Table of Contents

Introducción	1.1
1. Γο το ονέο	
1. La teoría	
Robotica en infantil	2.1
Robots	2.2
Programo Ergo Sum	2.3
Un poco de orden el pensamiento computacional	2.4
¿Se puede usar Bee-bot sin Bee-bot?	2.5
¿Cómo funciona?	2.6
Introducir Bee-Bot en el aula	2.7
Recorridos avanzados-1	2.8
Recorridos avanzados-2	2.9
Una propuesta	2.10
Alfombra	2.10.1
Flores	2.10.2
Palos	2.10.3
Papeles para programar	2.10.4
Una presentación	2.10.5
Resultado	2.10.6
2. Crea una actividad	
Actividad obligatoria	3.1
Muro de ediciones pasadas	3.2
Chat robótica educativa en Aragón	3.3
Créditos	3.4
oreatos	J1

Introducción

Este simpático robot o equivalentes (Colby, Scornabot...) pertenece dentro de los robots exclusivos para *Educación infantil* pues no se trata de programarlo con instrucciones complejas de código sino consiste en **programarlo con instrucciones ordenadas y secuenciales de orientación espacial** Con lo de *Ordenadas y secuenciales* quiere decir, que no es lo mismo la instrucción A y luego la B que la B y luego la A. Aprenderemos enseguida a programarlo, pero la verdadera intención de este curso es **realizar una propuesta didáctica para su uso en el aula** para ello te propondremos un ejemplo de uso, y luego hay que utilizar el otro ingrediente: *tu imaginación*

Robótica en infantil

En este módulo aprenderemos cómo utilizar la robótica infantil (con **beebot, colbi, escornabot..**) y crear plantillas para crear actividades

1 BEEBOT

Es un robot de fabricación americana, https://www.bee-bot.us/ orientado para infantil, con órdenes que orientación y dirección que va recordando para seguir un camino, hay dos modelos, con y sin bluetooth. En este curso los tutoriales son del modelo sin bluetooth.

Enlaces interesantes de BeeBot:

- Accesorios en Ro-bótica.
- Actividades educativas Tilk Education

EL CURSO SE PUEDE REALIZAR CON LOS OTROS MODELOS Y OTROS ROBOTS PARECIDOS pues básicamente son : Teclas con órdenes para orientar y dirigir

Video link

2 ESCORNABOT

Si eres un manita, otra opción es el Escornabot y puedes ver en este vídeo que "le puede al beebot", te lo puedes hacer tú mismo si tienes impresora 3D o comprarlo en abierto.cc por ejemplo

y puedes ver en este vídeo que "le puede al beebot":

Video link

3 COLBY

Robot Ratón Colby aproximadamente 37€ y con el tablero aproximadamente 50-60€

Video link

4 Otros robots parecidos

Cordi oruga de Fisher Price donde las instrucciones se colocan manualmente por piezas

Programo Ergo Sum

Esta sección la queremos agradecer al autor de la página http://www.programoergosum.com/ que nos ha autorizado publicar sus vídeos.

Contínuamente el autor sube propuestas, recomendamos visitar su canal de vídeo Youtube y suscribirse para estar al día.

Un poco de orden... el pensamiento computacional

¿Esto es una moda?

No sabemos qué futuro van a encontrar nuestros alumnos, pero sí que sabemos que por ejemplo el **Inglés** será importante en su entorno futuro. Pues igual con las TIC, no es una moda, hace tiempo que está, y seguirá. **El pensamiento computacional es el idioma de los ordenadores.**

Vale, y ... este curso ¿dónde se encuadra?¿para qué edad es recomendada?

Buena pregunta... para enseñar el pensamiento computacional tenemos dos caminos, totalmente compatibles:

- La programación, que sería como enseñar un nuevo idioma.
- La robótica que sería como practicar este idioma con un nativo, luego antes hay que saber el idioma.

En CATEDU hemos elaborado esta **hoja de ruta** de herramientas y edades, hay otras herramientas y otros criterios TOTALMENTE VALIDOS, este es el nuestro, lo que hemos elegido en los cursos de Aularagon y que enseñamos a continuación como orientación, pero no se debe de tomar al pie de la letra.

En el caso de LAROBOTICA EN INFANTIL te mostramos varios modelos para que compares

RoboTICa

Oferta de formación en Pensamiento computacional del Centro Aragonés de Tecnologías para la Educación.

¿Se puede usar Bee-bot sin Bee-bot?

Si, de forma virtual claro:

EN ORDENADOR: CODE.ORG

En CODE.ORG dirigido a alumnos entre 4 y 6 años, empieza aprendiendo a arrastrar y soltar con el raton, pero luego pasa a la programación que es casi igual que lo mismo que Bee-bot: ordenes de dirigir y orientar. En el vídeo vemos un ejemplo de como el pájaro de Angry Birds tiene que llegar al cerdito:

Video link

En CATEDU tenemos un minicurso, y incluso una microguia si quieres empezar en 2 patadas.

