CENG414-Introduction to Data Mining

Programming HW1

Task 4-Support Vector Machine

Zeynepsu Kesim

2292340

Run the classifier with default parameters and report Summary and Detailed Accuracy By Class

I use 'splitting data with 66% training set' which is the default value.

=== Summary ===									
Correctly Classified Instances			3181		93.5588 %				
Kappa statistic			0.9284						
Mean absolute error			0.1605						
Root mean squared error			0.2728						
Relative absolute error			89.1863 %						
Root relative squared error			90.9254 %						
Total Number of Instances			3400						
=== Detailed Accuracy By Class ===									
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0,987	0,005	0,957	0,987	0,972	0,969	0,995	0,955	0
	0,979	0,005	0,964	0,979	0,971	0,968	0,997	0,963	1
	0,918	0,009	0,926	0,918	0,922	0,913	0,983	0,906	2
	0,936	0,011	0,907	0,936	0,921	0,912	0,984	0,879	3
	0,931	0,007	0,937	0,931	0,934	0,927	0,992	0,908	4
	0,890	0,011	0,895	0,890	0,893	0,881	0,977	0,846	5
	0,934	0,005	0,959	0,934	0,946	0,940	0,992	0,935	6
	0,947	0,005	0,958	0,947	0,953	0,947	0,992	0,932	7
	0,898	0,005	0,948	0,898	0,922	0,915	0,982	0,892	8
	0,929	0,011	0,906	0,929	0,917	0,908	0,982	0,865	9
Weighted Avg.	0,936	0,007	0,936	0,936	0,936	0,928	0,988	0,909	

Support vector machines have a parameter called C. With this parameter, we can control how much we want to trade off a large separation between classified examples and a perfect classification. Because we want actually two main things: a hyperplane with the largest minimum margin, and a hyperplane that correctly separates as many instances as possible. But we cannot take both of them well. Therefore, the question is whether we want to have a large margin between different classes or we want the perfect classification. As much as we increase

the C parameter's value, it means that we want more and more correct values of the points meaning a better classification, and a smaller margin. If we have a medium C, then for having a large separation between classes, we can give up for some points and allow them to be classified in a different group. And as much as we decrease the value of C, it means that we care less about the precise values of the points; on the contrary, we more care about the largest possible distance. Choosing C is significant since we are determining a trade off in our predictions. When C is too large, it can overfit the data which can cause problems in testing the model. For example, when C is too large, it can take the outliers in account, and thus, could have wrong predictions in the test data.

In this dataset, we have the default C value = 1 accuracy = 93.5588%