Data Mining

Alexander Hinneburg

SS 2009

Inhaltsverzeichnis

1	Leh	Lehr- und Lernmethoden 1							
	1.1	Verortung des Gebiets, Fernziele							
	1.2	Gestaltung der Vorlesung							
2	Dat	Data Mining Einführung							
	2.1	Data Mining Prozeß							
	2.2	Beispiel: Polynom-Kurvenanpassung							
3	Wal	Wahrscheinlichkeitstheorie 19							
	3.1	Wahrscheinlichkeitsregeln							
	3.2	Wahrscheinlichkeitsdichte							
	3.3	Erwartungswerte und Kovarianzen							
	3.4	Bayessche Wahrscheinlichkeiten							
	3.5	Gauß-Verteilung							
	3.6	Nochmal Kurvenanpassung							
4	Wahrscheinlichkeitsverteilungen 3								
	4.1	Binäre Variablen							
	4.2	Multinomiale Variablen							
	4.3	Gauß-Verteilung							
	4.4	Einführung zu Mischmodellen							
5	Tex	Text Mining, Beispiel Spam 4							
	5.1	Mehrdimensionales Bernoulli-Modell							
	5.2	Multinomial-Modell							
	5.3	Anwendung: Spam-Erkennung							
	5.4	Nicht-Konjugierte Prior-Verteilungen							
6	Mischmodelle 4								
	6.1	K-Means							
	6.2	Gauß-Mischmodell, Teil 1							
7	The	Theorie zum EM-Algorithmus 5							
•	7.1	Allgemeiner EM-Algorithmus							
	7.2	Gauß-Mischmodell, Teil 2							
	7.3	K-Means als Spezialfall des EM							
8	Beri	Bernoulli-Mischmodell 5							
-	8.1	Mehrdimensionale Bernoulli-Verteilung und Mischmodell							
		FM Algorithmus für Dornoulli Mischmodell							

9	Multinomial-Mischmodell					
	9.1 EM-Algorithmus für Multinomial-Mischmodell	62				
	9.2 Kovarianz von Mischmodellen	64				
10	Anwendung des Multinomial-Mischmodell	66				
	10.1 Datenvorverarbeitung	66				
	10.2 Initialisierung der Parameter des EM-Algorithmus	69				
	10.3 EM-Implementierung	70				
11	EM-Algorithmus für MAP-Schätzung	76				
12	! Konvergenz des EM-Algorithmus	78				
13	B Evaluation	83				
	13.1 Evaluationsmaße	83				
	13.2 Trainings-, Validierungs- und Testdaten	85				
	13.3 Kreuzvalidierung					
	13.4 Bootstrap	86				

1 Lehr- und Lernmethoden

1.1 Verortung des Gebiets, Fernziele

Data Mining, was ist das?

- Motivation ist das Wichtigste beim Lernen
- Fragen zur Motivation
 - Warum soll ich mich mit Data Mining beschäftigen?
 - Kann ich Data Mining mit Gewinn nebenbei hören?
 - Ist Data Mining nur eine Modeerscheinung?
 - Brauche ich die ganze Mathematik für das eigentliche Data Mining?
 - Muss ich hier viel programmieren?

Einordnung von Data Mining

• Welt der Informatik

Komplexität des Alltäglichen

Das Problem Mathematik

- Data Mining und Maschinelles Lernen importiert Erkenntnisse aus Mathematik/Statistik
 - Stoff aus den 70-ern des letzten Jahrhunderts
 - heute in großen Maßstab anwendbar
- Gegen die Krankheit der Modewörter und Abkürzungen hilft nur Mathematik
- Mathematik ist ein Wettbewerbsvorteil
- Gut ausgebildete Absolventen werden gebraucht, Sie sollen diese Menschen sein.
- Gestaltung der Vorlesung
 - Weniger Stoff dafür lieber gründlich, dass Sie es verstehen
 - Aufspaltung der Übung in Besprechungsteil und Praxisteil

1.2 Gestaltung der Vorlesung

Unterrichts- und Lernorganisation 1/2

• Leistungsverhalten über den Tag, REFA-Normkurve¹

- Allgemeine Aussagen
 - Der Leistungshöhepunkt liegt am Vormittag.
 - Erneutes Zwischenhoch am frühen Abend.
- Folgerung
 - Bemühen Sie sich um 8 Uhr zur Vorlesung
 - Wiederholen Sie am frühen Abend die Vorlesung

Unterrichts- und Lernorganisation 2/2

• Leistungswerte der Konzentration im Verlauf von 60 Minuten:

- Folgerung
 - Nach 45 Minuten Pause machen

Zeitliche Aufteilung

Besprechung 8:15 – 9:00 Uhr, Besprechung der Übungen, Wiederholung

10 Minuten Pause

Vorlesung I 9:10 - 9:55 Uhr

10 Minuten Pause

¹http://www.gm.fh-koeln.de/~bundschu/dokumente/Referate/358/

Vorlesung II 10:05 - 10:50 Uhr

10 Minuten Pause

Praxis 11:00 – 11:45 Uhr, Bearbeiten von Beispielen

Aufbereitung des Lernstoffs

- Gesagt ist nicht gehört
- Gehört ist nicht verstanden
- Verstanden ist nicht behalten
- Behalten ist nicht gekonnt
- Gekonnt ist nicht angewendet
- Angewendet ist nicht beibehalten

Konrad Lorenz

Wir behalten

- 10% von dem, was wir lesen
- 20% von dem, was wir hören
- 30% von dem, was wir sehen
- 50% von dem, was wir hören und sehen
 - Bilder und Skizzen machen
- 70% von dem, was man selbst sagt
 - Fragen stellen, Übungen vorrechnen, Stoff wiederholen
- 90% von dem, was man selbst tut
 - Übungen machen, Zusammenfassungen erarbeiten

Quelle: Roland Spinola, Weiterbildung 4/1998

Aufbereitung des Lernstoffs

Je mehr Wahrnehmungskanäle angesprochen werden, desto höher ist die Behaltensquote.

Zur Arbeit mit dem Skript

- Es wird ein Skript gegeben
- Viele wichtige Sachen sind nicht im Skript enthalten, weil
 - Formeln an der Tafel entwickelt werden
 - Argumente besprochen werden
- Für Sie ist es wichtig von der Tafel und Diskussion mitzuschreiben
- Mitschrieb-Wiki ist Ihr Beitrag zum Skript

Nehmen Sie das Skript nicht wörtlich

Nachdenken, Nachlesen, Nachfragen

Bücher und Material

- Christopher M. Bishop: Pattern Recognition and Machine Learning. (Viele Abbildungen sind aus dem Buch)
- Ethem Alpaydin: Introduction to Machine Learning (auch in Deutsch).
- Ian H. Witten, Eibe Frank: Data Mining: Practical Machine Learning Tools and Techniques (Second Edition).
- David Heckerman: A Tutorial on Learning with Bayesian Networks http://research.microsoft.com/en-us/um/people/heckerman/

Organisation der Vorlesung 1/2

- Vorlesung und Übung finden Mi. 8:15-11:45, Raum 1.27 statt.
- Der Stoff aus Vorlesung und Übung ist prüfungsrelevant.
- Die Vorlesung hat 15 Wochen und ist in drei Teile gegliedert
 - Teil 1 geht von der ersten bis zur 4. Woche
 - Teil 2 geht von der 6. bis zur 9. Woche
 - Teil 3 geht von der 11. bis zur 14. Woche
- In der 5., 10. und 15. Woche werden die Klausuren zur Vorlesungszeit (jeweils 90 min) geschrieben.

Organisation der Vorlesung 2/2

- Es gibt keine Voraussetzungen, um an den Klausuren teilnehmen zu können. Es wird empfohlen die Übungen zu machen.
- Für die Wirtschaftsinformatiker zählen die besten beiden Klausuren von dreien mit jeweils 50 Fachpunkten. Bekanntgabe der Ergebnisse sind jeweils 2 Wochen nach der Klausur.
- Für WI-Inf ist das eine studienbegleitende Prüfung mit 5 LP für Vorlesung und Übung für mindestens 50 Fachpunkte (insgesamt) erbracht werden müssen.

Organisation der Übung

- Die Übungsblätter werden immer am Mittwoch zur Übungszeit ins Netz gestellt.
- $\bullet\,$ Die Übungen sind eine Woche später bis Mittwoch 8.00 Uhr elektronisch mittels Subversion (SVN) abzugeben.
- Übungsgruppen von zwei-drei Personen sind zulässig.
- Zum Vorstellen der Übungsaufgaben muss eine kleine Präsentation in PDF vorbereitet werden.

Arbeitsaufwand und Fallen

- Nicht zu viele Vorlesungen, 20 SWS sind OK.
- Vorlesungen werden zum Ende hin schwerer.
- Vergleich: Brettspiel Keltis

2 Data Mining Einführung

Data Mining Einführung 1/2

- Ziele und Motivation
 - Entdeckung von unbekanntem, nützlichem, interessantem und verstehbarem Wissen, Hypothesen, Fakten
 - Daten wurden oft nicht für Data Mining gesammelt
 - Datensammlungen wachsen ständig

Turning data grave yards into gold mines.

• Geschichte

- Beginn 1993 mit Datenbank-Workshops
- $-\,$ Seit 1995 eigene Konferenzen, ACM SIGKDD, IEEE ICDM, SIAM SDM, European ECML/PKDD, PA-KDD
- Seit 1999 eigene Gesellschaften ACM SIG-KDD, GI-AG KDML
- Seit 2004 teilweise Konvergenz mit Maschinellem Lernen und Information Retrieval

Data Mining Einführung 2/2

- Möglichkeiten und Unmöglichkeiten
 - Ziel: Modell der Wirklichkeit
 - Arten von Modellen
 - * Entity-Relationship (ER) Modell, Relationales Schema, Objektorierentiertes (OO) Modell
 - * Hidden Markov-Modell, Gaussisches Mischmodell
 - Flaschenhals-Methode
 - * Trennung von relevanten Informationen vom Rauschen
 - * Kompression: Probabilistische Modelle, Kodierungstheorie

2.1 Data Mining Prozeß

Anwendungsaufgabe Datenauswahl und Vorverarbeitung Modellinterpretation Modellevaluation

Typen von Anwendungsaufgaben 1/3

- Beschreiben und Reduzieren
 - Was steckt in den Daten?
 - Beispiele
 - * Kundensegementierung
 - * Kleidenkonfektionsgrößen
 - * Themen in Dokumentsammlungen

Typen von Anwendungsaufgaben 2/3

- Klassifizieren
 - Gegeben Beispiele, lerne Methode Objekte in Klassen/Kategorien einzuordnen
 - Beispiele
 - * Treue Kunden / Wechselkunden
 - * Spam / normale Emails
 - * Autos
- Regression
 - Gegeben Beispiele, lerne Methode einem Objekt einen numerischen, geordneten Wert zuzuweisen
 - Beispiele
 - * Noten geben, Prüfungen bewerten
 - * Bewertungen im Web

Typen von Anwendungsaufgaben 3/3

- Vorhersage
 - Gegeben eine Zeitreihe, setze die Reihe sinnvoll fort
 - Beispiele
 - * Wettervorhersage
 - * Anzahl den Anwesenden in der Vorlesung beim nächsten Termin
 - \ast Wichtigkeit eines Themas in den Veröffentlichungen im nächsten Jahr
- Zusammenhänge/Beziehungen/Kausalitäten
 - Lerne aus den Daten: Regeln, Netzwerke, Themen/Konzepte
 - Beispiele
 - * Kunden, die dieses Buch kauften, haben auch jenes gekauft.

Datenauswahl und Vorverarbeitung

- Daten müssen repräsentativ sein
- Daten sollen kein unnötiges, leicht entfernbares Rauschen enthalten
- Daten müssen informativ sein
- Daten müssen schlank sein
- Hilfsmittel
 - Datenbanken und Data Warehouses
 - Normalisierungsstandards, Reduktion der Variabilität
 - Einfache Analysen und Wichtungsschemata
 - Definition von beschreibenden Attributen (Feature-Extraction)

Modellbildung

- Wahl der Modellklasse, Aufbau der Pipeline
- Einstellen und Tunen der Parameter
- Wahl der Trainingsdaten
- Wahl der Trainingsmethoden
- Wahl der Initialisierung des Trainings

Modellevaluation

- Schätzung des Modellfehler
 - Passt das Modell überhaupt auf die Daten?
- Konfidenzintervalle des Modellfehlers
- Vergleich mit Grundwahrheit (Goldstandard)
- Systematische Methoden zur effektiven Ausnutzung der Daten
 - Kreuz-Validierung
 - Leave-One-Out
 - Bootstrap
 - Permutationstests
- $\bullet\,$ Test gegen Null-Hypothese
 - Rolle des Advocatus Diaboli

Modellinterpretation

- Semantische Deutung des Modells
- Plausibilitätsvergleich der gelernten Ergebnisse mit Hintergrundwissen
- Analyse von Fehlschlägen
- Visualisierung, Verdichten von Informationen

Ethische Fragen

- Werden durch die Ergebnisse Rechte verletzt
 - Persönlichkeitsrechte
 - Urheber- und Datenschutzrechte
 - Vertrauliche Informationen
- Privacy Preserving Data Mining
 - Definition neuer Begriffe
 - Echte Beiträge in der Methodik
- Soziale Implikationen
- Missbrauchsszenarien

2.2 Beispiel: Polynom-Kurvenanpassung

Probleme beim Data Mining

- Wie sehen Data Mining Modelle aus?
- Worin besteht das Lernen?
- Was sind die Schwierigkeiten bei der Wahl der Parameter?
- Was ist Over-fitting?
- Einfluß der Modellkomplexität
- Einfluß der Datenmenge
- Regulierung der Komplexität von Modellen beim Lernen
- Beispiel: Polynom-Kurvenanpassung
 - Keine großen theoretischen Voraussetzungen
 - Viele Probleme lassen sich anschaulich erklären
 - Leider keine grundlegende Theorie dahinter

Beispielproblem: Polynom-Kurvenanpassung

- Problemstellung:
 - Gegeben numerische Eingabe x, ordne eine numerische Ausgabe y zu.
 - Beispieldaten:
 - * N Beobachtungen $\vec{x} = (x_1, \dots, x_N)^T$ (geschrieben als Spaltenvektor)
 - * mit zugehörigen Ausgabewerten $\vec{t} = (t_1, \dots, t_N)^T$.
 - Problemtyp:
- Synthetische Daten für Lernspiel
 - $-x_n, n=1,\ldots,N$ gleichverteilt in [0,1].
 - $-\vec{t}$ berechnet durch $\sin(2\pi x)$ plus Gaußverteiltes Rauschen
- Ziel
 - Modell: neuen Eingaben \hat{x} Ausgaben \hat{t} zuordnen.

Synthetische Daten für Lernspiel

- N = 10 Ein- und Ausgaben
- Daten sind blaue Kreise
- Grüne Kurve $\sin(2\pi x)$

Modellklasse

- ullet Modellklasse der Polynome vom Grad M
- Polynomfunktion der Form

$$y(x, \vec{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$
 (1)

- M ist Ordnung des Polynoms
- Koeffizienten $\vec{w} = (w_0, w_1, \dots w_M)^T$
- Polynomfunktion $y(x, \vec{w})$ ist eine nichtlineare Funktion bezüglich x, aber eine lineare Funktion bezüglich der einzelnen Koeffizienten w_j .

Fehlerfunktion

- ullet Anpassen der Parameter des Modelles, die Koeffizienten $ec{w}$ an Trainingsdaten
- Optimierungsproblem: minimiere Fehlerfunktion

$$E(\vec{w}) = \frac{1}{2} \sum_{n=1}^{N} [y(x_n, \vec{w}) - t_n]^2$$
 (2)

- Nichtnegative Größe
- Null, wenn Polynom alle Trainingspunkte berührt
- Alternative Fehlerfunktionen?
- Wie kann man ein Optimierungsproblem lösen?

Geometrische Interpretation der Fehlerfunktion

 $\bullet \ E(\vec{w})$ ist Summe der quadrierten grünen Längeneinheiten

Ideen zur Lösung des Optimierungsproblems

- Fehlerfunktion ist quadratisch in Koeffizienten w_j \Rightarrow Abbleitungen nach w_j sind linear in w_j .
- \bullet Abbleitung Null setzen \Rightarrow Lösung eines Gleichungssystems
- $\bullet\,$ Eindeutige Lösung \vec{w}^*
- Polynom $y(x, \vec{w}^*)$ gibt die zugehörige Funktion (Modell)

Modell-Auswahl

- Offene Frage
 - Wie wird M gewählt?
 - Beliebige Werte für $M = 0, 1, \dots$ sind möglich
- Erster Ansatz
 - Probiere Werte M=0,1,3,9

Ergebnisse 1/4

 $\bullet \ M=0$

 $\bullet\,$ Visueller Eindruck: schlechtes Modell

Ergebnisse 2/4

M = 1 M = 1 0 0 -1

• Visueller Eindruck: schlechtes Modell

Ergebnisse 3/4

0

• M = 3

1

 \boldsymbol{x}

 \bullet Visueller Eindruck: paßt ganz gut, wenn auch nicht zu 100%

Ergebnisse 4/4

- Visueller Eindruck: paßt zu 100%, Polynom sieht seltsam aus
- Over-Fitting

Evaluation des Modells

- Modell zum Zuordnen von Ausgaben zu neuen Eingaben
- Testdaten mit 100 Datenpunkten (gleiche synthetische Erzeugung)
- Evaluation
 - Berechne für jeden Wert von M die Parameter \vec{w}^*
 - Berechne Fehlerfunktion $E(\vec{w}^*)$ jeweils für Trainings- und Testdaten
- Normalisierung des Fehlers, Root-Mean-Square Fehler (RMS)

$$E_{RMS} = \sqrt{2E(\vec{w}^*)/N} \tag{3}$$

Trainings- und Testfehler

• RMS für Trainings- und Testdaten

- 3 $\leq M \leq$ 8 liefert sinnvolle Ergebnisse
- \bullet Modell für M=9 verallgemeinert nicht gut

Diskussion 1/2

- Ergebnisse sind paradox
 - ModellM=9enthält alle anderen Modelle als Spezialfall
 - $-\ M=9$ sollte mindestens genauso gut abschneiden wie M=3
- Annahme: $\sin(2\pi x)$ ist bestes Modell
 - Taylor-Reihe von

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \text{ für alle } x$$

enthält alle höheren Potenzen

- also sollte die Qualität mit steigendem M besser werden

Diskussion 2/2

 \bullet Inspektion der Lösungen für verschieden
eM

inspention der Bosangen far versemedene in						
	M = 0	M = 1	M = 3	M = 9		
w_0^*	0.19	0.82	0.31	0.35		
w_1^*		-1.27	7.99	232.37		
w_2^*			-25.43	-5321.83		
w_3^*			17.37	48568.31		
w_4^*				-231639.30		
w_5^*				640042.26		
w_6^*				-1061800.52		
w_7^*				1042400.18		
w_8^*				-557682.99		
w_9^*				125201.43		

- ullet Koeffizienten haben mit steigendem M größere Skale
- $\bullet\,$ Für M=9 wird das Rauschen mitgelernt
 - Kosten: komplizierte Oszillationen zwischen den Datenpunkten

Abhängigkeit von der Datenmenge

- Größere Datenmenge, weniger Over-Fitting
- Je mehr Daten, desto komplexere Modelle können gelernt werden
- Heuristik
 - Anzahl der Datenpunkte sollte größer als f-Anzahl der Parameter sein,
 - f = 5 bis 10
- Mehr Datenpunkte sind meist teuer in
 - Beschaffung
 - Rechenkapazität

