

TEXHOATOM X

Задачи классификации и регрессии

Лекция 2

Иван Горбань

Преподаватель

Иван Горбань
Руководитель команды
Гео и Ритейл
BigData MegaFon

План занятия:

- 1. Задачи регрессии и классификации.
- 2. Bias-Variance tradeoff.
- 3. Методы:
 - a. kNN
 - b. Наивный Байес
 - с. Линейная регрессия
 - d. Логистическая регрессия
 - е. Регуляризация
- 4. Практика

Регрессия и классификация:

Регрессия и классификация:

- $Y = f(X) + \epsilon$ Общая форма для записи данных. Целевая переменная является некоторой функцией от X плюс ошибка.
- $\hat{Y} = \hat{f}(X)$ оценка целевой переменной посредством оценки функции f.
- $igl\phi$ В задаче регрессии $Y \in \mathbb{R}$
- ullet В задаче классификации $Y \in \{1, \dots, M\}$

Задача регрессии:

	Признаки (Features)								Target
	Площадь, м^2	Число комнат	Расстояние до центра, км	Новостройка	Наличие балкона	Время до метро, мин	Этаж	Высота потолков, м	Стоимость
Train -	36	1	36	1	0	14	5	2	3 321000
	56	2	4	0	0	3	3	4	13 000 000
	41	1	28	0	1	13	23	2.3	8 020 000
	148	4	13	1	1	7	3	5	21412 000
Test -	52	3	41	1	1	53	35	2.8	?

Два слова o train-test split

В процессе построения модели данные часто делят на две или три части:

Два слова o train-test split

В процессе построения модели данные часто делят на две или три части:

- Train
- Validation
- [Test]

Два слова o train-test split

В процессе построения модели данные часто делят на две или три части:

- Train
- Validation
- [Test]

Зачем?

Bias-variance tradeoff

Bias-variance tradeoff

#0 11

Непараметрический метод, требующий минимальное число предположений о характере функции f.

• Для регрессии:

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

• Для классификации:

$$\hat{p}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

• Какие проблемы могут возникнуть?

• Какие проблемы могут возникнуть?

■ Выбор k

• Какие проблемы могут возникнуть?

• Выбор k

Выбор метрики близости

• Какие проблемы могут возникнуть?

• Выбор k

Выбор метрики близости

• Скорость вычислений

• Какие проблемы могут возникнуть?

Выбор к

Выбор метрики близости

Скорость вычислений

• Проклятие размерности

Наиболее частым является использование Minkowski distance в качестве меры близости объектов:

$$\operatorname{dist}(\mathbf{x}, \mathbf{z}) = \left(\sum_{r=1}^{d} |x_r - z_r|^p\right)^{1/p}$$

Наиболее частым является использование Minkowski distance в качестве меры близости объектов:

$$\operatorname{dist}(\mathbf{x}, \mathbf{z}) = \left(\sum_{r=1}^{d} |x_r - z_r|^p\right)^{1/p}$$

Как называется данная метрика:

• При р=1?

Наиболее частым является использование Minkowski distance в качестве меры близости объектов:

$$\operatorname{dist}(\mathbf{x}, \mathbf{z}) = \left(\sum_{r=1}^{d} |x_r - z_r|^p\right)^{1/p}$$

Как называется данная метрика:

- При р=1?
- При р=2?

Наиболее частым является использование Minkowski distance в качестве меры близости объектов:

$$\operatorname{dist}(\mathbf{x}, \mathbf{z}) = \left(\sum_{r=1}^{d} |x_r - z_r|^p\right)^{1/p}$$

Как называется данная метрика:

- При p=1?
- При р=2?
- При $p \to \infty$?

В чем состоит проклятие размерности для kNN?

В чем состоит проклятие размерности для kNN?

Расстояние до ближайшего соседа растет с ростом размерности.

В чем состоит проклятие размерности для kNN?

- Расстояние до ближайшего соседа растет с ростом размерности.
- По этой причине, растет bias нашей оценки.

В чем состоит проклятие размерности для kNN?

- Расстояние до ближайшего соседа растет с ростом размерности.
- ▶ По этой причине, растет bias нашей оценки.
- Более того, с ростом размерности основная масса данных при определенных допущениях распределяется по поверхности гиперсферы, что делает ближайших соседей практически неотличимыми от дальних.

