The state of the s

BIRCH, STEWART, KOLASCH & BIRCH, LLP

TERRELL C BIRCH
RAYMOND C STEWART
JOSEPHA KOLASCH
JAMES M SLATTERY
BERNARD L SWEENEY*
MICHAEL K MUTTER
CHARLES GORENSTEIN
GERALD M MURPHY, JR
LEONARD R SVENSSON
TERRY L CLARK
ANDREW D MEIKLE
MARC S WEINER
JOE MCKINNEY MUNCY
ROBERT J KENNEY
DONALD J DALEY
JOHN W BAILEY
JOHN W BAILEY
JOHN A CASTELLANO, III
GARY D. YACURA

OF COUNSEL
HERBERT M BIRCH (1905-1996)
ELLIOT A GOLDBERG*
WILLIAM L GATES*
EDWARD H VALANCE
RUPERT J BRADY (RET)*
F. PRINCE BUTLER
FRED S WHISENHUNT

*ADMITTED TO A BAR OTHER THAN VA.

INTELLECTUAL PROPERTY LAW 8110 GATEHOUSE ROAD SUITE 500 EAST FALLS CHURCH, VA 22042-1210 U S A (703) 205-8000

FAX: (703) 205-8050 (703) 698-8590 (G IV)

e-mail. mailroom@bskb.com web: http://www bskb.com

CALIFORNIA OFFICE: COSTA MESA, CALIFORNIA THOMAS S. AUCHTERLONIG
JAMES T ELLER, JR
SCOTTL LOWE
MARK J NUELL, Ph.D.
D RICHARD ANDERSON
PAUL C LEWIS
MARK W. MILSTEAD*
RICHARD J. GALLAGHER
JAYNE M SAYDAH*

JAYNE M SAYDAH*

REG PATENT AGENTS
FREDERICK R HANDREN
MARYANNE ARMSTRONG, Ph D
MAKI HATSUMI
MIKE S RYU
CRAIG A MCROBBIE
GARTH M DAHLEN, Ph D
LAURA C. LUTZ
ROBERT E GOOZNER, Ph D
HYUNG N SOHN
MATTHEW J. LATTIG
ALAN PEDERSEN-GILES
C KEITH MONTGOMERY
TIMOTHY R WYCKOFF
KRISTI L RUPERT, Ph D
LARRY J HUME
ALBERT LEE
HRAYR A SAYADIAN, Ph D

Date: October 16, 2000

Docket No.: 2153-0110P

BOX PATENT APPLICATION

Assistant Commissioner for Patents Washington, DC 20231

Sir:

Transmitted herewith for filing is the patent application of

Inventor(s): Douglas A. NEWBERG

For: DRAINABLE FERRULE VALVE DESIGN

Enclosed are:

Other:

\boxtimes	A specification consisting of seventy-two (72) pages					
\boxtimes	Twenty-two (22) sheet(s) formal drawings					
	An assignment of the invention					
	Certified copy of Priority Document(s)					
\boxtimes	Executed Declaration (Original Photocopy)					
	A statement (\square original \boxtimes photocopy) to establish small entity status under 37 C.F.R. § 1.9 and 37 C.F.R. § 1.27					
	Preliminary Amendment					
	Information Disclosure Statement, PTO-1449 and reference(s)					

The filing fee has been calculated as shown below:

			LARGE ENTITY	SMALL ENTITY
	BASIC FEE		\$710.00	\$355.00
	NUMBER FILED	NUMBER EXTRA	RATE FEE	RATE FEE
TOTAL CLAIMS	1- 20 =	0	X 18 = \$0.00	x 9 = \$0.00
INDEPENDENT CLAIMS	1- 3 =	0	x 80 = \$0.00	x 40 = \$0.00
MULTIPLE DEPENDENT CLAIMS PRESENTED		+ \$270.00	+ \$135.00	
		TOTAL	\$0.00	\$355.00

- A check in the amount of \$355.00 to cover the filing fee and recording fee (if applicable) is enclosed.
- Please charge Deposit Account No. 02-2448 in the amount of \$0.00. A triplicate copy of this transmittal form is enclosed.
- □ Please send correspondence to:

BIRCH, STEWART, KOLASCH & BIRCH, LLP or Customer No. 2292 P.O. Box 747

Falls Church, VA 22040-0747 Telephone: (703) 205-8000

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. § 1.16 or under 37 C.F.R. § 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

Joe McKinney Muncy, #32,334

KM/PCL/smm 2153-0110P Attachments

STATEMENT CLAIMING SMALL ENTITY STATUS (37 CFR 1.9(f) L 1.27(c)) - SMALL BUSINESS CONCERN
Applicant, Patentee, or Identifier: Douglas A. NEWBERG Application or Patent No.: Filed or Issued: October 16, 2000 Title: DRAINABLE FERRULE VALVE DESIGN
I hereby state that I am the owner of the small business concern identified below: an official of the small business concern empowered to act on behalf of the concern identified below:
NAME OF SMALL BUSINESS CONCERN NI TECHNOLOGIES, LIMITED ADDRESS OF SMALL BUSINESS CONCERN P.O. Box 1001, Gambrills, Maryland 20154
I hereby state that the above identified small business concern qualifies as a small business concern as defined in 37 CFR Part 121 for purposes of paying reduced fees to the United States Patent and Tracemerk Citice, in that the number of employees of the concern, including those of its affiliates, does not exceed 500 persons. For purposes of this statement, (1) the number of employees of the business concern is the average over the previous fiscal year of the concern of the persons employed on a full-time, part-time, or temporary basis charing each of the pay pariods of the tiscal year, and (2) concerns are attiliates of each other when either, directly or indirectly, one concern controls or has the power to control the other, or a third party or parties controls or has the power to control both.
I horeby state that rights under contract or law have been conveyed to and remain with the small business concern identified above with regard to the invention described in:
the specification filed herewith with title as listed above. the application identified above. the patent identified above.
If the rights held by the above identified small business contern are not exclusive, each individual, contern, or organization having rights in the invention must file separate statements as to their status as small entities, and no rights to the invention are held by any person, other than the inventor, who would not qualify as an independent inventor under 37 CFR 1.9(c) if that person made the invention, or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d), or a nonprofit organization under 37 CFR 1.9(e).
Each person, concern, or organization having any rights in the invention is listed below: no such person, concern, or organization exists. each such person, concern, or organization is listed below.
Superate statements are required from each named person, concern, or organization having rights to the invention stating their status as small entities. (37 GPR 1:27)
I acknowledge the duty to file, in this application or patent, notification of paying, or at the time or paying, the cartiest of the issue fee or any maintenance tee due after the date on which status as a small entity is not longer appropriate. (37 cmm 1 **(1))

Limited
ADDRESS OF BERSON SIGNING P.S. Box 1001 Gembrils, Maryland 71054
SIGNATURE

DATE

DATE

10

15

DRAINABLE FERRULE VALVE DESIGN

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an automated sample extractor or feeder/inoculator and a removable manual override operator for a vessel or conduit. This vessel or conduit can be a bioreactor or other similar equipment.

2. Description of the Background Art

Development of new or more efficient commercialization of existing products requires faster and more effective methods to measure process variables. This is particularly true in processes which require cell culture and fermentation processes conducted in bioreactors where the accuracy of measurements in the research and development are critical for achieving economic production of high purity and highly refined end products.

Some factors which must be controlled include temperature and pressure. These factors are easily measured by utilizing standard sensors. However, many

15

other factors can be measured only by removing samples for external laboratory analysis. The frequency of sample extraction for testing and measurement, number of tests on each sample and the time constraints on the process vary widely as do the methods and equipment used to obtain the samples.

In most cases, measurement processes for variables do not lend themselves to in-situ measurement by remote sensors directly in the process. Instead, samples must be physically extracted from the process and examined and manipulated outside the vessel or conduit. Before examination and manipulation process can safe, effective means of carried out, a extraction must be made available. By "safe" here we mean that the process should remain as unaffected by the act of taking a sample as possible as the sample itself should. Besides being safe and effective, the removal should also take of sample means consideration that the character of sample material 20 taken from one place is very likely to differ from that taken from another place. Therefore, it is important to provide a means by which sample material can be removed from the vessel from a location where its character correlates well with information being derived from in-25 situ sensor measurements as well as with the character of the bulk of the process material. As such the means for removing material would best be one that also can be flexibly incorporated new or existing systems such as into existing (angled) ferrules and, at the same time, provide a means of sampling the process in the same area as is sampled by other in-situ measurement sensors.

prior art provides for removal of material but does not provide features that could 35 adequately address issues concerning the quality of the material as a representative sample of the process nor effectively incorporated ability to be the

30

35

existing system. Many of the prior art designs do not lend themselves easily to use as a retrofit but, instead, require substantial modification to the system for installation or repositioning. An apparatus should minimize or eliminate the dangers associated with the sampling process in an efficient and cost effective manner while providing quality, reproducible results in order to be of value for commercial application.

When working with samples, especially hazardous samples, it is necessary to remove or feed/inoculate material without endangering the integrity of the process, subsequently sampled material, the operator or the outside environment. Many prior art devices are unsatisfactory in this area.

15 Also, some prior art systems are not automated. Therefore, there is potential danger posed by human procedural errors which could easily result in operator and environmental exposure. Accordingly, a need exists for an automatable apparatus with the capacity for 20 independent verification of equipment operation built in.

There is a need for an automated system which offers a quick, easy-to-use means to override the automation apparatus. Sampling is most important processes of which relatively little is known. apparatus should be one that is easily incorporated into new and existing systems in one or more places in a cost-effective way, allowing material to be removed or added to the process at multiple points so that the means for monitoring and controlling optimal process can be established. Once defined, unnecessary or redundant devices should be easily removed from the process without adversely affecting the process but these devices should, ideally also remain intact and unaffected so that they may be readily used again in other process development, monitoring and control applications.

There always is a need to collect unanticipated samples. In providing this means, it is critical that the apparatus should be able to provide essentially identical samples in either case (i.e. manual or automated mode). Furthermore, the materials being sampled themselves are often expensive. Therefore, excessive removal of sample should be avoided.

In the existing art, rotating cams and rotating knobs or handwheels are usually the means employed to open and close sampling valves. These designs require the operator to move their arm or, at least their hand, through a range of motion of 90-180 degrees or more. In the very best conditions this motion will take at least 1.0 second to perform a full cycle (open and close).

- 15 Since most sample port apertures are 5 mm or more in diameter, it is very likely that 30 ml or more of process material will flow out between the time the valve is opened and closed. Usually the volume of sample required is small, often 50 ml or less.
- As a consequence, one of two events occurs. Either a relatively large amount of sample material is wasted or the technician must resort to "throttling" the valve (partially opening it). Since process material is either valuable, hazardous or there is a need for cleanliness, there is a tendency of technicians to resort to throttling the valve to more carefully and accurately control the flow of sampling material. However, "throttling" can significantly alter the sample in two important ways.
- First, the smaller, more fluid elements of the sample will more easily pass through the constricted opening rather than the larger, more viscous elements. The result is a selective removal, or sieving out, of the larger, more viscous elements from the sample.
- 35 Second, those elements that do pass through the crevice will have been subjected to high levels of shear, possibly significantly altering their physical

and chemical properties, changing them from the desired representative subsample of process populations and conditions.

An effective means to minimize this effect will require the valve to be opened to a full open position until enough sample is drawn at which time the valve must be rapidly closed. Automated actuation using electromagnetic solenoids or pneumatic actuators which have only two position, "open" or "closed", are much more preferable over "throttling" or "positioning" actuators.

Likewise, to eliminate sample bias in a manually operated valve, a manual motion which can be rapidly translated into full articulation of the operating rod from fully "closed" to fully "opened" and back must be The fastest (articulating) elements humans, besides the eyes, are the fingers. A "flick" or "snap" of the fingers takes a fraction of a second. Since most sample particles are much smaller than the 20 range of motion used in a single flick of a finger, direct coupling of finger motion to actuation of the operating rod of the sampling valve presents effective solution. Furthermore, because relatively small cross sectional area of sampling orifice and the relatively moderate pressures used in 25 most (biological) manufacturing processes, little or no gear reduction will be required to overcome the tension of a "fail close" return spring operating on valve operating rod to close and form a seal at the orifice. The mechanism described here can easily and quickly be valves with removably connected to mechanisms. When manual sampling is necessary, triggeraction control can provide a more physically and chemically representative subsample of the process with 35 more precise control of sampling volumes with less wasting of material.

When removing or adding material to a process, it

is often desirable to maintain the aseptic integrity of as well as protect the surrounding process environment. As such it is important that material from addition operation previous removal or 5 contaminate the environment, the process or the current sample material. Loss of a sample run or contamination extremely expensive can have the process it is important to add Therefore, ramifications. material or obtain a sample without the procedure 10 causing contamination.

Many prior art devices permit accumulation or pooling of samples or cleansing medium. When the device is first used this may not create a problem; however, upon subsequent runs, the sample material or material added to the process through the device may be contaminated, or at least, diluted.

Additionally in the prior art, technology used for taking samples is generally unsatisfactory for feeding/inoculating the vessel or container.

20

25

30

35

15

SUMMARY OF THE INVENTION

Accordingly, it is a primary object of the present invention to provide an apparatus for moving flowable material either in an automated or manual fashion into a vessel or conduit (an inoculation apparatus) or to move flowable material from the vessel or conduit (a sample extractor).

It is an object of the present invention to provide an apparatus which can be retrofitted to existing standard tank port holes without requiring equipment modification.

It is the further object of the invention to provide means to retrofit the present invention into existing tanks port holes of different lengths or to be installed in a penetrating configuration, equivalent to other in-situ sensors.

Another object of the present invention is to

35

provide an apparatus which will provide a representative subsample of the process composition which will better correlate with in-situ sensor measurements, even in applications involving heat labile or electrically sensitive materials.

It is a further object of this invention to provide an automated and manual means of sampling the process, the results of either being of equivalent quality and equally being representative of the process.

It is also an object of the invention to provide a means by which manual and automated operators can be added, removed or exchanged from the valve while it is in service and without jeopardizing the aseptic integrity of either the process or the outside environment.

Another object of the invention is to provide a device that has a safety catch so that the valve cannot accidentally be opened.

Furthermore, it is an object of the invention to provide within the same means a way to lock the valve in the open position to facilitate the taking of large volume of samples.