Abhängigkeit von der Datenmenge

• Abnahme des Over-Fitting-Problems mit größeren Datenmengen

• Minimiere Fehlerfunktion (2) mit M=9

Abhängigkeit von der Datenmenge

• Abnahme des Over-Fitting-Problems mit größeren Datenmengen

• Minimiere Fehlerfunktion (2) mit M = 9

Alternativer Umgang mit Overfitting

- Abhängigkeit der Modellkomplexität von Größe der Datenmenge ist unbefriedigend
- Modellkomplexität sollte dem Problem angepaßt sein
- Bisheriger Lernansatz entspricht Maximum-Likelihood-Schätzer
- Bayessche Schätzer vermeiden Overfitting durch Regulierungstechniken

Regulierung von Modellparametern

- Ziel
 - Vermeide Lösungen mit großen Absolutwerten (führt zu Oszillationen)
- Idee
 - Einführen eines Strafterms in die Fehlerfunktion
 - Bestraft große Absolutwerte

$$\tilde{E}(\vec{w}) = \frac{1}{2} \sum_{n=1}^{N} [y(x_n, \vec{w}) - t_n]^2 + \frac{\lambda}{2} ||\vec{w}||^2$$
(4)

- $\|\vec{w}\|^2 = \vec{w}^T \vec{w} = w_0^2 + w_1^2 + \ldots + w_M^2$
- \bullet In Abhängigkeit von λ ist der zweite Term groß, wenn die Absolutwerte der Parameter groß sind
 - Lösungen mit Oszillationen bekommen größeren Fehler zugewiesen

Regulierung, Beispiele

 $\bullet \ M=9, \ln \lambda=-18, \Rightarrow \lambda=1,523\cdot 10^{-8}$

Regulierung, Beispiele

• M = 9, $\ln \lambda = 0$, $\Rightarrow \lambda = 1$

Regulierung, Beispiele

• M = 9, $\ln \lambda = -\infty$, $\Rightarrow \lambda = 0$

• Ist Modell ohne Regulierung

Inspektion der Koeffizienten

• M = 9 und 10 Datenpunkte

	T	
$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
0.35	0.35	0.13
232.37	4.74	-0.05
-5321.83	-0.77	-0.06
48568.3	-31.97	-0.05
-231639.30	3.89	-0.03
640042.26	55.28	-0.02
-1061800.52	41.32	-0.01
1042400.18	-45.95	-0.00
-557682.99	-91.53	0.00
125201.43	72.68	0.01
	232.37 -5321.83 48568.3 -231639.30 640042.26 -1061800.52 1042400.18 -557682.99	$\begin{array}{cccc} 0.35 & 0.35 \\ 232.37 & 4.74 \\ -5321.83 & -0.77 \\ 48568.3 & -31.97 \\ -231639.30 & 3.89 \\ 640042.26 & 55.28 \\ -1061800.52 & 41.32 \\ 1042400.18 & -45.95 \\ -557682.99 & -91.53 \end{array}$

- Regulierung reduziert Absolutwerte der Parameter
- \bullet Parameter λ kontrolliert diesen Effekt

Einfluß der Regulierung auf Fehler

• M = 9, 10 Datenpunkte Trainingsdaten

Verfahren zum Lernen des Modells

- Einfache praktische Bestimmung der Modellkomplexität
 - Partitioniere Daten in Trainings-, Validierungs- und Testdaten
 - Nutze Trainingsdaten um Parameter \vec{w}^* zu bestimmen
 - Nutze Validierungsdaten um Modellkomplexität zu bestimmen (M oder λ)
 - Nutze Testdaten um Modellqualität zu bestimmen
- Relativ verschwenderischer Umgang mit Daten, später sparsamere Verfahren
- Bisher alles ad hoc per Intuition eingeführt, später alles auf solider Grundlage von Wahrscheinlichkeittheorie

3 Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie

- Grundkonzept für Data-Mining Modelle
- Konsistente Theorie zur Quantisierung und Manipulation von Informationen über Unsicherheit
- Kombination mit Entscheidungstheorie
- Enge Verbindung mit Informations- und Kodierungstheorie
- Interpretationen von Wahrscheinlichkeit
 - Häufigkeit
 - Maß für Unsicherheit (Bayessche Wahrscheinlichkeit)
 - * Aussagen über nicht wiederholbare Ereignisse bei unvollständigen Informationen

3.1 Wahrscheinlichkeitsregeln

Einfaches Beispiel

- Auswahlprozeß
 - Zufälliges Auswählen der Kiste
 - * Rote Kiste 40%
 - * Blaue Kiste 60%
 - dann zufällig Frucht ziehen

- Zufallsvariablen
 - − B für Kiste
 - * Belegungen: r (rot), b (blau)
 - * P(B=r) = 4/10, P(B=b) = 6/10
 - * Wahrscheinlichkeiten aller Alternativen summieren zu Eins
 - F für Frucht
 - * Belegungen: a (Apfel), o (Orange)
- Fragen
 - Was ist die Wahrscheinlichkeit einen Apfel zu ziehen?
 - Wenn eine Orange gezogen wurde, was ist die Wahrscheinlichkeit, daß sie aus der blauen Kiste kommt?

Summen- und Produktregel 1/2

- Zwei Zufallsvariablen
 - X, Werte $\{x_i\}, i = 1, ... M$
 - Y, Werte $\{y_i\}, j = 1, ... L$

$$M = 5, L = 3$$

- Beobachtungen
 - Insgesamt N Instanzen von Paaren (x_i, y_i)
 - Anzahl Instanzen für spezielles Paar $X = x_i$ und $Y = y_j$ ist n_{ij}
 - Anzahl Instanzen in Spalte c_i und Zeile r_j
- Verbundwahrscheinlichkeit

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} \tag{5}$$

• Randwahrscheinlichkeit

$$p(X = x_i) = \frac{c_i}{N}, \quad c_i = \sum_{j=1}^{L} n_{ij}$$
 (6)

Summen- und Produktregel 2/2

• Summenregel

$$p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j)$$
(7)

- Ergibt sich aus Gleichung (5) und (6)
- Wenn $X = x_i$ festgehalten
- Bedingte Wahrscheinlichkeit

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i} \tag{8}$$

• Produktregel

$$p(X = x_i, Y = y_i) = p(Y = y_i | X = x_i)p(X = x_i)$$
(9)

Kompakte Schreibweise

- \bullet Unterschied zwischen Zufallsvariable B und Belegung, z.B. r
- Wahrscheinlichkeit, B hat Wert r ist p(B = r).
- Kurznotation
 - Verteilung einer Zufallsvariable p(B)
 - Wahrscheinlichkeit einer Belegung p(B=r) = p(r)

- Wahrscheinlichkeitsregeln
 - Summenregel

$$p(X) = \sum_{Y} p(X, Y) \tag{10}$$

- Produktregel

$$p(X,Y) = p(Y|X)p(X) \tag{11}$$

Satz von Bayes

• Anwenden der Produktregel auf die Symmetrie p(X,Y) = p(Y,X)

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} \tag{12}$$

• Anwenden der Summenregel auf Nenner

$$p(X) = \sum_{Y} p(X|Y)p(Y) \tag{13}$$

- Nenner in Bayesschen Regel eine Art Normalisierungskonstante

Beispiel für bedingte Wahrscheinlichkeiten

- Histogramme sind einfache Schätzer für Wahrscheinlichkeiten
- Gleichverteilungsannahme innerhalb eines Intervalls

Früchtebeispiel 1/2

• Wahrscheinlichkeit für Kisten

$$-p(B=r)=4/10$$

$$- p(B = b) = 6/10$$

• Wahrscheinlichkeit für Früchte

$$- p(F = a|B = r) = 1/4$$

$$- p(F = o|B = r) = 3/4$$

 $- p(F = a|B = b) = 3/4$
 $- p(F = o|B = b) = 1/4$

Früchtebeispiel

- Wahrscheinlichkeit für Apfel
 - Summen und Produktregel

$$p(F = a) = p(F = a|B = r) \cdot p(B = r) + p(F = a|B = b) \cdot p(B = b)$$

$$= \frac{1}{4} \cdot \frac{4}{10} + \frac{3}{4} \cdot \frac{6}{10}$$

$$= \frac{11}{20}$$

- Wahrscheinlichkeit für Orange $p(F = 0) = 1 \frac{11}{20} = \frac{9}{20}$
- Wahrscheinlichkeit für rote Kiste, wenn Orange gezogen

$$p(B = r | F = o) = \frac{p(F = o | B = r)p(B = r)}{p(F = o)}$$

= $\frac{3}{4} \cdot \frac{4}{10} \cdot \frac{20}{9}$
= $\frac{2}{3}$

- ... für blaue Kiste $p(B = b|F = o) = 1 - \frac{2}{3} = \frac{1}{3}$

Interpretation der Bayesschen Regel

- Frage: Welche Kiste wurde gewählt?
 - Antwort: basierend auf p(B)
 - Prior-Wahrscheinlichkeit
- Antwort, nachdem Information über Frucht verfügbar
 - basiert auf p(B|F)
 - Posterior-Wahrscheinlichkeit

Unabhängigkeit

- Wenn Verbundwahrscheinlichkeit $p(X,Y) = p(X) \cdot p(Y)$ faktorisiert, dann X und Y unabhängig
- Produktregel ergibt für unabhängige Zufallsvariablen

$$- p(Y|X) = p(Y)$$

- Früchtebeispiel
 - Falls beide Kisten gleiche Anteile an Äpfeln und Orangen enthalten, dann p(F|B) = p(F)

3.2 Wahrscheinlichkeitsdichte

Wahrscheinlichkeitsdichte

- Erweiterung Wahrscheinlichkeit von diskreten Ereignissen auf kontinuierliche Variablen
- ullet Wahrscheinlichkeit, dass kontinuierliche Variable x
 - Wert im Intervall $(x, x + \delta x)$ annimmt,
 - ist $p(x)\delta x$ für $\delta x \to 0$.
 - -p(x) ist Wahrscheinlichkeitsdichte
- Allgemeines Intervall (a, b)

$$p(x \in (a,b)) = \int_{a}^{b} p(x)dx \tag{14}$$

- Geforderte Eigenschaften
 - $-p(x) \ge 0$
 - $-\int_{-\infty}^{\infty} p(x)dx = 1$

Variablentransformation

- Durch x = g(y) wird f(x) zu $\tilde{f}(y) = f(g(y))$.
- Sei $p_y(y)$ aus $p_x(x)$ durch Variablentransformation entstanden
 - Beobachtungen in Intervall $(x, x + \delta x)$ werden zu $(y, y + \delta y)$ (bei kleinen δx)
 - Daher gilt $p_x(x)\delta x \simeq p_y(y)\delta y$

$$p_y(y) = p_x(x) \left| \frac{dx}{dy} \right|$$

= $p_x(g(y))|g'(y)|$

- Beachte die Folgerung
 - Maximum einer Wahrscheinlichkeitsdichte hängt von der Wahl der Variable ab.

Verschiedene Erweiterungen

• Kumulative Verteilungsfunktion

$$P(z) = \int_{-\infty}^{z} p(x)dx$$

mit
$$P'(x) = p(x)$$
.

- Mehrdimensional
 - Verbundwahrscheinlichkeit $p(\vec{x}) = p(x_1, \dots, x_D)$ mit

*
$$p(\vec{x}) \ge 0$$

*
$$\int_{-\infty}^{\infty} p(\vec{x}) d\vec{x} = 1$$

• Summen-, Produkt und Bayes-Regel

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = p(y|x)p(x)$$

$$p(y|x) = \frac{p(x|y)p(y)}{\int p(x,y)dy}$$

3.3 Erwartungswerte und Kovarianzen

Erwartungswert 1/2

- Gewichteter Durchschnitt einer Funktion f(x)
- Erwartungswert

$$\mathbb{E}[f] = \sum_{x} p(x)f(x) \tag{15}$$

$$\mathbb{E}[f] = \int p(x)f(x)dx \tag{16}$$

ullet Annäherung bei N Beobachtungen

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n) \tag{17}$$

Erwartungswert 2/2

• Funktion mit mehreren Variablen

$$\mathbb{E}_x[f(x,y)]\tag{18}$$

- -x ist Variable, über die gemittelt wird
- $-\mathbb{E}_x[f(x,y)]$ ist eine Funktion in y
- Bedingter Erwartungswert

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x) \tag{19}$$

Varianz

- Maß für die Variabilität um den Mittelwert
- Definiert als

$$var[f] = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x))^2 \right]$$
(20)

• Umgestellt als

$$var[f] = \mathbb{E}\left[(f(x)^2] - \mathbb{E}\left[f(x) \right]^2$$
 (21)

Kovarianz

 \bullet Beziehung zwischen zwei Zufallsvariablen x und y

$$cov[x, y] = \mathbb{E}_{x,y}[\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
(22)

• Mehrdimensionale Zufallsvektoren \vec{x} und \vec{y}

$$cov[\vec{x}, \vec{y}] = \mathbb{E}_{\vec{x}, \vec{y}}[\{\vec{x} - \mathbb{E}[\vec{x}]\}\{\vec{y}^T - \mathbb{E}[\vec{y}^T]\}]$$

$$= \mathbb{E}_{\vec{x}, \vec{y}}[\vec{x}\vec{y}^T] - \mathbb{E}[\vec{x}]\mathbb{E}[\vec{y}]$$
(23)

• $cov[\vec{x}] = cov[\vec{x}, \vec{x}]$

3.4 Bayessche Wahrscheinlichkeiten

Bayessche Wahrscheinlichkeiten

- Bisher
 - Wahrscheinlichkeit als Häufigkeit
 - Wiederholbare Ereignisse
- Bayessche Interpretation
 - Wahrscheinlichkeit als Maß für Unsicherheit
 - Auch nicht-wiederholbare Ereignisse
- Viele Axiomsysteme zur Quantisierung von Unsicherheit führen zu Größen, die den Regeln für Wahrscheinlichkeiten gehorchen.
- Größen als (Bayessche) Wahrscheinlichkeiten bezeichnet
- Data Mining
 - Unsicherheit bei der Wahl der Modellparameter berücksichtigt

Beispiel, Kurvenanpassung

- Unsicherheiten über die Parameter \vec{w} durch Verteilung $p(\vec{w})$ erfaßt
- Effekte der Daten $\mathcal{D} = \{t_1, \dots, t_N\}$ durch $p(\mathcal{D}|\vec{w})$ ausgedrückt
- Bayessche Regel

$$p(\vec{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\vec{w})p(\vec{w})}{p(\mathcal{D})}$$
(24)

Unsicherheit über \vec{w} nach Beobachtung der Daten \mathcal{D}

• Bayessche Regel in Worten

$$posterior \propto likelihood \times prior$$
 (25)

• Nenner in Bayesscher Regel

$$p(\mathcal{D}) = \int p(\mathcal{D}|\vec{w})p(\vec{w})d\vec{w}$$
 (26)

Diskussion

- Häufigkeitsinterpretation
 - Modellparametern \vec{w} sind feste Werte
 - Fehler und Abweichungen werden über Verteilung von mehreren Datenmengen geschätzt
 - Beispiel: Maximum Likelihood und Bootstrap
- Bayessche Interpretation
 - Nur eine Datenmenge
 - -Unsicherheit als Verteilung über Parameter \vec{w}
 - Beispiel: Prior-Verteilung über \vec{w}
- Beispiel: Münzwurf
- Kritik an Bayesscher Interpretation
 - Wahl des Prior nur nach mathematischer Bequemlichkeit
 - kein Hintergrundwissen

3.5 Gauß-Verteilung

Gauss-Verteilung

- Normal- oder Gauß-Verteilung
 - eine der wichtigsten Verteilungen
 - für kontinuierliche Variablen
- Eindimensional

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$
 (27)

• Eigenschaften

$$- \mathcal{N}(x|\mu, \sigma^2) > 0$$

$$-\int \mathcal{N}(x|\mu,\sigma^2)dx = 1$$

Eigenschaften

• Erwartungswert

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) dx = \mu \tag{28}$$

• Moment zweiter Ordnung

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$
 (29)

• Varianz (folgt aus den ersten beiden Gleichungen)

$$var[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2 \tag{30}$$

Schätzer

- Gegeben: N Beobachtungen $\vec{x} = (x_1, \dots, x_N)^T$
 - Annahme: unabhängig und identisch verteilt (i.i.d.)
- Likelihood der Beobachtungen

$$p(\vec{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$
(31)

• Log-Likelihood

$$\ln p(\vec{x}|\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x-\mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$
 (32)

• Maximieren bezüglich μ und σ^2

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$
 (33)

 \bullet Eigentlich Verbundoptimierung, aber bei Normalverteilung sind die Gleichungen für μ und σ entkoppelt.

Verzerrung (Bias)

- Schätzer μ und σ^2 sind Funktionen der Datenmenge $(x_1,\ldots,x_N)^T$
- Erwartungswerte für die Schätzer

$$\mathbb{E}[\mu_{ML}] = \mu, \quad \mathbb{E}[\sigma_{ML}^2] = \frac{N-1}{N}\sigma^2$$
 (34)

- Varianz systematisch unterschätzt
 - grün: wahre Verteilung, rot: ML-Schätzung

3.6 Nochmal Kurvenanpassung

Kurvenanpassung aus Wahrscheinlichkeitssicht

- Nochmal Kurvenanpassung
 - Diesmal mit Verteilungsannahmen
 - Fehlerfunktion und Regulierung ergeben sich als Konsequenz
- Erinnerung
 - N Beobachtungen, $\vec{x} = (x_1, \dots, x_N)^T$, $\vec{t} = (t_1, \dots, t_N)^T$
- $\bullet \ \ Verteilungsannahme$
 - Ausgabe t ist normalverteilt verrauscht mit Mittelwert $y(x, \vec{w})$ und Genauigkeit β^{-1} .

$$p(t|x, \vec{w}, \beta) = \mathcal{N}(t|y(x, \vec{w}), \beta^{-1})$$
(35)

Maximum Likelihood

• Likelihood für i.i.d. Beobachtungen

$$p(\vec{t}|\vec{x}, \vec{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | y(x_n, \vec{w}), \beta^{-1})$$
(36)

• Maximierung der Log-Likelihood

$$\ln p(\vec{t}|\vec{x}, \vec{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \vec{w}) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

- Äquivalent zu Mininmierung der Negativen Log-Likelihood

- Ist bis auf Konstanten die alte Fehlerfunktion
- ML-Schätzer für β

$$\frac{1}{\beta} = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \vec{w}) - t_n\}^2$$
(37)

• Vorhersagende Verteilung

$$p(t|x, \vec{w}_{ML}, \beta_{ML}) = \mathcal{N}(t|y(x, \vec{w}_{ML}), \beta_{ML}^{-1})$$
(38)

Regulierung

• Prior-Verteilung für Polynom-Koeffizienten

$$p(\vec{w}|\alpha) = \mathcal{N}(\vec{w}|\vec{0}, \alpha^{-1}\vec{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\vec{w}^T\vec{w}\right\}$$
(39)

• Posterior

$$p(\vec{w}|\vec{x}, \vec{t}, \alpha, \beta) \propto p(\vec{t}|\vec{x}, \vec{w}, \beta)p(\vec{w}|\alpha) \tag{40}$$

• Maximierung negativer Log. der Posterior

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \vec{w}) - t_n\}^2 + \frac{\alpha}{2} \vec{w}^T \vec{w}$$
 (41)

– Entspricht regulierter Fehlerfunktion mit $\lambda = \alpha/\beta$

Bayesscher Ansatz

- Keine Punktschätzungen wie bisher
- Vorhersage-Wahrscheinlichkeit integriert über alle möglichen Parameterwerte

$$p(t|x,\vec{x},\vec{t}) = \int p(t|x,\vec{w})p(w|\vec{x},\vec{t})d\vec{w}$$
(42)

- Läßt sich geschlossen integrieren
- Ergibt Normalverteilung
- $M = 9, \alpha = 5 \cdot 10^{-3}, \beta = 11.1$
- Rote Region ist plus/minus 1 Standardabweichung

4 Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen

- Verteilungen sind
 - Einfache Modelle für Daten
 - Bausteine für komplexe Modelle
- Beispiele
 - Gauß- oder Normalverteilung für kontinuierliche Daten
 - Bernoulli-Verteilung für binäre Daten
 - Binomial und Multinomial-Verteilungen für diskrete Daten
- Schlüsselkonzepte für Bayessche Inferenz

Dichteschätzung

- Problem
 - Modelliere Wahrscheinlichkeitsverteilung $p(\vec{x})$ einer Zufallsvariable \vec{x} für gegebene Beobachtungen $\vec{x}_1, \dots, \vec{x}_N$
- Problem ist fundamental unterbestimmt, d.h. mehrdeutig
 - Von endlicher Anzahl Stützstellen soll auf Funktion mit unendlich vielen Eingaben geschlossen werden
 - Alle Verteilungen mit $p(\vec{x}_n) > 0$ und $n = 1, \dots, N$ sind potentielle Kandidaten
- Auswahl der Verteilung
 - Wahl der Modellklasse
 - Wahl der Modellkomplexität

Überblick

- Parametrische Verteilungen
 - Bestimmt durch eine kleine Zahl von Parametern
 - Z.B. Mittelwert μ und Varianz σ^2 einer Gaußverteilung
- Beispiele für Verteilungen
 - Gauß- oder Normalverteilung
 - Bernoulli-Verteilung
 - Binomial und Multinomial-Verteilungen
- Bestimmung der Parameter
 - Häufigkeitsinterpretation → Optimierungsproblem
 - Bayessche Interpretation \rightarrow Posterior-Verteilung der Parameter
- Konjugierte Prior-Verteilungen
 - Vereinfacht Bayessche Analyse, da Posterior dieselbe funktionale Form wie Prior annimmt
- Nicht-Parametrische Dichteschätzung

4.1 Binäre Variablen

Binäre Variablen

- Binäre Zufallsvariable $x \in \{0, 1\}$
- Beispiele
 - Münzwurf
 - Entscheidungen
- Wahrscheinlichkeit, daß x = 1 ist Parameter μ , d.h.

$$p(x=1|\mu) = \mu \text{ mit } 0 \le \mu \le 1$$
 (43)

$$\Rightarrow p(x=1|\mu)=1-\mu$$

• Bernoulli-Verteilung

$$Bern(x|\mu) = \mu^x (1-\mu)^{1-x}$$
(44)

• Erwartungswert und Varianz

$$\mathbb{E}[x] = \mu \tag{45}$$

$$var[x] = \mu(1-\mu) \tag{46}$$

Schätzer für Bernoulli-Verteilung

- Gegebene i.i.d. Beobachtungen $\mathcal{D} = \{x_1, \dots, x_N\}$ von x
- Likelihood

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$
(47)

• Häufigkeitsinterpretation: Maximierung der Log-Likelihood

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln(1 - \mu)\}$$
 (48)

• ML-Schätzer

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N} \tag{49}$$

mit $m = \sum_{n=1}^{N} x_n$ ist Anzahl der Einsen in \mathcal{D} (sufficient statistics).

