21/16/11 з. на 5/4/3

Комплексные числа помогают в планиметрии, так как их можно отождествить с точками плоскости: числу z = a + bi соответствует точка (a,b). При этом квадрат расстояния между точками z и w равен $|z-w|^2 = (z-w)(\overline{z}-\overline{w})$.

- **Задача 1.** (Эйлер) Докажите, что сумма квадратов длин сторон четырёхугольника отличается от суммы квадратов диагоналей на учетверённый квадрат длины отрезка, соединяющего середины диагоналей.
- **Задача 2.** Пусть M точка на плоскости, S окружность, AB её диаметр. Докажите, что величина $MA^2 + MB^2$ не зависит от выбора диаметра AB окружности S.
- Задача 3. ($Tеорема \ Лейбница$) Пусть F центр масс треугольника ABC. Докажите, что для любой точки M на плоскости выполнено равенство: $MA^2 + MB^2 + MC^2 = AF^2 + BF^2 + CF^2 + 3MF^2$.
- **Задача 4.** Докажите теорему косинусов $BC^2 = AB^2 + AC^2 2 \cdot AB \cdot AC \cdot \cos \alpha$, расположив вершины треугольника ABC в точках 0, z и w соответственно, где w вещественно.
- **Задача 5.** На плоскости даны точки A, B, C. Пусть A_1 образ точки C при повороте вокруг A на 90° против часовой стрелки, B_1 образ точки C при повороте вокруг B на 90° по часовой стрелке, K середина A_1B_1 , M середина AB. Докажите, что отрезки KM и AB перпендикулярны. Как соотносятся их длины?
- **Задача 6.** На сторонах треугольника $A_1A_2A_3$ во внешнюю сторону построены квадраты с центрами B_1, B_2, B_3 . Докажите, что отрезки B_1B_2 и A_3B_3 равны по длине и перпендикулярны.
- **Задача 7.** Пусть $A_1A_2A_3$ и $B_1B_2B_3$ правильные треугольники, и их вершины занумерованы против часовой стрелки. Докажите, что середины отрезков A_1B_1, A_2B_2 и A_3B_3 вершины правильного треугольника.
- **Задача 8.** Докажите, что три точки z_1, z_2, z_3 являются вершинами правильного треугольника тогда и только тогда, когда $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_1 z_3 + z_2 z_3$.
- **Определение 1.** Простое отношение тройки различных точек z_1, z_2 и z_3 это комплексное число $\frac{z_1-z_3}{z_2-z_3}$.
- Задача 9. Докажите, что а) три различные точки z_1, z_2, z_3 лежат на одной прямой тогда и только тогда, когда их простое отношение вещественно; б) прямая, проходящей через точки z_1 и z_2 , задаётся уравнением $(z_1-z)(\overline{z}_2-\overline{z})=(\overline{z}_1-\overline{z})(z_2-z);$ в) каково уравнение перпендикуляра к этой прямой, проходящего через w? Задача 10. (Прямая Эйлера) В любом треугольнике центр тяжести треугольника, его ортоцентр и центр опи-
- **Определение 2.** Двойное отношение четвёрки различных точек $z_1,\,z_2,\,z_3$ и z_4 это число $\dfrac{z_1-z_3}{z_2-z_3}:\dfrac{z_1-z_4}{z_2-z_4}.$
- **Задача 11. а)** Пусть четыре различные точки z_1, z_2, z_3, z_4 лежат на одной окружности. Докажите, что тогда их двойное отношение вещественно. **6)** Пусть двойное отношение четырёх различных точек вещественно. Что можно сказать об их взаимном расположении?
- **Задача 12.** Докажите, что **a)** $(z_1-z_2)(z_4-z_3)+(z_2-z_3)(z_4-z_1)=(z_2-z_4)(z_3-z_1);$

санной окружности лежат на одной прямой.

- **б)** в любом четырёхугольнике произведение длин диагоналей не превосходит сумму произведений длин противоположных сторон; **в)** (*теорема Птолемея*) для четырёхугольника, вписанного в окружность, достигается равенство. **г)** Верно ли, что если равенство достигается, то четырёхугольник вписанный?
- **Задача 13.** Докажите, что прямая, проходящая через точки a и b единичной окружности $z\overline{z}=1$, имеет уравнение $z+ab\overline{z}=a+b$, а касательная в точке p этой окружности имеет уравнение $\overline{p}z+p\overline{z}=2$.
- Задача 14. а) Пусть z_1 и z_2 точки на единичной окружности $z\overline{z}=1$. Докажите, что точка пересечения касательных к этой окружности, проходящих через z_1 и z_2 , это точка $\frac{2z_1z_2}{z_1+z_2}$. б) (Задача Ньютона) В описанном около окружности четырёхугольнике середины диагоналей и центр окружности лежат на одной прямой.
- **Задача 15*.** Каждую сторону *n*-угольника продолжили на её длину (обходя по часовой стрелке). Пусть концы построенных отрезков образуют правильный *n*-угольник. Докажите, что и исходный *n*-угольник правильный.
- **Задача 16*.** Пусть вписанная окружность треугольника ABC задаётся уравнением $z\overline{z}=1$ и касается его сторон в точках $p,\ q,\ r.$ Докажите, что **a)** $\frac{2pqr(p+q+r)}{(p+q)(p+r)(q+r)}$ центр описанной окружности треугольника ABC;
- **б**) $\frac{(pq+pr+qr)^2}{(p+q)(p+r)(q+r)}$ центр окружности Эйлера треугольника ABC; **в**) точка $\frac{pq+pr+qr}{p+q+r}$ лежит и на вписанной окружности, и на окружности Эйлера (окружность 9 точек) треугольника ABC; **г**) (теорема Фейербаха) вписанная окружность и окружность Эйлера треугольника ABC касаются друг друга.
- **Задача 17.** а) Пусть a, b, c, d различные точки на единичной окружности $z\overline{z} = 1$. Докажите, что секущая, проходящая через a и b, и секущая, проходящая через c и d, пересекаются в точке, сопряжённой к $\frac{(a+b)-(c+d)}{ab-cd}$.
- **Задача 18*.** (*Теорема Паскаля*) Докажите, что точки пересечения прямых, содержащих противоположные стороны вписанного шестиугольника, лежат на одной прямой.

1	2	3	4	5	6	7	8	9 a	9 б	9 B	10	11 a	11 б	12 a	12 б	12 B	12 Г	13	14 a	14 б	15	16 a	16 б	16 B	16 г	17 a	18