Проклятие размерности
$$\lim_{d \to \infty} rac{\mathrm{dist_{max}} - \mathrm{dist_{min}}}{\mathrm{dist_{min}}} o 0$$

Naïve Bayes Classifier

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Thomas Bayes 1702 - 1761

Используется для классификации

- Преимущества:
 - Скорость
 - Малое число гиперпараметров
 - Успешно работает в многомерных пространствах

Naïve Bayes Classifier

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Thomas Bayes 1702 - 1761

Используется для классификации

- Преимущества:
 - Скорость
 - Малое число гиперпараметров
 - Успешно работает в многомерных пространствах
- Недостатки:
 - Наивность

Пусть у нас бинарная классификация.

1. Предполагаем распределение наших признаков (например, нормальное).

$$P(x_i) \sim N(m_i, \sigma_i)$$

2. Используя bayes rule записываем:

$$P(y|X) = \frac{P(X|y)P(y)}{P(X)}$$

здесь
$$X = \{x_1, x_2, \dots, x_m\}$$

Главное допущение, которое делается далее (наивность) – взаимная независимость признаков. То есть:

$$P(X) = P(x_1 \cdot \dots \cdot x_m) = P(x_1) \cdot \dots \cdot P(x_m)$$

Главное допущение, которое делается далее (наивность) – взаимная независимость признаков. То есть:

$$P(X) = P(x_1 \cdot \ldots \cdot x_m) = P(x_1) \cdot \ldots \cdot P(x_m)$$

Отсюда переходим к финальной проблеме:

$$\hat{y} = arg \max_{y} \frac{P(X|y)P(y)}{P(X)} =$$

$$= arg \max_{y} P(X|y)P(y) =$$

$$= arg \max_{y} P(y) \prod_{i} P(x_{i}|y)$$

Далее для численной стабильности желательно перейти к логарифмам:

$$\hat{y} = arg \max_{y} \left\{ \ln(P(y)) + \sum_{i} \ln(P(x_i|y)) \right\}$$

Bottomline:

Необходимо быть внимательным к распределениям переменных!

Linear models. Постановка задачи.

Случай двух переменных:

Linear models. Постановка задачи.

Случай двух переменных:

Пусть модель распределения данных линейна по параметрам и имеет вид:

$$y = \beta_0 + \beta_1 x + \epsilon$$

Linear models. Постановка задачи.

О Пусть есть одна целевая переменная у и k признаков x₁, . . . , xk.
 Тогда линейная модель имеет вид:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

Linear models. Постановка задачи.

О Пусть есть одна целевая переменная у и к признаков х₁, . . . , хк.
 Тогда линейная модель имеет вид:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

Наша задача - получить оценку параметров модели β_і
 В итоге мы хотим получить уравнение:

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_k}x_k$$

Пусть имеется переменная – затраты абонента на связь. Есть распределение затрат по абонентам.

Пусть имеется переменная – затраты абонента на связь. Есть распределение затрат по абонентам.

Один из параметров, интересующих нас – матожидание:

$$E(y) = \int_{-\infty}^{\infty} u f(u) du$$

#039

Рассмотрим влияние различных переменных на затраты (пол, возраст и т.д.). Тогда можем рассмотреть условное матожидание при различных значениях этих параметров:

$$E(y|sex = man, age = 24, education = higher, ...) = ...$$

Рассмотрим влияние различных переменных на затраты (пол, возраст и т.д.). Тогда можем рассмотреть условное матожидание при различных значениях этих параметров:

$$E(y|sex = man, age = 24, education = higher, ...) = ...$$

Можем записать условное матожидание в общем виде:

$$E(y|x_1, x_2, ..., x_k) = m(x_1, x_2, ..., x_k) = m(\mathbf{x})$$

Рассмотрим влияние различных переменных на затраты (пол, возраст и т.д.). Тогда можем рассмотреть условное матожидание при различных значениях этих параметров:

$$E(y|sex = man, age = 24, education = higher, ...) = ...$$

Можем записать условное матожидание в общем виде:

$$E(y|x_1, x_2, ..., x_k) = m(x_1, x_2, ..., x_k) = m(\mathbf{x})$$

т(х) можно представить в виде:

$$m(\mathbf{x}) = E(y|\mathbf{x}) = \int_{-\infty}^{\infty} f(y|\mathbf{x})dy$$

Linear models. CEF error.

