Logica e Inteligencia Artificial

Ulises Jeremias Cornejo Fandos,¹ Lucas Di Cunzolo,² and Federico Ramón Gasquez³

¹13566/7, Licenciatura en Informatica, Facultad de Informatica, UNLP

compiled: October 12, 2018

1. Ejercicio 1

Sean A, B y C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L de los siguientes teoremas. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i.
$$\vdash_L ((\neg A \to A) \to A)$$

Así pues, $(\neg A \to A) \vdash_L A$.

 $\therefore \vdash_L ((\neg A \to A) \to A)$, por el Teorema de Deducción.

ii.
$$\vdash_L (\neg \neg B \to B)$$

Para este caso se escribe a continuación la demostración en L.

(1)
$$((B \to ((B \to B) \to B)) \to (B \to B)) \to (B \to B))$$
 (L_2)
(2) $(B \to ((B \to B) \to B))$ (L_1)
(3) $((B \to (B \to B)) \to (B \to B))$ $(1), (2)MP$
(4) $(B \to (B \to B))$ (L_1)
(5) $(B \to B)$ $(3), (4)MP$
(6) $(\neg \neg B \to B)$

iii.
$$\vdash_L ((A \to B) \to (\neg B \to \neg A))$$

El enunciado tiene la forma sintáctica del axioma L_3 .

²13572/5, Licenciatura en Informatica, Facultad de Informatica, UNLP

³13598/6, Licenciatura en Informatica, Facultad de Informatica, UNLP

2. Ejercicio 2

Sean A, B y C tres fórmulas bien formadas (fbfs) del sistema formal L. Dar una demostración sintáctica en L para la siguiente deducción. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i.
$$\{((A \to B) \to C), B\} \vdash_L (A \to C)$$

$$(1) \hspace{1cm} ((A \rightarrow B) \rightarrow C) \hspace{1cm} hip\acute{o}tesis$$

$$(2)$$
 B $hipótesis$

3. Ejercicio 3

Sea $\Gamma = \{A_1, \ldots, A_n\}$, n > 0, un conjunto de fibfs del C. de Enunciados. Se sabe que $\Gamma \vdash_L A$. ¿Es cierto que si Γ es satisfactible entonces $\vdash_L A$?. Fundar.

4. Ejercicio 4

Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \vdash_L A$. ¿Es cierto que para todo Γ_i tal que $\Gamma_i \subset \Gamma$, $\Gamma_i \vdash_L A$?. Fundar.

El enunciado es falso. Supongamos un conjunto de fbfs $\Gamma = \{C, B, C \to A\}$, luego sabemos que, siendo $\{C, C \to A\} \subset \Gamma$, podemos afirmar que se puede deducir A a partir de ambos, es decir, que $\{C, C \to A\} \vdash_L A$.

Sin embargo, no podemos afirmar lo mismo de $\{B\}$, incluso cuando $\{B\} \subset \Gamma$. Es decir, no se cumple que $\{B\} \vdash_L A$. Por lo tanto es falso.