● 5회차

013	02 ①	03 ②	04 ③	05 ②	
06 ②	07 4	085	09 ①	10 ⑤	
11 ②	12 ④	13 ⑤	14 4	15 ④	
16 ②	17 ③				

[서술형 1] 24

[서술형 2] 11

[서술형 3] (1) $a_{n+1} = a_n + 2n + 4 (n = 1, 2, 3, \cdots)$ (2) 130

$$2R = \frac{2\sqrt{3}}{\sin 60^{\circ}} = \frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} = 4 \qquad \therefore R = 2$$

따라서 △ABC의 외접원의 반지름의 길이는 2이다.

02 코사인법칙에 의하여
$$c^2 = 6^2 + 3^2 - 2 \cdot 6 \cdot 3 \cdot \cos 60^\circ$$
$$= 36 + 9 - 18 = 27$$
이므로 $c = 3\sqrt{3} \ (\because c > 0)$
$$\therefore \cos A = \frac{3^2 + (3\sqrt{3})^2 - 6^2}{2 \cdot 3 \cdot 3\sqrt{3}} = 0$$

다른 풀이

코사인법칙에 의하여

$$c^2=6^2+3^2-2\cdot 6\cdot 3\cdot \cos 60^\circ$$
 $=36+9-18=27$ 이때 $b^2+c^2=3^2+27=360$ 이므로 $a^2=b^2+c^2$ 따라서 $\triangle ABC$ 는 $A=90^\circ$ 인 직각삼각형이므로 $\cos A=\cos 90^\circ=0$

03
$$\sin\left(\frac{\pi}{2} - B\right) = \cos B$$
, $\sin\left(\frac{\pi}{2} - A\right) = \cos A$ 이므로 $a\sin\left(\frac{\pi}{2} - B\right) = b\sin\left(\frac{\pi}{2} - A\right)$ 에서 $a\cos B = b\cos A$ \bigcirc 코사인법칙에 의하여 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$ 위의 식을 \bigcirc 에 대입하면 $a\cdot\frac{c^2 + a^2 - b^2}{2ca} = b\cdot\frac{b^2 + c^2 - a^2}{2bc}$

$$c^2+a^2-b^2=b^2+c^2-a^2$$
, $a^2=b^2$
 $\therefore a=b \ (\because a>0, b>0)$
따라서 $\triangle ABC는 a=b$ 인 이동변삼각형이다.

Lecture 삼각형의 모양

삼각형 ABC에서

- (1) a = b = c
 - ⇒ △ABC는 정삼각형이다.
- (2) a=b 또는 b=c 또는 c=a
 - ⇒ △ABC는 이등변삼각형이다.
- (3) $a^2 + b^2 = c^2$
 - \Rightarrow \triangle ABC는 C=90°인 직각삼각형이다.
- **04** $A = 180^{\circ} (30^{\circ} + 30^{\circ}) = 120^{\circ}$ ∴ $\triangle ABC = 2 \cdot 2^{2} \cdot \sin 120^{\circ} \cdot \sin 30^{\circ} \cdot \sin 30^{\circ}$ $= 2 \cdot 4 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $= \sqrt{3}$

Lecture 삼각형의 넓이

삼각형 ABC 의 넓이를 S, 외접원의 반지름의 길이를 R 라 하면

- (1) $S = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C$
- $(2) S = \frac{abc}{4R} = 2R^2 \sin A \sin B \sin C$
- 05 등차수열 $\{a_n\}$ 의 첫째항을 a, 공차를 d라 하면 제3항이 11이므로 a+2d=11 ······ ① 제9항이 29이므로 a+8d=29 ····· ① ①, ①을 연립하여 풀면 a=5, d=3 따라서 $a_n=5+(n-1)\cdot 3=3n+2$ 이므로 $a_6=3\cdot 6+2=20$
- 06 등차수열 $\{a_n\}$ 의 첫째항이 a, 공차가 d이므로 a_4 =-2에서 a+3d=-2 ······ ① $a_2+a_7=0$ 에서 (a+d)+(a+6d)=0 2a+7d=0 ····· ① ①, ①을 연립하여 풀면 a=-14, d=4 $\therefore ad=-14\cdot 4=-56$

