5.147 elements_alldifferent

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from elements and alldiffer	rent.	
Constraint	${\tt elements_alldifferent(ITEMS,TAB}$	LE)	
Synonyms	elements_alldiff, elements_alldi	stinct.	
Arguments	ITEMS : collection(index-dva TABLE : collection(index-int	,	
Restrictions	required(ITEMS, [index, value]) ITEMS.index ≥ 1 ITEMS.index ≤ TABLE ITEMS = TABLE required(TABLE, [index, value]) TABLE.index ≥ 1 TABLE.index ≤ TABLE distinct(TABLE, index)		

Purpose

All the items of the ITEMS collection should be equal to one of the entries of the table TABLE and all the variables ITEMS.index should take distinct values.

```
Example
```

```
 \left( \begin{array}{cccc} \operatorname{index} - 2 & \operatorname{value} - 9, \\ \operatorname{index} - 1 & \operatorname{value} - 6, \\ \operatorname{index} - 4 & \operatorname{value} - 9, \\ \operatorname{index} - 3 & \operatorname{value} - 2 \\ \operatorname{index} - 1 & \operatorname{value} - 6, \\ \left\langle \operatorname{index} - 2 & \operatorname{value} - 9, \\ \operatorname{index} - 3 & \operatorname{value} - 2, \\ \operatorname{index} - 4 & \operatorname{value} - 9 \end{array} \right)
```

The elements_alldifferent constraint holds since, as depicted by Figure 5.338, there is a one to one correspondence between the items of the ITEMS collection and the items of the TABLE collection.

```
ITEMS
                                             TABLE
  {\tt index}-2
                 value - 9,
                                               {\tt index}-1
                                                              value - 6,
  {\tt index}-1
                                                              value - 9,
                 value - 6,
                                               {\tt index}-2
  {\tt index}-4
                 value - 9,
                                               {\tt index}-3
                                                              value - 2,
  {\tt index}-3
                 {\tt value}-2
                                               {\tt index}-4
                                                              {\tt value}-9
```

Figure 5.338: Illustration of the one to one correspondence between the items of ITEMS and the items of TABLE

20030820 1181

Typical

```
\begin{split} |\mathtt{ITEMS}| &> 1 \\ \mathbf{range}(\mathtt{ITEMS.value}) &> 1 \\ |\mathtt{TABLE}| &> 1 \\ \mathbf{range}(\mathtt{TABLE.value}) &> 1 \end{split}
```

Symmetries

- Arguments are permutable w.r.t. permutation (ITEMS, TABLE).
- Items of ITEMS are permutable.
- Items of TABLE are permutable.
- All occurrences of two distinct values in ITEMS.value or TABLE.value can be swapped; all occurrences of a value in ITEMS.value or TABLE.value can be renamed to any unused value.

Arg. properties

Functional dependency: ITEMS.value determined by ITEMS.index and TABLE.

Usage

Used for replacing by a single elements_alldifferent constraint an alldifferent and a set of element constraints having the following structure:

- The union of the index variables of the element constraints is equal to the set of variables of the alldifferent constraint.
- All the element constraints share exactly the same table.

For instance, the constraint given in the **Example** slot is equivalent to the conjunction of the following set of constraints:

 $alldifferent(\langle var - 2, var - 1, var - 4, var - 3 \rangle)$

```
 \begin{array}{c} \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9 \\ \text{index} - 1 & \text{value} - 6, \\ \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9, \\ \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9, \\ \text{index} - 3 & \text{value} - 2, \\ \text{index} - 4 & \text{value} - 9 \end{array} \right\rangle \end{array} \\ \text{element} \left( \begin{array}{c} \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 6 \\ \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 6, \\ \text{index} - 2 & \text{value} - 9, \\ \text{index} - 3 & \text{value} - 2, \\ \text{index} - 4 & \text{value} - 9 \end{array} \right) \end{array} \right) \\ \text{element} \left( \begin{array}{c} \left\langle \begin{array}{c} \text{index} - 3 & \text{value} - 2 \\ \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 6, \\ \text{index} - 2 & \text{value} - 9, \\ \text{index} - 2 & \text{value} - 9, \\ \text{index} - 3 & \text{value} - 2, \\ \text{index} - 4 & \text{value} - 9, \\ \end{array} \right) \end{array} \right)
```

$$\begin{array}{c|cccc} & \left\langle \begin{array}{cccc} \operatorname{index} - 4 & \operatorname{value} - 9 \end{array} \right\rangle, \\ & \operatorname{index} - 1 & \operatorname{value} - 6, \\ & \left\langle \begin{array}{cccc} \operatorname{index} - 2 & \operatorname{value} - 9, \\ \operatorname{index} - 3 & \operatorname{value} - 2, \\ \operatorname{index} - 4 & \operatorname{value} - 9 \end{array} \right\rangle \end{array} \right)$$

As a practical example of utilisation of the elements_alldifferent constraint we show how to model the link between a permutation consisting of a single cycle and its expanded form. For instance, to the permutation 3, 6, 5, 2, 4, 1 corresponds the sequence 354261. Let us note $S_1, S_2, S_3, S_4, S_5, S_6$ the permutation and $V_1V_2V_3V_4V_5V_6$ its expanded form (see Figure 5.339).

