1. Свойства интегралов от неотрицательных функций (в т.ч. теорема Леви для рядов).

1. Основные свойства

Монотонность

Если $0 \leq f(x) \leq g(x)$ п.в. на X, то:

$$\int_X f \, d\mu \le \int_X g \, d\mu.$$

Линейность

Для $a, b \geq 0$:

$$\int_X (af+bg)\,d\mu = a\int_X f\,d\mu + b\int_X g\,d\mu.$$

Аддитивность по области

Если $A\cap B=\emptyset$, то:

$$\int_{A\cup B}f\,d\mu=\int_{A}f\,d\mu+\int_{B}f\,d\mu.$$

Невозрастание меры

Если $A\subseteq B$, то:

$$\int_A f\,d\mu \le \int_B f\,d\mu.$$

2. Теорема Леви для рядов

Если $f_k \geq 0$ и измеримы, то:

$$\int_E \sum_{k=1}^\infty f_k \, d\mu = \sum_{k=1}^\infty \int_E f_k \, d\mu.$$

2. Неравенство Чебышева

Суммируемая функция $f\in L(E,\mu)$

Определение

Функция f называется суммируемой на E (пишут f \in L(E, μ)), если:

$$\int_E |f|\,d\mu < +\infty$$

Свойство

Если f суммируема, то она конечна почти всюду на Е.

Измеримая функция $f \in S(E)$

S(E) — это множество всех измеримых функций $f:E o\mathbb{R}$, принимающих конечное число значений.

$$S(E)=\{f$$
 измерима $\mid f(E)=\{c_1,\ldots,c_n\},\,c_i\in\mathbb{R},\,n<\infty\}$

Формулировка неравенства Чебышева

Для $f \in S(E)$ (классу измеримых функций), t > 0:

$$\mu\{x\in E: |f(x)|\geq t\}\leq rac{1}{t}\int_{E}|f|\,d\mu$$

Следствие 1

Если $f\in L(E,\mu)$, то $\mu(\{x\in E:|f(x)|=+\infty\})=0.$

Следствие 2

Если $f\geq 0$ и $\int_E f d\mu=0$, то f=0 почти всюду на E.

3. Приближение интеграла интегралом по множеству конечной меры

Определение

Пусть $f\in L(E,\mu)$, где $\mu E=+\infty$. Тогда для любого $\varepsilon>0$ существует подмножество $E_{\varepsilon}\subset E$ такое, что:

1. $\mu E_{arepsilon} < +\infty$ (множество $E_{arepsilon}$ имеет конечную меру),

2. $\int_{E\setminus E_{arepsilon}}|f|\,d\mu<arepsilon$ (интеграл от |f| по дополнению $E\setminus E_{arepsilon}$ меньше arepsilon).

Счетная аддитивность интеграла

Если $E=\bigcup_k E_k$, где E_k измеримы и попарно не пересекаются, и интеграл $\int_E f\,d\mu$ существует, то:

$$\int_E f\,d\mu = \sum_k \int_{E_k} f\,d\mu.$$

4. Теорема Фату

liminf

$$\liminf_{n o\infty}A_n=igcup_{n=1}^\inftyigcap_{k=n}^\infty A_k$$

Фату для неотрицательных измеримых функций

Пусть $f_n \in S(E)$, $f_n \geq 0$. Тогда:

$$\int_E \liminf_{n o\infty} f_n\,d\mu \leq \liminf_{n o\infty} \int_E f_n\,d\mu.$$

Фату для поточечного предела

Пусть $f_n, f \in S(E)$, $f_n \geq 0$, $f_n o f$ почти везде на E. Тогда:

$$\int_E f \, d\mu \leq \liminf_{n o \infty} \int_E f_n \, d\mu.$$

5. Теорема Лебега о мажорированной сходимости

Мажоранта

Функция (или число), которая доминирует (превосходит) другую функцию (или последовательность) на заданном множестве.

Теорема Лебега

Если последовательность измеримых функций f_n сходится к f почти везде на E, и существует суммируемая мажоранта $\phi \in L(E,\mu)$ (т.е. $|f_n| \leq \phi$ почти везде), то предельный переход под знаком интеграла корректен:

$$\lim_{n o\infty}\int_E f_n\,d\mu=\int_E f\,d\mu.$$

Следствие Теоремы Лебега (для множеств конечной меры)

Если $\mu(E) < +\infty$, f_n равномерно ограничены ($|f_n| \leq K$) и $f_n o f$ почти везде, то

$$\lim_{n o\infty}\int_E f_n\,d\mu=\int_E f\,d\mu.$$

Ограниченность семейства функций

Свойство семейства вещественных функций $\{f_a\}_{a\in A}$, где A — некоторое множество индексов, X — произвольное множество. Означает, что все функции семейства ограничены одной константой C:

$$\exists C > 0 \quad orall a \in A \quad orall x \in X \quad |f_a(x)| < C.$$

6.Интеграл Лебега от функции непрерывной на замкнутом промежутке; сравнение несобственого интеграла с интегралом Лебега.

Определение интеграла Римана

Функция $f:[a,b] o \mathbb{R}$ интегрируема по Риману, если существует предел интегральных сумм $\sum_{i=1}^n f(\xi_i) \Delta x_i$ при стремлении диаметра разбиения к нулю.

Критерий Лебега интегрируемости по Риману

Функция $f:[a,b] o \mathbb{R}$ интегрируема по Риману ($f \in R[a,b]$), если она ограничена и множество её точек разрыва имеет нулевую меру.

Сравнение интегралов Римана и Лебега

Если $f\in R[a,b]$, то $f\in L[a,b]$, и значения интегралов совпадают: $(L)\int_a^b f=(R)\int_a^b f.$

Несобственный интеграл и интеграл Лебега

Несобственный интеграл Римана на [a,c] — предел $\lim_{b o a}\int_b^c f(t)dt$. Он абсолютно сходится, если сходится $\int_a^c |f(t)|dt$.

7. Вычисление меры множества по мерам сечений

Теорема о связи меры множества с мерами его сечений

1. Измеримость сечений

Для множества $E\subseteq\mathbb{R}^{n+m}$ и фиксированного $x\in\mathbb{R}^n$ сечение определяется как:

$$E(x) = \{ y \in \mathbb{R}^m \mid (x, y) \in E \}$$

Если E - измеримо по Лебегу в \mathbb{R}^{n+m} , то для почти всех $x\in\mathbb{R}^n$ сечения E(x) измеримы в \mathbb{R}^m

2. Измеримость функции мер

Для измеримого множества $E\subseteq \mathbb{R}^{n+m}$ функция меры сечений определяется как:

$$f_E:\mathbb{R}^n o\mathbb{R},\quad f_E(x)=\mu(E(x))$$

 $E(x) = \{y \in \mathbb{R}^m \mid (x,y) \in E\}$ - сечение множества μ - мера Лебега в \mathbb{R}^m

3. Формула меры

Мера $\mu_{n+m}(E)$ — это стандартная мера Лебега на \mathbb{R}^{n+m} .

$$\mu_{n+m}(E) = \int_{\mathbb{R}^n} \mu_m(E(x)) \, dx.$$

Измеримость по Лебегу

Множество $E\subset\mathbb{R}^n$ измеримо по Лебеге, если для любого $\varepsilon>0$ существуют: Открытое множество $U\supset E$ и замкнутое $F\subset E$, такие что $\mu_n(U\setminus F)<\varepsilon$.

8. Мера декартова произведения и мера Лебега как произведение мер

Мера декартова произведения

 \mathcal{A}_n - σ -алгебра измеримых по Лебегу множеств в \mathbb{R}^n

Для измеримых множеств $A \in \mathcal{A}_n$, $B \in \mathcal{A}_m$ их декартово произведение $A \times B$ измеримо в \mathbb{R}^{n+m} , и его мера равна произведению мер:

$$\mu_{n+m}(A \times B) = \mu_n(A) \cdot \mu_m(B).$$

Мера Лебега как произведение мер

Мера Лебега на \mathbb{R}^n — это n-кратное произведение одномерных мер Лебега:

$$\lambda^n = \underbrace{\lambda^1 \times \lambda^1 \times \cdots \times \lambda^1}_{n \text{ pas}}.$$

9. Мера графика и подграфика

График функции (Гf)

Определение:

Для $f:E\subset\mathbb{R}^n o\mathbb{R}$ график — множество точек $(x,y)\in\mathbb{R}^{n+1}$, где y=f(x).

Подграфик функции (Qf)

Определение:

Для $f:E\subset\mathbb{R}^n o [0,+\infty]$ подграфик — множество точек (x,y), где $0\leq y\leq f(x)$.

Мера графика

Если $E\subset\mathbb{R}^n$, $f\in S(E)$ (измерима по Лебегу), то $\Gamma f\in\mathcal{A}_{n+1}$ и $\mu_{n+1}(\Gamma f)=0.$

Мера подграфика

Пусть $E \in \mathcal{A}_n$, $f: E o [0, +\infty]$. Тогда:

$$Q_f$$
 измерим $\Leftrightarrow f$ измерима, и $\mu_{n+1}(Q_f) = \int_E f \, d\mu_n.$

Доп:

 \mathcal{A}_n - σ -алгебра измеримых по Лебегу множеств в \mathbb{R}^n

10. Теорема Тонелли и Фубини

Теорема Тонелли (для неотрицательных функций)

Пусть $E\subset\mathbb{R}^{n+m}$, $f\in S(E o[0,+\infty])$. Тогда справедливы следующие утверждения.

- 1. При почти всех $x \in \mathbb{R}^n$ $f(x,\cdot) \in S(E(x))$.
- 2. Функция I, заданная формулой $I(x)=\int_{E(x)}f(x,y)dy$, измерима на \mathbb{R}^n .
- 3. $\int_E f d\mu_{n+m} = \int_{\mathbb{R}^n} I(x) dx$.

Теорема Фубини (для суммируемых функций)

Пусть $E\subset\mathbb{R}^{n+m}$, $f\in L(E)$. Тогда справедливы следующие утверждения.

- 1. При почти всех $x \in \mathbb{R}^n$ $f(x,\cdot) \in L(E(x)).$
- 2. Функция I, заданная формулой $I(x)=\int_{E(x)}f(x,y)dy$, суммируема на \mathbb{R}^n .
- 3. $\int_E f d\mu_{n+m} = \int_{\mathbb{R}^n} I(x) dx$.

Основное отличие теорем

Теорема Тонелли применяется к неотрицательным измеримым функциям $(f \geq 0)$, но не требует их суммируемости. Теорема Фубини применяется к функциям произвольного знака, но требует их суммируемости на E $(f \in L(E))$. При выполнении условий Фубини справедливо равенство повторных интегралов.

Интегральная функцией сечения I(x)

Функция, определяемая как $I(x)=\int_{E(x)}f(x,y)\,dy$, где $E(x)=\{y\in\mathbb{R}^m:(x,y)\in E\}$ — сечение множества E при фиксированном x.

11. Интеграл Эйлера-Пуассона

Определение:

Интеграл Эйлера-Пуассона — это несобственный интеграл вида $I=\int_0^{+\infty}e^{-x^2}\,dx$, значение которого равно $\frac{\sqrt{\pi}}{2}$.

Ключевые шаги:

- 1. Замена $I^2 = \iint e^{-(x^2+y^2)} \, dx \, dy.$
- 2. Переход к полярным координатам: $\int_0^{+\infty} \int_0^{\pi/2} r e^{-r^2} \, d\varphi \, dr$. 3. Вычисление: $\frac{\pi}{4}$, откуда $I=\frac{\sqrt{\pi}}{2}$.

12. Мера n-мерного шара и сферы

Определение:

Мера Лебега μ_n n-мерного шара $\overline{B}_n(a,R)=\{x\in\mathbb{R}^n:|x-a|\leq R\}$ вычисляется по формуле:

$$\mu_n \overline{B}_n(a,R) = rac{2^n}{n!} \left(rac{\pi}{2}
ight)^{\lfloor rac{n}{2}
floor} R^n.$$

Примеры:

- $\mu_2 \overline{B}_2(a,R) = \pi R^2$ (круг),
- $\mu_3\overline{B}_3(a,R)=rac{4}{3}\pi R^3$ (шар),
- $\mu_4 \overline{B}_4(a,R) = \frac{\pi^2}{2} R^4$.

13. Замена переменной в интеграле, образ и плотность меры

Общая схема замены переменной

Для пространств с мерами (X,A,μ) , (Y,B,v) и измеримой функции $h\geq 0$, если $vB=\int_{\Phi^{-1}(B)}h\,d\mu$ и f измерима на Y, то:

$$\int_Y f\,dv = \int_X (f\circ\Phi)h\,d\mu.$$

Образ меры

Если $h\equiv 1$, то $v=\Phi(\mu)$ (образ меры μ), и:

$$\int_Y f\,dv = \int_X f\circ\Phi\,d\mu.$$

Плотность меры

Если $vA=\int_A h\,d\mu$, то h- плотность v относительно μ , и:

$$\int_X f \, dv = \int_X f h \, d\mu.$$

Доп

 Φ – это измеримое отображение (функция), которое "переводит" точки из пространства X в пространство Y.

h – весовая функция, это неотрицательная измеримая функция, которая определяет, как мера μ на X преобразуется в меру v на Y.

