# Distillation Design 3: Review

- Tray operation
  - Entrainment
  - Flooding
  - Turn down ratio
  - Tray efficiency
  - Weeping
  - Weir
  - Downcomer
  - Downcomer flooding (less common than entrainment flooding)
  - Valve, sieve and bubble cap trays
- Column diameter



#### Diameter Calculation

$$Dia = \sqrt{\frac{4VRT}{\pi\eta(3600)p(fraction)u_{flood}}}$$
, ft Eq. 10-16

V in Ibmol/h

T in K

R in  $\frac{atm ft^3}{K \ lbmol}$ 

p in atm

u in ft/s

η is fraction of tray that is active (unitless) (fraction) is the fraction of flooding (unitless)

$$u_{flood} = C_{sb,f} \left(\frac{\sigma}{20}\right)^{0.2} \sqrt{\frac{\rho_L - \rho_v}{\rho_v}}$$
 ,ft/s

#### Diameter Calculation



Figure 10-16 Capacity factor for flooding of sieve trays from Fair and Matthews (1958).

Reprinted with permission from Petroleum Refiner, 37(4), 153 (1958), copyright 1958, Gulf Pub. Co.

## Overall Efficiency

 O'Connell correlation (in absence of data based on experience with similar columns)

$$E_{o}$$
=0.52782 - 0.27511  $log_{10}(\alpha\mu)$ +0.044923 $[log_{10}(\alpha\mu)]^{2}$ 



$$E_o = \frac{N_{equil}}{N_{actual}}$$

# Tray Sizing on Simulator

### Tray Efficiency

- Can calculate as part of tray sizing
- Can also estimate from "first principles"
- Possible to include as part of distillation simulation
  - Manual entry of individual tray efficiencies- does not appear to be coupled to efficiency calculation in ChemCAD (under convergence menu)
  - Calculation assuming mass transfer control rather than equilibrium

# Types of Equipment







Thermosyphon Reboilers

http://www.inspection-for-industry.com/heat-exchanger-theory.html

## Impact of Pressure

- Vapor density increases with pressure
- T increases with pressure
- u<sub>flood</sub> decreases with pressure
- Net result: Column diameter decreases with increasing pressure
- Cost of column actually lower for pressures below
   6 bar; modestly higher for pressures up to 20 bar.

### **Economic Trade-offs**

Capital costs vs.
 operating costs



