

DIFFERENTIATION RULES

GENERAL FORMULAS

1.
$$\frac{d}{dr}(c) = 0$$

3.
$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

5.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 (Product Rule)

7.
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$
 (Chain Rule)

2.
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

4.
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

6.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$
 (Quotient Rule)

8.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 (Power Rule)

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

$$9. \ \frac{d}{dx}(e^x) = e^x$$

11.
$$\frac{d}{dx} \ln |x| = \frac{1}{x}$$

$$10. \ \frac{d}{dx}(a^x) = a^x \ln a$$

12.
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

TRIGONOMETRIC FUNCTIONS

13.
$$\frac{d}{dx}(\sin x) = \cos x$$

14.
$$\frac{d}{dx}(\cos x) = -\sin x$$

15.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

16.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

17.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

18.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

INVERSE TRIGONOMETRIC FUNCTIONS

19.
$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$$

20.
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

21.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

22.
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2-1}}$$

23.
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}$$

24.
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

HYPERBOLIC FUNCTIONS

25.
$$\frac{d}{dx}(\sinh x) = \cosh x$$

$$26. \ \frac{d}{dx}(\cosh x) = \sinh x$$

27.
$$\frac{d}{dx}(\tanh x) = \mathrm{sech}^2 x$$

28.
$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$$

29.
$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

$$30. \frac{d}{dx} \left(\coth x \right) = -\operatorname{csch}^2 x$$

INVERSE HYPERBOLIC FUNCTIONS

31.
$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{1 + x^2}}$$

32.
$$\frac{d}{dx} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 - 1}}$$

33.
$$\frac{d}{dx} (\tanh^{-1}x) = \frac{1}{1 - x^2}$$

34.
$$\frac{d}{dx} \left(\operatorname{csch}^{-1} x \right) = -\frac{1}{|x| \sqrt{x^2 + 1}}$$

35.
$$\frac{d}{dx} (\operatorname{sech}^{-1} x) = -\frac{1}{x\sqrt{1-x^2}}$$

36.
$$\frac{d}{dx} \left(\coth^{-1} x \right) = \frac{1}{1 - x^2}$$

5

www.engclubs.net