Exercice 1 : Étude de fonction

Soit f la fonction définie pour $x \in \mathbb{R}$ par : $f(x) = 2 - 2x e^{-x}$.

1. (Calculer l'intégrale $I = \int_0^1 f(x) dx$.)

On a $I = 2 \int_0^1 dx - 2 \int_0^1 x e^{-x} dx$. Calculons par parties $J = \int_0^1 x e^{-x} dx$.

Les fonctions u, v définies ci-dessous sont bien de classe C^1 sur [0;1]:

$$\begin{cases} u = x \\ v' = e^{-x} \end{cases} \longrightarrow \begin{cases} u' = 1 \\ v = -e^{-x} \end{cases}$$

Il vient donc:

$$J = \left[-x e^{-x} \right]_0^1 - \int_0^1 -e^{-x} = -e^{-1} - \left[e^{-x} \right]_0^1 = -e^{-1} - (e^{-1} - 1) = 1 - 2e^{-1}$$

Ainsi :
$$I = 2 - 2(\underbrace{1 - 2e^{-1}}_{=J}) = 4e^{-1}$$
.

2. Étude de la fonction f

a) (Montrer que la fonction f est de classe C^2 sur \mathbb{R} .)

Les fonctions suivantes sont de classe C^{∞} sur \mathbb{R} : $x \mapsto -2x \quad \text{(fonction polynomiale)} \\ x \mapsto e^{-x} \quad \text{(fonction exponentielle)}$

Ainsi leur produit $x \mapsto -2x e^{-x}$ l'est aussi sur \mathbb{R} .

Par ajout de constante additive, la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} , donc aussi \mathcal{C}^2 .

b) (Faire le tableau de variations de f sur \mathbb{R} + limites en $\pm \infty$.)

On a: $\forall x \in \mathbb{R}, f(x) = 2 - 2x e^{-x}$

d'où:
$$f'(x) = -2(e^{-x} - x e^{-x})$$

= $2(x - 1) e^{-x}$.

On obtient donc pour f' et f le tableau de signes-variations à droite.

\overline{x}	$-\infty$	1	$+\infty$
x-1	_	Ó	+
e^{-x}		+	
f'(x)		+	
	$+\infty$		₇ 2
f(x)		$\searrow 2$ 2	

• Calcul de $\lim_{\infty} f$

Pour
$$x \to -\infty$$
, on a $f(x) = 2 \underbrace{-2x}_{\to +\infty} \cdot \underbrace{e^{-x}}_{\to +\infty} \to +\infty$.

• Calcul de $\lim f$

Pour
$$x \to +\infty$$
, on a $f(x) = 2 \underbrace{-2x}_{\to -\infty} \cdot \underbrace{e^{-x}}_{\to 0}$.

On obtient une forme indéterminée. Par croissances comparées $\lim_{x\to +\infty} x \cdot e^{-x} = 0$. Ainsi $\lim_{\to \infty} f = 2$.

• Calcul de f(1)On a $f(1) = 2 - e^{-1}$. c) (Étudier le signe de la fonction f'' + unique point d'inflexion.) On a : $\forall x \in \mathbb{R}$, $f'(x) = 2(x-1)e^{-x}$

 $f''(x) = 2(e^{-x} - (x-1)e^{-x})$ d'où: $= 2(2-x)e^{-x}$

On trouve le tableau de signes ci-contre. La dérivée seconde f'' s'annule en changeant de signe une seule fois : en 2.

