DSE ECONOMETRICS PROJECT

NAME: DEBASMITA SAHA

CLASS ROLL NO.: ECON045

REGISTRATION NO.: 21201220045

PAPER NAME: APPLIED ECONOMETRICS (DSE)

LIFE EXPECTANCY AROUND THE WORLD

Answer 1:

According to The World Bank, "Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life".

According to World Health Organization (WHO), "The average number of years that a newborn could expect to live, if he or she were to pass through life exposed to the sex- and age-specific death rates prevailing at the time of his or her birth, for a specific year, in a given country, territory, or geographic area".

For 2019:-

```
. ***FOR 2019:
. *QUESTION 1:
. *describing all the variables used in the data
Contains data
                208
 vars:
           17.888
 size:
                      display
            storage
variable name type
                      format
                                label
                                           variable label
            str30 %30s
CountryName
                                           Country Name
lexp
              double %14.2f
                                           lexp
```

co2

pun

hexp

gdppc

pcrate

Sorted by:

co2

pun

gdppc

stat

pcrate

Note: Dataset has changed since last saved.

double %14.2f

double %14.2f

double %14.2f

double %14.2f

double %14.2f

double %14.2f

- . *regressing lexp with all other explanatory variables to get their relation
- > reg lexp co2 porate pun hexp gdppc stat

Source	SS	df	MS	Number of obs	=	74
				F(6, 67)	=	18.78
Model	1604.27303	6	267.378838	Prob > F	=	0.0000
Residual	954.088994	67	14.2401342	R-squared	=	0.6271
				Adj R-squared	=	0.5937
Total	2558.36202	73	35.0460551	Root MSE	=	3.7736

lexp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
co2	4834918	. 2793186	-1.73	0.088	-1.041014	.0740304
pcrate	.1161309	.0380442	3.05	0.003	.0401944	.1920674
pun	0895493	.0694143	-1.29	0.201	2281008	.0490021
hexp	0398276	.2026607	-0.20	0.845	4443401	.3646848
gdppc	.0004022	.0000884	4.55	0.000	.0002257	.0005786
stat	.0521342	.04474	1.17	0.248	0371672	.1414356
_cons	53.7987	4.457649	12.07	0.000	44.90119	62.6962

end of do-file

Here, *lexp* is the dependent (or explained) variable. *co2*, *pcrate*, *pun*, *hexp*, *gdppc* and *stat* are the independent (or explanatory) variables. All the variables mentioned above are continuous in nature. If we regress *lexp* with all other explanatory variables, then,

- a. *co2* is statistically insignificant at 5% level of significance; which means as *co2* emission increases in each country, *lexp* decreases by 0.4833 years.
- b. *pcrate* is also statistically significant at 5% level of significance; as *pcrate* increases by 1 unit, *lexp* increases by 0.116 years for each country.
- c. *pun* is statistically insignificant at 5% level of significance, thus, as *pun* increases by 1%, *lexp* decreases by 0.0895 years for each country.
- d. *hexp* is statistically insignificant at 5% level of significance; as *hexp* increases by 1% of GDP, *lexp* decreases by 0.0398 years.
- e. *gdppc* is statistically significant at 5% level of significance which indicates that, as *gdppc* increases by 1 unit, *lexp* increases by 0.0004 years.
- f. *stat* is statistically insignificant at 5% level of significance; thus; as *stat* increases by 1 unit, *lexp* increases by 0.052 years for each country.
- g. the constant term (= 53.79) is statistically significant at 5% level of significance.

Answer 2:

```
. *QUESTION 2:
. *generating a new variable deve which stores the value 0 if developing and
. /// 1 if developed
> *the development threshold for GDP(PPP) per capita of a developed country is
. ///atleast US $22,000
> *comparing gdppc of our data with the given value, we get
. gen deve = 0 if gdppc <= 22000
(90 missing values generated)
. replace deve = 1 if gdppc > 22000
(90 real changes made)
. replace deve = . if(missing(gdppc))
(20 real changes made, 20 to missing)
```

Here, we generated a new variable named *deve* which took the value '0' if the country is developing and '1' if the country is developed. We also replaced the value of *deve* with '.' when it satisfies neither of the conditions mentioned above.

We had compared the value of gdppc with the given value (= 22000). This is the development threshold for GDP(PPP) per capita for a developed country (= US \$22,000).

1

¹ Source for the Development Threshold for GDP (PPP) per capita

[[]https://en.wikipedia.org/wiki/Developed_country#:~:text=Another%20commonly%20used%20measure%20of,fit%20three%20out%20of%20four.&text=World%20map%20showing%20country%20classifications,(last%20updated%20April%202023).]

Answer 3:

```
. *QUESTION 3:
. *Finding the mean of all the variables except stat score and testing its
. ///significance for both developing and developed countries
> mean lexp co2 pcrate pun hexp gdppc if deve == 0
                                 Number of obs =
Mean estimation
                                                          66
                    Mean Std. Err.
                                         [95% Conf. Interval]
                69.97071
                           .7210385
                                         68.53069
                                                    71.41072
       lexp
                2.057725
                          .2319248
                                         1.594539
                                                    2.520911
        co2
                90.38655 1.785383
                                         86.8209
                                                    93.95221
      pcrate
                11.26515 1.142248
                                         8.983926
                                                    13.54638
                5.741879
                          .2935322
                                         5.155655
                                                     6.328103
       gdppc
                9999.214
                            819.077
                                         8363.404
                                                    11635.02
. mean lexp co2 pcrate pun hexp gdppc if deve == 1
Mean estimation
                                 Number of obs =
                                                          40
                    Mean Std. Err.
                                        [95% Conf. Interval]
       lexp
                79.76691
                          .4994316
                                         78.75672
                                                    80.77711
                7.869315
                          .7295501
                                         6.393661
                                                     9.34497
        co2
                98.70799
                          .9928123
                                         96.69984
                                                    100.7161
     pcrate
                   2.875
                          .1943348
        pun
                                         2.481921
                                                    3.268079
                7.668487
                          . 432519
                                         6.793635
                                                    8.543339
       hexp
                47506.83 3048.122
                                         41341.42
                                                    53672.24
       gdppc
```

Here, we are finding the mean of all the variables except stat score for both developing and developed countries.

. ttest lexp, by(deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	125 63	69.21329 79.63789	.5656498 .449573	6.324158 3.568375	68.09371 78.7392	70.33287 80.53657
combined	188	72.70664	.5413007	7.421942	71.6388	73.77448
diff		-10.4246	.8589884		-12.11921	-8.729986
diff =	= mean(0) - = 0	mean(1)		degrees	t of freedom	= -12.1359 = 186
	iff < 0 = 0.0000	Pr(Ha: diff != T > t) =	_		iff > 0) = 1.0000

Here, Life expectancy at birth (lexp) varies between -12.11 and -8.72

Standard error for the difference in life expectancy at birth is very less (= 0.858)

The null hypothesis is given by,

Ho: diff = 0

From the t-test, we find that for,

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

. ttest co2, by(deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	. Interval]
0	124	2.057643	.1831721	2.039718	1.695066	2.420221
1	56	8.757779	.7606969	5.692534	7.233308	10.28225
combined	180	4.14213	.3534802	4.742435	3.444606	4.839655
diff		-6.700135	. 577988		-7.840726	-5.559545
2:55	(0)	(1)			_	11 E000

 $\label{eq:diff} \mbox{diff} = \mbox{mean}(0) - \mbox{mean}(1) \\ \mbox{Ho: diff} = 0 \\ \mbox{degrees of freedom} = \\ \mbox{178}$

Here, CO2 emission (co2) varies between -7.841 and -5.55

Standard error for the difference in CO2 emission is very less (= 0.577)

