Section 2.7

Precise Definitions of Limits

In this section we discuss the more precise definition of limits by transforming the concept of limit into solid mathematical foundation.

Assume the function f is defined for all x near a except possible at a. We will now define mathematically, what we mean with $\lim_{x\to a} f(x) = L$ for a real number L.

The distance between f(x) and L is given by |f(x) - L| and the distance between x and a is given by |x-a|.

Therefore we can write $\lim_{x\to a} f(x) = L$ if we can make |f(x) - L| arbitrary small for any x, distinct from a with |x-a| sufficiently small.

For example, if we want |f(x) - L| to be less than 0.01, then we must find a number $\delta > 0$ such that

$$|f(x) - L| < 0.01$$
 whenever $|x - a| < \delta$ and $x \neq a$.

For example, if we instead want |f(x) - L| to be less than 0.001, then we must find another number $\delta > 0$ such that

$$|f(x) - L| < 0.001$$
 whenever $0 < |x - a| < \delta$.

For the limit to exist, then for any $\epsilon > 0$, we can always find a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$.

Problem

Given the function $f(x) = \frac{(0.5x+1)(x-4)}{(x-4)}$. We are interested in the limit $\lim_{x\to 4} f(x) = 3$. For each value of $\epsilon > 0$, determine a value of $\delta > 0$ satisfying the statement

$$|f(x)-3| < \epsilon$$
 whenever $0 < |x-4| < \delta$

for

(A)
$$\epsilon = 1$$

(B)
$$\epsilon = \frac{1}{2}$$
.

Definition. Limit of a Function

Assume f(x) is defined for all x in some open interval containing a, except possibly at a. We say the **limit of** f(x) as x approaches a is L, written

$$\lim_{x \to a} f(x) = L$$

if for any number $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$.

- Steps for proving that $\lim_{x\to a} f(x) = L$ 1. Find δ . Let ϵ be an arbitrary positive number. Use the inequality $|f(x) L| < \epsilon$ to find a condition of the form $|x-a| < \delta$, where δ depends only on the value of ϵ .
- 2. Write a proof. For any $\epsilon > 0$, assume $0 < |x a| < \delta$ and use the relationship between ϵ and δ in Step 1 to prove that $|f(x) - L| < \epsilon$.

Problem Prove that $\lim_{x\to 3}(2x+1)=7$ using the precise definition of a limit.

Problem (exercise 2.7.33 modified) Prove that $\lim_{x\to 4}\frac{1}{x}=\frac{1}{4}$ using the precise definition of a limit.

Definition. Two-sided Infinite Limit

The infinite limit $\lim_{x\to a} f(x) = \infty$ means that for any positive number N, there exists a corresponding number $\delta > 0$ such that

$$f(x) > N$$
 whenever $0 < |x - a| < \delta$.

Steps for proving that $\lim_{x\to a} f(x) = \infty$

- 1. Find δ . Let N be an arbitrary positive number. Use the statement f(x) > N to find a condition of the form $|x a| < \delta$, where δ depends only N.
- 2. Write a proof. For any N > 0, assume $0 < |x a| < \delta$ and use the relationship between N and δ in Step 1 to prove that f(x) > N.

Problem Let $f(x) = \frac{1}{(x-3)^2}$. Prove that $\lim_{x\to 3} f(x) = \infty$.