Topologia Algebrica Computazionale Andrea Barletta

Contents

Ι	Teoria dei Gruppi	3		
1	Algebra	4		
	1.1 Introduzione	. 4		
	1.2 Anello degli interi modulo n			
	1.2.1 Divisione con resto			
	1.3 Congruenza e classi di resto			
	1.4 Operazioni con classi di resto			
	1.5 Classi di resto invertibili			
	1.5.1 Algoritmo di Euclide			
	1.6 Sottostrutture algebriche			
2	Omomorfismi	13		
	2.1 Omomorfismi e quozienti	. 14		
3	$\text{Confronto tra } \mathbb{Z} \text{ e } \mathbb{Z}_n$	16		
4	Assemblare, costruire e decomporre gruppi	18		
	4.1 Assemblare gruppi	. 18		
	4.2 Problemi di rappresentazione			
	4.3 Costruire nuovi gruppi			
	4.4 Decomposizione di gruppi			
	4.5 Costruire un gruppo libero generato da elementi	. 23		
5	Complementi	26		
II	Simplessi e complessi simpliciali	28		
6	K-Simplessi	29		
Ü	6.1 Proprietà generali			
	6.1.1 Proprietà 1			
	6.1.2 Proprietà 2			
	6.2 Confronto combinatorio-topologico			
	6.3 Proprietà topologiche k-simplessi			
7	Complessi simpliciali 4			
8	Sottospazi particolari di un poliedro 4			

9	Complessi simpliciali astratti	49
II	I Omologia simpliciale	52
10	Omologia simpliciale 10.1 Gruppi di omologia simpliciale	53
	10.2 Esempio completo	61
	10.2.1 Step 1: Calcolo p-catene	61
	10.2.2 Step 2: Operatori bordo	61
	10.2.3 Step 3: Determinare p-cicli e p-bordi	61
	10.2.4 Conclusione	64
	10.3 Esempio completo 2	64
	10.3.1 $H_0(K)$	64
	10.3.2 $H_2(K)$	64
	10.3.3 $H_1(K)$	65
	10.3.4 Conclusione	65
	10.3.5 Interpretazione topologica	65
	10.4 Gruppo di omologia ridotta	67
11	Metodo di calcolo dei gruppi di omologia simpliciale	69
	11.1 Esempio	70
	11.2 Esempio particolare - Nastro di Möbius	73
12	Piano proiettivo	79
	12.1 Piano proiettivo	79
	12.1.1 Prima idea	82
	12.1.2 Seconda idea	82
13	Gruppi di omologia a coefficienti arbitrari	88
	13.1 Casi $G = \mathbb{Z}_n$	88
	13.1.1 Caso speciale $n=2$	89
	13.1.2 Piano proiettivo in \mathbb{Z}_2	89
14	Omologia del cono	92
	14.1 Omomorfismo delle p-catene e delle p-catene del cono	95
15	Interpretazione geometrica/topologica dei gruppi di omologia 15.1 Interpretazione geometrica/topologica	
16	Omamarfismi indatti da manna simpliaisli	102
ΤΩ	Omomorfismi indotti da mappe simpliciali 16.1 Esempio	
	16.1.1 Omomorfismi indotti	
	16.2 Cosa succede se passo ai gruppi di omologia?	

Part I Teoria dei Gruppi

Chapter 1

Algebra

1.1 Introduzione

Definizione 1 (Anello commutativo con identità). Un insieme A dotato di due opearzioni

$$+: A \times A \rightarrow A$$

 $\cdot: A \times A \rightarrow A$

 $che\ soddisfano\ per+\ le\ propriet\`{a}\ di$

- associatività
- commutatività
- esistenza dell'elemento neutro
- esistenza dell'opposto

 $e\ per\cdot\ le\ proprietà\ di$

- associatività
- commutatività
- essitenza dell'elemento neutro
- \bullet distributività su +

si dice anello commutativo con identità

Osservazione Un anello commutativo con identità è "quasi" un campo (manca invertibilità degli elementi non nulli)

Osservazione (\mathbb{Z},\cdot) si può interpretare come $(\mathbb{Z},+)$

1.2 Anello degli interi modulo n

1.2.1 Divisione con resto

Teorema 1 (Lemma della divisione euclidea). Per ogni coppia di elementi $a, b \in \mathbb{Z}$ $b \neq 0$, esistono e sono unici i numeri interi q(quoziente) e r(resto) tali che

$$a = qb + r$$

 $(r \in [0, |b|))$

Proof. Possiamo suporre che $a\geq 0$ e b>0,senza ledere di generalità, infatti

• Se b < 0, ottengo

$$a = q(-b) + r \Leftrightarrow a = (-q)b + r$$

• Se a < 0, ottengo

$$-a = bq + r \Leftrightarrow a = (-q)b - r$$

che posso correggere come

$$a = (-q-1)b + (b-r)$$

$$(0 \le r < |b| \text{ implica } 0 \le b - r < |b|)$$

Procediamo per induzione:

• Base dell'induzione: a = 0

$$0 = 0b + 0 \quad q = r = 0$$

• Passo induttivo: Suppongo di essere in grado di calcolare divisione per tutti gli interi $a' \in [0,a) \subset \mathbb{Z}$

$$a < b \rightarrow a = 0b + a$$
 $q = 0$ $r = a$

a' = a - b ricade nei casi dell'ipotesi induttiva

$$a' = q'b + r' \Leftrightarrow a - b = q'b + r' \Leftrightarrow a = (q' + 1) + r'$$

otteniamo
$$q = q' + 1$$
 $r = r'$

Manca da dimostrare l'unicità. supponiamo di avere due differenti scomposizioni per a (indicate con a_1 e a_2)

$$a_1 = qb + r$$

$$a_2 = q'b + r$$

$$0 = a_1 - a_2 = (qb + r) - (q'b + r') = (q - q')b + (r - r')$$

riarrangiando i termini

$$(q - q')b = r' - r$$

inoltre

$$0 < r', r < |b| \to 0 < |r - r'| < |b|$$

bdivide r'-r,ma |r'-r|<|b|,ossia r'-r=0,quindir'=r. Quindi

$$(q - q')b = 0$$

ricordando che $b \neq 0, q - q' = 0$, quindi q = q'

1.3 Congruenza e classi di resto

Definizione 2 (Insieme degli interi multipli di n). Sia $n \geq 2$ un intero fissato, indichiamo con $n\mathbb{Z}$ l'insieme

$$n\mathbb{Z} := \{ t \in \mathbb{Z} | t = na \}$$

e lo chiameremo insieme degli interi multipli di n

Definizione 3 (Congruenza modulo n). La congruenza modulo n è la relazione

$$a \sim_n b$$
 sse $b - a \in n\mathbb{Z}$

Diremo che a e b sono congrui modulo n e scriveremo

$$a \equiv b \mod n$$

Esempio n=2, $a \sim_2 b$ sse $a-b \in 2\mathbb{Z}$, ossia se a-b è un multiplo di 2 (pari). a-b è pari sse a e b sono entrambi pari, o entrambi dispari

Osservazione Se $a \equiv b \mod n$, allora le divisioni di a e b rispetto a n hanno lo stesso resto, infatti

$$a = qn + r$$

$$a - b \in n\mathbb{Z} \Leftrightarrow a - b = kn$$

$$b = a - kn = qn + r - kn = (q - k)n + r$$

Vale inoltre il viceversa

$$a = qn + r$$
 $b = q'n + r$

$$a - b = qn + r - q'n + r = (q - q')n = kn \in n\mathbb{Z}$$

La congruenza modulo n ha le sequenti proprietà:

- Riflessiva: $a \sim_n a \ \forall a \in \mathbb{Z} \ (a a = 0 \in n\mathbb{Z})$
- Simmetrica: $a \sim_n b \Rightarrow b \sim_n a \ \forall a, b \in \mathbb{Z}$
- Transitiva: $a \sim_n b \wedge b \sim_n c \Rightarrow a \sim_n c \ \forall a, b, c \in \mathbb{Z}$

La congruenza modulo n è quindi una relazione di equivalenza

Definizione 4 (Classi di resto). Sia \sim_n la relazione di congruenza con $n \geq 2$. Per ogni elemento $a \in \mathbb{Z}$, definiamo classi di resto di a l'insieme formato da

$$[a] := \{b \in \mathbb{Z} | b \sim_n a\}$$

 $Ogni\ elemento\ della\ classe\ di\ resto\ si\ chiama\ rappresentante\ della\ classe\ di\ resto$

Osservazione In generale, tra i rappresentanti di una classe non ce ne sono di favoriti, ma solitamente (per semplicità) per le classi di resto si usano

$$0, 1, \ldots, n-1$$

Definizione 5 (Insieme delle classi di resto). Indichiamo con \mathbb{Z}_n o $\mathbb{Z}/n\mathbb{Z}$ l'insieme delle classi di resto modulo n (chiamato anche insieme quoziente di \mathbb{Z} rispetto alla relazione di congruenza modulo n). Esplicitamente,

$$\mathbb{Z}_n := \{[0]_n, [1]_n, \dots, [n-1]_n\}$$

Osservazione In generale, quante classi di resto ho al variare di n?

$$a = qn + r \ 0 < r < |n|$$

quindi $r = 0, 1, \dots, n-1$, ossia ho n classi di resto

Osservazione Prese due qualunque classi di resto (rispetto allo stesso n), ottengo

$$[a]_n \cap [b]_n = \begin{cases} [a]_n \ a \equiv b \ mod \ n \\ \emptyset \ a \not\equiv b \ mod \ n \end{cases}$$

inoltre

$$[0]_n \cup [1]_n \cup \cdots \cup [n-1]_n = \mathbb{Z}$$

ossia le classi di resto formano una partizione di $\mathbb Z$

1.4 Operazioni con classi di resto

Siamo interessati ora a definire delle operazioni (somma e prodotto) tra classi di resto, che siano compatibili con le usuali operazioni di somma e prodotto su \mathbb{Z}

Proposizione 1. Sia $n \geq 2$ un intero fissato, $a, b, c, d \in \mathbb{Z}$ tali che

$$a \equiv b \mod n$$
 $c \equiv d \mod n$

allora

$$(a+c) \equiv (b+d) \bmod n \tag{1.1}$$

$$(ac) = (bd) \bmod n \tag{1.2}$$

Proof. (Somma) $a - b = kn \ c - d = hn$, segue che

$$(a-b) + (c-d) = kn + hn = (k+h)n = (a+c) - (b+d)$$

ossia
$$(a+c)-(b+d)\in n\mathbb{Z}$$
, quindi $a+c\equiv b+d \mod n$

Proof. (Prodotto)

$$ac - bd = ac - ad + ad - bd = a(c - d) + (a - b)d = a(hn) + (kn)d = (ah + kd)n$$

ossia
$$ac - bd \in n\mathbb{Z}$$
, quindi $ac \equiv bd \mod n$

Abbiamo definito quindi due nuove operazioni

$$+: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$

$$([a]_n, [b_n]) \mapsto [a+b]_n$$

$$\cdot: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$

$$([a]_n, [b_n]) \mapsto [ab]_n$$

+	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

•	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

Esempio $(\mathbb{Z}_4,+,\cdot)$

Osservazione Per $(\mathbb{Z}_4, +, \cdot)$ non vale la legge di annullamento del prodotto

1.5 Classi di resto invertibili

Definizione 6 (Zerodivisore). Sia(A, +, *) un anello commutativo con identità, diciamo che un elemento $a \in A$, non nullo, è divisore dello zero (o zerodivisore) se

$$\exists b \in A, \ b \neq 0 \ a * b = 0$$

Definizione 7 (Elemento invertibile). Sia(A, +, *) un anello commutativo con identità, diciamo che un elemento $a \in A$, non nullo, è unità (o elemento invertibile) se

$$\exists b \in A, \ b \neq 0 \ a*b = 1$$

Proposizione 2. Se $n \in \mathbb{Z}$ $(n \geq 2)$ non è un numero primo, allora \mathbb{Z}_n ha divisori dello zero

Proof. Se $n \geq 2$ non è primo, allora

$$\exists a, b \in \mathbb{Z} \ a * b = n$$

dalla definizione delle operazioni su classi di equivalenza otteniamo

$$[a]_n[b]_n = [a * b]_n = [n]_n = [0]_n$$

Osservazione Una domanda sorge ora spontanea: "Cosa succede se n è primo?". Per rispondere a questa domanda bisogna introdurre prima altre nozioni

Definizione 8 (Massimo Comune Divisore). Siano $a, b \in \mathbb{Z}$. Un elemento $d \in \mathbb{Z}$ è chiamato massimo comune divisore tra $a \ e \ b \ se$:

- $d|a \ e \ d|b \ (d \ divide \ a \ e \ d \ divide \ b)$
- Se $\exists d' \in \mathbb{Z}$ tale che d'|a e d'|b, allora d'|d (ossia d è il massimo divisore)

Teorema 2 (Identità di Bézout). Data una coppia di numeri interi a, b non nulli, il massimo comune divisore MCD(a,b) = d esiste sempre. Inoltre esistono due interi $s, t \in \mathbb{Z}$ tale che

$$d = sa + tb$$

Proof. Consideriamo l'insieme

$$S := \{xa + yb \mid x, y \in \mathbb{Z}, \ xa + yb > 0\} \subseteq \mathbb{N}$$

L'insieme S è sicuramente non vuoto, poichè se prendo un qualunque a > 0

$$a = (1)a + (0)b \in S$$

se invece a < 0

$$-a = (-1)a + 0b \in S$$

L'insieme $\mathbb N$ ha la proprietà che ogni suo sottoinsieme non vuoto ha un elemento minimo.

Sia d = minS, voglio dimostrare che $d|a \in d|b$.

Considero

$$a = qd + r \implies r = a - qd$$

poichè $0 \le r < d, 0 \le a - qd < d$

Rioorganizzando i termini ottengo

$$a - qd = a - q(x_0a + y_0b) = (1 - qx_0)a - (qy_0)b = r$$

quindi $r \in S \cup \{0\}$. Tuttavia, poichè d è l'elemento minimo di S, e r < d, ottengo che per forza r = 0, ossia d|a.

Ragionamento analogo si può fare per b.

Manca da dimostrare che d è il massimo divisore.

Consideriamo ora un divisore comune di a e b, ossia un c tale che a=cu e b=cv. Otteniamo

$$d = sa + tb = scu + tcv = c(su + tv)$$

quindi c è un divisore di d, e poichè d > 0, $c \le d$

Proposizione 3. Sia $n \geq 2$ un numero primo. L'insieme delle classi di resto modulo n è un campo (tutti gli elementi non nulli sono invertibili rispetto alla moltiplicazione)

Proof. Devo far vedere che

$$[a]_n \neq [0]_n \implies \exists [b]_n \ [a]_n [b]_n = [1]_n$$

Se $a \notin n\mathbb{Z}$ e MCD(a,n)=1, allora per il teorema precedente esistono $s,t\in\mathbb{Z}$ tali che

$$1 = sa + tn$$

ossia

 $[s]_n[a]_n=[sa]_n=[1-tn]_n=[1]_n-[tn]_n=[1]_n-[t]_n[n]_n=[1]_n-[t]_n[0]_n=[1]_n$ quindi

$$[a]_n^{-1} = [s]_n$$

9

Lemma 1. Siano a,b due interi non nulli, e sia r il resto della divisione tra a e b, allora

$$MCD(a, b) = MCD(b, r)$$

1.5.1 Algoritmo di Euclide

L'algoritmo di euclide è in metodo efficace per calcolare il massimo comune divisore tra due numeri $a,b\in\mathbb{Z}.$

Condizione sugli input è che $a, b \in \mathbb{Z}$ e che non siano entrambi nulli.

L'algoritmo ricorsivo ha i seguenti casi base:

- a < 0 restituisco MCD(-a, b)
- b < 0 restituisco MCD(a, -b)
- a < b restituisco MCD(b, a)
- b = 0 restituisco MCD(a, 0) = a

a questo punto posso supporre $a \ge b > 0$, dall'algoritmo ottengo

$$a = qb + r \longrightarrow MCD(b, r)$$

Esempio Supponiamo di avere a=3522 e b=321, e di voler calcolare MCD(a,b). L'algoritmo viene eseguito come segue: Posso utilizzare questo

3522 = 10 * 321 + 312	MCD(3522, 321) = MCD(321, 312)
321 = 1 * 312 + 9	MCD(321, 312) = MCD(312, 9)
312 = 34 * 9 + 6	MCD(312,9) = MCD(9,6)
9 = 1 * 6 + 3	MCD(9,6) = MCD(6,3)
6 = 2 * 3	MCD(6,3) = MCD(3,0) = 3

metodo per calcolare il coefficente s dell'identità di Bézout, ma lo applichiamo ad un esempio più significativo

Esempio Qual'è l'inverso moltiplicativo di [12]₂₉? Poichè 29 è primo, segue che

$$1 = MCD(12, 29)$$

Applicando l'algoritmo di Euclide otteniamo

$$29 = 2 * 12 + 5$$

$$12 = 2 * 5 + 2$$

$$5 = 2 * 2 + 1$$

proseguiamo ora col procedimento inverso

$$1 = 5 + (-2)2$$

$$1 = 5 + (-2)(12 + (-2)5) = (5)5 + (-2)12$$

$$1 = (29 - (2)12) + (-2)12 = (5)29 + (-12)12$$

Otteniamo quindi che

$$[12]_{29}[-12]_{29} = [1]_{29}$$

quindi

$$[12]_{29}^{-1} = [-12]_{29}$$

che normalizzato diventa [17]₂₉

1.6 Sottostrutture algebriche

Sia (G, +) un gruppo abeliano. Un sottoinsieme $H \subseteq G$ si dice sottogruppo di G se H, con l'operazione di somma ristretta agli elementi di H, è un gruppo

Esempio Consideriamo \mathbb{Z}_4 con l'usuale operazione di somma, e restringiamo il dominio delle operazioni ai soli elementi $[0]_4$ e $[2]_4$

+	[0]	[1/]	[2]	[3]
[0]	[0]	[1/]	[2]	[3]
[1/]	[1/]	[2]	[3]	[Ø]
[2]	[2]	[3]	[0]	[1/]
[3]	[3]	[Ø]	[1/]	[2]

Consideriamo ora \mathbb{Z}_2 con la stessa operazione

•	[0]	[1]
[0]	[0]	[1]
[1]	[1]	[0]

Possiamo notare una relazione tra la struttura di $(\mathbb{Z}_4,+)$ e $(\mathbb{Z}_2,+)$

Idea Gli insiemi delle classi di resto sono in relazione

Osservazione $H \subset G$ sottogruppo di (G,+) significa che l'insieme H è chiuso rispetto alla somma, quindi

$$\forall h \in H \quad \forall a \in \mathbb{Z} \quad \underbrace{ah}_{h+h+\cdots+h} \in H$$

quindi ho necessariamente che $0_G \in H$

Definizione 9 (Relazione di equivalenza compatibile). Sia (G, +) un gruppo abeliano. Una relazione di equivalenza \sim sul gruppo G si dice compatibile con l'operazione di G se vale

$$g_1 \sim g_1', \ g_2 \sim g_2' \implies g_1 + g_2 \sim g_1' + g_2'$$

Proposizione 4. Sia $H \subset G$ un sottogruppo, allora posso definire una relazione di equivalenza \sim compatibile

$$g_1 \sim_H g_2 \Longleftrightarrow g_1 - g_2 \in H$$

Proof. La dimostrazione è identica alla dimostrazione per le classi di resto

Definizione 10 (Gruppo quoziente). Sia G un gruppo e H un suo sottogruppo. Posso definire un nuovo gruppo, chiamato gruppo quoziente (G modulo H) definito come

$$G_H := \{ classi \ di \ equivalenza \ di \ G \ rispetto \ alla \ relazione \sim_H \}$$

La classe di equivalenza di $a \in G$ rispetto $a \sim_H$ viene indicata come a + H. L'operazione di somma del gruppo quoziente viene definita come

$$+: G/_{H} \times G/_{H} \to G/_{H}$$
$$(a+H) + (b+H) \mapsto (a+b+H)$$

Esempio Sia $G = \mathbb{Z}_4 \in H = \{[0]_4, [2]_4\}.$

Chi sono gli elementi di $\mathbb{Z}_4/_H$?

$$[0] + H = \{[0] + [0], [0] + [1]\} = H$$

$$[1] + H = \{[1] + [0], [1] + [3]\} = \{[1], [3]\}$$

ossia

$$\mathbb{Z}_{4/H} = \{[0] + H, [1] + H\}$$

La tabella della somma risulta

+	[0] + H	[1]+H
[0]+H	[0] + H	[1]+H
[1]+H	[1]+H	[0] + H

Che risulta praticamente identica alla tabella di somma di \mathbb{Z}_2 . Prima di vedere che relazione c'è tra queste strutture algebriche, occorre introdurre altre nozioni

