Reconfiguration d'Architectures pour l'Amélioration de la Résilience des Véhicules Connectés

Soutenance de mi-parcours

Encadrants de Thèse : Etienne Borde Ulrich Kühne

Maxime AYRAULT

6 Novembre 2020

Sommaire

Présentation du sujet

État de l'art

- Techniques de défenses dynamiques
- Résilience
- Théorie des jeux

Travaux réalisés

- Définition de l'architecture d'un véhicule
- Défense MTD basée sur la reconfiguration du réseau
- Stratégies de défenses optimales

Travaux futurs

- Amélioration du modèle et prise en compte de la résilience
- Calcul de l'indice de résilience du véhicule

Présentation du sujet - Le contexte

- loT de plus en plus présent dans la vie courante.
 - \rightarrow fortement développé dans l'industrie automobile.

- Cohabitation entre applications critiques (impliquant vies humaines) et applications non critiques (expérience de l'utilisateur).
- Nouvelles attaques non connues au moment de la conception du système qui apparaitront pendant la durée de vie du véhicule
- Objectif : Être capable de s'adapter à toutes formes d'attaques connues ou non.
 - \rightarrow Être le plus résilient possible.
 - → ↑ Disponibilité; = Confidentialité et Intégrité

Présentation du sujet - Trois Types d'Attaquants

- Attaque physique : Via diagnostique de la voiture. Objectif : Rajouter des fonctionnalités sur le véhicules pour lesquelles on a pas payé.
- Attaque courte portée : Via smartphone/laptop.. Objectif : Prendre le contrôle d'un véhicule proche, ou envoyer de fausses informations au véhicules alentours.
- Attaque longue portée : Via WiFi/4G. Objectif : Prendre le contrôle d'une flotte de véhicule.

Etat de l'Art - Techniques de Défenses Dynamiques

- Véhicules limités en puissance calcul et en ressources.
 - → Utilisation de méthodes de défense légère.
- Deux types de défenses dynamiques complémentaires applicables sur les véhicules : Moving Target Defense (MTD) et Modes Dégradés.
- Côté proactif : MTD¹ : ralentir l'acquisition de connaissances sur le système par un attaquant.
- Côté réactif : Modes Dégradés : bloquer la progression d'un attaquant après les défenses percées.
 - Aide au retour du système dans état nominal.

^{1.} Gui-linCaiet al. "Moving target defense: state of the art and characteristics". en. In: Frontiers of Information Technology and Electronic Engineering17.11 (nov. 2016)

Etat de l'Art - Moving Target Defense

Rendre dynamique différents aspects d'un système
 → Casser la relation asymétrique attaquant /
défenseur.

 Ralentir un attaquant dans l'acquisition de connaissances, la découverte de vulnérabilités et l'exploitation de failles

Les MTD se divisent en 5 catégories 2 :

- Changer dynamiquement la représentation des données
- Utilisation dynamique d'applications
- Modification de l'environnement d'exécution
- Rendre dynamique la plateforme d'exécution
- Configuration dynamique du réseau

^{2.} H.Okhraviet al.Survey of Cyber Moving Target Techniques :en. Rapp. tech. Fort Belvoir, VA :Defense Technical Information Center, sept. 2013.

Etat de l'Art - Efficacité des MTD Lors d'une Attaque

Une attaque est divisée en 5 phases 3 :

- Reconnaissance
- Accès
- Déploiement
- Lancement
- Persistence

MTD/ Attack	Reconnaissance	Accès	Déploiement	Lancement	Persistence
Réseau	✓			✓	
Plateforme		√	✓		✓
Enviromenent d'Execution			✓	✓	
Logiciel			✓	✓	
Donées			√	√	

^{3.} H.Okhraviet al. "Finding Focus in the Blur of Moving-Target Techniques". In :IEEE SecurityPrivacy12.2 (mar. 2014)

Etat de l'Art - Résilience

Définition de la Résilience 4

• The persistence of service delivery that can justifiably be trusted, when facing changes.

Notre Définition de la Résilience

- Se défendre de manière proactive le plus longtemps possible contre toutes formes d'attaques. Une fois ces défenses tombées, revenir rapidement dans un état de fonctionnement nominal grâce à des mécanismes de défenses réactifs.
- Exemple de méthodes visant à améliorer la résilience : Redondance,
 Obsfucation, Cryptographie, Monitorat, Isolation.

^{4.} Laprie, Jean-Claude. "From Dependability to Resilience." International Conference on Dependable Systems and Networks (DSN 2008, 2008, 2.)

