成绩	
教师签字	

通信工程学院

实 验 报 告

(信号与系统)

实验题目:线性系统的频率特性

专业:	通信工程	年级:	2022 级
姓名:	苏睿杰	学号:	20220826
实验时间:	2023年10月27日	班级:	42

实验十九 线性系统的频率特性

一、实验目的

- 1. 熟练掌握测频谱的方法。
- 2. 加深对矩形脉冲频谱特点的掌握。

二、实验原理

- 1. 矩形脉冲的频谐与脉冲宽度 τ 及重复周期 T 之问有着密切的关系,本实验的任务就研究这种关系。测量频谐的方法同实验十四。短形脉冲由数字信号发生器提供,矩形脉冲的宽度与幅度均用数字示波器来测量。
- 2. 矩形脉冲谐波的幅度是按下式规律变化:

$$A_m = \frac{2A\tau}{T} \left| \frac{\sin \frac{n\pi\tau}{T}}{\frac{n\pi\tau}{T}} \right|$$

其中 A_m 表示第 n 谐波的幅度,A 表示脉冲的幅度, τ 表示脉冲宽度,T 表示脉冲重复周期。从上式可知,周期性矩形脉冲的频谱有几个重要的特点:

- (1) 频谱包络线的零点仅取決于 τ , 而与 T 无关,第一个零点的角频率为 $\frac{2\pi}{\tau}$, τ 越小,则第一个零点的角频率越高。
- (2) 频谱的密度仅取决于 T, 而与 τ 无关, T 越大, 则谱线愈密。
- (3) 谐波的幅度取决于 A 及 $\frac{\tau}{T}$, $\frac{\tau}{T}$ 愈小,则幅度愈小。
- (4) 各种周期信号频谱的共同点为: 离散性, 谐波性和收敛性。

由上式可知: 谐波的次数及幅度与 $\frac{\tau}{T}$ 有关,下面给出了脉冲宽度 τ 不变,而改变脉冲周期 T 及脉冲周期 T 不变,而改变脉冲宽度 τ ,这二种情况下的振幅频谱图如图 1 所示。

三、实验内容及要求

1. 测量重复频率 f=20KHz,脉冲宽度 τ 与周期 T 之比 $\frac{\tau}{T}=\frac{1}{5}$,脉冲幅度 A=2V 的矩形脉冲的频谱,数据记录于表 1,并且绘制频谱图于图 2。

表 1:
$$f = 20KHz$$
, $\frac{\tau}{T} = \frac{1}{5}$, $A = 2V$

谐波频率 fn(kHz)	20	40	60	80	100	120	140	160	180	200
谐波幅度 Pn(dB)	-2.7	-4.8	-8.3	-15.1	-28.2	-19.6	-15.5	-16.7	-18.4	-34.8
谐波电压 $U_n = 0.775 \times 10^{\frac{p_n}{20}}$	0.57	0.45	0.30	0.14	0.03	0.08	0.13	0.11	0.09	0.01

图 2: 实际图样以及实际, 理想对比图

2. 测量重复频率 f=10KHz,脉冲宽度 τ 与周期 T 之比 $\frac{\tau}{T}=\frac{1}{5}$,脉冲幅度 A=2V 的矩形脉冲的频谱,数据记录于表 2,并且绘制频谱图于图 3。

表 2:
$$f=10KHz, \frac{\tau}{T}=\frac{1}{5}, A=2V$$

谐波频率 fn (kHz)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
谐波幅度 Pn (dB)	-2.9	-4.7	-8.3	-14.9	-51.2	-18.5	-15.7	-16.8	-23.1	-37.7	-24.8	-21.1	-21.4	-30.6	-51.2
谐 波 电 $\mathbb{E} \ U_n = 0.775 \times 10^{\frac{pn}{20}}$	0.56	0.45	0.30	0.14	0.002	2 0.09	0.13	0.11	0.054	0.01	0.045	0.07	0.06	0.02	0.002

图 3: 实际图样以及实际, 理想对比图

3. 测量重复频率 f=10KHz,脉冲宽度 τ 与周期 T 之比 $\frac{\tau}{T}=\frac{1}{10}$,脉冲幅度 A=2V 的矩形脉冲的频谱,数据记录于表 3,并且绘制频谱图于图 4。

图 4: 实际图样以及实际, 理想对比图

表 3:
$$f = 10KHz$$
, $\frac{\tau}{T} = \frac{1}{10}$, $A = 2V$

谐波频率 fn(kHz)	10	20	30	40	50	60	70	80	90	100
谐波幅度 Pn(dB)	-8.5	-8.8	-9.7	-10.9	-12.4	-14.3	-17.0	-20.9	-26.4	-38.8
谐波电压 $U_n = 0.775 \times 10^{\frac{pn}{20}}$	0.30	0.28	0.25	0.22	0.19	0.15	0.11	0.07	0.04	0.01
谐波频率 fn(kHz)	110	120	130	140	150	160	170	180	190	200
谐波幅度 Pn(dB)	-34.6	-30.7	-23.8	-22.8	-22.9	-23.6	-25.3	-28.2	-38.5	-41.7
谐波电压 $U_n = 0.775 \times 10^{\frac{pn}{20}}$	0.014	0.02	0.05	0.06	0.06	0.05	0.04	0.03	0.009	0.006

