PATENT ABSTRACTS OF JAPAN

(11)Publication number:

53-048985

(43) Date of publication of application: 02.05.1978

(51)Int.CI.

C09K 9/00 G02F 1/17

G09F 9/00

(21)Application number: 51-124185

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

15.10.1976

(72)Inventor: NAKAMURA KENICHI

IIJIMA TAKASHI

(54) IMAGE DISPLAY ELEMENTS

(57)Abstract:

PURPOSE: Easily producible electrochromic image display elements increased in response speed and improved in service life attendant on coloring and color vanishing, obtained by using heteropolyacid for the electrouyr pg rrvytpchromic image display elements.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

19日本国特許庁

①特許出願公開.

公開特許公報

昭53-48985

 (1) Int. Cl.² (2) C 09 K 9/00 (3) G 02 F 1/17 (4) G 09 F 9/00 	識別記号	砂日本分類 13(9) C 0 101 E 9 104 G 0	庁内整理番号 7229—4 A 6750—54 7348—23	③公開 昭和発明の数審査請求	ロ53年(19 1 未請求	78)5月2日
						(全 4 頁)

9像表示案子

②特

面 昭51-124185

願 昭51(1976)10月15日 20出

中村研一 70発明者

門真市大字門真1006番地 松下

電器産業株式会社内

@発 明 者 飯島孝志

門真市大字門真1006番地 松下

電器産業株式会社内

⑪出 願 人 松下電器産業株式会社

門真市大字門真1006番地

仰代 理 人 弁理士 中尾敏男 外1名

1、発明の名称 像表示案子

2、特許滑求の範囲

質気化学的嵌化還元により稍色発色可能な物質 を有する電極と、対極と、両電極間に介在させた 簡解質とを備え、前記電解質が少なくとも1 つの ヘテロポリ殻の名で総称されるプロトン導電性固 体状化合物より選択されたものであることを特徴 とする像表示素子。

3、発明の詳細な説明

本発明は、電気化学的酸化還元により消色発色 させる像表示素子の改良に関する。

従来、三酸化タングステンWOg,三酸化モリブ デンMoOg ,二酸化チタンT1O2 等電気化学的 酸化混元により消色発色可能な金属酸化物を酸化 スズ又は似化インジウムの説明電柩上に蒸落し、 対核に白金、金等の不活性金属あるいはカーポン 等を用いたいわゆるエレクトロクロミック像表示 衆子が知られている。

この種素子の電解質としては、硫酸を主成分と した、例えば硫酸水溶液、硫酸のグリセリン溶液 が、印加電圧が比較的低く、又応答速度が速いと とから、一般的に使用されている。

上記の素子において、消色発色可能な金属酸化 物としてWO3 を用いた場合、避明質極を対極に 対して負買位(選元)にすれば背色に発色する。 そして印加包圧の核性を逆にすればWOs)膜は元に 戻る。との発色消色の筬標については、まだ十分 化解明されていないが、次のような硫酸水溶液と の間で起こる電気化学的敏化環元反応によるもの と考えられている。

即ち、発色はWO3 中への硫酸溶液からのH⁺イオ ンの住入と常板からの電子の住入によるタングス テンプロンメの生成によるものである。この機構 からすると、厳密引き抜きには硫炭からのプロト ンの供与が必要であり、電解質は一般にプロトン 供与体、即ち般でなければならない。

磁酸を電煤質成分とする場合は、特にとれが腐 食性の液体であることから、その液体を密封する という点で菓子の組み立てが煩雑であり、又封口 材料等の点でも問題が生じる。

本発明は、プロトン海国性の固体電解質を用いることにより、上記のような問題を解決するものである。即ち、本発明はヘテロポリ酸の名で総称される一群の化合物を電解質に用いるものである。このヘテロポリ酸は、20℃において10⁻²~10⁻⁵0⁻¹・∞⁻¹程度と比較的抵抗の低いプロトン 海電性固体電解質として最近知られるようになったもので、例えば燃料電池の電解質として使用することは既に発表されている。

本発明は、ヘテロポリ酸をエレクトロクロミック像表示案子の電解質に用いることにより、硫酸溶液を用いる場合以上の速い応答速度を得るとともに、発色消色に伴う寿命の改特を図るものである。勿論固体電解質であるから、素子の製作が簡単になる特長をも有する。

5 4...

以上のように各権のヘテロポリ酸が知られているが、つくり易さ、安定性等の点から中心ヘテロ原子がB,P,Si,Go、中心ヘテロ原子と酶接会
夙原子との比が1:12のものが最も好ましい。

以下本発明を、隋色発色する物質にWO₃、電解 質にリンタングステン酸・ケイタングステン酸 H₄[SiW₁₂O_{4O}]・3OH₂Oを用いた爽施例によ り説明する。

ガラス芸板に酸化スズ 8 nO2 を付着させた選明 電板上に、WO3を電子ビーム蒸着して、 直径1 Om, 厚さ1 μm の円形のやや育みがかった透明な 腹を付着させる。一方ケイタングステン酸・リンタングステン酸は、それらの結晶粉末を1トン/d の圧力でプレスして、直径1 Om, 厚さ1 mの円 板状ベレットとなし、その一方の面にグラファイト粉末を1トン/dの圧力でプレスして厚さ0.5 mの電極を密辯させる。このベレットを電極形成面と反対側の面を超明電極のWO3 膜表面に 密替させる。この場合、ベレット表面をアセトン等の溶剤で限らしておき、WO3 腹に接触させてから溶剤

