NONLOCAL GAMES

Contents

Part	1. Background	1
1.	Games and strategies	1
2.	Distance measures	3
3.	Chapters	7

We introduce definitions associated with nonlocal games and strategies that will be used throughout.

1. Games and strategies

Definition 1.1 (Two-player one-round games). A two-player one-round game \mathfrak{G} is specified by a tuple $(\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}, \mu, D)$ where

- (1) \mathcal{X} and \mathcal{Y} are finite sets (called the question alphabets),
- (2) \mathcal{A} and \mathcal{B} are finite sets (called the *answer alphabets*),
- (3) μ is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ (called the *question distribution*), and
- (4) $D: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \to \{0,1\}$ is a function (called the *decision predicate*).

Definition 1.2 (Tensor product strategies). A tensor product strategy S for a game $\mathfrak{G} = (\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}, \mu, D)$ is a tuple $(|\psi\rangle, A, B)$ where

- $|\psi\rangle$ is a pure quantum state in $\mathcal{H}_A \otimes \mathcal{H}_B$ for finite dimensional complex Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B$,
- A is a set $\{A^x\}$ such that for every $x \in \mathcal{X}$, $A^x = \{A^x_a\}_{a \in \mathcal{A}}$ is a POVM over \mathcal{H}_A , and
- B is a set $\{B^y\}$ such that for every $y \in \mathcal{Y}$, $B^y = \{B_b^y\}_{b \in \mathcal{B}}$ is a POVM over \mathcal{H}_B .

Definition 1.3 (Tensor product value). The *tensor product value* of a tensor product strategy $S = (|\psi\rangle, A, B)$ with respect to a game $\mathfrak{G} = (\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}, \mu, D)$ is defined as

$$\operatorname{val}^*(\mathfrak{G}, S) = \sum_{x, y, a, b} \mu(x, y) D(x, y, a, b) \langle \psi | A_a^x \otimes B_b^y | \psi \rangle.$$

For $v \in [0,1]$ we say that the strategy S passes (or wins) \mathfrak{G} with probability v if $val^*(\mathfrak{G},S) \geq v$. The tensor product value of \mathfrak{G} is defined as

$$\operatorname{val}^*(\mathfrak{G}) = \sup_{S} \operatorname{val}^*(\mathfrak{G}, S)$$
,

where the supremum is taken over all tensor product strategies S for \mathfrak{G} .

Remark 1.4. Unless specified otherwise, all strategies considered in this paper are tensor product strategies, and we simply call them *strategies*. Similarly, we refer to $val^*(\mathfrak{G})$ as the *value* of the game \mathfrak{G} .

Definition 1.5 (Projective strategies). We say that a strategy $S = (|\psi\rangle, A, B)$ is projective if all the measurements $\{A_a^x\}_a$ and $\{B_b^y\}_b$ are projective.

Remark 1.6. A game $\mathfrak{G}=(\mathcal{X},\mathcal{Y},\mathcal{A},\mathcal{B},\mu,D)$ is symmetric if the question and answer alphabets are the same for both players (i.e. $\mathcal{X}=\mathcal{Y}$ and $\mathcal{A}=\mathcal{B}$), the distribution μ is symmetric (i.e. $\mu(x,y)=\mu(y,x)$), and the decision predicate D treats both players symmetrically (i.e. for all x,y,a,b,D(x,y,a,b)=D(y,x,b,a)). Furthermore, we call a strategy $S=(|\psi\rangle,A,B)$ symmetric if $|\psi\rangle$ is a state in $\mathcal{H}\otimes\mathcal{H}$, for some Hilbert space \mathcal{H} , that is invariant under permutation of the two factors, and the measurement operators of both players are identical. We specify symmetric games \mathfrak{G} and symmetric strategies S using a more compact notation: we write $\mathfrak{G}=(\mathcal{X},\mathcal{A},\mu,D)$ and $S=(|\psi\rangle,M)$ where M denotes the set of measurement operators for both players.

Lemma 1.7. Let $\mathfrak{G} = (\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}, \mu, D)$ be a symmetric game such that $\operatorname{val}^*(\mathfrak{G}) = 1 - \varepsilon$ for some $\varepsilon \geq 0$. Then there exists a symmetric and projective strategy $S = (|\psi\rangle, M)$ such that $\operatorname{val}^*(\mathfrak{G}, S) \geq 1 - 2\varepsilon$.

