Resolucion

Laura Mayorgas del Castillo

2024 - 10 - 17

source("teoriadecision_funciones_multicriterio.R")

PROBLEMA 4

Resolución con AHP

```
library(ahp)
datos= Load("datos24.ahp")
Calculate(datos)
Visualize(datos)
```


export_formattable(AnalyzeTable(datos),file = "table01.png")

	Weight	AltA	AltB	Inconsistency
Elegir mejor alternativa	100.0%	61.1%	38.9%	0.0%
Rendimiento	66.7%	50.0%	16.7%	0.0%
Riesgo	33.3%	11.1%	22.2%	0.0%

export_formattable(AnalyzeTable(datos, variable = "priority"),file = "table02.png")

	Priority	AltA	AltB	Inconsistency
Elegir mejor alternativa	100.0%			0.0%
Rendimiento	66.7%	75.0%	25.0%	0.0%
Riesgo	33.3%	33.3%	66.7%	0.0%

Resolución con funciones

```
source("teoriadecision_funciones_multicriterio_diagram.R")
```

Cargando paquete requerido: shape

	a1	a2	Ponderadores Globales
a1	0.7500000	0.3333333	0.6111111
a2	0.2500000	0.6666667	0.3888889
Ponder.Criterios	0.6666667	0.3333333	NA

Con el diagrama

```
Xmatriznivel2= array(NA, dim= c(2,2,2))
Xmatriznivel2[,,1]=tb02a
Xmatriznivel2[,,2]=tb02b
multicriterio.metodoahp.diagrama(tb01,Xmatriznivel2)
```

Estructura Jerárquica (AHP)

Con la media geometrica

```
#Calcular los pesos

peson012= multicriterio.metodoAHP.variante2.mediageometrica(tb01)

#En $valoraciones.ahp se encuentran los pesos

peson022a= multicriterio.metodoAHP.variante2.mediageometrica(tb02a)

peson022b= multicriterio.metodoAHP.variante2.mediageometrica(tb02b)

sol2=multicriterio.metodoAHP.pesosglobales_entabla(peson012$valoraciones.ahp,

rbind(peson022a$valoraciones.ahp,

peson022b$valoraciones.ahp))

knitr::kable(sol2)
```

	a1	a2	Ponderadores Globales
a1	0.7500000	0.3333333	0.6111111
a2	0.2500000	0.6666667	0.3888889
Ponder.Criterios	0.6666667	0.3333333	NA