Umsetzbarkeit der Trennung von Percussive und Melodic Frequenzen in einer bereits komprimierten Wav Datei

Projektteil der Belegung einer Wahlspezialisierung im Studiengang Informatik an der Fakultät für Informatik und Ingenieurwissenschaften der Technischen Hochschule Köln

vorgelegt von: Lukas Fey, Nicolas Friedmann Matrikel-Nr.: 123 456 789, 111 55 463

Adresse: Auf der Platte. 1

51643 Gummersbach

vorname.nachname@smail.th-koeln.de, nicolas-friedmann@gmx.de

eingereicht bei: Prof. Dr. Lutz Köhler

Zweitgutachter*in: Prof. Dr. Vorname Nachname

Ort, TT.MM.JJJJ

Kurzfassung/Abstract

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Inhaltsverzeichnis

ΑŁ	Abbildungsverzeichnis					
1	Einl 1.1 1.2	eitung Relevanz	1 1 2			
2	Star	nd der Wissenschaft	3			
3	Theorie zur Signalverarbeitung					
	3.1	Was ist ein Ton?	5			
	3.2	Behandelte Musikgruppen	5			
	3.3	Formen der Musikdarstellungen	6			
		3.3.1 Einordnung in den Projektkontext	6			
	3.4	Aufbau einer Audiodatei/ Music Representation	7			
		3.4.1 Durchführung der Komprimierung	7			
		3.4.2 Waveform Audio File Format	7			
		3.4.3 Andere Formen von Audio-Dateien	8			
	3.5	Trennung einer Tonspur in verschiedene Instrumente	8			
		3.5.1 Fourier Transform	9			
		3.5.2 Wavelet Transform	11			
		3.5.3 Wahl der Fourier Transform	12			
		3.5.4 Short-Time Fourier Transform	12			
4	Cod	le	13			
	4.1	Beschreibung des Codes	13			
	4.2	Hauptfunktion: harmonic_extraction	13			
	4.3	Speichern der Ergebnisse	14			
	4.4	Fourier-Transformation und librosa	14			
	4.5	Hintergrund: Fourier-Transformation und HPSS in librosa	15			
		4.5.1 Short-Time Fourier Transform (STFT)	15			
		4.5.2 Harmonic-Percussive Source Separation (HPSS)	16			
		4.5.3 Inverse STFT (iSTFT)	16			

5	Wav-Manipulation und Analyse						
	5.1	Spektralanalyse der Audiodatei					
		5.1.1	Spektrogramm der Originaldatei	. 18			
		5.1.2	Spektrogramm der harmonischen Komponente	. 18			
		5.1.3	Spektrogramm der perkussiven Komponente	. 20			
	5.2	Interp	oretation der Ergebnisse	. 20			
Li	teratı	ur		21			
Αı	nhang	g		24			

Abbildungsverzeichnis

3.1	Wellenform eines Tons	5
3.2	Unterteilung in Samplingrate (oben) und Quantisierungsschrittweite	
	(unten)	7
3.3	Note C4 in unterschiedlichen Darstellungen (Müller 2021, S. 41) $$	10
5.1	Spektrogramm der Original-Audiodatei vor der Trennung	19
5.2	Spektrogramm der harmonischen Komponente	19
5.3	Spektrogramm der perkussiven Komponente	20

1 Einleitung

Musik ist zu einem Teil des täglichen Labens vieler Menschen geworden (Bundesverband Musikindustrie o. D.[b]). Durch den Konsum und den wirtschaftlichen Ertrag wird an der Produktion und Analyse von Musik geforscht (Bundesverband Musikindustrie o. D.[a]).

Ein Teil der Forschung bezieht sich auf die Trennung einer Wellenform in die unterschiedlichen Funktionen der Frequenzen. Unter anderem gründete die Universität zu Lübeck ein eigenes Institut für Signalverarbeitung (Universität zu Lübeck o. D.). Zuvor beinhaltet die Wellenform eine oder mehrere Sinus- und Kosinusfunktionen, die eine neue Funktion bilden. Dies gild sowohl für audiovisuelle als auch für visuelle Funktionen. Beispielsweise kann die Funktion mehrere Instrumente beinhalten, die anhand der Funktion nicht identifizierbar sind. Einer der Algorithmen zur Trennung von Signalen heißt Fourier Transform und wird in diesem Projekt behandelt.

Unter anderem werden Musikinstrumente in Liedern getrennt und einzeln angehört oder wiederverwendet. In diesem Projekt werden zum Einstieg lediglich perkussive aus akkustischen Instrumenten getrennt. Zwischen den jeweiligen Instrumentengruppen wird in Abschnitt 3.1 unterschieden.

1.1 Relevanz

Es gibt unterschiedliche Kontexte, in denen die Trennung von Audiosignalen zum Einsatz kommt. Häufig ist eine Eingabefunktion als Summe aller Signale schwierig zu analysieren oder weiterzuverarbeiten. Beispielsweise, wenn einzelne Instrumente im Nachhinein bearbeitet werden sollen oder einzeln angehört werden.

