Математическая статистика. Теория

Александр Сергеев

1 Введение

Есть генеральная совокупность. Надо выбрать часть генеральной совокупности – выборку. По выборке хотим сделать вывод о всей совокупности

В исследовании есть следующие этапы

- 1. Сбор данных
- 2. Препроцессинг (чистка)
- 3. Построение модели и анализ
- 4. Интерпретация

Определение

Репрезентативность – свойство выборки, означающее, что по выборке можно судить по всей совокупности

2 Простейшая модель выборки. Эмпирическая функция распределения

Простейшая модель выборки

 X_1,\ldots,X_n – i.i.d.

F – функция распределения (теоретическая, мы ее не знаем)

 x_1, \ldots, x_n – реализация выборки

Глобальная цель – оценить из реализации x_1, \ldots, x_n теоретическую функцию F

Определение (эмпирическая функция выборки)

$$\mu_n(t) = \sum_{i=1}^n \mathbb{1}(X_i \le t)$$

 $F_n(t) = \frac{\mu_n(t)}{n}$ – эмпирическая функция распределения

Заметим, что $\mathbb{1}(X_i \leq t) \sim Bin(F(t))$

Тогда $\mu_n(t) \sim Bin(n, F(t))$

$$P(F_n(x) = \frac{k}{n}) = P(\mu_n(x) = k) = \binom{n}{k} F_n^k(x) (1 - F_n(x))^{n-k}$$

Отсюда $E(\mu_n(x)) = nF_n(x)$

 $E(F_n(t)) = F(t)$ – несмещенность

$$\operatorname{Var} F_n(t) = \frac{F(t)(1 - F(t))}{n}$$

$$\text{Var } F_n(t) = \frac{F(t)(1-F(t))}{n}$$
 По ЦПТ
$$\frac{\mu_n(t) - nF(t)}{\sqrt{F(t)(1-F(t))n}} = \sqrt{n} \frac{F_n(t) - F(t)}{\sqrt{F(t)(1-F(t))}} \xrightarrow{d} N(0,1) - \text{асимпто-тическая нормальность}$$

Теорема Гливенко – Кантелли
$$\sup_{t\in\mathbb{R}}|F_n(t)-F(t)|\xrightarrow[n\to\infty]{a.s.}0$$

Теорема Колмагорова

$$D_n = \sup_{x} |F_n(x) - F(x)|, F \in C(\mathbb{R}), t \ge 0 \Rightarrow P(\sqrt{n}D_n \le t) \to K(t) =$$

$$\sum_{i=1}^{\infty}e^{-2j^2t^2}$$
 – функция распределения Колмагорова

Теорема Смирнова

 $X_1,\ldots,X_n,Y_1,\ldots,Y_n$ – независимы

Обе распределены на $F \in C(\mathbb{R})$

$$D_{m,n} = \sum_{x} |F_n(x) - F_m(x)|$$

Тогда
$$P(\sqrt{\frac{nm}{n+m}}D_{m,n} \le t) \xrightarrow{m,n\to\infty} K(t)$$

3 Выборочные моменты

 $lpha_k = EX_1^k - k$ -ый теоретический момент $eta_k = E(X_1 - EX_1)^k - k$ -ый теоретический момент $\overline{g(X)} := \frac{1}{n} \sum_{k=1}^{n} g(X_k), g(\bullet) : \mathbb{R} \to \mathbb{R}$

$$\widehat{\alpha}_k = \overline{X^k} = \frac{1}{n} \sum_{j=1}^n X_j^k - k$$
-ый выборочный момент

$$E\widehat{\alpha}_k = \alpha_k$$
 – несмещенность
 $\operatorname{Var}\widehat{\alpha}_k = \frac{1}{n}\operatorname{Var}(X_1^k) = \frac{1}{n}((EX_1^{2k}) - (EX_1^k)^2)$

По ЦПТ
$$\sqrt{n} \frac{\widehat{\alpha}_k - \alpha_k}{\sqrt{\alpha_{2k} - \alpha_k^2}} \approx N(0, 1)$$

$$\sqrt{n} \frac{\widehat{\alpha}_k - \alpha_k}{\sqrt{\widehat{\alpha}_{2k} - \widehat{\alpha}_k^2}} = \sqrt{n} \frac{\widehat{\alpha}_k - \alpha_k}{\sqrt{\alpha_{2k} - \alpha_k^2}} \underbrace{\sqrt{\frac{\alpha_{2k} - \alpha_k^2}{\widehat{\alpha}_{2k} - \widehat{\alpha}_k^2}}}_{N(0, 1)} \approx N(0, 1)$$

Пояснение

$$\widehat{\alpha}_k \xrightarrow{P} \alpha_k$$
 (3БЧ)

$$\widehat{eta}_k = \overline{(X-\overline{X})^k} = rac{1}{n} \sum_{j=1}^n (X_j - X)^k - k$$
-ый центральный выборочный мо-

 $\widehat{eta}_2 = S_*^2$ – выборочная дисперсия

 S_* – выборочное отклонение

Замечание

Выборочные моменты – моменты, посчитанные относительно эмпирического распределения

Тогда для них действуют утверждения, свойственные обычным момен-

$$S^{\mathrm{Tam}}_* = \overline{X}^2 - (\overline{X})^2$$
 $\widehat{\beta}_k = Poly(\widehat{\alpha}_k, \dots, \widehat{\alpha}_1)$
T.K. $\widehat{\alpha}_k \stackrel{P}{
ightarrow} \alpha_k$, to $\widehat{\beta}_k \stackrel{P}{
ightarrow} \beta_k$

Отступление

Пусть ξ_n — последовательность случайных векторов и $\sqrt{n}(\xi_n-\mu) \stackrel{d}{\to}$ $N(0,\Sigma)$

 μ – какой-то вектор (необязательно матожидание)

1.
$$\xi_n \xrightarrow{P} \mu$$

T.K. $(\xi_n - \mu) \frac{\sqrt{n}}{\sqrt{n}} \xrightarrow{d} 0$

2. Пусть
$$\phi : \mathbb{R}^m \to \mathbb{R}, \phi \in C^1(\mathbb{R})$$

$$\phi(\xi_n) \approx \phi(\mu) + \nabla \phi(\mu)(\xi_n - \mu)$$

$$\phi(\xi_n) - \phi(\mu) \approx \nabla \phi(\mu)(\xi_n - \mu)$$

$$\operatorname{Var}(\phi(\xi_n) - \phi(\mu)) \approx \operatorname{Var}(\nabla \phi(\mu)(\xi_n - \mu)) = \nabla \phi(\mu) \operatorname{Var}(\xi_n)(\nabla \phi(\mu))^T$$

$$\operatorname{Тогда} \sqrt{n}(\phi(\xi_n) - \phi(\mu)) \approx \sqrt{n} \nabla \phi(\mu)(\xi_n - \mu) \to N(0, \nabla \phi(\mu) \Sigma(\nabla \phi(\mu))^T)$$

Теорема

Пусть
$$\xi_n = (\overline{X}, \dots, \overline{X}^k)$$

(Многоперная ЦПТ $\Rightarrow \sqrt{(\xi_n - \alpha)} \xrightarrow{d} N(0, \sigma), \alpha = (\alpha_1, \dots, \alpha_k), \Sigma = \text{Var}(X_1, \dots, X_1^k))$
 $\phi : \mathbb{R}^k \to R, \phi \in C^1(\mathbb{R})$
 $\sigma^2 = \nabla \phi(\alpha) \Sigma (\nabla \phi(\alpha))^T > 0$
Тогда $\sqrt{n} \frac{\phi(\xi_n) - \phi(\alpha)}{\sigma} \xrightarrow{d} N(0, 1)$

Кроме того,
$$\sigma = \sigma(\alpha) \in C^1(\mathbb{R}) \Rightarrow \sqrt{n} \frac{\phi(\xi_n) - \phi(\alpha)}{\sigma(\xi_n)} \xrightarrow{d} N(0, 1)$$

Упражнение

$$\sqrt{n} \frac{S_*^2 - \sigma^2}{\sqrt{\widehat{\beta}_4 - S_*^4}} \approx N(0, 1)$$

$$ES_*^2 = \frac{n-1}{n}\sigma^2$$

$$S^2:=rac{n}{n-1}S_*^2=rac{1}{n-1}\sum_{i=1}^n(X-\overline{X})^2$$
 – исправленная (несмещенная) дисперсия

