

Sub A5

6. The termite barrier as claimed in claim 4, wherein the rectangular pores are dimensioned 0.40 mm by 0.70 mm.

7. The termite barrier as claimed in claim 1, wherein the mesh sheet is made of a corrosion resistant grade of stainless steel.

8. The termite barrier as claimed in claim 1, wherein the mesh sheet is bonded to or embedded in a moisture impervious sheet.

9. In combination with a building structure erected 10 on a ground level concrete slab, a termite barrier which is substantially resistant to termite chewing and corrosion, the termite barrier comprising:

a mesh sheet made of a material substantially resistant to termite secretions and having a hardness of not 15 less than about Shore D70 for resistance to termite chewing, the mesh sheet having pores wherein each pore has a linear dimension in all directions less than the maximum linear dimension of the cross-section of a head of a species of termite to be 20 controlled, the termite barrier being positioned beneath an underside of the slab and extending to a perimeter of the slab in all directions and upwardly about the perimeter of the slab to a distance above the slab, and above the ground level adjacent 25 thereto.

10. The combination as claimed in claim 9, further comprising a member projecting through the termite barrier and the slab, and a termite barrier sleeve integral with the termite barrier located beneath the slab and 30 clamped in pressure engagement therewith about the perimeter of the member.

11. The combination as claimed in claim 10, wherein the sleeve is formed by cutting an opening in the termite barrier, said opening having a perimeter less than the 35 perimeter of the member and stretching and deflecting the marginal area of termite barrier about the opening to form the sleeve.

12. A cable having a core of conductive member or members, and a protective covering surrounding the 40 core, said covering including a termite barrier which is substantially resistant to termite chewing and corrosion, said termite barrier surrounding said core and comprising a mesh layer formed of a material substantially resistant to termite secretions and having a hardness of not 45 less than about Shore D70 for resistance to termite chewing, the mesh sheet having pores wherein each pore has a linear dimension in all directions less than the maximum linear dimension of the cross-section of a head of a species of termite to be controlled. 50

13. In combination, a foundation structure for supporting a building, a termite barrier which is substantially resistant to termite chewing and corrosion for shielding the foundation structure to protect the building from termite invasion, the termite barrier comprising a mesh sheet formed of a material resistant to termite secretions and having a hardness of not less than about Shore D70 for resistance to termite chewing, the mesh sheet having pores wherein each pore has a linear 55

60

65

dimension in all directions less than the maximum linear dimension of the cross-section of a head of a species of termite to be controlled, the termite barrier covering the foundation structure to protect the building supported thereon against termites.

14. In combination with a building structure erected on a ground level or near ground level concrete slab, and having a non integral termite resistant adjacent structure, a strip of termite barrier material which is substantially resistant to termite chewing or corrosion, the termite barrier comprising; a mesh sheet made of a material substantially resistant to termite secretions and having a hardness of not less than about Shore D70 for resistance to termite chewing, the mesh sheet having pores wherein each pore has a linear dimension in all directions less than the maximum linear dimension of the cross-section of a head of a species of termite to be controlled, said strip of termite barrier material having respective marginal edge portions along opposite longitudinal edges of the strip integrally secured to the slab and the adjacent structure to establish integrity of the connection between the slab and the adjacent structure against the passage of termites.
15. The combination as claimed in claim 14, wherein the adjacent structure is a further concrete structure.
16. The combination as claimed in claim 14, wherein the adjacent structure is composed substantially of a building material selected from the group consisting of brick, natural stone, rock, concrete block, steel and aluminum in block or sheet form.
17. The combination claimed in claim 14, wherein the slab and the adjacent structure are each cast in-situ concrete components, the respective marginal edge portions of the termite barrier strip being embedded into the slab and adjacent structure during the pouring of the concrete.
18. The combination claimed in claim 14, wherein the slab and adjacent structure are each preformed and the combination further comprises an adhesive resistant to attack by termites for bonding the marginal edge portions of the strip of termite barrier material to the slab and adjacent structures.
19. The combination claimed in claim 18, further comprising a mechanical fastener for additionally securing the respective marginal edge portions of the termite barrier strip at spaced intervals along the length thereof.
20. A post or column to be erected with an end portion thereof embedded in the ground, said end portion being enclosed in a protective sleeve closed at one end, said sleeve being made from a mesh sheet of a material substantially resistant to termite secretions and having a hardness of not less than about Shore D70 for resistance to termite chewing, the mesh sheet having pores wherein each pore has a linear dimension in all directions less than the maximum linear dimension of the cross section of a head of a species of termite to be controlled.

* * * *

60

65