$$= d(C,h) + d(h,j) + d(j,k) + d(k,d) + d(d,c) + d(c,A) + d(A,q) +$$

$$d(q,p) + d(p,o) + d(o,n) + d(n,m) + d(m,E)$$

$$= 0.65 + 1.1 + 0.28 + 0.45 + 0.35 + 1.3 + 1.3 + 1.1 + 1.3 + 0.8 + 0.6 + 0.25$$

$$= 9.48$$

Rute d(C, E) = d(E, C) ketiga adalah:

$$= d(C,g) + d(g,f) + d(f,B) + d(B,e) + d(e,b) + d(b,a) + d(a,A) +$$

$$d(A,q) + d(q,p) + d(p,o) + d(o,n) + d(n,m) + d(m,E)$$

$$= 0.75 + 0.3 + 0.6 + 0.4 + 0.45 + 0.55 + 1.1 + 1.3 + 1.1 + 1.3 + 0.8 + 0.6 + 0.25$$

= 9,5

Rute
$$d(C, E) = d(E, C)$$
 keempat adalah:

$$= d(C, h) + d(h, j) + d(j, k) + d(k, l) + d(l, m) + d(m, E)$$

$$= 0,65 + 1,1 + 0,28 + 3,9 + 3,0 + 0,25$$

$$= 9,18$$

Maka, jalur terpendek d(C, E) = d(E, C) adalah:

$$d(C, E) = d(E, C) = 9.18$$
 (4.11)

Pencarian panjang titik C ke F sebagai berikut:

Rute d(C, F) = d(F, C) pertama adalah:

$$= d(C,h) + d(h,j) + d(j,k) + d(k,d) + d(d,c) + d(c,A) + d(A,q) + d(q,F)$$

$$= 0,65 + 1,1 + 0,28 + 0,45 + 0,35 + 1,3 + 1,3 + 0,35$$

$$= 5,78$$

Rute d(C, F) = d(F, C) kedua adalah:

$$= d(C,g) + d(g,f) + d(f,B) + d(B,e) + d(e,b) + d(b,a) + d(a,A) + d(A,q) + d(q,F)$$

$$= 0.75 + 0.3 + 0.6 + 0.4 + 0.45 + 0.55 + 1.1 + 1.3 + 0.35$$

= 5.8

Rute d(C, F) = d(F, C) ketiga adalah:

$$= d(C,f) + d(f,B) + d(B,e) + d(e,b) + d(b,a) + d(a,A) + d(A,q) + d(q,F)$$

$$= 1,2 + 0,6 + 0,4 + 0,45 + 0,55 + 1,1 + 1,3 + 0,35$$
$$= 5,95$$

Maka, jalur terpendek d(C,F) = d(F,C) adalah:

$$d(C, F) = d(F, C) = 5.78$$
 (4.12)

Pencarian panjang titik *D* ke *E* sebagai berikut:

Rute d(D, E) = d(E, D) pertama adalah:

$$= d(D,j) + d(j,k) + d(k,l) + d(l,m) + d(m,E)$$

$$= 0.7 + 0.28 + 3.9 + 3.0 + 0.25$$

$$= 8.13$$

Rute d(D, E) = d(E, D) kedua adalah:

$$= d(D,j) + d(j,k) + d(k,d) + d(d,c) + d(c,A) + d(A,q) + d(q,p) +$$

$$d(p,o) + d(o,n) + d(n,m) + d(m,E)$$

$$= 0.7 + 0.28 + 0.45 + 0.35 + 1.3 + 1.3 + 1.1 + 1.3 + 0.8 + 0.6 + 0.25$$

$$= 8.43$$

Maka, jalur terpendek d(D, E) = d(E, D) adalah:

$$d(D,E) = d(E,D) = 8.13$$
 (4.13)

Pencarian panjang titik D ke F sebagai berikut:

$$d(D,j) = 0.7$$

 $d(j,k) = 0.28$
 $d(k,d) = 0.45$
 $d(q,F) = 0.35$

Rute d(D,F) = d(F,D) pertama adalah:

$$= d(D,j) + d(j,k) + d(k,d) + d(d,c) + d(c,A) + d(A,q) + d(q,F)$$

$$= 0.7 + 0.28 + 0.45 + 0.35 + 1.3 + 1.3 + 0.35$$
$$= 4.73$$

Rute d(D, F) = d(F, D) kedua adalah:

$$= d(D,j) + d(j,k) + d(k,d) + d(d,e) + d(e,b) + d(b,a) + d(a,A) + d(A,q) + d(q,F)$$

$$= 0.7 + 0.28 + 0.45 + 0.65 + 0.45 + 0.55 + 1.1 + 1.3 + 0.35$$

= 5.83

Maka, jalur terpendek d(D, F) = d(F, D) adalah:

$$d(D,F) = d(F,D) = 4,73$$
 (4.14)

Terakhir, pencarian panjang titik E ke F sebagai berikut:

Rute
$$d(E,F) = d(F,E)$$
 pertama adalah:

$$= d(E,m) + d(m,n) + d(n,o) + d(o,p) + d(p,q) + d(q,F)$$

$$= 0.25 + 0.6 + 0.8 + 1.3 + 1.1 + 0.35$$

$$= 4.4$$

Rute
$$d(E,F) = d(F,E)$$
 kedua adalah:

$$= d(E,m) + d(m,n) + d(n,p) + d(p,q) + d(q,F)$$

$$= 0.25 + 0.6 + 2.7 + 1.1 + 0.35$$

$$= 5$$

Rute
$$d(E,F) = d(F,E)$$
 ketiga adalah:
= $d(E,m) + d(m,l) + d(l,q) + d(q,F)$
= $0.25 + 3.0 + 2.3 + 0.35$
= 5.9

Maka, jalur terpendek d(E,F) = d(F,E) adalah:

$$d(E,F) = d(F,E) = 4,4$$
 (4.15)

Berdasarkan hasil perhitungan (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), (4.14), dan (4.15). Maka, dapat diperoleh:

E F 2,5 0 4,13 3,08 5,35 1,65 2,5 0 1,65 2,48 7,85 4,15 4,13 1,65 0 2,45 9,18 5,78 3,08 2,45 2,48 8,13 4,73 0

9,18

5,78

8,13

4,73

0

4,4

4,4

0

5,35

1,65

7,85

4,15

Tabel 4. 3 Pembobotan Jarak (d_{rs})

Berdasarkan tabel 4.3, diperoleh jarak terpendeknya adalah rute d(A,B)=d(B,A) sebesar 2,5 km. Sedangkan jarak terjauhnya adalah rute (C,E)=d(E,C) sebesar 9,18 km.

4.3 Jalur Perjalanan (C)

Penulis mendapatkan titik awal dan akhir dari Bank Sampah Malang, dengan melewati beberapa tempat pengambilan menuju titik tujuan. Untuk merutekan perjalanan semut yaitu dengan mencari sirkuit Hamilton pada graf komplit dengan n simpul yang bernilai $\frac{(n-1)!}{2}$. Maka, sirkuit Hamiltonnya adalah $\frac{(6-1)!}{2}=60$ sebagai berikut:

```
C1
     = (A, B, C, D, E, F, A) =
                                  (A, F, E, D, C, B, A)
C2
     = (A, B, C, D, F, E, A) =
                                  (A, E, F, D, C, B, A)
                                  (A, F, D, E, C, B, A)
C3
     = (A, B, C, E, D, F, A) =
C4
     = (A, B, C, E, F, D, A) =
                                  (A, D, F, E, C, B, A)
C5
     = (A, B, C, F, D, E, A) =
                                  (A, E, D, F, C, B, A)
     = (A, B, C, F, E, D, A) =
                                  (A, D, E, F, C, B, A)
C6
C7
     = (A, B, D, C, E, F, A) =
                                  (A, F, E, C, D, B, A)
C8
     = (A, B, D, C, F, E, A) =
                                  (A, E, F, C, D, B, A)
C9
     = (A, B, D, E, C, F, A) =
                                  (A, F, C, E, D, B, A)
C10 = (A, B, D, E, F, C, A) =
                                  (A, C, F, E, D, B, A)
C11 = (A, B, D, F, C, E, A) =
                                  (A, E, C, F, D, B, A)
C12 = (A, B, D, F, E, C, A) =
                                  (A, C, E, F, D, B, A)
C13 = (A, B, E, C, D, F, A) =
                                  (A, F, D, C, E, B, A)
C14 = (A, B, E, C, F, D, A) =
                                  (A, D, F, C, E, B, A)
C15 = (A, B, E, D, C, F, A) =
                                 (A, F, C, D, E, B, A)
C16 = (A, B, E, D, F, C, A) = (A, C, F, D, E, B, A)
```

```
C17 = (A, B, E, F, C, D, A) =
                                 (A, D, C, F, E, B, A)
        (A,B,E,F,D,C,A) =
                                 (A, C, D, F, E, B, A)
C18 =
C19 =
        (A,B,F,C,D,E,A) =
                                 (A, E, D, C, F, B, A)
C20 = (A, B, F, C, E, D, A) =
                                 (A, D, E, C, F, B, A)
C21 = (A, B, F, D, C, E, A) =
                                 (A, E, C, D, F, B, A)
C22 =
        (A,B,F,D,E,C,A) =
                                 (A, C, E, D, F, B, A)
C23 =
        (A,B,F,E,C,D,A) =
                                 (A, D, C, E, F, B, A)
C24 = (A, B, F, E, D, C, A) =
                                 (A, C, D, E, F, B, A)
C25 = (A, C, B, D, E, F, A) =
                                 (A, F, E, D, B, C, A)
C26 =
        (A, C, B, D, F, E, A) =
                                 (A, E, F, D, B, C, A)
C27
     =
        (A,C,B,E,D,F,A) =
                                 (A, F, D, E, B, C, A)
C28 = (A, C, B, E, F, D, A) =
                                 (A, D, F, E, B, C, A)
C29 = (A, C, B, F, D, E, A) =
                                 (A, E, D, F, B, C, A)
C30 =
        (A,C,B,F,E,D,A)
                             =
                                 (A, D, E, F, B, C, A)
C31 = (A, C, D, B, E, F, A) =
                                 (A, F, E, B, D, C, A)
C32 = (A, C, D, B, F, E, A) =
                                 (A, E, F, B, D, C, A)
C33 = (A, C, D, E, B, F, A) =
                                 (A, F, B, E, D, C, A)
C34 =
        (A,C,D,F,B,E,A) =
                                 (A, E, B, F, D, C, A)
C35 =
        (A, C, E, B, D, F, A) =
                                 (A, F, D, B, E, C, A)
C36 =
        (A, C, E, B, F, D, A) =
                                 (A, D, F, B, E, C, A)
C37 = (A, C, E, D, B, F, A) =
                                 (A, F, B, D, E, C, A)
C38 =
        (A, C, E, F, B, D, A) =
                                 (A, D, B, F, E, C, A)
C39 =
        (A, C, F, B, D, E, A) =
                                 (A, E, D, B, F, C, A)
C40 =
        (A, C, F, B, E, D, A) =
                                 (A, D, E, B, F, C, A)
C41 = (A, C, F, D, B, E, A) =
                                 (A, E, B, D, F, C, A)
C42 =
        (A, C, F, E, B, D, A) =
                                 (A, D, B, E, F, C, A)
C43 =
        (A, D, B, C, E, F, A) =
                                 (A, F, E, C, B, D, A)
C44 = (A, D, B, C, F, E, A) =
                                 (A, E, F, C, B, D, A)
C45 = (A, D, B, E, C, F, A) =
                                 (A, F, C, E, B, D, A)
        (A, D, B, F, C, E, A) =
                                 (A, E, C, F, B, D, A)
C46 =
        (A, D, C, B, E, F, A) =
                                 (A, F, E, B, C, D, A)
C47 =
C48 = (A, D, C, B, F, E, A) =
                                 (A, E, F, B, C, D, A)
C49 = (A, D, C, E, B, F, A) =
                                 (A, F, B, E, C, D, A)
        (A, D, C, F, B, E, A) =
                                  (A, E, B, F, C, D, A)
C50 =
                                 (A, F, C, B, E, D, A)
C51 =
        (A, D, E, B, C, F, A) =
C52 = (A, D, E, C, B, F, A) =
                                 (A, F, B, C, E, D, A)
C53 = (A, D, F, B, C, E, A) =
                                 (A, E, C, B, F, D, A)
C54 = (A, D, F, C, B, E, A) =
                                 (A, E, B, C, F, D, A)
C55 = (A, E, B, C, D, F, A) =
                                 (A, F, D, C, B, E, A)
C56 = (A, E, B, D, C, F, A) =
                                 (A, F, C, D, B, E, A)
C57 = (A, E, C, B, D, F, A) =
                                 (A, F, D, B, C, E, A)
C58 =
        (A, E, C, D, B, F, A) =
                                 (A, F, B, D, C, E, A)
C59 = (A, E, D, B, C, F, A) =
                                 (A, F, C, B, D, E, A)
C60 = (A, E, D, C, B, F, A) =
                                 (A, F, B, C, D, E, A)
```

