Announcements:

- Discord server: email me if you want to be added

- H/W 1 graded (1 week for regrade requests)

- Hlw 3 will be posted later today

- Midterm 1: Wed. 9/20 7:00-8:30pm (Noyes Lab. 217)

 \Leftrightarrow

- Quiz 1: Fri. 9/15 (in class)

Thm 1.2.26 [Euler]:

G has an

Eulerian

circuit

containing edges

a) G has < 1 "nontrivial"

Connected component

AND

6) G is even

Pf: >>) Done last time

Def 1.1.32: A decomposition of G is a list of Subgraphs s.t. each edge appears in exactly one subgraph from the list

Corollary (Prop 1.7.27): Every even graph decomposes into cycles.

Pf: In the previous proof, G decomposes into G' and C;

use induction on |E(G)|.

§ 1.3: Vertex Degrees and Counting

Def 1.3.1:

a) Max. degree =
$$\Delta(G)$$

c) If
$$\Delta(G) = \delta(G) = k$$
, G is k-regular

d)
$$N_G(v) = N(v) = \{ vertices adjacent to v \}$$

Class activity:

regular?

regular?

Def 1.3. 2:

a)
$$n(G) = |V(G)|$$
 "order"

Important idea:

We can prove a lot about a graph using simple counting arguments

Prop (1.3.3-1.3.6):

a) (degree sum formula):

$$\geq d(v) = 2e(6)$$

degree

b)
$$\Gamma(C) \leq \frac{\Gamma(C)}{\Gamma(C)} \leq \Gamma(C)$$

- c) G has an even number of vertices of odd legree
- d) A k-regular graph of order n has nk/2 edges

Example 1.3.8: The k-hypercube Qk
Qk has vertices labelled by length-k strings
of 0's and 1's

Two vertices are adjacent iff their labels differ in exactly one position

$$Q_{0}$$
:
 Q_{0} :
 Q

Facts:

Subgraphs isomorphic to Q;

Extremal Problems

Questions involving the word "minimum" or "maximum"

Q: What is the maximum number of edges in a simple graph w/n vertices

A:

Q: What is the minimum number of edges in a simple graph w/n vertices

A :

Q: What is the minimum number of edges in a connected simple graph w/n vertices A:

Prop 1.3.15: If G is simple of order n, and $S(G) \ge \frac{n-1}{2}$, then G is connected Can rephrase in terms of extremality:

Q: What is the minimum value of such

Q: What is the minimum value of such that all n-vertex graphs with occided are connected

Y:

bt: