Regular Expression:

Regular Expression is a way of describing regular Language in algebraic form.

Rules of Regular Expression:

36

$$L = \{\}$$

Example:

$$L = \{\epsilon\}$$

$$L = \{a\}$$

$$L = \{a, b, c\}$$

$$L = \{\varepsilon, a, \underline{aa}, \underline{aaa}, ...\}$$

$$L = \{a, \underline{aa}, \underline{aaa}, ...\}$$

$$L = \{\epsilon, a, b, \underline{aa}, ab, \underline{ba}, \underline{bb}, \ldots\}$$

Regular Expression

$$RE = \Phi$$

$$RE = \varepsilon$$

$$RE = a$$

$$RE = a + b + c$$

$$RE = a*$$

$$RE = a^+$$

$$RE = (a + b)*$$

Precedence of operators:

Φ∩εUa*

$$a^*$$

Regular Expression for the following languages:

$$L_1 = \{ w \mid w \in (a, b)^*, \sum = \{a, b\} \}$$

i.
$$|\mathbf{w}| = 2 \implies \mathbf{RE} = (\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})$$

ii.
$$|\mathbf{w}| \ge 2 \implies \mathbf{RE} = (\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})^*$$

iii.
$$|w| \le 2 \implies RE = (a+b)(a+b) + (a+b) + \varepsilon = (a+b+\varepsilon)(a+b+\varepsilon)$$

iv.
$$|w| = Even \implies RE = [(a + b)(a + b)]^*$$

v.
$$|w| = Odd \implies RE = [(a + b)(a + b)]*(a + b)$$

$$L_2 = \{w \mid | w | mod 3 = 0, w \in (a, b)^*$$

$$L_3 =$$
Set of all strings start with a, over $\sum = \{a, b\} \Longrightarrow$

$$L_4$$
 = Set of all strings end with a, over Σ = {a, b} \Longrightarrow

$$L_5$$
 = Set of all strings contain a as a sub string \Longrightarrow

$$L_6$$
 = Set of all strings start with a & end with a \Longrightarrow

$$L_7$$
 = Start & end with different symbol \Rightarrow

$$L_8$$
 = Start & end with same symbol \Rightarrow

L₀ = Set of all strings contain at least two a ⇒

$$L_{10} = Contain exact two a \Longrightarrow$$

$$L_{11} = Contain at most two a \Longrightarrow$$

 L_{12} = Set of all strings contain $\underline{a}a$ as a sub string over $\Sigma = \{a, b\} \Longrightarrow$

$$L_{13}$$
 = Set of all strings does not contain $\underline{a}a$ as a sub string over Σ = $\{a,b\}$ \Longrightarrow

$$L_{14}$$
 = Set of all strings contain even no. of a, over $\Sigma = \{a, b\} \Longrightarrow$

$$L_{15}$$
 = Set of all strings contain at least one pair of a \Longrightarrow

$$L_{16}$$
 = Every 0 immediately followed by at least two 1 over Σ = $\{0,1\}$ \Longrightarrow

$$\mathbf{L}_{17} = \{\mathbf{a}^{\mathbf{m}} \ \mathbf{b}^{\mathbf{n}} \mid \mathbf{m}, \ \mathbf{n} \geq \mathbf{0}\} \Longrightarrow$$

$$\mathbf{L}_{18} = \{\mathbf{a^m} \ \mathbf{b^n} \mid \mathbf{m} + \mathbf{n} = \mathbf{Even} \mid \mathbf{m}, \ \mathbf{n} \ge \mathbf{0}\} \Longrightarrow$$

$$\mathbf{L}_{19} = \{(\mathbf{ab})^{\mathbf{n}} \mid \mathbf{n} \geq 0\} \Longrightarrow$$

$$\mathbf{L}_{20} = \{\mathbf{a}^{2\mathbf{n}} \mid \mathbf{n} \geq 0\} \Longrightarrow$$

$$\mathbf{L}_{21} = \{0, 1, 10, 100, 1000, ...\} \Longrightarrow$$

Q23: Write a RE for the set of strings of 0's and 1's whose 10th symbol from right end is 1.

