

### Tema 5:

# Especificación de sistemas secuenciales síncronos

Fundamentos de computadores

José Manuel Mendías Cuadros

Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid



### Contenidos



- Especificación basada en estados.
- ✓ Diagramas de estados.
- ✓ Máquinas de Moore y Mealy.

### Transparencias basadas en los libros:

- R. Hermida, F. Sánchez y E. del Corral. Fundamentos de computadores.
- D. Gajsky. Principios de diseño digital.

### Sistemas secuenciales

- La salida en cada instante depende del valor de la entrada en ese instante y de todos los valores que la entrada ha tomado con anterioridad.
  - o En ocasiones, a misma entrada, distinta salida.

$$x(t) \longrightarrow F$$

$$z(t_i) = F(x([0, t_i])), con x(t_i) \in E, z(t_i) \in S$$

- Para especificar su comportamiento deberán definirse:
  - o Los conjuntos discretos de valores de entrada/salida: E, S
  - o ¿Cómo especificar la función F?

# Especificación basada en estados

 Estado: clase de equivalencia formada por todas las secuencias de valores de entrada que producen una misma salida actual y futura.

# Especificación basada en estados

Estado: clase de equivalencia formada por todas las secuencias de valores de entrada que producen una misma salida actual y futura.



$$x(t) \in E = \{ A, B, C \}, z(t) \in S = \{ 0, 1 \}$$

| x(t) |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| z(t) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |

# Especificación de sistemas secuenciales síncronos

# Especificación basada en estados

Estado: clase de equivalencia formada por todas las secuencias de valores de entrada que producen una misma salida actual y futura.



$$x(t) \in E = \{ A, B, C \}, z(t) \in S = \{ 0, 1 \}$$

| x(t) | A | В | С | В | В | A | С | В | A | A | С | С | A | В | В |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| z(t) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |





| A | B | A | A | B | C

 $C \mid C \mid C \mid B \mid A$ 



z(t)



0

**A** B **A** A B C

0

 $C \mid C \mid C \mid B \mid A$ 

0



**Estado IMPAR** 

Han llegado un número **impar** de **A**es



### tema 5: -

# Especificación basada en estados

### **Estado IMPAR**

Han llegado un número **impar** de **A**es



### **Estado PAR**

Han llegado un número <mark>par</mark> de **A**es

### يّ لؤ **C**

# Especificación basada en estados

### **Estado IMPAR**

Han llegado un número **impar** de **A**es



### **Estado PAR**

Han llegado un número <mark>par</mark> de **A**es



- Especificación del dominio: E
  - Conjunto discreto de valores que puede tomar la entrada.
- Especificación del codominio: S
  - Conjunto discreto de valores que puede tomar la salida.
- Especificación del conjunto de estados: Q
  - o Conjunto discreto de estados en los que puede estar el sistema.
- Función de transición de estados: G: Q×E → Q
  - Define cuál será el estado siguiente del sistema para cada posible par (estado del sistema, valor de la entrada).
- Función de salida: H:  $Q \times E \rightarrow S$ 
  - Define cuál será la salida para cada posible par (estado del sistema, valor de la entrada)



$$x(t) \in E = \{ A, B, C \}, z(t) \in S = \{ 0, 1 \}$$
  
 $q(t) \in Q = \{ par, impar \}$ 

## Función de transición de estados

| q     | X | q'    |
|-------|---|-------|
| par   | Α | impar |
| par   | В | par   |
| par   | С | par   |
| impar | Α | par   |
| impar | В | impar |
| impar | С | impar |

### Función de salida

| q     | X | Z |
|-------|---|---|
| par   | Α | 0 |
| par   | В | 1 |
| par   | С | 1 |
| impar | Α | 1 |
| impar | В | 0 |
| impar | С | 0 |

# FC.

- Representa un de sistema secuencial mediante un grafo:
  - Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

# Especificación de sistemas secuenciales síncronos

- Representa un de sistema secuencial mediante un grafo:
  - Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

| q     | X | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | С | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | С | impar | 0 |

- Representa un de sistema secuencial mediante un grafo:
  - o Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

| q     | X | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | С | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | С | impar | 0 |