A further object of the apparatus is to provide a means by which samples can be safely and reliably taken automatically without having to worry about injury to someone who could be caught unaware standing near or up against the device when it automatically actuates. A corollary to this is that blockage to the mechanical elements and interference with sample taking is also avoided.

Still another object of the present invention is to eliminate or minimize the dangers of the sampling process such as contamination of the sample, process or surrounding environment.

It is a further object of the present invention to provide an apparatus which will conduct a sampling and

maintain the sample in sealed arrangement such that there will be no danger to the sample itself or to the operator, the process and the surrounding environment.

Another object of the present invention is to provide an automatable system to eliminate operator error.

It is the object of the invention to provide means for effectively duplicating automated action in a manual override mechanism.

10 Yet another object of the present invention is to provide for a built-in verification of proper operation of the apparatus.

Still another object of the present invention is to provide a sample apparatus which avoids contact of the sample with dynamic (sliding or rotating) seals, thereby avoiding potential sites for accumulation of carryover contaminants.

A further object of the present invention is to eliminate the usual static crevice areas which may 20 collect contaminates but yet are inaccessible to cleaning and sterilization agents and thus eliminates areas which might harbor carryover contaminants.

It is a further object of the present invention to avoid dead (stagnant) spaces in the apparatus which would result in samples that are not truly reflective of the process.

Yet another object of the present invention is to avoid obstacles or barriers to free drainage of the samples, not only when the device is installed in portholes with down-sloping or horizontal interior axes of orientation but also even when the device is installed in portholes with positive interior axes of orientation relative to horizontal.

Another object of the present invention is to 35 provide a relationship that relates the diameter of the valve sampling orifice to the angle of orientation of the porthole's internal axis with horizontal, the

porthole's internal diameter and the length of the porthole's internal bottom margin, providing a means to design valves to fit in existing portholes while maintaining the capability to be free-draining as does the invention in its latest embodiment.

Still another object of the present invention is to provide a flushing arrangement for the apparatus whereby contaminants and other material will be forced from the system.

Yet a further object of the present invention is to avoid excess process void volume inside the apparatus which would result in sample volume measurement difficulties and material wastage.

Still another object of the present invention is to avoid passive "breathing" between the seals of the apparatus and the outside environment.

Another object of the present invention is to provide an apparatus which can be repeatedly cleaned and/or sterilized in place.

A further object of the invention is to provide a means by which samples can be extracted from within the body of the process closer to where the sensors take their readings rather then at the margins (of vessels or conduits) where samples are taken as when using prior art devices.

It is an additional object of the invention to minimize the amount of thermal and/or electrical exchanged between the apparatus and the process within the vessel or conduit, especially during heat sterilization cycles, even though the device may be installed in a configuration where in the sampling orifice may be positioned well within the body of the process fluid.

Yet another object of the present invention is to 35 provide an apparatus which can easily be removed and quickly disassembled for maintenance, including replacement of worn parts.

A further object of the present invention is to provide an apparatus whose materials are compatible with the sample materials and the process.

Yet another object of the present invention is to provide a low cost apparatus which can effectively carry out sampling or inoculation.

Still another object of the present invention is to provide an apparatus which will be reliable, easy to maintain and low cost.

Another object of the present invention is to provide multiple use capability of the apparatus including feeding/inoculation as well as sampling.

These and other objects of the present invention are fulfilled by providing an apparatus for moving a sample of flowable material through a port in a wall of a vessel or conduit. Thus, this apparatus can either feed in or withdraw materials.

The apparatus comprises a body having an internal cavity with an end wall and an orifice in that end 20 wall. The valve body, walls near the end wall and the endwall, itself, may be at least one of hollow or coated or fabricated of at least one of a thermally or electrically insulating material. The purpose of the hollow, coated or insulating material character being 25 one of isolating the thermal and/or electrical internal valve sterilization and/or operating process from the heat and/or electrically sensitive process material it may (from time to time) come into contact with. Means (a threaded collar or clamp, for example) which is 30 fixed or adjustable in position along the body is provided for coupling the body to the port in the vessel or conduit. Where isolation of the process from the valve components is necessary, a diaphragm valve is positioned within the internal cavity of the body. Where a diaphragm is necessary to isolate the process,

35 Where a diaphragm is necessary to isolate the process, it would incorporate a sealing tip to close off the sampling orifice, said sealing tip being connected to

and continuos with a flexing diaphragm which can be removably anchored to the valve body so as to isolate mechanical components and crevices from process, two embodiments of the diaphragm valve being 5 one with a diaphragm with a (blind) bulbous tip and a rubber bellows with a tubular body and a blunt sealing tip or one with a long shaft with a (blind) blunt sealing tip at one end and a (conical) flexing base at the other. The tip of the diaphragm can be moved to 10 close or open the orifice. The body of the valve is spaced from the interior surfaces of the internal cavity to thereby define a sample cavity. This sample cavity is communicable with the orifice. A valve operating rod is attached to the blunt sealing tip and 15 is moved by an appropriate drive to open and close the orifice.

The valve operating rod extends out the rear of the valve through a plate attached to the rear wall of the valve. This plate (may) include seals that isolate 20 the valve interior from the outside environment.

A manual valve actuator, including a leverage adjustable trigger mechanism, a safety catch, secondary return spring with spring tension adjustment stroke-limiting backstop, may be removable 25 connected to the valve body and operating rod at the back of the valve. An automated actuator can also be removable added at the same point with the trigger mechanism being removed and, if desired, reattached onto the rear wall of the automated actuator. The valve operation, therefore, can be either manually or automatically driven, the manual method being one of a finger controlled trigger action mechanism while the automated method being one employing a pneumatic, electromagnetic or other acceptable means of actuation. The results in all cases are essentially the same back

and forth articulation of the valve operating rod resulting in opening and closing of the valve.

35

An inlet passage leads to the sample cavity of the body. In some instances where cleaning and sterilizing can be performed through the sampling orifice, the inlet passage may be eliminated. In practice, if it is 5 present, a restriction is that it also unobstructedly drain down to the drain hole and be connected with the internal cavity.

A drainage trough (or channel) formed (anterior portion of the) body leads away from the 10 orifice in the sample cavity of the body to some lowest point within the internal cavity from which material may be drained out of the cavity. The bottom of this channel forms a path between the orifice and the drain opening, the path having an angle or angles 15 declination to it so that, when installed in a ferrule, the angle of declination of the path is always greater than that of the ferrule. The sides and the rear wall of the internal cavity all have unobstructed paths that drain down to the drain opening exiting the valve 20 which, when in combination with the forward drainage trough lead down to the drain opening lowest point in the internal cavity and form a drainage basin with unobstructed drainage capabilities over a wide range of installation angles. This drain trough or channel has a longitudinal axis which is noncoaxial with longitudinal axis of the portion of the valve body which can be inserted into the porthole.

In one arrangement, steam, air and/or a wash medium can be supplied through the inlet passage, sample cavity and out the drain passage in order to clean the interior of the apparatus. With the tip of the valve moved to open the orifice, the sample can then be extracted from the vessel or conduit through the sample cavity and out the drain passage. sample will be fed to means for collecting the sample.

When the used for apparatus is feeding or inoculating, material is normally fed through the inlet passage. This diaphragm valve is retracted and the feed or inoculate is forced through the inlet passage, past the diaphragm valve into the vessel or conduit.

In some case only one passage into or out of the valve is necessary in addition to the orifice. In these cases the washing and sterilizing of the valve can be done through the orifice at the beginning and end of the process or, in the case of feeding, by making use of the drain passage by reversing flows as necessary.

10 If, when the adjustable collar is positioned part way forward along the barrel of the valve and the tip of the valve is flush with the inside wall of the vessel, the collar may be repositioned all the way back on the barrel of the valve and reinserted into the ferrule. Now the secondary o-ring in the valve cap 15 forms the seal with the ferrule and the tip of the valve will protrude beyond the margins of the vessel into the body of the process in a fashion similar to that of in-situ sensors. Since this is the region where 20 the sensors take their readings, taking samples from this area will correlate better with sensor readings. Alternatively there may only be one o-ring groove along the barrel and the valve may always be installed in a protruding fashion or, if the user does not need to remove the device, the barrel may be 25 permanently affixed into the wall of the vessel or conduit in either the flush or protruding fashion, thereby eliminating the need for the o-ring groove and the adjustable collar.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those

skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:

FIGURE 1a is a perspective view showing the 10 apparatus of the present invention attached to a vessel;

FIGURE 1b is a perspective, sectional view showing the apparatus of the present invention without the endcap of the valve body;

FIGURE 2 is a side, sectional view of the valve and end plate with the manual trigger actuator attached;

FIGURE 2a is a cross section of a valve assembly (made of insulating material) without an actuator in an 20 inclined ferrule, penetrating into the body of a vessel or conduit;

FIGURE 2b is a cross section of the spring backstop, spring sleeve and full view of the spring;

FIGURE 2c is a cross section of the diaphragm 25 backstop;

FIGURE 2d is a cross section of a diaphragm with a conical base;

FIGURE 2e shows the variables used to design a valve for retrofit into an existing ferrule, particularly an inclined ferrule;

FIGURE 2f is a side cross sectional view of a portion of the valve assembly without an interior portion of the valve housing above the drain passage removed;

FIGURE 2g is a side cross sectional view similar to FIGURE 2f, but with a portion of the valve housing above the drain passage removed;

FIGURE 3 is a schematic view of the apparatus of the present invention used as an extractor;

FIGURE 4 is an exploded view of some of the various parts associated with the valve;

5 FIGURE 5 is a perspective end view of the rear valve operating nut shown in Figure 4;

FIGURE 6 is a perspective end view of the non-rotating spacer and stabilizer pin shown in Figure 4;

FIGURE 7 is a perspective end view of the bushing 10 shown in Figure 4;

FIGURE 8 is an exploded side view of the valve operating rod and valve operating rod cap;

FIGURE 9 is an end view of the valve operating rod;

15 FIGURE 10 is an end view of the valve operating rod cap;

FIGURE 11 is a side, sectional view showing the endcap of the valve body;

FIGURE 12 is a side, partial sectional view of the apparatus of the instant invention showing the means for coupling the apparatus to a ferrule of an apparatus or conduit, an end cap of a valve subassembly being omitted for clarity;

FIGURE 13a is a perspective, orthogonal side, 25 sectional view of an adjustable coupling means

FIGURE 13b is a side, sectional view of an alternative adjustable coupling means;

FIGURE 14 is a perspective, sectional view of a backend plate in position between the valve and the 30 manual trigger actuator assembly the means for coupling;

FIGURE 15 is a perspective, side view of the disassembled means for coupling;

FIGURE 16 is a perspective sectional view from the rear of the incorporation of an automated pneumatic actuator into the valve-manual trigger actuator assembly;

15

25

30

FIGURE 17 is a perspective, sectional view of the manual trigger actuator assembly;

FIGURE 18 is a schematic end view showing the inlet passage and outlet passage;

5 FIGURE 19 is a side, sectional view illustrating the positioning of the inlet passage and drain passage of the apparatus of the present invention;

FIGURE 20 is a schematic view of the present invention attached to a generally horizontal ferrule;

10 FIGURE 21 is a schematic view of the instant invention showing the apparatus connected to a downwardly sloping ferrule;

FIGURE 22 is a schematic view of the instant invention showing the apparatus attached to an upwardly sloping ferrule;

FIGURE 23 is a schematic view of the instant apparatus used as a feeder/inoculator;

FIGURE 24 is a view similar to Figure 13 showing the apparatus extending beyond the interior wall of the vessel or conduit;

FIGURE 25 is a schematic view showing the operation of certain valves in the instant apparatus; and

FIGURE 26 is an example of a timing chart for one operation of the instant invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

context of these discussions, "ferrule' In the "porthole" may be used interchangeably. Furthermore, throughout these discussions a ferrule is discussed as though it had a round cross section with uniform a concentric central throughbore terminating on the process side (front) flush with the interior vessel or conduit wall. Also through out these discussion an example is used where in all parts are aligned in plane that forms a vertical cross section through the assembly. All of these cases are selected both because they are

25

30

5

10

the simplest arrangement to understand and would probably also be the most likely arrangement to be used. It should be understood, however, that many other related arrangements will become obvious once the design concepts and associated equations presented here are understood. Some examples would include offsetting elements of the system such as passages, modifying shapes such as round or oblong profiles, changing sealing arrangements from o-rings to diaphragms or vice versa. cases such as in the case of offsetting passages, these may result in the need to augment or modify certain formulas provided herein to bring them in line with the modified These changes, however, would be obvious to one configuration. knowledgable in the field once they have read and understood the description provided herein and, therefore, should be considered an extension of the art revealed within this description.

It is assumed in this discussion that the design goal is a valve that can be removably fitted into a ferrule. If the designer wishes to install the valve body permanently into the vessel or conduit, the value of the relationships described herein are not lost since they can still be used to achieve the same goal of providing a valve capable of freely draining from a port installed in a configuration that is inclined from a horizontal plane.

It is one of the purposes of this invention to provide means of assuring that when the embodiment of the valve is installed in a ferrule of a vessel or conduit, the lowest point of the valve's orifice 16 will be above the down-directed drain opening 33 (the drain opening being a free-draining exit from the valve located beyond the rear-most bottom margin of the ferrule where a drain would no longer be restricted by being within the geometric confines of the ferrule) and that these two will be connected by a drainage trough within the internal cavity of the valve, trough having a bottom profile from the

10

orifice opening to the opening of the drain opening that continuously declines at an angle greater than the angle of inclination of the axis of the ferrule's internal bore when the valve is installed in the ferrule and that inclines to the sides and to the rear from the drain opening 33. Whether or not free drainage through a flush-mounting (with the internal wall of the vessel or conduit) or penetrating (into the process, beyond the internal wall of the vessel or conduit) valve is achievable when mounted within the fixed geometry of an existing ferrule depends on three characteristics of the ferrule (as installed in the vessel or conduit). These characteristics will be discussed with reference to Figure 2e

Referring specifically to Figure 2e, ferrule 2 has an internal bore 3 with three characteristic features:

- 1) a diameter **Df** of internal bore 3;
- 2) an angle **Aa** of the axis of internal bore 3 measured relative to a horizontal plane, with an inclined bore 3 have a positive angular valve, a declining bore having a negative value and the value of Aa for a horizontal bore being "0";
- 3) **Lf**, the actual length of the bottom margin 56 of ferrule 2, measured from a point (**Pr**) formed by the bottom rearmost margin 8 of bore 3 forward to the point along the bottom margin 56 where bore 3 opens into the process and is flush with the internal wall of the vessel or conduit.