Определим понятие CEF error как:

$$e = y - m(\mathbf{x})$$

Linear models. Prediction error.

• Введем понятие ошибки предсказания:

$$E((g(\mathbf{x}) - y)^2)$$

Linear models. Prediction error.

• Введем понятие ошибки предсказания:

$$E((g(\mathbf{x}) - y)^2)$$

Можно утверждать, что для любой g(x):

$$E((g(\mathbf{x}) - y)^2) \ge E((m(x) - y)^2)$$

Linear models. Prediction error.

• Введем понятие ошибки предсказания:

$$E((g(\mathbf{x}) - y)^2)$$

Можно утверждать, что для любой g(x):

$$E((g(\mathbf{x}) - y)^2) \ge E((m(x) - y)^2)$$

Таким образом, m(x) – MMSE предиктор, решающий задачу:

$$m(\mathbf{x}) = \arg\min_{g(x)} E((g(x) - y)^2)$$

О Мы предположили, что данные генерируются линейной моделью:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \epsilon_i$$

Мы предположили, что данные генерируются линейной моделью:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \epsilon_i$$

Предположим, также, что наблюдения $(y_1, \mathbf{x}_1), ..., (y_n, \mathbf{x}_n)$ независимы и одинаково распределены (iid). Отсюда, предполагая линейность функции $\mathbf{g}(\mathbf{x})$, запишем задачу:

$$\hat{\beta} = \arg\min_{\beta} E((y - \mathbf{x}\beta)^2)$$

O Имея выборку из n наблюдений, перейдем к выборочной статистике для матожидания:

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} ((y_i - \mathbf{x_i}\beta)^2)$$

Имея выборку из п наблюдений, перейдем к выборочной статистике для матожидания:

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} ((y_i - \mathbf{x_i}\beta)^2)$$

Из условий минимума первого порядка (FOC) имеем:

$$\sum_{i=1}^{n} \mathbf{x}'_{i}(y_{i} - \mathbf{x}_{i}\hat{\beta}) = 0$$

Имея выборку из п наблюдений, перейдем к выборочной статистике для матожидания:

$$\hat{\beta} = arg \min_{\beta} \sum_{i=1}^{n} ((y_i - \mathbf{x_i}\beta)^2)$$

Из условий минимума первого порядка (FOC) имеем:

$$\sum_{i=1}^{n} \mathbf{x'}_{i}(y_{i} - \mathbf{x}_{i}\hat{\beta}) = 0$$

В матричном виде модель выглядит:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Имея выборку из п наблюдений, перейдем к выборочной статистике для матожидания:

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} ((y_i - \mathbf{x_i}\beta)^2)$$

Из условий минимума первого порядка (FOC) имеем:

$$\sum_{i=1}^{n} \mathbf{x'}_{i}(y_{i} - \mathbf{x}_{i}\hat{\beta}) = 0$$

В матричном виде модель выглядит:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

И FOC:

$$\mathbf{X}'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = 0$$

В итоге получаем решение:

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{y})$$

Assumtion 1(экзогенность):

$$E(\mathbf{x}'\epsilon) = \mathbf{0}$$

Это предположение о том, что ошибка имеет нулевое среднее и некоррелирована с регрессорами.

Assumtion 1(экзогенность):

$$E(\mathbf{x}'\epsilon) = \mathbf{0}$$

Это предположение о том, что ошибка имеет нулевое среднее и некоррелирована с регрессорами.

Assumtion 2 (полный ранг):

$$rank(\mathbf{x}'\mathbf{x}) = K$$

Эквивалентно предположению о положительно определенной матрице.

Assumtion 1(экзогенность):

$$E(\mathbf{x}'\epsilon) = \mathbf{0}$$

Это предположение о том, что ошибка имеет нулевое среднее и некоррелирована с регрессорами.

Assumtion 2 (полный ранг):

$$rank(\mathbf{x}'\mathbf{x}) = K$$

Эквивалентно предположению о положительно определенной матрице.

