# Eulersche Fluid Simulation für die Computergrafik Scientific Computing

Tim Krüger

Hochschule Niederrhein Fachbereich Elektrotechnik & Informatik

06. November 2024



#### Motivation

- Realistische, echtzeitfähige Flüssigkeitsbewegungen für Computergrafik-Anwendungen
  - ► Visualisierungen, Computerspiele etc.
- Zeitlimitierung von 16.6 ms (für alle Prozesse) wenn Framerate von 60 fps angestrebt wird
  - ► Inputmanagement, UI, Rendering, Physics ...
- Komplexes, nicht-triviales Problem "Rabbithole"
  - Physik ist kompliziert tiefe Theorie
  - Implementierung (performant) praktische Herausforderung
  - Numerische Einschränkungen
- Deswegen: Vereinfachungen und Annahmen (nächste Folie)
  - Keine Forschungsqualität
  - ► Meistens nicht mal double-precision



#### **Allgemeines**

- Als Fluid bezeichnet man sowohl eine Flüssigkeit als auch ein Gas
  - ► Ähnliche physikalische Struktur, dieselbe Simulationsmethode
- 1. Annahme: Inkompressibles Fluid
  - ► Gute Approximation für Wasser
  - ▶ 10.000  $kg/cm^2$  (≈ 10.000 bar) führen zu nur 3% Kompression
  - ► Auch für freie Gase geeignet
- 2. Annahme: Viskosität von 0
  - ► Zähigkeit der Flüssigkeit (Wasser vs: Honig)
  - Realistische Vereinfachung für Gase und Wasser
- Simulation würde ansonsten deutlich komplizierter werden
  - Lösung der vollständigen Navier-Stokes-Gleichungen



## Navier-Stokes Gleichungen (1)

- Mathematisches Modell der Strömung von linear-viskosen newtonschen Fluiden
  - ▶ Über Jahrzehnte entwickelt (ungefähr 1822-1850)
  - ► Benannt nach Claude-Louis Navier und George Gabriel Stokes
- Satz von partiellen Differentialgleichungen
- Teil der sieben Millenium-Probleme: Nicht bekannt, ob es für den allgemeinen 3D Fall eine überall definierte, glatte (eindeutige) Lösung gibt
  - Für 2D wissen wir es
- Im folgenden wird immer von der inkompressiblen Form der Navier-Stokes Gleichungen ausgegangen
  - ► Volumen bzw. Dichte der Flüssigkeit bleibt immer gleich



#### Differentialgleichungen

Differentialgleichungen beschreiben die Beziehung zwischen einer Funktion und ihren Ableitungen in Bezug auf eine oder mehrere unabhängige Variablen.

- Viele Naturgesetze können mittels Differentialgleichungen formuliert werden
- Den Grad der höchsten Ableitung nennt man Ordnung

Anhand der Anzahl der unabhängigen Variablen unterscheidet man:

- Gewöhnliche Differentialgleichungen (engl. ODE)
  - ► Eine unabhängige Variable
- Partielle Differentialgleichungen (engl. PDE)
  - Mehrere unabhängige Variablen



#### Gewöhnliche Differentialgleichungen

Bei gewöhnlichen Differentialgleichungen (ODE) hängt die gesuchte Funktion y(x) von nur einer Variablen ab.

- Nur gewöhnliche Ableitungen der gesuchten Funktion nach der unabhängigen Variable treten auf
- Beispiel:  $\frac{dy}{dx} = ky$  (Exponentielles Wachstum)

Man unterscheidet gewöhnliche Differentialgleichungen des Weiteren in *implizit*, *explizit*, *linear* und *nichtlinear*.

- Die Methoden zur Lösung variieren stark und hängen von der Art der Differentialgleichung ab
- Kann die ODE explizit gelöst werden, lässt sich eine analytische Formel für die Lösung y(x) finden
- Viele ODEs, besonders nichtlineare, erfordern jedoch numerische Methoden zur Approximation einer Lösung



#### Partielle Differentialgleichungen

Bei partiellen Differentialgleichungen (PDE) hängt die gesuchte Funktion von mehreren Variablen ab und es treten partielle Ableitungen nach mehr als einer Variable auf.

