Calcul Diferențial și Integral - Curs 8

Derivabilitatea funcțiilor de mai multe variabile reale.

EVA KASLIK, RALUCA MUREŞAN

Derivate parțiale - exemplu

Indicele termic depinde de temperatură și de umiditatea relativă: I = f(T, H).

Table 1 Heat index *I* as a function of temperature and humidity

Relative humidity (%)

Kerative numberty (76)									
T	50	55	60	65	70	75	80	85	90
90	96	98	100	103	106	109	112	115	119
92	100	103	105	108	112	115	119	123	128
94	104	107	111	114	118	122	127	132	137
96	109	113	116	121	125	130	135	141	146
98	114	118	123	127	133	138	144	150	157
100	119	124	129	135	141	147	154	161	168

Actual temperature (°F)

Fixând H = 70%, considerăm g(T) = f(T, 70) - descrie cum depinde indicele termic I de temperatura T atunci când umiditatea relativă este de 70%. Rata de variatie:

$$g'(96) = \lim_{h \to 0} \frac{g(96+h) - g(96)}{h} = \lim_{h \to 0} \frac{f(96+h,70) - f(96,70)}{h} = \frac{\partial f}{\partial T}(96,70)$$

Derivate parţiale - exemplu

$$\begin{aligned} & \text{Pentru } h = 2 \text{ obţinem: } g'(96) \simeq \frac{f(98,70) - f(96,70)}{2} = \frac{133 - 125}{2} = 4. \\ & \text{Pentru } h = -2 \text{ obţinem: } g'(96) \simeq \frac{f(94,70) - f(96,70)}{-2} = \frac{118 - 125}{-2} = 3.5. \end{aligned}$$

Considerand valoarea medie, obţinem următoare aproximare:

$$\frac{\partial f}{\partial T}(96,70) = g'(96) \simeq 3.75$$

 \implies atunci când temperatura este $96^{\circ}F$ și umiditatea relativă este 70%, indicele termic crește cu aproximativ $3.75^{\circ}F$ pentru fiecare grad de creștere a temperaturii.

Similar,

$$\frac{\partial f}{\partial H}(96,70) \simeq 0.9$$

 \implies atunci când temperatura este $96^{\circ}F$ şi umiditatea relativă este 70%, indicele termic creşte cu aproximativ $0.9^{\circ}F$ pentru fiecare procent de creştere a umidităţii relative.

3/20

Derivate parţiale - definiţii

Fie $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$ o funcție reală de n variabile și $a=(a_1,a_2,...,a_n)\in \mathrm{Int}(A).$

Funcţia f este derivabilă parţial în raport cu variabila x_i în punctul a dacă următoarea limită există şi este finită:

$$\lim_{h \to 0} \frac{f(a_1, ..., a_{i-1}, a_i + h, a_{i+1}, ..., a_n) - f(a_1, ..., a_{i-1}, a_i, a_{i+1}, ..., a_n)}{h}$$

Valoarea limitei se notează cu $\frac{\partial f}{\partial x_i}(a)$ şi se numește derivata parţială a funcţiei f în raport cu x_i în punctul a.

Vectorul

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), ..., \frac{\partial f}{\partial x_n}(a)\right)$$

se numeşte vectorul gradient (gradientul) funcţiei f în punctul a.

Remarci

- Pentru calculul derivatelor parţiale, trebuie sa derivăm (folosind metodele cunoscute) în raport cu variabila x_i , păstrând toate celelalte variabile fixate.
- Toate regulile de derivare (pentru sumă, produs, raport) se păstrează.
- Derivabilitatea parţială a unei funcţii vectoriale de n variabile este echivalentă cu derivabilitatea parţială a tuturor componentelor scalare.
- Pentru o funcție de două variabile f(x, y) derivatele parțiale sunt:

$$\frac{\partial f}{\partial x} = f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

$$\frac{\partial f}{\partial y} = f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

Exemplu

Considerăm funcţia

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \operatorname{dacă}\left(x,y\right) \neq (0,0) \\ 0 & \operatorname{dacă}\left(x,y\right) = (0,0) \end{cases}$$

Această funcție este continuă, deoarece:

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} x \cdot \underbrace{\frac{x^2}{x^2 + y^2}}_{\in [0,1]} = 0 = f(0,0).$$

Derivatele parţiale în (0,0) sunt calculate astfel:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h - 0}{h} = 1$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