The length Lf of internal bore 3 can be broken into **Lfh**, its horizontal component, and **Div**, its vertical component. Lfh can be calculated:

Lfh = Lf COS (Aa)

30

When a ferrule is inclined, the bottom rear margin at point Pr rises up like a wall and becomes the high point of a barrier to free drainage from within the ferrule. In order to get

15 15 L L L 20

25

30

5

10

beyond that barrier it is necessary to build a drainage trough 18 in the valve that, when installed in the valve 13 will provide an inlet at the process, the orifice 16, whose lower margin 20 forms the beginning of the trough 18 and which passes above or above and to the side of the bottom rear margin 8 of bore 3 down to an outlet 22 beyond the confines of the ferrule, the beginning of drainage trough 20 at the base of orifice 16 being above the outlet of the trough 21 and where the trough constructed within the valve body that continuously descends at an angle greater than the angle of inclination of the axis of the ferrule's internal bore 3 when the valve is installed in the ferrule. A horizontal plane can be imagined to extend forward from point Pr wherein the drain trough, beginning at the lower margin 20 of orifice 16 and passing back, just over and then beyond point Pr, is always above said plane but moving closer to it as the trough descend toward Pr, passing close but still above Pr and then beyond it to a point where it is free of the ferrule and can be drained out of the system. Thus, the start of the drainage trough 20 (which is coincident with the base of the orifice) and the trough all of the way back to a point just beyond point Pr must be above this imagined horizontal plane in order for the valve to freely drain process though inclined bore 3 in ferrule 2 beyond the point Pr.

The vertical component, Div of Lf, is the diametric height lost in order to off set bore inclination. Div can be calculated anywhere along the bottom margin 56 of bore 3 by using the value of Lf at that point and angle of inclination Aa of the internal bore 3. For a flush-mounting design, the full value of Lf would be used and the calculation would be as follows:

30

5

10

In order to actually achieve free drainage, it is necessary to have impart some minimum angle of declination to drainage trough 20 that is in excess of the offset to angle Aa created by the diametric loss Div. The determination of what is a sufficient positive drain angle, Ab, is dependent on the process. The amount of diametric height necessary to create Ab in drainage trough 20 at any point along the bottom margin of bore 3 can be calculated by using the value of Lf at that point and Ab. For a flush mounted valve, the full value of Lf would be used:

Ddv = [(Lf) COS (Aa)] [TAN (Ab)]

When a ferrule is installed at an inclined angle, the area where its internal bore intersects with a vertical plane such as the case with a vertical internal wall of a vessel or conduit changes from being circular to being elliptical in cross section (except in some compound angle cases). The major axis of the ellipse that forms the margin of the opening of the ferrule bore into the vessel or conduit we call the vertical diametric axis or the ferrule bore diametric height, **Dfv**, can be calculated:

Dfv = (Df)/[COS (Aa)]

The point tangent to the upper margin of this opening is (Pt) and will be discussed later.

The diametric height, Dfv, is the vertical height of the internal diameter of the ferrule. It is the composite sum of several diametric components. Its value is important because if it is great enough relative to Lf and to Aa, a valve which will be free draining while mounted in an inclined ferrule can be constructed.

30

10

The diametric height Dfv of internal bore 3 of ferrule 2 is composed of:

Dov: Diametric height for orifice construction.

5 Div: Diametric height lost due to inclination of bore 3 in ferrule 2.

Ddv: Diametric height to assure channel drainage (beyond the horizontal).

Dr1: Diametric space required to make a seal on the upper outside diameter of the valve body 13 with bore 3 of ferrule 2.

Dr2: Diametric space required to make a seal on the lower outside diameter of the valve body 13 with bore 3 of ferrule 2.

Dv1: Diametric space required to form the upper margin of annular wall 17 of the valve body 13 against which a seal is formed when the upper margin of sealing tip 30 engages the upper margin of annular wall 17.

Dv2: Diametric space required to form the lower margin of annular wall 17 of the valve body 13 against which a seal is formed when the lower margin of sealing tip 30 engages the lower margin of annular wall 17.

 $$\operatorname{\textsc{Dw}1}$$. Diametric space required to form the outer wall at the upper margin of the valve body 13.

Dw2: Diametric space required to form the outer wall at the lower margin of the valve body 13 or some minimum wall thickness of the bottom margin of drain trough 18 in order to allow material to flow over point Pr and down to the drain opening beyond.

Ds1: Diametric space required to allow for the interstitial space between the ID of the ferrule 2 and the OD of the valve body 13 along the body's upper margin.

Ds2: Diametric space required to allow for the interstitial space between the ID of the ferrule 2 and the OD of the valve body 13along the body's lower margin.

In order to be able to construct a free draining valve mounted in ferrule 2:

$$5 Dfv > or = [(Dr1+Dr2) + (Dv1+Dv2) + (Dw1+Dw2) + (Ds1+Ds2) + Dov + Div + Ddv]$$

This equation can be solved for Dov:

10 Dov < or = Dfv -
$$[(Dr1+Dr2) + (Dv1+Dv2) + (Dw1+Dw2) + (Ds1+Ds2) + Div + Ddv]$$

The contribution of interstitial space is usually negligible or is difficult to differentiate from the external sealing arrangement elements so it may be folded into Dr1 and Dr2, simplifying the equation to:

$$Dov < or = Dfv - [(Dr1+Dr2) + (Dv1+Dv2) + (Dw1+Dw2) + Div + Ddv]$$

Since wall thicknesses, sealing arrangements, interstitial space and annular seal arrangements are all determined by specific process requirements, manufacturing materials and methods which may be held constant for a range of different ferrule and valve configurations, a constant C may substituted for them and the equation rewritten as:

$$Dfv > or = (Dov + Div + Ddv + C)$$

or:

$$Dov < or = Dfv - [Div + Ddv + C]$$

Or:

15

20

25

30

25

30

5

10

Ddv < or = Dfv - [Div + Dov + C]

It is important to find the optimal combination of both the orifice side and the drainage angle in order to get the best drainage from the system.

In order to determine if it is possible to build a valve that will drain from positions within the process or from positions within the ferrule, an effective internal bore length, Lfe can be substituted into the equations for Lf. Lfe is the measured length along the bottom margin 56 of bore 3 from Pr to the point that would be coaxial with a vertical axis passing through the point 20 selected for the bottom margin of the into drainage trough 18. the orifice 16 opening of penetrating valve design has the effect of lengthening the A longer inclined ferrule bore length ferrule bore length. results in larger values of Div and Ddv in order to maintain the steady drop over a longer effective ferrule length. This, in turn, results in less residual diametric height for the sampling orifice as well as other structural elements of the valve. the diameter Df of bore 3 is too small, the angle Aa too steep or the length of penetration too great, all of the diametric height available in a particular ferrule installation may not be enough to compensate for the values of Div and Ddv as well as other valve diametric components. In this case it would not be possible to build a free draining valve.

For penetrating or flush-mounting valve designs, when a horizontal plane through Pr is also coplanar with Pt or when this plane passes above Pt, no free draining valve may be It is always necessary with penetrating or flush constructed. mounting designs that at least the lower margin of drainage trough 18 pass under point Pt with sufficient vertical space between the two such that the construction of the

20

25

30

5

10

structural components necessary above the trough can be accomplished and yet still allow some vertical height so that flow can be achieved down the trough, past Pt.

For a system (valve and ferrule) which includes a valve with an orifice formed within the confines of the ferrule, the position of Pt is not relevant since flow can move the ferrule to and through the orifice (assuming the level of fluid in the vessel or conduit is also above the level of the orifice). In the situations where the orifice is within the ferrule bore, the new Pt is the point that is the upper margin of the ferrule bore located in a vertical plane that also passes through the lower margin of orifice 16. In fact, Pt can always be defined as the point that is the upper margin of the ferrule bore located in a vertical plane that also passes through the lower margin of orifice 16 and, in the construction of the valve, it is merely necessary that the trough originating at the base of orifice 16 descend at some angle while installed in the ferrule but still pass above point Pr or above and to the side of Pr on its.

In some large vessels equipped with relatively long steeply angled small diameter ferrules, it is not even possible to construct flush-mounting valve arrangements. In these cases the best that can be accomplished is to draw the position of the orifice back up into the ferrule internal bore to appoint where there is sufficient diametric height to accommodate all of the necessary valve structural elements, including a sufficiently large orifice and a steep enough slope for the drainage trough. This situation is less than optimal since positioning the orifice up inside a ferrule places it in a "quiet" zone which will tent to stray in character from the more highly mixed body proper of the process.

35

Referring in detail to FIGURE la, a vessel 53 to which the instant apparatus A will be attached is should be appreciated that the instant invention can be attached to a vessel with a static 5 charge or to a conduit with a static or movable charge. Because this vessel itself of FIGURE 1a is not a part of the instant invention, it is shown in dotted lines. As will be discussed below, this apparatus A can be mounted on the top, side or bottom of the vessel or conduit.

The vessel 53 has a ferrule 1 on the side thereof. Conventional ferrules 1 have a 25 mm internal diameter, for example. A main body 10 of the instant apparatus A has been designed to have an outer diameter generally equal to or slightly less than a standard ferrule diameter. While this 25 mm dimension has been given, it should be recognized that it is merely necessary to have the outer diameter of the body 10 of the instant apparatus A slightly less than the inner diameter of 20 any existing size ferrule. The instant apparatus A of any size can therefore be easily retrofit to existing vessels or conduits with ports of any size. Of course, the instant apparatus can also be assembled to newly manufactured vessels or conduits.

25 The necessary equipment for either charging sample to the vessel or conduit 53 or removing a sample from the vessel or conduit 53 is provided through body 10 of the instant apparatus. Therefore, it is not necessary to alter existing equipment when using the 30 instant invention. This arrangement provides for easy retrofit with standard designed vessels or conduits.

Turning now to FIGURE 2, the instant apparatus A be described in more detail. A main sample subassembly 2 is shown connected to back end plate 118 and a manual trigger actuator mechanism subassembly 108. The main bodies of both of these subassemblies can be machined from a single piece of metal (plastic or

invention.

other material) thereby providing a single, one-piece, unitary structure. By making each of these elements a single piece, the need for several additional junctions can be eliminated with the instant apparatus. Each such 5 junction would represent a potential point contamination, misalignment or malfunction. However, due to the unique sealing arrangements and overall design of the main sample subassembly and the trigger mechanism subassembly of the instant invention, it is not mandatory to use subassemblies machined from single pieces of metal or other material. These subassemblies can, for example, be permanently affixed (welded, glued, etc.) into single units functioning essentially as single pieces.

The main sample subassembly 2 comprises a body 10 with an internal cavity 3. This cavity 3 includes a sample cavity 11 and a central bore 13 which will be discussed in more detail below.

FIGURE 3 shows a control means 4 connected to the apparatus A of the instant invention. This means can be a programmable logic controller, computer operated controller or the like. A part of the control means includes a means for detecting 4a. The operation of this control means 4 and the means for detecting 4a will be described in more detail below.

A supply means 50 is provided for supplying at least one of steam, air and wash medium to the apparatus. This supply means 50 helps maintain an aseptic environment. In some situations, steam alone is sufficient for cleansing the system. In other uses, it is necessary to use pure dry air or a wash medium. Moreover, any combination of these materials can be used. The wash medium can include detergents, alcohol, an alkaline rinse, acid rinse or other wash material. It should be evident that many different arrangements can be used for cleaning and/or sterilizing the instant

20

25

30

The supply means 50 of the instant invention includes a steam feed valve block 5, a pure dry air valve block 6 and a wash medium valve block 7. The steam feed valve block 5 includes a steam source 66 connected to a diaphragm pneumatic valve 67. Also connected to this valve 67 through an electromagnetic valve 69 is a pressurized air source 68. It should be noted that any suitable type of automatic or manual valves 67 and 69 can be used in the instant invention or that these two valves can be combined into a single unit.

The pressurized pure dry air valve block 6 includes a pure dry air source 70. This pressurized pure dry air source 70 is connected to a diaphragm pneumatic valve 71. Also connected to this valve 71 through an electromagnetic valve 72 is a source of pressurized air 73. Similarly to valves 67 and 69, it should be understood that any type of valve can be used for the valves 71, 72. Also, a single unit could replace these two valves 71, 72.

The wash medium valve block 7 includes a supply of wash medium 74. As noted above, this wash medium can be a detergent wash, an alkaline wash, an acid wash, an alcohol wash or any suitable cleansing arrangement. The supply for wash medium 74 is connected to a diaphragm pneumatic valve 75. Also connected to this valve 75 through an electromagnetic valve 76 is a source of pressurized air 77. Again, similarly to valve 67, 69, 71 and 72, any suitable valve or a single unit can be used for these valves 75 and 76.

The electromagnetic valves 69, 72 and 76 are indicated as being connected to the control means 4. It should be noted that the diaphragm pneumatic valves 67, 71 and 75 are also connected to the control means 4. It is merely necessary for the control means 4 to control supply of steam, pure dry air and/or wash medium to the inlet passage 12. Each of these mediums is connected to

the inlet passage 12 through the respective valves 67, 71 and 75. Moreover, while three valve blocks 5, 6 and 7 are shown, any of these can be omitted or additional valve blocks could be used as needed. Also, valves 69, 5 72 and 76 can be combined into a single valve.

The inlet passage 12 is shown as being continuous from the main sample subassembly 2 to the supply means 50. As noted above, this main sample subassembly can be machined from a single block. Appropriate tubing, piping or other connectors can be used to connect the passage 12 bored within the main subassembly 2 to the supply means 50. A tri-clamp connection 15 connects this tubing or piping to the inlet passage within the main sample subassembly. It should be noted that it is usually possible to perform all of the functions normally expected of the above described inlet port through either the sampling orifice (33, described later) in combination with the drain passage 14. For this reason in many cases it may 20 be possible to eliminate the inlet port.