In Zeiten von zunehmend digital produzierter Musik und Verbreitung von Informatik stellt sich die Frage, wie Musiksignale digital aufgebaut sind und wie mit ihnen gearbeitet wird. Im Kontext dieser Arbeit wird die Fourier Transform verwendet, um eine Tondatei in Gruppen von harmonischen und perkussiven Musikinstrumenten zu zerlegen. Dies kann mit weiterer Modifikation verwendet werden, um bestimmte Instrumente zum üben (das Üben?) zu trennen oder Hintergrundgeräusche auszublenden.

https://medium.com/analytics-vidhya/why-fourier-transform-is-so-important-cb7841733bb8

1.2 Vorgehen

Ohne jegliches Vorwissen, wie die Signale einer Musikdatei gespeichert und von einem Computer interpretiert oder getrennt werden, wird das Projekt durchgeführt. Die Erkenntnisse und notwendiges Hintergrundwissen werden dokumentiert und erklären die Logik und Zusammenhänge der Fourier Transform.

Durch die Dokumentation wird anderen Leser:innen ein erstes Verständnis von Signalverarbeitung vermittelt auf dem im Anschluss aufgebaut werden kann. Dabei werden unterschiedliche Dateiformate, Methoden zur Transformation von Signalen und die Trennung unterschiedlicher Signale behandelt (siehe: Kapitel 3).

Das Projekt dokumentiert anschließend die Implementierung eines Algorithmus zur Trennung der harmonischen und perkussiven Tongruppen einer WAV-Datei mittels Fourier Transform, sowie das schreiben auf zwei getrennte WAV-Dateien mittels Inverse Fourier Transform (siehe: Kapitel 4). Dabei wird zuvor behandelte Logik und Hintergrundwissen referenziert und in der Praxis erklärt.

2 Stand der Wissenschaft

Die Trennung von Musikinstrumenten ist ein praktischer Anwendungsfall zur Separation von Signalen. Es entwickelte sich aus dem Gebiet der Sprachverarbeitung und übernimmt einige Techniken (Müller, Ellis, Klapuri und Richard 2011). Dabei liegen in einer Aufnahme mehrere Signale in Form von einer Funktion (hier: Wellenform) vor. In der Wellenform sind die einzelnen Signale schwierig zu identifizieren.

Bei Vorgehen zur Trennung von Signalen wird die Funktion in eine Abhängigkeit zur Frequenz umgeformt. Anhand der Frequenz können unterschiedliche Signale identifiziert werden. Unter anderem werden die Frequenzen unterschiedlichen Instrumenten zugeordnet.

Inzwischen wurden mehrere Methoden zur Transformation einer Funktion in Abhängigkeit zur Zeit in die Abhängigkeit zur Frequenz entwickelt. Diese unterscheiden sich in der Darstellung der Funktion und der Genauigkeit des Ergebnisses.

In diesem Projekt wird die Fourier Transform angewendet, die als verbreitet und effektiv gilt (Stack Exchange 2011). Es wird überprüft, ob die Implementierung und Anwendung ohne Vorkenntnisse und anspruchsvolle Hardware umsetzbar ist. Eine weitere verbreitete Methode ist die Wavelet Transform (Guo, Zhang, Lim, López-Benítez, Ma und Yu 2022). Diese wird in Abschnitt 3.5.2 erläutert, um die Entscheidung für die Fourier Transform zu begründen.

3 Theorie zur Signalverarbeitung

Um ein grundlegendes Verständnis für die Analyse von Dateiformaten zu entwickeln wird einem klaren Schema gefolgt. Mit diesem Schema wird sich an der chronologischen Reihenfolge von der Entstehung eines Tons bis zur Verarbeitung im Code orientiert.

- 1. Was ist ein Ton
- 2. Formen der Musikdarstellung
- 3. Vorstellung der Fourier Transform
- 4. Alternative Methode zur Fourier Transform
- 5. Trennung von Instrumenten im Code
- 6. Vorgehen im Projekt (evtl früher)
- 7. Wie kann man auf dem Stand aufbauen? (/Wie könnte es weitergehen?)
- 8. Fazit
 - a) Aufwand
 - b) Ertrag (z.B. erworbenes Wissen)

Um einen Algorithmus zu implementieren, ist es hilfreich die unterschiedlichen Musikdarstellungen kennenzulernen. Diese werden im Anschluss an dem Aufbau eines Tons dargestellt. Für eine effektive Fourier Transform gibt es Voraussetzungen, die nur von wenigen Musikdarstellungen erfüllt werden.

Abschließend werden die Methoden zur Transformation eines Signals behandelt, da es relevant ist ein Verständnis für die Transformationen zu entwickeln. Dies hilft nachzuvollziehen warum die Fourier Transform geeignet ist und ein Verständnis für die Implementierung des Codes zu entwickeln.

3.1 Was ist ein Ton?

Töne entstehen durch die Vibration eines Gegenstandes, die Schallwellen erzeugen. Das Gehör kann diese Schwingungen der Luft wahrnehmen (Auersignal o. D.). Der Luftdruck einer Schallwelle wird graphisch als eine Sinus- oder Cosinusfunktion dargestellt (siehe: Abbildung 3.1).

Abbildung 3.1: Wellenform eines Tons

Anhand der Wellenform kann die Frequenz eines Tons abgeleitet und in Hertz (kurz: hz) angegeben werden. Die Frequenz gibt die Anzahl an Zyklen des Tons pro Sekunde an. Wenn beispielsweise Abbildung 3.1 eine Sekunde darstellt, entspricht die Frequenz 5hz, da sie fünf symmetrische Wellen aufweißt.

Diese Vibration kann durch unterschiedliche Gegenstände erzeugt werden. Dazu zählen Becken eines Schlagzeugs, Saiten eines Kontrabasses oder die Stimmbänder einer Person. In diesem Projekt werden die Perkussionsinstrumente von den restlichen Instrumenten einer Wav-Datei getrennt.

