The High-redshift Universe, Magnified

Sixteenth Synthesis Imaging Workshop 16-23 May 2018

High-redshift Galaxy Formation

- First few Gyr of cosmic history were a very exciting time!
 - Star formation grows to a peak around $z\sim2$, then falls off
 - High density, large gas supplies, active stirring

High-redshift Galaxy Formation Detailed simulations now exist but physics are not completely constrained 25 Myr Outflow Hayward et al. 20 kpc (simulation!) Schneider et al. 2018 nthesis Imaging Workshop

High-redshift Galaxy Formation

- To understand galaxy formation, we want to approximate local observations
 - In FIR, we may even want to exceed local observations
- This is hard for faint emission from the cool ISM

High-redshift Galaxy Formation

- Our view is less exciting!
 - Still true with ALMA

Gravitationally Lensed Galaxies

Vieira, DPM et al. 2013

[-2.3:7.3] mJy

[-2.3:7.1] mJy

[-2.3:13.6] mJy

Cycle 0 - 10min/src

Distant Gravitationally Lensed Galaxies

Cycle 4 – z=6.9 Weiss et al. 2013

NRAO

Strandet et al. 2017 Marrone et al. 2018

Distant Gravitationally Lensed Galaxies

Weiss et al. 2013 Strandet et al. 2016

Weiss et al. 2013

Interferometric Lens Modeling

SPT0346-52

Spilker, DPM et al. 2016

Interferometric Lens Modeling

SPT0346-52

Advanced Lens Modeling

Advanced Lens Modeling

- Most intense galaxy-scale star-formation in the universe!
 - 3x10¹³ Lsun within a 600pc half-light radius
- No evidence for AGN in X-ray
 - This is star-formation powered!

Ma et al. 2016

esis Imaging Workshop

Source-plane reconstruction

Source-plane reconstruction

- A massive merger
- Two highly unstable components!

Litke, DPM et al. 2018

Massive Galaxy Astrophysics: Outflows

Spilker et al. 2018 (submitted)

- OH 119um blue absorption against z=5.3 SMG
- Implied mass outflow is ~500M_{sun}/yr
 - Molecular gas depletion by SF and outflow similar
- Direct observation of quenching in massive galaxy?

ALMA WFC3/IR ACS

SPT0311-58 at z=6.900 780 Myr after the Big Bang IGM still 50% neutral

CII 158µm Data Cube

Marrone et al. 2018

- Two galaxies!
 - Separated by 8kpc and 700 km/s
 - Very different line and continuum properties
 - Large velocity dispersions

Marrone et al. 2018

- Total halo mass larger than any known at z>5
- Only handful in whole sky

Massive Galaxy Formation: Reionization NRAO/AUI/NSF; D. Berry 16th Synthesis Imaging Workshop 29

(Cycle 5 - 0.06")