- 07 100 이하의 자연수 중에서 3으로 나누었을 때의 나머지가 1인 수들은
 1, 4, 7, …, 100
 이 수열은 첫째항이 1이고 공차가 3인 등차수열이므로 일반항을 a_n이라 하면
 a_n=1+(n-1)·3=3n-2
 - $a_n = 1 + (n-1) \cdot 3 = 3n-2$ 이때 3n-2 = 100에서 n = 34이므로 구하는 합은 $\frac{34(1+100)}{2} = 1717$
- **08** 수열 2, a_1 , a_2 , a_3 , \cdots , a_{20} , 28에서 28은 제22항이므로 주어진 등차수열의 합은 $\frac{22(2+28)}{2} = 330$ 따라서 $2+a_1+a_2+a_3+\cdots+a_{20}+28=330$ 이므로 $a_1+a_2+a_3+\cdots+a_{20}=300$
- **10** 네 수 1, a, b, c가 공비가 r인 등비수열을 이루므로 a=r, $b=r^2$, $c=r^3$ 이때 $\log_8 c = \log_{2^3} r^3 = \log_2 r$, $\log_a b = \log_r r^2 = 2$ 이므로 $\log_8 c = \log_a b$ 에서 $\log_2 r = 2$ $\therefore r = 2^2 = 4$

Lecture 로그의 성질

a>0, $a\neq 1$, M>0, N>0일 때

- $(1) \log_a 1 = 0, \log_a a = 1$
- (2) $\log_a MN = \log_a M + \log_a N$
- (3) $\log_a \frac{M}{N} = \log_a M \log_a N$
- (4) $\log_a N^k = k \log_a N$ (단, k는 실수)
- 11 한 변의 길이가 2인 정삼각형의 넓이는 $\frac{\sqrt{3}}{4} \cdot 2^2 = \sqrt{3}$ 1회 시행 후 남아 있는 종이의 넓이는 $\sqrt{3} \cdot \frac{3}{4}$ 2회 시행 후 남아 있는 종이의 넓이는 $\sqrt{3} \cdot \left(\frac{3}{4}\right)^2$: $n회 시행 후 남아 있는 종이의 넓이는 <math>\sqrt{3} \cdot \left(\frac{3}{4}\right)^n$ 따라서 10회 시행 후 남아 있는 종이의 넓이는 $\sqrt{3} \cdot \left(\frac{3}{4}\right)^{10}$
- **12** $a_1 = S_1 = 2 1 = 1$ $a_9 = S_9 - S_8$ $= (2^9 - 1) - (2^8 - 1)$ = 256 $\therefore a_1 + a_9 = 1 + 256 = 257$

13
$$\sum_{k=2}^{10} (k+1)^2 - \sum_{k=1}^{10} (k-1)^2$$

$$= \left\{ -2^2 + \sum_{k=1}^{10} (k+1)^2 \right\} - \sum_{k=1}^{10} (k-1)^2$$

$$= -4 + \sum_{k=1}^{10} (k^2 + 2k + 1) - \sum_{k=1}^{10} (k^2 - 2k + 1)$$

$$= -4 + \sum_{k=1}^{10} 4k$$

$$= -4 + 4 \sum_{k=1}^{10} k$$

$$= -4 + 4 \cdot \frac{10 \cdot 11}{2}$$

$$= 216$$

14
$$\sum_{k=1}^{10} (-a_k + 10b_k + 1) = -\sum_{k=1}^{10} a_k + 10\sum_{k=1}^{10} b_k + \sum_{k=1}^{10} 1$$

$$= -1 \cdot 11 + 10 \cdot 7 + 1 \cdot 10$$

$$= -11 + 70 + 10$$

$$= 69$$

상수 p,q,r에 대하여 $\sum_{k=1}^n (pa_k+qb_k+r)=p\sum_{k=1}^n a_k+q\sum_{k=1}^n b_k+rn$

