The role of conservation planning in assessing and mitigating climate change impacts on protected areas

Bob Smith

CCPAWA Inception meeting, Banjul, 31st March 2011

Durrell Institute of Conservation and Ecology
University of Kent

Long term monitoring of CC impacts on PAs

Mapping wildfires

Sea level rises

Impacts on vulnerable species

Identifying priority areas for conservation

Gap analysis

At its simplest, a gap analysis combines maps of:

PA location

+

Distribution of important conservation features

To calculate the protection level for each feature

Gap analysis: the basic approach

Name	Total (ha)	
Montane grassland	2,000	
Riverine forest	3,551	
Terminalia woodland	308,116	

Gap analysis: the basic approach

Name	Total (ha)	Conserved (ha)	
Montane grassland	2,000	734	
Riverine forest	3,551	2,327	
Terminalia woodland	308,116	36,845	

Gap analysis: the basic approach

Name	Total (ha)	Conserved (ha)	Conserved (%)
Montane grassland	2,000	734	36.7
Riverine forest	3,551	2,327	65.5
Terminalia woodland	308,116	36,845	12.0

Gap analysis: post-prioritisation analysis

Name	Target (ha)	Conserved (ha)	Conserved (%)
Priority grassland	100%		
Important Bird Area	100%		
Ramsar site	100%		

Gap analysis: post-prioritisation analysis

Name	Target (ha)	Conserved (ha)	Conserved (%)
Important grassland	100%	734	36.7
Threatened species	100%	180,000	73.0
Ramsar site	100%	42,000	63.5

Gap analysis

Predicting protection under different climate scenarios

Gap analysis

Assessing conservation levels for resilient areas

Swaziland National Trust Commission

Gap analysis

Assessing conservation levels for resilient areas

Identifying priority areas for conservation

Systematic conservation planning:

- Most widely used approach for identifying priority areas
- Transparent
- Efficient
- Creates a platform for combining different prioritisation schemes
- Minimises impacts on other sectors

Margules & Pressey, *Nature*, 2000

Identifying priority areas for conservation

Systematic conservation planning:

Target-based

Targets are set for each species and habitat at the beginning of the analysis

Incorporates cost data

Identifies priority areas that minimise impacts on other sectors

- 1) Identify the planning region
- 2) Identify the conservation features
- 3) Divide the region into planning units any shape or size.

- 4) Measure the amount of each feature in each planning unit
- 5) Produce a cost value for each planning unit
- 6) Set the status of each planning unit (Conserved or Excluded)
- 7) Set targets for each conservation feature

- 4) Measure the amount of each feature in each planning unit
- 5) Produce a cost value for each planning unit
- 6) Set the status of each planning unit (Conserved or Excluded)
- 7) Set targets for each conservation feature

Case studies from Southern Africa

Case studies from Southern Africa

Maputaland Centre of Endemism

Conservation features

44 landcover types

20 vertebrates13 invertebrates

20 plants

14 ecological processes

Smith et al., Biological Conservation, 2008.

Conservation features

Conservation features

Developing robust PA systems

- Conserve current habitat
- Develop corridors and landscape linkages
- Stepping stones
- Identify priority areas based on predicted distributions
- Conserve areas least-likely to be affected

 Identify areas that are important for conservation and suitable targets for REDD+, etc projects

GEF project outcomes?

Gap analysis

Measure current and future levels of protection

Identify PAs that will remain important

Identify how well resilient areas are conserved

Incorporate management effectiveness?

Systematic conservation planning

Identify suitable corridors and linkages

Identify new priority areas for conservation based on future climate projections

THANK YOU

European Regional Development Fund The European Union, investing in your future

Fonds européen de développement régional L'un ion Européenne investit dans votre avenir