A drain passage 14 is also provided in the instant invention. This drain passage can be bored within the main sample subassembly 2 or can be piping connected to a downstream means for collecting a sample 51 and means 25 for collecting drain 52. These means 51 and 52 will be discussed in more detail below. Similarly to connection for the inlet passage at 15, the drain passage 14 has connection 16. Rather than using a triclamp at the connections 15 and 16, any suitable connection arrangement can be made.

Both the inlet passage 12 and drain passage 14 are connected to the interior sample cavity 11 of body 10. This body 10 not only includes sample cavity 11 but the central bore 13 which together form the above-noted 35 internal cavity 3.

From the rear of sample valve 2, the valve operating rod 22 extends forward through the central bore 123A of the a spring backstop 118A which will be discussed later and into the central bore 13 of body 10 5 as seen in FIGURE 2A. Within central bore 13, rod 22 extends forward through diaphragm backstop 300. While the combination spring backstop 118A and diaphragm backstop 300 are shown, it should be appreciated that any appropriate arrangement can be used for mounting the valve operating rod 22 in the body 10. By using parts 118A and 300, however, assembly disassembly of the sample subassembly 2 can be easily carried out.

Extending between seat 86A of the spring backstop 118A the valve operating rod detent 23 is a spring 27. 15 This spring 27, shown in FIGURE 2a, will urge the operating rod 22 away from the actuating means located to the rear. This will cause blunt sealing tip 32 of diaphragm 49A to close the orifice 33 as will 20 discussed in more detail below. By urging the tip 32 this direction, in the instant apparatus automatically close orifice 33 upon a power failure. Thus, safe operation of the instant apparatus can be ensured.

Turning to FIGURE 2b, the spring backstop 118A is shown along with its central bore 123A and spring seat 86A. Also shown in this figure is a hexagonal rearward extension, rear hex 28A, with the central bore 123A of spring backstop 118A also extending through it. Valve operating rod 22 will, therefore, also extend through this bore when it is inserted through 118A. Also shown is spring sleeve 310, its rear face 311 and forward face 312.

In FIGURE 2c, diaphragm backstop 300 is shown with its parts, diaphragm detent 301, backstop forward face 302, pressure seat 303, central bore 304, backstop rear face 305, body seal o-ring groove 306, body seal o-ring

307, rod seal o-ring groove 308 and rod seal o-ring 309.

FIGURE 2d shows diaphragm 49A with its parts, blunt sealing tip 32, shank 315, flexing cone 314, front base seal 317, back base seal 318, annular lip 313 and rod cavity 316.

FIGURE 2a illustrates the assembled sampling valve. The internal parts are assembled into the valve from the rear starting forward most with the diaphragm and moving back. Assembly is as follows: Diaphragm 49A and valve operating rod 22, which are shown together, may be assembled by slipping diaphragm 49A onto rod 22 from the rear of the diaphragm. It should be noted that the whole diaphragm, only a portion or none of the diaphragm might be molded onto rod 22. If the two are not molded together, the rod 22 may be fitted into the diaphragm through the opening to its cavity 316 found in the center of the flexing cone base.

Once assembled, the diaphragm/rod combination can 20 be slipped forward through the back of body 10 until front base seal 317 engages the real annular diaphragm mating face 319. Diaphragm backstop 300 is slipped over the rear portion of rod 22 until its backstop forward face 302 and diaphragm detent 301 engage back base seal 318 and annular slip 313 of diaphragm 49A. Next, valve 25 operating rod detent 23 may be slipped onto the rod and snapped into the groove on rod 22. Next, spring 27 can be slipped over rod 22 until its forward end engages the rear wall of spring detent 23. Spring sleeve 310 can be slipped around spring 27 and into the rear portion of central bore 13 of internal cavity 3 of body 10 until the forward face 312 engages backstop rear face 305. Lastly, spring backstop 118A can be slipped over the rear portion of rod 22 until its external 35 threads engage the internal threads of body 10. applying a hex wrench to rear hex 28A and tightening it into body 10, its forward face (spring seat 86A) will

urge spring sleeve forward against the backstop rear face 305 which in turn will press up against the back base seal 318 and annular lip 313, causing front base seal 317 of diaphragm 49 to seal against the annular 5 sealing surface of body 10. The tightening of spring backstop 118A also causes spring 27 to be compressed against the spring detent on rod 22, thereby urging the shaft's tip and the diaphragm sealing tip 32 against the annular sealing surface about orifice 33.

When valve operating rod 22 is retracted, blunt sealing tip 32 will be withdrawn from orifice 33, allowing material to flow into sample cavity 11 and down and out drain 14. When the actuator is inactivated (whether a manual or automated device), the compressed spring 27 acting against detent 23 will urge blunt 15 sealing tip 32 forward until it again the sealing surface about orifice 33. The blunt sealing tip 32 of diaphragm 49A tends to form a good seal, helping to minimize deadspace at orifice 33. Of course this blunt sealing tip can be configured in many ways. 20 merely necessary that an appropriate seal be formed with the orifice.

Spring detent 23A consists actually of a retainer ring fitted into a retainer ring slot 23B along rod 22. A washer can be added to form a more uniform mating surface with the spring.

Spring detent 23 can, of course, be an integral part of operating rod 22 but if operating rod 22 is machined out of a solid bar stock rod, making the spring detent an integral part would simply mean more 30 work since it would require starting with thicker bar stock. In some cases, however, making this as one piece may be advantageous.

Alignment of the valve internal components can be seen. To the rear, alignment for the valve operating 35 rod is provided by the bearing surfaces of central bore 123 in spring backstop 118A and forward, alignment is provided by the bearing surfaces about o-ring grove 308 of diaphragm backstop 300.

FIGURES 2a and 2c both show the pressure seat 303. The space in front of this surface provides room for the conical portion 314 of the diaphragm 49A to flex into. It also serves as a support structure in case the diaphragm is subjected to high pressures. The diaphragm may also be strengthened by the incorporation of fibers during its construction.

While a diaphragm with a large sealing tip, a reduced diameter shank and large base is shown, it could be constructed in many other ways. It is only important that there be associated with it an effective sealing tip and a shaft and base portions that allows the tip to be reciprocally opened and closed without exposing the process or sampled material to the mechanical components of the valve.

The use of a diaphragm 49 with conical flexing base 314 and blind bulb end 31A has several benefits. 20 First, all of the moving mechanical parts (such as the valve operating rod 22A and other components associated with central bore 13) are removed from the sample in sample cavity 11. The diaphragm 49A with its conical flexing base 314 are made from a biocompatible rubber, plastic or metal material with thermal and chemical 25 tolerant properties. Furthermore, these components are flexible and have a wide range of motion. This great range of motion allows the apparatus to achieve a flush (or penetrating) mounting condition on a vessel or 30 conduit, even when retrofit to an existing design. Further, this design allows the blunt sealing tip 32 to be withdrawn from the sampling orifice 33 over a great distance. This facet allows the apparatus to provide minimal sample size bias for samples with particles up 35 to at least six mm size in this particular configuration.

FIGURES 4, 5, 6 and 7 show portions of another

rod and diaphragm arrangement. A detailed valve discussion of these Figures can be found in parent applications Serial No. 08/613,586 filed March 1996, the entire contents of which, as noted above, are incorporated herein by reference.

In FIGURES 8, 9 and 10, the valve operating rod 22 and valve operating rod cap 21 are shown. One end of this valve rod 22 has a thick annular groove cut around it, resulting in a short section of narrow shaft, the connector shaft 170. Behind that is the remaining short section of larger diameter shaft, the connector cap 169. On the other end of rod 22 are a set of male threads 87 to mate with the female threads 88 in cap 21. These permit rod 22 to be screwed into cap 21. Of 15 course, other connection arrangements can be made.

A discussion of the connection of the actuators and their connection to the operating rod will be discussed below.

Blunt sealing tip 32 will assuredly seal orifice 33 and not deform and protrude through the orifice 33, 20 because the tip 32 is backed by a metal cap which gives solid support. Also, this cap 21 will prevent tip 32 from sticking to the area around the orifice 33 when the operating rod 22 is retracted.

25

10

Endcap

The orifice 33 is provided in the body 10 as seen in FIGURE 2a. This arrangement is made possible by the internal components modification of the 30 incorporation of the cap into the valve body. This has allowed the elimination of the set screws previously required to hold the endcap 44 in place. It has also allowed the elimination of alignment concerns, o-ring 17 and groove 36 as well as the seam associated with the o-ring and groove. This has also allowed the development of a smooth, crevice-free internal cavity which is capable of providing better drainage from

sample valves installed in ferrules with higher angles of inclination.

In FIGURE 11 of the previous embodiment shows the double walled nature of cap 44. The cap 44 resulting features and benefits including properties. In this later embodiment where cap 44 is an integral part of body 10, the double wall nature of cap 44 along with the insulating properties can also be incorporated 10. Besides double walled, into body properties can also be achieved having a single wall if that wall is coated, inside and/or outside, with an insulating material. Lastly, insulating properties can be conferred onto a design by fabricating the design itself out of materials with highly insulating 15 properties.

By appropriate selection of materials, body 10 can not only exhibit insulating thermal properties but also electrical as well. Key among the benefits of these insulating properties is the ability to protrude the 20 sampling orifice into the body of a process that is heat labile. This allows the placement of resterilizable sampling tip to be placed in a heat labile process in an area adjacent to where in-situ measurements are being taken, significantly increasing the value of the sampled material and its relevance to development effective process monitoring control.

To improve drainage from orifice 33 down and out of the sample cavity 11, the inner walls of cap 44 in the previous embodiment were inclined as could be seen in FIGURE 11. These inner walls could be parallel to the outer walls of the cap 44 if so desired but the alternative inclined arrangement would not be adversely affected if the apparatus A were used in an inclined 35 ferrule.

As will be discussed later, the forward end of the valve, including tip 32, can be extended beyond the

inner wall 56, where a stagnation layer forms to a greater or lesser degree, into the vessel or conduit interior. By moving the sampling orifice 33 into the the fluid, interference from stagnating 5 material along the margins is reduced, increasing the level of quality of representation that the sample has of the bulk of the process. The character of the sample will also correlate better with measurements taken from sensing sensors since their elements are positioned away from the wall in the bulk of the process. In many cases it is not sufficient to have only the ability to withdrawal a sample from deep within a tank, it is also important that the process be thermal or electrically protected. The most recent embodiment of the valve may include an insulated body 15 in order to minimize any adverse effects that might result of any thermal or electrical treatments that may be done to the valve interior between sampling events. These insulating properties 20 will significantly improve the ability to correlate insitu sensor data with the actual conditions at those points within the body of process by virtue of the current invention being capable of being installed with its sampling orifice adjacent to the sensors without adversely affecting the process.

Mounting to a Slanted Wall

In the arrangement shown in FIGURE 12, the wall 56 of the vessel or conduit is shown as being slanted. It 30 should be appreciated that many different configurations for the vessel are also possible. The forward end of the body 10 and/or cap 44 can be appropriately sloped in order to mate with the interior face of the wall 56. In so doing it is important to 35 assure that some seal such as an o-ring seal is formed between body 10 or cap 44 and the inside wall of the ferrule adjacent to wall 56.

Coupler

In FIGURE 13A, a means 57 is shown for coupling body 10 to ferrule 1. This special screw-type connection can be repositioned along a length of body 10. This coupler, alone, allows body 10 to be fitted effectively, in a flush-mounting condition or otherwise, to ferrules having a variety of different lengths.

Around body 10 and extending for a distance 10 forward from front side 91 are a series of evenly uniform circumferential positioning grooves 104. Movably positioned in front of front wall 91 of body 10 and around body 10 is a short cylindrical positioning collar 175. Positioning collar 175 has a 15 retainer flange 92 flush with its front wall 91a. Extending through flange 92 in radial fashion are a set of threaded through holes with set screws 178. These are evenly spaced around its circumference. Leading away to the rear from the flange is a smaller diameter 20 shoulder 176. Positioning collar 175 has a uniform cylindrical inside surface which allows it to move smoothly back and forth on body 10 when set screws 178 have been sufficiently loosened. Coupling nut 105, an internally threaded cylindrical 25 consisting of section 106 ending in a short inner annular lip 177, is positioned around body 10, behind positioning collar 175. This inner annular lip is of a smaller diameter then the outer diameter of flange 92 but greater than that of shoulder 176. Thus, coupling nut 105 can be 30 slipped forward over shoulder 176 so that the forward wall of its inner annular lip 177 can engage the rear wall of flange 92 but preventing it from ever passing around flange 92. The diameter of its inner threads are only slightly greater then the outside diameter of flange 92. The length of set screws 178 in positioning collar 175 have been selected so that their heads will

be flush with the outer surface of flange 92 only when threaded firmly down one into they are positioning grooves 104 on body 10. forward The threaded portion 106 of coupling nut 105, therefore, cannot be slipped forward over set screws 178 and be made to engage with the external threads 107 of ferrule 1 until set screws 178 are all tightened down firmly onto body 10. Coupling nut 105 can then be tightened onto threads 107 of ferrule 1 until front wall 91a positioning collar 175 engages the rear wall of ferrule 10 1. With coupling nut 105 tightly fixed to ferrule 1 and covering set screws 178 which are tightened into a groove 104, and because inner annular lip 177 coupling nut 105 can not slip by retainer flange 92, 15 main sample subassembly 2 is firmly but removably fixed to ferrule 1. Any other subassemblies attached to subassembly 2 will, therefore, also be firmly but removable attached to ferrule 1.

With coupling nut 105 pulled back and set screws
20 178 sufficiently loosened, position collar 175 can be
repositioned along body 10, allowing main sample
subassembly 2 to be adjusted to fit different length
ferrules or, in a given ferrule, to change its
interface with the process from one of flush mounting
25 to one of penetration.

