

Digital Asset Management 数字媒体资源管理

2. Introduction to Digital Media Format

任课老师: 张宏鑫 2017-09-20

基于Python的教学

- 推荐使用的工具链:
 - ipython
 - ipython notebook
 - ImageMagick
 - Flask ...

Review

Content

Content

Information

Data

What is Digital Asset Management?

- Tools for organizing, storing and retrieving content in digital format
 - downloading, renaming, backing up, rating, grouping, archiving, optimizing, maintaining, thinning, and exporting ...
- Includes:
 - text, video, images, movies, sound, and 3D content

Content

content = essence + metadata 内容=素材+元数据

Digital media data types

Table. File format used in Macromedia Director

File import					File export		Native
Image	Palette	Sound	Video	Animation	Image	Video	5
BMP	PAL	AIFF	AVI	DIR	BMP	AVI	DIR
GIF	ACT	AU	MOV	FLA		MOV	DXR
JPG		MP3		FLC			EXE
PICT		WAV		FLI			-
PNG				GIF	//		-
PNT				PPT			
PSD							
TGA					·		
TIFF							
WMF							

Outline

- Image format and coding methods
- Audio format and coding methods
- Video format and coding methods
- Introduction to HTML and XML
- Graphics format and coding methods

Key points

To grasp features of different types of digital media

 To understand principles of coding different types of digital media

2.1 Image format and coding methods

Common image formats

- General types:
 - -GIF
 - -JPEG
 - -PNG
 - -TIFF
 - -TGA
- Raw data:
 - -RAW
 - -DNG

- Platform spec.:
- ⇒BMP (Win)
- →PAINT&PICT (Mac)
- →PPM (X-Win)

- Vector data:
- →WMF (Win)
- →PS and PDF

Common image formats

- Key points of storage
 - -Color space
 - -Coding methods
 - -Byte order: hardware dependent
 - MSB/LSB (most/least significant byte)
 - MSB Power PC CPU
 - LSB Intel X86 CPU

2.1.1 Color spaces

Color systems and color models

- Common systems
 - -RGB
 - -XYZ
 - -Lab
 - -YUV
 - -HSV

Color Model

The photosensitive part of the eye is called the retina. The retina is largely composed of two types of cells, called rods and cones. Only the cones are responsible for color perception. Cones are most densely packed within a region of the eye called the fovea.

15

Color perception

Three types of cones:

S

M

L

Blue

Green

Red

roughly approximate

430nm

560nm

610nm

peak sensitivities

 Colorblindness results from a deficiency of one cone type.

RGB & CMYK

Additive color mixing

Subtractive color mixing

CMYK => RGB

$$t_{CM\Upsilon K} = C, M, \Upsilon, K$$

$$t_{CM\Upsilon} = C', M', \Upsilon'$$

= $C(1 - K) + K, M(1 - K) + K, \Upsilon(1 - K) + K$

$$t_{RGB} = R, G, B$$

= 1 - C', 1 - M', 1 - Y'

$$t_{RGB} = \{1 - (C(1 - K) + K), 1 - (M(1 - K) + K), 1 - (\Upsilon(1 - K) + K)\}$$

= \{1 - C(1 - K) - K, 1 - M(1 - K) - K, 1 - \Cappa(1 - K) - K\}

CIE XYZ space

CIE: Commission Internationale d'Eclairage"

CIE XYZ space

Color matching function

$$X = \int_0^\infty I(\lambda) \, \overline{x}(\lambda) \, d\lambda$$

$$Y = \int_{0}^{\infty} I(\lambda) \, \overline{y}(\lambda) \, d\lambda$$

$$Z = \int_{0}^{\infty} I(\lambda) \, \overline{z}(\lambda) \, d\lambda$$

CIE XYZ space

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

RGB vs. XYZ

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{b_{21}} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Since 1931

