AD-754 243

A LITERATURE SURVEY OF THE COMBINED EFFECTS OF STRAIN RATE AND ELEVATED TEMPERATURE ON THE MECHANICAL PROPERTIES OF METALS

Abdel-Salam M. Eleiche

Brown University

Prepared for:

Air Force Materials Laboratory

September 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

A LITERATURE SURVEY OF THE COMBINED EFFECTS OF STRAIN RATE AND ELEVATED TEMPERATURE ON THE MECHANICAL PROPERTIES OF METALS

BY
ABDEL-SALAM M. ELFICHE
DIVISION OF ENGINEERING
BROWN UNIVERSITY
PROVIDENCE, RHODE ISLAND

TECHNICAL REPORT AFML-TR-72-125

SEPTEMBER 1972

Approved for public release; distribution unlimited.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

AIR FORCE MATERIALS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ACCESSION IN	·	
NTIS	White Scotlon	
D:C	Buff Section	
BRY LUGALOSI		
18214 read 10		,
EY . OITUTUREEU	H./AVAILABILITY CO	DES
Olsı.	Avail, and/or sp.d	HÁL
Λ		
4	1	
	1	

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/2 October 1972 - 250

Security Classification	مسيده واستبريها						
DOCUMENT CONT							
(Security classification of title, body of abstract and indexing. 1 ORIGINATING ACTIVITY (Corporate author)	arnotation must be c		overall report is classified) ECURITY CLASSIFICATION				
	•	Unclass					
Brown University Division of Engineering		2b. GROUP					
Providence, Phode Island							
3. REPORT SITLE		<u> </u>					
A LITERATURE SURVEY OF THE COMBINED EFFECT ON THE MECHANICAL PROPERTIES OF METALS	S OF STRAIN	RATE AND F	ELEVATED TEMPERATURE				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Technical Report							
5. AUTHOR(S) (First name, middle initial, last name)							
Abdel-Salam M. Eleiche							
6. REPORT DATE	74, TOTAL NO. O	PAGES	7b. NO. OF REFS				
September 1972	13/						
BA. CONTRACT OR GRANT NO.	94. ORIGINA TOR'S	REPORT NUME	BER(8)				
F33615-71-C-1308							
b. PROJECT NO.							
с.	9b. OTHER REPOR		her numbers that may be assigned				
} ,	AFML-TR-72	1200					
d. 10. DISTRIBUTION STATEMENT	AFFIL-TR-/2						
11. SUPPLEMENTARY NOTES Air Force Materials Laboratory Wright-Patterson AFB, Ohio							
13. ABSTRACT	<u> </u>						
This report is a survey of the availab strain rate on the mechanical properties o range of strain rates included in this sur the range of temperatures from room temper The compiled data and the reference sh useful as a quick reference on the experim in this field, as well as a source for qua dependence of the mechanical properties of	f metals at vey is from ature up to eets include ental invest	eleyated_t 10-4 sec_t the meltin d in this- igations c formation	emperatures. The to 10 ⁻³ sec ⁻¹ , and g point. report should be arried out to date on the rate				
· //	1 . 1	•					
DD FORM1473							

Security Classifi dion

A LITERATURE SURVEY OF THE COMBINED EFFECTS OF STRAIN RATE AND ELEVATED TEMPERATURE ON THE MECHANICAL PROPERTIES OF METALS

BY
ABDEL-SALAM M. ELEICHE

Approved for public release; distribution unlimited.

AIR FORCE MATERIALS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE. OHIO

FOREWORD

This report was prepared by the Division of Engineering, Brown University, Providence, Rhode Island, under USAF Contract No. F33615-71-C-1308. The contract was initiated under Project No. 7353, "Characterization of Solid Phase and Interphase Phenomena in Crystalline Substances," Task No. 735303, "Surface Effects and Mechanical Response." Funds for this project were supplied to the Air Force Materials Laboratory by the Office of Aerospace Research. The work was administered by the Metals and Ceramics Division, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, with Dr. T. Nicholas, AFML/LLD, as Project Acientist.

This report covers work conducted from October 1971 to June 1972. Manuscript was released by the author July 1972 for publication.

This technical report has been reviewed and is approved.

W. J. TR PP

Chief, Strength and Dynamics Branch Metals and Ceramics Division Air Force Materials Laboratory

ABSTRACT

This report is a survey of the available literature on the observed effects of strain rate on the mechanical properties of metals at elevated temperatures. The range of strain rates included in this survey is from $10^{-4}~{\rm sec}^{-1}$ to $10^3~{\rm sec}^{-1}$, and the range of temperatures from room temperature up to the melting point.

The compiled data and the reference sheets included in this report should be useful as a quick reference on the experimental investigations carried out to date in this field, as well as a source for quantitative information on the rate dependence of the mechanical properties of metals at elevated temperatures.

TABLE OF CONTENTS

				Page
ı.	Introduct	tion		1
II.	Rate and	Investigations on the Combined Effects of Strain Elevated Temperature on the Mechanical Properties	; •	2
III.	Review of	f Experimental Investigations	•	8
IV.	the Tempe	tion of Experimental Data from the Literature Showerature Dependence of the Strain Rate Sensitivity	of	_
	Metals .	• • • • • • • • • • • • • • • • • • • •	•	84
	Table 1	Aluminum	•	85
	Table 2	Aluminum Alloys	•	86-90
	Table 3	Beryllium	•	91,92
	Table 4	Copper	•	93
	Table 5	Copper Alloys	•	94-98
	Table 6	Iron	•	99,100
	Table 7	Lead	•	101
	Table 8	Magnesium	•	102
	Table 9	Molybdenum	•	103
	Table 10	Nickel	•	104
	Table 11	Niobium	•	105
	Table 12	Steels	•	106-117
	Table 13	Titanium Alloys	•	118-119
٧.	Reference			120

SECTION I

INTRODUCTION

This survey is a compilation of the experimental data available in the literature on the combined effects of strain rate and elevated temperature on the mechanical properties of metals. It is not intended as a critical survey but only as a list of references along with brief statements of materials, methods, and results.

As of this writing the state-of-the- art in high strain rate testing is well documented in the recent review article of Lindholm [1]" and in the literature survey of the rate dependent strength properties of metals by Lindholm and Bessey [2]. However, in [2], the survey is limited to room temperature work and for many purposes data are required on elevated temperature behavior as well. Accordingly the present survey was undertaken to provide data on the combined effects of elevated temperature and strain rate. The data collected are presented in tabular form for the convenience of the reader. The documentation should serve as a source for quantitative information as well as a guideline for further work.

Number in brackets designate references in Section VI.

SECTION II

LIST OF INVESTIGATIONS ON THE COMBINED EFFECTS

OF STRAIN RATE AND ELEVATED TEMPERATURE

ON THE MECHANICAL PROPERTIES OF METALS

The investigations are listed chronologically in the following table, which also presents a list of the materials tested, the range of strain rates and temperatures covered and the maximum strain attained.

More details about each investigation are presented in Section III, while illustrative data for each material tested are gathered in Section IV.

LIST OF INVESTIGATIONS

ger.	Investigators	Technique	Mode of Loading	Ø	Type	Range of Temp., °C	Range of St.Rate,Sec	Max. True Strain	Ref. Sheet No.
27,	Nadai and Kanjoine (1941)	High speed rotary impact Tension machine	Tension	Aluminum Copper Iron Steel	Com. Pure Com. Pure Pure Low Carbon Stainless	25/600 25/1000 25/1200 25/1200 25/1200	100/1000	+fracture	25
36	Sokolov (1946–1950)	Modified Charpy Impact machine	Compression	Aluminum Copper Brass Zinc Lead Tin Steel			120		1
17	Hughes (1951)	Special Tor- sion machine	Torsion	Steel	Mild High Carbon Chromium	950/1350	(12-600rpm)	-failure	33
<u> </u>	Work and Dolam (1953)	Special Tor- sion machines	Torsion	Steel	SAE 1018	24/538 (75/1000°F)	10-*/12.5		34
۳	and St.	Cam Plastometer	Compression	Aluminum Copper Steel	Com. Pure Phosphorous deoxidised 0.17%C	-190/550 18/900 930/1200	1/40	0.5 nominal	н
8	Leech et. al. (1954)	Izod Impact Machine	Tension	Copper Alloys Bronze Bismut	Bress Bronze Bismuth- Copper	24/900 24/900 350/750	250	→fracture	29
81	(1955)	fodified tension m.	Tension	Steel	15 types	730/1230	0.8/77	0.2	_

LIST OF INVESTIGATIONS, CONT'D

				T TWO COUNTY TO THE TOTAL TOTAL TO THE TOTAL					
Kef.			Mode of Loading	Materials	Type	Range of Temp., °C	Range of Strain	Max. True Strain	Ref. Sheet
2	#CDonald et zl. (1956)	Hydramlic press and jig	Tension	Steel	Alum. killed	24/148 (75/300°F)	0.002/0.8	0.275	z
77	Cook (1957)	Cam Plastometer	Compression	Steel (12 types)	Carbon St. Stainless St. 900/1200 Chromium St.	900/1200	1.5/100	0.5	2
	Arnold and Cem Parker (1960) Plastometer	Cæn Plastometer	Compression	Alum. alloys	Com. Pure /l-Mn /l-Mg 61-Si-Mg	300/550	1/30	0.5	е
<u>ရှိ</u>	Ormerod and Special tor- Tegart (1960) sion machine	Special tor- sion machine	Torsion	Aluminum	Super Pure	195/550	0.86/7.1 (÷)	2.0(γ)	35
16	Hodierne (1962)	Special tor- sion machine	Torsion	Aluminum Copper Lead	•	700 max.	10/1000	3.0	36
31	Pugh et al. (1962)	Constant strain rate machine	Torsion	Iron	High Purity	-196/200	10-4, 0.37	0.5	22
12	Chiddister and Malvern (1955)	Split Hopkinson Bar	Compression	Aluminum	1100 F	30/550	300/2000	0.25 (at high- est strain	13
				\$	£	1		Tare)	

LIST OF INVESTIGATIONS, CONT'D

Ref. Sheet No.	90	97	7	at .	5 2	30	30
Max. True Strain	2.0 (plane strain)		0.7	0.7	0.1	2.5	-Rupture
Range of Hax. In Strain Strain	0.4/311 (plane strain rate)	10 ³ -19 ⁴ (mean &)	650 (Max. mean £)	0.05/200	10 ⁻³ /10 ²	0.65/8 (Initial è)	10 ³ /4 x 10 ³ (†)
Range of Temp., °C	0.95 Tm (max.)	24/550 24/600	20/500	-50/400	22/316 (72/500ºF)	22/600 300/500	20/500 20/800 20/1100
Type	Super Purity Dural. 4.2%Cu High Str. 5.7%Zn High Purity	Alloy BS 1476 24/550 Alloy BS 1433 24/600	Super Pure	Com. Pure	6061-76 7075-76 6A1-4V I-400	Pure 4.2%Cu	B.S. 1470 B.S. 1432 EN 2
Materials	Aluminum Lead	Aluminum Copper	Aluminum	A1uminum	Aluminum Titanium Beryllium	Aluminum	Aluminum Copper Mild Steel
Mode of Loading	Plane Strain Aluminum Compression Lead	Indentation	Compression	Compression	Compression and Tension Compression	Plane Strain Compression	Shear
Technique	Cam Plastometer	Air Gun	Drop Hammer	Cem Plastometer	Constant strain rate machine Split Hopkin- son bar	Hydraulic Press	Blanking Press
Investigators	Bailey and Singer (1963)	25 Mahtab et al. Air Gun (1965)	et al.	Hockett (1966)	Green and Babcock (1966)		Stater and 35 Johnson (1967)
Ref. No.	7,	25	30	74	13	ν ₀	35

LIST OF INVESTIGATIONS, CONT'D

Sheet,	ທົ່ນ	on.	27	76	88
Kax. True Strain	0.5 (nominal)	0.0 0.0 0.0 0.0 0.0		c.15	
Range of St.Rate,Sec	c.1/100	110/260 155/600 430(mean) 430(mean)	5 x 10 ³ (mean ɛ)	103	10 ² -10 ³
Range of Temp., °C	75/550 200/500 18/900 18/900 75/300 18/900 800/1200 800/1200	250/550 450/900 20/1055 20/1055	20/700		(±30/1#200°F) (200/800°F) (200/800°F) (200/800°F) (200/800°F)
Type	Com. Pure 75/550 Duralumin 200/500 Com. Pure 18/900 Copper alloys 18/900 Pure 18/900 Low Carbon 800/1200 High Strength 800/1200 Stainless 800/1209	Com. Fure 99.9%Cu Low Carbon Alloy Steel	BS 1432 Hild St.	1100	1100 2024 C1010
Haterials	Aluminum Copper Zinc Titanium Magnesium Steel	Aluminum Copper Steel	Copper Steel	Aluminum	Aluminum Steel
Mode of Loading	Compression	Compression	Compression	Compression and Tension	Tension
Technique	Cem Plastometer Lrop Hømmer	Drop Harmer	Speciman fired on hard anvil	Split Hopkinson bar	fransverse impact on wire specimen
Investigators	Suzuki et al. (1968)	Samenta (1968) (1959)		Lindholm and Yeakley (1968)	Schult z (1969)
Ref. No.	141	32,	#	,‡ &	ŧ

LIST OF INVESTIGATIONS, CONT'D

	Seet	1	٥	*	40 60	d.	8	8	60 74
	Hax. True Strain	6.19	0.1	6.906	0.2	0.002 (at yield)	0.08 at max. temp.	,	1.0
	Range of St. Rate, Sec	4 x 103 (max.)	16-3/102 (me.sm)	103	10 ⁻³ , × 10 ⁴	10 max. (elæstic è)	103 MX	103	500/1¢ [‡]
	Range of Temp., °C	-196/300	-196/324 -196/324	25/538 (78/1000F)	-78/440	315 max. (500°F)	21/538 (70/1000°F)	24, 704 (75, 1300°F) 24, 482 (75, 900°F)	RT, 100,200 300,400,500
A TEM COMPA	Type	0.002-0.05 wt % C		High Purity Armco	Hild St.	Mild St. 1018 Alloy St 4340 Tool St. Grade 300 St.	6A1-4V S-200E	316 Stainless TI-6-2-4-2	99.95% pure
,	Materials	Iron	Niobium Molybdenum	Copper	Steel	Steel	Titanium Beryllium	Steel Titanium	Iron Nickel
	Mode of Loading	Compression	Compression	Compression	Double Shear Steel	Tension	Compression, tension and biaxial	Tension	Compression
	Technique	Split Hopkin- son bar	Universal rapid load machine	Split Hopkinson bar	Rapid load machine Modified Splft Hopkinson bar	High Strein rate wachine	Biaxial machine and Split Hopkin- son bar	Split Hopkin- son bær	Split Hopkin- son bær
	Investigators	٠	Campbell and Universal Briggs (1969) rapid load machine	Watson and Ripperger (1969)	Campbell and Ferguson (1970)		Lindholm and Yeakley (1971)	Thiruvengadam Split Hopkin- amd Conn son bar (1971)	Muller
	Rer. No.	23	6	£ 1		19	23	4 5	26

SECTION III

REVIEW OF EXPERIMENTAL INVESTIGATIONS

For quick reference, and to supplement the illustrative data in Section IV, the investigations at high strain rates and elevated temperatures referred to in this survey are summarized in the present section in a much reduced form.

Each reference sheet in this section presents details concerning the test technique adopted, materials tested, specimen shapes, dimensions and heat treatment, lubrication and methods of heating and stress and strain measurement. Illustrations and graphs, reproduced from the original publications, are also presented. The reference sheets are classified with respect to the mode of loading used in each investigation, and further as to whether the experiments conducted were of the dynamic type (strain rate range: 0.1 to 100/sec) or of the impact type (strain rate over 100/sec).

List of Experimental Investigations Reviewed in Section III

Reference Sheet No.	Mode of Loading	Investigator	Ref. No.	Page
1	Dynamic Compression	Alder & Phillips (1954)	3	11
2		Cook (1957)	12	13
3		Arnold & Parker (1960)	ц	15
4		Hockett (1957)	15	17
5		Suzuki et al. (1958)	41	19
6		Campbell & Briggs (1969)	9	21
7		Green & Babcock (1966)	13	23
3	Impact *Compression	Suzuki et al. (1958)	41	25
9		Samanta (1968, 1969)	32 33	27
10		Mahtab et al. (1965)	25	29
11		Baraya et al. (1965)	8	31
12		Hawkyard et al.	14	33
13		Chiddister & Malvern (1963)	11	35
14		Watson & Ripperger (1969)	43	37
15		Green & Babcock (1966)	13	39
16		Lindholm & Yeakley (1968)	22	41
		Lindholm (1968)	21	
17		Nagata et al. (1969)	29	43
18		Muller (1971)	26	45

Reference Sheet No.	Mode of Loading	Investigator	Ref. No.	Page
19	Dynamic Plane Compression	Bailey & Singer (1963)	6, 7	47
20		Bailey (1967)	5	49
21	Dynamic Tension	MacDonald et al. (1956)	24	51
22		Pugh et al. (1961)	31	53
23		Green & Babcock (1966)	13	55
24		Kendall (1970)	19	57
25	Impact Tension	Nadai & Manjoine (1941)	27, 28	59
26		Lindholm & Yeakley (1971)	23	61
27		Thiruvengadam & Conn (1971)	42	63
28		Schultz (1969)	34	65
29		Leech et al (1954)	20	67
30	Impact Shear	Slater & Johnson (1967)	35	69
31	Dynamic Double Shear	Campbell & Ferguson (1970)	10	71
32	Impact Double Shear	Campbell & Ferguson (1970)	10	73
33	Dynamic Torsion	Hughes (1951)	17	75
34		Work & Dolan (1953)	44	77
35		Ormerod & Tegart (1960)	30	79
36	Impact Torsicn	Hodierne (1962)	16	81

Dynamic strain rate range : 0.1 - 100 sec⁻¹. Impact range : above 100 sec-1 - 10 -

Apparatus: Cam Plastometer: 10 tons capacity; Log. cam: 12.5 mm \times 90° Max. ε = 0.5 (nominal); $\dot{\varepsilon}$: constant true $\dot{\varepsilon}$ = 1/40 sec⁻¹

Mat.: Aluminum - commercial purity; as extruded 3/4" diameter Copper - phosphorous deoxidized; cold drawn 3/4" diameter Steel - 0.17% C; hot rolled 1" diameter

Spec.: Cylinders, axis parallel to extrusion or rolling direction
Aluminum - D = 12 or 18 mm, L = 25 mm; Annealed 400° C x 1 hour
Copper - 12 or 18 x 25 mm; Annealed 600 x 2 hours in vacuo
Steel - 12 or 18 x 25 mm; not annealed

[Lubr.: on 2 ends before heating; θ = Rm temp., Petroleum jelly; θ = Rm/450°C, Graphite in Alcohol; θ > 450°C, Glass + Alcohol; when barrelling occurred in a test, results were discarded.]

Heat: Spec. in guarding box heated in resistance furnace (+ argon for steel spec.), then tested quickly; maximum temperature drop = 5°C.

Test temperature: Aluminum, -190/550; Copper, 18/900; Steel, 930/1200°C.

Glass lubricants prevented oxidation.

Meas. Instr.: Load - Calibrated optical dynamometer, change in birefringence created in two glass blocks was recorded on rotating drum.
- Displ.: from cam design (allowance made for elastic distortion)

F10. 6.—Effect of Strain Rate on the Stress Required to Compress Aluminium to 40% Reduction at Various Temperatures,

(a) e v. logistic (b) logistic to logistic

Pto. 4.—Effect of Temperature on the Stress/Strain Curve for Aluminium. Stram rate = 4-38 & c.74

TABLE V.—Values of the Index n in the Equation $\sigma = \sigma_0 i^n$.

Metal	Temp.,		Value of	for a Com	pre-mion of :	
MEIAL	*C.	10%	20%	30%	40%	50%
Al	18	0·013	0.018	0.018	0.018	0.020
	150	0·022	0.022	0.021	0.024	0.026
	250	0·026	0.031	0.033	0.041	0.041
	350	0·055	0.061	0.073	0.084	0.088
	450	0·100	0.098	0.100	0.116	0.130
	550	0·130	0.130	0.141	0.156	0.155
Cu	18	0-010	0-001	0.002	0.006	0.010
	150	0-014	0-016	0.020	0.023	0.026
	300	0-016	0-018	0.017	0.025	0.024
	450	0-010	0-004	0.008	0.014	0.031
	600	0-050	0-043	0.041	0.056	0.078
	750	0-096	0-097	0.128	0.180	0.182
	900	0-134	0-110	0.154	0.193	0.190
Po	930	0.088	0·034	0·094	0-009	0·103
	1000	0.108	0·100	0·090	0-003	0·122
	1000	0.112	0·107	0·117	0-127	0·130
	1135	0.123	0·129	0·138	0-159	0·198
	1200	0.116	0·122	0·141	0-170	0·196

Table VII.—Values of σ_0 in the Equation $\sigma = \sigma_0^{-1}$.

Metal	Temp.,		Value of o	for a Com	prewion of:	
	•0.	10%	20%	30%	40%	60%
Al	18	14·6	17·1	18-9	20·6	2: 0
	150	11·4	13·5	15-0	16·1	17:0
	250	9·1	10·5	11-4	11·9	12:3
	350,	6·3	6·9	7-2	• 7·3	7:4
	450	3·9	4·3	4-5	4·4	4:3
	550	2·2	2·4	2-5	2·4	2:4
Chi	18	26.3	40-3	49·0	54·1	53-7
	159	23.1	32-4	37·8	41·5	43-5
	300	20.2	20-5	30·2	32·2	34-4
	460	17.0	22-5	25·1	26·6	26-8
	600	12.7	16-8	18·9	19·4	19-0
	750	7.6	9-7	10·0	8·5	8-2
	900	4.7	6-3	6·1	5·5	5-2
Fe	930	10-3	19-4	20·4	20-9	20-9
	1000	13-0	15-6	17·3	18-0	16-9
	1060	10-9	12-9	14·0	14-4	13-6
	1135	9-1	10-5	11·2	11-0	9-9
	1200	7-6	8-6	8·8	8-3	7-6

Fig. 6.—Effect of Temperature on the Stress Required to Compress Aluminium to 20% and 40% Reduction. Strain rate = 4.38 sec. 1.

Fig. 7.— Dependence of the Strain-Rate Diffect on the Homologous Temperature for 40% Reduction.

Table VI.—Values of the Slopes of the n/TH Curve for Various Compressions.

Compression, %	10	20	30	40	50
m ^{1 o} , ,	0.045	0.050	0 055	O-OHA)	0.005
m _s †	0.30	0.38	0.41	0.40	0.52

[•] m_1 is the slope for $0 < T_M < 0.65$. † m_2 is the slope for $T_M > 0.55$.

Dynamic Compression	соок (1957), [12]	2

Apparatus: Cam Plastometer: 10 tons capacity; Log. cam: 1/4" lift x 35° Max. ε = 0.5 (nominal); $\dot{\varepsilon}$: constant true $\dot{\varepsilon}$ = 1.5/100 sec

Mat.: Twelve steels; hot rolled bars up to 1 1/4" diameter, annealed before machining specimens.

Spec.: Cylinders; D = 3/8", L = 1/2"

[Lubr.: on 2 ends before heating, powder glass in alcohol. Different types of glass used at different temperatures. Very slight barreling, neglected in analysis. (μ < 0.1)]

Heat: Spec. in guarding box heated in resistance furnace, then compressed quickly. Test temperature: 900/1200° C.

Meas. Instr.: - Load - Calibrated optical dynamometer, change in birefringence created in two glass blocks recorded on rotating drum.

- Displ.: From cam design (allowance made for elastic distortion)

Fig. 3.17. Section Through Guard-ring Box, with Specimen

a Lubricated with Pyrex glass. b Lubricated with hard that glass, c Lubricated with lead borate glass.

yrex glass.

and thint glass.

See Table 3.3.

Fig. 3.19. Specimens Compressed 50 per cent at 1000 deg. C (1832 deg. F.)

Table 3.3. Percentage Glass Compositions

Туре	Lead borate	Hard flint	Pyrex
Used at, deg. C. deg. P.	900 and 1000 1652 and 1832	1100 2012	1200 2192
Silicon dioxide Boric oxide	20	66-4	80 12
Barium oxide Aluminium oxide Calcium oxide		5·2 4·3 7·8	3,
Lead oxide Sodium oxide Potassium oxide	80	12·3 4·0	4 0·3

Figs. 3 (a)-(f) Resistance to homogeneous deformation of various materials at strain rates of 1, 10, 20, and 30 in.lin.lsec. (a) Commercially pure aluminium; (b) Al-Mn altoy; (c) Al-21% Mg alloy; (d) Al-5% Mg alloy; (e) Al-5. Mg alloy; (f) Al-Cu-Si-Mg alloy.

Dynamic Compression

ARNOLD and PARKER (1969), [4]

3

Apparatus: Cam Plastometer, Const. vel. cams; upward displ. of lower platen is prop. with cam ang. rotation; effective lifts = 1/2, 1/4, 1/8" Max. ε = 0.5 (nominal); $\dot{\varepsilon}$: 1/30 sec⁻¹

Mat.: C. P. Alum. and 5 Alum. alloys;
hot rolled slaps 1 3/4 + 2" thick → ht treated → cold rolled to 1 1/4" thick

Spec.: Cylinders, axis in dir. of slab thickness: D = 0.5", L = 1.0, 0.5, 0.25".

Annealed: Al - Mn alloy: 500° C x l hr, all others: 400° C x l hr

Hardness measured after annealing.

[Lubr.: For $T < 500^{\circ}$ C: Colloidal graphite suspended in alcohol. For $T \ge 500^{\circ}$ C: Glass suspended in alcohol.]

Heat: Spec. in guarding box heated in resistance furnace, soaking time: 1/2 hr, then quickly tested.
Lubricants prevented oxidation.

Lubricants prevented oxidation. Test temp.: 300, 400, 450, 500° C

[Correction for frictional effects considered in analysis. Strain rate was defined as $\dot{\epsilon} = \Delta h/h_c t$]

Fig. 4 Comparison of resistance to homogeneous deformation of aluminium and five aluminium alloys. Values refer to a decrement of 20% and a strain rate of 20 in in. in. sec. The ordinate shows resistance to deformation (tons in).

Fig. 5. Comparison of the effect of strain rate on the resistance to deformation of aluminium and fire aluminium alloys. The ordinate shows the ratio of the resistance to deformation at a strain rate of 30 in./in./sec. to that at 1, in./in./sec.

\$ 1000 deg. C. (1832 deg. P.) d 1200 deg. C. (2192 deg. P.)

Yield-stress Against Natural-strain Curves for

Low-carbon Steel

Medium-earbon Steel

Pigures under i are sec.-1

Dynamic Compression

HOCKETT (1967), [15]

4

Apparatus: Çam, Plastometer

 $\dot{\varepsilon}$: constant true $\dot{\varepsilon} = 0.05/200 \text{ sec}^{-1}$

Mat.: CP Alum. 1100 F (as fabricated temper)

Spec.: Cylinders. no particulars concerning dim. reported.

Annealed: 773°K x 30 min., furnace cooled

Heat: Done in seatu in a heater. Test temp.: 223, 293, 473, 673° K

Meas. Instr.: - Load: Load cell + oscillograph

- Cam position and time: Counter used to adjust time base of a time mark generator, then registers count of 60 pips per rev. generated by the cam in each sec. Pips and time base applied to oscillograph.

Load, time and cam position are then recorded simultaneously.

[NB. Def. assumed homogeneous and verified by rm.temp microhardness surveys of sections of spec. tested at various θ & ϵ , and optically by high speed photography compared with grid def. on specimen.]

Fig. 4-True-stress vs true-strain curves for 1100-O aluminum at two temperatures. True-strain rates, ϵ , and temperatures as indicated.

Fig. 5—True-stress vs true-strain curves for 1100-O aluminum at two lower temperatures, True-strain rates, ξ , and temperatures as indicated.

Fig. 14-1 run-stress vs log true strain rate vs temperature 1100-0 aluminum. True strain, $|c| \leq \sigma/5$

Dynamic Compression

SUZUKI et al (1968), [41]

5

Apparatus: Cam Plastometer, 15 tons capacity; Log. cams: included angle 36°, 72°. Max. $\varepsilon = 0.5$ nominal; $\dot{\varepsilon} = \text{const. true } \dot{\varepsilon} = 0.1/100 \text{ sec}^{-1}$.

Mat.: Aluminum, Duralumin, Zinc, Magnesium, Titanium, Copper and its alloys, Different kinds of steel.

Spec.: Cylinders, D = 12, L = 18 mm and D = 8, L = 12 mm.

[Lubr.: 0 < 600: Colloidal Graphite; 600 < 0 < 800: Lead Glass; 0 > 1000° C: Pyrex glass. Degree of barrelling very small.]

Heat: Spec. in a subpress heated in Nichrome furnace for T < 600 or a

Silicon carbide furnace for T > 600, then transferred quickly to

m/c. Effect of lubricants at various temps. studied.

Test temp.: Alum., 75/650; Duralumin, 200/500; Zinc, 75/300;

Magnesium, 18/500; Titanium, 18/900; Copper, 18/900; Steels, 800/1200° C

Meas. Instr.: Capacitor strainmeters, for load and strain.

Time: intensity modulation of CR tube.3 traces recorded on film.

[NB. Effect of specimen dimensions and texture on flow stress measured was studied experimentally.]

Fig. 3:7 Strain Rate Dependence of the Flow-Stress of 0.15% C-Steel.

Fig. 2-1 Temperature Dependence of the Flow Stress of Commercial-Purity Metals.

Fig. 4.3 Flow Stress Strain Curves of Aluminium. Temperature Range: 18~500°C, Strain Rate Range: 0.1~10 sec⁻¹.

Fig. 2-8 Temperature Dependence of the Compression Stress of Copper and Copper-Zine Alloys at \$\epsilon 0.2 Strain Rate: 0.13 sec. 3.

Fig. 2-10 Strain Rate Dependence of the Flow Stress of 99.5% At at \$=0.2.

Dynamic Compression

CAMPBELL and BRIGGS (1969), [9]

6

Apparatus: Universal rapid load testing machine, hydraulically operated.

Nax. $\epsilon = 0.1$; Mean $\dot{\epsilon} = 6 \times 10^{-3}/100 \text{ sec}^{-1}$

Mat.: Niobium (electron beam milted); sintered Molybdenum, 3 mm dia.
Swaged and centreless ground rods.

Spec.: Cylinders, parted off by spark machining, D = 3, L = 5 mm Annealed: Niobium: 1020° C x 1 hr in vacuum, furnace cooled; Holybdenum: 1200° C x 2 hrs in vacuum, furnace cooled.

Heat: Spec. enclosed within a small resistance furnace.
Testing Temp: 77, 292, 400, 500, 600° K

Meas. Instr.: - Load: strain gauge dynamometer
- Crosshead velocity: with an electromagnetic transducer. Outputs fed simultaneously into CRO δ recorded on film.

Dynamic Compression

GREEN and BABCOCK (1966), [13]

7

Apparatus: Gas operated device; desired constant strain rate is obtained by proper selection of gas (air, helium or nitrogen), pressure and orifice size. E: constant true E = 0.001/100 sec-1.

Mat.: 6061-T6 Alum. alloy; 7075-T6 Alum. alloy; 6A1-4V Titanium alloy; I-400 Beryllium.

Spec.: Cylinders; Alum. alloys: $D = 0.375 \times L = 0.500$ or $D = 0.125'' \times L = 0.625''$

Titanium and Beryllium: $D = 0.250 \times L = 0.500$ or $D = 0.125" \times L = 0.625"$

Heat: A radiant energy furnace with three independently controlled zones is used to heat the specimen and maintain uniform temp. along its length.

Test temp.: Alum., 72/550°F; Tit. alloy, 72/600; Beryllium, 72/600

Meas. Instr.: _ Load: Measured by strain gages mounted on an elastic load bar directly above the specimen.

- Strain: by measuring piston displacement; by using strain gages mounted on specimen; by using an optical extensometer to look at marks placed on the specimen.

Flow Stress vs Log Strain Rate

Impact
Compression

SUZUKI et al (1968), [41]

8

Apparatus: Experimental Drop Hammer. $\epsilon = 100/650 \text{ sec}^{-1}$

Mat.: Aluminum, Duralumin, Zinc, Magnesium, Titanium, Copper and its alloys, Different kinds of steel.

Spec.: D = 12, L = 18 mm, and 8×12 mm.

[Lubr.: $\theta < \text{@00}$: Colloidal Graphite; 600 < $\theta < 800$: Lead Glass $\theta > 1000^{\circ}\text{C} = \text{Pyrex glass}$. Degree of barrelling very small.]

Heat: Spec. in asbestos heated in Nichrome furnace for T < 600 or a silicon carbide furnace for T > 600, then compressed quickly in hammer.

Test temp.: Alum, 75/650; Duralumin, 200/500; Zinc; 75/300; Magnesium, 18/500; Titanium, 18/900; Steel, 800/1200°C

Meas. Instr.: Load: Capacitor Strainmeter.
 Strain: indirectly through hammer displacements by a photoelectric tube
 Outputs fed into CRO and traces recorded on film.

Fig. 1-8 Prop-Hammer Type of Testing Machine. Weight of Hammer 25, 50 kg, Maximum Strain rate 700 sec-1.

Fig. 2-6 Temperature Dependence of the Compression Stress of 6994 Cu-3594 Zn Alloys at 4=0.2.

Fig. 1:11 "m"-Temperature Relation for Aluminium.

Fig. 2-12 "mi*-Temperature Relation for Copper.

Impact Compression

SAMANTA (1968, 1969),[32, 33]

9

Apparatus: Experimental Drop Hammer.

Mean & = for Alum: 110/260 sec ; Copper: 155/600 sec 1

Mat.: Alum., commercially pure, 20 mm bars. [33]
Copper, 99 %, 20 mm bars. [33]
Steel, 5 different types. [32]

Spec.: Cylinders, Alum: D = 20, L = 20 mm, Annealed 325 x 1 hr
Copper: 20 x 10 mm, annealed: 650°C x 20 min, water quenched
Steel: 20 nm dia with different D/L ratios.

Heat: Spec. enclosed in a platinum cylindrical furnace, then transported through a highly polished shannel to platen and compressed.

Test Temp.: Alum, 250/550; Copper, 450/900; St., 20/1055°C

Meas. Instr.: - Position of tup: with capacitive gauge.
 Retardation of tup: with piezoelectric accelerometer.
 Outputs fed into CRO and recorded on film, as displacement-time and force time relations for specimen (assuming wave effects in tup negligible.)

[$\dot{\epsilon}$ = velocity/height at any instant, $\dot{\epsilon}$ - ϵ relation was plotted and mean integrated value taken as mean $\dot{\epsilon}$]

Rolation between true compressive stress and natural compressive strain for high-speed recei (818 2722) at 1035°C

Rolation between true dynamic compressive stress and mean strain-rate for high-speed steel (818-2722) at 1055°C.

*luminium

copper

Relation between dynamic true yield stress and mean strain-rate for sluminium at 550°C; copper at 900°C.

Apparatus: Equipment for dynamic indentation, include horizontal air gun firing 0.5" dia cylindroconical projectiles Impact vel.= 1000 - 2500 in/sec; $\epsilon_{\rm mean} = 10^3/10^4$ sec⁻¹

Mat.: Copper and Aluminum alloy.

Spec.: 1.5" square section bars used as targets
Annealed: Copper = 550 × 1 hr; Alum 450 × 1 hr

Heat: Spec. heated and tested in furnace

Test temp.: Copper, up to 600°C; Alum. up to 550°C

[Mean effective indentation pressure calculated using relation derived theoretically.

Mean $\dot{\varepsilon} = \overline{\varepsilon}/t = \overline{\varepsilon}v/y$; $\overline{\varepsilon} = 1$, v = mean indentation speed, y = indentation depth.]

Relation between the logarithm of the crater diameter and temperature for different impact velocities

Fig. 12a. Relation between the mean effective dynamic indentation pressure \bar{P}_4 and temperature

Fig. 12b. Relation between P_a/P_a and temperature

Impact Compression

BARAYA, JOHNSON and SLATER (1965), [8]

11

Apparatus: Experimental drop hammer,

Tup assembly mass = 15.7 lb; Dropping heights = 5, 7.5, 10, 15, 20 ft. Max. $\dot{\varepsilon}$ = variable during test, max mean $\dot{\varepsilon}$ = 650 sec⁻¹

Mat.: Super Pure Alum.

Spec.: Cylinders, D = 1", L/D = 2, 1.5, 1, 0.5; annealed at 300°C × 1 hr.

Heat: Specimen in subpress heated in furnace to desired temp., then quickly transferred and compressed in hammer.

Max. temp. drop = 5°C

Test temp.: 20, 100, 200, 300, 400, 500°C

Meas. Instr.: Tup mass and dropping height are predetermined before test. Mean dyn. yield stress Y & mean strain rate & are computed from:

 $E/V = \overline{Y} \{ ln [1/(1-R)] + \frac{c}{6(H/D)} [R/(1-R)] \}; \dot{\epsilon} = 151.2\epsilon/HR$

Fig. 1 Diagram of triggering mechanism and tup assembly.

Fig. 2. Sub-press assembly.

Relation between log R and temperature

Relation between deformation energy/unit volume and natural strain

TEMPERATURE - SOO'C BMOLET YELOCITY - 3HIPT/S

MEAN STRAIN RATE & 5"

Relation between natural strain and the product HR_{\star}

Logarithmic relation between mean dynamic yield stress and mean strain rate for super-pure aluminium.

Relation between mean dynamic yield stress and mean strain rate for super-pure aluminium

Impact Compression

HAWKYARD, EATON and JOHNSON (1968), [14]

Apparatus: Commercial stud-driven gun for firing flat ended cylindrical projectiles (specimens) on a hardened steel anvil.

Impact vel. ~ 600 ft/sec; c: mean rate ~ 5 × 10 sec

Mat.: High conductivity Copper, b.S. 1432

Annealed Steel to B.S. 970 En 2

Bright drawn Mild Steel to B.S. 970 En la

Spec.: Cylinders, 0.370" dia × 1" long

Heat: Spec. preheated in an electric furnace to a greater temp. than required, transferred quickly within a steel jacket into position and fired after a predetermined interval when it is expected to reach desired temp.

Test temp.: 20, 400, 600, 700°C.

Meas. Instr.: - Impact vel. before impact: by measuring time interval between fracture of 2 fine wires in the path of the projectile (wires connected to microsecond timer).

- Deformed specimen profile obtained using a Shadowgraph.. [Equating K.E., from impact velocity measurement, to mean plastic strain energy, from spec. profile, gives mean eff. yield stress]

Comparison between a typical experimental profile and a theoretical profile based on Taylor's analysis.

variation of mean dynamic yield stress σ_k and mean static yield stress σ_8 with temperature for copper.

Fig. 13. Showing variation of mean dynamic yield stress a_0 and mean static yield stress a_2 with temperature for annealed mild steel Eu 2.

Fig. 16. Showing variation of dynamic states mean yield are scratted with homologous temperature (T/T_M) .

Impact Compression

CHIDDISTER and MALVERN (1963), [11]

13

Apparatus: Split Hopkinson pressure bar

[Oading: Hyge check tester and striker bar.

c = 300/2000 sec-1 nearly constant during test.

Hax. c = 0.05 for lowest c, and 0.25 for highest c

Mat.: Aluminum 1100 F. extruded

Spec.: $D = \langle \frac{3}{4} \rangle$ (bars dia.) $\times L = \frac{1}{4} \rangle$; Annealed: $400^{\circ}C \times 1$ hr

[Lubr.: Powder Graphite: 250°C, Powder glass + alcohol: 550°C Molykote (commercial Molybdenum disulfide: at other temps. No barrelling at room temp; slight, at higher temp.]

Heat: Electric combustion tube furnace, 12" long heating elements, TC welded to transmitter bar # from specimen Temp. distribution by TC (chromel alumel) 2 inches apart. Test temp.:30,150, 250, 350, 450°C

Meas. Instr.: 2 opposite foil strain gauges at each station (0 = room temp). Output fed to CRO, signal recorded on film as $\epsilon_{\rm I}$, $\epsilon_{\rm R}$, $\epsilon_{\rm T}$.

$$\left[\varepsilon_{s} = \frac{2 c_{s}}{L_{o}} \int_{0}^{k} \left(\varepsilon_{Is} - \varepsilon_{TB} - \varepsilon_{s}^{'}\right) dt ; \sigma_{s} = E_{B} \left(\varepsilon_{TB} - \varepsilon_{B}^{''}\right)\right]$$

Experimental test setup

Fig. 7-Strain-tim

Fig. 13--Semilogarithmic plot of stress vs. strain rate at 10.54 percent true strain

Yana a ab
Impact
Compression

WATSON and RIPPERGER (1969), [43]

14

Apparatus: Variation of split Hopkinson pressure bar

Loading: Air gun and projectile,

Max $\varepsilon = 10^3 \text{ sec}^{-1}$; variable during test

Max c = 0.6%

Mat.: High purity Copper, Iron

Spec.: $D = \frac{1}{2}$, L = 1"; ends lapped; lateral sides grit blasted

Heat: in furnace with 11" long quartz lamps.

Temp. Control: T.Couple + temp. controler + power controller + furnace Test Temp.: Copper and Iron: 78, 400, 600, 800, 1000°F.

Meas. Instr.: Thin quantz crystal, for mean stress over cross section
High temp. strain gage welded to specimen, for mean strain
Output fed in CRO, signal recorded on film.

[N.B. Since & could not be maintained constant during the course of a single test, the values of stress and strain at each strain rate deduced from several different tests, and therefore from several different specimens of the same material]

Fig. 1-Schomatic of short-specimen impact setup

Fig. 6—Typical short-specimen dynamic-test results for copper at 600° F

Fig. 7—Copper stress-strain-strain rate at 78° F

'g. 8--Copper stress-strain-strain rate at 400° F

Fig. 9-Coppor stress-strain-strain rate at 600° F

Fig. 10-Copper stress-strain-strain rate at 800° F

Fig. 11—Copper stress-strain-strain rate at 1000° F

Fig. 12—Copper dynamic overstress ratio vs. strain rate at \$00° F

15

Apparatus: Split Hopkinson pressure bar
Loading: Launch tube and driver bar
£ = 50/104 sec-1, variable during test.
£ = > 0.5

Mat.: Two Alum. alloys, Titanium, Beryllium

Spec.: Cylinders of different D/L ratios.

Heat: Specimen alone heated in a single zone resistance wire furnace. At testing temp., furnace is opened and pressure bars moved in quickly to compress the specimen. Insignificant heat conduction losses.

Test temp.: for all metals, 72, 300, 600°F.

Meas. Instr.: 3 strain gages in series at each gage station, output fed to oscilloscope and recorded on film.

Flow Stress vs Temperature

Impact Compression LINDHOLM and YEAKLEY (1968), [22] LINDHOLM (1968), [21]

16

Apparatus: Split Hopkinson pressure bar

Loading: striker bar producing pulse of constant amplitude

 $\dot{\varepsilon}$ = up to 1000 sec⁻¹

Mat.: 1100 O Aluminum

Spec.: Cylindrical D = < pressure bar dia.

Heat: By a cyl. furnace surrounding the specimen, and producing symmetrical

heat gradients along the bars. Test temp.: 27, 127, 262, 402°C

Meas. Instr.: Strain gauges at 2 stations, output fed to CRO

 $\boldsymbol{\varepsilon}_{\mathtt{T}^{\,\mathtt{S}}} \ \boldsymbol{\varepsilon}_{\mathtt{R}}$ and $\boldsymbol{\varepsilon}_{\mathtt{T}}$ recorded on film.

[N.B. Recorded strains are corrected using a correction factor

 $\epsilon_{o}/\epsilon_{T} = (1 + c_{a}^{3/4})$, $c_{a} = a_{2}(T-T_{o})/a$.

based on assumptions of:

- exponential temp. gradient $T - T_0 = T_S e^{-kx}$; $T \ge T_0$

- linear dependence of modulus $E = a_1 + a_2(T - T_0)$.

Usual analysis for computing $\sigma_{_{\mathbf{S}}}$ & $\varepsilon_{_{\mathbf{S}}}$ is used.

Correction factor is checked experimentally].

Fig. 7—Ratio of particle velocity at stream to particle velocity at hoated end; comparison 6, theory with experiment

- 42 -

Impact Compression

NAGATA, YOSHIDA and SEKINO (1969), [23]

17

Apparatus: Split Hopkinson pressure bar

 $\dot{\varepsilon}$ = up to 4 × 10³ sec⁻¹

Mat.: Polycrystalline iron containing 0.002, 0.01 and 0.05 wt % C. Ingots were forged, hot-rolled to bars and cold swaged.

Spec.: Cylindrical: D = 9 - 10 mm., L = 5 and 10 mm.

Annealed in vacuum at 570° - 880°C × 1-2 hr; furnace-cooled

Heat: Details not included in paper.

Test Temp.: 77, 126, 196, 242, 293, 373, 473, 573°K.

Meas. Instr.: Strain gauges at 2 stations, output fed to CRO

 $\boldsymbol{\varepsilon}_{1},\;\boldsymbol{\varepsilon}_{R}$ and $\boldsymbol{\varepsilon}_{\eta}$ recorded on film.

[N.B. Nothing is mentioned in the paper about the method used to bring the specimen to the required testing temp; for method of stress analysis, authors refer to their previous work on aluminum at room temp.; apparently, same analysis has been followed at other temperatures.]

Fig. 1 Schonetic diagram, of the apparatus.

Stress at the loading har and (σ_{R1}) ---- Stress at the supporting har and (σ_{R1})

Relation between the low-r yield stress and the incarding of the strain rate at rows temperature for polycrystalline. 7.4

Fig. 10. Relation between the logarithm of the lower yield stress and that of the strain rate at constant grain diameters replotted from Fig. 4.

ટ્ઠ

Impact
Compression MULLER (1971), [26] 18

Apparatus: Split Hopkinson pressure bar

 $t = 500/10^4 \text{ sec}^{-1}$

Max $\varepsilon = 10$ % natural strain.

Mat.: Ferrovac - E Iron; vacuum melted with 99.95% purity

Nickel - S; vacuum melted with 99.95% purity

Spec.: Cylinders: D = 10 mm, L = from 5 to 20 mm.
Annealed in vacuum for 2 hrs: Iron at 750°C,

Nickel at 800 C

Mean grain diameter after annealing : Iron : 90 μm

Nickel 70 µm

Heat: By a furnace surrounding the specimen and portions of the pressure bars.

Test Temp. : RT, 100, 200, 300, 400, 500°C

Meas. Instr.: Capacitance gauges directly coupled to emitter-followers, with

a very high imput impedance. Output fed into oscilloscope

[Recorded pulses are not corrected for the thermal gradient along the pressure bars. Maximum error in computed stress and strain estimated to be 0.2 and 0.4% respectively, for every 100°C increase in test temperature.]

Fig. 1. Iron. True stress-true strain curves. The average true strain rate $\tilde{\eta}$ is indicated on each curve.

Fig. 2. Nickel. True stress-true strain curves. The average true strain rate \$\vec{\eta}\$ is indicated on each curve.

Linear plot of true atms against true strain rate at various strains and temporatures.

Dynamic Plane Comp.

BAILEY and SINGER (1963), [6, 7]

10

Apparatus: Plane Strain Cam Plautomater

Cam of log. profile, to compress strip | thick × 1" wide to 90%

Indenting dies: die face 4" wide × 1.5" long

Max plane c = 0.9; Plane c: constant = 0.3/311 sec

Nat.: Super pure Alum.; Lead; 2 Alum. alloys, in cold rolled sheets . 0.125" thick.

Spec.: Strip 4" long x l" wide x 1/4" thick; annealed:
Lead 300°C x 1/2 hr, Alum 600 x 1/2 hr, air couled
Duralumin: 400°C x 4 hr, furnace cooled.

[Lubr.: Graphite & cadmium oxide suspended in alcohol.]

Heat: Compression dies heat: d in air circulation furnace for <2 hr. Specimen preheated for 20 min, transferred to plastometer, compressed, removed & water quenched.

Test temp.: up to 0.95 of melting temp.

Meas. Instr.: - Load: Resistance strain gauge dynamometer - Displ.: linear potentiometer, outputs fed to CRO

Diagrammatic representation of the cam plastometer by section.

Effect of strain rate on the resistance to deformation of super-purity aluminium at 500° C. C. strain rate[sec.

Fig. 2 Effect of strain rule on the stross required to produce a strain of 2.3 in uluminium.

Fig. 3 Vocation of n with the ratio of the ubsolute testing temperature (T) to the absolute melting point (Tu) for aluminum and lead.

Fig. 4 Variation of a with the ratio of the absolute testing temporature (T) to the absolute melting point (Ta) for aluminum. Comparison with the work of Alder and Philips (ref. 1).

Dynamic Plane Comp.

BAILEY (1987), [5]

20

Apparatus: Constant speed hydraulic press and a subpress
Indenting dies: die face 4" wide × 1.5" long
Speeds: 2, 5, 10, 30, 60 in/min.
&: veriable, initial & = 0.65, 1.3, 4, 8 sec.

Mat.: Pure Aluminum; Alum 4.26 Cu alloy, in cold rolled sheets 0.125" thick.

Spec.: Strip 4" long * 1" wide; annealed.
Alum: 600°C * 1/2 hr, AlCu alloy; 400°C * 4 hr.

[Lubr.: Alcoholic suspension of graphite and cadmium oxide.]

Heat: Dies and strip spec. preheated in an air circulated furnace, transferred quickly to subpress and compressed.

Test temp.: Pure Alum. 22-600°C; Alum Alloy 300-500°C

Meas, Instr.: - Load: Resistance strain gauge dynamometer
 Displ: Linear potentiometer,
 Outputs fed in a CRO and recorded on film.

[Correction made for the increase in strain rate produced in a constant velocity test]

Fig. 1 Subpress and die assembly

o Constant-strain-rate tests (8)

Effect of strain rate on stress required to produce a strain of 0.25 in pure aluminum

. Initial strain rate in constant-velocity tests.

o Constant-strain-rate tests (6)

Effect of strain rate on stress required to produce a strain of 2.3 in pure aluminum

Dynamic	
Tension	

MacDONALD, CARLSON and LANKFORD (1956), [24]

21

Apparatus: High speed hydraulic press and a special subpress. $\dot{\epsilon} = 0.002/0.8 \text{ sec}^{-1}$

Mat.: Low carbon sheet steel (fully aluminum killed, temper rolled sheet of thickness 0.038")

Spec.: Standard sheet specimen, of 4" gage section

Heat: Specimen submerged in heated oil contained in a special insulated tank attached to lower movable head
Test temp.: 75, 150, 225, 300°F

Meas. Instr.: - Load: calibrated wire strain gauge dynamometer bar combined with an analyser and oscillograph.

- Strain: a calibrated semi-circular clip gage equipped with wire strain gages connected to recorder. Thus load time and displacement time traces are recorded simultaneously.

F10. 1.-Subpress for High-Speed Tension Tests.

FIG. 4. BASIC DESIGN OF CLIP-GAGE EXTENSOMETER.

Dynamic
Tension PUGH, CHANG and HOPKINS (1961), [31]
22

Apparatus: Constant strain rate screw straining apparatus

: Constant, 10⁻⁴/0.37 sec⁻¹

Mat.: Polycrystalline high purity iron, hot rolled $\frac{5"}{8}$ dia., normalized at 950°C before machining specimens.

Spec.: Gauge length $1\frac{1}{4}$ long × 0.282" ϕ , threaded ends

Heat: Specimen surrounded with insulated temp. chamber.

Test temp.: - 196°/200°C

Meas. Instr.: - Load: by 8 electrical strain gauges on load bar.

- Elongation: indirectly using a counter. Output fed to CRO; signal recorded on film.

Typical conventional stress strain curves.

Effect of temperature on the lower yield stress at two strain rates.

Effect of temperature on the upper yield stress at two strain rates.

Apparatus: Gas operated device; desired constant strain rate is obtained by proper selection of gas (air, helium or nitrogen), pressure and orifice size. $\dot{\epsilon}$: constant true $\dot{\epsilon}$ = 0.001/100 sec⁻¹

Mat.: 6061-T6 Alum. alloy; 7075-T6 Alum. alloy; 6A1-4V Titanium alloy; I-400 Beryllium

Spec.: Cylinders: $D = 0.125" \times L = 0.625"$

Heat: A radiant energy furnace with three independently controlled zones is used to heat the specimen and maintain uniform temp. along its length. Test temp.: 72/600° F

Meas. Instr.: - Load: Measured by strain gages mounted on an elastic load bar directly above the specimen.

- Strain: by measuring piston displacement; by using strain gages mounted on specimen; or by using an optical extensometer to look at marks placed on the specimen.

TENSION HEAD

Tension Tests on 6061-T6 Aluminum Alloy

SPECIMEN: 0.125" Dia x 0.625" long

- 0.002 in/in/sec
- 0.001 in/in/sec 0.002 in/in/sec 18.0 in/in/sec

- ▼ 9.0 in/in/sec ▼ 10.0 in/in/sec

Fig. 19 Yield stress versus electic strain rate fc maraging 300 steel

Fig. 2 Yield stress versus elastic strein rere for 4340 fine grain marten-

Fig. 3 Viold stress versus electic strain rate for type H-11 steel

Fig. 9 Engarithm of yield stress vorces elastic strain rate for type H-1 t

Fig. 4 $\,$ \$cgarithm of upper yield stress versus classic strain rate for 1018 sized at 200 deg-K $\,$

Fig. 7 – Legerithm of upper yield stress versus elastic strain rate for 1018 steel at 477 deg κ

Fig. 8 . Legarithm of upper yield alress various alastic strain rate for 1018 steel at 890 deg $\ensuremath{\mathrm{K}}$

Fig. 8. Logarithm of upper yield stress various classic strain rate for 1016 total at 300 day K $\,$

Apparatus: Special high rate tensile testing system.

(fluid transfer from a high pressure accumulator to a hydraulic cylinder rapidly loads a standard tensile specimen)

c = 10-4/10 sec-1 (elastic strain rates).

Mat.: Mild steel: commercial grade 1018; cold rolled 1" dia.
Alloy steel: 4340, tool st. and grade 300; heat treated, tempered at 1025° F

Spec.: Standard ASTM round tensile specimens, 0.505" ♦ , threaded ends.

Heat: Split tubular electrical resistance furnace, heating zone:

3" \$\phi \times 5" L\$, surrounds the specimen; heating rate: 15° F/min.

Time in temp: 5 min. before testing. Temp. gradient along specimen is neglected.

Test temp.: up to 600° F

Meas. Instr.: - Load: with a load cell and high temp. res. strain gauges
 - Displacement: with a variable impedance transducer. (not reliable for
 strain measurement at high temp.)
Output fed into CRO.

Fig. 1 Load and displacement measuring system

Impact Tension

NADAI and MANJOINE (1941), [27, 28]

25

Apparatus: High speed rotary impact machine. £ = from 100 up to 1000 sec-1

Mat.: Copper, Alum., Pure Iron and Mild Steel

Spec.: D = 0.2", G. L. = 1"

Heat: With an induction furnace surrounding the spec.

Test temp.: Copper, 25/1000° C;

Alum., 25/600° C; Pure Iron, 25/1200° C; Mild Steel, 25/1200° C

Meas. Instr.: Two Photoelectric cells which depict:

- Load, through the elastic extension of a load bar

- Strain, through motion of the lower head.

Output of photo cells fed into CRO and recorded.

FIG. 1 HIGH-SCRED TRASILE MACHINE

Fig. 5 STREES-STRAIN CURVES FOR MILD SIEEL AT ELBYATED TEMPERATURES AND HIGH SPEEDS

Fig. 11 Repress of Bergin Rate on Ultimate Stress of Pore Aluminum at Various Temperatures

Fig. 10 EFFEOT OF STRAIN RATE ON TRUE STRESS AT ULTIMATE OF PORE COPPER AT VARIOUS TEMPERATURES

Fig. 9 Effect of Strain Rate on Ultimate Stress of Pure Copper at Various Temperatures

EFFECT OF TEMPERATURE AND STRA'N RATE ON ULTIMATE STRESS OF PURE COPPER AND PURE ALUMINUM

Fig. 13 Effect of Strain Rate on Ultimate Stress of Mild Stree at Various Temperatures

Fig. 14 TENSION TESTS OF MILD STEEL AT VARIOUS TEMPERATURES AND RATES OF STRAIN

Fig. 15 EPPECT OF STRAIN RATE ON ULTIMATE STRESS OF PURE IRON AT VARIOUS TEMPERATURES

TENSION TENTS OF PURE IRON ST VANDOUR TEMPERATURES AND RAT & OF STRAIN

Impact Tension

LINDHOLH and YEAKLEY (1971), [23]

96

Apparatus: 5 High-speed servo-controlled hydraulic testing machine; c = 10-5/10 sec-1

- Split Hopkinson bar in tension; & = 10 sec -1

Mat.: Titanium: 6Al-4V alloy; Heryllium S-200E

Spec .: Three different specimen geometries, depending upon the type of loading

- a button-head and type, for uniaxial tension testing on hydraulic machine

- a tubular binxial specimen, for binxial testing on hydraulic machine - a Hopkinson bar tensile specimen, for uniaxial tension at 10 846"1

Heat: Specimens were heated by a couxial, three-zone quartz lamp oven. Temp. gradient within the control 1/2-inch of the specimen gage section was symmetric and small. Test temp.: 300, 600, 1000° F

Meas. Instr.: - Load and pressure: using load and pressure cells - Strain: using specially designed electro-mechanical strain extensometers, for the uniaxial loading, the biaxial linear-torsional loading and for the biaxial linear-internal pressure loading.

Button Head End Tensile Specimen

- 61 -

FIGURE 13. EFFECT OF TEMPERATURE AND STRAIN RATE ON THE TENSILE YIELD STRENGTH OF S-200F RERYLLIHM

Impa	et
Tens	

THIRUVENGAPAH and CONH (1971), [42]

97

Annaratus: Modified Hopkinson pressure har heading: Compressed nitrogen gun accelerating an impact projectile which strikes the incident pressure bar.

c = ~ 100 sec 1

Mat.: 310 Stainless Steel and a Titanium alloy

<u>Roeq.</u>: Tensile specimens, of the type developed by Lindholm and Yeakley (hat shaped, fitting between a hollow thick-walled tube input har (Involoy 828) and a solid cylindrical output bar. (Inconel X 760)).

Heat: A furnace was made to entirely encase both pressure bars. (Therefore no thermal gradients were encountered by the atress waves in these bars, which simplified data reduction)

[MB] No numerical data is given about the uniformity of temp. inside the furnace and along the two long pressure bars, 30" each]
Test temp.: St. Steel, Room & 1300° F; Tit. alloy, Room & 900° F

Meas, Instr.: High temp. strain gauges (Microdot weldable type, MG 120) wave used at two stations. Output fed to CRO; c₁, c_R and c_T recorded on film.

Fig. 1-High-strain-rate tensile spocimen

Fig. 2.—Schumatic of split-Hopkinsonpressure-bar test facility

TABLE 1 STATIC AND DYNAMIC TENSILE PROPERTIES OF ANNUALED 316 STAINLESS STEPL

	Moon Temperature			1904.1		
Property	glatic.	Dynamic ,	Hellet	Sielie:	Dynamic'	Ratio
Ullimate Tensile Strength, eu, kai	61.2	1386	1.0	46.0	109.25	2.37
Reduction of Area, RA, %	76.V	\$3.30	0.61	50.0	59,3%	1.19
Klongation, N Logarithmic Duc-	\$5.0	37.36	0.64	35.0	0.894V	1.30
tilitys, D True Fracture	1,4663	0.7391	0.50	0.4938	207.4	2.72
Strength!, et, kei Elastin Modulus,	500.5	240.0	3.20	76.3	_,,,,,	0.97
E, 104 pal	36.4	31.1 °	1.01	20.5	19.81	0.37

TABLE 2-STATIC AND DYNAMIC TENSILE PROPERTIES OF TITANIUM ALLOY TI-6-2-4-2

Property	Room Temperature			\$00.1		
	Sielle.	Dynamic*	Haliro*	Statics	Dynamic*	Ratio*
Ultimate Tensile						
Strongth, ou, kal	152.0	229.5*	1.51	106.0	166.81	1.57
Reduction of Area,						
ra, %	44.0	40.31	0.92	60.3	57.24	0.95
Elongation, %	17.0	15.1*	0.89	21.0	20 .7¢	0.99
Logarithmic Duc-						
tility!, D	0.5805	0.5158	0.89	0.9239	0.8484	0.92
True Fracture						
Strengths, et, kal	240.2	347.4	1.45	203.9	304.3	1.51
Elastic Modulus,						
E. 104 psi	16.0	16.74	1.04	11.66	12.04	1.03

^{*} Values from Ref. 20

• Relit-Herkinson prosture-bat experimenta
• High-frequency-letigue execution to
• Relie of dynamic to static value
• D = In (1 / 3 / AA), Ruts. 7 and 8
• or wes (1 • D). Rets. 7 and 8
• Strain rate = 10 in./in./see

Impact
Tension

SCHULTZ (1969), [34]

28

Apparatus: Transverse impact on long thin wire specimen.

Loading: Nylon projectile transversely impacting specimen at its
mid-span.

2 3 -1

 ϵ : variable during test, ϵ average = 10^2 - 10^3 sec⁻¹

Mat.: Alum. 1100, annealed 800 F x 3 min; Alum. 2024, annealed 600 x 3 min; Steel C 1010, annealed.

Spec.: Long thin wire, D = 0.04", L = 32 ft. annealed in place, and pretensioned.

Heat: By passing an electric current through the wire. Temp. controlled through resistivity measurement. Temp. distribution checked with temp. sensitive paint. Test temp.: 1100 Alum., 200, 350, 550, 800°F; 2024 Alum., 200, 450, 600°F; Steel, 430, 700, 1050, 1400°F

Heas. Instr.: Transverse impact: observed by still photography with stroboacope of known flash rate, over a period of 1.5 msec. after impact.

[NB. From theoretical analysis, only measurements needed are: static prestrain; impact velocity (from distance travelled by projectile between flashes) and deformation angle behind transverse wave front].

- Strain: Observed optically.

fg. 1 Schemotic diagram of deforming wire, bunded for measurement of their 740 psi prestruss series

Stress-Strain Data, 1100 Alum.

	ULTIP	ATE 3		1	ATE S	TRESS,
MATERIAL	STATIC	DYN.	DYN. STATIC	STATIC	DYN.	DYN. STATIC
IIOO ALUMINUM						
200° F	.20	.075	.38	9.4	10.8	1.15
350° F	.09	.044	.49	4.5	7.8	1.7
550° F	.05	.03	.60	2.7	6.7	2.5
800° F	.02	.064	3.2	1.8	4.8	2.7
2024 ALUMINUM						
200° F	.077	.05	.65	28.0	20	.71
450° F	.04	.033	.82	14.5	20.5	1.4
600° F	.03	.025	.83	6.0	20.8	3.5
CIOIO STEEL						_
430° F	.11	.03	.28	45 (FLOW)	48	1.07
700° F	.07	.07	1.0	52	42	.81
1050° F	.04	.12	3.0	24	57	2.4
1400° F	.02	.044	2.2	6.5	39	6.0

Impact
Tension

LEECH, GREGORY and EBORALL (1954), [20]

29

Apparatus: Standard Izod impact machine fitted with a simple attachment to perform a tension test; £ max = ↑ 250 sec-1

<u>Mat.</u>: Copper base alloys (including brasses, bronzes, and coppers with various amounts of bismuth.

Spec.: Of suitable form; G. L. = 1/2" and cross section $3/8 \times 1/4$ "

Heat: Furnace placed close to the anvil; transfer into position for test takes only two sec. Cooling rate ~ 10°C/sec at 700°C Test temp: Bismuth Boaring Coppers, 350, 450, 550, 650, 750°C; Brasses, bronzes and alum. bronzes, Room temp. up to 900°C

Fio. 1.—Impact Tensile Tester.

. Pio. 2 ... Impact Tensile Specimen and Detail of Orip.

Fig. 3.—Impact Tensile and Notched-Bar Tools on Bismuth-Containing Coppers.

; ;

TABLE II.—Analyses of Commercial Copper Alloys Testel.

	04.%	ш, %	1%, %
Brassess	02-1 03-3 05-3 80-1	0-0001 0-0002 0-0001	<0.001 <0.001 <0.001 <0.001
Aluminium Bronzes	93-4 90-4	0.0004 0.0004	100:0>
Tin Bronzes : Nom. 5% Sn, 0-1% P 8% Sn, 0-1% P		0.0003 tr. <0.0001	0-0010 0-0022

Fio. 4.-Impact Tensilo Tests on Somo Cast Brasses.

Impact Shear	SLATER and JOHNSON (1967), [35]	30
		1

Apparatus: Linear induction motor accelerating a hammer of mass 21.5 lb.

K. E. acquired is utilized for dynamic or impact blanking.

Max. impact speed = 50'/sec:; $\dot{\gamma}$ = 10³ sec-1.

Mat.: Commercially pure aluminum; Copper; Black mild steel.

Spec.: Circular disks 2.5" dia. for quasi-static blanking; 3" square for dynamic blanking.

Heat: Spec. heated in separate furnace to 50-100° C above required temp., while blanking tool was preheated using a series of bars; spec. were transferred quickly into position and blanking performed. Test temp.: Alum., 20-500; Copper 20-800; Steel 2 -1100° C

Measurements: Phase voltage applied to motor (V_p) , from which the impact vel. of accelerated mass is determined $(u_m = V_p/6.75 \text{ ft/sec})$ and consequently K. E. available at impact.

Fig. 17. Relation between maximum force for quasi-static blanking and temperature at constant percentago radial clearance (aluminium B.S. 1470 SIC).

Comparison between the energy required for quasi-static and dynamic blanking at elevated temperatures

Relation between non-dimensional energy for blanking (E_B/E_S) and homologous temperature (T/T_M) at constant percentage radial charance

Double Shear	CAMPBELL and FERGUSON (1970), [10]	31
Apparatus: Unive	ersal rapid load testing machine, hydraulically operated 5 × 10 sec	
Mat.: Mild Steel	L	
Spec.: Of specia vacuum annea	al type with very small active gauge length (0.84 m/m) aled at 900°C × 1 hr, furnace cooled.	

Heat: Spec. enclosed within a small recistance furnace Test temp.: 195, 225, 293, 373, 493, 713°K

Measurements: - Load: strain gage dynamometer
- Crosshead velocity: with an electromagnetic transducer.
Outputs fed in CRO & recorded on film.

Design of shear specimen (dimensions in millimetres)

Comparison of results of tension (x) and punch (+) tests (Campbell and Cooper 1960, Dowling and Harding 1967) with present shear test data obtained at room temperature.

Variation of lower yield stress with strain rate (region IV). (a) Zero pro-strain; temperature 293, 493, 713°m. (b) Pre-strain 7-5, 21, 38 %; temperature 293°k.

Impact
Double Shear

CAMPBELL and FERGUSON (1970), [10]

32

Apparatus: Drop wt tester & modified split Hopkinson pressure bar Loading: by dropping weights from 0.3-25 m.

£ = 4 × 10 sec 2

Mat.: Mild Steel

Spec.: Of special type with very small active gauge length (0.84 n/m) vacuum annealed at 900°C × 1 hr, furnace cooled.

<u>Heat:</u> By enclosing the specimens with a small electric furnace; water cooling jackets placed adjacent to strain gauges for protection.
Test temp.: 195, 225, 293, 493, 713°K

Meas. Instr.: Strain gauges at 2 stations, output fed to CRO; ϵ_{I} , ϵ_{R} and ϵ_{T} recorded on film.

[NB. Effect of temp. gradient studied and a correction factor derived for determining the load at the end of the tube in terms of that measured at the strain gauges, the factor is small for temp. up to 713° K. Possible error at 713° K neglecting correction is $\pm 2\%$. Usual analysis for computing $\sigma_{\rm g}$ & $\varepsilon_{\rm g}$ is used.]

Design of split Hopkinson-bar apparatus (dimensions in millimetres)

Design of shear specimen (dimensions in millimotres).

Variation of lower yield stress with temperature, at constant strain rate.

Variation of lower yield atress with atrain rate, at constant temperature.

Dynamic	
Torsion	

HUGHES (1951), [17]

33

Apparatus: Not torsion testing machine. Speed 12.600 rpm

Mat.: Mild Steel, 3/4" ♦ hot rolled rod. (Steel R)
High Carbon Chromium atcel, 3/4" ♦ hot rolled rod. (Steel X)

Spec.: Standard test piece with central reduced portion.

Heat: Platinum wound electric furnace, filled with dry nitrogen, surrounds the spec. Temp. variation along length of specimen ~ 4° C at 1350° C Time at temp. * 5 min.

Test temp.: 950, 1050, 1150, 1250, 1350° C.

Heas. Instr.: - Torque: recorded electrically by means of a slide wire on

a "weighing machine."

- Revolutions to fracture: using a counter.

Fig. 2-Standard steel torsion test piece

Fig. 3.—Effect of testing temperature on revolutions to failure in tersion istandard g-in, dia, test pieces, (a) Steel R; (b) steel X

Fig. 8—Effect of testing temperature is on the turque at 10 revs. for steel R (standard test pieces);
(b) on the torque at 10 revs. for steel R istundard test pieces); (c) on revolutions to failure in torsion for fin. dia. test pieces (steel R); (d) on revolutions to failure in torsion for fin. dia. test pieces (steel R);

Dynamic Yorkion

WORK and DOLAN (1963), [44]

34

Apparatus: Torsion machine of special design.

Li const., \$ = 0.0001/12,5 see-1

Marti BAR 1018 Steel, 5/8" het rolled hars

Mpec,: Cylinders: D = 0.25", GL = 1"

Heat: Spee, heated in furnace during testing.

a) held at test temp, for 1/9 hr, before loading

b) given a 200 hr. aging treatment at test temp. before loading.

Test temp.: 75, 400, 700, 10000 P

Mean. Instr.: Torque: Resistance wire gages mounted outside furance, on wirface of weighbor gripping one end of the specimen; output continuously recorded on photosensitive paper in escillograph.

[Data scaled from each record plotted as targue twist curve

 $\tau = \frac{\tau_0}{\tau}$, $\gamma = \frac{c\theta}{\tau}$; or radius, 0 = angle of twist, 4 = 1"]

Pro. 4.--Combined Effects of Rate of Strain, and Temperature on the Shearing Yield Strength of SAE 1018 Steel in Torsion.

F10. 6.— Combined Effects of Rate of Strain and Temperature on the Total Spearing Strain of SAE 1018 Steel in Torsion.

Fig. 3.— Combined Effects of Rate of Strain and Temperature on the Virid Point Ratio for SAE 1018 Steel in Torsion.

Fig. 9,—Combined Effects of Rate of Strain and Temperature on the Energy Absorbed in Specimens of SAE 1018 Steel in Torsion.

Pio. 10.—Turque-Talet Curves for Fourth Speed Torsion Tests of SAR 1018 Steel at Four Temperatures.

Effect of Temperature on the Torque at Constant Shearing Strain SAE 1018 Steci.

Dynamic Torsion

ORMEROD and TEGART (1000) [30]

35

Annaratua: Hot torsion dynamic testing machine, of the type described by Hughes [65].

Speed: 66 - 524 rpm $\leftrightarrow \dot{\gamma} = 0.86 - 7.1 \text{ sec}^{-1}$

Mat.: Super Pure Aluminum, extruded bar, D = 1"

Spen,: Torsion spec. with reduced central gauge length to confine deformation to a given value maintained at const. temp.

Gage length | | 3" | | | 13"

Strained 2% in tension, annealed 2hr, x 575° C

Heat: Spec. enclosed in a furnace during test Test temp.: 195, 280, 390, 480, 550° C.

Meas. Instr.: Four strain gauges mounted on a cantilever dynamometer actuated by a torque arm following torque changes. Output is fed to recorder.

[True t = y curves calculated from torque = revs curves

 $\tau = (3 + n)T/2\pi R^3$; $T = T \delta^n$; $\gamma = R0/L$; $\gamma = R0/L$; T: torque, R: radius, $\theta: ang. veloSity]$

Fig. 1 Torquefres clutions curves for super-pure aluminium specimens twisted at 66 epm.

Fig. 3 True-stress/tene-steam eneves for super-pure aluminium at a steam ente of 0.5/sec, calculated from data of Fig. 1.

	TABLE II Derived from Tornion e Experiments on Alumin	
(cmp., °C	Torsion (Present Work)	Compression (e \to 0.7) (Rel. 4)
193 280 390 450 480 550	0·02 0·07 0·10 0·13 0·17 0·18	0·03 0·06 0·10 0·125 0·14 0·155

Fig. 2 Plot of logie T against logie 0, to test validity of relation T w Teor.

Impact
Torsion HODIERNE (1962), [16] 36

Apparatus: Torsion machines of special design.

t: constant; slow machine: up to 10 sec-1; fast: 10/1000 sec-1

Mat.: Aluminum, Copper, Lead

Spec.: Tubular, D = 0. 375", L = 0.125", K = 0.0625"

Heat: Specimen heated in Curnace during test. Testing temp.: up to 700° C

Meas. Instr.: - Torque: resistance wire strain gauges; on a torque heam in slow machine; on hollow water cooled shaft close to one end of the specimen in fast machine.

- Strain: wire wound potentionutes for angle of twist in slow machine; tooth wheel revolving past a magnetic pick up in fast machine.

Outputs fed to oscilloscope, and recorded on film.

(Shanning strains and strain are calculated from toward and apple of

[Shearing stress and strain are calculated from torque and angle of twist recorded, using the relations $\tau = 37/2\pi(r_1^3 - r_2^3)$; $\gamma = r_0/L$]

- 81 -

Fy. 6 Comparison of torsion (--) and plane compression (---)

Fig. 7 Comparisons of effective stress values under dynamic conditions.

Fig. \$ Log-log Stress/Strain Plots.

Fig. 9 Determination of uniform strain (mild steel).

SECTION IV

TEMPERATURE DEPENDENCE OF THE STRAIN-RATE SENSITIVITY

Most metals are believed to be strain-rate sensitive. How this sensitivity is affected by temperature is the concern of this Appendix. To avoid much confusion in comparing the results obtained for the same metal by different investigators, a unified definition for strain-rate sensitivity and temperature is adopted and computed for the available published data which has been surveyed. For strain-rate sensitivity, the ratio of the dynamic flow stress to the quasistatic flow stress, measured at the same temperature, was taken as the criterion. For temperature, a corresponding non-dimensional term was adopted in order to locate the point on a common temperature scale at which tests had been conducted. This non-dimensional term is the homologous temperature, $T_{\rm H}$, defined as the ratio of the testing temperature, $T_{\rm H}$, to the melting-point temperature of the tested material, $T_{\rm m}$, on the absolute Kelvin scale.

It is believed that this procedure will facilitate comparisons between various results obtained for the same metal, as well as for different ones. A word of caution, however, is worth-mentioning here. When comparison is made, using the following tables, it is important to keep in mind the level and range of strain-rate and the level of strain to which any one result belongs, since these two parameters considerably affect the strain-rate sensitivity.

Illustrative data pertaining to different metals and alloys, together with some important related information, were arranged in the comparison tables which are presented next, in the following order:

Table 1 : Aluminum

2 : Aluminum alloys

3 : Beryllium

4 : Copper

5 : Copper alloys

6 : Iron

7 : Lead

8 : Magnesium

9 : Molybdenum

10 : Nickel

11 : Niobium

12 : Steels

13 : Titanium alloys

+				TYPITE I STORT	ALUMINUM (Face	(Face-Centered Cubic)	red Cub	(0)							
	Melt Poin	Melting Point, Im	Ref.		Kode	u u	٠.		stra	2 I	Pata				Ref.
Condition	ŗ	,×	No.	Investigator	Loading	(e)	sec_1	္ပ	×	E)	st ks1	dy fest	क्षु हु	st dy	No.
			30	Ormerod and Tegart (1960)	Torsion	1.5	.5	195 480	468 753	.50 .81	1 1	7.4 1.5	ł	t	35
	· · · · · · · · · · · · · · · · · · ·	*					.4	22	295	.32	6	12	1.34		
					1	'n	.4 311	200	£2ħ	.51	4.8	13	1.55		
			6,7	Singer (1963)	Plane Strain		311	500	273	8.	7	6.5	3.25	Ş	
		4			Сощъ.		311	22	235	.33	174	138	1.29	0)	o:
Annealed 6	099	333			(စ)	1.5	311	200	473	.51	11	16	1.46		********
	9						.4 311	500	273	.83	2	6	3.4		
		L	80	Baraya , Johnson and Slater (1965)	Сомр.	at yield	static 105 643	500	773	ω.	25.	3.46 7.95	13.9 31.8	,	п
			;s	Bailey (1967)	Plane	1.5		200	674	.51	10.5	12.5	1.19	2	
					Strain Comp. (c)		.25 8.0	500	222	:83	1.8	4.2	2.33	4	0.

320

Composition: at least 99.9% Alum. For 99.996% Al content Values shown are plane strain values of stress, strain and strain rate.

	Data	• 3		.52 6 12.5 2.08 .,6	.73 1.7 8,4 4.9 10 25		.79 4.6 6.7 1.46 29.3 1	}	.73 2.3 3.4 1.48 30 3	.57 10.25 11 1.07 4.6 13	35 1.11 5.1	ļ	.73 2.5 6.5 2.6 8
	Illustrative	£	ж, р.	200 473	673	250 523	450 723	300 573	629 004	250 523	450 723	200 473	629 004
	I		sec_1		.001 1000	1.34 25		30 30	30 40	378 1740 25		.2 650 20	
ors		at max. stress (.6)		۲.		٠,		y.		v	· · ·		
ALUMINUM ALLOYS	Mode	emus September 1	Logding	Tension		Comp.	,	Comp.	•	G087		Comp.	(e)
TABLE 2 - ALU		Investigator	o	Nadal and Manjoine	(1941)	Alder and	Phillips (1954)	Arnold and Parker	(1960)	Chiddister	(1963)	Suzukt	et al. (1968)
		ن و ن		(c) 38 %		#		(a)		T 11			
	lting	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		3 916 (K									
			, D					643	2				<u>.</u>
	Mat.: Alua. Allow		Condition	· b				Annealed					
	Mat.: Al		Туре					1100	હ				

32000

Common name: Commercially pure aluminum; Alum. content: 99.0+
Solidus temp., from Ref. (45); Liquidus temp. = 657 C.
Composition of material used: A1: 99.21; Cur. 10, S1: .20; Hn: .02; Fe: .46; Zn: .01
Aluminum content in material used: 99.00%
Values shown for stress are in kg/mm²

		Ref.	Sheet No.	.1	16		თ		78		⇒
		1,	,&]_t		2.5.10		3950		ı	2240	1890
		,	A to	1	4.17	2.28	2.79	2.48	2.67	1.19	9.6 2.05
		L.	Kg d	11.7	7.5	10.7		6.7		16.3	9.6
	Data	L	kst	80	1.8	4.7	2.15	2.7	1.8	13.7	4.7
	tive	7.5	T/T	4	523	.57	.79	.61	%	.52	53
	Illustrative	EH	,×	399	672	523	723	560	669	573	773
		_	٥٫٦	126	399	250	450	287	426	200	004
LLOYS		. 3	sec_1	.004 1000	1000 1000	260 260	.066 260	static 287 dyn.	static dyn.	.095	.114 216
CNUM A		ω	(true)	50	?	v	,	at max.	u l	٧.)
.) - ALUMINUM ALLOYS	Mode	ð	Loading	Comp.		Comp.	(a)	Tension		Comp.	
TABLE 2 (Cont'd)		Three+4 m+4m		Lindholm	(1968)	Samanta	(1969)	Schultz	(1%9)	Hockett	(1966)
TA	900	1011	No.	22		33		34		15	
	Melting	ur. 1m	×	**			916				
	Mel		Ü		*****************************	·	643				
	Mat.: Alum Alloy		Condition				Annealed 643				
	Mat.: A		Type				1100	(Cont'd)			

(a) Values shown for stress are in kg/mm²

Melting B		Rof		Mode				strat	1 [Data	4 1		Bec
o. Investigator		Investig	ator.	of Loading	(true)	sec_1	تاك	¥	TH= T/Tm	ost ksi	o _{dy} ks1	St dy	dy Sheet
ľ	ľ	ľ		Plane	٧,	311	350	623	.77	13.5	772	8	
Balley			and pura	Strain Comp.	`	,4 311	500	273	.95	7	18.5	2.64	806
Singer (1963)		Singer (1963)		1.5	311	350	623	.77	12.5	21.5	1.72	 Q
					•	311	500	773	.95	6.5	14	2,15	
				Plane	5.		350	623	.77	13	8	1.69	<u> </u>
S Bailey (1962)		Bailev (82		;		500	273	39.	~	17	2.00	
				Comp.	v	l	350	623	.27	17	 	1.65	×
				(5)		.25 8.0	500	273	8.	C.	16	1.60	
					-		300	573	2.	13.7	20.3	1.48	
Suzukt	Suzukt	Suzukt		Сощр.			500	773	26.	<u></u>	17.8	5.39	· · · · ·
et al. (1968)		et al. (1968)	(၁)	¥,	30	300	573	8.	71.7	6.15	£.	
)		500	773	29.	~	5.5	1.83	·
Schultz	3t Schultz	Schultz		Tonefor		static dyn.				14.5	20.5		
(1969)		(1969)		1	stress	static dyn.			 	6.0	20.8	· 	

	Bee	edy Sheet			م 				^			 6		······································
		dg t	1,28	1.36	1.30	1.28	1,11	1.53	1.10	1.63	1,26	1.57	1.38	1.56
		dy ks1	5.5	3.0	6.25	3.4	14.4	7.35	15.5	2	5.4	3.5	6.5	3.75
	Data	ost Ksi	4.3	2.2	4.8	2.65	13	8. ‡	14.1	4.3	4.3	2.3	6.4	2.4
	1 1	TH=	.63	₽.	.63	g.	99.	68.	99.	.89	69.	ま	69.	ま.
	trat	×	573	773	573	773	573	773	573	773	573	773	573	773
	Illustrative	, o	300	200	300	500	300	200	300	200	300	290	300	200
ALLOYS		sec_1	30,000	1 30	1 30	1 30	1 30	1 30	1 30	1 30	1 30	1 30	1 30	3,
		(true		•	٨,	:			۶.	`	•		٧,	<u>`</u>
- ALUMINUM	Mode	of Loading		Comp.	(q);			Comp.	(a)			Comp.	(4)	
LE 2 (Cont'd)		Investigator	1	Arnold and	Parker (1960)			Arnold and	Parker (1960)			Arnold and	Parker (1960)	
TABLE	Ref			st	હ				છે			#	Î	
	Melting	K K		916	}			98				8		
	Mel	j.		£#3	<u> </u>		-	33	છ			\$3	3	
	Mat.: Alum. Alloy	Condition		Annesled										
	Mat. 1 A	Туре		3220	(a)			ğ	(e)			, exca	(q)	

(2) 3xxx Alloy composition: 1.2 % Hn, (45). (b) Solidus temp., from Ref. (45); Liquidus temp. = 654 C (c) Composition of Al-Mn used: Cu: .04, Mn: 1.36, S1: .30, Fe: .73. (d) Values shown for stress are in tons/in2. (e) 5052 Alloy coxposition: 2.5 % Hg. .25 % Cr. (45). (f) Solidus temp., from Ref. (45); Liquidus temp. = 649 C. (g) Coxposition of Al-2.25% Ng used: Cu: .06, Mn: .17, Mg: 2.35, S1: .22, Fe: .32. (h) Alloy containing Mg and S1. (1) Solidus temp. of 615% Alloy, from Ref. (45); Liquidus temp. = 649 C. (2) Composition of Al-S1-Hg alloy used: Cu: .07, Mn: .53, Mg: .73, S1: 1.04, Fe: .36.

	1		No.			fi 1				6) i				*	
			illi	10 X	\$ \$	2.30	1.45 6.10		9	1)		2 105	6333	2 355	£333
		3,0	i u	1.5	1.39	1.99	1.45	1.70	2.2	1.9	2.2	2.	1.92 6933	11.1	2.17 8333
		9	*******	45.5	872	18	点	25.5	7.25	R	21 6	77.5	22	82	2.5
	H T	0	-/=n ked	2-67 67		1	2.62.32	25	28.4	13	7	5.27 22.5		. 55 BS.5	3.67.56
	2	#	1	64.	38,		38	85	-; - R)	8	Ŕ,	<i>3</i> 5	8.	18	27.
	Illustrative	١,,	Ħ	7.7	**	7.75	ž.	£30 673	83	53	8	13.	, <u>c</u>	227	£ 78
	TIP		ņ	149	288	145	283	CC77	550	Q 27	550	1259	288	543	288
ALLOSS		·u	Sec-1	1000	2202	1002	1200	311	35.5	325	311	धु द <u>्</u> र	1965 1965	2007 7007	1,12 1,030
1		2	(true)	3		**		V	`	4		3		**	
- ACURTISTIN	No.		Læding		E S			1			(e)		Come	Ì	
LE 2 (Cont'd)		Truesca & co & Cop			Patrock	(961)		321. ev 872		(1963)		Green and	Babcock	(1986)	
TABLE	9		Š,		(4)	}			_		છ		(1	}	
	19	E .	, b d		o.	}			36				Ş.		
	Melting	Point	μ		6		(2)		3	\			52	•	
	72 t . 1 A l 12m 47.7 CT	- 1	Condition		Arrested						1 mm 2 mm 2				
	, T		Type		6061 -	6 .	8				7075 -	6	(e)	-	

(a) 6051 Alloy compositions May 1.00. Sis. 6, Cus. 25, Crs. 25, iron Ref. (45).
(b) Suitable temp. first Ref. (45); irights temp. = 50, C.; .), from Ref. (5), 7075 Alloy compositions Zns. 5.5. May 2.5, Cus. 1.5, Crs. .), from Ref. (45).
(c) Material uncets Al-5, May 2n.
(d) Material uncets Al-5, May 2n.
(e) Maines shown are plane strain values for stress, strain and strain rate.
(f) Scildus temp. from Ref. (45); Liquidus temp. = 638 C.

1278 1551	E S S S S S S S S S S S S S S S S S S S	Investigator Green and Babcock (1986)	Fode of Loading Comp.	(true)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	11. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	### Thimstratiing ### Thimstra	-	# 11 md	2 3 3 6 8 12 6	20 2 1.25 20 2 2.15 20 2 2.15 20 2 2.15 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
tyrr vý mieskinkadi blikvighdyans léh men dríbu halidag telepasa vidalnek tra	······································		Tens.com	8	2.5	315	B B B	B 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51.5	8 2	2500	3
	† <u>`</u>	Linghoim		200.	8552	325	8 8	18 13 13 13 13 13 13 13 13 13 13 13 13 13	(v)		3 8	وي	
1278 1551	3	and Yeakley	in terms:	.01	25. 52. 53. 53.	33.5	88 E	8 3	4		25 5	() Fel	*
		(1.6.1)		200	¥100°	25			33.5		1		}
			Brazia, Torraion	(23)	130	17.18 17.18	<u> </u>	N N	3. 5. 3. 4.	1	,	•	

Effective strain rate

	1	55.		((Q	104 100 pp. 11				}	ę.	
		¥		40,	2			al C) 			1
		s of	1.17	1.53	1.51	1.33	1.42	18	1. X	1.53	,	
		5 11	3	R	3	ĸ	88	99	17.	37	,	•
	136.52	្ត្រឡ	, , ,	23	28.5	75	5.5	ĸ	51.5	æ	3 %	18.5
	1 1	品	86	53,	8,	છં	8	55,	8	.52	8 3	83
	rati	þa	88	811	583	811	835	811	583	811	83.8 113	93.53 111
	Illustration	ပ	315	538	315	538	315	538	315	538	325	315
		Sec-1-	1001	100.	1001	10	1001	, 031 10		1501	.001 315	.001
TILLE		(true)	200		6		et mer	yleld	Ö		(¹ ₂)	.01 (^E LT)
) - BERYLLIUM	Kođe	of Loading						Tenston			Blaxial Tension	Biaxial Torsion
TABLE 3 (Cont'd)		Investigator	Lindholm	and	Yeakloy	(1971)		Lincholm	Brid	. earley	(1971)	
TAB	90	No.		2	·			•		8		
	Neiting	7. FR PR		1278 1551						1551		
	%elt	ပ်								1278:1551		
		1 g	i di		270016	(a)				Extraded		
	Mat., Beryllium	Type		******	-		S-200 E	(20ut 'ā)				

(a) Specimen machined from transverse direction .

		Bef.	Sheet No.				10				14	
		Ē.	6 7 16				3			6	2440	6.107
		Ω,	_ध ्रीह	1.13	1.88	2.30	1.8	1.10	₹ 7	1.13	1.69	1.78
		9		15	12.5	5.4	35.2	19.6	3.5	47.5	61	33
	Date	0	T/T ks1	13.3	11.6	2	な	17.8	8	42	55	18.5
	1	T.T.	T/T	.23	.50	66.	.21	.50	.79	22.	.35	.52
	Illustrative	H	Ä	291	673	800 1073 .79	291	673	800 1073 .79	298	827	200
2	1110		ပ	18	004	608	18	0047	800	25	205	427
d Cubic		3	sec-1	2.5	.1 2.5	.1 2.5	2.5	.1	.1 2.5	10 ⁻⁵ 500	10 ⁻⁵ 500	10 ⁻⁵ 600
(Face-Centered Cubic)		3	(true)		+			٠.			.003	
•	7.7	node	of Loading			Comp.	(a)				Comp.	
E 4 - COPPER		Tuesdattent	TILLES CIER CCI			Suzukt	et al. (1968)	•		We teen	Ripperger	(1969)
TABLE		Ref	No.				†				143	
	Melting	t, In	'n			1356	1				1356	
	Yelt	Potr	ပ			1083 1356					1083	
			Condition			Annealed	and the second second	****			Annealed 1083 1356	
	Mat.: Conner		Туре	Ę	# P	Purity	% 66.99 %	C a)		H1gh	Purity	Bridgeport Cu

(a) Values shown for stress are in kg/mm².

		Ref.	No.			(30		Lat 1820ma 2 . c		- 19.11		ת			
		É dy	Est			č	ç					S	3			
		ody.	gst	¥	1.07	1,38	1.07	1.17	1.50	1,46	1,68	2.50	1.98	2.88	3.29	
		o dv	ksi	17.2	12	5.5	38	18.5	4.5	13.4	11.6	80	20.8	21	11.5	
	Data	ost st	ksi	17.2	11.2	7	35.5	15.8	3	2.6	6*9	3.2	10.5	7.3	3.5	
	($T_{H}=$	$T/T_{\rm m}$.21	.50	<i>62.</i>	.21	.50	62.	.53	179°	98.	.53	79.	. 86	
	Illustrative	T	×	291	673	1073	291	673	1073	723	873	1173	723	873	1173	
	111u		ပု	18	0047	800	18	0017	800	450	009	006	450	009	900	
		٠ ي	sec-1	2.5	.1 2.5	.1 2.5	.1 2.5	2.5	.1 2.5	990.	600	990.	990°	990° 9009	990.	
		3	(true)		**			٠.			٠.			ŗ.		
ER ALLOYS	N-3	anora	or Loading			Comp	(8)					Gomb.	(6)	ì		
LE 5 - COPPER		Investigator				Suzukt	et al. (1968)					Samente	(1969)			
TABLE		Ref.	No.			<u> </u>	‡					33				
			×						1356			-				
	Me111	Point	ပ						1083 1356							
	Comper Allow Melting	Fre	Condition						Annesled							
	Ma+ • Co		Type						Pure	% 6.66) ()) }					

(a) Values shown for stress are in kg/mn^2 .

		Ref.	Sheet I.o.		25			#		36
		, , , , , , , , , , , , , , , , , , ,		6.102	6.10 ² 1.10 ⁶	6.132	5.3		N	100 1000 5000
		9	st of	1.08		2.67	1.02	1.04	1.54	1.2 1.45 1.66 1.85
		٥		47.5	16 27.5	777 77	57.1	30.1	11.0	7.8 9.4 10.8
	Data	ţ,	Ks1	17/1	6	1.5	56.0	29.0	2.9	6.5
ļ	1	_H <u>T</u>	T/Tm	22.	.57	ま	.21	.53	·87	79.
	Illustrative	T	×	297	500 273	1000 1273	291	450 723	900 1173	600 873
	Illus		ပ	1 77	500	1000	18	450	900	909
ALLOYS		• 🕠	sec_1	.00085 .51 1000	.00085 .51 1000	.00085 .51 1000	4.35	4.35	4.35 39.3	1 1 10 100 500
1		ω	(true)	a t	max. stress	(9.)				69.
) - COPPER	202	anort	or Loading		Tension			Сомр.		Torsion
LE 5 (Cont'd)		Investigator		Nadai and	Manjoine	(1941)	Alder and	Phillips (1954)		Hodlerne (1962)
TABLE	Raf	_	o N		27,			in)		16
	ing	t.Tm	×		1356				1356	
	Melt	7017	ຸບ		1083 1356				1083 1356	
	Mat.: Copper Allow Melting		Condition		Annealed			,	Annealed	
	Mat.1		Type	ı	Comm.		Comm.	Pure	(Phospho	rous deox1d1 sed)

	3	Sheet.	No.		10			30			7	
			al "t		1						1	
		١°	s de	5	8	16	460** 1.84	2.82	8.0	2,12	.71	10.2 4.08
		٥	183	4.7*	2.85	2.2	# ₀₉₇	310	200	26.5	12.8	10.2
	Data	6	T/Tm ks1	****	%.	.14	250	110	25	12.5	82	2.5
	1	FF	T/Tm	.22	.50	49. 678	22.	.50	.79	.22	.50	873 .64
	Illustrative	F)	,⊭	233	629		293	629	800 1073 .79	293	£29	
	1111		Ü	20	004	009	20	007	800	20	400	009
ALLOYS		۰۰	sec_1	static 2400(b) 20	static 2400	static 2400	static dyn.	static dyn,	static dyn.	static 7140(b)	static 6060	static 6560
COPPER ALI			(true)		ı			ı		+	Ď	•
١,	, Kody	a do	of Loading		Comp.			Shear	(c)		Comp.	(8)
TABLE 5 (Cont'd)		Investigator	•	Mahtab	et al. (1965)		Slater and	Johnson	(1967)	Houlds	(0)(0)	et al. (1900)
TAB	300	י שבר	No.	******	25			35				:
			×		1356				1356			
	Melti	Poln	ຸນ		1083				1083			
	Mat.: Copper Allow Melting		Ccnd1t1on		Annealed 1083 1356				Annealed 1083 1356			
	Mat.: Co		Type	ν M	1433			v a	1432	(н1gh	Conduc-	8

(a) Indentation tests.
(b) Impact velocity, in/sec.
(c) Blanking tests.
(d) Strain rate: Static 10⁻³ sec⁻¹, dynamic 4.10³ sec⁻¹.
(e) Mushrooming tests.

* Mean effective pressure, 10° psi . ** Energy required for blanking , ft lbf .

		Ref.	Sheet No.	8		,		0	•		
		€dy	ëst					5	3		
		$^{\rm qp}$	^o st			1.06	1.08	1.98	1.06	1.12	2,87
		^o dy	ks1	61 *	29	22	19.8	9.5	56.5	36.4	11.2
	Data	ost	T/T_{m} ks1	1		.24 20.8	.54 18.3	8° †7	.24 53.2	7.26 32.4	3.9
	ve	$T_{H}=$	$_{\mathrm{T/T_{m}}}$	26	.91	42.	₩5.	78°	₁₂ .	1 5•	.87
	Illustrative Data	T	¥	323	1123	291	673	1073	291	673	1073 .87
	Illus		Ö	50	850	18	004	800	18	0017	800
oys		. 3	sec_1	250		.1 10	.1 10	10	.1 10	10	1.0
COPPER ALLOYS		3	(true)	at	frac- ture		+			'n	
	Mode	g g	tng.	Tenston				£	(a)		
TABLE 5 (Cont'd) -		Investigator	9	Leech et al.	(1954)			Suzuki	et al.	(1968)	
TAB		Ref.	K No.	Š	2				T		
	ing	Point, Im Ref.	, X	0Ke 1938	000			1220	0631		
			٥.	8,4	2				8		
	non Allon	rate: corper arrey	Cond1t1on	+1	200		દળીતે	. mserf		Anneared	
	40%	, a	Type			878 848	200	200 % Ca	20 % Zn)		

(*) Energy to fracture, ft-lb.

(a) Values shown for stress are in $kg/m\pi^2$.

				TAB	TABLE 5 (Cont'd)) - COPPER	R ALLOYS	S								
Mat.: Co	Mat.: Copper Alloy	Melt	Melting	Pob		7.73			Illus	Illustrative	1	Data				
	- 1	Poin	t, Im		Tuesment from the	100 g	3	3	٢		TH= 1		0	0		Her.
Type	Condition	Ü	, X	No.	111405 C180 COL	ıng	(true)	sec_1	ပ	×		ksi	Ksi	st g		No.
	Cast	950	950 1223	20	Leech et al. (1954)	Tension	at frac- ture	250	50 450 850	323 723 1123	3.8.8	1	80°*	1		29
Bronze								.1 10	18	291	772.	30.6	35.6	1.16		
(95 % Cu	Cold				Suznic		.	.1 10	007	673	.55	72	26.5	1.10		
5 % Sn)	Drawn ;	950	950 1223	댴	et al.	Comp.		10	800	1073	88.	ω	19.5	2,14		
	Annealed				(1968)	(B)		10	18	291	.24	66.5	71.5	1.8	100	α .
							ئ. 	10	400	673	.55	₹,	53.8	1.25		
								10	800 1073		8.	7.5	19	2.53		
90 % Cu 10 % A1	Cast (b)	1030	1030 1303	20	Leech et al. (1954)	Tension	at frac- ture	250	50 450 850	323 723 1123	2,2,26	111	163* 388%		•	25
.0051 % B1 (c)				20	Leech et al. (1954)	Tension	at frac- ture	250	350 550 750	623 823 1023			*3 27 25	,	•	29

* Energy required to fracture , ft-lb , (a) Values shown for stress are in kg/mn² (b) Known as Alum-Bronze Copper , (c) Known as Bismuth Bearing Copper .

				TABLE	LE 6 - IRON		(Body-Centered Cubic,	Cubic)								
Mat, :	Iron	Welt	Kelting	Bef		\$ 50°%		F	Illustrative	ative	Data	66				1
		Porn	it, Tm		Investigator	of to	w	• w	£4 }		H.	st	dy	a ay	€ dy	Rei.
Type	Condition	ن	×			Loading	(true)	sec_1	Ů,	۲.	T/Tm	ks1	ks1	ost st	est st	No.
							at	.000097-196	.1%	22	50.	22	72	1.0		
	Hot						upper		50	293	.17	 	41.5	2.08		
	Rolled ;			÷	Pugh et al.		yleid	.000097	200	473	.28	15	21	1,40	000	3
H1¢h	normalised			;	(1962)	···oremer	at		-1%	77	.05	65	65	1.0	2000	1
)		1530	1530 1703				lower	.000097	20	293	.17	1.7	32	1.88		
Purity			-				yield	.000097	200	473	.28	13	15	1,15		
		g					a t	.00033	-1%	22	20.	88	89	1.0		
	Annealed			23	Nagata 6+91 (1960)		lower	.00033	20	293	.17	21	8	2.29	2.106	13
				(æ)		<u></u>	yteld		200	1473	.28	13	21	1,62		
							i de	.00225 550 5000	777	297	.165	† ₹	33	1.54	25.10 ⁴ 22.10 ⁵	
					,	a think and removal	Yield	780 5800	200	473	.261		288	,	1	œ.
H1gh	Annealed	1535	1535 1808	26	Muller	Comp.			500	773	428		152		1	2
Purity		}			(1971)	<u>.</u> (2)	Lower	.0022 <i>5</i> 550 5000	772	262	.165	19	36.5	1.92 3.14	25.10 ⁴ 22.10 ⁵	· · · · · · · · · · · · · · · · · · ·
							Yield	780 5800	200	624	.261		38	ſ		,
								700 6100	200	773	.428		2.5	,	,	,
4	() Material Constitution	144		000	7. 30	3	1	4		1	1	1	,			

(c) Material Tested: "Ferrovac-E" Iron, a vacuum-melted electrolytic iron with 99,95% purity.

* Tension test at 2.25 . 10-3/sec.

				TAB	TABLE 6 (Cont'd)	1) - IRON	2									
Mat. Iron	Iron	Mel	Melting Point T	Joe Rote		Mode			1111	Illustrative		Date				
Į			E .		Investigator	4 6	ω	ε		Ę-i	TH= 0.	į,	۵۲	9		Ref.
R. F.	committon	U	×	Š.		Loading	(true)	sec_1	ပ	×	K T/T ks1	ks1	ka c	s d	st d	Sheet
•	···							.00001 100 1000	25	298	.18	26	2,88	10 ⁷ 10 ⁸		
Pure	Annealed 1530 1703	1530	1703	£ €	Watson (1967)	Сомр.	.003	.00001 100 100C	204	Lla-	.28	22	33	1.68	10 ⁷ 10 ⁸	#
								100 1000	538	811	34.	15	53 129	1.93	107 108	-
					Madai and		s t	.00085	20	233	.17	33	82	1.57		
Pure	Annesled	1530 1703		; 83	27. Manjoine 28	Tension	ige X.	.00085	200	473	.28	52	芫	.89	1.8.105	5 25
					(1%1)		stress	stress.00085 150	800	£9° £201	.63	6	2	7.33		

(a) Material tested : "Armco" Iron (b) Material tested : "Wemco Research" Iron,

					TAI	TABLE 7 - LEAD (Face-Centered Cubic)	W (Face-C	entered	Cubic)								
, E	Kat 1 Less d	200	Melting	361	9		1		F	Illustrative Data	tive	Dat	_				
!	;		Poln	Point, Im	nei .	Investigator	agg.	u	3	۲		TH=	st	dd	ΑPο	E _{dy}	Ref.
	Type	Condition	ပ	, ¥4	No.	0	or Loading	(true)	sec_1	,U	×	'K T/Tm ks1	ks1	ksi	st	st	Sheet No.
									,4 311	22	295 ,49 3.7	64	3.7	~	1.35		
						Bailey	Plane	'n	311	170	47. 644	742	1.5	4.5	3.0		
æ.	High	Heat	33	900	ď	and	Strain		.4 311	300	300 573 .96	8	7.	2.35	5.88	900	
Pa	Pur11y	Treated	ξ	}	5 h-	Singer	Comp.		311	27	295 .49	647	~	~	1.40	0)	61
			**			(1963)	(a)	~	,4 311	170	443 .74 1.4	7,4	 	3.6	2.57		
									,4 311	38	573 .96	8	ė.	2.2	7.33		
, e	Valu	es shown ar	e pla	ne st	afri	(a) Values shown are plane strain walues for stress, strain and strain rate	ss, strain	and st	rain rat	0							

- 101 -

						Г			Illustrative Data	Illustrativ	P P	23				
👺	Mat, : Magnesium	Melting Point, Im		Ref.	Investigator	Mode	u		E4		THE ost	st	· 6	ody ody	[]	Sheet
	Type Condition	٥.	뇶	No.	ı	Loading (true)	(true)	သမင လ	Ü	M		ig	183	St.	şţ	OR
							,	.1	250 523 .57	53	23	5.2	8.4	1.35 25	23	
					Suzuk		٠,	1	500 773 .84	33	毒	.7	2.3	3.29 100	138	(5)
	Annealed 651 924	651	#26	ri T		Comp.		2.5	250 523 .57	523	.53	2	8.8	1.26 25	53	
							·	1.01	55	48. 677 005		.	2.5	6.25 100	100	

(a) Values shown for stress are in $kg/\pi m^2$.

		Y.	Zo.	İ	•	0	!
],	1 2	(11 - 111 1-1	,	6	TRI TRECE
		4	i oti	20	ът Ж	IN IN	1.35
		B	Ä	3	#	8	BR.
	eta eta	1	H	Ħ	25	.34 53.5	Ē,
	Illustrative Beta	120	17	3	Ŋ	41.	ΣĮ.
(i)	otra!	£ 1	¥.; 0,	127 4:00	222 600	903	500
3	E E	, .	ļ,u	13	A	122	23
nteret		٠.	Sec -1	51000	71000.	100 127 400	22 201
30cy-Ce			(true)	2.5	N ST	8	
) HOLESOEL	*ode	4	Lording		Į		
TABLE 9 - MOLIEDENCH (Body-Centered Codes)		Transact 6 mg 4 mg		Cs.mbell			(1969)
7.03	,	1	жо.		C		
	201	Point, Im	M		7892		
	Kelting	Poin	ပ		36.30	}	
	lyhdenna		Condition		Arrested 2620 SPG2		
	Mat.: Molyhdenna		Type	an and traumantifeth made	Sintered	Š.	

، چشونیه منا				**	TABLE 10 - STE	STORE (Pace	Center	(Pace-Centered Cutofe)	9							
r.	Mat.s Iron	3	Welting	, A				I	Links	1	Hintonties Bes	3				
		5	Fornt, Ig	w	Investigator	1	u							1	2	ż
Ě	Condition	υ ļ	<u>,</u> M 1		ý	Londing	(true)	7	,u	,bd	45	14	K	7.4	y_k	
***************	·				de status, en p		1111	.0022 500 5400	尽	62	12	8.3	# 1	22	2 K	
·			* ***********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ଷ୍	6530	200	£23	2		8.5 2.5	1	•	•
6	Arross 3 ad	11455	11455 1728	8	Haller S	8		#60 5530	200	3	K		2.5)	,	4
Partty		·	: ! " 		(1971)	(3)			13	162	17	\$	33	n m	23.105	8
			· * · · · · · · · · · · · · · · · · · · 				Ŕ	605 5530	82	573	R		25	112 (112)	,	
								5530	8	2	K.	2.2.2.2.2	82	771 TALPA II	,	
(e) H	(e) Material Tested s"Micha	ľ	Hele	9	1.6". a menug malted electrolytic aickel with 99.95 % purity	electrolyt	te edela	el elta	88	A N	#					

(E) Walues shown for stress are in kg/mg².

Tension test at 2.25 . 10⁻³/sec .

				L	TABLE 11 - NICELLE.	BIN. (D.	ky-Cent	(Dody-Centered Cutte)	(SE							
	,	100		3		-			11115	12244	Hinstrative Data	7				1
ž.	Fat.s Michiga (a) Point. Ta	Pola	t. 7		Trepett extor		Ü	٠.	ţn.		35 350	#	Š	49	40	2
Type	Condition 'C	ပ	, M	À		Londing	(true)	300	, C.	, NI	7,	벟	7	ti.	, Ji	9
Flectron					Company.			20017 50	R	Q	223 .12 128.5		2)	2.27		
Ben		(1 111				. e5017	8	81. 602 722	E	13	23.5	6	4	V
Kel ted	Anceled 2500 Z773	2506	CUS	U)	Source out			20017 56 3	8	22 22	27.	æ	5-25	1,60	1)
N105/us					(1964)		ş	.0001 100	122	227 500 .18	A	K)	9	2.34		, 311132
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \],					i								

(a) Also known as Columbium .