Another means, illustrated in FIGURE 13b, though a little more complex and expensive, will now be described. The cross section shown in FIGURE 13b only has a detailed showing and reference numerals included 30 for the upper quarter part of the cross section shown. The description follows its assembly onto body 10. First, body 10 has an annular shoulder 181 with a forward wall 91. A short cylindrical retainer sleeve 156 with a set of evenly spaced threaded holes 157 radiating outward, is slid over annular shoulder 181 of body 10 and is retained there by a retainer ring 142 held in a groove 143 in annular shoulder 181 just

25

35

behind forward wall 91.

coupling nut 105, consisting of a hollow cylindrical section with a forward internally threaded cylindrical section 106 having an inner annular lip 177 5 on the rear side thereof, can slide freely around the portion of a positioning collar 175. positioning collar 175 consists of a long, relatively thin cylindrical sleeve or shoulder 176 extending to the rear and with a set of screw through-holes 186 located near but not at its posterior margin. Forward, the positioning collar 175 has a short, double flanged cylindrical section, the outer radiating flange retainer flange 92 while the inner radiating flange is positioning flange 167 and the forward wall of both of 15 these being the forward wall 91a of positioning collar 175. There are a set of longitudinal through holes 187 bored longitudinally through forward wall 91a flange 167 adjacent to its inner annular margin. These holes 187 are fitted with countersunk 20 positioning screws 180. These coupler positioning screws 180 held captive in are flange 167 positioning collar 175 from behind by retainer rings 158 riding in grooves 188 in the screw shafts and from the front by the screw heads which are counter sunk in the forward wall 91a of positioning collar 175.

The coupling nut 105 can be slipped onto the positioning collar 175 from behind and held from slipping off the front by the retainer flange 92. With cylindrical retainer sleeve 156 already in place on shoulder 181 of body 10, the positioning collar 175 with the coupling nut 105 already around it can be slipped around body 10 from the front. Positioning screws 180 can be threaded into the longitudinal holes 189 in the front wall 91 of body 10. When these screws 180 are threaded in holes 189 far enough, screw holes 186 of the shoulder 176 will align with the threaded holes 157 in the cylindrical retainer sleeve 156. At

that point, a second set of screws 185 are fitted 176 and tightened 186 in shoulder holes through radially into threaded holes 157 in cylindrical sleeve 156. Once these screws 185 are tightened, coupling nut behind retainer flange captured positioning collar 175 on body 10. Furthermore, the position of flange 92 and forward wall 91a which engages the back wall of ferrule 1 during coupling, can be adjusted along body 10 relative to the position of 10 orifice 33 simply by threading screws 180 in or out of holes 189 in body 10. Thus, sampling subassembly 2 can be custom fit to vessels and conduits with a variety of ferrule lengths as well as providing a means to couple the apparatus in a penetrating fashion in a ferrule of given length. 15

Because the forward advance of the coupling collar 175 is stopped by the engagement of the forward wall of cylindrical retainer sleeve 156 with the rear wall of retainer ring 142 before the longitudinal screws can be threaded out of their respective holes, a user cannot inadvertently disengaged the coupler 57 from the valve, a potentially dangerous event should the vessel then be pressurized.

O-rings and grooves to receive the o-rings can be added along the inside circumferential surfaces of cylindrical retainer sleeve 156 and positioning flange 167 to inhibit this region from collecting dirt.

A third method of removably attaching the main sample subassembly 2 is shown in FIGURE 1b. This arrangement is even simpler than the designs shown in Figures 13a and 13b. Here, a helical thread 186 is provided around the circumference of the forward end of the main body 10 in front of the front side 91. This thread 186 takes the place of the positioning grooves 104. A positioning collar 175 with a rear annular lip can be threaded on thread 186. This allows for an infinite number of adjustment positions over the

threaded range. The threads would not allow the positioning collar 175 to become disengaged unless the collar was threaded too far forward. Such a problem could be avoided by placing a (low profile) retainer ring at the forward end of the threads. When the positioning collar 175 was farthest forward, it would engage the retainer ring. When collar 175 was farthest back, the front wall 91a of positioning collar would be flush with the front wall of this retainer ring.

of course, there are other methods to removable attach the main sample subassembly 2 and these means can be modified in various ways. An example would be the elimination of the grooves 104 on body 10. Though they provide a certain added safety margin, grooves 104 are not essential for the coupling means to work properly or effectively.

Back End Plate

Engaged with the rear wall 119 of body 10 is the 20 front wall 117 of back end plate 118 as seen in FIGURE 14. This engagement creates a static annular seal between o-ring groove 120 and o-ring 121 of back end plate 118 and rear wall 119 around central bore 13. An annular section 122 with a longitudinal axis parallel 25 and coinciding with the axis of the central bore 13 protrudes out from front 117 and rear 130 walls of back end plate 118 as seen in FIGURE 14. Cut into the walls of the cylindrical bore 123 of this annular section 122 are one or more annular o-ring grooves 124 (and 125) equipped with o-rings 126 (and 127). A double o-ring illustrated in FIGURE 14. The rear arrangement is cylindrical portion 166 of valve operating rod 22 extends through cylindrical bore 123. O-rings 126 (127) form a sliding seal between o-ring grooves 124 (125) 35 and cylindrical portion 166 of valve operating rod 22. Collectively, o-rings 121 and 126 (and 127) seal the inside of the valve from the outside environment and

serve as a secondary seal against leaks of the process material to the outside should diaphragm 49 fail. Likewise, they serve as secondary seals protecting the process from the outside environment. Other means of 5 sealing the valve interior from the outside environment could also be used. For example, the seal formed at oring 121 between back end plate 118 and rear wall 119 of body 10 could be moved to an annular position on the alignment lip formed by the outside circumferential 10 wall 128 of the forward protruding portion of the annular section 122 in FIGURE 14 which mates with circumferential wall 129 of central bore 13. Similarly, the seal created between the cylindrical bore 123 of annular section 122 and the valve operating rod 22 15 could be made by placing the o-ring grooves in the operating rod. If this latter approach to sealing about rod 22 is chosen, it may be necessary to extend a portion of annular section 122 to a point closer to the back wall of spacer 26 but with a smaller outside 20 diameter so that it fits within the hexagonal bore 78 of rear nut 28. This will allow a longer continuous surface for the o-rings in the cylindrical portion 166 of rod 22 to seal with cylindrical bore 123. One of the advantages of this arrangement is that of providing a longer alignment surface in back end plate 118 to 25 engage operating rod 22.

Once the intent of plate 118 and its seals have been described, it should be clear to anyone familiar with the art that many other sealing arrangements could be used so long as the sealing purpose is achieved.

Assurance of alignment of back end plate 118 with components of the main valve body 10 and, in particular, valve operating rod 22, is achieved by mating of opposing planar surfaces of front wall 117 of back end plate 118 with rear wall 119 of body 10 as well as the close fit of the alignment lip created by the outside circumferential wall 128 of forward

25

protruding portion of annular section 122 mating with an opposing circumferential wall 129 of central bore 13 adjacent to its intersection with the rear wall 119 of body 10. Of course, it should be understood that proper 5 alignment could be achieved in a variety of other ways. These could include: a series of alignment pins or screws in back end plate mating with an opposing set of alignment holes in body 10 (or vice versa); threading outside circumferential wall 128 to mate with the threaded section of central bore 13 behind rear valve operating nut 28; and other arrangements of opposing alignment surfaces or walls machined to relatively fine tolerances.

Back end plate 118 may be secured against rear 15 wall 119 of body 10 directly using screws, clamping or other suitable means or indirectly by being sandwiched between the rear wall 119 of body 10 and the forward wall 168 of an automated actuator housing 41 (shown in FIGURE 18) or the forward wall 131 of the trigger 20 housing 109.

Coupling Shafts

In order to allow for easy, fast connection of the reciprocating shafts of each of these subassemblies to another, a means for coupling 200 has been incorporated into the design. As illustrated in FIGURE 14, valve operating rod 22 extends through the central bore 13 of sample valve body 10 and central bore 123 of back end plate 118. Just beyond the rear margin of back 30 end plate 118, rod 22 has a thick annular groove cut around it, resulting in a section of narrow shaft. This shaft is the connector shaft 170. connector shaft 170 is the remaining short section of shaft, the connector cap 169.

The connector cap 169 has a greater diameter then 35 the connector shaft 170 as illustrated in FIGURE 15. If the shaft with which it is to mate has a greater

diameter then that of the valve operating rod 22, the diameter of connector cap need not be reduced and can have a diameter the same as that of valve operating rod 22 or larger. If, however, the mating shaft has a 5 diameter only slightly larger, equal to or of smaller diameter then that of operating rod 22, connector cap 169 should also have a reduced diameter. However, it still must be larger in diameter then that of the connector shaft 170. This is because connector cap 169 and shaft 170 interlock in the same fashion with either 10 the forward end of the rear valve operating rod 113 at manual trigger actuator part of the front subassembly 108 or the forward end of the actuator piston 39 of automated actuator 40 as seen in FIGURE 15 16. Whereas the connector cap 169 and shaft 170 form the "key", the "lock" into which they fit is formed by two perpendicular intersecting slots in the mating actuator rod. The first slot, the shaft slot (171 on the manual actuator in FIGURE 15, 171a on the automated 20 actuator, in FIGURE 16) for receiving the connector shaft, is cut into the forward end of the actuator rod in a direction parallel and down through its central longitudinal axis. The second slot, the cap slot (172 on the manual actuator, 172a on the automated actuator) for receiving the connector cap 170, is cut through perpendicular to the longitudinal axis. The result is a "T" profile hole into which the connector cap and shaft, also having a "T" profile, can fit as illustrated in FIGURES 15 and 16.

Although these slots can be through slots, the slots of the interlocking connection shown in FIGURES 14, 15 and 16 are not. If the slots are not through slots, the resulting interlocking mechanism will be stronger, more reliable and durable. Besides the quick, easy connect-disconnect nature of this "lock and key" design, this type of connection does not have the rigorous shaft alignment requirements as do other

arrangements such as threaded connections.

mated, the two two shafts are Once the subassemblies can be pushed together and secured. The interlocking connection between the two shafts will 5 slide into the central bore of the rear subassembly disengaged until they cannot become subassemblies are again taken apart. This arrangement provides a safe, sure and effective connection that, once assembled, cannot inadvertently become disengaged 10 as may be the case with some other connections.

The rear end of the automated actuator piston 39 terminates in a connector cap 169a and connector shaft 170a just like that of rod 22. This allows the user the freedom to attach the automated actuator alone, the 15 manual trigger actuator alone or the automated actuator the trigger actuator attached behind providing an automated system with manual override capabilities. Using this design, switching actuator combinations can be made quickly, easily and without 20 modification of the equipment or interference with the valve's on-line process operation.

Actuator Attachment

25

As indicated above, manual and automated actuators can be used with sample valve subassembly 2 to operate the valve. The benefits of using automated operators levels of reproducibility higher include qualitatively and quantitatively over the current manually operated equipment. There is also the benefit 30 of attendant-free operation. But if there is a power loss, a mechanical problem or an unanticipated sampling requirement, automated systems can be clumsy altogether non-functional. In this case, manual systems are much more dependable, less expensive and do not require the support systems, such as pressurized air, electricity, etc. Then, again, manual systems are not normally as qualitatively or quantitatively consistent

25

30

and require an attendant to take a sample. Because of the variety of situations that exist and because those situations change with frequency, this system was developed to offer the operator any or all operational 5 options without having to shut down the process to remove and modify the actuators on the valve.

The rear wall 130 of back end plate 118 and the rear wall of the automated actuator 179 are both equipped with a means for aligning and attachment to opposing housings as can be seen in FIGURES 14 and 16. The means for alignment of these subassemblies includes a short cylindrical section 122 (122a with the autoactuator) projecting rearward parallel with the longitudinal axis of the body and centered about the centerline of the actuating rods on each of the back end plate 118 and the pneumatic operator housing 41. To mate with these, the forward faces of both the pneumatic actuator housing 41 and the trigger housing 109 have similarly placed cylindrical bores or flange 20 through holes 194 to receive them.

The means for attachment of the actuators can be as follows. The front wall 131 of the manual trigger actuator housing 109 can mate with either the back wall 130 of the back end plate 118 or the back wall 179 of the automated actuator housing 41. The front wall 178 of the automated actuator housing 41 is essentially the same as the front wall 131 of that of the manual trigger actuator housing 109, the difference being only that the lower portion of front plate wall 132 has been removed in order to allow trigger lever 111 to start further forward so that it can have a longer stroke. Both of these walls mate with the back wall 130 of the back end plate 118.

FIGURES 14 and 16 show a pattern of holes for 35 receiving bolts with only the pattern of holes 210 within body 10 having internal threads. Furthermore, the holes in the other flanges are through holes 194

while those in body 10 are blind. In this way, body 10 can be fitted not only with the automated actuator, which, in this case, is a pneumatic operator 40, it can also be fitted with the manual trigger 5 mechanism 108 or both together. As an installing them both would entail positioning back end plate 118 on body 10 (if it is not already in place) followed by the pneumatic operator housing 41 on back plate 118 which would then be followed by positioning the trigger housing 109 onto the rear wall of the pneumatic operator housing 41. Bolts 195 would then be passed from the rear through the pattern of through holes in the front plate 132 of trigger housing 109, through the same pattern of through holes in the 15 pneumatic operator housing 41, through the same pattern in the back end plate 118 and into threaded bores 210 within body 10.

Of course, the threaded holes could be eliminated from body 10 and, instead be place in back end plate 118. Back end plate 118, itself, can be attached to body 10 in a variety of ways, including clamps, threads, etc. Here, back end plate 118 is attached to body 10 by a separate set screws 196 in back end plate 118 with a set of matching threaded holes 197 in body 10. Of course, other means by which the opposing faces 25 of these subassemblies are secured to each other could be clamp flanges, bayonet or any other appropriate means.

30 Manual Trigger Mechanism

described above, the manual subassembly 108 can either be attached directly to the valve at the back end plate 118 or indirectly through the automated actuator housing 41. Similarly, the rear 35 valve operating rod 113 which is the reciprocating member of the manual actuator subassembly, can be connected directly or indirectly to the valve operating

30

Unlike other manual described above. 22 as rod actuators, however, this manual actuator makes use of trigger action for quicker, more precise control of sample volume and better, more reliable sample quality. trigger actuation mechanism primarily manual comprises a retracting trigger lever which engages a transverse pin in the rear valve operating rod. As the rear valve rod is retracted, it pulls the forward valve rod attached to the sealing tip back away from the

10 valve orifice, opening the valve.

