

Thèse de doctorat

Search of the $0\nu\beta\beta$ decay with the SuperNEMO demonstrator

Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris Saclay au sein du Laboratoire Irène-Joliot Curie (anciennement Laboratoire de l'Accélérateur Linéaire)

École doctorale n°576 Particles, Hadrons, Energy, Nuclei, Instrumentation, Imaging, Cosmos et Simulation (PHENIICS) Spécialité de doctorat : Physique des particules

Thèse présentée et soutenue à Orsay, le ***, par

CLOÉ GIRARD-CARILLO

Composition du Jury:

***	Président

***	Rapporteur

***	Rapporteur
Christine Marquet	
CENBG - Bordeaux-Gradignan	Examinateur

***	Examinateur

***	Examinateur
Laurent Simard	
LAL - Orsay	Directeur de thèse
Mathieu Bongrand	
LAL - Orsav	Co-directeur de thèse

Contents

C	Contents					
In	trod	uction		7		
1	Phe	Phenomenology of particle physics				
	1.1	The S	tandard Model of particle physics	9		
		1.1.1	Bosons	9		
		1.1.2	Fermions	9		
		1.1.3	$2\nu\beta\beta$ decay	9		
		1.1.4	Where the Standard Model ends	9		
	1.2	Going	beyond the Standard Model with neutrinos	9		
		1.2.1	Neutrino flavors and oscillations	9		
		1.2.2	Neutrino masses and nature	9		
		1.2.3	Other searches beyond the Standard Model with neutrinos $% \left(1\right) =\left(1\right) \left(1\right) $.	9		
2	$0\nu\beta$	β expe	eriment status	11		
	2.1	Exper	imental design criteria	11		
		2.1.1	Aspects of the nuclear matrix elements	12		
		2.1.2	Quenching	12		
	2.2	$0\nu\beta\beta$	direct search experiments	12		
		2.2.1	Semiconductors	12		
		2.2.2	Bolometers	14		
		2.2.3	Time projection chambers	14		
		2.2.4	Scintillators	16		
		2.2.5	Tracking calorimeters	16		
3	The	Supe	rNemo demonstrator	18		
	3.1	The S	uperNemo demonstrator	18		
		3.1.1	Comparison with Nemo3 experiment	18		
		3.1.2	Expermimental design	18		
		3.1.3	Sources	18		
		3.1.4	Tracker	18		
		3.1.5	Calorimeter	18		
			3.1.5.1 Scintillator	18		
			3.1.5.2 Photomultiplier	18		
		3.1.6	Calibration systems	18		
		3 1 7	Control Monitoring system	18		

4 CONTENTS

		3.1.8 Electronics	18
	3.2	The backgroung of SuperNEMO	18
		3.2.1 Internal background	
		3.2.2 External background	18
		3.2.3 Background specifications	18
		3.2.4 Measured demonstrator background levels	18
	3.3	The SuperNemo software	18
	0.0	3.3.1 Simulation	18
		3.3.2 Reconstruction	19
		5.5.2 Iteconstitution	10
4	Ana	alysis tools	21
		4.0.1 Internal probability	
	4.1	Simulations	
		4.1.1 Modifications of simulation software	22
		4.1.2 Internal background simulations	22
		4.1.3 $0\nu\beta\beta$ simulations	22
5	Tim	ne difference	23
	5.1	Principle and goal	23
		5.1.1 Internal conversion	23
	5.2	Analysis	24
		5.2.1 Topological cuts	24
		5.2.2 Exponentially modified Gaussian	24
		5.2.3 Results	24
	5.3	Conclusion	24
	0.0		
6	Sen	sitivity of the SuperNEMO demonstrator to the $0\nu\beta\beta$	27
	6.1	Signal and backgrounds considered	27
	6.2	Optimisation of event selection	29
	6.3	Expected number of background events	29
	6.4	Demonstrator sensitivity	29
		6.4.1 avec B	30
		6.4.2 sans B	30
		6.4.3 Champ mappé	30
	6.5	HyperNEMO	30
	6.6	Other isotopes	30
	6.7	Conclusion	30
	0.1		00
7	Det	ector commissioning	31
	7.1	Reflectometry analysis	31
		7.1.1 Goal of the reflectometry analysis	31
		7.1.2 Pulse timing: controlling cable lengths	32
		7.1.3 Signal attenuation	37
		7.1.4 Pulse shape analysis	39
		7.1.5 Comparison with ⁶⁰ Co	39
		7.1.6 Conclusion	39

