

Motivation: Exploration can depend on

- Current state
- Learning progress
- "Number of good actions"
- \rightarrow Classic exploration strategies (ϵ or ϵz -greedy) do not take all of these into account

Idea: Adjust ϵ (or ϵ and z) online, based on **uncertainty of Q-values**

$$\epsilon = 0.1$$

e.g.

Challenge: How to compute ϵ ?

1) $\epsilon = \frac{|\mathcal{A}_{good}|}{|\mathcal{A}|}$, where $a \in \mathcal{A}_{good}$ if $Q(s, a) > \bar{Q}(s)$

2) $\epsilon = f(\sigma(Q(s, \cdot))$, where f normalizes the standard deviation to (0, 1]

 $\bar{Q}(s) = \text{mean, median, X-percentile, etc.}$

3) Statistical measures (skewness), ...

Possible Advantages:

- State-based exploration
- Assuming Q-value distributions "converge", this approach would inherently lead to ϵ -schedules for each state

However:

- Requires reliable calculation of good ϵ values
- Could we maybe learn this in some way?
- Problem: What is a good target?