Marco V. Bayas

Noviembre 24, 2022

Método del descenso más pronunciado "steepest descent"

 $F(\mathbf{x}_k)$: función de *n* variables $\mathbf{x} = (x_1, x_2, ..., x_n)$

Búsqueda del mínimo de
$$F$$
: $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{a} \frac{\nabla F(\mathbf{x}_k)}{|\nabla F(\mathbf{x}_k)|}$

u_k: Vector unitario en la dirección definida por el gradiente

Método de Newton

$$F(\mathbf{x})$$
: función de n variables $\mathbf{x} = (x_1, x_2, \dots, x_n)$

Condición para el mínimo: $\nabla F(\mathbf{x}) = 0$

Aproximación:

$$F(\mathbf{x}) = F(\mathbf{x}_0) + \sum_{i} \frac{\partial F}{\partial x_i} \Big|_{0} (x_i - x_0) + \frac{1}{2} \sum_{ij} \frac{\partial^2 F}{\partial x_i \partial x_j} \Big|_{0} (x_i - x_0) (x_j - x_0) + \cdots$$

Entonces:

$$\underbrace{\frac{\partial F(\mathbf{x})}{\partial x_i}}_{\nabla F} = \underbrace{\frac{\partial F}{\partial x_i}}_{\nabla F_0} \Big|_{\mathbf{0}} + \sum_j \underbrace{\frac{\partial^2 F}{\partial x_i x_j}}_{\mathbf{A}} \Big|_{\mathbf{0}} (x_j - x_0) + \cdots$$

Ecuación para el mínimo: $\nabla F_0 + \mathbf{A} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$

Método de Newton

Ecuación para el mínimo: $\nabla F_0 + \mathbf{A} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$

$$ightarrow \mathbf{x} = \mathbf{x}_0 - \mathbf{A}^{-1} \cdot \nabla F_0$$

Esquema iterativo: $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{A}_k^{-1} \cdot \nabla F_k$

Método de Newton

Algoritmo

Requerimientos:

- $F(\mathbf{x}) \mathbf{y} \nabla F$
- Estimación inicial x₀
- 1. Definir la estimación inicial: \mathbf{x}_0 y la tolerancia δ
- 2. Para cada valor de $k \ge 0$:
 - ightharpoonup Evaluar \mathbf{A}_k y ∇F_k
 - $\mathbf{x}_{k+1} = \mathbf{x}_k \mathbf{A}_k^{-1} \cdot \nabla F_k$
- 3. Repetir el paso 2 hasta que $|\nabla F_k| < \delta$

Método de Newton: $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{A}_k^{-1} \cdot \nabla F_k$

Alternativamente: $\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{A}_k^{-1} \cdot \mathbf{u}_k$

 \mathbf{u}_k puede ajustarse considerando la dirección dada por ∇F_{k-1}

En general:

$$\vec{u}_k \cdot \vec{u}_{k-1} = 0$$

Algoritmo

Requerimientos:

- F(x)
- Estimación inicial x₀
- ∇F_0
- 1. Definir la estimación inicial: \mathbf{x}_0 , ∇F_0 y la tolerancia δ
- 2. Para cada valor de $k \ge 0$:
 - ightharpoonup Evaluar \mathbf{A}_k
 - ► Evaluar u_k tal que $\vec{u}_k \cdot \vec{u}_{k-1} = 0$
 - ightharpoonup Calcular $\mathbf{x}_{k+1} = \mathbf{x}_k \mathbf{A}_k^{-1} \cdot u_k$
- 3. Repetir el paso 2 hasta que $|\nabla F_k| < \delta$