Quanti host?

- Il numero massimo di host che una sottorete può contenere è 2^h-2 (dove h è il numero di bit di Host-ID)
 - Host-ID = tutti 0 → indirizzo che identifica la sottorete
 - Host-ID = tutti 1 → indirizzo broadcast della sottorete
- In sottoreti non isolate almeno uno di questi deve essere assegnato al **Default Gateway**, che è il router verso cui instradare tutto il traffico diretto al di fuori della sottorete
 - Host-ID = broadcast-1 → indirizzo tipico del default gateway
- Esempio
 - Netmask = 255.255.255.0 \rightarrow h = 8 \rightarrow 28-2 = 254 host
 - 137.204.57.0/24 identifica la sottorete 57 di una rete di classe B
 - 137.204.57.255 è l'indirizzo broadcast di tale sottorete
 - 137.204.57.254 è l'indirizzo del suo default gateway
 - Indirizzi di host validi da 137.204.57.1 a 137.204.57.253

Quante sottoreti?

- In passato erano stati dichiarati riservati i Subnet-ID di tutti 1 e tutti 0 (come per gli Host-ID)
- In seguito è stato permesso l'utilizzo di tutti i possibili Subnet-ID (RFC 1878)
- Il numero di sottoreti possibili è quindi dato da 2^s (dove s è il numero di bit di Subnet-ID)
- Esempi:
 - 137.204.57.0/24 è una delle 256 possibili sottoreti "a 24 bit" di una rete di classe B
 - 192.168.10.192/26 è una delle 4 possibili sottoreti "a 26 bit" di una rete di classe C
 - 10.128.0.0/9 è una delle 2 possibili sottoreti "a 9 bit" di una rete di classe A

Regole del subnetting

- A seconda del numero di bit del Subnet-ID, la rete originaria viene suddivisa per multipli di 2
 - 1 bit → divido a metà
 - 2 bit → divido in 4 parti
 - 3 bit → divido in 8 parti
 - ecc.

Esempio

- Rete IP a disposizione: 192.168.1.0/24
- LAN A ha 50 host
 - mi basta una sottorete da 61 indirizzi host
 - 192.168.1.0/26 è un Subnet-ID valido
- LAN B ha 100 host
 - mi basta una sottorete da 125 indirizzi host
 - 192.168.1.64/25 NON è un Subnet-ID valido
 - 64 = 01000000
 - 192.168.1.128/25 è un Subnet-ID valido
 - 128 = 10000000

CIDR

Per cercare di porre rimedio a sprechi e carenze, in attesa dell'IPv6, nel 1993 è stato introdotto un nuovo schema di indirizzamento, la tecnologia **CIDR** (*Classeless InterDomain Routing*).

La CIDR è nota come **supernetting**, perché crea una super rete composta da più reti.

La CIDR non applica subnetting ed elimina il concetto di classe di indirizzi (**classless**).

Unità 12 – Il livello Network dell'architettura TCP/IP

CIDR Classless Inter-Domain Routing

Indirizzamento IP più flessibile senza l'uso delle classi.

- Es. Un ente ha bisogno di circa 2000 indirizzi IP
 - una rete di classe B è troppo grande (65534 indirizzi)
 - meglio 8 reti di classe C (8 × 256 = 2048 indirizzi)

Esempio dalla 194.24.0.0 alla 194.24.7.0

CIDR Classless Inter-Domain Routing

Dalla 194.24.0.0 alla 194.24.7.0

1°	194.24.0.0	11000010	00011000	00000 000	00000000
2°	194.24.1.0	11000010	00011000	00000 001	00000000
3°	194.24.2.0	11000010	00011000	00000 010	00000000
4°	194.24.3.0	11000010	00011000	00000 011	00000000
5°	194.24.4.0	11000010	00011000	00000 100	00000000
6°	194.24.5.0	11000010	00011000	00000 101	00000000
7°	194.24.6.0	11000010	00011000	00000 110	00000000
8°	194.24.7.0	11000010	00011000	00000 111	00000000

Supernetting: si accorpano le 8 reti contigue in un'unica super-rete:

Identificativo: 194.24.0.0/21Supernet mask: 255.255.248.0Indirizzi: 194.24.0.1 – 194.24.7.254

- Broadcast: 194.24.7.255

SUPERNETTING

Operazione inversa rispetto al subnetting

• n bit del Net-ID diventano parte dell'Host-ID

- Accorpamento di N reti IP (N = 2ⁿ)
- contigue:
- 194.24.0.0/24 + 194.24.1.0/24 = 194.24.0.0/23
- 194.24.0.0/24 + 194.24.2.0/24 = non contigue
- allineate secondo i multipli di 2ⁿ
- 194.24.0.0/24 + .1.0/24 + .2.0/24 + .3.0/24 = 194.24.0.0/22
- 194.24.2.0/24 + .3.0/24 + .4.0/24 + .5.0/24 = non allineate
 Unità 12 Il livello Network dell'architettura TCP/IP

