SmartFootPrintAI — Hybrid MRIO-LCA (CO₂, Land, Water): End-to-End Pipeline & QA

August 24, 2025

Abstract

This document specifies and audits the complete hybrid MRIO–LCA pipeline used in SmartFootPrintAI to compute sector-level environmental intensities for exactly three indicators: CO_2 (kg/), Land (m² year/), and Water (m³/). It details inputs, unit conversions (with formulas), aggregations (conceptual and mathematical), access to EXIOBASE Q (19×R × S), indicator selection, and the comparison methodology between the baseline (OLD) and micro-enhanced (NEW) sector intensities.

1 Concept and Goal

We link macroeconomic multi-regional input-output (MRIO; EXIOBASE 2022) with micro process life cycle assessment (LCA; e.g., Clark et al. 2022, WFLDB extracts) to obtain robust sector-level environmental intensities. We constrain indicators to exactly three (CO₂, Land, Water) to maintain unit consistency and reduce propagation of noise. Open Food Facts (OFF) products are translated, normalized to per-kg and per-euro, mapped to EXIO sectors, and aggregated to sectoral coefficients. Where high-quality micro values exist, they selectively override MRIO satellite intensities; otherwise we keep MRIO baselines. We then audit NEW vs. OLD.

Intuition. MRIO guarantees economy-wide system completeness (full upstream supply chains), while micro LCA provides process precision. Hybridization balances completeness and specificity.

2 Step-by-Step Pipeline (Files, Where, and Why)

Let I=19 indicators in EXIOBASE, R=189 regions, S=163 sectors. We propagate only the set $\mathcal{K} = \{\text{CO}_2, \text{Land}, \text{Water}\}.$

Detected Input/Project Files (example paths)

• off_translated (3).parquet, product_to_sector_mapping.parquet, EXIO zarr metadata, FAOSTAT CSVs, etc.

2.1 A. Data Pre-processing (Open Food Facts)

- 1. Translate product texts to English (cached Parquet; on-device model or prior cache).
- 2. Normalize text: lowercase, unidecode, strip, collapse spaces; deduplicate.
- 3. Output: off_translated (3).parquet (canonical product table).

2.2 B. OFF \rightarrow CPC \rightarrow EXIOBASE Mapping

- 1. Use precomputed mapping with confidence weights $w \in [0,1]$; file: product_to_sector_mapping.parquet.
- 2. Keep top-1 EXIO sector per product using the highest confidence (also export low-confidence diagnostics).
- 3. Output: product \rightarrow EXIO sector mapping with w.

2.3 C. Micro LCA & Price Normalization (Clark/WFLDB + FAOSTAT)

For each product p we expect, where available:

co2_per_kg_p [kg/kg],

land_per_kg_p [m² year/kg], water_per_kg_p [m³/kg],

eur_per_kg $_p$ [kg] from FAOSTAT / producer prices.

Convert prices: USD/tonne \rightarrow USD/kg \rightarrow EUR/kg:

$$\label{eq:usd_kg} {\rm USD/kg} = \frac{{\rm USD/tonne}}{1000}, \qquad {\rm EUR/kg} = {\rm USD/kg} \times ({\rm USD} \to {\rm EUR}).$$

Convert per-kg to per- for indicator $x \in \mathcal{K}$:

$$x_{per}(p) = \frac{x_{per}(p)}{\text{eur}_{per}(p)}.$$
 (1)

Outputs: products_normalized_units.csv (audited per-kg, EUR/kg, and per-).

2.4 D. Aggregate Product \rightarrow Sector (Regionless NEW Q)

Let \mathcal{P}_s be the set of products mapped to sector s, with confidence weights w_i . We compute weighted means for per- intensities:

$$\bar{x}_s = \frac{\sum_{i \in \mathcal{P}_s} w_i x_{\text{per_eur}}(i)}{\sum_{i \in \mathcal{P}_s} w_i}, \quad x \in \mathcal{K}.$$
 (2)

Outputs: sector_micro_intensities.csv, Q_new_sector_regionless.csv ($\mathrm{CO}_2/\mathrm{Land}/\mathrm{Water}$ per).

2.5 E. Access and Prepare OLD MRIO Q (19 \times $R \times S$)

We read EXIOBASE-2022 $Q \in \mathbb{R}^{I \times R \times S}$ and total outputs $T \in \mathbb{R}^{R \times S}$. To obtain sector-only, regionless per- values we use:

Method 1 (Output-weighted averaging).

$$w_{r|s} = \frac{T_{r,s}}{\sum_{r'} T_{r',s}}, \qquad q_{i,s}^{\text{global}} = \sum_{r=1}^{R} w_{r|s} Q_{i,r,s}.$$
 (3)

Outputs: Q_all19_global_regionless.csv (19 indicators, per), and the three-indicator slice Q_old_global_regionless.csv.