Proposizione 5. Sia \sim una relazione di equivalenza compatibile con un gruppo G, posso costruire un sottogruppo corrispondente

$$H = \{ g \in G \mid g \sim 0_G \}$$

Proof. Devo far vedere che H è chiuso rispetto all'operazione di somma

$$g_1, g_2 \in H$$
 $g_1 \sim 0_G$ $g_2 \sim 0_G$

Per ipotesi di relazione compatibile

$$g_1 + g_2 \sim 0_G + 0_G = 0_G$$

quindi $g_1 + g_2 \in H$

Faccio ora vedere che ogni elemento è invertibile

$$\forall g \in H \quad g \sim 0_G$$

per riflessività inoltre

$$-g \sim -g$$

Per compatibilità

$$0_G = g + (-g) \sim 0_G + (-g) = -g$$

quindi
$$-g \in H$$

Chapter 2

Omomorfismi

Sia ora interessati a vedere come si comportano le funzioni tra strutture algebriche, in particolare tra gruppi abeliani

Definizione 11 (Omomorfismo di gruppi). Siano (G, +) e (G', \triangle) due gruppi abeliani. Una funzione $f: G \to G'$ si definisce omomorfismo di gruppi se

$$\forall g_1, g_2 \in G, \quad f(g_1 + g_2) = f(g_1) \triangle f(g_2)$$

Dato un omomorfismo, possiamo inoltre definire alcuni sottogruppi importanti

Definizione 12 (Nucleo). Sia $f: G \to G'$ un omomorfismo di gruppi

$$Ker \ f := \{ g \in G \mid f(g) = 0_{G'} \}$$

Il nucleo è un sottogruppo del dominio

Definizione 13 (Immagine). Sia $f: G \to G'$ un omomorfismo di gruppi

$$Im \ f := \{ g' \in G' \mid \exists g \in G \ f(g) = g' \}$$

L'immagine è un sottogruppo del codominio

Definizione 14 (Co-nucleo). Sia $f: G \to G'$ un omomorfismo di gruppi

$$CoKer\ f := G'/_{Im\ f}$$

Nomenclatura Per gli omomorfismi viene utilizzata la seguente nomenclatura

- Omomorfismo iniettivo viene chiamato monomorfismo
- Omomorfismo suriettivo viene chiamato epimorfismo
- Omomorfismo biettivo viene chiamato isomorfismo
- \bullet Omomorfismo di G in se stesso viene chiamato endomorfismo
- Endomorfismo biettivo viene chiamato automorfismo

Proprietà Alcune proprietà sono già note dalle applicazioni lineari

- $f(0_G) = 0_{G'}$
- $f(-g) = -f(g) \ \forall g \in G$
- $\forall n \in \mathbb{Z} \ \forall g \in G \ f(\underbrace{ng}_{g+g+\cdots+g}) = \underbrace{nf(g)}_{f(g) \triangle f(g) \triangle \cdots \triangle f(g)}$
- f monomorfismo \iff $Ker f = \{0_G\}$

Osservazione Per i morfismi di gruppi, in generale non è vero che un endomorfismo iniettivo è anche suriettivo (come accade con gli spazi vettoriali)

2.1 Omomorfismi e quozienti

Supponiamo di avere un omomorfismo di gruppi $f: G \to G'$, sappiamo che K = Ker f è un sottogruppo di G.

Come si comportano gli elementi di una classe di equivalenza rispetto a f? Prendiamo le classi di equivalenza indotte da K

$$G_{/K} := \{ \text{classi di equivalenza di } \sim_K \}$$

E prendiamo $g_1,g_2\in G$ tali che $g_1\sim_K g_2$ ossia $g_1-g_2\in K$ dal quale segue

$$g_1 - g_2 \in K \iff f(g_1 - g_2) = 0_{G'}$$

Poichè f omomorfismo

$$f(g_1 - g_2) = f(g_1) - f(g_2) = 0_{G'}$$

ossia

$$f(g_1) = f(g_2)$$

Ho quindi che tutti gli elementi di una classe di equivalenza ha la stessa immagine tramite f, equivalente al teorema della fibra per gli spazi vettoriali

Teorema 3 (Teorema fondamentale di isomorfismo tra gruppi). Siano G e G' due gruppi abeliani, e $f: G \to G'$ un omomorfismo. Allora, esiste un unico isomorfismo

$$f^*: G_{Ker\ f} \to Im\ f$$

tale che

$$f = f^* \circ \pi$$

 $dove \pi denota la proiezione canonica 1$

$$\pi: G \to G/Ker \ f \ g \mapsto g + Ker \ f$$

Il teorema viene spesso enunciato con il seguente diagramma commutativo

Proof. Definisco una procedura per calcolare f^*

$$f^*: G_{Ker\ f} \to Im\ f$$

tale che $\forall g \in G$

$$f^*(g + Ker) = f(g)$$

inoltre poichè vale sempre

$$g + Ker \ f =: \pi(g) \implies f^* \circ \pi = f$$

 f^{\ast} è ben definita poichè l'immagine di g+Ker f non dipende dal rappresentante. Devo far vedere ora che:

- f^* è un omomorfismo
- f^* è un isomorfismo

$$f^*((g_1 + Ker f) + (g_2 + Ker f)) = f^*((g_1 + g_2) + Ker f) =$$

$$= f(g_1 + g_2) \stackrel{f \ om.}{=} f(g_1) + f(g_2) = f^*(g_1 + Ker \ f) + f^*(g_2 + Ker \ f)$$

Per il secondo punto bisogna dimostrare iniettività e suriettività:

• Iniettività: Prendo $g_1 + Ker f$ e $g_2 + Ker f$ tali che

$$f^*(q_1 + Ker \ f) = f^*(q_2 + Ker \ f) \Leftrightarrow f(q_1) = f(q_2)$$

ossia

$$\Leftrightarrow f(g_1 - g_2) \in Ker \ f \Leftrightarrow g_1 + Ker \ f = g_2 + Ker \ f$$

• Suriettività: $\forall q' \in Im \ f \exists q \in G \text{ tale che } f(q) = q'$

$$f^*(q + Ker f) = f(q) = q'$$

Esempio Consideriamo i gruppi $(\mathbb{Z}_4,+)$ e $(\mathbb{Z}_2,+)$ e il morfismo

$$[0]_4, [2]_4 \mapsto [0]_2$$

$$[1]_4, [3]_4 \mapsto [1]_2$$

La verifica che f sia un omomorifsmo è banale. Otteniamo inoltre

$$Im f = \mathbb{Z}_2$$

$$Ker f = \{[0]_4, [2]_4\}$$

Per il t.f. dell'isomorfismo tra gruppi $\exists f^*$ isomorfismo, ossia

$$\mathbb{Z}_4/_{Ker\ f}\stackrel{\sim}{\to} \mathbb{Z}_2$$

Chapter 3

Confronto tra \mathbb{Z} e \mathbb{Z}_n

Definizione 15 (Ordine di un elemento). Sia(G, +) un gruppo abeliano, $g \in G$ fissato. Definiamo **ordine** di g il più piccolo intero positivo n tale che

$$\underbrace{g+g+\cdots+g}_{n\ volte}=0_G$$

Se non esiste un intero n
 con queste proprietà, diciamo che l'ordine di g
è infinito

Esempio Consideriamo $G = \mathbb{Z}$, abbiamo 2 casi possibili

ordine di k =
$$\begin{cases} \infty & k \neq 0 \\ 1 & k = 0 \end{cases}$$

Osservazione 0_G è sempre l'unico elemento di ordine 1

Proprietà Per gruppi finiti, l'ordine di un elemento di Z_n è un divisore di n

Definizione 16 (Gruppi ciclico). Un gruppo G si dice ciclico se esiste un elemento $g \in G$ tale che

$$\{ng \mid n \in \mathbb{Z}\} = G$$

Proprietà Z_p con p primo, allora ogni classe non nulla ha tutti gli elementi di Z_p tra i suoi multipli, quindi Z_p è ciclico e l'ordine di un qualsiasi elemento non nullo è p

Definizione 17 (Ordine di un gruppo ciclico). Sia G un gruppo ciclico, l'**ordine** di G è l'ordine del suo elemento $g \in G$ tale che G è generato dai multipli di g, ossia

$$G = \{ ng \mid n \in \mathbb{Z} \}$$

Esempi \mathbb{Z} è un gruppo ciclico di ordine ∞ (è generato da 1 o -1). \mathbb{Z}_n è un gruppo ciclico di ordine n.

Proposizione 6. Ogni gruppi ciclico di ordine ∞ è isomorfo a $\mathbb Z$

Proof. Per ipotesi, $\exists g \in G$ tale che $G = \{ng \mid n \in \mathbb{Z}\}$. Definiamo il morfismo $f: G \to \mathbb{Z}$ come

$$ng\mapsto n$$

E' banale dimostrare che f è un isomorfismo:

- \bullet Suriettività immediata: $\forall n\in\mathbb{Z}\ f(ng)=n$ (il fatto che sia ciclico ci assicura che ng sia nel gruppo G)
- Iniettività: Prendo $ng, mg \in G$ tali che f(ng) = f(mg) ossia $nf(g) mf(g) = 0 \implies (n-m)f(g) = 0 \implies n = m$

Chapter 4

Assemblare, costruire e decomporre gruppi

4.1 Assemblare gruppi

Sia $\{(G_{\alpha}, +_{\alpha})\}_{\alpha \in \mathcal{I}}$ una collezione di gruppi, indicizzati con \mathcal{I} (che può avere cardinalità infinita), abbiamo due operazioni principali che possiamo definire

Definizione 18 (Prodotto diretto). Il prodotto diretto $\prod_{\alpha \in \mathcal{I}} G_{\alpha}$ è il gruppo con insieme di sostegno il prodotto cartesiano degli insiemi di sostegno dei G_{α} , e l'operazione somma definita componente per componente

$$\prod_{\alpha \in \mathcal{I}} G_{\alpha} := (G_{\alpha_1} \times G_{\alpha_2} \times \dots, +)$$

$$+ : \prod_{\alpha \in \mathcal{I}} G_{\alpha} \times \prod_{\alpha \in \mathcal{I}} G_{\alpha} \to \prod_{\alpha \in \mathcal{I}} G_{\alpha}$$

$$(g_1, g_2, \dots), (g'_1, g'_2, \dots) \mapsto (g_1 +_1 g'_1, g_2 +_2 g'_2, \dots)$$

Definizione 19 (Somma diretta esterna). La somma diretta esterna $\bigoplus_{\alpha \in \mathcal{I}} G_{\alpha}$ è il gruppo con insieme di sostegno le n-uple del prodotto cartesiano degli insiemi di sostegno dei G_{α} con un numero finito di elementi non nulli, e l'operazione somma definita come sopra, componente per componente

$$+: \bigoplus_{\alpha \in \mathcal{I}} G_{\alpha} \times \bigoplus_{\alpha \in \mathcal{I}} G_{\alpha} \to \bigoplus_{\alpha \in \mathcal{I}} G_{\alpha}$$

$$(0, \dots, g_1, \dots, g_n, 0, \dots), (0, \dots, g'_1, \dots, g'_n, 0, \dots) \mapsto (0, \dots, g_1 + g'_1, \dots, g_n + g'_n, 0, \dots)$$

Osservazione In generale

$$\bigoplus_{\alpha \in \mathcal{I}} G_{\alpha} \subseteq \prod_{\alpha \in \mathcal{I}} G_{\alpha}$$

ma se l'insieme degli indici è finito, allora

$$\bigoplus_{\alpha \in \mathcal{I}} G_{\alpha} = \prod_{\alpha \in \mathcal{I}} G_{\alpha}$$

4.2 Problemi di rappresentazione

Definizione 20 (Insieme di generatori). Sia (G, +) un gruppo abrliano, diciamo che la collezione di elementi $\{g_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ è un **insieme di generatori** del gruppo se ogni elemento del gruppo $g\in G$ si può scrivere come somma dinita di multipli dei generatori, ossia

$$\forall g \in G \quad g = \sum_{\alpha \in \mathcal{I}} a_{\alpha} g_{\alpha} \quad a_{\alpha} \in \mathbb{Z}$$

dove intendiamo

$$a_{\alpha}g_{\alpha} = \begin{cases} \underbrace{g_{\alpha} + g_{\alpha} + \dots + g_{\alpha}}_{a_{\alpha} \text{ volte}} & a_{\alpha} \ge 0 \\ \underbrace{(-g_{\alpha}) + (-g_{\alpha}) + \dots + (-g_{\alpha})}_{-a_{\alpha} \text{ volte}} & \alpha < 0 \end{cases}$$

Definizione 21 (Gruppo finitamente generato). Se la collezione di generatori è formato da un numero finito di elementi, diremo che il gruppi è **finitamente** generato

Definizione 22 (Base di un gruppo). Una collezione di elementi $\{g_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ si dice base di un gruppo G, se ogni elemento $g\in G$ si può scrivere in modo unico

$$g = \sum_{\alpha \in \mathcal{I}} a_{\alpha} g_{\alpha} \quad a_{\alpha} \in \mathbb{Z}$$

In questo caso G si dice gruppo libero di rango $|\mathcal{I}|$

Osservazione Viene usato il termine "rango" invece che "dimensione" poichè non è garantito che da un insieme di generatori sia possibile estrarre una base di rango n, nonostante esistano altre basi di rango n. Inotre un gruppo libero di rango n può avere sottogruppi (propri) liberi di rango n, cosa che non accade per esempio con gli spazi vettoriali

4.3 Costruire nuovi gruppi

Definizione 23 (Gruppo abeliano generato). $Sia\ S$ un insieme qualsiasi. Il gruppo abeliano generato da S è l'insieme di funzioni

$$\langle S \rangle := \{ f : S \to \mathbb{Z} \mid f^{-1}(\mathbb{Z} \setminus \{0\}) \text{ ha cardinalità finita} \}$$

 $(ossia\ funzioni\ che\ mandano\ in\ elementi\ non\ nulli\ un\ numero\ finito\ di\ valori)\\ con\ l'operazione$

$$+:\langle S\rangle \times \langle S\rangle \to \langle S\rangle$$

$$(f+g)(s) \mapsto f(s) + g(s)$$

Proposizione 7. $(\langle S \rangle, \circ)$ è un gruppo libero di rango |S|

Proof. Voglio costruire una base. Per ogni $s \in S,$ considero la funzione caratteristica di s

$$\chi_s(x) = \phi_s(x) = \begin{cases} 1 & s = x \\ 0 & s \neq x \end{cases}$$

se le prendo tutte, ossia la collezione $\{\chi_s\}_{s\in S}$, esse formano una base. Infatti

$$\forall f \in \langle S \rangle \quad f = \sum_{s \in S} f(s) \chi_s$$

Lemma 2. Sia (G,+) un gruppo libero (con base $\{g_{\alpha}\}_{{\alpha}\in\mathcal{I}}$). Ogni funzione

$$f: \{g_{\alpha}\}_{{\alpha} \in \mathcal{I}} \to G'$$

dove G' è un gruppo, si estende in modo unico ad un omomorfismo $\tilde{f}: G \to G'$ Proof. $\forall g \in G, g$ si puà scrivere un modo unico come

$$g = \sum_{\alpha \in \mathcal{I}} a_{\alpha} g_{\alpha}$$

quindi

$$\tilde{f}(g) = \tilde{f}\left(\sum_{\alpha \in \mathcal{I}} a_{\alpha} g_{\alpha}\right) = \sum_{\alpha \in \mathcal{I}} a_{\alpha} \tilde{f}(g_{\alpha}) = \sum_{\alpha \in \mathcal{I}} a_{\alpha} f(g_{\alpha})$$

Proposizione 8. Sia (G,+) un gruppo libero con base $\{g_{\alpha}\}_{{\alpha}\in\mathcal{I}}, G$ è isomorfo a

$$\prod_{\alpha\in\mathcal{I}}\mathbb{Z}=\mathbb{Z}^{|\mathcal{I}|}$$

Proof. Considero la funzione $f: \{g_{\alpha}\}_{{\alpha} \in \mathcal{I}} \to \prod_{{\alpha} \in \mathcal{I}} \mathbb{Z}$ definita come segue

$$g_{\alpha} \mapsto (0, \dots, 0, \underset{\stackrel{1}{i=\alpha}}{1}, 0, \dots, 0)$$

per il lemma precedente, f si estende a $\tilde{f}: G \to \prod_{\alpha \in \mathcal{I}} \mathbb{Z}$ e \tilde{f} è iniettiva e suriettiva (dimostrazione banale)

Osservazioni

- Se G ha rango finito, $G \simeq \bigoplus_{\alpha \in \mathcal{I}} \mathbb{Z}$
- $\bullet \ G = \langle S \rangle \simeq \bigoplus_{s \in S} \mathbb{Z}$ indipendentemente dalla cardinalità di S

4.4 Decomposizione di gruppi

Definizione 24 (Somma i Gruppi). Sia (G, +) un gruppo abeliano, e sia $\{G_{\alpha}\}_{{\alpha} \in \mathcal{I}}$ una collezione di sottogruppi di G. Diremo che G è la somma dei G_{α} , e scriveremo

$$G = \sum_{\alpha \in \mathcal{I}} G_{\alpha}$$

se ogni elemento $g \in G$ si può scrivere come

$$g = \sum_{\alpha \in \mathcal{I}} g_{\alpha} \quad g_{\alpha} \in G_{\alpha}$$

Definizione 25 (Somma diretta interna). Sia (G, +) un gruppo abeliano, e sia $\{G_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ una collezione di sottogruppi di G. Diremo che G è la somma diretta interna dei G_{α} , e scriveremo

$$G = \bigoplus_{\alpha \in \mathcal{I}} G_{\alpha}$$

se ogni elemento $g \in G$ si può scrivere in modo **unico** come

$$g = \sum_{\alpha \in \mathcal{I}} g_{\alpha} \quad g_{\alpha} \in G_{\alpha}$$

Osservazioni Per la somma diretta interna è immediato verificare le seguenti proposizioni:

- $\sum_{\alpha \in \mathcal{I}} a_{\alpha} g_{\alpha} = 0 \iff a_{\alpha} = 0 \quad \forall \alpha \in \mathcal{I}$ (deriva dall'unicità nello scrivere l'elemento nullo)
- $\forall \alpha \in \mathcal{I} \quad G_{\alpha} \cap \left(\sum_{\beta \neq \alpha} G_{\beta} \right) = \{0\}$

Esempio \mathbb{Z} con i generatori $\{4,7\}$, è facile vedere come

$$\forall n \in \mathbb{Z}, \quad n = (2n)4 + (-n)7$$

ossia

$$\mathbb{Z} = (4\mathbb{Z}) + (7\mathbb{Z})$$

La somma è diretta? Usiamo le proposizioni:

- 0 = (-7)4 + (4)7, non ok!
- $(4\mathbb{Z}) \cap (7\mathbb{Z}) = 28\mathbb{Z} \neq \{0\}$ non ok!

Esempio $G = \mathbb{Z}$, prendo $H = 3\mathbb{Z}$ sottogruppi di \mathbb{Z} . $3\mathbb{Z}$ è un possibile addendo diretto di \mathbb{Z} ?.

Ossia, esiste un $K \subseteq \mathbb{Z}$ tale che $3\mathbb{Z} \oplus K = \mathbb{Z}$?

Supponiamo che esista, vuol dire che univocamente

$$\forall n \in \mathbb{Z}, \quad n = 3m + k \quad k \in K$$

prendo il morfismo

$$f: \mathbb{Z} \to K$$

tale che

$$n = 3m + k \mapsto k$$

(proiezione sul secondo addendo)

E' facile verificare che

$$Ker f = \{3m + 0\} = 3\mathbb{Z}$$
$$Im f = K$$

Il teorema fondamentale di isomorfismo tra gruppi mi dice che (se K esiste), ho un isomorfismo

Ossia che $\mathbb Z$ contiene elementi di ordine 3, Assurdo! Quindi K non esiste

4.5 Costruire un gruppo libero generato da elementi

Osservazione Abbiamo visto che, dato un insieme S qualsiasi,

$$\langle S \rangle := \{ f : S \to \mathbb{Z} \mid f^{-1}(\mathbb{Z} \setminus \{0\}) \text{ ha cardinalità limitata} \}$$

Più in generale, fissato un gruppo (G, +)

$$\langle S \rangle_G := \left\{ f: S \to G \mid f^{-1}(G \setminus \{0_G\}) \text{ ha cardinalità limitata} \right\}$$

diamo quindi la seguente definizione

Definizione 26 (Gruppo di torsione). Sia (G, +) un gruppo abeliano qualsiasi. Gli elementi di G con ordine finito formano un sottogruppo di G, detto gruppo di torsione di G, indicato con T_G . Se il gruppo di torsione è il sottogruppo banale $(\{0_G\}$ appartiene sempre al gruppo di torsione), allora il gruppo G si dice privo di torsione

Osservazione T_G è veramente un gruppo? Affinchè lo sia, dobbiamo mostrare che la somma è chiusa su T_G

$$T_G := \{ g \in G \mid \exists \quad mg = 0_G \}$$

Prendiamo due elementi $g_1, g_2 \in T_G$, ossia esistono due interi m_1, m_2 tali che

$$m_1g_1 = m_2g_2 = 0_G$$

prendiamo ora un intero $m = mcm(m_1, m_2)$, ossia

$$m = a_1 m_1 = a_2 m_2$$

Per essere un gruppo, devo avere che dati g_1+g_2 esiste un m tale che $m(g_1+g_2)=0_G$

$$m(g_1+g_2) = mg_1 + mg_2 = a_1m_1g_1 + a_2m_2g_2 = a_1(m_1g_1) + a_2(m_2g_2) = a_10_G + a_20_G = 0_G$$

che dimostra che l'operazione è interna al gruppo di torsione. Inoltre ricaviamo che l'ordine dalla somma è l'mcm dell'ordine dei due addendi

Teorema 4 (Teorema fondamentale dei gruppi abeliani finitamente generati). Sia(G, +) un gruppo abeliano finitamente generato, e T_G io suo gruppo di torsione. Allora:

1. Esiste un gruppo libero di rango finito, tale che

$$G = H \oplus T_G$$

2. Il gruppo di torsione T_G si decompone come somma diretta

$$T_G = T_1 \oplus T_2 \oplus \cdots \oplus T_K$$

dove i T_i sono gruppi ciclici di ordine $t_i > 1$ e vale la seguente relazione

$$t_1|t_2|\dots|t_k$$

3. Il rango di H e gli ordini dei gruppi ciclici sono univocamente determinati da G

Nomenclatura Datemo i seguenti nomi ai coefficenti:

- ullet Il rango di H si dice Numero di Betti di G
- \bullet Gli ordini dei gruppi ciclici t_1,t_2,\ldots,t_k si dicono Coefficenti di torsione di G

Osservazione Se H è un gruppi libero di rango r, allora

$$H \simeq \underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{r \text{ volte}} = \mathbb{Z}^r$$

Se T è un gruppi ciclico di ordine finito $t < +\infty$, allora

$$T \simeq \mathbb{Z}/_{t\mathbb{Z}} = \mathbb{Z}_t$$

segue quindi il corollario

Corollario 1. Se (G,+) è un gruppo abeliano finitamente generato, allora

$$G \simeq Z^r \oplus \mathbb{Z}_{t_1} \oplus \mathbb{Z}_{t_2} \oplus \cdots \oplus \mathbb{Z}_{t_k}$$

 $tale\ che$

$$t_1|t_2|\dots|t_k$$

Chapter 5

Complementi

In seguito vengono illustrati alcuni risultati della teoria dei gruppi nell'ambito della teoria dei numeri, ed in particolare il suo utilizzo nella crittografia

Teorema 5 (Teorema di Fermat). Preso p numero primo $e[a]_p \neq [0]_p$, allora

$$[a]^{p-1} = [1]_p$$

Corollario 2.

$$[a]_p^{p-1} = [a]_p[a]_p^{p-1} = [1]_p$$

ossia

$$[a]_p^{-1} = [a]_p^{p-2}$$

Il teorema di Fermat è un caso specifico del teorema di Eulero, che per essere introdotto è necessario prima definire una funzione

Definizione 27 (Funzione di Eulero). Definiamo funzione di eulero la funzione

$$\phi: \mathbb{N} \to \mathbb{N}$$

 $n\mapsto numero\ di\ elementi\ in\ \{1,2,\ldots,n-1\}\ coprimi\ con\ n$

Proprietà Sono banali da dimostrare le seguenti proprietà

- Se p primo, $\phi(p) = p 1$
- Se p primo, $\phi(p^k) = p^k p^{k-1}$
- Se p, q coprimi, $\phi(pq) = \phi(p)\phi(q)$
- Se p, q primi, $\phi(pq) = (p-1)(q-1)$

Teorema 6 (Teorema di Eulero). $Sia[a]_n \in \mathbb{Z}_n$ un elemento invertibile (MCD(a, n) = 1), allora

$$[a]_m^{\phi(m)} = [1]_m$$

Corollario 3. Se [a] è invertibile in \mathbb{Z}_n , allora

$$[a]_{m}^{-1} = [a]_{m}^{\phi(m)-1}$$

Esempio Supponiamo di voler calcolare

$$[857342^{124}]_7$$

L'approccio di calcolare 857342^{124} e poi calcolare il resto ha buone probabilità di fallire su un calcolare, in quanto causerebbe immediatamente overflow. Possiamo procedere come segue

• Trasferisco l'esponente all'esterno

$$[857342^{124}]_7 = [857342]_7^{124}$$

• Scelgo un rappresentante più appropriato

$$[857342]_7 = [3]_7$$

• Sfrutto il teorema di Fermat / Eulero

$$[3]_7^6 = [3]_7$$

quindi fattorizzo 124 come

$$124 = 6q + r$$

ottengo quindi

$$[3]_7^{124} = [3]_7^{6q+r} = [3]_7^{6q} [3]_7^r = [3]_7^r$$

ottengo quindi

$$[857342^{124}]_7 = [3]_7^4 = [4]_7$$

Utilizzo Il teorema di eulero è alla base della crittografia asimmetrica

• Prendo due numeri primi p, q e ottengo un n = pq, da cui ottengo

$$\phi(n) = (p-1)(q-1)$$

• Prendo un h coprimo con $\phi(n)$, ossia dall'identità di Bezout

$$1 = ah + b\phi(n) \implies ah = 1 + (-b)\phi(n)$$

- $\bullet \ n$ e hsono le chiavi pubbliche
- $\bullet\,$ Dato un messaggio M, calcolo $[M^h]_n$ col metodo visto nell'esempio precedente
- ullet Il ricevente usa la chiave a come segue

$$[M^h]_n^a = [M^{ah}]_n = [M^{1+(-b)\phi(n)}]_n = [M]_n$$

Part II Simplessi e complessi simpliciali

Chapter 6

K-Simplessi

Definizione 28 (Insieme geometricamente indipendente). Un insieme di punti $\{P_0, P_1, \ldots, P_k\}$ in \mathbb{R}^n è detto insieme di punti geometricamente indipendente (o in posizione generale) se le due equazioni

$$\sum_{i=0}^{k} t_1 P_i = (0, 0, \dots, 0) \qquad \sum_{i=0}^{k} t_1 = 0$$

implica che $t_0 = t_1 = \cdots = t_k = 0$

Lemma 3. Se $k \ge 1$, i P_0, P_1, \ldots, P_k sono geometricamente indipendente se e solo l'insieme

$$\{v_1 = P_1 - P_0, v_2 = P_2 - P_0, \dots, v_k = P_k - P_0, \}$$

è in insieme di vettori linearmente indipendenti

Corollario 4. Condizione necessaria affinchè i punti $\{P_0, \ldots, P_k\}$ sono geometricamente indipendenti in \mathbb{R}^n è che

$$k \le n$$

Descrizione geometrica

- k=0: $\{P_0\}$ è sempre geometricamente indipendente
- k=1: $\{P_0, P_1\}$ è geometricamente indipendente sse $P_0 \neq P_1$
- k=2: $\{P_0, P_1, P_2\}$ è geometricamente indipendente sse i tre punti non sono allineati
- k=3: $\{P_0, P_1, P_2, P_3\}$ è geometricamente indipendente sse i punti non sono complanari

• ...

Oseervazione $\{P_0, P_1, \dots, P_k\}$ sono geometricamente indipendenti sse non sono contenuti in un sottospazio affine di dimesione k-1

Proposizione 9. Siano $\{P_0, P_1, \ldots, P_k\}$ punti geometricamente indipendenti in \mathbb{R}^n , allora P_0, \ldots, P_k sono contenuti in uno pazio affine di dimensione k descritto dalle seguenti coordinate

$$x = \sum_{i=0}^{k} t_i P_i \quad con \quad \sum_{i=0}^{k} t_i = 1$$

Proof. 1) Sicuramente i punti P_i appartengono allo spazio, infatti

$$\forall i = 0, \dots, k \quad P_i = 0P_0 + 0P_1 + \dots + 0P_{i-1} + 1P_i + 0P_{i+1} + \dots + 0P_k$$
$$\sum_{i=0}^k t_i = 0 + 0 + \dots + 0 + 1 + 0 + \dots + 0$$

$$\sum_{i=0}^{k} t_i = 1 \Longleftrightarrow t_0 = 1 - \sum_{i=1}^{k} t_i$$

otteniamo quindi

$$x = \sum_{i=0}^{k} t_i P_i = t_0 P_0 + \sum_{i=1}^{k} t_i P_i = \left(1 - \sum_{i=1}^{k} t_i\right) P_0 + \sum_{i=1}^{k} t_i P_i$$
$$= P_0 + \sum_{i=1}^{k} t_i (P_i - P_0)$$

Per ipotesi, $\{P_0, P_1, \dots, P_k\}$ generano uno spazio vettoriale di dimensione massima k, quindi x appartiene ad uno spazio affine di dimensione k

Lemma 4. Se ho $\{P_0, P_1, \ldots, P_k\}$ punti geometricamente indipendenti, allora $\{P_0, P_1, \ldots, P_k, Q\}$ sono punti geometricamente indipendenti sse Q non appartiene al sottospazioe affine identificato da $\{P_0, P_1, \ldots, P_k\}$

Definizione 29 (K-simplesso). Siano $\{P_0, P_1, \ldots, P_k\}$ punti geometricamente indipendenti in uno spazio euclideo \mathbb{R}^n , chiamiamo k-simplesso generato da $\{P_0, P_1, \ldots, P_k\}$ l'insieme di tutti i punti $x \in \mathbb{R}^n$ tali che

$$x = \sum_{i=0}^{k} t_i P_i$$
 $\sum_{i=0}^{k} t_i = 1$ $t_i \ge 0 \ \forall i = 0, \dots, k$

Nomenclatura I coefficienti t_i sono univocamente determinati da x e vengono detti coordinate baricentriche di x rispetto all'insieme $\{P_0, P_1, \dots, P_k\}$

Interpretazione geometrica

- k=0) $\{P_0\}$ Uno 0-simplesso è un punto P_0 di \mathbb{R}^n
- k=1) $\{P_0, P_1\}$ Un 1-simplesso è l'insieme dei punti

$$x = t_0 P_0 + t_1 P_1$$
 $t_0 + t_1 = 1$ $t_0, t_1 \ge 0$

ossia, considerando $t_0 = 1 - t_1$,

$$x = (1 - t_1)P_0 + t_1P_1$$

con $t_1 \ge 0$ $1 - t_1 \ge 0$, ossia $\underline{t_1} \in [0, 1]$. L'1-simplesso è il segmento $\overline{P_0P_1}$

k=2) $\{P_0, P_1, P_2\}$ Un 2-simplesso è l'insieme dei punti

$$x = t_0 P_0 + t_1 P_1 + t_2 P_2$$
 $t_0 + t_1 + t_2 = 1$ $t_0, t_1, t_2 \ge 0$

osservo che $P_0=1P_0+0P_1+0P_2$, e con un ragionamento analogo posso concludere che P_0,P_1,P_2 appartengono al 2-simplesso. Considero un $x \neq P_0$, ossia $t_0 \neq 1$

$$x = t_0 P_0 + \frac{1 - t_0}{1 - t_0} (t_1 P_1 + t_2 P_2) = t_0 P_0 + (1 - t_0) \underbrace{\left(\frac{t_1}{1 - t_0} P_1 + \frac{t_2}{1 - t_0} P_2\right)}_{P^*}$$

ossia x è il segmento tra P_0 e P^* . Capiamo ora come è fatto P^*

- $\frac{t_1}{1-t_0} + \frac{t_2}{1-t_0} = \frac{t_1+t_2}{1-t_0} = \frac{1-t_0}{1-t_0} = 1$
- $\bullet \ \frac{t_1}{1-t_0}, \frac{t_2}{1-t_0} \ge 0$

Quindi P^* è l'1-simplesso generato da $\{P_1, P_2\}$. Segue che il 2-simplesso generato da $\{P_0, P_1, P_2\}$ è il triangolo con vertici P_0, P_1, P_2

k=3) $\{P_0,P_1,P_2,P_3\}$ Un 3-simplesso è una piramide a base triangolare (tetraedro)

6.1 Proprietà generali

Definizione 30 (Trasformazione affine). Una trasformazione affine in \mathbb{R}^n è una composizione di una traslazione e di una trasformazione lineare invertibile

6.1.1 Proprietà 1

Le trasformazioni affini conservano le proprietà di indipendenza geometrica, ossia dato un insieme di punti $\{P_0, P_1, \dots, P_k\}$ geometricamente indipendenti , e una trasformazione affine

$$T: \mathbb{R}^n \to \mathbb{R}^n$$

allora

$$\{T(P_0), T(P_1), \dots, T(P_k)\}$$

è un insieme di punti geometricamente indipendenti

6.1.2 Proprietà 2

Per ogni insieme di punti $\{P_0,P_1,\ldots,P_k\}$ geometricamente indipendenti , esiste una trasformazione affine $T:\mathbb{R}^n\to\mathbb{R}^n$ tale che

- $T(P_0) = (0, \dots, 0)$
- $\forall i=1,\ldots,k\ T(P_i-P_0)=\underline{e_i}$ (elemento i-esimo della base canonica di \mathbb{R}^n)

Intepretazione geometrica

k=0) Basta una traslazione del punto

k=1) Serve una traslazione e una trasformazione lineare

k=2) Serve una traslazione e una trasformazione lineare

Definizione 31 (K-simplesso standard). In \mathbb{R}^n , il k-simplesso standard è il k-simplesso generato dai punti

$$P_{0} = (0, \dots, 0)$$

$$P_{1} = (1, 0, \dots, 0)$$

$$\vdots$$

$$P_{k} = (0, \dots, 0, \underbrace{1}_{(pos.\ k)}, 0, \dots, 0)$$

Proprietà 3 Due k-simplessi τ,σ qualsiasi sono tra loro omeomorfi, infatti, prendiamo la trasformazione affine

$$T_{\sigma}: \mathbb{R}^n \to \mathbb{R}^n$$

tale che i punti $\{P_0, P_1, \dots, P_k\}$ che generano σ vengono mandati nel k-simplesso standard ω .

Le restrizioni

$$T_{\sigma}|_{\sigma} \sigma \to \omega$$
 $T_{\tau}|_{\tau} \tau \to \omega$

le quali sono biunivoche.

Una trasformazione affine è continua per definizione, quindi le due restrizioni sono omeomorfismi. Inoltre

ossia σ e τ sono omeomorfi

Proprietà 4 Le funzioni

$$t_i: \sigma \to \mathbb{R}$$

che corrispondono alle coordinate baricentriche del simplesso σ , sono funzioni continue (punti nel simplesso vicini tra loro hanno coordinate vicine tra loro)

Proprietà 5 Il k-simplesso σ è l'unione di tutti i segmenti che uniscono un vertice di σ e un punto del k-1 simplesso generato dagli altri punti

Proprietà 6 Per ogni k-simplesso, esiste un unico insieme di punti geometricamente indipendenti che lo generano

Proprietà 7 Un simplesso è un insieme connesso di \mathbb{R}^n

- σ è il più piccolo insieme connesso di \mathbb{R}^n contenente i punti $\{P_0, P_1, \dots, P_k\}$ che generano σ
- σ è l'insieme di tutti gli insiemi connessi di \mathbb{R}^n contenenti $\{P_0, P_1, \dots, P_k\}$
- σ è l'inviluppo convesso (convex hull) dei punti $\{P_0, P_1, \dots, P_k\}$

6.2 Confronto combinatorio-topologico

Consideriamo un k-simplesso σ fissato generato da $\{P_0,P_1,\dots,P_k\}$ punti geometricamente indipendenti

- \bullet I punti $\{P_0,P_1,\ldots,P_k\}$ si dicono vertici di σ
- $\bullet~k$ si dice dimensione di σ
- \bullet Ogni simplesso generato da un sottoinsieme proprio di h+1 punti di $\{P_0,P_1,\ldots,P_k\}$ si dice faccia del k-simplesso

Le facce di dimensione 2 sono gli spigoli

Le facce di dimensione 1 sono i vertici

- \bullet Le facce di dimensione k-1 si dicono facce massimali (o facet)
- \bullet Dato un simplesso $\sigma,$ l'unione di tutte le facce di σ si dice bordo di σ $(Bd(\sigma))$

 $\bullet\,$ Dato un simplesso $\sigma,$ chiamiamo parte interna o interno di σ la differenza tra σ e il suo bordo

$$Int(\sigma) := \sigma \setminus Bd(\sigma)$$

Possiamo riscrivere le definizioni di bordo e interno come segue

$$\sigma := \left\{ x = \sum_{i=0}^{k} t_i P_i \mid \sum_{i=0}^{k} t_i = 1, \quad t_i \ge 0 \quad \forall i = 0, \dots, k \right\}$$

$$Int(\sigma) := \left\{ x = \sum_{i=0}^{k} t_i P_i \mid \sum_{i=0}^{k} t_i = 1, \quad t_i > 0 \quad \forall i = 0, \dots, k \right\}$$

$$Bd(\sigma) := \left\{ x = \sum_{i=0}^{k} t_i P_i \mid \sum_{i=0}^{k} t_i = 1, \quad \prod_{i=0}^{k} t_i = 0 \right\}$$

Osservazione Il numero di ceofficenti nulli ci informano della dimensione della faccia che stiamo considerano

- 1 coefficiente nullo \rightarrow faccia massimale
- $\bullet \ 2$ coefficienti nulli \rightarrow faccia di dimensione k-2

6.3 Proprietà topologiche k-simplessi

Sia $\sigma\subseteq\mathbb{R}^n$ un k-simplesso

- σ è connesso, chiuso, limitato (ossia compatto)
- $Int(\sigma) \subseteq \mathbb{R}^n$ è l'unione di tutti i segmenti aperti (senza i due estremi) che collegano un vertice e i punti interni alla faccia massimale opposta.

Non abbiamo perso la convessità, è $Int(\sigma)$ è aperto rispetto alla topologia dell'unico spazio affine di dimensione k che contiene σ

• $In\bar{t}(\sigma) = \sigma$ ossia $Bd(\sigma)$ è la frontiera del simplesso σ

Idea Non ho una ugualianza, ma posso dire che il k-simplesso è omeomorfo a

$$\{\underline{x} \in \mathbb{R}^k \mid ||\underline{x}|| \le 1\}$$

Teorema 7. Sia $U\subseteq \mathbb{R}^n$ un sottoinsieme aperto, connesso, limitato, e sia $P\in U$ un punto. Allora

- Ogni semiretta uscente da P interseca la frontiera $Bd(U) = \bar{U} \setminus U$ esattamente in un punto
- C'è un omeomorfismo

$$\varphi: \bar{U} \to B_n(1) := \{\underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| \le 1\}$$

tale che

$$\varphi|_{Bd(U)}:Bd(U)\to S^{n-1}:=Bd(B_n(1))$$

è un omeomorfismo tra i due bordi

Proof. 1. Sia r una semiretta uscente da P punto del sottoinsieme

$$r = \{ \underline{x} \in P + t\underline{v} \mid t \ge 0 \}$$

 $r \cap U \subseteq r$ è un sottoinseme aperto di r, ed è anche convesso e limitato

$$r\cap U=\{\underline{x}\in P+t\underline{v}\mid t\in [0,a)\}$$

il punto Qottenuto come $Q=P+a\underline{v}$ è un punto di frontiera $Q\in Bd(U)=\bar{U}\setminus U$

Devo mostrare che $\{Q\} = r \cap Bd(U)$

Supponiamo che rintersechi il bordo di Uanche in un'altro punto R56 Il punto Qè compreso tra PeR.

Non è più connesso

In coordinate $R = P + b\underline{v} \text{ con } b > a$

Quali sono le coordinate baricentriche di Q rispetto all'1-simplesso generato da P e R?

$$Q = t_0 R + t_1 P \qquad t_0 + t_1 = 1$$

$$Q = (1 - t)R + tP$$

$$Q = P + a\underline{v}$$

$$b\underline{v} = R - P$$

$$a\underline{v} = \frac{a}{b}b\underline{v} = \frac{a}{b}R - P$$

da cui

$$Q = P + \frac{a}{b}R - \frac{a}{b}P = \left(1 - \frac{a}{b}\right)P + \frac{a}{b}R$$

esplicitando P

$$bQ = (b-a)P + aR \longleftrightarrow P = \frac{1}{b-a}(bQ - aR)$$

 $R \in Bd(U)$ sse esiste una successione di punti $\{R_N\}_{N \in \mathbb{N}}$ tale che

$$R_N \in U$$
, ma $\lim_{n \to +\infty} R_N = R$

Vado a sostituire i punti ${\cal R}_N$ nella relazione che definisce P in funzione di Q e ${\cal R}$

$$P_N = \frac{1}{b-a}(bQ - aR_N)$$

Per ipotesi, U è aperto, quindi esiste un valore $N_0 \in \mathbb{N}$ tale che

$$\forall N \ge N_0, \quad P_N \in U$$

Per $N \geq N_0$, P_N e $R_N \in U$.

