University of Salzburg <u>Lecturer</u>: Roland Kwitt

Imaging Beyond Consumer Cameras - Proseminar (911.422)

Exercise sheet C

For the following exercises, template code is provided in the Jupyter notebook Exercise-Sheet-B-Notebook.ipynb. Please hand-in the updated version of this Jupyter notebook (with your solutions).

Exercise 1. 2P.

Consider *transverse relaxation* in MR imaging, i.e., the exponential decay (with T_2) of the the (x, y) component of the magnetization vector $\mathbf{M}(t)$. For the x-component (and also for the y-component), we know

$$M_{x}(t) = M_{x}(0)e^{-t/T_2}$$

where $M_X(0)$ denotes the initial value of the *x*-component at time t = 0. Assume $T_2 = 220$ ms and create a plot showing the time t (in ms) vs. $M_X(t)$ for $t \in [100, 300]$ ms. Calculate the exact value for $M_X(t)$ at t = 233 ms.

Exercise 2. 3P.

For *transverse relaxation*, now consider *both* the *x*- and *y*-component and $T_2 = 220$ ms. Start with $\mathbf{M}(0) = [1, 0, 0]^{\mathsf{T}}$ and write $\mathbf{M}(t)$ as $\mathbf{A}(t)\mathbf{M}(0)$ where \mathbf{A} is an appropriate 3×3 matrix. Obviously, $\mathbf{A}(t)$ needs to be such that this works for any other initial magnetization vector as well. Plot the (2-)norm $\|\mathbf{M}(t)\|$ over $t \in [100, 1000]$ ms for starting vector $\mathbf{M}(0) = [1, 0, 0]^{\mathsf{T}}$).

Exercise 3. 4P.

For longitudinal relaxation, the situation is slightly different. For the z-component of $\mathbf{M}(t)$, i.e., $M_z(t)$, we have

$$M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}$$

where M_0 is the magnetization at *equilibrium*, i.e., when $T \to \infty$. Remember that without any relaxation, $\mathbf{M}(t)$ precesses around the axis of the static magnetic field \mathbf{B}_0 . Taking relaxation into account, this means that longitudinal relaxation reaches M_0 as $T \to \infty$ (and transversal magnetization shrinks to 0). **Combine** both *longitudinal* and *transversal* relaxation such that you can write

$$\mathbf{M}(t) = \mathbf{A}(t)\mathbf{M}(\mathbf{0}) + \mathbf{b}(t)$$

where $\mathbf{A}(t)$ and $\mathbf{b}(t)$ are set appropriately (with $M_0 = 1$ and $T_1 = 600$ ms, $T_2 = 120$ ms). Create a plot for $M_z(t)$ over $t \in [100, 2000]$ ms for starting vector $\mathbf{M}(0) = [1, 0, 0]^{\mathsf{T}}$.

Exercise 4. 5P.

In this exercise, we simulate (1) the path of transversal relaxation and (2) how longitudinal magnetization approaches the equilibrium state. The code in the Jupyter notebook contains a function zRot(phi) which returns a rotation matrix **R** around the *z*-axis (and, by default, takes radians as input). Note that for the matrix **A** from *Exercise 3* and the rotation matrix **R**, we have

$$AR = RA$$
,

i.e., they commute.

Write a function freep(T,T1,T2,f) which returns two matrices A and B, such that we can write

$$\mathbf{M}(t) = \mathbf{A}(t)\mathbf{M}(0) + \mathbf{b}(t)$$

Note that T is the duration of the precession (here we look at the graph for 1000 ms), T1, T2 are the longitudinal and transversal relaxation times (600 ms and 100 ms) and f is the frequency (10 Hz). Note that we can compute the rotation angle (around the z-axis) ϕ via (see notebook)

$$\phi = \frac{2\pi fT}{1000}$$

Use the freep function to start at $\mathbf{M}(0) = [1, 0, 0]^{\top}$ and plot $M_x(t)$, $M_y(t)$ as well as $M_z(t)$ over the time t (i.e., over the 1000 [ms]). It's important to note that you only need to use freep once: start with $\mathbf{M}(0)$ and use T=1 to get $\mathbf{M}(t_1)$. Then use $\mathbf{M}(t_1)$ to get $\mathbf{M}(t_2)$, etc. Below is an example of what this plot should look like, as a sanity check.

Exercise 5.This last exercise is just for better understanding of MRI. Visit

http://drcmr.dk/BlochSimulator/index.Flash.html

and explore the Bloch simulator (the Flash version, **not** the newer one). There are a couple of Youtube videos on how to use it.