Exemplu

Derivatele parţiale într-un punct arbitrar $(x,y) \neq (0,0)$ se calculează folosind formulele uzuale:

$$\frac{\partial f}{\partial x} = f_x(x,y) = \left(\frac{x^3}{x^2 + y^2}\right)'_x = \frac{3x^2(x^2 + y^2) - 2x \cdot x^3}{(x^2 + y^2)^2} = \frac{x^4 + 3x^2y^2}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y} = f_y(x,y) = \left(\frac{x^3}{x^2 + y^2}\right)'_y = \frac{-2x^3y}{(x^2 + y^2)^2}$$

În concluzie, derivatele parţiale sunt:

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^4 + 3x^2y^2}{(x^2 + y^2)^2} & \operatorname{dacă}(x,y) \neq (0,0) \\ 1 & \operatorname{dacă}(x,y) = (0,0) \end{cases}$$

$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{-2x^3y}{(x^2+y^2)^2} & \operatorname{dacă}(x,y) \neq (0,0) \\ 0 & \operatorname{dacă}(x,y) = (0,0) \end{cases}$$

Interpretarea derivatelor parţiale

Rate de variație: Dacă z = f(x, y) atunci:

- $\frac{\partial f}{\partial x}$ reprezintă rata de variație a lui z în raport cu x, când y este fixat;
- ullet $\frac{\partial f}{\partial y}$ reprezintă rata de variație a lui z în raport cu y, când x este fixat.

Pante: z = f(x, y) este o suprafață S în \mathbb{R}^3 .

P(a,b,c) un punct pe suprafaţǎ: c=f(a,b).

$$\begin{array}{lll} \frac{\partial f}{\partial x}(a,b) &=& f_x(a,b) \text{ } \Si \text{ } \frac{\partial f}{\partial y}(a,b) &=& f_y(a,b) \\ \text{reprezintă pantele tangentelor în punctul} \\ P(a,b,c) \text{ la curbele } C_1 \text{ and } C_2 \text{ } \text{determinate de intersecția suprafeței } S \text{ cu planele } y=b \text{ } \Si \text{ } \text{respectiv, cu } x=a. \end{array}$$

Derivate parţiale - exemplu

Indicele de masă corporală al unei persoane se definește ca

$$B(m,h)=rac{m}{h^2},\quad ext{unde } m ext{ și } h ext{ sunt greutatea și înălţimea persoanei.}$$

$$\frac{\partial B}{\partial m} = \frac{1}{h^2} \quad \Longrightarrow \quad \frac{\partial B}{\partial m}(64, 1.68) = \frac{1}{(1.68)^2} \simeq 0.35 \ (kg/m^2)/kg$$

Aceasta este rata de modificare a IMC în raport cu greutatea, pentru o persoană cu greutatea de $64\ kg$ şi înălţimea de $1.68\ m$. Dacă greutatea creşte cu $1\ kg$, şi înălţimea rămâne neschimbată, IMC creşte cu aproximativ 0.35.

$$\frac{\partial B}{\partial h} = \frac{-2m}{h^3} \implies \frac{\partial B}{\partial h}(64, 1.68) = -\frac{128}{(1.68)^3} \simeq -27 (kg/m^2)/m^2$$

Aceasta este rata de modificare a IMC în raport cu înălţimea, pentru o persoană cu greutatea de 64~kg și înălţimea de 1.68~m. Dacă persoana se află în creştere și greutatea sa rămâne neschimbată, o creştere de 1~cm în înălţime implică o descreştere a IMC cu aproximativ 27(0.01) = 0.27.

Planul tangent și derivatele parțiale

Dacă funcția $f:\mathbb{R}^2\to\mathbb{R}$ are derivate parțiale continue, ecuația planului tangent la suprafața z=f(x,y) în punctul $P(x_0,y_0,z_0)$ este

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Exemplu. Ecuația planului tangent la paraboloidul eliptic $z=2x^2+y^2$ în punctul P(1,1,3) este:

$$z - 3 = 4(x - 1) + 2(y - 1)$$

$$\implies z = 4x + 2y - 3$$

Derivatele după o direcţie dată

Fie $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$ o funcție reală de n variabile reale, $a\in\mathrm{Int}(A)$ și un vector $u\in\mathbb{R}^n$ a.î. $\|u\|=1$.

Dacă următoarea limită există și este finită

$$\lim_{h \to 0} \frac{f(a+h \cdot u) - f(a)}{h} = \lim_{h \to 0} \frac{f(a_1 + hu_1, a_2 + hu_2, \dots, a_n + hu_n) - f(a_1, a_2, \dots, a_n)}{h}$$

atunci ea se numeşte derivata după direcţia u a funcţiei f în punctul a şi se notează cu $\nabla_u f(a)$.