RGB:: CMYK:: XYZ color spaces

YUV color spaces

Image

- used in most video capture system
- PAL television system

Y'		0.299	0.587	0.114	$\lceil R \rceil$
U	=	-0.14713	-0.28886	0.436	G
$\lfloor V \rfloor$		0.615	-0.51499	-0.10001	$\lfloor B \rfloor$

Color spaces: reference

http://en.wikipedia.org/wiki/Color_space

 http://www.cs.unc.edu/~mcmillan/comp136/ Lecture4/Color.html

2.1.2 Image representations

Representation of digital images

 An image can be viewed as a N×M vector matrix

- Grayscale image
- Color image
- Palette

CCD sensors

Nikon D40

CCD sensor

Image resolutions

Dimensions	MEGA pixels	Name	Comments
640x480	0.3	VGA	
720x576	0.4	CCIR 601 DV PAL	PAL DV, and PAL DVDs
768x576	0.4	CCIR 601 PAL full	PAL with square sampling grid ratio
800x600	0.4	SVGA	
1024x768	0.8	XGA	
1280x960	1.2		// 6
1600x1200	2.1	UXGA	
1920x1080	2.1	1080 HDTV	high resolution digital TV format
2048x1536	3.1	2K	Typically used for digital effects in feature films.
4096x3072	12.4	4K (!!!)	

Rep of Images

- Binary image
 - -1 bit = Boolean value
 - -One bit-planes
- Common Grayscale image:
 - -8 bits = 256 degrees of grayscale
 - -Eight bit-planes

Rep of Images

- Most used color images
 - -24bit RGB
 - –Red/Green/Blue each channel has 256 degrees of grayscale
 - -Can represent $2^24 = 16,777,216$ types of color

Rep of image – Palette

- Some systems and applications can only use
 8-bit color images
 - -Solution: Palette (Color look-up table)

High dynamic range image

HDRI example: a New York City nighttime cityscape

High dynamic range image

- HDR pixels:
 - 16-bit or 32-bit floating point numbers
 - 10-12 bits luminance (亮度)
 - 8 bits chrominance (色度)
 - 10^-4 to 10^8: the range of visible luminance values
- CMOS image sensors: up to 110dB
- Tone mapping:
 - Typical computer monitors, prints, and other methods of displaying images only have a limited dynamic range

An example of a High Dynamic Range (HDR) photography, made of three different exposures

2.1.3 Image encoding

Image compression methods

- lossless compression
- lossy compression

Lossless image compression methods

- Based on information theory
- General encoding methods
 - -RLC (Run-Length Coding)
 - -VLC (Variable-Length Coding)
 - -Dictionary Coding
 - -Arithmetic Coding

Run-Length Encoding

LZW: Lempel-Ziv-Welsh

- Universal lossless data compression algorithm
 by Abraham Lempel, Jacob Ziv, and Terry Welsh
- The compressor algorithm builds a string translation table from the text being compressed

LZW - Compressor

```
w = NIL;
add all possible char codes to the dictionary
for (every character c in the uncompressed data) do
    if ((w + c) exists in the dictionary) then
        W = W + C;
    else
        add (w + c) to the dictionary;
        add the dictionary code for w to output;
        w = c;
    endif
done
add the dictionary code for w to output;
display output;
```


● 原输入数据为:

• A B A B A B A B B B A B A B A A C D A C D A D C A B A A A B A B ...

● 初始标号集为:

0	1	2	3	4	5
А	В	С	D	Clear	End

● 编码过程:

步骤	前缀	后缀	Entry	认识(Y/N)	输出	标号
1		А	(, A)			
2	А	В	(A,B)	N	А	6
3	В	А	(B,A)	N	В	7
4	А	В	(A,B)	Y		
5	6	А	(6,A)	N	6	8
6	А	В	(A,B)	Y		
7	6	А	(6,A)	Y		
8	8	В	(8,B)	N	8	9
9	В	В	(B,B)	N	В	10
10	В	В	(B,B)	Y		
11	10	А	(10,A)	N	10	11
12	А	В	(A,B)	Υ		

