1. Übung

Timo Bergerbusch 344408, Andreas Nikulin 332065

19.10.2017

1 Exercise 1.1

1. Layers:

Logical data structures:

concepts: translate and optimize queries

interface: set-oriented interface: relations, tuples, views

Logical access structures:

concepts: manage cursor, sort components and dictionary

interface: record oriented interface: records, sets, keys,

access paths

Storage Structures:

concepts: manage record and index

interface: internal record interface: records, B* trees

Page assignment:

concepts: manage buffer and segments

interface: system buffer interface: pages, segments

Memory assignment structures:

concepts: manage files and external memory

interface: file interface: blocks, files

physical volume:

interface: device interface: tracks, cylinders, channels

- 2. Order: $e \rightarrow b \rightarrow d \rightarrow a \rightarrow c$
- 3. (a) **data independence**: the view on the data is independent of its organized structure inside of the DB

Physical data independence: the underlying logical organization is independent of the physical representation. So restructuring or changing the implemented structure does not affect the schema

logical data independence: the logical schema might change without any affect on the external schema

- (b) Data independence is important because it can provide an encapsulated split between development of programs on an external given structure independent of its internal handling.
- (c) answer:

Layer	What is hidden?
Logical data structures	Position indicator and explicit relations in the schema
Logical access paths	Number and kind of the physical access paths; internal representation of records
Storage structures	Management of buffers, logging
Page assignment structures	File mapping, indirect page assignment
Memory assignment structures	Technical features and technical details of external storage media

Problems:

Due to high specialization, functionality of operating system often not usable

- Segment-file mapping
- Paging
- · Shadow memory
- Buffer management
- Dispatching

2 Exercise 1.2

- 1. relational algebra
 - (a) $\pi_{code}(\sigma_{percentage=100 \land Continent='Africa'}(encompasses))$
 - (b) $\pi_{lakeName}(riverthrough \bowtie_{river=river1} \rho_{river1 \leftarrow river}(\sigma_{Country="F"}(located)))$
 - (c) $\pi_{name}(sea) \pi_{name}(sea \bowtie_{depth1>depth} (\rho_{name1,depth1}(sea)))$
 - (d) $\rho_{CountryWithTheHighestMountain}(\pi_{name})$ $(\pi_{name}(Mountain) - \pi_{name}(Mountain) \bowtie_{elevation < elevation 1} \rho_{elevation 1} \leftarrow_{elevation}(Mountain))$ $\bowtie geo_Mountain \bowtie Country)$
- 2. SQL queries

```
<sub>1</sub> -- a)
  SELECT DISTINCT 1.country FROM language 1
          WHERE l.name = 'German' OR l.name = 'English';
  -- b)
  SELECT DISTINCT l.name FROM
           Religion r JOIN Language | ON r.country=1.country
          WHERE r.name = 'Buddhist';
10
  -- C)
  SELECT river FROM River EXCEPT
  SELECT river FROM encompasses
          NATURAL INNER JOIN geo_source
14
          WHERE continent='Europe';
15
16
```