注: $U_n = 0.775^{\frac{P_n}{20}}$

四、数据处理

1. 理想情况电压的计算过程

(a) 重复频率 f=20KHz (即 f=20n),脉冲宽度 τ 与周期 T 之比 $\frac{\tau}{T}=\frac{1}{5}$,脉冲幅度 A=2V 的 矩形脉冲的频谱,利用公式

$$A_m = \frac{2A\tau}{T} \left| \frac{\sin \frac{n\pi\tau}{T}}{\frac{n\pi\tau}{T}} \right|$$

代入数值可计算出理想状况:

表 4:
$$f = 10KHz$$
, $\frac{\tau}{T} = \frac{1}{10}$, $A = 2V$

谐波频率 fn(kHz)	20	40	60	80	100	120	140	160	180	200
理想谐波电压	0.75	0.61	0.40	0.19	3.1×10^{-17}	0.12	0.17	0.15	0.08	3.1×10^{-17}

(b) 重复频率 f=10KHz (即 f=10n),脉冲宽度 τ 与周期 T 之比 $\frac{\tau}{T}=\frac{1}{5}$,脉冲幅度 A=2V 的 矩形脉冲的频谱,利用公式

$$A_m = \frac{2A\tau}{T} \left| \frac{\sin \frac{n\pi\tau}{T}}{\frac{n\pi\tau}{T}} \right|$$

代入数值可计算出理想状况:

表 5:
$$f = 10KHz$$
, $\frac{\tau}{T} = \frac{1}{10}$, $A = 2V$

谐波频率 fn(kHz)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
理想谐波电压	0.75	0.61	0.40	0.19	3.1× 10 ⁻¹	0.12	0.17	0.15	0.08	3.1×10^{-1}	_	0.1	0.09	0.05	3.1×10^{-17}

(c) 重复频率 f=10KHz (即 f=10n),脉冲宽度 τ 与周期 T 之比 $\frac{\tau}{T}=\frac{1}{10}$,脉冲幅度 A=2V 的矩形脉冲的频谱,利用公式

$$A_m = \frac{2A\tau}{T} \left| \frac{\sin \frac{n\pi\tau}{T}}{\frac{n\pi\tau}{T}} \right|$$

代入数值可计算出理想状况:

表 6:
$$f = 10KHz$$
, $\frac{\tau}{T} = \frac{1}{10}$, $A = 2V$

谐波频率 fn(kHz)	10	20	30	40	50	60	70	80	90	100
理想谐波电压	0.40	0.37	0.34	0.30	0.25	0.20	0.15	0.10	0.04	1.6×10^{-17}
谐波频率 fn(kHz)	110	120	130	140	150	160	170	180	190	200
理想谐波电压	0.036	0.062	0.079	0.086	0.085	0.076	0.061	0.042	0.021	1.6×10^{-17}

2. 第一个零点处角频率的比较

- (a) 实验一,根据公式 $\omega_0=\frac{2\pi}{\tau}$,代入数据 $\frac{\tau}{T}=\frac{1}{5}$, f=20KHz,得到 $\omega_0=\frac{2\pi}{\tau}=2\times 10^5\pi$,实际测量第一个零点频率 $f\approx 1\times 10^5\pi$,由 $\omega=2\pi f$ 可知,与实际测量值比较近似相等。
- (b) 实验二,根据公式 $\omega_0=\frac{2\pi}{\tau}$,代入数据 $\frac{\tau}{T}=\frac{1}{5}$, f=10KHz,得到 $\omega_0=\frac{2\pi}{\tau}=1\times 10^5\pi$,实际测量第一个零点频率 $f\approx 0.5\times 10^5\pi$,由 $\omega=2\pi f$ 可知,与实际测量值比较近似相等。
- (c) 实验三,根据公式 $\omega_0 = \frac{2\pi}{\tau}$,代入数据 $\frac{\tau}{T} = \frac{1}{10}$,f = 10KHz,得到 $\omega_0 = \frac{2\pi}{\tau} = 2 \times 10^5 \pi$,实际测量第一个零点频率 $f \approx 1 \times 10^5 \pi$,由 $\omega = 2\pi f$ 可知,与实际测量值比较近似相等。

五、实验结论与思考

1. 矩形脉中频谱包络线的要点仅取决于 τ ,与 T 无关,且第一个零点角频率为 $\frac{2\pi}{\tau}$ 。 τ 越小,第一个零点角频率越高。

- 2. 实际测量值与理论值存在误差,可能是选频电平表未自较,或使用不当或仪器本身误差。
- 3. 频谱的密度只与 T 有关,T 越大,谱线越卡密。