In its simplest form shown in FIGURE 17, manual trigger actuation subassembly 108 includes a trigger housing 109 having a front plate 132, two side plates, 109a and 109b and a rear plate 109c. Front 15 plate 132 serves as the site of attachment of the 108 to either the automated trigger subassembly actuator 40 or the valve subassembly as described above. Rear plate 109c has an elongated extension which extends downwardly and which serves as a palm rest 110. 20 Of course, front plate 132, side and rear plates 109a, b and c can all be made from one-piece.

longitudinal bore 135 central through housing has an axis coinciding with that of valve operating rod 22. Reciprocating within bore 135 is rear valve operating rod 113 which is attached to valve operating rod 22 either directly or indirectly through actuating piston 39 of the automatic operator by the interlocking means 200 described above. Between the two side plates 109a and 109b is the trigger lever cavity 137. Rear valve operating rod 113 extends from inside the central bore 135 in front plate 132, through cavity 137 and out the other side through the rear wall 138 of trigger lever cavity 137. Although central bore 135 extends through rear plate 109c, the rear wall of rear 35 valve operating rod 113 can be shortened so as only to come to a point flush with the back wall of plate 109c when rod 22 and sealing tip 32 are fully retracted.

20

30

Thus, when the valve is opened, because the end of the rear valve operating rod 113 is always enclosed, it cannot be interfered with or cause injury to anyone who might be near it when it is actuated.

If the return spring 27 used to keep the valve in a fail close condition is not too strong, a trigger lever 111a can be attached directly to the bottom of rear valve operating rod 113 using screws. By placing the palm of the hand on the palm rest and pulling back 10 on the lever with a finger, sealing tip 32 can be retracted from orifice 33, thereby opening the valve. When the lever is released, return spring 27 will automatically close the valve. This design is simple, effective and relatively low cost to manufacture but it 15 suffers from the following flaws.

First, if the return spring is strong, retracting and holding it with one or even several fingers for a period may be hard. Second, because the handle is attached directly to the shaft, if something gets in its way and nobody is around to clear it such as may be the case when using automated operation, the valve may incompletely open or close or not move at all. Also, if someone is standing in the way of the trigger lever when the automated actuator reciprocates the valve, they could be hit and injured by it. Lastly, the lever could be accidentally hit and the valve inadvertently opened. If additional cost is not as important as resolving these problems, then some or all of the following changes can be made to reduce or eliminate these weaknesses.

versatile alternative than more attachment of the trigger lever to the valve operating mechanism is to provide a means by which to adjust the leverage provided by the trigger lever. This would make it easier to use without effecting the valve's sealing characteristics. This can be accomplished effectively if the trigger lever is not coupled directly onto the

rear valve operating rod 113. FIGURES 2 and 17 illustrate one such arrangement.

FIGURES 2 and 17 depict a rectangular slot cut through the upper half of trigger lever 111, creating two flat parallel lever arms 146. The lever arms 146 mate with the flat lateral sides 147 of rear operating rod 113. The uppermost portion of each of the two arms of the trigger lever terminates in an annular section 148. A short transverse cam 114, as seen in both FIGURES 2 and 17, is fitted through the two annuli such that it protrudes out through the annuli 148 as shown in FIGURE 17. The axis 149 of the transverse cam-114 is generally perpendicular to the longitudinal axis 144 of the rear valve operating rod 113 and cylindrical bore 135. Transverse cam 114 slides along a leverage slot 15 150 in housing cover 112. Transverse cam 114 contains a transverse threaded bore 151 fitted with the threaded shaft 152 of positioning knob 115. Where it extends below transverse cam 114, threaded shaft 152 extends down between the lever arms 146 of trigger lever 111. 20

Positioning knob 115 is fixed in housing cover 112 by the placement of the knob retainer ring 116 in an annular slot 153 on threaded shaft 152 on a side of housing cover 112 opposite positioning knob 115. The point of engagement of transverse pin 155 in rear valve operating rod 113 along the length of trigger lever 111 (and, thus, the leverage) can be set by changing the position of transverse cam 114 along leverage slot 150. The position of transverse cam 114 along leverage slot 150 is, in turn, determined by its position along the threads of shaft 152. Consequently, the operator can adjust the leverage of the trigger mechanism 108 simply by turning positioning knob 115.

As discussed earlier, rear valve operating rod 113 is attached to automated actuator 39 or valve rod 22 by the interlocking means 200. Just to the rear of slots 171a and 172a of the interlocking means 200 on rear

35

valve operating rod 113, the sides of the cylindrical rod are milled so as to have two parallel flat opposing external walls 147. The distance between the two arms 146 of trigger lever 111 is slightly more than the thickness between the parallel walls 147 of rear valve operating rod 111. Once installed, rear valve operating rod 113 can slide freely back and forth between arms 146 of trigger lever 111 but cannot rotate because of the engagement of the flat surfaced lateral walls of rear valve operating rod 113 with the opposing flat surfaced arms 146 of trigger lever 111.

Although a non-threaded means of connection was used between rod 113 and rod 22 or piston elimination of rotational motion in this design would 15 permit threaded connections to be used. But this is not the most important aspect of this design. Because the point of engagement of the trigger lever 111 with transverse pin 155 is from the rear and because rear rod 113 can slide independently operating 20 backward between trigger lever arms 146, the valve can be actuated automatically without moving the trigger lever Thus, injuries can be avoided 111. automated operation. Furthermore, transverse pin 155 will always be correctly positioned to engage the 146 when manual actuation trigger lever arms 25 required. The rear margin 199 of arms 146 of trigger lever 111 where they engage transverse pin 155 have been rounded so as to reduce torque on rear valve operating rod 113 during retraction.

Trigger lever 111 is kept in the forward position and is not carried back with the momentum of an automated retraction of the rear valve operator rod 113 due to the application of forward spring tension acting on the lever arms 146. One end of a small utility return spring 201 is attached by a threaded spring anchor 202 into the inside wall of housing cover 112 while the other end is attached to the two lever arms

30

146 through two small holes positioned above rear valve rod 113.

To check against inadvertent actuation of sample valve, a safety catch is incorporated into one side wall 109a of the trigger housing 109. Here, a three-position rocker switch 203 is used. When switching into the "locked" safe position, the right half 204 of the rocker switch is depressed all the way in. This makes the back portion 205 of the rocker wedge in behind the transverse pin 155, locking pin 155 from moving back. When a sample is to be taken, the operator can press on the left half 206 of rocker switch 203 to move it to the neutral unlocked position, freeing up transverse pin 155. Since rocker switch 203 is spring 15 loaded, it will tend to stay in this position until switched again.

If the operator wishes, the valve can also be "opened" position. This can be locked accomplished simply by, first, pulling trigger 111 all the way back to fully retract the valve operating mechanism and fully open the valve. At this point, transverse pin 155 is behind the back portion 211 of the left half 206 of rocker switch 203. By depressing the left half of switch 203 all the way to the third locking position and releasing the trigger lever 111, the back portion 211 of the left half 206 of switch 203 will engage transverse pin 155 and hold it there as the return spring returns the valve operating mechanism forward. The rocker switch can also be color coded on the sides so that its exposed surfaces will quick indicate its status.

If adjustments to the spring tension acting on the sealing tip 32 or limitations on the stroke of the valve are desired, a secondary spring return can be incorporated by boring out the trigger housing central bore 135 behind rear wall 138 of trigger cavity 137 and threading it to make backstop bore 145. A retainer ring

groove 207 is cut in rear valve operating rod 113 and retainer ring 208 added. A washer 209 is add between retainer ring 208 and secondary return spring 27a which is fitted over the back end of rear valve operating rod 5 113. Tension is maintained and adjusted by a threaded back stop positioner 140. Back stop positioner 140 comprises a hollow cylinder 182 with a threaded outside diameter which is attached to a cylindrical positioner knob 184 by a annular spacer 183. Parts 183 and 182 10 have a through bore 141 large enough to accept the diameter of the spring around rear valve operating rod 113. Knob 184 does not have a through bore but to permit independent adjustment of the back stop and spring tension, it can be bored and threaded. A threaded bolt can be adjustable threaded into it to set 15 the back stop position. Otherwise, using backstop 140 to change the backstop position will, at the same time, change the spring tension acting on sealing tip 32 unless secondary return spring 27a is not included in 20 the assembly. By tightening back stop 140 all the way in, it can also be used as a safety lock to prevent the seal formed between the sealing tip 32 and orifice 33 with the process from being broken unintentionally by immobilizing the valve operating rod mechanism 159 in 25 the sealing position.

Alternative Manual Techniques

There are several other methods by which the valve rod may be actuated directly or indirectly.

30

1) DOUBLE PARALLEL SHAFT: An alternative to the above is to attach a second (alignment) shaft to the rear wall of the valve body 10 with a longitudinal axis parallel but not coinciding with that of valve operating rod 22. This alignment shaft extends further back so that when a finger catch or trigger lever having a rectangular upper portion with two horizontal

bore holes is fitted onto the two parallel shafts and retracted to a point that, if coupled to the valve operating rod, would represent a fully open state, the end of the alignment shaft would still extend back to the rear of the rear wall of the rectangular portion.

A retainer ring or other stop is attached toward but not at the end of the valve operating rod 22. A low power secondary return spring to serve as a trigger lever return is slid onto the alignment shaft and kept in place from the rear by the attachment of a palm rest to the end of the alignment shaft. When the trigger handle is retracted, the retainer ring near the end of valve operating rod 22 will engage the rear wall of the rectangular portion of the trigger lever about the bore hole through which it protrudes and retract valve operating rod 22, opening the valve.

An advantage of this design over the one discussed earlier is that the alignment shaft minimizes torque on valve operating rod 22 and its extension. Also, the secondary spring about the alignment shaft assures that the added friction created by the addition of the trigger lever will not affect sealing performance of the valve. Further, an automatic operator can be added to the valve and operated safely, the only exposed part moving being the smooth valve rod, the reciprocating end of which can always be housed in a receiving cylinder in the palm rest. A disadvantage is that there is no means for adjusting the power required to overcome the valve return spring.

30

2) CABLE ACTION: Still another alternative would be to have the trigger lever rotate about a cam in a housing extending out from the rear wall of the valve body and connecting to the palm rest in the rear, the housing and the connection to the valve being similar to that described above. With one end of a cable, flexible band or other means attached to the top of the

trigger lever on the opposite side of the cam from the finger catch, the cable would pass back into the palm rest, around a pulley or other similarly functioning element in the palm rest and pass forward along an axis 5 coinciding with that of the valve operating rod 22. It would attach to the rear of valve operating rod 22 at pin. A rotational trigger lever return spring would to keep the trigger lever in the returned position. Ιf the position of the cam can be repositioned along the length of the trigger lever so that the lever arm lengths can be changed, this design has all the advantages of the above as well as leverage adjustment. Various other arrangements can be arranged using gears assemblies, including rack and pinion 15 designs. These can, however, become complex and expensive, with several moving parts.

Pneumatic Control

The pneumatic automated actuator 40, illustrated 20 in FIGURES 3 and 16 is controlled by the control means 4. This control means 4 can cause movement of the valve operating rod 22 by actuating the pneumatic actuator 40 (in this case, through electromagnetic actuator 212 and pressurized air 213) in order to reciprocate the valve operating rod 22 in the central bore 13. When the 25 manual trigger mechanism is attached to the rear of the pneumatic actuator as was discussed above, and if, for some reason, the control means or automatic actuator should fail, an operator could simply reciprocate the 30 valve using the trigger lever. If the actuator 40 is connected but not to the trigger lever mechanism, the operator could grasp the "keyed" rear end of pneumatic operator piston 39 protruding from the rear of actuator and use that to actuate the system. Lastly, if 35 the valve is installed with neither the automated actuator or manual actuator available, the valve can still be operated by levering or otherwise grasping and

pulling back on the "keyed" end of rod 22 protruding from the rear of the valve.

Probe and Sensor

Returning to FIGURES 2 and 3, a probe 20 is indicated within a probe orifice 19 of the drain passage 14. This probe 20 and orifice 19 can alternatively be located in the sample cavity 11 or alternatively within both the drain passage 14 and sample cavity 11. The probe 20 can be a temperature and/or pressure probe. This probe 20 is operatively connected to the means for detecting 4a of the control means 4.

The means for detecting 4a and probe 20 provide for independent verification of the various 15 aspects of the system's operation. By comparing a profile of a sampling system temperature or pressure when the system is operating correctly with profiles various components of the system when 20 determination can be made by the means for detecting 4a of a system failure (abnormal operation). Moreover, a determination can be made by the system as to the severity of the failure and whether to abort further sampling cycles as well as to sound an alarm. 25 temperature or pressure profile is captured from the probe 20 and fed to the means for detecting Accordingly, if the diaphragm 49, for example, were to rupture, the probe 20 could determine this condition. Moreover, if there was blockage in the inlet passage 12, this condition could be detected. The means for detecting 4a with the control means 4 can initiate appropriate action. This probe 20 can also detect if an adequate steam temperature has been reached during the sterilization cycle.

35

Sample Collection

Returning to FIGURE 3, downstream from the drain

passage 14 is means for collecting sample 51 and a means for collecting drain 52. The means for collecting a sample 51 includes sample drain valve block 8. This valve block 8 has a diaphragm pneumatic valve 93 5 connected to the sample collector 94. This sample collector can be а sample vial subassembly, example. Also connected to the diaphragm pneumatic 93 is an electromagnetic valve 95 with a pressurized air source 96.

10 The drain valve block 9 includes a diaphragm pneumatic valve 97 connected to a disposal means 98. Also connected to the diaphragm pneumatic valve 97 is an electromagnetic valve 99 and a source 100 pressurized air. Similarly to the valves 67, 71 and 75, the diaphragm pneumatic valves 15 93 and 97 can replaced by any known valves. Likewise, the valves 95 and 99 could also be replaced by other valves or the valves 93 and 95 and the valves 97 and 99 could be combined into a single unit. The electromagnetic valves 20 95 and 99 are operatively connected to the control means 4 as indicated in FIGURE 3.

Feed/Drain Lines

30

Turning now to FIGURES 18 and 19, configuration for the inlet passage 12 and drain passage 14 will be 25 described. To one side of the central bore 13 for the valve operating rod 22 is the inlet passage 12. This inlet passage declines towards the sample cavity 11.

