CLAIM AMENDMENTS

1-22 (cancelled)

- 23. (Currently Amended) An ethylene copolymer which is a copolymer of ethylene and an α -olefin of 3 to 20 carbon atoms and has the following properties:
- (a) the melt index (MI2) at 190° C under a load of 2.16 kg is in the range of 0.0001 to 1000 g/10 min,
 - (b) the density is not more than 0.899 g/cm^3 ,
- (c) the relationship between a vinyl group amount and MI2 of the polymer satisfies the following expressions:

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log (MI2)$, and

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.004509 + 0.000815 \times \log{(MI2)}$,

and

(d) the relationship between a vinylidene group amount and MI2 of the polymer satisfies the following expressions:

(vinylidene group amount: number of vinylidene groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log(MI2)$, and

(vinylidene group amount: number of vinylidene groups/1000 carbon atoms) $\leq 0.013528 + 0.002445 \times \log{(MI2)}$.

- 24. (Currently Amended) An ethylene copolymer which is a copolymer of ethylene and an α -olefin of 3 to 20 carbon atoms and has the following properties:
- (a) the melt index (MI2) at 190° C under a load of 2.16 kg is in the range of 0.0001 to 1000 g/10 min,
 - (b) the density is in the range of 0.875 to 0.899 g/cm^3 , and
- (c) the relationship between a vinyl group amount and MI2 of the polymer satisfies the following expression expressions:

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log{(MI2)}$, and

(vinyl group amount: number of vinyl groups/1000 carbon atoms) \leq 0.004509+0.000815 \times log(MI2).

- 25. (Previously presented) An ethylene copolymer which is a copolymer of ethylene, an α -olefin of 3 to 20 carbon atoms and a cycloolefin and has the following properties:
 - (a) the cycloolefin content is not less than 0.01 % by mol,
- (b) the melt index (MI2) at 190° C under a load of 2.16 kg is in the range of 0.0001 to 1000 g/10 min,
- (c) the relationship between a vinyl group amount and MI2 of the polymer satisfies the following expression:

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log(MI2)$,

and

(d) the relationship between a vinylidene group amount and MI2 of the polymer satisfies the following expression:

(vinylidene group amount: number of vinylidene groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log{(MI2)}$.

26. (Previously presented) The ethylene copolymer as claimed in claim 25, wherein the ethylene copolymer further has the following properties:

the relationship between a vinyl group amount and MI2 of the polymer satisfies the following expression:

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.004509 + 0.000815 \times \log{(MI2)}$,

and

the relationship between a vinylidene group amount and MI2 of the polymer satisfies the following expression:

(vinylidene group amount: number of vinylidene groups/1000 carbon atoms) $\leq 0.013528 + 0.002445 \times \log{(MI2)}$.

27. (Previously presented) The ethylene copolymer as claimed in any one of claims 23 to 26, wherein regio-regularity of the α -olefin of 3 to 20 carbon atoms, as measured by $^{13}\text{C-NMR}$, satisfies the following expression:

 $T_{\alpha\beta}/(T_{\alpha\beta}+T_{\alpha\alpha}) \le 0.25-0.0020x$

wherein $T_{\alpha\beta}$ is a peak intensity of a carbon atom having branches at the $_{\alpha}\text{-position}$ and the $_{\beta}\text{-position}$ in the $^{13}\text{C-NMR}$ spectrum, $T_{\alpha\alpha}$

is a peak intensity of a carbon atom having branches at both of the α -positions, and x is an ethylene content (% by mol) in the polymer.

28. (Previously presented) The ethylene copolymer as claimed in claim 23, wherein regio-regularity of the α -olefin of 3 to 20 carbon atoms, as measured by $^{13}\text{C-NMR}$, satisfies the following expression:

 $T\beta\gamma/(T\beta\gamma+T\beta\beta) \le 0.30-0.0015x$

wherein $T\beta\gamma$ is a peak intensity of a carbon atom having branches at the β -position and the γ -position in the ^{13}C -NMR spectrum, $T\beta\beta$ is a peak intensity of a carbon atom having branches at both of the β -positions, and x is an ethylene content (% by mol) in the polymer.

- 29. (Previously presented) The ethylene copolymer as claimed in claim 23, wherein the molecular weight distribution (Mw/Mn), as measured by GPC, is in the range of 1.2 to 10.
- 30. (Previously presented) The ethylene copolymer as claimed in claim 23, wherein the molecular weight distribution (Mw/Mn), as measured by GPC, is in the range of 1.6 to 10.

