

ICPC Template Manual

作者: 贺梦杰

October 11, 2019

Contents

1	字符	串 L	
	1.1	Hash .	
		1.1.1	基础 Hash 匹配
	1.2	KMP.	
		1.2.1	前缀函数
			1.2.1.1 朴素算法
			1.2.1.2 第一个优化
			1.2.1.3 第二个优化
		1.2.2	在线 KMP
		1.2.3	统计每个前缀出现次数
			1.2.3.1 单串统计
			1.2.3.2 双串统计
		1.2.4	统计一个字符串本质不同的子串的数目
		1.2.5	字符串压缩
		1.2.6	根据前缀函数构建一个自动机
		1.2.7	Gray 字符串
		1.2.8	UVA11022 String Factoring
		1.2.9	UVA12467 Secret word
		1.2.10	UVA11019 Matrix Matcher
		1.2.11	cf808G Anthem of Berland

Chapter 1

字符串 L

1.1 Hash

Hash 的核心思想在于,暴力算法中,单次比较的时间太长了,应当如何才能缩短一些呢?如果要求每次只能比较 O(1) 个字符,应该怎样操作呢?我们定义一个把 string **映射成** int 的函数 f,这个 f 称为是 Hash 函数。我们需要关注的是时间复杂度和 Hash 的准确率。通常我们采用的是多项式 Hash 的方法,即

$$f(s) = \sum (s[i] * b^i) \pmod{M}$$

其中 b = M 互质,且 M 越大错误率越小。(单次匹配错误率 $\frac{1}{M}$, n 次匹配的错误率为 $\frac{n}{M}$)

1.1.1 基础 Hash 匹配

```
#include <bits/stdc++.h>
 1
 2
 3
   using namespace std;
   typedef long long 11;
 4
   // b和M互质; M可以尽量取大、随机化。对于本问题,无需建立关于M的数组,所以M最大可以达到1<<31大小。
   const 11 N = 1e3 + 10, b = 131, M = 1 << 20;
 6
 7
   char s[2][N]; // s[0]是待匹配串, s[1]是模式串。下标从1开始
   ll len[2];
                 // 两串的长度
10
   11 Exp[N];
                  // Exp[i]=b^i
11
12
   // 返回s[1..r]的哈希值 s[1]*Exp[1]+s[1+1]*Exp[2]+..
13
   inline 11 Hash(char s[], 11 1, 11 r) {
14
       11 i, ret = 0;
       for (i = 1; l + i - 1 <= r; i++)
15
16
           ret = (ret + Exp[i] * s[l + i - 1]) % M;
17
       return ret;
18
   }
19
   vector<ll> ans; // 匹配子串的开始下标
20
21
   inline void match() {
22
       ans.clear();
       11 i;
23
       ll h0 = Hash(s[0], 1, len[1]); // 初始时待匹配串对应模式串那部分子串的哈希值
24
       11 h1 = Hash(s[1], 1, len[1]); // 初始时模式串的哈希值
25
       for (i = 1; i <= len[0] - len[1] + 1; i++) {</pre>
26
27
           // 若两哈希值一致,则认为匹配
           if ((h0 - h1 * Exp[i - 1]) % M == 0)
28
29
               ans.push_back(i);
           h0 = (h0 - Exp[i] * s[0][i] + Exp[i + len[1]] * s[0][i + len[1]]) % M; // 模式串向后移动,
30
       对应h0也要改变
31
       }
32
   }
33
34
   int main() {
35
       ios::sync_with_stdio(0);
36
       cin.tie(0);
37
38
       11 i, j;
39
40
       // 初始化
41
       Exp[0] = 1;
42
       for (i = 1; i < N; i++)
           Exp[i] = Exp[i - 1] * b % M;
43
44
       cin >> (s[0] + 1) >> (s[1] + 1);
45
       len[0] = strlen(s[0] + 1), len[1] = strlen(s[1] + 1);
46
47
48
       match();
49
50
       return 0;
51
   }
```

1.2 KMP

1.2.1 前缀函数

给定一个长度为 n 的字符串 s(假定下标从 1 开始),其**前缀函数**被定义为一个长度为 n 的数组 π ,其中 $\pi[i]$ 为既是子串 s[1...i] 的前缀同时也是该子串的后缀的最长真前缀(proper prefix)长度。一个字符串的真前缀是其前缀但不等于该字符串自身。根据定义, $\pi[1]=0$ 。