Furthermore, the surfaces facing into the sample cavity 11, when endcap 44 is in place, generally are angled in a declining fashion such that flow is down and out of sampling cavity 11 through declining drain passage 14. Thus, gravity alone will insure complete drainage of any material entering the valve through 35 either inlet passage 12 or orifice 33 down and out through drain passage 14. Inset within the base of the sample cavity, leading away from the lower rear point

of sealing of o-ring 17 in groove 36 of cap 44 with body 10, is a drain collection trough 42 declining to and through opening 48 from internal cavity 11 into drain passage 14. Drain collection trough 42 5 actually be an opened extension of drain bore 43 up and into a side of the sample cavity 11, rather than terminating flush with the rear wall at opening 48 into sample cavity 11 as can be seen in FIGURE 19. In fact, the collection trough 42 can extend up to the front of sample cavity 11 if so desired. Thus, 10 the collection trough 42 and drain passage 14 incline downwardly away from the sample cavity 11. Likewise, inlet passage 12 can also be extended forwardly through the side wall to thereby terminate at or near the forward wall of the sample cavity. In FIGURE 2a, the 15 entire internal cavity of body 10 forms a drainage basin which drains down from all sides to the opening to drain passage 14. With a path between lowest point opening of orifice 33 always having 20 unobstructed profile that descends at an angle greater than that of the ferrule in which it is installed and with the back wall behind the drain 14 also sloping to opening, the latest embodiment provides effective means for removing fluid (without pooling or 25 hold up within the valve body) from vessel and conduits, even when retrofitted into upwardly slanted ferrules.

In FIGURE 18, the cap 44 has been omitted and the offset of the feed inlet 47 to the sample cavity 11 can be seen. It should be appreciated that central bore 13 may also be offset when physical size constraints in valve design require it (also illustrated in FIGURE 19). At such times, orifice 33 of cap 44 will be similarly offset so as to align with the blunt sealing tip 32 of diaphragm 49 positioned on valve operating rod 22. It has been shown that the cap 44 can be made an integral part of body 10, that a means to feed

25

35

(including feed inlet 47) may not be a necessary inclusion in the device and that neither the feed inlet 47 (if present) or the means for draining (including may not need to be offset from a drain bore 43) (vertical) plane through the central axis of the valve body.

As can be seen in FIGURE 19, the angle inclination for the drain passage 14 is less than the angle of inclination for the inlet passage 12. 10 course this relationship of the angles between the drain passage 14 and inlet passage 12 can vary. For example, a greater angle between the drain passage 14 and axis of the body can be provided than between the inlet passage 12 and the axis of body 10.

Due to the positioning of the inlet passage 12 above the drain passage 14, the position of declining drain collection trough 42 leading through opening 48 to become drain passage 14 as well as the smooth, flush transition between the drain passage and the bottom 20 wall of drain collection trough 42 all with respect to 45 for preventing 11, а means sample cavity accumulation of material in cavity 11 is formed. This means will enable free flow of the sample from the sample cavity 11 to the drain passage 14. Pooling of Therefore, be avoided. possible sample will contamination of subsequent samples is avoided.

Also, drain passage 14 has an internal diameter of generally 6 mm. This is generally larger than the biggest sample particle drawn from vessel 53. In that 30 way, clogging of the drain passage 14 is avoided. While maximum sample particle size is one variable to be considered when designing a valve for retrofit onto a vessel, other variables defining the configuration of the existing ferrule that will receive the valve are also important. Below a mathematical relationship which includes these variables will be discussed, showing how the variables may affect each other and how this can be

used to define critical parameters for a free-draining valve.

As seen in FIGURES 18 and 19, due to the offset mounting of inlet passage 12 and outlet passage 14, it 5 is possible, for example, to squeeze each of these items within the 25 mm constraint for the outer diameter of body 10. In this manner, the body 10 can be retrofit into an existing apparatus. As noted above, the inner diameter of ferrule 1 is typically 25 mm in many devices. While this dimension can change, should be understood that the instant invention can be inserted into existing equipment without the need for retrofitting this equipment. Of course, when larger or smaller ferrule ports exist, the instant invention can be made larger or smaller to accommodate these ferrules with correspondingly larger or smaller components.

As seen in FIGURE 2a, the inlet passage 12, drain opening 14 and drain trough 42 all can be accommodated within the arrangement shown without planar offset. In 20 other words, all feed and drain can be coaxial and/or coplanar, but such an arrangement is not mandetory. This arrangement would provide a greater flexiblility with the axis of the body.

25 Angles of Installation

In FIGURES 20-22, mounting of the apparatus of the instant invention is schematically represented. If the instant apparatus is to be mounted in a horizontally oriented ferrule 1 as shown FIGURE in 20, longitudinal axis 65 of the body 10 will be generally 30 horizontal. The longitudinal axis 59 for the inlet passage 12 will be offset from axis 65 by an angle of approximately 18.5°. The longitudinal axis 58 for the drain passage 14 will be offset from the longitudinal 35 axis 65 of the body by approximately 3°. Therefore, the slope for the inlet passage 12 is greater than the slope for the drain passage 14. This helps to ensure

proper drainage of the sample, steam, air, wash medium and/or condensate.

As shown in FIGURE 21, if the ferrule 1 is sloped downwardly, for example, by 15° from the horizontal 5 plane h, the longitudinal axis 65 of the body 10 will similarly be offset by 15°. Such a downward slope of 15° is a standard design for some ports in vessels or 53. With this downward inclination, longitudinal axis 58 of the drain 14 will be offset 10 about 18° from the horizontal plane h. The longitudinal axis 59 of the inlet passage 12 will continue to have a downward slope. This axis 59 will be offset from the horizontal plane h by approximately 3.5°. Therefore, with a downwardly oriented ferrule 1, proper flow can 15 continue to be had with the instant invention. Pooling of the sample and steam, air, wash medium and/or condensate can be avoided in this arrangement.

In the upwardly inclined ferrule 1 of FIGURE 22, the longitudinal axis 58 of the drain would have less 20 of a slope than the longitudinal axis 59 of the inlet passage 12. Nonetheless, this arrangement continues to urge material through the system. For situations where the ferrule is sloping upward at an angle greater then the 2°, effective drainage can be accomplished in either of two ways. The first is by means of extending a tube up to orifice 33 and overpressuring the valve, in effect, vacuuming the sample out by the low pressure created around the mouth of the extension of the drain line. The second method is to have a greater angle of declination on the drain line and a lesser angle of 30 inclination to the feed line.

Determing whether or not a valve can be

retrofitted to an existing port can be done using the relationships described earlier. The latest embodiment described above provides a means by which material may be removed through an upward sloping ferrule, contrary 5 to intuition. For example, a ferrule with a upward slope of 15 degrees, a length of 1.0" and a diameter of 1.0" can be fitted with a valve with an orifice having at least 0.25" diameter with a sealing face about the orifice of over 0.4" in diameter and with a internal drainage trough which has a declining slope of at least 16 degrees. When installed in the ferrule, this valve has a net declination to its internal profile. This, in conjunction with the smooth, declining orientation of the internal cavity sides and rear wall leading back to seal face 320 combine to make this an effective fully drainable valve even in this orientation.

In the present application, longitudinal axis 59 of inlet passage 12 may decline by as much as 90 degrees, but at least by an amount greater than the 20 amount of inclination of the ferrule. Similarly, the longitudinal axis 58 for drain passage 14 may decline by as much as 90 degrees, but at least by an amount greater than the amount of inclination of the ferrule. While flow related problems are less of a concern with horizontal and declining ferrule installations, it is potentially a much more serious problem with inclined ferrules. The trend in the industry is toward inclined ferrules, particularly those at 15 degree angles of inclination. With the incorporation of end cap 44 into body 10, eliminating the junction between these two and the creation of a drain trough 42 formed with the bottom of sample cavity 11 with all surfaces draining down to and exiting through drain opening 14, the potential for sample and process contamination due to 35 sample hold up and carry over in crevices and pooling on non-draining surfaces has been minimized. Unlike other designs, this is not dependent on flushing

material out through multiple washes or high pressure flows. This most recent embodiment has its surfaces optimized to promote free and full drainage.

5 Process Control

the instant invention Process control for carried out under the direction of the control means 4. noted above, this control means 4 can logic controller, computer operated programmable controller or any other suitable control means. control means 4 permits the appropriate sequencing of of the invention. various valves instant Collectively, the sequences and times system opening/closing of each valve as well as the sampling 15 device but will allow an operator to program the length of time each valve will remain open. This provides a means by which the process control system can be adapted and incorporated into a variety of different process applications.

Different sized valves, different materials of construction, different process flow temperatures and flow rates different cleaning or chemical agents (steam, air, wash medium, etc.) and other process materials can influence the proper timing of the various facets of operation (sampling, cleaning, sterilizing, resampling, etc.). A single cycle sequence of the basic components of the system of the instant invention will now be discussed.

The control means 4 controls the functioning of the main sample subassembly 2 in tandem with the five peripheral process flow control valves 5, 6, 7, 8 and 9. The control sequencing is laid out in FIGURES 25 and 26. This sequence is designed to clean and sterilize the inlet passage 12, main sample subassembly 2 and drain passage 14 before each sampling. This system will also purge the last of the sampling material into the disposal means 98. After the blunt sealing tip 32

closes orifice 33, the system will also be cleaned and resterilized between each sampling.

The pure steam feed block 5, for example, will control the flow of steam to sterilize the system. 5 Likewise, the pure air feed block 6 will control the flow of pure air through the system for two purposes. First, this air will be blown through the inlet passage 12, sample cavity 11, drain passage 14 and to the disposal means 98 such that any sampling material that might remain after a sampling is removed. This air is also blown down the drain passage 14 such that any steam condensate that remains after the sterilization phase is completely removed. The pure air will both cool and dry the sampling system before the next sample 15 is taken. The wash medium can be provided by the wash medium valve block 7 to clean the system if steam is insufficient. Likewise, a combination of steam and wash medium can be used. The pure dry air 70 can also be used to help flush the wash medium from the system and 20 to dry the system after the use of wash medium.

The drain line block 9 will be open to drain away condensate, wash medium and the like during cleaning and sterilization. The sample vial block 8, on the other hand, will be open to allow the sample material to flow into the sample collector 94.

In FIGURE 25, valves 49, 71, 67, 93 and 97 are indicated by SO, V1, V2, V3 and V4, respectively. As indicated in FIGURE 26, a waiting period will first be encountered during one type of sampling operation. The valve indicated as V1 and V4 will be open. In other words, the diaphragm pneumatic valves 67 and 97 will be open. Steam will rush from source 66 through inlet passage 12, sample cavity 11 and out drain passage 14 to the disposal means 98 while valve 97 is still open.

After an appropriate period of time, the valve 67 will be closed and the valve 71 will be open. Pure dry air can then rush through the system to the disposal means

25

98. This pure dry air will not only force any remaining particulate matter through the system but will also aid to cool and dry the interior of the apparatus.

In the timing chart of FIGURE 26, a one-second 5 delay is then indicated. It should be recognized that this delay could be omitted or could be for a shorter or longer duration. Sampling will next take place. In this arrangement, the valve SO and V3 are indicated as being open. In other words, the valve 49 will be opened 10 to permit the sample to exit the vessel or conduit 53 through the port 54 thereof. The material will move through orifice 33 into sample cavity 11 and down drain 14 to the sample collector 94. While it is not shown in the FIGURES 25 and 26 arrangement, it should be noted 15 that the valve 93 can initially be closed and the valve 97 opened such that a first portion of the sample will actually go to the disposal means, if so desired. In any case, valve 97 should close before valve 93 opens.

No valves are provided in the interior of the 11 for preventing the sample sample cavity entering the inlet passage 12. The valves 67, 71 and 75 will be closed such that an internal pressure will be sufficient to prevent the sample from traveling up inlet passage 12. Moreover, gravity also prevents the sample from traveling up the inlet passage 12. The apparatus A is therefore simplified and can be used in existing vessels or conduits 53 without modification due, in part, to the omission of extra valves. In other words, the relatively small size of body 10 can be maintained such that it is compatible with existing 30 vessel or conduit ports. Moreover, potential sites of contamination are avoided by omitting such additional valves.

After a sufficient sample has been collected at collector 94, another one-second delay is indicated in FIGURE 26. Again, no delay or a greater or lesser time period can be provided. The valve 49 indicated by SO in

25

30

FIGURE 26 is then closed and the valve 71 is opened. Pure dry air will then rush through the system in order force the sample in cavity 11 and drain passage 14 into the sample collector 94. Accordingly, one operation of apparatus of the instant invention has described. It should be understood that the wash medium valve block 7 can also be operated if so desired. However, in the arrangement of FIGURE 26, the wash medium from source 74 is not used.

As previously noted, the arrangement in FIGURE 24 (and FIGURE 3) shows the body 10 of the apparatus being inserted into a vessel or conduit 53. When stagnant layers 60 may be present in the vessel, a mounting arrangement shown in FIGURE 24 can be used. This design places orifice 33 beyond these stagnant layers 60. The 15 apparatus used in the design of FIGURE 24 is similar to the arrangements of FIGURES 2, 13A or 13B. If the user will never install the valve in a penetrating fashion, the cap 44 need not have two o-rings and grooves on its outside circumference and cap 44 need not be quite as 20 long as is shown in these figures. However, if two grooves are used, a single o-ring 34 can be moved between the two grooves 35 or 35a as needed. Of course, two separate o-rings could be provided, one for each groove. However, when the apparatus A is positioned as shown in FIGURE 24 (or FIGURE 3), it is preferred to omit an o-ring from the forward groove 35. In this manner, it is less likely that material would become trapped at the forward, outer end of the cap 44.

It should be appreciated that after the body 10 is mounted in the arrangement of FIGURE 24, this body 10 is not movable once mounted. Rather, it extends within the vessel or conduit 53 for the predetermined distance indicated during its operation. Of course, when this device is no longer needed, the means 57 for coupling can simply be detached and this apparatus removed from the vessel or conduit 53 and readjusted. Due to the

30

35

forward o-ring groove 35, this body 10 can be mounted substantially flush with the wall 61 of the vessel or conduit 53, too. The o-ring groove 35a with o-ring 34 will form a seal between body 10 and vessel or conduit 53 when the apparatus A is extended as shown in FIGURE 24. Alternatively, when the face of cap 44 is generally flush with the interior 61 of vessel or conduit 53, an o-ring in groove 35 will form a seal between the apparatus A and the vessel or conduit 53. The o-ring 34 can be moved from the rearward groove 35a to the forward groove or a new o-ring 34a can be inserted in groove 35 while the rearward groove 35a may or may not retain the o-ring 34.