Etat de l'Art - Théorie des Jeux

- Problème décisionnel à résoudre?
 - \rightarrow Modélisation du problème grâce à la théorie des jeux 5
 - → Analyse sur le modèle afin trouver une/des solution(s)

Exemple : Recherche stratégies défenses optimales en cas d'attaque.

- \rightarrow Représentation interractions attaquant / defenseur avec modèle mathématique.
- \to Permet l'observation de l'impact de la configuration système et méthodes défenses sur interactions attaquant / défenseur.

^{5.} Lin Chenet J.Leneutre. "A Game Theoretical Framework on Intrusion Detection in Heteroge-neous Networks". en. In: IEEE Transactions on Information Forensics and Security4.2 (juin 2009)

Etat de l'Art - Analyse sur les Jeux

- La recherche des meilleures stratégies passe par l'analyse de plusieurs 'equilibres ⁶.
- Equilibre de Nash; joueurs jouent simultanément. D'etermination stratégies dont les deux joueurs ne devraient pas dévier seul.
- Equilibre de Stackelberg; joueurs jouent chacun leur tour. Determination des meilleures stratégies permettant de limiter les gains du second joueur.
- Minmax. Permet de minimiser le reward maximum que l'autre joueur pourrait obtenir.

^{6.} Ziad Ismail et al. "A Game Theoretical Model forOptimal Distribution of Network Security Resources".en. In: (2017)

Travaux Réalisés - Architecture Véhicule

Travaux Réalisés - Défense MTD Basée sur la Reconfiguration du Réseau

- Méthode permettant cacher un véhicule dans un réseau.
 - → Changement régulier adresse IP + Limitation impact sur QoS.
- Publication article Workshop MTD associé ACM CCS de 2019⁷.

Actuellement:

- Un véhicule = Une adresse IPv4 (appartenant à la plage d'adresse du constructeur)
- Découverte de l'adresse → Collecte d'informations du système par attaquant possible.

^{7.} Maxime Ayrault, Etienne Borde, Ulrich Kühne. "Run or Hide? Both! A Method Based onIPv6 Address Switching to Escape While Being Hidden". In :Proceedings of the 6th ACMWorkshop on Moving Target Defense - MTD'19.

Travaux Réalisés - Principe de notre Méthode

- Un véhicule = N interfaces réseaux.
 → Plusieurs adresses IP par véhicule.
- Une seule adresse IP active à la fois.
 (Active = Acceptant les messages entrant)
- Rotation périodique de l'adresse IP active.
- Renouvellement adresse IP après utilisation.
- Utilisation MultiPath TCP (MPTCP)
 - → Garantir une qualité de service suffisante.

Rotation périodique

Travaux Réalisés - Différentes versions Méthode

- Version 1 : N > 2; Pas de renouvellement adresse après utilisation.
- Version 2 : N > 2; Renouvellement addresse après utilisation.
- Version 3 : N = 2; Renouvellement addresse après utilisation.

	Version 1	Version 2	Version 3
Coût interface	+++	+++	+
Coût bande passante	+	++	+++
Risque d'attaque DoS	+++	+	+

Travaux Réalisés - Exemple d'Utilisation de la Version 3

Travaux Réalisés - Définition du Jeu

- 2 joueurs : Un attaquant (le hacker) un défenseur (le système).
 Nombre fini de mouvements définis.
- Une combinaison mouvement = une fonction reward par joueur.
 - R_d: Reward Défenseur; R_a: Reward Attaquant
- Choix des actions à réaliser
 - → Dépense d'un budget attribué à chaque joueur.
 - P: Budget Défenseur; Q: Budget Attaquant
- Trouver les meilleures stratégies
 - → Objectif des deux joueurs = maximiser les rewards obtenus.

Travaux Réalisés - Forme Normale Jeu

- Utilisation des budgets dans les actions :
 - q_i : Se reconfigurer; q_i^{not} : ne rien faire; q_i^{deg} : Passer en mode dégradé; p_i : attaquer; p_i^{not} : ne pas attaquer
- Tableau représentant forme normale du jeu :

	Reconf (q_i)	Rien (q_i^{not})	Degradé (q_i^{deg})
Attaque (p _i)	$R_1^a; R_1^d$	$R_2^a; R_2^d$	$R_3^a; R_3^d$
Pas Attaque (p_i^{not})	$R_4^a; R_4^d$	$R_5^a; R_5^d$	$R_6^a; R_6^d$

ullet Analyses de différents équilibres o determiner les meilleures stratégies.

Futurs travaux

- Adapter le modèle au cas d'étude du véhicule.
- Prise en compte de la résilience dans le modèle du jeu.
- Calcul de l'indice de la résilience.
- Créer un modèle générique du jeu.