15 수열
$$\frac{1}{2}$$
, $\frac{1}{2+4}$, $\frac{1}{2+4+6}$, ..., $\frac{1}{2+4+6+\cdots+2n}$ 의 일반항을 a_n 이라 하면
$$a_n = \frac{1}{\sum_{k=1}^n 2k} = \frac{1}{2 \cdot \frac{n(n+1)}{2}} = \frac{1}{n(n+1)}$$

$$\therefore 1 + \frac{1}{2} + \frac{1}{2+4} + \frac{1}{2+4+6} + \dots + \frac{1}{2+4+6+\cdots+2n}$$

$$= 1 + \sum_{k=1}^n a_k$$

$$= 1 + \sum_{k=1}^n \frac{1}{k(k+1)}$$

$$= 1 + \left\{ \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) \right\}$$

$$= 1 + \left(1 - \frac{1}{n+1}\right)$$

$$= \frac{2n+1}{n+1}$$

16
$$a_{n+1}=3a_n-3$$
의 n 에 $1, 2, 3, 4, 5$ 를 차례로 대입하면 $a_2=3a_1-3=3\cdot 2-3=3$ $a_3=3a_2-3=3\cdot 3-3=6$ $a_4=3a_3-3=3\cdot 6-3=15$ $a_5=3a_4-3=3\cdot 15-3=42$ $a_6=3a_5-3=3\cdot 42-3=123$ $\therefore a_6-a_5=123-42=81$

- **17** (i) n=1일 때, (좌변)=1, (우변)=2-1=1이므로 주어진 등식이 성립한다.
 - (ii) n=k일 때, 주어진 등식이 성립한다고 가정하면 $1+2+2^2+\cdots+2^{k-1}=2^k-1$ …… ① 의 양변에 $(?) 2^k$ 을 더하면 $1+2+2^2+\cdots+2^{k-1}+(?) 2^k$ $=2^k-1+2^k$ $=2\cdot 2^k-1$ $=2^{k+1}-1$

즉 n=[0]k+1일 때도 주어진 등식이 성립한다. (i), (ii)에서 모든 자연수 n에 대하여 주어진 등식이 성립한다.

$$\therefore$$
 (가) 2^k (나) $k+1$ 따라서 $f(k)=2^k, g(k)=k+1$ 이므로 $f(3)+g(3)=2^3+4=12$

[서술형 1] 직각삼각형 ABC에서 $\overline{AB}=10$, $\overline{AC}=6$ 이므로 피타고라스 정리에 의하여

$$\overline{BC} = \sqrt{10^2 - 6^2} = 8$$

$$\angle BAC = \theta$$
라 하면 $\sin \theta = \frac{\overline{BC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5}$

2

채점 기준	배점	
● BC의 길이를 구할 수 있다.		
② $\angle {\rm BAC} = \theta$ 라 할 때, $\sin \theta$ 의 값을 구할 수 있다.		
③ △ADE의 넓이를 구할 수 있다.	3점	

[서술형 2] 첫째항이 -3, 공차가 $\frac{3}{2}$ 인 등차수열의 일반항 을 a_n 이라 하면 $a_n = -3 + (n-1) \cdot \frac{3}{2} = \frac{3}{2}n - \frac{9}{2}$

이때 15는 제(k+2)항이므로

$$\frac{3}{2} \cdot (k+2) - \frac{9}{2} = 15$$

$$k+2=13$$
 $\therefore k=11$

채점 기준	배점	
● 주어진 등차수열의 일반항을 구할 수 있다.	3점	
② <i>k</i> 의 값을 구할 수 있다.		

[**서술형 3**] (1) 주어진 그림에서

$$a_1=4$$
 $a_2=a_1+6$
 $a_3=a_2+8$
 \vdots
 $a_{n+1}=a_n+2(n+2)$
 $a_n+2n+4 (n=1, 2, 3, \cdots)$

(2) a_{n+1} = a_n +2n+4의 n에 $1, 2, 3, \cdots$, 9를 차례대로 대입하여 변끼리 더하면

$$a_{2}=a_{1}+2\cdot 1+4$$

$$a_{3}=a_{2}+2\cdot 2+4$$

$$a_{4}=a_{3}+2\cdot 3+4$$

$$\vdots$$

$$+)a_{10}=a_{9}+2\cdot 9+4$$

$$a_{10}=a_{1}+2(1+2+3+\cdots+9)+4\cdot 9$$

$$=a_{1}+2\sum_{k=1}^{9}k+4\cdot 9$$

$$=4+2\cdot \frac{9\cdot 10}{2}+4\cdot 9$$

$$=4+90+36$$

$$=130$$

채점 기준	배점
$lue{1}$ a_n 과 a_{n+1} 사이의 관계식을 구할 수 있다.	3점
② a_{10} 의 값을 구할 수 있다.	4점