Proabilidade e Estatística

Exercícios sobre Probabilidade e Medida

Construindo medidas Os próximos dois exercícios versarão sobre a construção de probabilidades em diferentes espaços.

Exercício 1 (Probabilidade Elementar) Nesse exercício, veremos como construir probabilidades em espaços elementares. Seja Ω um conjunto finito. Considere um conjunto de números não-negativos $\{p_{\omega} : \omega \in \Omega\}$ tal que $\sum_{\omega \in \Omega} p_{\omega} = 1$. Cada p_{ω} pode ser visto como a probabilidade de que cada um dos $\omega \in \Omega$ seja sorteado pela incerteza do problema em questão.

a Considere o espaço mensurável $(\Omega, 2^{\Omega})$. Mostre que a função $S: 2^{\Omega} \to \mathbb{R}$ dada por:

$$S(A) := \sum_{a \in A} p_a \,, \quad A \in 2^{\Omega} \,,$$

define uma medida deprobabilidade sobre 2^{Ω} .

- b Mostre que a medida S é a única extensão possível de $\{\{a\}: a \in \mathcal{A}\}$ para 2^{Ω} que preserva as probabilidades $\{p_a\}_a$, no seguinte sentido: qualquer outra medida H sobre 2^{Ω} que satisfaz $H[\{a\}] = p_a$, $\forall a \in \Omega$, é tal que H = S.
- c Mostre que, tomando como base o espaço mensurável $(\Omega, 2^{\Omega})$, qualquer função $f: \Omega \mapsto \mathbb{R}$ constitui uma variável aleatória.

Exercício 2 (Construindo a medida uniforme na reta) O obejtivo destes exercícios consite em construir o espaço $((0,1],\mathcal{B}(0,1],\widetilde{\text{Leb}})$.

a Considere o conjunto \mathcal{A} de subconjuntos de (0,1] da forma:

$$\bigcup_{i=1}^n (a_i, b_i]$$
,

com $n \in \mathbb{N}$ e $0 \le a_1 \le b_1 \le a_2 \le b_2 \le \ldots \le a_n \le b_n \le 1$. Mostre que esse conjunto \mathcal{A} forma uma **álgebra**, no seguinte sentido: (1) $(0,1], \emptyset \in \mathcal{A}$; (2) se $A \in \mathcal{A}$, então $A^{\complement} \in \mathcal{A}$; e (3) sejam $A_1, A_2, \ldots A_k$ elementos de \mathcal{A} , com $k < \infty$, então $\bigcup_{l=1}^k A_l \in \mathcal{A}$.

b Defina a função $\widetilde{\text{Leb}}: \mathcal{A} \mapsto [0,1]$, da seguinte forma. Se $A = \bigcup_{i=1}^{n} (a_i, b_i]$, então

$$\widetilde{\text{Leb}}(A) = \sum_{i=1}^{n} (b_i - a_i).$$

Mostre que $\widetilde{\text{Leb}}$ está bem definida, isto é, que o valor de $\widetilde{\text{Leb}}(A)$ é o mesmo para duas representações distintas de um mesmo conjunto A em termos de união de intervalos disjuntos; e que $\widetilde{\text{Leb}}(\emptyset) = 0$ e $\widetilde{\text{Leb}}(0, 1] = 1$.

c Mostre que Leb é aditiva em \mathcal{A} , isto é, para $A_1, A_2, \dots A_k, k < \infty$, elementos disjuntos de \mathcal{A} :

$$\widetilde{\operatorname{Leb}}(\cup_{l=1}^k A_l) = \sum_{l=1}^k \widetilde{\operatorname{Leb}}(A_l)$$

d Usando o resultado anterior, mostre que $\widetilde{\text{Leb}}$ é enumeravelmente **aditiva** em \mathcal{A} , isto é, para $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\infty},\ A_j\cap A_i=\emptyset$ se $i\neq j,$ e tal que $\bigcup_{l=1}^{\infty}A_l\in\mathcal{A}$:

$$\widetilde{\operatorname{Leb}}(\cup_{l=1}^{\infty} A_l) = \sum_{l=1}^{\infty} \widetilde{\operatorname{Leb}}(A_l)$$

 $\it Dica:$ para os itens (c) e (d), veja o Teorema 1.3 em Billingsley (1995), "Probability and Measure".

e Recorra ao Teorema 1.7 de Williams (1991), "Probability with Martingales" para concluir que que existe uma única medida de probabilidade que estende $\widetilde{\text{Leb}}$ a $\mathcal{B}(0,1]$.

Exercício 3 (Conjuntos não mensuráveis) O objetivo deste exercício consiste em mostrar que existem conjuntos que não estão em $\mathcal{B}(0,1]$. Para começar, definamos a seguinte operação entre dois números $x,y \in (0,1]$.

$$x \oplus y = \begin{cases} x + y, & \text{se } x + y \le 1\\ x + y - 1, & \text{se } x + y > 1 \end{cases}$$

É possível mostrar (não faremos isso) que, para todo $x \in (0,1]$ e $A \in \mathcal{B}[0,1)$, o conjunto $A \oplus x \coloneqq \{a \oplus x : x \in A\}$ é mensurável (i.e. $A \oplus x \in \mathcal{B}[0,1)$) e que $\text{Leb}(A \oplus x) = \text{Leb}(A)$ (a medida de Lebesgue é invariante a translações).

