Predictive Analytics, Classification, and Decision Trees

Data Science Dojo

Agenda

- Introduction to predictive analytics
- Introduction to classification
- Decision Tree Classifier
- Hands-on Lab: Building a decision tree classifier using R

INTRODUCTION TO PREDICTIVE ANALYTICS

Family and Personal Life

- Location
 - Microsoft and Nokia predict future location based on cellular phone and location data
- Life Events
 - Target predicts customer pregnancy
- Divorce and infidelity
 - University and clinical researchers can predict this as well!

Friendship and Love

- Friendship and connection
 - Facebook and LinkedIn predict your personal connections
- Love
 - Every dating site tries to predict potential matches
 - OkCupid tracks which message content is most likely to elicit a response

data science for everyone

Telcos, Retail, and More

FedEx

 Predicts defection to a competitor with 65-90% accuracy

Amazon

• 35% sales come from product recommendation

Social Networks

Face recognition in Facebook posts

Performed better than humans

97% accuracy in recognizing faces

Customer Churn

Keep customers before they leave

Advanced detect allows for customer retention strategies to be employed

36% reduction in customer turnover

40% reduction in customer calls

Lead Scoring

Pin-pointing which leads to nurture

Allows sales resources to be more focused towards leads with higher probable conversions

3.6 X more coupons than before are sent out

Coupon Redemption

Knowing the liability to bottom-line

Most coupons go un-redeemed. Knowing exactly how many allows you to plan more coupons by having less future liability.

Even In Law Enforcement....

INTRODUCTION TO CLASSIFICATION

Supervised Learning

Training Set

15

?

Test Set

38

19

40

42

32

Male

Male

Male

Male

Age Pclass Survived

3

2

The Classification Task

- Given a collection of records (training set)
 - Two attribute types: predictors and class
 - Find a model to map predictor set to class
 - Class is
 - Categorical
 - Nominal (almost always)

The Classification Task

- Goal: Assign new records a correct class
 - Training set used to create model
 - **Test set** used to check
 - Predict test set classes to assess correctness
 - Split data into training and test sets
 - **70/30, 60/40, 50/50**

DECISION TREE LEARNING

Decision Tree Learning

Pid	Sex	Age	Pclass	Survived
2	Female	38	1	Yes
3	Female	26	3	Yes
5	Male	35	3	No
7	Male	54	1	No
13	Male	20	3	No
14	Male	39	3	No
21	Male	35	2	No
24	Male	28	1	Yes
34	Male	66	1	No
54	Female	29	2	Yes

A Different Decision Tree

Pid	Sex	Age	Pclass	Survived
2	Female	38	1	Yes
3	Female	26	3	Yes
5	Male	35	3	No
7	Male	54	1	No
13	Male	20	3	No
14	Male	39	3	No
21	Male	35	2	No
24	Male	28	1	Yes
34	Male	66	1	No
54	Female	29	2	Yes

There could be more than one tree that fits the same data!

Start from the root of tree.

Test Data

Sex	Age	Pclass	Survived
Male	32	2	?

Decision Tree Application

71

No

How Do We Get A Tree?

- Exponentially many decision trees are possible
- Finding the optimal tree is infeasible
- Greedy methods that find near-optimal solutions do exist

Tree Induction

- Greedy strategy
 - Split based on attribute test that optimizes a criterion
- Issues
 - How to split the records
 - What attribute test condition?
 - How to determine the best split?
 - When do we stop?

Tree Induction

- Greedy strategy
 - Split based attribute test that optimizes a criterion
- Issues
 - How to split the records
 - What attribute test criterion?
 - How to determine the best split?
 - When do we stop?

How to Specify Test Condition?

- Attribute types
 - Nominal
 - Ordinal
 - Continuous
- Order of split
 - 2-way split
 - Multi-way split

Splitting: Nominal Attributes

Multi-way split: As many partitions as distinct values.

Binary split: Divide values into two subsets.
 Need to find optimal partitioning.

Splitting: Ordinal Attributes

Multi-way split: As many partitions as distinct values.

Binary split: Divides values into two subsets. Need to find optimal partitioning.

What about this split?