3.2 Behandelte Musikgruppen

Akkustische Instrumente erzeugen einen Ton indem Menschen Kraft auf sie ausüben. Sie benötigen keinen Strom, keine Verstärkung und keinen Computerprozessor, um einen Ton zu erzeugen und sind die ältesten Instrumente. Sie können in perkussive und harmonische Instrumente unterteilt werden.

Perkussive Instrumente werden geschlagen, geschüttelt oder geschabt und sind eine spezielle Form der akkustischen Instrumente. Die übrigen akkustischen Instrumente sind harmonisch (Ezquerra, Dr. Victor 2020). In diesem Projekt wird versucht perkussive und harmonische Instrumente zu trennen.

Darüberhinaus existieren noch elektrische und digitale Instrumente. Sie benötigen entweder Elektrizität oder einen Computerprozessor, um wie vorgesehen zu funktionieren. Allerdings werden sie in diesem Projekt nicht behandelt.

3.3 Formen der Musikdarstellungen

Musik kann unterschiedlich dargestellt werden und es wird je nach Bedarf eine andere Form der Musikdarstellung benötigt. Unterteilt wird in Musiknoten, symbolische Darstellungen und Audiodarstellungen. Musiknoten sind eine formale Sprache, die vorgibt wie ein Musikstück gespielt wird (Müller, Meinard and Arifi-Müller, Vlora o. D.).

Bei symbolischen Darstellungen werden eindeutige Entitäten definiert, die von einem Computer übersetzt werden. Beispielsweise wird der Musical Instrument Digital Interface (kurz: MIDI) Standard verwendet, um Informationen eines gespielten Tons möglichgst detailliert zu speichern und abzurufen.

Eine weitere Form der Darstellung, ist die Audiodarstellung. In diesen Darstellungen werden die Informationen von Tönen als Audiosignale digital gespeichert und geteilt. Es werden die Schallwellen eines Tons (siehe Abschnitt 3.1) aufgenommen und digital als eine Wellenform gespeichert, die an der Schallwelle orientiert ist. Dazu gehören auch das Timing, die Intensität, die Lautstärke, die Länge des Tons und vieles mehr. Es werden nicht die einzelnen Töne und Noten gespeichert, sondern die Frequenzen während der Aufnahme in Abhängigkeit zur Zeit. Die Audiodatei kann auch Nebengeräusche oder weitere Instrumente beihalten (Müller 2021, S. 1ff).

3.3.1 Einordnung in den Projektkontext

Die digitale Darstellung macht es schwieriger unterschiedliche Audiosignale zu trennen und die ursprünglichen Töne wieder herzustellen, dessen verbreitetste Darstellungsform ist MP3 (NRWision o.D.). In diesem Projekt werden jedoch Wav-Dateien behandelt. Die Unterschiede, sowie Vor- und Nachteile der Audiodarstellungen werden in Abschnitt 3.4.3 behandelt.

3.4 Aufbau einer Audiodatei/ Music Representation

Für die Aufnahme von Audiosignalen werden analoge Signale in eine digitale Form von Schall umgewandelt. Ein analoges Signal basiert auf kontinuierlichen und konstanten Spannungsschwankungen, die den verursachten Luftdruckschwankungen entsprechen (Electronic Music Interactive o. D.). In der digitalen Form werden die Spannungsschwankungen als Bitstreams gespeichert und je nach Audio-Format komprimiert.

3.4.1 Durchführung der Komprimierung

Die Komprimierung von Audiodateien wird meistens verwendet, um mehr Musik auf einem Datenträger speichern zu können (Audioengine o. D.). Für die Komprimering einer Aufnahme wird diese in eine Samplingrate (auch: Abtastrate) und eine Quantisierungsschrittweite reduziert.

Abbildung 3.2: Unterteilung in Samplingrate (oben) und Quantisierungsschrittweite (unten)

Samplingrate

Die Samplingrate definiert die Anzahl von gespeicherten Signalen pro Sekunde. Dies reduziert die benötigten gespeicherten Daten einer durchgängigen Aufnahme auf mehrere Blöcke. Beispielsweise werden auf einer CD 44.100 Werte pro Sekunde gespeichert (kurz: 44.1 kHz), dessen Übergänge kaum wahrnehmbar sind, jedoch bereits zu einem deutlichen Reduzierung des Speicherbedarfs führen.

Quantisierungsschrittweite

Die Quantisierungsschrittweite beschreibt die Auflösung, mit der jedes Sample komprimiert wird. Die möglichen Werte eines Samples sind kontinuierlich und könnten theoretisch unendlich viele Dezimalstellen haben. Durch die Quantisierungsschrittweite werden diese Werte jedoch auf eine festgelegte Anzahl möglicher diskreter Werte reduziert, wodurch der Unterschied zwischen den Werten bestimmt wird. Bei CDs wird beispielsweise eine 16-Bit-Codierung gewählt, die 65.536 mögliche Werte definiert.

3.4.2 Waveform Audio File Format

Das Waveform Audio File Format (kurz: Wav-Datei) speichert Audioaufnahmen unkomprimiert (Roxio o. D.). Der Begriff leitet sich "vom englischen Wort "wave" (e-teaching.org o. D.) für Schallwelle ab. Für die in diesem Projekt behandelte Fourier

Transform sind insbesondere die "Abtastrate fs des Messsystems" und die Quantisierungsschrittweite (siehe Abschnitt 3.4.1) entscheidend (NTi Audio o. D.). Aufgrund der unkomprimierten Speicherung (und der damit verbundenen hohen Abtastrate und Quantisierungsschrittweite) lässt sich eine klare Trennung von Tonspuren ermöglichen.

