भारतीय सूचना प्रौद्योगिकी संस्थान कोटा INDIAN INSTITUTE OF INFORMATION TECHNOLOGY KOTA

B.Tech. (ECE), Semester – IV End Term Examination, Even Semester 2023-24

Measurement and Instrumentation Technology (ECT204)

Marks: 40 (Weightage – 40%) Time: 120 minutes Date: May 14, 2024

Note: Attempt all questions in sequence.

Q1. Answer in brief.

 $[2 \times 11 = 22 \text{ Marks}]$

- i. Name different components of a measurement system.
- ii. Express the following derived units in terms of base SI units: Farad, Ohm.
- iii. Mention at least four classification of instruments based on type and method of measurements.
- iv. Define standards and calibration.
- v. Mention the percentage of values that lie within a band around the mean in a normal distribution curve with a width of two and four times of standard deviations, respectively.
- vi. Two resistors, with given nominal values \pm uncertainty, R_1 (100 \pm 0.1 Ω) and R_2 (50 \pm 0.03 Ω) are connected in series and then in parallel. Calculate equivalent resistance (nominal value \pm resulting uncertainty) for series and parallel connections.
- vii. Derive the expression of gage factor for a strain gage with circular cross-section.
- viii. Consider a full-bridge circuit having identical strain gages with nominal resistance equal to 130Ω . If each strain gage cannot sustain power dissipation of more than 0.35 W, what is the maximum value of the input excitation?
 - ix. With the help of schematic diagram, explain the working principle of LVDT.
 - x. Design an active band-reject filter with following specifications: band-pass gain = 2 V/V. lower cut-off frequency = 100 Hz, upper cut-off frequency = 1000 Hz. Use OPAMP ICs 741, capacitors with 1 μF and resistors of appropriate values.
 - xi. A pressure sensor outputs a voltage varying as 100 mV/psi and has $2.5 \text{ k}\Omega$ output impedance. Design an OPAMP based signal conditioning circuit to provide 0 to 2.5 V as the pressure varies from 50 to 150 psi.
- Q2. A piezoelectric transducer having a capacitance of 1000 pF and charge sensitivity of 40×10^{-3} coulomb/cm is connected to a CRO having resistance of 1 M Ω in parallel with 50 pF by a cable which has a capacitance of 300 pF.
 - i. Find the sensitivity of the transducer alone in V/cm.
 - ii. Find the overall sensitivity of the system in V/cm.
- iii. Find the time-constant of the system.
- iv. Find the maximum operating frequency in rad/sec so that the amplitude-ratio error is no worse than 5%. [1+1+1+3=6 Marks]

Q3. Two ideal op-amps are used to linearize the output of a single active arm Wheatstone bridge, shown in **Figure 1**. The resistance of the variable resistor is given by $R_v = R + \Delta R$, where $\Delta R > -R$.

- i. Find an algebraic expression for $V_0 = f(V_s, R, R_1, R_2)$.
- ii. Let $V_s = 5 \text{ V}$, $R = R_1 = R_2 = 1 \text{ k}\Omega$. Find the permissible range in R_v so that neither opamp's output reaches \pm 12V (saturation). [3+3 = 6 Marks]

Figure 1

Q4. Consider a rectangular strip of gold sample with length L, width W, and thickness D (1 µm) as shown in Figure 2. A current I (100 mA) is passed along L, perpendicular to the cross-sectional area W×D. The face W×I is exposed to a magnetic field intensity B. A voltmeter is connected across the width to read the Hall voltage V_H. What is the magnetic field that can be recorded per micro-volt of Hall voltage?

Given: density of gold is 19.32 g/cm^3 ; 1 gm-atomic weight of gold (196.97 gm) contains atoms 6.0225×10^{23} (Avogadro number); gold is monovalent, meaning each atom contributes one conduction electrons. [6 Marks]

*** Be Good, Do Good ***

Figure 2