4.4 Panjang Jalur (C^k)

Selanjutnya perhitungan panjang jalur (C^k) , sebagai berikut:

Jalur ke-1

$$C^{1} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FA}$$

$$= 2.5 + 1.65 + 2.45 + 8.13 + 4.4 + 1.65$$

$$= 20.78$$
(4.16)

Jalur ke-2

$$C^{2} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DF} + \overrightarrow{FE} + \overrightarrow{EA}$$

$$= 2.5 + 1.65 + 2.45 + 4.73 + 4.4 + 5.35$$

$$= 21.08$$
(4.17)

Jalur ke-3

$$C^{3} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CE} + \overrightarrow{ED} + \overrightarrow{DF} + \overrightarrow{FA}$$

$$= 2.5 + 1.65 + 9.18 + 8.13 + 4.73 + 1.65$$

$$= 27.84$$
(4.18)

Jalur ke-4

$$C^{4} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CE} + \overrightarrow{EF} + \overrightarrow{FD} + \overrightarrow{DA}$$

$$= 2.5 + 1.65 + 9.18 + 4.4 + 4.73 + 3.08$$

$$= 25.54$$
(4.19)

Jalur ke-5

$$C^{5} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CF} + \overrightarrow{FD} + \overrightarrow{DE} + \overrightarrow{EA}$$

$$= 2.5 + 1.65 + 5.78 + 4.73 + 8.13 + 5.35$$

$$= 28.14$$
(4.20)

$$C^{6} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CF} + \overrightarrow{FE} + \overrightarrow{ED} + \overrightarrow{DA}$$

$$(4.21)$$

$$= 2.5 + 1.65 + 5.78 + 4.4 + 8.13 + 3.08$$
$$= 25.54$$

$$C^{7} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC} + \overrightarrow{CE} + \overrightarrow{EF} + \overrightarrow{FA}$$

$$= 2.5 + 2.48 + 2.45 + 9.18 + 4.4 + 1.65$$

$$= 22.66$$
(4.22)

Jalur ke-8

$$C^{8} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC} + \overrightarrow{CF} + \overrightarrow{FE} + \overrightarrow{EA}$$

$$= 2.5 + 2.48 + 2.45 + 5.78 + 4.4 + 5.35$$

$$= 22.96$$
(4.23)

Jalur ke-9

$$C^{9} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DE} + \overrightarrow{EC} + \overrightarrow{CF} + \overrightarrow{FA}$$

$$= 2.5 + 2.48 + 8.13 + 9.18 + 5.78 + 1.65$$

$$= 29.72$$
(4.24)

Jalur ke-10

$$C^{10} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FC} + \overrightarrow{CA}$$

$$= 2.5 + 2.48 + 8.13 + 4.4 + 5.78 + 4.13$$

$$= 27.42$$
(4.25)

Jalur ke-11

$$C^{11} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DF} + \overrightarrow{FC} + \overrightarrow{CE} + \overrightarrow{EA}$$

$$= 2.5 + 2.48 + 4.73 + 5.78 + 9.18 + 5.35$$

$$= 30.02$$
(4.26)

$$C^{12} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DF} + \overrightarrow{FE} + \overrightarrow{EC} + \overrightarrow{CA}$$
(4.27)

$$= 2,5 + 2,48 + 4,73 + 4,4 + 9,18 + 4,13$$
$$= 27,42$$

$$C^{13} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{EC} + \overrightarrow{CD} + \overrightarrow{DF} + \overrightarrow{FA}$$

$$= 2.5 + 7.85 + 9.18 + 2.45 + 4.73 + 1.65$$

$$= 28.36$$
(4.28)

Jalur ke-14

$$C^{14} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{EC} + \overrightarrow{CF} + \overrightarrow{FD} + \overrightarrow{DA}$$

$$= 2.5 + 7.85 + 9.18 + 5.78 + 4.73 + 3.08$$

$$= 33.12$$
(4.29)

Jalur ke-15

$$C^{15} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{CF} + \overrightarrow{FA}$$

$$= 2.5 + 7.85 + 8.13 + 2.45 + 5.78 + 1.65$$

$$= 28.36$$
(4.30)

Jalur ke-16

$$C^{16} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{ED} + \overrightarrow{DF} + \overrightarrow{FC} + \overrightarrow{CA}$$

$$= 2.5 + 7.85 + 8.13 + 4.73 + 5.78 + 4.13$$

$$= 33.12$$
(4.31)

Jalur ke-17

$$C^{17} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{EF} + \overrightarrow{FC} + \overrightarrow{CD} + \overrightarrow{DA}$$

$$= 2.5 + 7.85 + 4.4 + 5.78 + 2.45 + 3.08$$

$$= 26.06$$
(4.32)

$$C^{18} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{EF} + \overrightarrow{FD} + \overrightarrow{DC} + \overrightarrow{CA}$$
(4.33)

$$= 2.5 + 7.85 + 4.4 + 4.73 + 2.45 + 4.13$$
$$= 26.06$$

$$C^{19} = \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA}$$

$$= 2.5 + 4.15 + 5.78 + 2.45 + 8.13 + 5.35$$

$$= 28.36$$
(4.34)

Jalur ke-20

$$C^{20} = \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FC} + \overrightarrow{CE} + \overrightarrow{ED} + \overrightarrow{DA}$$

$$= 2.5 + 4.15 + 5.78 + 9.18 + 8.13 + 3.08$$

$$= 38.82$$
(4.35)

Jalur ke-21

$$C^{21} = \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FD} + \overrightarrow{DC} + \overrightarrow{CE} + \overrightarrow{EA}$$

$$= 2.5 + 4.15 + 4.73 + 2.45 + 9.18 + 5.35$$

$$= 28.36$$
(4.36)

Jalur ke-22

$$C^{22} = \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FD} + \overrightarrow{DE} + \overrightarrow{EC} + \overrightarrow{CA}$$

$$= 2.5 + 4.15 + 4.73 + 8.13 + 9.18 + 4.13$$

$$= 32.82$$
(4.37)

Jalur ke-23

$$C^{23} = \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FE} + \overrightarrow{EC} + \overrightarrow{CD} + \overrightarrow{DA}$$

$$= 2.5 + 4.15 + 4.4 + 9.18 + 2.45 + 3.08$$

$$= 25.76$$
(4.38)

$$C^{24} = \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FE} + \overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{CA}$$
(4.39)

$$= 2.5 + 4.15 + 4.4 + 8.13 + 2.45 + 4.13$$
$$= 25.76$$

$$C^{25} = \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BD} + \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FA}$$

$$= 4,13 + 1,65 + 2,48 + 8,13 + 4,4 + 1,65$$

$$= 22,44$$
(4.40)

Jalur ke-26

$$C^{26} = \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BD} + \overrightarrow{DF} + \overrightarrow{FE} + \overrightarrow{EA}$$

$$= 4,13 + 1,65 + 2,48 + 4,73 + 4,4 + 5,35$$

$$= 22,74$$
(4.41)

Jalur ke-27

$$C^{27} = \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BE} + \overrightarrow{ED} + \overrightarrow{DF} + \overrightarrow{FA}$$

$$= 4,13 + 1,65 + 7,85 + 8,13 + 4,73 + 1,65$$

$$= 28,14$$
(4.42)

Jalur ke-28

$$C^{28} = \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BE} + \overrightarrow{EF} + \overrightarrow{FD} + \overrightarrow{DA}$$

$$= 4,13 + 1,65 + 7,85 + 4,4 + 4,73 + 3,08$$

$$= 25,84$$
(4.43)

