

Chapitre 1

Anneaux de valuation discrète et de Dedekind.

1.1 Anneaux de valuation discrète

Pour le contexte, moi je m'intéresse au cas intègre déjà et au cas où le DVR est un $A_{\mathfrak{p}}$ pour un anneau noethérien intègre de dimension 1. Sa clôture intégrale dans $\operatorname{Frac}(A)$ devient un anneau de Dedekind.

1.1.1 Les 2 définitions.

Y'a deux manières de les voir :

- 1. Dans un corps (K, v) muni d'une valuation discrète. Avec $A = \{x \in K | v(x) \ge 0\}$. $(v(x) = 0 \implies v(x^{-1}) = 0)$
- 2. Comme un anneau principal (donc intègre) ayant un seul idéal premier non nul.

L'implication 1. implique 2. consiste juste à se placer dans l'espace ambiant K.

L'autre côté consiste à construire une valuation par l'absurde.

1.1.2 Première caractérisation

Équivalences. Dans un anneau noethérien,

DVR \equiv local, noethérien, $\mathfrak{m} = (\pi)$ non nilpotent.

On veut juste écrire $x=\pi^n u$ de manière unique, on peut juste utiliser que $t\in A$ implique $t\in \mathfrak{m}$ ou $t\in A^{\times}$.

1.1.3 Deuxième caractérisation

Équivalences. DVR \equiv Noethérien, intégralement clos, un seul idéal premier $\neq 0$ (local mais pas un corps ? Non! Tu verras pq.).

Là c'est un peu plus dur. Le point c'est de montrer que \mathfrak{m} est inversible, alors \mathfrak{m} est principal. On note $\mathfrak{m}' = \{x \in K | x\mathfrak{m} \subset A\}$. On a

$$\mathfrak{mm}' \subset A \text{ et } A \subset \mathfrak{m}' \text{ implique } \mathfrak{m} \subset \mathfrak{mm}'.$$

d'où $\mathfrak{m}\mathfrak{m}'=\mathfrak{m}$ ou A. Maintenant en fait

si
$$\mathfrak{m}\mathfrak{m}'=A$$
alors $\sum x_iy_i=1$ d'où $u=x_{i_0}y_{i_0}\in A-\mathfrak{m}=A^\times$

par l'absurde. En particulier tout $z \in \mathfrak{m}$ se réécrit

$$z = x_{i_0}(u^{-1}y_{i_0}z)$$

parce que $x_{i_0}y_{i_0}u^{-1}=1$ et $y_{i_0}z\in A!$

1.1.4 Résumé de preuve

On montre en trois temps que

- 1. Si m est inversible alors il est principal.
- 2. Si $\mathfrak{m}\mathfrak{m}' = \mathfrak{m}$ et A est intégralement clos alors $\mathfrak{m}' = A$.
- 3. Si A a un seul idéal non nul (et pas juste local) alors $\mathfrak{m}' \neq A$.

Le premier je l'ai expliqué avant. Le deuxième c'est que si $z \in \mathfrak{m}'$ alors $A[z] \subset \mathfrak{m}'$ qui est t.f. D'où le résultat. Le troisème utilise que si $x \in \mathfrak{m} - 0$, alors

- 1. $A_x = K$
- 2. En faisant varier x, $\mathfrak{m}^N \subset zA$ pour un N minimal et $z \in A 0$.
- 3. Pour $z \in \mathfrak{m}$, on a $y \in \mathfrak{m}^{N-1} zA$ puis $y/z\mathfrak{m}' A$.

Note 1. Le troisième point se traduit en $Spec(K) = D(x) \subset Spec(A)$ et

$$A_x = \mathcal{O}_{D(x)}(D(x))$$

$$= \mathcal{O}_{Spec(A)}(Spec(A))|_{(0)}$$

$$= \mathcal{O}_{Spec(A),(0)}$$

$$= (A \setminus 0)^{-1}A$$

$$= K$$

Aussi, cette histoire de $y \in \mathfrak{m}^{n-1} - zA$ et $y\mathfrak{m} \subset zA$ ça fait remarquer de l'arithmétique plus habituelle.

Anneaux de valuation discrète et de Dedekind.

