SISTEMAS DE ECUACIONES LINEALES

Edición 2023

Manuel Carlevaro

Instituto de Física de Líquidos y Sistemas Biológicos (CONICET – UNLP) Departamento de Ingeniería Mecánica – UTN FRLP

Resolver:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_2 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Resolver:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_2 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

O, en forma matricial:

$$\mathbb{A}\mathbf{x} = \mathbf{b}$$

Resolver:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_2 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

O. en forma matricial:

$$\mathbb{A}\mathbf{x} = \mathbf{b}$$

Matriz de coeficientes aumentada:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{nn} & b_n \end{bmatrix}$$

Resolver:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_2 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

O, en forma matricial:

$$A\mathbf{x} = \mathbf{b}$$

Matriz de coeficientes aumentada:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{nn} & b_n \end{bmatrix}$$

Si $\mathbb{A} \in \mathbf{R}^{n \times n}$ y $\mathbf{b} \in \mathbf{R}$, la existencia y unicidad de la solución está asegurada si una de las siguientes condiciones se cumple:

- lacktriangle A es invertible (no singular)
- lacktriangle El sistema homogéneo $\mathbb{A}oldsymbol{x}=oldsymbol{0}$ admite solo la solución nula.

Resolver:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_2 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

O. en forma matricial:

$$A\mathbf{x} = \mathbf{b}$$

Matriz de coeficientes aumentada:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{nn} & b_n \end{bmatrix}$$

Si $\mathbb{A} \in \mathbf{R}^{n \times n}$ y $\mathbf{b} \in \mathbf{R}$, la existencia y unicidad de la solución está asegurada si una de las siguientes condiciones se cumple:

- ▶ A es invertible (no singular)
- lacktriangle El sistema homogéneo $\mathbb{A}oldsymbol{x}=oldsymbol{0}$ admite solo la solución nula.

Solución: regla de Cramer

$$x_j = \frac{\Delta_j}{\det \mathbb{A}}$$

Esfuerzo computacional: $\mathcal{O}((n+1)!)$. n=50, Intel i7: 200 Gflops $\approx 5 \times 10^{45}$ años.

Métodos:

- ▶ Directos: alcanzan la solución en un número finito de pasos. $\mathcal{O}(2/3N^3)$.
 - > Eliminación gaussiana
 - ightharpoonup Factorización LU
 - \rightarrow LDM T
 - > Factorización de Cholesky
 - ightharpoonup Factorización QR
- Iterativos: más eficientes en casos particulares. $\mathcal{O}(N^2)$.
 - > Jacobi
 - > Gauss-Seidel
 - > Subespacios de Krylov
 - > GMRES

Métodos:

- ▶ Directos: alcanzan la solución en un número finito de pasos. $\mathcal{O}(2/3N^3)$.
 - Eliminación gaussiana
 - ➤ Factorización LII
 - $\rightarrow \mathsf{LDM}^T$

 $\mathcal{O}(N^2)$.

- > Factorización de Cholesku
- > Factorización QR
- lterativos: más eficientes en casos particulares.
 - JacobiGauss-Seidel
 - Subespacios de Krylov
 - > GMRES

Estabilidad de la solución:

$$(\mathbb{A} + \delta \mathbb{A})(\boldsymbol{x} + \boldsymbol{\delta x}) = \boldsymbol{b} + \delta \boldsymbol{b}$$

Unicidad de la solución: \mathbb{A} es no singular: $|\mathbb{A}| \neq 0$. Número de condición: $\operatorname{cond}(\mathbb{A}) = ||\mathbb{A}|| ||\mathbb{A}^{-1}||$. Se puede demostrar que si

$$\operatorname{cond}(\mathbb{A}) \frac{\|\delta \mathbb{A}\|}{\|\mathbb{A}\|} < 1$$

se cumple:

$$\frac{\|\delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le \frac{\operatorname{cond}(\mathbb{A})}{1 - \operatorname{cond}(\mathbb{A}) \frac{\|\delta \mathbf{a}\|}{\|\mathbb{A}\|}} \left(\frac{\|\delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|} + \frac{\|\delta \mathbb{A}\|}{\|\mathbb{A}\|} \right)$$

En general es muy costoso evaluar $\|A\|$. Usualmente se

compara $|\mathbb{A}|$ con a_{ij} .

$$\begin{cases} 2x + y = 3 \\ 2x + 1.001y = 0 \end{cases}, \quad |\mathbb{A}| = 0.002$$

Solución: x = 1501.5, y = -3000.

3

$$\begin{cases} 2x + y = 3 \\ 2x + 1.002y = 0 \end{cases}, \quad |\mathbb{A}| = 0.004$$

Solución: x = 751.5, y = -1500.

0.1% de cambio en $a_{ij}\mapsto$ 100% de cambio en ${m x}$.

