

1. (2 puntos) Indica cuáles serían las funciones semántica unaria y binaria del siguiente programa while P, donde Pg representa otro Programa While k-variables cuya función semántica binaria es g(x,y) para todo x, y:

```
begin
X1 := X1 + X1;
Xk+1 := X2;
Pq;
X2 := 5;
while X2 \neq Xk+1 do
begin
 X1 := succ(X1);
 Xk+1 := pred(Xk+1)
end
X1 := X1 + X2
end
```

2. (1.5 puntos) Completa los 5 huecos del siguiente programa Programa While de forma que compute la función dada. Cada hueco puede contener más de una instrucción. Se permiten las macros de la suma, resta, producto y asignación:

O		t = l= :	l: -ll
()	ากบา	ranı	แนวน
OUL	IPU	lani	lidad

14/12/2020

Apellidos,	Nombre:	DNI:

3. (1.5 puntos) Dada una Máquina de Turing Mg=({0,1}, {p0,...,pf}, Tg, p0, {pf}) con función binaria semántica g(x,y), completa la Máquina de Turing Mf siguiente para que compute la función f(x,y) = g(0, x+y). Se deben completar las 4 transiciones incompletas y la quíntupla que define Mf:

$$Mf = (\{0,1\}, , , q0,)$$
Tf:
$$(q0, 1, 1, D, q0) \qquad (q1, 0, 0, I, q2) \qquad (q3,)$$

$$(q0,) \qquad (q2,) \qquad (q4, 1, 0, I, q5)$$

$$(q1, 1, 1, D, q1) \qquad (q3, 1, 1, I, q3) \qquad (q5,)$$

4. (1.5 puntos) Determina la función semántica unaria que computa la siguiente máquina de Turing (q0 estado inicial y qf único estado final).

- **5.** Se pretende demostrar que el problema de decidir si un programa while P cumple que su función semántica binaria es 10 si, y solo si, x>y es irresoluble.
 - a) (2 puntos) Rellena los huecos que faltan en el proceso de demostración por reducción:

Suponemos que existe un algoritmo A cuya función semántica es:

y definimos la macro A(X) a partir de él.

Hacemos ahora este programa P_d , que nos permitirá más adelante reducir el problema de la parada (se permite usar todas las macros vistas en clase):

y cuya función semántica es:

Apellidos.	Nombre:	 	DNI:	

Aplicando el teorema de parametrización, el código d se puede calcular mediante una función f(c,k) total y computable. Dado que es total y computable, se puede definir una macro F(X,Y) que la compute.

A partir de las macros A y F podemos ahora definir el siguiente programa:

```
begin
  X1 := F(X1, X2);
  X1 := A(X1);
end

cuya función semántica es:
```

Dada la definición de P_d , esta función es equivalente a la función característica del problema de la parada. Por tanto, hemos encontrado una contradicción, ya que...

, por lo que nuestro problema es irresoluble.

- b) **(0.5 puntos)** Demuestra, utilizando el Teorema de Rice, que el problema descrito en el apartado anterior es irresoluble (se permite usar todas las macros vistas en clase).
- 6. (1 punto, incorrecta resta 0.3) Consideramos un programa while 'e' tal que $\varphi_e(x,y,z)=x^z+y$. Basándonos en el teorema de parametrización, ¿cuál de las siguientes opciones podemos asegurar?
 - a) La función $g(z)=2^z$ es computable y el código del programa que la computa es $S_1^2(e,2,0)$
 - b) La función $g(z)=3^z$ es computable y el código del programa que la computa es $S^1_1(e,3)$
 - c) La función $g(x,y)=x^3+2$ es computable y el código del programa que la computa es $S_1^2(e,2,3)$
 - d) La función $g(x,y)=x^2+y$ es computable y el código del programa que la computa es $S^1_2(e,2)$