Лекция

Методы принятия управленческих решений в условиях риска и неопределеннности

Системный анализ

- Риск это потенциально существующая вероятность потери ресурсов или неполучения доходов, связанная с конкретной альтернативой управленческого решения; риск есть вероятность неблагоприятного исхода.
- Риск как экономическая категория совмещает в себе оценку вероятности потерь и их величину. Для описания риска используют показатели: степень риска и цену риска.

Степень риска количественно характеризует вероятность результатов принятого решения (как негативных, так и позитивных).

Цена риска (R) дает количественную характеристику вероятных потерь.

$$R = F(w; u)$$

- где F функция описания риска;
- w вероятность неблагоприятного результата (степень риска);
- *u* количественная оценка возможных потерь.

Для оценки степени приемлемости риска выделяют определенные зоны риска в зависимости от ожидаемой величины потерь.

Рис. - Кривая риска.

- Зона допустимого риска область, в пределах которой величина вероятных потерь не превышает ожидаемой прибыли.
- Зона критического риска это область возможных потерь, превышающих величину ожидаемой прибыли вплоть до величины полной расчетной выручки (суммы прибыли и затрат).
- Зона катастрофического риска область вероятных потерь, которые превосходят критический уровень и могут достигать величины, равной собственному капиталу организации (ситуация банкротства).

Условия риска и неопределенности характеризуются так называемыми условиями многозначных ожиданий будущей ситуации во внешней среде.

В этом случае ЛПР должен сделать выбор одной альтернативы (A_i) , не имея точного представления о факторах внешней среды и их влияния на результат.

В этих условиях **исход, результат** каждой альтернативы представляет собой функцию условий – факторов внешней среды (функцию полезности), который не всегда способен предвидеть ЛПР.

- Методы принятия решений в условиях риска используют теорию выбора, получившую название теории полезности.
- В соответствии с этой теорией, ЛПР выбирает A_i из совокупности A_i ($i = 1 \dots n$), если она максимизирует ожидаемую стоимость его функции полезности $Y_{i,j}$.
- Существует два основных подхода к определению данного показателя: метод дедукции и статистический анализ данных.

- Метод дедукции не нуждается в экспериментировании, а статистический анализ данных предполагает наличие экспериментов в прошлом и определяет частоту наступления события, которую и принимают за вероятность.
- После определения вероятности наступления состояния среды S_j, определяют ожидаемую стоимость реализации каждой альтернативы, которая представляет собой средневзвешенную стоимость E(x):

$$E(A_i) = \sum_{i=1}^{S} w_i E_{i,j}$$

 $E(A_i) = \sum_{j=1}^{S} w_j E_{i,j}$

- где E_{i,i} − результат реализации A_i;
- w_i вероятность реализации A_i в условиях S_j .

Оптимальной стратегией является та, которая обеспечивает наибольшую ожидаемую стоимость.

$$E(A_i) = \sum_{j=1}^{S} w_j E_{i,j} \Rightarrow max$$
 при $w_i = 1$.

Для принятия решения в условиях риска используют два метода:

- 1. Матрица результативности;
- 2. «Дерево» решений.

	w (S ₁)	w (S ₂)	61	w (S _S)
	S_1	S_2	•••	S_{S}
Aı	E ₁₁	E ₁₂	W.	E _{1S}
A_2	E ₂₁	E_{22}	***	E_{2S}
X2		(444)	***	***
A_A	E_{A1}	E_{A2}	555 5	E_{AS}

Матрица решений

где A_1 , A_2 , ..., A_A –альтернативные стратегии действий; S_1 , S_2 , ..., S_S – состояние экономики (стабильность, спад, рост и др.) $w(S_1)$, $w(S_2)$, ..., $w(S_S)$ – вероятность наступления состояния экономики.

Числа в ячейках матрицы представляют собой результаты реализации A_i стратегии в условиях S_i .

При этом, в условиях риска вероятность наступления S_j известна, а в условиях неопределенности эта вероятность может быть определена субъективно, в зависимости от того какой информацией располагает ЛПР.

В условиях риска при принятии решения основным моментом является определение вероятности наступления состояния среды S_i , т. е. степени риска.

При принятии решений в условиях риска после определения предполагаемой стоимости $E(A_i)$ и степени риска v встает проблема определения компромисса между риском и прибылью.

Как правило, получение больших доходов сопровождают более высокие значения степени риска, поэтому решения ЛПР будет зависеть не только от расчета показателей $E(A_i) = \sum_{j=1}^{S} w_j \, E_{i,j}$, но и от финансового состояния предприятия.

Дерево решений – графический метод, позволяющий увязать точки принятия решения, возможные стратегии A_i , их последствия $Y_{i,j}$ с возможными факторами, условиями внешней среды.

Построение дерева решений начинается с более раннего решения, затем изображается возможные действия и последствия каждого действия (событие), затем снова принимается решение (выбор направления действия) и т. д., до тех пор, пока все логические последствия результатов не будут исчерпаны.

Дерево решений строится с помощью пяти элементов:

- 1. Момент принятия решения.
- 2. Точка возникновения события.
- 3. Связь между решениями и событиями.
- 4. Вероятность наступления события (сумма вероятностей в каждой точке должна быть равна 1).
- 5. Ожидаемое значение (последствия) количественное выражение каждой альтернативы, расположенное в конце ветви.

Простейшее решение представляет собой выбор из двух вариантов – «Да» или «Нет»

Простейшее дерево решений

Квадрат означает место, где решение принимает человек, а светлый кружок – место, где все решает случай.

На ветвях дерева написаны значения вероятностей, а справа у конечных ветвей – значения исходов (результаты).

Дерево можем использовать для представления своих возможных действий и для нахождения последовательности правильных решений, ведущих к максимальной ожидаемой полезности.

Пример. Формула Ж. Поля Гетти **«Как стать богатым»: «Вставай рано»; «Работай усердно»; «Найдешь нефть!».**

Моделирование последовательности решений (рис.):

- 1. Решение: Нужно сделать выбор между тем, чтобы «Вставать рано» или «Спать допоздна» простейший выбор.
- 2. Решение: Нужно сделать выбор между тем, чтобы «Работать усердно» или «Спустя рукава» простейший выбор.
- 3. Событие: «Найдешь нефть», происходит с определенной вероятностью, зависящей от последовательности принимаемых решений.

Степень риска, называемая коэффициентом вариации, как известно, определяется отношением среднего квадратичного отклонения к средней арифметической:

$$v_i = \frac{\sqrt{\sum (E_{i,j} - \sum w_j E_{i,j})^2 w_j}}{\sum w_j E_{i,j}}$$

Коэффициент вариации вычисляется в процентах и характеризует показатель риска для каждой стратегии A_i (i=1-A). Чем выше значение коэффициента вариации, тем более рискованное решение принимает ЛПР.