- Die Theorie ist mathematisch nicht abgeschlossen, sondern Gegenstand der aktuellen Forschung
  - ▶ Die Lösungstheorie linearer partieller Differentialgleichungen ist größenteils erforscht
  - ▶ Die Lösungstheorie nichtlinearer partieller Differentialgleichungen dagegen enthält noch viele Lücken
- Gleichungen höherer Ordnung sind i.d.R. schwieriger zu lösen
- Meist nur numerische Lösung möglich (Finite-Elemente, ...)
- Anzahl der Variablen  $\rightarrow$  Untersuchung theor. Lösbarkeit:
  - Navier-Stokes-Gleichungen in 2D: Beweis von Existenz-, Eindeutigkeits- und Regularitätsaussagen
  - Navier-Stokes-Gleichungen in 3D: Offen Teil der Millennium-Probleme



# Navier-Stokes Gleichungen (2)

- 1.1 Inkompressibilität  $\nabla \cdot \vec{u} = 0$
- 1.2 Momentum  $\rho\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) = -\nabla p + v \nabla^2 \vec{u} + \vec{g}$



## Inkompressibilitätsgleichung (1)

#### Inkompressibilität $\nabla \cdot \vec{u} = 0$

Wird auch als Kontinuitätsgleichung oder *Conservation of Mass*-Gleichung bezeichnet.

- $\vec{u}$  := Geschwindigkeitsfeld (engl. velocity field)
  - ▶ Velocity := Speed with direction (u, v, w)
- ∇ := Divergenzoperator
  - Summe der einzelnen Komponenten der partiellen Ableitungen des Vektorfeldes entlang der jeweiligen Achsen
  - ► Ergebnis ist ein skalares Feld welches die Divergenz des Vektorfeldes an iedem Punkt beschreibt
  - Wie stark kontrahieren oder divergieren die Vektoren an diesem Punkt?



#### Inkompressibilitätsgleichung (2)

$$\nabla \cdot \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Die Gleichung sagt also aus, dass die Divergenz des Geschwindigkeitfeldes Null sein muss.

 Man bezeichnet ein solches Vektorfeld als inkompressibel oder divergenzfrei



## Impulsgleichung (1)

Wird auch als Erhaltung des Momentums bezeichnet.

• Fangen wir mit der gegebenen Definition aus 1.2 in etwas vereinfachter Form an:

$$\rho \frac{D\vec{u}}{Dt} = -\nabla p + v\nabla^2 \vec{u} + \vec{g}$$

• Hinter dieser Gleichung verbirgt sich nichts anderes als Newtons 2. Gesetz:  $\vec{F} = m\vec{a}$ 

$$\underbrace{\rho}_{\text{Masse}} \quad \underbrace{\frac{D\vec{u}}{Dt}}_{\text{Beschleunigung}} = \underbrace{-\nabla p + v\nabla^2 \vec{u}}_{\text{Interne Kräfte}} \quad + \underbrace{\vec{g}}_{\text{Externe Kräfte}}$$



## Impulsgleichung (2)

- $\rho :=$  Masse bzw. Dichte (engl. density)
  - ightharpoonup Wasser := 1000 kg/m<sup>3</sup>
  - ▶ Luft :=  $1.3 \ kg/m^3$
- Die Beschleunigung geschrieben als materielle Ableitung:

$$\frac{D\vec{u}}{Dt} = \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}$$

- $\frac{\partial \vec{u}}{\partial t}$  := Lokale Änderung an einem Ort ohne Fluidbewegung
- $\vec{u} \cdot \nabla \vec{u} :=$  Konvektive Änderung durch Bewegung des Fluids
  - ▶ Entspricht dem Produkt des Geschwindigkeitsfeldes  $\vec{u}$  und dessen Gradienten
  - ▶ Die Berechnung erfolgt komponentenweise und das Ergebnis ist ein Vektorfeld
- Insgesamt: Änderung eines "Partikels", welches sich mit der Strömung bewegt



## Impulsgleichung (3)

• Interne Kräfte (Kräfte welche innerhalb des Fluids wirken):

$$-\nabla p + v\nabla^2 \vec{u}$$

- $\nabla := \mathsf{Gradient}$ 
  - Richtung und Stärke der "steilsten" Steigung:

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

- p := Druck (engl. pressure)
  - ► Kraft pro Flächeneinheit, welche sich auf das Fluid auswirkt
  - $ightharpoonup -\nabla p :=$  Bewegung des Fluids in Richtung niedrigeren Drucks
- v := Viskosität (engl. viscosity)
  - ► Wie stark verformt sich das Fluid während es fließt?
  - $ightharpoonup v 
    abla^2 \vec{u} := Modelliert viskose Effekte; Ausgleich von Geschwindigkeitsunterschieden$



## Impulsgleichung (4)

- $\nabla^2 := \text{Laplace-Operator (engl. Laplacian)}$ 
  - ▶ Verschiedene Schreibweisen:  $\nabla^2$ ,  $\nabla \cdot \nabla$  oder auch  $\Delta$
  - ▶ Differentialoperator zweiter Ordnung, entspricht der Divergenz des Gradienten:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

- $v\nabla^2 \vec{u}$ :
- **1** Bilde den Laplacian des Vektorfeldes  $\vec{u}$ . Der Laplace-Operator wird dabei auf jede Komponente des Vektorfeldes  $\vec{u}$  einzeln angewendet, wodurch wieder ein Vektorfeld entsteht
- 2 Multipliziere das resultierende Vektorfeld mit der Viskosität v



