Multivariate Limits

Pre-lecture for 6/16

Directions for One Variable

- Recall $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$ then limit exists at x = a
- So we need left and right side directions equal

Also recall alternate forms of the limit:

- $\lim_{x\to a} f(x) = \lim_{x\to 0} f(x+a) = \lim_{|x|\to 0} f(x+a)$
- We will use the last alternate form

Directions for Multiple Variables

Definition of multivariate limit:

• $\lim_{v\to c} f(v) = L$ if f(v) approaches L regardless how v approaches c

Let's consider an alternate form:

- $\lim_{v \to c} f(v) = \lim_{\|v\| \to 0} f(v+c)$
- ||v|| is a scalar, we can now use 1 variable tactics

Properties of Limits

- Sums: $\lim(f+g) = \lim f + \lim g$
- Products: $\lim fg = (\lim f)(\lim g)$
- Composition: $\lim f \circ g = f \circ (\lim g)$ when f is continuous
- Limits on right side must exist for rule to apply

More Properties

These follow by using the previous slide

- $\lim cf = c \lim f$, $\lim (f-g) = \lim f \lim g$
- Limit of finite products or sums
- $\lim f/g = (\lim f)/(\lim g)$ provided $\lim g$ non-zero

Continuity

Recall continuity for one variable

- If limit exists and $\lim_{x\to a} f(x) = f(a)$, f continuous at x = a
 - Function f cont. if it is continuous for every value in domain
- Same definition for multivariable functions
- We now omit writing the variable when it doesn't matter

Properties of Continuity

If f and g are continuous, these are too:

- f±g, fg, f ∘ g
- f/g at any point where $g \neq 0$

Continuity is preserved when space gets upgraded:

• If f(x) cont, then $g(a_1, a_2, a_3, ...) = f(a_i)$ continuous

Checking Limits

- Limits will exist at almost all points (for math 243)
 - Use limit properties to work your way up
- For problem points, try cancelling factors
- Nothing to cancel, try directions
 - Get 2 different values and it doesn't exist
- All directions equal, try substitutions to prove existence
 - Polar: Put x = rcos(t), y = rsin(t)
 - \circ Linear: Put y = tx
- Also try squeeze theorem for existence

Checking for Continuity

Simple recipe:

- Find domain of function
- Check in domain where properties imply continuity
- Check the problem points by considering limits

Practice Problems

Check the following functions are continuous:

- $f(x,y) = (x+y)/(x^2+y^2+1)$
- $f(x,y,z) = 3x^2z + xy \cos(x-y+z) + e^{\tan(x)}$

Show the limit doesn't exist or find its value

- $(2x^2-xy-y^2)/(x^2-y^2)$ at (1,1)
- $(x^2+y^2)/(x^4+3y^4)$ at (0,0)
- $x^2 \ln(x+1)/(x^2+y^2)$ at (0,0)

Scratchwork

More Scratchwork