14. Естественная мера на кривой и на поверхности. Криволинейный и поверхностный интегралыпервого рода для элементарных поверхностей

1. Мера, порожденная кривой

Пусть $\gamma:\langle a,b\rangle \to \mathbb{R}^n$ - кривая. Для множества B определим $\mathcal{A}=\{B:\gamma^{-1}(B) \text{ измеримо}\}$ (σ -алгебра). Мера m_γ на кривой задается формулой:

$$m_{\gamma}(B)=\int_{\gamma^{-1}(B)}\|\gamma'(t)\|dt$$

2. Мера, порожденная поверхностью

Пусть $\varphi:U\subseteq\mathbb{R}^2\to\mathbb{R}^3$ - параметризация поверхности (φ гладкая). Для множества B мера m_S на поверхности задается формулой:

$$m_S(B) = \int_{arphi^{-1}(B)} \|arphi_u imes arphi_v\| du dv$$

3. Криволинейный интеграл первого рода

Пусть $\gamma:\langle a,b\rangle \to \mathbb{R}^n$ - кривая, $A\subseteq \mathbb{R}^n$, $x=\gamma(t)$. Интеграл функции f по кривой γ в множестве A определяется как:

$$\int_A f d\gamma = \int_{\gamma^{-1}(A)} f(\gamma(t)) \cdot \|\gamma'(t)\| dt$$

4. Поверхностный интеграл первого рода

Пусть S - поверхность, заданная параметризацией $\varphi:U\subseteq\mathbb{R}^2\to\mathbb{R}^3$, $x=\varphi(u)$, $A\subseteq\mathbb{R}^3$. Для функции f, определенной на поверхности, интеграл по множеству A задается формулой:

$$\int_A f dS = \int_{arphi^{-1}(A)} f(arphi(u)) \cdot \|arphi_u imes arphi_v\| du dv$$

15. Преобразование меры Лебега при диффеоморфизме. Замена переменной в интеграле Лебега. Использование полярных, цилиндрических и сферических координат в кратных интегралах.

Диффеоморфизм

Пусть $G,V\subset\mathbb{R}^n$ — открытые множества. Отображение $\Phi:G o V$ называется диффеоморфизмом, если:

- Ф биективно
- $\Phi \in C^{(1)}(G o V)$
- $\Phi^{-1} \in C^{(1)}(V o G).$ Якобиан $\det \Phi'
 eq 0$ во всех точках G.

Преобразование меры Лебега

Пусть $G\subset \mathbb{R}^n$ открыто, $\Phi:G o \mathbb{R}^n$ — диффеоморфизм. Тогда для $E\in \mathcal{A}_n(G)$:

$$\mu(\Phi(E)) = \int_E |\det \Phi'(x)| d\mu.$$

Замена переменных в интеграле Лебега

Пусть $G\subset\mathbb{R}^n$ открыто, $\Phi:G o\mathbb{R}^n$ — диффеоморфизм, $E\in\mathcal{A}_n(G)$, $f\in\mathcal{S}(\Phi(E))$. Тогда:

$$\int_{\Phi(E)} f(y) d\mu(y) = \int_E f(\Phi(x)) \cdot |\det \Phi'(x)| d\mu(x).$$

Равенство выполняется, если существует один из интегралов.

Классические замены координат

Полярные (\mathbb{R}^2): $x=r\cos\varphi,\ y=r\sin\varphi,\quad |\det\Phi'|=r$ Цилиндрические (\mathbb{R}^3): $x=r\cos\varphi,\ y=r\sin\varphi,\ z=h,\quad |\det\Phi'|=r$ Сферические (\mathbb{R}^3): $x=r\cos\varphi\cos\psi,\ y=r\sin\varphi\cos\psi,\ z=r\sin\psi,\quad |\det\Phi'|=r^2|\cos\psi|$

Доп:

 $\det D arphi$ - якобиан.

16. Мера Лебега-Стилтьеса и дискретная мера

Полукольцо ячеек

Полукольцо ячеек P_{Δ} — это семейство промежутков вида [a,b) (или других типов: (a,b], [a,b], (a,b)), замкнутое относительно пересечения и таких, что разность двух ячеек представима в виде конечного объединения непересекающихся ячеек из P_{Δ} .

Мера Лебега-Стилтьеса

Мера μ_g на полукольце ячеек P_Δ , заданная через возрастающую непрерывную слева функцию g как $v_g[a,b]=g(b)-g(a)$, и стандартно распространённая на σ -алгебру A_g .

Дискретная мера Лебега-Стилтьеса

Для функции g со скачками h_k в точках a_k :

$$\mu_g(A) = \sum_{a_k \in A} h_k$$

где A — любое измеримое подмножество числовой прямой (например, интервал, отрезок или точечное множество).

Ключевая связь

Дискретная мера — частный случай меры Лебега-Стилтьеса, где g кусочно-постоянна со скачками в точках носителя. Это позволяет единообразно работать как с непрерывными, так и дискретными распределениями.

17. Интеграл Лебега-Стилтьеса по мере, порожденной абсолютно непрерывной функцией

1. Определение локально абсолютно непрерывной функции

Функция $g:\Delta\to\mathbb{R}$ называется локально абсолютно непрерывной на промежутке Δ ($g\in AC_{loc}(\Delta)$), если существует точка $x_0\in\Delta$ и функция $h\in L_{loc}(\Delta)$ такие, что для всех $x\in\Delta$ выполняется:

$$g(x)=\int_{x_0}^x h d\mu +g(x_0).$$

2. Теорема об интеграле по абсолютно непрерывной функции

Пусть Δ — промежуток, $x_0\in \Delta$, $h\in L_{loc}(\Delta)$, $h\geq 0$, $g(x)=\int_{x_0}^x hd\mu+g(x_0)$, $E\in A_1(\Delta)$ (измеримо по Лебегу), $f\in S(E)$ (измерима и знакопостоянна на E). Тогда:

$$\int_E f dg = \int_E f h d\mu,$$

причем если существует один из этих интегралов, то существует и другой, и они равны.

3. Следствие для гладкой функции (С¹-случай)

Пусть Δ — промежуток, $g\in C^{(1)}(\Delta)$ (непрерывно дифференцируема), $g'\geq 0,$ $E\in A_1(\Delta),$ $f\in S(E)$. Тогда:

$$\int_E f dg = \int_E f g' d\mu,$$

18. Формула Фруллани

Дано: a,b>0, $f\in C(0;+\infty)$.

$$I(a,b) = \int_0^\infty \left(f(ax) - f(bx)
ight) dx$$

1. Если $\lim_{x o 0^+} f(x) \in \mathbb{R}$ (существует и конечен), то:

$$I(a,b) = -\left(\lim_{x o 0^+} f(x)
ight) \lnrac{a}{b}$$

2. Если $\lim_{x o 0^+} f(x) \in \mathbb{R}$ и $\lim_{x o +\infty} f(x) \in \mathbb{R}$, то:

$$I(a,b) = \left(\lim_{x o 0^+} f(x) - \lim_{x o +\infty} f(x)
ight) \ln rac{b}{a}$$

3. Если $\lim_{x \to +\infty} f(x) \in \mathbb{R}$ (существует и конечен), то:

$$I(a,b) = \left(\lim_{x o +\infty} f(x)
ight) \ln rac{a}{b}$$

19. Локальное условие Лебега для интегралов зависящих от параметра. Равномерная сходимостьнесобственных интегралов. Признаки Вейерштрасса, Дирихле и Абеля равномерной сходимости несобственных интегралов

Локальное условие Лебега для интегралов, зависящих от параметра

Пусть функция f(x,y) интегрируема по x на $[a,+\infty)$ при каждом $y\in Y$ и удовлетворяет условию:

$$\exists g(x) \in L^1([a,+\infty)): |f(x,y)| \leq g(x)$$
 для почти всех x и всех $y \in Y$

Тогда интеграл $\int_a^\infty f(x,y) dx$ сходится равномерно по $y \in Y$.

Равномерная сходимость несобственных интегралов

Интеграл $\int_a^{+\infty} f(x,y) dx$ сходится равномерно на множестве Y, если:

$$orall arepsilon > 0 \ \exists A = A(arepsilon) > a: orall R > A, orall y \in Y \Rightarrow \left| \int_R^{+\infty} f(x,y) dx
ight| < arepsilon$$

где R - это нижний предел интегрирования для остатка интеграла.

Критерий Коши равномерной сходимости

Интеграл $\int_a^\infty f(x,y) dx$ сходится равномерно на Y тогда и только тогда, когда:

$$orall arepsilon > 0 \ \exists A > a: orall R_1, R_2 > A, orall y \in Y \Rightarrow \left| \int_{R_1}^{R_2} f(x,y) dx
ight| < arepsilon$$

где R_1, R_2 - Это произвольные точки на оси x, лежащие правее A.

Признак Вейерштрасса

Если $|f(x,y)| \leq g(x)$ для всех $x \geq a$, $y \in Y$ и $\int_a^{+\infty} g(x) dx$ сходится, то $\int_a^{+\infty} f(x,y) dx$ сходится равномерно на Y.

Признак Дирихле

Пусть:

- 1. $\left|\int_a^R f(x,y) dx
 ight| \leq M$ для всех R>a, $y\in Y$
- 2. При каждом $y \in Y$ функция g(x,y) монотонна по x
- 3. g(x,y)
 ightrightarrows 0 при $x
 ightarrow +\infty$ на Y

Тогда $\int_a^\infty f(x,y)g(x,y)dx$ сходится равномерно на Y (\rightrightarrows это сходится равномерно).

Признак Абеля

Пусть:

- 1. $\int_a^\infty f(x,y) dx
 ightrightarrows$ по y (сходится равномерно), при $x
 ightarrow \infty$ на Y
- 2. g(x,y) равномерно ограничена: $|g(x,y)| \leq M$ для всех $x \geq a$, $y \in Y$
- 3. При каждом $y \in Y$ функция g(x,y) монотонна по x

Тогда
$$\int_a^{+\infty} f(x,y)g(x,y)dx
ightrightarrows$$
 на Y .

Доп:

 $L^1(X)$ -пространство абсолютно интегрируемых функций на X (интеграл понимается в смысле Лебега):

$$L^1(X) = \left\{ f: X o \mathbb{R} \ \Big| \ \int_X |f(x)| \, dx < +\infty
ight\}$$

Y - произвольное множество, на котором определен параметр. ([c,d])

20. Связь (равномерной) сходимости несобственного интеграла с (равномерной) сходимостью ряда из определенных интегралов.

Несобственный интеграл

$$I(y) = \int_a^\infty f(x, y) \, dx$$

Ряд из кусочных интегралов

$$\sum_{k=1}^{\infty} u_k(y) = \sum_{k=1}^{\infty} \int_{x_{k-1}}^{x_k} f(x,y) \, dx$$

Критерий равномерной сходимости

- 1. Интеграл \to Ряд: Если I(y) сходится равномерно, то для любого разбиения ряд $\sum u_k(y)$ сходится равномерно (так как "хвост" ряда соответствует "хвосту" интеграла).
- 2. Ряд \to Интеграл: Если для какого-то разбиения ряд $\sum u_k(y)$ сходится равномерно, то I(y) сходится равномерно (поскольку частичные суммы ряда совпадают с интегралами $\int_a^{x_N} f(x,y) \, dx$).

21. Предельный переход под знаком интеграла по параметру при условии Лебега, предельный переход

под знаком интеграла по параметру в случае равномерной сходимости.

Предельный переход при условии Лебега

Пусть (X,A,μ) — пространство с мерой, $ilde{Y}$ — метрическое пространство, $Y\subset ilde{Y}$, $f:X\times Y\to \mathbb{R}$, при всех $y\in Y$ $f(\cdot,y)\in L(X,\mu)$ (где у фиксирован) . Если при почти всех $x\in X$ $f(x,y)\underset{y\to y_0}{\longrightarrow} g(x)$, и существует $\Phi\in L(X,\mu)$ и окрестность V_{y_0} , такие что $|f(x,y)|\le \Phi(x)$ для почти всех x и $y\in V_{y_0}\cap Y$,

то
$$g\in L(X,\mu)$$
 и $\lim_{y o y_0}\int_X f(x,y)d\mu(x)=\int_X g(x)d\mu(x)=\int_X \lim_{y o y_0} f(x,y)d\mu(x).$

Предельный переход при равномерной сходимости

Пусть (X,A,μ) — пространство с мерой, $ilde{Y}$ — метрическое пространство, $Y\subset ilde{Y}$, $\mu X<+\infty$, $f:X\times Y\to \mathbb{R}$, $f(\cdot,y)\in L(X,\mu)$, и $f(\cdot,y)\underset{y\to y_0}{\Longrightarrow}g$ (равномерно на X), y_0 - предельная точка: Тогда $g\in L(X,\mu)$ и $\lim_{y\to y_0}\int_X f(x,y)d\mu(x)=\int_X g(x)d\mu(x)=\int_X \lim_{y\to y_0}f(x,y)d\mu(x)$.

Равномерная сходимость

Семейство $\{f(\cdot,y)\}_{y\in Y}$ равномерно сходится к g на X, если $\sup_{x\in X}|f(x,y)-g(x)|\underset{y\to y_0}{\longrightarrow}0.$ Обозначение: $f(\cdot,y)\rightrightarrows g.$

22. Локальная непрерывность интеграла по параметру, глобальная непрерывность интеграла по параметру.