Over-fitting Problem

- Wenige Beobachtungen vorhanden
 - ML-Schätzer kann Extremwerte für μ schätzen
 - Z.B. $N=m=3 \Rightarrow \mu_{\text{ML}}=1$
- Ergebnis widerspricht gesundem Menschenverstand
- Vermeiden durch Einbeziehen eines Priors

Bionomial-Verteilung

- \bullet Wahrscheinlichkeit, dass bei N unabhängigen Bernoulli-Versuchen m Einsen rauskommen
 - proportional zu $\mu^m (1-\mu)^{N-m}$, siehe Gleichung (47)
- Normalisierungskonstante
 - Anzahl der verschiedenen Möglichkeiten mit N Versuchen m Einsen zu würfeln ist $\binom{N}{m}$
- Bionomial-Verteilung

$$\operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m} \tag{50}$$

- Erwartungswert und Varianz
 - Herleitung über N unabhängigen Bernoulli-Versuchen

$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m|N,\mu) = N\mu$$
 (51)

$$\operatorname{var}[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^2 \operatorname{Bin}(m|N,\mu) = N\mu(1-\mu)$$
 (52)

Beispiel für Bionomial-Verteilung

- $\bullet\,$ Histogramm für verschiedene Werte für m
- $N = 10, \mu = 0.25$

Wahl eines Priors für Bernoulli-Verteilung

- Vermeide Overfitting beim ML-Schätzer für Bernoulli
 - Ziel: wähle Prior für μ mit kleinem $p(\mu)$ für Extremwerte
- Motivation
 - Likelihood hat Form $\mu^x(1-\mu)^{1-x}$
 - Wenn Prior \propto Potenzen von μ und (1μ) , dann hat Posterior dieselbe funktionale Form wie Prior.

- Konjugierter Prior
- Beta-Verteilung

Beta
$$(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$
 (53)

 \bullet Gamma-Funktion $\Gamma(x)$ ist kontinuierliche Verallgemeinerung der Fakultät

$$- \Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} du$$

$$-\Gamma(x+1) = x\Gamma(x), \Gamma(1) = 1, \Gamma(x+1) = x!, x \in \mathbb{N}$$

•
$$\int_0^1 \operatorname{Beta}(\mu|a,b) d\mu = 1$$

Beta-Verteilung

• Erwartungswert und Varianz

$$\mathbb{E}[\mu] = \frac{a}{a+b} \tag{54}$$

$$\mathbb{E}[\mu] = \frac{a}{a+b}$$

$$\operatorname{var}[\mu] = \frac{ab}{(a+b)^2(a+b+1)}$$
(54)

 \bullet Hyperparameter a und b

Posterior-Verteilung

- Allgemein: $posterior \propto likelihood \times prior$
- Was passiert für Bernoulli-Likelihood (47) und Beta-Prior (53)?
- Posterior ist auch Beta-Verteilung mit Hyperparameter m + a und l + b
- Interpretation der Hyperparameter
 - Pseudo-Beobachtungen
 - Müssen keine ganzen Integer sein

Sequentieller Schätzer

- Posterior-Verteilung kann als Prior fungieren, wenn neue Beobachtungen kommen
- Beispiel
 - Beobachtungen x_1, \ldots, x_N kommen nach und nach
- Neue Posterior ist Likelihood der neuen Daten mal alte Posterior

$$a = 2, b = 2, N = m = 1$$

- Anwendungen
 - Real-time Learning
 - Strom-Verarbeitung
 - Große Datenmengen

Vorhersagen

- Ziel
 - Sage Ergebnis der nächsten Beobachtung voraus

$$p(x=1|\mathcal{D}) = \int_0^1 p(x=1,\mu|\mathcal{D})d\mu$$
$$= \int_0^1 p(x=1|\mu)p(\mu|\mathcal{D})d\mu = \int_0^1 \mu p(\mu|\mathcal{D})d\mu = \mathbb{E}[\mu|\mathcal{D}] \quad (56)$$

• In bisherigen Beispiel

$$p(x=1|\mathcal{D}) = \frac{m+a}{m+a+l+b} \tag{57}$$

- Für $m, l \to \infty$ die Vorhersage wird zur ML-Schätzung
- ullet Für endliche Daten liegt der Posterior-Durchschnitt für μ zwischen dem Durchschnitt des Priors und der Likelihood

Bayessche Eigenschaften von Erwartungswert und Varianz

- Beobachtung
 - Mit zunehmender Anzahl der Beobachtungen wird Varianz kleiner
- Für Beispiel, (55) geht gegen 0 für $a \to \infty$ oder $b \to \infty$
- Allgemein
 - Parameter $\vec{\theta}$, Daten \mathcal{D} , beschrieben durch $p(\vec{\theta}, \mathcal{D})$

$$\mathbb{E}_{\vec{\theta}}[\vec{\theta}] = \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\vec{\theta}}[\vec{\theta}|\mathcal{D}]\right] \tag{58}$$

mit $\mathbb{E}_{\vec{\theta}}[\vec{\theta}] \equiv \int \theta p(\vec{\theta}) d\theta$ und $\mathbb{E}_{\mathcal{D}}[\mathbb{E}_{\vec{\theta}}[\vec{\theta}|\mathcal{D}]] \equiv \int \{\int \theta p(\vec{\theta}|\mathcal{D}) d\theta \} p(\mathcal{D}) d\mathcal{D}$

Analog für Varianz

$$\operatorname{var}_{\vec{\theta}}[\vec{\theta}] = \mathbb{E}_{\mathcal{D}}[\operatorname{var}_{\vec{\theta}}[\vec{\theta}|\mathcal{D}]] + \operatorname{var}_{\mathcal{D}}[\mathbb{E}_{\vec{\theta}}[\vec{\theta}|\mathcal{D}]]$$
(59)

- Fazit
 - Posterior-Varianz ist im Durchschnitt kleiner als Prior-Varianz, bei speziellen Daten kann es Ausnahmen geben

4.2 Multinomiale Variablen

Multinomiale Variablen

- Verallgemeinerung von Bernoulli auf mehrwertige Ergebnisse
 - Bernoulli-Variable $x \in \{0, 1\}$
 - Multinomial-Verteilte Variable $x \in \{1, \dots, K\}$
- \bullet 1-aus-K-Schema
 - Statt Integer, Bitvektor, $\vec{x} \in \{0,1\}^K$ mit $\sum_{k=1}^K x_k = 1$
 - Beispiel: K = 6, $\vec{x} = (0, 0, 1, 0, 0, 0)^T$
 - Jedem möglichem Wert (Vektor) wird eine Wahrscheinlichkeit μ_k zu geordnet, mit $\sum_{k=1}^K \mu_k = 1$

$$p(\vec{x}|\vec{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k} \tag{60}$$

$$mit \vec{\mu} = (\mu_1, \dots, \mu_K)^T$$

Likelihood

- Daten $\mathcal{D} = \{\vec{x}_1, \dots, \vec{x}_N\}$ iid. Beobachtungen
- Likelihood

$$p(\mathcal{D}|\vec{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{\sum_{n=1}^{N} x_{nk}} = \prod_{k=1}^{K} \mu_k^{m_k}$$
 (61)

mit $m_k = \sum_{n=1}^{N} x_{nk}$ (sufficient statistics)

• ML-Schätzer

$$\mu_k^{\rm ML} = \frac{m_k}{N} \tag{62}$$

• Herleitung nutzt Lagrange-Multiplikatoren

Multinomialverteilung

• Wahrscheinlichkeit für eine bestimmte Kombination m_1, \ldots, m_K mit $\sum_{k=1}^K m_k = N$

$$Mult(m_1, ..., m_K | \vec{\mu}, N) = \binom{N}{m_1 m_2 ... m_K} \prod_{k=1}^K \mu^{m_k}$$
(63)

mit
$$\binom{N}{m_1 m_2 \dots m_K} = \frac{N!}{m_1! m_2! \dots m_K!}$$

• Ist Likelihood für Beobachtung der Kombination m_1, \ldots, m_K

Dirichlet Verteilung 1/3

- Konjugierter Prior für Multinomial-Verteilung
- Vergleich mit Form von (63)

$$p(\vec{\mu}|\vec{\alpha}) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k - 1} \tag{64}$$

mit $0 \le \mu_k \le 1$ und $\sum_{k=1}^K \mu_k = 1$

K-1-dimensionaler Simplex mit K=3

• Parametervektor $\vec{\alpha} = (\alpha_1, \dots, \alpha_K)^T$

Dirichlet Verteilung 2/3

• Normalisierte Verteilung

$$\operatorname{Dir}(\vec{\mu}|\vec{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\dots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1}$$
(65)

mit $\alpha_0 = \sum_{k=1}^K \alpha_k$

- Posterior für Parameter $\{\mu_k\}$ mit Beobachtungen $\{m_k\}$

$$p(\vec{\mu}|\mathcal{D}, \vec{\alpha}) \propto p(\mathcal{D}|\vec{\mu})p(\vec{\mu}|\vec{\alpha}) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k + m_k - 1}$$
(66)

- Posterior ist Dirichlet-Verteilung
 - Normalisierungskonstante durch Vergleich

$$p(\vec{\mu}|\mathcal{D}, \vec{\alpha}) = \operatorname{Dir}(\vec{\mu}|\vec{\alpha} + \vec{m})$$

$$= \frac{\Gamma(\alpha_0 + N)}{\Gamma(\alpha_1 + m_1) \dots \Gamma(\alpha_K + m_K)} \prod_{k=1}^K \mu_k^{\alpha_k + m_k - 1}$$
(67)

 $\min \vec{m} = (m_1, \dots, m_K)^T$

Dirichlet Verteilung 3/3

- ullet Wie bei Beta-Verteilung können die α_k als Pseudo-Beobachtungen interpretiert werden
- Beispiele für Dirichlet-Verteilungen

Anwendung Text-Mining

- Bernoulli- und Multinomial-Verteilung mit ihren Prior-Verteilung Beta- und Dirichlet-Verteilung sind wichtige Verteilungen für Text-Mining
- Texte als Menge von Worten repräsentieren (Bag-of-Words)
- Einfachstes Modell: Unigram-Modell
 - Multinomial-Verteilung über dem Vokabular
 - Beobachtungen sind Wortanzahlen über eine Menge von Dokumente
 - Dokumente werden in diesem einfachsten Modell nicht unterschieden
- Einfache Anwendung
 - Zwei Sorten Text: Normale Emails und Spam
 - Bestimme für jede Textsorte eine Multinomialverteilung über dem Vokabular
 - Für neue Email bestimme Vorhersagewahrscheinlichkeiten p(neue Email Normale Emails) und p(neue Email Spam)
 - Naive Klassifikator

4.3 Gauß-Verteilung

Gauß-Verteilung

ullet Verteilung für kontinuierliche eindimensionale Variable x

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$
 (68)

• D-dimensionale Verteilung für Vektor $\vec{x} \in \mathbb{R}^D$

$$\mathcal{N}(\vec{x}|\vec{\mu}, \vec{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})\right\}$$
(69)

mit $\vec{\mu}$ ist D-dimensionale Vektor und Sigma ist $D \times D$ Kovarianzmatrix

Motivation für Gauß-Verteilung

- Gauß-Verteilungen entstehen durch Addition von Zufallsvariablen
 - Zentraler Grenzwertsatz
- Beispiel
 - -N gleichverteilte Variablen x_1, \ldots, x_N in [0,1]
 - Verteilung des Durchschnitts $\sum_{n=1}^{N} x_n/N$
 - -Für große ${\cal N}$ verhält sich der Durchschnitt normalverteilt

- Konvergiert sehr schnell
- Spezialfall
 - Bionomial Verteilung ist Summe von N Beobachtungen einer binären Zufallsvariable
 - Wird für große N durch Gauß-Verteilung approximiert

Probleme der Gauß-Verteilung 1/2

- \bullet Anzahl der Parameter wächst quadratisch mit Dimension D
 - Kovarianzmatrix $\vec{\Sigma}$ hat D(D+1)/2 Parameter
 - Mittelwert $\vec{\mu}$ hat D Parameter
 - Robuste Schätzungen werden unmöglich
 - Invertierung von $\vec{\Sigma}$ sehr aufwendig

• Einschränkungen

 x_1 (b)

- a Allgemeine Form für $\vec{\Sigma}$
- b Diagonal form $\vec{\Sigma} = \mathrm{diag}(\sigma_i^2)$
- c Isotropische Form $\vec{\Sigma} = \sigma^2 \vec{I}$

Probleme der Gauß-Verteilung 2/2

- Der Flexibilität der Kovarianzmatrix steht die Beschränkung auf ein Maxima gegenüber
- Viele reale Verteilungen sind multi-modal
- Mischmodelle schaffen hier Abhilfe
 - Einführung von neuen versteckten Variablen
 - Mischmodelle können prinzipiell für alle Arten von Verteilung gebildet werden

4.4 Einführung zu Mischmodellen

Mischmodelle mit Gauß-Verteilungen 1/3

- Reale Daten: Old-Faithful-Geiser
 - Dauer eines Ausbruchs (x-Achse)
 - Abstand bis zum nächsten Ausbruch (y-Achse)

Mischmodelle mit Gauß-Verteilungen 2/3

• Lineare Kombination von Verteilungen

$$p(\vec{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\vec{x}|\vec{\mu}_k, \Sigma_k)$$
 (70)

Blau: drei Gauß-Komponenten, Rot: Summe

• Parameter π_k sind Mischungskoeffizienten mit $0 \le \pi_k \le 1$ und $\sum_{k=1}^K \pi_k = 1$

Mischmodelle mit Gauß-Verteilungen 3/3

Erzeugendes Modell

Randverteilung $p(\vec{x})$

Randverteilung $p(\vec{x})$

5 Text Mining, Beispiel Spam

Text-Mining Beispiel

- Gegebene Daten, Dokumente im Bag-of-Words Modell
 - Vokabular $\mathcal V$ mit V Wörtern
 - Dokumentmenge \mathcal{D} mit N Dokumenten
 - Dokument ist Multimenge $d_n \subset \mathcal{V}^*$
 - * Multimenge heißt, daß Worte mehrfach in der Menge vorkommen können
 - * z.B. $d_n = \{blau, blau, rot, gelb\}$
 - Sammlung W ist Vereinigung aller Dokumente
 - * Mehrfach-Elemente bleiben bei der Vereinigung erhalten

* z.B.
$$d_1 = \{b, b, g\}, d_2 = \{r, r, g, g, g, g\}$$

 $\mathcal{W} = \bigcup_{n=1}^{2} d_n = \{b, b, r, r, g, g, g, g, g\}$

- Unigram-Modelle
 - Mehrdimensionales Bernoulli-Modell
 - Multinomial-Modell
- Anwendung Spam-Erkennung

5.1 Mehrdimensionales Bernoulli-Modell

Mehrdimensionales Bernoulli-Modell

- \bullet Unigram-Modell für eine Sammlung \mathcal{W}
- Mehrdimensionales Bernoulli-Modell
 - Modelliert das Vorhandensein eines Wortes im Dokument, nicht die Worthäufigkeit
 - * Korrespondiert zum Boolschen Modell, Information Retrieval
 - Dokumente als V-dimensionale Bit-Vektoren $\vec{d_n} \in \{0,1\}^V$
 - * Bit v zeigt an, ob $\vec{d_n}$ Wort v enthält
 - Eine Bernoulli-Verteilung pro Wort aus dem Vokabular $\mathcal V$
 - Insgesamt V Parameter $\vec{\mu} = (\mu_1, \dots, \mu_V)^T$, $0 \le \mu_v \le 1$, $1 \le v \le V$.

$$p(v \in d_n | \vec{\mu}) = \mu_v, \ 1 \le v \le V \tag{71}$$

• Likelihood (iid. Dokumente, unabhängige Worte)

$$p(\mathcal{D}|\vec{\mu}) = \prod_{n=1}^{N} \prod_{v=1}^{V} \mu_v^{d_{nv}} (1 - \mu_v)^{1 - d_{nv}} = \prod_{v=1}^{V} \mu_v^{m_v} (1 - \mu_v)^{l_v}$$
(72)

mit m_v ist Anzahl Dokumente, die v enthalten, $l_v = N - m_v$

Bayessches mehrdimensionales Bernoulli-Modell

- Konjugierte Prior-Verteilung
 - Mehrdimensionale Beta-Verteilung

$$p(\vec{\mu}|\vec{a}, \vec{b}) = \prod_{v=1}^{V} \text{Beta}(\mu_v|a_v, b_v) = \prod_{v=1}^{V} \mu_v^{a_v - 1} (1 - \mu_v)^{b_v - 1}$$
(73)

- Posterior
- Hyperparameter können als Pseudoanzahlen von Dokumenten interpretiert werden

Beispiel: mehrdimensionales Bernoulli-Modell

- Daten
 - Original: $d_1 = \{b, b, g\}, d_2 = \{r, r, g, g, g, g\}$
 - Transformiert: $\vec{d_1} = (1,0,1)^T$, $\vec{d_2} = (0,1,1)^T$ mit $b \to v = 1, r \to v = 2, g \to v = 3$
 - Zusammengefaßt: $\vec{m} = (1, 1, 2)^T$, $\vec{l} = (1, 1, 0)^T$
- Hyperparameter (vom Anwender gewählt)

$$-\vec{a} = (1.5, 1.5, 2)^T, \vec{b} = (1.5, 1.5, 1)^T$$

- Vorhersage für neues Dokument $d = \{b, b, r, r, r, r\}$
 - Transformation $\vec{d} = (1, 1, 0)^T$
 - Vorhersage
 - Paßt d zu den bisher gesehenen Daten?