U è connesso, $Q \in U$ (Q unione di R_N e P_N)

Contraddizione, poichè per it
potesi $Q \in Bd(U)$

$$R \neq q \in Bd(U)$$

non può esistere

2. A meno di traslazioni, posso supporre che $P \in U$ $P = \underline{0}$ Considero la funzione $f : \mathbb{R}^n \setminus \{\underline{0}\} \to S^{n-1}$ definita da

$$\underline{x} \mapsto \frac{\underline{x}}{||\underline{x}||}$$

Ogni semiretta passante per l'origine, interseca sia S^{n-1} che il bordo Bd(U) in un unico punto

$$f|_{Bd(U)}: Bd(U) \to S^{n-1}$$

fè biettiva, quindi $f|_{Bd(U)}$ è un omeomorfismo tra Bd(U)e $Bd(B_n(1))=S^{n-1}$

Sia $g: S^{n-1} \to Bd(u)$ la funzione inversa di f.

Voglio estendere g ad una funzione $\bar{g}: B_n(1) \to U$

L'idea è di dilatare/contrarre ogni segmento di estremi $\underline{0}$ e \underline{y} nel segmento di estremi $\underline{0}$ e g(y)

 $\forall Q \in B_n(1) \ Q = \underline{t}\underline{v} \text{ con } \underline{v} \text{ versore, quindi } t \in (0,1]$

Il segmento tra $\underline{0}$ e $\frac{Q}{||Q||}$ viene mandato nel segmento tra $\underline{0}$ e $g\left(\frac{Q}{||Q||}\right)$ Il fattore di scala è dato da

$$\left| \left| g \left(\frac{Q}{\left| \left| Q \right| \right|} \right) \right| \right|$$

quindi $Q = t\underline{v}$ viene mandato in

$$t \left\| g \left(\frac{Q}{||Q||} \right) \right\| \underline{v}$$

 $\bar{g}: B_n(1) \to U$ è definito da

$$\bar{g}(z) = \begin{cases} (0, \dots, 0) & z = \underline{0} \\ \left| \left| g\left(\frac{Q}{||Q||}\right) \right| \right| z & z \neq \underline{0} \end{cases}$$

 \bar{g} è invertibile ed è continua sicuramente per $z\neq\underline{0}.$ Cosa posso dire di $\underline{0}?$ Osservo che

$$||g||:S^{n-1}\to\mathbb{R}$$

definita da ||g||(x) = ||g(x)|| è limitata, quindi posso prendeer $M = \max_{S^{n-1}} ||g||$

$$0 \leq ||z - \underline{0}|| \leq \delta \implies ||\bar{g}(z) - g(\underline{0})|| < M\delta$$

 \bar{g} è continua anche in $\underline{0}$

Per riassumere Dal punto di vista topologico, i k-simplessi di \mathbb{R}^n ha le stesse proprietà di una palla n-dimensionale.

Dal punto di vista metrico invece, le proprietà sono molto diverse, ad esempio l'area contenuta è diversa

Chapter 7

Complessi simpliciali

Una domanda sorge spontanea: Posso utilizzare i simplessi per approssimare una forma qualsiasi

Definizione 32 (Complesso simpliciale). Un complesso simpliciale (simplicial complex) K di \mathbb{R}^n è una collezione di simplessi tali che

- 1. Ogni faccia di un simplesso di K appartiene a K
- 2. L'intersezione di due simplessi di K è una faccia di entrambi, oppure è vuota

Esempio 1 Consideriamo il simplesso $\sigma = [P_0, P_1, P_2]$ generato da $\{P_0, P_1, P_2\}$

 $K=\{\sigma\}$ non è un complesso simpliciale poichè non rispetta la prima regola. Il più piccolo complesso simpliciale che contiene σ è la collezione

$$K = \{\sigma, \underbrace{[P_0, P_1], [P_0, P_2], [P_1, P_2]}_{1-simplessi}, \underbrace{[P_0], [P_1], [P_2]}_{0-simplessi}\}$$

Esempio 2

$$K = \left\{ \begin{array}{l} [P_0, P_1, P_2], [P_0, P_1, P_3], \\ [P_0, P_1], [P_1, P_2], [P_0, P_2], [P_0, P_3], [P_1, P_3], \\ [P_0], [P_1], [P_2], [P_3] \end{array} \right\}$$

Esempio 3

Non è un complesso simpliciale, infatti

$$[P_0,P_1,P_2]\cap [P_0,P_3,P_4]=[P_0,P_4]$$

non è una faccia di $[P_0, P_1, P_2]$

Lemma 5. Condizione equivalente per essere un complesso simpliciale: Una collezione K di simplessi di \mathbb{R}^n è un complesso simpliciale se:

- Ogni faccia di un simplesso di K appartiene a K
- Due simplessi distinti hanno interno disgiunto

$$\sigma \neq \tau$$
, $Int(\sigma) \cap Int(\tau) = \emptyset$, $\forall \sigma, \tau \in K$

Nell'esempio

$$[P_0, P_1] \neq [P_0, P_4]$$

ma

$$Int([P_0, P_1]) \cap Int([P_0, P_4]) = Int([P_0, P_4]) \neq \emptyset$$

Definizione 33 (Sottocomplesso simpliciale). Sia K un complesso simpliciale, una collezione L di simplessi di K che contiene anche le facce di tutti i suoi elementi è ancora un complesso simpliciale.

Diciamo che L è un sottocomplesso di K

Definizione 34 (P-scheletro). Dato un complesso simpliciale K, definiamo p-scheletro di K il sottocomplesso

$$K^{(p)} := \{ \sigma \in K \mid \dim \sigma \le p \}$$

~

Definizione 35 (Dimensione di un complesso). Dato un complesso simpliciale K, chiamiamo dimensione di K il numero

$$dim \ K = \max_{\sigma \in K} (dim \ \sigma)$$

Osservazione In particolare, lo 0-scheletro è l'insieme dei vertici e ogni scheletro

$$K^{(0)} \subset K^{(1)} \subset K^{(2)} \subset \cdots \subset K^{(\dim K)} = K$$

Definizione 36 (Spazio soggiacente). Sia K un complesso simpliciale di \mathbb{R}^n , indichiamo con |K| il sottoinsieme \mathbb{R}^n formato dall'unione di punti contenuti nei simplessi di K, e lo chiameremo spazio soggiacente di K (o politopo / poliedro di K)

Definizione 37 (Topologia del complesso). Dato lo spazio soggiacente, la topologia è definita dai chiusi seguenti:

 $A \subset |K|$ insieme chiuso di $|K| \iff A \cap \sigma$ insieme chiuso di $\sigma \quad \forall \sigma \in K$

Nota bene $\,$ Alcuni testi utilizzano politopo per indicare lo spazio soggiacente solo nel caso in cui K sia una collezione finita

Proposizione 10. Se K è una collezione finita, la topologia del complesso coincide con la topologia euclidea. In generale, la topologia indotta dal complesso simpliciale è più fine della topologia indotta dalla topologia euclidea di \mathbb{R}^n (ho più chiusi / aperti)

Osservazione Se L è un sottocomplesso di K, allora lo spazio soggiacente di |L| è un chiuso dello spazio soggiacente di |K|. In particolare

$$\forall \sigma \in K \quad |\sigma| \ chiuso$$

infatti

$$\forall \sigma \in K \quad |L| \cap \sigma = \left\{ \begin{array}{ll} \emptyset & \sigma \not\in L \\ \sigma & \sigma \in L \end{array} \right.$$

Lemma 6. Sia K complesso simpliciale,

- Se K è una collezione finita, allora |K| è compatto
- Se $A \subset |K|$ compatto, allora esiste un sottocomplesso K_0 finito tale che

$$A = |L_0K|$$

Osservazione Se K è una collezione finita, allora la topologia è quella euclidea, e ogni elemento σ di K è compatto, quindi K è unione finita di compatti, ossia |K| è compatto

Proposizione 11. Una funzione

$$f:|K|\to X$$

è continua se e solo se

$$f|_{\sigma}: \sigma \to X$$

 $\grave{e} \ continua \ \forall \sigma \in K$

Proof. f continua se e solo se

$$\forall C \subset X$$
 chiuso, $f^{-1}(C)$ è un chiuso di $|K|$

- \Longrightarrow) $f:|K|\to X$ continua. $f|_{\sigma}:\sigma\to X$ è continua poichè σ è un chiuso di |K|

Chapter 8

Sottospazi particolari di un poliedro

Sia K un complesso simpliciale

Definizione 38 (Star di un vertice). Per ogni vertice $v \in K^{(0)}$, definiamo star di v l'unione della parte interna di tutti i simplessi di K che hanno v come vertice, ossia

$$St(v) = St(v, K) = \bigsqcup_{v \in \sigma \in K} Int(\sigma)$$

Porprietà St(v) è un insieme aperto di |K|

Proof. $|K| \setminus St(v)$ è l'unione di tutti i simplessi di K che non hanno v come vertice.

 $|K| \setminus St(v) = |L|,$ con Lsottocomplesso di K,il quale è un chiuso rispetto alla topologia di |K|

Morale St(v) è il più piccolo intorno aperto di v deducibile dalla struttura combinatoriale di K

Definizione 39 (Star chiusa). Per ogni vertice $v \in K^{(0)}$, definiamo star chiusa di v la chiusura (nel senso topologico) della star di v. Useremo una delle seguenti notazioni

$$\overline{St}(v)$$
 $\overline{St(v)}$ $ClSt(v)$

o per specificare il complesso

$$\overline{St}(v,K)$$
 $\overline{St(v,K)}$ $ClSt(v,K)$

Proprietà

- $\overline{St}(v)$ è un insieme chiuso di |K| (con la topologia di |K|
- $\overline{St}(v)$ è lo spazio soggiacente del sotto
complesso $L'\subseteq K$ formato da tutti i cimplessi co
nvcome vertice

Definizione 40 (Link). Per ogni vertice $v \in K^{(0)}$, definiamo link di v la differenza tra

$$Lk := \overline{St}(v) \setminus St(v)$$

Proprietà Lk) è un chiuso di |K|, infatti

$$Lk := \overline{St}(v) \setminus St(v) = \overline{St}(v) \cap (|K| \setminus St(v))$$

entrambi sono sottocomplessi, quindi chiusi, da cui Lk chiuso

Osservazione St(v) e $\overline{St}(v)$ sono in genere insiemi connessi per archi, ciò non è invece vero per Lk(v). Ad esempio

Definizione 41 (Mappa simpliciale). Siano K e L due complessi simpliciali e sia

$$f: K^{(0)} \to L^{(0)}$$

una funzione tale che per ogni insieme di vertici $\{P_0, P_1, \dots, P_k\}$ di K che generano un simplesso di K, i punti corrispondenti

$$\{f(P_0), f(P_1), \dots, f(P_K)\}$$

devono essere vertici di un simplesso di L.

Allora la funzione f si può estendere ad una funzione continua

$$\tilde{f}: |K| \to |L|$$

tale che

$$x \in \sigma \in K$$
 $x = \sum_{i=0}^{k} t_i P_i$ $\tilde{f}(x) = \sum_{i=0}^{k} t_i f(P_i)$

Chiamiamo \tilde{f} mappa simpliciale (lineare) indotta da f

Osservazione Per ogni $x \in |K|$, esiste un unico $\sigma \in K$ tale che x sia un punto della parte interna di σ

Osservazione Non stiamo chiedendo che i punti che otteniamo siano distinti

Esempio 1

K

Consideriamo la funzione

$$f: K^{(0)} \to L^{(0)}$$

definita come

$$P_0 \longmapsto Q_0 \quad P_1 \longmapsto Q_1$$

$$P_2 \longmapsto Q_2 \text{ oppure } P_2 \longmapsto Q_0 \text{ oppure } P_2 \longmapsto Q_1$$

$$x \in [P_0, P_1, P_2] \implies x = t_0 P_0 + t_1 P_1 + t_2 P_2$$

Caso 1)

$$\tilde{f}(x) = t_0 f(P_0) + t_1 f(P_1) + t_2 f(P_2) = t_0 Q_0 +_1 Q_1 + t_2 Q_2 \in [Q_0, Q_1, Q_2]$$

Caso 2/3)

$$\tilde{f}(x) = t_0 f(P_0) + t_1 f(P_1) + t_2 f(P_2) = (t_0 + t_2) Q_0 + t_1 Q_1 \in [Q_0, Q_1]$$

Esempio 2 Un esempio di funzione che non si esteda a una mappa simpliciale è

$$P_0 \longmapsto Q_1 \quad P_1 \longmapsto Q_1 \quad P_2 \longmapsto Q_2$$

 $P_3 \longmapsto Q_3 \text{ oppure } P_3 \longmapsto Q_4$

 $\{P_1, P_2, P_3\}$ generano un 2-simplesso di K, ma

$$\{f(P_1), f(P_2), f(P_3)\} = \{Q_1, Q_2, Q_3\}$$

non sono vertici di un simplesso di L

Utilità Questa possibilità permette di dimostrare che la composizione di mappe simpliciali è una mappa simpliciale

$$K^{(0)} \xrightarrow{f} L^{(0)} \xrightarrow{g} M^{(0)}$$

$$x = \sum_{i=0}^{k} t_i P_i \mapsto \tilde{f}(x) = \sum_{i=0}^{k} t_i f(P_i) \mapsto \tilde{g}(\tilde{f}(x)) = \sum_{i=0}^{k} t_i g(f(P_i))$$

Osservazione $\tilde{f}:|K|\to |L|$ è continua, ossia $\tilde{f}\Big|_{\sigma}:\sigma\to |L|$ è continua $\forall \sigma\in K$

$$\sigma = [P_0, \dots, P_k] \stackrel{\tilde{f}}{\longmapsto} [f(P_0), \dots, f(P_k)]$$

è continua poichè è una mappa di inclusione

$$i:[f(P_0),\ldots,f(P_k)]\hookrightarrow |L|$$

Proposizione 12. Siano K e L due complessi simpliciali e sia $f:K^{(0)} \to L^{(0)}$ una funzione biettiva tale che i vertici $P_0, \ldots, P_k \in K^{(0)}$ generano un simplesso di K se e solo se $f(P_0), \ldots, f(P_k) \in L^{(0)}$ generano un simplesso di L. Allora la mappa simpliciale indotta $\tilde{f}: |K| \to |L|$ è un omeomorfismo

Proof. Se $f:K^{(0)}\to L^{(0)}$ è biettiva, allora $\exists g:L^{(0)}\to K^{(0)}$ tale che

$$g \circ f = f \circ g = id$$

quindi $g = f^{-1}$. Segue che

$$\tilde{f}^{-1}\left(\tilde{f}(x)\right) = \tilde{f}^{-1}\left(\sum_{i=0}^{k} t_i f(P_i)\right) = \sum_{i=0}^{k} t_i f^{-1}\left(f(P_i)\right) = \sum_{i=0}^{k} t_i P_i = x$$

Corollario Condizioni necessarie per essere omeomorfismi via mappe simpliciali

- K finito, |K| compatto, e |L|, |K| omeomoerfi (via m.s.) $\implies L$ finito, |L| compatto
- $\bullet \ |K| \ |L|$ omeomorfi $\implies K^{(0)}$ e $L^{(0)}$ hanno la stessa cardinalità
- |K| |L| omeomorfi $\implies K$ e L hanno lo stesso numero di p-simplessi $\forall p$

Corollario 5. Sia K un complesso simpliciale finito, allor |K| è omeomorfo allo spazio soggiacente di un sottocomplesso del complesso simpliciale formato dal simplesso standard Δ^N con le sue facce, per un N sufficentemente grande

Proof. Prendiamo P_0, \ldots, P_n vertici di K, i vertici del simplesso standard Δ^N sono

$$\{0,\underline{e_1},\underline{e_2},\ldots,\underline{e_n},\}$$

Prendiamo la funzione

$$f:K^{(0)}\to\Delta^{N^{(0)}}$$

che associa

$$P_0 \longmapsto \underline{0}$$
$$P_i \longmapsto e_i$$

Il sotto
complesso $L\subset \Delta^N$ con spazio soggiacente ome
omorfo a |K| è

$$L = \{ \sigma \in \Delta^N \mid \sigma = [f(P_0), \dots, f(P_k)] \}$$

per
$$[P_0,\ldots,P_k]\in K$$

Chapter 9

Complessi simpliciali astratti

Abbiamo quindi visto come l'omomorfismo topologico è controllato completamente dalle proprietà combinatoriali, e non da quelle geometriche.

Inoltre, le coordinate dei vertici non influiscono sugli enunciati e sui teoremi, ma quello che conta è la struttura astratta. Possiamo quindi dare una struttura algebrica più raffinata ai complessi simpliciali.

Definizione 42 (Complesso simpliciale astratto). Un complesso simpliciale astratto è una collezione S di insiemi finiti non vuoti tali che

$$A \in \mathcal{S} \implies \mathcal{P}(A) \in \mathcal{S}$$

Nomenclatura Abbiamo una equivalenza tra la nomenclatura dei complessi simpliciali geometrici e dei complessi simpliciali astratti

- $\bullet\,$ Ogni $A\in\mathcal{S}$ si dice simplesso astratto
- \bullet La dimensione di $A \in \mathcal{S}$ è pari al numero di elementi meno 1
- \bullet Ogni sottoinsieme di $A \in \mathcal{S}$ si dice faccia di A
- \bullet La mensione di ${\mathcal S}$ è la dimensione massima di un suo sottoinsieme
- L'insieme dei vertici di \mathcal{S} (l'insieme dei singoletti) si dice 0-scheletro di \mathcal{S} , l'insieme dei sottoinsiemi di 1 elemento si dice 1-scheletro di \mathcal{S} ecc.
- \bullet Due complessi simpliciali astratti \mathcal{S} e \mathcal{T} si dicono isomorfi se c'è una corrispondenza biunivoca tra gli 0-scheletri tale che

$$\{a_0, a_1, \dots, a_k\} \in \mathcal{S} \iff \{f(a_0), f(a_1), \dots, f(a_k)\} \in \mathcal{T}$$

Definizione 43 (Vertex scheme). Sia K un complesso simpliciale (geometrico) e sia $V = K^{(0)}$ l'insieme dei vertici di K. La collezione di sottoinsiemi di V

$$\mathcal{K} := \{ \{v_0, v_1, \dots, v_k\} \in V \mid [v_0, \dots, v_n] \in K \}$$

 $\`{e}\ un\ complesso\ simplicale\ astratto\ detto\ vertex\ scheme\ di\ K$

Teorema 8. • Ogni complesso simpliciale astratto è isomorof ad un vertex scheme di un complesso simpliciale geometrico

• Due complessi simpliciali (geometrici) sono isomorfi (e gli spazi soggiacenti omeomorfi) se e solo se i vertex scheme sono isomorfi Esempio Consideriamo il complesso simpliciale astratto

$$S = \left\{ \begin{array}{l} \{0,1,2\}, \{0,1,4\}, \{0,2,3\}, \{0,3,4\}, \{1,2,5\}, \{1,4,5\}, \\ \{2,3,5\}, \{3,4,5\}, \text{e tutti i sottoinsiemi} \end{array} \right\}$$

Qual'è il complesso simpliciale geometrico che ha S come vertex scheme?