Jalur ke-29

$$C^{29} = \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BF} + \overrightarrow{FD} + \overrightarrow{DE} + \overrightarrow{EA}$$

$$= 4,13 + 1,65 + 4,15 + 4,73 + 8,13 + 5,35$$

$$= 28,14$$
(4.44)

$$C^{30} = \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BF} + \overrightarrow{FE} + \overrightarrow{ED} + \overrightarrow{DA}$$
 (4.45)

$$= 4,13 + 1,65 + 4,15 + 4,4 + 8,13 + 3,08$$
$$= 25,54$$

$$C^{31} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DB} + \overrightarrow{BE} + \overrightarrow{EF} + \overrightarrow{FA}$$

$$= 4,13 + 2,45 + 2,48 + 7,85 + 4,4 + 1,65$$

$$= 22,96$$
(4.46)

Jalur ke-32

$$C^{32} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DB} + \overrightarrow{BF} + \overrightarrow{FE} + \overrightarrow{EA}$$

$$= 4,13 + 2,45 + 2,48 + 4,15 + 4,4 + 5,35$$

$$= 22,96$$
(4.47)

Jalur ke-33

$$C^{33} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EB} + \overrightarrow{BF} + \overrightarrow{FA}$$

$$= 4,13 + 2,45 + 8,13 + 7,85 + 4,15 + 1,65$$

$$= 28,36$$
(4.48)

Jalur ke-34

$$C^{34} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DF} + \overrightarrow{FB} + \overrightarrow{BE} + \overrightarrow{EA}$$

$$= 4,13 + 2,45 + 4,73 + 4,15 + 7,85 + 5,35$$

$$= 28,66$$
(4.49)

Jalur ke-35

$$C^{35} = \overrightarrow{AC} + \overrightarrow{CE} + \overrightarrow{EB} + \overrightarrow{BD} + \overrightarrow{DF} + \overrightarrow{FA}$$

$$= 4,13 + 9,18 + 7,85 + 2,48 + 4,73 + 1,65$$

$$= 30,02$$
(4.50)

$$C^{36} = \overrightarrow{AC} + \overrightarrow{CE} + \overrightarrow{EB} + \overrightarrow{BF} + \overrightarrow{FD} + \overrightarrow{DA}$$
(4.51)

$$= 4,13 + 9,18 + 7,85 + 4,15 + 4,73 + 3,08$$
$$= 33,12$$

$$C^{37} = \overrightarrow{AC} + \overrightarrow{CE} + \overrightarrow{ED} + \overrightarrow{DB} + \overrightarrow{BF} + \overrightarrow{FA}$$

$$= 4,13 + 9,18 + 8,13 + 2,48 + 4,15 + 1,65$$

$$= 29,72$$
(4.52)

Jalur ke-38

$$C^{38} = \overrightarrow{AC} + \overrightarrow{CE} + \overrightarrow{EF} + \overrightarrow{FB} + \overrightarrow{BD} + \overrightarrow{DA}$$

$$= 4,13 + 9,18 + 4,4 + 4,15 + 2,48 + 3,08$$

$$= 27,42$$
(4.53)

Jalur ke-39

$$C^{39} = \overrightarrow{AC} + \overrightarrow{CF} + \overrightarrow{FB} + \overrightarrow{BD} + \overrightarrow{DE} + \overrightarrow{EA}$$

$$= 4,13 + 5,78 + 4,15 + 2,48 + 8,13 + 5,35$$

$$= 30,02$$
(4.54)

Jalur ke-40

$$C^{40} = \overrightarrow{AC} + \overrightarrow{CF} + \overrightarrow{FB} + \overrightarrow{BE} + \overrightarrow{ED} + \overrightarrow{DA}$$

$$= 4,13 + 5,78 + 4,15 + 7,85 + 8,13 + 3,08$$

$$= 33,12$$
(4.55)

Jalur ke-41

$$C^{41} = \overrightarrow{AC} + \overrightarrow{CF} + \overrightarrow{FD} + \overrightarrow{DB} + \overrightarrow{BE} + \overrightarrow{EA}$$

$$= 4,13 + 5,78 + 4,73 + 2,48 + 7,85 + 5,35$$

$$= 30,32$$
(4.56)

$$C^{42} = \overrightarrow{AC} + \overrightarrow{CF} + \overrightarrow{FE} + \overrightarrow{EB} + \overrightarrow{BD} + \overrightarrow{DA}$$
(4.57)

$$= 4,13 + 5,78 + 4,4 + 7,85 + 2,48 + 3,08$$
$$= 27,72$$

$$C^{43} = \overrightarrow{AD} + \overrightarrow{DB} + \overrightarrow{BC} + \overrightarrow{CE} + \overrightarrow{EF} + \overrightarrow{FA}$$

$$= 3,08 + 2,48 + 1,65 + 9,18 + 4,4 + 1,65$$

$$= 22,44$$
(4.58)

Jalur ke-44

$$C^{44} = \overrightarrow{AD} + \overrightarrow{DB} + \overrightarrow{BC} + \overrightarrow{CF} + \overrightarrow{FE} + \overrightarrow{EA}$$

$$= 3,08 + 2,48 + 1,65 + 5,78 + 4,4 + 5,35$$

$$= 22,74$$
(4.59)

Jalur ke-45

$$C^{45} = \overrightarrow{AD} + \overrightarrow{DB} + \overrightarrow{BE} + \overrightarrow{EC} + \overrightarrow{CF} + \overrightarrow{FA}$$

$$= 3,08 + 2,48 + 7,85 + 9,18 + 5,78 + 1,65$$

$$= 30,02$$
(4.60)

Jalur ke-46

$$C^{46} = \overrightarrow{AD} + \overrightarrow{DB} + \overrightarrow{BF} + \overrightarrow{FC} + \overrightarrow{CE} + \overrightarrow{EA}$$

$$= 3,08 + 2,48 + 4,15 + 5,78 + 9,18 + 5,35$$

$$= 30,02$$
(4.61)

Jalur ke-47

$$C^{47} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BE} + \overrightarrow{EF} + \overrightarrow{FA}$$

$$= 3,08 + 2,45 + 1,65 + 7,85 + 4,4 + 1,65$$

$$= 21,08$$
(4.62)

$$C^{48} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BF} + \overrightarrow{FE} + \overrightarrow{EA}$$
 (4.63)

$$= 3,08 + 2,45 + 1,65 + 4,15 + 4,4 + 5,35$$
$$= 21,08$$

$$C^{49} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{CE} + \overrightarrow{EB} + \overrightarrow{BF} + \overrightarrow{FA}$$

$$= 3,08 + 2,45 + 9,18 + 7,85 + 4,15 + 1,65$$

$$= 28,36$$
(4.64)

Jalur ke-50

$$C^{50} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{CF} + \overrightarrow{FB} + \overrightarrow{BE} + \overrightarrow{EA}$$

$$= 3,08 + 2,45 + 5,78 + 4,15 + 7,85 + 5,35$$

$$= 28,66$$
(4.65)

Jalur ke-51

$$C^{51} = \overrightarrow{AD} + \overrightarrow{DE} + \overrightarrow{EB} + \overrightarrow{BC} + \overrightarrow{CF} + \overrightarrow{FA}$$

$$= 3,08 + 8,13 + 7,85 + 1,65 + 5,78 + 1,65$$

$$= 28,14$$
(4.66)

Jalur ke-52

$$C^{35} = \overrightarrow{AD} + \overrightarrow{DE} + \overrightarrow{EC} + \overrightarrow{CB} + \overrightarrow{BF} + \overrightarrow{FA}$$

$$= 3,08 + 8,13 + 9,18 + 1,65 + 4,15 + 1,65$$

$$= 27,84$$
(4.67)

Jalur ke-53

$$C^{53} = \overrightarrow{AD} + \overrightarrow{DF} + \overrightarrow{FB} + \overrightarrow{BC} + \overrightarrow{CE} + \overrightarrow{EA}$$

$$= 3,08 + 4,73 + 4,15 + 1,65 + 9,18 + 5,35$$

$$= 28,14$$
(4.68)

$$C^{54} = \overrightarrow{AD} + \overrightarrow{DF} + \overrightarrow{FC} + \overrightarrow{CB} + \overrightarrow{BE} + \overrightarrow{EA}$$
 (4.69)

$$= 3,08 + 4,73 + 5,78 + 1,65 + 7,85 + 5,35$$
$$= 28,44$$

$$C^{55} = \overrightarrow{AE} + \overrightarrow{EB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DF} + \overrightarrow{FA}$$

$$= 5,35 + 7,85 + 1,65 + 2,45 + 4,73 + 1,65$$

$$= 23,68$$
(4.70)

Jalur ke-56

$$C^{56} = \overrightarrow{AE} + \overrightarrow{EB} + \overrightarrow{BD} + \overrightarrow{DC} + \overrightarrow{CF} + \overrightarrow{FA}$$

$$= 5,35 + 7,85 + 2,48 + 2,45 + 5,78 + 1,65$$

$$= 25,56$$
(4.71)

Jalur ke-57

$$C^{57} = \overrightarrow{AE} + \overrightarrow{EC} + \overrightarrow{CB} + \overrightarrow{BD} + \overrightarrow{DF} + \overrightarrow{FA}$$

$$= 5,35 + 9,18 + 1,65 + 2,48 + 4,73 + 1,65$$

$$= 25,04$$
(4.72)

Jalur ke-58

$$C^{58} = \overrightarrow{AE} + \overrightarrow{EC} + \overrightarrow{CD} + \overrightarrow{DB} + \overrightarrow{BF} + \overrightarrow{FA}$$

$$= 5,35 + 9,18 + 2,45 + 2,48 + 4,15 + 1,65$$

$$= 25,26$$
(4.73)