5.2 Multinomial-Modell

Multinomial-Modell

- ullet Unigram-Modell für eine Sammlung ${\mathcal W}$
- Multinomial-Modell
 - Berücksichtigt Häufigkeit eines Wortes in Sammlung
 - Sammlung enthält M Worte (mit Mehrfachvorkommen)
 - Häufigkeit eines Wortes v in Sammlung sei m_v mit $\sum_{v=1}^V m_v = M$
 - Dokumente werden nicht unterschieden
- Likelihood

$$p(D|\vec{\mu}) = \text{Mult}(\vec{m}|\vec{\mu}, M) = \binom{M}{m_1 m_2 \dots m_V} \prod_{v=1}^{V} \mu_v^{m_v}$$
 (74)

mit $\vec{\mu} = (\mu_1, \dots, \mu_V)^T$ und $\vec{m} = (m_1, \dots, m_V)^T$

Bayessches Multinomial-Modell

- Konjugierte Prior-Verteilung
 - Dirichlet-Verteilung

$$p(\vec{\mu}|\vec{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\dots\Gamma(\alpha_V)} \prod_{v=1}^{V} \mu_v^{\alpha_v - 1}$$
(75)

mit
$$\alpha_0 = \sum_{v=1}^{V} \alpha_v$$

- Posterior
- \bullet Hyperparameter α_v können als Pseudoanzahlen von Worten interpretiert werden

Beispiel: Multinomial-Modell

- Daten
 - Original: $d_1 = \{b, b, g\}, d_2 = \{r, r, g, g, g, g\}$
 - Transformiert: $W = \{b, b, r, r, g, g, g, g, g\}$
 - Zusammengefaßt: $\vec{m} = (2, 2, 5)^T$ und M = 9
- Hyperparameter (vom Anwender gewählt)

$$-\vec{\alpha} = (1.5, 1.5, 2)^T$$

- Vorhersage für neues Dokument $d = \{b, b, r, r, r, r\}$
 - Zusammengefaßt: $\vec{m}_d' = (2, 4, 0)^T$ und $M_d' = 6$
 - Vorhersage
 - Paßt d zu den bisher gesehenen Daten?
- Vorhersage-Verteilung ist Dirichlet Compound Multinomial Verteilung (DCM) (auch Polya-Verteilung)²

5.3 Anwendung: Spam-Erkennung

Anwendung: Spam-Erkennung

- Gegeben zwei Sammlungen: C_1 mit normalen eMails und C_2 mit Spam
 - $C_1 = \{d_1, d_2\}, d_1 = \{b, b, g\}, d_2 = \{r, r, g, g, g, g\}$
 - $C_2 = \{d_3, d_4\}, d_3 = \{b, b, b, r, r\}, d_4 = \{r, r, r, g\}$
 - Prior-Wahrscheinlichkeiten $p(C_1) = 0.9, p(C_2) = 0.1$
- ullet Klassifikation einer neuen eMail d mittels Bayesscher Regel

$$p(C_i|d,\vec{\alpha}_i) = \frac{p(d|C_i,\vec{\alpha}_i)p(C_i)}{\sum_j p(d|C_j,\vec{\alpha}_j)p(C_j)}$$

$$(76)$$

mit i = 1, 2

- $p(d|C_i,\vec{\alpha}_i)$ ist Vorhersagewahrscheinlichkeit entsprechend dem verwendeten Modell
- Vereinfachend entscheidet der Klassifikator für die Klasse mit der höherer Posterior-Wahrscheinlichkeit
 - An dieser Stelle können Kosten für Entscheidungen und Fehlentscheidungen berücksichtigt werden.

²Siehe Madsen, RE., Kauchak, D. and Elkan, C. (2005) Modeling Word Burstiness Using the Dirichlet Distribution. ICML, 545-552, http://www.cse.ucsd.edu/~dkauchak/kauchak05modeling.pdf

Evaluation

- Einfache Evaluation
 - Aufteilung der Daten in Training- und Testdaten
 - Bestimmung des Klassifikationsfehlers auf den Testdaten
 - Berechnung der Kosten, z.B. wieviel Falsch-Negative wenn keine Falsch-Positiven erlaubt
- k-fache Kreuzvalidierung
 - Partitioniere Gesamtdaten in k gleiche Teile
 - -k-1 Teile sind Trainingsdaten und ein Teil ist Testdaten
 - Führe für diese Aufteilung die einfache Evaluation (s.o.) durch
 - Tausche Testdatenteil durch einen Trainingsdatenteil aus, dann einfache Evaluation
 - Jeder Teil ist mal Testdatenteil $\Rightarrow k$ Klassifikationsfehler \Rightarrow Standardabweichung des Klassifikationsfehler
- Bootstrap
 - Wie Kreuzvalidierung, nur die Trainingsdaten werden durch Ziehen mit Zurücklegen bestimmt.
 - Eignet sich für kleine Datensätze
- Tuning der Hyperparameter mittels Validierungsdaten
 - Verschiedene Parametereinstellungen testen und beste Einstellung wählen

Verbesserung der Vorverarbeitung

- Bessere Erkennung von Wortgrenzen, Markov-Random-Fields
- Einführen von einfachen Zusatzattributen
 - Anzahl nicht darstellbarer Zeichen
 - Länge von Sequenzen mit Großbuchstaben
- Beispieldaten
 - Spam Base: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/spambase/
 - Apache SpamAssassin Project http://spamassassin.apache.org

5.4 Nicht-Konjugierte Prior-Verteilungen

Nicht-Konjugierte Prior-Verteilungen

- Beliebige Prior-Verteilungen über der passenden Domäne sind erlaubt.
- Bisherige Prior-Verteilungen
 - Mehrdimensionale Beta-Verteilung für mehrdimensionale Bernoulli-Verteilung
 - Dirichlet-Verteilung für Multinomial-Verteilung
 - Mehrdimensionale Beta- und Dirichlet-Verteilung nehmen unabhängige Wörter an
- Prior-Verteilung mit Kovarianzen zwischen Wörtern
 - Mehrdimensionale Normal-Verteilung kann Kovarianzen modellieren
 - Aber Domäne paßt nicht

Logistische Normalverteilung 1/3

• Abbildung aus dem \mathbb{R}^K in den K-1 Simplex mit logistischer Funktion

$$\vec{x} \in \mathbb{R}^K u_k = \frac{e^{x_k}}{1 + \sum_{k'=1}^K e^{x_{k'}}} \tag{77}$$

• Rücktransformation ist logit-Funktion

$$\vec{u} \in \mathbb{R}, 0 \le u_k \le 1, \sum_{k=1}^{K} u_k = 1, x_k = \ln\left(\frac{u_k}{1 - \sum_{k'=1}^{K} u_{k'}}\right)$$
 (78)

Logistische Normalverteilung 2/3

Logistische Funktion

Logit-Funktion

Logistische Normalverteilung 3/3

- Logistische Normalverteilung $L(u|\mu, \Sigma)$
- Posterior für Multinomial mit Logistischer Normalverteilung
- Vorteil
 - Kovarianzen zwischen Wörtern werden modelliert
- Nachteil
 - keine normalisierte Wahrscheinlichkeit
 - Keine geschlossene Form bei der Vorhersage, da kein konjugierter Prior
 - Approximationen und Sampling möglich

6 Mischmodelle

Mischmodelle

- \bullet Probabilistische Modelle können beobachtbare \vec{x} und versteckte Variablen $\vec{\theta}$ enthalten
- ullet Die Verteilung der beobachtbaren Variablen $ec{x}$ ist als Randverteilung modelliert

$$p(\vec{x}) = \sum_{\vec{\theta}} p(\vec{x}, \vec{\theta}) = \sum_{\vec{\theta}} p(\vec{x}|\vec{\theta})p(\vec{\theta})$$
(79)

- Einführung von versteckten Variablen erlaubt komplexe Verteilungen aus einfachen Verteilungen zusammenzubauen.
- Mischmodelle entstehen durch das Einführen von diskreten Indikatorvariablen (Auswahl-Bits)
- Einführung
 - K-Means als einfacher nicht-probabilistischer Spezialfall
 - Gauß-Mischmodelle mit Expectation-Maximization (EM) Algorithmus

6.1~K-Means

K-Means Cluster-Analyse

- Gegeben
 - -N mehrdimensionale Datenpunkte $\{\vec{x}_1,\ldots,\vec{x}_N\}$
- Problem
 - Partitioniere Daten in K Cluster
 - Cluster sind Teilmengen der Daten
 - * Distanz innerhalb ist klein, kleine Intra-Cluster-Distanz
 - * Distanz zwischen Punkten aus verschiedenen Clustern ist groß, große Inter-Cluster-Distanz
 - K ist erstmal ein vorgegebener Parameter
- Cluster beschrieben durch Prototyp-Punkt $\vec{\mu}_k, \ k=1,\ldots,K$
- Ziel:
 - Summe der quadrierten Distanzen der Punkte zu ihrem jeweils nächsten Prototyp minimieren

K-Means Fehlerfunktion

- Zuordnung von Datenpunkten zu Cluster, Eins-aus-K-Kodierung
 - binäre Indikatorvariablen $r_{nk} \in \{0,1\}, k = 1, \dots, K$
 - Punkt \vec{x}_n gehört zu Cluster k, dann $r_{nk} = 1$ und $r_{nj} = 0$ für $k \neq j$
- Fehlerfunktion oder Verzerrungsmaß

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\vec{x}_n - \vec{\mu}_k||^2$$
(80)

- Ziel
 - Finde Belegung für $\{r_{nk}\}$ und $\{\vec{\mu}_k\}$, so daß J minimal

K-Means Algorithmus 1/2

- Iterative Zwei-Schritt-Optimierung
 - 1. Minimiere J bezüglich $\{r_{nk}\}$, festes $\{\vec{\mu}_k\}$
 - 2. Minimiere J bezüglich $\{\vec{\mu}_k\}$, festes $\{r_{nk}\}$
 - 3. Falls Abbruchkriterium nicht erreicht, gehe zu 1.
- Minimiere bezüglich $\{r_{nk}\}$, E-Schritt
 - J ist in (80) eine lineare Funktion in r_{nk}
 - Terme mit r_{nk} sind unabhängig bezüglich n
 - * $\{r_{nk}\}_{k=1,\dots,K}$ separat optimieren
 - Setze r_{nk} auf eins, wenn $\|\vec{x}_n \vec{\mu}_k\|^2$ minimal

$$r_{nk} = \begin{cases} 1 & \text{wenn } k = \operatorname{argmin}_{j} ||\vec{x}_{n} - \vec{\mu}_{j}||^{2} \\ 0 & \text{sonst} \end{cases}$$
 (81)

K-Means Algorithmus 2/2

- Minimiere bezüglich $\{\vec{\mu}_k\}$, M-Schritt
 - J ableiten und Null setzen

$$\vec{\mu}_k = \frac{1}{\sum_{n=1}^{N} r_{nk}} \sum_{n=1}^{N} r_{nk} \vec{x}$$
(82)

- $\sum_{n=1}^{N} r_{nk}$ ist Anzahl Cluster k zugeordneten Punkte
- $\vec{\mu}_k$ wird im zweiten Schritt auf den Durchschnitt gesetzt
- In jedem Schritt wird J verringert \Rightarrow Konvergenz

K-Means, Old-Faithful-Daten

- a) Initialisierung,
- b) erster E-Schritt,
- c) anschließender M-Schritt,
- d-i) Schritte bis Konvergenz

K-Means Konvergenz

• Fehlerfunktion nach jedem E-Schritt (blau) und M-Schritt (rot)

- Erweiterungen
 - Kombination mit Indexstrukturen (Suchbäumen)
 - Ausnutzen der Dreiecksungleichung
 - Sequentielle on-line Berechnung

K-Means Beispiel-Anwendung

- Verlustbehaftete Bildkompression
- Daten: drei-dimensionale RGB Farbinformation aller Pixel
- \bullet K ist Anzahl der Farben im komprimierten Bild
- \bullet Prototypen $\{\vec{\mu}_k\}$ sind im Originalfarbraum, Pixel im Bild referenzieren auf zugeordnetes $\vec{\mu}_k$
- Beispiel
 - Original hat 8 Bit Farbinformation pro Farbkanal und Pixel,
 - Original
bild hat $24 \cdot N$ Bit, N ist Anzahl Pixel
 - Komprimiertes Bild
 - * Prototypen: $24 \cdot K$ Bit
 - * Pixel: $N \log_2 K$ Bit
 - Bild mit Auflösung $240 \times 180 = 43200$ Pixel braucht $24 \cdot 43200 = 1036800$ Bit
 - Komprimierte Version: 43248 Bit (K = 2), 86472 Bit (K = 3), 173040 Bit (K = 10)

K-Means Bildkompression

6.2 Gauß-Mischmodell, Teil 1

Gauß-Mischmodell 1/2

- Motivation für EM-Algorithmus
- Gauß-Mischmodell ist linear-Kombination von Gauß-Verteilungen

$$p(\vec{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\vec{x}|\vec{\mu}_k, \vec{\Sigma}_k)$$
(83)

- Indikatorvaribale \vec{z}
 - Eins-aus-K-Schema
 - $-\vec{z} \in \{0,1\}^K \text{ mit } \sum_{k=1}^K z_k = 1$
 - Verteilung spezifiziert als $p(z_k=1)=\pi_k$ mit $0\leq \pi_k\leq 1$ und $\sum_{k=1}^K\pi_k=1$
- \bullet Wegen Eins-aus-K-Schema, Verteilung schreiben als

$$p(\vec{z}) = \prod_{k=1}^{K} \pi_k^{z_k} \tag{84}$$

Gauß-Mischmodell 2/2

• Bedingte Verteilung für Komponenten

$$p(\vec{x}|z_k = 1) = \mathcal{N}(\vec{x}|\vec{\mu}_k, \vec{\Sigma}_k) \tag{85}$$

 \bullet Wegen Eins-aus-K-Schema, Verteilung schreiben als

$$p(\vec{x}|\vec{z}) = \prod_{k=1}^{K} \mathcal{N}(\vec{x}|\vec{\mu}_k, \vec{\Sigma}_k)^{z_k}$$
(86)

• Verbundverteilung $p(\vec{x}, \vec{z}) = p(\vec{x}|\vec{z})p(\vec{z})$

• Randverteilung $p(\vec{x})$ durch summieren über \vec{z}

$$p(\vec{x}) = \sum_{\vec{z}} p(\vec{z}) p(\vec{x}|\vec{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\vec{x}|\vec{\mu}_k, \vec{\Sigma}_k)$$
 (87)

• Bei N Beobachtungen $\vec{x}_1,\dots,\vec{x}_N$ gibt es für jede Beobachtung \vec{x}_n eine separate Indikatorvariable \vec{z}_n

Beobachtungen ziehen aus Gauß-Mischmodell

- Für gegebene Parameter $\{\pi_k, \vec{\mu}_k, \vec{\Sigma}_k\}$ analog wie Früchteziehen
 - Erst Indikatorvariable ziehen
 - Dann Beobachtung entsprechend gewählter Gauß-Komponente ziehen
- Posterior für gezogene Beobachtung \vec{x} :
 - Von welcher Gauß-Komponente wurde \vec{x} gezogen?

ML-Schätzer für Gauß-Mischmodell

- Gegebene Daten
 - -N iid. Beobachtungen, D-dimensionale Datenpunkte, $\{\vec{x}_1, \dots, \vec{x}_N\}$
 - Repräsentiert als $N \times D$ Matrix $\vec{X},$ n-te Zeile ist \vec{x}_n^T
- Indikatorvariablen, versteckt, nicht beobachtet
 - $-N \times K$ Matrix \vec{Z} , n-te Zeile ist \vec{z}_n^T
- Log-Likelihood der Daten

$$\ln p(\vec{X}|\vec{\pi}, \vec{\mu}, \vec{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\vec{x}|\vec{\mu}_k, \vec{\Sigma}_k) \right\}$$
(89)

Probleme des ML-Schätzer für Gauß-Mischmodell

- Singularitäten
 - Optimierungsproblem ist schlecht gestellt, weil Likelihood gegen ∞ gehen kann
 - Vereinfachung: $\Sigma_k = \sigma_k \vec{I}$, \vec{I} ist Einheitsmatrix
 - * Beobachtung gilt auch für allgemeinen Fall
 - Falls eine Gauß-Komponente auf einem Datenpunkt sitzt, $\vec{\mu}_j = \vec{x}_n$, dann kann das Mischmodell kollabieren. Likelihood geht in diesem Fall gegen ∞ , wenn σ_j gegen Null geht.

- Singularitäten treten erst bei Mischmodell auf, nicht bei einzelner Gaußverteilung
- Gesucht ist gutartiges lokales Optimum, kein globales Optimum
- Bayesscher Ansatz vermeidet Singularitäten
- Sonst Heuristiken verwenden

Weitere Probleme

- Identifizierbarkeit
 - Für jedes lokale Optimum gibt es K! gleichartige Lösungen
 - Umbenennen der Komponenten
 - Tritt nur auf, wenn Komponenten interpretiert werden
- Maximierung der Log-Likelihood von Mischmodellen ist komplizierter als bei einfachen Verteilungen, weil Summe im Logarithmus auftaucht.
- Ansätze
 - Direkte gradienten-basierte Optimierung
 - Expectation-Maximization (EM)

EM für Gauß-Mischmodelle 1/2

- Herleitung ohne EM-Theorie
- Ableitung der Daten-Likelihood (89) nach $\vec{\mu}_k$ und Null setzen

$$0 = -\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\vec{x}_n | \vec{\mu}_k, \vec{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\vec{x}_n | \vec{\mu}_j, \vec{\Sigma}_j)} \vec{\Sigma}_k^{-1}(\vec{x}_n - \vec{\mu}_k)$$
(90)

- In Gleichung taucht Posterior $\gamma(z_{nk}) \equiv p(z_k = 1 | \vec{x}_n) = \frac{\pi_k \mathcal{N}(\vec{x}_n | \vec{\mu}_k, \vec{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\vec{x}_n | \vec{\mu}_j, \vec{\Sigma}_j)}$ auf.
- Multiplizieren mit $\vec{\Sigma}_k$ ergibt

$$\vec{\mu}_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \vec{x}_n \tag{91}$$

mit
$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

- N_k ist Anzahl der Punkte in Cluster k
- $\vec{\mu}_k$ ist gewichteter Durchschnitt

EM für Gauß-Mischmodelle 2/2

- Ableitung der Daten-Likelihood (89) nach $\vec{\Sigma}_k$ und Null setzen

$$\vec{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\vec{x}_n - \vec{\mu}_k) (\vec{x}_n - \vec{\mu}_k)^T$$
(92)

- Ähnlich zum ML-Schätzer einer Gauß-Verteilung
- Ableitung der Daten-Likelihood (89) mit Lagrange-Multiplikator $p(\vec{X}|\vec{\pi}, \vec{\mu}, \vec{\Sigma}) + \lambda \left(\sum_{k=1}^{K} \pi_k 1\right)$ nach π_k und Null setzen

$$0 = \sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\vec{x}_n | \vec{\mu}_k, \vec{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\vec{x}_n | \vec{\mu}_j, \vec{\Sigma}_j)} + \lambda$$
 (93)

• Ergebnis

$$\pi_k = \frac{N_k}{N} \tag{94}$$

 \bullet Keine geschlossene Form, Parameter hängen über $\gamma(z_{nk})$ zusammen.

