Low (2024) Replication Exercise

Marriage Market Matching with Human and Reproductive Capital

Department of Economics, Duke University

Table of Contents

- Introduction and Motivation
- 2 Exercise 1: Parameter Space Analysis
- 3 Exercise 2: Endogenous Education
- 4 Exercise 3: Income-Leisure Model
- 5 Comparative Analysis and Conclusions

Introduction and Motivation

Research Question

Central Puzzle: Why do highly educated women historically marry men with lower incomes than college-educated women, despite their own higher earnings?

Low's (2024) Explanation:

- ▶ Human capital investments increase income but reduce fertility
- ► Men value women's "reproductive capital" on marriage market
- Creates trade-off between human and reproductive capital

Our Contribution:

- ► Exercise 1: Replicate Low's parameter space analysis
- ► Exercise 2: Extend to endogenous education choice
- ► Exercise 3: Develop alternative income-leisure mechanism

Historical Marriage Market Pattern

Figure 1.A.—Spousal Income by Wife's Education: The Crossing Pattern

Key Empirical Facts:

- ► Non-monotonic relationship until 1990s
- Crossing between college and graduate-educated women around 1990 2000
- Transition to assortative matching in recent decades

Department of Economics 5 / 29 Duke University

Exercise 1

Theoretical Framework

Two-Type Model Setup:

- **Women:** Low income/high fertility (L) vs. High income/low fertility (H)
- ▶ Men: Characterized by income $y \in [0, Y]$
- ► Surplus function: $s(y, z, p) = \frac{1}{4}p(y + z 1)^2$

Key Parameters:

 δ_{γ} = Income gap between H and L women δ_{π} = Fertility gap between H and L women

Surplus Difference Function:

$$\Delta^{H-L}(y) = \frac{1}{4}(-\delta_\pi)y^2 + \frac{1}{2}\left[\pi(\gamma+\delta_\gamma-1)-(\pi+\delta_\pi)(\gamma-1)\right]y + C.$$

Department of Economics 7 / 29 Duke University

Parameter Space Results

Figure 2.A.—Equilibrium Regions in Parameter Space

Equilibrium Types:

- **Eqm 1:** Assortative
- ► Eqm 2: Non-monotonic
- ► Eqm 3: Reverse assortative

Key Insight: Higher fertility penalties (δ_{π}) shift equilibrium toward non-monotonic matching patterns.

Surplus Function Analysis

Figure 2.B.—Surplus Difference Functions: Parameter Comparison

Theoretical Validation:

- Quadratic form confirms declining complementarity at high incomes
- ▶ Peak location determines optimal matching for H-type women
- ▶ Parameter sensitivity demonstrates robustness of equilibrium classification

Department of Economics 9 / 29 Duke University

Quantitative Results

Table 2.A.—Parameter Space Analysis: Key Results

Combination	δ_{γ}	δ_{π}	Peak Location	Peak Value	Equilibrium
Test 1	2.5	0.1	12.00	3.281	Assortative
Test 2	2.2	0.1	1.40	1.089	Non-Monotonic
Test 3	1.8	0.2	-0.84	0.535	Reverse Assortative
Test 4	1.3	0.5	-2.13	0.211	Reverse Assortative

Figure 2.C.—Surplus Difference Functions Across Parameter Space

Department of Economics 10 / 29 Duke University

Exercise 2

Endogenous Education Framework

Extension to Endogenous Choice:

- ▶ Women choose whether to invest in higher education
- ▶ Investment cost c_i varies across individuals
- ► Three cost distribution scenarios tested

Investment Decision Rule:

Invest if
$$c_i \leq U^H - U^M = v^H - v^M + \delta_{\gamma}$$
,

where v^K represents marriage market surplus for type K.

