

Features:

- RoHS Compliant and Halogen Free
- Capacitance range: 0.1pF to 220uF
- Voltage range: 4V to 100V
- Terminations: 100% matte Tin (Sn), Palladium (Pd-Ag), Gold (Au) and Lead (Pb)
- Very low ESR in X7R/X5R (<10mΩ typical)
- Ceramic monolithic structure provides excellent reliability
- High-speed automated placement capabilities

Part Number Structure

	0805	COG		00		_ 10)1		J				N					Р			
ies	Size	Temperature		ated Volt	age	Ca	pacitan	ce	То	leran	ce		T	ermina	tion			Pa	ckagir	ng	Optional
xar	01005 0201 0402 0504 0603 0805 1206 1210 1812 2220 2221	Characteristi (Dielectric) COG X7R X5R Y5V Z5U	1 a fc n 4 6 1 2 5 6 1 1	st two dipre significations of the signification of the significant of the signifi	zeroes /DCW /DCW DCW DCW DCW DCW DCW DCW	1s ard foll nu ze 10 R de 6R	t two destroyed to the	igits cant, by f .g: pF	* *	B = ± C = ± D = ± F = ± G = ± J = ± J = ± E M = ± N = ± Z = +8 For va	0.25 0.5p 1% 2% 5% 10% 20% 30% 30 -	pF DF 3 20% 5 belov	*	N = 10 Tin (Si P = Pa G = Go Pb = 9 Lead (Pd/Ag termii limite availa	n) ove alladic old ove 90% Ti Pb) g & Go nation d valu	er Nick um Silv er Nic n (Sn). old ns hav	ver kel /10%	Tap E = Tap P = Tap R = Tap U =	Emb De (7" Pape De (7" Pape De (13	" Reel; ossed Reel) er Reel)	Leave blank for standard thickness. Designate "-" for Min. "*" for Max. followed by Thickness Code
						On	tional T	hickr	ness	ldent	ifier	Codes	:								thickness
С	ODE:	C D	Е	F G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	6	of .026")
	ENSION:	.015 .020	.026	.030 .039	.040	.045	.050 .0	055 .	060	.065	.07	0 .075	.080	.085	.090	.095	.100	.105	.110	.023	

Electrical Specifications

Operating Temperature Range:

-55°C to +125°C

Temperature Coefficient:

0 ±30PPM/°C

Temperature Voltage Coefficient:

0 ±30PPM/°C

Insulation Resistance:

>1000 Ω -F or 100 G Ω , for values $\leq 0.047 uF$

(whichever is less at 25°C, WDCV).

For Capacitance values > 0.047uF, the 500Ω -F rule applies. (The IR at 125°C is 10% of the

value at 25°C)

Ageing:

None

Withstanding Voltage:

>2.5 times VDCW

Capacitance Tolerance:

B,C,D,F,G,J,K Dissipation Factor:

0.1% max

Electrical Specifications

Operating Temperature Range: -55°C to +125°C

Temperature Coefficient:

0 ±15%Δ°C MAX.

Temperature Voltage Coefficient:

X7R not applicable Insulation Resistance:

>100 Ω -F or 10 G Ω , whichever is less at 25°C, VDCW. (The IR at 125°C is 10% of the value at 25°C)

Ageing:

2.5% per decade hour, typical

Withstanding Voltage:

>2.5 times VDCW

Capacitance Tolerance:

Rated Voltage	D.F.		Exception of D.F.
≥50V	≤2.5%	≤3%	0201 (50V); 0603≥0.047uF 0805≥0.22uF; 1206≥0.47uF
		≤5%	0603≥1uF; 0805≥1uF; 1206≥4.7uF; 1210≥4.7uF
		≤5%	0201≥0.01uF; 0805≥1uF; 1210≥4.7uF
25V	≤2.5%	≤10%	0402≥0.10uF; 0603≥0.33uF; 0805≥2.2uF 1206≥4.7uF; 1210≥22uF
16V	<3.5%	≤5%	0201≥0.01uF; 0402≥0.033uF; 0805≥0.68uF; 1206≥2.2uF; 1210≥4.7uF
160	\$3.5%	≤10%	0402≥0.47uF; 0603≥0.68uF; 0805≥2.2uF; 1206≥4.7uF; 1210≥22uF
10V	≤5%	≤10%	0402≥0.33uF; 0603≥0.33uF; 0805≥2.2uF; 1206≥2.2uF; 1210≥22uF
6.3V	≤10%	02	.01≥0.1uF; 0402≥1uF; 0603≥10uF; 0805≥4.7uF; 1206≥47uF; 1210≥100uF

X₅R

Operating Temperature Range:

-55°C to +85°C

Temperature Coefficient:

0 ±15%Δ°C MAX.