Ho disegnato i 2-simplessi in \mathbb{R}^2 , ma con ripetizione di lati. Per realizzare S devo "incollare" assieme i lati

S è isomorfo al vertex scheme di un complesso simpliciale in \mathbb{R}^3

Part III Omologia simpliciale

Chapter 10

Omologia simpliciale

10.1 Gruppi di omologia simpliciale

Definizione 44 (Gruppo delle p-catene). Sia K un complesso simpliciale (geometrico o astratto), chiamiamo gruppo delle p-catene di K il gruppo libero generato dai p-simplessi di K, ossia l'insieme

$$C_p(K) := \{c : \{p\text{-simplessi di } K\} \to \mathbb{Z} \mid c^{-1}(\mathbb{Z} \setminus \{0\}) \text{ ha cardinalità finita}\}$$

con l'operazione somma

$$+: C_p(K) \times C_p(K) \to C_p(K)$$

$$(C + C')(\sigma) = C(\sigma) + C'(\sigma) \quad \forall \sigma \ p\text{-simplesso}$$

N.B. Per convenzione si ha

$$C_p(K) = \{0\}$$

per p > dim K oppure p < 0

Osservazioni

- Posso consierare la stessa costruzione anche rispetto ad altri gruppi, ossia $C_p(K) := \{c : \{\text{p-simplessi di } K\} \to G \mid c^{-1}(G \setminus \{0_G\}) \text{ ha cardinalità finita} \}$ casi interessanti sono $C_p(K, \mathbb{Z}_n)$
- $\bullet\,$ Una base di $C_p(K)$ è formato dalle funzioni caratteristiche dei simplessi

$$\forall \sigma \text{ p-simplesso}, \quad C_{\sigma}(\tau) = \left\{ \begin{array}{ll} 1 & \tau = \sigma \\ 0 & \tau \neq \sigma \end{array} \right.$$

D'ora in poi, σ indicherè il simplesso o la funzione caratteristica associata C_σ

Domanda Che significato ha l'elemento opposto nel gruppo delle p-catene? Partiamo dall'elemento opposto degli elementi della base

p=1

Consideriamo il simplesso $\sigma = [P_0, P_1]$, otteniamo

$$\sigma_{[P_0,P_1]}([P_0,P_1])=1$$

$$\sigma_{[P_1,P_2]}([P_0,P_1])=0$$

cosa vuol dire $-\sigma_{[P_0,P_1]}?$ Idea intuitiva: cambiamo il verso di percorrenza!

p=2

Cosa significa $-\sigma_{[P_0,P_1,P_2]}$? Nel nostro esempio, $[P_0,P_1,P_2]$ corrisponde all'esplorare i vertici in senso antiorario, quindi $-[P_0,P_1,P_2]$ potrebbe significare esplorare i vertici in senso orario

Ossia intendiamo

$$-[P_0,P_1,P_2]=[P_0,P_2,P_1]$$

In generale è difficile estendere intuitivamente il concetto a psimplessi di dimensione superiore (e nemmeno a 0-simplessi)

Definizione 45 (Ordinamenti equivalenti). Sia σ un p-simplesso. Diciamo che due ordinamenti dei vertici di σ sono equivalenti se differiscono per un numero pari di scambi (cioè per una permutazione pari).

Le due classi di equivalenza si dicono ordinamenti di σ

Definizione 46 (Simplesso orientato). Un simplesso orientato è un simplesso con una delle sue orientazioni fissata

Esempi

 $\mathbf{p=0}$ {0} ho una sola orientazione

p=1 $[P_0, P_1]$. Ho due orientamenti possibili, che differiscono per uno scambio

p=2 Possiamo dividere gli ordinamenti in due classi di equivalenza, corrispondenti ad una visita dei vertici in senso orario o antiorario

Possiamo ora migliorare la nostra definizione di gruppo delle p-catene di un complesso simpliciale

Definizione 47 (Gruppo delle p-catene v2). Sia K un complesso simpliciale (geometrico o astratto), con una orientazione fissata per ogni silesso, chiamiamo gruppo delle p-catene di K il gruppo libero generato dai p-simplessi di K, ossia l'insieme

 $C_p(K) := \{c : \{p\text{-simplessi di } K\} \to \mathbb{Z} \mid c^{-1}(\mathbb{Z} \setminus \{0\}) \text{ ha cardinalità finita} \}$ con l'operazione somma

$$+: C_p(K) \times C_p(K) \to C_p(K)$$

$$(C + C')(\sigma) = C(\sigma) + C'(\sigma) \quad \forall \sigma \ p\text{-simplesso}$$

Definizione 48 (P-esimo operatore di bordo). Sia K un complesso simpliciale, definiamo p-esimo operatore di bordo l'omomorfismo di gruppi

$$\partial_p: C_p(K) \to C_{p-1}(K)$$

 $definito\ come$

$$\sigma = [P_0, P_1, \dots, P_p] \longmapsto \sum_{i=0}^{p} (-1)^i [P_0, \dots, P_{i-1}, \hat{P}_i, P_{i+1}, \dots, P_p]$$

dove con \hat{P}_i intendiamo che l'elemento P_i viene rimosso dalla collezione di punti che generano il simplesso

Osservazione

$$C_p(K) = \{0\} \quad p < 0 \implies \partial_p = 0 \quad p \le 0$$

Esempio

p=1 Consideriamo il complesso simpliciale

$$\begin{split} \partial_1[P_0,P_1] &= (-1)^0[P_1] + (-1)^1[P_0] = [P_1] - [P_0] \\ \partial_1[P_1,P_2] &= (-1)^0[P_2] + (-1)^1[P_1] = [P_2] - [P_1] \\ \partial_1([P_1,P_2] + [P_1,P_2]) &= \partial_1[P_0,P_1] + \partial_1[P_1,P_2] = P_1 - P_0 + P_2 - P_1 = P_2 - P_0 \end{split}$$

Osservazione Posso rappresentare gli operatori di bordo come matrici. Consideriamo il complesso simpliciale K

$$K = \{ [P_0, P_1, P_2], [P_0, P_1], [P_1, P_2], [P_0, P_2], [P_1, P_3], [P_0], [P_1], [P_2], [P_3] \}$$

I gruppi delle p-catene risultano essere

$$C_p(K) = \{0\} \quad p < 0 \lor p > 2$$

$$C_0(K) = \langle \{P_0, P_1, P_2, P_3\} \rangle \simeq \mathbb{Z}^4$$

$$C_1(K) = \langle \{[P_0, P_1], [P_1, P_2], [P_0, P_2], [P_1, P_3] \} \rangle \simeq \mathbb{Z}^4$$

$$C_2(K) = \langle [P_0, P_1, P_2] \rangle \simeq \mathbb{Z}$$

Gli operatori bordo risultano essere

$$\begin{split} \partial_p &= 0 \quad p \leq 0 \lor p > 2 \\ \partial_2 &: C_2(K) \to C_1(K) \\ \partial_2 [P_0, P_1, P_2] &= (-1)^0 [P_1, P_2] + (-1)^1 [P_0, P_2] + (-1)^2 [P_0, P_1] = \\ &= [P_0, P_1] + [P_1, P_2] - [P_0, P_2] \end{split}$$

posso rappresentrare l'opearatore tramite una matrice

$$\mathcal{M}_{3\times 1}(\mathbb{Z})\ni \partial_2 = \begin{bmatrix} P_0, P_1, P_2 \\ 1 \\ 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} P_0, P_1 \\ [P_1, P_2] \\ [P_0, P_2] \\ [P_1, P_3] \end{bmatrix}$$

$$\begin{split} \partial_1: C_1(K) \to C_0(K) \\ \partial_1[P_0, P_1] &= P_1 - P_0 \quad \partial_1[P_1, P_2] = P_2 - P_1 \\ \partial_1[P_1, P_2] &= P_2 - P_1 \quad \partial_1[P_1, P_3] = P_3 - P_1 \end{split}$$

oppure, sotto forma di matrice

$$\mathcal{M}_{4\times 4}(\mathbb{Z})\ni \partial_1 = \left[\begin{array}{cccc} -1 & 0 & -1 & 0 \\ 1 & -1 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Esempio di operatore di bordo ∂_3 Consideriamo il complesso simpliciale generato da $[P_0,P_1,P_2,P_3]$

 $\partial_3[P_0,P_1,P_2,P_3] = -[P_0,P_1,P_2] + [P_0,P_1,P_3] - [P_0,P_2,P_3] + [P_1,P_2,P_3]$ consideriamo i singoli termini

L'operatore di bordo rappresenta un flusso uscente dal solido

Osservazione Ogni lato del 3-bordo di $[P_0, P_1, P_2, P_3]$ è percorso due volte, in versi opposti

Teorema 9. Sia K un complessso simpliciale, la composizione di due operatori bordo consecutivi è uguale all'omomorfismo nullo

$$\partial_{p_1} \circ \partial_p = 0 \quad \forall p$$

Proof. Osservo che se $p>\dim K$ oppure $p-1\leq 0 \implies p\leq 1$, allora uno dei due omomorfismi ∂ oppure ∂_{p-1} è l'omomorfismo nullo, la composizione è quindi banalmente l'omomorfismo nullo

Nel caso $1 , studio gli effetti la composizione degli operatori bordo sulla base del gruppo <math>C_p(K)$

$$\partial_{p-1} \left(\partial_p [P_0, \dots, P_p] \right) = \partial_{p-1} \left(\sum_{i=0}^p (-1)^i [P_0, \dots, P_{i-1}, \hat{P}_i, P_{i+1}, \dots, P_p] \right) =$$

$$= \sum_{i=0}^p (-1)^i \partial_{p-1} [P_0, \dots, P_{i-1}, \hat{P}_i, P_{i+1}, \dots, P_p]$$

possiamo spezzare la somma nei due casi possibili dell'applicazione del secondo operatore bordo (rimuovo un punto prima di P_i , oppure dopo P_i)

$$= \sum_{j < i} (-1)^{i} (-1)^{j} [P_0, \dots, \hat{P}_j, \dots, \hat{P}_i, \dots, P_p] +$$

$$+ \sum_{j > i} (-1)^{i} (-1)^{j-1} [P_0, \dots, \hat{P}_i, \dots, \hat{P}_j, \dots, P_p]$$

(poichè rimuovo un elemento prima di ${\cal P}_j,$ l'indice risulta spostato) Ottengo quindi

$$= \sum_{j < i} (-1)^{i+j} [P_0, \dots, \hat{P}_j, \dots, \hat{P}_i, \dots, P_p]$$
$$- \sum_{j > i} (-1)^{i+j} [P_0, \dots, \hat{P}_i, \dots, \hat{P}_j, \dots, P_p]$$
$$- 0$$

Segue quindi un corollario, facilmente rappresentabile con un diagramma

Corollario 6. Sia K un complesso simpliciale, il seguente diagramma commuta

In oltre

$$\partial_{p-1} \circ \partial_p = 0 \implies Im(\partial) \subseteq Ker(\partial_{p-1})$$

Domanda "Misurare" la differenza tra $Im(\partial_p)$ e $Ker(\partial_{p-1})$ ci dà delle informazioni sulla topologia del complesso?

Definizione 49 (Gruppo dei p-cicli). Il nucleo dell'operatore bordo $\partial_p: C_p(K) \to C_{p-1}(K)$ su un complesso simpliciale K si dice gruppo dei p-cicli di K e viene denotato con

$$Z_p(K)$$

Definizione 50 (Gruppo dei p-bordi). L'immagine dell'operatore bordo ∂_{p+1} : $C_{p+1}(K) \to C_p(K)$ su un complesso simpliciale K si dice gruppo dei p-bordi di K e viene denotato con

$$B_p(K)$$

Osservazione Per il corollario, abbiamo

$$B_p(K) \subseteq Z_p(K) \subseteq C_p(K)$$

il che spiega la scelta degli indici diversi per i p-cicli e i p-bordi

Definizione 51 (Gruppi di omologia). Dato un complesso simpliciale K, chiamiamo p-esimo gruppo di omologia (simpliciale) di K il gruppo

$$H_p(K) := Z_p(K)/B_p(K)$$

10.2 Esempio completo

Calcolare i gruppi di omologia simpliciale del complesso simpliciale

$$K = \{[P_0, P_1], [P_1, P_2], [P_2, P_3], [P_0, P_3], P_0, P_1, P_2, P_3\}$$

10.2.1 Step 1: Calcolo p-catene

- $C_0(K) = \langle P_0, P_1, P_2, P_3 \rangle \simeq \mathbb{Z}^4$
- $C_1(K) = \langle [P_0, P_1], [P_1, P_2], [P_2, P_3], [P_0, P_3] \rangle \simeq \mathbb{Z}^4$
- $C_p(K) = \{0\} \ \forall p \neq 0, 1$

Avrò quindi 2 gruppi di omologia

10.2.2 Step 2: Operatori bordo

- $\partial_p = 0 \ \forall p \neq 1$
- $\partial_1: C_1(K) \to C_0(K)$

$$\partial_1 = \left[\begin{array}{rrrr} -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

10.2.3 Step 3: Determinare p-cicli e p-bordi

p=0

$$H_0(K) = Z_0(K)/B_0(K) = Ker \partial_0/Im \partial_1$$

$$\partial_0 : C_0(K) \to \{0\} \implies \partial_0 = 0 \implies Z_0(K) = C_0(K)$$

Per quanto riguarda $B_0(K)$, esso è generato dalle immagini della base di $C_1(K)$ tramite ∂_1

$$\partial_1[P_0, P_1] = P_1 - P_0$$

$$\partial_1[P_1, P_2] = P_2 - P_1$$

$$\partial_1[P_2, P_3] = P_3 - P_2$$

$$\partial_1[P_0, P_3] = P_3 - P_1$$

Questi generatori sono minimali? Dobbiamo risolvere

$$m_1(P_1 - P_0) + m_2(P_2 - P_1) + m_3(P_3 - P_2) + m_4(P_0 - P_3) = 0$$

e troviamo che il quarto generatore è rindondante. Abbiamo quindi

$$B_0(K) = \langle P_1 - P_0, P_2 - P_1, P_3 - P_2 \rangle \simeq \mathbb{Z}^3$$

Osservazione Dal disegno si intuiva che $[P_0, P_3]$ era ridondante, infatti

 $[P_0, P_3]$ non è l'unico modo per passare da P_0 a P_3 Come calcolo il quoziente?

$$C_0(K)/B_0(K) = \langle P_0, P_1, P_2, P_3 \rangle/\langle P_1 - P_0, P_2 - P_1, P_3 - P_2 \rangle \simeq \mathbb{Z}^4/\mathbb{Z}^3$$

Ricordo che gli elementi di $C_0(K)/B_0(K)$ sono le classi di equivalenza della relazione

$$a_0P_0 + a_1P_1 + a_2P_2 + a_3P_3 \sim b_0P_0 + b_1P_1 + b_2P_2 + b_3P_3$$

$$\updownarrow$$

$$(a_0 - b_0)P_0 + (a_1 - b_1)P_1 + (a_2 - b_2)P_2 + (a_3 - b_3)P_3 \in B_0(K)$$

per descrivere le classi di equivalenza è utile determinare un rappresentante canonico ("speciale")

$$[a_{0}P_{0} + a_{1}P_{1} + a_{2}P_{2} + a_{3}P_{3}] \in H_{0}(K)$$

$$\updownarrow$$

$$[a_{0}P_{0} + a_{1}P_{1} + a_{2}P_{2} + a_{3}P_{3} + \underbrace{(P_{3} - P_{2})(-a_{3})}_{\in B_{0}(K)}] \in H_{0}(K)$$

$$\updownarrow$$

$$[a_{0}P_{0} + a_{1}P_{1} + (a_{2} + a_{3})P_{2} \underbrace{-(a_{2} + a_{3})(P_{2} - P_{1})}_{\in B_{0}(K)}] \in H_{0}(K)$$

$$\updownarrow$$

$$[a_0P_0 + (a_1 + a_2 + a_3)P_1 \underbrace{-(a_1 + a_2 + a_3)(P_1 - P_0)}_{\in B_0(K)}] \in H_0(K)$$

$$\updownarrow$$

$$[(a_0 + a_1 + a_2 + a_3)P_0] \in H_0(K)$$

ho (non rigorosamente) dimostrato che il quoziente ha un solo generatore, ossia $H_0(K) \simeq \mathbb{Z}$.

Per una dimostrazione algebrica, utilizzo il teorema fondamentale di isomorfismo. Considero il morfismo

$$f: C_0(K) \to \mathbb{Z}$$

$$a_0P_0 + a_1P_1 + a_2P_2 + a_3P_3 \longmapsto a_0 + a_1 + a_2 + a_3$$

la suriettività è banale. Segue inoltre che

$$Im f = \mathbb{Z} \quad Ker f = \langle P_3 - P_0, P_2 - P_1, P_3 - P_2 \rangle$$

da cui

$$H_0(K) = C_0(K)/B_0(K) = C_0(K)/Ker \ f \simeq \mathbb{Z}$$

p=1

$$H_1(K) = \frac{Z_1(K)}{B_1(K)} = \frac{Ker \ \partial_1}{Im \ \partial_2}$$
$$\partial_2 : C_2(K) \to C_1(K)$$

poichè $C_2(K)=\{0\},$ è immediato $Im\ \partial_2=\{0\},$ da cui

$$H_1(K) = Z_1(K)/\{0\} = Z_1(K)$$

Calcoliamo il gruppo degli 1-cicli

$$Z_1(K) = Ker \partial_1 =$$

$$=\{c: m_{01}[P_0,P_1]+m_{12}[P_1,P_2]+m_{23}[P_2,P_3]+m_{03}[P_0,P_3]\in C_1(K)\mid \partial_1c=0\}$$

$$\partial_1c=(-m_{01}-m_{03})P_0+(m_{01}-m_{12})P_1+(m_{12}-m_{23})P_2+(m_{23}+m_{03})P_3=0$$

$$\begin{bmatrix} -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} m_{01} \\ m_{12} \\ m_{23} \\ m_{03} \end{bmatrix} = \underline{0} \implies \begin{cases} m_{01} = 1 \\ m_{12} = -1 \\ m_{23} = -1 \\ m_{03} = -1 \end{cases}$$

ho quindi

$$Z_1(K) = Ker \ \partial_1 = \langle [P_0, P_1] + [P_1, P_2] + [P_2, P_3] - [P_0, P_3] \rangle \simeq \mathbb{Z}$$

Cosa rappresenta $Z_1(K)$?

Descrive un ciclo tra dei vertici di K

10.2.4 Conclusione

Abbiamo quindi

$$H_p(K) = \begin{cases} \mathbb{Z} & p = 0, 1\\ \{0\} & p \neq 0, 1 \end{cases}$$

10.3 Esempio completo 2

Calcolare i gruppi doi omologia simpliciale di

10.3.1 $H_0(K)$

 $Im \partial_2$ è generato dalle immagini degli elementi della base di $C_2(K)$, ossia

$$P_1 - P_0$$
 $P_2 - P_1$ $P_2 - P_0$ $P_3 - P_1$

E' immediato verificare che

$$1(P_1 - P_0) + 1(P_2 - P_3) - 1(P_2 - P_0) + 0(P_3 - P_1) = 0$$

ossia

$$B_0(K) = \langle P_1 - P_0, P_2 - P_3, P_3 - P_1 \rangle \simeq \mathbb{Z}^3$$

 $H_0(K) = \frac{C_0(K)}{B_0(K)} \simeq \mathbb{Z}$

10.3.2 $H_2(K)$

$$\partial_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$

ossia

$$a[P_0, P_1, P_2] \xrightarrow{\partial_2} a([P_0, P_1] + [P_1, P_2] - [P_0, P_2])$$

$$a[P_0, P_1, P_2] \in Ker \ \partial_2 \Longleftrightarrow a = 0 \implies Ker \ \partial_2 = \{0\}$$

da cui

$$H_2(K) = \{0\}$$

10.3.3 $H_1(K)$

$$H_1(K) = \frac{Ker \partial_1}{Im \partial_2}$$

è facile verificare che

$$Ker \ \partial_1 = \langle [P_0, P_1] + [P_1, P_2] - [P_0, P_2] \rangle \simeq \mathbb{Z}$$

Inoltre, $Im \partial_2$ è generato dall'immagine della base di $C_2(K)$

$$\partial_2[P_0, P_1, P_2] = [P_0, P_1] + [P_1, P_2] - [P_0, P_2]$$

$$Im \ \partial_2 = \langle [P_0, P_1] + [P_1, P_2] - [P_0, P_3] \rangle \simeq Z \simeq Ker \ \partial_1$$

da cui

$$H_1(K) = \{0\}$$

10.3.4 Conclusione

Abbiamo quindi

$$H_p(K) = \begin{cases} \mathbb{Z} & p = 0\\ \{0\} & p \neq 0 \end{cases}$$

10.3.5 Interpretazione topologica

Osservazione Il gruppo di omologia $H_0(K)$ ha una interpretazione molto utile, riassumibile nel seguente teorema

Teorema 10. Sia K un complesso simpliciale, allora

- 1. Il gruppo $H_0(K)$ è un gruppo libero
- 2. Sia $\{P_{\alpha}\}$ una collezione di vertici di K ($\subseteq K^{(0)}$) tali che he no uno per ogni componente connessa di |K|. Allora le classi di omologia delle funzioni caratteristiche dei punti selezionati formano una base dello 0-esimo gruppo di omologia

In poche parole Il rango di $H_0(K)$ ci dice il numero di componenti connesse di |K|

Proof. 2. Definisco la seguente relazioen di equivalenza tra i vertici di K: $P \sim Q$ se e solo se esiste una sequenza di vertici P_0, P_1, \ldots, P_n tali che $P_0 = P, P_n = Q$ e $\{P_{i-1}, P_i\}$ sia un 1-simplesso di K per ogni i (scriviamo $\{P_{i-1}, P_i\}$ invece di $[P_{i-1}, P_i]$ per indicare l'1-simplesso privo di orientazione)

Per ogni vertice $P \in K^{(0)}$, definisco

$$C_P = \bigcup_{Q \sim P} St(Q) \subseteq |K|$$

Voglio far vedere che gli insiemi C_P (al variare della classe di equivalenza) descrivono le componenti connesse di |K|

Osservazioni

- (a) C_P è un sottoinsieme aperto di |K|, poichè unione di aperti
- (b) $P \sim Q \implies C_P = C_Q$
- (c) C_P è un insieme connesso (per archi), infatti, se prendo $P \sim Q$ e $x \in St(Q)$, per definizione della relazione di equivalenza, esiste una successione

$$P = P_0, P_1, \dots, P_n = Q$$
 $P_{i-1}, P_i \in K$ 1-simplessi

La spezzata di vertici P_0, P_1, \ldots, P_n, x appartiene a C_P , infatti

$$P_i \sim P \implies St(P_i) \subset C_P$$

in particolare

$${P_i, P_{i+1}} \subseteq \overline{St(P_i)} \subseteq C_P$$

Inoltre

$${P_n, x} \subseteq \overline{St(P_n)} \subseteq C_P$$

Mettendo tutto insieme ho mostrato che un qualsiasi punto $x \in St(Q)$ con $Q \sim P$ è collegato a P tramite una spezzata contenuta in C_P

(d) Voglio far vedere che $P \nsim Q$ implica che $C_P \cap C_Q = \emptyset$ Supponiamo che ci sia un $x \in C_P \cap C_Q$

$$x \in C_P \cap C_Q \implies \begin{cases} x \in C_P \implies x \in St(P') \text{ con } P' \sim P \\ x \in C_Q \implies x \in St(Q') \text{ con } Q' \sim Q \end{cases}$$

x deve quindi appartenere ad un simplesso σ che ha P' e Q' tra i suoi vertici, ossia $\{P',Q'\}$ è una faccia del simplesso σ . Quindi $P'\sim Q'$, ma allora

$$P \sim P' \sim Q' \sim Q \implies P \sim Q \implies C_P = C_Q$$

Quindi $\{C_P\}$ sono insiemi aperti, connessi, e a due a due disgiunti, ossia $\{C_P\}$ sono le componenti connesse di |K|

1. Sia $\{P_{\alpha}\}$ una collezione di vertici, presi uno per ogni componente connessa di |K|. Inizio mostrando che le classi di omologia di $\{P_{\alpha}\}$ formano un insieme di generatori di $H_0(K)$.