Коэффициент асимметрии

$$\frac{E(X - EX)^3}{\sigma^3}$$

Тогда $\frac{\widehat{eta}_3}{S_*^3}$ – выборочный коэффициент асимметрии

Коэффициент эксцесса

$$\frac{E(X - EX)^4}{\sigma^4} - 3 \mapsto \frac{\hat{\beta}_4}{\sigma_*^4} - 3$$

Ковариация

$$Cov(X,Y) = EXY - EXEY \mapsto S_{*XY} = \frac{1}{n} \sum_{j} (X_j - \overline{X})(Y_j - \widetilde{Y}) = \frac{1}{n} \sum_{j} X_i Y_i - \overline{X}$$

Корреляция

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var} X \operatorname{Var} Y}} \mapsto \rho_n = \frac{S_{*XY}}{S_{*X}S_{*Y}}$$

Порядковые статистики 4

Определение

Вариационный ряд – выборка $X_{(1)} \leq \ldots \leq X_{(m)}$

Определение

 $X_{(k)} - k$ -ая порядковая статистика

Напоминание

Квантиль порядка $\alpha - q_{\alpha} : P(X \ge q_{\alpha}) \ge 1 - \alpha, P(X \le q_{\alpha}) \ge \alpha$ Есди F – строго монотонная, то $F(q_{\alpha}) = \alpha \Leftrightarrow q_{\alpha} = F^{-1}(\alpha)$

Определение

Выборочный квантиль порядка $0 = \min X_i$

Выборочный квантиль порядка $1 = \max X_i$

Выборочный квантиль порядка $\alpha \in (0,1)$:

$$\exists\,0\leq k\leq n-1:rac{k}{n}\leq lpha<rac{k+1}{n}$$
 Тогда $X_{(k)}$ – искомый квантиль

$$\alpha = \frac{1}{4}$$
 – первый (нижний) квартиль

$$\alpha = \frac{1}{2}$$
 – второй квартиль, выборочная медиана

$$\alpha = \frac{3}{4}$$
 — третий (верхний) квартиль

 $\alpha = 1$ – четвертный квартиль / максимум

$$n = 2m \Rightarrow med(X) = \frac{X_{(m)} + X_{(m+1)}}{2}$$
$$n = 2m + 1 \Rightarrow med(X) = X_{(m+1)}$$

$$P(X_{(k)} \le t) = P(\mu_n(t) \ge k) = B(F(x), k, n - k + 1)$$

 $P(X_{(k)} \leq t) = P(\mu_n(t) \geq k) = B(F(x), k, n-k+1)$ Пусть p(t) – теоретическая плотность т.е. p = F'

$$P(X_{(k)} \leq t)_t' = \frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} F^{k-1}(t) (1-F(t))^{n-k} p(t)$$
 – плотность k -ой

порядковой статистик

порядковой статистики
$$g(x_1,x_2) = \frac{n!}{(k-1)!(r-k-1)!(n-r)!} F^{k-1}(x_1)(F(x_2)-F(x_1))^{r-k-1} (1-F(x_2))^{n-r} p(x_1) p(x) 2$$
 — совместная плотность вектора $(x_{(k)},x_{(r)}), k < r$ $g(x_1,\ldots,x_n) = n! p(x_1)\ldots p(x_n)$ — плотность для вектора всех статистик $(X_{(1)},\ldots,X_{(n)})$

Определение

Средний член вариационного ряда – $X_{(k(n))}, \frac{k(n)}{n} \to \text{const} \in (0, 1)$

Крайний член варианционного ряда – $X_{(r)}$, r – ограничено по n или X_{n+1-s}, s – ограничено

Теорема (об асимптотике среднего члена вариационного ряда)

Пусть $0<\alpha<1, p$ — теоретическая плотность, q_{α} — теоретическая квантиль порядка α

$$p \in C^1(U(q_\alpha))$$

Тогда
$$\sqrt{n}p(q_{\alpha})\frac{X_{(\lfloor n\alpha \rfloor)} - q_{\alpha}}{\sqrt{\alpha(1-\alpha)}} \xrightarrow{d} N(0,1)$$

Доказательство

Комментарии к доказательству в лекции 3, 0:55

- 1. $k := \lfloor n\alpha \rfloor$. Выпишем плотность $X_{(k)}$
- 2. Напишем плотность преобразования над $X_{(k)}$

Теорема (об асимптотике крайнего члена вариационного ряда)

Пусть r, s – фиксированные, p – плотность

Тогда
$$nF(X_{(r)}) \xrightarrow{d} \Gamma(r,1), nF(X_{(n+1-s)}) \xrightarrow{d} \Gamma(s,1)$$
 – независимые

5 Точечное оценивание параметров

5.1Постановка задачи точечного оценивания параметрова

Пусть $X_1, \ldots, X_n \sim F_{\theta}, \theta \in \widehat{\mathbb{H}} \subset \mathbb{R}^d$ – параметр В классической постановке θ – фиксированный неизвестный вектор Цель: оценить θ в виде функции $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ от выборки

Замечание

1. Функции от выборки принято называть статистиками

2. Байесовская постановка: θ – случайная величина из известного априорного распределения

Определение (Состоятельность)

 $\hat{\theta}$ – состоятельная оценка $\theta \Leftrightarrow \hat{\theta} \xrightarrow{p} \hat{\theta} \Leftrightarrow P(\|\hat{\theta} - \theta\| > \varepsilon) \xrightarrow{p \to \infty} 0$

Определение (несмещенность)

 $bias(\hat{\theta}) = E\hat{\theta} - \theta$ – смещение

 $bias(\hat{\theta}) = 0 \Leftrightarrow \hat{\theta} \; \forall \, n$ – несмещенная

 $bias(\hat{\theta}) = 0 \Leftrightarrow \hat{\theta}$ при $n \to \infty$ – асимптотическая несмещенная

Определение (асимптотическая нормальность)

 $\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{n} N(0,\Sigma_{\theta})$

Определение (эффективность/оптимальность)

 $\hat{\theta}_1$ – эффективнее $\hat{\theta}_2 \Leftrightarrow MSE(\hat{\theta}_1) < MSE(\hat{\theta}_2)$, где $MSE(\hat{\theta}) = E \|\hat{\theta} - \theta\|^2 = 0$ $E(\hat{\theta}-\theta)^T(\hat{\theta}-\theta)$

 $MSE(\hat{\theta}) = \operatorname{tr}(\operatorname{Var}\hat{\theta}) + \|bias(\hat{\theta})\|^2$

Доказательство

Доказательство
$$E(\hat{\theta}-\theta)^T(\hat{\theta}-\theta) = E(\hat{\theta}-E\hat{\theta}+E\hat{\theta}-\theta)^T(\hat{\theta}-E\hat{\theta}+E\hat{\theta}-\theta) = E\underbrace{(\hat{\theta}-E\hat{\theta})^T(\hat{\theta}-E\hat{\theta})}_{\text{Var}\hat{\theta}} + \|bias(\hat{\theta})\|^2$$

Метод моментов

Рассмотрим $g_1,\ldots,g_d:\exists\, Eg_i(X_1)=m_j(\theta_1,\ldots,\theta_d) \xrightarrow{\text{выборочные аналоги}} \overline{g_i(X_1)}=$ $m_i(\hat{\theta}_1,\ldots,\hat{\theta}_d)$ – получили уравнения от θ

Решая уравнения, получаем оценки

Часто берут $q_i(x) = x^i$ – отсюда метод моментов (но можно брать и другие функции)

1. Асимптотическая нормальность ⇒ состоятельность

Доказательство

$$\hat{\theta} - \theta = \frac{1}{\sqrt{n}} \sqrt{n} (\hat{\theta} - \theta) \stackrel{p}{\to} 0$$

2. Асимптотическая нормальность $\Rightarrow bias(\hat{\theta}) \rightarrow 0$

Доказательство

Пусть d=2

$$P(|\theta - \hat{\theta}| > \varepsilon) = P(\frac{\sqrt{n}|\theta - E\hat{\theta}|}{\sigma} > \frac{\sqrt{n}\varepsilon}{\sigma}) = 1 - P(\frac{\sqrt{n}|\theta - E\hat{\theta}|}{\sigma} < \frac{\sqrt{n}\varepsilon}{\sigma}) \approx 2(1 - \Phi(\frac{\sqrt{n}\varepsilon}{\sigma})) = 2(1 - \Phi(\frac{\sqrt{n}\varepsilon}{\sigma})) \to 0$$