		Ý	13 of 1			•		, b		ļ , <u></u>			N	•	
			8 Ju	33.3	6.7	22.3		23. 23.		33.3	6.3	33.3	33.3	6.7	33.3
		,	ह्य है	2	1.38	\$	1.53	1.69	2.07	1.33	1.0	7	1.37	2.09	1.8
			8 ,6	₩. ₩.	7.65	6.3	2	12.1	9.5	16.2	(D)	7.2	23	5	16.2
	2222	. ~	K B	6 5	5.3	٧) عار	# # #	7.15	9	23	න න	9	16.8	12.9	5.65
	1	= 1	7/12	******			ĺ			THE PROPERTY OF THE					
	Hestrative	7	H	800 2073	:273	1473	1933	1273	1473	2003	1273	1673	1073	1273	1473
	H		Į,u	88	1000	1200	900	1000	1230	8	1000	1200	800	1000	1200
			1-395 246	úë.	£,2	4,8	4,8	ώä	5.01	.3 10	£,2	€.51	いさ	20	ώ 5
		3	(true)		*			'n			••			~. ~.	
STEELS	100	1	Læding			Ç	છ					8	3	E)	
TABL 12 - ST		Investigator		* 4 12.11 11 11 11		Surukt	(1964)					Suzukt	et al. (1968)		
TAT	à		Sc.				, I					Į.	. 3	9	
	Keiting	11.12 [12]	'n		*******										
	L		.0		•			****		···					
	Mat. clos Carbon St.		Condition			Anna 1 of						Anneeled			
	Mat. Low		Type			W 85						15 % C			

(e) Composition of Steel tested : C: .037, Si: .003, Mm: .34, P: .025, S: .02
(b) Composition of Steel tested : C: .147, Si: .27, Mm: .48, F: .014, S: .07, Cm: .275, Cm: .07, Mis. .099
(c) Values shown for stress are in kg/mm².

		E i	9		A	•			×			R		}	8
			W. 3		0	Ų O			3			1332			ł
		2	6 t	1.45	8 .1	17.7	1.15	9,1	12.2	3.33	11.77	1.12	1.82	1.07	0.9
			r y	11.8	5.8	15.E	8.6	57	37.5	10	14.2	3.78	3.3	8	28
	Ests		u u	8.15	€.3	13.1	7.5	33	5.91	6.7	3.5	3.38	3.28	表	6.5
	21170	1		-2	E.	8	2	297	673	22	300	394	588	754	33
	Hustrative	H	¥. 0.	1000 1273	1200 1473	1000 1273	1200 1473	2 = 2	600 B	1000 1273	20 3	ध्य	315 5	# 1222	760 1033
	H	• •	Sec -1		3.5 1	3.5 1	3.5 1		.96665	544			. 8 9	static dyn.	static , dyn,
		•				v			8	3. (1.)	β; 	mber	yleld .	# # F	************************
STEELS	Ц		(true)			·		et.					h		
	¥.		Londing			(9)			Tension			Tension		Tensfor	
TABLE 12 (Cont'd)		Trues +1 as + ar			Suzukt	(a) et al. (1968)	····	Nadal, end	Kanjoine	(1%1)	Kenda11	(1920)		Schultz	(1%9)
TABI		Bef	Fo.		,	(E)		2	58			13	(9)	8	(e)
	ting	Point, Ta	* K						····		· · · · · · · · · · · · · · · · · ·				
	. Mel	Pg	ပ						<u></u>					·	
	Carton St		Condition		Anrealed			+- 6 5	Treated				Annealed		
	Mat.:Low Carton St.		Type		.25 % C					Commer-		B TH	Steel		

(a) Composition of Steel tested; C: ,25, S1: ,08, Mr: ,45, P: ,012, S: ,025 (b) Values shown for stress are in kg/mr.
(c) Steel tes -4: Grade 10:18; C: ,15, Mn: .65, N2: 13 ppm, 02: 205 ppm (d) Values shown are elastic strain rates.
(e) Steel tested: Grade 10:10.

		Bef.	Set No.			•	→					(N		
		٠.	۵/_۲			,						3	6		
		0	म _ु ह	1.16	1.2	1.21	1.22	1.36	1.39	1.51	1.52	1.86	1.45	1.57	2,26
		_	£ 5	9"12	15.4	10.9	7.52	22.1	14.0	11.6	9.5	6.5	91	13.1	8.8
	Pata	i	E St	18.6	12.8	0.6	24.1	16.3	10.1	7.7	6.25	3.5	11	8.35	3.9
	tive	TIT	7	2	- <u>F</u>	<u>~</u>			- Pri		<i>*</i>	PA-	3	117	3
	Illustrative	Ŧ	x. 0.	930 1203	1060 1333	C277 0C	930 1203	50 1333	xo 1473	900 1173	1000 1273	1200 1473	900 1173	00 1273	1200 1473
	П	-,-	-			5 1200		1 1060	1200					1000	
		ω.	(true) sec-1	4.35	4.35	4.35	4.35	23.1	4.35	100	15.5	185	13.5	1.8 7.8	100
STEELS		u	(true	~~~~	۲:			ż			4			'n	
,		node	of Loading			Constant	,					S S	4		
TABLE 12 (Cont'd)		Investigator	•	······································	Alder and	Ph111128	(400)	(FKT)				Cook	(1997)		
a l		Bef.	Ño.			ო	3)			·····	12	3)	
	Melting	nt, In	×				******								
	rel.	Pot	Ü	·············						-11.				<u>-</u>	
	Mat.:Low Carbon St.		Condition			න න්	received					Annealed			
	Mat. : Lon		Type				Conner-	cial	M11d		Steel				

(a) Composition of rel tested (c) .17, S1: .153, Mn: .52, S: .054, P: .032 (b) Composition of Steel tested (c) .15, S1: .12 , Mn: .68, S: .034, P: .025

	٩	A Page	No.		33	····		#6		{ 	.5			31	
		Ę,	st		500			105			1	• •		106	·
		٥	st	ı	1,89	2.50	1,40	1.09	1.92	1.58	**	4.33	2.10	1,52	1.20
		g Q	ks1	-	85	55	35	25	24	87*	33	52	225	132	100
	Data	924		(c)	St	22	25	23	12.5	55,	33	9	107	87	83
	1 1	THE	T/T							.16	.37	÷2.			
	Illustrative	Т	У.	950 1223	1423	1623	300	224	811	293	673	616	293	624	713
	1110		ပ္	950	1150 1423	1350 1623	12	204	538	20	400	200	20	220	01/1
		ب •	sec-1	12 (b) 600	12 600	12 600	.0001	.0031	.0001 10	static dyn.	static dyn.	strtic dyn.	1000		1000
SIS		u	(true)	a t	10	revs.		р С	yleid	at.	7		at	10мет	улеца
d) STEELS	Kake) 1	or Londing		Torsion			Torsion	(e)		Comp.	(8)		Shear	3
TABLE 12 (Cont'd)		Investigator		Hughes	(1951)		9	MOTK AND	Dolan (1953)	Haviven	(8)01)	6, 41, (1700)	Campbell and	Ferguson (1970)	(0)(1)
F		Point, Im her.	No.	i	17	(a)		#	(q)		#	(£)		۶ ۲	
	ing	T, Ta	M								1527 1800				
	Melt	Polr	ပ								1527				
	Mat. : Low Carbon St.		Condition		Annealed			γ ₂	recelved	Bright	\$ 5 A	***************************************			
	Mat, slow		Type		0.10% C			SAE TOLB			En 1 A			En 3 3	

(a) Composition of Steel tested: C: .10, Si: .22, Mn: .37, S: .45, P: .013, Cr: .02, Ni: .08.
(b) Strain rate in rpm. (c) Torque at 10 revs, in 1b in. (d) SAE 1018 St.; C: .16, Mn: .75, P: .012, S: .024, Si: .04 (e) Values shown are shear values for stress, strainand strain rate. (i) Same as (e), in Mnm-2. (g) Mushrooming tests (f) En 1A: C: .11,Si: .02, Mn: 1.24,S: .281,P: .01 (h) En 3B: C: .12,Si: .10,Mn: .62,S: .C29,Pb: .004 (*) In tors/in²

	Ref.	Shest No.		30			12					g)		
	£			t			•				,	6760		
	g		1.23	3.17	10.5	45** 1.34	1.26	,	1.80	2.22	0.4	ı	2.56	29.5
	ş	ks1	<i>2</i> 0η	285	210	#5 *	32.5	27.7	22	8	10	,	50	17
	St.	Ä	330*	06	20	33.5*	25.8		9	13.5	2.5	9	19.5	3
	THE	T/Tm	.16	611	92.	.16	.37	45.						
		·K	293	873	1100 1373	293	623	673	293	873	1328	293	873	1055 1328
	F	ပ့	20	009	l	50	0047	200	20	630	1055	20	630	
	٠٠	sec-1	static (c) dyn.	static dyn.	static dyn.	static dyn.	static dyn.	static dyn.	•066 430	430	•066 430	• 066 430	,066 430	430
SIS	.	(true)		ı		÷	vield			+:			۶.	
d) Steels	Mode	of Loading		Shear	(b)		сопр.	(a)			E E	•	દે	
IE 12 (Cont'd)		TOLESTING	Slater and	Johnson	(1967)	Hawkvard	et al. (1968)				Samanta	(10/0)	(6041)	
TABLE	Ref.	No.		30	(g)		7.4				32	3		
	Melting oint, Tm	×		1527 1800			1527 1800							
	Mel:	ວ.		1527			1527							
	Mat.iLow Carbon St. Point, Im	Condition			Annesled						Annealed			
	Mat. ilon	Type			8n 2	(Black mild	steel)				SIS	1311		

(f) Stress in $\frac{kg}{m\pi^2}$. (b) Blanking tests . (a) Composition of Steel tested: C: .132, Si: .25, Mn: .55, S: .034, P: .025 (b) Blanking te (c) Static rate: 10⁻³ sec⁻¹; dynamic: 4 10³ sec⁻¹. (d) Mushrooming tests. (e) Material tested: Steel SIS 1311, Swedish Standard, C: .10, Si: .24, Mn: .36, P: .013, S: .038 * Energy required for blanking, in ft.lbf. ** Stress values expressed in tons/in².

- 110 -

	Illustrative Data	ost ody ody Edy	ks1	900 1173 9 16.5 1.83	1000 1273 6.8 12.4 1.82	1200 1473 3.5 7.5 2.14	900 1173 10.4 18 1.73 8/	1000 1273 7.5 14 1.87	1200 1473 3.5 8.2 2.34	900 1173 8.4 15 1.79	1100 1273 6.5 11.7 1.8	1200 1473 2.8 2.68 62 3		1000 1273 7.6 13.6 1.79	1200 1473 4.2 8.8 2.1
		٠ ۵	sec_1	1.5	1.5	1.5 1	1.5	1.5	1.5	1.5	1.5 1	100 1	1.5	1.5 1	1.5 1
STEELS		ω	(true)		년 -			ň			۲.			ż.	
- (p.:	Mode	200	of Leading			C.	· dmo	(4)				n E	3	6	
TABLE 12 (Cont'd)		Investigator	0			ي د د		(1957)				G S S	(4069)	(1661)	
TAE	374	- - - - -	No.			12						12			
	Melting	Point, Im net.	S.							· · · · · · · · · · · · · · · · · · ·					
	St.		Condition			Anneal						Annealed			
	Mat., Carbon		Type			High	Steel	(æ)			, F	Carbon	Steel	9	

(2) Composition of Steel tested: C:1.0, S1: .19, Mn: .17, S: .027, P: .023, Gr: .10, N1: .09 (b) Values shown for stress are in tonsfin? (c) Composition of Steel tested: C: .56, S1: .26, Mn: .28, S: .014, P: .013, Gr: .12, N1: .09 .

			ost st No.	1,10	1.30	1.73	1.27	1.42	1,61	1,10	98.	2.33	1.32	1.13	3.51
		a,Fo		14.5	13	6	20.8	17.9	10.6	9	25	17.5	62.5	₹	33
	Data	φ. φ.	ks1	13,2	10	5.2	791	12.6	9.9	36.5	53	7.5	47.5	33	4.6
	i i	TH=	T/T												
	Illustrative		×	1173	1273	1473	1173	1000 1273	1200 1473	797	1038	1328	797	1038	1055 1328
	Lili	E	ιυ	006	1000	1200	006	1000	1200	524	765	1055	524	265	1055
		• ω	sec_1	1.5	1.5	1.5	1.5	1.5 100	1.5	.056 430	730	.56 5.79	430	430	730
STEELS		ω	(true)	,	٠,			ż.			ч.			r,	
•	, distant	agge	Loading			Gomb.	(9)					Comp	(g)		
LE 12 (Cont'd)		Investigator	,			Gook	(1957)					Samenta			
TABLE	Melting	Hei.	No.			21	(g)	,				32	<u> </u>	,	
	ting	nt.Tm	×	-											
											·· · · ·				
	Mat. r Stainless St		Condition			Annealed						Annealed			
	Mat. r Sta		Type		18 & Cr		8 % N1				18 % Cr	8 % N1	(Auste-	nitic)	

(a) Composition of Steel tested: C: .07, Si: .43, Mn: .48, Cr: 18.6, Ni: 7.70, P: nil, S: nil . (b) Values shown for stress are in tons/in². (c) Material tested: Type SIS 2333, Swedish Standard, C: .46, Si: .5, Mn: .42, P: .012, S: .008, Cr: 18.8,Ni: 9.2, (d) Values shown for stress are in kg/mm². Mo: .27, W: nil, V: nil .

- 112 -

		Ref.	Sheet No.	5	3		25					ć	œ			
		2	1		1		009					8	3			
		3,00	st	1.70	2.37	1.08	1.07	3.79	1.10	1.11	1,69	1,62	1.10	1.30	1.21	1.67
		م	ks1	138	109.2	73.5	47.5	26.5	52	31.2	22	11	114	58.5	33.5	14
	Data	, t	ks1	.18 81.2	0.54 65.	89	44.5	2	25	28	13	8.9	104	45	27.7	⊅• સ
	1ve	TH=	T/Tm	.18	.59						-		-		25.	
	Illustrative		×	297	104 977	297	873	1000 1273	273	400 673	800 1973	1200 1473	273	673	800 1073	1200 1473
	Illu	ı	ပ	77		777	909	1000	0	7000	800	1200	0	004	800	1200
		3	sec_1	static dyn.	static dyn,	,00085	.00085) .00085 10	100	100	100	100	.2 100	100	.2 100	100
20		ω	(true)	i .	stress dyn.	at max	stress	(1.)		•	•			V	;	
d) STEELS	Mode	<u>ئ</u>	Loading	Tenefor			Tension				-	C ESC	(9)			
TABLE 12 (Cont'd)		Investigator	0	Thiruvengadam	and Conn (1971)	N-3-4	Man foine	(1941)				Suzuki	et al.	(1966)		
TA	Ref.		No.	7			27,	28				:	(e)			
	Melting F	nt.T	×	1385 1658	}						·					
			Ü	1385				······································			,					
	Mat. 1 Stainless St.		Condition	Annealed							Annealed					
	Mat., Sta		Type	316					0	R 01		00 K				

(a) Composition of Steel tested: C: .08, Si: .49, Mn: 1.06, Cr: 18.37, Ni: 9.16, P: .037, S: .005 . (b) Values shown for stress are in kg/mm² .

				T.	TABLE 12 (Constal)		STEELS								'
Kat. 1 A	Kat. 1 Alloy St.	Mel	ting	Melting		Kode			11111	Illustrative	Data				
		Pot	발.1	Ref.	Investigator	of to	3	۰ ω	€+	$T_{\rm H}=$	-	ost ody	AP A	cdv	Hef.
Type	Condition	ပ	,×	No.	þ	Loading	(true)	sec-1	٥.	*K T/Tm				st	Sheet No.
18/4/1								1.5 160	006	1173	22	28.2	1.28		!
H						_	۲.	1.5	1000	1273	17.2	2 23.5	5 1.37		···········
Speed				12	Cook	Comp.		1.5	1200	1473	6	14.9	9 1.66		···-
3				િ	(1957)	(s)		1.5 100	006	1173	20.7	30.8	9 1.49	ò	N
15575				,			z.	1.5	1000 1273	1273	16	24.8	3 1.55	i	
								1.5	1200 1473	1473	7.8	15	1.92	<u> </u>	
SIS								.066 430	524	797	25	50	2		
22/22						. —	٠.	οεπ 990°	265	1038	23	55	2.17	<u> </u>	
High				32	Samanta	Comp.		.066 430	1055	1328	3	28.5	9.50		
Spead				હ	(1968)	(g)		.064 430	524	262	39.5	1	'	GG	·
Steel							'n	0£4 990*	265	1038	58	55	1.8	1	······································
								0£4 990*	1055 1328	1328	~	3	α)		
(a) Compos (b) Value	(a)Composition of 18/4/1 MSS tested: Co	/4/1 str	HSS	tested	8,5	.28, Mns .3	.32, Cr: 4.3, N1:	4.3, NA	1.16	.18, Mos .	.55, #1	18.4,	, V: 1.54	13.	
(c) SIS 2 (d) Value	(c) SIS 2722, Swedish Standard: (d) Values shown for stress are	h Sta stre	indar iss a	1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 St.	.21, Mn: .34, P: .023, S: .02, Gr: 4.07, N1:	.023,	S ₁ .02,	Ç.	4.07, N	£.9.	2, Mos	.32, Moi 5.5, Wi 6.63,	6.63,	

- 114 -

				TABLE	LE 12 (Cont'd)	1	STEELS									
Mat.: A	Mat.: Alloy St.	Melt Poin	Melting R	Ref.		Mode			[Ref.
Туре	Condition	Ů.	Ä	No.	Investigator	of Loading	(true	sec-1	, o	×	T/Tm ks1		dy ks1	st od	st kg.	Sheet No.
H-gh					Highes		a t	25 403(b) 850	850	1123	12	125*	175* 1	1,40		
Carbon				17	(105)	Torsion	10	25 400	1050 1323	1323	20	 		1.57	16	33
Chromium				(a)	(37)2)		revs.	25 400	1250 1523	1523	8		89	2.27		
En 31								1.5	900	1173	10		17	1.70		
High					•		₩.	1.5 100	1000 1273	1273	9	6.8	12.5	1.84		
Carbon				12		ر د د		1.5	1200 1473	1473	3	3.4	7.8	2.29	(•
Chronium				<u> </u>	(1057)	(4)		1.5	900 1173	1173	12.2		19.5	1.60	6	N
Steel				}	((())	3	٠.	1.5	1000 1273	1273	ω	8.4	13	1.55		
								1.5	1200 1473	1473		4 8.	8.35 2	2.09		

(a) Composition of alloy tested: C: 1.14, Si: .23, Mn: .48, S: .031, P: .034, Cr: 1.33, Ni: .18
(b) Strain rate values shown are in rpm.
(c) Composition of alloy tested: C: 1.06, Si: .22, Mn: .46, S: .019, P: .031, Cr: .17.
(d) Values shown for stress are in toms/in².