Локальная непрерывность интеграла по параметру в точке

Пусть (X,A,μ) — пространство с мерой, Y — метрическое пространство, $f:X\times Y\to\mathbb{R}$, при всех $y\in Y$ $f(\cdot,y)\in L(X,\mu)$, $y_0\in Y$, при почти всех $x\in X$ функция $f(x,\cdot)$ непрерывна в точке y_0 , и f удовлетворяет локальному условию Лебега в точке y_0 (т.е. существует окрестность V_{y_0} и функция $\Phi\in L(X,\mu)$ такие, что для почти всех $x\in X$ и всех $y\in V_{y_0}\cap Y$ выполняется $|f(x,y)|\leq \Phi(x)$). Тогда интеграл I(y) непрерывен в точке y_0 . $(I(y)=\int_X f(x,y)\,d\mu(x))$

Глобальная непрерывность интеграла по параметру на множестве

Пусть X — компакт в \mathbb{R}^n , μ — мера Лебега, Y — метрическое пространство, $f\in C(X imes Y)$. Тогда интеграл I(y) принадлежит C(Y) (т.е. непрерывен на Y). $(I(y)=\int_X f(x,y)\,d\mu(x))$

Различие

Оба результата (локальный и глобальный) опираются на идею контроля роста f(x,y): в первом случае — через локальную мажоранту, во втором — через глобальную ограниченность, обеспечиваемую компактностью X.

Локальное условие Лебега и его роль

 $\exists \Phi \in L(X,\mu), \exists V_{y_0}:$ при почти всех $x \in X \ orall y \in \dot{V}_{y_0} \cap Y \ |f(x,y)| \leq \Phi(x).$

23: Правило Лейбница дифференцирования интеграла по параметру в случае абсолютной суммируемости

Условия применимости правила Лейбница

Пусть функция $f(x,\alpha)$ определена на $[a,b] imes [lpha_1,lpha_2]$, интегрируема по x на [a,b] для любого $lpha\in [lpha_1,lpha_2]$, и её частная производная $rac{\partial f}{\partial lpha}$ существует и абсолютно суммируема (т.е. $\int_a^b \left|rac{\partial f}{\partial lpha}\right| dx < \infty$). Тогда, то для $lpha\in [lpha_1,lpha_2]$ справедливо:

$$rac{d}{dlpha}\left(\int_a^b f(x,lpha)\,dx
ight)=\int_a^b rac{\partial f(x,lpha)}{\partiallpha}\,dx.$$

Важность абсолютной суммируемости и условий

Абсолютная суммируемость $\frac{\partial f}{\partial \alpha}$ (т.е. $\int_a^b \left| \frac{\partial f}{\partial \alpha} \right| dx < \infty$) обеспечивает равномерную сходимость интеграла, что позволяет применять теоремы о перестановке пределов. Без этого условия производная под интегралом может "вести себя плохо" — например, интеграл может расходиться или производная может не существовать. Абсолютная суммируемость — это способ "контролировать" поведение функции, чтобы все операции были законны.

Условия гарантируют, что интеграл можно "дифференцировать под знаком интеграла". Абсолютная суммируемость производной нужна, чтобы обеспечить равномерную сходимость и избежать проблем при перестановке операций дифференцирования и интегрирования.

24 Правило Лейбница дифференцирования интеграла по параметру в отсутствии абсолютной суммируемости. Интегрирование интеграла по параметру

1) Случай постоянного множества интегрирования

Пусть (X,\mathbb{A},μ) — пространство с мерой, $Y=\langle c,d\rangle\subset\mathbb{R}$, $f:X\times Y\to\mathbb{R}$, при всех $y\in Y$ функция $f(\cdot,y)\in L(X,\mu)$, при почти всех $x\in X$ функция $f(x,\cdot)$ дифференцируема на $Y,y_0\in Y$, и производная f'_y удовлетворяет локальному условию Лебега в точке y_0 . Тогда интеграл $I(y)=\int_X f(x,y)d\mu(x)$ дифференцируем в точке y_0 и выполняется равенство:

$$I'(y_0)=\int_X f_y'(x,y_0)d\mu(x).$$

2) Случай переменного множества интегрирования

Пусть функции f(x,y) и её частная производная $\frac{\partial f}{\partial y}$ интегрируемы на прямоугольнике $[\alpha,\beta] imes [c,d]$, где отрезок $[\alpha,\beta]$ содержит все значения функций a(y),b(y), а функции a(y),b(y) дифференцируемы на [c,d]. Тогда интеграл $I(y)=\int_{a(y)}^{b(y)}f(x,y)dx$ дифференцируем по y на [c,d] и справедлива формула:

$$rac{d}{dy}I(y) = f(b(y),y) \cdot b'(y) - f(a(y),y) \cdot a'(y) + \int_{a(y)}^{b(y)} rac{\partial f}{\partial y}(x,y) dx.$$

3) Отсутствие абсолютной суммируемости

Интегрирование интеграла по параметру не требует абсолютной суммируемости подынтегральной функции или её производной в случае постоянных пределов интегрирования. Достаточно выполнения локального условия Лебега на производную f_u' в точке дифференцирования y_0 .

25. Свойства Г-функции Эйлера: определение, формула приведения, значения в натуральных и полуцелых точках, выражение для k-й производной, геометрические свойства.

Определение и базовые значения

Г-функция Эйлера задаётся интегралом:

$$\Gamma(p)=\int_0^{+\infty}x^{p-1}e^{-x}\,dx,\quad p>0.$$

Формула приведения и значения в специальных точках

Формула приведения:

$$\Gamma(p+1) = p\Gamma(p).$$

Значения в целых и полуцелых точках:

$$\Gamma(n+1)=n!,\quad \Gamma\left(n+rac{1}{2}
ight)=rac{(2n-1)!!}{2^n}\sqrt{\pi},\quad n\in\mathbb{Z}_+.$$

Производные Г-функции:

$$\Gamma^{(n)}(p) = \int_0^{+\infty} x^{p-1} e^{-x} \ln^n x \, dx.$$

Геометрические свойства:

- 1. $\Gamma(p)$ строго выпукла вниз на $(0,+\infty)$.
- 2. Имеет единственный минимум на (1,2).
- 3. $\Gamma(p)\sim rac{1}{p}$ при p o 0 и $\Gamma(p) o +\infty$ при $p o +\infty$.

26. Связь между Г- и В-функцией

Определение В-функции (бета-функции Эйлера)

В-функция определяется как интеграл:

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} \, dx, \quad p,q>0.$$

Связь между Г- и В-функциями

Для любых p,q>0 выполняется соотношение:

$$B(p,q) = rac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

27. Формула Эйлера-Гаусса.

Формулировка формулы Эйлера-Гаусса

$$\Gamma(p) = \lim_{n o \infty} rac{n^p \cdot n!}{p(p+1)(p+2) \cdot \ldots \cdot (p+n)}, \quad p \in \mathbb{R} \setminus \mathbb{Z}_-.$$

- $\Gamma(p)$ гамма-функция, билет 25
- n! факториал числа n.
- n^p степенная функция.
- Знаменатель p(p+1)...(p+n) произведение линейных множителей.

Условия применимости

Область определения:

Формула справедлива для всех $p \in \mathbb{R}$, кроме отрицательных целых чисел ($p \notin \mathbb{Z}_-$), так как при таких p знаменатель обращается в ноль для некоторого n.

Связь с факториалом:

При целых положительных $p=m\in\mathbb{N}$ формула сводится к $\Gamma(m)=(m-1)!$, согласуясь с классическим определением.

28. Теорема о разложении функции в обобщенный степенной ряд. Ряды Лорана

Определение ряда Лорана

Ряд вида $\sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$, где $c_k, z, z_0 \in \mathbb{C}$, называется рядом Лорана. Числа c_k называются его коэффициентами, а z_0 — центром ряда.

Структура ряда Лорана

Главная часть ряда Лорана определяется как $\sum_{k=-\infty}^{-1} c_k (z-z_0)^k$. Правильная (регулярная) часть определяется как $\sum_{k=0}^{\infty} c_k (z-z_0)^k$. Ряд сходится тогда и только тогда, когда сходятся обе части.

Теорема Лорана о разложении

Пусть $z_0 \in \mathbb{C}$, $0 \le r < R \le +\infty$, $f \in \mathcal{A}(K_{r,R}(z_0))$. Тогда f раскладывается в кольце $K_{r,R}(z_0)$ в ряд Лорана: $f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$ для $r < |z-z_0| < R$.

4. Единственность коэффициентов Лорана

Пусть $0 \le r < R \le +\infty$ и $f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$ при $r < |z-z_0| < R$. Тогда коэффициенты c_k определяются единственным образом по формуле:

$$c_k = rac{1}{2\pi i} \int_{\gamma_o} rac{f(\zeta)}{(\zeta-z_0)^{k+1}} d\zeta,$$

где $ho \in (r,R)$, $\gamma_{
ho} = \gamma_{
ho,z_0}$ (окружность $|\zeta - z_0| =
ho$).

29. Неравенства Коши для коэффициентов рядов Тейлора и Лорана

Неравенство Коши для коэффициентов степенного ряда (Тейлора)

Пусть $z_0 \in \mathbb{C}$, $R \in (0,+\infty]$, и функция f аналитична в круге $|z-z_0| < R$:

$$f(z) = \sum_{k=0}^\infty c_k (z-z_0)^k.$$

Тогда для любого $ho \in (0,R)$ и всех $k \in \mathbb{Z}_+$ (т.е. $k=0,1,2,\ldots$) выполняется:

$$|c_k| \leq rac{M_f(
ho)}{
ho^k},$$
 где $M_f(
ho) = \max_{|\zeta-z_0|=
ho} |f(\zeta)|.$

Неравенство Коши для коэффициентов ряда Лорана

Пусть $z_0 \in \mathbb{C}$, $0 \leq r < R \leq +\infty$, и функция f аналитична в кольце $r < |z-z_0| < R$:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k.$$

Тогда для любого $ho \in (r,R)$ и всех $k \in \mathbb{Z}$ (т.е. $k = \dots, -2, -1, 0, 1, 2, \dots$) выполняется:

$$|c_k| \leq rac{M_f(
ho)}{
ho^k},$$
 где $M_f(
ho) = \max_{|\zeta-z_0|=
ho} |f(\zeta)|.$

Обозначения

- z₀: центр разложения
- R: радиус сходимости (Тейлор) / внешний радиус кольца (Лоран)
- r: внутренний радиус кольца (Лоран)
- ho: радиус выбранной окружности (r <
 ho < R)
- ζ : точка на окружности $|\zeta-z_0|=
 ho$
- c_k : коэффициенты ряда
- $M_f(
 ho)$: $\max |f|$ на окружности радиуса ho
- k: индекс коэффициента (≥ 0 для Тейлора, $\in \mathbb{Z}$ для Лорана)

30. Изолированные особые точки аналитических функций, их типы. Характеризация устранимой особой точки посредством лорановского разложения

Определение изолированной особой точки

Пусть $z_0 \in \mathbb{C}$, функция f голоморфна по крайней мере в проколотой окрестности $\dot{V}(z_0)$. Тогда z_0 называется изолированной особой точкой однозначного характера функции f.

Классификация изолированных особых точек

Выделяют три типа z_0 :

- 1. Устранимая особая точка, если \exists конечный предел $\lim_{z \to z_0} f(z)$.
- 2. Полюс, если $\lim_{z o z_0} f(z) = \infty$.
- 3. Существенно особая точка, если \nexists ни конечного, ни бесконечного предела $\lim_{z \to z_0} f(z)$.

Характеризация устранимой особенности

Пусть $z_0 \in \mathbb{C}$, f голоморфна в $\dot{V}(z_0)$. Эквивалентны:

- 1. z_0 устранимая особая точка f.
- 2. f ограничена в некоторой проколотой окрестности $\dot{V}(z_0)$.
- 3. f аналитически продолжима в z_0 (т.е. $\exists g$ голоморфная в $V(z_0)$ с $g \equiv f$ в $\dot{V}(z_0)$).
- 4. В главной части ряда Лорана f в z_0 все коэффициенты при $(z-z_0)^k$ (k<0) равны нулю.

Доп:

Функция $f:D \to \mathbb{C}$ называется голоморфной в области $D \subseteq \mathbb{C}$, если она комплекснодифференцируема в каждой точке D.

31. Специфика лорановских разложений в окрестности полюса и существенно особой точки

Характеристика полюсов (Теорема 3)

Пусть $z_0 \in \mathbb{C}$, f аналитична в проколотой окрестности V_{z_0} ($f \in A(V_{z_0})$). Тогда эквивалентны:

- 1. z_0 полюс функции f.
- 2. Существуют номер $m\in\mathbb{N}$ и функция $arphi\in A(V_{z_0})$, $arphi(z_0)\neq 0$, такие что $f(z)=rac{arphi(z)}{(z-z_0)^m}$ для всех $z\in V_{z_0}.$
- 3. В главной части ряда Лорана функции f с центром в z_0 лишь конечное число коэффициентов отлично от нуля.

