Pioneer sound.vision.soul

Service Manual

DEH-240F/XN/UC

ORDER NO. CRT2757

HIGH POWER CD PLAYER WITH FM/AM TUNER

DEH-2400F DEH-24F XN/UC

XN/UC

This service manual should be used together with the following manual(s):

Model No.	Order No.	Mech. Module	Remarks
CX-977	CRT2624	S9	CD Mech. Module:Circuit Description, Mech.Description, Disassembly

CONTENTS

1 CAFETY INFORMATION

1. SAFETY INFORMATION	3
2. EXPLODED VIEWS AND PARTS LIST	4
3. BLOCK DIAGRAM AND SCHEMATIC DIAGRA	M10
4. PCB CONNECTION DIAGRAM	24
5. ELECTRICAL PARTS LIST	32
6. ADJUSTMENT	37

7.	GENERAL INFORMATION	41
	7.1 DIAGNOSIS	41
	7.1.1 DISASSEMBLY	41
	7.1.2 CONNECTOR FUNCTION DESCRIPTION	44
	7.2 PARTS	45
	7.2.1 IC	45
	7.2.2 DISPLAY	53
	7.3 OPERATIONAL FLOW CHART	54
	7.4 CLEANING	55

8. OPERATIONS AND SPECIFICATIONS......56

For details, refer to "Important symbols for good services" on the next page.

PIONEER CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS (USA) INC. P.O.Box 1760, Long Beach, CA 90801-1760 U.S.A. PIONEER EUROPE NV Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936 [Important symbols for good services]

In this manual, the symbols shown-below indicate that adjustments, settings or cleaning should be made securely. When you find the procedures bearing any of the symbols, be sure to fulfill them:

1. Product safety

You should conform to the regulations governing the product (safety, radio and noise, and other regulations), and should keep the safety during servicing by following the safety instructions described in this manual.

2. Adjustments

To keep the original performances of the product, optimum adjustments or specification confirmation is indispensable. In accordance with the procedures or instructions described in this manual, adjustments should be performed.

3. Cleaning

For optical pickups, tape-deck heads, lenses and mirrors used in projection monitors, and other parts requiring cleaning, proper cleaning should be performed to restore their performances.

4. Shipping mode and shipping screws

To protect the product from damages or failures that may be caused during transit, the shipping mode should be set or the shipping screws should be installed before shipping out in accordance with this manual, if necessary.

5. Lubricants, glues, and replacement parts

Appropriately applying grease or glue can maintain the product performances. But improper lubrication or applying glue may lead to failures or troubles in the product. By following the instructions in this manual, be sure to apply the prescribed grease or glue to proper portions by the appropriate amount. For replacement parts or tools, the prescribed ones should be used.

CD Player Service Precautions

- For pickup unit(CXX1480) handling, please refer to "Disassembly" (see page 41).
 - During replacement, handling precautions shall be taken to prevent an electrostatic discharge(protection by a jumper-solder).
- During disassembly, be sure to turn the power off since an internal IC might be destroyed when a connector is plugged or unplugged.
- Please checking the grating after changing the pickup unit(see page 38).
- 4. In this product, because the memory capacity of the microcomputer is insufficient, the test mode is not installed. However grating of the pickup unit can be confirmed.

1. SAFETY INFORMATION

CAUTION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

This product contains lead in solder and certain electrical parts contain chemicals which are known to the state of California to cause cancer, birth defects or other reproductive harm.

Health & Safety Code Section 25249.6 - Proposition 65

2. EXPLODED VIEWS AND PARTS LIST

2.1 PACKING

NOTE:

- Parts marked by "*" are generally unavailable because they are not in our Master Spare Parts List.
- lacktriangle Screws adjacent to ∇ mark on the product are used for disassembly.
- For the applying amount of lubricants or glue, follow the instructions in this manual.
 (In the case of no amount instructions, apply as you think it appropriate.)

(1) PACKING SECTION PARTS LIST

Mark	No.	Description	Part No.	Mark No.	Description	Part No.
	1-1	Owner's Manual	See Contrast table(2)	12	Polyethylene Bag	CEG1173
	1-2	Installation Manual	See Contrast table(2)	13	Carton	See Contrast table(2)
*	1-3	Card	See Contrast table(2)	14	Contain Box	See Contrast table(2)
*	1-4	Warranty Card	See Contrast table(2)	15	Protector	CHP2251
	1-5	Polyethylene Bag	CEG1116	16	Protector	CHP2252
	2	Cord Assy	CDE6468	17	Case Assy	See Contrast table(2)
	3	Spring	CBH1650	18	Screw	BPZ20P060FZK
	4	Screw Assy	CEA2796	19	••••	
	5	Screw	CBA1002	20	••••	
*	6	Polyethylene Bag	CEG-127	21	Accessory Assy	CEA2773
	7	Screw	CRZ50P090FMC	22	Earth Plate	CNC9450
	8	Screw	TRZ50P080FMC			
*	9	Polyethylene Bag	CEG-158			
	10	Handle	CNC5395			
	11	Bush	CNV3930			

(2) CONTRAST TABLE

DEH-240F/XN/UC, DEH-2400F/XN/UC and DEH-24F/XN/UC are constructed the same except for the following:

			Part No.	
Mark No.	Symbol and Description	DEH-240F/XN/UC	DEH-2400F/XN/UC	DEH-24F/XN/UC
1-1	Owner's Manual	CRD3497	CRD3498	CRD3498
1-2	Installation Manual	CRD3501	CRD3502	CRD3502
* 1-3	Card	Not used	ARY1048	ARY1048
* 1-4	Warranty Card	CRY1070	Not used	Not used
13	Carton	CHG4645	CHG4643	CHG4644
14	Contain Box	CHL4645	CHL4643	CHL4644
17	Case Assy	CXB3520	Not used	Not used

Owner's Manual, Installation Manual

Model	Part No.	Language
DEH-240F/XN/UC	CRD3497	English, French, Spanish
	CRD3501	
DEH-2400F/XN/UC	CRD3498	English, French, Spanish
DEH-24F/XN/UC	CRD3502	

DEH-240F,2400F,24F

2.2 EXTERIOR

(1) EXTERIOR SECTION PARTS LIST

	. Description	Part No.	Mark	No.	Description	Part No.
	1 Screw	BMZ30P040FZK		41	Pin	CNV6486
:	2 Screw	BMZ30P100FMC		42	Lighting Conductor	CNV6487
;	3 Screw	BSZ26P060FMC		43	Gear	CNV6507
	4 Screw	BSZ30P060FMC			Arm	CNV6508
	5 Cord Assy	CDE6468			Panel Unit	CWM7375
	, co. a. r. co.,	0220100				
(3 ·····			46	Socket(CN1950)	CKS3550
•	7 Cable	CDE6610		47	Connector(CN1951)	CKS4206
	3 Fuse(10A)	CEK1136		48	Damper Unit	CXB5070
	9 Case	CNB2686		49	Holder Unit	CXB6356
10) Holder	CNC5704		50	Holder Unit	CXB6357
1	1 Holder	CNC8659		51	Clutch Unit	CXB6358
1:	2 Cushion	CNM4870		52	Screw	IMS20P045FZK
1:	3 Insulator	CNM6948		53	Detach Grille Assy	See Contrast table(2)
1	4 Tuner Amp Unit	CWM8319		54	Screw	BPZ20P100FZK
	5 Screw	ASZ26P060FMC		55	Button(1-6)	CAC7225
10	6 Screw	BPZ26P080FMC		56	Button(OPEN)	CAC7227
1	7 Screw	BSZ26P160FMC		57	Button(LOUD)	CAC7229
18	B Pin Jack(CN351)	CKB1028		58	Button(EQ)	CAC7231
19	9 Terminal(CN404)	CKF1059		59	Button(CLOCK)	CAC7233
	Plug(CN901)	CKM1330		60	Button(AUDIO)	CAC7234
	1 Plug(CN750)	CKS3537		61	Button(LOCAL)	CAC7235
2:	2 Connector(CN501)	CKS3835		62	Button(BSM)	CAC7236
23	3 Antenna Jack(CN402)	CKX1056		63	Knob	CAC7527
2	4 Holder	CNC8615		64	Spring	CBH2430
2	5 Holder	CNC9619		65	Spring	CBH2431
20	6 Insulator	CNM6949		66	Spring	CBH2630
2	7 Heat Sink	CNR1614		67	Cover	CNS6740
28	3 FM/AM Tuner Unit	CWE1563		68	Holder	CNV6505
29	9 Holder	CNC8815		69	Holder	CNV6506
30	Chassis Unit	CXB6100		70	Keyboard Unit	See Contrast table(2)
3	1 Button(EJECT)	CAC6839			LCD	See Contrast table(2)
3:	2 Screw(M2x2)	CBA1176		72	Connector(CN1901)	CKS4524
33	3 Washer	CBF1038		73	Holder	CNC9757
3	4 Washer	CBF1039		74	Sheet	CNM7647
3!	5 Spring	CBH2428		75	Connector	CNV6440
30	6 Spring	CBH2429			Lighting Conductor	CNV7244
3	7 Spring	CBL1512		77	Sub Grille Assy	See Contrast table(2)
38	3 Holder	CNC9096		78	CD Mechanism Module(S9ANA)	CXK5501
39	9 Cover	CNM6854		79	Screw	ISS26P055FUC
40) Panel	CNS6278		80	Transistor(Q510,910)	2SD2396
					IC(IC361)	TDA7386
				82	Panel	CNS6332

(2) CONTRAST TABLE

DEH-240F/XN/UC, DEH-2400F/XN/UC and DEH-24F/XN/UC are constructed the same except for the following:

	Part No.				
Mark No. Symbol and Description	DEH-240F/XN/UC	DEH-2400F/XN/UC	DEH-24F/XN/UC		
53 Detach Grille Assy	CXB8786	CXB8784	CXB8785		
70 Keyboard Unit	CWM8370	CWM8370	CWM8322		
71 LCD	CAW1724	CAW1724	CAW1719		
77 Sub Grille Assy	CXB8792	CXB8790	CXB8791		

2.3 CD MECHANISM MODULE

● CD MECHANISM MODULE SECTION PARTS LIST

Mark No.	Description	Part No.		Description	Part No.
1	Control Unit	CWX2481	46	Gear	CNV6320
2	Connector(CN701)	CKS1959	47	Arm	CNV6322
3	Connector(CN101)	CKS3486	48	Arm	CNV6323
4	Screw	BMZ20P025FMC	49	Arm	CNV6324
5	Screw	BSZ20P040FMC		Arm	CNV6888
6	Screw(M2x4)	CBA1362	51	Arm	CNV6889
	Screw(M2x3)	CBA1527	52	Guide	CNV6327
	Screw	CBA1545		Arm	CNV6924
	Washer	CBF1037		Guide	CNV6921
	Washer	CBF1038		Rack	CNV6923
11	Washer	CBF1039	56	Clamper	CNV6331
	Washer	CBF1060		Arm	CNV6332
	Spring	CBH2378		Guide	CNV6333
	Spring	CBH2379		Cover	CNV6334
	Spring	CBH2514		Arm	CNV6335
15	Spring	CBH2514	00	AIII	CIVVOSSS
	Spring	CBH2533		Guide	CNV6336
	Spring	CBH2382	62	Roller	CNV6338
18	Spring	CBH2383	63	Damper	CNV6339
19	Spring	CBH2384	64	Damper	CNV6340
	Spring	CBH2527	65	Guide	CNV6925
21	Spring	CBH2386	66	Chassis Unit	CXB7980
	Spring	CBH2537	* 67	Arm Unit	CXB7983
	Spring	CBH2390		Arm Unit	CXB7984
	Spring	CBH2391		Arm Unit	CXB7985
	Spring	CBH2523		Motor Unit(M2)	CXB5903
26	Spring	CBH2426	71	Screw Unit	CXB5904
	Spring	CBH2444		Gear Unit	CXB8076
	Spring	CBL1561		Bracket Unit	CXB7982
	Spring	CBL1553		Motor Unit(M1)	CXB6007
	Shaft	CLA3845		Arm Unit	CXB8504
21	Roller	CLA3910	76	Screw(M2x5)	EBA1028
	Frame	CNC9654		Screw	JFZ20P020FMC
	Lever	CNC9664		Screw	JGZ17P020FZK
	Lever	CNC8949		Washer	YE15FUC
35	Arm	CNC9661	80	Washer	YE20FUC
	Arm	CNC9016		Pickup Unit(Service)(P9)	CXX1480
	Arm	CNC9017		Screw	IMS26P030FMC
38	Bracket	CNC9123	83	Guide	CNV6922
39	Frame	CNC9656	84	Roller	CNV6887
40	Belt	CNT1086	85	Spring	CBH2509
41	Gear	CNV6886	86	Spring	CBH2512
	Gear	CNV6316		Spring	CBH2536
	Gear	CNV6317		Collar	CNV6906
	Gear	CNV6318	00		
	Gear	CNV6319			
43	Cour	3.44.00.10			

3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM

3.1 BLOCK DIAGRAM

Α

В

С

D

3

10

2

_

3

Α

В

С

D

7

6

5

11

8

5 **=** 6 **=** 7 **=**

3.2 OVERALL CONNECTION DIAGRAM(GUIDE PAGE)

2

Note: When ordering service parts, be sure to refer to "EXPLODED VIEWS AND PARTS LIST" or "ELECTRICAL PARTS

3

Practical value

Code 123 103

4

Practical value 0.01uF 100uF/10V

D

В

Α

В

С

D

Al Mennout Chronicut Chron \$3 C251 122 ICE PE52 SYSTEM CC C218 122 TOV EJECTIN ANTWA 467/35 C314 SVIn_R 20 ±2 9₹ 487735 GND C815 ELECTRONIC ICSØT PML003AM 3 IZ a_ruobr Net-28 25 NC ROMD 1 VOND INET NC GINET NC ₽₽ 102 PS 24 NC 102 PS 102 001 C208 105 S 3 C200 104 C310 01/01/10/10 C201/410/10 C311 C312 -0127 1210 09 L Cesi ceso 102 (1/4W) —**₽**₽ 01 12 -X610 X610 282/50 C615 818 223 2614 7 + 173 861 821 473 C619 S C618 4R7/35 ₽ ₽ S Ce17 101 S Ce16 104 0K0 080 080 PCE1 5 0104 S **1** ₽ R429 681 LOCH 473 473 R411 R410 473 (1/4M) 473 473 162 7447 ₽Ş 0418 2SC2412K 6423 472 162 8412 473 R446 272 AR418 DSP-281N 8414 473 (M4/1) C412 E422 R415 293 183 C+52 C417 472 C418 R421 681 R420 105 R419 681 R418 681 R417 681 183 C454 101/683 183 | | C+18 ANTENNA OT ATTENTION JACK CONTROL QTP138 DGND FMLOCL ROUT N CO HOO SDBW 2 s8b5.ef-:(%00f)MA s8b0E-:(%0E)MA TINU RANUT, MA\MT

3

2

3

A-a B

Α

В

С

D

3

16 **A-b**

2

3

В

С

D

A-b

3.3 KEYBOARD UNIT

В

D

3

C

2

_

C

3.4 CD MECHANISM MODULE CONTROL UNIT

Note:1. The encircled numbers denote measuring pointes in the circuit diagram.

