

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOL. 88

"EVERY MAN IS A VALUABLE MEMBER OF SOCIETY WHO, BY HIS OBSERVATIONS, RESEARCHES, AND EXPERIMENTS, PROCURES KNOWLEDGE FOR MEN"-SMITHSON

(Publication 3240)

GITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1934

The Lord Waltimore (Press BALTIMORE, MD., U. S. A.

ADVERTISEMENT

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the octavo publications of the Institution, except the Annual Report. Its scope is not limited, and the volumes thus far issued relate to nearly every branch of science. Among these various subjects zoology, bibliography, geology, mineralogy, anthropology, and astrophysics have predominated.

The Institution also publishes a quarto series entitled "Smith-sonian Contributions to Knowledge." It consists of memoirs based on extended original investigations, which have resulted in important additions to knowledge.

C. G. ABBOT,

Secretary of the Smithsonian Institution.

CONTENTS

Fowle, Frederick E. Smithsonian Physical Tables. Eighth revised edition. 782 pp., Sept. 22, 1933. (Publ. 3171.) (Whole volume.)

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 88 (WHOLE VOLUME)

SMITHSONIAN PHYSICAL TABLES

EIGHTH REVISED EDITION

PREPARED BY

FREDERICK E. FOWLE

ASSOCIATE PHYSICIST, SMITHSONIAN ASTROPHYSICAL OBSERVATORY

(Publication 3171)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1933

The Lord Baltimore (Press BALTIMORE, MD., U. S. A.

ADVERTISEMENT

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 and 1922, respectively, two further volumes were added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, Smithsonian Mathematical Formulae.

The 14 years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Prof. Thomas Gray, made imperative a radical revision for the fifth and sixth revised editions published in 1910 and 1914. The latter edition was reprinted thrice. The seventh revision was issued in 1919 and was reprinted thrice. The present eighth edition results from a further extensive revision.

Inconsistencies that will be noted in minor points of style, such as abbreviations, etc., arise from the fact that many of the tables are printed from electrotype plates; to change them to agree with present usages would involve too great expense.

CHARLES G. ABBOT,
Secretary, Smithsonian Institution.

March, 1932.

PREFACE TO 8TH REVISED EDITION

The present edition of the Smithsonian Physical Tables entails a considerable enlargement. Besides the insertion of new data in the older tables, about 270 new ones have been added. Their scope has been further broadened to include many new tables relating to astrophysics, geophysics, meteorology, geochemistry, atmospheric electricity, wireless, molecular and atomic data, etc.

Many suggestions and data have been received: from the Bureau of Standards, the Coast and Geodetic Survey (magnetic data), the Geophysical Laboratory, Naval Research Laboratory, Department of Terrestrial Magnetism, Harvard College Observatory, Eastman Kodak Co. (photographic data), National Research Council (International Critical Tables); from Messrs. Adams, White (Geophysical Laboratory), R. T. Birge, Briggs, Dellinger, Deming (Bureau of Chemistry and Soils), Dorsey (I. C. T.), Fleming, Forsythe, Hulburt, Lovejoy and Loomis (Eastman Kodak Co.), Kimball, Menzel, van Maanen, Russell, Shapley, St. John, Wells, Wherry, and many others whose names generally will be found with the corresponding data furnished. To all these we are indebted.

The changes in the domain of physics and allied branches have been so radical and extensive that it has been difficult to do justice to the advances. Further, it has been deemed essential to keep this volume in handy size, referring the reader to the more extensive International Critical Tables or to Landolt-Börnstein's Physikalisch-chemische Tabellen for more extensive data. It has been inadvisable to delay the tables for revision in many places. We will be grateful for criticisms, the notification of errors, and new data.

FREDERICK EUGENE FOWLE.

Astrophysical Observatory, Smithsonian Institution, *March*, 1932.

TABLE OF CONTENTS

Introduction	ci
Units of measurement xxx	ci
Fundamental units, xxxi; derived units, xxxii.	
Conversion factors and dimensional formulae xxxi	ii
Geometrical and mechanical units, xxxiv; heat units, xxxvi;	
electric and magnetic units, xxxvii; electrostatic system,	
xxxviii; electromagnetic system, xxxix.	
Fundamental standards	li
Standard of length, xlii; standard of mass, xlii; standard of time,	
xlii; standard of temperature, xlii.	
Numerically different systems of units xli	ii
Proposed systems of units (Table I), xliii; Gaussian systems,	
xliii; "practical" electromagnetic system, xliv; the inter-	
national electric units, xliv.	
The standards of the international electrical units xl	vi
Resistance, xlvi: Mercury standards, xlvi; secondary standards,	
xlvii; resistance standards in practice, xlvii; absolute ohm,	
xlvii.	
Current, xlviii: The silver voltameter, xlviii; resistance stand-	
ards used in current measurements, xlix; absolute ampere,	
xlix.	
Electromotive force, xlix: International volt, xlix; Weston	
normal cell, xlix; Weston portable cell, li; absolute and	
semi-absolute volt, li.	
Quantity of electricity, lii: Standards, lii.	
Capacity, lii.	
Inductance, lii: Inductance standards, lii.	
Power and energy, liii: Standards and measurements, liii.	
Magnetic units	11
The ordinary and the ampere-turn magnetic units (Table II), liv.	
TABLE PA(
1. Spelling and abbreviations of common units of weight and measure.	2
2. Fundamental and derived units, conversion factors	3
(a) Fundamental units	3
(b) Derived units	3
3. Tables for converting U. S. weights and measures:	
(1) Customary to metric	5
(2) District to customary	6
4. Miscellaneous equivalents of U. S. and metric weights and measures.	7

vi CONTENTS

5.	Equivalents of metric and British imperial weights and measures:
	(1) Metric to imperial
	(2) Metric to imperial, multiples
	(3) Imperial to metric
	(4) Imperial to metric, multiples
	(4) Imperial to metric, multiples
	Mathematical Tables
6.	Derivatives and integrals
7.	Series
8.	Mathematical constants
9.	Reciprocals, squares, cubes, square roots of natural numbers
10.	Logarithms [4-place, 1000-2000]
10. 11.	" ["]
	Antilogarithms [4-place]
12.	Anthogarithms [4-place]
13.	" [" , 0.9000-1.0000]
14.	Circular (trigonometric) functions [arguments (°, ')]
15.	" (radians)]
16.	Logarithmic factorials, $n!$, $n=1$ to 100
17.	Hyperbolic functions
18.	Factorials [1 to 20]
19.	Exponential functions
20.	" Values of e^{x^2} and e^{-x^2} and their logarithms.
20.	$\alpha \qquad \alpha \qquad \alpha \qquad \alpha \qquad \frac{\pi}{\rho 4} \qquad \alpha \qquad \frac{\pi}{\rho} \qquad \alpha \qquad $
21.	t t
22.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	" " " px " p-x " " " "
23.	
	[x fractional]
24.	Least squares: Probability integral, argument hx
25.	x/r
26.	" Values of $0.6745\sqrt{1/(n-1)}$
27.	" " $0.6745\sqrt{1/n(n-1)}$
	" " $0.8453\sqrt{1/n(n-1)}$
28.	
29.	" " 0.8453 $\{1/n\sqrt{n-1}\}$
30.	" (Formulae)
31.	Diffusion integral, inverse probability integral
	Γ (x,y) $\int_{-x}^{-x} (x,y) dy$
32.	Exponential integral, $Ei(x)$, $\int_{\infty}^{-x} (e^{-u}/u) du \dots \dots$
33.	Gamma function, logarithms, n between 1 and 2
34.	Zonal spherical harmonics [first seven, $\theta = 0^{\circ}$ to $\theta = 90^{\circ}$]
35.	Cylindrical harmonics, oth and 1st orders [6-place values, $x = 0$ to 4]
ээ. 36.	" " [4-place values, x=4 to 15]
	(a) 1st 10 roots (R_m) of $J_o(x) = 0$; $J_1(R_m)$
37.	(a) 15t 10 100ts (R_m) of $J_0(X) = 0$, $J_1(R_m)$
	(b) " 15 " of $J_1(x) = \frac{dJ_0(x)}{dx} = 0 \dots \dots$

	Notes, general formulae of Bessel's functions

CONTENTS

38.	Elliptic in	ıtegral	s: Va	dues of	$\int_{0}^{\frac{\pi}{2}} \left(1 - \sin^2 \Theta \sin^2 \Phi \right) \pm \frac{1}{2} d\Phi \dots \dots$	71
39.					gyration, and corresponding weights .	72
			Bir	ge's P	HYSICAL CONSTANTS	
40.	The v Newto Mean Relati Norm Ratio Atom H Norm Absol Mecha The f Electr Specif Planc	density onian of density on litter interrice weight, p. 8 al atments arraday onic office characteristics which is the density of the constant	of light on the constant of t	ght in very street of general three	$.547 \times 10^{-27} \text{ erg/sec.}$]	73 74 75 75 75 75 77 81 84 85 86 87 88 92 94
41.					Birge	103
42.					Birge in connection with Table 40	104
43.	Miscellan	eous (derive	d physi	ical constants, Birge	105
44. 45. 46.	Reduction	ns of v	veighi	ngs in	weight of its volume of Hg or H_2O . air to vacuo	100
			Ν	Лесна	NICAL PROPERTIES	
4.00	Introduct	.:				1.10
47· 48.	Introduct				Iron and iron alloys	
49.	"	"	"	"	Carbon steels	
50.	44	**	**	4.	Heat treatments	
51.	"	"	46	"	Alloy steels	113
52.	"	"	"	44	Steel wire—specification values	
53.	44	"	**	44	" " experimental values	112
54·	"	"	"	"	Semi-steel	IIJ
55.	"	"	"	66	Steel-wire rope—specification values.	II
56.	"	"	"	"	" " experimental values.	115
57·	"	"	"	"	Plow-steel rope [specification values]	
~O	Λ 1				r - i - r	тт6

59.	Aluminum sheet: (a) Experimental values	116
	(b) Specification values	116
60.	Aluminum alloys	117
61.	Copper	118
62.	", rolled—specification values	118
63.	" wire [hard-drawn]—specification values	118
64.	" , medium hard-drawn	119
65.	Copper wire—soft or annealed	119
66.	" plates	119
67.		119
68.	" : Copper-zinc or brasses; copper-tin or bronzes	120
69.	": Three (or more) components	121
70.	• • • • • • • • • • • • • • • • • • •	124
71.	" " : (a) Tungsten and zinc	125
	(b) White metal bearing alloys	125
72.	Cement and concrete: (a) Cement	126
	(b) Cement and cement mortars	126
	(<i>c</i>) Concrete	127
73.	Stone and clay products: (a) American building stones	128
	(b) Bavarian building stones	128
	(c) American building bricks	129
	(d) Brick piers, terra-cotta block piers.	129
		129
74.		130
		130
75.		131
76.	Hardwoods grown in U. S. (metric units)	132
77.		133
78.		134
79.		135
80.		136
81.	Variation of the rigidity modulus with the temperature	
82.	Interior friction at low temperatures	137
83.		137
84.		137
85.		137
86.	Elasticity of crystals [formulae]	138
87.	" " [numerical results]	
88.		140
89.	" " " linear compressibility	
90.	" " " cubic "	140
91.	Relations between T , p , v , and wt. of gases [theory]	141
92.		141 142
03.	Relative gas volumes at various pressures	142

CONTENTS ix

0.4	Correcting factors: Saturated gas volume to volume at 760 mm, 0° C.	T.12
94.	Compressibility of gases: At ordinary temperatures	
95.		
96.		
97.	" " O, air, N, and H	
98.	Ethylene	
99.	Carbon dioxide	
100.	Physical properties of compressed introgen	
101.	Under high pressures	
102.	Gage pressure to atmospheres (absolute)	
103.	Relation between p, T, and v, sulphur dioxide	
104.	annona	
105.	Volume of gases: Values of $1 + .00367t$	
	(a) For values of t between 0° and 10° C by 0.1° steps	
	(b) Logs for t between -49° and $+399^{\circ}$ C by 1° steps	
	(c) For values of t between -90° and $+2090^{\circ}$ C by 10° steps.	
	(d) Logs for t between 400° and 1990° C by 10° steps	
106.	Compressibility of liquids	
107.	" and thermal expansion of petroleum oils	
108.	" of solids	
109.	" " crystals	157
	D	
	Densities	
110.	Specific gravities corresponding to the Baumé scale	
III.	Degrees A. P. I. corresponding to specific gravities at 60°/60° F.	158
112.	Density of the elements, liquid or solid	
113.	" " different kinds of wood	161
114.	" various solids	162
115.	" " " alloys	163
116.	" " some foreign woods	163
117.	" various natural and artificial minerals	164
118.	" " liquids	165
119.	" pure water free from air, o° to 41° C	166
120.	Volume of water free from air, o° to 36° C	167
121.	Density and volume of water, -10° to $+250^{\circ}$ C	168
122.	" " mercury, -10° to +360° C	169
123.	" of aqueous solutions	170
124.	" " mixtures of ethyl alcohol and water	172
125.	" aqueous methyl alcohol, cane sugar, sulphuric acid	174
126.	" cane sugar solutions, Brix and Baumé degrees	175
127.	" " gases	176
128.	" "moist air: $h/760$, h from 1 to 9	
129.	" " $\log h/760$, h from 80 to 800	
130.	" " " values of 0.378c	
131.	Maintenance of air at definite humidities	
132.	Pressure of columns of mercury and water	180

BAROMETRIC TABLES

133.	Reduction of barometric height to standard temperature		181
134.	" barometer to standard gravity, free-air altitude term		
135.	" " " " metric measures		183
136.	" " " " English measures .		185
137.	Correction of the barometer for capillarity		187
138.	Volume of mercury meniscus in mm ³		187
139.	Pressures and the boiling point of water:		·
	(a) Metric units		188
	(b) English units		
140.	Determination of heights by the barometer		
	Ç ,		
	Acoustics		
141.	Velocity of sound in solids		100
142.	" " " water		
143.	" " " liquids and gases		191
144.	Musical scales: Data for middle octave	Ċ	192
145.	" Notes needed to transpose to other scales		
146.	Fundamental tone, harmonics, nearest tone of equal-tempered sca		
147.	The bel and the decibel		
148.	Loudness levels of various noises		
140.	Peak power in watts of musical instruments (fortissimo)		
150.	Relative strength of partials, various musical instruments		
151.	Miscellaneous sound data		
152.	Audibility as dependent on sound pressure and frequency		
153.	Speech		195
154.	Characteristic resonance values for spoken vowels		
155.	Speech power (Fletcher)		
156.	Phonetic powers, average conversation	٠	195
	Aerodynamics		
			106
157.	Velocity pressure at different air speeds	•	190
158.			
159.	Resistance coefficient for thin flat plates normal to wind		
160.	Forces on thin flat plates at angles to wind		
161.	Forces on nonrotating circular cylinders		
162.	spheres		
163.	miscenaneous bodies		
164.	cynnders		
165.	Skin friction	•	203
166.	Friction		204
167.			
	Lubricants for cutting tools		
			,

CONTENTS xi

VISCOSITY

169.			iids and											
170.	"		ater in c											
171.	"	" ale	cohol-wa	iter mi	xtures	(tem	pera	ture	va	riati	lon]) .		205
172.	66	and de	ensity of											
173.	"	"	" "	glycero	ol "	"	"		(20	° (\mathbb{C})			206
174.	"	"	"		oil (ter									
175.	"	of org	ganic liq											
176.	Fluiditie	s of ga	solines a	nd ker	osene (tempe	eratu	re v	aria	tion	1)			207
177.	Pressure	effect	on visco	osity of	pure	liquid	s.							208
178.	Viscosity	of m	iscellane	ous liq	uids .									209
179.	Specific	viscosit	y of sol	utions	(densit	y and	tem	pera	tur	e va	ria	tion	1).	210
180.	"	66	"	66	(variou	s con	cent	ratic	ms,	25°	C) .		212
181.	Viscosity													
182.	"	" "	" : Va	riation	with p	ressu	re a	nd t	emį	oera	tur	е.		214
				•	-				-					
183.	Diffusion													
184.	66		oors .											
185.	66		icients o											
186.	46		ietals int											
187.	Solubility													
188.	"		few orga											
189.	"		ises in w											
190.	"		ge of, p											
191.	Common													
192.	Absorpti													
193.	Capillari	ty and s	surface t	ension	: Wate	r and	alco	lorl	in n	nois	t ai	r.		222
194.	"	66	6.6	66	Misc									
195.	"			"	Solut									222
196.	Surface													223
197.	66	66	"	' at	solidif	ying	poir	ıt .						223
				3.7	Ъ									
					Press									
198.	Vapor p													
199.		"	of elein	ents .		• •							٠	224
200.	44	46		mic liq										
201.	4.6	66	at low											
202.	"	66	of ethy											
203.	66	"	" metl	nyl alco	ohol .								٠	227
204.	"	66	" (a)		disulp							٠	٠	228
			(b)		benzen									228
				bromo										228
			(d)	aniline										228
			(e)	methyl	-									229
			<i>(f)</i>		naphth	alene								229
			<i>(g)</i>	mercu	ry .					•	•	4		229

xii CONTENTS

205.	Vapor pressure of solutions of salts in water	
206.	Pressure of saturated aqueous vapor over ice, low temperatures	232
207.	" " water, low temperatures.	232
208.	" " " " o° to 374° C	232
209.	Weight in grams of a cubic meter of saturated aqueous vapor	234
210.		234
211.	Pressure of aqueous vapor in the atmosphere: Various altitudes .	
212.	" " Sea-level	
213.	Relative humidity, vapor pressure and dry temperature	
214.	" wet and dry thermometers	
	· ·	
	THERMOMETRY	
215.	The international temperature scale	230
216.	Recommended procedure for calibration	241
217.	The standard platinum resistance thermometer	
218.	The standard thermocouple	
219.	Secondary calibration points	243
220.	Directions for use of standard thermoelement calibrations	243
221.	Standard calibration curve for Pt-PtRh (10%Rh) thermoelement.	244
222.	" " Cu-constantan thermoelement	
223.	" " " " below o° C	
224.	Melting points of some purified salts, 400° to 1300° C	240
225.	Standard calibration curve for chromel-alumel thermoelement	240
225. 226.	Optical pyrometry	
227.	Correction for temperature of mercurial thermometer thread	240
228.	Stem correction for centigrade thermometers	
229.	Reduction of gas thermometers to thermodynamic scale	
230.	Practical thermoelectric scales (comparisons)	
231.	Temperature differences between I. T. S. and various older scales .	
231.	reinperature differences between 1. 1. 5. and various order scales .	251
232.	Conversion factors for units of work	251
233.	English and American horsepower at various altitudes and latitudes.	
234.	Nonflammable liquids for cryostats	
	Melting and Boiling Points	
00 =	Malting and hailing asints of the about all almosts	
235.		
	Effect of pressure on melting point	253
237.	rreezing point of water	253
238.	bonnig point	253
239.	Densities and melting and boiling points of inorganic compounds . " " " organic " .	
240.		256
	(a) Paraffin series	
	(b) Olefines or the ethylene series	
	(c) Acetylene series	257

	* * *
CONTENTS	X111

	(d) Monatomic alcohols	57
	(e) Alcoholic ethers	57
	(f) Ethyl ethers \dots 2	57
	(g) Miscellaneous	58
241.	Melting point of mixtures of metals	
242.	" " alloys of lead, tin, and bismuth	
243.	" " low-melting-point alloys	
244.	" " some refractory substances	
245.	Enantistropic inversions in crystals	
246.	Transformation and melting temperatures of minerals and eutectics. 2	
247.	Lowering of freezing points by salts in solution	
248.	Rise of boiling point produced by salts dissolved in water 2	
249.	Freezing mixtures	
250.	Critical temperatures, pressures, and densities of gases	
_50.	Control of the contro	′
	THERMAL CONDUCTIVITIES	
251.	Thermal conductivity of metals and alloys	
252.	" " insulators at high temperatures 2	
253.	various substances 2	
254.	insulating materials	
255.	various insulators 2	
256.	water and sait solutions	
257.	organic inquids	
258.	gases	
259.	Diffusivities	
260.	Thermal conductivity—liquids, pressure effect	
261.	The unit of thermal resistance—the fourier	
262.	Factors to reduce heat flow in fouriers to other units	
263.	Conversion factors between units of current density of heat flow . 2	
264.	Thermal resistivities in fouriers	79
265.	Anti-freezing solutions (for automobile radiators, etc.) 2	79
	Expansion Coefficients	
266.		
267.	" " miscellaneous substances	81
268.	Cubical expansion of solids	82
269.	" " liquids	83
270.		
	Specific Heats	
271.	Specific heat of the chemical elements	85
272.		87
273.	Heat capacities, true and mean specific heats, latent heats at fusion . 2	

274.	Atomic heats and specific heats (50° K.), atomic volumes, elements.	
275.	Specific heat of various solids	290
276.	" " water and of mercury	
277.	" " various liquids	
278.	" " liquid ammonia under saturation conditions	291
279.	Heat content of saturated liquid ammonia	291
280.	Specific heat of minerals and rocks	292
281.	" " silicates	292
282.	" " gases and vapors	293
	LATENT HEATS	
283.	Latent heat of fusion	294
284.	" " vaporization, elements	295
285.	" " " " liquids	
286.	" and total heat of vaporization, formulae	
287.	" of vaporization, ammonia	
288.	"Latent heat of pressure variation" of liquid ammonia	296
289.	Thermal properties of saturated water and steam	297
290.	Properties of saturated steam: Metric and common units, o° to	
	220° C	
291.	Properties of saturated steam: Common units, 400° to 700° F	
292.	" superheated steam: Common units, 212° to 3000° F.	305
293.	" " mercury vapor: 402° to 1000° F	306
294.	" liquid ammonia: -100° to +250° F	306
	HEATS OF COMBUSTION, FORMATION, ETC.	
295.	Heats of combustion of some carbon compounds	307
296.	" " miscellaneous compounds	307
297.	Heat values and analyses of various fuels: (a) Coals	
,	(b) Peats and woods.	
	(c) Liquid fuels	
	(d) Gases	
298.	Chemical and physical properties of explosives	309
299.	Additional data on explosives	
300.	Ignition temperatures of gaseous mixtures	
301.	Time of heating for explosive decomposition	
302.	Flame temperatures	
303.	Thermochemistry: Heats of formation from elements	311
304.	" of ions	
305.	" " neutralization	
30б.	" " dilution of sulphuric acid	
500.		-
	Radiation	
307.	Radiation constants and formulae for black body	
308.	" in ergs and g. cal. from a perfect radiator to absolute zero.	

CONTENTS XV

309.	Black-l	ody s		n intensi	ties (J_{λ})), 50° to 20000° K	. 314
310.	66	"	66	"	"	25° to 600° K	. 315
311.	"	66	66	"	"	800° to 25000° K	. 316
312.	"	4.6	66	66	: 1	Auxiliary table, J_{λ} , any tem	-
	pera	ature					
313.	Black-b	ody sp	ectrun	n intensit	ies, J_{λ} ,	various temperatures C	. 317
314.						sity. Relative J_{λ}	
315.	_					lue at each temperature	
316.						ninosity. Luminosity factors	
317.	• "	"		16	66	" Variation with C_2	
318.	Radiati	on emi	ssivitie	es: Relat	ive emis	ssive powers for total radiation	
319.	"		66			oxides	
320.	Some in	ntrinsi	c prope	erties of	tungste	n [300° to 3655° K.]	. 321
321.						rcentage) [1800° to 3400° K.	
322.						00° to 2400° K.]	
323.						1 [500° to 3500° K.]	
324.	"					ntalum [300° to 3300° K.] .	
325.	66	66	"	"		olybdenum [273°-2895° K.]	
326.	Relation	n brigt	itness a	and color		atures for various substances	
327.						e for carbon	
328.						d oxides	
329.						, Ag, Fe, nichrome]	
330.						overed nickel (watts/cm²).	
330.	1014111	adiatio		i bare arr	a 500t c	overed menor (wates, em) .	. 3-4
	Cod	OLING	by Ra	DIATION,	Condu	ection, and Convection	
331.	Cooling	by rac	diation	and con	vection:	At ordinary pressures	. 325
332.	**	"	66	"	"	" different pressures	. 325
333.	"	46	"	"	66	Platinum wire in copper en	-
	velo	pe .					. 326
334.	Cooling	by ra	diation	and cor	vection	: Effect of pressure and temp	. 326
335.	Conduc	tion o	f heat	across ai	r spaces	s (ordinary temperatures).	. 327
336.	Convec	tion of	heat i	in air at	ordinar	y temperatures	. 327
337.	"					y gases at high temperatures	
	(
						tion of absolute temperature	
338.						nents	
						e	
			,	Гне Еүн	E AND R	ADIATION	
339.						s a function of intensity	
339. 340.	Thresh	old ser	nsibility	y as rela	ted to fi	eld brightness	. 330
	Thresho Heteroo	old ser chroma	nsibility atic th	y as relar reshold	ted to fi sensibili		. 330 . 331

xvi	CONTENTS

343.	Glare sensibility	33I
344.	Rate of adaptation of sensibility	331
345.	Apparent diameter of pupil and flux density at retina	332
346.		332
347.	Miscellaneous eye data	332
0 17		55-
	Photometric Tables	
348.	Photometric definitions and units	333
349.	" standards	33/1
350.	Waidner-Burgess standard of light	334
351.	Intrinsic brightness of various light sources	334
352.	Brightness, Crova wave length, mechanical equivalent of light	335
353.	Luminous and total intensity and luminous efficiency of black-body.	335
354.	Color of light emitted by various sources	
355.	Blue brightness B, brightness in candles of incandescent oxides	336
356.	Efficiency of various electric lights	337
357.	Color and brightness temperatures, and brightness of illuminants .	338
358.	Temperature, efficiency, brightness of vacuum lamps	
359.	Temperature, efficiency, brightness of gas-filled tungsten lamps .	338
360.	Energy distribution for some tungsten lamps	339
361.	Brightness of some tungsten lamps and other sources	339
362.	Characteristics of some miniature lamps	339
363.	" sunlight Mazda lamp (S 1) 300 w, a.c	340
364.	" photoflash lamp	340
365.	Visibility of white lights	340
	Photographic Data	
366.	Sensitometric constants of type plates and films, definitions	341
367.	Formula for laboratory pyrogallol developer	341
368.	Sensitometric constants of type plates and films	342
369.	Resolving power, sharpness, and astro gamma, definitions	342
370.	" " " data	343
371.	Relative spectrum sensitivity of various plates and films	343
372.	Spectrum sensitivity of photographic materials	344
373.	Relative photographic efficiency of illuminants	344
374.	Variation of resolving power with plate and developer	345
375.	Relative intensification of various intensifiers	345
376.	Reflection and transmission by photographic plates	345
	Spectrum Wave Lengths	
377.	Wave lengths of Fraunhofer lines	346
378.	Primary wave-length standard. Definition of Angstrom	347
379.	International secondary standards. Iron arc lines	
380.	Computed wave lengths of iron arc lines	349

CONTENTS	XVII

381.					
382.				lengths. International Angstroms	
383.	Provi	siona	al ultra-viol	et and infra-red solar wave lengths	353
384.	Redu	ction	of wave-le	ngth measures to standard conditions	354
385.	Spect	ra of	f the elemen	nts	355
]	Indices of Refraction	
386.	Index	of	refraction o	of glass: $n_{\rm X} - n_{\rm D}$ and $n_{\rm G'} - n_{\rm D}$	356
387.	4.6	66	"	", effect of composition on	356
388.	Deriva	ation	of partial	dispersions of glass from $n_{\rm F} - n_{\rm C}$	357
389.	Index	of	refraction c	of glasses (American)	358
390.				of Table 389	
391.				f glasses made by Schott and Gen, Jena	
392.				nsity of Jena glasses	
393.				1° C [for some Jena glasses]	
394.	-	-		Rock salt in air	
395.	66	66	"	Change of, for I° C [for rock salt]	
396.	66	66	"	Silvite (potassium chloride) in air	-
397.	66	"	"	Fluorite in air	
398.	66	66	"	Change of, for I° C [for fluorite]	361
399.	66	"	"	Iceland spar (CaCO ₃) in air	
400.	66	66	"	Nitroso-dimethyl-aniline	
401.	66	"	"	Quartz (SiO ₂), 18° C	362
402.	66	66	"	Various alums	362
403.	66	"	"	Selected monorefringent or isotropic minerals.	
404.	"	66	"	Miscellaneous monorefringent or isotropic	
	sol	lids			364
405.	Index	of r	efraction:	Selected uniaxial minerals: (a) Positive	365
				(b) Negative .	365
406.	"	6.	44	Miscellaneous uniaxial crystals	366
407.	66	66	64	Selected biaxial minerals: (a) Positive	367
				(b) Negative .	368
408.	66	66	"	Miscellaneous biaxial crystals	370
409.	66	66	44	Liquefied gases, oils, fats, waxes	370
410.	66	66	"	Liquids relative to air	371
411.	"	66	"	Relative to air for solutions of salts and acids.	372
412.	44	66	"	Gases and vapors	373
413.	66	66	"	Air (15° C, 76 cm); corrections for reducing	
	wa	ave 1	engths and	frequencies in air to vacuo	374
414.				ions of refractive indices with the microscope:	
				0.589μ) = 1.74 to 1.87	375
415.				ions of refractive indices with the microscope:	
	Re	esinli	ike substanc	ces, $n_{\rm D}(0.589\mu) = 1.68$ to 2.10	375

xviii CONTENTS

416.	Media for determinations of refractive indices with the microscope:	
	Permanent standard resinous media, $n_D(0.589\mu) = 1.546$ to 1.682.	375
417.		
	Substances, $n_D = 1.39$ to 1.75 · · · · · · · · · · · · · · · · · · ·	375
	Reflecting Powers	
418.	Light reflected when light is normal to surface	376
419.	" " is near unity or equals $1+dn$	376
420.	" $n=1.55$	376
421.	Optical constants of metals	377
422.	" " (additional data)	378
423.	Reflecting power of metals	
424.	" " " Perpendicular incidence and reflection.	379
425.	Percentage diffuse reflection, from miscellaneous substances	379
426.	" reflection from metals, violet end of spectrum	380
427.	Ultra-violet reflecting power of some metals	380
428.	Infra-red reflectivity of tungsten (temperature variation)	380
429.	Percentage reflecting power of dry powdered pigments	381
430.	Infra-red diffuse percentage reflecting powers of dry pigments	381
431.	Reflectivity of snow, sand, etc	381
432.	Reflecting power of powders (white light)	382
433.	Variation of reflecting power of surfaces with angle	382
434.	The reflecting power of building materials	383
	•	
	Transmissive Powers	
435.	Light filters, narrow spectrum regions	384
436.	Absorbing power of various materials—infra-red	384
437.	Transmissibility of radiation by dyes	385
438.	" " " Jena glasses	386
439.	" " colored glasses	
440.	" " " ultra-violet glasses	
441.	" " " American glasses	
442.	Transmission of various lights through colored glasses	
443.	Ultra-violet transparency (302 m μ)	388
444.	(a) Ultra-violet transparency atmospheric components	
	(b) Atmospheric transparency for ultra-violet	
445.	Penetration ultra-violet light into sea water	
446.	Transparency of the various substances of Tables 394 to 402	390
447.	Color screens [Landolt]	391
448.	" " [Wood]	391
449.	Transmission percentages of radiation through moist air	392
450.	Transparency of water vapor (steam)	392
451.	" water	392
452.	Infra-red transmission and absorption: Gases, 6.7 to 32.8μ	393
453.	" " Solids, 6.7 to 32.8μ	393

CONTENTS	XIX
----------	-----

454.	Infra-red reflection, solids, 22.9 and 32.8μ		393
455.	" transmission, various substances, 20 to 130 μ		393
456.	Far infra-red, 20 to 150 μ : Restrahlung bands		394
457.	" " " " Reflecting power		394
458.	" " " " Transmission		394
459.	Long-wave radiations: Long-wave absorption by gases		395
460.	" Properties with wave lengths $108 \pm \mu$.		
461.			396
462.	" " " " Sodium chlorate, quartz		
ľ			0,
463.	Electric equivalents		397
	Electromotive Forces		
464.	Composition and electromotive force of voltaic cells:		398
	(a) Double fluid cells		398
	(b) Single " "		398
	(c) Secondary cells		
465.	Contact difference of potentials in volts: Solids and liquids		399
466.	Difference of potential between metals in solutions of salts		400
467.	Thermoelectric power		401
468.	" of alloys		402
469.	Thermal e.m.f. of metals and alloys versus platinum (millivolts)		403
470.	" " platinum-rhodium alloys versus platinum .		403
471.	" " aluminum versus platinum		404
472.	" " zinc versus platinum		404
473.	" " cadmium versus platinum		
474.	" " nickel versus platinum		
475.	Thermoelectric properties at low temperatures		
476.	Thomson effect in microvolts per degree		405
477.	Peltier effect		
478.	" , Fe-Constantan, Ni-Cu, o° to 560° C		406
479.	" e.m.f. in millivolts		
480.	Thermoelectric power; pressure effects		
481.	Peltier and Thomson heats; pressure effects		407
482.	The tribo-electric series		408
	Electrical Resistance		
0			0
483.	Auxiliary table for computing wire resistances		
484.	Resistivity of metals and some alloys		
485.	Resistance " under pressure (Bridgman)		
486.	mercury and manganin under pressure		
487.	metals, effect of tension on		
488.	Conductivity and resistivity of miscellaneous alloys; temp. coef.		
489.	Conducting power of alloys		415

XX CONTENTS

490.	Allowable carrying capacity of rubber-covered copper wires		
491.	Resistivities at high and low temperatures	417	
492.	Volume and surface resistivity of solid dielectrics	418	
493.	Variation of resistance, glass and porcelain, with temperature	419	
494.	Temperature resistance coefficients of glass, porcelain, and quartz.	419	
	Wire Tables		
495.	Tabular comparison of wire gages	420	
496.	Introduction; mass and volume resistivity of copper and aluminum.	421	
497.	Copper wire: Temperature coefficients		
498.	" Reduction of observations to standard temperature.	422	
499.	", standard annealed: English units, B. & S. gage	423	
500.	" " Metric " "	426	
501.		429	
502.	" " " Metric " " "	430	
	Electrolysis		
503.	Electrochemical equivalents	431	
504.	Conductivity of electrolytic solutions	432	
505.	Electrochemical equivalents and normal solutions		
506.	Specific molecular conductivity of solutions: Mercury=108	433	
507.	" " Limiting values of μ .		
508.	" " Temperature coeffici-		
	ents	434	
509.	Equivalent conductivity of salts, acids, bases in aqueous solutions.		
510.	" additional salts in aqueous solutions	437	
511.	" " separate ions	438	
512.	Hydrolysis of ammonium acetate and ionization of water	438	
	Dielectric Strength		
513.	Steady potential required to produce spark in air, ball electrodes .	439	
514.	A.c. " " " " " " " "	439	
515.	Potential to produce spark in air, more widely separated electrodes.		
516.			
517.	Dielectric strength of materials	441	
518.	Potentials in volts to produce a spark in kerosene	441	
	Division Constants		
	Dielectric Constants		
519.	Dielectric constant of gases: Atmospheric pressure		
520.	, temperature variation	442	
521.	pressure variation	442	
522.	liquids (ϵ). Pressure effect	443	
523.		443	

CONTENTS	XX1

524.		of liquids: Temperature formula 4	
525.	"	" liquefied gases 4	45
526.	" " "	standard solutions for measuring 4	46
527.		of solids 4	.46
528.		" crystals 4	47
529.		neans) 4	
530.		<mark> </mark>	
531.	Calculation of the hi	igh-frequency resistance of conductors 4	49
532.	Resistance ratio	o " F " for isolated round wires 4	
533.	"	for isolated tubular conductors 4	.50
534.		formula for proximity factor, parallel round	150
535.		to direct current resistances for copper wires . 4	
536.		for high-frequency resistance ratio of 1.01 4	
		Wireless Telegraphy	
		WIRELESS TELEGRAPHY	
537.		s for various wave lengths and antenna heights. 4	
538.		erties of nonconductors 4	
539.	Power factor, insula	ating materials at radio-frequencies 4	153
540.	Dielectric constant,	insulating materials at radio-frequencies 4	154
541.	Absorption factors	for radio propagation 4	54
542.		over sea water, conductivity I.I x 10 ⁻¹¹ e.m.u 4	
543.	"	" land, conductivity 1.1 x 10 ⁻¹³ e.m.u 4	155
544.	"	" " 10^{-13} e.m.u., $\epsilon = 15$ e.s.u. 4	
545.	" "	" ground, " 10 ⁻¹⁵ e.m.u., " " 4	155
546.	Kilocycle-meter con	version table, 299820 km/sec 4	
547.		ency, oscillation constant, 300000 km/sec 4	
548.		ange table 4	
	Î		
		Magnetic Properties	
549.		eral discussion 4	
550.		of various types of iron and steel 4	
551.	"	" a specimen of very pure iron (.017% C) . 4	
552.	"	" electrical sheets 4	
553.	66 66	"two types of American magnet steel 4	
554.	"	" a ferro-cobalt alloy, Fe $_2$ Co (35% cobalt) . 4	
555.	"	" ring sample of transformer steel, weak fields. 4	
556.	"	"iron in very weak fields 4	
557.			1 66
558.		e of the specimens in Table 557 4	168
559.	Magnetic properties	of soft iron at 0° and 100° C 4	168
560.	. "	" steel at o° and 100° C 4	

xxii CONTENTS

561.	Magnetic properties of cobalt at 0° and 100° C	469
562.	" " nickel " " " " "	469
563.	" " magnetite	469
564.	" Lowmoor wrought iron	469
565.	" " Vicker's tool steel	469
566.	" " Hadfield's manganese steel	469
567.	" " saturation values for steels	469
568.	Demagnetizing factors for rods	470
569.		470
570.	Magnetic properties of iron and steel	
571.	Cast iron in intense fields	
572.	Corrections for ring specimens	
573.	Energy losses in transformer steels	
574.	Magnetic properties of permalloy	
575.	Dissipation of energy in cyclic magnetization, various substances	
576.	Magnetism and temperature, critical temperature	
577.	Temperature variation for paramagnetic substances	
578.	" effect on susceptibility of diamagnetic elements	474
579.	" " " paramagnetic elements	474
580.	Magnetic susceptibility	475
	Magneto-optic Rotation	
581.	Magneto-optic rotation: General discussion	
582.	Solids, verdet's constant	
583.	Liquids,	
584.	Acids and saits in water, verdet's constant.	
585.	Gases, verdet's constant	
586.	Verdet's and Kundt's constants	
587.	Values of Kerr's constant	_
588.	Dispersion of Kerr effect	
589.		400
	Various Magnetic Effects	
590.	Resistance of metals: Bismuth, variation in transverse magnetic field	481
591.	Resistance of metals: Nickel, increase in transverse magnetic field.	
592.	" " Change, in transverse magnetic field	-
593.	Transverse galvanomagnetic and thermomagnetic effects	482
594.		482
	Атоміс Дата	
F0=		10-
	International atomic weights, atomic numbers and valencies Isotopes, packing fractions	
	, , , , , , , , , , , , , , , , , , , ,	1

	* * *
CONTENTS	XX111
CONTENTS	AAIII

597.	Periodic system of the elements		485
598.	Atomic numbers		485
599.	Periodic system and the radioactive isotopes		486
600.	Atomic structure		487
бот.			
602.			
	Atomic Structure		
603.	(a) Electrons, protons, Rutherford atom		402
003.	(b) Bohr atom, relativistic considerations		
	(c) Hydrogen orbits, inner quantum numbers		
	(d) The spinning electron, summary		
604.	Energy of binding of an electron—neutral atoms		
605.	" " " singly ionized atoms		408
606.	First ionization potentials of the elements		400
607.	Second " " " "	·	500
608.	Radiation units	•	501
609.	Spectrum ranges of various radiations		
610.	The mechanical effects of radiation		
010.	The inechanical effects of fadiation	•	501
	Atomic Spectrum Series Relations and Notations		
611.	Normal series relations in atomic spectra		502
612.	Inner quantum numbers		
613.	Spectroscopic notation		504
614.			
·	numbers		
615.	Comparison of notations		
616.	•		
617.	Persistent lines, arc spectra		
618.	" " spark "		
619.			
620.			
621.	*		
622.			512
623.	" " " " [table]		513
624.	Various atomic and spectrum functions		515
	Radioactivity		
625	Introduction The uranium family		E T 6
	Introduction. The uranium family		
	Actinium family		
04/.	Admining ramily		210

xxiv

628.		
629.	Radioactivity units	
630.		
631.		
632.		
633.		
634.	" Relative ranges of, of RaF in gases	. 523
635.	" " RaC' in solid elements.	. 523
635(a). " ", long-range [from RaC' and ThC']. Relativ	e
	numbers	. 523
636.	Alpha particles: Atomic stopping powers for, of RaC'	. 523
637.	" Stopping powers of molecules for, of RaC'.	. 523
638.	H particles	. 524
639.	Relative total ionization by a rays in various gases	
640.	Delta rays	
641.	Heating effect of radium and its emanation	
642.	Beta rays	
643.	" particles, work of extraction of	
644.	" from RaE, effective range of, in a few elements.	
645.	" absorption of, in air and CO_2	
646.	Gamma rays: Emission, energy and wave length, etc	
647.	" Nuclear analysis, ionization	
648.	" Scattering, comparison of sources	
649.	" "Absorption of	. 532
650.	Characteristic gamma rays, wave lengths and energies	533
651.	Gamma rays: Nuclear energy from spectra	. 533
652.	" Wave lengths and energies by crystal reflection.	. 534
653.	Quantities in radioactive equilibrium	
	Röntgen Rays (X Rays)	
654.	Cathode rays	. 536
655.	Constants for cathode-ray speeds in matter	. 537
656.	X-ray emission	537
657.	Emission lines and critical absorption limits (in Angstroms)	. 538
	Probabilities of ionization in K and L shells	. 541
659.		542
660.	Energy and quality of emission X rays	542
661.	X-ray spectroscopy	543
662.	Lattice constants of crystals	543
663.	Absorption and scattering of X rays; fluorescence	543
664.	X-ray absorption and chemical combination	544
665.	Mass absorption coefficients, μ/ρ	545
666.	Photographic effects of X rays	546

CONTENTS XXV

ELECTRON EMISSION

667.	Electron emission from hot solid elementary substances 5	
668.	" monomolecular thorium-coated filaments . 5	47
669.	Emission current, efficiency, diffusion, Th on W 5	47
670.	Electron emission from other coated filaments 5	48
671.	Photoelectric effect	48
672.	Contact (Volta) potentials 5	48
673.	Electron affinity of the elements, in volts 5	49
674.	Molecular velocities	50
675.	" free paths, collision frequencies, and diameters 5	50
676.	Cross-sections and lengths of some organic molecules 5	
677.	Size of diffracting units in crystals	
678.	Ionic mobilities	
679.	Diffusion coefficients	552
680.	Colloids, general properties of	553
681.	" molecular weights of	553
682.	": Brownian movement	
683.	" Adsorption of gas by finely divided particles	554
684.	" Heats of adsorption	
685.	" Molecular heats of adsorption and liquefaction (Favre) . ;	554
	Meteorology	
686.	Transmission of solar radiation by earth's atmosphere	555
687.	Ultra-violet solar radiation at earth's surface	
688.	Relative intensity of solar radiation	
689.	Mean monthly and yearly temperatures	
690.	Temperature variation over earth's surface (Hann)	
691.	" with depth (land and ocean)	
692.		558
693.	" Var. percentage composition with altitude (Hum-	
093.	phreys)	558
694.	Atmosphere: Var. temp., pressure, density with altitude (Hum-	
094.	phreys)	558
695.	Atmosphere: Standard [Nat. Adv. Com. Aeronautics]	559
696.	" p. in dynes/cm², summer and winter, day and night	000
ogo.		56c
697.		
698.	*	561
699.		561
700.		561
701.		-
702.		
,	T I	-

xxvi CONTENTS

703. 704. 705.	Atmosphere: Seasonal variation height of tropopause over Batavia. "Atmospheric ozone	563
	Geodesy	
706. 707. 708. 709. 710.	Acceleration of gravity: For sea-level and different altitudes	565 566 567 568
	Geophysics	
712. 713. 714. 715. 716. 717. 718. 719. 720. 721.	Miscellaneous geographical data Densities and pressures of earth's interior Velocities of earthquake waves Elastic constants of earth's interior Miscellaneous geophysical data Age of earth and its strata (a) Geologic age determinations based on the lead method (b) The age of the earth Geochemical data The earth's rotation: Its variation Tides, sea-level, level net	569 569 570 571 571 571 572 573
	Terrestrial Magnetism	
722. 723. 724. 725. 726. 727. 728. 729. 730. 731. 732. 733. 734. 735. 736.	Mean annual values of magnetic elements at observatories	575 575 576 576 577 577 578 578 579 579 580 580 581
738. 739.	" " " " , bibliography Secular change in declination, United States [1820-1930]	589 590

CONTENTS	XXVII

740.	Dip or inclination, United States [1925, long. and lat. variation]	592
741.	Secular change in dip, United States [1855-1925]	
742.	Horizontal intensity, United States [1925, long. and lat. variation].	
743.	Secular change in horizontal intensity, United States [1855-1925].	
744.	Total intensity, United States [1925, long. and lat. variation].	
745.	Secular change in total intensity, United States [1855-1925]	
746.	Agonic line, United States [1800 to 1925]	
747.	Mean magnetic character of each month, 1906 to 1930	
,		0,0
	Atmospheric Electricity	
748.	Elements and constants of atmospheric electricity	596
749.	Atmospheric-electric data	
750.	Ionic equilibrium in the atmosphere	
751.	Thunderstorm electricity	
752.	Charge on rain and snow	
753·	Ionization in the upper atmosphere of the earth	
754·	Ion density y_+ in the upper atmosphere	
	a). Maximum electron density y_c max. in the upper atmosphere	
/ 54 (, , , , , , , , , , , , , , , , , , ,	000
	Astronomy	
755.	Miscellaneous astronomical data	601
756.	" " and formulae	602
757·	Calendar, Julian day	603
758.	" perpetual	
759.	Right ascension-declination into galactic coordinates	601
760.	Planetary data	606
761.	Satellites of the solar system	606
, 762.	Diameters of the planets	606
, 763.	Planetary and Satellite distances, Bode's law; later developments.	
, 764.	Albedos	
765.	Equation of time	
766.	Solar data: The solar constant	608
, 767.	Solar spectrum energy, transmission by earth's atmosphere	
768.	Amount of solar radiation, uv., visual, ir., in calories	
, 769.	Distribution of intensity (radiation) over the solar disk	
770.	The solar constant, decade means	
771.	" " monthly and yearly means	
772.	" " 1930, 1931	
773.	Wolf's observed sun-spot numbers. Annual means	
774.	Duration of sunshine	
775.	Transmission of radiation through moist and dry air	
776.	Brightness of sky radiation, Mt. Wilson (1730 m.), Flint	011
, , = .	Island (sea-level)	611
		UII

xxviii Contents

777.	Distribution in normal spectrum of sunlight and skylight, Mt.	
0	Wilson	
778.	Air masses	
779.	58 elements known in the sun's atmosphere	
780.	Quantitative estimates of composition of solar atmosphere	-
781.	Abundance of elements in sun, earth and meteorites	
782.	Abbot-Priest solar-energy curve, sea-level	614
783.	Constellation abbreviations (Astron. Union, 1922)	615
784.	Occurrence and abundance of elements in the stars	
<i>7</i> 85.	Stellar systems	
786.	Stellar spectra and related characteristics	
787.	The Harvard spectrum classification	
788.	Log (no. stars)/(sq. degree) brighter than photographic magni-	/
,	tude, m , at stated galactic latitudes	6т8
789.	Numbers and equivalent light of the stars	
790.	The first-magnitude stars	
791.	Stars known to be within five parsecs of the sun	
792.	Percentage of stars of various spectrum classes	
• -		
793.	Galactic concentration of various spectrum classes	
794.	Distribution of binaries as to spectrum class	
795.	Masses of spectroscopic binaries, Sun=1	
796.	Russell diagram [Adams]	
797.	Spectrum types and absolute magnitudes [Strömberg]	
798.	Brightness of the stars	
799.	Giant and dwarf stars	
800.	Masses and densities	
801.	Parallax and mean apparent magnitude	
802.	Spectrum type and mean absolute magnitude	
803.	Reduction of visual to bolometric magnitude	624
	Stellar Motions	
804.	Summary, elements of solar motion (Campbell, 1928)	625
805.	Elements of solar motion (Charlier, 1926)	625
806.	Stars of large proper motion	625
807.	Spectrum class and proper motions	626
808.	Equipartition of energy in stellar motions	
	Stars of large space velocity, greater than 300 km/sec	
	Stars of small space velocity, 5 km/sec. or less	
	Motions of the stars	
	Known stars of radial velocity greater than 100 km/sec	
	BINARY STARS	
813.	Visual binary stars	620
	Spectroscopic binary stars	
2.4.	Special of the state of the sta	229

XX1X

815. 816.	Periods of known binary stars within 10 parsecs of the sun [Luyten,	
	1930]	630
817.	Masses and absolute magnitudes of binary stars [Pitman, 1929] .	
818.	Mass luminosity data	631
819.	Stellar radiation measurements (Pettit, Nicholson, 1928)	
820.	Spectrum classes and temperatures	
821.	Visual and radiometric magnitudes and total radiations	
822. 823.	Stellar radiation measurements: Energy spectra (Abbot, 1929) Temperatures, radiation, diameters.	
	Variable Stars	
824.	Variable stars, general characteristics; classification	634
825.	The Cepheid period-luminosity curve	
826.	Novae	
	Observed maxima of spectrum lines in the giant sequence	
828.	High-density stars. White dwarfs	636
829.	Low-density stars. Giants	636
830.	High-temperature stars. High-luminosity stars	636
	Star Clusters	
831.	Properties and classification of star clusters	
832.	Distribution of open star clusters	
833.	Globular star clusters	
834.	Galactic star clusters	638
	Nebulae	
~ ~	Classification of nebulae	
	a). Galactic nebulae	
	b). Data on six planetary nebulae	
	Diffuse galactic nebulae, dimensions	
	Nongalactic nebulae	
	The Magellanic clouds and N.G.C 6822, dimensions	
840.		
841.	Extra-galactic nebulae, high velocities	042
842.	Rotation of stars	
843.	The galaxy, its center and rotation	643
844.	Transmission of light across space; theoretical	
845.	" " observed estimates	
	Amount of matter in interstellar space	
847.	Radii of curvature of space	644

XXX CONTENTS

848.	Interstellar gases (calcium, sodium)		644
849.	Temperature of interstellar space		645
850.	Matter and energy		645
	Compton effect		646
	DeBroglie phase waves		646
	Neutrons		647
	Positrons		647
851.	Packing fractions (Aston)		648
852.	Cosmic rays		649
	Appendix		
853.	Area of ocean depths (Littlehales)		650
854.	Oceanic gradients (Kaümmel)		650
855.	Atlantic Ocean basin. Areas and depths (Littlehales)		650
856.	Indian Ocean basin. Areas and depths (Littlehales)		650
857.	Pacific Ocean basin. Areas and depths (Littlehales)		651
858.	Physical properties of sea water (Thompson)		651
859.	Chemical composition of sea water (Thompson, Robinson).		652
860.	Waves of the sea (Patton, Marmer)		653
861.	Properties of carboloy		
862.	" Dekhotinsky cement		654
863.	" fused quartz (vitreous silica)		654
864.	" phenol-resinoid products		655
865.	High vacuum technique		655
866.	Relative viscosity of water; high pressure variation		
867.	Viscosity of mercury; high pressure variation		
868.	" some glasses at high temperature		656
869.	Some possible accuracies, 1928		656
870.	Properties of malleable cast iron		
871.	Definitions of units		658
	Index		661

INTRODUCTION

UNITS OF MEASUREMENT

The quantitative measure of anything is expressed by two factors, — one, a certain definite amount of the kind of physical quantity measured, called the unit, the other, the number of times this unit is taken. A distance is stated as 5 meters. The purpose in such a statement is to convey an idea of this distance in terms of some familiar or standard unit distance. Similarly quantity of matter is referred to as so many grams; of time, as so many seconds, or minutes or hours.

The numerical factor definitive of the magnitude of any quantity must depend on the size of the unit in terms of which the quantity is measured. For example, let the magnitude factor be 5 for a certain distance when the mile is used as the unit of measurement. A mile equals 1760 yards or 5280 feet. The numerical factor evidently becomes 8800 and 26400, respectively, when the yard or the foot is used as the unit. Hence, to obtain the magnitude factor for a quantity in terms of a new unit, multiply the old magnitude factor by the ratio of the magnitudes of the old and new units; that is, by the number of the new units required to make one of the old.

The different kinds of quantities measured by physicists fall fairly definitely into two classes. In one class the magnitudes may be called extensive, — in the other, intensive. To decide to which class a quantity belongs, it is often helpful to note the effect of the addition of two equal quantities of the kind ir question. If twice the quantity results, then the quantity has extensive (additive) magnitude. For instance, two pieces of platinum, each weighing 5 grams, added together, weigh 10 grams; on the other hand, the addition of one piece of platinum at 100° C to another at 100° C does not result in a system at 200° C. Volume, entropy, energy may be taken as typical of extensive,— density, temperature and magnetic permeability, of intensive magnitudes.

The measurement of quantities having extensive magnitude is a comparatively direct process. Those having intensive magnitude must be correlated with phenomena which may be measured extensively. In the case of temperature, a typical quantity with intensive magnitude, various methods of measurement have been devised, such as the correlation of magnitudes of temperature with the varying lengths of a thread of mercury.

Fundamental Units. — It is desirable that the fewest possible fundamental unit quantities should be chosen. Simplicity should regulate the choice, — simplicity 1st, psychologically, in that they should be easy to grasp mentally, and 2nd, physically, in permitting as straightforward and simple definition as

possible of the complex relationships involving them. Further it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: 1st, geometrical considerations — length, surface, etc., — lead to the need of a length; 2nd, kinematical considerations — velocity, acceleration, etc., — introduce time; 3rd, mechanics — treating of masses instead of immaterial oints — introduces matter with the need of a fundamental unit of mass; 4th, electrical, and 5th, thermal considerations require two more such quantities. The discovery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quantities, — the dielectric constant, K, the basis of the "electrostatic" system and the magnetic permeability, μ , the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "international" system which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen.

Derived Units. — Having selected the fundamental or basic units, — namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature, — it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wished when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is $3 \times 3 \times 3$ times as great as that whose edge is a foot. Thus the given volume will contain only 1/27 as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by 1/27, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length-number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is l^3 . Similarly the ratio of two units of area would be l^2 , and so on for other quantities.

¹ Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity, a quantity of electrical charge, e. The standard unit of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (R. C. Tolman, The Measurable Quantities of Physics, Physical Review, 9, p. 237, 1017.)

CONVERSION FACTORS AND DIMENSIONAL FORMULAE

For the ratios of length,

mass, time, temperature, dielectric constant and permeability units the small bracketed letters, [l], [m], [t], $[\theta]$, [k], and $[\mu]$ will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was 1/3, and the power involved in the expression for volume was 3; hence the factor for transforming from cubic feet to cubic yards was l^3 or $1/3^3$ or 1/27. These factors will be called *conversion factors*.

To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or $\lfloor L/T \rfloor$, and acceleration by a velocity number divided by an interval-of-time number, or $\lfloor L/T^2 \rfloor$, and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just stated cases, $\lfloor l/t \rfloor$ and $\lfloor l/t^2 \rfloor$. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called *dimensional equations*. Thus $\lfloor E \rfloor = \lfloor ML^2T^{-2} \rfloor$ will be found to be the dimensional equation for energy, and $\lfloor ML^2T^{-2} \rfloor$ the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$Q = CL^aM^bT^c$$
,

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are L_i , M_i , T_i , we have to find the value of L_i/L , M_i/M , T_i/T , which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_t = Ll$, $M_t = Mm$, $T_t = Tt$, and if Q_t be the new quantity number,

$$Q_{\prime} = CL_{\prime}^{a}M_{\prime}^{b}T_{\prime}^{c},$$

= $CL^{a}l^{a}M^{b}m^{b}T^{c}t^{c} = Ol^{a}m^{b}t^{c},$

or the conversion factor is $[l^a m^b t^c]$, a quantity precisely of the same form as the dimension formula $[L^a M^b T^c]$.

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in them must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is $s = v_0 t + \frac{1}{2}at^2$. The corresponding dimensional equation is $[L] = [(L/T)T] + [(L/T^2)T^2]$, each term reducing to [L].

Dimensional considerations may often give insight into the laws regulating physical phenomena.¹ For instance Lord Rayleigh, in discussing the intensity

¹ See "On Physically Similar Systems; Illustrations of the Use of Dimensional Equations." E. Buckingham, Physical Review, (2) 4, 345, 1914; also Phil. Mag. 42, 696, 1921.

of light scattered from small particles, in so far as it depends upon the wave length, reasons as follows: 1

"The object is to compare the intensities of the incident and scattered ray; for these will clearly be proportional. The number (i) expressing the ratio of the two amplitudes is a function of the following quantities: -T, the volume of the disturbing particle; r, the distance of the point under consideration from it; λ , the wave length; b, the velocity of propagation of light; D and D', the original and altered densities: of which the first three depend only on space, the fourth on space and time, while the fifth and sixth introduce the consideration of mass. Other elements of the problem there are none, except mere numbers and angles, which do not depend upon the fundamental measurements of space, time, and mass. Since the ratio i, whose expression we seek, is of no dimensions in mass, it follows at once that D and D' occur only under the form D: D', which is a simple number and may therefore be omitted. It remains to find how i varies with T, r, λ , b.

"Now, of these quantities, b is the only one depending on time; and therefore, as i is of no dimensions in time, b cannot occur in its expression. We are left, then, with T, r, and λ ; and from what we know of the dynamics of the question, we may be sure that i varies directly as T and inversely as r, and must therefore be proportional to $T \div \lambda^2 r$, T being of three dimensions in space. In passing from one part of the spectrum to another λ is the only quantity which varies, and we have the important law:

"When light is scattered by particles which are very small compared with any of the wave lengths, the ratio of the amplitudes of the vibrations of the scattered and incident light varies inversely as the square of the wave length, and the intensity of the lights themselves as the inverse fourth power."

The dimensional and conversion-factor formulae for the more commonly occurring derived units will now be developed.

GEOMETRICAL AND MECHANICAL UNITS

Area is referred to a unit square whose side is the unit of length. The area of a surface is expressed as

$$S = CL^2$$
.

where the constant C depends on the contour of the surface and L is a linear dimension. If the surface is a square and L the length of a side, C is unity; if a circle and L its diameter, C is $\pi/4$. The dimensional formula is therefore $\lfloor L^2 \rfloor$ and the conversion factor $\lfloor l^2 \rfloor$. (Since the conversion factors are always of the same dimensions as the dimensional formulae they will be omitted in the subsequent discussions. A table of them will be found on page 3.)

Volume is referred to a unit cube whose edge is the unit of length. The volume of a body is expressed as

$$V = CL^3$$
.

The constant C depends on the shape of the bounding surfaces. The dimensional formula is $[L^3]$.

Density is the quantity of matter per unit volume. The dimensional formula is $\lceil M/V \rceil$ or $\lceil ML^{-3} \rceil$.

Ex.—The density of a body is 150 pd. per cu. ft.: required the density in grains per cu. in. Here m, the number of grains in a pd., = 7000; l, the number of in. in a ft., = 12; $ml^{-3} = 7000/12^3 = 4.051$. The density is $150 \times 4.051 = 607.6$ grains/cu. in.

The specific gravity of a body is the ratio of a density to the density of a standard substance. The dimensional formula and conversion factor are both unity.

¹ Philos. Mag., (4) 41, p. 107, 1871. See also Robertson, Dimensional analysis, Gen. Elec.. Rev., 33, 207, 1930.

Velocity, v, of a body is dL/dt, or the ratio of a length to a time. The dimensional formula is $[LT^{-1}]$.

Angle is measured by the ratio of the length of an arc to its radius. The dimensional formula is unity.

Angular Velocity is the ratio of the angle described in a given time to that time. The dimensional formula is $[T^{-1}]$.

Linear Acceleration is the rate of change of velocity or a = dv/dt. The dimensional formula is $[VT^{-1}]$ or $[LT^{-2}]$.

Ex.— A body acquires velocity at a uniform rate and at the end of one minute moves at the rate of 20 kilometers per hour: what is the acceleration in centimeters per second per second? Since the velocity gained was 20 km per hour in one minute, the acceleration was 1200 km per hour per hour. l = 100000, t = 3600, $lt^{-2} = 100000/3600^2 = 0.00771$; the acceleration = .00771 × 1200 = 9.26 cm/sec.

Angular Acceleration is rate of change of angular velocity. The dimensional formula is [(angular velocity)/T] or $[T^{-2}]$.

Momentum, the quantity of motion in the Newtonian sense, is measured by the product of the mass and velocity of the body. The dimensional formula is [MV] or $[MLT^{-1}]$.

Moment of Momentum of a body with reference to a point is the product of its momentum by the distance of its line of motion from the point. The dimensional formula is $[ML^2T^{-1}]$.

Moment of Inertia of a body round an axis is expressed by the formula $\sum mr^2$, where m is the mass of any particle of the body and r its distance from the axis. The dimensional formula for the sum is the same as for each element and is $[ML^2]$.

Angular Momentum of a body is the product of its moment of inertia and angular velocity. The dimensional formula is $[ML^2T^{-1}]$.

Force is measured by the rate of change of momentum it can produce. The dimensional formulae for force and "time rate of change of momentum" are therefore the same, the ratio of a momentum to a time $[MLT^{-2}]$.

Ex. — When mass is expressed in lbs., length in ft., and time in secs., the unit force is called the poundal. When grams, cms, and secs. are the corresponding units, the unit of force is called the dyne. Find the number of dynes in 25 poundals. Here m=453.59, l=30.48, t=1; $mlt^{-2}=453.59\times30.48=13825$ nearly. The number of dynes is $13825\times25=345625$ approximately.

Moment of Couple, Torque, or Twisting Motive can be expressed as the product of a force and a length. The dimensional formula is [FL] or $[ML^2T^{-2}]$.

Intensity of Stress is the ratio of the total stress to the area over which the stress is distributed. The dimensional formula is $[FL^{-2}]$ or $[ML^{-1}T^{-2}]$.

Intensity of Attraction, or "Force at a Point," is the force of attraction per unit mass on a body placed at the point. The dimensional formula is $[FM^{-1}]$ or $[LT^{-2}]$, the same as acceleration.

Absolute Force of a Center of Attraction, or "Strength of a Center," is the intensity of force at unit distance from the center, and is the force per unit mass at any point multiplied by the square of the distance from the center. The dimensional formula is $[FL^2M^{-1}]$ or $[L^3T^{-2}]$.

Modulus of Elasticity is the ratio of stress intensity to percentage strain. The dimensional of percentage strain, a length divided by a length, is unity. Hence the dimensional formula of a modulus of elasticity is that of stress intensity $[ML^{-1}T^{-2}]$.

Work is done by a force when the point of application of the force, acting on a body, moves in the direction of the force. It is measured by the product of the force and the displacement. The dimensional formula is [FL] or $[ML^2T^{-2}]$.

Energy. — The work done by the force produces either a change in the velocity of the body or a change of its shape or configuration, or both. In the first case it produces a change of kinetic energy, in the second, of potential energy. The dimensional formulae of energy and work, representing quantities of the same kind, are identical $[ML^2T^{-2}]$.

Resilience is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimensional formula is $[ML^2T^{-2}L^{-3}]$ or $[ML^{-1}T^{-2}]$.

Power or Activity is the time rate of doing work, or if W represents work and P power, P = dw/dt. The dimensional formula is $[WT^{-1}]$ or $[ML^2T^{-3}]$, or for problems in gravitation units more conveniently $[FLT^{-1}]$, where F stands for the force factor.

Exs. — Find the number of gram-cms in one ft.-pd. Here the units of force are the attraction of the earth on the pound and the gram of matter. (In problems like this the terms "grams" and "pd." refer to force and not to mass.) The conversion factor is [f], where f is 453.59 and ι is 30.48. The answer is $453.59 \times 30.48 = 13825$.

Find the number of ft.-poundals in 1000000 cm-dynes. Here m = 1/453.59, l = 1/30.48,

t = 1; $ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.

If gravity produces an acceleration of 32.2 ft./sec./sec., how many watts are required to make one horsepower? One horsepower is 550 ft.-pds. per sec., or $550 \times 32.2 = 17710$ ft.-poundals per second. One watt is 10^7 ergs per sec., that is, 10^7 dyne-cms per sec. The conversion factor is $[ml^2l^{-3}]$, where m is 453.59, l is 30.48, and l is 1, and the result has to be divided by 10^7 , the number of dyne-cms per sec. in the watt. $17710 \ ml^2l^{-3}/10^7 = 17710 \times 453.59 \times 30.48^2/10^7 = 746.3$.

HEAT UNITS

Quantity of Heat, measured in dynamical units, has the same dimensions as energy $[ML^2T^{-2}]$. Ordinary measurements, however, are made in *thermal units*, that is, in terms of the amount of heat required to raise the temperature of a unit mass of water one degree of temperature at some stated temperature. This involves the unit of mass and some unit of temperature. If we denote temperature numbers by θ , the dimensional formula for quantity of heat, H, will be $[M\theta]$. Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being called *thermometric units*. The dimensional formula now changed by the substitution of volume for mass is $[L^3\theta]$.

Specific Heat is the relative amount of heat, compared with water as standard substance, required to raise unit mass of different substances one degree in temperature and is a simple number.

Coefficient of Thermal Expansion of a substance is the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature. These ratios are simple numbers, and the change of temperature varies inversely as the magnitude of the unit of temperature. The dimensional formula is $[\Theta^{-1}]$.

Thermal Conductivity, or Specific Conductance, is the quantity of heat, H, transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore $K = H/L^2T\Theta/L$, and the dimensional formula $[H/\Theta LT] = [ML^{-1}T^{-1}]$ in thermal units. In thermometric units the formula becomes $[L^2T^{-1}]$, which properly represents diffusivity, and in dynamical units $[MLT^{-3}\Theta^{-1}]$.

Thermal Capacity is mass times the specific heat. The dimensional formula is [M].

Latent Heat is the quantity of heat required to change the state of a body divided by the quantity of matter. The dimensional formula is $[M\Theta/M]$ or $[\Theta]$; in dynamical units it is $[L^2T^{-2}]$.

Note. — When Θ is given the dimensional formula $[L^2T^{-2}]$, the formulae in thermal and dynamical units are identical.

Joule's Equivalent, J, is connected with the quantity of heat by the equation $ML^2T^{-2} = JH$ or $JM\Theta$. The dimensional formula of J is $[L^2T^{-2}\Theta^{-1}]$. In dynamical units J is a simple number.

Entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is $[M\Theta/\Theta]$ or [M]. In dynamical units the formula is $[ML^2T^{-2}\Theta^{-1}]$.

Exs. — Find the relation between the British thermal unit, the large or kilogram-calorie and the small or gram-calorie, sometimes called the "therm." Referring all the units to the same temperature of the standard substance, the *British thermal unit* is the amount of heat required to warm one pound of water 1° F., the *large calorie*, 1° kilogram of water, 1° C, the *small calorie* or *therm*, 1° gram, 1° C. (1) To find the number of kg-cals. in one British thermal unit. m = .45359, $\theta = .45359 \times 5/9 = .25199$. (2) To find the number therms in one kg-cal. m = 1000, and $\theta = 1$; $m\theta = 1000$. (3) Hence the number of small calories or therms in one British thermal unit is $1000 \times .25199 = 251.99$.

ELECTRIC AND MAGNETIC UNITS

A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolute systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third in common use called the "international" system.

In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

 $F = \frac{QQ'}{Kr^2},$

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q' are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is $[MLT^{-2}]$, that for Q is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$.

The electromagnetic system is based upon the unit of the magnetic pole strength. The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$F=\frac{mm'}{\mu r^2},$$

in which μ is the permeability of the medium and r is the distance between two poles having the strengths m and m'. μ is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

The symbols K and μ are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and μ are connected by the equation $1/\sqrt{K\mu} = v$, where v is the velocity of an electromagnetic wave. For empty space or for air, K and μ being measured in the same units, $1/\sqrt{K\mu} = c$, where c is the velocity of light in vacuo, 3×10^{10} cm per sec. It is sometimes forgotten that the omission of the dimensions of K or μ is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when μ is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of μ has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

ELECTROSTATIC SYSTEM

Quantity of Electricity has the dimensional formula $[M^{\frac{1}{2}}L^{\frac{n}{2}}T^{-1}K^{\frac{1}{2}}]$, as shown above.

Electric Surface Density of an electrical distribution at any point on a surface is measured by the quantity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$.

Electric Field Intensity is measured by the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or $[MLT^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$.

Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$.

Capacity of an Insulated Conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]T^{-1}K^{-\frac{1}{2}}$ or [LK].

Specific Inductive Capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Electric Current is quantity of electricity flowing past a point per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/T]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}]$.

Electrical Conductivity, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/L^{2}(M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}/L)T]$ or $[T^{-1}K]$.

Resistivity is the reciprocal of conductivity. The dimensional formula is $[TK^{-1}]$.

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$ or $[LT^{-1}K]$.

Resistance is the reciprocal of conductance. The dimensional formula is $[L^{-1}TK^{-1}]$.

Exs. — Find the factor for converting quantity of electricity expressed in ft.-grain-sec. units to the same expressed in c.g.s. units. The formula is $[m^{\frac{1}{2}}l^{2}t^{-1}k^{\frac{1}{2}}]$, in which m=0.0648, l=30.48, l=1, k=1; the factor is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{3}{2}}$, or 42.8.

Find the factor required to convert electric potential from mm-mg-sec. units to c.g.s. units. The formula is $\lfloor m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}\rfloor$, in which m=0.001, l=0.1, t=1, k=1; the factor is $0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}}$, or 0.01.

Find the factor required to convert electrostatic capacity from ft.-grain-sec. and specific-inductive capacity 6 units to c.g.s. units. The formula is [lk] in which l = 30.48, k = 6; the factor is 30.48×6 , or 182.88.

ELECTROMAGNETIC SYSTEM

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability μ for K.

Magnetic Pole Strength or Quantity of Magnetism has already been shown to have the dimensional formula $\lceil M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}\rceil$.

Magnetic Flux characterizes the magnetized state of a magnetic circuit. Through a surface inclosing a magnetic pole it is proportional to the magnetic pole strength. The dimensional formula is that for magnetic pole strength.

Magnetic Field Intensity or Magnetizing Force is the ratio of the force on a magnetic pole placed at the point and the magnetic pole strength. The dimensional formula is therefore the ratio of the formulae for a force and magnetic quantity, or $[MLT^{-2}/M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Magnetic Potential or Magnetomotive Force at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is the ratio of the formulae for work and magnetic quantity, $[ML^2T^{-2}/M^{\frac{1}{2}}L^2T^{-1}\mu^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Magnetic Moment is the product of the pole strength by the length of the magnet. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{n}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Intensity of Magnetization of any portion of a magnetized body is the ratio of the magnetic moment of that portion and its volume. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{n}{2}}T^{-1}\mu^{\frac{1}{2}}/L^3]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic Induction is the magnetic flux per unit of area taken perpendicular to the direction of the magnetic flux. The dimensional formula is $[M^{\frac{1}{2}}L^{2}T^{-1}\mu^{\frac{1}{2}}/L^{2}]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic Susceptibility is the ratio of intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}/M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[\mu]$.

Current, I, flowing in circle, radius r, creates magnetic field at its center, $2\pi I/r$. Dimensional formula is product of formulae for magnetic field intensity and length or $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Quantity of Electricity is the product of the current and time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$.

Electric Potential, or Electromotive Force, as in the electrostatic system, is the ratio of work to quantity of electricity. The dimensional formula is $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$.

Electrostatic Capacity is the ratio of quantity of electricity to difference of potential. The dimensional formula is $[L^{-1}T^2\mu^{-1}]$.

Resistance of a Conductor is the ratio of the difference of potential between its ends and the constant current flowing. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{n}{2}}T^{-2}\mu^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[LT^{-1}\mu]$.

Conductance is the reciprocal of resistance, and the dimensional formula is $[L^{-1}T\mu^{-1}]$.

Conductivity is the quantity of electricity transmitted per unit area per unit potential gradient per unit of time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}\mu^{-\frac{1}{2}}/L^2(M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}/L)$ T or $[L^{-2}T\mu^{-1}]$.

Resistivity is the reciprocal of conductivity as just defined. The dimensional formula is $\lfloor L^2T^{-1}\mu \rfloor$.

Self-inductance is for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is the product of the formulae for electromotive force and time divided by that for current or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}} \times T \div M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[L\mu]$.

Mutual Inductance of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula is the same as for self-inductance.

Electric Field Intensity is the ratio of electric potential or electromotive force and length. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}\mu^{\frac{1}{2}}]$.

Magnetic Reluctance is the ratio of magnetic potential difference to magnetic flux. The dimensional formula is $[L^{-1}\mu^{-1}]$.

Thermoelectric Power is measured by the ratio of electromotive force and temperature. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}\Theta^{-1}]$.

Coefficient of Peltier Effect is measured by the ratio of the quantity of heat and quantity of electricity. The dimensional formula is $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$, the same as for electromotive force.

Exs. — Find the factor required to convert intensity of magnetic field from ft.-grain-min. units to e.g.s. units. The formula is $[m^{\frac{1}{2}}l^{-1}\mu^{-\frac{1}{2}}]$; m = 0.0648, l = 30.48, t = 60, and $\mu = 1$; the factor is $0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}}$, or 0.046108.

How many c.g.s. units of magnetic moment make one ft.-grain-sec. unit of the same quantity? The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-\frac{1}{2}}]$; m = 0.0648, l = 30.48, t = 1, and $\mu = 1$; the number is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{1}{2}}$, or 1305.6.

If the intensity of magnetization of a steel bar is 700 in c.g.s. units, what will it be in mmmg-sec. units? The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}\mu^{\frac{1}{2}}]$; m = 1000, l = 10, t = 1, $\mu = 1$; the intensity is $700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}}$, or 70000.

Find the factor required to convert current from c.g.s. units to earth-quadrant- 10^{-11} gramsec. units. The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-1}\mu^{-\frac{1}{2}}]$; $m=10^{11}$, $l=10^{-9}$, $\mu=1$; the factor is $10^{\frac{1}{2}}\times10^{-\frac{9}{5}}$, or 10.

Find the factor required to convert resistance expressed in e.g.s. units into the same expressed in earth-quadrant-10⁻¹¹ gram-sec. units. The formula is $[lt^{-1}\mu]$; $l = 10^{-9}$, t = 1, $\mu = 1$; the factor is 10^{-9} .

FUNDAMENTAL STANDARDS

The choice of the nature of the fundamental quantities already made does not sufficiently define the system for measurements. Some definite unit or arbitrarily chosen standard must next be taken for each of the fundamental quantities. This fundamental standard should have the qualities of permanence, reproducibility and availability and be suitable for accurate measures. Once chosen and made it is called the primary standard and is generally kept at some central bureau, — for instance, the International Bureau of Weights and Measures at Sèvres, France. A primary standard may also be chosen and made for derived units (e.g., the international ohm standard), when it is simply a standard closely representing the unit and accepted for practical purposes, its value having been fixed by certain measuring processes. Secondary or refer-

ence standards are accurately compared copies, not necessarily duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of Length. — The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at o° C on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of Mass. — The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C.

Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes.

Standard of Time.— The unit of time universally used is the mean solar second, or the 86400th part of the mean solar day. It is based on the average time of one rotation of the earth on its axis relatively to the sun as a point of reference = 1.002 737 91 sidereal second.

Standard of Temperature. — The standard scale of temperature as adopted by the International Committee of Weights and Measures (1887) depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at o' C of one meter of mercury, o' C, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as o' and of condensing steam as 100° under standard atmospheric pressure. This is known as the Centigrade scale (abbreviated C).

A scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. In it the temperature is proportional to the average kinetic energy per molecule of a perfect gas. The temperature of melting ice is taken as 273.18°, that of the boiling point, 373.18°. The scale of the hydrogen thermometer varies from it only in the sense that the behavior of hydrogen departs from that of a perfect gas. It is customary to refer to this scale as the Kelvin scale (abbreviated K.)

NUMERICALLY DIFFERENT SYSTEMS OF UNITS

The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron (μ) or one-millionth of a meter is often used. The following table ¹ gives some of the systems proposed, all built upon the fundamental standards already described. The centimeter-gram-second (cm-g-sec. or c.g.s.) system proposed by Kelvin is the only one generally accepted.

TABLE I.
PROPOSED SYSTEMS OF UNITS.

	Weber and Gauss	Kelvin c.g.s.	Moon 1891	Giorgi MKS (Prim. Stds.)	France 1914	B. A. Com., 1863	Practical (B. A. Com., 1873)	Strout 1891
Length	mm	cm	dm	m	m	m	10 ⁹ cm	10 ⁹ cm
Mass	mg	g	Kg	Kg	10 ⁶ g	g	10 ⁻¹¹ g	10 ⁻⁹ g
Time	sec.	sec.	sec.	sec.	sec.	sec.	sec.	sec.

Further the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships $F = QQ'/Kr^2$ and $mm'/\mu r^2$, respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (1) the units chosen for the fundamental quantities may be different; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way, — for instance using the foot, grain and second in place of the centimeter, gram and second. A system differing from it in the second way is that of Heaviside which introduces the factor 4π at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian Systems. — "The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units.

¹ Circular 60 of the Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular.

"Some writers ¹ on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue, — one a combination of c.g.s. electrostatic and c.g.s electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.

"When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system."

It may be observed from the dimensions of K given in Table 1 that $\lceil 1/K\mu \rceil = \lceil L^2/T^2 \rceil$ which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and μ were expressed in the same system of units. Maxwell proved theoretically that $1/\sqrt{K\mu}$ is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes $c/\sqrt{K\mu} = v$. For the ether K = I in electrostatic units and $\mu = I$ in electromagnetic units. Hence c = v for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the c.g.s. electromagnetic to the c.g.s. electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is 2.9979×10^{10} centimeters per second.

"Practical" Electromagnetic System. — This electromagnetic system is based upon the units of 10^9 cm, 10^{-11} gram, the sec. and μ of the ether. It is never used as a complete system of units but is of interest as the historical basis of the present International System. The principal quantities are the resistance unit, the ohm = 10^9 c.g.s. units; the current unit, the ampere = 10^{-1} c.g.s. units; and the electromotive force unit, the volt = 10^8 c.g.s. units.

The International Electric Units. — The units used in practical measurements, however, are the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units are based upon certain concrete standards presently to be defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system.

¹ For example, A. G. Webster, "Theory of Electricity and Magnetism," 1897; J. H. Jeans, "Electricity and Magnetism," 1911; H. A. Lorentz, "The Theory of Electrons," 1909; and O. W. Richardson, "The Electron Theory of Matter," 1914.

This system of units, sufficiently near to the "absolute" system for the purpose of electrical measurements and as a basis for legislation, was defined as follows:

- "1. The *International Ohm* is the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice, 14.4521 grams in mass, of a constant cross-sectional area and of a length of 106.300 centimeters.
- "2. The *International Ampere* is the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with specification II attached to these Resolutions, deposits silver at the rate of 0.00111800 of a gram per second.
- "3. The *International Volt* is the electrical pressure which, when steadily applied to a conductor the resistance of which is one international ohm will produce a current of one international ampere.
- "4. The *International Watt* is the energy expended per second by an unvarying electric current of one international ampere under the pressure of one international volt."

In accordance with these definitions, a value was established for the electromotive force of the recognized standard of electromotive force, the Weston normal cell, as the result of international coöperative experiments in 1910. The value was 1.0183 international volts at 20° C.

The definitions by the 1908 International Conference supersede certain definitions adopted by the International Electrical Congress at Chicago in 1893. Certain of the units retain their Chicago definitions, however. They are as follows:

- "Coulomb. As a unit of quantity, the *International Coulomb*, which is the quantity of electricity transferred by a current of one international ampere in one second.
- "Farad. As a unit of capacity, the International Farad, which is the capacity of a condenser, charged to be a potential of one international volt by one international coulomb of electricity.
- "Joule. As a unit of work, the Joule, which is equal to ro⁷ units of work in the c.g.s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.
- "Henry. As the unit of induction, the Henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."

"The choice of the ohm and ampere as fundamental was purely arbitrary. These are the two quantities directly measured in absolute electrical measurements. The ohm and volt have been urged as more suitable for definition in terms of arbitrary standards, because the primary standard of electromotive force (standard cell) has greater simplicity than the primary standard of current (silver voltameter). The standard cell is in fact used, together with resistance standards, for the actual maintenance of the units, rather than the silver voltameter and resistance standards. Again, the volt and ampere have some claim

for consideration for fundamental definition, both being units of quantities more fundamental in electrical theory than resistance."

For all practical purposes the "international" and the "practical" or "absolute" units are the same. Experimental determination of the ratios of the corresponding units in the two systems have been made and the mean results are given in Table 463. These ratios represent the accuracy with which it was possible to fix the values of the international ohm and ampere at the time they were defined (London Conference of 1908). It is unlikely that the definitions of the international units will be changed in the near future to make the agreement any closer. An act approved July 12, 1894, makes the International units as above defined the legal units in the United States of America.

THE STANDARDS OF THE INTERNATIONAL ELECTRICAL UNITS

RESISTANCE

The definition of the international ohm adopted by the London Conference in 1908 is accepted practically everywhere.

Mercury Standards. — Mercury standards conforming to the definition were constructed in England, France, Germany, Japan, Russia and the United States. Their mean resistances agree to about two parts in 100,000. To attain this accuracy, elaborate and painstaking experiments were necessary. Tubes are never quite uniform in cross-section; the accurate measurement of the mass of mercury filling the tube is difficult, partly because of a surface film on the walls of the tube; the greatest refinements are necessary in determining the length of the tube. In the electrical comparison of the resistance with wire standards, the largest source of error is in the filling of the tube. These and other sources of error necessitated a certain uniformity in the setting up of mercury standards and at the London Conference the following specifications were drawn up:

SPECIFICATION RELATING TO MERCURY STANDARDS OF RESISTANCE

The glass tubes used for mercury standards of resistance must be made of a glass such that the dimensions may remain as constant as possible. The tubes must be well annealed and straight. The bore must be as nearly as possible uniform and circular, and the area of cross-section of the bore must be approximately one square millimeter. The mercury must have a resistance of approximately one ohm.

Each of the tubes must be accurately calibrated. The correction to be applied to allow for the area of the cross-section of the bore not being exactly the same at all parts of the tube must not exceed 5 parts in 10,000.

The mercury filling the tube must be considered as bounded by plane surfaces placed in contact with the ends of the tube.

The length of the axis of the tube, the mass of mercury the tube contains, and the electrical resistance of the mercury are to be determined at a temperature as near to o° C as possible. The measurements are to be corrected to o° C.

For the purpose of the electrical measurements, end vessels carrying connections for the current and potential terminals are to be fitted on to the tube. These end vessels are to be spherical in shape (of a diameter of approximately four centimeters) and should have cylindrical pieces attached to make connections with the tubes. The outside edge of each end of the tube

is to be coincident with the inner surface of the corresponding end vessel. The leads which make contact with the mercury are to be of thin platinum wire fused into glass. The point of entry of the current lead and the end of the tube are to be at opposite ends of a diameter of the bulb; the potential lead is to be midway between these two points. All the leads must be so thin that no error in the resistance is introduced through conduction of heat to the mercury. The filling of the tube with mercury for the purpose of the resistance measurements must be carried out under the same conditions as the filling for the determination of the mass.

The resistance which has to be added to the resistance of the tube to allow for the effect of the end vessels is to be calculated by the formula

$$A = \frac{0.80}{1063\pi} \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \text{ ohm,}$$

where r_1 and r_2 are the radii in millimeters of the end sections of the bore of the tube.

The mean of the calculated resistances of at least five tubes shall be taken to determine the value of the unit of resistance.

For the purpose of the comparison of resistances with a mercury tube the measurements shall be made with at least three separate fillings of the tube.

Secondary Standards. — Secondary standards, derived from the mercury standards and used to give values to working standards, are certain coils of manganin wire kept in the national laboratories. Their resistances are adjusted to correspond to the unit or its decimal multiples or submultiples. The values assigned to these coils are checked from time to time with the similar coils of the other countries. The value now in use is based on the comparison made at the U. S. Bureau of Standards in 1910 and may be called the "1910 ohm." Later measurements on various mercury standards checked the value then used within 2 parts in 100,000. Thus the basis of resistance measurement is maintained not by the mercury standards of a single laboratory, but by all the mercury standards of the various national laboratories; it is furthermore the same in all countries, except for very slight outstanding discrepancies due to the errors of measurement and variations of the standards with time.

Resistance Standards in Practice. — In ordinary measurements, working standards of resistance are usually coils of manganin wire (approximately 84 per cent Cu + 12 per cent Mn + 4 per cent Ni). They are generally used in oil which carries away the heat developed by the current and facilitates regulation and measurement of the temperature. The best type is inclosed in a sealed case for protection against atmospheric humidity. Varying humidity changes the resistance of open coils often to several parts in 10,000 higher in summer than in winter. While sealed 1 ohm and 0.1 ohm coils may remain constant to about 1 part in 100,000.

Absolute Ohm. — The absolute measurement of resistance involves the precise determination of a length and a time (usually an angular velocity) in a medium of unit permeability. Since the dimensional formula of resistance in the electromagnetic system is $\lfloor L\mu/T \rfloor$, such an absolute measurement gives R not in cm/sec. but in cm \times μ /sec. The definitions of the ohm, ampere and volt by the 1908 London conference tacitly assume a permeability equal to unity. The relation of the international ohm to the absolute ohm has been measured in different ways involving revolving coil, revolving disk, and alter-

nate current methods. Probably the most accurate value is that given by Birge (see p. 77).

I international ohm = 1.00051 ± 0.00002 absolute ohms,

or, in other words, while one international ohm is represented by a mercury column 106.300 cm long as specified above, one absolute ohm requires a similar column 106.246 cm long.

CURRENT

The Silver Voltameter. — The silver voltameter is a concrete means of measuring current in accordance with the definition of the international ampere. As used for the realization of the international ampere "it consists of a platinum cathode in the form of a cup holding the silver nitrate solution, a silver anode partly or wholly immersed in the solution, and some means to prevent anode slime and particles of silver mechanically detached from the anode from reaching the cathode. As a standard representing the international ampere, the silver voltameter includes also the chronometer used to measure time. The degree of purity and the mode of preparation of the various parts of the voltameter affect the mass of the deposit. There are numerous sources of error, and the suitability of the silver voltameter as a primary standard of current has been under investigation since 1803. Differences of as much as 0.1 per cent or more may be obtained by different procedures, the larger differences being mainly due to impurities produced in the electrolyte (by filter paper, for instance). Hence, in order that the definition of current be precise, it must be accompanied by specifications for using the voltameter."

The original specifications were recognized to be inadequate and an international committee on electrical units and standards was appointed to complete the specifications. It was also recognized that in practice standard cells would replace secondary current standards so that a value must be fixed for the electromotive force of the Weston normal cell. This was attempted in 1910 at the Bureau of Standards by representatives of that institution together with one delegate each from the Physikalische-Technische Reichsanstalt, The National Physical Laboratory and the Laboratoire Central d'Electricité. Voltameters from all four institutions were put in series under a variety of experimental conditions. Standard Weston cells and resistance standards of the four laboratories were also intercompared. From the joint comparison of standard cells and silver voltameters particular values were assigned to the standard cells from each laboratory. The different countries thus have a common basis of measurement maintained by the aid of standard cells and resistance standards derived from the international voltameter investigation of 1910.

It was not found possible to draw up satisfactory and final specifications for the silver voltameter. Provisional specifications were submitted by the U. S. Bureau of Standards and more complete specifications have been proposed in correspondence between the national laboratories and members of the international committee since 1910, but no agreement upon final specifications has yet been reached.

Resistance Standards Used in Current Measurements. — Precise measurements of currents require a potentiometer, a standard cell and a resistance standard. The resistance must be so designed as to carry the maximum current without undue heating and consequent change of resistance. Accordingly the resistance metal must have a small temperature resistance coefficient and a sufficient area in contact with the air, oil, or other cooling fluid. It must have a small thermal electromotive force against copper. Manganin satisfies these conditions and is usually used. The terminals of the standard must have sufficient contact area so that there shall be no undue heating at contacts.¹ It must be so designed that the current distribution does not depend upon the mode of connection to the circuit.

Absolute Ampere. — The absolute ampere (10⁻¹c.g.s. electromagnetic units) differs by a negligible amount from the international ampere. Since the dimensional formula of the current in the electromagnetic system is $[L^{\frac{1}{2}}M^{\frac{1}{2}}/T\mu^{\frac{1}{2}}]$ which is equivalent to $[F^{\frac{1}{2}}/\mu^{\frac{1}{2}}]$, the absolute measurement of current involves fundamentally the measurement of a force in a medium of unit permeability. In most measurements of high precision an electrodynamometer has been used of the form known as a current balance.

The best value may be taken as (Birge, 1930)

1 international ampere=0.99995±0.00005 absolute ampere.

The result may also be expressed in terms of the electrochemical equivalent of silver, and thus equals 0.00111805 g per absolute coulomb. The value is 0.00111800 g per international coulomb.

ELECTROMOTIVE FORCE

International Volt. — "The international volt is derived from the international ohm and ampere by Ohm's law. Its value is maintained by the aid of the Weston normal cell. The national standardizing laboratories have groups of such cells, to which values in terms of the international ohm and ampere have been assigned by international experiments, and thus form a basis of reference for the standardization of the standard cells used in practical measurements."

Weston Normal Cell. — The Weston normal cell is the standard used to maintain the international volt and, in conjunction with resistance standards, to maintain the international ampere. The cell is a simple voltaic combination

¹ See "Report to the International Committee on Electrical Units and Standards," 1912, p 199. For the Bureau of Standards investigations see Bull. Bureau of Standards, 9, pp. 209, 493; 10, p. 475, 1912-14; 13, p. 147, 1915; 9, p. 151, 1912; 13, pp. 447, 479, 1916. having its anode or negative electrode of cadmium amalgam, consisting of 10 per cent by weight of cadmium and 90 per cent mercury. The cathode, or positive electrode, is pure mercury covered with a paste consisting of mercurous sulphate, cadmium-sulphate crystals, and solution. The electrolyte is cadmium-sulphate solution in contact with an excess of cadmium-sulphate crystals. The containing vessel is of glass, usually in the H form. Connection is made to the electrodes by platinum wires sealed into the glass. The cells are sealed, preferably hermetically, and in use are submerged in a constant-temperature oil bath. The resistance of a cell is about 600 to 1000 ohms. The Weston cell used with potentiometers is not the Weston normal cell, but differs from it only slightly, the cadmium-sulphate solution not being saturated. It is described in the next section below.

One of the great advantages of the Weston normal cell is its small change of electromotive force with change of temperature. At any temperature, t (centigrade), between 0° and 40° , $E_{t} = E_{20} - 0.0000406 (t - 20) - 0.0000095 (t - 20)^{2} + 0.0000001 (t - 20)^{3}$. This temperature formula was adopted by the London conference of 1908. That this formula may apply, the cell must be of a strictly uniform temperature throughout. One leg of the cell has a large positive and the other leg a large negative temperature coefficient. If the temperature of one leg changes faster than the other, the formula does not hold.

When the best of care is taken as to purity of materials and mode of procedure, Weston normal cells are reproducible within 1 part in 100,000. The source of the greatest variations has probably been in the mercurous sulphate. Cells using the best samples of this material have an electromotive force the constancy of which over a period of one year is about 1 part in 100,000. Only very meager specifications for the cell have as yet been agreed upon internationally, however, and the procedures in various laboratories differ in some respects.

The basis of measurements of electromotive force is the same in all countries as the result of the joint international experiments of 1910. As already stated, a large number of observations were made at that time with the silver voltameter, and a considerable number of Weston normal cells from the national laboratories of England, France, Germany and the United States were compared. From the results of these voltameter experiments and from resistance measurements, the value

1.0183 international volts at 20° C

was assigned to the Weston normal cell. A mean of the groups of cells from the four laboratories was taken as most accurately representing the Weston normal

¹ For the preliminary specifications which have been issued and the reports of the various investigations on the standard cells see the following references: Preliminary specifications, Wolff and Waters, Bull. B. of S. 3, p. 623, 1907; Clark and Weston Standard Cells, Wolff and Waters, ditto, 4, p. 1, 1907; Temperature formula of Weston Standard Cell, ditto, 5, p. 309, 1908; The materials, reproducibility, etc., of the Weston Cell, Helett, Phys. Rev. 22, p. 321, 1906; 23, p. 166, 1906; 27, pp. 33, 337, 1908; Mercurous sulphate, etc., Steinwehr, Zs. für Electroch. 12, p. 578, 1906; German value of cell, Jaeger and Steinwehr, ditto, 28, p. 367, 1908; National Physical Laboratory researches, Smith, Phil. Trans. 207, p. 393, 1908; On the Weston Cell, Haga and Boerema, Arch. Neerland, des Sci. Exactes, 3, p. 324, 1913.

cell. Each laboratory has means of preserving the unit. Any discrepancies between the bases of the different countries at the present time would be due only to possible variations in the reference cells of the national laboratories. Such discrepancies are probably less than 2 parts in 100,000.

The figure 1.0183 has been in use since January 1, 1911. The value used in the United States before 1911, 1.019126 at 20° C or 1.0189 at 25° C, was assigned to a certain group of cells maintained as the standard of electromotive force at the Bureau of Standards. The high value is partly due to the use of commercial mercurous sulphate in the cells. The old and the new values, 1.01926 and 1.0183, thus apply to different groups of cells. The group of cells to which the value 1.019126 was assigned before 1910 differed by 26 microvolts from the mean of the international group, such that the international group to which the value 1.0183 is now assigned had the value 1.019126 + 0.000026, or 1.019152, in terms of the old United States basis. The difference between 1.019152 and 1.0183 is 0.000852.

The electromotive force of any Weston cell as now given is therefore 0.000852 volt smaller than on the old United States basis, i.e., the present international volt is 84 parts in 100,000 larger than the old international volt of the United States.

Upon the new international basis the Clark cell set up according to the old United States legal specifications has an e.m.f of 1.43280 international volts at 15° C. The Clark cell set up (with specially purified mercurous sulphate) according to improved specifications used at the Bureau of Standards has an e.m.f of 1.43250 international volts at 15° C or 1.42637 at 20° C.

Weston Portable Cell. — The standard cell used in practice is the Weston portable cell. It is like the Weston normal cell except that the cadmium-sulphate solution at ordinary temperatures is unsaturated. As usually made, the cadmium-sulphate solution is saturated at about 4°C; at higher temperatures the crystals are dissolved. Plugs of asbestos or other material hold the chemicals in place. Its resistance is usually about 200 to 311 ohms. The change of e.m.f., wholly negligible in most electrical measurements, is less than 0.00001 volt per degree C. The two legs of the cell have large and opposite temperature coefficients so that care must be taken that the temperature of the cell is kept uniform and the cell must be protected from draughts or large changes of temperature. The electromotive force of a portable cell ranges from 1.0181 to 1.0191 international volts and must be determined by comparison with standards. It decreases very slightly with time, usually less than 0.0001 volt per year.

Absolute and Semi-absolute Volt. — Since the direct determination of the volt in absolute measure presents great difficulties, it is derived by Ohm's law from the absolute measures of the ohm and ampere. From the absolute values of these,

I international volt= 1.00046 ± 0.00005 absolute volts.

The electromotive force of the Weston normal cell at 20° C is 1.01830 international volts and 1.01877 absolute volts. A semi-absolute volt is that potential

difference which exists between the terminals of a resistance of one *international* ohm when the latter carries a current of one *absolute* ampere. The e.m.f of the Weston normal cell may be taken as 1.01821 semi-absolute volts at 20° C.

QUANTITY OF ELECTRICITY

The international unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96494 international coulombs=96489 absolute coulombs (Birge).

Standards. — There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

CAPACITY

The unit generally used for capacity is the international microfarad or the one-millionth of the international farad. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically air condenser plates must be separated by 1 mm or more and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards with different methods of measurement must be carefully determined.

INDUCTANCE

The henry, the unit of self-inductance, is also the unit of mutual inductance. The henry has been known as the "quadrant" and the "secohm." The length of a quadrant or quarter of the earth's circumference is approximately 109 cms. and a henry is 10^9 cms. of inductance. Secohm is a contraction of second and ohm; the dimensions of inductance are [TR] and this unit is based on the second and ohm.

Inductance Standards. — Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-

current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It usually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligible; otherwise the apparent inductance will vary with the frequency.

POWER AND ENERGY

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any other way. The watt and the electric units were so chosen in terms of the c.g.s. units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The international watt, defined as "the energy expended per second by an unvarying electric current of one international ampere under an electric pressure of one international volt," differs but little from the absolute watt.

Standards and Measurements. — No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

MAGNETIC UNITS

C.g.s. units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the c.g.s. unit of magnetomotive force is called the "gilbert," of reluctance, the "oersted," following the provisional definitions of the American Institute of Electrical Engineers (1894). The c.g.s. unit of flux is called the "maxwell" as defined by the 1900 Paris conference. The name "gauss" is used unfortunately both for the unit of induction (A.I.E.E. 1894) and for the unit of magnetic field intensity or magnetizing force. "This double usage, recently sanctioned by engineering societies, is based upon the mathematical convenience of defining both induction and magnetizing force

as the force on a unit magnetic pole in a narrow cavity in the material, the cavity being in one case perpendicular, in the other parallel, to the direction of the magnetization: this definition however applies only in the ordinary electromagnetic units. There are a number of reasons for considering induction and magnetizing force as two physically distinct quantities, just as electromotive force and current are physically different."

In the United States "gauss" has been used much more for the c.g.s. unit of induction than for the unit of magnetizing force. The longer name of "maxwell per cm²" is also sometimes used for this unit when it is desired to distinguish clearly between the two quantities. The c.g.s. unit of magnetizing force is usually called the "gilbert per cm."

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates 4π in certain calculations. It is derived from the "ampere turn per cm." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units.¹

TABLE II.

THE ORDINARY AND THE AMPERE-TURN MAGNETIC UNITS.

Quantity		Ordinary magnetic units.	Ampere-turn units.	Ordinary units in 1 ampere- turn unit	
Magnetomotive force	F	Gilbert	Ampere-turn	$4\pi/10$	
Magnetizing force	H	Gilbert per	Ampere-turn per	$4\pi/10$	
		cm	cm		
Magnetic flux	Φ	Maxwell	Maxwell	I	
Magnetic induction	В	∫ Maxwell per	∫ Maxwell per cm ²	I	
		cm ² Gauss	Gauss		
Permeability	μ			I	
Reluctance	R	Oersted	∫ Ampere-turn per	$4\pi/10$	
			Maxwell		
Magnetization intensity	J		Maxwell per cm ²	$1/4\pi$	
Magnetic susceptibility	К		•	$1/4\pi$	
Magnetic pole strength	m		Maxwell	$I/4\pi$	

¹ Dellinger, International System of Electric and Magnetic Units, Bull. Bureau of Standards, 13, p. 599, 1916.

PHYSICAL TABLES

2

TABLE 1 SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The period is omitted after the metric abbreviations but not after those of the customary system. The exponents "2" and "3" are used to signify area and volume respectively in the metric units. The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A. for acre, where the use of the capital letter is general. The following list is taken from circular 47 of the U. S. Bureau of Standards.

Unit.	Abbreviation.	Unit.	Abbreviation.	
acre	A	kilogram	kg	
	a	kiloliter	l ki	
are avoirdupois	av.	kilometer	km	
barrel	bbl.	link	li.	
board foot	bd. ft.	liquid	liq.	
bushel	bu. It.	liter	1	
carat, metric	C C	meter	m	
centare	ca	metric ton	t	
		micron	μ	
centigram	cg cl	mile	mi.	
centiliter	cm	milligram	mg '	
centimeter	ch.	milliliter	ml	
chain	cm ³	millimeter	mm	
cubic centimeter cubic decimeter	dm ³	millimicron	mμ	
cubic decimeter	dkm³	minim	min. or m	
	cu. ft.	ounce	OZ.	
cubic foot	hm³	ounce, apothecaries'	oz. ap. or 3	
cubic hectometer	cu. in.	ounce, avoirdupois	oz. ap. or o	
041010111011	km ³	ounce, fluid	fl. oz.	
cubic kilometer	m ³	ounce, troy	oz. t.	
cubic meter	cu. mi.	peck	pk.	
cubic mile	mm ³	pennyweight	dwt.	
cubic millimeter		pint	pt.	
cubic yard	cu. yd.	pound	lb.	
decigram	dg dl	pound, apothecaries'	lb. ap.	
deciliter	dm	pound, avoirdupois	lb. av.	
decimeter	ds		lb. t.	
decistere	dkg	pound, troy	qt.	
dekagram	dkl	quart rod	rd.	
dekaliter	dkm	scruple, apothecaries'	s. ap. or 9	
dekameter	dks	square centimeter	cm ²	
dekastere	dr.	square chain	sq. ch.	
dram	dr. ap. or 3	square decimeter	dm ²	
dram, apothecaries'	dr. ap. or 5	square dekameter	dkm²	
dram, avoirdupois	fl. dr.	square foot	sq. ft.	
dram, fluid fathom	fath.	square hectometer	hm²	
foot.	ft.	square inch	sq. in.	
firkin	fir.	square kilometer	km²	
furlong	fur.	square meter	m ²	
gallon	gal.	square mile	sq. mi.	
0	gr.	square millimeter	mm ²	
grain	1	square rod	sq. rd.	
gram hectare	g ha	square yard	sq. yd.	
	hg	stere	sq. yu.	
hectogram hectoliter	hl	ton	tn.	
hectometer	hm	ton, metric	t.	
	hhd.	troy	t.	
hogshead	cwt.	vard	yd.	
hundredweight inch	in.	yara	74.	
HICH	111.			

SMITHSONIAN TABLES.

FUNDAMENTAL AND DERIVED UNITS

Conversion Factors

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratios of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is lt^{-1} ; l = 5280/1, l = 3600/1, and the factor is 5280/3600 or 1.467. Or we may proceed as follows: e. g., to find the equivalent of 1 c.g.s. unit of angular momentum in the pd.ft.m unit, from the Table 1 g cm²/sec.=x lb. ft.²/min. where x is the factor sought. Solving, x=1g/lb. \times cm²/ft.² \times min./sec.=1 \times .002205 \times .001076 \times 60=.0001425.

The dimensional formulæ lack one quality which is needed for completeness, an indication of their vector characteristics; such characteristics distinguish plane and solid angle, torque and

energy, illumination and brightness.

(a) Fundamental Units

The fundamental units and conversion factors in the systems of units most commonly used are: Length [l]; Mass [m]; Time [l]; Temperature [l]; and for the electrostatic system, Dielectric Constant [k]; for the electromagnetic system, Permeability $[\mu]$. The formulae will also be given for the International System of electric and magnetic units based on the units length, resistance [r], current [i], and time.

(b) DERIVED UNITS

Name of unit.		onversi factor. [m²l½t²]		Name of units. (Heat and light.)		fa	version ctor. ·lut·θv]	
dynamical.)	x	У	z	(х	у	z	τ
Area, surface	0	2	0	Quantity of heat:				
Volume	0	3	0	thermal units	1	0	0	1
Angle	0	0	0	thermometric units.	0	3	0	ī
2330				dynamical units	I	2	-2	0
Solid angle	0	0	0					
Curvature	0	-1	0	Coefficient of thermal				
Angular velocity	0	0	-1	expansion	0	0	0	-1
T 1				TD1				
Linear velocity	0	1	-I -2	Thermal conductivity:	ī	-1	-1	
Angular acceleration	0	т	$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$	thermometric units	1	-1	-1	0
Linear acceleration		1	-2	or diffusivity	0	2	-1	
Density	1	-3		dynamical units	ī	1	-3	-1
Moment of inertia	ī	2	0	dy manifest and the second	1	1	3	_
Intensity of attraction	0	1	2	Thermal capacity	1	0	0	0
-								
Momentum	1	T	- I	Latent heat:				
Moment of momentum	1	2	- I	thermal units	0	0	0	1
Angular momentum	I	2	- I	dynamical units	0	2	-2	0
T.				T1-214				
Force Moment of couple,	1	I	-2	Joule's equivalent	0	2	-2	I
torque	1	2	-2	Entropy:				
Work, energy	I	2	-2	heat in thermal units	τ	0	0	
Work, chergy	1	-		heat in dynamical	1			
Power, activity	I	2	-3	units	I	2	-2	1
Intensity of stress	1	- ī	-2			ĺ		
Modulus of elasticity	I	- I	-2	Luminous intensity	0	0	0	1*
				Illumination	0	-2	0	1*
Compressibility		I	2	Brightness	0	-2	0	1*
Resilience	I	- I	-2	Visibility		-2	3	1*
Viscosity	1	-1	-1	Luminous efficiency	-1	-2	3	1 *
		1	<u> </u>					

^{*} For these formulæ the numbers in the last column are the exponents of F where F refers to the luminous flux For definitions of these quantities see Table 348, page 333.

FUNDAMENTAL AND DERIVED UNITS

Conversion Factors

(b) Derived Units

		_		_		_	_				_	_		
						Co	NVE	RSIO:	n Fac	CTOR.				
Name of Unit. (Electric and magnetic.)	Sym- bol.*		Electro			Ele		mag tem.	netic	emu	I		natio stem	
(Electric and magnetic.)			$m^x l^y$	tzkv			$m^x l$	yt²μι	,	T		rx	i ^y l²t°	
		x	у	2	v	x	у	z	v		x	у	2	υ
Quantity of electricity Electric displacement Electric surface density	Q D D	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\left -\frac{1}{2} \right $	- I - I	1 1 1 2 1 2	121212	$-\frac{\frac{1}{2}}{\frac{3}{2}}$	0 0 0	$-\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}$	C C	0 0	I I	0 -2 -2	I I
Electric field intensity. Electric potential. Electromotive force.	E V E	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1 2 -	- I - I	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1 2 3 2 3 2 3 2	-2 -2 -2	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1/c 1/c 1/c	1	I I I	0	0 0
Electrostatic capacity Dielectric constant Specific inductive capacity	C K	000	I 0 0	0 0 0	1 0	0 0 0	-1 -2 0	2 0	- I - I O	C ² C ²	- I - I	0 0	0 -1	0 I 0
CurrentElectric conductivity	$\begin{bmatrix} I \\ \gamma \\ \rho \end{bmatrix}$	1/2 O	-	- 2 - I I	$\begin{array}{c c} \frac{1}{2} \\ I \\ -I \end{array}$	1/2 O	$-\frac{1}{2}$ -2 2	- I - I	$-\frac{1}{2}$ - I	$\begin{bmatrix} c \\ c^2 \\ I/c^2 \end{bmatrix}$	0 -1	I 0 0	0 -1 1	0 0
Conductance	g R m	0 0 1 2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 1	I - I - \frac{1}{2}		-1 1 3 2	1 -1 -1	- I I 1 2	C^2 I/C^2 I/C	-I I I	0 0	0 0 0	0 0 I
Quantity of magnetism	т Ф Н	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1 1 1 2 1 2	0 -2	$-\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	- - - - - - - - - - - - - - - - - - -	-1 -1 -1	$-\frac{\frac{1}{2}}{2}$	1/c 1/c	I I O	I I O	0 0	I I O
Magnetizing force	$\overset{H}{\Omega} \\ \mathcal{F}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	8 2	- 2 - 2 - 2	1 2 1 2 1 2	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$-\frac{1}{2}$	-1 -1	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	C C	0 0 0	0 I I	- I 0 0	0 0 0
Magnetic moment Intensity magnetization. Magnetic induction.	<u></u>	$\frac{\frac{1}{2}}{\frac{1}{2}}$	- 12 3/21 - 2 3/21 - 2 3/21	0 0 0	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$-\frac{\frac{5}{2}}{-\frac{1}{2}} \\ -\frac{1}{2}$	-1 -1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1/c 1/c 1/c	I I I	I I I	1 -2 -2	I I
Magnetic susceptibility Magnetic permeability Current density	κ μ —	0 0 <u>1</u> 2	$\begin{vmatrix} -2 \\ -2 \\ -\frac{1}{2} \end{vmatrix}$		- I - I \frac{1}{2}	O 0 1/2	0 0 - 3/2	0 0	1 -1/2	1/C ² 1/C ² C	I	0 0 I	- I - I - 2	1 1 0
Self-inductance	L N R	0 0 0	- 1 - 1 - 1		- I - I I	0 0 0	1 1 -1	0 0 0	I -1	I/C ² I/C ² C ²	1 -1	0 0 0	0 0 0	I I -1
Thermoelectric power‡ Peltier coefficient‡	_	$\frac{1}{2}$ $\frac{1}{2}$		- I	$-\frac{1}{2} \stackrel{+}{+} \\ -\frac{1}{2} \stackrel{+}{+}$	$\frac{1}{2}$ $\frac{1}{2}$	303303	- 2 - 2	1 + 1 + 1 + 2 +	1/c 1/c	1	I	0	o‡ o‡

^{*} As adopted by American Institute of Electrical Engineers, 1915. † ϵ is the velocity of an electromagnetic wave in the ether = 3 \times 10¹⁰ approximately. ‡ This conversion factor should include $[\theta^{-1}]$.

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES*

(1) CUSTOMARY TO METRIC

		LINE	CAR.				CAPAC	TTV	
	Inches to millimeters	Feet to	Yards to meters.	Miles to kilometers.		Fluid drams to milliliters or cubic centimeters.	Fluid ounces to milliliters.	Liquid quarts to liters.	Gallons to liters.
6 78	50 8001 76.2002 101.6002 127.0003 152.4003 177.8004 203.2004	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 7 8	3.70 7.39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.01 236.58 266.16	0.94633 1.89267 2.83900 3.78533 4.73167 5.67800 6.62433 7.57066 8.51700	3.78533 7.57066 11.35600 15.14133 18.92666 22.71199 26.49733 30.28266 34.06799
		SQUA	RE.				WEIG	НТ.	
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milligrains.	Avoirdu- pois ounces to grams,	Avoirdu- pois pounds to kilo- grams,	Troy ounces to grams.
1 2 3 4 5 6 7 8 9	6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065	9.290 18.581 27.871 37.161 46.452 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.345 4.181 5.017 5.853 6.689 7-525	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281 2.8328 3.2375 3.6422	1 2 3 4 5 6 7 8 9	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3913 583.1903	28.3495 56.6991 85.0.486 113.3981 141.7476 170.0972 198.4467 226.7962 255.1457	0.45359 0.90718 1.36078 1.81437 2.26796 2.72155 3.17515 3.62874 4.08233	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133
		CUBI	C.						
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Bushels to hectoliters.		I Gunter's I sq. statu I fathom	te mile =	20.1168 259.000 1.829	meters. hectares. meters.
1 2 3 4 5 6 7 8 9	16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	0.02832 0.05663 0.08495 0.11327 0.14159 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154		1 nautical : 1 foot 1 avoir. po 1 5432.35639	und =	1853.25 0.30480: 453.59242; 1.000 l	

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 meter, and the avoirdupois pound as 1/2.20462 kilogram.

I meter (international prototype) = 1553164.13 times the wave length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, 1907 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spherical of 1994). roid of 1866).

^{*} Quoted from sheets issued by the United States Bureau of Standards.

TABLES FOR CONVERTING U.S. WEIGHTS AND MEASURES

(2) METRIC TO CUSTOMARY

								2.5				
_		LINEA	AK.					CAP	ACI	TY.		
	Meters to inches.	Meters to feet.	Meters to yards.	Kilometers to miles.		Millili- ters or cubic cen- timeters to fluid drams.	Cer liter flu ound	s to	Liters to quarts	s 1	Deca- iters to illous.	Hecto- liters to bushels.
1 2 3 4 5 6 7 8 9	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354.3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.68500 22.96583 26.24667 29.52750	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	1 2 3 4 5 6 7 8	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43	0.3 0.6 1.0 1.3 1.6 2.0 2.3 2.7 3.0	53 91 929 67 05	1.056 2.113 3.170 4.226 5.283 6.340 7.397 8.453 9.510	4 5 1 7 8 10 6 13 3 15 0 18 7 21	.6418 .2836 .9253 .5671 .2089 .8507 .4924 .1342 .7760	2.8378 5.6756 8.5135 11.3517 14.1891 17.0269 19.8647 22.7026 25.5404
						WE	IGH	т.				
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.		Kilo- grams grain	to	Hec grams ound avoirds	s to	Kilo- grams to pounds voirdupois.
1 2 3 4 5 6 7 8 9	0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950	10.764 21.528 32.292 43.055 53.819 64.583 75.347 86.111 96.875	1.196 2.392 3.588 4.784 5.980 7.176 8.372 9.568 10.764	2.471 4.942 7.413 9.884 12 355 14.826 17.297 19.768 22.239	1 2 3 4 5 6 7 8 9	0.01543 0.03086 0.04636 0.06173 0.07716 0.09259 0.10803 0.12346	3 3 3 1 1	15432 30864 46297 61729 77161 92594 08026 23458 38891	1.71 7.07 9.43 1.78 1.14 5.49 3.85	3.52 7.05 10.58 14.10 17.63 21.16 24.69 28.21 31.74	48 22 96 70 44 18	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236 17.63698 19.84160
		CUBI	C.					WE	EIGH	IT.		
	Cubic centimeters to cubic inches.	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.		Quintals pounds			lilliers es to p av.	or ounds	to	lograms ounces Troy.
1 2 3 4 5 6 7 8 9	0.0610 0.1220 0.1831 0.2441 0.3051 0.3661 0.4272 0.4882 0.5492	61.023 122.047 183.070 244.094 305.117 366.140 427.164 488.187 549.210	35.314 70.269 105.943 141.258 176.572 211.887 247.201 282.516 317.830	1.308 2.616 3.924 5.232 6.540 7.848 9.156 10.464 11.771	1 2 3 4 5 6 7 8 9	220. 440. 661. 881. 1102. 1322. 1543. 1763.	9 ² 39 85 31 77 24	I	2204 4409 6613 8818 11023 13227 15432 17637 19841	.2 .9 .5 .1 .7 .4	6 9 12 16 19 22	2.1507 4.3015 6.4522 8.6030 0.7537 2.9045 5.0552 7.2059 9.3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. These apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Meter is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

Weights and Measures

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight

in vacuo is the same as that of the Kilogram des Archives.
The liter is equal to the quantity of pure water at 4º C (760 mm Hg pressure) which weighs 1 kilogram and = 1.000027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoît.)

(For other equivalents than those below, see Table 3.)

```
LINEAR MEASURES.
```

```
1 mil (.001 in.) = 25.4001 μ
1 in. = .00015783 mile
1 hand (4 in.) = 10.16002 cm
1 link (.66 ft.) = 20.11684 cm
1 span (9 in.) = 22.86005 cm
1 fathom (6 ft.) = 1.828804 m
1 rod (25 links) = 5.029210 m
1 chain (4 rods) = 20.11684 m
1 light year (9.5 × 10<sup>12</sup> km) = 5.9 × 10<sup>12</sup> miles
```

I parsec (31 \times 10¹² km) = 10 \times 10¹² miles

I m = 4.970960 links = 1.093611 yds. = .198838 rod = .0497096 chain

SQUARE MEASURES.

```
I sq. link (62.7264 sq. in.) = 404.6873 cm<sup>2</sup>
I sq. rod (625 sq. links) = 25.20295 m<sup>2</sup>
I sq. chain (16 sq. rods) = 404.6873 m<sup>2</sup>
I acre (10 sq. chains) = 4046.873 m<sup>2</sup>
I sq. mile (640 acres) = 2.589998 km<sup>2</sup>
I km<sup>2</sup> = .3861006 sq. mile
I m<sup>2</sup> = 24.7104 sq. links = 10.76387 sq. ft.
= .039537 sq. rod = .00247104 sq.
```

CUBIC MEASURES.

r board foot (144 cu. in) = 2359.8 cm³ r cord (128 cu. ft.) = 3.625 m³

chain

CAPACITY MEASURES.

```
I minim (M) = .0616102 ml
I fl. dram (60M) = 3.69661 ml
I fl. oz. (8 fl. dr.) = 1.80469 cu. in.
= 29.5729 ml
I gill (4 fl. oz.) = 7.21875 cu. in. = 118.292 ml
I liq. pt. (28.875 cu. in.) = .473167 l
I liq. qt. (57.75 cu. in.) = .946333 l
I gallon (4 qt., 231 cu. in.) = 3.785332 l
I dry pt. (33.6003125 cu. in.) = .550509 l
```

1 dry qt. (67.200625 cu. in.) = 1.101198 l 1 pk. (8 dry qt., 537.605 cu. in.) = 8.80958 l

1 bu. (4 pk., 2150.42 cu. in.) = 35.2383 l 1 firkin (9 gallons) = 34.06799 l 1 liter = .264178 gal. = 1.05671 liq. qt. = 33.8147 fl. oz. = 270.518 fl. dr.

1 ml = 16.2311 minims. 1 dkl = 18.620 dry pt. = 9.08102 dry qt. = 1.13513 pk. = .28378 bu. MASS MEASURES.

Avoirdupois weights.

1 grain = .064708018 g

ı dram av. (27.34375 gr.) = 1.771845 g ı oz. av. (16 dr. av.) = 28.349527 g

1 lb. av. (16 oz. av. or 7000 gr.)

= 14.583333 oz. ap. (3) or oz. t. = 1.2152778 or 7000/5760 lb. ap. or t.

= 453.5924277 g 1 kg = 2.204622341 lb. av.

I g = 15.432356 gr. = .5643833 dr. av. = .03527306 oz. av.

1 short hundred weight (100 lb.) =45.359243 kg

1 long hundred weight (112 lb.) = 50.802352 kg

1 short ton (2000 lb.) = 907.18486 kg

1 long ton (2240 lb.) = 1016.04704 kg

I metric ton = 0.98420640 long ton = 1.1023112 short tons

Troy weights.

I pennyweight (dwt., 24 gr.) = I.555174 g; gr., oz., pd. are same as apothecary

A pothecaries' weights.

- I metric carat = 200 mg = 3.0864712 gr.
- U. S. $\frac{1}{2}$ dollar should weigh 12.5 g and the smaller silver coins in proportion.

* Taken from Circular 47 of the U.S. Bureau of Standards, 1915, which see for more complete tables.