3. Состоятельность $\Rightarrow bias(\hat{\theta}) \rightarrow 0$

Доказательство

Следует из УЗБЧ $\overline{V}^{a.s.}$ $U \rightarrow \overline{V}$

$$\overline{X} \xrightarrow{a.s.} \mu \Rightarrow E\overline{X} \to \mu$$

4. Пусть $d=1, bias\hat{\theta} \to 0, Var \widetilde{\theta} \to 0 \Rightarrow \hat{\theta}$ – состоятельная

Замечание

- 1. Если $(\overline{g_1(X)},\ldots,\overline{g_d(X)})$ состоятельная оценка для $(\ldots,\overline{Eg_i(X)}m_i,\ldots)$, α_1,\ldots,α_d непрерывные от $\overline{g_1(X)},\ldots,\overline{g_d(X)}$, то они состоятельные
- 2. Если $(\overline{g_1(X)}, \dots, \overline{g_d(X)})$ асимптотически нормальные и g_1, \dots, g_d гладкие, то каждая оценка асимптотически нормальная

6 Метод максимального правдоподобия

 $pmf: p(x,\theta) = p(x|\theta)$

 $pdf: p(x,\theta) = p(x|\theta)$

Все это будем называть плотностью

$$X_1,\dots,X_n\sim p(X|\theta)$$
 $L(X|\theta)=\prod_i p(X_i|\theta)$ — функция правдоподобия $\hat{\theta}_*=\operatorname{argmax} L(X|\theta_i)$

Предположим, что $\theta \in B$ – откр., $\theta_1 \neq \theta_2 \Rightarrow L(X,\theta_1) \neq L(X,\theta_2)$ Алгоритм

- 1. Рассмотрим $\ln L(X, \theta)$
- 2. Приравняем производную к нулю
- 3. Найдем максимум

Пример

$$Poly(1,p), p = (p_1,\ldots,p_m)$$

 ν_1,\ldots,ν_m — количество наблюдений типа $1,\ldots,m$
 $L(X,p) = p_1^{\nu_1}\cdot\ldots\cdot p_m^{\nu_m}$

$$\ln L(X,p) = \sum_{j=1}^{m-1} \nu_j \ln p_j + \nu_m \ln(1-p_1-\ldots-p_{m-1})$$

$$\frac{\partial \ln L}{\partial \ln p_j} = \frac{\nu_j}{p_j} - \frac{\nu_m}{1-p_1-\ldots-p_{m-1}}$$
 Суммируем уравнения: $\nu_j (1-\hat{p}_1-\ldots-\hat{p}_{n-1}) = \hat{p}_j \nu_m$
$$\hat{p}_m (n-\nu_m) = \nu_m (1-\hat{p}_m)$$

$$\hat{p}_m = \frac{\nu_m}{n}$$

Аналогично $\hat{p}_j = \frac{\nu_j}{m}$

Определение (информация Фишера)

Определение (информация Фишера) Для
$$d=1$$
 $L(X,\theta)=\prod p(X_j,\theta)$ $\ln L(X,\theta)=\sum \ln p(X_j,\theta)$ $V(X,\theta)=\frac{\partial \ln L}{\partial \theta}=\sum \frac{\partial \ln p}{\partial \theta}$ — вклад выборки Пусть $\theta\in \stackrel{\textstyle \dot{\boxplus}}{\textstyle -}$ открыто $\theta_1\neq\theta_2\Rightarrow p(X,\theta_1)=p(X,\theta_2)$ Регулярность:

1.
$$\frac{\partial}{\partial \theta} \int_X T(X) L(X, \theta) = \int_X \frac{\partial}{\partial \theta} L(X, \theta) T(X) \, \mathrm{d}\, x$$
 Необходимое условие

 $\operatorname{supp} P_x$ нне зависит от θ

$$U[0,\theta]: \int_0^\theta \frac{1}{\theta} dt = 1$$
$$\left(\int_0^\theta \frac{1}{\theta} dt\right)' = \left(\frac{1}{\theta} \int_0^\theta dt\right)' = -\frac{1}{\theta^2} \int_0^\theta dt + \frac{1}{\theta} \neq \int_0^\theta (\frac{1}{\theta})' dt$$

2.
$$EV^{2}(X, \theta) < \infty$$

$$\int_{X} L(X, \theta) dX = 1$$

$$\int_{X} \frac{\partial L}{\partial \theta} dX = \int_{X} \frac{\frac{L}{\theta}}{L} L dX = \int_{X} V(X, \theta) L(X, \theta) dX = EV(X, \theta) = 0$$

$$I(\theta) = VarV(X,\theta) = EV^2(X,\theta)$$
 – информация Фишера всей выборки
$$V(X,\theta) = \sum_j \frac{\partial \ln \hat{p}(X_j,\theta)}{\partial \theta} = \operatorname{Var} V(X,\theta) = n \underbrace{\operatorname{Var} \frac{\partial \ln p(X_j,\theta)}{\partial \theta}}_{i(\theta)$$
 – информация Фишера набора

$$i(\theta) = E(\frac{\partial \ln p(X_j, \theta)}{\partial \theta})^2 = -E\frac{\partial \partial \ln p}{\partial \theta^2}$$

$$\frac{\partial}{\partial \theta} \int_{\mathbb{R}} \frac{\partial \ln p(x, \theta)}{\partial \theta} p(x, \theta) \, dx = \int_{\mathbb{R}} \frac{\partial \partial \ln p(x, \theta)}{\partial \theta^2} p(x, \theta) + \int_{\mathbb{R}} \frac{\partial L}{\partial \theta} \frac{\partial p}{\partial \theta} \, dx = E\frac{\partial \partial \ln p}{\partial \theta^2} + \underbrace{E(\frac{\partial \ln p}{\partial \theta})^2}_{i(\theta)} = 0$$

Для произвольного d

$$i(\theta)=-(Erac{\partial\partial\ln p(X_1,\theta)}{\partial\theta_i\partial\theta_j})_{1\leq i,j\leq d}$$
 – информационная матрица для 1 набора $I(\theta)=n\cdot i(\theta)$

Рассмотрим
$$N(\theta_1, \theta_2)$$

 $p(x, \theta_1, \theta_2) = \frac{1}{\sqrt{2\pi\theta_2}} \exp(-\frac{(x - \theta_1)^2}{2\theta_2})$
 $\ln p(x, \theta_1, \theta_2) = -\frac{1}{2} \ln 2\pi - \frac{1}{2} \ln \theta_2 - \frac{(x - \theta_1)^2}{2\theta_2}$

$$\frac{\partial \ln p}{\partial \theta_1} = \frac{(x - \theta_1)}{\theta_2}$$

$$\frac{\partial \ln p}{\partial \theta_2} = -\frac{1}{2\theta_2} + \frac{(x - \theta_1)^2}{2\theta_2^2}$$

$$\frac{\partial^2 f}{\partial \theta_1^2} = -\frac{1}{2\theta_2}$$

$$\frac{\partial^2 f}{\partial \theta_2^2} = \frac{1}{2\theta_2} (x - \theta_1)^2$$

$$\frac{\partial \theta_1^2}{\partial \theta_2^2} = \frac{2\theta_2}{2\theta_2^2} - \frac{(x - \theta_1)^2}{\theta_2^2}$$
$$\frac{\partial^2 f}{\partial \theta_1 \theta_2} = -\frac{(x - \theta_1)}{\theta_2^2}$$

$$i(\theta) = \begin{pmatrix} \frac{1}{\theta_2} & 0\\ 0 & \frac{1}{2\theta_2^2} \end{pmatrix}$$

По неравенству Рао-Крамера $\operatorname{Var} \hat{\theta}_1 \geq \frac{\theta_2}{n}$

Теорема (неравенство Рао-Крамера)

Пусть модель регулярна, d=1

 $\tau(\theta)$ – оцениваемая функция, $\tau \in C^1, \tau(\theta) \equiv \theta$

 $\hat{\tau}(\theta)$ – оценка несмещенная, т.е. $E(\hat{\tau}(\theta)) = \tau(\theta)$

Тогда
$$\operatorname{Var} \hat{\tau}(\theta) \ge \frac{(\tau'(\theta))^2}{n \cdot i(\theta)}$$

Доказательство

$$\tau'(\theta) = \int \hat{\tau}(\theta) \frac{\partial L}{\partial \theta} dx = \frac{\int \tau(\theta) V(X, \theta) L(X, \theta) dx}{E \hat{\tau}(\theta) V(x, \theta)} - EV(X, \theta) E \hat{\tau}(\theta) = \text{Cov}(V(X, \theta), \hat{\tau}(\theta))$$

$$\text{Cov}^{2}(V(X, \theta), \hat{\tau}(\theta)) \leq \text{Var } V(X, \theta) \text{ Var } \hat{\tau}(\theta)$$