2. Reference voltage VREF:2.1V

Waveforms

DEH-240F,2400F,24F

4. PCB CONNECTION DIAGRAM

4.1 TUNER AMP UNIT

NOTE FOR PCB DIAGRAMS

Α

1. The parts mounted on this PCB include all necessary parts for several destination. For further information for respective destinations, be sure to check with the schematic diagram.

2. Viewpoint of PCB diagrams

IC,Q

3

IC361

Q913

Q911 Q91Ø

IC603

Q51Ø

D

2

A

В

С

D

C362 R3555 R3555 R3555 R3551 0341 C341 R344 0351 R445 0420 4003 6001 757 8 C31Ø صه R447 Ф R452 - оч ю С3Ø9 ощо R446 R488 9699 □ R418 004 9€ 18444 004 R444 **∞** R419 **a_b** R416 ∞ R42Ø œ R421 R617 о Об19 2 j o= R425 10000000 Q416 🗪 R45Ø IC61 ∞ R428 ^{сто} R434 ⊌Ю С426 R769 Ф R78Ø ФШФ R765 a p □ R431 82 **◯** R43Ø 000 R788 R758

3

26 **A**

2

DEH-240F,2400F,24F

A

Α **B** PANEL UNIT 0 0 O CN1951 **► C** CN1901 В С \circ

3

28 **B**

D

2

3

4.3 KEYBOARD UNIT

C

Α

В

С

D

30

4.4 CD MECHANISM MODULE

2

2

3

2

D

5. ELECTRICAL PARTS LIST

NOTES:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

 $\mathsf{RS1/} \bigcirc \mathsf{S} \bigcirc \bigcirc \mathsf{J,RS1/} \bigcirc \mathsf{S} \bigcirc \bigcirc \mathsf{J}$

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

===	====Circuit Symbol and No.===Part Name		Part No.	====Circuit Symbol and No.===Part Name			Part No.
	U ni	t Number: CWM8319 t Name: Tuner Amp Un ANEOUS		L L L X S	617 618 750 610 750	Ferri-Inductor Ferri-Inductor Ferri-Inductor Crystal Resonator 4.194304MHz Switch(DSENS)	LAU101K LAU2R2K LAU2R2K CSS1023 CSN1039
IC IC IC	301 361 603	IC IC IC	PML003AM TDA7386 S-80834ANY	AR	410	FM/AM Tuner Unit Surge Protector	CWE1563 DSP-201M-S00B
IC IC	610 901	IC IC	PE5262A TPD1018F	RES	SISTO	RS	
Q Q Q Q	351 359 361 410 510	Transistor Transistor Transistor Transistor Transistor	IMH3A DTA124EK DTC124EK 2SC2412K 2SD2396	R R R R	310 311 314 315 351		RS1/16S101J RS1/16S101J RS1/16S101J RS1/16S101J RD1/4PU821J
Q Q Q Q	511 750 751 752 753	Transistor Transistor Transistor Transistor Transistor	RN46A1 2SA1037K 2SA1036K DTC114EK DTC114EK	R R R R	352 353 354 355 361		RS1/16S821J RS1/16S223J RS1/16S223J RS1/16S0R0J RS1/16S103J
Q Q Q Q	909 910 911 912 913	Transistor Transistor Transistor Transistor Transistor	RN46A1 2SD2396 2SB1243 DTC114EK 2SD1859	R R R R	362 363 364 410 411		RS1/16S103J RS1/16S331J RD1/4PU153J RS1/16S222J RS1/16S222J
Q Q D D	920 921 510 750 751	Transistor Transistor Diode Diode Diode	IMX1 DTA124EK HZS9L(B1) 1SS270 1SS270	R R R R	413 414 415 417 418		RS1/16S473J RS1/16S473J RS1/16S393J RS1/16S681J RS1/16S681J
D D D D	752 753 754 755 756	Diode Diode Diode Diode Diode	1SS270 1SS270 1SS270 1SS270 1SS270	R R R R	419 420 421 422 423		RS1/16S681J RS1/16S103J RS1/16S681J RD1/4PU473J RD1/4PU472J
D D D D	757 758 759 767 768	Diode Network Diode Diode Diode Diode	DA204U 1SS270 MA152WA 1SS270 1SS270	R R R R	424 429 430 431 432		RD1/4PU473J RS1/16S681J RS1/16S681J RS1/16S473J RS1/16S473J
D D D D	910 911 912 913 914	Diode Diode Diode Diode Diode	HZS9L(B3) HZS6L(B2) S5688G HZS7L(C2) HZS7L(A1)	R R R R	437 438 445 446 447		RS1/16S0R0J RS1/16S0R0J RS1/16S272J RS1/16S272J RS1/16S162J
D D D D	919 920 921 923 924	Diode Diode Diode Diode Diode	S5688G S5688G DAN202U S5688G S5688G	R R R R	448 490 510 511 512		RS1/16S162J RS1/16S0R0J RD1/4PU221J RD1/4PU221J RD1/4PU472J
L L L L	310 361 410 411 412	Inductor Choke Coil 600µH Ferri-Inductor Ferri-Inductor Ferri-Inductor	LAU1R0K CTH1221 LAU4R7K LAU2R2K LAU2R2K	R R R R	513 516 517 519 520		RD1/4PU222J RS1/16S104J RD1/4PU222J RD1/4PU102J RS1/16S0R0J

=====Circuit Symbol and No.===Part Name	Part No.	=====Circuit Symbol and No.===Part Name	Part No.
R 521	RS1/16S0R0J	R 923	RD1/4PU102J
R 522	RS1/16S0R0J	R 924	RS1/16S472J
R 523	RS1/16S0R0J	R 927	RS1/16S102J
R 525	RS1/16S0R0J	R 928	RS1/16S473J
R 527	RS1/16S0R0J	R 929	RS1/16S0R0J
R 531 R 532 R 536 R 537 R 538	RD1/4PU222J RD1/4PU222J RD1/4PU102J RS1/16S104J RS1/16S0R0J	R 930 R 931 R 937 R 939	RS1/16S0R0J RS1/16S0R0J RS1/16S152J RS1/16S0R0J
R 612	RS1/16S0R0J	CAPACITORS C 307 C 308 C 309 C 310 C 311	CEJQ470M10
R 613	RD1/4PU102J		CEJQ100M16
R 614	RS1/16S821J		CKSRYB104K25
R 615	RS1/16S473J		CKSRYB105K6R3
R 616	RS1/16S682J		CKSRYB104K25
R 617	RS1/16S473J	C 312	CKSRYB104K25
R 618	RS1/16S223J	C 313	CKSRYB105K6R3
R 622	RD1/4PU393J	C 314	CEJQ4R7M35
R 623	RD1/4PU104J	C 315	CEJQ4R7M35
R 625	RS1/16S0R0J	C 316	CKSRYB153K25
R 712	RD1/4PU104J	C 321	CKSRYB153K25
R 750	RD1/4PU104J	C 324	CCSRCH100D50
R 751	RS1/16S103J	C 326	CCSRCH100D50
R 752	RS1/16S153J	C 327	CCSRCH100D50
R 753	RS1/16S153J	C 329	CCSRCH100D50
R 754	RS1/16S222J	C 351	CEJQ2R2M50
R 756	RS1/16S473J	C 352	CEJQ2R2M50
R 757	RS1/16S104J	C 361 3300µF/16V	CCH1368
R 758	RS1/16S102J	C 362	CKSRYB104K25
R 760	RD1/4PU222J	C 363	CKSQYB474K16
R 761	RD1/4PU472J	C 364	CKSQYB474K16
R 762	RD1/4PU222J	C 365	CKSQYB474K16
R 763	RD1/4PU222J	C 366	CKSQYB474K16
R 765	RS1/16S1R0J	C 367	CKSQYB474K16
R 766	RD1/4PU102J	C 368	CKSQYB474K16
R 767	RS1/16S103J	C 369	CKSQYB474K16
R 768	RD1/4PU102J	C 370	CKSQYB474K16
R 769	RS1/16S102J	C 371	CEJQ330M10
R 771	RS1/16S104J	C 372	CEJQ2R2M50
R 772	RD1/4PU222J	C 373	CKSQYB225K10
R 773	RD1/4PU222J	C 374	CKSQYB225K10
R 774	RS1/16S0R0J	C 375	CEJQ100M16
R 775	RS1/16S1R0J	C 410	CKSQYB103K25
R 777	RS1/16S152J	C 412	CKSRYB223K50
R 778	RS1/16S152J	C 413	CKSRYB102K50
R 779	RD1/4PU103J	C 414	CEJQ220M10
R 781	RS1/16S104J	C 415	CKSRYB223K50
R 783	RD1/4PU391J	C 417	CKSRYB472K50
R 784	RD1/4PU222J	C 418	CEJQ101M6R3
R 786	RS1/16S102J	C 419	CKSRYB473K50
R 787	RD1/4PU222J	C 424	CKSRYB183K25
R 791	RS1/16S0R0J	C 425	CKSRYB183K25
R 910	RS1/16S1R0J	C 510	CKSRYB473K50
R 911	RD1/4PU220J	C 511	CKSRYB102K50
R 912	RD1/4PU132J	C 512	CEJQ101M10
R 913	RD1/4PU122J	C 515	CKSRYB102K50
R 914	RS1/16S103J	C 516	CKSRYB102K50
R 915	RS1/16S222J	C 614	CKSRYB473K50
R 916	RD1/4PU153J	C 615	CEJ02R2M50
R 917	RS1/16S104J	C 616	CKSRYB104K25
R 918	RS1/16S104J	C 617	CCSRCH101J50
R 919	RS1/16S104J	C 618	CEJQ4R7M35
R 920	RS1/16S473J	C 619	CKSRYB473K50
R 921	RS1/16S103J	C 620	CCSRCH150J50
R 922	RS1/16S473J	C 621	CCSRCH150J50