3.4.3 Andere Formen von Audio-Dateien

- MP3: Verwendet standardisiertes Komprimierungsverfahren und benötigt Speicherplatz bei vergleichsweise hoher Qualität.
- WMA: Speziell für Microsoft entwickeltes Dateiformat mit ebenfalls sowohl hoher Kompression und als auch guter Qualität.
- AAC: Ist ein Weiterentwicklung der Entwickler:innen von MP3 mit verbessertem Verhältnis aus Komprimierung und Qualität.
- OGG: Wurde als frei-verfügbare Alternative zu MP3 entwickelt.
- FLAC: Steht ebenfalls patentfrei zur Verfügung und implementiert ein Verfahren zum Kodieren und Dekodieren der Daten.
 - RM: Steht für Real Media und beinhaltet as Real Audio Format mit Fokus auf guter Qualität, trotz Komprimierung.

(Lehrerinnenfortbildung Baden-Württemberg o. D.)

3.5 Trennung einer Tonspur in verschiedene Instrumente

Eine Aufnahme speichert das eingehende Signal in Abhängigkeit zur Zeit. Dabei weist jedes Signal charakteristische Schwingungen in Form einer Wellenform auf. Während einer Aufnahme überlagern sich mehrere Signale zu einer gemeinsamen Wellenform, was ihre Unterscheidung erschwert. Dies tritt insbesondere bei Hintergrundgeräuschen oder bei der gleichzeitigen Aufnahme mehrerer Musikinstrumente auf.

Die Trennung von Signalen ist ein Thema, das in Forschung und Bildung intensiv behandelt wird (siehe: Kapitel 2). Eine der mit am häufigsten verwendete Methode ist die Fourier Transform (Müller 2021, S.39), die es ermöglicht, ein Signal in seine Frequenzkomponenten zu zerlegen. Diese wird auch bei der Audioverarbeitung für die Trennung von Instrumenten innerhalb einer Tonspur verwendet.

Neben der Fourier Transform werden auch andere Ansätze wie die Wavelet Transform, die Short-Time Fourier Transform (kurz: STFT), sowie statistische Verfahren wie die Blind Source Separation (BSS) und die Independent Component Analysis (ICA) eingesetzt. Darüber hinaus finden moderne Verfahren des maschinellen Lernens, insbesondere neuronale Netzwerke, zunehmend Anwendung in der Trennung von Audiosignalen.

3.5.1 Fourier Transform

Die Fourier Transform ist ein Algorithmus der die Darstellung einer Tondatei verändert. Ursprünglich liegt die Audiospur mit einer Kombination aus unterschiedlichen Frequenzen in Abhängigkeit zur Zeit vor. In dieser Darstellung sind die unterschiedlichen Signale schwierig zu trennen und werden von der Fourier Transform transformiert.

Entwicklung der Fourier Transform

Die Fourier Transform ist eine Verallgemeinerung der Fourierreihen. Diese Reihen können stetige oder stückweise stetige Funktionen in eine Summe von Sinus- und Kosinusfunktionen zerlegen. Bereits im 18. Jahrhundert wurden Fourierreihen für spezifische Funktionen entdeckt. 1822 stellte Joseph Fourier die Hypothese auf, dass sich jede Funktion als Summe solcher Reihen darstellen lässt. Erst im 20. Jahrhundert wurden Fourierreihen auch für andere stetige oder stückweise stetige Funktionen formal bewiesen. Dank der Vollständigkeiten der Funktionenreihe lässt sich die Fourier Transform auf eine Vielzahl von Funktionen anwenden, einschließlich periodischer und nicht-periodischer Funktionen, und erhielt ihren Namen zu Ehren von Fourier.

Durchführung der Transformation

Die Fourier Transform ist ein mathematisches Verfahren, bei dem ein Signal aus dem Zeitbereich in den Frequenzbereich transformiert wird. Die Transformation ermöglicht es, beliebige periodische und stückweise stetige Funktionen als Summe von Sinus- und Kosinuswellen unterschiedlicher Frequenzen darzustellen.

In der neuen Darstellung werden die Frequenzen der Funktion unabhängig von der zeitlichen Komponente wiedergegeben. Unterschiedliche Frequenzen können unterschiedlichen Signalen zugeordnet werden. Die frequentielle Darstellung gibt an welche Signale in welchen Frequenzen Teil der Funktion sind, allerdings nicht wann. Daher wird die Darstellung wieder umgeformt in die zeitliche Abhängigkeit.

Das Signal oder die Signale, die von der Tonspur getrennt werden, können in der frequentiellen Darstellung identifiziert werden. Anschließend werden diese von den übrigen Signalen getrennt und zurück in die ursprüngliche Darstellung transformiert (Inverse Fourier Transform). Damit erhält man eine neue Tondatei, die ausschließlich aus den benötigten Signalen besteht.

Durchführung am Beispiel einer Musiknote

In diesem Beispiel (aus Müller 2021, S.40f) wird eine Note auf einem Piano gespielt und durch die Transformation in eine frequentielle Darstellung umgeformt, in der ein gespielter Ton erkannt wird.

Die Aufnahme des Tons ist in Abbildung 3.3(a) zu erkennen. Für die Transformation wird ein Ausschnitt von 10ms verwendet, um den Rechenaufwand zu reduzieren und den Vorgang beispielhaft zu verdeutlichen.