SUPERNETTING

Generalizzazione del subnetting/supernetting

- reti IP definite da Net-ID/Netmask

Allocazione di reti IP di dimensioni variabili

- utilizzo più efficiente dello spazio degli indirizzi

Accorpamento delle informazioni di routing

– più reti contigue rappresentate da un'unica riga nelle tabelle di routing

Miglioramento di due situazioni critiche

- limitatezza di reti di classe A e B
- crescita esplosiva delle dimensioni delle tabelle di routing

Unità 12 – Il livello Network dell'architettura TCP/IP

ESEMPIO

Vogliamo costruire una super-rete che comprenda tutti gli indirizzi di classe C compresi tra i due seguenti:

00000000	10101000	00010000	11001100	204.16.168.0	
11111111	10101111	00010000	11001100	204.16.175.255	
11111111	10101111	00010000	11001100	204.16.175.255	

Analizzando il terzo byte osserviamo che le reti da aggregare sono 8, che vanno dall'indirizzo 168 fino all'indirizzo 175, comprendendo tutti gli indirizzi seguenti:

LAN 1				
204.16.168.0	11001100	00010000	10101000	00000000
204.16.168.255	11001100	00010000	10101000	11111111
LAN 2				
204.16.169.0	11001100	00010000	10101001	00000000
204.16.169.255	11001100	00010000	10101001	11111111
LAN 3				
204.16.170.0	11001100	00010000	10101010	00000000
204.16.170.255	11001100	00010000	10101010	11111111
LAN 4				
204.16.171.0	11001100	00010000	10101011	00000000
204.16.171.255	11001100	00010000	10101011	11111111
LAN 5				
204.16.172.0	11001100	00010000	10101100	00000000
204.16.172.255	11001100	00010000	10101100	11111111
LAN 6				
204.16.173.0	11001100	00010000	10101101	00000000
204.16.173.255	11001100	00010000	10101101	11111111
LAN 7				
204.16.174.0	11001100	00010000	10101110	00000000
204.16.174.255	11001100	00010000	10101110	11111111
LAN 8				
204.16.175.0	11001100	00010000	10101111	00000000
204.16.175.255	11001100	00010000	10101111	11111111

ESEMPIO

Praticamente si effettua il procedimento inverso rispetto a quello di subnetting visto in precedenza: invece di scomporre la parte di Host-ID in due parti, si raggruppano gli indirizzi a formare una rete di dimensione maggiore.

Quindi le reti possono essere definite in termini di due componenti, cioè solo Net-ID/netmask

204.16.168.0/21

e la netmask viene semplicemente indicata con il numero dei bit che hanno valore 1.

Si parla perciò di netmask e non più di subnet mask in quanto il concetto di sottorete è superato.

Unità 12 – Il livello Network dell'architettura TCP/IP

ESEMPIO 2

Un azienda ha bisogno di avere 1000 indirizzi IP. Soluzione con CIDR?

ESEMPIO 2

204.16.164/22

Address 204.16.164.0	11001100.00010000.101001 00.00000000
Netmask 255.255.252.0	11111111.11111111.111111 00.00000000
CIDR 22	
Cisco Wildcard 0.0.3.255	00000000.000000000.000000 11.111111111
Network 204.16.164.0	11001100.00010000.101001 00.00000000
Broadcast 204.16.167.255	11001100.00010000.101001 11.11111111
Hosts 1.022	
HostMin 204.16.164.1	11001100.00010000.101001 00.00000001
HostMax 204.16.167.254	11001100.00010000.101001 11.11111110

Unità 12 – Il livello Network dell'architettura TCP/IP

VLSM

La **VLSM** (*Variable Length Subnet Mask*, cioè una maschera a lunghezza variabile) permette di utilizzare in modo più efficiente lo spazio di indirizzi. Negli esempi che abbiamo visto la maschera ha la stessa lunghezza per tutte le sottoreti. A partire dal 1987 è stata introdotta la tecnica VLSM.

VLSM consente di subnettare ulteriormente una subnet.

In altre parole permette di dividere una sottorete in sottoreti con utilizzando maschere di lunghezza diversa.

VLSM

Per esempio nella rete 172.16.0.0/24, consideriamo la subnet 172.16.14.0/24. In binario:

10101100.00010000.00001110.00000000

possiamo dividere ulteriormente questa subnet utilizzando i bit del quarto ottetto, per es. i primi 6 bit

10101100.00010000.00001110.00000000

otteniamo così le subnet

172.16.14.0/30, 172.16.14.4/30, 172.16.14.8/30, ...172.16.14.128/30,172.16.14.132/30 ... 172.16.14.248/30,172.16.14.252/30

Ogni subnet dispone di due soli indirizzi, per es. la 172.16.14.128 ha 172.16.14.129 e 172.16.14.130.

Questo partizionamento perciò è utilizzato quando si devono assegnare gli indirizzi alle due porte che collegano due router fra loro.

VLSM

Un amministratore di rete può a questo punto assegnare maschere diverse a seconda delle esigenze.

Per esempio la rete 172.16.0.0 può utilizzare una maschera a 30 bit per le connessioni fra i router, una a 24 bit per sottoreti fino a 254 host e una a 22 bit per reti con oltre 1000 host.

