Textbook notes on Topology

David Cardozo

February 2, 2015

The following are notes based on the book Topology by Munkres.

Chapter 1

Set Theory and Logic

1.1 Fundamental Concepts

We express that an object a belongs to a set A by the notation:

$$a \in A$$

Similarly,

$$a \not\in A$$

We denote the inclusion of a set into another set with:

$$A \subseteq B$$

so that $A = B \iff A \subset B$ and $B \subset A$. If $A \subset B$ but A is different from A, we say A is a **proper subset** of B, in notation:

$$A \subset B$$

The relation \subset is called **inclusion** and \subsetneq is called proper inclusion.

The Union of Sets and the Meaning of "or"

Given two sets A and B, we can form another set called the union of A and B.

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

We will use the concept of exclusive or, if the necessity arises.

The Intersection of Sets, the Empty set, and the Meaning of "If...Then"

Another way to form a set from two existing sets is to take the elements in common, that is:

$$A \cap B = \{x | x \in A \text{ and } x \in B\}$$

The **empty set** is the set with no elements, denoted by \emptyset . We say that two elements are disjoint if:

$$A\cap B=\emptyset$$

Some property of this interesting empty set are:

$$A \cap \emptyset = \emptyset$$
 $A \cup \emptyset = A$

Chapter 2

Topological Spaces and Continuous Functions

2.1 Topological Spaces

Definition 1. A topology on a set X is a collection τ of subsets of X having the sollowing properties:

- \emptyset and X are in τ
- The union of the elements of any subcollection of τ is in τ
- The intersection of the elements of any finite subcollection of τ is in τ .

A set X for which a topology τ has been specified is called a **topological space**

Properly, a topological space is an ordered pair (X, τ) .

If Z is a topological space with topology τ , we say that a subset U of X is an **open set** of X if U belongs to the collection τ .

Example 1. If X is any set, the collection of all subsets of X is a topology on X; it is called the **discrete topology**. The collection consisting of X and \emptyset only is also a topology on X; we shall call it the **indiscrete topology**, or the **trivial topology**

Example 2. Let X be a set; let τ_f be the collection of all subsets of U of X such that X-U is either finite or is all of X. Then τ_f is a topology on X, called the **finite complement topology**. Both X and \varnothing are in τ_f , since X-X is finite and $X-\varnothing$ is all of X. If $\{U_\alpha\}$ is an indexed family of nonempty elements of τ_f , to show that $\cup U_\alpha$ is in τ_f , we compute

$$(\bigcup U_{\alpha})^{c} = \bigcap U_{\alpha}^{c}$$

and since each U^c is finite, the union of these set is finite. If U_1, \ldots, U_n are nonempty elements of τ_f , to show that $\cap U_i$ is in τ_f , er compute:

$$\left(\bigcap_{i=1}^{n}\right)^{c} U_{i} = \bigcup_{i=1}^{n} U_{i}^{c}$$

Observe then that each U_i^c is finite, and finite union of finite set is finite.

Example 3. Let X be a set; let τ_c be the collection of all subsets U of X such that X - U either is countable or is all of X. Then τ_c is a topology on X.

Definition 2. Suppose that τ and τ' are two topologies on a given set X. If $\tau' \supset \tau$, we say that τ' is **finer** than τ ; if τ' properly contains τ , we say τ' is **strictly finer** than τ . We also say that τ is **coarser** than τ' , or **strictly coarser**, in these two respective situations. We say τ is **comparable** with τ' if either $\tau' \supset \tau$ or $\tau \supset \tau'$

Basis for a Topology

Definition 3. If X is a set, a **basis** for a topology on X is a collection \mathfrak{B} of subsets of X (called **basis elements**) such that:

- For each $x \in X$, there is at least one basis element B containing x.
- If x belongs to the intersection of two basis elements B₁ and B₂, then there
 is a basis element B₃ containing x such that B₃ ⊂ B₁ ∩ B₂.

If \mathfrak{B} satisfies these two conditions, then we define the **topology** τ **generated** by \mathfrak{B} as follows: A subset U of X is said to be open in X (that is, to be an element of τ) if for each $x \in U$, there is a basis element $B \in \mathfrak{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of τ

Example 4. If X is any set, the collection of all one-point subsets of X is a basis for the discrete topology on X.

Lemma 1. The collection τ generated by the basis $\mathfrak B$ is, in fact a topology on X