Теорема (состоятельность МНК):

При выполнении предположений 1и 2 оценка \hat{eta} является состоятельной оценкой параметра eta из модели $y=eta \mathbf{x}+\epsilon$

Assumtion 3 (гомоскедастичность):

$$E(\epsilon^2 \mathbf{x}' \mathbf{x}) = \sigma^2 E(\mathbf{x}' \mathbf{x})$$

Где
$$\sigma^2 = E(\epsilon^2)$$
 .

Квадрат ошибки некоррелирован с каждым элементом, их квадратами и их кросс-продуктам.

Из свойств условных матожиданий видно, что достаточным условием является $var(\epsilon|\mathbf{x}) = \sigma^2$

Assumtion 3 (гомоскедастичность):

$$E(\epsilon^2 \mathbf{x}' \mathbf{x}) = \sigma^2 E(\mathbf{x}' \mathbf{x})$$

Где
$$\sigma^2 = E(\epsilon^2)$$
 .

Квадрат ошибки некоррелирован с каждым элементом, их квадратами и их кросс-продуктам.

Из свойств условных матожиданий видно, что достаточным условием является $var(\epsilon|\mathbf{x}) = \sigma^2$

Теорема (асимптотическая нормальность МНК):

При выполнении предположений 1, 2 и 3:

$$\sqrt{N}(\hat{eta}-eta) \sim \mathcal{N}(0,V_{eta})$$

$$\sqrt{N}(\hat{\beta} - \beta) \sim \mathcal{N}(0, \sigma^2 E(\mathbf{x}'\mathbf{x})^{-1})$$

Linear models. Нормальная регрессия.

• Предположим, что ошибка распределена нормально. Тогда мы имеем модель:

$$\mathbf{y} = \mathbf{x}\beta + \epsilon,$$

$$\mathbf{y} = \mathbf{x}\beta + \epsilon,$$
$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

Linear models. Нормальная регрессия.

Предположим, что ошибка распределена нормально. Тогда мы имеем модель:

$$\mathbf{y} = \mathbf{x}\beta + \epsilon,$$
$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

 Правдоподобием называют совместную вероятность реализовавшейся выборки, рассматривая её как функцию от параметров. Для модели выше:

$$f(\mathbf{y}|\mathbf{x}) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{x}'\beta)^2\right)$$

Linear models. MMΠ.

Записывая условную плотность для всей выборки, получим функцию правдоподобия:

$$f(y_1, ..., y_n | \mathbf{x_1}, ..., \mathbf{x_n}) = \prod_{i=1}^n f(y_i | \mathbf{x_i})$$

Linear models. MMΠ.

Записывая условную плотность для всей выборки, получим функцию правдоподобия:

$$f(y_1, ..., y_n | \mathbf{x_1}, ..., \mathbf{x_n}) = \prod_{i=1}^n f(y_i | \mathbf{x_i})$$

Логарифмируя и находя максимум из FOC:

$$(\hat{\beta}_{mle}, \hat{\sigma}_{mle}^2) = arg \max_{\beta \in \mathbb{R}, \sigma^2 > 0} \ln(L(\beta, \sigma^2))$$

Рассмотрим следующую статистику:

$$T(eta) = rac{\hat{eta} - eta}{\sqrt{V_{\hat{eta}}}}$$

Рассмотрим следующую статистику:

$$T(\beta) = \frac{\hat{\beta} - \beta}{\sqrt{V_{\hat{\beta}}}}$$

Можем получить:

$$T(\beta) = \frac{\hat{\beta} - \beta}{\sqrt{V_{\hat{\beta}}}} = \frac{\sqrt{N}(\hat{\beta} - \beta)}{\sqrt{V_{\beta}}} \xrightarrow{d} \frac{\mathcal{N}(0, V_{\beta})}{\sqrt{V_{\beta}}} = Z \sim \mathcal{N}(0, 1)$$

Так как вместо $V_{\hat{eta}}$ мы имеем лишь её оценку $\hat{V}_{\hat{eta}}$, то после некоторых преобразований можем получить:

$$T(\beta) = t = \frac{\hat{\beta} - \beta}{\sqrt{\hat{V}_{\hat{\beta}}}} \sim \frac{\mathcal{N}(0, 1)}{\sqrt{\frac{\chi_{n-k}^2}{n-k}}} \sim t_{n-k}$$

Таким образом, можем проверить значимость коэффициентов регрессии. Проверяем гипотезу $H_0: \beta = 0$

Таким образом, можем проверить значимость коэффициентов регрессии. Проверяем гипотезу $H_0: \beta = 0$

Считаем статистику:

$$t = \frac{\hat{\beta}}{\sqrt{\hat{V}_{\hat{\beta}}}} \sim t_{n-k}$$

при справедливости H_0 .

