

SolidWorks Assembly

TURTLE Hatchling

Sketches

Sketches are 2D "drawings"

A plane has 3 Degrees of Freedom:

- X (Translational)
- Y (Translational)
- $\theta(z)$ (Rotational)

An ideal sketch will have one enclosed region and fully defined (cannot move) in space

Assemblies

Assemblies are 3D

3D has 6 Degrees of Freedom

- X (Translational)
- Y (Translational)
- Z (Translational)
- θ(x) (Rotational)
- θ(y) (Rotational)
- θ(z) (Rotational)

Moving mechanism may result in under defined assemblies

Common Symbols

Defined States are shown in the feature tree

- (f) Fixed component
 - Should have one of these in an assembly
- (-/+) Under/Over defined
- (?) Cannot solve
- Nothing Fully defined
- Education license tag

- SERVO_MG92B<1> (Pre
- ▶ **⑤** (f) chassis<1> ->? (Defa
- SERVO_MG92B<3> (Pre
- SERVO_MG92B<4> (Pre
- Top plate<1> ->? (Defa
- Front Plate<1> ->? (Def
- ▶ SERVO_MG92B<5> (Pre
- PCB, Raspberry Pi Zei
- PCB, Raspberry Pi Zel

 Output

 Description:

 Output

 Descripti
- (-) SCREWS
- (-) HEAT INSERTS
- ► FPlateAssem<2> -> (De
- Full Leg F24<1> (Default) <[
- Full Leg F24<3> (Mirror) <D
- Camera_module_3_wide
- MirrorFull Leg F24<1> (Mirro
- MirrorFull Leg F24<2> (Defa
- ▶ **On** Mates

Creating an Assembly

Method 1:

- 1. Click "New"
- 2. Click "Assembly"

*Method 2 automatically aligns origin and "fixes" the part

Method 2: From a part/assembly

- 1. Click down arrow on "New"
- 2. "Make Assembly from part/assembly"
- 3. Click "Assembly"

Inserting Components

Go to Assembly Tab > Insert Components

From here, open parts can be added or browse for saved files

From the drop down, new parts can be created, or parts can be inserted from Part Supply

Section View

Allows you to "cut" an assembly/part and look at difficult to reach places

*Faces visible through section view are temporary You cannot use them for functional purposes

Helpful Assembly Shortcuts

You can customize shortcuts for your workflow

"q": Shows all planes

"f": Orients view to fit the model

"Ctrl + t": Flat Feature Tree

"Shift + c": Fully Minimizes Feature Tree

Feature Tree Search "*": Fully Expands Feature Tree

"Spacebar": Allows Viewing Orientation Selection

Mates

Three categories of mates:

- Standard Used a majority of the time
- Advanced
- Mechanical

Entity Priority:

- 1. Plane/Face
- 2. Edge
- 3. Point

How to use:

- 1. Click "Mate" Mate
- 2. Select mate type
- 3. Select mating entities

Coincident13 (

How should you add mates?

Technically best practice is to mate as you would assemble the parts in real life

It is much easier and faster to mate all of one component before moving on to the next component

Standard Mates

These should look familiar

Identical to sketch relations but can be used in 3 dimensions

Switching the mate direction may flip other mate directions as well

Advanced Mates

Fancy but often computational complex

SolidWorks has no collision detection

Ranges can be used to simulate collision constraints, however, this can cause funky CAD. Would recommend using configurations for various positions.

Width Mate

Creates an imaginary midplane between two selected faces on two parts and makes them coincident

Path Mate

Requires 2 Sketches:

- 1. A sketch with a "following" point
- 2. Construction Guide Curve

*If your path is multiple connected line segments. you must use "Selection Manager" and "Select Open Loop" Mate Selections

Can control location and orientation within mate

Open

Loop

Mechanical Mates

These allow you to simulate real-world mechanical movements between components

Cam Mate

This mate constrains a follower component to stay in contact with the cam component as it rotates

Video: Cam-Follower Mate - 2021 **SOLIDWORKS** Help

Hinge Mate

Combines a "Coincident" and "Concentric mate into one

Same as "Concentric"