Характеристика существенно особых точек (Следствие 1)

Пусть $z_0 \in \mathbb{C}$, f аналитична в проколотой окрестности V_{z_0} ($f \in A(V_{z_0})$). Тогда эквивалентны:

- 1. z_0 существенно особая точка функции f.
- 2. В главной части ряда Лорана функции f с центром в z_0 бесконечно много коэффициентов отлично от нуля.

32. Теорема Сохоцкого

Формулировка теоремы

Пусть $f\in A(\dot{V}_\delta(z_0))$; z_0 — существенно особая точка f. Тогда для любого $A\in\mathbb{C}$ существует последовательность $\{z_n\}$, такая что $z_n\in V_\delta(z_0)$, $z_n\to z_0$, $f(z_n)\to A$.

Обозначения

- 1. $A(\dot{V}_{\delta}(z_0))$ класс функций, аналитических в проколотой окрестности $\dot{V}_{\delta}(z_0)=\{z:0<|z-z_0|<\delta\}$ точки z_0 .
- 2. $z_n \in V_\delta(z_0)$ последовательность точек, лежащих в окрестности $|z-z_0| < \delta$.
- 3. $z_n \to z_0$, $f(z_n) \to A$ последовательность сходится к особой точке z_0 , а значения функции в этих точках сходятся к A.

33. Два определения вычета. Теорема Коши о вычетах. Теорема о полной сумме вычетов.

Определения вычета в конечной точке и на бесконечности

1. Пусть $z_0 \in \mathbb{C}, f \in \mathcal{A}(\dot{V}_{z_0})$. Коэффициент c_{-1} в разложении f в ряд Лорана

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$$

называется вычетом функции f в точке z_0 и обозначается $\operatorname{res}_{z_0} f.$

2. Пусть $f \in \mathcal{A}(\dot{V}_{\infty})$. Вычетом функции f в точке ∞ называется коэффициент c_1 в разложении f в ряд Лорана, взятый с противоположным знаком:

$$\operatorname{res}_{\infty}f=-c_{1}.$$

Теорема Коши о вычетах

Пусть D — область в \mathbb{C} , $E\subset D$, $f\in\mathcal{A}(D\setminus E)$, E — множество изолированных особых точек f, G — ограниченная область с ориентированной границей, $\overline{G}\subset D$, $\partial G\cap E=\emptyset$. Тогда

$$\int_{\partial G} f(z) dz = 2\pi i \sum_{z_k \in G \cap E} \operatorname{res}_{z_k} f.$$

Теорема о полной сумме вычетов

Пусть $E\subset \mathbb{C}$, $f\in \mathcal{A}(\mathbb{C}\setminus E)$, $E\cup \{\infty\}$ — множество изолированных особых точек f. Тогда

$$\sum_{z_k \in E \cup \{\infty\}} \operatorname{res}_{z_k} f = 0.$$

34. Приемы отыскания вычетов

Вычет в устранимой особой точке

Если z_0 — устранимая особая точка функции f, то вычет в этой точке равен нулю:

$$\operatorname{res}_{z_0} f = 0.$$

Вычет в простом полюсе

Пусть z_0 — простой полюс функции f. Тогда вычет вычисляется по формулам:

- 1. $\operatorname{res}_{z_0} f = \lim_{z o z_0} (z z_0) f(z)$.
- 2. Если $f(z)=rac{P(z)}{Q(z)}$, где P,Q голоморфны в окрестности $z_0,P(z_0)
 eq 0$, $Q(z_0)=0$, $Q'(z_0)
 eq 0$, то:

$$\operatorname{res}_{z_0} f = rac{P(z_0)}{Q'(z_0)}.$$

Вычет в полюсе кратности m

Пусть z_0 — полюс функции f кратности m. Тогда вычет равен:

$$ext{res}_{z_0} \, f = rac{1}{(m-1)!} \lim_{z o z_0} rac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z)
ight]$$

или эквивалентно:

$$\operatorname{res}_{z_0} f = rac{1}{(m-1)!} \left. rac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z)
ight]
ight|_{z=z_0}.$$

Определение полюса кратности n

Точка z_0 называется полюсом кратности n ($n\in\mathbb{N}$), если:

- 1. f(z) представима в виде $f(z)=rac{\phi(z)}{(z-z_0)^n}$, где $\phi(z)$ голоморфна в окрестности z_0 и $\phi(z_0)
 eq 0$.
- 2. В разложении Лорана f(z) в окрестности z_0 главная часть конечна и имеет вид $\sum_{k=-n}^\infty c_k(z-z_0)^k$ с $c_{-n} \neq 0$.

35. Вычисление тригонометрических интегралов с помощью вычетов

Основная идея метода

Интегралы вида $\int_0^{2\pi} R(\sin\varphi,\cos\varphi) d\varphi$, где R(u,v) — рациональная функция двух переменных, вычисляются путём замены $z=e^{i\varphi}$ и применения теоремы о вычетах к полученному контурному интегралу по единичной окружности.

Замена переменных

Положим $z=e^{iarphi}$. Тогда:

$$darphi=rac{dz}{iz},\quad arphi:0 o 2\pi\iff z:|z|=1$$
 (против ч.с.) $\sinarphi=rac{z-z^{-1}}{2i},\quad \cosarphi=rac{z+z^{-1}}{2}$

После подстановки интеграл преобразуется к виду:

$$\oint_{|z|=1} R\left(rac{z-z^{-1}}{2i},rac{z+z^{-1}}{2}
ight)rac{dz}{iz} = \oint_{|z|=1} f(z)rac{dz}{iz}$$

где f(z) — рациональная функция от z, полученная после подстановки и упрощения.

Применение теоремы о вычетах

Искомый интеграл равен $2\pi i$ умноженной на сумму вычетов подынтегральной функции $\frac{f(z)}{iz}$ внутри единичного круга |z|<1:

$$\int_0^{2\pi} R(\sinarphi,\cosarphi) darphi = 2\pi i \sum_{\substack{z_k \ |z_k| < 1}} \mathrm{Res}\left(rac{f(z)}{iz},z_k
ight)$$

где z_k — особые точки (полюса) функции $rac{f(z)}{iz}$, лежащие внутри |z|<1.

36. Вычисление несобственных интегралов от рациональных функций с помощью вычетов

Условия и формула для интеграла рациональной функции по вещественной оси

Пусть $F(x)=rac{P(x)}{Q(x)}$ — рациональная дробь, где $\deg Q-\deg P\geq 2$, и Q(x) не имеет нулей на вещественной оси $\mathbb R$. Тогда несобственный интеграл вычисляется по формуле:

$$\int_{-\infty}^{+\infty} F(x) dx = 2\pi i \sum_{\substack{\operatorname{Im} z_k > 0 \ Q(z_k) = 0}} \operatorname{res}_{z_k} F(z).$$

37. Лемма Жордана. Вычисление преобразований Фурье с помощью вычетов

Формулировка леммы Жордана

Пусть $\Delta\in(0,+\infty)$, функция f непрерывна в области $\{z:\operatorname{Im} z\geq0,\,|z|\geq\Delta\}$, удовлетворяет условию $f(z)\to0$ при $z\to\infty$ в этой области, и $C_R(t)=Re^{it},\,t\in[0,\pi]$ — полуокружность в верхней полуплоскости. Тогда для любого $\lambda>0$ выполняется предельное соотношение:

$$\int_{C_R} f(z) e^{i\lambda z} dz \overset{}{\underset{R o +\infty}{\longrightarrow}} 0.$$

Применение к вычислению преобразований Фурье

Для вычисления интегралов вида $\hat{f}(\lambda)=\int_{-\infty}^{+\infty}f(x)e^{i\lambda x}dx$ ($\lambda>0$) методом вычетов: 1) Рассмотреть комплексный интеграл $\oint_{\Gamma}f(z)e^{i\lambda z}dz$ по замкнутому контуру Γ , состоящему из отрезка [-R,R] и полуокружности C_R в верхней полуплоскости; 2) Применить основную теорему о вычетах: $\oint_{\Gamma}=2\pi i\sum \mathrm{res};$ 3) Перейти к пределу $R\to\infty$. В силу леммы Жордана интеграл по C_R стремится к нулю, поэтому:

$$\hat{f}(\lambda)=\int_{-\infty}^{+\infty}f(x)e^{i\lambda x}dx=\lim_{R o\infty}\oint_{\Gamma}f(z)e^{i\lambda z}dz=2\pi i\sum$$
 выч $_{z_{k}\in\mathbb{C}^{+}}f(z)e^{i\lambda z},$

где сумма берется по всем вычетам функции $g(z)=f(z)e^{i\lambda z}$ в особых точках z_k , лежащих в верхней

38. Вычисление несобственных интегралов от аналитических функций с мнимым периодом

Условия и формула для интеграла без экспоненты

Пусть функция f(z) голоморфна в верхней полуплоскости $I^+=\{z\mid {\rm Im}\,z\geq 0\}$ и на вещественной оси, за исключением конечного числа n полюсов, не лежащих на вещественной оси, и $\lim_{z\to\infty}zf(z)=0$. Тогда:

$$\int_{-\infty}^{+\infty} f(x) dx = 2\pi i \sum_{k=1}^n \mathrm{Res}_{z=z_k} \, f(z)$$

Условия и формула для интеграла с экспонентой $e^{i lpha x}$

Пусть функция f(z) голоморфна в верхней полуплоскости $I^+=\{z\mid {\rm Im}\,z\geq 0\}$ и на вещественной оси, за исключением конечного числа n полюсов, не лежащих на вещественной оси, $\lim_{z\to\infty}zf(z)=0$ и $\alpha>0$. Тогда:

$$\int_{-\infty}^{+\infty} f(x) e^{i lpha x} dx = 2 \pi i \sum_{k=1}^n \mathrm{Res}_{z=z_k} \left[f(z) e^{i lpha z}
ight]$$

39. Гладкие многообразия с краем (определение и примеры); отображение перехода, гладкость отображения перехода.

Определение гладкого многообразия с краем

Множество $M\subset\mathbb{R}^n$ называется главным k-мерным многообразием класса $C^{(r)}$ (или r-гладким), если для любой точки $x\in M$ существует окрестность V_x^M и регулярный гомеоморфизм $\varphi:\Pi_k\to V_x^M$ класса $C^{(r)}$, где Π_k — стандартный k-мерный куб $(-1,1)^k$ или полукуб $(-1,0]\times(-1,1)^{k-1}$. Точка x называется краевой, если φ задан на полукубе, а множество таких точек образует край ∂M .

Примеры гладких многообразий

- 1. Открытое множество $G \subset \mathbb{R}^n$ многообразие без края ($\partial G = \varnothing$), так как любая точка имеет кубическую окрестность (например, тождественная параметризация).
- 2. Кривые (k=1) и гиперповерхности (k=n-1) частные случаи многообразий.

Отображение перехода и его гладкость

Пусть $M\in \mathbb{M}^{(r)}_{kn}, U, V$ — стандартные окрестности с параметризациями $\varphi:\Pi\to U$ и $\psi:\Pi'\to V$. Если $W=U\cap V\neq\varnothing$, то отображение $L=\psi^{-1}\circ\varphi:W_1\to W_2$ (где $W_i=\varphi^{-1}(W)$) называется переходом между параметризациями и является биекцией.

Теорема (Регулярность и гладость перехода).

Отображение L принадлежит классу $C^{(r)}$ и является регулярным (его матрица Якоби невырождена).

40. Мера малого измеримого подмножества многообразия; независимость меры малого измеримогомножества от выбора параметризации; измеримое подмножество многообразия.

Мера малого измеримого подмножества

Пусть $M\in \mathbb{M}^{(1)}_{kn}$, $E\subset M$ — малое измеримое множество, содержащееся в стандартной окрестности U с параметризацией $\varphi:\mathbb{R}^k \to U$. Мера $\mu_M E$ определяется как:

$$\mu_M E = \int_{arphi^{-1}(E)} \sqrt{D_arphi} d\mu_k,$$

где
$$D_{arphi}=\det\left(\left(rac{\partial arphi}{\partial u_i}\cdotrac{\partial arphi}{\partial u_j}
ight)_{i,j=1}^k
ight)$$
, а μ_k — мера Лебега в \mathbb{R}^k .

Независимость меры от параметризации

Пусть $E\subset M$ — малое измеримое множество, содержащееся в двух стандартных окрестностях U и V с параметризациями φ и ψ . Тогда меры, вычисленные через φ и ψ , совпадают:

$$\int_{arphi^{-1}(E)} \sqrt{D_{arphi}} d\mu_k = \int_{\psi^{-1}(E)} \sqrt{D_{\psi}} d\mu_k.$$

Измеримое подмножество многообразия

Пусть $M\in \mathbb{M}_{kn}^{(1)}$, $E\subset M$.

- 1. E называется малым измеримым, если \exists стандартная окрестность $U\supset E$ с параметризацией φ , такая что $\varphi^{-1}(E)$ измеримо в \mathbb{R}^k .
- 2. E называется *измеримым*, если оно представимо в виде $E = \bigcup_{\nu} E_{\nu}$, где $\{E_{\nu}\}$ не более чем счётное семейство дизъюнктных малых измеримых множеств.

