Foll spring 560 -> 561/562 Midterm: likely on 19/11 or 11/06

What is a robot?

A robot is an autonomous machine handling repetitive/complex tasks. sonsing - computing - control

Mathmetic foundation

A set is a collection of elements.

n-dimentional Euclidean spaces. Rn

symmetric difference: A OB = AUB-AOB

powerset: p(s) = {A/Acs}

E.g. S= {1,2} p(s) = {\phi, \{1\}, \{2\}, \{1,2\}}

A function is surjective if fix) = Y. E.g. R > R + U {0}, x -> x2

injective $\forall x_1 \neq x_2$, $f(x_1) \neq f(x_2)$

bijective it's both surjective and injective.

In general the size of P(s) is $|P(s)| = 2^{|s|}$

2f |A| ≤ |B| and |A| ≥ |B|, then |A| = |B| useful when trying to prove equality.

A set X and a collection P of subsets (called open sets) of X form a topological space if:

- · ØEP and xEP
- · Arbitrary union (U) of elements of Pis again in P.
- · Finite intersection (1) of elements of P is again in P.

Eg. $P = \{0, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}$

 $\{\emptyset, \{1,2\}, \{2,3\}, \{1,2,3\}\}\}$ $\{1,2\} \cap \{1,3\} = \{2\} \notin [$

A set is closed if (X-A) is open.

One can build a series of homeomorphisms to deform between two objects, that is.

 F_t , $t \in [0,1]$, is a bijective continuous function with domain X. $F_0(x) = X$, $F_1(x) = Y$ F_x , $\chi \in [0,1]$ here is known as deformation. Classic example: coffee mug \iff donut

Simply connected space

A topological space X is simply connected if $\exists x_1, x_2 \in X$ and any T_1, T_2 with $T_1(0) = T_2(0) = X_1$ and $T_1(1) = T_2(1) = X_2$, T_1 and T_2 are homotopic. Deherwise, X is multiply connected.

Do not understand!

1 multiply connected.