DEH-240F,2400F,24F

====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
C 750 C 751 C 910 330μF/16V C 911 C 912	CKSRYB103K50 CKSRYB104K25 CCH1326 CKSRYB103K50 CEJQ101M16	R 1943 R 1950 R 1954 R 1955 R 1956	RS1/16S151J RS1/16S104J RS1/16S151J RS1/16S181J RS1/16S181J
C 913 C 914 C 915 C 916 470μF/16V C 918	CEJQ101M10 CKSRYB473K50 CKSRYB103K50 CCH1331 CKSQYB473K50	R 1957 R 1958 R 1959 R 1960 R 1961	RS1/16S181J RS1/16S151J RS1/16S181J RS1/16S151J RS1/16S181J
C 919	CKSRYB103K50	R 1962 R 1963	RS1/16S181J RS1/16S121J
Unit Number : CWM8370(DI	H-2400F/XN/UC)	R 1964 R 1970 R 1971	RS1/16S121J RS1/16S181J RS1/16S151J
Unit Name : Keyboard Ur MISCELLANEOUS	III.	R 1972	RS1/16S181J
IC 1900 IC	PD6340A	CAPACITORS	
D 1901 Diode D 1902 Diode D 1917 LED D 1918 LED	MA152WK MA152WA NSSW440-9159 NSSW440-9159	C 1902 C 1923 C 1930	CKSRYB104K25 CKSQYF104Z50 CKSQYF104Z50
D 1919 LED D 1920 LED X 1900 Ceramic Resonator 4.97MHz S 1900 Switch S 1901 Switch	SML-310PT SML-310PT CSS1573 CSG1107 CSG1107	Unit Number: CWM8322(DE Unit Name: Keyboard Unit MISCELLANEOUS	H-24F/XN/UC) t
S 1902 Switch S 1903 Switch S 1904 Switch S 1905 Switch S 1906 Switch	CSG1107 CSG1107 CSG1107 CSG1107 CSG1107	IC 1900 IC D 1901 Diode D 1902 Diode D 1917 LED D 1918 LED	PD6340A MA152WK MA152WA NSSW440-9159 NSSW440-9159
S 1907 Push Switch S 1908 Switch S 1909 Switch S 1910 Switch S 1911 Switch	CSG1111 CSG1107 CSG1107 CSG1107 CSG1107	D 1919 LED D 1920 LED X 1900 Ceramic Resonator 4.97MHz S 1900 Push Switch S 1901 Push Switch	SML-310DT SML-310DT CSS1573 CSG1133 CSG1117
S 1912 Switch S 1913 Switch S 1914 Switch S 1915 Switch S 1916 Switch	CSG1107 CSG1107 CSG1107 CSG1107 CSG1107	S 1902 Push Switch S 1903 Push Switch S 1904 Push Switch S 1905 Push Switch S 1906 Push Switch	CSG1117 CSG1117 CSG1117 CSG1117 CSG1117
S 1917 Push Switch S 1922 Switch(VOLUME) LCD	CSG1111 CSD1077 CAW1724	S 1907 Push Switch S 1908 Push Switch S 1909 Push Switch S 1910 Push Switch	CSG1111 CSG1117 CSG1117 CSG1117
RESISTORS	DC4/40C4701	S 1911 Push Switch S 1912 Push Switch	CSG1117 CSG1117
R 1900 R 1901 R 1902 R 1903 R 1904	RS1/16S473J RS1/16S222J RS1/16S222J RS1/16S470J RS1/16S470J	S 1913 Push Switch S 1914 Push Switch S 1915 Push Switch S 1916 Push Switch	CSG1117 CSG1117 CSG1117 CSG1117
R 1910 R 1911 R 1912 R 1913 R 1914	RS1/16S151J RS1/16S181J RS1/16S151J RS1/16S181J RS1/16S181J	S 1917 Push Switch S 1922 Switch(VOLUME) LCD RESISTORS	CSG1111 CSD1077 CAW1719
R 1915 R 1917 R 1919 R 1920 R 1927	RS1/16S181J RS1/16S121J RS1/16S121J RS1/16S121J RS1/16S472J	R 1900 R 1901 R 1902 R 1903 R 1904	RS1/16S473J RS1/16S222J RS1/16S222J RS1/16S470J RS1/16S470J
R 1935 R 1936 R 1939 R 1941 R 1942	RS1/16S104J RS1/16S151J RS1/16S151J RS1/16S121J RS1/16S151J	R 1910 R 1911 R 1912 R 1913 R 1914	RS1/16S151J RS1/16S181J RS1/16S151J RS1/16S181J RS1/16S181J

====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
R 1915 R 1917 R 1919 R 1920 R 1927	RS1/16S181J RS1/16S121J RS1/16S121J RS1/16S121J RS1/16S472J	R 203 R 204 R 206 R 208 R 209	RS1/16S823J RS1/16S823J RS1/16S823J RS1/16S124J RS1/16S183J
R 1935 R 1936 R 1939 R 1941 R 1942	RS1/16S104J RS1/16S151J RS1/16S151J RS1/16S121J RS1/16S151J	R 210 R 211 R 212 R 213 R 215	RS1/16S153J RS1/16S103J RS1/16S103J RS1/16S124J RS1/16S0R0J
R 1943 R 1950 R 1954 R 1955 R 1956	RS1/16S151J RS1/16S104J RS1/16S151J RS1/16S181J RS1/16S181J	R 216 R 301 R 302 R 303 R 304	RS1/16S471J RS1/16S333J RS1/16S332J RS1/16S332J RS1/16S514J
R 1957 R 1958 R 1959 R 1960 R 1961	RS1/16S181J RS1/16S151J RS1/16S181J RS1/16S151J RS1/16S181J	R 306 R 307 R 312 R 313 R 315	RS1/16S102J RS1/16S102J RS1/16S103J RS1/16S473J RS1/16S334J
R 1962 R 1963 R 1964 R 1970 R 1971	RS1/16S181J RS1/16S121J RS1/16S121J RS1/16S181J RS1/16S151J	R 321 R 322 R 323 R 401 R 402	RS1/16S331J RS1/16S0R0J RS1/16S332J RS1/16S684J RS1/16S103J
R 1972 CAPACITORS C 1902	RS1/16S181J CKSRYB104K25	R 403 R 404 R 405 R 407 R 408	RS1/16S103J RS1/16S183J RS1/16S123J RS1/16S622J RS1/16S622J
C 1923 C 1930 Unit Number: CWM7375 Unit Name: Panel Unit	CKSQYF104Z50 CKSQYF104Z50	R 409 R 410 R 701 R 702 R 703	RS1/16S113J RS1/16S752J RS1/16S102J RS1/16S221J RS1/16S221J
D 1950 LED S 1950 Push Switch(EJECT) R 1952 R 1953	CL220PGC CSG1112 RS1/16S101J RS1/16S101J	R 704 R 705 R 706 R 707 R 708	RS1/16S221J RS1/16S221J RS1/16S221J RS1/16S221J RS1/16S102J
Unit Number: CWX2481 Unit Name: Control Unit MISCELLANEOUS IC 101 IC IC 201 IC IC 401 IC IC 701 IC	TA2153FN TC9495F2 BA5996FM BAGESED	R 709 R 710 R 901 R 902 R 903 CAPACITORS	RS1/16S102J RS1/16S102J RS1/16S104J RS1/16S473J RS1/16S273J
Q 101 Transistor Q 102 Transistor L 201 Inductor L 202 Inductor X 301 Ceramic Resonator 16.934MHz	BA05SFP 2SD1664 UMD2N CTF1546 CTF1546 CSS1525	C 101 C 102 C 103 C 104 C 105	CEV470M6R3 CKSRYB102K50 CKSRYB104K16 CKSRYB224K16 CEV470M6R3
S 901 Spring Switch(HOME) S 902 Spring Switch(CLAMP) S 903 Spring Switch(DSCSNS) S 904 Spring Switch(12EJ) S 905 Spring Switch(8EJ)	CSN1051 CSN1052 CSN1051 CSN1052 CSN1051	C 106 C 107 C 201 C 202 C 204	CKSRYB104K16 CKSRYB105K6R3 CKSRYB104K16 CCSRCH560J50 CKSRYB224K16
RESISTORS R 101 R 102 R 103 R 201 R 202	RS1/16S222J RS1/8S120J RS1/8S100J RS1/16S513J RS1/16S513J	C 205 C 206 C 207 C 208 C 209 C 210 C 211 C 301 C 302 C 303	CKSRYB224K16 CKSRYB273K25 CKSRYB104K16 CKSRYB104K16 CKSRYB104K16 CCSRCK2R0C50 CCSRCH220J50 CKSRYB153K25 CKSRYB104K16 CKSRYB103K50

DEH-240F,2400F,24F

====Circuit Symbol and No.===Part Name			Part No.		
CCCC	304 305 306 307 308		CKSRYB103K50 CKSRYB104K16 CKSRYB104K16 CKSRYB333K16 CKSRYB104K16		
C C C C C	309 310 311 312 315		CKSRYB473K16 CKSRYB473K16 CKSRYB104K16 CKSRYB104K16 CEV220M6R3		
C C C C C	317 318 319 320 325		CKSRYB104K16 CKSRYB104K16 CKSRYB104K16 CCSRCH470J50 CKSRYB471K50		
C C C C C	328 329 330 331 401		CKSRYB472K50 CKSRYB104K16 CKSRYB104K16 CKSRYB104K16 CKSRYB221K50		
C C C C C	402 403 404 405 702		CKSRYB221K50 CKSRYB153K25 CKSRYB103K50 CEV101M10 CKSRYB104K16		
C C C	703 801 802 803	10μF/10V	CKSRYB104K16 CCH1349 CEV101M10 CKSRYB224K16		
Miscellaneous Parts List					

		Pickup Unit(Service)(P9)	CXX1480
M	1	Motor Unit(SPINDLE)	CXB6007
M	2	Motor Unit(LOADING/CARRIAGE)	CXB5903

6. ADJUSTMENT

6.1 CD ADJUSTMENT

1) Precautions

lowing.

• This unit uses a single power supply (+5V) for the regulator. The signal reference potential, therefore, is connected to VREF(approx. 2.1V) instead of GND. If VREF and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the fol-

Do not connect the negative probe of the measuring equipment to VREF and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to VREF with the channel 2 negative probe connected to GND.

Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status

If by accident VREF comes in contact with GND, immediately switch the regulator or power OFF.

- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON, let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- The RFI and RFO signals are easy to oscillate because of a wide band. When observing them, insert a resistor of about 1 k Ω to the series.
- This equipment will not guarantee the load ejection operation when the mechanical unit is turned upside down. In particular, if the ejection operation is incorrectly performed and recovery is disabled, the recovery is enabled by resetting a product or turning ACC off to on.

2) Test Mode

This mode is used for adjusting the CD mechanism module of the device.

- Test mode starting procedure
 Reset while pressing the 4 and 6 keys together.
- Test mode cancellation Switch ACC, back-up OFF.
- After pressing the EJECT key, do not press any other key until the disk is completely ejected.
- If the ► or < key is pressed while focus search is in progress, immediately turn the power off (otherwise the actuator may be damaged due to adhesion of the lenses).

6.2 CHECKING THE GRATING AFTER CHANGING THE PICKUP UNIT

· Note:

The grating angle of the PU unit cannot be adjusted after the PU unit is changed. The PU unit in the CD mechanism module is adjusted on the production line to match the CD mechanism module and is thus the best adjusted PU unit for the CD mechanism module. Changing the PU unit is thus best considered as a last resort. However, if the PU unit must be changed, the grating should be checked using the procedure below.

Purpose :

To check that the grating is within an acceptable range when the PU unit is changed.

· Symptoms of Mal-adjustment :

If the grating is off by a large amount symptoms such as being unable to close tracking, being unable to perform track search operations, or taking a long time for track searching.

· Method:

Measuring Equipment

• Oscilloscope, Two L.P.F.

Measuring Points

• E, F, VREF

• Disc

• ABEX TCD-784

• Mode

TEST MODE

CONTROL UNIT

Checking Procedure

- 1. In test mode, load the disc and switch the 5V regulator on.
- 2. The display will change, returning to "81" on the fourth press.
- 3. As shown in the diagram above, monitor the LPF outputs using the oscilloscope and check that the phase difference is within 75°. Refer to the photographs supplied to determine the phase angle.
- 4. If the phase difference is determined to be greater than 75° try changing the PU unit to see if there is any improvement. If, after trying this a number of times, the grating angle does not become less than 75° then the mechanism should be judged to be at fault.

Note

Because of eccentricity in the disc and a slight misalignment of the clamping center the grating waveform may be seen to "wobble" (the phase difference changes as the disc rotates). The angle specified above indicates the average angle.

• Hint

Reloading the disc changes the clamp position and may decrease the "wobble".

Grating waveform

 $\begin{aligned} &\text{Ech} \rightarrow \text{Xch} & 20\text{mV/div, AC} \\ &\text{Fch} \rightarrow \text{Ych} & 20\text{mV/div, AC} \end{aligned}$

6.3 ERROR MODE

Error Messages

If a CD is not operative or stopped during operation due to an error, the error mode is turned on and cause(s) of the error is indicated with a corresponding number. This arrangement is intended at reducing nonsense calls from the users and also for facilitating trouble analysis and repair work in servicing.

- (1) Basic Indication Method
- 1) When SERRORM is selected for the CSMOD (CD mode area for the system), error codes are written to DMIN (minutes display area) and DSEC (seconds display area). The same data is written to DMIN and DSEC. DTNO remains in blank as before.
- 2) Head unit display examples

Depending on display capability of LCD used, display will vary as shown below. xx contains the error number.

8-digit display	6-digit display	4-digit display
ERROR-xx	ERR-xx	E-xx

(2) Error Code List

12/ 111	JI COUE LIST		
Code	Class	Displayed error code	Description of the code and potential cause(s)
10	Electricity	Carriage Home NG	CRG can't be moved to inner diameter.
		SERVO LSI Com-	CRG can't be moved from inner diameter.
		munication Error	ightarrow Failure on home switch or CRG move mechanism.
			Communication error between microcomputer and SERVO LSI.
11	Electricity	Focus Servo NG	Focusing not available.
			ightarrow Stains on rear side of disc or excessive vibrations on REWRITABLE.
12	Electricity	Spindle Lock NG	Spindle not locked. Sub-code is strange (not readable).
		Subcode NG	ightarrow Failure on spindle, stains or damages on disc, or excessive vibrations.
			A disc not containing CD-R data is found.
			Turned over disc are found, though rarely.
			CD signal error.
17	Electricity	Setup NG	AGC protection doesn't work. Focus can be easily lost.
			ightarrow Damages or stains on disc, or excessive vibrations on REWRITABLE.
30	Electricity	Search Time Out	Failed to reach target address.
			ightarrow CRG tracking error or damages on disc.
44	Electricity	ALL Skip	Skip setting for all track.
			(CD-R/RW)
50	Mechanism	CD On Mech Error	Mechanical error during CD ON.
			ightarrow Defective loading motor, mechanical lock and mechanical sensor.
A0	System	Power Supply NG	Power (VD) is ground faulted.
			ightarrow Failure on SW transistor or power supply (failure on connector).

Remarks: Mechanical errors are not displayed (because a CD is turned off in these errors).

Unreadable TOC does not constitute an error. An intended operation continues in this case.

Upper digits of an error code are subdivided as shown below:

1x: Setup relevant errors, 3x: Search relevant errors, Ax: Other errors.

7. GENERAL INFORMATION

7.1 DIAGNOSIS

7.1.1 DISASSEMBLY

- Removing the Case (not shown)
- 1. Remove the Case.