Abbildung 3.3: Note C4 in unterschiedlichen Darstellungen (Müller 2021, S. 41)

Anschließend werden unterschiedliche Vergleichsfunktionen für die jeweiligen Frequenzen mit dem Ausschnitt der Tonspur verglichen. Die Ähnlichkeiten der jeweiligen Frequenzen werden in (f) wiedergegeben.

In Abbildung 3.3(c) ist die Übereinstimmung für die Frequenz w = 262 Hz besonders hoch. Daraus folgt in (f) bei ungefähr 262 der höchste Wert. Die Höhe des Wertes

wird in der Variable dw angegeben.

Die Frequenz 262 entspricht der Note C4. Darüberhinaus wird bei einer Frequenz von 523 (siehe Abbildung 3.3(e)) eine hohe Übereinstimmung erkannt. Dies entspricht ungefähr der Frequenz des zweiten Teiltons der Note C4.

Nachteile

Die Fourier Transform ermöglicht es je nach Bedarf zwischen der zeitlichen oder der sequentiellen Darstellung zu wechseln. Allerdings ist bei der Fourier Transform der Wechsel zwischen den Darstellung notwendig und es wird entweder die zeitliche oder die frequentielle Komponente ignoriert. Bei der Anwendung der Fourier Transform gibt es keine Darstellung die beide Komponenten kombiniert.

Außerdem wird bei der Fourier Transform die ganze Datei bearbeitet. Dies führt bei größeren Dateien zu großem Rechenaufwand des Prozessors und zu Ungenauigkeiten in der Durchführung, da kleinere Abschnitte ignoriert werden.

3.5.2 Wavelet Transform

Die Wavelet Transform ist ein Verfahren, das eine zeitliche Darstellung einer Funktion in eine dreidimensionale Darstellung in Abhhängigkeit von Zeit und Frequenz überführt. Dabei werden sogenannte Wavelets - spezielle Wellenfunktionen - mit der ursprünglichen Funktion verglichen, um Übereinstimmungen zu finden. Der Begriff "Wavelet" stammt aus dem Französischen und bedeutet "kleine Welle" oder "Wellchen".

Im Gegensatz zur ursprünglichen Funktion haben die Wavelets eine endliche Fläche (auch: finite energy), was sie begrenzt und lokalisiert. Eine weitere Bedingung für Wavelets ist, dass ihr Integral gleich null ergibt, d.h., dass die Fläche über und unter der X-Achse gleich groß ist (Admissibility condition). Unterschiedliche Wavelets verfügen über unterschiedliche Anwendungsszenarien.

Jedes Wavelet wird durch die Parameter m und b ergänzt:

- m: Bestimmt die Frequenz des Wavelets
- b: Bestimmt den Zeitpunkt des Wavelets

Zudem besitzt das Wavelet einen realen und einen imaginären Teil. Durch die Berücksichtigung des imaginären Teils entsteht eine dreidimensionale Darstellung des Signals. Bei der Wavelet Transform wird sowohl der reale als auch der imaginäre Teil des Wavelets mit der Funktion korreliert (Mathematik: Korrelation), um die Ähnlichkeit der Funktion und des Wavelets zu berechnen. Diese Ähnlichkeit wird für jedes m und

b ermittelt und in einem dreidimensionalen Ausgabe-Graphen in Abhängigkeit von der Zeit und der Frequenz dargestellt.

Ein Anwendungsfall ist die Überprüfung von Ampelleuchten. Während die Fourier Transform die verschiedenen Frequenzen der Farben Grün, Gelb und Rot erkennt, um festzustellen, ob die Lampen leuchten, erlaubt die Wavelet Transform zusätzlich die Angabe, ob die Lichter zu den richtigen Zeitpunkten aufleuchten (Kirsanov, Artem 2022).

3.5.3 Wahl der Fourier Transform

Für die Trennug der Instrumente einer Wav-Datei wurde die Fourier Transform gewählt, trotz einiger Alternativen. Die Fourier Transform ist eines der meistverwendeten Werkzeuge der Signalverarbeitung (Müller 2021, S.39). Der größte Nachteil der Fourier Transform ist, dass nicht gleichzeitig die Zeit und die Frequenz Domäne dargestellt werden können. Allerdings reicht dies bei der Trennung von Musikinstrumenten, da die Darstellung zum Schluss wieder in die zeitliche Domäne umgeformt wird, um das Ergebnis in eine Wav-Datei zu überführen. Außerdem verliert die Fourier Transform wenig Informationen durch die klare Trennung von zeitlicher und frequentieller Darstellung (Parsons, Boonman und Obrist 2000).

Allerdings ist die Fourier Transform bei größeren Dateien aufwändiger und fehleranfälliger, falls die ganze Datei transformiert wird. Jedoch wird diese Limitierung durch die Verwendung der Short-Time Fourier Transform reduziert (Chetlur Adithya, Sankar, Moreno und Hart 2017).

3.5.4 Short-Time Fourier Transform

Die Short-Time Fourier Transform (auch: STFT) basiert auf der Fourier Transform, dessen Nachteile zunehmender Aufwand und fehleranfälligkeit bei der Transformation größerer Dateien beihaltet (siehe: Abschnitt 3.5.1). Damit ist es eins der wichtigsten Tools in der Audioverarbeitung (Müller 2021, S.110).

