JHU Coursera Regression Model Quizes

 Autoz

2018-08-01

目录

L	JHU Coursera Regression Model Quizes	1
	1.1 Week 2	1
	1.2 Week 3	4
	1.3 Week 4	G
	JHU DataScience Specialization/Cousers Reproducible Data/Week1-4/Regression Model Quizes	
	1 JHU Coursera Regression Model Quizes	
	主要练习手工计算回归模型的基础方法	
1.	1 Week 2	
1.	1.1 Quiz 1	
	手算均值	

```
x <- c(0.18, -1.54, 0.42, 0.95)
w <- c(2, 1, 3, 1)
mu.y <- sum(w * x) / sum(w)
sprintf("mean of y is : %f", mu.y)</pre>
```

```
## [1] "mean of y is : 0.147143"
```

1.1.2 Quiz 2

线性回归

$$x \leftarrow c(0.8, 0.47, 0.51, 0.73, 0.36, 0.58, 0.57, 0.85, 0.44, 0.42)$$

 $y \leftarrow c(1.39, 0.72, 1.55, 0.48, 1.19, -1.59, 1.23, -0.65, 1.49, 0.05)$
 $pander(lm(y~x))$ #THROUGH THE ORIGIN

表 1: Fitting linear model: $y \sim x$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.567	1.252	1.252	0.246
x	-1.713	2.105	-0.8136	0.4394

pander(lm(y~x-1)) #去除截距

表 2: Fitting linear model: $y \sim x - 1$

	Estimate	Std. Error	t value	Pr(> t)
x	0.8263	0.5817	1.421	0.1892

1.1.3 Quiz 3

mtcars 回归系数

(Intercept)	wt
37.29	-5.344

1.1.4 Quiz 4

练习求 b1

$$Cor(Y, X) = 0.5$$

$$Sd(Y) = 1 Sd(X) = 0.5$$

$$\beta_1 = Cor(Y, X) * \frac{Sd(Y)}{Sd(X)}$$

B1 = 0.5 * 1 / 0.5

1.1.5 Quiz 5

```
corr <- .4; emean <- 0; varr1 <- 1
varr2 <- 1; b0 <- 0; x <- 1.5
b1 <- corr * sqrt(varr1) / sqrt(varr2)
(y <- b0 + b1 * x)</pre>
```

[1] 0.6

1.1.6 Quiz 6

```
x \leftarrow c(8.58, 10.46, 9.01, 9.64, 8.86)
(x - mean(x)) / sd(x) # Choose No.1
```

[1] -0.9718658 1.5310215 -0.3993969 0.4393366 -0.5990954

1.1.7 Quiz 7

```
x \leftarrow c(0.8, 0.47, 0.51, 0.73, 0.36, 0.58, 0.57, 0.85, 0.44, 0.42)

y \leftarrow c(1.39, 0.72, 1.55, 0.48, 1.19, -1.59, 1.23, -0.65, 1.49, 0.05)

lm(y \sim x)
```

```
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 1.567 -1.713
```

1.1.8 Quiz 8

It must be identically 0.

1.1.9 Quiz 9

$$x \leftarrow c(0.8, 0.47, 0.51, 0.73, 0.36, 0.58, 0.57, 0.85, 0.44, 0.42)$$

mean(x)

[1] 0.573

1.1.10 Quiz 10

$$\beta_1 = Cor(Y, X) * Sd(Y)/Sd(X)$$

$$Y_1 = Cor(Y, X) * Sd(X)/Sd(Y)$$

$$\beta_1/Y_1 = Sd(Y)^2/Sd(X)^2 = Var(Y)/Var(X)$$

1.2 Week 3

1.2.1 Quiz 1

求系数

$$x \leftarrow c(0.61, 0.93, 0.83, 0.35, 0.54, 0.16, 0.91, 0.62, 0.62)$$

 $y \leftarrow c(0.67, 0.84, 0.6, 0.18, 0.85, 0.47, 1.1, 0.65, 0.36)$
fit $\ln(y^x)$
pander(summary(fit)\$coefficients)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.1885	0.2061	0.9143	0.391
\mathbf{x}	0.7224	0.3107	2.325	0.05296

