

Agenda

- Power Fundamentals
- Power Analysis Flow
- Hierarchical Estimation
- User Interface
- Reporting
- Estimation Accuracy
- Conclusion

Power Fundamentals

Total Power made up of 3 Components:

- Core Static Power
- Core Dynamic Power
- I/O Power

Core Static Power

- Power drawn by device even when the clocks are stopped
- Leakage current is main component

Core Dynamic Power

- Increases Linearly (or close to linearly) with clock Frequency
- Power due to Charging and Discharging of Capacitance of Routing Wires and logic resources (LEs/ALMs).

I/O Power

Also includes static power and dynamic power

Power Analysis

- Successful Power Estimation requires accurate power models and thorough operation condition specifications
 - Specifications apply to maximum static power
- Altera PowerPlay Power Analyzer
 - Accurate power models
 - Easy-to-use power analysis tools

Power Analysis in the Design Process

- Accurate power estimates & analysis allow
 - FPGA CAD software to optimize design power
 - Design decisions that reduce power

PowerPlay Power Estimation Tools

Successful Power Analysis

- Three required parts to high accuracy Power Estimation
 - 1. Accurate Toggle Rate data on each node (internal and external)
 - Accurate Power Models of FPGA architecture
 - 3. Knowledge of actual device Operating Conditions
- Detailed Power Estimation Report available for analysis

Power Analyzer Flow

- Different Power Analyzer Flows are available
 - User-Entry and Vectorless Estimation
 - Quartus II Simulator
 - 3rd-Party Simulation
 - Mix & Match
- Depends on stage of design process, availability of data

User-Entry and Vectorless Estimation

Quartus II Simulator

3rd-Party Simulation (RTL)

3rd-Party Simulation (Gate-Level)

Mix & Match Flow

Simulation & User-Entered Activity Rate

Multiple Simulation Files Supported

- Multiple simulation files supported in Power Analyzer
 - Combine VCD and SAF by instance hierarchy
- Benefits
 - Re-use of simulations out files in hierarchy design flow
 - Accurate power estimation results
 - Flexibility and control
 - Ease of use

Hierarchical Estimation

- Usage scenarios
 - **Complete Design Estimation**
 - Hierarchical Design Estimation
 - Multiple Estimations on the Same Entity
 - Overlapping Estimation
 - Partial Estimation

Complete Design Estimation

File Name (Power analyzer Input files)	Entity
full_design.vcd	Тор

Hierarchical Design Estimation

File Name (Power analyzer Input files)	Entity
8b10b_dec.vcd	Top 8b10b_dec:decode1
8b10b_dec.vcd	Top 8b10b_dec:decode2
8b10b_dec.vcd	Top 8b10b_dec:decode3
8b10b_rxerr.vcd	Top 8b10b_rxerr:err1
mux.saf	Top mux:mux1
8b10b_enc.vcd	Top 8b10b_enc:encode1

© 2009 Altera Corporation

Multiple Estimations on the Same Entity

- Can use multiple simulations of full design or sub-modules
- Power Analyzer employs arithmetic average of toggle rates
 - Using below, err_out toggle rate calculates to 40 toggle/sec

File Name (Power analyzer Input files)	Signal "err_out"
normal.saf	0 toggles/sec
corner1.vcd	50 toggles/sec
corner2.vcd	70 toggles/sec

File Name (Power analyzer Input files)	Entity
normal.saf	Тор
corner1.vcd	Тор
corner2.vcd	Тор

Overlapping Estimation

File Name (Power analyzer Input files)	Entity
full_design.vcd	Тор
error_cases.saf	Top 8b10b_rxerr:err1

Partial Estimation

- Limit VCD file period for useful part of the simulation
 - Used to bypass long "startup" sequences

User Interface

- Power Analyzer
 - Processing Menu
- Enter Toggle Rates
 - Signal Activity File
 - From Quartus II Simulator
 - VCD
 - From 3rd-Party Simulators
 - Assignment Editor
 - **Unspecified Toggle Rates**
 - Default Toggle Rates
 - Vectorless Estimation
- Set Operation Conditions

User Interface – Input Files

Supports multiple simulation output files

User Interface – Input Files

User Interface – Input Files

© 2009 Altera Corporation

User Interface – Output Files

User Interface – Other Settings

© 2009 Altera Corporation

User Interface – Other Settings

- Some logic produces many transitions/cycle
 - e.g. CRC/parity, multipliers
- 3rd party simulators can provide better glitch filtering than Quartus II
 - 3rd party simulators filter glitches at block outputs and in routing
 - Quartus II filters glitches in routing only
- Enable Glitch filtering

User Interface – Starting the PPPA

Compilation folder power report

- The Power Analyzer Report includes two kinds of info:
 - Data to verify that correct settings and inputs were used
 - Confidence metric
 - Signal activities (simulation files)
 - Operating conditions
 - Data that present the power estimate in many ways (slices):
 - Overall result
 - Power by block type
 - Power by block

Estimation Accuracy

Timing/Gate Level Simulation

RTL Simulation + Vectorless

Default Toggle Rate

Conclusion

- Successful power analysis comes from accurate power models and thorough operation condition specifications.
- Power Analyzer User Interface provides complete control
- Reporting provides full analysis capabilities
- Different levels of Estimation accuracy available
 - Incorrect usage may result in inaccurate estimation and poor optimization