Proof. By definition there exists a strategy $S' = (|\psi'\rangle, A, B)$ such that $\operatorname{val}^*(\mathfrak{G}, S') \geq 1 - 2\varepsilon$. Using Naimark's theorem (for example as formulated in [?, Theorem 4.2]) we can assume without loss of generality that $|\psi'\rangle \in \mathbb{C}^d_{A'} \otimes \mathbb{C}^d_{B'}$ for some integer d and that for every x and y, A^x and B^y is a projective measurement. Let

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A |1\rangle_B |\psi'\rangle_{A'B'} + |1\rangle_A |0\rangle_B |\psi'_{\tau}\rangle_{A'B'}) \in (\mathbb{C}_A^2 \otimes \mathbb{C}_{A'}^d) \otimes (\mathbb{C}_B^2 \otimes \mathbb{C}_{B'}^d) ,$$

where $|\psi'_{\tau}\rangle$ is obtained from $|\psi\rangle$ by permuting the two players' registers. Observe that $|\psi\rangle$ is invariant under permutation of AA' and BB'.

For any question $x \in \mathcal{X} = \mathcal{Y}$, define the measurement $M^x = \{M_a^x\}_{a \in \mathcal{A}}$ acting on the Hilbert space $\mathbb{C}^2 \otimes \mathbb{C}^d$ as follows:

$$M_a^x = |0\rangle\langle 0| \otimes A_a^x + |1\rangle\langle 1| \otimes B_a^x$$
.

When Alice receives question x, she measures M^x on registers AA', and when Bob receives question y, he measures M^y on registers BB'. Using that by assumption the decision predicate D for \mathfrak{G} is symmetric, it is not hard to verify that $\operatorname{val}^*(\mathfrak{G}, S) = \operatorname{val}^*(\mathfrak{G}, S')$.

Definition 1.8. Let $\mathfrak{G} = (\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}, \mu, D)$ be a game, and let $S = (|\psi\rangle, A, B)$ be a strategy for \mathfrak{G} such that the spaces $\mathcal{H}_A \simeq \mathcal{H}_B$ canonically. Let $S \subseteq \mathcal{X} \times \mathcal{Y}$ denote the support of the question distribution μ , i.e. the set of (x, y) such that $\mu(x, y) > 0$. We say that S is a *commuting strategy for* \mathfrak{G} if for all question pairs $(x, y) \in S$, we have $[A_a^x, B_b^y] = 0$ for all $a \in \mathcal{A}, b \in \mathcal{B}$, where [A, B] = AB - BA denotes the commutator.

Definition 1.9 (Consistent measurements). Let \mathcal{A} be a finite set, let $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H}$ a state, and $\{M_a\}_{a\in\mathcal{A}}$ a projective measurement on \mathcal{H} . We say that $\{M_a\}_{a\in\mathcal{A}}$ is consistent on $|\psi\rangle$ if and only if

$$\forall a \in \mathcal{A}, \quad M_a \otimes \mathrm{Id}_B \mid \psi \rangle = \mathrm{Id}_A \otimes M_a \mid \psi \rangle.$$

Definition 1.10 (Consistent strategies). Let $S = (|\psi\rangle, A, B)$ be a projective strategy with state $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H}$, for some Hilbert space \mathcal{H} , which is defined on question alphabets \mathcal{X} and \mathcal{Y} and answer alphabets \mathcal{A} and \mathcal{B} , respectively. We say that the strategy S is *consistent* if for all $x \in \mathcal{X}$, the measurement $\{A_a^x\}_{a \in \mathcal{A}}$ is consistent on $|\psi\rangle$ and if for all $y \in \mathcal{Y}$, the measurement $\{B_b^y\}_{b \in \mathcal{B}}$ is consistent on $|\psi\rangle$.

Definition 1.11. We say that a strategy S for a game \mathfrak{G} is PCC if it is projective, consistent, and commuting for \mathfrak{G} . Additionally, we say that a PCC strategy S is SPCC if it is furthermore symmetric.

