TCPCP problem:

$$\min_{\mathcal{L}, \mathcal{S}} \|\mathcal{L}\|_* + \lambda \|\mathcal{S}\|_1, s.t. P_{\Omega}(\mathcal{S} + \mathcal{L}) = P_{\Omega} \mathcal{X}_0.$$

Rewrite the constraint into $G(S(:) + \mathcal{L}(:)) = G\mathcal{X}_0(:) = g$, then we want to solve the following optimization problem,

$$\min_{\mathcal{L},\mathcal{S}} \|\mathcal{L}\|_* + \lambda \|\mathcal{S}\|_1 + \frac{\lambda_1}{2} \|G(\mathcal{S}(:) + \mathcal{L}(:)) - g\|_F^2.$$

In order to solve this problem by ADMM, we introduce \mathcal{P}, \mathcal{Q} and then obtain the following optimization problem,

$$\min_{\mathcal{S},\mathcal{L},\mathcal{P},\mathcal{Q}} \|\mathcal{L}\|_* + \lambda \|\mathcal{S}\|_1 + \frac{\lambda_1}{2} \|G(\mathcal{S}(:) + \mathcal{L}(:)) - g\|_F^2 + \frac{\lambda_2}{2} \|(\mathcal{L} - \mathcal{P})\|_F^2 + \frac{\lambda_3}{2} \|(\mathcal{S} - \mathcal{Q})\|_F^2$$

Solve this by ADMM by introducing two dual problems, the algorithm can be shown as follows,

Algorithm: Solve TCPCP by ADMM

- 1: Initialization $S = \mathcal{L} = \mathcal{P} = \mathcal{Q} = \mathcal{Z}_1 = \mathcal{Z}_2 = zeros(dim(X_0))$
- 2: **for** $k = 1, 2, \cdots$ **do**
- 3: update \mathcal{P} : $\mathcal{P} = D_{\frac{1}{\lambda_2}}(\mathcal{L} + \mathcal{Z}_1)$
- 4: update \mathcal{Q} : $\mathcal{P} = S_{\frac{\lambda}{2}}^{2}(\mathcal{S} + \mathcal{Z}_2)$
- 5: update \mathcal{L} : $\mathcal{L}(:) = (\lambda_1 G^T G + \lambda_2 I)^{-1} (\lambda_1 G g + \lambda_2 \mathcal{P}(:) \lambda_1 G^T G \mathcal{S}(:))$
- 6: update $S: S(:) = (\lambda_1 G^T G + \lambda_3 I)^{-1} (\lambda_1 G g + \lambda_3 \mathcal{Q}(:) \lambda_1 G^T G \mathcal{L}(:))$
- 7: dual update \mathcal{Z}_1 : $\mathcal{Z}_1 = \mathcal{Z}_1 + \mathcal{L} \mathcal{P}$
- 8: dual update \mathcal{Z}_2 : $\mathcal{Z}_2 = \mathcal{Z}_2 + \mathcal{S} \mathcal{Q}$
- 9: end for

where the updates for \mathcal{Z}_1 , \mathcal{Z}_2 are dual ascent for sub-optimization problem:

- \mathcal{Z}_1 : $\min_{\mathcal{P}} \|\mathcal{P}\|_* + \frac{\lambda_2}{2} \|\mathcal{L} \mathcal{P}\|_F^2$
- \mathcal{Z}_2 : $\min_{\mathcal{Q}} \|\mathcal{Q}\|_1 + \frac{\lambda_2}{2} \|\mathcal{S} \mathcal{Q}\|_F^2$