● Removing the Panel Assy (Fig.1)

Remove the two screws and then remove the Panel Assy.

Removing the CD Mechanism Module (Fig.1)

Remove the four screws and then remove the CD Mechanism Module.

■ Removing the Tuner Amp Unit (Fig.2)

Remove the two screws.

Remove the three screws.

Straight the tabs at three locations indicated.

Remove the screw and then remove the Tuner Amp Unit.

How to hold the Mechanical Unit

- 1. Hold the top and bottom frame.
- 2. Do not squeeze top frame's front portion too tight, because it is fragile.

How to remove the Top and Bottom Frame

- 1. When the disk is in "clamp" state, unlock Spring A (6 pieces) and Spring B (2 pieces), and unscrew screws (4 pieces).
- 2. Unlock each 1 of pawl at the both side of the frame, then remove the top frame.
- 3. Remove the Carriage Mechanical part in such way Carriage that; you remove the mechanical part from 3 pieces of Damper while slowly pulling up the part.
- 4. Now, the top frame has been removed, and under this state, fix the genuine Connector again, and eject the disk.

(Caution)

When you reassemble the Carriage Mechanical part, apply a bit of alcohol to Dampers.

Carriage Mechanical Part Bottom Frame Damper

How to remove the Guide Arm Assy

- Unlock the spring (1 piece) at the right side of the assembly.
- 2. Unscrew screws (2 pieces), then remove the Screw Gear Bracket.
- 3. Shift the Guide Arm Assy to the left and slowly rotate it to the upper direction.
- 4. When the Guide Arm Assy rotates approximately 45 degree, shift the Assy to the right side direction and remove it.

How to remove the Control Unit

- Give jumper-solder treatment to the Flexible Wire of the Pickup unit, then remove the wire from the Connector.
- 2. Remove all 4 points of solder-treatment on the Lead Wire. Also, unscrew the screw(1 piece).
- 3. Then, Remove the Control unit. (Caution)

Be careful not to damage SW when you reassemble the Control Unit into the device.

How to remove the Loading Arm Assy

- 1. Unlock the spring (1 piece) and remove the E ring (1 piece) of the Fulcrum Shaft.
- 2. Shift the arm to the left side direction and unlock pins (2 pieces).

How to remove the Pickup Unit

- 1. Unscrew 2 pieces of screws, then remove the Pulley Cover.
- Remove the Feed Screw unit from the pawl of the Feed Screw Guide (The pawl is located inside the guide).
- 3. Remove the belt from the Pulley, then remove the Pickup unit.

(Caution)

Pulley Cover

Make sure not to stain the belt with grease when you fix the belt.

7.1.2 CONNECTOR FUNCTION DESCRIPTION

ANTENNA PRE OUT

- 1. GND
- 2. BACK UP
- 3. ACC
- 4. NC
- 5. NC
- 6. B.REM
- 7. NC 8. NC
- 9. RL-
- 10. FL-
- 11. RL+
- 12. FL+
- 13. RR-14. FR-
- 15. RR+
- 16. FR+

7.2 PARTS

7.2.1 IC

● Pin Functions(PE5262A)

	TIONS(PE5262A)		T = :	
Pin No.	Pin Name	I/O	Format	Function and Operation
1	MODEL1	1		Model select input
2,3	NC NC			Not used
4	AVSS	I		A/D GND
5	ST	I		FM stereo input
6	SD	I		SD input
7	AVREF1			A/D converter reference voltage
8	KYDT	I		Key data input
9	DPDT	Ö	С	Display data output
10	SDBW	Ī	† •	SDBW input
11	TUNPDI	i		PLL IC data input
12	TUNPDO	0	С	PLL IC data input
13	TUNPCK	0	C	PLL IC data output PLL IC clock output
13	TUNPCE	0	C	
				PLL IC chip enable output
15	CURRO	0		Tuner voltage FIX output
16	LOCL	0	С	Local L output
17	NC			Not used
18	FM/AM	0	С	FM/AM power select output
19	NC	<u> </u>		Not used
20	FLPILM	0	С	Inside of flap illumination output
21	VDCONT	0	С	VD control output
22	NC			Not used
23	CONT	0	С	Servo driver power supply control output
24	XCE	0	С	CD LSI chip enable output
25	XRST	0	C	CD LSI reset output
26	XPCK	Ō	C	CD LSI clock output
27-30	XPI0-3	I/O	C	CD LSI data input/output
31	CLCONT	0	C	Driver input select output
32	HOME	ī	C	Home position detector input
33	VSS	_	-	GND
33	LOEJ			
		0	C	CD load motor LOAD/EJECT direction exchange output
35	CD5VON	0	L C	CD +5V power supply control output
36,37	ROT1-0	<u> </u>		Rotary encoder data input
38	TELIN	I		Telephone mute input
39	NC			Not used
40	ILMPW	0	С	Illumination power supply control output
41	SWVDD	0	С	Keyboard unit power supply control output
42	SYSPW	0	С	System power supply control output
43	VST	0	С	Strobe pulse output for electronic volume
44	MUTE	0	С	System mute output
45	PEE	0	C	Beep tone output
46	LOCH	Ō	C	Local H output
47	NC		1	Not used
48	TUNPCE2	0	С	EEPROM chip enable output
49	PCL	0	C	Clock adjustment output
50	VCK	0	C	Clock output for electronic volume
	VDT	0	C	
51				Data output for electronic volume
52	ANTPW	0		Antenna output
53	EJECTS	1	_	Eject key input pin
54	DALMON	0	С	Stand-by output
55–59	NC			Not used
60	RESET			Reset input
61,62	NC			Not used
63	BSENS	I		Back up power sense input
64	ASENS	I		ACC power sense input
65	DSENS	I		Grille detach sense
66	ADPW	0	С	A/D converter power supply output
			 	
67	NC	ļ		Not used

DEH-240F,2400F,24F

Pin No.	Pin Name	I/O	Format	Function and Operation		
68	VDD			Power supply		
69	X2			Crystal oscillator connection pin		
70	X1	ı		Crystal oscillator connection pin		
71	IC(VPP)			Connect to GND		
72	NC			Not used		
73	TESTIN	ı		Test program mode input		
74	AVDD			Positive power supply terminal for analog circuit		
75	AVREF0			A/D converter reference voltage		
76	SL	ı		SD level input from tuner		
77	TEMP	ı		CD temperature sense input		
78	VDSENS	ı		VD power supply voltage sense input		
79	DISCSNS	I		CD DISC sense input		
80	CSENS	I		Flap open/close sense input		

Output Format	Meaning
С	C MOS output

IC's marked by * are MOS type.

Be careful in handling them because they are very liable to be damaged by electrostatic induction.

*PE5262A

● Pin Functions (PD6340A)

Pin No.	Pin Name	I/O	Function and Operation
1-5	SEG4-0	0	LCD segment output
6-9	COM3-0	0	LCD common output
10	VLCD		LCD drive power supply
11-14	KST3-0	0	Key strobe output
15,16	KDT0,1	I	Key data input (analogue input)
17	REM	I	Remote control reception
18	DPDT	I	Display data input
19	NC		Not used
20	KYDT	0	Key data output
21	MODA		GND
22	X0		Crystal oscillator connection pin
23	X1		Crystal oscillator connection pin
24	VSS		GND
25,26	KDT2,3	I	Key data input
27	NC		Not used
28	KST4	0	Key strobe output
29-32	NC		Not used
33-55	SEG35-13	0	LCD segment output
56	VDD		Power supply
57-64	SEG12-5	0	LCD segment output

*PD6340A

DEH-240F,2400F,24F

● Pin Functions(TA2153FN)

Pin No.	Pin Name	I/O	Function and Operation
1	VCC		Power supply voltage terminal
2	RFGC	ı	RF amplitude adjustment control signal terminal
3	GMAD	I	AGC amplifier frequency characteristic adjustment terminal
4	FNI	I	Main beam amplifier input terminal
5	FPI	I	Main beam amplifier input terminal
6	TPI	I	Sub beam amplifier input terminal
7	TNI	I	Sub beam amplifier input terminal
8	MDI	0	Monitor photodiode amplifier input terminal
9	LDO	I	Laser diode amplifier output terminal
10	SEL	I	APC circuit ON/OFF signal, LDO terminal control input terminal and bottom
			and peak detection frequency switching terminals
11	TEB		Tracking error balance adjustment signal input terminal
12	2VRO	0	Reference voltage (2VRO) output terminal
13	TEN		Tracking error signal generation amplifier reverse phase input terminal
14	TEO	0	Tracking error signal generation amplifier output terminal
15	SBAD	0	Sub beam addition signal output terminal
16	FEO	0	Focus error signal generation amplifier output terminal
17	FEN	I	Focus error signal generation amplifier reverse phase input terminal
18	SEB	I	RFRP generation circuit mode switching terminal
19	VRO	0	Reference voltage (VREF) output terminal
20	RFRP	0	Signal generation amplifier output terminal for track count
21	BTC	I	Bottom detection time constant adjustment terminal for RFCT signal
			generation
22	RFCT	0	RFRP signal center level output terminal
23	PKC	1	Peak detection time constant adjustment signal for RFCT signal generation
24	RFRPIN	1	Signal generation amplifier input terminal for track count
25	RFGO	0	RF signal amplitude adjustment amplifier output terminal
26	GVSW	I	AGC, FE or TE amplifier gain switching terminal
27	AGCIN	I	RF signal amplitude adjustment amplifier input terminal
28	RFO	0	RF signal generation amplifier output terminal
29	GND	I	GND terminal
30	RFN2	I	RF signal generation amplifier input terminal

TA2153FN

● Pin Functions(TC9495F2)

~	ons(TC9495F2)	1	
Pin No.	Pin Name	I/O	Function and Operation
1	TESTO		Test mode terminal
2	HSO	0	Replay speed flag output terminal
		0	Replay speed flag output terminal
4	EMPH	0	Emphasis flag output terminal for sub code Q data
5	LRCK	0	Channel clock (44.1 kHz) output terminal
6	6 VSS		Digital ground terminal
7	BCK	0	Bit clock output terminal
8	AOUT	0	Digital audio data output terminal
9	DOUT	0	Digital out output terminal
10	MBOV	0	Buffer memory over signal output terminal
11	IPF	0	Correction flag output terminal
12	SBOK	0	CRCC decision result output for sub code Q data
13	CLCK	I/O	Clock input/output terminal for sub code P-W data read
14	VDD	1,0	Digital + power supply terminal (5 V)
15	VSS		Digital ground terminal
16	DATA	0	Sub code P-W data output terminal
17	SFSY	0	Replay-system frame sync signal output terminal
18	SBSY	0	Sub code block sync output terminal
19	SPCK	0	Clock for processor status signal read
20	SPDA	0	Processor status signal output terminal
21	COFS	0	Correction-system frame clock (7.35 kHz) output terminal
22	MONIT	0	LSI internal signal output terminal
23	VDD		Digital + power supply terminal (5 V)
24	TESIO0	I	Test input/output terminal
25	P2VREF		PLL-system only 2VREF terminal
26	HSSW	0	The VREF voltage is reached for double or quad speed.
27	ZDET	0	One-bit DAC zero detection flag output terminal
28	PDO	0	Phase error signal issue between the EFM and PLCK signals
29	TMAXS	0	TMAX detection result output terminal
30	TAMX	0	TMAX detection result output terminal
31	LPFN	I	Reverse input terminal of amplifier for lowpass filter
32	LPFO	0	Output terminal of amplifier for lowpass filter
33	PVREF		PLL-system only VREF terminal
34	VCOREF	I	VCO center frequency reference level terminal
35	VCOF	0	Filter terminal for VCO
36	AVSS		Analog-system ground terminal
37	SLCO	0	Output terminal of DAC for data slice level generation
38	RFI	ī	RF signal input terminal
39	AVDD	<u>'</u>	Analog-system power supply terminal (5 V)
40	RFCT	ı	RFRP signal center level input terminal
41	RFZI	i	Input terminal for RFRP signal zero cross
42	RFRP	ı	RF ripple signal input terminal
43	FEI	'	Focus error signal input terminal
43	SBAD	1	Sub beam addition signal input terminal
45	TSIN	1	Test input terminal
	TEI	1	Tracking error input terminal
46		1	
47	TEZI	1	Input terminal for tracking error or zero cross
48	FOO	0	Focus equalizer output terminal
49	TRO	0	Tracking equalizer output terminal
50	VREF		Analog reference power supply terminal
51	RFGC	0	RF amplitude adjustment control signal output terminal
52	TEBC	0	Tracking balance control signal output terminal
53	FMO	0	Feed equalizer output terminal
54	FVO	0	Speed error signal or feed search EQ output
55	DMO	0	Disc equalizer output terminal
56	2VREF		Analog reference power supply terminal
57	SEL	0	APC circuit ON/OFF signal output terminal