Jalur ke-59

$$C^{59} = \overrightarrow{AE} + \overrightarrow{ED} + \overrightarrow{DB} + \overrightarrow{BC} + \overrightarrow{CF} + \overrightarrow{FA}$$

$$= 5,35 + 8,13 + 2,48 + 1,65 + 5,78 + 1,65$$

$$= 25,04$$
(4.74)

$$C^{60} = \overrightarrow{AE} + \overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BF} + \overrightarrow{FA}$$
(4.75)

$$= 5,35 + 8,13 + 2,45 + 1,65 + 4,15 + 1,65$$

= 23,38

Berdasarkan persamaan (4.16), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), (4.28), (4.29), (4.30), (4.31), (4.32), (4.33), (4.34), (4.35), (4.36), (4.37), (4.38), (4.39), (4.40, (4.41), (4.42), (4.43), (4.44), (4.45), (4.46), (4.47), (4.48), (4.49), (4.50), (4.51), (4.52), (4.53), (4.54), (4.55), (4.56), (4.57), (4.58), (4.59), (4.60), (4.61), (4.62), (4.63), (4.64), (4.65), (4.66), (4.67), (4.68), (4.69), (4.70), (4.71), (4.72), (4.73), (4.74), dan (4.75). Dilampirkan tabel sebagai berikut:

Tabel 4. 4 Panjang Rute (C^k)

Rute ke-				Rute		(-	<u>, </u>	Panjang Rute (km)
1	Α	В	С	D	Е	F	Α	20,78
2	Α	В	С	D	F	Ε	Α	21,08
3	Α	В	С	Е	D	F	Α	27,84
4	Α	В	С	Е	F	D	Α	25,54
5	Α	В	С	F	D	Е	Α	28,14
6	Α	В	С	F	Ε	D	Α	25,54
7	Α	В	D	С	Ε	F	Α	22,66
8	Α	В	D	С	F	Ε	Α	22,96
9	Α	В	D	Е	С	F	Α	29,72
10	Α	В	D	Е	F	С	Α	27,42
11	Α	В	D	F	С	Ε	Α	30,02
12	Α	В	D	F	Е	С	Α	27,42
13	Α	В	Е	С	D	F	Α	28,36
14	Α	В	Ε	С	F	D	Α	33,12
15	Α	В	Ε	D	С	F	Α	28,36
16	A	В	Ε	D	F	С	A	33,12
17	Α	В	Ε	F	С	D	Α	26,06
18	Α	В	Ε	F	D	С	Α	26,06
19	Α	В	F	С	D	Ε	Α	28,36
20	Α	В	F	С	Ε	D	Α	32,82
21	Α	В	F	D	С	Ε	Α	28,36
22	Α	В	F	D	Ε	С	Α	32,82
23	A	В	F	Е	С	D	A	25,76
24	A	В	F	Е	D	С	Α	25,76
25	Α	С	В	D	Е	F	Α	22,44
26	Α	С	В	D	F	Е	Α	22,74
27	Α	С	В	Е	D	F	Α	28,14
28	Α	С	В	Е	F	D	A	25,84

29 A C B F D E A 28,14 30 A C B F E D A 25,54 31 A C D B E F A 22,96 32 A C D E B F E A 22,96 33 A C D E B F A 28,36 34 A C D F B E A 28,66 35 A C E B D F A 30,02 36 A C E B F D A 33,12 37 A C E B F D A 29,72 38 A C E F B D A 30,02 40 A C									
31 A C D B E F A 22,96 32 A C D B F E A 22,96 33 A C D E B F A 28,36 34 A C D F B E A 28,66 35 A C E B D F A 30,02 36 A C E B F D A 33,12 37 A C E F B D A 29,72 38 A C E F B D A 29,72 38 A C F B D A 27,42 39 A C F B D A 27,42 39 A C F B E	29	Α	С	В	F	D	Ε	Α	28,14
32 A C D B F E A 22,96 33 A C D E B F A 28,36 34 A C D F B E A 28,66 35 A C E B D F A 30,02 36 A C E B F D A 33,12 37 A C E D B F A 29,72 38 A C E F B D A 27,42 39 A C F B D A 30,02 40 A C F B E D A 30,02 40 A C F B E D A 30,02 41 A C F B	30	Α	С	В	F	Е	D	Α	25,54
33 A C D E B F A 28,36 34 A C D F B E A 28,66 35 A C E B D F A 30,02 36 A C E B F D A 33,12 37 A C E D B F A 29,72 38 A C E F B D A 27,42 39 A C F B D E A 30,02 40 A C F B D E A 30,02 40 A C F B E D A 33,12 41 A C F B E D A 30,02 42 A C F	31	Α	С	D	В	Е	F	Α	22,96
33 A C D E B F A 28,36 34 A C D F B E A 28,66 35 A C E B D F A 30,02 36 A C E B F D A 33,12 37 A C E D B F A 29,72 38 A C E F B D A 27,42 39 A C F B D E A 30,02 40 A C F B D E A 30,02 40 A C F B E D A 33,12 41 A C F B E D A 30,02 42 A C F	32	Α	С	D	В	F	Е	Α	22,96
34 A C D F B E A 28,66 35 A C E B D F A 30,02 36 A C E B F D A 33,12 37 A C E D B F A 29,72 38 A C E F B D A 27,42 39 A C F B D A 27,42 39 A C F B D A 30,02 40 A C F B E D A 30,02 40 A C F B E D A 33,12 41 A C F B E D A 27,72 43 A D B C E	33	Α	С	D	Е	В	F	Α	28,36
36 A C E B F D A 33,12 37 A C E D B F A 29,72 38 A C E F B D A 27,42 39 A C F B D E A 30,02 40 A C F B E D A 33,12 41 A C F D B E A 30,02 42 A C F E B D A 27,72 43 A D B C E F A 22,44 44 A D B E C F A 22,74 45 A D B E C F A 30,02 47 A D C	34	Α	С	D	F	В	Е	Α	
37 A C E D B F A 29,72 38 A C E F B D A 27,42 39 A C F B D E A 30,02 40 A C F B E D A 33,12 41 A C F D B E A 30,32 42 A C F E B D A 27,72 43 A D B C E F A 22,44 44 A D B C F E A 22,74 45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C	35	Α		Е	В	D	F	Α	30,02
38 A C E F B D A 27,42 39 A C F B D E A 30,02 40 A C F B E D A 33,12 41 A C F D B E A 30,32 42 A C F E B D A 27,72 43 A D B C E F A 22,74 43 A D B C F E A 22,74 44 A D B E C F A 22,74 45 A D B E C F A 22,74 44 A D B E C F A 22,74 45 A D B	36	Α		Е	В	F	D	Α	33,12
39 A C F B D E A 30,02 40 A C F B E D A 33,12 41 A C F D B E A 30,32 42 A C F E B D A 27,72 43 A D B C E F A 22,74 44 A D B E C F E A 22,74 45 A D B E C F A 22,74 45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D	37	Α	С	Ε	D	В	F	A	29,72
40 A C F B E D A 33,12 41 A C F D B E A 30,32 42 A C F E B D A 27,72 43 A D B C E F A 22,44 44 A D B C F E A 22,74 45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 28,36 50 A D C	38	Α	С	Е	F	В	D	Α	27,42
40 A C F B E D A 33,12 41 A C F D B E A 30,32 42 A C F E B D A 27,72 43 A D B C E F A 22,44 44 A D B C F E A 22,74 45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 28,36 50 A D C	39	Α	С	F	В	D	Е	Α	
42 A C F E B D A 27,72 43 A D B C E F A 22,44 44 A D B C F E A 22,74 45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 21,08 49 A D C E B F A 21,08 49 A D C F B E A 28,36 50 A D E B F A 28,66 51 A D E C <td< td=""><td>40</td><td>Α</td><td>С</td><td>F</td><td>В</td><td>Е</td><td>D</td><td>Α</td><td></td></td<>	40	Α	С	F	В	Е	D	Α	
42 A C F E B D A 27,72 43 A D B C E F A 22,44 44 A D B C F E A 22,74 45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 21,08 49 A D C E B F A 28,36 50 A D C F B E A 28,14 52 A D E	41	Α		F	D	В	Е	Α	30,32
43 A D B C E F A 22,44 44 A D B C F E A 22,74 45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 21,08 49 A D C E B F A 23,36 50 A D C F B E A 28,166 51 A D E B F A 28,14 52 A D F B	42	Α	С	F	Е	В	D	Α	
45 A D B E C F A 30,02 46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 21,08 49 A D C E B F A 21,08 49 A D C E B F A 21,08 49 A D C E B F A 28,36 50 A D C F B E A 28,66 51 A D E C B F A 27,84 53 A D F	43	Α	D	В		Е	F	Α	
46 A D B F C E A 30,02 47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 28,36 50 A D C F B E A 28,36 51 A D E B E A 28,66 51 A D E B C F A 28,14 52 A D E C B F A 27,84 53 A D F B C E A 28,14 54 A D F C B E A 28,44 55 A E B C	44	Α	D	В	С	F	Е	Α	22,74
47 A D C B E F A 21,08 48 A D C B F E A 21,08 49 A D C E B F A 28,36 50 A D C F B E A 28,66 51 A D E B C F A 28,14 52 A D E C B F A 27,84 53 A D F B C E A 28,14 54 A D F B C E A 28,14 54 A D F C B E A 28,44 55 A E B C D F A 23,68 56 A E B	45	Α	D	В	Е	С	F	Α	30,02
48 A D C B F E A 21,08 49 A D C E B F A 28,36 50 A D C F B E A 28,66 51 A D E B C F A 28,14 52 A D E C B F A 27,84 53 A D F B C E A 28,14 54 A D F B E A 28,14 54 A D F C B E A 28,14 54 A D F C B E A 28,44 55 A E B C D F A 23,68 56 A E B D	46	Α	D		F			A	30,02
49 A D C E B F A 28,36 50 A D C F B E A 28,66 51 A D E B C F A 28,14 52 A D E C B F A 27,84 53 A D F B C E A 28,14 54 A D F C B E A 28,14 54 A D F C B E A 28,14 55 A E B C D F A 23,68 56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C	47	Α	D	С	В	Е	F	Α	21,08
50 A D C F B E A 28,66 51 A D E B C F A 28,14 52 A D E C B F A 27,84 53 A D F B C E A 28,14 54 A D F C B E A 28,44 55 A E B C D F A 23,68 56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	48	Α	D		В	F	Е	Α	21,08
51 A D E B C F A 28,14 52 A D E C B F A 27,84 53 A D F B C E A 28,14 54 A D F C B E A 28,44 55 A E B C D F A 23,68 56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	49	Α	D	С	Ε	В	F	A	28,36
52 A D E C B F A 27,84 53 A D F B C E A 28,14 54 A D F C B E A 28,44 55 A E B C D F A 23,68 56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	50	Α	D	С	F	В	Е	Α	28,66
53 A D F B C E A 28,14 54 A D F C B E A 28,44 55 A E B C D F A 23,68 56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	51	Α	D		В	С	F	Α	28,14
53 A D F B C E A 28,14 54 A D F C B E A 28,44 55 A E B C D F A 23,68 56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	52	Α	D	Ε	С	В	F	A	27,84
55 A E B C D F A 23,68 56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	53	Α	D	F	В	С	Е	Α	
56 A E B D C F A 25,56 57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	54	Α	D	F		В	Е	Α	28,44
57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	55	Α	Е	В	С	D	F	Α	23,68
57 A E C B D F A 25,04 58 A E C D B F A 25,26 59 A E D B C F A 25,04	56	A	Е	В	D	С	F	A	
58 A E C D B F A 25,26 59 A E D B C F A 25,04	57	A	Е	С	В	D	F	A	25,04
59 A E D B C F A 25,04	58	Α	Е	С	D	В	F	Α	25,26
		Α	Е	D	В	С	F	Α	25,04
	60	A	Е	D	С	В	F	A	