Remark 1.12. A strategy $S=(|\psi\rangle,A,B)$ for a symmetric game $\mathfrak{G}=(\mathcal{X},\mathcal{X},\mathcal{A},\mathcal{A},\mu,D)$ is called synchronous if it holds that for every $x\in\mathcal{X}$ and $a\neq b\in\mathcal{A},\ \langle\psi|A_a^x\otimes B_b^x|\psi\rangle=0$; in other words, the players never return different answers when simultaneously asked the same question. As shown in [?] the condition for a finite-dimensional strategy of being synchronous is equivalent to the condition that it is projective, consistent, and moreover $|\psi\rangle$ is a maximally entangled state. (The equivalence is extended to infinite-dimensional strategies, as well as correlations induced by limits of finite-dimensional strategies, in [?].)

Definition 1.13 (Entanglement requirements of a game). For all games \mathfrak{G} and $\nu \in [0,1]$, let $\mathcal{E}(\mathfrak{G},\nu)$ denote the minimum integer d such that there exists a finite dimensional tensor product strategy S that achieves success probability at least ν in the game \mathfrak{G} with a state $|\psi\rangle$ whose Schmidt rank is at most d. If there is no finite dimensional strategy that achieves success probability ν , then define $\mathcal{E}(\mathfrak{G},\nu)$ to be ∞ .

2. Distance measures

We introduce several distance measures that are used throughout.

Definition 2.1 (Distance between states). Let $\{|\psi_n\rangle\}_{n\in\mathbb{N}}$ and $\{|\psi'_n\rangle\}_{n\in\mathbb{N}}$ be two families of states in the same space \mathcal{H} . For some function $\delta:\mathbb{N}\to[0,1]$ we say that $\{|\psi_n\rangle\}$ and $\{|\psi'_n\rangle\}$ are δ -close, denoted as $|\psi\rangle\approx_{\delta}|\psi'\rangle$, if $||\psi_n\rangle-|\psi'_n\rangle||^2=O(\delta(n))$. (For convenience we generally leave the dependence of the states and δ on the indexing parameter n implicit.)

Definition 2.2 (Consistency between POVMs). Let \mathcal{X} be a finite set and μ a distribution on \mathcal{X} . Let $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ be a quantum state, and for all $x \in \mathcal{X}$, $\{A_a^x\}$ and $\{B_a^x\}$ POVMs. We write

$$A_a^x \otimes I_B \simeq_{\delta} I_A \otimes B_a^x$$

on state $|\psi\rangle$ and distribution μ if

$$\mathop{\mathbb{E}}_{x \sim \mu} \sum_{a \neq b} \langle \psi | A_a^x \otimes B_b^x | \psi \rangle \leq O(\delta) \; .$$

In this case, we say that $\{A_a^x\}$ and $\{B_a^x\}$ are δ -consistent on $|\psi\rangle$.

Note that a consistent measurement according to Definition 1.9 is 0-consistent with itself, under the singleton distribution, according to Definition 2.2 (and viceversa).

Definition 2.3 (Distance between POVMs). Let \mathcal{X} be a finite set and μ a distribution on \mathcal{X} . Let $|\psi\rangle \in \mathcal{H}$ be a quantum state, and for all $x \in \mathcal{X}$, $\{M_a^x\}$ and $\{N_a^x\}$ two POVMs on \mathcal{H} . We say that $\{M_a^x\}$ and $\{N_a^x\}$ are δ -close on state $|\psi\rangle$ and under distribution μ if

$$\mathbb{E}_{x \sim \mu} \sum_{a} \left\| (M_a^x - N_a^x) |\psi\rangle \right\|^2 \le O(\delta) ,$$

and we write $M_a^x \approx_{\delta} N_a^x$ to denote this when the state $|\psi\rangle$ and distribution μ are clear from context. This distance is referred to as the *state-dependent* distance.

Definition 2.4 (Distance between strategies). Let $\mathfrak{G} = (\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}, \mu, D)$ be a nonlocal game and let $S = (\psi, A, B), S' = (\psi', A', B')$ be strategies for \mathfrak{G} . For $\delta \in [0,1]$ we say that S is δ -close to S' if the following conditions hold.