DEH-240F,2400F,24F

S8-61 FLGA-D O External flag output terminal for internal signal monitor			1		
62 VDD 63 VSS Digital ground terminal 64 IOO O RF amplifier gain switching terminal 65 IO1 O Not used 66 IO2 I HOME detection switch input terminal 67 IO3 O FocusDrv and signal output terminal 68 DMOUT I Field equalizer PWM output terminal for IOO and IO1 Disc equalizer PWM output terminal for IO2 and IO3 69 CKSE I Usually open 70 DACT I DAC test mode terminal 71 TESIN I Test input terminal 72 TESIO1 I Test input/output terminal 73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit utput terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit utput terminal 79 XO O System clock oscillator circuit utput terminal 79 XO O System clock oscillator circuit input terminal 80 XVDD For system clock oscillator circuit utput terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L Channel forward rotation output terminal 86 DVSL L Channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 89-93 BUSO-3 I/O Data input/output terminal 99-05 NSS Digital power supply terminal 1 Test mode terminal 99-07 TEST4 I Test mode terminal 99-07 TEST4 I Test mode terminal 99-07 TEST4 I Test mode terminal	Pin No.	Pin Name	I/O	Function and Operation	
63 VSS			0		
64 IOO O RF amplifier gain switching terminal 65 IO1 O Not used 66 IO2 I HOME detection switch input terminal 67 IO3 O FocusDrv and signal output terminal 68 DMOUT I Field equalizer PWM output terminal for IOO and IO1 Disc equalizer PWM output terminal for IOO and IO1 Disc equalizer PWM output terminal for IOO and IO1 Disc equalizer PWM output terminal for IOO and IO1 Disc equalizer PWM output terminal for IOO and IO1 Disc equalizer PWM output terminal for IOO and IOO 69 CKSE I Usually open 70 DACT I DAC test mode terminal 71 TESIN I Test input terminal 72 TESIO1 I Test input terminal 73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit input terminal 80 XVDD For system clock oscillator circuit the power supply terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 88 DVSL L channel D/A converting unit power supply terminal 89 O9-93 BUSO-3 I/O Data input/output terminal for microcomputer interface 99 VSS Digital ground terminal 90 Digital power supply terminal 90 DIGEN PROVED DIGITAL PROVED	62				
65 IO1					
HOME detection switch input terminal	64				
67 IO3 O FocusDrv and signal output terminal 68 DMOUT I Field equalizer PWM output terminal for IO0 and IO1 Disc equalizer PWM output terminal for IO0 and IO1 Disc equalizer PWM output terminal for IO2 and IO3 69 CKSE I Usually open 70 DACT I DAC test mode terminal 71 TESIN I Test input terminal 72 TESIO1 I Test input terminal 73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit output terminal 80 XVDD For system clock oscillator circuit output terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel forward rotation output terminal 87-89 TEST1-3 I Test mode terminal 88-7-89 TEST1-3 I Test mode terminal 89-93 BUSO-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chipe nable signal for microcomputer interface 98 TEST4 I Test mode terminal	65		0		
Field equalizer PWM output terminal for IO0 and IO1 Disc equalizer PWM output terminal for IO2 and IO3	66		I	HOME detection switch input terminal	
Disc equalizer PWM output terminal for IO2 and IO3	67		0	FocusDrv and signal output terminal	
69 CKSE I Usually open 70 DACT I DAC test mode terminal 71 TESIN I Test input terminal 72 TESIO1 I Test input terminal 73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit input terminal 80 XVDD For system clock oscillator circuit terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 99-93 BUSO-3 I/O Data input/output terminal for microcomputer interface 994 VDD Digital + power supply terminal (5 V) 955 VSS Digital ground terminal 996 BUCK I Clock terminal for microcomputer interface 998 TEST4 I Test mode terminal 999 TSMOD I Test mode terminal	68	DMOUT	I	Field equalizer PWM output terminal for IO0 and IO1	
70 DACT I DAC test mode terminal 71 TESIN I Test input terminal 72 TESIO1 I Test input/output terminal 73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit input terminal 80 XVDD For system clock oscillator circuit input terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal (5 V) 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 89-93 BUS0-3 I/O Data input/output terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal				Disc equalizer PWM output terminal for IO2 and IO3	
71 TESIN I Test input terminal 72 TESIO1 I Test input/output terminal 73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit input terminal 80 XVDD For system clock oscillator circuit output terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 90-93 BUSO-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	69	CKSE	I	Usually open	
TESIO1 I Test input/output terminal 73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit input terminal 80 XVDD For system clock oscillator circuit + power supply terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal (5 V) 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 90-93 BUSO-3 I/O Data input/output terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	70	DACT	I	DAC test mode terminal	
73 VSS Digital ground terminal 74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit output terminal 80 XVDD For system clock oscillator circuit output terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 87-89 TEST1-3 I Test mode terminal 90-93 BUS0-3 I/O Data input/output terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	71	TESIN	I	Test input terminal	
74 PXI I DPS-system clock oscillator circuit input terminal 75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit output terminal 80 XVDD For system clock oscillator circuit + power supply terminal 81 DVSR R channel D/A converting unit power supply terminal 81 DVSR R channel data forward rotation output terminal 82 RO O R channel data forward rotation output terminal (5 V) 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 90-93 BUS0-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital pound terminal 5 V) <	72	TESIO1	I	Test input/output terminal	
75 PXO O DPS-system clock oscillator circuit output terminal 76 VDD Digital + power supply terminal (5 V) 77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit output terminal 80 XVDD For system clock oscillator circuit - power supply terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 90-93 BUSO-3 I/O Data input/output terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	73	VSS		Digital ground terminal	
Test mode terminal Formation Formati	74	PXI	I	DPS-system clock oscillator circuit input terminal	
77 XVSS Ground terminal for system clock oscillator circuit 78 XI I System clock oscillator circuit input terminal 79 XO O System clock oscillator circuit output terminal 80 XVDD For system clock oscillator circuit + power supply terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 890-93 BUS0-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	75	PXO	0		
Test mode terminal System clock oscillator circuit input terminal Test mode terminal State S	76	VDD		Digital + power supply terminal (5 V)	
79 XO O System clock oscillator circuit output terminal 80 XVDD For system clock oscillator circuit + power supply terminal 81 DVSR R channel D/A converting unit power supply terminal 82 RO O R channel data forward rotation output terminal 83 DVDD D/A converting unit power supply terminal (5 V) 84 DVR Reference voltage terminal 85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 890-93 BUS0-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	77	XVSS		Ground terminal for system clock oscillator circuit	
SO	78	XI	I	System clock oscillator circuit input terminal	
R channel D/A converting unit power supply terminal	79		0	System clock oscillator circuit output terminal	
RO	80	XVDD		For system clock oscillator circuit + power supply terminal	
B3 DVDD D/A converting unit power supply terminal (5 V)	81	DVSR		R channel D/A converting unit power supply terminal	
Reference voltage terminal Reference volt	82	RO	0	R channel data forward rotation output terminal	
85 LO O L channel forward rotation output terminal 86 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 90-93 BUS0-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	83	DVDD		D/A converting unit power supply terminal (5 V)	
B6 DVSL L channel D/A converting unit power supply terminal 87-89 TEST1-3 I Test mode terminal 90-93 BUS0-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	84	DVR			
87-89 TEST1-3 I Test mode terminal 90-93 BUS0-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal			0	L channel forward rotation output terminal	
90-93 BUS0-3 I/O Data input/output terminal for microcomputer interface 94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	86	DVSL		L channel D/A converting unit power supply terminal	
94 VDD Digital + power supply terminal (5 V) 95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	87-89		I		
95 VSS Digital ground terminal 96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	90-93		I/O	Data input/output terminal for microcomputer interface	
96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal	94	VDD		Digital + power supply terminal (5 V)	
96 BUCK I Clock terminal for microcomputer interface 97 CEE I Chip enable signal for microcomputer interface 98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal					
98 TEST4 I Test mode terminal 99 TSMOD I Test mode terminal			I		
99 TSMOD I Test mode terminal	97	CEE	I	Chip enable signal for microcomputer interface	
	98	TEST4	1	Test mode terminal	
100 DCT I Decet signal insult to making I	99	TSMOD	I	Test mode terminal	
iou K51 I Keset signal input terminal	100	RST	I	Reset signal input terminal	

*TC9495F2

● Pin Functions(BA5996FM)

Pin No.	Pin Name	Function and Operation
1	VR	Input pin for reference voltage
2	OPIN2(+)	Input pin for non-inverting input for CH2 preamplifier
3	OPIN2(-)	Input pin for inverting input for CH2 preamplifier
4	OPOUT2	Output pin for CH2 preamplifier
5	OPIN1(+)	Input pin for non-inverting input for CH1 preamplifier
6	OPIN1(-)	Input pin for inverting input from CH1 preamplifier
7	OPOUT1	Output pin for CH1 preamplifier
8	GND	Ground pin
9	MUTE	Mute control pin
10	POWVCC1	Power supply pin for CH1, CH2, and CH3 at "Power" stage
11	VO1(-)	Driver CH1 - Negative output
12	VO1(+)	Driver CH2 - Positive output
13	VO2(-)	Driver CH2 - Negative output
14	VO2(+)	Driver CH2 - Positive output
15	VO3(+)	Driver CH2 - Positive output
16	VO3(-)	Driver CH2 - Negative output
17	VO4(+)	Driver CH4 - Positive output
18	VO4(-)	Driver CH4 - Negative output
19	POWVCC2	Power supply pin for CH4 at "Power" stage
20	GND	Ground pin
21	CNT	Control pin
22	LDIN	Loading input
23	OPOUTSL	Output pin for preamplifier for thread
24	OPINSL	Input pin for preamplifier for thread
25	OPOUT3	CH3 preamplifier output pin
26	OPIN3(-)	Input pin for inverting input for CH3 preamplifier
27	OPIN3(+)	Input pin for non-inverting input for CH3 preamplifier
28	PREVCC	PreVcc

BA5996FM

● FM/AM Tuner Unit

	Symbol	I/O	Explain	
1	STIND	0	stereo	"Low" when the FM stereo signals are received.
			indicator	To be pulled up to the "VDD" at $47k\Omega$.
2	FMSD	0	FM station	"High" when signals are received. To be pulled up to the "VDD" at $47 k\Omega$
			detector	Meanwhile, $10k\Omega$ should be used when taking diver FIX trigger from here
				and "High: 0.9VDD or more" and "Low: 250mV or less".
				(Should satisfy the diver IC specifications)
3		0	noise level-1	"High" when noise is received. Output for the RDS. GND at $47k\Omega$ //1,800pF.
4	NL2	0	noise level-2	"High" when noise is received. Output for the RDS. GND at $36k\Omega$ //330pF.
5	Rch	0	R channel	FM stereo "R-ch" signal output or AM audio output.
			output	Add the specified de-emphasis constant.
6	Lch	0	L channel	FM stereo "L-ch" signal output or AM audio output.
			output	Add the specified de-emphasis constant.
	WC		write control	EEPROM write control. Writing permissible at "Low". Normally open.
	SDBW	0	SD bandwidth	SD bandwidth signal output. For detection of detuning data for the RDS.
9	NC			Not used
10	VDD		power	Power supply pin for the digital section.
			supply	DC 5V +/- 0.25V. Be careful about overlapping noise in the logic section.
11	DGND		digital ground	Grounding for the digital section.
12	CE2	I	chip enable-2	EEPROM chip enable. Active a "Low"
				To be pulled up to the "VDD" at $47k\Omega$
13	SL	I/O	signal level	Received FM/AM signal level (strength) output.
				Connect the specified load resistor and capacitor (10k Ω + 39k Ω //4,700pF)
14	DI/DO	I/O	data input/	Data input/Data output
			data output	To be pulled up to the "VDD" at $47k\Omega$
15		I	clock	Clock input To be pulled up to the "VDD" at $47k\Omega$
	CE1	1	chip enable-1	AF-RF chip enable. Active at "High" To be grounded at $47k\Omega$
	NC			Not used
	LDET	0	lock detector	Active at "Low". To be pulled up to the "VDD" at $47k\Omega$
	CREQ	1	current request	Active at "Low". To be grounded at $47k\Omega$
	NC			Not used
	COMP	0	composite signal	FM composite signal output. r out $< 100\Omega$
	VCC		power supply	Analog section power supply pin.DC 8.4V +/- 0.3V
	LOCH	I	local high	FM local high pin. When seeking local high, apply 5V together with "LOCL".
24	FMLOCL	ı	FM local low	FM local low pin. When seeking local low, apply 5V to the base of the NPN
				transistor with which the specified resistor is being connected to the emitter.
				Keep it open in case of ordinary marketed models.
25	LOCL	ı	local low	FM/AM local low pin. When seeking local low, apply 5V to the base of the
				NPN transistor. Since this pin is exclusive for AM when the FMLOCL is in use,
				do not drive it under FM.
	RFGND		RF ground	Grounding for the antenna section.
27	FMANT	I	FM antenna input	FM antenna input. 75 Ω . Surge absorber (DSP-201M-S00B) is necessary.
28	AMANT	I	AM antenna input	AM antenna input. High impedance.
				Connect to the antenna through an L (LAU type) of 4.7µH.To cope with the
				power transmission line hums, insert a series circuit consisting of an L
				(a coil of about 100mH) + R (a resistor of 470 Ω to 2.2k Ω) between the GND.

7.2.2 DISPLAY

● CAW1724(DEH-240F/XN/UC, DEH-2400F/XN/UC), CAW1719(DEH-24F/XN/UC)

SEGMENT

DEH-240F,2400F,24F

7.3 OPERATIONAL FLOW CHART

Completes power-on operation.(After that, proceed to each source operation.)

7.4 CLEANING

Before shipping out the product, be sure to clean the following portions by using the prescribed cleaning tools:

Portions to be cleaned	Cleaning tools
CD pickup lenses	Cleaning liquid : GEM1004
	Cleaning paper : GED-008

DEH-240F,2400F,24F

8. OPERATIONS AND SPECIFICATIONS

8.1 OPERATIONS

What's what

- ① BSM button
 Press and hold for two seconds to switch BSM function on or off.
- ② LOCAL button Press to switch local function on or off.
- ③ OPEN button
 Press to open the front panel.
- AUDIO button Press to select various sound quality controls.
- ⑤ A/▼/◄/► buttons Press to do manual seek tuning, fast forward, reverse and track search controls. Also used for controlling functions.
- © LOUDNESS button Press to switch loudness function on or off.

