Resolução da lista de exercícios de Sistemas Discretos Aluna: Anna Gabriele Marques de Oliveira

Questão 1:

a)
$$B \cap C = \{t\}$$

b)
$$A \cup C = \{p, q, r, s, t, u\}$$

c)
$$\sim C = \{ p, q, r, s, t, v \}$$

$$d)A \cap B \cap C = \emptyset$$

$$e)B - C = \{r, v\}$$

$$f$$
) $\sim (A \cup B) = \{p, q, s, t, u, v\}$

$$g)A \times B = \{(p,r),(q,r),(r,r),(s,r),(p,t),(q,t),(r,t),(s,t),(p,v),(q,v),(r,v),(s,v)\}$$

$$h)A \cup B \cap C = \{p, s, t\}$$

Questão 2:

a)
$$A \cup B = \{1, 2, 4, 5, 6, 8, 9\}$$

b)
$$A \cap B = \{4, 5\}$$

c)
$$A \cap C = \{2, 4\}$$

d)
$$B \cup C = \{1, 2, 3, 4, 5, 9\}$$

e)
$$A - B = \{2, 6, 8\}$$

f)
$$\sim A = \{1, 3, 9\}$$

g)
$$A \cap \sim A = \emptyset$$

h)
$$\sim (A \cap B) = \{1, 2, 3, 6, 8, 9\}$$

i)
$$C - B = \{2, 3\}$$

j)
$$(C \cap B) \cup \sim A = \{1, 2, 3, 4, 5, 9\}$$

$$k \sim (B-A) \cap (A-B) = \{2, 6, 8\}$$

1)
$$\sim (\sim C - B) = \{1, 4, 5, 9\}$$

m)
$$B \times C = \{(1,2), (4,2), (5,2), (9,2), (1,3), (4,3), (5,3), (9,3), (1,4), (4,4), (5,4), (9,4)\}$$

Questão 3:

a)
$$(A \cup B) \cap C = \{6\}$$

b)
$$B - C = \{0, 1, 2, 4, 5\}$$

c)
$$(B \cap C) - A = \{3\}$$

d)
$$(A \cap B) \cup (B \cap C) = \{1, 3, 4, 6\}$$

e)
$$(A \cup \emptyset) = \{1, 4, 6, 8, 10\}$$

f)
$$(B \cap \emptyset) = \emptyset$$

Questão 4:

a)
$$A \cup B = \mathbb{R}$$

b)
$$A - B = \{x \in \mathbb{R} \mid x < 4\}$$

c)
$$A \cap B = \{x \in \mathbb{R} \mid 4 \le x \le 7\}$$

d)
$$B - A = \{x \in \mathbb{R} \mid x > 7\}$$

Questão 5:

a)
$$B \cap C = \{t\}$$

b)
$$A \cup C = \{p, q, r, s, t, u\}$$

c)
$$A \cap B \cap C = \emptyset$$

d)
$$B - C = \{r, v\}$$

e)
$$A \times B = \{(p,r),(q,r),(r,r),(s,r),(p,t),(q,t),(r,t),(s,t),(p,v),(q,v),(r,v),(s,v)\}$$

f)
$$A + B = \{p_A, q_A, r_A, s_A, r_B, t_B, v_B\}$$

g)
$$B + B = \{r_B, t_B, v_B\}$$

Questão 6:

a)
$$A \cup B = \{0, 1, 2, 3, 5\}$$

b)
$$B \cup C = \{0, 2, 3, 4, 5, 6, 8\}$$

c)
$$(A \cup B) \cup C = \{0, 1, 2, 3, 4, 5, 6, 8\}$$

d)
$$A \cup C = \{0, 1, 2, 3, 4, 6, 8\}$$

e)
$$B - D = \{0, 2, 3\}$$

f)
$$(A \cap C) \cup C = \{0, 2, 5, 7, 9\}$$

g)
$$A \cup D = \{0, 1, 2, 3, 5, 7, 9\}$$

Questão 7:

Para que dois conjuntos sejam iguais, por definição, todos os elementos de um devem pertencer ao outro e vice-versa.

Dessa forma, devemos provar que:

$$\exists x \in (A \cup A) \mid x \in A$$

$$\cdot 2) \ \exists x \in A \mid x \in (A \cup A)$$

Prova 1)
$$\exists x \in (A \cup A) \mid x \in A$$
:

pela teoria básica de conjuntos temos por definição: $A \cup B = \{x \mid x \in A \lor x \in B\}$

Mais especificamente em $A \cup A$, temos: $x \in (A \cup A) = \{x \mid x \in A \lor x \in A\}$.

Portanto: $x \in A$

Prova 2)
$$\exists x \in A \mid x \in (A \cup A)$$
:

pela teoria básica de conjuntos temos por definição: $A \cup B = \{x \mid x \in A \lor x \in B\}$

Assim, é correto afirmar que x pertencerá a qualquer conjunto que seja composto da união do conjunto A com qualquer outro conjunto, mais especificamente $A \cup A$. Assim, temos que $\forall x \in A, x \in (A \cup A)$.

Dessa forma temos: $A \subseteq (A \cup A)$ e $(A \cup A) \subseteq A \Rightarrow A = (A \cup A)$.

Questão 8:
$$A \cup B = B \cup A$$

Seja $x \in (A \cup B)$. Pela teoria básica de conjuntos temos por definição:

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

Assim, pela equivalência lógica, obtemos as seguintes proposições:

$$P = x \in A$$

$$Q = x \in B$$

Dessa forma, a operação $x \in A \lor x \in B$, pode ser representada utilizando o conceito lógico de disjunção: $P \lor Q$.

Logo, pela propiedade comutativa das proposições: $P \lor Q = Q \lor P$, uma vez que, a ordem das proposições não altera o resultado.

Portanto, $Q \vee P$ é equivalente à $x \in B \vee x \in A = B \cup A$. Provando que $A \cup B = B \cup A$.

Questão 9:
$$(A \cup B) \cup C = A \cup (B \cup C)$$

Questão 10:
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Pela teoria básica de conjuntos temos por definição: $A \cap B = \{x \mid x \in A \land x \in B\}$. utilizando-se da definição, temos: $(A \cap B) \cap C = \{x \mid (x \in A \land x \in B) \land x \in C\}$.

Pela equivalência lógica, obtemos as seguintes proposições:

$$P = x \in A$$

$$Q = x \in B$$

$$R = x \in C$$

Dessa forma, a operação $(x \in A \land x \in B) \land x \in C$, pode ser representada utilizando o conceito lógico de conjunção: $(P \land Q) \land R$.

Logo, pela propiedade associativa das proposições: $(P \land Q) \land R = P \land (Q \land R)$, uma vez que, a ordem das proposições não altera o resultado.

Além disso, $P \wedge (Q \wedge R)$ é equivalente à: $x \in A \wedge (x \in B \wedge x \in C)$. Portanto, $(A \cap B) \cap C = A \cap (B \cap C)$

Questão 11:

Questão 12:—