1.1.5 But de ces caractérisations

Celle qui nous intéresse c'est la deuxième qui permet de montrer que \mathfrak{m} est principal. Alors on peut utiliser la première pour montrer que c'est un DVR.

1.2 Anneaux de Dedekind

On montre que

Équivalences. $A_{\mathfrak{p}}$ est un dvr pour tout $\mathfrak{p} \equiv A$ est noethérien intégralement clos de dimension 1.

On sait que un $DVR \equiv$ noethérien intègre avec un seul idéal premier non nul. I.e. de dimension ≤ 1 . Donc faut juste Que intégralement clos équivaut à tout les $A_{\mathfrak{p}}$ sont intégralement clos.

Remarque 1. Gauche à droite c'est l'équivalence habituelle et droite à gauche c'est que le dénominateur est dans aucun idéal maximal. Donc est inversible.

1.2.1 Relever l'inversibilité pour les premiers

De l'inversibilité de \mathfrak{p} dans $A_{\mathfrak{p}}$ je veux relever dans A. En fait ça vient du fait que $_{-} \otimes_{A} A_{\mathfrak{p}}$ est un morphisme de monoides $Mod_{A, \subset K} \to Mod_{A_{\mathfrak{p}}, \subset K}$ additif et multiplicatif!

1.2.2 Spec(A) est de dimension 1, i.e. V(I) est fini pour $I \neq (0)$.

Si on prends $x \in A$, psq si $\mathfrak{p}_1, \ldots, \mathfrak{p}_k, \ldots$ le contiennent alors on a une chaine

$$A \subset (A : \mathfrak{p}_1) \subset (A : \mathfrak{p}_1 \cap \mathfrak{p}_2) \subset \ldots \subset (A : \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_k) \subset \ldots \subset x^{-1}A$$

d'où ça stationne et c'est fini.

Comme I est de type fini on obtient direct que V(I) est fini.

1.2.3 Valuations et décomposition

Étant donné $I \subset A$, on a $I_{\mathfrak{p}} = \mathfrak{p}^m$ et on peut définir $v_{\mathfrak{p}}(I) = m$, on l'étend à $I \subset K$ par (I : A).

1.2.4 Relever l'inversibilité en général

Il transforme aussi (I:J) en $(I_{\mathfrak{p}}:J_{\mathfrak{p}})$. Concrètement :

$$(\mathfrak{p}.(A:\mathfrak{p}))\otimes_A A_{\mathfrak{p}}=(\mathfrak{p}A_{\mathfrak{p}}.(A_{\mathfrak{p}}:\mathfrak{p}A_{\mathfrak{p}}))=A_{\mathfrak{p}}$$

sauf que à gauche $\mathfrak{p}.(A:\mathfrak{p})\subseteq A$ est un idéal et y'a que A qui a pour image $A_{\mathfrak{p}}.$

Remarque 2. On a utilisé que $\mathfrak{p} \mapsto \mathfrak{p}A_{\mathfrak{p}}$ est injectif.

Remarque 3. Ca se généralise direct à I un idéal fractionnaire car $I \otimes_A A_{\mathfrak{p}} = \mathfrak{p}^n$ d'où $(I\mathfrak{p}^{-n})_{\mathfrak{p}} = A_{\mathfrak{p}}$.

Note 2. Le foncteur $_{-}\otimes_{A}A_{\mathfrak{p}}$ de Mod_{A} dans $Mod_{A_{\mathfrak{p}}}$ a surement les mêmes propriétés pour les bonnes définitions de produits et sommes.

1.2.5 Décomposition en idéaux

Note 3. Faire une section sur la décomposition en idéaux primaires.

Chapitre 2

Extensions d'anneaux de Dedekind

2.1 Le cadre général

Comme on part d'un anneau de Dedekind \mathcal{O}_K . La première question c'est Quand est-ce que

$$\mathcal{O}_K - \tilde{\mathcal{O}}_K$$

est une extension d'anneaux de Dedekind. La question se réduit systématiquement à

Est-ce que $\tilde{\mathcal{O}}_K$ est noethérien ?

