FIZIKA

Fizika je fundamentalna prirodna znanost koja se bavi proučavanjem općih svojstava i zakona kretanja materije.

FIZIKA

potječe od grčke riječi *fizis*, što znači **PRIRODA**, pa je izvorno proučavala sve prirodne pojave i dugo vremena se zvala *filozofija prirode*.

Fiziku možemo podijeliti na:

- klasičnu fiziku, koja proučava pojave iz našeg tzv. makrosvijeta, tj. pojave koje možemo vidjeti i neposredno mjeriti
- modernu fiziku, koja se razvila u 20. stoljeću kao odgovor na činjenice koje se nisu mogle uklopiti u okvire klasične fizike

Podjela fizike

Klasičnu fiziku možemo podijeliti na:

- mehaniku s mehanikom fluida
- toplinu i termodinamiku
- optiku
- akustiku
- elektromagnetizam

Klasična mehanika je osnovni i najstariji dio fizike koji opisuje gibanja i interakcije (međudjelovanja) «običnih tijela», tj. tijela čije su dimenzije velike u usporedbi s veličinom atoma (10⁻¹⁰ m) i koja se gibaju brzinama znatno manjim od brzine svjetlosti ($c = 3.10^8$ m/s). Ona se temelji na 3 aksioma koja je Newton formulirao još u 17. stoljeću.

Moderna fizika obuhvaća:

- relativističku mehaniku
- kvantnu mehaniku
- atomsku fiziku
- nuklearnu fiziku
- fiziku elementarnih čestica

Fizikalne veličine

- Fizikalna veličina je mjerljivo svojstvo (parametar) fizikalnog stanja, procesa ili tijela, koje omogućuje definiranje fizikalne pojave i njeno opisivanje u matematičkom obliku pomoću odgovarajućih jednadžbi.
- Primjeri fizikalnih veličina: put, vrijeme, masa, brzina, rad, energija, snaga, temperatura, tlak...
- Fizikalne veličine se označavaju malim i velikim slovima latinske abecede i grčkog alfabeta.
- Znakovi, odn. simboli fizikalnih veličina se koriste prema međunarodnom dogovoru (ISO – International Standard Organisation, IUPAP – International Union for Pure and Applied Physics).
- Većinom su to početna slova engleskih ili latinskih naziva odgovarajućih fizikalnih veličina:
- brzina v velocity, velocitas
- sila F force
- rad W work
- vrijeme t time, tempus

Fizikalne veličine

- Fizikalni zakoni se precizno mogu izraziti pomoću fizikalnih jednadžbi (formula) koje povezuju fizikalne veličine u tom zakonu.
- Mjeriti neku veličinu znači odrediti broj koji pokazuje koliko puta ta veličina sadrži u sebi istovrsnu veličinu dogovorom uzetu za jedinicu.
- Tako dobijemo brojčanu vrijednost fizikalne veličine koju mjerimo no to nam nije dovoljno jer moramo znati i njezinu jedinicu.

Fizikalne veličine i mjerne jedinice

Svaka fizikalna veličina se izražava pomoću brojčane vrijednosti i mjerne jedinice:

$$\mathbf{A} = \{\mathbf{A}\} \ [\mathbf{A}]$$

- A vrijednost fizikalne veličine
- {A} brojčana vrijednost (mjerni broj)
- [A] mjerna jedinica

Na primjer: duljina stola je l = 1,06 m $\{l\} = 1,06$ [l] = m

Podjela fizikalnih veličina

- skalarne fizikalne veličine, koje su potpuno određene svojom brojčanom vrijednošću i odgovarajućom jedinicom
- (npr. volumen, gustoća, temperatura, masa, frekvencija, rad, snaga, vrijeme...)
- vektorske fizikalne veličine, za čije potpuno određivanje moramo znati pravac nositelj, smjer vektora i iznos (brojčana vrijednost izražena u odgovarajućim jedinicama)
- (npr. *brzina, akceleracija, sila, količina gibanja, moment sile...*)

SI mjerne jedinice

- Međunarodni sustav mjernih jedinica, tzv.
 SI (Système International d'Unités)
- Dogovorom je odabrano 7 osnovnih mjernih jedinica Međunarodnog sustava iz kojih se matematičkim operacijama izvode sve ostale jedinice.
- Osnovne jedinice Međunarodnog sustava i pripadajuće fizikalne veličine:

Fizikalna veličina/Znak/Mjerna jedinica/Znak

- Duljina / // metar / m
- Masa / m / kilogram /kg
- Vrijeme / t / sekunda / s
- Termodinamička temperatura / T / kelvin / K
- Električna struja / I /amper / A
- Jakost svjetlosti / // kandela / cd
- Množina (količina tvari) / n / mol / mol

Mjerne jedinice

- Neke jedinice izvan SI su toliko udomaćene u pojedinim područjima da njihovo izbacivanje ne bi bilo svrsishodno.
- One će se u tim posebnim područjima i dalje moći upotrebljavati.

• Na primjer:

morska milja, čvor, hektar (ha), litra (L), stupanj (°), jedinica atomske mase (u), minuta (min), sat (h), dan (d), vatsat (Wh), elektronvolt (eV), Celzijev stupanj (°C), bar (bar), itd.

Međunarodno prihvaćeni prefiksi fizikalnih jedinica

Prefiks	Simbol	Vrijednost
• jota	Υ	10 ²⁴
• zeta	Z	10 ²¹
eksa	E	10 ¹⁸
• peta	Р	10 ¹⁵
• tera	Т	1012
• giga	G	10 ⁹
• mega	M	10 ⁶
• kilo	k	10 ³
hekto	h	10 ²
deka	da	10 ¹
• deci	d	10 ⁻¹
• centi	С	10 ⁻²
• mili	m	10 ⁻³
mikro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
• piko	р	10 ⁻¹²
• femto	f	10 ⁻¹⁵
ato	а	10 ⁻¹⁸
• zepto	Z	10 ⁻²¹
• jokto	у	10 ⁻²⁴

Fizikalno moguće, stvarno u prirodi

 1 J - energija potrebna da se mala jabuka od 10 dag digne na visinu od 1 m iznad zemlje

 Godišnja proizvodnja el. energije u HR u 2008. god. oko 12000 GWh ili 12 TWh

Energija mirovanja elektrona
 E=m₀c² je oko 0,5 MeV

 Promjer helijevog atoma oko 0,1 nm

 10 ps nakon Big Banga se EM sila odvojila od drugih osnovnih sila

Koordinatni sustav

- Položaj, odnosno koordinate materijalne točke ovise o izabranom referentnom sustavu.
- Izbor referentnog sustava je proizvoljan, ali se obično kao najpraktičniji odabire sustav koji miruje s obzirom na Zemlju, takozvani laboratorijski sustav.

Položaj materijalne točke možemo opisati pomoću koordinata u nekom koordinatnom sustavu:

- pravokutnom koordinatnom sustavu (x, y, z)
- cilindričnom koordinatnom sustavu (ρ , φ , z)
- sfernom koordinatnom sustavu (r, φ, θ)
- paraboličkom koordinatnom sustavu (ξ, η, φ)
- eliptičkom koordinatnom sustavu (u, v, z)

Najčešće položaj materijalne točke određujemo pomoću njenih koordinata u pravokutnom Kartezijevom koordinatnom sustavu.

Pravokutni Kartezijev koordinatni sustav