- a Defina a relação \sim sobre [0,1) da forma: $x\sim y\iff \exists r\in\mathbb{Q}\cap(0,1], x\oplus r=y.$ Mostre que \sim é uma relação de equivalência, i.e. reflexiva, simétrica e transitiva.
- b Para $x \in [0,1)$, defina a classe de equivalência $[x]_{\sim} = \{a \in [0,1] : a \sim x\}$. Mostre que, se $[x]_{\sim} \neq [y]_{\sim}$, então $[x]_{\sim} \cap [y]_{\sim} = \emptyset$, e que $\cup_{a \in (0,1]} [a]_{\sim} = (0,1]$. Conclua que a coleção $\mathcal{S} = \{[a]_{\sim} : a \in (0,1]\}$ forma uma partição de (0,1].
- c Considere o conjunto $H = \{h \in s : s \in \mathcal{S}\}$ que consiste em coletar um elemento de cada uma das classes de equivalência distintas de \sim . Considere os conjuntos $H_n = H \oplus r_n$, $n \in \mathbb{N}$, onde $(r_n)_{n \in \mathbb{N}}$ é uma enumeração dos números racionais em (0,1]. Mostre que os H_n são disjuntos, e que $\cup_{n \in \mathbb{N}} H_n = (0,1]$.
- d Conclua que $H \notin \mathcal{B}(0,1]$. *Dica:* suponha, por contradição, que $H \in \mathcal{B}(0,1]$, e use a igualdade do item anterior.

Exercício 4 (extensão do lema do π -sistema) prove a seguinte extensão do lema do π -sistema. Seja (Ω, Σ) um espaço mensurável, e μ_1 e μ_2 duas medidas sobre Σ que são σ -finitas num conjunto \mathcal{I} , i.e. tais que existem $E_1, E_2, E_3 \ldots \in \mathcal{I}$ disjuntos com $\Omega = \bigcup_{i=1}^{\infty} E_i$ com $\mu_1(E_i) < \infty$ e $\mu_2(E_i) < \infty$ para todo $i \in \mathcal{N}$. Prove que, se $\mu_1(I) = \mu_2(I)$ para todo $I \in \mathcal{I}$, e \mathcal{I} é um π -sistema que gera Σ , então $\mu_1 = \mu_2$.

Exercício 5 (um contraexemplo) Considere o espaço de medida $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \text{Leb})$, onde Leb é a medida de Lebesgue sobre a reta, que satisfaz:

$$Leb(a, b] = b - a, \quad \forall -\infty < a \le b < \infty.$$

- a Use o resultado da questão anterior para concluir que as medidas dos intervalos (a,b] caracterizam a medida de Lebesgue na reta.
- b Considere a sequência de conjuntos mensuráveis $E_n = (n, \infty), n \in \mathbb{N}$. Mostre que $\mu(E_n) = \infty$ para todo $n \in \mathbb{N}$, e que $\mu(\cap_{n \in \mathbb{N}} E_n) = 0$. Por que o teorema de convergência visto em aula não vale nesse caso?

Exercício 6 (um macaco e uma máquina de escrever) Seja \mathcal{V} o conjunto de teclas de uma máquina de escrever. Considere um experimento em que um macaco digita sequencialmente em uma máquina de escrever, infinitamente no tempo. O espaço amostral é dado por $\mathcal{V}^{\mathbb{N}}$, o espaço de sequências com valores em \mathcal{V} . Considere a σ -álgebra \mathcal{F} gerada pelos eventos $\{\omega \in \mathcal{V}^{\mathbb{N}} : \omega_k = v\}$, para todo $k \in \mathbb{N}$ $v \in \mathcal{V}$. Esses são os eventos em que o macaco digita um caractere v na k-ésima posição do texto.

- a Considere o subconjunto \mathcal{I} de eventos da forma $\{\omega \in \mathcal{V}^{\mathbb{N}} : \omega_{i_1} = v_1, \omega_{i_2} = v_2, \ldots, \omega_{i_k} = v_k\}$, para todo $k < \infty$, $i_1 < i_2 < \ldots < i_k \in v_1, v_2 \ldots, v_k \in \mathcal{V}$. Inclua também o conjunto vazio em \emptyset em \mathcal{I} . Mostre que \mathcal{I} é um π -sistema e $\mathcal{I} \subset \mathcal{F}$.
- b Suponha agora que o macaco digita as teclas de forma uniforme e independente no tempo, isto é, considere a probabilidade \mathbb{P} sobre $(\mathcal{V}^{\mathbb{N}}, \mathcal{F})$ da forma:

$$\mathbb{P}[\{\omega \in \mathcal{V}^{\mathbb{N}} : \omega_{i_1} = v_1, \omega_{i_2} = v_2, \dots, \omega_{i_k} = v_k\}] = \frac{1}{|\mathcal{V}|^k}$$

para todo evento em $\mathcal I$ não vazio, e $\mathbb P[\emptyset]=0$. Use o lema do π -sistema para concluir que as probabilidades sobre $\mathcal I$ caracterizam $\mathbb P$.

c Seja S_n o evento em que, a partir da enésima posição do texto, o macaco digita as obras completas de Shakespeare. Use o segundo lema de Borell-Cantelli para concluir que a probabilidade de que o macaco digita as obras completas de Shakespeare infinitas vezes é 1.

Exercício 7 Seja (Ω, Σ) um espaço mensurável, e $f: \Omega \mapsto \mathbb{R}$ uma função $\Sigma/\mathcal{B}(\mathbb{R})$ -mensurável. Mostre que as seguintes funções são mensuráveis:

a
$$g = \max\{f, 0\}.$$

b
$$g = \min\{f, 0\}.$$

c $g = s \circ f$, onde $s : \mathbb{R} \mapsto \mathbb{R}$ é uma função contínua.