Замечание

1.
$$E\hat{\tau}(\theta) - \tau(\theta) = bias(\theta) \neq 0$$

 $E\hat{\tau}(\theta) = \tau(\theta) + bias(\theta)$
 $Var \hat{\tau}(\theta) \geq \frac{(\tau'(\theta) + bias'(\theta))^2}{ni(\theta)}$
 $MSE(\tau(\theta)) \geq \frac{(\tau'(\theta) + bias'(\theta))^2}{ni(\theta)} + bias^2(\theta)$

2. $\operatorname{Cov}^2(V(X,\theta),\hat{\tau}(\theta)) = \operatorname{Var} V(X,\theta) \operatorname{Var} \hat{\tau}(\theta),$ если $\hat{\tau}(\theta) = \alpha(\theta)V(X,\theta) + \tau(\theta)$

Теорема (неравенство Рао-Крамера)

Пусть модель регулярна, d>1

$$\tau(\theta): \mathbb{R}^d \to \mathbb{R}, \tau \in C^1, \tau(\theta) \equiv \theta$$

$$\hat{\tau}(\theta)$$
 – оценка несмещенная, т.е. $E(\hat{\tau}(\theta)) = \tau(\theta)$

Тогда
$$\operatorname{Var} \hat{\tau}(\theta) \geq \frac{\nabla \tau(\theta) i^{-1}(\theta) \nabla^T \tau(\theta)}{n}$$

Свойства оценки максимального правдоподобия Если существует несмещенная оптимальная оценка в регулярном случае, то она совпадает с оценкой максимального правдоподобия

6.1 Состоятельность оценки максимального правдоподобия

Пусть θ_0 – реальный параметр, $\theta \neq \theta_0$

Тогда
$$P_{\theta_0}(L(X,\theta_0) > L(X,\theta)) \to 1$$

Доказательство

$$\frac{L(X,\theta)}{L(X,\theta_0)} < 1$$

$$\frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(X_j,\theta)}{p(X_j,\theta_0)} < 0$$

По ЗБЧ
$$E_{\theta_0} \ln \frac{p(X_j, \theta)}{p(X_j, \theta_0)} \le E_{\theta_0} (\frac{p(X_j, \theta)}{p(X_j, \theta_0)} - 1) = \int_X p(X, \theta) \, \mathrm{d} X - \int p(X, \theta_0) \, \mathrm{d} X = 0$$

0

Пусть
$$S_n = \{X : \ln L(X, \theta_0) > \ln L(X, \theta_0 - \alpha)\} \cap \{X : \ln L(X, \theta_0) > \ln L(X, \theta_0 + \alpha)\}$$
 $P_{\theta_0}(S_n) \to 1$
 $A_n = \{X : |\hat{\theta} - \theta_0| < \alpha\}$
 $B_n = \{X : \frac{\partial \ln L(X, \theta)}{\partial \theta} \bigg|_{\theta = \hat{\theta}} = 0\}$
 $S_n \subset A_n B_n \subset A_n$
Отсюда $P(A_n) \to 1$ – т.о. оценка состоятельная

6.2 Принцип инвариантности правдоподия

$$\theta \in \bigoplus_{\phi}^{\text{биекция}} \gamma \in \Gamma$$

$$\gamma = \Phi(\theta)$$

$$\theta = \phi^{-1}$$

$$\sup_{\theta} L(X, \phi(\theta)) = \sup_{\gamma} L(X, \theta)$$

$$\Pi \mathbf{ример}$$
 Дано $Exp(\lambda)$
$$\text{Тогда } \lambda e^{-\lambda x} \mapsto \frac{1}{\overline{X}}$$

$$\frac{1}{\lambda} e^{-\frac{x}{\lambda}} \mapsto \overline{X}$$

$$\mathbf{Теорема (асимптотическая нор)}$$

 $\stackrel{\wedge}{\text{Теорема}}$ (асимптотическая нормальность оценки максимального правдоподобия)

Пусь модель регулярна $|\frac{\partial^3 \ln F(X,\theta)}{\partial \theta_i \partial \theta_j \partial \theta_k}| \leq M(X), EM(X) < \infty$ θ_* — оценка максимального правдоподия $\nabla \ln F(X,\theta) = 0$ — имеет единственное решение Тогда

1.
$$\sqrt{n}(\theta_* - \theta) \to N(0, i^{-1}(\theta))$$

2. Если
$$\tau(\theta)$$
 – оцениваемая $\mathbf{u} \in C^1$, то
$$\sqrt{n}(\tau(\theta_*) - \tau(\theta)) \to N(0, \theta^2)$$

$$\sigma^2 = \nabla \tau(\theta) i^{-1}(\theta) \nabla \tau(\theta)$$

3. Если
$$\sigma^2$$
 непрерывная от σ , то $\sqrt{n} \frac{\tau(\sigma_*) - \tau(\theta)}{\sigma(\theta_*)} \to N(0,1)$

Доказательство 1

$$V(X, \theta) = \frac{\partial \ln L(X, \theta)}{\partial \theta}$$
 θ_0 – реальный параметр

$$V(X,\theta) = V(X,\theta_0) + V'_{\theta}(X,\theta_0)(\theta - \theta_0) + V''_{\theta}(X,\widetilde{\theta}) \frac{(\theta - \theta_0)^2}{2}, \widetilde{\theta} \in (\theta,\theta_0)$$

Выполним подстановку $\theta = \theta_*$

$$0 = V(X, \theta_0) + V'_{\theta}(X, \theta_0)(\theta_* - \theta_0) + V''_{\theta}(X, \widetilde{\theta}) \frac{(\theta_* - \theta_0)^2}{2}$$

$$V'_{\theta}(X, \theta_0)(\theta_* - \theta_0) = -V(X, \theta_0) - V''_{\theta}(X, \widetilde{\theta}) \frac{(\theta_* - \theta_0)^2}{2}$$

$$\sqrt{n}V_{\theta}'(X,\theta_0)(\theta_* - \theta_0) = -\sqrt{n}V(X,\theta_0) - \sqrt{n}V_{\theta}''(X,\widetilde{\theta})\frac{(\theta_* - \theta_0)^2}{2}$$

Заметим, что $V(X, \theta_0)$ на самом деле представляет сумму независимых одинаково распределенных величин с матожиданием 0 и дисперсией, равной информации Фишера

Тогда по ЦПТ
$$-\sqrt{n}V(X,\theta_0) = A_n = N(0,i(\theta))$$

 $\sqrt{n}V_{\theta}''(X,\widetilde{\theta})\frac{(\theta_* - \theta_0)^2}{2} = n^{\frac{3}{2}} \underbrace{V_{\theta}''(X,\widetilde{\theta})}_{\text{ограниченно по ЗБЧ}} \frac{(\theta_* - \theta_0)^2}{2}$

$$V'_{\theta}(X, \theta_0) = n \frac{V'_{\theta}(X, \theta_0)}{n} \rightarrow -ni(\theta)$$
 по ЗБЧ $\sqrt{n}V'_{\theta}(X, \theta_0)(\theta_* - \theta_0) \rightarrow N(0, i(\theta))$

TO BE CONTINUED

Какая-то лажа, смотри https://t.me/c/2069367863/1/726

Определение

*Вспомним неравенство Рао-Крамера

Показатель эффективности – $\frac{(\tau'(\theta))^2}{n \cdot i(\theta) \operatorname{Var} \widehat{\tau}(\theta)} \in [0, 1]$ для регулярных моделей

Если $\Pi \Theta = 1$, то оценка эффективная

Определение

Пусть
$$\sqrt{n}(\widehat{\theta} - \theta_0) \to N(0, \frac{\sigma^2}{n})$$

Показатель асимптотической эффективности – $\frac{1}{i(\theta)\sigma^2}$

6.3 Экспоненциальное семейство распределений

Пусть модель регулярна

Если $p(x,\theta) = \exp(A(\theta)B(x) + C(\theta) + D(x))$, то распределение относится

к регулярному распределению

Примеры: $N, \Gamma, Pois, Bin, NB$

Свойства

$$\ln p(x,\theta) = A(\theta)B(x) + C(\theta) + D(x)$$

$$\frac{\partial \ln p(x,\theta)}{\partial \theta} = A'(\theta)B(x) + C'(x)$$

$$V(X,\theta) = A'(\theta)\sum B(X_i) + nC'(\theta)$$

$$V(X,\theta) = n(A'(\theta)\overline{B(X)} + C'(\theta))$$

$$V(X,\theta) = -(A'(\theta)\overline{B(X)} + C'(\theta))$$

$$V(X,\theta) = n(A'(\theta)\overline{B(X)} + C'(\theta))$$

$$\frac{V(X,\theta)}{n} - C'(\theta) = A'(\theta)\overline{B(X)}$$

$$\overline{B(X)} = \frac{V(X,\theta)}{nA'(\theta)} - \frac{C'(\theta)}{A'(\theta)}$$