ヘテロポリ酸としては、リンモリブデン酸 $H_3[PMo_{12}O_{4O}] \cdot 30H_2O$, リンタングステン酸 $H_3[PW_{12}O_{4O}] \cdot 20H_2O$ が一般的であり、それぞれ $[PMo_{12}O_{4O}]^{5-}$, $[PW_{12}O_{4O}]^{5-}$ なる巨大アニオンと、 H^+ イオンを水素結合を介してその中心にとり込んだ水分子クラスターから 梯成されたイオン結晶であり、 H^+ イオンは、この水分子クラスター中を移動する。

巨大アニオンの中心には上記の例ではヘテロ原子であるPが存在しているが、中心ヘテロ原子となりうるものとして、他にB,A&,Si,S,Aa,Cr,Ce,Bl,Ti等各領のものがあり、又ヘテロポリ酸をつくる能力のある金駅としてMo,W以外にV,Nb,Taが知られている。巨大アニオン中の中心ヘテロ原子と解接金橋原子との比は、上記例の1:12以外に、1:11,1:10,1:8,1:6,2:13,2:17,2:13,2:5,4:12のものが知られている。又結晶中の水分子の量は、結晶の作製条件、保存条件等により変動する。

を揮散させると、WO₃ 膜とヘテロポリ酸との接 療がより完全になる。次に銀ペーストを用いて SnO₂部分及びグラファイト部分からそれぞれリ ードをとり、エポキン樹脂のような無落剤系接着 剤で密封する。

なおケイタングステン酸及びリンタングステン 酸のペレットは、白色半透明であり、 WO₃ の育 色の発色に対してよいコントラストを与えるパッ クグラウンドとなる。

第1図は上配のようにして得た素子の稗成を示すもので、1はガラス基板2に5nO2膜3を設けた満明電低、4はWO3膜、6はグラファイトの対極、8は固体電解質層、7は電極1のリード、8は電極5のリード、8は工ポキン樹脂封口層である。

第2関は比較例の案子の構成を示すもので、電 概1の構成及びカーボン製対極 5'と解極1 との距 能は上記と同様である。なお1 ロロボリエチレン 製スペーサ、6'は硫酸水溶液、9'はパラフィンの 對口間である。

特開 昭53-48985(3)

次に、第1図の構成において、電解質にケイタングステン酸を用いた案子A、同じくリンタングステン酸を用いた案子B及び第2図の構成において電解質に7N碳酸を用いた案子Cの動作比較を示す。

第3図は素子Aに対して透明電極側が負となるように、定電圧の矩形破(1.5 V,1秒)を与え、次に極性を逆にして同じ矩形放を与えた場合の案子に流れる電流の時間変化を示す。エレクトロクロミック案子では、一般に案子に流れる電気型と潜色量は比例するので、できるだけ短い時間に大電流が流れるほど、歌い潜色が短時間で起こるととになる。即ち応答速度が速い。消色の場合にも同様のことが言える。

第4四及び第5図はそれぞれ案子B,Cに対する同じ条件での電流時間曲線を示す。第3~5図を比較すると、特にAの場合が応答速度が速く、B,Cがこれに続いている。さらにそれぞれの案子について矩形被(1.5 ♥,0.5 秒)を与えて着色消色の繰り返しテストをおこなった。案子A,

9 ~--

速度がさらに速くなることが期待される。 この場合には、多孔性の薄いスペーサ、例えばポリプロピレンやピニロンの不織布をどに、溶剤、特にアセトン・エーテル等の乾燥の早い含成素溶媒に溶かしたヘテロポリ酸を含みし、両側から超極をサンドイッチし、溶剤を乾燥するとヘテロポリ酸が含浸された不敏布の部分は WO3 膜の 対色部分に対して白色のパックグラウンドとなり、この場合でも、エポキン樹脂で密封が可能である。

先きに述べたごとく、ヘテロボリ酸は多くの種類があり、もちろん表示案子に応用可能なものは上記2例に限定されるものではなく、また2般以上のヘテロボリ酸を混合したものを用いることとできる。又符色発色可能な物質としてはWO3を例にあげたが、MoO3.TiO2 等の金瓜酸化物の他、水業イオンとの反応で色変化を生じる有缺化合物例とばPH指示機も用いることができる。 さらに対極としては上例のカーボン以外にも、 白金・パラジウム・金・ステンレスメリーンタル等を用いることができる。

B 化ついては 10⁵ 回級り返してもなか十分なコントラストで着色消色の確認ができたが、C については 4×10³ 回 の級り返しの後では着色時便色時のコントラストが十分でなく、明らかに案子の劣化が認められた。

以上述べたようにヘテロボリ駅を固体電解倒として使用した場合には、硫酸溶液を使用した場合には、硫酸溶液を使用した場合にはなるとともに毎命の理由とレクトロクロミック森子が得られる。このきまれてして、1つは硫酸溶液を用いる場合には含まれて起こり、2分化を起これでの応答特性を悪くし、発子ロボリ酸になる。ヘテロボロのとして、発力のができるとしても結晶水としてのから、でで、ないないはほとんと供給されず、従っの破にはほとんと供給されず、従っの関係にはほとんと供給されず、従っても関いたのである。また来子をエポーン関脂である。

をお上奥施例では、電解質を1 m厚のペレット として用いたが、極間距離をさらに縮めると応答

1 0

4、図面の簡単な説明

第1図は本発明の素子の解成例を示す図、第2 図は従来の菓子の構成を示す図、約3~5図は各種案子の応答特性を示す。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 3 図

第 5 図