前缀函数的定义可用数学语言描述如下:

$$\pi[i] = \max_{k=0...i-1} \{k: s[1\dots k] = s[i-k+1\dots i]\}$$

举例来说,字符串 abcabcd 的前缀函数为 [0,0,0,1,2,3,0],字符串 aabaaab 的前缀函数为 [0,1,0,1,2,2,3]。

1.2.1.1 朴素算法

直接按定义计算前缀函数:

1.2.1.2 第一个优化

第一个重要的事实是相邻的前缀函数值至多增加 1。(如不然,会产生矛盾)

所以当移动到下一个位置时,前缀函数要么增加 1,要么不变或减少。实际上,该事实已经允许我们将复杂度降至 $O(n^2)$ 。因为每一步中前缀函数至多增加 1,因此在总的运行过程中,前缀函数至多增加 n,同时也至多减小 n。这意味着我们仅需进行 O(n) 次字符串比较,所以总复杂度为 $O(n^2)$ 。

```
void prefix func1(char t[], int n, int pi[]) {
2
        int i, j;
3
        i = 2, j = 1;
4
        while (i <= n) {
5
            if (t[i] == t[j]) // 加1
6
                pi[i] = pi[i - 1] + 1, ++j;
7
            else { // 开始减
8
                pi[i] = pi[i - 1];
                while (strncmp(t + i - pi[i] + 1, t + 1, pi[i]))
9
                    --pi[i];
10
                j = pi[i] + 1;
11
12
            }
13
            ++i;
14
        }
   }
15
16
```

1.2.1.3 第二个优化

考虑计算位置 i+1 的前缀函数 π 的值,如果 $s[i+1] = s[\pi[i] + 1]$,显然 $\pi[i+1] = \pi[i] + 1$ 。

$$\underbrace{\frac{\pi[i]}{S_1} \underbrace{s_4 = s_{i+1}}_{\pi[i+1] = \pi[i] + 1} \dots \underbrace{\frac{\pi[i]}{S_{i-2}} \underbrace{s_4 = s_{i+1}}_{S_{i-1} S_i} \underbrace{s_4 = s_{i+1}}_{S_{i+1}}}_{\pi[i+1] = \pi[i] + 1}$$

如果不是上述情况,即 $s[i+1] \neq s[\pi[i]+1]$,我们需要尝试更短的字符串。为了加速,我们希望直接移动到最长的长度 $j < \pi[i]$,使得在位置 i 的前缀性质仍得以保持,也即 $s[1 \dots j] = s[i-j+1 \dots i]$:

$$\underbrace{s_1 \, s_2}_{j} \, s_3 \, s_4 \, \dots \, \underbrace{s_{i-3} \, s_{i-2}}_{j} \, \underbrace{s_{i-1} \, s_{i}}_{j} \, s_{i+1}$$

实际上,如果我们找到了这样的 j,我们仅需要再次比较 s[i+1] 和 s[j+1]。如果它们相等,则 $\pi[i+1] = j+1$,否则,我们就需要找小于 j 的最大的新的 j 使得前缀性质仍然保持,如此反复,直到 s[i+1] = s[j+1] 或者确实完全找不到(令 j=-1)。最后 $\pi[i+1] = j+1$ 。

所以我们已经有了一个大致框架,现在仅剩的问题是对于满足 s[1...j] = s[i-j+1...i] 的 j, 如何快速找到小于 j 的最大的新的 j, 我们令新的 j 为 k, 使得 s[1...k] = s[i-k+1...i] 仍然满足。

$$\underbrace{s_1 \, s_2}_{k} \, s_3 \, s_4 \, \dots \, \underbrace{s_{i-3} \, s_{i-2}}_{k} \, \underbrace{s_{i-1} \, s_i}_{k} \, s_{i+1}$$