Mal condicionamiento

Si la solución de un sistema lineal cambia mucho cuando el problema cambia muy poco, la matriz está mal condicionada.

4

$$\begin{cases} 2x + y = 3\\ 2x + 1.002y = 0 \end{cases}, \quad |\mathbb{A}| = 0.004$$

Solución: x = 751.5, y = -1500.

0.1% de cambio en $a_{ij} \mapsto 100\%$ de cambio en \boldsymbol{x} .

Mal condicionamiento

Si la solución de un sistema lineal cambia mucho cuando el problema cambia muy poco, la matriz está mal condicionada.

Otro ejemplo:

$$\mathbb{A} = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix}, \quad |\mathbb{A}| = 1$$

$$\mathbb{A}^{-1} = \begin{bmatrix} 1 & -100 \\ 0 & 1 \end{bmatrix}, \quad |\mathbb{A}^{-1}| = 1$$

$$\begin{cases} 2x + y = 3 \\ 2x + 1.002y = 0 \end{cases}, \quad |\mathbb{A}| = 0.004$$

Solución: x = 751.5, y = -1500.

0.1% de cambio en $a_{ij}\mapsto$ 100% de cambio en $oldsymbol{x}$.

Mal condicionamiento

Si la solución de un sistema lineal cambia mucho cuando el problema cambia muy poco, la matriz está mal condicionada.

Otro ejemplo:

$$\mathbb{A} = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix}, \quad |\mathbb{A}| = 1$$

$$\mathbb{A}^{-1} = \begin{bmatrix} 1 & -100 \\ 0 & 1 \end{bmatrix}, \quad |\mathbb{A}^{-1}| = 1$$

Soluciones:

$$m{b} = egin{bmatrix} 100 \\ 1 \end{bmatrix}
ightarrow m{x} = egin{bmatrix} 0 \\ 1 \end{bmatrix}, \ m{b} = egin{bmatrix} 100 \\ 0 \end{bmatrix}
ightarrow m{x} = egin{bmatrix} 100 \\ 0 \end{bmatrix}$$

1% de cambio en $\boldsymbol{b}\mapsto$ 100% de cambio en \boldsymbol{x} .

л

$$\begin{cases} 2x + y = 3 \\ 2x + 1.002y = 0 \end{cases}, \quad |\mathbb{A}| = 0.004$$

Solución: x = 751.5, y = -1500.

0.1% de cambio en $a_{ij}\mapsto 100\%$ de cambio en \boldsymbol{x} .

Mal condicionamiento

Si la solución de un sistema lineal cambia mucho cuando el problema cambia muy poco, la matriz está mal condicionada.

Otro ejemplo:

$$\mathbb{A} = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix}, \quad |\mathbb{A}| = 1$$

$$\mathbb{A}^{-1} = \begin{bmatrix} 1 & -100 \\ 0 & 1 \end{bmatrix}, \quad |\mathbb{A}^{-1}| = 1$$

Soluciones:

$$m{b} = egin{bmatrix} 100 \\ 1 \end{bmatrix}
ightarrow m{x} = egin{bmatrix} 0 \\ 1 \end{bmatrix}, \ m{b} = egin{bmatrix} 100 \\ 0 \end{bmatrix}
ightarrow m{x} = egin{bmatrix} 100 \\ 0 \end{bmatrix}$$

1% de cambio en $b \mapsto 100\%$ de cambio en x.

```
1 #!/usr/bin/env python3
2
3 import numpy as np
4 from numpy import linalg as la
5
6 a = np.array([[1, 100],[0, 1]])
7 ai = np.array([[1, -100],[0, 1]])
8 a_norm = la.norm(a, ord=2)
9 ai_norm = la.norm(ai, ord=2)
10 print(f"||a|| = {a_norm}, ||ai|| = {ai_norm}")
11 print(f"cond(a) = {a_norm * ai_norm}")
```

12 print(f"cond(a) = {la.cond(a)}")

cond(a) = 10001 000000010005

Métodos directos

Operaciones elementales:

- $k \times a_{ij}, |\mathbb{A}| \to k \times |\mathbb{A}|$
- $ightharpoonup a_{ik} k \, a_{ik}, |\mathbb{A}|$ no cambia

MÉTODOS DIRECTOS

Operaciones elementales:

- $k \times a_{ij}, |\mathbb{A}| \to k \times |\mathbb{A}|$
- lacksquare $a_{ik}-k\,a_{ik}, |\mathbb{A}|$ no cambia

Método	Forma inicial	Forma final
Eliminación gaussiana	$\mathbb{A}\mathbf{x}=\mathbf{b}$	$\mathbb{U}\mathbf{x}=\mathbf{c}$
Descomposición LU	$\mathbb{A}\mathbf{x} = \mathbf{b}$	$\mathbb{L}\mathbb{U}\mathbf{x}=\mathbf{b}$
Eliminación de Gauss-Jordan	$\mathbb{A}\mathbf{x} = \mathbf{b}$	$\mathbb{I}\mathbf{x}=\mathbf{c}$

