CS 6160 Cryptology Lecture 8: Cryptanalysis of Block Ciphers

Maria Francis

September 22, 2020

Attacks on Block Ciphers

- We look at how to attack SPN and DES ciphers that have fewer than the lower bound rounds.
- We then look at the standard tool to attack block ciphers differential attack.
- We give an overview of another standard tool, linear cryptanalysis.

Attacks on Reduced Rounds of SPN

- The strength of a block cipher depends on the number of rounds.
- The straightforward attacks on reduced rounds will help our understanding of these ciphers better.
- On one round with no final key-mixing step:
 - ▶ Adversary knows one input/output pair, $y = F_k(x)$.
 - ► He inverts *y* using public MP and *S*-boxes.
 - ▶ The intermediate that he has now is $x \oplus k$.
 - \blacktriangleright He knows x, so easily retrieves k.
- Shows how important key-mixing step is.

Attack on 1-round of SPN

- Full 1 round and key-mixing step.
- Assume a 64-bit block and a *S*-box with 8-bit input/output length.
- We assume two independent 64-bit sub-keys k_1 , k_2 for the two key-mixing steps, master key, $k_1 \circ k_2$ is 128 bits long.
- First a simple idea: given a single input/output pair (x, y) launch a meet-in-the-middle like attack.
- For every possible k_2 invert the key-mixing step on y to get y'.
- Now we have a full 1-round with no key-mixing step and we have seen how to get a unique k_1 corresponding to k_2 choice.
- Thus in 2^{64} time, we get 2^{64} possibilities for master key. More pairs and we get the result.

Attack on 1-round of SPN

- Another idea: Individual bits of the output depend on only part of the master key.
- Fix some input/output pair as before (x, y).
- The adversary will enumerate over all possible values for the first byte of k_2 .
- XOR this value with y to get a candidate value for the output of the first S-box, invert it to obtain a cadidate for the input of that S-box.
- What is the input of the S-box? XOR of 8 bits of x and 8 bits of k_1 (the positions of these bits depend on the public MP)
- So now we have a candidate value for 8-bits of k_1 .
- For each candidate for the first byte of k_2 , there is a unique possible value for *some* 8 *bits of* k_1 , the attack time is now reduced from 2^{16} to 2^8 .

Attack on 1-round of SPN

- The attacker can tabulate all the feasible values in 2⁸ time and for each byte he does this, giving him 8 lists.
- Number of possible master keys $(2^8)^8 = 2^{64}$ values.
- The total time to do it $-8 \cdot 2^8 = 2^{11}!$
- Add more input/output pairs and you further reduce the space of possible keys: correct value of key should be consistent with more pairs and incorrect value can be consistent with new pair with probability no better than guessing, i.e. with 2^{-8} .
- The attack is possible because different parts of the key can be isolated from other parts. Way out: Diffusion with multiple rounds!

Attacks on Reduced Rounds of DES

Reading exercise: Attacks on Reduced-Round DES (in Section 6.2.3 in the Yehuda and Katz Textbook) Expect questions for your quiz from this section!

Differential Cryptanalysis

- A standard tool in cryptanalysis for block ciphers.
- Using this technique we can launch a CPA attack.
- Proposed first by Biham and Shamir to attack DES (1993).
- The idea:
 - ▶ We are not working with a random permutation, so can we obtain information regarding which specific differences in inpu (chosen plaintexts) will result in which specific differences in output with probability higher than a random permutation.
 - ► Consider a keyed permutation F'_k and for two uniform inputs x_1, x_2 , let $\Delta_x = x_1 \oplus x_2$ and $\Delta_v = F'_k(x_1) \oplus F'_k(x_2)$.
 - ▶ What we are looking for is differential (Δ_x, Δ_y) occurs in some keyed permutation F_k with probability p that is higher than for a random permutation.

Overview

- For any fixed (Δ_x, Δ_y) and x_1, x_2 s.t. $\Delta_x = x_1 \oplus x_2$, if we choose a uniform function $f: \{0,1\}^\ell \to \{0,1\}^\ell$, we have $Pr[f(x_1) \oplus f(x_2) = \Delta_y] = 2^{-\ell}$.
- Our way of attacking a weak block cipher : to look for differentials with significantly higher probability.
- The reason why they are useful is because we can use that to then launch a key-recovery attack.
- We show that for SPNs. Let F be a block cipher with ℓ -bit block length and a r-round SPN.
- Let $F'_k(x)$ be the intermediate result after doing the key mixing step of round r.
- l.e, we exclude the S-box step, mixing permutation of the last round and the final r+1 key-mixing step.

What we are looking at?

How to get the final sub-key?

