- (a) 对任意 $x \in X$, $x \le u$,
- (b) 如果有 $b \in B$ 满足对任意 $x \in X$ 都有 $x \le b$,则 $u \le b$ 。

就称 $u \in X$ 的上确界, 一般记作 $\sum X$ 。

- (2) 如果存在 $l \in \mathcal{B}$ 满足:
 - (a) 对任意 $x \in X$, $l \leq x$,
 - (b) 如果有 $b \in B$ 满足对任意 $x \in X$ 都有b < x, 则b < l。

就称 $l \in X$ 的下确界,一般记作 $\prod X$ 。

如果对布尔代数 $\mathcal B$ 的任意非空子集 X, 都有 $\sum X \in \mathcal B$ 并且 $\prod X \in \mathcal B$, 就称 $\mathcal B$ 是完全的。

引理 1.1.33. 假设 \mathcal{B} 是布尔代数, $X \subset B$, 则

- (1) 如果 $\sum X$ 存在,则 $\prod (-X)$ 也存在,并且等于 $-\sum X$;
- (2) 如果 $\sum X$ 存在, $a \in B$, 则 $\sum \{a \cdot b \mid b \in X\}$ 存在并且等于 $a \cdot \sum X$ 。

证明. (2) 对任意 $b \in X$, $b \leq \sum X$, 所以 $a \cdot b \leq a \cdot \sum X$,即 $\sum X$ 是上界。现在假设 u 也是上界,即对任意 $b \in X$, $a \cdot b \leq u$ 。注意到这蕴含 $b = a \cdot b + (-a) \cdot b \leq u + (-a) \cdot b \leq u + (-a)$,所以 $\sum X \leq u + (-a)$,而这又蕴含 $a \cdot \sum X \leq a \cdot u \leq u$ 。

引理 **1.1.34.** 对任意一阶逻辑中的理论 T,令 $\mathcal{B}(T)$ 为相应的 Lindenbaum 代数,则

 $[\exists x \phi] = \sum \{ [\phi_y^x] \mid y$ 是变元 $[\forall x \phi] = \prod \{ [\phi_y^x] \mid y$ 是变元 \}

证明. 显然,我们只需证明其中一个等式。因为对任意变元 y,旨 $\forall x \phi \to \phi_y^x$,所以 $[\forall x \phi] \leq \prod \{ [\phi_y^x] \mid y$ 是变元},即,它是这个集合的下界。另一个方向,令 $[\psi]$ 是一个下界,则对任意变元 y, $T \vdash \psi \to \phi_y^x$ 。特别地,这对一个不在 $T \cup \{\psi, \phi\}$ 中出现的变元 y 仍然成立。利用全称量词引入规则,我们有 $T \vdash \psi \to \forall x \phi$ 。所以, $[\forall x \phi]$ 是下确界。

练习 1.1.35. 如果 $B = \mathcal{P}(X)$,则对任意 $Y \subseteq B$, $\sum Y = \bigcup Y$, $\prod Y = \bigcap Y$ 。 $\mathcal{P}(X)$ 是完全的布尔代数。

练习 1.1.36. 如果 \mathcal{B} 是一个集合代数并且是完全的,则存在 X , $\mathcal{B} \cong \mathcal{P}(X)$ 。

例 1.1.37. 令 $B = \{x \subseteq \mathbb{N} \mid x$ 是有穷的或余有穷的 $\}$,参见练习 1.1.9, \mathcal{B} 在集合运算下是一个布尔代数。对任意 $n \in \mathbb{N}$,令 $x_n = \{p < n \mid p$ 是素数 $\}$,同时令 $X = \{x_n \mid n \in \mathbb{N}\}$,则 $\sum X$ 在 \mathcal{B} 中不存在。它是全体素数的集合,是无穷的,但不是余有穷的。

练习 1.1.38. 在定理1.1.26中,如果 \mathcal{B} 还是完全的,则 f 是一个同构。所以,如果 \mathcal{B} 是一个完全的原子化的布尔代数,则存在集合 X , $\mathcal{B} \cong \mathcal{P}(X)$ 。【证明:如果 A 是全体原子的集合, $Y \subseteq A$,则 $f(\sum Y) = Y$,所以 f 是一个满射。】

引理1.1.39. 假设 B 是布尔代数,以下命题等价:

- (1) B 是原子化的;
- (2) 对任意 $b \in B$,

$$\sum \{a \mid a \leq b \land a \ \mathcal{L}$$
 \mathbb{R} $\mathcal{F} \}$

存在并且等于 b。

推论 1.1.40. 如果 B 是原子化的并且只有有穷多个原子,则 B 是有穷的。

1.2 滤与理想

定义 1.2.1. 令 \mathcal{B} 为布尔代数, $F \subseteq B$, 如果 F 满足以下条件:

- 1. $0 \notin F$, $F \neq \emptyset$;
- 2. 如果 $a, b \in F$, 则 $a \cdot b \in F$;
- 3. 如果 $a \in F$ 并且 $a \leq b$, $b \in F$ 。

就称 $F \neq \mathcal{B}$ 上的滤。

例 1.2.2. 对任意集合 X, $(\mathcal{P}(X), X, \emptyset, \cap, \cup, -)$ 是布尔代数。

- $\{X\}$ 是 $\mathcal{P}(X)$ 上的滤,称为平凡的。
- 如果 X 是无穷的,令 $F = \{Y \subseteq X \mid Y$ 是余有穷的},则 F 是一个滤。条件(1)和(3)是显然的;关于(2),如果 Y_1, Y_2 是余有穷的,则 $X Y_1 \cap Y_2 = (X Y_1) \cup (X Y_2)$ 也是有穷的,所以 $Y_1 \cap Y_2 \in F$ 。

习惯上,如果 $F \subseteq \mathcal{P}(X)$ 是滤,我们更经常地称其为"X 上的滤"。

练习 1.2.3. 令 \mathcal{B} 为布尔代数, $F \subseteq B$, 以下命题等价:

- (1) *F* 是滤;
- (2) $0 \notin F$, $1 \in F$ 并且对任意 $a, b \in B$, $a \cdot b \in F$ 当且仅当 $a \in F$ 且 $b \in F$ 。
- 定义 1.2.4. 对任意布尔代数 \mathcal{B} ,它的子集 $G \subseteq B$ 如果满足: 对任意 $n \in \omega$,任意 $g_1, \dots, g_n \in G$,它们的积不为 0,即, $g_1 \cdot g_2 \cdots g_{n-1} \cdot g_n > 0$,就称 G有**有穷**交性质。
- **练习 1.2.5.** 如果 $G \subseteq B$ 有有穷交性质, $a \in B$,则 $G \cup \{a\}$ 或 $G \cup \{-a\}$ 有有穷交性质。

引理 1.2.6. 令 \mathcal{B} 是布尔代数, $G \subset B$ 有有穷交性质,则

$$F = \{b \in B \mid \exists g_1, \cdots, g_n \in G(g_1 \cdots g_n \le b)\}$$
 (1.3)

是 B 上的滤, 称为 G 生成的滤。

练习 1.2.7. 如果 F 是由 G 生成的滤,则 F 是包含 G 的最小的滤,即, $G \subseteq F$ 并且如果 $F' \supseteq G$ 也是滤,则 $F \subseteq F'$ 。

注记 1.2.8. 由于 $\{a\}$ 总是有有穷交性质,所以,对任意 $a \in B$, $\{a\}$ 生成 𝔞 上的一个滤。由单点集生成的滤称为主滤。