

UNIVERSITY COLLEGE OF ENGINEERING, PANRUTI ANNA UNIVERSITY, CHENNAI 600 025

LITERATURE SURVEY CRUDE OIL PRICE PREDICTION

YEAR	TITLE	AUTHOR	TECHNIQUE	PROBLEM STATEMENT	PROS AND CONS
2018	Low salinity water flooding form a length and time scale perspective	W.Bartels and H.Mahani	EOR,SCAL, micro- CT,micro- model	The field application of low salinity waterflooding is the improvement of oil recovery by acceleration of production "Oil faster compared to conventional high salinity brine injection.	PROS: Microscopic sweep efficiency is standard reservoir engineering terminology and related to areal and volumetric sweep it is related to the overall result of the oil recovery process CONS: Ground soil quality gets under 30>.
2019	Text-based crude oil price forecasting	Xuerong lii shaupang Wang	Econometric model and CNN model	The novel crude oil price forecasting method based on online media test mining with the aim of the capturing the more immediate market antecedents of price fluctuation specifically early attempt to apply deep learning technique of crude oil forecasting and extract hidden pattern on online new media CNN. They need to grouped for according greater forecasting method is LDA topic model optimized input	PROS: Oil price forecasting, financial market, online news, text analysis convolutional neural network. Our emperical forecasting in accurate crude oil price.

				variable lag order	
				selection	
2020	A new hybrid model for forecasting Brent crude oil price.	H. Abdollahi and S.B. Ebrahimi	Adaptative Neuro Fuzzy Inference System (ANFIS) and Auto regressive Fractionally Integrated Moving Average (ARFIMA) and Markov- Switching model	Oil price forecasting remains a challenging Issue due to the particular characteristics of oil price and its podigious impact on various economic sectors. Motivated by this issue the author aim to	PROS: The specific weights are assigned to each model to achieve an accurate prediction of the empirical time series. Robustness of results and prediction quality of the hybrid model compared CONS: Reliable forecasting of crude oil prices is especially beneficial to producer and imposter nations to optimize their production and order rates and mitigate the adverse effects of possible shocks.
2021	Towards predictive Crude Oil Purchase	Jen-Yulee and Tien-Think Ngugen	Autorecresive Integrated Moving average (ARIMA) and Sessional Auto regressive integrated moving average (SARIMA)	Crude oil price impact volatility global economy in general as well as the economy of Europe and us particular supremely difficult to describes to tendency precisely. Hence it is used to forecast methodology to approach autorecresive cope with predictive crude oil.	PROS: We further estimated the forecasts of

					various time period as there are a multitude of factors that can affect the prices of oil.
2018	Online media sources to forecast the crude oil price	Elshendy, and M., Fronzetti colladon	GDELT and ARIMAX	This slady looks for signals of economic awareness on online social media and test this significance in economic predictions the study analyses over a period of two years the relationship between West Texas intermediate daily crude oil price and multiple predicators extracted from twitter google trends , Wikipedia and the global data on events, language and Tone database.	PROS: Advantages of integrating information from Different platforms, to relative the predicative model, neural network based models.
2018	Crude Oil Price Prediction using LSTM networks	Varun Gupta, Ankit Pandey	RNN,LSTM	In this paper, we have tried to predict crude oil prices is using LSTM based RNN. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.	PROS: All the input to the proposed network were normalised to achieve the best results. CONS: Increase in lookback, accuracy of the Network decreased.

2019	Hybrid	Rajesh Prasad	Hybrid	Crude oil price	PROS:
	Approach	Tajosii i iusuu	approach	prediction is a wide	DMA model
	and		model, AI	area of research that	provides better
	econometri		approach DMA	has been for a very	proxy of expected
	c models		model, SSL.	long time in history	Spot price than
			1110001, 552.	and numerous	future price.
				approaches have been	CONS:
				proposed in predicting	However
				crude oil price. The	prediction using
				Econometric models	powerful AI tool
				Cover many familiar	like the LSTM of
				models. LSTM is	the DL is very
				applied on the	rare.
				extracted dataset to	
				train and test the	
				models. At the end the	
				prediction of crude oil	
				Prices is evaluated	
				with a view to	
				discovering	
				knowledge.	
2020	Crude oil	Nidhi Motra,	RNN,LSTM,	This is the attempt	PROS:
	price	Priya Raj,	Backpropagati	mode to forecast price	LSTM network is
	prediction	Sanidhya	on ,CNN	prediction using	better than other
	Using	Saxena, Rohit		LSTM neural network	tradition neural
	LSTM	Kumar		We have come across	network for
				Testing different	forecasting
				various version of	prices.
				model using various	CONS:
				lookback and	Large look ups do
				alternative turning	not necessarily
				methods. The	improve the
				conclusion derived	accuracy of the
				from this study are	prediction of
				promising and	crude oil prices.
				represent and more	
				precise prediction for	
				the crude oil price in	
				coming days.	

2020	The prediction of Brent crude oil trend using LSTM and Facebook prophet.	Cruleryuz. D, Oxden. E	RNN,LSTM, Facebook Prophet	In this study, to increase the accuracy and stability, the Long Short Term Memory and Facebooks prophet were applied to foresee future tendencies in Brent Oil Prices considering their previous prices.	PROS: LSTM and Facebook prophet Can predict the 349 weeks without needing the actual price of the previous period.
2021	Crude oil price forecast based on Dup Transfer Learning	Ahao deng, Liang Ma and Taishan	RNN, LSTM And Transfer learning	This paper proposes using Long Short Term Memory Network based on transfer learning to predict the price of crude oil in Shangai. The basic idea is to take advantage of the Correlation between Brent crude oil for training in the early stage and the use Shangai crude oil to fine –tune the network.	PROS: The proposed T-LSTM can accuracy predict the crude oil price of Shanghai and the model has strong generalization ability and higher Predication.
2021	Crude oil price based on the variable selection-LSTM integrated model	Shaelong sun	BTNA, and LASSO-LSTM	This paper assesses and selects are influence factors with the elastic-net regularized linear model (GLMNET), spike-slab laser model and bayseian model average (BSA). The influence factors of crude oil price into price supply and demand finance factor.	PROS: BMA- LSTM Integrated models are the best compared with other techniques CONS: Hard to learn LSTM

2018	Crude oil	Lean yu	ARIMA, SVM,	A new SVM based	PROS: The
	price		BPNN (Back	method for time series	support vector
	forecasting		Propagation	forecasting and its	machine can
	based on		Neural	application in crude oil	perform very well
	support		Network)	price prediction are	on time series
	vector			presented. We first	forecasting.
	machine			introduce a basic	CONS: It does
				theory of the support	not execute well
				vector machine model,	when the data set
				and then present the	as more sound,
				new SVM based	target class are
				methods for time	overlapping.
				series forecasting.	
	1				