MÉTODOS DIRECTOS

Operaciones elementales:

$$\bullet \ a_{ik} \rightleftarrows a_{jk}, |\mathbb{A}| \to -|\mathbb{A}|$$

$$\blacktriangleright k \times a_{ij}, |\mathbb{A}| \to k \times |\mathbb{A}|$$

$$ightharpoonup a_{ik} - k \, a_{ik}, |\mathbb{A}|$$
 no cambia

Matriz triangular superior 3x3

$$\mathbb{U} = \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

Método	Forma inicial	Forma final
Eliminación gaussiana	$\mathbb{A}\mathbf{x}=\mathbf{b}$	$\mathbb{U}\mathbf{x}=\mathbf{c}$
Descomposición LU	$\mathbb{A}\mathbf{x}=\mathbf{b}$	$\mathbb{L}\mathbb{U}\mathbf{x}=\mathbf{b}$
Eliminación de Gauss-Jordan	$\mathbb{A}\mathbf{x} = \mathbf{b}$	$\mathbb{I}\mathbf{x}=\mathbf{c}$

Matriz triangular inferior 3x3

$$\mathbb{L} = \begin{bmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{bmatrix}$$

Dos fases: eliminación y solución.

Fase de eliminación:

Utiliza solo una operación elemental:

$$\mathsf{Ec}(i) \leftarrow \mathsf{Ec}(i) - \lambda \times \mathsf{Ec}(j)$$

donde Ec(j) se denomina ecuación pivote.

Dos fases: eliminación y solución.

Fase de eliminación:

Utiliza solo una operación elemental:

$$\mathsf{Ec}(i) \leftarrow \mathsf{Ec}(i) - \lambda \times \mathsf{Ec}(j)$$

donde Ec(j) se denomina ecuación pivote.

Ejemplo:

$$\begin{cases} 4x_1 - 2x_2 + x_3 = 11 \\ -2x_1 + 4x_2 - 2x_3 = -16 \\ x_1 - 2x_2 + 4x_3 = 17 \end{cases}$$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ -2 & 4 & -2 & -16 \\ 1 & -2 & 4 & 17 \end{bmatrix}$$

Dos fases: eliminación y solución.

Fase de eliminación:

Utiliza solo una operación elemental:

$$\mathsf{Ec}(i) \leftarrow \mathsf{Ec}(i) - \lambda \times \mathsf{Ec}(j)$$

donde Ec(j) se denomina ecuación pivote.

Ejemplo:

$$\begin{cases} 4x_1 - 2x_2 + x_3 = 11 \\ -2x_1 + 4x_2 - 2x_3 = -16 \\ x_1 - 2x_2 + 4x_3 = 17 \end{cases}$$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ -2 & 4 & -2 & -16 \\ 1 & -2 & 4 & 17 \end{bmatrix}$$

Ec(1): pivote;

$$Ec(2) \leftarrow Ec(2) - (-0.5) \times Ec(1);$$

$$Ec(3) \leftarrow Ec(3) -0.25 \times Ec(1)$$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ 0 & 3 & -1.5 & -10.5 \\ 0 & -1.5 & 3.75 & 14.25 \end{bmatrix}$$

Dos fases: eliminación y solución.

Fase de eliminación:

Utiliza solo una operación elemental:

$$\mathsf{Ec}(i) \leftarrow \mathsf{Ec}(i) - \lambda \times \mathsf{Ec}(j)$$

donde $\mathsf{Ec}(j)$ se denomina ecuación pivote.

Ejemplo:

$$\begin{cases} 4x_1 - 2x_2 + x_3 = 11 \\ -2x_1 + 4x_2 - 2x_3 = -16 \\ x_1 - 2x_2 + 4x_3 = 17 \end{cases}$$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ -2 & 4 & -2 & -16 \\ 1 & -2 & 4 & 17 \end{bmatrix}$$

Ec(1): pivote;

$$Ec(2) \leftarrow Ec(2) - (-0.5) \times Ec(1);$$

$$Ec(3) \leftarrow Ec(3) -0.25 \times Ec(1)$$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ 0 & 3 & -1.5 & -10.5 \\ 0 & -1.5 & 3.75 & 14.25 \end{bmatrix}$$

Ec(2): pivote;

$$Ec(3) \leftarrow Ec(3) - (-0.5) \times Ec(2)$$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ 0 & 3 & -1.5 & -10.5 \\ 0 & 0 & 3 & 9 \end{bmatrix}$$

Dos fases: eliminación y solución.