Same as "Coincident"

Coincident Selections:

Mate Selections

Face<3>@A<1> Face<4>@F<1>

Concentric Selections:

Face<1>@F<1>

Face<2>@A<1>

Specify angle limits

Can also add an "Angle Range" mate

Hinge Mates - 2021 - SOLIDWORKS Help

Gear Mate

Requires two sketches

- 1. Construction Circle on Gear 1
- 2. Construction Circle on Gear 2
- *Best practice is to use the corresponding pitch circle for mating
- **Teeth will not automatically align Aligning teeth options:
 - Collision detection
 - Temporary "For Position" mate

Sub-Assemblies

- You can add assemblies to assemblies
 - You cannot add an assembly to itself

- Mates within sub-assembly do NOT calculate
 - This is essential for large (100+) component assemblies
 - Think modularity. Every module should be a sub-assembly

- Flexible sub-assemblies do calculate internal mates
 - Only use if you absolutely must It

External References

Purpose:

- Automatically update dependent parts when changes occur
- Relations between components based on geometry or features from other parts, assemblies, or drawings

Created by:

 Editing a component in an assembly and defining geometry based on another component

Note: These can break CAD models quickly, best practice is to remove external reference on finished parts*

{ - >}
indicates
external
reference

Suppressed State

Temporarily removes a component from the assembly without deleting it

No longer part of the parametric equations

Advantages:

- Allows configurations with added features
- Simplifies assemblies and reduces computational load
- Easily reversible

Hidden vs Transparent

Hidden:

- Makes the component invisible
- Must unhide from feature tree to use again
- Used to focus on internal components

Transparent:

- Makes the component... well transparent
- Edges are still selectable
- Used to visualize or reach internal components

Normal

Transparent

Configurations

Mcmaster M3

Screw

Used to create a multiple variations of a part or assembly within a single file

Advantages:

- Prevents modeling same thing twice
- Allows design table parametric modelling
- Reduces the number of files you need

Think about screws. One CAD model works for every length variation

More on Configurations

How to Use:

- 1. Switch to "Configurations" tab
- 2. Right click then "Add Configuration"
- 3. Double Click to switch between configurations

*Green Check is the configuration you are in

Configurations work on both parts and assemblies

Design Table

Implementation of Excel in SolidWorks for parametric modeling More powerful version of "Global Variables"

Sketch Dimensions

Collision Detection

Checks if components touch or interfere with motion

Uses:

- Ensures proper fit and movement of parts
- Prevents design errors
- Simulate realistic motion scenarios for mechanism

Accessed by clicking on "Move Component" or "Rotate Component"

Move	
Rota	te
C	Free Drag
Optio	ons
	Standard Drag
	O Collision Detection
	Physical Dynamics
	Check between:
	 All components
	These components
	Stop at collision
	Dragged part only
_ D	ynamic Clearance
Che	ck clearance between:
4	
	Resume Drag

Replace Components

- 1. Use the "Replace Components" tool
 - a. Next to "Insert Components"
- 2. Select the components
- 3. Confirm/Reassign mates

- *Only really useful if mating geometry is identical*
- **Often it is easier to delete the object and add new mates

Commercial-off-the-Shelf (COTS)

Work Smarter NOT Harder

Most item suppliers will provide a CAD file. Use them

SolidWorks accepts most CAD file formats

Common suppliers:

- McMaster-Carr: Fasteners, Power Transmission, etc
- Misumi: Industrial components
- Adafruit: Electronics
- A lot more

*We have M3, M2.5, or M2 screws in the lab

Heat Set Inserts

- Threaded inserts melted into 3D-printed parts (Use the Soldering tool with het set insert tip)
 - Let the insert cool before touching it (From experience)
- 3D-printed threads/self tapping are very easy to destroy

Important information: (M3 example)

Installed Length	3.8 mm
For Min. Material Thickness	4.57 mm
Drill Bit Size	No. 8
For Maximum Hole Diameter	0.199"

> Hole cutout dimensions for CAD

Note: To make installation easy, add an 8° chamfer to ½ "Installed Length"