Stattdessen teilt die Short Time Fourier Transform eine Datei in mehrere kleine Pakete, deren Transformation effizienter und effektiver durchgeführt werden können. Anschließend werden die Übergänge der Pakete geglättet, um Unregelmäßigkeiten zu vermeiden. In Abschnitt 4.5.1 wird die praktische Umsetzung mittels Programmcode dargestellt und die Funktionalität erläutert.

4 Code

In diesem Abschnitt wird der Python-Code zur Extraktion von harmonischen und perkussiven Komponenten aus Audiodateien unter Verwendung der Bibliothek librosa detailliert erklärt.

4.1 Beschreibung des Codes

Der Code beginnt mit dem Importieren der benötigten Bibliotheken, um Audio zu laden, zu verarbeiten und in neue Dateien zu schreiben:

Listing 4.1: Bibliotheken importieren

```
import os
import librosa
import soundfile as sf
import numpy as np
```

Hierbei ist librosa die zentrale Bibliothek zur Verarbeitung von Audiodaten, während soundfile für das Schreiben der resultierenden Audiodateien verwendet wird.

4.2 Hauptfunktion: harmonic_extraction

Die Hauptfunktion des Codes ist harmonic_extraction, die einen Dateipfad für die Audiodatei und einen Namen für die Ausgabedatei als Parameter erhält.

Listing 4.2: Die Funktion harmonic_extraction

```
def harmonic_extraction(audio_path, output_filename):
    y, sr = librosa.load(audio_path)

y_harmonic, y_percussive = librosa.effects.hpss(y)
```

Die Funktion beginnt mit dem Laden der Audiodatei. Die Methode librosa.load lädt die Datei und gibt das Audiosignal y und die Sampling-Rate sr zurück. Der nächste

Schritt ist die Verwendung der Harmonic-Percussive Source Separation (HPSS) Funktion librosa.effects.hpss(y), die das Audiosignal in harmonische und perkussive Komponenten zerlegt. Dies geschieht mithilfe der Fourier-Transformation.

4.3 Speichern der Ergebnisse

Nach der Zerlegung speichert der Code die beiden Komponenten in separaten Dateien:

Listing 4.3: Speichern der Komponenten

```
current_dir = os.getcwd()

input_audio_path = os.path.join(current_dir, 'audios', audio_path)
output_directory = os.path.join(current_dir, 'extractedfiles')
output_path_harmonic = os.path.join(output_directory, output_filename)
output_path_percussive = os.path.join(output_directory, 'extracted_percussive.wav')
os.makedirs(output_directory, exist_ok=True)

sf.write(output_path_harmonic, y_harmonic, sr)
print("Harmonic_component_saved_to:", output_path_harmonic)

y_percussive_only = y - y_harmonic

sf.write(output_path_percussive, y_percussive_only, sr)
print("Percussive_component_saved_to:", output_path_percussive)
```

Das obige Codefragment erstellt das Verzeichnis extractedfiles und speichert darin die harmonischen und perkussiven Komponenten als separate Dateien. Die Methode sf.write schreibt das Audiosignal in eine Datei, die anschließend abgespielt oder analysiert werden kann.

4.4 Fourier-Transformation und librosa

Im Hintergrund verwendet librosa die Fourier-Transformation zur Analyse und Trennung der Frequenzkomponenten. Die Fourier-Transformation wandelt ein Zeitsignal in seine Frequenzkomponenten um, was es librosa ermöglicht, harmonische und perkussive Elemente zu isolieren.

Die Harmonic-Percussive Source Separation (HPSS) Methode analysiert das Spektrum des Audiosignals und trennt es basierend auf der Stabilität der Frequenzkomponenten

über die Zeit: Harmonische Komponenten bleiben relativ konstant, während perkussive Komponenten abrupte Änderungen im Spektrum aufweisen.

4.5 Hintergrund: Fourier-Transformation und HPSS in librosa

Um die Funktionsweise von librosa bei der Verarbeitung und Trennung von Audiosignalen nachzuvollziehen, betrachten wir die verwendeten Algorithmen, insbesondere die Short-Time Fourier Transform (STFT) und die Harmonic-Percussive Source Separation (HPSS). Diese Verfahren lassen sich mithilfe von grundlegender Signalverarbeitung in Python umsetzen.

4.5.1 Short-Time Fourier Transform (STFT)

Die STFT teilt das Audiosignal in kurze, sich überlappende Abschnitte, um das zeitliche Verhalten der Frequenzanteile zu erfassen. Dies ergibt ein Spektrogramm, das Frequenzänderungen im Zeitverlauf darstellt. Der Code für die STFT ist wie folgt:

Listing 4.4: STFT-Implementierung

```
import numpy as np

def stft(y, n_fft=2048, hop_length=512, window="hann"):
    if window == "hann":
        win = np.hanning(n_fft)
    num_frames = 1 + (len(y) - n_fft) // hop_length
    stft_matrix = np.empty((n_fft // 2 + 1, num_frames), dtype=np.complex64)

for i in range(num_frames):
    start = i * hop_length
    frame = y[start : start + n_fft] * win
    stft_matrix[:, i] = np.fft.rfft(frame)

return stft_matrix
```

Dieser Code berechnet das Spektrogramm des Audiosignals, indem für jedes Segment die Fourier-Transformation mit np.fft.rfft durchgeführt wird. Das Hann-Fenster glättet die Segmente und reduziert abrupte Übergänge zwischen den Abschnitten.

