Lecture 24

-Hidden Markov Model (HMM)

HMM

- HMM: Hidden Markov Model
- Hidden states q (POS) and observed states o (output/words)
- o₁,o₂,....o_T constitute the output sentence
- q₁,q₂,....q_T constitute the hidden states at the back-end that produce the output sentence
- Transition probabilities (between hidden states)
- Output probabilities (for each output)
- Task: there are different candidate output sentences (eg. Chatbot application) and you have to find the best sentence of all. The sentence with the maximum probability wins

HMM probability calculations

Joint probability

$$P(O,Q) = P(O|Q) \times P(Q) = \prod_{i=1}^{n} P(o_i|q_i) \times \prod_{i=1}^{n} P(q_i|q_{i-1})$$

Probability of the output sentence

$$P(O) = \sum_{Q} P(O,Q) = \sum_{Q} P(O|Q)P(Q)$$

Demo 1

Demo 2

 $P(3 \ 1 \ 3) = P(3 \ 1 \ 3, \text{cold cold cold}) + P(3 \ 1 \ 3, \text{cold cold hot}) + P(3 \ 1 \ 3, \text{hot hot cold}) + \dots$

Assignment

• Find the best output sentence: O: the old woman ate /the young child slept

Q: <s>Det Adj Noun Verb