! Derivatele parţiale sunt cazuri particulare ale derivatelor după o direcţie dată: derivata parţială a f în a după direcţia $e_i = (0, ..., 0, 1, 0, ..., 0)$ este

$$\nabla_{e_i} f(a) = \frac{\partial f}{\partial x_i}(a) \qquad i = \overline{1, n}$$

! Legătura dintre derivata după o direcție dată și gradient:

$$\nabla_u f(a) = \nabla f(a) \cdot u$$
 (unde $||u|| = 1$)

Derivata după o direcţie dată - exemple

Exemplu. Calculați derivata după o direcție dată a funcției

$$f(x,y,z)=x^2+xy+z^2 \text{ după direcția } u=\left(\frac{1}{3},\frac{2}{3},\frac{2}{3}\right) \text{ în punctul } a=(1,2,3)$$

Calculăm mai întâi gradientul:

$$\nabla f = (2x + y, x, 2z) \implies \nabla f(a) = (4, 1, 6)$$

Deci, derivata după direcţia u este:

$$\nabla_u f(a) = \nabla f(a) \cdot u = (4, 1, 6) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) = 4 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} + 6 \cdot \frac{2}{3} = 6.$$

Derivata după o direcţie dată - exemple

Exemplu. Harta temperaturilor.

Vectorul unitate în direcţia sudest:

$$u = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

Rata de variaţie a temperaturii când călătorim în direcţia sudest este:

$$\nabla_u T \simeq \frac{60-50}{75} \simeq 0.13^{\circ} \text{F/mi}$$

Diferenţiabilitate

Teoremă

Fie $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$ o funcție de n variabile, și $a\in Int(A)$.

Dacă derivatele parţiale $\frac{\partial f}{\partial x_i}$, $i=\overline{1,n}$ există într-o vecinătate a punctului a şi sunt continue în a, atunci are loc următoarea egalitate:

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - \nabla f(a) \cdot h}{\|h\|} = 0$$

Consecință: Într-o vecinătate a punctului a (când ||h|| este mic), are loc următoarea aproximare liniară:

$$f(a+h) \simeq f(a) + \nabla f(a) \cdot h$$
 (pentru $||h||$ mic)

Diferenţiabilitate - definiţie

O funcţie reală de n variabile $f:A\subset\mathbb{R}^n\to\mathbb{R}^1$ este diferenţiabilă în a dacă sunt îndeplinite următoarele condiţii:

- ullet este derivabilă parţial în punctul a în raport cu fiecare variabilă x_i
- $\bullet \lim_{h \to 0} \frac{f(a+h) f(a) \nabla f(a) \cdot h}{\|h\|} = 0.$

Derivata Fréchet a funcției f în a: funcția $d_a f : \mathbb{R}^n \to \mathbb{R}^1$ definită prin

$$\mathbf{d_a}f(h) = \nabla f(a) \cdot h = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) \cdot h_i$$

- Derivata Fréchet $d_a f: \mathbb{R}^n \to \mathbb{R}^1$ este o funcţie liniară pe \mathbb{R}^n (polinom de gradul 1 în $h_1, h_2, ..., h_n$).
- Pentru ||h|| = 1, avem $d_a f(h) = \nabla_h f(a)$.
- Dacă $f:\subset \mathbb{R}^n \to \mathbb{R}^1$ este diferențiabilă în $a\in A,$ atunci este continuă în a.

Diferențiabilitate - definiție

O <u>funcţie vectorială</u> de n variabile $f=(f_1,\ldots,f_m):A\subset\mathbb{R}^n\to\mathbb{R}^m$ este <u>diferenţiabilă</u> în $a\in\mathrm{Int}(A)$ dacă fiecare componentă scalară $f_j,j=\overline{1,m}$ a funcţiei f este diferenţiabilă în a.

Derivata Fréchet a funcției f în a este funcția $d_a f : \mathbb{R}^n \to \mathbb{R}^m$ definită prin

$$d_a f(h) = \sum_{j=1}^m \left(\sum_{i=1}^n \frac{\partial f_j}{\partial x_i}(a) \cdot h_i \right) \cdot e_j \quad \text{unde } e_j = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^m.$$

Matricea funcției liniare $d_a f$ se numește matricea Jacobi a funcției f în a:

$$J_a(f) = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{m \times n}$$

Avem: $d_a f(h) = J_a(f) \cdot h$.