EM-Algorithmus, Beispiel

- Iteratives Verfahren: Initialisieren, E-Schritt und M-Schritt abwechseln
 - E-Schritt: $\gamma(z_{nk})$ berechnen
 - M-Schritt: $\vec{\pi}, \vec{\mu}, \vec{\Sigma}$ aktualisieren
- \bullet Beispiel: Old-Faithful-Daten, $K=2,\,L$ ist Anzahl Iterationen

Zusammenfassung des Algorithmus

- 1. Initialisiere $\vec{\pi}, \vec{\mu}$ und $\vec{\Sigma}$ und berechne Startwert der log-Likelihood
- 2. E-Schritt berechne Posteriors mit den aktuellen Parametern

$$\gamma(z_{nk}) \equiv p(z_k = 1 | \vec{x}_n) = \frac{\pi_k \mathcal{N}(\vec{x}_n | \vec{\mu}_k, \vec{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\vec{x}_n | \vec{\mu}_j, \vec{\Sigma}_j)}$$
(95)

3. M-Schritt Aktualisiere Parameter mit neuen Posteriors

$$\vec{\mu}_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \vec{x}_n$$
 (96)

$$\vec{\Sigma}_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\vec{x}_n - \vec{\mu}_k) (\vec{x}_n - \vec{\mu}_k)^T$$
(97)

$$\pi_k^{\text{new}} = \frac{N_k}{N} \text{ mit } N_k = \sum_{n=1}^N \gamma(z_{nk})$$
(98)

4. Berechne Log-Likelihood, falls nicht konvergiert, gehe zu 2.

$$\ln p(\vec{X}|\vec{\pi}, \vec{\mu}, \vec{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\vec{x}|\vec{\mu}_k, \vec{\Sigma}_k) \right\}$$
(99)

Diskussion

- ullet EM-Algorithmus braucht viel mehr Iterationen als K-Means und die Iterationen sind berechnungsitensiver
- K-Means wird oft zum Initialisieren des EM benutzt
- Abbruch-Kriterien für Konvergenz
 - K-Means: wenn keine Zuordnung sich mehr ändert
 - Feste, meist kleine Anzahl von Schritten, early stopping
 - Absolute Zuwachs der Likelihood L fällt unten einen Schwellenwert $L-L^{\mathrm{new}} < \theta$
 - Relativer Zuwachs der Likelihood L fällt unten einen Schwellenwert $\frac{L-L^{\mathrm{new}}}{L} < \theta'$
- EM findet nur lokales Maximum
- Maximierung ist nicht alles, Overfitting, Singularitäten

7 Theorie zum EM-Algorithmus

7.1 Allgemeiner EM-Algorithmus

EM-Algorithmus in abstrakter Form

- Versteckte Variablen
 - Schlüsselrolle für EM
 - Bisher nur durch intelligentes Draufsehen berücksichtigt
- Ziel des EM
 - Maximum-Likelihood Schätzung
 - kann auf Maximum-A-Posteriori (MAP) und fehlende Daten erweitert werden
- Notation
 - $-\vec{X}$ Datenmatrix, n-te Zeile ist \vec{x}_n^T
 - $-\vec{Z}$ versteckte Variablen, n-te Zeile is \vec{z}_n^T
 - $-\vec{\theta}$ alle Parameter
 - * z.B. Gauß-Mischmodell $\vec{\theta} = (\vec{\mu}, \vec{\Sigma}, \vec{\pi})$
- Log-Likelihood für die Daten als Randverteilung

$$\ln p(\vec{X}|\vec{\theta}) = \ln \left\{ \sum_{\vec{Z}} p(\vec{X}, \vec{Z}|\vec{\theta}) \right\}$$
 (100)

Transformation des Maximierungsproblems 1/2

• Unvollständige Daten-Log-Likelihood (106) ist Funktion von $\vec{\theta}$

$$f(\vec{\theta}) \equiv \ln p(\vec{X}|\vec{\theta}) \tag{101}$$

- Problem
 - Summe innerhalb des Logarithmus läßt sich nicht weiter vereinfachen
 - Keine Formel für ML-Schätzung
- Idee
 - Maximiere anstelle unvollständigen Daten-Log-Likelihood (106) andere Funktion, die maximal wird, wenn unvollständige Daten-Log-Likelihood maximal wird
- Vollständige Daten-Log-Likelihood

$$g(\vec{\theta}, \vec{Z}) \equiv \ln p(\vec{X}, \vec{Z} | \vec{\theta}) \tag{102}$$

Transformation des Maximierungsproblems 2/2

- Problem
 - Berechnung von (102) setzt Kenntnis der versteckten Variablen \vec{Z} voraus
 - Bekannte Information über \vec{Z} ist Posterior $p(\vec{Z}|\vec{X}, \vec{\theta})$
 - Posterior hängt aber wiederum von Parametern $\vec{\theta}$ ab
- Idee: Zwei-Schritt Optimierung nach Initialisierung von $\vec{\theta}$

- E-Schritt: Berechne Posterior-Verteilung von \vec{Z} für aktuelle Parameter $\vec{\theta}^{\text{old}}$
- M-Schritt: Maximiere Erwartungswert von güber Posterior-Verteilung von $\vec{Z} \to$ neue Parameter $\vec{\theta}^{\rm new}$
- \bullet Bei gegebenen aktuellen Parametern $\vec{\theta}^{\rm old}$ ist Erwartungswert von güber Posterior-Verteilung von \vec{Z} eine Funktion von $\vec{\theta}$

$$Q(\vec{\theta}, \vec{\theta}^{\text{old}}) = \mathbb{E}_{\vec{Z}}[g] = \sum_{\vec{Z}} p(\vec{Z}|\vec{X}, \vec{\theta}^{\text{old}}) \ln p(\vec{X}, \vec{Z}|\vec{\theta})$$
(103)

Diskussion

• Transformation des Maximierungproblems von

$$\operatorname{argmax}_{\vec{\theta}} \ln p(\vec{X}|\vec{\theta}) = \operatorname{argmax}_{\vec{\theta}} \ln \left\{ \sum_{\vec{Z}} p(\vec{X}, \vec{Z}|\vec{\theta}) \right\}$$

nach

$$\vec{\theta}^{\text{new}} = \operatorname{argmax}_{\vec{\theta}} \, \mathcal{Q}(\vec{\theta}, \vec{\theta}^{\text{old}}) = \operatorname{argmax}_{\vec{\theta}} \sum_{\vec{z}} p(\vec{Z}|\vec{X}, \vec{\theta}^{\text{old}}) \ln p(\vec{X}, \vec{Z}|\vec{\theta})$$

- Gewinn: Logarithmus wird direkt auf $p(\vec{X}, \vec{Z}|\vec{\theta})$ angewendet \Rightarrow idd. Annahme nutzbar und bekanntes \vec{Z} erlaubt Formulierung von Auswahlprodukten
- Offene Frage
 - Führt die Transformation auch wirklich zu einem Maximum in der unvollständigen Daten-Log-Likelihood?
 - Antwort: ja, zu einem lokalen Maximum, Beweis später

Zusammenfassung des Algorithmus

- 1. Initialisiere Parameter $\vec{\theta}$ mit $\vec{\theta}^{\rm old}$ und berechne Startwert der unvollständigen Daten-log-Likelihood
- 2. **E-Schritt** berechne Posteriors $p(\vec{Z}|\vec{X}, \vec{\theta}^{\text{old}})$
- 3. M-Schritt Berechne neue Parameter $\vec{\theta}^{\text{new}}$

$$\vec{\theta}^{\text{new}} = \operatorname{argmax}_{\vec{\theta}} \mathcal{Q}(\vec{\theta}, \vec{\theta}^{\text{old}}) \tag{104}$$

mit

$$Q(\vec{\theta}, \vec{\theta}^{\text{old}}) = \sum_{\vec{Z}} p(\vec{Z}|\vec{X}, \vec{\theta}^{\text{old}}) \ln p(\vec{X}, \vec{Z}|\vec{\theta})$$
(105)

4. Teste auf Konvergenz der unvollständigen Daten-Log-Likelihood oder der Parameter. Falls nicht konvergiert, $\vec{\theta}^{\text{old}} \leftarrow \vec{\theta}^{\text{new}}$ und gehe zu 2.

Erweiterungen

• Maximierung der Log-Posterior anstelle der Log-Likelihood

$$\ln p(\vec{\theta}|\vec{X}) = \ln \left\{ p(\vec{\theta}) \sum_{\vec{Z}} p(\vec{X}, \vec{Z}|\vec{\theta}) \right\} + c \tag{106}$$

- Fehlende Daten
 - Statt nicht beobachtete Variablen können die versteckten Variablen auch zu Attributen von fehlenden Werten zugeordnet werden
 - Geht nur, wenn das Fehlen der Werte zufällig ist und nicht systematisch

7.2 Gauß-Mischmodell, Teil 2

Gauß-Mischmodell, Teil 2

- In unvollständiger Daten-Log-Likelihood (89) ist die Summe innerhalb der Logarithmus
- Wegen (84) und (86) ist vollständige Daten-Likelihood

$$p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\Sigma}, \vec{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_K^{z_{nk}} \mathcal{N}(\vec{x}_n | \vec{\mu}_k, \vec{\Sigma}_k)^{z_{nk}}$$
(107)

- Vollständige Daten-Log-Likelihood
- Posterior

Gauß-Mischmodell, E-Schritt

 \bullet Zur Summe über alle Belegungen für \vec{Z} in

$$\mathcal{Q}(\vec{\theta}, \vec{\theta}^{\mathrm{old}}) = \sum_{\vec{Z}} p(\vec{Z}|\vec{X}, \vec{\theta}^{\mathrm{old}}) \ln p(\vec{X}, \vec{Z}|\vec{\theta})$$

tragen nur Terme mit $z_{nk}=1$ bei \Rightarrow

• Berechne nur Posteriors mit $z_{nk} = 1$

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \vec{x}_n, \vec{\mu}^{\text{old}}, \vec{\Sigma}^{\text{old}}, \vec{\pi}^{\text{old}})
= \frac{p(z_{nk} = 1 | \vec{\pi}^{\text{old}}) p(\vec{x}_n | z_{nk} = 1, \vec{\mu}^{\text{old}}, \vec{\Sigma}^{\text{old}})}{\sum_{j=1}^k p(z_{nj} = 1 | \vec{\pi}^{\text{old}}) p(\vec{x}_n | z_{nj} = 1, \vec{\mu}^{\text{old}}, \vec{\Sigma}^{\text{old}})}
= \frac{\pi_k^{\text{old}} \mathcal{N}(\vec{x}_n | \vec{\mu}_k^{\text{old}}, \vec{\Sigma}_k^{\text{old}})}{\sum_{j=1}^K \pi_j^{\text{old}} \mathcal{N}(\vec{x}_n | \vec{\mu}_j^{\text{old}}, \vec{\Sigma}_j^{\text{old}})}$$

Gauß-Mischmodell, M-Schritt

• Erwartungswert der vollständigen Daten-Log-Likelihood

$$Q(\vec{\theta}, \vec{\theta}^{\text{old}}) = \mathbb{E}_{\vec{Z}}[\ln p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\Sigma}, \vec{\pi})]$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left(\ln \pi_k + \ln \mathcal{N}(\vec{x}_n | \vec{\mu}_k, \vec{\Sigma}_k)\right)$$
(108)

- Ableiten nach μ_k, Σ_k und π_k , jeweils null setzen und umstellen
 - Bei π_k wieder den Lagrange-Multiplikator $\lambda(\sum_{k=1}^K \pi_k 1$ addieren
- Dies ergibt die gleichen Update-Gleichungen wie (91), (92) und (94).
- Rolle des Erwartungswert der vollständigen Daten-Log-Likelihood wird beim Konvergenzbeweis des EM genauer beleuchtet.

7.3 K-Means als Spezialfall des EM

Beziehung von K-Means zu EM

- \bullet Beide Algorithm sind iterativ, K-Means weist Objekte hart den Clustern zu (ganz oder gar nicht), während EM weiche, teilweise Zuweisungen macht.
- K-Means als Spezialfall des EM für Gauß-Mischmodell
 - Annahme: $\vec{\Sigma}_k = \epsilon \vec{I}$
 - ϵ ist das gleiche für alle Komponenten

$$\mathcal{N}(\vec{x}|\vec{\mu}_k, \vec{\Sigma}_k) = \frac{1}{(2\pi\epsilon)^{1/2}} \exp\left\{-\frac{1}{2\epsilon} ||\vec{x} - \vec{\mu}_k||^2\right\}$$
 (109)

• Posteriors

$$\gamma(z_{nk}) = \frac{\pi_k \exp\{-\|\vec{x}_n - \vec{\mu}_k\|^2 / 2\epsilon\}}{\sum_{j=1}^K \pi_j \exp\{-\|\vec{x}_n - \vec{\mu}_j\|^2 / 2\epsilon\}}$$
(110)

• $\lim \epsilon \to 0 \Rightarrow$ $- \gamma(z_{nk}) \to 0, \text{ für } \|\vec{x}_n - \vec{\mu}_j\|^2 \text{ nicht minimal}$ $- \gamma(z_{nk}) \to 1, \text{ für } \|\vec{x}_n - \vec{\mu}_j\|^2 \text{ minimal}$ $\Rightarrow \gamma(z_{nk}) \to r_{nk}, \text{ siehe (81)}$

Fehlerfunktion

 \bullet Für $\epsilon \to 0$ die erwartete vollständige Daten-Log-Likelihood geht gegen

$$\mathbb{E}_{\vec{Z}}[\ln p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\Sigma}, \vec{\pi})] \to -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\vec{x}_n - \vec{\mu}_j||^2 + \text{const.}$$
(111)

ullet Maximierung dieser Größe ist äquivalent zu Minimierung der Fehlerfunktion J für K-Means

8 Bernoulli-Mischmodell

Bernoulli-Mischmodell

- Gauß-Mischmodell ist für Vektoren mit kontinuierlichen Attributen
- Viele Daten passen nicht dazu
 - Dokumente nach Boolschem Modell
 - Schwarz/Weiß Bilder
 - Internet-Werbeanzeigen mit Schlüsselwörtern
 - Soziale Netzwerke mit Benutzern, Inhalten und Tags
 - Dünn-besetzte Graphen, z.B. Web, Communities, ...
- D binäre Variablen $x_i, i = 1, \ldots, D$
- Jedes x_i folgt einer eigenen Bernoulli-Verteilung Bern $(x_i|\mu_i)$
- Für ein Objekt kann mann alle Variablen beobachten, zusammengefaßt als Vektor $\vec{x} \in \{0,1\}^D$ mit $\vec{x} = (x_1, \dots, x_D)^T$.

8.1 Mehrdimensionale Bernoulli-Verteilung und Mischmodell

Mehrdimensionale Bernoulli-Verteilung

• Mehrdimensionale Bernoulli-Verteilung

$$p(\vec{x}|\vec{\mu}) = \prod_{i=1}^{D} \mu_i^{x_i} (1 - \mu_i)^{1 - x_i}$$
(112)

 $mit \vec{\mu} = (\mu_1, \dots, \mu_D)^T$

- Alle D binäre Variablen sind unabhängig
- Erwartungswert

$$\mathbb{E}[\vec{x}] = \vec{\mu} \tag{113}$$

• Kovarianzmatrix

$$\operatorname{cov}[\vec{x}] = \operatorname{diag}\{\mu_i(1 - \mu_i)\} \tag{114}$$

 Eine einzelne mehrdimensionale Bernoulli-Verteilung kann keine Korrelationen zwischen den Variablen modellieren.

Mehrdimensionales Bernoulli-Mischmodell

• Bernoulli-Mischmodell

$$\vec{x} \in \{0,1\}^D, p(\vec{x}|\vec{\mu}, \vec{\pi}) = \sum_{k=1}^K \pi_k p(\vec{x}|\vec{\mu}_k)$$
(115)

mit $\vec{\mu} = {\{\vec{\mu}_1, \dots, \vec{\mu}_K\}}, \, \vec{\pi} = {\{\pi_1, \dots, \pi_K\}}$ und

$$p(\vec{x}|\vec{\mu}_k) = \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i}$$
(116)

• Erwartungswert

$$\mathbb{E}[\vec{x}] = \sum_{k=1}^{K} \pi_k \vec{\mu}_k \tag{117}$$

• Kovarianzmatrix

$$\operatorname{cov}[\vec{x}] = \sum_{k=1}^{K} \pi_k (\vec{\Sigma}_k + \vec{\mu}_k \vec{\mu}_k^T) - \mathbb{E}[\vec{x}] \mathbb{E}[\vec{x}^T]$$
(118)

 $mit \Sigma_k = diag(\mu_{ki}(1 - \mu_{ki}))$

Vergleich

- Im Gegensatz zum mehrdimensiolen Bernoulli-Modell kann das Bernoulli-Mischmodell Kovarianzen zwischen den Variablen modellieren.
- \bullet Beim Bernoulli-Mischmodell hat die Kovarianzmatrix Rang K, d.h. sie ist Summe von K Rang-Eins-Matrizen
 - Rang-Eins-Matrix ist ein äußeres Produkt $\vec{x}\vec{x}^T$
- Anwendungen
 - Finden von korrelierten Worten in Dokumentsammlungen
 - Korrelierte Tags in Web 2.0 Anwendungen
 - ...

