Machine Vision

October 9, 2018

1 Lecture 1

Bernoulli Distribution

$$Pr(x) = \lambda^x (1 - \lambda)^{1-x}, \lambda \in [0, 1], x \in \{0, 1\}$$

$$Pr(x) = Bern_x[\lambda]$$

Beta Distribution

$$Pr(\lambda) = \frac{\Gamma[\alpha + \beta]}{\Gamma[\alpha]\Gamma[\beta]} \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1}, \alpha, \beta > 0$$
$$\Gamma(z) = \int_0^\infty t^{z - 1} c^{-t} dt = (z - 1)!$$
$$E[\lambda] = \frac{\alpha}{\alpha + \beta}$$
$$B(p, q) = \frac{q - 1}{p + q + 1} B(p, q - 1)$$

 α, β decide the coin fact λ

Categorical Distribution

$$Pr(x = k) = \lambda_k$$

$$Pr(x) = Cat_x[\lambda]$$

Dirichlet Distribution

$$Pr(\lambda_1 \dots \lambda_K) = \frac{\Gamma[\sum_{k=1}^K]\alpha_k}{\prod_{k=1}^K \Gamma[\alpha_k]} \prod_{k=1}^K \lambda_k^{\alpha_k - 1}$$
$$Pr(\lambda_1 \dots \lambda_K) = \text{Dir}_{\lambda_1 \dots \lambda_K} [\alpha_1, \alpha_2 \dots, \alpha_K]$$

Univariate Normal Distribution

$$Pr(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp[-0.5(x-\mu)^2/\sigma^2]$$
$$Pr(x) = \text{Norm}_x[\mu, \sigma^2]$$

Normal Inverse Gamma Distribution

$$Pr(\mu, \sigma^2) = \frac{\sqrt{\gamma}\beta^{\alpha}}{\sigma\sqrt{2\pi}\Gamma[\alpha]} (\frac{1}{\sigma^2})^{\alpha+1} \exp[-\frac{2\beta + \gamma(\delta - \mu)^2}{2\sigma^2}]$$
$$Pr(\mu, \sigma^2) = \text{NormInvGam}_{\mu, \sigma^2}[\alpha, \beta, \gamma, \delta]$$

Multivariate Normal Distribution

$$Pr(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\sum_{k=1}^{T} |1/2|} \exp[-0.5(\mathbf{x} - \mu)^T \sum_{k=1}^{T} 1(\mathbf{x} - \mu)]$$

Normal Inverse Wishart

$$Pr(\mu, \Sigma) = \frac{\gamma^{D/2} |\Psi|^{\alpha/2} |\Sigma|^{-\frac{\alpha+D+2}{2}}}{(2\pi)^{D/2} 2^{\frac{\alpha D}{2}} \Gamma_D(\frac{\alpha}{2})} \exp\{-\frac{1}{2} (Tr(\Psi \Sigma^{-1})) + \gamma(\mu - \delta)^T \Sigma^{-1} (\mu - \delta)\}$$

Conjugate Distribution and Conjugate prior

Conjugate Distribution is between prior and posterior

Prior is the conjugate prior of the likelihood function.