Diferenţiabilitate - exemple

Exemplul 1. Pentru funcţia reală $f(x,y,z)=x^2+xy+z^2$, derivata Fréchet în punctul a=(1,2,3) este funcţia $d_af:\mathbb{R}^3\to\mathbb{R}$ dată de:

$$d_a f(h) = \nabla f(1,2,3) \cdot (h_1,h_2,h_3) = (4,1,6) \cdot (h_1,h_2,h_3) = 4h_1 + h_2 + 6h_3$$

Exemplul 2. Pentru funcţia vectorială $f(x,y,z)=(x^2+z^2,xy)$, matricea Jacobi este:

$$J(f) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{pmatrix} = \begin{pmatrix} 2x & 0 & 2z \\ y & x & 0 \end{pmatrix}$$

și deci, matricea Jacobi în punctul a=(1,2,3) este

$$J_a(f) = \left(\begin{array}{ccc} 2 & 0 & 6\\ 2 & 1 & 0 \end{array}\right)$$

Derivata Fréchet este funcţia $d_a f : \mathbb{R}^3 \to \mathbb{R}^2$ definită prin:

$$d_a f(h) = J_a(f) \cdot h = \begin{pmatrix} 2h_1 + 6h_3 \\ 2h_1 + h_2 \end{pmatrix}$$

Diferenţiabilitate - exemple

Exemplul 3. Pentru funcţia

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \operatorname{dacă}\left(x,y\right) \neq (0,0) \\ 0 & \operatorname{dacă}\left(x,y\right) = (0,0) \end{cases}$$

am văzut că derivatele parţiale în punctul (0,0) sunt

$$\frac{\partial f}{\partial x}(0,0) = 1 \quad \text{si} \quad \frac{\partial f}{\partial y}(0,0) = 0 \quad \implies \quad \nabla f(0,0) = (1,0).$$

Pe baza definiţiei, verificăm dacă funcţia este diferenţiabilă în (0,0) calculând limita:

$$\begin{split} L &= \lim_{(h_1,h_2) \to (0,0)} \frac{f(h_1,h_2) - f(0,0) - \nabla f(0,0) \cdot (h_1,h_2)}{\|(h_1,h_2)\|} = \\ &= \lim_{(h_1,h_2) \to (0,0)} \frac{\frac{h_1^3}{h_1^2 + h_2^2} - 0 - (1,0) \cdot (h_1,h_2)}{\sqrt{h_1^2 + h_2^2}} = \lim_{(h_1,h_2) \to (0,0)} \frac{\frac{h_1^3}{h_1^2 + h_2^2} - h_1}{\sqrt{h_1^2 + h_2^2}} \end{split}$$

Diferenţiabilitate - exemple

Simplificând expresia anterioară, obţinem:

$$L = \lim_{(h_1, h_2) \to (0, 0)} \underbrace{\frac{-h_1 h_2^2}{(h_1^2 + h_2^2)^{3/2}}}_{g(h_1, h_2)}$$

Observăm că în limita de mai sus avem raportul a două expresii de ordin 3, şi arătăm că limita nu există:

de-a lungul axei orizontale: $g(h_1, 0) = 0 \stackrel{h_1 \to 0}{\longrightarrow} 0$

de-a lungul primei bisectoare:
$$g(h_1,h_1)=\frac{-h_1^3}{(2h_1^2)^{3/2}}=-\frac{1}{2\sqrt{2}}\stackrel{h_1\to 0}{\longrightarrow}-\frac{1}{2\sqrt{2}}$$

Concluzie: Funcţia f nu este diferenţiabilă în (0,0).

Proprietăţi

Regula compusei.

 $\mathsf{Fie}\ f:A\subset\mathbb{R}^n\to B\subset\mathbb{R}^m\ \mathsf{si}\ g:B\subset\mathbb{R}^m\to\mathbb{R}^p.$

Dacă f este diferențiabilă în $a\in \mathrm{Int}(A)$ şi g este diferențiabilă în $f(a)=b\in \mathrm{Int}(B),$ atunci $h=g\circ f$ este diferențiabilă în a şi

$$d_a h = d_b g \circ d_a f$$

Matricea Jacobi a funcției h în a este produsul dintre matricea Jacobi a funcției g în b și matricea Jacobi a funcției f în a:

$$J_a(g \circ f) = J_b(g)J_a(f).$$

Regula inversei.

Fie $f:A\subset\mathbb{R}^n\to B\subset\mathbb{R}^n$ o funcţie bijectivă unde A,B sunt mulţimi deschise în \mathbb{R}^n .

Dacă f este diferențiabilă în $a\in A$ și f^{-1} este diferențiabilă în b=f(a), atunci $d_af:\mathbb{R}^n\to\mathbb{R}^n$ este bijectivă și

$$(d_a f)^{-1} = d_{f(a)} f^{-1}$$