- 31. (Previously presented) The ethylene copolymer as claimed in claim 23, which satisfies the expression MI10/MI2 < (Mw/Mn) + 5.55.
- 32. (Currently Amended) The ethylene copolymer as claimed in claim 23, which satisfies the expression MI2 > $19.009_{\rm X}(\eta)^{-}$ 5.2486 where η is intrinsic viscosity determined by the formula η = $\eta_{\rm SP}$ /(C(1+0.28 $\eta_{\rm SP}$)) where $\eta_{\rm SP}$ is specific viscosity and C is solution concentration g/dl as measured in decalin at 135 °C at a concentration of about 1 mg/ml.
- 33. (Previously presented) The ethylene copolymer as claimed in claim 23, wherein the ash content in the ethylene copolymer is not more than 1000 ppm.
 - 34. (Previously presented) The ethylene copolymer as claimed in claim 23, wherein the titanium element content in the ethylene copolymer is not more than 10 ppm, and/or the zirconium element content in the ethylene copolymer is not more than 10 ppm.
 - 35. (Previously presented) The ethylene copolymer as claimed in claim 23, which is a copolymer prepared by forming not less than 50 % of chain transfer by the addition of hydrogen.

- 36. (Previously presented) A molded product comprising the ethylene copolymer of claim 23.
- 37. (Previously presented) A resin modifier comprising the ethylene copolymer of claim 23.
- 38. (Currently Amended) A composition comprising the ethylene copolymer of claim 23, optionally together with a thermoplastic polymer.
- 39. (Previously presented) The composition as claimed in claim 38, wherein the thermoplastic polymer is a polyolefin.
- 40. (Previously presented) The composition as claimed in claim 38, wherein the weight ratio of the ethylene copolymer to the thermoplastic polymer is in the range of 0.01/99.99 to 99.99/0.01.
- 41. (Previously presented) A molded product comprising the ethylene copolymer composition of claim 38.
- 42. (Previously presented) An ethylene copolymer which is a copolymer of ethylene and an α -olefin of 3 to 20 carbon atoms and has the following properties:
- (a) the melt index (MI2) at 190° C under a load of 2.16 kg is in the range of 0.0001 to 1000 g/10 min,

- (b) the density is not more than 0.899 g/cm^3 ,
- (c) the relationship between a vinyl group amount and MI2 of the polymer satisfies the following expression:

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log{(MI2)}$,

and

(d) the relationship between a vinylidene group amount and MI2 of the polymer satisfies the following expression:

(vinylidene group amount: number of vinylidene groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log(MI2)$, and

wherein the ash content in the ethylene copolymer is not more than 1000 ppm.

- 43. (Previously presented) An ethylene copolymer which is a copolymer of ethylene and an α -olefin of 3 to 20 carbon atoms and has the following properties:
- (a) the melt index (MI2) at 190° C under a load of 2.16 kg is in the range of 0.0001 to 1000 g/10 min,
 - (b) the density is not more than 0.899 g/cm^3 ,
- (c) the relationship between a vinyl group amount and MI2 of the polymer satisfies the following expression:

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log(MI2)$,

and

(d) the relationship between a vinylidene group amount and

MI2 of the polymer satisfies the following expression:

(vinylidene group amount: number of vinylidene groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log{(MI2)}$, and

wherein the titanium element content in the ethylene copolymer is not more than 10 ppm, and/or the zirconium element content in the ethylene copolymer is not more than 10 ppm.

- 44. (Previously presented) An ethylene copolymer which is a copolymer of ethylene and an α -olefin of 3 to 20 carbon atoms and has the following properties:
- (a) the melt index (MI2) at 190° C under a load of 2.16 kg is in the range of 0.0001 to 1000 g/10 min,
 - (b) the density is not more than 0.899 g/cm^3 ,
- (c) the relationship between a vinyl group amount and MI2 of the polymer satisfies the following expression:

(vinyl group amount: number of vinyl groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log(MI2)$,

and

(d) the relationship between a vinylidene group amount and MI2 of the polymer satisfies the following expression:

(vinylidene group amount: number of vinylidene groups/1000 carbon atoms) $\leq 0.018038 + 0.003259 \times \log(MI2)$,

which is a copolymer prepared by forming not less than 50 % of chain transfer by the addition of hydrogen.