| Wersja:                                                       | Numer indeksu:   |         | Grupa <sup>1</sup> : |        |  |  |  |
|---------------------------------------------------------------|------------------|---------|----------------------|--------|--|--|--|
| <b>A</b>                                                      |                  |         | s. 4                 | s. 5   |  |  |  |
|                                                               |                  |         | s. 105               | s. 139 |  |  |  |
|                                                               | Logika dla infor | matykóv | V                    |        |  |  |  |
| Kolokwium nr 3, 24 stycznia 2020<br>Czas pisania: 30+60 minut |                  |         |                      |        |  |  |  |
|                                                               |                  |         |                      |        |  |  |  |

| Zadanie 1 (2                   | punkty). | Dla | m, n | $\in I$ | ∛ niech | $A_{m,n}$ | oznacza | zbiór | relacji | zawierających | parę |
|--------------------------------|----------|-----|------|---------|---------|-----------|---------|-------|---------|---------------|------|
| $\langle m, n \rangle$ , czyli |          |     |      |         |         |           |         |       |         |               |      |

s. 103

s. 140

s. 104

nie chodzę

na ćwiczenia

$$A_{m,n} = \{ R \subseteq \mathbb{N} \times \mathbb{N} \mid \langle m, n \rangle \in R \}.$$

Jeśli w zbiorze $\bigcap_{n\in\mathbb{N}}A_{n,n}$ jest jakaś relacja niesymetryczna, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz dowód, że takiej relacji w tym zbiorze nie ma.

| 1 |  |  |  |
|---|--|--|--|
| 1 |  |  |  |
|   |  |  |  |

**Zadanie 2 (2 punkty).** Na rodzinie zbiorów  $\mathcal{P}(\mathbb{N} \times \{0,1\})$  definiujemy operację rzutu na  $drugq\ os\ \pi: \mathcal{P}(\mathbb{N}\times\{0,1\}) \to \mathcal{P}(\{0,1\})\ \text{wzorem}\ \pi(X) = \{b\in\{0,1\}\mid \exists n\in\mathbb{N}\ \langle n,b\rangle\in X\}.$  Następnie definiujemy relację równoważności  $\simeq$  na  $\mathcal{P}(\mathbb{N} \times \{0,1\})$  wzorem

$$X \simeq Y \iff \pi(X) = \pi(Y).$$

W tym zadaniu pytamy o istnienie takich zbiorów  $A, B, C, D, \dot{z}e |[A]_{\simeq}| = 1, |[B]_{\simeq}| = 2,$  $|[C]_{\sim}| = \aleph_0$ ,  $|[D]_{\sim}| = \mathfrak{c}$ . Jeśli takie zbiory istnieją, to w odpowiadające im prostokąty poniżej wpisz dowolne przykłady takich zbiorów; w przeciwnym przypadku wpisz słowa "NIE ISTNIE-JE".

| A: | B : |  |
|----|-----|--|
| C: | D : |  |

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.



Wersja:



| Numer indel | su: |  |  |
|-------------|-----|--|--|
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |

 $Grupa^1$ :

| s. 4   | s. 5   | s. 103 | s. 104                        |
|--------|--------|--------|-------------------------------|
| s. 105 | s. 139 | s. 140 | nie chodzę<br>na<br>ćwiczenia |

**Zadanie 6 (5 punktów).** Rozważmy funkcję  $\varphi: \mathbb{Z}^{\mathcal{P}(\mathbb{N}) \cup \mathbb{R}} \to \mathbb{Z}^{\mathcal{P}(\mathbb{N})} \times \mathbb{Z}^{\mathbb{R}}$  zdefiniowaną dla argumentu  $f: \mathcal{P}(\mathbb{N}) \cup \mathbb{R} \to \mathbb{Z}$  wzorem  $\varphi(f) = \langle g_1, g_2 \rangle$  gdzie dla  $X \in \mathcal{P}(\mathbb{N})$  i  $y \in \mathbb{R}$  mamy  $g_1(X) = f(X)$  i  $g_2(y) = f(y)$ . Udowodnij, że funkcja  $\varphi$  jest injekcją.

**Zadanie 7 (5 punktów).** Na zbiorze  $\mathcal{P}(\mathbb{N})$  określamy relację równoważności  $\approx$  wzorem

$$A \approx B \iff A \sim B \ \land \ (\mathbb{N} \backslash A) \sim (\mathbb{N} \backslash B)$$

Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że zbiór ilorazowy relacji  $\approx$  ma moc  $\aleph_0$ . Wskazówka: Możesz (bez dowodu) skorzystać z faktu, że  $(\mathbb{N} \cup {\aleph_0}) \times (\mathbb{N} \cup {\aleph_0}) \sim \mathbb{N}$ .

**Zadanie 8 (5 punktów).** Rozważmy relację równoważności  $\approx$  zdefiniowaną na zbiorze  $\mathcal{P}(\mathbb{N})$  wzorem

$$X \approx Y \iff \text{zbi\'or } (X \setminus Y) \cup (Y \setminus X)$$
jest skończony.

Podaj moc klasy abstrakcji zbioru pustego i udowodnij poprawność swojej odpowiedzi.

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.

| Wer  | sja: Numer indeks                                                                               | u: Gru                                                                                                                                       | $pa^1$ : |           |           |                               |  |  |
|------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|-------------------------------|--|--|
| T    | <b>`</b>                                                                                        | 8                                                                                                                                            | . 4      | s. 5      | s. 103    | s. 104                        |  |  |
| L    | <b>)</b>                                                                                        | s.                                                                                                                                           | 105      | s. 139    | s. 140    | nie chodzę<br>na<br>ćwiczenia |  |  |
|      | Logika dla informatyków                                                                         |                                                                                                                                              |          |           |           |                               |  |  |
|      | Kolokwium nr 3, 24 stycznia 2020<br>Czas pisania: 30+60 minut                                   |                                                                                                                                              |          |           |           |                               |  |  |
| pier | $wszq \ os \ \pi : \mathcal{P}(\mathbb{N} \times \{0,1\}) \to$                                  | odzinie zbiorów $\mathcal{P}(\mathbb{N} \times \{0,1\})$<br>$\mathcal{P}(\mathbb{N})$ wzorem $\pi(X) = \{n \in \mathbb{N} \mid        \text$ |          |           |           |                               |  |  |
|      |                                                                                                 | $X \simeq Y \iff \pi(X) = \pi(Y).$                                                                                                           |          |           |           |                               |  |  |
| [C]  | $ \omega  = \aleph_0,  [D]_{\omega}  = \mathfrak{c}.$ Jeśli tal<br>z dowolne przykłady takich z | enie takich zbiorów $A, B, C, I$ xie zbiory istnieją, to w odpow zbiorów; w przeciwnym przypa                                                | iada     | jące im p | orostokąt | y poniżej                     |  |  |
| A:   |                                                                                                 | В                                                                                                                                            | :        |           |           |                               |  |  |

D:

| injekcje z $A \le B$ : | injekcje z $B\le A$ : |  |
|------------------------|-----------------------|--|

C:

**Zadanie 2 (2 punkty).** Rozważmy takie zbiory A i B, że zbiór wszystkich funkcji z A w B ma moc 2020. W prostokąty poniżej wpisz odpowiednio moce zbiorów wszystkich injekcji z A w B oraz injekcji z B w A. Wskazówka:  $2020 = 4 \cdot 5 \cdot 101$ .