Temperature Voltage Coefficient:

X5R not applicable

Insulation Resistance:

>100 $\Omega\text{-F}$ or 10 GΩ, whichever is less at 25°C, VDCW. (The IR at 125°C is 10% of the value at 25°C)

2.5% per decade hour, typical

Withstanding Voltage:

>2.5 times VDCW

Capacitance Tolerance:

K.M

Rated Voltage	D.F.		Exception of D.F.
≥50V	≤2.5%	≤3%	0201 (50V); 0603≥0.047uF 0805≥0.22uF; 1206≥0.47uF
		≤5%	0603≥1uF; 0805≥1uF; 1206≥4.7uF; 1210≥4.7uF
		≤5%	0201≥0.01uF; 0805≥1uF; 1210≥4.7uF
25V	≤2.5%	≤10%	0402≥0.10uF; 0603≥0.33uF; 0805≥2.2uF 1206≥4.7uF; 1210≥22uF
45)/	-2.5%	≤5%	0201≥0.01uF; 0402≥0.033uF; 0805≥0.68uF; 1206≥2.2uF; 1210≥4.7uF
16V	≤3.5%	≤10%	0402≥0.47uF; 0603≥0.68uF; 0805≥2.2uF; 1206≥4.7uF; 1210≥22uF
10V	≤5%	≤10%	0402≥0.33uF; 0603≥0.33uF; 0805≥2.2uF; 1206≥2.2uF; 1210≥22uF
6.3V	≤10%	02	.01≥0.1uF; 0402≥1uF; 0603≥10uF; 0805≥4.7uF; 1206≥47uF; 1210≥100uF

Z5U

Operating Temperature Range:

+10°C to +85°C

Temperature Coefficient:

+22% - 56%Δ°C MAX.

Insulation Resistance:

>100 Ω -F or 10 G Ω , whichever is less at 25°C, WDCV. (The IR at 125°C is 10% of the value at 25°C)

Ageing:

5% per decade hour, typical

Withstanding Voltage:

>2.5 times VDCW

Capacitance Tolerance:

Rated Voltage	D.F.		Exception of D.F.
≥50V	≤5%	≤9%	0603≥0.1uF; 0805≥0.47uF; 1206≥4.7uF;
25V	≤5%	≤9%	0402≥0.047uF; 0603≥0.1uF; 0805≥0.33uF; 1206≥1uF; 1210≥4.7uF
16V	≤9%	≤12.5%	0603≥2.2uF; 0805≥3.3uF; 1206≥10uF; 1210≥22uF; 1812≥47uF
10V	≤12.5%	≤16%	0603≥2.2uF; 0805≥3.3uF; 1206≥4.7uF; 1210≥10uF; 1812≥47uF
6.3V	≤16%		

Electrical Specifications

Y5V

Operating Temperature Range:

-30°C to +85°C

Temperature Coefficient: +22% - 82%Δ°C MAX.

Insulation Resistance:

>100 Ω -F or 10 G Ω , whichever is less at 25°C, WDCV. (The IR at 125°C is 10% of the value at 25°C)

Ageing:

7% per decade hour, typical Withstanding Voltage: >2.5 times VDCW

Capacitance Tolerance: M.Z

Rated Voltage	D.F.		Exception of D.F.
≥50V	≤5%	≤9%	0603≥0.1uF; 0805≥0.47uF; 1206≥4.7uF;
25V	≤5%	≤9%	0402≥0.047uF; 0603≥0.1uF; 0805≥0.33uF; 1206≥1uF; 1210≥4.7uF
16V	≤9%	≤12.5%	0603≥2.2uF; 0805≥3.3uF; 1206≥10uF; 1210≥22uF; 1812≥47uF
10V	≤12.5%	≤16%	0603≥2.2uF; 0805≥3.3uF; 1206≥4.7uF; 1210≥10uF; 1812≥47uF
6.3V	≤16%		

Test Parameters

Test parameters for Multilayer Ceramic Capacitors - X7R, X5R and Y5V:

1KHz ± 100Hz at 1.0 ± 0.2 Vrms < 10uF (10 V min.) 1KHz ± 100Hz at 0.5 ± 0.1 Vrms < 10uF (6.3V max.)