Таким образом, можем проверить значимость коэффициентов регрессии. Проверяем гипотезу $H_0: \beta = 0$

Считаем статистику:

$$t = \frac{\hat{\beta}}{\sqrt{\hat{V}_{\hat{\beta}}}} \sim t_{n-k}$$

при справедливости H_0 .

Её p-value — это $P(rejectH_0|H_0)$. Уровень значимости — некоторая установленная нами граница такая, что, если p-value меньше либо равно данной границы, мы отвергаем гипотезу H_0 на этом уровне значимости.

Предположим, мы хотим протестировать множественную гипотезу:

$$H_0: \beta_0 = 0, ..., \beta_k = 0$$

в этом нам поможет F-test.

Предположим, мы хотим протестировать множественную гипотезу:

$$H_0: \beta_0 = 0, ..., \beta_k = 0$$

в этом нам поможет F-test.

F статистика выглядит следующим образом:

$$F = rac{rac{ ilde{\sigma}^2 - \hat{\sigma}^2}{q}}{rac{\hat{\sigma}^2}{n-k}}$$

Предположим, мы хотим протестировать множественную гипотезу:

$$H_0: \beta_0 = 0, ..., \beta_k = 0$$

в этом нам поможет F-test.

F статистика выглядит следующим образом:

$$F = \frac{\frac{\tilde{\sigma}^2 - \hat{\sigma}^2}{q}}{\frac{\hat{\sigma}^2}{n - k}}$$

где

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^n (y_i - \mathbf{x_i} \hat{\beta})^2$$

$$\tilde{\sigma}^2 = \frac{1}{N} \sum_{i=1}^n (y_i - \mathbf{x_i} \tilde{\beta})^2$$

#071

 $ilde{eta}, ilde{\sigma}$ - это оценки restricted модели, где соответствующие коэффициенты приняты равными 0. $q=df_r-df_{ur}$, где степень свободы определяется как число наблюдений минус число параметров.

F статистика имеет распределение: $F \sim F_{q,n-k-1}$

Linear models. Градиентный спуск.

В случае, когда мы имеем дело с большими данными, иногда невозможно применить МНК (хотя существуют реализации и для этих случаев).

Применяют метод градиентного спуска. Минимизируем:

$$L(\beta) = \sum_{i=1}^{n} (y_i - \mathbf{x_i}\beta)^2$$

.

Linear models. Градиентный спуск.

В случае, когда мы имеем дело с большими данными, иногда невозможно применить МНК (хотя существуют реализации и для этих случаев).

Применяют метод градиентного спуска. Минимизируем:

$$L(\beta) = \sum_{i=1}^{n} (y_i - \mathbf{x_i}\beta)^2$$

Обновляем значение:

$$\hat{\beta}^{(i+1)} = \hat{\beta}^{(i)} - \alpha \nabla L(\hat{\beta}^{(i)})$$

Linear models. Градиентный спуск.

В случае, когда мы имеем дело с большими данными, иногда невозможно применить МНК (хотя существуют реализации и для этих случаев).

Применяют метод градиентного спуска. Минимизируем:

$$L(\beta) = \sum_{i=1}^{n} (y_i - \mathbf{x_i}\beta)^2$$

Обновляем значение:

$$\hat{\beta}^{(i+1)} = \hat{\beta}^{(i)} - \alpha \nabla L(\hat{\beta}^{(i)})$$

Останавливаемся при

$$|\hat{\beta}^{(i+1)} - \hat{\beta}^{(i)}| < \epsilon$$

Linear models. Стохастический градиентный спуск.

При вычислении градиента на каждой итерации суммируем значения. Долго.

Альтернатива – стохастический градиентный спуск. Считаем градиент по каждому наблюдению.

$$\hat{\beta}^{(i+1)} = \hat{\beta}^{(i)} - \alpha \nabla L_i(\hat{\beta}^{(i)})$$

Решаем задачу классификации. Имеем $y \in \{1, 2, ..., K\}$ Как будем решать?