Fase de eliminación:

Utiliza solo una operación elemental:

$$\mathsf{Ec}(i) \leftarrow \mathsf{Ec}(i) - \lambda \times \mathsf{Ec}(j)$$

donde $\mathsf{Ec}(j)$ se denomina $\mathit{ecuaci\'on\ pivote}.$

Ejemplo:

$$\begin{cases}
4x_1 - 2x_2 + x_3 = 11 \\
-2x_1 + 4x_2 - 2x_3 = -16 \\
x_1 - 2x_2 + 4x_3 = 17
\end{cases}$$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ -2 & 4 & -2 & -16 \\ 1 & -2 & 4 & 17 \end{bmatrix}$$

Ec(1): pivote;

 $Ec(2) \leftarrow Ec(2) - (-0.5) \times Ec(1);$ $Ec(3) \leftarrow Ec(3) - 0.25 \times Ec(1);$

 $Ec(3) \leftarrow Ec(3) -0.25 \times Ec(1)$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ 0 & 3 & -1.5 & -10.5 \\ 0 & -1.5 & 3.75 & 14.25 \end{bmatrix}$$

Ec(2): pivote;

 $Ec(3) \leftarrow Ec(3) - (-0.5) \times Ec(2)$

$$\begin{bmatrix} 4 & -2 & 1 & 11 \\ 0 & 3 & -1.5 & -10.5 \\ 0 & 0 & 3 & 9 \end{bmatrix}$$

 $|\mathbb{A}| = |\mathbb{U}| = U_{11} \times U_{22} \times \cdots U_{NN}$

Bonus: no se altera |A|:

Fase de solución: sustitución hacia atrás.

Algoritmo:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1k} & \cdots & a_{1j} & \cdots & a_{1n} & b_1 \\ 0 & a_{22} & a_{23} & \cdots & a_{2k} & \cdots & a_{2j} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{kk} & \cdots & a_{kj} & \cdots & a_{kn} & b_k \\ \hline \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{ik} & \cdots & a_{ij} & \cdots & a_{in} & b_i \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nk} & \cdots & a_{nj} & \cdots & a_{nn} & b_N \end{bmatrix}$$

Eliminación:

- 1: for $i \leftarrow k+1, k+2, \dots n$ do
- 2: $\lambda \leftarrow a_{ik}/a_{kk}$
- $3: \quad \text{for } j \leftarrow k, n \text{ do}$
- 4: $a_{ij} \leftarrow a_{ij} \lambda a_{kj}$
- 5: end for
- 6: $b_i \leftarrow b_i \lambda b_k$
- 7: end for

Solución:

$$x_n = b_n/a_{nn}$$

$$x_k = \left(b_k - \sum_{j=k+1}^n a_{kj}x_j\right) \frac{1}{a_{kk}}$$

$$k = n - 1, n - 2, \dots, 1$$

 $\mathbb{A} = \mathbb{L}\mathbb{U}$

Nombre	Restricción	
Descomposición de Doolittle	$L_{ii} = 1, i = 1, 2, \cdots, n$	
Descomposición de Crout	$U_{ii}=1,\ i=1,2,\cdots,n$	
Descomposición de Choleski	$\mathbb{T}_{\star} = \mathbb{T}^T$	
(A debe ser simétrica y definida positiva)	$\mathbb{L} = \mathbb{U}$	

Luego de la factorización:

$$\mathbb{L}\mathbb{U}\,oldsymbol{x}=oldsymbol{b}$$

La solución consiste en:

$$\mathbb{L}\, \boldsymbol{y} = \boldsymbol{b}$$

resuelta por sustitución hacia adelante, sequida de:

$$\mathbb{U} x = y$$

que da el resultado $oldsymbol{x}$ obtenido por sustitución hacia atrás.

Método de Doolittle:

$$\mathbb{L} = \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix} \qquad \mathbb{U} = \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

Encontramos \mathbb{A} :

$$\mathbb{A} = \left[\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ U_{11}L_{21} & U_{12}L_{21} + U_{22} & U_{13}L_{21} + U_{23} \\ U_{11}L_{31} & U_{12}L_{31} + U_{22}L_{32} & U_{13}L_{31} + U_{23}L_{32} + U_{33} \end{array} \right]$$

Método de Doolittle:

$$\mathbb{L} = \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix} \qquad \mathbb{U} = \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

Encontramos \mathbb{A} :

$$\mathbb{A} = \left[\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ U_{11}L_{21} & U_{12}L_{21} + U_{22} & U_{13}L_{21} + U_{23} \\ U_{11}L_{31} & U_{12}L_{31} + U_{22}L_{32} & U_{13}L_{31} + U_{23}L_{32} + U_{33} \end{array} \right]$$