The null hypothesis is given by,

Ho: diff = 0

From the t-test, we find that for,

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

. ttest pcrate, by(deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	80	89.53725	1.703021	15.23229	86.14747	92.92703
1	47	98.87777	.8734635	5.988164	97.11958	100.636
combined	127	92.99398	1.18742	13.38154	90.64411	95.34384
diff		-9.340525	2.323499		-13.93902	-4.742031
	= mean(0)	- mean(1)			_	= -4.0200
Ho: diff :	= 0			degrees	of freedom	= 125
Ha: d	iff < 0		Ha: diff !=	0	Ha: d	liff > 0

Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0001

Pr(T > t) = 1.0000

Here, primary completion rate (pcrate) varies between -13.93 and -4.74 Standard error for the difference in primary completion rate is 2.323 The null hypothesis is given by,

Ho: diff = 0

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

. ttest pun, by (deve)

Pr(T < t) = 1.0000

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	102	12.31765		11.04542		
1	52	3.009615	.1831363	1.320615	2.641954	3.377277
combined	154	9.174675	.8083227	10.03102	7.577761	10.77159
diff		9.308032	1.539719		6.266018	12.35005
diff :	= mean(0) -	- mean(1)		degrees	t of freedom	= 6.0453 = 152
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff > 0

Pr(|T| > |t|) = 0.0000

Here, percentage of undernourished population (*pun*) varies between 6.266 and 12.35 Standard error for the difference in percentage of undernourished population is 1.53 The null hypothesis is given by,

Pr(T > t) = 0.0000

Ho: diff = 0

- a) Ha: diff < 0: Ho is accepted at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is rejected at 1% level of significance

. ttest hexp, by(deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
0	121	5.927667	.2598077	2.857884	5.413266	6.442068
1	55	7.68739	.371519	2.755259	6.942539	8.432241
combined	176	6.47758	.2212076	2.93465	6.041002	6.914158
diff		-1.759723	. 4596435		-2.666918	8525287

diff = mean(0) - mean(1) t = -3.8285

Ho: diff = 0 degrees of freedom = 174

Here, health expenditure (% of GDP) (hexp) varies between -2.66 and -8.52

Standard error for the difference in health expenditure (% of GDP) is very less (=0.459)

The null hypothesis is given by,

Ho: diff = 0

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 10% level of significance

. ttest gdppc, by(deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	125	9509.119	590.3338	6600.133	8340.683	10677.55
1	63	49745.26	2762.249	21924.68	44223.6	55266.92
combined	188	22992.51	1711.827	23471.39	19615.53	26369.48
diff		-40236.14	2125.673		-44429.67	-36042.61

$$\label{eq:diff} \mbox{diff} = \mbox{mean}(0) - \mbox{mean}(1) & t = -18.9287 \\ \mbox{Ho: diff} = 0 & \mbox{degrees of freedom} = & 186 \\ \mbox{}$$

.

Here, GDP per capita (*gdppc*) varies between -44429.67 and -36042.61 Standard error for the difference in GDP per capita is very high (=2125.673) The null hypothesis is given by,

Ho: diff = 0

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

Answer 4:

```
. *QUESTION 4:
. *Taking log of GDP per capita
. gen lgdppc = ln(gdppc)
(20 missing values generated)
. *creating a dummy variable from stat score
. gen ss = 1 if stat <= 25
(207 missing values generated)
. replace ss = 2 if stat > 25 & stat <= 50
(29 real changes made)
. replace ss = 3 if stat > 50 & stat <= 75
(70 real changes made)
. replace ss = 4 if stat > 75 & stat <= 100
(42 real changes made)
. replace ss = . if (missing(stat))
(0 real changes made)
end of do-file
```

Here, we took log of *gdppc* and stored it in *lgdppc*. Next, we are generating s new dummy variable from stat score named 'ss' which stores the values '1', '2', '3', '4' and '.'under the following conditions given.

Answer 5:

- . *QUESTION 5:
- . *running a regression on lexp and all other explanatory variables including
- . ///the dummy variable
- > reg lexp co2 pcrate pun hexp lgdppc stat i.ss

	Source	ss	df	MS	Numb	er of obs	=	74
_					F(8,	65)	=	16.68
	Model	1720.50292	8	215.062865	Prob	> F	=	0.0000
	Residual	837.859097	65	12.89014	R-sq	uared	=	0.6725
_					Adj	R-squared	=	0.6322
	Total	2558.36202	73	35.0460551	Root	MSE	=	3.5903
		•						
	lexp	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
_	co2	4530016	.2487928	-1.82	0.073	949875	1	.0438719
	pcrate	.0826651	.0374112	2.21	0.031	.007949	7	.1573805
	pun	.0115544	.074892	0.15	0.878	138015	2	.161124
	hexp	0621712	.1938881	-0.32	0.750	449392	4	.3250501
	lgdppc	4.367693	.9802781	4.46	0.000	2.40994	2	6.325443
	stat	.0072442	.0777578	0.09	0.926	148048	9	.1625374
	99							
	3	-1.564096	2.296125	-0.68	0.498	-6.14977	5	3.021583
	4	1.400875	3.568512	0.39	0.696	-5.72593	6	8.527685
	_cons	24.51965	10.02219	2.45	0.017	4.50395	7	44.53533
	_	I						

Here, we are regressing life expectancy at birth (*lexp*) with *co2*, *pcrate*, *pun*, *hexp*, *lgdppc*, *stat*; which are the explanatory variables in our data along with the newly created dummy variable named 'ss'. Here, while regressing, we considered 'i.ss' for the dummy variable. This is because *i*. stands for the intercept dummy of the categorical variable *ss* in our data. All other variables are continuous in nature.

Now, from the regression, we find that,

- co2, pun, hexp, stat are statistically insignificant at 5% level of significance
- pcrate and lgdppc are statistically significant at 5% level of significance
- if co2 increases by 1 kiloton (kt), lexp decreases by 0.453 years
- if *pcrate* increases by 1 unit, *lexp* increases by 0.082 years

- if *pun* increases by 1 member, *lexp* increases by 0.115 years
- if hexp increases by 1 percent, lexp decreases by 0.062 years
- if *lgdppc* increases by 1 US \$, *lexp* increases by 4.367 years
- if stat increases by 1 score, lexp increases by 0.0072 years

For the dummy variable ss,

- compared to s = 1 and s = 2, if stat score lies between 50 and 75, *lexp* decreases by 1.564 years
- compared to s = 1 and s = 2, if stat score lies between 75 and 100, *lexp* increases by 1.4 years

However, the dummy variable s is statistically insignificant at 5% level of significance.

The constant term of the regression is 24.51 which is statistically significant at 5% level of significance.

Answer 6:

Regression Diagnostics:-

```
. predict lexp1
(option xb assumed; fitted values)
(134 missing values generated)
. predict res, residuals
(134 missing values generated)
. *checking for normality
. *(jarque-bera test)
. jb res
Jarque-Bera normality test: 1.353 Chi(2) .5084
Jarque-Bera test for Ho: normality:
```

Jarque-Bera test is a no (no parameter) test where the null hypothesis is presented as,

Ho: normality

The value of Jarque-Bera normality test is 1.353

Here, the value of Chi(2) = 0.5084 with 2 degrees of freedom

This is statistically insignificant at 5% level of significance and we reject the null hypothesis of normality.

```
histogram res, normal
[bin=8, start=-10.254249, width=2.1857467)

end of do-file

graph save Graph "F:\Stata MP 14.2\MD PROJECT\histogram 2019.gph"
[file F:\Stata MP 14.2\MD PROJECT\histogram 2019.gph saved)

do "C:\Users\student\AppData\Local\Temp\STD00000000.tmp"

rvfplot, yline(0)

end of do-file

graph save Graph "F:\Stata MP 14.2\MD PROJECT\rvfplot 2019.gph"
[file F:\Stata MP 14.2\MD PROJECT\rvfplot 2019.gph saved)
```

We had plotted a histogram where we found, the histogram is very mean-centric (i.e. it is leptokurtic in nature).