Cost Distribution Scenarios:

- Uniform: $c \sim U[0, 15]$
- Normal (low variance): $c \sim N(5, 5^2)$ on [-10, 20]
- **3** Normal (high variance): $c \sim N(5, 10^2)$ on [-25, 35]

Spousal Income Results

Scenario 1: Uniform Distribution

Figure 3.A.— $Cost \sim \mathcal{U}[0, 15]$

Scenario 2: Normal Distribution (Low Variance)

Figure 3.B.— $Cost \sim N(5, 5^2)$

Scenario 3: Normal Distribution (High Variance)

Figure 3.C.— $Cost \sim N(5, 10^2)$

Education Investment Patterns

Scenario 1: Uniform Distribution

Figure 3.D.—Investment Rates – Uniform

Scenario 2: Normal Distribution (Low Variance)

Figure 3.E.—Investment Rates – Normal Low

Scenario 3: Normal Distribution (High Variance)

Figure 3.F.—Investment Rates – Normal High

Computational Results

Table 3.A.—Endogenous Education: Investment Patterns by Scenario

Scenario	Cost Distribution	Mean Investment Rate	Crossing Year	
Uniform	$\mathcal{U}[0,15]$	0.165	N/A	
Normal (Low Var)	$N(5, 5^2)$	0.142	1980	
Normal (High Var)	$\mathcal{N}(5, 10^2)$	0.198	1980-1990	

Key Findings:

- ▶ Normal distribution scenarios replicate the crossing pattern in spousal income
- ► Higher cost variance leads to later crossing in spousal income
- ► Simulation overshoots the fraction of highly educated by 2010

Department of Economics 21 / 29 Duke University

Exercise 3

Alternative Mechanism

Research Innovation: Can work-life balance preferences explain the same empirical patterns as fertility penalties?

Theoretical Framework:

- ► Men face income-leisure trade-off: $t = T_{\text{max}} \cdot (1 (y/Y_{\text{max}})^k)$
- Women value male leisure with intensity $\alpha(z)$
- ► High-income women prefer men with better work-life balance

Key Functions:

Male leisure:
$$t(y) = 1.0 \cdot \max \left(0, \min \left(1, \left[1 - (y/120000)^{1.2} \right) \right] \right),$$

Female valuation: $\alpha(z) = 0.5 + \frac{7.5}{1 + \exp \left[-2.5 \cdot (z - 50000) / 50000 \right]}.$

Mechanism Validation

Table 4.A.—Function Validation: Income-Leisure Trade-off

Income Level	Male Leisure	Female Valuation
\$20,000	0.884	1.868
\$40,000	0.732	3.332
\$60,000	0.565	5.168
\$80,000	0.385	6.632
\$100,000	0.197	7.431
\$120,000	0.000	7.780

Robust Parameter Design:

- ▶ Bounded logistic function prevents explosive growth
- ▶ Leisure time constrained to [0, 1] interval for theoretical consistency
- ► Alpha values represent realistic preference magnitudes (0.5 to 8.0)

Department of Economics 24 / 29 Duke University

Empirical Replication

(a) Spousal Income Evolution

(b) Spousal Leisure Evolution

Figure 4.A.—Leisure Model

Perfect Empirical Replication:

- ► Crossing detected between 1990 and 2010 (matches Low's findings)
- ▶ Non-monotonic income with leisure compensation in early years
- ► Transition to assortative pattern by 2010

Detailed Results

Table 4.B.—Income-Leisure Model: Simulation Results

Education Level	1970		1990		2010	
	Income	Leisure	Income	Leisure	Income	Leisure
≤ High School	\$41,778	0.716	\$41,359	0.721	\$27,206	0.824
Some College	\$64,879	0.537	\$56,276	0.615	\$40,425	0.720
College Graduate	\$105,996	0.264	\$76,171	0.472	\$73,572	0.495
Graduate Degree	\$75,715	0.429	\$71,729	0.497	\$89,623	0.404
Pattern	Non-monotonic		Non-monotonic		Assortative	

Economic Interpretation:

- ▶ 1970-1990: Highly educated women sacrifice \$30,281-\$4,442 in spousal income for 0.165-0.025 more leisure time
- ➤ 2010: Income complementarity overwhelms leisure preferences (mechanism reversal)

Department of Economics 26 / 29 Duke University

Theoretical Components

(a) Female Leisure Valuation Function

(b) Male Income-Leisure Trade Off

Figure 4.B.—Theoretical Components

Department of Economics 27 / 29 Duke University

Conclusion

Summary

- Successful Replication: Validated Low's theoretical framework and empirical findings through comprehensive parameter space analysis
- Methodological Extension: Incorporated endogenous education choice with robust results across multiple cost distribution scenarios
- Theoretical Innovation: Developed alternative income-leisure mechanism that perfectly replicates empirical patterns through different economic channel

Broader Implication: Our analysis highlights the sophisticated challenge of identifying underlying economic mechanisms when multiple theories can generate identical observable outcomes.