8 TABLE 5

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES*

(1) METRIC TO IMPERIAL

(For U. S. Weights and Measures, see Table 3)

LINEAR MEASURE.

```
I millimeter (mm)
                          0.03037 in.
   (m 100.)
I centimeter (.o. m) =
                          0.39370
I decimeter (.1 m)
                          3.93701
                       39.370113
                          3.280843 ft.
I METER (m).
                          1.00361425 yds.
I dekameter
                    = 10.03614
   (10 m)
r hectometer
                    . = 100.361425
   (100 m)
I kilometer
                    . =
                          0.62137 mile.
   (1.000 \, m)
I myriameter
                          6.21372 miles.
   (10,000 m)
I micron. .
                         0.00I mm.
```

SOUARE MEASURE.

```
I sq. centimeter . . = 0.1550 sq. in.
I sq. decimeter (100 sq. cm) = 15.500 sq. in.
I sq. meter or centiare (100 sq. dm) = 10.7639 sq. ft.
I ARE (100 sq. m) = 119.60 sq. yds.
I hectare (100 ares or 10,000 sq. m) = 2.4711 acres.
```

CUBIC MEASURE.

```
1 cu. centimeter
(cc) (1,000 cubic millimeters)
1 cu. decimeter
(cd) (1,000 cubic centimeters)
1 cu. METER
or stere
(1,000 cd)

1 cu. centimeter

= 0.0610 cu. in.

= 61.024 " "

= 35.3148 cu. ft.
1.307954 cu. yds.
```

MEASURE OF CAPACITY.

milliliter (ml)

```
| 1 minimer (m) | = 0.0610 cu. in. |
| 1 centiliter (.01 liter) = { 0.61024 " " 0.070 gill. |
| 2 deciliter (.1 liter) = 0.176 pint. |
| 3 LITER (1,000 cu. centimeters or 1 cu. decimeter) | = 1.75980 pints. |
| 4 dekaliter (10 liters) = 2.200 gallons. |
| 5 hectoliter (100 ") = 2.75 bushels. |
| 6 kiloliter (1,000") = 3.437 quarters. |
```

APOTHECARIES' MEASURE.

AVOIRDUPOIS WEIGHT.

```
I milligram (mg) . .= 0.01543 grain.
I centigram (.01 gram)= 0.15432 "
I decigram (.1")= 1.54324 grains.
I GRAM . .
                           .=15.43236
1 dekagram (10 grams) = 5.64383 drams.
                                3.52739 oz.
I hectogram (100 "
                          )=
                                  2.2046223 lb.
I KILOGRAM (1,000 "
                                  15432.3564
                                      grains.
I myriagram (10 kg) = 22.04622 lbs.
                (100 "
I quintal
                          = 1.06811 cwt.
I millier or tonne
                          . = 0.9842 \text{ ton.}
   (1,000 kg)
```

TROY WEIGHT.

I GRAM . . .
$$=$$
 $\begin{cases} 0.03215 \text{ oz. Troy.} \\ 0.64301 \text{ pennyweight.} \\ 15.43236 \text{ grains.} \end{cases}$

APOTHECARIES' WEIGHT.

I GRAM =
$$\begin{cases} 0.25721 \text{ drachm.} \\ 0.77162 \text{ scruple.} \\ 15.43236 \text{ grains.} \end{cases}$$

Note.—The Meter is the length, at the temperature of o° C, of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the meter is 39.370113 inches, as above stated. The Kilogram is the mass of a platinum-iridium weight deposited at the same place.

The LITER contains one kilogram weight of distilled water at its maximum density (4° C), the barometer being at 760 millimeters.

^{*} In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES

(2) METRIC TO IMPERIAL, MULTIPLES

(For U. S. Weights and Measures, see Table 3)

	LI	NEAR MEA	SURE.			ME	ASURE OF	CAPACITY	
	Millimeters to inches	Meters to feet.	Meters to yards.	Kilo- meters to miles.		Liters to pints.	Dekaliters to gallons	Hectoliters to bushels.	Kiloliters to quarters.
1	0.03937011	3.28084	1.09361	0.62137	1	1.75980	2.19975	2.74969	3.43712
2	0.07874023	6.56169	2.18723	1.24274	2	3.51961	4.39951	5.49938	6.87423
3	0.11811034	9.84253	3.28084	1.86412	3	5.27941	6.59926	8.24908	10.31135
4	0.15748045	13.12337	4.37446	2.48549	4	7.03921	8.79902	10.99877	13.74846
5	0.19685056	16.40421	5.46807	3.10686	5	8.79902	10.99877	13.74846	17.185 5 8
6 7 8 9	0.23622068	19.68506	6.56169	3.72823	6	10.55882	13.19852	16.49815	20.62269
	0.27559079	22.96590	7.65530	4.34960	7	12.31862	15.39828	19.24785	24.05981
	0 31496090	26.24674	8.74891	4.97097	8	14.07842	17.59803	21.99754	27.49692
	0-35433102	29.52758	9.84253	5.59235	9	15.83823	19.79778	24.74723	30.93404
SQUARE MEASURE.						W	EIGHT (Avo	oirdupois).	
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.	Kilograms to grains.	Kilo- grams to pounds,	Quintals to hundred- weights.
1	0.15500	10.76393	1.19599	2.4711	1	0.01543	15432.356	2.20462	1.96841
2	0.31000	21.52786	2.39198	4 9421	2	0.03086	30864.713	4.40924	3.93683
3	0.46500	32.29179	3.58798	7.4132	3	0.04630	46297.069	6.61387	5.90524
4	0.62000	43.05572	4.78397	9.8842	4	0.06173	61729.426	8.81849	7.87365
5	0.77500	53.81965	5.97996	12.3553	5	0.07716	77161.782	11.02311	9.84206
6	0.93000	64.58357	7.17595	14.8263	6	0.09259	92594.138	13.22773	11.81048
7	1.08500	75.34750	8.37194	17.2974	7	0.10803	108026.495	15.43236	13.77889
8	1.24000	86.11143	9.56794	19.7685	8	0.12346	123458.851	17.63698	15.74730
9	1.39501	96.87536	10.76393	22.2395	9	0.13889	138891.208	19.84160	17.71572
	CUBIC	MEASURE		APOTHE- CARIES' MEASURE.	Av	voirdupois (cont.)	Troy W	EIGHT.	APOTHE- CARIES' WEIGHT,
	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards,	Cub. centimeters to fluid drachms.		Milliers or tonnes to tons.	Grams to ounces Troy,	Grams to penny- weights.	Grams to scruples.
1	61.02390	35.31476	1.30795	0.28157	1	0.98421	0.03215	0.64301	0.77162
2	122.04781	70.62952	2.61591	0.56314	2	1.96841	0.06430	1.28603	1.54324
3	183.07171	105.94428	3.92386	0.84471	3	2.95262	0.09645	1.92904	2.31485
4	244.09561	141.25904	5.23182	1.12627	4	3.93683	0.12860	2.57206	3.08647
5	305.11952	176.57379	6.53977	1.40784	5	4.92103	0.16075	3.21507	3.85809
6	366.14342	211.88855	7.84772	1.68941	6	5.90524	0.19290	3.85809	4.62971
7	427.16732	247.20331	9.15568	1.97098	7	6.88944	0.22506	4.50110	5.40132
8	488.19123	282.51807	10.46363	2.25255	8	7.87365	0.25721	5.14412	6.17294
9	549.21513	317.83283	11.77159	2.53412	9	8.85786	0.28936	5.78713	6.94456

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND

(3) IMPERIAL TO METRIC

(For U. S. Weights and Measures, see Table 3)

LINEAR MEASURE.

$1 \text{ inch } \dots = \begin{cases} 25.400 \text{ millimeters.} \end{cases}$
(foot (12 in) - 0.30480 meter.
I YARD (3 ft.) = 0.914399 "
I pole $(5\frac{1}{2} \text{ yd.})$ = 5.0292 meters.
i chain (22 yd. or) = 20.1168 "
1 furlong (220 vd.) = 201.168
(1.6093 kilo-
1 mile (1,760 yd.) . = { 1.6093 kilometers.
1 yard $=$ $\begin{cases} 1420210. \times Cd_r\lambda. \\ (Tutton 1032) \end{cases}$

SQUARE MEASURE.

```
6.4516 sq. cen-
square inch
                                timeters.
                             9.2903 sq. deci-
1 sq. ft. (144 sq. in.) =
                               meters.
                             0.836126 sq.
I SQ. YARD (0 sq. ft.) =
                               meters.
                            25.293 sq. me-
1 perch (30\frac{1}{3} sq. yd.) =
                              ters
1 rood (40 perches) =
                            10.117 ares.
I ACRE (4840 sq. vd.) =
                            0.40468 hectare.
1 sq. mile (640 acres) = 259.00 hectares.
```

CUBIC MEASURE.

```
I cu. inch = 16.387 cu. centimeters.

I cu. foot (1728) = \begin{cases} 0.028317 \text{ cu. meter, or } 28.317 \text{ cu. decimeters.} \end{cases}
I cu. YARD (27) = 0.76455 cu. meter.
```

APOTHECARIES' MEASURE.

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

```
I gill . . . . . = 1.42 deciliters.
I pint (4 gills) . . . = 0.568 liter.
I quart (2 pints) . . = 1.136 liters.
I GALLON (4 quarts) = 4.5459631 "
I peck (2 gal.) . . = 9.092 "
I bushel (8 gal.) . = 3.637 dekaliters.
I quarter (8 bushels) = 2.909 hectoliters.
```

AVOIRDUPOIS WEIGHT.

TROY WEIGHT.

Note. - The Troy grain is of the same weight as the Avoirdupois grain.

APOTHECARIES' WEIGHT.

Note. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° F., marked on a bronze bar deposited with the Board of Trade.

The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of o° C., and which is also deposited with the Board of Trade.

The GALLON contains 10 lb. weight of distilled water at the temperature of 62° F., the barometer being at 30 inches.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES

(4) IMPERIAL TO METRIC, MULTIPLES

(For U. S. Weights and Measures, see Table 3)

-					Ш				
	LI	NEAR ME	ASURE.			MEA	SURE OF	CAPACITY	
	Inches to centimeters.	Feet to meters.	Yards to meters.	Miles to kilo- meters.		Quarts to liters.	Gallons to liters.	Bushels to dekaliters.	Quarters to hectoliters.
1 2 3 4 5	2.539998 5.079996 7.619993 10.159991 12.699989	0.30480 0.60960 0.91440 1.21920 1.52400	0.91440 1.82880 2.74320 3.65760 4.57200	1.60934 3.21869 4.82803 6.43737 8.04671	1 2 3 4 5	1.13649 2.27298 3.40947 4.54596 5.68245	4-54596 9-09193 13-63789 18-18385 22-72982	3.63677 7.27354 10.91031 14.54708 18.18385	2.90942 5.81883 8.72825 11.63767 14.54708
6 7 8 9	15.239987 17.779984 20.319982 22.859980	1.82880 2.13360 2.43840 2.74320	5.48640 6.40080 7.31519 8.22959	9.65606 11.26540 12.87474 14.48408	6 7 8 9	6.81894 7.95544 9.09193 10.22842	27.27578 31.82174 36.36770 40.91367	21 82062 25.45739 29.09416 32.73093	17.45650 20.36591 23.27533 26.18475
	sQ	UARE ME	ASURE.			w	EIGHT (Avo	IRDUPOIS).	
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milli- grams.	Ounces to grams.	Pounds to kilo- grams.	Hundred- weights to quintals.
1 2 3 4 5	6.45159 12.90318 19.35477 25.80636 3 ² · ² 5794	9.29029 18.58058 27.87086 37.16115 46.45144	0.83613 1.67225 2.50838 3.34450 4.18063	0.40468 0.80937 1.21405 1.61874 2.02342	1 2 3 4 5	64.79892 129.59784 194.39675 259.19567 323.99459	28.34953 56.69905 85.04858 113.39811 141.74763	0.45359 0.90718 1.36078 1.81437 2.26796	0.50802 1.01605 1.52407 2.03209 2.54012
6 7 8 9	38.70953 45.16112 51.61271 58.06430	55.74173 65.03201 74.32230 83.61259	5.01676 5.85288 6.68901 7.52513	2.42811 2.83279 3.23748 3.64216	6 7 8 9	388.79351 453.59243 518.39135 583.19026	170.09716 198.44669 226.79621 255.14574	2.72155 3.17515 3.62874 4.08233	3.04814 3.55616 4.06419 4.57221
	CUBIC	MEASURI	Σ.	Apothe- caries' Measure.	A	voirdupois (cont.).	Troy W	BIGHT	APOTHE- CARIES' WEIGHT
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Fluid drachins to cubic centi- meters.		Tons to milliers or tonnes.	Ounces to grams.	Penny- weights to grams.	Scruples to grams.
1 2 3 4 5	16.38702 32.77404 49.16106 65.54808 81.93511	0.02832 0.05663 0.08495 0.11327 0.14158	0.76455 1.52911 2.29366 3.05821 3.82276	3.55153 7.10307 10.65460 14.20613 17.75767	1 2 3 4 5	1.01605 2.03209 3.04814 4.06419 5.08024	31.10348 62.20696 93.31044 124.41392 155.51740	1.55517 3.11035 4.66552 6.22070 7.77587	1.29598 2.59196 3.88794 5.18391 6.47989
6 7 8 9	98.32213 114.70915 131.09617 147.48319	0.16990 0.19822 0.22653 0.25485	4.58732 5.35187 6.11642 6.88098	21.30920 24.86074 28.41227 31.96380	6 7 8 9	6.09628 7.11233 8.12838 9.14442	186.62088 217.72437 248.82785 279.93133	9.33104 10.88622 12.44139 13.99657	7.77587 9.07185 10.36783 11.66381

TABLE 6

DERIVATIVES AND INTEGRALS *

d ax	= a dx	$\int x^n dx$	$=\frac{x^{n+1}}{n+1}$, unless $n=-1$
d uv	$= \left(u \frac{dv}{dx} + v \frac{du}{dx}\right) dx$	$\int \frac{dx}{x}$	$= \log x$
$d\frac{u}{v}$	$= \left(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}\right) dx$	$\int e^x dx$	$=e^{x}$
$d x^n$	$= nx^{n-1} dx$	$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}$
d f(u)	$=d\frac{f(u)}{du}\cdot\frac{du}{dx}\cdot dx$	$\int x^m e^{ax} dx =$	$\frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx$
$d e^x$	$=e^x dx$	$\int \log x dx$	$= x \log x - x$
$d e^{ax}$	$= a e^{ax} dx$	fu dv	$= u v - \int v du$
$d \log_e x$	$=\frac{\mathbf{I}}{x} dx$	$\int a dx$ $\int (a+bx)^n dx$	$=\frac{(a+bx)^{n+1}}{(n+1)b}$
$d x^x$	$= x^x \left(1 + \log_e x \right) dx$		(11 + 1)0
$d \sin x$	$= \cos x dx$	$\int (a^2+x^2)^{-1} dx$	$= \frac{1}{a} \tan^{-1} \frac{x}{a} =$
			$\frac{1}{a}\sin^{-1}\frac{x}{\sqrt{x^2+a^2}}$
$d \cos x$	$=-\sin xdx$	$\int (a^2-x^2)^{-1}dx$	$= \frac{\mathbf{I}}{2a} \log \frac{a+x}{a-x}$
$d \tan x$	$= \sec^2 x dx$	$\int (a^2-x^2)^{-\frac{1}{2}} dx$	$= \sin^{-1} \frac{x}{a}, \text{ or } -\cos^{-1} \frac{x}{a}$
d cot x	$= -\csc^2 x dx$	$\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$	$=\pm(a^2\pm x^2)^{\frac{1}{2}}$
$d \sec x$	$= \tan x \sec x dx$	$\int \sin^2 x dx$	$= -\frac{1}{2}\cos x \sin x + \frac{1}{2}x$
$d \csc x$	$= -\cot x \cdot \csc x dx$	$\int \cos^2 x dx$	$= \frac{1}{2}\sin x \cos x + \frac{1}{2}x$
$d \sin^{-1} x$	$= (\mathbf{I} - x^2)^{-\frac{1}{2}} dx$	$\int \sin x \cos x dx$	$= \frac{1}{2} \sin^2 x$
$d \cos^{-1} x$	$= -(1-x^2)^{-\frac{1}{2}} dx$	$\int (\sin x \cos x)^{-1}$	
$d \tan^{-1} x$	$= (1+x^2)^{-1} dx$	$\int \tan x dx$	$= -\log \cos x$
$d \cot^{-1} x$	$= -(1+x^2)^{-1} dx$ $= x^{-1} (x^2 + 1)^{-1} dx$	$\int \tan^2 x dx$	$= \tan x - x$
$\begin{array}{c} d \sec^{-1} x \\ d \csc^{-1} x \end{array}$	$= x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$ = $-x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot x dx$	$= \log \sin x$
$d \operatorname{sinh} x$	$= -x \cdot (x^2 - 1)^{-1} dx$ $= \cosh x dx$	$\int \cot^2 x dx$	$=-\cot x - x$
$d \cosh x$	$= \sinh x dx$ $= \sinh x dx$	$\int \csc x dx$ $\int x \sin x dx$	$= \log \tan \frac{1}{2} x$ $= \sin x - x \cos x$
$d \tanh x$	$= \operatorname{sech}^2 x dx$	$\int x \sin x dx$ $\int x \cos x dx$	$= \sin x - x \cos x$ $= \cos x + x \sin x$
$d \coth x$	$= -\operatorname{csch}^2 x dx$	$\int x \cos x dx$ $\int \tanh x dx$	$= \log \cosh x$
d sech x	$=$ -sech $x \tanh dx$	$\int \coth x dx$	$= \log \sinh x$
d csch x	= -csch x . coth $x dx$	$\int \operatorname{sech} x dx$	$= 2 \tan^{-1} e^x = \operatorname{gd} u$
$d \sinh^{-1} x$	$=(x^2+1)^{-\frac{1}{2}} dx$	$\int \operatorname{csch} x dx$	$= \log \tanh \frac{x}{2}$
$d \cosh^{-1} x$	$=(x^2-1)^{-\frac{1}{2}}dx$	$\int x \sinh x dx$	$= x \cosh x - \sinh x$
$d \tanh^{-1} x$	$= (1-x^2)^{-1} dx$	$\int x \cosh x dx$	$= x \sinh x - \cosh x$
$d \coth^{-1} x$	$= (1-x^2)^{-1} dx$	$\int \sinh^2 x dx$	$= \frac{1}{2} \left(\sinh x \cosh x - x \right)$
$d \operatorname{sech}^{-1} x$	$= -x^{-1} (1-x^2)^{-\frac{1}{2}} dx$ $= x^{-1} (x^2 + 1)^{-\frac{1}{2}}$	$\int \cosh^2 x dx$	$= \frac{1}{2} \left(\sinh x \cosh x + x \right)$
$d \operatorname{csch}^{-1} x$	$= -x^{-1} (x^2 + 1)^{-\frac{1}{2}}$	$\int \sinh x \cosh x dx$	$z = \frac{1}{4} \cosh (2 x)$

^{*} See also accompanying table of derivatives. For example: $\int \cos x \, dx = \sin x + \cos x$

 $(x^2 < \infty)$

$$(x+y)^n = x^n + \frac{n}{1} x^{n-1} y + \frac{n(n-1)}{2!} x^{n-2} y^2 + \dots$$

$$\frac{n(n-1) \dots (n-m+1)}{n!} x^{n-m} y^m + \dots (y^2 < x^2)$$

$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2!} \pm \frac{n(n-1)(n-2)x^2}{3!} + \dots + \frac{(\pm 1)k n + x^k}{(n-k)! k!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n(m+1)}{2!} x^2 \mp \frac{n(n+1)(n+2)x^2}{3!} + \dots$$

$$(\mp 1)k \frac{(n+k-1)x^k}{(n-1)! k!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \dots$$

$$(x^2 < 1)$$

$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^2 \mp 4x^3 + 5x^4 \mp 6x^5 + \dots$$

$$f(x) = f(x) + hf'(x) + \frac{h^2}{2!} f''(x) + \dots + \frac{h^n}{n!} f^{(n)}(x) + \dots$$

$$f(x) = f(x) + \frac{x}{1} f'(x) + \frac{x^2}{2!} f''(x) + \dots + \frac{x^n}{n!} f^{(n)}(x) + \dots$$

$$e = \lim_{x \to 1} \left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

$$(x^2 < x)$$

$$\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x}\right)^2 + \frac{1}{3} \left(\frac{x-1}{x}\right)^3 + \dots$$

$$(x^2 < x)$$

$$\log x = \frac{x-1}{x} + \frac{1}{3} \left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1}\right)^5 + \dots$$

$$(x^2 < x)$$

$$\log_{x} \left(1 + x\right) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + \dots$$

$$(x^2 < x)$$

$$\cos x = \frac{1}{2} \left(e^{1x} - e^{-1x}\right) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = 1 - \text{versin } x$$

$$(x^2 < x)$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^5}{17x^5} + \frac{62}{853} x^9 + \dots$$

$$(x^2 < x)$$

$$\sin \ln x = \frac{\pi}{2} - \cot^{-1} x = x + \frac{1}{6} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots$$

$$(x^2 < 1)$$

$$\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots$$

$$(x^2 < x)$$

$$\sin \ln x = \frac{\pi}{2} \left(e^{x} - e^{-x}\right) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$(x^2 < 1)$$

$$\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots$$

$$(x^2 < 1)$$

$$\sin \ln x = \frac{1}{2} \left(e^{x} - e^{-x}\right) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$(x^2 < 1)$$

$$\sin \ln x = \frac{1}{2} \left(e^{x} - e^{-x}\right) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$(x^2 < 1)$$

$$\sin \ln x = \frac{1}{2} \left(e^{x} - e^{-x}\right) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$(x^2 < 1)$$

$$\sin \ln x = \frac{1}{2} \left(e^{x} - e^{-x}\right) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$(x^2 < 1)$$

$$\cosh x = \frac{1}{2} (e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots \qquad (x^{2} < \infty)$$

$$\tanh x = x - \frac{1}{3} x^{3} + \frac{2}{15} x^{5} - \frac{17}{315} x^{7} + \dots \qquad (x^{2} < \frac{1}{4} \pi^{2})$$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^{3}}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7} + \dots \qquad (x^{2} < 1)$$

$$= \log 2x + \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{5}} - \dots \qquad (x^{2} > 1)$$

$$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{5}} - \dots \qquad (x^{2} > 1)$$

$$\tanh^{-1} x = x + \frac{1}{3} x^{3} + \frac{1}{5} x^{5} + \frac{1}{7} x^{7} + \dots \qquad (x^{2} < 1)$$

$$\gcd x = \phi = x - \frac{1}{6} x^{3} + \frac{1}{24} x^{5} - \frac{61}{5040} x^{7} + \dots \qquad (x \text{ small})$$

$$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^{3} x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5} - \dots \qquad (x \text{ large})$$

$$x = \gcd^{-1} \phi = \phi + \frac{1}{6} \phi^{3} + \frac{1}{24} \phi^{5} + \frac{61}{5040} \phi^{7} + \dots \qquad (\phi < \frac{\pi}{2})$$

$$f(x) = \frac{1}{2} b_{0} + b_{1} \cos \frac{\pi x}{c} + b_{2} \cos \frac{2\pi x}{c} + \dots$$

$$+ a_{1} \sin \frac{\pi x}{c} + a_{2} \cos \frac{2\pi x}{c} + \dots (-c < x < c)$$

$$a_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} dx$$

$$b_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} dx$$

TABLE 8.-MATHEMATICAL CONSTANTS

$e = 2.71828 \ 18285$	Numbers. $\pi = 3.14159 \ 26536$	Logarithms. 0.49714 98727
$e^{-1} = 0.36787 \ 94412$	$\pi^2 = 9.8696044011$	0.99429 97454
$M = \log_{10^{\ell}} = 0.43429 \ 44819$	$\frac{1}{\pi} = 0.31830 98862$	9.50285 01273
$(M)^{-1} = \log_e 10 = 2.30258 50930$	$\sqrt{\pi} = 1.77245 38509$	0.24857 49363
$\log_{10} \log_{10} e = 9.63778 43113$	$\frac{\sqrt{\pi}}{2} = 0.88622 \ 69255$	9-94754 49407
$\log_{10}2 = 0.3010299957$	$\frac{1}{\sqrt{\pi}} = 0.56418 \ 95835$	9.75142 50637
$\log_{e^2} = 0.6931471806$	$\frac{2}{\sqrt{\pi}} = 1.12837 \ 91671$	0.05245 50593
$\log_{10} x = M.\log_e x$	$\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$	0.09805 99385
$\log_{B} x = \log_{e} x. \log_{B} e$	$\sqrt{\frac{2}{\pi}} = 0.79788 \ 45608$	9.90194 00615
$= \log_e x \div \log_e B$	$\frac{\pi}{4} = 0.78539 \ 81634$	9.89508 98814
$\log_e \pi = 1.14472 \ 98858$	$\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$	9.64651 49450
$\rho = 0.47693 62762$	$\frac{4}{3}\pi = 4.18879 \ 02048$	0.62208 86093
$\log \rho = 9.67846 \text{ o}_{3565}$	$\frac{e}{\sqrt{2 \pi}} = 1.08443 \ 75514$	0.03520 45477

72	1000.1	n^2	n^3	√n	22	1000.1	n^2	n ³	J 22
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
11	90.9091	121	1331	3.3166	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	4761	328509	8.3066
15	66.6667	225	337 5	3.8730	70	14.2857	4900	343000	8.3666
16	62.5000	256	4096	4.0000	71	14.0845	5041	357911	8.4261
17	58.8235	289	491 3	4.1231	72	13.8889	5184	373248	8.4853
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	4.3589	74	13.5135	5476	405224	8.6023
20	50.0000	400	8000	4.4721	75 76 77 78 79	13.3333	5625	421875	8.6603
21	47.6190	441	9261	4.5826		13.1579	5776	438976	8.7178
22	45.4545	484	10648	4.6904		12.9870	5929	456533	8.7750
23	43.4783	529	12167	4.7958		12.8205	6084	474552	8.8318
24	41.6667	576	13824	4.8990		12.6582	6241	493°39	8.8882
25	40.0000	625	15625	5.0000	80	12.5000	6400	512000	8.9443
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104
29	34.4828	841	24389	5.3852	84	11.9048	7 056	592704	9.1652
30	33·3333	900	27000	5.4772	85	11.7647	7225	614125	9.2195
31	32·2581	961	29 7 91	5.5678	86	11.6279	7396	636056	9.2736
32	31·2500	1024	32768	5.6569	87	11.4943	7569	658503	9.3274
33	30·3030	1089	35937	5.7446	88	11.3636	7744	681472	9.3808
34	29·4118	1156	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161	90	11.1111	8100	729000	9.4868
36	27.7778	1296	46656	6.0000	91	10.9890	8281	753571	9.5394
37	27.0270	1369	50653	6.0828	92	10.8696	8464	778688	9.5917
38	26.3158	1444	54872	6.1644	93	10.7527	8649	804357	9.6437
39	25.6410	1521	59319	6.2450	94	10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	857375	9.7468
41	24.3902	1681	68921	6.4031	96	10.4167	9216	884736	9.7980
42	23.8095	1764	74088	6.4807	97	10.3093	94 0 9	912673	9.8489
43	23.2558	1849	79507	6.5574	98	10.2041	9604	941192	9.8995
44	22.7273	1936	85184	6.6332	99	10.1010	9801	970299	9.9499
45	22.2222	2025	91125	6.7082	100	10.0000	10000	1000000	10.0000
46	21.7391	2116	97336	6.7823	101	9.90099	10201	1030301	10.0499
47	21.2766	2209	103823	6.8557	102	9.80392	10404	1061208	10.0995
48	20.8333	2304	110592	6.9282	103	9.70874	10609	1092727	10.1489
49	20.4082	2401	117649	7.0000	104	9.61538	10816	1124864	10.1980
50	20.0000	2500	125000	7.0711	105	9.52381	11025	1157625	10.2470
51	19.6078	2601	132651	7.1414	106	9.43396	11236	1191016	10.2956
52	19.2308	2704	140608	7.2111	107	9.34579	11449	1225043	10.3441
53	18.8679	2809	148877	7.2801	108	9.25926	11664	1259712	10.3923
54	18.5185	2916	157464	7.3485	109	9.17431	11881	1295029	10.4403
55	18.1818	302 5	166375	7.4162	110	9.09091	12100	1331000	10.4881
56	17.8571	3136	175616	7.4833	111	9.00901	12321	1367631	10.5357
57	17.5439	3249	185193	7.5498	112	8.92857	12544	1404928	10.5830
58	17.2414	3364	195112	7.6158	113	8.84956	12769	1442897	10.6301
59	16.94 <i>9</i> 2	3481	205379	7.6811	114	8.77193	12996	1481544	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	13225	1520875	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896	10.7703
62	16.1290	3844	238328	7.8740	117	8.54701	13689	1601613	10.8167
63	15.8730	3969	250047	7.9373	118	8.47458	13924	1643032	10.8628
64	15.6250	4096	262144	8.0000	119	8.40336	14161	1685159	10.9087

12	1000.1	n^2	n^3	V 12	11	1000.1	n^2	113	√n
120 121 122 123 124	8.33333 8.26446 8.19672 8.13008 8.06452	14400 14641 14884 15129 15376	1728000 1771561 1815848 1860867	10.9545 11.0000 11.0454 11.0905	175 176 177 178 179	5.71429 5.68182 5.64972 5.61798 5.58659	30625 30976 31329 31684 32041	5359375 5451776 5545233 5639752 5735339	13.2288 13.2665 13.3041 13.3417 13.3791
125	8.00000	15625	1953125	11.1803	180	5.55556	32400	5832000	13.4164
126	7.93651	15876	2000376	11.2250	181	5.52486	32761	5929741	13.4 5 36
127	7.87402	16129	2048383	11.2694	182	5.49451	33124	6028568	13.4907
128	7.81250	16384	2097152	11.3137	183	5.46448	33489	6128487	13.5277
129	7.75194	16641	2146689	11.3578	184	5.43478	33856	6229504	13. 5 647
130 131 132 133 134	7.69231 7.63359 7.57576 7.51880 7.46269	16900 17161 17424 17689 17956	2197000 2248091 2299968 2352637 2406104	11.4018 11.4455 11.4891 11.5326 11.5758	185 186 187 188 189	5.40541 5.37634 5.34759 5.31915 5.29101	34225 34596 34969 35344 35721	6331625 6434856 6539203 6644672 6751269	13.6015 13.6382 13.6748 13.7113
135	7.40741	18225	2460375	11.6190	190	5.26316	36100	68 59000	13.7840
136	7.35294	18496	2515456	11.6619	191	5.23560	36481	6967871	13.8203
137	7.29927	18769	2571353	11.7047	192	5.20833	36864	7077888	13.8564
138	7.24638	19044	2628072	11.7473	193	5.18135	37249	7189057	13.8924
139	7.19424	19321	2685619	11.7898	194	5.15464	37636	7301384	13.9284
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	19881	2803221	11.8743	196	5.10204	38416	7529536	14.0006
142	7.04225	20164	2863288	11.9164	197	5.07614	38809	7645373	14.0357
143	6.99301	20449	2924207	11.9583	198	5.05051	39204	7762392	14.0712
144	6.94444	20736	2985984	12.0000	199	5.02513	39601	7880 5 99	14.1067
145	6.89655	21025	3048625	12.0416	200	5 00000	40000	8000000	14.1421
146	6.84932	21316	3112136	12.0830	201	4.97 51 2	40401	8120601	14.1774
147	6.80272	21609	3176523	12.1244	202	4.95050	40804	8242408	14.2127
148	6.75676	21904	3241792	12.1655	203	4.92611	41209	8365427	14.2478
149	6.71141	22201	3307949	12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	337 5000	12.2474	205	4.87805	42025	8615125	14.3178
151	6.62252	22801	3442951	12.2882	206	4.85437	42436	8741816	14.3527
152	6.57895	23104	351 1808	12.3288	207	4.83092	42849	8869743	14.3875
153	6.53595	23409	358 1 577	12.3693	208	4.80769	43264	8998912	14.4222
154	6.49351	23716	3652264	12.4097	209	4.78469	43681	9129329	14.4568
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	14.4914
156	6.41026	24336	3796416	12.4900	211	4.73934	44521	9393931	14.5258
157	6.36943	24649	3869893	12.5300	212	4.71698	44944	9528128	14.5602
158	6.32911	24964	3944312	12.5698	213	4.69484	45369	9663597	14.5945
159	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160	6.25000	25600	4096000	12.6491	215	4.65116	46225	9938375	14.6629
161	6.21118	25921	4173281	12.6886	216	4.62963	46656	10077696	14.6969
162	6.17284	26244	4251528	12.7279	217	4.60829	47089	10218313	14.7309
163	6.13497	26569	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225	4492125	12.8452	220	4.54545	48400	10648000	14.8324
166	6.02410	27556	4574296	12.8841	221	4.52489	48841	10793861	14.8661
167	5.98802	27889	4657463	12.9228	222	4.50450	49284	10941048	14.8997
168	5.95238	28224	4741632	12.9615	223	4.48430	49729	11089567	14.9332
169	5.91716	28561	4826809	13.0000	224	4.46429	50176	11239424	14.9666
170	5.88235	28900	4913000	13.0384	225	4.41444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	4.42478	51076	11543176	15.0333
172	5.81395	29584	5088448	13.1149	227	4.40529	51529	11697083	15.0665
173	5.78035	29929	5177717	13.1529	228	4.38596	51984	11852352	15.0997
174	5.74713	30276	5268024	13.1909	229	4.36681	52441	12008989	15.1327

	1	n^2	123	1		1000	n^2	123	1
12	1000.1	n-	720	V 12	11	1000.1	72-	720	V 12
230	4.34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
231	4.32900	53361	12326391	15.1987	286	3.49650	81796	23393656	16.9115
232	4.31034	53824	12487168	15.2315	287	3.48432	82369	23639903	16.9411
233	4.29185	54289	12649337	15.2643	288	3.47222	82944	23887872	16.9706
234	4.27350	54756	12812904	15.2971	289	3.46021	83521	241 37 569	17.0000
235	4.25532	55225	12977875	15.3297	290	3.44828	84100	24389000	17.0294
236	4.23729	55696	13144256	15.3623	291	3.43643	84681	24642171	17.0587
237	4.21941	56169	13312053	15.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	15.4272	293	3.41297	85849	25153757	17.1172
239	4.18410	57121	13651919	15.4596	294	3.40136	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	3.38983	87025	25672375	17.1756
241	4.14938	58081	13997521	15.5242	296	3.37838	87616	25934336	17.2047
242	4.13223	58564	14172488	15.5563	297	3.36700	88209	26198073	17.2337
243	4.11523	59049	14348907	15.5885	298	3.35570	88804	26463592	17.2627
244	4.09836	59536	14526784	15.6205	299	3.34448	89401	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	3.33333	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	3.32226	90601	27270901	17-3494
247	4.04858	61009	1 5069223	15.7162	302	3.31126	91204	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	3.30033	91809	27818127	17.4069
249	4.01606	62001	1 5438249	15.7797	304	3.28947	92416	28094464	17.4356
250	4.00000	62500	15625000	15.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3.24675	94864	29218112	17.5499
254	3.93701	64516	16387064	15.9374	309	3.23625	95481	29503629	17.5784
255	3.921 57	65025	16581375	15.9687	310	3.22581	96100	29791000	17.6068
256	3.90625	65536	16777216	16.0000	311	3.21543	96721	30080231	17.6352
257	3.89105	66049	16974593	16.0312	312	3.20513	97344	30371328	17.6635
258	3.87597	66564	17173512	16.0624	313	3.19489	97969	30664297	17.6918
259	3.86100	67081	17373979	16.0935	314	3.18471	98596	30959144	17.7200
260	3.84615	67600	17576000	16.1245	315	3.17460	99225	31255875	17.7482
261	3.83142	68121	17779581	16.1555	316	3.16456	99856	31554496	17.7764
262	3.81679	68644	17984728	16.1864	317	3.1 54 57	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326
264	3.78788	69696	18399744	16.2481	319	3.13480	101761	32461759	17.8606
265	3.77358	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	321	3.11526	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	3.10559	103684	33386248	17.9444
268	3.73134	71824	19248832	16.3707	323	3.09598	104329	33698267	17.9722
269	3.71747	72361	19465109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	73441	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	3.67647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.0831
273	3.66300	74529	20346417	16.5227	328	3.04878	107584	35287552	18.1108
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275	3.63636	75625	20796875	16.5831	330	3.03030	108900	35937000	18.1659
276	3.62319	76176	21024576	16.6132	331	3.02115	109561	36264691	18.1934
277	3.61011	76729	21253933	16.6433	332	3.01205	110224	36594368	18.2209
278	3.59712	77284	21484952	16.6733	333	3.00300	110889	36926037	18.2483
279	3.58423	77841	21717639	16.7033	334	2.99401	111556	37259704	18.2757
280	3.57143	78400	21952000	16.7332	335	2.98507	112225	37595375	18.3030
281	3.55872	78961	22188041	16.7631	336	2.97619	112896	37933056	18.3303
282	3.54610	79524	22425768	16.7929	337	2.96736	113569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	114244	38614472	18.3848
284	3.52113	80656	22906304	16.8523	339	2.94985	114921	38958219	18.4120
!									

12	1000.1	n^2	n^3	V 12	72	1000.1	n^2	n ³	√n
340	2.94118	115600	39304000	18.4391	395	2.53165	156025	61629875	19.8746
341	2.93255	116281	39651821	18.4662	396	2.52525	156816	62099136	19.8997
342	2.92398	116964	40001688	18.4932	397	2.51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	158404	63044792	19.9499
344	2.90698	118336	40707584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	119025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	119716	41421736	18.6011	401	2.49377	160801	64481201	20.0250
347	2.88184	120409	41781923	18.6279	402	2.48756	161604	64964808	20.0499
348	2.87356	121104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349	2.86533	121801	42508549	18.6815	404	2.47525	163216	65939264	20.0998
350	2.85714	122500	4287 5 000	18.7083	405	2.46914	164025	66430125	20.1246
351	2.84900	123201	43243551	18.7350	406	2.46305	164836	66923416	20.1494
352	2.84091	123904	43614208	18.7617	407	2.45700	165649	67419143	20.1742
353	2.83286	124609	43986977	18.7883	408	2.45098	166464	67917312	20.1990
354	2.82486	125316	44361864	18.8149	409	2.44499	167281	68417929	20.2237
355	2.81690	126025	44738875	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	45118016	18.8680	411	2.43309	168921	69426531	20.2731
357	2.80112	127449	45499293	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330	128164	45882712	18.9209	413	2.42131	170569	70444997	20.3224
359	2.78552	128881	46268279	18.9473	414	2.41 5 46	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	71473375	20.3715
361	2.77008	130321	47045881	19.0000	416	2.40385	173056	71991296	20.3961
362	2.76243	131044	47437928	19.0263	417	2.39808	173889	72511713	20.4206
363	2.75482	131769	47832147	19.0526	418	2.39234	174724	73034632	20.4450
364	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	48627125	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.1311	421	2.37530	177241	74618461	20.5183
367	2.72480	134689	49430863	19.1572	422	2.36967	178084	75151448	20.5426
368	2.71739	135424	49836032	19.1833	423	2.36407	178929	75686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.35849	179776	76225024	20.5913
370	2.70270	136900	50653000	19.2354	425	2.35294	180625	76765625	20.6155
371	2.69542	137641	51064811	19.2614	426	2.34742	181476	77308776	20.6398
372	2.68817	138384	51478848	19.2873	427	2.34192	182329	77854483	20.6640
373	2.68097	139129	51895117	19.3132	428	2.33645	183184	78402752	20.6882
374	2.67380	139876	52313624	19.3391	429	2.33100	184041	78953589	20.7123
375	2.66667	140625	52734375	19.3649	430	2.32558	184900	79507000	20.7364
376	2.65957	141376	53157376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	53582633	19.4165	432	2.31481	186624	80621568	20.7846
378	2.64550	142884	54010152	19.4422	433	2.30947	187489	81182737	20.8087
379	2.63852	143641	54439939	19.4679	434	2.30415	188356	81746504	20.8327
380 381 382 383 384	2.63158 2.62467 2.61780 2.61097 2.60417	144400 145161 145924 146689	54872000 55306341 55742968 56181887 56623104	19.4936 19.5192 19.5448 19.5704 19.5959	435 436 437 438 439	2.29885 2.29358 2.28833 2.28311 2.27790	189225 190096 190969 191844 192721	82312875 82881856 83453453 84027672 84604519	20.8567 20.8806 20.9045 20.9284 20.9523
385 386 387 388 389	2.59740 2.59067 2.58398 2.57732 2.57069	148225 148996 149769 150544 151321	57066625 57512456 57960603 58411072 58863869	19.6214 19.6469 19.6723 19.6977 19.7231	440 441 442 443 444	2.27273 2.26757 2.26244 2.25734 2.25225	193600 194481 195364 196249	85184000 85766121 86350888 86938307 87528384	20.9762 21.0000 21.0238 21.0476 21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	21.0950
391	2.55754	152881	59776471	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102	153664	60236288	19.7990	447	2.23714	199809	89314623	21.1424
393	2.54453	154449	60698457	19.8242	448	2.23214	200704	89915392	21.1660
394	2.53807	155236	61162984	19.8494	449	2.22717	201601	90518849	21.1896

12	$1000.\frac{1}{n}$	n^2	123	V 12	n	1000.1	n^2	n^3	√n
450	2.22222	202500	91125000	21.2132	505 506 507 508 509	1.98020	255025	128787625	22.4722
451	2.21729	203401	91733851	21.2368		1.97628	256036	129554216	22.4944
452	2.21239	204304	92345408	21.2603		1.97239	257049	130323843	22.5167
453	2.20751	205209	92959677	21.2838		1.96850	258064	131096512	22.5389
454	2.20264	206116	93576664	21.3073		1.96464	259081	131872229	22.5610
455	2.19780	207025	94196375	21.3307	510	1.96078	260100	132651000	22.5832
456	2.19298	207936	94818816	21.3542	511	1.95695	261121	133432831	22.6053
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6274
458	2.18341	209764	96071912	21.4009	513	1.94932	263169	135005697	22.6495
459	2.17865	210681	96702579	21.4243	514	1.94553	264196	135796744	22.6716
460	2.17391	211600	97336000	21.4476	515	1.94175	2652 2 5	136590875	22.6936
461	2.16920	212521	97972181	21.4709	516	1.93798	266256	137388096	22.7156
462	2.16450	213444	98611128	21.4942	517	1.93424	267289	138188413	22.7376
463	2.15983	214369	99252847	21.5174	518	1.93050	268324	138991832	22.7596
464	2.15517	215296	99897344	21.5407	519	1.92678	269361	139798359	22.7816
465	2.15054	216225	100544625	21.5639	520	1.92308	270400	1,40608000	22.8035
466	2.14592	217156	101194696	21.5870	521	1.91939	271441	1,41,420761	22.8254
467	2.14133	218089	101847563	21.6102	522	1.91571	272484	1,422,366,48	22.8473
468	2.13675	219024	102503232	21.6333	523	1.91205	273529	1,430,55667	22.8692
469	2.13220	219961	103161709	21.6564	524	1.90840	274576	1,438,778,24	22.8910
470	2.12766	220900	103823000	21.6795	525 526 527 528 529	1.90476	275625	144703125	22.9129
471	2.12314	221841	104487111	21.7025		1.90114	276676	145531576	22.9347
472	2.11864	222784	105154048	21.7256		1.89753	277729	146363183	22.9365
473	2.11416	223729	105823817	21.7486		1.89394	278784	147197952	22.9783
474	2.10970	224676	106496424	21.7715		1.89036	279841	148035889	23.0000
475	2.10526	225625	107171875	21.7945	530	1.88679	280900	148877000	23.0217
476	2.10084	226576	107850176	21.8174	531	1.88324	281961	149721291	23.0434
477	2.09644	227529	108531333	21.8403	532	1.87970	283024	150568768	23.0651
478	2.09205	228484	109215352	21.8632	533	1.87617	284089	151419437	23.0868
479	2.08768	229441	109902239	21.8861	534	1.87266	285156	152273304	23.1084
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	153130375	23.1301
481	2.07900	231361	111284641	21.9317	536	1.86567	287296	153990656	23.1517
482	2.07469	232324	111980168	21.9545	537	1.86220	288369	154854153	23.1733
483	2.07039	233289	112678587	21.9773	538	1.85874	289444	155720872	23.1948
484	2.06612	234256	113379904	22.0000	539	1.85529	290521	156590819	23.2164
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	157464000	23.2379
486	2.05761	236196	114791256	22.0454	541	1.84843	292681	158340421	23.2594
487	2.05339	237169	115501303	22.0681	542	1.84502	293764	159220088	23.2809
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544	1.83824	295936	160989184	23.3238
490	2.04082	240100	117649000	22.1359	545	1.83486	297025	161878625	23.3452
491	2.03666	241081	118370771	22.1585	546	1.83150	298116	162771336	23.3666
492	2.03252	242064	119095488	22.1811	547	1.82815	299209	163667323	23.3880
493	2.02840	243049	119823157	22.2036	548	1.82482	300304	164566592	23.4094
494	2.02429	244036	120553784	22.2261	549	1.82149	301401	165469149	23.4307
495	2.02020	245025	121287375	22.2486	550	1.81818	302500	16637 5000	23.4521
496	2.01613	246016	122023936	22.2711	551	1.81488	303601	167284151	23.4734
497	2.01207	247009	122763473	22.2935	552	1.81159	304704	168196608	23.4947
498	2.00803	248004	123505992	22.3159	553	1.80832	305809	169112377	23.5160
499	2.00401	249001	124251499	22.3383	554	1.80505	306916	170031464	23.5372
500	2.00000	250000	12500000	22.3607	555	1.80180	308025	170953875	23.5584
501	1.99601	251001	125751501	22.3830	556	1.79856	309136	171879616	23.5797
502	1.99203	252004	126506008	22.4054	557	1.79533	310249	172808693	23.6008
503	1.98807	253009	127263527	22.4277	558	1.79211	311364	173741112	23.6220
504	1.98413	254016	128024064	22.4499	559	1.78891	312481	174676879	23.6432

12	I 000. <u>I</u>	**************************************	n^3	√n	72	1000.1	n^2	n^3	122
560	1.78571	313600	175616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	315844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	316969	178453547	23.7276	618	1.61812	381924	236029032	24.8596
564	1.77305	318096	179406144	23.7487	619	1.61551	383161	237176659	24.8797
565 566 567 568 569	1.76991 1.76678 1.76367 1.76056	319225 320356 321489 322624 323761	180362125 181321496 182284263 183250432 184220009	23.7697 23.7908 23.8118 23.8328 23.8537	620 621 622 623 624	1.61290 1.61031 1.60772 1.60514 1.60256	384400 385641 386884 388129 389376	2383 2 8000 239483061 240641848 241804367 242970624	24.8998 24.9199 24.9399 24.9600 24.9800
570	1.75439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000
571	1.75131	326041	186169411	23.8956	626	1.59744	391876	245314376	25.0200
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374	628	1.59236	394384	247673152	25.0599
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799
575	1.73913	330625	190109375	23.9792	630	1.58730	396900	250047000	25.0998
576	1.73611	331776	191102976	24.0000	631	1.58479	398161	251239591	25.1197
577	1.73310	332929	192100033	24.0208	632	1.58228	399424	252435968	25.1396
578	1.73010	334084	193100552	24.0416	633	1.57978	400689	253636137	25.1595
579	1.72712	335241	194104539	24.0624	634	1.57729	401956	254840104	25.1794
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	1.72117	337561	196122941	24.1039	636	1.57233	404496	257259456	25.2190
582	1.71821	338724	197137368	24.1247	637	1.56986	405769	258474853	25.2389
583	1.71527	339889	198155287	24.1454	638	1.56740	407044	259694072	25.2587
584	1.71233	341056	199176704	24.1661	639	1.56495	408321	260917119	25.2784
585 586 587 588 589	1.70940 1.70648 1.70358 1.70068	342225 343396 344569 345744 346921	200201625 201230056 202262003 203297472 204336469	24.1868 24.2074 24.2281 24.2487 24.2693	640 641 642 643 644	1.56250 1.56006 1.55763 1.55521 1.55280	409600 410881 412164 413449 414736	2621440 0 0 263374721 264609288 2658477 0 7 267089984	25.2982 25.3180 25.3377 25.3574 25.3772
590	1.69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25.3969
591	1.69205	349281	206425071	24.3105	646	1.54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362
593	1.68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755
595 596 597 <u>5</u> 98 599	1.68067	354025	210644875	24.3926	650	1.53846	422500	274625000	25.4951
	1.67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147
	1.67504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343
	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
	1.66945	358801	214921799	24.4745	654	1.52905	427716	279726264	25.5734
600	1.66667	360000	216000000	24.4949	655	1.52672	429025	281011375	25.5930
601	1.66389	361201	217081801	24.5153	656	1.52439	430336	282300416	25.6125
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603	1.65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515
604	1.65563	364816	220348864	24.5764	659	1.51745	434281	286191179	25.6710
605	1.65289	366025	22144512 5	24.5967	660	1.51515	435600	287496000	25.6905
606	1.65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099
607	1.64745	368449	223648543	24.6374	662	1.51057	438244	290117528	25.7294
608	1.64474	369664	224755712	24.6577	663	1.50830	439569	291434247	25.7488
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292754944	25.7682
610	1.63934	372100	226981000	24.6982	665	1.50376	442225	294079625	25.7876
611	1.63666	373321	228099131	24.7184	666	1.50150	443556	295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	1.49925	444889	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	1.49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447561	299418309	25.8650

	T								
n	1000.1	112	n^3	√ 12	12	$1000.\frac{1}{n}$	n^2	n^3	12
							-		
670	1.49254	448900	300763000	25.8844	725	1.37931	525625	381078125	26.9258
671	1.49031	450241	302111711	25.9037	726	1.37741	527076	382657176	26.9444
672	1.48810	451584	303464448	25.9230	727	1.37552	528529	384240583	26.9629
673	1.48588	452929	304821217	25.9422	728	1.37363	529984	385828352	26.9815
674	1.48368	454276	306182024	25.9615	729	1.37174	531441	387420489	27.0000
							33-44-		-/10000
675	1.48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308915776	26.0000	731	1.36799	534361	390617891	27.0370
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555
678	1.47493	459684	311665752	26.0384	733	1.36426	537289	393832837	27.0740
679	1.47275	461041	313046839	26.0576	734	1.36240	538756	395446904	27.0924
680	1.47059	462400	211122000	26.0768	735	1.36054	540225	397065375	27.1109
186	1.46843	463761	314432000	26.0960	736	1.35870	541696	398688256	
682	1.46628		315821241	26.1151		1.35685		0,	27.1293
683	1 2	465124		26.1343	737		543169	400315553	27.1477 27.1662
	1.46413	467856	318611987		738	1.35501	544644	401947272	
684	1.46199	407030	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	1.35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	1.34953	549081	406869021	27.2213
687	1.45560	471969	324242703	26.2107	742	1.34771	550564	408518488	27.2397
688	1.45349	47 3344	325660672	26.2298	743	1.34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.24ŚS	744	1.34409	553536	411830784	27.2764
600									
690	1.44928	476100	328509000	26.2679	745	1.34228	555025	413493625	27.2947
169	1.44718	477481	32993937 I	26.2869	746	1.34048	556516	415160936	27.3130
692	1.44509	478864	331 37 3888	26.3059	747	1.33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26.3249	748	1.33690	559504	418508992	27.3496
694	1.44092	481636	334255384	26.3439	749	1.33511	561001	420189749	27.3679
695	1.43885	483025	225702375	26.3629	750	1 22222	562500	421875000	27.3861
696	1.43678	484416	335702375	26.3818	751	1.33333	564001		
697	,		337153536	26.4008	752			423564751	27.4044
698	1.43472	485809	338608873	26.4197		1.32979	565504	425259008	27.4226
699	1.43266	488601	340368392	26.4386	753	1.32626	568516	426957777	27.4408
099	1.43002	400001	341 532099	20.4300	754	1.32020	300310	420001004	27.4591
700	1.42857	490000	343000000	26.4575	755	1.32450	570025	430368875	27.4773
701	1.42653	491401	344472101	26.4764	756	1.32275	571536	432081216	27.4955
702	1.42450	492804	345948408	26.4953	7.57	1.32100	573049	433798093	27.5136
703	1.42248	494209	347428927	26.5141	7 58	1.31926	574564	435519512	27.5318
704	1.42045	495616	348913664	26.5330	759	1.31752	576081	437245479	27.5500
705		100000	250,00625	26 9	760		6		(0-
	1.41844	497025	350402625	26.5518	760	1.31579	577600	438976000	27.5681
706	1.41643	498436	351895816	26.5707	761	1.31406	579121	440711081	27.5862
707	1.41443	499849	353393243	26.5895	762	1.31234	580644	442450728	27.6043
708	1.41243	501264	354894912	26.6083	763	1.31062	582169	444194947	27.6225
709	1.41044	502681	356400829	26.6271	764	1.30890	583696	445943744	27.6405
710	1.40845	504100	357911000	26.6458	765	1.30719	585225	447697125	27.6586
711	1.40647	505521	359425431	26.6646	766	1.30548	586756	449455096	27.6767
712	1.40449	506944	360944128	26.6833	767	1.30378	588289	451217663	27.6948
713	1.40252	508369	362467097	26.7021	768	1.30208	589824	452984832	27.7128
714	1.40056	509796	363994344	26.7208	769	1.30039	591361	454756609	27.7308
715	1.39860	511225	365525875	26.7395	770	1.29870	592900	456533000	27.7489
716	1.39665	512656	367061696	26.7582	77 I	1.29702	594441	458314011	27.7669
717	1.39470	514089	368601813	26.7769	772	1.29534	595984	460099648	27.7849
718	1.39276	51 5524	370146232	26.7955 26.8142	773	1.29366	597529	461889917	27.8029
719	1.39082	516961	371694959		774	1.29199	599076	463684824	27.8209
720	1.38889	518400	373248000	26.8328	775	1.29032	600625	465484375	27.8388
721	1.38696	519841	374805361	26.8514	776	1.28866	602176	467288576	27.8568
722	1.38504	521284	376367048	26.8701	777	1.28700	603729	469097433	27.8747
723	1.38313	522729	377933067	26.8887	778	1.28535	605284	470910952	27.8927
724	1.38122	524176	379503424	26.9072	779	1.28370	606841	472729139	27.9106
						0.			

n	1000.1	n^2	n^3	J 12	12	1000.1	n^2	123	· √n
<i>n</i>									
7 80	1.28205	608400 609961	474552000 476379541	27.9285 27.9464	835 836	1.19760	69722 5 698896	582182875 584277056	28.8964 28.9137
782	1.27877	611524	478211768	27.9643	837	1.19474	700569	586376253	28.9310
783 784	1.27714	613089 614656	480048687	27.9821	838 839	1.19332	702244	588480472	28.9482 28.9655
785	1.27389	616225	483736625	28.0179	840	1.19048	705600	592704000	28.9828
786	1.27226	617796	485587656	28.0357	841	1.18906	707281	594823321	29.0000
787 788	1.27065	619369 62 0 944	489303872	28.0535 28.0713	842	1.18624	708964 710649	596947688	29.0172 29.0345
789	1.26743	622521	491169069	28.0891	844	1.18483	712336	601211584	29.0517
790	1.26582	624100 625681	493039000 494913671	28.1069 28.1247	845 846	1.18343	714025	603351125	29.0689 29.0861
792	1.26263	627264	496793088	28.1425	847	1.18064	717409	607645423	29.1033
793 794	1.25103	628849 63 0 436	498677257 500566184	28.1603 28.1780	848 849	1.17925	719104	609800192	29.1204 29.13 7 6
795	1.25786	632025	502459875	28.1957	850	1.17647	722500	614125000	29.1 548
796	1.25628	633616	504358336	28.2135	851 852	1.17509	724201	616295051	29.1719 29.1890
797 798	1.25471	635209 636804	506261573	28.2312 28.2489	853	1.17371	725904 727609	620650477	29.1090
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
800	1.25000	640000	512000000	28.2843	855	1.16959	731025 732736	625026375 627222016	29.2404
801 802	1.24844	641601 643204	51 3922401 51 5849608	28.3019 28.3196	856 857	1.16686	734449	629422793	29.2575 29.2746
803	1.24533	644809	517781627	28.3373	858	1.16550	736164 737881	631628712	29.2916 29.3087
804	1.24378	646416	519718464	28.3549	859 860	1.16279	739600	636056000	29.3258
806	1.24224	648 0 25 649636	521660125 523606616	28.3725 28.3901	861	1.16144	741321	638277381	29.3238
807	1.23916	651249	525557943	28.4077	862	1.16009	743044	640503928	29.3598
808	1.23762	652864 654481	527514112 529475129	28.4253 28.4429	863 864	1.15741	744769 746496	642735647 644972 54 4	29.3769
810	1.23457	656100	531441000	28.4605	865	1.1 5607	748225	647214625	29.4109
811	1.23305	657721	533411731 535387328	28.4781 28.4956	866 867	1.15473	749956 751689	649461896 651714363	29.42 7 9 29.4449
813	1.23001	660969	537367797	28.5132	868	1.15207	753424	653972032	29.4618
814	1.22850	662596	539353144	28.5307	869	1.15075	755161	656234909	29.4788
815 816	1.22699	664225 665856	541343375 543338496	28.5482 28.5657	870 871	1.14943	756900 758641	658503000 660776311	29.4958 29.5127
817	1.22399	667489	545338513	28.5832	872	1.14679	760384	663054848	29.5296
818	1.22249	669124 670761	547343432 549353259	28.6007 28.6182	873 874	1.14548	762129 763876	665338617 667627624	29.5466 29.5635
820	1.21951	672400	551368000	28.6356	875	1.14286	765625	669921875	29.5804
821	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
822	1.21655	675684	555412248	28.6705 28.6880	877 878	1.14025	769129	674526133 676836152	29.6142
824	1.21359	67 73 29 67 8 976	557441767 559476224	28.7054	879	1.13766	772641	679151439	29.6479
825	1.21212	680625	561515625	28.7228	880	1.13636	774400	681472000	29.6648
826 827	1.21065	682276 683929	563559976 565609283	28.7402 28.7576	881 882	1.13507	776161 777924	683797841 686128968	29.6816
828	1.20773	685584	567663552	28.7750	883	1.13250	779689	688465387	29.7153
829	1.20627	687241	569722789	28.7924	884	1.13122	781456	690807104	29.7321
830	1.20482	688900	571787000 573856191	28.8097 28.8271	885 886	1.12994	78322 5 784996	693154125 695506456	29.7489 29.7658
832	1.20192	692224	57 5930368	28.8444	887	1.12740	786769	697864103	29.7825
833 834	1.19904	693889	578009537 580093704	28.8617 28.8791	888 889	1.12613	788544 790321	700227072	29.7993 29.8161
	77-4	7,555	3 731 - 4						

_									
72	1000.1	n^2	72 ³	J n	n	1000.1	n^2	n^3	Vn.
	1000.			4		i coo.n	**		V
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	1.12233	793881	707347971	29.8496	946	1.05708	894916	846590536	30.7571
892	1.12108	795664	709732288	29.8664	947	1.05597	896809	849278123	30.7734
893	1.11982	797449	712121957	29.8831	948	1.05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	1.05374	900601	854670349	30.8058
094	111103/	799230	714310904	29.0990	949	11033/4	900001	0340/0349	30.0030
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
897	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898	1.11359	806404	724150792	29.9666	953	1.04932	908209	865523177	30.8707
899	1.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
099	233	000201	720372099	29.9033	234	1104022	9.0110	000230004	30.0009
900	1111111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	811801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	813604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
	1.10619	817216	738763264	30.0666			919681	881974079	
904	1.10019	01/210	/30/03204	30.0000	959	1.04275	919001	0019/40/9	30.9677
905	1.10497	819025	741217625	30.0832	960	1.04167	921600	884736000	30.9839
906	1.10375	820836	743677416	30.0998	961	1.04058	923521	887503681	31.0000
907		822649	746142643	30.1164	962	1.03950	925444	890277128	31.0161
908	1.10254					1.03930		893056347	
	1.10132	824464	748613312	30.1330	963		927369		31.0322
909	1.10011	826281	751089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	828100	7 5 3 5 7 1 0 0 0	30.1662	965	1.03627	931225	898632125	31.0644
116	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
-	1.09529	833569	761048497	30.2159	968	1.03306	937024	907039232	31.1127
913		835396		0 07					31.1288
914	1.09409	035390	763551944	30.2324	969	1.03199	938961	909853209	31.1200
915	1.09290	837225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
_	- '	840889		30.2820		1.02881	944784	918330048	31.1769
917	1.09051		771095213		972				
	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	844561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.3315	975	1.02564	950625	926859375	31.2250
921	1.08578	848241	781229961	30.3480	976	1.02459	952576	929714176	31.2410
922	1.08460	850084	783777448	30.3645	977	1.02354	954529	932574833	31.2570
923	1.08342	851929		30.3809	978	1.02249	956484		
, ,			786330467 788889024	0 0 1				935441352	31.2730
924	1.08225	853776	700009024	30.3974	979	1.02145	958441	938313739	31.2890
925	80180.1	855625	791453125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	964324	946966168	31.3369
928	1.07759	861184	799178752	30.4631	983	1.01729	966289	949862087	31.3528
929	1.07643	863041	801765089	30.4795	984	1.01626	968256	952763904	31.3688
929	1.0,043	.,03041	301/33009	30.4/93	904	1.01020	900230	932703904	33000
930	1.07 527	864900	804357000	30.4959	985	1.01523	970225	955671625	31.3847
931	1.07411	866761	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	974169	961 504803	31.4166
933	1.07181	870489	812166237	30.5450	988	1.01215	976144	964430272	31.4325
933	1.07066	872356	814780504	30.5614	989	1.01112	978121	967361669	31.4484
		-7-330	3.4,30304	30.3014),	7-730.009	3
935	1.06952	874225	817400375	30.5778	990	0.01010	980100	970299000	31.4643
936	1.06838	876096	820025856	30. 5941	991	1.00908	982081	973242271	31.4802
937	1.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960
938	1.06610	879844	825293672	30.6268	993	1.00705	986049	979146657	31.5119
939	1.06496	881721	827936019	30.6431	994	1.00604	988036	982107784	31.5278
		00.6							
940	1.06383	883600	830584000	30.6594	995	1.00503	990025	985074875	31.5436
. 941	1.06270	885481	833237621	30.6757	996	1.00402	992016	988047936	31.5595
942	1.06157	887364	835896888	30.6920	997	1.00301	994009	991026973	31.5753
943	1.06045	889249	838561807	30.7083	998	1.00200	996004	994011992	31.5911
944	1.05932	891136	841232384	30.7246	999	1.00100	998001	997002999	31.6070

TABLE 10

N.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115 116 117 118 119	0607 0645 0682 0719	0611 0648 0686 0722 0759	0615 0652 0689 0726 0763	0618 0656 0693 0730 0766	0622 0660 0697 0734 0 7 70	0626 0663 0700 0737 0774	0630 0667 0704 0741	0633 0671 0708 0745 0781	0637 0674 0711 0748 0785	0641 0678 0715 0752 0788	0645 0682 0719 0755 0792
120 121 122 123 124	0792 0828 0864 0899 0934	0795 0831 0867 0903 0938	0799 0835 0871 0906 0941	0803 0839 0874 0910	0806 0842 0878 0913 0948	0810 0846 0881 0917 0952	0813 0849 0885 0920	0817 0853 0888 0924 0959	0821 0856 0892 0927 0962	0824 0860 0896 0931 0966	0828 0864 0899 0934 0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	1159	1163	1166	1169	1173
131	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	1271
134	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492 ¹
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1553
143	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	1584
144	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1614
145 146 147 148 149	1614 1644 1673 1703 1732	1617 1647 1676 1706	1620 1649 1679 1708 1738	1623 1652 1682 1711 1741	1626 1655 1685 1714 1744	1629 1658 1688 1717 1746	1632 1661 1691 1720 1749	1635 1664 1694 1723 1752	1638 1667 1697 1726 1755	1641 1670 1700 1729 1758	1644 1673 1703 1732 1761

LOGARITHMS

N.	0	1	2	3	4	5	6	7	8	9	10
150 151 152 153 154	1761 1790 1818 1847 1875	1764 1793 1821 1850 1878	1767 1796 1824 1853 1881	1770 1798 1827 1855 1884	1772 1801 1830 1858 1886	1775 1804 1833 1861 1889	1778 1807 1836 1864 1892	1781 1810 1838 1867 1895	1784 1813 1841 1870 1898	1787 1816 1844 1872	1790 1818 1847 1875 1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2449	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2 7 88
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2858	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

TABLE 11 LOGARITHMS

N	0	1	2	3	4	5	6	7	8	9			P. F		
1											1	2	3	4	5
10 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	4 4 3 3 3	8 8 7 6 6	12 11 10 10	17 15 14 13	21 19 17 16
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	3 3 2 2 2 2	6 5 5 4	8 8 7 7 7	11 11 10 9	14 13 12 12
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3 ⁸ 74	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2	4 4 4 4	6 6 6 5 5	8 8 7 7	11 10 10 9
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 4757	2 2 2 2 1	3 3 3 3	5 5 5 4	7 7 6 6 6	9 8 8 8 7
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	I I I I	3 3 3 3	4 4 4 4 4	6 5 5 5	7 7 7 6 6
35 36 37 38 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	I I I I	2 2 2 2	4 4 3 3 3	5 5 5 4	6 6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	607 5 6180 6284 638 5 648 4	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	I I I I	2 2 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6384 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	I I I I	2 2 2 2	3 3 3 3 3	4 4 4 4 4	5 5 4 4
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	I I I I	2 2 2 2 2	3 2 2 2	3 3 3 3	4 4 4 4 4

LOGARITHMS

	1														
N.	0	1	2	3	4	5	6	7	8	9	1	2	P. F	4	
55 56 57 58	7404 7482 7559 7634	7412 7490 7566 7642	7419 7497 7574 7649	74 ² 7 75 ⁰ 5 75 ⁸ 2 7 ⁶ 57	7435 7513 7589 7664	7443 7520 7597 7672	7451 7528 7604 7679	74 5 9 7536 7612 7686	7466 7543 7619 7694	7474 7551 7627 7701	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 I	2 2 2 2	3 3 3 3	4 4 4 4
59 60 61 62 63 64	7709 7782 7853 7924 7993 8062	7716 7789 7860 7931 8000 8069	7723 7796 7868 7938 8007 8075	7731 7803 7875 7945 8014 8082	7738 7810 7882 7952 8021 8089	7745 7818 7889 7959 8028 8096	7752 7825 7896 7966 8035 8102	7760 7832 7903 7973 8041 8109	77 ⁶ 7 7839 7910 7980 8048 8116	7774 7846 7917 7987 8055 8122	I	I	2 2 2 2 2	3 3 3 3 3	4 4 3 3 3 3
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I	2 2 2 2 2	3 3 3 3	3 3 3 3 3
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 8525 8585 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2	3 3 3 3
75 76 77 78 79	8751 8308 8865 8921 8976	87 56 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	8785 8842 8899 8954 9009	8791 8848 8904 8960 9015	8797 8854 8910 8965 9020	8802 8859 8915 8971 9025	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2	2 2 2 2	3 3 3 3
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	I I I I	I I I I	2 2 2 2	2 2 2 2	3 3 3 3
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 9 5 28	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	I 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 1 1 1	2 2 2 2	3 2 2 2
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9562 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	00000	I I I I	I I I I	2 2 2 2	2 2 2 2 2
95 96 97 98 99	977 7 98 23 9868 9912 9956	9782 9827 9872 9917 9961	9786 9832 9877 9921 99 ⁶ 5	9791 9836 9881 9926 9969	9795 9841 9886 9930 9974	9800 9845 9890 9934 9978	9805 9850 9894 9939 9983	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	00000	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2

TABLE 12
ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9			P. I	٠.	
											1	2	3	4	5
.00 .01 .02 .03 .04	1000 1023 1047 1072 1096	1002 1026 1050 1074 1099	1005 1028 1052 1076 1102	1007 1030 1054 1079 1104	1009 1033 1057 1081 1107	1012 1035 1059 1084 1109	1014 1038 1062 1086	1016 1040 1064 1089	1019 1042 1067 1091	1021 1045 1069 1094 1119	0 0 0 0	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.05 .06 .07 .08 .09	1122 1148 1175 1202 1230	1125 1151 1178 1205 1233	1127 1153 1180 1208 1236	1130 1156 1183 1211 1239	1132 1159 1186 1213 1242	1135 1161 1189 1216 1245	1138 1164 1191 1219 1247	1140 1167 1194 1222 1250	1143 1169 1197 1225 1253	1146 1172 1199 1227 1256	0 0 0 0	I I I	I I I I	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.10 .11 .12 .13 .14	1259 1288 1318 1349 1380	1262 1291 1321 1352 1384	1265 1294 1324 1355 1387	1 268 1 297 1 327 1 358 1 390	1271 1300 1330 1361 1393	1274 1303 1334 1365 1396	1276 1306 1337 1368 1400	1279 1309 1340 1371 1403	1282 1312 1343 1374 1406	1285 1315 1346 1377 1409	0 0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	I I I I I	1 2 2 2 2
.15 .16 .17 .18 .19	1413 1445 1479 1514 1549	1416 1449 1483 1517 1552	1419 1452 1486 1521 1556	1422 1455 1489 1524 1560	1426 1459 1493 1528 1563	1429 1462 1496 1531 1567	1432 1466 1500 1535 1570	1435 1469 1503 1538 1574	1439 1472 1507 1542 1578	1442 1476 1510 1545 1581	0 0 0 0	I I I I	I I I I	I I I I	2 2 2 2 2
.20 .21 .22 .23 .24	1585 1622 1660 1698 1738	1589 1626 1663 1702 1742	1592 1629 1667 1706 1746	1596 1633 1671 1710 1750	1600 1637 1675 1714 1 754	1603 1641 1679 1718 1758	1607 1644 1683 1722 1762	1611 1648 1687 1726 1766	1614 1652 1690 1730 1770	1618 1656 1694 1734 1774	00000	1 1 1 1	I I I I	I 2 2 2 2	2 2 2 2 2
.25 .26 .27 .28 .29	1778 1820 1862 1905 1950	1782 1824 1866 1910	1786 1828 1871 1914 1959	1791 1832 1875 1919	1795 1837 1879 1923 1968	1799 1841 1884 1928 1972	1803 1845 1888 1932 1977	1807 1849 1892 1936 1982	1811 1854 1897 1941 1986	1816 1858 1901 1945 1991	00000	I I I I	I f I I	2 2 2 2 2	2 2 2 2 2
.30 .31 .32 .33 .34	1995 2042 2089 2138 2188	2000 2046 2094 2143 2193	2004 2051 2099 2148 2198	2009 2056 2104 2153 2203	20 1 4 2061 2109 2158 2208	2018 2065 2113 2163 2213	2023 2070 2118 2168 2218	2028 2075 2123 2173 2223	2032 2080 2128 2178 2228	2037 2084 2133 2183 2234	0 0 0 0	I I I I	1 I I 1 2	2 2 2 2 2	2 2 2 3
.35 .36 .37 .38 .39	2239 2291 2344 2399 2455	2244 2296 2350 2404 2460	2249 2301 2355 2410 2466	2254 2307 2360 2415 2472	2259 2312 2366 2421 2477	2265 2317 2371 2427 2483	2270 2323 2377 2432 2489	2275 2328 2382 2438 2495	2280 2333 2388 2443 2500	2286 2339 2393 2449 2506	I I I I	I I I I	2 2 2 2	2 2 2 2	3 3 3 3 3
.40 .41 .42 .43 .44	2512 2570 2630 2692 2754	2518 2576 2636 2698 2761	2523 2582 2642 2704 2767	2529 2588 2649 2710 2773	2535 2594 2655 2716 2780	2541 2600 2661 2723 2786	2547 2606 2667 2729 2793	2553 2612 2673 2735 2799	2559 2618 2679 2742 2805	2564 2624 2685 2748 2812	I I I I 1	I I I I	2 2 2 2 2	2 2 3 3	3 3 3 3 3 3
. 45 .46 .47 .48 .49	2818 2884 2951 3020 3090	2825 2891 2958 3027 3097	2831 2897 2965 3°34 3105	2838 2904 2972 3041 3112	2844 2911 2979 3048 3119	2851 2917 2985 3055 3126	2858 2924 2992 3062 3133	2864 2931 2999 3069 3141	2871 2938 3006 3076 3148	2877 2944 3013 3083 3155	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2 2	3 3 3 3 3	3 3 4 4

ANTILOGARITHMS

	_	-	0	3	4	5	6	7	8	9		I	P. P		
	0	1	2	<u> </u>	*					9	1	2	3	4	5
.50 .51 .52 .53 .54	3162 3236 3311 3388 3467	3170 3243 3319 3396 3475	3177 3251 3327 3404 3483	3184 3258 3334 3412 3491	3192 3266 3342 3420 3499	3199 3273 3350 3428 3508	3206 3281 3357 3436 3516	3214 3289 3365 3443 3524	3221 3296 3373 3451 3532	3228 3304 3381 3459 3540	I I I I	I 2 2 2 2	2 2 2 2	3 3 3 3 3	4 4 4 4
.55 .56 .57 .58 .59	3548 3631 3715 3802 3890	3556 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 3917	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 3767 3855 3945	3606 3690 3776 3864 3954	3614 3698 3784 3873 3963	3622 3707 3793 3882 3972	I I I I	2 2 2 2	3 3 3 3	3 3 4 4	4 4 4 5
.60 .61 .62 .63 .64	3981 4074 4169 4266 4365	3990 4083 4178 4276 4375	3999 4093 4188 4285 4385	4009 4102 4198 4295 4395	4018 4111 4207 4305 4406	4027 4121 4217 4315 4416	4036 4130 4227 4325 4426	4046 4140 4236 4335 4436	4055 4150 4246 4345 4446	4064 4159 4256 4355 4457	I I I	2 2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 5 5
.65 .66 .67 .68 .69	4467 457 I 4677 4786 4898	4477 4581 4688 4797 4909	4487 4592 4699 4808 4920	4498 4603 4710 4819 4932	4508 4613 4721 4831 4943	4519 4624 4732 4842 4955	4529 4634 4742 4853 4966	4539 4645 4753 4864 4977	4550 4656 4764 4875 4989	4560 4667 4775 4887 5000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	4 4 4 5	5 5 6 6
.70 .71 .72 .73 .74	5012 5129 5248 5370 5495	5023 5140 5260 5383 5508	5035 5152 5272 5395 5521	5047 5164 5284 5408 5534	5058 5176 5297 5420 5546	5070 5188 5309 5433 5559	5082 5200 5321 5445 5572	5093 5212 5333 5458 5585	5105 5224 5346 5470 5598	5117 5236 5358 5483 5610	I I I I	2 2 3 3	4 4 4 4	5 5 5 5	6 6 6 6
.75 .76 .77 .78 .79	5623 5754 5888 6026 6166	563 6 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 6209	567 5 5808 5943 6081 6223	5689 5821 5957 6095 6237	5702 5834 5970 6109 6252	5715 5848 5984 6124 6266	5728 5861 5998 6138 6281	5741 5875 6012 6152 6295	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3 3 3 3	4 4 4 4 4	5 5 6 6	7 7 7 7 7
.80 .81 .82 .83 .84	6310 6457 6607 6761 6918	6324 6471 6622 6776 6934	6339 6486 6637 6792 6950	6353 6501 6653 6808 6966	6368 6516 6668 6823 6982	6383 6531 6683 6839 6998	6397 6546 6699 6855 7015	6412 6561 6714 6871 7031	6427 6577 6730 6887 7047	6442 6592 6745 6902 7063	I 2 2 2 2 2	3 3 3 3	4 5 5 5 5	6 6 6	7 8 8 8
. 85 .86 .87 .88 .89	7079 7244 7413 7586 7762	7096 7261 7430 7603 7780	7112 7278 7447 7621 7798	7129 7295 7464 7638 7816	7145 7311 7482 7656 7834	716 1 7328 7499 7674 7852	7178 7345 7516 7691 7870	7194 7362 7534 7709 7889	7211 7379 7551 7727 7907	7228 7396 7568 7745 7925	2 2 2 2 2	3 3 4 4	5 5 5 5	7 7 7 7 7	8 8 9 9
.90 .91 .92 .93 .94	7943 8128 8318 8511 8710	7962 8147 8337 8531 8730	7980 8166 8356 8551 8750	7998 8185 8375 8570 8770	8017 8204 8395 8590 8790	8035 8222 8414 8610 8810	8054 8241 8433 8630 8831	8072 8260 8453 8650 8851	8091 8279 8472 8670 8872	8110 8299 8492 8690 8892	2 2 2 2 2	4 4 4 4 4	6 6 6	7 8 8 8	9 9 10 10 10
.95 .96 .97 .98 .99	8913 9120 9333 9550 9772	8933 9141 9354 9572 9795	8954 9162 9376 9594 9817	8974 9183 9397 9616 9840	8995 9204 9419 9638 9863	9016 9226 9441 9661 9886	9036 9247 9462 9683 9908	9057 9268 9484 9705 9931	9078 9290 9506 9727 9954	9099 9311 9528 9750 9977	2 2 2 2 2 2	4 4 4 5	6 6 7 7 7	8 8 9 9	11 11 11

TABLE 13

	0	1	2	3	4	5	6	7	8	9	10
.900	7943	7945	7947	7949	7951	795 ²	7954	7956	7958	7960	7962
.901	7962	7963	7965	7967	7969	7971	7973	7974	7976	7978	7980
.902	7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
.903	7998	8000	8002	8004	8006	8008	8009	8011	8013	8015	8017
.904	8017	8019	8020	8022	8024	8026	8028	8030	8032	8033	8035
.905	8035	8037	8039	8041	8043	8045	8046	8048	8050	8052	8054
.906	8054	8056	8057	8059	8061	8063	8065	8067	8069	8070	8072
.907	8072	8074	8076	8078	8080	8082	8084	8085	8087	8089	8091
.908	8091	8093	8095	8097	8098	8100	8102	8104	8106	8108	8110
.909	8110	8111	8113	8115	8117	8119	8121	8123	8125	8126	8128
.910	8128	8130	8132	8134	8136	8138	8140	8141	8143	8145	8147
.911	8147	8149	8151	8153	8155	8156	8158	8160	8162	8164	8166
.912	8166	8168	8170	8171	8173	8175	8177	8179	8181	8183	8185
.913	8185	8187	8188	8190	8192	8194	8196	8198	8200	8202	8204
.914	8204	8205	8207	8209	8211	8213	8215	8217	8219	8221	8222
.915	8222	8224	8226	8228	8230	8232	8234	8236	8238	8239	8241
.916	8241	8243	8245	8247	8249	8251	8253	8255	8257	8258	8260
.917	8260	8262	8264	8266	8268	8270	8272	8274	8276	8278	8279
.918	8279	8281	8283	8285	8287	8289	8291	8293	8295	8297	8299
.919	8299	8300	8302	8304	8306	8308	8310	8312	8314	8316	8318
.920	8318	8320	8321	8323	8325	8327	8329	8331	8333	8335	8337
.921	8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
.922	8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
.923	8375	8377	8379	8381	8383	8385	8387	8389	8391	8393	8395
.924	8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
.925	8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
.926	8433	8435	8437	8439	8441	8443	8445	8447	8449	8451	8453
.927	8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
.928	8472	8474	8476	8478	8480	8482	8484	8486	8488	8490	8492
.929	8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	8511
.930	8511	8513	8515	8517	8519	8521	8523	8525	8527	8529	8531
.931	8531	8533	8535	8537	8539	8541	8543	8545	8547	8549	8551
.932	8551	8553	8555	8557	8559	8561	8562	8564	8566	8568	8570
.933	8570	8572	8574	8576	8578	8580	8582	8584	8586	8588	8590
.934	8590	8592	8594	8596	8598	8600	8602	8604	8606	8608	8610
.935	8610	8612	8614	8616	8618	8620	8622	8624	8626	8628	8630
.936	8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
.937	8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
.938	8670	8672	8674	8676	8678	8680	8682	8684	8686	8688	8690
.939	8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
.940	8710	8712	8714	8716	8718	8720	8722	8724	8726	8728	8730
.941	8730	8732	8734	8736	8738	8740	8742	8744	8746	8748	8750
.942	8750	8752	8754	8756	8758	8760	8762	8764	8766	876\$	8770
.943	8770	8772	8774	8776	8778	8780	8782	8784	8786	8788	8790
.944	8790	8792	8794	8796	8798	8800	8802	8804	8806	8808	8810
.945 .946 .947 .948 .949	8810 8831 8851 8872 8892	8813 8833 8853 8874 8894	8815 8835 8855 8876 8896	8817 8837 8857 8878 8898	8819 8839 8859 8880 8900	8821 8841 8861 8882 8902	8823 8843 8863 8884 8904	8825 8845 8865 8886 8906	8827 8847 8867 8888 8908	8829 8849 8870 8890	8831 8851 8872 8892 8913

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	10
.950	8913	8915	8917	\$919	8921	8923	8925	8927	8929	8931	8933
.951	8933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
.952	8954	8956	8958	8960	8962	8964	8966	8968	8970	8972	8974
.953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
.954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
.955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
.956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
.957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
.959	9099	9101	9103	9105	9108	9110	9112	9114	9116	9118	9120
.960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
.962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
.963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
.964	9204	9207	9209	9211	9213	9215	9217	9219	9221	9224	9226
.965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
.966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
.967	9268	9270	9273	9275	9277	9279	9281	9283	9285	928 8	9290
.968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	9311
.969	9311	9313	9315	9318	9320	9322	9324	9326	9328	9330	9333
.970	9333	9335	9337	9339	9341	9343	9345	9348	9350	9352	9354
.971	9354	9356	9358	9361	9363	9365	9367	9369	9371	9373	9376
.972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
.973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
.974	9419	9421	9423	9425	9428	9430	9432	9434	9436	9438	9441
.975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
.976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
.977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
.978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
.979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
980	9550	9552	9554	9557	9559	9561	9563	9565	9568	9570	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
.982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
.985	9661	9663	9665	9667	9669	9672	9674	9676	9678	9681	9683
.986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
.987	97°5	9707	9710	9712	9714	9716	9719	9721	9723	9725	9727
.988	97°27	9730	9732	9734	9736	9739	9741	9743	9745	9748	9750
.989	97°50	9752	9754	9757	9759	9761	9763	9766	9768	9770	9772
.990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	9811	9813	9815	9817
.992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
.993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
.994	9863	9865	9867	9870	9872	9874	9876	9879	9881	9883	9886
.995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
.996	9908	9911	9913	9915	9917	9920	9922	9924	9927	9929	9931
.997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
.998	9954	9956	9959	9961	9963	9966	9968	9970	9972	9975	9977
.999	9977	9979	9982	9984	9986	9988	9991	9993	9995	9998	0000

TABLE 14

CIRCULAR (TRIGONOMETRIC) FUNCTIONS

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RA	GRI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.0000 0.0029 0.0058 0.0087 0.0116 0.0145	0°00′ 10 20 30 40 50	.0000	1.0000 0.0000 1.0000 .0000 1.0000 .0000 1.0000 .0000 .9999 .0000	.0000	∞ ∞ 343.77 2.5363 171.89 .2352 114.59 .0591 85.940 1.9342 68.750 .8373	90°00′ 1.570 50 1.56 40 1.56 30 1.56 20 1.555	79 50 21 92
0.0175 0.0204 0.0233 0.0262 0.0291 0.0320	1°00′ 10 20 30 40 50	.0175 8.2419 .0204 .3088 .0233 .3668 .0262 .4179 .0291 .4637 .0320 .5050	.9998 9.9999 .9998 .9999 .9997 .9999 .9996 .9998 .9995 .9998	.0175 8.2419 .0204 .3089 .0233 .3669 .0262 .4181 .0291 .4638 .0320 .5053	57.290 1.7581 49.104 .6911 42.964 .6331 38.188 .5819 34.368 .5362 31.242 .4947	89°00′ 1.555 50 1.556 40 1.547 30 1.544 20 1.541 10 1.538	75 46 17
0.0349 0.0378 0.0407 0.0436 0.0465 0.0495	2°00′ 10 20 30 40 50	.0349 8.5428 .0378 .5776 .0407 .6097 .0436 .6397 .0465 .6677 .0494 .6940	.9994 9.9997 .9993 .9997 .9992 .9996 .9990 .9996 .9989 .9995 .9988 .9995	.0349 8.5431 .0378 .5779 .0407 .6101 .0437 .6401 .0466 .6682 .0495 .6945	28.636	88°00′ 1.533 50 1.533 40 1.533 30 1.527 20 1.524 10 1.521	30 01 72 43
0.0524 0.0553 0.0582 0.0611 0.0640 0.0669	3°00′ 10 20 30 40 50	.0523 8.7188 .0552 .7423 .0581 .7645 .0610 .7857 .0640 .8059 .0669 .8251	.9986 9.9994 .9985 .9993 .9983 .9993 .9981 .9992 .9980 .9991 .9978 .9990	.0524 8.7194 .0553 .7429 .0582 .7652 .0612 .7865 .0641 .8067 .0670 .8261	19.081 1.2806 18.075 .2571 17.169 .2348 16.350 .2135 15.605 .1933 14.924 .1739	87°00′ 1.518 50 1.515 40 1.512 30 1.500 20 1.500 10 1.503	55 26 97 68
0.0698 0.0727 0.0756 0.0785 0.0814 0.0844	4°00′ 10 20 30 40 50	.0698 8.8436 .0727 .8613 .0756 .8783 .0785 .8946 .0814 .9104 .0843 .9256	.9976 9.9989 .9974 .9989 .9971 .9988 .9969 .9987 .9967 .9986 .9964 .9985	.0699 8.8446 .0729 .8624 .0758 .8795 .0787 .8960 .0816 .9118 .0846 .9272	14.301 1.1554 13.727 .1376 13.197 .1205 12.706 .1040 12.251 .0882 11.826 .0728	86°00′ 1.501 50 1.498 40 1.495 30 1.492 20 1.486 10 1.486	81 52 23 93
0.0873 0.0902 0.0931 0.0960 0.0989 0.1018	5°00′ 10 20 30 40 50	.0872 8.9403 .0901 .9545 .0929 .9682 .0958 .9816 .0987 .9945 .1016 9.0070	.9962 9.9983 .9959 .9982 .9957 .9981 .9954 .9980 .9951 .9979 .9948 .9977	.0875 8.9420 .0904 .9563 .0934 .9701 .0963 .9836 .0992 .9966 .1022 9.0093	11.430 1.0580 11.059 .0437 10.712 .0299 10.385 .0164 10.078 .0034 9.7882 0.9907	85°00′ 1.483 50 1.486 40 1.477 30 1.474 20 1.471 10 1.469	06 77 48 19
0.1047 0.1076 0.1105 0.1134 0.1164 0.1193	6°00 10 20 30 40 50	.1045 9.0192 .1074 .0311 .1103 .0426 .1132 .0539 .1161 .0648 .1190 .0755	.9945 9.9976 .9942 .9975 .9939 .9973 .9936 .9972 .9932 .9971 .9929 .9969	.1051 9.0216 .1080 .0336 .1110 .0453 .1139 .0567 .1169 .0678 .1198 .0786	9.5144 0.9784 9.2553 .9664 9.0098 .9547 8.7769 .9433 8.5555 .9322 8.3450 .9214	84°00′ 1.466 50 1.463 40 1.460 30 1.457 20 1.454 10 1.451	32 03 74 44 15
0.1222 0.1251 0.1280 0.1309 0.1338 0.1367	7°00′ 10 20 30 40 50	.1219 9.0859 .1248 .0961 .1276 .1060 .1305 .1157 .1334 .1252 .1363 .1345	.9925 9.9968 .9922 .9966 .9918 .9964 .9914 .9963 .9911 .9961 .9907 .9959	.1228 9.0891 .1257 .0995 .1287 .1096 .1317 .1194 .1346 .1291 .1376 .1385	8.1443 0.9109 7.9530 .9005 7.7704 .8904 7.5958 .8806 7.4287 .8709 7.2687 .8615	83°00′ 1.448 50 1.445 40 1.442 30 1.439 20 1.437 10 1.434	57 28 99 70 41
0.1396 0.1425 0.1454 0.1484 0.1513 0.1542	8°00′ 10 20 30 40 50	.1392 9.1436 .1421 .1525 .1449 .1612 .1478 .1697 .1507 .1781 .1536 .1863	.9903 9.9958 .9899 .9956 .9894 .9954 .9896 .9952 .9886 .9950 .9881 .9948	.1405 9.1478 .1435 .1569 .1465 .1658 .1495 .1745 .1524 .1831 .1554 .1915	7.1154 0.8522 6.9682 .8431 6.8269 .8342 6.6912 .8255 6.5606 .8169 6.4348 .8085	82°00′ 1.431 50 1.428 40 1.425 30 1.422 20 1.419 10 1.416 81°00′ 1.413	83 54 24 95 66
0.1571	9.00	Nat. Log.	.9877 9.9946 Nat. Log.	.1584 9.1997 Nat. Log.	6.3138 0.8003 Nat. Log.		-
		COSINES.	SINES.	COTAN- GENTS.	TANGENTS.	DE- GREES. RADI- ANS.	

TABLE 14 (continued)

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RA	GRI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9°00′ 10 20 30 40 50	.1564 9.1943 .1593 .2022 .1622 .2100 .1650 .2176 .1679 .2251 .1708 .2324	.9877 9.9946 .9872 .9944 .9868 .9942 .9863 .9940 .9858 .9938 .9853 .9936	.1584 9.1997 .1614 .2078 .1644 .2158 .1673 .2236 .1703 .2313 .1733 .2389	6.3138 0.8003 6.1970 .7922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.7694 .7611	81°00′ 50 40 30 20	1.4137 1.4108 1.4079 1.4050 1.4021 1.3992
0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	10°00′ 10 20 30 40 50	.1736 9.2397 .1765 .2468 .1794 .2538 .1822 .2606 .1851 .2674 .1880 .2740	.9848 9.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924 .9822 .9922	.1763 9.2463 .1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750 .1914 .2819	5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	80°00′ 50 40 30 20	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817
0.1920 0.1949 0.1978 0.2007 0.2036 0.2065	11°00′ 10 20 30 40 50	.1908 9.2806 .1937 .2870 .1965 .2934 .1994 .2997 .2022 .3058 .2051 .3119	.9816 9.9919 .9811 .9917 .9805 .9914 .9799 .9912 .9793 .9909 .9787 .9907	.1944 9.2887 .1974 .2953 .2004 .3020 .2035 .3085 .2065 .3149 .2095 .3212	5.1446 0.7113 5.0658 .7047 4.9894 .6980 4.9152 .6915 4.8430 .6851 4.7729 .6788	79°00′ 50 40 30 20	1.3788 1.3759 1.3730 1.3701 1.3672 1.3643
0.2094 0.2123 0.2153 0.2182 0.2211 0.2240	12°00′ 10 20 30 40 50	.2079 9.3179 .2108 .3238 .2136 .3296 .2164 .3353 .2193 .3410 .2221 .3466	.9781 9.9904 .9775 .9901 .9769 .9899 .9763 .9896 .9757 .9893 .9750 .9890	.2126 9.3275 .2156 .3336 .2186 .3397 .2217 .3458 .2247 .3517 .2278 .3576	4.7046 0.6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483 4.3897 .6424	78°00′ 50 40 30 20	1.3614 1.3584 1.3555 1.3526 1.3497 1.3468
0.2269 0.2298 0.2327 0.2356 0.2385 0.2414	13°00′ 10 20 30 40 50	.2250 9.3521 .2278 .3575 .2306 .3629 .2334 .3682 .2363 .3734 .2391 .3786	.9744 9.9887 .9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875 .9710 .9872	.2309 9.3634 .2339 .3691 .2370 .3748 .2401 .3804 .2432 .3859 .2462 .3914	4.3315 0.6366 4.2747 .6309 4.2193 .6252 4.1653 .6196 4.1126 .6141 4.0611 .6086	77°00′ 50 40 30 20	1.3439 1.3410 1.3381 1.3352 1.3323 1.3294
0.2443 0.2473 0.2502 0.2531 0.2560 0.2589	14°00′ 10 20 30 40 50	.2419 9.3837 .2447 .3887 .2476 .3937 .2504 .3986 .2532 .4035 .2560 .4083	.9703 9.9869 .9696 .9866 .9689 .9863 .9681 .9859 .9674 .9856 .9667 .9853	.2493 9.3968 .2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230	4.0108 0.6032 3.9617 .5979 3.9136 .5926 3.8667 .5873 3.8208 .5822 3.7760 .5770	76°00′ 50 40 30 20	1.3265 1.3235 1.3206 1.3177 1.3148 1.3119
0.2618 0.2647 0.2676 0.2705 0.2734 0.2763	15°00′ 10 20 30 40 50	.2588 9.4130 .2616 .4177 .2644 .4223 .2672 .4269 .2700 .4314 .2728 .4359	.9659 9.9849 .9652 .9846 .9644 .9843 .9636 .9839 .9628 .9836 .9621 .9832	.2679 9.4281 .2711 .4331 .2742 .4381 .2773 .4430 .2805 .4479 .2836 .4527	3.7321 0.5719 3.6891 .5669 3.6470 .5619 3.6059 .5570 3.5656 .5521 3.5261 .5473	75°00′ 50 40 30 20	1.3090 1.3061 1.3032 1.3003 1.2974 1.2945
0.2793 0.2822 0.2851 0.2880 0.2909 0.2938	16°00′ 10 20 30 40 50	.27 56 9.4403 .2784 .4447 .2812 .4491 .2840 .4533 .2868 .4576 .2896 .4618	.9613 9.9828 .9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810	.2867 9.4575 .2899 .4622 .2931 .4669 .2962 .4716 .2994 .4762 .3026 .4808	3.4874 0.5425 3.4495 ·5378 3.4124 ·5331 3.3759 ·5284 3.3402 ·5238 3.3052 ·5192	74°00′ 50 40 30 20	1.2915 1.2886 1.2857 1.2828 1.2799 1.2770
0.2967 0.2996 0.3025 0.3054 0.3083 0.3113	17°00′ 10 20 30 40 50	.2924 9.4659 .2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3062 .4861	.9563 9.9806 .9555 .9802 .9546 .9798 .9537 .9794 .9528 .9790 .9520 .9786	.3057 9.4853 .3089 .4898 .3121 .4943 .3153 .4987 .3185 .5031 .3217 .5075	3.2709 0.5147 3.2371 .5102 3.2041 .5057 3.1716 .5013 3.1397 .4969 3.1084 .4925	73°00′ 50 40 30 20	1.2741 1.2712 1.2683 1.2654 1.2625 1.2595
0.3142	18°00′	.3090 9.4900	.9511 9.9782	.3249 9.5118	3.0777 0.4882	72°00′	1.2566
		COSINES.	SINES.	COTAN- GENTS.	Nat. Log.	DE- GREES.	RADI- ANS.

DI-	ES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RADI-	DE- GREES.	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	18°00′ 10 20 30 40 50	.3090 9.4900 .3118 .4939 .3145 .4977 .3173 .5015 .3201 .5052 .3228 .5090	.9511 9.9782 .9502 .9778 .9492 .9774 .9483 .9770 .9474 .9765 .9465 .9761	.3249 9.5118 .3281 .5161 .3314 .5203 .3346 .5245 .3378 .5287 .3411 .5329	3.0777 0.4882 3.0475 .4839 3.0178 .4797 2.9887 .4755 2.9600 .4713 2.9319 .4671	72°00′ 50 40 30 20	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
0.3316 0.3345 0.3374 0.3403 0.3432 0.3462	19°00′ 10 20 30 40 50	.3256 9.5126 .3283 .5163 .3311 .5199 .3338 .5235 .3365 .5270 .3393 .5306	.9455 9.9757 .9446 .9752 .9436 .9748 .9426 .9743 .9417 .9739 .9407 .9734	.3443 9.5370 .3476 .5411 .3508 .5451 .3541 .5491 .3574 .5531 .3607 .5571	2.9042 0.4630 2.8770 .4589 2.8502 .4549 2.8239 .4509 2.7980 .4469 2.7725 .4429	71°00′ 50 40 30 20	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00′ 10 20 30 40 50	.3420 9.5341 .3448 .5375 .3475 .5409 .3502 .5443 .3529 .5477 .3557 .5510	.9397 9.9730 .9387 .9725 .9377 .9721 .9367 .9716 .9356 .9711 .9346 .9706	.3640 9.5611 .3673 .5650 .3706 .5689 .3739 .5727 .3772 .5766 .3805 .5804	2.7475 0.4389 2.7228 .4350 2.6985 .4311 2.6746 .4273 2.6511 .4234 2.6279 .4196	70°00′ 50 40 30 20	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21°co′ 10 20 30 40 50	3584 9.5543 .3611 .5576 .3638 .5609 .3665 .5641 .3692 .5673 .3719 .5704	.9336 9.9702 .9325 .9697 .9315 .9692 .9304 .9687 .9293 .9682 .9283 .9677	.3839 9.5842 .3872 .5879 .3906 .5917 .3939 .5954 .3973 .5991 .4006 .6028	2.6051 0.4158 2.5826 .4121 2.5605 .4083 2.5386 .4046 2.5172 .4009 2.4960 .3972	69°00′ 50 40 30 20	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.37.46 9.57.36 .3773 .5767 .3800 .5798 .3827 .5828 .3854 .5859 .3881 .5889	.9272 9.9672 .9261 .9667 9250 .9661 .9239 .9656 .9228 .9651 .9216 .9646	.4040 9.6064 .4074 .6100 .4108 .6136 .4142 .6172 .4176 .6208 .4210 .6243	2.4751 0.3936 2.4545 .3900 2.4342 .3864 2.4142 .3828 2.3945 .3792 2.3750 .3757	68°00′ 50 40 30 20	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00′ 10- 20 30 40 50	.3907 9.5919 .3934 .5948 .3961 .5978 .3987 .6007 .4014 .6036 .4041 .6065	.9205 9.9640 .9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618 .9147 .9613	.4245 9.6279 .4279 .6314 .4314 .6348 .4348 .6383 .4383 .6417 .4417 .6452	2.3559 0.3721 2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583 2.2637 .3548	67°00′ 50 40 30 20	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 9.6093 .4094 .6121 .4120 .6149 .4147 .6177 .4173 .6205 .4200 .6232	.9135 9.9607 .9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584 .9075 .9579	.4452 9.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654	2.2460 0.3514 2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380 2.1609 .3346	66°00′ 50 40 30 20	1.1519 1.1490 1.1461 1.1432 1.1403 1.1374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00′ 10 20 30 40 50	.4226 9.6259 .4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366 .4358 .6392	.9063 9.9573 .9051 .9567 9038 .9561 .9026 .9555 .9013 .9549 .9001 .9543	.4663 9.6687 .4699 .6720 .4734 .6752 .4770 .6785 .4806 .6817 .4841 .6850	2.1445 0.3313 2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183 2.0655 .3150	65°00′ 50 40 30 20	1.1345 1.1316 1.1286 1.1257 1.1228 1.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00′ 10 20 30 40 50	.4384 9.6418 .4410 .6444 .4436 .6470 .4462 .6495 .4488 .6521 .4514 .6546	.8988 9.9537 .8975 .9530 .8962 .9524 .8949 .9518 .8936 .9512 .8923 .9505	.4877 9.6882 .4913 .6914 .4950 .6946 .4986 .6977 .5022 .7009 .5059 .7040	2.0503 0.3118 2.0353 .3086 2.0204 .3054 2.0057 .3023 1.9912 .2991 1.9768 .2960	64°00′ 50 40 30 20 10	1.1170 1.1141 1.1112 1.1083 1.1054 1.1025
0.4712	27°00′	.4540 9.6570 Nat. Log.	.8910 9.9499 Nat. Log	.5095 9.7072 Nat. Log.	1.9626 0.2928 Nat. Log.	63°00′	1.0996
		COSINES.	SINES.	COTAN- GENTS.	TANGENTS	DE- GREES.	RADI- ANS.

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.	
RA	GRI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	
0.4712	27°00′	.4540 9.6570	.8910 9.9499	.5095 9.7072	1.9626 0.2928	63°00′ 1.0996
0.4741	10	.4566 .6595	.8897 .9492	.5132 .7103	1.9486 .2897	50 1.0966
0.4771	20	.4592 .6620	.8884 .9486	.5169 .7134	1.9347 .2866	40 1.0937
0.4800	30	.4617 .6644	.8870 .9479	.5266 .7165	1.9210 .2835	30 1.0908
0.4829	40	.4643 .6668	.8857 .9473	.5243 .7196	1.9074 .2804	20 1.0879
0.4858	50	.4669 .6692	.8843 .9466	.5280 .7226	1.8940 .2774	10 1.0850
0.4887	28°00′	.4695 9.6716	.8829 9.9459	.5317 9.7257	1.8807 0.2743	62°00′ 1.0821
0.4916	10	.4720 .6740	.8816 .9453	.5354 .7287	1.8676 .2713	50 1.0792
0.4945	20	.4746 .6763	.8802 .9446	.5392 .7317	1.8546 .2683	40 1.0763
0.4974	30	.4772 .6787	.8788 .9439	.5430 .7348	1.8418 .2652	30 1.0734
0.5003	40	.4797 .6810	.8774 .9432	.5467 .7378	1.8291 .2622	20 1.0705
0.5032	50	.4823 .6833	.8760 .9425	.5505 .7408	1.8165 .2592	10 1.0676
0.5061	29°00′	.4848 9.6856	.8746 9.9418	.5543 9.7438	1.8040 0.2562	61°00′ 1.0647
0.5091	10	.4874 .6878	.8732 .9411	.5581 .7467	1.7917 .2533	50 1.0617
0.5120	20	.4899 .6901	.8718 .9404	.5619 .7497	1.7796 .2503	40 1.0588
0.5149	30	.4924 .6923	.8704 .9397	.5658 .7526	1.7675 .2474	30 1.0559
0.5178	40	.4950 .6946	.8689 .9390	.5696 .7556	1.7556 .2444	20 1.0530
0.5207	50	.4975 .6968	.8675 .9383	.5735 .7585	1.7437 .2415	10 1.0501
0.5236	30°00′	.5000 9.6990	.8660 9.9375	.5774 9.7614	1.7321 0.2386	60°00′ 1.0472
0.5265	10	.5025 .7012	.8646 .9368	.5812 .7644	1.7205 .2356	50 1.0443
0.5294	20	.5050 .7033	.8631 .9361	.5851 .7673	1.7090 .2327	40 1.0414
0.5323	30	.5075 .7055	.8616 .9353	.5890 .7701	1.6977 .2299	30 1.0385
0.5352	40	.5100 .7076	8601 .9346	.5930 .7730	1.6864 .2270	20 1.0356
0.5381	50	.5125 .7097	.8587 .9338	.5969 .7759	1.6753 .2241	10 1.0327
0.5411	31°00′	.5150 9.7118	.8572 9.9331	.6009 9.7788	1.6643 0.2212	59°00′ 1.0297
0.5440	10	.5175 .7139	.8557 .9323	.6048 .7816	1.6534 .2184	50 1.0268
0.5469	20	.5200 .7160	.8542 .9315	.6088 .7845	1.6426 .2155	40 1.0239
0.5498	30	.5225 .7181	.8526 .9308	.6128 .7873	1.6319 .2127	30 1.0210
0.5527	40	.5250 .7201	.8511 .9300	.6168 .7902	1.6212 .2098	20 1.0181
0.5556	50	.5275 .7222	.8496 .9292	.6208 .7930	1.6107 .2070	10 1.0152
0.5585	32°00′	.5299 9.7242	.8480 9.9284	.6249 9.7958	1.6003 0.2042	58°00′ 1.0123
0.5614	10	.5324 .7262	.8465 .9276	.6289 .7986	1.5900 .2014	50 1.0094
0.5643	20	.5348 .7282	.8450 .9268	.6330 .8014	1.5798 .1986	40 1.0065
0.5672	30	.5373 .7302	.8434 .9260	.6371 .8042	1.5697 .1958	30 1.0036
0.5701	40	.5398 .7322	.8418 .9252	.6412 .8070	1.5597 .1930	20 1.0007
0.5730	50	.5422 .7342	.8403 .9244	.6453 .8097	1.5497 .1903	10 0.9977
0.5760	33°00′	.5446 9.7361	.8387 9.9236	.6494 9.8125	1.5399 0.1875	57°00′ 0.9948
0.5789	10	.5471 .7380	.8371 .9228	.6536 .8153	1.5301 .1847	50 0.9919
0.5818	20	.5495 .7400	.8355 .9219	.6577 .8180	1.5204 .1820	40 0.9890
0.5847	30	.5519 .7419	.8339 .9211	.6619 .8208	1.5108 .1792	30 0.9861
0.5876	40	.5544 .7438	.8323 .9203	.6661 .8235	1.5013 .1765	20 0.9832
0.5905	50	.5568 .7457	.8307 .9194	.6703 .8263	1.4919 .1737	10 0.9803
0.5934	34°00′	.5592 9.7476	.8290 9.9186	.6745 9.8290	1.4826 0.1710	56°00′ 0.9774
0.5963	10	.5616 .7494	.8274 .9177	.6787 .8317	1.4733 .1683	50 0.9745
0.5992	20	.5640 .7513	.8258 .9169	.6830 .8344	1.4641 .1656	40 0.9716
0.6021	30	.5664 .7531	.8241 .9160	.6873 .8371	1.4550 .1629	30 0.9687
0.6050	40	.5688 .7550	.8225 .9151	.6916 .8398	1.4460 .1602	20 0.9657
0.6080	50	.5712 .7568	.8208 .9142	.6959 .8425	1.4370 .1575	10 0.9628
0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	35°00′ 10 20 30 40 50	.5736 9.7586 .5760 .7604 .5783 .7622 .5807 .7640 .5831 .7657 .5854 .7675	.8141 .9107 .8124 .9098 8107 .9089	.7002 9.8452 .7046 .8479 .7089 .8506 .7133 .8533 .7177 .8559 7221 .8586	1.4281 0.1548 1.4193 .1521 1.4106 .1494 1.4019 .1467 1.3934 .1441 1.3848 .1414	55°00′ 0.9599 50 0.9570 40 0.9541 30 0.9512 20 0.9483 10 0.9454
0.6283	36°00′	.5878 9.7692	8090 9.9080	.7265 9.8613	1.3764 0.1387	54°00′ 0.9425
i		Nat. Log. COSINES.	Nat. Log SINES.	Nat. Log. COTAN- GENTS.	TANGENTS.	GREES. RADI- ANS.

DI-	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RADI. ANS.	GRI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	36°00′ 10 20 30 40 50	.5878 9.7692 .5901 .7710 .5925 .7727 .5948 .7744 .5972 .7761 .5995 .7778	.8090 9.9080 .8073 .9070 .8056 .9061 .8039 .9052 .8021 .9042 .8004 .9033	.7265 9.8613 .7310 .8639 .7355 .8666 .7400 .8692 .7445 .8718 .7490 .8745	1.3764 0.1387 1.3680 .1361 1.3597 .1334 1.3514 .1308 1.3432 .1282 1.3351 .1255	54°00′ 50 40 30 20	0.9425 0.9396 0.9367 0.9338 0.9308 0.9279
0.6458 0.6487 0.6516 0.6545 0.6574 0.6603	37°00′ 10 20 30 40 50	.6018 9.7795 .6041 .7811 .6065 .7828 .6088 .7844 .6111 .7861 .6134 .7877	.7986 9.9023 .7969 .9014 .7951 .9004 .7934 .8995 .7916 .8985 .7898 .8975	.7536 9.8771 .7581 .8797 .7627 .8824 .7673 .8850 .7720 .8876 .7766 .8902	1.3270 0.1229 1.3190 .1203 1.3111 .1176 1.3032 .1150 1.2954 .1124 1.2876 .1098	53°00′ 50 40 30 20	0.9250 0.9221 0.9192 0.9163 0.9134 0.9105
0.6632 0.6661 0.6690 0.6720 0.6749 0.6778	38°00′ 10 20 30 40 50	.6157 9.7893 .6180 .7910 .6202 .7926 .6225 .7941 .6248 .7957 .6271 .7973	.7880 9.8965 .7862 .8955 .7844 .8945 .7826 .8935 .7808 .8925 .7790 .8915	.7813 9.8928 .7860 .8954 .7907 .8980 .7954 .9006 .8002 .9032 .8050 .9058	1.2799 0.1072 1.2723 .1046 1.2647 .1020 1.2572 .0994 1.2497 .0968 1.2423 .0942	52°00′ 50 40 30 20	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930
0.6807 0.6836 0.6865 0.6894 0.6923 0.6952	39°00′ 10 20 30 40 50	.6293 9.7989 .6316 .8004 .6338 .8020 .6361 .8035 .6383 .8050 .6406 .8066	.7771 9.8905 .7753 .8895 .7735 .8884 .7716 .8874 .7698 .8864 .7679 .8853	.8098 9.9084 .8146 .9110 .8195 .9135 .8243 .9161 .8292 .9187 .8342 .9212	1.2349 0.0916 1.2276 .0890 1.2203 .0865 1.2131 .0839 1.2059 .0813 1.1988 .0788	51°00′ 50 40 30 20	0.8901 0.8872 0.8843 0.8814 0.8785 0.8756
0.6981 0.7010 0.7039 0.7069 0.7098 0.7127	40°00′ 10 20 30 40 50	.6428 9.8081 .6450 .8096 .6472 .8111 .6494 .8125 .6517 .8140 .6539 .8155	.7660 9.8843 .7642 .8832 .7623 .8821 .7604 .8810 .7585 .8800 .7566 .8789	.8391 9.9238 .8441 .9264 .8491 .9289 .8541 .9315 .8591 .9341 .8642 .9366	1.1918 0.0762 1.1847 .0736 1.1778 .0711 1.1708 .0685 1.1640 .0659 1.1571 .0634	50°00′ 50 40 30 20	0.8727 0.8698 0.8668 0.8639 0.8610 0.8581
0.7156 0.7185 0.7214 0.7243 0.7272 0.7301	41°00′ 10 20 30 40 50	.6561 9.8169 .6583 .8184 .6604 .8198 .6626 .8213 .6648 .8227 .6670 .8241	.7547 9.8778 .7528 .8767 .7509 .8756 .7490 .8745 .7470 .8733 .7451 .8722	.8693 9.9392 .8744 .9417 .8796 .9443 .8847 .9468 .8899 .9494 .8952 .9519	1.1504 0.0608 1.1436 .0583 1.1369 .0557 1.1303 .0532 1.1237 .0506 1.1171 .0481	49°00′ 50 40 30 20	0.8552 0.8523 0.8494 0.8465 0.8436 0.8407
0.7330 0.7359 0.7389 0.7418 0.7447 0. 7 476	42°00′ 10 20 30 40 50	.6691 9.8255 .6713 .8269 .6734 .8283 .6756 .8297 .6777 .8311 .6799 .8324	.7431 9.8711 .7412 .8699 .7392 .8688 .7373 .8676 .7353 .8665 .7333 .8653	.9004 9.9544 .9057 .9570 .9110 .9595 .9163 .9621 .9217 .9646 .9271 .9671	1.1106 0.0456 1.1041 .0430 1.0977 .0405 1.0913 .0379 1.0850 .0354 1.0786 .0329	48°00′ 50 40 30 20	0.8378 0.8348 0.8319 0.8290 0.8261 0.8232
0.7505 0.7534 0.7563 0.7592 0.7621 0.7650	43°00′ 10 20 30 40 50	.6820 9.8338 .6841 .8351 .6862 .8365 .6884 .8378 .6905 .8391 .6926 .8405	.7314 9.8641 .7294 .8629 .7274 .8618 .7254 .8606 .7234 .8594 .7214 .8582	.9325 9.9697 .9380 .9722 .9435 .9747 .9490 .9772 .9545 .9798 .9601 .9823	1.0724 0.0303 1.0661 .0278 1.0599 .0253 1.0538 .0228 1.0477 .0202 1.0416 .0177	47°00′ 50 40 30 20	0.8203 0.8174 0.8145 0.8116 0.8087 0.8058
0.7679 0.7709 0.7738 0.7767 0.7796 0.7825	44°00′ 10 20 30 40 50	.6947 9.8418 .6967 .8431 .6988 .8444 .7009 .8457 .7030 .8469 .7050 .8482	.7193 9.8569 .7173 .8557 .7153 .8545 .7133 .8532 .7112 .8520 .7092 .8507	.9657 9.9848 .9713 .9874 .9770 .9899 .9827 .9924 .9884 .9949 .9942 .9975	1.0355 0.0152 1.0295 .0126 1.0235 .0101 1.0176 .0076 1.0117 .0051 1.0058 .0025	46°00′ 50 40 30 20 10	0.8029 0.7999 0.7970 0.7941 0.7912 0.7883
0.7854	45°00′	Nat. Log.	.7071 9.8495 Nat Log.	Nat. Log.	Nat. Log.	45°00′	0.7854
		COSINES.	SINES.	COTAN- GENTS.	TANGENTS.	DE- GREES.	RADI- ANS.

i i									vi l
RADIANS	SIN	ES.	COSI	NES.	TANG	ENTS.	COTAN	GENTS.	DEGREES
RAD	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEG
0.00 .01 .02 .03	0.00000 .01000 .02000 .03000 .03999	— ∞ 7.99999 8.30100 .47706 .60194	1.00000 0.99995 .99980 .99955 .99920	0.00000 9.99998 .99991 .99980	— ∞ 0.01000 .02000 .03001 .04002	∞ 8.00001 .30109 .47725 .60229	∞ 99.997 49.993 33.323 24.987	∞ 1.99999 .69891 .52275 .39771	00°00′ 00 34 01 09 01 43 02 18
0.05 .06 .07 .08	0.04998 .05996 .06994 .07991 .08988	8.69879 .77789 .84474 .90263 .95366	0.99875 .99820 .99755 .99680 .99595	9.99946 .99922 .99894 .99861 .99824	0.05004 .06007 .07011 .08017	8.69933 .77867 .84581 .90402 .95542	19.983 16.647 14.262 12.473 11.081	1.30067 .22133 .15419 .09598 .04458	02°52′ 03 26 04 01 04 35 05 09
0.10 .11 .12 .13	0.09983 .10978 .11971 .12963 .13954	8.99928 9.04052 .07814 .11272 .14471	0.99500 .99396 .99281 .99156	9.99782 ·99737 .99687 .99632 ·99573	0.10033 .11045 .12058 .13074 .14092	9.00145 .04315 .08127 .11640 .14898	9.9666 9.0542 8.2933 7.6489 7.0961	0.99855 .95685 .91873 .88360 .85102	05°44′ 06 18 06 53 07 27 08 01
0.15 .16 .17 .18	0.14944 .15932 .16918 .17903 .18886	9.17446 .20227 .22836 .25292 .27614	0.98877 .98723 .98558 .98384 .98200	9.99510 .99442 .99369 .99293 .99211	0.15114 .16138 .17166 .18197 .19232	9.17937 .20785 .23466 .26000 .28402	6,6166 6.1966 5.8256 5.4954 5.1997	0.82063 .79215 .76534 .74000 .71598	08°36′ 09 10 09 44 10 19 10 53
0.20 .21 .22 .23 .24	0.19867 20846 .21823 .22798 .23770	9.29813 .31902 .33891 .35789 .37603	0.98007 .97803 .97590 .97367 .97134	9.99126 .99035 .98940 .98841 .98737	0.20271 .21314 .22362 .23414 .24472	9.30688 .32867 .34951 .36948 .38866	4.9332 4.6917 4.4719 4.2709 4.0864	0.69312 .67133 .65049 .63052 .61134	11°28′ 12 02 12 36 13 11 13 45
0.25 .26 .27 .28 .29	0.24740 .25708 .26673 .27636 .28595	9.39341 .41007 .42607 .44147 .45629	0.96891 .96639 .96377 .96106	9.98628 .98515 .98397 .98275 .98148	0.25534 .26602 .27676 .28755 .29841	9.40712 .42491 .44210 .45872 .47482	3.9163 3.7592 3.6133 3.4776 3.3511	0.59288 ·57509 ·55790 ·54128 ·52518	14°19′ 14 54 15 28 16 03 16 37
0.30 .31 .32 .33 .34	0.29552 .30506 .31457 .32404 .33349	9.47059 .48438 .49771 .51060 .52308	0.95534 ·95233 ·94924 ·94604 ·94275	9.98016 .97879 .97737 .97591	0.30934 .32033 .33139 .34252 .35374	9.49043 .50559 .52034 .53469 .54868	3.2327 3.1218 3.0176 2.9195 2.8270	0.50957 •49441 •47966 •46531 •45132	17°11' 17 46 18 20 18 54 19 29
0.35 .36 .37 .38 .39	0.34290 .35227 .36162 .37092 .38019	9.53516 .54688 .55825 .56928 .58000	0.93937 .93590 .93233 .92866 .92491	9.97284 .97123 .96957 .96786 .96610	0.36503 .37640 .38786 .39941 .41105	9.56233 .57565 .58868 .60142 .61390	2.7395 2.6567 2.5782 2.5037 2.4328	0.43767 ·42435 ·41132 ·39858 ·38610	20°03′ 20 38 21 12 21 46 22 21
0.40 .41 .42 .43 .44	0.38942 .39861 .40776 .41687 .42594	9.59042 .60055 .61041 .62000 .62935	0.92106 .91712 .91309 .90897 .90475	9.96429 .96243 .96051 .95855 .95653	0.42279 .43463 .44657 .45862 .47078	9.62613 .63812 .64989 .66145 .67282	2.3652 2.3008 2.2393 2.1804 2.1241	0.373 ⁸ 7 .36188 .35011 .33 ⁸ 55 .32718	22°55′ 23 29 24 04 24 38 25 13
0.45 .46 .47 .48 .49	0.43497 ·44395 ·45289 ·46178 ·47063	9.63845 .64733 .65599 .66443 .67268	0.90045 .89605 .89157 .88699 .88233	9.95446 ·95233 ·95015 ·94792 ·94563	0.48306 •49545 •50797 •52061 •53339	9.68400 .69500 .70583 .71651 .72704	2.0702 2.0184 1.9686 1.9208 1.8748	0.31600 .30500 .29417 .28349 .27296	25°47′ 26 21 26 56 27 30 28 04
0 50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	28°39′

A N.S.	SIN	NES.	cos	INES.	TANG	ENTS	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
0.50 .51 .52 .53 .54	0.47943 .48818 .49688 .50553 .51414	9.68072 .68858 .69625 .70375 .71108	0.877 58 .87274 .86782 .86281 .8577 I	9.94329 .94089 .93843 .93 5 91 .93334	0.54630 .55936 .57256 .58592 .59943	9·73743 ·74769 ·75782 ·76784 ·77774	1.8305 .7878 .7465 .7067 .6683	0.26257 .25231 .24218 .23216 .22226	28°39′ 29 I3 29 48 30 22 30 56
0.55 .56 .57 .58 .59	0.52269 .53119 .53963 .54802 .55636	9.71824 .72525 .73210 .73880 .74536	0.85252 .84726 .84190 .83646 .83094	9.93071 .92801 .92526 .92245 .91957	0.61311 .62695 .64097 .65517 .66956	9.78754 .79723 .80684 .81635 .82579	1.6310 .5950 .5601 .5263 .4935	0.21246 .20277 .19316 .18365 .17421	31°31′ 32 0 5 32 40 33 14 33 48
0.60 .61 .62 .63 .64	0.56464 ·57287 ·58104 ·58914 ·59720	9.75177 .75805 .76420 .77022 .77612	0.82534 .81965 .81388 .80803 .80210	9.91663 .91363 .910 5 6 .90743 .90423	0.68414 .69892 .71391 .72911 .74454	9.83514 .84443 .85364 .86280 .87189	1.4617 .4308 .4007 .3715 .3431	0.16486 .15557 .14636 .13720 .12811	34°23′ 34 57 35 31 36 06 36 40
o.65 .66 .67 .68 .69	0.60519 .61312 .62099 .62879 .63654	9.78189 .78754 .79308 .79851 .80382	0.79608 .78999 .78382 .77757 .77125	9.90096 .89762 .89422 .89074 .88719	0.76020 .77610 .79225 .80866 .82534	9.88093 .88992 .89886 .90777 .91663	1.3154 .2885 .2622 .2366 .2116	0.11907 .11008 .10114 .09223 .08337	37°15′ 37 49 38 23 38 58 39 32
0.70 .71 .72 .73 .74	0.64422 .65183 .65938 .66687 .67429	9.80903 .81414 .81914 .82404 .82885	0.76484 .75836 .75181 .74517 .73847	9.88357 .87988 .87611 .87226 .86833	0.84229 .85953 .87707 .89492 .91309	9.92546 .93426 .94303 .95178 .96051	1.1872 .1634 .1402 .1174 .0952	0.07454 .06574 .05697 .04822 .03949	40°06′ 40 41 41 15 41 50 42 24
0.75 .76 .77 .78 .79	0.68164 .68892 69614 .70328 .71035	9.83355 .83817 .84269 .84713 .85147	0.73169 .72484 .71791 .71091 .70385	9.86433 .86024 .85607 .85182 .84748	0.93160 .95045 .96967 .98926 1.0092	9.96923 •97793 .98662 9.99531 0.00400	1.0734 .0521 .0313 1.0109 0.99084	0.03077 .02207 .01338 .00469 9.99600	42°58′ 43 33 44 °7 44 41 45 16
0.80 .81 .82 .83 .84	0.71736 .72429 .73115 .73793 .74464	9.85573 .85991 .86400 .86802	0,69671 .68950 .68222 .67488 .66746	9.84305 .83853 .83393 .82922 .82443	1.0296 .0505 .0717 .0934 .1156	0.01268 .02138 .03008 .03879 .04752	0.97121 .95197 .93309 .91455 .89635	9.98732 .97862 .96992 .96121 .95248	45°50′ 46 25 46 59 47 33 48 08
0.85 .86 .87 .88 .89	0.75128 .75784 .76433 .77074 .77707	9.87580 .87958 .88328 .88691 .89046	0.65998 .65244 .64483 .63715 .62941	9.81953 .81454 .80944 .80424	1.1383 .1616 .1853 .2097 .2346	0.05627 .06504 .07384 .08266 .09153	0.87848 .86091 .84365 .82668 .80998	9.94373 .93496 .92616 .91734 .90847	48°42′ 49 16 49 51 50 25 51 00
0.90 .91 .92 .93 .94	0.78333 .78950 .79560 .80162 .80756	9.89394 .89735 .90070 .90397	0.62161 .61375 .60582 .59783 .58979	9.79352 .78799 .78234 .77658	1.2602 .2864 .3133 .3409 .3692	0.10043 .10937 .11835 .12739 .13648	0.79355 .77738 .76146 .74578 .73034	9.89957 .89063 .88165 .87261	51°34′ 52 08 52 43 53 17 53 51
0.95 .96 .97 .98	0.81342 .81919 .82489 .83050 .83603	9.91031 .91339 .91639 .91934 .92222	0.58168 ·57352 ·56530 ·55702 ·54869	9. 7 6469 .75855 .75228 .74587 .73933	1.3984 .4284 .4592 .4910	0.14563 .15484 .16412 .17347 .18289	0.71511 .70010 .68531 .67071 .65631	9.85437 .84516 .83588 .82653 .81711	54°26′ 55 00 55 35 56 09 56 43
1.00	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	57°18′

CIRCULAR (TRIGONOMETRIC) FUNCTIONS

ANS.	SII	NES.	cos	INES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.00 .01 .02 .03	0.84147 .84683 .85211 .85730 .86240	9.92504 .92780 .93049 .93313 .93571	0.54030 .53186 .52337 .51482 .50622	9.73264 .72580 .71881 .71165 .70434	1.5574 .5922 .6281 .6652 .7036	0.19240 .20200 .21169 .22148 .23137	0.64209 .62806 .61420 .60051 .58699	9.80760 .79800 .78831 .77852 .76863	57°18′ 57 52 58 27 59 01 59 35
1.05	0.86742	9.93823	0.49757	9.69686	1.7433	0.24138	0.57362	9.75862	60°10′
.06	.87236	.94069	.48887	.68920	.7844	.25150	.56040	.74850	60 44
.07	.87720	.94310	.48012	.68135	.8270	.26175	.54734	.73825	61 18
.08	.88196	.94545	.47133	.67332	.8712	.27212	.53441	.72788	61 53
.09	.88663	.94774	.46249	.66510	.9171	.28264	.52162	.71736	62 27
1.10 .11 .12 .13	0.89121 .89570 .90010 .90441 .90863	9.94998 .95216 .95429 .95637 .95839	0.45360 .44466 .43568 .42666 .41759	9.65667 .64803 .63917 .63008 .62075	1.9648 2.0143 .0660 .1198 .1759	0.29331 ·30413 ·31512 ·32628 ·33763	0.50897 .49644 .48404 .47175 .45959	9.70669 .69587 .68488 .67372 .66237	63°02′ 63 36 64 10 64 45 65 19
1.15 .16 .17 .18	0.91276 .91680 .92075 .92461 .92837	9.96036 .96228 .96414 .96596 .96772	0.40849 •39934 •39015 •38092 •37166	9.61118 .60134 .59123 .58084 .57015	2.2345 .2958 .3600 .4273 .4979	0.34918 .36093 .37291 .38512 .39757	0.44753 .43558 .42373 .41199 .40034	9.65082 .63907 .62709 .61488 .60243	65°53′ 66 28 67 02 67 37 68 11
1.20	0.93204	9.96943	0.36236	9.55914	2.5722	0.41030	0.38878	9.58970	68°45′
.21	.93562	.97110	·35302	.54780	.6503	.42330	·37731	-57670	69 20
.22	.93910	.97271	·34365	.53611	.7328	.43660	·36593	-56340	69 54
.23	.94249	.97428	·33424	.52406	.8198	.45022	·35463	-54978	70 28
.24	.94578	.97579	·32480	.51161	.9119	.46418	·34341	-53582	71 03
1.25	0.94898	9.97726	0.31532	9.49875	3.0096	0.47850	0.33227	9.52150	71°37′
.26	.95209	.97868	.30582	.48546	.1133	.49322	.32121	.50678	72 12
.27	.95510	.98005	.29628	.47170	.2236	.50835	.31021	.49165	72 46
.28	.95802	.98137	.28672	.45745	.3413	.52392	.29928	.47608	73 20
.29	.96084	.98265	.27712	.44267	.4672	.53998	.28842	.46002	73 55
1.30	0.96356	9.98388	0.26750	9.42732	3.6021	0.55656	0.27762	9.44344	74°29′
.31	.96618	.98506	.25785	.41137	.7471	.57369	.26687	.42631	75 °3
.32	.96872	.98620	.24818	.39476	.9033	.59144	.25619	.40856	75 38
.33	.97115	.98729	.23848	.37744	4.0723	.60984	.24556	.39016	76 12
.34	.97348	.98833	.22875	.35937	.2556	.62896	.23498	.37104	76 47
1.35	0.97572	9.98933	0.21901	9.34046	4.455 ²	0.64887	0.22446	9.35113	77°21′
.36	.97786	.99028	.20924	.32064	.6734	.66964	.21398	•33036	77 55
.37	.97991	.99119	.19945	.29983	.9131	.69135	.20354	•30865	78 30
.38	.98185	.99205	.18964	.27793	5.1774	.71411	.19315	•28589	79 04
.39	.98370	.99286	.17981	.25482	.4707	.73804	.18279	•26196	79 38
1.40	0.98545	9.99363	0.16997	9.23036	5.7979	0.76327	0.17248	9.23673	80°13′
.41	.98710	.99436	.16010	.20440	6.1654	.78996	.16220	.21004	80 47
.42	.98865	.99504	.15023	.17674	6.5811	.81830	.15195	.18170	81 22
.43	.99010	.99568	.14033	.14716	7.0555	.84853	.14173	.15147	81 56
.44	.99146	.99627	.13042	.11536	7.6018	.88092	.13155	.11908	82 30
1.45	0.99271	9.99682	0.12050	9.08100	8.2381	0.91583	0.12139	9.08417	83°05′
.46	.99387	·99733	.11057	.04364	8.9886	.95369	.11125	.04631	83 39
.47	.99492	·99779	.10063	.00271	9.8874	.99508	.10114	.00492	84 13
.48	.99588	.99821	.09067	8.95747	10.983	1.04074	.09105	8.95926	84 48
.49	.99674	·99858	.08071	.90692	12.350	.09166	.08097	.90834	85 22
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	85°57′

CIRCULAR FUNCTIONS AND FACTORIALS

TABLE 15 (concluded).—Circular (Trigonometric) Functions

IANS.	SIN	IES.	COSINES.		TANGENTS		COTANGENTS.		KEES.
RADI	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	DEGREES
1.50 .51 .52 .53 .54	0.99749 .99815 .99871 .99917	9.99891 •99920 •99944 •99964 •99979	0.07074 .06076 .05077 .04079 .03079	8.84965 .78361 .70565 .61050 .48843	14.101 16.428 19.670 24.498 32.461	1.14926 .21559 .29379 .38914 .51136	0.07091 .06087 .05084 .04082 .03081	8.85074 .78441 .70621 .61086 .48864	85°57′ 86 31 87 05 87 40 88 14
1.55 .56 .57 .58 .59	0.99978 0.99994 1.00000 0.99996 0.99982	9.99991 9.99997 0.00000 9.99998 9.99992	0.02079 .01080 .00080 00920 01920	8.31796 8.03327 6.90109 7.96396n 8.28336n	48.078 92.621 1255.8 108.65 52.067	1.68195 1.96671 3.09891 2.03603 1.71656	0.02080 .01080 .00080 00920 01921	8.31805 8.03329 6.90109 7.96397n 8.28344n	88°49′ 89 23 89 57 90 32 91 06
1.60	0.99957	9.99981	-0.02920	8.46538n	34.233	1.53444	-0.02921	8.46556n	91°40′

90°=1.570 7963 radians.