Terdapat beberapa langkah dalam proses pencarian jalur terpendek menggunakan algoritma *Ant Colony*. Yaitu, mencari intensitas *pheromone* beserta perubahan nya (τ_{rs}) . Nilai (τ_{rs}) selalu berubah pada setiap perulangan, nilai awal (τ_{rs}) adalah 1.

Sesudah harga τ_{rs} diperoleh, selanjutnya setiap semut dilist pada tabel (4.4). Dengan (n) merupakan banyaknya titik yaitu 6 dan (m) merupakan banyaknya semut yaitu 60. Karena nilai titik awal dan titik tujuan nya sama, maka:

$$d_{rs} = d_{sr}$$

Jalur terpendeknya adalah rute ke-1, yaitu sebesar 20,78 km. Sedangkan jalur terjauhnya terdapat pada rute ke-36 yaitu sebesar 33,12 km.

4.5 Perubahan Harga Intensitas *Pheromone* ($\Delta \tau_{rs}$)

Rumus perubahan nilai pheromone adalah sebagai berikut:

$$\Delta \tau_{rs} = \sum_{k=1}^{m} \Delta \tau_{rs}^{k}$$

Sehingga,

$$\Delta \tau_{rs}^k = \frac{Q}{C^k}$$

Dimana nilai Q adalah 1, dan dengan nilai C^k yang telah diperoleh, maka perhitungannya adalah:

$$\frac{Q}{C^{1}} = \frac{1}{20,78} = 0,048123195$$

$$\frac{Q}{C^{2}} = \frac{1}{21,08} = 0,04743833$$

$$\frac{Q}{C^{3}} = \frac{1}{27,84} = 0,03591954$$

$$\frac{Q}{C^{4}} = \frac{1}{25,54} = 0,039154268$$

$$\frac{Q}{C^{5}} = \frac{1}{28,14} = 0,035536603$$

$$\frac{Q}{C^{6}} = \frac{1}{25,54} = 0,039154268$$

$$\frac{Q}{C^{7}} = \frac{1}{22,66} = 0,044130627$$

$$\frac{Q}{C^{8}} = \frac{1}{22,96} = 0,043554007$$

$$\frac{Q}{C^{9}} = \frac{1}{29,72} = 0,033647376$$

$$\frac{Q}{C^{10}} = \frac{1}{27,42} = 0,03646973$$

$$\frac{Q}{C^{11}} = \frac{1}{30,02} = 0,033311126$$

$$\frac{Q}{C^{12}} = \frac{1}{27,42} = 0,03646973$$

$$\frac{Q}{C^{13}} = \frac{1}{28,36} = 0,035260931$$

$$\frac{Q}{C^{14}} = \frac{1}{33,12} = 0,030193237$$

$$\frac{Q}{C^{15}} = \frac{1}{28,36} = 0,035260931$$

$$\frac{Q}{C^{16}} = \frac{1}{33,12} = 0,030193237$$

$$\frac{Q}{C^{16}} = \frac{1}{26,06} = 0,038372985$$

$$\frac{Q}{C^{18}} = \frac{1}{26,06} = 0,038372985$$

$$\frac{Q}{C^{19}} = \frac{1}{28,36} = 0,035260931$$

$$\frac{Q}{C^{20}} = \frac{1}{32,82} = 0,035260931$$

$$\frac{Q}{C^{20}} = \frac{1}{32,82} = 0,030469226$$

$$\frac{Q}{C^{21}} = \frac{1}{28,36} = 0,035260931$$

$$\frac{Q}{C^{22}} = \frac{1}{32,82} = 0,030469226$$

$$\frac{Q}{C^{22}} = \frac{1}{25,76} = 0,038819876$$

$$\frac{Q}{C^{24}} = \frac{1}{25,76} = 0,038819876$$

$$\frac{Q}{C^{25}} = \frac{1}{25,76} = 0,038819876$$

 $\frac{Q}{C^{26}} = \frac{1}{22.74} = 0.043975374$

 $\frac{Q}{C^{27}} = \frac{1}{28.14} = 0.035536603$

$$\frac{Q}{C^{28}} = \frac{1}{25,84} = 0,03869969$$

$$\frac{Q}{C^{29}} = \frac{1}{28,14} = 0,035536603$$

$$\frac{Q}{C^{30}} = \frac{1}{25,54} = 0,039154268$$

$$\frac{Q}{C^{31}} = \frac{1}{22,96} = 0,043554007$$

$$\frac{Q}{C^{32}} = \frac{1}{22,96} = 0,043554007$$

$$\frac{Q}{C^{33}} = \frac{1}{28,36} = 0,035260931$$

$$\frac{Q}{C^{34}} = \frac{1}{28,66} = 0,034891835$$

$$\frac{Q}{C^{35}} = \frac{1}{30,02} = 0.033311126$$

$$\frac{Q}{C^{36}} = \frac{1}{35.6} = 0.028089888$$

$$\frac{Q}{C^{37}} = \frac{1}{29.72} = 0.033647376$$

$$\frac{Q}{C^{38}} = \frac{1}{27.42} = 0,03646973$$

$$\frac{Q}{C^{39}} = \frac{1}{30.02} = 0.033311126$$

$$\frac{Q}{C^{40}} = \frac{1}{33.12} = 0.030193237$$

$$\frac{Q}{C^{41}} = \frac{1}{30.32} = 0,03298153$$

$$\frac{Q}{C^{42}} = \frac{1}{27,72} = 0,036075036$$

$$\frac{Q}{C^{43}} = \frac{1}{22,44} = 0,04456328$$

$$\frac{Q}{C^{44}} = \frac{1}{22,74} = 0,043975374$$

$$\frac{Q}{C^{45}} = \frac{1}{30,02} = 0,033311126$$

$$\frac{Q}{C^{46}} = \frac{1}{30,02} = 0,033311126$$

$$\frac{Q}{C^{47}} = \frac{1}{21,08} = 0,04743833$$

$$\frac{Q}{C^{48}} = \frac{1}{28,36} = 0,035260931$$

$$\frac{Q}{C^{50}} = \frac{1}{28,66} = 0,034891835$$

$$\frac{Q}{C^{51}} = \frac{1}{28,14} = 0,035536603$$

$$\frac{Q}{C^{52}} = \frac{1}{27,84} = 0,035536603$$

$$\frac{Q}{C^{53}} = \frac{1}{28,14} = 0,035536603$$

$$\frac{Q}{C^{53}} = \frac{1}{28,14} = 0,035536603$$

$$\frac{Q}{C^{54}} = \frac{1}{28,44} = 0,035161744$$

$$\frac{Q}{C^{55}} = \frac{1}{23,68} = 0,04222973$$

$$\frac{Q}{C^{56}} = \frac{1}{25,56} = 0,039123631$$

$$\frac{Q}{C^{56}} = \frac{1}{25,04} = 0,039936102$$

$$\frac{Q}{C^{59}} = \frac{1}{25,04} = 0,039936102$$

$$\frac{Q}{C^{60}} = \frac{1}{25,04} = 0,039936102$$

$$\frac{Q}{C^{60}} = \frac{1}{25,04} = 0,039936102$$

Dengan berikut, maka diperoleh jejak *pheromone* maksimum terdapat pada jalur ke-1 yaitu sebesar 0,048123195. Yang berarti, jalur ini memiliki tingkat

penguapan *pheromone* yang lebih rendah dibandingkan dengan jalur lainnya. Sehingga semut lebih memilih jalur ini sebagai rute perjalanan menuju sumber makanan. Sedangkan jejak *pheromone* minimum terdapat pada jalur ke-36 yaitu sebesar 0,028089888. Dengan artian bahwa jalur ini memiliki tingkat penguapan *pheromone* yang lebih tinggi. Sehingga jarang semut yang memilih jalur ini sebagai jalur dalam perjalanan menuju sumber makanan.

4.6 Analisis Hasil Perhitungan Dan Pembobotan

Proses pencarian jalur terpendek pada *Ant Colony* yaitu menentukan lokasi yang menjadi tempat penelitian dan simbolisasi, identifikasi nilai awal dan parameter, pembobotan jarak, menentukan jalur perjalanan semut, menentukan nilai rute perjalanan semut, serta analisis hasil akhir dan perhitungan perubahan harga intensitas *pheromone*.

Pada pembobotan jarak, diperoleh diperoleh jarak awal terpendeknya adalah rute d(A,B)=d(B,A) sebesar 2,5 km. Sedangkan jarak awal terjauhnya adalah rute (C,E)=d(E,C) sebesar 9,18 km..

Kemudian nilai jarak yang diperoleh pada pembobotan jarak di implementasikan ke 60 jalur yang diperoleh pada pencarian jalur perjalanan. Sehingga setelah dilakukan perhitungan, maka diperoleh jalur terpendeknya terdapat pada jalur ke-1 yaitu $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FA}$ yang bernilai 20,78 km. Sedangkan jalur terpanjangnya terdapat pada jalur ke 14, 16, 36, 40 memiliki nilai panjang jarak yang sama yaitu 33,12 km. Namun jika dilihat dari segi tingkat penguapan *pheromone*, nilainya tentu berbeda.

