Caroph Lab, CNSC 204 due 11:59 pm @ Dec. 5 2020 Lucas Sicard

1. Draw the State Graph

V(StateGraph) = (Oregon, Alaska, Texas, Hawaii, Vermont, New York, California)

E(State Grayh) = [(Alaska, Oregon), (Hawaii, Alaska),

(Havaii, Texas), (Texas, Hawaii), (Hawaii, Cali.),

(Havaii, New York). (Texas, Vermont). (Vermont, Cali.), (Vermont, Alaska)]

Oregon Texas California
Alaska New York
Hawaii

3a. Adjacency Matrix

(v) (v)	AL	CA	IHI	NY	OR	1-	LVT
Alaska	Ø	Ø	Ø	Ø		Ø	LY
Caci.	Ø	Ø	Ø	Ø	Ø	Ø	I
Hawaii	1	1	Ø.		Ø		Ø
New York	Ø	Ø	Ø	0	Ø	Ø	Ø
Oregon	Ø	Ø	Ø	Ø	10	0	Ø
Texas	Ø	Ø	1	Ø	0	2	1
Vermont	Ø	0	Ø	0	Ø	0	0

36. Adjacency List
Alaska -> [Oregon/] -> [Vermont/] Cali> [Vermont/]
Hawaii -> [Alaska/] -> [Cali./] -> [New York/] New York
Teras -> [Hawaii/] -> [Vermont/]
Vermont

Ua. D

46. A

5. Shortest distance from Altanta to every other city?

Atlanta & 2100 2800 1900 2680 800 600

6 Find minimal spanning tree va Primmi algorithm. Start at Olax source vertex. Prommis algorithm

Take the maintaining

13' While maintaining

the tree V= {0.1.2.3.4.E} 11=6 E = (0,1),(0,2),... { |E| = |V|-1 = 5 Spanning Tree Cost: 14 3 1525

tind minimum 1) Kruskali algorithm 15 Cost edge, but maintain O(IVIIE 1) = ((n2) Kruskal's Minimum Spanning

Minimum Spanning Tree:

Minneapolis/St. Pav/ Cost: 1230

270

Des

Modison 80

Milwaukee

270

Ot. Louis

Chicago

280

Dah 4

ordering. Shows the steps is a correct production.

topolegical Order, and a present

Front

Step

Gueve

1 Start at 0 POP 0 output

10: Children front

3 get unid 654325 POP'5'015 out 015

40 get child 865432 POP 2'0152 out 015

40 get child 865432 POP 2'0152 out 0152

40 get child 865432 POP 2'0152 out 0152

6 get child 348654 POP'3' 015234 out 015234

6 get child 348654 POP'3' 015234 out 015234

7 15' 348654 POP'3' 015234 out 015234

a) get child 8386 Pop 6 0152346 get 0152346

Ot 6

Ot 6

9 get d. 14 9838 = 01023468 - 3:563468

(11) 13 risiled 983 01523468 01503468

	1 81 visited Queue predCount topological Order 01523468 01523468
	(12) No children of '9' 9 POR'9' 015234689-015234689
	Node '7' recyhbors nodes '4' 6' and '9'. Node '7' is a neighbor to none however
	Breadth First topological order:
	10. List the nodes of the graph in a breadth first topological order
	Given Decrete Math Algorithms Computation Stort (2) Program I -> program I -> High-level Denior Lang 7) Jenior (1) (1) (2)
	BFO (55) On -> 0.5. (8) \ End (12)
-3	Step Queue pop Seen out Order (10) 2. 432 -> 12 -> 12
= 1	3. $5443 \rightarrow 123 \rightarrow 123$ 4. $76544 \rightarrow 1234 \rightarrow 1234$ 5. $8765 \rightarrow 12345 \rightarrow 12345$
	8 165 100 1 - 10510

Queue Seen Order 9876 -> 123456 -> 123456 7. (11)987 --> 1234567 -> 1234567 8. (10×11)98 -> 12345678 -> 12345678 a. (11×10×11)9 - 123456789 -> 123456789 10. (12X11X10X11) → 123456789(11) → 123456789 (HX(12)(HX(10) -> 123456789(11) -> , 23456789 11. (10) (12) -> 123456789(11) 123456789 (10)(12) -> (11)(10)(12) 12

Breadth First Order:

Start, Discrete Math. Program I, Program II, Computer Organization, Algorithms, High Level Languages, Operating Systems, Theory of Computation, Jenier Jeminar, Compilers, End.