TABLE 16 .- Logarithmic Factorials

Logarithms of the products I.2.3. n, n from I to 100. See Table I8 for Factorials I to 20.

See Table 33 for log. Γ (n+1), values of n between 1 and 2.

n.	$\log (n!)$	12.	log (n!)	72.	log (n!)	п.	log (n!)
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	13.161916
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6 7 8 9	2.857332 3.702431 4.605521 5.559763 6.559763	31 32 33 34 35	33.915022 35.420172 36.938686 38.470165 40.014233	56 57 58 59 60	74.851869 76.607744 78.371172 80.142024 81.920175	81 82 83 84 85	120.763213 122.677027 124.596105 126.520384 128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

TABLE 17
HYPERBOLIC FUNCTIONS

	sin	ih u	cos	h u	tan	h u	cot	h u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
0.00 .01 .02 .03	0.00000 .01000 .02000 .03000 .04001	— ∞ 8.00001 .30106 .47719 .60218	1.00000 .00005 .00020 .00045 .00080	0.00000 .00002 .00009 .00020	0,00000 .01000 .02000 .02999 .03998	∞ 7.99999 8.30097 .47699 .60183	∞ 100.003 50.007 33·343 25.013	2.00001 1.69903 1.52301 1.39817	00°00′ 0 34 1 09 1 43 2 17
0.05 .06 .07 .08	0.05002 .06004 .07006 .08009 .09012	8.69915 .77841 .84545 .90355 .95483	1.00125 .00180 .00245 .00320 .00405	0.00054 .00078 .00106 .00139 .00176	0.04996 .05993 .06989 .07983 .08976	8.69861 •77763 •84439 •90216 •95307	20.017 16.687 14.309 12.527 11.141	1.30139 .22237 .15561 .09784 .04693	2 52 3 26 4 00 4 35 5 09
0.10 .11 .12 .13	0.10017 .11022 .12029 .13037 .14046	9.00072 .04227 .08022 .11517 .14755	1.00500 .00606 .00721 .00846 .00982	0 00217 .00262 .00312 .00366 .00424	0.09967 .10956 .11943 .12927 .13909	8.99856 9.03965 .07710 .11151 .14330	10.0333 9.1275 8.3733 7.7356 7.1895	1.00144 0.96035 .92290 .88849 .85670	5 43 6 17 6 52 7 26 8 00
0.15 .16 .17 .18	0.15056 .16068 .17082 .18097	9.17772 .20597 .23254 .25762 .28136	1.01127 .01283 .01448 .01624 .01810	0.00487 .00554 .00625 .00700	0.14889 .15865 .16838 .17808 .18775	9.17285 .20044 .22629 .25062 .27357	6.7166 6.3032 5.9389 5.6154 5 3263	0.82715 .79956 .77371 .74938 .72643	8 34 9 08 9 42 10 15 10 49
0.20 .21 .22 .23 .24	0.20134 .21155 .22178 .23203 .24231	9.30392 .32541 .34592 .36555 .38437	1.02007 .02213 .02430 .02657 .02894	0.00863 .00951 .01043 .01139 .01239	0.19738 .20697 .21652 .22603 .23550	9.29529 .31590 .33549 .35416 .37198	5.0665 4.8317 4.6186 4.4242 4.2464	0.70471 .68410 .66451 .64584 .62802	11 23 11 57 12 30 13 04 13 37
0.25 .26 .27 .28 .29	0.25261 .26294 .27329 .28367 .29408	9.40245 .41986 .43663 .45282 .46847	1.03141 .03399 .03667 .03946 .04235	0.01343 .01452 .01564 .01681	0.24492 .25430 .26362 .27291 .28213	9-38902 -40534 -42099 -43601 -45046	4.0830 3.9324 3.7933 3.6643 3.5444	0.61098 .59466 .57901 .56399 .54954	14 11 14 44 15 17 15 50 16 23
0.30 .31 .32 .33 .34	0.30452 .31499 .32549 .33602 .34659	9.48362 .49830 .51254 .52637 .53981	1.04534 .04844 .05164 .05495 .05836	0.01926 .02054 .02187 .02323 .02463	0.29131 -30044 -30951 -31852 -32748	9.46436 •47775 •49067 •50314 •51518	3.4327 .3285 .2309 .1395 .0536	0.53564 .52225 .50933 .49686 .48482	16 56 17 29 18 02 18 34 19 07
0.35 .36 .37 .38 .39	0.35719 .36783 .37850 .38921 .39996	9.55290 .56564 .57807 .59019 .60202	1.06188 .06550 .06923 .07307 .07702	0.02607 .02755 .02907 .03063 .03222	0.33638 .34521 .35399 .36271 .37136	9.52682 .53809 .54899 .55956 .56980	2.9729 .8968 .8249 .7570 .6928	0.47318 .46191 .45101 .44044 .43020	19 39 20 12 20 44 21 16 21 48
0.40 .41 .42 .43 .44	0.41075 .42158 .43246 .44337 .45434	9.61358 .62488 .63594 .64677 .65738	1.08107 .08523 .08950 .09388 .09837	0.03385 .03552 .03723 .03897 .04075	0.37995 .38847 .39693 .40532 .41364	9.57973 .58936 .59871 .60780 .61663	2.6319 ·5742 ·5193 ·4672 4175	0.42027 .41064 .40129 .39220 .38337	22 20 22 52 23 23 23 55 24 26
0.45 .46 .47 .48 .49	0.46534 .47640 .48750 .49865 .50984	9.66777 .67797 .68797 .69779 .70744	1.102970 .10768 .11250 .11743 .12247	.04256 .04441 .04630 .04822 .05018	0.42190 .43008 .43820 .44624 .45422	9.62521 .63355 .64167 .64957 .65726	2.3702 .3251 .2821 .2409 .2016	0.37479 .36645 .35833 .35043 .34274	24 57 25 28 25 59 26 30 27 01
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27 31

TABLE 17 (continued)

HYBERBOLIC FUNCTIONS

	sin	h u	cos	h u	tan	h u	001	th u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
0.50 .51 .52 .53 .54	0.52110 .53240 .54375 .55516 .56663	9.71692 .72624 .73540 .74442 .75330	1.12763 .13289 .13827 .14377 .14938	0.05217 .05419 .05625 .05834 .06046	0.46212 .46995 .47770 .48538 .49299	9.66475 .67205 .67916 .68608 .69284	2.1640 .1279 .0934 .0602 .0284	0.33525 .32795 .32084 .31392 .30716	27°31′ 28 02 28 32 29 02 29 32
• .55 .56 .57 .58 .59	0.57815 .58973 .60137 .61307 .62483	9.76204 .77065 .77914 .78751 .79576	1.15510 .16094 .16690 .17297 .17916	0.06262 .06481 .06703 .06929	0.50052 .50798 .51536 .52267 .52990	9.69942 .70584 .71211 .71822 .72419	1.9979 .9686 .9404 .9133 .8872	0.30058 .29416 .28789 .28178 .27581	30 02 30 32 31 01 31 31 32 00
0.60 .61 .62 63 .64	0.63665 .64854 .66049 .67251 .68459	9.80390 .81194 .81987 .82770 .83543	1.18547 .19189 .19844 .20510 .21189	0.07389 .07624 .07861 .08102 .08346	0.53705 .54413 .55113 .55805 .56490	9.73001 .73570 .74125 .74667 .75197	1.8620 .8378 .8145 .7919 .7702	0.26999 .26430 .25875 .25333 .24803	32 29 32 58 33 27 33 55 34 24
0.65 .66 .67 .68 .69	0.69675 .70897 .72126 .73363 .74607	9.84308 .85063 .85809 .86548 .87278	1.21879 .22582 .23297 .24025 .24765	0.08593 .08843 .09095 .09351 .09609	0.57167 .57836 .58498 .59152 .59798	9.75715 .76220 .76714 .77197 .77669	7.7493 .7290 .7095 .6906 .6723	0.24285 .23780 .23286 .22803 .22331	34 52 35 20 35 48 36 16 36 44
0.70 .71 .72 .73 .74	0.75858 .77117 .78384 .79659 .80941	9.88000 .88715 .89423 .90123 .90817	1.25517 .26282 .27059 .27849 .28652	0.09870 .10134 .10401 .10670 .10942	0.60437 .61068 .61691 .62307 .62915	9.78130 .78581 .79022 .79453 .79 ⁸ 75	1.6546 .6375 .6210 .6050 .5895	0.21870 .21419 .20978 .20547 .20125	37 11 37 38 38 05 38 32 38 59
0.75 .76 .77 .78 .79	0.82232 .83530 .84838 .86153 .87478	9.91504 .92185 .92859 .93527 .94190	1.29468 .30297 .31139 .31994 .3286e	0.11216 .11493 .11773 .12055 .12340	0.63515 .64108 .64693 .65271 .65841	9.80288 .80691 .81086 .81472 .81850	1.5744 .5599 .5458 .5321 .5188	0.19712 .19309 .18914 .18528 .18150	39 26 39 52 40 19 40 45 41 11
0.80 .81 .82 .83 .84	0.88811 .90152 .91503 .92863 .94233	9.94846 .95498 .96144 .96784 .97420	1.33743 .34638 .35547 .36468 .37404	0.12627 .12917 .13209 .13503 .13800	0.66404 .66959 .67507 .68048 .68581	9.82219 .82581 .82935 .83281 .83620	1.5059 ·4935 .4813 ·4696 ·4581	0.17781 .17419 .17065 .16719 .16380	41 37 42 02 42 28 42 53 43 18
0.85 .86 .87 .88	0.95612 .97000 .98398 .99806	9.98051 .98677 .99299 .99916 0.00528	1.38353 .39316 .40293 .41284 .42289	0.14099 .14400 .14704 .15009 .15317	0.69107 .69626 .70137 .70642 .71139	9.83952 .84277 .84595 .84906 .85211	1.4470 .4362 .4258 .4156 .4057	0.16048 .15723 .15405 .15094 .14789	43 43 44 c8 44 32 44 57 45 21
0.90 .91 .92 .93	1.02652 .04090 .05539 .06998 .08468	0.01137 .01741 .02341 .02937 .03530	1.43309 .4434 ² .45390 .46453 .47530	0.15627 .15939 .16254 .16570 .16888	0.71630 .72113 .72590 .73059 .73522	9.85509 .85801 .86088 .86368 .86642	1.3961 .3867 .3776 .3687 .3601	0.14491 .14199 .13912 .13632 .13358	45 45 46 09 46 33 46 56 47 20
0.95 .96 .97 .98	1.09948 .11440 .12943 .14457 .15983	0.04119 .04704 .05286 .05864 .06439	1.48623 .49729 .50851 .51988 .53141	0.17208 .17531 .17855 .18181 .18509	0.73978 .74428 .74870 .75307 .75736	9.86910 .87173 .87431 .87683 .87930	1.3517 .3436 .3356 .3279 .3204	0.13090 .12827 .12569 .12317 .12070	47 43 48 06 48 29 48 51 49 14
1.00	1.17520	0.07011	1.54308	0.18839	0.76159	9.88172	1.3130	0.11828	49 36

HYPERBOLIC FUNCTIONS

	sinl	ı u	cosh	ı u	tanl	n u	cot	h u	ad "
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
1.00 .01 .02 .03	1.17520 .19069 .20630 .22203 .23788	0.07011 .07580 .08146 .08708 .09268	1.54308 .55491 .56689 .57904 .59134	0.18839 .19171 .19504 .19839 .20176	0.76159 .76576 .76987 .77391 .77789	9.88172 .88409 .88642 .88869 .89092	1.3130 .3059 .2989 .2921 .2855	0.11828 .11591 .11358 .11131 .10908	49°36′ 49 58 50 21 50 42 51 04
1.05 .06 .07 .08	1.25386 .26996 .28619 .30254 .31903	0.09825 .10379 .10930 .11479 .12025	1.60379 .61641 .62919 .64214 .65525	0.20515 .20855 .21197 .21541 .21886	0.78181 .78566 .78946 .79320 .79688	9.89310 .89524 .89733 .89938 .90139	1.2791 .2728 .2667 .2607 .2549	0.10690 .10476 .10267 .10062 .09861	51 26 51 47 52 08 52 29 52 50
1.10 .11 .12 .13	1.33565 .35240 .36929 .38631 .40347	0.12569 .13111 .13649 .14186 .14720	1.66852 .68196 .69557 .70934 .72329	0.22233 .22582 .22931 .23283 .23636	0.80050 .80406 .80757 .81102 .81441	9.90336 .90529 .90718 .90903 .91085	1.2492 .2437 .2383 .2330 .2279	0.09664 .09471 .09282 .09097 .08915	53 11 53 31 53 52 54 12 54 32
1.15 .16 .17 .18	1.42078 .43822 .45581 .47355 .49143	0.15253 .15783 .16311 .16836 .17360	1.73741 .75171 .76618 .78083 .79565	0.23990 .24346 .24703 .25062 .25422	0.81775 .82104 .82427 .82745 .83058	9.91262 .91436 .91607 .91774 .91938	1.2229 .2180 .2132 .2085 .2040	0.08738 .08564 .08393 .08226 .08062	54 52 55 11 55 31 55 50 56 09
1.20 .21 .22 .23 .24	1.50946 .52764 .54598 .56447 .58311	0.17882 .18402 .18920 .19437 .19951	1.81066 .82584 .84121 .85676 .87250	0.25784 .26146 .26510 .26876 .27242	0.83365 .83668 .83965 .84258 .84546	9.92099 .92256 .92410 .92561 .92709	1.1995 .1952 .1910 .1868 .1828	0.07901 .07744 .07590 .07439 .07291	56 29 56 47 57 06 57 25 57 43
1.25 .26 .27 .28 .29	1.60192 .62088 .64001 .65930 .67876	0.20464 .20975 .21485 .21993 .22499	1.88842 .90454 .92084 .93734 .95403	0.27610 .27979 .28349 .28721 .29093	0.84828 .85106 .85380 .85648 .85913	9.92854 .92996 .93135 .93272 .93406	1.1789 .1750 .1712 .1676 .1640	0.07146 .07004 .06865 .06728 .06594	58 02 58 20 58 38 58 55 59 13
1.30 .31 .32 .33 .34	1.69838 .71818 .73814 .75828 .77860	0.23004 .23507 .24009 .24509 .25008	1.97091 .98800 2.00528 .02276 .04044	0.29467 .29842 .30217 .30594 .30972	0.86172 .86428 .86678 .86925 .87167	9.93537 .93665 .93791 .93914 .94035	1.1605 .1570 .1537 .1504 .1472	0.06463 .06335 .06209 .06086 .05965	59 31 59 48 60 05 60 22 60 39
1.35 .36 .37 .38 .39	1.79909 .81977 .84062 .86166 .88289	0.25505 .26002 .26496 .26990 .27482	2.05833 .07643 .09473 .11324 .13196	0.31352 .31732 .32113 .32495 .32878	0.87405 .87639 .87869 .88095 .88317	9.94154 .94270 .94384 .94495 .94604	1.1441 .1410 .1381 .1351 .1323	0.05846 .05730 .05616 .05505 .05396	60 56 61 13 61 29 61 45 62 02
1.40 .41 .42 .43 .44	1.90430 .92591 .94770 .96970 .99188	0.27974 .28464 .28952 .29440 .29926	2.15090 .17005 .18942 .20900 .22881	0.33262 .33647 .34033 .34420 .34807	0.88535 .88749 .88960 .89167 .89370	9.94712 .94817 .94919 .95020 .95119	1.1295 .1268 .1241 .1215 .1189	0.05288 .05183 .05081 .04980 .04881	62 18 62 34 62 49 63 05 63 20
1.45 .46 .47 .48 .49	2.01427 .03686 .05965 .08265 .10586	0.30412 .30896 .31379 .31862 .32343	2 24884 .26910 .28958 .31029 .33123	0.35196 ·35585 ·35976 ·36367 ·36759	0.89569 .89765 .89958 .90147	9.95216 .95311 .95404 .95495 .95584	1.1165 .1140 .1116 .1093 .1070	0.04784 .04689 .04596 .04505	63 36 63 51 64 06 64 21 64 36
1.50	2,12928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	64 51

TABLE 17 (continued)

HYPERBOLIC FUNCTIONS

u	sin	h u	cos	h u	tan	h u	cot	th u	gd	u
u u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gu	u
1.50 .51 .52 .53 .54	2.12928 .15291 .17676 .20082 .22510	0.32823 .33303 .33781 .34258 .34735	2.35241 .37382 .39547 .41736 .43949	0.37151 ·37545 ·37939 ·38334 ·38730	0.90515 .90694 .90870 .91042 .91212	9.95672 .95758 .95842 .95924 .96005	1.1048 .1026 .1005 .0984 .0963	0.04328 .04242 .04158 .04076 .03995	64° 65 65 65 65	51' 05 20 34 48
1.55 .56 .57 .58 .59	2.24961 .27434 .29930 .32449 .34991	0.35211 ·35686 ·36160 ·36633 ·37105	2.46186 .48448 .50735 .53047 .55384	0.39126 ·39524 ·39921 ·40320 ·40719	0.91379 .91542 .91703 .91860 .92015	9.96084 .96162 .96238 .96313 .96386	1.0943 .0924 .0905 .0886 .0868	0.03916 .03838 .03762 .03687 .03614	66 66 66 66 66	02 16 30 43 57
1.60 .61 .62 .63	2.37557 40146 .42760 .45397 .48059	0.37577 .38048 .38518 .38987 .39456	2.57746 .60135 .62549 .64990 .67457	0.41119 .41520 .41921 .42323 .42725	0.92167 .92316 .92462 .92606 .92747	9.96457 .96528 .96597 .96664 .96730	1.0850 .0832 .0815 .0798	0.03543 .03472 .03403 .03336 .03270	67 67 67 67 68	10 24 37 50 03
1.65 .66 .67 .68 .69	2.50746 ·53459 ·56196 ·58959 ·61748	0.39923 .40391 .40857 .41323 .41788	2.69951 .72472 .75021 .77596 .80200	0.43129 ·43532 ·43937 ·44341 ·44747	0.92886 .93022 .93155 .93286 .93415	9.96795 .96858 .96921 .96982 .97042	1.0766 .0750 .0735 .0720 .0705	0.03205 .03142 .03079 .03018 .02958	68 68 68 68 69	15 28 41 53 05
1.70 .71 .72 .73 .74	2.64563 .67405 .70273 .73168 .76091	0.42253 .42717 .43180 .43643 .44105	2.82832 .85491 .88180 .90897 .93643	0.45153 ·45559 ·45966 ·46374 ·46782	0.93541 .93665 .93786 .93906 .94023	9.97100 .97158 .97214 .97269 .97323	1.0691 .0676 .0663 .0649	0.02900 .02842 .02786 .02731 .02677	69 69 69 69 70	18 30 42 54 05
1.75 .76 .77 .78 .79	2.79041 .82020 .85026 .88061	0.44567 .45028 .45488 .45948 .46408	2.96419 .99224 3.02059 .04925 .07821	0.47191 .47600 .48009 .48419 .48830	0.94138 .94250 .94361 .94470 .94576	9.97376 .97428 .97479 .97529 .97578	1.0623 .0610 .0598 .0585	0.02624 .02572 .02521 .02471 .02422	70 70 70 70 71	17 29 40 51 03
1.80 .81 .82 .83 .84	2.94217 .97340 3.00492 .03674 .06886	0.46867 ·47325 ·47783 ·48241 ·48698	3.10747 .13705 .16694 .19715 .22768	0.49241 .49652 .50064 .50476 .50889	0.94681 .94783 .94884 .94983 .95080	9.97626 .97673 .97719 .97764 .97809	1.0562 .0550 .0539 .0528 .0518	0.02374 .02327 .02281 .02236 .02191	71 71 71 71 71	14 25 36 46 57
1.85 .86 .87 .88 .89	3.10129 .13403 .16709 .20046 .23415	0.49154 .49610 .50066 .50521 .50976	3.25853 .28970 .32121 .35305 .38522	0.51302 .51716 .52130 .52544 .52959	0.95175 .95268 ·95359 ·95449 ·95537	9.97852 .97895 .97936 .97977 .98017	1.0507 .0497 .0487 .0477 .0467	0.02148 .02105 .02064 .02023 .01983	72 72 72 72 72 72	08 18 29 39 49
1.90 .91 .92 .93	3.26816 .30250 .33718 .37218 .40752	0.51430 .51884 .52338 .52791 .53244	3.41 7 73 .45058 .48378 .51733 .55123	0.53374 .53789 .54205 .54621 .55038	0.95624 •95709 •95792 •95873 •95953	9.98057 .98095 .98133 .98170 .98266	1.0458 .0448 .0439 .0430 .0422	0.01943 .01905 .01867 .01830 .01794	72 73 73 73 73	59 09 19 29 39
1.95 .96 .97 .98	3.44321 .47923 .51561 .55234 .58942	0.53696 .54148 .54600 .55051 .55502	3.58548 .62009 .65507 .69041 .72611	0.55455 .55872 .56290 .56707 .57126	0.96032 .96109 .96185 .96259 .96331	9.98242 .98276 .98311 .98344 .98377	1.0413 .0405 .0397 .0389	0.01758 .01724 .01689 .01656 .01623	73 73 74 74 74	48 58 07 17 26
2.00	3.62686	0.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01591	74	35

HYPERBOLIC FUNCTIONS

	sin	h u	cos	h u	tan	ih u	col	th u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
2.00 .01 .02 .03	3.62686 .66466 .70283 .74138 .78029	o.55953 .56403 .56853 .57303 .57753	3.76220 .79865 .83549 .87271 .91032	0.57544 .57963 .58382 .58802 .59221	0.96403 .96473 .96541 .96609	9.98409 .98440 .98471 .98502 .98531	1.0373 .0366 .0358 .0351	0.01591 .01560 .01529 .01498	74°35′ 74 44 74 53 75 02 75 11
2.05 .06 .07 .08 .09	3.81958 .85926 .89932 .93977 .98061	0.58202 .58650 .59099 .59547 .59995	3.94832 .98671 4.02550 .06470 .10430	0.59641 .60061 .60482 .60903 .61324	0.96740 .96803 .96865 .96926 .96986	9.98560 .98589 .98617 .98644 .98671	1.0337 .0330 .0324 .0317 .0311	0.01440 .01411 .01383 .01356 .01329	75 20 75 28 75 37 75 45 75 54
2.10 .11 .12 .13 .14	4.02186 .06350 .10555 .14801 .19089	0.60443 .60890 .61337 .61784 .62231	4.14431 .18474 .22558 .26685 .30855	0.61745 .62167 .62589 .63011 .63433	0.97045 .97103 .97159 .97215 .97269	9.98697 .98723 .98748 .98773 .98798	1.0304 .0298 .0292 .0286	0.01303 .01277 .01252 .01227 .01202	76 02 76 10 76 19 76 27 76 35
2.15 .16	4.23419 .27791 .32205 .36663 .41165	0.62677 .63123 .63569 .64015 .64460	4.35067 .39323 .43623 .47967 .52356	0.63856 .64278 .64701 .65125 .65548	0.97323 .97375 .97426 .97477 .97526	9.98821 .98845 .98868 .98890 .98912	.0275 .0270 .0264 .0259	0.01179 .01155 .01132 .01110	76 43 76 51 76 58 77 06 77 14
2.20 .21 .22 .23 .24	4.45711 .50301 .54936 .59617 .64344	0.64905 .65350 .65795 .66240 .66684	4.56791 .61271 .65797 .70370 .74989	0.65972 .66396 .66820 .67244 .67668	0.97574 .97622 .97668 .97714 .97759	9.98934 .98955 .98975 .98996	1.0249 .0244 .0239 .0234 .0229	0.01066 .01045 .01025 .01004 .00984	77 21 77 29 77 36 77 44 77 51
2.25 .26 .27 .28 .29	4.69117 .73937 .78804 .83720 .88684	0.67128 .67572 .68016 .68459 .68903	4.79657 .84372 .89136 .93948 .98810	0.68093 .68518 .68943 .69368 .69794	0.97803 .97846 .97888 .97929 .97970	9.99035 .99054 .99073 .99091	1.0225 .0220 .0216 .0211 .0207	0.00965 .00946 .00927 .00909 .00891	77 58 78 05 78 12 78 19 78 26
.31	4.93696 .98758 5.03870 .09032 .14245	0.69346 .69789 .70232 .70675 .71117	5.03722 .08684 .13697 .18762 .23878	0.70219 .70645 .71071 .71497 .71923	0.98010 .98049 .98087 .98124 .98161	9.99127 .99144 .99161 .99178 .99194	.0203 .0199 .0195 .0191 .0187	0.00873 .00856 .00839 .00822 .00806	78 33 78 40 78 46 78 53 79 00
2.35 .36 .37 .38 .39	5.19510 .24827 .30196 .35618 .41093	0.71559 .72002 .72444 .72885 .73327	5.29047 .34269 .39544 .44873 .50256	0.72349 .72776 .73203 .73630 .74056	0.98197 .98233 .98267 .98301 .98335	9•99210 .99226 .99241 .99256 .99271	.0184 .0180 .0176 .0173 .0169	0.00790 .00774 .00759 .00744 .00729	79 06 79 13 79 19 79 ² 5 79 3 ²
2.40 .41 .42 .43 .44	5.46623 .52207 .57847 .63542 .69294	0.73769 .74210 .74652 .75093 .75534	5.55695 .61189 .66739 .72346 .78010	0.74484 .74911 .75338 .75766 .76194	0.98367 .98400 .98431 .98462 .98492	9.99285 .99299 .99313 .99327 .99340	0.0166 .0163 .0159 .0156 .0153	0.00715 .00701 .00687 .00673 .00660	79 38 79 44 79 50 79 56 80 02
2.45 .46 .47 .48 .49	5.75103 .80969 .86893 .92876 .98918	0.75975 .76415 .76856 .77296 .77737	5.83732 .89512 .95352 6.01250 .07209	0.76621 .77049 .77477 .77906 .78334	0.98522 .98551 .98579 .98607 .98635	9.99353 .99366 .99379 .99391 .99403	1.0150 .0147 .0144 .0141 .0138	0.00647 .00634 .00621 .00609 .00597	80 08 80 14 80 20 80 26 80 31
2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	80 37

TABLE 17 (continued)

HYPERBOLIC FUNCTIONS

	sin	h u	cos	h u	tan	h u	cot	h u		
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd	u
2.50 .51 .52 .53 .54	6.05020 .11183 .17407 .23692 .30040	0.78177 .78617 .79057 .79497 .79937	6.13229 .19310 .25453 .31658 .37927	0.78762 .79191 .79619 .80048 .80477	0.98661 .98688 .98714 .98739	9.99415 .99426 .99438 .99449	1.0136 .0133 .0130 .0128 .0125	0.00585 .00574 .00562 .00551	80° 80 80 80 80	37' 42 48 53 59
2.55 .56 .57 .58 .59	6.36451 .42926 .49464 .56068 .62738	0.80377 .80816 .81256 .81695 .82134	6.44259 .50656 .57118 .63646 .70240	0.80906 .81335 .81764 .82194 .82623	0.98788 .98812 .98835 .98858 .98881	9.99470 .99481 .99491 .99501	1.0123 .0120 .0118 .0115	0.00530 .00519 .00509 .00499 .00489	81 81 81 81	04 10 15 20 25
2.60 .61 .62 .63 .64	6.69473 .76276 .83146 .90085 .97092	0.82573 .83012 .83451 .83890 .84329	6.76901 .83629 .90426 .97292 7.04228	0.83052 .83482 .83912 .84341 .84771	0.98903 .98924 .98946 .98966 .98987	9.99521 .99530 .99540 .99549 .99558	1.0111 .0109 .0107 .0104 .0102	0.00479 .00470 .00460 .00451 .00442	81 81 81 81	30 35 40 45 50
2.65 .66 .67 .68 .69	7.04169 .11317 .18536 .25827 .33190	0.84768 .85206 .85645 .86083 .86522	7.11234 .18312 .25461 .32683 .39978	0.85201 .85631 .86061 .86492 .86922	0.99007 .99026 .99045 .99064 .99083	9.99566 ·99575 ·99583 ·99592 ·99600	· 1.0100 .0098 .0096 .0094 .0093	0.00434 .00425 .00417 .00408 .00400	82	55 00 05 09 14
2.70 .71 .72 .73 .74	7.40626 .48137 .55722 .63383 .71121	0.86960 .87398 .87836 .88274 .88712	7.47347 .54791 .62310 .69905 .77578	0.87352 .87783 .88213 .88644 .89074	0.99101 .99118 .99136 .99153	9.99608 .99615 .99623 .99631	1.0091 .0089 .0087 .0085	0.00392 .00385 .00377 .00369 .00362	82 82 82 82 82	19 23 28 32 37
2.75 .76 .77 .78 .79	7.78935 .86828 .94799 8.02849 .10980	0.89150 .89588 .90026 .90463	7.85328 .93157 8.01065 .09053 .17122	0.89505 .89936 .90367 .90798 .91229	0.99186 .99202 .99218 .99233 .99248	9.99645 .99652 .99659 .99666	1.0082 .0080 .0079 .0077	0.00355 .00348 .00341 .00334 .00328	82 82 82 82 82 82	41 45 50 54 58
2.80 .81 .82 .83 .84	8.19192 .27486 .35862 .44322 .52867	0.91339 .91776 .92213 .92651	8.25273 .33506 .41823 .50224 .58710	0.91660 .92091 .92522 .92953 .93385	0.99263 .99278 .99292 .99306 .99320	9.99679 .99685 .99691 .99698	1.0074 .0073 .0071 .0070 .0069	0.00321 .00315 .00309 .00302 .00296	1 ~~	02 07 11 15
2.85 .86 .87 .88	8.61497 .70213 .79016 .87907 .96887	0.93525 .93963 .94400 .94837 .95274	8.67281 .75940 .84686 .93520 9.02444	0.93816 .94247 .94679 .95110 .95542	0.99333 .99346 .99359 .99372 .99384	9.99709 .99715 .99721 .99726 .99732	1.0067 .0066 .0065 .0063	0.00291 .00285 .00279 .00274 .00268	83 83 83 83 83	23 27 31 34 38
2.90 .91 .92 .93 .94	9.05956 .15116 .24368 .33712 .43149	0.95711 .96148 .96584 .97021 .97458	9.11458 .20564 .29761 .39051 .48436	0.95974 .96405 .96837 .97269 .97701	0.99396 .99408 .99420 .99531 .99443	9·99737 •99742 •99747 •99752 •99757	1.0061 .0060 .0058 .0057 .0056	0.00263 .00258 .00253 .00248 .00243	83 83 83 83 83	42 46 50 53 57
2.95 .96 .97 .98	9.52681 .62308 .72031 .81851 .91770	0.97895 .98331 .98768 .99205 .99641	9.57915 .67490 .77161 .86930 .96798	0.98133 .98565 .98997 .99429 .99861	0.99454 .99464 .99475 .99485	9.99762 .99767 .99771 .99776 .99780	1.0055 .0054 .0053 .0052 .0051	0.00238 .00233 .00229 .00224 .00220	84	00 04 08 11 15
3.00	10.01787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	84	18

	sin	h u	cos	h u	tan	h u	cotl	h u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
3.0 .1 .2 .3 .4	10.0179 11.0765 12.2459 13.5379 14.9654	1.00078 .04440 .08799 .13155	10.0677 11.1215 12.2866 13.5748 14.9987	1.00293 .04616 .08943 .13273	0.99505 •99595 •99668 •99728	9.99785 .99824 .99856 .99882	1.0050 .0041 .0033 .0027	0.00215 .00176 .00144 .00118	84°18′ 84 50 85 20 85 47 86 11
3.5 .6 .7 .8	16.5426 18.2855 20.2113 22.3394 24.6911	1.21860 .26211 .30559 .34907 .39254	16.5728 18.3128 20.2360 22.3618 24.7113	1.21940 .26275 .30612 .34951 .39290	0.99818 .99851 .99878 .99900	9.99921 •99935 •99947 •99957 •99964	1.0018 ,0015 .0012 .0010	0.00079 .00065 .00053 .00043	86 32 86 52 87 10 87 26 87 41
4.0 .1 .2 .3 .4	27.2899 30.1619 33.3357 36.8431 40.7193	1.43600 .47946 .52291 .56636 .60980	27.3082 30.1784 33.3507 36.8567 40.7316	1.43629 .47970 .52310 .56652 .60993	0.99933 ·99945 ·99955 ·99963 ·99970	9.99971 .99976 .99980 .99984 .99987	1.0007 .0005 .0004 .0004 .0003	0.00029 .00024 .00020 .00016	87 54 88 06 88 17 88 27 88 36
4.5 .6 .7 .8 .9	45.0030 49.7371 54.9690 60.7511 67.1412	1.65324 .69668 .74012 .78355 .82699	45.0141 49.7472 54.9781 60.7593 67.1486	1.65335 .69677 .74019 .78361 .82704	0.99975 .99980 .99983 .99986 .99989	9.99989 .99991 .99993 .99994 .99995	1,0002 .0002 .0002 .0001 .0001	0.00011 .00009 .00007 .00006 .00005	88 44 88 51 88 57 89 03 89 09

TABLE 18 .- Factorials

See Table 16 for logarithms of the products 1.2.3.... n from 1 to 100. See Table 33 for log, Γ (n+1) for values of n between 1.000 and 2.000.

12	$\frac{I}{n:}$	$n; = 1. 2. 3. 4 \dots n$	n
1	1. 0.5 .16666 66666 66666 66666 66667 .04166 66666 66666 66666 66667 .00833 33333 33333 33333 33333	1	1
2		2	2
3		6	3
4		24	4
5		120	5
6 7 8 9 10	0.00138 88888 88888 88888 88889 .00019 84126 98412 69841 26984 .00002 48015 87301 58730 15873 .00000 27557 31922 39858 90053 .00000 02755 73192 23985 89065	720 5040 40320 3 62880 36 28800	6 7 8 9
11	0.00000 00250 52108 38544 17188	399 16800	11
12	.00000 00020 87675 69878 68099	4790 01600	12
13	.00000 00001 60590 43836 82161	62270 20800	13
14	.00000 00000 11470 74559 77297	8 71782 91200	14
15	.00000 00000 00764 71637 31820	130 76743 68000	15
16	0.00000 00000 00047 79477 33239	2092 27898 88000	16
17	.00000 00000 00002 81145 72543	35568 74280 96000	17
18	.00000 00000 00000 15619 20697	6 40237 37057 28000	18
19	.00000 00000 00000 00822 06352	121 64510 04088 32000	19
20	.00000 00000 00000 00041 10318	2432 90200 81766 40000	20

TABLE 19
EXPONENTIAL FUNCTIONS

x	$\log_{10}(ex)$	ех	e-x	х	$\log_{10}(ex)$	ex	e-x
0.00 .01 .02 .03	0.00000 .00434 .00869 .01303	1.0000 .0101 .0202 .0305 .0408	1.000000 0.990050 .980199 .970446 .960789	0.50 .51 .52 .53	0.21715 .22149 .22583 .23018 .23452	1.6487 .6653 .6820 .6989 .7160	0.606531 .600496 .594521 .588605 .582748
0.05 .06 .07 .08 .09	0.02171 .02606 .03040 .03474 .03909	1.0513 .0618 .0725 .0833 .0942	0.951229 .941765 .932394 .923116 .913931	0.55 .56 .57 .58 .59	0.23886 .24320 .24755 .25189 .25623	1.7333 .7507 .7683 .7860 .8040	0.576950 .571209 .565525 .559898 .554327
0,10 .11 .12 .13 .14	0.04343 .04777 .05212 .05646 .06080	1.1052 .1163 .1275 .1388 .1503	0.904837 .895834 .886920 .878095 .869358	0.60 .61 .62 .63 .64	0.26058 .26492 .26926 .27361 .27795	1.8221 .8404 .8589 .8776 .8965	0.548812 •543351 •537944 •532592 •527292
0.15 .16 .17 .18	0.06514 .06949 .07383 .07817 .08252	1.1618 .1735 .1853 .1972 .2092	0.860708 .852144 .843665 .835270 .826959	0.65 .66 .67 .68 .69	0.28229 .28663 .29098 .29532 .2966	1.9155 .9348 .9542 .9739 .9937	0.522046 .516851 .511709 .506617 .501576
0.20 ,21 ,22 ,23 ,24	0.08686 .09120 .09554 .09989 .10423	1.2214 .2337 .2461 .2586 .2712	0.818731 .810584 .802519 .794534 .786628	0.70 .71 .72 .73 .74	0.30401 .30835 .31269 .31703 .32138	2.0138 .0340 .0544 .0751 .0959	0.496585 .491644 .486752 .481909 .477114
0.25 .26 .27 .28 .29	0.10857 .11292 .11726 .12160 .12595	1.2840 .2969 .3100 .3231 .3364	0.778801 .771052 .763379 .755784 .748264	0.75 .76 .77 .78 .79	0.32572 .33006 .33441 .33875 .34309	2.1170 .1383 .1598 .1815 .2034	0.472367 .467666 .463013 .458406 .453845
0.30 .31 .32 .33 .34	0.13029 .13463 .13897 .14332 .14766	1.3499 .3634 .3771 .3910 .4049	0.740818 •733447 •726149 •718924 •711770	0.80 .81 .82 .83 .84	0.34744 .35178 .35612 .36046 .36481	2.2255 .2479 .2705 .2933 .3164	0.449329 .444858 .440432 .436049 .431711
0.35 .36 .37 .38 .39	0.15200 .15635 .16069 .16503 .16937	1.4191 •4333 •4477 •4623 •4770	0.704688 .697676 .690734 .683861 .677057	0.85 .86 .87 .88 .89	0.36915 ·37349 ·37784 ·38218 ·38652	2.3396 .3632 .3869 .4109	0.427415 .423162 .418952 .414783 .410656
0.40 .41 .42 .43 .44	0.17372 .17806 .18240 .18675 .19109	1.4918 .5068 .5220 .5373 .5527	0.670320 .663650 .657047 .650509 .644036	0.90 .91 .92 .93 .94	0.39087 .39521 .39955 .40389 .40824	2.4596 .4843 .5093 .5345 .5600	0.406570 .402524 .398519 .394554 .390628
0.45 .46 .47 .48 .49	0.19543 .19978 .20412 .20846 .21280	1.5683 .5841 .6000 .6161 .6323	0.637628 .631284 .625002 .618783 .612626	0.95 .96 .97 .98	0.41258 .41692 .42127 .42561 .42995	2.5857 .6117 .6379 .6645 .6912	0.386741 .382893 .379083 .375311 .371577
0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879

х	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}\left(e^{x}\right)$	ex	e-x
1,00 .01 .02 .03	0.43429 .43864 .44298 .44732 .45167	2.7183 .7456 .7732 .8011 .8292	0.367879 .364219 .360595 .357007 .353455	1.50 ·51 ·52 ·53 ·54	0.65144 .65578 .65013 .66447 .66881	4.4817 .5267 .5722 .6182 .6646	0.223130 .220910 .218712 .216536 .214381
1.05 .06 .07 .08 .09	0.45601 .46035 .46470 .46904 .47338	2.8577 .8864 .9154 .9447 .9743	0.349938 .346456 .343009 .339596 .336216	1.55 .56 .57 .58 .59	0.67316 .67750 .68184 .68619 .69053	4.7115 .7588 .8066 .8550	0.212248 .210136 .208045 .205975 .203926
1.10 .11 .12 .13	0.47772 .48207 .48641 .49075 .49510	3.0042 .0344 .0649 .0957 .1268	0.332871 •329559 •326280 •323033 •319819	1.60 .61 .62 .63	0.69487 .69921 .70356 .70790 .71224	4.9530 5.0028 .0531 .1039 .1552	0.201897 .199888 .197899 .195930 .193980
1.15 .16 .17 .18	0.49944 .50378 .50812 .51247 .51681	3.1 582 .1899 .2220 .2544 .2871	0.316637 .313486 .310367 .307279 .304221	1.65 .66 .67 .68 .69	0.71659 .72093 .72527 .72961 .73396	5.2070 .2593 .3122 .3656 .4195	0.192050 .190139 .188247 .186374 .184520
1.20 .21 .22 .23 .24	0.52115 .52550 .52984 .53418 .53 ⁸ 53	3.3201 ·3535 ·3872 ·4212 ·4556	0.301194 .298197 .295230 .292293 .289384	1.70 •71 •72 •73 •74	0.73830 ·74264 ·74699 ·75133 ·75567	5-4739 .5290 .5845 .6407 .6973	0.182684 .180866 .179066 .177284 .175520
1.25 .26 .27 .28 .29	0.54287 -54721 -55155 -55590 -56024	3.4903 · 5254 · 5609 · 5966 · 6328	0.286505 .283654 .280832 .278037 .275271	1.75 .76 .77 .78 .79	0.76002 .76436 .76870 .77304 .77739	5.7 546 .81 24 .8709 .9299 .9895	0.173774 .172045 .170333 .168638 .166960
1.30 .31 .32 .33 .34	0.56458 .56893 .57327 .57761 .58195	3.6693 .7062 .7434 .7810 .8190	0.272532 .269820 .267135 .264477 .261846	1.80 .81 .82 .83 .84	0.78173 .78607 .79042 .79476 .79910	6.0496 .1104 .1719 .2339 .2965	0.165299 .163654 .162026 .160414 .158817
1.35 .36 .37 .38 .39	o.58630 .59064 .59498 .59933 .60367	3.8 57.4 .8962 •9354 •9749 4.0149	0.259240 .256661 .254107 .251579 .249075	1.85 .86 .87 .88 .89	0.80344 .80779 .81213 .81647 .82082	6.3598 •4237 •4883 •5535 •6194	0.157237 .155673 .154124 .152590 .151072
1.40 .41 .42 .43 .44	0.60801 .61236 .61670 .62104 .62538	4.0552 .0960 .1371 .1787 .2207	0.246597 .244143 .241714 .239309 .236928	1.90 .91 .92 .93 .94	0.82516 .82950 .83385 .83819 .84253	6.6859 .7531 .8210 .8895 .9588	0.149569 .148080 .146607 .145148 .143704
1.45 .46 .47 .48 .49	0.62973 .63407 .63841 .64276 .64710	4.2631 .3060 .3492 .3929 .4371	0.234570 .232236 .229925 .227638 .225373	1.95 .96 .97 .98	0.84687 .85122 .85556 .85990 .86425	7.0287 .0993 .1707 .2427 .3155	0.142274 .140858 .139457 .138069 .136695
1.50	0.65144	4.4817	0.223130	2.00	0.86859	7.3891	0.135335

EXPONENTIAL FUNCTIONS

х	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}(e^x)$	ex	e-x
2.00 .01 .02 .03	0.86859 .87293 .87727 .88162 .88596	7.3891 .4633 .5383 .6141 .6906	0.135335 .133989 .132655 .131336 .130029	2.50 .51 .52 .53 .54	1.08574 .09008 .09442 .09877 .10311	12.182 .305 .429 .554 .680	0.082085 .081268 .080460 .079659 .078866
2.05 .06 .07 .08 .09	0.89030 .89465 .89899 .90333 .90708	7.7679 .8460 9248 8.0045 .0849	0.128735 .127454 .126186 .124930 .123687	2.55 .56 .57 .58 .59	1.10745 .11179 .11614 .12048 .12482	12.807 .936 13.066 .197 .330	0.078082 .077305 .076536 .075774 .075020
2.10 .11 .12 .13 .14	0.91202 .91636 .92070 .92505 .92939	8.1662 .2482 .3311 .4149 .4994	0.122456 .121238 .12003 2 .118837 .117655	2.60 .61 .62 .63 .64	1.12917 .13351 .13785 .14219 .14654	13.464 ·599 ·736 ·874 14.013	0.074274 .073535 .072803 .072078 .071361
2.15 .16 .17 .18	0.93373 .93808 .94242 .94676 .95110	8.5849 .6711 .7583 .8463 .9352	0.116484 .115325 .114178 .113042 .111917	2.65 .66 .67 .68 .69	1.15088 .15522 .15957 .16391 .16825	14.154 .296 .440 .585 .732	0.070651 .069948 .069252 .068563 .067881
2.20 .21 .22 .23 .24	0.95545 -95979 .96413 .96848 .97282	9.0250 .1157 .2073 .2999 .3933	0.110803 .109701 .108609 .107528 .106459	2.70 .71 .72 .73 .74	1.17260 .17694 .18128 .18562 .18997	14.880 15.029 .180 .333 .487	0.067206 .066537 .065875 .065219 .064570
2.25 .26 .27 .28 .29	0.97716 .98151 .98585 .99019 .99453	9.4877 .5831 .6794 .7767 .8749	0.105399 .104350 .103312 .102284 .101266	2.75 .76 .77 .78 .79	1.19431 .19865 .20300 .20734 .21168	15.643 .800 .959 16.119 .281	0.063928 .063292 .062662 .062039
2.30 .31 .32 .33 .34	0.99888 1.00322 .00756 .01191 .01625	9.9742 10.074 .176 .278 .381	0.100259 .099261 .098274 .097296 .096328	2.80 .81 .82 .83 .84	1.21602 .22037 .22471 .22905 .23340	16.445 .610 .777 .945 17.116	0.060810 .060205 .059606 .059013 .058426
2.35 .36 .37 .38 .39	1.02059 .02493 .02928 .03362 .03796	10.486 .591 .697 .805 .913	0.095369 .094420 .093481 .092551 .091630	2.85 .86 .87 .88 .89	1.23774 .24208 .24643 .25077 .25511	.462 .637 .814 .993	0.057844 .057269 .056699 .056135
2.40 .41 .42 .43 .44	1.04231 .04665 .05099 .05534 .05968	.134 .246 .359 .473	0.090718 .089815 .088922 .088037 .087161	2.90 .91 .92 .93 .94	1.25945 .26380 .26814 .27248 .27683	18.174 •357 •541 •728 •916	0.0550 2 3 .054476 .053934 .053397 .052866
2.45 .46 .47 .48 .49	1.06402 .06836 .07271 .07705 .08139	11.588 .705 .822 .941 12.061	0.086294 .085435 .084585 .083743 .082910	2.95 .96 .97 .98	1.28117 .28551 .28985 .29420 .29854	19.106 .298 .492 .688 .886	0.052340 .051819 .051303 .050793 .050287
2.50	1.08574	12.182	0.082085	3.00	1.30288	20.086	0.049787

EXPONENTIAL FUNCTIONS

x	$\log_{10}(ex)$	ex	e-x	x	$\log_{10}(ex)$	ex	e-x
3.00 .01 .02 .03	1.30288 .30723 .31157 .31591 .32026	20.086 .287 .491 .697 .905	0.049787 .049292 .048801 .048316 .047835	3.50 .51 .52 .53 .54	1.52003 .52437 .52872 .53306 .53740	33.115 .448 .784 34.124 .467	0.030197 .029897 .029599 .029305 .029013
3.05 .06 .07 .08 .09	1.32460 .32894 .33328 .33763 .34197	21.115 .328 .542 .758 .977	0.047359 .046888 .046421 .045959 .045502	3.55 .56 .57 .58 .59	1.54175 .54609 .55043 .55477 .55912	34.813 35.163 .517 .874 36.234	0.028725 .028439 .028156 .027876 .027598
3.10 .11 .12 .13	1.34631 .35066 .35500 .35934 .36368	22.198 .421 .646 .874 23.104	0.045049 .044601 .044157 .043718 .043283	3.60 .61 .62 .63 .64	1.56346 .56780 .57215 .57649 .58083	36.598 .966 37.338 .713 38.092	0.027324 .027052 .026783 .026516 .026252
3.15 .16 .17 .18	1.36803 •37237 •37671 •38106 •38540	23.336 .571 .807 24.047 .288	0.042852 .042426 .042004 .041586 .041172	3.65 .66 .67 .68 .69	1.58517 .58952 .59386 .59820 .60255	38.475 .861 39.252 .646 40.045	0.025991 .025733 .025476 .025223 .024972
3.20 .21 .22 .23 .24	1.38974 .39409 .39843 .40277 .40711	24.533 .779 25.028 .280 .534	0.040762 .040357 .039955 .039557 .039164	3.70 .71 .72 .73 .74	1.60689 .61123 .61558 .61992 .62426	40.447 .854 41.264 .679 42.098	0.024724 .024478 .024234 .023993 .023754
3.25 .26 .27 .28 .29	1.41146 .41580 .42014 .42449 .42883	25.790 26.050 .311 .576 .843	0.038774 .038388 .038006 .037628	3.7 5 .76 .77 .78 .79	1.62860 .63295 .63729 .64163 .64598	42.521 .948 43.380 .816 44.256	0.023518 .023284 .023052 .022823 .022596
3.30 .31 .32 .33 .34	1.43317 .43751 .44186 .44620 .45054	27.113 .385 .660 .938 28.219	o.o36883 .o36516 .o36153 .o35793 .o35437	3.80 .81 .82 .83 .84	1.65032 .65466 .65900 .66335 .66769	44.701 45.150 .604 46.063 .525	0.022371 .022148 .021928 .021710 .021494
3·35 ·36 ·37 ·38 ·39	1.45489 .45923 .46357 .46792 .47226	28.503 .789 29.079 .371 .666	0.035084 .034735 .034390 .034047 .033709	3.85 .86 .87 .88 .89	1.67203 .67638 .68072 .68506 .68941	46.993 47.465 .942 48.424 .911	0.021280 .021068 .020858 .020651
3.40 .41 .42 .43 .44	1.47660 .48094 .48529 .48963 .49397	29.964 30.265 .569 .877 31.187	0.033373 .033041 .032712 .032387 .032065	3.90 .91 .92 .93 .94	1.69375 .69809 .70243 .70678 .71112	49.402 .899 50 400 .907 51.419	0.020242 .020041 .019841 .019644 .019448
3.45 .46 .47 .48 .49	1.49832 .50266 .50700 .51134 .51569	31.500 .817 32.137 .460 .786	0.031746 .031430 .031117 .030807 .030501	3.95 .96 .97 .98	1.71546 .71981 .72415 .72849 .73 ²⁸ 3	51.935 52.457 .985. 53.517 54.055	0.019255 .019063 .018873 .018686
3.50	1.52003	33.115	0:030197	4.00	1.73718	54.598	0.018316

TABLE 19 (continued)

EXPONENTIAL FUNCTIONS

x	$\log_{10}(e^x)$	ex	ex	x	$\log_{10}(e^x)$	ez	e-x
4.00 .01 .02 .03	1.73718 .74152 .74586 .75021 .75455	54.598 55.147 .701 56.261 .826	0.018316 .018133 .017953 .017774 .017597	4.50 .51 .52 .53 .54	1.95433 .95867 .96301 .96735 .97170	90.017 .922 91.836 92.759 93.691	0.011109 .010998 .010889 .010781
4.05 .06 .07 .08 .09	1.75889 .76324 .76758 .77192 .77626	57·397 .974 58·557 59·145 .740	0.01742 2 .017249 .017077 .016907 .016739	4·55 .56 ·57 ·58 ·59	1.97604 .98038 .98473 .98907	94.632 95.583 96.544 97.514 98.494	0.010567 .010462 .010358 .010255 .010153
4.I0 .II .I2 .I3 .I4	1.78061 .78495 .78929 .79364 .79798	60.340 .947 61.559 62.178 .803	0.016573 .016408 .016245 .016083 .015923	4.60 .61 .62 .63 .64	1.99775 2.00210 .00644 .01078 .01513	99.484 100.48 101.49 102.51 103.54	0.010052 .009952 .009853 .009755 .009658
4.15 .16 .17 .18	1,80232 .80667 .81101 .81535 .81969	63.434 64.072 .715 65.366 66.023	0.015764 .015608 .015452 .015299 .015146	4.65 .66 .67 .68 .69	2.01947 .02381 .02816 .03250 .03684	104.58 105.64 106.70 107.77 108.85	0.009562 .009466 .009372 .009279 .009187
4.20 .21 .22 .23 .24	1,82404 .82838 .83272 .83707 .84141	66.686 67.357 68.033 .717 69.408	0.014996 .014846 .014699 .014552 .014408	4.70 .71 .72 .73 .74	2.04118 .04553 .04987 .05421 .05856	109.95 111.05 112.17 113.30 114.43	0.009095 .009005 .008915 .008826 .008739
4.25 .26 .27 .28	1.84575 .85009 .85444 .85878 .86312	70.105 .810 71.522 72.240 .966	0.014264 .014122 .013982 .013843 .013705	4·75 ·76 ·77 ·78 ·79	2,06290 .06724 .07158 .07593 .08027	115.58 116.75 117.92 119.10 120.30	0.008652 .008566 .008480 .008396 .008312
4.30 .31 .32 .33 .34	1.86747 .87181 .87615 .88050 .88484	73.700 74.440 75.189 .944 76.708	0.013569 .013434 .013300 .013168 .013037	4.80 .81 .82 .83 .84	2.08461 .08896 .09330 .09764 .10199	121.51 122.73 123.97 125.21 126.47	0.008230 .008148 .008067 .007987 .007907
4·35 ·36 ·37 ·38 ·39	1,88918 .89352 .89787 .90221	77.478 78.257 79.044 79.838 80.640	0.012907 .012778 .012651 .012525 .012401	4.85 .86 .87 .88 .89	2,10633 .11067 .11501 .11936 .12370	127.74 129.02 130.32 131.63 132.95	0.007828 .007750 .007673 .007597
4.40 .41 .42 .43 .44	1.91090 .91524 .91958 .92392 .92827	81.451 82.269 83.096 .931 84.775	0 012277 .012155 .012034 .011914 .011796	4.90 .91 .92 .93 .94	2.12804 .13239 .13673 .14107 .14541	134.29 135.64 137.00 138.38 139.77	0.007447 .007372 .007299 .007227 .007155
4·45 •46 •47 •48 •49	1.93261 .93695 .94130 .94564 .94998	85.627 86.488 87.357 88.235 89.121	0.011679 .011562 .011447 .011333 .011221	4.95 .96 .97 .98	2.14976 .15410 .15844 .16279 .16713	141.17 142.59 144.03 145.47 146.94	0.007083 .007013 .006943 .006874 .006806
4.50	1.95433	90.017	0.011109	5.00	2.17147	148.41	0.006738

TABLE 19 (concluded)

EXPONENTIAL FUNCTIONS

x	$\log_{10}(e^x)$	ex	e-x	.r	$\log_{10}(e^x)$	ez	e-x
5.00 .01 .02 .03	2.17147 .17582 .18016 .18450	148.41 149.90 151.41 152.93 154.47	0.006738 .006671 .006605 .006539 .006474	5.0 .1 .2 .3 .4	2.17147 .21490 .25833 .30176 .34519	148.41 164.02 181.27 200.34 221.41	0.006738 .006097 .005517 .004992 .004517
5.05 .06 .07 .08 .09	2.19319 .19753 .20187 .20622 .21056	1 56.02 1 57.59 1 59.17 160.77 162.39	0.006409 .006346 .006282 .006220 .006158	5.5 .6 .7 .8 .9	2.38862 .43205 .47548 .51891 .56234	244.69 270.43 298.87 330.30 365.04	0.004087 .003698 .003346 .003028
5.10 .11 .12 .13	2.21490 .21924 .22359 .22793 .23227	164.02 165.67 167.34 169.02 170.72	0.006097 .006036 .005976 .005917 .005858	6.0 .1 .2 .3 .4	2.60577 .64920 .69263 .73606 .77948	403.43 445.86 492.75 544.57 601.85	0.002479 .002243 .002029 .001836 .001662
5.15 .16 .17 .18	2.23662 .24096 .24530 .24965	172.43 174.16 175.91 177.68 179.47	0.005799 .005742 .005685 .005628 .005572	6.5 .6 .7 .8	2,82291 .86634 .90977 .95320 .99663	665.14 735.10 812.41 897.85 992.27	0.001503 .001360 .001231 .001114
5.20 .21 .22 .23 .24	2.25833 .26267 .26702 .27136 .27570	181.27 183.09 184.93 186.79 188.67	0.005517 .005462 .005407 .005354 .005300	7.0 .1 .2 .3 .4	3.04006 .08349 .12692 .17035 .21378	1096.6 1212.0 1339.4 1480.3 1636.0	0.000912 .000825 .000747 .000676
5.25 .26 .27 .28	2,28005 .28439 .28873 .29307 .29742	190.57 192.48 194.42 196.37 198.34	0.005248 .005195 .005144 .005092 .005042	7·5 .6 ·7 .8	3.25721 .30064 .34407 .38750 .43093	1808.0 1998.2 2208.3 2 440.6 2697.3	0.000553 .000500 .000453 .000410
5.30 ·31 ·32 ·33 ·34	2.30176 .30610 .31045 .31479 .31913	200.34 202.35 204.38 206.44 208.51	0.004992 .004942 .004893 .004844 .004796	8.0 .1 .2 .3 .4	3.47436 .51779 .56121 .60464 .64807	2981.0 3294.5 3641.0 4023.9 4447.1	0.000335 .000304 .000275 .000249
5·35 .36 ·37 .38 ·39	2.32348 .32782 .33216 .33650 .34085	210.61 212.72 214.86 217.02 219.20	0.004748 .004701 .004654 .004608 .004562	8.5 .6 .7 .8	3.69150 ·73493 .77836 .82179 .86522	4914.8 5431.7 6002.9 6634.2 7332.0	0.000203 .000184 .000167 .000151
5.40 .41 .42 .43 .44	2.34519 .34953 .35388 .35822 .36256	221.41 223.63 225.88 228.15 230.44	0.004517 .004472 .004427 .004383 .004339	9.0 .1 .2 .3 .4	3.90865 .95208 .99551 4.03894 .08237	8103.1 8955.3 9897.1 10938.	0.000123 .000112 .000101 .000091 .000083
5·45 .46 .47 .48 .49	2.36690 .37125 .37559 .37993 .38428	232.76 235.10 237.46 239.85 242.26	0.004296 .004254 .004211 .004169 .004128	9.5 .6 .7 .8 .9	4.12580 .16923 .21266 .25609 .29952	13360. 14765. 16318. 18034. 19930.	0.000075 .000068 .000061 .000055
5.50	2. 38862	244.69	0.004087	10.0	4-34294	22026.	0.000045

TABLE 20

EXPONENTIAL FUNCTIONS

Values of e^{x^2} and e^{-x^2} and their logarithms

x	e ^{x²}	$\log e^{x^2}$	e-x2	log e-x2
0.1	1.0101	0.00434	0.99005	7.99566
2	1.0408	01737	96079	98263
3	1.0942	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89143
0.6 7 8 9	1.4333 1.6323 1.8965 2.2479 2.7183	0.15635 21280 27795 35178 43429	0.69768 61263 52729 44486 36788	7.84365 78720 72205 64822 56571
1.1	3·3535	0.52550	0.29820	7.47450
2	4·2207	62538	23693	37462
3	5·4195	73396	18452	26604
4	7·0993	85122	14086	14878
5	9·4877	97716	10540	02284
1.6	1.2936 × 10	1.11179	0.77305×10^{-1} 55576 " 39164 " 27052 " 18316 "	2.88821
7	1.7993 "	25511		74489
8	2.5534 "	40711		59289
9	3.6966 "	56780		43220
2.0	5.4598 "	73718		26282
2.1	8.2269 " 1.2647×10^{2} 1.9834 " 3.1735 " 5.1801 "	1.91524	0.12155 "	2.08476
2		2.10199	79071 × 10 ⁻²	3.89801
3		29742	50418 "	70258
4		50154	31511 "	49846
5		71434	19305 "	28566
2.6 7 8 9 3.0	8.6264 " 1.4656×10^{3} 2.5402 " 4.4918 " 8.1031 "	2.93583 3.16601 40487 65242 90865	0.11592 " 68233 × 10 ⁻³ 39367 " 22263 " 12341 "	3.06417 4.83399 59513 34758 09135
3.1 2 3 4 5	1.4913×10^{4} 2.8001 " 5.3637 " 1.0482×10^{5} 2.0898 "	4.17357 44718 72947 5.02044 32011	0.67055×10^{-4} $357^{1}3$ 18644 95402×10^{-5} 47851	5.82643 55282 27053 6.97956 67989
3.6	4.2507 " 8.8205 " 1.8673×10^{6} 4.0329 " 8.8861 "	5.62846	0.23526 "	6.37154
7		94549	11337 "	05451
8		6.27121	53553 × 10 ⁻⁶	7.72879
9		60562	24796 "	39438
4.0		94871	11254 "	05129
4.1	1.9975×10^{7} 4.5809 1.0718×10^{8} 2.5582 6.2296 "	7.30049	0.50062 × 10 ⁻⁷	8.69951
2		66095	21830 "	23905
3		8.03010	93303 × 10 ⁻⁸	9.96990
4		40794	39089 "	59206
5		79446	16052 "	20554
4.6 7 8 9 5.0	1.5476×10^{9} $3.9^{22}5$ 1.0142×10^{10} 2.6755 7.2005	9.18967 59357 10.00614 42741 85736	0.64614×10^{-9} 25494 98595×10^{-19} 37376 13888 "	10.81033 40643 11.99386 57259 14264

EXPONENTIAL FUNCTIONS

TABLE 21.—Values of $e^{\frac{\pi}{4}z}$ and $e^{-\frac{\pi}{4}z}$ and their logarithms

æ	$e^{\frac{\pi}{4}^{x}}$	$\log e^{\frac{\pi}{4}x}$	$e^{-\frac{\pi}{4}x}$	$\log e^{-\frac{\pi}{4}z}$
1	2.1933	0.34109	0.45594	7.65891
2	4.8105	.68219	.20788	31781
3	1.0551 × 10	1.02328	.94780 × 10 ⁻¹	2.97672
4	2.3141 "	.36438	.43214 "	63562
5	5.0754 "	.70547	.19703 "	29453
6 7 8 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.04656 .38766 .72875 3.06985 .41094	0.89833 × 10 ⁻² .49958 " .18674 " .85144 × 10 ⁻³ .38820 "	3.95344 .61234 .27125 4.93015 .58906
11	5.6498 " 1.2392×10^{4} 2.7178 " 5.9610 " 1.3074×10^{5}	3.7 52 03	0.17700 "	4·24797
12		4.09313	.80700 × 10 ⁻⁴	5·90687
13		•43422	.36794 "	·56578
14		•77 532	.16776 "	·22468
15		5.11641	.76487 × 10 ⁻⁵	6·88359
16	2.8675 " 6.2893 " 1.3794×10^{6} 3.0254 " 6.6356 "	5.45751	0.34873 "	6.54249
17		.79860	.15900 "	.20140
18		6.13969	.72495 × 10 ⁻⁶	7.86031
19		.48079	.33°53 "	.51921
20		.82188	.15070 "	.17812

TABLE 22.—Values of $\ell^{\frac{\sqrt{\tau}}{4}z}$ and $\ell^{-\frac{\sqrt{\pi}}{4}z}$ and their logarithms

æ	$e^{\frac{\sqrt{\pi}}{4}z}$	$\log e^{\frac{\sqrt{\pi}}{4}z}$	$e^{-\frac{\sqrt{\pi}}{4}z}$	$\log e^{-\frac{\sqrt{\pi}}{4}x}$
1 2 3 4 5	1.5576 2.4260 3.7786 5.8853 9.1666	0.19244 •38488 •57733 •76977 •96221	0.64203 .41221 .26465 .16992 .10909	ī.807 56 .61 512 .42267 .23023 .03779
6 7 8 9	14.277 22.238 34.636 53.948 84.027	1.15465 ·34799 ·53953 ·73198 ·92442	0.070041 .044968 .028871 .018536 .011901	2.84535 .65291 .46047 .26802 .07558
11 12 13 14 15	130.88 203.8 5 317.50 494.52 770.24	2.11686 .30930 .50174 .69418 .88663	0.0076408 .0049057 .0031496 .0020222 .0012983	3.88314 .69070 .49826 .30582 .11337
16 17 18 19 20	1199.7 1868.6 2910.4 4533.1 7060.5	3.07907 .27151 .46395 .65639 .84883	0.00083355 .00053517 .00034360 .00022060 .00014163	4.92093 .72849 .53605 .34361

TABLES 23 AND 24

EXPONENTIAL FUNCTIONS AND LEAST SQUARES

EXPONENTIAL FUNCTIONS

TABLE 23.—Values of e^x and e^{-x} and their logarithms.

x	ex	log ez	e-x	x	e ^x	log ez	e-z
1/64 1/32 1/16 1/10 1/9 1/8 1/7 1/6 1/5	1.0157 .0317 .0645 .1052 .1175 1.1331 .1536 .1814 .2214	0.00679 .01357 .02714 .04343 .04825 0.05429 .06204 .07238 .08686 .10857	0.98450 .96923 .93941 .90484 .89484 0.88250 .86688 .84648 .81873	1/3 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2	1.3956 .6487 2.1170 .7183 3.4903 4.4817 5.7546 7.3891 9.4877 12.1825	0.14476 .21715 .32572 .43429 .54287 0.65144 .76002 .86859 .97716 1.08574	0.71653 .60653 .47237 .36788 .28650 0.22313 .17377 .13534 .10540 .08208

LEAST SQUARES ${\rm TABLE~24.-Values~of~P} = \frac{2}{\sqrt{\pi}} \int_{o}^{hx} e^{-(hx)^2} \ d\ (hx).$

P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{h.x} e^{-(h.x)^2} d(h.x)$. $h^2 = (\frac{1}{2}m\Delta x^2)$ where $m = \text{no. obs. of deviation } \Delta x$,

hx	0	1	2	3	4	5	6	7	8	9
0.0		.01128	02256	02284	.04511	.05637	.06762	.07886	.09008	.10128
J.U.	.11246	.12362	.02256	.03384	.15695	.16800	.17901	.18999	.20094	.21184
.2	.22270	.23352	.24430	.25502	.26570	.27633	.28690	.29742	.30788	.31828
.3	.32863	.33891	.34913	.35928	.36936	37938	.38933	.39921	.40901	.41874
.4	.42839	.43797	-44747	.45689	.46623	47548	.48466	-49375	-50275	.51167
0.5	.52050	.52924	.53790	.54646	.55494	.56332	.57162	.57982	.58792	-59594
.6	.60386	.61168	.61941	.62705	.63459	.64203	.64938	.65663	.66378	.67084
·7 .8	.67780	.68467	.69143	.69810	.70468	.71116	.71754	.72382	.73001	.73610
	.74210	.74800	.75381	.75952	.76514	.77067	.77610	.78144	.78669	.79184
.9	.79691	.80188	.80677	.81156	.81627	.82089	.82542	.82987	.83423	.83851
1.0	.84270	.84681	.85084	.85478	.85865	.86244	.86614	.86977	.87333	.87680
ı.	.88021	.88353	.88679	.88997	.89308	.89612	.89910	-90200	.90484	.90761
.2	.91031	.91296	.91553	.91805	.92051	.92290	.92524	.92751	.92973	.93190
-3	.93401	.93606	.93807	.94002	.94191	.94376	.94556	.9473Ì	.94902	.95067
-4	.95229	.95385	.95538	.95686	.95830	.95970	.96105	.96237	.96365	96490
1.5	.96611	.96728	.96841	.96952	.97059	.97162	.97263	-97360	-97455	.97546
.6	.97635	.97721	.97804	.97884	.97962	.98038	.98110	.98181	.98249	.98315
.7 .8	.98379	.98441	.98500	.98558	.98613	.98667	.98719	.98769	.98817	.98864
41 1	.98909	.98952	.98994	.99035	.99074	.99111	.99147	.99182 .99466	.99216	.99248
.9	.99279	.99309	.99338	.99366	.99392	.99418	•99443			.99511
2.0	.99532	.99552	·99572	.99591	.99609	.99626	.99642	.99658	.99673	.99688
I.	.99702	.99715	.99728	.99741	-997.53	.99764	·99775 .99861	.99785 .99867	.99795	.99805 .99880
.2	.99814	.99822	.99831 .99897	.99839	.99846 .99906	.99854	.99915	.99920	.99074	.99928
·3 ·4	.99931	.99935	.99938	.99941	-99944	.99947	.99950	.99952	99955	99957
2.5					.99967					•99975
.6	•99959 •99976	.99961 .99978	.99963	.99965 .99980	.99907	.99969	.99971 .99983	.999 72 .99984	·99974 ·99985	.99986
	.99970	.999/3	.99979 .99988	.99989	.99989	.99990	.99903	.99901	.99903	.99992
.7 .8	.99992	.99997	.99993	-99994	.99994	.99994	.99995	.99995	.99995	.99996
9.9	.99996	.99996	.99996	•99997	.99997	-99997	-99997	-99997	.99997	.99998
3.0	.99998	.99999	.99999	1.00000						
	7777	77777	77777							

Burgess, James. Trans. Roy. Soc. Edinburgh, 39, 257, 1900.

TABLES 25 AND 26 LEAST SQUARES

TABLE 25

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694 / h.

$\frac{x}{r}$	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4	.00000 .05378 .10731 .16035 .21268 .26407 .31430 .36317 .41052 .45618 .50000 .54188 .58171 .61942 .65498 .68833 .71949 .74847 .77528 .79999 .82266 .84335 .86216 .87918	.00538 .05914 .11264 .16562 .21787 .26915 .31925 .36798 .41517 .46064 .50428 .54595 .58558 .62308 .65841 .69155 .72249 .75124 .77782 .80233 .82481 .84531 .84531 .84539 .88595	.01076 .06451 .11796 .17088 .22304 .27421 .32419 .37277 .41979 .40509 .50853 .55001 .58942 .62671 .66182 .69474 .72546 .75400 .78039 .80409 .82695 .84726 .86570 .88237 .8938	3 .01614 .06987 .12328 .17614 .22821 .27927 .32911 .37755 .42440 .46952 .51277 .55404 .59325 .63032 .66521 .72841 .75674 .78291 .80700 .82907 .84919 .86745 .88395 .88395 .88395	.02152 .07523 .12860 .18138 .28431 .33402 .38231 .42899 .55806 .59705 .66838 .70106 .73134 .75945 .78542 .80930 .83117 .85109 .86917 .88550 .90019	.02690 .08059 13391 .18662 .23851 .28934 .33892 .38705 .43357 .47832 .52119 .56205 .60083 .63747 .767193 .70419 .73425 .76214 .78790 .81158 .83324 .85298 .87058 .88705 .90157	.03228 .08594 .13921 .19185 .24364 .29436 .39178 .43813 .43813 .448270 .52537 .56602 .60460 .64102 .77729 .73714 .74881 .79036 .81383 .83530 .85486 .87258 .88857	.03766 .09129 .14451 .19707 .24876 .29936 .34866 .39649 .44267 .48705 .52952 .56998 .60833 .64454 .71038 .74000 .76746 .79280 .81607 .83734 .85671 .87428 .89088	8 .04303 .09663 .14980 .20229 .25388 .30435 .35352 .40118 .44719 .53366 .57391 .61205 .64804 .71344 .74285 .77099 .79522 .81828 .83936 .85854 .87591 .89157 .90562	.04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570 .53778 .67157 .68510 .71648 .74567 .77270 .79761 .82048 .84137 .86036 .87755 .89304 .90694
2.5 2.6 2.7 2.8 2.9	.99436 .90825 .92051 .93141 .94105 .94954 0 .95698 .99302 .99926	.99393 .99954 .92166 .93243 .94195 .95933 1 .96346 .99431 .99943	.91082 92280 .93344 .94284 .95111 2 .96910 .99539	.91 208 .92392 .93443 .94371 .95187 3 .97397 .99627 .99966	.91332 .92503 .93541 .94458 .95263 4 .97817 .99700 .99974	.91456 .92613 .93638 .94543 .95338 5 .98176 .99760	.91 578 .92721 .93734 .94627 .95412 6 .98482 .99808 .99985	.91698 .92828 .93828 .94711 .95484 7 .98743 .99848	.91817 .92934 .93922 .94793 .95557 8 .98962 .99879 .99991	.91935 .93038 .94014 .94874 .95628 9 .99147 .99905 .99993

TABLE 26.—Values of the factor 0.6745 $\sqrt{\frac{1}{n-1}}$

This factor occurs in the equation $r_s = 0.6745 \sqrt{\frac{\Sigma v^2}{n-t}}$ for the probable error of a single observation, and other similar equations.

n	0	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.2248 .1547 .1252 .1080	0.2133 .1508 .1231 .1066	0.6745 .20 34 .1472 .1211 .1053	0.4769 .1947 .1438 .1192 .1041	0.3894 .1871 .1406 .1174 .1029	0.3372 .1803 .1377 .1157	0.3016 .1742 .1349 .1140	0.2754 .1686 .1323 .1124 .0994	0.2549 .1636 .1298 .1109	0.2385 .1590 .1275 .1094 .0974
50 60 70 80 90	0.0964 .0878 .0812 .0759 .0715	0.0954 .0871 .0806 .0754 .0711	0.0944 .0864 .0800 .0749 .0707	0.0935 .0857 .0795 .0745 .0703	0.0926 .0850 .0789 .0740 .0699	0.0918 .0843 .0784 .0736 .0696	0.0909 .0837 .0779 .073? .0692	0.0901 .0830 .0774 .0727 .0688	0.0893 .0824 .0769 .0723 .0685	0.0886 .0818 .0764 .0719 .0681

TABLES 27-29

LEAST SQUARES

TABLE 27.—Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$

This factor occurs in the equation $r_0 = 0.6745 \sqrt{\frac{\Sigma v^2}{n(n-t)}}$ for the probable error of the arithmetical mean.

n	=	1 2		3	4	5	6	7	8	9
00 10 20 30 40	0.0711 .0346 .0229 .0171	0.0643 .0329 .0221 .0167	0.4769 .0587 .0314 .0214 .0163	0.27 54 .0 540 .0 300 .0 208 .0 1 59	0.1947 .0500 .0287 .0201 .0155	0.1508 .0465 .0275 .0196 .0152	0.1231 .0435 .0265 .0190 .0148	0.1041 .0409 .0255 .0185	0.0901 .0386 .0245 .0180	0.0795 .0365 .0237 .0175 .0139
50 60 70 80 90	0.0136 .0113 .0097 .0085	0.0134 .0111 .0096 .0084 .0075	0.0131 .0110 .0094 .0083 .0074	0.0128 .0108 .0093 .0082 .0073	0.0126 .0106 .0092 .0081 .0072	0.0124 .0105 .0091 .0080 .0071	0.0122 .0103 .0089 .0079 .0071	0.0119 .0101 .0088 .0078 .0070	0.0117 .0100 .0087 .0077 .0069	0.0115 .0098 .0086 .0076 .0068

TABLE 28.—Values of the factor 0.8453 $\sqrt{\frac{1}{n(n-1)}}$

This factor occurs in the approximate equation $r = 0.8453 \frac{\Sigma |v|}{\sqrt{n(n-1)}}$ for the probable error of a single observation.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0891 .0434 .0287 .0214	0.0806 .0412 .0277 .0209	0.5978 .0736 .0393 .0268	0.3451 .0677 .0376 .0260 .0199	0.2440 .0627 .0360 .0252 .0194	0.1890 .0583 .0345 .0245	0.1543 .0546 .0332 .0238 .0186	0.1304 .0513 .0319 .0232 .0182	0.1130 .0483 .0307 .0225 .0178	0.0996 .0457 .0297 .0220
50 60 70 80 90	0.0171 .0142 .0122 .0106 .0094	0.0167 .0140 .0120 .0105 .0093	0.0164 .0137 .0118 .0104 .0092	0.0161 .0135 .0117 .0102 .0091	0.0158 .0133 .0115 .0101	0.0155 .0131 .0113 .0100 .0089	0.0152 .0129 .0112 .0099 .0089	0.0150 .0127 .0111 .0098 .0088	0.0147 .0125 .0109 .0097 .0087	0.0145 .0123 .0108 .0096 .0086

TABLE 29.—Values of 0.8453 $\frac{1}{n\sqrt{n-1}}$

This factor occurs in the approximate equation $r_0 = 0.8453 \frac{\Sigma |v|}{n\sqrt{n-1}}$ for the probable error of the arithmetical mean.

n	=	1	2	3	4	5	6	7	8	9	
00			0.4227	0.1993	0.1220	0.0845	0.0630	0.0493	0.0399	0.0332	
10	0.0282	0.0243	.0212	.0188	.0167	.0151	.0136	.0124	.0114	.0105	
20	.0097	.0090	.0084	.0078	.0073	.0069	.0065	.0061	.0058	.0055	
30	.0052	.0050	.0047	.0045	.0043	.0041	.0040	.0038	.0037	.0035	
40	.0034	.0033	.0031	.0030	.0029	.0028	.0027	.0027	.0026	.0025	
50	0.0024	0.0023	0.0023	0.0022	0.0022	0.0021	0.0020	0.0020	0.0019	0.0019	
60	.0018	8100.	.0017	.0017	.0017	.0016	.0016	.0016	.0015	.0015	
70	.0015	.0014	.0014	.0014	.0013	.0013	.0013	.0013	.0012	.0012	
80	.0012	.0012	1100.	1100.	1100.	1100.	1100.	.0010	.0010	.0010	
90	.0010	.0010	.0010	.0009	.0009	.0009	.0009	.0009	.0009	.0009	

Observation equations:

$$\begin{array}{lll} a_1z_1 + b_1z_2 + \dots & l_1z_q = M_1, \text{ weight } p_1 \\ a_2z_1 + b_2z_2 + \dots & l_2z_q = M_2, \text{ weight } p_2 \\ \dots & \dots & \dots \\ a_nz_1 + b_nz_2 + \dots & l_nz_q = M_n, \text{ weight } p_n. \end{array}$$

Auxiliary equations:

Normal equations:

Solution of normal equations in the form,

$$\begin{aligned} \mathbf{z}_1 &= \mathbf{A}_1[\operatorname{paM}] + \mathbf{B}_1[\operatorname{pbM}] + \dots \quad \mathbf{L}_1[\operatorname{plM}] \\ \mathbf{z}_2 &= \mathbf{A}_2[\operatorname{paM}] + \mathbf{B}_2[\operatorname{pbM}] + \dots \quad \mathbf{L}_2[\operatorname{plM}] \\ \mathbf{z}_0 &= \mathbf{A}_0[\operatorname{paM}] + \mathbf{B}_0[\operatorname{pbM}] + \dots \quad \mathbf{L}_n[\operatorname{plM}], \end{aligned}$$

gives:

wherein

r = probable error of observation of weight unity
= 0.6745
$$\sqrt{\frac{\sum pv^2}{n-q}}$$
. (q unknowns.)

Arithmetical mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum v^2}{n-1}} = \frac{0.8453 \ \Sigma \ v}{\sqrt{n(n-1)}}. \quad \text{(approx.) = probable error of observation of weight unity.}$$

$$r_{o} = \text{o.6745} \sqrt{\frac{\sum v^{2}}{n \, (n-1)}} = \frac{\text{o.8453} \, \Sigma \, v}{n \sqrt{n-1}} \cdot \quad \text{(approx)} = \underset{\text{of mean.}}{\text{probable error}}$$

Weighted mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum p v^2}{n-1}}; r_0 = \frac{r}{\sqrt{\sum p}} = 0.6745 \sqrt{\frac{\sum p v^2}{(n-1) \sum p}}$$

Probable error (R) of a function (Z) of several observed quantities z_1, z_2, \ldots whose probable errors are respectively, r_1, r_2, \ldots $Z = f(z_1, z_2, \ldots)$

$$R^{2} = \left(\frac{\partial Z}{\partial z_{1}}\right)^{2} r_{1}^{2} + \left(\frac{\partial Z}{\partial z_{2}}\right)^{2} r_{2}^{2} + \dots$$

$$R^{2} = r_{1}^{2} + r_{2}^{2} + \dots$$

Examples: $Z = z_1 \pm z_2 + \dots$

$$Z = Az_1 \pm Bz_2 \pm \dots$$
 $R^2 = A^2 r_1^2 + B^2 r_2^2 + \dots$

$$Z = z_1 z_2$$
. $R^2 = z^2 r_0^2 + z_2^2 r_1^2$.

See Birge, Calculation of errors by the method of least squares, Phys. Rev., 40, 207, 1932.

TABLE 31 DIFFUSION INTEGRAL

Inverse * values of
$$v/c = 1 - \frac{2}{\sqrt{\pi}} \int_0^q e^{-q^2} dq$$

 $\log x = \log (2q) + \log \sqrt{kt}$. t expressed in seconds.

= $\log \delta + \log \sqrt{kt}$. t expressed in days.

 $=\log \gamma + \log \sqrt{kt}$. " years.

 $k = \text{coefficient of diffusion.} \dagger$

c = initial concentration.

v = concentration at distance x, time t.

v/c	log 2 <i>q</i>	29	log δ	δ	log γ	γ		
0.00	+ ∞	+ ∞	+∞	+ ∞	00	00		
.01	0.56143	3.6428	3.02970	1070.78	4.31098	20463.		
.02	.51719	3.2900	2.98545	967.04	.26674	18481.		
.03	.48699	3.0690	.95525	902.90	.23654	17240.		
.04	.46306	2.9044	.93132	853.73	.21261	16316.		
0.05	0.44276	2.7718	2.91102	814.74				
.06	.42486	2.6598	.89311	781.83	4.19231	15571.		
.07	.40865	2.5624	.87691	753.20	.17440	14395.		
.08	.39372	2.47 58	.86198	727.75	.14327	13908.		
.09	.37979	2.3977	.84804	704.76	.12933	13469.		
0.10	0.36664							
0.10		2.3262	2.83490 .82240	683.75 664.36	4.11619	13067. 12697.		
.12	.35414	2.1988	.81044	646.31		12352.		
.13	.34218	2.1900	.79893	629.40	.09173	12352.		
.14	.31954	2.0871	.78780	613.47	.06909	11724.		
0.15								
	0.30874	2.0358	2.77699	598.40	4.05828	11436.		
.16	.29821	1.9871	.76647	584.08	.04776	11162,		
.17	.28793 .27786	1.9406 1.8961	.75619	570.41	.03748	10901. 10652.		
.10	.26798	1.8534	.74612 .73624	557·34 544.80	.02741	10052.		
					.01753			
0.20	0.25825	1.8124	2.72651	532.73	4.00780	10181.		
.21	.24866	1.7728	.71692	521.10	3.99821	9958.9		
.22	.23919	1.7346	.70745	509.86	.98874	9744.1		
.23	.22983	1.6976	.68880	498.98	-97937	9536.2		
.24	.22055	1.6617		488.43	.97010	9334.6		
0.25	0.21134	1.6268	2.67960	478.19	3.96089	9138.9		
.26	.20220	1.5930	.67046	468.23	.95175	8948.5		
.27	.19312	1.5600	.66137	458.53	.94266	8763.2		
.28	.18407	1.5278	.65232	449.08	.93361	8582.5		
.29	.17505	1.4964	.64331	439.85	.92460	8406.2		
0.30	0.16606	1.4657	2.63431	430.84	3.91 560	8233.9		
.31	.15708	1.4357	.62533	422.02	.90662	8065.4		
.32	.14810	1.4064	.61636	413.39	.89765	7900.4		
.33	.13912	1.3776	.60738	404.93	.88867	7738.8 7580.3		
•34	.13014	1.3494	.59840	396.64	.87969			
0.35	0.12114	1.3217	2.58939	388.50	3.87068	7424.8		
.36	.11211	1.2945	.58037	380.51	.86166	7272.0		
.37	.10305	1.2678	.57131	372.66	.85260	7122.0		
.38	.09396	1.2415	.56222	364.93	.84351	6820.2		
.39	.08482	1.2157	-55308	357.34	.83437	6829.2		
0.40	0.07563	1.1902	2.54389	349.86	3.82518	6686.2		
.41	.06639	1.1652	.53464	342.49	.81 593	6545.4		
.42	.05708	1.1405	·52533	335.22	.80662	6406.6		
.43	.04770	1.1161	.51 595	328.06	.79724	6269.7		
.44	.03824	1.0920	.50650	320.99	.78779	6134.6		
0.45	0.02870	1.0683	2.49696	314.02	3.77825	6001.3		
.46	.01907	1.0449	.48733	307.13	.76862	5869.7		
-47	.00934	0.99886	.47760	300.33	.75889	5739.7		
.48	9.99951	0.99880	.46776	293.60	.74905	5611.2		
.49	.98956	0.97624	.45782	286.96	.73911	5484.1		
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4		

† Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280. *For direct values see table 24.

TABLE 31 (continued) DIFFUSION INTEGRAL

v/c	log 2q	29	log δ	δ	log γ	γ
0.50 ·51 ·52 ·53 ·54	9.97949 .96929 .95896 .94848	0.95387 .93174 .90983 .88813 .86665	2.44775 .43755 .42722 .41674 .40610	280.38 273.87 267.43 261.06 254.74	3.72904 .71884 .70851 .69803 .68739	5358.4 5234.1 5111.0 4989.1 4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
.56	.91607	.82426	.38432	242.28	.66561	4630.3
.57	.90490	.80335	.37316	236.13	.65445	4512.8
.58	.89354	.78260	.36180	230.04	.64309	4396.3
.59	.88197	.76203	.35023	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	.85815	.72135	.32640	212.03	.60770	4052.2
.62	.84587	.70124	.31412	206.12	.59541	3939.2
.63	.83332	.68126	.30157	200.25	.58286	3827.0
.64	.82048	.66143	.28874	194.42	.57003	3715.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
.66	.79388	.62213	.26214	182.87	-54343	3494.9
.67	.78008	.60266	.24833	177.15	-52962	3385.4
.68	.76590	.58331	.23416	171.46	-51545	3276.8
.69	.75133	.56407	.21959	165.80	-50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	3061.1
.71	.72089	.52588	.18915	154.58	.47044	2954.2
.72	.70495	.50694	.17321	149.01	.45450	2847.7
.73	.68849	.48808	.15675	143.47	.43804	2741.8
.74	.67146	.46931	.13972	137.95	.42101	2636.4
0.75 .76 .77 .78 .79	9.65381 .63550 .61646 .59662 .57590	0.45062 .43202 .41348 .39502 .37662	2.12207 .10376 .08471 .06487 .04416	132.46 126.99 121.54 116.11	3.40336 .38505 .36600 .34616 .32545	2531.4 2426.9 2322.7 2219.0 2115.7
0.80	9.55423	0.35829	2.02249	105.31	3.30378	2012.7
.81	.53150	.34001	1.99975	99.943	.28104	1910.0
.82	.50758	.32180	.97584	94.589	.25713	1807.7
.83	.48235	.30363	.95061	89.250	.23190	1705.7
.84	.45564	.28552	.92389	83.926	.20518	1603.9
0.85	9.42725	0.26745	1.89551	78.615	3.17680	1 502.4
.86	.39695	.24943	.86521	73.317	.14650	1 401.2
.87	.36445	.23145	.83271	68.032	.11400	1 300.2
.88	.32940	.21350	.79766	62.757	.07895	1 1 9 9.4
.89	.29135	.19559	.75961	57.492	3.04090	1 0 9 8.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	.20374	.15986	.67200	46.989	•95329	898.03
.92	.15239	.14203	.62065	41.750	•90194	797.89
.93	.09423	.12423	.56249	36.516	•84378	697.88
.94	9.02714	.10645	.49539	31.289	•77668	597.98
0.95	8.94783	0.08868	1.41609	26.067	2.69738	498.17
.96	.85082	.07093	.31907	20.848	.60036	398.44
.97	.72580	.05319	.19406	15.633	.47535	298.78
.98	.54965	.03545	.01791	10.421	.29920	199.16
.99	.24859	.01773	0.71684	5.21007	1.99813	99.571
1.00	-∞	0.00000	∞	0.00000	-∞	0.000

VALUES OF THE EXPONENTIAL INTEGRAL

$$Ei(x) = \int_{-\infty}^{-x} (e^{-u}/u) du$$

	х	Ei(x).	Ei(-x)	х	Ei(x)	Ei(-x)
I	00.0	- ∞ -4.017 929	- ∞ -4.037 930	0.50 .51	+0.454 220 0.487 032	-0.559 774 -0.547 822
Ш	.02	-3.314707	-3.354708	.52	0.519 531	-0.536 220
H	.03	-2.899 116	-2.959 119	∙53	0.551 730	-0.524 952
ı	.04	-2.601 257	-2.681 264	-54	0.583 646	-0.514 004
	0.05	-2.367 885 -2.175 283	-2.467898 -2.295307	0.55	+0.615 291 0.646 677	-0.503 364 -0.493 020
Ш	.06 .07	-2.010 800	-2.150838	.56 -57	0.677 819	-0.482 960
I	.08	-1.866 884	-2.026 941	.58	0.708 726	-0.473 173
	.09	-1.738 664	-1.918 745	∙59	0.739 410	-0.463 650
	0.10	-1.622 813	-1.822924	0.60	+0.769 881	-0.454 380
Ш	.11	-1.516 959	-1.737 107	.61	0.800 150	-0.445 353
П	.12	-1.419 350 -1.328 655	-1.659 542 -1.588 899	.62 .63	0.830 226 0.860 119	-0.436 562 $-0.427 997$
ı	.14	-1.243 841	-1.524 146	.64	0.889 836	-0.419 652
	0.15	-1.164 086	-1.464 462	0.65	+0.919 386	-0.411 517
	.16	-1.088 731	-1.409 187	.66	0.948 778	-0.403 586
	.17	-1.017 234	-1.357 781 -1.300 706	.67	0.978 019	-0.395853 -0.388309
	.18	-0.949 148 -0.884 095	-1.309 796 -1.264 858	.68	1.007 116 1.036 077	-0.380 950
ı						
ı	0.20 .21	-0.821 761 -0.761 872	-1.222 651 -1.182 902	0.70	+1.064 907 1.093 615	-0.373 769 -0.366 760
ı	.22	-0.704 195	-1.145 380	.71	1.122 205	-0.359 918
Ш	.23	-0.648 529	÷1.109 883	.73	1.150 684	-0.353 237
	.24	-0.594 697	-1.076 235	.74	1.179 058	-0.346 713
I	0.25	-0.542 543	-1.044 283	0.75	+1.207 333	-0.340 341
ı	.26 .27	-0.491 932 -0.442 741	-1.013 889 -0.984 933	.76	1.235 513 1.263 605	-0.334 115 -0.328 032
ı	.28	-0.394 863	-0.957 308	.78	1.291 613	-0.322 088
	.29	-0.348 202	-0.930 918	.79	1.319 542	-0.316 277
	0.30	-0.302 669	-0.905 677	0.80	+1.347 397	-0.310 597
Ш	.31	-0.258 186 -0.214 683	-0.881 506 -0.858 335	.81	1.375 182 1.402 902	-0.305 043 -0.299 611
	.32	-0.214 003 $-0.172 095$	-0.836 101	.83	1.430 561	-0.294 299
	.34	-0.130 363	-0.814 746	.84	1.458 164	-0.289 103
	0.35	-0.089 434	-0.794 215	0.85	+1.485 714	-0.284 019
	.36	-0.049 258	-0.774 462	.86	1.513 216	-0.279 045
	·37 ·38	-0.009 790 +0.029 011	-0.755 441 -0.737 112	.87	1.540 673 1.568 089	-0.274 177 -0.269 413
	-39	+0.067 185	-0.719 437	.89	1.595 467	-0.264 749
	0.40	+0.104 765	-0.702 380	0.90	+1.622 812	-0.260 184
	.41	+0.141 786	-0.685 910	.91	1.650 126	-0.255 714
	.42	+0.178 278	-0.669 997	.92	1.677 413	-0.251 336
	·43 ·44	+0.214 270 +0.249 787	-0.654 613 $-0.639 733$	·93 ·94	1.704 677 1.731 920	-0.247 050 -0.242 851
	0.45	+0.284 855	-0.625 331	0.95	+1.759 146	-0.238 738
	.46	0.319 497	-0.611 387	.96	1.786 357	-0.234 708
	-47	0.353 735	-o.597 877	.97	1.813 557	-0.230 760
	.48	0.387 589	-0.584 784	.98	1.840 749	-0.226 891
	-49	0.421 078	-0.572 089	.99	1.867 935	-0.223 100
	0.50	+0.454 220	-0.559 774	1.00	+1.895 118	-0.219 384
П						

(Taken from Glaisher, Philos. Trans., 160, 367, 1870)

VALUES OF EXPONENTIAL INTEGRAL

$$Ei(x) = \int_{-\infty}^{-x} (e^{-u}/u) du$$

x	Ei(x)	Ei-(x)	х	Ei(x)	Ei(x)
1.0	+1.895 118 2.167 378 2.442 092 2.721 399 3.007 207	-0.219 384	3.0	+ 9.933 833	-0.013 0484
1.1		-0.185 991	3.1	10.626 300	-0.011 4944
1.2		-0.158 408	3.2	11.367 303	-0.010 1330
1.3		-0.135 451	3.3	12.161 041	-0.008 9390
1.4		-0.116 219	3.4	13.012 075	-0.007 8910
1.5	+3.301 285	-0.100 020	3.5	+13.925 354	-0.006 9701
1.6	3.605 320	-0.086 3083	3.6	14.906 254	-0.006 1604
1.7	3.920 963	-0.074 6546	3.7	15.960 619	-0.005 4478
1.8	4.249 868	-0.064 7131	3.8	17.094 802	-0.004 8202
2.0 2.1 2.2 2.3	4.593 714 +4.954 234 5.333 235 5.732 615 6.154 381	-0.056 2044 -0.048 9005 -0.042 6143 -0.037 1911 -0.032 5023	3.9 4.0 4.1 4.2 4.3	18.315 714 +19.630 874 21.048 467 22.577 401 24.227 380	-0.004 2671 -0.003 7794 -0.003 3489 -0.002 9688 -0.002 6329
2.4	6.600 670	-0.028 4403	4.4	26.008 973	-0.002 3360
2.5	+7.073 766	-0.024 9149	4.5	+27.933 697	-0.002 0734
2.6	7.576 115	-0.021 8502	4.6	30.014 099	-0.001 8410
2.7	8.110 347	-0.019 1819	4.7	32.263 860	-0.001 6352
2.8	8.679 298	-0.016 8553	4.8	34.697 890	-0.001 4530
3.0	9.286 024	-0.014 8240	4·9	37·332 451	-0.001 2915
	+9.933 833	-0.013 0484	5.0	+40·185 275	-0.001 1483
	x	Ei(x)		Ei(x)	
	6 7 8 9 10 11 12 13 14 15	+ 85.989 762 + 191.504 743 + 440.379 900 + 1037.878 291 + 2492.228 976 + 6071.406 374 + 14959.532 666 + 37197.688 491 + 93192.513 634 + 234955.852 491		0.000 360 082 .000 115 482 .000 037 665 6 .000 012 447 4 .000 004 156 97 .000 001 400 30 .000 000 475 11 .000 000 162 19 .000 000 055 66 .000 000 019 18	

(Taken from Glaisher, Philos. Trans., 160, 367, 1870)

TABLE 33

CAMMA FUNCTION *

Value of
$$\log \int_0^{\infty} e^{-x} x^{n-1} dx + 10$$

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-x}x^{n-1}dx + \log \Gamma(n) + 1c$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

			1		1	T .				
n	0	1	2	3	4	5	6	7	8	9
1.00	9.99-	97497	95001	92512	90030	87555	85087	82627	80173	777 ² 7
1.01	75287	72855	70430	68011	65600	63196	60798	58408	56025	53648
1.02	51279	48916	46561	44212	41870	39535	37207	34886	32572	30265
1.03	27964	25671	23384	21104	18831	16564	14305	12052	09806	07567
1.04	95334	03108	00889	98677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	53757	51690	49630	47577	45530	43489
1.07	41455	39428	37407	35392	33384	31382	29387	27398	25415	23439
1.08	21469	19506	17549	15599	13655	11717	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	88956	87100	85250
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095
1.11	65313	63538	61768	60005	58248	56497	54753	53014	51281	49555
1.12	47834	46120	44411	42709	41013	39323	37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14689	13094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9599007	97471	95941	94417	92898	91 386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	46011	44687	43368
1.19	42054	40746	39444	38147	36856	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	169.46	15748	14556	13369	12188	11011	09841	08675	07515	06361
1.22	05212	04068	02930	01796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32429	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11541	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	73574	73476
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

^{*} Legendre's "Exercises de Calcul Intégral," tome ii.

TABLE 33 (continued)

CAMMA FUNCTION

n	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9-947 5449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77237	7743 ⁷	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	8201 5	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98 5 08	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19649	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64825	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	76777	77657	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87563	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	07625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83918	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	64139	65551	66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	95909	97389	98871
1.88	800356	01844	03335	04830	06327	07827	09331	10837	12346	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41 59 5	43164	44736
1.91	46311	47890	49471	51055	52642	54232	55825	57 4 2 1	59020	60621
1.92	62226	63834	65445	67058	68675	70294	71917	7 3 5 4 2	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	8 9 9 5 7	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	0 6 6 6 3	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165

Table 34
ZONAL SPHERICAL HARMONICS*

Degrees	P ₁	P ₂	D	D	D	D	P ₇
Degrees		F 2	P ₃	P4	P ₅	P ₆	P7
0	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000
1	.9998	.9995	.9991	.9985	.9977	.9968	.9957
2	.9994	.9982	.9963	.9939	.9909	.9872	.9830
3	.9986	.9959	.9918	.9863	.9795	.9714	.9620
4	.9976	.9927	.9854	.9758	.9638	.9495	.9329
5	+ 0.9962	+ 0.9886	+ 0.9773	+ 0.9623	+ 0.9437	+ 0.9216	+ 0.8962
6	·9945	.9836	.9674	.9459	.9194	.8881	.8522
7	·9925	.9777	.9557	.9267	.8911	.8492	.8016
8	·9903	.9709	.9423	.9048	.8589	.8054	.7449
9	·9877	.9633	.9273	.8803	.8232	.7570	.6830
10 11 12 13 14	+ 0.9848 .9816 .9781 .9744 .9703	+ 0.9548 ·9454 ·9352 ·9241 ·9122	+ 0.9106 .8923 .8724 .8511 .8283	+ 0.8532 .8238 .7920 .7582 .7224	+ 0.7840 .7417 .6966 .6489	+ 0.7045 .6483 .5891 .5273 .4635	+ 0.6164 .5462 .4731 .3980 .3218
15 16 17 18	+ 0.9659 .9613 .9563 .9511	+ 0.8995 .8860 .8718 .8568 .8410	+ 0.8042 .7787 .7519 .7240 .6950	+ 0.6847 .6454 .6046 .5624 .5192	+ 0.5471 -4937 -4391 -3836 -3276	+ 0.3983 -3323 -2661 -2002 -1353	+ 0.2455 + .1700 + .0961 + .0248 0433
20	+ 0.9397	+ 0.8245	+ 0.6649	+ 0.4750	+ 0.2715	+ 0.0719	- 0.1072
21	.9336	.8074	.6338	.4300	.2156	+ .0106	.1664
22	.9272	.7895	.6019	.3845	.1602	0481	.2202
23	.9205	.7710	.5692	.3386	.1057	1038	.2680
24	.9135	.7518	.5357	.2926	.0525	1558	.3094
25	+ 0.9063	+ 0.7321	+ 0.5016	+ 0.2465	+ 0.0009	-0,2040	- 0.3441
26	.8988	.7117	.4670	.2007	0489	.2478	.3717
27	.8910	.6908	.4319	.1553	0964	.2869	.3922
28	.8829	.6694	.3964	.1105	1415	.3212	.4053
29	.8746	.6474	.3607	.0665	1839	.3502	.4113
30	+ 0.8660	+ 0.6250	+ 0.3248	+ 0.0234	0.2233	-0.3740	- 0.4102
31	.8572	.6021	.2887	0185	.2595	.3924	.4022
32	.8480	.5788	.2527	0591	.2923	.4053	.3877
33	.8387	.5551	.2167	0982	.3216	.4127	.3671
34	.8290	.5310	.1809	1357	.3473	.4147	.3409
35 36 37 38 39	+ 0.8192 .8090 .7986 .7880 .7771	+ 0.5065 .4818 .4567 .4314 .4059	+ 0.1454 .1102 .0755 .0413	0.1714 .2052 .2370 .2666 .2940	0.3691 .3871 .4011 .4112 .4174	-0.4114 .4031 .3898 .3719 .3497	0.3096 .2738 .2343 .1918 .1470
40	+ 0.7660	+ 0.3802	0.0252	- 0.3190	0.4197	0.3236	- 0.1006
41	·7547	·3544	.0574	.3416	.4181	.2939	0535
42	·7431	·3284	.0887	.3616	.4128	.2610	0064
43	·7314	·3023	.1191	.3791	.4038	.2255	+ .0398
44	·7193	·2762	.1485	.3940	.3914	.1878	+ .0846
45	+ 0.7071	+ 0.2500	- 0.1768	0.4063	- 0.3757	- 0.1484	+ 0.1271
46	.6947	.2238	.2040	.4158	.3568	1078	.1667
47	.6820	.1977	.2300	.4227	.3350	0665	.2028
48	.6691	.1716	.2547	.4270	.3105	0251	.2350
49	.6561	.1456	.2781	.4286	.2836	+ .0161	.2626
50	+ 0.6428	+ 0.1198	- 0.3002	-0.4275	- o.2545	+ 0.0564	+ 0.2854

^{*} Calculated by Mr. C. E. Van Orstrand for this publication.