41. Мера на многообразии. Интеграл первого рода на многообразии. Частные случаи интеграла I рода на многообразии: криволинейный и поверхностный, вычислительные формулы для них

Мера на многообразии μ_M

Пусть $M \in M_{kn}^{(1)}$, $E \in A_M$.

- 1. Если E малое, U стандартная окрестность, $E\subset U$, arphi параметризация U, то $\mu_M E=\int_{arphi^{-1}(E)}\sqrt{D_{arphi}}d\mu_k.$
- 2. Если $E=\bigcup_{
 u}E_{
 u}$ (дизъюнктные малые измеримые множества), то $\mu_M E=\sum_{
 u}\mu_M E_{
 u}.$

Функция μ_M называется мерой на многообразии M.

Криволинейный интеграл первого рода

Пусть Γ — гладкая кривая (k=1), заданная параметризацией $x=\gamma(t)$, $t\in\langle a,b
angle$. Тогда:

• Мера (длина) кривой:

$$\mu\Gamma = \int_a^b |\gamma'(t)| dt$$
.

• Криволинейный интеграл первого рода:

$$\int_{\Gamma}fd\mu_{\Gamma}=\int_{a}^{b}(f\circ\gamma)(t)\cdot|\gamma'(t)|dt.$$

Классическое обозначение: $\int_{\Gamma} f ds$, где ds — элемент длины дуги.

Поверхностный интеграл первого рода

Пусть S — гладкая поверхность (k=n-1), заданная параметризацией $\varphi:G\subset\mathbb{R}^{n-1}\to\mathbb{R}^n$. По формуле Вине–Коши:

$$\sqrt{D_{arphi}} = \sqrt{\sum_{j=1}^n (\det arphi_j')^2} = |\mathcal{N}_{arphi}|,$$

где \mathcal{N}_{φ} — вектор нормали к поверхности. Тогда:

• Мера (площадь) поверхности:

$$\mu S = \int_G |\mathcal{N}_{\varphi}| d\mu_{n-1}.$$

• Поверхностный интеграл первого рода:

$$\int_S f d\mu_S = \int_G (f \circ \varphi) \cdot |\mathcal{N}_{arphi}| d\mu_{n-1}.$$

42. Ориентация многообразий. Понятия: одинаково ориентирующие параметризации, ориентация окрестностей, согласованные ориентации окрестностей, ориентированное многообразие, ориентируемое многообразие. Возможное количество ориентаций связного многообразия

Одинаково ориентирующие параметризации

Две параметризации φ и ψ стандартной окрестности U многообразия M называются согласованными (или одинаково ориентирующими), если для перехода $L:\Pi\to\Pi$ между ними якобиан $\det L'>0$ на всей области Π . Если $\det L'<0$, параметризации называются противоположно ориентирующими.

Ориентация окрестностей

Ориентация окрестности U — это выбор класса эквивалентности параметризаций, для которых переходы имеют положительный якобиан. Параметризации этого класса называются положительно ориентирующими, а остальные — отрицательно ориентирующими.

Согласованные ориентации окрестностей

Две ориентированные окрестности U и V называются согласованными, если либо их пересечение пусто, либо для любых положительно ориентирующих параметризаций φ (для U) и ψ (для V) переход L между ними имеет $\det L'>0$ в области пересечения.

Ориентированное многообразие

Многообразие M называется ориентированным, если существует набор попарно согласованных ориентаций всех его стандартных окрестностей. Такой набор называется ориентацией многообразия.

Ориентируемое многообразие

Многообразие M называется ориентируемым, если существует хотя бы одна его ориентация (т.е. если его можно превратить в ориентированное многообразие выбором подходящих локальных ориентаций).

Количество ориентаций связного многообразия

Если многообразие M связно и ориентируемо, то оно имеет ровно две ориентации: исходную и противоположную (где во всех окрестностях выбран "обратный" класс параметризаций).

43. Понятие направления, лемма о существовании направлений

Кривая как одномерное многообразие

При k=1 гладкое многообразие M в \mathbb{R}^n называется кривой. Это означает, что локально кривая устроена как интервал числовой прямой.

Параметрическое задание кривой

Кривая Γ задаётся параметризацией $\gamma \in C^{(1)}((a,b) o \mathbb{R}^n)$, где:

- 1. γ инъективна (кроме, возможно, концов для замкнутых кривых)
- 2. γ регулярна ($\gamma'(t) \neq 0$ для всех t)
- 3. $\Gamma = \gamma((a,b))$

Определение направления на кривой

Пусть Γ — гладкая кривая в \mathbb{R}^n . Отображение $au\in C(\Gamma o\mathbb{R}^n)$ называется направлением на Γ , если:

$$orall x \in \Gamma$$
 $au(x) \in T_x \Gamma$ и $| au(x)| = 1,$

где $T_x\Gamma$ — касательное пространство к Γ в точке x.

Лемма о существовании двух направлений

На связной гладкой кривой Γ , заданной параметризацией γ (соотношения (12.6)), существуют ровно два направления:

$$au_{\pm} = \pm rac{\gamma'}{|\gamma'|} \circ \gamma^{-1}.$$

44. Сторона поверхности, лемма о существовании стороны

Определение двусторонней поверхности и Стороны

Связная поверхность S в \mathbb{R}^n называется *двусторонней*, если существует непрерывное отображение $\mathcal{N} \in C(S o \mathbb{R}^n)$ (называемое *стороной* поверхности S), такое что для всех $x \in S$:

$$\mathcal{N}(x) \perp T_x S$$
 и $|\mathcal{N}(x)| = 1.$

Лемма о связи двусторонности и ориентируемости

Для того чтобы связная поверхность S была двусторонней, необходимо и достаточно, чтобы она была ориентируемой. При этом S имеет ровно две стороны.

Построение стороны через параметризацию

Если $\varphi:G o U\subset S$ — параметризация стандартной окрестности U, то сторона U задаётся формулой:

$$\mathcal{N}_{\pm}(x) = \pm rac{\mathcal{N}_{arphi}}{|\mathcal{N}_{arphi}|} \circ arphi^{-1}(x),$$

где \mathcal{N}_{arphi} — векторное произведение частных производных:

$$\mathcal{N}_{arphi} = rac{\partial arphi}{\partial u^1} imes rac{\partial arphi}{\partial u^2} imes \cdots imes rac{\partial arphi}{\partial u^{n-1}}.$$

45. Теорема о крае многообразия и его ориентации. Понятие ориентации края, согласованной с ориентацией многообразия. Пример согласованных ориентаций на поверхности и ограничивающей кривой.

Теорема о крае многообразия

Если M-k-мерное многообразие класса $C^{(r)}$, то его край ∂M является (k-1)-мерным многообразием класса $C^{(r)}$ без края.

Если M ориентируемо, то ∂M также ориентируемо.

Понятие ориентации края, согласованной с ориентацией многообразия

Ориентация края ∂M , заданная формулой $\tilde{\varphi}_x(\tilde{u})=\varphi_x(0,\tilde{u})$ (где φ_x — параметризация M и $\tilde{u}\in\Pi_{k-1}$), называется индуцированной или согласованной с ориентацией M.

Пример согласованных ориентаций

Пусть $G \subset \mathbb{R}^2$ — область с гладкой границей S. Если G ориентирована естественным образом (якобиан > 0), то согласованная ориентация S задаётся касательным вектором τ , при котором G остаётся слева при обходе границы. Нормаль $\mathcal N$ направлена наружу.

Доп

 $\Pi_{k-1} = (-1,1)^{k-1}$ - это открытый (k-1)-мерный куб в пространстве параметров $\tilde{u} = (u_2,\ldots,u_k)$, используемый для параметризации края ∂M .

46. Полилинейные формы, кососимметрические формы - определения и элементарные свойства, внешнее произведение форм

Полилинейные формы

Пусть X,Y — векторные пространства над полем $K,p\in\mathbb{N}$. Отображение $F:X^p\to Y$ называется p -линейным, если оно линейно по каждому аргументу. Если Y=K, то F называется p-формой на X. Множество всех p-форм обозначается $\mathcal{F}_p(X)$. При p=0 под 0-формами понимаются элементы Y.

Разложение по базису

Если $\dim X = n < +\infty$ и e^1, \ldots, e^n — базис X, то для $F \in \mathcal{F}_p(X)$:

$$F = \sum_{i_1,\ldots,i_p=1}^n a_{i_1,\ldots,i_p} \pi_{i_1} \otimes \ldots \otimes \pi_{i_p},$$

где π_i — проектор на i-ю координату, а коэффициенты $a_{i_1,\dots,i_p} = F(e^{i_1},\dots,e^{i_p}).$

Кососимметрические формы

Форма $F \in \mathcal{F}_p(X)$ называется кососимметрической, если для любых двух аргументов:

$$F(x^1, ..., x^i, ..., x^j, ..., x^p) = -F(x^1, ..., x^j, ..., x^i, ..., x^p).$$

Множество таких форм обозначается $\mathcal{E}_p(X)$. При p>n все формы нулевые.

Базис в $\mathcal{E}_p(X)$

Для $p \leq n$ форма F раскладывается как:

$$F = \sum_{1 \leq i_1 < \ldots < i_p \leq n} a_{i_1,\ldots,i_p} \pi_{i_1} \wedge \ldots \wedge \pi_{i_p},$$

где \wedge — внешнее произведение, а $\pi_{i_1} \wedge \ldots \wedge \pi_{i_p}$ вычисляется через определитель матрицы из координат векторов.

Внешнее произведение форм

Для $F\in\mathcal{E}_p(X)$ и $G\in\mathcal{E}_q(X)$ их внешнее произведение $F\wedge G\in\mathcal{E}_{p+q}(X)$ определяется на базисных формах как:

$$(\pi_{i_1}\wedge\ldots\wedge\pi_{i_p})\wedge(\pi_{j_1}\wedge\ldots\wedge\pi_{j_q})=\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q},$$

а затем продолжается по линейности.

Формула для коэффициентов

Если F и G заданы в виде (12.19), то:

$$F \wedge G = \sum_{1 \leq i(j)_1 < \ldots < i(j)_p \leq n} a_{i_1,\ldots,i_p} b_{j_1,\ldots,j_q} \pi_{i_1} \wedge \ldots \wedge \pi_{i_p} \wedge \pi_{j_1} \wedge \ldots \wedge \pi_{j_q}.$$

47. Дифференциальные формы; координатное представление дифференциальных форм. Внешнее дифференциальных форм

Определение дифференциальной формы

Пусть $G\subset\mathbb{R}^n$, $p\in\mathbb{N}$. Дифференциальной формой степени p (p-формой) на G называется функция $\omega:G imes(\mathbb{R}^n)^p\to\mathbb{R}$, такая что для всех $x\in G$ функция $\omega(x;\cdot)$ принадлежит пространству $\mathcal{E}_p(\mathbb{R}^n)$ (является кососимметрической p-линейной формой). 0-формой называется функция $f:G\to\mathbb{R}$.

Координатное представление дифференциальных форм

Пусть $p\in\mathbb{N}$. Дифференциальная p-форма ω в открытом множестве $G\subset\mathbb{R}^n$ может быть записана в виде:

$$\omega = \sum_{1 \leq i_1 < \dots < i_p \leq n} a_{i_1 \dots i_p}(x) dx_{i_1} \wedge \dots \wedge dx_{i_p},$$

где $a_{i_1\dots i_p}:G o\mathbb{R}$ — коэффициенты формы, а $dx_{i_1}\wedge\dots\wedge dx_{i_p}$ — базисные внешние произведения дифференциалов координат. Для p=n форма имеет вид $\omega=a(x)dx_1\wedge\dots\wedge dx_n$.

Внешнее дифференцирование дифференциальных форм

Пусть G открыто в \mathbb{R}^n , $p\in\mathbb{Z}_+$, $r\in\mathbb{N}\cup\{\infty\}$. Внешнее дифференцирование — это оператор $d:\Omega_p^{(r)}(G)\to\Omega_{p+1}^{(r-1)}(G)$, определяемый так:

1. Для 0-формы $\omega=f\in C^{(r)}(G)$:

$$df = \sum_{i=1}^n rac{\partial f}{\partial x_i} dx_i.$$

2. Для p-формы $\omega = \sum_I a_I(x) dx_I$ (где $I = (i_1 < \cdots < i_p)$):

$$d\omega = \sum_I da_I \wedge dx_I = \sum_I \left(\sum_{j=1}^n rac{\partial a_I}{\partial x_j} dx_j
ight) \wedge dx_I.$$

Свойства:

- 1. d линейно.
- 2. $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^{\deg \omega} \omega \wedge d\lambda$ для форм ω, λ .
- 3. $d^2\omega = d(d\omega) = 0$.

48. Перенос дифференциальных форм. Теорема о свойствах переноса форм

Определение переноса дифференциальных форм

Пусть G — открытое множество в \mathbb{R}^n , U — открытое множество в \mathbb{R}^m , $p\in\mathbb{Z}_+$, $\omega\in\Omega_p(G)$, $T\in C^{(1)}(U\to G)$. Перенесённая форма $T^*\omega$ определяется равенством:

$$(T^*\omega)(u;du^1,\ldots,du^p)=\omega(T(u);T'(u)du^1,\ldots,T'(u)du^p),$$

где $u\in U$, $du^1,\dots,du^p\in\mathbb{R}^m$. Отображение T^* называется переносом форм или заменой переменных.