Aplicamos ahora eliminación gaussiana con las siguientes operaciones elementales:

fila 2
$$\leftarrow$$
 fila 2 $-L_{21} imes$ fila 1 (elimina a_{21}) fila 3 \leftarrow fila 3 $-L_{31} imes$ fila 1 (elimina a_{31})

$$\mathbb{A}' = \left[\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & U_{22}L_{32} & U_{23}L_{32} + U_{33} \end{array} \right]$$

Método de Doolittle (cont.): tomamos ahora la segunda fila como pivote:

$$\mathbb{A}' = \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & U_{22}L_{32} & U_{23}L_{32} + U_{33} \end{bmatrix}$$

fila 3
$$\leftarrow$$
 fila 3 $-L_{32} \times$ fila 2 (elimina a_{32})
$$\mathbb{A}'' = \mathbb{U} = \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

Método de Doolittle (cont.): tomamos ahora la segunda fila como pivote:

$$\mathbb{A}' = \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & U_{22}L_{32} & U_{23}L_{32} + U_{33} \end{bmatrix}$$

fila 3
$$\leftarrow$$
 fila 3 $-L_{32} \times$ fila 2 (elimina a_{32})
$$\mathbb{A}'' = \mathbb{U} = \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

Características del método de Doolittle:

- La matriz U es idéntica a la matriz triangular superior que resulta de la eliminación gaussiana
- Los elementos no diagonales de $\mathbb L$ son los factores que multiplican a la ecuación pivote durante la eliminación gaussiana: L_{ij} es el multiplicador que elimina a_{ij}

Método de Doolittle (cont.): tomamos ahora la segunda fila como pivote:

$$\mathbb{A}' = \left[\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & U_{22}L_{32} & U_{23}L_{32} + U_{33} \end{array} \right]$$

Características del método de Doolittle:

- La matriz U es idéntica a la matriz triangular superior que resulta de la eliminación gaussiana
- Los elementos no diagonales de $\mathbb L$ son los factores que multiplican a la ecuación pivote durante la eliminación gaussiana: L_{ij} es el multiplicador que elimina a_{ij}

fila 3 \leftarrow fila 3 $-L_{32} \times$ fila 2 (elimina a_{32})

$$\mathbb{A}'' = \mathbb{U} = \left[\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{array} \right]$$

Almacenamiento:

$$\mathbb{L}/\mathbb{U} = \left[\begin{array}{ccc} U_{11} & U_{12} & U_{13} \\ L_{21} & U_{22} & U_{23} \\ L_{31} & L_{32} & U_{33} \end{array} \right]$$

Sistema:

$$2x_1 - x_2 = 1$$
$$-x_1 + 2x_2 - x_3 = 0$$
$$-x_2 + x_3 = 0$$

Solución:
$$x_1 = x_2 = x_3 = 1$$

$$\left[\begin{array}{cc|c}
2 & -1 & 0 & 1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array} \right]$$

11

Sistema:

$$2x_1 - x_2 = 1$$
$$-x_1 + 2x_2 - x_3 = 0$$
$$-x_2 + x_3 = 0$$

Solución:
$$x_1 = x_2 = x_3 = 1$$

$$\begin{bmatrix}
2 & -1 & 0 & | & 1 \\
-1 & 2 & -1 & | & 0 \\
0 & -1 & 1 & | & 0
\end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 1 & 0 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{bmatrix}$$
NOK

$$[\mathbb{A}|\mathbf{b}] = \begin{bmatrix} \varepsilon & -1 & 1 & 0 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{bmatrix} \rightarrow [\mathbb{A}'|\mathbf{b}'] = \begin{bmatrix} \varepsilon & -1 & 1 & 0 \\ 0 & 2 - 1/\varepsilon & -1 + 1/\varepsilon & 0 \\ 0 & -1 + 2/\varepsilon & -2/\varepsilon & 1 \end{bmatrix}$$

$$[\mathbb{A}|\mathbf{b}] = \begin{bmatrix} \varepsilon & -1 & 1 & 0 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{bmatrix} \rightarrow [\mathbb{A}'|\mathbf{b}'] = \begin{bmatrix} \varepsilon & -1 & 1 & 0 \\ 0 & 2 - 1/\varepsilon & -1 + 1/\varepsilon & 0 \\ 0 & -1 + 2/\varepsilon & -2/\varepsilon & 1 \end{bmatrix}$$

Almacenamiento en la memoria ($\varepsilon \ll 1$):

$$[\mathbb{A}'|\mathbf{b'}] = \begin{bmatrix} \varepsilon & -1 & 1 & 0 \\ 0 & -1/\varepsilon & 1/\varepsilon & 0 \\ 0 & 2/\varepsilon & -2/\varepsilon & 1 \end{bmatrix}$$

$$[\mathbb{A}|\mathbf{b}] = \left[\begin{array}{ccc|c} \varepsilon & -1 & 1 & 0 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{array} \right] \rightarrow [\mathbb{A}'|\mathbf{b}'] = \left[\begin{array}{ccc|c} \varepsilon & -1 & 1 & 0 \\ 0 & 2 - 1/\varepsilon & -1 + 1/\varepsilon & 0 \\ 0 & -1 + 2/\varepsilon & -2/\varepsilon & 1 \end{array} \right]$$