- Representa un de sistema secuencial mediante un grafo:
  - o Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

| q     | Х | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | С | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | С | impar | 0 |



- Representa un de sistema secuencial mediante un grafo:
  - o Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

| q     | X | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | С | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | С | impar | 0 |



- Representa un de sistema secuencial mediante un grafo:
  - o Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

| q     | X | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | C | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | С | impar | 0 |



- Representa un de sistema secuencial mediante un grafo:
  - o Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

| q     | X | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | С | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | C | impar | 0 |



- Representa un de sistema secuencial mediante un grafo:
  - o Cada estado se representa por un nodo.
  - Cada transición de estado por un arco dirigido y etiquetado:
    - Cada arco une un estado origen con estado destino.
    - La etiqueta indica el valor de entrada que provoca la transición y el valor de la salida para el par (estado origen, entrada).
    - Esto NO quiere decir que la salida se calcule durante la transición.

| q     | X | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | С | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | С | impar | 0 |



### Descripción binaria



La entrada es un vector de n bits

$$o \ \underline{x} \in \{0, 1\}^n \text{ es decir, } \underline{x} = (x_{n-1} ... x_0) \text{ con } x_i \in \{0, 1\}$$

La salida es un vector de m bits

$$o \ \underline{z} \in \{0, 1\}^m \text{ es decir, } \underline{z} = (z_{m-1}... z_0) \text{ con } z_i \in \{0, 1\}$$

El estado es un vector de p bits

$$o \underline{q} \in \{0, 1\}^p \text{ es decir, } \underline{q} = (q_{p-1} \dots q_0) \text{ con } q_i \in \{0, 1\}$$

Función de transición de estados:

o p funciones de conmutación de p+n variables

○ 
$$\underline{G} = \{ g_i : \{ 0, 1 \}^{p+n} \rightarrow \{ 0, 1 \} / q_i = g_i(\underline{q}, \underline{x}), \text{ con } 0 \le i \le p-1 \}$$

Función de salida:

o m funciones de conmutación de p+n variables

○ 
$$\underline{H} = \{ h_i : \{ 0, 1 \}^{p+n} \rightarrow \{ 0, 1 \} / z_i = h_i(\underline{q}, \underline{x}), \text{ con } 0 \le i \le m-1 \}$$

### Descripción binaria



- Codificación domino:  $\{A \rightarrow (00), B \rightarrow (01), C \rightarrow (10)\}$
- Codificación codomino:  $\{0 \rightarrow 0, 1 \rightarrow 1\}$
- Codificación estados:  $\{ par \rightarrow 0, impar \rightarrow 1 \}$

# Función de transición de estados

| q        | $X_1$ | $\mathbf{x}_{0}$ | q' |
|----------|-------|------------------|----|
| <b>q</b> | 0     | 0                | 1  |
| 0        | 0     | 1                | 0  |
| 0        | 1     | 0                | 0  |
| 0        | 1     | 1                | -  |
| 1        | 0     | 0                | 0  |
| 1        | 0     | 1                | 1  |
| 1        | 1     | 0                | 1  |
| 1        | 1     | 1                | -  |

### Función de salida

| q | $X_1$ | X <sub>0</sub> | Z |
|---|-------|----------------|---|
| 0 | 0     | 0              | 0 |
| 0 | 0     | 1              | 1 |
| 0 | 1     | 0              | 1 |
| 0 | 1     | 1              | - |
| 1 | 0     | 0              | 1 |
| 1 | 0     | 1              | 0 |
| 1 | 1     | 0              | 0 |
| 1 | 1     | 1              | - |

### Asíncrono vs. síncrono



- Sistema secuencial asíncrono:
  - El estado del sistema puede cambiar en cualquier instante en respuesta a un cambio de la entrada.
- Sistema secuencial síncrono:
  - El estado del sistema solo puede cambiar en un conjunto discreto de instantes indicados por una señal de reloj.
  - Un cambio en la entrada no provoca por sí mismo un cambio de estado.
  - Sólo el valor existente en la entrada en los instantes marcados por el reloj afectan al estado.



