- 1. Let ω be distributed uniformly over [0,1] and define $X_n(\omega) = \omega$ and $X_\infty(\omega) = 1 \omega$.
 - (a) Show that in this case the CDFs of X_n and X_∞ are the same so that $X_n \stackrel{d}{\to} X_\infty$ holds.
 - (b) Show that the CDF of $X_n X_\infty$ is not concentrated at 0 so that $X_n X_\infty \stackrel{d}{\to} 0$ does not hold.
- 2. In view of the dominated convergence, what is a sufficient condition for the a.s. convergence to imply the 1st mean convergence?
- 3. Consider a sequence of random variables $\{X_n\}$ defined by

$$X_n(\omega) = \begin{cases} 0 & \text{if } \omega \in [0, 1 - 1/n) \\ n & \text{if } \omega \in [1 - 1/n, 1] \end{cases}$$

and ω has the uniform distribution over [0,1].

- (a) Is this sequence of random variables asymptotically uniformly integrable?
- (b) Does this sequence of random variables converge in the first mean to zero?
- (c) After showing the result for (b), discuss which of the assumptions on the Lebesgue dominating convergence theorem is violated with this sequence.
- 4. Suppose $X_n \stackrel{d}{\to} X_{\infty}$, where X_{∞} is a normal random vector of size k with variance-covariance matrix Ω , which is a $k \times k$ non-singular matrix. Assume that Γ_n converges in probability to Γ , which is the Cholesky factor for Ω , where $\Omega = \Gamma \Gamma'$.
 - (a) Consider a mapping from $A \mapsto \det(A)$, where A is a $k \times k$ matrix. Explain why this a continuous function with respect to the k^2 arguments in A.
 - (b) Explain why each element of A^{-1} is a continuous function of the k^2 elements of A if the determinant of A is not zero, using Cramer's rule.
 - (c) Use the Slutsky's theorem to show that $\Gamma_n^{-1}X_n$ converges in distribution to a vector of normal random vector, where each of the k elements are mutually independent.
 - (d) Explain why each of the following equalities hold:

$$(\Gamma_n^{-1} X_n)' (\Gamma_n^{-1} X_n) = X_n' (\Gamma_n^{-1})' \Gamma_n^{-1} X_n$$

= $X_n' (\Gamma_n')^{-1} \Gamma_n^{-1} X_n$
= $X_n' (\Gamma_n \Gamma_n')^{-1} X_n$.

- (e) Use the continuous mapping theorem to show why the first expression on the left-hand side converges in distribution to the chi-square random variable with k degrees of freedom. Above equalities imply that the last expression has the same property.
- 5. Using the same idea with the proof given for the Chebyshev's inequality, prove Markov's inequality: for any non-negative random variable X with finite mean, for any $\epsilon > 0$,

$$\Pr(X \ge \epsilon) \le E(X)/\epsilon$$
.

6. Suppose for each i, $X_i = v + u_i$ for random variables v and u_i for i = 1, ..., n. Note that v is common across all i so that every i receives the same random value. Assume that v and u_i for all i are independent and all random variables have mean 0. Assume that random variable v has a finite variance σ_v^2 and u_i has finite variance σ_v^2 for each i.

- (a) Show that the condition for the Chebyshev's WLLN does not hold for $n^{-1} \sum_{i=1}^{n} X_i$.
- (b) Show that $n^{-1} \sum_{i=1}^{n} X_i$ converges in probability to a random variable v.
- 7. Suppose $X_{ni} = o_p(1)$ for each i = 1, ..., n. Does this imply that $\sum_{i=1}^{n} X_{ni}$ converges in probability to 0? If yes, please give a proof. If no, please provide a counter-example.
- 8. Show that when $\hat{\sigma} \stackrel{p}{\to} \sigma$ and $\sqrt{n} \left(\hat{\theta} \theta_0 \right) \stackrel{d}{\to} N \left(0, \sigma \right), \sqrt{n} \left(\hat{\theta} \theta_0 \right) / \hat{\sigma} \stackrel{d}{\to} N \left(0, 1 \right).$