Financial Stochastic Analysis

Xie Zejian

2021-08-23

Contents

1	Brownian Motion		2
	1.1	Markov Property	9
	1.2	Exponential Martingale	
	1.3	Reflection	4

Chapter 1

Brownian Motion

Brownian motion at time t is limit of infinite fast random walk W_t^n , it can be equivalently characterized by

- 1. Any increment $W_{t_1} W_{t_2}$ is normal distributed with mean 0 and variance $t_1 t_2$. Disjoint increment are independency.
- 2. For any time t_1, t_2, \dots, t_m , $\mathbf{W} = (W_{t_1}, W_{t_2}, \dots, W_{t_m})$ is normal distributed with zero mean and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} t_1 & t_1 & \dots & t_1 \\ t_1 & t_2 & \dots & t_2 \\ \vdots & \vdots & & \vdots \\ t_1 & t_2 & \dots & t_m \end{bmatrix}$$

3. W has MGF

$$\varphi(\mathbf{t}) = \exp\left\{\sum_{i=1}^m \frac{1}{2} \left(\sum_{j=i}^m t_j\right)^2 (t_i - t_{i-1})\right\}$$

where $t_0 = 0$.

Brownian motion is a Markov martingale with variation:

- 1. $dW_t = \infty$
- $2. \ dW_t^t dW_t = dt$
- 3. $dW_t dt = dt^2 = 0$

1.1 Markov Property

Lemma 1.1 (Independence Lemma). Suppose $X \in \mathcal{A}$, $Y \perp \mathcal{A}$, then

$$\mathop{\mathbb{E}}_{\mathcal{A}} f(X,Y) = \mathop{\mathbb{E}} f(x,Y)|_{x=X}$$

Proof. When $f = g \times h$ for some g, h, then

$$\mathop{\mathbb{E}}_{\mathcal{A}} f(X,Y) = \int K(X,dy) f(X,y) = \int \mu(dy) f(X,y) = \mathop{\mathbb{E}} f(x,Y)|_{x=X}$$

since product σ algebra is generated by measurable rectangles, monotone class theorem completes the proof.

Preceding lemma implies

$$\begin{split} &\mathbb{E}_{s}f(W_{t}) = \mathbb{E}_{s}f(W_{t} - W_{s} + W_{s}) \\ &= \mathbb{E}f(W_{t} - W_{s} + x)|_{x = W_{s}} \\ &= \frac{1}{\sqrt{2\pi(t - s)}} \int_{\mathbb{R}} f(w + x) \exp\left\{-\frac{w^{2}}{2(t - s)}\right\} dw|_{x = W_{s}} \\ &= \frac{\tau = t - s, y = w + x}{\sqrt{2\pi\tau}} \frac{1}{\sqrt{2\pi\tau}} \int_{\mathbb{R}} f(y) \exp\left\{-\frac{w^{2}}{2\tau}\right\} dw|_{x = W_{s}} \\ &= \int_{\mathbb{R}} f(y) p(\tau, W_{s}, y) dy \end{split}$$

where $p(\tau, W_s, y)$ is pdf of $\mathcal{N}(W_s, \tau)$.

1.2 Exponential Martingale

Proposition 1.1. Suppose W_t is a Brownian Motion with filtration \mathbb{F} , then process

$$Z_t = \exp\left\{\sigma W_t - \frac{1}{2}\sigma^2 t\right\}$$

is a martingale.

Define the first passage time to m as

$$\tau_m = \min\left\{t \geq 0, W_t = m\right\}$$

recall the stopped martingale, we have

$$1 = \mathbb{E}\,Z_0 = \mathbb{E}\,Z_{t\wedge\tau_m} = \mathbb{E}\exp\left\{\sigma W_{t\wedge\tau_m} - \frac{1}{2}\sigma^2(t\wedge m)\right\}$$

Taking limit inside expectations:

$$\lim_{t\to\infty} \exp\left\{\sigma W_{t\wedge\tau_m} - \frac{1}{2}\sigma^2(t\wedge m)\right\} = \mathbf{1}_{\tau_m<\infty} \exp\left\{\sigma m - \frac{1}{2}\sigma^2\tau_m\right\}$$

that implies

$$\mathbb{E}\,\mathbf{1}_{\tau_m<\infty}\exp\left\{-\frac{1}{2}\sigma^2\tau_m\right\}=\exp\left\{-\sigma m\right\}$$

take $\sigma \searrow 0$, we have τ_m is finite a.s..

And the characteristic function of τ_m is given by taking $t = \frac{1}{2}\sigma^2$:

$$\mathbb{E}\exp\left\{ -t\tau_{m}\right\} =\exp\left\{ -\left| m\right| \sqrt{2t}\right\}$$

1.3 Reflection

By the symmetry of Brownian motion, we have

$$\mathbb{P}\left\{\tau_{m} \leq t, W_{t} \leq w\right\} = \mathbb{P}\left\{W_{t} \geq 2m - w\right\}$$

when $0 < m \ge w$. On the other hand:

$$\mathbb{P}\left\{\tau_{m} \leq t, W_{t} \geq w\right\} = \mathbb{P}\left\{W_{t} \geq w\right\}$$

take m = w and adding these two:

$$\mathbb{P}\left\{\tau_{m} \leq t\right\} = 2\,\mathbb{P}\left\{W_{t} \geq m\right\}$$

1.3.1 Joint Distribution of Brownian Motion and its maximum

Define maximum process:

$$M_t = \max_{0 \le s \le t} W_s$$

clearly, $M_t \ge m$ iff $\tau_m \le t$, thus

$$\mathbb{P}\left\{M_{t} \geq m, W_{t} \leq w\right\} = \mathbb{P}\left\{W_{t} \geq 2m - w\right\}$$

from which we have:

$$f_{M,W}(m,w) = \frac{2(2m-w)}{t\sqrt{2\pi t}} e^{-\frac{(2m-\omega)^2}{2t}}$$

 ${\rm ssss} {\bf 1}_2 {\bf 1} \; {\bf \Sigma}$

 sdfw

$$\mathbf{1}_2\mathbf{1}\;\mathbf{\Sigma}$$

$${\rm sss} \Sigma$$