Тогда $\overline{B}(X)$ – оптимальная оценка для $-\frac{C'(\theta)}{A'(\theta)}$ по критерию оптимальности

6.4 Байесовская постановка

$$X_1,\ldots,X_n\in F_\theta$$

 θ — неизвестный параметр

 $\theta \sim \Pi(\theta)$ – априорное распределение

 $l(\widehat{\theta}, \theta)$ – функция потерь

$$R(\widehat{\theta}, \theta) = E_{F_{\theta}} l(\widehat{\theta}, \theta)$$
 – риск

$$r(\widehat{\theta}) = E_{\pi(\theta)} R(\widehat{\theta}, \theta)$$
 – байесовский риск

$$\widehat{\theta}_B = \operatorname{argmin}_{\widehat{\theta}} r(\widehat{\theta})$$

$$r(\widehat{\theta}) = E_{(\pi(\theta), F_{\theta})} l(\widehat{\theta}, \theta)$$

$r(\widehat{ heta}) = E_{(\pi(heta),F_{ heta})} l(\widehat{ heta}, heta)$ Теорема Байеса для плотностей

$$p(\theta|X) = \frac{L(X|\theta)\pi(\theta)}{\int L(X|\theta)\pi(\theta) \,\mathrm{d}\,\theta}$$
 Утверждение

$$\widehat{\theta}_B = \operatorname{argmin}_{\widehat{\theta}} E[l(\widehat{\theta}, \theta)|X]$$

Доказательство

Пусть
$$\theta_* = \operatorname{argmin} \dots$$

$$r(\theta_*) = EE[l(\theta_*, \theta)|X] \le EE[l(\widehat{\theta}, \theta)|X] = r(\widehat{\theta})$$

Замечание
$$l(\widehat{\theta},\theta) = (\theta - \widehat{\theta})^2 \Rightarrow \widehat{\theta_B} = E[\theta|X]$$

6.5Минимаксная оценка

$$m(\hat{\theta}) = \sup_{\theta} R(\hat{\theta}, \theta)$$

 $\hat{ heta}_{wc} = rgmin \, m(\hat{ heta})$ – минимаксная оценка

Утверждение

 $r(\hat{\theta}) \leq \mu(\hat{\theta})$ – по определению

Утверждение

Если $\exists \pi(\theta)$ – априорное распределение : $R(\hat{\theta}_B, \theta) \equiv \text{const}$

Тогда
$$\hat{\theta}_{wc} = \hat{\theta}_B$$

Доказательство

Пусть $\exists \hat{\theta} : m(\hat{\theta}) < m(\theta)$

Тогда $r(\hat{\theta}) \leq m(\hat{\theta}) < m(\hat{\theta}_B) = r(\hat{\theta}_B)$ – противоречие с определением $\hat{\theta}_B$

6.6 Интервальное оценивание

Определение (доверительный интервал)

$$X_1, \dots, X_n \sim F_\theta, \theta \in \widehat{\mathbb{H}} \subset \mathbb{R}$$

 $1-\alpha=\gamma\in(0,1)$ – уровень доверия

Рассмотрим $(T_l(X), T_r(X))$ – доверительный интервал уровня $\gamma = 1 - \alpha$, если $P(\theta \in (T_l(X), T_r(X))) \geq \gamma$

Классическая схема построения доверительных интервалов

Пусть $T(X,\theta) \sim G$ – не зависит от θ

Рассмотрим $P(q_1 < T(X, \theta) < q_2) = 1 - \alpha$ – доверительный интервал

Потребуем, чтобы
$$P(T(X,\theta) \leq q_1) = P(T(X,\theta) \geq q_2) = \frac{\theta}{2}$$

Тогда $q_1=q_{\frac{\alpha}{2}},q_2=q_{1-\frac{\alpha}{2}},q_{ullet}$ – квантили

6.7Доверительные интервалы параметров нормального закона

Лемма о независимости линейной и квадратической статистик

$$X_1, \ldots, X_n \sim N(\theta, \sigma^2) - -i.i.d.$$

$$T=AX; X=(X_1,\ldots,X_n)^T, A\in M_{m\times n}(\mathbb{R})$$
 – линейная статистика $Q=X^TBX, B\in M_n(\mathbb{R}), B=B^T$ – квадратичная статистика

$$Q = X^T B X, B \in M_n(\mathbb{R}), B = B^T$$
 – квадратичная статистика

$$AB = 0$$

Тогда T, Q — независимые

Доказательство

$$\Lambda=\mathrm{diag}(\lambda_1,\ldots,\lambda_m,0,\ldots,0), \lambda_i \neq 0$$
 – потенциально нули в конце

$$\Lambda - U^T B U$$
 — в силу симметричности

$$U = (u_1, \dots, u_n)$$
 – собственные вектора, образуют ортонормированный базис

$$B = U\Lambda U^T = \sum_{j=1}^{m} \lambda_j u_j u_j^T$$

$$Q = \sum_{j=1}^{m} \lambda_{j}(X^{T}u_{j})(u_{j}^{T}X) = \sum_{j} \lambda_{j}(u_{j}^{T}X)^{2}$$

$$A(\sum_{j=1}^{m} \lambda_j u_j u_j^T) = 0$$

$$\sum_{j=1}^{m} \lambda_j A u_j u_j^T = 0$$

Возьмем $k \in [1, m]$

Домножим справа на u_k

$$\sum_{j=1}^{m} \lambda_j A u_j \underbrace{u_j^T u_k}_{\mathbb{1}(j=k)} = 0$$

$$\lambda_k A u_k = 0$$

Отсюда
$$Au_k=0$$

Рассмотрим вектор
$$\binom{u^T}{A} X$$
 – гауссовский вектор

Проверим, что
$$A_i X$$
 и $u_k^T X$ – независимые $\forall i, k$

Проверим, что
$$A_iX$$
 и u_k^TX – независимые $\forall i, k$ $\operatorname{Cov}(A_iX, u_k^TX) = A_i \underbrace{\operatorname{Cov}(X, X^T)}_{\neq 0} u_k = A_i \underbrace{\operatorname{Var} X}_{\sigma^2 \cdot E} u_k = \sigma^2 A_i u_k = 0$

Т.е. статистики независимые

Лемма о независимости двух независимых статистик

$$Q_1 = X^T B_1 X$$

$$Q_2 = X^T B_2 X$$

$$B_1 B_2 = B_2 B_1 = 0$$

Тогда Q_1, Q_2 — независимые

Доказательство

Аналогично

Определение

$$X_1,\ldots,X_n \sim N(0,1)$$

Тогда $\sum_{k=1} X_k^2 \sim \chi^2(n)$ – распределение хи-квадрат с n степенями свободы

Лемма о распределении квадратичной статистики

$$X_1, \dots, X_n \sim N(0, 1)$$
$$Q = X^T B X, B = B^2$$

$$Q = X^T B X, B = B^2$$

$$r := rg(B)$$

Тогда
$$Q \sim \chi^2(r), r = \operatorname{tr}(B)$$

Доказательство

Заметим, что собтсвенные числа либо 0, либо 1: $\lambda u = Bu = B^2u =$

$$B\lambda u = \lambda^2 u$$

$$B = \sum_{k=1}^{r} u_k u_k^T$$

$$Q = \sum_{k=1}^{n} (u_k^T X)^2$$

$$u_k^T X \stackrel{k=1}{\sim} N(\underbrace{u_k^T E X}_0, \underbrace{u_k^T E u_k}_1)$$

$$Cov(u_k^T X, u_i^T X) = 0$$

Тогда
$$Q \sim \chi(r)$$

$$B = U\Lambda U^T$$

$$\operatorname{rg} B = \operatorname{rg} \Lambda = \operatorname{tr} \Lambda$$

$$B_{jj} = \lambda_j u_j u_j^T = \lambda_j$$

Тогда
$$\operatorname{tr} B = \operatorname{tr} \Lambda = \operatorname{rg} B$$

Теорема Фишера

Пусть
$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$

Тогда

1.
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

Доказательство очевидно

2.
$$\frac{nS_*^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
Доказательство
$$Y_j = \frac{X_j - \mu}{\sigma}$$

