Dashboard / My cou	rses / <u>FP (2022/2023 - R.R. Slavescu)</u> / 19 December - 25 December / <u>Haskell test - Labs 8 - 10 (30433/1)</u>	
Started on	Tuesday, 20 December 2022, 10:05 AM	
	Finished	
	Tuesday, 20 December 2022, 10:12 AM	
	6 mins 44 secs	
Grade	5.17 out of 10.00 (52 %)	
Question 1		
Incorrect		
Mark 0.00 out of 1.00		
Select the snippets	that are valid Haskell code	
a. len l = case [] -> 0	e I of 1 + len xs	×
☑ b. inc :: Num	a => a -> a	~
inc a = a +		
c. inc : Num : inc a = a +		×
d. len l = case [] -> 0 (_:xs) ->	e l of 1 + len xs	~
Your answer is inco	rrect.	
Question 2		
Incorrect		
Mark 0.00 out of 1.00		
Given the following f :: [Int] -> Int f [1, 2] = 1	function definition:	
f [_, _] = 2		
f [3, 4] = 3		
	lowing function call is:	
f [3, 4]		
Answer:		

Question 3	
Partially correct	
Mark 0.67 out of 1.00	

Which function describes best the each of the following list comprehensions?

[x^2 x <- xs]	map	~
[take 3 x <- xs]	take	×
[x x <- xs, x `div` 3 == 2]	filter	~

Your answer is partially correct.

You have correctly selected 2.

Question 4	
Correct	
Mark 1.00 out of 1.00	

Which of the following are examples of **valid** ways to create local definitions in Haskell?

- ☑ a. let y = 5 in y * 1
- b. y * 2 with y = 5
- c. y * 2 where y = 5
- d. local y = 5 in y * 2

Your answer is correct.

20.12.2022, 10:13 Haskell test - Labs 8 - 10 (30433/1): Attempt review Question **5** Correct Mark 1.00 out of 1.00 Select the function that uses pattern guards correctly to implement the filter function: a. filter _ [] = [] filter p (x:xs) | p x = x:filter p xsotherwise = filter p xs b. filter _ [] = [] filter p (x:xs) | p x -> x:filter p xs | else -> filter p xs c. filter _ [] = [] filter p(x:xs) =if p x then x:filter p xs otherwise filter p xs Your answer is correct. $\hbox{Question } 6$ Correct Mark 1.00 out of 1.00 Select all the **true** statements about the bottom value: a. In Haskell, Nothing is the bottom value b. In Haskell, undefined is the bottom value c. The bottom value can be assigned to any type d. The compiler won't compile (i.e. will show an error) programs that contain the bottom value

Your answer is correct.

Question 7	
Incorrect	
Mark 0.00 out of 1.00	
Select all the true statements about type classes	
a. All type class implementations for a data type must be in the module where the data is defined	×
☐ b. Type classes are used to define classes, types that also have methods and private fields	
c. We can implement type classes defined by the standard library for our own types	~
d. Type classes are used to abstract common behavior for various types (like Java interfaces)	
Your answer is incorrect.	
Question 8	
Correct	
Mark 1.00 out of 1.00	
The following list comprehension:	
[(x, y) x <- ['a', 'b']; y <- [1, 2]]	
a. Returns [('a', 1), ('b', 2)]	
b. Returns [('a',1),('a',2),('b',1),('b',2)]	
c. Fails to combile because the syntax is invalid	~
○ d. Fails to combile because x and y have different types	

Your answer is correct.

Question 9
Incorrect
Mark 0.00 out of 1.00

Select the correct functions such that the definition of m3 below multiplies 3 numbers wrapped in Maybe

Your answer is incorrect.

Question 10
Partially correct
Mark 0.50 out of 1.00

Given the following code:

```
newtype All = All Bool
instance Semigroup All where

(All a) <> (All b) = All (a && b)
instance Monoid All where

mempty = All True
```

The result of the following expressions is:

Your answer is partially correct.

You have correctly selected 1.

→ Haskell test - Labs 8 - 10 (30433/2)

Jump to...

L12-Synopsis-Lazy-evaluation ►