Algebra 1 Unit 1, Lesson 3: Simplifying Radicals NOTES

Name		E	Block Date	
Essential Que	estion: How	do I simplify ra	radical numbers?	
I. Fin	ding the Squ	are Root(s) of a	a Number	
Vocabulary	/ :			
Square Root			Radicand/Index/Radical	
Perfect Square			Irrational Number	
12=	2 ² =	3 ² =		
4 ² =	5 ² =	6 ² =		
7 ² =	8 ² =	9 ² =		
10 ² =	11 ² =	12 ² =		
Example: Eva	aluate the exp	oression.		
1) √ 36		2) $-\sqrt{9}$	3) $\sqrt{81}$ 4) - $\sqrt{49}$	

Example: Sometimes the radicand is not a perfect square. This is an irrational number. You could either use your calculator for a decimal approximation or use your perfect squares chart for an approximation.

- 1) $\sqrt{32}$
- 2) $\sqrt{103}$

- 3) $-\sqrt{48}$ 4) $\sqrt{23}$

How can I simplify a square root that's not a perfect square?

Method 1 – Prime Factorization	Method 2 – find factors that are perfect squares

Examples: Simplify each square root.

- 1) $\sqrt{72}$ 2) $\sqrt{20}$
- 3) $\sqrt{300}$
- 4) $\sqrt{90}$

Let's think about radicals that aren't square roots. How about cube roots? Radicals with an index of 4? 5? Can we use the same methods that we just used? If not, how can we amend them?

Examples: Simplify each radical.

- 1) $\sqrt[3]{80}$ 2) $\sqrt[3]{54}$ 3) $\sqrt[4]{48}$ 4) $\sqrt[4]{162}$