

Sentiment Analysis Tool Using PySpark

Unlocking Insights from Twitter Data

Riccardo Ruberto 1860609

Big Data Computing course A.A. 2022-2023

What is sentiment analysis?

What is sentiment analysis?

Is the process of evaluating and determining the emotional tone and polarity in text data

Analyzing sentiment in tweets

Analyzing sentiment in tweets

- provides insights into public opinions and emotions
- supports brand reputation management
- helps detect trends and emerging issues
- ...

Data source

Sentiment 140 dataset with 1.6 million tweets

TARGET	Polarity of the tweet (0 = NEGATIVE, 2 = NEUTRAL, 4 = POSITIVE)
ID	ID of the tweet (AUTO-INCREMENT)
DATE	DATE of the tweet (DAYNAME MONTHNAME DAY HH:MM:SS TIMEZONE YEAR)
FLAG	Specific QUERY used (NO_QUERY if no query was used)
USER	USER that tweeted
TEXT	Content of the tweet

Data pre-processing

Cleaning and structuring the dataset.

Conversion of TARGET to binary labels
 (0 = NEGATIVE, 1 = POSITIVE)

Ther are no **NEUTRAL** = 2 values in the dataset

Data pre-processing

Cleaning and structuring the dataset.

 Extraction of HOUR and DAYNAME from the DATE

The dataset contains dates for only 2 months of 2009, so the **YEAR** and **MONTH** are not useful

Data pre-processing

Cleaning and structuring the dataset.

• FLAG, ID, USER removal

FLAG has only one value within the dataset ID and USER are not useful

Cleaned Data source

TARGET	Polarity of the tweet (0 = NEGATIVE, 1 = POSITIVE)
DAY_NAME	Day of the week (Mon, Tue, Wed)
HOUR	Hour (HH format)
TEXT	Content of the tweet

Case normalization and Trimming

"Text To Normalize"

"text to normalize"

Username and Link removal

"thanks to @Riccardo

http://github.com/RiccardoRobb!!!"

"thanks to !!!"

Punctuation symbol removal

Tokenization

Tokenization is vital for processing and analyzing text effectively in natural language processing

Stopwords removal

["example", "of", "stopword", "removal"]

["example", "stopword", "removal"]

In order to reduce the dimensionality of text data and focuses analysis on the more meaningful words

Stemming

Using SnowballStemmer for english

["example", "stopword", "removal"]

["exampl", "stopword", "remov"]

Used to eliminate variations of words so that different forms of the same word are treated as one

Dataset balancing

Embedding mapping

Gensim library GloVe

GloVe (Global Vectors for Word Representation) embeddings allows us to represent each word in our text data as a <u>fixed-length numerical vector</u>

It's based on the fact that words occurring in similar contexts tend to have similar meaning

Dataset splitting

Test dataset = 20%

Train dataset = 80%

+

Weights assigment to HOUR and DAY_NAME

Assigning weights to data is particularly important because it helps create a more balanced, fair, and accurate model

PySpark models

- Logistic regression
- Support Vector machines
- Decision tree
- Random forest

Logistic regression results

Precision 0.69

Recall 0.76

F1 Score 0.73

Support Vector results

Precision 0.71

Recall 0.72

F1 Score 0.72

Decision Tree results

Precision 0.65

Recall 0.52

F1 Score 0.58

Random forest results

Precision 0.66

Recall 0.63

F1 Score 0.65

Firefox extension live demo

Future work

Automatize feedback system

Append new record to the train dataset and re-train the model in background

Build a powerful model

To support typos and no sense phrases

Hyperparameter tuning

Try new combinations of tree depht Decision tree and number of trees Random forest