- (1) The states $|\psi\rangle, |\psi'\rangle$ are states in the same Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ and are
- (2) For all $x \in \mathcal{X}, y \in \mathcal{Y}$, we have $A_a^x \approx_{\delta} (A')_a^x$ and $B_b^y \approx_{\delta} (B')_b^y$, with the approximations holding under the distribution μ , and on either $|\psi\rangle$ or $|\psi'\rangle$.

We record several useful facts about the consistency measure and the statedependent distance without proof. Readers are referred to Sections 4.4 and 4.5 in [?] for additional discussion and proofs.

Fact 2.5 (Fact 4.13 and Fact 4.14 in [?]). For POVMs $\{A_a^a\}$ and $\{B_a^a\}$, the following hold.

- (1) If $A_a^x \otimes I_B \simeq_{\delta} I_A \otimes B_a^x$ then $A_a^x \otimes I_B \approx_{\delta} I_A \otimes B_a^x$. (2) If $A_a^x \otimes I_B \approx_{\delta} I_A \otimes B_a^x$ and $\{A_a^x\}$ and $\{B_a^x\}$ are projective measurements, then $A_a^x \otimes I_B \simeq_{\delta} I_A \otimes B_a^x$.
- (3) If $A_a^x \otimes I_B \approx_{\delta} I_A \otimes B_a^x$ and either $\{A_a^x\}$ or $\{B_a^x\}$ is a projective measurement, then $A_a^x \otimes I_B \simeq_{\delta^{1/2}} I_A \otimes B_a^x$.

Fact 2.6 (Fact 4.20 in [?]). Let A, B, C be finite sets, and let D be a distribution over question pairs (x, y). Let $\{A_{a,b}^x\}$ and $\{B_{a,b}^x\}$ be operators whose outcomes range over the product set $A \times B$. Suppose a set of operators $\{C_{a,c}^y\}$, whose outcomes range over the product set $\mathcal{A} \times \mathcal{C}$, satisfies the condition $\sum_{a,c} (C_{a,c}^y)^{\dagger} C_{a,c}^y \leq \text{Id}$ for all y. If $A_{a,b}^x \approx_{\delta} B_{a,b}^x$ on average over x sampled from the corresponding marginal of distribution D, then $C_{a,c}^y A_{a,b}^x \approx_{\delta} C_{a,c}^y B_{a,b}^x$ on average over (x,y) sampled from D.

Proof. Fix questions x, y and answers $a \in \mathcal{A}, b \in \mathcal{B}$. We have then that

$$\sum_{c} \left\| (C_{a,c}^{y} A_{a,b}^{x} - C_{a,c}^{y} B_{a,b}^{x}) |\psi\rangle \right\|^{2} = \sum_{c} \langle \psi | (A_{a,b}^{x} - B_{a,b}^{x})^{\dagger} (C_{a,c}^{y})^{\dagger} (C_{a,c}^{y}) (A_{a,b}^{x} - B_{a,b}^{x}) |\psi\rangle$$

$$(2.6.2) \leq \langle \psi | (A_{a,b}^x - B_{a,b}^x)^{\dagger} (A_{a,b}^x - B_{a,b}^x) | \psi \rangle$$

(2.6.3)
$$= \|(A_{a,b}^x - B_{a,b}^x)|\psi\rangle\|^2$$

where the inequality follows from the fact that $\sum_{c} (C_{a,c}^y)^{\dagger} C_{a,c}^y \leq \sum_{a,c} (C_{a,c}^y$ Id. Thus we obtain the desired conclusion

$$\mathop{\mathbb{E}}_{(x,y) \sim D} \sum_{a,b,c} \left\| (C^y_{a,c} A^x_{a,b} - C^y_{a,c} B^x_{a,b}) |\psi\rangle \right\|^2 \leq \mathop{\mathbb{E}}_{(x,y) \sim D} \sum_{a,b} \left\| (A^x_{a,b} - B^x_{a,b}) |\psi\rangle \right\|^2 \leq \delta.$$

Fact 2.7. Let \mathcal{X} , \mathcal{A} denote finite sets, and let \mathcal{G} denote a set of functions $g: \mathcal{X} \to \mathcal{A}$. Let $\{A_a^x\}$, $\{B_a^x\}$ be POVMs indexed by \mathcal{X} and outcomes in \mathcal{A} . Let $\{S_a^x\}$ denote a set of operators such that for all $x \in \mathcal{X}$, $\sum_{q} (S_q^x)^{\dagger} S_q^x \leq \text{Id.}$ If $A_a^x \approx_{\delta} B_a^x$ on average over x, then $S_q^x A_{q(x)}^x \approx_{\delta} S_g^x B_{q(x)}^x$.

