Note del corso di Geometria 1

Gabriel Antonio Videtta

10 maggio 2023

Quadriche e classificazione affine delle coniche

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Nota. Si assume che, nel corso del documento, valga che char $\mathbb{K} \neq 2$.

Definizione (quadriche). Si dice **quadrica** un qualsiasi luogo di zeri di un polinomio $p \in \mathbb{K}[x_1, \dots, x_n]$ con deg p = 2.

Definizione (coniche). Si dice **conica** una quadrica relativa ad un polinomio in due variabili.

Osservazione.

- ▶ Una quadrica è invariante per la relazione \sim su $\mathbb{K}[x_1,\ldots,x_n]$, dove $p_1 \sim p_2 \iff \exists \alpha \in \mathbb{K}^* \mid p_1 = \alpha p_2$. Infatti il luogo di zeri di un polinomio non varia se esso viene moltiplicato per una costante non nulla di \mathbb{K} .
- ▶ Una quadrica può essere vuota (come nel caso della conica relativa a $x^2 + y^2 + 1$ in \mathbb{R}).
- ▶ Si identifica con la notazione $p(\underline{x})$ con $\underline{x} \in \mathbb{K}^n$, la valutazione del polinomio p nelle coordinate di \underline{x} . Per esempio, se $\underline{x} = (1,2)$ e $p(x,y) = x^2 + y^2$, con $p(\underline{x})$ si identifica il valore $p(1,2) = 1^2 + 2^2 = 5$.

Osservazione (riscrittura di p mediante matrici). Sia $p \in \mathbb{K}[x_1, \dots, x_n]$ di grado due. Allora p si può sempre scrivere come $p_2 + p_1 + p_0$, dove p_i è un polinomio omogeneo contenente soltanto monomi di grado i.

In particolare, $p_2(x_1,\ldots,x_n)$ può essere sempre riscritto come $\sum_{i=1}^n \sum_{j=1}^n a_{ij}$ con $a_{ij} \in \mathbb{K}$ con $a_{ij} = a_{ji}$. È infatti sufficiente "sdoppiare" il coefficiente c_{ij} di x_ix_j in due metà, in modo tale che $c_{ij}x_ix_j = \frac{c_{ij}}{2}x_ix_j + \frac{c_{ij}}{2}x_ix_j = \frac{c_{ij}}{2}x_ix_j + \frac{c_{ij}}{2}x_jx_i$. Inoltre, anche $p_1(x_1,\ldots,x_n)$

può essere riscritto come $\sum_{i=1}^{n} b_{ij}$.

Si possono allora considerare la matrice $A \in M(n, \mathbb{K})$ ed il vettore $\underline{b} \in \mathbb{K}^n$, definiti in modo tale che:

$$A = (a_{ij})_{i,j=1-n}, \qquad \underline{b} = (b_i)_{i=1-n} \in \mathbb{K}^n.$$

Infatti, $A \in \underline{b}$ soddisfano la seguente identità:

$$p(\underline{x}) = \underline{x}^{\top} A \underline{x} + \underline{b}^{\top} \underline{x} + c,$$

che, riscritta tramite l'identificazione di $\mathcal{A}_{n}(\mathbb{K})$ come l'iperpiano $H_{n+1} \in \mathcal{A}_{n+1}(\mathbb{K})$, diventa:

$$p(\underline{x}) = \hat{\underline{x}}^{\top} \hat{A} \hat{\underline{x}}, \text{ dove } \hat{A} = \begin{pmatrix} A & \underline{b}/2 \\ \underline{b}^{\top}/2 & c \end{pmatrix}.$$

Si osserva che \hat{A} è una matrice simmetrica di taglia n+1 a elementi in \mathbb{K} , e in quanto tale essa induce un prodotto scalare su \mathbb{K}^{n+1} . Pertanto la quadrica relativa p è esattamente l'intersezione tra H_{n+1} e $\mathrm{CI}(\hat{A})$, identificando \mathbb{K}^{n+1} come H_{n+1} , ossia la quadrica è esattamente $\iota^{-1}(H_{n+1} \cap \mathrm{CI}(\hat{A}))$.

Definizione (matrice associata ad una quadrica). Si definisce la costruzione appena fatta di \hat{A} come la **matrice associata alla quadrica relativa a** p, e si indica con $\mathcal{M}(p)$. In particolare, A è detta la matrice che rappresenta la parte quadratica, e si indica con $\mathcal{A}(p)$, mentre b/2 rappresenta la parte lineare, indicata con $\mathcal{L}(p)$, e c = c(p) è detto termine noto.