- ③ BAND button Press to select among three FM and one AM band and cancel the control mode of functions.
- ® 1-6 (PRESET TUNING) buttons Press for preset tuning.
- SOURCE button
 This unit is switched on by selecting a source. Press to cycle
 through all of the available sources.
- © EQ button Press to select various equalizer curves.
- (1) VOLUME Rotate to increase or decrease the volume.
- © CLOCK button Press to switch clock display on or off.

Power ON/OFF

Turning the unit on

Listening to the radio

Tuner

Press SOURCE to turn the unit on.

When you select a source the unit is turned on.

BAND indicator Θ

Selecting a source

Shows which band the radio is tuned to, AM or FM. to. To switch to the built-in CD player, load a You can select a source you want to listen

- ② FREQUENCY indicator
- Shows to which frequency the tuner is tuned.

Press SOURCE repeatedly to switch between

Built-in CD player—Tuner the following sources:

Press SOURCE to select a source.

disc in this unit.

PRESET NUMBER indicator

Shows what preset has been selected. <u>ල</u>

- STEREO ((()) indicator
- Shows that the frequency selected is being broadcast in stereo. 4

· When no disc is set in this product, built-in

Notes

 When this unit's blue/white lead is connected to the car's auto-antenna relay

CD player source will not change.

switched on. To retract the antenna,

switch the source off.

■

control terminal, the car's antenna extends when this unit's source is

Press SOURCE to select the tuner.

- Rotate to increase or decrease the volume. 2 Use VOLUME to adjust the sound level.
- Press BAND until the desired band is dis-Press BAND to select a band. played, F1, F2, F3 for FM or AM.
- with quick presses.

The frequencies move up or down step by step.

- broadcast strong enough for good reception 5 To perform seek tuning, press and hold ▲ The tuner will scan the frequencies until a or ▶ for about one second and release. is found.
 - You can cancel seek tuning by pressing either ▲ or ▶ with a quick press.
- If you press and hold

 or

 vou can skip broadcasting stations. Seek tuning starts as soon as you release the buttons.

broadcast in stereo the STEREO ((()) indica-· When the frequency selected is being tor will light.

Built-in CD player

Playing a CD

- ① TRACK NUMBER indicator
- Shows the track currently playing.
- Shows the elapsed playing time of the ② PLAY TIME indicator current track.
- 2 Insert a CD into the CD loading slot. Playback will automatically start. CD loading slot appears.

1 Press OPEN to open the front panel.

- CD EJECT button
- You can eject a CD by pressing CD EJECT.
- Close the front panel

SOURCE to select the built-in CD player. After a CD has been inserted, press

Turning the unit off

Press SOURCE and hold for at least one second to turn the unit off. \blacksquare

Built-in CD player

- Rotate to increase or decrease the volume 4 Use VOLUME to adjust the sound level.
- 5 To perform fast forward or reverse, press and hold ▲ or ▶.
- 6 To skip back or forward to another track, press ▲ or ▶.

the current track. Pressing again will skip to Pressing ▶ skips to the start of the next the previous track.

- The built-in CD player plays one, standard, 12-cm or 8-cm (single) CD at a time. Do not use an adapter when playing 8-cm CDs.
- Do not insert anything other than a CD into the CD loading slot.
- check the disc for damage before inserting play, check that the label side of the disc is If you cannot insert a disc completely or if up. Press CD EJECT to eject the disc, and after you insert a disc the disc does not the disc again.
- properly, an error message such as ERROR-14 may be displayed. If the built-in CD player does not operate

Playing tracks in a random order

Random play lets you play back tracks on the CD in a random order.

- RDM appears in the display. Tracks will play 1 Press 4 to turn random play on. in a random order.
- Tracks will continue to play in order. 2 Press 4 to turn random play off.

Repeating play

Repeat play lets you hear the same track over again.

ments

- presently playing will play and then repeat. RPT appears in the display. The track 1 Press 5 to turn repeat play on.
- The track presently playing will continue to 2 Press 5 to turn repeat play off. play and then play the next track.

forward/reverse, repeat play is automati- If you perform track search or fast cally cancelled.

Pausing CD playback

Pause lets you temporarily stop playback of the CD.

- PAUSE appears in the display. Play of the 1 Press 6 to turn pause on. current track pauses.
- Play will resume at the same point that you 2 Press 6 to turn pause off. turned pause on. 🔳

Using balance adjustment Introduction of audio adjust-**Audio Adjustments**

provides an ideal listening environment in You can select a fader/balance setting that all occupied seats.

1 Press AUDIO to select FAD.

EE.

Press AUDIO until FAD appears in the display. If the balance setting has been previously

adjusted, BAL will be displayed.

2 Press ▲ or ▼ to adjust front/rear speaker Each press of ▲ or ▼ moves the front/rear balance.

speaker balance towards the front or the

Appears in the display when loudness is

② LOUD indicator

turned on.

Shows the audio adjustments status.

① AUDIO display

- front/rear speaker balance moves from front · FAD F15 – FAD R15 is displayed as the to rear. rear.
- FAD 0 is the proper setting when only two speakers are used.

Press AUDIO repeatedly to switch between

(equalizer)—LOUD (loudness)—FIE (front

FAD (balance adjustment)—EQ-L

the following audio functions:

Press AUDIO to display the audio function

3 Press

or

to adjust left/right speaker balance.

When you press ▲ or ▶, BAL 0 is displayed. speaker balance towards the left or the image enhancer)—SLA (source level adjust-

eft/right speaker balance moves from left to BAL L9 – BAL R9 is displayed as the right.

To return to the display of each source,

oress BAND.

· When selecting the FM tuner as the source, you cannot switch to SLA.

ment)

Note

automatically returned to the source dis-If you do not operate the audio function within about 30 seconds, the display is

Audio Adjustments

Using the equalizer

The equalizer lets you adjust the equalization to match car interior acoustic characteristics as desired.

Recalling equalizer curves

you can easily recall at any time. Here is a list There are six stored equalizer curves which of the equalizer curves:

Display	Equalizer curve
SPR-BASS	Super bass
POWERFUL	Powerful
NATURAL	Natural
VOCAL	Vocal
CUSTOM	Custom
EQ FLAT	Flat

- CUSTOM is an adjusted equalizer curve that
- When EQ FLAT is selected no supplement or ful to check the effect of the equalizer curves correction is made to the sound. This is useby switching alternatively between EQ FLAT and a set equalizer curve.

Press EQ to select the equalizer.

an equalizer curve other than POWERFUL then the title of that previously selected equalizer · If the equalizer has been previously set to curve will be displayed, such as SPR-BASS, NATURAL, VOCAL, CUSTOM, or EQ FLAT.

Adjusting equalizer curves

izer curve setting as desired. Adjusted equal-You can adjust the currently selected equalizer curve settings are memorized in

CUSTOM.

1 Press AUDIO to select the equalizer mode. Press AUDIO until EQ-L/EQ-M/EQ-H appears in the display.

You can also switch LOUD on or off by

Note

pressing the LOUDNESS.

2 Select the band you want to adjust with the ▲/▼.

Q-L (low) —EQ-M (mid) —EQ-H (high)

- The definition of the rear specifical curve is frequency output from the rear speakers, $+\delta$ δ is displayed as the equalizer curve is limiting their output to low-range frequential of the specific curve. Press ▲ or ▼ to adjust the equalizer curve. ach press of ▲ or ▼ increases or decreases ne equalizer curve respectively.
 - The actual range of the adjustments are icreased or decreased.

cies. You can select the frequency you want

to cut.

ifferent depending on which equalizer irve is selected.

Note

appears on the display while selecting the other than CUSTOM is selected, the newly adjusted curve will replace the previous · If you make adjustments when a curve curve. Then a new curve with CUSTOM equalizer curve.

Adjusting loudness

Select the desired frequency with ▲/▼.

100-160-250 (Hz)

Select FIE on or off with ▲/▼

Loudness compensates for deficiencies in the low- and high-sound ranges at low volume.

Press AUDIO until LOUD appears in the dis- Press AUDIO to select LOUD. play.

Select LOUD on or off with ▲/▼.

Switch the F.I.E. function OFF when using

a 2-speaker system. 🔳

- Settings are based on the volume level of the FM tuner, which remains unchanged. prevent radical changes in volume when switching between sources.

adjust the volume level of each source to

SLA (Source level adjustment) lets you

Adjusting source levels

1 Compare the FM tuner volume level with the level of the source you wish to adjust.

The F.I.E. (Front Image Enhancer) function is

Front image enhancer (FIE)

a simple method of enhancing front imag-

ing by cutting mid- and high-range

- Press AUDIO until SLA appears in the display. 2 Press AUDIO to select SLA.
- Each press of ▲ or ▼ increases or decreases 3 Press ▲ or ▼ to adjust the source volume. the source volume.
- SLA +4 SLA –4 is displayed as the source volume is increased or decreased.

When the F.I.E. function is deactivated, the rear speakers output sound of all frequen-

Precaution

volume before disengaging F.I.E. to pre-

vent a sudden increase in volume.

cies, not just bass sounds. Reduce the

- Since the FM tuner volume is the control, it is not possible to apply source level adjustments to the FM tuner.
 - adjusted with source level adjustments. The AM tuner volume level can also be

Press AUDIO until FIE appears in the display.

Press AUDIO to select FIE.

Notes

speaker volume levels until they are bal-Audio Menu, and adjust front and rear After switching the F.I.E. function ON, select the Fader/Balance mode in the anced.

8.2 SPECIFICATIONS

Genera	ıl	
Power s	ource	14.4 V DC (10.8 – 15.1 V allowable)
Ground	ing system	Negative type
Max. cu	rrent consumptio	n
		10.0 A
Backup	current	5 mA
Dimens	ions (W \times H \times D):	
(DII	٧)	
	Chassis	178 × 50 × 157 mm
		$(7 \times 2 \times 6-1/8 \text{ in})$
	Nose	$188 \times 58 \times 19 \text{ mm}$
		$(7-3/8 \times 2-1/4 \times 3/4 \text{ in})$
(D)		
	Chassis	178 × 50 × 162 mm
		$(7 \times 2 \times 6-3/8 \text{ in})$
	Nose	$170 \times 48 \times 14 \text{ mm}$
		$(7 \times 1-7/8 \times 1/2 \text{ in})$
Wei	ght	1.5 kg (3.3 lbs)

Audio

Continuous power output is 20 W per channel min. into 4 ohms, both channel driven 50 to 15,000 Hz with no more than 5% THD. Maximum power output $45\,W\times4$ Load impedance 4 Ω (4 – 8 Ω allowable) Preout max output level/output impedance 2.2 V/1 kΩ Equalizer (3-Band Equalizer): (LOW) Level : ±12 dB (MID) Level: ±12 dB (HIGH) Level: ±12 dB Loudness contour (LOW)+3.5 dB (100 Hz), +3 dB (10 kHz) (MID)+10 dB (100 Hz), +6.5 dB (10 kHz) (HIGH)+11 dB (100 Hz),

+11dB (10 kHz) (volume: -30 dB)

CD player		
System	Compact disc audio	
	system	
Usable discs	Compact disc	
Signal format:		
Sampling frequency		
Number of quantizati		
	•	
Frequency characteristics		
Signal-to-noise ratio		
	network)	
Dynamic range		
Number of channels	2 (stereo)	
FM tuner		
Frequency range		
Usable sensitivity	9 dBf (0.8 μ V/75 Ω ,	
	mono,	
	S/N: 30 dB)	
50 dB quieting sensitivity	•	
	Ω, mono)	
Signal-to-noise ratio		
Distortion		
-	stereo)	
Frequency response		
Stereo separation		
Selectivity Three-signal intermodula		
(desired signal level)		
(desired signal level)	(two undesired signal	
	level: 100 dBf)	
	icvei. 100 abij	
AM tuner		
Frequency range		
Usable sensitivity		
Selectivity	. 50 dB (±10 kHz)	
Note		

· Specifications and the design are subject to possible modifications without notice due to improvements.

Pioneer

Service Manual

ORDER NO. CRT2624

- This service manual describes the operation of the CD mechanism module incorporated in models listed in the table below.
- When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Module
DEH-P630/X1N/UC	CRT2648	CXK5500
DEH-P7300R/X1N/EW	CRT2649	
DEH-P730/X1N/UC	CRT2650	
DEH-P7350/X1N/ES	CRT2651	

CONTENTS

. CIRCUIT DESCRIPTIONS	2
2. MECHANISM DESCRIPTIONS	26
B. DISASSEMBLY	28

PIONEER CORPORATION
4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS SERVICE INC.
P.O.Box 1760, Long Beach, CA 90801-1760 U.S.A.
PIONEER EUROPE NV Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium
PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936

1. CIRCUIT DESCRIPTIONS

From divisional viewpoint, the CX-977 is roughly divided into four sections, namely, Preamplifier, Servo, Power Supply and Loading Control.

This LSI realizes eight types of automatic adjustments (controls) through cooperative work between Preamplifier and Servo unit.

Because the system uses the single power source (+ 5v) specification, reference voltages used in the servo system (Preamplifier, Servo DSP and Pickup) are all Vref (2.1V).