- Let there be a (Δ_x, Δ_y) in F' that occurs in F' with $p >> 2^{-\ell}$. We can retrieve the final mixing sub-key k_{r+1} .
- $\{(x_1^i, x_2^i)\}_{i=1}^L$ a collection of L pairs of random inputs s.t. $\Delta_x = x_1^i \oplus x_2^i \ \forall i$.
- Consider a chosen-plaintext attack: Obtain the encryption of x_1^i, x_2^i for all i as $y_1^i = F_k(x_1^i), y_2^i = F_k(x_2^i)$.
- For all possible bit-strings $k^* \in \{0,1\}^\ell$, compute $y_1^{i^*}, y_2^{i^*}$ as outputs of $F'(x_1^i), F'(x_2^i)$ along with the S-box substitution, mixing permutation and XORing with the final sub-key as k^* .

How to get the final sub-key?

- If $k^*=k_{r+1}$ then a p-fraction of the pairs will satisfy ${y_1}^{i^*}\oplus {y_2}^{i^*}=\Delta_y.$
- Else heuristically only a $2^{-\ell}$ fractions will yield this differential.
- For a large enough L the correct value for the final sub-key k_{r+1} can be determined.
- But we have to try out 2^{ℓ} possibilities, guess portions of k_{r+1} at a time.
 - Assume S-boxes in F have 1-byte input/output and focus on the first byte of Δ_y .
 - ▶ We verify if the differential holds in the first byte by guessing only 8-bits of k_{r+1} , the 8-bit output of the first S-box.
 - ► Try out all 2^8 possibilities and see which one yields the desired differential with the highest probability ($\approx p + 2^{-8}$) and that can be used to guess that portion. Why $p + 2^{-8}$ and not p?

An Example

4-round SPN, $\ell=16$ bits, S-box with 4-bit input/output length.

Input: Output:				
Input: Output:				

Mixing Permutation:

In:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Out:	7	2	3	8	12	5	11	9	10	1	14	13	4	6	16	15

Finding a differential

- Consider a differential $\Delta_{\scriptscriptstyle X}=1111.$
- $S(0000) \oplus S(1111) = 0000 \oplus 1010 = 1010$ a difference of 1111 in inputs yields a difference of 1010 in the outputs.
- We now need to see if this differential happens very often.
- For e.g: $S(0001) \oplus S(1110 = 0001 \oplus 1111) = 1110$ is a counterexample.
- But here is another one that also gives the same differential: $S(0100) \oplus S(1011) = 1010$.

Finding a differential Below figure shows this differential happens with probability 1/2.

х	S(x)	x ⊕ 1111	S(x ⊕ 1111)	S(x) ⊕ S(x ⊕ 1111)
0000	0000	1111	1010	1010
0001	1011	1110	1110	0101
0010	0101	1101	0011	0110
0011	0001	1100	1001	1000
0100	0110	1011	1100	1010
0101	1000	1010	0010	1010
0110	1101	1001	0111	1010
0111	0100	1000	1111	1011
1000	1111	0111	0100	1011
1001	0111	0110	1101	1010
1010	0010	0101	1000	1010
1011	1100	0100	0110	1010
1100	1001	0011	0001	1000
1101	0011	0010	0101	0110
1110	1110	0001	1011	0101
1111	1010	0000	0000	1010

All possible differentials

- Carry this process for all 2^4 input differences Δ_x to calculate the probability of the differential.
- For each pair (Δ_x, Δ_y) , we make a table of the number of 4-bit input x s.t.

$$S(x) \oplus S(x \oplus \Delta_x) = \Delta_y$$
.

Differentials in our S-box

- (i,j) - no of inputs with difference i that map to outputs with difference j. 8 pairs for (1111, 1010). (0100, 0110) has also high probability of 6/16 = 3/8.

		3.157.6															
ı								Outp	ut Dif	ferer	ice Δ	VIN'	0				
ı		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	(16)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	4	0	0	0	2	2	2	2	0	0	4	0
	2	0	0	0	0	0	2	0	2	0	2	2	4	2	2	0	0
١.	3	0	2	2	4	0	4	0	0	0	0	0	0	0	2	2	0
00	4	0	0	0	2	2	2	6	0	2	0	0	0	2	0	0	0
×Δ	5	0	2	2	0	0	0	0	0	4	0	0	0	4	2	2	0
o ⊳	6	0	2	0	2	0	0	0	0	0	2	0	2	0	4	0	4
eren	7	0	2	0	0	2	4	2	2	0	2	0	0	0	2	0	0
ä	8	0	0	0	2	0	0	0	2	0	0	0	2	2	2	2	4
Input Difference	9	0	2	0	2	2	2	0	4	0	2	2	0	0	0	0	0
Γ	Α	0	0	4	0	2	0	2	4	2	0	2	0	0	0	0	0
	В	0	0	2	0	0	0	2	0	0	2	0	0	4	2	4	0
	С	0	0	0	0	0	0	0	0	4	4	0	4	0	0	0	4
	D	0	4	2	2	0	0	2	2	0	0	0	0	0	0	0	4
	E	0	2	4	2	4	0	0	0	0	0	0	0	2	0	2	0
1	F	0	0	0	0	0	2	2	0	2	0	(8)	2	0	0	0	0

