請分別上傳

- 1. 程式碼;
- 2. 前三維 MFCC, Delta MFCC, Double Delta MFCC的圖

作業11

第三章MFCC作業

檔名格式: 作業_學號;例如: HW11_B10400001

(大寫英文字母)

作業說明

- 首先,使用librosa將hello.wav抽取出前13維的MFCC 反頻譜特徵(cepstral coefficients)
 - 如果你的系統內沒有librosa,可自行安裝:pip install librosa
- 根據講義上的公式 (p=4),計算出Delta MFCC、double Delta MFCC。
- 繪出前三維的 MFCC, Delta MFCC, 以及Double Delta MFCC; 並說明:
 - A. Delta MFCC 曲線如何反應出MFCC 的變化趨示。
 - B. Double Delta MFCC 曲線如何反應出Delta MFCC 的變化趨示。
- 繳交:
- 1. 程式碼;
- 2. 前三維 MFCC, Delta MFCC, Double Delta MFCC的圆(如下頁所示)

- p=4
- **注意**: $y_t(j)$, $\Delta y_t(j)$, $\Delta^2 y_t(j)$ 的前p個和最後p個數值均設為0 (因為這些點無法取得完整的 $m = -p \sim p$ 的數值)

$$y_t(j)$$

$$\Delta y_t(j) = \frac{\sum_{m=-p}^{p} m \cdot y_{t+m}(j)}{\sum_{m=-p}^{p} m^2}$$

$$\Delta^{2} y_{t}(j) = \frac{\sum_{m=-p}^{p} m \cdot \Delta y_{t+m}(j)}{\sum_{m=-p}^{p} m^{2}}$$

使用Librosa實現的MFCC函式

• 以下為librosa實作之MFCC函式的用法

import librosa as lb

mfcc=lb.feature.mfcc(y,sr,n_mfcc=n_mfcc,n_fft=int(n_fft),hop_length=int(hop_length))

#紅字部分請自行更改

- 1. y為浮點型態的音訊資料。為確保資料y為浮點型態,請先將讀入的音訊資料進行正規 化處理(使用第二章所提的Absolute Scaling正規化)
- 2. sr為原始音訊檔的取樣頻率(sample/s)
- 3. n_mfcc為MFCC的個數,請取13維(即:n_mfcc=13)
- 4. n_fft為frame size , 請取25ms時間長度的樣本數 (即: n_fft=int(sr*0.025))
- 5. hop_length為frame shift , 請取10ms時間長度的樣本數 (即:hop_length=int(sr*0.01))