1.1 PREAMPLIFIER (TA2153FN; IC101)

The Preamplifier processes output signals sent from the Pickup and generates signals to supply to each unit of the next stage, that is, Servo, Demodulator or Control. It also performs power control of Pickup's laser diode. Signals from the Pickup are I-V-converted by the Preamplifier, which is built-in in Pickup's photo detector, and then added-up by the RF amplifier to obtain signals such as RF, FE and TE.

Reference voltage, Vref (2.1v), is output from #19 pin of the IC, and 2Vref (4.2v) is supplied to the Servo DSP as the reference voltage to determine its D range of A/D input.

Fig. 1: TA2153FN circuit

1) Focus Error Amplifier unit

In this sub-unit, outputs from the photo detector, namely, (A+C) and (B+D), are processed in the differential amplifier and further in the error amplifier, and then, (A+C-B-D) is output as FE signal from #16 pin of IC101 (TA2153FN). Low frequency component of voltage FE is expressed as:

 $FE = (A+C-B-D) \times (150k/(51k+1k)) \times (60k/60k) \times (120k/60k) = 5.77 \text{ times}$

In FE output, "S" curve of approximately 1.45 Vpp on the basis of Vref is obtained. The cutoff frequency of the succeeding amplifier is 11.4 kHz.

Fig. 2: FE circuit

2) Tracking Error Amplifier unit

In this sub-unit, outputs from the photo detector, namely, E and F, are processed in the differential amplifier and further in the error amplifier, and then, (E-F) is output as TE signal from #14 pin of IC101 (TA2153FN).

Low frequency component of voltage TE is expressed as:

 $TE = (E-F) \times 300k/100k \times 82k/20k = 5.8 times$

In TE output, "TE" waveform of approximately 1.51 Vpp on the basis of Vref is obtained. The cutoff frequency of the succeeding amplifier is 20 kHz.

3) RF Amplifier unit

Outputs from the photo detector, namely, (A+C) and (B+D), are added up, amplified and equalized in the Head Amplifier LSI (TA2153FN). The processed-signals are output to RFI terminal as RF signals (These signals are used to check eye patterns).

Low frequency component of voltage RFI is expressed as:

$$RFI = (A+B+C+D) \times 5.43$$

RFI is used for RF Offset Control circuit. These RFI signals so output from #28 pin are AC-coupled outside the unit, and then re-input to #27 pin and amplified by the RFAGC amplifier to obtain RFO signals.

TA2153FN has built-in function for RFAGC adjustment, as described later, and through such function, the gain of RFAGC is controlled so that RFO output stays within 1.2 ± 0.3 Vpp range.

Also, RFO signals are used for EFM and RFAGC Adjustment circuit. They are further used to generate RFRP and RFCT signals, both of which are used for track counting.

Fig. 4: RF circuit

4) RFRP and RFCT Signal Circuit unit

RFCT signals are generated through the Head Amplifier (IC101). A RFCT signal is the difference signal that represents the difference between the peak and bottom level of RF signal. RFRP and RFCT can be monitored at TP203 (#20 pin of IC101, namely, TA2153FN) and TP204 (#20 pin of IC101) respectively.

Size-comparison among TE, RFRP and RFCT signals is performed by the Hysteresis Comparator in IC201 (TC9495F2), and through such comparison, track information (TEZC and RFZC signal) is generated. Based on these signals, information to determine tracking speed of the lens when it moves on the disk is generated. Also based on these signals, number of tracks is counted.

Fig. 5: RFRP and RFCT circuit

5) SBAD Signal Circuit unit

In this unit, outputs from the photo detector, namely, E and F are processed through the addition amplifier. That is, E and F are added together and (E+F) signal is output from #15 pin of IC101 (TA2153FN), as SBAD signal.

This SBAD signal, along with Focus Error signal, is used as one of the conditions that the system uses to internally judge Focus ON/OFF based on them.

Also, SBAD signal is used to detect defects: defects that may be detected when the Pickup passes a scratch on the disk, for instance.

Fig. 6: SBAD circuit

6) APC Circuit unit

If a laser diode is driven at constant current, its optical output comes to have high level negative-characteristics, and this may cause it out-of-control drive because of the heat. So, driving current must be controlled, through use of a monitoring diode, so that optical output remains within the specific degree. This is exactly where APC circuit works. LD current can be obtained by measuring the voltage between LD1 and GND. The value is approximately 35 mA at room temperature.

Fig. 7: APC circuit

1.2 SERVO DSP (TC9495F2; IC201)

1) Focus Servo system

The main equalizer of the Tracking Servo is comprised with a digital equalizer unit. Fig. 8 shows the block diagram of the Tracking Servo.

Fig. 8: Block diagram of Focus Servo circuit

A series of actions of detecting in-focus point and switching on the Focus Servo upon such detection are called "focus search." In Focus Servo system, the system needs to move the lens to in-focus point so that it performs "Focus Close." So, the system detects in-focus point moving the lens up and down, which it performs by changing focus search voltage of a triangle wave. During these operations, the spindle motor maintains offset mode and keeps constant rotating speed.

The Focus Servo is switched on through three steps shown below.

- 1 FOK-⊢
- 2. The Focus Error signal exceeds "Focus Standby" level threshold
- 3. The Focus Error signal reaches "Zero Cross"

Here are descriptions of the three steps.

While there is enough distance between the lens and the in-focus point, the system cancels SBAD offset, and defines this level (distance) as SBOFF. Then, starting from this SBOFF standard, SBAD level moves toward FOK threshold, reaches it, and finally exceeds the threshold. Upon this passing over the threshold, the condition of the lens becomes FOK ="H."

As the lens moves up and down, the focus error signal changes at the in-focus point. CD-LSI (IC201) analog/digital-converts such signal, and then, let the signal pass through the high-pass filter to remove the offset component of the signal. The signal so processed is called FEHPF signal. When the level of the FEHPF signal (internal signal of the LSI) exceeds "Focus Standby" level, because it means the lens has come to close to the in-focus point, the system sets the condition of the lens to "Servo-ON Standby." Finally, the FEHPF signal matches the value of the in-focus point, and the system triggers ON of the Focus Servo.

The microcomputer monitors FOON signal while the system is performing focus search, and starts monitoring of FOK signal from the point when 40 ms has passed after FOON signal became active (The signal is active when the condition is "Servo ON." It shows "L" in a test with a probe). If the microcomputer judges that FOK is not active, it performs necessary actions such as protection.

When, under Test mode, you press the Focus Close button, with the "Mode Select" of the focus set to "Display 01," you can check Focus Error signals, search-voltage and actual actions of the lens.

2) Tracking Servo system

The main equalizer of the Tracking Servo is comprised with a digital equalizer unit. Fig. 10 shows the block diagram of the Tracking Servo.

Fig. 10: Block diagram of the Tracking Servo

Track jump

Track jump is automatically performed with a command issued by the microcomputer. It is performed through Auto-Sequence function that the LSI has in it.

The CX-977 has two types of track jump as those used for searching. Namely, the "Lens Kick" mode used for 1, 4, 10, 32 and 100 track, and the "Carriage Move" mode used for jumping of more than 1,000 tracks. Under Test mode, you can use, to check the track position, 1, 32 and 100 jump as Lens Kick jump and Carriage Move jump according to mode selection.

· Lens Kick jump

A Lens Kick jump is performed when the LSI receives a Lens Kick command from the microcomputer. Direction of jump and number of tracks are specified by the command. When the LSI receives a Lens Kick command, it applies kick pulses to the tracking EQ, and the jump occurs.

The LSI controls travelling speed of the lens by referring to the table it holds in it. In such way, the lens travels faster when there are a good number of tracks to go, while travelling speed gets slower as the number of remaining tracks decreases.

When track count is completed, Tracking Close is performed. During jump, the LSI observes RFRP signals, and based on the signals, performs track count. It detects the direction of the jump based on phases of RFRP and TEZI signals.

To prepare for good servo-feed in next time track jump, the system performs operations to increase Tracking Servo's gain and hysteresis operations for 50 ms after completion of Tracking Close. The system realizes FF/REV actions under Normal mode by continuously performing single jumps. The speed of FF/REV is approximately 10 to 20 times faster than "Play" (varies depending on the direction).

Fig. 11: Lens Kick

• Carriage Move jump

A Carriage Move jump is performed when the LSI receives a Carriage Move command from the microcomputer. Direction of move and number of tracks are specified by the command. When the LSI receives a Carriage Move command, it makes the Tracking Servo "Open," applies kick signals to the Carriage EQ and make the carriage motor drive. Thus, a track jump occurs.

The profile of the kick signals so applied to the EQ has the specific constant given to it at the starting-up of the jump operations. So, as the number of remaining tracks decreases, voltage is lowered so that travelling speed of the carriage becomes slower. In this way, by reducing speed just before the jump terminates, the servo-feed at the end of the jump is improved.

Also, to prepare for good servo-feed in next time track jump, every time a jump is completed, the system performs operations to increase the gain of the Tracking Servo and hysteresis operations for 60 ms after the completion of the jump.

Fig. 12: Carriage Move

· Hysteresis operations

In certain operation, such as Setup or jump, servo-feed tends to be deteriorated during operations. Hysteresis is the operation to keep stable feed to servo-loop under such conditions. It acts in such manner that it holds a TE signal when each beam spot comes to off-track position, so that convergence of the Tracking Servo can be improved.

Fig. 13: Hysteresis operations

3) Carriage Servo system

The Carriage Servo inputs low-frequency-component output (lens position information) of the tracking equalizer into the carriage equalizer, then, after it has earned certain amount of gain, it outputs a drive signals from the LSI. Further, such drive signals are applied to the carriage motor via the driver.

Specifically, the system works as follows. That is, entire body of the pickup needs to move to the forward direction when the lens offset reaches certain level during Play. So, the gain of the equalizer is set in such manner that the equalizer constantly outputs higher voltage than the starting-up voltage of the carriage motor when such condition occurs. Practically, the system satisfies such requirement in such manner that the Servo LSI outputs the drive voltage only when the equalizer's output exceeds the specific level of threshold.

To minimize power consumption, and to stabilize operations, the level of threshold is pre-set slightly higher than the starting-up voltage of the motor. Waveforms of output of this drive voltage take pulse shape.

Fig. 14: Block diagram of Carriage Servo circuit

4) Spindle Servo system

Fig.16 shows the block diagram of the Spindle Servo.

Fig. 16: Block diagram of the Spindle Servo circuit

Spindle Servo has the following modes

CLV Servo mode

This is the mode the system uses for such span as "after Focus Close and before it applies brake to the motor to stop the disk." Before Tracking Close and during normal Play, the system operates under this mode.

During this mode, the system performs synchronous detection in EFM demodulation block in the CD-LSI (IC201) so that the disk keeps predefined rotating speed. To realize synchronous detection before Tracking Close the system adopts such method that it applies to PLL circuit the same speed control by VCO that is performed in the LSI.

On the other hand, as to speed control after Tracking Close, control by VCO is muted and the method is switched to speed/phase control through the master clock (a ceramic oscillator).

· Offset Servo mode

- (a) After the kick is over in the setup, this mode is turned on until changing to rough servo mode.
- (b) When focus is lost during play, this mode is turned on until the focus is restored.

Both of the above are used for maintaining the disc rotation rate near to the specified rate.

· Brake mode

The mode is for use to stop the spindle motor.

Brake Sequence starts up when the microcomputer sends the command to CD-LSI. Then, the LSI, watching disk's rotating speed, sets the flag when it detects that the speed comes to approximately one twentieth (1/20). On the other hand, the microcomputer, also monitoring such flag, switches off the servo when it caches the flag.

In case the microcomputer cannot catch such flag within the specific period after starting-up of the Brake Sequence, it changes the mode to Stop, and monitoring FG pulses, keep the mode until it confirms that the speed has become slow.

In case such change to Stop mode occurs at Eject time, the microcomputer moves the operations to Eject operations after Timeout time elapses.

· Stop mode

This is the mode used for Power-On and Eject operations. Drive's output is "0."

1.3 AUTOMATIC ADJUSTMENT FUNCTION

In this CX-977 system, all circuit adjustments are automatically performed in CD-LSI (IC201: TC9495F2). Adjustments are automatically performed every time a disk is inserted into the unit, or a CD mode is selected through the Source Key.

1) Automatic TE offset/FE offset adjustment

This is the adjustment performed at POWER ON time. It adjusts both TE and FE amp- offsets of the Preamplifier to the target value defined for each signal (TE and FE), using Vref as the reference. The target values are (TE, FE) = (0, 0) [V]

Adjustments are performed as follows.

- (1) Servo LSI reads each offset value under the condition of "Laser Diode is OFF."
- (2) The LSI, based on the value so read, calculates the voltage to be reversed, and assigns the revised value to the location specified for use for such adjustment.

If you want to observe changes of voltage to examine actual offset voltage shown as error (focus error or tracking error), you cannot see such changes, even after adjustment, because such adjustment is made inside the digital filter.

Fig. 17: Offset adjustment

2) Automatic Tracking Balance (T, BAL) adjustment

This is the control that eliminates the difference between pickup's Ech and Fch output by changing the gain in the Preamplifier. In practice, the LSI realizes the control in such manner that it makes a TE waveform vertically symmetric against the Servo Reference level.

Adjustments are performed as follows.

- (1) After Focus Close
- (2) The system switches on the spindle servo.
- (3) The LSI fetches the level of TE signal and the level of TE offset, and based on these values, calculates the TE center value.
- (4) The LSI changes RF amp's gain so that such center value comes to close to the Servo Reference level.

Servo Reference level is set as follows.

In case offset adjustment is made, the level is set to:

The level of TEI input (i.e. TF offset level) at "Servo = OFF."

