## STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 6: Polynomials and Factors

## **Polynomials**

- what shall we do if lack of fit exists?
- we could do nothing and just sit there and cry
- or we could improve our model
- Polynomial Regression: some terms are higher power of some predictors
- simplest example: quadratic regression

$$E(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2$$

a natural question: use straight line or quadratic?

## Polynomials - con't

- answer by F-test from multiple regression ANOVA
- in general:

$$E(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_d x^d$$

- important question: how to choose d
- e.g. find the most desirable value of x that maximizes or minimizes E(Y|X) in quadratic regression
- for  $E(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2$ , solving

$$\frac{dE(Y|X=x)}{dx} = 0 \quad \Rightarrow \quad x_M = \frac{-\beta_1}{2\beta_2}$$

## **Polynomials with Several Predictors**

a special case of two predictors:

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$$

- the term  $X_1X_2$  is called an interaction
- effect of  $X_2$  cannot be kept constant if we change  $X_1$
- if we only limit the highest order to 2, how many terms are there for k predictors?
- one intercept, k linear terms, k quadratic terms and  $\frac{k(k-1)}{2}$  interaction terms
- e.g., k = 5, altogether 21 terms

### Polynomials with Several Predictors - con't

• Y: palatability score;  $X_1$ : baking time;  $X_2$ : baking temp



FIG. 6.3 Estimated response curves for the cakes data, based on (6.7).

### Polynomials with Several Predictors - con't

#### without interaction



FIG. 6.4 Estimated response curves for the cakes data, based on fitting with  $\beta_{12} = 0$ .

#### The Delta Method

- provides approximate standard errors for nonlinear combinations of parameter estimates
- e.g., what is  $Var(\hat{x}_M)$  where  $\hat{x}_M = \frac{-\hat{\beta}_1}{2\hat{\beta}_2}$ ?
- suppose  $\hat{\theta} \stackrel{\circ}{\sim} N(\theta, \Sigma)$  and  $g(\theta)$  is a continuous function of  $\theta$  ( $\theta$  may be a vector)
- $\blacksquare$  then, when n is large, we have

$$\mathrm{E}[g(\hat{m{ heta}})] pprox g(m{ heta})$$
 $\mathrm{Var}[g(\hat{m{ heta}})] pprox \dot{g}(m{ heta})' \Sigma \dot{\mathbf{g}}(m{ heta})$ 
where  $\dot{g}(m{ heta}) = \frac{\partial g}{\partial m{ heta}} = (\frac{\partial g}{\partial heta_1}, \cdots, \frac{\partial g}{\partial heta_k})'$ 

ullet note: some authors use  $\sigma^2 {f D}$  instead of  ${f \Sigma}$ 

### The Delta Method - con't

back to the example for 
$$\hat{x}_M$$

$$\hat{y}_{(\beta)} = (\beta_0, \beta_1, \beta_2)' \text{ and } \hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)' \quad (3 \cdot \hat{\beta}) \sim N(g(\beta) \cdot \hat{\beta}) \times g(\beta)$$

$$N(g(\beta) \cdot \hat{\beta}) \times g(\beta) \times$$

• we know, for large n,  $\hat{\boldsymbol{\beta}} \stackrel{\circ}{\sim} N(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$ 

• R function vcov(lm.fit) gives 
$$\widehat{\mathrm{Cov}}(\hat{\beta}) \approx \hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$$

$$g(\hat{\boldsymbol{\beta}}) = \frac{-\hat{\beta}_{1}}{2\hat{\beta}_{2}} \Rightarrow \dot{g}(\hat{\boldsymbol{\beta}}) = (0, \frac{-1}{2\hat{\beta}_{2}}, \frac{\hat{\beta}_{1}}{2\hat{\beta}_{2}^{2}}) \qquad \rho(\underbrace{\frac{|g(\hat{\boldsymbol{\beta}}) - g(\hat{\boldsymbol{\beta}})|}{\sqrt{\hat{g}(\hat{\boldsymbol{\beta}})}}}_{\mathbf{Z}\hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}}) = -\mathbf{A}$$