15 Feed/Inoculation Means

Up to this point, the instant invention has been discussed as a sampling apparatus. As shown in FIGURE 23, this instant invention can also be used as a feed/inoculation means. In FIGURE 23, the apparatus A is mounted on the top of vessel 53. When used as a feed/inoculation apparatus, the instant invention can also be mounted on the side of vessel 53.

The feed/inoculation arrangement shown in FIGURE 23 is similar to the sampling arrangement previously discussed. However, the drain passage 14 extends well into the sample cavity 11 to prevent pooling of the sample or cleaning material in this arrangement. The opening 48 for drain passage 14 is generally adjacent the wall of cap 44 having orifice 33.

As indicated in FIGURE 23, means 101 is provided for feeding the sample. This means 101 will supply the sample through the inlet passage 12, sample cavity 11, orifice 33 and into the vessel or conduit 53. After the sample has been charged to the orifice or conduit 53, the sealing tip 32 can be moved to close orifice 33. Then the supply means 50 can feed steam, dry air and/or wash medium through the inlet passage 12, sample cavity

25

11 and out of the drain passage 14 to the means for collecting drain 52.

schematically in FIGURE 23 is Indicated switching means 102 utilized with the supply means 50 5 and means 101 for feeding sample. This means selects whether the means 101 will supply the sample through the inlet passage 12 or whether the supply means 50 will clean and/or sterilize the inlet passage 12 and other downstream structure.

Apart from having the end 48 of the drain passage 14 located at the end of the sample cavity 11, the diameter of the drain passage 14 is of a sufficiently small diameter such that the pressure in sample cavity 11 (created from inflow through passage 12) will be sufficient to force any material fed through inlet 15 passage 12 up and out drain passage 14. In this manner, the particle size of the sample fed to the sample cavity 11 is limited by the size of the inlet passage 12. When the supply means 50 is operated, sufficient air, steam, and/or wash medium can be fed through the inlet passage 12 in order to force any sample or other contaminant through the drain passage 14 to the means 52. Otherwise, the design of collecting feed/inoculation arrangement shown in FIGURE 23 similar to the sample assembly previously discussed.

Advantages

The instant apparatus A has several advantages. Its geometry will enable the body 10 and its contents to be relatively small such that it can be retrofitted into existing vessels or conduits. For example, the 25 mm standard size for ferrules 1 can be accommodated with the instant invention.

The instant invention provides a uniquely designed 35 biocompatible, resterilizable flexible diaphragm which allows the sample extraction orifice to be flush mounted with or penetrated into the vessel or conduit

53. A customized subassembly design is possible in contamination-prone of the opposing which all sliding/rotating surfaces are sealed from the sample. For example, the bellows 30 separates and isolates a 5 sample from the operating portions of the valve 49. Other control features such as the steam feed valve block 5, pure dry air valve block 6 and wash medium valve block 7 are removed from the sample. contamination-prone parts are removed from the process, 10 the instant apparatus A is a more effective overall sanitary design.

The instant apparatus A is free-draining and will avoid pooling. Pockets between the sample cavity 11 and the drain passage 14 are not present such that pooling or accumulation of a sample or drain is further avoided.

With the exception of seals about the cylindrical sealing portion 166 of rod 22, all secondary seals are static to provide the most effective barrier to leakage 20 within the system and/or to the outside environment. Further, the interfaces between the abutting surfaces on the process side (where crevice-related carryover contamination often occurs) are sealed with the static seals (with the exception of the specially designed primary seal which is a diaphragm-type seal). instant invention avoids the need for dynamic o-ring seals. Void volume in the sample cavity minimized. Tortuous flow is also avoided. Therefore, minimal loss of sample material during the sampling 30 process and maximized reproducibility and accuracy of measured samples is had with the instant invention. By using small volumes, only small errors in measurements will be made.

Within this 25 mm outside diameter design discussed, the instant design permits particles of at least six mm outside diameter particles to pass from the vessel or conduit 53 through the sample cavity 11

and out of the drain line 14 to the sample collector 94. Therefore, physical distortion of the sample constituents is avoided, thereby assuring that samples taken are not biased due to size exclusion.

5 The trigger mechanism, which allows the valve to be rapidly opened and closed, allows more precise control of sample volumes and, at the same time, reduces sample waste. Furthermore, because sample volumes can be controlled much more precisely, even small volumes, operators will not have to resort to 10 "throttling" which can cause physically and chemical changes in samples through shear. Lastly, the trigger actuator mimics the action of automated actuators. This means that its samples will correlate better with those 15 taken using automated actuators then will other manual actuator designs.

The trigger mechanism and or the automated actuator can readily be added or removed from the valve, providing easier maintainability. Furthermore, 20 because the valve is sealed and has the primary return spring within, these change-out operations can be done without affecting the valve's on-line service.

All static threaded connections and abutting surfaces of the instant invention are placed behind static o-ring seals. This removes trouble-prone interfaces from contacts with process flow.

The control means 4 and means for detecting 4a of the instant invention provide for automatic sampling or inoculation. Therefore, operator error is avoided.

30 Manual override also permits sampling even in the case of power failure.

Pressure or temperature profiling of the system and independent indirect verification enables a more reliable operation.

Accordingly, with the instant invention, an accurate subsample of the process composition can be had. This arrangement can be used with existing systems

or with new systems. Maintenance of the instant apparatus can easily be carried out.

Because the body 10 of the instant invention can be machined from a single piece of metal, plastic or 5 other material, if so desired, the need for additional junctures is eliminated. This also avoids potential points for contamination to the sample. Also, the bulb design of the sealing tip 32 avoids dead space.

Due to the control means 4, the timing sequence can easily be changed. For example, an operator can change the length of each of the phases in the sampling process and, using feedback from the temperature and/or sensor probe 19, determine if any error has occurred in the system.

15 The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the 20 art are intended to be included within the scope of the following claims.

What is claimed is:

```
1. A valve for insertion into a ferrule having a given
1
2
   internal diameter, the valve having a sample cavity, a
3
   sampling orifice and a drain outlet, the sampling orifice
   and drain outlet being operatively connected to the sample
4
   cavity, a diameter of the sampling orifice being determined
5
6
   by the following formula:
        Dov < or = Dfv - [(Dr1+Dr2) + (Dv1+Dv2) + (Dw1+Dw2) +
7
8
   (Ds1+Ds2) + Div + Ddv].
```

ABSTRACT OF THE DISCLOSURE

apparatus for inoculating a sample to or withdrawing a sample from a vessel or conduit includes body with an internal sample cavity, a valve operating rod movable to open and close an orifice to 5 the sample cavity and a coupler to attach the body to a port of the vessel or conduit. A portion of the sample cavity is formed by an endcap which includes the sample cavity is thermally and/or orifice. The electrically insulated from the vessel or conduit. This 10 insulation can arise from an empty or filled space between an inner wall and outer wall of the valve. Otherwise, insulating material can be used in forming the valve. The valve can be mountable on the vessel or conduit such that a positive drain angle is maintained 15 regardless of whether the ferrule to the vessel or conduit is inclined upwardly, downwardly is horizontal.

FIG. 1a

FIG. 2b

FIG. 2c

FIG. 2d

FIG. 24

F1G14

FIG.18

	WAITING	STEAM	AIR	SAMPLING	AIR
so					
V1	i				///////////////////////////////////////
V2					
V3				///////////////////////////////////////	7/////////
V4			///////////////////////////////////////		
		V2, V4	V1, V4	S0,V3	V1, V3
		OPEN	OPEN	OPEN	OPEN
		and the second			
			1 5	 SEC 1S	SEC

FIG. 26

Automey Docket No. 2153-0110P

BIRCH, STEWART, KOLASCH & BIRCH, LLP

PLEASE NOTE YOU MUST CYMPLETE TRO DOLLOWING

ī

100

Page 1 of 2

(Application Number)

P.O. Box 747 - Falls Church, Virginia 22040-0747 Telephone: (703) 205-8000 • Faceimile: (703) 205-8050

COMBINED DECLARATION AND POWER OF ATTORNEY FOR PATENT AND DESIGN APPLICATIONS

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated next to ray came; that I verily believe that I am the original, first and sole inventor (if only one inventor is named below) or an original. Inst and joint inventor (if plural inventor are removed below) of the subject matter which is claimed and for which a patent is marght as the invention entitled: Irport Title: DRAINABLE FERRULE VALVE DESIGN Rill in Appengalase the specification of which is attached herets. If not attached hosors, information : the specification was filed on October 16, 2000 For Use WENCE United States Application Number Specification and amended on (if applicable) and/or Attached: the specification was filed on za PCT International Application Number amanded under PCT Artigle 10 on ; and was (il applicable) I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I aske twings the study is fittless information. This is more in the parametricity on a formed in Ritle 25, foot of Potential Regulations, \$1.30. I do not know and do not helicus the same was ever known or used in the United Sisters of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof or state that one year prior to this application, that the same was not been pasented or made the subject of an inventor's estiticate issued before the date of this application, that the invention has not been pasented or made the subject of an inventor's estiticate issued before the date of this application in any country foreign to the United States of America on an application filled by me or my legal representative or assigns more than (we've months for designs) prior to this application, and that no application for patent or inventor's certificate on this invention has been filled in any country foreign to the United States of America prior to this application by me or my legal representatives of assigns, except as follows.

I hereby claims foreign priority benefits under Title 35, United States code, \$1.19(a)/(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed: any amuncinguit referred to above. 8 Priority Claimed Prior Foreign Application (a) Insert Priority Yøs (If appropriate) (Number) (Country) (Month/Duy/Year Filed) Nο (Number) (Country) (Month/Day/Year Filed) Υœ No □ %0 (Month/Day/Year Filed) (Number) (Country) □ No (Number) (Country) (Month/Day/Year Filed) I hareby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional applications(s) listed below. Insert Provisions? (Application Number) Application(s) (Filing Date) (Lany) (Application Number) (Fifting Date) All Foreign Applications, if any, for any Patent or Inventor's Certificate Filed More than 12 Months (6 Months for Designs) Prior to the Filing Lease of this Applications. Country Application Funder Date of liling (Month/Day/Year) Insert Recovered Information (if announciate) I hereby claim the benefit neder Title 35, United States Code, § 120 of any United States und/or PCT application(a) listed below and, insofar as the sudgest matter of each of the claims of the application is not disclosed in the paid. United States and/or PCT application in the manner provided by the first puragraph of Title 35. United States Code, \$112, I admondedge the dety to disclose information which is material to the patentiability as defined in Title 37, Code of Federal Regulations, § 1.56 which became available between the fitting date of the prior application and the national or PCT international filling date of this application. locart Prior U.S. Application(s): (Application Number) (Filing Date) (Status - petented, pending, abandoned) (k any)

(Filing Date)

(Status - patented, pending, abandoned)

I hereby appoint the Indowing atterneys to projecute this application and/or un international application based on this application and to transact all business in the Faters and Tradentark Office connected therewith and in connection with the resulting patent based on instructions received from the emity who first sent the application papers to the attorneys identified below, unless the inventor(s) or assignee provides said attorneys with a written notice to the contrary:

Raymond C. Stewart	(Reg. No. 21,066)	Terrell C. Biroh	(Reg. No. 19,382)
Joseph A. Kolasch	(Rog. No. 22,463)	iames M. Sistlery	(Reg. No. 28,380)
Bornard I. Sweeney	(Reg. No. 24,448)	Michael K. Mutter	(Reg. No. 29,680)
Charles Corenstein	(Reg. No. 29,271)	Geesld M. Marphy, Jr.	(Reg. No. 28,977)
Leonard R. Svensson	(Reg. No. 30,330)	Terry T Clark	(Reg. No. 32,644)
Andrew D. Meikle	(Reg. No. 32,868)	Maro & Weitter	(Reg. No. 32,181)
loe McKinney Munoy	(Reg. No. 32,334)	Donald J Duley	(Reg. No. 34,313)
John W. Bailey	(Reg. No. 32,881)	John A. Castellano	(Reg. No. 35,094)
Gary D. Ygours	(Reg. No. 35,416)		

Send Correspondence to:

BIRCH, STEWART, KOLASCH & BIRCH, LLP

or Customer No. 2292

P.O. Box 747 • Falls Church, Virginia 22040-0747 Telephone: (703) 205-8000 • Facsimile: (703) 205-8050

PLEASE NOTE: YOU MUST COMPLETE THE BOLLOWING:	I hereby declare that all statements rando believed to be true; and further that these sta- punishable by fise or imprisonment, or both, un- leopardize the validity of the application or any	herein of my own knowledge are true and the tements were made with the knowledge the trier Section 1011 of Title 18 of the United St patent issued factors.	nat all statements made on in I willful false statements or lates Code and that such will	formation and belief are nd the like so made are ful false statements may			
Table Name of Free	GIVEN NAME/FAMILY NAME Doubles A. NEWBERG	DIVENTOR'S RIGHATURE	DATE (n)	1/4/00			
Distance is bigued	Residence (City, State & Country)	4 304	CATIZENSHIP	10/00			
light foreignet Basel (Attention →	Gambrilla, Maryland, USA	1 - 1	United States				
Salara office	POST OFFICE ADDRESS (Complete Street Address including City, State & Country)						
	P.O. Box 1001, Gazzirilia, Maryland, USA						
in about	GIVEN NAME/PAMILY NAME	inventor's signature	DATE*				
	Residence (City, State & Country)		CITIZENSHIP				
Compression of the compression o	POST OFFICE ADDRESS (Complete Street Address including City, State & Country)						
Pall Hann of Third Inventor, If any:	given name#amily name	INVENTOR'S SIGNATURE	DATE				
	Residence (Cky, State & Country)		CITIZENSHIP				
	POST OPPICE ALKIRESS (Complete Street Address including City, State & Country)						
Full Harns of Fourth transmer, it agr: use shows	GIVEN NAME/FAMILY NAME	INVENTORS SIGNATURE	DATE				
	Residence (City, State & Country)	CITIZENSHIP					
	POST OFFICE ADDRESS (Complete Street	Address including City. State & Country)					

Page 2 of 2 (Rov. 04/06/2008)

*DATE OF SIGNATURE