CONTENTS 5

		7.2.1	Principle	39
		7.2.2	Measuring the time offset of front end boards	39
		7.2.3	Results	39
	7.3	Energ	y calibration of optical modules	
	7.4	Baseli	ne studies	39
	7.5	Light	Injection System	39
8	Cha	racter	risation of the calorimeter time resolution	41
	8.1	Intera	ction of particles in the SuperNEMO scintillators	42
		8.1.1	Interaction of electrons	42
		8.1.2	Interaction of photons	42
	8.2	Measu	are urement of the time resolution with a $^{60}\mathrm{Co}$ source	43
		8.2.1	Description of Cobalt 60 nucleus	44
		8.2.2	Time response of optical modules	44
		8.2.3	Final experimental design	47
		8.2.4	Signal events selection	49
		8.2.5	Background estimation	
		8.2.6	Detector efficiency	55
		8.2.7	Determination of the individual timing resolution of each	- 0
		0.0.0	optical module	
	0.0	8.2.8	Conclusion	
	8.3		ight Injection System	
		8.3.1	Light injection system commissioning	
		8.3.2	Time resolution of optical modules	61
Co	onclu	sion		63
Bi	bliog	graphy		65

Chapter 6

Sensitivity of the SuperNEMO demonstrator to the $0\nu\beta\beta$

In this chapter, we present the SuperNEMO sensitivity to the $0\nu\beta\beta$ decay half-life, and the corresponding effective neutrino masses, for several isotopes. The SuperNEMO final detector is expected to exclude $0\nu\beta\beta$ half-lives up to 1.2×10^{26} y (90% CL) if $0\nu\beta\beta$ decays through the mass mechanism, with a detector exposure of 500 kg.y [7]. The sensitivity is given as a limit, in case we do not observe the expected signal. In 2010 began the demonstrator installation at the Laboratoire Souterrain de Modane. With an exposure of 17.5 y, the demonstrator could set a limit on the $0\nu\beta\beta$ process of 5.35×10^{24} y (90% CL) [8].

This study aims to explore the impact on the sensitivity of the presence of a magnetic field, and will participate in the final decision on the installation of the coil. In a context of investigating the demonstrator and final detector capabilities, different internal source contamination levels are explored. The topology of interest is the two electrons topology, and we use the 2e energy sum to discriminate the signal from the background events. Thanks to SuperNEMO tracking capabilities, topological informations are exploited to improve the SuperNEMO sensitivity.

6.1 Signal and backgrounds considered

A full simulation for the SuperNEMO demonstrator was performed, in order to determine the longest $0\nu\beta\beta$ half-life that can be probed with SuperNEMO using the distribution of the sum of electron energies, in the case where the $0\nu\beta\beta$ decay were not observed. In the Tab. 6.1 is summarised the expected number of signal and background events, both for the SuperNEMO demonstrator and final detector, and we present the amount of simulated Monte-Carlo events for each considered decay.

The $0\nu\beta\beta$ signal

In the following, the assumed underlying mechanism for the $0\nu\beta\beta$ decay is the mass mechanism (MM), as it is the most natural and widespread mechanism. The hypotetical $0\nu\beta\beta$ signal would be detected as an excess of events in the region

of interest, with respect to the predicted background contamination level. The $10^7~0\nu\beta\beta$ Monte-Carlo events are generated using the DECAY0 software [9]. The simulations are normalised assuming a $T_{1/2}^{0\nu}=6.0\,10^{24}$ y half-life [citation].

Internal backgrounds

As described in Sec. 3.2.1, source foils contaminations by isotopes such as 208 Tl or 214 Bi constitute the principal internal backgrounds with the $2\nu\beta\beta$ decay. These backgrounds are processed by the same detector simulation as the $0\nu\beta\beta$ signal, using DECAY0. Since internal backgrounds have very low efficiencies in the 2e topology, we simulated an important amount of Monte-Carlo events. The target background activities were defined so that each background has a similar contribution to that of the $2\nu\beta\beta$ in the region of interest [10].