120Hz ± 24Hz at 1.0 ± 0.1 Vrms ≥ 10uF

1MHz ± 100KHz at 1.0 ± 0.2 Vrms ≤ 1000pF, 25°C 1KHz ± 100Hz at 1.0 ± 0.2 Vrms > 1000pF, 25°C

Test parameters for Multilayer Ceramic Capacitors - NPO/COG:

Note: To ensure proper capacitance readings, the voltage level must be held constant. The HP4284 and Agilent E4980 has a "ALC" (Automatic Level Control) function and should be switched to the "ON" position for accurate capacitance readings.

Voltage and Capacitance Range

COG (NPO) Dielectric

Values that are typically available.

(All measurements in inches)

								Γ														surements	
	S	Size		(± 0.0	0 05 0008)	02 (± 0.			0402 (± 0.004)		(± 0	.008)		006)		0805 (± 0.008)		12 (± 0.			10 008)		8 12 012)
		L		.0	16	.0:	24		.040		.0	53	.0	63		.080		.1	26	.1	26	.1	77
		W		.0	08	.0	12		.020		.0	40	.0	32		.050		.0	63	.0	98	.1	26
	T (ı	max)		.0.	08	.0	12		.025		.0	40	.0	33		.055		.0	70	.0	75	.0:	85
	Mir	n E/E	3	.0	02	.0	02		.004		.0	05	.0	08	.0	020 ± .01	0	.020	± .010	.020	± .010	.024	± .015
	VDCV	V (M	AX)	6.3V	16V	25V	50V	25V	50V	100V	50V	100V	50V	100V	25V	50V	100V	50V	100V	50V	100V	50V	100V
^	OR1	Ŷ	0.1pF																				
l Ï	0R2		0.2pF																				
	0R3		0.3pF																				
	0R4		0.4pF																				
	0R5		0.5pF																				
	1R0		1.0pF																				
	1R2		1.2																				
	1R5		1.5																				
	1R8		1.8																				
CODE-	2R2	VALUE-	2.2																				
	2R7	VA	2.7																				
CAPACITANCE	3R3	CAPACITANCE	3.3																				
\CIT\	3R9	CITA	3.9																				
AP/	4R7	APA	4.7																				
	5R0		5.0																				
	5R6		5.6																				
	6R8		6.8																				
	8R2		8.2																				
	100		10pF																				
	120		12																				
	150		15																				
	180		18																				
\ \	220	·	22																				

Note: Additional values may be available. Please contact us for more information. Due to demand and raw material fluctuations, specific values may not be available.

Voltage and Capacitance Range

COG (NPO) Dielectric

																_									
																							(All measu	rements i	n inches)
		Size			005 0008)		2 01 .002)		0402 (± 0.004)			.008)	06 (± 0.			0805 (± 0.008			. 06 .008)		2 10 008)	18 (±0.	12	2220 / (±0.0	
		L			016		024		.040		-	053		063		.080			126		126		177		/ .225
		w			008		012		.020			040)32		.050			063		098		126		/ .210
	1	(max)		008		012		.025		-	040)33		.055			070		075		085		/.108
		lin E/I			002		002		.004			005		008		020 ± .0	10		± .010		± .010		± .015		± .015
							T	251/		1001/															
	_	W (M	_	6.3V	16V	25V	50V	25V	50V	100V	50V	100V	50V	100V	25V	50V	100V	50V	100V	50V	100V	50V	100V	50V	100V
1	270 330	1	27 33																						
	390	11	39																						
	470] [47																						
	560	-	56																						
	680 820	+	68 82																						
	101		100pF																						
	121] [120																						
	151]	150																						
	181	-	180																						
	221	$\exists \ \ $	220 270																						
	331	11	330																						
	391		390																						
	471	-	470																						
	561 681	-	560 680																						
	821	\exists	820																						
	102		1000pF																						
	122] [1200																						
	152	+	1500																						
	182	\exists	1800 2200																						
	272] [2700																						
	332	_ 	3300																						
CAPACITANCE CODE	392	VALUE-	3900																						
NE NE	472 562	빌	4700 5600																						
CITA	682	CAPACITANCE	6800																						
APA	822	APA	8200																						
	103	-	.01uF																						
H	123 153	\exists	.012																						
	183	1	.018																						
	223] [.022																						
	273	-	.027																						
П	333 393	-	.033																						
	473	1	.047																						
	563		.056																						
	683	-	.068																						
	823 104	-	.082															25V 50V							
	124	-	.120															50V							
	154		.150																						
	184	-	.180																						
	224	-	.220																						
	334	1	.330																						
	394		.390																						
	474	-	.470																						
	564 684	+	.560 .680																						
1	824	- ↓	.820																						

