

MOVIMENTOCIRCULAR

1.º Bach

Rodrigo Alcaraz de la Osa

Movimiento circular uniforme [MCU]

Características

Las características del movimiento circular uniforme (MCU) son:

- Trayectoria circular.
- Módulo de la velocidad constante (aceleración tangencial $a_t = 0$).

Ecuación principal

La ecuación principal del MCU es:

$$\varphi(t) = \varphi_0 + \omega(t - t_0),$$

donde φ es la posición angular final, φ_0 la posición angular inicial, ω la velocidad angular, t el tiempo final y t_0 el tiempo inicial.

Periodo T El tiempo que tarda el móvil en completar una vuelta completa. Frecuencia f El número de vueltas que da el móvil por unidad de tiempo:

$$f = \frac{1}{T} \left[\frac{1}{s} = s^{-1} = Hz \right]$$

La frecuencia o velocidad angular, ω , está relacionada con el periodo y la frecuencia:

$$\omega = \frac{\Delta \varphi}{\Delta t} = \frac{2\pi}{T} = 2\pi f$$

Las magnitudes lineales y angulares se relacionan a través del radio, R:

$$e = \varphi R$$

$v = \omega R$

Aceleración centrípeta a_c

También llamada ACELERACIÓN NORMAL, es una aceleración que surge del cambio de dirección de la velocidad. Su módulo es igual a:

$$a_{\rm c} = \frac{v^2}{R} = \omega^2 R$$

y siempre se dirige hacia el centro de la circunferencia.

Movimiento circular uniformemente acelerado [MCUA]

Componentes intrínsecas de la aceleración

La aceleración puede descomponerse en sus COMPONENTES INTRÍNSECAS, una normal (centrípeta) y otra tangencial, debida a la variación del módulo de la velocidad:

$$\vec{a} = \vec{a}_n + \vec{a}_t \longrightarrow a = \sqrt{a_n^2 + a_t^2},$$

con

$$a_{n} = \frac{v^{2}}{r}$$

$$a_{t} = \frac{dv}{dt}$$

donde v representa el módulo de la velocidad instantánea y r es el radio de curvatura.

Adaptada de https://commons.wikimedia.org/wiki/File:Nonuniform_circular_motion.svg.

La aceleración tangencial se relaciona con la aceleración angular, α , a través de la expresión:

$$a_{\rm t} = \alpha R$$

Características

Las características del movimiento circular uniformemente acelerado (MCUA) son:

- Trayectoria circular.
- Aceleración tangencial, a_t , constante (velocidad angular ω variable).

Ecuaciones principales

La ECUACIONES PRINCIPALES del MCUA son:

POSICIÓN ANGULAR:
$$\varphi(t) = \varphi_0 + \omega_0(t - t_0) + \frac{1}{2}\alpha(t - t_0)^2$$
 (1)

VELOCIDAD ANGULAR:
$$\omega(t) = \omega_0 + \alpha(t - t_0)$$
 (2)

$$\omega^2 - \omega_0^2 = 2\alpha\Delta\varphi \tag{3}$$

donde φ es la posición angular final, φ_0 la posición angular inicial, ω_0 la velocidad angular inicial, ω la velocidad angular final, α la aceleración angular, t el tiempo final, t_0 el tiempo inicial y $\Delta \varphi = \varphi - \varphi_0$ es la distancia angular o espacio angular recorrido.

Dinámica del movimiento circular

Fuerza centrípeta

La fuerza centrípeta (que busca el centro) es una fuerza que hace que un cuerpo siga una trayectoria curva. Su dirección es siempre perpendicular al movimiento del cuerpo y hacia el centro de curvatura de la trayectoria.

$$F_{\rm c} = ma_{\rm c} = \frac{mv^2}{r}$$

Péndulo cónico

Un PÉNDULO CÓNICO está formado por una masa m suspendida de un hilo de longitud L, de tal forma que gira sin rozamiento con una velocidad v constante describiendo una trayectoria circular, formando un ángulo θ con la vertical.

• La componente horizontal de la tensión actúa como fuerza centrípeta:

$$T\sin\theta = \frac{mv^2}{r}$$

• La componente vertical de la tensión se compensa con el peso:

$$T\cos\theta = mg$$

• Resolviendo el sistema y despejando la velocidad:

$$v = \sqrt{rg \tan \theta}$$

Adaptada de
https://commons.wikimedia.org/wiki/File:
Conical_pendulum.svg.

Curvas

Sin peralte La única fuerza que mantiene al vehículo girando en su trayectoria es el ROZAMIENTO, que ha de ser suficientemente grande como para proporcionar la FUERZA CENTRÍPETA necesaria:

$$\mu mg > \frac{mv^2}{r} \Longrightarrow v < \sqrt{\mu rg}$$

Con peralte (sin rozamiento)

Los bordes inclinados añaden una fuerza adicional (la normal) que mantiene el vehículo en su trayectoria incluso en ausencia de rozamiento.

• La componente horizontal de la fuerza normal actúa como fuerza centrípeta:

$$N\sin\theta = \frac{mv^2}{r}$$

• La componente vertical de la normal se compensa con el peso:

$$N\cos\theta=mg$$

• Resolviendo el sistema y despejando la velocidad:

$$v = \sqrt{rg \tan \theta}$$

Traducida y adaptada de https://commons.wikimedia.org/wiki/File:
Banked_turn.svg.