由上图,我们要求的是比 j 小的最大的 k, 而两边长度为 j 的前后缀本身是相等的, 那么新的长为 k 的前后缀则可以只放到最左边长为 j 的前缀中去考虑:

$$\underbrace{\underbrace{s_1 \ s_2}_{k} \underbrace{s_3 \ s_4}_{k}}^{j}$$

即 $k = \pi[j]$,而 $\pi[j]$ 之前已经求过了。

```
void prefix func2(char t[], int n, int pi[]) {
1
2
       int i, j;
       pi[0] = -1, pi[1] = 0; // 确实没有找到任何相等的
3
4
       for (i = 1; i < n; ++i) {
5
           j = pi[i];
           while (j >= 0 && t[j + 1] != t[i + 1]) // 若不相等, 找更小的新的j
6
7
               j = pi[j];
8
           pi[i + 1] = j + 1; //最后得出pi[i+1]
9
       }
10
   }
11
12
```

1.2.2 在线 KMP

最基础的字符串匹配。下面的算法不是在线的,但只要稍作修改就可以变成在线的了。 假设当前在 s 串的 i 处,cur 是当前 s 和 t 匹配的最大长度,也就是 t 的长为 cur 的前缀和 s 中以 s[i] 为右端点的子串相等

```
// 长为n的待匹配串s,长为m的模式串t,返回t在s中出现的次数
1
   int kmp(char s[], int n, char t[], int m, int pi[]) {
3
       int cur = 0, i, j, cnt = 0; // cur是当前pi值
4
       for (i = 0; i < n; i++) {
5
           j = cur;
6
           while (j \ge 0 \&\& s[i + 1] != t[j + 1])
7
               j = pi[j];
           cur = j + 1;
8
           if (cur == m)
9
10
               ++cnt:
11
12
       return cnt;
13
   }
14
```

1.2.3 统计每个前缀出现次数

1.2.3.1 单串统计

统计 s 的每个前缀在 s 中出现的次数。首先我们明确,一个长度为 i 的前缀中会出现长度为 $\pi[i]$ 的前缀,然后长度为 $\pi[i]$ 的前缀又会出现长度为 $\pi[\pi[i]]$ 的前缀,等等。所以我们考虑后缀和的思想,首先统计每一个位置的 $\pi[i]$,然后将 ans[i] 累加给长为 $ans[\pi[i]]$ 的前缀个数,按照长度递减的顺序依次累加下去就可以了。最后再统计原始前缀,即对每个 ans[i] 加一。

```
1 // 统计s[]的每个前缀在s[]中出现的次数
2 inline void count_prefix(char s[], int n, int pi[]) {
3 prefix_func(s, n, pi); // 计算前缀函数
```

```
4
      int i;
      for (i = 1; i <= n; i++)
5
6
         ++ans[pi[i]];
7
      // 令真前后缀长度为i, 其个数为ans[i], 则长为i的真前后缀的真前后缀长为pi[i], 其原本个数为ans[pi[i]]
8
      // 现在需要累加上它在更长的真前后缀中出现的次数。有点类似倍增
9
      for (i = n; i >= 1; i--)
10
         ans[pi[i]] += ans[i];
      // 这里不能放到开头,否则,一开始ans[n]=1,也就认为s有一个长为n的真前后缀
11
12
      for (i = 1; i <= n; i++)
          ++ans[i];
13
14
   }
15
```

1.2.3.2 双串统计

给出串 s 和 t, 问 t 的每个前缀在 s 中出现的次数。首先运用类似 KMP 的思想, 通过'#' 连接 t 和 s, 即"t#s", 设为 link, 对 link 求前缀函数。接下来我们只关心与 s 有关的前缀函数值, 即 $i \ge m+2$ 的 $\pi[i]$ 。

```
inline void count_prefix(char s[], int n, char t[], int m, int pi[]) {
2
       // 连接字符串 t..#s..
3
       strcpy(link + 1, t + 1);
       link[m + 1] = '#';
4
5
       strcpy(link + m + 2, s + 1);
6
       // 计算前缀函数
7
       prefix_func(link, n + m + 1, pi);
8
9
       int i:
10
       // 只关心#后面的pi值
11
       for (i = m + 2; i <= n + m + 1; i++)
           ++ans[pi[i]];
12
13
       // pi[i]的值不会超过t的长度, 即i<=m
14
       for (i = m; i >= 1; i--)
15
           ans[pi[i]] += ans[i];
16
   }
17
```

