MIPS Reference Data

(1)

0	Ne	ler	ence Data	4	
CORE INSTRUCTI	ON SE	Т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT	01 = 11 11 11 (11 11 11 11 18)	(1)	(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]		0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
e e	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	$R[rt]=\{16^{\circ}b0,M[R[rs]\\+SignExtImm](15:0)\}$	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	$R[rd] = R[rt] \gg shamt$		0 / 02 _{hex}
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	Ι	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}

- (1) May cause overflow exception
- (2) SignExtImm = { 16{immediate[15]}, immediate }
- (3) $ZeroExtImm = \{ 16\{1b'0\}, immediate \}$

R R[rd] = R[rs] - R[rt]

- (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 }
- (6) Operands considered unsigned numbers (vs. 2's comp.)
- (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

subu

Subtract Unsigned

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 (
I	opcode	rs	rt		immediate	e
	31 26	25 21	20 16	15		(
J	opcode			address		
	31 26	25				(

ARITHMETIC CORE INSTRUCTION SET

		O	/ FMT /FT
	FOR	-	/ FUNCT
NAME, MNEMONIC	MAT	OPERATION	(Hex)
Branch On FP True bolt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False bc1		if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned divi		Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	
FP Add Single add.	s FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double		{F[ft],F[ft+1]}	
FP Compare Single c.x.s	* FR	([-] .]	11/10//y
FP Compare Double	* FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
	(on ic	$\{F[ft],F[ft+1]\}\)?1:0$ ==, <, or <=) (y is 32, 3c, or 3e)	•
		F[fd] = F[fs] / F[ft]	11/10//3
FP Divide		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} /$	
Double div.	d FR	{F[ft],F[ft+1]}	11/11//3
FP Multiply Single mul.	s FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double mu1.	ı rĸ	$\{F[ft],F[ft+1]\}$	11/11//2
FP Subtract Single sub.	s FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double		${F[ft],F[ft+1]}$	
Load FP Single lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	I	$F[rt]=M[R[rs]+SignExtImm]; \qquad (2)$	35//
Double Many France III	D	F[rt+1]=M[R[rs]+SignExtImm+4]	0 / / /10
Move From Hi mfhi Move From Lo mflo		R[rd] = Hi	0 ///10 0 ///12
Move From Control mfc		R[rd] = Lo R[rd] = CR[rs]	10 /0//0
Multiply mult	_	R[ta] - CR[ts] $\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned mult		$\{Hi,Lo\} = R[rs] * R[rt]$ $\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith. sra	_	R[rd] = R[rt] >>> shamt	0///3
Store FP Single swc1		M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP		M[R[rs]+SignExtImm] = F[rt]; (2)	
Double sdc1	. I	M[R[rs]+SignExtImm] = F[rt], (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d//
		[14[15] DIBIDATIBILATI	

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	;
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than		if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	l bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