1.2.2 Quiz 2

总平方和与回归与残差关系

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

$$\hat{y}_i = \beta_0 + \beta_1 x_i + e_i$$

$$e_i = y_i - \hat{y}_i$$

$$SS_{total} = ||y_i - \bar{y}\mathbf{1}||^2 = \sum_{i=1}^n (y_i - \bar{y})^2$$

$$= ||\hat{y}_i - \bar{y}\mathbf{1}||^2 + ||\hat{\epsilon}|| = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^n (y_i - \hat{y})^2$$

$$= SS_{regression} + SS_{residual}$$

$$\mathbf{1} = (1, 1, \dots, 1)^T$$

平方和与残差

$$SS_x = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$e_i = y_i - (\beta_1 x_i + \beta_0)$$

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2 = \frac{1}{n-2} SS_{residual} \sim \chi^2_{(n-2)}$$

```
# init
n <- length(x)
beta1 <- cor(y, x) * sd(y) / sd(x)
beta0 <- mean(y) - beta1 * mean(x)
ssx <- sum((x - mean(x))^2)
e <- y - (beta1 * x + beta0)
sigma <- sqrt(sum(e^2) / (n-2))</pre>
```

方差与系数方差关系

$$\sigma_{\hat{\beta}_1}^2 = Var(\hat{\beta}_1) = \frac{\sigma^2}{SS_x}$$

$$\sigma_{\hat{\beta}_0}^2 = Var(\hat{\beta}_0) = (\frac{1}{n} + \frac{\bar{X}^2}{SS_x})\sigma^2$$

$$R^2 = \frac{SS_{regression}}{SS_{total}} = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

t 分布与方差

$$\frac{\hat{\beta}_j - \beta_j}{\sigma_{\hat{\beta}_i}} \sim t_{\beta_j}(n - p)$$

```
# 计算 Beta1
seBeta0 <- sqrt(1/n + mean(x)^2/ssx)*sigma
seBeta1 <- sigma / sqrt(ssx)
tBeta0 <- beta0 / seBeta0
tBeta1 <- beta1 / seBeta1
pBeta0 <- 2 * pt(tBeta0, df = n-2, lower.tail = FALSE)
pBeta1 <- 2 * pt(tBeta1, df = n-2, lower.tail = FALSE)
```

	Estimate	Std. Error	t value	P(> t)
(Intercept)	0.1885	0.2061	0.9143	0.391
x	0.7224	0.3107	2.325	0.05296

1.2.3 Quiz 3

Dataset: mtcars

```
# 构造模型
fit <- lm(mpg~wt,mtcars)
pander(summary(fit))
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	37.29	1.878	19.86	8.242e-19
\mathbf{wt}	-5.344	0.5591	-9.559	1.294 e-10

表 7: Fitting linear model: mpg~wt

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
32	3.046	0.7528	0.7446

```
sumCoef <- summary(fit)$coefficients
b0 <- sumCoef[1,1]
b1 <- sumCoef[2,1]
seb0 <- sumCoef[1, 2]
seb1 <- sumCoef[2, 2]</pre>
```

```
b0i <- b0 + c(-1, 1) * qt(.9, df = fit$df) * seb0
b1i <- b1 + c(-1, 1) * qt(.9, df = fit$df) * seb1
x0 <- mean(mtcars$wt)
```

	fit	lwr	upr
confidence	20.09	18.99	21.19
${f prediction}$	20.09	13.77	26.41
manual	20.09	15.27	24.91

1.2.4 Quiz 4

The estimated expected change in mpg per 1,000 lb increase in weight.

1.2.5 Quiz 5

pander(predict(fit,newdata = data.frame(wt=3000/1000),interval = ("prediction")))

fit	lwr	upr
21.25	14.93	27.57

1.2.6 Quiz 6

fit	lwr	upr
20.09	12.58	27.6
fit	lwr	upr
20.09	18.99	21.19
fit	lwr	upr
20.09	13.77	26.41

1.2.7 Quiz 7

fit3<-lm(mpg~I(wt/100),mtcars)
pander(summary(fit3)\$coefficients)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	37.29	1.878	19.86	8.242e-19
$\mathrm{I}(\mathrm{wt}/100)$	-534.4	55.91	-9.559	1.294 e-10

#It would get multiplied by 100.

1.2.8 Quiz 8

The new intercept would be bhat0???cbhat1

1.2.9 Quiz 9