1.2.4 统计一个字符串本质不同的子串的数目

给定一个长度为 n 的字符串 s, 我们希望计算其本质不同子串的数目。

假设现在知道了当前 s 本质不同的子串的数目,那么接下来可以考虑在原来的 s 末尾加上一个字符 c ,然后统 计产生了多少新的子串。

我们枚举 i,对每一个 i,反转 $s[1 \dots i]$ 令其为 t,然后对 t 求前缀函数, π_{max} 即为以 s[i] 结尾的重复子串的数目,那么 $|s| - \pi_{max}$ 即为以 s[i] 结尾的新的子串的数目。

```
// 统计串S中本质不同的子串数目
1
   inline int diff(char s[], int n) {
3
       int i, ret = 0;
       for (i = 1; i <= n; i++) {
4
5
          reverse_copy(s + 1, s + 1 + i, t + 1); // 翻转s并存入t
          int mx = prefix_func2(t, i, pi);
                                               // 略微修改一下prefix_func, 使其可以返回最大的pi值
6
7
          ret += i - mx;
                                               // 统计新的子串数目
8
       }
9
       return ret;
10
   }
11
```

1.2.5 字符串压缩

给定一个长度为 n 的字符串 s,我们希望找到其最短的"压缩"表示,也即我们希望寻找一个最短的字符串 t,使得 s 可以被 t 的一份或多份拷贝的拼接表示。

显然,我们只需要找到 t 的长度即可。知道了长度,该问题的答案即为长度为该值的 s 的前缀。

直接说结论, 首先求 s 的前缀函数, 令 $k = n - \pi[n]$, 若 $n \mod k = 0$, 则该长度为 k, 否则为 n.

注:上述情况为 s 恰好为最短循环节的倍数,如果没有这个限制,那么对于 $s[1\dots i]$ 最短循环节长度永远是 $k=i-\pi[i]$ 。

```
1 // 计算s的最短压缩表示,返回最短压缩的长度
2 int compress(char s[], int n, int pi[]) {
3     prefix_func(s, n, pi);
4     int k = n - pi[n];
5     if (n % k)
6         return n;
7     return k;
8     }
```

1.2.6 根据前缀函数构建一个自动机

让我们重新回到通过一个分割符将两个字符串拼接的新字符串。设模式串为 t, 待匹配串为 s, 则拼接成 t+#+s。前面我们就知道,我们只需要管 t+# 的前缀函数值就可以,所以在这里我们的自动机也是如此。自动机的状态为当前前缀函数的值,而下一个读入自动机的字符则决定状态如何转移。下面我们就是要求状态

自动机的状态为当前前缀函数的值,而下一个读入自动机的字符则决定状态如何转移。下面我们就是要求状态转移表 aut,aut[i][c] 表示当前前缀函数值为 i (也即当前处于 t[i] 处)下一个字符为 c 的转移的目标状态。

```
// 计算长度为n的字符串t[]的自动机的转移表, t[]下标从1开始
   void compute_automaton0(char t[], int n, int pi[], int aut[][26]) {
2
       prefix_func(t, n, pi); // 先求t[]的前缀函数
3
       int i, j, c;
4
       // 0是初始状态, 匹配长度为0; n是终止状态, 完全匹配
5
       for (i = 0; i <= n; i++) {
6
7
          // 转移的因素--下一个字符
8
          for (c = 0; c < 26; c++) {
9
              j = i;
10
              // 通过不断跳转前缀来匹配下一个字符
              while (j \ge 0 \&\& c + 'a' != t[j + 1])
11
12
                  j = pi[j];
13
              aut[i][c] = j + 1;
14
          }
15
       }
16
   }
17
```

在上面的代码中,由于有 while 循环的存在,所以时间复杂度为 $O(|\Sigma|n^2)$ 。

事实上,我们可以通过动态规划来优化。我们注意到当下一个字符 $c \neq s[j+1]$ 时,j 会跳转至 $\pi[j]$,而在之前我们已经计算过所有 $aut[\pi[j]][c]$, $\forall c \in \Sigma$,所以我们可以直接利用 $aut[\pi[i]][c]$ 。时间复杂度 $O(|\Sigma|n)$ 。

```
// 计算长度为n的字符串t[]的自动机的转移表,t[]下标从1开始
   void compute_automaton1(char t[], int n, int pi[], int aut[][26]) {
3
       prefix_func(t, n, pi); // 先求t[]的前缀函数
4
       int i, c;
5
       // O是初始状态,匹配长度为O; n是终止状态,完全匹配
6
       aut[0][t[1] - 'a'] = 1;
7
       for (i = 1; i <= n; i++) {
8
          // 转移的因素--下一个字符
9
          for (c = 0; c < 26; c++) {
              // 利用动态规划的思想来优化,在上面j跳转至pi[j]时,aut[pi[j]][c]对于所有的c都已经被计算过了
10
              if (c + 'a' == t[i + 1])
11
12
                 aut[i][c] = i + 1;
13
              else
14
                 aut[i][c] = aut[pi[i]][c];
15
          }
16
      }
17
   }
```

