

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2012

GCE Chemistry – CH1

SECTION A

Q.1

1s	2s	2p		3s	3р		
1 1	1	11 11	11	1 ↑	‡ ↑	1	1

[1]

Q.2 B/13 [1]

Q.3 Acid: Proton donor (1)

Dynamic equilibrium: Reversible reaction where the **rate** of forward and reverse reactions is equal (1) [2]

Q.4 (a)

	1	2	3	4
Volume used / cm ³	20.75	20.20	20.10	20.30

[1]

(b) 20.20 cm³

[1]

[2]

Q.5 A [1]

Q.6 (a) Ratio of C:H is 1:1.33 (1) Emp. Formula = C_3H_4 (1)

(b) Molecular formula = C_9H_{12} [1]

SECTION A TOTAL [10]

SECTION B

Q.7	(a)	(i)	Temperature: 298K / 25°C (1) Pressure: 1 atm / 101.325 kPa or 100 kP (1)	a [2]			
		(ii)	Hydrogen gas is an element in its standard state	[1]			
		(iii)	$\Delta H = \Delta H_f (C_5 H_{12}) + 5 \Delta H_f (H_2 O) - 5 \Delta H_f (CO) - 11 \Delta H_f (H_2)$ (1)				
			$\Delta H_f (C_5 H_{12}) = -1049 - 5 (-286) + 5 (-111)$ (1)				
			$\Delta H_f (C_5 H_{12}) = -174 \text{ kJ mol}^{-1}$ (1)	[3]			
	(b)	(i)	Catalyst in different state to reactants	[1]			
		(ii)	Catalysts provide an alternative route (1) with a lower activation energy (1)	/ [2]			
		(iii)	Lower temperature or less time so less energy needed / Can make alternative production method possible with sustainable starting materior less waste products	als [1]			
		(iv)	At higher temperatures particles have more energy (1)				
			More collisions have energy above activation energy (1)				
			(Can obtain these two marks from correctly labelled Boltzmann energy distribution plot with two temperature lines (1) and Activation energy (1))				
			Successful collisions occur more frequently (1) – 3 max	[3]			
			QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter	∍ [1]			
	(c)	(i)	No effect (1)				
			Same number of (gas) molecules on both sides of reaction (1)	[2]			
		(ii)	Lower yield of hydrogen (1)				
			Reaction shifts in endothermic direction to (try to counteract increas in temperature) (1)	e [2]			
		(iii)	No effect	[1]			

Total [19]

Q.8	(a)	Be: 80	00 - 1000 kJ mol ⁻¹ (1)			
		Ne: 17	$700 - 2300 \text{ cm}^{-1} (1)$	[2]		
	(b)	Be (g)	\Rightarrow Be ⁺ (g) + e	[1]		
	(c)	(i)	Greater nuclear charge on He (1)			
			No increase in shielding / Outer electrons same distance from nucl / Outer electrons in same shell (1)	eus [2]		
		(ii)	Outer electron in O is paired in orbital / Outer electron for N is unpaired (1)			
			Repulsion between paired electrons makes it easier to remove out electron of oxygen (1)	er [2]		
	(d)	(i)	Electrons excited to a higher energy level (1)			
			Energy levels are quantised (1)			
			Electrons drop from higher to lower energy levels (1)			
			Energy is emitted as light (1) – 3 max	[3]		
			Lines represent the energy emitted (1) when an excited electron drops back (1) from one energy level to another (1)			
			QWC: legibility of text, accuracy of spelling, punctuation and grammal clarity of meaning [1]	nar,		
		(ii)	Find frequency of convergence limit (1) for Lyman series (1)			
			Ionisation energy is given by E=hf / Energy ∞ frequency (1)	[3]		

Total [14]

Q.9 (a) M_r (PbS) = 239.1 M_r (PbO) = 223 (1)

Moles of PbS = $20,000 \div 239.1 = 83.65$ moles (1)

Mass of PbO =
$$83.65 \times 223 \div 1000 = 18.7 \text{ kg (1)}$$
 [3]

(b) (i) Sulfur dioxide: Acid rain (1)

- (ii) I. Sum of M_r of reactants = 223 + 28 = 251 (1) Atom economy = (207 ÷ 251) x 100 = 82.5% (1) [2]
- (ii) II. Method 1 as higher atom economy means less waste / more useful product [1]
- (c) (i) Symbol = Po (1) Mass number = 212 (1) [2]
 - (ii) All three arrows labelled correctly, as shows below, gives two marks
 - Any two arrows labelled correctly gives one mark [2]

- (iii) γ -radiation is high energy / frequency electromagnetic waves (1) It affects neither atomic number nor mass number / it changes neither the number of protons nor neutrons (1) [2]
- (iv) 31.8 hours = 3 half lives (1)

Mass remaining after 3 half lives = 3mg (1) [2]

(d) $A_r = [(206.0 \times 25.48) + (207.0 \times 22.12) + (208.0 \times 52.40)] \div 100 (1)$ $A_r = 207.3 (1)$

1 mark for correct significant figures (answer must be reasonable) [3]

Total [19]

```
Q.10 (a)
         (i)
                  M_r (CuSO<sub>4</sub>.5H<sub>2</sub>O) = 249.7
                                                                                                   [1]
         (ii)
                           Moles of copper(II) sulfate
                           = 0.250 \times 250/1000 = 6.25 \times 10^{-2} \text{ moles (1)}
                           Mass = 6.25 \times 10^{-2} \times 249.7 = 15.6 \text{ g} (1)
                                                                                                   [2]
                  II.
                           1 mark each for:
                           Weighing method
                           Dissolve copper sulfate in a smaller volume of distilled water
                           Transfer to 250.0 cm<sup>3</sup> volumetric / standard flask
                           Use of funnel
                           Wash funnel / glass rod / beaker with distilled water into
                           volumetric flask
                           Add distilled water up to mark
                           Shake solution / mix thoroughly
                                                                                                   [5]
                                                                               5 max
                  QWC: organisation of information clearly and coherently; use of
                  specialist vocabulary where appropriate
                                                                                                   [1]
(b)
         (i)
                  Powder has a greater surface area (1) so gives a higher rate of reaction
                  (1)
                                                                                                   [2]
         (ii)
                  Extrapolate lines from start (level at 21.3°C) and end (through points
                  at 180-270 seconds) (1)
                  Temperature rise = 6.0^{\circ}C (Range 5.8-6.2^{\circ}C) (1)
                                                                                                   [2]
                           Moles = 0.250 \times 0.05 = 1.25 \times 10^{-2} moles
         (iii)
                  Ι.
                                                                                                   [1]
                  II.
                           Zinc is the limiting reagent / Copper(II) sulfate is in excess
                                                                                                   [1]
                             \Delta H = -(50)x \ 4.18 \ x \ 6.0 \div (6.12 \ x \ 10^{-3}) \ (1)
                  III.
                             \Delta H = -204902 \text{ J mol}^{-1}
                             \Delta H = -205 \text{ kJ mol}^{-1} (1)
                                                                                                   [2]
                  IV.
                           Enthalpy measures chemical energy, and as heat energy
                           increases, chemical energy must decrease
                                                                                                   [1]
```

SECTION B TOTAL [70]

Total [18]