2.6 F. Align, Impute, Compare OLD vs NEW

- 1. Reorder NEW sectors to EXIO order; preserve all S sectors.
- 2. Impute missing NEW per- values with the indicator mean across sectors; log flags.
- 3. Compute absolute/relative differences versus OLD.

Outputs: Q_new_sector_aligned.csv, Q_new_sector_aligned_imputed.csv (+.npy), Q_compare_new_vs_or Q_compare_new_vs_old_long.csv, Q_top5_diffs_by_indicator_UNSCALED.csv.

3 Unit Conversions (Formulas)

Water volume. If data are in liters/kg, convert to m³/kg:

water_per_kg [m³/kg] =
$$\frac{\text{water}_L_per_kg}{1000}$$
. (4)

FAOSTAT price. Producer price conversion (year t):

$$USD/kg_t = \frac{USD/tonne_t}{1000}, \qquad EUR/kg_t = USD/kg_t \times (USD \to EUR)_t.$$
 (5)

Per- intensities. For $x \in \mathcal{K}$:

$$x_{per}_{eur} = \frac{x_{per}_{kg}}{eur_{per}_{kg}},$$
(6)

with units: CO_2 [kg/], Land [m² year/], Water [m³/].

MRIO per-. Using either output weights or divide-by-T yields sector-only MRIO intensities.

4 Aggregations: Concepts and Equations

$\textbf{4.1} \quad \textbf{Product} \rightarrow \textbf{Sector}$

Weighted means with mapping confidence w_i .

4.2 Region \rightarrow Global Sector

Use either output weights or divide-by-T; under consistent currency, both are equivalent.

4.3 Imputation

For each $x \in \mathcal{K}$, fill NaNs in \bar{x}_s with the mean across sectors; record flags.

5 Resulting Outputs (File Catalog)

- products_normalized_units.csv product-level, audited units (per-kg, EUR/kg, per-).
- sector_micro_intensities.csv diagnostics: per-kg, per-, counts per sector.
- Q_new_sector_regionless.csv NEW sector-only Q (CO₂/Land/Water per).
- Q_new_sector_aligned.csv NEW, aligned to EXIO order.
- Q_new_sector_aligned_imputed.csv (+ .npy) NEW with mean imputation + flags.
- Q_all19_global_regionless.csv OLD, 19 indicators aggregated to sector (per).
- Q_old_global_regionless.csv OLD, selected CO₂/Land/Water.
- $Q_old_divT_global_regionless.csv OLD via divide-by-T (per).$
- Q_compare_new_vs_old.csv wide comparison (old/new/abs Δ /rel Δ).
- Q_compare_new_vs_old_long.csv tidy long version.
- Q_top5_diffs_by_indicator_UNSCALED.csv top-5 absolute diffs per indicator.

6 Accessing EXIOBASE Q and Indicator Choice

We access EXIOBASE-2022 $Q \in \mathbb{R}^{I \times R \times S}$ with (I, R, S) = (19, 189, 163) and $T \in \mathbb{R}^{R \times S}$. Indicators are chosen by fixed indices: $CO_2 \to 7$, Land $\to 3$, Water $\to 2$. We aggregate to sector-only, regionless per- via output-weighted averaging or divide-by-T.

7 Matrix Comparison Methodology

Let $Q^{\text{new}} \in \mathbb{R}^{3 \times S}$ and $Q^{\text{old}} \in \mathbb{R}^{3 \times S}$ be aligned by sector. For indicator $k \in \{1, 2, 3\}$ (CO₂, Land, Water) and sector s:

$$\Delta_s^{(k)} = Q_{k,s}^{\text{new}} - Q_{k,s}^{\text{old}},\tag{7}$$

$$\delta_s^{(k)} = \frac{\Delta_s^{(k)}}{Q_{k,s}^{\text{old}}} \quad \text{(guard division-by-zero)}. \tag{8}$$

We report coverage, summary statistics (mean, median, p90, max), and the top-5 sectors by $|\Delta|$ per indicator.

8 QA and Diagnostics

- Unit sanity checks: liters \rightarrow m³; price construction; per- recomputation.
- NaN scans and imputation flags for NEW per-.
- Coverage: products with LCA; products with prices; sector coverage after aggregation.
- MRIO shapes/currency: confirm Q per (or M) and rescale as needed.
- Consistency: sector order alignment; numeric types; no silent coercions.