$$\operatorname{Var}(g(\hat{\boldsymbol{\beta}})) = \dot{g}(\hat{\boldsymbol{\beta}})'\widehat{\operatorname{Cov}}(\hat{\boldsymbol{\beta}})\dot{g}(\hat{\boldsymbol{\beta}}) \qquad \qquad \mathbf{A}$$

$$= \frac{1}{4\hat{\beta}_{2}^{2}}\left(\operatorname{Var}(\hat{\beta}_{1}) + \frac{\hat{\beta}_{1}^{2}}{\hat{\beta}_{2}^{2}}\operatorname{Var}(\hat{\beta}_{2}) - \frac{2\hat{\beta}_{1}}{\hat{\beta}_{2}}\operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{2})\right)$$

use z-test or z-interval, i.e., critical value from N(0,1)

#### The Delta Method - con't

- revisit cakes data: find optimal baking times given different baking temperatures
- $x_1$ : baking time;  $x_2$ : baking temperature  $E(Y|x_1,x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$
- solve for optimal baking time:  $x_M = g(\beta; x_2) = -\frac{\beta_1 + \beta_5 x_2}{2\beta_3}$

- $100(1-\alpha)$ % pointwise confidence interval for  $x_M$ :

$$\hat{x}_M \pm z_{\alpha/2} \sqrt{\dot{g}(\hat{\boldsymbol{\beta}}; x_2)' \widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}) \dot{g}(\hat{\boldsymbol{\beta}}; x_2)}$$

### **Factors**

- allow qualitative or categorical predictors
- different levels: male or female, eye colour, etc.
- use dummy variables in the regression model e.g., 0 for male and 1 for female, or -1, 1
- will give the same outcomes if you know what you are doing
- · instead of the original categorical predictor

## **Factors - Sleep Data**



- sleep data sleeping patterns of 62 mammal species (4 missing at random, thus omitted)
- ullet response TS: total hours of sleep per day
- predictor D: danger indicator, 1 to 5, D=1 means least danger from other animals

### The Factor Rule

the factor rule:

A factor with d levels can be represented by at most d dummy variables. If the intercept is in the mean function, at most d-1 of the dummy variables can be used in the mean function

$$0.01 + \rho_2 U_2 + \rho_3 U_3 + \rho_4 U_4 + \rho_5 U_5$$
 rank 5

Matrix with  $0.1$ , 5 columns

Not 12345 no intercept

Solve if use an intercept, by 5

Not by 4

# Two Models for the Same Thing

- $\beta_j$ : can be interpreted as the population mean for all species with danger index j
- note that no intercept is there, why?
- now consider an equivalent model:

$$E(TS|D) = \eta_0 + \eta_2 U_2 + \eta_3 U_3 + \eta_4 U_4 + \eta_5 U_5$$

- this is called a one-way analysis of variance model fits "level
  a separate mean for each level

### Model 6.1a

• (Table 6.1a) coefficient for  $U_j$  is the estimated mean for level j of D There are two tables Study ANOVA

|               | Mugha.       | TWUVT                |            |         |          |
|---------------|--------------|----------------------|------------|---------|----------|
|               | Esti         | mate                 | Std. Error | t-value | Pr(> t ) |
| (a) Mean func | etion (6.15) |                      |            |         |          |
| $U_1$         | /13.0        | 0833                 | 0.8881     | 14.73   | 0.0000   |
| $U_2$         | 11.          | 7500                 | 1.0070     | 11.67   | 0.0000   |
| $U_3$         | 10.3         | 3100                 | 1.1915     | 8.65    | 0.0000   |
| $U_4$         | 8.8          | 8111                 | 1.2559     | 7.02    | 0.0000   |
| $U_5$         | 4.0714       |                      | 1.4241     | 2.86    | 0.0061   |
|               | Df           | Sum Sq               | Mean Sq    | F-value | Pr(>F)   |
| D             | 5            | into cept<br>6891.72 | 1378.34    | 97.09   | 0.0000   |
| Residuals     | 53           | 752.41               | 14.20      |         |          |