The dominant two neutrino $2\nu\beta\beta$ background and the background due to foil contamination were normalised assuming a detector exposure of 500 kg.y.

Tracking volume background

External background

All external backgrounds from outside the foil, apart from ²²²Rn in the tracking volume, are expected to be negligible and were not simulated.

Table 6.1: Expected and simulated decays for different processes, both for the demonstrator (17.5 kg.y) and for the final detector (500 kg.y).

	Expected decays		Simulated decays
	Demonstrator	Final detector	
$0\nu\beta\beta \ (T_{1/2}^{0\nu} = 6.0 10^{24} \text{y})$	1.510^{1}	2.710^7	1.010^7
2 uetaeta	$9.5 10^5$	4.210^2	1.010^7
²⁰⁸ Tl	5.510^3	1.610^5	1.010^7
$^{214}\mathrm{Bi}$	1.110^3	3.110^4	1.010^7
222 Rn	1.810^5	7.210^6	1.010^7

Justifier bdf externe avec article nemo3 (plus diff roi et meilleure eff) Activités bkg considérées à justifier, bkg interne: balek externe à justifier

Demies vies 2nu à jusifier

Se, Nd avec et sans champs

présentation du PID de Steven (peut être à bouger dans Tl selon développement du plan ou généralités)

Influence des quantités de contaminations sur la sensibilité

6.2 Optimisation of event selection

plot S/sqrt(B) en fonction E¿Emin

Quel est le signal qu'on cherche présentation des cuts efficacité des cuts/ signal + bkg cuts premier et second ordre

6.3 Expected number of background events

plot energy tot plus dans région intéret

6.4 Demonstrator sensitivity

Résultats B=0, avec activités nominales, puis avec activités caca Efficiency spretra Energy spectra

CHAPTER 6. SENSITIVITY OF THE SUPERNEMO DEMONSTRATOR TO 30 THE $0\nu\beta\beta$

6.4.1 avec B

Parler du champ non uniforme/attenuation ROI optimization: avec variation coupure énergie

6.4.2 sans B

avec variation coupure énergie

6.4.3 Champ mappé

6.5 HyperNEMO

results for 500kg.y exposure

6.6 Other isotopes

bam bam le Nd distribution t1/2 avec différents échantillons de simus (17.5 kg.y)

6.7 Conclusion

Faut arrêter SN

Etude plus générale avec bkg externe+lab (reprendre chiffres NEMO3) + neutrons (cf NEMO3)

Bibliography

- [1] M. et al. Agostini. Probing majorana neutrinos with double- β decay. Science 365, 1445, 2019.
- [2] S.I. et al Alvis. Search for neutrinoless double-beta decay in ⁷⁶ge with 26 kg-yr of exposure from the majorana demonstrator. *Phys. Rev. C*, 100, 2019.
- [3] O. et al. Azzolini. First result on the neutrinoless double- β decay of ⁸²Se with cupid-0. *Phys. Rev. Lett.*, 120:232502, Jun 2018.
- [4] C. et al. Alduino. First results from cuore: A search for lepton number violation via $0\nu\beta\beta$ decay of ¹³⁰Te. *Phys. Rev. Lett.*, 120:132501, Mar 2018.
- [5] J. B. et al. Albert. Search for neutrinoless double-beta decay with the upgraded exo-200 detector. *Phys. Rev. Lett.*, 120:072701, Feb 2018.
- [6] A. et al. Gando. Search for majorana neutrinos near the inverted mass hierarchy region with kamland-zen. Phys. Rev. Lett., 117:082503, Aug 2016.
- [7] R. et al. Arnold. Probing new physics models of neutrinoless double beta decay with supernemo. Eur. Phys. J. C, 2010.
- [8] S. Clavez. Development of reconstruction tools and sensitivity of the SuperNEMO demonstrator. PhD thesis, Université Paris Sud, 2017.
- [9] Tretyak V.I. Ponkratenko O.A. and Zdesenko Yu.G. The event generator decay4 for simulation of doublebeta processes and decay of radioactive nuclei. *Phys. At. Nucl.*, 63:1282–1287, Jul 2000.
- [10] Gomez-Cadenas et al. Physics case of supernemo with ⁸²se source. Internal presentation, 2008.
- [11] Nucleid database.