0 / 23_{hex}

OPCOD	FS RASI	E CONVER	RSION	ASCIL	SVMR	OLS		(3)	
	(1) MIPS		101011, 7			ASCII	L .	Hexa-	ASCII
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)		mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
` ′		$\mathrm{sub}.f$	00 0001	1	1	SOH	65	41	Ă
j	srl	$\mathtt{mul}.f$	00 0010	2	2	STX	66	42	В
jal	sra	${ t div.} f$	00 0011	. 3	3	ETX	67	43	C
beq	sllv	sqrt. f	00 0100		4	EOT	68	44	D
bne		abs.f	00 0101	5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110		6	ACK	70	46	F
bgtz	srav	neg.f	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000 00 1001	8 9	8	BS HT	72 73	48 49	H I
addiu slti	jalr movz		00 1001	-	a	LF	74	49 4a	J
sltiu	movn		00 1010	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100		c	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110		e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010		12	DC2	82	52	R
	mtlo	movn. f	01 0011	19	13	DC3	83	53	S
			01 0100		14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	U
			01 0110	22 23	16	SYN	86	56 57	V W
	mult		01 0111		17 18	ETB CAN	87	58	X
	multu		01 1000	25	19	EM	89	59	Y
	div		01 1001		la	SUB	90	5a	Ž
	divu		01 1011	27	1b	ESC	91	5b	[
	0110		01 1100		1c	FS	92	5c	
			01 1101		1d	GS	93	5d	j
			01 1110	30	1e	RS	94	5e	^
			01 1111	31	1 f	US	95	5f	_
lb	add	cvt.s.f	10 0000		20	Space	96	60	
lh	addu	$\operatorname{cvt.d} f$	10 0001	33	21	!	97	61	a
lwl	sub		10 0010		22	"	98	62	b
lw	subu		10 0011	35	23	#	99	63	c
lbu	and	$\operatorname{cvt.w.}\!f$	10 0100 10 0101	36 37	24	\$ %	100 101	64	d
lhu lwr	or xor		10 0101		25 26	&	101	65 66	e f
TWI	nor		10 0111	39	27	,	103	67	g
sb	1101		10 1000		28	(104	68	h
sh			10 1001	41	29)	105	69	i
swl	slt		10 1010		2a	*	106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k
			10 1100	44	2c	,	108	6c	1
			10 1101		2d	-	109	6d	m
swr			10 1110		2e		110	6e	n
cache		_ ^	10 1111	47	2f	/	111	6f	О
11	tge	c.f.f	11 0000		30	0	112	70	p
lwc1	tgeu	c.un.f	11 0001 11 0010	49	31 32	1 2	113	71 72	q
lwc2 pref	tlt tltu	c.eq.f	11 0010	51	33	3	114	73	r s
brer	teq	c.ueq.f	11 0100		34	4	116	74	f
ldc1	ced	c.ult.f	11 0100		35	5	117	75	u
ldc2	tne	c.ole.f	11 0110		36	6	118	76	V
		c.ule.f	11 0111	55	37	7	119	77	w
sc		c.sf.f	11 1000		38	8	120	78	X
swc1		c.ngle. f	11 1001		39	9	121	79	У
swc2		c.seq.f	11 1010		3a	:	122	7a	z
		c.ngl f	11 1011	59	3b	;	123	7b	{
		c.lt.f	11 1100		3c	<	124	7c	
sdc1		c.nge.f	11 1101		3d	=	125	7d	}
sdc2		c.le.f	11 1110	62	3e	>	126	7e	~

⁽¹⁾ opcode(31:26) == 0 (2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f$ = s (single); if fmt(25:21)== $17_{\text{ten}} (11_{\text{hex}}) f$ = d (double)

11 1111

c.ngt.f

IEEE 754 FLOATING-POINT STANDARD

3

(-1)^S × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

 $\begin{array}{c|ccc} \textbf{IEEE 754 Symbols} \\ \hline Exponent & Fraction & Object \\ \hline 0 & 0 & \pm 0 \\ \hline 0 & \neq 0 & \pm \text{ Denorm} \\ \hline 1 \text{ to MAX - 1} & \text{anything } \pm \text{ Fl. Pt. Num.} \\ \hline MAX & 0 & \pm \infty \\ \hline MAX & \neq 0 & \text{NaN} \\ \hline S.P. \text{ MAX} = 255, \text{ D.P. MAX} = 2047 \\ \hline \end{array}$

DATA ALIGNMENT

			Doub	ole Wor	d		
	Wo	rd			W	ord	
Halfv	vord	Half	Halfword		fword	Half	word
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte
0	1	2	3	4	5	6	7

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

	 					_		
B		Interrupt			Exception			
D		Mask			Exception Code			
31	15	8	3	6		2		
		Pending			U		Е	Ι
		Interrupt			M		L	Е
	15	8	3		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Name	Cause of Exception	Number	Name	Cause of Exception
Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
AJEI	Address Error Exception	10	DI	Reserved Instruction
Auel	(load or instruction fetch)	10	KI	Exception
Adec	Address Error Exception	11	CnII	Coprocessor
AuLS	(store)	11	СрС	Unimplemented
IDE	Bus Error on	12	Ov	Arithmetic Overflow
IDE	Instruction Fetch	12	Ov	Exception
DDE	Bus Error on	12	Т.	Trap
DBE	Load or Store	13	11	пар
Sys	Syscall Exception	15	FPE	Floating Point Exception
	Int AdEL AdES IBE DBE		Int	Int

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

ter ixeo (10 101 bisk, communication, 2 101 memory)											
	PRE-		PRE-		PRE-		PRE-				
SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX				
$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-				
$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10-6	micro-	10-18	atto-				
$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10 ⁻⁹	nano-	10-21	zepto-				
$10^{12}, 2^{40}$	Tera-	10 ²⁴ , 2 ⁸⁰	Yotta-	10-12	pico-	10-24	yocto-				

The symbol for each prefix is just its first letter, except is used for micro.

127

7f DEL