In case offset adjustment is not made, the level is equal to:

Vref level.

In this case, the adjustment is repeated several times to improve adjustment accuracy.

3) Focus/Tracking AGC

This is the control that automatically adjusts servo loop gain of the Focus Servo and Tracking Servo.

The adjustment is performed in the following manner.

- (1) The system (microcomputer) injects a disturbance into servo loop.
- (2) Then, caused by such injection, error signals (FE and TE) are generated, and the system samples such error signals through BPF.
- (3) Then, inside the LSI, comparison of the difference of phase between the error signal and the disturbance is performed.
- (4) Finally, the system adjusts the gain so that the difference of phase accords to the target value preset by the microcomputer.

Fig. 19: Loop gain adjustment

4) FE Bias automatic adjustment

The task of this adjustment is to maximize RFI level by optimizing the focus point during Play. The adjustment is performed by examining RFRP level and phase-difference as of the time when a disturbance to generate focus errors is injected into focus loop.

Steps of the adjustment are shown below.

- (1) A disturbance is injected into focus loop based on the command issued by the microcomputer. (The session is performed in the Servo LSI.)
- (2) In the LSI, level of RFRP signal is detected.
- (3) Also in the LSI, the relation between such RFRP signal and the disturbance is examined, and through such examination the degree and direction of focus misalignment is detected.
- (4) Then, the system substitutes the detected-result for the value in the "Bias Adjustment" item (field).

As to this FE Bias automatic adjustment, as similar to cases of automatic gain control, the system repeats a series of adjustments several times to maximize accuracy of adjustments.

Fig. 20: FE Bias adjustment

5) RF Level automatic adjustment (RFAGC)

The aim of this adjustment is to adjust the variance of signals' level (RFO signals), which may be caused by mechanical factors or those factors derived from the disk, and keeps such variant levels to the specific value so that stable and accurate signal transfer can be secured. The adjustment is realized by varying amplifier-gains between RFI and RFO.

The following steps are taken.

- (1) Based on the peak and bottom value of RFRP level inside the Servo LSI, RFRP 's PP level is calculated.
- (2) The system compares this PP level with the standard level and catches the difference between the two. Then, based on this difference, it sets such amount of amplifier-gain, inside the LSI, as it needs to accord RFO signals with the target RFO level, so that RF amp's gain can be controlled.

These adjustments are performed in the following timing.

Just before the completion of Setup (i.e. just before "Play")

After restoration of correct focus, in case focus point comes to out of focus.

Fig. 21: RF level adjustment

6) Gain adjustment at Preamplifier-Stage

This adjustment increases the gain of entire RFAMP (FE, TE and RE amp.) by +13 dB through the specific setting on GVSW terminal. The adjustment occurs in such occasion that the lens is stained, or there is remarkably little reflection (light), during CD-RW replay operations, for instance.

The adjustment is performed as follows.

During Setup operations, if the system judges that there is remarkably little reflection of the disk, it switches the value of GVSW terminal from "H" to "L." Then, the gain of entire RFAMP increases by 13 dB.

For reference, if the system so changes the gain, it performs Setup operations over again form the beginning.

7) Comments for initial values of the foregoing adjustments

In principle, every and each automatic adjustment uses previous adjustment-value as the initial value unless microcomputer's power is switched off (That is, unless backup power is switched off.) (There are several exceptions.) In case backup power is switched off, or the value of CVSW terminal is "L," default initial value is used instead of such previous adjustment-value.

8) Function to display coefficient of the adjustment-result

In some automatic adjustments (FE Offset/TE Offset, Tracking Balance, Focus/Tracking AGC, FE Bias and RF AGC) you can display the result of the adjustment, that is, display the coefficient, under Test mode, to confirm the result. Below, details of coefficient-display function for each automatic adjustment are shown.

(1) FE Offset/TE Offset adjustment

Standard value = 32 (Value "32" indicates that no adjustment was required, and this value-definition applies to every case described in this section.) The unit of value representation of coefficient is 46 mV.

Example: Coefficient of FE offset = 35

 $35 - 32 = 3 \ 3 \times 46 \ \text{mV} = 138 \ \text{mV}$

This means, that FE offset before the adjustment was 138 mV.

(2) T. BAL (Tracking Balance) adjustment

Standard value = 32

Coefficient = 33 to 63 ----- TE: Top side - Bottom side < 0

Coefficient = 31 to 0 ----- TE: Top side - Bottom side >0

Every time the value moves by "1" misalignment changes by approximately 0.71 to 4.97 %.

Maximum misalignment of minus side (<0) = When coefficient is 63

This is the misalignment of [TYP - 45 %].

Maximum misalignment of plus side (>0) = When coefficient is 0

This is the misalignment of [TYP + 45 %].

(3) Focus/Tracking AGC adjustment

Standard value: Focus/Tracking = 32 The unit of value representation of coefficient is approximately 0.375 dB.

Example: Coefficient of AGC = 48

 $48 - 32 = 16 \ 16 \times 0.375 \ dB = 6 \ dB$

The meaning is, the system performed adjustment of "+6 dB" (i.e. 2 times).

In other words, servo-loop's gain before adjustment was "1/2 times" (a half) so the system doubled the entire gain to obtain the target value.

4) FE Bias adjustment

Standard value = 32 The unit of value representation of coefficient is approximately 21.5 mV.

Example: Coefficient of FE Bias = 35

35 - 32 = 3 $3 \times 21.5 \text{ mV} = 64.5 \text{ mV}$

Thus, you can see that misalignment of FE Bias before the adjustment was "+ 64.5 mV."

5) RF Level adjustment (RFAGC)

Standard value = 32

Coefficient = 33 to 63 Adjustment of level-variance is being made to the direction of raising RF level

(Direction of increasing gain)

Coefficient = 31 to 0 Adjustment of level-variance is being made to the direction of lowering RF level

(Direction of decreasing gain)

Every time the value move by "1" gain changes by approximately 0.07 to 0.15 dB.

Maximum gain = When coefficient is 63

This is the gain of [TYP - 2.69 dB].

Minimum gain = When coefficient is 0

This is the gain of [TYP - 3.93 dB].

1.4 POWER SUPPLY AND LOADING CONTROL SECTION

CX-977 uses power sources of two systems. One is the VD $(8.3 \pm 0.5V)$ supplied by the motherboard. This system of power source ("Drive system" power source) is supplied to the 4-CH CD Driver IC and the 5V Regulator IC. The second is V+5 power source ("Control system" power source).

ON/OFF switching of the CD driver, except those for Load and Eject, is controlled by the microcomputer through "CONT" control terminal. ON/OFF switching of 5V is controlled through "CD5VON" control terminal. As to ON/OFF switches of the loading drive (Load/Eject), there is no control terminal specifically provided for such use. However, "LOEJ," which is an input signal, performs similar task. Also, at LCO Output part, switching of LOADING and CARRIAGE mode is performed through "CLCONT."

Fig. 22: Block diagram of circuits in Power supply/Loading system

Fig. 23: Switching of LOADING/CARRIAGE mode

LOAD/EJECT actions are controlled through condition-changes of four switches, namely, the Clamp switch on the mechanical unit and three switches on the Control unit (Combination of ON/OFF conditions of each one of these 4 switches is called "status" as a whole). That is, DSCSNS voltage changes according to ON/OFF conditions of these switches, and controls are performed through such change of voltage. Accordingly, to control this voltage, the microcomputer judges each status (A to E) using its A/D port. Also, it judges whether the disk is 8cm-disk or 12cm-disk through such change of status, too.

Fig. 24 shows each status and Fig. 25 shows transition of status.

DETECTION SWITCH STATUS AT THE TIME OF LOAD EJECTION

STATUS	Α	В	С	D	E
SW1(S903)	ON	OFF	OFF	OFF	ON
SW2(S905)	OFF	OFF	ON	ON	OFF
SW3(S904)	OFF	OFF	OFF	ON	OFF
SW4(S902)	OFF	OFF	OFF	OFF	ON
MECH. STATUS	NO DISK				CLAMP

Fig. 24: DSCSNS status

LOAD EJECTION OPERATING STATUS TRANSITION DIAGRAM

Fig. 25: Transition of loading actions in correlation to status-change

DEAD ZONE

STOP

MOTOR STOP

CARRIAGE/LOAD SWITCHING

2. MECHANISM DESCRIPTIONS

Loading actions

- 1. When a disk is inserted, SW Arm L and R rotate. Due to the rotation of Arm L, SW1 is switched from ON to OFF and the Load Carriage Motor starts.
- 2. If the disk is 12cm-disk, when it is carried to the position shown with the dotted line in the drawing, SW 3 switches to ON due to such rotation of Arm L. Then, the microcomputer judges that the disk is 12cm-disk.
- 3. In case of 8cm-disk, the disk cannot reach such dotted line position, and from such limitation of approach, the microcomputer judges that the disk is 8cm-disk and simply triggers clamp actions.
 - (Movement of SW Arm L and R are connected together. So, if pushing force is fed to only one arm, the distance between tow arms cannot be widened beyond the specific degree, because the coupling part is locked in such case.)

Disk centering mechanism

- 1. In case of 12cm-disk, the 12cm-Disk Detection Arm rotates, and with such rotation, it raises the Centering Arms to retreat the arms from disk's trace. The disk passes through under the arms, and at the inner part, it is centered.
- 2. In case of 8cm-disk, it is just centered at the position where its edge touches the front portion of the Centering Arm.

Clamp actions

- 1. When centering of 12 or 8cm-disk onto the Spindle is completed, the Detection Arm starts driving.
- 2. Then, the Detection Arm, via the Detection Reversion Arm, triggers driving of the Plunging Rack, which is on the Mode Switching Arm unit, in order to engage the rack with the 2-Stage Gear.
- 3. With such engaging, the Mode Switching Arm rotates, and with the rotation, slides the Clamp-Up Lever and pushes down the Clamp Arm. At the same time, the Mode Switching Arm slides the Loading-Up lever, and separates the Loading Arm from the disk. Also, the Loading-Up Lever rotates the Mechanics Lock Arm, releases the Mechanics Lock, and switches on the Clamp SW. Now, at this position (the position where the disk is situated when the Clamp SW is switched on), clamping actions are completed.
- 4. Then, upon the completion of clamping actions, the Plunging Rack lets the Pickup Lock Arm start rotating, and this Pickup Lock Arm, with such rotation, feeds the Pickup to Feed Screw's screw portion. Now, Carriage actions start.

Eject actions

- 1. Eject actions start when the Pickup is fed to the position inner than "Home SW ON" point in the internal circumference of the circle, caused by backward rotation of the Load Carriage Motor. Eject actions follow the foregoing procedures (steps taken in loading, centering and clamping actions), but each action in those steps is performed in reversed manner.
- 2. In case of 12cm-disk, Eject is completed when SW3 completes its condition- transition of OFF → ON → OFF.
- 3. For 8cm-disk, Eject is completed when SW2 completes its condition-transition of OFF \rightarrow ON \rightarrow OFF.

3. DISASSEMBLY

How to hold the Mechanical Unit

- 1. Hold the top and bottom frame.
- 2. Do not squeeze top frame's front portion too tight, because it is fragile.

How to remove the Top and Bottom Frame

- When the disk is "clamp" state, unlock Spring A (6 pieces) and Spring B (2 pieces), and unscrew screws (4 pieces).
- 2. Unlock each 1 of pawl at the both side of the frame, then remove the top frame.
- 3. Remove the Carriage Mechanical part in such way Carriage that; you remove the mechanical part from 3 pieces Mechanical Part of Damper while slowly pulling up the part.
- 4. Now, the top frame has been removed, and under this state, fix the genuine Connector again, and eject the disk.

(Caution)

When you reassemble the Carriage Mechanical part, apply a bit of alcohol to Dampers.

How to remove the Guide Arm Assy

- 1. Unlock the spring (1 piece) at the right side of the assembly.
- Unscrew screws (2 pieces), then remove the Screw Gear Bracket.
- 3. Shift the Guide Arm Assy to the left and slowly rotate it to the upper direction.
- 4. When the Guide Arm Assy rotates approximately 45 degree, shift the Assy to the right side direction and remove it.

How to remove the Control Unit

- Give jumper-solder treatment to the Flexible Wire of the Pickup unit, then remove the wire from the Connector.
- 2. Remove all 4 points of solder-treatment on the Lead Wire. Also, unscrew the screw(1 piece).
- 3. Then, Remove the Control unit. (Caution)

Be careful not to damage SW when you reassemble the Control Unit into the device.

How to remove the Loading Arm Assy

- 1. Unlock the spring (1 piece) and remove the E ring (1 piece) of the Fulcrum Shaft.
- 2. Shift the arm to the left side direction and unlock pins (2 pieces).

How to remove the Pickup Unit

- 1. Unscrew 2 pieces of screws, then remove the Pulley Cover.
- Remove the Feed Screw unit from the pawl of the Feed Screw Guide (The pawl is located inside the guide).
- 3. Remove the belt from the Pulley, then remove the Pickup unit.

Caution) Pulley Cover

Make sure not to stain the belt with grease when you fix the belt.

How to remove the Load Carriage Motor Assy

- 1. Unscrew the screw (1 piece).
- 2. Remove the Load Carriage Motor Assy.

How to remove the Clamp Arm Assy

- 1. Unlock springs (3 pieces).
- 2. Remove the Clamp-Up Lever.
- 3. Remove the Assy in such way that; you shift the Assy to the left side direction while you rotate it to the upper direction slowly.

 Spring

How to remove the Spindle Motor

1. Unscrew 2 pieces of screws. Then you can remove the motor.