Voltage and Capacitance Range

X7R Dielectric Values that are typically available. (All measurements in inches) 01005 Size (± 0.002) (± 0.004) (± 0.0008) (± 0.008) (± 0.006) (± 0.008) .016 .024 .040 .053 .063 .080 .020 W .008 .012 .040 .032 .050 T (max) .008 .012 .025 .040 .038 .058 .002 .002 .004 .008 Min E/B .005 .020 ± .010 VDCW (MAX) 6.3V 10V 6.3V 25V 25V 50V 100V 50V 25V 50V 100V 10V 16V 100V 10V 16V 50V 100V 101 100pF 121 120 151 150 181 180 220 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000pF CAPACITANCE CODE 122 1200 1500 182 1800 2200 272 332 3300 392 472 4700 562 5600 682 6800 822 8200 103 .01uF 123 .012 153 .015 183 .018 223 .022 273 .027

Voltage and Capacitance Range

X7R Dielectric

Size	l																					(All meas	surements i	in inches)
Time		Siz	ze																					
Time Time		L				.024				.040					.0	63					.08	30		
Value Valu		V	I			.012				.020					.0	32					.0	50		
VDCW MAX		T (m	ax)*			.012				.025					.0	38					.0	58		
100 100		Min	E/B			.002				.004					.0	08					.020 :	± .010. ±		
473 0.047 0.056		VDCW	(MAX	()	4V	6.3V	10V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V
Sea Control	î	393	Ŷ	.039																				
Control Cont		473		.047																				
000 100		563		.056																				
104 124 154 154 159 150		683		.068																				
124		823		.082																				
154 184 224 224 224 226 220 230 230 2470 24		104		.100uF																				
184 224 274 270		124		.120																				
224 274 274 270		154		.150																				
274 334 330		184		.180																				
334 394 390		224		.220																				
No.		274		.270																				
105	🛓	334		.330																				
105	Ö	394	ALU	.390																				
105	l l	474		.470																				
105		564	TAN	.560																				
105	APA	684	PACI	.680																				
1.20	ΙĮΫ	824	Ā	.820																				
155 1.50 1.8		105		1.00uF																				
185 2.20 2.20 3.30 3.30 3.4.70 3.5.8		125		1.20																				
225 335 3.30 3 3 3 3 3 3 3 3 3		155		1.50																				
335 4.70 4.70 6.80 6.80 6.80 6.50 6		185		1.80																				
4.70		225		2.20																				
685 6.80 10.0uF 15.0uF		335		3.30																				
106 10.0uF 15.0uF 15.0uF		475		4.70																				
156 226 22.0uF 22.0uF 2476 47.0uF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		685		6.80																				
226 476 47.0uF 22.0uF 2		106		10.0uF																				
476 47.0uF 47.0uF		156		15.0uF																				
		226		22.0uF																				
v 107 v 100 0 u E		476		47.0uF																				
	ļ	107	;	100.0uF																				

^{*} For values above 1uF, thickness may be greater than specified above.

T(max): 0603 – 0.040" 0805 – 0.060"

Voltage and Capacitance Range

X7R Dielectric

(All r	measurem	ents i	n inches)															-	_				
	S	ize				1206 (± 0.008)					1210 (±0.008)						8 12 012)					/ 222 1 .016)	
		L				.126					.126					.1	77				.225	.225	
		W				.063					.098					.1	26				.200	.210	
	T (n	nax)*	•			.070					.125					.0	85				.108	/.108	
	Mir	n E/E	3		.0	020 ± .01	0				020 ± .01	0				.024	± .015				.025	± .015	
	VDCV	V (MA	AX)	10V	16V	25V	50V	100V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V	16V	25V	50V	100V
^	102	î	1000pF																				
	122		1200																				
П	152		1500																				
	182		1800																				
	222		2200																				
	272		2700																				
Ш	332		3300																				
	392		3900																				
	472		4700																				
	562		5600																				
	682		6800																				
	822		8200																				
	103		.01uF																				
1	123	Ä	.012																				
00	153	/ALL	.015																				
Ę	183	(E)	.018																				
IIAI	223	ITA	.022																				
-CAPACITANCE CODE-	273	CAPACITANCE VALUE-	.027																				
٦	333	Ď	.033																				
	393		.039																				
	473		.047																				
	563 683		.056																				
	823		.082																				
	104		.100uF																				
	124		.120																				
	154		.150																				
	184		.180																				
	224		.220																				
	274		.270																				
\ !	334	ļ	.330																				
			.550																				

^{*} For values above 1uF, thickness may be greater than specified above. T(max): 1206 – 0.075" 1812 – 0.130" 1210 – 0.125" 2220 – 0.135"