Definizione (azione di $A(\mathcal{A}_n(\mathbb{K}))$ su $\mathbb{K}[x_1,\ldots,x_n]$). Sia $f \in A(\mathcal{A}_n(\mathbb{K}))$. Allora $A(\mathcal{A}_n(\mathbb{K}))$ agisce su $\mathbb{K}[x_1,\ldots,x_n]$ in modo tale che $p'=p\circ f$ è un polinomio per cui $p'(\underline{x})=p(f(\underline{x}))$.

Definizione (equivalenza affine tra polinomi). Si dice che due polinomi p_1 , $p_2 \in \mathbb{K}[x_1, \ldots, x_n]$ sono affinemente equivalenti se e solo se $\exists f \in A(\mathcal{A}_n(\mathbb{K})) \mid p_1 = p_2 \circ f$. In tal caso si scrive che $p_1 \sim p_2$.

Osservazione.

- ▶ L'equivalenza affine è una relazione di equivalenza.
- ▶ Sia Z(p) il luogo di zeri di p. Allora, $p_1 \sim p_2 \implies \exists f \in A(\mathcal{A}_n(\mathbb{K})) \mid Z(p_2) = f(Z(p_1))$.
- ▶ In generale, se $p_1 = p_2 \circ f$, vale che $Z(p_2) = f(Z(p_1))$.

Proposizione (formula del cambiamento della matrice associata su azione di $A(\mathcal{A}_n(\mathbb{K}))$). Sia $f \in A(\mathcal{A}_n(\mathbb{K}))$ e sia $p \in \mathbb{K}[x_1, \dots, x_n]$ di grado due. Allora vale la seguente identità:

$$\mathcal{M}(p \circ f) = \hat{M}^{\top} \mathcal{M}(p) \hat{M} = \begin{pmatrix} M^{\top} \mathcal{A}(p) M & M^{\top} (\mathcal{A}(p) \underline{t} + \mathcal{L}(p)) \\ M^{\top} (\mathcal{A}(p) \underline{t} + \mathcal{L}(p)) \end{pmatrix}^{\top} & p(\underline{t}) \end{pmatrix},$$

$$\operatorname{con} \hat{M} = \begin{pmatrix} M & \underline{t} \\ 0 & 1 \end{pmatrix},$$

dove $f(\underline{x}) = M\underline{x} + \underline{t} \ \forall \underline{x} \in \mathbb{K}^n \text{ con } M \in GL(n, \mathbb{K}) \text{ e } \underline{t} \in \mathbb{K}^n.$

Dimostrazione. Per definizione, $p \circ f$ è tale che $(p \circ f)(\underline{x}) = p(f(\underline{x})) = p(M\underline{x} + \underline{t})$. In particolare, $(p \circ f)(\underline{x}) = (\widehat{M}\underline{x} + \underline{t})^{\top} \mathcal{M}(p)(\widehat{M}\underline{x} + \underline{t}) = (\widehat{M}\hat{x})^{\top} \mathcal{M}(p)(\widehat{M}\hat{x})$. Pertanto vale che:

$$(p \circ f)(\underline{x}) = \hat{x}^{\top} \hat{M}^{\top} \mathcal{M}(p) \hat{M} \hat{x} \implies \mathcal{M}(p \circ f) = \hat{M}^{\top} \mathcal{M}(p) \hat{M},$$

da cui la tesi. \Box

Osservazione.

▶ Per la proposizione precedente, due matrici, associate a due polinomi di secondo grado affinemente equivalenti, variano per congruenza, così come le matrici della parte quadratica.

Pertanto $\operatorname{rg}(\mathcal{M}(p \circ f)) = \operatorname{rg}(\mathcal{M}(p))$, come $\operatorname{rg}(\mathcal{A}(p \circ f)) = \operatorname{rg}(\mathcal{A}(p))$ (così come, per $\mathbb{K} = \mathbb{R}$, non variano i segni dei vari determinanti). Allo stesso tempo, la classe di equivalenza di $\mathcal{M}(p)$ è rappresentata completamente per $\mathbb{K} = \mathbb{C}$ (tramite il rango) e per $\mathbb{K} = \mathbb{R}$ (tramite la segnatura), per il teorema di Sylvester.

ightharpoonup Se f è una traslazione, $M=I_n$, e dunque la formula si riduce alla seguente:

$$\mathcal{M}(p \circ f) = \left(\begin{array}{c|c} \mathcal{A}(p) & \mathcal{A}(p)\underline{t} + \mathcal{L}(p) \\ \hline \left(\mathcal{A}(p)\underline{t} + \mathcal{L}(p) \right)^\top & p(\underline{t}) \end{array} \right).$$

In particolare, non varia la matrice relativa alla parte quadratica, ossia vale che $\mathcal{A}(p \circ f) = \mathcal{A}(p)$.