Differentials for our S-box

 $\begin{array}{c} 4-round & SPN \\ \text{Consider two 16-bit inputs that have a differential} \\ 0000 & 1100 & 0000 & 0000. \end{array}$

4-round SPN

- Key mixing step is just XOR no impact on differential.
- Inputs to the second *S*-box in the first round have the differential 1100.
- From our previous table, Fig. Differentials for our S-box, a difference in 1100 yields a difference of 1000 with probability 1/4.
- With probability 1/4 the differential in the output of the 2nd S-box after round 1 is a single bit which is moved from the 5th position to 12th position by the mixing permutation.
- The inputs to other *S*-boxes are equal and so outputs are equal and differential is 0000.

After one round

After 4 rounds

- So now for the third S-box, input difference of 0001 gives an output difference of 0100 with prob. 1/4.
- Once again one output bit difference is moved to 1st position from 10th position by MP.
- In the third round there is an output difference of 1111 with probability of 1/4 and the bits 1,2,3,4 are moved to 7,2,3,8.
- Overall, $\Delta_x=0000$ 1100 0000 0000 results in an output difference $\Delta_y=0110$ 0011 0000 0000 after three rounds with probability $\frac{1}{4}\cdot\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{64}.$
- For a random function it is $2^{-16} = 1/65536$ so the differential here happens with significantly higher probability than a random function.

Recovering final sub-key k_5

- $\{(x_1^i, x_2^i)\}_{i=1}^L$ L pairs of random inputs with Δ_x differential.
- Using a CPA, we obtain the values $y_1^i = F_k(x_1^i)$ and $y_2^i = F_k(x_2^i)$ for all i.
- For all possible initial 8 bits of k_5 we compute the initial 8 bits of y_1^{i*} , y_2^{i*} , the intermediate value after the key mixing step of the 4th round. All that we need is invert S-boxes and MP.
- Now if we had used the correct 8 bits of k_5 then the 8 bit differential 0110 0011 would have occurred with at least 1/64 probability.
- For a random incorrect key it would have been $2^{-8} = 1/256$ probability.
- With more pairs (large L) we can retrieve the key!

Differential Attacks in practice

- Famous one: Differential attack broke FEAL-8, an alternative to DES with just 1000 chosen plaintexts.
- Any proposed cipher should be tested for resistance to differential cryptanalysis.
- But on DES, only slightly better than brute-force search, needs 2⁴⁷ chosen plaintexts.
- Most real-world applications you cannot get that many pairs.
- Small changes to *S*-boxes can make DES vulnerable to differential attacks.

Linear Cryptanalysis

- Developed by Matsui in the early 1990s.
- Basic idea: Identify linear relationships between input and output that occur more than a random function.
- Formally, we define a linear bias ϵ : Bit positions i_1,\ldots,i_{in} and i'_1,\ldots,i'_{out} have linear bais ϵ if for uniform x and x and $y:=F_k(x)$, it holds that

$$|Pr[x_{i_1} \oplus \cdots \oplus x_{i_{i_n}} \oplus y_{i'_1} \oplus \cdots \oplus y_{i'_{out}}] - \frac{1}{2}| = \epsilon$$

where x_i, y_i denote *i*th bit of x and y.

- For a random function we expect the bias to be close to 0. Just an XOR of bit values should give 0 or 1 with probability $\frac{1}{2}$.

Linear Cryptanalysis & Cipher Design

- Matsui showed if you have a large enough bias in a cipher then you can retrieve the secret key.
- This attack only needs known plaintexts! It is much easier to obtain a huge encrypted file of known plaintext than gathering encryptions of plaintexts of our choice.
- Attack on DES: 2⁴³ known plaintext/ciphertext pairs.

Design of Block Ciphers:

- Design S-boxes with minimal differential probabilities and linear biases.
- Cannot eliminate all since some differential will happen more frequently than others.
- Increasing rounds helps.

Security of DES

- The best known attack is still exhaustive key search.
- In 1997 DES was broken in 96 days and by next year 14 days and then in just 56 hours.
- The last attack was broken by a special machine called Deep Crack built at a cost of a quarter of a million.
- The short block length is also a concern.
- For e.g: we will soon see that an attacker can break the security of the encryption scheme with prob. $2q^2/2^\ell$ if it has q plaintext/ciphertext pairs.
- For DES that means only $q=2^{30}$ plaintext/ciphertext pairs are needed for security to be compromised with high probability.
- But the design is still perfect