Jalur ke-14 memiliki nilai *pheromone* sebesar 0.030193237, jalur ke-16 memiliki nilai *pheromone* sebesar 0.030193237, jalur ke-36 memiliki nilai

pheromone sebesar 0.028089888, dan jalur ke-40 memiliki nilai *pheromone* sebesar 0.030193237. Jalur ke-36 memiliki tingkat penguapan *pheromone* paling tinggi dibandingkan jalur lainnya.

Sehingga secara perhitungan algoritma *Ant Colony* jika dilihat dari tingkat penguapan *pheromone*nya, jalur ini merupakan jalur terpanjang dibandingkan dengan 3 jalur tersebut. Oleh karena *pheromone* pada jalur ke-36 sudah banyak yang menguap, maka koloni semut tidak memilih jalur tersebut sebagai jalur perjalanan menuju sumber makanan. Sehingga dapat disimpulkan bahwa, jalur ke-36 merupakan jalur terpanjang karena rute ini memiliki nilai jarak yang paling besar dibandingkan dengan 60 jalur lainnya.

BAB V

PENUTUP

5.1 Kesimpulan

Penelitian pencarian jalur terpendek Bank Sampah Malang dengan 6 titik dimana 1 titik merupakan kantor Bank Sampah Malang (BSM) Induk sedangkan 5 titik lainnya merupakan BSM Binaan. Dikarenakan fokus penelitian ini adalah jarak terpendek dengan mempertimbangkan nilai *pheromone* dan panjang jalur yang telah diperoleh. Maka dapat disimpulkan bahwa jalur terpendek pada sistem pengangkutan sampah dari BSM Induk ke BSM Binaan adalah jalur ke-1:

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FA}$$

Dengan artian bahwa, truk pengangkut berawal dari titik (A) Bank Sampah Malang menuju ke titik (B) Gading Kasri Gg. 2F No.39. Kemudian dari titik (B) menuju titik (C) Jl. Klampok Kasri. Kemudian dari titik (C) menuju titik (D) Bareng Raya. Selanjutnya dari titik (D) menuju titik (D) Perum Tmn Permata Asri E/12 Sitirejo. Kemudian dari titik (D) menuju titik (D) Jl. Keben II Timur. Kemudian dari titik (D) menuju titik (D) m

Hasil pembobotan jalurnya sebesar 20,78 km, dengan nilai panjang jarak paling kecil dibandingkan dengan 60 jalur lainnya. Jalur ini memiliki tingkat penguapan *pheromone* paling besar yaitu 0,048123195. Dikarenakan semakin tinggi tingkat penguapan *pheromone* berarti tingkat penguapan zat *pheromone* nya sangat rendah. Sehingga dapat disimpulkan bahwa jalur ke-1 merupakan jalur terpendek, karena memiliki nilai tingkat penguapan *pheromone* yang sangat rendah. Maka koloni semut memilih jalur ini sebagai jalur terpendek.

5.2 Saran untuk Penelitian Lanjutan

Diharapkan untuk peneliti selanjutnya untuk dapat menganalisis lebih banyak titik pengangkutan dalam penelitiannya. Serta membandingkan algoritma semut yang lain, demi tercapainya sistem pengangkutan BSM yang lebih baik. Penelitian berikutnya bisa juga diterapkan pada perjalanan lainnya, misalnya distribusi pengiriman barang produksi makanan yang mempunyai masa *expaid' dead* cepat dibandingkan dengan barang produksi yang masa expaidnya lama misalnya perabot rumah tangga. Simulasi perhitungan juga dapat diberikan dengan menggunakan pemrograman dengan harapan dapat menggunakan big data dan memperoleh hasil yang cepat dan akurat.

DAFTAR PUSTAKA

- Abdussakir, Azizah, N.N. & Nofandika, F.F. 2009. *Teori Graf.* Malang: UIN Malang Press.
- Tafsir A;Jazairi, 2007. *Tafsir Al-Qur'an dan Al-Aisar*. Jakarta: Darus Sunnah Press.
- Al-Qur'an Terjemahan. 2015. Department Agama RI. Bandung: CV. Darus Sunnah.
- Bondy, J. A. & Murty, U. S. R. 2008. *Graph Theory*. J. Springer. New York.
- Chartrand, G.& Lesniak, L. 1986. *Graphs and Digraphs Second Edition*. California: a Division of Wadsworth, Inc.
- Chartrand G., Lesniak, L., & Zhang, P. 2016. *Graphs and Digraphs (Sixt Edition)*, Boca Raton: CRC Press.
- Dorigo, M., Maniezzo, V & Colorni, A. 1991. *Positive Feedback as a Search Strategy*. Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano. Milan.
- Dorigo, M. & Gambardella, L. 1996. *Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem*. Tech.Rep/IRIDIA/1996-005. Université Libre de Bruxelles. Belgium.
- Dorigo, M., Maniezzo, V.& Colorni, A. 1996. *The Ant System: Optimization by a Colony of Cooperating Agents*. IEEE Transactions on Systems, Man and Cybernetics-Part B. 26(1):1-13.
- Dorigo, M. & Gambardella, L. M. 1997. *Ant Colonies for the Traveling Salesman Problem*. Tech.Rep/IRIDIA/1996-003. Université Libre de Bruxelles. Belgium.
- Dorigo, Marco and Stützle, Thomas. 2004. *Ant Colony Optimization*. London: MIT Press.
- Lestari, H. P. & Sari, E. R. 2013. Penerapan Algoritma Koloni Semut untuk Optimisasi Rute Distribusi Pengangkutan Sampah di Kota Yogyakarta. J. Sains Dasar. 2(1):13-19.
- Mutakhiroh, I., Saptono, F., Hasanah, N., dan Wiryadinata, R., 2007. *Pemanfaatan Metode Heuristik Dalam Pencarian Jalur Terpendek Dengan Algoritma Semut dan Algoritma Genetik*. Seminar Nasional Aplikasi Teknologi Informasi. ISSN: 1907-5022. Yogyakarta.

Zwaan, S. V. D. & Marques, C. 1999. *Ant Colony Optimisation for Job Shop Scheduling*. Instituto de Sistemas e Robótica (ISR) and Instituto Superior Técnico (IST). Lisbon.

LAMPIRAN

Lampiran 1 Pembobotan Jarak (d_{rs})

_		_							10								10				B 10								0			
NO			Aa	ab	be	eB	Ac	cd	de	Bf	Bg	fC	gC	dk	kj	ji	jh	ih	hC:	kl	lm	lq	Aq	Fq	mE	mn	no	np	Pq	ор	fg	jD
1 8	AB	2.5	1.1	0.55	0.45	0.4	Same?	2022-00			1000		1 80		1 10	970	100		1 1			(4)	10.00	075	1 8			10	00/00/0	XV. 3	2	XX
8		2.7	1000000	11400000	1	0.4	1.3	0.35	0.65		1 6		1 6	-	1 6		1 6	-	1 6		8 8		\$ 60		1 6		1 6	- 3	1 6	-	1 6	
2	AC	4.3	1.1	0.55	0.45	0.4				0.6		1.2																				
200		4.15	1.1	0.55	0.45	0.4	10 00		ME 88	0.6	1 33		0.75		£ 39		į ()		()		1 8		((i)		1 0		£ 8		į (j		0.3	
		4.2	1.1	0.55	0.45	0.4					0.95		0.75																			
8		5.23	1.1	0.55	0.45		1 30		0.65		1 9		100	0.45	0.28		1.1		0.65		1 9		E 93		1 33		8 6	- 3	£ 8		£ 6	
100		5.41	1.1	0.55	0.45		1 3		0.65				1 3	0.45	0.28	1		0.28	0.65		8		8		1 8		8		3 3		8 8	
		4.5				0.4	1.3	0.35	0.65	0.6		1.2																				
8		4.35	8 8		8 8	0.4	1.3	0.35	0.65	0.6	1		0.75		§ §		8	- 7	5 33		8 8		6 8		1 3		8 8	- 7	8 8	- 0	0.3	
8		4.4	8 8		8 8	0.4	1.3	0.35	0.65	25,000	0.95		0.75	- 3	3 6	- 3	8 8	- 3	3 6		8 8	- 3	3 8		1 6		8 8	- 3	§ 8		1	
		4.13					1.3	0.35						0.45	0.28		1.1		0.65													
Ē		4.31			1 18		1.3	0.35			1 13			0.45	0.28	1		0.28	0.65		1 2		0.00		1 8		6 8		6 8		8	
3	AD	4.18	1.1	0.55	0.45				0.65					0.45	0.28	- 2.2									-						_	0.7
9		3.08	(6)		0		1.3	0.35	18 0		1 0		8 8	0.45	0.28		(0)		()		8 (8)		(0)		£ (0		(i)	- 3	(5)		2 (0)	0.7
4	AE	6.85	9		9		1000	200-000			9		0 0	2000000	Server S		9		9		3	2.3	1.3		0.25		8		3 8		9	9000
		5.95						_															1.3		0.25	0.6		2.7	1.1			
		5.35	5 8		8 8		8		1 8		8 8		8 8		5 3		8 8		8 8		9		1.3		0.25	0.6	0.8			1.3	9 8	
-5	AF	1.65	1 8		8		1 8		1 8		1 8		8		3 8				3 8		8		1.3	0.35	7	100000	2 200			10000	1 7	
6	BC	1.8					-			0.6	-	1.2	-								-			0.00	-				-		-	
		1.65	77		8		8 8	_	8 8	0.6	8 8	- 1.2	0.75		8 88		1 18		8 88		1 1		2 12		1 72		8 8		8 88		0.3	
-		1.7	- 2		- 2		- 2	_	1	0.0	0.95	_	0.75		- 2				- 2				- 2		- 2		- 2		- 2		0.0	
7	BD	4.1	8 70		3 80		3 30	_	8 8	0.6	0.05		0.75		3 30		1.1	-	0.65	-	8 70		3 70		3 30		3 70		3 30	_	0.3	0.7
- 5		2.48				0.4		_	0.65	0.0			0.15	0.45	0.28		1.1		0.05		1								1 1	_	0.0	0.7
8	BE	7.85	1.1	0.55	0.45	0.4	8 6	_	0.03		8 38	_	30	0.45	0.20		k (6)		2		8 (8		1.3		0.25	0.6	0.8	_	1.1	1.3	8 (8)	0.1
	DE	8.05	2,6400	0.55	0.45	0.4	1.3	0.35	0.65		3 9	_	8 9	-	8 99	-	8 60		8 99	_	8 9	-	1.3	_	0.25	0.6	0.8	_	1.1	1.3	8 99	
-		8.65	- 8	_		0.4	1.0	0.35	0.65	_	1 8	_		0.45	3 8	_		_	2 2	3.9	3	_	1.0	_	0.25	0.6	0.0	-	1.1	1.0		
	BF	4.15	1.1	0.55	0.45	0.4	2 0	-	0.65	-	2 0	_	2 0	0.45	2 9		V V		2 9	3.3	3		1.3	0.35			2 9		2 5	_	3 0	
9	DF	4.35	SILLS	0.55	0.45		40	0.05	0.05	-	3 33	-	9	_	3 33		3 39		3 59		2 3	_				_	3 33	_	3 33	_	3 3	
-	CD	2.63	S 23		3 3	0.4	1.3	0.35	0.65	_	20	_	- 3		20		- 3	0.28	0.05		- 0		1.3	0.35			3 3		- 33		33	0.7
10	CD				2 20			-				_				1	- 44	0.28	0.65				2 20				2 20				2 20	
	CE	2.45 9.65	-				2	-	1 5		5 3	1.0	2		5 8	_	1.1		0.65		5	-	4.6		0.25		-	_		4.6	5	0.7
11	UE		1.1	0.55	0.45	0.4	2 3		. 8	0.6	2 3	1.2	8 33				2 35	-			8 8		1.3			0.6	0.8	-	1.1	1.3	3 3	
		9.48					1.3	0.35		-	_				0.28		1.1		0.65		_		1.3		0.25	0.6	0.8		1.1	1.3		
2		9.5	1.1	0.55	0.45	0.4	8			0.6			0.75		Section 2		12000		1 200		8		1.3		0.25	0.6	0.8		1.1	1.3	0.3	
- 0		9.18	9		(0)		0		13 0		3 0		3 60		0.28		1.1		0.65	3.9	3		3 0		0.25		3 0		1 0		9	
12	CF	5.78	-			170.00	1.3	0.35	-					0.45	0.28		1.1		0.65				1.3	0.35								
		5.8	1.1	0.55	0.45	0.4	3		1 8	0.6	3		0.75		\$ 9				\$ 39		1 8		1.3	0.35	3		0 0				0.3	
		5.95	1.1	0.55	0.45	0.4				0.6		1.2											1.3	0.35								
13	DE	8.13	<u></u>		8 0		2	DATE:	1 9		8 9		8 6	manual)	0.28		8		3 9	3.9	3		2		0.25	2000	2		9	0200	5 6	0.7
		8.43	8 8		3		1.3	0.35			9			0.45	0.28		3		9 9		1 0 3		1.3		0.25	0.6	0.8		1.1	1.3		0.7
14	DF	4.73					1.3	0.35						0.45	0.28								1.3	0.35								0.7
9		5.83	1.1	0.55	0.45		8		0.65		8 8		8 8	0.45	0.28		8	- 1	8 8		8 8		1.3	0.35	1	150000	9.00	1	99	10000	9 (8)	0.7
15	EF	4.4	100000	110011000			1 6		1		8 6		8 6	11044.555	(£ 6		3 6		8 8		1	0.35	0.25	0.6	0.8		1.1	1.3	1 6	20015
		5																						0.35	0.25	0.6		2.7	1.1			
8		5.9	1 2		1 2		1 2				2		1 3		4 3		1 27	1	§ 23		3	2.3	1 2	0.35	0.25		1 10	1	1 2	- 1	4 2	

