

Overview

- 1. Problem
- 2. Objective
- 3. Overview

4. Dataset

- 5. Architecture
- 6. Evaluation
- 7. Results
- 8. Future Work

Over 970 million people suffer from mental health disorders Global shortage of over 4 million mental health professionals Barriers:

- High cost of therapy
- Stigma surrounding mental health
- Limited geographic access

Need for scalable, empathetic, and accessible AI support tools

Project Objective

- Build a web-based therapy chatbot using fine-tuned Large Language Models (LLMs)
- Deliver empathetic, CBT-aligned responses
- Detect user emotions with high accuracy
- Compare performance of 3 LLMs
- Ensure ethical, privacy-preserving, and usercentered design

- Fine-tuned LLMs:
- Llama-3.1-8B-Instruct
- Qwen/Qwen2-7B-Instruct
- Mistral-7B-Instruct-v0.3

Hybrid architecture:

CBT-based rule prompts + generative replies

- 20,000-row subset from 800,000-row mental health dataset
- Sources: public forums + synthetic dialogue generation
- Emotions covered: anxiety, grief, stress, loneliness, anger
 Preprocessing steps:
 - Cleaning, normalization, spelling correction
 - Tokenization with Hugging Face tools

80/20 train-validation split with stratified sampling

Hyperparameter Tuning

Grid search over:

- Learning rates: 1e-5, 2e-4, 5e-4
- LoRA ranks: 8, 16, 32
- Batch sizes and accumulation steps

Best configuration:

- Learning rate = 2e-4
- LoRA rank = 16
- Dropout = 0.1
- Early stopping after 500 steps of no improvement

System Architecture

Emotion Detection:

- Softmax classifier (5 classes: happy, sad, anxious, angry, neutral)
 - 90% accuracy using fine-tuned Qwen embeddings

Dialogue Manager:

- Rule-based CBT prompts
- LLM-generated empathetic responses
- State tracking via Finite State Machine

Evaluation Protocol

- Evaluated using Gemini API on 100 test prompts
- **Criteria:**
 - Empathy
 - Understanding
 - Advice Quality
 - Conversation Flow

Judging function compared 3 model responses per prompt

Selected winner based on aggregated scores

Results - Fine-Tuning & Evaluation

- Validation Loss (Best Checkpoint):
- Qwen2-7B: 0.8510
- Mistral-7B: 0.7352
- Llama-3.1-8B: 0.7241

Model	Empathy	Understanding	Advice	Flow	Overall
Qwen2-7B	94%	93%	90%	91%	92%
Llama-3.1-8B	87%	86%	84%	83%	85%
Mistral-7B	82%	80%	79%	78%	80%

- Dataset: only 20k rows used due to GPU constraints
- Struggles with complex emotional input (e.g., sarcasm)
- No real-time crisis detection system
- Internet dependency limits reach
- Gemini API sometimes misjudges nuance in emotional tone

Future Work

- Train on full 800k dataset
- Add multilingual and offline support
- Integrate crisis detection and escalation protocols
- Combine generative responses with structured CBT modules
- Conduct clinical validation via longitudinal studies

