Generalized LFP

-not a convex problem

 $\frac{c_{i}x+d_{i}}{e_{i}x+f_{i}}$

$$\frac{c_{i}^{T}x+d_{i}}{e_{i}^{T}x+f_{i}}$$

Gx=h

Charnes-Cooper transform not applicable

miy t \times, t

cix+di <t +i

Gx sh

Ax = b

dom: $C_i^T x + f_i > 0$

How to solve?

Observe:
$$g_i(\underline{x}) := \frac{c_i x + d_i}{c_i x + f_i}$$
 neither convex wor concave but quasiconvex.

given α , $C_{\alpha}^i := \underbrace{x} \underbrace{|g_i(\underline{x})|} \le \alpha \underbrace{s}$ convex set.

 $= \underbrace{x} \underbrace{|c_i x + d_i|} \le \alpha \underbrace{(c_i x + f_i)} \underbrace{s}$
 $= \underbrace{x} \underbrace{(c_i - \alpha e_i)^T x + (d_i - \alpha f_i)} \le 0 \underbrace{s}$

that space $\underbrace{(g_i ven \alpha)}$

Fine search $\underbrace{(e_g, b_i x e c t i on)}$ on α

towarder feasibility problem $\underbrace{f_i u d}_i x \underbrace{(f_{\alpha})}_{i x e d} x = \underbrace{(f_{\alpha})}_{i x e d} x =$

find smallest a st. constraint satisfied

for each x solve f_{α} Bisection

given
$$l \le \alpha \le u$$

set $\alpha = \frac{l+u}{2}$

Solve
$$P_d$$

The solve P_d

In feasible: $u = \infty$

In feasible $l = \infty$

In feasible $l = \infty$

In feasible $l = \infty$

takes ~ O(log / E) iterations solve using a series of convex problems

Summary: G-LFP

$$P_{\alpha}: f_{ind} \times (c_{i} - \alpha e_{i}) \times + (d_{i} - \alpha f_{i}) \leq 0 \quad \forall i$$

(convex) $\rightarrow cvx$ $Gx \leq h$

quesi-convex
 $Ax = b$
 $\rightarrow series of convex$ $e_{i}^{T}x + f_{i} > 0 \quad \forall i$
 $log(V_{6})$