Proof. We expand:

$$\begin{split} \mathbb{E}_{x} \sum_{g} \left\| S_{g}^{x} (A_{g(x)}^{x} - B_{g(x)}^{x}) |\psi\rangle \right\|^{2} &= \mathbb{E}_{x} \sum_{g} \langle \psi | (A_{g(x)}^{x} - B_{g(x)}^{x})^{\dagger} (S_{g}^{x})^{\dagger} S_{g}^{x} (A_{g(x)}^{x} - B_{g(x)}^{x}) |\psi\rangle \\ &= \mathbb{E}_{x} \sum_{a} \langle \psi | (A_{a}^{x} - B_{a}^{x})^{\dagger} \Big(\sum_{g:g(x)=a} (S_{g}^{x})^{\dagger} S_{g}^{x} \Big) (A_{a}^{x} - B_{a}^{x}) |\psi\rangle \\ &\leq \mathbb{E}_{x} \sum_{a} \langle \psi | (A_{a}^{x} - B_{a}^{x})^{\dagger} (A_{a}^{x} - B_{a}^{x}) |\psi\rangle \\ &= \mathbb{E}_{x} \sum_{g} \left\| (A_{a}^{x} - B_{a}^{x}) |\psi\rangle \right\|^{2}. \end{split}$$

The inequality follows from the fact that $\sum_{g:g(x)=a} (S_g^x)^{\dagger} S_g^x \leq \sum_g (S_g^x)^{\dagger} (S_g^x) \leq \text{Id.}$ The last line is at most δ by assumption, and we obtain the desired conclusion. \square

Lemma 2.8. Let \mathcal{A} be a finite set. Let $\{A_a^x\}_{a\in\mathcal{A}}$ be a projective measurement and let $\{B_a^x\}_{a\in\mathcal{A}}$ be a set of matrices. If $A_a^x \approx_{\delta} B_a^x$, then for all subsets $S \subseteq \mathcal{A}$, we have

$$\sum_{a \in S} A_a^x \approx_{\delta} \sum_{a \in S} A_a^x \cdot B_a^x.$$

Proof. We expand:

$$\mathbb{E}_{x} \left\| \sum_{a \in S} \left(A_a^x - A_a^x \cdot B_a^x \right) |\psi\rangle \right\|^2 = \mathbb{E}_{x} \left\| \sum_{a \in S} A_a^x \cdot \left(A_a^x - B_a^x \right) |\psi\rangle \right\|^2 \\
= \mathbb{E}_{x} \sum_{a \in S} \langle \psi | (A_a^x - B_a^x)^{\dagger} A_a^x (A_a^x - B_a^x) |\psi\rangle \\
\leq \mathbb{E}_{x} \sum_{a} \left\| (A_a^x - B_a^x) |\psi\rangle \right\|^2.$$

In the second line we used the projectivity of $\{A_a^x\}$, and in the third line we used that $A_a^x \leq \operatorname{Id}$.

Fact 2.9 (Triangle inequality, Fact 4.28 in [?]). If $A_a^x \approx_{\delta} B_a^x$ and $B_a^x \approx_{\epsilon} C_a^x$, then $A_a^x \approx_{\delta+\epsilon} C_a^x$.

Fact 2.10 (Triangle inequality for " \simeq ", Proposition 4.29 in [?]). If $A_a^x \otimes I_B \simeq_{\varepsilon} I_A \otimes B_a^x$, $C_a^x \otimes I_B \simeq_{\delta} I_A \otimes B_a^x$, and $C_a^x \otimes I_B \simeq_{\gamma} I_A \otimes D_a^x$, then $A_a^x \otimes I_B \simeq_{\varepsilon+2\sqrt{\delta+\gamma}} I_A \otimes D_a^x$.