TABLE 34 (continued)
ZONAL SPHERICAL HARMONICS

Degrees	P ₁	P_2	P ₃	P ₄	P ₅	P ₆	P ₇
50 51 52 53 54	+ 0.6428 .6293 .6157 .6018	+ 0.1198 .0941 .0686 .0433 .0182	- 0.3002 .3209 .3401 .3578 .3740	- 0.4275 .4239 .4178 .4093 .3984	-0.2545 .2235 .1910 .1571 .1223	+ 0.0564 .0954 .1326 .1677 .2002	+ 0.2854 .3031 .3154 .3221 .3234
55 56 57 58 5 9	+ 0·5736 ·5592 ·5446 ·5299 ·5150	0.0065 .0310 .0551 .0788 .1021	0.3886 .4016 .4131 .4229 .4310	- 0.3852 .3698 .3524 .3331 .3119	- 0.0868 0509 0150 + .0206 + .0557	+ 0.2297 .2560 .2787 .2976 .3125	+ 0.3191 .3095 .2947 .2752 .2512
60 61 62 63 64	+ 0.5000 .4848 .4695 .4540 .4384	0.1250 .1474 .1694 .1908 .2117	- 0.4375 .4423 .4455 .4471 .4470	0.2891 .2647 .2390 .2121 .1841	+ 0.0898 .1229 .1545 .1844 .2123	+ 0.3232 .3298 .3321 .3302 .3240	+ 0.2231 .1916 .1572 .1203 .0818
65 66 67 68 69	+ 0.4226 .4067 .3907 .3746 .3584	- 0.2321 .2518 .2710 .2895 .3074	- 0.4452 .4419 .4370 .4305 .4225	- 0.1552 .1256 .0955 .0651	+ 0.2381 .2615 .2824 .3005 .3158	+ 0.3138 .2997 .2819 .2606 .2362	+ 0.0422 + .0022 0375 0763 1135
70 71 72 73 74	+ 0.3420 .3256 .3090 .2924 .2756	0.3245 .3410 .3568 .3718 .3860	- 0.4130 .4021 .3898 .3761	- 0.0038 + .0267 .0568 .0864	+ 0.3281 ·3373 ·3434 ·3463 ·3461	+ 0.2089 .1791 .1472 .1136 .0788	-0.1485 .1808 .2099 .2352 .2563
75 76 77 78 79	+ 0.2588 .2419 .2250 .2079 .1908	0.3995 .4122 .4241 .4352 .4454	- 0.3449 .3275 .3090 .2894 .2688	+ 0.1434 .1705 .1964 .2211 .2443	+ 0.3427 .3362 .3267 .3143 .2990	+ 0.0431 + .0070 0290 0644 0990	- 0.2730 .2850 .2921 .2942 .2913
80 81 82 83 84	+ 0.1736 .1564 .1392 .1219	- 0.4548 .4633 .4709 .4777 .4836	- 0.2474 .2251 .2020 .1783 .1539	+ 0.2659 .2859 .3040 .3203 .3345	+ 0.2810 .2606 .2378 .2129 .1861	-0.1321 .1635 .1927 .2193 .2431	- 0.2835 .2708 .2536 .2321 .2067
85 86 87 88 89	+ 0.0872 .0698 .0523 .0349 .0175	- 0.4886 .4927 .4959 .4982 .4995	- 0.1291 .1038 .0781 .0522 .0262	+ 0.3468 .3569 .3648 .3704 .3739	+ 0.1577 .1278 .0969 .0651 .0327	-0.2638 .2810 .2947 .3045 .3105	- 0.1778 .1460 .1117 .0755 .0381
90	+ 0.0000	- 0.5000	- 0.0000	+ 0.3750	+ 0.0000	-0.3125	- 0.0000

TABLE 35 CYLINDRICAL HARMONICS OF THE OTH AND 1ST ORDERS

 $J_n(x) = \frac{x^n}{2^n \Gamma(n+1)} \left\{ 1 - \frac{x^2}{2^2(n+1)} + \frac{x^4}{2^4 2!(n+1)(n+2)} \dots \right\}. \qquad J_1(x) = -J_0'(x) = \frac{dJ_0(x)}{dx}.$

_		Jn(x) -	$2^n\Gamma(n+1)$:) ($2^{2}(n+1)$	24 2!(n	十 1)()	1 + 2)	j. 51(x			dx
	x	$J_{0}\left(x\right)$	$J_1(x)$	x	$J_{\hat{\sigma}}(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
l	.00	unity	zero	.50			1 .00	.765198	.440051			
ł	.01	-999975		.51		.246799	.01			.51	.506241	
1	.02		.010000	.52		.251310		.756332		_		.560653
ı	.03	.999775	.014998	-53	2 0	.255803	.03		.452794	·53	o -	
ł	.04	.999000	.019990	.54	.920410	12002//	.04	1147339	1432794	*34	1409403	1303200
1	.05	.999375	.024992	.55	.925793	.264732	1.05	.742796	.455897	1.55	.483764	.564424
ł	.06	.999100		.56	.923123		.06	.738221	.458966	.56	.478114	
ı	.07	.998775		-57		.273581	.07	.733616	.462001	.57		.566735
ı	.08	.998401	.039968	.58	.917652		.08		.465003	1 " 1		
ı	.09	.997976	.044954	.59	.914850	.282349	.00	.724316	.467970	.59	.461096	.568883
ı	.10		240000	.60	074005	.286701	1 10	.719622	.470902	1 .60	4 7 7 400	=60806
1	.11	.997502	.049938	.61	.912005		.11	.714808	.473800	.61	.455402 .449698	.569896
ı	.12		.059892		.905184	- 0 1	.12	' ' '	.476663	.62		.571798
ı	.13	.995779		.63	.903209		.13		.479491	.63		
1	.14	.995106		.64	.900192		.14		.482284	.64		
1												
1	.15	.994383		.65	.897132			.695720	.485041		.426792	
ı	.16	.993610		.66	.894029	0 000	.16		.487763	.66		
1	.17		.084693	.67	.890885	0 00	.17 .18		.490449	.67		.575836
ı	.18	.991916	, ,	.68	.887698		i		.493098	.68		.576520
ı	.19	.990995	.094572	.69	.884470	.324871	.19	.070103	.495712	.69	.403760	.5//103
ı	.20	.990025	.099501	.70	.881201	.328996	1.20	.671133	.498289	1.70	.307085	.577765
ı	.21	.989005		.71	.877890		.21	.666137	.500830	.71		.578326
ı	.22		.109336	.72	.874539		.22		.503334	.72		.578845
1	.23	.986819		.73	.871147	.341220	.23	.656071	.505801	.73	.380628	
ì	.24	.985652	.119138	.74	.867715	.345245	.24	.651000	.508231	.74	.374832	.579760
ı	05	0 (06		1 05	6		1 75		-0
1	.25	.984436		.75	.864242	.349244		.045900	.510623			.580156
ı	.26	.983171	.128905	.76	.860730 .857178	.353216	.26		.512979 .515296	.76	.363229	
ı	.28	.980496		.77	.853587	.361083	.28	.630482	.517577	.78		
ı	.29			.79	.849956		.29	.625205	.519819	.79	.345801	
ı	1-9	-979-55		1,19	1995			3 ,3				
ı	.30	.977626	.148319	.80	.846287	.368842	1 .30	.620086			.339986	.581517
ı	.31	.976119		.81	.842580		.31		.524189	.81	.334170	
ı	.32	.974563		.82	.838834	.376492	.32		.526317	.82	.328353	
ı	•33	.972960		.83	.835050	.380275		.604329	- 01	.83	.322535	.581840
l	•34	.971308	.167555	.84	.831228	.384029	•34	.599034	.530458	.84	.316717	.581865
	.35	.060600	.172334	.85	.827369	.387755	1 .35	.503720	.532470	1 .85	.310808	.581849
1	.36	.967861		.86	.823473	.391453	.36	.588385	.534444	.86		.581793
	.37	.966067		.87	.819541	.395121	.37	.583031	.536379	.87	.299262	
ı	.38	.964224	.186591	.88	.815571	.398760		.577658	.538274	.88	.293446	.581557
ı	-39	.962335	.191316	.89	.811565	.402370	-39	.572266	.540131	.89	.286631	.581377
1	40	262-0	6	00	8057	105-7	1 40	-660	# 4 T D . O	1 00	20-0	=0
1	.40		.196027	.90	.807524				.541948		.281819	
	.41	.958414		.91	.803447	.409499	.41	.561427	·543726 ·545464	.91	.276008	
1	.42		.205403	- 1	.795186	.416507	1	.550518	.545404		.264397	
			.214719	.94			.44	.545038	.548821	.94		.579870
1											0 0 7	
1	.45	.950012		.95	.786787	.423392	1 .45	.539541	.550441			.579446
1		.947796		.96		.426787			.552020	.96		
I	.47	•945533		97	.778251	-430151		.528501				.578478
1	.48		00 0 1	.98	•773933					.98	.235438	
	•49	.940870	.237720	.99	.769582	.436783	.49	.517400		•99		-577349
1	.50	.938470	.242268	1 .00	.765198	.440051	1 .50	.511828	-557937	2 .00	.223891	.576725
1		70.47							001701		3.7-	0, 1-3
L												

TABLE 35 (continued) CYLINDRICAL HARMONICS OF THE OTH AND 1ST ORDERS

 $J_1(x) = -J_0'(x)$. Other orders may be obtained from the relation, $J_{n+1}(x) = \frac{2n}{x}J_n(x) - J_{n-1}(x)$. $J_{-n}(x) = (-1)^nJ_n(x).$

	$J_{-n}(x) = (-1)^n J_n(x).$										
x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	J ₁ (x)
2.00	222827	.576725	2 50	048384	407004	3 00	260052	220050	3 50	380128	.137378
.01	.218127			053342			263424			381481	.133183
.02	.212370			058276			266758			382791	.128989
.03	.206620			063184			270055			384060	
.04	.200878			068066		.04	273314	.323998	.54	385287	.120601
	·										
2.05		.573003					276535			386472	.116408
.06	.189418			077753		06	279718	.310308		387615	.112216
.07	.183701			082557			282862			388717	.108025
.08	.177993			087333			285968 289036		_	389776	.103836
.09	.172295	.509313	•39	092083	.4/3502	.09	209030	.304005	1.39	390793	.099030
2.10	.166607	.568202	2.60	096805	.470818	3.10	292064	.300021	3.60	391769	.095466
.11	.160929			101499			295054			392703	.001284
.12	.155262	.566134	.62	106165	.465202		- 298005		.62	393595	.087106
.13	.149607	.564997	.63	110803	.462350	.13	300916	.289184		394445	.082931
.14	.143963	.563821	.64	115412	.459470	.14	303788	.285244	.64	395253	.078760
0.15		-6-6	0.05	*****	66.	9 15	226627	.0	2 65	206200	074500
2.15				119992			306621			396020	.074593
.16	.132/11	.561354		124543 129065			309414 312168			396745 397429	.070431
.18	.121509			133557			314881			398071	.062122
.19		.557368		138018			317555			398671	.057975
		3373	´		''' '						0,,,,
2.20	.110362	.555963	2.70	142449	.441601	3.20	320188	.261343	3.70	399230	.053834
.21	.104810	.554521		146850			322781			399748	.049699
.22	.099272			151220			325335			400224	.045571
.23		.551524		155559		_	327847			400659	
.24	.088242	.549970	-74	159866	.429150	.24	330319	.245184	•74	401053	.037336
2.25	082750	£18278	2.75	164141	125072	3.25	332751	241120	3.75	401406	.033229
.26		.546750		168385			335142		.76	401718	.029131
27	.071815			172597			337492			401989	.025040
.28		.543384		176776			339801			402219	.020958
.29	.060947	.541646	.79	180922	.413011	.29	342069	.224771	-79	402408	.016885
0.00			0.00	0 (0.00			0.00		
2.30		.539873		185036			344296				.012821
.31	.050150			189117			346482			402664	.008766
.32	.044779	.534336		193164 197177			348627 350731			402732 402759	.004722
33		.532419		201157			352793			402746	
134	54-9-	33-4-9			397	1.34	-55-195	,		1 -1 7 1	3337
2.35	.028778	.530467	2.85	205102	.392849	3.35	354814	.200018	3.85	402692	007350
.36	.023483	.528480	.86	209014	.389408		356793		.86	402599	011352
-37		.526458		212890		.37	358731	.191716		402465	
.38		.524402		216733			360628			402292	
•39	.007720	.522311	.89	220540	.378955	•39	362482	.183394	.89	402079	023289
2.40	.002508	520185	2.90	224312	275427	3.40	364296	170226	3.90	401826	027244
	002683			228048			366067			401534	
.42				231749			367797			401202	
-43	013000	.513606	.93	235414	.364722	•43	369485	.166699	.93	400832	039031
•44	018125	.511346	•94	239043	.361113		371131		-94	400422	042933
0 45			0.05	((2 45		0	2 05		69-
4.40	023227	.509052	2.90	242030	.357485	3.40	372735	.158331		399973	
	028306 033361			246193 249713			374297 375818			399485 398959	
	038393			253196			377296			398394	
	043401			256643			378733			397791	
									' '		
2.50	048384	.497094	3.00	260052	.339059	3.50	380128	.137378	4.00	397150	.066043

CYLINDRICAL HARMONICS OF THE OTH AND 1ST ORDERS

TABLE 36.—4-place Values for x = 4 to 15

(a) 1st 10 roots (R_m) of $J_0(x) = 0$; $J_1(R_m)$

Higher roots may be calculated to better

x	$J_{0}(x)$	$J_1(x)$	x	$J_{0}(x)$	$J_1(x)$
4.0	3972	0660	9.5	1939	+.1613
. 1	3887	1033	9.5	2090	. 1395
. 2	3766 3610	1386 1710	.8	2218 2323	.1166
.4	3610 3423	2028	.9	2403	.0684
4.5	3205	2311	10.0	2459	.0435
0.	2961	2566	. 1	2490	+.0184
.8	2693 2404	2791 2985	.2	2496 2477	0066 0313
.9	2097	3147	.4	2434	0555
5.0	1776	3276	10.5	2366	0789
. I	1443	3371	.6	2276	1012
.2	– . 1 103 – . 0758	3432 3460	.7	2164 2032	1224 1422
.4	0412	3453	.9	1881	1603
5 . 5	0068	3414	11.0	1712	1768
.6	+.0270 .0599	3343 3241	. I	1528 1330	1913 2039
.8	.0399	3110	.3	1121	2143
.9	. I 220	2951	.4	0902	2225
6.0	. 1506	2767	.6	0677	2284
.1	.1773	2559 2329	.7	0446 0213	2320 2333
.3	. 2238	2081	.8	+.0020	2323
.4	. 2433	1816	.9	.0250	2290
6.5	. 2601	1538	12.0	.0477	2234
.7	. 2740 . 2851	1250 0953	.1	.0697	2157 2060
.8	. 2931	0652	.3	.1108	1943
.9	. 2981	0349	.4	.1296	1807
7.0	. 3001	0047 +.0252	12.5	. 1469 . 1626	1655 1487
. 2	. 2951	.0543	. 7	. 1766	1307
.3		.0826	.8	. 1887	1114
.4	. 2786	.1096	.9	. 1988	0912 0703
7.5	.2516	.1592	.1	.2129	0489
.7	. 2346	.1813	. 2	.2167	0271
.8	. 2154	. 2014	.4	.2183	0052 +.0166
8.0	.1717	. 2346	13.5	.2150	.0380
. 1	. 1475	. 2476	0.0	.2101	.0590
. 2	.1222	. 2580	.8	. 2032	.0791
.4	.0692	.2708	.9	.1836	.1165
8.5	.0419	. 2731	14.0	.1711	. 1334
.6	.0146	.2728	. 1	.1570	. 1488
8	0125 0392	. 2697	.2	.1414	. 1626
.9	0653	.2559	.4	.1065	. 1850
9.0	0903	. 2453	14.5	.0875	.1934
. I	II42	.2324	.6	.0679	. 1999
$\begin{vmatrix} \cdot & 2 \\ \cdot & 3 \end{vmatrix}$	1367 1577	.2174	.8	.0476	. 2043
.4			.9	1 >	. 2069
9.5	1939	.1613	15.0	0142	. 2051
	1	1	II		!

han I part in 10,00	oo by the approximate
ormula $R_m = R_{m-1}$	$_{1}+\pi$
$R_1 = 2.404826$	$J_1(R_1) = +0.5191$
$R_2 = 5.520078$	$J_1(R_2) = -0.3403$
$R_3 = 8.653728$	$J_1(R_3) = +0.2715$
$R_4 = 11.791534$	$J_1(R_1) = -0.2325$
$R_5 = 14.930918$	$J_1(R_5) = +0.2065$
$R_6 = 18.071064$	$J_1(R_6) = -0.1877$
P = 21.011627	$I_{-}(R_{-}) = \pm 0.1723$

 $R_8 = 24.352472$ $J_1(R_5) = +0.1/33$ $R_8 = 24.352472$ $J_1(R_5) = -0.1617$ $R_9 = 27.493479$ $J_1(R_5) = +0.1522$ $R_{10} = 30.634606$ $J_1(R_{10}) = -0.1442$ (b) 1st 15 roots of $J_1(x) = \frac{dJ_0(x)}{dx} = 0$ with corresponding values of maximum or minimum values of $J_0(x)$.

1 3.831706402759 2 7.015587 +.300116 3 10.173468249705 4 13.323692 +.218359 5 16.470630196465 6 19.615859 +.18063 7 22.760084167185 8 25.903672 +.156725 9 29.046829148011 10 32.180680 +.140606	No. of root (n)	$Root = x_n$	$J_0(x_n)$
11 35.332308134211 12 38.474766 +.128617 13 41.617094123668 14 44.759319 +.119250 15 47.001461115274	2 3 4 5 6 7 8 9 10 11 12 13	7.015587 10.173468 13.323692 16.470630 19.615859 22.760084 25.903672 29.046829 32.189680 35.332308 38.474766 41.617094 44.759319	+ .300116 249705 + .218359 196465 + .180063 167185 + .156725 148011 + .140606 134211 + .128617 123668 + .119250

Higher roots may be obtained as under (a). Notes. $y = J_n(x)$ is a particular solution of Bessel's equation,

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2})y = 0.$$

The general formula for $J_n(x)$ is

or
$$J_n(x) = \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} \pi s} \frac{\pi (n+s)}{\pi (n+s)},$$
$$= \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} s! (n+s)!}$$

when n is an integer and

and

$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x),$$

$$J_1(x) = \frac{dJ_0(x)}{dx},$$

$$J_{-n}(x) = (-1)^n J_n(x).$$

Tables 36 to 37 are based upon Gray and Matthews' reprints from Dr. Meissel's tables. See also Reports of British Association, 1907–1916.

ELLIPTIC INTEGRALS

Values of $\int_0^{\frac{\pi}{2}} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}} d\phi$

This table gives the values of the integrals between 0 and $\pi/2$ of the function $(1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$ for different values of the modulus corresponding to each degree of θ between 0 and 90.

θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^{n-2}}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi^{)\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (\tau - s)^{\frac{\pi}{2}}$	in²θsin²φ) ^½ dφ	θ	$\int_0^{\bullet \pi} \frac{d\phi}{(1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$		$\int_0^{\frac{\pi}{2}} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$	
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0° 1 2 3 4	1.570S	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
	5709	196153	5707	196087	6	8691	271644	3418	127690
	5713	196252	5703	195988	7	8848	275267	3329	124788
	5719	196418	5697	195822	8	9011	279001	3238	121836
	5727	196649	5689	195591	9	9180	282848	3147	118836
5° 6 7 8 9	1.5738	0.196947	1.5678	0.195 ² 93	50°	1.9356	0.286811	1.3055	0.115790
	5751	197312	5665	194930	I	9539	290895	2963	112698
	5767	197743	5649	194500	2	9729	295101	2870	109563
	5785	198241	5632	194004	3	9927	299435	2776	106386
	5805	198806	5611	193442	4	2.0133	303901	2681	103169
10° 1 2 3 4	5828	0.199438	1.5589	0.192815	55°	2.0347	0.308504	1.2587	0.099915
	5854	200137	5564	192121	6	0571	313247	2492	096626
	5882	200904	5537	191302	7	0804	318138	2397	093303
	5913	201740	5507	190537	8	1047	323182	2301	089950
	5946	202643	5476	189646	9	1300	328384	2206	086569
15° 6 7 8 9	1.5981	0.203615	1.5442	0.188690	60°	2.1 565	0.333753	1.2111	0.083164
	6020	204657	5405	187668	1	1842	339295	2015	079738
	6061	205768	5367	186581	2	2132	345020	1920	076293
	6105	206948	5326	185428	3	2435	350936	1826	072834
	6151	208200	5283	184210	4	2754	357053	1732	069364
20° 1 2 3 4	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
	6252	210916	5191	181580	6	3439	369940	1545	062412
	6307	212382	5141	180168	7	3809	376736	1453	058937
	6365	213921	5090	178691	8	4198	383787	1362	055472
	6426	215533	5037	177150	9	4610	391112	1272	052020
25°	1.6490	0.217219	1.4981	0.17 5545	70° 1 2 3 4	2.5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876		5507	406665	1096	045183
7	6627	220818	4864	172144		5998	414943	1011	041812
8	6701	222732	4803	170348		6521	423596	0927	038481
9	6777	224723	4740	168489		7081	432660	0844	035200
30°	1.6858	0.226793	1.4675	0.166567	75° 6 7 8 9	2.7681	0.442176	1.0764	0.031976
1	6941	228943	4608	164583		8327	452196	0686	028819
2	7028	231173	4539	162537		9026	462782	0611	025740
3	7119	233485	4469	160429		9786	474008	0538	022749
4	7214	235880	4397	158261		3.0617	485967	0468	019858
35° 6 7 8 9	7415 7522 7633 7748	0.238359 240923 243575 246315 249146	1.4323 4248 4171 4092 4013	0.156031 153742 151393 148985 146519	80° 1 2 3 4	3.1534 2553 3699 5004 6519	0.498777 512591 527613 544120 562514	1.0401 0338 0278 0223 0172	0.017081 014432 011927 009584 007422
40° 1 2 3 4	1.7868 7992 8122 8256 8396	0.252068 255085 258197 261406 264716	1 3931 3849 37 ⁶ 5 3680 3594	0.143995 141414 138778 136086 133340	85° 6 7 8 9	3.8317 4.0528 3387 7427 5.4349	0.583396 607751 637355 676027 735192	0056 0053 0026 0008	0.005465 003740 002278 001121 000326
45°	1.8541	0.268127	1.3506	0.130541	90°	∞	∞	1.0000	

MOMENTS OF INERTIA. RADII OF GYRATION, AND WEIGHTS

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is av.

Body.	Axis.	Weight.	Moment of Inertia I	Square of Radius of Gyration ρ ₀ ² .
Sphere of radius r	Diameter	$\frac{4\pi v r^3}{3}$	$\frac{8\pi wr^5}{15}$	$\frac{2r^2}{5}$
Spheroid of revolution, polar axis 2a, equatorial diameter 2r	Polar axis	<u>4πτυατ²</u> 3	8πwar ⁴ 15	$\frac{2r^2}{5}$
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	<u>4πwabc</u> 3	$\frac{4\pi wabc(b^2+c^2)}{15}$	$\frac{b^2+c^2}{5}$
Spherical shell, external radius r, internal r'	Diameter	$\frac{4\pi\pi(r^3-r'^3)}{3}$	$\frac{8\pi w(r^5-r^{.5})}{15}$	$\frac{2(r^5-r'^5)}{5(r^3-r'^3)}$
Ditto, insensibly thin, radius r, thickness dr	Diameter	4πwr²dr	$\frac{8\pi wr^4dr}{3}$	$\frac{2r^2}{3}$
Circular cylinder, length 2a, radius r	Longitudinal axis 2a	$2\pi war^2$	Twar.	$\frac{r^2}{2}$
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	2πιυabc	$\frac{\pi wabc(b^2+c^2)}{2}$	$\frac{b^2+c^2}{4}$
Hollow circular cylinder, length 2a, external radius r, internal r'	Longitudinal axis 2a	2πwa(r ² —r' ²)	$\pi wa(r^4-r'^4)$	$\frac{r^2+r'^2}{2}$
Ditto, insensibly thin, thickness dr	Longitudinal axis 2a	4#wardr	$4\pi war^{8}dr$	r^2
Circular cylinder, length 2a, radius r	Transverse diameter	$2\pi war^2$	$\frac{\pi \pi v a r^2 (3r^2 + 4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b	Transverse axis 2b	2 π τυαbc	$\frac{\pi wabc(3c^2+4a^2)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2a, external radius r, internal r'	Transverse diameter	$2\pi wa(r^2-r'^2)$	$ \frac{\pi \pi va}{6} \left\{ \begin{array}{l} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\} $	$\frac{r^2+r'^2}{4}+\frac{a^2}{3}$
Ditto, insensibly thin, thickness dr	Transverse diameter	4πwardr	$\pi wa(2r^3 + \frac{4}{3}a^2r)dr$	$r^{2} + \frac{a^{2}}{3}$
Rectangular prism, dimensions 2a, 2b, 2c	Axis 2a	Swabe	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4wabc	$\frac{2wahc(h^2+c^2)}{3}$	$\frac{b^2+c^2}{6}$
Ditto	Diagonal 2b	4wabc	$\frac{2wabc(c^2+2a^2)}{3}$	$\frac{c^2}{6} + \frac{a^2}{3}$

(Taken from Rankine.)

For further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic, Circular and Exponential Functions); Smithsonian Mathematical Formulae and Tables of Elliptic Functions, Adams and Hippisley; Functionentafeln, Jahnke und Emde (xtgx, x^{-1} tgx, Roots of Transcendental Equations, a + bi and $re^{\theta i}$, Exponentials, Hyperbolic Functions,

$$\int_{0}^{x} \frac{\sin u}{u} du, \int_{x}^{\infty} \frac{\cos u}{u} du, \int_{\infty}^{+x} \frac{e^{-u}}{u} du, \text{ Fresnel Integral, Gamma Function, Gauss Integral}$$

$$\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} dx, \text{ Pearson Function } e^{-\frac{1}{2}\pi\nu} \int_{0}^{\pi} \sin^{\nu} e^{\nu x} dx, \text{ Elliptic Integrals and Functions, Spherical and Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the 11th ed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.$$

PROBABLE VALUES OF THE GENERAL PHYSICAL CONSTANTS

(As of January 1, 1929)

(Considerably abbreviated from paper by Raymond T. Birge published in Phys. Rev. Suppl., vol. 1, no. 1, July, 1929, which see for further details)

Some of the most important results of physical science are embodied in the numerical magnitudes of various universal constants; the accurate determination of such constants has engaged the time and labor of many most eminent scientists. Some of these constants can be evaluated by various methods. Each has been investigated by various persons, at various times, and each investigation normally produces a result more or less different from that of any other investigation. Under such conditions there arises a general and continuous need for a searching examination of the *most probable* value of each important constant. An investigation of the values of general constants in current use reveals a surprising inconsistency, both in regard to the actually adopted values and to their origin, probably because of the fact that it is almost impossible to find a critical study of the best values, sufficiently up-to-date to be really reliable, and sufficiently detailed to explain the inconsistencies found among older tables.

- (1) In what follows "each general constant has been determined from the available data, beginning with that constant whose value depends least on other constants. The value thus adopted has then been used *consistently* in the calculation of each succeeding constant for which it is an 'auxiliary constant'. No attempt has been made to compare the results of different investigators until these have been made properly comparable by the use of the same value of each auxiliary constant.
- (2) "Each constant has been calculated from the available data by the use, as far as possible, of formulas which involve no approximations.
- (3) "Each constant has been recalculated, whenever it seemed necessary, by analytic methods—usually by the method of least squares."

Attention should be directed to two important sources:

(1) The International Critical Tables (1926) publish a list of nine so-called "Accepted Basic Constants," each with its "Uncertainty." A list is given of 21 constants derived from these, and also certain other conventional and experimental constants. The I.C.T.¹ list was adopted in 1923; since then important work on nearly every constant has appeared. It was prepared with the aid of various scientific societies and individuals. The values are not claimed to be the best values then available, although obviously an attempt was made to obtain the best values. The chief weakness of this list is the lack of any statement as to their origins. By correspondence and in other ways Doctor Birge has obtained such information, and specific references to this are made in the various sections to follow.

¹ I.C.T. will be used for International Critical Tables, 1926.

PROBABLE VALUES OF THE GENERAL PHYSICAL CONSTANTS

(2) The Geiger and Scheel "Handbuch der Physik" contains an article by F. Henning and W. Jaeger on "The General Physical Constants." There is a list of 52 constants, basic and derived, and a statement as to the theoretical and numerical basis of each value. Many approximations and sources of inconsistency are pointed out, but with one or two exceptions no attempt is made to recalculate data to improve the published values. The Henning and Jaeger article, written in 1926, contains more recent information than the I.C.T.

Since 1926 much new material has appeared, so that practically every constant adopted in the present paper differs more or less in value from that given in either of these two preceding lists. In fact for the great majority of the constants considered the adopted value is based primarily on work which has appeared since 1926. In the case of most of the constants, the situation is now much more satisfactory than it was a few years ago.

The velocity of light in vacuum (c).—An accurate summary of all numerical results to 1927, in which many errors in the literature are corrected, has been given by de Bray. A good recent account of the experimental methods for measuring c, as well as the numerical results, is that by Ladenburg.

The latest and most accurate direct determination of the velocity of light is that by Michelson, in 1921-1926. When the various sets of results are collected under the five different mirrors used, the agreement is quite remarkable, all five results varying only from 299797 to 299795 with a mean of 299796 as before.

$$c = (2.99796 \pm 0.00004) \times 10^{10} \text{ cm} \cdot \text{sec.}^{-1}$$

The velocity of electromagnetic waves may be obtained *indirectly* from the measured ratio of the electrostatic (es) to the electromagnetic (em) system of electrical units, according to the generally accepted electromagnetic theory of light. The best value of this ratio, which is here denoted by c', is undoubtedly that found by Rosa and Dorsey.⁵ Their final result is the average of a very large number of individual results, taken at different times, under varying conditions, and of remarkable consistency. It seems to Doctor Birge that about one part in 30000 is a very conservative estimate for the *probable* error, giving $c' = 2.0071 \pm 0.0001$.

This result is in terms of international electrical units. Henning and Jaeger show that, to obtain the true ratio between the *es* and the *em* system, in absolute units, the result of Rosa and Dorsey must be multiplied by $p^{1/2}$, where one int. ohm = p abs. ohm. According to a subsequent discussion, $p = 1.00051 \pm 0.00002$. This gives a corrected value of $c' = (2.9979 \pm 0.0001) \times 10^{10}$ cm·sec⁻¹. It is in beautiful agreement with Michelson's recent value of c.

¹ Henceforth denoted by H.P. ² Nature, 120, 602, 1927. ³ Handb. der Exp. Phys., 18, 1, 1928. ⁴ Astrophys. Journ. 65, 1, 1927. ⁵ Bur. Standards Bull., 3, 433, 1907. ⁶ H.P., 2, 507.

The Newtonian constant of gravitation (G).—The H.P.¹ gives a table of seven determinations of G, ranging from 6.60 to 6.70×10^{-8} dyne·cm²·g⁻². Henning and Jaeger adopt 6.65. In their list they omit Poynting's value² of 6.66 ± 0.01 . The I.C.T. adopt as one of their basic constants $G = 6.66 \pm 0.01$.

Since the publication of these reviews, Heyl 3 has made undoubtedly the most reliable determination of G. His final result is

$$G = (6.664 \pm 0.002) \times 10^{-8} \text{ dyne} \cdot \text{cm}^2 \cdot \text{g}^{-2}$$

This result is adopted here. It is based on five separate determinations varying from 6.661 to 6.667.

Mean density of the earth.—Assuming $R = 6.371 \times 10^8$ cm as the mean radius of the earth, as given in the H.P., and $g_{45} = 980.616$ cm·sec⁻², $G \cdot \delta$ (earth) = 36.797×10^{-8} sec⁻², where δ (earth) is the mean density of the earth. From the H.P. result G = 6.65 δ (earth) = 5.53 g·cm⁻³. With the new result G = 6.664

$$\delta(\text{earth}) = 5.522 \pm 0.002 \text{ g} \cdot \text{cm}^{-3}$$

Relation of the liter to the cubic decimeter (1000 cm³).—The liter is defined as the volume of a kilogram of air-free water at its maximum density. In other words, the maximum density of water is, by definition, one kg·l-¹. The kilogram is defined as the mass of the prototype kilogram preserved in Paris. This original prototype was intended to be the mass of a cubic decimeter (dm³) of water, at maximum density. Later determinations have shown a slight discrepancy. The various experimental results are discussed by Henning and Jaeger.⁴ The mean of the best determinations is I liter = 1000.027 cm³; this value has been accepted in all recent tables. Henning and Jaeger give no probable error for the result, but one unit in the last place seems a reasonable assumption. Hence

1 liter =
$$1000.027 \pm 0.001$$
 cm³ = 1.000027 ± 0.000001 dm³

The maximum density of water $\delta_m(H_2O)$ is accordingly

$$1/1.000027 = 0.999973 \pm 0.000001 \text{ kg} \cdot \text{dm}^{-3} \text{ or g} \cdot \text{cm}^{-3}$$

It should be noted in conclusion, that it is customary to define I cc as liter/1000, while I cm³=liter/1000.027.

The normal mole volume of an ideal gas.-

$$(\nu_n \text{ cm}^3 \cdot \text{mole}^{-1}, \text{ or } R_n \text{ liter} \cdot \text{mole}^{-1})$$

The normal mole volume of an ideal gas is the volume occupied by one gram mole of an ideal gas, at o° C, under one normal atmosphere pressure. This

¹ H.P., 2, 507. ² "Gravitation," Encyc. Brit., XI ed. ³ Proc. Nat. Acad. Sci., 13, 601, 1927. Heyl's more recent value is 6.670 × 10⁻⁸ cm³ · g⁻¹ · sec. ⁻² Bur. Standards Journ. Res., 5, 1243, 1930. ⁴ H.P., 2, 491.

quantity can theoretically be determined from any real gas, correcting to reduce to an ideal gas. Actually, only oxygen is used because its atomic weight is 16.000 by definition; there is no error in the resulting value due to error in the atomic weight. As a result of extensive investigations, the correction to change oxygen to an ideal gas is known with considerable accuracy.

The I.C.T. gives $\nu_n = 22.4115 \times 10^3$ cm³. The H.P. gives $22.414_5 \times 10^3$ cm³ or $R_n = 22.413_9$ liters. The discrepancy must be due to different values of $\delta_n(O_2)$, the normal density of oxygen, or of $(1-\alpha)$, the factor due to the deviation of oxygen from an ideal gas.¹ Thus

$$v_n = 32(I-\alpha)/\delta_n(O_2) = \{32(I-\alpha)/L_n(O_2)\}1000.027 = R_n(1000.027)$$

where ν_n is the normal mole volume in cm³, R_n the same in liters, $\delta_n(O_2)$ the normal density of O_2 , in grams per cm³, and $L_n(O_2)$ the normal density in grams per liter. All these values correspond to normal gravity $(g_n = 980.665)$. It is, however, customary among chemists to express the experimental results in terms of g_{45} (980.616). Such values will be denoted by ν , δ , L, and R. Thus

$$R = M(I - \alpha)/L$$

where M is the molecular weight.

¹ The most general definition of α is (1/pv) d(pv)/d(p), (temp. = constant); it measures the change in pv, per unit change in pressure, and has the dimensions of pressure-¹. To make the numerical values more definite, it is customary to write $\alpha = [1/(pv)_1] d(pv)/d(p)$, where $(pv)_1$ refers to unit pressure. In investigations on normal density or normal mole volume, it is natural to choose one atmosphere as the unit of pressure. Henning and Heuse use one meter of mercury as the unit of p, and denote α by κt (see page 85). Since the numerical magnitude of α is proportional to the size of the unit of p, we have $\kappa t = 100\alpha/76$. Henning (H.P. 9, 528) uses the symbol κt , but states that p is measured in atmospheres.

Within limits of error, the isothermal pv is a linear function of p, for the so-called permanent gases O_2 , N_2 , H_2 , etc., for such substances α is independent of p but is a function of temperature, and is more properly written αt . The linear extrapolation of pv to p=0 gives then $(pv)_0=(1-\alpha)(pv)_1$. Now in the limit p=0, any gas becomes, by definition, an ideal gas. Hence $(pv)_0$ is the constant pv of an ideal gas, and $(1-\alpha)$ is the factor which converts the real $(pv)_1$, (unit pressure) into the ideal $(pv)_0$, both at some definite temperature. $(1-\alpha)$ is often denoted by $(1+\lambda)$, and $(1-\alpha)$ or $(1+\lambda)$ may be defined as the ratio $(pv)_0/(pv)_1$. Frequently v is so chosen (in magnitude or unit) that $(pv)_1$ is unity. α (or κt) is then numerically (but not dimensionally) the slope of the pv isothermal (see H.P. 9, 528 and 538).

Henning and Jaeger ' give as a mean value, L=1.42892 g·l⁻¹ and (1-a)=1.00092. A more recent result by Baxter and Starkweather 2 (L=1.42901) is omitted, but is included in the discussion by Henning and Jaeger, and raises the mean L to 1.42893. From this, and the value of (1-a) just quoted, the H.P. gets its value of ν_n . The more recent values of (1-a), average 1.00086, and this, taken with the Baxter and Starkweather value of L, gives $\nu_n=22.4119\times 10^3$ cm³, in close agreement with the I.C.T. value.

Baxter and Starkweather ³ have recalculated their 1926 data in a more logical manner and obtain L = 1.428965 grams per liter, (1 - a) = 1.000927.

$$L = (1.428965 \pm 0.000030)$$
 gram · liter · $(g = 980.616)$
I $-a = 1.000927 \pm 0.000030$.

$$R = 22.4146 \pm 0.0008 \, \text{liter} \cdot \text{mole}^{-1} \, (g_{45} = 980.616)$$

 $R_n = 22.4135 \pm 0.0008 \, \text{liter} \cdot \text{mole}^{-1} \, (g_n = 980.665)$
 $\nu_n = (22.4141 \pm 0.0008) \times 10^3 \, \text{cm}^3 \cdot \text{mole}^{-1} \, (g_n = 980.665).$

Ratio of international (int.) to absolute (abs.) electrical units.—For practical convenience, the ohm, ampere, and volt have been defined, by international agreement, in terms of definite physical apparatus.

These international units are to be compared with the corresponding absolute units, with which they were of course identical, within limits of experimental error, at the time of adoption in 1908. One abs. ohm= 10^9 em units of resistance, the em unit, under the assumption that permeability is dimensionless, being one cm·sec.⁻¹. Measurements of the abs. ohm have been made in a variety of ways, but all methods necessarily involve the measurement of length and time. The abs. ampere is 10^{-1} em units, the em unit being one dyne^{1/2}, again with the assumption of dimensionless permeability.

The definition of the int. amp. just given is the primary definition, and Doctor Birge follows the I.C.T. in designating the int. amp. so defined, and all quantities involving it, by the symbol "(a)." Now let

- (1) I int. ohm = p abs. ohm (2) I int. amp. (a) = q abs. amp. then
 - (3) I int. coul. (a) = q abs. coul. (6) I int. henry = p abs. henry
 - (4) I int. volt (a) = pq abs. volt (7) I int. gauss = q abs. gauss
 - (5) I int. joule (a) = pq^2 abs. joule

¹ H.P., 2, 493. ² Proc. Nat. Acad. Sci., 10, 476, 1924. ⁸ Proc. Nat. Acad. Sci., 14, 57, 1928. ⁴ London, 1908. ⁵ This book, p. xlvi et seq.

The int. ohm can be constructed as a definite laboratory standard. This is not true of the int. amp. (a). Hence the 1908 London conference appointed a committee to determine the e.m.f. of the Weston normal cell, in terms of the int. ohm and int. amp. The final value adopted by the committee (Jan. 1, 1911) was 1.0183 int. volts, at 20°C, which, to avoid ambiguity, is written 1.01830. This is effectively a new definition of the int. volt and to distinguish it, if necessary, from the primary definition, Doctor Birge again follows the I.C.T. in writing int. volt (v). Similarly all units involving the Weston normal cell will be designated by "(v)." Let

I int. volt
$$(v) = r$$
 abs. volt (8)

as contrasted with eq. (4). It is now possible to use the int. volt (v) and the int. ohm to obtain a new (subsidiary) definition of the int. amp. Thus

I int. amp.
$$(v) = r/p$$
 abs. amp. (9)

as compared to eq. (2). Finally, in many investigations, a so-called "semi-absolute" volt has been used. This is defined as the e.m.f. required to force one abs. amp. of current through one *int*, ohm resistance. Hence from eq. (1)

I semiabs.
$$volt = p$$
 abs. $volt$. (10)

From eqs. (8) and (10) one obtains

I int. volt (v) =
$$r/p$$
 semiabs. volt. (II)

We have now to consider the most probable value of p and of q, and the difference, if any, between r and pq (or between r/p and q). These questions are discussed by Henning and Jaeger in the H.P., and they conclude,

$$q = 1$$
, $p = 1.0005_0$, $r = pq = 1.0005_0$.

On the other hand, the I.C.T. gives

$$q = 0.99993$$
, $p = 1.00052$, $r = 1.00042$, while $pq = 1.00045$.

Hence $r/p = 0.99999 \neq q$. The correct determination of the best values of p and q is a very technical and extremely involved matter. Unfortunately, as just seen, there is no exact agreement on the subject. Part of the present disagreement in the values of p and q is due to the fact that there is no standard international unit of resistance or of voltage. Each national laboratory has its own standards which differ more or less among themselves, and also may change with time. The values of p and q finally adopted here represent, as well as possible, mean values both in respect to place and to time. Fortunately the accuracy of these quantities is so great that any possible error in the finally adopted values is entirely immaterial in its effect on the many constants derived later in this paper.

The numerical relation of the int. and abs. ohm rests chiefly on two extensive investigations, one $p=1.00052\pm0.00004$, by Smith, at the National Physical Laboratory (N.P.L.) of England, and the other, p=1.00051, by Grüneisen and Giebe,² at the German Reichsanstalt. The latter estimate their probable error, as well as that of Smith, as about 3 parts in 105. In 1925 a committee at the N.P.L. began an investigation of the relation of the int, and abs. electrical units. This work is incomplete. It was stated in 1925 that a comparison of various manganin with mercury resistances indicates that the former have all increased in resistance by about 2.5 parts per 105 since 1912, or that the mercury standards (defining the int. ohm) are really smaller by this amount. The latter assumption would give p=1.000495, in place of Smith's value of 1.00052. In a recent investigation at the Reichsanstalt, Steinwehr and Schulze 4 evidently assume that the N.P.L. 1925 standards are 2 parts in 105 less than the older 1912 standards, giving a mean value of p in exact agreement with the 1920 Reichsanstalt value. Their own experiments in 1928 agree with this same mean value to ±1 in 105. Various intercomparisons at the N.P.L. show that the German and American standards lie between the 1912 and 1925 N.P.L. values. It seems certain that the best value of p, at the present time, is 1.00051 (p.e. seems to be not more than 2 parts in 105).

The most probable value of q is more uncertain. In the older work, the abs. amp., determined with either a current balance or a tangent galvanometer, was compared directly with the int. amp. as measured by a silver voltameter. There was measured by means of a silver voltameter, with certain specifications, the amount of silver, in grams, deposited per sec. by a current of one abs. amp. This mass of silver was then compared with 0.00111800 gram, the defined amount deposited, under the same conditions, by one int. amp. per sec.

Such a procedure determines q unambiguously, but does not necessarily evaluate the electrochemical equivalent of silver (E_{Ag}) per abs. coul. The electrochemical equivalent of a substance is the mass actually associated with unit charge, and is independent of experimental imperfections, while the mass deposited in an electrolytic cell per unit charge—the only quantity we can actually measure—is subject to experimental imperfections. This distinction has no bearing on the value of q, so long as one accepts the official definition of the int. ampere. It concerns only the value of electrochemical equivalents and the resulting value of the faraday. The various experimental values of q, determined as explained above, are listed by Henning and Jaeger.

¹ Philos. Trans., 214, 27, 1914. ² Ann. Phys., 63, 179, 1920. ³ N.P.L. Reports, p. 94, 1925. ⁴ Ann. Phys., 87, 769, 1928. ⁵ N.P.L. Reports, p. 8, 1927. ⁶ H.P., 2, 499.

In the later work (1906 to date) the current, measured in abs. amp., usually with a current balance, is sent through an int. ohm resistance, using a Weston normal cell. From the known current in abs. amp. and the known resistance in int. ohms, one obtains the e.m.f. of the Weston cell in semiabsolute volts. By eq. (11) the ratio of this result to the e.m.f. in int. volt (v), (1.01830 by definition), is r/p, evaluating only r/p, and not q.

The value of the e.m.f. of the Weston cell, in semiabs, volts, the assumed corresponding electrochemical equivalent of silver per abs. coul., and the true resulting value of r/p, are listed by Henning and Taeger. Omitting a probably less accurate value by Guthe, the remaining four values range from 1.00006 to 0.00080. Henning and Jaeger give correctly as 1.01822 semiabs. volts the Rosa, Dorsey and Miller 2 value of the e.m.f. of the Weston cell, but misquote and use in their averages the resulting E_{Ag} and r/p, giving 0.99995 for r/b in place of the true 0.00002 (=1.01822/1.01830). Using 0.00002, the unweighted average of the four investigations is r/p = 0.99995. The Bureau of Standards * considers only (a) (c) and (d) of reference 3 and gives 0.99991 as the best average value of r/p. The I.C.T. value (0.99990) is based on (a) and (d) only. Henning and Jaeger 1 take the unweighted average of all four values, and Doctor Birge has done the same, since there seem to be differences of opinion as to the relative weighting of these four values. It is very probable that (c) should be given a relatively lower weight; the final average is fortunately not changed.

The next question concerns the equality of r/p and q. Rosa, Vinal and McDaniel determined the e.m.f. of the Weston cell as 1.01827 int. volt (a), by using a silver voltameter and an int. ohm resistance. Hence by eqs. (4) and (8), knowing 1.01827 int. volt (a) = 1.01830 int. volt (v), pq/r=1.01830/1.01827=1.00003. Hence q=1.00003 r/p. These investigators naturally assumed r/p=0.99992, for reference 3 (d). Hence q=0.99995. This is the figure misquoted as r/p, by Henning and Jaeger.

The result indicates that q differs from r/p by 3 parts in 10⁵, and that, to agree with the primary int. units, the Weston cell should have been taken as 1.01827 int. volts. But at the Reichsanstalt, the corresponding quantity was found, in 1908, to be 1.01834 int. volts, and in 1922, 1.01831. The average of these three results indicates that the accepted value of 1.01830 int. volts is correct within limits of error. In other words, q=r/p, and one int. volt (a) = one int. volt (v). This agrees with the view of Henning and Jaeger. The relative values of q and r/p adopted by the I.C.T. are based directly on the work of the Bureau of Standards. The relative values of q and q and

 $^{^1}$ H.P., 2, 500, Table 6. 2 Bur. Standards Bull., 8, 269, 1912. 3 (a) Ayrton, Mather, Smith, (N.P.L.) 1908, r/p=0.99989, (b) Janet, Laporte, Jouaust, 1908, 1.00006, (c) Haga, Boerema, 1913, 0.99994, (d) Rosa, Dorsey, Miller (Bur. Standards), 1912, 0.99992. 4 Bur. Standards Circ. 60, 38, 1916. 5 Bur. Standards Bull., 10, 475, 1914. 6 Z. Instrument., 28, 327 and 353, 1908; ibid., 42, 221, 1922. 7 H.P., 2, 501.

Henning and Jaeger tonsider that the variation from unity of either r/p or q is less than the experimental error, and think it more practical to assume r/p = q = 1.0000. It seems best to accept the mean value of r/p = 0.99995, determined in four different laboratories, with the probable error as ± 0.00005 . Assuming then no distinction between int. volt (v), and int. volt (a), we have

 $p = 1.00051 \pm 0.00002$ $pq = 1.00046 \pm 0.00005$
 $q = 0.99995 \pm 0.00005$ $pq^2 = 1.00041 \pm 0.00010$

The atomic weights of certain elements.—In evaluating some of our constants, it is necessary to use the atomic weights of various elements. In the ultimate analysis, only ratios of atomic weights enter our formulas for the general constants. All atomic weights are determined from ratios, but in general not directly from the particular ratios we need. Hence it is necessary to consider individual atomic weights.

The present atomic weights are based on the arbitrary assumption that the weight of oxygen is 16 exactly. In choosing oxygen as a basis, it is assumed that it has always the same atomic weight; i. e., it has no isotopes. Giauque and Johnston have very recently found an isotope of atomic weight 18, from an analysis of the atmospheric absorption bands of oxygen. H. D. Babcock states that experiments performed on absorption coefficients in these bands indicate that O₁₈ has an abundance of only one part in 1250 (probable error some 25 per cent). Aston's atomic weights should be greater than the chemical values by about one part in 10,000. Babcock's determination of relative abundance, involves the assumption that the absorption coefficient is the same, per molecule, for each species of molecule $(O_{16}-O_{16})$ and $O_{16}-O_{18}$, and this may not be true. The atomic weights determined by Aston,³ from the mass spectrograph, need not be identical with those determined by chemical means, since Aston's atomic weights are based on the mass 16 isotope of oxygen considered as exactly 16, while the chemical atomic weights are based on the ordinary mixture of the two isotopes considered as exactly 16. We shall see that Aston's atomic weights of hydrogen, helium, nitrogen and iodine seem to agree with the chemical values within his limit of error (one part in ten thousand to one part in five thousand).

Hydrogen.—Moles 'lists nine results lying in the narrow range 1.00766 to 1.00783, with a mean value of 1.00777 ±0.00002, or a rounded figure of 1.0078. The final average represents the result of 223 different measurements by five different investigators, using four different methods, and seems to be the most reliable now available. Doctor Birge accordingly adopts

¹H.P., 2, 501. ² Journ. Amer. Chem. Soc., 51, 1436, 1929. ³ Proc. Roy. Soc., 115 A, 487, 1927. ⁴ Berichte, 61 B, 1, 1928; 59, SII, (A) 1926.

PROBABLE VALUES OF THE GENERAL PHYSICAL CONSTANTS H = 1.00777 + 0.00002.

Aston, from positive ray analysis, obtains H=1.00778 with a limit of error 0.00015. The recent discovery of an isotope of oxygen makes it permissible to use Aston's value only as an indication of the relative abundance of O_{18} and O_{16} , not as an atomic weight determination. It is in perfect agreement with the chemical value, which indicates a very low abundance of O_{18} .

Helium.—The true atomic weight of helium must be close to Aston's value. The chemical value is at present slightly less accurate than Aston's, and Doctor Birge accordingly adopts his value but his assumed error as the *probable* error, although he considers such a procedure may be open to criticism, in view of the situation regarding the oxygen isotopes. He accordingly writes

He = 4.0022 + 0.0004.

Nitrogen.—The error in the atomic weight of nitrogen produces practically the entire error in the atomic weight of silver. Since the great majority of the accepted atomic weights are derived more directly from silver than from oxygen, that of silver is of the highest importance.

The atomic weight of nitrogen can be obtained by direct comparison with oxygen, and also from density measurements, using the adopted value of R. According to Clarke, the final average of these two methods gives N=14.0076. The atomic weight can be obtained indirectly in many ways. The results of all methods, including the two just mentioned, are summarized by Clarke and give N=14.0081, presumably the best value in 1920. Now it is generally agreed that, as in the case of helium, the atomic weight of nitrogen can be determined most accurately from its density and deviation from a perfect gas, by the use of $R=M(1-\alpha)/L$ where R is 22.4146 ± 0.0008 (see p. 77), $(1-\alpha)=1.00043\pm0.00002$, and $L=1.25046\pm0.000045$ whence

$N = 14.0083 \pm 0.008$.

Aston 'obtains N=14.008, but his assumed accuracy is only one part in 5000. Aston gives always the *limit* of error, and his *probable* error should be much smaller. His values all agree beautifully with the chemical values; the decision as to his actual probable error may be left open.

Silver.—The best atomic weight of silver is at present directly dependent on that of nitrogen. A summary is given by Moles and Clavera.² Of the many methods for obtaining the value of Ag, the most accurate is based on the reduc-

¹ Mem. Nat. Acad. Sci., 16, 1920. ² Z. anorg. Chem., 167, 49, 1927. ³ Ibid., 167, 40, 1927. ⁴ Proc. Roy. Soc., 115 A, 487, 1927.

tion of AgNO₃ to Ag. Since O=16.000, by definition, the sole error is due to that in N. The proportional error is due to that in NO₃, only about one fourth the probable proportional error in N. The ratio AgNO₃/Ag can be determined with great precision. The most accurate ratio, by far, is that by Richards and Forbes, 'yielding also 1.57479. A very elaborate investigation by Hönigschmid, Zintl and Thile, 'gives again exactly the same ratio. With our adopted value of N and the above value of AgNO₃/Ag=r, one has NO₃/(r-1) = $(62.0083 \pm 0.0008)/(0.57479) = 107.8799 \pm 0.0014$.

The atomic weight of silver can be obtained in many ways. Clarke ³ lists 43 methods, yielding a final weighted average of 107.8804. It seems reasonable that at the present time only the AgNO₃/Ag ratio results need be considered, with a final real error in Ag due merely to that in N. It seems reasonable to adopt

$Ag = 107.880 \pm 0.001$.

Iodine.—The atomic weight of iodine enters into the discussion of the value of the faraday. Clarke slists eight methods, with a mean of 126,926. This result will bear closer scrutiny. The most accurate is the direct determination of the I/Ag ratio, assuming the atomic weight of silver as known. Among the values of this ratio, 1.176603, obtained by Baxter, in 1910, is the most reliable. Clarke lists all determinations. Now the four earlier results are all approximately 1.1753, while the later results run much higher. These earlier results probably are vitiated by some systematic error. They are quite self consistent, and so by Clarke are given a high weighting. With the four earlier results eliminated, we have a new weighted average of 1.176549, in closer agreement with Baxter's 1910 result. This ratio, combined with Ag=107.880, gives I=126.926, while Baxter's result gives 126.932. Using the revised average value for the I/Ag ratio with Clarke's results for the other seven methods, we obtain a final weighted average of I = 126.932, in place of Clarke's value 126.926, and in exact agreement with Baxter's result. Doctor Birge adopts

$I = 126.932 \pm 0.002$.

In conclusion it is of interest to note that Aston gets I=126.932, in exact agreement with our adopted value.

Carbon.—The atomic weight of carbon can be determined directly from oxygen. The result of all such determinations, as obtained by Clarke, is 12.0000 ± 0.00026. This result (written 12.000) was accepted in 1925 by the International Committee on Atomic Weights, and has since been used by Baxter.

¹ Journ. Amer. Chem. Soc., 29, 808, 1907. ² Z. anorg. Chem., 163, 65, 1927. ³ Mem. Nat. Acad. Sci., 16, 1920. ⁴ Journ. Amer. Chem. Soc., 32, 1591, 1910. ⁶ Journ. Amer. Chem. Soc., 47, 597, 1925. ⁶ Journ. Amer. Chem. Soc., 50, 603, 1928.

Thirteen methods, including the above, listed by Clarke, give a weighted mean of 12.0025±0.00019. Aston finds C=12.0036, (limit of error 0.0012). The mean of the final Clarke value and Aston's value is 12.003, and is adopted here.

$$C = 12.003 \pm 0.001$$
.

Calcium.—The atomic weight of calcium is needed for the grating space of calcite. The value of Ca, accepted since 1911, is 40.07. When readopted in 1925 by the International Committee, reference was made to the work of Richards and Hönigschmid.² These investigators precipitate CaCl₂ by a solution of Ag, and determine the amount of AgCl produced. They assume Ag=107.88 and Cl=35.457. The final result is Ca=40.075, based on four determinations ranging from 40.085 to 40.070. It seems probable that the Richards and Hönigschmid value of 40.075 is the best. The probable error 0.005, is very uncertain.

Ca = 40.075 + 0.005.

The normal atmosphere (A_n) .—The normal atmosphere is defined as the pressure due to a column of Hg 76 cm high, of normal density $(0^{\circ}C, A_n)$, under normal gravity.

The I.C.T. gives $A_n=1.013250\times 10^6$ dyne · cm⁻², based on the definition of A_n as the pressure of a column of a liquid of density 13.5951 g per cm³, normal gravity. The H.P. gives $A_n=1.01325_3\times 10^6$, from the defining equation $A_n=H_n\cdot\rho_n(\mathrm{Hg})\cdot\delta_m(\mathrm{H_2O})\cdot g_n$, in which $H_n=\mathrm{height}$ of normal barometer=76.000 cm, $\rho_n=\mathrm{normal}$ specific gravity of Hg (at o°C, A_n), referred to air-free water of max. density, $\delta_m(\mathrm{H_2O})=\mathrm{max}$. density of water, $g_n=\mathrm{normal}$ gravity⁴=980.665 cm · sec.⁻². Henning and Jaeger,³ using the density of mercury in the definition, investigate the most probable value of ρ_n , then adopt $\rho_n=13.5955$. The value of $\delta_m(\mathrm{H_2O})$ is 0.999973 g·cm⁻³. The product $\rho_n(\mathrm{Hg})\cdot\delta_m(\mathrm{H_2O})=D_n=13.5955\times0.999973=13.595133$ g·cm⁻³, agreeing with the I.C.T. value to the six significant figures given by the I.C.T., but, with the use of seven figures, leading to $A_n=1,013,253$, as given by the H.P.

Doctor Birge adopts as the most probable value of ρ_n , the figure calculated by Scheel and Blankenstein,⁴ viz. 13.59546. $D_n = 13.59546 \times 0.999973 = 13.59599$ g·cm⁻³, and $A_n = 13.59599 \times 76 \times 980.665 = 1.013249 \times 10^6$ dyne·cm⁻². This should have a probable error of not more than two or three units in the last digit, ± 0.000003 .

The 45° atmosphere is obtained by the mere substitution of g_{45} (980.616) for g_n .

$$A_n = (1.013249 \pm 0.000003) \times 10^6 \text{ dyne} \cdot \text{cm}^{-2}.$$

 $A_{45} = (1.013199 \pm 0.000003) \times 10^6 \text{ dyne} \cdot \text{cm}^{-2}.$

¹ Proc. Roy. Soc., 115 A, 487, 1927. ² Z. anorg. Chem., 163, 315, 1927. ³ H.P., 2, 490, 494. ⁴ Z. Phys., 31, 202, 1925.

Note.—It is evident that the definition of the normal atmosphere given by Dorsey in the I.C.T. is technically quite different from Henning and Jaeger's in the H.P. The I.C.T. definition makes the normal atmosphere a conventional constant, with no probable error. Doctor Birge had some correspondence on this matter with Doctor Dorsey, leading to the conclusion that the H.P. definition is correct. The adopted value is therefore based on this H.P. definition.

Unfortunately, an article by Burgess ¹ was overlooked in which the "standard atmosphere" is defined as "the pressure due to a column of mercury 760 mm high, having a mass of 13.5951 g·cm⁻³, gravitational acceleration of 980.665 cm·sec.⁻¹, and is equal to 1,013,250 dyne·cm⁻²." It is thus a conventional constant, with no error. This definition was adopted in 1927 by the International Commission of Weights and Measures. Fortunately, this definition makes no change in the magnitude or the error of any derived constant. It should be noted that no temperature is specified and that the word "mercury" is technically superfluous. This seems very objectionable, since there is thus technically no simple method for reducing to standard atmospheres an actual barometer reading at an actual observed temperature. The H.P. definition, as used by Doctor Birge, seems preferable, in spite of international agreement.

The absolute temperature of the ice-point (T_0) .—The generally accepted value of T_0 was, for many years, 273.09°K., based on Berthelot's analysis 2 of the data of Chappuis, 3 and of Joule and Thomson for the porous plug experiment. The final average value was $\gamma = 36618 \times 10^{-7}$, or $T_0 = 273.09$ °. The I.C.T. gives $T_0 = 273.1$ as one of its basic constants.

Most extensive observations on the volume and pressure coefficients (α and β) of certain gases have recently been made by Henning and Heuse, at the Reichsanstalt. The value of γ was obtained by two different methods.

The first method gave for the gases He, H₂, and N₂, $\gamma \times 10^7 = 36600$, 36607, and 36606, or $T_0 = 273.224^\circ$, 273.172° and 273.179°. The mean is $\gamma \times 10^8 = 366043$ or $T_0 = 273.190^\circ \pm 0.015$.

The second method gave for He (two determinations at slightly different p_0), H₂ and N₂, $\gamma \times 10^7 = 36598$, 36597, 36617, and 36604. The mean is 36604.0 or $T_0 = 273.194^\circ$. They conclude that the best mean value of all the experiments is $\gamma \times 10^7 = 36604$. The reciprocal of this is $T_0 = 273.19^\circ$. They write it as 273.20°. In the later article 'by Heuse, neon is used, and the above value of γ is confirmed.

The only other determination of T_0 of comparable accuracy is that by Roebuck, using the Joule-Thomson effect in air. This method requires a, the volume coefficient, as well as the Joule-Thomson coefficient μ . Roebuck mea-

¹ Bur. Standards Journ. Res., 1, 635, 1928. ² Trav. et Mem. Bur. intern.; 13, 12, 1907.
³ Ibid., vols. 6, 13. ⁴ Z. Phys., 5, 264, 1921; 5, 285, 1921; 37, 157, 1926. ⁶ H.P., 9, 527.
⁶ Proc. Amer. Acad. Arts and Sci., 60, 537, 1925. ¹ H.P., 2, 496.

sured μ , but for a used data, mainly by Chappuis. Henning and Jaeger ¹ note this and adopt merely the Henning and Heuse value 273.20° (which as previously noted should be 273.19°). Roebuck obtained three results, 273.18°, 273.16°, and 273.12°, average, 273.15°. He lists all previous determinations, and chooses 273.17°, lying midway between his own result and that of Henning and Heuse. He gives $\pm 0.02^\circ$ as the probable error. Doctor Birge feels that these two results (273.15° and 273.19°) are entitled to far more weight than any of the older work, but that the second result is probably the most accurate, being based on new determinations of a. Hence he adopts—with the probable error given by Henning and Jaeger—

$$T_0 = 273.18 \pm 0.03$$
°K.

(Roebuck's ±0.02° may well be more reasonable).

The mechanical equivalent of heat (J) and the electrical equivalent of heat (J').—A description of the methods for the evaluation of J, and a discussion of the results, is given by Jaeger in the H.P.² The value adopted by Henning and Jaeger in the H.P.³ is one cal. $_{15}$ =4.1842 int. joule=4.1863 abs. joule. The I.C.T. value is one cal. $_{15}$ =4.185 abs. joule. The cal. $_{15}$ is defined as the amount of thermal energy required to heat one gram of pure water from 14.5° to 15.5° C.

Joule turned mechanical energy directly into thermal energy, and J was evaluated in abs. joules. In most modern work electrical energy is turned directly into thermal, thus evaluating the *electrical* equivalent of heat (J', measured in int. joules). Since the relation between the int. joule and the abs. joule (Io^{7} ergs) is known with considerable precision, the mechanical equivalent may be obtained from the electrical equivalent.

The value of J adopted by the H.P. results from the work of Jaeger and Steinwehr.⁴ They determined J', for many different mean temperatures lying between 4.75° C and 49.60° C. This is undoubtedly the most accurate work now available. They list 67 results. These results are represented as a parabolic function of t.

On examining their data, Doctor Birge finds that a parabola is not a sufficiently complex function. Their residuals show pronounced trends; unfortunately the largest trend is near 15°C. He accordingly made a separate investigation of the best curve for their data.

$$J' = 4.21040 - 2.78958 \times 10^{-8}t + 7.73723 \times 10^{-5}t^{2} - 8.52567 \times 10^{-7}t^{3} + 3.7540 \times 10^{-9}t^{4}$$
 (1)

This gives $J'_{15}=4.18327$ int. joules, and is the most probable value resulting from the work of Jaeger and Steinwehr. Jaeger gives two parts in 10000 (i.e., 8×10^{-4} joules) as the probable error. Doctor Birge therefore writes $J'_{15}=4.1833\pm0.0008$ int. joules. We have one int. joule= pq^2 abs. joule, where $pq^2=1.00041\pm0.00010$. Hence there results

 $J_{15} = (4.1833 \pm 0.0008) (1.00041 \pm 0.00010) = 4.1850 \pm 0.0009$ abs. joules.

¹ H.P., 2, 496. ² H.P., 9, 476, ³ H.P., 2, 497. ⁴ Ann. Phys., 64, 305, 1921.

The most accurate direct determination of the *mechanical* equivalent of heat J is the work of Laby and Hercus, which appeared since the H.P. was compiled. They use a continuous flow calorimeter and make 23 determinations, grouped about six different temperatures, the temperature change in the calorimeter being always about 5°C. Their result is $J=4.1841\pm0.0001$ abs. joules at 16.67°C.

A more precise method of reduction is first to adopt a curve for the temperature variation of the specific heat of water. Such a curve is given immediately by eq. (1). If it is desired that the specific heat at 15°C be unity, eq. (1) is to be divided by 4.18327. Doctor Birge finally adopts

one 15° calorie
$$(J_{15})=4.1852\pm0.0006$$
 abs. joules one 15° " $(J'_{15})=4.1835\pm0.0007$ int. joules

and by eq. (1) $m{J}_{20}=4.1813\pm0.0006 \ ext{abs. joules} \ m{J'}_{20}=4.1796\pm0.0007 \ ext{int. joules}$

The faraday (F).—The faraday is defined as the quantity of electricity carried in electrolysis by one gram equivalent of any element. It is believed to be a general constant of nature. According to modern ideas, each univalent ion carries a charge numerically equal to the electronic charge e. The Avogadro number N_0 gives the number of atoms (or molecules) in one gram equivalent. Hence one may define the faraday more precisely as the product $N_0 \cdot e$. The fact that F can be most accurately evaluated from electrolysis, and N_0 is then obtained from F and e, does not affect the validity of the definition.

One electrochemical equivalent is the mass associated with unit electric charge. Like the faraday, its true value, independent of experimental conditions, depends only on the adopted unit of charge. On the other hand we can measure only the amount of a substance deposited or released in an electrolytic cell, per unit current per second. This is affected by experimental conditions, and may or may not equal the electrochemical equivalent. The faraday is then, by definition, the ratio of the gram equivalent of a substance to its electrochemical equivalent. Almost universally the distinction between mass deposited per unit charge, and electrochemical equivalent is ignored. Considerable confusion results regarding the best value of certain electrochemical equivalents, and the resulting best value of the faraday.

Nevertheless, it is convenient to assume, for the moment, that the silver deposited per unit charge in a silver voltameter, under the conditions defining the international ampere, is the electrochemical equivalent of silver (E_{Ag}) . With this assumption, the value of faraday follows from constants already adopted. The gram equivalent of silver, or of any univalent substance, is numerically equal to its atomic weight in grams (Ag). The amount of silver deposited in electrolysis by one international coulomb is, by definition, 0.00111800 gram. Hence

¹ Philos. Trans., A 227, 63, 1927.

$$F = Ag/0.00111800 = (107.880 \pm 0.001)/0.00111800$$
 int. coul.
= 96494. ± 1 int. coul., (1)

 $= 96489. \pm 5$ abs. coul. (2)

If q=1, as adopted by the H.P., F=96404 int, coul, or abs. coul., the actual value adopted by Henning and Jaeger. If q=0.99993, as adopted by the I.C.T., there results F=96487 abs. coul. The I.C.T., however, adopts $F=96500\pm10$ abs. coul., which with its adopted value of a, leads to F = 06507 int. coul. This last value requires Ag = 107.893, in direct contradiction to facts. F = 06500+ 10 abs. coul. is evidently taken from Vinal and Bates, and to understand the seeming discrepancy, it would be necessary to examine in detail this last quoted work employing the distinction between mass carried in electrolysis and mass deposited (see Doctor Birge's discussion, Phys. Rev., Suppl. 1, 35, 1929). Henning and Jaeger 2 make no distinction between mass carried and mass deposited, writing E_{Ag} =0.00111800 g per int. coul. It seems evident from Vinal and Bouvard that there are inclusions in the silver deposit, tending to make E_{Ag} too large by 4×10^{-8} g, and F too small by 4 coulombs. There may be small parasitic chemical reactions in the silver voltameter, tending to decrease the value of E_{Ag} and hence to increase the value of F. It seemed best to adopt the value of F given in eqs. (1) and (2), but to assign to E_{Ag} a probable error of 5 × 10⁻⁸ g, i.e., an error slightly greater than the measured effect of the inclusions. Then

$$F = \frac{107.880 \pm 0.001}{(1.11800 \pm 0.00005) \times 10^{-3}} = 96494 \pm 5 \text{ int. coul.}$$

$$= 96489 \pm 7 \text{ abs. coul.}$$

$$= 9648.9 \pm 0.7 \text{ abs. } em \text{ units,}$$

$$= (2.89270 \pm 0.00021) \times 10^{14} \text{ abs. } es \text{ units.}$$

The electronic charge (e).—The values of a large number of important constants depend directly on the value of the electronic charge; in most cases the final probable error is due mainly to the error in e. It is desirable that it be determined in many different ways, and by many different persons. The situation has been the reverse. Only one precision method for the evaluation of e was known, and the work had been carried out by a single individual. It is very fortunate that the investigation referred to is a masterpiece. Millikan's investigations extend over more than a decade; the latest value of e was published in 1917. The great importance of e, and because higher values have recently been obtained, led Doctor Birge to investigate the matter in more than usual detail.

Millikan found that if the viscosity of air is taken as constant, in Stokes' law of fall, the apparent value of e is a function of the radius of the drop and of the pressure of the air. The true value of e can be found by assuming a modification of Stokes' law such that his observations could be plotted as a

¹ Bur. Standards Bull., 10, 425, 1914 (p. 447). ² H.P., 2, 502. ³ Bur. Standards Bull., 13, 147, 1916. 4 Phys. Rev., 29, 60, 1909; 32, 342, 1911; 2, 109, 1913; Philos. Mag., 34, 1, 1917; 19, 209, 1910.

linear graph, its intercept on the y axis giving $e^{2/3}$, and leading to the desired quantity.

Millikan found that for values of 1/pa less than about 700 (p in cm Hg, a, radius of drop, in cm), the resulting graph was linear. Only that part of the curve corresponding to 1/pa less than 700 was used in precise determinations of e. The 1917 value of e was deduced from 25 oil drops, each giving one point on the graph. The 25 observations form a beautifully consistent set of data. The least squares solution, as calculated by Doctor Birge, gives for the intercept $(61.1111\pm0.032)\times10^{-8}$; but plotted data are based on the 1913 value (0.0001824) for the viscosity of air. The value of $a_0 (=e^{2/3})$ is proportional to the viscosity. With the improved 1917 value of the viscosity (0.00018227), $e=a_0^{3/2}=(4.7721\pm0.0038)\times10^{-10}$ es units.

Millikan stars 18 of the points, with conditions of observation as perfect as possible. These 18 drops give $a_0 = 61.121 \pm 0.038$ ($e = 4.7733 \pm 0.0045$, 1917 viscosity). These 18 drops deviate from the best straight line more than do the other 7. The standard deviation of the 25 drops is 0.121×10^{-8} , while for the 18 drops it is 0.123×10⁻⁸. The drops of smaller radius fall more slowly, and can be more accurately timed. Actually they are less reliable. Thus 13 smaller drops have a standard deviation of 0.134, considered as part of the 25 drops, definitely larger than the 0.121 average of the 25. A least squares solution of these 13 drops gives $a_0 = 61.143 \pm 0.050$, standard deviation of 0.132. This is so close to 0.134 that we can conclude that the 13 drops fit the graph of the entire 25 as well as a graph designed to fit them alone. On the other hand, the 12 larger drops give for the least square solution, $a_0 = 61.078 \pm 0.045$, standard deviation 0.117, thus definitely more reliable than the smaller drops. The resulting value of e, reduced to the 1917 viscosity, is 4.7759 ± 0.0058 for the 13 smaller drops, and 4.7683 ± 0.0053 for the larger drops. The weighted mean is 4.7718, in essential agreement with the value (4.7721) obtained from all 25 drops. This, of course, is what we should expect.

The average deviation from the average for small and large drops is 0.0038, much less than the probable error of either. This is an analytic proof that the true value of e is not a function of the radius of the drop. This also indicates that the larger drops are, if anything, more reliable than the smaller. If the larger are given a higher weight, the resulting value of e would lie between 4.772 and 4.768. The final conclusion is that there is no particular reason for giving different weights to the different drops, and that any such weighting, if made, would slightly lower e. We therefore take $4.772 \times 10^{-10} es$ units as the best result of the 1917 work.

In 1913 data on 58 drops were obtained. Millikan used, in evaluating e, the 23 drops (out of 58) of smallest 1/pa. These are more consistent, having a standard deviation of only 0.092. They lead to $e=4.7665\pm0.0058$ (1917 viscosity), while the entire 58 give 4.7703 ± 0.0022 . This last figure might appear more reliable than that of 1917; such a conclusion ignores other errors. In 1913 Millikan estimated four factors, each with a maximum uncertainty of 0.1 per cent. In 1917 he estimated two such factors, each with a maximum uncertainty of 0.05 per cent. His final 1917 estimate for the maximum uncertainty in e is 0.1 per cent, based mainly on these two factors. The above calculations show, however, a *probable error* of 0.08 per cent (±0.0038) in the 1917 value, due to accidental errors. The final uncertainty is therefore several times as large. Doctor Birge estimates that the final *probable error* is about 0.1 per cent, and writes $e=(4.772\pm0.005)\times10^{-10}$ es units.

This value is now subject to two further corrections. In reducing the result to es units per cm, Millikan used $c=2.999\times 10^{10}$ cm · sec. -1, and made no distinction between international and absolute electrical units. It has been shown definitely that the int. volt differs from the abs. volt by an appreciable amount. We have also now the new value, c=2.99796. The change in c is obvious, it lowers e from 4.772 to 4.770. The other change seems to have been overlooked by everyone. Because the electrical potential forces the charged drops against the viscosity of air, instead of against *electrical* resistance, one has *only* electric voltage coming into the calculations. One int. volt=1.00046±0.0005 abs. volts. The true value of e, in abs. es units is smaller by just this ratio. Hence, the value of e is reduced from 4.770 to 4.768. Since the error in each of these corrections is negligible, the final result is $e=(4.768\pm0.005)\times10^{-10}$ abs. es units. This should be the most reliable value from Millikan's oil-drop work.

Recently an entirely different method has been devised for e. The two results which have already been published are apparently less reliable than the oil-drop value. This new method measures directly the Avogadro number N_0 , and from this and the value of the faraday, e immediately follows. It utilizes the absolute wave lengths of X-ray lines, determined with an ordinary ruled grating at grazing incidence, as compared with the wave lengths determined with a crystal grating.

$$\lambda = 2d \cdot \sin \theta \tag{1}$$

where d is the grating space. It has been pointed out by Siegbahn,² and by

¹ Professor Millikan agreed, 1928. ² Siegbahn, Spectroscopy of X-rays, p. 26.

Compton, Beets and DeFoe, that, to obtain the *true* X-ray wave length λ , it is necessary to use an *effective* grating space d, automatically correcting for the refraction of the X rays at the crystal surface. For first order spectra and the high frequencies of ordinary X rays, the *true* grating space d' is connected with the effective space d by the relation

$$d = d'(1 - 0.000135). \tag{2}$$

Siegbahn uses for calcite $d = 3.02904 \times 10^{-8}$ cm, at 18°C. This is a more or less arbitrary value, assuming that d for rock-salt, at 18°C, is 2.81400×10^{-8} cm. We shall denote by d''_{18} this 3.02904 value, and by λ'' the resulting wavelength. Hence

$$\lambda'' = 2d''_{18} \sin \theta \tag{2}$$

and $\lambda/\lambda'' = d_{18}/d''_{18} \tag{3}$

where λ is the true wave length from a ruled grating, d_{18} the effective grating space of calcite at 18° C, λ'' the supposed true wave length from measures with a calcite crystal with d''_{18} as an assumed grating space at 18° C. d_{18} follows knowing d''_{18} and λ . From (2) we obtain d'_{18} , the true grating space of calcite. The temperature coefficient ² is 1.04×10⁻⁵; d'_{20} is accordingly 2.08×10⁻⁵ larger. This 20° value is given theoretically by the formula

$$d'_{20} = \{ nM/\rho N_0 \phi(\beta) \}^{1/3}$$
 (4)

where n is $\frac{1}{2}$, M, the molecular weight of calcite (CaCo₃), ρ , its density at 20°C, $\phi(\beta)$, a geometrical constant depending on the crystal structure, and N_0 , F/e; knowing d'_{20} we can obtain N_0 and then e.

We have $M = 100.078 \pm 0.005$; the best value of ρ is 2.7102 ± 0.0004 g·cm⁻³ (DeFoe, Compton³), of $\phi(\beta)$, 1.09630 ± 0.00007 at 20° C (Beets⁴) whence

$$e = (1.7176 \pm 0.0003) \times 10^{13} (d'_{20})^3.$$
 (5)

The two published determinations of d_{18} , based on absolute X-ray wave lengths, are by Bäcklin, and Wadlund. Using (3), Wadlund obtains 1.5373 \pm 0.0008A for the Ka₁ line of Cu, combined with Siegbahn's values of d''_{18} and λ'' , giving $d_{18} = (3.0290 \pm 0.0016) \times 10^{-8}$ cm. The corresponding value of d_{20} is 3.02906; the true grating space d'_{20} , (3.0295 \pm 0.0016) \times 10⁻⁸ cm. This value is to be substituted in (5). It gives $e = (4.7757 \pm 0.0076) \times 10^{-10}$ abs. es units. This is not as accurate as the oil-drop value.

It is difficult to appraise the work of Bäcklin, as regards its accuracy. He gets 8.333 ± 0.008 A for the absolute wave length of the Al Ka line. Comparing this with an unpublished result by A. Larsson $(8.3229 \pm 0.0008$ A), obtained with a crystal, Bäcklin obtains $d_{18} = 3.033 \pm 0.003$ A. This gives $d'_{20} = 3.03347$ A, and $e = (4.794 \pm 0.015) \times 10^{-10}$ abs. es units. This value is 0.55 per cent higher than the oil-drop result.

¹ Phys. Rev., 25, 625, 1925. ² Siegbahn, Spectroscopy of X-rays, p. 85. ⁸ Phys. Rev., 25, 618, 1925. ⁴ Phys. Rev., 25, 621, 1925. ⁶ Upsala Dissertation, 1928. ⁶ Proc. Nat. Acad. Sci., 14, 588, 1928; Phys. Rev., 32, 841, 1928.

Bäcklin's results lead to 4.794 ± 0.015.

The investigation by Bäcklin is a pioneer piece of work, and it is quite likely, as such, to contain unsuspected systematic errors. If the three values of e (4.768 from Millikan's oil-drop work, 4.776 by Wadlund, and 4.794 by Bäcklin) are weighted according to the apparent probable error of each, the result is still suspiciously high. The thorough examination made of the actual value of e and its probable error, from the oil-drop work, was carried out because of this inconsistency. It seems best to reject the Bäcklin value, and to use the weighted mean of the remaining two values, viz. 4.768 ± 0.005 and 4.776 ± 0.008 , or 4.770; as usual adopt as its probable error the smaller of the two individual errors, rather than that given by least squares; the latter is meaningless when only two observations are concerned. The finally adopted value is then

 $e = (4.770 \pm 0.005) \times 10^{-10}$ abs. es units.

The specific charge of the electron (e/m).—A very complete and critical account of all work on the measurement of e/m, up to 1919, has been given by Bestelmeyer. His final conclusion is that $e/m = (1.76 \pm 0.02) \times 10^7$ em units. A more recent discussion is that by Gerlach, who concludes that $e/m = 1.766 \times 10^7$ em units. The question is discussed very briefly by Henning and Jaeger, who however adopt Gerlach's value. The I.C.T. adopts 1.769 ± 0.003 .

The latest work greatly exceeds in accuracy all the preceding; it seems legitimate to confine the discussion to these new results. The value of e/m has been obtained with considerable accuracy by three distinct methods, (a) deflection of electrons in electric and magnetic fields, (b) Zeeman effect, (c) fine structure and relative wave lengths of H and He⁺ spectral lines. It may be obtained also from Bohr's theoretical expression for the Rydberg constant, R_{∞} , provided one assumes the value of e and of e. This last method is not as accurate as the preceding. A fifth involves the Compton shift. This also is as yet a relatively inaccurate method.

The latest and most accurate work with method (a), that by Wolf, is carried out with every possible refinement. The essential point is the employment of a longitudinal magnetic field. The electron velocity is calculated from the potential fall. He concludes that $e/m = (1.7679 \pm 0.0018) \times 10^7 \ em$ units. 1.7679 should be corrected for the difference between the int. and abs. units. It then becomes $(1.7689 \pm 0.0018) \times 10^7$ abs. em units.

¹ Marx, Handb. Radiologie, 5, 1, 1919. ² H.P., 22, 41. ³ H.P., 2, 504. ⁴ Ann. Phys., 83, 849, 1927.

The most recent accurate work, using method (b), is by Babcock.¹ A large number of spectrum lines (116 in all) were employed. Nearly all showed a complex Zeeman pattern. For determining e/m it was necessary to assume the Runge denominator of each line. In cases where this is small, it was known with certainty. In some cases it was large and rather uncertain. His work has been criticized, and Gerlach, in his final table,² omits Babcock's result. It appears to Doctor Birge that the criticism is unjustified; at his suggestion, Babcock has recalculated his data, omitting all Zeeman patterns in any way doubtful. The new result.³ based on 48 lines for which the Zeeman pattern is definitely established, is 1.7606±0.0012; the error is purely observational. The difference between the two values is just that produced by the change in the value of c. Doctor Birge therefore writes $e/m = (1.761 \pm 0.002) \times 10^7$ abs. cm units as the best result from Zeeman effect.

The latest, most accurate work using method (c), is by Houston, based on the Bohr-Sommerfeld model consisting of a positive nucleus and one encircling electron (moving in elliptic or circular orbits). Such atoms are H and Het. In order to determine e/m, we must evaluate the so-called Rydberg constant for hydrogen (R_H) and for ionized helium (R_{He}) . Practically the entire error in e/m is merely the error in the difference $R_{He}-R_H$.

The pioneer work was performed by Paschen.⁵ He obtained $R_H = 109677.69 \pm 0.06$ cm⁻¹, $R_{He} = 109722.14 \pm 0.04$ cm⁻¹. Those give $e/m = 1.768 \pm 0.003$, using his values and assumed errors for R_H and R_{He} , but the present accepted values and errors for H, He, and F. The recent investigation by Houston,⁴ is so much more accurate than the work just mentioned that it alone will be considered. Houston's new experimental results are

$$R_{He} = 109722.403 \pm 0.004 \text{ cm}^{-1}$$
, $R_{H} = 109677.759 \pm 0.008 \text{ cm}^{-1}$.

The stated errors are purely least squares probable errors. He believes the *relative* values of R_{He} and R_{H} are correct to 0.02, although the *absolute* error in each may be about 0.05.

Houston used $m=5.4\times10^{-4}$, He=4.0001, H=1.0077, F=96470 abs. coulombs, and obtained $e/m=(1.7606\pm0.0010)\times10^{7}$ em units. Using his constants and the corrected formula the result is 1.7603. The error in his formula is therefore almost negligible. The entire probable error in e/m, due to errors in all factors, aside from $(R_{He}-R_{H})$, is less than 0.01 per cent and so is entirely negligible compared to the error in $(R_{He}-R_{H})$.

¹ Astrophys. Journ., 58, 149, 1923. ² H.P., 22, 81. ³ Phys. Rev., 33, 268 A, 1929; Astrophys. Journ., 69, 43, 1929. ⁴ Phys. Rev., 30, 608, 1927. ⁵ Ann. Phys., 50, 901, 1916.

Using Houston's value of R_H , and of $R_{He}-R_H$, together with the values of H, He, etc., we obtain $e/m=(1.7608\pm0.0008)\times10^7$ abs. em units. This value of e/m thus agrees with that obtained by Babcock. Summarizing the results we find $e/m=1.769\pm0.002$ from deflection experiments, =1.761 ±0.002 from Zeeman effect, =1.761 ±0.001 from H and He spectra. The discrepancy between the first result and the last two is four times the probable error of the first. Theory gives only one chance in 143 of this occurring. The discrepancy seems to be real.

The last two results are measurements of e/m for electrons inside of an atom, based upon the quantum theory of atomic structure. The first is the measurement of e/m for electrons in free space. The figures point to the conclusion that the e/m of an electron is less when it is inside an atom than when it is outside. If this conclusion seems unacceptable, then it would appear that there is some general error in the equations of the quantum theory of atomic structure or there is some unknown general error in all the deflection experiments. Under the circumstances two values may be assumed of e/m—one for where atomic structure is involved, the other for free electrons. Hence

```
e/m (spectroscopic) = (1.761 \pm 0.001) \times 10^7 abs. em units per g,
 = (5.279 \pm 0.003) \times 10^{17} abs. es "",
 e/m (free electrons) = (1.769 \pm 0.002) \times 10^7 abs. em "",
 = (5.303 \pm 0.006) \times 10^{17} abs. es """.
```

The Planck constant (h).—The Planck constant has been evaluated in a number of ways. There is difference of opinion as to the relative accuracy of the results; some are more or less incompatible. A satisfactory determination of this constant is difficult.

The first attempt to obtain a value of h, from the results of all seven methods, was made by Doctor Birge in 1919. The value found was $(6.5543 \pm 0.0025) \times 10^{-27}$ erg·sec., the error being merely the least-squares probable error. This error has been criticized by Ladenburg as far too small. It is not the final error since, as clearly stated, one must add to it an error somewhat greater than the proportional error in e. This occurs with some positive power (unity to two) in every known method for obtaining h. This makes the total probable error more nearly ± 0.01 . Doctor Birge's 1919 evaluation of h has been adopted by the I.C.T., but the probable error should be ± 0.001 .

In 1920 Ladenburg wrote an article on the evaluation of h, in which several of Doctor Birge's conclusions were criticized. His own result in that article was 6.54 ± 0.01 . In 1925 Ladenburg wrote another article on this subject, for the H.P. He then concludes that h=6.547, which value he rounds

¹ Jahrb. Radioakt. und Electronik, 17, 93, 1920. ² H.P., 23, 279.

off to 6.55 ± 0.01. Henning and Jaeger discuss the most probable value and adopt 6.55.

(a) Bohr's formula for the Rydberg Constant.—Bohr's theory of the Hy-

drogen atom leads to the equation

$$R_{\infty} = 2\pi^2 e^5 / h^3 c^2 e / m \tag{I}$$

in which R_{∞} is the Rydberg constant for infinite mass (cm⁻¹ units), e, the electronic charge (abs. es units), and e/m is in em units. R_{∞} is derived from the observed R_H by the equation

 $R_{\infty} = R_H (1 + m/m_H) = R_H \{ 1 + F/(e/m) (H - m) = 109737.424 \text{ cm}^{-1}.$ (2) The probable error in R_{∞} is about 0.06 cm⁻¹. In absolute units $R_{\infty} \cdot \mathbf{c} = (3.28988 \pm 0.00004) \times 10^{15} \text{ sec.}^{-1}$. Substituting in (1) the spectroscopic value of e/m, since we are dealing with spectroscopic data,

$$h = (6.547 \pm 0.011) \times 10^{-27} \text{ erg} \cdot \text{sec.}$$

After adopting a weighted mean value of h, (1) becomes a method for calculating, indirectly, the value of R_{∞} . Or, using the directly determined value

 R_{∞} , (1) becomes a means for calculating e/m.

(b) Ionization potentials.—In 1919 Birge had available 13 values of ionization and resonance potentials. Many more such potentials have been obtained. The probable error in each is rather large. We have one really accurate determination obtained with electrons of carefully controlled velocity. This is Lawrence's value of the ionization potential of Hg. His final value equals 10.40±0.02 int. volts.

The equation for obtaining h is hv = eV; all quantities are in absolute units. The observed potential (V') is always in int. volts. The potential in abs. es units is then $V = pqV'10^8/c$. The spectral frequency v (in sec.⁻¹) is obtained always from the wave length λ , in cm. Hence v'(cm⁻¹) = $1/\lambda$, and $v = c/\lambda$. The above equations lead to

equations lead to $h/e = (pqV'10^8)/(c^2v') = (pqV'\lambda10^8)/c^2$ (3)

It seems quite customary to assume that $V_{es} = V'$ volts/300 and to write this equation $h/c = V'\lambda/300c$. (4)

This is equivalent to assuming $c=3\times 10^{10}$ cm· $sec.^{-1}$, causing an error of 0.07 per cent. Scarcely anyone uses $c=3\times 10^{10}$ cm· $sec.^{-1}$ when reducing λ to ν , and thus in the same equation it is customary to use two different values of c. The "term" of Hg corresponding to the ordinary ionization potential is 84178.5 cm⁻¹, whence $h=(6.560\pm0.015)\times10^{-27}.$

The probable error in V' is 0.2 per cent and in e, 0.1 per cent. The errors of

the other factors are negligibly small.

(c) X-ray continuous spectrum.—This method uses (3), λ being measured by means of a calcite crystal, i.e., $\lambda = 2d \sin \theta$ where d is the grating space, and θ the angle at which the given wave length shows constructive interference.

$$h/e = pq \ 2d (V' \sin \theta) 10^8/c^2$$

Duane, Palmer, and Yeh ^a have carried out an accurate investigation. The resulting value of h is $(6.556\pm0.009)\times10^{-27}$. Another result for which equal accuracy is claimed, is by Wagner. ^t Ladenburg ^a gives a complete list of Wagner's experimental results. Ladenburg, using eq. (4), with $c=2.9985\times10^{10}$, gets 6.529 ± 0.01 .

¹ H.P., 2, 510. ² Phys. Rev., 28, 947, 1926. ³ Proc. Nat. Acad. Sci., 7, 237, 1921. ⁴ Phys. Zeit., 21, 621, 1920. ⁵ H.P., 23, 296.

Duane, Palmer, and Yeh used a known potential (int. volts) and measured the angle θ at which the ionization suddenly started (or stopped). This gives the critical ionization frequency corresponding to the given voltage. Wagner used known wave lengths varying the voltage for a given wave length, until ionization suddenly began (or ceased). Both methods involve the calcite grating space d. On page 91 the absolute wave lengths of rays were used to evaluate d', the true grating space; d' was then used with other known constants to evaluate the electronic charge e. In this section we use the finally adopted value of e, $(4.770\pm0.005)\times10^{-10}$ abs. es units, with these same constants, to evaluate d'.

$$d'_{20} = \{4.770 \times 10^{-10}/1.7176 \times 10^{13}\}^{\frac{1}{3}} = (3.0283 \pm 0.0010) \times 10^{-8} \text{ cm}$$

This value of d'_{20} includes the result of the X-ray work, since the value of e just used is the weighted average from both oil-drop and X-ray work. We might have used e=4.768 to get a value of d' based on oil-drop work. A second value of d' might then be obtained from absolute X-ray measurements. The weighted average of these two values would be the value given, provided we use the data and probable errors indicated on p. 91.

We obtain for the effective grating space of calcite at 20°C, for the first order spectrum, $d_{20} = (3.0270 \pm 0.0010) \times 10^{-8}$ cm.

This value is to be substituted with the direct experimental value of $V' \sin \theta$. For the latter Duane, Palmer, and Yeh found 2039.9±1 int. volts (mean temperature of about 20°C). Thus we have

$$h = (6.559 \pm 0.008) \times 10^{-27} \text{ erg} \cdot \text{sec.}$$

Similarly revising Wagner's result we obtain 6.532 ± 0.010 , in place of 6.526 ± 0.010 . It is difficult to judge what revision is required in the values of λ used by Wagner; the change is probably small. We thus have, as the two best values of h, from X-ray data, 6.559 ± 0.008 (or 0.009) and 6.532 ± 0.010 . The work of Wagner has not yet been published in sufficient detail. For this reason in adopting a weighted average only one-half as much weight is given to Wagner. Since the two results differ by much more than the probable error of either, the regular least squares probable error is used. Hence, from X-ray data, $h = (6.550\pm0.009) \times 10^{-27} \, \mathrm{erg \cdot sec.}$

(d) Photoelectric effect.—The most accurate determination of h, from photoelectric work, is by Lukirsky and Prilezaev. They use a somewhat different technique from that employed by Millikan, and obtain a simple empirical relation for the ionization current as a function of voltage. The actual curve may be transposed into a linear graph, making the extrapolation to zero current more certain. They also carry the readings very close to this zero point.

¹ Zeit. Phys., 49, 236, 1928. ² Phys. Rev., 7, 355, 1916.

The equation for evaluating h is that just used, except that now the energy (P) to pull an electron out of the metal is no longer negligible compared to $h\nu$. Hence we write

$$Ve = hv - P$$
.

To eliminate P, light of varying frequencies is used, measuring for each the critical voltage V at which ionization starts. V is plotted against v; the resulting curves should be linear, with a slope

$$dV/dv = h/e$$
.

With V measured as V' int. volts, and ν as ν' cm⁻¹, we have

$$dV/dv = (paio^8 dV')/(c^2 dv') = h/e$$

Lukirsky and Prilezaev use the metals Al, Zn, Sn, Ni, Cd, Cu, and Pt. Six curves, three with Zn, two with Al, and one with Ni, were the best. Unfortunately these investigators give no detailed data, and no indication of the actual equation used. Their final value of h is 6.543×10^{-27} erg · sec., the individual results being 6.539, 6.542, 6.540, 6.556, 6.536, and 6.546. We take

$$h = (6.543 \pm 0.010) \times 10^{-27} \text{ erg} \cdot \text{sec.}$$

These investigators estimate their final error in h as 0.1 to 0.2 per cent.

(e) Wien's displacement law; Planck equation.—h may be had from radiation constants in two different ways. The first is by means of c_2 , in the Wien displacement law,

 $\lambda_{\max} T = c_2/\beta = A$.

where $\beta = 4.9651$ (root of $e^{-\beta} + \beta/5 - 1 = 0$). The radiation constant c_2 occurs also in Planck's black-body radiation law in the form

$$c_2 = hc/k$$
.

c=velocity of light, $k(Boltzmann constant) = R_0/N_0$, R_0 (gas constant per mole) = $\nu_n A_n/T_0$, and N_0 (Avogadro's number) = Fc/e. Substituting the values of ν_n , A_n , T_0 , F and e previously adopted,

$$N_0 = (6.0644 \pm 0.0061) \times 10^{23} \text{ mole}^{-1}.$$

 $R_0 = (8.3136 \pm 0.0010) \times 10^7 \text{ erg} \cdot \text{deg.}^{-1} \cdot \text{mole}^{-1}.$
 $k = (1.3709 \pm 0.0014) \times 10^{-16} \text{ erg} \cdot \text{deg.}^{-1}.$

In 1919 Doctor Birge asked Coblentz what in his opinion was then the best value of c_2 . He recommended 1.433 cm·deg.; this value was adopted. In a long critical review of the radiation constants, three years later, Coblentz ¹ gives 1.432 as the most probable value. No probable error is given but the four results, obtained by four investigators, were 1.436, 1.430, 1.430 and 1.4318,

¹ Bur. Standards Bull., 17, 7, 1922.

the last being Coblentz' own value. Ladenburg ¹ gives 1.432±0.006. The separate results which he used are 1.425 to 1.441, 1.4295±0.007, 1.435, 1.4318, 1.430. The chief error arises from the various corrections applied to the observed values. Coblentz' original value ² of 1.4456 has become 1.4318 in his latest article,³ Doctor Birge believes 0.003 is a much more reasonable estimate of error. Both Coblentz and Ladenburg agree on the absolute value. Hence he adopts

$$c_2 = 1.432 \pm 0.003 \text{ cm} \cdot \text{deg.}$$

 $h = (6.548 \pm 0.015) \times 10^{-27} \text{ erg} \cdot \text{sec.}$

The radiation constant c_2 occurs in the Boltzmann factor $e^{-\epsilon/kT}$, (ϵ =energy, T=absolute temperature) in the form $e^{-c_2\nu/T} = e^{-c_2/\lambda T}$, where ν in cm⁻¹, or λ in cm, is the quantum equivalent of ϵ ergs.

(f) The Stefan-Boltzmann law and the Planck equation.—The second method for determining h by the radiation constants is through the Stefan-Boltzmann law, $E = \sigma T^4 = acT^4/4$. h is connected with σ , using Planck's law, by the relation

$$h = (2\pi^5 k^4 / 15c^2\sigma)^{\frac{1}{3}}$$
.

As in the case of c_2 , there is a difference of opinion concerning the accuracy with which σ may be measured. The best value, in 1919, was that obtained by Coblentz, namely $(5.722 \pm 0.012) \times 10^{-5}$ erg · cm⁻² · deg.⁻⁴ · sec.⁻¹. In his more recent discussion, Coblentz gives all available data, and concludes that the most probable value lies between 5.72 and 5.73.

Since this 1922 article by Coblentz, there have been two new determinations of σ , one by Hoffman ⁵ (method of Westphal), giving $\sigma = 5.764 \pm 0.052$, and the other by Kussman, using the modified Angström pyrheliometer. This latter method was used also by Coblentz ³ giving 5.722 as stated, by Gerlach ⁷ giving 5.80, and by Kahanowicz giving 5.60 to 5.73 as corrected by Coblentz. Kussman obtained $\sigma = 5.795 \pm \text{one per cent}$. Ladenburg quotes the four results by Gerlach, Hoffman, Coblentz, and Kussman. He adopts the unweighted mean. He agrees with Gerlach that Coblentz' true error is more nearly 0.06 than 0.012. The experimental results of Kussman and Coblentz are in almost perfect agreement. The discrepancy in their results is due to the correction for the lack of complete absorption of the receiver. Michel and Kussman 'claim to prove that the correction Coblentz applied is too small. The values of σ by Kussman and by Hoffman, as well as Gerlach's earlier value of 5.80, correspond to impossibly low values of h. Coblentz' result gives an h in good agreement with that obtained by more accurate methods. This tends to indicate the correctness of Coblentz' correction for incomplete absorption, as opposed to Kussman's.

¹ H.P., 23, 303. ² Bur. Standards Bull., 10, 1, 1914. ³ Proc. Nat. Acad. Sci., 3, 504, 1917. ⁴ Bur. Standards Bull., 17, 7, 1912. ⁵ Zeit. Phys., 14, 301, 1923. ⁶ Ibid., 25, 58, 1924. ⁷ Ann. Phys., 50, 259, 1916; Zeit. Phys., 2, 76, 1920. ⁸ Nuovo Cimento, 13, 142, 1917. ⁹ Zeit. Phys., 18, 263, 1923.

It appears that Coblentz' estimated error for his own work (5.722±0.012) is too small, but that his final average of the work of all investigators up to 1922 (5.72 to 5.73) should be more trustworthy than any single value. We will choose 5.725 and 0.02 for its probable error. This result is then to be averaged with the more recent work whence

$$\sigma = (5.735 \pm 0.011) \times 10^{-5} \text{ erg} \cdot \text{cm}^{-2} \cdot \text{deg.}^{-4} \cdot \text{sec.}^{-1}$$

 $a = 4\sigma/c = (7.652 \pm 0.015) \times 10^{-15} \text{ erg} \cdot \text{cm}^{-3} \cdot \text{deg.}^{-4}$

There has appeared a further determination of this quantity, by Hoare.¹ He used a Callendar radio balance; the advantage of the method is that both source and receiver are essentially "black-bodies." Hoare obtains $\sigma = 5.735$, agreeing exactly with the value adopted. He lists 38 separate results, average deviation only 0.016. The inclusion of this new result leaves the average value unchanged, and Doctor Birge leaves the probable error unchanged. Objection might be made to this adopted error as too small; such an objection can hardly hold in the face of Hoare's work. This new work also speaks against Strum's assumption of an inadequacy of Planck's formula. We have then

$$h = (6.539 \pm 0.010) \times 10^{-27} \text{ erg} \cdot \text{sec.}$$

(g) Summary.—We have now six determinations of h:

Rydberg constant	$h = 6.547 \pm 0.011$	Power of e involved, $5/3$
Ionization potentials	6.560 ± 0.015	3/3
X rays	6.550 ± 0.009	4/3
Photoelectric	6.543 ± 0.010	$\frac{4/3}{3/3}$
C2	6.548 ± 0.015	3/3
σ	6.539 ± 0.010	4/3

Doctor Birge adopts

and

$$h = (6.547 \pm 0.008) \times 10^{-27} \text{ erg} \cdot \text{sec.}$$

This value of h is identical with Ladenburg's most recent estimate.² This identity is spurious, since Ladenburg assumes $e=4.774\times10^{-10}$. If this older value of e had been used in the present work, we should have obtained h=6.5535, in practically exact agreement with Doctor Birge's 1919 value (6.5543).

Another potentially accurate method is given by the Compton shift of X-ray lines. The theoretical equation for this is $\Delta\lambda = (h/mc)(1-\cos\phi)$, where m is the mass of an electron, as deduced from the values of e and e/m. Since h varies in value with e, this equation can better be used to evaluate e/m. We can in fact write $\Delta\lambda = (h/e)(e/m)(1-\cos\phi)$ in which e as usual is in es units, and e/m in em units. Then

$$e/m = (\Delta \lambda)/(h/e)(I - \cos \phi)$$

The most accurate work on this subject has been done by Sharp,³ who obtains $\Delta\lambda = (0.04825 \pm 0.00017) \times 10^{-8}$ cm, for $(1 - \cos \phi) = (1.984 \pm 0.001)$. With the adopted values of h and e, we have $h/e = (1.3725 \pm 0.0005) \times 10^{-17}$

¹ Philos. Mag., 6, 828, 1928. ² H.P., 23, 279. ³ Phys. Rev., 26, 691, 1925.

erg · sec · es^{-1} . Substituting, one finds $e/m = (1.772 \pm 0.006) \times 10^7$ abs. em units, the final error being due almost entirely to the error in $\Delta\lambda$. It seems possibly significant that this value agrees better with the deflection than with the spectroscopic value of e/m, for the theory used in the derivation of the equation is essentially the collision theory of classical dynamics for free electrons.

e, e/m, and h^1 appear in many important constants. h depends for its value on e, therefore the e appears implicitly, if not explicitly, in every quantum relation. The outstanding discrepancy was between the work of Wagner and of Duane and co-workers, on the value of h from the X-ray continuous spectrum. The recent work of Feder, using this method, gives h in exact agreement with the value adopted, and explains Wagner's low value. Doctor Birge now feels that the value of h/e listed in Table 43 can be assumed with some confidence. The real problem concerns the values of e and of e/m.

The need of two values of e/m is very annoying, and fundamentally unsatisfactory. The same situation seems to be arising in regard to e. Millikan's value has been accepted; it was the only one available. The new work on X rays opened another possibility. The value of Bäcklin is one-half per cent higher than Doctor Birge's adopted value. As a final result Doctor Bearden obtains for the absolute wave length of the (unresolved) Cu Ka line, 1.5430 ± 0.0002 A, and for the Cu KB line, 1.3040 ± 0.0002 A. These results are obtained under many varied conditions. The first is 0.345 per cent higher than Siegbahn's value, the second 0.336 per cent. The relative wave lengths are in agreement with Siegbahn, but the absolute wave lengths lead to a value for calcite of $d'_{20} = 3.0398$ A, and $e = 4.825 \times 10^{-10}$ abs. es units, 1.15 per cent above Doctor Birge's adopted value of e. It is desirable to consider the various relations that have been suggested between these constants. The most famous connects e, e/m, h, and c in Bohr's formula for the Rydberg constant. This was used to evaluate h, and the value (6.54713) is identical to four digits with that adopted. Hence, the indirectly calculated value of e/m is also practically identical with that adopted. Thus the adopted values of e, e/m, h and c form a self-consistent system, as judged by the Bohr formula for R_{∞} .

Lewis and Adams² (theory of ultimate rational units), have obtained, with the aid of Planck's radiation law, the relation: $hc/2\pi e^2 = 8\pi (8\pi^5/15)^{\frac{1}{2}}$. The right side equals 137.348; the left side, with the constants here adopted, equals 137.294±0.11. The left side equals the reciprocal of the fine structure constant a, and the value quoted is taken directly from Table 43. The numerical agreement is very striking. The present agreement shows that this method yields a value of h almost identical with that adopted.

a is a dimensionless constant involving fundamental general constants; it should be remembered that to make a dimensionless, we must include with the factor hc the unknown dimensions of specific inductive capacity.

¹ Note added by Birge April, 1929 (abbreviated). ² Phys. Rev., 3, 92, 1914.

Perles has pointed out that the ratio of the mass of the proton to that of the electron (M_p/m_o) is another dimensionless constant which should have some significance, and has found that

$$(hc/e^2)(=2\pi/a)=(M_p/m_0)(\pi-1)$$

the left side equals 862.64 ± 0.68 , the right 858.36 ± 0.49 or 862.26 ± 0.99 depending on whether one uses the spectroscopic or the deflection value of e/m. The agreement is good for the deflection value but poor for the spectroscopic.

Note.—In evaluating the constants, it has been necessary to calculate auxiliary constants, and also to use certain conventional quantities, such as g_{45} and g_{16} . All such quantities are listed in Table 42.

In addition to constants listed in Table 42 there are many other functions of constants given on page 103 of this table and in Table 42. A number of these derived constants are collected in Table 43. An attempt has been made to include the more important or more frequently used values. The process for obtaining the correct probable error for many of the constants of Tables 42 and 43 is sometimes involved. The various derived constants of Table 43 (and the occasional derived constant appearing on page 103 of this table and in Table 41) are given with one and often two more digits than required by the probable error. Such digits are printed below the line, and have been added that calculations made in different ways shall not introduce any appreciable error.

e/m always indicates merely the *ratio* of charge to mass for an electron, in em units; e indicates electronic charge in es units; m_0 , electronic mass; m, the atomic weight of an electron. A more logical but less convenient nomenclature would have been (e/m_0) es units, and possibly (e'/m_0) em units.

In the quantum relation, $\epsilon = hv = eV$, each side represents energy in ergs, provided all quantities are in abs. c.g.s. units. ν/V (= e/h) then measures the frequency in sec.⁻¹ associated with one abs. es unit of potential. It is usually convenient to substitute the wave number (ν') or the wave length (λ) in place of ν , and to substitute the number of abs. volts (V'') in place of V. (V' = int. volts, throughout this paper). The values of the various ratios, such as ν'/V'' etc., are given in Table 43.

An electron which has fallen through one abs. volt of potential is termed an abs. volt-electron; its energy in ergs and speed in cm \cdot sec. $^{-1}$ are given in Table 43. Corresponding to any *ionization potential* of an atom or molecule in volts (V''), there is an *energy of ionization* (eV'') which can be measured in units equal to the energy of a volt-electron, and is so designated. An ionization potential of 10 volts corresponds to an energy of ionization of 10 volt-electrons. Similarly, in the case of molecules, we speak of a *dissociation potential* of, let us say, 10 volts, and a corresponding energy of dissociation (heat of dissociation) of 10 volt-electrons per molecule. The factor by which this last quantity must be multiplied to give the heat of dissociation in calories per mole is given in Table 43. Unfortunately there has arisen the practise, to which Doctor Birge pleads guilty, of designating the *heat* of dissociation as 10 volts, instead of stating, more correctly, that the equivalent dissociation *potential* is 10 volts, or that the heat of dissociation per molecule is 10 volt-electrons.

The name of the units conforms as far as possible with current practise. Difficulties arise with the unknown dimensions of magnetic permeability μ , and specific inductive capacity ϵ . It is customary to indicate these unknown dimensions by the symbols μ and ϵ . A given unit, such as the gauss, is applied only to quantities of a given set of dimensions, including μ and ϵ . In the present discussion we are concerned only with numerical magnitudes and no particular attention has accordingly been paid to this matter of dimensions.

¹ Naturwiss., 16, 1094, 1928.

Thus the statement that the absolute em unit of resistance is one cm·sec. involves the assumption not only of unit permeability, but also of dimensionless permeability. In a number of the equations given in Table 43 the two sides of the equation do not check dimensionally unless one assumes μ and e to be dimensionless. It follows from this that the name of the unit stated in the table applies strictly only to one side of such an equation. In such cases the unit applies to the left side of the equation, since this is the quantity being evaluated. The right side gives merely the most direct derivation of the numerical magnitude, in terms of quantities already evaluated. Since this ambiguity does not affect the numerical magnitude, it is inconsequential in the present discussion. As examples of this situation we cite the fine structure constant α , which is dimensionless. To satisfy this condition one should write $\alpha = 2\pi e^2/\epsilon_0 hc$ where ϵ_0 is numerically unity, and represents merely the dimensions of ϵ . The ratio of the Bohr magneton μ_1 to the Bohr unit of angular momentum $(h/2\pi)$ is strictly $\mu_0 = \frac{1}{2}(e/m)$, where μ_0 is numerically unity, and represents merely the dimensions of permeability.

The mole is a (variable) unit of mass, equal to the molecular weight in grams. The gram equivalent is a similar (variable) unit of mass, equal to the atomic or molecular weight in grams, divided by the valence.

The various quantities appearing on page 103 of this table and in Table 42 have been discussed. No general explanation will be given of the meaning or use of the quantities appearing in Table 43; any adequate explanation would constitute a textbook of modern physics and physical chemistry. For the more specialized constants, no explanation is needed by investigators working with such constants, and it is to such persons that the data will be most useful.

In conclusion, attention should be directed merely to two constants for which the formula used here differs from that normally given. It is customary to use for the speed of the electron in the normal orbit of hydrogen, as given by Bohr's original theory, a value which refers to the nucleus considered as the center of coordinates. This is called $v_0 = ac$ in Table 43. It would seem more logical to give the speed referred to the center of mass, the quantity denoted v_0 in Table 43. There is a similar discrepancy in the case of the radius of this orbit. The electron, according to Bohr, moves about the center of mass in a circle of radius a_0 , as it is denoted in Table 43. This is not the same as the constant separation of the nucleus and electron, which is here denoted a_0 . In the literature these two quantities, a_0 , and a_0 , are sometimes confused. The expressions for v_0 , v_0 , a_0 , and a_0 given in Table 43 include also the factor $(1-a^2)^{1/2}$, arising from the variation of mass with speed.

Birge. Probable values of e, h, e/m and α Phys. Rev. 40, 228, 1932.

e, $(4.7688 \pm 0.0040) \times 10^{-10}$ es units h, $(6.5443 \pm 0.0091) \times 10^{-27}$ erg · sec. e/m, $(1.7611 \pm 0.0009) \times 10^{7}$ em units · g⁻¹ $1/\alpha$, 137.307 ± 0.048 Fundamental constants, Birge.—The critical discussion of the determination by Dr. R. T. Birge of theses values will be found in abbreviated form on pages 73 to 102 of this book; for full details see Phys. Rev. Suppl., 1, 1, 1929. These constants, for purposes of computation, are to be taken as exactly correct; that is, all additional digits in each constant are to be assumed as zero. The real probable error of each value is of course that indicated in the table, and each constant has an accepted value carried only to the number of significant figures required by the adopted probable error.

Velocity of light...... $c = (2.99796 \pm 0.00004) \times 10^{10} \text{ cm} \cdot \text{sec.}^{-1}$

```
Liter ...... l = 1000.027 \pm 0.001 \text{ cm}^3
Volume of perfect gas (0°C, A_n)..\nu_n = (22.4141 \pm 0.0008) \times 10^3 \text{ cm}^3 \cdot \text{mole}^{-1}
Volume of perfect gas (0°C, A_{45})...R = 22.4146 \pm 0.0008 liter · mole<sup>-1</sup>
International ohm = p abs. ohm...p = 1.00051 \pm 0.00002
International ampere = q abs. amp. q = 0.99995 \pm 0.00005
Ice point (absolute scale).........T_0 = 273.18 \pm 0.03°K.
Mechanical equivalent of heat....J_{15} = 4.1852 \pm 0.0006 abs. joule cal. 15
Electrical equivalent of heat.....J'_{15} = 4.1835 \pm 0.0007 int. joule cal. ^{-1}
Faraday constant .....F = 96494 \pm 5 int. coul. g-equiv.
                                  = 96489 \pm 7 abs. coul. · g-equiv.<sup>-1</sup>
                                  = 9648.9 \pm 0.7 abs. em-unit · g-equiv.<sup>-1</sup>
                               Fc = (2.8927_0 \pm 0.0002) \times 10^{14} \text{ abs. } es\text{-unit} \cdot \text{g-equiv.}^{-1}
Electronic charge * .....e = (4.770 \pm 0.005) \times 10^{-10} abs. es-units
                              e/c = (1.59108 \pm 0.0016) \times 10^{-20} abs. em-units
Specific electronic charge (spectro-
 (e/m)c = (5.27941 \pm 0.003) \times 10^{17} abs. es-unit \cdot g<sup>-1</sup>
Specific electronic charge (deflec-
 tion) ......e/m = (1.769 \pm 0.002) \times 10^{7} abs. em-unit · g<sup>-1</sup>
                           (e/m)c = (5.303^{39} \pm 0.006) \times 10^{17} \text{ abs. es-unit} \cdot \text{g}^{-1}
Atomic weights
   0 = 16.0000
                              C = 12.003 \pm 0.001
                                                         I = 126.932 \pm 0.002
  He = 4.0022 \pm 0.0004
                             H = 1.00777 \pm 0.00002
                                                       Ca = 40.075 \pm 0.005
  Ag = 107.880 \pm 0.001
                             N = 14.0083 \pm 0.0008
```

TABLE 41.—Powers of c, h, e, h/c

```
c-2;
c-1;
c-1/2;
c<sup>1/2</sup>;
                                                                                                                              (1.11262 ± 0.00003)10-21 cm-2 · sec.2
                                                                                                           h-3;
h-2;
                    (3.33560 \pm .00005) 10<sup>-11</sup> cm<sup>-1</sup>·sec.
                                                                                                           h^{2};
h^{3};
e^{-2};
                    (5.77546 \pm .00006) 10^{-6} \text{ cm}^{-1/2} \cdot \text{sec.}^{1/2}
                   (1.73146 \pm .00001) 10^{5} \text{ cm}^{1/2} \cdot \text{sec.}^{-1/2}
(8.98782 \pm .00024) 10^{20} \text{ cm}^{2} \cdot \text{sec.}^{-2}
c2;
                                                                                                                               (4.39504 ± .009) 10<sup>18</sup> es-units-:
(2.27529 ± .0045) 10<sup>-19</sup> es-units<sup>2</sup>
                                            .00011)1031 cm3 · sec. -3
                   (2.69449 ± .00011)10<sup>31</sup> cm<sup>3</sup> · sec. · <sup>3</sup>
(8.07798 ± .00043)10<sup>41</sup> cm<sup>4</sup> · sec. · <sup>4</sup>
                                                                                                           e3;
                                                                                                                               (1.085313 ± .0033) 10-28 es-units3
                                                                                                                              (5.17694 ± .021)10-38 es-units4
(2.46940 ± .012)10-47 es-units5
h/c;
                   (2.183s1 ± .003)10-37 g cm
```

^{*} Millikan, Phys. Rev., 35, 1930, takes $e = 4.774 \times 10^{-10}$, $h = 6.547 \times 10^{-27}$, $N = 6.062 \times 10^{-23}$.

TABLE 42

ADDITIONAL PHYSICAL CONSTANTS

Used or evaluated by Doctor Birge in Phys. Rev. Suppl., 1, 1, 1929, in connection with Table 40, p. 103.

Ratio of cs to cm units (direct)..... $c' = (2.9979 \pm 0.0001) \times 10^{10}$ cm·sec. Acceleration of gravity (45°) $g_{45} = 980.616$ cm·sec. Acceleration of gravity (normal)... $g_n = 980.665$ cm·sec. Mean density of the earth....... $\delta = 5.522 \pm 0.002$ g·cm⁻²

Maximum density of water... $\delta_m(H_2O) = 0.999973 \pm 0.000001 \text{ g} \cdot \text{cm}^{-3}$ Density of oxygen gas $(0^{\circ}C, A_{45})$

 $L(O_2) = 1.428965 \pm 0.000030 \,\mathrm{g} \cdot \mathrm{liter}^{-1}$

Factor converting oxygen (o°C, A45) to

ideal gas $1 - \alpha(O_2) = 1.000927 \pm 0.000030$

Density of nitrogen (0°C, A_{45}). $L(N_2) = 1.25046 \pm 0.000045 \text{ g} \cdot \text{liter}^{-1}$

Factor converting nitrogen (o°C, A₄₅)

to ideal gas..... $1 - \alpha(N_2) = 1.00043 \pm 0.00002$

Density of Hg (0°C, A_n)..... $D_n = 13.59509 \pm 0.00003 \text{ g} \cdot \text{cm}^{-3}$

International volt (= pq abs. volts)..pq = 1.00046 \pm 0.00005

International joule (= pq^2 abs. joules)

$$pq^2 = 1.00041 \pm 0.00010$$

Electrochemical equivalent of Ag

 $E(Ag) = (1.11800 \pm 0.00005) \times 10^{-3} \text{ g} \cdot \text{int. coul.}^{-1}$ = $(1.11805 \pm 0.00007) \times 10^{-3} \text{ g} \cdot \text{abs. coul.}^{-1}$

Density of calcite $(20^{\circ}\text{C}).....\rho = 2.7102 \pm 0.0004 \text{ g} \cdot \text{cm}^{-3}$

Structural constant of calcite (20°C)

$$\phi(\beta) = 1.09630 \pm 0.00007$$

True grating space of calcite (20°C)

 $d'_{20} = (3.0283 \pm 0.0010) \times 10^{-8} \,\mathrm{cm}$

Effective grating space of calcite

$$(20^{\circ}\text{C})$$
 $d_{20} = (3.0279 \pm 0.0010) \times 10^{-8} \text{ cm}$

Rydberg constant for hydrogen..... $R_H = 109677.759 \pm 0.05 \text{ cm}^{-1}$

Rydberg constant for ionized helium

$$R_{He} = 109722.403 \pm 0.05 \,\mathrm{cm}^{-1}$$

Wave length of red Cd line (15°C, An)

$$\lambda_{ca} = 6438.4696 \text{ I.A. (definition of I.A. unit)}$$

Rydberg constant for infinite mass.. $R_{\infty} = 109737.42 \pm 0.06 \text{ cm}^{-1}$

$$cR_{\infty} = (3.28988 \pm 0.00004) \times 10^{15} \text{ sec.}^{-1}$$

Avogadro's number $N_0 = Fc/e = (6.064_{38} \pm 0.006) \times 10^{23} \,\text{mole}^{-1}$

Gas constant per mole... $R_0 = \nu_n A_n / T_0 = (8.3136_0 \pm 0.0010) \times 10^7 \text{ erg} \cdot \text{degree}^{-1} \cdot \text{mole}^{-1}$

 $R'_0 = R_0/(I_{15} \times 10^7) = 1.9864_3 \pm 0.0004 \text{ cal.}_{15} \cdot \text{deg.}^{-1} \cdot \text{mole}^{-1}$

Boltzmann constant $k = R_0/N_0 = (1.3708_0 \pm 0.0014) \times 10^{-16} \,\text{erg} \cdot \text{deg.}^{-1}$

Second radiation constant (exp. value)

$$c_2 = 1.432 \pm 0.003 \,\mathrm{cm} \cdot \mathrm{deg}$$
.

Second radiation constant (indirect)

$$c_2 = hc/k = 1.4317_4 \pm 0.0006 \text{ cm} \cdot \text{deg}.$$

Radiation density constant... $a = 4\sigma/c = (7.651_s \pm 0.015) \times 10^{-15} \text{ erg} \cdot \text{cm}^{-3} \cdot \text{deg}$.

Stefan-Boltzmann constant (exp. value)

$$\sigma = (5.735 \pm 0.011) \times 10^{-5} \,\mathrm{erg} \cdot \mathrm{cm}^{-2} \cdot \mathrm{deg}^{-4} \cdot \mathrm{sec}^{-1}$$

Stefan-Boltzmann constant (indirect)

$$\sigma = 2\pi^5 k^4 / 15c^2 h^3 = (5.713 \pm 0.006) \times 10^{-5} \text{ erg} \cdot \text{cm}^{-2} \cdot \text{deg}.^{-4} \cdot \text{sec}.^{-1}$$

MISCELLANEOUS DERIVED PHYSICAL CONSTANTS

Evaluated by Doctor Birge in Phys. Rev. Suppl., 1, 1, 1929.

(See notes on page 99.)

Mass of electron (spectroscopic)

$$m_0 = c/\{c(e/m)_{sp}\} = (9.035_{10} \pm 0.010) \times 10^{-28} \,\mathrm{g}$$

Mass of electron (deflection)

$$m_0 = c/\{c(e/m)defi\} = (8.99425 \pm 0.014) \times 10^{-28} g$$

Atomic weight of electron (spectroscopic)

$$m = F/(e/m)_{sp} = (5.479_{22} \pm 0.003) \times 10^{-4}$$

Atomic weight of electron (deflection)

$$m = F/(c/m)_{defl} = (5.4544 \pm 0.006) \times 10^{-4}$$

Mass of atom of unit atomic weight

$$M_0 = I/N_0 = (1.64898 \pm 0.0016) \times 10^{-24} \,\mathrm{g}$$

Mass of hydrogen atom..... $M_H = H/N_0 = (1.6617_9 \pm 0.0017) \times 10^{-24} \,\mathrm{g}$

Number of atoms per gram of hydrogen

$$I/M_H = (6.017_{61} \pm 0.006) \times 10^{23} \,\mathrm{g}^{-1}$$

Mass of proton..... $M_P = (H - m)/N_0 = (1.6608_9 \pm 0.0017) \times 10^{-24} \,\mathrm{g}$

Mass of a particle...
$$Ma = (He - 2m)/N_0 = (6.59774 \pm 0.007) \times 10^{-24} \text{ g}$$

Charge (electrolysis) of 1 g hydrogen

$$c/M_H = F/H = (9574.51 \pm 0.7)$$
 abs. em-units · g⁻¹

Specific charge of proton

$$c/M_P = F/(H - m) = (9579.73 \pm 0.7)$$
 abs. em-units · g⁻¹

Specific charge of a particle

$$2c/Ma = 2F/(Hc - 2m) = (4823.I_1 \pm 0.6)$$
 abs. cm-units $\cdot g^{-1}$

Ratio, mass H atom to mass electron (spec-

Ratio, mass H atom to mass electron (deflec-

tion)
$$(e/m)_{defl}/(e/M_H) = 1847.61 \pm 2$$

Ratio, mass proton to mass electron (spec-

troscopic)
$$M_P/m_{sp} = 1839.26 - 1 = 1838.26 \pm 1$$

Ratio, mass proton to mass electron (deflec-

tion)
$$M_P/mdefl = 18.47.61 - 1 = 1846.61 \pm 2$$

Energy associated with unit wave number

$$\epsilon/\nu' = hc = (1.9627_{64} \pm 0.0025) \times 10^{-16} \,\mathrm{erg}\cdot\mathrm{cm}$$

Potential (es) associated with unit frequency

$$V/\nu = h/e = (1.37254 \pm 0.0005) \times 10^{-17} es$$
-units · sec.

Frequency associated with 1 abs. volt

$$\nu/V'' = 10^{9} e/h_{C} = (2.4302_{5} \pm 0.0009) \times 10^{14} \text{ sec.}^{-1} \cdot \text{abs. volt}^{-1}$$

Wave number associated with I abs. volt

$$\nu_0 = \nu'/V'' = 10^9 e/hc^2 = (8106.31 \pm 3) \text{ cm}^{-1} \cdot \text{abs. volt}^{-1}$$

Wave length associated with I abs. volt

$$\lambda_0 = \lambda V'' = hc^2/e = (12336.1 \pm 5) \times 10^{-3} \text{ cm} \cdot \text{abs. volt}$$

MISCELLANEOUS DERIVED PHYSICAL CONSTANTS

Energy of one-abs.-volt-electron

 $h\nu/V'' = 10^8 e/c = (1.5910_8 \pm 0.0016) \times 10^{-12} \, ergs$

Speed of abs.-volt-electron (spectroscopic)

 $v_c = [2 \times 10^8 (e/m)_{sp}]^{1/2} = (5.9346_4 \pm 0.0017) \times 10^7 \,\mathrm{cm} \cdot \mathrm{sec.}^{-1}$

Speed of abs.-volt-electron (deflection)

 $v_e = [2 \times 10^8 (e/m) deft]^{1/2} = (5.9481_1 \pm 0.0034) \times 10^7 \text{ cm} \cdot \text{sec.}^{-1}$

Fine structure constant............ $a = 2\pi e^2/hc = 7.283_{64} \pm 0.006) \times 10^{-3}$

Reciprocal of fine structure constant...... $I/a = 137.294 \pm 0.11$

Magnetic moment, Bohr magneton (spectro-

 $\mu_1 = \{ h(e/m) defi \} / 4\pi = (0.9216_{38} \pm 0.0016) \times 10^{-20} \text{ erg} \cdot \text{gauss}^{-1}$

Magnetic moment per mole (1 Bohr magneton

per molecule) (spectroscopic)...... $\mu_1 N_0 = 5563.s$; $\pm 10 \text{ erg} \cdot \text{gauss}^{-1} \cdot \text{mole}^{-1}$

Magnetic moment per mole (I Bohr magneton

per molecule) (deflection)...... $\mu_1 N_0 = 5589.14 \pm 11 \text{ erg} \cdot \text{gauss}^{-1} \cdot \text{mole}^{-1}$

Zeeman displacement per gauss

 $\Delta \nu'/H = (e/m)_{sp}/4\pi c = (4.674_{38} \pm 0.003) \times 10^{-5} \text{ cm}^{-1} \cdot \text{gauss}^{-1}$

Band spectrum constant connecting wave-number

(cm⁻¹) and moment of inertia...... $h/8\pi^2c = (27.65_{83} \pm 0.04) \times 10^{-40} \,\mathrm{g \cdot cm}$

Atomic specific heat constant...... $c_2/c = h/k = (4.7757z \pm 0.0019) \times 10^{-11} \text{ sec} \cdot \text{deg}$.

