

GOSFORD HIGH SCHOOL

2011 TRIAL HSC EXAMINATION

EXTENSION 1 MATHEMATICS

General Instructions:

• Reading time: 5minutes.

• Working time: 2 hours

- Write using black or blue pen.
- Board-approved calculators may be used.
- Each question should be started on a separate writing booklet.
- All necessary working should be shown in every question.

Total marks: - 84

Attempt all Questions 1-7.

Question 1

Start a SEPARATE BOOKLET

Marks

a) Evaluate $\lim_{x\to 0} \frac{5\sin 2x}{4x}$

1

b) Solve $\frac{x^2-3}{2x} > 0$

3

c) Evaluate $\int_0^1 \frac{dx}{\sqrt{4-x^2}}$

2

d) Find $\int x\sqrt{x^2+1}\,dx$, using the substitution $u=x^2+1$

3

e) Differentiate $\log_e(\frac{e^x+1}{e^x-1})$ with respect to x

3

Question 2

Start a SEPARATE BOOKLET

Marks

a) In the diagram, DA is a tangent to the circle and DCB is a straight line, cutting the circle in C and B. The point E is taken on CB so that DA = DE and AE produced, meets the circle at F.

- (i) Copy the diagram into your answer booklet
- (ii) Prove that AE bisects ∠ BAC

3

(hint: let $\angle DAC = \alpha \& \angle CAE = \beta$) (i) Show that $\frac{d}{dx}(\frac{v^2}{2}) = \frac{dv}{dt}$

2

(ii) When x metres from the origin, the velocity, v ms⁻¹, of a particle which moves along a straight line is given by

$$v^2 = 6(16 - x^4).$$

Find its acceleration when it is at $x = \frac{1}{2}$

2

Question 2 continued

- c) P, Q and R are the points (-5,12), (4, 9) and (0,2) respectively. X divides the interval PQ externally in the ratio 5:2

 Prove that angle PRX is a right angle.
- d) Evaluate $\int_0^{\pi} \cos^2 2x \ dx$

Question 3

Start a SEPARATE BOOKLET

Marks

2

- a) The area under the curve $y = \sin x + \cos x$, above the x axis and between x = 0 and $x = \frac{\pi}{2}$, is rotated about the x-axis. Find the volume of the solid of revolution formed. 4
- b) A disintegrating comet called Z, which is always spherical in shape, is decreasing in volume at a constant rate of 8m³/min. Find the rate at which the surface area is changing when the radius is 4m.
- c) α , β , γ are roots of the polynomial equation $2x^3 4x^2 + 5x 3 = 0$. Find:

(i)
$$\alpha + \beta + \gamma$$

(ii)
$$\alpha\beta\gamma$$

(iii)
$$\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$$

Question 4

Start a SEPARATE BOOKLET

Marks

- a) The line y = mx makes an angle of 45° with the line y = 2x 3. Find the two possible values of m.
- b) The polynomial $P(x) = (x a)^3 + b$ has a value zero at x = 1, and, when divided by x, the remainder is -7. Find all possible values of a and b.
- c) Use the method of mathematical induction to prove that, for all positive integral values of n for $n \ge 1$,

$$1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + n \times n! = (n+1)! - 1$$

Question 5

Start a SEPARATE BOOKLET

Marks

- a) Sketch the graph of the function $y = 3sin^{-1}(\frac{x}{2})$, stating clearly the domain and range.
- b) (i) Given that $x^2 + 4x + 5 \equiv (x + a)^2 + b^2$ find the values for a and b.
 - (ii) Using the result from part (i) above, find; $\int \frac{dx}{x^2 + 4x + 5}$ 2
- c) A particle moves in a straight line and at time t seconds, its distance is x cms from a fixed origin point, O. The equation of the line is given by :

$$x = 1 + \frac{1}{2}\cos 2t$$

- (i) Show the motion of the particle is in Simple Harmonic Motion 1
- (ii) State the period of motion for the particle.
- (iii) Sketch the graph of x as a function of t in the domain $0 \le t \le 2\pi$
- (iv) Find the displacement of the particle when it is at rest and thus determine the length of its path.

