

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia de Computação e Telecomunicações Sistemas de Controle Experiência 4 (Projeto por alocação de pólos) com $MatLab^{\textcircled{C}}$ Prof a Adriana Castro

Danilo Souza - 10080000801

July 26, 2013

Contents

1	Questão 1 - Controlador Proporcional	3
2	Questão 2 - Controlador Porporcional e Integral	4
3	Questao 3 - Controlador Integral	5

List of Figures

Chapter 1

Questão 1 - Controlador Proporcional

Este experimento consiste em utilizar o método de Projeto por alocação de pólos para realizar projetos de controladores. O sistema realimentado mostrado na Figura 1 possui função de transferência mostrada na equação 1.1.

$$M(s) = \frac{G_c(s)G_p(s)}{1 + G_c(s)G_p(s)}$$
(1.1)

Para garantir a eficácia do método, G_c é calculado de tal forma que M_s seja um sistema de $1^a ou 2^a$ ordem.

Neste primeiro experimento, a função de transferência do processo a ser controlado é dada pela equação 1.2.

$$G_p(s) = \frac{2}{1 + 100s} \tag{1.2}$$

A função de transferência de primeira ordem usada para comparar com M(s) é dada por:

$$G(s) = \frac{K}{\tau s + 1}$$

, onde

$$\tau = \frac{4}{T_e}$$

, para o critério de 2%

Após a introdução de $G_c=K_p$ na malha do sistema, temos que:

$$M_s = \frac{\frac{2K_p}{1+100s}}{1 + \frac{2K_p}{1+100s}}$$

$$M_s = \frac{2K_p}{100s + 1 + 2K_p}$$

Dividindo âmbos numerador e denominador por

Chapter 2

Questão 2 - Controlador Porporcional e Integral

Chapter 3

Questao 3 - Controlador Integral