

FRACIO DE ELEVAMENTO TRANSAZIONII FRAUDOLENTE

Progetto:

MACHINE LEARNING

Autore:

ANTONIO BISOGNO [MAT. 0512116580]

Prof./Prof.ssa

GIUSEPPE POLESE, LOREDANA CARUCCIO

INDICE

1.	Introduzione	3
2.	Dataset	4
	2.1 Fonte	4
	2.2 Caratteristiche principali	4
	2.3 Struttura	. 4
3.	Analisi dei dati	5
	3.1 Analisi esplorativa	5
	3.2 Pulizia dei dati	5
	3.3 Preprocessing	. 5
4.	Modelli e metriche	6
	4.1 Modelli scelti	. 6
	4.2 Metriche di valutazione	7
5.	Analisi dei risultati	8
	5.1 Logistic Regression	. 8
	5.2 Random Forest	. 9
	6. Conclusioni	10
	6.1 Sviluppi futuri	1 ^

1. INTRODUZIONE

Il problema delle frodi nelle transazioni finanziarie rappresenta una delle sfide più rilevanti nell'ambito dell'applicazione del **Machine Learning**. Le transazioni fraudolente hanno un impatto significativo sia per gli istituti bancari sia per i clienti.

L'obiettivo di questo progetto è sviluppare un sistema in grado di distinguere tra transazioni legittime e fraudolente, sfruttando tecniche di Machine Learning.

Il sistema è stato implementato in Python, utilizzando librerie standard come *scikit-learn*, *pandas*, *matplotlib*, e *seaborn*.

È stata realizzata anche una piccola GUI interattiva in *Tkinter* per consentire la verifica in tempo reale di nuove transazioni.

2. DATASET

2.1 FONTE

Il dataset utilizzato è il **Credit Card Fraud Detection Dataset**, pubblicato su Kaggle.com e fornito dal *Machine Learning Group* dell' *Université Libre de Bruxelles*.

2.2 CARATTERISTICHE PRINCIPALI

Il dataset raccoglie 284.807 transazioni effettuate con carte di

credito europee, per un totale di **492 frodi** (0,172%), rilevate in due giorni.

Il dataset è pulito, non presenta valori mancanti. La *issue* principale riguarda lo sbilanciamento dei dati: esiste 1 frode ogni 578 transazioni.

Per motivi di riservatezza, alcune features

non sono interpretabili direttamente, ma racchiudono relazioni nascoste nei dati originali. Ciò limita la *spiegabilità* dei modello ma aumenta la robustezza della predizione.

2.3 STRUTTURA

Contiene 31 caratteristiche:

- 28 variabili di valore numerico (V1,...,V28) sono ottenute tramite la trasformazione del metodo *PCA*;
- 2 variabili sono:
 - Time (tempo che intercorre tra la transazione corrente e la prima transazione);
 - Amount (importo della transazione);
- Classe:
 - 0 = Legit;
 - 1 = Fraud.

3. ANALISI DEI DATI

3.1 ANALISI ESPLORATIVA

Le classi non sono bilanciate: il rischio è che un modello che predice sempre "Legit" ottenga una **Accuracy** superiore al 99%

ma senza alcuna utilità pratica.

La distribuzione del parametro **Amount** presenta valori molto variabili (da 0 a oltre 25.000), con forti asimmetrie e *outlier*.

tipiche della PCA.

La distribuzione del parametro **Time** mostra pattern legati all'attività oraria (picchi durante il giorno, cali durante la notte)

Le features **V1,...,V28** mostrano distribuzioni gaussiane centrate intorno allo zero,

3.2 PULIZIA DEI DATI

Non sono presenti missing values.

Non sono stati rimossi gli *outlier* poiché le transazioni fraudolente stesse potrebbero apparire come *outlier* rispetto ai dati "*Legit*".