C'est donc l'unique point d'inflexion de f sur \mathbb{R} .

x	$-\infty$	4	$2 + \infty$
$2 \mathrm{e}^{-x}$		+	+
2-x		+ () –
f''(x)		+ (-
f(x)		convexe	concave
			→ inflexion

- 3. Tracé de la fonction f sur [0;3] (On donne $e^{-1} \simeq 0.37$ et $e^{-2} \simeq 0.14$.)
 - a) (Tracer l'asymptote représentant la limite de f en $+\infty$.) L'asymptote est horizontale, à l'ordonnée y=2.
 - c) (Calculer f(0), f(1) et f(2) (+ approx).)
 - f(0) = 2.
 - $f(1) = 2 2e^{-1}$ $2 - 2 \in 2$ $\simeq 2 - 2 \times 0.37 = 1.26.$ $2 - \frac{4}{e^2} \simeq 1.46$ $2 - \frac{2}{e} \simeq 1.26$
 - $f(2) = 2 4e^{-2}$ $\simeq 2 - 4 \times 0.14 = 1.44$

1

2

0

- **d)** (Calculer f'(0), f'(1) et f'(2) (approx).)
 - f'(0) = -2.
 - f'(1) = 0.
 - $f'(2) = 2e^{-2} \simeq 0.28.$
- **4.** L'équation f(x) = x. On définit la fonction $g: \int \mathbb{R} \to \mathbb{R}$ $\int x \mapsto f(x) - x$
 - a) (Montrer que pour $x \ge 1$, on a $0 \le f'(x) \le 2e^{-2}$.) On a trouvé le tableau de signes ci-contre pour

la dérivée seconde f''.

On en déduit le tableau de variations pour f'. On obtient bien l'inégalité :

2

3

b) (En déduire que la fonction g est strictement décroissante sur $[1; +\infty[$.)

La fonction g est dérivable et on a $\forall x \ge 1$, g'(x) = f'(x) - 1. Par la question précédente :

$$\forall x \ge 1, \quad g'(x) \le 2 e^{-2} - 1 < 0.$$

Ainsi la fonction g est bien strictement décroissante sur $[1; +\infty[$. $(sur \]0; +\infty[\ aussi.)$

c) (Montrer que l'équation g(x) = 0 admet une unique solution ℓ sur $[0; +\infty[.)]$

Sur l'intervalle $[0; +\infty[$, la fonction q est \rightarrow continue

▶ strictement décroissante.

Par le théorème de la bijection monotone, la fonction g réalise donc une bijection $]0\,;+\infty[\,\rightarrow\,]\lim_{+\infty}g\,;g(0)[.\text{ Or }\left\{ \begin{array}{c} g(0)=2\\ \lim_{x\to +\infty}g(x)=-\infty \end{array} \right\} \text{ donc } 0\in]\lim_{+\infty}g\,;g(0)[,\text{ et il existe un } 0\in]\lim_{+\infty}g:g(0)=0$

unique $\ell \in]0; +\infty[$ tel que $g(\ell) = 0$.

d) (Montrer que $\ell \in [1;2]$.) Calculons $\begin{cases} g(1) = 1 - 2e^{-1} > 0 \\ g(2) = -4e^{-2} < 0 \end{cases}$

$$g(2) = -4e^{-2} < 0$$

Ainsi, la fonction g change de signes entre 1 et 2, donc s'y annule, et $1 < \ell < 2$.

e) (Étudier le signe de g(x) pour $x \ge 0$.)

La fonction g est st^t décroissante, et s'annule en ℓ . On trouve donc le tableau de signes ci-contre.

x	1		ℓ		$+\infty$
g(x)		+	Ó	_	

5. Étude de la suite (u_n) définie par $u_0 = 2$, et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

 $g(x) \geqslant 0 \iff f(x) \geqslant x$.

a) (Montrer que $\forall n \geq 0$, on a $u_n \geq \ell$.)

Remarquons que

Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $u_n \geqslant \ell$ (H_n)

- $u_0 = 2 \geqslant \ell$ ▶ Initialisation On a bien d'après la question 4.d) : (H_0)
- ▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit : $u_n \ge \ell$.

