© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°22

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Mines-Ponts Maths I MP 2016 – Autour de l'inégalité de Hoffman-Wielandt

Dans tout le problème n désigne un entier supérieur ou égal à 2. Soit $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels et \mathcal{A} un sous ensemble de $\mathcal{M}_n(\mathbb{R})$. On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est *extrémale dans* \mathcal{A} si pour tous M, N dans \mathcal{A} et tout $\lambda \in]0, 1[$, on a l'implication :

$$A = \lambda M + (1 - \lambda)N \implies A = M = N$$

On note \mathcal{B}_n l'ensemble des matrices bistochastiques de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire l'ensemble des matrices $A = (A_{i,j})_{1 \leq i,j \leq n}$ dont tous les coefficients sont positifs ou nuls et tels que $\sum_{j=1}^n A_{i,j} = \sum_{j=1}^n A_{j,i} = 1$ pour tout $i \in \{1,2,\ldots,n\}$.

On note enfin \mathcal{P}_n l'ensemble des matrices de permutation $\mathrm{M}_\sigma \in \mathcal{M}_n(\mathbb{R})$ dont les coefficients sont de la forme :

$$(\mathbf{M}_{\sigma})_{i,j} = \begin{cases} 1 & \text{si } i = \sigma(j) \\ 0 & \text{sinon} \end{cases}$$

pour tous i, j dans $\{1, 2, ..., n\}$, où σ est une permutation de $\{1, 2, ..., n\}$.

La partie I n'est pas indispensable à la résolution des parties suivantes.

I Un exemple

Soit J la matrice de $\mathcal{M}_n(\mathbb{C})$ définie par

$$J = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$

c'est-à-dire par $J_{i,j} = 1$ si j - i = 1 ou i - j = n - 1, et $J_{i,j} = 0$ sinon.

- 1 Montrer que J est une matrice de permutation. Calculer les valeurs propres réelles et complexes de J, et en déduire que J est diagonalisable sur C.
- $\boxed{\mathbf{2}}$ Déterminer une base de \mathbb{C}^n de vecteurs propres de J.

Dans les trois questions suivantes n désigne un entier naturel *impair* supérieur ou égal à 3. Pour tout $m \in \mathbb{N}$, on note X_m une variable aléatoire à valeurs dans $\{0, 1, ..., n-1\}$ telle que

© Laurent Garcin MP Dumont d'Urville

- $X_0 = 0$ avec probabilité 1;
- si $X_m = k$, alors ou bien $X_{m+1} = k 1$ modulo n, ou bien $X_{m+1} = k + 1$ modulo n, ceci avec équiprobabilité.

On note

$$U_m = \begin{pmatrix} P(X_m = 0) \\ P(X_m = 1) \\ \vdots \\ P(X_m = n - 1) \end{pmatrix}$$

- 3 Déterminer U_0 et une matrice A de $\mathcal{M}_n(\mathbb{R})$ telle que pour tout $m \in \mathbb{N}$, $U_{m+1} = AU_m$. On exprimera A à l'aide de la matrice J.
- Déterminer les valeurs propres de la matrice A et un vecteur propre de \mathbb{R}^n unitaire associé à la valeur propre de module maximal.
- **5** En déduire la limite de U_m lorsque $m \to +infty$.

II Théorème de Birkhoff-Von Neumann

- **6** Montrer que l'ensemble \mathcal{B}_n est convexe et compact. Est-il un sous espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?
- Montrer que $\mathcal{P}_n \subset \mathcal{B}_n$ et que \mathcal{P}_n est un sous-groupe multiplicatif de $GL_n(\mathbb{R})$. Tout élément de \mathcal{P}_n est-il diagonalisable sur \mathbb{C} ? L'ensemble \mathcal{P}_n est-il convexe?
- **8** Montrer que toute matrice de \mathcal{P}_n est extrémale dans \mathcal{B}_n .

Dans toute la suite de cette partie, on considère une matrice **bistochastique** $A = (A_{i,j})_{1 \le i,j \le n}$ qui n'est **pas** une matrice de permutation.

- Montrer qu'il existe un entier r > 0 et deux familles i_1, i_2, \dots, i_r et j_1, j_2, \dots, j_r d'indices distincts dans $\{1, 2, \dots, n\}$ tels que pour tous $k \in \{1, 2, \dots, r\}$, $A_{i_k, j_k} \in]0, 1[$ et $A_{i_k, j_{k+1}} \in]0, 1[$ avec $j_{r+1} = j_1$.
- 10 En considérant la matrice $B = (B_{i,j})_{1 \le i,j \le n}$ de $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\begin{cases} \mathbf{B}_{i_k,j_k} = 1 & \text{si } k \in \{1,2,\dots,r\} \\ \mathbf{B}_{i_k,j_{k+1}} = -1 & \text{si } k \in \{1,2,\dots,r\} \\ \mathbf{B}_{i,j} = 0 & \text{dans les autres cas} \end{cases}$$

montrer que A n'est pas un élément extrémal de \mathcal{B}_n . En déduire l'ensemble des éléments extrémaux de \mathcal{B}_n .

On dit qu'une matrice $M = (M_{i,j})_{1 \le i,j \le n}$ de $\mathcal{M}_n(\mathbb{R}^+)$, à coefficients positifs ou nuls, admet un *chemin stricte-ment positif* s'il existe une permutation σ de $\{1,2,\ldots,n\}$ telle que $M_{\sigma(1),1}M_{\sigma(2),2}\cdots M_{\sigma(n),n} > 0$.