We had also plotted a scatterplot of residuals versus fitted values where we found there is no such relation between the two axes. It is not depicting any particular shape (or a pattern).

Thus, there is no presence of heteroscedasticity in our data.

After performing the graphical method for detecting heteroscedasticity, we then performed the formal method for detecting heteroscedasticity.

Here, we found that for the Breusch-Pagan/ Cook-Weisberg test for heteroscedasticity, the null hypothesis is presented as,

Ho: Constant variance

The chi2(1) value is 6.50 which is greater than the critical value (= 3.84), thus we reject the null hypothesis of constant variance. The chi2(1) value is statistically insignificant at 5% level of significance.

Thus, there is a presence of heteroscedasticity in our data.

. reg lexp co2 pcrate pun hexp lgdppc stat i.ss, robust

Linear regression	Number of obs	=	74
	F(8, 65)	=	24.83
	Prob > F	=	0.0000
	R-squared	=	0.6725
	Root MSE	=	3.5903

		Robust				
lexp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
co2	4530016	.1957965	-2.31	0.024	8440343	0619689
pcrate	.0826651	.0315637	2.62	0.011	.0196281	.1457021
pun	.0115544	.0899919	0.13	0.898	1681718	.1912806
hexp	0621712	.2131474	-0.29	0.771	4878559	.3635135
lgdppc	4.367693	.9961031	4.38	0.000	2.378337	6.357048
stat	.0072442	.0852536	0.08	0.933	163019	.1775075
ss						
3	-1.564096	2.731703	-0.57	0.569	-7.019684	3.891492
4	1.400875	3.853447	0.36	0.717	-6.294991	9.09674
_cons	24.51965	9.840201	2.49	0.015	4.867408	44.17188

Next, we performed regression with robust standard errors. "Robust" standard errors is a technique to obtain unbiased standard errors of OLS coefficients under heteroscedasticity.

Now, some of the coefficients are statistically significant at 5% level of significance.

*checking for multicollinearity

Variable	VIF	1/VIF
co2	2.29	0.437030
pcrate	1.56	0.640425
pun	2.68	0.373562
hexp	1.17	0.857127
lgdppc	4.39	0.227771
stat	5.48	0.182362
99		
3	7.57	0.132158
4	18.06	0.055363
Mean VIF	5.40	

We can use vif command after the regression to check for multicollinearity. As a rule of thumb, a variable whose vif value is > 10 may merit further investigation.

Here, the vif value = 5.40 which is less than 10, thus there is no multicollinearity issue in our data and it is a full column rank matrix.

- . *descriptive statistics
- . desc lexp stat

variable name	storage type	display format	value label	variable label
lexp	double	%14.2f		lexp
co2	double	%14.2f		co2
pcrate	double	%14.2f		pcrate
pun	double	%14.2f		pun
hexp	double	%14.2f		hexp
gdppc	double	%14.2f		gdppc
stat	double	%14.2f		stat

. sum lexp - stat

Max	Min	Std. Dev.	Mean	Obs	Variable
85.18049	52.91	7.449954	72.96525	20€	lexp
31.8772	.0337149	4.674155	4.040135	188	co2
120.4473	54.72869	13.5823	92.64288	132	pcrate
54.8	2.5	10.62906	9.60625	160	pun
20.88979	2.017115	2.94654	6.458008	180	hexp
128031.2	760.6041	23471.39	22992.51	188	gdppc
96.66667	16.66667	16.66675	64.5227	142	stat

corr lexp - stat
[obs=74)

	lexp	co2	pcrate	pun	hexp	gdppc	stat
lexp	1.0000						
co2	0.5126	1.0000					
pcrate	0.5587	0.4250	1.0000				
pun	-0.5989	-0.5379	-0.4863	1.0000			
hexp	0.0901	0.0810	0.1475	0.1192	1.0000		
gdppc	0.7161	0.7761	0.4275	-0.6208	0.1387	1.0000	
stat	0.5399	0.5004	0.4057	-0.5066	0.1236	0.5763	1.0000

There is high correlation among the variables as the values are greater than or equal to 0.5

- . *principle component analysis (PCA)
- . factor lexp stat, pcf
 (obs=74)

Factor analysis/correlation Number of obs = 74

Method: principal-component factors Retained factors = 2

Rotation: (unrotated) Number of params = 13

Factor	Eigenvalue	Difference	Proportion	Cumulative
Factorl	3.76368	2.69533	0.5377	0.5377
Factor2	1.06835	0.37921	0.1526	0.6903
Factor3	0.68915	0.15493	0.0984	0.7887
Factor4	0.53422	0.10624	0.0763	0.8651
Factor5	0.42798	0.06027	0.0611	0.9262
Factor6	0.36770	0.21877	0.0525	0.9787
Factor7	0.14893		0.0213	1.0000

LR test: independent vs. saturated: chi2(21) = 238.08 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp co2	0.8343	-0.0054 -0.0157	0.3040 0.3618
pcrate	0.6822	0.1208	0.5201
pun	-0.7851	0.3296	0.2749
hexp	0.1306	0.9697	0.0426
gdppc	0.8836	0.0229	0.2188
stat	0.7418	0.0627	0.4459

- a. There are two factors (retained factors = 2) which satisfies the kaiser criterion. The first 2 eigenvalues are 3.76 and 1.06.
- b. We performed the factor analysis, where we considered rotation (unrotated) to understand the factor loadings.
- c. We perform LR test: independent vs saturated (correlated to each other)
- d. The null hypothesis is Ho: independence (i.e. no correlation) (or, zero correlation)
- e. The value of chi2(21) = 238.08 and Prob>chi2 = 0.0000
- f. The null hypothesis, Ho is rejected at 1% level of significance; thus, running factor analysis is a good idea.

Now,

- 1. lexp has as much as 83.43% commonness with factor 1
- 2. co2 has as much as 79.87% commonness with factor 1
- 3. pcrate has as much as 68.22% commonness with factor 1
- 4. hexp has as much as 13.06% commonness with factor 1
- 5. gdppc has as much as 88.36% commonness with factor 1
- 6. stat has as much as 74.18% commonness with factor 1

. estat kmo

Kaiser-Meyer-Olkin measure of sampling adequacy

Variable	kmo
lexp co2 pcrate pun hexp gdppc stat	0.7967 0.7646 0.7933 0.8593 0.3286 0.7294 0.9377
Overall	0.7907

. factortest lexp - stat

Determinant of the correlation matrix
Det = 0.035

Bartlett test of sphericity

Chi-square = 234.723
Degrees of freedom = 21
p-value = 0.000
H0: variables are not intercorrelated

Kaiser-Meyer-Olkin Measure of Sampling Adequacy
KMO = 0.791

Here, kmo value is 0.7907 which is close to 1, thus we have adequate data to run factor analysis.

For the Bartlett's test of Sphericity,

- 1. the null hypothesis is Ho: variables are not intercorrelated
- 2. the value of chi-square is 234.723 with 21 degrees of freedom and the p-value is 0.0000
- 3. we reject the null hypothesis that variables are not intercorrelated at 5% level of significance.
- 4. Therefore, factor analysis is a good idea.

```
. *scree plot
. screeplot
. screeplot, yline(1)
.
end of do-file
. graph save Graph "D:\Stata MP 14.2\MD PROJECT\screeplot 2019.gph"
(file D:\Stata MP 14.2\MD PROJECT\screeplot 2019.gph saved)
```

We had then plotted the screeplot which is a graphical method of detecting and dropping the eigenvalues which are less than 1 since these provide less information than is provided by a single variable.

