Лабораторная работа №8

Информационная безопасность

Махорин И. С.

2024

Российский университет дружбы народов имени Патриса Лумумбы, Москва, Россия

Докладчик

- Махорин Иван Сергеевич
- Студент группы НПИбд-02-21
- Студ. билет 1032211221
- Российский университет дружбы народов имени Патриса Лумумбы

Цель лабораторной работы

• Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Ход выполнения лабораторной

работы

Задача лабораторной работы

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты Р1 и Р2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов С1 и С2 обоих текстов Р1 и Р2 при известном ключе; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить [1].

Решение задачи лабораторной работы

Для решения задачи написан программный код:

```
ітпост оз # Импортируем модуль оз для генерации случайних байтов
def generate key(length):
    # ФУНКЦИЯ ЛЛЯ ГЕНЕРАЦИИ КЛЮЧА ЗАЛАННОЙ ЛЛИНЫ
    return os urandom(length) # Возвлащает случайный ключ в виде байтов
def encrypt(plaintext, key):
    # Функция для цифрования текста с использованием ключа
    return bytes(a ^ b for a, b in zip(plaintext,encode(), key))
    # XOR (исключающее MBM) каждого байта текста с соотпетствующим байтом ключа
def decrypt(ciphertext, key):
    # функция для лешифрования текста с использованием ключа
    return bytes(a ^ b for a, b in zip(ciphertext, key)).decode()
    # XOR шифротекста с ключом и декодирование результата в строку
в Примеры использования
P1 = "Hello, World!" # Первый текст для шифрования
P2 = "Python Programming" # Второй текст для вифрования
# Генерация ключа
key length = max(len(P1), len(P2)) # Определяем длину ключа как максимальную длину из двух текстов
key = generate key(key length) # Генерируем ключ заданной длины
C1 = encrypt(P1, key) # Шифруем первый текст
C2 = encrypt(P2, key) # Hwbovem BTODOR TEKCT
print("Шифротекст С1:", С1) # Выролим шифротекст перрого текста
print("Шифротекст С2:", С2) # Выводим шифротекст второго текста
# Дешифровка
decrypted P1 = decrypt(C1, key) # Лешифруем первый цифротекст
decrypted P2 = decrypt(C2, key) # Дешифруем второй шифротекст
print("Дешифрованный текст Р1:", decrypted P1) # Выводим расшифрованный первый текст
print("Децифорванный текст P2:", decrypted P2) # Выводим расшифрованный второй текст
```

Рис. 1: Программный код

Вывод

Вывод

• В ходе выполнения лабораторной работы было освоено на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Список литературы. Библиография

Список литературы. Библиография

[1] Методические материалы курса