## Impulsgleichung (5)

- Externe Kräfte (Alle Kräfte, welche von außerhalb auf die Flüssigkeit einwirken):
  - $ightharpoonup \vec{g} := Gravitation (engl. gravity)$ 
    - $9.81 \,\mathrm{m/s^2}$
  - ► Zusätzliche Kräfte, die zur Erzeugung von Fluid-Bewegungen beitragen, werden ebenfalls in  $\vec{g}$  zusammengefasst

Bei vielen Problemen ist das Fluid nicht nur inkompressibel, sondern hat auch konstante Dichte. Dann vereinfacht sich Gleichung 1.2 zu:

$$\frac{D\vec{u}}{Dt} = -\nabla p + v\nabla^2 \vec{u} + \vec{g}$$



#### **Euler-Gleichungen**

Die Navier-Stokes-Gleichungen ohne viskose Effekte werden *Euler-Gleichungen* genannt:

1.3 
$$\nabla \cdot \vec{u} = 0$$
  
1.4  $\frac{D\vec{u}}{Dt} + \frac{1}{\rho} \nabla p = \vec{g}$ 

- Beschreiben "ideales" Fluid, welches keine inneren Reibungseffekte aufweist
- Eignen sich gut für diskrete Approximationen und eine numerische Umsetzung
- Bei konstanter Dichte vereinfacht sich 1.4 entsprechend weiter



#### Numerische Lösung (1)

Es existieren zwei prominente Ansätze zur Fluid-Simulation:

- Lagrange: Bewegung einzelner Partikel im Raum
- Euler: Strömung an festen Punkten eines Gitters

Zur numerischen Berechnung des Gradienten wird jede Komponente durch einen Differenzenquotienten ersetzt.

Vorwärtsdifferenz: 
$$f'(x) \approx \frac{f(x+h) - f(x)}{h} + O(h)$$
  
Rückwärtsdifferenz:  $f'(x) \approx \frac{f(x) - f(x-h)}{h} + O(h)$   
Zentrale Differenz:  $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$ 

- *h* := Kleiner positiver Wert (Schrittweite)
- O(h) := Wachstum des Fehlers



#### Numerische Lösung (2)

- Intuition: Approximation der Ableitung indem benachbarte Gitterpunkte verglichen werden
- Zentrale Differenz bietet generell ein h\u00f6here Genauigkeit und wird deshalb oft bevorzugt
- Das Hauptproblem bei der Nutzung von Differenzenquotienten ist die Wahl der Schrittweite h
  - ► Ist h zu klein, kann es zu numerischen Stabilitätsproblemen und signifikanten Rundungsfehlern kommen (Auslöschung)
  - ► h darf deswegen von der Maschinengenauigkeit abhängige Schranken nicht unterschreiten
  - ▶ Ist h zu groß, wächst der Fehler linear bzw. quadratisch



## Staggered Grid (1)

#### Optimierte Gitterstruktur für das Geschwindigkeitsfeld:

- Wird auch als MAC-Grid bezeichnet
- Geschwindigkeit ist ein 2D-Vektor:  $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$
- Der Wert einer jeden Gitterzelle (i, j) wird im Zentrum der Zelle gesampled
- Die horizontale u-Komponente wird im Zentrum der vertikalen Zell-Faces gesampled
  - $ightharpoonup u_{i+1/2,j}$  für die *u*-Geschwindigkeit zwischen (i,j) und (i+1,j)
- Die vertikale v-Komponente wird im Zentrum der horizontalen Zell-Faces gesampled
  - $ightharpoonup v_{i,j+1/2}$  für die v-Geschwindigkeit zwischen (i,j) und (i,j+1)



# Staggered Grid (2)



• Staggered Grids erlauben für eine bessere (numerische) Ableitungsformel (ohne *null-space-problem*):

$$\left(\frac{\partial q}{\partial x}\right)_i pprox rac{q_{i+1/2} - q_{i-1/2}}{\Delta x}$$



#### Simulationsaufbau

- 1 Kräfte hinzufügen (modifiziere Geschwindigkeitsfeld)
- Mache das Fluid inkompressibel (Projection)
- 3 (Optional) Extrapoliere für Randpunkte
- 4 Bewege das Geschwindigkeitsfeld (Advection)
- 6 (Optional) Visualisiere den Fluss



# Kräfte hinzufügen

$$\begin{aligned} \text{for all i, j} \\ v_{i,j} \leftarrow v_{i,j} + \Delta t \cdot g \end{aligned}$$

- g := Gravity
- $\Delta t := \text{Zeitschritt}$



#### Projection (1)

Modifiziert die Geschwindigkeiten um  $\vec{u}$  divergenzfrei zu machen und hält Randwertkonditionen ein.

