MAC0121 - Algoritmos e Estruturas de Dados I

BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO – SEG. SEMESTRE DE 2018 Terceira Prova – 29 de novembro de 2018

Nome do aluno:			
Assinatura:			

Instruções:

- 1. Não destaque as folhas deste caderno.
- 2. Preencha o cabeçalho acima.
- 3. A prova pode ser feita a lápis. Cuidado com a legibilidade.
- 4. A prova consta de 3 questões. Verifique antes de começar a prova se o seu caderno de questões está completo.
- 5. Não é permitido o uso de folhas avulsas para rascunho.
- 6. Não é permitido a consulta a livros, apontamentos ou colegas.
- 7. Não é necessário apagar rascunhos no caderno de questões.

DURAÇÃO DA PROVA: 2 horas

Questão	Nota
1	
2	
3	
Total	

1 /	Trolor	3 0	pontos)
1. (vaior	0.0	pontos

Considere as seguintes afirmações sobre árvores de busca binária. Para cada afirmação abaixo, diga se é falsa ou verdadeira, **justificando detalhadamente**:

(a) Ao procurar a chave 300 em uma árvore de busca binária foram visitados os seguintes nós na ordem abaixo:

512, 117, 410, 128, 225, 288, 312, 210, 300.

(b) Se a árvore foi construída a partir de uma árvore vazia com os nós na seguinte ordem

 $52\ 37\ 18\ 21\ 15\ 61\ 52\ 19\ \dots\ 35\ \dots\ 20\dots$

Na ABB construída com estes elementos, 21 é ancestral de 35, mas não é ancestral de 20.

(c) A árvore terá altura máxima n-1 em dois casos: quando os elementos foram incuídos em ordem crescente ou em ordem decrescente. Portanto, a probabilidade de que a altura da árvore seja n-1 é

 $\frac{2}{n!}$

(d) Considere o conjunto B de vértices do caminho visitado na árvore a partir da raiz quando uma folha é procurada. Tome agora o conjunto A de vértices à esquerda deste caminho e o conjunto C de vértices à direita do caminho. Então, para quaisquer $a \in A, b \in B$ e $c \in C$, temos a < b < c.

2. (valor 3.5 pontos)

Dizemos que uma árvore de busca binária **pende a direita** se para cada um dos seus nós, a altura da subárvore esquerda é menor ou igual do que a altura da subárvore direita. Faça uma função **pendeDireita** com o protótipo

apontador pendeDireita(apontador raiz)

que recebe uma árvore de busca binária e faz rotações à direita em seus nós de forma que ela penda a direita. Veja o exemplo da figura abaixo.

Você pode usar, sem escrever, funções para calcular a altura de uma árvore binária e para rodar uma árvore binária à direita, como vistas em aula, de protótipos abaixo:

```
int altura(apontador raiz);
apontador rodaDir (apontador raiz);
```

Qual a complexidade de sua função? Justifique.

3. (valor 3.5 pontos)

Faça uma função **recursiva** de protótipo

void listaIntervalo (apontador raiz, int inf, int sup)

que recebe uma árvore de busca binária apontada por raiz e dois números inteiros, e lista **em ordem crescente** todos os nós da árvore que estão no intervalo [inf, sup]. Qual a complexidade de sua função? Justifique.