right click to open a new tab for certain words in red to learn something new!

Unit	Unit	Quantity	Definition	Dimension
name	symbol	name		symbol
metre	m	length	 Original (1793): 1/10000000 of the meridian through Paris between the North Pole and the Equator. FG Interim (1960): 1650763.73 wavelengths in a vacuum of the radiation corresponding to the transition between the 2p¹⁰ and 5d⁵ quantum levels of the krypton-86 atom. Current (1983): The distance travelled by light in vacuum in 1/299792458 second. 	L
kilogram ^[n 2]	kg	mass	 Original (1793): The grave was defined as being the weight [mass] of one cubic decimetre of pure water at its freezing point. FG Current (1889): The mass of the international prototype kilogram. 	M
second	S	time	 Original (Medieval): 1/86400 of a day. Interim (1956): 1/31556925.9747 of the tropical year for 1900 January 0 at 12 hours ephemeris time. Current (1967): The duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom. 	Т

ampere	A	electric current	 Original (1881): A tenth of the electromagnetic CGS unit of current. The [CGS] electromagnetic unit of current is that current, flowing in an arc 1 cm long of a circle 1 cm in radius creates a field of one oersted at the centre. [39] IEC Current (1946): The constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to 2×10⁻⁷ newtons per metre of length. 	İ
kelvin	К	thermodynamic temperature	 Original (1743): The centigrade scale is obtained by assigning 0 °C to the freezing point of water and 100 °C to the boiling point of water. Interim (1954): The triple point of water (0.01 °C) defined to be exactly 273.16 K. [n 3] Current (1967): 1/273.16 of the thermodynamic temperature of the triple point of water 	Θ
mole	mol	amount of substance	 Original (1900): The molecular weight of a substance in mass grams. ICAW Current (1967): The amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. [n 4] 	N
candela	cd	luminous intensity	Original (1946): The value of the new candle is such that the brightness of the full radiator at the temperature of solidification of platinum is 60 new candles per square centimetre.	J

● Current (1979): The luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 5.4×10 ¹⁴ hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.
--

Derived units

Name	Symbol	Quantity	Equivalents	SI base unit
				Equivalents
hertz	Hz	frequency	1/s	S ⁻¹
radian	rad	angle	m/m	dimensionless
steradian	sr	solid angle	m²/m²	dimensionless
newton	N	force, weight	kg·m/s²	kg·m·s ⁻²
pascal	Pa	pressure, stress	N/m²	$kg \cdot m^{-1} \cdot s^{-2}$
joule	J	energy, work, heat	N·m	kg·m²·s ⁻²
			C · V	
			W·s	
watt	W	power, radiant flux	J/s	kg·m²·s ⁻³
			V·A	

coulomb	С	electric charge or quantity of	s·A	s·A
		electricity		
volt	V	voltage, electrical potential	W/A	$kg \cdot m^2 \cdot s^{-3} \cdot A^{-1}$
		difference, electromotive force	J/C	
farad	F	electrical capacitance	C/V	$kg^{-1} \cdot m^{-2} \cdot s^4 \cdot A^2$
			s/Ω	
ohm	Ω	electrical resistance, impedance, reactance	V/A	kg · m ² · s ⁻³ · A ⁻²
siemens	S	electrical conductance	1/Ω	$kg^{-1} \cdot m^{-2} \cdot s^3 \cdot A^2$
			A/V	
weber	Wb	magnetic flux	J/A	$kg \cdot m^2 \cdot s^{-2} \cdot A^{-1}$
			$T \cdot m^2$	
tesla	T	magnetic field strength, magnetic	V·s/m²	kg·s ⁻² ·A ⁻¹
		flux density	Wb/m ²	
			N/(A·m)	
henry	Н	inductance	V·s/A	$kg \cdot m^2 \cdot s^{-2} \cdot A^{-2}$
			Ω·s	
			Wb/A	

degree Celsius	°C	temperature relative to 273.15 K	К	К
lumen	lm	luminous flux	cd·sr	cd
lux	İx	illuminance	lm/m ²	m ⁻² ⋅cd
becquerel	Bq	radioactivity (decays per unit time)	1/s	s ⁻¹
gray	Gy	absorbed dose (of ionizing radiation)	J/kg	m ² · s ⁻²
sievert	Sv	equivalent dose (of ionizing radiation)	J/kg	$m^2 \cdot s^{-2}$
katal	kat	catalytic activity	mol/s	s ⁻¹ ·mol