Voltage and Capacitance Range

X7R Dielectric

																							(All meası	rements ir	n inches)
	S	ize					.008)					12 (±0.0							1 12 012)				2220 (±0.		
		L				.1	26					.1:	26					.1	77				.225	/ .225	
		W				.0	63					.0:	98					.1	26				.200	/ .210	
	T (n	nax)*				.0	70					.1.	25					.0	95				.108	/.108	
	Mir	ı E/B				.020	± .010					.020 :	± .010					.024	± .015				.025	± .015	
	VDCV	V (MA	X)	6.3V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V	16V	25V	50V	100V
î	394	Ŷ	.390																						
	474		.470																						
	564		.560																						
	684		.680																						
	824		.820																						
	105		1.00uF																						
CODE	125	Ü.	1.20																						
	155	VAI	1.50																						
ANC	185	NCE	1.80																						
CAPACITANCE	225	CAPACITANCE VALUE	2.20																						
CAP,	335	APA	3.30																						
	475	Ĭ	4.70																						
	685		6.80																						
	106		10.0uF																						
	156		15.0uF																						
	226		22.0uF																						
	476		47.0uF																						
,	107	Ľ	100.0uF																						

^{*} For values above 1uF, thickness may be greater than specified above. T(max): 1206 – 0.075" 1812 – 0.130" 1210 - 0.125" 2220 - 0.135"

Voltage and Capacitance Range

X5R Dielectric

																														neasureme		
	S	ize		010 (± 0.0				0201 ± 0.002	2)					4 02 .004)				06 (± 0.				08 (± 0.				12 (± 0.	.006 .008)			210 .016)	18 (±0.0	
		L		.0	16			.024					.0)40				.0	63			.0	80			.1	26		.′	126	.17	77
		W			08			.012)20					32			.0					63)98	.12	
	T (max)		.0	80			.012					.0)25				.0.	40			.0	50			.0	72			125	.02	_
	Mir	n E/E	3	.0	02			.002					.0	004				.0	80			.020	± .010			.020	± .010		.020	± .010	.02	
	VDCV	V (M	AX)	6.3V	10V	4V	6.3V	10V	16V	25V	4V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	16V	25V	16V	25V
î	102	î	1000pF																													
	122		1200																													
	152		1500																													
	182		1800																													
	222		2200																													
	272		2700																													
	332		3300																													
	392		3900																													
	472		4700																													
	562		5600																													
	682		6800																													
	822		8200																													
CAPACITANCE CODE	103	-CAPACITANCE VALUE	.01uF																													
ANCE	153	NGE	.015																													
PACIT	223	ACIT/	,022																													
5	333	-CAP	.033																													
	393		.039																													
	473		.047																													
	104		0.10uF																													
	154		.150																													
	224		.220																													
	334		.330																													
	474		.470																													
	684		.680																													
	105		1.00uF																													
	125		1.20																													\neg
	155		1.50																													
	185		1.80																													
	225		2.20																													-
	335		3.30																													
Ľ	ددد	Ľ	5.50																													

For values above 1uF, thickness may be greater than specified above. T(max): 1206 – 0.075" 1812 – 0.130" 1210 – 0.125" 2220 – 0.135"

Voltage and Capacitance Range

X5R Dielectric (0402 - 1206)

Values that are typically available.

																		(All m	ieasurer	nents ir	n inches)	
	!	Size		(0402 (± 0.009			(:	0603 ± 0.006	5)					3 05 .008)				(1206 ± 0.008		
		L			.040				.063					.0	80					.126		
		W			.020				.032					.0	50					.063		
	Т	(max)			.027				.040					.0	60					.072		
	Mi	in E/E	3		.004				.008					.020	± .010				.0.	20 ± .0)10	
	VDC	w (M	AX)	4V	6.3V	10V	4V	6.3V	10V	16V	25V	4V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V
î	395	^	3.90uF																			
	475		4.70uF																			
	685		6.80uF																			
ODE	106	ALUE-	10.0uF																			
-CAPACITANCE CODE	156	-CAPACITANCE VALUE	15.0uF																			
PACIT/	226	ACITA	22.0uF																			
CA	476	CAF	47.0uF																			
	107		100.0uF																			
	157		150.0uF																			
	227	>	220.0uF																			

X5R Dielectric (1210 - 2221)

(All measurements in inches)