Almacenamiento en la memoria ($\varepsilon \ll 1$):

$$[\mathbb{A}'|\mathbf{b'}] = \begin{bmatrix} \varepsilon & -1 & 1 & 0 \\ 0 & -1/\varepsilon & 1/\varepsilon & 0 \\ 0 & 2/\varepsilon & -2/\varepsilon & 1 \end{bmatrix}$$

 \mathbb{A} es diagonalmente dominante si:

$$|a_{ii}| > \sum_{\substack{j=1\\ i \neq i}}^{N} |a_{ij}|; \ (i = 1, 2, \dots, N)$$

$$\begin{bmatrix} -2 & 4 & -1 \\ 1 & -1 & 3 \\ 4 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
 4 & -2 & 1 \\
 -2 & 4 & -1 \\
 1 & -1 & 3
 \end{bmatrix}$$

NO diagonalmente dominante

Diagonalmente dominante

En todos los casos: si $a_{ii} \neq 0 \mapsto$ no intercambiar filas.

▶ Pivoteo trivial:

▶ $a_{ii} = 0 \mapsto$ buscar el primer $a_{ki} \neq 0 (k > i)$ e intercambiar filas $i \leftrightarrows k$.

En todos los casos: si $a_{ii} \neq 0 \mapsto$ no intercambiar filas.

- ▶ Pivoteo trivial:
 - ▶ $a_{ii} = 0 \mapsto$ buscar el primer $a_{ki} \neq 0 (k > i)$ e intercambiar filas $i \leftrightarrows k$.
- ▶ Pivoteo parcial:
 - $oldsymbol{\lambda}$ $a_{ii}=0\mapsto$ buscar la fila k tal que $|a_{ki}|=\max_{j>i}|a_{ji}|\wedge a_{ji}\neq 0$ e intercambiar filas $i\leftrightarrows k$.

En todos los casos: si $a_{ii} \neq 0 \mapsto$ no intercambiar filas.

- ▶ Pivoteo trivial:
 - ▶ $a_{ii} = 0 \mapsto$ buscar el primer $a_{ki} \neq 0 (k > i)$ e intercambiar filas $i \leftrightarrows k$.
- ▶ Pivoteo parcial:
 - $m{\lambda}$ $a_{ii}=0\mapsto$ buscar la fila k tal que $|a_{ki}|=\max_{j>i}|a_{ji}|\wedge a_{ji}\neq 0$ e intercambiar filas $i\leftrightarrows k$.
- ▶ Pivoteo parcial escalado:
 - lacksquare Calcular $s_i = \max_{1 \leq j \leq N} |a_{ij}|, \ i=1,\ldots,N$
 - $\textbf{>} \ a_{ii} = 0 \mapsto \text{buscar la fila} \ k \ \text{tal que} \ \frac{|a_{ki}|}{s_k} = \max_{j>i} \frac{|a_{ji}|}{s_j} \wedge a_{ji} \neq 0 \ \text{e intercambiar filas} \ i \leftrightarrows k \ \text{y} \ s_i \leftrightarrows s_k.$

En todos los casos: si $a_{ii} \neq 0 \mapsto$ no intercambiar filas.

▶ Pivoteo trivial:

▶ $a_{ii} = 0 \mapsto$ buscar el primer $a_{ki} \neq 0 (k > i)$ e intercambiar filas $i \leftrightarrows k$.

▶ Pivoteo parcial:

 $m{\lambda}$ $a_{ii}=0\mapsto$ buscar la fila k tal que $|a_{ki}|=\max_{j>i}|a_{ji}|\wedge a_{ji}\neq 0$ e intercambiar filas $i\leftrightarrows k$.

▶ Pivoteo parcial escalado:

- lacksquare Calcular $s_i = \max_{1 \leq j \leq N} |a_{ij}|, \ i=1,\ldots,N$
- $\ \ \, a_{ii} = 0 \mapsto \text{buscar la fila } k \text{ tal que } \frac{|a_{ki}|}{s_k} = \max_{j>i} \frac{|a_{ji}|}{s_j} \wedge a_{ji} \neq 0 \text{ e intercambiar filas } i \leftrightarrows k \text{ y } s_i \leftrightarrows s_k.$

▶ Pivoteo completo o maximal:

> $a_{ii} = 0$ → buscar la fila j > i y columna k > i tal que $|a_{jk}| = \max_{\substack{l > i \\ m > i}} |a_{lm}| \land a_{jk} \neq 0$ e intercambiar filas $i \leftrightarrows j$ y columnas $i \leftrightarrows k$.

