PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2023

MAT1107 - Introducción al Cálculo

Solución Interrogación N° 3

1. (a) (2pts) Determine el dominio de la función (real de variable real) definida por

$$f(x) = \frac{\sqrt{|x| - 4}}{x^2 - 16}.$$

(b) (4pts) Determine el rango (o conjunto imagen) de la función $f:[-4,4]\to\mathbb{R}$ definida por

$$f(x) = 5 - \sqrt{16 - x^2}.$$

Instrucción: debe calcular el rango por definición. En particular, deducir el rango a partir del gráfico de la función no tiene puntaje.

Solución.

(a) La expresión $\frac{\sqrt{|x|-4}}{x^2-16}$ está bien definida en \mathbb{R} si $|x|-4\geq 0$ y $x^2-16\neq 0$. Notando que $|x|\geq 4\iff x\in (-\infty,-4]\cup [4,\infty)$ y que $x^2\neq 16\iff x\in \mathbb{R}\setminus \{-4,4\}$, concluimos que

$$Dom(f) = [(-\infty, -4] \cup [4, \infty)] \cap [\mathbb{R} \setminus \{-4, 4\}] = (-\infty, -4) \cup (4, \infty).$$

(b) Debemos determinar el conjunto $\{y \in \mathbb{R} \mid \exists x \in [-4, 4] \text{ tal que } y = f(x)\}$. Luego, para $x \in [-4, 4]$ consideramos la ecuación $y = 5 - \sqrt{16 - x^2} \iff 5 - y = \sqrt{16 - x^2}$. Para que esto sea cierto, necesariamente $5 \ge y$, en cuyo caso se tiene

$$(5-y)^2 = 16 - x^2 \iff x^2 = 16 - (5-y)^2.$$

Esta ecuación posee solución si y sólo si

$$16 - (5 - y)^2 \ge 0 \iff 0 \ge y^2 - 10y + 9 \iff 0 \ge (y - 1)(y - 9) \iff y \in [1, 9].$$

Finalmente, deducimos que si $y \in [1, 9] \cap (-\infty, 5] = [1, 5]$, entonces $x = \pm \sqrt{16 - (5 - y)^2} \in [-4, 4]$ es tal que y = f(x), por lo que

$$\{y \in \mathbb{R} \mid \exists x \in [-4, 4] \text{ tal que } y = f(x)\} = [1, 5].$$

Puntaje Pregunta 1.

Respecto a la parte (a)

- 1 punto por obtener las restricciones $|x| 4 \ge 0$ y $x^2 16 \ne 0$.
- 1 punto por obtener el dominio de la función.

Respecto a la parte (b)

- 1 punto por obtener la condición $5 \ge y$.
- 1 punto por obtener la ecuación $x^2 = 16 (5 y)^2$.
- 1 punto por deducir que esta ecuación posee solución si y sólo si $y \in [1, 9]$.
- 1 punto por obtener el rango o imagen de la función.

- 2. La gráfica de $g(x) = -\sqrt{2-x} 1$ se obtiene a partir de la gráfica de $f(x) = \sqrt{x}$ aplicando transformaciones de funciones elementales vistas en cátedra, como traslaciones horizontales y verticales, dilataciones y contracciones horizontales y verticales y reflexiones.
 - a) Identifique en orden las transformaciones elementales que permiten obtener el gráfico de g(x) a partir del gráfico de f(x).
 - b) Grafique cada una de estas transformaciones del inciso a), indicando los puntos donde la gráfica intersecta los ejes coordenados. Tenga en cuenta que solo se puede aplicar una transformación a la vez.

Solución.

a) Podemos ver que g(x) = -f(-(x-2)) - 1. Luego, una forma de identificar el orden en que se realizar las transformaciones es:

Orden	Transformación	Descripción
1	$h_1(x) = f(-x)$	Reflexión eje Y
2	$h_2(x) = -h_1(x) = -f(-x)$	Reflexión eje X
3	$h_3(x) = h_2(x-2) = -f(-(x-2))$	Traslación derecha
4	$g(x) = h_3(x) - 1 = -f(-(x-2)) - 1$	Traslación abajo

b) A continuación se muestran las transformaciones en el orden dado.

Puntaje Pregunta 2.

- 1,5 puntos por dar el orden de las reflexiones, las reflexiones pueden conmutar su orden.
- 1,5 puntos por dar el orden de las translaciones, las traslaciones pueden conmutar su orden.
- 1,5 puntos por graficar las reflexiones.
- 1,5 puntos por graficar las traslaciones.