Решаем задачу классификации. Имеем $y \in \{1, 2, ..., K\}$ Как будем решать?

• One vs. One

Решаем задачу классификации. Имеем $y \in \{1, 2, ..., K\}$ Как будем решать?

- One vs. One
- One vs. All

Решаем задачу классификации. Имеем $y \in \{1, 2, ..., K\}$ Как будем решать?

- One vs. One
- One vs. All
- Multiclass

Linear models. One vs. One.

Строим К(К-1)/2 бинарных классификаторов.

Проблема:

Linear models. One vs. All.

Строим К-1 бинарных классификаторов.

Проблема:

Предположим, что есть абонент, который выбирает купить или не купить услугу.

Он покупает услугу, если "польза" от услуги больше нуля. Запишем:

$$\mathbf{y}_i^* = \mathbf{x}_i' \mathbf{w} + \epsilon_i$$

Предположим, что есть абонент, который выбирает купить или не купить услугу.

Он покупает услугу, если "польза" от услуги больше нуля. Запишем:

$$\mathbf{y}_i^* = \mathbf{x}_i' \mathbf{w} + \epsilon_i$$

Модель скрытой переменной, где \mathbf{y}_i^* - ненаблюдаемая переменная, а ϵ_i - ошибка, имеющая распределение F.

$$\mathbf{y}_i = \begin{cases} 1, & \text{if } \mathbf{y}_i^* \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Предположим, что есть абонент, который выбирает купить или не купить услугу.

Он покупает услугу, если "польза" от услуги больше нуля. Запишем:

$$\mathbf{y}_i^* = \mathbf{x}_i' \mathbf{w} + \epsilon_i$$

Модель скрытой переменной, где \mathbf{y}_i^* - ненаблюдаемая переменная, а ϵ_i - ошибка, имеющая распределение F.

$$\mathbf{y}_i = \begin{cases} 1, & \text{if } \mathbf{y}_i^* \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Тогда:

$$P(\mathbf{y}_i = 1|\mathbf{x}_i) = P(\mathbf{y}_i^* > 0|\mathbf{x}_i) = P(\mathbf{x}_i'\mathbf{w} + \epsilon_i|\mathbf{x}_i) =$$

$$= P(\epsilon_i > -\mathbf{x}_i'\mathbf{w}|\mathbf{x}_i) = 1 - F(-\mathbf{x}_i'\mathbf{w}) = F(\mathbf{x}_i'\mathbf{w})$$

Предположим, распределение ошибки – логистическое. То есть:

$$F(\epsilon) = \frac{1}{1 + \exp(-\epsilon)}$$

Отсюда получаем логистическую регрессию.

Можем подойти с другой стороны. Предположим, у нас 2 класса. Тогда:

$$p(y = 1|\mathbf{x}) = \frac{p(\mathbf{x}|y = 1)p(y = 1)}{p(\mathbf{x}|y = 0)p(y = 0) + p(\mathbf{x}|y = 1)p(y = 1)} = \frac{1}{1 + \exp(-\epsilon)} = \sigma(\epsilon)$$

Можем подойти с другой стороны. Предположим, у нас 2 класса. Тогда:

$$p(y = 1 | \mathbf{x}) = \frac{p(\mathbf{x} | y = 1)p(y = 1)}{p(\mathbf{x} | y = 0)p(y = 0) + p(\mathbf{x} | y = 1)p(y = 1)} = \frac{1}{1 + \exp(-\epsilon)} = \sigma(\epsilon)$$

где
$$\epsilon = \ln \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0)} = \ln \frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})}$$
 - отношение шансов.

Можем подойти с другой стороны. Предположим, у нас 2 класса. Тогда:

$$p(y = 1 | \mathbf{x}) = \frac{p(\mathbf{x} | y = 1)p(y = 1)}{p(\mathbf{x} | y = 0)p(y = 0) + p(\mathbf{x} | y = 1)p(y = 1)} = \frac{1}{1 + \exp(-\epsilon)} = \sigma(\epsilon)$$

где
$$\epsilon = \ln \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0)} = \ln \frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})}$$
 - отношение шансов.

При этом можем записать
$$\epsilon = \ln \frac{\sigma}{1-\sigma}$$
 , которую называют логит функцией.