$$\overline{Y} = \frac{1}{\sigma}(\overline{X} - \mu)$$

$$S_*^2(Y) = \frac{1}{n} \sum_{j=1}^n (Y_j - \overline{Y})^2 = \frac{S_*^2(X)}{\sigma^2}$$

$$\overline{Y} = \frac{\sum Y_j}{n} = \underbrace{\left(\frac{1}{n} \dots \frac{1}{n}\right)}_{b} \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = bY$$

$$nS_*^2(Y) = (Y - bY)^T(Y - bY) = Y^T(E - B)^T(E - B)Y, B = \begin{pmatrix} b \\ \vdots \\ b \end{pmatrix}$$

$$(I - B)^T(I - B) = I - B$$
По предыдущей лемме $Y^T(E - B)^T(E - B)Y \sim \chi^2(\text{tr}(I - B))$

$$\text{tr}(I - B) = \sum_{k=1}^n (1 - \frac{1}{n}) = n - 1$$

3. S^2, \overline{X} – независимые S^2_*, \overline{X} – независимые

Доказательство

$$b(I - B) = b - b = 0$$

Тогда по лемме 1

Определение

$$X_0, \ldots, X_n$$
 — i.i.d $N(0, 1)$

Тогда
$$\frac{X_0}{\sqrt{\frac{1}{n}\sum_{k=1}^n X_k^2}} \sim T(n)$$
 – распределение Стьюдента

Определение

$$\chi_n^2 \sim \chi^2(n)$$

$$\chi_m^2 \sim \chi^2(m)$$
 – независимые

$$\chi_n^2 \sim \chi^2(n)$$
 $\chi_m^2 \sim \chi^2(m)$ – независимые
 $\frac{\chi_n^2}{\chi_m^2} \sim F(n,m)$ – распределение Фишера

6.8 Асимптотические доверительные интервалы

$$\lim_{\substack{n\to\infty\\T(X,\theta)\to d}}P(\theta\in(l_n,r_n))\geq 1-\alpha$$

7 Проверка статистических гипотез

Основное предположение (по умолчанию)

Альтернативное предположение (хотим доказать)

Определение

Пусть есть выборка в широком смысле X_1, \dots, X_n

Будем считать, что $(X_1, \ldots, X_n) \sim F$

 $H_0 := (F \in \mathcal{F}_0)$ – нулевая гипотеза (основная гипотеза)

 $H_1:=(F\in\mathcal{F}_1)$ – альтернатива

 $\alpha \in (0,1)$ – уровень значимости

Проводим стат. тест/критерий $\delta(X,\alpha)$:

$$\delta(X,\alpha) = \begin{cases} \underbrace{\text{ассерt } H_0}_{\text{данные не противоречат нулевой гипотезе}} \\ \underbrace{\text{reject } H_0 \text{ with respect to } H_1}_{\text{данные противоречат нулевой и свидетельствуют альтернативной}}$$

Тест не подтверждает и не опровергает гипотезу, но позволяет делать некоторые выводы о гипотезе

Рассмотрим T(X) – статистику критерия

$$T(X) \sim G$$
 или $T(X) \xrightarrow[n \to \infty]{d} G$ при условии H_0

$$P(T(X) \in T_0(\alpha)|H_0) = 1 - \alpha$$

$$P(T(X) \in T_1(\alpha)|H_0) = \alpha$$
 (при сходимости \approx)

Если
$$T(x) \in T_1(\alpha)$$
 – reject H_0

Иначе – accept H_0

$$\operatorname{supp} G = \underbrace{T_0(\alpha)}_{\text{область принятия}} \sqcup \underbrace{T_1(\alpha)}_{\text{область опровержения}}$$

Виды тестов в зависимости от критической области:

1. Left-sided

$$T_0(\alpha) = [q_{\alpha}, +\infty), T_1(\alpha) = (-\infty, q_{\alpha})$$

$$p_l = P(\Gamma \le T(x)|H_0)$$

2. Right-sided

$$T_0(\alpha) = (-\infty, q_{1-\alpha}], T_1(\alpha) = (q_{1-\alpha}, +\infty) \ p_r = P(\Gamma > T(x)|H_0)$$

3. Two-sided

$$T_0(\alpha) = [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}], T_1 = \overline{T_0} \ p = 2\min(p_l, p_r)$$

Тогда мы получили еще одно условие:

Если $p < \alpha$ – reject H_0

Иначе accept H_0

p (p-value) — это максимальный уровень, при котором мы принимаем ${\cal H}_0$

Виды ошибок:

- 1. first type error / false positive $P(T(X) \in T_1(\alpha)|H_0) = \alpha$
- 2. second type error / false negative $P(T(X) \in T_0(\alpha)|H_1) = \beta$ $1-\beta$ мощность критерия

Пример (spam classifier)

 H_0 – не спам

 H_1 – спам

Письма не фильтруются, $\alpha=0\Rightarrow\beta$ – большое, т.к. спама много

Все письма – спам, $\beta = 0 \Rightarrow \alpha$ – большое

7.1 Статистические критерии и доверительные интервалы

Вспомним задачу построения доверительного интервала

$$X_1, \dots, X_n \sim F_\theta, T(X, \theta) \to G, P(q_{\frac{\alpha}{2}} \le T(X, \theta) \le q_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

Рассмотрим следующую стат. гипотезу

 $H_0: \theta = \theta_0$

$$P(T(X, \theta_0) \in T_\theta | \theta = \theta_0) = 1 - \alpha$$

 $H_1: \theta \neq \theta_0$ или $\theta > \theta_0$ или $\theta < \theta_0$

7.2 Критерий Колмагорова

 $X_1, \ldots, X_n \sim F$

 $H_0: F = F_0, F_0$ – непрерывная

 $H_1: F \neq F_0$

Теорема Колмагорова (напоминание)

$$P(\sqrt{n}\sup_{x\in\mathbb{R}}|F_n(x) - F(x)| \le t) \to K(t)$$

Статистика критерия: $D_n = \sqrt{n} \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|, F_n - \mathfrak{s}. \mathfrak{\phi}. \mathfrak{p}.$

Если $D_n > q_{1-\alpha}$ – reject H_0

Иначе accept H_0

7.3 Критерий Смирнова

 $X_1,\ldots,X_n,Y_1,\ldots,Y_m$ – независимые

 $H_0: F_X = F_Y (=F_0), F_0$ – непрерывная

 $H_1: \neg H_0$

$$D_{m,n} = \sqrt{\frac{nm}{n+m}} \sup_{x} |F_n(x) - F_m(x)|$$

 $T_1(\alpha) = (q_{1-\alpha}, +\infty)$

7.4 Критерии типа хи-квадрат

Критерий согласия Пирсона

Пусть есть N-элементное множество

 $p = (p_1, \dots, p_N)$ – настоящий вектор вероятностей (не знаем)

 $p_0 = (p_{01}, \dots, p_{0N})$ – ожидаемый, фиксированный вектор вероятностей

 u_k – кол-во элементов типа k в выборке, $n=\sum_k \nu_k$

 $H_0: p = p_0$

 $H_1: p \neq p_1$

Тогда возьмем статистику $\chi_N^2 = \sum_{k=1}^N \frac{(\nu_k - n p_{0k})^2}{n p_{0k}}$

Теорема

 $\chi_N^2 \xrightarrow[n \to \infty]{} \chi^2(N-1)$ – при условии H_0

Доказательство для N=2

$$\frac{(\nu_1 - np_{01})^2}{np_{01}} + \frac{(\nu_2 - np_{02})^2}{np_{02}} = \frac{(\nu_1 - np_{01})^2}{n} \left(\frac{1}{p_{01} + \frac{1}{1 - p_{01}}}\right) = \frac{(\nu_1 - np_{01})^2}{np_{01}(1 - p_{01})} \to (N(0, 1))^2$$

Замечание

Критерий состоятельный (мощность стремится к 1)

Критическая область правосторонняя (если H_0 верна, то χ будет мало)

Усложним задачу

$$H_0: p = p_0(\theta), \theta \in \circ H \subset \mathbb{R}^d, d < N - 1$$

Тогда
$$\chi_N^2 = \sum_{k=1}^N \frac{(\nu_k - np_{0k}(\theta))^2}{np_{0k}(\theta)}$$