EN TABLETA APPLE: Bee-bot app

Solo disponible en AppStore (IOS)

EN TABLETA APPLE Y ANDROID: Blue-bot

Aquí sí que esta disponible para Android (Google Play) (ojo: no compatible en todos los tablets) y para Apps Store (IOS), aunque está pensado para maniobrar la versión bluetooth de Bee-bot puede funcionar sin el robot

¿Cómo funciona?

En este vídeo podemos ver:

- Cómo funciona
- Cómo crear plantillas de forma casera para ayudar a nuestros alumnos a realizar el circuito
- Un ejemplo de uso

Introducir Bee-Bot en el aula

- Aquí nos enseña con gomets como introducir el Bee-bot
- Visión espacial

Recorridos avanzados-1

En este vídeo vamos a ver recorridos más avanzados utilizando "palos de helado" pero como puedes ver más abajo también vale palos depresores que venden en farmacias.

Recorridos avanzados-2

Una propuesta

Vamos a enseñarte una propuesta, es la mejor manera para empezar

Alfombra

Hay muchas alfombras que se venden (ver aquí) pero no te gastes tanto dinero, te lo puedes hacer tú, nosotros hemos cogido un papel de presentaciones:

y hemos pintado un tablero de 6 x 4 cuadros, cada cuadro de 15x15 cm

Otra opción es coger un mantel de papel, o ir juntando folios con celo, pero ten en cuenta que un folio sólo te cabe 1 cuadro

Flores

Imprimir 3 hojas con un cuadrado de 15 x 15 cm y poner una flor con un número 1 2 y 3 en cada uno, aquí lo tienes (docx - 17,54 $\overline{\text{KB}}$) por si te gusta este modelo

Palos

En el vídeo mostraban palos de helado, pero ¿donde se compran? nosotros hemos encontrado que los palos depresores de venta en las farmacias tienen el tamaño ideal 15 cm !!!

Papeles para programar

Se imprime unas cuadrículas para que los niños escriban y piensen en las órdenes que tienen que dar al robot. si te gusta este, aquí tienes un documento con dos por hoja (docx - 11,24 KB) (tamaño suficiente para escribir flechas y giros):

Primero pon las paredes y luego tienes que marcar en cada cuadrado las órdenes que tienes que programar al BEE-BOT $\uparrow \rightarrow \leftarrow \downarrow$

Una presentación

A los niños se les enseña una presentación de cómo funciona y lo que tienen que hacer, esta es una propuesta:

Fíjate las órdenes cómo proponemos que se copien en la hoja, de otra manera hemos experimentado que no se aclaran

Resultado

Fue probado en tercero de infantil y primero de primaria:

- 1. Se les enseño la presentación
- 2. Los retos.
- 3. Lo tenían que hacer en el papel y en equipo, el docente lo puede revisar y ayudar. El papel es útil para el trabajo en equipo y para que en el caso de fallo, localizar si es por culpa de que el algoritmo es incorrecto o que han introducido mal el algoritmo.
- 4. Una vez realizado en papel, ya pueden programarlo en la abeja.
- 5. Para forzar la optimización del código, se realizaban carreras, el primero que llegaba había minimizado el número de instrucciones.

Retos

- Llegar a la flor
- Llegar a la flor pero con distintos obstáculos con los palos
- Un camino realizado con los palos
- Ir primero a la flor 1 luego a la 2 y luego a la 3 (esto obliga a que utilicen la marcha atrás)
- Ojo, no sale a la primera, pero se emocionan y quieren volver a intentarlo "SUPERARSE A SI MIS MO"

Video link

Actividad obligatoria

¿Qué tengo que hacer?

Tienes que grabar en vídeo una actividad original con BeeBot, con alumnos o sin alumnos, da igual, pero tiene que ser original y subirlo al muro que te vamos a indicar.

info La mejor forma de subir un vídeo a Youtube es utilizando el móvil, grabas el víde y compartir en youtube (tienes que tener cuenta en Gmail = youtube) Subir un vídeo al muro es muy intuitivo, sólo tienes que pulsar en el + NO ES NECESARIO USUARIO NI CONTRASEÑA para subir un vídeo al muro.

Muro de ediciones pasadas

En esta sección encontrarás los muros de las ediciones pasadas de este curso. Puedes verlas y que te sirvan de inspiración ¿por qué te crees que las publicamos?

Pero nada de copiar eeeehhh!!

Para ver el muro visita el curso en http://moodle.catedu.es/

Grupo ROBOTICA EDUCATIVA EN ARAGÓN

Tenemos un grupo en Telegram de profesorado interesado en la Robótica Educativa en Aragón, si estás interesado en unirte, envía un mensaje por Whatsapp o Telegram a CATEDU 623197587 y te enviaremos un enlace.

2017 por CATEDU (Javier Quintana Peiró).

Cualquier observación o detección de error por favor aquí soporte.catedu.es

Los contenidos se distribuy e bajo licencia Creative Commons tipo BY-NC-SA.

Departamento de Educación, Cultura y Deporte

