A PROJECT REPORT ON FABRICATION OF MULTI NOZZLE WHEEL SPRAYING IN AGRICULTURE

Submitted in practical fulfilment of the requirement For the award of the degree of

Bachelor of Technology

In

MECHANICAL ENGINEERING

K.S.PRAVEEN KUMAR REDDY	142R1A0307
U.BHARATH KUMAR REDDY	142R1A0311
H.PRASANNA KUMAR	142R1A0306
M.SURESH	152R5A0307
S.UMA MAHESHWAR	144G1A0398
S.SIVA PRASAD	132R1A0329

Under the Guidance of

A.MAHABOOB BASHA M.Tech.,

Assistant Professor

Mechanical Engineering Department

Chiranjeevi Reddy Institute of Engineering and Technology

DEPARTMENT OF MECHANICAL ENGINEERING CHIRANJEEVI REDDY INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Affiliated to J.N.T. University ANANTAPUR, College Code: 2R) ANANTAPUR – 515004 2014-2018

DEPARTMENT OF MECHANICAL ENGINEERING

CHIRANJEEVI REDDY INSTITUTE OF ENGINEERING AND TECHNOLOGY

CERTIFICATE

This is to certify that the project report entitled DESIGN AND IMPLIMENTATION OF SOLAR FERTILIZER BROADCASTER

Being submitted by

K.S.PRAVEEN KUMAR REDDY	142R1A0307
U.BHARATH KUMAR REDDY	142R1A0311
H.PRASANNA KUMAR	142R1A0306
M.SURESH	152R5A0307
S.UMA MAHESHWAR	144G1A0398
S.SIVA PRASAD	132R1A0329

In the Partial fulfilment of requirements for the award of BACHELOR OF TECHNOLOGY to JNTU, Anantapur. This record is a bonefide work carried out by them under my guidance and supervision. The result embodied in this project report has not been submitted to any other university or institute for the award of any degree

Project Guide Mr. A.MAHA BOOB BASHA M.Tech Asst. Professor Department of Mechanical CRIT, ANANTAPUR-515004 Date: Head of the department Mr. B. RAMA KRISHNA M. Tech Asst. Professor & HOD Department of Mechanical CRIT, ANANTAPUR-515004 Examiner 1:

Examiner 2:

Place:

DECLARATION

We declare that this written submission represents our own ideas and where other ideas or words have been included we have adequately sited and referenced and original sources. We also declare that we have adhered to all principles of academic honesty and integrity and have not misrepresented any ideas or fabricated any data in our submission we understand that any violation of the above will be cause for disciplinary action by the institute and also can evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

K.S.PRAVEEN KUMAR REDDY	Sign. with date
U.BARATH KUMAR REDDY	Sign. with date
H.PRASSANA KUMAR	Sign. with date
M.SURESH	Sign. with date
S.UMA MAHESWAR	Sign. with date
S.SIVA PRASAD	Sign. with date

ACKNOWLEDGEMENT

We Wish to express my profound gratitude to my guide Mr. A.MAHA BOOB BASHA M.Tech, Assistant professor, Department of Mechanical Engineering For his invaluable guidance and constant co-operation through this work. It has been pleasure and privilege to work under his guidance. His encouragement and guidance during the course or the present investigation have been invaluable.

We express our gratitude to Mr. B.RAMA KRISHNA M.Tech., Assistant Professor and Head of Mechanical Engineering Department for helping us with his esteemed guidance and valuable solutions to the problems encountered.

We thank reverend Principal Dr.C.RAMA CHANDRUDU_{M.Tech.}, Ph.D., for helping us in many regards throughout the work.

We are greatly indebted to Mr. K. CHIRANJEEVI REDDY Chairman of the institute and Mr. K. ARUN KUMAR REDDY Director of the institute for providing us the necessities for completing the project work.

We also thank the entire well-wishers whose co-operation and valuable suggestions have helped us for completion of the project successfully.

Project Associates

K.S.PRAVEEN KUMAR REDDY U.BHARATH KUMAR REDDY	142R1A0307 142R1A0311
H.PRASSANA KUMAR	142R1A0306
M.SURESH	152R5A0307
S.UMA MAHESHWAR	144G1A0398
S.SIVA PRASAD	132R1A0329

ABSTRACT

As India is agriculture based country and 70% people do farming and related work. Agriculture is required to be boomed to enhance the gross domestic product (GDP) of the country by improving the productivity.

The productivity of the crops can be increased with the help of pest control. Pesticide spraying is the necessary procedure in cultivation of the crops. The present idea deals with the designing and fabrication a pesticide sprayer which will be useful and affordable to the farmers which will assist to increase the productivity of crops.

Though this project an attempt has been done to improve the method of spraying the pesticide that will enhance the productivity and increase the formers income. So we have designed a pesticide spraying machine which will not improves productivity but also will reduce the effort of the farmers. The machine will save the time of the formers as well as efficiency in spraying. This model carrier's multi nozzle pesticides sprayer pump which will perform spraying at maximum rate in minimum time. Constant flow valves can be applied at nozzle to have uniform nozzle pressure.