Оценку коэффициентов получаем методом максимального правдоподобия.

Так как имеем условные испытания бернулли, запишем вероятность события:

$$f(y_i|\mathbf{x}_i) = p_i^{y_i}(1-p_i)^{1-y_i} = F(\mathbf{x}_i'\mathbf{w})^{y_i}(1-F(\mathbf{x}_i'\mathbf{w}))^{1-y_i}$$

Записываем функцию правдоподобия, логарифмируем её и находим максимум по коэффициентам из FOC. Получаем $\hat{\mathbf{w}}$.

Рассмотрим multiclass logistic regression.

Предположим $y \in \{1,2,...,K\}$.

Рассмотрим multiclass logistic regression.

Предположим $y \in \{1, 2, ..., K\}$.

Тогда, по аналогии с предыдущим запишем модель:

$$\ln \frac{P(y=1|\mathbf{x})}{P(y=K|\mathbf{x})} = w_{10} + w_1'\mathbf{x}$$

Pacсмотрим multiclass logistic regression.

Предположим $y \in \{1, 2, ..., K\}$.

Тогда, по аналогии с предыдущим запишем модель:

$$\ln \frac{P(y=1|\mathbf{x})}{P(y=K|\mathbf{x})} = w_{10} + w_1'\mathbf{x}$$

$$\ln \frac{P(y=2|\mathbf{x})}{P(y=K|\mathbf{x})} = w_{20} + w_2'\mathbf{x}$$

• • •

$$\ln \frac{P(y = K - 1|\mathbf{x})}{P(y = K|\mathbf{x})} = w_{(K-1)0} + w'_{K-1}\mathbf{x}$$

Отсюда легко получить:

$$P(y = i|\mathbf{x}) = \exp(w_{i0} + w_i'\mathbf{x})P(y = K|\mathbf{x})$$

Отсюда легко получить:

$$P(y = i|\mathbf{x}) = \exp(w_{i0} + w_i'\mathbf{x})P(y = K|\mathbf{x})$$
$$P(y = K|\mathbf{x}) = 1 - \sum_{i=1}^{K-1} \exp(w_{i0} + w_i'\mathbf{x})P(y = K|\mathbf{x})$$

Отсюда легко получить:

$$P(y = i|\mathbf{x}) = \exp(w_{i0} + w_i'\mathbf{x})P(y = K|\mathbf{x})$$

$$P(y = K|\mathbf{x}) = 1 - \sum_{i=1}^{K-1} \exp(w_{i0} + w_i'\mathbf{x})P(y = K|\mathbf{x})$$

$$P(y = K|\mathbf{x}) = \frac{1}{1 + \sum_{i=1}^{K-1} \exp(w_{i0} + w_i'\mathbf{x})}$$

Отсюда легко получить:

$$P(y = i | \mathbf{x}) = \exp(w_{i0} + w_i' \mathbf{x}) P(y = K | \mathbf{x})$$

$$P(y = K | \mathbf{x}) = 1 - \sum_{i=1}^{K-1} \exp(w_{i0} + w_i' \mathbf{x}) P(y = K | \mathbf{x})$$

$$P(y = K | \mathbf{x}) = \frac{1}{1 + \sum_{i=1}^{K-1} \exp(w_{i0} + w_i' \mathbf{x})}$$

Далее действуем, применяя метод максимального правдоподобия и получаем оценки для параметров w.

Рассмотрим разложение MSE следующим образом:

$$MSE = E(y - \hat{m}(\mathbf{x}))^2 = \sigma_{\epsilon}^2 + (Em(\mathbf{x}) - \hat{m}(\mathbf{x}))^2 + E(m(\mathbf{x}) - E\hat{m}(\mathbf{x}))^2 =$$
$$= \sigma_{\epsilon}^2 + Bias^2(\hat{m}(\mathbf{x})) + var(\hat{m}(\mathbf{x}))$$

Рассмотрим разложение MSE следующим образом:

$$MSE = E(y - \hat{m}(\mathbf{x}))^2 = \sigma_{\epsilon}^2 + (Em(\mathbf{x}) - \hat{m}(\mathbf{x}))^2 + E(m(\mathbf{x}) - E\hat{m}(\mathbf{x}))^2 =$$
$$= \sigma_{\epsilon}^2 + Bias^2(\hat{m}(\mathbf{x})) + var(\hat{m}(\mathbf{x}))$$

Ошибка раскладывается на неустранимую ошибку, bias и variance.

