实验九:被动隔振实验

1. 实验目的

- 1、学习隔振的基本知识;
- 2、学习隔振的基本原理:
- 3、了解被动隔振效果的测量;

2. 实验仪器及安装示意图

实验仪器: INV1601B 型振动教学实验仪、INV1601T 型振动教学实验台、加速度传感器、速度传感器、接触式激振器。软件: INV1601型 DASP 软件。

图 1 振动测试实验台的组成及连接示意图

3. 实验原理

防止地基的振动通过支座传至需保护的精密设备或仪器仪表,以减小运动的传递,称为被动隔振。被动隔振传动比等于底座传递到物体的振动与底座的振动之比,由底座传递到物体时则用位移、振动速度或振动加速度表示。

隔振效率:
$$\eta = (1 - T) \times 100\%$$

传动比
$$T: T = \sqrt{\frac{1 + D^2 u^2}{\left(1 - u^2\right)^2 + D^2 u^2}}$$

式中D为阻尼比, $u = \frac{f}{f_0}$ 为激振频率和共振频率的比。

被动隔振的隔振原理和隔振效果与主动隔振相似。

4. 实验步骤

1、 仪器安装

把由空气阻尼器(1kg)和质量块组成的弹簧质量系统固定在梁中部,速度传感器放在上面,接入 INV1601B 型实验仪的第一通道的速度传感器输入端。压电加速度传感器放在梁的下面,接入 INV1601B 型实验仪的第二通道的压电加速度传感器输入端,档位放

在压电加速度的ν速度档。

- 2、 开机进入 INV1601 型 DASP 软件的主界面,选择双通道按钮。进入双通道示波状态进行波形和频谱同时示波。
- 3、在采样参数菜单中推荐设置:采样频率为 500Hz,程控 1 倍、采样点数 2K、工程单位 μm。输入传感器标定值(标定值计算参考实验指导第五页**模拟输出电压转换成振动工**程单位的方法)。
- 4、 调节 INV1601B 型实验仪的频率调节旋钮和功率输出旋钮,使梁产生共振,从频率计中 读取频率值 f_0 及第一通道的振幅峰值 A_1 和第二通道的振幅峰值 A_2 。
- 5、 改变激振频率,分别测量 $f_0 < f < \sqrt{2} f_0$ 、 $\sqrt{2} f_0 < f < 3 f_0$ 、 $3 f_0 < f < 6 f_0$ 、 $6 f_0 < f < 10 f_0$ 、 $f > 10 f_0$ 时,上下传感器的振动幅度。
- 6、 根据所测幅值计算传动比和隔振效率。

隔振传动比:
$$T = \frac{A_1}{A_2}$$
 隔振效率: $\eta = (1-T) \times 100\%$

5. 实验结果和分析

1kg 空气阻尼器隔振器被动隔振测试结果

频率范围	频率 ƒ	第一通道振幅 A_1	第二通道振幅 A ₂	传动比 <i>T</i>	隔振效率
	(Hz)	(m/s)	(m/s)		
$f = f_0$	24.6	1.57372×10^{-2}	9.48483×10^{-3}	1.66	-65.92%
$f_0 < f < \sqrt{2}f_0$	30.6	6.58907×10^{-3}	4.28111× 10 ⁻³	1.54	-53.91%
$\sqrt{2}f_0 < f < 3f_0$	50.6	2.40696×10^{-3}	9.5576× 10 ⁻⁴	2.52	-151.84%
$3f_0 < f < 6f_0$	100.6	4.22879× 10 ⁻⁴	2.8168×10^{-4}	1.50	-50.13%
$6f_0 < f < 10f_0$	170.1	2.14582×10^{-5}	8.15769× 10 ⁻⁵	0.26	73.70%
$f > 10f_0$	250.1	5.00712×10^{-5}	3.18349×10^{-4}	0.16	84.27%

所作图像如下:

