- **20.** a. What is the relationship between *n* and the total number of orbitals in a main energy level?
 - b. How many total orbitals are contained in the third main energy level? in the fifth?
- **21.** a. What information is given by the spin quantum number?
 - b. What are the possible values for this quantum number?
- **22.** How many electrons could be contained in the following main energy levels with *n* equal to the number provided?
 - a. 1
 - b. 3
 - c. 4
 - d. 6
 - e. 7

PRACTICE PROBLEMS

- **23.** Sketch the shape of an *s* orbital and a *p* orbital.
- **24.** How does a 2s orbital differ from a 1s orbital?
- **25.** How do a $2p_x$ and a $2p_y$ orbital differ?

Electron Configurations

SECTION 3 REVIEW

- **26.** a. In your own words, state the Aufbau principle.
 - b. Explain the meaning of this principle in terms of an atom with many electrons.
- **27.** a. In your own words, state Hund's rule.
 - b. What is the basis for this rule?
- **28.** a. In your own words, state the Pauli exclusion principle.
 - b. What is the significance of the spin quantum number?
- **29.** a. What is meant by the highest occupied energy level in an atom?
 - b. What are inner-shell electrons?
- **30.** Determine the highest occupied energy level in the following elements:
 - a. He
 - b. Be
 - c. Al
 - d. Ca
 - e. Sn

- **31.** Write the orbital notation for the following elements. (Hint: See Sample Problem A.)
 - a. P
 - b. B
 - c. Na
 - d. O
- **32.** Write the electron-configuration notation for the element whose atoms contain the following number of electrons:
 - a. 3
 - b. 6
 - c. 8
 - d. 13
- **33.** Given that the electron configuration for oxygen is $1s^22s^22p^4$, answer the following questions:
 - a. How many electrons are in each oxygen atom?
 - b. What is the atomic number of this element?
 - c. Write the orbital notation for oxygen's electron configuration.
 - d. How many unpaired electrons does oxygen have?
 - e. What is the highest occupied energy level?
 - f. How many inner-shell electrons does the atom contain?
 - g. In which orbital(s) are these inner-shell electrons located?
- **34.** a. What are the noble gases?
 - b. What is a noble-gas configuration?
 - c. How does noble-gas notation simplify writing an atom's electron configuration?
- **35.** Write the noble-gas notation for the electron configuration of each of the elements below. (Hint: See Sample Problem B.)
 - a. Cl
 - b. Ca
 - c. Se
- **36.** a. What information is given by the noble-gas notation $[Ne]3s^2$?
 - b. What element does this represent?
- **37.** Write both the complete electron-configuration notation and the noble-gas notation for each of the elements below. (Hint: See Sample Problem C.)
 - a. Na
 - b. Sr
 - c. P