SolidWorks Folders

Necessity when organizing large assembly feature-trees

Please use for your fasteners

To use:

- 1. Right Click feature-tree
- 2. Select one of the two options
- 3. Click and drag components

Example

112 total components

- 38 unique

61 Screws/Heat Inserts

Still easy to navigate

Suppressed components load significantly quicker

Let's Practice

Files are available under "CAD Examples" at

https://www.turtlerobotics.org/hatchling

- (f) A<1> (Default) <
- ▶ 🥞 🔊 B<1> (Default) <<ℂ
- C<1> (Default) <<E</p>
- 🔖 🥟 (-) D<1> (Default) <
- 😽 🎓 E<1> -> (Default) <
- (-) F<2> (1m, 25 Deg, 2
- 🕨 🇳 🎓 (-) F<3> (1m, 25 De
- (-) McMaster
- ▶ **I** Mates
- ▶ ☐ MirrorComponent1

Action Plan 1

Sub assembly

- 1. Insert parts A-F, Should have 2 F parts
- 2. 3 "Coincident" mates between A and B
- 3. 1 [2.5mm] "Distance" mate, 1 "Width" mate, and 1 "Coincident" mate between A and C
- 4. 1 "Concentric" mate and 1 "Coincident" mate between A and D
- 5. 2 "Concentric" mates and 1 "Coincident" mate between A and E. Use an external reference to define E

Action Plan 2

Sub assembly continued

- 6. 1 "Hinge" mate between A and F_21tooth
- 7. 1 "Concentric" mate and 1 "Coincident" mate between A and F 10tooth
- 8. Download M3X4 (91292A109) screws and M3 heat-set insert (94180A331) part files from McMaster Carr
- 9. Ìnsert 2 M3X4 (91292A109) screws and 2 M3 heat-set insert (94180A331)
- 10. Repeat twice, 1 "Concentric" mate and 1 "Coincident" mate between A and heat-set insert
- 11. 1 "Concentric" mate and 1 "Coincident" mate between E and M3X4 screw

Action Plan 3

Sub assembly continued

- 12. Mirror the heat-set insert
 - a. This is just to showcase how to use assembly mirror

Main assembly

- 13. Insert part G and the "Sub" assembly
- 14. 1 "Path" mate between G and "Sub"
 - b. Pitch/Yaw control "Follow Path" Y-axis
 - c. Roll control "Up Vector" [Front flat face of G rail] Z-axis

Take a little bit of time to clean up your assembly feature tree. This will make modifying the assembly a lot easier.

Tolerance vs Clearance

Tolerance -> Maximum allowed deviation from nominal design

Clearance -> The gap between two components

Types of fits / 3D Printing Design

Gear Ratios

Gear ratio: The ratio of the number of rotations of a driver gear to the number of rotations of a driven gear

Use Case:

- Manipulate torque to speed ratio
 - Reduce torque by increasing speed
 - Increase torque by decreasing speed
- Keeping two axes synchronized
- Gears spin in alternating direction

**Keep 3D Printed Gears to a minimum tooth count of 9 **

Note: To distribute tooth wear, add 1 to your "friendly" gear ratio*

CSWA/CSWP Free Vouchers

These SolidWorks Certifications look great on your resume.

The information on our slides and the LinkedIn course is enough to pass both with some practice. The CSWA comes before the CSWP.

How to claim a voucher?

- 1. Create a Tangix TesterPro account with "@tamu.edu" email
- 2. Request a voucher on the <u>FEDC website</u>
- Download the Tangix TesterPro Client or schedule a FEDC CAD Station
- 4. You will get an email when the voucher is loaded. The voucher expires in a week. (You will need SolidWorks installed)

Next Milestone

Milestone: Assembly Review

Date: Week 7: Programming and Git/GitHub (1 week from today)

Expectation: Have a detailed sketch and begin CAD of drive system. Decide on the electronics you will use.

Exceed Expectation: Have a CAD assembly of a drive system. Have a finished electronics wiring diagram.

Impact: We will review design viability and suggest improvements. Potential to prototype your mechanism.

Programming and Git/GitHub

Next Week

