

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

สอบกลางภาค 1/2556

วิชา PHY 305 Vacuum Technology

นักศึกฟิสิกส์ชั้นปีที่ 3

สอบวัน ศุกร์ ที่ 27 กันยายน 2556

เวกา 9:00 - 12:00 น.

คำขึ้นจง

- 1. ข้อสอบมีทั้งหมด 7 ข้อ คะแนนเต็ม 80 คะแนน 5 หน้า (รวมใบปะหน้า)
- 2. ห้ามนำคำราหรือเอกสารค่างๆ เข้าห้องสอบ
- 3. อนุญาตให้ใช้เครื่องคำนวณทางวิทยาศาสตร์และไม้ไปรแทรกเตอร์เข้าห้องสอบได้
- 4. ข้อสอบไม่มีการแก้ไขใดๆ ทั้งสิ้น

ชื่อ – สกุลเถขที่นั่งสอบ	ลรหัสนักศึ้ง	กษาเลขที่นั่งสอบ
--------------------------	--------------	------------------

อ. สมชาย ปัญญาอินแก้ว

ข้อสอบฉบับนี้ได้ผ่านการพิจารณาของกรรมการกลั่นกรองข้อสอบภาควิชาฟิสิกส์เป็นที่เรียบร้อยแล้ว

TAN TO THE TANK THE T

ข้อมูลที่อาจจะนำไปใช้ในการทำข้อสอบ

$$\eta = \frac{0.998 \left(\frac{mkT}{\pi}\right)^{1/2}}{\pi \xi^2}$$

$$\lambda = \frac{kT}{\sqrt{2}\pi\xi^2 p}$$

$$C = 1.15 \left(\frac{T}{M}\right)^{1/2} A$$

$$C = 1.204 \left(\frac{T}{M}\right)^{1/2} \frac{D^3}{L}$$

$$K_n = \frac{\lambda}{d_{ef}}$$

$$K=\frac{1}{4}(9\gamma-5)\eta c_{v}$$

Monatomic gas:
$$\gamma = \frac{5}{3}$$
 $C_V = \frac{3}{2}R$

Diatomic gas:
$$\gamma = \frac{7}{5}$$
 $C_V = \frac{5}{2}R$

Triatomic gas:
$$\gamma = \frac{4}{3}$$
 $C_V = 3R$

$$R = 8.31 \frac{J}{\text{mole} \cdot K}$$

 C_{ν} molar heat capacity

- จงบอกว่าเนื้อหาในวิชา Vacuum Technology จะนำไปใช้ในอุตสาหกรรมด้าน ใดบ้าง โดยให้ยกตัวอย่างที่เกี่ยวข้องกับอุตสาหกรรมที่กล่าวถึงมาให้ชัดเจน (12 กะแนน)
- 2. กราฟที่แสดงความสัมพันธ์ระหว่าง pressure กับ pumping speed แสดงดังรูปที่ 1

- (ก) จากกราฟถ้าพิจารณาความคันในช่วงสั้นๆ จงให้เหตุผล ว่าทำไมใน ขณะที่ความคันมีค่าสูง pumping speed จึงมีค่าต่ำ ในทางกลับกันเมื่อ ความคันต่ำ pumping speed กลับมีค่าสูงขึ้น (4 คะแนน)
- (ข) ถ้ากราฟดังกล่าว ได้จาก viscous flow จงพิสูจน์ว่า pump down time มี ค่า:

$$t=2.302 \; rac{v}{s} log rac{p_i}{p_f} \; ;_{P_i} \;$$
คือความคันเริ่มต้น $;_{P_f} \;$ คือความคันสุดท้าย

(8 คะแนน)

รูปที่ 1แสดงความสัมพันธ์ระหว่าง pressure กับ pumping speed

3. จงหาค่า Thermal conductivity ของแก๊สในโครเจน ที่อุณหภูมิ 0 $^{\rm o}$ C (10 กะแนน) กำหนคให้ diameter of nitrogen molecule ξ = 3.0 x 10 $^{-8}$ cm ส่วนหนึ่งของระบบสุญญากาศแสดงดังรูปที่ 2 แก๊สที่อยู่ในระบบเป็นแก๊สอาร์กอน ความดันขณะที่พิจารณามีค่า 1 x 10 ^{- 3} Pa โดยมีอุณหภูมิคงที่ 25 °C จงหา Conductance ของระบบ (15 คะแนน)

กำหนดให้ Argon gas : Molecur weight, M = 40 g

Diameter of molecule,
$$\xi = 3.10 \times 10^{-10} \text{ m}$$

Conductance of valve, $C_{valve} = 0.60 \text{ m}^3/\text{s}$

Gas flow modes in vacuum system

Flow modes	Boundaries				
	Lower	Upper			
Viscous	Atmosphere pressur	$K_n \le 5 \times 10^{-3}$			
Molecular-viscous	$K_n > 5 \times 10^{-3}$	K _n ≤ 1.5			
Molecular	K _n > 1.5	$K_n \rightarrow \infty$			

รูปที่ 2 ส่วนหนึ่งของระบบสุญญากาศ

5. ระบบสุญญากาศ มีปริมาตร 10 ถิตร ถูกออกแบบให้ทำงานในสภาวะ Ultra High Vacuum (UHV) มีแก๊สส่วนหนึ่งที่มีจำนวนเพียงเล็กน้อยแต่ระเหยได้ง่าย ซึ่งถูกดูค ซับอยู่ที่พื้นผิวของระบบ แก๊สดังกล่าวมี molecular weight เท่ากับ 70 กรัม จง คำนวณหาปริมาณของแก๊ส ถ้าความคันของระบบเป็น 10⁻⁶ Pa และอุณหภูมิคงที่ 293 K (15 คะแนน)

<u>ข้อแนะนำ</u>

Freundlich adsorption isotherm: $V = kp^{1/n}$ Values for k and n in the Freundlich adsorption isotherm

Gas	193 K			255 K			273 K		
	k	n	1/ n	k	n	1/n	k	n	1/n
Argon	0.5	1.05	0.95	0.076	1	1.0	0.058	1.0	1.0
Krypton	2.93	1.41	0.71	0.497	1.13	0.88	0.34	1.0	1.0
Xenon	15.99	1.75	0.57	2.46	1.45	0.69	1.58	1.29	0.77

6. จงแปลข้อความต่อไปนี้ให้เป็นภาษาไทย (10 คะแนน)

The usual way in which the sorption of gas or vapour is determined for a particular solid is to begin with a surface which is free of all adsorbates. Because of the weak forces involved in physisorption, this situation is achieved simply by heating the adsorbent at a suitably high temperature in a good vacuum. Then, while the adsorbent is maintained at a constant known temperature, the sorbate gas introduced into the system and a decrease in pressure is observed when equilibrium is attained.

7. จงอธิบาย Physisorption และ Chemisorption บนพื้นผิวของโลหะโคยอธิบายให้ กระชับและได้ใจกวามที่ชัดเจน (6 กะแนน)