Per ogni $Q \in K^{(0)}$, esiste un unico P_{α} tale che $Q \sim P_{\alpha}$, cioè $Q \in C_{P_{\alpha}}$, quindi esiste una successione di vertici di K tali che

$$P_{\alpha} = P_0, P_1, \dots, P_n = Q \quad \{P_{i+1}, P_i\} \in K$$

Considero la 1-catena che descrive il cammino da P_{α} a Q

$$\sigma = [P_{\alpha}, P_1] + [P_1, P_2] + \dots + [P_{n-1}, Q]$$
$$\partial_1 \sigma = Q - P_{\alpha}$$

da cui segue

$$H_0(K) = Z_0(K)/B_0(K) = C_0(K)/Im \partial_1$$

$$Q - P_{\alpha} \in B_0(K) \implies [Q - P_{\alpha}] = 0 \text{ in } H_0(K)$$

quindi

$$[Q] = [P_{\alpha}] \implies \{[P_{\alpha}]\}$$
 generatore di $H_0(K)$

Rimane da far vedere che non ci sono relazioni tra le classi $\{[P_{\alpha}]\}$ Sia

$$c = \sum n_{\alpha} P_{\alpha} \in C_0(K)$$

e supponiamo che $c = \partial_1 \sigma$ per qualche $\sigma \in C_1(K)$, ossia

$$c \in Im \ \partial_1 \implies c \in B_0(K) \implies [c] = 0_{H_0(K)}$$

Ogni 1-simplessso può appartenere a una sola componente connessa, quindi decompongo σ secondo le componenti connesse di |K|

$$\sigma = \sum \sigma_{\alpha}$$

dove σ_{α} coinvolge 1-simplessi nella componente connessa corrispondente $C_{P_{\alpha}}$

$$\partial_1 \sigma = \sum \partial_1 \sigma_{\alpha}$$

ossia $\partial_1\sigma_\alpha$ è una 0-catena che coinvilge 0-simplessi (vertici) appartenenti a C_{P_α}

$$c = \partial_1 d \Longleftrightarrow \partial_1 \sigma_\alpha = n_\alpha P_\alpha \quad \forall \alpha$$

ossia

$$c \in B_0(K)$$

quindi l'unica possibilità è $n\alpha = 0$

"L'unico modo che ho per costruire un bordo a partire dai vertici $\{P_{\alpha}\}$ delle componenti connesse di |K| è considerare la 0-catena con tutti i coefficenti nulli"

10.4 Gruppo di omologia ridotta

Definizione 52 (Augmentation map). Sia~K~un~complesso~simpliciale,~definisco~l'omomorfismo

$$\varepsilon: C_0(K) \to \mathbb{Z}$$

come l'omomorfismo

$$P \longmapsto 1 \quad \forall P \in C_0(K)$$

e lo chiamerò augmentation map di $C_0(K)$, e per ogni

$$\sum n_j P_j \in C_0(K)$$

abbiamo

$$\varepsilon\left(\sum n_j P_j\right) = \sum n_j \varepsilon(P_j) = \sum n_j$$

Lo scopo dell'augmentation map è quella di allungare la successione di gruppi e omomorfismi di omologia simpliciale, infatti da

$$\dots \xrightarrow{\partial_2} C_1(K) \xrightarrow{\partial_1} C_0(K) \xrightarrow{\partial_0} \{0\}$$

passiamo a

$$\ldots \xrightarrow{\partial_2} C_1(K) \xrightarrow{\partial_1} C_0(K) \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow \{0\}$$

Proposizione 13.

$$\forall \sigma \in C_1(K) \quad \varepsilon(\partial_1 \sigma) = 0$$

Proof. Verifico che $\varepsilon(\partial_1 \sigma) = 0$ per σ elemento della base di $C_1(K)$

$$\sigma = [P, Q]$$

$$\partial_1[P, Q] = Q - P$$

$$\varepsilon(\partial_1 \sigma) = \varepsilon(Q - P) = \varepsilon(Q) - \varepsilon(P) = 1 - 1 = 0$$

Osservazione Otteniamo quindi che

$$\varepsilon \circ \partial_1 = 0 \implies Im \ \partial_1 \subseteq Ker \ \varepsilon$$

Possiamo quindi definire un nuovo gruppo

Definizione 53 (Gruppo di omologia simpliciale ridotta). Dato un complesso simpliciale K, definiamo gruppo di omologia ridotta di K di dimensione 0 il gruppo quoziente

$$\tilde{H_0}(K) := {Ker} \ \varepsilon /_{Im} \ \partial_1$$

Osservazione Dalla definizione, risulta che

$$\forall p > 0 \quad \tilde{H}_p(K) = H_p(K)$$

Chapter 11

Metodo di calcolo dei gruppi di omologia simpliciale

Siamo ora interessati a trovare un metodo algebrico efficace per il calcolo dei gruppi di omologia simpliciale

Teorema 11 (Forma normale di Smith). Sia $f: \mathbb{Z}^n \to \mathbb{Z}^m$ un omomorfismo di gruppi liberi. Esistono due basi \mathcal{B} di \mathbb{Z}^n e \mathcal{C} di \mathbb{Z}^m tali che la matrice rappresentativa di f rispetto a \mathcal{B} e \mathcal{C} è della forma

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \\ \hline & 0 & & & 0 \end{bmatrix}$$

dove

$$a_{11}|a_{22}|\dots|a_{nn} \qquad a_{ii} \in \mathbb{Z}_{>0}$$

Calcolo della forma di Smith Per il calcolo della forma di Smith, si procede in modo simile al metodo di eliminazione di Gauss. Le operazioni consentite sono:

• Scambi di righe o colonne

$$C_i \longleftrightarrow C_j \qquad R_i \longleftrightarrow R_j$$

• Cambio di segno di righe o colonne

$$-C_i \longrightarrow C_i \qquad -R_i \longrightarrow R_i$$

• Somma di una righa o una colonna con il multiplo di un'altra

$$C_i + qC_j \longrightarrow C_i \qquad R_i + qR_j \longrightarrow R_i$$

 $con q \in \mathbb{Z}$

11.1 Esempio

$$\partial_1 = \begin{bmatrix} P_0, P_1 \end{bmatrix} & \begin{bmatrix} P_1, P_2 \end{bmatrix} & \begin{bmatrix} P_2, P_3 \end{bmatrix} & \begin{bmatrix} P_0, P_3 \end{bmatrix} & P_0 \\ 1 & -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & P_1 \\ 0 & 1 & -1 & 0 & P_2 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} P_0 & P_1 & P_2 & P_3 \end{bmatrix}$$

 $R_1 \longleftrightarrow R_2$

$$\partial_1 = \begin{bmatrix} [P_0, P_1] & [P_1, P_2] & [P_2, P_3] & [P_0, P_3] \\ 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_0 \\ P_2 \\ P_3 \end{bmatrix}$$

$$R_2 + R_1 \longrightarrow R_2$$

$$\partial_1 = \begin{bmatrix} [P_0, P_1] & [P_1, P_2] & [P_2, P_3] & [P_0, P_3] \\ 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_0 + P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

$$R_2 \longleftrightarrow R_3$$

$$\partial_1 = \begin{bmatrix} P_0, P_1 \end{bmatrix} & [P_1, P_2] & [P_2, P_3] & [P_0, P_3] \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_0 + P_1 \\ P_3 \end{bmatrix}$$

$$R_3 + R_2 \longrightarrow R_3$$

$$\partial_1 = \begin{bmatrix} P_0, P_1 \end{bmatrix} & \begin{bmatrix} P_1, P_2 \end{bmatrix} & \begin{bmatrix} P_2, P_3 \end{bmatrix} & \begin{bmatrix} P_0, P_3 \end{bmatrix} \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_1 & 0 & 0 & 0 \\ P_2 & 0 & 0 & 0 & 1 & 1 \\ P_3 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$R_3 \longleftrightarrow R_4$$

$$\partial_1 = \begin{bmatrix} [P_0,P_1] & [P_1,P_2] & [P_2,P_3] & [P_0,P_3] \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_0 + P_1 + P_2 \end{bmatrix}$$

$$R_4 + R_3 \longrightarrow R_4$$

$$\partial_1 = \begin{bmatrix} P_0, P_1 \end{bmatrix} & [P_1, P_2] & [P_2, P_3] & [P_0, P_3] \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_0 + P_1 + P_2 + P_3 \end{bmatrix}$$

$$C_2 + C_1 \longrightarrow C_2$$

$$C_3 + C_2 \longrightarrow C_3$$

$$[P_0,P_1] \quad [P_0,P_1] \quad [P_0,P_1] \quad [P_0,P_3] \\ +[P_1,P_2] \quad +[P_1,P_2] \\ +[P_2,P_3] \\ \partial_1 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right] \begin{array}{c} P_1 \\ P_2 \\ P_3 \\ P_0 + P_1 + P_2 + P_3 \end{array}$$

$$C_4 - C_3 \longrightarrow C_4$$

$$[P_0,P_1] \quad \begin{array}{cccc} [P_0,P_1] & [P_0,P_1] & [P_0,P_3] \\ & +[P_1,P_2] & +[P_1,P_2] & -[P_0,P_1] \\ & & +[P_2,P_3] & -[P_1,P_2] \\ & & & -[P_2,P_3] \end{array}$$

$$\partial_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} P_1 \\ P_2 \\ P_3 \\ P_0 + P_1 + P_2 + P_3 \end{array}$$

$$\partial_1:C_1(K)\to C_0(K)$$

ossia, dalla matrice

$$\langle [P_0, P_1], \dots, [P_0, P_3] - [P_0, P_1] - [P_1, P_2] - [P_2, P_3] \rangle \rightarrow \langle P_1, P_2, P_3, P_0 + P_1 + P_2 + P_3 \rangle$$

$$H_1(K) = Z_1(K) = Ker \ \partial_1 = \langle [P_0, P_3] - [P_0, P_1] - [P_1, P_2] - [P_2, P_3] \rangle \simeq \mathbb{Z}$$
(guardo le colonne con entrate tutte nulle)

$$\begin{split} H_0(K) = & {^C_0(K)}/_{Im} \ \partial_1 = \langle \cancel{P_1}, \cancel{P_2}, \cancel{P_3}, P_0 + P_1 + P_2 + P_3 \rangle / \langle \cancel{P_1}, \cancel{P_2}, \cancel{P_3} \rangle & \cong \\ & \simeq \langle P_0 + P_1 + P_2 + P_3 \rangle \end{split}$$

notiamo come $P_1+P_2+P_3$ è l'elemento che genera il gruppo per cui quozientiamo, da cui segue

$$[P_0 + P_1 + P_2 + P_3]_{\langle P_1, P_2, P_3 \rangle} = [P_0]_{\langle P_1, P_2, P_3 \rangle} \implies \langle P_0 + P_1 + P_2 + P_3 \rangle \simeq \langle P_0 \rangle \simeq \mathbb{Z}$$

11.2 Esempio particolare - Nastro di Möbius

Prendo una striscia di carta ed eseguo la seguente costruzione

Ripeto lo stesso processo ma a partire da un complesso simpliciale orientato

Catene

$$C_2(M) = \langle [P_0, P_1, P_2], [P_0, P_1, P_5], [P_0, P_2, P_3],$$

 $x [P_1, P_4, P_5], [P_2, P_3, P_4], [P_2, P_4, P_5] \rangle \simeq \mathbb{Z}^6$

$$C_1(M) = \langle [P_0, P_1], [P_0, P_2], [P_0, P_3], [P_0, P_5], [P_1, P_2], [P_1, P_4],$$
$$[P_1, P_5], [P_2, P_3], [P_2, P_4], [P_2, P_5], [P_3, P_4], [P_4, P_5] \rangle \simeq \mathbb{Z}^{12}$$

$$C_0(M) = \langle P_0, P_1, P_2, P_3, P_4, P_5 \rangle \simeq \mathbb{Z}^6$$

Operatori bordo

$$\partial_2: C_2(M) \to C_1(M)$$

$$[P_0,P_1,P_2] \quad [P_0,P_1,P_5] \quad [P_0,P_2,P_3] \quad [P_1,P_4,P_5] \quad [P_2,P_3,P_4] \quad [P_2,P_4,P_5] \\ = \begin{bmatrix} 1 & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot \\ 1 & \cdot \\ 1 & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & 1 & \cdot & -1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & 1 & \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & 1 & \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot & -1 & 1 \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot & -1 & 1 \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & 1 \end{bmatrix} \begin{bmatrix} P_0, P_1 \\ [P_0, P_2] \\ [P_0, P_3] \\ [P_0, P_5] \\ [P_1, P_2] \\ [P_2, P_3] \\ [P_2, P_3] \\ [P_2, P_4] \\ [P_2, P_4] \\ [P_2, P_5] \\ [P_3, P_4] \\ [P_4, P_5] \end{bmatrix}$$

$$\partial_1:C_1(M)\to C_0(M)$$

$$\partial_1 = \begin{bmatrix} P_0, P_0 & [P_0, P_0] & [P_0, P_0]$$

Calcolo i gruppi di omologia

$$\begin{split} H_0(M) &= Z_0(M) /_{B_0(M)} = C_0(M) /_{B_0(M)} = C_0(M) /_{Im \ \partial_1} \ (\simeq \mathbb{Z} \text{ per connessione di } |M|) \\ &H_1(M) = Z_1(M) /_{B_1(M)} = Ker \ \partial_1 /_{Im \ \partial_2} \\ &H_2(M) = Z_2(M) /_{B_2(M)} = Z_2(M) /_{\{0\}} = Ker \ \partial_2 \end{split}$$

 ∂_2) Riducendo la matrice di ∂_2 in forma di Smith ottengo:

Ottengo quindi

$$\begin{split} H_2(M) &= Ker \ \partial_2 = \{0\} \\ Im \ \partial_2 &= \langle [P_0, P_1] + [P_0, P_5], -[P_0, P_5], -[P_0, P_3], [P_1, P_4], \\ [P_2, P_3] &+ [P_0, P_3], [P_2, P_4] + [P_2, P_3] + [P_0, P_3] \rangle \end{split}$$

Attenzione Im $\partial_2 = B_1(M)$, ma la forma normale di Smith nasconde la natura geometrica del bordo

Non è facile trovare il giusto equilibrio tra efficienza algebrica e interpretazione geometrica

 ∂_1) Riducendo la matrice di ∂_1 in forma di Smith (senza cancellare le colonne che non contengono pivot) ottengo:

Ottengo quindi

$$Ker \ \partial_1 = \langle [P_1, P_2] + [P_0, P_1] - [P_0, P_2], [P_1, P_5] + [P_0, P_1] - [P_0, P_5],$$

$$[P_2, P_3] + [P_0, P_2] - [P_0, P_3], [P_2, P_4] - [P_0, P_1] + [P_0, P_2] - [P_1, P_4],$$

$$[P_2, P_5] + [P_0, P_2] - [P_0, P_5], [P_3, P_4] - [P_0, P_1] + [P_0, P_3] - [P_1, P_4],$$

$$[P_4, P_5] + [P_0, P_1] - [P_0, P_5] + [P_1, P_4] \rangle \simeq \mathbb{Z}^7$$

Riepilogo:

$$\begin{split} H_2(M) &= Ker \ \partial_2 = \{0\} \\ H_1(M) &= \langle P_0 \rangle \simeq \mathbb{Z} \quad \text{(prevedibile, dato che } |M| \ \text{\`e connesso)} \\ H_0(M) &= \frac{Ker \ \partial_1}{Im \ \partial_2} = \frac{Z_1(M)}{B_1(M)} \simeq \mathbb{Z}^7/\mathbb{Z}^6 \end{split}$$

Osservazione $\,$ Ho 6 bordi provenienti dai 2-simplessi di M, tuttavia

$$Z_1(M) \simeq \mathbb{Z}^7$$

ho quindi un 1-ciclo che non proviene da una 2-catena mediante ∂_2 I tre cammini chiusi da P_0 a P_0

$$[P_2, P_4] - [P_0, P_1] + [P_0, P_2] - [P_1, P_4]$$

$$\begin{split} [P_2,P_5] + [P_0,P_2] - [P_0,P_5] \\ [P_3,P_4] - [P_0,P_1] + [P_0,P_3] - [P_1,P_4] \end{split}$$

differiscono per un elemento nel sottogruppo degli 1-bordi, non sono quindi indipendenti nel gruppo $H_1(M)$

$$([P_2, P_4] - [P_0, P_1] + [P_0, P_2] - [P_1, P_4]) - ([P_2, P_5] + [P_0, P_2] - [P_0, P_5]) =$$

$$= -[P_0, P_1] + [P_0, P_5] - [P_1, P_4] + [P_2, P_4] - [P_2, P_5] \in B_1(M)$$

$$-[P_0, P_1] + [P_0, P_5] - [P_1, P_4] + [P_2, P_4] - [P_2, P_5]$$

$$([P_2,P_5]+[P_0,P_2]-[P_0,P_5])-([P_3,P_4]-[P_0,P_1]+[P_0,P_3]-[P_1,P_4])=\\[P_2,P_5]+[P_0,P_2]-[P_0,P_5]-[P_3,P_4]+[P_0,P_1]-[P_0,P_3]+[P_1,P_4]\in B_1(M)$$

$$\begin{aligned} &[P_2,P_5] + [P_0,P_2] - [P_0,P_5] \\ &- [P_3,P_4] + [P_0,P_1] - [P_0,P_3] \\ &+ [P_1,P_4] \end{aligned}$$

$$H_1(M) = \langle [P_2, P_5] + [P_0, P_2] - [P_0, P_5] \rangle \simeq \mathbb{Z}$$

Chapter 12

Piano proiettivo

12.1 Piano proiettivo

Prima di definire il piano proiettivo, partiamo dall'analogo di dimensione 1: la retta proiettiva

Definizione 54 (Retta proiettiva). *Abbiamo due definizioni equivalenti per la retta proiettiva:*

- La retta proiettiva reale è l'insieme delle rette passanti per l'origine di \mathbb{R}^2
- \bullet La retta proiettiva reale è l'insieme dei sottospazi vettoriali di dimensione 1 di \mathbb{R}^2

Dal punto di vista della notazione, indicheremo la retta proiettiva come

$$\mathbb{RP}^1$$
 oppure $\mathbb{P}^1_{\mathbb{R}}$

Obiettivo Vogliamo rappresentare efficacemente questo insieme (possibilmente introducendo una topologia)

- 1. Per ogni retta, scelgo un vettore che definisce la direzione
- 2. Per semplicità, scelgo un versore per ogni retta

3. Per ogni retta non orizzontale, scelgo il versore che giace nel semipiano superiore y>0

 Ho il problema della retta orizontale, tuttavia, i due punti possono essere "incollati"

Dal punto di vista topologico

$$\mathbb{RP}^1 \simeq S^1$$

Possiamo fare un ragionamento analogo con il piano proiettivo

Definizione 55 (Piano proiettivo). *Abbiamo due definizioni equivalenti per il piano proiettivo:*

- ullet Il piano proiettivo reale è l'insieme delle rette passanti per l'origine di \mathbb{R}^3
- Il piano proiettivo reale è l'insieme dei sottospazi vettoriali di dimensione 1 di \mathbb{R}^3

Dal punto di vista della notazione, indicheremo il piano proiettivo come

$$\mathbb{RP}^2$$
 oppure $\mathbb{P}^2_{\mathbb{R}}$

Obiettivo Rappresentare \mathbb{RP}^2 come spazio topologico. Facciamo una costruzione analoga a quella per la retta proiettiva

Considero ora una retta che giace nel piano xy, è facile da intire l'omomorfismo descritto da

Indicando con D il disco, e con \sim la relazione di equivalenza che lega due punti se antipodali, risulta semplice descrivere il piano proiettivo come

$$\mathbb{RP}^2 \simeq D_{/\sim}$$

Sui libri di testo, questa costruzione viene rappresentata indicando i versi di percorrenza sul disco

Domanda In quale spazio vive \mathbb{RP}^2 ? Si può dimostrare che non si riesce a costruire un oggetto in \mathbb{R}^3

Posso cercare di indagare le proprietà topologiche di \mathbb{RP}^2 mediante l'omologia simpliciale.