- . *rotation
- . *# orthogonal rotation
- . rotate, varimax

Factor analysis/correlation Number of obs = 74

Method: principal-component factors Retained factors = 2

Rotation: orthogonal varimax (Kaiser off) Number of params = 13

Factor	Variance	Difference	Proportion	Cumulative
Factorl	3.73652	2.64102	0.5338	0.5338
Factor2	1.09550		0.1565	0.6903

LR test: independent vs. saturated: chi2(21) = 238.08 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp co2 pcrate pun hexp gdppc stat	0.8306 0.7963 0.6666 -0.8142 0.0326 0.8768 0.7317	0.0784 0.0646 0.1887 0.2492 0.9779 0.1115 0.1368	0.3040 0.3618 0.5201 0.2749 0.0426 0.2188 0.4459

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9950	0.1004
Factor2	-0.1004	0.9950

This is an orthogonal rotation.

Here, variance = 3.736 has been extracted by factor 1 and variance = 1.095 has been extracted by factor 2

The cumulative variance is 0.6903

However, all the variables are loaded on both the factors

. rotate, varimax blanks(.49)

Factor analysis/correlation Number of obs = 74

Method: principal-component factors Retained factors = 2

Rotation: orthogonal varimax (Kaiser off) Number of params = 13

Factor	Variance	Difference	Proportion	Cumulative
Factorl	3.73652	2.64102	0.5338	0.5338
Factor2	1.09550		0.1565	0.6903

LR test: independent vs. saturated: chi2(21) = 238.08 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp co2 pcrate pun hexp gdppc stat	0.8306 0.7963 0.6666 -0.8142 0.8768 0.7317	0.9779	0.3040 0.3618 0.5201 0.2749 0.0426 0.2188 0.4459

(blanks represent abs(loading)<.49)

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9950	0.1004
Factor2	-0.1004	0.9950

We had considered 0.49 as the rule of thumb. Thus, values which are less than 0.49 are represented by blanks in the pattern matrix.

Therefore, lexp to pun and gdppc and stat are now loaded on factor 1

But, hexp is now loaded on factor 2

- . *saving factor score
- . predict pc1 pc2

(regression scoring assumed)

Scoring coefficients (method = regression; based on varimax rotated factors)

Variable	Factorl	Factor2
lexp co2 pcrate pun hexp gdppc stat	0.22105 0.21262 0.16898 -0.23852 -0.05657 0.23143 0.19020	0.01723 0.00669 0.13073 0.28605 0.90658 0.04489 0.07815

. estat common

Correlation matrix of the varimax rotated common factors

Factors	Factorl	Factor2
Factor1 Factor2	1	1

. corr pc1 pc2

(obs=74)

	pcl	pc2
pcl	1.0000	
pc2	0.0000	1.0000

We find that, there is no correlation in orthogonal rotation.

. *# oblique rotation

. rotate, promax

Factor analysis/correlation Number of obs = 74

Method: principal-component factors Retained factors = 2

Rotation: oblique promax (Kaiser off) Number of params = 13

Factor	Variance	Proportion	Rotated	factors	are	correlated
Factor1 Factor2	3.76003 1.14107	0.5371 0.1630				

LR test: independent vs. saturated: chi2(21) = 238.08 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp	0.8306	0.0255	0.3040
co2		0.0138	0.3618
pcrate	0.6585	0.1470	0.5201
pun	-0.8355	0.3030	0.2749
hexp	-0.0307	0.9819	0.0426
gdppc	0.8750	0.0558	0.2188
stat	0.7274		0.4459

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9993	0.1643
Factor2	-0.0368	0.9864

This is oblique rotation.

Here, variance = 3.76 has been extracted by factor 1 and variance = 1.141 has been extracted by factor 2

There is correlation in oblique rotation as the rotated factors are correlated.

However, all the variables are loaded on both the factors

. rotate, promax blanks(.44)

Factor analysis/correlation Number of obs = 74
Method: principal-component factors Retained factors = 2
Rotation: oblique promax (Kaiser off) Number of params = 13

Factor	Variance	Proportion	Rotated	factors	are	correlated
Factor1 Factor2	3.76003 1.14107	0.5371 0.1630				

LR test: independent vs. saturated: chi2(21) = 238.08 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp co2 pcrate pun hexp gdppc stat	0.8306 0.7970 0.6585 -0.8355 0.8750 0.7274	0.9819	0.3040 0.3618 0.5201 0.2749 0.0426 0.2188 0.4459

(blanks represent abs(loading)<.44)

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9993	0.1643
Factor2	-0.0368	0.9864

We had considered 0.44 as the rule of thumb. Thus, values which are less than 0.44 are represented by blanks in the pattern matrix.

Therefore, lexp to pun and gdppc and stat are now loaded on factor 1

But, hexp is now loaded on factor 2

- . *saving factor score
- . predict pc3 pc4

(regression scoring assumed)

Scoring coefficients (method = regression; based on promax(3) rotated factors)

Variable	Factorl	Factor2
lexp	0.22170	0.03144
co2	0.21261	0.02037
pcrate	0.17697	0.14134
pun	-0.21981	0.27009
hexp	0.00131	0.90105
gdppc	0.23382	0.05970
stat	0.19479	0.09024

. estat common

Correlation matrix of the promax(3) rotated common factors

Factors	Factorl	Factor2
Factor1 Factor2	1 .1279	1

. corr pc3 pc4

(obs=74)

	pc3	pc4
pc3	1.0000	
pc4	0.1279	1.0000

There is some amount of correlation in oblique rotation, however no presence of multicollinearity in the data.

. linktest

Source	SS	df	MS	Numb	er of obs	; =	74
				F(2,	71)	=	73.10
Model	1722.0889	2	861.044448	Prob	> F	=	0.0000
Residual	836.273124	71	11.7784947	R-so	quared	=	0.6731
				- Adj	R-squared	i =	0.6639
Total	2558.36202	73	35.0460551	Root	MSE	=	3.432
	•						
lexp	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
_hat	.0641803	2.551769	0.03	0.980	-5.0239	02	5.152263
hatsq	.006723	.0183225	0.37	0.715	0298	11	.043257
_cons	32.40201	88.50066	0.37	0.715	-144.06	33	208.8673

Here, we have performed model misspecification tests. For the linktest, we get,

- a. lexp has been regressed on hat and hatsq
- b. here, *hat* is significant as it should be at 1% level of significance and *hatsq* in insignificant at 1% level of significance.

Thus, model is highly misspecified.

. ovtest

```
Ramsey RESET test using powers of the fitted values of lexp Ho: model has no omitted variables F(3,\ 62) = 0.69 Prob > F = 0.5627
```

For the ovtest, we get,

- a. the null hypothesis is given by, Ho: model has no omitted variables
- b. F(3,62) = 0.69 < 2.68 (the critical value of F(3,62) at 5% level of significance); thus we reject the null hypothesis that the model has no omitted variables at 5% level of significance.
- c. Prob > F = 0.5627 > 0.05; thus it is insignificant at 5% level of significance.
- d. Thus, the model has a lot of explanatory variables which are omitted variables.

