Simulación de Ecosistemas Simples

Introducción

Este proyecto simula un ecosistema en el que interactúan predadores y presas en un entorno bidimensional representado por una cuadrícula. Los animales interactúan con su entorno a través de movimiento, reproducción, alimentación y caza. Además, la simulación introduce comida que las presas pueden consumir para sobrevivir y reproducirse. La visualización del ecosistema se realiza utilizando la biblioteca pygame.

Objetivo del Proyecto

El objetivo del proyecto es modelar las interacciones entre especies en un entorno controlado y observar la dinámica de poblaciones bajo diferentes condiciones iniciales. Este modelo puede extenderse para estudiar comportamientos ecológicos, como el impacto de la disponibilidad de recursos en la estabilidad del ecosistema.

Algoritmos Empleados

1. Representación del Ecosistema

El ecosistema se modela como dos matrices:

- Matriz de animales (matriz): Representa las posiciones de los predadores y las presas.
- Matriz de comida (comida): Representa la cantidad de comida disponible en cada celda.

Ambas matrices se inicializan según las dimensiones del ecosistema, ajustadas al tamaño de la pantalla.

2. Movimiento de Animales

Cada animal puede moverse aleatoriamente a una de las celdas vecinas (arriba, abajo, izquierda o derecha). Los movimientos están restringidos a las fronteras del ecosistema.

Depredadores: Si se encuentran con una presa, la cazan y ganan energía.

• Presas: Se mueven hacia celdas vacías y consumen comida si está disponible.

Eficiencia: Este algoritmo tiene una complejidad de O(f×c), donde f es el número de filas y c es el número de columnas, ya que se evalúan todas las celdas para determinar si contienen animales.

3. Alimentación

Las presas pueden alimentarse si están en una celda con comida. Cada unidad de comida consumida aumenta su energía y reduce la cantidad de comida en la celda.

- La distribución inicial de comida se realiza aleatoriamente.
- Periódicamente se genera nueva comida para simular la regeneración de recursos.

Eficiencia: El consumo de comida tiene una complejidad de O(f×c).

4. Reproducción

Los animales pueden reproducirse si tienen suficiente energía y encuentran una celda vacía vecina.

- Presas: Necesitan más de 5 unidades de energía para reproducirse.
- **Depredadores:** Necesitan más de 10 unidades de energía y gastan energía adicional durante la reproducción.

Eficiencia: Este proceso tiene una complejidad de O(f×c).

5. Actualización del Ecosistema

Cada turno, el ecosistema se actualiza realizando las siguientes operaciones:

- 1. Los animales envejecen y, si su energía o tiempo de vida llegan a cero, mueren.
- 2. Los animales se mueven a celdas vecinas.
- 3. Las presas se alimentan si hay comida en su celda.
- 4. Los animales intentan reproducirse si cumplen con las condiciones.
- 5. Se genera nueva comida periódicamente.

Eficiencia: La complejidad total de la actualización es O(f×c). Cada celda es procesada para manejar animales y comida.

6. Visualización

La representación gráfica se realiza utilizando pygame, donde cada celda se dibuja con un color específico:

Blanco: Celdas vacías.

• Rojo: Predadores.

• Verde: Presas.

• Amarillo: Celdas con comida.

La pantalla se actualiza en cada turno, mostrando el estado actual del ecosistema.

Eficiencia: El proceso de dibujo tiene una complejidad de O(f×c).

Justificación de los Algoritmos

1. Uso de matrices bidimensionales:

- a. Es una representación intuitiva para modelar un ecosistema espacial.
- b. Permite realizar operaciones locales (como movimiento y alimentación) de manera intuitiva.

2. Movimiento aleatorio:

a. Simula el comportamiento impredecible de los animales.

3. Regeneración de comida:

a. Introduce un mecanismo de retroalimentación, manteniendo la dinámica del ecosistema.

4. Algoritmos lineales:

a. Las operaciones clave tienen complejidad O(f×c). Al ser lineal garantiza un buen rendimiento incluso a escalas mayores a la presentada.

Análisis de Eficiencia

Complejidad Temporal	Descripción
O(f×c)	Cada animal realiza un movimiento por turno.
O(f×c)	Las presas verifican la comida en su celda.
Reproducción O(f×c)	Cada celda es evaluada para determinar si un
	animal puede reproducirse.
Visualización O(f×c)	Se recorren todas las celdas para dibujar el estado
	actual del ecosistema.
	Temporal O(f×c) O(f×c) O(f×c)

Actualización Total O(f×c) Combina envejecimiento, movimiento, alimentación y reproducción.

Conclusión

Este proyecto combina representaciones gráficas y algoritmos intuitivos para simular la dinámica de un ecosistema. La estructura del código permite extender el modelo para incluir nuevos comportamientos, como migración de animales o eventos climáticos.