CHAPTER 3: Compression Coding

Lectures 10-11

25 words or less!

Compression coding

- Variable length codes
- Assume that there is no channel noise: source coding

COMPRESSION CODING

- Variable length codes
- Assume that there is no channel noise: source coding

Define

```
source S with symbols s_1, \dots, s_q with probabilities p_1, \dots, p_q code C with codewords \mathbf{c}_1, \dots, \mathbf{c}_q of lengths \ell_1, \dots, \ell_q and radix r
```

Morse code

Morse code is a variable-length ternary code (radix r=3). Its code alphabet is

- called dot (or dit or di)
- called dash (or dah)
- p a pause

The codewords are strings of \bullet and - terminated (separated) by p.

Morse code

Α	−p	Ν	-• p	1	•p
В	-••• p	0	p	2	••p
C	-•-•p	Р	••p	3	•••p
D	-••p	Q	•_p	4	••••-p
Ε	•p	R	•-•p	5	••••p
F	••-•p	S	•••p	6	_••••p
G	•p	Τ	-р ⁻	7	•••p
Η	••••p	U	••-p	8	••p
	••p	V	•••-p	9	•p
J	•p	W	•p	0	p
K	-•-p	X	-••-p		_
L	•-••p	Y	-•p		
M	p	Z	••p		(See Appendix 1 for full list)

Example

The Morse code encodes the word "sky" into

Morse code

Common letters have short codewords, and rarer ones longer:

E is
$$\bullet p$$
T is $-p$
Q is $--\bullet -p$

Morse code is thus a compression code.

A code C is

- uniquely decodeable (UD) if it can always be decoded unambiguously
- instantaneous if no codeword is the prefix of another Such a code is an I-code.

Example

The standard comma code of length 5 is

The standard comma code of length 5 is

$$egin{array}{llll} s_1 &
ightarrow & {f c}_1 & = & 0 \ s_2 &
ightarrow & {f c}_2 & = & 10 \ s_3 &
ightarrow & {f c}_3 & = & 110 \ s_4 &
ightarrow & {f c}_4 & = & 1110 \ s_5 &
ightarrow & {f c}_5 & = & 11110 \ s_6 &
ightarrow & {f c}_6 & = & 11111 \end{array}$$

This code is an I-code.

Decode

as

$$S_3S_1S_5S_3S_2S_6S_3$$

Consider the code *C*:

$$s_1 \rightarrow \mathbf{c}_1 = 0$$
 $s_2 \rightarrow \mathbf{c}_2 = 01$
 $s_3 \rightarrow \mathbf{c}_3 = 11$
 $s_4 \rightarrow \mathbf{c}_4 = 00$

This code is not uniquely decodable since, for example,

0011

can be decoded as $s_1s_1s_3$ and s_4s_3 .

Consider the code *C*:

$$s_1 \rightarrow \mathbf{c}_1 = 0$$
 $s_2 \rightarrow \mathbf{c}_2 = 01$
 $s_3 \rightarrow \mathbf{c}_3 = 011$
 $s_4 \rightarrow \mathbf{c}_4 = 0111$
 $s_5 \rightarrow \mathbf{c}_5 = 1111$

This code is uniquely decodable but is **not** instantaneous. Decode

as

$$S_4S_5S_3S_2S_1$$

Consider the code *C*:

$$s_1 \rightarrow \mathbf{c}_1 = 0$$
 $s_2 \rightarrow \mathbf{c}_2 = 100$
 $s_3 \rightarrow \mathbf{c}_3 = 1011$
 $s_4 \rightarrow \mathbf{c}_4 = 110$
 $s_5 \rightarrow \mathbf{c}_5 = 111$

This code is an I-code.