Answer 1:

For 2020:

```
. ***FOR 2020:
. *QUESTION 1:
. *describing all the variables used in the data
. desc
Contains data
 obs:
              208
                 8
vars:
size:
           17,888
            storage display value
variable name type
                    format
                              label
                                        variable label
             str30 %30s
CountryName
                                          Country Name
             double %14.2f
lexp
                                          lexp
             double %14.2f
co3
                                          co3
            double %14.2f
                                          pcrate
             double %14.2f
                                          pun
pun
              double %14.2f
hexp
                                          hexp
             double %14.2f
gdppc
                                          gdppc
stat
              double %14.2f
                                          stat
```

Sorted by:

Note: Dataset has changed since last saved.

- . *regressing lexp with all other explanatory variables to get their relation
- . ///with each other
- > reg lexp co3 pcrate pun hexp gdppc stat

Source	SS	df	MS	Number of ob	s =	60
				F(6, 53)	=	18.95
Model	1247.01478	6	207.835797	Prob > F	=	0.0000
Residual	581.312867	53	10.9681673	R-squared	=	0.6821
				- Adj R-square	d =	0.6461
Total	1828.32765	59	30.9886042	Root MSE	=	3.3118
lexp	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
co3	3202865	.2918929	-1.10	0.2779057	496	.2651766
pcrate	.1247831	.0398583	3.13	0.003 .0448	375	.2047288
pun	1328368	.0717487	-1.85	0.0702767	466	.0110729
hexp	.1481946	.194948	0.76	0.4512428	216	.5392108
gdppc	.0003295	.0000836	3.94	0.000 .0001	618	.0004972
stat	.0342244	.0388422	0.88	0.3820436	831	.1121319
_cons	53.60646	4.744244	11.30	0.000 44.09	071	63.12221

Here, *lexp1* is the dependent (or explained) variable. *co3*, *pcrate1*, *pun1*, *hexp1*, *gdppc1* and *stat1* are the independent (or explanatory) variables. All the variables mentioned above are continuous in nature. If we regress *lexp1* with all other explanatory variables, then,

- a. *co3* is statistically insignificant at 5% level of significance; which means as *co3* emission increases in each country, *lexp1* decreases by 0.3208 years.
- b. *pcrate1* is also statistically significant at 5% level of significance; as *pcrate1* increases by 1 unit, *lexp1* increases by 0.124 years for each country.
- c. *pun1* is statistically insignificant at 5% level of significance, thus, as *pun1* increases by 1%, *lexp1* decreases by 0.132 years for each country.
- d. *hexp1* is statistically insignificant at 5% level of significance; as *hexp1* increases by 1% of GDP, *lexp1* decreases by 0.148 years.
- e. *gdppc1* is statistically significant at 5% level of significance which indicates that, as *gdppc1* increases by 1 unit, *lexp1* increases by 0.0003 years.
- f. *stat1* is statistically insignificant at 5% level of significance; thus; as *stat1* increases by 1 unit, *lexp1* increases by 0.034 years for each country.
- g. the constant term (=53.60) is statistically significant at 5% level of significance.

Answer 2:

```
. *QUESTION 2:
. *generating a new variable deve which stores the value 0 if developing and
. /// 1 if developed
> *the development threshold for GDP(PPP) per capita of a developed country is
. ///atleast US $22,000
> *comparing gdppc of our data with the given value, we get
. gen deve = 0 if gdppc <= 22000
(84 missing values generated)

. replace deve = 1 if gdppc > 22000
(84 real changes made)

. replace deve = . if(missing(gdppc))
(21 real changes made, 21 to missing)
```

Here, we generated a new variable named *deve* which took the value '0' if the country is developing and '1' if the country is developed. We also replaced the value of *deve* with '.' when it satisfies neither of the conditions mentioned above.

We had compared the value of gdppc with the given value (= 22000). This is the development threshold for GDP(PPP) per capita for a developed country (= US \$22,000).

Answer 3:

- . *QUESTION 3:
- . *Finding the mean of all the variables except stat score and testing its
- . ///significance for both developing and developed countries
- > mean lexp co3 pcrate pun hexp gdppc if deve == 0

Mean estimation

Number of obs =

52

	Mean	Std. Err.	[95% Conf.	Interval]
lexp	69.99173	.7648911	68.45615	71.52732
co3	2.061425	.2467412	1.566071	2.556778
pcrate	92.79357	1.94169	88.89547	96.69168
pun	10.20577	1.207201	7.782213	12.62933
hexp	6.289619	.3329459	5.621202	6.958035
gdppc	10138.76	877.9201	8376.259	11901.26

. mean lexp co3 pcrate pun hexp gdppc if deve == 1

Mean estimation

Number of obs =

40

	Mean	Std. Err.	[95% Conf.	Interval]
lexp	79.11657	.5190952	78.0666	80.16654
co3	7.09856	.7912014	5.498204	8.698916
pcrate	98.7742	.9477576	96.85718	100.6912
pun	2.98	.2237845	2.527353	3.432647
hexp	8.688491	.4654086	7.747113	9.629869
gdppc	46002.95	3122.254	39687.6	52318.31
	1			

Here, we are finding the mean of all the variables except stat score for both developing and developed countries.

- . *executing t-test among two group of countries
- . ttest lexp, by(deve)

Two-sample t test with equal variances

Interval]	[95% Conf.	Std. Dev.	Std. Err.	Mean	Obs	Group
69.58783	67.41479	6.112317	.5489023	68.50131	124	0
80.03154	78.17505	3.685756	.4643617	79.10329	63	1
73.13793	71.00827	7.381038	.539755	72.0731	187	combined
-8.947144	-12.25682		.8387973	-10.60198		diff
= -12.6395	t :			mean(1)	= mean(0) -	diff =

Ho: diff = 0 degrees of freedom = 185

Here, Life expectancy at birth (lexp) varies between -12.25 and -8.94

Standard error for the difference in life expectancy at birth is very less (= 0.838)

The null hypothesis is given by,

Ho: diff = 0

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

. ttest co3, by(deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
0	122	1.807898	.1608685	1.77685	1.489416	2.126379
1	57	8.187992	.7786513	5.878689	6.628165	9.747818
combined	179	3.839548	.349803	4.680045	3.149253	4.529842
diff		-6.380094	.5805183		-7.525722	-5.234466
diff.	- maan (0)	- moan (1)			_	10 9902

 $\label{eq:diff} \mbox{diff} = \mbox{mean}(0) - \mbox{mean}(1) \\ \mbox{Ho: diff} = 0 \\ \mbox{degrees of freedom} = 177$

Here, CO3 emission (co3) varies between -7.525 and -5.234

Standard error for the difference in CO3 emission is very less (= 0.58)

The null hypothesis is given by,

Ho: diff = 0

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

. ttest pcrate, by(deve)

Two-sample t test with equal variances

Interval]	[95% Conf.	Std. Dev. [Std. Err.	Mean	Obs	Group
94.76551	86.94419	15.65564 8	1.956955	90.85485	64	0
100.8164	97.39871	5.754448 9	.848447	99.10757	46	1
96.78476	91.82722	13.11703 9	1.25066	94.30599	110	combined
-3.455356	13.05009	-1	2.420257	-8.252725		diff
= -3.4099	t :	dogrees of		- mean(1)	= mean(0)	diff:
- 108	or freedom -	degrees or			- 0	HO: GIII -
iff > 0	Ha: d:	0	Ha: diff !		iff < 0	Ha: d:
) = 0.9995	Pr(T > t)	0.0009	T > t) =	Pr() = 0.0005	Pr(T < t)

Here, primary completion rate (*pcrate*) varies between -13.05 and -3.455 Standard error for the difference in primary completion rate is 2.42 The null hypothesis is given by,

