Optimizing Time Delay for Cell Cycle Drug Response Model

Tommy Thach Meyer Lab (185 Project)

Identifying effective drug combinations

- Combinations can target key cancer pathways in additive way
- Identification is difficult due to complexity of pathways
- Meyer Lab approaches this with cell population modeling

Neuroendocrine Tumour Cell

Mokhtari RB et al. Oncotarget. 2017

Meyer Lab's cell cycle model

- Predicts cell population over time for insight into drug effects
- Ordinary Differential Equations (ODE)
- Explicit progression and death rates help with predictions for combinations
- "Linear Chain Trick": Time delay simulated with sub-phases

G1
$$\frac{d\,G_{11,1}}{dt} = +2\beta_4 G_{24,5} - (\alpha_1 + \gamma_{1,1}) G_{11,1}$$

$$\frac{d\,G_{1k,1}}{dt} = +\alpha_{k-1} G_{1k-1,2} - (\alpha_k + \gamma_{1,k}) G_{1k,1}$$
(sub-phases)
$$\frac{d\,G_{1k,2}}{dt} = +\alpha_k G_{1k,1} - (\alpha_k + \gamma_{1,k}) G_{1k,2} \, 1 \le k \le 4$$

$$\frac{d\,G_{21,1}}{dt} = +\alpha_4 G_{14,2} - (\beta_1 + \gamma_{2,1}) G_{21,1}$$

$$\left[\frac{d\,G_{2i,j}}{dt} = +\beta_i G_{2i,j-1} - (\beta_i + \gamma_{2,i}) G_{2i,j} \, 2 \le j \le 5, 1 \le i \le 4\right]$$

Example of model prediction vs experimental data

Pros and cons of original model

Pros:

 Time delay (LCT) reduces error across all drugs

Cons:

- Error remains high for S-G2 drugs
- High error can negatively affect treatment predictions

Gross SM et al. Nature Communications. 2023

Hypothesis: Unoptimized time delay might cause high error

- Number of sub-phases kept the same across all drugs
- Current number of sub-phases might not be optimal for S-G2 drugs

Goal: Optimizing Time Delay

Can time delay from the number of sub-phases be adjusted so the model will have lower error for S-G2 drugs?

Experimental cell data

- Tracked cell population over 96 hours
- Varied concentrations across different drugs
- Focusing on three drugs:
 - Lapatinib (G1 drug)
 - Doxorubicin, Gemcitabine (S-G2 drugs)

Baseline ODE model setup

- Phases: G1 and S-G2
- G1 = 8 sub-phases
- G2 = 20 sub-phases
- α , β = progression rate
- $y_1, y_2 = \text{death rate}$

$$\frac{dG_{11,1}}{dt} = +2\beta_4 G_{24,5} - (\alpha_1 + \gamma_{1,1})G_{11,1}$$

$$\frac{dG_{1k,1}}{dt} = +\alpha_{k-1}G_{1k-1,2} - (\alpha_k + \gamma_{1,k})G_{1k,1}$$

$$\frac{dG_{1k,2}}{dt} = +\alpha_k G_{1k,1} - (\alpha_k + \gamma_{1,k}) G_{1k,2} 1 \le k \le 4$$

$$\frac{d G_{21,1}}{dt} = +\alpha_4 G_{14,2} - (\beta_1 + \gamma_{2,1}) G_{21,1}$$

$$\left(\frac{d G_{2i,j}}{dt} = +\beta_i G_{2i,j-1} - (\beta_i + \gamma_{2,i}) G_{2i,j} 2 \le j \le 5, 1 \le i \le 4\right)$$

Baseline ODE predictions

Baseline ODE fitting: minimizing error

Experiment Pipeline

Optimization function chooses best number of sub-phases

Find parameters with fixed number of sub-phases

Predict cell population with parameters and evaluate fit

Altered ODE pipeline: Optimizing sub-phases

Altered ODE pipeline: Predictions with new sub-phases

Evaluating fit

Compare errors of optimized model predictions to original

Compare qualitative fit e.g. similar oscillations

Gross SM et al. Nature Communications. 2023

Results: Changes to sub-phases

Drug	G1 sub-phases	S-G2 sub-phases
Baseline	8	20
Lapatinib (G1)	4	20
Doxorubicin (S-G2)	4	28
Gemcitabine (S-G2)	4	24

Changes to sub-phases support hypothesis

Comparing errors between models

- Improvements across all drugs
- Only minor changes to error due to optimizing sub-phases

Lapatinib: Qualitative comparisons at highest dosage

Doxorubicin: Qualitative comparisons at highest dosage

Gemcitabine: Qualitative comparisons at highest dosage

Summary of results

- All three drugs had a minor decrease to their errors
- Lapatinib and Doxorubicin only visually improved slightly
- Gemcitabine seems to visually capture the dynamics much better as well as decreasing error

Conclusion: Improving cancer treatment predictions

- Changing sub-phases is a simple change that improves the model's ability to capture population dynamics for S-G2 drugs
- Optimized number of sub-phases offers additional insight
- Other aspects of time delay can be an area of improvement for the model
- Improvements to the model allow for better insights into drug effects, guiding our ability to find effective combinations for cancer

References

Mokhtari RB et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–38043. https://doi.org/10.18632/oncotarget.16723

Gross SM et al. Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects. Nature Communications. 2023;14(1):3450. https://doi.org/10.1038/s41467-023-39122-z

LCT model of phase progression

Overall errors across the three drugs

Drug	Baseline Error	Optimized Error	% Improvement
Lapatinib	4.97	4.84	2.62%
Doxorubicin	6.47	6.23	3.80%
Gemcitabine	6.46	6.34	1.90%

Lapatinib: Error

Best model:G1 = 4, G2 = 20

• Original SSE: 4.97

Best SSE: 4.84

• Improvement: 2.62%

Doxorubicin: Error

Best model:G1 = 4, G2 = 28

• Original SSE: 6.47

• Best SSE: 6.23

• Improvement: 3.80%

Gemcitabine: Error

Best model:G1 = 4, G2 = 24

• Original SSE: 6.46

• Best SSE: 6.34

• Improvement: 1.90%

Gemcitabine: G2 predictions