Свойства переноса форм

- 1. Линейность: $T^*(\alpha\omega + \beta\lambda) = \alpha T^*\omega + \beta T^*\lambda$.
- 2. Умножение на функцию: $T^*(f\omega)=(f\circ T)T^*\omega$ для $f\in C^{(r)}(G)$.
- 3. Внешнее произведение: $T^*(\omega \wedge \lambda) = T^*\omega \wedge T^*\lambda$ для $\lambda \in \Omega_q^{(r)}.$
- 4. Дифференциал: $T^*d\omega=dT^*\omega$ при $r\geq 1$.
- 5. Явная формула: Для $\omega = \sum a_{i_1,\dots,i_p} dx_{i_1} \wedge \dots \wedge dx_{i_p}$,

$$T^*\omega = \sum (a_{i_1,\ldots,i_p}\circ T)\cdot \det\left(rac{\partial T_{i_k}}{\partial u_{j_l}}
ight)du_{j_1}\wedge\ldots\wedge du_{j_p}.$$

6. Композиция: $(T\circ S)^\omega=S^(T^*\omega)$, если V открыто в $\mathbb{R}^i,S\in C^{(1)}(V o U)$.

49 Поверхностный интеграл второго рода. Выражением поверхностного интеграла второго рода через поверхностный интеграл первого рода. Выражения для интеграла 2го рода в случае размерностей многообразия 1 и 2. Примеры. Лемма Пуанкаре в общем случае (без док-ва)

Определение интеграла второго рода

Пусть G открыто в \mathbb{R}^n , $M\subset G$ — ориентированное k-мерное многообразие класса $\mathbb{M}^{(1)}_{k,n}$, $\omega\in\Omega_k(G)$ — дифференциальная форма степени $k,E\in\mathbb{A}_M$ — малое измеримое множество. Тогда интеграл второго рода определяется как:

$$\int_E \omega = \int_{arphi^{-1}(E)} \widehat{arphi^* \omega} \, d\mu_k,$$

где φ — положительно ориентирующая параметризация стандартной окрестности U, содержащей E, а $\varphi^*\omega$ — pullback формы ω .

Связь с интегралом первого рода

Для малого множества E и формы $\omega = \sum a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$ интеграл второго рода выражается через интеграл первого рода:

$$\int_E \omega = \int_E \left\langle a, rac{\det arphi'}{\sqrt{\mathcal{D}_arphi}} \circ arphi^{-1}
ight
angle d\mu_M,$$

где $\mathcal{D}_{arphi} = \sum (\det arphi'_{i_1 \dots i_k})^2$ — грамиан параметризации.

Примеры для размерностей 1 и 2:

- Для k=1 (кривая): $\int_E \omega = \int_E \langle a, au
 angle d\mu_1$, где au единичный касательный вектор.
- Для k=2, n=3 (поверхность):

$$\int_S \omega = \int_S \langle F, N
angle d\mu_S, \quad F = (P, Q, R), \, N$$
 — единичная нормаль.

Теорема Пуанкаре (без доказательства):

Если G — звездная область в \mathbb{R}^n и ω — замкнутая форма ($d\omega=0$), то ω точна ($\exists \eta:\omega=d\eta$). Для форм класса C^r первообразная также C^r .

50. Общая формула Стокса. Частные случаи и следствия общей формулы Стокса: формула Ньютона-Лейбница для криволинейных интегралов, формула Грина, классическая формула Стокса, формула Гаусса-Остроградского

Общая формула Стокса для многообразий

Пусть $M\in \mathbb{M}_{kn}^{(2)}$ — компактное u ориентированное многообразие, G — открытое множество в \mathbb{R}^n , $M\subset G, \omega\in \Omega_{k-1}^{(1)}(G)$. Тогда:

$$\int_M d\omega = \int_{\partial M} \omega.$$

Формула Грина

Пусть D — ограниченная область в \mathbb{R}^2 с гладкой границей ∂D , G открыто в \mathbb{R}^2 , $\overline{D}\subset G$, $P,Q\in C^{(1)}(G)$. Тогда:

$$\iint_D (Q_x'-P_y')\,dx\,dy = \int_{\partial D} P\,dx + Q\,dy.$$

Классическая формула Стокса

Пусть S — компактная ориентированная поверхность класса $C^{(2)}$ в \mathbb{R}^3 с краем ∂S , G открыто в \mathbb{R}^3 , $S\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iint_S (R_y'-Q_z')dy\wedge dz + (P_z'-R_x')dz\wedge dx + (Q_x'-P_y')dx\wedge dy = \int_{\partial S} P\,dx + Q\,dy + R\,dz.$$

Формула Гаусса-Остроградского

Пусть V — ограниченная область в \mathbb{R}^3 с гладкой границей ∂V , G открыто в \mathbb{R}^3 , $V\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iiint_V (P'_x + Q'_y + R'_z) \, dx \, dy \, dz = \iint_{\partial V} P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dy.$$

51: Неравенства Минковского и Гёльдера, существенный супремум, пространства $L_p(X,\mu)$

Теорема (Неравенство Гёльдера):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы на E, существует $\int_E fg\,d\mu$, $1< p<+\infty$, $\frac{1}{p}+\frac{1}{q}=1$. Тогда:

$$\left|\int_E fg\,d\mu
ight| \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} \left(\int_E |g|^q\,d\mu
ight)^{1/q}.$$

Неравенство Минковского для интегралов

Теорема (Неравенство Минковского):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы, конечны почти везде на E

, $1 \leq p < +\infty$. Тогда:

$$\left(\int_E |f+g|^p\,d\mu
ight)^{1/p} \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} + \left(\int_E |g|^p\,d\mu
ight)^{1/p}.$$

Существенный супремум функции

Для измеримой функции $f:E o\overline{\mathbb{R}}$ почти везде на пространстве с мерой (X,\mathbb{A},μ) существенный супремум:

$$\operatorname{ess\,sup}_{x\in E}f(x)=\inf\{A\in\mathbb{R}:f(x)\leq A$$
 почти везде на $E\}.$

(Если таких A нет, полагаем $+\infty$.)

Пространства $L_p(X,\mu)$

Для $1 \leq p < +\infty$:

$$L_p(E,\mu) = \left\{ f:$$
 н.в. $E o \mathbb{R}$ измеримы, $\int_E |f|^p \, d\mu < +\infty
ight\}.$

Для $p=+\infty$:

$$L_{\infty}(E,\mu)=\{f:$$
 н.в. $E o\mathbb{R}$ измеримы, $\operatorname{ess\,sup}|f|<+\infty\}$.

Норма: $\|f\|_p = \left(\int_E |f|^p\,d\mu\right)^{1/p}$ (для $L_\infty - \operatorname{ess\,sup}|f|$).

52: Вложения пространств Лебега $L_p(X,\mu)$ и пространств ℓ_p . Несравнимость пространств L_p

Вложение $L_q \subset L_p$ при конечной мере

Если мера пространства $\mu E < +\infty$ и индексы удовлетворяют условию $1 \le p < q \le +\infty$, то $L_q(E,\mu) \subset L_p(E,\mu)$. Более того, для любой функции $f \in L_q(E,\mu)$ выполняется неравенство:

$$\|f\|_{L_p(E,\mu)} \leq (\mu E)^{1/p-1/q} \|f\|_{L_q(E,\mu)}.$$

Несравнимость L_p при бесконечной мере

Если $\mu E=+\infty$, то пространства $L_p(E,\mu)$ могут не быть вложены друг в друга. Контрпример: E= $(0,+\infty)$ с мерой Лебега,

- $f_1(x)=rac{1}{x+1}$: $f_1\in L_2(E)$ но $f_1
 otin L_1(E)$. $f_2(x)=rac{1}{\sqrt{x}}\chi_{(0,1)}(x)$: $f_2\in L_1(E)$ но $f_2
 otin L_2(E)$.

Пространства ℓ_p и вложение периодических L_p

Пространство ℓ_p состоит из последовательностей $x=(x_k)_{k=1}^\infty$ с конечной нормой:

$$\|x\|_p = egin{cases} (\sum_{k=1}^\infty |x_k|^p)^{1/p}\,, & 1 \leq p < +\infty, \ \sup_{k \in \mathbb{N}} |x_k|, & p = +\infty. \end{cases}$$

Для 2π -периодических функций на $\mathbb R$ с мерой Лебега на $[-\pi,\pi]$ верно вложение пространств:

$$C \subset L_{\infty} \subset \ldots \subset L_2 \subset \ldots \subset L_1$$
,

где C — пространство непрерывных 2π -периодических функций с нормой $\|f\|_{\infty}=\max_{x\in[-\pi,\pi]}|f(x)|$, совпадающей с L_{∞} -нормой для непрерывных функций.

53. Полнота пространства C(K)

Определение полного нормированного пространства

Нормированное пространство X называется полным (банаховым), если любая фундаментальная последовательность в X сходится к некоторому элементу из X. Последовательность $(x_n)\subset X$ фундаментальна, если $orall \epsilon > 0 \; \exists N \colon \forall n,m \geq N$ выполняется $\|x_n - x_m\|_X < \epsilon.$

Пространство непрерывных функций C(K)

Пусть K — компактное топологическое пространство. Пространство C(K) состоит из всех непрерывных функций $f:K o\mathbb{C}$ (или \mathbb{R}), с нормой $\|f\|_{C(K)}=\sup_{x\in K}|f(x)|$. Обозначается $C_{\mathbb{C}}(K)$ или $C_{\mathbb{R}}(K)$ в зависимости от поля.

Teopeма о полноте C(K)

Пространство C(K) полно.

54. Критерий полноты нормированного пространства

Определение полного нормированного пространства (банахово пространство)

Нормированное пространство $(X,\|\cdot\|)$ называется полным, если любая фундаментальная последовательность в X сходится к элементу этого пространства. Полное нормированное пространство также называют банаховым.

Критерий полноты через абсолютную сходимость ряда

Нормированное пространство X полно тогда и только тогда, когда любой абсолютно сходящийся ряд в X сходится, то есть:

$$x_k \in X, \sum_{n=1}^\infty \|x_k\| < +\infty \implies \sum_{n=1}^\infty x_k$$
 сходится в $X.$

55 Полнота пространств $L^p(X,\mu)$ при $p\in [1,+\infty]$

Определение пространства $L^p(X,\mu)$

Пусть (X,\mathcal{A},μ) — пространство с мерой, $p\in[1,+\infty]$. Пространство $L^p(X,\mu)$ - полное, состоит из измеримых функций $f:X\to\mathbb{R}$ (или \mathbb{C}), для которых конечна норма:

- ullet при $p<+\infty$: $\|f\|_p=\left(\int_X|f|^p\,d\mu
 ight)^{1/p}$,
- при $p=+\infty$: $\|f\|_{\infty}=\mathrm{ess}\,\sup_{x\in X}|f(x)|.$

Критерий полноты пространства L^p

Пространство $L^p(X,\mu)$ полно при $p\in [1,+\infty]$, то есть любая фундаментальная последовательность $\{f_n\}\subset L^p$ сходится к некоторой функции $f\in L^p$ по норме $\|\cdot\|_p$.

Теорема Рисса-Фишера

Любое нормированное пространство $L^p(X,\mu)$ при $p\in [1,+\infty]$ является банаховым (полным). В частности, если $\{f_n\}$ — фундаментальна в L^p , то существует $f\in L^p$, такая что $\|f_n-f\|_p o 0$.

56. Плотность ступенчатых функций в L^p

Определение плотного множества в метрическом пространстве

Подмножество K_0 метрического пространства (X,d) называется **плотным** в X, если его замыкание совпадает с X:

$$\overline{K_0} = X$$
.

Определение ступенчатой функции

Функция $g:X o\mathbb{R}$ называется ступенчатой (обозначается $g\in \mathrm{step}(X,\mu)$), если она представима в виде:

$$g=\sum_{k=1}^n c_k\cdot \chi_{E_k},$$
 где $\mu(E_k)<\infty,$ $c_k\in\mathbb{R}.$

Теорема о плотности в L^p для $1 \leq p < \infty$

Пусть (X,\mathcal{A},μ) — пространство с мерой, и $1\leq p<\infty$. Тогда для любой $f\in L^p(X,\mu)$ и $\varepsilon>0$ существует ступенчатая функция $g\in \mathrm{step}(X,\mu)$ такая, что:

$$\|f-g\|_p где $\|h\|_p=\left(\int_X|h|^pd\mu
ight)^{1/p}.$$$

57. Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$, плотность $C_{2\pi}$ в $L^p_{2\pi}$

Аппроксимация характеристических функций ограниченных множеств

Для ограниченного измеримого множества $E\subset\mathbb{R}^n$ с $\lambda_n(E)<\infty$ и $\chi_E\in L^p(\mathbb{R}^n)$ ($1\leq p<\infty$), существует функция $g\in C_0(\mathbb{R}^n)$ такая, что:

$$\|\chi_E - g\|_p \le 2\epsilon.$$

Конструкция:

$$g(x) = 1 - rac{d(x, \mathbb{R}^n \setminus U)}{d(x, \mathbb{R}^n \setminus U) + d(x, E)},$$

где $U\supset E$ — открытое множество с $\lambda_n(U\setminus E)<\epsilon.$

Аппроксимация простых функций

Любая простая функция $f=\sum_{k=1}^N c_k\chi_{E_k}$ с $\lambda_n(E_k)<\infty$ аппроксимируется функцией $g\in C_0(\mathbb{R}^n)$:

$$\|f-g\|_p < \epsilon,$$
 где $g = \sum_{k=1}^N c_k g_k,$

и для каждого k: $\|\chi_{E_k} - g_k\|_p < rac{\epsilon}{N \cdot \max(|c_k|)}.$

Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$ и $C_{2\pi}$ в $L^p_{2\pi}$

- ullet Для $L^p(\mathbb{R}^n)$: $orall f\in L^p(\mathbb{R}^n)$ и $\epsilon>0$ $\exists g\in C_0(\mathbb{R}^n): \|f-g\|_p<\epsilon.$
- Для $L^p_{2\pi}$ (периодические функции): $\forall f \in L^p_{2\pi} \ \exists g \in C_{2\pi} : \|f-g\|_{L^p_{2\pi}} < \epsilon$, где $C_{2\pi}$ непрерывные 2π -периодические функции.