Вместо θ подставим оценку максимального правдоподия

Теорема

$$p_0(\theta) > 0 \forall \theta$$

$$\frac{\partial p_0}{\partial \theta}$$
, $\frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} p_0$ – непрерывные

$$\operatorname{rg}(\frac{\partial p_{0k}}{\partial \theta_{\cdot}})_{1 \leq k \leq N, 1 \leq j \leq d} = d$$

$$\operatorname{rg}(\frac{\partial p_{0k}}{\partial \theta_j})_{1 \leq k \leq N, 1 \leq j \leq d} = d$$

Тогда $\chi_N^2 \to \chi^2(N-1-\underline{d})$

Критерий однородности

Есть K независимых выборок

Все они из $\{1..., N\}$

Пусть $p^{(j)}$ – истинный вектор вероятностей для j-ой выборки

$$H_0: p^{(1)} = \ldots = p^{(k)}$$
 – мы их не знаем

$$H_1: \neg H_0$$

 u_{ij} – количество элементов j в выборке i

$$n_i = \sum \nu_{i*}$$

$$n_i = \sum_{i=1}^{n} \nu_{i*}$$

$$n = n_1 + \ldots + n_k$$

Пусть $p^{(*)}$ известны

$$\chi_{n_i}^2 = \sum_j \frac{(\nu_{ij} - n_i p_j^{(i)})^2}{n_i p_j^{(i)}}, df = N - 1$$

$$\chi_n^2 = \sum_{n=1}^{\infty} \chi_n^2, df = k(N-1)$$

Теперь $p^{(*)}$ – неизвестные. Тогда суммарно (N-1) неизвестных

Тогда из прошлой теоремы df = k(N-1) - (N-1) = (N-1)(k-1)

Подставим вместо $p^{(i)}$ оценку максимального правдоподия $\widehat{p_j} = \underbrace{\nu_{1j} + \ldots + \nu_{kj}}_{n}$

Критерий независимости

$$x_1,\ldots,x_n\in\{1,\ldots,N\}$$

$$y_1,\ldots,y_n\in\{1,\ldots,M\}$$

 ν_{ij} – количество пар, в которых первая компонента i, вторая – j

$$p_{ij} = P(X = i, Y = j)$$

$$p_{X_i} = p(X = i)$$

$$p_{Y_j} = p(Y = j)$$

$$H_0: p_{ij} = p_{X_i} p_{Y_i}$$

$$H_1: \neg H_0$$

$$\chi^2 = \sum_{ij}^{M_0} \frac{(\nu_{ij} - p_{ij}n)^2}{np_{ij}}, df = NM - 1$$

Учитывая, что $p_{ij} = p_{X_i} p_{Y_i}, df = NM - 1 - N - M$

Критерий квантилей

$$H_0: F(q_1) = \alpha_1, \dots, F(q_N) = \alpha_N$$
, где $0 < \alpha_1 < \dots < \alpha_N < 1$

$$H_1: \neg H_0$$

Разобьем множество по $\underbrace{\inf \operatorname{supp} P}_{q_0} < q_1 < \ldots < q_N < \underbrace{\sup \operatorname{sup} P}_{q_{N+1}}$

$$\underbrace{\operatorname{rsupp}_{q_0}} < q_1 < \ldots < q_N < \underbrace{\operatorname{supsupp}_{q_{N+1}}}_{q_{N+1}}$$

$$\Delta_i = [q_{i-1}, q_i), p(\Delta_i) = q_i - q_{i-1}$$

Далее воспользуемся хи-квадрат

Критерий знаков

$$H_0: F(q) = \frac{1}{2}$$

$$H_1: \neg H_0$$

В общем случае:

Есть парная выборка
$$\begin{pmatrix} X_i \\ Y_i \end{pmatrix}_i$$

Хотим проверить, что выборки i.i.d. $\Leftrightarrow F(x,y) = F(x)F(y)$

Сведем к критерию знаков: рассмотрим U = X - Y. Если H_0 , то med U =0

Замечание

Рассмотрим ν_1 – количество элементов > med

$$Z_n = \frac{2}{\sqrt{n}} (\nu_1 - \frac{n}{2}) \to N(0, 1)$$

 ${\bf C}$ помощью данного факта можно более гибко настроить H_1

Тест на коэффициент корреляции

Есть парная выборка
$$\begin{pmatrix} X_i \\ Y_i \end{pmatrix}_i \sim N(\dots,\dots)$$

Тогда
$$\frac{\sqrt{n-2}\rho_n}{\sqrt{1-\rho_n^2}} \sim T(n-2)$$

 $H_0: \rho=0$
 $H_1: \rho \neq 0, \rho>0, \rho<0$

Ранговые критерии 7.5

Определение

 X_1, \ldots, X_n – выборка $r(X_k)$ – номер в вариационном ряде

Замечание

Если число повторяется несколько раз, то можно взять

- минимум
- 2. максимум
- 3. среднее арифметическое

$$X_1,\dots,X_n,Y_1,\dots,Y_m$$
 — две независимые выборки R_i — ранг X_i в объединенной выборке $T=R_1+\dots+R_n$ — статистика Вилкоксона $Z_{rs}=\mathbb{1}(X_r< Y_s)$ $U=\sum_{r=1}^n\sum_{s=1}^m Z_{rs}$ — статистика Манн-Уитни $T+U=nm+rac{n(n+1)}{2}$

Пусть хотим проверить, что распределение X= распределение Y $EU=mnE\mathbb{1}(X< Y)=mnP(X< Y)=\frac{mn}{2}$ — при условии H_0

T.e.
$$H_0: P(X < Y) = \frac{1}{2}$$

 $H_1: P \neq \frac{1}{2}, P > \frac{1}{2}, P < \frac{1}{2}$

(Статистика нормальная – $U \sim N(\frac{nm}{2}, \frac{nm(n+m+1)}{12}))$

Коэффициент корреляции Спирмена

$$\left(egin{array}{c} X_i \ Y_i \end{array}
ight)_i$$
 – парные выборки

 R_i – ранг X_i в своей выборке

 S_i – ранг Y_i в своей выборке

ho – выборочный коэффиент корреляции между R_i и S_i – коэффициент корреляции Спирмена

$$H_0: \rho = 0$$

 H_1 – можем выбирать, т.к. $\sqrt{n}\rho \to N(0,1)$

Статистический тест Кенделла

Рассмотрим последовательность $\begin{pmatrix} R_i \\ S_i \end{pmatrix}$.

Упорядочим по
$$R$$
: $\begin{pmatrix} i \\ T_i \end{pmatrix}_i$

Тогда коэффициент корреляции Кенделла $\tau = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{sign}(T_i - T_i)$

$$T_j$$

Если
$$H_0$$
, то $E\tau = 0$, $\operatorname{Var} \tau = \frac{2(2n+5)}{9n(n-1)}$

Тогда
$$\tau \approx N(0, \frac{4}{9n})$$

$$H_0: \tau = 0$$

 H_1 – можем настраивать

7.6 Проверка независимости наблюдений

 X_1,\ldots,X_n – выборка из непрерывного распределения

 H_0 – все наблюдения независимые и пришли из одного и того же закона

T.e.
$$F(x_1, ..., x_n) = F(x_1) ... F(x_n)$$

Критерий инверсий

Рассмотрим вариационный ряд: $X_{(1)} \leq \ldots \leq X_{(n)}$

 u_i – количество инверсий для элемента X_i

$$T = \nu_1 + \ldots + \nu_{n-1}$$

$$ET = \frac{n(n-1)}{4}$$

$$T = \nu_1 + \ldots + \nu_{n-1}$$

$$ET = \frac{n(n-1)}{4}$$

$$Var T = \frac{n(n-1)(2n+5)}{72}$$

$$CTATHET WAY T = 3CHMITTON$$

Статистика T – асимптотически нормальная

Линейные статистические модели 8

$$Y = Xb + \varepsilon$$

 $X \in M_{n \times m}(\mathbb{R})$ – матрица переменных (детерминированные)

 X_{ij} – количественная переменная

 $Y \in \mathbb{R}^n$ – наблюдения зависимой переменной (количественная)

 $b \in \mathbb{R}^m$ – вектор коэффициентов (не знаем)

 $\varepsilon \in \mathbb{R}^n$ – ошибка (случайная величина)

 $n \gg m$

Минимальные предположения:

- 1. $E\varepsilon = 0$
- 2. Var $\varepsilon_i = \sigma^2$ гомоскедастичность
- 3. $Cov(\varepsilon_i, \varepsilon_j) = 0$

Цель – «оценить» b и σ^2

Определение (оценка наименьших квадратов)

 $\widehat{b} = \operatorname{argmin} S^2(b) = \operatorname{argmin} (Xb - Y)^T (Xb - Y)$