		Size				1210 (±0.016	5)				8 12 016)				/ 2221 016)		
		L				.126				.1	77			.225	/ .225		
		W				.098				.1	26			.200	/ .210		
	Т	(max)				.125				.1	30			.135			
	М	in E/E	3		.0	20 ± .0	10			.024	± .015			.025	± .015		
	VDCW (MAX)				10V	16V	25V	50V	6.3V	10V	16V	25V	6.3V	10V	25V	50V	
î	395	î	3.90uF														
	475		4.70uF														
	685		6.80uF														
CODE-	106	/ALUE	10.0uF														
ANCE (156	-CAPACITANCE VALUE-	15.0uF														
-CAPACITANCE	226	PACIT,	22.0uF														
CA	476	Y	47.0uF														
	107		100.0uF														
	157		150.0uF														
ļ	227	-	220.0uF														

For values above 1uF, thickness may be greater than specified above. 2220 - 0.135"

Note: Additional values may be available. Please contact us for more information. Due to demand and raw material fluctuations, specific values may not be available. All components manufactured with the X7R dielectric are also available as an X5R dielectric.

1210 - 0.125"

Voltage and Capacitance Range

Z5U Dielectric

																(All measurem	
	Si	ze		05 (± 0.			5 03 .006)	08 (± 0.	.008)	12 (± 0.	0 6 008)	12 (±0.		18 (±0.	1 12 016)	2220 (±0.	/ 2221 016)
	ı	L		.0	50	.с	163	.0	80	.1	26	.1	26	.1	77	.225	/ .225
	V	N		.0.	40	.0	132	.0	50	.0	63	.0	98	.1:	26	.200	/ .210
	T (n	nax)		.0.	40	.0	138	.0	58	.0	70	.0	75	.0	85	.108	/.108
	Min	E/B		.0	05	.С	108	.020	± .010	.020	± .010	.020	± .010	.024 :	± .015	.025	± .015
	VDCW	(MA	X)	25V	50V	25V	50V	25V	50V	25V	50V	25V	50V	25V	50V	25V	50V
^	102	^-	1000pF														
	122		1200														
	152		1500														
	182		1800														
	222		2200														
	272		2700														
	332		3300														
	392		3900														
	472		4700														
	562		5600														
	682		6800														
	822		8200														
	103		.01uF														
DDE-	123	CAPACITANCE VALUE	.012														
CAPACITANCE CODE	153	ΕVΑ	.015														
IANC	183	ANC	.018														
'ACI	223	ACIT	.022														
-CAP	273	CAP	.027														
	333		.033														
	393		.039														
	473		.047														
	563		.056														
	683		.068														
	823		.082														
	104		.100uF														
	124		.120														
	154		.150														
	184		.180														
	224		.220														
	274	>	.270														
Ľ	334		.330														

Note: Additional values may be available. Please contact us for more information. Due to demand and raw material fluctuations, specific values may not be available.

Voltage and Capacitance Range **Z5U Dielectric** Values that are typically available. (All measurements in inches) 2220 / 2221 Size (± 0.008) (± 0.008) (± 0.006) (± 0.008) (±0.016) (±0.016) (±0.016) .050 .063 .080 .126 .126 .177 .225 / .225 W .040 .032 .050 .126 .200 / .210 T (max) .040 .038 .058 .070 .075 .085 .108 /.108 Min E/B .005 .008 .020 ± .010 .020 ± .010 .020 ± .010 .024 ± .015 .025 ± .015 VDCW (MAX) 25V 394 .390 474 .470 564 .560 684 .680 .820 105 155 1.50 185 1.80 225 2.20 335 3.30 395 3.90 475 4.70 685 6.80 106 10.0uF

Note: Additional values may be available. Please contact us for more information. Due to demand and raw material fluctuations, specific values may not be available. For values above 1uF, thickness may be greater than specified above.