#### Model 6.1b

(Table 6.1b) intercept: estimated mean for level 1 of D coefficient for  $U_j$  is the estimated difference between means for level 1 and level j, j > 1

|                | Estimate        | 5                                  | Std. Error     | t-value | Pr(> t ) |          |
|----------------|-----------------|------------------------------------|----------------|---------|----------|----------|
| (b) Mean funct | ion (6.16)      |                                    |                |         |          |          |
| Intercept      | 13.0833         | 3                                  | 0.8881         | 14.73   | 0.0000   |          |
| $U_2$          | -1.3333         | glevel 1                           | 1.3427         | -0.99   | 0.3252   |          |
| $U_3$          | -2.7733         | level 1<br>sleep more<br>so negati | 1.4860         | -1.87   | 0.0675   |          |
| $U_4$          | -4.2722         | so negativ                         | <b>4</b> .5382 | -2.78   | 0.0076   |          |
| $U_5$          | <b>-</b> 9.0119 |                                    | 1.6783         | -5.37   | 0.0000   |          |
|                | Df              | Sum Sq                             | Mean Sq        | F-value | Pr(>F)   |          |
| $\overline{D}$ | 4               | 457.26                             | 114.31         | 8.05    | 0.0000   | < 0.3252 |
| Residuals      | 53              | 752.41                             | 14.20          |         |          | or 0.067 |
|                |                 |                                    |                |         |          | 0-0.007  |

### More on Models 6.1a and 6.1b

- how about the t-values?
- ANOVA Table 6.1a:

NH: all 
$$\beta$$
's are zero or  $E(TS|D) = 0$ 

ANOVA Table 6.1b:

NH: 
$$E(TS|D) = \eta_0$$

- $\blacksquare$  caution: identical RSS's, the ANOVA in Table 6.1a is not
- an exclusive decomposition,  $SYY \neq SS_{reg} + RSS$  without intercept, with the 1st is easier to interpret, the 2nd is more used intercept:
- $\blacksquare$  let's add a continuous predictor,  $\log(\text{BodyWt})$ ?

# **Adding a Continuous Term** log(BodyWt)

- so two terms: D and  $\log(\text{BodyWt})$
- four different cases



### Model 1

- one regression line for each level of D
- $E[TS|log(BodyWt), D] = \sum_{j=1}^{5} (\beta_{0j}U_j + \beta_{1j}U_jx)$
- $E[TS|log(BodyWt), D] = \eta_0 + \eta_1 x + \sum_{j=2}^{5} (\eta_{0j}U_j + \eta_{1j}U_j x)$
- interactions between  $U_i$  and  $\log(\text{BodyWt})$
- first one is more convenient for obtaining interpretable parameters
- second one is useful for comparing mean functions
- what is the difference between this and fitting 5 separate regressions?

#### **Other Models**

- Model 2: parallel regression
- same slope but different intercepts, no interaction between  $U_j$  and  $\log(\mathrm{BodyWt})$
- when do we want to fit a model like this?
- Model 3: common intercept
- Model 4: coincident regression lines (no D)
- general F test: Model 1 as the model in AH
- NH: usually either Model 2 or 4
- what are the design matrices X for the above models?

#### **Table 6.2**

TABLE 6.2 Residual Sum of Squares and df for the Four Mean Functions for the Sleep Data

|             |                | df | RSS    | F    | P(>F) |
|-------------|----------------|----|--------|------|-------|
| Model 1, mo | st general     | 48 | 565.46 |      |       |
| Model 2, pa | rallel         | 52 | 581.22 | 0.33 | 0.853 |
| Model 3, co | mmon intercept | 52 | 709.49 | 3.06 | 0.025 |
| Model 4, al | l the same     | 56 | 866.23 | 3.19 | 0.006 |
|             |                |    |        |      |       |

- exercise: compute F values from df and RSS
- more: ordinal factors sometimes may be treated as continuous, how to decide?