Devo quindi "approssimare" il disco con un complesso simpliciale, e imporre le stesse condizioni di orientamento e incollatura.

12.1.1 Prima idea

Funziona? Pensiamo al vertex scheme: P e Q sono ripetuti, quindi non esiste un complesso simpliciale astratto associato (i tre vertici del 2-simplesso devono essere un posizione generale)

12.1.2 Seconda idea

Ho costruito un complesso simpliciale in \mathbb{R}^2 omeomorfo al disco, tale che nessuna coppia di 2-simplessi è identificato dalla stessa relazione antipodale (la scelta dei versi di percorrenza è arbitraria, l'importante è rispettare le relazioni antipodali)

Catene

$$C_2(K_{\mathbb{RP}^2}) \simeq \mathbb{Z}^{12}$$

 $C_1(K_{\mathbb{RP}^2}) \simeq \mathbb{Z}^{18}$
 $C_0(K_{\mathbb{RP}^2}) \simeq \mathbb{Z}^7$

$$\{0\} \longrightarrow C_2(K_{\mathbb{RP}^2}) \xrightarrow{\partial_2} C_1(K_{\mathbb{RP}^2}) \xrightarrow{\partial_1} C_0(K_{\mathbb{RP}^2}) \xrightarrow{\partial_0} \{0\}$$

Operatori bordo

$$\partial_1 = \left[\begin{smallmatrix} [P_0,P_1] & [P_0,P_2] & [P_0,P_3] & [P_1,P_2] & [P_1,P_3] & [P_1,P_4] & [P_1,P_6] & [P_2,P_3] & [P_2,P_4] & [P_2,P_6] & [P_3,P_6] & [P_3,P_6] & [P_3,P_6] & [P_4,P_6] & [P_4,P_6] & [P_6,P_6] & [P_6,$$

Calcolo i gruppi di omologia

$$H_{0}(K_{\mathbb{RP}^{2}}) = C_{0}(K_{\mathbb{RP}^{2}})/B_{0}(K_{\mathbb{RP}^{2}}) = \langle P_{0} \rangle \simeq \mathbb{Z}$$

$$H_{1}(K_{\mathbb{RP}^{2}}) = \frac{Z_{1}(K_{\mathbb{RP}^{2}})}{B_{1}(K_{\mathbb{RP}^{2}})} = \frac{Ker \ \partial_{1}}{Im \ \partial_{2}}$$

$$H_{2}(K_{\mathbb{RP}^{2}}) = \frac{Z_{2}(K_{\mathbb{RP}^{2}})}{B_{2}(K_{\mathbb{RP}^{2}})} = \frac{Z_{2}(K_{\mathbb{RP}^{2}})}{\{0\}} = Ker \ \partial_{2}$$

Riduco la matrice di ∂_2

 $\theta_2 = \begin{bmatrix} [P_0, P_1, P_3] & [P_0, P_2, P_3] & [P_0, P_1, P_3] & [P_1, P_2, P_4] & [P_1, P_3, P_4] & [P_1, P_2, P_4] & [P_1, P_2, P_4] & [P_2, P_3, P_6] & [P_2, P_3, P_6] & [P_3, P_4, P_5] & [P_3, P_4, P_6] & [P_4, P_5, P_6] & [P_6, P_2, P_3] & -2[P_6, P_1, P_6] & +2[P_6, P_1, P_3] & +2[P_6, P_1, P_3] & +2[P_6, P_1, P_3, P_6] & +2[P_1, P_2, P_4] & +2[P_1, P_2, P_4] & +2[P_1, P_2, P_6] & +2[P_1, P_2, P_6] & +2[P_2, P_2, P_6$

$$\mathbf{Im}\ \partial_{\mathbf{2}} = \mathbf{B_1}(\mathbf{K}_{\mathbb{RP}^{\mathbf{2}}})$$

 $+[P_0, P_1]$ $+[P_1, P_3]$ $-[P_0, P_3]$

 $+[P_0, P_2]$ $+[P_2, P_3]$ $-[P_0, P_3]$

 $+[P_0, P_3]$ $-[P_0, P_5]$ $-[P_1, P_3]$ $+[P_1, P_5]$

 $+[P_1, P_2]$ $+[P_2, P_4]$ $-[P_1, P_4]$

 $+[P_1, P_3]$ $+[P_3, P_4]$ $-[P_1, P_4]$

 $+[P_1, P_4] \\ -[P_2, P_4] \\ +[P_2, P_6] \\ -[P_1, P_6]$

$$+[P_1, P_5]$$

 $+[P_5, P_6]$
 $-[P_1, P_6]$

 $+[P_2, P_3]$ $+[P_3, P_6]$ $-[P_2, P_6]$

$$+[P_2, P_4] +[P_4, P_5] -[P_2, P_5]$$

 $+[P_3, P_4]$ $+[P_4, P_6]$ $-[P_3, P_6]$

 $+[P_4, P_5]$ $+[P_5, P_6]$ $-[P_4, P_6]$

$$+2[P_2, P_5] +2[P_5, P_6] -2[P_2, P_6]$$

L'ultimo caso è quello che risulta dall'ultima colonna della matrice dell'opertore bordo, ed è anche quello interessante

$$Im \ \partial_2 \simeq \mathbb{Z}^{12}$$

$$Ker \ \partial_2 = \{0\} \implies H_2(K_{\mathbb{RP}^2}) = \{0\}$$

Riduco la matrice di ∂_1

Ho 6 pivot, quindi ho 12 generatori in $Ker~\partial_1$

Tutti gli altri 1-cicli sono combinazione di 1-bordi, quindi in $H_1(K_{\mathbb{RP}^2})$ sono nella classe di equivalenza dell'elemento nullo

Eliminando i generatori di $C_1(K_{\mathbb{RP}^2})$ con le relazioni di $B_1(K_{\mathbb{RP}^2})$ si scopre che

$$Z_1(K_{\mathbb{RP}^2}) = (Z_1(K_{\mathbb{RP}^2}) \cap B_1(K_{\mathbb{RP}^2})) \oplus \langle [P_2, P_5] - [P_2, P_6] + [P_5, P_6] \rangle \simeq \mathbb{Z}^{12}$$

quindi 11 generatori sono anche 1-bordi.

Analogamente

$$B_1(K_{\mathbb{RP}^2}) = (Z_1(K_{\mathbb{RP}^2}) \cap B_1(K_{\mathbb{RP}^2})) \oplus \langle 2[P_2, P_5] - 2[P_2, P_6] + 2[P_5, P_6] \rangle \simeq \mathbb{Z}^{12}$$

Ottengo quindi

$$H_{1}(K_{\mathbb{RP}^{2}}) = \frac{Z_{1}(K_{\mathbb{RP}^{2}})}{B_{1}(K_{\mathbb{RP}^{2}})} = \frac{(Z_{1}(K_{\mathbb{RP}^{2}}) \cap B_{1}(K_{\mathbb{RP}^{2}})) \oplus \langle [P_{2}, P_{5}] - [P_{2}, P_{6}] + [P_{5}, P_{6}] \rangle}{(Z_{1}(K_{\mathbb{RP}^{2}}) \cap B_{1}(K_{\mathbb{RP}^{2}})) \oplus \langle 2[P_{2}, P_{5}] - 2[P_{2}, P_{6}] + 2[P_{5}, P_{6}] \rangle} = \frac{(Z_{1}(K_{\mathbb{RP}^{2}}) \cap B_{1}(K_{\mathbb{RP}^{2}})) \oplus \langle [P_{2}, P_{5}] - [P_{2}, P_{6}] + [P_{5}, P_{6}] \rangle}{(Z_{1}(K_{\mathbb{RP}^{2}}) \cap B_{1}(K_{\mathbb{RP}^{2}})) \oplus 2 \langle [P_{2}, P_{5}] - [P_{2}, P_{6}] + [P_{5}, P_{6}] \rangle} = \frac{Z^{11} \oplus \mathbb{Z}_{\mathbb{Z}^{11}} \oplus 2\mathbb{Z}}{\mathbb{Z}^{11} \oplus 2\mathbb{Z}} \simeq \mathbb{Z}^{11}/\mathbb{Z}^{11} \oplus \mathbb{Z}/2\mathbb{Z}} = \{0\} \oplus \mathbb{Z}_{2} \simeq \mathbb{Z}_{2}$$

Riepilogando

$$\begin{cases} H_0(K_{\mathbb{RP}^2}) \simeq \mathbb{Z} & \text{(per connessione)} \\ H_1(K_{\mathbb{RP}^2}) \simeq \mathbb{Z}_2 \\ H_2(K_{\mathbb{RP}^2}) \simeq \{0\} \end{cases}$$

Una rappresentazione del piano proiettivo è data dalla bottiglia di Klein, oggetto che non può essere costruito in \mathbb{R}^3 , ma la cui proiezione in \mathbb{R}^3 (proiettata a sua volta in \mathbb{R}^2) è la seguente

(L'autointersezione non è presente in \mathbb{R}^4 o superiori)

Chapter 13

Gruppi di omologia a coefficienti arbitrari

Definizione 56 (Gruppo delle p-catene a coefficienti arbitrari). Sia K un complesso simpliciale e G un gruppo, definiamo gruppo delle p-catene su G l'insieme

$$C_p(K,G) := \{c : \{p\text{-simplessi di } K\} \to G \mid c^{-1}(G \setminus \{0_G\}) \text{ ha cardinalità finita}\}$$

 $C_{p}(K,G)$ non è in genere un gruppo libero, ma

$$C_p(K,G) \simeq \underbrace{G \oplus G \oplus \cdots \oplus G}_{\text{numero di p-simplessi}}$$

Cosa succede all'operatore bordo?

$$\partial_p = \sum_{i=0}^p (-1_G)^i [P_0, \dots, \hat{P}_i, \dots, P_p]$$

L'operazione $(-1_G)^i$ non ha senso nel gruppo G, poichè non abbiamo definito l'operazione prodotto. Posso tuttavia assegnare \pm guardando solo la posizione del vertice che sto rimuovendo.

13.1 Casi $G = \mathbb{Z}_n$

I casi più interessanti sono quelli con $G = \mathbb{Z}_n$ poichè

- \mathbb{Z}_n è un anello, quindi ho il prodotto e posso scrivere $(-1)^i$
- \mathbb{Z}_n è un anello quoziente rispetto a \mathbb{Z} , posso quindi reinterpretare tutto nelle classi di resto

$$\partial_p[P_0,\dots,P_p] = \sum_{i=0}^p (-1)^i[P_0,\dots,\hat{P_i},\dots,P_p]$$
 in \mathbb{Z}

 $\partial_p[P_0, \dots, P_p] = \sum_{i=0}^p [-1]_n^i[P_0, \dots, \hat{P}_i, \dots, P_p]$ in \mathbb{Z}_n

equivalentemente

$$\sigma = m_1 \sigma_1 + m_2 \sigma_2 + \dots + m_k \sigma_k \quad \text{in } C_p(K, \mathbb{Z})$$

$$\sigma = [m_1]_n \sigma_1 + [m_2]_n \sigma_2 + \dots + [m_k]_n \sigma_k \quad \text{in } C_p(K, \mathbb{Z}_n)$$

13.1.1 Caso speciale n = 2

In \mathbb{Z}_2 [1] = [-1], quindi $[-1]^i = [1] \quad \forall i,$ da cui

$$\partial_p[P_0, \dots, P_p] = \sum_{i=0}^p [-1]_2^i[P_0, \dots, \hat{P}_i, \dots, P_p] = \sum_{i=0}^p [P_0, \dots, \hat{P}_i, \dots, P_p]$$

Una possibile interpretazione geometrica è la seguente: Calcolando i gruppi di omologia in \mathbb{Z}_2 , non distinguo le orientazioni

Convenzione Nel caso $C_p(K, \mathbb{Z}_2)$, utilizziamo la seguente convenzione

$$[P_0,\ldots,P_p]\longrightarrow \{P_0,\ldots,P_p\}$$

13.1.2 Piano proiettivo in \mathbb{Z}_2

da cui

$$Ker \ [\partial_2]_2 \simeq \mathbb{Z}_2 \implies H_2(K_{\mathbb{RP}^2}) \simeq \mathbb{Z}_2$$

$$Im \ [\partial_2]_2 \simeq \mathbb{Z}_2^{11}$$

in modo analogo

da cui

$$Ker \ [\partial_1]_2 \simeq \mathbb{Z}_2^{12}$$

otteniamo quindi

$$Z_{1} = (K_{\mathbb{RP}^{2}}, \mathbb{Z}_{2}) = (Z_{1}(K_{\mathbb{RP}^{2}}, \mathbb{Z}_{2}) \cap B_{1}(K_{\mathbb{RP}^{2}}, \mathbb{Z}_{2})) \oplus \mathbb{Z}_{2} \langle \{P_{2}, P_{5}\} + \{P_{2}, P_{6}\} + \{P_{5}, P_{6}\} \rangle$$
$$B_{1}(K_{\mathbb{RP}^{2}}, \mathbb{Z}_{2}) = Z_{1}(K_{\mathbb{RP}^{2}}, \mathbb{Z}_{2}) \cap B_{1}(K_{\mathbb{RP}^{2}}, \mathbb{Z}_{2})$$

Gli 1-cicli sono tutti 1-bordi, eccetto uno

$$Z_1(K_{\mathbb{RP}^2}, \mathbb{Z}_2) \simeq B_1(K_{\mathbb{RP}^2}, \mathbb{Z}_2) \oplus \mathbb{Z}_2 \langle \{P_2, P_5\} + \{P_2, P_6\} + \{P_5, P_6\} \rangle$$

da cui

$$H_1(K_{\mathbb{RP}^2}, \mathbb{Z}_2) \simeq \frac{B_1(K_{\mathbb{RP}^2}, \mathbb{Z}_2) \oplus \mathbb{Z}_2 \left\langle \{P_2, P_5\} + \{P_2, P_6\} + \{P_5, P_6\} \right\rangle}{B_1(K_{\mathbb{RP}^2}, \mathbb{Z}_2)} \simeq \mathbb{Z}_2$$

Attenzione

$$H_1(K_{\mathbb{RP}^2}, \mathbb{Z}_2) = H_1(K_{\mathbb{RP}^2}, \mathbb{Z}) \simeq \mathbb{Z}_2$$

ma il messaggio è diverso:

- $\bullet\,$ Su $\mathbb Z$ sto dicendo che c'è un 1-ciclo che non è un 1-bordo, ma il suo doppio lo è
- $\bullet\,$ Su \mathbb{Z}_2 sto dicendo che c'è un 1-ciclo che non è un 1-bordo

Semplificando i coefficienti posso ottenere informazioni di minore rilevanza, ma ridurre notevolmente il numero di calcoli.

Cosa succede se prendo come gruppo $G=\mathbb{Z}_3$? $[2]_3=[-1]_3$, quindi 2 è un elemento invertibile. Ho quindi

$$Ker \ [\partial_2]_3 = \{0\} \implies H_2(K_{\mathbb{RP}^2}, \mathbb{Z}_3) = \{0\}$$

$$\begin{split} H_1(K_{\mathbb{RP}^2},\mathbb{Z}_3) &= \frac{Z_1(K_{\mathbb{RP}^2},\mathbb{Z}_3) \cap B_1(K_{\mathbb{RP}^2},\mathbb{Z}_3)}{Z_1(K_{\mathbb{RP}^2},\mathbb{Z}_3) \cap B_1(K_{\mathbb{RP}^2},\mathbb{Z}_3)} \oplus \frac{\mathbb{Z}_3 \left< [P_2,P_5] - [P_2,P_6] + [P_5,P_6] \right>}{\mathbb{Z}_3 \left< [2]_3[P_2,P_5] - [2]_3[P_2,P_6] + [2]_3[P_5,P_6] \right>} \\ &= \frac{\mathbb{Z}_3 \left< [P_2,P_5] - [P_2,P_6] + [P_5,P_6] \right>}{\mathbb{Z}_3 \left< [2]_3[P_2,P_5] - [2]_3[P_2,P_6] + [2]_3[P_5,P_6] \right>} \end{split}$$

Attenzione però, $[2]_3$ e $[1]_3$ sono entrambi generatori di \mathbb{Z}_3 , quindi

$$H_1(K_{\mathbb{RP}^2},\mathbb{Z}_3)\simeq\{0\}$$

Per riassumere

	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_3
H_0	\mathbb{Z}	\mathbb{Z}_2	{0}
H_1	\mathbb{Z}_2	\mathbb{Z}_2	{0}
H_2	{0}	\mathbb{Z}_2	{0}

Chapter 14

Omologia del cono

Siamo ora interessati a calcolare i gruppi di omologia del simplesso n-dimensionale, e del suo bordo

Richiamo $\sigma = [P_0, \dots, P_n]$ simplesso geometrico (vertici in uno spazio euclideo in posizione generale) ha come formulazione equivalente:

" σ =L'insieme di tutti i segmenti che uniscono uno dei vertici (fisso P_0) con un qualsiasi punto del simplesso di dimensione n-1 generato da $[P_1, \ldots, P_n]$ "

Come traduco ciò in termini di catene?

Definizione 57 (Cono su K con vertice Q). Sia K un complesso simpliciale geometrico, e sia Q un punto tale che ogni semiretta uscente da Q intersechi |K| in al più un punto.

Definiamo cono su K con vertice in Q la collezione di simplessi $[Q, P_0, \ldots, P_k]$ (dove i punti $[P_0, \ldots, P_k]$ definiscono un simplesso di K), più tutte le sue facce. Denotiamo questo nuovo complesso simpliciale come

$$Q * K$$

Proposizione 14. Q*K è un complesso simpliciale che contiene K come sottocomplesso

- Proof. 1. Per ogni simplesso $[P_0, \ldots, P_k]$ di K, voglio mostrare che aggiungendo Q ottengo Q, P_0, \ldots, P_k punti geometricamente indipendenti. Supponiamo che Q appartenga allo spazio affine individuato da P_0, \ldots, P_k . Prendo un punto $R \in Int([P_0, \ldots, P_k])$ e considero i segmento QR.
 - Poichè Q e R sono nello spazio affine di P_0, \ldots, P_k , lo è anche \bar{QR}
 - $Int([P_0,\ldots,P_k])$ è un insieme aperto dello spazio affine di P_0,\ldots,P_k

Segue che $QR \cap Int([P_0, \dots, P_k])$ contiene un intervallo contenuto in QR. Questo non può accadere poichè ogni semiretta uscente da Q ha al più una intersezione con |K|. La contraddizione è originata dalla supposizione che Q appartenga allo spazio affine di P_0, \dots, P_k , quindi Q è geometricamente indipendente da P_0, \dots, P_k

Infinite intersezioni

2. Per la proprietà di incollamento, devo far vedere che l'intersezione della parte interna di due simplessi è vuota.

Abbiamo 3 tipi di coppie di simplessi da confrontare

- $[P_0,\ldots,P_k]\in K$
- $[Q, P_0, \dots, P_k] \in Q * K \setminus K$
- Q
- \bullet K è un complesso simpliciale, quindi due simplessi del primo tipo soddisfa la proprietà di incollamento
- Due simplessi del secondo tipo $[Q, P_0, \dots, P_k]$ e $[Q, R_0, \dots, R_h]$ $Int([Q, P_0, \dots, P_k])$ è l'unione dei segmenti aperti da Q ad un punto di $Int([P_0, \dots, P_k])$

 $Int([Q,R_0,\ldots,R_h])$ è l'unione dei segmenti aperti da Q ad un punto di $Int([R_0,\ldots,R_k])$ I due insiemi sono disigunti

ullet Visto che ogni semiretta di piede Q interseca |K| in al più un punto,

$$Int([Q, P_0, \dots, P_k]) \cap Int([Q, R_0, \dots, R_h]) = \emptyset$$

Esempio 1 Consideriamo il complesso simpliciale

$$K_0 = \{ [P_0] \}$$

otteniamo che

$$K_1 = P_1 * K_0 = \{ [P_1, P_0], P_1, P_0 \}$$

$$K_2 = P_2 * K_1 = \{ [P_2, P_1, P_0], [P_2, P_1], [P_2, P_0], P_2, P_1, P_0 \}$$

Iterando il processo possiamo vedere come otteniamo complessi simpliciali generati da simplessi di dimensione crescente. L'idea è quella di costruire i gruppi di omologia in modo ricorsivo, equivalentemente come costruiaimo i complessi simpliciali.