La señal de reloj es cuadrada y periódica de frecuencia,  $f_{clk}$ , fija.

Los cambios de 0 a 1 (flanco subida) ó 1 a 0 (flanco de bajada) marcan los instantes.

# Concepto de registro de estado



# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado





# Concepto de registro de estado







Estructura de una Máquina de Moore

La salida en todo instante depende exclusivamente del estado en que se encuentra el sistema.



#### Estructura de una Máquina de Mealy

La salida en cada instante depende del estado en que se encuentra el sistema y del valor de la entrada en ese instante.

#### FC

### Mealy vs. Moore



#### Mealy:



| Х | q'                    |
|---|-----------------------|
| Α | impar                 |
| В | par                   |
| С | par                   |
| Α | par                   |
| В | impar                 |
| С | impar                 |
|   | A<br>B<br>C<br>A<br>B |

| q     | Х | Z |
|-------|---|---|
| par   | Α | 0 |
| par   | В | 1 |
| par   | С | 1 |
| impar | Α | 1 |
| impar | В | 0 |
| impar | С | 0 |

#### Moore:



| q     | Х | q'    |
|-------|---|-------|
| par   | Α | impar |
| par   | В | par   |
| par   | С | par   |
| impar | Α | par   |
| impar | В | impar |
| impar | С | impar |

| q     | Z |
|-------|---|
| par   | 1 |
| impar | 0 |





| q     | Х | q'    |
|-------|---|-------|
| par   | Α | impar |
| par   | В | par   |
| par   | С | par   |
| impar | Α | par   |
| impar | В | impar |
| impar | С | impar |
|       |   |       |

| q     | Z |
|-------|---|
| par   | 1 |
| impar | 0 |

#### FC

#### Máquina de Moore



par

par

impar

impar

impar

par

par

impar impar





| q     | Х | q'    |
|-------|---|-------|
| par   | Α | impar |
| par   | В | par   |
| par   | С | par   |
| impar | Α | par   |
| impar | В | impar |
| impar | С | impar |

| q     | Z |
|-------|---|
| par   | 1 |
| impar | 0 |

#### FC

#### Máquina de Moore



impar

impar

|                | par   |
|----------------|-------|
|                | par   |
| <del>→</del> 1 | par   |
|                | impar |
|                | impar |
|                | impar |

| 9     |
|-------|
| par   |
| impar |

impar

par

par

par

impar impar

44

## Máquina de Moore



impar



impar

impar

impar

#### FC

#### Máquina de Moore



impar

impar

impar

par

impar

impar

par

clk

46

#### FC





| q     | Х | q'    |
|-------|---|-------|
| par   | Α | impar |
| par   | В | par   |
| par   | С | par   |
| impar | Α | par   |
| impar | В | impar |
| impar | С | impar |

| q     | Z |
|-------|---|
| par   | 1 |
| impar | 0 |



impar

impar

impar

49

### Máquina de Moore



clk

impar

impar

impar impar

50

#### Máquina de Moore



impar

impar

impar

#### FC

#### Máquina de Moore



impar

impar

impar

par

impar

impar

par

par

**51** 



par

par

par

impar

impar

impar

par

par

impar



impar

impar

impar

par

impar

impar

par

clk



impar

impar

impar

55

## Máquina de Moore



impar

56







impar

impar

impar























| q     | Х | q'    | Z |
|-------|---|-------|---|
| par   | Α | impar | 0 |
| par   | В | par   | 1 |
| par   | С | par   | 1 |
| impar | Α | par   | 1 |
| impar | В | impar | 0 |
| impar | С | impar | 0 |



impar

#### FC

#### Máquina de Mealy



impar

impar

impar

par

impar

impar

0

par













impar

impar

0

impar

impar

76





































A/0

par

impar

# Mealy vs. Moore



Las salidas de las máquinas Moore y Mealy son notablemente diferentes.

