Math 623 Fall 2015

Problem Set # 7

- (1) (The Saga of the Change of Variables Formula, Part 2)
 - (a) A function $T: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ is said to be Lipschitz continuous in Ω if there is some number $0 < L < \infty$ such that

$$|T(x) - T(y)| \le L|x - y|, \ \forall \ x, y \in \Omega$$

In this case, the number

$$[T]_{\operatorname{Lip}(\Omega)} = \inf_{x,y \in \Omega, x \neq y} \frac{|T(x) - T(y)|}{|x - y|}$$

is called the Lipschitz constant or the Lipschitz seminorm of T in Ω .

- (b) Let $E \subset \mathbb{R}^n$ be a set of measure zero, and $T : \mathbb{R}^n \to \mathbb{R}^m$ a Lipschitz function. Show that T(E) is a set of measure zero.
- (c) If $L: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz, then the image of every measurable set is measurable.
- (2) Let $f:[a,b] \to \mathbb{R}$ be such that f' exists and is continuous in [a,b]. Show that f is a Lipschitz function in [a,b]. Hint: Use the mean value theorem.
- (3) Let $K \subset \mathbb{R}^n$ be a compact set. Show that the function f(x) = d(x, K) is Lipschitz with Lipschitz constant 1. Hint: Do the case $K = \{0\}$ first, use the triangle inequality.
- (4) * Let $E \subset \mathbb{R}_+ := (0, \infty)$ be a Borel set, and define a measure h by

$$h(E) = \int_{E} \frac{1}{x} \, dx$$

Given $a \in \mathbb{R}$, let $aE := \{ax | x \in E\}$. Show that for any E Borel and any $a \in \mathbb{R}_+$ we have

$$h(E) = h(aE)$$

Hint: Note that h(aE) and h(E) agree when E is an interval.