Q24: L = {
$$a^{2n} b^{2m+1} | n \ge 0, m \ge 0$$
}

Q25: Write RE for L = $\{a^n \ \underline{b}^m \mid n \ge a, m \le 3\}$

Q26: $L = \{w \mid |w| \text{ mod } 3 = 0\}, w \in (a, b)^*$

Q27: $L = \{w \mid w \in (a, b)^*, \underline{n}_a(w) \mod 3 = 0\}$

Identities Related to Regular Expression:

36

There are many identities for the regular expression. Let p, q and r are regular expressions.

1.
$$\Phi + R = R$$

7.
$$R \cdot R^* = R^* \cdot R = R^+$$

2.
$$\Phi \cdot \mathbf{R} = \mathbf{R} \cdot \Phi = \Phi$$

8.
$$(R^*)^* = R^*$$

3.
$$\varepsilon \cdot R = R \cdot \varepsilon = R$$

9.
$$\varepsilon + RR^* = \varepsilon + R^*R = R^*$$

10.
$$(PQ)^* P = P(QP)^*$$

$$5. \qquad \mathbf{R} + \mathbf{R} = \mathbf{R}$$

11.
$$(P+Q)^* = (P^*Q^*)^* = (P^*+Q^*)^* = P^*(QP^*)^*$$
 Imp

6.
$$R^*. R^* = R^*$$

12.
$$(P + Q) R = PR + QR \text{ and } R (P + Q) = RP + RQ$$

Note: Two regular expression P and Q are equivalent (P = Q) if and P and Q represent the same set of strings.

Example: Simplify RE (1 + 00*1) + (1 + 00*1)(0 + 10*1)*(0 + 10*1)

Example: The regular expression 0*(10*)* denotes the same set as

- a) (1*0)*1*
- b) 0 + (0 + 10)*
- c) (0+1)*10(0+1)*
- d) None

Example: Let
$$A = (m + n^*)^*$$
, $B = (m + n)^*$

- a) A = B
- b) A ⊂ B
- c) B ⊂ A
- d) $A \cap B = \Phi$

Example: Let
$$A = [(01)*1*]$$
, $B = (01 + 1)*$

- a) A = B
- b) A ⊂ B
- c) B ⊂ A
- d) None

Regular Expression to NFA:

- Φ =
- 2. ε=
- 3. a =
- 4. b=
 - 5. a + b =

- 6. a.b =
 - 7. $a^* =$

8. (a+b)*=

36

9. (ab)*

12.
$$aa + b$$

$$14.(aa + b)*$$

13. (a + b)a*

16.
$$(a + b)*abb$$
,

17.
$$(a + b + (a) (\underline{bab} + (a + b))*(ab)*$$

18.
$$[a + \underline{ba}(a + b)]*a(\underline{ba})*b*$$

19.
$$a*b(a + b)*$$

24.
$$(a + b)*(\underline{a}\underline{a} + \underline{b}\underline{b}) (a + b)$$

Peg 21.5

36

Finite Automata to Regular Expression:

Arden's Theorem: Let P, Q and R be three regular expressions if P does not contain ε , then R = Q + RP has a unique solution, that is $R = QP^*$, if P contain ε then R = Q + RP has more than one solution.

That means, whenever we get any equation in the form of R = Q + RP.

Then we can directly replaced by $R = QP^*$.

Assumption for applying Arden's Theorem:

- The transition diagram must not have ε transition.
- It must have only one initial state.
- Arden's Theorem used only for DFA, NFA but not for ε NFA.

Example: Find regular expression:

Example: Find regular expression.

Peg 24.5

FA to Regular Expression Direct Method:

26

1.

2

3

36

4.

5.

36

 $\xrightarrow{A} \xrightarrow{r_1} \xrightarrow{r_2} \xrightarrow{B}$

10.

14.
$$q_0 \xrightarrow{a} q_1$$

96

17.

18.

22.

23.

