EE746 Neuromorphic Engineering

Udayan Ganguly

udayan@ee.iitb.ac.in

Jan, 10, 2020

Exponential Growth in Computing

Source: Kurzweil 1999 - Moravec 1998

The story of micro-processor data in timescales

80486, circa 1990 1.2 Million Transistors

Tukwila, circa 2010 2 Billion Transistors

Source: www.intel.com

Typical access latency in processor cycles (@ 4 GHz)

Prof. M Qureshi

Computation – A comparison

17.8 Million Watts 7750 sq. ft. $\sim 10^9 \; \text{ops/J}$

Source: http://spectrum.ieee.org/

 \sim 20 Watts 2 sq. ft. \sim 10^{15} ops/J

Si vs. C based computation

Artificial Intelligence progress

Outline

• How we compute?

Neuromorphic Engineering - Elements

• Why Neuromorphic engineering? – Opportunities

Outline

• How we compute?

Neuromorphic Engineering – Elements

Why Neuromorphic engineering? - Opportunities

Computation in the Brain

3

Spikes are the tokens of information processing Strength of communication is encoded in the synapse

 $\sim 10^{11}$ neurons in human brain

 $\sim 10^{15}$ synapses in human brain

Inherently 3-dimensional connectivity that changes with activity

Cogito Ergo Sum - I think, therefore I am

You are your spikes!

What does a neuron do?

when there is negative current it behave like a rc circuit but when there is +ve voltage it behaves like a CCO. MORE POSITIVE CURRENT MORE THE SPIKE

Alan Lloyd Hodgkin

Nobel Prize, 1963.

Source: Neuroscience, Purves

What happens at the synapse?

Nobel Prize, 1932.

Nobel Prize, 1963.

Source: Neuroscience, Purves

What is the basis of intelligence?

Eric R. Kandel

"Synaptic plasticity emerged as a fundamental mechanism for information storage" - Nobel Lecture, 2000.

effect before the cause

Spike Time Dependent Plasticity (STDP)

Bi & Poo, J. Neuroscience, '98

Causal firing ⇒ Conductivity increases Anti-causal firing ⇒ Conductivity decreases

$$\Delta G \propto \exp(-|\Delta t|)$$

Timing correlations in the range of ± 100 ms.

Learning in Biology

Source: Nature Neurosci. 3:1178-1183.

Low voltage spikes and timing based plasticity is fundamental in biology

What can a neuro-synaptic network do?

Learnt patterns

- $I^1 = [100101000]$
- $I^2 = [011010000]$
- $I^3 = [000000111]$

Task: Is $X \in \{I^1, I^2, I^3\}$?

Key component of pattern recognition.

What can a neuro-synantic network do?

What can a neuro-synaptic network do?

$$rac{dx_i}{dt} = -x_i + \sum_{j=1}^N J_{ij} tanh(x_j)$$

Source: L. Abbott

Random Network on Neurons will learn a function

Outline

• How we compute?

Neuromorphic Engineering – Elements

Why Neuromorphic engineering? – Opportunities

How can we build a neuro-synaptic core?

STDP ($\Delta G(\Delta t)$) = RRAMs + Neuronal Waveform

- Waveforms
 - Means of converting timing info to voltage etc

Waveforms produce STDP but replace sharp biological spikes with long waveforms

RRAMs – Analog weights & STDP

- Voltage-pulse-dependent resistances
 - STDP shown successfully by many [Jo et al], [Panwar et

1. Biology(Bi & Poo)

2. Simple STDP

3. Arbitrary STDP

Nanoscale Devices as Synapse

Exploit nanoscale phenomenon to mimic biology

Source: T. Ohno, Nature Materials, 2011

Can we engineer the building blocks of bio-mimetic computational systems from nanoscale materials?

Outline

• How we compute?

Neuromorphic Engineering – Elements

Why Neuromorphic engineering? - Opportunities

Understanding Biology: Noise/Signal

Z. Mainen et al, Science Vol 268 '95

Rate coding vs. temporal coding.

Challenge: To Connect sensing to perception

How does the brain build a meaningful representation of the world from stochastic signals?

Are these connection maps set from birth? Do they evolve during infancy?

Bio-inspired computation – perception to decision

C. Elegans (1 mm long)

- 302 neurons
- \sim 8700 synapses

Smallest network capable of learning?

Bio-inspired computation

Arjun Rao, Ashish Bora, Sai Bhargav Yalamanchi, Akshat Kadam

Chemotaxis Neural Network

- S. Santurkar et al IJCNN 2016
- S. Shukla et al ICANN 2018

C. Elegans (1 mm long)

- 302 neurons
- ~ 8700 synapses

Solving NP Hard Problems

Neurons

Synapses

Solving a graph coloring problem

Coupled Oscillatory Neurons solve problems in parallel!

Boltzmann Machine

(Mott-Gurney)

Stochastic (d)

Temperature (

 $(Trap Density (N_T))$

2.3 V

2.2 V

10-4

10.7

10.6

Pulse width (s)

Multi-stable Perception/Illusion

https://en.wikipedia.org/wiki/Necker cube

https://en.wikipedia.org/wiki/Schroeder_stairs

https://www.illusionsindex.org/i/hermann-grid

Liquid State Machine

A random array of neurons produce temporary memory for speech recognition

Controlling an Insect

https://today.uconn.edu/2018/09/cyborg-cocroach-someday-save-life/

A cockroach with an implanted neurocontroller. (Image courtesy of the Dutta Lab)

An understanding of neuroscience enables the control of biological agents

Bio-mimetic Information Processing

Course Content

- Goal:
 - Develop models for each element of SNN neuron, synapse etc.
 - Replication algorithms for recognition and learning
- Need to be able to code in MATLAB
- Course Content
- 3 Home-works
- 4 Exams
- 1 Project to implement learning & recognition tasks
 - Handwriting
 - Video
 - Audio
 - Navigation