Reduced mass of H atom... $\mu_H = R_H(m_0)_{SP}/R_{\infty} = 9.030_{10} \pm 0.010) \times 10^{-28} \,\mathrm{g}$

Schroedinger constant for H atom.... $8\pi^2\mu_H/h^2 = (1.663_{12} \pm 0.003) \times 10^{27} \,\mathrm{g \cdot erg^{-2} \cdot sec.^{-2}}$ Schroedinger constant for electron

 $8\pi^2 (m_0)_{sp}/h^2 = (1.664_{32} \pm 0.003) \times 10^{27} \,\mathrm{g \cdot erg^{-2} \cdot sec.^{-2}}$

Ionization potential for H atom..... $R_H/\nu_0 = 13.529_0 \pm 0.005$ abs. volt

Ionization potential for He⁺...... $4R_{He}/\nu_0 = 54.1417 \pm 0.020$ abs. volt

Radius of Bohr orbit in normal hydrogen, re-

ferred to center of mass, using experimental

value of $R_{\infty} \dots a_0' = \alpha (1 - \alpha^2)^{1/2} / 4\pi R_{\infty} = (0.5281_{69} \pm 0.0004) \times 10^{-8} \text{ cm}$

Speed of electron in normal H orbit, referred to

center of mass..... $v_0 = \alpha c R_H / R_{\infty} = (2.18242 \pm 0.0017) \times 10^8 \text{ cm} \cdot \text{sec.}^{-1}$

MISCELLANEOUS DERIVED PHYSICAL CONSTANTS

Hydrogen doublet constant

$$\Delta \nu_H = R_H \alpha^2 / 16 = 0.3636_{59} \pm 0.0006 \text{ cm}^{-1}$$

Compton shift at 90° (spectroscopic)

$$h/m_0c = (c/m)_{sph/e} = (0.024170_4 \pm 0.000016) \times 10^{-8}$$
 cm

Compton shift at 90° (deflection)

$$h/m_0c = (c/m)_{def} ih/e = (0.02428_{02} \pm 0.00003) \times 10^{-8} \text{ cm}$$

Wave length of 1-abs.-volt-electron

$$h/[m_0(ve)_{sp}] = (12.210_0 \pm 0.006) \times 10^{-8} \text{ cm}$$

Wien's displacement constant (indirect)

$$A = c_2/4.9651 = 0.28836_1 \pm 0.00011 \text{ cm} \cdot \text{deg}.$$

or
$$hc^2 = (0.5884_{29} \pm 0.0008) \times 10^{-5} \text{ erg} \cdot \text{cm}^2 \cdot \text{sec.}^{-1}$$

or $2\pi hc^2 = (3.697_{20} \pm 0.005) \times 10^{-5} \text{ erg} \cdot \text{cm}^2 \cdot \text{sec.}^{-1}$

Energy per mole, equivalent to 1-abs.

-volt-electron per molecule

$$F(abs. coul. \cdot g-equiv.^{-1})/$$

$$J_{15}$$
 (abs. joule · cal.₁₅⁻¹) = 23054.8 ± 4 cal.₁₅ · mole⁻¹

Sackur-Tetrode constant (ϵ = base of

$$\log = 2.71828$$

$$S_0 = R_0' \ln \left[(2\pi k)^{3/2} \epsilon^{5/2} / h^3 N_0^{5/2} \right] = - 11.0533 \pm 0.0026 \text{ cal.}_{15} \cdot \text{deg.}^{-1} \cdot \text{mole}^{-1}$$

Chemical constant (unit at. wt., pressure

in atm.)

$$i_0' = \frac{3}{9} \log \left[2\pi k^{5/3} / N_0 h^2 \right] - \log A_n = -1.5882_5 \pm 0.0004$$

Multiplier of (Curie constant)1/2 to give

magnetic moment in Bohr magnetons

per molecule
$$(3k/N_0)^{1/2}/\mu_1 = 2.8384_2 \pm 0.0019 \text{ erg}^{-1/2} \cdot \text{gauss} \cdot \text{deg.}^{-1/2} \cdot \text{mole}^{1/2}$$

* $E_{\lambda} = c_1 \lambda^{-5} (e^{-c_2/\lambda T} - 1)^{-1}$; E_{λ} may be defined in various ways, and c_1 varies accordingly. If $E_{\lambda} d\lambda$ denotes the energy density of unpolarized radiation in range $d\lambda$, $c_1 = 8\pi hc$. If $E_{\lambda} d\lambda$ denotes the intensity of emission of linearly polarized radiation in range $d\lambda$, perpendicular to a surface, per unit of surface, per unit solid angle, $c_1 = hc^2$. If $E_{\lambda} d\lambda$ denotes the emission of unpolarized radiation in range $d\lambda$, per unit surface, in all directions $(2\pi \text{ solid angle})$, $c_1 = 2\pi hc^2$.

108 TABLE 44

VOLUME OF A CLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT

If a glass vessel contains at $P \subset P$ grammes of mercury, weighed with brass weights in air at 760 mm pressure, then its volume in ccm

at the same temperature,
$$t_1: V = PR = P \frac{p}{d}$$
, at another temperature, $t_1: V = PR_1 = P p/d \{1 + \gamma (t_1 - t)\}$

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;

d = the density of mercury or water at $t^{\circ}C$,

and $\gamma = 0.000$ 025, is the cubical expansion coefficient of glass.

Temper-	Temper-			MERCURY.			
t	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^{\circ}.$	R.	R_1 , $t_1 = 10^\circ$.	$R_1, t_1 = 20^{\circ}.$	
00	1.001192	1.001443	1.001693	0.0735499	0.0735683	0.0735867	
И т І	1133	1358	1600	5633	5798	5982	
2	1092	1292	1542	5766	5914	6098	
3	1068	1243	1493	5900	6029	6213	
4	1060	1210	1460	6033	6144	6328	
5	1068	1193	1443	6167	6259	6443	
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558	
7 8	1131	1206	1456	6434	6490	6674 6789	
	1184	1234	1485	6568 6702	6605 6720	6904	
9	1252	1277	1527	6835	6835	7020	
10	1333	1333	1584		0033	7020	
11	1.001428	1.001403	1.001653	0.0736969	0.0736951	0.0737135	
12	1536	1486	1736	7103	7066	7250	
13	1657	1582	1832	7236	7181	7365	
14	1790	1690	1940	7370	7297	7481	
15	1935	1810	2060	7504	7412	7 596	
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711	
17	2261	2086	2337	7771	7642	7826	
81	2441	2241	2491	7905	77.57	7941	
19	2633	2407	2658	8039	7872	8057	
20	2835	2584	2835	8172	7988	8172	
21	1,003048	1.002772	1.003023	0.0738306	0.0738103	0.0738288	
22	3271	2970	3220	8440	8218	8403	
23	3504	3178	3429	8573	8333	8518	
24	3748	3396	3647	8707	8449	8633	
25	1001	3624	3875	8841	8564	8748	
26	1.004264	1.003862	1.004113	0.0738974	0.0738679	0.0738864	
27	4537	4110	4361	9108	8794	89 79	
28	4818	4366	4616	9242	8910	9094	
29	5110	4632	4884	9376	9025	9210	
30	5410	4908	51 59	9510	9140	9325	
				Ji	1		

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

TABLE 45 .- Reductions of Weighings in Air to Vacuo

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to M δ (1/d-1/d₁) where δ = the density (wt. of 1 ccm in grams =0.0012) of the air during the weighing, d the density of the body, d₁ that of the weights. δ for various barometric values and humidities may be determined from Tables 128 to 130. The following table is computed for δ = 0.0012. The corrected weight = M+kM/1000.

Density	Correction factor, k.		Density	Correction factor, k.			
of body weighed d.	Pt. Ir. weights d ₁ == 21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.	of body weighed d.	Pt. Ir. weights d ₁ =21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.
.5 .6 .7 .75 .80 .85 .90 .95 1.00 1.1 1.2 1.3	+ 2.34 + 1.91 + 1.66 + 1.55 + 1.44 + 1.36 + 1.28 + 1.21 + 1.14 + 1.04 + 0.94 + .87 + .80 + .75	+ 2.26 + 1.86 + 1.57 + 1.46 + 1.36 + 1.27 '.19 + 1.06 + 0.95 + .86 + .78 + .71 + .66	+ 1.95 + 1.55 + 1.26 + 1.15 + 1.05 + 0.96 + .88 + .81 + .75 + .64 + .55 + .47 + .40 + .35	1.6 1.7 1.8 1.9 2.0 2.5 3.0 4.0 6.0 8.0 10.0 15.0 20.0 22.0	+ 0.69 + .65 + .62 + .58 + .54 + .43 + .34 + .24 + .14 + .09 + .06 + .03 + .004 001	+ 0.61 + .56 + .52 + .49 + .46 + .34 + .26 + .16 + .06 + .01 02 08 09	+ 0.30 + .25 + .21 + .18 + .15 + .03 05 15 25 30 33 37 39 40

TABLE 46 .- Reductions of Densities in Air to Vacuo

(This correction may be accomplished through the use of the above table for each separate weighing.)

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the

uncorrected density, s, is 0.0012 (1-s/L). Let $W_s =$ uncorrected weight of substance, $W_l =$ uncorrected weight of the liquid displaced by the substance, then by definition, $s = LW_s/W_l$. Assuming D to be the density of the balance of weights, $W_s \{1 + 0.0012 (1/S - 1/D)\}$ and $W_l \{1 + 0.0012 (1/L - 1/D)\}$ are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of 1 cc of air is 0.0012 gram).

Then the true density
$$S = \frac{W_s\{1 + 0.0012 (1/S - 1/D)\}}{W_1\{1 + 0.0012 (1/L - 1/D)\}}I$$
.

But from above $W_s/W_1 = s/L$, and since L is always large compared with 0.0012, S - s = 0.0012 (1 - s/L).

The values of 0.0012 (1-s/L) for densities up to 20 and for liquids of density I (water), 0.852 (xylene) and 13.55 (mercury) follow:

(See reference below for discussion of density determinations).

		Corrections,		D is f	Corrections.	
Density of substance s.	L= t Water.	L=0.852 Xylene.	L=13.55 Mercury.	Density of substance s	L= r Water.	L=13.55 Mercury.
0.8 0.9 1. 2. 3. 4. 5. 6. 7. 8. 9.	+ 0.00024 + .00012 0.0000 0012 0024 0036 0060 0072 0084 0096 0108	- 0.0002 0016 0030 0044 0058 0073 0087 0101 0115		11. 12. 13. 14. 15. 10. 17. 18. 19. 20.	- 0.0120 0132 0144 0156 0168 0180 0192 0204 0216 0228	+ 0.0002 + .0001 0.0000 0001 0002 0003 0004 0005 0006

Johnston and Adams, J. Am. Chem. Soc. 34, p. 563, 1912.

TABLE 47

MECHANICAL PROPERTIES: INTRODUCTION AND DEFINITIONS

(Compiled from various sources by Harvey Λ. Anderson, C.E., Assistant Engineer Physicist, U. S. Bureau of Standards.)

The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental. Credit for information included is due the U. S. Bureau of Standards; the Am. Soc. for Testing Materials; the Soc. of Automotive Eng.; the Motor Transport Corps, U. S. War Dept.; the Inst. of Mech. Eng.; the Inst. of Metals; Forest Products Lab.; Dept. of Agriculture (Bull. 556); Moore's Materials of Engineering; Hatfield's Cast Iron; and various other American, English and French authorities.

The specified properties shown are indicated minimums as prescribed by the Am. Soc. for Testing Materials, U. S. Navy Dept., Panama Canal, Soc. of Automotive Eng., or Intern. Aircraft Standards Board. In the majority of cases, specifications show a range for chemical constituents and the average value only of this range is quoted. Corresponding average values are in general given for mechanical properties. In general, tensile test specimens were 12.8 mm (0.505 in.) diameter and 50.8 mm (2 in.) gage length. Sizes of compressive and transverse specimens are generally shown accompanying the data.

All data shown in these tables are as determined at ordinary room temperature, averaging 20° C (68° F.). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).

Proportional Limit (abbreviated P-limit). — Stress at which the deformation (or deflection) ceases to be proportional to the load (determined with extensometer for tension, compressometer for compression and deflectometer for transverse tests).

Elastic Limit. — Stress which produces a permanent elongation (or shortening) of o.oo1 per cent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Yield Point. — Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in load (determined usually by drop of beam or with dividers for tension, compression or transverse tests).

Ultimate Strength in Tension or Compression. — Maximum stress developed in the material during test.

Modulus of Rupture. — Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Modulus of Elasticity (Young's Modulus). — Ratio of stress within the proportional limit to the corresponding strain, — as determined with an extensometer. Note: All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Brinell Hardness Numeral (abbreviated B. h. n.). — Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indentation produced. The standard sphere used is a romm diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

B. h. n. = $P \div \pi t D = P \div \pi D (D/2 - \sqrt{D^2/4 - d^2/4})$.

P = pressure in kg, t = depth of indentation, D = diameter of ball, and d = diameter of indentation, — all lengths being expressed in mm. Brinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration.

Shore Scleroscope Hardness. — Height of rebound of diamond pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals 100. On very soft metals a "magnifier" hammer is used in place of the commonly used "universal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by \$. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Erichsen Value. — Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses. (See Proc. A. S. T. M. 17, part 2, p. 200, 1917.)

Alloy steels are commonly used in the heat treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

Iron and Iron Alloys

Metal. Grade.	Yield point.	Ultimate strength.	Yield point.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. in area.	Hard Brinell	
		sion mm ²	Ten lb/	sion in ²		cent.	at 3000 kg	Sclero- scope.
Iron:		. 0 .	.0			83.0	05 +	18
Electrolytic* (remelt): as forged annealed 900° C	34.0 12.5					87.0		_
Gray cast‡(19 mm diam. bars)				(25,000		gible	100	5 24
	_	1 26.5	—	138,000	_		1150	140
Malleable cast, American (after				{35,000		{15.0		_
Hatfield)	(19.0		145,000	(42,000	6.0		_	_
Castings Ass.)		45.5		65,000	2.0	1.1	_	
(see p. 653)	((43.3	(`	`		
Commercial wrought	19.5		{ 28,000		{40.0		_	{ 25
Silicon allowell Si 0.01, as formed	122.5		41,800				_	130
Silicon alloys Si 0.01: as forged (Melted in vacuo) ann. 970° C	29.5 11.0		16,000		35.0 53.0		_	_
(Note: C max. o.o1 per cent)	11.0	24.3	10,000	34,900	33.0	02.3		
Si 1.71: as forged	48.0		68,100		37.0		-	-
annealed 970° C	25.0		35,800		50.0	90.6	_	-
Si 4.40: as forged	66.0	1-1	94,000	0,	6.0 24.0	7·5 25.1	_	_
Aluminum alloys Al 0.00: as forged			72,900		26.0		_	_
(Melted in vacuo) ann. 1000° C	12.5	24.5	17,600		60.0	93.5		- 1
(Note: C max. o.o1 per cent)								
Al 3.08: as forged	48.0		68,200		21.0	76.4		_
annealed 1000° C Al 6.24: as forged	22.5	37·5 60.5	31,800	00	51.0 28.0	85.3 74.7	_	_
annealed 1000° C	54·5 37·5	49.0	53,400		27.0	55.5	_	
	37.3	12.	30,1			00.0		

Composition, approximate:
Electrolytic, C 0.0125 per cent; other impurities less than 0.05 per cent.
Cast, gray: Graphitic, C 3.0, Si 1.3 to 2.0, Mn 0.6 to 0.9, S max. 0.1, P max. 1.2.
A. S. T. M. Spec. A48 to 18 allows S max. 0.10, except S max. 0.12 for heavy castings.
Malleable: American "Black Heart," C 2.8 to 3.5, Si 0.6 to 0.8, Mn max. 0.4, S max. 0.07, P max. 0.2.
European "Steely Fracture," C 2.8 to 3.5, Si 0.6 to 0.8, Mn 0.15, S max. 0.35, P max. 0.2.
Compressive Strengths [Specimens tested: 25.4 mm (1 in.) diam. cylinders 76.2 mm (3 in.) long].
Electrolytic iron 50.5 kg/mm² or 80,000 lb/in².
Gray and malleable cast iron 56.5 to 84.5 kg/mm² or 80,000 to 120,000 lb/in².
Wrought iron, approximately equal to tensile yield point (slightly above P-limit).
Density:

Density: Electrolytic iron. 7.8 g/cm³ or 487 lb/ft³ Malleable iron. see page 653
Cast iron. 7.2 g/cm³ or 449 lb/ft³ Wrought iron. 7.85 g/cm³ or 4
Ductility: — Normal Erichsen values for good trade quality sheets, 0.4 mm (0.0156 in.) 7.85 g/cm3 or 490 lb/ft3 Thislenges and summaled

I mckness, soit annealed.	D	շթւո.
	mm	in.
Sheet metal hoop iron, polished	9 . 5	0.374
Charcoal iron tinned sheet	7 . 5	0.295
Second quality tinned sheet	6.7	0.264

Modulus of elasticity in tension and compression:

Electrolytic iron . . . 17,500 kg/mm² or 25,000,000 lb/in² Cast iron 10,500 kg/mm² or 15,000,000 lb/in² Malleable iron... see page 653 Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in² Modulus of elasticity in shear:

odulus of elasticity

Electrolytic iron.......7030 kg/mm

Wrought iron....

Strength in Shear: Commercial wrought

Gray cast iron

Gray cast iron
Modulus of rupture, 33.0 kg/mm² or 47,000 lb/in²

"Arbitration Bar," 31.8 mm (1½ in.) diameter, or 304.8 mm (12 in.) span; minimum central load at rupture 1130 to 1500 kg (2500 to 3300 lb.); minimum central deflection at rupture 2.5 mm (0.1 in.), (A. S. T. M. Spec. A 48-18).

*Properties of Swedish iron (impurities less than 1 per cent) approximate those of electrolytic iron.

† These two values of B. h. n. only are as determined at 500 kg pressure.

‡ U. S. Navy specifies minimum tensile strength of 14.1 kg/mm² or 20,000 lb/in².

||From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 83, 1915 (shows Si 4.40 as alloy of trimum strength)

maximum strength).
¶ From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 95, 1917.

TABLE 49 - Carbon Steels - Commercial Experimental Values

S. A. E. (Soc. of Automotive Eng., U. S. A.) classification scheme used as basis for steel groupings. First two digits S. A. E. Spec. No. show steel group number, and last two (or three in case of five figures) show carbon content in hundredths of one per cent.

carbon content in hundredths of one per cent.

The first lines of properties for each steel show values for the rolled or forged metal in the annealed or normalized condition. Comparative heat-treated values show properties after receiving modified S. A. E. heat treatment as shown below (Table 50). The P-limit and ductility of cast steel average slightly lower and the ultimate strength to to 15 per cent higher than the values shown for the same composition steel in the annealed condition. The properties of rolled steel (raw) are approximately equal to those shown for the annealed condition, which represents the normalized condition of the metal rather than the soit annealed state.

The data for heat-treated strengths are average values for specimens for heat treatment ranging in size

from \(\frac{1}{2}\) to \(\frac{1}{2}\) in. diameter. The final drawing or quenching temperature for the properties shown is indicated in degrees C with the heat treatment letter, wherever the information is available. In general, specimens

were drawn near the lower limit of the indicated temperature range.

Metal.	S. A. E. spec. no.	Nominal contents per cent.	S.A.E. heat treat- ment.		Tension Kg/mm ²		uis Ultimate strength.	ion D		Brinell (@ 3000 kg.	Sclero- scope.
Steel, carbon	1010 } 1010 } 1020 } 1020 } 1045 } 1045 } 1095 }	See Spec. No. (Mn 0.45) (Mn 0.65)	Ann. A Ann. H 230° C Ann. H 260° C Ann. F 510° C	24.0 27.0 28.0 35.0 40.0 62.0 42.0 84.0	32.0 42.0 38.0 56.0 50.0 86.0 56.0	34,500 39,000 39,500 49,500 57,500 88,000 59,500	46,000 60,000 54,400 79,500 71,300 123,000 79,000	37.0 30.0 32.0 20.0 23.0 13.5 21.0 6.0	72.0 62.0 68.0 59.0 54.0 36.0 51.0	120 100 176 168 290 187 551	18 24 17 35 27 45 29 75

Specification values: Steel, castings, Ann. A.S.T.M. A27-16, Class B; * P max. 0.06; S max. 0.05.

0.1	77' 11 - ' 4	Ultimate te	nsile strength.	Per cent	Per cent
Grade.	Yield point.	kg/mm ²	lb/in²	50.8 mm or 2 in.	reduct. area.
Hard	0.45 ultimate 0.45 " 0.45 "	56.2 49.2 42.2	80,000 70,000 60,000	1 5 1 8 2 2	20 25 30

Structural Steel: Rolled: S max. 0.05; P-Bess. max. 0.10; -O-H. max. 0.06.
Tension: Yield Point min. = 0.5 ultimate; ultimate = 38.7 to 45.7 kg/mm² or 55,000 to 65,000 lb/in² with 22% min. elongation in 50.8 mm (2 in.).

* Average carbon contents: steel castings, C 0.30 to 0.40; structural steel, C 0.15 to 0.30 (mild carbon or medium hard steel).

TABLE 50. - Explanation of Heat Treatment Letters used in Table of Steel Data

Motor Transport Corps Modified S. A. E. Heat Treatments for Steels. (S. A. E. Handbook, Vol. 1, pp. 9d and 9e, 1915, q. v. for alternative treatments.)

Heat Treatment A. — After forging or machining (1) carbonize at a temperature between 870 and 930° C (1600 and 1700° F.); (2) cool slowly; (3) reheat to 760 to 820° C (1400 to 1500° F.) and quench in oil.

Heat Treatment D. — After forging or machining: (1) heat to 820 to 840° C (1500 to 1550° F.); (2) quench; (3) reheat to 790 to 820° C (1450 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C (600 to 1200° F.)

and cool slowly.

Heat Treatment F. — After shaping or coiling: (1) heat to 775 to 800° C (1425 to 1475° F.); (2) quench; (3) reheat to 200 to 480° C (400 to 900° F.) in accordance with degree of temper required and cool slowly.

Heat Treatment H. — After forging or machining: (1) heat to 820 to 840° C (1500 to 1550° F.); (2) quench; (3) reheat to 230 to 650° C (450 to 1200° F.) and cool slowly.

Heat Treatment L. — After forging or machining: (1) carbonize at a temperature between 870 and 050° C (1600 and 1750° F.), preferably between 900 and 930° C (1650 and 1700 F.); (2) cool slowly in carbonizing material; (3) reheat to 700 to 820° C (1450 to 1500° F.); (4) quench; (5) reheat to 700 to 760° C (1500 to 1400° F.); (6) quench; (7) reheat to 120 to 260° C (250 to 500 F.) and cool slowly.

Heat Treatment M. — After forging or machining: (1) heat to 700 to 820° C (1450 to 1500° F.); (2) quench; (3) reheat to between 260 and 680° C (500 and 1250° F.) and cool slowly.

Heat Treatment P. — After forging or machining: (1) heat to 700 to 820° C (1450 to 1500° F.); (2) quench; (3) reheat to 750 to 770° C (1375 to 1425° F.); (4) quench; (5) reheat to 260 to 650° C (500 to 1200° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 000 to 050° C (1650 to 1250° F.); (2) quench; (3) reheat to 750 to 770° C (375 to 1425° F.); (4) quench; (5) reheat to 750 to 650° C (500 to 1200° F.); (2) quench; (3) reheat to 750 to 770° C (375 to 1425° F.); (4) quench; (5) reheat to 750 to 650° C (500 to 1200° F.); (2) quench; (3) reheat to 750 to 770° C (375 to 1425° F.); (4) quench; (5) reheat to 750 to 650° C (500 to 1200° F.); (2) quench; (3) reheat to 750 to 770° C (375 to 1425° F.); (4) quench; (5) reheat to 750 to 650° C (500 to 1200° F.); (2) quench; (3) reheat to 750 to 770° C (375 to 1425° F.); (4) quench; (5) reheat to 750 to 650° C (500 to 1200° F.); (4) quench; (5) reheat to 750 to 650° C (500 to 1200° F.); (4) quench; (5) reheat to 750 to 650° C (500 to 1200° F.); (4) quench; (5) reheat to 750 to 7

1200° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 900 to 950° C (1650 to 1750° F.); (2) quench; (3) reheat to 260 to 700° C (500 to 1300° F.) and cool slowly.

Heat Treatment U. — After forging: (1) heat to 830 to 870° C (1525 to 1600° F.), hold half an hour; (2) cool slowly; (3) reheat to 900 to 930° C (1650 to 1700° F.); (4) quench; (5) reheat to 180 to 290° C (350 to 550° F.) and cool slowly.

Heat Treatment V. — After forging or machining. (1) heat to 900 to 950° C (1650 to 1750° F.); (2) quench; (3) reheat to between 200 and 650° C (400 and 1200° F.) and cool slowly.

Editorok's Note: Oil quenching is recommended wherever the instructions specify "quench," inasmuch as the data in the table are taken from tests of automobile parts which must resist considerable vibration and which are usually small in section. The quenching medium must always be carefully considered.

Alloy Steels - Commercial Experimental Values

Metal.	S. A. E. spec.	Nominal contents,	S. A. E. heat treat-	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct.	ne	ard-
	no.	per cent.	ment.		sion mm²		sion /in²	Per o		Brine	Sclero- scope.
Steel, nickel	2315 2315 2335 2335 2335	_ Ni 3.50	Ann. H Ann. H		76.0 48.0 131.0	75,000 55,000 151,000	107,500 68,000 186,000	18.0 24.0 15.0	60.0 55.0 53.0 51.0	138 321 165 465	43
nickel	2345 2345 Invar	(Mn 0.65) Ni 36.0 C 0.40	Ann. H Ann.	44.0 136.0 50.0	'	62,500 193,000 71,000	78,000	21.0 12.0 30.0	48.0 45.0 50.0	570	76
chrome	3120 3120 3135 3135 3220	\begin{cases} \text{Ni 1.25} \\ \text{Cr 0.60} \\ \text{(Mn 0.65)} \end{cases}	Ann. H 450° C Ann. H or D Ann.	34.0 60.0 40.0 88.0	82.0 50.0 121.0	85,000 57,000 125,000	116,000 71,300 172,000	23.0 20.0 18.0	53.0 48.0 46.0 43.0 50.0	270 182 330	36 30 44
	3220 } 3250 } 3250 } 3250 } 3320 }	\begin{cases} \text{Ni 1.75} \\ \text{Cr 1.10} \\ \text{(Mn 0.45)} \end{cases} \end{cases}	H or D Ann. M Ann. L	77.0 44.0 134.0 32.0	106.0 55.0 183.0 42.0	62,000 190,000 46,000	151,000 78,000 260,000 59,500 150,000	23.0 19.0 16.0 21.0	48.0 42.0 32.0 50.0 48.0	375 180 480	50 64
chromium.	3340 3340 51120 51120 52120	Cr 1.50 (Mn 0.45) Cr 1.00 (Mn 0.35) Cr 1.20	Ann. P Ann. M or P Ann.	39.0 1 20.0 44.0	52.0 163.0 58.0 193.0	56,000	74,000 232,000 82,000	18.0 18.0 16.0 7.0	45.0 42.0 31.0 26.0 24.0	479 —	64
chrome vanadium	52120 } 6130 } 6130 }	(Mn 0.35) (Mn 0.65) { Cr 0.95 V 0.18	M or P Ann. T	141.0 43.0	178.0 59.0	200,000	253,000	7.0	25.0 51.0 43.0	152	_
silico- manganese	6195	(Mn 0.35)	Ann. U	48.0 176.0 42.0	232.0	250,000	330,000	8.c	38.0 24.0 28.0		75
tungsten	9250 9250 9×30 9×30 (C-73)	Mn 0.70 Si 0.85 Mn 1.75 W 2.4	V Ann. V Ann.	91.0 48.0	122.0 61.0 148.0	130,000 68,000 160,000	174,000 87,000 211,000	14.0	24.0 22.0 21.0	441	
tungsten	(C-73) (C-70) (C-47)	W 9.7 W 15.6	Ann. Quench 1065° Draw 205° C	63.0	89.0	90,000	126,000	14.0	31.5 22.1 43.0		64

GENERAL NOTE. — Table on steels after Motor Transport Corps, Metallurgical Branch of Engineering Division,

Maximum allowable P 0.045 or less, maximum allowable S 0.05 or less.
Silicon contents were not determined by Motor Transport Corps in preparing table, except for silico-manganese steels. Compressive strengths:

For all steels approx. equal to yield point in tension (slightly above P-limit).

Density:

Steel weighs about 7.85 g/cm3 or 490 lb/ft3

Ductility, Erichsen values:

0.75 mm (0.029 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.0 mm or 0.472 in.

1.30 mm (0.050 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.5 mm or 0.492 in.

Modulus of elasticity in tension and compression:

For all steels approx. 21,000 kg/mm² = 30,000,000 lb/in².

Modulus of elasticity in shear:

For all steels approx. 8400 kg/mm² = 12,000,000 lb/in².

Scleroscope hardness values shown are as determined with the Shore Universal hammer.

Strength in shear:
P-limit and ultimate strength each about 70 per cent corresponding tensile values.

TARLES 52-54

MECHANICAL PROPERTIES

TABLE 52. - Steel Wire - Specification Values

(After I. A. S. B. Specification 3S12, Sept., 1917, for High-strength Steel Wire.)

S. A. E. Carbon Steel, No. 1050 or higher number specified (see Carbon steels above). Steel used to be manulactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily.

American	Dian	neter.	Req'd twists in	Weig	gh t.	Req'd	Spec.	minimur	n tensile s	trength.
B. and S. wire gage.	mm	in.	203.2 mm or 8 in.	kg/100 m	lb/100 ft.	bends thru 90°	kg	lb.	kg/mm²	lb/in²
6	4.115	0.162	16	10.44	7.01	5	2040	4500	154	219,000
7 8	3.665	. 144	19	8.28	5.56	6	1680	3700	161	229,000
1	3.264	.129	21	6.55	4.40	8	1360	3000	164	235,000
9	2.906	.114	23	5.21	3.50	9	1135	2500	172	244,000
10	2.588	.102	26	4.12	2.77	11	910	2000	172	244,000
11	2.305	.091	30	3.28	2.20	14	735	1620	179	254,000
I 2	2.053	.081	33	2.60	1.74	17	590	1300	177	252,000
13	1.828	.072	37	2.06	1.38	21	470	1040	179	255,000
14	1.628	. 064	42	1.64	1.10	25	375	830	181	258,000
15	1.450	.057	47	1.30	0.87	29	300	660	182	259,000
16	1.291	.051	53	1.03	0.69	34	245	540	186	264,000
17	1.150	.045	60	0.81	0.55	42	195	425	188	267,000
18	1.024	.040	67	0.65	0.43	52	155	340	190	270,000
19	0.912	.036	75	0.51	0.34	70	125	280	193	275,000
20	0.812	.032	85	0.41	0.27	85	100	225	197	280,000
21	0.723	.028	96	0.32	0.22	105	80	175	200	284,000

- Number of 90° bends specified above to be obtained by bending sample about 4.76 mm (0.188 in.) radius. alternately, in opposite directions.

(Above specification corresponds to U. S. Navy Department Specification 22W6, Nov. 1, 1916, for tinned, galvan ized or bright aeroplane wire.)

TABLE 53. - Steel Wire - Experimental Values

(Data from tests at General Electric Company laboratories.) "Commercial Steel Music Wire (Hardened)."

Diame	eter.	Ultimate	e strength.
mm	in.	kg/mm² t	ension lb/in²
12.95	0.051	226.0	321,500
11.70	.046	249.0	354,000
9.15	.036	253.0	360,000
7.60	.030	260.0	370,000
6.35	.025	262.0	372,500
4.55	.018	265.5	378,000
2.55*	.010	386.5	550,000
1.65*	.0065	527.0	750,000
4.55	.018	49.2	70,000

* For 4.55 mm wire drawn cold to indicated sizes. † For 4.55 mm (0.018 in.) wire annealed in H2 at 850° C.

TABLE 54. - Semi-steel

Test results at Bureau of Standards on 155-mm shell, Jan. 1919.

Microstructure — matrix resembling pearlitic steel, embedded in which are flakes of graphite.

Composition-Comb. Co.60 to 0.76, Mn 0.88, P 0.42 to 0.43, S 0.077 to 0.088, Si 1.22 to 1.23, graphitic C 2.84 to 2.94.

Metal.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	P-limit.	P-limit. Ultimate strength.		Ultimate strength.	Brinell	dness.
		nsion mm²		sion 'in²	Compression kg/mm²			oression /in²	@3000 kg	Sclero- scope.
Semi-steel: Graph. C 2.85 Comb. C 0.76	7.9	19.8	11,200	28,200	24.3	72.6	34,500	103,000	176	_
Graph. C 2.92 Comb. C 0.60	4.2	14.9	6,000	21,200	18.3	61.4	26,000	87,300	170	-

Tension specimens 12.7 mm (0.5 in.) diameter, 50.8 mm (2 in.) gage length; clongation and reduction of area negligible.

Compression specimens 20.3 mm (0.8 in.) diameter, 61.0 mm (2.4 in.) long; failure occurring in shear. Tension set readings with extensometer showed elastic limit of 2.1 kg/mm² or 3000 lb/in².

Modulus of elasticity in tension — 9560 kg/mm² or 13,600,000 lb/in².

TABLE 55. - Steel-wire Rope - Specification Values

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm2 or 220,000 lb/in2

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm² or 220,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Plow steel wire to be of hard crucible steel with minimum tensile strength of 183 kg/mm² or 260,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm² or 110,000 lb/in² and minimum elongation of 7 per cent in 254 mm (10 in.).

Type A: 6 strands with hemp core and 19 wires to a strand (= 6 × 19), or 6 strands with hemp core and 18 wires to a strand with jute, cotton or hemp center.

Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.

Type C: 6 strands with hemp core, and 14 wires to a strand with hemp or jute center.

Type AA: 6 strands with hemp core, and 37 wires to a strand (= 6 × 37) or 6 strands with hemp core and 36 wires to a strand with jute, cotton or hemp center.

D	Diam	eter.	Approx.	weight.	Minimum	strength.
Description.	mm	in.	kg/m	lb/ft	kg	lb.
Galv. cast steel, Type A	9.5 12.7 25.4 38.1 9.5 12.7 25.4 38.1 9.5 12.7 25.4 38.1 25.4 41.3 9.5 12.7 25.4 36.5	in. 38 8 1 2 I I 1 2 3 8 1 2 I I 1 2 3 8 1 2 I I 1 3 5 8 1 2 I I 1 5 6 8 1 2 I I 1 1 5 6 8 1 2 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.31 0.55 2.23 5.06 0.35 0.58 2.23 5.28 0.25 0.42 1.68 3.94 1.59 4.35 0.31 0.55 2.23 4.66 0.33	0.21 0.37 1.50 3.40 0.22 0.39 1.50 3.55 0.17 0.28 1.13 2.65 1.07 2.92 0.21 0.37 1.50	3,965 6,910 27,650 63,485 3,840 7,410 27,650 59,735 2,995 5,210 20,890 47,965 18,825 51,575 4,690 8,165 32,675 69,140 4,540	8,740 15,230 60,960 139,960 8,460 16,330 60,960 131,690 6,600 11,500 46,060 105,740 41,500 113,700 10,340 18,000 72,040 152,430 10,000
	12.7 25.4 41.3	$\frac{\frac{1}{2}}{1}$ $\frac{1}{8}$	0.58 2.35 6.18	0.39 1.58 4.15	8,750 32,250 83,010	19,300 71,100 183,000

TABLE 56. - Steel-wire Rope - Experimental Values

(Wire rope purchased under Panama Canal Spec. 302 and tested by U. S. Bureau of Standards, Washington, D. C.)

Description and analysis.	Diam	eter.	Ultimate	strength.		e strength area).
	mm	in.	kg	lb.	kg/mm²	lb/in²
Plow Steel, 6 strands × 19 wires C 0.90, S 0.034, P 0.024, Mn 0.48, Si 0.172	50.8	2	137,900	304,000	129.5	184,200
C o.77, S o.036, P o.027, Mn o.46, Si o.152 Plow Steel, 6 × 37 plus 6 × 19 C o.58, S o.032, P o.033, Mn	69.9	2 ³ / ₄	314,800	694,000	151.2	214,900
o.41, Si o.160	82.6	31/4	392,800	866,000	132.2	187,900
Mn 0.23, Si 0.169		31/4	425,000	937,000	142.5	202,400

Recommended allowable load for wire rope running over sheave is one fifth of specified min. strength.

TABLE 57, - Plow-Steel Hoisting Rope (Bright)

(After Panama Canal Specification No. 302, 1912.)

Wire rope to be of best plow steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center. Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in. of about $2\frac{1}{2}$ per cent.

Diame	ter.	Spec. minim	um strength.	Diame	ter.	Spec. minim	um strength.
mm	in.	kg	lb.	mm	in.	kg	lb.
9·5 12·7 19·0 25·4	3 8 1 2 3 4 1	5,215 9,070 20,860 34,470	11,500 20,000 46,000 76,000	38.1 50.8 63.5 69.9	$ \begin{array}{c} 1\frac{1}{2} \\ 2 \\ 2\frac{1}{2} \\ 2\frac{3}{4} \end{array} $	74,390 127,000 207,740 249,350	164,000 280,000 458,000 550,000

TABLES 58 AND 59

MECHANICAL PROPERTIES

TABLE 58. - Aluminum

Metal, approx.	Condition.		nsity reight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	@ w	dness.
per cent.		gm per cm³	lb.per ft³	Ten: kg/r	sion, nm²		sion, /in²	Per	ent.	Brinell Soo k	Sclero- scope.
ALUMINUM: Av. Al 99.3 Imp., Fe and Si	Cast, sand at 700° C	2.57 2.69 2.70 2.70	- 160.5 168.0 168.5 168.5	7.0 - 6.0 6.0 14.0	8.0 to 9.8 8.9 to 9.6 9.0 9.0 21.0 23.0 28.0	10,000	12,000 to 14,000 12,600 to 13,600 13,500 30,000 33,000 40,000	15	36 to 22 30 to 22 25. C 25. O 35. O 50. O	26	5

Compressive strength: cast, yield point 13.0 kg/mm² or 18,000 lb/in²; ultimate strength 47.0 kg/mm² or 67,000 lb/in².

Modulus of elasticity: cast, 6000 kg/mm² or 0,810,000 lb/in² at 17° C.

TABLE 59 .- Aluminum Sheet

(a) Grade A (Al min. 99.9) Experimental Erichsen and Scleroscope Hardness Values. [From tests on No. 18 B. & S. Gage sheet rolled from 6.3 mm (0.25 in.) slab. Iron Age v. 101, page 952].

leroscope	Indentation,	Thickness,	Heat treatment annealed.
ardness.	mm	mm	
14.0	6.8 ₃	r.08	None (as rolled)
8.0	8.86	r.09	
4·5 4·5 II.8	9.40	r.07 r.08	@ 400° C, 2 hours
		r.07	(a) 300° C, 2 hours

(b) Specification Values. — (1) Cast: U. S. Navy 49 Al, July 1, 1915; Al min. 94, Cu max.

6, Fe max. 0.5, Si max. 0.5, Mn max. 3.

Minimum tensile strength 12.5 kg/mm² or 18,000 lb/in² with minimum elongation of 8 per cent in 50.8 mm (2 in.).

(2) Sheet, Grade A: A. S. T. M. 25 to 18T; Al min. 99.0; minimum strengths and elongations.

Gage	, sheet thic	knesses.	Temper, No.	Tensile	strength.	Elong. in 50.8 mm or 2 in.	
(B. & S.)	mm in.		nardness.	kg/mm²	lb/in²	per cent.	
12 to 16 incl. 17 to 22 incl. 23 to 26 incl.	2.052 to 1.293 1.152 to 0.643 0.574 to 0.404	o. o8o8 to .o5o9 .o453 to .o253 .o226 to .or59	r Soft, Ann. 2 Half-hard 3 Hard 1 Soft, Ann. 2 Half-hard 3 Hard 1 Soft, Ann. 2 Half-hard 3 Hard	8.8 12.5 15.5 8.8 12.5 17.5 8.8 12.5 21.0	12,500 18,000 22,000 12,500 18,000 25,000 12,500 18,000 30,000	30 7 4 20 5 2 10 5	Sheets of temper No. 1 to withstand being bent double in any direction and hammered flat; temper No. 2 to bend 180° about radius equal to thickness without cracking.

NOTE. — Tension test specimen to be taken parallel to the direction of cold rolling of the sheet. SMITHSONIAN TABLES.

TABLE 60 MECHANICAL PROPERTIES

Aluminum Alloys

-										- 472.5	-
			nsity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard	ness.
Alloy, approx.	Condition,			Ę.	15 #	4	Str CI	55 55	S of	20	- 11
composition	per cent				1 - 01					3 20	ا ند
per cent.	reduction.		I							Brinell 6 500 kg	Sclero- scope.
		gm/	lb/		sion,		sion,	Per	cent.	8 Ř.	12 00
		cm ³	ft3	kg/1	mm²	- lb/	in ²	10.	CCIICI	Br	0, 0,
	. 1 111				l						
Aluminum — Copper	Cast, chill			5.3	10.5	7,500	15,000	24.0	34.0		I — II
Al 98 Cu 1 Imp. max. 1	Rolled, 70%	_		19.0	21.0	27,000	30,000	4.0 12.0	21.0		
Al 96 Cu 3 Imp. max. 1	Cast, chill			8.1	13.7 28.8	11,500	19,500	5.5	21.0	_	
	Rolled, 70%	_		25.0 10.0	15.0	35,000 14,500	21,500	7.0	14.0	_	
Al 94 Cu 5 Imp. max. 1	Cast, chill			23.0	27.0	33,000	38,000	6.0	14.0		
Al 92 Cu 8: Alloy No.	Cast, sand	2.88	180			11,000 to			3.5 to	so to	13 to
Al 92 Cu 8: Alloy No.	Cast, Sand	2.00	180	10.5	16.2	15,000	23,000	None	None	65	18
Al 90-92 Cu 7-8.5				10.5	10.2	13,000	23,000	110110		3	
Imp. max. 1.7	Cast*	2.0	181		12.7		18,000	1.0	_	l —	_
Copper, Magnesium.	Cast* Cast at 700° C.		_		9.6 to		13,600 to		0.5 to	74 to	I7 tc
Al 9.52 Cu 4.2 Mg 0.6	Case at 700 C.		1	4.6	13.3	6,500	18,900	0	0	74	18
11. 9.92 Cu 4.2 Mg 0.0	Ann. 500° C			4.6	17.3	6,500	24,900	3.0	1.0	80	21
Duralumin or 17S	(Ann	2.8	174	25.0	42.0	35,100	59,500	21.1	29.5		
Alloy Al 94 Cu 4 Mg	Rolled 70%			53.0	56.0	75,400	79,600	4.0	13.2	_	
0.5	Rolled heat			00	ľ					1	
	tr'd †	-		23-4	39.0	33,400	55,300	25.5	26.0		
Copper, Manganese	Cast, chill		<u> </u>	10.0	14.0	14,300	20,300	5.0	_	<u> </u>	
Al 96 Cu 2 Mn 2	Rolled, 20 mm		-	19.0	27.0	27,100	38,200	16.0	28.0	<u> </u>	
Al 96 Cu 3 Mn 1	Cast, chill			11.3	19.0	16,200	27,000	14.0	_	—	
Naval Gun Factory	Cast, sand	2.8	175		14.0	_	20,000	12.0		i —	— i
Al 97 Cu 1.5 Mn 1	{ Forged		_	14.0	19.0	19,500	27,800	12.0	47.0	-	
Al 94 Cu max. 6 Mn	251 1						0				
max. 3	Minimum ‡	_	-	_	12.7	_	18,000	8.0	-	I —	- 1
Copper, Nickel, Mg	Cast at 700° C.	_	_	4-			25,500 to	6 0 40	8.5 to	r. to	0 40
Mn	Cast at 700 C.	_		3.5 10	17.9 to	5,000 to	25,500 10	0.0 0	0.5 10	154 60	9 60
Mg 1 Mn 0.5				9.8	23.2	14,000	33,000	1.5	1.0	86	25
Copper, Nickel Mn	Cast at 700° C.		_	9.0	14.5 to		20,600 to		11.0 to		
Al 94.2 Cu 3 Ni 2 Mn	Cast at 700 C.		[124.5 00		20,000 00	0.0 00	11.0 00	130 60	19 60
0.8					21.4	}	30,500	1.0	2.0	01	27
Magnesium:							0.,0			-	1
Magnalium Al 95 Mg 5	Cast, sand	2.5	156	5.6	15.5	8,000	22,000	7.0	8.5	_	_
Al 77-98, Mg 23-2	Cast, chill				29.5 to		42,000 to		_	_	-
		2.57	160		45.0		64,000				
	Cast, chill		_	4.0	0.11	5,800	14,900	21.0	36.0	-	-
Nickel Al 97 Ni 2	{ Drawn, cold	<u> </u>		14.0	16.0	19,700	22,700	13.0	37.0	_	-
	Rolled, hot	1 —	-	8.0	13.0	11,900	18,200	28.0	52.0	-	-
41 87	Cast, chill	-	-	6.0	15.0	9,000	21,700	9.0	11.0	-	- 1
Al 95 Ni 5	Drawn, cold	-	-	16.0	20.0	22,900	27,900	8.0	24.0		
Nickel Copper:	Rolled, hot	-	_	9.0	16.0	13,500	22,300	22.0	36.0	_	
Al 93.5 Ni 5.5 Cu 1	Cast, chill	_	_	7.0	17.0	TO 700	24,800	6.0	8.0	_	_
Al 93.5 Ni 3.5 Cu 1 Al 91.5 Ni 4.5 Cu 4	Cast, chill			7.0	18.0	9,900	25,200	4.0	5.0		
	Drawn, cold	_		22.0	27.0	31,700	37,800	8.0	15.0	_	_
Al 92 Ni 5.5 Cu 2	Rolled, hot	_	_	13.0	22.0	18,200	31,500	16.0	24.0	-	_
Zinc, Copper:	(=:0::03)			-3.0	-2.0	-5,200	32,300				
Al 88.6 Cu 3 Zn 8.4	Cast at 700° C.	-	_	4.7	18.5	6,700	26,300	8.0	7.5	50	10
	Ann. 500° C.	_	l —	4.4	20.2	6,200	28,800	8.0	7.5	50	10
Al 81.1 Cu 3 Zn 15.9.	Cast at 700° C.	3.1	193	9.8	24.7	14,000	35,100	2.0	2.0	7.4	15
	Ann. 500° C	-	_	9.8	29.0	14,000	41,200	4.0	4.0	70	15
		1	1	1	1		1	1	1	1	

^{*} Specification Values: Alloy "No. 12": A. S. T. M. B26-18T, tentative specified minimums for aluminum, copper.
† Quenched in water from 475° C after heating in a salt bath. Modulus of elasticity for Duralumin averages
7000 kg/mm² or 10.000,000 lb/in².
† Specification values: Aluminum castings; U. S. Navy 49 Al, July 1, 1915 (Impurities: Fe max. 0.5, Si max. 0.5)

\$ Specification values: Aluminum castings; U. S. Navy 49 Al, July 1, 1915 (Impurities: Fe max. 0.5, Si max. 0.5 SMITHSONIAN TABLES.

TABLES 61-63

MECHANICAL PROPERTIES

TABLE 61. - Copper

Metal and		Den or we		-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. in area.	Hard	ness.
approx. composition.	Condition.	01		4	St G	P.	st di	So.	R.ii	ell@ kg	اية ف
Per cent.		gm/ cm³	lb/ ft³		sion, mm²	Tension	n, lb/in²	Per c	ent.	Brinell @ 500 kg	Sclero- scope.
Copper: 99.9: electrolytic Cu 99.6 Rolled Cu 99.6	Ann. 200° C Cast { Hard, 40% reduct Ann. at 500° C Drawn cold, 50%	8.89 8.85 8.89 8.90	555 552 555 556	6.0 7.0 14.0 indet.	27.0 18.0 35.0 25.0	8,500 10,000 20,000 indet.	38,000 25,000 50,000 35,000	50.0 20.0 5.0 50.0	50.0 60.0 8.0 60.0		7 8 -6
Cu 99.9 *	reduct No Ann. (96% reduction)		_	26.0	35.0 47.3	37,000	50,000	9.0	64.5		18
Cu 99.9†	Ann. 750° C after drawing cold Drawn hot (64%)		_	_	21.9	_	31,200	24.5	76.0	_	-
Cu 99.9	reduction)	-	-	-	33.0	_	46,800	4.3	70.5	_	-

*Wire drawn cold from 3.18 mm (0.125 in.) to 0.64 mm (0.025 in.) Bull. Am. Inst. Min. Eng., Feb., 1919.

† Wire drawn at 150° C'from 0.79 mm (0.031 in.) to 0.64 mm (0.025 in.) (Jeffries, *loc. cit.*).

Cempression, cast copper, Ann. 15.9 mm (0.625 in.) diam. by 50.8 mm (2 in.) long cylinders.

Shortened 5 per cent at 22.0 kg/mm² or 31,300 b/m² load.

"10" "29.0 kg/mm² "41,200 b/m² "

20" "39.0 kg/mm² "55,400 b/in² "

Shearing strength, cast copper 21.0 kg/mm² or 30,000 b/in² (2 cast 7,700 kg/mm² or 17,400,000 b/in² (2 cast 7,700 kg/mm² or 11,000,000 b/in² (2 cast 7,700 kg/mn² or 11,000,000 b/in² (2 cast 7,700 kg/m² or 11,0

TABLE 62 .- Rolled Copper - Specification Values

Specification values: U. S. Navy Dept., 47C2, minimums for rolled copper, - Cu min. 99.5

	Tens	ile strength.	Elong, in 50.8
Description, temper and thickness.	kg/mm²	lb/in²	or 2 in. — per cent.
Rods, bars, and shapes:	21.0	30,000	25
Hard: to $q.5 \text{ mm}$ ($\frac{3}{8}$ in.) incl	35.0	50,000	10
Hard: 0.5 mm to 25.4 mm (1 in.)	31.5	45,000	I 2
Hard: 25.4 mm to 50.8 mm (2 in.)	28.0	40,000	15
Hard: over 50.8 mm (2 in.)	24.5	35,000	20
Sheets and plates: Soft	21.0 to 28.0 24.5	30,000 to 40,000 35,000	25 to 25 18

TABLE 63 .- Copper Wire - Specification Values

Specific Gravity 8.89 at 20° C (68° F).

Copper wire: Hard Drawn (and Hard-rolled flat copper of thicknesses corresponding to diameters of wire)

Specification values. (A. S. T. M. B1-15, and U. S. Navy Dept., 22W3, Mar. 1, 1915.)

Diame	ter.	Minimum te	nsile strength.	Maximum elongation, per cent in
mm	in.	kg/mm²	lb/in²	254 mm (10 in.).
11.68	.460	34·5 35·9	49,000 51,000	2.75 3.25
9.27	.365	37.1	52,800	2.80
8.25	.325	38.3	54,500	2.40
7.34	. 289	39.4	56,100 57,600	2.17 1.98
6.55	.258	40.5	-59,000	1.79
]	1 .229	43		in 1524 mm (60 in.)
5.18	. 204	42.2	60,100	1.24
4.62	.182	43.0	61,200 62,100	1.18
4.12 3.66	.102	43.7 44.3	63,000	1.00
3.25	.128	44.8	63,700	1.06
2.90	.114	45.2	64,300	1.02
2.59	.102	45·7 46.0	64,900 65,400	1.00
2.31	.001	46.2	65,700	0.95
1.83	.072	46.3	65,900	0.92
1.63	.064	46.5	66,200	0.90
1.45	.057	46.7 46.8	66,400 66,600	0.89
1.30	.051	47.0	66,800	0.86
1.02	.040	47.I	67,000	0.85

P-limit of hard-drawn copper wire must average 55 per cent of ultimate tensile strength for four largest sized wires in table, and 60 per cent of tensile strength for smaller sizes.

TABLES 64-67

MECHANICAL PROPERTIES

Table 64. - Copper Wire - Medium Hard-drawn

(A. S. T. M. B2-15) Minimum and Maximum Strengths.

Diam	neter.		Tensile s	trength.		Florestics
Dian	icter.	Min	imum.	Max	rimum.	Elongation, minimum per cent
mm	in	kg/mm²	kg/mm² lb/in²		lb/in²	in 254 mm (10 in.).
11.70 6.55	0.460	29.5 33.0	42,000 47,000	34·5 38.0	49,000 54,000	3.75 2.50 in 1524 mm (60 in.)
4.12 2.59 1.02	.162 .102 .040	34·5 35·5 37·0	49,000 50,330 53,000	39·5 40·5 42·0	56,000 57,330 60,000	1.15 1.04 0.88

Representative values only from table in specifications are shown above. P-limit of medium hard-drawn copper averages 50 per cent of ultimate strength.

TABLE 65 .- Copper Wire - Soft or Annealed

(A. S. T. M. B3-15) Minimum Values.

Diar	neter.	Minin st	Elongation in 254 mm	
mm i	in.	kg/mm²	lb/in²	(10 in.), per cent.
11.70 to 7.37	0.460 to 0.290	25.5	36,000	35
7.34 to 2.62	0.289 to 0.103	26.0	30	
2.59 to 0.53	0.102 to 0.021	27.0	38,500	25
0.51 to 0.08	0.020 to 0.003	28.0	40,000	20

NOTE. — Experimental results show tensile strength of concentric-lay copper cable to approximate 90 per cent of combined strengths of wires forming the cable.

TABLE 66. — Copper Plates

(A. S. T. M. BII-18) for Locomotive Fire Boxes. Specification Values.

Minimum requirements.	Tensile	strength.	Elong. in 203.2 mm
	kg/mm²	lb/in²	(8 in.), per cent.
Copper, Arsenical, As 0.25-0.50 Impurities, max. 0.12 Copper, Non-arsenical:	22.0	31,000	35
Impurities, max. 0.12	21.0	30,000	30

Note. — Copper to be fire-refined or electrolytic, hot-rolled from suitable cakes.

TABLE 67 .- Copper Alloys

The general system of nomenclature employed has been to denominate all simple copperzinc alloys as **brasses**, copper-tin alloys as **bronzes**, and three or more metals alloys composed primarily of either of these two combinations as alloy brasses or bronzes, e.g., "Zinc bronze" for U. S. Government composition "G" Cu 88 per cent, Sn 10 per cent, Zn 2 per cent. Alloys of the third type noted above, together with other alloys composed mainly of copper, have been called **copper alloys**, with the alloying elements other than minor impurities listed as modifying copper in the order of their relative percentages.

In some instances, the scientific name used to denote an alloy is based upon the deoxidizer used in its preparation, which may appear either as a minor element of its composition or not at all, e.g., phosphor bronze.

Commercial names are shown below the scientific names. Care should be taken to specify the chemical composition of a commercial alloy, as the same name frequently applies to widely varying compositions.

TABLE 68

MECHANICAL PROPERTIES

Copper Alloys - Copper-Zinc or Brasses: Copper-Tin or Bronzes

Metal and approx. composition,	Condition.	Den or we		P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 59.8 mm (2 in.).	Reduct. in area.	0.0	iness.
per cent.		gm cm³	lb ft³		sion, mm²	Ter lb	nsion, /in²	Per c	ent.	Brinell @ 500 kg	Sclero- scope.
Brass: Cu 90 Zn 10†	Sand cast Cold rolled, hard Cold rolled, soft.	8.7	_ 543	=	20.0 39.0 26.0	=	29,000 55,000 * 37,000 *	22 5* 40*	 	- 60 47	20 10
Cu 80, Zn 20 ‡. Cu 70, Zn 30 Cu 66 Zn 34 Std.	Sand cast Cold rolled, hard Cold rolled, soft. Sand cast Cold rolled, hard	8.6 8.4 8.5	537 524 530	=======================================	25.0 53.0 29.0 28.0 42.0	1 1 1 1	35,000 75,000 * 42,000 * 40,000 60,000	5 * 50 * 35 *	85 —	75 46 37 75§	28 12 26
Sheet	Cold rolled, soft. Sand cast Cold rolled, hard	s —	524 — 522	15.5	34.0 32.2 49.0		48,000 * 45,800 70,000	50 * 15 30	85 22 50	45	12
Bronze: Cu 97.7, Sn 2.3.	{ Cast	=	=	6.0 7.6	19.5 34.0	8,500	28,000 48,000	20 55	— 75	=	=
Cu 90, Sn 10	Cast or gun bronze or bell metal		548	7.2	23.0	10,300	33,000	10	_	-	23
Cu 80, Sn 20 Cu 70, Sn 30	Cast	8.8 ₁ 8.8 ₄	550 552	7.I I.4	22.5 5.0	10,100	32,000 7,000	0.5	=	=	=

Compressive Strengths, Brasses:

Cu 90, Zn 10, cast 21.0 kg/mm² or 30,000 lb/in² Cu 80, Zn 20, cast 27.4 kg/mm² or 30,000 lb/in² Cu 70, Zn 30, cast 42.0 kg/mm² or 60,000 lb/in² Cu 60, Zn 40, cast 52.5 kg/mm² or 75,000 lb/in² Cu 50, Zn 50, cast 77.0 kg/mm² or 110,000 lb/in²

Modulus of elasticity, — cast brass, — average 9100 kg/mm² or 13,000,000 lb/in²
Erichsen values: Soft slab, 1.3 mm (0.05 in.) thick, no rolling, depth of impression 13.8 mm (0.55 in.).
Hard sheet, 1.3 mm, rolled 38% reduction, depth of impression 7.3 mm (0.29 in.).
Hard sheet, 0.5 mm, rolled 60% reduction, depth of impression 3.7 mm (0.15 in.).

Compressive Ultimate Strengths, Cast Bronzes:

Cu 97.7, Sn 2.3 to 24.0 kg/mm² or 34,000 lb/in² Cu 90, Sn 10 to 39.0 kg/mm² or 56,000 lb/in² Cu 80, Sn 20 to 83.0 kg/mm² or 118,000 lb/in² Cu 70, Sn 30 to 105.0 kg/mm2 or 150,000 lb/in2

Specification value, A. S. T. M., B 22-18 T, for specimen = cylinder 645 sq. mm (1 sq. in.) area, 25.4 mm (1 in.)

long.

Cu 80, Sn 20: minimum compressive elastic limit = 17.0 kg/mm² or 24,000 lb/in²

Modulus of elasticity for bronzes varies from 7000 kg/mm² or 10,000,000 lb/in² to 10,000 kg/mm² or 15,500,000

* Values marked thus are S. A. E. Spec. values. (See S. A. E. Handbook, Vol. I, p. 13a, rev. December, 1913.) † Red metal.
\$ A. S. T. M. Spec. B19-18T requires B.h.n. of \$1-65 kg/mm² @ 5000 kg pressure for 70: 30 annealed sheet

hrass.

FOOT NOTES TO TABLE 69, PAGE 121

- * Tensilite, Cu 67, Zn 24, Al 4.4, Mn 3.8, P 0.01 compressive P-limit: 42.2 kg/mm² or 60,000 lb/in² and 1.33 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.
 † Compressive P-limit 20.0 to 28.2 kg/mm² or 28,500 to 40,000 lb/in²
 ‡ Compressive ultimate strength 54.5 kg/mm² or 77,500 lb/in²
 § Compressive P-limit 4.2 kg/mm² or 6000 lb/in² and 40 per cent set for 70.3 kg/mm² or 100,000 lb/in²
 ¶ Modulus of elasticity 98,0 kg/mm² or 14,000,000 lb/in²
 | Values are for yield point.
- The North Control of the Control of
- requirements
- For list of 30 German silver alloys, see Braunt, "Metallic Alloys," p. 314, "best" (Hiorns), "hard Sheffield," Cu 46, Zn 20, Ni 34.

 §§ Platinoid Cu 60, Zn 24, Ni 14, W 1 to 2; high electric resistance alloy with mechanical properties as nickel brass | ||| Specification Values, Naval Brass Castings, U. S. Navy, 46B 10b, Dec. 1, 1917 for normal proportions Cu 62, Zn 37, Sn 1, min. tensile strength 17.5 kg/mm² or 25,000 lb/in² with 15 per cent elongation in 50.8 mm (2 in.).

TABLE 69 MECHANICAL PROPERTIES

Copper Alloys - Three (or more) Components

											_
Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard	ness.
per cent.	Condition	gm	lb.		nsion, mm²		sion, /in²		cent.	Brinell @	Sclero- scope.
Brass, Aluminum Cu 57, Zn 42, Al 1 Cu 55, Zn 41, Al 4 Cu 62, 9, Zn 33, 3, Al Cu 70.5, Zn 26.4, Al Alum., Manganese	3,8.1			13.4	40.0 60.0 56.2 33.0	 19,000	57,000 85,400 80,000 47,000	50.0 16.5 — 50.0		=	
Cu 64, Zn 29, Al 3.1, Mn 2.5, Fe 1.2 Alum., Vanadium			-	2 I. I	68.8	30,000	98,000	16.0	17.0	130	-
Cu 58.5, Zn 38.5, Al 1.5, V 0.03 Iron:	Cold drawn	-	_	35.6	57.0	50,600	81,400	12.0	14.0	_	_
Cu 56, Zn 41.5, Fe 1. Aich's Metal	Cast	_	_	_	50.7 to 59.2	_	72,000 to 84,000	35.0 to	35.0 to	109 to	-
Cu 60, Zn 38.2, Fe 1.8 Delta Metal	Cast	8.42	5 26	_	40.3 31.7	_	57,300 45,000	10.0	_	_	_
Cu 57, Zn 42, Fe 1 Cu 65, Zn 30, Fe 5 Iron, Tin:	Rolled hard	_	=	=	42.2 45.5	=	65,000	17.0	=	=	=
Cu 56.5, Zn 40, Fe 1.5, Sn 1.0 † Sterro metal:	Cast	_	_	23.2 to 26.0	49.2 to 52.8	33,000 to 37,000	70,000 to 75,000	35.0 to	35.0 to	104 to	_
Cu 55, Zn 42.4 Fe 1.8, Sn 0.8 Lead or Yellow brass	Hard drawn	8.4 — 8.5	525 — 531	111	42.5 53.6 58.5 23.2 t o		60,500 76,200 83,100 33,000 to		 35.0 to		
Cu 60 to 63.5, Zn 35 to 33.5, Pb 5 to 3.	Sheet ann	=	_	_	27.5 25.5 42.9	=	39,000 42,000 61,000	26.0 50.0 30.0	30.0	_	=
Lead, Tin or Red brass Cu83,Zn7,Pb6,Sn4	Cast	8.6	535	11.0	21.0	16,000	30,000	17.0	19.0	-	7.0
Cu 78, Zn 9.5, Pb 10, Sn 2 Yellow brass: Cu 70, Zn 27, Pb 2,	Cast	8.87	554	8.4	18.6	12,000	26,500	22.0	24.9	_	-
Sn I	Cast §	8.4	524	7-4	20.7	10,500	29,500	25.0	28.5	53.0	-
Cu 58, Zn 39, Mn	Cast, sand ¶	8.3	520	21.1 to 24.6	52.7	30,000 to	70,000 to	22.0	25.0	119	19
(Sn, Fe, Al, Pb.) Cu 60, Zn 39 Mn,	Cast, chill	8.3	520	22.5 to 26.0 31.5	52.7 to 56 3 52.5	32,000 to 37,000 45,000	75,000 to 80,000 75,000	32.0 to 25.0 25.0	34.0 to 28.0 28.0		22
Specification values: U. S. Navy, 46 B											
U. S. N., 46 B 15a Manganese Vana-	Rolled††	-	_	24.6	49.2 49.2	35,000	70,000 70,000	20.0 30.0	_	=	=
dium: Cu 58.6, Zn 38.5, Al 1.5 Mn 0.5, V 0.03. Nickel: Nickel sil-	Cold drawn	-	_	35.6	57.0	50,600	81,400	12.0	14.0	-	-
ver, Cu 60.4, Zn 31.8, Ni 7.7 German silver, Cu 61.6, Zn 17.2,	Cast	8.5	530	10.8	25.3	15,400	36,000	40.5	42.0	46	-
Ni 21.1		8.7		13.2	28.8	18,800	40,900	28.5	25. I	80	-
Ni 27.3 Fine wire: Cu 58, Zn 24, Ni 18 Nickel silver ‡‡ Nickel Tungsten: §§		8.8	530		37.6	23,700	53,500	32.0	31.4	67	-
Tin: Cu 61, Zn 38, Sn 1 Naval brass, as above	Cast, sand Ann. after roll-	-	-	11.0	30.0	15,700	42,600	29.6	32.0	_	-
Tobin bronze: as below	ing	. 8.3	518	26.0 17.6	43.5 42.2	37,000 25,000	62,000 60,000	25.0	37.0	_	=
Cu 58.2, Zn 39.5, Sn 2.3 Cu 55, Zn 43, Sn 2.	Rolled	8.4	524	38.0	56.0 48.4	54,000	79,000 68,900	35.0 48.0	40.0 70.0	=	_

Copper Alloys - Three (or more) Components

Alloy and approx. composition	Conditio	on.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard-ness.
per cent.			gm per cm³	per		sion,		nsion, /in²	Per	cent.	Brinell @ 500 kg Sclero-
Brass, Tin — (continued): Rods:* o to 12.7 mm (½ in.) 12.7 to 25.4 mm (1 in.)			=	=	19.0 18.3	42.2 40.8	27,000 26,000	60,000	35.0 40.0	cold	nd 120° about us equal
over 25.4 mm (in.) diam Shapes, all			_ _ _	_	17.6 15.7 19.3 17.6	38.0 39.4 38.7 39.4	25,000 22,400 27,500 25,000	54,000 56,000 55,000 56,000	40.0 30.0 32.0 35.0		iameter.
Tubing (wall thickness) o to 3.2 mm (\frac{1}{8} in.)			=	_ _ _	21.1 19.7 18.3	42.2 38.7 35.1	30,000 28,000 26,000	60,000 55,000 50,000	28.0 32.0 35.0	=	
Victor bronze, V 0.03, Cu 58.6, Zn 38.5, Al 1.5, Fe 1.0 U. S. Navy † 49 B 1b	Cold di	rawn	-	_	56.5	64.5	80,000	92,000	11.5	29.0	
Bronze, Aluminum	See Cu		_	_	15.8	38.7	22,500	55,000	25.0	_	- -
Cu 89, Sn 10, Pb 1 Cu 88, Sn 10, Pb 2	Cast ‡. Cast §.		=	=	 13.4 t 0 16.2	15.5 21.1 to 24.6	 19,000 t 23,000	22,000 30,000 to 35,000	20.0 to	26.0 to	70 -
Cu 80, Sn 10, Pb 10 Lead, Phosphor:	Cast, sa	and . hill	8.8	549	10.0	22.I 24.7	15,500	31,400 35,200	13.5 4.5	12.0 3.5	85 -
Cu 80, Sn 10, Pb 10, P trace Lead Zinc, Red brass: Cu 81, Sn 7, Pb 9, Zn 3	Cast Cast . Cast ¶ .		-		11.0 13.8 13.4 t 0 14.1	24.6	20,000	30,000 26,800 30,000 to 35,000	15.0	3.5 11.5 24.0 to 22.0	155 -
Cu 88, Sn 8, Pb 2, Zn 2 Lead, Zinc Phosphor:	Cast	• • • •	_	_	_	21.8 to 26.0	_	31,000 to 37,000	16.0	_	57 to -
Cu 73.2, Sn 11.3, Pb 12.0, Zn 2.5, P 1	Cast **		-		10.5	21.4	15,000	30,400	4.0	3.3	- 11
Cu 88, Sn 10, Mn 2	Cast		_	_	9.0	19.1 28.6	12,800	27,200	32.0	28.0	
Cu 89, Sn 4, Ni 4, Zn 3 (2) Phosphor: Cu 95, Sn 4.9, P 0.1	Cast#		8.6	535	8.1 28.0	27.9 46.0	11,500	39,700	31.0	31.0	— - — ₃₇
Cu 89, Sn 10.5, P 0.5 Cu 80, Sn 20, P max. 1 Rods and bars §§ up to 12.7	Cast Cast ‡‡		-	_	11.2 to 14.1			31,000 to 35,000	6.0 to	_	72 to -
mm (½ in.)			_	_	42.2	56.2 42.2	60,000 40,000	80,000	12.0	Requir bend thro	red to l cold ugh 120°
to 25.4 mm (1 in.) over 25.4 mm (1 in.) Sheets and plates §§ spring temper			_	_	21.1		30,000	55,000	25.0	abou us e	t radi- qual to kness.
Medium temper			-		17.6	35.1	25,000	50,000	25.0		14
Bronze, Phosphor: spring wir Sn min. 4.5, Zn max 0.3, Fe m	e, hard-dr ax. o.1, Ph	o max	. 0.2	, P c	.05 to 0	U. S. 1 0.50; m	ax. elong	. in 203 mi	m (8 in.) = 4 [oer cent.
Diameter (group limits)).			engt	b.	_	Diam (group l	mits).	_	Min. te	th.
Up to 1.59 mm or 0.0625 in		95 88		13	b/in² 35,000	to	nm 6.35	in.	kg/n 77 -	5	lb/in ²
Over 1.59 mm to 3.17 mm (o.	125 in.)	88.	. 0		25,000	to	9.52	to 0.375	74.		105,000

- * Specification Values, Rolled Brass, Cu 62, Zn 37, Sn 1, min. properties after U. S. Navy Spec., 1018.
 † Specification Values: Jan. 3, 1976, Vanadium Bronze Castings, Cu 61, Zn 38, Sn max. 1 (incl. V). Mimima.
 ‡ Compressive P-limit 15.5 kg/mm² or 22,000 lb/in² and 28 per cent set for 70 kg/mm² or 10,000 lb/in² [Ultimate compressive strength, 54.2 kg/mm² or 77,100 lb/in² (Cu 76, Sn 7, Pb 13, Zn 4).
 ¶ Compressive P-limit 8.8 to 9.1 kg/mm² or 12,500 to 13,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
 **Compression: ultimate strength 49.5 kg/mm² or 70,500 lb/in², and 34 to 35 per cent set for 70 kg/mm²
 †† Modulus of Elasticity: (1) 12,200 kg/mm² or 17,300,000 lb/in², (2) 10,500 kg/mm² or 14,900,000 lb/in²
 †† Modulus of Elasticity: (1) 12,200 kg/mm² or 17,300,000 lb/in², (2) 10,500 kg/mm² or 14,900,000 lb/in²
 or 100,000 lb/in² load.
 Specification Values: U. S. Navy 46 B 5c, Mar. 1, 1917, Cu 85 to 90, Sn 6 to 11, Zn max. 4: Cast, Grade 1. Impurities max. 0.8; min. tensile strength 31.6 kg/mm² or 45,000 lb/in² with 20 per cent elong, in 50.8 mm (2 in.).
 ¶ Grade 2. Impurities max. 1.6; min. tensile strength 21.1 kg/mm² or 30,000 lb/in² with 15 per cent elong. in 50.8 mm (2 in.).
 §§ Specification Values: U. S. Navy 46B 14b, Mar. 1, 1916, Cu min. 94, Sn min. 3.5, P 0.50, rolled or drawn.
- - §§ Specification Values: U. S. Navy 46B 14b, Mar. 1, 1916, Cu min. 94, Sn min. 3.5, P 0.50, rolled or drawn.
 |||| Minimum yield points specified: for P-limits assume 66 per cent of values shown.

TABLE 69 (concluded)

MECHANICAL PROPERTIES

Copper Alloys - Three (or more) Components

			_								
Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. in area.	Hard	ness.
composition. per cent.	Condition:	gm per cm³	lb. per in ³	Ten:	sion,		sion, /in²	Per	cent.	Brinell @ 500 kg	Sclero- scope.
Cu 70, Zn 29.5, Si 0.5 Zinc * Comp. "G" Admiralty gun metal Comm'c'l range Spec. values Cu 88, Sn 8, Zn 4	Cast	_	535 	8.6	46.0 74.0 27.4 22.5 to 26.7 21.1 27.5	12,200 8,000 to 12,000		10.0 14.0 30.5	24.0	65 to 75 58	20 II
Cu 85, Sn 13, Zn 2 Zinc, Lead. Cu 90, Sn 6.5, Zn 2, Pb 1.5 Rods and bars up to 12.7 mm (½ in.) over 12.7 mm to 25.4 mm (1 in.)				8.4 to 11.2 28.1	26.7 23.9 to 28.1 56.2 52.7	12,000 to 16,000 40,000	34,000 to 40,000 80,000	25.0 30.0 30.0	26.0 Require cold 120°	50 to 60 ed to thr about	bend ough ra-
over 25.4 mm (1 in.) Shapes, all thicknesses Sheets and plates, o to 12.7 mm (½ in.) over 12.7 mm (½ in.) AluminumTin: Cu 88.5, Al 10.4, Sn 1.2				24.6 26.4 27.4 26.4 26.0	50.7 52.7 54.8 52.7 48.0	35,000 37,500 39,000¶ 37,500 36,700		30.0 30.0 30.0 30.0		iness.	l to
Aluminum Titanium:	Cast ** Quench, 800° C	- -	_	13.9	52.0 74.0	19,800	74,000	19.5	23.7	262	25
Cu 89, Al 10, Fe 1 Lead: Cu 71.9, Pb 27.5, Sn 0.5	Cast #		473	14.1 to		20,000 to 25,000	65,000 to 80,000	20.0	30.0 to 20.0 4.2 to	100	25 to 26
Nickel, Aluminum:	Table of the state			44.5	4.6	63,300	6,600	3.2	6.7		
Zn o.7 ‡‡ Cu 85, Sn 5, Zn 5, Pb 5 Cu 83, Sn 14, Zn 2, Pb 1	Cast §§	_	_	10.5 to	19.0 to	15,000 to 19,000 15,000 to		20.0 to 16.0		50 to	20 24
Zinc, Phosphor ("Non Gran") Cu 86, Sn 11, Zn 3, Ptr. Vanadium, See Brass, Vanadium.	Cast	_	-	13.0	25.0	19,000	35,000	9.0	_	_	_
Copper, Aluminum or Aluminum Bronze: Cu 90, Al 10	Rolled, and	7·5- 7·45		13.9 to 23.3 7.0	51.1 to 60.0 37.5	19,800 to 33,200 9,600	72,700 to 85,500 53,500	28.8 to 21.7 91.0	30.0 to	102 to 106 81	25 to 26
Aluminum, Iron or Sillman bronze Cu 86.4, Al 9.7, Fe 3.9	ann. Wrought Cast Cast, sand	<u> </u>	=	9.8 8.1 14.0	59-3 55-5 54-0	14,000 11,500 20,000	84,400 78,850 77,000	11.5 14.5 24.5	25.0	100	
Cu 88.5, Al 10.5, Fe 1.0.	850° C drawn 700° C	-	_	28.0	65.0	40,000	92,000	14.0	18.5	140	-

^{*}Gov't. Bronze: Cu 88, Sn 10, Zn 2 (values shown are averages for 30 specimens from five foundries tested at the Bureau of Standards).

† Compressive P-limit 10.5 kg/mm² or 15,000 lb/in² with 29 per cent set for 70 kg/mm² or 100,000 lb/in² load.

† Values from same series of tests as first values for "88-10-2," averages for 26 specimens from five foundries tested at Bureau of Standards.

at Bureau of Standards.

§ Compressive P-limit 9.1 kg/mm² or 13,000 lb/in² with 34 per cent set for 70 kg/mm² or 100,000 lb/in² load.

[| Specification minimums: U. S. Navy 46B17, Dec. 2, 1918, for hot-rolled aluminum broaze, Cu 85 to 87, Al 7 to 0, Fe 2.5 to 4.5. Specification values under P-limit are for yield point.

¶ Two and six tenths per cent increase in strength up to 762 mm (30 in.) width.

*** Compressive P-limit: cast, 14.1 kg/mm² or 20,000 lb/in² with 11.4 per cent set at 70 kg/mm² or 100,000 lb/in²

load.

the Compressive P-limit: cast, 12.7 to 14.1 kg/mm² or 18,000 to 20,000 lb/in² with 13 to 15 per cent set at 700 kg/mm² or 100,000 lb/in2 load.

of 106,000 10/11s² 1041.

11 Modulus of elasticity 14,800 kg/mm² or 21,150,000 lb/in² with 36 per cent set for 70.3 kg/mm², or 100,000 lb/in² load.

| | | | High values are after Jean Escard "L'Aluminum dans L'Industrie." Paris, 1918. Compressive P-limit 13.5 kg/mm² or 19,200 lb/in² with 13.5 per cent set for 70.3 kg/mm² or 10,000 lb/in² load.

TARLE 70

MECHANICAL PROPERTIES

Miscellaneous Metals and Allovs

	1		_					_	_	_	
Metal or alloy. Approx. composition,	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm	Reduct.	Hand	ard- ess.
per cent.		gm per cm³	lb. per ft8	Tens:		Tens lb/	sion, in ²	Per o	ent.	Brinell @	Sclero- scope.
* Cobalt, Co 99.7 } Gold, Au 100	Cast	8.8 8.9 19.3 — 17.2	550 556 1203 — 1073	-	23.1 26.0 18.0 26.0 45.8	_	33,000 37,000 25,000 37,000 65,100	25.0	- - -	48 — —	20
30 Ag 12. Lead, Pb† (Comm'c'l.) Antimony ‡Pb95.5,Sb4.5	Drawn hard Cast. Rolled hard. Drawn soft. Drawn hard. Cast.	11.40	710 711 — 655	=	102.0 1.3 2.3 1.7 2.2 4.5	=	145,000 1,780 3,300 2,420 3,130 6,400	=		- 8 - -	- 3 - -
Magnesium, Mg. Nickel, Ni 98.5. Ni 99.95. Ni 98.5. Ni . Ni .	Cast	1.7 1.74 8.3 8.7 —	106 109 518 543 —	16.7 **	21.0 23.2 26.7	23,800 ** 17,900	30,000	5.7 11.0	6.1 	76 83 —	35
Copper, iron, manganese or Monel metal:	Drawn hard, D = 1.65 mm or 0.065 in	_	_	-	109.0		155,000	_	-	-	-
Ni 67, Cu 28, Fe 3, Mn 2. Ni 66, Cu 28, Fe 3.5, Mn 2.5	Wrought	8.9 —	_	21.2 55.1 28.3	73.8	30,100 78,400 40,300	70,000 104,900 92,200	31.3	20.0 61.7 70.2		21 27
Ni 71, Cu 27, Fe 2 § 46 M1a 46 M 7b	Drawn hard Cast, minimums. Rolled, min., rods and bars ¶ Rolled, mini-	_	_ _	22.8 ** 28.1 **		 32,500 ** 40,000 **	160,000 65,000 80,000	-	=		_
Palladium, Pd Platinum, Pt	mum, sheets and plates Drawn hard Drawn hard	12.1	755 1342	21.I — —	27.0 37.3	30,000	65,000 39,000 53,000	18.0			24
Silver, Ag 100 Copper, Ag 75, Cu 25 Tantalum, Ta	Cast	10.5	655 660 1035		24.6 28.1 36.0 77.0 91.0	-	35,000 40,000 51,200 109,500 130,000	=		59	32
Tin, Sn 99.8††	Rolled	7-3 —	456	-	3.7 7.0		4,000 5,300 10,000		=	14	8
Sn 63, Zn 18, Al 13, Cu 3, Sb 2, Pb 1 Sn 62, Zn 15, Al 11, Pb 8, Cu 3, Sb 1 Zinc, aluminum: Sn 86, Zn 9, Al 5 Aluminum, zinc, cad-	Cast Cast	_ _ _	- - -	- - -	9.1 8.6		14,500 13,000 12,200	1.6	1.5 1.3 81.0	- - -	-
mium: Sn 78, Al 9, Zn 8, Cd 5.	Cast, chill	-	-	-	10.1	-	14,300	18.0	41.0	-	

Antimony: Modulus of Elasticity 7960 kg/mm² or 11,320,000 lb/in² (Bridgman).

* Compressive strength: cast and annealed, 86.0 kg/mm² or 122,000 lb/in² Comm²c¹l. comp., C 0.06, cast, tensile, ultimate, 42.8 kg/mm² or 61,000 lb/in², with 20 per cent elongation in 50.8 or 2 in. Compression. ultimate 123.0 kg/mm² or 175,000 lb/in² Stellite, Co 50.5, Mo 22.5, C 10.8, Fe 3.1, Mn 2.0, C 0.0, Si 0.8. Brinell hardness 512 at 3000 kg, density 8.3 † Modulus of elasticity, cast or rolled, 492 kg/mm² or 700,000 lb/in²; drawn hard 703 kg/mm² or 1,000,000 lb/in² For compressive test data on lead-base babbit metal, see table following zinc.

§ Modulus of elasticity 15,800 kg/mm² or 22,500,000 lb/in² [] Specification values, U. S. Navy, Monel metal, Ni min. 60, Cu min. 23, Fe max. 3.5, Mn max. 3.5, C + Si max. 0.8, Al max. 0.5.

§ Values shown are subject to slight modifications dependent on shapes and thicknesses.

** Values are for yield point.

†† Compressive strength: cast, 4.5 kg/mm² or 6,400 lb/in²; rolled av. 401.0 kg/mm² or 5,700,000 lb/in² Smithsonian Tables.

TABLE 71

MECHANICAL PROPERTIES

Miscellaneous Metals and Allovs

(a) TUNGSTEN AND ZINC

Metal or alloy	alloy pprox. Condition.		nsity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard	
comp. per cent.	0020100	gm per cm³	lb. per ft³		ension, g/mm²		ension, b/in²	Per		Brinell (Soo kg	Solero- scope.
	Ingot sintered, D = 5.7 mm or 0.22 in. Swaged rod, D = 0.7 mm or 0.03 in.	18.0	1124	_	12.7	_	18,000	0.0	0.0	_	_
Tungsten, W 99.2*	Drawn hard, D = 0.029 mm or 0.00114 in Swaged and drawn hot 97.5% reduction†	_	_	_	415.0 164.0	_	590,000	3.2	65.0	_	_
	Same as above and equiaxed at 2000°C in H2‡	-	_	_	118.0	-	168,000	0.0	0.0	_	-
	Cast (Coarse crystalline Fine crystalline	7.0 —	437 —	_ _	mpurities 2.8 to 8.4	Pb, Fe	and Cd) 4,000 to 12,000	=	=	42 to	8 to
Zinc, §Zn.	Rolled (with grain or direction of rolling). Rolled (across grain or	-	_	2.0	19.0	2,900	27,000		-	_	-
	direction of rolling). Drawn hard	7.1	443	4.1	25.3 7.0	5,800	36,000 10,000	_	=	_	=

* Commercial composition for incandescent electric lamp filaments containing thoria (ThO2) approx. 0.75 per cent alter Z Jeffries Am. Inst. Min. Eng. Bulletin 138, June, 1918.

† After Z Jeffries Am. Inst. Min. Eng. Bulletin 139, May, 1919.

† Ordinary annealing treatment makes W brittle, and severe working, below recrystallization or equiaxing temperature, produces ductility W rods which have been worked and recrystallized are stronger than sintered rods. The equiaxing temperature of worked tungsten, with a 5-min. exposure, varies from 2200° C for a work rod with 24 per cent reduction, to 1350° C for a fine wire with 100 per cent reduction. Tungsten wire, D = 0.635 mm or 0.025 in.

§ Compression on cylinder 25.4 mm (r in.) by 65.1 mm (2.6 in.), at 20 per cent deformation:

For spelter (cast zinc) free from Cd, av. 17.2 kg/mm² or 24.500 bl/in²

[See Proc. A. S. T. M., Vol. 13, pl. 19.)

Modulus of rupture averages twice the corresponding tensile strength.

Shazing strength: rolled, averages 13.6 kg/mm² or 104.000 bl/in²

Shearing strength: rolled, averages 13.6 kg/mm² or 104,000 lb/in² Modulus of elasticity: cast, 7.750 kg/mm² or 11,025,000 lb/in² Modulus of elasticity: rolled, 8450 kg/mm² or 12,000 000 lb/in² (M (Moore, Bulletin 52, Eng. Exp. Sta. Univ. of Ill.)

(b) White Metal Bearing Alloys (Babbitt Metal)

A. S. T. M. vol. xviii, I, p. 491.

Experimental permanent deformation values from compression tests on cylinders 31.8 mm (1½ in.) diam. by 63.5 mm (2½ in.) long, tested at 21° C (70° F.) (Set readings after removing loads.)

	Formula,	Pou	ring	iring Weight			Permane	n t defo	rmation	@ 21°	С	Haro	lness.
loy No.	per cent.		mp.	Wei	Weight.		4 kg 00 lb.		268 kg 2000 lb.	@ 45. = 10,	36 kg 000 lb.	Brinell @ 21°C	500 kg 100° C
	Sn Sb Cu	Pb C	F.	g/cm³	g/cm³ lb./ft³		in.	mm	in.	mm	in.	E B	88
	Tin Base.												
1 2* 3 4 5		- 440 - 432 - 491 10.0 360 18.0 350	824 808 916 680 661	7·34 7·39 7·46 7·52 7·75	461 465 469	0.000 .000 .025 .013	0.0000	0.025 .038 .114 .064		0.380 .305 .180 .230	0.0150 .0120 .0070 .0090	28.6 28.3 34.4 29.6 29.6	12.8 12.7 15.7 12.8 11.8
	Lead Base.												
6 7 8 9 10 11	10.0 13.0 — 5.0 15.0 — 5.0 10.0 — 2.0 15.0 — 15.0 —	63.5 337 75.0 329 80.0 329 85.0 319 83.0 325 85.0 325 90.0 334	638 625 625 616 625 625 634	9.33 9.73 10.04 10.24 10.07 10.28 10.67	582 607 627 640 629 642 666	.038 .025 .051 .102 .025 .025 0.064	.0015 .0010 .0020 .0040 .0010 .0010	.127 .127 .229 .305 .254 .254 0.432	.0050 .0050 .0090 .0120 .0100 .0100	.457 .583 1.575 2.130 3.910 3.020 7.240	.0180 .0230 .0620 .0840 .1540 .1190 0.2850	24.3 24.1 20.9 19.5 17.0 17.0	11.7 10.3 8.6 8.9 9.9 6.4

*U.S. Navy Spec. 46M2b (Cu 3 to 4.5, Sn 88 to 80.5, Sb 7.0 to 8.0) covers manufacture of anti-friction-metal castings. (Composition W.)
NOTE. — See also Brass, Lead (yellow brass), Brass, Lead-Tin (Red Brass); Bronze, Phosphor, etc., under Copper

alloys

TABLE 72

MECHANICAL PROPERTIES

Cement and Concrete

(a) CEMENT

CEMENT: Specification Values (A. S. T. M. C9 to 17, C10 to 09, and C9 to 16T).

Minimum strengths based on tests of 645 mm² (1 in²) cross section briquettes for tension, and cylinders 50.8 mm (2 in.) diameter by 101.6 mm (4 in.) length for compression. Mortar, composed of 1 part cement to 3 parts Ottawa sand by volume; specimens kept in damp closet for first 24 hours and in water from then on until tested.

Cement	Specific	Age, days.	Tens	ion.	Compression.		
(1: 3 mortar tested).	gravity.	days.	kg/mm²	lb/in²	kg/mm²	lb/in²	
Std. Portland	3.10	7	0.16	200	0.85	. 1,200	
White Portland	3.07	28	- 24	300	1.60	2,000	
Natural Av Natural	2.85	7 28	.03	50 125	_		

(b) CEMENT AND CEMENT MORTARS

CEMENT AND CEMENT MORTARS. — Bureau of Standards Experimental Values. Compressive Strengths of Portland cement mortars of uniform plastic consistency. Data from tests on 50.8 mm (2 in.) cubes stored in water. Sand: Potomac River, representative concrete sand.

Cement.	· Sand.	Water,	Age,	Compressiv	e strength.
Proportions	by volume.	per cent.	Age, days.	kg/mm²	lb/in²
I	0	30.0	7 28	4.20 6.40	5,970 9,120
I	I	16.0	7 28	3.10	4,440 6,750
1	2	13.6	7 28	2.05	2,900 4,440
1	3	13.9	7 28	1.25	1,780
1	9	15.1	7 28	0.10	1 20 200
			28	0.15	200

Note. — (From Bureau of Standards Tech. Paper 58.) Neat cement briquettes mixed at plastic consistency (water 21 per cent) show 0.52 kg/mm² or 740 lb/in² tensile strength at 28 days' age;

1 Cement: 3 Ottawa sand-mortar briquettes, mixed at plastic consistency (water 9 per cent) show 0.28 kg/mm² or 400 lb/in² tensile strength at 28 days' age.

(c) Concrete

CONCRETE: Compressive strengths. Experimental values for various mixtures. Results compiled by Joint Committee on Concrete and Reinforced Concrete. Final Report adopted by the Committee July 1, 1916. Data are based on tests of cylinders 203.2 mm (8 in.) diameter and 406.4 mm (16 in.) long at 28 days age.

American Standard Concrete Compressive Strengths.

Aggregate.	Units.			Mix.		
Aggregate.	Ontes.	1:3	1: 41/2	r:6	I: 7½	1:9
Granite, trap rock	kg/mm² lb/in²	2.3 3300	2.0 2800	I.5 2200	I.3 1800	1.0
Gravel, hard limestone and hard sandstone	kg/mm² lb/in²	2.I 3000	1.8	I.4 2000	1.1 1600	0.9
sandstone	kg/mm²	1.5	1.3	I.I	0.8	0.7
C' 1	lb/in²	2200	1800	1500	1200	1000
Cinders	kg/mm² lb/in²	0.6 800	700	600	0.4 500	400

Note. - Mix shows ratio of cement (Portland) to combined volume of fine and coarse aggregate (latter as

Committee recommends certain fractions of tabular values as safe working stresses in reinforced concrete design, which may be summarized as follows:

design, which may be summarized as follows: Bearing, 35 per cent of compressive strength; Compression, extreme fiber, 32.5 per cent of compressive strength; Vertical shearing stress 2 to 6 per cent of compressive strength, depending on reinforcing; Bond stress, 4 and 5 per cent of compressive strength, for plain and deformed bars, respectively.

Modulus of Elasticity to be assumed as follows:

For concrete wit	h strength.	Assume mod	alus of elasticity.
kg/mm²	lb/in²	kg/mm²	lb/in²
up to 0.6	up to 800	530	750,000
0.6 to 1.5	800 to 2200	1400	2,000,000
1.5 to 2.0	2200 to 2900	1750	2,500,000
over 2.0	over 2900	2100	3,000,000

(See Joint Committee Report, Proc. A. S. T. M. v. XVII, 1917, p. 201.)

EDITOR'S NOTE. — The values shown in the table above are probably fair values for the compressive strengths EDITOR'S NOTE. — The values shown in the table above are probably fair values for the compressive strengths of concretes made with average commercial material, although higher results are usually obtained in laboratory tests of specimens with high grade aggregates. Observed values on 1:2:4 gravel concrete show moduli of elasticity up to 3160 kg/mm² or 4,500,000 lb/in² and compressive strengths to 4.2 kg/mm² or 6000 lb/in² Tensile strengths average oper cent of values shown from compressive strengths. Shearing strengths average from 7s to 125 per cent of the compressive strengths; the larger percentage representing the shear of the leaner mixtures (for direct shear, Hatt gives 60 to 80 per cent of crushing strength). Compressive strengths of natural cement concrete average from 30 to 40 per cent of that of Portland cement concrete of the same proportioned mix.

cement concrete of the same proportioned mix.

Transverse strength: modulus of rupture of 1: 2\frac{1}{2}: 5 concrete at 1 and 2 months equal to one sixth crushing strength at same age (Hatt).

Weight of granite, gravel and limestone, 1:2:4 concretes averages about 2.33 g/cm³ or 145 lb/ft³; that of cinder concrete of same mix is about 1.85 g/cm³ or 115 lb/ft³

Concrete, 1:2:4 Mix, Compressive Strengths at Various Ages.

Experimental Values: one part cement, two parts Ohio River sand and four parts of coarse aggregate as shown. Compressive tests made on 203.2 mm (8 in.) diameter cylinders, 406.4 mm (16 in.) long. (After Pittsburgh Testing Laboratory Results. See Rwy Age, vol. 64, Jan. 18, 1918, pp. 165-166.)

	Unit.		Ag	ze.	
Coarse aggregate.	Unit.	r4 days.	30 days.	60 days.	180 days.
Gravel	kg/mm ²	1.35	1.61	2.06	2.67
	$ m lb/in^2$	1921	2294	2925	3798
Limestone	$ m kg/mm^2$	1.24	1.53	2.35	3.11
	lb/in²	1758	2174	3343	4426
Trap rock	kg/mm^2	1.45	1.67	2.36	3.39
	lb/in²	2063	2386	3360	4819
Granite	kg/mm ²	1.49	1.61	2.14	2.92
	lb/in²	2122	2292	3043	4151
Slag No. 1	kg/mm ²	1.75	2.16	2.37	3.38
	lb/in²	2484	3075	3365	4803
Slag No. 2.	kg/mm ²	1.37	1.78	2.06	2.64
	lb/in²	1941	2525	2930	3753

Note. — Maximum and minimum test results varied about 5 per cent above or below average values shown above. SMITHSONIAN TABLES.

TABLE 73

MECHANICAL PROPERTIES

Stone and Clay Products

(a) STRENGTH AND STIFFNESS OF AMERICAN BUILDING STONES *

	(-)													
	Weig			mpressio ate strer		Mo	lexure odulus upture	of		Shear. Ultimat strength	e	Mod	Flexure, ulus of elas	ticity.
Stone.		-3	Ave	rage.	nt.	Ave	rage.	e nt.	Ave	erage.	e ort.	A	verage.	e nt.
	g/cm³	lb/ft³	kg/mm²	lb/in²	lb/in² g		$\mathrm{lb/in^2}$	Ib/in ² § Range per cent.		$1\mathrm{b/in^2}$	Range per cent.	kg/mm ²	lb/in²	Range per cent.
Granite Marble Limestone	2.6 2.7 2.6	165 170 160		20,200		1.15	1500	50	0.90	2300 1300 1400	20 25 45	5750	7,500,000 8,200,000 8,400,000	25 50 65
Sandstone.	2.2	135		12,500			1500			1700	45	0 /	3,300,000	

* Values based on tests of American building stones from upwards of twenty-five localities, made at Watertown (Mass.) Arsenal (Moore, p. 184). Each value shown under "Range" is one half the difference between maximum and minimum locality averages expressed as a percentage of the average for the stone.

(b) STRENGTH AND STIFFNESS OF BAVARIAN BUILDING STONES*

	Weig			mpressio ate strei		M	lexure odulus upture	of		Shear. Ultimat Strength		Flexure. Modulus of elasticity		
Stone.	a v circ		Ave	rage.	nge cent.	Ave	rage.	e nt.	Ava	rage.	e nt.	A	verage.	e nt.
	g/cm³	lb/ft³	kg/mm²	lb/in²	Range per cent	kg/mm²	lb/in²	Range per cent.	kg/mm²	lb/in^2	Range per cent.	kg/mm²	lb/in²	Range per cent.
Granite.	2,66	165	12 70	19,500	5	0.90	1300	5	1.00	T.4.20		1600	2,300,000	30
Marble ‡.	2.16	135	5.60		_	0.30	450		0.45		50		4,900,000	
Limestone		155		11,500		1.10		45	0.60		20		3,350,000	90
Sandstone		145		11,500		0.45	650	55	0.50		35		3,550,000	35
		,										1		

^{*} Values based on careful tests by Bauschinger, "Communications," Vol. 10.

General Notes.— 1. Later transverse strength (flexure) tests on Wisconsin building stones (Johnson's "Materials of Construction," 1918 ed., p. 255) show moduli of rupture as follows: Granite, 1.90 to 2.75 kg/mm² or 2710 to 3910 lb/in²; limestone, 0.80 to 3.30 kg/mm² or 1160 to 4660 lb/in²; sandstone, 0.25 to 0.95 kg/mm² or 360 to 1320 lb/in².

2. Good slate has a modulus of rupture of 4.90 kg/mm² or 7000 lb/in² (loc. cit., p. 257).

[†] Shearing strength determined perpendicular to bed of stone.

I Values are for Jurassic limestone.

Stone and Clay Products

(c) STRENGTH OF AMERICAN BUILDING BRICKS *

Brick — description.	Absorption average	Comp	oression. t. strength.	Flex Min. modul	ure. us rupture.
	per cent.	kg/mm ²	lb/in²	kg/mm ²	lb/in²
Class A (Vitrified)	12	3.50 2.45 1.40 1.05	5000 3500 2000 1500	0.65 0.40 0.30 0.20	900 600 400 300

^{*} After A. S. T. M. Committee C-3, Report 1913, and University laboratories' tests for Committee C-3 (Johnson, p. 281).

(d) STRENGTH IN COMPRESSION OF BRICK PIERS AND OF TERRA-COTTA BLOCK PIERS Tabular values are based on test data from Watertown Arsenal, Cornell University, U. S. Bureau of Standards, and University of Ill. (Moore, p. 185).

Brick or block used.	Mortar.	Compre Av. ult. s	ssion.*
		kg/mm²	lb/in²
Vitrified brick	1 part P. cement: 3 parts sand 2 part lime: 3 parts sand	0.50	2800 2000 1400 1000 700
Terra-cotta brick	1 part P. cement: 3 parts sand	2.10	3000

^{*}Building ordinances of American cities specify allowable working stresses in compression over bearing area of 12.5 per cent (vitrified brick) to 17.5 per cent (common brick) of corresponding ultimate compressive strength shown in table.

† P. denotes Portland.

(e) STRENGTH OF COMPRESSION OF VARIOUS BRICKS

Reasonable minimum average compressive strengths for other types of brick than building brick are noted by Johnson, "Materials of Construction," pp. 289 ff., as follows:

Brick.	kg/mm²	lb/in²
sand-lime sand-lime (German) paving acid-refractory silica-refractory	2.10 1.53 5.60 0.70 1.40	3000 2180 (av. 255 tests) 8000 1000 2000

The specific gravity of brick ranges from 1.9 to 2.6 (corresponding to 120 to 160 lb/ft³). Building tile: hollow clay blocks of good quality, — minimum compressive strength: 0.70 kg/mm² or 1000 lb/in². Tests made for A. S. T. M. Committee C-10 (A. S. T. M. Proc. XVII, I, p. 334) show compressive strengths ranging from 0.45 to 8.70 kg/mm² or 640 to 12,360 lb/in² of net section, corresponding to 0.05 to 4.20 kg/mm² or 95 to 6000 lb/in² of gross section. Recommended safe loads (Marks, "Mechanical Engineers' Handbook," p. 625) for effective bearing parts of hollow tile: hard fire-clay tiles 0.06 kg/mm² or 80 lb/in²; ordinary clay tiles 0.04 kg/mm² or 60 lb/in²; porous terracotta tiles 0.03 kg/mm² or 40 lb/in.² The specific gravity of tile ranges from 1.9 to 2.5 corresponding to a weight of 120 to 155 lb/ft³.

TABLE 74

MECHANICAL PROPERTIES

Rubber and Leather

(a) RUBBER, SHEET *

		Ultimate	e strength.		Ult. elo	ngation.	Se	t.‡
Grade.	Longitu	tudinal.† Transverse.			Longit.	Transv.	Longit.	Transv.
	kg/mm²	lb/in²	kg/mm²	lb/in²	Per	cent.	Per	cent.
ı	1.92	2730	1.81	2575	630	640	11.2	7.3
. 2	1.45	2070	1.43	2030	640	670	6.0	5.0
3	0.84	1200	0.89	1 260	480	555	22.I	16.3
4	1.30	1850	1.20	1700	410	460	34.0	24.0
5	0.48	690	0.36	510	320	280	27.5	25.0
6	0.62	880	0.48	690	315	315	34.3	25.9

- * Data from Bureau of Standards Circular 38.
- † Longitudinal indicates direction of rolling through the calendar.
- ‡ Set measured after 300 per cent elongation for 1 minute with 1 minute rest.

The specific gravity of rubber averages from 0.95 to 1.25, corresponding to an average weight of 60 to 80 lb/ft³.

Four-ply rubber belts show an average ultimate tensile strength of 0.63 to 0.65 kg/mm² or 890 to 930 lb/in² (Benjamin), and a working tensile stress of 0.07 to 0.11 kg/mm² or 100 to 150 lb/in² is recommended (Bach).

(b) LEATHER, BELTING

Oak tanned leather from the center or back of the hide:

Minimum tensile strengths of belts \[\single 2.8 kg/mm^2 \] or 4000 lb/in² \[\langle (Mark's, p. 622) \] \[\langle double 2.5 kg/mm^2 \] or 3600 lb/in²

Modulus of elasticity of leather varies from an average value of 12.5 kg/mm² or 17,800 lb/in² (new) to 22.5 kg/mm² or 32,000 lb/in² (old).

Chrome leather has a tensile strength of 6.0 to 0.1 kg/mm² or 8500 to 12,900 lb/in².

The specific gravity of leather varies from 0.86 to 1.02, corresponding to a weight of 53.6 to 63.6 lb./ft³.

TABLE 75

MECHANICAL PROPERTIES

Manila Rope

Manila Rope, Weight and Strength — Specification Values. From U. S. Government Standard Specifications adopted April 4, 1918.

Rope to be made of manila or Abaca fiber with no fiber of grade lower than U. S. Government Grade I, to be three-strand,* medium-laid, with maximum weights and minimum strengths shown in the table below, lubricant content to be not less than 8 nor more than 12 per cent of the weight of the rope as sold.

Approxi diamet	mate er.	Circumf	erence.	Maximum	net weight.	Minimum strer	breaking agth.
mm	in.	mm	in.	kg/m	lb/ft.	kg	lb.
mm 6.3 7.9 9.5 11.1 11.9 12.7 14.3 15.9 19.1 20.6 22.2 25.4 27.0 28.6 31.8	in. 14 4 16 28 8 7 16 28 8 7 16 55 8 34 16 7 8 1 17 17 18 11 17 18 11 14	19.1 25.4 28.6 31.8 34.9 38.1 44.5 50.8 57.2 63.5 69.9 76.2 82.6 88.9 95.2	in. 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.029 0.044 0.061 0.080 0.095 0.109 0.153 0.195 0.241 0.284 0.328	0.0196 0.0286 0.0408 0.0539 0.0637 0.0735 0.1029 0.1307 0.1617 0.1911 0.2205 0.2645 0.3087 0.3528 0.4115	320 540 660 790 950 1,110 1,430 1,810 2,220 2,680 3,170 3,720 4,310 4,990 5,670	1b. 700 1,200 1,450 1,750 2,100 2,450 3,1150 4,900 5,900 7,000 8,200 9,500 11,000 12,500
33.3 34.9 38.1 39.4 41.2 44.5 50.8 52.4 57.2 63.5 66.7 73.0 76.2 79.4 82.5	$\begin{array}{c} 1 \frac{5}{16} \\ 1 \frac{3}{8} \\ 1 \frac{1}{2} \\ 1 \frac{9}{16} \\ 1 \frac{5}{5} \\ 1 \frac{3}{4} \\ \\ 2 \\ 2 \frac{1}{16} \\ \\ 2 \\ 2 \\ 5 \\ 5 \\ \\ 3 \\ 3 \\ 3 \\ \\ 4 \\ \\ 3 \\ \\ 4 \\ \\ 5$	101.6 108.0 114.3 120.7 127.0 140.0 152.4 165.1 177.8 190.5 203.2 215.9 228.6 241.3 254.0	4 44 44 44 43 5 5 52 6 6 6 6 7 7 2 8 8 8 2 9 9 10	0.700 0.787 0.875 0.984 1.094 1.312 1.576 1.823 2.144 2.450 2.799 3.136 3.543 3.936 4.375	0.4703 0.5290 0.5879 0.6615 0.7348 0.8818 1.059 1.225 1.441 1.646 1.881 2.107	6,440 7,260 7,940 8,840 9,750 11,550 13,610 15,420 17,460 19,730 22,220 24,940 27,670 30,390 33,110	14,200 16,000 17,500 19,500 21,500 25,500 30,000 34,000 43,500 49,000 55,000 61,000 67,000 73,000

^{*} Four-strand, medium-laid rope when ordered may run up to 7% heavier than three-strand rope of the same size, and must show 95% of the strength required for three-strand rope of the same size.

132 TABLE 76.—	Mecha	nical	Prop	erties	of H	ardw	oods (Frown	in U	. S. (Metri	c Uni	ts)	
		cific	Sta	tic bend			t bend-	Co	ompressi	ion.	Shear.	Ten- sion.	Har	dn
Common and botanical name.	oven	vol. oven- dry.	P-limit, kg/mm2	Modulus of rupture, kg/mm ²	Modulus of elasticity, kg/mm ²	P-limit, kg/mm ²	22.7 kg hammer fall for failure—m.	P- limit	rallel rain. Ultimate.	Perpendicular to grain P-limit, kg/mm²	Parallel to grain ult. st. kg/mm ²	Perpendicular to grain ult. st. kg/mm²	Loa 1/2 in 11.3 d. end kg	mt 3 D
1	4	5	6	7	8	9	10	11	12	13	14	15	16	-
														-
(Alnus oregona)	0.37	0.43	2.65	4.55	830	5.60	0.56	1.85	2.10	0.22	0.54	0.27	250	
Ash, black	0.46	0.53	1.85	4.20	720	5.10	0.81	1.15	1,60	0.31	0.61	0.35	270	
(Fraxinus americana) Ash, white (second growth)	0.52	0.71	3 - 45	7.60	950	9.70	0.91	2.30	2.70	0.57	1.13	0.44	455	
(Fraxinus americana) Aspen	0.36	0.42	2.05	3.75	590	4.85	0.71	1.10	1.50	0.14	0.44	0.13	120	
(Populus tremuloides) Basswood	0.33	0.40	1.90	3.50	725	4.35	0.43	1.20	1.55	0.15	0.43	0.20	125	
(Tilia americana) Beech	0.54	0.66	3.15	5.80	875	7.30	1.02	1.80	2.30	0.43	0.85	0.56	430	
(Fagus atropunicea) Birch, paper	0.47	0.60	2.05	4.10	710	5.50	1.14	1.20	1.55	0.21	0.56	0.27	180	
Birch, yellow	0.54	0.66	3.25	6.05	1080	8.25	1.02	1.90	2.40	0.32	0.78	0.34	370	
(Betula lutea) Butternut	0.36	0.40	2.05	3.80	680	5.15	0.61	1.40	1.70	0.19	0.53	0.30	185	
(Juglans cinerea) Cherry, black	0.47	0.53	2.95	5.65	920	7.20	0.84	2.10	2.50	0.31	0.80	0.40	340	
(Prunus serotina) Chestnut	0.40	0.46	2.20	3.95	655	5-55	0.61	1.45	1.75	0.27	0.56	0.30	240	
(Castanea dentata)	0.37	0.43	2.05	3.75	710	5.05	0.53	1.25	1.60	0.17	0.48	0.29	175	
(Populus deltoides) Cucumber tree	0.44	0.52	2.95	5.20	1100	6.55	0.76	1.95	2.20	0.29	0.70	0.31	270	
(Magnolia acuminata) Dogwood (flowering)	0.64	0.80	3.40	6.20	830	5.00	1.47	_	2.55	0.73	1.07	-	640	1
(Cornus florida) Elm, cork	0.58	0.66	3.25	6.70	840	7.75	I.27	2.00	2.70	0.53	0.89	0.47	445	
(Ulmus racemosa) Elm, white	0.44	0.54	2.55	4.85	725	5.70	0.86	1.60	2.00	0.28	0.65	0.39	275	
(Ulmus americana) Gum, blue	0.62	ი.80	5.35	7.85	1430	10.00	1.02	3.40	3.70	0.72	1.09	0.45	595	
(Eucalyptus globulus) Gum, cotton	0.46	0.52	2.95	5.15	740	6.30	0.76	1.95	2.40	0.42	0.84	0.42	365	
(Nyssa aquatica) Gum, red (Liquidambar styraciflua)	0.44	0.53	2.60	4.80	810	7.05	0.84	1.70	1.95	0.32	0.75	0.36	285	
Hickory pecan	0.60	0.69	3.65	6.90	950	8.65	1.35	2.15	2.80	0.63	1.04	0.48	575	
Hickory, shagbark	0.64	-	4.15	7.75	1105	10.10	1.88	2.40	3.20	0.70	0.93	-	_	
Holly, American	0.50	0.61	2.40	4.55	630	6.25	1.30	1.40	1.85	0.43	0.80	0.43	390	
Laurel, mountain	0.62	0.74	4.10	5.90	650	7.20	0.81	-	3.00	0.78	1.18	-	635	
Locust, black	0.65	0.71	6.20	9.70	1300	12.90	I.I2	4.40	4.85	1.01	I.24	0.54	740	
Locust, honey	0.65	0.67	3.95	7.20	910	8.30	1.20	2.35	3.10	1.00	1.17	0.66	655	
Magnolia (evergreen) (Magnolia foetida)	0.46	0.53	2.55	4.80	780	6.20	1.37	1.55	1.90	0.40	0.73	0.43	355	
Maple, silver(Acer saccharinum)	0.44	0.51	2.20	4.10	660	4.80	0.74	1.35	1.75	0.32	0.74	0.39	305	1
Maple, sugar(Acer saccharum)	0.56	0.66	3.50	6.40	1010	8.50	0.91	2.20	2.80	0.53	0.97	0.54	455	
Oak, canyon live	0.70	0.84	4.45	7.45	945	7.90	I.20	2.85	3.30	1.04	I.20	0.68	720	1
Oak, red(Quercus rubra)	0.56	0.65	2.60	5.40	910	7.30	1.04	1.65	2.25	0.51	0.79	0.52	465	1
Oak, white(Quercus alba)	0.60	0.71	3.30	5.85	880	7.55	1.07	2.10	2.50	0.59	0.88	0.54	510	4
Persimmon(Diospyros virginiana)	0.64	0.78	3.95	7.05	965	8.50	1.04	2.15	2.95	0.78	1.03	0.54	565	
Poplar, yellow	0.37	0.42	2.25	3.95	850	5.65	0.43	1.40	1.80	0.22	0.56	0.32	190	
Sycamore	0.46	0.54	2.30	4.60	745	6,20	0.84	1.70	2.00	0.32	0.71	0.44	320	1
Walnut, black	0.51	0.56	3.80	6.70	1000	8.40	0.94	2.55	3.05	0.42	0.86	0.43	435	4
Willow, black(Salix nigra)	0.34	0.41	1.25	2.75	395	3.60	0.91	0.70	1.05	0.15	0.44	0.30	160	1

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 50.8 by 50.8 mm in section, 762 mm for bending; others, shorter. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 1 tests. See pages 133 and 135 for explanation of columns.

SMITHSONIAN TABLES.

TABLE 77	-Meen	anica	1 110	pertic	01 0	7011110	15 01							
	Spe	cific	Sta	itic ben			t bend-	Co	mpressi	ion.	Shear.	Ten- sion.	Hard	lness.
mon and botanical name.	over base	vity, a-dry, ed on	P-limit, kg/mm ²	Modulus of rupture, kg/mm²	lulus of y, kg/mm ²	, kg/mm²	s hammer nilure — m		rain.	Perpendicular to grain P-limit, kg/mm²	allel to grain st, kg/mm²	Perpendicular to grain ult. st. kg/mm²	½ in	d to nbed mm ball
	vol. when green.	vol. oven- dry.	P-limit	Mod	Modulus of elasticity, kg/n	P-limit,	fall for failure -	limit.	mate.	Perpen grain kg	Parallel ult. st, k	Perpen grain kg,	end kg	side kg
1	4	5	6	7	8	9	10	11	12	13	14	15	16	17
incense	0.35	0.36	2.75	4.35	590	5.15	0.43	2.00	2.20	0.32	0.58	0.20	260	175
Port Orford,aecyparis lawsoniana)	0.41	0.47	2.75	4.80	1055	6.55	0.64	2.10	2.30	0.27	0.62	0.17	255	220
western red	0.31	0.34	2.30	3.65	670	5.05	0.43	1.75	2.00	0.22	0.51	0.15	195	118
white	0.29	0.32	1.85	2.95	450	3.75	0.38	1.00	1.40	0.20	0.44	0.17	145	104
s, baldodium distichum)	0.41	0.47	2.80	4.80	835	5.60	0.61	2.20	2.45	0.33	0.58	0.20	215	175
iabilises amabilis)	0.37	0.42	2.75	4.45	915	5.50	0.53	1.70	2.00	0.22	0.47	0.17	165	140
lsames balsamea) ouglas (1)	0.34	0.41	3.50	3.45	675	4.85 6.60	0.41	2.40	2.80	0.15	0.43	0.23 0.14	230	215
udotsuga taxifolia) puglas (2)	0.40	0.44	2.55	4.50	830	6.40	0.51	1.80	2.10	0.37	0.62	0.25	205	180
udotsuga taxifolia)	0.37	0.42	2.55	4.30	915	5.70	0.56	1.90	2.10	0.24	0.53	0.16	190	165
es grandis) ble	0.35	0.41	2,40	4.00	900	5.55	0.51	1.70	1.90	0.22	0.49	0.13	135	115
es nobilis) itees concolor)	0.35	0.44	2.75	4.20	795	5.05	0.46	1.85	1.95	0.31	0.51	0.18	175	150
ck, eastern	0.38	0.44	2.95	4.70	790	5 - 55	0.51	1.90	2.30	0.35	0.62	0.18	230	185
ga canadensis) ck, western	0.38	0.43	2.40	4.30	835	5.50	0.51	1.60	2.05	0.25	0.57	0.18	245	195
ga heterophylla) westeraix occidentalis)	0.48	0.59	3.25	5.25	950	6.60	0.61	2.30	2.70	0.39	0.65	0.16	215	205
uban	0.58	0.68	3.95	6.20	1150	7.95	0.94	2.80	3.15	0.41	0.72	0,20	260	285
us neterophytia) pblolly us taeda) pdgepole	0.50	0.59	3.10	5.30	970	6.70	0.81	2.00	2.50	0.39	0.63	0.20	185	205
odgepoleus contorta)	0.38	0.44	2.10	3.85	760	5.05	0.51	1.50	1.85	0.22	0.49	0.15	145	150
mgleafus palustris)	0.55	0.64	3.80	6.10	1150	7.60	0.86	2.70	3.10	0.42	0.75	0.20	250	270
Norway	0.44	0.51	2.60	4.50	970	5.35	0.71	1.75	2.20	0.25	0.55	0.13	165	155
itchus rigida)	0.47	0.54	2.60	4.70	790	6.40	0.74	1.50	2.15	0.36	0.67	0.25	210	220
hortleafus echinata)	0.50	0.58	3.15	5.65	1020	7.90	0.99	2.50	2.70	0.34	0.63	0.23	2 20	255
ugar us lambertiana)	0.36	0.39	2.30	3.75	685	4.70	0.43	1.65	1.85	0.25	0.50	0.19	150	145
restern whiteus monticola)	0.39	0.45	2.45	4.00	935	5.35	0.58	1.95	2.15	0.21	0.50	0.18	150	150
restern yellow us ponderosa)	0.38	0.42	3.20	3.65	710	4.70	0.48	1.45	1.75	0.24	0.48	0.20	140	145
hite	0.36	0.39	2.40	3.75	750	4.55	0.46	1.65	1.90	0.22	0.45	0.18	135	135
us strobus) , red	0.48	0.41	2.40	4.00	830	5.05	0.46	1.65	1.95	0.25	0.54	0.15	190	160
a rubens) ;, Sitka	0.34	0.37	2.10	3.85	830	5.05	0.74	1.60	1.85	0.23	0.55	0.16	195	170
ea sitchensis) ackix laricina)	0.49	0.56	2.95	5.05	875	5.50	0.71	2.20	2.45	0.34	0.66	0.18	185	170
restern	0.60	0.67	4 - 55	7. 10	695	9.20	0.97	2.40	3.25	0.73	1.14	0.32	610	520

OTE. — The data above are extracted from tests on one hundred and twenty-six species of wood made at the Forest Products bry, Madison, Wisconsin. Bulletin 556 records results of tests on air-dry timber also, but only data on green timber are shown, tter are based on a larger number of tests and on tests which are not influenced by variations in moisture content. The of dry material usually exceeds that of green material, but allowable working stresses in design should be based on strengths timber, inasmuch as the increase of strength due to drying is a variable, uncertain factor and likely to be offset by defects, specimens were two inches square, by lengths as shown.

COLUMN Notes. — 2, Locality where grown, — see Tables 78 and 79; 3, Moisture includes all matter volatile C expressed as per cent of ordinary weight; 5, Weight, air-dry is for wood with 12 per cent moisture; sity, see metric unit tables 76 and 77; 6-10, 762 mm (30 in.) long specimen on 711.2 mm (28 in.) span, with center.

34 TABLE 78.—					Sta	tic bendi	ng.	Impact bending.	Compr	ession.	Shear.	Ten-
Common and botanical name.	Locality where grown.	Moisture content, green, per cent.	Green.	Air-dry.	P-limit, lb/in²	Modulus of rupture, lb/in²	Modulus of elasticity 1000 Xlb/in²	P-limit, lb/in²	Parallel to grain. P- limit. lb/in²	Perpendicular to grain, P-limit lb/in²	Parallel to grain, ult. st. lb/in²	Perpendicular to grain, ult. st. lb/in²
1	2	3	4	5	6	7	8	9	11	13	14	15
Alder, red	Wash.	98	46	28	3800	6500	1170	8000	2650	310	770	390
	Mich. and	83	53	34	2600	6000	1020	7200	1620	430	870	490
(Fraxinus nigra) Ash, white (forest grown).	Wis. Ark. and W.	43	46	40	4900	9100	1350	11700	3230	800	1260	620
(Fraxinus americana) Ash, white (2d growth)	Va. N. Y.	40	51	46	6100	10800	1640	13800	3820	790	1600	790
(Fraxinus americana) Aspen	Wis.	107	47	27	2900	5300	840	6900	1620	200	620	180
(Populus tremuloides) Basswood	Wis. and Pa.	103	41	26	2700	5000	1030	6200	1710	210	610	280
(Tilia americana)	Ind. and Pa.	62	55	44	4500	8200	1240	10400	2550	610	1210	760
(Fagus atropunicea) Birch, paper	Wis. and Pa.	72	51	38	2900	5800	1010	7800	1650	300	790	380
(Betula papyrifera) Birch, yellow	Wis.	68	58	45	4600	8600	1540	11700	2760	450	1110	480
(Betula lutea) Butternut	Tenn. and	104	46	27	2000	5400	970	7300	1060	270	760	430
(Juglans cinerea) Cherry, black	Wis. Pa.	55	46	36	4200	8000	1310	10200	2940	440	1130	570
(Prunus serotina)	Md. and Tenn.	122	55	30	3100	5600	930	7900	2040	380	800	430
(Castanea dentata)	Mo.	111	49	29	2900	5300	1010	7200	1770	240	680	410
(Populus deltoides) Cucumber tree	Tenn.	80	50	33	4200	7400	1560	9300	2760	410	990	440
(Magnolia acuminata)	Tenn.	62	65	54	4800	8800	1180	7100	2,00	1030	1520	_
(Cornus florida)	Wis.	50		45	4600	9500			2870		1270	660
Elm, cork(Ulmus racemosa)	Wis. and Pa.	88	54		3600		1190	11000		750		560
Elm, white(Ulmus americana)			52	35		6900	1030	8100	2290	390	920	640
Gum, blue	Cal.	79	70 56	54	7600	11200	2010	14200	4870	1020	1550	600
Gum, cotton	La.	97		34	4200	7300	1050	9000	2760	590	1190	
Gum, red(Liquidambar styraciflua)	Mo.	81	50	36	3700	6800	1150	10000	2360	460	1070	510
Hickory, pecan (Hicoria pecan)	Mo.	63	61	46	5200	9800	1370	12300	3040	960	1480	630
	O., Miss., Pa. and W. Va.	60	6.4	51	5900	11000	1570	1,4400	3430	1000	1320	_
Holly, American (Ilex opaca)	Tenn.	82	57	40	3400	6500	900	8900	1970	610	1130	610
Laurel, mountain (Kalmia latifolia)	Tenn.	62	62	49	5800	8400	920	10200	_	1110	1670	
Locust, black	Tenn.	40	58	49	8300	13800	1850	18300	6280	1430	1760	770
Locust, honey	Mo. and Ind.	63	01	47	5600	10200	1290	11800	3320	1420	1 660	930
Magnolia (evergreen) (Magnolia foetida)		117	62	35	3600	6800	1110	8800	2200	570	1040	610
Maple, silver(Acer saccharinum)	Wis.	66	46	34	3100	5800	940	6800	1950	460	1050	560
Maple, sugar(Acer saccharum)	Ind., Pa. and Wis.	60	56	44	5000	9100	1480	12100	3120	750	1380	770
Oak, canyon live (Quercus chrysolepsis)	Wis. Cal.	62	71	56	6300	10600	1340	11200	4050	1480	1700	970
Oak, red(Quercus rubra)	Ark., La., Ind. and Tenn.	84	64	45	3700	7700	1290	10400	2330	730	1120	740
Oak, white(Quercus alba)	Ark., La. and Ind.	68	62	47	4700	8300	1250	10700	2990	830	1250	770
Persimmon(Diospyros virginiana)	Mo.	58	63	53	5600	10000	1370	12100	3030	1110	1470	770
Poplar, yellow	Tenn.	64	38	28	3200	5600	1210	8000	2000	310	790	460
Sycamore(Platanus occidentalis)	Ind. and Tenn.	83	52	35	3300	6500	1060	8800	2390	450	1000	630
Walnut, black	Ky.	81	58	39	5400	9500	1420	11900	3600	600	1220	570
(Juglans nigra)			•		1		1	-	<u> </u>	-		

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 2 by 2 inches in section, 30 inches long for bending; others, shorter. Tested in a green condition. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 133 and 135 for explanation of columns.