Lampiran 2 Panjang Rute (C_k)

		АВ	AC	AD	AE	AF	ВС	BD	BE	BF	CD	CE	CF	DE	DF	EF
C1	20.78	2.5				1.65	1.65				2.45			8.13		4.4
C2	21.08	2.5			5.35		1.65				2.45				4.73	4.4
C3	27.84	2.5				1.65	1.65					9.18		8.13	4.73	,
C4	25.54	2.5		3.08			1.65	8				9.18			4.73	4.4
C5	28.14	2.5			5.35		1.65						5.78	8.13	4.73	,
C6	25.54	2.5		3.08			1.65	8					5.78	8.13		4.4
C7	22.66	2.5				1.65		2.48			2.45	9.18				4.4
C8	22.96	2.5			5.35			2.48			2,45		5.78			4.4
C9	29.72	2.5				1.65		2.48				9.18	5.78	8.13		,
C10	27.42	2.5	4.13					2.48					5.78	8.13		4.4
C11	30.02	2.5			5.35			2.48				9.18	5.78		4.73	,
C12	27.42	2.5	4.13					2.48				9.18			4.73	4.4
C13	28.36	2.5				1.65			7.85		2.45	9.18			4.73	,
C14	33.12	2.5		3.08					7.85			9.18	5.78		4.73	
C15	28.36	2.5				1.65			7.85		2.45		5.78	8,13		,
C16	33.12	2.5	4.13						7.85				5.78	8.13	4.73	
C17	26.06	2.5		3.08					7.85		2.45		5.78			4.4
C18	26.06	2.5	4.13					3	7.85		2.45				4.73	4.4
C19	28.36	2.5			5.35					4.15	2.45		5.78	8.13		,
C20	32.82	2.5		3.08			i i			4.15		9.18	5.78	8.13		
C21	28.36	2.5			5.35					4.15	2.45	9.18			4.73	,
C22	32.82	2.5	4.13							4.15		9.18		8.13	4.73	
C23	25.76	2.5		3.08						4.15	2.45	9.18				4.4
C24	25.76	2.5	4.13				<u> </u>	-		4.15	2.45			8.13		4.4
C25	22.44		4.13			1.65	1.65	2,48	- 0					8.13		4.4
C26	22.74		4.13		5.35		1.65	2.48							4.73	4.4
C27	28.14		4.13			1.65	1.65		7.85					8.13	4.73	
C28	25.84		4.13	3.08			1.65		7.85						4.73	4.4
C29	28.14		4.13		5,35		1.65			4.15				8.13	4.73	
C30	25.54		4.13	3.08			1.65			4.15				8.13		4.4
C31	22.96		4.13			1.65		2.48	7.85		2,45					4.4
C32	22.96		4.13		5.35			2.48		4.15	2.45					4.4
C33	28.36		4.13			1.65			7.85	4.15	2.45			8.13		,

1	~	1
•	^	J

4000	22/00														
C34	28.66	4.13		5.35				7.85	4.15	2.45				4.73	/
C35	30.02	4.13			1.65		2.48	7.85			9.18			4.73	
C36	33.12	4.13	3.08					7.85	4.15		9.18			4.73	
C37	29.72	4.13			1.65		2.48		4.15		9.18		8.13		
C38	27.42	4.13	3.08				2.48		4.15		9.18				4.4
C39	30.02	4.13		5.35	9	9	2.48	9	4.15		j.	5.78	8.13		
C40	33.12	4.13	3.08					7.85	4.15			5.78	8.13		
C41	30.32	4.13	ĵ	5.35	9		2.48	7.85		S		5.78		4.73	
C42	27.72	4.13	3.08				2.48	7.85				5.78			4.4
C43	22.44	3	3.08	5	1.65	1.65	2.48	9		8	9.18	6)		4.4
C44	22.74		3.08	5.35		1.65	2.48					5.78			4.4
C45	30.02		3.08	21	1.65		2.48	7.85	29	4	9.18	5.78	3	3	
C46	30.02		3.08	5.35			2.48		4.15		9.18	5.78			
C47	21.08		3.08	2	1.65	1.65	9	7.85	2	2.45		4			4.4
C48	21.08		3.08	5.35		1.65			4.15	2.45					4.4
C49	28.36		3.08		1.65			7.85	4.15	2.45	9.18	i.e			
C50	28.66		3.08	5.35				7.85	4.15	2.45	28	5.78			
C51	28.14		3.08		1.65	1.65		7.85				5.78	8.13		
C52	27.84		3.08		1.65	1.65			4.15		9.18		8.13		
C53	28.14		3.08	5.35		1.65			4.15		9.18			4.73	
C5 4	28.44		3.08	5.35		1.65		7.85				5.78		4.73	
C55	23.68			5.35	1.65	1.65		7.85		2.45				4.73	
C56	25.56			5.35	1.65		2.48	7.85		2.45		5.78			
C57	25.04			5.35	1.65	1.65	2.48				9.18			4.73	
C58	25.26			5.35	1.65		2.48		4.15	2.45	9.18				
C59	25.04			5.35	1.65	1.65	2.48					5.78	8.13		
C68	23.38			5.35	1.65	1.65			4.15	2.45			8.13		

Lampiran 3 Nilai *Pheromone* $(\Delta \tau_{rs})$

	Q	2	
0.048123195	1	20.78	C1
0.04743833	1	21.08	C2
0.03591954	1	27.84	C3
0.039154268	1	25.54	C4
0.035536603	1	28.14	C5
0.039154268	1	25.54	C6
0.044130627	1	22.66	C7
0.043554007	1	22.96	C8
0.033647376	1	29.72	C9
0.03646973	1	27.42	C10
0.033311126	1	30.02	C11
0.03646973	1	27.42	C12
0.035260931	1	28.36	C13
0.030193237	1	33.12	C14
0.035260931	1	28,36	C15
0.030193237	1	33.12	C16
0.038372985	1	26.06	C17
0.038372985	1	26.06	C18
0.035260931	1	28.36	C19
0.030469226	1	32.82	C20
0.035260931	1	28.36	C21
0.030469226	1	32.82	C22
	0.04743833 0.03591954 0.039154268 0.035536603 0.039154268 0.044130627 0.043554007 0.03646973 0.03646973 0.035260931 0.030193237 0.035260931 0.030193237 0.038372985 0.038372985 0.035260931 0.030469226 0.035260931	0.048123195 1 0.04743833 1 0.03591954 1 0.039154268 1 0.039154268 1 0.044130627 1 0.043554007 1 0.033647376 1 0.03646973 1 0.03646973 1 0.035260931 1 0.035260931 1 0.038372985 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1 0.035260931 1	0.048123195 1 20.78 0.04743833 1 21.08 0.03591954 1 27.84 0.039154268 1 25.54 0.039154268 1 25.54 0.044130627 1 22.66 0.043554007 1 22.96 0.033647376 1 27.42 0.033311126 1 30.02 0.03646973 1 27.42 0.035260931 1 28.36 0.030193237 1 33.12 0.035260931 1 28.36 0.038372985 1 26.06 0.038372985 1 26.06 0.035260931 1 28.36 0.035260931 1 28.36 0.035260931 1 28.36 0.035260931 1 28.36 0.035260931 1 28.36 0.035260931 1 28.36 0.035260931 1 28.36