The constraint:

```
\left(\begin{array}{cccc} & \text{index} - V_1 & \text{value} - V_2, \\ & \text{index} - V_2 & \text{value} - V_3, \\ & \text{index} - V_3 & \text{value} - V_4, \\ & \text{index} - V_4 & \text{value} - V_5, \\ & \text{index} - V_5 & \text{value} - V_6, \\ & \text{index} - V_6 & \text{value} - V_1 \\ & \text{index} - I & \text{value} - S_1, \\ & \text{index} - 1 & \text{value} - S_2, \\ & \text{index} - 2 & \text{value} - S_2, \\ & \text{index} - 3 & \text{value} - S_3, \\ & \text{index} - 4 & \text{value} - S_4, \\ & \text{index} - 5 & \text{value} - S_5, \\ & \text{index} - 6 & \text{value} - S_6 \end{array}\right)
```

models the fact that $S_1, S_2, S_3, S_4, S_5, S_6$ corresponds to a permutation with a single cycle. It also expresses the link between the variables $S_1, S_2, S_3, S_4, S_5, S_6$ and $V_1, V_2, V_3, V_4, V_5, V_6$.

Figure 5.339: Two representations of a permutation containing a single cycle

Reformulation

The elements_alldifferent($\langle \text{index} - I_1 \text{ value} - V_1, \text{index} - I_2 \text{ value} - V_2, \ldots, \text{index} - I_{|\text{ITEMS}|} \text{ value} - V_{|\text{ITEMS}|} \rangle$, TABLE) constraint can be expressed in term of a conjunction of |ITEMS| elem constraints and of one alldifferent constraint of the form:

```
\begin{split} & \mathbf{elem}(\langle \mathbf{index} - I_1 \ \mathbf{value} - V_1 \rangle, \mathtt{TABLE}), \\ & \mathbf{elem}(\langle \mathbf{index} - I_2 \ \mathbf{value} - V_2 \rangle, \mathtt{TABLE}), \\ & \dots \\ & \mathbf{elem}(\langle \mathbf{index} - I_{|\mathtt{ITEMS}|} \ \mathbf{value} - V_{|\mathtt{ITEMS}|} \rangle, \mathtt{TABLE}), \\ & \mathbf{alldifferent}(\langle I_1, I_2, \dots, I_{|\mathtt{ITEMS}|} \rangle). \end{split}
```

20030820 1183

See also implies: elements, indexed_sum.

used in reformulation: all different, elem, element.

Keywords characteristic of a constraint: disequality.

combinatorial object: permutation.
constraint type: data constraint.

modelling: array constraint, table, functional dependency.

with TABLE.value ≥ 0

implies bin_packing_capa(TABLE, ITEMS).

Arc input(s)	ITEMS TABLE	
Arc generator	$PRODUCT \mapsto \texttt{collection}(\texttt{items}, \texttt{table})$	
Arc arity	2	
Arc constraint(s)	items.index = table.indexitems.value = table.value	
Graph property(ies)	NVERTEX = ITEMS + TABLE	

Graph model

The fact that all variables ITEMS.index are pairwise different is derived from the conjunctions of the following facts:

- From the graph property **NVERTEX** = |ITEMS| + |TABLE| it follows that all vertices of the initial graph belong also to the final graph,
- A vertex v belongs to the final graph if there is at least one constraint involving v that holds,
- ullet From the first condition items.index = table.index of the arc constraint, and from the restriction distinct(TABLE.index) it follows: for all vertices v generated from the collection ITEMS at most one constraint involving v holds.

Parts (A) and (B) of Figure 5.340 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NVERTEX** graph property, the vertices of the final graph are stressed in bold.

Figure 5.340: Initial and final graph of the elements_alldifferent constraint

Signature

Since the final graph cannot have more than |ITEMS| + |TABLE| vertices one can simplify $\overline{NVERTEX}$ to $\overline{NVERTEX}$.

20030820 1185