Instruction Graph Grammar

Andrew Benson

Program	p	::=	P(v, vs)	programs
Vertices	vs	::=	nil	empty
			v :: vs	cons
Vertex	v	::=	V(n, c)	vertex
Content	c	::=	do a then n	single action
			do a until cnd then n	open loop action
			if cnd then n else n	conditional
			$\mathbf{goto} \ n$	goto
			end	termination

We let $n \in \mathbb{Z}$, the integers.

We let $a \in \mathsf{Action}$, a sort describing classes of actions, like movement, that a robot might be able to perform. A grammar defining Action is assumed.

We let $cnd \in \texttt{Condition}$, a sort describing classes of conditions, like whether an object is some distance ahead, that a robot might be able to detect. A grammar defining Condition is assumed.