Question 6

Start a SEPARATE BOOKLET

Marks

- a) (i) Assuming that $\cos x \neq 0$, make $\tan x$ the subject of $\sin(x + \theta) = a \cos x$ 3
 - (ii) Find the exact value of $\tan x$ when $\sin \left(x + \frac{\pi}{3}\right) = 2\cos x$, and the values of x, for $0 \le x \le 2\pi$, correct to 4 decimal places.
- b) (i) Derive the equation of the tangent to the parabola $x^2 = 4\alpha y$ at the point P(2ap, ap²), 2
 - (ii) The tangent meets the line x = a at Q. Find the co-ordinates of Q. 2
 - (ii) M is the mid-point of PQ. Prove that, as P moves on the parabola, M moves on a straight line.

Question 7

Start a SEPARATE BOOKLET

Marks

- a) Find, correct to 2 decimal places, the root of $e^{-x} = \sin(\frac{x}{10})$, using one application of Newton's Method, and taking x = 2 as the first approximation.
- b) A ball is projected from a point O with speed V m / sec and at an angle α to the horizontal. Air resistance is ignored and g m / sec² is the acceleration due to gravity.
 - (i) Derive the expressions for the horizontal component x (t) and the vertical component y (t) of the ball's displacement after t seconds (neglect air resistance).
 - (ii) If R is the range on the horizontal plane of this projectile, show that the cartesian equation of the path can be given by: $y = x \left(1 \frac{x}{R}\right) \tan \alpha$ 4

If $\alpha=45^{\circ}$ and the ball just clears two vertical posts, which are both 4 metres above the level of projection and 6 metres apart, calculate the range, R.

END OF EXAM ☺

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_{\alpha} x$, x > 0

LUSWERS

المجيد عاديان

•		
	2011 Ext one Trial	
	1 a) lim 5 sm 2x = 5 x 2	e) $y = log_e \left(\frac{e^x + 1}{e^x - 1}\right)$
	×>0 4× 4	3 de (ex-1)
)		
	= 22 0	y= loge (ex+1) - loge (ex-1)
	W ≈²-3 ~~	du ex ex
	$\frac{b)}{2x} > 0$	$\frac{dy = e^{x} - e^{x}}{dx e^{x} + 1 e^{x} - 1}$
	Considur	$= e^{x}(e^{x}-1)-e^{x}(e^{x}+1)$
	270 260 ①	$(e^{x}+1)(e^{x}-1)$
	x²-3>0 x²-3<0	= e2x -ex -e2x - ex
	: x < - 13 or x > 18 - 13 (x* < 15 1)	e ²⁼ -1
<u> </u>	ļ.	
	since x>0 Since x<0	$= -2e^{x}$
	2>13 -13<×<0 (1)	e ²⁵⁴ - (
	0 (1 dx = [=1/x)71 0	Question 2
	c) $\int \frac{dx}{\sqrt{4-x^2}} = \left[\frac{\sin\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \right] dx$	<u> </u>
<u>-</u>	= SIN 1 - SI'N 0	A II
	2-517 0	a).
	= 1 - 0	D
	= 75. 0	c B
	. 76	F
	d) let sx= x2+1	ii) let LABE = 0t,
	2	
<u></u>	du = 2x	LBAE = B
		<u> </u>
	\x \sqrt{x^2+1} dx = \frac{1}{2} \sqrt{u} du (1)	LAEC = (oc+18) (ebet Lat NA)
	$= \frac{1}{2} \times \frac{2}{3} \times \frac{3}{2} + C$	· · LEAD = (a+B) (1505 DAED)(
	2 3	
· · · · · · · · · · · · · · · · · · ·	= 1 3 4 = +c	But LDAC = LABG
<u></u>	= 342+4	= x (angle in alt sag)
	$=\frac{1}{3}(x^2+1)^{\frac{3}{2}}+c$	
		LEAC =B
'. i i	e 1	°. LEAC = B °. LIBRAE = LEAC = B
\ <u></u>		-B
· -]		- - 9
		0 1 - 0 1 1 2
<u> </u>		. O A E Breeds LBAC
)		!