Name	Symbol	Quantity	Expression in terms of SI base units
square metre	m ²	area	m ²
cubic metre	m³	volume	m³
metre per second	m/s	speed, velocity	m·s ⁻¹
cubic metre per second	m³/s	volumetric flow	$m^3 \cdot s^{-1}$

metre per second squared	m/s ²	acceleration	m · s ⁻²
metre per second cubed	m/s³	jerk, jolt	m · s ⁻³
metre per quartic second	m/s ⁴	snap, jounce	m·s ⁻⁴
radian per second	rad/s	angular velocity	S ⁻¹
radian per second squared	rad/s²	angular acceleration	S ⁻²
newton second	N·s	momentum, impulse	m·kg·s ⁻¹
newton metre second	N·m·s	angular momentum	$m^2 \cdot kg \cdot s^{-1}$
newton metre	N·m = J/rad	torque, moment of force	$m^2 \cdot kg \cdot s^{-2}$
newton per second	N/s	yank	m·kg·s ⁻³
reciprocal metre	m ⁻¹	wavenumber, optical power, curvature, spatial frequency	m ⁻¹
kilogram per square metre	kg/m²	area density	m ⁻² ·kg
kilogram per cubic metre	kg/m³	density, mass density	m ⁻³ ·kg

cubic metre per kilogram	m³/kg	specific volume	$m^3 \cdot kg^{-1}$
mole per cubic	mol/m³	molarity, amount of substance concentration	m ⁻³ ·mol
cubic metre per mole	m³/mol	molar volume	m ³ ·mol ⁻¹
joule second	J·s	action	m ² ·kg·s ⁻¹
joule per kelvin	J/K	heat capacity, entropy	$m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$
joule per kelvin mole	J/(K·mol)	molar heat capacity, molar entropy	$m^2 \cdot kg \cdot s^{-2} \cdot K^{-1} \cdot mol^{-1}$
joule per kilogram kelvin	J/(K·kg)	specific heat capacity, specific entropy	$m^2 \cdot s^{-2} \cdot K^{-1}$
joule per mole	J/mol	molar energy	$m^2 \cdot kg \cdot s^{-2} \cdot mol^{-1}$
joule per kilogram	J/kg	specific energy	m ² · s ⁻²
joule per cubic metre	J/m³	energy density	m ⁻¹ ·kg·s ⁻²
newton per metre	N/m = J/m ²	surface tension, stiffness	kg·s ⁻²
watt per square metre	W/m²	heat flux density, irradiance	kg·s ⁻³

watt per metre kelvin	W/(m·K)	thermal conductivity	m·kg·s ⁻³ ·K ⁻¹
square metre per	m²/s	kinematic viscosity, thermal diffusivity, diffusion coefficient	m ² ·s ⁻¹
pascal second	Pa·s = N·s/m²	dynamic viscosity	m ⁻¹ ·kg·s ⁻¹
coulomb per square metre	C/m ²	electric displacement field, polarization density	m ⁻² ⋅s⋅A
coulomb per cubic metre	C/m³	electric charge density	m ⁻³ ·s·A
ampere per square metre	A/m²	electric current density	A·m ⁻²
siemens per metre	S/m	electrical conductivity	$m^{-3} \cdot kg^{-1} \cdot s^3 \cdot A^2$
siemens square metre per mole	S·m²/mol	molar conductivity	kg ⁻¹ ·s ³ ·mol ⁻¹ ·A ²
farad per metre	F/m	permittivity	$m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$
henry per metre	H/m	magnetic permeability	m·kg·s ⁻² ·A ⁻²
volt per metre	V/m	electric field strength	m·kg·s ⁻³ ·A ⁻¹
ampere per metre	A/m	magnetization, magnetic field strength	A · m ⁻¹

