in the high level function call of tdksman(). The parameters for RT-TDDFT cal-

culations are parsed and stored in tdks_desc, then the correct type of TDKS or-

bital is selected by the tdks_selector(). The td_ks is pointed to either td_ks_r

or td_ks_u. The proper propagator algorithm is selected in a similar way by the

propagator_selector(), and the propagator is then pointed to the desired class

(euler_1st_order, mmut_2nd_order, lflppc_3rd_order or eppc_3rd_order). Then

set the initial state. The propagation starts and keep iterates until is done. Each

class focus on their properties and functionalities. Such as in the propagator derived

class mmut_2nd_order, it is all about the algorithm for the propagator. It does not

depend on which orbital type is using, how the CAP is constructed, and which ex-

ternal field is selected. For future implementations of the propagator algorithms, for

example, developers do not need to know how restricted/unrestricted is implemented,

how CAP is integrated, or the details of which field. Other classes appeared in the

propagator classes (base and derived) are the base classes that act as interfaces.

3 Manual

Fig. 2.3 shows a basic RT-TDDFT job for H₂O. Fig. 2.4 shows an unrestricted

RT-TDDFT job for H₂O incorporate with PCM. The RT-TDDFT calculation is per-

formed after the SCF calculation if in \$rem section TDKS is set true. INCFOCK need

to be 0, and PURECART need to be 2222. Below are control variables in the \$tdks

section. We provide each with their description, type and default value.

DT

the value for the time step Δt in a.u.

TYPE: double

23

```
$molecule
  0 1
  0.000000 0.000000 0.000000
  H 0.758602 0.000000 0.504284
  H 0.758602 0.000000 -0.504284
$end
$rem
  METHOD pbe0
  BASIS 6-31G*
  TDKS
          true
  INCFOCK O
  PURECART 2222
  SCF_CONVERGENCE 7
$end
$tdks
                 0.05
  \mathsf{DT}
  MAXITER
                 30000
  PROPAGATOR
                 MMUT
  FIELD_VECTOR
                 1 1 1
  FIELD_TYPE
                 delta
  FIELD_AMP
                 0.001
$end
```

Figure 2.3: Q-Chem basic RT-TDDFT job for H_2O .

```
$molecule
  0 1
  0.000000 0.000000 0.000000
  H 0.758602 0.000000 0.504284
  H 0.758602 0.000000 -0.504284
$end
$rem
  METHOD pbe0
  BASIS 6-31G*
  TDKS
          true
  INCFOCK O
  PURECART 2222
  UNRESTRICTED
                    true
                   7
  SCF_CONVERGENCE
  SOLVENT_METHOD
                  PCM
$end
$pcm
                CPCM
  Theory
  Method
                 SWIG
  Solver
                Inversion
               194
  HeavyPoints
  HPoints
                194
  Radii
                Bondi
  vdwScale
                 1.2
$end
$solvent
  Dielectric 78.39
$end
$tdks
               0.05
  DΤ
                30000
  MAXITER
  PROPAGATOR
               MMUT
  FIELD_VECTOR 1 1 1
  FIELD_TYPE delta
  FIELD_AMP
                0.001
$end
```

Figure 2.4: Q-CHEM unrestricted RT-TDDFT job for H₂O incorporate with PCM.

DEFAULT: 0.02

MAXITER

the max number of time steps.

TYPE: integer

DEFAULT: 15000

DO_CAP

include complex absorbing potential

TYPE: logical

DEFAULT: false

$\mathbf{CAP_TYPE}$

the CAP type

TYPE: string

 $DEFAULT: atom_centered_spherical$

$CAP_{-}R0$

the cut off radius r_0 for CAP

TYPE: double

DEFAULT: 0

CAP_ETA

the curvature η for CAP

TYPE: double

DEFAULT: 1.0

PROPAGATOR

the propagator algorithm

TYPE: string

DEFAULT: MMUT

OPTIONS: EULER, MMUT, LFLPPC, EPPC

PC_FOCK_THRESH

the Fock matrix threshold for consistency checking in PC methods

TYPE: integer

DEFAULT: 7 (for 10^{-7})

PC_DEN_THRESH

the density matrix threshold for consistency checking in PC methods

TYPE: integer

DEFAULT: 7 (for 10^{-7})

PC_MAX_ITER

the max number of iterations for PC methods

TYPE: integer

DEFAULT: 20

$FIELD_TYPE$

the external field type

TYPE: string

DEFAULT: delta

OPTIONS: delta, cw, impulse, static, none

FIELD_VECTOR

the field vector for the external field

TYPE: vector with elements in double

DEFAULT: 1.0 1.0 1.0

FIELD_AMP

the external field amplitude in a.u.

TYPE: double

DEFAULT: 0.0001

FIELD_FREQUENCY

the external field frequency in e.v.

TYPE: double

DEFAULT: 0.001

FIELD_PEAK

the t_{peak} in the Gaussian envelope for impulse field (in a.u.)

TYPE: double

DEFAULT: 0.0

FIELD_TAU

the σ in the Gaussian envelope for impulse field (in a.u.)

TYPE: double

DEFAULT: 0.7