1.2.7 Gray 字符串

18

首先定义 Gray 字符串,令 g[0] = ""(空串),g[1] = "1",之后 g[i] = g[i-1] + i + g[i-1],加号为字符串拼接。接下来我们考虑这样一个问题(与 OIWIKI 不同的是数据范围作了修改): 给定长为 $n(n \le 1000)$ 的字符串 $s(1 \le s[i] \le n)$,一个整数 $k(k \le 1000)$,要求 s 在 g[k] 中出现的次数。

这题是 kmp 自动机 +dp。

显然, g[k] 的长度非常大, 我们不可能去构造。但我们可以好好利用 Gray 字符串递归的性质, 即 g[i] = g[i-1] + i + g[i-1]。

对 s 构建一个自动机 aut[i][j],表示从当前状态 i 通过输入的 j 到达的状态。

假设当前自动机处于状态 i,接下来要处理 g[j],我们可以分为 3 步:

- 1. 从状态 i 开始处理 g[j-1], 自动机到达状态 t1
- 2. 从状态 t1 开始处理 j, 自动机到达状态 t2
- 3. 从状态 t2 开始处理 g[j-1], 自动机到达状态 t3。

其中 t3 即为目标状态。

显然,如果每一步都老老实实做的话,工作量并未减少。仔细观察发现我们可以建立一个 dp 状态,G[i][j] 表示自动机从状态 i 开始处理 g[j],处理完成后自动机所处的状态。那么上面的 3 步就可以变为如下形式:

$$t1 = G[i][j-1]$$

 $t2 = aut[t1][j]$
 $t3 = G[t2][j-1]$

由于 $i \le n$ 且 $j \le k$ 复杂度 O(nk)。

如何计算答案呢?我们只要在自动机转移的过程中看当前状态是否为 |s| 状态(和 s 完全匹配)即可。但是我们上面都是一跳一大步,可能有的 |s| 状态就给跳过去了。所以我们再用一个 $\mathbf{K}[\mathbf{i}][\mathbf{j}]$ 记录自动机从状态 \mathbf{i} 开始处理 $\mathbf{g}[\mathbf{j}]$ 直到处理完成,这个过程中几次达到状态 |s|。显然有:

$$K[i][j] = K[i][j-1] + (t2 == |s|) + K[t2][j-1]$$

初始时,aut[i][j] 可全部求出,G[i][0]=i,K[i][0]=0,因为 g[0] 为空串,自动机不会转移,g[0] 也不会包含 s。 显然,最后答案为 K[0][k]。

```
#include <bits/stdc++.h>
1
2
3
   using namespace std;
   const int N = 1e3 + 10;
4
5
6
   int s[N];
7
   int n, k;
8
   int pi[N];
9
   int aut[N][N]; // 自动机, aut[i][j]表示当前状态通过输入j得到的下一个状态
   int G[N][N];
                 // G(i,j)表示自动机从状态i开始处理g[j],处理完成后自动机的状态
10
   int K[N][N];
                 // K(i,j)表示自动机从状态i开始处理g[j],处理完成后s在g[j]中出现的次数
11
12
13
   void prefix_func(int t[], int n, int pi[]) {
14
       int i, j;
15
       pi[0] = -1, pi[1] = 0; // 确实没有找到任何相等的
       for (i = 1; i < n; ++i) {
16
17
          j = pi[i];
          while (j >= 0 && t[j + 1] != t[i + 1]) // 若不相等, 找更小的新的j
18
19
              j = pi[j];
20
          pi[i + 1] = j + 1; //最后得出pi[i+1]
21
      }
22
   }
23
24
   // 计算长度为n的字符串t[]的自动机的转移表,t[]下标从1开始
25
   void compute_automaton1(int t[], int n, int pi[], int aut[][N]) {
26
      t[n + 1] = -1;
                           // 结束符, 结束符应是字母表中没有的符号
27
       prefix_func(t, n, pi); // 先求t[]的前缀函数
28
       int i, c;
29
       // 0是初始状态,匹配长度为0;n是终止状态,完全匹配
30
       aut[0][t[1]] = 1;
       for (i = 1; i <= n; i++) {
31
          // 转移的因素--下一个字符
32
33
          for (c = 1; c <= n; c++) {
34
              // 利用动态规划的思想来优化,在上面j跳转至pi[j]时,aut[pi[j]][c]对于所有的c都已经被计算过了
35
              if (c == t[i + 1])
36
                 aut[i][c] = i + 1;
37
38
                 aut[i][c] = aut[pi[i]][c];
39
          }
```

```
40
       }
41
   }
42
43
   int main() {
44
        ios::sync_with_stdio(0);
45
        cin.tie(0);
46
47
       int i, j;
        cin >> n >> k;
48
49
        for (i = 1; i <= n; i++)
50
            cin >> s[i];
51
52
        compute_automaton1(s, n, pi, aut);
53
        // 初始化,从状态i开始处理g[0],由于g[0]是空串,所以自动机不会转移,s也不会出现在g[0]中
54
55
       for (i = 0; i <= n; i++)</pre>
56
            G[i][0] = i, K[i][0] = 0;
57
        // 类似于动态规划的递推
58
        for (j = 1; j <= k; j++) {
            for (i = 0; i <= n; i++) {
59
                int mid = aut[G[i][j - 1]][j];
60
61
                G[i][j] = G[mid][j - 1];
62
                K[i][j] = K[i][j - 1] + (n == mid) + K[mid][j - 1];
63
            }
       }
64
65
       cout << K[0][k] << endl;</pre>
66
67
68
       return 0;
69
   }
70
```

1.2.8 UVA11022 String Factoring

给定一个字符串 $s(|s| \le 80)$,问最小压缩长度。例如, $AAA = (A)^3$ 最小长度为 1, $CABAB = C(AB)^2$ 最小长度为 3,再如 POPPOP 既可以是 $PO(P)^2OP$ 也可以是 $(POP)^2$,但后者长度为 3,前者为 5,所以后者更优。

这题是 kmp 字符串压缩 + 区间 dp。

f[i][j] 表示 s[i...j] 被压缩后的最短长度, pi2[i][j] 表示以 i 为左端点, j 处的前缀函数值。先考虑最简单的区间 dp:

$$f(l,r) = \min_{l \le k \le r} \{ f(l,m) + f(m+1,r) \}$$

可以发现,这是**不完整**的,例如 ATTATT,假设已知 f(1,3)=2 和 f(4,6)=2,接下来算 f(1,6) 就会等于 4,而正确答案是 2。也就是说,我们没有考虑 s[l..r] 可能本身就可以被压缩。若 s[l..r] 本身可以被压缩,则一定存在一个最小循环节,这我们可以通过上面的 pi2[l][r] 来求。