58 Теорема о непрерывности сдвига

Определение Оператора Сдвига

Пусть $h \in \mathbb{R}^m$. Оператор сдвига на вектор h определяется как отображение, действующее на функцию f по правилу:

$$(au_h f)(x) = f(x+h).$$

Теорема о Непрерывности Сдвига в L^p

Пусть $1 \leq p < +\infty$ и $f \in L^p(\mathbb{R}^m)$. Тогда оператор сдвига непрерывен по норме пространства L^p , то есть:

$$\lim_{|h| o 0} \| au_h f - f\|_p = \lim_{|h| o 0} \left(\int_{\mathbb{R}^m} |f(x+h) - f(x)|^p dx
ight)^{1/p} = 0.$$

59. Гильбертовы пространства. Непрерывность скалярного произведения. Скалярное умножение в

$L^2(X,\mu)$. Примеры ортогональных систем в $L^2(X,\mu)$

Гильбертовы пространства

Полное линейное пространство H, снабженное скалярным произведением $\langle \cdot, \cdot \rangle$, относительно нормы $\|x\| = \sqrt{\langle x, x \rangle}$.

Непрерывность скалярного произведения

Если $x_n o x$ и $y_n o y$ в H, то $\langle x_n, y_n
angle o \langle x, y
angle$.

Скалярное умножение в $L^2(X,\mu)$

Для $f,g\in L^2(X,\mu)$ скалярное произведение задается формулой:

$$\langle f,g
angle = \int_X f(x) \overline{g(x)}\, d\mu(x).$$

 \overline{g} обозначает комплексно сопряжённое значение. Например, для g=a+bi, верно $\overline{g}=a-bi$.

Ортогональные системы в $L^2(X,\mu)$

Система функций $\{\phi_k\}\subset L^2(X,\mu)$ называется ортогональной, если:

$$\langle \phi_m,\phi_n
angle=0$$
 при $m
eq n.$

Если дополнительно $\|\phi_k\|=1$ для всех k, система называется ортонормированной.

Примеры ортогональных систем в $L^2(X,\mu)$

- 1. Тригонометрическая система $\{e^{inx}\}_{n\in\mathbb{Z}}$ в $L^2([-\pi,\pi]).$
- 2. Многочлены Лежандра $\{P_n\}$ в $L^2([-1,1]).$
- 3. Функции Хаара на отрезке.

60. Теорема Пифагора для гильбертовых пространств и критерий сходимости ортогонального ряда

Лемма о почленном умножении сходящегося ряда

Пусть $\sum_{k=1}^\infty x_k$ — сходящийся ряд в гильбертовом пространстве $\mathcal H$. Тогда для любого вектора $y\in\mathcal H$ выполняется:

$$\left\langle \sum_{k=1}^{\infty} x_k, y
ight
angle = \sum_{k=1}^{\infty} \langle x_k, y
angle.$$

Критерий сходимости ортогонального ряда

Ортогональный ряд $\sum_{k=1}^\infty x_k$ в гильбертовом пространстве $\mathcal H$ сходится тогда и только тогда, когда сходится числовой ряд $\sum_{k=1}^\infty \|x_k\|^2$. При этом выполняется равенство:

$$\left\|\sum_{k=1}^\infty x_k
ight\|^2 = \sum_{k=1}^\infty \|x_k\|^2.$$

Теорема Пифагора для гильбертовых пространств

Для любого конечного набора ортогональных векторов $\{x_k\}_{k=1}^N$ в ${\mathcal H}$ выполняется:

$$\left\| \sum_{k=1}^N x_k
ight\|^2 = \sum_{k=1}^N \|x_k\|^2.$$

61. Вычисление коэффициентов суммы ортогонального ряда. Коэффициенты Фурье и ряды Фурье по ортогональной системе. Геометрические свойства частичных сумм ряда Фурье. Неравенство Бесселя

Вычисление коэффициентов суммы ортогонального ряда

Пусть $\{e_k\}_{k=1}^\infty$ — ортогональная система (ОС) в гильбертовом пространстве $\mathcal{H}, x \in \mathcal{H}$, причём $x = \sum_{k=1}^\infty c_k e_k$. Тогда коэффициенты c_k определяются единственным образом по формуле:

$$c_k = rac{\langle x, e_k
angle}{\|e_k\|^2}.$$

Определение коэффициентов и ряда Фурье

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} , $x\in\mathcal{H}$. Коэффициентами Фурье вектора x называются числа:

$$c_k(x) = rac{\langle x, e_k
angle}{\|e_k\|^2}.$$

Рядом Фурье вектора x по ОС $\{e_k\}$ называется ряд:

$$\sum_{k=1}^{\infty} c_k(x) e_k.$$

Свойства частичных сумм ряда Фурье

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} , $x\in\mathcal{H}$, $n\in\mathbb{N}$, $S_n=\sum_{k=1}^nc_k(x)e_k$, $\mathcal{L}=\mathcal{L}(e_1,\ldots,e_n)$. Тогда:

- 1. S_n ортогональная проекция x на \mathcal{L} , т.е. $x=S_n+z$, где $z\perp\mathcal{L}$.
- 2. S_n элемент наилучшего приближения к x в \mathcal{L} , т.е. $\|x-S_n\|=\min_{y\in\mathcal{L}}\|x-y\|$, причём минимум достигается только при $y = S_n$.
- 3. $||S_n|| \leq ||x||$.

Неравенство Бесселя

Пусть $\{e_k\}_{k=1}^{\infty}$ — ОС в $\mathcal{H}, x \in \mathcal{H}$. Тогда:

$$\sum_{k=1}^{\infty} |c_k(x)|^2 \|e_k\|^2 \leq \|x\|^2.$$

62. Теорема Рисса-Фишера. Равенство Паресваля.

Теорема Рисса-Фишера

Пусть $\{e_k\}_{k=1}^{\infty}$ — ортонормированная система (ОС) в гильбертовом пространстве \mathcal{H} , $x \in \mathcal{H}$. Тогда:

- 1. Ряд Фурье вектора x сходится.
- 2. $x=\sum_{k=1}^\infty c_k(x)e_k+z$, где $z\perp e_k$ для всех k. 3. $x=\sum_{k=1}^\infty c_k(x)e_k$ тогда и только тогда, когда $\sum_{k=1}^\infty |c_k(x)|^2\|e_k\|^2=\|x\|^2$.

Равенство Парсеваля (Уравнение замкнутости)

Ряд Фурье $\sum_{k=1}^\infty c_k(x)e_k$ — ортогональный, $\{e_k\}_{k=1}^\infty$ — ортонормированная система (ОС) в гильбертовом пространстве $\mathcal{H}, x \in \mathcal{H}$

$$\sum_{k=1}^{\infty} |c_k(x)|^2 \|e_k\|^2 = \|x\|^2$$

63. Характеристика базиса в гильбертовом пространстве. Процесс ортогонализации Грама-Шмидта.

Определение базиса и связанных понятий

Ортогональная система $\{e_k\}_{k=1}^\infty\subset\mathcal{H}$ называется **базисом** (*ортогональным базисом*), если любой вектор $x\in\mathcal{H}$ раскладывается в ряд по этой системе: $x=\sum_{k=1}^\infty c_k(x)e_k$. Она называется **полной**, если не существует ненулевого вектора, ортогонального всем e_k . Она называется **замкнутой**, если для любого $x\in\mathcal{H}$ выполнено уравнение замкнутости.

Характеристика базиса

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} . Следующие утверждения равносильны:

- 1. $\{e_k\}$ базис.
- 2. $\langle x,y \rangle = \sum_{k=1}^\infty c_k(x) c_k(y) \|e_k\|^2$ для любых $x,y \in \mathcal{H}$ (обобщенное уравнение замкнутости).
- 3. $\{e_k\}$ замкнута.
- 4. $\{e_k\}$ полна.
- 5. Линейная оболочка системы $\{e_k\}$ плотна в \mathcal{H} . $(\forall x\in\mathcal{H}$ и $orall \mathcal{E}>0,\exists y\in\{\{c_k\}:||x-y||<\mathcal{E}\})$

Процесс ортогонализации Грама-Шмидта

Пусть $\{x_k\}_{k=1}^\infty$ — линейно независимая система в \mathcal{H} . Тогда существует ОНС $\{e_k\}_{k=1}^\infty$, такая что $\mathcal{L}(e_1,\ldots,e_n)=\mathcal{L}(x_1,\ldots,x_n)$ для всех $n\in\mathbb{N}$. Эта ОНС единственна с точностью до множителей λ_k с $|\lambda_k|=1$ (т.е. $h_k=\lambda_k e_k$ для любой другой ОНС $\{h_k\}$, удовлетворяющей тому же условию).

64. Тригонометрический многочлен, тригонометрический ряд, тригонометрический ряд в комплексной форме. Лемма о вычислении коэффициентов тригонометрического ряда. Тригонометрический ряд Фурье функции (в т.ч. в экспоненциальной форме)

Определение тригонометрического многочлена

Пусть $n \in \mathbb{Z}_+$. Функция T_n вида

$$T_n(x)=rac{a_0}{2}+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$$

называется тригонометрическим многочленом порядка не выше n. Если $|a_n|+|b_n|\neq 0$, то порядок ровно n. Коэффициенты a_k,b_k — вещественные или комплексные числа. T_n — множество всех таких многочленов порядка $\leq n$, $T=\bigcup_{n=0}^\infty T_n$.

Тригонометрический ряд и комплексная форма

Тригонометрический ряд имеет вид:

$$rac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

С помощью формул Эйлера $\cos kx=rac{e^{ikx}+e^{-ikx}}{2},$ $\sin kx=rac{e^{ikx}-e^{-ikx}}{2i}$ он преобразуется в комплексную форму:

$$\sum_{k=-\infty}^{\infty} c_k e^{ikx} = \lim_{n o\infty} \sum_{k=-n}^n c_k e^{ikx}.$$

Лемма о вычислении коэффициентов (ортогональность)

Если тригонометрический ряд сходится к функции f(x) в $L_2[-\pi,\pi]$, то его коэффициенты вычисляются по формулам:

$$a_k=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos(kx)dx,\quad b_k=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin(kx)dx\quad (k\geq 0),$$

$$c_k = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx \quad (k \in \mathbb{Z}).$$

Тригонометрический ряд Фурье функции

Тригонометрическим рядом Фурье функции f, интегрируемой на $[-\pi,\pi]$, называется ряд:

$$rac{a_0}{2} + \sum_{k=1}^\infty (a_k \cos kx + b_k \sin kx),$$
 где $a_k = rac{1}{\pi} \int_{-\pi}^\pi f(x) \cos(kx) dx,$ $b_k = rac{1}{\pi} \int_{-\pi}^\pi f(x) \sin(kx) dx.$

В экспоненциальной (комплексной) форме:

$$\sum_{k=-\infty}^{\infty}c_ke^{ikx},$$
 где $c_k=rac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-ikx}dx.$

65. Теорема Римана-Лебега

Теорема Римана-Лебега

1. Если E — измеримое множество ($E\in\mathbb{A}_1$) и функция f интегрируема на E ($f\in L(E)$), то:

$$\int_E f(t) egin{bmatrix} e^{i\lambda t} \ \cos \lambda t \ \sin \lambda t \end{bmatrix} dt \stackrel{\lambda o \infty}{\longrightarrow} 0,$$

(где λ принимает вещественные значения.)

2. Если f интегрируема на основном периоде ($f \in L$), то её коэффициенты Фурье стремятся к нулю:

$$a_k(f) \xrightarrow{k o \infty} 0, \quad b_k(f) \xrightarrow{k o \infty} 0, \quad c_k(f) \xrightarrow{k o \infty} 0.$$

Краткий смысл:

Теорема Римана-Лебега утверждает, что для интегрируемой функции f интеграл от её произведения с быстро осциллирующими функциями ($e^{i\lambda t}$, $\cos\lambda t$, $\sin\lambda t$) стремится к нулю при $\lambda\to\infty$. Это означает, что высокочастотные колебания "усредняют" вклад функции в интеграл. Аналогично, коэффициенты Фурье a_k , b_k , c_k периодической интегрируемой функции затухают с ростом k, что отражает отсутствие значимых высокочастотных компонент в её спектре.