Ho: diff = 0 From the t-test, we find that for,

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

. ttest hexp, by (deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
0	119	6.370955	.2724702	2.972299	5.83139	6.910521
1	56	8.610337	.3858615	2.887523	7.837053	9.383621
combined	175	7.087557	.235727	3.118375	6.622305	7.55281
diff		-2.239382	.4773391		-3.18154	-1.297223

 $\label{eq:diff} \mbox{diff} = \mbox{mean}(0) - \mbox{mean}(1) & t = -4.6914 \\ \mbox{Ho: diff} = 0 & \mbox{degrees of freedom} = & 173 \\ \mbox{}$

Here, health expenditure (% of GDP) (*hexp*) varies between -3.181 and -1.297 Standard error for the difference in health expenditure (% of GDP) is very less (=0.477) The null hypothesis is given by,

Ho: diff = 0From the t-test, we find that for,

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 10% level of significance

. ttest pun, by (deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	100	13.061	1.132858	11.32858	10.81316	15.30884
1	53	3.035849	.1945762	1.416536	2.645403	3.426295
combined	153	9.588235	.8369678	10.35272	7.934643	11.24183
diff		10.02515	1.564907		6.93321	13.11709
diff =	= mean(0) -	mean(1)			t	= 6.4062
Ho: diff =	= 0			degrees	of freedom	= 151
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t)	= 1.0000	Pr(T > t) =	0.0000	Pr(T > t	0.0000

Here, percentage of undernourished population (*pun*) varies between 6.933 and 13.11 Standard error for the difference in percentage of undernourished population is 1.564 The null hypothesis is given by,

Ho: diff = 0

From the t-test, we find that for,

- a) Ha: diff < 0: Ho is accepted at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is rejected at 1% level of significance

. ttest gdppc, by(deve)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	. Interval]
0	124	8843.649	530.7116	5909.755	7793.138	9894.16
1	63	46908.57	2505.692	19888.31	41899.76	51917.38
combined	187	21667.66	1602.762	21917.44	18505.73	24829.59
diff		-38064.92	1931.069		-41874.67	-34255.17
diff:	= mean(0)	- mean(1)			+	= -19 7118

Here, GDP per capita (*gdppc*) varies between -41874.67 and -34255.17 Standard error for the difference in GDP per capita is very high (=1931.069) The null hypothesis is given by,

Ho: diff = 0From the t-test, we find that for,

- a) Ha: diff < 0: Ho is rejected at 1% level of significance
- b) Ha: diff != 0: Ho is rejected at 1% level of significance
- c) Ha: diff > 0: Ho is accepted at 1% level of significance

Answer 4:

```
. *QUESTION 4:
. *Taking log of GDP per capita
. gen lgdppc = ln(gdppc)
(21 missing values generated)

. *creating a dummy variable from stat score
. gen ss = 1 if stat <= 25
(207 missing values generated)

. replace ss = 2 if stat > 25 & stat <= 50
(33 real changes made)

. replace ss = 3 if stat > 50 & stat <= 75
(70 real changes made)

. replace ss = 4 if stat > 75 & stat <= 100
(38 real changes made)

. replace ss = . if (missing(stat))
(0 real changes made)</pre>
```

Here, we took log of *gdppc* and stored it in *lgdppc*. Next, we are generating s new dummy variable from stat score named 'ss' which stores the values '1', '2', '3', '4' and '.'under the following conditions given.

Answer 5:

- . *OUESTION 5:
- . *running a regression on lexp and all other explanatory variables including
- . ///the dummy variable
- > reg lexp co3 pcrate pun hexp lgdppc stat i.ss

reg lexp co.	s perate pun n	exp igappo	Stat 1.88				
Source	ss	df	MS	Numb	er of obs	=	60
				F(8,	51)	=	16.90
Model	1327.55074	8	165.943843	Prob	> F	=	0.0000
Residual	500.776904	51	9.81915498	R-sq	uared	=	0.7261
				Adj	R-squared	=	0.6831
Total	1828.32765	59	30.9886042	Root	MSE	=	3.1336
lexp	Coef.	Std. Err.	t	P> t	[95% Co	nf.	<pre>Interval]</pre>
co3	3639859	.2703337	-1.35	0.184	906703	6	.1787317
pcrate	.0627868	.0395569	1.59	0.119	016627	1	.1422007
pun	0655449	.0744067	-0.88	0.383	214922	6	.0838328
hexp	.2051085	.1828109	1.12	0.267	161899	7	.5721168
lgdppc	4.121248	.9174177	4.49	0.000	2.27945	5	5.963041
stat	.0064151	.0785306	0.08	0.935	151241	7	.1640719
SS							
3	-2.546789	2.1	-1.21	0.231	-6.76271	6	1.669137
4		3.460376		0.841	-7.64463		6.249351
_cons	28.46513	8.894389	3.20	0.002	10.608	9	46.32137

Here, we are regressing life expectancy at birth (*lexp*) with *co3*, *pcrate*, *pun*, *hexp*, *lgdppc*, *stat*; which are the explanatory variables in our data along with the newly created dummy variable named 'ss'. Here, while regressing, we considered 'i.ss' for the dummy variable. This is because *i*. stands for the intercept dummy of the categorical variable *ss* in our data. All other variables are continuous in nature.

Now, from the regression, we find that,

- co3, pcrate, pun, hexp, stat are statistically insignificant at 5% level of significance
- *lgdppc* is statistically significant at 5% level of significance
- if co3 increases by 1 kiloton (kt), lexp decreases by 0.363 years
- if *pcrate* increases by 1 unit, *lexp* increases by 0.062 years

- if *pun* increases by 1 member, *lexp* decreases by 0.065 years
- if *hexp* increases by 1 percent, *lexp* increases by 0.205 years
- if *lgdppc* increases by 1 US \$, *lexp* increases by 4.12 years
- if *stat* increases by 1 score, *lexp* increases by 0.0064 years

For the dummy variable ss,

- compared to s = 1 and s = 2, if stat score lies between 50 and 75, *lexp* decreases by 2.54 years
- compared to s = 1 and s = 2, if stat score lies between 75 and 100, *lexp* decreases by 0.69 years

However, the dummy variable s is statistically insignificant at 5% level of significance.

The constant term of the regression is 28.46 which is statistically significant at 5% level of significance.

Answer 6:

Regression Diagnostics:

```
. predict lexp1
(option xb assumed; fitted values)
(148 missing values generated)
. predict res, residuals
(148 missing values generated)
end of do-file
. do "C:\Users\DILIP\AppData\Local\Temp\STD00000000.tmp"
. *checking for normality
. *(jarque-bera test)
Jarque-Bera normality test: 5.176 Chi(2) .0752
Jarque-Bera test for Ho: normality:
. histogram res, normal
(bin=7, start=-8.1841908, width=1.9835954)
end of do-file
. graph save Graph "D:\Stata MP 14.2\MD PROJECT\histogram 2020.gph"
(file D:\Stata MP 14.2\MD PROJECT\histogram 2020.gph saved)
```

Jarque-Bera test is a no (no parameter) test where the null hypothesis is presented as,

Ho: normality

The value of Jarque-Bera normality test is 5.176

Here, the value of Chi(2) = 0.0752 with 2 degrees of freedom

This is statistically insignificant at 5% level of significance and we reject the null hypothesis of normality.

```
. *checking for homoscedasticity
. *# graphical method
. rvfplot, yline(0)
.
end of do-file
. graph save Graph "D:\Stata MP 14.2\MD PROJECT\rvfplot 2020.gph"
(file D:\Stata MP 14.2\MD PROJECT\rvfplot 2020.gph saved)
```

We had plotted a histogram where we found, the histogram is very mean-centric (i.e. it is leptokurtic in nature).