D'après la question 4.e) avec $x = u_n \geqslant \ell \ u_{n+1} = f(u_n) = u_n + \underbrace{g(u_n)}_{\geqslant 0} \geqslant u_n$

 (H_{n+1}) $u_{n+1} \geqslant \ell$ Ainsi, il vient bien:

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

héréditaire

On a donc bien pour tout $n \in \mathbb{N}$, $u_n \geqslant \ell$ (H_n)

- **b)** (Étudier le sens de variation de la suite (u_n) .) On a $\forall n \in \mathbb{N}, u_n \geqslant \ell$. Donc, $\forall n \in \mathbb{N}, u_{n+1} - u_n = g(u_n) \leqslant 0$. (d'après 4.e)) Ainsi la suite (u_n) est décroissante.
- c) (Montrer que la suite (u_n) converge, et préciser sa limite.)
 - ▶ Convergence de (u_n) La suite (u_n) est ▶ décroissante, par 5.b), et ▶ minorée par ℓ , par **5.a**).

Par le théorème de la limite monotone, la suite (u_n) converge et $\lim (u_n) \ge \ell$.

- ▶ Limite de (u_n) ▶ La suite (u_n) satisfait $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$, et
 - ▶ la fonction f est continue sur \mathbb{R} .

D'après le théorème du point fixe, la limite $\lim(u_n)$ est un point fixe ≥ 1 de f.

D'après la question 4.c), le seul point fixe de f qui soit ≥ 1 est le réel ℓ .

Ainsi $\lim (u_n) = \ell$.

d) (Montrer grâce à la question **4.a**) que $\forall n \in \mathbb{N}$, on a $0 \leqslant u_{n+1} - \ell \leqslant 2 e^{-2}(u_n - \ell)$.) La fonction f est dérivable sur $[1; +\infty[$, et $\forall x \ge 1, 0 \le f'(x) \le 2e^{-2}$. Ainsi, d'après l'inégalité des accroissements finis, pour $1 \le a \le b$, on a :

$$0 \leqslant f(b) - f(a) \leqslant 2 e^{-2}$$
.

On applique, pour $n \in \mathbb{N}$, entre $a = \ell$, et $b = u_n$: (on a bien $1 \leq \ell \leq u_n$)

$$0 \leqslant \underbrace{u_{n+1} - \ell}_{f(u_n) - f(\ell)} \leqslant 2 e^{-2} (u_n - \ell).$$

- **e)** (En déduire que $\forall n \in \mathbb{N}$, on $a: 0 \leq u_n \ell \leq 2^n e^{-2n}$.)
 - Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $0 \leq u_n - \ell \leq 2^n e^{-2n} (H_n)$

- ▶ Initialisation On a $\ell \geqslant 1$, donc : $0 \leqslant u_0 \ell \leqslant 2 1 = 1$ (H_0)
- ▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit : $0 \le u_n - \ell \le 2^n e^{-2n}$

D'après la question 5.d) $0 \leqslant u_{n+1} - \ell \leqslant 2 e^{-2} (u_n - \ell) \leqslant 2 e^{-2} 2^n e^{-2n} = 2^{n+1} e^{-2(n+1)}$.

Ainsi, il vient bien : $0 \le u_{n+1} - \ell \le 2^{n+1} e^{-2(n+1)}$ (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

▶ héréditaire

On a donc bien pour tout $n \in \mathbb{N}$, $0 \leqslant u_n - \ell \leqslant 2^n e^{-2n}$ (H_n)

f) (Combien de termes de (u_n) calculer pour approcher ℓ avec une précision $\leq 10^{-3}$?)

(on rappelle $\ln(2) \simeq 0.69$ et $\ln(10) \simeq 2.3$) Pour $n \in \mathbb{N}$, l'erreur commise en approchant ℓ par u_n est $\leq 2^n \, \mathrm{e}^{-2n}$.

Pour que celle-ci soit $\leq 10^{-3}$, on souhaite donc avoir :

$$2^n e^{-2n} \le 10^{-3} \iff n \ln(2 e^{-2}) \le -3 \ln(10) \iff n[2 - \ln(2)] \ge 3 \ln(10)$$

$$\iff n \geqslant \frac{3\ln(10)}{2-\ln(2)} \simeq \frac{3\times 2,3}{2-0.7} = \frac{6,9}{0.6} = 11,5$$

Pour obtenir ℓ avec une précision $\leq 10^{-3}$, il suffit donc de calculer u_{12} .