• Alle Zellseiten müssen mit demselben Wert verrechnet werden



## Projection (2)

Berechnung des Druckwertes mit dem die Geschwindigkeiten der einzelnen Zellseiten verrechnet werden.

$$d \leftarrow u_{i+1,j} - u_{i,j} + v_{i,j+1} - v_{i,j}$$

$$u_{i,j} \leftarrow u_{i,j} + d/4$$

$$u_{i+1,j} \leftarrow u_{i+1,j} - d/4$$

$$v_{i,j} \leftarrow v_{i,j} + d/4$$

$$v_{i,j+1} \leftarrow v_{i,j+1} - d/4$$



# Projection (3)

#### Berechnung des Gitters:

- Randzellen werden einfach auf 0 gesetzt
- Anzahl an benachbarten Randzellen muss beachtet werden
- Lösung mittels Gauss-Seidel

$$d \leftarrow u_{i+1,j} - u_{i,j} + v_{i,j+1} - v_{i,j}$$

$$s \leftarrow s_{i+1,j} + s_{i-1,j} + s_{i,j+1} - s_{i,j-1}$$

$$u_{i,j} \leftarrow u_{i,j} + d s_{i-1,j}/s$$

$$u_{i+1,j} \leftarrow u_{i+1,j} - d s_{i+1,j}/s$$

$$v_{i,j} \leftarrow v_{i,j} + d s_{i,j-1}/s$$

$$v_{i,j+1} \leftarrow u_{i,j+1} - d s_{i,j+1}/s$$

$$s_{i-1,j}=0 \quad s_{i-1,j}=1$$



## Advection (1)

Bewegt das Fluid (q := generische Quantität) entlang des Geschwindigkeitsfeldes  $\vec{u}$  für ein Zeitintervall  $\Delta t$ .

- Sollte grundsätzlich nur auf ein divergenzfreies Geschwindigkeitsfeld angewandt werden
- Es existieren verschiedene Ansätze und Implementierungen

Eine populäre Wahl ist Semi-Lagrangian Advection:

- Idee: Man stelle sich ein "Partikel" und dessen Fluss vor
  - Physikalisch-motivierter Ansatz
  - ► Keine wirklichen Partikel, immernoch statisches Gitter!
- Finde vorherige Position der u-Komponente und v-Komponente des Geschwindigkeitsfeldes



# Advection (2)



• Diese Updateregel entspricht Forward-Euler!



## Advection (3)

Updateregel für Forward-Euler auf einem Gitter:

$$q_i^{n+1} = q_i^n - \Delta t \cdot u_i^n \frac{q_{i+1}^n - q_{i-1}^n}{2\Delta x}$$

- Nutzt die Zentrale Differenz, um die r\u00e4umliche Ableitung zu approxieren
  - ► Vorteil des Staggered Grid
- Leider ist Forward-Euler nicht stabil!
  - ► Lösung: Mehrere Schritte von Forward-Euler mit Mittelung (entspricht *Runge-Kutta2* Verfahren)
- Implementierung folgt ...



#### Visualisierung

Visualisierung des Flusses benötigt nichts besonderes, alles notwendige ist bereits im Geschwindigkeitsfeld vorhanden.

- Idee: Speichere einen Dichtewert zwischen 0 und 1 im Zentrum einer jeden Zelle
  - ► Wird manchmal auch als *Dye*-Wert (Färbung) bezeichnet
- Führe die Advection für diesen Wert durch
  - ▶ Dafür wird die Geschwindigkeit im Zentrum einer jeden Zelle genommen:  $(u_{i,j} + u_{i+1,j}) * 0.5$  und  $(v_{i,j} + v_{i,j+1}) * 0.5$
  - Dann wird (in einer geraden Linie) der Dichtewert an der vorherigen Position interpoliert

| • | • | • | • | • | • |
|---|---|---|---|---|---|
| • | • | • | • | • | • |
| • | • | • | • | • | • |



#### Quellen

- Eulerian Fluid Simulator
   M. Müller, Ten Minute Physics, 2022
   matthias-research.github.io/pages/tenMinutePhysics
- Fluid Simulation for Computer Graphics 2nd Edition
   R. Bridson, CRC Press, 2016
- Real-time fluid dynamics for games
   J. Stam, Proceedings of the game developer conference, 2003
- Navier-Stokes Equations
   T. Crawford (University of Oxford), Numberphile, 2019
   youtube.com/watch?v=ERBVFcut13M
- Divergence and Curl
   G. Sanderson, 3Blue1Brown, 2018
   youtube.com/watch?v=rB83DpBJQsE



#### Quellcode und Demo

- Teil einer eigenen OpenGL-Engine
- Veröffentlicht unter github.com/Zang3th/SalinityGL
- MIT-Lizenz



Vielen Dank für Ihre Aufmerksamkeit!