IABLE 10.	-M2COHallioa											
		t,	Wei	ght.	Sta	tic bendi		Impact bending.	Compre	ession.	Shear.	Ten- sion.
Common and botanical	Locality	Moisture content, green, per cent.			'in²	of /in²	of elas- Xlb/in²	$/\mathrm{in}^2$	Parallel to grain	ar to mit	to grain, . lb/in²	ar to lb/in²
name.	where grown.	een, p	Green.	Air- dry.	P-limit, lb/in²	Modulus of rupture, lb/in²	y ooo	P- limit, lb/in²	P- limit.	Perpendicular to grain, P-limit lb/in²	lel to g	Perpendicular t grain, ult. st. lb/
		Mc	lb/	ft³	P-lir	Me	Modulus o	P- li	lb/in²	Perpe	Parallel to ult. st.	Perp grain,
1	2	3	4	5	6	7	8	9	11	13	14	15
Cedar, incense	Cal. and Ore.	108	45	24	3900	6200	840	7300	2870	460	830	280
(Libocedrus decurrens) Cedar, Port Orford (Chamaecyparis law-	Ore.	52	39	31	3900	6800	1500	9300	3970	380	880	240
soniana) Cedar, western red (Thuja plicata)	Wash. and Mont.	39	27	23	3300	5200	950	7100	2500	310	720	210
Cedar, white	Wis.	55	28	21	2600	4200	640	5300	1420	290	620	240
(Thuja occidentalis) Cypress, bald (Taxodium distichum)	La. and Mo.	87	48	30	4000	6800	1190	8000	3100	470	820	280
Fir, amabilis	Ore. and	102	47	27	3900	6300	1300	7800	2380	320	670	240
(Abies amabilis) Fir, balsam	Wash. Wis.	117	45	25	3000	4900	960	6900	2220	210	610	180
(Abies balsamea) Fir, Douglas (1)	Wash, and	36	38	34	5000	7800	1580	9400	3400	530	910	200
(Pseudotsuga taxifolia) Fir, Douglas (2)	Ore. Mont. and	38	34	32	3600	6400	1180	9100	2520	450	880	350
(Pseudotsuga taxifolia) Fir, grand	Wyo. Mont. and	94	44	27	3600	6100	1300	8100	2680	340	700	230
(Abies grandis) Fir, noble	Ore. Ore.	41	31	26	3400	5700	1280	7900	2370	310	700	τ80
(Abies nobilis)	Cal.	156	56	26	3000	6000	1130	7200	2610	440	730	260
Fir, white	Tenn, and	105	48	29	4200	6700	1120	7900	2710	500	880	260
(Tsuga canadensia) Hemlock (western)	Wis. Wash.	71	41	20	3400	6100	1190	7800	2290	350	810	260
(Tsuga heterophylla) Larch, western	Mont. and	58	48	37	4600	7500	1350	9400	3250	560	920	230
(Larix occidentalis) Pine, Cuban	Wash. Fla.	47	53	45	5600	8800	1630	11300	3950	590	1030	290
(Pinus heterophylla) Pine, loblolly	Fla., N. and	70	54	39	1400	7500	1380	9500	2870	550	900	280
(Pinus taeda) Pine, lodgepole	Fla., N. and S. Car. Col., Mont.	65	39	28	3000	5500	1080	7200	2100	310	690	220
(Pinus contorta) Pine, longleaf	and Wyo. Fla., La. and	47	50	43	5400	8700	1630	10800	3840	600	1070	290
(Pinus palustris) Pine, Norway	Miss.	54	42	34	3700	6400	1380	7500	2470	360	780	190
(Pinus resinosa) Pine, pitch		85	54	35	3700	6700	1120	9100	2100	510	950	350
(Pinus rigida) Pine, shortleaf		64	50	37	4500	8000	1450	11200	3650	480	890	330
(Pinus echinata) Pine, sugar	Cal.	123	50	26	3300	5300	970	6700	2340	350	710	270
(Pinus lambertiana) Pine, western white	Mont.	58	39	30	3500	5700	1330	7600	2770	300	710	250
(Pinus monticola) Pine, western yellow (Pinus ponderosa)	Col., Mont.,	95	46	28	3100	5200	1010	6700	2080	340	680	280
Pine, white	Ariz., Wash. and Cal. Wis.	74	39	27	3400	5300	1070	6500	2370	310	640	260
(Pinus strobus) Spruce, red	N. H. and Tenn.	43	34	28	3400	5700	1180	7200	2360	350	770	220
(Picea rubens) Spruce, Sitka	Wash.	53	33	26	3000	5500	1180	7900	2280	330	780	230
(Picea sitchensis) Tamarack(Larix laricina)	Wis.	52	47	38	4200	7200	1240	7800	3010	480		
Yew, western	Wash.	44	54	45	6500	10100	990	13100	3400	1040	1620	450
1	·			·				-				

Column Notes (continued).— (7) recommended allowable working stress (interior construction): \(\frac{1}{2}\) tabular value; experimental results on tests of air-dry timber in small clear pieces average 50 per cent higher; kiin-dry, double tabular values; (10) repeated falls of 50-lb. hammer from increasing heights; 11-12, 203.2-mm (8 in.) long specimen loaded on ends with deformations measured in a 152.4-mm (6 in.) gage length; (12) allowable working stress \(\frac{1}{2}\) tabular crushing strength; (13) 152.4-mm (6 in.) long block loaded on its side with a central bearing area of 2580.6-mm² (4 in²) allowable working stress, \(\frac{1}{2}\) tabular value. (14) 50.8-mm by 50.8-mm (2 in.) projecting lip sheared from block; allowable working stress, \(\frac{1}{2}\) tabular value; (15) 63.5-mm (2\) in.) specimen with 25.4-mm (1 in.) free loaded length; allowable working stress, \(\frac{1}{2}\) tabular values in lbs. multiply values of metric tables by 2.2.

TABLES 80 AND 81

ELASTIC MODULI

TABLE 80 .- Rigidity Modulus

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg per sq. mm) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity Modulus.	Refer- ence.	Substance.	Rigidity Modulus.	Reference.
Aluminum	3350 2580 3550 3715 3700 1240 4060 2450 4780 4213 4450 4664 2850 3950 5210 6706 7975 6940 8108 7505 1710 7820 4359	14 5 10 11 5 5 5 5 5 18 10 19 5 15 16 17 16 14 5 16 17 16 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16	Quartz fibre " " " hard-drawn Steel " cast " cast, coarse gr. " silver- Tin, cast " Zinc " Platinum " Glass " Clay rock Granite Marble Slate	2888 2380 2960 2650 2566 2816 8290 7458 8070 7872 1730 1543 3820 6630 6220 2350 2730 1770 1280 1190 2290	20 21 5 10 16 11 16 15 5 11 5 19 16 22

References 1-16, see Table 48. 17 Gratz, Wied. Ann. 28, 1886.

- 18 Savart, Pogg. Ann. 16, 1829. 19 Kiewiet, Diss. Göttingen, 1886.
- 20 Threlfall, Philos. Mag. (5) 30, 1890.
- 21 Boys, Philos. Mag. (5) 30, 1890.
- 22 Thomson, Lord Kelvin.
- 23 Gray and Milne.
- 24 Adams-Coker, Carnegie Publ. No. 46, 1906.

TABLE 81 .- Variation of the Rigidity Modulus with the Temperature

 $n_t = n_o (1 - at - \beta t^2 - \gamma t^3)$, where t = temperature Centigrade.

Substanço	е.	210 a 10	β β 108	γ1010	Authority.
Copper		2652 2153 3200 45 3972 2714 3900 57 8108 200 6940 48 6632 11 2566 38 8290 18	5 36 -23 2 28 6 19 3 12 50 7 38	32 47 -11 -8 11 -9	Kohlrausch-Loomis, Pogg. Ann. 141. Pisati, loc. cit. K and L, loc. cit. Pisati, loc. cit. K and L, loc. cit. Pisati, loc. cit. Pisati, loc. cit. """
Copper Copper (com- mercial) Iron Steel	4.37* a=	.00039 Pla	atinum old ver	6.46*	.00048 Cadmium 2.31 .0058

^{*} Modulus of rigidity in 1011 dynes per sq. cm

TABLE 82 .- Interior Friction at Low Temperatures

C is the damping coefficient for infinitely small oscillations; T, the period of oscillation in seconds; N, the second modulus of elasticity. Guye and Schapper, C. R. 150, p. 963, 1910.

Substance	Cu	Ni	Au	Pd	Pt	Ag	Quartz
Length of wire in cm.	22.5	22.2	22.3	22.2	23.0	17.2	17.3
Diameter in mm	.643	.411	.609	.553	.812	.601	.612
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.1 2.381s 3.32 5.88 2.336s 3.45 3.64 2.274s 3.64	1.34 3.831s 7.54 .417 3.754s 7.85 .556 3.577s 8.65	2.62 6.36	1.67 2.579 5.08 1.25 2.5718 5.12 .744 2.5528 5.19	2.98 1.143s 5.77 4.60 1.133s 3.02 1.111s 6.10	55.8 1.808s 2.71 7.19 1.759s 2.87 1.64 1.694s 3.18	4.69 1.408s 2.26 1.02

TABLE 83 .- Hardness

From Landolt-Börnstein-Meyerhoffer Tables : Auerbachs, Winklemann, Handb. der Phys. 1891.

TABLE 84 .- Relative Hardness of the Elements (Means)

C 10. Ir 6.5 B 9.5 Ge 6.2 Cr 9. Rh 6. Ru 7.5 Mo 6? Ta 7. Mn 6. Os 7. Co 5. W 7. Si 6.5 Zr 4.5	Pt 4.3 Al 2.9 Ti 4.0 Ag 2.7 Pd 4.0 Zn 2.5 Fe 4. Te 2.3 As 3.5 Mg 2.6 Sb 3. Au 2.5 Be 3. Ce 2.5 Cu 3.0 S 2.0	Se 2.0 In 1.2 Cd 2.0 T1 1.2 Sr 1.8 Li 0.6 Bi 1.8 K 0.5 Sn 1.8 Na 0.4 Pb 1.5 Rb 0.3 Ga 1.5 Hg 1.5
---	---	--

TABLE 85.—Ratio, p, of Transverse Contraction to Longitudinal Extension under Tensile Stress (Poisson's Ratio)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
ρ	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.

ρ for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906.

TABLE 86

ELASTICITY OF CRYSTALS *

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma$, $\alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grams per square centimeter.

Barite.
$$\frac{10^{10}}{E} = 16.13\alpha^4 + 18.51\beta^4 + 10.42\gamma^4 + 2(38.79\beta^2\gamma^2 + 15.21\gamma^2\alpha^2 + 8.88\alpha^2\beta^2)$$

$$\frac{10^{10}}{T} = 69.52\alpha^4 + 117.66\beta^4 + 116.46\gamma^4 + 2(20.16\beta^2\gamma^2 + 85.29\gamma^2\alpha^2 + 127.35\alpha^2\beta^2)$$
Beryl (Emerald).
$$\frac{10^{10}}{E} = 4.325\sin^4\phi + 4.619\cos^4\phi + 13.328\sin^2\phi\cos^2\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675\cos^4\phi - 17.536\cos^2\phi\cos^2\phi$$
where $\phi \phi_1 \phi_2$ are the angles which the length, breadth, and thickness of the specimen make with the principal axis of the crystal.

Fluorite.
$$\frac{10^{10}}{E} = 13.05 - 6.26(\alpha^4 + \beta^1 + \gamma^4)$$

$$\frac{10^{10}}{T} = 58.04 - 50.08(\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Pyrite.
$$\frac{10^{10}}{T} = 18.60 - 17.95(\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Rock salt.
$$\frac{10^{10}}{T} = 154.58 - 77.28(\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Sylvite.
$$\frac{10^{10}}{E} = 75.1 - 48.2(\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 36.0 - 192.8(\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Topaz.
$$\frac{10^{10}}{E} = 4.341\alpha^4 + 3.460\beta^4 + 3.771\gamma^4 + 2(3.879\beta^2\gamma^2 + 2.856\gamma^2\alpha^2 + 2.39\alpha^2\beta^2)$$

$$\frac{10^{10}}{E} = 14.88\alpha^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2\alpha^2 + 43.51\alpha^2\beta^2$$
Quartz.
$$\frac{10^{10}}{E} = 12.734(1 - \gamma^2)^2 + 16.693(1 - \gamma^2)\gamma^2 + 9.705\gamma^4 - 8.466\beta\gamma(3\alpha^2 - \beta^2)$$

$$\frac{10^{10}}{E} = 19.665 + 9.060\gamma^2 + 22.984\gamma^2\gamma^2 - 16.920[(\gamma\beta_1 + \beta\gamma_1)(3\alpha\alpha_1 - \beta\beta_1) - \beta_2\gamma_2)]$$

* These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

ELASTICITY OF CRYSTALS

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated. Moduli in grams per sq. cm.

(a) Isometric System *											
Substance.	\mathbf{E}_a	\mathbf{E}_{b}	\mathbf{E}_c	T_a	* Authority.						
Fluorite Pyrite Rock salt Solvite Sodium chlorate Potassium alum Iron alum	$\begin{array}{c} 1473 \times 10^{6} \\ 3530 \times 10^{6} \\ 419 \times 10^{6} \\ 403 \times 10^{6} \\ 401 \times 10^{6} \\ 372 \times 10^{6} \\ 405 \times 10^{6} \\ 181 \times 10^{6} \\ 161 \times 10^{6} \\ 186 \times 10^{6} \end{array}$	1008 × 10 ⁶ 2530 × 10 ⁶ 349 × 10 ⁶ 339 × 10 ⁶ 209 × 10 ⁶ 196 × 10 ⁶ 319 × 10 ⁶ 199 × 10 ⁶ 177 × 10 ⁶	910 × 10 ⁶ 2310 × 10 ⁶ 303 × 10 ⁶	345 × 10 ⁶ 1075 × 10 ⁶ 129 × 10 ⁶ — 655 × 10 ⁶ — —	Voigt.† "Koch.‡ Voigt. Koch. Beckenkamp.\$						

(b) ORTHORHOMBIC SYSTEM |

	Substance.	\mathbf{E}_1	$\mathrm{E_2}$	E_3	E_4	\mathbf{E}_{5}	E_6	Authority.
	Barite . Topaz .	620 × 10 ⁶ 2304 × 10 ⁶	540 × 10 ⁶ 2890 × 10 ⁶	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	376×10^{6} 2670×10^{6}	702 × 10 ⁶ 2893 × 10 ⁶	740 × 10 3180 × 10	Voigt.
-	Substance.			$T_{12} = T_{21}$	$T_{13} = T_3$	T ₂₃ =	= T _{3 2}	Authority.

 293×10^{6}

 1353×10^{6}

 121×10^{6}

 1104×10^{6}

Voigt.

In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

 283×10^{6}

 1336×10^{6}

$$\begin{aligned} & \text{Gypsum} \; \left\{ \begin{array}{l} E_{\text{max}} = 887 \times 10^6 \; \text{at } 21.9^\circ \; \text{to the principal axis.} \\ E_{\text{min}} = 313 \times 10^6 \; \text{at } 75.4^\circ \qquad \qquad \qquad \qquad \qquad \qquad \end{aligned} \right. \\ & \text{Mica} \; \left\{ \begin{array}{l} E_{\text{max}} = 2213 \times 10^6 \; \text{in the principal axis.} \\ E_{\text{min}} = 1554 \times 10^6 \; \text{at } 45^\circ \; \text{to the principal axis.} \end{array} \right. \end{aligned}$$

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6$$
, $E_{45} = 1796 \times 10^6$, $E_{90} = 2312 \times 10^6$,

 $\begin{array}{lll} E_0 = 2165 \times 10^6, & E_{45} = 1796 \times 10^6, & E_{90} = 2312 \times 10^6, \\ T_0 = 667 \times 10^6, & T_{90} = 883 \times 10^6. & The smallest cross dimension of the \end{array}$ prism experimented on (see Table 86), was in the principal axis for this last case.

In the RHOMBOHEDRAL SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$, $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$.

Baumgarten ¶ gives for calcite

$$E_0 = 501 \times 10^6$$
, $E_{-45} = 441 \times 10^6$, $E_{+45} = 772 \times 10^6$, $E_{90} = 790 \times 10^6$.

Barite

Topaz

^{*} In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

[†] Voigt, "Wied. Ann." 31, p. 474, p. 701, 1587; 34, p. 981, 1888; 36, p. 642, 1888

‡ Koch, "Wied. Ann." 18, p. 325, 1882.

§ Beckenkamp, "Zeit. für Kryst." vol. 10.

The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.

¶ Baumgarten, "Pogg. Ann." 152, p. 369, 1879.

MECHANICAL PROPERTIES OF SOME SINGLE METAL CRYSTALS (BRIDGMAN)

All the following metals have an axis of rotational symmetry: Zn and Cd have a 6-fold axis (hexagonal system); Bi, Sb, Te, 3-fold, trigonal; Sn, 4-fold, tetragonal. The rotational axis is taken as the datum line. The notation of Voigt is used (Lehrbuch der Kristallphysik, Berlin, 1910). Bridgman, Proc. Amer. Acad. Arts and Sci., 60, 305, 1925.

TABLE 88.-Elastic Constants, Abs. c.g.s. units

Constan S11	8.23 X	Cd 12.9 X	Bi 26.9 X	Sb 17.7 ×	Te 48.7 X	Sn 18.5 ×	W 2.534 ×
S ₁₂ S ₁₃	10^{-13} $+0.34$ -6.64	-1.5 -9.3	-10^{-13} -14.0 -6.2	-3.8 -8.5	-6.9 -13.8	10 ⁻¹³ -9.9 -2.5	10 ⁻¹³ -0.726 s ₁₂
S ₃₃ S ₄₄ 1/2 S ₆₆	26.38 25.0 s ₁₁ -s ₁₂	36.9 64.0 s ₁₁ -s ₁₂	28.7 104.8 S ₁₁ -S ₁₂	33.8 41.0 s ₁₁ -s ₁₂	23.4 58.1 s ₁₁ -s ₁₂	11.8 57.0 67.5	S ₁₁ 6.55 S ₁₁ -S ₁₂
S ₁₄	0	0	+16	-8.o	-	0	0

TABLE 89.-Linear Compressibility, 1/lo

Pressure in kg/cm² Range 12,000 kg/cm²

Metal		at 30° C		at 75° C
Zn	12.98 X I	$0^{-7}p - 5.32 \times 10^{-12}p^2$	13.55 × 1	$0^{-7}p - 7.82 \times 10^{-12}p^2$
	1.946	- 1.11	2.025	- 1.47
Bi	15.92	-11.1	15.80	-11.6
	6.450	- 4.60	6.423	- 4.57
Sb	16.48	-20.5	16.37	- 18.o
	5.256	- 4.56	5.091	- 3.04
Те	-4.137	+ 9.6	-5.132	+13.2
6	27.48	-52.7	27.77	-53.6
Sn	6.719	- 4.07	6.956	- 3.9 ī
	6.022	- 4.20	6.144	- 4.26

TABLE 90.-Cubic Compressibility

(V/V₀); Pressure kg/cm² Range, 12,000 kg/cm² (calculated)

Metal	at 30° C	at 75° C
Zn	$16.87 \times 10^{-7}p - 8.08 \times 10^{-12}p^2$	$17.60 \times 10^{-7}p - 11.35 \times 10^{-12}p^{2}$
Bi	29.17 - 22.43	29.89 - 31.13
Sb	26.99 - 31.6	26.55 - 25.3
Te	50.82 - 101.1	50.41 - 85.6
Sn	18.76 — 13.6	19.24 — 13.7
W	3.18 — 1.4	3.18 — 1.5

CALCULATIONS INVOLVING THE RELATIONS BETWEEN THE TEMPERA-TURES, PRESSURES, VOLUMES, AND WEIGHTS OF GASES

(Abridged from S. F. Pickering, Bur. Standards Circ. 279, which see for further details.)

Simple laws.—Any amount of gas completely fills the space in which it is confined. The pressure it exerts upon the confining walls depends upon the temperature. A quantity of gas can not be specified by volume only; all three factors-volume, temperature, and pressure—must be stated. The relations between these three factors are expressed by means of the following equation, pv = KT

in which p, v, and T represent simultaneous values of the pressure, volume, and absolute temperature of any definite quantity of gas, while K is a constant, the numerical value of which depends upon the quantity of gas considered and the units in which pressure, volume,

and temperature are measured.

While the behavior of gases at atmospheric pressure closely approximates the equation (1), the relation is not exact. The expansion of air is nearer one 272nd of its volume at

273.1° K. per degree. For most practical purposes such errors may be neglected.

If we take weights of gases proportional to their molecular weights, a new relation of the greatest importance develops: The value of the constant in equation (1) is the same for each gas. It is customary to use as the unit of quantity, the mol, the number of grams of gas equal to the molecular weight. When I mol is the quantity considered, the resulting value of K is designated R.

Absolute	temperature	Pressure		Volume	R
°C + 273.1		. Atmosphere	Liter		0.08206
°C + 273.1		. mm of mercury	do		62.37
°C + 273.1		. Gram per cm²	do		84.79
$^{\circ}\text{C} + 273.\text{I}$. Megabar	do		.08315
°C + 273.1		. Atmosphere	Cubic fee	t	.002898
°C + 273.1		. mm of mercury	do		2.2024
°C + 273.1		. Inches of mercury	do		.08671
°C + 273.1		. Pounds per in.2	do		.04259

With the mol the unit of quantity, N the number of mols of gas, equation (1) becomes bv = NRT

By the use of equation (2), the above table, and a table of molecular weights, the solution of any problem involving volumes, temperatures, pressures, and weights of gases is

very simple.

Mixtures of gases.—Any quantity of gas fills the space in which it is confined and exerts a pressure upon the confining walls. If an additional quantity is added, the pressure is increased in direct proportion to the quantity added. One can regard the pressure exerted by each portion of the total quantity of gas as independent of the presence of the rest. This is true if the second portion of gas is different chemically from the first (Dalton's law),

provided the gases do not react chemically.

Vapor pressure and the effect of vapor pressure upon the measurement of gas.—If a volatile liquid is introduced, a portion evaporates and exerts a pressure on the confining walls. The amount evaporated and the pressure exerted are independent of the presence of any other gas. If there is enough so that not all evaporates and if time is allowed for equilibrium, the pressure is independent of the volume of space and of the amount of liquid left unevaporated; but it does depend upon the temperature. For each volatile liquid there is therefore a definite saturation pressure or vapor pressure corresponding to every temperature (see pages 223 to 232).

When any gas is in contact with a volatile substance, the measured pressure is the pressure exerted by the gas plus the vapor pressure of the volatile material. With no change of temperature, this vapor pressure remains constant no matter how we change the total pressure. Hence for the purposes of volume conversion the saturated gas may be considered as a dry gas, the pressure of which is the partial pressure of the gas, or its equivalent, the difference between the total pressure and the saturated vapor pressure of

the volatile material.

Volume conversions involving high pressures .- In the measurement of gases at high pressures, pressure 2,000 lbs./in.2, the quantity pv is no longer constant at constant temperature, but varies with the pressure by amounts which differ for each gas. Consequently the

relation $p_1v_1/T_1 = p_2v_2/T_2$ is no longer true. In Table 92 $\{273.1/T\}$ pv is given as a function of the pressure. This quantity $\{273.1/T\}$ pv is called the factor (F). Consider the o°C isothermals. They are taken on the basis of pv at o°C and I atm. as unity. The factor for any pressure given by the table will represent the ratio of the value of pv at this pressure to the value of pv at I atmosphere; that is, $(pv)_n/(pv)_1 = F_n$

where F_n is the factor for n atmospheres. This relation, of course, holds for all pressures, therefore, $v_m = v_n \{ P_n F_m / P_m F_n \}$. The corrections are made as though the substance behaved as a perfect gas, and the result multiplied by the ratio of the factor at the desired pressure to the factor at the measured pressure.

TABLES 92 AND 93

TABLE 92.--Values of Factor

 $F = (273.1/T)_{pv}$. (See p. 141)

v = 1 at 1 atm. pressure, o° C

					1 .		0.1.1.		
Atm.	Air	: Holborn	, Schultze,	1915	Argo	n: Holbor	n, Schult	ze, 1915	Neon*
Atm.	o°C	50°C	100°C	200°C	o°C	50°C	100°C	200°C	o°C
10	.9950	.9995	1.0019	1.0059	.9919	.9971	.9998	1.0021	1.0043
25	.9875	.9985	1.0042	1.0082	.9782	.9916	.9982	1.0042	1.0117
50	.9780	.9994	1.0098	1.0175	-9575		.9969	1.0082	1.0233
75	.9720	1.002	1.0189	1.0275	.9401		.9969	1.0136	
100	.9710	1.0075	1.0251	1.0380	.9260	.9744	.9988	1.0195	(1.0490)
	Ualium: I	Jolhorn (Otto, 1922	Hydroger	. Holborn	1020	Ovyge	n. Holbor	n, Otto, 1922
Atm.	Henum:	10100111,		Trydroger	1. 11010011	Holborn, 1920 Oxygen: Holborn			11, Octo, 1922
	o°C	50°C	100°C	o°C	50°C		o°C	20°C	50°C 100°C
10	1.0048	1.0040	1.0033	1.0055	1.0055	.0045	.9915	.9940 .	9972 1.0000
25	1.0127	1.0106	1.0090			.0122	.9778		9915 .9987
50	1.0258	1.0216	1.0183	1.0311	1.0280 1	.0248	.9569	.9692 .	9838 .9975
75	1.0390	1.0327	1.0277			.0375	.9385		9778 .9978
100	1.0522	1.0438	1.0370	1.0640	1.0565 1	.0500	.9238		9740 .9990
	NT:4	rogen Mea	n +	Methane: l	Farras Sm	ith Toube			
Atm.	INIC			Methane.	Leyes, Sin	1011, 101100			
	o°C	50°C	100°C	0°C 50	°C 100°	C 200°C			ommelin, 1915. Otto, 1922,
10	.996	1.000	1.002		9999	3 .999			aylor, 1923.
50	.982	1.002	1.011		41 .97				
100	.982	1.013	1.028		396 .95				
150	1.000	1.037	1.053		73 .94		, ,		
200		1.067	1.082	8	373 .95	0 1.020)		

TABLE 93.—Relative Gas Volumes at Various Pressures

(Deduced by Cochrane, from the pv curves of Amagat and other observers)

Relative volumes when the pressure is reduced from the value given at the head of the column to 1 atmosphere; see also Bur. Standards Circ. 279:

Gas (Temp. = 16°C)	Relative volume which the gas will occupy when the pressure is reduced to atmospheric from								
(1emp. = 10 c)	ı atm.	50 atm.	100 atm.	120 atm.	150 atm.	200 atm.			
"Perfect" gas	I	50	100	120	150	200			
Helium	1		94.6	112.5	141				
Hydrogen	1	48.5	93.6	111.3	136.3	176.4			
Nitrogen	Ι	50.5	100.6	120.0	147.6	190.8			
Air	I	50.9	101.8	121.9	150.3	194.8			
Argon			106.3	127.6	161				
Oxygen	I		105.2			212.6			
Oxygen (at o°C)	1	52.3	107.9	128.6	161.9	218.8			
Carbon dioxide	1	69	477*	485*	498*	515*			

^{*} Carbon dioxide is liquid at pressures greater than 90 atmospheres.

CORRECTING FACTORS: SATURATED GAS VOLUME TO VOLUME AT 760 MM HG AND 0°C

[Multiply observed volumes of saturated gas by factor to correct to volume of dry gas at 760 mm of mercury pressure (o°C) and o°C]

(Abridged from Bur. Standards Circ. 279)

Tem pera tur (°C	a- e	720	725	730	Press	sure mm 740	of Hg.	750	755	760	765	770
5° 6 7 8 9	0.916 .912 .908 .904	0.922 .918 .914 .910	0.928 .924 .920 .916 .912	0.935 .931 .927 .923 .919	0.942 ·937 ·933 ·929 ·925	0.948 ·944 ·940 ·936 ·932	0.954 .950 .946 .942 .938	0.961 ·957 ·952 ·948 ·944	0.967 .963 .959 .955	0.974 .970 .965 .961 .957	0.980 .976 .972 .967	0.986 .982 .978 .974
10 11 12 13 14	.896 .892 .888 .884	.902 .898 .894 .890 .886	.908 .904 .900 .896 .892	.915 .911 .907 .903 .899	.921 .917 .913 .909	.928 .924 .919 .915	.934 .920 .925 .921	.940 .936 .932 .928	.946 .942 .939 .934 .930	.953 .949 .945 .940 .936	.959 .955 .951 .947	.966 .962 .957 .953
15 16 17 18 19	.876 .872 .868 .864 .859	.882 .878 .874 .870 .865	.888 .884 .880 .875 .871	.895 .890 .886 .882	.901 .896 .892 .888 .884	.907 .903 .898 .894 .890	.913 .909 .905 .900	.920 .915 .911 .907	.925 .921 .917 .913	.932 .928 .923 .919	.938 .934 .929 .925	.944 .940 .936 .931
20 21 22 23 24	.855 .851 .847 .842 .838	.861 .857 .853 .848	.867 .863 .858 .854	.874 .869 .865 .860	.879 .875 .871 .866	.886 .881 .877 .872 .868	.892 .887 .883 .878	.898 .893 .888 .884	.904 .899 .894 .890	.910 .906 .901 .897	.916 .912 .907 .903 .898	.922 .918 .913 .909
25 26 27 28 29	.833 .829 .824 .820 .815	.839 .835 .830 .825	.845 .841 .836 .831	.851 .847 .842 .837 .832	.857 .853 .848 .843	.863 .859 .854 .849	.869 .865 .860 .855	.875 .871 .866 .861	.881 .877 .872 .867 .862	.888 .883 .878 .873	.893 .889 .884 .879	.899 .895 .890 .885
30 31 32 33 34	.810 .805 .800 .795 .790	.816 .811 .806 .801	.822 .817 .812 .807	.828 .823 .818 .813	.833 .829 .823 .818	.840 .835 .830 .824	.845 .840 .835 .830 .825	.851 .846 .841 .836 .831	.857 .852 .847 .842 .837	.863 .858 .853 .848	.869 .864 .859 .853	.875 .870 .865 .860 .854
35 36 37 38 39	.785 .780 .774 .769 .763	.790 .785 .780 .774 .768	.796 .791 .785 .780 .774	.802 .797 .791 .786 .780	.808 .802 .797 .791 .785	.814 .808 .803 .796	.819 .814 .809 .803 .797	.825 .820 .814 .809	.831 .826 .820 .814 .809	.837 .832 .826 .820	.843 .836 .832 .826	.849 .843 .838 .832 .826
40 41 42 43 44	.756 .751 .745 .739 .733	.763 .757 .751 .745 .738	.768 .762 .756 .750 .744	.774 .768 .762 .756 .750	.780 -774 .768 .762 -755	.786 .780 .774 .767	.792 .786 .779 .773	.797 .791 .785 .779 .772	.803 .797 .791 .784 .778	.809 .803 .796 .790 .784	.814 .808 .802 .796 .789	.820 .814 .808 .802 .795
45 46 47 48 49	.726 .720 .713 .706 .700	.732 .725 .719 .712 .705	.737 .731 .724 .717 .710	.743 .737 .730 .723 .716	.749 .742 .735 .728 .721	.754 .748 .741 .734 .727	.760 .754 .746 .739 .732	.766 .759 .752 .745 .738	.771 .765 .758 .751 .744	.777 .770 .764 .756 .750	.783 .776 .769 .762 .755	.788 .782 .775 .768 .761

TABLES 95 AND 96

COMPRESSIBILITY OF GASES

TABLE 95.—Compressibility at Ordinary Temperatures

As a measure of the compressibility, it is customary to use a coefficient, $I + \lambda = p_0 v_0 / p_1 v_1$, p_0 , v_0 being at o°C

H ₂ N ₂ O ₂ He Ne A	I + λ = 0.99939 = I.00044 I.00094 0.99948 0.99951 I.00099	± 0.00001 0.00001 0.000013 0.000005 0.000025 0.000026	CO CO ₂ N ₂ O	$1 + \lambda = 1.00081$ 1.00668 1.00747	
W	ild, Philos. Mag., 12, 49	, 1931	Rayleigh, Z. Phys. Chem., 52, 705, 1905		

TABLE 96.—Compressibility at Low Temperatures

pv = 1 for o°, 1 atmosphere

	Table 96a	-Helium		Table 96b.—Hydrogen					
t°C	p atm.	Þυ	Density	t°C	p atm.	Þv	Density		
0.00 "" -103.64 -269.69 -270.52	26.66 38.95 58.58 24.13 49.96 .232 .353 .0308	1.0146 1.0196 1.0294 .6337 .6479 .01126 .01041 .00911	26.28 38.20 56.91 38.07 77.08 20.63 33.92 3.381 7.535	0.00 -103.57 .58 -204.70 . " -257.26	32.313 44.119 38.41 51.49 16.75 37.00 44.63 .06698 .13153	1.0188 1.0266 .6376 .6433 .2404 .2316 .2300 .05783	31.715 43.284 38.41 80.04 69.68 159.7 194.0 1.1582 2.3031		
	Bocke, On	nes, 1924		Nighoff, Ke	eesom, 1928; Onnes, Bra	Onnes, Penn	ing, 1903;		
	Table 96c.	-Neon			Table 96d	.—Argon			
t°C	p atm.	рv	Density	t°C	atm.	рv	Density		
0.0 "" -200.1 -217.5	23.06 30.79 84.66 61.66 79.92 49.93 64.97 79.42	1.0089 1.0147 1.0408 .2337 .2293 .1393 .1269	21.87 30.34 81.35 763.8 348.6 358.5 511.8 632.2	0.0 -102.51 " -130.38 -159.62 -149.60	20.58 31.57 14.86 45.09 62.24 12.77 11.99	.9856 .9774 .5813 .4706 .3939 .4663 .4262	20.88 32.30 25.57 95.80 158.01 27.39 28.12 29.18		
	Onnes, Crom	melin, 1915		Onnes, Crommelin, 1910					
	Table 96e	.—Oxygen		Table 96f.—Nitrogen					
t°C	atm.	ÞФ	Density	t°C	atm.	ÞО	Density		
0 - 80.03 -116.01	20.92 49.79 21.01 34.18 61.88 22.30 43.95 55.05	.9813 .9573 .6550 .6213 .5464 .4835 .3541	21.32 52.01 32.09 55.02 13.23 46.12 124.1 330.2	- 81.10 - 146.32	33.14 43.08 58.63 30.17 45.47 56.71 22.92 30.14 36.49	.9886 .9860 .9834 .6516 .6270 .6109 .3340 .2656 .1058	33.52 43.70 • 59.62 46.13 72.52 92.84 68.62 113.48 344.5		
C	nnes, Kuype	rs, 1923, 1924	ŀ		Onnes, Van	Urk, 1924			

COMPRESSIBILITY OF GASES

TABLE 97.—O, Air, N, and H. Relative Volumes at Various Pressures and Temperatures, the volumes at 0°C and at 1 atmosphere being taken as 1 000 000

Oxygen.			Air.			Nitrogen.			Hydrogen.			
Atm.	o 0	99°-5	1990.5	oo	99 ⁰ -4	2000.4	00	99 ⁰ ·5	1990.6	90	99 ⁰ •3	200°.5
100 200 300 400 500 600 700 800	9265 4570 3208 2629 2312 2115 1979 1879	7000 4843 3830 3244 2867 2610 2417	9095 6283 4900 4100 3570 3202 2929	9730 5050 3658 3036 2680 2450 2288 2168	7360 5170 4170 3565 3180 2904 2699	9430 6622 5240 4422 3883 3502 3219	9910 5195 3786 3142 2780 2543 2374 2240	7445 5301 4265 3655 3258 2980 2775	9532 6715 5331 4515 3973 3589 3300	5690 4030 3207 2713 2387 2149 1972	7567 5286 4147 3462 3006 2680 2444	9420 6520 5075 4210 3627 3212 2900
900	1800 1735	2268 2151	2718	2070 1992	2544 2415	3000 2828	2149 2068	2616	3085	1832	2244 2093	2657

Amagat: C. R. III, p. 871, 1890; Ann. chim. phys. (6) 29, pp. 68 and 505, 1893.

TABLE 98.—Ethylene pv at o°C and I atm. = I

Atm.	00	10 ⁰	200	30°	40°	60°	80°	1000	1370.5	1980.5
46 48 50 52 54 56 100	0.176 - - 0.310 0.441	0.562 0.508 0.420 0.240 0.229 0.227 0.331 0.459	0.684 - 0.629 0.598 0.561 0.524 0.360 0.485	0.73I - - 0.403 0.515	0.814 - - 0.471 0.551	- 0.954 - 0.668 0.649	1.077 - - 0.847 0.776	1.192 - - - 1.005 0.924	1.374 - - - 1.247 1.178	1.652 - - 1.580 1.540
200 300 500 1000	0.565 0.806 1.256 2.289	0.585 0.827 1.280 2.321	0.610 0.852 1.308 2.354	0.638 0.878 1.337 2.387	0.669 0.908 1.367 2.422	0.744 0.972 1.431 2.493	0.838 1.048 1.500 2.566	0.946 1.133 1.578 2.643	1.174 1.310 1.721 2.798	1.537 1.628 1.985

Amagat, C. R. 111, p. 871, 1890; 116, p. 946, 1893.

TABLE 99.-Carbon Dioxide

Pressure in meters of	Relative values of po at—												
mercury	18°.2	35	°.1 4	.0°.2	50°.0	60°.0	70°.0	80	.0	00°.0	100°.0		
30 50 80 110 140 170 200 230 260 290 320	liquid 625 825 1020 1210 1405 1590 1770 1950 2135	17 7 9 11 13 15 16 18	25 50 30 20 10 00 90 70	2460 1900 825 980 1175 1360 1550 1730 1920 22100 2280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2870 2525 1975 1550 1525 1645 1810 2160 2340 2525	5 26 5 22 6 18 6 17 6 17 6 19 6 20 6 22	85 25 45 15 80 30 90 65	3120 2845 2440 2105 1950 1975 2075 2210 2375 2550 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830		
Atm.	Relative values of po; po at o°C and I atm. = I												
	o°	100	20°	30°	40°	60°	80°	100°	137°	198°	258°		
50 100 150 300 500 1000	0.105 0.202 0.295 0.559 0.891 1.656	0.114 0.213 0.309 0.578 0.913 1.685	0.680 0.229 0.326 0.599 0.938 1.716	0.775 0.255 0.346 0.623 0.963 1.748	0.750 0.309 0.377 0.649 0.990 1.780	0.984 0.661 0.485 0.710 1.054 1.848	1.096 0.873 0.681 0.790 1.124 1.921	1.206 1.030 0.878 0.890 1.201 1.999	1.380 1.259 1.159 1.108 1.362	1.582 1.530 1.493 1.678	1.847 1.818 1.820		

Amagat, C. R. 111, p. 871, 1890; Ann. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

COMPRESSIBILITY OF GASES

TABLE 100 .- Some Physical Properties of Compressed Nitrogen

(Abridged from Deming, Shupe, Phys. Rev., 37, 639, 1931; based on data by Bartlett and collaborators,

Journ, Amer. Chem. Soc., 1927-31.)

Tables published by Bartlett et al show compressibility factors pv/(pv), at the different pressures and temperatures. The denominator (pv), is the value of pv at S.T.P. In order to find the specific volume of the gas it is required to know the volume of τ g at S.T.P. Birge gives 22414.1 cc as the volume of a mole of an ideal gas at S.T.P.

 $pp/(pp)_s$ at 1 atm. is close to 1/1.00046. The gas used by Bartlett contained 0.0003 nitrogen and 0.0007 inert gas, presumably argon; the apparent molecular weight is therefore taken as 28.025. The volume adopted for 1 g at S.T.P. is 22414.1/1.00046 \times 28.025 = 799.42 cc, and the value of RT at 0° is 22414.1/28.025 = 799.79 cc atm./g. When one of Bartlett's compressibility factors is divided by the pressure and multiplied by 799.42 the result is the volume in cc of 1 g of the gas at the given temperature and pressure.

For fugacities, see Lewis and Randall, Thermodynamics, 1923.

t p Sp. vol						_Joule-
°C atm. cc/g -70 20 28.50 60 8.84 100 5.08 200 2.72 400 1.89 800 1.50 1200 1.35 60 10.13 100 5.95 200 3.175 60 10.13 400 2.06 800 1.59 1200 1.40 -25 20 35.75 60 11.66 100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 30.67 60 13.11 100 7.88 200 4.13 - 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.00 200 4.52 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 15.87 60 18.52 100 1200 100 20 5.48 60 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.75 200 9.23 400 2.26 800 2.22 1200 1.83	Density	f		<i>m</i> ,		Thomson coefficient
60 8.84 100 5.08 200 2.72 400 1.89 800 1.59 800 1.59 1200 1.35 -50 20 31.75 60 10.13 400 2.06 800 1.59 1200 1.40 -25 20 35.75 60 11.06 100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.07 60 11.00 7.88 200 4.13 400 2.51 800 1.79 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 400 2.51 800 1.79 1200 1.54 20 40.85 20 40.85 20 40.85 20 1.00 8.00 20 45.2 400 2.60 800 1.88 1200 1.60 100 8.60 200 4.52 400 2.60 800 1.88 1200 1.60 100 9.03 200 5.97 400 2.90 800 2.01 1200 1.68 100 20 54.87 100 11.29 200 5.97 400 2.90 800 2.01 1200 1.83 300 20 84.64 800 2.22 1200 1.83 300 20 84.64 800 2.23 1200 1.83 300 20 84.64 800 2.23 1200 1.83 300 20 84.64 800 2.23 1200 1.83 300 20 84.64 800 2.23 1200 1.83 300 20 84.64 800 2.23 1200 1.83 300 20 84.64 800 2.23 1200 1.83 300 20 84.64 800 2.23 1200 1.83 300 20 84.64	ρ g/cc	fugacity atm.	$\left(\frac{-p}{v}\cdot\frac{dv}{dp}\right)_T$	$\left(\frac{T}{v} \cdot \frac{dv}{dT}\right)_p$	ΔC_p cal./mole°	°/atm.
100 5.08	.03508	19.22	1.053	1.102	.50	.627
200 2.72 400 1.89 800 1.50 1200 1.35 -50 20 31.73 400 2.06 800 1.59 1200 1.40 -25 20 35.75 60 11.00 6.95 200 3.44 400 2.28 800 1.69 1200 1.40 -25 20 35.75 60 11.00 7.88 200 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.09 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.97 400 2.06 800 2.01 1200 1.68 100 9.63 200 5.97 400 1.68 100 9.63 200 5.97 400 1.68 100 1.68 100 1.68 100 1.68 100 1.68 100 1.68 100 1.68 100 1.68 100 1.69 100 1.68 100 1.68 100 1.68 100 1.69 100 1.68 100 1.68 100 1.83 100 1.68 100 1.75 200 2.38 800 2.22 1200 1.83 300 2.08 800 2.22 1200 1.83 300 2.08 800 3.06 800 3.06 1200 2.38 800 3.06 1200 2.38		53.31 83.18	1.075	1.530 1.806	1.79	.538
\$00		152.1	1.004	1.564	3.13 5.17	.408 .128
1200		319.2	.403	.918	5.10	013
-50 20 31.75 60 10.13 100 5.95 200 3.13 400 2.06 800 1.59 1200 1.40 -25 20 35.75 60 11.06 100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.60 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.97 400 2.96 800 2.01 1200 1.60 100 100 100 800 800 1.88 1200 1.60 800 1.88 1200 1.60 800 1.88 1200 1.60 800 1.88 1200 1.60 800 1.88 1200 1.60 800 1.88 1200 1.60 800 1.88 1200 1.60 800 1.88 800 2.01		976.2 2545	.280	.551 .356	4.97 4.81	057 074
60 10.13 100 5.95 200 3.13 400 2.06 800 1.59 1200 1.40 -25 20 35.75 60 110.0 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 100 8.60 100 8.60 100 8.60 100 1.88 1200 1.60 100 9.63 100 9.63 100 9.63 100 9.63 100 1.68	.03149	19.48	1.031	1,129	.45	.559
200 3.13 400 1.59 1200 1.40 -25 20 35.75 60 11.06 100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 41.13 . 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 11.20 1.54 20 20 42.74 60 12.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.96 800 2.01 1200 1.68 100 2.05 800 2.01 1200 1.68 100 2.05 800 2.01 1200 1.68 300 2.01 300 2.05 800 2.01 1200 1.83 300 2.02 200 5.95 400 3.42 800 2.22 200 5.95 400 3.42 800 2.22 200 5.95 400 3.42 800 2.23 400 5.09 800 3.06 800 2.21 200 5.95 400 3.42 800 2.22 200 5.95 400 3.42 800 3.66 800 2.23	.09872	55.49 88.75	1.048	1.381	1.43	.463
400 2.06 800 1.59 1200 1.40 -25 20 35.75 60 11.06 100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 100 9.63 200 5.07 400 9.63 200 1.68 100 10 10 10 10 10 10 10 10 10 10 10 10		88.75 168.4	1.000	1.560	2.41	.355
800 1.59 1200 1.40 -25 20 35.75 60 11.66 100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 . 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.59 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.97 400 2.96 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.20 200 5.95 400 3.42 800 2.22 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.90 800 3.06 60 28.73 100 17.57 200 9.23 400 5.90 800 3.06 60 20 212.88 600 20 128.8	.4836	357.8	•775 •472	1.462 •937	3.76 3.84	.136 012
-25 20 35.75 60 11.06 11.06 10.06 9.59 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 30.07 1200 1.54 20 20 42.74 60 14.23 100 8.00 1.60 200 4.52 400 2.60 800 1.60 12.00 1.60 10.00 11.20 1.68 10.00 11.20 1.68 10.00 11.20 1.68 10.00 11.20 1.60 11.2	.6284	1063	.313	.578	3.66	064
60 11.66 100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 41.3 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.97 400 2.96 800 2.01 1200 1.80 11200 1.83 300 2.22 1200 1.83 300 20 84.64 60 28.73 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 800 3.06 1200 2.38 600 2.38 600 2.38		2645	.286	.404	3.48	081
100 6.95 200 3.64 400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.96 800 2.01 1200 1.68 100 11.29 200 5.07 400 1.88 300 2.01 1200 1.68 300 2.01 300 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 800 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 800 3.00 1200 2.38 600 2.21	.02798	19.70 57.43	1.018	1.094 1.266	.36 1.14	.470
400 2.28 800 1.69 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.97 400 2.96 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.29 200 5.97 400 2.96 800 2.01 1200 1.68 300 2.01 300 20 54.87 60 18.52 300 5.97 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.90 800 3.06 60 1200 2.38 600 2.21		93.70	.900	1.377	1.14	.298
800 1.60 1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.60 800 1.88 1200 1.88 1200 1.60 50 20 47.33 100 9.63 200 5.07 400 9.63 200 1.60 800 2.01 1200 1.68 100 11.29 200 5.95 400 3.42 800 3.42 800 3.42 800 3.42 800 3.42 800 3.42 800 3.42 800 3.42 800 3.42 800 3.42 800 9.23 400 5.95 800 3.42	.2744	183.6	.830	1.363	2.95	.134
1200 1.47 0 20 39.67 60 13.11 100 7.88 200 4.13 . 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.96 800 2.01 1200 1.60 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 800 3.06 60 20 2.38 600 2.21 800 3.60		395.5 1121	.540	.961 .608	3.02 2.72	008 069
60 13.11 100 7.88 200 4.13 . 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.60 800 1.60 50 20 47.33 200 5.07 400 2.96 800 2.01 1200 1.68 100 10.60 800 2.01 1200 1.68 300 2.01 1200 1.68 300 2.01 300 8.60 800 2.01 1200 1.68 300 2.01 300 20 54.87 60 18.52 100 11.29 200 5.95 400 3.42 800 3.42		2703	.353 .320	-45 7	2.53	085
100 7.88 200 4.13 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.06 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.29 200 5.97 400 3.42 800 2.22 1200 1.83 300 20 84.63 300 20 84.63 60 28.73 100 17.57 200 9.23 400 5.99 800 3.06 60 2.38 60 2.22 600 2.38 600 2.38	.02521	19.84	1.010	1.068	.29	.387
200 4.13 400 2.51 800 1.79 1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 200 5.07 400 2.96 800 2.01 1200 1.68 100 10.88 100 1.88 300 2.01 1200 1.68 300 2.01 300 20 84.64 60 18.52 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8	.07627	58.72	1.005	1.183	.92	.308
. 400 2.5T 800 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79		97.05 194.6	.978 .850	1.265 1.281	1.53 2.34	.247
1200 1.54 20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 200 5.07 400 2.96 800 2.01 1200 1.60 10 20 54.87 60 18.52 100 11.20 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.95 400 3.42 800 3.46 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.95 800 3.06 60 28.73 60 2.38 600 20 128.8	.3984	424.2	.590	.983	2.48	005
20 20 42.74 60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.96 800 2.01 1200 1.60 100 11.20 20 54.87 60 18.52 100 11.20 200 5.95 400 3.42 800 2.22 1200 18.3 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 800 3.06 60 28.73 60 20 2.88 60 2.22		1194	.390	.639	2.20	071 084
60 14.23 100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.96 800 2.01 1200 1.68 100 10.20 20 54.87 60 18.52 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 800 3.06 60 28.73 60 20 2.28 600 2.28 600 2.38 600 2.38 600 2.28 600 2.38	.6481	2732	.350	.503	2.01	
100 8.60 200 4.52 400 2.69 800 1.88 1200 1.60 50 20 47.33 200 5.07 400 2.96 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.20 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 60 20 12.88	.07027	19.92 59.41	1.003 .995	1.055 1.140	.25 .75	.325
400 2.60 800 1.88 800 1.200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.96 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.20 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.99 800 3.06 60 28.73 60 28.73 60 28.73 60 28.73 60 28.73 60 28.86 60 43.57	.1162	99.06	.970	1.199	1.22	.211
800 1.88 1200 1.60 50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.06 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.29 200 5.95 400 3.42 800 2.21 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.90 800 3.06 60 20 12.8.8	.2210	201.0 441.5	.860 .628	1.223 .994	2.05 2.33	.114 002
50 20 47.33 60 15.87 100 9.63 200 5.07 400 2.06 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.90 800 3.06 60 28.73 60 2.22 1200 2.38 600 2.38 600 43.55	.5318	1226	.417	.660	2.13	071
60 15.87 100 9.63 200 5.07 400 2.96 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8	.6248	2737	-373	•534	1.98	083
100 9.63 200 5.07 400 2.96 800 2.01 1200 1.68 100 20 54.87 60 18.52 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 60 20 128.8	.02113	20.01	.998	1.037	.19	.248
200 5.07 400 2.06 800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8	.06301	60.18	.984 .961	1.099	·54 .86	.208
800 2.01 1200 1.68 100 20 54.87 60 18.52 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8	.1969	207.5	.845	1.151	1.46	.094
100 1.68 100 20 54.87 60 18.52 100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8		459.7	.670	.995 .688	1.88	001 071
60		1254 2719	.456 .402	.566	1.74	083
100 11.29 200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8	.01822	20.08	.995	1.023	.12	.162
200 5.95 400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8 60 43.57	.05400	60.87	.975	1.052	-35	.138
400 3.42 800 2.22 1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8 60 43.57	.08856 .1679	102.1 213.7	.953 .881	1.078	.56 1.01	.114
1200 1.83 300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8 60 43.57	.2924	476.8	.716	.974	1.53	010
300 20 84.64 60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8 60 43.57		1271	-515	-720	1.70	072
60 28.73 100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8 60 43.57	.01181	2649 20.18	.445 .990	.597 1.003	1.98 .05	085 .010
100 17.57 200 9.23 400 5.09 800 3.06 1200 2.38 600 20 128.8 60 43.57	.03480	61.62	.970	.997	.14	006
400 5.09 800 3.06 1200 2.38 600 20 128.8 60 43.57	.05692	104.6	.951	.992	.22	018
800 3.06 1200 2.38 600 20 128.8 60 43.57		219.6 487.4	.907 .808	.969 .894	.39 .64	042 071
600 20 128.8 60 43.57	.3268	1218	.658	.751	.91	096
60 43.57		2306	.570	.642	1.02	107
	.007766		.992	.995	.01	083
100 26.54	.02295	61.36 103.9	.976 .961	.987 .978	.04 .06	090 095
200 13.77	.07264	215.8	.926	.943	.11	101
400 7.40 800 4.23		466.9 1097	.860 .746	.891 .792	.19	110 117
1200 3.17		1938	.670	.792	.3I .35	117

TABLE 101.—Compressibility of Gases Under High Pressures

(Bridgman, Proc. Amer. Acad., 59, 173, 1924.)

Actual vols. rest upon Amagat's doubtful values at 3000 kg/cm.² Vol. of gas = 1 cm³ at o°C, 1 kg/cm² pressure. Densities at highest pressures indicate that the molecules or atoms are very nearly in contact in the sense of the kinetic theory.

	((a).—Res	ults for Hy	drogen				(b).—Res	sults for Nit	rogen
kg/cm²	Vol., change c³/g from c³/g g so°C 65°C 30°C 65°C 41 65°C 30°C 65°C Vol. c³/mol 30°C 65°C 30°C 65°C		c^3/g from c^3/g at $65^{\circ}C$			68°C		Volume at 68°C 3/g c³/mo1	at 68°C	
3000 4000 5000 7000 10000 13000 15000	1.12 1 1.84 1 2.77 2 3.63 3 4.32 4	.14 10 .88 9 .88 8 .68 8 .21 7	.64 12.17 .52 11.03 .80 10.29 .87 9.29 .01 8.49 .32 7.96	3.18 3.83 4.50 5.65 7.29 8.66	23.47 21.21 19.76 17.88 16.15 14.76	24.53 22.24 20.74 18.73 17.12 16.05		2.49 I 4.25 I 6.56 I 8.61	.290 36.13 .201 33.64 .138 31.88 .056 29.57 .982 27.52 .933 26.13 .908 25.43	4.68 5.82 6.89 8.95 11.91 14.70 16.50
	(c).	—Result	s for Heliun	n			Results Argon	(e).—I	Results for A	mmonia
kg/cm²	Vol. change c³/g 65°C	Total vol. change 30-95° c³/g	Volum 65°(c³/g c³		at 65°C	5	hange at 55° c³/g atom	kg/cm²	Vol. ch: 30 c³/g	ange at °C c³/mol
3000 4000 5000 7000 10000 13000 15000	65°C c³/g c³/g c³/mol				2.31 2.64 2.99 3.66 4.60 5.52 6.11	0.000 .049 .085 .134 .180 .209	0.00 1.96 3.39 5.34 7.18 8.34 8.94	1000 2000 3000 5000 7000 10000 12000	-0.827 217 .000 + .200 .310 .409 .461	-14.1 - 3.70 0.00 + 3.41 5.28 6.97 7.85

TABLE 102.—Gage Pressure (lb./in.2) to Atmospheres (absolute)
(Taken from Bur. Standards Circ., 279, 1926.)

1b./in.2	0	10	20	30	40	50	60	70	80	90
. 0	1.00	1.68	2.36	3.04	3.72	4.40	5.08	5.76	6.44	7.12
100	7.80	8.48	9.17	9.85	10.53	11.21	11.89	12.57	13.25	13.93
200	14.61	15.29	15.97	16.65	17.33	18.01	18.69	19.37	20.05	20.73
300	21.41	22.09	22.77	23.45	24.14	24.82	25.50	26.18	26.86	27.54
400	28.22	28.90	29.58	30.26	30.94	31.62	32.30	32.98	33.66	34.34
500	35.02	35.70	36.38	37.06	37.74	38.42	39.11	39.79	40.47	41.15
600	41.83	42.51	43.19	43.87	44.55	45.23	45.91	46.59	47.27	47.95
700	48.63	49.31	49.99	50.67	51.35	52.03	52.71	53.39	54.08	54.76
800	55.44	56.12	56.80	57.48	58.16	58.84	59.52	60.20	60.88	61.56
900	62.24	62.92	63.60	64.28	64.96	65.64	66.32	67.00	67.68	68.36
1,000	69.04	69.73	70.41	71.09	71.77	72.45	73.13	73.81	74.49	75.17
1,100	75.85	76.53	77.21	77.89	78.57	79.25	79.93	80.61	81.29	81.97
1,200	82.65	83.34	84.01	84.70	85.38	86.06	86.74	87.42	88.10	88.78
1,300	89.46	90.14	90.82	91.50	92.18	92.86	93.54	94.22	94.90	95.58
1,400	96.27	96.95	97.63	98.31	98.98	99.67	100.3	101.0	101.7	102.4
1,500	103.1	103.8	104.4	105.1	105.8	106.5	107.1	107.8	108.5	109.2
1,600	109.9	110.6	111.3	111.9	112.6	113.3	114.0	114.6	115.3	116.0
1,700	116.7	117.4	118.0	118.7	119.4	120.1	120.8	121.4	122.1	122.8
1,800	123.5	124.2	124.8	125.5	126.2	126.9	127.6	128.2	128.9	129.6
1,900	130.3	131.0	131.6	132.3	133.0	133.7	134.4	135.0	135.7	136.4
2,000	137.1	137.8	138.4	139.1	139.8	140.5	141.2	141.9	142.5	143.2
2,100	143.9	144.6	145.2	145.9	146.6	147.3	148.0	148.7	149.3	150.0
2,200	150.7	151.4	152.I	152.7	153.4	154.1	154.8	155.5	156.1	156.8
2,300	157.5	158.2	158.9	159.5	160.2	160.9	161.6	162.3	162.9	163.6
2,400	164.3	165.0	165.7	166.3	167.0	167.7	168.4	169.1	169.8	170.4
2,500	171.1	171.8	172.5	173.2	173.8	174.5	175.2	175.9	176.6	177.2
2,600	177.9	178.6	179.3	180.0	180.6	181.3	182.0	182.7	183.4	184.0
2,700	184.7	185.4	186.1	186.8	187.4	188.1	188.8	189.5	190.2	190.8
2,800	191.5	192.2	192.9	193.6	194.2	194.9	195.6	196.3	197.0	197.7
2,900	198.3	199.0	199.7	200.4	201.1	201.7	202.4	203.1	203.8	204.4

RELATION BETWEEN PRESSURE, TEMPERATURE, AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA*

TABLE 103 .- Sulphur Dioxide

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in nos.	Correspon periment	ding Volun	ne for Ex- erature —	Volume.	Pressure Experime	in Atmosph nts at Temp	neres for erature —
Pressure i Atmos.	58°.0	99 ⁰ .6	183°.2	voiume.	58°.0	99 ⁰ .6	183°.2
10 12 14 16	8560 6360 4040 -	9440 7800 6420 5310		10000 9000 8000	- 9.60 10.40	9.60 10.35	-
18 20 24	-	4405 4030 3345	-	7000	11.55	13.05	-
28 32	_	2780 2305	3180 2640	6000 5000	12.30	14.70 16.70	-
36 40 50	-	1935	2260 2040 1640	4000 3500	14.40	23.00	- ·
50 60 70 80	-	-	1375	3000 2500	-	26.40 30.15	29.10 33.25
90	-	=	930 790 680	2000 1 500	-	35.20 39.60	40.95 55.20
120 140 160	- - -	- - -	545 430 325	1000 500	-	-	76.00 117.20

TABLE 104 .- Ammonia

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

essure in Atmos.	Correspon periment	nding Volun ts at Tempe	ne for Ex- rature —	Valuma	Pressure in Atmospheres for Experim at Temperature —					
Pressure Atmos	46°.6	99°.6	183°.6	v orume.	30°.2	46°.6	99°.6	ە.°381		
10	9500	_	_	10000	8.85	9.50		_		
12.5	7245	7635	-	9000	9.60	10.45		-		
15	5880	6305		8000	10.40	11.50	I 2.00	_		
20 25	_	4645 3560	4875 3835	7000	11.05	13.00	13.60	-		
30	_	2875	3185	6000	11.80	14.75	15.55	-		
35	-	2440	2680	5000	12.00	16.60	18.60	19.50		
40	_	2080	2345	4000	_	18.35	22.70	24.00		
45	_	1795	2035 1775	3500	_	18.30	25.40	27.20		
50 55	_	1250	1590	3000	_	_	29.20	31.50		
55 60	-	975	1450	2 500	_	_	34.25	37.35		
70	-	-	1245	2000	_	_	41.45	45.50		
80	-		1125	1500	_	_	49.70	58.00		
90	_	_	950	1000	_	_	59.65	93.60		

^{*} From the experiments of Roth, "Wied. Ann." vol. 11, 1880

VOLUME OF CASES

Values of 1 + .00367 t

The quantity t + .00367 t gives for a gas the volume at t^0 when the pressure is kept constant, or the pressure at t^0 when the volume is kept constant, in terms of the volume or the pressure at 0^0 .

- (a) This part of the table gives the values of τ + .00367 t for values of t between o° and 10° C by tenths of a degree.
- (b) This part gives the values of t + .00367 t for values of t between -90° and $+ 1990^{\circ}$ C by 10° steps.
- These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:—In the (b) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature be $682^{\circ}.2:$

- (c) This part gives the logarithms of $\tau + .00367 t$ for values of t between -49° and $+399^{\circ}$ C by degrees.
- (d) This part gives the logarithms of t + .00367 t for values of t between 400° and 1990° C by 10° steps.

(a) Values of 1+.00367 t for Values of t between 0° and 10° C by 0.1° Steps

t	0.0	0.1	0.2	0.3	0.4
0 I 2 3	1.00000 .00367 .00734 .01101	1.00037 .00404 .00771 .01138	1.00073 .00440 .00807 .01174	1.00110 .00477 .00844 .01211	1.00147 .00514 .00881 .01248
5 6 7 8	.01468	.01505 1.01872 .02239 .02606	.01541 1.01908 .02275 .02642 .03009	.01578 1.01945 .02312 .02679 .03046	.01615 1.01982 .02349 .02716 .03083
8 9	.02936 .03303	.02973 .03340	.03376	.03040	0.9
0 1 2 3 4 5 6 7 8	1.00184 .00550 .00918 .01284 .01652 1.02018 .02386 .02752 .03120 .03486	1.00220 .00587 .00954 .01321 .01688 1.02055 .02422 .02789 .03156	1.00257 .00624 .00991 .01358 .01725 1.02092 .02459 .02826 .03193 .03560	1.00294 .00661 .01028 .01395 .01762 1.02129 .02496 .02863 .03290	1.00330 .00697 .01064 .01431 .01798 1.02165 .02532 .02899 .03266 .03633

VOLUME OF

(b) Logarithms of 1 + .00367 t for Values

t	. 0	1	2	3	4	Mean diff. per degree.
-40 -30 -20 -10	ī 931051 .949341 .966892 .983762 0.000000	1.929179 .947546 .965169 .982104 .998403	1.927299 ·945744 ·963438 ·980440 ·996801	7.925410 .943934 .961701 .978769 .995192	1.923513 .942117 .959957 .977092 .993577	1884 1805 1733 1667 1605
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	.01 5653	.017188	.018717	.020241	.021760	1526
30	.030762	.032244	.033721	.035193	.036661	1474
30	.045362	.046796	.048224	.049648	.051068	1426
40	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.07 58 53	0.077190	0.078522	1335
60	.086431	.087735	.089036	.090332	.091624	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.147274	.248408	.149539	.150667	.151793	1129
120	.158483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150 160 170 180 190	0.190472 .200632 .210559 .220265	0.191498 .201635 .211540 .221224 .230697	0.192523 .202635 .212518 .222180 .231633	0.193545 .203634 .213494 .223135 .232567	0.194564 .204630 .214468 .224087 .233499	1023 1000 976 956 935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	.249044	.249942	.250837	.251731	897
220	.257054	.257935	.258814	.259692	.260567	878
230	.265784	.266648	.267510	.268370	.269228	861
240	.274343	.275189	.276034	.276877	.277719	844
250	0.282735	0.283566	0.284395	0.285222	0.286048	828
260	.290969	.291784	.292597	•293409	.294219	813
270	.299049	.299849	.300648	•301445	.302240	798
280	.306982	.307768	.308552	•309334	.310115	784
290	.314773	.315544	.316314	•317083	.317850	769
300	0.322426	0.323184	0.323941	o.324696	0.325450	756
310	.329947	.330692	•331435	•332178	.332919	743
320	.337339	.338072	•338803	•339533	.340262	730
330	.344608	.345329	•346048	•346766	.347482	719
340	.351758	.352466	•353174	•353880	.354585	707
350	0.358791	0.359488	0.360184	0.360879	0.361 573	696
360	•365713	.366399	.367084	.367768	.368451	684
370	•372525	.373201	.373875	.374549	.37 5221	674
380	•379233	.379898	.380562	.381225	.38 1887	664
390	•385439	.386494	.387148	.387801	.388453	654

CASES. of t between -49° and $+399^\circ$ C by 1° Steps

						Mean diff.
t	5	6	7	8	9	per degree.
			ī.917773	ī.915843	ī.913904	1926
-40	7.921608	1.919695 .938460	.936619	93477 I	.932915	1845
30	.940292 .958205	.956447	.954681	.952909	.951129	1771
20	.975409	.973719	.972022	.970319	.968609	1699
— o	.991957	.990330	.988697	.987058	.985413	1636
+0	0.007897	0.009459	0.011016	0.012567	0.014113	1554
10	.023273	.024781	.026284	.027782	.029274	1 500 14 50
20	.038123	.039581	.041034	.042481	.043924	1402
30	.052482	.053893	.055298 .069109	.056699	.071819	1359
40	.066382	.00//40			0.085133	1315
50	0.079847	0.081174	0.082495	0.083811	0.085123	1281
60	.092914	.094198	.095486 .108088	.109329	.110566	1243
70	.105595	.106843	.120340	.121547	.122750	1210
80	.117917	.119130	.132256	.133430	.134601	1175
			0.143954	0.144997	0.146137	1144
100	0.141559	0.142708	0.143854	.156264	.1 57 37 5	1115
110	.152915	.1 54034	.155151	.167246	.168330	1087
120	.163981	.175836	.176898	.177958	.179014	1060
130	.174772	.186340	.187377	.188411	.189443	1035
	0.105581	0.196596	0.197608	0.198619	0.199626	1011
150 160	0.195581	.206615	.207605	.208 592	.209577	988 966
170	.21 5439	.216409	.217376	.218341	.219304	946
180	.225038	.225986	.226932	.227876	.238129	925
190	.234429	.235357	.236283	.237 207	1230129	, ,
200	0.243621	0.244529	0.245436	0.246341	0.247244	906 887
210	.252623	.253512	.254400	.255287	.256172	870
220	.261441	.262313	.263184	.264052	.273494	853
230	.270085	.270940	.271793	.281070	.281903	836
240	.278559	.279398	.200234			820
250	0.286872	0.287694	0.288515	0.289326	0.290153	805
260	.295028	.295835	.296640	.297445	.306196	790
270	.303034	.303827	.304618	.305407	.314000	776
280	.318616	.311673	.312450	.320906	.321667	763
290	.310010			0.228452	0.329201	750
300	0.326203	0.326954	0.327704	0.328453	.336606	7.37
310	.333659	-334397	.335135	.343164	.343887	724
320	.340989 .348198	.341715	.349624	.350337	351048	713
330	.346196	.355991	.356693	-357394	.358093	701
		0.362957	0.363648	0.364337	0.365025	690
350	0.362266	.369813	.370493	.371171	.371849	678 668
360	.369132	.376562	.377232	.377900	.378567	658
37° 38°	.382548	.383208	.383868	.384525	.385183	648
390	.389104	.3897 54	.390403	.391052	.391.099	
	1					

VOLUME OF GASES

(c) Values of $1+.00367\,t$ for Values of t between $-\,90^\circ$ and $+\,2090^\circ$ C by 10° Steps

1	00	10	20	30	40
-000	1.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.03670	1.07340	1.11010	1.14680
100	1.36700	1.40370	1.44040	1.47710	1.51380
200	1.73400	1.77070	1.80740	1.84410	1.88080
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50470	2.54140	2.57810	2 61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27 540	3.31210	3.34880
700	3.56900	3.60570	3.64240	3.67910	3.71580
800	3.93600	3.97270	4.00940	4.04610	4.08280
900	4.30300	4.33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40.400	5.44070	5.47740	5.51410	5.55080
1 300	5.77100	5.80770	5.84440	5.88110	5.91780
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240 7.67940	7.34910	7.38580
1800	7.60600	7.27570 7.64270 8.00970	7.67940	7.71610	7.75280 8.11980
1900	7.97300	8.00970	8.04640	8.08310	8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	60	70	80	90
-000	50	60 0.77980	0.74310	80 0.70640	1
	0.81650		0.74310	0.70640	90
-000	0.81650	0.77980 1.22020 1.58720	0.74310	0.70640 1.29360 1.66060	90
-000 +000 100 200	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	90 0.66970 1.33030 1.69730 2.06430
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020 1.58720 1.95420 2.32120	0.74310 1.25690 1.62390 1.99090 2.35790	0.70640 1.29360 1.66060 2.02760 2.39460	90 0.66970 1.33030 1.69730 2.06430 2.43130
-000 +000 100 200	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	90 0.66970 1.33030 1.69730 2.06430
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 100 200 300 400 500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66660 2.02760 2.39460 2.76160 3.12860 3.49360 3.86260	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99990 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66660 2.02760 2.39460 2.76160 3.12860 3.49360 3.86260	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99990 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330
-000 +000 100 200 300 400 500 600 700 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.78250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 100 200 300 400 500 600 700 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.59220 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.15290 4.15290 4.92690 5.29390 5.66690	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.773430
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.558750 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.662420 5.99120	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 5.66000 6.02790	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33660 5.69760 6.06460	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.59220 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.15290 4.15290 4.92690 5.29390 5.66690	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.485350 5.22050 5.22050 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.662420 5.99120	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 5.66000 6.02790	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.29660 4.96360 5.33060 5.69760 6.06460 6.43160	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.595450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.15290 4.15290 4.92690 5.29390 5.66090 6.39490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.69760 6.06460 6.43160 6.79860 7.16560	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700 800 900 1000 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.595450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.459320	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 5.66090 6.39490 6.76190 7.12890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.69760 6.06460 6.43160 6.79860 7.16560	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.595450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920 7.45920 7.8562620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 6.02790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260 7.53260	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930 7.93630
-000 +000 100 200 300 400 500 600 700 800 900 1000 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.258750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.459320	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 5.66090 6.39490 6.76190 7.12890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.69760 6.06460 6.43160 6.79860 7.16560	90 0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930

VOLUME OF GASES

(d) Logarithms of $1+.00367\,t$ for Values of t between 400° and 1990° C by 10° Steps

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	.505421	.510371	.515264	.520103	.524889
700	.552547	.556990	.561388	.565742	.570052
800	.595055	.599086	.603079	.607037	.610958
900	.633771	.637460	.641117	.644744	.648341
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	.702172	.705325	.708455	.711563	.714648
1200	.732715	.735655	.738575	.741475	.744356
1 300	.761251	.764004	.766740	.769459	.772160
1400	.788027	.790616	.793190	.795748	.798292
1500	0.813247	0.815691	0.818120	0.820536	0.822939
1600	.837083	.839396	.841697	.843986	.846263
1700	.859679	.861875	.864060	.866234	.868398
1800	.881156	.883247	.885327	.887398	.889459
1900	.901622	.903616	.905602	.907578	.909545
t	50	60	70	80	90
400				0.441161	90 0.446894
400	0.423492	0.429462	0.435351	0.441161	0.446894
400 500	0.423492	0.429462	0.435351	0.441161	0.446894
400 500 600	0.423492 0.479791 .529623	0.429462 0.485040 •534305	0.435351 0.490225 .538938	0.441161 0.495350 •543522	0.446894 0.500415 .548058
400 500 600 700	0.423492 0.479791 .529623 .574321	0.429462 0.485040 •534305 •578548	0.435351 0.490225 .538938 .582734	0.441161 0.495350 •543522 .586880	0.446894 0.500415 .548058 .590987
400 500 600 700 800	0.423492 0.479791 .529623 .574321 .614845	0.429462 0.485040 •534305 •578548 •618696	0.435351 0.490225 .538938 .582734 .622515	0.441161 0.495350 ·543522 ·586880 ·626299	0.446894 0.500415 .548058
400 500 600 700 800 900	0.423492 0.479791 .529623 .574321 .614845 .651908	0.429462 0.485040 .534305 .578548 .618696 .655446	0.435351 0.490225 .538938 .582734 .622515 .658955	0.441161 0.495350 .543522 .586880 .626299 .662437	0.446894 0.500415 .548058 .590987 .630051 .665890
400 500 600 700 800 900	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055	0.429462 0.485040 .534305 .578548 .618696 .655446	0.435351 0.490225 .538938 .582734 .622515 .658955	0.441161 0.495350 .543522 .586880 .626299 .662437	0.446894 0.500415 .548058 .590987 .630051 .605890 0.698996
400 500 600 700 800 900 1000 1100	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712	0.429462 0.485040 .534395 .578548 .618696 .655446 0.689327 .720755	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776	0.441161 0.495350 543522 .586880 .626299 .662437 0.695797 .726776	0.446894 0.500415 5.48058 .590987 .630051 .665890 0.698996 .729756
400 500 600 700 800 900 1000 1100 1200	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218	0.429462 0.485040 .534395 .578548 .618696 .655446 0.689327 .720755 .750061	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886	0.441161 0.495350 543522 .586880 .626299 .662437 0.695797 .726776	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .720756 .758480
400 500 600 700 800 900 1000 1100 1200 1300	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845	0.429462 0.485040 ·534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166	0.441161 0.495350 ·543522 ·586880 .626299 .662437 0.695797 .726776 .755692 .782802	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .78480
400 500 600 700 800 900 1000 1100 1200	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820	0.429462 0.485040 .534395 .578548 .618696 .655446 0.689327 .720755 .750061	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329	0.429462 0.485040 .534395 .578548 .618696 .655446 0.689327 .720755 .75061 .777514 .803334	0.435351 0.490225 .538038 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .720756 .758480 .785422 .810790 0.834758
400 500 600 700 800 900 1000 1100 1200 1300 1400	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528	0.429462 0.485040 ·534305 .578548 .618696 .655446 0.689327 ·720755 .750061 ·777514 .803334 0.827705 .850781	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023	0.441161 0.495350 ·543522 ·586880 ·626299 ·662437 0.695797 ·726776 ·755692 ·782802 ·808319 0.832420 ·855253	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471
400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550 .891510	0.429462 0.485040 .534395 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692 .893551	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824 .895583	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945 .897605	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056 .899618
400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056

COMPRESSIBILITY OF LIQUIDS

At the constant temperature t, the compressibility $\beta = (1/V_0)(dV/dP)$. In general as P increases, β decreases rapidly at first and then slowly; the change of β with t is large at low pressures but very small at pressures above 1000 to 2000 megabaryes. I megabarye $= 10^6 \, \mathrm{dynes/cm^2} = 1.020 \, \mathrm{kg/cm^2} = 0.987$ atmosphere.

	Substance.	Temp. °C	Pressure, megabaryes.	Compressibility per megabaryes. $\beta \times 10^6$.	Reference.	Substance.	Temp. °C	Pressure, megabaryes.	Compressibility per megabaryes. $\beta \times 10^6$.	Reference.
	Acetone. """ Amyl alcohol. """ """ Benzene """ Butyl alcohol, iso. """ """ """ Carb. tetrachloride. """ """ Chloroform. Dichlorethylsulfide. Ethyl alcohol. """ Ethyl alcohol. """ "" Ethyl bromide. """ "" Ethyl chloride. """ "" Ethyl chloride. """ """ Ethyl chloride. """ """ Ethyl chloride. """ """ Ethyl chloride. """ """ """ Ethyl chloride. """ """ """ Ethyl chloride. """ """ """ """ """ """ """	14 20 20 20 40 17 20 20 20 20 20 20 20 20 20 20 20 20 20	23 500 1,000 12,000 1,000	III	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ethyl ether, ct'd """ """ """ Gallium. Glycerine. Hexane. """ Mercury. """ """ Methyl alcohol. """ """ Nitric acid. Oils: Almond. Castor. Linseed. Olive. Rape-seed. Phosph. trichloride. """ """ """ Propyl alcohol, n """" """ Propyl alcohol, n """" """ """ Toluene. """ Turpentine. Water. """ """ """ """ """ """ """	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1,000 12,000 200 400 500 1,000 12,000 300 500 1,000 12,000	Solution	1
_					- []					

For references, see page 156.

COMPRESSIBILITY AND THERMAL EXPANSION OF PETROLEUM OILS.

0-50 kg/cm2, 0-400°C

(R. S. Jessup, Bur. Standards Journ. Res., 5, 985, 1930.)

It was found that the compressibility and thermal expansion of two samples of the same specific gravity, but from different sources, differed more than 30 per cent at the higher temperatures, whereas oils of the same specific gravity and the same viscosity had the same compressibility and thermal expansion within rather narrow limits. In other words, with a knowledge of the specific gravity and viscosity of the oils, it was possible to represent all the measured volumes within less than 0.5 per cent over the entire range of temperature and pressure covered by the measurements.

Kinematic	Specific	Pressure			Rel	ative volu	mes		
viscosity 100°F., c.g.s.	gravity 60°/60°F.	kg/cm ²	o°	20°	50°	100°	200°	300°	400°
.020	.80	0	1.000	1.018	1.045	1.096	1.222	1.422	
**	"	50	0.996	1.014	1.041	1.089	1.205	1.370	(1.63)
44	.85	0 50	1.000 0.997	1.017	I.044 I.040	1.093	1.213	1.396 1.352	(1.71)
4.4	.90	0	1.000	1.017	1.043	1.000	1.204	1.375	(1.67)
44	ē 4	50	0.997	1.013	1.038	1.084	1.191	1.337	(1.55)
.050	.80	0	1.000	1.017	1.043	1.089	1.202	1.369	(1.71)
**	··	50	0.997	1.013	1.038	1.083	1.189	1.333	(1.56)
44	.85	0 50	1.000 0.99 7	1.016	1.041	1.087	1.194	1.349	(1.63)
4.4	.90	ő	1.000	1.016	1.040	1.084	1.188	1.331	(1.56)
**	4.4	50	0.997	1.012	1.036	1.078	1.176	1.304	(1.48)
.100	.85	0	1.000	1.016	1.040	1.083	1.185	1.325	(1.54)
**	••	50	0.997	1.012	1.036	1.078	1.174	1.299	(1.47)
4.4	.95	0 50	1.000 0.997	1.015	1.038 1.034	1.079 1.074	1.174 1.164	1.297 1.276	(1.47)
#44	0 =	-					•		
.500	.85	0 50	1,000 0.997	1.015	1.038	1.078	1.170 1.161	1.289 1.269	(1.45)
44	-95	0	1.000	1.014	1.034	1.074	1.161	1.269	(1.40)
**	1	50	0.998	1.012	1.033	1.070	1.152	1.252	(1.37)
1.000	.85	0	1.000	1.015	1.037	1.076	1.165	1.279	(1.43)
**	••	50	0.997	1.012	1.034	1.071	1.157	1.260	(1.39)
44	-95	0 50	0.998	1.014	1.035	1.073	1.157	1.261 1.244	(1.39)
	0 -	-							
2.000	.85	0 50	0.998	1.014	1.036 1.033	1.075 1.070	1.162	1.270 1.253	(1.41)
44	-95	0	1.000	1.014	1.035	1.071	1.153	1.254	(1.37)
44	4.5	50	0.998	1.011	1.032	1.067	1.145	1.239	(1.35)
5.000	.85	0	1.000	1.014	1.035	1.073	1.157	1.261	(1.39)
44		50	0.998	110.1	1.032	1.068	1.149	1.245	(1.36)
**	-95	• 50	0.998	1.013	1.034	1.069 1.065	1.148	1.244	(1.36)
270°F 2.72	60°/60°F.	lea /am²	o°	20°	50°	100°			1
210°F., c.g.s.	00 /00 F.	kg/cm ²	9	20	50	100	200°	300°	400°
					* == (* = (=	(-	(5)
.100	.90	0 50	0.000	1.014	1.036 1.032	I.074 I.070	1.161 1.152	1.269 1.252	(1.41)
**	.95	0	1.000	1.014	1.035	1.071	1.154	1.256	(1.38)
**		50	0.998	1.011	1.032	1.067	1.147	1.241	(1.35)
44	1.00	0 50	0.008	1.014	1.034 1.031	1.070 1.066	1.149 1.142	I.247 I.232	(1.37)
200		•			_		·		
.200	.90	0 50	0.000	1.014	1.035	1.072 1.067	1.155	1.258	(1.39) (1.35)
44	1.00	0	1.000	1.013	1.033	1.067	1.144	1.237	(1.35)
44	6.6	50	0.998	1.011	1.030	1.064	1.137	1.223	(1.32)
.440	.90	0	1.000	1.013	1.034	1.070	1.151	1.248	(1.36)
44		50	0.998	1.011	1.031	1.066	1.143	1.234	(1.34)
44	1.00	0 50	0.000	1.012 1.010	1.032 1.029	1.066 1.063	1.140	1.228 1.214	(1.33)
* ***	00					_		·	
1.100	.90	0 50	0.998	1.013	1.033	1.068	1.146 1.139	1.241	(1.35) (1.33)
4.4	1.00	0	1.000	1.012	1.031	1.063	1,134	1.218	(1.32)
4.4	4.4	50	0.998	1.010	1.028	1.060	1.128	1,205	(1.29)

TARLE 108

COMPRESSIBILITY OF SOLIDS

If V is the volume of the material under a pressure P megabaryes and V_0 is the volume at atmospheric pressure, then the compressibility $\beta = -(1/V_0) \ (dV/dP)$. Its unit is cm²/ megadynes (reciprocal megabaryes). $10^6/\beta$ is the bulk modulus in absolute units (dynes/cm²). The following values of β , arranged in order of increasing compressibility, are for P = 0 and room temperature. I megabarye = 10^6 dynes/cm² = 1.020 kg/cm² = 0.087 atmosphere.

Substance	Compression per unit vol. per megabarye	Bulk modulus, dynes/cm ² × 10 ¹²	Refer- ence	Substance	Compression per unit vol. per megabarye	Bulk modulus, dynes/cm ² × 10 ¹²	Refer- ence
Tungsten	0.27	3.7	2	Plate glass	2,23	0.45	4
Boron	0.3	3.0	2	Lead	2,27	0.44	1,2
Silicon	0.32	3.1	2	Thallium	2.3	0.43	2
Platinum	0.38	2.6	2	Antimony	2.4	0.42	2
Nickel	0.43	2.3	2	Quartz	2.7	0.37	1
Molybdenum	0.46	2.2	2	Magnesium	2.9	0.34	2
Tantalum	0.53	1.9	2	Bismuth	3.0	0.33	I
Palladium	0.54	1.9	2	Graphite	3.0	0.33	2
Cobalt	0.55	1.82	9	Silica glass	3.1	0.32	I
Nichrome	0.56	1.79	9	Cerium	3.6	0.27	9
Iron	0.60	1.67	3	Sodium chloride	4.12	0.24	1
Gold	0.60	1.67	I, 2	Arsenic	4.5	0.22	2
Pyrite	0.7	1.4	4	Calcium	5.7	0.175	2
Copper	0.75	1.33	I	Potassium chloride.	7.4	0.135	6
Manganese	0.84	1.19	2	Strontium	8.4	0.120	9
Brass	0.89	1.12	I	Lithium	9.0	0.111	2
Chromium	0.9	1.12	I	Phosphorus (red)	9.2	0.109	2
Silver	0.99	1.01	1, 2	Selenium	12.0	0.083	2 8
Mg. silicate, crys	1.03	0.97	4	lce	12.0	0.083	
Mg. silicate Aluminum	1.21		7	Sulphur	12.9	0.078	2
Calcite	1.33	0.75	1-3	Iodine	13.0	0.077	2 2
Germanium	1.39	0.72 0.71	0	Hard rubber		0.064	7
Zinc	1.74	0.71	ı	Phosphorus (white)	19.4	0.040	2
Tin	1.89	0.53	I	Potassium	20.5 31.7	0.049	2
Gallium	2.09	0.53	5	Rubidium	40.0	0.032	2
Cadmium	2.17	0.46	1.2	Caesium	61.0	0.025	2
Cadimani	2.1	0.40	1, 2	Cacolum	01.0	0.010	

Winklemann, Schott, and Straulel (Wied Ann., 1897, 1899) give the following (among others) for Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kg/mm².

No.	Glass	Bulk moduli	No.	Glass	Bulk moduli
665 1299 16	Barytborosilicat Natronkalkzinksilicat		S208	Kalibleisilicat Heaviest Bleisilicat Tonerdborat with sodium, baryte.	3660 3550 3470

These values are in cm²/kg × 10⁶ × Compressibility, Grüneisen, Ann. der Phys. 33, p. 65, 1910.

Al — 191°, 1.32; 17°, 1.46; 125°, 1.70 Cu — 191°, 0.72; 17°, 0.77; 165°, 0.83 Pt — 189°, 0.37; 17°, 0.39; 164°, 0.40

Fe — 190°, 0.61; 18°, 0.63; 165°, 0.67 Ag — 191°, 0.71; 16°, 0.76; 166°, 0.86 Pb — 191°, (2.5); 14°, (3.2)

References to Table 106, p. 154:

- Bridgman, Pr. Am. Acad. 49, 1, 1913;
 Roentgen, Ann. Phys. 44, 1, 1891;
 Pagliani-Palazzo, Mem. Acad. Lin. 3, 18, 1883;
 Bridgman, Pr. Am. Acad. 48, 341, 1912;
 Adams, Williamson, J. Wash. Acad. Sc. 9, Jan. 19,
- 1919; (6) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 389, 1918; (7) Richards, J. Am. Ch. Soc. 37, 1646, 1915; (8) Bridgman, Pr. Am. Acad. 47, 381, 1911;

References to Table 108, p. 156:

- (1) Adams, Williamson, Johnston, J. Am. Ch. Soc.
- 41, 39, 1919; (2) Richards, *ibid*. 37, 1646, 1915; (3) Bridgman, Pr. Am. Acad. 44, 279, 1909; 47, 366, IQII:
- (4) Adams, Williamson, unpublished;
- (5) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 388, 1918;
 (6) Voigt, Ann. Phys. 31, 1887; 36, 1888;
 (7) R. E. Gibson, L. H. Adams, unpublished;
 (8) Bridgman, Pr. Am. Acad., 48, 310, 1912;
 (9) Bridgman, Pr. Am. Acad., 58, 166, 1923.

(9) Amagat, C. R. 73, 143, 1872; (10) Amagat, C. R. 68, 1170, 1869; (11) Amagat, Ann. chim. phys. 29, 68, 505, 1893; (12) de Metz, Ann. Phys. 41, 663, 1890; (13) Adams, Williamson, Johnston, J. Am. Chem.

(13) Adams, Windamson, Someon, Soc. 41, 27, 1910; (14) Colladon, Sturm, Ann. Phys. 12, 39, 1828; (15) Quincke, Ann. Phys. 19, 401, 1883; (16) Richards et al. J. Am. Ch. Soc. 34, 988, 1912.

TABLE 109 COMPRESSIBILITY OF CRYSTALS

		Linear. $L/L_0 = ap - bp^2$		Volume, $V/V_0 = ap - bp^2$			
Crystal	System	30	°C	30	°C	75	°C
		a × 106	b × 1012	a × 106	b × 1012	a × 106	b × 1012
Quartz	Trigonal *	0.7052 .9764	6.44 7.79	2.658	24.4	2.705	25.0
Hanksite	Hexagonal	1.1651	12.34	2.413	24.8	2.509	26.9
Orthoclase	Monoclinic A B C	.9944 .5490 .4599	5.31 5.09 5.15 1.68	2.085	15.3	2.078	14.8
Galena Barite	Cubic Orthorhom A	1.0765 .6122	7.14 2.48	1.837	6.33	1.893	7.14
	B C	.4940 .6695 .5660	3.57 4.34 3.81	1.729	12.70	1.760	13.44
Celestite	Orthorhom A B C	.6268 .4476 .4537	3.67 2.59 1.70	1.528	7.20	1.545	8.67
Calcite	Trigonal	.8071	3.26	1.345	4.16	1.370	4.38
Sphalerite	Cubic†	.427	.70	1.281	1.56	1.257	1.56
Fluorite	Cubic	.4019	2.39	1.206	6.69	1.238	6.75
Apatite	Hexagonal	.2410 .4160	·35 2.31	1.0730	5.34	1.0910	5.07
Jeffersonite	B C	.3093 .3924 .3078	2.02 1.74 2.51	.8947	5.21	.9400	6.79
Tourmaline (black)	Ï	.1945 .478 .163	.70 1.59 .70	.804	3.18	.849	3-37
Cobaltite Spodumene	Cubic Monoclinic A B C	.2519 .1801 .2459 .1997	1.01 .70 .70 .70	.756 .6930	2.85 2.84	.768 .6969	2.82 3.50
Pyrite Andradite Topaz	Cubic Cubic Orthorhom A B	.2474 .2243 .2210 .2145 .1486 .2393	.70 .70 .70 .70 .70	.673 .6630 .6024	1.95 2.25 2.32	.671 .6606 .5991	1.95 2.25 2.32
Magnetite Garnet	Cubic Cubic	.1799	.70	•5397 •5379	2.01	.5376 ·5439	2.01 2.19

^{*} These symbols relate to the corresponding trigonal, tetragonal, hexagonal, axes respectively. † Transition above 9000°, Data from Bridgman, Amer. Journ. Sci., 10, Dec., 1925; 15, Apr., 1928. Unit of pressure kg/cm². The following additional crystal volume compressibilities have been taken from Madelung, Fuchs, Ann. Phys., 65, 305, 1921. Their unit of pressure is dynes × 106 per cm² at o°C. I dyne/cm² equals 1.020 × 10-6 kg/cm².

TABLE 110. - Specific Gravities Corresponding to the Baumé Scale

The specific gravities are for 15.56°C (60°F.) referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé =
$$\frac{140}{\text{Specific Gravity}} - 130$$
.

For specific gravities greater than unity from:

Degrees Baumé =
$$145 - \frac{145}{\text{Specific Gravity}}$$

	Specific Gravities less than 1.									
Specific	0.00	10.0	0.02	0.03	0 04	0.05	0.06	0.07	0.08	0.09
Gravity.					Degrees	Baumé.				
0.60 .70 .80 .90	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.75 59.19 36.67 18.94	85.38 56.67 34.71 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	75.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41
	Specific Gravities greater than 1.									
Specific	0.00	0.01	0 02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Gravity.										
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80	0.00 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44	1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89	2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33	4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76	5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67 66.20	6.91 18.91 29.00 37·59 45.00 51.45 57.12 62.14 66.62	8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61	9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08	10.74 22.12 31.72 39.93 47.03 53.23 58.69 63.54	11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99

TABLE 111. Degrees A. P. I. Corresponding to Specific Gravities at 60°/60° F.

(15.56°/15.56° C) for petroleum oils.

In order to avoid confusion and misunderstanding the American Petroleum Institute, the Bureau of Mines, and the Bureau of Standards have agreed that a scale based on the modulus 141,5 shall be used in the United States Petroleum Industry and shall be known as the A. P. I. scale. The United States Baumé scale based on the modulus 140 will continue to be used for other liquids lighter than water.

Calculated from the formula, degrees A. P. I. =
$$\frac{141.5}{\text{Sp. Gr. }60^{\circ}/60^{\circ}\text{ F}} - 131.5}$$

Degrees A. P. I. 60°/60°F.	0	I	2	3	4	5	6	7	8	9
o.6 .7 .8 .9	104.33 70.64 45.38 25.72 10.00	100.47 67.80 43.19 23.99	96.73 65.03 44.06 22.30	93.10 62.34 38.98 20.65	89.59 59.72 36.95 19.03	86.19 57.17 34.97 17.45	82.89 54.68 33.03 15.90	79.69 52.27 31.14 14.38	76.59 49.91 29.30 12.89	73.57 47.61 27.49 11.43

TABLE 112

DENSITY OF THE ELEMENTS, LIQUID OR SOLID

The density may depend considerably on previous treatment. To reduce to lbs./cu. ft. multiply by 62.4.

Element	Physical State	g/cm³	°C*	Authority
Aluminum	commercial h'd d'n	2.70	20°	Wolf, Dellinger, 1910
Aluminum	liquid	2.43	740	7. 1. 7. 1.
44	11	2.29	1000	Edwards, Taylor
Antimony	vacuo-distilled	6.618	20	Kahlbaum, 1902
"	ditto-compressed	6.691 6.22	20	Hérard
14	amorphous	6.55	631	Pascal, Jauniaux
Argon	liquid	1.40	-186	Baly-Donnan
Argon	solid	1.65	-233	Simon, 1924
Arsenic	crystallized	5.73	14	Geuther
44	amorph. brblack	3.70 3.88		Linck
	yellow solid	3.78		Guntz
Barium Bismuth	electrolytic	9.747		Classen, 1890
Districtir "	vacuo-distilled	9.781	20	Kahlbaum, 1902
66	liquid	10.00	27 I	Vincentini-Omodei
**	solid	9.67	271	Wigand
Boron	crystal	2.535		Moissan
Duamina	amorph. pure	2.45 3.12		Richards-Stull
Bromine	solid	4.2	-273	Computed†
Cadmium	wrought	8.67		Kahlbaum 1999
44	vacuo-distilled	8.648	20	Kahlbaum, 1902 Vincentini-Omodei
4.6	solid	8.37	318	Vincentini-Onloger
	liquid	7.99 1.873	20	Richards-Brink
Cæsium	solid liquid	1.836	27	Eckardt, Graefe, 1900
Calcium	nquid	1.54		Brink
Carbon	diamond	3.52		Wigand
"	graphite	2.25		Muthmann-Weiss
Cerium	electrolytic	6.79 7.02		Wittenham voice
Chlorino	pure liquid	1.507	- 33.6	Drugman-Ramsay
Chlorine	solid	2.2	-273	Computed†
Chromium		6.52-6.73		Deffer 1921
44	pure	6.93	25 21	Peffer, 1931 Tilden, Ch. C., 1898
Cobalt		8.71	15	Muthmann-Weiss
Columbium	cast	8.30-8.95		
Copper	annealed	8.89	20	Dellinger, 1911
	hard drawn	8.89	20	K-blhoum 1000
44	vacuo-distilled	8.9326	20	Kahlbaum, 1902
"	ditto-compressed	8.9376 8.217	20	Roberts-Wrightson_
	liquid	4.77		St. Meyer, Z. Ph. Ch. 37
Erbium Fluorine	liquid	1.14	-200	Moissan-Dewar
114011110	solid	1.5	-273	Computed†
Gallium		5.93	23	de Boisbaudran Winkler
Germanium		5.46	20	Humpidge
Glucinum	cost	1.85		114111111111111111111111111111111111111
Gold	cast vacuo-distilled	18.88	20	Kahlbaum, 1902
66	ditto-compressed	19.27	20	1 D
Hafnium	solid	13.3		de Boer, 1930 Onnes, 1908
Helium	liquid	0.15	-269	Computed†
77-1	solid	0.19	-273 -252	Dewar, Ch. News, 1904
Hydrogen	liquid solid	0.763	-260	Dewar
Indium	Solid	7.28		Richards

^{*}Where the temperature is not given, ordinary temperature is understood. † Herz, 1919.

DENSITY OF THE ELEMENTS, LIQUID OR SOLID

		1		
Element	Physical State	g/cm³	°C*	Authority
Iridium		22.42	17	Deville-Debray
Iodine		4.940	20	Richards-Stull
	liquid	3.71	184	Drugman, Ramsey Bureau of Standards
Iron	pure	7.86		Bureau of Standards
11	gray cast white cast	7.03-7.13		
11	wrought	7.58-7.73 7.80-7.90		
11	liquid	6.88		Roberts-Austen
11		6.91	I 200	Honda
Krypton	11	2.16	-146	Ramsay-Travers
T 41	solid	3.4	-273	Computed†
Lanthanum Lead	vacuo-distilled	6.15	40	Muthmann-Weiss Kahlbaum, 1902
Lead "	ditto-compressed	11.342	20 20	Kambaum, 1902
· · ·	solid	11.005	325	Vincentini-Omodei
"	liquid	10.597	400	Day, Sosman, Hostetter,
"	-11	10.078	850	1914
Lithium		0.534	20	Richards-Brink, 1907
Magnesium		1.741		Voigt
Manganese Mercury	liquid	7.3	О	Mean Thiesen, Scheel, Sell,
Wicicary	"	13.596 13.546	20	Heuse, 1912
44	44	13.690	- 38.8	Vincentini-Omodei
11	solid	14.193	- 38.8	Mallet
"	"	14.383	-188	Dewar, 1902
Molybdenum		10.2		Davy, 1925
Neodymium Neon		7.00	245	Kremers, 1925
Nickel		1.204 8.8	-245	Onnes, Alii
Nitrogen	liquid	0.810	-195	Baly-Donnan, 1902
" -	111	0.854	-205	
44	solid	1.0265	-252.5	Dewar
	**	1.14	-273	Computed
Osmium	liquid	22.5	-0-6	Deville-Debray
Oxygen	solid	1.132	-183.6 -252.5	Drugman, Ramsey Dewar
44	11	1.568	-273	Computed†
Palladium		11.5	2/3	compared
Phosphorus	white	1.83		
"	red	2.20		***.
11	metallic	2.34	15	Hittorf
Platinum	black	2.69	20	Bridgman, 1918 Richards-Stull
1 latinuiti	black	21.37	20	Richards-Stuff
Potassium		0.870	20	Richards-Brink, 1907
11	solid	0.851	62.1	Vincentini-Omodei
	liquid	0.830	62.1	777° 1 77
Praseodymium Rhodium		6.6	25	Wierda, Kremers, 1925
Rubidium		12.44	20	Holborn Henning Richards-Brink, 1907
Ruthenium		1.532	19	Ruff, Vidic, 1925
Samarium		7.7-7.8	- 9	Muthmann-Weiss
Selenium		4.82		Bradley, 1924
Silicon	cryst.	2.42	20	Richards-Stull-Brink
Silver	amorph.	2.35	15	Vigoroux
Sliver	vacuo-distilled	10.42-10.53	20	Kahlbaum, 1902
44	"-compressed	10.492	20	11 11 11
**	liquid	9.51	20	Wrightson
Sodium		0.9712	20	Richards-Brink, 1907
11	solid	0.9519	97.6	Vincentini-Omodei
11	liquid	0.9287	97.6	
		1.0066	-188	Dewar
		1		

^{*} Where the temperature is not given, ordinary temperature is understood. † Herz, 1919.

TABLES 112 (concluded) AND 113

TABLE 112 (concluded).-Density of the elements, liquid or solid

Element	Physical state	g/cm³	°C*	Authority
Strontium	solid	2.60		
Sulphur	6.6	2.0-2.1		
7.	liquid	1.811	113	Vincentini-Omodei
Tantalum	•	16.6		
Tellurium	crystallized	6.25		
46	amorphous	6.02	20	Bjeljankin
Thallium	_	11.86		Stull
Thorium		11.00	17	Nilson
Tin	white, cast	7.29		Matthiessen
44	" wrought	7.30		
44	" solid	7.184	226	Vincentini-Omodei
44	liquid	6.99	226	"
4.6	gray	5.8		
Titanium		4.5	18	Mixter
Tungsten		18.6-19.1		CO.
Uranium		18.7	13	Zimmermann
Vanadium		5.6		T
Xenon	liquid	3.52	109	Ramsay-Travers
Yttrium		4.57		Kremers, 1926
Zinc	cast	7.04-7.16		
16	solid	4.32	-273	Herz, computed
14	vacuo-distilled	6.92	20	Kahlbaum, 1902
**	ditto-compressed	7.13	20	D 1 /- Wai-14
"	liquid	6.48		Roberts-Wrightson
Zirconium		6.53		De Boer, 1930
			1	

TABLE 113.—Density in grams per cubic centimeter and in pounds per cubic foot of different kinds of wood

Wood is to be seasoned and of average dryness. See also pages 132 to 135 and 163

Wood	Grams per cubic centimeter	Pounds per cubic foot	Wood	Grams per cubic centimeter	Pounds per cubic foot
Alder Apple Ash Balsa Bamboo Basswood. See Linden Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Pine, Eastern White "Larch "Pitch "Red "Scotch "Spruce "Yellow	0.65-0.85 < Cork 0.31-0.40 0.70-0.90 1.00 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 0.76 1.11-1.33 0.54-0.60 0.35-0.50 0.50-0.56 0.83-0.85 0.48-0.70 0.43-0.53	26-42 41-52 40-53 19-25 43-56 62 32-48 59-72 65 24 30-35 43-56 14-16 47 69-83 34-37 22-31 31-35 52-53 30-44 27-33 30-44 23-37	Greenheart Hazel Hickory Holly Iron-bark Juniper Laburnum Lancewood Lignum vitæ Linden or Lime-tree. Locust Logwood Mahogany, Honduras "Spanish. Maple Oak Pear-tree Plum-tree Poplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	0.32-0.59 0.67-0.71 0.91	58-65 37-49 37-58 47 64 35 57 42-62 73-83 20-37 42-44 57 41 53 39-47 37-56 38-45 41-49 22-31 59 24-37 41-55 61 40-43 62 24-37

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

162 TABLE 114

DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS

N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material. Crams per cu. cm. Pounds per cu. foot.	r					
Alabaster: Carbonate 2.69-2.78 168-173 Hematite 4.9-5.3 306-330 187 306-330 187 306-330 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-300 306-	Material.			Material.		
Emery	Agate Alabaster: Carbonate Sulphate Albite Amber Amphiboles Anorthite Anthracite Asbestos Asphalt Basalt Beeswax Beryl Biotite Bone Brick Butter Calamine Caoutchouc Celluloid Cement, set Chalk Charcoal: oak pine Chromite Cinnabar Clay Coal, soft Cocoa butter Coke Copal Corundum Diamond: Anthracitic Carbonado Diorite Dolomite Ebonite Emery Epidote Feldspar Flint Fluorite Gamboge Garnet	cu. cm. 2.5-2.7 2.69-2.78 2.26-2.32 2.62-2.65 1.06-1.11 2.9-3.2 2.74-2.76 1.4-1.8 2.0-2.8 1.1-1.5 2.4-3.1 0.96-0.97 2.69-2.7 2.7-3.1 1.7-2.0 1.4-2.2 0.86-0.87 4.1-4.5 0.92-0.99 1.4 2.7-3.0 1.9-2.8 0.57 0.28-0.44 6.00 4.32-4.57 8.12 1.8-2.6 1.2-1.5 0.89-0.91 1.0-1.7 1.04-1.14 3.9-4.0 1.66 3.01-3.25 2.52 2.84 1.15 4.0 3.25-3.5 2.63 3.18 1.2 3.15-4.3	156-168 168-173 141-145 163-165 66- 69 180-200 171-172 87-112 125-175 69- 94 150-190 00- 61 168-168 170-190 106-125 87-137 53- 54 255-280 57- 62 87 170-190 118-175 35 18- 28 374 270-285 507 122-162 75- 94 56- 57 62-105 65- 71 245-250 104 188-203 157 177 72 250 203-218 159-172 164 198 75	Gum arabic Gypsum Hematite Hornblende Ice Ilmenite Ivory Labradorite Lava: basaltic trachytic Leather: dry greased Limestone Litharge: Artificial Natural Magnetite Malachite Marble Meerschaum Mica Muscovite Ochre Oligoclase Olivine Opal Orthoclase Paper Paraffin Peat Pitch Porcelain Porphyry Pyrite Quartz Quartzite Resin Rock salt Rutile Sandstone Serpentine Slag, furnace Slate Soapstone Starch	1.3-1.4 2:31-2:33 4:9-5:3 3.0 0.917 4:5-5: 1.83-1.92 2:7-2:72 2:8-3.0 2:0-2:7 0:86 1.3-1.4 2:68-2:76 9:3-9.4 7.8-8.0 4:9-5:2 3:7-4:1 2:6-2:84 0:99-1:28 2:6-3:2 2:76-3:0 3:5 2:05-2:67 3:27-3:37 2:2 2:58-2:61 0:7-1:15 0:87-0:91 0:84 1:07 2:3-2:5 2:65-2:9 4:95-5:1 2:65 2:73 1:07 2:18 4:2 2:14-2:36 2:50-2:65 2:0-3:9 2:6-3:3 2:6-3:3 2:6-3:3	80- 85 144-145 306-330 187 57.2 280-310 114-120 168-170 175-185 125-168 54 64 103-111 81- 87 167-171 580-585 490-500 306-324 231-256 160-177 62- 80 165-200 172-225 218 165-167 204-210 137 161-163 44- 72 54- 57 52 67 143-156 162-181 309-318 165 170 67 136 260 134-147 156-165 125-240 162-205 162-175 95

TABLE 115 .- Density in Grams per Cubic Centimeter and Pounds per Cubic Foot of Various Alloys

All All	Grams	Pounds
Alloy	per cubic centimeter	per cubic foot
Brasses: Yellow, 70Cu + 30Zn, cast rolled.	8.44 8.56	527
" " drawn	8.70	534 542
" Red, $90Cu + 10Zn$	8.60	536
" White, 50Cu + 50Zn	8.20	511
Bronzes: 90Cu + 10Sn	8.78 8.89	548 555
" 80Cu + 20Sn	8.74	545
" 75Cu + 25Sn	8.83	551
German Silver: Chinese, 26.3Cu + 36.6Zn + 36.8Ni "Berlin (1) 52Cu + 26Zn + 22Ni	8.30	518
" " (2) 59Cu + 30Zn + 11Ni	8.45 8.34	527 520
" " (3) 63 Cu + 30 Zn + 6 Ni	8.30	518
" Nickelin	8.77	547
Lead and Tin: 87.5Pb + 12.5Sn	10.60	661 644
" " 77.8Pb + 22.2Sn	10.05	627
" " 63.7Pb + 36.3Sn	9.43	588
+ 53.3511	8.73	545
" " 30.5Pb + 69.5Sn Bismuth, Lead, and Cadmium: 53Bi + 40Pb + 7Cd	8.24	514 659
Wood's Metal: 50Bi + 25Pb + 12.5Cd + 12.5Sn	9.70	605
Cadmium and Tin: 32Cd + 68Sn	7.70	480
Gold and Copper: 98Au + 2Cu	18.84	1176
" " 94Au + 6Cu	17.95	1145 1120
" " " 90Au + 10Cu	17.16	1071
" " " 86Au + 14Cu	16.47	1027
Aluminum and Copper: 10Al + 90Cu	7.69 8.37	480 522
" " " $3AI + 95Cu$	8.69	542
Aluminum and Zinc: 91Al + 9Zn	2.80	175
Platinum and Iridium: 90Pt + 10Ir	21.62	1348
" " 85Pt + 15Ir	21.62	1348 1364
Carboloy	14.3	895
Constantan: 60Cu + 40Ni	8.88	554
Magnalium: 70Al + 30Mg Manganin: 84Cu + 12Mn + 4Ni	2.0	125
Manganin; o4Cu + 12Mn + 4M1	8.5 8.87	530 554
Monel metal Platinoid: German silver + little Tungsten	9.0	560
Stellite: Co 59.5; Mo 22.5; Cr 10.8; Fe 3.1; Mn 2.0; C 0.9; Si 0.8	8.3	518

TABLE 116.—Density (g/cm') of some foreign woods on the American market (See also pages 132-135 and 161.)

Almon 0.464 Bullet-wood, Guiana 1.03–1.23 Boxwood, West Indian 83 – 88 Balsa 11 Carreto 84 Cedar, Spanish 38 Cocobola 1.20 Cocus 1.25 Fustic 68 Koa 83 Lauaan, Red 41 Mahogany, African 55 Mahogany, E Indian 38 Mora 1.07–1.09 Oak, English 60–78	Boulger U.S.F.P.L. Boulger Stone Boulger Howard Gardner Boulger	Olive Orange Wood Padouk Prima Vera Purple-heart Quebracho Rosewood, Brazil Rosewood, Honduras Sabicu Snakewood Tamarind Tanguile Wallaba Zebra Wood	6.94 .70 .89-1.29 .58 .7297 1.25 .7784 1.09-1.23 .9096 1.05-1.33 1.32 .4751 .9394	Boulger "Howard Boulger "" "" "" Gardner Boulger
--	---	--	---	--

Table prepared by W. M. N. Watkins, U. S. National Museum

DENSITY OF VARIOUS NATURAL AND ARTIFICIAL MINERALS

Name and formula		Density in grams per cm ³	Sp. vol. in cm³ per gram	Reference
0 ' '	-			
Oxides Corundum Al ₂ O ₃ art. Lime CaO art. Magnesia MgO art. Ferrous oxide FeO art. Hematite Fe ₂ O ₃ . Magnetite Fe ₃ O ₄ . Quartz SiO ₂ nat. " " art. Cristobalite SiO ₂ art Vitreous silica. Rutile TiO ₂ .	C (0°) (25°) (20°) (20°) (25°) (25°) (0°) (25°) (0°) (0°) (0°)	3.980 3.306 3.603 5.99 5.25 5.172 2.649 2.648 2.325 2.203 4.250	.2513 .3025 .2775 .1669 .1905 .1933 .3775 .3776 .4301*	11, 14 ^a 2 5, 13 ^a 15 ^a 14 ^a 11 22 22 22 21
Ilmenite (FeTi)2O3	(o°)	5.088	.1965	11
Silicates Sillimanite Al ₂ O ₃ .SiO ₂	(25%)	2.045	.3080	16
Mullite 3Al-Oa-2SiO2 art Albite NaAlSi ₃ Os art Anorthite CaAl ₂ Si ₃ Os art Nephelite NaAlSiO ₄ art Labradorite Ab ₄ 8An ₂ 2 Oligoclase Ab ₇ 8An ₂ 2 Orthoclase KAlSi ₃ O ₈ b Microcline Microcline	(25°) (25°) (25°) (25°) (21°) (26°) (15°) (15°) (25°)	3.247 3.156 2.597 2.757 2.619 2.695 2.638 2.554 2.566 2.557	.3060 .3169 .3851 .3627 .3818 .3711 .3791 .3915 .3897	16 1 1 6 12 12 20 20
Calcium Orthosilicates				
$\alpha = \text{Ca}_2\text{SiO}_4 \text{ art.}$ $\beta = \text{Ca}_2\text{SiO}_4 \text{ art.}$ $\gamma = \text{Ca}_2\text{SiO}_4 \text{ art.}$	(25°) (25°) (25°)	3.26 3.27 2.965	.307 .306 .3373	2 2 2
Calcium Metasilicates				
$\alpha - \text{CaSiO}_3$ ($\psi - \text{Wollastonite}$) art. $\beta - \text{CaSiO}_3$ (Wollastonite) art. Diopside CaSiO $_3$.MgSiO $_3$. Enstatite MgSiO $_3$ art. (MgSiO $_3$) art. Hypersthene (MgSiO $_3$) $_7$ 0 (FeSiO $_3$) $_7$ 0. Forsterite MgSiO $_3$ 0 $_7$ 0 (FeSiO $_3$) $_7$ 0. Fayalite FeSiO $_4$ art. Garnet—grossularite. "almandite. Jadeite.	(25°) (25°) (28°) (25°) (25°) (25°) (20°) (15°) (31°) (31°)	2.904 2.906 3.257 3.265 3.166 3.254 3.415 3.223 4.28 3.544 4.160 3.328	.3444 .3441 .3070 .3063 .3159 .3073 .2928 .3103 .234 .2822 .2404	2 2 12 4 3 12 17 10 18 18
Miscellaneous Substances				
Borax. Anhydrous, Na ₂ B ₄ O ₇ art. CaCO ₃ ; calcite CaFC ₃ ; fluorite Diamond. NaCl; rock salt. NaSO ₄ VI; thenardite art. Na ₂ SO ₄ III art. KCl; fine powder art Pyrite FeS ₂ . Marcasite FeS ₂ .	(0°) (20°) (10°) (25°) (20°) (25°) (25°) (30°) (25°) (25°)	2.27 2.932 2.7102 3.180 3.516 2.1632 2.664 2.697 1.984 5.012 4.873	.440 .3411 .3688 .3145 .2844 .4623 .3754 .3708 .5040 .1995 .2052	1 11 21 8 12 21 19 19 7

(1) Day and Allen, 1005. (2) Day and Shepherd, 1906. (3) Allen, Wright and Clement, 1906. (4) Allen and White, 1909. (5) Larsen, 1909. (6) Bowen, 1912. (7) Johnston and Adams, 1911. (8) Merwin, 1911. (9) Allen and Crenshaw, 1911. (10) Busz and Rüsberg, 1913. (11) Madelung and Fuchs, 1921. (12) Adams and Williamson, 1923. (13) Rinne, 1923. (14) Pauling and Hendricks, 1925. (15) Wyckoff and Crittenden, 1925. (16) Greig (unpublished). (17) Aurousseau and Merwin, 1928. (18) Adams and Gibson, 1929. (19) Kracek and Gibson, 1929. (20) Bjeljankin, 1927. (21) DeFoe and Compton, 1925. (22) Sosman, 1927.

X-ray diffraction data.
 Calculated from density and composition of adularia.

DENSITY OF LIQUIDS

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

Liquid.	Grams per cubic centimeter.	Pounds per cubic foot.	Temp. C.
A			
Acetone	0.792	49 · 4	20°
Alcohol, ethyl	0.807	50.4	0
methyl	0.810	50.5	0
Aniline	1.035	64.5	0
Benzene	0.899	56.1	0
Bromine	3.187	199.0	0
Carbolic acid (crude)	0.950-0.965	59.2-60.2	15
Carbon disulphide	1.293	80.6	0
Chloroform	1.489	93.0	20
Cocoa-butter	0.857	53.5	100
Ether	0.736	45.9	0
Gasoline	0.66-0.69	41.0-43.0	_
Glycerine	1.260	78.6	0
Japan wax	0.875	54.6	100
Milk	1.028-1.035	64.2-64.6	_
Naphtha (wood) .	0.848-0.810	52.9-50.5	0
Naphtha (petroleum ether)	0.665	41.5	15
Oils: Amber	0.800	49.9	15
Anise-seed.	0.996	62.1	16
Camphor	0.990	56.8	10
Castor			7.5
Clove	0.969	60.5	15
Cocoanut	1.04-1.06	6566.	25
	0.925	57.7	15
Cotton Seed	0.926	57.8	16
Creosote	1.040-1.100	64.9-68.6	15
Lard	0.920	57.4	15
Lavender	0.877	54.7	16
Lemon	0.844	52.7	16
Linseed (boiled)	0.942	58.8	15
Neat's foot.	0.913~.917	57.0-57.2	-
Olive	0.918	57 - 3	15
Palm	0.905	56.5	15
Pentane	0.650	40.6	0
"	0.623	38.9	25
Peppermint	0.9092	56-57	25
Petroleum	0.878	54.8	o l
" (light)	0.795-0.805	49.6-50.2	15
Pine	0.850-0.860	53.0-54.0	15
Poppy	0.924	57.7	_
Rapeseed (crude)	0.915	57.I	15
" (refined)	0.913	57.0	15
Resin	0.955	59.6	15
Sperm	0.88	55.	25
Soya-bean .	0.919	57·3	30
66 66	0.906	56.5	90
Train or Whale	0.918-0.925	57.3-57.7	15
Turpentine.	0.873	54.2	16
Valerian .		54·2 60.2	16
Wintergreen .	0.965 1.18		
Pyroligneous acid	0.800	74.	25
Water		49.9	0
Water	1.000	62.4	4

TABLE 119

DENSITY OF PURE WATER FREE FROM AIR. 0° TO 41° C

[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from 0° to 40° C, in grams per milliliter 1]

De- grees				Ter	nths of D	egrees.					Mean Differ-
grees Centi- grade.	0	1	2	3	4	5	6	7	8	9	ences.
0 1 2 3 4	0.999 8681 9267 9679 9922 1.000 0000	8747 9315 9711 9937 *9999	8812 9363 9741 9951 *9996	8875 9408 9769 9962 *9992	8936 9452 9796 9973 *9986	8996 9494 9821 9981 *9979	9053 9534 9844 9988 *9970	9109 9573 9866 9994 *9960	9163 9610 9887 9998 *9947	9216 9645 9905 *0000	+ 59 + 41 + 24 + 8 - 8
5 6 7 8 9	0.999 9919 9682 9296 8764 8091	9902 9650 9249 8703 8017	9884 9617 9201 8641 7940	9864 9582 9151 8577 7863	9842 9545 9100 8512 7784	9819 9507 9048 8445 7704	9795 9468 8994 8377 7622	9769 9427 8938 8308 7539	9742 9385 8881 8237 7455	9713 9341 8823 8165 7369	- 24 - 39 - 53 - 67 - 81
10 11 12 13 14	7282 6331 5248 4040 2712	7194 6228 5132 3912 2572	7105 6124 5016 3784 2431	7014 6020 4898 3654 2289	6921 5913 4780 3523 2147	6826 5805 4660 3391 2003	6729 5696 4538 3257 1858	6632 5586 4415 3122 1711	6533 5474 4291 2986 1564	6432 5362 4166 2850 1416	- 95 -108 -121 -133 -145
15 16 17 18 19	1 266 0.998 9705 8029 6244 4347	9542 7856 6058 4152	0962 9378 7681 5873 3955	0809 9214 7505 5686 3757	0655 9048 7328 5498 3558	0499 8881 7150 5309 3358	0343 8713 6971 5119 3158	0185 8544 6791 4927 2955	0026 8373 6610 4735 2752	*9865 8202 6427 4541 2549	—156 —168 —178 —190 —200
20 21 22 23 24	2343 0233 0.997 8019 5702 3286	2137 0016 7792 5466 3039	1930 *9799 7564 5227 2790	1722 *9580 7335 4988 2541	1511 *9359 7104 4747 2291	1301 *9139 6873 4506 2040	1090 *8917 6641 4264 1788	0878 *8694 6408 4021	0663 *8470 6173 3777 1280	0449 *8245 5938 3531 1026	-211 -221 -232 -242 -252
25 26 27 28 29	0770 0.996 8158 5451 2652 0.995 9761	0513 7892 5176 2366 9466	0255 7624 4898 2080 9171	*9997 7356 4620 1793 8876	*9736 7087 4342 1505 8579	*9476 6817 4062 1217 8282	*9214 6545 3782 0928 7983	*8951 6273 3500 0637 7684	*8688 6000 3218 0346 7383	*8423 5726 2935 0053 7083	-261 -271 -280 -289 -298
30 31 32 33 34	6780 3714 0561 0.994 7325 4007	6478 3401 0241 6997 3671	6174 3089 *9920 6668 3335	5869 2776 *9599 6338 2997	5564 2462 *9276 6007 2659	5258 2147 *8954 5676 2318	4950 1832 *8630 5345 1978	4642 1515 *8304 5011 1638	4334 1198 *7979 4678 1296	4024 0880 *7653 4343 0953	-307 -315 -324 -332 -340
35 36 37 38 39	0610 0.993 7136 3585 0.992 9960 6263	0267 6784 3226 9593 5890	*9922 6432 2866 9227 5516	*9576 6078 2505 8859 5140	*9230 5725 2144 8490 4765	*8883 5369 1782 8120 4389	*8534 5014 1419 7751 4011	*8186 4658 1055 7380 3634	*7837 4301 0691 7008 3 ² 55	*7486 3943 0326 6636 2876	-347 -355 -362 -370 -377
40 41	o.991 8661	2116	1734	1352	0971	0587	0203	*9818	*9433	*9047	-384

¹ According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907.