Рассмотрим $A = X^T X \in M(m \times m)$

Будем предполагать, что $\operatorname{rg} A = m$ – отсутствие коррелированности у переменных

Теорема

$$\hat{b} = A^{-1}X^TY$$

Доказательство

Докажем, что $\hat{b} = A^{-1}X^{T}Y$ – оценка наименьших квадратов $S^{2}(\widehat{b} + \delta) = (X\widehat{b} - Y + X\delta)^{T}(X\widehat{b} - Y + X\delta) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + \delta^{T}X^{T}X\delta + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) = S^{2}(\widehat{b}) + (X\widehat{b} - Y)^{T}(X\widehat{b} - Y) + ($ $(Y)^T X \delta + \delta^T X^T (X \hat{b} - Y)$

Подставим вместо
$$\hat{b}$$
 нашу формулу Тогда $S^2(\hat{b} + \delta) = S^2(\hat{b}) + \delta^T X^T X \delta$

Отсюда $\hat{b} = A^{-1}X^TY$ – оценка наименьших квадратов

Свойства

$$t=Tb, T\in M_{k imes m}, m\leq m, \operatorname{rg} T=k$$
 Тогда $\widehat{t}=T\widehat{b}$

Теорема Гаусса-Маркова

1. \hat{t} – несмещенная оценка t $\operatorname{Var} \widehat{t} = \sigma^2 T A^{-1} T^T$

$$\operatorname{Var} \widehat{b} = \sigma^2 A^{-1}$$

$$MSE(\widehat{t}) = \operatorname{tr} \operatorname{Var} \widehat{t}$$

2. \hat{t} – оптимальная оценка в классе линейных несмещенных оценок

Доказательство

TODO

$$ES^{2}(b) = n\sigma^{2}$$

$$E(\widehat{b} \quad b)^{T} \Lambda(\widehat{b} \quad b)$$

$$E(\widehat{b} - b)^T A(\widehat{b} - b) = \sigma^2 m$$

$$\widehat{\sigma}^2 = rac{S^2(\widehat{b})}{n-m}$$
 – несмещенная оценка для σ^2

8.1 Условные оценки наименьших квадратов

Определение

$$Tb = t_0, T \in M_{k \times m}, \operatorname{rg} T = k$$

$$\widehat{b}_{T,t_0} = \mathop{\mathrm{argmin}}_{Tb=t_0} S^2(b)$$
 – условная оценка наименьших квадратов

$$\widehat{b}_{T,t_0} = \widehat{b} - A^{-1}T^T D^{-1}(T\widehat{b} - t_0), D = TA^{-1}T^T$$

Доказательство

Можно показать, что
$$S^2(b) = S^2(\widehat{b}_{T,t_0}) + (\widehat{b}_{T,t_0} - b)^T A(\widehat{b}_{T,t_0} - b)$$

Замечание

$$S^{2}(b) = S^{2}(\widehat{b}) + (\widehat{b} - b)^{T} A(\widehat{b} - b)$$

Подставим $b = \widehat{b}_{T,t_0}$

$$S^{2}(\widehat{b}_{T,t_{0}}) = S^{2}(\widehat{b}) + (\widehat{b} - \widehat{b}_{T,t_{0}})^{T} A(\widehat{b} - \widehat{b}_{T,t_{0}})$$

$$S^{2}(\widehat{b}_{T,t_{0}}) - S^{2}(\widehat{b}) = (T\widehat{b} - t_{0})^{T} D^{-1}(T\widehat{b} - t_{0})$$

«Обычные» предположения = Минимальные предположения + $arepsilon \sim N(0,\sigma^2 E_n)$

$$Y = Xb + \varepsilon \sim N(Xb, \sigma^2 E_n)$$

«Обычные» предположения = Минимальные пред
$$Y = Xb + \varepsilon \sim N(Xb, \sigma^2 E_n)$$

$$L(b, \sigma^2; Y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2}\underbrace{(Xb - Y)^T (Xb - Y)}_{S^2(b)})$$

Если
$$\sigma^2$$
 – фиксированное, то $\sup_b L(b, \sigma^2; Y) \Leftrightarrow \inf_b S^2(b)$

 \widehat{b} – оценка максимального правдоподия

Тогда \hat{b} – эффективно в классе несмещенных оценок

Основная теорема о линейной регресии

1.
$$S^2(\widehat{b}), \widehat{b}$$
 – независимые

2.
$$\hat{b} \sim N(b, \sigma^2 A^{-1})$$

3.
$$\frac{S^2(\widehat{b})}{\sigma^2} \sim \chi^2(n-m)$$
$$S^2(b) - S^2(\widehat{b}) \sim \chi^2(m)$$

Следствие (Т-тест для регрессии)

$$\frac{\frac{\widehat{b}_j - b_j}{\sigma \sqrt{A_{jj}^{-1}}}}{\sqrt{\frac{1}{n-m} \frac{S^2(\widehat{b})}{\sigma^2}}} = \sqrt{n-m} \frac{\widehat{b}_j - b_j}{S(\widehat{b}) \sqrt{A_{jj}^{-1}}} \sim T(n-m)$$

Отсюда можем проверять гипотезы: $H_0: b_i = b_{i0}, H_1: \neq, >, <$

F-тест для регрессии

 $H_0: Tb=t_0 \text{ (default } T=E_m, t_0=0, \text{ т.е. все } b_i \text{ одновременно равны } 0)$

 $H_1: Tb \neq t_0$

$$F = \frac{n - m}{k} \frac{S^{2}(\widehat{b}_{T,t_{0}}) - S^{2}(\widehat{b})}{S^{2}(\widehat{b})} = \frac{n - m}{k} \frac{(T\widehat{b} - t_{0})^{T} D^{-1} (T\widehat{b} - t_{0})}{S^{2}(\widehat{b})} \sim F(k, n - m)$$

Рассмотрим вспомогательную задачу:
$$E(U^TBU) = \sum_{i,j} B_{ij} E(U_i, U_j) = \sum_{i,j} B_{ij} \operatorname{Cov}(U_j, U_i) + \sum_{i,j} B_{ij} EU_i EU_j =$$

 $\operatorname{tr}(B\operatorname{Var} U) + (EU)^T BEU$

Возьмем
$$U = T\hat{b} - t_0, b = D^{-1}, \frac{1}{k}E(U^TBU) = \frac{1}{k}\operatorname{tr}\underbrace{(D^{-1}\operatorname{Var}U)}_{\sigma^2E} + (Tb - Tb)$$

$$(t_0)^T D^{-1} (Tb - t_0)$$

Тогда если $Tb \neq t_0$, то матожидание числителя будет больше σ^2

Тогда F-тест правосторонний

$$R = corr(Y, \widehat{Y}), \widehat{Y} = X\widehat{b}$$

 R^2 – коэффициент детерминации

Замечание

Если
$$y_i = b_0 + b_1 x_1 + \ldots + b_m x_m$$
, $H_0: b_1 = \ldots = b_m = 0$, то $F = (n-m)\frac{R^2}{1-R^2}$

Замечание

Замечание
$$S^2(\hat{b}) = (1 - R^2)$$
 $\sum (Y_i - \overline{Y}_i)^2$

9 Дисперсионный анализ

Неформально: y – количественная переменная, x – категориальные переменные

Однофакторный дисперсионный анализ 9.1

F-тест

$$Y_{ij} = \mu_j + \varepsilon_{ij}, \mu_j$$
 — среднее влияние на j -ом факторе $1 \le j \le J$ — уровень фактора $1 \le i \le I_j$ — i -ое наблюение для фактора с уровнем j $I = \sum_{ij} I_j$ $\varepsilon_{ij} \sim N(0, \sigma E)$ $H_0: \mu_1 = \ldots = \mu_j$ $H_1 = \neg H_0$ $F = \frac{S_B^2}{\frac{df_B}{df_W}} \sim F(J-1, I-J)$ $S_B^2 = \sum_{j=1}^{N} I_j (\overline{Y}_{*j} - \overline{Y})^2$ — межгрупповая дисперсия $df_B = J - 1$ $S_W^2 = \sum_{j=1}^{N} \sum_{i=1}^{N} (Y_{ij} - \overline{Y}_{*j})^2$ — внутригрупповая дисперсия $df_W = I - J$ Замечание: $S^2 = S_W^2 + S_D^2$

Замечание: $S^2 = S_W^2 + S_B^2$

Тест правосторонний (как и для регрессии)

ПРОДОЛЖИТЬ НА ЛЕКЦИИ 13