若确实存在循环节,设其长度为 k,则 f(l,r) = f(l,l+k-1),之所以这样,是因为循环节本身也是可以被压缩的(类似子问题)。之后再用上面的区间 dp,就是对的了。

```
#include <bits/stdc++.h>
1
2
3
   using namespace std;
4
   const int N = 85;
5
6
   char s[N];
7
8
   int pi[N], pi2[N][N]; // pi2[i][j]表示以i为左端点, j处的前缀函数值
9
   int f[N][N];
                         // f[i][j]表示s[i..j]被压缩后的最短长度
10
   void prefix_func(char t[], int n, int pi[]) {
11
12
       int i, j;
       pi[0] = -1, pi[1] = 0; // 确实没有找到任何相等的
13
14
       for (i = 1; i < n; ++i) {
15
16
           while (j >= 0 && t[j + 1] != t[i + 1]) // 若不相等, 找更小的新的j
17
              j = pi[j];
```

```
18
           pi[i + 1] = j + 1; //最后得出pi[i+1]
19
       }
20
   }
21
22
   int main() {
23
       ios::sync_with_stdio(0);
24
       cin.tie(0);
25
26
       int i, j, k, l, r, m;
27
28
       while (cin \gg (s + 1)) {
           if (s[1] == '*')
29
30
               break;
           n = strlen(s + 1);
31
32
33
           // 求pi2[i][j]
34
           for (i = 1; i <= n; i++)</pre>
35
               prefix_func(s + i - 1, n - i + 1, pi2[i] + i - 1);
36
37
           // dp求f(1,r), s[1..r]被压缩后的最短长度
38
            for (i = 1; i <= n; i++) {
                                                    // 枚举长度
                for (l = 1; l + i - 1 <= n; l++) { // 枚举左端点
39
40
                   r = 1 + i - 1;
                                                    // 右端点
                   f[1][r] = i;
                                                    // 初始化为最坏情况
41
                   int len = r - 1 + 1;
                                                    // 当前区间的长度
42
                   // 如果本身完全是循环节
43
                   k = len - pi2[1][r];
44
                   if (len % k == 0)
45
46
                       f[1][r] = min(f[1][r], f[1][1 + k - 1]); // 循环节的性质, 转化为已求的子问题
47
                   // 区间DP
48
                   for (m = 1; m < r; m++)
49
                       f[1][r] = min(f[1][r], f[1][m] + f[m + 1][r]);
50
               }
           }
51
52
53
           cout << f[1][n] << endl;</pre>
54
       }
55
56
       return 0;
57
   }
58
```

1.2.9 UVA12467 Secret word

给你一个串 $S(1 \le |S| \le 10^6)$,要求最长前缀,这种前缀满足:它的反转是 S 的子串。

前缀的反转是 S 的子串,换句话说,我们将 S 反转,若它的某一个子串为原串 S 的前缀,则该子串的反转就是满足条件的子串之一。

令 S' 为 S 的反转,则 S 为模式串,S' 为待匹配串,对 S 和 S' 用 kmp, 匹配过程中的最大 π 值即为答案。

1.2.10 UVA11019 Matrix Matcher

给定一个 n*m 的大矩阵和一个 x*y 的小矩阵, 问小矩阵在大矩阵中出现的次数。

令大矩阵为 s[[[], 小矩阵为 t[][], 最暴力的想法:

设 pi2[i][j] 为 t[i] 在 j 处的前缀函数值。

设 f(i,j,k) 为以 $\mathbf{t}[i]$ 为模式串, $\mathbf{s}[j]$ 为待匹配串,匹配到 $\mathbf{s}[j][k]$ 处的前缀函数值。

pi2 可以直接通过 x 次 KMP 求出, f 可以通过枚举 (i,j) 对 t[i] 和 s[j] 用 KMP 求出。

最后枚举 t 在 s 中的左上角,判断每一行匹配到最后的值是否为 y 即可。具体来说,设当前 s 左上角为 (i,j),对 t 的第 k 行匹配,若 $\forall k \in [1,x], f[k][i+k-1][j+y-1] = y$,则匹配成功,否则失败。 事实上,这题正解应该是 **AC 自动机**。

1.2.11 cf808G Anthem of Berland

给出两个串 s 和 t, s 中有一部分是问号(t 是确定的),问号可以是任意字符,问 t 在 s 中出现的最大次数。

最暴力的做法是直接 dfs 搜索, 时间爆炸。

由于每一个问号处都可能匹配到 t 的任意位置,所以可以考虑 dp 优化,设状态为 f(i,j),表示 s[i] 处匹配到 t[j] 处时 t 在 s 中出现的最大次数。如何转移呢? 当 s[i] 处完全匹配 t 串,此时 f(i,j) 的值就要加 1,否则不变。但是光这样还不够,考虑 j 处的 $\pi[j]$ 值,这意味着 t 的长度为 $\pi[j]$ 的前后缀是相等的,也就是说值 f(i,j) 也可以传递给 $f(i,\pi[j])$ 以及 $f(i,\pi[\pi[j]])$ 等等。

如果对每个 j 还要枚举 $\pi[j]$,时间就会爆炸。所以我们还要借用前缀和的思想,h(i,c) 表示当前 π 值为 i 且下一个字符为 c 的最优答案。我们按 j 从大到小处理,在处理 j 时,我们同时给 $h[\pi[j]][t[j+1]]$ 更新,而当前的 f(i,j) 也与 h(j,s[i+1]) 有关。