Pivoteo: estrategias

En todos los casos: si $a_{ii} \neq 0 \mapsto$ no intercambiar filas.

▶ Pivoteo trivial:

▶ $a_{ii} = 0 \mapsto$ buscar el primer $a_{ki} \neq 0 (k > i)$ e intercambiar filas $i \leftrightarrows k$.

▶ Pivoteo parcial:

 $m{\lambda}$ $a_{ii}=0\mapsto$ buscar la fila k tal que $|a_{ki}|=\max_{j>i}|a_{ji}|\wedge a_{ji}\neq 0$ e intercambiar filas $i\leftrightarrows k$.

▶ Pivoteo parcial escalado:

- $lack ext{Calcular } s_i = \max_{1 \leq j \leq N} |a_{ij}|, \ i=1,\ldots,N$
- $\bullet \ a_{ii} = 0 \mapsto \text{buscar la fila } k \text{ tal que } \frac{|a_{ki}|}{s_k} = \max_{j>i} \frac{|a_{ji}|}{s_j} \land a_{ji} \neq 0 \text{ e intercambiar filas } i \leftrightarrows k \text{ y } s_i \leftrightarrows s_k.$

▶ Pivoteo completo o maximal:

> $a_{ii} = 0$ → buscar la fila j > i y columna k > i tal que $|a_{jk}| = \max_{\substack{l > i \\ m > i}} |a_{lm}| \land a_{jk} \neq 0$ e intercambiar filas $i \leftrightarrows j$ y columnas $i \leftrightarrows k$.

Nota: en matemática " $x=0, x\neq 0$ ", en mundo real "|x|<arepsilon, |x|>arepsilon".

MÉTODOS INDIRECTOS

Ventajas:

- ▶ Es posible almacenar solo los elementos no nulos de la matriz
- ▶ Las iteraciones son auto-correctivas

MÉTODOS INDIRECTOS

Ventajas:

- ► Es posible almacenar solo los elementos no nulos de la matriz
- ▶ Las iteraciones son auto-correctivas

Desventajas:

- ▶ Más lentos que los métodos directos
- No siempre convergen (garantizado cuando la matriz es diagonalmente dominante)

MÉTODOS INDIRECTOS

Ventajas:

- ▶ Es posible almacenar solo los elementos no nulos de la matriz
- ▶ Las iteraciones son auto-correctivas

Desventajas:

- ▶ Más lentos que los métodos directos
- No siempre convergen (garantizado cuando la matriz es diagonalmente dominante)

Algoritmo de Gauss-Seidel

Escribimos las ecuaciones $A\mathbf{x} = \mathbf{b}$ en notación escalar:

$$\sum_{j=1}^{N} a_{ij} x_j = b_i, \ i = 1, 2, \dots, n$$

Extraemos el término que contiene x_i :

$$a_{ii}x_i + \sum_{\substack{j=1\\j\neq i}}^{N} a_{ij}x_j = b_i, \ i = 1, 2, \dots, n$$

Resolviendo para x_i tenemos:

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\j \neq i}}^{N} a_{ij} x_j \right), i = 1, 2, \dots, n$$

ALGORITMO DE GAUSS-SEIDEL (CONT.)

Esquema iterativo:

$$x_i \leftarrow \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\j\neq i}}^N a_{ij} x_j \right), i = 1, 2, \dots, n$$

ALGORITMO DE GAUSS-SEIDEL (CONT.)

Esquema iterativo:

$$x_i \leftarrow \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\j \neq i}}^N a_{ij} x_j \right), \ i = 1, 2, \dots, n$$

Técnica de relajación:

$$x_i \leftarrow \frac{\omega}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\j \neq i}}^N a_{ij} x_j \right) + (1 - \omega) x_i, \ i = 1, 2, \dots, n$$

Determinación de ω :

Si
$$\Delta x^{(k)} = |x^{(k-1)} - x^{(k)}|$$
 calculado con $\omega = 1$:

$$\omega_{
m opt} pprox rac{2}{1 + \sqrt{1 - (\Delta x^{(k+p)})/\Delta x^{(k)})^{1/p}}}$$

donde p es un entero positivo.

GAUSS-SEIDEL

Esquema general con relajación:

- lacktriangle Realizar k iteraciones con $\omega=1$ (k=10). Luego de la iteración k almacenar $\Delta x^{(k)}$.
- $lackbox{$\blacktriangleright$}$ Realizar p iteraciones adicionales y almacenar $\Delta x^{(k+p)}$ para la última iteración.
- lacktriangle Realizar las iteraciones siguientes con $\omega=\omega_{
 m opt}$.