On démontre par récurrence sur n, et on admet le résultat suivant : si M est à coefficients positifs ou nuls et si toute matrice extraite de M ayant p lignes et q colonnes avec p + q = n + 1 n'est pas la matrice nulle, alors M admet un chemin strictement positif.

11 Montrer que A admet un chemin strictement positif.

On note σ une permutation de $\{1,2,\ldots,n\}$ telle que $A_{\sigma(1),1}A_{\sigma(2),2}\cdots A_{\sigma(n),n}>0$ et on pose $\lambda_0=\min_j\left(A_{\sigma(j),j}\right)$ et $A_0=\frac{1}{1-\lambda_0}(A-\lambda_0M_\sigma)$ où M_σ est la matrice de permutation associée à σ .

© Laurent Garcin MP Dumont d'Urville

12 Montrer que A₀ est bien définie, et que c'est une matrice bistochastique contenant au moins un élément nul de plus que A.

En raisonnant par récurrence, démontrer que A s'écrit comme une combinaison linéaire d'un nombre fini de matrices de permutation M_0, M_1, \dots, M_s :

$$A = \lambda_0 M_0 + \lambda_1 M_1 + \cdots + \lambda_s M_s$$

où les coefficients λ_i sont tous strictement positifs et de somme $\sum_{i=0}^{s} \lambda_i = 1$.

Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$. Montrer que $\inf_{M \in \mathcal{P}_n} \varphi(M)$ existe. En déduire que $\inf_{M \in \mathcal{B}_n} \varphi(M)$ existe et est atteint en une matrice de permutation.

III Inégalité de Hoffman-Wielandt

Dans cette partie, on munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire défini par $\langle A, B \rangle = \operatorname{tr}(A^TB)$ et de la norme euclidienne associée notée $\|\cdot\|$. On note $S_n(\mathbb{R})$ le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ des matrices symétriques et $O_n(\mathbb{R})$ celui des matrices orthogonales.

15 Montrer que pour tous $A \in \mathcal{M}_n(\mathbb{R})$ et P, Q dans $O_n(\mathbb{R})$, on a $\|PAQ\| = \|A\|$.

Dans la suite de cette partie, A et B désignent deux matrices symétriques réelles.

- Montrer qu'il existe deux matrices diagonales réelles D_A , D_B , et une matrice orthogonale $P = (P_{i,j})_{1 \le i,j \le n}$ telles que $||A B||^2 = ||D_A P PD_B||^2$.
- Montrer que la matrice R définie par $R_{i,j} = (P_{i,j})^2$ pour tous i, j dans $\{1, 2, ..., n\}$ est bistochastique et que

$$\|A - B\|^2 = \sum_{1 \le i, j \le n} R_{i,j} |\lambda_i(A) - \lambda_j(B)|^2$$

où $\lambda_1(A), \dots, \lambda_n(A)$ désignent les valeurs propres de A et $\lambda_1(B), \dots, \lambda_n(B)$ celles de B.

18 En déduire que

$$\min_{\sigma} \sum_{j=1}^{n} |\lambda_{\sigma(j)}(\mathbf{A}) - \lambda_{j}(\mathbf{B})|^{2} \le \|\mathbf{A} - \mathbf{B}\|^{2}$$

où le minimum porte sur l'ensemble de toutes les permutations de $\{1, 2, ..., n\}$.

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé et L^2 l'ensemble des variables aléatoires définies sur cet espace admettant un moment d'ordre 2. Pour tout X de L^2 , on note $X \sim \mathbb{P}_X$ si X suit la loi \mathbb{P}_X . Pour tout couple $(\mathbb{P}_1, \mathbb{P}_2)$ de lois, on pose

$$d^{2}(\mathbf{P}_{1}, \mathbf{P}_{2}) = \inf_{\substack{\mathbf{X}, \mathbf{Y} \in \mathbf{L}^{2} \\ \mathbf{X} \sim \mathbb{P}_{1}, \mathbf{Y} \sim \mathbb{P}_{2}}} \mathbb{E}(|\mathbf{X} - \mathbf{Y}|^{2})$$

Soit (a_1, \ldots, a_n) et (b_1, \ldots, b_n) deux familles de réels. On note \mathbb{P}_1 la loi uniforme sur $\{a_1, \ldots, a_n\}$ et \mathbb{P}_2 la loi uniforme sur $\{b_1, \ldots, b_n\}$.

19 Montrer que

$$d^{2}(\mathbb{P}_{1}, \mathbb{P}_{2}) = \frac{1}{n} \sum_{i=1}^{n} |a(i) - b(i)|^{2}$$

où l'on a noté $a(1) \le \cdots \le a(n)$ et $b(1) \le \cdots \le b(n)$ les suites (a_1, \ldots, a_n) et (b_1, \ldots, b_n) réordonnées par ordre croissant. En déduire que pour toutes matrices symétriques réelles A, B de valeurs propres respectives (a_1, \ldots, a_n) et (b_1, \ldots, b_n) , on a l'inégalité :

$$d^{2}(\mathbb{P}_{1}, \mathbb{P}_{2}) \leq \|\mathbf{A} - \mathbf{B}\|^{2}$$