

Exploiting Local and Global Structure for Point Cloud Semantic Segmentation with Contextual Point Representations

Xu Wang¹, Jingming He¹, Lin Ma² ¹Shenzhen University; ²Tencent Al Lab wangxu@szu.edu.cn; {hejingming519,forest.linma}@gmail.com

出版 https://github.com/fly519/ELGS

Point Cloud Semantic Segmentation

The point cloud semantic segmentation aims to take the 3D point cloud as input and assign one semantic class label for each point.

Proposed Model: Our proposed network consists of three components, (1) point enrichment (2) feeture recent (1) (1) point enrichment, (2) feature representation, (3) prediction

Previous set-based methods that only consider the raw coordinate and attribute information of each single point, we pay more attentions on the spatial context information within neighbor points.

Point Enrichment

(1) The local region

(2) Gated fusion strategy

For each point, we have two different representations R_i and P_i The gated fusion operation is performed:

$$g_i = \sigma(w_i R_i + b_i), \qquad \hat{P}_i = g_i \odot \tilde{P}_i,$$
 $g_i^R = \sigma(w_i^R \tilde{P}_i + b_i^R), \qquad \hat{R}_i = g_i^R \odot R_i,$

As such, the i-th point representation is then enriched by concatenating them together as $\hat{P}_i \parallel \hat{R}_i$

Enriched

Feature Representation

Graph Pointnet Module

(1) Similarity α_{ij} between point i and point j

 $\alpha_{ii} = G_i \cdot G_i$.

(2) Influence factor of point j on point i:

 $\beta_{ii} = \text{softmax}_{i}(\text{LeakyReLU}(\alpha_{ii})),$

(3) Update representation by attentively aggregating the point representations with β_{ii}

$$ilde{G}_i = \sum_{j=1}^{N_e} eta_{ij} \hat{G}_j$$

Spatial-wise & Channel-wise Attention

To capture:

- the global context information for each point
- the inter-dependencies between feature channels $\hat{F}_i = \sum_{i=1}^{n} (v_{ii}D_i) + F_i$.

 $v_{ii} = \text{softmax}_{i} (A_{i} \cdot B_{i}),$

$$\hat{F}_{i} = \sum_{j=1}^{N_d} (v_{ij}D_{j}) + F_{i}.$$

Experimental Results

Table 1: Results of S3DIS dataset on "Area 5" and over 6 fold in terms of OA and mIoU. † and indicate that the PointNet performances are directly copied from [8] and [3], respectively. indicates that the PointNet++ performance

Test Area	Method	OA	mIoU
	PointNet [†] [13]	_	41.09
Area5	SEGCloud [19]	-	48.92
	RSNet [6]	_	51.93
	PointNet++* [14]	86.43	54.98
	SPGraph [8]	86.38	58.04
	Ours	88.43	60.06
	PointNet [‡] [13]	78.5	47.6
6 fold	SGPN [23]	80.8	50.4
	Engelmann et al. [3]	81.1	49.7
	A-SCN [26]	81.6	52.7
	SPGraph [8]	85.5	62.1
	DGCNN [24]	84.3	56.1
	Ours	87.6	66.3

tion. From top to bottom are the result of the Point Cloud, PointNet++, Ours, and Ground Truth, respectively. The segmentation results of our proposed model is closer to the ground truth than that of PointNet++.

Table 2: The segmentation results of S3DIS dataset in terms of IoU for each category.

Test Area	Method	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	bookcase	board	clutter
Area5	PointNet [13] in [8]	88.80	97.33	69.80	0.05	3.92	46.26	10.76	52.61	58.93	40.28	5.85	26.38	33.22
	SEGCloud [19]	90.06	96.05	69.86	0.00	18.37	38.35	23.12	75.89	70.40	58.42	40.88	12.96	41.60
	RSNet [6]	93.34	98.36	79.18	0.00	15.75	45.37	50.10	65.52	67.87	22.45	52.45	41.02	43.64
	PointNet++ [14]	91.41	97.92	69.45	0.00	16.27	66.13	14.48	72.32	81.10	35.12	59.67	59.45	51.42
	SPGraph [8]	89.35	96.87	78.12	0.00	42.81	48.93	61.58	84.66	75.41	69.84	52.60	2.10	52.22
	Ours	92.80	98.48	72.65	0.01	32.42	68.12	28.79	74.91	85.12	55.89	64.93	47.74	58.22
6fold	PointNet [13] in [3]	88.0	88.7	69.3	42.4	23.1	47.5	51.6	42.0	54.1	38.2	9.6	29.4	35.2
	Engelmann et al. [3]	90.3	92.1	67.9	44.7	24.2	52.3	51.2	47.4	58.1	39.0	6.9	30.0	41.9
	SPGraph [8]	89.9	95.1	76.4	62.8	47.1	55.3	68.4	73.5	69.2	63.2	45.9	8.7	52.9
	Ours	93.7	95.6	76.9	42.6	46.7	63.9	69.0	70.1	76.0	52.8	57.2	54.8	62.5

Table 4: Ablation studies in terms of OA and

Method	OA	mean IoU
Ours(w/o CR)	87.91	56.15
Ours(w/o GPM)	87.74	57.84
Ours(w/o AM)	87.90	58.67
Ours(CR with concatenation)	88.21	59.14
Ours	88.43	60.06

Table 3: The segmentation results of ScanNet dataset in terms of both OA and mIoU.

Method	OA	mIoU
3DCNN [2] PointNet [13]	73.0 73.9	-
PointNet++ [14] RSNet [6]	84.5	38.28 39.35
PointCNN [10] Ours	85.1 85.3	40.6

Figure 5: Qualitative results from the S3DIS dataset. From top to bottom are the result of the Point Cloud, PointNet++, Ours, and Ground Truth, respectively. The segmentation results of our proposed model is closer to the ground truth than that of PointNet++.