We had also plotted a scatterplot of residuals versus fitted values where we found there is no such relation between the two axes. It is not depicting any particular shape (or a pattern).

Thus, there is no presence of heteroscedasticity in our data.

```
. *# formal test
```

. hettest

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
```

Variables: fitted values of lexp

chi2(1) = 0.62 Prob > chi2 = 0.4293

. reg lexp co3 pcrate pun hexp lgdppc stat i.ss, robust

Linear regression Number of obs = 60
F(8, 51) = 30.07
Prob > F = 0.0000
R-squared = 0.7261
Root MSE = 3.1336

		Robust				
lexp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_						
co3	3639859	.1892717	-1.92	0.060	7439648	.0159929
pcrate	.0627868	.0363616	1.73	0.090	0102121	.1357857
pun	0655449	.0769133	-0.85	0.398	2199549	.0888651
hexp	.2051085	.1695959	1.21	0.232	1353694	.5455865
lgdppc	4.121248	.7351396	5.61	0.000	2.645393	5.597102
stat	.0064151	.0943056	0.07	0.946	1829113	.1957415
SS						
3	-2.546789	2.266373	-1.12	0.266	-7.096723	2.003144
4	6976435	3.832307	-0.18	0.856	-8.39132	6.996033
_cons	28.46513	7.376782	3.86	0.000	13.65563	43.27464
	I					

After performing the graphical method for detecting heteroscedasticity, we then performed the formal method for detecting heteroscedasticity.

Here, we found that for the Breusch-Pagan/ Cook-Weisberg test for heteroscedasticity, the null hypothesis is presented as,

Ho: Constant variance

The chi2(1) value is 0.62 which is less than the critical value (= 3.84), thus we accept the null hypothesis of constant variance. The chi2(1) value is statistically insignificant at 5% level of significance.

Thus, there is no presence of heteroscedasticity in our data.

. *checking for multicollinearity

vif

Variable	VIF	1/VIF
co3	2.15	0.464895
pcrate	1.67	0.597545
pun	2.39	0.417640
hexp	1.17	0.851671
lgdppc	4.02	0.248666
stat	7.21	0.138754
SS		
3	6.67	0.149937
4	18.11	0.055221
Mean VIF	5.43	

We can use vif command after the regression to check for multicollinearity. As a rule of thumb, a variable whose vif value is > 10 may merit further investigation.

Here, the vif value = 5.43 which is less than 10, thus there is no multicollinearity issue in our data and it is a full column rank matrix

- . *descriptive statistics
- . desc lexp stat

variable name	storage type	display format	value label	variable label	
lexp	double	%14.2f		lexp	
co3	double	%14.2f		co3	
pcrate	double	%14.2f		pcrate	
pun	double	%14.2f		pun	
hexp	double	%14.2f		hexp	
gdppc	double	%14.2f		gdppc	
stat	double	%14.2f		stat	

. sum lexp - stat

Variable	Obs	Mean	Std. Dev.	Min	Max
lexp	206	72.34202	7.407253	52.777	85.49756
co3	188	3.775203	4.620423	.0325848	31.72684
pcrate	114	94.53861	12.96707	51.19454	115.6307
pun	160	9.935625	10.81931	2.5	53.1
hexp	180	7.064762	3.123236	2.007863	21.53917
gdppc	187	21667.66	21917.44	751.2009	120010.2
stat	142	63.10251	16.4038	22.2222	94.44447

. corr lexp - stat (obs=60)

	lexp	co3	pcrate	pun	hexp	gdppc	stat
lexp	1.0000						
co3	0.5105	1.0000					
pcrate	0.5966	0.4166	1.0000				
pun	-0.6510	-0.5468	-0.5315	1.0000			
hexp	0.3070	0.0487	0.2383	-0.1197	1.0000		
gdppc	0.7326	0.7035	0.4039	-0.6133	0.2625	1.0000	
stat	0.5020	0.4686	0.2505	-0.4473	0.2247	0.5798	1.0000

There is high correlation among the variables as the values are greater than or equal to 0.5

- . *principle component analysis (PCA)
- . factor lexp stat, pcf
 (obs=60)

Factor analysis/correlation Number of obs = 60
Method: principal-component factors Retained factors = 2
Rotation: (unrotated) Number of params = 13

Factor	Eigenvalue	Difference	Proportion	Cumulative
Factorl	3.77218	2.76884	0.5389	0.5389
Factor2	1.00334	0.19348	0.1433	0.6822
Factor3	0.80986	0.32320	0.1157	0.7979
Factor4	0.48665	0.07225	0.0695	0.8674
Factor5	0.41441	0.06945	0.0592	0.9266
Factor6	0.34496	0.17636	0.0493	0.9759
Factor7	0.16860		0.0241	1.0000

LR test: independent vs. saturated: chi2(21) = 189.00 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp	0.8657	0.1027	0.2400
co3	0.7620	-0.3576	0.2916
pcrate	0.6728	0.1375	0.5285
pun	-0.8010	0.1736	0.3282
hexp	0.3399	0.9001	0.0743
gdppc	0.8730	-0.0743	0.2324
stat	0.6857	-0.0159	0.5295
	l		

- g. There are two factors (retained factors = 2) which satisfies the kaiser criterion. The first 2 eigenvalues are 3.77 and 1.00.
- h. We performed the factor analysis, where we considered rotation (unrotated) to understand the factor loadings.
- i. We perform LR test: independent vs saturated (correlated to each other)
- j. The null hypothesis is Ho: independence (i.e. no correlation) (or, zero correlation)
- k. The value of chi2(21) = 189.00 and Prob>chi2 = 0.0000
- 1. The null hypothesis, Ho is rejected at 1% level of significance; thus, running factor analysis is a good idea.

Now,

- 7. lexp has as much as 86.57% commonness with factor 1
- 8. co2 has as much as 76.20% commonness with factor 1
- 9. pcrate has as much as 67.28% commonness with factor 1
- 10.hexp has as much as 33.99% commonness with factor 1
- 11.gdppc has as much as 87.30% commonness with factor 1
- 12.stat has as much as 68.57% commonness with factor 1

. estat kmo

Kaiser-Meyer-Olkin measure of sampling adequacy

Variable	kmo
lexp co3 pcrate pun hexp gdppc stat	0.7967 0.7738 0.7572 0.8958 0.6630 0.7593 0.9112
Overall	0.8020

. factortest lexp - stat

Determinant of the correlation matrix
Det = 0.036

Bartlett test of sphericity

Chi-square = 185.677

Degrees of freedom = 21
p-value = 0.000

HO: variables are not intercorrelated

Kaiser-Meyer-Olkin Measure of Sampling Adequacy
KMO = 0.802

Here, kmo value is 0.8020 which is close to 1, thus we have adequate data to run factor analysis.

For the Bartlett's test of Sphericity,

- 1. the null hypothesis is Ho: variables are not intercorrelated
- 2. the value of chi-square is 185.677 with 21 degrees of freedom and the p-value is 0.0000
- 3. we reject the null hypothesis that variables are not intercorrelated at 5% level of significance.
- 4. Therefore, factor analysis is a good idea.