4.5.2 Harmonic-Percussive Source Separation (HPSS)

Die HPSS-Technik trennt das Spektrum des Audiosignals in harmonische und perkussive Komponenten, basierend auf der Annahme, dass harmonische Frequenzen über die Zeit stabil bleiben, während perkussive Frequenzen abrupte Änderungen aufweisen. Hierfür werden Medianfilter verwendet:

Listing 4.5: HPSS-Implementierung

```
from scipy.ndimage import median_filter

def harmonic_percussive_separation(stft_matrix, harmonic_filter_size=31, percussive_fi harmonic_component = median_filter(np.abs(stft_matrix), size=(1, harmonic_filter_s percussive_component = median_filter(np.abs(stft_matrix), size=(percussive_filter_size))
    harmonic_mask = harmonic_component > percussive_component
    percussive_mask = percussive_component >= harmonic_component
    harmonic_stft = stft_matrix * harmonic_mask
    percussive_stft = stft_matrix * percussive_mask
    return harmonic_stft, percussive_stft
```

Dieser Code verwendet median_filter, um das Spektrum über die Zeitachse zu glätten und so harmonische und perkussive Komponenten zu trennen. Die beiden Masken trennen das Spektrum in harmonische und perkussive Anteile und erlauben eine gezielte Extraktion der einzelnen Bestandteile.

4.5.3 Inverse STFT (iSTFT)

Um das transformierte Spektrum wieder in ein Zeitsignal zu konvertieren, verwenden wir die inverse STFT:

Listing 4.6: iSTFT-Implementierung

```
def istft(stft_matrix, hop_length=512, n_fft=2048, window="hann"):
    if window == "hann":
        win = np.hanning(n_fft)
    y = np.zeros(hop_length * (stft_matrix.shape[1] - 1) + n_fft)

for i in range(stft_matrix.shape[1]):
    frame = np.fft.irfft(stft_matrix[:, i]) * win
    start = i * hop_length
    y[start : start + n_fft] += frame
return y
```

Die Funktion istft führt das Frequenzspektrum zurück in die Zeitdomäne und rekonstruiert das Audiosignal durch eine inverse Fourier-Transformation mit np.fft.irfft. Die Überlappungsaddierung gewährleistet eine nahtlose Rücktransformation in die Zeitdomäne.

Zusammenfassend lässt sich sagen, dass librosa mithilfe der STFT und HPSS das Audiosignal in harmonische und perkussive Anteile zerlegt und so die Frequenzkomponenten eines Signals analysieren und trennen kann.

5 Wav-Manipulation und Analyse

In diesem Kapitel wird anhand von Spektrogrammen, die mit Python und der Bibliothek librosa generiert wurden, die Analyse und Visualisierung der harmonischen und perkussiven Komponenten des Audiosignals demonstriert. Der Fokus liegt auf den Frequenzverteilungen und der Amplitudenhüllkurve.

5.1 Spektralanalyse der Audiodatei

Im Folgenden wird die Frequenzverteilung des Audiosignals vor und nach der Trennung in harmonische und perkussive Komponenten dargestellt. Diese Analyse ermöglicht es, die Struktur des Signals und die Unterschiede zwischen den beiden Komponenten zu visualisieren.

5.1.1 Spektrogramm der Originaldatei

Abbildung 5.1 zeigt das Spektrogramm des ungetrennten Audiosignals. Die Farbskala stellt die Amplituden der Frequenzanteile dar, wobei hellere Farben höhere Amplituden repräsentieren. Dieses Spektrogramm stellt das gesamte Frequenzspektrum dar, das sowohl harmonische als auch perkussive Elemente enthält.

5.1.2 Spektrogramm der harmonischen Komponente

Abbildung 5.2 zeigt das Spektrogramm der harmonischen Komponente nach der Trennung. Die harmonischen Komponenten des Signals sind Frequenzen, die stabil und langanhaltend sind, was typisch für melodische oder gesangliche Elemente ist. Man sieht eine gleichmäßigere Verteilung im Frequenzbereich mit weniger plötzlichen Amplitudenänderungen.

Abbildung 5.1: Spektrogramm der Original-Audiodatei vor der Trennung

Abbildung 5.2: Spektrogramm der harmonischen Komponente

Abbildung 5.3: Spektrogramm der perkussiven Komponente

5.1.3 Spektrogramm der perkussiven Komponente

Abbildung 5.3 zeigt das Spektrogramm der perkussiven Komponente. Die perkussiven Elemente zeigen eine charakteristische Struktur, da sie Frequenzen darstellen, die plötzliche Änderungen aufweisen, typischerweise durch kurze, abrupte Schläge oder rhythmische Akzente gekennzeichnet.

5.2 Interpretation der Ergebnisse

Durch die Trennung der Audiodatei in harmonische und perkussive Komponenten wird die Spektralanalyse differenziert. Harmonische Spektren zeigen konstante, langanhaltende Frequenzen, während perkussive Spektren kurze, intensive Peaks aufweisen. Dies erlaubt eine gezielte Analyse und Bearbeitung der musikalischen Elemente, die für verschiedene Audioverarbeitungsaufgaben wie die Musikproduktion, Remixing oder Audio-Restaurierung wertvoll ist.