 $<sup>^{1}\</sup>mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

| Zadanie 3 (2 punkty). Dla $m, n \in \mathbb{N}$ niech $A_{m,n}$ oznacza zbiór relacji zawierających parę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\langle m,n \rangle$ , czyli $A_{m,n} = \{ R \subseteq \mathbb{N} \times \mathbb{N} \mid \langle m,n \rangle \in R \}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Jeśli w zbiorze $\bigcap_{m\in\mathbb{N}}\bigcup_{n>m}A_{m,n}$ jest jakaś relacja będąca funkcją różnowartościową, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz dowód, że takiej relacji w tym zbiorze nie ma.                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Zadanie 4 (2 punkty). Rozważmy funkcje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $f \ : \ C \to B, \qquad \qquad g \ : \ B \to A, \qquad \qquad h \ : \ B^C \to A^B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| oraz elementy $a \in A$ , $b \in B$ i $c \in C$ . W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów $A, B$ i $C$ ) jej argument należy do dziedziny tej funkcji. Np. wyrażenie $f(b)$ nie jest poprawne, bo nie dla wszystkich zbiorów $A, B$ i $C$ jest $b \in C$ . Jeśli wyrażenie jest poprawne, to przez jego $typ$ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia $f(c)$ jest $B$ . W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE". |
| $f(c)$ $B$ $g \circ f$ $h(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $f(b)$ NIE $h \circ f$ $\Big(h(f)\Big)(b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Zadanie 5 (2 punkty). Jeśli istnieje relacja równoważności na zbiorze {0,1,2,3,4}, w której każda klasa abstrakcji ma 2 elementy, to w prostokąt poniżej wpisz dowolną taką relację równoważności. W przeciwnym przypadku wpisz dowód, że taka relacja nie istnieje.                                                                                                                                                                                                                                                                                                                                                                               |

| Wersja |  |
|--------|--|
|        |  |

| Numer | indeksı | 1: |  |
|-------|---------|----|--|
|       |         |    |  |
|       |         |    |  |
|       |         |    |  |

| $Grupa^1$ |  |
|-----------|--|
|-----------|--|

| s. 4   | s. 5   | s. 103 | s. 104                        |
|--------|--------|--------|-------------------------------|
| s. 105 | s. 139 | s. 140 | nie chodzę<br>na<br>ćwiczenia |

**Zadanie 6 (5 punktów).** Na zbiorze  $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$  określamy relację równoważności  $\approx$  wzorem

$$\langle A, B \rangle \approx \langle C, D \rangle \stackrel{\text{df}}{\iff} A \sim C \wedge B \sim D$$

Korzystając z twierdzenia Cantora-Bernsteina udowodnij, że zbiór ilorazowy relacji  $\approx$  ma moc  $\aleph_0$ . Wskazówka: Możesz (bez dowodu) skorzystać z faktu, że  $(\mathbb{N} \cup {\aleph_0}) \times (\mathbb{N} \cup {\aleph_0}) \sim \mathbb{N}$ .

**Zadanie 7 (5 punktów).** Rozważmy funkcję  $\varphi: \mathbb{Z}^{\mathcal{P}(\mathbb{N}) \cup \mathbb{R}} \to \mathbb{Z}^{\mathcal{P}(\mathbb{N})} \times \mathbb{Z}^{\mathbb{R}}$  zdefiniowaną dla argumentu  $f: \mathcal{P}(\mathbb{N}) \cup \mathbb{R} \to \mathbb{Z}$  wzorem  $\varphi(f) = \langle g_1, g_2 \rangle$  gdzie dla  $X \in \mathcal{P}(\mathbb{N})$  i  $y \in \mathbb{R}$  mamy  $g_1(X) = f(X)$  i  $g_2(y) = f(y)$ . Udowodnij, że funkcja  $\varphi$  jest surjekcją.

**Zadanie 8 (5 punktów).** Rozważmy relację równoważności  $\approx$  zdefiniowaną na zbiorze  $\{0,1\}^{\mathbb{N}}$  wzorem

$$f \approx g \iff \text{zbi\'or } \{n \in \mathbb{N} \mid f(n) \neq g(n)\} \text{ jest sko\'aczony}$$

oraz funkcję  $z: \mathbb{N} \to \mathbb{N}$  daną wzorem z(n)=0 dla  $n \in \mathbb{N}$ . Podaj moc klasy abstrakcji funkcji z i udowodnij poprawność swojej odpowiedzi.

<sup>&</sup>lt;sup>1</sup>Proszę zakreślić właściwą grupę ćwiczeniową.