Esempio 2

$$K = \{[P_1, P_2], [P_2, P_3], [P_3, P_4], P_1, P_2, P_3, P_4\}$$

 $P_0*K = \{[P_0, P_1, P_2], [P_0, P_2, P_3], [P_0, P_3, P_4], [P_0, P_1], [P_0, P_2], [P_0, P_3], [P_0, P_4]\} \cup K \cup \{P_0\}$

Lemma 7. Sia $U \subseteq \mathbb{R}^n$ limitato e convesso e $Q \in U$ un punto. Supponiamo che esista un complesso simpliciale K finito tale che

$$|K| = \delta U$$

(frontiera di U)

Allora Q * K è un complesso simpliciale finito tale che

$$|Q*K| = \delta U$$

Proof. Per ipotesi di convessità su U, ogni semiretta uscente da U che interseca δU in un solo punto.

 $\delta U=K$ per ipotesi, abbiamo quindi che $Q*K=\bar{U}$ poichè considero l'unione di tutti i segmenti da Q ad un punto della frontiera

Osservazione Dato K complesso simpliciale, Q*K cono su K con vertice Q, la costruzione fatta si comporta bene rispetto all'orientazione, cioè se condiero

$$[P_0,\ldots,P_k]\in K \qquad [Q,P_0,\ldots,P_k]\in Q*K$$

e cambio l'ordientazione del primo

$$-[P_0, P_1, \dots, P_k] = [P_1, P_0, \dots, P_k]$$

ottengo un analogo cambio di orientazione nel cono $Q\ast K$

$$[Q, P_1, P_0, \dots, P_k] = -[Q, P_0, P_1, \dots, P_k]$$

14.1 Omomorfismo delle p-catene e delle p-catene del cono

Definizione 58. Dato un complesso simpliciale K e il cono Q*K di vertice Q, definisco l'omomorfismo di catene

$$[Q,]:C_p(K)\to C_{p+1}(Q*K)$$

$$\sum n_\alpha\sigma_\alpha\mapsto [Q,\sum n_\alpha\sigma_\alpha]=\sum n_\alpha[Q,\sigma_\alpha]$$

Come si computa l'operatore bordo? Può essere utile il seguente diagramma commutativo:

$$C_{p}(K) \xrightarrow{\partial_{p}} \cdots \xrightarrow{\partial_{2}} C_{1}(K) \xrightarrow{\partial_{1}} C_{0}(K) \xrightarrow{\partial_{0}} \{0\}$$

$$C_{p+1}(Q * K) \xrightarrow{\partial_{p+1}} C_{p}(Q * K) \xrightarrow{\partial_{p}} \cdots \xrightarrow{\partial_{2}} C_{1}(Q * K) \xrightarrow{\partial_{1}} C_{0}(Q * K) \xrightarrow{\partial_{0}} \{0\}$$

Prendo un $\sigma \in C_p(K)$ σ p-simplesso (orientato) di K.

$$\partial_{p+1}[Q,\sigma] = \begin{cases} \sigma - Q & p = 0\\ \sigma - [Q,\partial_p] & p > 0 \end{cases}$$

 $\sigma \in C_p(K)$ catena qualsiasi

$$p = 0$$
) $\sigma = \sum n_{\alpha} P \alpha$

$$\begin{split} \partial_1[Q,\sigma] &= \partial_1[Q,\sum n_\alpha P_\alpha] = \partial_1 \sum n_\alpha [Q,P_\alpha] = \\ &= \sum n_\alpha \partial_1[Q,P_\alpha] = \sum n_\alpha (P_\alpha - Q) = \sum n_\alpha P_\alpha - (\sum n_\alpha) Q = \\ &= \sigma - \varepsilon(\sigma) Q = \sigma - Q \end{split}$$

 $p>0)\ \partial[Q,\sigma]=\sigma-[Q,\partial\sigma]$ e procedo come prima

Teorema 12. Sia Q * K il cono di vertice Q su un complesso simpliciale K. Allora

$$H_p(Q * K) = \begin{cases} \mathbb{Z} & p = 0\\ \{0\} & p \neq 0 \end{cases}$$

oppure, rispetto all'omologia ridotta,

$$\tilde{H}_p(K) = \{0\} \quad \forall p$$

Proofp = 0) $H_0(Q * K) = \mathbb{Z}$ poichè Q * K è connesso per archi (per definizione di cono)

p > 0

$$H_p(Q*K) = Z_p(Q*K)/B_p(Q*K)$$

dal teorema, segue che

$$H_p(Q*K) = \{0\} \implies Z_p(Q*K) = B_p(Q*K)$$

Sia \mathbb{Z}_p un p-ciclo di $\mathbb{Q}*K$. Decompongo \mathbb{Z}_p come

$$Z_p = C_p + [Q, d_{p-1}]$$

con $C_p \in C_p(K)$ $d \in C_{p-1}(K)$. Z_p è un ciclo, quindi

$$0 = \partial Z_p = \partial C_p + \partial [Q, d_{p-1}] =$$

$$= \begin{cases} \partial C_p + d_{p-1} - \varepsilon(d_{p-1})Q & p = 1\\ \partial C_p + d_{p-1} - [Q, d_{p-1}] & p \neq 1 \end{cases}$$

Voglio far vedere che $Z_p \in B_p(Q * K)$, ossia che $Z_p = \partial[Q, C_p]$

$$Z_p - \partial [Q, C_p] = C_p + [Q, d_{p-1}] - (C_p - [Q, \partial C_p]) = [Q, d_{p-1}] - [Q, \partial C_p] - [Q, d_{p-1}] - [Q, \partial C_p] = [Q, d_{p-1}] - [Q, \partial C_p] - - [Q, \partial C_p$$

(per omomorifsmo)

$$[Q,\underbrace{d_{p-1}-\partial C_p}_{e_{n-1}}]$$

Voglio far vedere che $e_{p-1} = 0$. Osservo che

$$\partial(Z_p - \partial[Q,C_p]) = \partial Z_p - \partial^2[Q,C_p] = \partial[Q,e_{p-1}]$$

 $\partial Z_p = 0$ poichè Z_p bordo. Ottengo quindi

$$0 = \begin{cases} e_{p-1} - \varepsilon(e_{p-1})Q & p = 1\\ e_{p-1} - [Q, \partial e_{p-1}] & p \neq 1 \end{cases}$$

In entrambi i casi, $e_{p-1}C_{p-1}(K)$ (non coinvolge Q), quindi per ottenere 0 devono essere 0 entrambi gli addendi (poichè il gruppo è libero). Da ciò segue che

$$e_{p-1} = 0$$

$$[Q, \sigma] = 0 = Z_p - \partial [Q, C_p] \implies Z_p = \partial [Q, C_p]$$

 ${\bf Corollario~7.~} \textit{Se~K~\`e~il~complesso~simpliciale~associato~all'n-simplesso,}$

$$H_p(K) = \begin{cases} \mathbb{Z} & p = 0\\ \{0\} & p \neq 0 \end{cases}$$

 $oppure,\ rispetto\ all'omologia\ ridotta,$

$$\tilde{H}_p(K) = \{0\} \quad \forall p$$

Proof. La dimostrazione si può fare per induzione, osservando che gli n-simplessi vengono generati dai coni degli (n-1)-simplessi ■

Chapter 15

Interpretazione geometrica/topologica dei gruppi di omologia

Definizione 59 (Complessi simpliciale aciclico). Un complesso simpliciale K con $\tilde{H}_p(K) = \{0\} \ \forall p \ si \ dice \ complesso \ simpliciale \ aciclico$

Teorema 13. Sia K_n il complesso simpliciale corrispondente ad un n-simplesso (n > 0) e sia Σ^{n-1} il sottocomplesso formato dalle facce proprie di K_n . Allora

$$H_p \sigma^{n-1} = \begin{cases} \mathbb{Z} & p = 0\\ \{0\} & p \neq 0, p \neq n - 1\\ \mathbb{Z} = \langle \partial_n, \Delta_n \rangle & p = n - 1 \end{cases}$$

dove Δ_n è l'unico n-simplesso di K_n

Proof. Σ^{n-1} è l'(n-1)-scheletro di K_n . Se prendo $p \leq n-1$

{Insieme dei p-simplessi di K_n } = {Insieme dei p-simplessi di Σ^{n-1} }

Quindi abbiamo due successioni di catene

$$\{0\} \longrightarrow C_n(K_n) \xrightarrow{\partial_n} C_{n-1}(K_n) \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_2} C_1(K_n) \xrightarrow{\partial_1} C_0(K_n) \xrightarrow{\partial_0} \{0\}$$

 $p=0)~(\Sigma^{n-1}$ è connesso per $n\geq 2)$

$$\begin{split} H_0(\Sigma^{n-1}) &= {^{C_0}(\Sigma^{n-1})}/_{B_0(\Sigma^{n-1})} = {^{C_0(K_n)}}/_{Im\ \partial_1} = \\ &= {^{C_0(K_n)}}/_{Im\ \partial_1} = H_0(K_n) \simeq \mathbb{Z} \end{split}$$

$$0
$$H_p\left(\Sigma^{n-1}\right) = Z_p\left(\Sigma^{n-1}\right) / B_p\left(\Sigma^{n-1}\right) = Ker \ \partial_p / Im \ \partial_{p+1} = Z_p(K_n) / B_p(K_n) = H_p(K_n) = \{0\} \implies H_p\left(\Sigma^{n-1}\right) = \{0\}$$

$$p = n-1)$$

$$H_{n-1}\left(\Sigma^{n-1}\right) = Z_{n-1}\left(\Sigma^{n-1}\right) / B_{n-1}\left(\Sigma^{n-1}\right) = Ker \ \partial_{n-1} / Im \ \partial_n = Xer \ \partial_{n-1} / \{0\} = Ker \ \partial_{n-1}$$
in K_n ho che
$$H_{n-1}(K_n) = Z_{n-1}(K_n) / B_{n-1}(K_n) = \{0\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$$$

Esempio

ho che

 $H_{n-1}\left(\Sigma^{n-1}\right) \simeq \mathbb{Z}$

Osservazione

- Σ^1 omeomorfo a S^1
- Σ^2 omeomorfo a S^2

15.1 Interpretazione geometrica/topologica

Il r
ngo di $H_p(K)$ corrisponde al numero di p-cicli indipendenti che non sono p-bot
di, ossia il numero di buchi p-dimensionali di K

Esempio Supponiamo di avere un complesso K tale che

$$H_0(K)=\mathbb{Z}^2\implies 2$$
 componenti
$$H_1(K)=\mathbb{Z}^3\implies 3 \text{ fori}$$

$$H_2(K)=\mathbb{Z}\implies 1 \text{ cavità}$$

A che oggetto corrisponde?

La struttura omologica non varia se cambio posizione ai 4 elementi fondamentali (bordo del 2-simplesso e i bordi dei 3 1-simplessi) e se aggiungo dei complessi simpliciali

Attenzione Cosa succede nel caso n = 1? Abbiamo detto che, in generale,

$$H_p(\Sigma^{n-1}) = \begin{cases} \mathbb{Z} & p = 0\\ \{0\} & p \neq 0, n-1\\ \mathbb{Z} & p = n-1 \end{cases}$$

nel caso n=1, abbiamo

Da cui risulta che

$$H_0(\Sigma^0) = \mathbb{Z}^2$$

l'indice 0 e l'indice n-1 coincidono, e portano ad avere \mathbb{Z}^2 . Rispetto ai gruppi di omologia ridotta, invece questo caso non si presenta, in quando avremmo

$$\tilde{H}_0(\Sigma^0) = \mathbb{Z}$$

che nel gruppi di omologia ridotta corrisponde a 2 componenti connesse

Chapter 16

Omomorfismi indotti da mappe simpliciali

Domanda Cosa posso dire dell'effetto di una mappa simpliciale rispetto all'omologia simpliciale?

Definizione 60 (Omomorfismo sulle catene indotto da una mappa simpliciale). Sia $f: K \to L$ una mappa simpliciale, definiamo l'omomorfismo

$$(f_{\#})_p: C_p(K) \to C_p(L)$$

come

$$(f_{\#})_p([P_0,\ldots,P_p]) = \begin{cases} [f(P_0),\ldots,f(P_p)] & se\ f(P_0),\ldots,f(P_p)\ distinti\\ 0 & altrimenti \end{cases}$$

Osservazione La mappa $(f_\#)_p$ è ben definita, poichè se cambio orientazione sul dominio, induco un cambio di direzione anche sul codominio

$$-[P_0, P_1, \dots, P_p] = [P_1, P_0, \dots, P_p]$$

$$(f_\#)_p(-[P_0, P_1, \dots, P_p]) = (f_\#)_p([P_1, P_0, \dots, P_p]) = [f(P_1), f(P_0), \dots, f(P_p)] =$$

$$= -[f(P_0), f(P_1), \dots, f(P_p)] = (f_\#)_p([P_0, P_1, \dots, P_p])$$

Nomenclatura $\ f_{\#}$ si dice mappa tra catene indotta da f

Attenzione Con $f_{\#}$ indichiamo una collezione di omomorfismi, uno per ogni p-catena

16.1 Esempio

 $f:K\to L$ definita da

$$P_0 \longmapsto Q_0 \qquad P_1 \longmapsto Q_1$$

 $P_2 \longmapsto Q_0 \qquad P_3 \longmapsto Q_2$

16.1.1 Omomorfismi indotti

$$(f_{\#})_{0}: C_{0}(K) = \langle P_{0}, P_{1}, P_{2}, P_{3} \rangle \rightarrow C_{0}(L) = \langle Q_{0}, Q_{1}, Q_{2}, Q_{3} \rangle$$

$$(f_{\#})_{0} = \begin{bmatrix} P_{0} & P_{1} & P_{2} & P_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} Q_{0} \\ Q_{1} \\ Q_{2} \\ Q_{3} \end{bmatrix}$$

$$(f_{\#})_1: C_1(K) = \langle [P_0, P_1], [P_0, P_2], [P_1, P_2], [P_1, P_3], [P_2, P_3] \rangle$$

$$C_1(L) = \langle [Q_0, Q_1], [Q_0, Q_2], [Q_0, Q_3], [Q_1, Q_2] \rangle$$

$$[P_0, P_1] \quad [P_0, P_2] \quad [P_1, P_2] \quad [P_1, P_3] \quad [P_2, P_3]$$

$$(f_{\#})_{1} = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} Q_{0}, Q_{1} \\ Q_{0}, Q_{2} \\ Q_{0}, Q_{3} \\ Q_{0}, Q_{2} \end{bmatrix}$$

$$\begin{split} (f_{\#})_2:C_2(K) &= \langle [P_0,P_1,P_2], [P_1,P_2,P_3] \rangle \to C_2(L) = \langle [Q_0,Q_1,Q_2] \rangle \\ (f_{\#})_2 &= \begin{bmatrix} [P_0,P_1,P_2] & [P_1,P_2,P_3] \\ 0 & -1 \end{bmatrix} & [Q_0,Q_1,Q_2] \end{split}$$

16.2 Cosa succede se passo ai gruppi di omologia?

Proposizione 15. Gli omomorfismi indotti $(f_{\#})_p$ da $C_p(K)$ in $C_p(L)$ commutano con gli operatori bordo, ossia

$$\partial_p' \circ (f_\#)_p = (f_\#)_{p-1} \circ \partial_p \qquad \forall p$$

Proof. Dimostriamo l'enunciato sui generatori di $C_p(K)$ Sia $\sigma = [P_0, \dots, P_p]$ e sia τ il simplesso generato da $f(P_0), \dots, f(P_p)$

caso 1) $dim \tau = p$ (f trasferisce la dimensione) ossia

$$f(P_0), \ldots, f(P_n)$$
 distinti

da cui

$$\left(\partial_p' \circ (f_\#)_p\right) ([P_0, \dots, P_p]) = \partial_p' ([f(P_0), \dots, f(P_p)]) =$$

$$= \sum_{i=0}^p (-1)^i [f(P_0), \dots, f(\hat{P}_i), \dots, f(P_p)] = \sum_{i=0}^p (-1)^i (f_\#)_{p-1} ([P_0, \dots, \hat{P}_i, \dots, P_p]) =$$

$$= (f_\#)_{p-1} \left(\sum_{i=0}^p (-1)^i [P_0, \dots, \hat{P}_i, \dots, P_p]\right) = ((f_\#)_{p-1} \circ \partial_p) ([P_0, \dots, P_p])$$

caso 2) $dim \ \tau \leq p-2$

$$(f_{\#})_p([P_0,\ldots,P_p]) = 0 \implies (\partial'_p \circ (f_{\#})_p)([P_0,\ldots,P_p]) = 0$$

$$(f_{\#})_{p-1}(\partial_1([P_0,\ldots,P_p])) = \sum_{i=0}^p (-1)^i (f_{\#})_{p-1}([P_0,\hat{P}_i,P_p]) =$$

da $\dim \tau \leq p-2$ segue che, per ognii,c'è almeno una ripetizione di vertici immagini di f, quindi

$$(f_{\#})_{p-1}([P_0,\ldots,\hat{P}_i,\ldots,P_p]) = 0 \quad \forall i$$

da cui

$$(f_{\#})_{p-1} \circ \partial_p = 0$$

- caso 3) $\dim \tau = \dim \sigma 1 = p 1$. Possiamo supporre che $f(P_0) = f(P_1)$ e che tutte le altre immagini siano distinte
 - $\partial_p' \circ (f_\#)_p([P_0,\dots,P_p]) = \partial_p' 0 = 0$ (per definizione dell'omomorfismo sulle catene)

$$((f_{\#})_{p} \circ \partial_{p})([P_{0}, \dots, P_{p}]) = (f_{\#})_{p-1} \left(\sum_{i=0}^{p} (-1)^{i} [P_{0}, \dots, \hat{P}_{i}, \dots, P_{p}] \right) =$$

$$= \sum_{i=0}^{p} (-1)^{i} (f_{\#})_{p-1} ([P_{0}, \dots, \hat{P}_{i}, \dots, P_{p}]) =$$

tutti gli addendi sono nulli, tranne i primi due (che tolgono i vertici ripetuti tramite f), ottengo quindi

$$= (-1)^{0} (f_{\#})_{p-1} ([P_{1}, P_{2}, \dots, P_{p}]) + (-1)^{1} (f_{\#})_{p-1} ([P_{0}, P_{2}, \dots, P_{p}]) =$$

$$= \underbrace{[f(P_{0}), f(P_{2}), \dots, f(P_{p})] - [f(P_{1}), f(P_{2}), \dots, f(P_{p})]}_{\text{uguali poichè } f(P_{0}) = f(P_{1})} = 0$$

Corollario 8. Gli omomorfismi indotti $(f_{\#})_p$ mandano p-cicli in p-cicli, e p-bordi in p-bordi, ossia

$$(Z_p(K)_{\#})_p \subseteq Z_p(L)$$

$$(B_p(K)_{\#})_p \subseteq B_p(L)$$

Proof. Dimostriamo separatamente per p-cicli e p-bordi

(p-cicli) Prendiamo un
$$C_p \in Z_p(K)$$
, ossia $\partial_p C_p = 0$

$$\left(\partial_p' \circ (f_\#)_p\right)(C_p) = \left((f_\#)_{p-1} \circ \partial_p\right)(C_p) =$$

$$= (f_\#)_{p-1}(\partial_p(C_p)) = (f_\#)_{p-1}(0) = 0$$

da cui segue

$$(Cp_{\#})_p \in Z_p(L)$$

(p-bordi) Prendiamo un $b_p \in B_p(K)$, ossia

$$\exists d \in C_{p+1}(K) \quad t.c. \quad \partial p + 1d = b_p$$

Voglio far vedere che

$$\exists d' \in C_{p+1}(L) \quad t.c. \quad \partial p + 1d' = (f_{\#})_p(b_p)$$
$$\left(\partial'_{p+1} \circ (f_{\#})_{p+1}\right) = \left((f_{\#})_p \circ \partial_{p+1}\right)(d) =$$
$$= (f_{\#})_p(\partial_{p+1}(d)) = (f_{\#})_p(b_p)$$

da cui segue

$$d' = (f_{\#})_{p+1}(d) \implies (f_{\#})_p(b_p) \in B_p(L)$$