1MCACC3: DISCRETE MATHEMATICS

Total No. of Hours: 52 Hours/Week: 04

<u>Course Objective:</u> To equip with mathematical skills for automating, simulating and modelling computer hardware and software systems.

Course Outcome: Students will be able to

CO1: Understand the concept of logical reasoning

CO2: Implement various algorithms using principles of mathematical induction

CO3: Interpret the importance of set theory concepts

CO4: Understand the importance of graph theory and its applications

Unit I	Introduction to logic: Methods of proof, Rules of inference, valid	
	arguments, Rules of inference for quantified statements. Principle of	
	Mathematical Induction. Basic counting principles, the product rule	8 hrs
	and the sum rule, Examples to illustrate sum and product rule. The	
	inclusion exclusion principle and examples, Pigeonhole Principle and	
	examples.	
Unit II	Review of set theory concepts, Definition and types of relations.	
	Representing relations using matrices and digraphs. Closure of	
	relations, Transitive closure, Warshall's algorithm. Recurrence	
	relations, modeling with recurrence relations with example of	12 hrs
	Fibonacci numbers. Generating function- definition with examples,	
	List of generating functions. Partial orderings, Hasse diagrams,	
	Maximal and minimal elements.	
	Introduction to Graph Theory, types of graphs Basic terminology, Sub	
Unit III	graphs, Representing graphs as incidence matrix and adjacency matrix.	
	Graph Isomorphism connectedness and simple graphs paths and cycles	
	in graphs and digraphs, planar graphs, graph colouring. Trees, Rooted	12 hrs
	trees, Binary trees, properties of Trees, Minimal Spanning Trees,	
	Network Flows-Graphs as Models of Flow of Commodities, Flows.	

	Error analysis, Polynomial, algebraic and transcendental equations,	
Unit IV	Solution of equations -Bisection method, Fixed point iteration method,	
	Newton Raphson method, convergence. System of linear equations-	10 hrs
	Solution by direct methods-Gauss Jordon method, LU decomposition	
	method. Solution by iterative methods- Gauss Seidal method, Jacobi's	
	method.	
Unit V	Numerical solutions of First order linear Ordinary Differential	
	equations- Euler and Picard methods. Runge Kutta methods (III & IV	10 hrs
	level). Introduction to Eigenvalues and Eigenvectors.	

REFERENCE BOOKS

- [1] C.L. Liu, "Elements of Discrete Mathematics", Tata McGraw Hill, Second Edition.
- [2] J. L. Mott, A. Kandel and T. P. Baker, "Discrete Mathematics for Computer Scientists and Mathematicians", Prentice Hall of India, Second Edition.
- [3] K. Shankar Rao, "Numerical methods for Scientists and Engineers", Prentice Hall Publications, Second Edition.
- [4] M. K. Jain, S. R. Iyengar and R. K. Jain, "Numerical Methods", Second Edition.
- [5] J. P. Trembly and R. P. Manohar, "Discrete Mathematical Structures with applications to Computer Science", McGraw Hill.
- [6] F. Harary, "Graph Theory", Addition Wesley.
- [7] J. H. Van Lint and R. M. Wilson, "A course on Combinatorics", Cambridge University Press.
- [8] Generald and Wheatly, "Applied Numerical Analysis", Prentice-Hall Publications.
- [9] E. V. Krishnamurthy and S. K. Sen, "Numerical Algorithms", East West Press.
- [10] E Balagurusamy, "Numerical Methods", Tata McGraw Hill Publications.