156

226

476

107

15.0uF

22.0uF

47.0uF

100.0uF

Voltage and Capacitance Range

Y5V Dielectric

																											/All m		ents in ii	nehoe)
	Siz			0201			0402					0603					0805				12					210	(All III		1812	
	314	ze .		(± 0.002)		(±	± 0.004	+)			(:	± 0.006	i)			(:	± 0.008	3)			(± 0.	008)			(±0.	016)		(±0.016))
	L	L		.024			.040					.063					.080				.1	26			.1	126			.177	
	v	V		.012			.020					.032					.050				.0	63			.0)98			.126	
	T (m	nax)		.012			.025					.038					.058				.0	70			.0	096			.085	
	Min	E/B		.002			.004					.008				.0	20 ± .0	010			.020	± .010			.020	± .010		.0	24 ± .0	115
	VDCW	(MA	X)	10V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	10V	16V	25V	50V	6.3V	10V	16V	25V	6.3V	10V	25V
î	102	î	1000pF																										ш	
	122		1200																											
	152		1500																										ш	
	182		1800																										ш	
	222		2200																										\square	
	272		2700																										\square	
	332		3300																											
	392		3900																											
	472		4700																											
	562		5600																											
	682		6800																											
	822		8200																											
	103	4	.01uF																											
0	123	/ALL	.012																											
Į Š	153	Ę.	.015																											
Į,	183	ITAN	.018																											
CAPACITANCE CODE	223	CAPACITANCE VALUE-	.022																											
	273	5	.027																											
	333		.033																											
	393		.039																											
	473		.047																											
	563		.056																											
	683		.068																											
	823		.082																											
	104		.100uF																											
	124		.120																											
	154		.150																											
	184		.180																											
	224		.220																											
	274		.270																											
Ľ	334	\ \	.330																											

Note: Additional values may be available. Please contact us for more information. Due to demand and raw material fluctuations, specific values may not be available. For values above 1uF, thickness may be greater than specified above.

Voltage and Capacitance Range

Y5V Dielectric

				0704		0/02									0005									4240		(All m	easuren	nents in i	
		Size		0201 (± 0.002)	(0402 (± 0.004				0603 (± 0.006	5)			(0805 ± 0.008	3)				2 06 .008)				1210 (±0.016				1812 (±0.016	
		L		.024		.040				.063					.080				.1	26				.126				.177	
	_	W		.012		.020				.032					.050					063				.098				.126	
-	-	max)		.012		.025				.038					.058					070				0.10				.085	
		n E/B		.002		.004				.008					20 ± .C					± .010)20 ± .0				24 ± .0	
	VDC\	N (MA	XX)	10V	6.3V	10V	16V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	25V
Î	394	^	.390																										
	474		.470																										
	564		.560																										
	684		.680																										
	824		.820																										
	105		1.00uF																										
	125		1.20																										
CODE	155	/ALUE	1.50																										
ANCE	185	ANCE	1.80																										
CAPACITANCE CODE	225	-CAPACITANCE VALUE-	2.20																										
Α)	335	CA	3.30																										
	395		3.90																										
	475		4.70																										
	685		6.80																										
	106		10.0uF																										
	156		15.0uF																										
	226		22.0uF																										
	476		47.0uF																										
	107	>	100.0uF																										

Note: Additional values may be available. Please contact us for more information. Due to demand and raw material fluctuations, specific values may not be available. For values above 1uF, thickness may be greater than specified above.

Tape and Reel Specifications

Reel Dimensions

Unit: mm (inch)

Таре	B min	С	A (7")	A (13")	D min	N min	G	T max
4mm	2.0 (0.079)	13 ± 0.05 (0.512 ± 0.02)	178 ±2.0 (7 ± 0.079)	-	21 ± 0.8 (0.82 ± 0.03)	50 (1.97)	5.0 ± 1.5 (0.196 ± 0.05)	8.0 max (0.315 max)
8mm	2.0 (0.07)	13 ± 0.05 (0.512 ± 0.02)	178 ±2.0 (7 ± 0.079)	330 ± 2.0 (13± 0.08)	20.2 (0.795)	50 (1.97)	10 ± 1.5 (0.394 ± 0.059)	14.9 (0.587)
12mm	2.0 (0.07)	13 ± 0.05 (0.512 ± 0.02)	178 ±2.0 (7 ± 0.079)	330 ± 2.0 (13± 0.08)	20.2 (0.795)	50 (1.97)	10 ± 1.5 (0.394 ± 0.059)	14.9 (0.587)

Taping Specifications

7 in. Reel Quantities **

Size	01005 (E)	01005 (P)	0201	0402	0603	0805	1206	1210	1812	2221
Tape Size	4mm	8mm	8mm	8mm	8mm	8mm	8mm	8mm	12mm	12mm
Min Qty Per Reel	40,000*	20000*	15,000	5,000	3,000	2,000	2,000	1,000	1,000	1,000
Max Qty Per Reel	40,000*	20000*	15,000	10,000	4,000	5,000	5,000	5,000	3,000	1,000

Note: ** Quantity dependent on thickness

*Smaller quantities may be available. Please contact us.