```
fit1 <- lm(mpg ~ wt, data = mtcars)</pre>
fit2 <- lm(mpg ~ 1, data = mtcars)</pre>
num <- sum((predict(fit1)-mtcars$mpg)^2)</pre>
den <- sum((predict(fit2)-mtcars$mpg)^2)</pre>
num/den
## [1] 0.2471672
1 - summary(fit1)$r.squared#options
## [1] 0.2471672
1.2.10 Quiz 10
x \leftarrow c(0.61, 0.93, 0.83, 0.35, 0.54, 0.16, 0.91, 0.62, 0.62)
y \leftarrow c(0.67, 0.84, 0.6, 0.18, 0.85, 0.47, 1.1, 0.65, 0.36)
sum(resid(lm(y ~ x)))
## [1] 1.110223e-16
sum(resid(lm(y ~ 1)))
## [1] -3.816392e-17
sum(resid(lm(y - x - 1)))
## [1] 0.220565
#If an intercept is included, then they will sum to 0.
```

- 1.3 Week 4
- 1.3.1 Quiz 1

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	29.74	2.541	11.7	2.688e-12
I(1 * (cyl == 8))	-1.815	1.358	-1.337	0.192
I(1 * (cyl == 4))	4.256	1.386	3.07	0.004718
\mathbf{wt}	-3.206	0.7539	-4.252	0.000213

[1] -6.07086

1.3.2 Quiz 2

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	19.74	1.218	16.21	4.493e-16
I(1 * (cyl == 8))	-4.643	1.492	-3.112	0.004152
I(1 * (cyl == 4))	6.921	1.558	4.441	0.0001195

1.3.3 Quiz 3

```
##
## Call:
## lm(formula = mpg ~ factor(cyl) + wt, data = mtcars)
##
## Coefficients:
## (Intercept) factor(cyl)6 factor(cyl)8
                                                  wt
       33.991 -4.256 -6.071
##
                                            -3.206
##
## Call:
## lm(formula = mpg ~ factor(cyl), data = mtcars)
##
## Coefficients:
## (Intercept) factor(cyl)6 factor(cyl)8
        26.664
                   -6.921
                                -11.564
##
```

1.3.4 Quiz 4

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.990794 1.887793 18.005569 6.257246e-17
```

```
## I(wt * 0.5) -6.411227 1.507791 -4.252065 2.130435e-04
## factor(cyl)6 -4.255582 1.386073 -3.070244 4.717834e-03
## factor(cyl)8 -6.070860 1.652288 -3.674214 9.991893e-04
```

函数 step 可以实现基于 AIC 准则的模型选择,最优模型为 AIC 值最小的

表 16:	Fitting	linear	model:	$mpg \sim$	wt	+	qsec	+	am
-------	---------	--------	--------	------------	----	---	------	---	----

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.618	6.96	1.382	0.1779
\mathbf{wt}	-3.917	0.7112	-5.507	6.953 e-06
\mathbf{qsec}	1.226	0.2887	4.247	0.0002162
am	2.936	1.411	2.081	0.04672

1.3.5 Quiz 5

```
x <- c(0.586, 0.166, -0.042, -0.614, 11.72)
y <- c(0.549, -0.026, -0.127, -0.751, 1.344)
fit <- lm(y ~ x)
round(hatvalues(fit),4)</pre>
```

1 2 3 4 5 ## 0.2287 0.2438 0.2525 0.2804 0.9946

1.3.6 Quiz 6

- 异常值
- 杠杆点
- 杠杆点对回归系数没有影响,但是会影响决定系数,可以通过观察帽子矩阵来识别,杠杆作用的平均值为 h=p/n, p 为自变量个数, n 为样本量,如果一个观测值的杠杆值 >2h,则应考虑为杠杆点,考虑剔除或采取措施。R 中可以通过 hatvalues 函数计算杠杆值。
- 影响点
- 影响点有将回归线拉向它的趋势,因此会影响回归系数的值,可以通过 COOK 距离来判断,R 中可以通过 cooks.distance 函数计算每个观测值的 COOK 距离。根据经验,如果距离大于1,则说明观测点为影响点。

• 此外,还可以通过 dffits 函数和 dfbetas 函数计算相应的值,如果 dffits>2/根号 p/n,那么可认为是影响点,如果 dfbetas>2/根号 n,也可认为是影响点,p 为自变量个数,n 为样本量

```
x <- c(0.586, 0.166, -0.042, -0.614, 11.72)
y <- c(0.549, -0.026, -0.127, -0.751, 1.344)
fit <- lm(y ~ x)
round(dfbetas(fit),4)</pre>
```

```
## (Intercept) x
## 1 1.0621 -0.3781
## 2 0.0675 -0.0286
## 3 -0.0174 0.0079
## 4 -1.2496 0.6725
## 5 0.2043 -133.8226
```

round(hatvalues(fit),4)

```
## 1 2 3 4 5
## 0.2287 0.2438 0.2525 0.2804 0.9946
```