2.2 Ésthétique des anneaux de Dedekind

L'anneau de Dedekind est un anneau noethérien de dimension 1. Autrement dit, on est sur un schéma affine de dimension 1 :

$$\operatorname{Spec}(\mathcal{O}_K) \to \operatorname{Spec}(\mathbb{Z})$$

Mais surtout, tout ses localisés à des premiers sont des anneaux de valuation discrète! Ça ça m'intéresse pour les raisons suivantes :

- 1. On obtient un local-global en localisant.
- 2. On peut compléter et obtenir le cadre des corps locaux.

en particulier on a le pont de, si

$$K - L$$

est une extension de corps finis, on peut en faire une extension de corps valués via le processus suivant :

- 1. D'un premier de \mathcal{O}_K on obtient $(\mathcal{O}_K)_{\mathfrak{m}_K}$.
- 2. On obtient aussi un corps valué $(K, |.|_{\mathfrak{m}_K})$.
- 3. De $\mathfrak{m}_K \tilde{\mathcal{O}}_K = \prod \mathfrak{m}_i^{e_i}$ on obtient des premiers \mathfrak{m}_i .
- 4. D'un $\mathfrak{m}_i|\mathfrak{m}_K$ on obtient une extension de valeur absolue $|.|\mathfrak{m}_i|$ et une extension de DVR

$$\mathcal{O}_K - (\tilde{\mathcal{O}}_K)_{\mathfrak{m}_i}$$
.

Géometriquement c'est l'étude de la fibre en $\mathfrak{m}_K \in \operatorname{Spec}(\mathcal{O}_K)$. Maintenant, on cherche a obtenir le e tel que $\mathfrak{m}_K = \mathfrak{m}_i^e$. On obtient la cardinalité de la fibre et l'indice de ramification des uniformisantes.

En fait maintenant le point puissant, c'est le point où on complète K en \mathfrak{m}_K et L en \mathfrak{m}_i . Alors

$$\widehat{K} - \widehat{L}$$

a dimension $f_i e_i$.

Remarque 4. Un point qui semble flou là c'est : mais si je complète K en \mathfrak{m}_K , $\widehat{L} = L.\widehat{K}$ donc il est où le choix de compléter en \mathfrak{m}_i pour L? On dirait que le choix est immédiat et les idéaux se contractent en un. En fait écrire

$$L.\hat{K}$$

équivaut à faire vivre L et \widehat{K} au même endroit. D'où à plonger L dans une clôture de K, K^c et la regarder dans $(\widehat{K})^c$. Sinon on pourrait regarder

$$L \otimes_K \widehat{K}$$

et là son spectre est non trivial! Choisir

$$L \otimes_K \widehat{K} \to (\widehat{K})^c$$

équivaut à choisir un idéal maximal.

On peut maintenant utiliser la théorie des corps complets et Hensel!

2.3 Les points omis

J'ai direct dit que $\tilde{\mathcal{O}}_K$ était de Dedekind. En fait si L/K est finie c'est toujours vrai.

2.4 Quand est-ce que $\tilde{\mathcal{O}}_K$ est monogène sur \mathcal{O}_K ?

2.5 L'étude du cas complet

2.6 Quand est-ce que $\tilde{\mathcal{O}}_K$ est noethérien ?

Comme d'hab on prends

L/K finie avec $K = Frac(\mathcal{O}_K)$ un anneau de valuation discrète

Ensuite on regarde sa fermeture intégrale dans L, $\tilde{\mathcal{O}}_K$. On veut une extension de DVR, pour ça y faut que $\tilde{\mathcal{O}}_K$ soit de Dedekind. Le problème c'est toujours de montrer que c'est noethérien.

2.6.1 Cas séparable

Étant donnée L/K finie séparable, on a tout ce qui nous faut. On a un discriminant non nul bien défini, d'où si $L = \bigoplus Ke_i$ alors

$$(Tr(e_ie_j))_{i,j}$$

est non dégénérée. Puis on a une base duale à e_i , i.e. e_i^* telle que $Tr(e_i^*e_j) = \delta_{ij}$. Avec ça on peut

- 1. à partir de e_i une base de L/K dans $\tilde{\mathcal{O}}_K$, obtenir sa base duale pour la trace e_i^* .
- 2. montrer que tout élément entier $b = \sum \lambda_i e_i^*$ vérifie $\lambda_i \in \mathcal{O}_K$, via $Tr(be_i) = \lambda_i!$
- 3. D'où \mathcal{O}_K est un sous \mathcal{O}_K -module d'un module de type fini donc noethérien.