

Creating a quantum computation simulation framework

Vladislav Guschakowski, Anantha Vasudevan

Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

Motivation

Powerful quantum algorithms, such as Shor's and Grover's, were already discovered over three decades ago. To this day the experimental realization of these algorithms still presents a large obstacle, due to high error rate in qubits. Thus, classical simulations of quantum circuits are still necessary².

Our goal is to create a modular and simple-to-use Python framework for simulating quantum circuits. The framework should be organized in a **robust** manner, with cooperative development and feature expansions in mind.

Our project focuses on two aspects:

- 1. Learning how to create and maintain usable and expandable software frameworks in a research context.
- 2. Applying the framework to investigate the effect of noise on the Deutsch-Josza algorithm.

Framework

Tools & Workflow

Collaborative coding projects require a strong maintenance structure. Helpful practices for this purpose are:

- Version control: logging changes between versions with the possibility to create development branches (GitHub)
- Unit testing: testing single units of a framework, thus assuring all former features don't break during updates
- Jupyter Notebooks: prepared coding environments showing how to use a tool and allowing for quick experimentation

lupyter

Features

- Fully works with pure & mixed states as numpy arrays
- Native gate & channel application
- Quick and flexible instruction list syntax using the internal *instruction* class

- Supports sparse matrices for pure states using scipy csr_matrix
- Supports projective measurements for any given set of projectors
- Contains functions to create **Bloch plots** using Qutip
- Contains functions to initialize Haar, Hilbert-Schmidt and Bures random states³
- Thus, classical simulations of quantum circuits by using sparse matrices

0.25

0.00

Deutsch - Josza algorithm

Problem The function $f: \{0,1\}^n \to \{0,1\}$ takes bitstrings of length n and returns either 0 or 1. It is known to be either constant or balanced. constant balanced 000...000 000...001 111...110 111...110 111...111 111...111 Which is it?

- Classically we need $2^{n-1} + 1$ quarries to so solve this problem, by direct testing
- The quantum algorithm known as **Deutsch-Josza algorithm** solves this problem in exactly one quarry

- If f is **constant** the measured state only received a factor of either 1 or -1 (which is just a phase) during this protocol, leading to the final state being just $|0 \cdots 0\rangle$
- If f is **balanced** the equally many bitstrings receive a factor of either 1 or -1, leading to $|0 \cdots 0\rangle$ being canceled out before measuring

Noisy Deutsch - Josza

To investigate the effect of noise on the Deutsch-Josza algorithm we used a black box function that simulated the oracle, while applying single-qubit channels N; at all the possible noise positions.

Phaseflip channel

Depolarization channel

Amplitude damping channel Pull qubit towards |0> 0.75 +0.50

0.50

Damping probability

0.50

Flip probability

Main results

It is more likely for the $|0 \cdots 0\rangle$ state to decohere than for it to be produced. Thus, we find:

- Constant functions are more prone to errors
- Longer bitstrings stabilize balanced functions to the depolarization channel
- Longer bitstrings destabilize constant functions to the depolarization channel

Internal noise positions act on equal superposition states, while external positions act on computational basis states, we therefore conclude:

0.75

- Bitflips are only relevant externally
- Phaseflips are only relevant internally

Why are not all balanced configurations affected?

0.25

For the balanced function to be **incorrectly estimated**, the output state needs to have some overlap with the |0 ··· 0| state. Some noise channels do not produce any overlap with the $|0 \cdots 0\rangle$ state, for example, the bitflip channel on the first qubit of |01) will not impact the balanced function.

[2] Nielsen, Michael A., and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, 2010. [3] Alhambra, Álvaro M. "Quantum many-body systems in thermal equilibrium." PRX Quantum 4.4 (2023): 040201.