SMITHSONIAN TABLES.

TABLE 120

167

VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY. 0° TO 36° C

Hydrogen Thermometer Scale

Temp. C.	.0	.1	.2	•3	-4	•5	.6	-7	.8	.9
0 1 2 3 4	073 073 032 008 000	069 029 006 000	064 026 005 000	059 023 004 001	106 055 020 003 001	100 051 018 002 002	095 047 016 001 003	089 043 013 001 004	084 039 011 000 005	079 035 009 000
5	008	010	012	014	016	018	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	070	075	080	085	090	095	101	106	112	118
8	124	130	137	142	149	156	162	169	176	184
9	191	198	206	214	222	230	238	246	254	263
10	272	281	290	299	308	317	327	337	347	357
11	367	377	388	398	409	420	430	441	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	623	536	649	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	873	890	905	920	935	951	967	983	998	015*
16	1.001031	047	063	080	097	113	130	147	164	182
17	198	216	233	252	269	287	305	323	341	358
18	378	396	415	433	452	471	490	510	529	548
19	568	588	606	626	646	667	687	707	728	748
20	769	790	811	832	853	874	895	916	938	960
21	981	002*	024*	046*	068*	091*	113*	135*	158*	181*
22	1.002203	226	249	271	295	319	342	364	389	412
23	436	459	483	507	532	556	581	605	629	654
24	679	704	729	754	779	804	829	854	879	905
25 26 27 28 29	932 1.003195 467 749 1.004041	958 221 495 776 069	983 248 523 806	010* 275 550 836 129	036* 302 579 865 160	061* 330 607 893 189	088* 357 635 922 220	384 663 951 250	141* 412 692 981 280	168* 439 720 011* 310
30	341	371	403	43 ² 744 066* 395 73 ²	464	494	526	557	588	619
31	651	682	713		777	808	840	872	904	936
32	968	001*	033*		098*	132*	163*	197*	229*	263*
33	1.005296	328	361		427	461	496	530	562	597
34	631	665	698		768	802	836	871	904	940
35	975	009*	044*	078*	115*	150*	185*	219*	255*	290*

Reciprocals of the preceding table.

Influence of Pressure *

kg/cm ²	O _o C	20° C	40° C	kg/cm ²	20° C	40° C
1	1.0000	1.0016	1.0076	7,000	0.8404	0.8485
500	.9771	.9808	.9873	8,000	.8275	.8360
1,000	.9578	.9630	.9700	9,000	.8160	.8249
2,000	.9260	.9327	.9403	10,000	-	.8149
3,000	.9015	.9087	.9164	11,000	_	.8056
5,000	.8632	.8702	.8778	12,000	_	.7966
6,000	.8480	.8545	.8623	12,500	_	.7922

^{*} Williamson, Change of Physical Properties with Pressure, J. Frank. Inst. 193, p. 491, 1922.

DENSITY AND VOLUME OF WATER -10° TO +250° C

The mass of one cubic centimeter at 4° C is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10° -9 -8 -7 -6	0.99815 843 869 892 912	1.00186 157 131 108 088	+ 35° 36 37 38 39	0.99406 371 336 300 263	1.00598 633 669 706 743
- 5 4321	0.99930 945 958 970 979	055 042 031 021	40 41 42 43 44	0.99225 187 147 107 066	1.00782 821 861 901 943
+0	0.99987	1.00013	45	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	001	48	896	116
4	1.00000	1.00000	49	852	162
5	0.99999	1.00001	50	0.98807	1.01207
6	997	003	51	7 ⁶²	254
7	993	007	52	7 ¹ 5	301
8	988	012	53	669	349
9	981	019	54	621	398
10 11 12 13 14	0.99973 963 952 940 927	037 048 060 073	55 60 65 70 75	0.98573 324 059 0.97781 489	1.01448 705 979 1.02270 576
15	0.99913	1.00087	80	0.97183	1.02899
16	897	103	85	0 96865	1.03237
17	880	120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	1.0515
21	802	198	120	·9434	1.0601
22	780	220	130	·9352	1.0693
23	757	244	140	·9264	1.0794
24	733	268	150	·9173	1.0902
25	0.99708	1.00293	160	0.9075	1.1019
26	682	320	170	.8973	1.1145
27	655	347	180	.8866	1.1279
28	627	37.5	190	.8750	1.1429
29	598	404	200	.8628	1.1590
30	0.99 568	1.00434	210	0.850	1.177
31	537	465	220	.837	1.195
32	506	497	230	.823	1.215
33	473	530	240	.809	1.236
34	440	563	250	.794	1.259

From — 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to $_{41}^{\circ}$, to Chappuis, $_{42}^{\circ}$ to $_{100}^{\circ}$, to Thiesen; $_{110}^{\circ}$ to $_{250}^{\circ}$, to means from the works of Ramsey, Young, Waterston, and Hirn.

DENSITY AND VOLUME OF MERCURY

- 10° to + 360°C
 Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp. C.	Mass in grams per cu. cm.	Volume of r gram in cu. cms.	Temp. C.	Massin grams per cu. cm.	Volume of gram in cu. cms.
-10° -9 -8 -7 -6	13.6198	0.0734225	30°	13.5213	0.0739572
	6173	4358	31	5189	9705
	6148	4492	32	5164	9839
	6124	4626	33	5140	9973
	6099	4759	34	5116	40107
-5	13.6074	0.0734893	35	13.5091	0.0740241
-4	6050	5026	36	5066	0374
-3	6025	5160	37	5042	0508
-2	6000	5293	38	5018	0642
-1	5976	5427	39	4994	0776
01234	13.5951	0.0735560	40	13.4969	0.0740910
	5926	5694	50	4725	2250
	5901	5828	60	4482	3592
	5877	5961	70	4240	4936
	5852	6095	80	3998	6282
5 6 7 8	13.5827	0.0736228	90	13.3723	0.0747631
	5803	6362	100	3515	8981
	5778	6496	110	3279	50305
	5754	6629	120	3040	1653
	5729	6763	130	2801	3002
10	13.5704	0.0736893	140	13.2563	0.0754°54
11	5680	7030	150	2326	5708
12	5655	7164	160	2090	7064
13	5630	7298	170	1853	8422
14	5606	7431	180	1617	9784
15 16 17 18	13.5581 5557 5532 5507 5483	0.0737565 7699 7832 7966 8100	190 200 210 220 230	13.1381 1145 0910 0677 0440	0.0761149 2516 3886 5260 6637
20	13.5458	0.0738233	240	13.0206	0.0768017
21	5434	8367	250	12.9972	9402
22	5409	8501	260	9738	7090
23	5385	8635	270	9504	2182
24	5360	8768	280	9270	3579
25 26 27 28 29	13.5336 5311 5287 5262 5238	0.0738902 9036 9170 9304 9437	300 310 320 330	12.9036 8803 8569 8336 8102	0.0774979 6385 7795 9210 80630
30	13.5213	0.0739571	340 350 360	12.7869 7635 7402	0.0782054 3485 4921

Based upon Thiesen und Scheel, Tätigkeitber. Phys. Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903. Thiesen, Scheel, Sell; Wiss, Abh. Phys. Techn. Reichsanstalt 2, p. 184, 1895, and 1 liter = 1.000027 cu. dm.

TABLE 123

DENSITY OF AQUEOUS SOLUTIONS *

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

	P			F or Dr							
Substance.	W	eight of	the diss	olved si	abstance e solutio	in 100	parts by	weight	of	ηр. С.	Authority.
	5	10	15	20	25	30	40	50	60	Тетр.	
K ₂ O	1.047	1.098	I.I53 I.I27	1.214 1. 1 76	1.284	1.354 1.286	1.503 1.410	1.659	1.809 1.666	15. 15.	Schiff.
Na ₂ O NaOH	1.073	1.144	1.218	1.284	I.354 I.279	1.421	1.557 1.436	1.689	1.829	15. 15.	66
NH ₃	0.978	o.9 5 9	0.940	0.924	0.909	0.896	-	-	-	1Ğ.	Carius.
NH ₄ Cl KCl	1.015	1.030 1.065	1.044	1.135	1.072	_	-	-	-	15. 15.	Gerlach.
NaCl LiCl	1.035	1.072	1.110	1.116	1.191 1.147	1.181	1.255	_	-	1 5. 1 5.	46
CaCl ₂	1.041	1.086	1.132	1.181	1.232	1.286	1.402	-	-	15.	Schiff.
$CaCl_2 + 6H_2O$ $AlCl_3$ $MgCl_2$	1.030	1.040	1.111	1.153	1.105 1.196 1.226	1.128	1.176	1.225	1.276	15. 15.	Gerlach.
MgCl ₂ +6H ₂ O ZnCl ₂	1.041 1.014 1.043	_	1.049		1.085	1.103	1.141 1.417	1.183 1.563	1.222 1.737	24. 19.5	Schiff. Kremers.
$CdCl_2 \dots SrCl_2 \dots$	1.043	1.087	1.138	1.193		1.319	1.469	1.653	1.887	19.5	" Gerlach.
$SrCl_2 + 6H_2O$ $BaCl_2 \cdot \cdot \cdot$	1.027	1.053	1.082	1.111		1.174	1.242	1.317	-	15. 15.	44
BaCl ₂ + 2H ₂ O	1.035	1.075	1.119		,	1.273	-	~	_	21.	Schiff.
CuCl ₂ NiCl ₂	1.044	1.091	1.155	1.221	1.291	1.300	1.527	-	~	17.5 17.5 20.	Franz. " Mendelejeff.
$\begin{array}{c cccc} \operatorname{HgCl_2} & \cdot & \cdot & \cdot \\ \operatorname{Fe_2Cl_6} & \cdot & \cdot & \cdot \\ \operatorname{PtCl_4} & \cdot & \cdot & \cdot \end{array}$	1.041 1.041 1.046	1.092 1.086 1.097	1.130	1.179			1.413 1.546	1.545 1.785	1.668	17.5	Hager. Precht.
$SnCl_2 + 2H_2O$ $SnCl_4 + 5H_2O$	1.032	1.067 1.058	1.104			1.229	1.329	1.444	1.580 1.467	15. 15.	Gerlach.
LiBr	1.033	1.070	1.111	1.154		1.252	1.366		-	19.5	Kremers.
NaBr	1.038	1.078	1.123	1.172	1.224		1.408		~	19.5	66
$MgBr_2 \dots $ $ZnBr_2 \dots$	1.041	1.085	1.144	1.189	1.263	1.328	I.449 I.473	1.648	1.873	19.5	"
CdBr ₂ CaBr ₂	1.041 1.042	1.088	1.137	1.197	2.250	1.313	1.479	1.639	_	19.5	66
BaBr ₂	1.043	1.090	1.142	1.199			1.483	1.683	1.953	19.5	66
SrBr ₂ KI LiI	1.043 1.036 1.036	1.076	1.118		1.216	1.269		1.544	1.732	19.5	46
NaI ZnI ₂	1.038	1.080	1.126		1.232	1.292		1.598	1.808	19.5	ee ee
CdI_2	1.042	1.086	1.136	1.192	1.251	1.317	1.474	1.678	_	19.5	66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.042	1.088	1.137	1.196	1.258	1.318	1.475	1.663	1.908	19.5	46
$\operatorname{SrI}_2 \dots $ $\operatorname{BaI}_2 \dots $	1.043	1.089	1.140	1.198	1.263	1.328	1.493	1.693		19.5	66
NaClO ₃ NaBrO ₃	1.035		1.106	1.145		1.233	1.329	-	_	19.5	
KNO_3 $NaNO_3$	1.031	1.064	1.099	1.135		-	-	- 1.416	-	15.	Schiff.
AgNO ₃	1.044		1.140		1.255	1.322	1.479	1.675	1.918	15.	Kohlrausch.

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27. SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS

Substance.	W	eight of	the diss	olved s	ubstance solution	e in 100 on.	parts by	weight	of	p. C.	Authority.
Substance,	5	10	15	20	25	30	40	50	60	Temp.	
$NH_4NO_3 \dots $ $Zn(NO_3)_2 \dots$	1.020	1.041	1.063	1.085	1.107	1.131	1.178	1.229	1.282	17.5	Gerlach. Franz.
$\begin{bmatrix} \operatorname{Zn}(\operatorname{NO}_3)_2 + 6\operatorname{H}_2\operatorname{O} \\ \operatorname{Ca}(\operatorname{NO}_3)_2 & \cdot & \cdot \end{bmatrix}$	1.037	1.054		1.113	1.211	1.178	1.250	1.329	- 1.604 -	14. 17.5 17.5	Oudemans, Gerlach. Franz.
$\begin{bmatrix} \operatorname{Cu}(\operatorname{NO_3})_2 & \cdot & \cdot \\ \operatorname{Sr}(\operatorname{NO_3})_2 & \cdot & \cdot \\ \operatorname{Pb}(\operatorname{NO_3})_2 & \cdot & \cdot \end{bmatrix}$	1.044 1.039 1.043	1.093	1.143 1.129 1.143	1.203 1.179 1.199	1.263	1.328	1.47 I - -	-	-	19.5	Kremers. Gerlach.
$\begin{bmatrix} \operatorname{Cd}(\operatorname{NO}_3)_2 & \cdot & \cdot \\ \operatorname{Co}(\operatorname{NO}_3)_2 & \cdot & \cdot \end{bmatrix}$	1.052	1.097	1.150	1.212	1.283	1.355	1.536 1.465	1.759	-	17.5 17.5	Franz.
$\begin{array}{cccc} \text{Ni}(\text{NO}_3)_2 & \cdot & \cdot \\ \text{Fe}_2(\text{NO}_3)_6 & \cdot & \cdot \end{array}$	1.045	1.090		1.192		1.318	1.465	1.496	1.657	17.5	" Schiff.
Mg(NO ₃) ₂ +6H ₂ O Mn(NO ₃) ₂ +6H ₂ O K ₂ CO ₈	1.018 1.025 1.044	1.038 1.052 1.092	1.060 1.079 1.141	1.082 1.108 1.192	1.105 1.138 1.245	1.129 1.169 1.300	1.179 1.235 1.417	1.232 1.307 1.543	1.386	8 15	Oudemans. Gerlach.
$K_2CO_3 + 2H_2O$. $Na_2CO_3IoH_2O$.	1.037	1.072	1.110	1.150	1.191	1.233	1.320	1.415	1.511	15. 15.	"
$(NH_4)_2SO_4$ $Fe_2(SO_4)_3$ $FeSO_4 + 7H_2O$.	1.027 1.045 1.025	1.055 1.056 1.053	1.084 1.150 1.081	1.113 1.207 1.111	1.142 1.270 1.141	1.170 1.336 1.173	1.226 1.489 1.238	1.287	-	19. 18. 17.2	Schiff. Hager. Schiff.
$\begin{array}{c} \operatorname{MgSO_4} \cdot \cdot \cdot \cdot \\ \operatorname{MgSO_4} + 7 \operatorname{H_2O} \cdot \end{array}$	1.051	1.104	1.161	1.221	1.284	1.155	1.215	1.278	-	15 15.	Gerlach.
$\begin{array}{c} Na_2SO_4 + 10H_2O \\ CuSO_4 + 5H_2O \end{array}$	1.019	1.039	1.059	1.081 1.134	1.102	1.124 1.213 1.214	1.303	1.398	_	15. 18.	Schiff. Gerlach.
$MnSO_4 + 4H_2O$. $ZnSO_4 + 7H_2O$. $Fe_2(SO_4)_3 \cdot K_2SO_4$	1.031	1.064	1.099	1.135	1.174	1.191	1.269	1.351	1.443	20.5	Schiff.
$+\frac{24}{\text{H}_2\text{O}}$ $\text{Cr}_2(\text{SO}_4)_8 \cdot \text{K}_2\text{SO}_4$	1.026	1.045		1.088	1.112	1.141	-	-	_	17.5	Franz.
$ \begin{array}{c c} + 24 H_2 O & . & . \\ MgSO_4 + K_2 SO_4 \\ + 6 H_2 O & . & . \end{array} $	1.016	1.033 1.066	1.051	1.073	1.099	-	1.188	1.287	I.454 -	17.5	Schiff.
(NH4)2SO4 + FeSO4 + 6H2O K2CrO4	1.028	1.058	1.090 1.127	I.122 I.174	1.154	1.191	- 1.397	-	_	19.	66
$K_2Cr_2O_7$ $Fe(Cy)_6K_4$	1.035	1.071		1.174	-	-	-	-	-	19.5	Kremers. Schiff.
$\begin{array}{c} Fe(Cy)_6K_3 \\ Pb(C_2H_3O_2)_2 + \end{array}$	1.025	1.053	1.070	1.113	-	-	- 1 21 5	- 126	_	13	" Gerlach.
$_{2N_{2}O}^{3H_{2}O} + _{4S_{2}O_{5}}^{3H_{2}O} + _{24H_{2}O}^{3H_{2}O} .$	1.031	1.064		1.137	1.177	1.220	1.315	1.426	_	15.	Schiff.
	5	10	15	20	30	40	60	80	ICO		
$SO_3 \dots \dots SO_2 \dots \dots$	1.040	1.084	1.132	1.179	1.277	1.389	1.564	1.840	_	15.	Brineau. Schiff.
$N_2O_5 \dots \dots$ $C_4H_6O_6 \dots \dots$	1.033	1.069	1.104	1.096	1.150	1.207	1.422	1.506 - -	_	15.	Kolb. Gerlach.
$C_6H_8O_7$ Cane sugar $HC1$	1.019	1.039	1.060		1.129		1.273	_	_	15. 17.5 15.	" Kolb.
HBr HI	1.035	1.073	1.114	1.158	1.257	1.376	-	-	-	14.	Topsöe. "Kolb.
H_2SO_4 H_2SiF_6	1.032 1.040 1.035	1.069	1.127		1.273	1.307	1.501	1.732		15. 17.5 17.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.027	1.057	1.086	1.119	1.184	1.264	1.438	1.459	1.528	15.	Schiff. Kolb.
$C_2H_4O_2$	1.007	1.014	1.021	1.028	1.041	1.052	1.068	1.075	1.055	1 5.	Oudemans.

172 TABLE 124

DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN GRAMS PER MILLILITER

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4° C as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular 19, 1913.

Per cent				Temperatures.			
C ₂ H ₅ OH by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	_40° C.
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99225
I	785	725	636	520	379	217	034
2	602	542	453	336	194	031	.98846
3	426	365	275	157	014	.98849	663
4	2 58	195	103	.98984	•98839	672	485
5	098	032	.98938	817	670	501	311
6	.98946	.98877	780	656	507	335	142
7	801	729	627	500	347	172	•97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	.97846	641
10	393	304	187	043	.97875	685	473
11	267	171	047	.97897	723	527	312
12	145	041	.97910	753	573	371	150
13	026	.97914	775	611	424	216	.96989
14	.97911	790	643	472	278	063	829
15 16 17 18	800 692 583 473 363	669 552 433 313 191	514 387 259 129	334 199 062 .96923 782	133 .96990 844 697 547	.96911 760 607 452 294	670 512 352 180 02
20	252	068	864	639	395	134	.9585
21	139	.96944	729	495	242	·95973	68
22	024	818	592	348	087	809	510
23	.96907	689	453	199	.95929	643	34
24	787	558	312	048	769	476	16
25	665	424	168	.95895	607	306	.9499
26	539	287	020	738	442	133	810
27	406	144	.95867	576	272	•94955	62
28	268	.95996	710	410	098	774	438
29	125	844	548	241	.94922	590	248
30	.95977	686	382	067	741	403	05
31	823	524	212	.94890	557	214	93866
32	665	357	038	709	370	021	66:
33	502	186	.94860	525	180	.93825	46:
34	334	011	679	337	.93986	626	25;
35	162	.94832	494	146	790	425	051
36	.94986	650	306	•93952	591	221	.92843
37	805	464	114	756	390	016	632
38	620	273	.93919	556	186	.92808	422
39	431	079	720	353	.92979	597	208
40	238	.93882	518	148	770	385	.91992
41	042	682	314	.92940	558	170	774
42	.93842	478	107	729	344	.91952	554
43	639	271	.92897	516	128	733	332
44	433	062	685	301	.91910	513	108
45	226	.92852	472	085	692	291	.90884
46	017	640	257	.91868	472	069	660
47	.92806	426	041	649	250	.90845	434
48	593	211	.91823	429	028	621	207
49	379	.91995	604	208	.90805	396	.89979
50	162	776	384	.90985	580	168	750

DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER

Per cent				Temperature.			
C ₂ H ₅ OH by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	40° C.
50	0.92162	0.91776	0.91384	0.90985	0.90580	0.90168	0.89750
51	.91943	555	160	760	353	.89940	519
52	723	333	.90936	534	125	710	288
53	502	110	711	307	.89896	479	056
54	279	.90885	485	079	667	248	.88823
55	055	659	258	.89850	437	016	589
56	.90831	433	031	621	206	.88784	356
57	607	207	.S9S03	392	.88975	552	122
58	381	.89980	574	162	744	319	.87888
59	154	752	344	.88931	512	085	653
60 61 62 63 64	.89927 698 468 237 006	523 293 662 .88830 597	.88882 650 417 183	699 466 ² 33 .8 ₇ 998 763	278 044 .87809 574 337	.87851 615 379 142 .86905	417 180 .86943 705 466
65 66 67 68 69	.88 ₇₇₄ 541 308 074 .8 ₇ 8 ₃₉	364 130 .87895 660 424	.87948 713 477 241 004	527 291 054 .86817 579	100 .86863 625 387 148	667 429 190 .85950 710	.85987 747 507 266
70	602	187	.86766	340	.85908	470	025
71	365	.86949	527	100	667	228	.84783
72	127	710	287	.85859	426	.84986	540
73	.86888	470	047	618	184	743	297
74	648	229	.85806	376	.84941	500	053
75	408	.85988	564	134	698	257	.83809
76	168	747	322	.84891	455	013	564
77	.85927	505	079	647	211	.83768	319
78	685	262	.84835	403	.83966	523	074
79	442	018	590	158	720	277	.82827
80	197	.84772	344	.83911	473	029	578
81	.84950	525	096	664	224	.82780	329
82	702	277	,83848	415	.82974	530	079
83	453	028	599	164	724	279	.81828
84	203	.83777	348	.82913	473	027	576
85	.83951	525	095	660	220	.81774	322
86	697	271	.82840	405	.81965	519	067
87	441	014	583	148	708	262	.80811
88	181	.82754	323	.81888	448	003	552
89	.82919	492	062	626	186	.80742	291
90	654	.81959	.81797	362	.80922	478	028
91	386	.88959	529	094	655	211	.79761
92	114	.688	257	.80823	384	-79941	491
93	.81839	.413	.80983	549	111	669	220
94	561	.134	705	272	.79835	393	.78947
95 96 97 98 99	278 .80991 698 399 094	.SoS 52 566 274 •7997 5 670	424 138 .79846 547 243	.79991 706 415 117 .78814	555 271 .78981 684 382	.78831 542 247 •77946	670 388 100 .77806 507
100	.79784	, 360	.78934	506	075	641	203

DENSITY OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULFURIC ACID

Per cent by weight of substance.	Methyl Alcohol. D 15° C.	Cane Sugar. 20° See p. 175	Sulphurie Acid. $D \frac{20^{\circ}}{4^{\circ}} C,$	Per cent by weight of substance.	Methyl Alcohol, D 15° C.	Cane Sugar. 20° See p. 175	Sulphuric Acid. D $\frac{20^{\circ}}{4^{\circ}}$ C.
0 1 2 3 4	0.99913 .99727 .99543 .99370 .99198	0.998234 1.002120 1.006015 1.009934 1.013881	0.99823 1.00506 1 01178 1.01839 1.02500	50 51 52 53 54	0.918 5 2 .91653 .91451 .91248	1.229567 1.235085 1.240641 1.246234 1.251866	1.39505 1.40487 1.41481 1.42487 1.43503
5 6 7 8	.99029 .98864 .98701 .98547 .98394	1.017854 1.021855 1.025885 1.029942 1.034029	1.03168 1.03843 1.04527 1.05216 1.05909	55 56 57 58 59	.90839 .90631 .90421 .90210 .89996	1.257535 1.263243 1.268989 1.274774 1.280595	1.44530 1.45568 1.46615 1.47673 1.48740
10 11 12 13 14	.98241 .98093 .97945 .97802 .97660	1.038143 1.042288 1.046462 1.050665 1.054900	1.06609 1.07314 1.08026 1.08744 1.09468	60 61 62 63 64	.89781 .89563 .89341 .89117 .88890	1.286456 1.292354 1.298291 1.304267 1.310282	1.49818 1.50904 1.51999 1.53102 1.54213
15 16 17 18	.97518 .97377 .97237 .97096 .96955	1.059165 1.063460 1.067789 1.072147 1.076537	1.10199 1.10936 1.11679 1.12428 1.13183	65 66 67 68 69	.88662 .88433 .88203 .87971 .87739	1.316334 1.322425 1.328554 1.334722 1.340928	1.55333 1.56460 1.57595 1.58739 1.59890
20 21 22 23 24	.96814 .96673 .96533 .96392 .96251	1.080959 1.085414 1.089900 1.094420 1.098971	1.13943 1.14709 1.15480 1.16258 1.17041	70 71 72 73 74	.87507 .87271 .87033 .86792 .86546	1.347174 1.353456 1.359778 1.366139 1.372536	1.61048 1.62213 1.63384 1.64560 1.65738
25 26 27 28 29	.96108 .95963 .95817 .95668	1.103557 1.108175 1.112828 1.117512 1.122231	1.17830 1.18624 1.19423 1.20227 1.21036	75 76 77 78 79	.86300 .86051 .85801 .85551 .85300	1.378971 1.385446 1.391956 1.398505 1.405091	1.66917 1.68095 1.69268 1.70433 1.71585
30 31 32 33 34	.95366 .95213 .95056 .94896	1.126984 1.131773 1.136596 1.141453 1.146345	1.21850 1.22669 1.23492 1.24320 1.25154	80 81 82 83 84	.85048 .84794 .84536 .84274 .84009	1.411715 1.418374 1.425072 1.431807 1.438579	1.72717 1.73827 1.74904 1.75943 1.76932
35 36 37 38 39	.94570 .94404 .94237 .94067 .93894	1.151275 1.156238 1.161236 1.166269 1.171340	1.25992 1.26836 1.27685 1.28543 1.29407	85 86 87 88 89	.83742 .83475 .83207 .82937 .82667	1.445388 1.452232 1.459114 1.466032 1.472986	1.77860 1.78721 1.79509 1.80223 1.80864
40 41 42 43 44	.93594 .93720 .93543 .93365 .93185	1.176447 1.181592 1.186773 1.191993	1.30278 1.31157 1.32043 1.32938 1.33843	90 91 92 93 94	.82396 .82124 .81849 .81568 .81285	1.479976 1.487002 1.494063 1.501158	1.81438 1.81950 1.82401 1.82790 1.83115
45 46 47 48 49	.92815 .92627 .92436 .92242 .92048	1.202540 1.207870 1.213238 1.218643	1.34759 1.35686 1.36625 1.37574 1.38533	95 96 97 98	.80999 .80713 .80428 .80143 .79859	1.515455 1.522656 1.529891 1.537161 1.544462	1.83368 1.83548 1.83637 1.83605
50	.91852	1.229567	1.39505	100	.79577	1.551800	

⁽¹⁾

All reprinted from Circular 19, U.S. Bureau of Standards, 1913.

Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at 15°/15°C; J. Russ., Phys. Chem. Soc., 41, p. 977, 1909.

According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2. p. 153, 1900.

Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, 5, p. 131, 1900.

DENSITY, BRIX, AND BAUMÉ DEGREES, OF CANE SUGAR SOLUTIONS

Degrees Brix, Specific Gravity, and Degrees Baumé of Sugar Solutions. Degrees Brix = Per cent Sucrose by Weight.

Specific Gravities and Degrees Baumé corresponding to the Degrees Brix are for $\frac{2c^{\circ}}{20^{\circ}}$ C.

The relation between the specific gravity and Degrees Baumé is given by Degrees Baumé = $145 - \frac{145}{\text{specific gravity}}$.

Degrees Brix or per cent sucrose by weight	Specific gravity at 20°/20°C	Degrees Baumé (modu- lus 145)	Degrees Brix or per cent sucrose by weight	Specific gravity at 20°/20°C	Degrees Baumé (modu- lus 145)	Degrees Brix or per cent sucrose by weight	Specific gravity at 20°/20°C	Degrees Baumé (modu- lus 145)
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0	1.00000 1.00389 1.00779 1.01172 1.01567 1.01965 1.02366 1.02770 1.03176	0.00 0.56 1.12 1.68 2.24 2.79 3.35 3.91 4.46	40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0	1.17853 1.18368 1.18887 1.19410 1.19936 1.20467 1.21001 1.21538	21.97 22.50 23.04 23.57 24.10 24.63 25.17 25.70 26.23	80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0	1.41421 1.42088 1.42759 1.43434 1.44112 1.44794 1.45480 1.46170 1.46862	42.47 42.95 43.43 43.91 44.38 44.86 45.33 45.80 46.27
9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	1.03586 1.03998 1.04413 1.04831 1.05252 1.05077 1.06104 1.06534 1.06968	5.02 5.57 6.13 6.68 7.24 7.79 8.34 8.89 9.45	49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0	1.22625 1.23174 1.23727 1.24284 1.248444 1.25408 1.25976 1.20548 1.27123 1.27703	26.75 27.28 27.81 28.33 28.86 29.38 29.90 30.42 30.94 31.46	89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0	1.47559 1.48259 1.48063 1.49071 1.50381 1.51096 1.51814 1.52535 1.53260 1.53988	46.73 47.20 47.66 48.12 48.58 49.03 49.49 49.94 50.39 50.84
20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0	1.07844 1.08287 1.08733 1.09183 1.09636 1.10092 1.10551 1.11014 1.11480 1.11049	10.55 11.10 11.65 12.20 12.74 13.29 13.84 14.39 14.93 15.48	59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0	1.28286 1.28873 1.29464 1.30059 1.30657 1.31260 1.31866 1.32476 1.33090 1.33708	31.97 32.49 33.00 33.51 34.02 34.53 35.04 35.55 36.55 36.55	99.0	I.54719 I.55454	51.28
30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0	I.12422 I.12898 I.13378 I.13861 I.14347 I.14837 I.15331 I.15828 I.16329 I.16833 I.17341	16.02 16.57 17.11 17.65 18.19 18.73 19.28 19.81 20.35 20.89 21.43	70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0	1.34330 1.34956 1.35585 1.36218 1.36856 1.37496 1.38141 1.38790 1.39442 1.40098 1.400758	37.06 37.56 38.06 38.55 39.05 39.54 40.03 40.53 41.01 41.50 41.99			

The above table is abridged from Bureau of Standards Technologic Paper No. 115. The original table is given in steps of 0.1 Degrees Brix.

TABLE 127

DENSITY OF GASES

The following table gives the density as the weight in grams of a liter (normal liter) of the gas at o°C, 76 cm pressure, and standard gravity, 980.665 cm/sec.², (sea-level, 45° latitude), the specific gravity referred to dry, carbon-dioxide-free air, and to pure oxygen, and the weight in pounds per cubic foot. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000. For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights. The following table was prepared by the Gas Chemistry Section, Bur. Standards, 1929.

Gas	Formula	Weight of normal liter in grams	Air = 1	$O_2 = I$	Pounds per cubic foot	Reference
Air		1.2929	1.0000	.9047	.08071	I
Acetylene	C_2H_2	1.173	.907	.8208	.07323	I
Ammonia	. NH ₃	.7710	.5963	-5395	.04813	I
Argon	. A	1.7837	1.3796	1.2482	.11135	2
Arsine		3.48	2.69	2.44	.217	I
Butane-iso	$C_{4}H_{10}$	2.673	2.067	1.870	.1669	I
Butane-n	. C_4H_{10} $\left\{at\right\}$	2.519 ₀ \ 710 mm	2.0854*	1.8868*	.15725*	5,6
Carbon dioxide	CO_2	1.9769	1.5290	1.3834	.12341	I
Carbon monoxide		1.2504	.9671	.8750	.07806	I
Carbon oxysulphide		2.72	2.10	1.90	.170	I
Chlorine		3.214	2.486	2.249	.2006	I
Chlorine monoxide		3.89	3.01	2.72	.243	I
Ethane		1.3566	1.0493	∙9493	.08469	I
Ethylene		1.2604	.9749	.8820	.07868	I
Fluorine		1.696	1.312	1.187	.1059	I
Helium		.17847	.13804	.12489	.011142	I
Hydrogen		.08988	.06952	.06290	.005611	I
Hydrogen bromide	. HBr	3.6445	2.8189	2.5503	.22752	I
Hydrogen chloride	. HCI	1.6392	1.2678	1.1471	.10233	I
Hydrogen iodide		5.789 ₁	4.4776	4.0510	.36140	I
Hydrogen selenide		3.670	2.839	2.568	.229	I
Hydrogen sulphide		1.539	1.190	1.077	.09608	I
Krypton		3.70_{8}	2.868	2.596	.2315	I
Methane		.7168	-5544	.5016	.04475	I
Monomethylamine		1.396	1.080	.9769	.08715	I
Methyl chloride		2.3076	1.7848 1.6318	1.6148 1.4764	.14406	I
Methyl ether		2.1098 1.5452	1.1951	1.4704	.13171	I
Neon		.90035	.69638	.63004	.056207	3
Nitric oxide		1.3402	1.0366	.9378	.08367	J I
Nitrogen (chem)		1.25056	.96724	.87510	.078069	1,4
Nitrogen (atm)		1.2568	.9721	.8795	.07846	I
Nitrosyl chloride		2.992	2.314	2.094	.1868	I
Nitrous oxide		I.9778	1.5297	1.3840	.12347	Î
Oxygen		1.42904	1.10527	1.0000	.089212	ī
Phosphine		1.5294	1.1829	1.0702	.09548	Î
Propane		2.020	1.562	1.414	.1261	ī
Silicon tetrafluoride		4.684	3.623	3.278	.2924	I
Sulphur dioxide		2.9269	2.2638	2.0482	.18272	I
Xenon		5.851	4.525	4.094	.3653	I
		-				

^{*}Both butane and air at 710 mm.

Based on densities in I. C. T., 3, 3, 1928.

Baxter and Starkweather, Proc. Nat. Acad. Sci., 14, 57, 1928.

Baxter and Starkweather, Proc. Nat. Acad. Sci., 14, 50, 1928.

Moles and Clavera, Z. Anorg. Allgem. Chem., 167, 49, 1927.

Bogaert, Bull. Soc. Chim. Belg., 36, 384, 1927.

Beckers, Bull. Soc. Chim. Belg., 36, 559, 1927.

RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES

TABLE 128.—Values of $\frac{h}{760}$, from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure

This gives the density of moist air at pressure h in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: h=B-o.378e, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of e may be taken from Table 212 and then o.378e from Table 130, or the dew point may be found and the value of o.378e taken from Table 130.

h	/ ₇₆₀
1	0.0013158
2	.0026316
3	.0039474
4	0.0052632
5	.0065789
6	.0078947
7	0.0092105
8	.0105263
9	.0118421

TABLE 129.—Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 800

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

						/2				
h					Values of	log 760				
	0	1	2	3	4	5	6	7	8	9
80 90	ī.02228 .07343	ī.02767 .07823	ī.03300 .08297	ī.03826 .08767	1.04347 .09231	ī.04861 .09691	ī.05368 .10146	ī.05871 .10596	ī.06367 .11041	ī.06858 .11482
100 110 120 130 140	ī.11919 .16 0 58 .19837 .23313 .26531	1.12351 .16451 .20197 .23646 .26841	1.12779 .16840 .20555 .23976	1.13202 .17226 .20909 .24304 .27452	1.13622 .17609 .21261 .24629	1.14038 .17988 .21611 .24952 .28055	7.14449 .18364 .21956 .25273 .28354	1.14857 .18737 .22299 .25591	7.15261 .19107 .22640 .25907 .28945	7.15661 .19473 .22978 .26220 .29237
150 160 170 180 190	ī.29528 .32331 .34964 .37446 .39794	ī.29816 .32601 .35218 .37686 .40022	1.30103 .32870 .35471 .37926 .40249	ī.30388 ·33137 ·35723 ·38164 ·40474	7.30671 ·33403 ·35974 ·38400 ·40699	7.30952 .33667 .36222 .38636 .40922	1.31231 .33929 .36470 .38870 .41144	ī.31509 .34190 .36716 .39128 .41365	ī.31784 .34450 .36961 .39334 .41585	ī.32058 .34707 .37204 .39565 .41804
200 210 220 230 240	7.42022 .44141 .46161 .48091 .49940	1.42238 ·44347 ·46358 ·48280 ·50120	7.42454 -44552 -46554 -48467 -50300	1.42668 ·44757 ·46749 ·48654 ·50479	7.42882 .44960 .46943 .48840 .50658	7.43094 .45162 .47137 .49025 .50835	1.43305 .45364 .47329 .49210 .51012	7.43516 •45565 •47521 •49393 •51188	7.43725 -45764 -47712 -49576 -51364	1.43933 .45963 .47902 .49758 .51539
250 260 270 280 290	ī.51713 .53416 .55055 .56634 .58158	ī.51886 ·53583 ·55216 ·56789 ·58308	7.52059 •53749 •55376 •56944 •58457	ī.52231 ·53914 ·55535 ·57097 ·58605	7.52402 ·54079 ·55694 ·57250 ·58753	7.52573 ·54243 ·55852 ·57403 ·58901	1.52743 .54407 .56010 .57555 .59048	7.52912 •54570 •56167 •57707 •59194	7.53081 ·54732 ·56323 ·57858 ·59340	7.53249 .54894 .56479 .58008 .59486
300 310 320 330 340	7.59631 .61055 .62434 .63770 .65067	1.59775 .61195 .62569 .63901 .65194	1.59919 .61334 .62704 .64032 .65321	7.60063 .61473 .62839 .64163 .65448	7.60206 .61611 .62973 .64293	ī.60349 .61750 .63107 .64423 .65701	7.60491 .61887 .63240 .64553 .65826	7.60632 .62025 .63373 .64682 .65952	1.60774 .62161 .63506 .64810 .66077	7.60914 .62298 .63638 .64939 .66201

TABLE 129 (continued)

DENSITY OF MOIST AIR

Values of logarithms of $\frac{h}{760}$ for values of h between 80 and 800

h					Values o	$f \log \frac{h}{760}$				
	0	1	2	3	4	5	6	7	8	9
350	ī.66325	ī.66449	ī.66573	ī.66696	ī.66819	ī.66941	ī.67064	ī.67185	ī.67307	ī.67428
360	.67549	.67669 .68856	.67790 .68 9 73	.67909 .69090	.68029 .692 0 6	.68148	.68267	.68385	.68503	.68621
370 380	.68739 .69897	.70011	.70125	.70239	.70352	.69322	.69437	.69553	.69668	.69783
390	.71025	.71136	.71247	.71358	.71468	.71578	.71688	.71798	.71907	.72016
400	1.72125	1.72233	1.72341	Ī.72449	1.72557	1.72664	1.72771	ī.72878	1.72985	ī.73091
410	.73197	.73303	.73408	.73514	.73619	-73723	.73828	.73932	.74036	.74140
420	.75265	·74347 ·75366	·74450 ·75467	·74553 ·75567	.74655 .75668	·74758 ·75768	.75867	.74961 .75967	.75063 .76066	.75164 .76165
440	.76264	.76362	.76461	.76559	.76657	.76755	.76852	.76949	.77046	.77143
450	Ī.77240	1.77336	Ī.77432	1.77528	ī.77624	Ī.77720	7.77815	1.77910	ī.78005	7.78100
460 470	.78194	.78289	.78383	.78477	.78570	.78664	.78757	.78850	.78943 .79861	.79 0 36 .79952
480	.80043	.80133	.80223	.80313	.80403	.80493	.80582	.80672	.80761	.80850
499	.80938	.81027	.81115	.81203	.81291	.81379	.81467	.81 554	.81642	.81729
500	7.81816	7.81902	7.81989	1.82075	1.82162	1.82248	1.82334	7.82419	1.82505	1.82590
510	.82676	.82761	.82846 .83686	.82930	.83015	.83099	.83184	.83268	.83352	.83435
520 530	.83519	.84428	.84510	.83769	.83852	.83935	.84835	.84916	.84997	.84264 .85076
540	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	ī.85955	1.86034	7.86113	7.86191	7.86270	7.86348	7.86426	7.86504	7.86582	ī.8666o
560 570	.86737 .87506	.86815 .87582	.86892	.86969	.87047 .87810	.87123	.872 0 0 .87961	.87277	.87353	.87430 .88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	.89589	.89661
600 610	1.89734	1.89806	7.89878	7.89950 .90665	1.90022	1.90094 .90806	1.90166	1.90238	1.90309	1.90380
620	.90452	.90523	.90594	.90005	.90735	.91507	.90877	.90947	.91017	.91088
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	1.93210	1.93277	1.93343	1.93410	T.93476	1.93543	7.93609	7.93675	1.93741	1.93807
660	.93873	·93939 ·94591	.94004	.94070	.94135	.94201	.94266	.94331	.94396	.94461 .95106
680	.94520	.94591	.95297	.95361	.95424	.95488	.95551	.95614	.95677	95741
690	.95804	.95866	.95929	.95992	.96055	.96117	.96180	.96242	.96304	.96366
700	1.96428	ī.96490	ī.965 <u>5</u> 2	ī.96614	ī.96676	ī.96738	ī.96799	ī.96861	1.96922	1.96983
710	.97044	.97106	.97167	.97228	.97288	·97349 ·97951	.97410	.97471	.97531 .98132	.97592
730	.98251	.98310	.98370	.98429	.98488	.98547	.98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	.99134	.99193	.99251	.99309	.99367
750	1.99425	7.99483	T.99540	7.99598	7.99656	Ī.99713	1.99771	1.99828	ī.99886	ī.99942
760	.00568	0 00057	.00680	.00737	.00793	0.00285	.00342	.00398	0.00455	.01072
780	.01128	.01184	.01239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173
l			J							

TABLES 130 AND 131

DENSITY OF MOIST AIR

TABLE 130. - Values of 0.378e *

This table gives the humidity term 0.378e, which occurs in the equation $\delta = \delta_0 \frac{h}{760} = \delta_0 \frac{B - 0.378e}{760}$ for the calculation of the density of air containing aqueous vapor at pressure e; δ_0 is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B - 0.378e, the pressure corrected for humidity. For values of $\frac{h}{760}$, see Table 128. Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

meters of h	nereury.							
Dew point.	Vapor pressure (ice).	0.378e	Dew point.	Vapor pressure (water).	0.378e	Dew point.	Vapor pressure (water).	0.378e
_ C _ 50°	mm	mm	0°	mm	mm	30°	mm	mm
	0.029	0.01	11	4.58	1.73]]	31.86	12.0
-45	0.054	0.02	I	4.92	1.86	31	33.74	12.8
-40	0.160	0.04	2	5.29	2.00	32	35.70	13.5
-35 -30	0.109	0.00	3	5.68 6.10	2.15	33	37.78	14.3
-25	0.480	0.11	4 5		2.31	34 35	39.95	15.1
24	0.430	0.10	6	6.54 7.01	2.47 2.66		42.23	16.0
24 23	0.585	0.20	7	7.51	2.84	36	44.62	16.9
22	0.646	0.24	8	8.04	3.04	37 38	47.13	17.8
21	0.712	0.27		8.61	3.25		49.76 52.51	19.8
$-\tilde{20}$	0.783	0.30	10	Q. 2I	3.48	39 40	55.40	20.0
19	0.862	0.33	II	9.85	3.72	41	58.42	22. I
18	0.947	0.36	12	10.52	3.98	42	61.58	23.3
17	1.041	0.39	13	11.24	4.25	43	64.89	24.5
16	1.142	0.43	14	11.00	4.53	44	68.35	25.8
-15	1.252	0.47	15	12.79	4.84	45	71.97	27.2
14	1.373	0.52	16	13.64	5.16	46	75.75	28.6
13	1.503	0.57	17	14.54	5.50	47	79.70	30.1
12	1.644	0.62	. 18	15.49	5.85	48	83.83	31.7
11	1.798	0.68	19	16.49	6.23	49	88.14	33 · 3
-10	1.964	0.74	20	17.55	6.63	50	92.6	35.0
9 8	2.144	0.81	2 I	18.66	7.06	51	97.3	36.8
	2.340	0.88	22	19.84	7 - 50	52	102.2	38.6
7	2.550	0.96	23	21.09	7.97	53	107.3	40.6
6	2.778	1.05	24	22.40	8.47	54	112.7	42.6
-5	3.025	1.14	25	23.78	8.99	55	118.2	44.7
4	3.291	I.24	26	25.24	9.54	56	124.0	46.9
3 2	3.578 3.887	1.35	27 28	26.77 28.38	10.12	57	130.0	49. I
1 1	4.220	I.47 I.60	20	30.08	10.73 11.37	58	136.3	51.5
Ô	4.580	1.73	30	31.86	12.04	59 60	142.6	54.0 56.5
	4.300	1.73		32.00	12.04	0.0	149.0	30.5
		!						

^{*} Table quoted from Smithsonian Meteorological Tables.

TABLE 131. - Maintenance of Air at Definite Humidities

Taken from Stevens, Phytopathology, 6, 428, 1916; see also Curtis, Bul. Bur. Standards, 11. 359, 1914; Dieterici, Ann. d. Phys. u. Chem., 50, 47, 1893. The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulphuric acid are given below.

Density of	Relative	Vapor	pressure.	Density of	Relative	Vapor pressure.		
acid sol.	humidity.	20° C	30° C	acid sol.	humidity.	20° C	30° C	
		mm	mm			mm	mm	
1.00	100.0	17.4	31.6	1.30	58.3	10.1	18.4	
1.05	97 - 5	17.0	30.7	1.35	47.2	8.3	15.0	
1.10	93.9	16.3	29.6	I.40	37.1	6.5	11.9	
1.15	88.8	15.4	28.0	1.50	18.8	3.3	6.0	
I,20	80.5	14.0	25.4	1.60	8.5	1.5	2.7	
1.25	70.4	12.2	22.2	1.70	3.2	0.6	1.0	

PRESSURE OF COLUMNS OF MERCURY AND WATER

British and metric measures. Correct at o° C for mercury and at 4° C for water.

	METRIC MEAS	SURE.		British Meas	SURE.
Cms. of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34-533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0 0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995638	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE *

	or brass scale and n measure.		brass scale and measure.	Corrections for metric i	glass scale and neasure.
Height of barometer in inches.	a in inches for temp. F.	Height of barometer in mm.	a in mm for temp. C.	Height of barometer in mm.	in mm for temp. C.
15.0	0.00135	400	0.0651	50	0.0086
16.0	.00145	410	.0668	100	.0172
17.0	.00154	120	.0684	150	.0258
17.5	.00158	430	.0700	200	.0345
18.0	.00163	4.40	.0716	250	.0431
18.5	.00167	450	.07.32	300	.0517
19.0	.00172	460	.0749	350	.0603
19.5	.00176	470	.0765	33	5
, ,		480	.0781	400	0.0689
20.0	0.00181	490	.0797	450	.0775
20.5	.00185		, , ,	500	.0861
21.0	.00100	500	0.0813	520	.0895
21.5	.00194	510	.0830	540	.0930
22.0	.00199	520	.0846	560	.0965
22.5	-00203	530	.0862	580	.0999
23.0	.00208	540	.0878		777
23.5	.00212	550	.0894	600	0.1034
		560	1160	610	.1051
24.0	0.00217	570	.0927	620	.1068
24.5	.00221	580	.0943	630	.1085
25.0	.00226	590	.0959	640	.1103
25.5	.00231			650	.1120
26.0	.00236	600	0.0975	660	.1137
26.5	.00240	610	.0992		0,
27.0	.00245	620	.1008	670	0.1154
27.5	.00249	630	.1024	68o	.1172
		640	.1040	690	.1189
28.0	0.00254	650	.1056	700	.1206
28.5	.00258	660	.1073	710	.1223
29.0	.00263	670	.1089	720	.1 240
29.2	.00265	680	.1105	730	.1258
29.4	.00267	690	.1121		_
29.6	.00268			740	0.1275
29.8	.00270	700	0.1137	750	.1292
30.0	.00272	710	.1154	760	.1309
		720	.1170	770	.1327
30.2	0.00274	730	.1186	780	.1344
30.4	.00276	740	.1202	790	.1 361
30.6	.00277	750	.1218	800	.1378
30.8	.00279	760	.1235		
31.0	.00281	770	.1251	850	0.1464
31.2	.00283	780	.1267	900	.1 551
31.4	.00285	790	.1283	950	.1639
31.6	.00287	800	.1299	1000	.1723

*The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_I = H_I' - \alpha(I' - I)$ where H_I is the height at the standard temperature, H_I' the observed height at the temperature I', and I' and I' and I' the correction for temperature. The standard temperature is I' of the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately I' system, while mercury has the standard density at I' system and I' so that I' is a standard at I' system. The Abarometer having a brass scale gave I' system at I' system. The standard density at I' system at I' system at I' system at I' system at I' system. The Abarometer having a brass scale gave I' system at I' system. The standard density at I' system at I' sy

mined by experiment.

REDUCTION OF BAROMETER TO STANDARD GRAVITY

Free-air Altitude Term. Correction to be subtracted.

The correction to reduce the barometer to sea-level is $(g_1-g)/g \times B$ where B is the barometer reading and g and g_1 the value of gravity at sea-level and the place of observation respectively. The following values were computed for free-air values of gravity g_1 (Table 706). It has been customary to assume for mountain stations that the value of $g_1 = \text{say}$ about $\frac{a}{3}$ the free-air value, but a comparison of modern determinations of g_1 in this country shows that little reliance can be placed on such an assumption. Where g_1 is known its value should be used in the above correction term. (See Tables 707 to 709. Similarly for the latitude term, see succeeding tables, the true value of g should be used if known; the succeeding tables are based on the theoretical values, Table 706.)

Height				Obse	rved he	igh t of l	aromet	er in mi	llimeter	s.		
above sea-level.	g1 - g	400	450	500	550	600	650	700	750	800		
meters.												
meters. 100 200 300 400 500 600 700 800 900 1100 1100 1100 1100 1100 1100	0.031 0.062 0.093 0.123 0.154 0.185 0.216 0.247 0.309 0.330 0.370 0.401 0.463 0.494 0.525 0.586 0.617 0.648 0.679 0.710 0.740 0.771 0.802 0.833 0.804 0.895 0.957 0.988 1.010 1.040 1.040 1.040 1.111 1.142 1.173 1.204	height	t above	in mm sea-lev-ding in sea-lev-	el in fir	subtracts t column line.		.02 .04 .07 .09 .11 .13 .15 .20 .22 .24 .26 .29 .31 .33	.02 .05 .07 .10 .11 .16 .19 .22 .24 	.02 .05 .07 .10 .13		15000 14500 14500 13500 13500 12500
Ξ	=	.006	.008	.008	.007	.007	subtra sea-lev	cted for rel in las eter rea	in in. height st colum ading in	above in and	.0092 .0062 .0031	3000 2000 1000 feet.
		30	28	26 Observed	24 I height	22 of bard	20 ometer i	18 n inches	16	14	g1 — g	Height above sea-level.

METRIC MEASURES

From Latitude o° to 45°, the Correction is to be Subtracted.

Lati- tude	520	540	560	580	600	620	640	660	680	700	720	740	760	780
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0	—I.39	—I.45	—I.50						—1.82			- 1		-2.09
5	-1.37 1.36	-I.42 I.42	—1.48 1.47	-1.53 1.52	1.58 1.57	-1.64 1.63	-1.69 1.68	-1.74 1.73	1.79 1.78	—1.85 1.83	1.80	—1.95 1.94	-2.00 I.00	-2.06 2.04
7 8	I.35 I.34	I.40 I.39	I.46 I.44	I.5I I.49	1.56 1.55	1.61	1.66 1.65	I.72 I.70	I.77 I.75	1.82	1.87	I.92 I.91	1.98	2.03
9	1.33	1.38	1.43	1.48	1.53	1.58	1.63	1.68	1.73	1.78	1.84	1.89	1.94	1.99
10	-1.31	—1.3 6	—I.4I	—ı .46	—ı.5ı	—ı.56	_1.61	—ı.66	-1.71	1.76	_ı.8ı	—ı .86	-1.92	—I.97
11	I.29 I.27	I.34 I.32	I.39 I.37	I.44 I.42	I · 49 I · 47	I.54 I.52	I.59 I.57	I.64 I.62	1.69 1.67	I.74 I.72	I · 79 I · 76	1.84 1.81	1.89 1.86	1.94
13	1.25	1.30	1.35	1.40	1.45	1.50	I.54	1.59	1.64	1.69	1.74	1.78	1.83	1.88
14	1.23	1.28	1.33	1.38	1.42	1.47	1.52	1.56	1.61	1.66	1.71	1.75	1.80	1.85
15 16	I.10	-1.26 1.23	—1.30 1.28	-1.35 1.32	1.40 1.37	—I.44 I.41	—1.49 1.46	-1.54 1.50	—1.58 1.55	—1.63 1.60	—1.67 1.64	-1.72 1.69	I . 77	-1.81 1.78
17 18	1.16 1.13	1.20	I.25 I.22	I.29 I.26	I.34 I.31	1.38 1.35	I.43 I.39	1.47 1.44	1.52 1.48	1.56 1.52	1.60 1.57	1.65 1.61	1.69 1.65	I.74 I.70
19	1.13	1.15	1.19	1.23	1.27	1.32	1.36	I . 40	1.44	1.48	1.53	1.57	1.61	1.65
20	—I.07	-1.11	-1. 16	—1. 20	1 .24	—I.28	—I.32	—1.3 6	— 1.40	—I.44	—1. 49	—I.53	—1.57	—ı.6ı
2I 22	I.04 I.01	1.08	I.12 I.09	1.16 1.13	1.20 1.16	I.24 I.20	1.28 1.24	1.32 1.28	I.36 I.32	1.40 1.36	I.44 I.40	1.48 1.44	I.52 I.48	1.56
23	0.98	1.01	1.05	1.09	1.13	1.16	1.20	1.24	1.28	1.31	1.35	1.39	1.43	1.46
24	0.94	0.98	1.01	1.05	1.08	1.12	1.16	1.19	1.23	1.27	1.30	I . 34	1.37	1.41
25 26	-0.90 0.87	-0.94 0.90	0.97	-1.01 0.97	-I.04 I.00	-1.08	-1.11 1.07	-1.15 1.10	—1.18 1.13	-1.22 1.17	-I.25 I.20	-I.29 I.23	-1.32 1.27	-1.36 1.30
27 28	0.83	0.86	0.89	0.92	0.96	0.99	1.02	I.05 I.00	1.08	1.12	1.15	I.18 I.12	1.21	1.24
29	0.75	0.78	0.81	0.84	0.86	0.89	0.92	0.95	0.98	10.1	1.04	1.07	1.10	1.12
30	0.7I	-0.74	-0.76	-0.79	-0.82	-o.85	-0.87	-0.90	—o.93	-0.95	-0.98	-1.01	—ı .04	-1.06
31 32	0.67	0.69	0.72	0.74	0.77	0.80 9.74	0.82	0.85 0.79	0.87	0.90	0.92	0.95	0.98	I.00 0.94
33	0.58	0.60	0.63	0.65	0.67	0.69	0.72	0.74	0.76	0.78	0.80	0.83	0.85	0.87
34	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.79	0.81
35 36	0.49 0.45	-0.51 0.46	-0.53 0.48	0.50	-0.57 0.52	-0.59 0.53	0.55	-0.63 0.57	-0.64 0.58	-0.66 0.60	-0.68 0.62	-0.70 0.64	-0.72 0.65	-0.74 0.67
37 38	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51	0.52	0.54	0.56	0.57	0.59	0.60
39	0.36	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.48	0.49	0.51	0.52	0.53 0.46
40	-0.26	-0.27	-0.28	-0.29	-0.30	- 0.31	-0.32	-0.33	-0.34	-o.35	-0.36	— 0.37	-0.38	-0.39
4I 42	0.21	0.22	0.23	0.24	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.30	0.31	0.32
43	0.12	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.16	0.16	0.16	0.17	0.17	0.18
44	0.07	0.07	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.11
45	-0.02	-0.02	-0.03	-0.03	-0.03	— 0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04

[&]quot; Smithsonian Meteorological Tables."

METRIC MEASURES

From Latitude 46° to 90°, the Correction is to be Added.

Lati-	520	540	560	580	600	620	640	660	680	700	720	740	760	780
45	mm. -0.02	mm.	mm. —0.03	mm.	mm. -0.03	mm.	mm. -0.04							
			ŭ											+0.04
46	0.07	0.08	0.08			0.09	0.09			0.10	0.10	0.10		0.11
48 49	0.12	0.17	0.18	0.19	0.19	0.20	0.21	0.21	0.22	0.23	0.23	0.24	0.25	0.25
50	0.22		Ŭ										_	+0.39
51 52	0.31	0.32	0.33	0.34	0.36	0.37	0.38	0.39	0.40	0.42	0.43	0.44	0.45	0.46
53 54	0.36		0.43	0.40	0.46		0.49	0.51	0.52	0.54	0.56	.057	0.59	
55	0.45	0.46			_					1		·		0.67
56 57	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.78	
58 59	0.58	0.60	0.67		0.72	0.74	0.77	0.79	0.81	0.84	0.86	0.89	0.91	0.93
60	0.66					0.79			1					1.00
61 62	0.74	0.77	0.80	0.83	0.85	0.88	0.91	0.94	0.97	1.00	1.02	1.05	1.08	_
63 64	0.78	0.85	0.89	0.92	0.95	0.98	1.01	1.04	1.08	1.11	1.14	1.17	1.20	1.23
65	0.86			0.96	1			-			1	_		
66	+0.90 0.93		+0.97	1.04		I.II								
68	0.97 1.00	I.00 I.04		1.08										
70	1.03	1.07		1.15	-						1			
71 72	+1.06 1.09			+1.18										+1.59 1.63
73 74	I · I 2 I · I 4													
75	1.17	1.21	1.26	1.30	1.35	1.39	1.44	1.48	1.53	1.57			1.71	1.75
76 77	+1.19 1.21													+1.79 1.82
77 78 79	I.23 I.25	1.28	1.33	1.38	1.42	1.47	1.52	1.57	1.61	1.66	1.71	1 76	1.80	1.85
80	1.27	_												
81 82	+1.29 1.30													+1.93 1.95
83 84	I.3I I.32	1.36	1.41	1.46	1.51	1.56	1.61	1.67	1.72	1.77	1.82	1.87	1.92	1.97
85	1.33	- 0											1	1
90	+1.35	+1.41	+1:46	+1.51	+1.56	+1.61	+1.67	+1.72	+1.77	+1.82	+1.87	+1.93	+1.98	+2.03

^{* &}quot; Smithsonian Meteorological Tables."

ENGLISH MEASURES

From Latitude o° to 45°, the Correction is to be Subtracted.

Lati- tude	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.										
0	-0.051	-0.054	-0.056	-0.059	-0.062	-0.064	-0.067	0.070	-0.072	-0.075	-0.078	
P		0.070	0 0	0.050	0.06	0.060	2 266	0.06		0.054		
5	-0.050 0.050	0.053	0.055	-0.058 0.058	-0,061 0.060	0.063	0.066			-0.074 0.073	-0.077 0.076	-0.079
	0.049	0.052	0.055	0.057	0.060	0.062	0.065		0.070	0.073	0.075	0.079
7 8	0.049	0.025	0.054	0.057	0.059	0.062	0.064	0.067	0.070	0.072	0.075	0.077
9	0.048	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074	0.076
10	00	0.040	0.053		0.070	0.060	0.060	0.066	2 269	0.071	0.0=2	
10	-0.048 0.047	-0.050 0.050	-0.053 0.052	-0.055 0.055	-0.058 0.057	-0,060 0,060	-0.063 0.062		-0.068 0.067	-0.071 0.070	-0.073 0.072	/ -
12	0.047	0.049	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.075
13	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.072
14	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.069	0.071
15	0.0	0.015	0.040	0.057	0.053	0.056	0.050	0.060	0.060	0.067	0.06=	
15 16	0.044	-0.047 0.046	-0.049 0.048	0.051	-0.053 0.052	-0.056 0.055	-0.058 0.057	-0.060 0.059		-0.065 0.064	-0.067 0.066	0.068
17	0.043	0.045	0.048	0.049	0.051	0.053	0.056	0	0.060	0.062	0.065	0.068
18	0.041	0.044	0.046	0.048	0.050	0.052	0.054		0.059	0.061	0.063	0.065
19	0.040	0.042	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.062	0.064
											(-	
20	-0 .039		-0.043		-0.047					-0.058	-0.060	
2I 22	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.056	0.058 0.056	0.060
23	0.036	0.038	0.039	0.041	0.043	0.045	0.049	0.049		0.053	0.054	0.056
24	0.034	0.036	0.038	0.040	0.042	0.043	0.045	0.047	0.049	0.051	0.052	0.054
										j		
25		-0.035		- 1			, ,			-0.049	-0.050	0
26	0.032	0.033	0.035	0.037	0.038					0.047	0.048	0.050
27 28	0.030	0.032	0.033	0.035	0.037	0.038 0.036	0.040		0.043	0.045	0.040	0.048
29	0.027	0.029	0.030	0.032	0.033	0.035	0.036		0.039	0.040	0.042	0.043
	'						-				·	
30		-0.027				— 0.033				-0.038	-0.040	
31	0.024	0.026	0.027	0.028	0.030	0.031	0.032	0.033		0.036	0.037	0.038
32	0.023	0.024	0.025	0.026	0.028		0.030		0.032	0.034	0.035	0.036
34	0.020	0.021	0.022	0.023	0.024	0.025	0.026		0.028	0.029	0.030	0.031
						-5		_,		-	Ü	
35		-0.019				-0.023					-0.027	
36	0.016	0.017	0.018	0.019	0.020	0.021	0.022	0.022		0.024	0.025	0.026
37	0.015	0.015	0.016	0.017	0.018	0.019	0.019	0.020		0.022	0.022	0.023
39	0.013	0.012	0.012	0.013	0.014		0.015			0.017	0.017	0.018
03	0.011						3			1		
40	-0.010			-0.011	-0.012		-0.013			-0.014		
41	0.008	0.008	0.009	0.009	0.009	0.010	0.010		0.011	0.012	0.012	
42	0.006	0.006	0.007	0.007	0.007	0.008	0.008	-		0.009	0.009	0.010
43	0.003	0.003	0.003	0.003	0.003	0.003	0.003			0.004		
77	0.005	0.000	5.553	5.133	0.003	2.233	2.23	0.004	3,134			
45	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001

^{* &}quot; Smithsonian Meteorological Tables."

SMITHERNIAN TABLES

ENGLISH MEASURES

From Latitude 46° to 90° the Correction is to be Added.

							-					
Lati-	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
45						-0.001	1					
	0,001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
46	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
47	0.003											
48	0.004		0.005	0.005	0.005	c.006	0.006	0.006	0.006	0.006	0.007	0.007
49	0.006				0.007			1		_	_	
50	0.008	0.008	0.009	0.009	0.010	0.010	0.010	0.011	0.011	0.012	0.012	0.012
51	10.010	10.010	10.011	10 011	10.073	10.010	10.010	10.014	1000		1000	
	0.011	0.012	0.012		0.012							+0.015
52 53	0.013	0.012	0.012		0.014				0.018			0.018
54	0.015	0.015	0.014				,			0.022		0.023
55	0.016		0.018	,								0.026
33		,				_			3			
56	+0.018	+0.019	+0.020	+0.021	+0.022	+0.023	+0.024	+0.024	+0.026	+0.026	+0.027	+0.028
57	0.020	0.021	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.031
58	0.021	0.022	0.023		0.026		0.028					00
59	0.023	0.024	0.025	0.026	0.028	_	_		-			0.036
60	0.024	0.026	0.027	0.028	0.029	0.031	0.032	0.033	0.034	0.036	0.037	0.038
61	10 006	10.027	10.008	1 0 020	10.021	10 022	10.024	10.025	1.0.025	1.0 020	10.020	10045
62	0.020	0.020	0.030		0.033		0.036					+0.041
63	0.027			0.032	0.035	0.034						
64	0.030	_	-	0.035	0.036	0	0.					
65	0.031	0.033	0.035									
			0.5			·			, ,	,-		
66	+0.033	+0.034	+0.036	+0.038	+0.040	+0.041	+0.043	+0.045	+0.047	+0.048	+0.050	+0.052
67	0.034	0.036	0.038	0.039	0.041	0.043	0.045	0.047	0.048	0.050	0.052	0.054
68	0.035	0.037	0.039		0.043	0.045	0.046					- 0
69	0.036		0.040		0.044	0.046						
70	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.053	0.055	0.057	0.059
71	10.020	±0.047	1.0.042	1004	1.0.045	10.040	10.051	-10.052	±0.055	La 055	10.050	10 061
72	0.040			0.045	0.048	+0.049 0.050				0.059		0.063
73	0.041	9.043	0.044		0.040		0.052			0.059	0.062	0.061
74	0.042				0.051			0.057	0.050	0.062		0.066
75	0.043		0.047		0.052		20			0.063	0.065	0.067
76	+0.044	+0.046	+0.048	+0.050	+0.053	+0.055	+0.057		+0.062	+0.064	0.066	0.069
77	0.044	0.047	0.049	0.051	0.054	0.056	0.058	0.061	0.063	0.065	0.068	0.070
78	0.045	0.047	0.050		0.055	0.057	0.059		0.064	0.066	0.069	0.071
79	0.046		0.051	0.053	0.055	0.058	0.060		0.065	0.067	0.070	0.072
80	0.046	0.049	0.051	0.054	0.056	0.059	0.061	0.063	0.066	0.068	0.071	0.073
81	+0.047	±0.040	+0.050	+0.054	+0.055	+0.050	+0.060	+0.064	+0.067	+0.060	+0.073	+0.074
82	0.047	0.050	0.052	0.055	0.057	0.060	0.062	0.065	0.067	0.070		0.075
83	0.048		0.052	0.055	0.058	0.061	0.063	0.066	0.068	0.071	0.073	0.076
84	0.048		0.053	0.056	0.059		0.064	0.066	0.069	0.071	0.074	0.076
85	0.049		0.054	0.056	0.059	-	0.064	_	0.069	0.072	0.074	0.077
			- •									
90	+0.049	+0.052	+0.055	+0.057	+0.060	+0.062	+0.065	+0.068	+0.070	+0.073	+0.075	+0.078

^{* &}quot; Smithsonian Meteorological Tables."

TABLE 137 .- Correction of the Barometer for Capillarity *

			ı. Me	rric Mea	SURE.			
			Неібнт	OF MENIS	cus in Mili	IME TE RS.		
Diameter of tube in mm.	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
			Correc	ction to be a	dde d i n milli	meters.		
4 5 6 7 8 9 10 11 12 13	0.83 .47 .27 .18 - - - -	1.22 0.65 .41 .28 .20 .15 	1.54 0.86 .56 .40 .29 .21 .15 .10 .07 .04	1.98 1.19 0.78 -53 -38 -28 -20 -14 -10 -07	2.37 1.45 0.98 .67 .46 .33 .25 .18 .13	- 1.80 1.21 0.82 .56 .40 .29 .21 .15	- 1.43 0.97 .65 .46 -33 .24 .18	1.13 0.77 -5 ² -37 -27 .19
			Нег	GHT OF М Е	iniscus in I	NCHES.		
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08
			Cor	rection to be	e added in in	iches.		
.15 .20 .25 .30 .35 .40 .45 .50	0.024 .011 .006 .004 - - -	0.047 .022 .012 .co8 .005 .004	0.069 .033 .019 .013 .008 .006 .003 .002	0.092 .045 .028 .018 .012 .008 .005 .004	0.116 .059 .037 .023 .015 .010 .007 .005	-0.078 -047 -029 -018 -012 -008 -006 -004	- 0.059 .035 .022 .014 .010 .006	- 0.042 .026 .016 .012 .007

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

TABLE 138 .- Volume of Mercury Meniscus in Cu. Mm

Height of					Diamete	r of tube	in mm				
meniscus.	14	15	16	17	18	19	20	2 I	22	23	24
mm 1.6 1.8 2.0 2.2 2.4 2.6	1 57 181 206 233 262 291	185 211 240 271 303 338	214 244 278 313 350 388	245 281 319 358 400 444	280 320 362 406 454 503	318 362 409 459 511 565	356 407 460 515 573 633	398 455 513 574 639 706	444 507 57 I 637 708 782	492 560 631 704 781 862	541 616 694 776 859 948

Scheel und Heuse, Annalen der Physik, 33, p. 291, 1910.

PRESSURES AND THE BOILING POINT OF WATER

Useful when a boiling-point apparatus is used in the determination of heights.

(A) METRIC UNITS.

Tem- perature.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
C 80° 81 82 83 84			373.01 388.25 404.00		mm. 361.19 376.02 391.36 407.22 423.61	408.83		380.57 396.06 412.08	mm. 367.06 382.09 397.64 413.71 430.32	mm. 368.54 383.62 399.22 415.35 432.01
85 86 87 88 89	450.99 468.84 487.28	435.41 452.75 470.66 489.16 508.26	454.51 472.48 491.04 510.20	456.28 474.31 492.93 512.15	458.06 476.14 494.82 514.11	459.84 477.99 496.72 516.07	461.63 479.83 498.63 518.04	445.75 463.42 481.68 500.54 520.01	465.22 483.54 502.46 521.99	449.24 467.03 485.41 504.39 523.98
90 91 92 93 94	546.26 567.20 588.80 611.08		550.40 571.47 593.20 615.62	552.48 573.61 595.41 617.90	597.63 620.19	556.65 577.92 599.86 622.48	558.75 580.08 602.09 624.79	582.25 604.33 627.09	562.96 584.43 606.57 629.41	565.08 586.61 608.82 631.73
95 96 97 98 99	657.75 682.18 707.35 733.28	660.16 684.66 709.90 635.92	662.58 687.15 712.47 738.56	665.00 689.65 715.04 741.21	667.43 692.15 717.63 743.87	669.87 694.67 720.22 740.54	648.19 672.32 697.19 722.81 749.22	674.77 699.71 725.42 751.90	652.96 677.23 702.25 728.03 754.59	655.35 679.70 704.79 730.65 757.29 784.73

(B) ENGLISH UNITS.

Tem- perature.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
185°	17.075	17.112	17.150	17.187	17.224		17.300	17.337	17.375	17.413
186	17.450		17.526	17.564	17.602		17.679		17.756	17.794 18,182
187	17.832	17.871' 18.261	17.910	17.948 18.340	18.379		18.065 18.458		18.143	18.578
189	18.618		18.698				18.859	18.899	18.940	18.980
190	19.021		19.102						19.349	19.390
191 192	19.431		19.514		19.598		19.681	J + 0	19.765	19.807
192	20.275		20.361		20.447	20.490	20.533	20.577	20.620	20.664
194		20.751	20.795	20.839	20.883	20.927	20.971	21.015	21.059	21.103
195		21.192	21.237				21.416		21.506	21.551
196		21.642		21.733	21.778				21.961	22.007
197		22.099		22.192 22.658			22.331		22.424	22.471
199		23.038	23.085	23.133	23.181	23.229		23.325	23.374	23.422
200	23.470	23.519	23.568	23.616		23.714	23.763	23.812	23.861	23.910
201	23.959	24.009				24.207	24.257	24.307	24.357	24.407
202	24.457	24.507	24.557 25.065	24.608 25.116	24.658 25.168	24.709 25.219		24.810	24.861 25.374	24.912 25.426
204	25.478	25.530	25.582	25.634	25.686	25.738	25.791	25.843	25.896	25.948
205	26.001	26.054	26.107	26.160	26.213	26.266	26.319	26.373	26.426	26.480
206		26.587	26.641	26.695		26.803	26.857	26.912	26.966	27.021
207	27.075 27.626		27.184	27.239	27.294	27.349 27.904	27.404	27.460	27.515	27.570 28.129
209	28.185	28.242	28.298	28.355	28.412	28.469	28.526	28.583	28.640	28.697
210	28.754		28.869	28.927	28.985	29.042		29.158	29.216	29.275
211	29.333	29.391			29.567	29.626		29.744	29.803	29.862
212	29.92I 30.519			30.100	30.159	30.219	30.279	30.339	30.399	30.459
214	31.127			31.311	31.373	31.435	31.497	31.559	31.621	31.683

DETERMINATION OF HEIGHTS BY THE BAROMETER

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.
 C (in feet) = 52494 $\left[1 + \frac{t_0 + t - 64}{900} \right]$ English measures.
 C (in meters) = 16000 $\left[1 + \frac{2(t_0 + t)}{1000} \right]$ metric measures.

In which Z = difference of height of two stations in feet or meters. B_0 , B = barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

Values of C

½ (t ₀ +t). C Fahr. Feet. 10° 49928 15 50511 20 51094 25 51677 30 52261 35 52844 40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927 75 57511	Log C 4.69834 -70339 4.70837 -71330 4.71818 -72300 4.72777 -73248	Cent10° -8 -6 -4 -2 0 + 2 4 6 8	C Meters. 15360 15488 15616 15744 15872 16000 16128 16236 16384 16512	Log C 4.18639 .19000 .19357 .19712 .20063 4.20412 .20758 .21101 .21442 .21780
10° 49928 15 50511 20 51094 25 51677 30 52261 35 52844 40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927	4.70837 .71330 4.71818 .72300 4.72777	-10° -8 -6 -4 -2 0 +2 4 6 8	15360 15488 15616 15744 15872 16000 16128 16256 16384	.19000 .19357 .19712 .20063 4.20412 .20758 .21101
15 50511 20 51094 25 51677 30 52261 35 52844 40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927	4.70837 .71330 4.71818 .72300 4.72777	-8 -6 -4 -2 0 + 2 4 6 8	15488 15616 15744 15872 16000 16128 16256 16384	.19000 .19357 .19712 .20063 4.20412 .20758 .21101
20 51094 25 51677 30 52261 35 52844 40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927	4.70837 .71330 4.71818 .72300 4.72777	-6 -4 -2 0 +2 4 6 8	15616 15744 15872 16000 16128 16256 16384	.19357 .19712 .20063 4.20412 .20758 .21101
25	.71330 4.71818 .72300 4.72777	-4 -2 0 +2 4 6 8	15744 15872 16000 16128 16256 16384	.19712 .20063 4.20412 .20758 .21101
25	.71330 4.71818 .72300 4.72777	-2 0 +2 4 6 8	15872 16000 16128 16256 16384	.20063 4.20412 .20758 .21101 .21442
30 52261 35 52844 40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927	4.71818 .72300 4.72777	0 + 2 4 6 8	16000 16128 16256 16384	4.20412 .20758 .21101 .21442
35 52844 40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927	4.72777	+ 2 4 6 8	16128 16256 16384	.20758 .21101 .21442
35 52844 40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927	4.72777	4 6 8	16256 16384	.20758 .21101 .21442
40 53428 45 54011 50 54595 55 55178 60 55761 65 56344 70 56927			16384	.21442
50 54595 55 55178 60 55761 65 56344 70 56927				
50 54595 55 55178 60 55761 65 56344 70 56927	.73248		16512	.21780
55 55178 60 55761 65 56344 70 56927				
55 55178 60 55761 65 56344 70 56927	4.73715	10	16640	4.22115
60 55761 65 56344 70 56927	.74177	12	16768	.22448
65 56344 70 56927	1	14	16896	.22778
70 56927	4.74633	16	17024	.23106
3-7-1	.75085	18	17152	.23431
3-7-1	4.75532	20	17280	4-237.54
	7 597 5	22	17408	.24075
		24	17536	.24393
80 58094	4.76413	26	17664	.24709
85 58677	.76847	28	17792	.25022
90 59260		30	17920	4-25334
95 59844	4.77270	32	18048	.25643
	4.77276		18176	.25950
100 60427	4.77276	34		.26255

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables.

TABLES 141 AND 142 VELOCITY OF SOUND

TABLE 141 .- Velocity of Sound in Solids

The velocity of sounds in solids varies as $\sqrt{E/\rho}$, where E is Young's modulus of elasticity and ρ the density. These constants for most materials vary through a somewhat wide range. The numbers can be taken only as rough approximations to the velocity in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

Substance	t°C	m/sec.	Ref.	Substance	t°C	m/sec.	Ref.
Ag hard	20	2678	2	Fe	200	4720	2
Ag hard		2640	2	11	20	4990	3
		2480	2	11	100	4920	3
Al	200	5104	ī	u	200	4790	3
Au hard	20	1743	2	Mg		4602	4
44 44		1720	2	Ni		4973	ī
Cd		2307	ī	Pb		1322	1
Co		4724	l i l	Pd		3150	
Cu	20	3560	2	Pt	20	2690	2
	100	3290	2	44	100	2570	2
	200	2950	2	"	200	2460	2
Fe	20	5130	2	Sn	ì	2500	
44	100	5300	2	Zn		3700	1
		00				••	
Ash, along the fiber		4670	2	Brick		3652	5
" across the rings		1390	2	Clay rock	1	3480	6
" along the rings		1260	2	Cork		500	7
Beech, along the fiber		3340	2	Granite		3950	6
" across the rings."		1840	2	Marble		3810	6
" along the rings		1415	2	Paraffin	15	1304	8
Elm, along the fiber		4120	2	Slate		4510	6
" across the rings		1420	2	Tallow	16	390	8
" along the rings		1013	2	Tuff		2850	6
Fir, along the fiber		4640	2	Glass		5000	
Mahogany, along the				(00	1	6000	
fiber		4135	3	Ivory		3013	9
Maple, along the fiber		4110	2	Vul. rubber (black){	0	54	10
Oak, along the fiber		3850	2		1 30	31	10
Pine, along the fiber		3320	2	" " (red)		69	10
Poplar, along the fiber		4280	2		70	34	10
Sycamore, along the				Wax	17	880	7
fiber		4460	2		28	441	7

⁽¹⁾ Masson. (2) Wertheim. (3) Cast steel, Wertheim. (4) Melde. (5) Chladni. (6) Gray & Milne. (7) Stefan. 8) Warburg. (9) Ciccone & Campanile. (10) Exner.

TABLE 142.-Velocity of Sound in Water

Substance	t°C	m/sec.	Ref.	Substance	t°C	m/sec.	Ref.
Water, air-free. " dust-free. " " " " distilled. " 10% Na Cl sol. " 15% Na Cl sol. " 20% Na Cl sol. Water, sea: 35.1% salt. 35.2% " Lake Geneva. Seine River.	19 31 20 15 15 15 17 9 15	1441 1461 1505 1470 1530 1650 1474 1477.4 1510.4 1435 1437 1528	3 4 5	Water, sea: (continued) Seine River. N. Atlantic, 1228m deep. Carib. Sea, 338m deep. Carib. Sea, 1771m deep. Pacific, 2962m deep. Explosive Waves: Gun Cotton, 9 oz "" 10" "" 18" "" 64"	60	1724 1520 1478 1486 1493 1732 1775 1942 2013	5 6 6 6 7 7

⁽¹⁾ Dörsing, 1908. (2) Ionescu, 1924. (3) Wood, Browne, Cochran, 1923. (4) Colladon-Sturm. (5) Wertheim. (6) Heck & Service, 1924. (7) Threlfall, Adair, 1889, see Barstow's Sound, p. 518.

VELOCITY OF SOUND IN LIQUIDS AND GASES

For gases, the velocity of sound = $\sqrt{\gamma P/\rho}$, where P is the pressure, ρ the density, and γ the ratio of specific heat at constant pressure to that at constant volume. For moderate temperature changes $V_t = V_0(1+\alpha t)$ where $\alpha = 0.00367$. The velocity of sound in tubes increases with the diameter up to the free-air value as a limit. The values from ammonia to methane inclusive, except for argon and helium, are for closed tubes.

Substance	Temp. C	m/sec.	ft./sec.	Authority
Liquids: Alcohol, 93% Ethyl	18°	1150	3772	Cisman, 1926
" Methyl	19	1143	3750	Busse, 1924
Ammonia, .880	16	1663	5456	Dörsing, 1908
Benzol	17	1166	3826	" "
Carbon bisulphide	18	1060	3477	Cisman, 1926
Chloroform	1.5	983	3225	Dörsing, 1908
Ether	ő	, ,	3386	Mean
Mercury	20	1407	4614	Bungetziam
Turpentine oil	15	1326	4351	Dörsing, 1908
Gases: Air, dry, 1 atmosphere	0	331.7	1088	Mean
25 "	0	332.0	1089	" (Witkowski)
50	0	334.7	1098	44 44
100	0	350.6	1150	
,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	386	1266	Stevens
	500	553	1814	**
	1000	700	2297	
Ammonia	0	415	1361	Masson
Argon	0	308	1010	Mean
<u> </u>	1000	666	2184	D, C, P, 1921
Carbon monoxide	0	337.1	1106	Wullner
	0	337.4	1107	Dulong
dioxide	0	258.0	846	Brockendahl, 1906
disulphide	0	189	620	Masson Martini
Chlorine	0	206.4	677	Strecker
Etherland	0	205.3	674	Dulong
Ethylene	0	314	1030	Scheel, Heuse, 1919
Helium	0	971	3185	Dulong
,, 8	0	1269.5	4165	Zoch
Illuminating gas	0	•	1609	2001
Methane	0	490.4 432	1417	Masson
Nitric oxide	0	325	1066	11
Nitrogen	0	323	1108	Mean
Nitrous oxide	0	261.8	859	Dulong
Oxygen	0	317.2	1041	11
Explosive waves in air:		3.7.2	1041	
Charge of powder, 0.24 gms		336	1102)
3.80 "		500	1640	Violle, Cong. Intern.
" " 17.40 "		931	3060	Phys. 1, 243, 1900
45.60 "		1268	4160)
Vapors: Alcohol	0	230.6	756	Masson
Ether	0	179.2	588	6.6
Water	0	401	1315	44
	100	404.8	1328	Treitz, 1903

Supersonies: Reid, 1930:—Air, 0°C, no CO2, 42 Kc/sec., 331.75 m/sec.; 20°C, sat. H₂O, 333.1 m/sec.; 140 Kc/sec. 331.60, 332.92, respectively; Thompson, 1930:—100 c/sec. sat. H₂O vapor, 27°C, 432 m/sec.; Poole, 1930:—Water, distilled, audio-frequency, 25°C, 1485 m/sec.

MUSICAL SCALES

The pitch relations between two notes may be expressed precisely (1) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for (2) is nearly 40 times that for (3).

Table 144 gives data for the middle octave, including vibration frequencies for three standards of pitch: A₃=435 double vibrations per second, is the international standard and was adopted by the American Piano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one octave, thus:

4:5:6

4:5:6

4:5:6

Other equivalent ratios and their values in E. S. are given in Table 145. By transferring D to the left and using the ratio 10: 12: 15 the scale of A-minor is obtained, which agrees with that of C-major except that D=26 2/3. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 145. Disregarding the usually negligible difference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, 0.22 E. S. The line "mean tone" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in TABLE 144.—Data for Still 144.—Data for Still 144.—Data for Still 145.

TABLE 144,-Data for Middle Octave

	Inte	rval.	Ra	Ratios.		Logarithms.		Number of double Vibrations per second.							
Note.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Just.	Just.	Tem- pered-	Tem- pered.	Tem- pered			
C ₃	E. S.	E. S.	1.00	1.00000	.0000	.00000	256	264	258.7	258.7 274.0	261.6 277.2	271.1			
D_3	2.04	2 3	1.125	1.12246	-05115	.05017	288	297	291.0	290.3 307.6	293 · 7 311 · 1	304·3 322·4			
E ₃ F ₃	3.86 4.98	5 6	1.25	1.25992	.09691	.10034	320 341.3	330 352	323.4 344.9	325·9 345·3	329.6 349.2	341.6 361.9			
C ₃	7.02	6 7 8	1.50	1.41421	.17609	.15051 .17560 20060	38.4	396	388	365.8 387.5 410.6	370.0 392.0 415.3	383.4 406.2 430.4			
A ₃	8.84	9	1.67	1.58740 1.68179 1.78180	.22185	.22577	426.7	440	431.1	435.0	440.0	456.0 483.1			
B ₃ C ₄	10.88	11 12	1.875	1.88775	.27300 .30103	·27594 ·30103	480 512	495 528	485.0 517.3	488.3 517.3	493.9 523.2	511.8 542.3			

TABLE 145 .- Notes Needed to Transpose to Other Scales

Ke	y of	С		D		E	F		G		A		В	С
7 #s 6 " 5 " 4 " 2 " 1 # 1 b s 3 " 4 " 5 " 6 " 7 "	C# F# B E A D G C F Bb A D G G C C C	0.00 0.00 0.00 0.00 22 22	1.14 0.92 1.14 0.92 1.14 0.92 0.92 0.70 0.92 0.70 0.92 0.70 0.92	2.04 1.82 2.04 2.04 2.04 1.82 1.82	3.18 2.96 2.96 2.74 2.96 2.74 2.96 2.74 2.94 2.94 2.94 2.94 2.72	4.08 3.86 4.08 3.86 4.08 3.86 4.08 3.86 3.86 3.86	5.00 4.78 5.00 4.78 4.98 4.98 4.98 4.98 4.76 4.76	6.12 5.90 6.12 5.90 6.12 5.90 5.90 5.90 5.90 5.88 5.88 5.88	7.02 7.02 7.02 7.02 6.80 6.80 6.80	8.16 7.94 8.16 7.94 7.72 7.94 7.72 7.94 7.72 7.92 7.92 7.92 7.92 7.92 7.92	9.06 8.84 9.06 8.84 9.06 9.06 \$.84 8.84	9.98 9.76 9.98 9.76 9.98 9.76 9.96 9.96 9.96 9.74 9.74	11.10 10.88 11.10 10.88 11.10 10.88 11.10 10.88 10.88 10.88 10.88	12.00 12.00 12.00 12.00 12.00 11.78 11.78
Harmon Cycle of Cycle of Mean to Equal 7	fourths	8 0.0 0.0 0.0 0.0 0.0	(17) 1.05) 1.14 0.90 0.76	9 2.04 2.04 1.80 1.93 1.71	(2.98) 3.18 2.94 3.11 3.43	3.86 4.08 3.84 3.86	(21 (4.70) 5.22 4.98 5.03 5.14	5.51 6.12 5.88 5.79	7.02 7.02 6.78 6.97 6.86	(25 7.73) 8.16 7.92 7.72	9.06 8.82 8.90 8.57	14 9.69 10.20 9.96 10.07 10.29	15 10.88 11.10 10.86 10.83	16 12.00 12.24 11.76 12.00 12.00

TABLE 146.—A Fundamental Tone, its Harmonics (Overtones) and the Nearest Tone of the Equal-tempered Scale

No. of partial	1	2	3	4	5	6	7	8	9	10
Frequency	129	259	388	517	647	776	905	1035	1164	1293
Nearest tempered note	C	C	G	C	E	G	Bb	C	D	E
Corresponding frequency	129	259	388	517	652	775	922	1035	1164	1293
No. of partial	11	12	13	14	15	16	17	18	19	20
	1423	1552	1681	1811	1940	2069	2199	2328	2457	2586
	Gh	G	G#	Bb	B	C	C#	D	D#	E
	1463	1550	1642	1843	1953	2069	2192	2323	2461	2607

CHARACTERISTICS OF SPEECH, MUSIC, AND NOISE

(See Kaye, Nature 128, 253, 1931; Fletcher, Rev. Mod. Phys., 3, 258, 1931.)

Average ear perceives frequencies 20–20,000 cycles/sec. Upper limit less with increasing age. Ordinarily attention largely restricted to 50–5,000 for speech, 35–7,000 in music.

Matching of sounds.—Average ear detects 10 per cent difference of energy when two notes of medium loudness sound alternately without break; doubled if interval of silence; ordinarily 25 per cent holds.

Weber-Fechner law.—When sound sensation advances arithmetically, physical intensity advances geometrically (Kingsbury). Frequencies, 700–4,000 c/sec., relation between loudness and intensity independent of frequency. Lower frequencies, loudness increases proportionally more rapidly than intensity.

TABLE 147.-The Bel and the Decibel

Bel, Decibel.—One bel is 10-fold increase in power or energy.

Intensities differing as r to 1 differ by $\log r$ bels.

Least perceptible change in loudness of a sound of medium loudness under various conditions = 1 db (0.2 to 9 db according to frequency and loudness). Threshold of audibility taken as zero (see Table 148). Pure sounds of medium frequency: range of audibility between threshold and sensation of "feeling" of the sound about 130 db.

If intensity levels of two pure sounds is the same, then if each is increased by the same amount of energy they no longer give an equal sensation of tone. Standard for mixed sounds may be taken as a pure note. Frequency about 1000 cycles/sec. Threshold value (zero) = about 1 millidyne/cm².

TABLE 148 .- Loudness Levels of Various Noises

	Average tance decibels t. above thresholo	Note	Source	Distance ft.	Average decibels above threshold	Note
Quiet whisper	5 10	6	Lindbergh applause		90	5
Quiet garden	. 30	I	Pneumatic drill	20	90	I
Ordinary talk		6	Elevated R.R., N.Y.	20	90	3
Express train Pul		4	N. Y. subway	Int.	95	4
Steamship siren 1,		3	Riveting	35	95	3
D - 4 - CC NT NZ	72	2	Steamship siren		95	3
	15 80	3	Airplane cabin	Int.	80-110	
	18 85	3	Airplane engine		115	4

(1) Davis, Journ. Roy. Aeron. Soc., 1931. (2) Free. (3) Galt. (4) Parkinson, Journ. Acoust. Soc. Amer., 1930. (5) Fletcher. (6) Kaye.

TABLE 149.—Peak Power in Watts of Musical Instruments (Fortissimo)

(Sivian, Dunn, White, Journ. Acoust. Soc. Amer., Jan. 1931.)

75-piece orchestra Large bass drum Pipe organ Snare drum	25 13	Piano Trumpet Bass tuba	0.4 0.3 0.2	Piccolo 0.08 Flute 0.06 Clarinet 0.05 French horn 0.05
Cymbale	10	Base viol	0.16	Triangle 0.05

Peak powers, fortissimo playing. Orchestra of 75 pieces. Both peak and average powers of orchestra are about 10,000 times such for conversational speech. Violin played as softly as possible, 4 microwatts. Threefold peak power 20,000,000 times this.

TABLE 150.-Relative Strength of the Partials in Various Musical Instruments

The values given are for tones of medium loudness. Individual tones vary greatly in quality and, therefore, in loudness.

Instrument.		Strength of partials in per cent of total tone strength.											
Institutiont.	I	2	3	4	5	6	7	8	9	10	. 11	12	
Tuning fork on box. Flute Violin, A string. Oboe Clarinet Horn Trombone	100 66 26 2 12 36 6	24 25 2 0 26 11	4 9 4 10 17 35	6 10 29 3 7	27 35 5 4 8		0 4 8 2 6		3 15 1 3	41812		0 6 1	

TABLE 151.-Miscellaneous Sound Data

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all pitches. $n_t = n_0(1-0.00011t^2 \text{ C})$, Ann. d. Phys. 9, p. 408, 1880.

Vibration frequencies for continuous sound sensations are practically the same as for continuous light sensation, 10 or more per second. Helmholtz' value of 32 per sec. may be taken as the flicker value for the ear. Moving pictures use 16 or more per sec. For light the number varies with the intensity. The quality of a musical tone depends solely on the number and relative strength of its partials (simple tones) and probably not at all on their phases.

The wave lengths of sound issuing from a closed pipe of length L are 4L, 4L/3, 4L/5, etc., and from an open pipe, 2L, 2L/2, 2L/3, etc. The end correction for a pipe with a flange is such that the antinode is $0.82 \times \text{radius}$ of pipe beyond the end; with no flange the correction is $0.57 \times \text{radius}$ of pipe.

The energy of a pure sine wave is proportional to n^2A^2 ; the energy per cm³ is on the average $2pn^3U^2A^2/\lambda^2$; the energy passing per sec. through 1 cm² perpendicular to direction of propagation is $2pn^2U^3A^2/\lambda^2$; the pressure is $\frac{1}{2}(\gamma+1)$ (average energy per cm³); where n is the vibration number per sec., λ the wave length, A the amplitude, V the velocity of sound, ρ the density of the medium, γ the specific heat ratio. Althery (Ann. d. Phys. 11, p. 405, 1903) measured sound-wave pressures of the order of 0.24 dynes/cm² = 0.00018 mm Hg.

TABLE 152 .- Audibility as Dependent on Sound Pressure and Frequency

The ear detects sounds over a pressure range about 0.001 to 1000 dynes/cm²; over much of this range it differentiates between complex sounds so nearly alike that no existing physical device can distinguish them. Plot shows minimum audibility pressures from 72 normal ears from 60 to 4000 cycles (both scales logarithmic); standard deviation indicated by dotted curves. The maximum audibility curve was obtained from 48 normal ears. A louder sound becomes painful. The intensity of pressure necessary is about that required to excite the tactile nerves in the finger tips. (Wegel, Pr. Nat. Acad. Sc., 8, p. 155, 1922.)

TABLE 153.-Speech

(Fletcher, Rev. Mod. Phys., 3, 258, 1931.)

Speech is composed of vowels and consonants. Most are continued in steady tones (continuants), long vowels, a, short, i, diphthongs, ou, semivowels, l, fricative consonants, s; others are interrupted (stops). The pure stops are p, t, ch, k; voiced, b, d, j, g.

When frequencies, f, are measured in kilocycles, then the pitch $P = \log_2 F$. J is the intensity of the sound passing through a cm² of the wave-front. The intensity level $I = \log_{10} J$ and is expressed in bells.

TABLE 154.—Characteristic Resonance Values for Spoken Vowels

The larynx generates a fundamental tone of a *chosen* pitch with some 20 partials, usually of low intensity. The particular partial, or partials, most nearly in unison with the mouth cavity is greatly strengthened by resonance. Each vowel, for a given mouth, is characterized by a particular *fixed* pitch, or pitches, of resonance corresponding to that vowel's definite form of mouth cavity. These pitches may be judged by whispering the vowels. It is difficult to sing vowels true above the corresponding pitches. The greater part of the energy or loudness of a vowel of a *chosen* pitch is in those partials reinforced by resonance. The vowels may be divided into two classes, — the first having one characteristic resonance region, the second, two. The representative pitches of maximum resonance of a mouth cavity for selected vowels in each group are given in the following table.

Vowel indicated by italics in the words.	Pitch of maximum resonance.	Vowel indicated by italics in the words.	Pitch of maximum resonance.		
father, far, guardraw, fall, haulno, rode, goalgloom, move, group.	910 732 461 326	mat, add, cat	488 and 2461		

Pitch in octaves from one kilocycle. For the first 6 vowels high pitch region less intense (Fletcher).

pool	-0.3 - 1.3	talk	- o.i - o.7	tap	-0.45 + 0.8	tip	-1.2 + 1.2
put					-0.7 + 0.9		-1.4 + 1.3
tone	-0.2 - 1.0	father	+ 0.3 - 0.3	tape	-0.9 + 1.1		

TABLE 155 .- Speech Power (Fletcher)

Average conversational speech power, 10 microwatts or 100 ergs per second. About 1/3 of time no sound is flowing (pauses), so if silent intervals are excluded these values may be taken as 15 and 150. Shouting as loud as possible increases 100-fold, whispering intelligibly 1/10,000. The mean speech power may be defined as average over 1/100 sec. period; phonetic speech power, max. value of mean speech power of a fundamental vowel or consonant; peak speech power, max. value of instantaneous power over interval considered.

TABLE 156 .- Phonetic Powers, Average Conversation

ó	68o	ö	470	ū	310	1	100	ch	42	S	16	v	12	f	5
a	600	u	460	i	260	sh	80	n	36	t	15	Ъ	7	th	1
0	510	ā	370	ē	220	11g	73	j	23	g	15	d	7		
á	490	е	350	٠r	210	m	52	Z	16	k	13	p	6		

The most powerful sound is "azul,"—900 times the power of th in thigh. Intoned without emphasis it is about 50 microvolts. Peak powers are 10-20 times the phonetic power. In ordinary conversation 2% of time > 20 db over average level; 42%, 6 to 16 db.

Note.—For Bibliography of Acoustics of Buildings (Watson) see Nat. Res. Council, Reprint, and Circulars, No. 98, 1931, or Journ. Acoust. Soc. Amer., 2, 14, 1931.

VELOCITY PRESSURE AT DIFFERENT AIR SPEEDS

The resistance F of a body of fixed shape and presentation moving through a fluid may be written

 $F = \rho L^2 V^2 \left(\frac{V L \rho}{\mu} \right) \tag{1}$

in which ρ denotes the fluid density, μ the viscosity, L a linear dimension of the body fixing the scale, and V is the speed of the body relative to the fluid. The dimensionless ratio $\frac{VL\rho}{\mu}$ is termed the Reynolds Number R. Values of R are comparable only for geometrically similar bodies. The quantity $(1/2)\rho V^2$ is termed the velocity pressure q; it is the increase in pressure above the static pressure set up in a tube whose open end is pointed into the relative wind. The relation (1) is usually written F = CAq, A being some specifically defined area as, for example, the area of the projection of the body on a plane normal to the wind. C is usually termed the absolute resistance coefficient. It has the same value in any self-consistent system of units and is a function of the Reynolds Number R. The method of defining A and L must in every case be explicitly stated.

For speeds near the speed of sound, C is also a function of the ratio of the air speed to the speed of sound. Values given in these Tables can not then be used.

The table gives values of the velocity pressure q at different air speeds. In conjunction with the values of C in subsequent tables, this table can be used for computation of the resistance under specified conditions. It is computed for standard air density: dry air, normal CO_2 content, $15^{\circ}C$, one atmosphere, standard gravity,

$$o.12497 \; \frac{\text{metric slugs}}{m^3} \left(\frac{\text{Kg(mass)}}{9.807 \; \text{m}^3} \right) = o.002378 \; \frac{\text{slugs}}{\text{ft.}^3} \left(\frac{\text{lbs. (mass)}}{32.156 \; \text{ft.}^3} \right)$$

For other densities the values must be multiplied by the ratio of the actual density to the standard density.

Air speed m/sec.	Pressure, q	Air speed m/sec.	Pressure, q kg/m²	Air speed m/sec.	Pressure, q kg/m²	Air speed m/sec.	Pressure, q kg/m²	Air speed m/sec.	Pressure, q kg/m²
1 2 3 4 5 6 7 8	0.063 250 .562 1.00 1.56 2.25 3.06 4.00 5.06	11 12 13 14 15 16 17 18	7.56 9.00 10.56 12.25 14.06 16.00 18.06 20.25 22.56	21 22 23 24 25 26 27 28 29	27.56 30.25 33.06 36.00 39.06 42.25 45.56 49.00 52.56	31 32 33 34 35 36 37 38 39	60.06 64.00 68.06 72.25 76.56 81.00 85.56 90.25 95.06	41 42 43 44 45 46 47 48 49	105.1 110.3 115.6 121.0 126.6 132.2 138.1 144.0
10 Air	6.25 Pressure, q lb./ft.²	Air speed ft./sec.	25.00 Pressure, q 1b./ft. ²	Air speed ft./sec.	56.25 Pressure, q 1b./ft.2	Air speed ft./sec.	Pressure, q lb./ft.2	Air speed ft./sec.	Pressure, q lb./ft.2
2 3 4 5 6	0.00119 .00476 .01070 .0190 .0297 .0428	11 12 13 14 15 16	.1438 .1712 .2009 .2330 .2675 .3044	21 22 23 24 25 30	.5243 .5755 .6290 .6849 .7431	55 60 65 70 75 80	3.597 4.280 5.024 5.826 6.688 7.610	105 110 115 120 125 130	13.11 14.39 15.72 17.12 18.58 20.09
7 8 9 10	.0583 .0761 .0963 .1189	17 18 19 20	.3436 .3852 .4292 .4756	35 40 45 50	1.457 1.902 2.408 2.973	85 90 95 100	8.591 9.631 10.73 11.89	135 140 145 150	21.67 23.30 25.00 26.75

CORRECTIONS TO ROBINSON CUP ANEMOMETERS

The official Weather Bureau instrument used for measuring speed of natural winds is a Robinson type cup anemometer. Before January 1, 1928, a four-cup driving unit was used; after that date a three-cup unit, because of the large errors of the older type at high speeds. The table gives the speeds indicated by the old and new instruments at various true speeds.

speed, four-cup	speed, three-cup	True speed, miles per hour	Indicated speed, four-cup standard, miles per hour	speed, three-cup	True	Indicated speed, four-cup standard, miles per hour	Indicated speed, three-cup standard, miles per hour
5	5	40	50	41	75	98	79
II	10	45	57	47	80	105	84
17	15		6.4	52	85	112	89
•	20					118	95
-	25	6 o				125	100
-		65		68	100	132	105
44	3 6	70	91	73	110	145	116
	speed, four-cup standard, miles per hour 5 11 17 23 30 37	four-cup standard, standard, miles per hour 5 5 11 10 17 15 23 20 30 25 37 31	speed, four-cup standard, miles per hour speed, mi	speed, four-cup standard, miles per hour speed, three-cup standard, miles per hour speed, four-cup standard, miles per hour speed, four-cup standard, miles per hour 5 5 40 50 11 10 45 57 17 15 50 64 23 20 55 71 30 25 60 78 37 31 65 85	Speed, four-cup standard, miles per hour Speed, four-cup standard, miles per hour Speed, four-cup standard, miles	speed, four-cup standard, miles per hour speed, three-cup standard, miles per hour True standard, miles per hour speed, four-cup standard, miles per hour speed, four-cup standard, miles per hour speed, three-cup standard, miles per hour True standard, miles per hour speed, three-cup standard, miles per hour 11 10 45 57 47 80 17 15 50 64 52 85 23 20 55 71 57 90 30 25 60 78 63 95 37 31 65 85 68 100	Speed, four-cup standard, miles per hour Speed, four-cup standard, miles per hour Speed, four-cup standard, miles per hour Speed, four-cup standard, miles per hour Speed, miles per hour Speed, four-cup standard, miles per hour Speed, mile

Note.—Values above a true speed of 75 miles per hour are extrapolated.

It must be borne in mind that problems in aerodynamics can not be idealized as easily as many problems in mechanics. The side of a building may not be regarded as a thin flat plate in computing the force of the wind, and data for a cylinder of a given length can not be directly applied for the wind force on a cylinder of some other length. Further, objects nearby exert an appreciable influence.

These complications limit the strict application of a test on a particular object to geometrically similar objects in similar surroundings. They also cause apparent discrepancies among the results of different experimenters which are to be attributed to departure from geometrical similarity of the models, to the effects of the relative size of the body and the air stream, of the supports or other nearby objects, and to differences in the fine structure (turbulence) of the approximately steady air streams rather than to errors of measuring.

The data here given are intended to apply to the ideal condition of an isolated body of exactly the shape specified in a uniform, steady air stream of infinite extent.

Example of tables: Take the problem of the resistance of a sphere 1.5 cm. diam. moving at a speed 35 m/sec. (3500 cm/sec.) through still air of density 0.0010 g/cm³ and viscosity 0.000173 g/cm sec. The Reynolds number is $3500 \times 1.5 \times 0.0010/0.000173$ or 30,347; $\log_{10}R$ is 4.482; whence from Table 162 C is 0.50. From Table 157 the value of q for std. density is $76.56 \text{ kg (force)/m}^2$. The ratio of the actual to std. density is 0.0010/0.0012255 or 0.816. The resistance is therefore $\{0.50\} \{\pi/4\} \{1.5/100\}^2 \{76.56\} \{0.816\} = 0.00552 \text{ kg (force)} = 5413 \text{ dynes.}$

RESISTANCE COEFFICIENT FOR THIN FLAT PLATES NORMAL TO THE WIND

The pressure on a thin rectangular plate varies with the "aspect ratio," a term introduced by Langley for the ratio of the length of the leading edge (span) to the chord length. The resistance coefficient is nearly independent of the Reynolds Number if the Reynolds Number (L taken as the chord length) is greater than 100. In the following table the values of C are given as a function of the aspect ratio. A is taken as the area of the plane, viz., product of chord and span. Values of C for circular disks are practically the same as for a square plate.

3

6

7

5

8

 ∞

COEFFICIENTS OF RECTANGULAR PLATES, SEE P. 199.

SMITHSONIAN TABLES

Aspect ratio

FORCES ON THIN FLAT PLATES AT ANGLES TO THE WIND

For plates at angles, the force is usually resolved into components at right angles and parallel to the direction of the relative wind. The components, termed the lift and drag respectively, are expressed in the form of absolute coefficients, the forces being divided by the product of the velocity pressure and the area of the plate (N. B.—not the projected area on a plane normal to the wind). The line of action of the force is given by the intersection of the resultant force with the plate expressed as the ratio of the distance of the intersection from the leading edge to the chord length, a quantity called the center of pressure coefficient. The lift coefficient $L = \operatorname{lift}/Aq$, the drag coefficient $D = \operatorname{drag}/Aq$, and the center of pressure coefficient for various angles are given for plates of aspect ratios 1, 3, and 6 in the form of graphs. (See page 198.)

The following formulae indicate the use of the coefficients from the plots for the determination of the forces:

 F_d = component of resulting wind force parallel to wind = drag = DAq;

 F_l = that normal to wind and width = lift = LAq;

 x_c (see small figure in upper set of curves) = $\overline{CP} \cdot W$; W is that dimension of the plane of reference which makes the least angle with wind.

A = area of one surface of plate. D, L, \overline{CP} are independent of Reynold's No. and temperature.

Authorities and the conditions of their experiments: (1) Eiffel. (2) Dines, 1890. (3) Föppl, 1910. (4) Riabouchinski, 1912. (5) Stanton, 1903. (6) Bureau of Standards. In lower figure of previous page: L_1 , Föppl; L_2 , L_3 , B. of S.; L_4 , Eiffel; D, Föppl, B. of S.; D_2 , B. of S.; D_3 , Eiffel. For more detailed information as to references and data see 1.C.T. 1, 406, 1926.

Authority		ratio 1		Ası	ect rat	io 3	Aspect ratio 6				
	(1)	(2)	(3)	(4)	(1)	(3)	(5)	(1)	(3)	(6)	(6)
Span	25 25 ·33 1500 210	30.5 30.5 .32 ∞ 382	12 12 .17 2000 55	12 12 1200 42	45 15 .3 1500 126	7.6 2.5 .025 600 10	36 12 .17 2000 55	90 15 .3 1500 126	30.5 5.08 .117 1370 64	72 12 .17 2000 55	30.5 5.08 .129 1370 64

TABLE 161

FORCES ON NON-ROTATING CIRCULAR CYLINDERS

The coefficient for cylinders normal to the wind, the area A being taken as the product of length and diameter and the linear dimension L as the diameter, depends to a marked degree on the ratio of length to diameter and on the Reynolds Number, R. The graph shows the variation of C with R for cylinders of infinite length.

The variation of C with the length-diameter ratio for a Reynolds Number of 80,000 is as follows:

Ratio of length to diameter	I	2	3	5	10	20	40	
C	0.63	.69	.75	.74	.83	.92	1.00	1.20

If the axis of the cylinder is inclined to the wind direction, the force remains approximately at right angles to the axis of the cylinder, its magnitude falling off approximately as the square of the sine of the angle of the axis to the wind.

AIR FORCES, CIRCULAR CYLINDERS.

Force = CAq. Reynold's number = $R = VD\rho/\mu$.

C is taken from above plot; for q see Table 157; A = Area axial section of cylinder = L (length) $\times D$ (diameter); the plane of reference contains the axis and is perpendicular to the plane defined by the axis and the wind direction; V = air speed; ρ , the density of the medium and μ , its viscosity. Curve (a) is due to Wieselsberger, 1922; curve (b) to Relf.

TABLE 162 .- Forces on Spheres

For spheres the linear dimension L is taken as the diameter of the sphere D and the area as $\frac{\pi D^2}{4}$. For values of the Reynolds Number between 80,000 and 300,000 the value of C depends in large measure on the turbulence of the air stream (cf. Technical Report 342 of the National Advisory Committee for Aeronautics). The curves marked S and W most clearly approximate the condition of zero turbulence.

AIR FORCES ON SPHERES.

Force =
$$F = CAq$$
. $A = \pi D^2/4$. $R = VD\rho/\mu$.

For meaning of letters see previous table.

Authorities: A, Allen, 1900; B₂, Bacon and Reid; E, Eiffel; P, Pannell; R, Riabouchinski, 1914; S, Bureau of Standards; W, Wieselsberger, 1914, 1922. For more detailed references see I.C.T., 1, 411, 1926.

TABLE 163 .- Forces on Miscellaneous Bodies

The values of the shape coefficients in the following table are to be used with the area of the projection of the body on a plane normal to the wind direction. Where this projection is a circle, the diameter is used as the quantity L in the Reynolds Number. Where the projection is rectangular, the shortest side of the rectangle is taken as L.

TABLE 163 (continued) .- Forces on Miscellaneous Bodies

Body	С	Reynolds Number
Struts (bodies streamlined in two dimensions)	0.06-0.08	above 40,000
Streamline bodies of revolution	0.03-0.04	above 100,000
Rectangular prism, I x I x 3, normal to I x 3 face	1.60 *	400,000
Model of automobile	.78 *	about 300,000
Cone, angle 60°, diam. base 40 cm, point to wind, solid	.51	about 270,000
Cone, angle 30°, diam. base 40 cm, point to wind, solid	-34	270,000
Hemisphere, convex to wind	·34	170,000
Hemisphere, concave to wind	.13	170,000
Concave cup	1.39	170,000
Convex cup	-35	170,000
Sphero-conic body, diam. 20 cm, cone 20° point forward.	.16	135,000
Sphero-conic body, diam. 20 cm, cone 20° point to rear	.088	135,000
Cylinder 120 cm long, spherical ends	.19	100,000
* C varies very little with Reynolds Number.		

^{*} C varies very little with Reynolds Number.

TABLE 164.—Forces on Cylinders

Cylinder, base perpendicular to		C *	
wind, <u>length</u> diameter	0	1.07	100,000 to 200,000
"	I	1.07	"
"	2	.88	66
44	4	.81	46
66	6	.82	46
66	8	.82	66
66	14	.94	66

^{*} Eiffel's values: See Table 159 for best value, 1.12.

SKIN FRICTION

The surface friction on well-varnished surfaces of thin flat plates may be expressed in the following form:

 $R_F = 0.0375 AqR^{-0.15}$

where R_F is the frictional force on the area A exposed to the stream, q is the velocity pressure, and R the Reynolds Number based on the length of the plate parallel to the wind direction. The values in the table apply when the flow is fully turbulent as in most practical applications. (Cf. Technical Report 342 of the National Advisory Committee for Aeronautics.)

Speed	kg per	riction sq. m ine	Speed	lbs. pe	friction er sq. ft. ane
m/sec.	I m long	30 m long	ft./sec.	I ft. long	30 ft. long
10	0.0311	0.0187	10	0.00083	0.00050
20	.112	.0673	20	.00303	.00182
30	.237	.142	30	.00641	.00385
40	.404	.243	40	.0109	.00655
50	.611	.3 66	50	.0164	.00987
60	.856	.514	60	.0231	.0139
70	1.138	.683	70	.0307	.0184
80	1.457	.874	80	.0393	.0236
90	1.812	1.087	90	.0488	.0293
100	2.202	1.321	100	.0594	.0356
110	2.626	1.576	110	.0708	.0425
120	3.085	1.851	120	.0831	.0499
130	3.577	2.146	130	.0964	.0579
140	4.102	2.461	140	.1106	.0664
150	4.662	2.797	150	.1256	.0754
160	5.253	3.152	160	.1416	.0850
170	5.875	3.525	170	.1584	.0951
180	6.531	3.919	180	.1761	.1057
190	7.218	4.331	190	.1946	.1168
200	7.937	4.762	200	.2140	.1284

TABLE 166 .- Friction

The required force F necessary to just move an object along a horizontal plane =fN where N is the normal pressure on the plane and f the "coefficient of friction." The angle of repose Φ (tan $\Phi = F/N$) is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

Material.	f	1/f	φ
Wood on wood, dry	2550	4.00-2.00	14.0-26.5
" " soapy	20	5.00	11.5
Metals on oak, dry	5060	2.00-1.67	26.5-31.0
" " wet	2426	4.17-3.85	13.5-14.5
" " " soapy	20	5.00	11.5
" " elm, dry	2025	5.00-4.00	11.5-14.0
Hemp on oak, dry	· ·53	1.89	28.0
Hemp on oak, dry	. 33	3.00	18.5
Leather on oak	2738	3.70-2.86	15.0-19.5
" " metals, dry	56	1.79	29.5
" " wet	. 36	2.78	20.0
" " wet	23	4.35	13.0
" " oily	15	6.67	8.5
Metals on metals, dry	1520	6.67-5.00	8.5-11.5
" " wet	3	3.33	16.5
Smooth surfaces, occasionally greased.	0708	14.3-12.50	4.0-4.5
" continually greased	05	20.00	3.0
" best results	03036	33.3-27.6	1.75-2.0
Steel on agate, dry *	20	5.00	11.5
" " " oiled *	107	9.35	6.1
Iron on stone	3070	3.33-1.43	16.7-35.0
Wood on stone	. About .40	2.50	22.0
Masonry and brick work, dry	6070	1.67-1.43	33.0-35.0
Masonry and brick work, dry	74	1.35	36.5
" on dry clay	51	1.96	27.0
" " moist clay	33	3.00	18.25
Earth on earth	25-1.00	4.00-1.00	14.0-45.0
" " dry sand, clay, and mixed earth		2.63-1.33	21.0-37.0
" " damp clay	. 1.00	1.00	45.0
" " wet clay	31	3.23	17.0
" " shingle and gravel	81-1.11	1.23-0.9	39.0-48.0

^{*} Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

TABLE 167,-Lubricants

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 168 .- Lubricants For Cutting Tools

Material.	Turning.	Chucking.	Drilling.	Tapping Milling.	Reaming.
Tool Steel, Soft Steel, Wrought iron Cast iron, brass Copper Glass	dry or oil dry or soda water dry or soda water dry dry turpentine or kerosene	oil or s. w. soda water soda water dry dry	oil or s. w. oil or s. w. dry	oil oil oil dry dry	lard oil lard oil lard oil dry mixture

Mixture = 1/3 crude petroleum, 3/3 lard oil. Oil = sperm or lard.

Tables 167 and 168 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons.

TABLE 169.-Viscosity of Fluids and Solids

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit speed relative to another parallel plane surface from which it is separated by a layer a unit thick of the substance. Viscosity measures the temporary rigidity it gives to the substance. The viscosity of fluids is generally measured by the rate of flow of the fluid through a capillary tube the length of which is great in comparison with its diameter. The equation generally used is

$$\mu$$
, the viscosity, $=\frac{\gamma\pi gd^4t}{128Q(l+\lambda)}\left(h-\frac{mv^2}{g}\right)$,

where γ is the density (g/cm^3) , d and l are the diameter and length in cm of the tube, Q the volume in cm³ discharged in l sec., λ the Couette correction which corrects the measured to the effective length of the tube, l the average head in cm, m the coefficient of kinetic energy correction, mv^2/g , necessary for the loss of energy due to turbulent in distinction from viscous flow, g being the acceleration of gravity (cm/sec/sec), v the mean velocity in cm per sec. (See Technologic Paper of the Bureau of Standards, 100 and 112, Herschel, 1917–1918, for discussion of this correction and λ .) The fluidity is the reciprocal of the absolute viscosity. The kinetic viscosity is the absolute viscosity divided by the density. Specific viscosity is the viscosity relative to that of some standard substance, generally water, at some definite temperature. The dimensions of viscosity are $ML^{-1}T^{-1}$. It is generally expressed in cgs units as dyne-seconds page m^2 of m^2 and m^2 and m^2 are m^2 of m^2 and m^2 and m^2 are m^2 of m^2 and m^2 are m^2 and m^2 are m^2 are m^2 and m^2 and m^2 are m^2 and m^2 are m^2 are m^2 and m^2 are m^2 and m^2 are m^2 and m^2 are m^2 and m^2 are m^2 and m^2 are m^2 are m^2 and m^2 and m^2 are m^2 are m^2 and m^2 are m^2 are m^2 and m^2 are m^2 are m^2 are m^2 and m^2 are m^2 are m^2 are m^2 are m^2 and $m^$

per cm² or poises.

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 82). Ladenburg (1906) gives the viscosity of Venice turpentine at 18.3° as 1300 poises; Trouton and Andrews (1904) of pitch at 0°, 51 × 10¹⁰, at 15°, 1.3 × 10¹⁰; of shoemakers' wax at 8°, 4.7 × 10⁶; of soda glass at 575°, 11 × 10¹³; Deeley (1908) of glacier ice as 12×10^{13} .

TABLE 170 .- Viscosity of Water in Centipoises (Temperature Variation)

Bingham and Jackson, Bulletin Bureau of Standards, 14, 75, 1917. Pressure effect, see p. 652.

