

- (a) Ten groups of points.
- (b) Probability a sample contains points from each of 10 groups.

Figure 2.10. Finding representative points from 10 groups.

the correct sample size initially, it requires that there be a way to evaluate the sample to judge if it is large enough.

Suppose, for instance, that progressive sampling is used to learn a predictive model. Although the accuracy of predictive models increases as the sample size increases, at some point the increase in accuracy levels off. We want to stop increasing the sample size at this leveling-off point. By keeping track of the change in accuracy of the model as we take progressively larger samples, and by taking other samples close to the size of the current one, we can get an estimate of how close we are to this leveling-off point, and thus, stop sampling.

2.3.3 Dimensionality Reduction

Data sets can have a large number of features. Consider a set of documents, where each document is represented by a vector whose components are the frequencies with which each word occurs in the document. In such cases, there are typically thousands or tens of thousands of attributes (components), one for each word in the vocabulary. As another example, consider a set of time series consisting of the daily closing price of various stocks over a period of 30 years. In this case, the attributes, which are the prices on specific days, again number in the thousands.

There are a variety of benefits to dimensionality reduction. A key benefit is that many data mining algorithms work better if the dimensionality—the number of attributes in the data—is lower. This is partly because dimensionality reduction can eliminate irrelevant features and reduce noise and partly because of the curse of dimensionality, which is explained below. Another benefit is that a reduction of dimensionality can lead to a more understandable model because the model usually involves fewer attributes. Also, dimensionality reduction may allow the data to be more easily visualized. Even if dimensionality reduction doesn't reduce the data to two or three dimensions, data is often visualized by looking at pairs or triplets of attributes, and the number of such combinations is greatly reduced. Finally, the amount of time and memory required by the data mining algorithm is reduced with a reduction in dimensionality.

The term dimensionality reduction is often reserved for those techniques that reduce the dimensionality of a data set by creating new attributes that are a combination of the old attributes. The reduction of dimensionality by selecting attributes that are a subset of the old is known as feature subset selection or feature selection. It will be discussed in Section 2.3.4.

In the remainder of this section, we briefly introduce two important topics: the curse of dimensionality and dimensionality reduction techniques based on linear algebra approaches such as principal components analysis (PCA). More details on dimensionality reduction can be found in Appendix B.

The Curse of Dimensionality

The curse of dimensionality refers to the phenomenon that many types of data analysis become significantly harder as the dimensionality of the data increases. Specifically, as dimensionality increases, the data becomes increasingly sparse in the space that it occupies. Thus, the data objects we observe are quite possibly not a representative sample of all possible objects. For classification, this can mean that there are not enough data objects to allow the creation of a model that reliably assigns a class to all possible objects. For clustering, the differences in density and in the distances between points, which are critical for clustering, become less meaningful. (This is discussed further in Sections 8.1.2, 8.4.6, and 8.4.8.) As a result, many clustering and classification algorithms (and other data analysis algorithms) have trouble with high-dimensional data leading to reduced classification accuracy and poor quality clusters.