Рассмотрим разложение MSE следующим образом:

$$MSE = E(y - \hat{m}(\mathbf{x}))^2 = \sigma_{\epsilon}^2 + (Em(\mathbf{x}) - \hat{m}(\mathbf{x}))^2 + E(m(\mathbf{x}) - E\hat{m}(\mathbf{x}))^2 =$$
$$= \sigma_{\epsilon}^2 + Bias^2(\hat{m}(\mathbf{x})) + var(\hat{m}(\mathbf{x}))$$

Ошибка раскладывается на неустранимую ошибку, bias и variance.

При добавлении новых компонент в x мы уменьшаем bias, но увеличиваем дисперсию.

Рассмотрим разложение MSE следующим образом:

$$MSE = E(y - \hat{m}(\mathbf{x}))^2 = \sigma_{\epsilon}^2 + (Em(\mathbf{x}) - \hat{m}(\mathbf{x}))^2 + E(m(\mathbf{x}) - E\hat{m}(\mathbf{x}))^2 =$$
$$= \sigma_{\epsilon}^2 + Bias^2(\hat{m}(\mathbf{x})) + var(\hat{m}(\mathbf{x}))$$

Ошибка раскладывается на неустранимую ошибку, bias и variance.

При добавлении новых компонент в x мы уменьшаем bias, но увеличиваем дисперсию.

Вопрос – как подобрать х оптимально?

Linear models. Stepwise selection.

Отличают forward и backward stepwise selection.

Forward stepwise selection – жадный алгоритм добавления признаков.

Linear models. Stepwise selection.

Отличают forward и backward stepwise selection.

Forward stepwise selection – жадный алгоритм добавления признаков.

Плюсы:

- Можно применять при k>>n
- Имеет меньшую дисперсию, но, возможно, большее смещение

Linear models. Stepwise selection.

Отличают forward и backward stepwise selection.

Forward stepwise selection – жадный алгоритм добавления признаков.

Плюсы:

- Можно применять при k>>n
- Имеет меньшую дисперсию, но, возможно, большее смещение

Backward – начинается с полной модели и убирает признаки по одному.

Linear models. Regularization.

Какие проблемы может решать регуляризация?

Linear models. Regularization.

Какие проблемы может решать регуляризация?

- Overfitting
- Feature selection
- High variance

Linear models. Regularization.

Какие проблемы может решать регуляризация?

- Overfitting
- Feature selection
- High variance

Популярны два основных типа регуляризации – Ridge(L2) и Lasso(L1).

Linear models. Ridge regression.

Решает проблему больших по модулю коэффициентов для коррелированных переменных, производя "weight decay".

$$\hat{\beta}_{ridge} = arg \min_{\beta} \{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{k} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{k} \beta_j^2 \}$$

Linear models. Ridge regression.

Решает проблему больших по модулю коэффициентов для коррелированных переменных, производя "weight decay".

$$\hat{\beta}_{ridge} = \arg\min_{\beta} \{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{k} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{k} \beta_j^2 \}$$

Эквивалентно задаче условной минимизации:

$$\hat{\beta}_{ridge} = arg \min_{\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{k} x_{ij}\beta_j)^2$$

$$s.t. \sum_{i=1}^{k} \beta_j^2 \le t$$

Linear models. Ridge regression.

Linear models. Lasso regression.

В дополнение к проблемам ridge решает проблему отбора признаков.

$$\hat{\beta}_{lasso} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{k} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{k} |\beta_j| \right\}$$

Linear models. Lasso regression.

В дополнение к проблемам ridge решает проблему отбора признаков.

$$\hat{\beta}_{lasso} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{k} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{k} |\beta_j| \right\}$$

Эта задача эквивалентна задаче условной минимизации:

$$\hat{\beta}_{lasso} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{k} x_{ij} \beta_j)^2$$

$$s.t. \sum_{j=1}^{k} |\beta_j| \le t$$

Linear models. Lasso regression.

#0 113

Не забудьте, пожалуйста, оставить отзыв о занятии!)

Задачи классификации и регрессии

Практическая часть