Decode

as

$$S_1S_1S_4S_1S_3S_5$$

Example

The standard comma code of length 5 is

Consider the block code *C*:

$$s_1
ightharpoonup \mathbf{c}_1 = 00$$
 $s_2
ightharpoonup \mathbf{c}_2 = 01$
 $s_3
ightharpoonup \mathbf{c}_3 = 10$
 $s_4
ightharpoonup \mathbf{c}_4 = 11$

Consider the code *C*:

$$s_1 \rightarrow \mathbf{c}_1 = 0$$
 $s_2 \rightarrow \mathbf{c}_2 = 100$
 $s_3 \rightarrow \mathbf{c}_3 = 1011$
 $s_4 \rightarrow \mathbf{c}_4 = 110$
 $s_5 \rightarrow \mathbf{c}_5 = 111$

Consider the code *C*:

$$s_1
ightharpoonup \mathbf{c}_1 = 0$$
 $s_2
ightharpoonup \mathbf{c}_2 = 100$
 $s_3
ightharpoonup \mathbf{c}_3 = 1011$
 $s_4
ightharpoonup \mathbf{c}_4 = 110$
 $s_5
ightharpoonup \mathbf{c}_5 = 111$

- Branches are numbered from the top down.
- Any radix r is allowed.
- Two codes are equivalent if their decision trees are isomorphic.

Example

Code

- Branches are numbered from the top down.
- Any radix r is allowed.
- Two codes are equivalent if their decision trees are isomorphic.

20

Example

 $s_6 \rightarrow \mathbf{c}_6 = 21$

			Code	Equivalent code
s_1	\rightarrow	\mathbf{c}_1	= 00	10
s_2	\rightarrow	\mathbf{c}_2	= 01	11
S_3	\rightarrow	\mathbf{c}_3	= 02	12
S_4	\rightarrow	\mathbf{c}_4	= 1	0
S_5	\rightarrow	\mathbf{c}_5	= 20	21

- Branches are numbered from the top down.
- Any radix r is allowed.
- Two codes are equivalent if their decision trees are isomorphic.

Example

Cod	e	Eau	ival	ent	cod	e
COG		-99	ı v a ı		COG	

s_2^-	\rightarrow	$egin{array}{c} \mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3 \end{array}$	=	01	10 11 12
_		\mathbf{c}_4			0
S_5	\rightarrow	\mathbf{c}_5	=	20	21
s_6	\rightarrow	\mathbf{c}_6	=	21	20

- Branches are numbered from the top down.
- Any radix r is allowed.
- Two codes are equivalent if their decision trees are isomorphic.
- By shuffling source symbols, we may assume that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$.

The Kraft-McMillan Theorem The following are equivalent:

- ① There is a radix r UD-code with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- ② There is a radix r l-code with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$

$$(3) K = \sum_{i=1}^{q} \left(\frac{1}{r}\right)^{\ell_i} \le 1$$

Example

Is there a radix 2 UD-code with codeword lengths 1, 2, 2, 3? No, by the Kraft-McMillan Theorem:

$$\left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 = \frac{9}{8} \nleq 1$$

The Kraft-McMillan Theorem The following are equivalent:

- ① There is a radix r UD-code with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- ② There is a radix r I-code with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$

$$(3) K = \sum_{i=1}^{q} \left(\frac{1}{r}\right)^{\ell_i} \le 1$$

Example

Is there a radix 3 I-code with codeword lengths 1, 2, 2, 2, 2, 3? Yes, by the Kraft-McMillan Theorem:

$$\left(\frac{1}{3}\right)^{1} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{3} = \frac{22}{27} \le 1$$

Is there a radix 3 l-code with codeword lengths 1, 2, 2, 2, 2, 3? Yes, by the Kraft-McMillan Theorem:

$$\left(\frac{1}{3}\right)^{1} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{3} = \frac{22}{27} \le 1$$

For instance,

The Kraft-McMillan Theorem The following are equivalent:

- ① There is a radix r UD-code with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- ② There is a radix r I-code with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$

Proof $@\Rightarrow @$ is trivial. We now prove that $@\Rightarrow @$. Suppose that a radix r UD-code has codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$. Note that

$$K^{n} = \left(\sum_{i=1}^{q} \left(\frac{1}{r}\right)^{\ell_{i}}\right)^{n} = \sum_{j=1}^{\infty} \frac{N_{j}}{r^{j}}$$

where $N_j = |\{(i_1, \dots, i_n) \in \{\ell_1, \dots, \ell_q\}^n : i_1 + \dots + i_n = j\}|$.

Compression coding

- Variable length codes
- Assume that there is no channel noise: source coding