Devoir surveillé n°1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, $z = \frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta}$. Calculer Re z, Im z, |z|, arg z.

II. Calcul de quelques sinus et cosinus.

- 1) Résoudre sur \mathbb{R} l'équation $\cos(3x) = \cos(\frac{\pi}{2} 2x)$, puis préciser les solutions dans $[0, 2\pi]$.
- 2) Pour tout réel x, exprimer $\cos(3x)$ en fonction de $\cos x$.
- 3) En déduire qu'il existe trois réels a, b, c que l'on précisera tels que

$$\forall x \in \mathbb{R}, \cos(3x) - \sin(2x) = \cos x (a\sin^2 x + b\sin x + c)$$

- 4) Résoudre l'équation $4y^2 + 2y 1 = 0$.
- 5) Utiliser les résultats précédents pour déterminer les valeurs de sin $\frac{\pi}{10}$ et sin $\frac{3\pi}{10}$.
- 6) A l'aide des formules de trigonométrie, déterminer les valeurs de $\cos \frac{\pi}{5}$, $\cos \frac{\pi}{10}$, $\sin \frac{\pi}{5}$ et $\cos \frac{3\pi}{10}$.

III. Étude d'une bijection et de sa réciproque.

Dans tout ce problème, on considère la fonction f définie sur \mathbb{R} par

$$f: x \mapsto x + x^3$$
.

On note \mathscr{C} la courbe représentative de f.

Partie I : réciproque de f

- 1) Dresser le tableau des variations de f.
- 2) Justifier que f possède une réciproque q, dont on donnera le tableau des variations.
- 3) Justifier que g est impaire.
- 4) Dresser le tableau de signes de g.
- 5) Justifier que si x > 0, alors g(x) < x.
- 6) Tracer dans un même repère l'allure de \mathscr{C} , ainsi que celle de la courbe de g.

Partie II : approximation rationnelle de g.

Dans toute cette partie, on considère un réel a > 0. Nous allons étudier une méthode de calcul approché de g(a): la méthode de Newton.

On note \mathcal{D}_a la droite parallèle à l'axe des abscisses et passant par le point d'ordonnée a.

7) Soit $t \ge 0$. On note $\varphi(t)$ l'abscisse du point d'intersection de \mathcal{D}_a et de la tangente à \mathscr{C} au point (t, f(t)). Réaliser un schéma explicatif. Montrer que

$$\varphi(t) = \frac{2t^3 + a}{3t^2 + 1}.$$

- 8) Montrer que $\varphi(g(a)) = g(a)$.
- 9) Montrer que pour tout t > 0, $t \varphi(t)$ a le même signe que f(t) a.
- 10) Pour t > 0, déterminer le signe de $\varphi'(t)$ en fonction de celui de f(t) a. En déduire les variations de φ sur l'intervalle $I_a = [g(a), a]$.
- 11) Montrer que si $t \in I_a$, alors $\varphi(t) \in I_a$.
- **12)** Montrer que si $t \in I_a$, alors $0 \leqslant \varphi'(t) \leqslant \frac{2}{3}$.

On définit maintenant la suite $(u_n(a))$ par $u_0(a) = a$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1}(a) = \varphi(u_n(a)).$$

On considère enfin un entier naturel N vérifiant $a \leq N$.

- **13)** Montrer que pour tout $n \in \mathbb{N}$, $u_n(a) \in I_a$.
- 14) Montrer que la suite $(u_n(a))$ est décroissante et en déduire qu'elle converge vers une limite ℓ .
- **15)** Montrer que $f(\ell) = a$. Que vaut-donc ℓ ?
- **16)** En considérant $\int_{g(a)}^{u_n(a)} \varphi'(t) dt$, montrer que pour tout $n \in \mathbb{N}$:

$$0 \leqslant u_{n+1}(a) - g(a) \leqslant \frac{2}{3}(u_n(a) - g(a)).$$

17) En déduire que pour tout $n \in \mathbb{N}$:

$$0 \leqslant u_n(a) - g(a) \leqslant N\left(\frac{2}{3}\right)^n$$
.

18) Application : calculer à la main une valeur approchée rationnelle à 10^{-1} près de g(1).

— FIN —