Proof. If U is the empty set, it satisfies the defining condition of openness vacuously. Likewise, X is in τ , since for each $x \in X$ there is some basis element B containing x and contained in X. Now let us take an indexed family $\{U_{\alpha}\}_{{\alpha}\in J}$ of elements of τ , that is the collection \subset in τ and show that:

$$U = \bigcup_{\alpha \in J} U_{\alpha} \in \tau$$

Given $x \in U$, there exist an index α such that $x \in U_{\alpha}$. Since U_{α} is open, there is a basis element B such that $x \in B \subset U_{\alpha}$. Then $x \in B$ and $B \subset U$, so that U is open, by definition. Now let us take two elements U_1 and U_2 of τ and show

that the intersection belongs to τ . Given $x \in U_1 \cap U_2$, choose a basis element B_1 containing x such that $B_1 \subset U_1$; choose also a basis B_2 containing x such that $B_2 \subset U_2$. The second condition for a basis enables us to choose a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$. Then $x \in B_3$ and $B_3 \subset U_1 \cap U_2$, so $U_1 \cap U_2$ belongs to τ . Finally, we show by induction that any finite intersection $U_1 \cap \ldots \cap U_n$ of elements in τ is in τ . The fact is trivial for n = 1; we suppose it true for n - 1 and prove it for n. Now

$$(U_1 \cap \dots U_n) = (U_1 \cap \dots U_{n-1}) \cap U_n$$

. By hypothesis, $U_1 \cap \dots U_{n-1}$ belongs to τ ; by the result proven above, the intersection of $U_1 \cap \dots U_{n-1}$ and U_n also belongs to τ

Another point of view to view a basis for a topology is summarized in the following lemma:

Lemma 2. Let X be a set; let \mathfrak{B} be a basis for a topology τ on X. Then τ equals the collection of all unions of elements of \mathfrak{B}

Proof. By double inclusion, Given a collection of elements in \mathfrak{B} , they are also elements of τ . Because τ is a topology, their union is in τ . Conversely, given $U \in \tau$, choose for each $x \in U$ an element B_x of \mathfrak{B} such that $x \in B_x \subset U$. Then $U = \bigcup_{x \in U} B_x$, so U equals a union of elements of \mathfrak{B}

As an important observation, this says that every open set U in X can be written as a union of basis elements. This expression for U is not unique. In summary, we have just described two ways from going from the basis to the topology it generates, now for the other way around:

Lemma 3. Let X be a topological space. Suppose that \mathfrak{C} is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of \mathfrak{C} such that $x \in C \subset U$. Then \mathfrak{C} is a basis for the topology of X.

Proof. We must show that \mathfrak{C} is a basis. The first condition for a basis is easy: Given $x \in X$, since X is itself an open set, there is by hypothesis an element C of \mathfrak{C} such that $x \in C \subset X$. To check the second condition, let x belong to $C_1 \cap C_2$, where C_1 and C_2 are elements of \mathfrak{C} . Since C_1 and C_2 are open, so is $C_1 \cap C_2$. Therefore, there exists by hypothesis an element C_3 in \mathfrak{C} such that $x \in C_3 \subset C_1 \cap C_2$.

Let τ be the collection of open sets of X; we must show that the topology τ' generated by $\mathfrak C$ equals the topology τ . First, note that if U belongs to τ and if $x \in U$ then there is by hypothesis an element C of $\mathfrak C$ such that $x \in C \subset U$. It follows that U belongs to the topology τ' , by definition. Conversely, if W belongs to the topology τ' , then W equals a union of elements of $\mathfrak C$, by the preceding lemma. Since each element of $\mathfrak C$ belongs to τ and τ is a topology. W also belongs to τ

When topologies are given by bases, we want to have a criterion for deciding which topology is finer than other. The following provides a criterion:

Lemma 4. Let \mathfrak{B} and \mathfrak{B}' be bases for the topologies τ and τ' , respectively, on X. Then the following are equivalent:

- τ' is finer than τ , i.e., $\tau' \supset \tau$
- For each $x \in X$ and each basis element $B \in \mathfrak{B}$ containing x, there is a basis element $B' \in \mathfrak{B}'$ such that $x \in B' \subset B$.

Proof. "2 \Longrightarrow 1". Given an element U of τ , we wish to show that $U \in \tau'$. Let $x \in U$. Since \mathfrak{B} generates τ , there is an element $B \in \mathfrak{B}$ such that $x \in B \subset U$. Condition (2) tell us there exists an element $B' \in \mathfrak{B}'$ such that $x \in B' \subset B$. Then $x \in B' \subset U$, so $U \in \tau'$, by definition.

"1 \Longrightarrow 2". We are given $x \in X$ and $B \in \mathfrak{B}$, with $x \in B$. Now B belongs to τ by definition and $\tau \subset \tau'$ by condition (1); therefore, $B \in \tau'$. Since τ' is generated by \mathfrak{B}' , there is an element $B' \in \mathfrak{B}'$ such that $x \in B' \subset B$

2.2 Closed Sets and limit Points

Definition 4. A subset A of a topological space X is said to be **closed** if the set X - A is open.

Observe that a set can be open, or closed or both.

Theorem 1. Let X be atopological space, Then the following conditions holds:

- \varnothing and X are closed.
- Arbitary intersections of closed sets are closed.
- Finite unions of closed sets are closed.

Proof. Observe that \emptyset and X are closed necause they are the complements of the open set X and \emptyset respictively.

For the second proof, suposse that we are given a collection of closed sets $\{A_{\alpha}\}_{\alpha\in J}$, and we apply then DeMorgan's Law,

$$X - \bigcap_{\alpha \in J} A_{\alpha} = \bigcup (X - A_{\alpha})$$

Theorem 2. Let Y be a subspace of X. Then a a set A is closed in Y if and only if it equals the intersection of a closed set of X