● 编码结果:

0	1	2	3	4	5	6	7	8	9	10	11
Α	В	С	D	Clear	End	AB	ВА	6A	8B	BB	10A

LZW - Decompressor

```
read a char k;
output k;
w = k;
while (read a char k) do
   if (index k exists in dictionary) then
       entry = dictionary entry for k;
   else if (k == currSizeDict)
       entry = w + w[0];
   else
       signal invalid code;
   endif
   output entry;
   add w+entry[0] to the dictionary;
   w = entry;
done
```

LZW Demo

http://vgg.fiit.stuba.sk/2015-02/lzw-coding/

Coding / compression

Decoding / decompression

Deflate

- a lossless data compression algorithm:
 - -LZ77 algorithm + Huffman coding.
 - -originally defined by Phil Katz for version 2 of his PKZIP archiving tool,
 - -later specified in RFC 1951.
 - used by gzip, modern versions of zip and as part of the compression process of PNG, PPP, HTTP, SSH

Lossless image compression methods (cont.)

- Other lossless image compression methods
 - -Image different encoding (差分)
 - -Lossless JPEG (JPEG 2000)
 - discrete wavelet transform

Lossy image compression methods

- Quantization
- Transform coding
 - -Discrete Cosine Transform
 - -Discrete Wavelet Transform
 - –Karhune-Loeve Transform (Principle component analysis)

Image compression standards

JPEG

- -Joint picture encoding group
- -Discrete Cosine Transform
- JPEG 2000
 - -newer standard
 - Discrete Wavelet Transform

JPEG compression: main idea

http://zh.wikipedia.org/zh-cn/JPEG

52	55	61	66	70 109 144 154	61	64	73
63	59	55	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
167	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	70 59 68	65	76	78	$94_{_}$

 16
 11
 10
 16
 24
 40
 51
 61

 12
 12
 14
 19
 26
 58
 60
 55

 14
 13
 16
 24
 40
 57
 69
 56

 14
 17
 22
 29
 51
 87
 80
 62

 18
 22
 37
 56
 68
 109
 103
 77

 24
 35
 55
 64
 81
 104
 113
 92

 49
 64
 78
 87
 103
 121
 120
 101

 72
 92
 95
 98
 112
 100
 103
 99

RGB Image

 \longrightarrow

8x8 image blocks

YCbCr Color Model

DCT Quantization

frequency-domain representation

JPEG compression: implementation

Common image formats - GIF

- Graphics Interchange Format
 - -UNISYS Corporation and Compuserve
 - Lempel-Ziv-Welch compression method
 - -GIF87/GIF89a
 - -Features
 - Only support 8-bit (256) color image
 - Support several animation effects
 - Support interlaced image coding

Common image formats - PNG

- Portable Network Graphics
 - -motivation: Compuserv owns the LZW coding patent for GIF images
 - -open source
 - -Transparent
 - -PNG64

Common image formats - JPEG

Lossy to lossless editing

Common image formats - TIFF (6.0)

- Tagged Image File Format
 - -flexible and adaptable
 - -handling images and data within a single file
 - header tags: size, definition, image-data arrangement, applied image compression
 - -defining the image's geometry.

Common image formats - TIFF (6.0)

- a TIFF can be a container file
 - -compressed JPEG and RLE
 - -lossless compression
- include a vector-based Clipping path (outlines, cropping, image frames)

DNG: Digital Negative (数字负片)

- a royalty free RAW image format
- design by Adobe
- based on TIFF/EP
- mandates use of metadata

Summary – Essential factors of image storage

- Resolution
- Compression rate
 - −1bpp,2bpp, ...
 - -Compression methods
- Color representation
 - -RGB, YUV, Lab ...

Image converting tools

ACDSEE

imagemagik (Linux)

XnView

-http://perso.orange.fr/pierre.g/