95

# Mealy vs. Moore



- Las salidas de las máquinas Moore y Mealy son notablemente diferentes.
  - Pero como, típicamente, son leídas por otro sistema sincronizado con el mismo reloj, solo son relevantes los valores existentes en los flancos de reloj.
- Por ello, a efectos prácticos, la salida de la máquina de Moore equivale a la de Mealy pero con un ciclo de retraso.



$$z(t) = \begin{cases} SI & \text{si } x(t-2) = a \text{ y } x(t-1) = b \text{ y } x(t) = b \\ NO & \text{en caso contrario} \end{cases}$$

Máquina de Mealy

Estado S0: no ha llegado ningún elemento del patrón



$$z(t) = \begin{cases} SI & \text{si } x(t-2)=a \text{ y } x(t-1)=b \text{ y } x(t)=b \\ NO & \text{en caso contrario} \end{cases}$$

Máquina de Mealy

Estado S0: no ha llegado ningún elemento del patrón



$$z(t) = \begin{cases} SI & \text{si } x(t-2)=a \text{ y } x(t-1)=b \text{ y } x(t)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado SO: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"



$$z(t) = \begin{cases} SI & \text{si } x(t-2)=a \text{ y } x(t-1)=b \text{ y } x(t)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado SO: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"



### tema . Especi

# Reconocedor del patrón "abb"

$$z(t) = \begin{cases} SI & \text{si } x(t-2) = a \text{ y } x(t-1) = b \text{ y } x(t) = b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado S0: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"
- Estado S2: ha llegado el subpatrón "ab"



# tema 5:

# Reconocedor del patrón "abb"

$$z(t) = \begin{cases} SI & \text{si } x(t-2)=a \text{ y } x(t-1)=b \text{ y } x(t)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado S0: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"
- Estado S2: ha llegado el subpatrón "ab"



# tema 5:

### FC

# Reconocedor del patrón "abb"

$$z(t) = \begin{cases} SI & \text{si } x(t-2)=a \text{ y } x(t-1)=b \text{ y } x(t)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado S0: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"
- Estado S2: ha llegado el subpatrón "ab"



$$z(t) = \begin{cases} SI & \text{si } x(t-3)=a \text{ y } x(t-2)=b \text{ y } x(t-1)=b \\ NO & \text{en caso contrario} \end{cases}$$

$$z(t) = \begin{cases} SI & \text{si } x(t-3)=a \text{ y } x(t-2)=b \text{ y } x(t-1)=b \\ NO & \text{en caso contrario} \end{cases}$$

Máquina de Moore

Estado S0: no ha llegado ningún elemento del patrón



$$z(t) = \begin{cases} SI & \text{si } x(t-3)=a \text{ y } x(t-2)=b \text{ y } x(t-1)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado SO: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"



$$z(t) = \begin{cases} SI & \text{si } x(t-3)=a \text{ y } x(t-2)=b \text{ y } x(t-1)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado SO: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"
- Estado S2: ha llegado el subpatrón "ab"



$$z(t) = \begin{cases} SI & \text{si } x(t-3)=a \text{ y } x(t-2)=b \text{ y } x(t-1)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado S0: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"
- Estado S2: ha llegado el subpatrón "ab"
- Estado S3: ha llegado el patrón "abb"



# Reconocedor del patrón "abb"

$$z(t) = \begin{cases} SI & \text{si } x(t-3)=a \text{ y } x(t-2)=b \text{ y } x(t-1)=b \\ NO & \text{en caso contrario} \end{cases}$$

- Estado SO: no ha llegado ningún elemento del patrón
- Estado S1: ha llegado el subpatrón "a"
- Estado S2: ha llegado el subpatrón "ab"
- Estado S3: ha llegado el patrón "abb"



# rema 5

## Acerca de Creative Commons





- Ofrece algunos derechos a terceras personas bajo ciertas condiciones. Este documento tiene establecidas las siguientes:
  - Reconocimiento (Attribution):
    En cualquier explotación de la obra autorizada por la licencia hará falta reconocer la autoría.
  - No comercial (Non commercial):

    La explotación de la obra queda limitada a usos no comerciales.
  - Compartir igual (Share alike):

    La explotación autorizada incluye la creación de obras derivadas siempre que mantengan la misma licencia al ser divulgadas.

Más información: https://creativecommons.org/licenses/by-nc-sa/4.0/