Splitting: Continuous Attributes

- Discretize: transform to ordinal categorical attribute
 - Static "bucket" once at the beginning
 - Dynamic "bucket" at each node
 - Equal interval bucketing
 - Equal frequency bucketing (percentiles)
 - Clustering
 - Sweep Consider all possible splits
 - Usually more computationally intensive

Splitting on Continuous Attributes

Binary Split

Multi-way Split

Tree Induction

- Greedy strategy
 - Split based attribute test that optimizes a criterion
- Issues
 - How to split the records
 - What attribute test criterion?
 - How to determine the best split?
 - When do we stop?

C₁: Dead C₂: Survived

What is The Best Split?

Before Splitting: 10 records of class 1, 10 records of class 2

Which test condition is the best?

C₁: Dead C₂: Survived

What is The Best Split?

- Greedy approach
 - Homogeneous class distribution preferred
- Need a measure of node impurity

C₁: 5 C₂: 5

Non-homogeneous

High degree of impurity

C₁: 9 C₂: 1

Homogeneous

Low degree of impurity

Measures of Node Impurity

- Gini Index
- Entropy
- Misclassification error

C₁: Dead C₂: Survived

Impurity Measure: GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

- p(j | t) is the relative frequency of class j at node t
- Maximum (1 $1/n_c$) when records are equally distributed among all classes, implying least interesting information
 - n_c=number of classes
- Minimum (0.0) when all records belong to one class, implying most interesting information

C_1	0
C ₂	6
Gini=0.000	

Gini=0.278	
C ₂	5
C_1	1

Gini=₄	Q.444
C_2	4
C_1	2

C_1	3
C ₂	3
Gini=0.500	

Impurity Measure: GINI

C₁: Dead C₂: Survived

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Impurity Measure: GINI

When a node p is split into k partitions (children), the quality of split is computed as:

$$GINI(split, p) = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where

n_i = number of records at child i

n = number of records at node p

C₁: Dead C₂: Survived

Impurity Measure: GINI

- Split data into two partitions
- Partition measurements are weighted
 - Larger and purer partitions are sought after

	Parent
C_1	6
C ₂	6
Gini = 0.500	

Gini(N ₁)
$= 1 - (5/7)^2 - (2/7)^2$
= 0.408

G	ini(N ₂)	
=	$1 - (1/5)^2$	- (4/5) ²
=	0.320	

	N ₁	N ₂
C_1	5	1
C ₂	2	4
Gini=0.371		

Gini(B?, Parent) = 7/12 * 0.408 + 5/12 * 0.320 = 0.371

Impurity Measure: Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log_2(p(j | t))$$

- p(j|t) is the relative frequency of class j at node t
- Maximum: records equally distributed
- Minimum: all records belong to one class

C₁: Dead C₂: Survived

Impurity Measure: Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Entropy = -(1/6) log_2 (1/6) - (5/6) log_2 (5/6) = 0.65$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Impurity Measure: Information

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

- Node p is split into k partitions
- n_i is number of records in partition i
- Measures reduction in entropy
- Choose split that maximizes GAIN
- Tends to prefer splits with large number of partitions

Impurity Measure: Classification Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Maximum: records are equally distributed
- Minimum: all records belong to one class
- Similar to information gain
 - Less sensitive for > 2 or 3 splits
 - Less prone to overfitting

C₁: Dead C₂: Survived

Impurity Measure: Classification Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C_1	0
C ₂	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3$

Tree Induction

- Greedy strategy
 - Split based attribute test that optimizes a criterion
- Issues
 - How to split the records
 - What attribute test criterion?
 - How to determine the best split?
 - When do we stop?

Sample Stopping Criteria

- All the records belong to the same class
- All the records have similar attribute values
- Fixed termination or pruning
 - Number of Levels
 - Number of Leaf Nodes
 - Minimum samples per leaf node

Decision Trees - PROS

Intuitive

Easy interpretation for small trees

Non parametric

 Incorporate both numeric and categorical attributes

Fast

- Once rules are developed, prediction is rapid
- Robust to outliers

Decision Trees - CONS

- Overfitting
 - Must be trained with great care
- Rectangular Classification
 - Recursive partitioning of data may not capture complex relationships

QUESTIONS

HANDS-ON LAB: BUILDING A DECISION TREE CLASSIFIER USING R