66. Свертка периодических функций, ее элементарные свойства. Ядро Дирихле. Сумма Фурье как свертка

Определение свертки периодических функций

Пусть $f,K\in L[-\pi,\pi]$ (интегрируемые по Лебегу 2π -периодические функции). Сверткой f*K называется функция, заданная для почти всех x формулой:

$$(fst K)(x)=\int_{-\pi}^{\pi}f(x-t)K(t)dt.$$

Свертка определена почти всюду и принадлежит $L[-\pi,\pi]$ (т.е. интегрируема).

Ядро Дирихле

Для $n \in \mathbb{Z}_+$ функция

$$D_n(t) = rac{1}{\pi} \left(rac{1}{2} + \sum_{k=1}^n \cos kt
ight) = rac{\sin\left((n+rac{1}{2})t
ight)}{2\pi\sin\left(rac{t}{2}
ight)}$$

называется ядром Дирихле порядка n.

Интеграл Дирихле:

$$\int_{-\pi}^{\pi} f(x-t) D_n(t) dt$$

Сумма Фурье как свертка

Частичная сумма (порядка n) ряда Фурье функции $f\in L[-\pi,\pi]$ выражается через свертку с ядром Дирихле:

$$S_n(f,x)=(fst D_n)(x)=\int_{-\pi}^{\pi}f(x-t)D_n(t)dt.$$

Элементарные свойства свертки

- Измеримость и интегрируемость: f*K измерима и $f*K\in L[-\pi,\pi].$
- Коммутативность:

$$f * K = K * f$$
.

• Коэффициенты Фурье:

$$c_k(f * K) = 2\pi c_k(f)c_k(K).$$

• Непрерывность при $K \in L_q$:

Если
$$1\leq p\leq\infty$$
, $\frac{1}{p}+\frac{1}{q}=1$, $f\in L_p$, $K\in L_q$, то $f*K$ непрерывна ($f*K\in C$) и $\|f*K\|_\infty\leq\|K\|_q\|f\|_p$.

• Оценка нормы при $K \in L_1$:

Если
$$1 \leq p \leq \infty$$
, $f \in L_p$, $K \in L_1$, то $f * K \in L_p$ и $\|f * K\|_p \leq \|K\|_1 \|f\|_p$.

67. Принцип локализации Римана. Признак Дини и его следствия.

1) Принцип локализации Римана

Пусть $f,g\in L$, $x\in\mathbb{R}$, $\delta\in(0,\pi)$, и функции f и g совпадают на интервале $(x-\delta,x+\delta)$. Тогда разность частичных сумм их рядов Фурье в точке x стремится к нулю при $n o \infty$:

$$S_n(f,x)-S_n(g,x) \mathop{\longrightarrow}\limits_{n o \infty} 0.$$

В частности, из сходимости ряда Фурье f в точке x к сумме S следует сходимость ряда Фурье g в точке x к той же сумме S, и наоборот.

Признак Дини сходимости

Пусть $f \in L, x \in \mathbb{R}, S \in \mathbb{R}$ (или \mathbb{C}) и выполняется условие:

$$\int_0^{\pi} \frac{|f(x+t) - 2S + f(x-t)|}{t} dt < +\infty. \quad (13.11)$$

Тогда ряд Фурье функции f сходится к сумме S в точке x:

$$S_n(f,x) \underset{n \to \infty}{\longrightarrow} S.$$

Следствия признака Дини 1

Если $x \in \mathbb{R}$, $f \in L$ и существуют конечные пределы:

$$f(x\pm) = \lim_{t o x\pm} f(t), \quad lpha_\pm = \lim_{t o 0\pm} rac{f(x+t) - f(x\pm)}{t}$$

то ряд Фурье f сходится в точке x к $S=rac{f(x+)+f(x-)}{2}$. Если f непрерывна в x и пределы $lpha_\pm$ существуют, то ряд сходится к f(x).

Следствия признака Дини 2

Если $f\in L$ имеет конечные односторонние производные в точке x (т.е. $f'_+(x)$ и $f'_-(x)$ существуют и конечны), то её ряд Фурье сходится в x к f(x). В частности, это верно, если f дифференцируема в x. $(a_\pm=f'_+(x))$

68. Примеры разложения функций в ряды Фурье. Вычисление сумм
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 и $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$

Разложение функции $f_z(x) = \cos zx$ в ряд Фурье на $[-\pi,\pi]$ при $z \in \mathbb{C} \setminus \mathbb{Z}$

Функция $f_z(x)=\cos zx$, $x\in [-\pi,\pi]$, является бесконечно дифференцируемой и чётной. Её ряд Фурье сходится к $f_z(x)$ всюду на $[-\pi,\pi]$. Коэффициенты Фурье:

$$a_0(f_z)=rac{2}{\pi}\int_0^\pi\cos zt\,dt=rac{2\sin\pi z}{\pi z}, \ a_k(f_z)=rac{2}{\pi}\int_0^\pi\cos zt\cos kt\,dt=rac{\sin\pi z}{\pi}(-1)^k\left(rac{1}{z+k}+rac{1}{z-k}
ight) \quad (k\in\mathbb{N}).$$

Ряд Фурье:

$$\cos zx = rac{\sin \pi z}{\pi z} + rac{\sin \pi z}{\pi} \sum_{k=1}^{\infty} (-1)^k \left(rac{1}{z+k} + rac{1}{z-k}
ight) \cos kx, \quad x \in [-\pi,\pi].$$

Разложение $\pi\operatorname{ctg}\pi z$ и $\frac{\pi}{\sin\pi z}$ в суммы простых дробей

При $z\in\mathbb{C}\setminus\mathbb{Z}$ из разложения $\cos zx$ подстановкой $x=\pi$ и x=0 соответственно получаются разложения в ряды (в смысле главного значения):

$$\pi\operatorname{ctg}\pi z = \sum_{k=-\infty}^{\infty} rac{1}{z-k}, \quad rac{\pi}{\sin\pi z} = \sum_{k=-\infty}^{\infty} rac{(-1)^k}{z-k}.$$

Вычисление сумм $\sum_{n=1}^{\infty} rac{1}{n^2}$ и $\sum_{n=1}^{\infty} rac{(-1)^{n-1}}{n^2}$

- 1. Сумма $\sum_{n=1}^{\infty} \frac{1}{n^2}$:
 - Используем тождество Парсеваля для функции $f_{\sqrt{-1}}(x)=\cosh x$ (частный случай z=i, но проще для $f(x) = x^2$).
 - Стандартный результат: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- 2. Сумма $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$:
 - Подставим $x=\pi$ в разложение функции $g(x)=x^2$ в ряд Фурье на $[-\pi,\pi].$

 - Ряд Фурье для $g(x)=x^2$: $x^2=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}\cos nx$. При $x=\pi$: $\pi^2=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}(\cos n\pi)=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}(-1)^n=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{1}{n^2}$.
 - Отсюда: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

 - Теперь подставим x=0: $0=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}(1)$. Отсюда: $\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}=-\frac{\pi^2}{12}$, следовательно, $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2}=\frac{\pi^2}{12}$.

69. Общее представление о методах суммирования рядов. Суммирование по Чезаро, суммирование

методами Абеля-Пуассона (их перманентность и эффективность)

Суммирование по Чезаро

Пусть дан числовой ряд $\sum_{k=0}^{\infty} a_k$ с частичными суммами $S_n = \sum_{k=0}^n a_k$. Средние арифметические Чезаро (первого порядка) определяются как:

$$\sigma_n = rac{1}{n+1} \sum_{k=0}^n S_k$$

Ряд называется суммируемым по Чезаро к числу S, если существует предел:

$$\lim_{n \to \infty} \sigma_n = S$$

Обозначение: $(C,1)\sum a_k=S.$

Суммирование методом Абеля-Пуассона

Пусть дан степенной ряд $f(x) = \sum_{k=0}^{\infty} a_k x^k$, сходящийся при |x| < 1. Суммой ряда методом Абеля-Пуассона называется предел (если он существует):

$$f(A)\sum_{k=0}^\infty a_k=\lim_{x o 1^-}f(x)=\lim_{x o 1^-}\sum_{k=0}^\infty a_kx^k$$

Перманентность методов

Метод суммирования F называется перманентным (регулярным), если:

- 1. Линейность: $F\sum (lpha a_k + eta b_k) = lpha F\sum a_k + eta F\sum b_k.$
- 2. **Согласованность**: Если ряд $\sum a_k$ сходится классически к S, то $F \sum a_k = S$.

Эффективность методов

Метод суммирования F называется эффективным (или сильнее другого метода G), если:

- Любой ряд, суммируемый методом G, суммируем и методом F к той же сумме.
- Существует ряд, суммируемый методом F, но не суммируемый методом G.

70. Аппроксимативная единица и усиленная аппроксимативная единица. Теорема о свойствах свертки с аппроксимативной единицей (без док-ва). Теорема Фейера. Полнота тригонометрической системы в $L^2_{2\pi}$

Аппроксимативная единица

Пусть $D\subset\mathbb{R}$, h_0 — предельная точка D (в $\overline{\mathbb{R}}$). Семейство функций $\{K_h\}_{h\in D}$ называется аппроксимативной единицей при $h\to h_0$, если:

1.
$$orall h \in D$$
: $K_h \in L^1[-\pi,\pi]$ и $\int_{-\pi}^{\pi} K_h(t) dt = 1$.

2.
$$\exists M>0$$
: $orall h\in D$, $\int_{-\pi}^{\pi}|K_h(t)|dt\leq M$.

3.
$$orall \delta \in (0,\pi)$$
: $\int_{E_\delta} |K_h(t)| dt \mathop{\longrightarrow}\limits_{h o h_0}^{-\pi} 0$, где $E_\delta = [-\pi,\pi] \setminus [-\delta,\delta]$.

Усиленная аппроксимативная единица

Семейство $\{K_h\}_{h\in D}$ называется усиленной аппроксимативной единицей при $h o h_0$, если:

- 1. Выполнены условия 1, 2 (из прошлого пункта) аппроксимативной единицы.
- 2. $\forall h \in D$: $K_h \in L^\infty[-\pi,\pi]$.
- 3. $orall \delta \in (0,\pi)$: $\displaystyle \operatorname*{ess\,sup}_{t \in E_\delta} \lvert K_h(t) \rvert \overset{}{\underset{h o h_0}{\longrightarrow}} 0.$

3) Теорема о свойствах свертки

Пусть $\{K_h\}$ — аппроксимативная единица при $h o h_0$. Тогда:

- 1. Если $f\in C_{2\pi}$ (непрерывная 2π -периодическая), то $f*K_h \xrightarrow{h o h_0} f$ равномерно.
- 2. Если $f\in L^p_{2\pi}$, $1\leq p<\infty$, то $\|f*K_h-f\|_p \xrightarrow{h o h_0} 0$.
- 3. Если $\{K_h\}$ *усиленная* аппроксимативная единица, $f\in L^1_{2\pi}$, и f непрерывна в точке x, то $(f*K_h)(x)\stackrel{h\to h_0}{\longrightarrow} f(x).$

Теорема Фейера

Ядра Фейера $\Phi_n(t)=rac{1}{2\pi(n+1)}\left(rac{\sinrac{(n+1)t}{2}}{\sinrac{t}{2}}
ight)^2$ образуют *усиленную* аппроксимативную единицу при $n o\infty$. Следовательно:

- 1. Если $f \in C_{2\pi}$, то $\sigma_n(f) o f$ равномерно.
- 2. Если $f \in L^p_{2\pi}$, $1 \leq p < \infty$, то $\|\sigma_n(f) f\|_p o 0$.

3. Если $f \in L^1_{2\pi}$ непрерывна в точке x, то $\sigma_n(f,x) o f(x).$

Полнота тригонометрической системы в $L^2_{2\pi}$

Тригонометрическая система $\{e^{ikx}\}_{k\in\mathbb{Z}}$ (или $\{1,\cos kx,\sin kx\}_{k=1}^\infty$) полна в $L^2_{2\pi}$. То есть:

$$orall f \in L^2_{2\pi}: \quad \|S_n(f) - f\|_2 \stackrel{n o \infty}{\longrightarrow} 0,$$

где $S_n(f)$ — частичная сумма ряда Фурье. Эквивалентно: если все коэффициенты Фурье f равны нулю, то f=0 п.в.

71. Теорема Вейерштрасса о тригонометрических многочленах. Теорема Вейерштрасса об алгебраических многочленах

Теорема Вейерштрасса о тригонометрических многочленах

Любая непрерывная периодическая функция $f\in C_{(a,b)}$ может быть равномерно приближена тригонометрическими многочленами $T(x)=\sum_{k=0}^{\infty}q_kx^k$, где остаток $\|T(x)-P_N(x)\|_{C_{at}}\to 0$ при $N\to\infty$.

Теорема Вейерштрасса об алгебраических многочленах

Для любой непрерывной функции $f\in C_{at}$ на отрезке [a,b] существует последовательность алгебраических многочленов $P_N(x)=\sum_{j=0}^N q_j x^k$, такая что $\|f-P_N\|_{L^p}\leq \epsilon$ при достаточно больших N.