GAUSS-SEIDEL

Esquema general con relajación:

- Realizar k iteraciones con $\omega=1$ (k=10). Luego de la iteración k almacenar $\Delta x^{(k)}$.
- Realizar p iteraciones adicionales y almacenar $\Delta x^{(k+p)}$ para la última iteración.
- lacktriangle Realizar las iteraciones siguientes con $\omega=\omega_{
 m opt}$.

Algoritmo:

Requiere \mathbb{A},\mathbf{b} y ω
Devuelve x
1: $\mathbf{x} \leftarrow$ valores aleatorios
2: repeat
$i \leftarrow 1,\ldots,N$ do
4: $\sigma \leftarrow 0$
5: for $j \leftarrow 1, \dots, N$ do
6: if $j \neq i$ then
7: $\sigma \leftarrow \sigma + a_{ij}x_j$
8: end if
9: end for
10: $x_i \leftarrow x_i + \omega \left(\frac{b_i - \sigma}{a_{ii}} - x_i \right)$
11: end for
12: Verificar convergencia
13: until Convergencia alcanzada

▶ inputs

> output

⊳ Fin *j*-loop

⊳ Fin *i*-loop

EJEMPLO C++11

Compilación:

```
$ g++ sislin.cpp -o sislin -03 -larmadillo
```

```
$ ./sislin
A =
  3.0000 2.0000
                         0
  1.0000
          -1.0000
           5.0000
                    1.0000
b =
  2.0000
 4.0000
  -1.0000
× =
  2.0000
  -2.0000
  9.0000
```

```
P^T=
  1.0000
                0
                        0
                   1.0000
           1.0000
                         0
L =
  1.0000
                        0
       0 1.0000
  0.3333 -0.3333
                   1.0000
U =
  3.0000
           2.0000
                        0
           5.0000
                   1.0000
                0
                    0.3333
```

EIEMPLO PYTHON

```
1 #!/usr/bin/env pvthon3
 3 import numpy as np
 4 from scipy import linalg
 5
 6 = \text{np.array}([[3, 2, 0], [1, -1, 0], [0, 5, 1]])
7 b = np.array([2, 4, -1])
8 \times = linalg.solve(a, b)
91 \text{ print}('x = ', x)
10
11 # Verificación
12 print('a @ x ?', (np.dot(a, x) == b))
13 print('a @ x ?', np.allclose(a @ x, b))
14 print('a @ x =', a @ x)
15 # Descomposición LU
16 p. l. u = linalg.lu(a)
17 print(p)
18 print(l)
19 print(u)
```

```
$ ./eiemplo.pv
x = [2, -2, 9.1]
a@x ? [ True True True]
a@x?True
a \otimes x = [2, 4, -1]
[[1. 0. 0.1
[0. 0. 1.]
[0. 1. 0.]]
[[ 1.
            0.
                      0.
Γ Θ.
            1.
                      0.
[ 0.33333333 -0.33333333 1.
[[3.
           2.
                    0.
ΓΘ.
          5.
                    1.
ΓΘ.
          0.
                    0.3333333311
```

PROBLEMAS

1. Resolver las ecuaciones $\mathbb{A}\mathbf{x} = \mathbf{b}$ utilizando la descomposición de Doolittle, donde:

$$\mathbb{A} = \begin{bmatrix} 1 & 2 & 4 & 3 & 5 \\ 3 & 5 & 3 & 1 & 2 \\ 1 & 4 & 4 & 2 & 1 \\ 4 & 1 & 2 & 5 & 3 \\ 5 & 2 & 1 & 4 & 1 \end{bmatrix}; \qquad \mathbf{b} = \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{bmatrix}$$

Resolver el sistema utilizando la descomposición LU obtenida para diversos ${f b}$.

2. Resolver mediante Gauss-Seidel Ax = b, donde:

$$\mathbb{A} = \begin{bmatrix} 12 & -2 & 3 & 1 \\ -2 & 15 & 6 & -3 \\ 1 & 6 & 20 & -4 \\ 0 & -3 & 2 & 9 \end{bmatrix}; \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 20 \\ 0 \end{bmatrix}$$

Comparar la velocidad de convergencia utilizando $\omega=1$, subrelajación, sobrerrelajación y ω_{opt} .

BIBLIOTECAS ÚTILES

- ► GSL GNU Scientific Library https://www.gnu.org/software/gsl/#subjects
- Scipy.linalg http://docs.scipy.org/doc/scipy/reference/linalg.html
- Armadillo http://arma.sourceforge.net/
- Pysparse http://pysparse.sourceforge.net/
- ► Trilinos https://trilinos.github.io/
- PETSc http://www.mcs.anl.gov/petsc/

LECTURAS SUGERIDAS

A. Quarteroni, R. Sacco y F. Saleri. *Numerical Mathematics*. New York, United States: Springer-Verlag, 2000.