▶ Se $\lambda \in \mathbb{K}^*$, $\mathcal{M}(\lambda p) = \lambda \mathcal{M}(p)$, dal momento che $\mathcal{A}(\lambda p) = \lambda \mathcal{A}(p)$, così come $\mathcal{L}(\lambda p) = \lambda \mathcal{L}(p)$ e $c(\lambda p) = \lambda c(p)$. Tuttavia, a differenza del cambio di matrice per equivalenza affine, per $\mathbb{K} = \mathbb{R}$ la segnatura non è più un invariante (infatti, in generale $\sigma(-S) = (\iota_-(S), \iota_+(S), \iota_0(S))$, se $S \in \text{Sym}(n, \mathbb{R})$). Ciononostante non varia, in valore assoluto, la differenza tra l'indice di positività e quello di negatività, ossia $S(\mathcal{M}(p)) := |\iota_+ - \iota_-|$ continua ad essere invariante.

Definizione (quadrica non degenere). Una quadrica relativa a $p \in \mathbb{K}[x_1,\ldots,x_n]$ si dice **non degenere** se $\operatorname{rg}(\mathcal{M}(p)) = n+1$ (ossia se $\det(\mathcal{M}(p)) \neq 0$), e altrimenti si dice degenere. In particolare, una conica si dice non degenere se $\operatorname{rg}(\mathcal{M}(p)) = 3$ e degenere altrimenti.

Definizione (quadrica a centro). Una quadrica C relativa a $p \in \mathbb{K}[x_1,\ldots,x_n]$ (o p stesso) si dice **a centro** se $\exists \underline{x}_0 \in \mathbb{K}^n \mid p(\underline{x}_0+\underline{x}) = p(\underline{x}_0-\underline{x})$ $\forall \underline{x} \in \mathbb{K}^n$. In particolare, si dice che tale \underline{x}_0 è un **centro di simmetria** per C.

Osservazione.

- ▶ Si osserva che $\underline{0}$ è un centro di simmetria per p se $p(\underline{x}) = p(-\underline{x})$, ossia se e solo se la parte lineare $\mathcal{L}(p)$ è nulla.
- ▶ Allora \underline{x}_0 è un centro di simmetria per p se e solo se $\underline{0}$ è un centro di simmetria per $p \circ f$, dove f è la traslazione che manda $\underline{0}$ in \underline{x}_0 . Infatti, in tal caso, vale che $f(\underline{x}) = \underline{x} + \underline{x}_0$ e che:

$$(p \circ f)(\underline{x}) = p(\underline{x} + \underline{x}_0) = p(\underline{x} - \underline{x}_0) = (p \circ f)(-\underline{x}).$$

▶ Per le osservazioni precedenti, vale allora che \underline{x}_0 è un centro di simmetria per p se e solo se la parte lineare di $p \circ f$ è nulla, ossia se e solo se \underline{x}_0 è tale che $\mathcal{A}(p)\underline{x}_0 + \mathcal{L}(p)$. Pertanto p è a centro se e solo se il sistema $\mathcal{A}(p)\underline{x} = -\mathcal{L}(p)$ è risolvibile, e quindi se e solo se $\operatorname{rg}(\mathcal{A}(p) \mid \mathcal{L}(p)) = \operatorname{rg}(\mathcal{A}(p))$ $\iff \mathcal{L}(p) \in \operatorname{Im}(\mathcal{A}(p))$, per il teorema di Rouché-Capelli. Vale dunque che p è sempre a centro, se $\mathcal{A}(p)$ è invertibile.

Poiché i centri di una conica sono esattamente le soluzioni del sistema lineare $\mathcal{A}(p)\underline{x} = -\mathcal{L}(p)$, essi formano un sottospazio affine. In particolare, se \underline{x}_0 è un centro, vale che tale sottospazio è esattamente $\underline{x}_0 + \text{Ker } \mathcal{A}(p)$. Pertanto, se $\mathcal{A}(p)$ è invertibile (ossia se è iniettiva), il centro è unico.