Fact 2.11 (Data processing, Fact 4.26 in [?]). Suppose $A_a^x \otimes I_B \simeq_{\delta} I_A \otimes B_a^x$. Then $A_{\lceil f(\cdot) = b \rceil}^x \otimes I_B \simeq_{\delta} I_A \otimes B_{\lceil f(\cdot) = b \rceil}^x$.

The state-dependent distance is the right tool for reasoning about the closeness of measurement operators in a strategy. The following lemma ensures that, when two families of measurements are close on a state, changing from one family of measurement to the other only introduces a small error to the value of the strategy.

Lemma 2.12. Let $\{A_{a,\,b}^x\}$, $\{B_{a,\,b,\,c}^x\}$, $\{C_{a,\,c}^x\}$ be POVMs. Suppose $\{B_{a,\,b,\,c}^x\}$ is projective, and

$$A_{a,b}^x \otimes \operatorname{Id}_B \approx_{\delta} \operatorname{Id}_A \otimes B_{a,b}^x$$
, $C_{a,c}^x \otimes \operatorname{Id}_B \approx_{\delta} \operatorname{Id}_A \otimes B_{a,c}^x$.

Then the following approximate commutation relation holds:

$$[A_{a,b}^x, C_{a,c}^x] \otimes I_B \approx_{\delta} 0$$

Proof. Applying Fact 2.6 to $C_{a,c}^x \otimes \operatorname{Id}_B \approx_{\delta} \operatorname{Id}_A \otimes B_{a,c}^x$ and $\{A_{a,b}^x \otimes \operatorname{Id}_B\}$, we have

$$(2.12.1) A_{a,b}^x C_{a,c}^x \otimes \operatorname{Id}_B \approx_{\delta} A_{a,b}^x \otimes B_{a,c}^x.$$

Similarly, applying Fact 2.6 to $A_{a,b}^x \otimes \operatorname{Id}_B \approx_{\delta} \operatorname{Id}_A \otimes B_{a,b}^x$ and $\{\operatorname{Id}_A \otimes B_{a,c}^x\}$, and using the fact that $\{B_{a,b,c}^x\}$ is projective, we have

$$(2.12.2) A_{a,b}^x \otimes B_{a,c}^x \approx_{\delta} \operatorname{Id}_A \otimes B_{a,c}^x B_{a,b}^x = \operatorname{Id}_A \otimes B_{a,b,c}^x.$$

Combining Equations (2.12.1) and (2.12.2), we have

$$(2.12.3) A_{a,b}^x C_{a,c}^x \otimes \operatorname{Id}_B \approx_{\delta} \operatorname{Id}_A \otimes B_{a,b,c}^x.$$

A similar argument gives

$$(2.12.4) C_{a,c}^x A_{a,b}^x \otimes \operatorname{Id}_B \approx_{\delta} \operatorname{Id}_A \otimes B_{a,b,c}^x.$$

The claim follows from Equations (2.12.3) and (2.12.4).

The following lemma is a slightly modified version of [?, Fact 4.34].

Lemma 2.13. Let $k \geq 0$ be an integer and let $\varepsilon > 0$. Let \mathcal{X} be a finite set and μ a distribution over \mathcal{X} . For each $1 \leq i \leq k$ let \mathcal{G}_i be a set of functions $g_i : \mathcal{Y} \to \mathcal{R}_i$ and for each $x \in \mathcal{X}$ let $\{G_g^{i,x}\}_{g \in \mathcal{G}_i}$ be a projective measurement. Suppose that for all $i \in \{1, \ldots, k\}$, \mathcal{G}_i satisfies the following property: for any two $g_i \neq g_i' \in \mathcal{G}_i$, the probability that $g_i(y) = g_i'(y)$ over a uniformly random $y \in \mathcal{Y}$ is at most ε .