```
. *scree plot
. screeplot
. screeplot, yline(1)
.
end of do-file
. graph save Graph "D:\Stata MP 14.2\MD PROJECT\screeplot 2020.gph"
(file D:\Stata MP 14.2\MD PROJECT\screeplot 2020.gph saved)
```

We had then plotted the screeplot which is a graphical method of detecting and dropping the eigenvalues which are less than 1 since these provide less information than is provided by a single variable.

- . *rotation
- . *# orthogonal rotation
- . rotate, varimax

Factor analysis/correlation Number of obs = 60
Method: principal-component factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 13

Factor	Variance	Difference	Proportion	Cumulative
Factorl	3.54968	2.32384	0.5071	0.5071
Factor2	1.22584		0.1751	0.6822

LR test: independent vs. saturated: chi2(21) = 189.00 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp	0.8011	0.3439	0.2400
co3	0.8321		0.2916
pcrate	0.6062	0.3226	0.5285
pun	-0.8174	-0.0606	0.3282
hexp	0.0708	0.9595	0.0743
gdppc	0.8582	0.1762	0.2324
stat	0.6621		0.5295

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9590	0.2835
Factor2	-0.2835	0.9590

This is an orthogonal rotation.

Here, variance = 3.549 has been extracted by factor 1 and variance = 1.225 has been extracted by factor 2

The cumulative variance is 0.6822

However, all the variables are loaded on both the factors

. rotate, varimax blanks(.49)

Factor analysis/correlation Number of obs = 60
Method: principal-component factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 13

Factor	Variance	Difference	Proportion	Cumulative
Factorl	3.54968	2.32384	0.5071	0.5071
Factor2	1.22584	-	0.1751	0.6822

LR test: independent vs. saturated: chi2(21) = 189.00 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp co3 pcrate pun hexp gdppc stat	0.8011 0.8321 0.6062 -0.8174 0.8582 0.6621	0.9595	0.2400 0.2916 0.5285 0.3282 0.0743 0.2324 0.5295

(blanks represent abs(loading)<.49)

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9590	0.2835
Factor2	-0.2835	0.9590

We had considered 0.49 as the rule of thumb. Thus, values which are less than 0.49 are represented by blanks in the pattern matrix.

Therefore, lexp to pun and gdppc and stat are now loaded on factor 1

But, hexp is now loaded on factor 2

. *saving factor score

. predict pc1 pc2

(regression scoring assumed)

Scoring coefficients (method = regression; based on varimax rotated factors)

Variable	Factorl	Factor2
lexp co3 pcrate pun hexp gdppc stat	0.19108 0.29474 0.13219 -0.25269 -0.16789 0.24293 0.17883	0.16319 -0.28450 0.18198 0.10572 0.88582 -0.00543 0.03629

. estat common

Correlation matrix of the varimax rotated common factors

Factors	Factorl	Factor2
Factor1 Factor2	1	1

. corr pc1 pc2

(obs=60)

	pcl	pc2
pcl	1.0000	
pc2	-0.0000	1.0000

We find that, there is no correlation in orthogonal rotation.

. *# oblique rotation

. rotate, promax

Factor analysis/correlation Number of obs = 60
Method: principal-component factors Retained factors = 2
Rotation: oblique promax (Kaiser off) Number of params = 13

Factor	Variance	Proportion	Rotated factors are correlated
Factor1	3.73232	0.5332	
Factor2	1.47741	0.2111	

LR test: independent vs. saturated: chi2(21) = 189.00 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
lexp	0.7820	0.2159	0.2400
co3 pcrate	0.8827 0.5827	-0.2764 0.2278	0.2916 0.5285
pun	-0.8402	0.0799	0.3282
hexp	-0.0661	0.9800	0.0743
gdppc stat	0.8658 0.6617	0.0325 0.0697	0.2324 0.5295

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9928	0.4138
Factor2	-0.1200	0.9104

This is oblique rotation.

Here, variance = 3.732 has been extracted by factor 1 and variance = 1.477 has been extracted by factor 2

There is correlation in oblique rotation as the rotated factors are correlated.

However, all the variables are loaded on both the factors

. rotate, promax blanks(.44)

Factor analysis/correlation Number of obs = 60
Method: principal-component factors Retained factors = 2
Rotation: oblique promax (Kaiser off) Number of params = 13

Factor	Variance	Proportion	Rotated factors are correlated
Factor1	3.73232	0.5332	
Factor2	1.47741	0.2111	

LR test: independent vs. saturated: chi2(21) = 189.00 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness		
lexp co3 pcrate pun hexp gdppc stat	0.7820 0.8827 0.5827 -0.8402 0.8658 0.6617	0.9800	0.2400 0.2916 0.5285 0.3282 0.0743 0.2324 0.5295		

(blanks represent abs(loading)<.44)

Factor rotation matrix

	Factorl	Factor2
Factor1	0.9928	0.4138
Factor2	-0.1200	0.9104

We had considered 0.44 as the rule of thumb. Thus, values which are less than 0.44 are represented by blanks in the pattern matrix.

Therefore, lexp to pun and gdppc and stat are now loaded on factor 1

But, hexp is now loaded on factor 2

```
. *saving factor score
. predict pc3 pc4
(regression scoring assumed)
Scoring coefficients (method = regression; based on promax(3) rotated factors)
      Variable Factor1 Factor2
          lexp 0.21556 0.18812
                 0.24330 -0.24086
0.16062 0.19856
-0.23158 0.06964
           co3
         pcrate
           pun
                 -0.01818 0.85396
          hexp
                 0.23864 0.02832
          gdppc
          stat 0.18238 0.06075
. estat common
Correlation matrix of the promax(3) rotated common factors
       Factors Factor1 Factor2
       Factor1 1
Factor2 .3016 1
. corr pc3 pc4
(obs=60)
              pc3 pc4
       pc3
             1.0000
              0.3016 1.0000
        pc4
```

There is some amount of correlation in oblique rotation, however no presence of multicollinearity in the data.

. *model specification tests

linktest

Source	SS	df	MS	Numbe	er of obs	=	60
				F(2,	57)	=	61.15
Model	1247.12113	2	623.560566	Prob	> F	=	0.0000
Residual	581.206515	57	10.1966055	R-sq	uared	=	0.6821
				- Adj 1	R-squared	=	0.6710
Total	1828.32765	59	30.9886042	Root	MSE	=	3.1932
	•						
lexp	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
_hat	1.262007	2.567952	0.49	0.625	-3.8802	27	6.404242
_hatsq	0018839	.0184524	-0.10	0.919	03883	42	.0350665
_cons	-9.068041	89.05248	-0.10	0.919	-187.39	26	169.2565

Here, we have performed model misspecification tests. For the linktest, we get,

- a. lexp has been regressed on hat and hatsq
- b. here, *hat* is significant as it should be at 1% level of significance and *hatsq* in insignificant at 1% level of significance.

Thus, model is highly misspecified.

```
. ovtest
```

```
Ramsey RESET test using powers of the fitted values of lexp Ho: model has no omitted variables F(3, \ 50) = 0.53 Prob \ > \ F = 0.6610
```

For the ovtest, we get,

- a. the null hypothesis is given by, Ho: model has no omitted variables
- b. F(3,62) = 0.6610 < 2.68 (the critical value of F(3,62) at 5% level of significance); thus we reject the null hypothesis that the model has no omitted variables at 5% level of significance.
- c. Prob > F = 0.53 > 0.05; thus it is insignificant at 5% level of significance.
- d. Thus, the model has a lot of explanatory variables which are omitted variables.

Answer 7:

If we compare the data given for the years 2019 and 2020, we see that,

- *pcrate* and *gdppc* are statistically significant at 5% level of significance for both the years.
- *lexp, co2, pun, hexp, stat* are statistically insignificant at 5% level of significance for 2019.
- *lexp, co3, pun, hexp, stat* are statistically insignificant at 5% level of significance for 2020.
- There is significant presence of heteroscedasticity in the data for 2019, but no presence of heteroscedasticity in the data for 2020.
- There is no presence of multicollinearity in the data for both the years.
- There is significant presence of omitted variable bias in the data for both the years.