((os 2x dx cos)x= cosx+sw $= \frac{1}{2} \left(\cos 4x + \cos x \right) = \frac{1}{2} \left(\cos 4x + \cos x \right) = \frac{1}{2} \left(\cos x + \cos x \right)$ hence Coslx=cos4x+1 = dv = = = [sn4x] () $\frac{\partial}{\partial x} \left(\frac{v^2}{2} \right) = \frac{dv}{dt}$ = \[\sin4\times + \times \] \[\tag{\pi} \] (-1) $V^2 = 6(16 - x^4)$ = sin 47 + 77 -sn4.0 -0 = 0 + 1 - 0 = d (3 (16-x4)) D Question 3 a) V= (2/11 y 2 dx $= \pi \left(\frac{\pi}{2} \left(\sin x + \cos x \right)^{2} dx \right)$ $= \pi \int_{0}^{\pi} \left(sn^{2}x + 2sinx \cos x + \cos^{2}x \right) dx$ C Co-ordinate of x (-5x=2+4x5 = (10,7)= (10,7)

Gradient of PR = 2-12 grad of RX

0+5 = 7-2 = T (1 + 2 s m x cos x) } dx = 11 (1/2 (1 + sn 2x) dx $= \pi \left[x - \frac{1}{2} \cos 2x \right]^{\frac{1}{2}}$ $= \pi \left[\frac{\pi}{2} - \frac{1}{2} \cos \pi - o - \frac{1}{2} \cos \phi \right]$ $= \pi \left(\frac{\pi}{2} + \frac{1}{2} + \frac{1}{2} \right)$ $= \pi \left(\frac{\pi}{2} + \frac{1}{2} + \frac{1}{2} \right)$... LPRX is a rightangle

٠,

•	Q3 Contd.	Question 4.
	b) V=4TR R3	a) y= m= has gradient m
	dy ly de	11 = 20 - 3 has andient of 2
	dy dy de (1)	y=2x-3 has gradient of 2 $tan \theta = \left \frac{m-2}{1+2m} \right $
	8 = 4TIR2 de	\(\(\frac{1+2m}{}\)
		= tan 45°
	de TIR	=
	Now SA = 4-TIR3	$\int_{-\infty}^{\infty} \left(\frac{M-2}{1+2m} \right) = 1$
	ds = ds xdl dt dk dt	1+2m
	dt dk dt	$\frac{M-2}{1+2m} = 1$ $\frac{M-2}{1+2m} = -1$
	=8TIRx 2 TIR2	1+2m 1+2m
)		m-2=1+2m $m-2=-1-2m$
	=16/R	$m=-3 \qquad m=\frac{1}{2} \bigcirc$
	when R=4	·
	ds = 16 dt 4	b) $P(x) = (x-a)^3 + b$
	dt 4	P(1)=0:0(1-a)+b=0[
	= 4m/min	$P(0) = -7$. $(0-a)^3 \cdot b = -7$
		$-a^{3}+b=-7$ (2)
	c) 2x3-4x2+5x-3=0	17 - 2
	i) $\alpha + \beta + \gamma = -\frac{6}{\alpha}$	$(1-a)^3 + a^3 = 7$
- -	- 4/2	$1-3a+3a^2-a^3+a^3=7$
	= 2	3a2-3a-6=0
<u> </u>		$a^2 - a - 2 = 0$
	ii) aptoxy+py=C	(a-2)(a+1)=0
		a=2, a=-1 (1)
	= 50	6 b = 1, b= -8
	1 1 & TB+V	
	111) 1 + 1 = 2 + B+4 0	
1	= 2/3/2	
	- 4 T	
\	3	
1		