Unit: mm (inch)

Paper Tape Carrier **Dimensions** (8mm)

Size (inches)	А	В	w	F	E	Po	Pz	D	t	Р
01005	0.25 ± 0.05 (0.010 ± .002)	0.45 ± 0.05 (0.018 ± .002)	8.0 ± 0.2 (.315 ± .008)	3.5 ± 0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 - 0.0 (.039 ± .002) 000	1.5 + 0.1	1.15 MAX (.045 MAX)	2.0 ± 0.05 (.079 ± .002)
0201	0.37 ± 0.05 (0.014 ± .002)	0.67 ± 0.05 (0.026 ± .002)	8.0 ± 0.2 (.315 ± .008)	3.5 ± 0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 - 0.0 (.039 ± .002) 000	1.5 + 0.1	1.15 MAX (.045 MAX)	2.0 ± 0.05 (.079 ± .002)
0402	$\frac{0.65 \pm 0.1}{(.026 \pm .004)}$	1.10 ± 0.2 (.043 ± .008)	8.0 ± 0.2 (.315 ± .008)	3.5 ± 0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 - 0.0 (.039 ± .002) 000	1.5 + 0.1	1.15 MAX (.045 MAX)	2.0 ± 0.05 (.079 ± .002)
0603	1.10 ± 0.2 (.043 ± .008)	1.90 ± 0.2 (.075 ± .008)	8.0 ± 0.2 (.315 ± .008)	3.5 ± 0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 - 0.0 (.039 ± .002) 000	1.5 + 0.1	1.15 MAX (.045 MAX)	4.0 ± 0.1 (.157 ± .004)
0805	1.16 ± 0.2 (.046 ± .008)	2.4 ± 0.2 (.095 ± .008)	8.0 ± 0.2 (.315 ± .008)	3.5 ± 0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 - 0.0 (.039 ± .002) 000	1.5 + 0.1 (.064 + .004)	1.15 MAX (.045 MAX)	4.0 ± 0.1 (.157 ± .004)
1206	2.0 ± 0.2 (.079 ± .008)	3.6 ± 0.2 (.142 ± .008)	8.0 ± 0.2 (.315 ± .008)	$\frac{3.5 \pm 0.1}{(.138 \pm .004)}$	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 - 0.0 (.039 ± .002) 000	1.5 + 0.1 (.064 + .004)	1.15 MAX (.045 MAX)	4.0 ± 0.1 (.157 ± .004)

Embossed Carrier **Dimensions** (4mm, 8mm & 12mm)

Size (inches)	А	В	w	F	E	Po	Pz	D	То	Т	Р
01005	0.23 (0.009)	<u>0.43</u> (0.016)	4.0 ± 0.05 (0.157 ± 0.002)	1.8 ± 0.02 (0.070 ± 0.001)	0.9 ± 0.05 (0.035 ± 0.002)	$\frac{2.0 \pm 0.04}{(0.079 \pm 0.001)}$	2.00 (0.079)	0.8 ± 0.04 (0.031 ± 0.001)	0.5 max (0.019 max)	0.15 ~0.4 (0.005 ~0.015)	1.00 (0.039)
0805	1.48 ± 0.2 (.058 ± .008)	2.3 ± 0.2 (.091 ± .008)	8.0 ± 0.2 (.315 ± .008)	3.5 ± .0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 (.079 ± .002)	1.5 + 0.1 - 0.0 (.06 + .004) 000	2.5 MAX (.098 MAX)	0.6 MAX (.024 MAX)	4.0 ± 0.1 (.157 ± .004)
1206	2.0 ± 0.2 (.079 ± .008)	3.6 ± 0.2 (.142 ± .008)	8.0 ± 0.2 (.315 ± .008)	3.5 ± .0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 (.079 ± .002)	1.5 + 0.1 - 0.0 (.06 + .004) 000	2.5 MAX (.098 MAX)	0.6 MAX (.024 MAX)	4.0 ± 0.1 (.157 ± .004)
1210	2.9 ± 0.2 (.114 ± .008)	3.6 ± 0.2 (.142 ± .008)	8.0 ± 0.2 (.315 ± .008)	3.5 ± .0.1 (.138 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 (.079 ± .002)	1.5 + 0.1 - 0.0 (.06 + .004) 000	2.5 MAX (.098 MAX)	0.6 MAX (.024 MAX)	4.0 ± 0.1 (.157 ± .004)
1812	3.6 ± 0.2 (.142 ± .008)	4.9 ± 0.2 (.193 ± .008)	12.0 ± 0.3 (.472 ± .012)	5.6 ± .0.1 (.221 ± .004)	1.75 ± 0.1 (.069 ± .004)	4.0 ± 0.1 (.157 ± .004)	2.0 ± 0.05 (.079 ± .002)	1.5 + 0.1 - 0.0 (.06 + .004) 000	3.8 MAX (.150 MAX)	0.6 MAX (.024 MAX)	8.0 ± 0.1 (.315 ± .004)