candela per square metre	cd/m ²	luminance	cd·m ⁻²
lumen second	lm·s	luminous energy	cd·sr·s
lux second	lx·s	luminous exposure	cd·sr·s·m ⁻²
coulomb per kilogram	C/kg	exposure (X and gamma rays)	kg ⁻¹ ⋅s⋅A
gray per second	Gy/s	absorbed dose rate	$m^2 \cdot s^{-3}$
ohm metre	Ω·m	resistivity	$m^3 \cdot kg \cdot s^{-3} \cdot A^{-2}$
kilogram per metre	kg/m	linear mass density	m ⁻¹ ·kg
coulomb per metre	C/m	linear charge density	m ⁻¹ ·s·A
mole per kilogram	mol/kg	molality	kg ⁻¹ ⋅mol
kilogram per mole	kg/mol	molar mass	kg·mol ⁻¹
metre per cubic metre	m/m³	fuel efficiency	m ⁻²
kilogram per second	kg/s	mass flow rate	kg⋅s ⁻¹
joule per tesla	J/T	magnetic dipole moment	m² · A
watt per cubic metre	W/m³	spectral irradiance, power density	m ⁻¹ ·kg·s ⁻³

kelvin per watt	K/W	thermal resistance	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot K$
reciprocal kelvin	K ⁻¹	thermal expansion coefficient	K ⁻¹
kelvin per metre	K/m	temperature gradient	m⁻¹ · K
square metre per volt second	m²/(V·s)	electron mobility	kg ⁻¹ ⋅s ² ⋅A
joule per square metre second	J/(m²·s)	energy flux density	kg·s ⁻³
reciprocal pascal	Pa ⁻¹	compressibility	m⋅kg ⁻¹ ⋅s ²
reciprocal henry	H ⁻¹	magnetic reluctance	$m^{-2} \cdot kg^{-1}s^2 \cdot A^2$
weber per metre	Wb/m	magnetic vector potential	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-2} \cdot \mathbf{A}^{-1}$
weber metre	Wb·m	magnetic moment	$m^3 \cdot kg \cdot s^{-2} \cdot A^{-1}$
tesla metre	T·m	magnetic rigidity	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-2} \cdot \mathbf{A}^{-1}$
joule per square metre	J/m²	radiant exposure	kg·s ⁻²
cubic metre per mole second	m³/(mol·s)	catalytic efficiency	$m^3 \cdot s^{-1} \cdot mol^{-1}$
kilogram square metre	kg·m²	moment of inertia	m ² ·kg

newton metre second per kilogram	N·m·s/kg	specific angular momentum	$m^2 \cdot s^{-1}$
hertz per second	Hz/s	frequency drift	s ⁻²
lumen per watt	lm/W	luminous efficacy	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot lm$
ampere radian	A·rad	magnetomotive force	A
metre per henry	m/H	magnetic susceptibility	$m^{-1} \cdot kg^{-1} \cdot s^2 \cdot A^2$
watt per steradian	W/sr	radiant intensity	$m^2 \cdot kg \cdot s^{-3}$
watt per steradian metre	W/(sr·m)	spectral intensity	m⋅kg⋅s ⁻³
watt per steradian square metre	W/(sr·m²)	radiance	kg·s ⁻³
watt per steradian cubic metre	W/(sr·m³)	spectral radiance	m ⁻¹ ·kg·s ⁻³
watt per metre	W/m	spectral power	m·kg·s ⁻³