V

LIST OF CONTENTS

	Page No.
 ACKNOWLEDGEMENT 	iv
• ABSTRACT	V
• INDEX	vi
• LIST OF FIGURES	X ·
• LIST OF TABLES	xi ::
• NOMENCLATURE	xii
CHAPTER-1: INTRODUCTION	1-9
1.1 Introduction	1
1.2 Historical back ground	4
1.2.1 Hand-pulled sprayers	4
1.2.2Animal-pulled sprayers	4
1.2.3 Tractor-powered sprayers	4
1.2.4 Bicycle sprayer	4
1.3 Hand operated sprayers	5
1.3.1 Mechanism lever-operated knapsack sprayer	5
1.4 Supplementary points	6
1.5 Lever-operated knapsack sprayers	7
1.5.1Motorized hydraulic knapsack sprayers	7
1.5.2 Compression sprayers	7
1.5.3 Motorized mist blowers	7
1.6 Nozzle choice	8
1.7 Knapsack sprayers	8
CHAPTER – 2: LITERATURE SURVEY	10-12
CHAPTER – 3: RESEARCH METHODOLOGY	13-15
3.1 Problem defination	13

3.2 Application method and Choice of Equipment	13
3.3 Objective	14
CHAPTER – 4: COMPONENTS OF MULTI SPRAYER PUMP	16-32
4.1 Sprockets	16
4.2 Chain	18
4.3 Crank	18
4.4 Connecting rod	19
4.5 Pump	19
4.6 Nozzle	20
4.6.1 Working of nozzle	20
4.6.2 Nozzle spray pattern	22
4.7 Wheel	24
4.8 Frame	24
4.9 Tank	25
4.10 Bearing	25
4.11 Basic components of sprayer	27
4.11.1 Pump	27
4.11.2 Tank	27
4.11.3 Agitator	28
4.114 Air chamber	28
4.12 Components of sprayer pump	28
4.12.1 Pressure gauge	28
4.12.2 Pressure regulator	28
4.12.3 Strainer	28
4.12.4 Nozzles	28
4.13 Types of sprayer	28
4.13.1 Low pressure sprayer	29

4.13.1a Tractor-mounted	29
4.13.2b High-clearance sprayer	29
4.13.2c Trailer-mounted sprayers	30
4.13.2d Truck mounted sprayer	30
4.13.2 High pressure sprayer	30
4.13.3 Air-carrier sprayers	30
4.13.4 Foggers (Mist blowers)	31
4.13.5 Hand operated sprayers	31
CHAPTER – 5: CONSTRUCTION AND WORKING	33-36
5.1 Construction and working of push operated spray pump	33
5.1.1 Construction	34
5.1.2 Crank-slotted mechanism	35
5.1.3 Working	35
CHAPTER – 6: SAFETY OPERATION	37-40
6.1 Chain selection	37
6.1.1 Chain failures caused by poor selection	37
6.1.2 The correct chain selection	37
6.1.3 Normal revolution range	38
6.1.4 Celing revolution range	38
6.1.5 General rules for choosing the chain pitch	38
6.1.6 Safety	39
6.2 Safe operated needs a qualified operator	40
CHAPTER – 7: COST ESTIMATION	45-46
7.1 Cost estimation of the project	45
CHAPTER – 8: ADVANTAGES AND DISADAVANTAGES OF	47-48
MULTI SPRAYER	
Advantages	47
Disadvantages	47

Applications	48
CHAPTER – 9: DESIGN OF MULTI NOZZLE WHEEL SPRAY	49-54
9.1 Design of wheel	49
9.2 Design of pinion	49
9.3 Design of gear sprocket	50
9.4 Design of chain	50
9.5 Design of crank and connecting rod by using synthesis of	51
mechanism	
9.6 Nozzle selection	51
9.7 Design of manifold and pipe selection	52
9.8 Design of pump	53
9.9 Design of frame	53
CHAPTER – 10: TESTING & PERFORMANCE OF MULTI SPRAYER	55-57
10.1 Testing's	55
10.2 Observations	56
10.3 Results	57
CHAPTER – 11 :CONCLUSION	58
REFERENCES	59

LIST OF FIGURES

Figure N0.	Title	Page No.
1 1	T	
1.1	Leaver operated knapsack sprayer	6
1.2	Knapsack sprayers	8
3.1	General Procedure in design of multi sprayer	15
4.1	Sprockets	16
4.2	Chain	18
4.3	Crank	18
4.4	Connecting rod	19
4.5	Pump	19
4.6	Nozzle	20
4.7	Working of nozzle	21
4.8	Nozzle spray pattern	22
4.9	Wheel	24
4.10	Tank	25
4.11	Bearing	26
4.12	Components of sprayer	27
5.1	Agricultural reciprocating multi-sprayer	33
5.2	Construction of pump	34
5.3	Crank slotted mechanism	35

LIST OF TABLES

Table No.	Table Name	Page No.
1.1	Distances (horizontal & vertical) and height of crop	2
7.1	Cost Estimation	45
10.1	Hand operated pump	56
10.2	Mechanism bicycle sprayer	56

NOMENCLATURE

D_p Pitch circle diameter

 $T_p \qquad \qquad \text{-} \qquad \text{Teeth on pinion}$

 $T_g \qquad \qquad \text{-} \qquad \text{Teeth on gear}$

L - Length of chain

D - Diameter of wheel

K - Number of chain

P - Pressure drop

 $N_p \qquad \qquad \text{-} \qquad \text{Number of plants}$

Q - Pump discharge

k - Bending co-efficient

f - Friction factor

 $h_{fE} \qquad \quad - \qquad Loss \ at \ entry$

 $h_{ft} \hspace{1.5cm} \text{-} \hspace{1.5cm} \text{Total losses}$

 $h_{fo} \qquad \qquad - \qquad Loss \ at \ out$

 $D_o \qquad \qquad \text{-} \qquad \text{Outer dia of pinion}$

 $D_i \qquad \qquad \text{-} \qquad \text{Inner dia pinion}$

 $D_g \qquad \qquad \text{-} \qquad Diameter\ of\ gear}$