Let $\{A_{g_1, g_2, \dots, g_k}^x\}$ be a projective measurement with outcomes $(g_1, \dots, g_k) \in \mathcal{G}_1 \times \dots \times \mathcal{G}_k$. For each $1 \leq i \leq k$, suppose that on average over $x \sim \mu$ and $y \in \mathcal{Y}$ sampled uniformly at random,

$$(2.13.1) A_{[\operatorname{eval}_y(\cdot)_i = a_i]}^x \otimes I_B \simeq_{\delta} I_A \otimes G_{[\operatorname{eval}_y(\cdot) = a_i]}^{i, x}.$$

Define the POVM family $\{C^x_{q_1,q_2,\ldots,q_k}\}$, for $x \in \mathcal{X}$, by

$$C^x_{g_1,\,g_2,\,\ldots,\,g_k} = G^{k,\,x}_{g_k} \cdots G^{2,\,x}_{g_2} \, G^{1,\,x}_{g_1} \, G^{2,\,x}_{g_2} \cdots G^{k,\,x}_{g_k} \; .$$

Then on average over $x \sim \mu$ and $y \in \mathcal{Y}$ sampled uniformly at random,

$$(2.13.2) A_{[\text{eval}_y(\cdot) = (a_1, a_2, ..., a_k)]}^x \otimes I_B \simeq_{k(\delta + \varepsilon)^{1/2}} I_A \otimes C_{[\text{eval}_y(\cdot) = (a_1, a_2, ..., a_k)]}^x$$

Proof. The proof is identical to the one given in [?, Fact 4.34], with the only modification needed to insert the dependence on x for all measurements considered.

Lemma 2.14 (Fact 4.35 in [?]). Let \mathcal{D} be a distribution on $(x, y_1, y_2) \in \mathcal{X} \times \mathcal{Y}_1 \times \mathcal{Y}_2$. For $i \in \{1, 2\}$ let \mathcal{G}_i be a collection of functions $g_i : \mathcal{Y}_i \to \mathcal{R}_i$ and let $\{(G_i)_g^x\}_{g \in \mathcal{G}_i}$ be families of measurements such that $\{(G_2)_g^x\}_g$ is projective for every x. Suppose further that for every (x, y_1) it holds that for $g_2 \neq g_2' \in \mathcal{G}_2$ the probability, on average over y_2 chosen from \mathcal{D} conditioned on (x, y_1) , that $g_2(y_2) = g_2'(y_2)$ is at most η . Let $\{A_{a_1, a_2}^{x, y_1, y_2}\}$ be a family of projective measurements with outcomes $(a_1, a_2) \in \mathcal{R}_1 \times \mathcal{R}_2$ such that for $i \in \{1, 2\}$,

$$(2.14.1) A_{a_i}^{x,y_1,y_2} \otimes \operatorname{Id} \simeq_{\delta} \operatorname{Id} \otimes (G_i)_{[\operatorname{eval}_{u_i}(\cdot)=a_i]}^x$$

and

$$(2.14.2) A_{a_1,a_2}^{x,y_1,y_2} \otimes \text{Id} \simeq_{\delta} \text{Id} \otimes A_{a_1,a_2}^{x,y_1,y_2}.$$

Define a family of measurements $\{J^x_{g_1,g_2}\}$ as

$$J_{g_1,g_2}^x = (G_2)_{g_2}^x (G_1)_{g_1}^x (G_2)_{g_2}^x .$$

Then there is a

(2.14.4)
$$\delta_{pasting} = \delta_{pasting}(\eta, \delta) = \text{poly}(\eta, \delta)$$

such that

$$(2.14.5) A_{a_1,a_2}^{x,y_1,y_2} \otimes \operatorname{Id} \simeq_{\delta_p} \operatorname{Id} \otimes J_{[\operatorname{eval}_{y_1}(\cdot) = a_1, \operatorname{eval}_{y_2}(\cdot) = a_2]}^x.$$

3. Chapters

Preliminaries

(1) Introduction

Background

- (2) Nonlocal games
- (3) Complexity theory
- (4) Operator algebras

Warm-up

(5) Pauli braiding

Overview

(6) The argument

- (7) Question reduction
- (8) Answer reduction
- (9) Recursive compression

Building blocks

- (10) Classical low-degree test
- (11) Quantum low-degree test

Related tools

(12) Parallel repetition

Extensions

(13) TBD