

Arquitetura de Computadores

ENGENHARIA INFORMÁTICA
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

– Exame da Época Normal –

14 de Janeiro de 2022

Duração: 90 minutos + 30 minutos de tolerância

Nome:										Número:									
Notas Importantes:																			
	nte a prov tanto, <u>nã</u>													de apo	io a tra	balhos	prátic	os).	
pergu	é um test inta corr ndida val	etamei	ite res	pondid	a vale	cinco	pontos	; <u>cada</u>	respo	sta err	ada de	sconta							
Res	<u>postas</u> :	(ind	icar d	le <u>for</u>	ma le	gível a	a resp	osta .	A, B,	C ou I	D, del	aixo	do nú	mero	da qı	uestão	0)		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
 Das instruções indicadas a seguir, indique qual a única que é uma instrução TAL: a. andi \$4,\$5,0x0000FF00 b. mul \$a0,\$t0,\$t1 Considere um computador equipado com memória cache em que o acesso à memória demora 70 ns, enquanto o acesso à cache demora 10 ns. Qual o speedup que se consegue 																			
	bter no		ema	-		s ace					ltare	_	-	_	_		11	,	
 3. Qual dos seguintes segmentos de código em C reproduz mais fielmente o ciclo em assembly indicado ao lado? a. while((\$s3>=\$s4) (\$s5<\$s4)){\$s4;} b. while((\$s3<\$s4) (\$s5>=\$s4)){\$s4;} c. while((\$s3<\$s4)&&(\$s5<\$s4)) {\$s4;} d. while((\$s3>=\$s4)&&(\$s5<\$s4)) {\$s4;} 													bne \$t slt \$t beq \$t			10,\$s3,\$s4 10,\$0,out 11,\$s5,\$s4 11,\$0,out 154,\$s4,-1			
	C omo .ddi S	s \$t1,			mpõ .020		a em		truçã ruçõe		em L?	A	Assen	ıbly	d	0	MI	PS	
		a) lui \$at,0x1020 andi \$at,\$at,0x3040 add \$t1,\$t0,\$at								or	lui \$at,0x1020 ori \$at,\$at,0x3040 add \$t1,\$t0,\$at								
	c) lui \$at,0x3040 ori \$at,\$at,0x1020 add \$t1,\$t0,\$at								ad	ld \$at		3040 ut,0x1020 0,\$at							

5. Considere o excerto de código em *Assembly* do MIPS apresentado na caixa ao lado. Indique qual das opções representa o valor armazenado no registo \$t3 após a execução deste excerto de código em *Assembly* do MIPS:

```
a. $t3=5
```

c. \$t3=2

```
b. $t3=6
```

d. \$t3=15

```
.data
tab:
        .word 5,15,10,20,25,30,35,40,45,50
        .text
        l a
                $t.0.tab
                $t1,4($t0)
                $t2,12($t0)
        addi
                $t3,$0,1
                $t4,$t2,$t1
        slt
       bne
                $t4,$0,cond2
                $t3,$0,4
        addi
cond2:
       addi
                $t3,$t3,1
fim ciclo:
```

```
6. Considerando o programa em C ao lado, indique qual das seguintes opções é <u>VERDADEIRA</u>.
```

- **a.** O programa termina com um erro do tipo *Segmentation Fault*.
- **b.** É apresentado no ecrã o valor 0x05.
- **c.** É apresentado no ecrã o valor 0x06.
- **d.** É apresentado no ecrã o valor 0×07 .

```
int main() {
  int a[] = {1,2,3,4,5,6,7};
  int *p1, *p2, **p3;
  p1 = a+5;
  p2 = p1-2;
  p3 = &p1;
  printf("%#X\n",*(*p3-3)+(*p2)-2);
  return 0;
}
```

7. Tendo em conta o *datapath* de um processador MIPS e a normal execução de uma instrução, indique qual das seguintes afirmações é <u>VERDADEIRA</u>:

- **a.** Na execução de uma instrução do tipo *branch*, o processador está ativo em todas as etapas do *datapath*.
- **b.** Na execução de uma instrução do tipo *load*, o processador está inactivo na etapa 5
- **c.** Na execução de uma instrução do tipo *jump*, o processador está *inactivo* nas etapas 4 e 5.
- **d.** Na execução de uma instrução do tipo *store*, o processador está ativo na etapa 5 *datapath*.
- 8. Considere um sistema baseado num processador com um valor de CPI <u>REAL</u> igual a 5.0. O sistema possuí duas caches, uma para instruções e outra para dados. O CPI <u>IDEAL</u> deste sistema é igual a 2. A hit rate da cache de instruções é de 90%. A miss penalty para a memória de instruções é igual a 20 ciclos de relógio e a da memória de dados é igual a 25 ciclos de relógio. Sabendo que apenas 40% das instruções envolvem um acesso à memória de dados indique qual a *hit rate* da cache de dados?

a. 90%

b. 80%

c. 85%

d. 10%

9. Considere uma hierarquia de memória (memória principal + memória cache do tipo *Direct Mapped*) tal que na estrutura de endereçamento, o campo *Index* ocupa 10 bits do endereço. Se, para o mesmo tamanho da memória principal, memória cache e tamanho de bloco da memória, a memória cache fosse do tipo 8-way set-associative, quantos sets teria a memória cache?

a. 512 sets

b. 1024 sets

c. 128 sets

d. 256 sets

10. Considere um certo programa que deve executar ordenadamente as operações OP1, OP2, OP3, OP4, OP5 sobre um conjunto de 3 dados distintos. Considere que a operação mais rápida demora 1ns a executar e a mais lenta demora 2ns a executar. Qual o tempo de execução global assumindo o modo de operação em pipeline (sem stalls de paragem) com pipeline vazia no início da execução do programa?

a. 6 ns

b. 7 ns

c. 30 ns

d. 14 ns

- 11. Considere uma memória cache do tipo "4-way associative cache" com um tamanho total de 4 MB e blocos de 1024 bytes. Numa arquitetura de 32 bits, um endereço de memória de decompõe-se em:
 - a. "Tag" de 12 bits, "index" de 10 bits e "offset" de 10 bits.
 - b. "Tag" de 13 bits, "index" de 9 bits e "offset" de 10 bits.
 - c. "Tag" de 10 bits, "index" de 12 bits e "offset" de 10 bits.
 - d. "Tag" de 11 bits, "index" de 11 bits e "offset" de 10 bits.
- 12. Relativamente ao Assembly do MIPS, indique qual das seguintes afirmações é VERDADEIRA:
 - **a.** Nenhuma instrução do tipo I necessita de realocação na fase da *linkagem*.
 - **b.** As instruções do tipo R são sempre resolvidas na fase do "assembling".
 - c. A resolução de "labels" de instruções "branches" é feita pelo "linker".
 - **d.** As tabelas de símbolos são criadas na fase de pré-processamento e resolvidas na fase da *linkagem*.
- 13. Relativamente ao excerto de código ao lado indique qual dos seguintes códigos hexadecimais corresponde à codificação da instrução beq \$t0,\$0,Loop.

```
Loop: lw $s0,0($a0)
addi $s0,$s0,0x40000
addi $a0,$a0,4
slti $t0,$s0,100
beq $t0,$0,Loop
```

a. 0x1100FFFB

c. 0×1100FFFA

b. 0x1100FFF9

d. 0x11000005

- 14. Considere o programa em C ao lado. Com base nos valores que as funções *printf* imprimem no ecrã, indique qual das seguintes opções é <u>VERDADEIRA</u>:
 - a. Os valores a imprimir são: 3, 2, 4, 5
 - **b.** Os valores a imprimir são: 3, 3, 4, 5
 - c. Os valores a imprimir são: 3, 3, 1, 4
 - **d.** Os valores a imprimir são: 3, 2, 4, 4

```
int main() {
    int X[]={3,2,1,0};
    int *p=X;

    *(p+1)=X[0];

    printf("%d, %d,",X[0],X[1]);

    X[3]=5;
    p=p+3;

    printf(" %d, %d",*(p-1),*p-1);
    return 0;
}
```