* Values shown are for the tempue at 10 revs. in lb.in.

		Kef.	Sheet No.				Ø1			1	K.	1	ĸ.
			HJ#				0515	***************************************	ing potter til	24	9 9	2	2
		٥	1 st	2,42	2.58	2.54	,	3.08	3.61	8	86.	6,1	×
		ď		3	33.5	51	,	3	8	1425	3	262	237.5
	Data	ď		16.5	53	6.3	21.5	19	8. 6.3	158	3	22.5	288.5
	1	Į.	•								********		16-m/11-1-m/2-4
ļ	Illustrative	g.,		765 1038	865 1138	1055 1328	765 1038	865 1138	1055 1328	300	280	R	9690
	11105		į,	765	865	1055	765	865	1055	22	317	2	317
		وريا	sec-1	.066 4730	0£4 930°	0£1 990°	367 990°	990°	8. 8. 8.	.0003	68.	.0003°	8. 8.
STEELS		w	(true)		.1			٠,		200	Offset	200°	orrset .0003
	K.23.) (1)	Loading			£	(a)					Tenston	
LE 12 (Cont'd)		Threettestor	-0			Semente	(1968)			Kendall	(0.61)	Kendall	(1970)
TABLE	900	יוננד	No.		32 (e)						(a)	61	E
	Melting	Point, Im	. K										
	Mel	Pol	ပ			******************************							
	07 St.	,	Condition			Annealed				Heat	(c)	Heat treated	(e)
	Mat.: Alloy St.		Type		SIS	Š		Steel		4340 Heat	-tion St.	Grade 300	Steel

		Ä	6		Į.				B)				1	4	
			5 Li	*40	3			\$	Š					3	-m-1 tne
			s u	6	8	2.08	2.38	47.7	1.3	70,000	8) 1)	1.33	# F	ix X	3.22
		<u>L</u> .	5 3	(a-1 5-352	8	2.5	33.5	100	R	2	×	82	R	A	83
	ti M	***	K j	20 80 80	82	75		E	\$.83.	4	4	61	66	83	\$2
	2. FT	1	} }	350	530	7.67	88	88	عجر ا	36	88	7.62	Z Z	252	23
	Hilmstration	F	¥, 0,	23	317 5	2 200	355 1538	1055 1328	200	765 1038	325 336	2 25	1691	25. 2	3 600 %
	171		200 -11		. 200 0		.066 1730						युव स	229	प्रत्य च च
STEETS		v	(true)	220	Offset		***		<u></u>	ν.		3	,,,,,,	8	
		1	39	£				Ş	(3)				8		
(2 :2 (Cost*6)		Toward 625 tor		Kentall	(3300)		-	Semente	(1968)			n gayr mar great (a a . a	recourte	et al. (1997)	• • •
TABLE	16 6 R					22							Ę		
	Kelting	int.Th	ļa	-1 							*******				
	Me.	Po	C B			· · · · · · · · · · · · · · · · · · ·		******	· · · · · · · · · · · · · · · · · · ·						
	lor St.		Condition	Heat.	(3)			Amele					Temper	rolled	
	Kat. : Alloy St.		Type	(F)	Tool St.			ST5	Tool St.	3		A.3.cm.	11100	Sheet	(e)

(a) H-11 AISI type, High Ouronium tool steel : C: ,40,Cr: 5.0,Mos 1.3,T: .5 (b) After trestment, ASIB grain size 7/8: (c) SIS 2242 Tool St., Swedish Standard: C: .39,Cr: 5.29,Mos 1.35,T: .83, Sis 1.402,Mus .60.2: .005,S: .020,Mis .44.

				Trent	٠ ع	TITASTIES ALCOSS	, N									
	Metaliza	Felt	N							Tilles traction	1	Wate				
	factor and	Pofe	t. TH	N.	Trapet and or		3	J	*	'E:	1	o l	8	e de	1	, i
Type	Condition	့ပ	М	No.		Lording	(træ)	72	,u	, tu	7/12 200		7	i k	i u	i e
							8	903°	\$	22	73	215	376	1.23	2.25 2.3cm	un.
····					400	į		.03. 9 20	景		Ħ	S.	122	627	1.29.2.3 act	ua -
							ķ	9 6 6 6 6 7 8	E.	2	R	麗	清	1.26	1.16 1. P. 18	U\
- TY 9		7,	Š		7		`	700 006	N.	R.	K	113	13	61.49	1.19 2.3 Est	
A		}		3			Ę	20°, C1°, C2°, C3°, C3°, C3°, C3°, C3°, C3°, C3°, C3	145	23	R	립	R	12.23	14.50 17.50	*
* *** **********		3		********	(9863)	3	1	.022 10	326	5.89	ĸ	8	*	四四四	10 mg	
							8	100.	1,69	3	27		N N	M .135	14	-
							`	.002 1.0	338	R. B	R	\$£)	<u> </u>	2.12	1	
6 A1 -	F \$			2	Septimental	Terret		103	艿	232		SZ.	8	14 15 14		
4 Zr ~ 2 Sn	Received				(1971)		S trees	193	\$)	8	Transmi	100	637	2.57	•	· -m

(a) Liquidus temp., from Ref. (45).

		ď,	E S			•	A		
		3	1			*	\$		
		4	i u	44 45 45 45 45 45 45 45 45 45 45 45 45 4	14.5 1.19	6	100	25	2,53
		4) j	8	4.5	Α, Α,	9	77	O
	The tre	9		5	727	ш- т-т (L)	R	FQ	3.7
l	2	4	17			.,		,	
	Himstration lets		, M	ET3	873	E00 1073	£00 223	833	800 1073
	113	•	,u	8	900	630	2003	909	800
LLOSS			Feet -1	2.5	2.5	2.5	2.5	2.5	2.5
STITES.		u	(tree)		ન્			'n	
i) - ma	1	3774	or Londing			6			
TABLE 13 (Cont'd) - TITAFILM ALLOTS		Transact for the				Suraid	•	10001	
TAB	300	7	Жo.		• *******	4	3	j	
	tfag	H. Ja	м						
	Mel	भूव	ຸບ						
	Mat of tanim Aller Melting		Conition	*****	H G	rolled ;	amealed		
	F2. 1.T.		Type			Comper-	cial		

(a) Composition of alloy tested: Tis Bal., Fer. 03, Mr. 10084, Hr. 10025 . (b) Values shown for stress are in kg/mm².

SECTION VI

REPERENCES

- 1. Lindholm, U. S., "High Strain Rate Tests", in Techniques of Metals Research, volume V. Nessurement of Mechanical Properties, Part 1, Chapter 4, p. 240, Series Editor: R. F. Bunshah, Interscionce Publishers, N. Y., 1971.
- 2. Lindholm, U. S. and Bessey, R. L., "A Survey of Rate Dependent Strength Properties of Netals", Tech. Report AFNL-TR-69-119, Southwest Rusearch Institute, 1969.
- 3. Alder, J. F. and Phillips, V. A., "The Effect of Strain Rate and Temperature on the Resistance of Aluminium, Copper, and Steel to Compression", J. Inst. Metals, 83, 80-86, (1954-55).
- 4. Arnold, R. R. and Parker, R. J., "Resistance to Deformation of Aluminium and Some Aluminium Alloys; its Dependence on Temperature and Rate of Deformation", J. Inst. Metals, 88, 255-259, (1959-60).
- 5. Bailey, J. A., "Some Strain-Rate Effects Observed During Deformation in Plane Compression", ASME Paper 67-MET-11, Presented at the Metals Engineering Conference, Houston, Tex., April 3-5, 1967, of the ASME.
- 6. Bailey, J. A. and Singer, A.R.E., "A Plane-Strain Cam Plastometer for Use in Metal Working Studies", J. Inst. Metals, 92, 288-289, (1963-64).
- 7. Bailey, J. A. and Singer A. R. E., "Effect of Strain Rate and Temperature on the Resistance of Aluminum, Two Aluminum Alloys, and Lead", J. Inst. Metals, 92, 404-408, (1963-64).
- 8. Baraya, G. L., Johnson, W. and Slater, R. A. C., "The Dynamic Compression of Circular Cylinders of Super Pure Aluminum at Elevated Temperatures", Int. J. Mech. Sci., 7, 621-645, (1965).
- 9. Campbell, J. D. and Briggs, T. L., "The Effect of Strain Rate and Temperature on the Yield and Flow of Polycrystalline Niobium and Molybdenum", University of Oxford, Department of Engineering Science Report No. 1091, 1969.
- 10. Campbell, J. D. and Ferguson, W. G., "The Temperature and Strain-rate Dependence of the Shear Strength of Mild Steel", Phil. Mag., 21, 63-82, (1970).
- Chiddister, J. L. and Malvern, L. E., "Compression-impact Testing of Aluminum at Elevated Temperatures", Experimental Mechanics, 3, 81-90, (1963).
- 12. Cook, P. M., "True Stress-Strain Curves for Steel in Compression at High Temperatures and Strain Rates, for Application to the Calculation of Load and Torque in Hot Rolling", Proc. Conf. Properties of Materials at High Rates of Strain, Inst. Mech. Eng., London, Session 3, Paper 2, I. Mech. E., London, 1957.

- 13. Green, S. J. and Babcock, S. G., "High Strain Rate Properties of Eleven Reentry-Vehicle Materials at Elevated Temperatures", Part I of Final Report for DASA Contract DA-49-149-XX-322, AFFDL-TR-67-35, Part I, Nevember 1968, 110 pages.
- 14. Hawkyard, J. B., Eaton, D. and Johnson, W., "The Mean Dynamic Yield Strength of Copper and Low Carbon Steel at Elevated Temperatures from Measurements of the Mushrooming of Flat-Ended Projectiles, "Int. J. Mech. Sci., 10, 929-948, (1968).
- 15. Hockett, J. E., "On Relating the Flow Stress of Aluminum to Strain, Strain Rate, and Temperature", Trans. AIME Metallurgical Soc., 239, 969-976, (1967).
- 16. Hodierne, F. A., "A Torsion Test for Use in Metalworking Studies", J. Inst. Metals, 91, 267-273, (1962-63).
- 17. Hughes, D. E. R., "Hot Torsion Tests for Assessing Hot Working Properties of Steels", J. Iron Steel Inst., 170, 214-220, (1952).
- 18. Inoue, K., Testu-to-Hagane, 41, 593, (1955). (in Japanese).
- 19. Kendall, D. P., "The Effect of Strain Rate and Temperature on Yielding in Steels", Watervliet Arsenal Report No. WVT-7061, Watervliet, New York, November 1970, also an ASME paper No. 71-Met-R.
- 20. Leech, E. A., Gregory, P. and Eborall, R., "A Hot Impact Tensile Test and Its Relation to Hot-Working Properties", J. Inst. Metals, 83, 347-353, (1954-55).
- 21. Lindholm, U. S., "Some Experiments in Dynamic Plasticity Under Combined Stress", Mechanical Behavior of Materials Under Dynamic Loads. U. S. Lindholm, ed., Springer-Verlag New York, Inc., 1968.
- 22. Lindholm, U. S. and Yeakley, L. M., "High Strain-rate Testing: Tension and Compression", Experimental Mechanics, 7, 1-9, (1968).
- 23. Lindholm, U. S. and Yeakley, L. M., "Effect of Strain Rate, Temperature and Multiaxial Stress on the Strength and Ductility of S-200 E Beryllium and 6Al-4V Titanium", Technical Report AFML-TR-71-37, Wright-Patterson AFB, Ohio, March 1971.
- 24, MacDonald, R. J., Carlson, R. L. and Lankford, W. T., "The Effects of Strain Rate and Temperature on the Stress-Strain Relations of Deep-Drawing Steel", Proc. Am. Soc. Test. Mat., 56, 704-720, (1956).
- 25. Mahtab, F. U., Johnson, W. and Slater, R. A. C., "Dynamic Indentation of Copper and an Aluminum Alloy with a Conical Prijectile at Elevated Temperatures", Proc. Instn. Mech. Engrs., 180, part 1, 1-10, (1965-66).
- 26. Muller, T., "The Visco-Plastic Dynamic Behavior of Iron and Nickel at Elevated Temperatures", Acta. Met., 19, 691-699, (1971).
- 27. Nadai, A. and Manjoine, M. J., "High Speed Tension Tests at Elevated Temperatures Part I", Proc. ASTM, 40, 822-837, (1940).

- 28. Nadal, A., and Manjoine, N. J., "High Speed Tension Tests at Elevated Temperatures Parts II and III", J. Appl. Mech., 8, A77-A91, (1941).
- Nagata, N., Yoshida, S., and Sekine, Y., "Strain Rate, Temperature, and Grain Size Dependence of the Lower Yield Stress of Polycrystalline Iron", Trans, ISIJ, 10, 173-180, (1970).
- 30. Ormerod, H. and Tegart, W. J. M.G., "Resistance to Deformation of Super-Pure Aluminium at High Temperatures and Strain Rates, Determination from High-Temperature Torsion Data", J. Inst. Metals, 89, 94-96, (1960-61).
- 31. Pugh, H. Ll.D., Chang, S. S. and Hopkins, B. E., "Tensile Properties of a High Purity Iron from -196 C to 200 C at Two Rates of Strain", Phil. Mag., 8, 753-768, (1963).
- 32. Samanta, S. K., "Resistance to Dynamic Compression of Low-Carbon Steel and Alloy Steels at Elevated Temperatures and at High Strain-Rates", Int. J. Mech. Sci., 10, 613-636, (1988).
- 33. Samanta, S. K., "On Relating the Flow Stress of Aluminum and Copper to Strain, Strain-Rate and Temperature", Int. J. Mcch. Sci., 11, 433-453, (1969).
- 34. Schultz, A. B., "Dynamic Behavior of Metals Under Tensile Impact, Part I, Elevated Temperature Tests", Technical Report AFML-TR-69-76, Part I, Wright-Patterson AFB, Ohio, April, 1969.
- 35. Slater, R. A. C. and Johnson, W., "The Effects of Temperature, Speed and Strain-rate on the Force and Energy Required in Blanking", Int. J. Mech. Sci. 9, 271-305, (1967).
- 36. Sokolov, L. D., "Influence of Velocity on the Resistance of Metals to Deformations", Zhurn. Tekhn. Fiziki, 16, 437-442, (1946) (in Russian).
- 37. Sokolov, L. D., "The Investigation of the Relationship between Resistance to Plastic Strain of Metals and Amorphous Bodies and the Strain Rate and Temperature of Experiment", Zhurn. Tekhn. Fiziki, 17, 543-548, (1947). (in Russian).
- 38. Sokolov, L. D., "The Influence of Degree of Deformation on the Dependence of Rate of Strain", Zhurn. Tekhn. Fiziki, 18, 93-97, (1948) (in Russian).
- 39. Sokolov, L. D., "On the Problem of Calculation of the Resistance of Metals to Plastic Deformation in Connection with Strain and Temperature", Akademiia Nauk S.S.S.R. Doklady, 67, 459-462, (1949) (in Russian).
- 40. Dokolov, L. D., "A Systematic Study of the Dependence of the Resistance to Deformation on Rate of Deformation and Temperature in Single Phase Metals", Akademiia Nauk S.S.S.R. Doklady, 70, 839-841, (1950) (in Russian).
- 41. Suzuki, H., Hashizume, S., Yabuki, Y., Ichihara, Y., Nakajima, S. and Kenmocki, K., "Studies on the Flow Stress of Metals and Alloys". Report of the Institute of Industrial Science, The University of Toxyo, Vol. 18, No. 3, Serial No. 117, (March 1965).

- 42. Thiruvengadam, A. and Conn, A. F., "On High-frequency Fatigue and Dynamic Properties at Elevated Temperatures", Experimental Mechanics, 11, 315-320, (1971).
- 43. Watson, Jr., H. and Ripperger, E. A., "Dynamic Stress-Strain Characteristics of Metals at Elevated Temperatures", Experimental Mechanics, 9, 289-295, (1969).
- 44. Work, C. E. and Dolan, T. J., "The Influence of Strain Rate and Temperature on the Strength and Ductility of Mild Steel in Torsion", Proc. Am. Soc. Test. Mat., 53, 611-626, (1953).
- 45. Lyman, T., (ed.), Metals Handbook, vol. 1, Properties and Selection of Metals, American Society for Metals, Ohio, 8th Edition, 1961.
 - Additional References (Books, Conference Proceedings, Review Articles and Reports).
- 46. Cristescu, N., Dynamic Plasticity, North-Holland Publishing Company, Amsterdam, 1967.
- 47. Dorn, J. E., Mechanical Behaviour of Materials at Elevated Temperatures, McGraw-Hill, New York, 1961.
- 48. Savitsky, E. M., The Influence of Temperature on the Mechanical Properties of Metals and Alloys, Translated by D. Sherby, Stanford University Press, Stanford, Calif. and Oxford University Press, 1962.
- 49. Zener, C., Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago, Ill., 1948.
- 50. Anon. Proceedings of the Conference on the Properties of Materials at High Rates of Strain, Institution of Mechanical Engineers, London, 1957.
- 51. Shewman, P. G. and Zackay, V. F., (eds), Response of Metals to High Velocity Deformation, Metallurgical Society Conference, 9, Interscience Publishers, 1961.
- 52. Anon. Proceedings of the Army Conference on Dynamic Behavior of Materials and Structures, Engineering Science Division, Army Research Office Durham, 1962.
- 53. Anon. Symposium on the Stress-Strain-Time-Temperature Relationships in Materials, Am. Soc. Testing Mat. Special Publication No. 325, Am. Soc. Test. Mat., Philadelphia, Pa., 1962.
- 54. Huffington, N. J., Jr., (ed.), Behavior of Materials Under Dynamic Loading, ASME, New York, 1965.
- Loads, Springer-Verlag New York, Inc., 1968.
- 56. Effect of Temperature Upon the Properties of Metals, Proc. ASTM Symp., vol. 24, Part II, 1924.

- 57. Effect of Temperature on the Properties of Metals, Proc. ASTM Symp., ASTM STP No. 12, 1931.
- 58. Jonas, J. J., Sellars, C. M. and McG. Tegart, W. J., "Strength and Structure Under Hot-working Conditions", Met. Rev., 14, Rev. 130, 1-24, 1969.