A. DEFINITION

Respiration is:

The controlled release of energy from organic compounds to produce ATP

B. TYPES OF RESPIRATION

'Compare & Contrast' Table

Aerobic Respiration	Anaerobic Respiration
Similarities	
use glucose	
use glycolysis	
produce <u>ATP</u>	
produce pyruvate	
Differences	
requires oxygen	does not require oxygen
produces CO ₂ and water	produces ethanol and CO ₂ in
	yeast / lactic acid in animals
(can) use lipids	does not use lipids
produces more ATP	produces less ATP
(per glucose)	(per glucose)
(some stages) occur in	does not occur
mitochondria	in mitochondria /
	only occurs in the cytoplasm

C. MITOCHONDRION

• Aerobic respiration mainly occurs in mitochondria.

• Most of the ATP is produced at the cristae, which contain respiratory enzymes.

D. RESPIROMETERS AND RESPIRATION RATES

Used to measure the rate of respiration of living organisms.

- Living organisms are placed in a sealed glass container.
- As the animals respire they would use O₂, decreasing its volume and pressure in the tube.
- The suction created will draw the liquid towards them (upwards).
- However, they would also **produce CO₂**, which would move this liquid **away from them** (down).
- Potassium hydroxide (alkali) is added to the tube, which absorbs CO₂.
- This ensures that any **change in volume** is **only due** to the **volume of O₂ consumed**, so the liquid will **only move towards them (up)**.
- The greater the distance the liquid moves towards them, the greater the rate of respiration.

- The temperature must be kept the same throughout as it affects the rate of respiration due to decreased or increased enzyme activity.
- Rate of respiration = mm of liquid moved per unit time per g of organism.

Ethics of doing this

- Will animals suffer stress or pain?
- Are there unacceptable risks to the animals e.g. touching the potassium hydroxide?

- Are animals taken out of their natural habitat? If so, will they be put back?
- Is it necessary to use animals rather than plants, such as germinating seeds?

E. ANAEROBIC RESPIRATION IN MUSCLES

Intense exercise

- When a person slows down, oxygen is first used to breakdown the lactic acid by aerobic respiration, which has built up in muscles.
- The amount of oxygen needed to breakdown the lactic acid is called the oxygen debt.
- If a large amount of lactic acid is present in muscles, it can be taken to the liver via the blood and broken down by aerobic respiration.

F. ADAPTATIONS DURING INTENSE EXERCISE

- More oxygen enters the blood;
- More oxygen to cells/tissues/organs;
- (For) aerobic respiration;
- (As) muscles have a greater demand for energy;
- More lactic acid taken to liver;
- More oxygen taken to muscles/liver;
- (So) lactic acid broken down faster / faster aerobic respiration of lactic acid;
- (Also) more (toxic) carbon dioxide removed (from body);

G. USING ANAEROBIC RESPIRATION IN BAKING AND BREWING

• The fungus **yeast** is used.

Baking bread

CO₂ bubbles make the dough rise.

This makes the dough less dense.

The dough then increases in volume.

The **ethanol evaporates**.

Brewing alcohol

Yeast is given a source of sugar, such as grape juice.

Yeast is grown in a container in the absence of oxygen so that it respires anaerobically.

The container allows CO₂ to escape so that it does not build up and kill the yeast.

If the **alcohol** content rises to over **15%**, it will **kill** the yeast and stop this process.