Literatur

- Ashbourn, Julian (2020). Audio Technology, Music, and Media. 1. Berkhamsted: Springer Cham.
- Audioengine (o.D.). What Is Audio Compression (And Why Should You Care)? Abgerufen am 31.08.2024. URL: https://audioengine.com/explore/what-is-audio-compression-and-why-should-you-care/.
- Auersignal (o. D.). Signaltöne. Abgerufen am 19.08.2024. URL: https://www.auersignal.com/de/technische-informationen/akustische-signalgerate/signaltone/.
- Bundesverband Musikindustrie (o.D.[a]). *Absatz*. Abgerufen am 19.08.2024. URL: https://www.musikindustrie.de/wie-musik-zur-karriere-werden-kann/musikindustrie-in-zahlen/absatz-2021.
- (o. D.[b]). Musiknutzung. Abgerufen am 19.08.2024. URL: https://www.musikindustrie. de/wie-musik-zur-karriere-werden-kann/musikindustrie-in-zahlen/musiknutzung-2021.
- Chetlur Adithya, Prashanth, Ravi Sankar, Wilfrido Alejandro Moreno und Stuart Hart (2017). "Trends in fetal monitoring through phonocardiography: Challenges and future directions". In: *Biomedical Signal Processing and Control* 33, S. 289–305. ISSN: 1746-8094. DOI: https://doi.org/10.1016/j.bspc.2016.11.007. URL: https://www.sciencedirect.com/science/article/pii/S1746809416301859.
- e-teaching.org (o.D.). WAV. Abgerufen am 31.08.2024. URL: https://www.e-teaching.org/materialien/glossar/wav.
- Electronic Music Interactive (o.D.). Digital Representation. Abgerufen am 31.08.2024. URL: https://pages.uoregon.edu/emi/8.php#:~:text=A%20digital%20representation%20of%20sound%20is%20a%20series%20of%20discrete,spaced%20measurements%20is%20a%20sample%20..
- Ezquerra, Dr. Victor (Aug. 2020). The Difference Between Acoustic, Electric and Digital Instruments. Abgerufen am 19.08.2024. URL: https://www.metromusicmakers.com/2020/08/the-difference-between-acoustic-electric-and-digital-instruments/.
- Guo, Tiantian, Tongpo Zhang, Enggee Lim, Miguel López-Benítez, Fei Ma und Limin Yu (2022). "A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities". In: *IEEE Access* 10, S. 58869–58903. DOI: 10.1109/ACCESS.2022. 3179517.

- Karmasin, Matthias und Rainer Ribing (2019). Die Gestaltung wissenschaftlicher Arbeiten. Ein Leitfaden für Facharbeit/VWA, Seminararbeiten, Bachelor-, Master-, Magister- und Diplomarbeiten sowie Dissertationen. 10., überarbeitete und aktualisierte Auflage. Wien: facultas.
- Ken (Okt. 2021). Manipulate Audio File in Python With 6 Powerful Tips. Abgerufen am 31.08.2024. URL: https://www.codeforests.com/2021/10/02/manipulate-audio-file-in-python/.
- Kirsanov, Artem (Aug. 2022). Wavelets: a mathematical microscope. Abgerufen am 19.08.2024. URL: https://youtu.be/jnxqHcObNK4?si=1VZPZquUYXSuI4vN.
- Lehrerinnenfortbildung Baden-Württemberg (o. D.). Audioformate im Überblick. Abgerufen am 31.08.2024. URL: https://lehrerfortbildung-bw.de/st_digital/medienwerkstatt/multimedia/audio/formate/.
- Librosa (o.D.). Abgerufen am 31.08.2024. URL: https://github.com/librosa.
- Müller, Meinard (2021). Fundamentals of Music Processing. 2. Erlangen: Springer Cham.
- Müller, Meinard, Daniel P. W. Ellis, Anssi Klapuri und Gaël Richard (2011). "Signal Processing for Music Analysis". In: *IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING* 0, S. 1.
- Müller, Meinard and Arifi-Müller, Vlora (o.D.). Sheet Music Representations. Abgerufen am 19.08.2024. URL: https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_SheetMusic.html.
- NRWision (o.D.). *Audioformate im Vergleich*. Abgerufen am 19.08.2024. URL: https://www.nrwision.de/mitmachen/wissen/audioformate-vergleich.
- NTi Audio (o.D.). Fast Fourier Transformation FFT Grundlagen. Abgerufen am 31.08.2024. URL: https://www.nti-audio.com/de/service/wissen/fast-fourier-transformation-fft.
- Parsons, Stuart, Arjan M. Boonman und Martin K. Obrist (Nov. 2000). "Advantages and Disadvantages of Techniques for Transforming and Analyzing Chiropteran Echolocation Calls". In: Journal of Mammalogy 81.4, S. 927–938. ISSN: 0022-2372. DOI: 10.1644/1545-1542(2000)081<0927: AADOTF>2.0.CO; 2. eprint: https://academic.oup.com/jmammal/article-pdf/81/4/927/7022013/81-4-927.pdf. URL: https://doi.org/10.1644/1545-1542(2000)081%3C0927: AADOTF%3E2.0.CO; 2.
- Roxio (o.D.). What is a WAV file? Abgerufen am 31.08.2024. URL: https://www.roxio.com/en/file-formats/wav-file/.
- Stack Exchange (Aug. 2011). Why is the Fourier transform so important? Abgerufen am 19.08.2024. URL: https://dsp.stackexchange.com/questions/69/why-is-the-fourier-transform-so-important.
- Universität zu Lübeck (o.D.). Research Activities. Abgerufen am 19.08.2024. URL: https://www.isip.uni-luebeck.de/research.

William, Stephen (Okt. 2021). *Music Extraction*. Abgerufen am 31.08.2024. URL: https://medium.com/@swilliam.productions/music-extraction-7eb352d92bff.

Anhang

- Eventuell Git-Repo verlinken