Q23	0.038819876	1	25.76	C23
Q24	0.038819876	1	25.76	C24
Q25	0.04456328	1	22.44	C25
Q26	0.043975374	1	22.74	C26
Q27	0.035536603	1	28.14	C27
Q28	0.03869969	1	25.84	C28
Q29	0.035536603	1	28.14	C29
Q30	0.039154268	1	25.54	C30
Q31	0.043554007	1	22.96	C31
Q32	0.043554007	1	22.96	C32
Q33	0.035260931	1	28.36	C33
Q34	0.034891835	1	28.66	C34
Q35	0.033311126	1	30.02	C35
Q36	0.028089888	1	35.6	C36
Q37	0.033647376	1	29.72	C37
Q38	0.03646973	1	27.42	C38
Q39	0.033311126	1	30.02	C39
Q40	0.030193237	1	33.12	C40
Q41	0.03298153	1	30.32	C41
Q42	0.036075036	1	27.72	C42
Q43	0.04456328	1	22.44	C43
Q44	0.043975374	1	22.74	C44

Q45	0.033311126	1	30.02	C45
Q46	0.033311126	1	30.02	C46
Q47	0.04743833	1	21.08	C47
Q48	0.04743833	1	21.08	C48
Q49	0.035260931	1	28.36	C49
Q50	0.034891835	1	28.66	C50
Q51	0.035536603	1	28.14	C51
Q52	0.03591954	1	27.84	C52
Q53	0.035536603	1	28.14	C53
Q54	0.035161744	1	28.44	C54
Q55	0.04222973	1	23.68	C55
Q56	0.039123631	1	25.56	C56
Q57	0.039936102	1	25.04	C57
Q58	0.039588282	1	25.26	C58
Q59	0.039936102	1	25.04	C59
Q60	0.0427716	1	23.38	C60

Lampiran 4 Jadwal Pengambilan BSM

	JADWAL PENGAMBILAN HARI SENIN/ 25-01-2021											
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER							
1	M-513	Evi Triana	Perum IKIP Tegalgondo Asri blok 3F	085289772338								
2	M-013	Siti Fatimah	Jl.Klampok Kasri Rt.8	081232423040								
3	M-637	Yayuk Eko	Jl.Babatan RT 4 RW 3 Arjowinangun	081336009495	PAGI							
4	M-641	Sri Wulaningsih	Jl.Keben II Timur (Jl. Keben II, Bandungrejosari, Kec. Sukun, Kota Malang, Jawa Timur 65148)	085277775086								
5			Sakari, Kota Maiaris, Jawa Illiui (55146)									

	JADWAL PENGAMBILAN HARI SELASA/ 26-01-2021											
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER							
1	M-14	Sukarmi	Gading Kasri Gg. 2F No.39 (Gading Kasri Gg. 2F No.39)	082141791565	PAGI							
2	M-15	Khoirul Huda	Jl.Klampok Kasri (Jl. Klampok Kasri, Gading Kasri, Kec. Klojen, Kota Malang, Jawa Timur 65115)	081331643381								
3	I-1327	Kukuh	Bareng Raya (Bareng, Kec. Klojen, Kota Malang, Jawa Timur)	089679495660								
4	I-1490	Sumiyati	Jl.Mergan Raya Gg.10 No.54	-								
5												

	•	١.	•
		,	١,
	ī		
		L.	

	JADWAL PENGAMBILAN HARI RABU/ 27-01-2021					
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER	
1	M-410	Khairani Dewi	Perum Tmn Permata Asri E/12 Sitirejo (Jl. Taman Permata Asri, Lemah Duwur, Sitirejo, Kec. Wagir, Malang, Jawa Timur 65158)	085855977313	PAGI	
2	I-1765	Wiwin	Raya Sumbersari 287 A	081944817163		
3	M-017	Yosephine	Jl.Klampok Kasri 2C	081334771753	PAGI	
4						
5						

	JADWAL PENGAMBILAN HARI KAMIS/ 28-01-2021						
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER		
1	I-816	M.Syarif	Metro Swalayan 1 2 3	081333763680			
2	M-436	Sumarah Noor	Graha Sejahtera Residence(Samping Masjid Ar Rifahah) Jl Tirto Mulyo Landungsari	081233557519	PAGI		
3							
4							
5							

JADWAL PENGAMBILAN HARI JUMAT/ 29-01-2021

NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER
1	I-1748	Ardarina	Jl.Tangerang	081358097589	PAGI
2	M-230	Yusuf Karyawan	Jl. Bandara Eltari 5 Blok Vo 21	085707385462	
3	M-634	Moh. Khosen	Jl. Baran Tempuran Rt.02 Rw.06 Cemorokandang	085889541398	
4	M-276	Pak Djoko	Jl.Hamid Rusdi Gg.6B	081805176974	PAGI
5					

	JADWAL PENGAMBILAN HARI SABTU/ 30-01-2021						
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER		
1	M-57	Ali HS	Jl.Pulosari	082232792809			
2	M-496	Farida	Jl. Raya Wagir 8 Wagir Depan Pasar Baru	0881026888989	PAGI		
3	M-635	Wahyudiono	Jl.Sampurna No.A03 RT02 RW02 CemoroKandang	081278083122	PAGI		
4	M-245	Tri Agustini	Jl.Sawojajar IX	085790998832			
5	M-198	Filih Dewi	Danau Maninjau dlm 5 B2 E8 Sawojajar	085334536971			

Lampiran 5 Jadwal Pengambilan BSM

		JAI	DWAL PENGAMBILAN HARI KAMIS/ 04-02-2021		
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER
1	M-000	Indah Wulandari	JI Klayatan Ga 2 RT 1a		Pagi
2			0 10 10 10 10 10 10 10 10 10 10 10 10 10		
3					
4					
5					
		JAI	DWAL PENGAMBILAN HARI JUMAT/ 05-02-2021		
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVER
1	1-1792	Tjatur Indi	Jl.Kapi Sraba XI 10 H No.3	085103014189	PAGI
2	M-487	Ernita	Jl.Ikan Arwana M1b	08885815829	
3	M-617	Taufan	JI- Kemayoran III /AE 7	0815532563	07
4	M-507	Ayukerti	Il Kapiman kasti sawajojan		
5	M-176	Riyama	' Kampung Putih		
		-	DWAL PENGAMBILAN HARI SABTU/ 06-02-2021		
NO	NO. REK	NAMA	ALAMAT	NO. HP	DRIVE
1	M-043	Diana	JI.I R Rais Gang 2 No.32	085330667544	
2	M-083	Sumiati	Jl.Jombang Gg3 No.22	081249970608	PAGI
3	M-378	Amel	JI.LA Sucipto Gg.Makam	087859410696	
4	M-567	Chelsea Fernandes	JI.Terusan Batubaa VB	081333381804	PAGI
5					

RIWAYAT

Ardi Muliawan dilahirkan di Bima pada tanggal 02 Desember 1997, anak pertama dari lima bersaudara, pasangan Bapak Abdul Khalik dan Ibu Arinah. Pendidikan dasar ditempuh di SDN 02 Ngali, Kecamatan Belo, Kabupaten Bima, Nusa Tenggara Barat (NTB) yang

ditamatkan pada tahun 2006. Pada tahun yang sama Penulis melanjutkan pendidikan menengah pertama di SMPN 1 Belo. Pada tahun 2009 dia menamatkan pendidikan menengah pertamanya, kemudian melanjutkan pendidikan menengah atas di SMAN 1 Woha di tempat yang sama dan menamatkan pendidikan tersebut pada tahun 2015. Pendidikan berikutnya Penulis tempuh di Universitas Islam Negeri Maulana Malik Ibrahim Malang melalui jalur Mandiri dengan mengambil Program Studi Matematika Fakultas Sains dan Teknologi.

KEMENTERIAN AGAMA RI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG FAKULTAS SAINS DAN TEKNOLOGI

Jl. Gajayana No. 50 Dinoyo Malang Telp./Fax.(0341)558933

BUKTI KONSULTASI SKRIPSI

Nama

: Ardi Muliawan

NIM

15610124

Fakultas/Jurusan

Sains dan Teknologi/Matematika

Judul Skripsi

Penerapan Algoritma Ant Colony untuk Menentukan

Jalur Terpendek di Bank Sampah Malang

Pembimbing I

: Evawati Alisah, M.Pd

Pembimbing II

Juhari, M.Si

No	Tanggal	Hal	TandaTangan	
1	8 Maret 2022	Konsultasi dan Revisi Bab I	1. 6.	
2	11 Maret 2022	Konsultasi Integrasi Bab I, Bab II dan Bab IV		2. ap
3	16 April 2022	Konsultasi dan Revisi Bab II dan III	3. 4.	
4	20 April 2022	Konsultasi dan Revisi Bab IV		4. 4.
5	7 Mei 2022	Revisi Agama Bab I, Bab II dan Bab IV	5.	
6	12 Mei 2022	Revisi Bab I, II dan III		6. 20.
7	15 Mei 2022	Revisi Integrasi	7. 20.	1
8	19 Juni 2022	Revisi Bab IV	+	8. 80.
9	21 Juni 2022	ACC Bab IV	9. 49.	1
10	21 Juni 2022	ACC Integrasi	1	10.7
11	21 Juni 2022	ACC Keseluruhan	11. 50.	0

Malang, 23 Juni 2022

Mengetahui,

Ketua Program Studi Matematika

Dr. Elly Susanti, M. Sc

NIP. 19741129 200012 2 005