8.2 EM-Algorithmus für Bernoulli-Mischmodell

Likelihood des Bernoulli-Mischmodells

- Daten als Matrix $\vec{X} = \{\vec{x}_1, \dots, \vec{x}_N\}$
- Unvollständige Daten-Likelihood

$$p(\vec{X}|\vec{\mu}, \vec{\pi}) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k p(\vec{x}_n | \vec{\mu}_k)$$
(119)

• Unvollständige Daten-Log-Likelihood

$$\ln p(\vec{X}|\vec{\mu}, \vec{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k p(\vec{x}_n | \vec{\mu}_k) \right\}$$
 (120)

• Keine geschlossene Form für Maximum-Likelihood-Schätzer, weil die Summe innerhalb des Logarithmus auftaucht

Einführen von versteckten Variablen

- \bullet Jede Instanz der Daten \vec{x} mit einer versteckten Variablen \vec{z} koppeln
- $\vec{z} = (z_1, \dots, z_K)$ folgt Eins-aus-K-Schema, $\vec{z} \in \{0, 1\}^K$
- Bedingte Verteilung für \vec{x} gegeben \vec{z}

$$p(\vec{x}|\vec{z}, \vec{\mu}, \vec{\pi}) = \prod_{k=1}^{K} p(\vec{x}|\vec{\mu}_k)^{z_k}$$
(121)

ullet Prior-Verteilung für versteckte Variable \vec{z}

$$p(\vec{z}) = p(\vec{z}|\vec{\pi}) = \prod_{k=1}^{K} \pi_k^{z_k}$$
 (122)

• Verteilung für \vec{x} als Randverteilung \rightarrow Hausaufgabe

Vollständige Daten-Likelihood

 \bullet Für gegebene Daten \vec{X} und versteckte Daten \vec{Z} ist die vollständige Daten-Likelihood

$$p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(\vec{x}_n | \vec{\mu}_k)^{z_k} \pi_k^{z_k}$$
(123)

• Vollständige Daten-Log-Likelihood

$$\ln p(\vec{X}, \vec{Z}|\vec{\mu}, \vec{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \sum_{i=1}^{D} \left(x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln(1 - \mu_{ki}) \right) \right\}$$
(124)

Transformation

- Maximiere statt der unvollständigen Likelihood, den Erwartungswert der vollständigen Daten-Log-Likelihood über der Posterior-Verteilung der versteckten Variablen.
- Erwartungswert der vollständigen Daten-Log-Likelihood

$$Q(\vec{\mu}, \vec{\pi} | \vec{\mu}^{old}, \vec{\pi}^{old}) = \mathbb{E}_{\vec{Z}}[\ln p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\pi})]$$

$$= \sum_{\vec{Z}} p(\vec{Z} | \vec{X}, \vec{\mu}^{old}, \vec{\pi}^{old}) \ln p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\pi})$$
(125)

- Zwei Argumente
 - 1. Nur Terme mit $z_{nk}=1$ tragen zu (124) bei \Rightarrow betrachte Posteriors $\gamma(z_{nk})=p(z_{nk}=1|\vec{x}_n,\vec{\mu}^{old},\vec{\pi}^{old})$
 - 2. Linearität des Erwartungswertes $\mathbb{E}[\sum x_i] = \sum_i \mathbb{E}[x_i]$

$$\mathbb{E}[z_{nk}] = \sum_{z_{nk} \in \{0,1\}} z_{nk} p(z_{nk} | \vec{x}_n, \vec{\mu}^{old}, \vec{\pi}^{old})$$

$$= p(z_{nk} = 1 | \vec{x}_n, \vec{\mu}^{old}, \vec{\pi}^{old})$$
(126)

E-Schritt

• Posteriors

$$\gamma(z_{nk}) = \frac{\pi_k \prod_{i=1}^D \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}{\sum_{j=1}^K \pi_j \prod_{i=1}^D \mu_{ji}^{x_{ni}} (1 - \mu_{ji})^{1 - x_{ni}}}$$
(127)

• Numerische Probleme bei hoher Dimensionalität

M-Schritt

• Maximiere

$$Q(\vec{\mu}, \vec{\pi} | \vec{\mu}^{old}, \vec{\pi}^{old})$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_k + \sum_{i=1}^{D} \left(x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln(1 - \mu_{ki}) \right) \right\}$$
(128)

bezüglich μ_{ki} und π_k

• Aktualisierungsgleichungen

$$\mu_{ki}^{new} = \frac{\bar{x}_{ki}}{N_k} \tag{129}$$

$$\pi_k^{new} = \frac{N_k}{N} \tag{130}$$

mit
$$\bar{x}_{ki} = \sum_{n=1}^N \gamma(z_{nk}) x_{ni}$$
 und $N_k = \sum_{n=1}^N \gamma(z_{nk})$

Beispiel

- Handgeschriebene Zahlen aus $\{2,3,4\}$, Bilder wurden binarisiert (Grauwert $> 0.5 \rightarrow$ Pixel auf 1)
- ullet Jedes Pixel ist eine Dimension, N=600 Bilder gegeben, K=3 Bernoulli-Komponenten
- Vermeidung von pathologischen Situationen
 - Initialisierung $\pi_k=1/K,\,\mu_{ki}$ zufällig aus (0.25, 0.75), dann Normalisierung, s.d. $\sum_j\mu_{kj}=1.$

• Oben: Original-Daten, Unten, links: Komponenten des Mischmodells, Unten, rechts: Einzelne Bernoulli-Verteilung

9 Multinomial-Mischmodell

Multinomial-Mischmodell

- Bernoulli-Mischmodell modelliert die Existenz eines Wortes in einem Dokument
 - Häufigkeiten der Worte werden ignoriert
- Multinomial-Verteilung
 - D Möglichkeiten eine nominale Zufallsvariable zu belegen (z.B. Würfel)
 - Eine Beobachtung besteht aus D absoluten Häufigkeiten (Anzahlen) der einzelnen Zustände

$$\vec{x} = (x_1, \dots, x_D)^T, \ x_i \in \mathbb{N}, N = \sum_{i=1}^D x_i$$
 (131)

- \vec{x} folgt Multinomial-Verteilung Mult $(\vec{x}|\vec{\mu}, N)$ mit $\vec{\mu} = (\mu_1, \dots, \mu_D)^T$, $0 \le \mu_i \le 1$ und $\sum_{i=1}^D \mu_i = 1$
- Das N kann im gegebenen Teil auch weggelassen werden, da es sich aus \vec{x} ergibt, d.h. $\mathrm{Mult}(\vec{x}|\vec{\mu},N) = \mathrm{Mult}(\vec{x}|\vec{\mu})$

Multinomial-Verteilung

• Multinomial-Verteilung

$$\operatorname{Mult}(\vec{x}|\vec{\mu}) = \frac{\left(\sum_{i=1}^{D} x_i\right)!}{\prod_{i=1}^{D} x_i!} \prod_{i=1}^{D} \mu_i^{x_i}$$
(132)

$$mit \sum_{i=1}^{D} \mu_i = 1$$

• Erwartungswert und Kovarianz

$$\mathbb{E}[\vec{x}] = \left(\sum_{i=1}^{D} x_i\right) \cdot \vec{\mu} \tag{133}$$

$$cov[\vec{x}] = -\left(\sum_{i=1}^{D} x_i\right) \cdot \vec{\mu} \vec{\mu}^T \tag{134}$$

Diskrete Verteilung

- Zugehörige Diskrete Verteilung zur Multinomial-Verteilung ist eine andere mehrdimensionale Verallgemeinerung der Bernoulli-Verteilung
 - Statt zwei Möglichkeiten beim Bernoulli-Versuch gibt es hier D mögliche Ergebnisse, $\sum_{i=1}^{D} \mu_i = 1$
 - Zufallsvariable $\vec{x} = (x_1, \dots, x_D)^T$ mit $\vec{x} \in \{0, 1\}^D$ wird als 1-aus-D Schema modelliert, d.h. $\sum_{i=1}^D x_i = 1$

$$\operatorname{Disc}(\vec{x}|\vec{\mu}) = \prod_{i=1}^{D} \mu_i^{x_i} \tag{135}$$

• Erwartungswert und Kovarianz

$$\mathbb{E}[\vec{x}] = \vec{\mu} \tag{136}$$

$$\operatorname{cov}[\vec{x}] = \mu \tag{130}$$

$$\operatorname{cov}[\vec{x}] = \operatorname{diag}(\mu_1, \dots, \mu_D) \tag{137}$$

Multinomial-Mischmodell

- \bullet Daten sind Vektoren mit absoluten Häufikeiten $\vec{x} \in \mathbb{N}^D$
 - Zum Beispiel Worthäufigkeiten eines Dokuments
- Verteilung des Mischmodells

$$p(\vec{x}|\vec{\mu}, \vec{\pi}) = \sum_{k=1}^{K} \pi_k \text{Mult}(\vec{x}|\vec{\mu}_k)$$
(138)

mit $\vec{\mu} = {\vec{\mu}_1, \dots, \vec{\mu}_K}, \sum_{i=1}^D \mu_{ki} = 1 \text{ und } \sum_{k=1}^K \pi_k = 1$

- Daten als Matrix $X = \{\vec{x}_1, \dots, \vec{x}_N\}$
- Unvollständige Daten-Log-Likelihood

$$\ln p(\vec{X}|\vec{\mu}, \vec{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \text{Mult}(\vec{x}_n | \vec{\mu}_k) \right\}$$
 (139)

9.1 EM-Algorithmus für Multinomial-Mischmodell

Einführen von versteckten Variablen

- Jede Instanz der Daten \vec{x} mit einer versteckten Variablen \vec{z} koppeln
- $\vec{z} = (z_1, \dots, z_K)$ folgt Eins-aus-K-Schema, $\vec{z} \in \{0, 1\}^K$
- Bedingte Verteilung für \vec{x} gegeben \vec{z}

$$p(\vec{x}|\vec{z}, \vec{\mu}, \vec{\pi}) = \prod_{k=1}^{K} p(\vec{x}|\vec{\mu}_k)^{z_k}$$
(140)

ullet Prior-Verteilung für versteckte Variable \vec{z}

$$p(\vec{z}) = p(\vec{z}|\vec{\pi}) = \prod_{k=1}^{K} \pi_k^{z_k}$$
(141)

 \bullet Verteilung für \vec{x} als Randverteilung

Vollständige Daten-Likelihood Multinomial-Mischmodell

ullet Für gegebene Daten $ec{X}$ und versteckte Daten $ec{Z}$ ist die vollständige Daten-Likelihood

$$p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(\vec{x}_n | \vec{\mu}_k)^{z_{nk}} \pi_k^{z_{nk}}$$
(142)

• Vollständige Daten-Log-Likelihood

$$\ln p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \sum_{i=1}^{D} x_{ni} \ln \mu_{ki} + \ln \left(\sum_{i=1}^{D} x_{ni} \right)! - \sum_{i=1}^{D} \ln x_{ni}! \right\}$$
(143)

Transformation

- Maximiere statt der unvollständigen Likelihood, den Erwartungswert der vollständigen Daten-Log-Likelihood über der Posterior-Verteilung der versteckten Variablen.
- Erwartungswert der vollständigen Daten-Log-Likelihood

$$Q(\vec{\mu}, \vec{\pi} | \vec{\mu}^{old}, \vec{\pi}^{old}) = \mathbb{E}_{\vec{Z}}[\ln p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\pi})]$$

$$= \sum_{\vec{Z}} p(\vec{Z} | \vec{X}, \vec{\mu}^{old}, \vec{\pi}^{old}) \ln p(\vec{X}, \vec{Z} | \vec{\mu}, \vec{\pi})$$
(144)

• Linearität des Erwartungswertes

$$\mathbb{E}[z_{nk}] = \sum_{z_{nk} \in \{0,1\}} z_{nk} p(z_{nk} | \vec{x}_n, \vec{\mu}^{old}, \vec{\pi}^{old})$$

$$= p(z_{nk} = 1 | \vec{x}_n, \vec{\mu}^{old}, \vec{\pi}^{old})$$
(145)

E-Schritt: Multinomial-Mischmodell

• Posteriors

$$\gamma(z_{nk}) = \frac{\pi_k \prod_{i=1}^D \mu_{ki}^{x_{ni}}}{\sum_{j=1}^K \pi_j \prod_{i=1}^D \mu_{ji}^{x_{ni}}}$$
(146)

- Numerische Probleme
 - explizite Berechnung der Mantisse und Exponenten bei den Produkten
 - In der Summe vor der Berechnung 10
ner Potenzen ausklammern und kürzen

M-Schritt: Multinomial-Mischmodell

• Maximiere

$$Q(\vec{\mu}, \vec{\pi} | \vec{\mu}^{old}, \vec{\pi}^{old})$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_k + \sum_{i=1}^{D} x_{ni} \ln \mu_{ki} + c \right\}$$
(147)

bezüglich μ_{ki} mit Nebenbedingung $\sum_{i=1}^{D} \mu_{ki} = 1$ und π_k mit Nebenbedingung $\sum_{k=1}^{k} \pi_k = 1$

• Aktualisierungsgleichungen

$$\mu_{ki}^{new} = \frac{\bar{x}_{ki}}{\sum_{j=1}^{D} \bar{x}_{kj}} \tag{148}$$

$$\pi_k^{new} = \frac{N_k}{N} \tag{149}$$

mit
$$\bar{x}_{ki} = \sum_{n=1}^{N} \gamma(z_{nk}) x_{ni}$$
 und $N_k = \sum_{n=1}^{N} \gamma(z_{nk})$

9.2 Kovarianz von Mischmodellen

Kovarianz von Mischmodellen

Satz Gegeben ein Mischmodell mit $p(\vec{x}|\vec{\theta}) = \sum_{k=1}^{K} \pi_k p(\vec{x}|\vec{\theta}_k)$ und $\mathbb{E}_k[\vec{x}]$ ist Erwartungswert und $\text{cov}_k[\vec{x}]$ ist Kovarianzmatrix der k-ten Komponente, dann sind Erwartungswert und Kovarianzmatrix des Mischmodells:

$$\mathbb{E}[\vec{x}] = \sum_{k=1}^{K} \pi_k \mathbb{E}_k[\vec{x}] \tag{150}$$

$$\operatorname{cov}[\vec{x}] = \sum_{k=1}^{K} \pi_k \left(\operatorname{cov}_k[\vec{x}] + \mathbb{E}_k[\vec{x}] \mathbb{E}_k[\vec{x}^T] \right) - \mathbb{E}[\vec{x}] \mathbb{E}[\vec{x}^T]$$
(151)

Beweis siehe Mitschrift

Beispiel 1: Multinomial-Mischmodell

• Multinomial-Komponenten, $\vec{x} \in \mathbb{N}^D, \ \sum_{i=1}^D x_i = N$

$$\mathbb{E}_k[\vec{x}] = N\vec{\mu}_k \tag{152}$$

$$\operatorname{cov}_{k}[\vec{x}] = -N\vec{\mu}_{k}\vec{\mu}_{k}^{T} \tag{153}$$

(154)

• Mischverteilung

$$\mathbb{E}[\vec{x}] = N \sum_{k=1}^{K} \pi_k \vec{\mu}_k \tag{155}$$

$$cov[\vec{x}] = \sum_{k=1}^{K} \pi_k N(N-1) \vec{\mu}_k \vec{\mu}_k^T - N^2 \left(\sum_{k=1}^{K} \pi_k \vec{\mu}_k\right) \left(\sum_{k=1}^{K} \pi_k \vec{\mu}_k^T\right)$$
(156)

Beispiel 2: Diskrete Verteilung des Multinomial-Mischmodell

• Diskrete Verteilung der Multinomial-Komponenten, $\vec{x} \in \{0,1\}^D$ mit $\sum_{i=1}^D x_i = 1$

$$\mathbb{E}_k[\vec{x}] = \vec{\mu}_k \tag{157}$$

$$\operatorname{cov}_{k}[\vec{x}] = \operatorname{diag}(\mu_{k1}, \dots, \mu_{kD}) \tag{158}$$

(159)

• Mischverteilung

$$\mathbb{E}[\vec{x}] = \sum_{k=1}^{K} \pi_k \vec{\mu}_k \tag{160}$$

$$\operatorname{cov}[\vec{x}] = \sum_{k=1}^{K} \pi_k \left(\operatorname{diag}(\mu_{k1}, \dots, \mu_{kD}) + \vec{\mu}_k \vec{\mu}_k^T \right) -$$

$$\left(\sum_{k=1}^{K} \pi_k \vec{\mu}_k\right) \left(\sum_{k=1}^{K} \pi_k \vec{\mu}_k^T\right) \tag{161}$$

Beispiel 3: Gauß-Mischmodell

 \bullet Verteilung der Gauß-Komponenten mit $\Sigma_k = \mathrm{diag}(\sigma_{k1}, \dots, \sigma_{kD})$ und $\vec{x} \in \mathbb{R}^D$

$$\mathbb{E}_k[\vec{x}] = \vec{\mu}_k \tag{162}$$

$$\operatorname{cov}_{k}[\vec{x}] = \operatorname{diag}(\sigma_{k1}, \dots, \sigma_{kD}) \tag{163}$$

(164)

• Mischverteilung

$$\mathbb{E}[\vec{x}] = \sum_{k=1}^{K} \pi_k \vec{\mu}_k \tag{165}$$

$$\operatorname{cov}[\vec{x}] = \sum_{k=1}^{K} \pi_k (\operatorname{diag}(\sigma_{k1}, \dots, \sigma_{kD}) + \vec{\mu}_k \vec{\mu}_k^T) -$$

$$\left(\sum_{k=1}^{K} \pi_k \vec{\mu}_k\right) \left(\sum_{k=1}^{K} \pi_k \vec{\mu}_k^T\right) \tag{166}$$

10 Anwendung des Multinomial-Mischmodell

Anwendung von Mischmodellen

- Bisher: Theorie zum Schätzen der Parameter von Mischmodellen
 - EM-Algorithmus
 - Bernoulli-Verteilung, Multinomial-Verteilung
- Offene Punkte
 - Datenvorverarbeitung, Beispiel Text-Mining
 - Initialisierung der Parameter
 - Implementierung der EM-Algorithmen
 - Wahl der Anzahl der Mischkomponenten
 - Evaluation der Mischmodelle

Data-Mining-Prozeß

10.1 Datenvorverarbeitung

Beispiel Text-Mining

- Anwendungsaufgabe
 - Überblick über die Meldungen auf der DBWorld-Mailing-Liste
- Datenauswahl und Vorverarbeitung
 - Datenbeschaffung
 - Aufbereiten (HTML, Satz- und Sonderzeichen usw. entfernen)
 - Datenbank erstellen und Daten laden
- Modellbildung
 - Bernoulli-Mischmodell in SQL
 - Multinomial-Mischmodell in SQL

- Initialisierung
- Modellevaluation
 - Welche Wahl für die Anzahl der Mischkomponenten K ist passend?
 - Welche Art Modell ist mehr geeignet?
- Modellinterpretation
 - Welche semantische Bedeutung haben die einzelnen Mischkomponenten?
 - Welche Schlüsse können aus dem Modell gezogen werden?
 - Wie können die gefundenen Korrelationen ausgewertet werden?

Datenauswahl und Vorverarbeitung

- Daten beschaffen
 - Jede eMail ist als separate HTML-Seite gespeichert
 - Links zu diesen Seiten sind im HTML-Code der Überblickseite
 - \Rightarrow Liste von Links
 - Dateien mit wget aus dem Netz laden

```
wget http://www.cs.wisc.edu/dbworld/messages/2009-05/1241607365.html wget http://www.cs.wisc.edu/dbworld/messages/2009-05/1241597129.html
```

- Daten reinigen
 - HTML-Tags entfernen
 - Alle Zeichen zu Kleinbuchstaben konvertieren
 - Alle Zeichen außer Kleinbuchstaben zu Leerzeiche konvertieren
 - Alle mehrfachen Leerzeichen zu einem Leerzeichen zusammenfassen
 - Zeilen in Worte aufspalten
 - Worte pro Dokument in sortierter Reihenfolge (mit Duplikaten) in einzelnen Zeilen ausgeben.
- Worte bei Bedarf auf Wortstamm reduzieren: Porters Stemmer

Text-Vorverarbeitung

- Apache-UIMA-FrameWork (Java) bietet umfangreiche Bibliothek
- Probleme
 - Wörter zusätzlich mit grammatischen Annotationen versehen Rightarrow Part-of-Speech-Tagging (POS)
 - Zusammengesetzte Begriffe erkennen
 - * im Englischen: z.B. mixture model
 - Fachbegriffe erkennen
 - * Linguistische Modelle nutzen
 - * Speziell trainierte Random-Markov-Fields, z.B. Bio-Wissenschaften
 - * Computer Linguistic Jena: http://www.julielab.de
 - Zahlen und Einheiten erkennen
 - Synonyme und Hierarchien von Begriffen beachten
 - **–** ..