La tecnica VLSM permette di risparmiare sugli indirizzi IP e ne impedisce lo spreco.

VLSM Esempio

Si ha una rete 192.168.1.0 (privato di Classe C) e bisogna creare 3 sottoreti con 100 host nella prima (N1), 50 host nella seconda (N2) e 50 host nella terza (N3).

Senza VLSM non sarebbe possibile pianificare gli indirizzi partendo dall'indirizzo di rete dato.

Unità 12 – Il livello Network dell'architettura TCP/IP

VLSM Esempio

Si ha una rete 192.168.1.0 (privato di Classe C) e bisogna creare 3 sottoreti con 100 host nella prima (N1), 50 host nella seconda (N2) e 50 host nella terza (N3).

Usiamo VLSM

Si parte dalla **rete con più host** N1 con 100 host 100 host \rightarrow 7bit per gli indirizzi \rightarrow 1 bit per subnetting \rightarrow 2 sottoreti 192.168.1.0/25 (**0** 0000000) 192.168.1.128/25 (**1** 0000000)

Subnet mask 255.255.255.128

Assegniamo a N1 192.168.1.0/25

VLSM Esempio

Si ha una rete 192.168.1.0 (privato di Classe C) e bisogna creare 3 sottoreti con 100 host nella prima (N1), 50 host nella seconda (N2) e 50 host nella terza (N3).

Analizziamo N2 e N3 con 50 host

50 host \rightarrow 6 bit per gli indirizzi \rightarrow 2 bit per subnetting \rightarrow 4 sottoreti

192.168.1.0/26 (**00** 000000) 192.168.1.64/26 (**11** 000000) 192.168.1.128/26 (**10** 000000) 192.168.1.192/26 (**11** 000000)

Subnet mask 255.255.255.128

Unità 12 – Il livello Network dell'architettura TCP/IP

VLSM Esempio

192.168.1.0/26 (**00** 000000) 192.168.1.64/26 (**11** 000000) 192.168.1.128/26 (**10** 000000) 192.168.1.192/26 (**11** 000000)

Le prime 2 non posso prenderle. Assegno

N1 192.168.1.128/26 (10 000000) N2 192.168.1.192/26 (11 000000)

VLSM Esempio

VLSM Esempio

Se per esempio arriva un pacchetto con IP di destinazione 192.168.1.200, il router deve capire a quale delle sottoreti va indirizzato.

Il router esegue la messa in AND bit a bit per decidere verso quale subnet inoltrare il pacchetto.

Ricordiamo che la messa in AND va fatta tra IP destinatario e mask delle varie subnet: il risultato dà l'indirizzo della sottorete di appartenenza del destinatario del pacchetto.

Per N1 (192.168.1.0/25) avremo:

192.168.1.200 AND 255.255.255.128 = 192.168.1.128 \rightarrow NO: indirizzo di rete diverso da quello di N1.

Per N2 (192.168.1.128/26) avremo:

192.168.1.200 AND 255.255.255.192 = 192.168.1.192 \rightarrow NO: indirizzo di rete diverso da quello di N2.

Per N3 (192.168.1.192/26) avremo:

192.168.1.200 AND 255.255.255.192 = **192.168.1.192** \rightarrow SÌ: indirizzo di rete uguale a quello di N3.

Subnetting: esempio

Un'azienda possiede tre siti distribuiti su una grande area urbana: **S1, S2, S3**. Ciascun sito aziendale è dotato di infrastrutture informatiche comprendenti, tra l'altro, una LAN ed un router di uscita verso il mondo esterno. Tutti i siti devono essere interconnessi tra loro con una rete MAN a maglia completa **M**.

I siti sono così divisi:

S1, S2: 50 host **S3**: 20 host

Si richiede di progettare una rete di classe **C** a cui viene assegnato l'indirizzo **196.200.96.0** comprensiva della numerazione dei router, definendo le relative netmask.

Architettura

Soluzione 2

Subnet	# indirizzi	Range IP	Broadcast
196.200.96.0/26	64	1 – 62	63
196.200.96.64/26	64	65 – 126	127
196.200.96.128/27	32	129 – 158	159
196.200.96.160/27	32	161 – 190	191
196.200.96.192/27	32	193 – 222	223
196.200.96.224/28	16	225 – 238	239
196.200.96.240/30	4	241 – 242	243
196.200.96.244/30	4	245 – 246	247
196.200.96.248/30	4	249 – 250	251
196.200.96.252/30	4	253 – 254	255

Soluzione 2

Esercizio 1

Partendo dalla rete maschera di sottorete di un indirizzo di classe C 255.255.255.0 e operando su questa con Subnetting avente maschera fissa, quante sotto-reti si possono ottenere?

Esercizio 2

Data la rete in figura, definire un possibile schema di indirizzamento utilizzando la tecnica del subnetting con maschera fissa a partire da indirizzi di classe C

Esercizio 3

Considerando la rete dell'esercizio 2, utilizzando il subnetting con maschere di lunghezza variabile, definire uno schema di indirizzamento che utilizzi un solo indirizzo di classe C

• 195.168.1.0/24