15. Considere a instrução em *Assembly* do MIPS dada pelo seguinte código hexadecimal 0x8C880100. Sabendo que os registos \$t0 e \$a0 são os registos #8 e #4, respectivamente, indique qual das seguintes instruções representa a descodificação da instrução anterior:

```
a. lw $t0,128($a0)
```

c. sw \$a0,256(\$t0)

b. lw \$a0,256(\$t0)

d. lw \$t0,256(\$a0)

16. No trabalho prático 3 utilizaram-se dois displays de 7 segmentos do simulador MARS. Para programar o valor a mostrar no display da esquerda bastava escrever um byte no endereço 0xFFFF0011. Qual seria o resultado do trecho de programa em assembly apresentado ao lado?

```
addi $a0, $0, 0xFFFF0011
addi $t0, $0, 0x79
sb $t0,0($a0)
```

- **a.** Escreve um **E** no display.
- **b.** Escreve um **6** no display.

- **c.** Escreve um **5** no display.
- **d.** Escreve um **F** no display.

- 17. Assumindo que a "label" tabInt se refere a uma tabela de inteiros armazenada no endereço de memória 0x10000448, e que as "label" funcA e funcB corresponde a uma referência externa ao ficheiro, indique quantas entradas na tabela de realocação gerará o seguinte código Assembly do MIPS?
 - a. 3 entradas na tabela de realocação.
 - **b.** 4 entradas na tabela de realocação.
 - c. 6 entradas na tabela de realocação.
 - **d.** 5 entradas na tabela de realocação.

```
$t0,10($sp)
       ٦w
       ٦w
               $t1,14($sp)
       addu
               $a0,$t1,$t0
       jal
               funca
                $v0,$a0,end
       bea
               $v0,18($sp)
       SW
       blt
               $t0,50, loop
       la
               $a0, tabInt
               $t2,0($a0)
       SW
       jal
               funcB
       move
               $v0,$0
end:
               $ra,8($sp)
       addiu $sp,$sp,24
```

- 18. Na compilação de um programa escrito em C e em *assembly*, qual dos seguintes comandos é válido para gerar um executável denominado *«exe»*:
 - a. gcc main.c func.s -O exe
 - **b.** gcc -c exe main.c func.s

- c. gcc main.c func.s -o exe
- **d.** gcc -c main.c func.s exe
- 19. Considerando o trecho de programa indicado ao lado, indique qual das afirmações é <u>FALSA</u>:
 - **a.** A variável *str* vai ser armazenada na zona de dados estáticos.
 - **b.** As variáveis *i* e *temp* vão ser armazenadas na pilha.
 - **c.** A variável *temp* vai apontar para uma zona de memória no *heap*.
 - **d.** A variável *str* vai ser armazenada na zona de dados estáticos do programa, a variável *i* na pilha e a variável *temp* no *heap*.
- char str[] = "One STRING";

 void main() {
 int i;
 char *temp;

 temp=(char *)malloc(strlen(str)+1);

 for(i=0;i<=strlen(str);i++)
 temp[i]=str[i];
 }</pre>
- 20. Assumindo que o registo \$a0 contém o valor 0x11223344, indique qual é o valor armazenado no registo \$t0 após a execução do excerto de código Assembly do MIPS listado ao lado:
- ori \$t0,\$a0,0x0000FF00
 sll \$t0,\$t0,8
 andi \$t0,\$t0,0xFFFF0000
 srl \$t0,\$t0,8
 ori \$v0,\$t0,0x00000055

- **a.** 0x0022FF00
- **b.** 0x22FF3300

- **c.** 0x11FF2233
- **d.** 0x22FF0044