BINOMIAL IDENTITIES

PETRO KOLOSOV

ABSTRACT. Binomial identities

1. Binomial identities

Contents

1

1.1. Part 1		1
1.2. Part2		2
1.3. Part 3		2
1.4. Part 4		2
	1. Binomial identities	
1.1. Part 1.		
	$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$	(1.1)
	$\binom{n}{k} = \frac{n^{\underline{k}}}{k!}$	(1.2)
	$\sum_{r=0}^{n} \binom{r}{c} = \binom{n+1}{c+1}$	(1.3)
	$\sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}$	(1.4)
	$\sum_{k=0}^{m} \binom{n-k}{m-k} = \binom{n+1}{m}$	(1.5)

 $Date \hbox{: July 22, 2023.}$

 $^{2010\} Mathematics\ Subject\ Classification.\ 26E70,\ 05A30.$

 $[\]label{eq:Keywords} \textit{Key words and phrases}. \quad \text{Polynomials, Polynomial identities, Faulhaber's formula, Cental Factorial Numbers} \; .$

$$\sum_{k=0}^{n} \binom{n-k}{k} = f_{n+1} \tag{1.6}$$

$$k \binom{n}{k} = n \binom{n-1}{k-1} \tag{1.7}$$

$$\binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k} \tag{1.8}$$

$$\sum_{j=0}^{n} \binom{n}{j} \binom{m}{k-j} = \binom{n+m}{k} \tag{1.9}$$

1.2. **Part2.**

$$k \binom{n}{k} = n \binom{n-1}{k-1} \tag{1.10}$$

$$\frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1} \tag{1.11}$$

$$\frac{k+1}{n+1} \binom{n+1}{k+1} = \binom{n}{k} \tag{1.12}$$

$$\binom{n+1}{k+1} = \frac{n+1}{k+1} \binom{n}{k} \tag{1.13}$$

1.3. Part 3.

$$\binom{t}{r} \binom{r}{k} = \binom{t}{k} \binom{t-k}{r-k}$$
 (1.14)

$$\binom{t}{k} \binom{t-k}{r-k} = \binom{t}{t-k} \binom{t-k}{r-k} = \binom{t}{r-k} \binom{t-r+k}{t-r}$$
 (1.15)

By the symmetry of binomial coefficients we get

$$\binom{t}{k} \binom{t-k}{r-k} = \binom{t}{k} \binom{t-k}{t-r}$$
 (1.16)

$$\binom{t}{k} \binom{t-k}{t-r} = \binom{t}{t-k} \binom{t-k}{t-r}$$
 (1.17)

1.4. Part 4.

$$\binom{t}{r} \binom{r}{k} = \binom{t}{k} \binom{t-k}{r-k} = \binom{t}{t-k} \binom{t-k}{r-k} = \binom{t}{r-k} \binom{t-r+k}{t-r} = \binom{t}{r-k} \binom{t-r+k}{k}$$

$$(1.18)$$