Vokabular erstellen

- Mischen aller sortierter Dokumente
 - Merge-Sort
 - Implementiert in Unix Sort, Option -m
- Entfernen aller Duplikate \rightarrow Vokabular
 - Einfacher Schritt bei sortierten Daten
 - Implementiert in uniq
- Erstellen der Wort-IDs
 - Implementiert durch seq
- Zusammenfügen der IDs mit Vokabular
 - Implementiert durch paste

```
sort -m SourceDir/*.token |uniq > tmp_1
seq 1 'wc -l <tmp_1' > tmp_2
paste tmp_2 tmp_1 >TargetDir/vocabulary.txt
```

Term-Dokument-Matrix erstellen

- Berechne für jedes Dokument
 - die Häufigkeit seiner Wörter und
 - den Verbund mit der Vokabular-Datei
 - \Rightarrow (Dokument-ID, Wort-ID, Häufigkeit)-Tripel

Datenbank

- Tabellen
 - term(termid, term varchar(255))
 - doc(docid, doc varchar(255))
 - term_doc(docid, termid, tf)
- Tabellen mit den ersten 50 Dokumenten
 - term_50(termid, term varchar(255))
 - doc_50(docid, doc varchar(255))

- term_doc_50(docid, termid, tf)
- Daten mit Load-Befehlen in Tabellen laden, anstatt mit Insert
- Indexe für Primärschlüssel erst nach dem Laden erzeugen

10.2 Initialisierung der Parameter des EM-Algorithmus

Allgemeine Parmeterinitialisierung für den EM

- Zwei prinzipielle Möglichkeiten
 - 1. Initialisierung der Parameter $\vec{\mu} = \{\vec{\mu}_1, \dots, \vec{\mu}_K\}$ und $\vec{\pi} = \{\pi_1, \dots, \pi_K\}$
 - 2. Initialisierung der Posteriors $\gamma(z_{nk})$
- Kosten
 - Parameter: Anzahl der Zufallszahlen ist $K \cdot D$
 - Posteriors: Anzahl der Zufallszahlen ist $K \cdot N$
- Diskussion
 - Aufgrund des Aufwandes könnte man sich für die Methode mit weniger der Zufallszahlen entscheiden; ist D < N
 - Einfache Implementierung
 - * Posteriors haben bei Mischmodellen immer gleiche Struktur (Dirichlet-Verteilung)
 - * Parameter folgen je nach Modell anderen Verteilungen
 - * Vorteil für Posteriors
 - Nicht genutzte Komponenten
 - * Kann bei Parameter-Initialisierung auftreten
 - * Ist bei Posterior-Initialisierung unwahrscheinlich
 - * Nachteil Parameterinitialisierung

Parmeterinitialisierung beim Multinomial-Mischmodell

- Posteriors wie auch Parameter sind Punkte aus einem Simplex
- \bullet Problem: gleichverteilt aus einem K-dimensionalen Simplex ziehen
 - entspricht: aus K-dimensionalen Dirichletverteilung mit $\vec{\alpha} = \vec{1}$ ziehen
- Möglichkeiten
 - Rejection-Sampling
 - * Ziehe gleichverteilt aus $(0,1)^D$ Würfel
 - * Lehne Sample ab, wenn es nicht auf dem Simplex liegt
 - * Trefferrate sinkt gegen Null, bei steigender Dimension
 - Projection-Sampling
 - * Ziehe gleichverteilt aus $(0,1)^D$ Würfel
 - * Projiziere auf Simplex
 - * Liefert keine Gleichverteilung auf dem Simplex
 - Sampling von Differenzen
 - Normalisierte Exponential-Verteilung

Gleichverteilt aus K-dimensionalen Simplex ziehen 1/2

- Sampling von Differenzen
 - -K-1 Werte gleichverteilt aus (0,1) ziehen
 - Sei $s_0, s_1, \ldots, s_{K-1}, s_K$ die sortierte Sequenz dieser Werte, mit $s_0 = 0$ und $s_K = 1$
 - $\vec{d}=(d_1,\ldots,d_K)^T$ mit $d_i=s_i-s_{i-1}$ ist gleichverteilt im K-dimensionalen Simplex
 - Beweis mittels Ordnungs-Statistiken http://www-stat.stanford.edu/~susan/courses/s116/node79.html

Gleichverteilt aus K-dimensionalen Simplex ziehen 2/2

- Normalisierte Exponential-Verteilung
 - Ziehe K Werte x_1, \ldots, x_K aus einer Exponentialverteilung
 - * Ziehe Wert y_i gleichverteilt aus (0,1)
 - * Setze $x_i = -\log y_i$
 - Sei $S = \sum_{i=1}^{K} x_i$
 - $-\vec{d} = (d_1, \dots, d_K)^T$ mit $d_i = x_i/S$ ist gleichverteilt im K-dimensionalen Simplex
- Material
 - http://geomblog.blogspot.com/2005/10/sampling-from-simplex.html
 - http://en.wikipedia.org/wiki/Simplex\#Random_sampling
 - Buch von Luc Devroye: Non-Uniform Random Variate Generation, frei unter http://cg.scs.carleton.ca/~luc/rnbookindex.html

Initialisierung: Diskussion und Zusammenfassung

- Posterior-Initialisierung scheint leichte Vorteile zu haben
 - läßt sich allgemein für Mischmodelle nutzen
 - Vermeidet kaum genutzte Komponenten
- Gleichverteiltes Ziehen aus dem Simplex
 - Normalisierte Exponential-Verteilung hat lineare Komplexität O(K) anstelle von $O(K \log K)$ von der Differenzenmethode

10.3 EM-Implementierung

Implementierung des EM

- EM-Algorithmus für Multinomial-Mischmodell kann in jeder Programmiersprache implementiert werden.
- Operationen sind hauptsächlich Berechnungen von großen Summen
- Datenbanken bieten effiziente Algorithmen zum Durchlesen von großen Daten
- SQL kann Summen mittels Aggregatfunktion berechenen
- Nachteil: SQL hat keine While-Schleife
 - Wähle Anzahl der Iterationen fest

- Beispiel: K=3, Startwert für $\pi_1=\pi_2=\pi_3=1/3$
- Startwerte für $\vec{\mu}_k$ werden in Term-Tabelle gespeichert
 - term(termid, term varchar(255), mu1, mu2, mu3)

Initialisierung

- Parameter-Initialisierung, Normalisierte Exponentialverteilung
- Würfeln der Exponentialverteilung für $\vec{\mu}_k$

```
update term set (mu1,mu2,mu3) =
  (select
    (-1.0)*log(DBMS_RANDOM.VALUE+termid+1-1-termid,10),
    (-1.0)*log(DBMS_RANDOM.VALUE+termid+2-2-termid,10),
    (-1.0)*log(DBMS_RANDOM.VALUE+termid+3-3-termid,10)
from dual);
```

• Normalisieren

```
update term set
  mu1 = mu1 /( select sum(mu1) from term),
  mu2 = mu2 /( select sum(mu2) from term),
  mu3 = mu3 /( select sum(mu3) from term);
```

E-Schritt: Multinomial-Mischmodell

Posteriors

$$\gamma(z_{nk}) = \frac{\pi_k \prod_{i=1}^D \mu_{ki}^{x_{ni}}}{\sum_{i=1}^K \pi_i \prod_{i=1}^D \mu_{ii}^{x_{ni}}}$$
(167)

• Numerische Probleme

E-Schritt: Berechnen der Posteriors

```
create view posterior_it0 as (
select z3.docid,
  power(z3.a1 - z3.min_a,10)/z3.norm_const as gamma_z1,
  power(z3.a2 - z3.min_a,10)/z3.norm_const as gamma_z2,
  power(z3.a3 - z3.min_a,10)/z3.norm_const as gamma_z3
select z2.docid, z2.a1, z2.a2, z2.a3, z2.min_a,
       power(z2.a1-z2.min_a,10) + power(z2.a2-z2.min_a,10) +
       power(z2.a3-z2.min_a,10) as norm_const
select z1.docid, z1.a1, z1.a2, z1.a3,
     least(z1.docid, z1.a1, z1.a2, z1.a3) min_a
from (
select td.docid,
       log(1/3,10) + sum(td.tf *log(t.mu1,10)) as a1,
       log(1/3,10) + sum(td.tf *log(t.mu2,10)) as a2,
       log(1/3,10) + sum(td.tf *log(t.mu3,10)) as a3
from term_doc td, term t where td.termid = t.termid
group by td.docid
) z1 ) z2 ) z3 );
```

M-Schritt: Multinomial-Mischmodell

• Maximiere

$$Q(\vec{\mu}, \vec{\pi} | \vec{\mu}^{old}, \vec{\pi}^{old})$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_k + \sum_{i=1}^{D} x_{ni} \ln \mu_{ki} + c \right\}$$
(168)

bezüglich μ_{ki} mit Nebenbedingung $\sum_{i=1}^D \mu_{ki} = 1$ und π_k mit Nebenbedingung $\sum_{k=1}^k \pi_k = 1$

• Aktualisierungsgleichungen

$$\mu_{ki}^{new} = \frac{\bar{x}_{ki}}{\sum_{j=1}^{D} \bar{x}_{kj}} \tag{169}$$

$$\pi_k^{new} = \frac{N_k}{N} \tag{170}$$

mit $\bar{x}_{ki} = \sum_{n=1}^{N} \gamma(z_{nk}) x_{ni}$ und $N_k = \sum_{n=1}^{N} \gamma(z_{nk})$

M-Schritt: Berechnen der π_k

M-Schritt: Berechnen der $\vec{\mu}_k$

```
create view sum_xbar as (
select sum(p0.gamma_z1 * td.tf) as sxbar1,
       sum(p0.gamma_z2 * td.tf) as
                                    sxbar2,
       sum(p0.gamma_z3 * td.tf) as
from posterior_it0 p0, term_doc td
where p0.docid = td.docid
create view mu_it1 as (
select td.termid,
  sum(p0.gamma_z1 * td.tf)/sx.sxbar1 as mu1,
  sum(p0.gamma_z2 * td.tf)/sx.sxbar2 as mu2,
  sum(p0.gamma_z3 * td.tf)/sx.sxbar3 as mu3
from posterior_it0 p0, term_doc td, sum_xbar sx
where p0.docid = td.docid
group by td.termid, sx.sxbar1,sx.sxbar2, sx.sxbar3
);
```

E-Schritt: Multinomial-Mischmodell

• Posteriors

$$\gamma(z_{nk}) = \frac{\pi_k \prod_{i=1}^D \mu_{ki}^{x_{ni}}}{\sum_{j=1}^K \pi_j \prod_{i=1}^D \mu_{ji}^{x_{ni}}}$$
(171)

E-Schritt: Berechnen der nächsten Posteriors

```
create view posterior_it1 as (
select z3.docid,
  power(z3.a1 - z3.min_a,10)/z3.norm_const as gamma_z1,
  power(z3.a2 - z3.min_a,10)/z3.norm_const as gamma_z2,
  power(z3.a3 - z3.min_a,10)/z3.norm_const as gamma_z3
from (
select z2.docid, z2.a1, z2.a2, z2.a3, z2.min_a,
       power(z2.a1-z2.min_a,10) + power(z2.a2-z2.min_a,10) +
       power(z2.a3-z2.min_a,10) as norm_const
select z1.docid, z1.a1, z1.a2, z1.a3,
least(z1.docid, z1.a1, z1.a2, z1.a3) min_a
from (
select td.docid,
       log(p1.pi1,10) + sum(td.tf *log(m1.mu1,10)) as a1,
       log(p1.pi2,10)+sum(td.tf *log(m1.mu2,10)) as a2,
       log(p1.pi3,10)+sum(td.tf *log(m1.mu3,10)) as a3
from term_doc td, mu_it1 m1, pi_it1 where td.termid=m1.termid
group by td.docid, log(pi1,10), log(pi2,10), log(pi3,10)
) z1 ) z2 ) z3 );
```

Numerische Probleme beim E-Schritt

- Numerische Umformung hilft nicht bei sehr großen Exponenten
- Beispiel DocID Z1.A1 Z1.A2 Z1.A3 Z1.Min_A 28 -1003.5657 -1134.0201 -1463.7964 -1463.7964
- Differenz -1003+ 1463= 460 hoch 10 ist zu groß

Inspektion des Ergebnisses 1/3

• Ausgabe der π_k nach der ersten Iteration

Inspektion des Ergebnisses 2/3

 \bullet Nach der ersten Iteration die 30 Worte mit den größten μ_{ki} für jede Komponente ausgegeben

```
select term
from (
select rownum, termid, mu1
from mu_50_it1 m1
order by mu1 desc
) z1, term_50 t
where rownum <=10 and
  z1.termid = t.termid
order by z1.mu1 desc</pre>
```

Inspektion des Ergebnisses 3/3

- Nach der ersten Iteration die 30 Worte mit den größten μ_{ki} für jede Komponente ausgegeben
- $\vec{\mu}_1$ and the for of de on a to workshop in web http information papers submission conference paper geospatial www ibima be applications will multimedia feb deadline are n y service
- $\vec{\mu}_2$ and of in the for univ to social ue on network paper has papers be a submission workshop conference security by information will management http with issues international web korea
- $\vec{\mu}_3$ of and the university to in for a be on systems papers data information will is web research usa workshop http are paper at submission italy conference by or as

Inspektion des Ergebnisses bei Posterior-Initialisierung 1/2

• Ausgabe der π_k nach der ersten Iteration

Inspektion des Ergebnisses bei Posterior-Initialisierung 2/2

- \bullet Nach der ersten Iteration die 30 Worte mit den größten μ_{ki} für jede Komponente ausgegeben
- $\vec{\mu}_1$ university a u s and of the in be concordia must security conference canada rutgers to for email papers paper state data italy di secure applications milano information universit proposals
- $\vec{\mu}_2$ of and the to in university for a be on papers systems data information will workshop web http is are paper research submission at conference by as www or with
- $\vec{\mu}_3$ university of and the usa to italy france in for australia technology systems research germany data de japan china austria national universit uk information hong di at a management be

Data-Mining-Prozeß

11 EM-Algorithmus für MAP-Schätzung

Motivation für MAP-Schätzer

• Bisher: Maximum-Likelihood-Schätzer

$$\operatorname{argmax}_{\vec{\theta}} p(\vec{X}|\vec{\theta}) \tag{172}$$

- Bernoulli-Mischmodell: $\vec{\theta} = \{\vec{\mu}, \vec{\pi}\}$
- Multinomial-Mischmodell: $\vec{\theta} = \{\vec{\mu}, \vec{\pi}\}$
- Nachteile:
 - Unbalancierte Mischkomponenten
 - Singularitäten bei kontinuierlichen Variablen
 - Kein Zusatzwissen
- Idee: mittels Prior-Verteilungen ungünstige Parametereinstellungen bestrafen

MAP-Schätzer

• Maximum-A-Posteriory (MAP) Schätzer

$$\operatorname{argmax}_{\vec{\theta}} p(\vec{\theta}|\vec{X}) \tag{173}$$

• Transformation des Problems mit Bayesscher Regel

$$p(\vec{\theta}|\vec{X}) = \frac{p(\vec{X}|\vec{\theta})p(\vec{\theta})}{p(\vec{X})}$$
(174)

• Für die Maximierung reicht es nur den Logarithmus des Zählers zu maximieren

$$\ln p(\vec{X}|\vec{\theta}) + \ln p(\vec{\theta}) \tag{175}$$

EM-Algorithmus für MAP-Schatzer

- Linker Term von 175 ist unvollständige Log-Daten-Likelihood
- Einführen von versteckten Variablen und Transformation des Maximierungsproblems wie bei Maximum-Likelihood-Schätzer
- Erwartungswert von 175

$$Q'(\vec{\theta}|\vec{\theta}^{old}) = \mathbb{E}_{\vec{Z}}[\ln p(\vec{X}, \vec{Z}|\vec{\theta}) + \ln p(\vec{\theta})]$$

$$= \mathbb{E}_{\vec{Z}}[\ln p(\vec{X}, \vec{Z}|\vec{\theta})] + \ln p(\vec{\theta})$$
(176)

$$= \mathcal{Q}(\vec{\theta}|\vec{\theta}^{old}) + \log p(\vec{\theta}) \tag{177}$$

$$= \left(\sum_{\vec{Z}} p(\vec{Z}|\vec{X}, \vec{\theta}^{old}) \ln p(\vec{X}, \vec{Z}|\vec{\theta})\right) + \ln p(\vec{\theta})$$
(178)

(179)

• Weil Posterior der versteckten Variablen nicht von neuen Prior betroffen ⇒ E-Schritt wie beim ML-Schätzer

M-Schritt für Map-Schätzer

• Maximiere $Q'(\vec{\theta}|\vec{\theta}^{old})$, d.h.

$$Q(\vec{\theta}|\vec{\theta}^{old}) + \log p(\vec{\theta}) \tag{180}$$

MAP für Bernoulli-Beta-Mischmodell

• Prior

$$p(\vec{\theta}) = p(\vec{\pi}, \vec{\mu}) = \text{Dir}(\vec{\pi}|\vec{\alpha}) \cdot \prod_{k=1}^{K} \text{Beta}(\vec{\mu}_k | \vec{a}_k, \vec{b}_k)$$
(181)

• M-Schritt

$$\pi_k = \frac{N_k + \alpha_k - 1}{N + \sum_{l=1}^K \alpha_l - K}$$

$$\mu_{ki} = \frac{\bar{x}_{ki} + a_{ki} - 1}{N_k + a_{ki} - 1 + b_{ki} - 1}$$
(182)

$$\mu_{ki} = \frac{\bar{x}_{ki} + a_{ki} - 1}{N_k + a_{ki} - 1 + b_{ki} - 1} \tag{183}$$

• $N_k = \sum_{n=1}^N \gamma(z_{nk})$ und $\bar{x}_{ki} = \sum_{n=1}^N \gamma(z_{nk}) x_{ni}$

MAP für Multinomial-Dirichlet-Mischmodell

• Prior

$$p(\vec{\theta}) = p(\vec{\pi}, \vec{\mu}) = \text{Dir}(\vec{\pi}|\vec{\alpha}) \cdot \prod_{k=1}^{K} \text{Dir}(\vec{\mu}_k|\vec{\beta}_k)$$
(184)

• M-Schritt

$$\pi_k = \frac{N_k + \alpha_k - 1}{N + \sum_{l=1}^K \alpha_l - K} \tag{185}$$

$$\pi_{k} = \frac{N_{k} + \alpha_{k} - 1}{N + \sum_{l=1}^{K} \alpha_{l} - K}$$

$$\mu_{ki} = \frac{\bar{x}_{ki} + \beta_{ki} - 1}{\left(\sum_{i'=1}^{D} \bar{x}_{ki'} + \beta_{ki'}\right) - D}$$
(185)

• $N_k = \sum_{n=1}^N \gamma(z_{nk})$ und $\bar{x}_{ki} = \sum_{n=1}^N \gamma(z_{nk}) x_{ni}$

12 Konvergenz des EM-Algorithmus

Allgemeine Behandlung des EM-Algorithmus

- Probabilistische Modell mit
 - beobachtbaren Variablen \vec{X}
 - versteckten Variablen \vec{Z}
 - * Annahme: \vec{Z} ist diskret,
 - * falls nicht, werden aus den Summen Integrale
 - Parameter $\vec{\theta}$
- Ziel
 - Maximiere Likelihood

$$p(\vec{X}|\vec{\theta}) = \sum_{\vec{Z}} p(\vec{X}, \vec{Z}|\vec{\theta})$$
(187)

• Dies ist äquivalent zum Maximieren der Log-Likelihood $\ln p(\vec{X}|\vec{\theta})$

Zerlegung der Log-Likelihood

- \bullet Idee: zerlege Log-Likelihood bezüglich einer beliebigen Verteilung $q(\vec{Z})$ über den versteckten Variablen
- Sei $q(\vec{Z})$ irgend eine Verteilung über den versteckten Variablen \vec{Z} , dann gilt

$$\ln p(\vec{X}|\vec{\theta}) = \mathcal{L}(q,\vec{\theta}) + \text{KL}(q||p) \text{ mit}$$
(188)

$$\mathcal{L}(q, \vec{\theta}) = \sum_{\vec{Z}} q(\vec{Z}) \ln \frac{p(\vec{X}, \vec{Z} | \vec{\theta})}{q(\vec{Z})}$$
(189)

$$KL(q||p) = -\sum_{\vec{Z}} q(\vec{Z}) \ln \frac{p(\vec{Z}|\vec{X}, \vec{\theta})}{q(\vec{Z})}$$
(190)

Exkurs: KL-Divergenz

• KL-Divergenz (Kullback, Leibler, 1951) oder relative Entropie ist von zwei Verteilungen a(x) und b(x) abhängig, die die gleiche Domäne x haben.

$$KL(a||b) = -\sum_{x} a(x) \ln \frac{b(x)}{a(x)}$$
(191)

$$= \sum_{x} a(x) \ln a(x) - \sum_{x} a(x) \ln b(x)$$
 (192)

- Eigenschaften
 - $\text{KL}(a|b) \ge 0$ mit Gleichheit genau dann wenn die beiden Verteilungen gleich sind a(x) = b(x)
 - Nicht symmetrisch $KL(a||b) \neq KL(b||a)$
 - Dreieckungleichung gilt nicht