Q4 contd c) Sn= 1x1 P+2x2P+3x3P+...+nxnP (b) i) x2+4x+4+1 $=(x+2)^2+1$ = (n+1)P-1 0° 1 x2+4x+5 = (x+a)2+62 , when n= 1 5, = 1 x 1 P a=2 b=±1 = (1+1)!-1 $\frac{dx}{x^2+4x+5} = \frac{dx}{(x+2)^2+1}$. true for n=1 = fan - (x+2) + c 3 Assume true for n=k and proven=k+1 = (k+1) P-1+(k+1) x (k+1) P c) ; Replace x-1 by X = (k+1)P+(k+1)P-10 ° X = 1 cas 2t x = -sm2t = (k+)! { 1+k+1}-1 $\overset{\circ\circ}{\times} = -2\cos 2t$ = (R+1) (R+2) -1 = (k+2) f-1 $= -4 (\frac{1}{2} \cos 2t)$ $=-(2^2)\times$. true for n= k+1 oo in SHM 3 since true for n=1 , n=k and n=k+1 63 it is true for all positive $\frac{1}{1} = \frac{2\pi}{2} = \frac{2\pi}{2} = \frac{17}{2} =$ integral values for n > 10 $X = \frac{1}{12}$ $X = \frac{1}{12}$ Question 5 a) y=sin-1 (= 3) 3) (1) 14 When X = 0 -sin2t = 0 t = nT/ n=0/13... when t = 0 n 17 x=x-1= 2 cos2(n) Dom: -1 (* <1 = 2 cos n7 (1) o. The displacement are 3 or 1 the RANGE - - 5 < 3 < 2 (1) tenoth = 32-2=1

Question 6) SIM (X+02)=SIM X COSO + COSO SIMO Eqn of Tomport is y-ap'=p(x-2ap) y-ap'=p(x-2ap)· snxcos&+cosxsin& = a cos x (T) px -2ap2 1 Divide by cosx b ii) $y-px+ap^2=0$ = ab in x=aCOSX COSX 00 y - ap + ap2 =0 = acosx : Q is (a, ap-ap2) ten x cos 0+ sin 0 = a : ten x = a - sino Tii) P(20p, ap?) Q(a, ap-ap?)
Find the midpoint of M ii H = n(x+] = 260ex $x = \frac{2ap + a}{2} y = \frac{y = ap^2 + ap - ap^2}{2}$ = ap () tanx = 2-sin \$ From y = ap p = 24 COS II = 2 - 3/2 1/2 .. x = 2a(24)+9 2x=4y+a 2x-4y-a=0 ie locus of M is a stronght b) i x2= 4 ay 00 y = x2 dy 2x = 2 ap at (2 ap, ap2)

Question 7 a) $f(x) = \sin(\frac{x}{10}) - e^{-x}$ $f'(x) = \frac{1}{10}\cos(\frac{x}{10}) + e^{-x}$ when t=0 ig= Vsina ° C2 = V smx y=+1 gt + Vsinx y=+1 gt + (Vsnx)++c3 $x_2 = x_1 - \frac{f(x_1)}{f(x_2)}$ f(x) rez= 2-f(2) when t=0 y=0: c3=0 : y= -1 gt2 + Vtsind Now f(2)= sn = -e-2 ij t= x from [] 00 y = -1 9 (x2) + V.x sin2 f'(2)= 10005+e-2 y= -022 + x tanz To find R let y=0 10 tma 2 - 0 = x (ton x - 9 x 2 v2 cosos) ≈ 1073 x = tanx x 2 v2cosx $= 2V^{2} \text{s now cosoc}$ hence $R = 2V^{2} \text{s mov cosoc}$ 9when t=0 x=Vcoxx · 2 y2 - Rg since cos a Sub into [3]

y=-9x2

+ x tonx ()

Res successor i) x=0 .: x=Vcosx x = (Vcosx) + +C, $= -x^{2} + \alpha \times + x + x + x$ $y = x(1-x) + \alpha \times 0$ when += 0 x=0 ° ≈ Vtcos × III ÿ=-g ÿ=-g++cz 1

Q7 contd $y = x \left(1 - \frac{x}{R}\right)$ when space halved:
when $x = \frac{R}{2} - 3$ y = 4 $-6-4=(R-3)(1-\frac{(R-3)}{R})$ $4R = (\frac{R}{2} - 3)(R - \frac{R}{2} + 3)$ 4 R= R - 9 16R= R2-36 R2-16R-36=00 (R-18)(R+2)=0 R=18 or-2 as RYO R= 18m (