3.3 PREPROCESING

Scaling: Amount e Time sono state standardizzate con StandardScaler, per portarle su una scala confrontabile con V1,...,V28;

- Train-test split: dati divisi in 80% training e 20% test tramite stratify = y, per mantenere la stessa proporzione di "Fraud" e "Legit" in entrambi i set;
- Class imbalance: gestito tramite il parametro class_weight="balanced", che ribilancia automaticamente il contributo delle classi durante l'allenamento.

4. MODELLI E METRICHE

4.1 MODELLI SCELTI

Logistic Regression:

- Modello lineare interpretabile, adatto a problemi binari;
- Utile come baseline

Random Forest Classifier:

Modello ensemble basato su molti alberi decisionali;

 Robusto al rumore e capace di catturare relazioni non lineari;

Logistic Regression è stato scelto per la sua semplicità, rapidità di training e interpretabilità.

Random Forest è stato scelto perché garantisce maggiore Accuracy e Recall e la gestione di dataset sbilanciati.

4.2 METRICHE DI VALUTAZIONE

- Confusion Matrix: visualizza True Positive, False Positive, True Negative e False Negative;
- Precision: rapporto tra transazioni identificate come frodi e quelle effettivamente fraudolente;
- * Recall: capacità del modello di individuare tutte le frodi;
- F1-Score: media armonica tra Precision e Recall;
- * ROC AUC: misura la capacita discriminativa del modello;
- Precision-Recall Curve: particolarmente utile con dataset sbilanciati.

5. ANALISI DEI RISULTATI

5.1 LOGISTIC REGRESSION

Il modello riesce a catturare una buona parte delle frodi grazie a un Recall discreto.

Nonostante non sia molto preciso a causa dei molti falsi positivi, è stato considerato che è meglio identificare più transazioni come sospette piuttosto che perderne qualcuna.

CLASSE	PRECISION	RECALL	F1-SCORE	ROC AUC
0	1.00	0.98	0.99	0.97
1	0.06	0.92	0.11	0.97

5.2 RANDOM FOREST

Il modello presenta un Recall molto alto e una Precision migliore rispetto alla Logistic Regression. Tuttavia richiede maggiore complessità e tempi di training più lunghi.

Modello adatto ad applicazioni reali grazie al buon compromesso tra Recall e

Precision.

1.0	0							
0.8								
label: 1)	,	\mathbb{N}						
Precision (Positive label: 1)		' ኪ						
ecision (4							
<u>دّ</u> 0.2		h	ነ					
		Clas	sifier (AP =	= 0.13)				
0.0	0.0	0.).4 II (Positive	0.6 label:	0.8 1)	3	1.0

CLASSE	PRECISION	RECALL	F1-SCORE	ROC AUC
0	1.00	1.00	1.00	0.96
1	0.96	0.76	0.85	0.96

ROC Curve e Precision-Recall Curve mostrano una chiara superiorità della Random Forest. Mentre la Logistic Regression resta utile solo come baseline ma meno adatta a sistemi di rilevamento reali.

6. CONCLUSIONI

Il progetto Fraud Detection ha mostrato come il Machine Learning possa essere applicato con successo a un problema reale e complesso come il rilevamento delle frodi.

La pipeline ha incluso tutte le fasi: analisi, preprocessing, gestione dello sbilanciamento, addestramento, valutazione e prototipazione dell'applicativo.

I risultati confermano che modelli più sofisticati come la Random Forest superano approcci lineari come la Logistic Regression.

L'interfaccia Tkinter consente una semplice interazione con il modello e rappresenta un primo passo verso un'applicazione reale.

6.1 SVILUPPI FUTURI

- Bilanciamento avanzato dei dati: utilizzo di tecniche di oversampling, come SMOTE,
- Ottimizzazione degli iperparametri: Grid Search o Random Search per migliorare le prestazioni
- Nuovi algoritmi: Gradient Boosting (XGBoost, LightGBM);
- Feature Engineering per creare nuove variabili informative a partire da quelle esistenti;
- Utilizzo di un API WEB per integrare il modello in applicazioni bancarie reali.