Untere Schranke für Log-Likelihood

• Zerlegung der Log-Likelihood

• Untere Schranke für Log-Likelihood

$$\ln p(\vec{X}|\vec{\theta}) \ge \mathcal{L}(q,\vec{\theta}) \tag{193}$$

• Untere Schranke gilt für beliebige Verteilungen $q(\vec{Z})$

Konvergenz des EM

- Idee
 - Maximiere anstelle der Log-Likelihood $\ln p(\vec{X}|\vec{\theta})$ die untere Schranke $\mathcal{L}(q,\vec{\theta})$
 - Maximiere $\mathcal{L}(q, \vec{\theta})$ abwechselnd
 - * nach $q(\vec{Z})$ (E-Schritt) und
 - * nach $\vec{\theta}$ (M-Schritt)
- Beweisziele
 - Untere Schranke $\mathcal{L}(q, \vec{\theta})$ steigt im E-Schritt
 - Untere Schranke $\mathcal{L}(q, \vec{\theta})$ steigt im M-Schritt
 - Zusammenhang zu EM-Algorithmus

E-Schritt

- Maximiere $\mathcal{L}(q, \vec{\theta})$ nach $q(\vec{Z})$
 - Parameter werden mit $\vec{\theta}^{old}$ initialisiert
- $\mathcal{L}(q, \vec{\theta}^{old})$ hängt nur von $q(\vec{Z})$ ab
 - $q(\vec{Z})$ beeinfl
ßt nur $\mathrm{KL}(q||p)$

$$\mathcal{L}(q, \vec{\theta}^{old}) = \ln p(\vec{X}|\vec{\theta}^{old}) - \text{KL}(q||p)$$
(194)

- $\mathcal{L}(q, \vec{\theta}^{old})$ ist maximal, wenn $\mathrm{KL}(q||p) = 0$ $\Rightarrow q(\vec{Z}) = p(\vec{Z}|\vec{X}, \vec{\theta}^{old})$
- Wenn $q(\vec{Z})$ so gewählt ist, dann ist

$$\mathcal{L}(q, \vec{\theta}^{old}) = \ln p(\vec{X}|\vec{\theta}^{old}) \tag{195}$$

E-Schritt, Veranschaulichung

• Wenn $q(\vec{Z})$ gleich der Posterior $p(\vec{Z}|\vec{X}, \vec{\theta}^{old})$ gewählt wird \Rightarrow untere Schranke $\mathcal{L}(q, \vec{\theta}^{old})$ wird angehoben, bis sie gleich $\ln p(\vec{X}|\vec{\theta}^{old})$ ist

M-Schritt

- Wahl für $q(\vec{Z})$ aus E-Schritt wird festgehalten
- Maximiere $\mathcal{L}(q, \vec{\theta})$ nach $\vec{\theta}$
- Wenn $q(\vec{Z}) = p(\vec{Z}|\vec{X}, \vec{\theta}^{old})$ dann ergibt sich für die untere Schranke

$$\mathcal{L}(q, \vec{\theta}) = \sum_{\vec{Z}} p(\vec{Z} | \vec{X}, \vec{\theta}^{old}) \ln \frac{p(\vec{X}, \vec{Z} | \vec{\theta})}{p(\vec{Z} | \vec{X}, \vec{\theta}^{old})}$$
(196)

$$= \mathcal{Q}(\vec{\theta}, \vec{\theta}^{old}) + c \tag{197}$$

- Konstante c ist negative Entropie von $p(\vec{Z}|\vec{X},\vec{\theta}^{old})$
- Maximierung von $\mathcal{Q}(\vec{\theta},\vec{\theta}^{old})$ ist das was bisher im M-Schritt gemacht wurde
- D.h. der M-Schritt vergrößtert auch die untere Schranke der Log-Likelihood

M-Schritt, Veranschaulichung

- Maximierung von $\mathcal{L}(q,\vec{\theta})$ bezüglich $\vec{\theta}$ ergibt $\vec{\theta}^{new}$
- Weil $p(\vec{Z}|\vec{X}, \vec{\theta}^{old}) \neq p(\vec{Z}|\vec{X}, \vec{\theta}^{new})$ ist $\mathrm{KL}(q||p) \geq 0$ bezüglich $\vec{\theta}^{new}$
- Deshalb steigt $\ln p(\vec{X}|\vec{\theta})$ durch den M-Schritt mehr als $\mathcal{L}(q,\vec{\theta})$

Arbeitsweise des EM im Parameterraum

- \bullet Starte mit initialen Parameter $\vec{\theta}^{old}$
- $\mathcal{L}(q, \vec{\theta}^{old})$ hat nach E-Schritt Kontakt mit Likelihood $\ln p(\vec{X}|\vec{\theta})$
- Beide Funktionen haben auch gleichen Gradienten

Spezialfall iid. Daten

- $\vec{X} = \{\vec{x}_n\}, \ \vec{Z} = \{\vec{z}_n\}$
- iid. Annahme

$$p(\vec{X}, \vec{Z}) = \prod_{n=1}^{N} p(\vec{x}_n, \vec{z}_n)$$
 (198)

• Randverteilung

$$p(\vec{X}) = \sum_{\vec{Z}} p(\vec{X}, \vec{Z}) = \sum_{\vec{Z}} \prod_{n=1}^{N} p(\vec{x}_n, \vec{z}_n) = \prod_{n=1}^{N} p(\vec{x}_n)$$

• E-Schritt

$$p(\vec{Z}|\vec{X}, \vec{\theta}) = \frac{\prod_{n=1}^{N} p(\vec{x}_n, \vec{z}_n | \vec{\theta})}{\sum_{\vec{Z}} \prod_{n=1}^{N} p(\vec{x}_n, \vec{z}_n | \vec{\theta})} = \frac{p(\vec{X}, \vec{Z} | \vec{\theta})}{\sum_{\vec{Z}} p(\vec{X}, \vec{Z} | \vec{\theta})}$$
(199)

$$= \prod_{n=1}^{N} p(\vec{z}_n | \vec{x}_n, \vec{\theta})$$
 (200)

MAP-Schätzung mit EM

- Maximiere $p(\vec{\theta}|\vec{X})$ mit beliebiger Prior Verteilung $p(\vec{\theta})$

$$p(\vec{\theta}|\vec{X}) = \frac{p(\vec{\theta}, \vec{X})}{p(\vec{X})} \Rightarrow \tag{201}$$

$$\ln p(\vec{\theta}|\vec{X}) = \ln p(\vec{\theta}, \vec{X}) - \ln p(\vec{X}) \tag{202}$$

$$= \ln p(\vec{X}|\vec{\theta}) + \ln p(\vec{\theta}) - \ln p(\vec{X}) \tag{203}$$

$$= \mathcal{L}(q, \vec{\theta}) + \mathrm{KL}(q||p) + \ln p(\vec{\theta}) - \ln p(\vec{X})$$
(204)

- E-Schritt: optimiere $q(\vec{Z})$ wie bisher
- M-Schritt: maximiere $\mathcal{L}(q, \vec{\theta}) + \ln p(\vec{\theta})$

Erweiterungen des EM

- Statt Maximierung in E- und M-Schritt nur eine Verbesserung der jeweiligen Zielfunktion
- Verallgemeinerter EM, GEM
 - Statt Maximierung im M-Schritt nur eine Steigerung von $\mathcal{L}(q,\vec{\theta})$
 - Einsatz von nicht-linearen Optimierungstechniken

• Online-EM

- Statt Minimierung von $\mathrm{KL}(q||p)$ nur eine Senkung
- Bei iid. Daten, nur Posterior eines Beobachtung neu berechnen und dann gleich den M-Schritt durchführen.
- Beispiel: Multinomial-Mischmodell
- Reihenfolge der Abarbeitung wird spielt eine Rolle

13 Evaluation

Data Mining Prozeß

Evaluation von Data-Mining-Modellen

- Für dieselbe Data-Mining-Aufgabe gibt es oft mehrere alternative Modelle.
- Ein Data-Mining-Modell hat meist mehrere Parameter, die sich nicht mittels Hintergrundwissen einstellen lassen.
- Fragen
 - Modellselektion: Welches Modell ist am besten geeignet oder welche Parametereinstellung soll genutzt werden?
 - Modellbewertung: Welchen Fehler macht ein Modell?
- Antworten hängen von der Aufgabe ab
- Wahl des Evaluationsmaßes
- Wahl der Evaluationsmethode

13.1 Evaluationsmaße

Evaluationsmaße

- Die meisten Maße sind für Testdaten entworfen
- Likelihood auf Testdaten als allgemeines Maß für probabilistische Modelle
- Maße für spezifische Aufgabenstellungen
 - Klassifikationsfehler für Klassifikation
 - Approximationsfehler bei Regression
- Maße ohne Testdaten
 - Akaikes Informationskriterim (AIC)
 - Bayesisches Informationskriterium (BIC)

Likelihood auf Testdaten

- Gegeben sei ein probabilistisches Modell $p(x|\vec{\theta})$ mit geschätzten Parametern $\vec{\theta}$
- \bullet Die Parameter wurden auf den Trainingsdaten \vec{X} geschätzt, z.B. mittels Maximum-Likelihood oder Maximum-Aposteriory
- Die Likelihood auf den Testdaten $\vec{X}' = \{\vec{x}_1', \dots, \vec{x}_{N'}'\}$ ist

$$p(\vec{X}'|\vec{\theta}) = \prod_{n'=1}^{N'} p(\vec{x}'_{n'}|\vec{\theta})$$
 (205)

- Die Testdaten, die das Modell bisher noch nie gesehen hat, sollten auch eine hohe Wahrscheinlichkeit bekommen, wenn das Modell sinnvoll gelernt ist.
- Die Likelihood auf den Testdaten $p(\vec{X}'|\vec{\theta})$ ist ein Maß, wie gut das Modell auf neue Daten verallgemeinert.
- Wenn $p(\vec{X}'|\vec{\theta})$ klein ist, hat sich das Modell wahrscheinlich zu sehr auf die Trainingsdaten \vec{X} spezialisiert (Overfitting).

Klassifikationsfehler

- Klassifikation ist eine Funktion $c = f(\vec{x})$ mit Beobachtung \vec{x} als Eingabe und $c \in \{c_1, \dots, c_K\}$ als Zielvariable
- Klassifikation liefert für eine Beobachtung \vec{x}
 - die Klasse c oder
 - die Posterior-Verteilung über den Klassen $p(c=k|\vec{x})$ für $k=1,\ldots,K$
- Bewertungsmaße für Testdaten $\vec{X}' = \{\vec{x}_1', \dots, \vec{x}_{N'}'\}$ mit bekannten Klassen $\vec{C}' = \{c_1', \dots, c_{N'}'\}$ sind
 - 0-1 loss

$$L(\vec{C}', f(\vec{X}')) = \frac{1}{N'} \sum_{n'=1}^{N'} I(c'_{n'} = f(\vec{x}'_{n'}))$$
(206)

- Cross-Entropy

$$L(\vec{C}', f(\vec{X}')) = -\sum_{k=1}^{K} \sum_{n'=1}^{N'} I(c'_{n'} = f(\vec{x}'_{n'})) \ln p(c = k|\vec{x}'_{n'})$$
(207)

Approximationsfehler

- (Eindimensionale) Regression ist eine Funktion $f(\vec{x})$ mit Beobachtung \vec{x} als Eingabe und Zielvariable y als Ausgabe
- Bewertungsmaße für Testdaten $\vec{X}' = \{\vec{x}_1', \dots, \vec{x}_{N'}'\}$ mit bekannten Zielvariablen $\vec{Y}' = \{y_1', \dots, y_{N'}'\}$ sind
 - Quadratischer Fehler

$$L(\vec{Y}', f(\vec{X}')) = \frac{1}{N'} \sum_{n'=1}^{N'} (y'_{n'} - f(\vec{x}'_{n'}))^2$$
(208)

Absoluter Fehler

$$L(\vec{Y}', f(\vec{X}')) = \frac{1}{N'} \sum_{n'=1}^{N'} |\vec{y}'_{n'} - f(\vec{x}'_{n'})|$$
(209)

13.2 Trainings-, Validierungs- und Testdaten

Trainings-, Validierungs- und Testdaten

- Wenn viele Daten vorhanden sind sollte die Gesamtdatenmenge idealerweise in
 - Trainingsdaten
 - Validierungsdaten
 - Testdaten

aufgespalten werden

- Verwendung
 - Modelltraining mit Trainingsdaten
 - Modellselektion mit Validierungsdaten
 - Modellbewertung des endgültigen Modells mit Testdaten, Testdaten bleiben solange unter Verschluß bis endgültiges Modell feststeht
- \bullet Typische Aufspaltung 50% Trainingsdaten, 25% Validierungsdaten und 25% Testdaten

Beziehung zwischen Trainings- und Validierungsfehler

Für quadratischen Fehler gilt folgende Zerlegung

Fehler = Nichtreduzierbarer Fehler +
$$Bias^2 + Varianz$$
 (210)

- Nichtreduzierbarer Fehler: Schwankungen, die durch den Zufallsprozeß entstehen
- Bias: Abweichungen, die durch die Differenz zwischen der Ausgabe des geschätzten Modells und den (unbekannten) wahren Zielgrößen entstehen
- Varianz: Schwankungen, die beim Schätzen des Modells entstehen

Diskussion

- Trainingsfehler ist meist deutlich kleiner als Validierungsfehler
- Problem
 - Gesamtdatenmenge ist meist zu klein um eine sinnvolle Aufteilung in Trainings- und Validierungsmenge zuzulassen.
- Ideen
 - Kreuz-Validierung: Validierungsfehler durch Variation der Daten direkt schätzen
 - Differenz zwischen Trainings- und Validierungsfehler modellieren
 - Bootstrap: Differenz zwischen Trainings- und Validierungsfehler durch Variation der Daten schätzen

13.3 Kreuzvalidierung

Kreuzvalidierung

- Gegeben sind die Daten \vec{X}
- Methode
 - Partitioniere \vec{X} zufällig in etwa K gleichgroße Teile
 - Der kte Teil wird als Validierungsmenge genutzt. Die restlichen K-1 Teile dienen zum Trainieren des Modells. Mit dem so trainierten Modell kann das Evaluationsmaß für jede Beobachtung des kten Teil berechnet werden.
 - Führe den zweiten Schritt für alle Teile $k=1,\ldots,K$ durch und fasse dann die Schätzungen des Validierungsfehlers zusammen.
- Kreuz-Validierungsschätzer
 - Sei $\kappa\colon\{1,\dots,N\}\to\{1,\dots,K\}$ die Indexfunktion, die jede Beobachtung ihrer Partition zuordnet
 - Sei $\hat{f}^{-k}(\vec{x})$ die Ausgabe des Modells, das ohne den kten Teil gelernt wurde
 - Der Kreuz-Validierungsschätzer für die Fehlerfunktion L ist dann

$$CV = \frac{1}{N} \sum_{n=1}^{N} L(y_n, \hat{f}^{-\kappa(n)}(\vec{x}_n))$$
 (211)

Diskussion Kreuz-Validierung

- \bullet Für Kreuz-Validierung muß das Modell K mal gelernt werden
- \bullet Für K=N wird die Kreuz-Validierung zum Leave-One-Out oder Jack-Knife
- Typische Werte sind K = 5 oder K = 10
- Wie soll K gewählt werden?
 - Für K=N unterscheiden sich die Trainingsmengen kaum $\Rightarrow CV$ is fast ohne Bias, kann aber hohe Varianz haben
 - Für K=5 hat CV eine geringere Varianz, aber Bias kann aufgrund der kleineren Traininigsmengen ein Problem sein.
 - Beispiel: Normalverteilung $\mathcal{N}(x|\mu=10,\sigma=1), N=100$ Beobachtungen, Evaluationsmaß ist mittlere log-Likelihood pro Beobachtung
 - * K = N: CV = -1.5817763, sd = 0.9395846, wahre LL = -1.580407
 - * K = 10: CV = -1.4232838, sd = 0.2536275, wahre LL = -1.417698
 - * K = 5: CV = -1.5018074, sd = 0.1541024, wahre LL = -1.488055

13.4 Bootstrap

Einfacher Bootstrap

- Bootstrap ist auch wie Kreuzvalidierung eine Daten-Simulationsmethode
- ullet B Trainingsmengen werden aus der Datenmenge $ec{X}$ durch zufälliges Ziehen mit Zurücklegen erzeugt
- Für jede der B Trainingsmenge wird ein Modell gelernt.
- ullet Der Fehler für alle Modelle wird auf der Originaldatenmenge $ec{X}$ bestimmt
- Leider unterschätzt diese Methode den wahren Fehler, weil die Originaldaten viele Beobachtungen mit den Bootstrap-Samples gemeinsam haben

Beispiel

Beispiel:Normalverteilung $\mathcal{N}(x|\mu=10,\sigma=1),\ N=100,$ Evaluationsmaß ist mittlere log-Likelihood pro Beobachtung

Originaldaten	Bootstrap-Sample	Optimismus
-1.409073246	-1.403020812	0.006052434
-1.405453177	-1.401165041	0.004288135
-1.40891088	-1.50837986	-0.09946899
-1.405668300	-1.396156306	0.009511994
-1.42066249	-1.34595431	0.07470818
-1.40515675	-1.41785483	-0.01269808
-1.40977385	-1.38526100	0.02451284
-1.41025214	-1.45041413	-0.04016198
-1.4053961	-1.5218744	-0.1164783
-1.40769963	-1.36328762	0.04441201
-1.40981595	-1.40112698	0.00868897

Trainingsdaten: -1.405157

Trainingsdaten + Optimismus: -1.413846

Kreuzvalidierung: -1.4115505

Verbesserter Bootstrap mit Optimismus

- Erzeuge B Trainingsmengen aus den Daten durch zufälliges Ziehen mit Zurücklegen
- Lerne ein Modell für jede Trainingsmenge
- Berechne Fehler von jedem Modell auf der Trainingsmenge und auf der Originalmenge
- Differenz beider Fehler ist der Optimismus
- Mittele den Optimismus über alle B Trainingsmengen
- Lerne ein Modell für die Originaldaten
- Berechne den Trainingsfehler für dieses Modell auf den Originaldaten
- Der Bootstrap-Fehler ist der Trainingsfehler plus mittlerer Optimismus

0.632 Bootstrap

• Die Wahrscheinlichkeit, daß eine Beobachtung in ein Bootstrap-Sample aufgenommen wird, ist

$$1 - \left(1 - \frac{1}{N}\right)^N \approx 1 - e^{-1} = 0.632 \tag{212}$$

- Erzeuge B Trainingsmengen aus den Daten durch zufälliges Ziehen mit Zurücklegen
- \bullet Sei C^{-n} die Indexmenge der Bootstrap-Samples, die Beobachtung x_n nicht enthalten
- Der Leave-One-Out-Bootstrap-Fehler ist

$$Err^{(1)} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{|C^{-n}|} \sum_{b \in C^{-n}} L(y_n, \hat{f}^b(x_n))$$
 (213)

- Sei Err der Trainingsfehler des auf der Originaldatenmenge trainierten Modells
- Der 0.623-Bootstrap-Fehler ist

$$Err^{0.632} = 0.368 \cdot Err + 0.632 \cdot Err^{(1)}$$
(214)

Zusammenfassung

- Für die meisten praktischen Anwendungen existiert schon ein Fehlermaß
- Kreuz-Validierung ist eine bewährte Methode Fehler realistisch zu schätzen
 - Es wird auch Standardabweichung mitgeschätzt
 - Der wahre Fehler wird meist etwas überschätzt
- Informationsmaße, die mit Zusatzinformations den Trainingsfehler korrigieren, sind nur in Spezialfällen einsetzbar
- Verbesserter Bootstrap und 0.632-Bootstrap korrigieren auch den Trainingsfehler, aber durch Datensimulation und sind deshalb generell einsetzbar.