Method Description

General Information

Type of Entry (Academic, Practitioner,	Researcher
Researcher, Student)	
First Name	Vilém
Last Name	Novák
Country	Czech Republic
Type of Affiliation (University, Company-	Organization
Organization, Individual)	•
Affiliation	University of Ostrava, Institute
	for Research and Applications
	of Fuzzy Modelling, NSC
	IT4Innovations

Team Members (*if applicable***)**:

1 st Member	
First Name	Vilém
Last Name	Novák
Country	Czech Republic
Affiliation	University of Ostrava, Institute for
	Research and Applications of Fuzzy
	Modelling, NSC IT4Innovations
2 nd Member	
First Name	Viktor
Last Name	Pavliska
Country	Czech Republic
Affiliation	University of Ostrava, Institute for
	Research and Applications of Fuzzy
	Modelling, NSC IT4Innovations
3 rd Member	
First Name	Linh
Last Name	Nguyen
Country	Czech Republic
Affiliation	University of Ostrava, Institute for
	Research and Applications of Fuzzy
	Modelling, NSC IT4Innovations

Information about the method utilized

Name of Method	Linguistic Fuzzy Logic
	Forecaster (LFL Forecaster)
Type of Method (Statistical, Machine	Soft computing, Statistical
Learning, Combination, Other)	
Short Description (up to 200 words)	LFL Forecaster is a specialized
	software tool for an analysis and

forecasting of time series
developed by the Institute for
Research and applications of
Fuzzy Modeling (IRAFM),
University of Ostrava, Czech
Republic. It is mainly based on
two methods originally developed
by members of IRAFM: (1) the
Fuzzy Transform and (2) the
Perception-based Logical
Deduction (part of Fuzzy Natural
Logic techniques).

Extended Description:

Assumption

Assume that we have a time series data:

$$X(t), t=0,1,...,n$$

which can be additively decomposed into a trend-cycle, a seasonal component and an irregular component

$$X(t) = TC(t) + S(t) + R(t)$$
.

Future values of the time series can be determined as a sum of future values of those components.

Procedure

Step 1: split the data X(t) into learning and validation sets: Q^L and Q^V On the basis of the learning set, Q^L , we find the best model of the time series where we measure quality of the model on the validation set, Q^V .

Step 2: predict future values of the trend-cycle TC

- **Step 2.1:** apply the direct fuzzy transform of higher degree (direct F^m transform) to Q^L to transform it into a sequence of polynomials (direct F^m transform components)
- Step 2.2: forecast future direct F^m transform components using techniques of Fuzzy Natural Logic (FNL) and pattern model.
- **Step 2.3:** apply the inverse fuzzy transform of higher degree (inverse F^m transform) to the future direct F^m transform components to obtain the future values of the trend-cycle

Step 3: predict future values of the seasonal component S(t)

- **Step 3.1:** seasonal component is modeled as linear combination of several previous seasons
- **Step 3.2:** compute coefficients of linear combination from historical data by the least square method of over-determined linear equations