°C.	Vis- cosity.												
0	1.7921	10	1.3077	20	1.0050	30	0.8007	40	0.6560	50	0.5494	60	0.4688
I	1.7313	11	1.2713	21	0.9810	31	0.7840	41	0.6439	51	0.5404	65	0.4355
2	1.6728	12	1.2363	22	0.9579	32	0.7679	42	0.6321	52	0.5315	70	0.4061
3	1.6191	13	1.2028	23	0.9358	33	0.7523	43	0.6207	53	0.5229	75	0.3799
4	1.5674	14	1.1709	24	0.9142	34	0.7371	44	0.6097	54	0.5146	80	0.3565
5	1.5188	15	1.1404	25	0.8937	35	0.7225	45	0.5988	55	0.5064	85	0.3355
6	1.4728	16	1.1111	26	0.8737	36	0.7085	46	0.5883	56	0.4985	90	0.3165
7	1.4284	17	1.0828	27	0.8545	37	0.6947	47	0.5782	57	0.4907	95	0.2994
8	1.3860	18	1.0559	28	0.8360	38	0.6814	48	0.5683	58	0.4832	100	0.2838
9	1.3462	19	1.0299	29	0.8180	39	0.6685	49	0.5588	59	0.4759	153	0.181 *

*de Haas, 1894. Undercooled water: -2.10°, 1.33 cp; -4.70°, 2.12 cp; -6.20°, 2.25 cp; -8.48°, 2.46 cp; 9.30°, 2.55 cp; White, Twining, J. Amer. Ch. Soc., 50, 380, 1913.

TABLE 171 .- Viscosity of Alcohol-water Mixtures in Centipoises (Temperature Variation)

	Percentage by weight of ethyl alcohol.												
° C.	0	10	20	30	39	40	45	50	60	70	80	90	100
0 5 10 15 20	1.792 1.519 1.308 1.140 1.005	3.311 2.577 2.179 1.792 1.538	5.319 4.065 3.165 2.618 2.183	6.94 5.29 4.05 3.26 2.71	7.25 5.62 4.39 3.52 2.88	7.14 5.59 4.39 3.53 2.91	6.94 5.50 4.35 3.51 2.88	6.58 5.26 4.18 3.44 2.87	5.75 4.63 3.77 3.14 2.67	4.762 3.906 3.268 2.770 2.370	3.690 3.125 2.710 2.309 2.008	2.732 2.309 2.101 1.802 1.610	I.773 I.623 I.466 I.332 I.200
25 30 35 40 45 50	0.894 0.801 0.722 0.656 0.599 0.549	1.323 1.160 1.006 0.907 0.812 0.734	1.815 1.553 1.332 1.160 1.015 0.907	2.18 1.87 1.58 1.368 1.189 1.050	2.35 2.00 1.71 1.473 1.284 1.124	2.35 2.02 1.72 1.482 1.289 1.132	2.39 2.02 1.73 1.495 1.307 1.148	2.40 2.02 1.72 1.499 1.294 1.155	2.24 1.93 1.66 1.447 1.271 1.127	2.037 1.767 1.529 1.344 1.189 1.062	1.748 1.531 1.355 1.203 1.081 0.968	1.424 1.279 1.147 1.035 0.939 0.848	1.096 1.003 0.914 0.834 0.764 0.702
60 70 80	0.469 0.406 0.356	0.609 0.514 0.430	0.736 0.608 0.505	0.834 0.683 0.567	0.885 0.725 0.598	0.893 0.727 0.601	0.907 0.740 0.609	0.913 0.740 0.612	0.902 0.729 0.604	0.856	0.789	0.704	0.592

TABLES 172-174

TABLE 172 .- Viscosity and Density of Sucrose in Aqueous Solution

See Scientific Paper 298, Bingham and Jackson, Bureau of Standards, 1917, and Technologic Paper 100, Herschel, Bureau of Standards, 1917.

		Viscosity in	n centipoises		Density det.						
Tempera- ture.	Pe	er cent suci	rose by weig	ht.							
	0	20	40	60	0	20	40	60			
o° C 5 10 15 20	1.7921 1.5188 1.3077 1.1404 1.0050	3.804 3.154 2.652 2.267 1.960	14.77 11.56 9.794 7.468 6.200	238. 156. 109.8 74.6 56.5	0.99987 0.99999 0.99973 0.99913 0.99823	1.08546 1.08460 1.08353 1.08233 1.08094	1.18349 1.18192 1.18020 1.17837 1.17648	1.29560 1.29341 1.29117 1.28884 1.28644			
30 40 50 60 70 80	0.8007		33.78 21.28 14.01 9.83 7.15 5.40	o.99568 o.99225 o.98807 o.98330	1.07767 1.07366 1.06898 1.06358	1.16759 1.27615 1.16248 1.27058					

TABLE 173.—Viscosity and Density of Glycerol in Aqueous Solution (20°C)

% Glycerol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	Kine- matic viscos- ity.	% Glyc- erol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	roo X Kine- matic viscos- ity.	Glyc- erol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	100 X Kine- matic viscos- ity.
5	1.0098	1.181	1.170	35	1.0855	3.115	2.870	65	1.1662	14.51	12.44
10	1.0217	1.364	1.335	40	1.0989		3.450	70	1.1797	21.49	18.22
15	1.0337	1.580	1.529	45	1.1124	4.692	4.218	7.5	1.1932	33.71	28.25
20	1.0461	1.846	1.765	50	1.1258	5.908	5.248		1.2066		45.86
25	1.0590	2.176	2.055	55	1.1393		6.727	85	1.2201	102.5	84.01
30	1.0720	2.585	2.411	60	1.1528		8.943	90	1.2335	207.6	168.3
				[

The kinematic viscosity is the ordinary viscosity in cgs units (poises) divided by the density.

TABLE 174.—Viscosity and Density of Castor Oil (Temperature Variation)

Density,	Viscosity in poises. Kinematic viscosity.	Density,	Viscosity in poises. Kinematic viscosity.	°C	Density, g/cm ³	Viscosity in poises. Kinematic viscosity.	° C	Density,	Viscosity in poises.	Kinematic viscosity.
6 .9700 7 .9693 8 .9686 9 .9679	31.6 32.6 28.9 29.8 26.4 27.3 24.2 25.0 22.1 22.8 20.1 20.8	16 .963 17 .962 18 .961 19 .961 20 .960 21 .959	8 15.14 15.7 1 13.80 14.3 4 12.65 13.1 7 11.62 12.0 0 10.71 11.1 3 9.86 10.2 6 9.06 9.4	1 24 3 25 4 26 9 27 5 28 7 29 4 30	·9555 ·9548 ·9541 ·9534	7.06 7.37 6.51 6.80 6.04 6.32 5.61 5.87	32 33 34 35 36 37 38 39 40	.9471	3.65 3.40 3.16 2.94 2.74 2.58 2.44	4.14 3.84 3.58 3.33 3.10 2.89 2.72 2.58 2.44

Tables 173 and 174, taken from Technologic Paper 112, Bureau of Standards, 1918. Glycerol data due to Archbutt, Deeley and Gerlach; Castor Oil to Kahlbaum and Räber. See preceding table for definition of kinematic viscosity. Archbutt and Deeley give for the density and viscosity of castor oil at 65.6° C, 0.9284 and 0.605, respectively; at 100° C, 0.9050 and 0.169.

SMITHSONIAN TABLES.

TABLE 175.-Viscosity of Organic Liquids

Compiled from Landolt and Börnstein, 1912. Based principally on work of Thorpe and Rogers, 1894–97. Viscosity given in centipoises. One centipoise = 0.01 dyne-second per cm².

Liquid			1	Viscosit	y in ce	ntipoise	es		
	Formula	o°C	10°C	20°C	30°C	40°C	50°C	70°C	100°C
Acids: Formic	CH ₂ O ₂ C ₂ H ₄ O ₂			1.784				.780 .631	
Propionic	$C_3H_6O_2$ $C_4H_8O_2$	1.521	1.289	1.102	.960	.845	.752	.607	.459
Butyric	CH ₄ O	.817	.690	1.540 .596	.520	.456	.403	.760	
Allyl Propyl	C ₃ H ₆ O C ₃ H ₈ O			1.363 2.256				·553	
i-Propyl	C ₃ H ₈ O C ₄ H ₁₀ O	4.565	3.246	2.370 2.948	1.757	1.331	1.029	.646	
Aromatics: Benzol	C_6H_6	.906	.763	.654	.567	.498	-444	.359	
TolueneOrthoxylene	C_7H_8 C_8H_{10}	.772 1.105	.671	.590		.471		354 .458	
Metaxylene Paraxylene	C ₈ H ₁₀ C ₈ H ₁₀	.806 solid	.702 .738	.620 .648	·552 ·574	·497	.451	·375	.296
Bromides: Ethyl	C ₂ H ₅ Br	.487	.441	.402	.368				
Propyl Ethylene		.651 2.438	.582 2.039	.524 1.721	.475 1.475	.433 1.286	1.131		.678
Bromine	Br C₂H₄Cl	1.267	.966	1.005	.911	.830		 .479	
Chloroform	CHCl ₃ CCl ₄	.706	.633	.571	.519	.474	.435		
Ethers: Diethyl	C ₄ H ₁₀ O	1.351 .294	.268		.848	.746			
Methyl-propyl Ethyl-propyl	$C_4H_{10}O$ $C_6H_{12}O$.314	.285 .360		.237	.268			
Esters: Methylformate Ethylformate	C ₂ H ₄ O ₂ C ₃ H ₆ O	.436	.391	-355	.325				
Methylacetate	$C_3H_6O_2$.484	.431	.388	.352	.320	.293		
Ethylacetate	C ₄ H ₈ O ₂ CH ₃ I	.582	.512		.407 .460	.367		.279	
Ethyl Propyl	C ₂ H ₆ I C ₃ H ₇ I	.727 .944	.654 .833		.54c .669	.495 .607	.456	.391 .466	.371
AllylParaffines: Pentane	C ₃ H ₈ I C ₆ H ₁₂	.936		.734	.660	-597	.544	.458	.365
Hexane	C_6H_{14}	.401	.360	.326	.296	.271	.248		
i-Hexane Heptane	C_6H_{14} C_7H_{16}	.376	.338			.254	.310	.262	
i-Heptane Octane	C ₇ H ₁₆ C ₈ H ₁₈	.481	.428	.384		.315	.288	.243	
Sulphides: Carbon di	CS_2	.438	.405	.376	.352	.330			
Turpentine		2.248	1.783	1.487	1.272	1.071	.926	.728	

Table 176.—Fluidities of Gasolines and Kerosene (Temperature Variation) (Henschel, Bur. Standards, Techn. Paper, 125, 1919.)

Sp. gr.	gr. Temperature						Sp. gr.	Sp. gr. Temperature					
15°.6/15°.6	5°C	15°C	25°C	35°C	45°C	55°C	15°.6/15°.6	5°C	15°C	25°C	35°C	45°C	55°C
0.757 .748 .743 .726 .722 .716 .708	145 130 129 202 189 197 203	166 151 156 233 219 217 230	193 170 185 264 244 256 257	212 194 203 293 278 289 292	235 214 227 324 308 321 232	262 243 360 342 341 260	0.702 .701 .699 .694 .680 .813 Kerosene	233 230 233 251 288 39	261 262 269 286 323 47	296 287 306 316 365 61	321 333 335 354 413 71	358 373 372 387 441 84	400 398 423 427 475

PRESSURE EFFECT ON VISCOSITY OF PURE LIQUIDS

This table gives \log_{10} of the relative viscosity as a function of pressure and density, the viscosity at 30°C and atmospheric pressure taken as unity. Bridgman, Proc. Amer. Acad., 61, 59, 1926, which see for further liquids. For each compound first line $\log \eta/\eta_0$ at 30°C, second line at 75°C, third line η_{30}/η_{7b} .

Methyl					Pre	ssure kg	/cm²			
Color Colo	Substance	I	500	1000				8000	10000 12000	η_{30}
The content of the										
Ethyl	alcohol									.00520
alcohol. 9,657 9,772 9,873	Ethyl									
n-propyl alcohol 0.000 1.51 2.283 4.94 8.36 1.131 1.402 1.667 1.075 1.075 1.015 1.0		1 -					-			.01003
alcohol. 9,598 9,754 9,880 0,74 3,68 610 827 1.033 1.223 0.1775							2.270			
n-butyl alcohol. 2,233 2,495 2,529 2,630 2,938 3,319 3,758 4,305 4,920 3,921 3,548 9,724 9,867 0,89 3,12 0,690 0,941 1,72 1,396 0,000 1,88 3,41 0,607 1,605 1,448 1,811 2,164 2,495 2,848 2,917 2,951 3,177 3,926 4,742 5,781 7,996 8,570 2,848 2,917 2,951 3,177 3,926 4,742 5,781 7,996 8,570 2,848 2,917 2,951 3,177 3,926 4,742 5,781 7,996 8,570 3,144 3,315 3,524 8,47 1,112 1,360 1,615 1,846 3,155 2,248 2,917 2,951 3,177 3,926 4,742 5,781 7,996 8,570 3,144 3,32 3,591 4,224 4,514 1,803 3,914 4,261 4,646 4,646 4,742 4,151 4,189 3,930 3,28 1,71 3,797 3,961 1,194 1,803 3,948 4,947 1,112 1,360 1,615 1,846 4,988 3,284 3,978 4,945 4,948 4,				00						01550
n-butyl alcohol 0.006 0.175 0.321 0.524 0.394 1.286 1.600 0.191 1.172 1.396 0.2237 0	alconor			-						.01779
alcohol 9.548 9.724 9.867 .089 3.12 .690 .941 1.172 1.396 2.845 2.838 2.858 2.939 3.343 3.991 4.679 5.521 6.518 n-amyl000 .188 .341 .607 1.060 1.448 1.811 2.164 2.495 2.884 2.917 2.951 3.177 3.926 4.742 5.781 7.096 8.570 .000 .181 .315 .524 .847 1.112 1.360 1.615 1.846 1.545 1.460 1.419 1.393 1.483 1.600 1.742 2.004 2.254 .000 .184 .332 .561 .914 1.224 1.514 1.803 1.545 1.460 1.419 1.393 1.483 1.600 1.742 2.004 2.254 .000 .184 .332 .561 .914 1.224 1.514 1.803 1.574 1.432 1.449 1.521 1.633 1.832 2.070 2.382000 .134 .242 .405 .649 .837 1.008 1.172 1.323000 .134 .242 .405 .649 .837 1.008 1.172 1.323000 .134 .222 .387 .631 .854 1.043 1.223 1.400 bromide . 9.850 .017 .131 .285 .514 .683 .834 .977 1.111 1.413 1.309 1.291 1.318 1.365 1.426 1.493 1.567 1.633000 .121 .222 .387 .631 .854 1.043 1.223 1.400 bromide . 9.806 9.959 .072 .235 .472 .653 .816 .978 1.758 1.892000 .115 .218 .385 .656 .888 1.108 1.330 1.549 iodide . 9.837 9.954 .057 .227 .467 .672 .854 1.030 1.200 .00540 1.455 1.449 1.445 1.439 1.545 1.644 1.795 1.995 2.234000 .135 .226 .373 .005 .804 .987 1.16000540 1.545 1.449 1.445 1.459 1.545 1.644 1.795 1.995 2.234000 .134 .260 .497 .936 1.346 1.741 2.133005 .1549 16.37 17.26 19.63 25.53 33.73 44.36 58.08000 .150 .331 .493 000 .150 .331 .493493 1.567 1.884000 .150 .313 .493000 .150 .373 .075 .999 .988 .09410010000010010011 .386 .660 .884	n-butyl									
n-amyl.	alcohol		9.724	9.867	.089	.312				.02237
alcohol 9.540 9.723 9.871 105 466 772 1.049 1.313 1.562 2.884 2.917 2.951 3.177 3.926 4.742 5.781 7.096 8.570 000 181 315 524 847 1.112 1.360 1.615 1.846 163 380 676 908 1.119 1.313 1.493 000 1.84 323 561 914 1.224 1.514 1.803 000 184 323 561 914 1.224 1.514 1.803 000 184 323 561 914 1.224 1.514 1.803 000 134 242 405 649 837 1.008 1.172 1.323 003 121 1.318 1.365 1.426 1.493 1.567 1.633 141	n omvil									
n-pentane $\begin{vmatrix} 2.884 & 2.917 & 2.951 & 3.177 & 3.926 & 4.742 & 5.781 & 7.096 & 8.570 \\ .000 & .181 & .315 & .524 & .847 & 1.112 & 1.360 & 1.615 & 1.846 \\ 9.811 & .014 & .163 & .380 & .676 & .908 & 1.119 & 1.313 & 1.493 \\ 1.545 & 1.469 & 1.419 & 1.393 & 1.483 & 1.600 & 1.742 & 2.004 & 2.254 \\ .000 & .184 & .332 & .561 & .914 & 1.224 & 1.514 & 1.803 \\ 9.803 & .028 & .171 & .379 & .701 & .961 & 1.198 & 1.426 & 1.646 \\ 1.574 & 1.432 & 1.449 & 1.521 & 1.633 & 1.832 & 2.070 & 2.382 \\ Ethyl & .000 & .134 & .242 & .405 & .649 & .837 & 1.008 & 1.172 & 1.323 \\ 0.000 & .134 & .242 & .405 & .649 & .837 & 1.008 & 1.172 & 1.633 \\ 1.413 & 1.309 & 1.291 & 1.318 & 1.365 & 1.426 & 1.493 & 1.567 & 1.633 \\ 1.567 & 1.452 & 1.413 & 1.419 & 1.442 & 1.589 & 1.687 & 1.758 & 1.892 \\ Ethyl & .000 & .115 & .218 & .385 & .656 & .888 & 1.08 & 1.330 & 1.549 \\ iodide & . & .9837 & .9954 & .057 & .227 & .467 & .672 & .854 & 1.030 & 1.200 \\ .000 & .135 & .226 & .373 & .665 & .804 & .987 & 1.160 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ .000 & .189 & .324 & .514 & .792 & 1.042 & 1.261 & 1.491 & .005 \\ .000 & .189 & .324 & .514 & .792 & 1.042 & 1.261 & 1.491 & .005 \\ .000 & .189 & .324 & .514 & .792 & 1.042 & 1.261 & 1.491 & .005 \\ .000 & .189 & .324 & .514 & .792 & 1.042 & 1.261 & 1.491 & .005 \\ .000 & .1845 & .274 & .497 & .897 &$										
n-pentane	uiconorr.									
1.545 1.469 1.419 1.393 1.483 1.600 1.742 2.004 2.254 .000 .184 .332 .561 .914 1.224 1.514 1.803 .00296 1.574 1.432 1.449 1.521 1.633 1.832 2.070 2.382 .151 .379 .701 .961 1.198 1.426 1.646 .00296 .1574 1.432 1.449 1.521 1.633 1.832 2.070 2.382 .151 .131 2.85 .514 .683 .834 .977 1.111 .1413 1.309 1.291 1.318 1.365 1.426 1.493 1.567 1.633 .1854 1.043 1.223 1.400 .000 .121 .222 .387 .631 .854 1.043 1.223 1.400 .006 .1567 1.452 1.413 1.419 1.442 1.589 1.687 1.758 1.892 .006 .1567 .218 .385 .656 .888 1.08 1.330 1.549 .006 .1575 .218 .385 .656 .888 1.08 1.330 1.549 .006 .1455 1.449 1.445 1.439 1.545 1.644 1.795 1.995 2.234 .000 .135 .226 .373 .605 .804 .987 1.160 .000 .135 .226 .373 .605 .804 .987 1.160 .000 .134 .260 .497 .936 1.346 1.741 2.133 .00285 .000 .134 .260 .497 .936 1.346 1.741 2.133 .00285 .000 .134 .260 .497 .936 1.346 1.741 2.133 .00285 .000 .190 .351 .493 .445 .1563 .1679 1.828 .000 .190 .351 .493 .493 .493 .000 .190 .351 .493 .1334 1.321 1.285 .943 .309 .365 .514 1.560 .000 .190 .351 .493 .480 .691 .914 1.141 .0054 .344 .344 .403 .436 .586 .986 .1551 .311 .334 1.312 1.285 1.340 1.371 1.403 1.476 1.592 1.750 .000 .189 .324 .514 .792 1.042 1.261 1.469 1.670 .000 .180 .324 .514 .792 1.042 1.261 1.469 1.670 .000 .180 .324 .514 .792 1.042 1.261 1.469 1.670 .000 .180 .324 .346 .308 .498 .308 .498 .308 .498 .308 .498 .308 .498 .308 .498 .308 .498 .309 .306 .277 .30		.000	.181	.315	.524	.847	1.112	1.360	1.615 1.846	
n-hexane 0.000	n-pentane	_		_			-	-		.00220
n-hexane										
Ethyl chloride. 9.850 .017 .131 .225 .514 .683 .834 .977 1.111 Ethyl chloride. 9.850 .017 .131 .225 .514 .683 .834 .977 1.111 1.413 1.309 1.291 1.318 1.365 1.426 1.493 1.567 1.633 Ethyl	n-hexane									.00296
Ethyl chloride .000 .134 .242 .405 .649 .837 1.008 1.172 1.323 9.850 .017 .131 .285 .514 .683 .834 .977 1.633 1.413 1.309 1.291 1.318 1.365 1.426 1.493 1.567 1.633 .000 .121 .222 .387 .631 .854 1.043 1.223 1.400 .003 .1567 1.452 1.413 1.419 1.442 1.589 1.687 1.758 1.892 .003 .154 1.452 1.413 1.419 1.442 1.589 1.687 1.758 1.892 .003 .154 .414 1.589 1.687 1.758 1.892 .003 1.545 1.641 1.795 1.898 1.689 1.681 1.993 1.549 1.600 .002 .003 .005 .227 .467 .672 .884 1.030 1.549 1.455 1.441 1.795 1.995 2.234 .000 .003 1.545 1.644 1.795 1.995 2.234 .003 .003 1.100<										
Ethyl bromide			.134	.242	.405		.837			
Ethyl bromide. 9.806 9.959	chloride						Ų			
bromide. 9.806	Ethyl									
Ethyl iodide 1.567										.00368
Ethyl iodide										
Acetone			.115							
Acetone	iodide									.00540
Acetone 9.895										
Glycerine	Acetone					-				.00285
Glycerine $\begin{cases} .000 & .134 & .260 & .497 & .936 & 1.346 & 1.741 & 2.133 \\ 8.810 & 8.920 & 9.023 & 9.204 & 9.529 & 9.818 & .094 & .369 & .628 \\ 15.49 & 16.37 & 17.26 & 19.63 & 25.53 & 33.73 & 44.36 & 58.08 \\ .000 & .190 & .351 & .493 \\ (1500)/kg/cm^2 \\ 9.760 & 9.949 & .100 & .349 & .542 \\ 1.738 & 1.742 & 1.782 \\ .000 & .110 & .211 & .386 & .660 & .884 \\$							_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.497	.936				
$\begin{array}{c} \text{CCl}_4 \dots \\ \text{CCl}_4 \dots \\ \text{Soo} \\ \text{Soo}$	Glycerine						-		^	3.8
$\begin{array}{c} (1500) \text{ kg/cm}^2 \\ 9.760 & 9.949 & .100 & .349 & .542 \\ 1.738 & 1.742 & 1.782 \\ .000 & .110 & .211 & .386 & .660 & .884 \\ \text{Chloroform.} \\ \begin{array}{c} 9.858 & 9.985 & .094 & .251 & .480 & .691 & .914 & 1.141 \\ 1.387 & 1.334 & 1.309 & 1.365 & 1.514 & 1.560 \\ .000 & .090 & .160 & .307 & .509 & .674 & .840 & 1.010 & 1.189 \\ 9.875 & 9.972 & .051 & .180 & .372 & .527 & .671 & .808 & .946 \\ 1.334 & 1.312 & 1.285 & 1.340 & 1.371 & 1.403 & 1.476 & 1.592 & 1.750 \\ .000 & .189 & .324 & .514 & .792 & 1.042 & 1.261 & 1.469 & 1.670 \\ 9.878 & .024 & .149 & .344 & .601 & .806 & .986 & 1.155 & 1.311 \\ 1.324 & 1.462 & 1.496 & 1.479 & 1.552 & 1.722 & 1.884 & 2.061 & 2.286 \\ .000 & .173 & .347 \\ 9.765 & 9.938 & .081 & .308 & .498 \\ & & & & & & & & & & & & & & & & & & $						25.53	33.73	44.30	50.00	
$ \begin{array}{c} {\rm CCl_4. \dots} \\ {\rm O.506} \\ {\rm I.738} \\ {\rm I.742} \\ {\rm I.782} \\ {\rm I.782} \\ {\rm I.387} \\ {\rm I.334} \\ {\rm I.334} \\ {\rm I.309} \\ {\rm I.300} \\ {\rm I.310} \\ {\rm I.200} \\ {\rm I.300} \\ {\rm I.30$	j	.000	.190	•332		kg/cm ²	:			
Chloroform.	CC14	9.760	9.949							.00845
Chloroform. $ \begin{cases} 9.858 & 9.985 & .094 & .251 & .480 & .691 & .914 & 1.141 \\ 1.387 & 1.334 & 1.309 & 1.365 & 1.514 & 1.560 \\ .000 & .090 & .160 & .307 & .509 & .674 & .840 & 1.010 & 1.189 \\ 9.875 & 9.972 & .051 & .180 & .372 & .527 & .671 & .808 & .946 \\ 1.334 & 1.312 & 1.285 & 1.340 & 1.371 & 1.403 & 1.476 & 1.592 & 1.750 \\ .000 & .189 & .324 & .514 & .792 & 1.042 & 1.261 & 1.469 & 1.670 \\ 9.878 & .024 & .149 & .344 & .601 & .806 & .986 & 1.155 & 1.311 \\ 1.324 & 1.462 & 1.496 & 1.479 & 1.552 & 1.722 & 1.884 & 2.061 & 2.286 \\ .000 & .173 & .347 & & & & & & & & & & & & & & & & & & &$	ļ				-06		00-			
$\begin{array}{c} \text{I} \cdot 387 \text{I} \cdot 334 \text{I} \cdot 309 \text{I} \cdot 365 \text{I} \cdot 514 \text{I} \cdot 560 \\ -000 .090 .160 .307 .509 .674 .840 \text{I} \cdot .010 \text{I} \cdot .189 \\ 9.875 9.972 .051 .180 .372 .527 .671 .808 .946 \\ \text{I} \cdot 334 \text{I} \cdot 312 \text{I} \cdot 285 \text{I} \cdot 340 \text{I} \cdot 371 \text{I} \cdot 403 \text{I} \cdot 476 \text{I} \cdot 592 \text{I} \cdot 750 \\ -000 .189 .324 .514 .792 \text{I} \cdot 042 \text{I} \cdot 261 \text{I} \cdot 469 \text{I} \cdot 670 \\ 9.878 .024 .149 .344 .601 .806 .986 \text{I} \cdot 155 \text{I} \cdot 311 \\ \text{I} \cdot 324 \text{I} \cdot 462 \text{I} \cdot 496 \text{I} \cdot 479 \text{I} \cdot 552 \text{I} \cdot 722 \text{I} \cdot 884 2 \cdot 061 2 \cdot 286 \\ -000 .173 .347 & & & & & & & & & & & & & & & & & & $	Chloroform							014	T T 4 T	00510
$\begin{array}{c} \text{CS}_2. \dots & \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	emorororm.					•		1914	1.141	.00319
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ì							.840	1.010 1.189	
Ether	CS_2							• -		.00352
Ether	,			-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ether									.00212
Benzene 3.000	Zener									100212
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					117		·			
Toluene 1.718 1.718 1.845 1.695 1.285 1.699 2.177 1.600 1.600 1.618 1.698 1.995 2.449 3.258 4.710 1.652 (3000) (5000) kg/cm ² Eugenol 9.429 9.616 9.810 1.143 8.05 1.520 2.343 1.718 1.718 1.845 1.698 1.995 2.449 3.258 4.710 1.652 (3000) (5000) kg/cm ² 1.652 (3000) (5000) kg/cm ² 1.652 (3000) (30	Benzene	9.765	9.938	.081	.308					.00566
Toluene 0.00		T 777 Q	7 770	T 84"		(3000)	kg/cm ²			
Toluene					.407	.807	1.285	1,600	2.177	
Lugenol 1.600 1.607 1.618 1.698 1.995 2.449 3.258 4.710 2.000 .288 .541 1.081 2.273 3.007 1.652 (3000) (5000) kg/cm ² 2.429 9.616 9.810 .143 .805 1.520 2.343	Toluene									.00523
Eugenol 9.429 9.616 9.810 .143 .805 1.520 2.343	1		1.607				-			
Eugenol) 9.429 9.616 9.810 .143 .805 1.520 2.343	1	.000	.288	•541				1/		
	Fugenot	0.430	0.616	0.810						
3.724 4.699 5.383 8.670 29.38	Eugenor						1.520	2.343		

VISCOSITY OF MISCELLANEOUS LIQUIDS

Viscosities are given in cgs units, dyne-seconds per cm2, or poises.

Liquid.	°C	Viscosity.	Refer- ence.	Liquid.	° C	Viscosity.	Refer- ence.
A 4 - 1 d - 1 - 1 d -		0.00275	ı	* Dark cylinder	27 8	7. 204	
Acetaldehyde	0.	0.002/3	I		37.8	7.324 0.34I	10
"	20.	0.00231	I	* " Extra L. L. "	37.8	11.156	10
Air	-192.3	0.00172	2	" " "	100.0	0.451	10
Aniline	20.	0.04467	3	Linseed .925 ‡	30.	0.331	9
Bismuth	60. 285.	0.0156	3 4	" .922 " .914	50.	0.176	9
"	365.	0.0146	4	Olive .0195	10.	1.38	11
Copal lac	22.	4.80	5	"	15.	1.075	II
Glycerine	2.8	42.2		.9130	20.	0.840	II
44	14.3	13.87 8.30	6	" .9065 " .9000	30. 40.	0.540	II
. "	20.3 26.5	4.04	6	" .8935	50.	0.303	11
" 80.31% H ₂ O " 64.05% H ₂ O " 49.79% H ₂ O	8.5	I.021	6	" .8800	70.	0.124	11
" 64.05% H ₂ O	8.5	0.222	6	† Rape	15.6	1.118	10
" 49.79% H ₂ O	8.5	0.092	6	44	37.8	0.422	10
Hydrogen, liquid Menthol, solid	_	0.00011 2 × 10 ¹²	2	" (another)	100.0	0.080	10
" liquid	14.9 56.0	0.069	7	" (another)	100.0	0.085	10
Mercury	-20.	0.0184	7 8	Soya bean .919 ‡ · · · · ·	30.0	0.406	9
44.	0.	0.01661	4	" " .915	50.0	0.206	9
	20.	0.01547	4	.900	90.0	0.078	9
	34.	0.01476	4	† Sperm	15.6	0.120	10
"	98. 193.	0.01263	4 4	"	37.8	0.185	10
	200.	0.00975	4	Paraffins:	100.0	0.040	.
Oils:	- 77			Pentane	21.0	0.0026	12
Dogfish-liver .923 ‡	30.	0.414	9	Hexane	23.7	0.0033	12
" " .918 " " .908	50.	0.211	9	HeptaneOctane.	24.0	0.0045	12
Linseed .925	90. 30.	0.000	9	Nonane	22.2	0.0053	12
.922	50.	0.176	9	Decane	22.3	0.0077	12
" .014	90.	0.071	9	Undecane	22.7	0.0095	I 2
* Spindle oil .885	15.6	0.453	10	Dodecane	23.3	0.0126	I 2
" Spindle on .oos	37.8	0.162	10	Tridecane	23.3 21.0	0.0155	12
* Light machinery	100.0	0.033	10	Pentadecane	22.0	0.0213	12
.907 ‡	15.6	1.138	10	Hexadecane	22.2	0.0350	12
* Light machinery	37.8	0.342	10	Phenol	18.3	0.1274	13
*"Solar red" engine	100.0	0.049	10	Sulphur	90.0	0.0126	13
Solar red engine	15.6 37.8	0.496	10	14	180.	320.0 550.0	14
	100.0	0.490	10	11	187.	560.0	14
* " Bayonne" engine	15.6	2.172	10	"	200.	500.0	14
	37.8	0.572	10	"	250.	101.0	14
* " O	100.0	0.063	10		300.	24.0	1.4
* " Queen's red" engine	15.6 37.8	2.995 0.711	10	"	340. 380.	6.2	14
	100.0	0.070	10	44	420.	1.13	14
* " Galena " axle oil	15.6	4.366	10		448.	0.80	14
* '' '' ''	37.8	0.909	10	† Tallow	66.	0.176	10
* Heavy machinery	15.6	6.606	10	Zinc	100. 280.	0.078	10
* Filtered cylinder	37.8 37.8	2.406	10	44	357.	0.0108	4 4
" " "	100.0	0.187	10		389.	0.0131	4
* Dark cylinder	37.8	4.224	10				
	100.0	0.240	10				
			1	l .		1	

^{*}American mineral oils; based on water as .01028 at 20° C. † Based on water as per 1st footnote. ‡ Densities. References: (1) Thorpe and Rodger, 1894-7; (2) Verschaffelt, Sc. Ab. 1917; (3) Wijkander, 1879; (4) Plüss. Z. An. Ch. 03, 1915; (5) Metz, C. R. 1903; (6) Schöttner, Wien. Ber. 77, 1878, 79, 1879; (7) Heydweiller, W. Ann. 63, 1897; (8) Koch, W. Ann. 14, 1881; (6) White, Bul. Bur. Fish. 32, 1912; (10) Archbutt-Deeley, Lubrication and Lubricants, 1912; (11) Higgins, Nat. Phys. Lab. 11, 1914; (12) Bartolli, Stracciati, 1885-6; (13) Scarpa, 1903-4; (14) Rotinganz, Z. Ph. Ch. 62, 1908.

Ratio of Viscosity at High to that at Atmospheric Pressure.

Pressur tons/in 2	re Kg/cm ²	Bayonne oil (mineral)	FFF cylinder (mineral)	Trotter (animal)	Rape (veget	casto r able)	Sperm (fish)
1	157.5	1.3	1.4	1.2	1.1	1.2	1.2
2	315.	2.0	2.0	1.6	I.4	1.6	1.5
4	630.	4.0	4.5	2.4	2.3	2.7	2.4
6	945.	7.8	8.9	3.5	3.5	4.2	3.5
8	7.060	76.7		r 0		r R	_

Hyde, Pr. Roy. Soc. 97A, 240, 1920.

TABLE 179

SPECIFIC VISCOSITY OF SOLUTIONS

(Density and temperature variation)

This table shows the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity \times 100 is given for one or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

(Abridged from earlier editions of these tables.)

		(Abridge	ed Holli ear	lier editions	of these tab	165.)	
Salt	Per- centage by weight of salt in solution	Density.	μ t	μt	μt	μ t	Authority
BaCl ₂	7.60		77.9 10	44.0 30	35.2 50		Sprung
11	24.34		100.7 "	00.2	47.7		
$Ba(NO_3)_2$ $CaCl_2$	2.98	1.027	62.0 15	51.1 25 71.3 30	42.4 35 50.3 50	34.8 45	Wagner
11	31.60		272.5 "	177.0 "	124.0 "		Sprung
11	39.75		670.0 ''	379.0 "	245.5 "		11
$Ca(NO_3)_2$	44.09 17.55	1.171	93.8 15	593.1	303.2	49.9 45	Wagner
Ca(1103)2	40.13	1.386	242.6 "	217.1 "	156.5	128.1 "	44
CdCl ₂	11.09	1.109	77.5 "	60.5 "	49.1 "	40.7 "	14
$Cd(NO_3)_2$	7.81	1.074	61.9 " 85.1 "	50.1 "	57.3 "	34.0 ··· 47.5 ··	44
CoCl ₂	7.97	1.081	83.0 "	65.1 "	53.6 "	44.9 ''	4.6
"	22.27	1.264	161.6 "	126.6 "	101.6 "	85.6 "	11
$Co(NO_3)_2$	8.28	1.073	74.7	57.9 " 88.0 "	40.7	39.8 " 59.1 "	44
CuCl ₂	24.53	1.229	87.2 "	67.8 "	71.5	45.6 "	"
44	21.35	1.215	121.5 "	95.8 "	77.0 "	63.2 "	11
1	33.03	1.331	170.4	137.2	107.6	87.1	44
$Cu(NO_3)_2$	18.99	1.177	97·3 382.9 "	283.8 "	215.3 "	51.3 "	4.6
CuSO ₄	6.79	1.055	79.6 "	61.8 "	49.8 "	41.4 "	"
"	12.57	1.115	98.2	74.0	59.7	52.0	**
HCl	17.49	1.163	71.0 "	96.8 "	75.9 "	61.8 " 40.1 "	
"	16.12	1.084	80.0 "	66.5 "	56.4 ''	48.1 "	4.4
11 (1)	23.04	1.114	91.8 "	79.9 ''	65.9 "	56.4 "	44
HgCl ₂ HNO ₃	3.55 8.37	1.033	76.75 10 66.4 15	59.2 20 54.8 25	46.6 30 45.4 35	38.3 40 37.6 45	**
**	12.20	1.116	69.5 "	57.3 ''	1 47.9	40.7	
11.00	28.31	1.178	80.3 "	65.5 "	54.9 "	46.2 "	66
H ₂ SO ₄	7.87	1.065	77.8	61.0	50.0 "	49.8 "	4.6
14	15.50	1.130	95.1 "	75.0 "	77.5 "	64.3 "	6.6
KC1	10.23		70.0 10	46.1 30	33.1 50		Sprung
KBr	22.21		70.0 "	48.6 "	36.4 "		4.4
11	23.16		66.6 ''	44.7 "	33.2 "		44
KI	8.42		69.5 "	44.0 "	31.3 "		
44	33.03		61.8 "	42.9 "	32.4 "		11
KClO₃	5.69			45.0 "	31.4 "		11
KNO ₃	6.32		70.8 "	44.6 "	31.8 "		11
K ₂ SO ₄	17.60		00.0	46.0 "	33.4		16
112304	5.17		77.4 81.0 "	52.0 "	34.3 " 36.9 "		44
K ₂ CrO ₄	11.93		75.8 "	62.5 "	41.0 40		44
K ₂ Cr ₂ O ₇	32.78	I 040	109.5	00.9	62.6 "	27.7.40	Slotte
$M_2Cr_2Cr_3$ $Mg(NO_3)_2$	18.62	1.049	73.1	56.4 20 81.3 25	45.5 30 66.5 35	37.7 40 56.2 45	Wagner
- 44	39.77	1.430	317.0	250.0	191.4	158.1	44
MgSO₄	4.98		96.2 10		40.9 50		Sprung
MnCl ₂	8.01	1.096	302.2 92.8 15	71.1 25	57.5 35	48.1 45	Wagner
11	40.13	1.453	537.3	393.4	300.4	246.5	H

SPECIFIC VISCOSITY OF SOLUTIONS

(Density and temperature variation) (Abridged from earlier editions)

		(ii earne						
Salt	Per- centage by weight of salt in solution	Density	μ	t	μ	t	μ	t	μ	t	Authority
Mn(NO ₃) ₂ MnSO ₄ NaCl " NaBr " NaI " NaClO ₃ NaNO ₃ " Na2SO ₄ " Na ₂ SO ₄ " Na ₂ CrO ₄ " NH ₄ Cl " NH ₄ NO ₃ " (NH ₄) ₂ SO ₄ (NH ₄) ₂ CrO ₄ (NH ₄) ₄ CrO ₄	risalt in solution	I.148 I.506 I.147 I.306 I.112 I.164 I.120 I.173 I.078 I.126 I.108 I.126 I.108 I.136 I.388 I.179 I.362 I.088 I.307 I.146 I.229 I.343 I.115 I.229 I.437	96.0 396.8 129.4 661.8 82.4 94.8 128.3 75.6 82.6 95.9 73.1 73.8 157.2 96.2 187.9 302.2 187.9 302.2 187.9 302.2 103.3 127.5 67.3 67.4 65.2 62.4 69.6 67.0 81.1 107.9 148.4 88.2 101.1 172.6 77.6 90.4 229.5 90.7 222.6 74.0 91.6 93.6 111.5 99.7 116.7 93.6	15	76.4 301.1 98.6 474.3 52.0 60.1 79.4 48.7 53.5 61.7 46.0 47.4 96.4 50.0 75.7 47.9 55.9 97.1 45.0 46.2 47.7 43.2 44.6 44.3 47.7 43.2 44.6 44.3 70.1 169.7 169.7 171.8 70.1 169.7 171.8 70.1 169.7 171.8 70.1 169.7 171.8 70.1 169.7 171.8 70.1 172.5 17	25	64.5 221.0 78.3 347.9 31.8 36.9 47.4 38.2 43.8 32.4 43.8 35.3 53.0 35.3 53.0 66.9 35.3 31.9 31.9 34.0 31.5 34.3 31.6 34.3 31.6 34.9 37.0 54.1 57.5 57.5 57.5 57.5 57.6 66.9 68.9 69.6 69.6 69.6 69.6 69.6 69	35	55.6 188.8 63.4 266.8 52.3 63.0 52.3 63.0 48.4 456.4 39.1 40.9 48.9 111.9 48.9 152.4 40.3 50.6 39.1 62.3 48.2 57.2 63.5 72.6 72.6 73.6 7	45	Wagner "" "" "" "" "" "" "" "" "" "" "" "" ""
66	16.64 23.09	1.195	156.0) "	177.4	5 "	94.2		73.5	5	61

SPECIFIC VISCOSITY OF SOLUTIONS (VARIOUS CONCENTRATIONS, 25°C)

	Normal s	solution.	½ nor	mal.	1 nor	mal.	l nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$ \begin{array}{c} \text{Acids}: \operatorname{Cl}_2\operatorname{O}_3 & . & . \\ \text{HCl} & . & . \\ \text{HClO}_3 & . & . \\ \text{HNO}_3 & . & . \\ \text{H}_2\operatorname{SO}_4 & . & . \\ \end{array} $	1.0562 1.0177 1.0485 1.0332 1.0303	1.012 1.067 1.052 1.027 1.090	1.0283 1.0092 1.0244 1.0168	1.003 1.034 1.025 1.011 1.043		1.000 1.017 1.014 1.005 1.022	1.0074 1.0025 1.0064 1.0044 1.0035	0.999 1.009 1.006 1.003 1.008	Reyher " " Wagner
Aluminium sulphate Barium chloride " nitrate Calcium chloride . " nitrate	1.0550 1.0884 - 1.0446 1.0596	1.406 1.123 - 1.156 1.117	1.0278 1.0441 1.0518 1.0218 1.0300	1.178 1.057 1.044 1.076 1.053	1.0138 1.0226 1.0259 1.0105 1.0151	1.082 1.026 1.021 1.036 1.022	1.0068 1.0114 1.0130 1.0050 1.0076	1.038 1.013 1.008 1.017 1.008	66 66 66
Cadmium chloride . " nitrate . " sulphate . Cobalt chloride " nitrate " sulphate	1.0779 1.0954 1.0973 1.0571 1.0728 1.0750	1.134 1.165 1.348 1.204 1.166 1.354	1.0394 1.0479 1.0487 1.0286 1.0369 1.0383	1.063 1.074 1.157 1.097 1.075 1.160	1.0197 1.0249 1.0244 1.0144 1.0184 1.0193	1.031 1.038 1.078 1.048 1.032	1.0098 1.0119 1.0120 1.0058 1.0094 1.0110	1.020 1.018 1.033 1.023 1.018 1.040	66 66 66 66
Copper chloride	1.0624 1.0755 1.0790 1.1380 1.0243 1.0453	1.205 1.179 1.358 1.101 1.142 1.290	1.0313 1.0372 1.0402 0.0699 1.0129 1.0234	1.098 1.080 1.160 1.042 1.066	1.0158 1.0185 1.0205 1.0351 1.0062	1.047 1.040 1.080 1.017 1.031 1.065	1.0077 1.0092 1.0103 1.0175 1.0030	1.027 1.018 1.038 1.007 1.012 1.032	16 14 14 14
Magnesium chloride " nitrate . " sulphate Manganese chloride " nitrate . " sulphate	1.1375 1.0512 1.0584 1.0513 1.0690 1.0728	1.201 1.171 1.367 1.209 1.183 1.364	1.0188 1.0259 1.0297 1.0259 1.0349 1.0365	1.094 1.082 1.164 1.098 1.087	1.0091 1.0130 1.0152 1.0125 1.0174 1.0179	1.044 1.040 1.078 1.048 1.043	1.0043 1.0066 1.0063 1.0063 1.0087	1.021 1.020 1.032 1.023 1.023 1.037	64 64 64 64 64
Nickel chloride	1.0591 1.0755 1.0773 1.0466 1.0935 1.0605	1.205 1.180 1.361 0.987 1.113	1.0308 1.0381 1.0391 1.0235 1.0475 1.0305	1.097 1.084 1.161 0.987 1.053 0.982	1.0144 1.0192 1.0198 1.0117 1.0241	1.044 1.042 1.075 0.990 1.022 0.987	1.0067 1.0096 1.0017 1.0059 1.0121	1.021 1.019 1.032 0.993 1.012 0.992	66 66 66 66 66 66
" sulphate Sodium chloride	1.0664 1.0401 1.0786 1.0710 1.0554 1.1386	1.105 1.097 1.064 1.090 1.065 1.058	1.0338 1.0208 1.0396 1.0359 1.0281 1.0692	1.049 1.047 1.030 1.042 1.026 1.020	1.0170 1.0107 1.0190 1.0180 1.0141 1.0348	1.021 1.024 1.015 1.022 1.012 1.006	1.0054 1.0056 1.0100 1.0092 1.0071 1.0173	1.008 1.013 1.008 1.012 1.007 1.000	Reyher " " Wagner
Strontium chloride . " nitrate . Zinc chloride " nitrate " sulphate	1.0676 1.0822 1.0590 1.0758 1.0792	1.141 1.115 1.189 1.164 1.367	1.0336 1.0419 1.0302 1.0404 1.0402	1.067 1.049 1.096 1.086 1.173	1.0171 1.0208 1.0152 1.0191 1.0198	1.034 1.024 1.053 1.039 1.082	1.0084 1.0104 1.0077 1.0096 1.0094	1.014 1.011 1.024 1.019 1.036	66

^{*} In the case of solutions of salts it has been found (vide Arrhennius, Zeits, für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1^n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits, für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits, für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C.

SMITHSONIAN TABLES.

VISCOSITY OF GASES AND VAPORS

The values of μ given in the table are 10^6 times the coefficients of viscosity in c.g.s. units.

Substance.	Temp.	μ	Refer- ence.	Substance.	Temp.		Refer- ence.
Acetone	18.0	78.	I	Ether	16.1	73.2	I
Air *	-21.4	163.9	2		36.5	79.3	I
**	0.0	173.3	2	Ethyl chloride	0.	93.5	4
"	15.0	180.7	2	Ethyl iodide	72.3	216.0	3
"	99.1	220.3	2	Ethylene	0.0	96.1	2
	182.4	255.9	2	Helium	0.0	189.1	5
	302.0	299.3	2	"	15.3	196.9	5
Alcohol, Methyl	66.8	135.	3	"	66.6	234.8	5
Alcohol, Ethyl	78.4	142.	3		184.6	269.9	5
Alcohol, Propyl,				Hydrogen	-20.6	81.9	2
norm	97.4	142.	3		0.0	86.7	10
Alcohol, Isopropyl	82.8	162.	3	"	15.	88.9	2
Alcohol, Butyl, norm.	116.9	143.	3		99.2	105.9	2
Alcohol, Isobutyl	108.4	144.	3		182.4	121.5	2
Alcohol, Tert. butyl.	82.9	160.	3		302.0	139.2	2
Ammonia	0.0	96.	4	Krypton	15.0	246.	11
44	20.0	108.	4	Mercury	270.0	489.	8
Argon	0.0	210.4	5	"	300.0	532.†	8
K	14.7	220.8	5		330.0	582.†	8
44	17.9	224.I	5	"	360.0	627.	8
"	99.7	273.3	5	"	390.0	671.	8
46	183.7	322.I	5	Methane	20.0	120.1	4
Benzene	o.	70.	10	Methyl chloride	0.0	98.8	2
	10.0	79.	6	" " "	15.0	105.2	2
44	100.0	118.	6	" "	302.0	213.9	2
Carbon bisulphide	16.9	92.4	I	Methyl iodide	44.0	232.	3
Carbon dioxide	-20.7	120.4	2	Nitrogen	-21.5	156.3	7
" "	0.	142.	10		0.	166.	10
"	15.0	145.7	2		10.9	170.7	7
	99.1	186.1	2	"	53.5	189.4	7
" "	182.4	222.I	2	Nitric oxide	0.	179.	10
" "	302.0	268.2	2	Nitrous oxide	0.	138.	10
Carbon monoxide	0.0	163.0	10	Oxygen	0.	189.	10
" "	20.0	184.0	4		15.4	195.7	7
Chlorine	0.0	128.7	4		53.5	215.9	7
46	20.0	147.0	4	Water Vapor	0.0	90.4	I
Chloroform	0.0	95.9	I		16.7	96.7	I
"	17.4	102.9	1		100.0	132.0	9
	61.2	189.0	3	Xenon	15.	222.	II
Ether	0.0	68.9	I				
					1		
				·			

- 1 Puluj, Wien. Ber. 69 (2), 1874.
- 2 Breitenbach, Ann. Phys. 5, 1901.
- 3 Steudel, Wied. Ann. 16, 1882.
- 4 Graham, Philos. Trans. Lond. 1846, III.
- 5 Schultze, Ann. Phys. (4), 5, 6, 1901.
- 6 Schumann, Wied. Ann. 23, 1884.
- 7 Obermayer, Wien. Ber. 71 (2a), 1875.
- 8 Koch, Wied. Ann. 14, 1881, 19, 1883.
- 9 Meyer-Schumann, Wied. Ann. 13, 1881.
- 10 Jeans, assumed mean, 1916.
- 11 Rankine, 1910.
- 12 Vogel (Éucken, Phys. Z. 14, 1913). For summaries see: Fisher, Phys. Rev. 24, 1904; Chapman, Phil. Tr. A. 211,

1904; Chapman, Phil. Tr. A. 211, 1911; Gilchrist, Phys. Rev. 1, 1913.

Schmidt, Ann. d. Phys. 30, 1909.

†The values here given were calculated from Koch's table (Wied. Ann. 19, p. 869, 1883)

by the formula $\mu = 489 [1 + 746(t - 270)]$.

^{*} Gilchrist's value of the viscosity of air may be taken as the most accurate at present available. His value at 20.2° C is 1.812×10^{-4} . The temperature variation given by Holman (Phil. Mag. 1886) gives $\mu = 1715.50 \times 10^{-7} (1 + .00275t - .0000034t^2)$. See Phys. Rev. 1, 1913. Millikan (Ann. Phys. 41, 759, 1913) gives for the most accurate value $\mu_t = 0.00018240 - 0.00000493(23 - t)$ when (23 > t > 12) whence $\mu_{20} = 0.0001809 \pm 0.1\%$. For μ_0 he gives 0.0001711.

VISCOSITY OF GASES

Variation of Viscosity with Pressure and Temperature

According to the kinetic theory of gases the coefficient of viscosity $\mu = \frac{1}{3}(\rho \bar{c}l)$, ρ being the density, \bar{c} the average velocity of the molecules, l the average path. Since l varies inversely as the number of molecules per unit volume, ρl is a constant and μ should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below $\frac{1}{60}$ atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., $\frac{1}{60}$ at $\frac{1}{30}$ and above $\frac{1}{50}$ atm. See Jeans, "Dynamical Theory of Gases."

If B is the amount of momentum transferred from a plane moving with velocity U and parallel to a stationary plane distant d. and s is a quantity (coefficient of slip) to allow for the slipping of the gas molecules over the plane, then $\mu = (B/U)$ (d+2s); s is of the same magnitude as l, probably between .7 (Timiriazeff) and .9 (Knudsen) of it; at low pressures d becomes negligible compared with 2s and the viscosity should vary inversely as the pressure.

 \overline{c} depends only on the temperature and the molecular weight. \overline{c} varies as the \sqrt{T} , but μ has been found to increase much more rapidly. Meyer's formula, $\mu t = \mu_0(1 + at)$, where a is a constant and μ_0 the viscosity at 0° C, is a convenient approximate relation. Sutherland's formula (Phil. Mag. 31, 1893),

$$\mu_t = \mu_0 \, \frac{273 + C}{T + C} \left(\frac{T}{273} \right)^{\frac{3}{2}},$$

is the most accurate formula in use, taking in account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form $T=KT^{\frac{3}{2}}/\mu-C$ which is linear in terms of T and $T^{\frac{3}{2}}/\mu$, with a slope equal to K and the ordinate intercept equal to K. See Fisher, Phys. Rev. 24, 1907, from which most of the following table is taken. Onnes (see Jeans) shows that this formula does not represent Helium at low temperatures with anything like the accuracy of the simpler formula K = K

The following table contains the constants for the above three formulae, T being always the absolute temperature, Centigrade scale.

Gas.	<i>C</i>	<i>K</i> × 10 ⁷	<i>a</i>	n*	Gas.	С	<i>K</i> × 10 ⁷	<i>a</i>	n ÷
Air Argon Carbon monoxide Carbon dioxide Chloroform Ethylene Helium	102 240 454 226 80	150 206 135 158 159 106 148	.00269	·754 .819 ·74 .98 — .683 .647	Hydrogen Krypton Neon Nitrogen Nitrous oxide, N2O Oxygen Xenon	188 252 110 313 131	66 — 143 172 176 —	.00269	.69 .74 .93 .79

^{*} The authorities for n are: Air, Rayleigh; Ar, Mean, Rayleigh, Schultze; CO, CO₂, N₂, N₂O, von Obermayer; Helium, Mean, Rayleigh, Schultze; 2d value, low temperature work of Onnes; H₂, O₂, Mean, Rayleigh, von Obermayer.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dtat the place x, through q sq. cm of a diffusion cylinder under the influence of a drop of concentration dc/dx, then

 $dS = -kq \frac{dc}{dx} dt.$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

	_								
Substance.	с	t° .	k	Refer- ence	Substance.	с	t°	k	Refer- ence.
n .					Calcium chloride .	0.864	8.5	0.70	
Bromine	0.1	12.	0.8	1	T		2		4
Chlorine	·.*	12.	1.22	66	" "	1.22	9.	0.72	66
Copper sulphate .	44	17.	0.39	2		0.060	9.	0.64	
Glycerine	44	10.14	0.357	3	"	0.047	9.	0.68	66
Hydrochloric acid .	46	19.2	2.21	2	Copper sulphate .	1.95	17.	0.23	2
Iodine	46	12.	(0.5)	ı	* cc * cc * .	0.95	17.	0.26	66
Nitric acid	44	19.5	2.07	2		0.30	17.	0.33	66
Potassium chloride .	66	17.5	1.38	2		0.005	17.	0.47	6.6
" hydroxide	64	13.5	1.72	2	Glycerine	2/8	10.14	0.354	3
Silver nitrate	66	12.	0.985	2	"	6/8	10.14	0.345	"
Sodium chloride .	66	15.0	0.94	2	"	10/8	10.14	0.329	66
Urea	66				"	14/8	10.14	0.300	66
Acetic acid		14.8	0.97	3	Hydrochloric acid .	4.52	11.5	2.93	4
	0.2	13.5	0.77	4	Trydrochione acid .	3.16	11.5	2.67	66
Barium chloride .	46	8.	0.66	4	" "			2.12	66
Glycerine	"	10.1	3.55	3		0.945	II.	2.02	66
Sodium actetate .		12.	0.67	5		0.387	II.	1.84	
Cinoride .		15.0	0.94	2		0.250	II.		
Urea	"	14.8	0.969	3 6	Magnesium sulphate	2.18	5.5	0.28	4
Acetic acid	1.0	12.	0.74			0.541	5.5	0.32	66
Ammonia	66	15.23	1.54	1 7	" .	3.23	10.	0.27	
Formic acid	"	12.	0.97	7	" "	0.402	IO.	0.34	46
Glycerine	"	10.14	0.339	3 6	Potassium hydroxide	0.75	12.	1.72	6
Hydrochloric acid .	- "	12.	2.09	6	" .	0.49	12.	1.70	66
Magnesium sulphate	"	7.	0.30	4		0.375	12.	1.70	64
Potassium bromide.	66	10.	1.13	8	" nitrate .	3.9	17.6	0.89	2
" hydroxide.	"	12.	1.72	6	" .	1.4	17.6	1.10	66
Sodium chloride .	4.6	15.0	0.94	2		0.3	17.6	1.26	"
16 16	44	14.3	0.961			0.02	17.6	1.28	66
" hydroxide .	- 66	12.	1.11	3 2	" sulphate	0.95	19.6	0.79	66
" iodide .	- 66	10.	0.80	8		0.28	19.6	0.86	- 16
Sugar	64	12.	0.254	1		0.05	19.6	0.97	66
Sulphuric acid .	46	12.	1.12	6		0.02	19.6	1.01	66
Zinc sulphate	66	14.8	0.236		Silver nitrate	3.9	12.	0.535	66
Acetic acid	2.0	12.	0.69	9 6	" "	0.9	12.	0.88	44
Calcium chloride	46	10.	0.68	8		0.02	12.	1.035	"
Cadmium sulphate.	66	10.04	0.246		Sodium chloride .	2/8	14.33	1.013	3
Hydrochloric acid .	"	19.04	2.21	9	Sodium emoride :	4/8	14.33	0.996	3
	"			8		6/8	14.33	0.980	2
Sodium iodide .		10.	0.90	6	" "	10/8	14.33	0.948	
Sulphuric acid .	"	12.	1.16		" "	14/8		0.940	66
Zinc acetate	"	18.05	0.210		• •		14.33	2.36	2
		0.04	0.120		Sulphuric acid .	9.85	18.	1.90	
Acetic acid	3.0	12.	0 68	-	" "		18.	1.60	1
Potassium carbonate	"	10.	0.60	8	" "	2.85	18.		64
" hydroxide		12.	1.89	6		0.85	18.	1.34	
Acetic acid	4.0	12.	0.66	6		0.35		1.32	- 66
Potassium chloride.		10.	1.27	8		0.005	18.	1.30	
	1	1			lk .				

Euler, Wied. Ann. 63, 1897.
 Thovert, C. R. 133, 1901; 134, 1902.
 Heimbrodt, Diss. Leipzig, 1903.
 Scheffer, Chem. Ber. 15, 1882; 16, 1883; Zeitschr. Phys. Chem. 2, 1888.

⁵ Kawalki, Wied. Ann. 52, 1894; 59, 1896. 6 Arrhenius. Zeitschr. Phys. Chem. 10, 1892. 7 Abegg, Zeitschr. Phys. Chem. 11, 1893. 8 Schuhmeister, Wien. Ber. 79 (2), 1879. 9 Seitz, Wied. Ann. 64, 1898.

TABLE 184

DIFFUSION OF VAPORS

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.*

Vapor.		Temp. C.	kt for vapor diffusing into hydrogen.	kt for vapor diffusing into air.	k _t for vapor diffusing into carbon dioxide.
Acids: Formic		0.0	0.5131	0.1315	0.0879
46		65.4	0.7873	0.2035	0.1343
66		84.9	0.8830	0.2244	0.1519
Acetic		0.0	0.4040	0.1061	0.0713
**		65.5	0.6211	0.1578	0.1048
44		98.5	0.7481	0.1965	0.1321
Isovaleric		0.0	0.2118	0.0555	0.0375
* * *		98.0	0.3934	. 0.1031	0.0696
Alcohols: Methyl		0.0	0.5001	0.1325	0.0880
"		25.6	0.6015	0.1620	0.1046
		49.6	0.6738	0.1809	0.1234
Ethyl		0.0	0.3806	0.0994	0.0693
"		40.4	0.5030	0.1372	0.0898
		66.9	0.5430	0.1475	0.1026
Propyl		0.0	0.3153	0.0803	0.0577
46		66.9	0.4832	0.1237	0.0901
		83.5	0.5434	0.1379	0.0976
Butyl		0.0	0.2716	0.0681	0.0476
		99.0	0.5045	0.1265	0.0884
Amyl		0.0	0.2351	0.0589	0.0422
"		99.1	0.4362	0.1094	0.0784
Hexyl		0.0	0.1998	0.0499	0.0351
	•	99.0	0.3712	0.0927	0.0651
Benzene		0.0	0.2940	0.0751	0.0527
46		19.9	0.3409	0.0877	0.0609
		45.0	0.3993	0.1011	0.0715
Carbon disulphide		0.0	0.3690	0.0883	0.0629
"		19.9	0.4255	0.1015	0.0726
		32.8	0.4626	0.1120	0.0789
Esters: Methyl acetate		0.0	0.327 7	0.0840	0.0557
** **		20.3	0.3928	0.1013	0.0679
Ethyl "		0.0	0.2373	0.0630	0.0450
"		46.1	0.3729	0.0970	0.0666
Methyl butyrate.		0.0	0.2422	0.0640	0.0438
" "		92.1	0.4308	0.1139	0.0809
Ethyl "		0.0	0.2238	0.0573	0.0406
" "		96.5	0.4112	0.1064	0.07 56
" valerate		0.0	0.2050	0.0505	0.0366
٠٠ ٠٠	•	97.6	0.3784	0.0932	0.0676
Ether		0.0	0.2960	0.0775	0.0552
44		19.9	0.3410	0.0893	0.0636
Water		0,0	0.6870	0.1980	0.1310
"		49.5	1.0000	0.2827	0.1811
66		92.4	1.1794	0.3451	0.2384
		7=-4	/) 1		3-4

^{*} Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at 0° C and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{76}{p}$, where T is temperature absolute and $T_0 = T_0$ the pressure of the gas. The exponent $T_0 = T_0$ is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $T_0 = T_0$, $T_0 = T_0$

DIFFUSION OF GASES, VAPORS AND METALS

TABLE 185 .- Coefficients of Diffusion for Various Gases and Vapors *

Gas or Vapor diffusing.	Gas or Vapor diffused into.	Temp.	Coefficient of Diffusion.	Authority.
Air	Hydrogen	0	0.661	Schulze.
46	Oxygen	0	0.1775	Obermayer.
Carbon dioxide	Air		0.1423	Loschmidt
" "	46		0.1360	Waitz.
	Carbon monoxide	0	0.1405	Loschmidt.
"	"	0	0.1314	Obermayer.
	Hydrogen	0	0.5437	o Berinayer.
	Methane	0	0.1465	66
" "	Nitrous oxide	0	0.0983	Loschmidt.
"	Oxygen	0	0.1802	11030111111111
Carbon disulphide	Air	0	0.0995	Stefan
Carbon monoxide	Carbon dioxide	0	0.1314	Obermayer.
" " "	Ethylene	0	0.101	"
	Hydrogen	0	0.6422	Loschmidt.
66 46	Oxygen	0	0.1802	1.05Cmmat.
	"	0	0.1872	Obermayer.
Ether	Air	0	0.0827	Stefan.
Ether	Hydrogen	0	0.3054	iii.
Hydrogen	Air	0	0.6340	Obermayer.
Trydrogen	Carbon dioxide	0	0.5384	obermayer.
	" monoxide	0	0.5384	61
	Ethane	0	0.4593	46
	Ethylene	0	0.4863	16
	Methane	0	0.4803	46
	Nitrous oxide	0	0.5347	66
"	Oxygen	0	0.5347	66
	"	0	0.0787	66
	Carbon dioxide	0	0.1767	66
Oxygen	Hydrogen	0	0.135/	Loschmidt.
"	Nitrogen	0	0.7217	Obermayer.
Sulphur dioxide		0	0.1710	Loschmidt.
Water	Hydrogen	8	0.4828	Guglilemo.
Water	Air	18	0.2475	Guginemo.
46	Hudrogen	18	0.24/5	66
	Hydrogen	10	0.0/10	

^{*} Compiled for the most part from a similar table in Landolt & Börnstein's Phys. Chem. Tab.

TABLE 186 .- Diffusion of Metals into Metals

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2}; \text{ where } x \text{ is the distance in direction of diffusion; } v, \text{ the degree of concentration of the diffusing metal; } t, \text{ the time; } k, \text{ the diffusion constant} = \text{ the quantity of metal in grams diffusing through a sq. cm} in a day when unit difference of concentration (gr. per cn. cm) is maintained between two sides of a layer one cm thick.}$

Diffusing Metal.	Dissolving Metal.	Tempera- ture ° C.	k	Diffusing Metal.	Dissolving Metal.	Tempera- ture O C.	k.
Gold	Lead . "	555 492 251 200 165 100 555 555 555	3.19 3.00 0.03 0.008 0.004 0.00002 4.52 4.65 4.14	Platinum . Lead Rhodium . Tin Lead Zinc Sodium . Potassium Gold	Lead . Tin . Lead . Mercury " " " " " "	492 555 550 15 15 15 15	1.69 3.18 3.04 1.22* 1.0* 1.0* 0.45* 0.40* 0.72*

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.

^{*} These values are from Guthrie.

SOLUBILITY OF INORGANIC SALTS IN WATER (TEMPERATURE VARIATION)

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

	Temperature Centigrade.										
Salt.	00	100	200	300	40 ⁰	50°	60°	70°	8 o °	90°	1000
Salt. Ag NO ₃ Al ₂ (SO ₄) ₈ Al ₂ (X ₂ (SO ₄) ₄ Al ₂ (N H ₄) ₂ (SO ₄) ₄ B ₂ O ₃ BaCl ₂ Ba(NO ₃) ₂ CaCl ₂ CoCl ₂ CSCl CSNO ₃ CS ₂ SO ₄ Cu(NO ₃) ₂ CuSO ₄ FeCl ₂ Fe ₂ Cl ₆ FeSO ₄ HgCl ₂ KBr K ₂ CO ₃ KCl KClO ₃ K ₂ CrO ₄ K ₂ CrO ₄ KNO ₃ KI KNO ₃ KI KNO ₃ KOH	1150 313 30 26 11 316 50 595 1614 93 1671 818 149 -744 156 43 540 1050 285 33 589 50 225 1279 133	1600 335 - 45 15 333 70 650 450 1747 149 1731 - 819 208 66 - 312 50 609 85 277 1361 209	2150 362 -66 22 357 92 745 500 1865 230 1787 1250 -685 918 264 74 650 -343 71 629 131 332 1442 316	30° 2700 404 84 91 382 116 1010 565 1973 339 1841 - 255 - 330 84 - 1140 373 101 650 1523 458 1260	3350 457 124 40 408 142 1153 650 2080 472 1899 1598 295 - 402 96 760 1170 401 1453 1670 292 453 1600 639	4000 521 -159 -436 171 -935 2185 644 1949 -336 820 3151 486 113 -1210 429 197 690 -522 1680 855	4700 591 248 241 62 464 203 1368 940 2290 838 1999 1791 390 - 550 1390 80 1270 455 260 1760 1760 1099	5500 662 - 270 - 494 236 1417 950 2395 1070 2050 - 457 - 560 173 - 1330 483 325 730 - 1840 1380	6500 731 - 352 95 524 270 1470 960 2500 1340 2103 2078 535 1040 5258 506 243 955 1400 510 396 751 730	90° 7600 808 556 306 1527 - 2601 1630 2149 - 627 1050 - 430 371 - 1470 538 475 771 - 2010 2040 1680	9100 891 1540 - 157 588 342 1590 1030 2705 1970 2203 - 735 1060 5357 - 540 1050 1560 566 560 791 1020 2090 2460 1780
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	970 7 74 127 528 260 408	1030 9 92 127 535 309 422 333	1120 11 111 128 545 356 439 372	1260 14 130 129 - 409 453 414	1360 18 148 130 575 456 -	1400 22 165 133 - 504 504	1460 26 182 138 610 - 550 552	1510 32 198 144 - - 596 602	1590 38 214 153 660 - 642 656	1680 45 228 - - - 689 713	1780 52 241 175 730 - 738 773
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119 1183 706 795 - 71	730 845 16	754 903 - 214	270 2418 780 - 39 409	2970 810 1058	3540? 844 1160 105	4300? 880 1170 200	5130? 916 - 244	5800 953 1185 314	7400 992 - 408	8710 1033 1205 523
" (7aq) NaCl	204 356 820 317 1630 69	263 357 890 502 1700 82	335 358 990 900 1800 96	435 360 - - 1970 111 241	(1aq) 363 1235 960 2200 127 639	475 367 - 1050 2480 145	464 371 1470 1150 2830 164	458 375 - 3230 - 949	452 380 1750 1240 3860	45 ² 385 - - - -	452 391 2040 1260 4330 - 988
NaI	730	1690 805	1790 880	1900	2050	2280 1140	2570 1246	1360	2950 1480	1610	3020 1755

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 187 (continued) .- Solubility of Inorganic Salts in Water (Temperature Variation)

The numbers give the number of grams of the *anhydrous* salt soluble in 1000 grams of water at the given temperatures.

Salt.				7	l'empe ra	iture Ce	ntigrade				
Sait,	o°	100	200	30°	40°	50°	60 ⁰	70 ⁰	800	900	1000
NaOH	420 32 141 50 196 525 - 272 5 365 770 195 364 442 - 395 7 - 2 395 770 196 396 442 - 397 442 - 442 442 442 444 444 444	515 39 -90 305 610 600 -6 444 844 330 426 483 - 549 10 - 2 62 37	1090 62 287 194 447 700 640 - 8 523 911 533 482 539 10 708 14 - 3 96 49	1190 99 - 400 - 847 680 425 12 607 976 813 535 600 12 876 20 - 5 143 62	1290 135 495 482 1026 720 - 15 694 1035 1167 585 667 14 913 30 40 6	1450 174 - 468 1697 760 502 20 787 1093 1556 631 1744 17 926 51 25 8 304 92	1740 220 - 455 2067 810 548 24 880 1155 2000 674 831 21 940 - 16 10 462 109	- 255 - 445 - 594 - 28 977 1214 2510 714 2510 25 956 - 11 13 695 127 72	3130 300 - 437 2488 - 632 33 1076 1272 3090 750 924 30 972 - 16 1116 69	- 429 2542 - 688 - 1174 1331 3750 787 962 34 990 - 200 2000 165 58	- - 330 427 2660 - 776 48 1270 1389 4520 818 1019 40 1011 - - 4140 - 47
$Z_{\rm n}(NO_3)_2$ $Z_{\rm n}SO_4$	948	_	_	-	2069 700	768	-	890	860	920	785

TABLE 188 .- Solubility of a Few Organic Salts in Water (Temperature Variation)

Salt.	00	100	20 [©]	30°	400	50°	60°	70 ⁰	800	90°	100 ⁰
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 28 1150 92 2900	53 45 1260 140 -	102 69 1390 206 3350 6	159 106 1560 291	228 162 1760 433 3810	321 244 1950 595	445 358 2180 783 4550 24	635 511 2440 999 - 32	978 708 2730 1250 5750 45	1200 - 3070 1530 - 57	- 1209 3430 1850 7900 69

TABLE 189 .- Solubility of Gases in Water (Temperature Variation)

The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

Gas.	00	100	200	30 ⁰	40 ⁰	500	60 ⁰	70 ⁰	80°
$\begin{array}{c c} O_2 \\ H_2 \\ N_2 \\ Br_2 \\ Cl_2 \\ CO_2 \\ H_2S \\ NH_3 \\ SO_2 \end{array}$.0705 .00192 .0293 431. - 3.35 7.10 987. 228.	.0551 .00174 .0230 248. 9.97 2.32 5.30 689.	.0443 .00160 .0189 148. 7.29 1.69 3.98 535-	.0368 .00147 .0161 94. 5.72 1.26 - 422. 78.	.0311 .00138 .0139 62. 4.59 0.97	.0263 .00129 .0121 40. 3.93 0.76	.0221 .00118 .0105 28. 3.30 0.58	.0181 .00102 .0089 18. 2.79	.0135 .00079 .0069 11. 2.23 - - -

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

Table 190 .- Change of Solubility Produced by Uniform Pressure*

	CdSO ₄ 8/3	H ₂ O at 25°	ZnSO ₄₋₇	H ₂ O at 25 ⁰	Mannite	at 24.05°	NaCl a	at 24.05°
Pressure in atmos- pheres.	Conc. of satd. soln. gs. CdSO ₄ per 100 gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. ZnSO ₄ per 100 gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. mounite per roo gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. NaCl. per 100 gs. H ₂ O.	Percentage change.
1	76.80		57-95		20,66	_	35.90	_
500	78.01	+ 1.57	57.87	0.14	21.14	+ 2.32	36.55	+ 1.81
1000	78.84	+ 2.68	57.65	-0.52	21.40	+ 3.57	37.02	+ 3.12
1500	_	_	_		21.64	+ 4.72	37.36	+ 4.07

^{*} E. Cohen and L. R. Sinnige, Z. physik. Chem 67, p. 432, 1909; 69, p. 102, 1909. E. Cohen, K. Iuouye and C. Euwen, ibid. 75, p. 257, 1911. These authors give a critical résumé of earlier work along this line.

Table 191.—Commonly Used Organic Solvents

Arranged in the order of their Boiling Points (Table by Dr. J. W. H. Randall, reprinted with permission of Chemical Catalog Co.)

Name	Boiling point °C	Name	Boiling point °C
Ethyl ether Carbon disulphide Acetone Methyl acetate Chloroform Methyl alcohol Carbon tetrachloride Ethyl acetate. Ethyl alcohol Benzol Isopropyl alcohol Ethylene dichloride Trichlorethylene Ethyl propionate Toluene Butyl alcohol (n) Ethyl butyrate Methyl cellosolve Diethyl carbonate Butyl acetate Tetrachlorethane Cellosolve Ethyl benzene Amyl alcohol (n)	34.54 46.25 56.08 57.1 61.2 64.5 76.74 77.15 78.32 79.6 82.26 83.5 899.1 110.7 117.7 121.3 124.5 125.8 126.5 130 134.8 136.1 137.9	Xylene (o) Amyl acetate Cellosolve acetate Ethyl lactate Cyclohexanone Furfural Butyl cellosolve Ethyl acetoacetate Diethyl oxalate Ethylene glycol Carbitol Benzyl alcohol Ethyl benzoate Butyl stearate Butyl stearate 22 Butyl carbitol Diethylene glycol Triphenyl phosphate 24 Triacetin Diacetin Dimethyl phthalate Diethyl phthalate Dibutyl phthalate	147.6 153 154 156.7 158–162 170.6 186.1 197.2 198 205.8 213.2 23 (25mm) 222 245 (11mm) 259 261 282 296

For producers of solvents, see the following pages of Chemical Engineering Catalog: 1017, 1018, 1020, 1023, 1024, 1027, 1028-9, 1030, 1031, 1032, 1033, 1036-7, 1038, 1039, 1041, 1043, 1046-7, 1048, 1050, 1052, 1056, 1060, 1063, 1066, 1068-9, 1072-3, 1077, 1078, 1082-3, 1084, 1087, 1091, 1094, 1095.

TABLE 192

ABSORPTION OF CASES BY LIQUIDS *

Temperature			Absor	RPTION COEFF	ICIENTS, a_t ,	FOR GASI	ES IN	WATE	R			
Centigrade.		ide.	Carbon monoxide. CO	Hydrogen. H	Nitrogen. N	Nitr oxio N	de.	02	trous xide. N ₂ O	Oxygen. O		
0 5 10 15 20 25 30 40 50	1.7 1.4 1.1 1.0 0.9 0.7	50 85 02 01 72 - 06	0.0354 .0315 .0282 .0254 .0232 .0214 .0200 .0177 .0161	0.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608	.02134 .064 .01918 .057 .01742 .051 .01599 .047 .01481 .043 .01370 .04c .01195 .035		.0646 c .0571 c		048 8778 7377 6294 5443 	0.04925 .04335 .03852 .03456 .03137 .02874 .02646 .02316 .02080 .01690		
Temperature Centigrade.	Ai	r.	Ammonia. N H ₃	Chlorine. Cl	Ethylene, C ₂ H ₄	Meth CF		sulp	lrogen bhide. I ₂ S	Sulphur dioxide. SO ₂		
0 5 10 15 20 25	0.02. .019 .019	953 795	1174.6 971.5 840.2 756.0 683.1 610.8	3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488	.048	04889 04367 03903		.371 .965 .586 .233 .905	79·79 67.48 56.65 47·28 39·37 32·79		
Temperature		Ав	SORPTION (Coefficients,	a_t , for GA	SES IN A	LCOHO)L, C ₂	H ₅ OH			
Centigrade.	Carbon dioxide. CO ₂	Ethyle C ₂ H	ne. Methan CH ₄	Hydrogen.	Nitrogen.	Nitric oxide. NO	oxi	rous de. ₂ O	Hydrog sulphid H ₂ S			
0 5 10 15 20 25	4.329 3.891 3.514 3.199 2.946 2.756	3·59, 3·32, 3·086 2·88: 2·71, 2·578	3 .5086 6 .495 2 .4828 3 .4710	.0685 .0679 .0673 .0667	0.1263 .1241 .1228 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659 .2595	0.3161 4.1 .2998 3.8 .2861 3.5 .2748 3.2 .2659 3.0		4.190 3.838 3.525 3.215 3.015 2.819		17.86 14.78 11.99 9.5- 7.4 5.62	251.7 190.3 14 144.5 1 114.5

^{*} This table contains the volumes of different gases, supposed measured at o° C and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C:

$$\begin{cases} P = 45 \text{ cms} & 50 \text{ cms} & 55 \text{ cms} & 60 \text{ cms} & 65 \text{ cms} \\ \alpha_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

CAPILLARITY AND SURFACE TENSION OF LIQUIDS

Table 193.—Water and Alcohol in Contact with Moist Air

Values represent means. See I.C.T. and L. and B. for more elaborate tables. Tension (γ) in dynes/cm.

°C	H₂O	C ₂ H ₅ OH	°C	H ₂ O	C ₂ H ₅ OH	°C	H ₂ O
-5	76.4		35	70.3	21.0	75	64.3
5	75.6 74.8	24.0 23.5	40 45	69.5 68.7	20.6	80 85	62.5 61.6
10	74.2 73.4	23.I 22.7	50 55	67.9 67.0	19.8 19.4	90 95	60.7 59.8
20 25	72.7 71.9	22.3	60	66.1 67.0	19.0	100	58.8
30	71.1	21.4	70	64.3	_		

Table 194 .- Miscellaneous Liquids in Contact with Air

Liquid	°C	γ Dynes per cm	
Aceton, (CH ₃) ₂ CO. Acetic acid, CH ₃ CO ₂ H. Amyl alcohol, C ₆ H ₁₂ O. Aniline, C ₆ H ₇ N. Benzene, C ₆ H ₆ . Bromoform, CHBr ₃ . Butyric acid. Carbon disulphide. Carbon tetrachloride. Chloroform, CHCl ₃ . Ether, C ₄ H ₁₀ O. Ethyl chloride Glycerine. Methyl alcohol. Olive oil. Petroleum Phenol, C ₆ H ₆ O.	20 20 0 20 20 20 20 20 20 20 20 18 20 18 25 20	28.9 41.5 26.7 32.3 26.8 27.2 17.01 16.2 63 22.6 33.1 26 41.0	CCl₄ Mean
Propyl alcohol Silicon tetrachloride, SiCl ₄ Toluene, C ₇ H ₈ Turpentine	20	17.0 28.4	Ramsay '93

Table 195.—Solutions of Salts in Water

Salt	% Salt	°C	Dynes cm
BaCl ₂	0	30	71.1
CaCl ₂	24.6 0	30 30	75.6 71.1
CaC ₁₂	12.3	30	75.7
****	31.9	30	86.4
HC1	0 15	20 20	73.0 72.0
	25	20	70.7
KCl	0	30	71.1
	23.3 21.1	30 18	76.8 77.7
NaCl	0	18	72.4
	7.6	18	74.8
NH ₄ C1	13.7	18	76.9 72.5
	11	18	74.9
K_2CO_3	0	30	71.1
	39·4 53.6	30 30	89.4
Na ₂ CO ₃	0	30	71.1
	10.5	30	73.9
	24.4 63.1	30 30	76.5 80.6
KNO₃	0	18	72.6
	15.2	18 18	74.5
NaNO ₃	21.5	30	75·4 71.1
1102103111	35.6	30	78.4
CuSO ₄	50.9	30	82.8
CusO ₄	25.4	30 30	71.1 74.1
H ₂ SO ₄	ŏ	18	72.8
	12.7	18 18	73.5
	47.6 80.3	18	76.7 71.2
	90	18	63.6
K ₂ SO ₄	. 0	18	72.7
HNO ₃	9.I . 7.2	20	74.6 73.1
	50	20	65.4
NaOH	70	20	59·4 72.8
NaOn	. 0	20 20	
	20	20	85.8
кон	30	20 18	, ,
KOH	. o 3.8	18	72.8 74.1
	7.8	18	75.5

TABLE 196 .- Surface Tension of Liquids *

	iquio	i.			Specific	Surface tension in dynes per centimeter of liquid in contact with —				
	•					gravity.	Air.	Water.	Mercury.	
Water							1.0	75.0	0.0	(392)
Mercury							13.543	513.0	392.0	0
Bisulphide of carbon							1.2687	30.5	41.7	(387)
Chloroform						-	1.4878	(31.8)	26.8	(415)
Ethyl alcohol .							0.7906	(24.1)	_	364
Olive oil		-			۰		0.9136	34.6	18.6	317
Turpentine							0.8867	28.8	11.5	241
Petroleum							.7977	29.7	(28.9)	271
Hydrochloric acid							1.10	(72.9)	_	(392)
Hyposulphite of soda	solu	ition	٠			. }	1.1248	69.9		429

TABLE 197 .- Surface Tension of Liquids at Solidifying Point †

Subst	ance		Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimeter.	Substance.	Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimeter.
Platinum	•		2000	1691	Antimony	432	249
Gold .			1200	1003	Borax	1000	216
Zinc .			360	877	Carbonate of soda	1000	210
Tin .			230	599	Chloride of sodium		116
Mercury			-40	599 588	Water	0	87.91
Lead .			330	457	Selenium	217	71.8
Silver .			1000	427	Sulphur	111	42.1
Bismuth			265	1390	Phosphorus	43	42.0
Potassium			58	37 I	Wax	43 68	34.1
Sodium	•	٠	90	258			

^{*} This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20° C.

Note. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1: that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

TABLE 198 .- Vapor Pressure and Rate of Evaporation

• K.	Мо	W		tion rate. 12/sec.		Platinum.	
	mm	mm	Мо	W	° K.	mm	g/cm²/sec.
1800 2000 2200 2400 2600 2800 3000 3200 3500	0.08643 0.06789 0.04396 0.021027 0.0160 0.1679 3890° 760 mm	0.0 ₁₁ 645 0.0 ₉ 849 0.0 ₇ 492 0.0 ₅ 151 0.0 ₄ 286 0.0 ₃ 362 0.0 ₂ 333 0.0572	0.0 ₁₀ 863 0.0 ₇ 100 0.0 ₆ 480 0.0 ₄ 120 0.0 ₃ 179 0.0 ₂ 181	0.0 ₁₂ 114 0.0 ₁₀ 144 0.0 ₉ 798 0.0 ₇ 236 0.0 ₆ 429 0.0 ₅ 523 0.0 ₄ 467 0.0 ₃ 769	Rev.	0.017324 0.012111 0.09188 0.07484 0.05350 0.03107 760 mm nuir, MacK 2, 1913; 4, of vacuum,	1914.

 $p = K.T^{-\frac{1}{2}}e^{-\lambda_0/RT}$ dynes/cm². Egerton, Phil. Mag. 33, p. 33, 1917. Zn, $\lambda_0 = 3.28 \times 10^4$; $K = 1.17 \times 10^{14}$ Cd, $\lambda_0 = 2.77 \times 10^4$; $K = 5.27 \times 10^{13}$ Hg, $\lambda_0 = 1.60 \times 10^4$; = 3.72 × 10¹³ (Knudsen)

[†] Quincke, "Pogg. Ann." vol. 135, p. 661. ‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

"'Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

TABLE 199 VAPOR PRESSURE OF ELEMENTS

(Over liquid unless otherwise noted)

Hydrogen °K. mm	°K.	Helium mm	°K.	Neon atm.		Argon	n mm	°K.	Crypton m	m	°K.	non mm
20.48 787 20.36 760 19.65 611 18.03 552 16.49 192 14.10 59.5	5.16 4.9 4.20 3.52 1.48	360	41.3 36.2 31.3 27.1 20.4 15.6	2.98 7 1.00 1 12.8 m	m		026 746 512 201 48.0 22.0	201.	6	20	287.7 255.6 244.2 231.4 237.4 183.2	21970 15870 11130
Onnes, 1923	Onn	es, 1915-6	O	Onnes, 1917 Travers, 1902		Born, 1	922		Ramsa	y, Tra	vers, 19	01
Niton °K. mm	°K.	Oxygen mm	l.	Nitrogen °K. mm		Chlorin	ne itm.		Bromii °C	ne mm	°C	line mm
377.5 62 364.4 53 321.7 26.4 290.3 13.2 262.8 6. 212.4 1.05 202.6 .66		57 36.1 71 64 59 162.2	76 74 72 70 67	7.33 760 6.65 700 6.03 500 7.39 400 7.80 200 7.80 200 7.80 100		- 33.6 7 - 50 3 - 70 I	41.7 6.62 3.66 60 50 18 62 37	-	58.75 51.95 40.45 23.45 8.20 7.0 12.0 16.65	600 400 200	50 45	3.084 2.154 1.498 1.025 .699 .469 .131
Gray, Ramsay,	C	Cath, 1908	Fis	scher, Alt., 1902		Knietso 1890	h,	h, Ram Young				Hickey, s, 1907
°K. Ozone	m	Arsenic,	solid itm.			°C Ca	°C mr		Calci °C	ium mm	°C Cae	sium mm
86.01 .0 83.24 .0	089 042 0152 0068	616 1.	.076 .00 .85 .3		7 3		371	52 279 013	982 1028 1049 1085 1129 1175		247 276 316 353 397 670	.30 I.00 3.02 6.68 I5.9
Spangenbur 1926 Reisenfeld		Horiba 1923		Greenwoo 1910	od,		raune, 1920		Ru Hartm 191	nann,		ears,
Copper °C mm	Ga: °C	llium mm	°C	Gold mm		Lead °C n		l mm °C		nm	Mag °C	nesium mm
1875 20 1980 100 2180 257 2310 760	1009	.0004	1155 1985 2315 2500		7		.08 1.75 6.8 3	14:	15 105 10 266 25 760 70 6			
Greenwood,		rteck, 927	Н	Iarteck, Ruff	Wartenh 1913			Greenwood 1911		ood,	Har	Ruff, tmann, 924
Niton °C mi	n	Potas: °C	sium mm	°C R	ubi	dium mm		Silico C	n mm	°C	Silver	mm
11 %		406.2 469.1 528.5 759.8	4.6 16.2 44.8 783	2 115 250		.00006 .0004 .98	20	95	10 110 210 760	103 136 166 175	58 50 103	
Gray, Ramsa 1909	ay,	Flock, Ro				Ruff	, Kon 1926	schak,		various		

VAPOR PRESSURE OF ORGANIC LIQUIDS

The vapor pressures on this page are in millimeters over a liquid phase unless distinguished by the subscript s. They are generally means from various determinations.

			<u> </u>							-
°C	Acetone C ₃ H ₆ O	Benzine C6H6	Cam- phor C ₁₀ H ₁₆ O	Carbon bisul- phide CS ₂	Carbon tetra- chloride CCl4	Chloro- form CHCl ₃	Ethane C ₂ H ₆	Ethyl ether C ₄ H ₁₀ O	Ethyl bro- mide C ₂ H ₅ Br	Turpen- tine C10H6
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
-90	.02				-70°	(-60°)	-100°	-101.3°))	
-57	1.26	-50°,.3	3	-80°)	.14	.85	390 ∫	.04	58}	
-40				.61	-50°	4.8	- 90°	- 60°)		
-30		•3		-25°	,92	10	700	4.		
-20	• • •	• • •		-34)	19	- 80°	- 40°	59	
-10	• • •	14		80		6-0	1180	19 5	102	• • •
0	• • •	26.5		127 160	33	610	- 75°	186.1	166	.2
+ 5	116	34		198	43 56	100	1500	291.8	207 257	
15		45 59		244	71			291.0	317	.3
20	185	75	.15	298	90	160		442.4	386	•4
30	283	119	.26	433	141	247		648	564	.7
40	422	182	.60	617	213	370		921	802	1.1
50	612	269	1.30	855	315	540		1276	1113	1.7
60	860	390	2.6	1170	448	750		1728	1510	2.6
70	1190	548	4.6	1570	620	1025		2294	2015	4.1
80	1860	750	9.2	2040	843	1400		2991	2640	6.1
90	2140	1010		2620	1120	2130		3840	3400	9.0
100	2800	1340	26	3000	1460 1880	2420	• • •	4860	4310	13.1
110	3590	1740 2200	• • •	4160 5150		2000	• • •	7500	5390 6660	18.6
130	4550 5670	2800		5150	2390 3000	3900 4900		7500	8120	25.7 34.9
	6970	3500			3700	6000		11080	9780	34.9
	0310							160°)	3100	• • • •
150	• • •	4300	170	9100	4500	7300		15800		• • •
								180°)		
200	• • •		• • •	1	0900			21800		• • •
	ylene ₂H₄	Glyceri C₃H₅0		Methane CH ₄	e N	lethyl eth (CH3)2O	er N	aphthalene C10H8		chloride 2H6Cl
°C	mm	°C mn	1 °(mm m	°C	m	m	°C mm	°C	mm
-150	14.9	118	.24 — I	80 119	- 67	78		ο.	028 -30	011
-190	1 /		.5 -1			120			06 _s -20	
-145	26.7	175 13	-1	70 353	- 41.	4 326		50 .	81 _s -16	302
-135		190 32								5 465
		220 100				782		80 10	10	_
-120		260 385		55 1229			atm.	90 13	20	
-110	0 ,		-1	50 1720		6.0 75 II.2	5	100 20 110 29	30	
-103	192				49. 80.			110 29 120 43	59 7.	~ ^
					99.			150 119	100	
					125.			200 490		-,

Table 200 (continued) .- Vapor Pressure of Organic Liquids

°C	Am- monia NH3	Carbon dioxide CO ₂	Ethyl iodide C2H6I	Ethyl acetate	Hy- drogen sulphide H ₂ S	Methyl chlo- ride CH ₃ Cl	Nap- thalin C10H8	Sulphur dioxide SO ₂	Tolu C ₁₀ F	
	atm.	atm.	mm	mm	mm	mm	mm	mm	°C	mm
-50	.403	6.74			1216			86	-91.9	.002
-30	1.180	14.10			2840	579		286	-81.7	.005
-25	1.496	16.61				718		379	-77.4	.007
-20	1.877	19.44		6.5	4100	883		474	-67.5	.020
-15	2.332	22.60				1079		• • • •	-57.7	.060
-10	2.870	26.13		12.9	5720	1310	• • •	760	-38.0	.39
- 5	3.502	30.05				1579	• • •	• • •	-24.2	1.47
0	4.238	34.38	41.5	24.3	7750	1891	• • •	1155	- 2.9	5.72
+ 5	5.090	39.16	53.5	• • • •		2250	• • •			6.86
10	6.068	44.41	68.6	42.7	10300	2660	• • •	1714	+15.0 1	
15	7.188	50.17	-00 -	0		3134	• • •	0.60	+25.8 2	.0.7
20	8.458	56.50	108.5	72.8	14000	3667 4267	• • •	2460	• • •	• • •
25	9.896	63.45	1676		17500	4940	• • •	3420	• • •	• • •
30	11.512	71.4	167.6	119	17500	5700	• • •		• • •	• • •
35	13.321	(I.C.T.	250	186	22000	6650		4650	Druc	ker.
40	15.339 17.580	1928)	230					40,0	Tum	
45 50	20.060		362	282	27500	8510		6210	191	
60	25.80		510	415		10900		8150	Bark	
70	32.69			596	40400	14300		10540	191	
80	40.90			833		16800	9.6			
90	50.56			1130		21000	13.0			
100	61.82			1515		25800	19.7	27.8	atm.	
	Cragoe			∫ 200°		∫ 141°	∫200°	∫150°	, , ,	
	1920			15600		\53600	₹ 490	71.4	**	

Table 201.—Vapor Pressure at Low Temperatures

Many of the following values are extrapolations made by Langmuir by means of plots of log p against I/T. Gen. Elec. Rev. 23, 681, 1920. I bar = 0.000000987 atm. = 0.000750 mm Hg.

Gas	°C	Mm	Gas	°C	Bars
O_2	-182.9	760	CO ₂	- 148 - 168	100
N_2	-211.2 -195.8	7·75 760		-182	.01
СО	-210.5 -190	86 863	Ice	- 193 - 60	9.6
CH₄	-200 -185.8	249 79.8		- 75 - 89	1.0
A	-201.5 -186.2	50.2 760	7.7	-110 -100	100.
C ₂ H ₄	- 194.2 - 175.7	.76	Hg	+ 30 + 20	3.7
	- 188 - 197	.076		+ 10	.65 .25
C ₂ H ₆	-205 -150	.00076 7.6		- 10 - 20	.087
	- 190 - 180	.076		- 40 - 78	.0023 4.3 × 10 ⁻⁶
	-198	.00076		-180	2.3 × 10 ⁻²⁴

TABLE 202 .- Vapor Pressure of Ethyl Alcohol *

O.	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°		
Temp.			Va	por pressur	e in millim	eters of me	ercury at o	°C				
0° 10 20 30	12.24 23.78 44.00 78.06	13.18 25.31 46.66 82.50	14.15 27.94 49.47 87.17	15.16 28.67 52.44 92.07	16.21 30.50 55.56 97.21	17.31 32.44 58.86 102.60	18.46 34.49 62.33 108.24	19.68 36.67 65.97 114.15	20.98 38.97 69.80 120.35	22.34 41.40 73.83 126.86		
40 50 60 70	133.70 220.00 350.30 541.20	140.75 230.80 366.40 564.35	148.10 242.50 383.10 588.35	1 55.80 253.80 400.40 61 3.20	163.80 265.90 418.35 638.95	172.20 278.60 437.00 665.55	181.00 291.85 456.35 693.10	190.10 305.65 476.45 721.55	199.65 319.95 497.25 751.00	209.60 334.85 518.85 781.45		
Fron	n the form	the formula $\log p = a + l\alpha' + l\beta'$ Ramsay and Young obtain the following numbers.										
D.	0°	10°	20°	30°	40 °	50°	60°	70°	80°	90°		
Temp.			Va	por pressur	e in millim	eters of me	ercury at o	, C				
0° 100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	43.97 3223 0 32196.	78.11 4318.7 38389.	133.42 5686.6 45519.	219.82 7368.7		540.91 11858.	811.81 14764.	1186.5 18185.		

TABLE 203 .- Vapor Pressure of Methyl Alcohol t

. C	0°	1°	2 °	3°	4°	5°	6 °	7 °	8 °	9°
Temp.			Va	por pressur	e in millim	eters of me	ercury at o	, C		
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374·7 575·3	247·4 391·7 599·4

^{*} This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301; $\log b = \overline{2}.6406131$; $\log c = 0.6050854$; $\log \alpha = 0.003377538$; $\log \beta = \overline{1}.99682424$ (c is negative).

[‡] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

SMITHSONIAN TABLES.

TABLE 204

VAPOR PRESSURE*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline

Temp.	0.0	1°	2º	3°	4 °	5°	6°	7°	8°	9°
				(a) CAR	BON DIS	SULPHIDE	€.			
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25
				(b) C	HLOROBI	ENZENE.				
20° 3° 4°	8.65 14.95 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	1 3.42 22.69 37.08	14.17 23.87 38.88
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 156.05 223.45	46.84 73.11 110.41 161.95 * 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70	333·35 454·65 608·75	344.15 468.50 626.15	355.25 482.65 643.95	366.65 497.20 662.15	378.30 512.05 680.75	390.25 527.25 699.65
				(c) 1	Вкомові	ENZENE.			,	_
40°	_	_	-	-	_	12.40	13.06	13.75	14.47	15.22
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	156.03 219 58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757.55	776.95	796.70	816.90
				(4	d) Anii	INE.				
80 °	18.So 30.10	19.78	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37.30	25.14 38.90	26.32 40.56	27.54 42.28	28.80 44.06
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.80 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.45

^{*} These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Socvol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

VAPOR PRESSURE

Methyl Salicylate, Bromonaphthalene, and Mercury

Temp.	0°	1°	2°	3°	4°	5°	6°	7 °	8 °	9°
}			'	(e) ME	THYL SA	LICYLAT	Е.			
70°	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4·34
So	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	7·42
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200 210 220	432-35 557-50 710.10	443.75 571.45 727.05	455·35 585.70 744·35	467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
				(f) Bro	MONAPH	THALEN	E.			
110°	3.60	3.74	3.89	4.05	4.22	4.40	4·59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7·10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11·07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150 160 170 180 190	19.80 28.85 40.75 56.45 77.15	20.59 29.90 42.12 58.27 79.54	21.41 30.98 43.53 60.14 81.99	22.25 32.09 44.99 62.04 84.51	23.11 33.23 46.50 64.06 87.10	24.00 34.40 48.05 66.10 89.75	24.92 35.60 49.64 68.19 92.47	25.86 36.83 51.28 70.34 95.26	26.83 38.10 52.96 72.55 98.12	27.83 39.41 54.68 74.82
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35	395.60	405.05	414.65	424.45	434·45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	545·35	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	70 7. 15	722.15	737.45
				(g) Mercu	JRY.				
270°	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	1 50.1 2	1 53.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324.37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350 360	658.03 784.31	669.86	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER *

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

prosonic pro	oduced by the				1		,			
Subs	stance.	0.6	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{c} {\rm Al_2(SO_4)_3} \\ {\rm AlCl_3} \\ {\rm BaS_2O_6} \\ {\rm Ba(OH)_2} \\ {\rm Ba(NO_3)_2} \end{array}$		22.5	36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
Ba(ClO ₃) ₂ BaCl ₂ . BaBr ₂ . CaS ₂ O ₈ Ca(NO ₃) ₂		15.8 16.4 16.8 9.9 16.4	33.3 36.7 38.8 23.0 34.8	70.5 77.6 91.4 56.0 74.6	108.2 150.0 106.0 139.3	204.7	205.4			
$\begin{array}{c} CaCl_2 \ . \\ CaBr_2 \ . \\ CdSO_4 \\ CdI_2 \ . \\ CdBr_2 \ . \end{array}$		17.0 17.7 4.1 7.6 8.6	39.8 44.2 8.9 14.8 17.8	95.3 135.8 18.1 33.5 36.7	166.6 191.0 52.7 55.7	241.5 283.3 80.0	319.5 368.5			
$\begin{array}{c} CdCl_2 \ . \\ Cd(NO_3)_2 \\ Cd(ClO_3)_2 \\ CoSO_4 \end{array}$		9.6 15.9 17.5 5.5	18.8 36.1	36.7 78.0	57.0 122.2 45.5	77-3	99.0			
$CoCl_2$. $Co(NO_3)_2$		15.0	34.8	83.ó 89.o	136.0	186.4	282.0	332.0		
FeSO ₄ H ₃ BO ₃ H ₃ PO ₄ H ₃ AsO ₄		5.8 6.0 6.6 7·3	10.7 12.3 14.0 15.0	24.0 25.1 28.6 30.2	42.4 38.0 45.2 46.4	51.0 62.0 64.9	81.5	103.0	146.9	189.5
H ₂ SO ₄ KH ₂ PO ₄ KNO ₃ . KClO ₃ KBrO ₃		12.9 10.2 10.3 10.6 10.9	26.5 19.5 21.1 21.6 22.4	62.8 33·3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2	148.0
KHSO ₄ KNO ₂ KClO ₄		10.9 11.1 11.5	21.9 22.8 22.3	43·3 44.8	65.3 67.0	85.5 90.0	107.8	129.2	170.0	198.8
KCI . KHCO ₃		12.2	24.4	48.8 59.0	74.1 77.6	100.9	128.5 132.0	152.2 160.0	210.0	255.0
$\begin{array}{c} {\rm KI} & . \\ {\rm K_2C_2O_4} \\ {\rm K_2WO_4} \\ {\rm K_2CO_3} \\ {\rm KOH} & . \end{array}$		12.5 13.9 13.9 14.4 15.0	25.3 28.3 33.0 31.0 29.5	52.2 59.8 75.0 68.3 64.0	82.6 94.2 123.8 105.5 99.2	112.2 131.0 175.4 152.0 140.0	141.5 226.4 209.0 181.8	171.8 258.5 223.0	225.5 350.0 309.5	278.5 387.8
K ₂ CrO ₄ LiNO ₃ LiCl . LiBr . Li ₂ SO ₄		16.2 12.2 12.1 12.2 13.3	29.5 25.9 25.5 26.2 28.1	60.0 55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	155.1 175.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	309.2 393.5 438.0
LiHSO ₄ LiI . Li ₂ SiFl ₆ LiOH . Li ₂ CrO ₄		12.8 13.6 15.4 15.9 16.4	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0	130.0 154.5	168.0 206.0	264.0	357.0	445.0

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f Phys." ch. 2, 42, 1886.

SMITHSONIAN TABLES.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 6.5 . 16.8 . 17.6 . 17.9 . 18.3	12.0 39.0 42.0 44.0 46.0	24.5 100.5 101.0 115.8 116.0	47·5 183.3 174.8 205.3	277.0 298.5	377.0			
MnSO ₄	. 6.0 . 15.0 . 10.5 . 10.9	10.5 34.0 20.0 22.1 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
$NaClO_8$ $(NaPO_3)_6$. 10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
NaOH	. 11.8	22.8 24.4 23.5	48.2 50.0 43.0	77·3 75.0 60.0	107.5 98.2 78.7	139.1 122.5 99.8	172.5 146.5 122.1	243.3 189.0	314.0 226.2
NaHCO ₈	. 12.9	24.1	48.2	77.6	102.2	127.8	152.0	198.0	239.4
Na ₂ SO ₄	. 12.6 . 12.3 . 12.1 . 12.6	25.0 25.2 25.0 25.9	48.9 52.1 54.1 57.0	74.2 80.0 81.3 89.2	111.0 108.8 124.2	143.0 136.0 159.5	176.5	268.0	
NaI	. 12.1	25.6	60.2	99.5	1 36.7	177.5	221.0	301.5	370.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 13.2 . 14.3 . 14.5 . 14.8	22.0 27.3 30.0 33.6	53.5 65.8 71.6	80.2 105.8 115.7	111.0 146.0 162.6				
Na ₃ PO ₄ (Na ₂ PO ₃) ₃ NH ₄ NO ₃ (NH ₄) ₂ SiFl ₆ . NH ₄ Cl	. 16.5 . 17.1 . 12.8 . 11.5	30.0 36.5 22.0 25.0 23.7	52.5 42.1 44.5 45.1	62. ₇	82.9 94.2	103.8	121.0	152.2	180.0
NH ₄ HSO ₄ (NH ₄) ₂ SO ₄	. 11.5 . 11.0 . 11.9 . 12.9	22.0 24.0 23.9 25.1 10.2	46.8 46.5 48.8 49.8 21.5	71.0 69.5 74.1 78.5	94.5 93.0 99.4 104.5	118. 117.0 121.5 132.3	139 0 141.8 145.5 156.0	181.2 190.2 200.0	218.0 228.5 243.5
NiCl ₂	. 16.1 . 16.1 . 12.3 . 7.2 . 15.8	37.0 37.3 23.5 20.3 31.0	86.7 91.3 45.0 47.0 64.0	147.0 156.2 63.0	212.8 235.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 16.8 . 17.8 . 4.9 . 9.2 . 16.6	38.8 42.0 10.4 18.7 39.0	91.4 101.1 21.5 46.2 93.5	156.8 179.0 42.1 75.0 157.5	223.3 267.0 66.2 107.0 223.8	281.5 153.0	195.0		

PRESSURE OF SATURATED AQUEOUS VAPOR

The following tables for the pressure of saturated aqueous vapor are taken principally from the Fourth Revised Edition (1918) of the Smithsonian Meteorological Tables.

TABLE 206.—At Low Temperatures,—69° to 0° C over Ice

Temp.	0	I	2	3	4	5	6	7	8	9
	mm	mm								
-60	0.008	0.007	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.002
-50	0.020	0.026	0.023	0.020	0.017	0.015	0.013	0.012	0.010	0.009
-40	0.096	0.086	0.076	0.068	0.060	0.054	0.048	0.042	0.037	0.033
-30	0.288	0.259	0.233	0.209	0.188	0.169	0.151	0.135	O. I 2 I	0.108
-20	0.783	0.712	0.646	0.585	0.530	0.480	0.434	0.392	0.354	0.319
-10	1.964	1.798	1.644	1.503	1.373	1.252	1.142	1.041	0.947	0.861
- 0	4.580	4.220	3.887	3.578	3.291	3.025	2.778	2.550	2.340	2.144
J										

TABLE 207.—At Low Temperatures, - 16° to 0° C over Water

Temp.	0	I	2	3	4	5	6	7	8	9
- o°		mm 1.979 4.255	mm 1.826 3.952	mm 1.684 3.669	mm 1.551 3.404	mm 1.429 3.158	mm 1.315 2.928	mm 	mm 	mm

TABLE 208.—For Temperatures 0° to 374° C over Water

0° 4.580 4.614 4.647 4.681 4.715 4.750 4.784 4.819 4.854 4. 1 4.924 4.960 4.996 5.032 5.068 5.105 5.142 5.179 5.216 5. 2 5.291 5.329 5.368 5.406 5.445 5.484 5.523 5.562 5.602 5. 3 5.682 5.723 5.763 5.804 5.846 5.887 5.929 5.971 6.013 6.014 6.185 6.228 6.272 6.316 6.301 6.406 0.450 6. 6.6 6.6 6.6 6.726 6.773 6.820 6.868 6.916 6. 7.710 7.150 7.220 7.259 7.300 7.360 7.410 7. 7.513 7.565 7.617 7.609 7.725 7.758 7.882 7.882 7.882 7.882 7.936 7.410 7. 7.751 7.828 7.882 7.882 7.936 7.	Temp.	.0	. 1	. 2	-3	-4	. 5	.6	. 7	.8	. 9
0° 4.580 4.614 4.647 4.081 4.715 4.750 4.784 4.819 4.854 4. 1 4.924 4.960 4.996 5.032 5.068 5.105 5.142 5.179 5.210 5. 2 5.291 5.329 5.368 5.406 5.445 5.484 5.523 5.562 5.602 5. 3 5.682 5.723 5.763 5.804 5.846 5.887 5.929 5.971 6.013 6. 4 6.098 6.141 6.185 6.228 6.272 6.316 6.301 6.406 0.450 6. 5 6.541 6.587 6.633 6.680 6.726 6.773 6.820 6.868 6.916 6. 6 7.012 7.061 7.110 7.159 7.209 7.259 7.309 7.410 7. 7 7.513 7.565 7.617 7.069 7.722 7.775 7.828 7.882		mm									
1	o°	ì		1.647	4.681	4.715	4.750	4.781	4.810	4.854	4.889
2	• 1										5.254
4 6.098 6.141 6.185 6.228 6.272 6.316 6.361 6.406 0.450 6.	2										5.642
4	3								5.971	6.013	6.056
6 7.012 7.061 7.110 7.159 7.209 7.259 7.309 7.360 7.410 7.410 7.759 7.209 7.259 7.309 7.360 7.410 7.410 7.7513 7.565 7.617 7.609 7.722 7.775 7.828 7.882 7.892 7.936 7.410 7.7036 7.410 7.7036 7.410 7.7036 7.410 7.7036 7.828 7.882 7.882 7.892 7.936 7.410 7.7036 7.7036 7.828 7.882 7.828 7.882 7.892 7.936 7.828 7.882 7.892 7.936 7.828 7.882 7.882 7.893 7.410 7.722 7.775 7.828 7.882 7.894 7.906 7.896 8.846 8.906 8.960 9.026 9.087 9.085 9.91 9.86 10.04 11.02 11.02 11.01 11.01 11.01 11.02 11.02 11.03 11.11 11.11 11.01 11.02 11.02 <t< th=""><th></th><th>6.098</th><th>6.141</th><th>6.185</th><th>6.228</th><th>6.272</th><th>6.316</th><th>6.361</th><th>6.406</th><th>6.450</th><th>6.496</th></t<>		6.098	6.141	6.185	6.228	6.272	6.316	6.361	6.406	6.450	6.496
7 7.513 7.565 7.617 7.609 7.722 7.775 7.828 7.882 7.936 7.88 8.045 8.100 8.156 8.211 8.267 8.324 8.380 8.437 8.494 8. 9 8.010 8.669 8.727 8.786 8.846 8.966 8.960 9.026 9.087 9. 10 9.21 9.27 9.33 9.40 9.46 9.52 9.59 9.65 9.72 9. 11 9.85 9.91 9.98 10.04 10.11 10.18 10.25 10.31 10.38 10. 11 10.52 10.52 10.59 10.60 10.73 10.80 10.87 10.04 11.02 11.09 11. 11.09 11. 11.09 12.07 12.15 12.23 12.31 12.39 12.47 12.55 12.63 12. 15 12.79 12.88 12.96 13.04 13.13 13.21 13.30 13.38 13.47 13. 15 14.54 14.63 14.73 14.82 14.91 15.01 15.10 15.20 15.20 15.29 15. 18 15.49 15.58 15.68 15.78 15.88 15.98 16.08 16.18 16.28 16. 18 16.29 16.59 16.70 16.80 10.91 17.01 17.12 17.22 17.33 17. 18.66 18.78 18.90 19.01 19.13 19.25 19.36 19.48 19.00 19. 22 19.84 19.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20. 23. 24 22.40 22.53 22.07 22.80 22.94 23.08 23.22 23.30 23.50 23.50 23.50	5	6.541	6.587	6.633	6.680	6.726	6.773	6.820	6.868	6.916	6.964
8 8.045 8.100 8.156 8.211 8.267 8.324 8.380 8.437 8.494 8.906 9 8.610 8.669 8.727 8.786 8.846 8.906 8.960 9.026 9.087 9. 10 9.21 9.27 9.33 9.40 9.46 9.52 9.59 9.65 9.72 9. 11 9.85 9.91 9.98 10.04 10.11 10.18 10.25 10.31 10.38 10. 12 10.52 10.59 10.60 10.73 10.80 10.87 10.94 11.02 11.09 11. 13 11.24 11.31 11.38 11.40 11.53 11.61 11.68 11.76 11.84 11. 14 11.99 12.07 12.15 12.23 12.31 12.39 12.47 12.55 12.63 12. 15 12.79 12.88 12.96 13.04 13.13 13.21 13.30	6	7.012	7.061	7.110	7.159	7.209	7.259	7.309	7.360	7.410	7.462
9 8.610 8.669 8.727 8.786 8.846 8.966 8.966 9.026 9.087 9. 10 9.21 9.27 9.33 9.40 9.46 9.52 9.59 9.65 9.72 9. 11 9.85 9.91 9.98 10.04 10.11 10.18 10.25 10.31 10.38 10. 12 10.52 10.59 10.66 10.73 10.80 10.87 10.94 11.02 11.09 11. 13 11.24 11.31 11.38 11.46 11.53 11.61 11.68 11.76 11.84 11. 14 11.99 12.07 12.15 12.23 12.31 12.39 12.47 12.55 12.63 12. 15 12.79 12.88 12.96 13.04 13.13 13.21 13.30 13.38 13.47 13. 16 13.64 13.73 13.82 13.91 14.00 14.08 14.17 14.20 14.36 14.71 14.54 14.63 14.73 14.82 14.91 15.01 15.10 15.20 15.29 15. 18 15.49 15.58 15.68 15.78 15.88 15.98 16.08 16.18 16.28 16. 19 10.49 16.59 16.70 16.80 10.91 17.01 17.12 17.22 17.33 17. 20 17.55 17.66 17.77 17.88 17.99 18.10 18.21 18.32 18.44 18. 21 18.66 18.78 18.90 19.01 19.13 19.25 10.36 19.48 19.60 19. 22 19.84 19.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20.42 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.30 23.50 23.50	7	7.513	7.565								7.991
10											8.552
II 9.85 9.91 9.98 10.04 10.11 10.18 10.25 10.31 10.38 10.31 I2 10.52 10.59 10.66 10.73 10.80 10.87 10.94 11.02 11.09	9	8.610	8.669	8.727	8.786	8.846	8.906	8.966	9.026	9.087	9.148
12 10.52 10.59 10.66 10.73 10.80 10.87 10.94 11.02 11.09 11.09 11.109 11.09 11.09 11.00 1	10	9.21	9.27	9.33	9.40	9.46	9.52	9.59	9.65	9.72	9.78
13 11.24 11.31 11.38 11.40 11.53 11.61 11.68 11.76 11.84 11.71 14 11.99 12.07 12.15 12.23 12.31 12.39 12.47 12.55 12.63 12. 15 12.79 12.88 12.96 13.04 13.13 13.21 13.30 13.38 13.47 13.13 16 13.64 13.73 13.82 13.91 14.00 14.08 14.17 14.26 14.36 14.71 17 14.54 14.63 14.73 14.82 14.91 15.01 15.10 15.20 15.29 15.18 18 15.49 15.58 15.68 15.78 15.88 15.98 16.08 16.18 16.28 16.19 19 16.49 16.59 16.70 16.80 16.91 17.01 17.12 17.22 17.33 17.01 20 17.55 17.66 17.77 17.88 17.99 18.10 18.21 18.32 18.44 18.21 21 18.66 18.78 18.90 19.01 19.13 19.25 10.36 19.48 19.60 19.20 23 21.09 21.22 </th <th>11</th> <th>9.85</th> <th>9.91</th> <th></th> <th>10.04</th> <th></th> <th></th> <th>10.25</th> <th></th> <th></th> <th>10.45</th>	11	9.85	9.91		10.04			10.25			10.45
14 11.99 12.07 12.15 12.23 12.31 12.39 12.47 12.55 12.63 12.15 12.23 12.31 12.39 12.47 12.55 12.63 12.10 12.10 12.25 12.63 12.10 12.55 12.63 12.10 12.10 12.25 12.63 12.10 12.25 12.63 12.10 12.25 12.63 12.10 12.10 12.25 12.63 12.10 12.25 12.63 12.10 12.10 12.25 12.63 12.10 12.10 12.10 12.10 12.25 12.63 12.10 12											11.16
15									'		11.92
16 13.64 13.73 13.82 13.91 14.00 14.08 14.17 14.20 14.36 14.71 17 14.54 14.63 14.73 14.82 14.91 15.01 15.10 15.20 15.29 15.29 15.10 18 15.49 15.58 15.68 15.78 15.88 15.98 16.08 16.18 16.28 16.18 19 16.49 16.59 16.70 16.80 10.91 17.01 17.12 17.22 17.33 17.12 20 17.55 17.66 17.77 17.88 17.99 18.10 18.21 18.32 18.44 18. 21 18.66 18.78 18.90 19.01 19.13 19.25 10.36 19.48 19.60 19. 22 19.84 19.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20. 23 21.09 21.22 21.34 21.47 21.60 21.73 21.87 22.00 22.13 22. 24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.30 23.50 23.50	14	11.99	12.07	12.15	12.23	12.31	12.39	12.47	12.55	12.63	12.71
17											13.56
18 15.49 15.58 15.68 15.78 15.88 15.98 16.08 16.18 16.28 16.28 19 16.49 16.59 16.70 16.80 16.91 17.01 17.12 17.22 17.33 17.3 20 17.55 17.66 17.77 17.88 17.99 18.10 18.21 18.32 18.44 18. 21 18.66 18.78 18.90 19.01 19.13 19.25 19.36 19.48 19.00 19. 22 19.84 19.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20. 23 21.09 21.22 21.34 21.47 21.60 21.73 21.87 22.00 22.13 22. 24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.30 23.50 23.50											14.45
19 16.49 16.59 16.70 16.80 16.91 17.01 17.12 17.22 17.33 17.33 17.12 20 17.55 17.66 17.77 17.88 17.99 18.10 18.21 18.32 18.44 18.21 21 18.66 18.78 18.90 19.01 19.13 19.25 19.36 19.48 19.00 19.6 22 19.84 19.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20. 23 21.09 21.22 21.34 21.47 21.60 21.73 21.87 22.00 22.13 22. 24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.30 23.50 23.50											15.39
20 17.55 17.66 17.77 17.88 17.99 18.10 18.21 18.32 18.44 18. 21 18.66 18.78 18.90 19.01 19.13 19.25 19.36 19.48 19.60 19. 22 19.84 19.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20. 23 21.09 21.22 21.34 21.47 21.60 21.73 21.87 22.00 22.13 22. 24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.36 23.50 23.50 23.50											16.39
21 18.66 18.78 18.90 10.01 10.13 10.25 10.36 10.48 10.00 10. 22 10.84 10.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20. 23 21.09 21.22 21.34 21.47 21.60 21.73 21.87 22.00 22.13 22. 24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.36 23.50 23.50	19	10.49	10.59	10.70	10.80	10.91	17.01	17.12	17.22	17.33	17.44
21 18.66 18.78 18.90 19.01 19.13 19.25 19.36 19.48 19.60 19. 22 19.84 19.96 20.09 20.21 20.33 20.46 20.58 20.71 20.83 20. 23 21.09 21.22 21.34 21.47 21.60 21.73 21.87 22.00 22.13 22. 24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.30 23.50 23.50	20	17.55	17.66	17.77	17.88	17.99	18.10	18.21	18.32	18.44	18.55
23 21.09 21.22 21.34 21.47 21.60 21.73 21.87 22.00 22.13 22. 24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.30 23.50 23.	21		18.78		19.01	19.13	19.25	19.36	19.48		19.72
24 22.40 22.53 22.67 22.80 22.94 23.08 23.22 23.30 23.50 23.	22			20.09							20.96
	23		1								22.26
	24	22.40	22.53	22.67	22.80	22.94	23.08	23.22	23.36	23.50	23.64
25 23.78 23.92 24.06 24.21 24.35 24.50 24.64 24.79 24.94 25.0	25	23.78	23.92	24.06	24.21	24.35	24.50	24.64	24.79	24.94	25.09

PRESSURE OF SATURATED AQUEOUS VAPOR

For Temperatures 0° to 374° C over Water

Temp.	.0	Ι,	. 2	-3	-4	- 5	.6	. 7	.8	. 9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
25°	23.78	23.92	24.06	24.21	24.35	24.50	24.64	24.79	24.94	25.09
26	25.24	25.38	25.54	25.69	25.84	25.99	26.14	26.30	26.46	26.61
27	26.77	26.92	27.08	27.24	27.40	27.56	27.72	27.89	28.05	28.22
28	28.38	28.55	28.71	28.88	29.05	29.22	29.39	29.56	29.73	29.90
29	30.08	30.25	30.43	30.60	30.78	30.96	31.14	31.32	31.50	31.68
30	31.86	32.04	32.23	32.41	32.60	32.79	32.97	33.16	33.35	33.54
31	33.74	33.93	34.12	34.32	34.51	34.71	34.91	35.10	35.30	35.50
32	35.70	35.91	36.11	36.32	36.52	36.73	36.94	37.14	37.35	37.56
33	37.78	37.99	38.20	38.42	38.63	38.85	39.06	39.28	39.50	39.72
34	39.95	40.17	40.39	40.62	40.85	41.07	41.30	41.53	41.76	41.99
35	42.23	42.46	42.70	42.93	43.17	43.41	43.65	43.89	44.13	44.37
36	44.62	44.86	45.11	45.36	45.61	45.86	46.11	46.36	46.62	46.87
37	47.13	47.38	47.64	47.90	48.16	48.43	48.69	48.95	49.22	49.49
38	49.76	50.02	50.30	50.57	50.84	51.12	51.39	51.67	51.95	52.23
39	52.51	52.79	53.08	53.36	53.65	53.94	54.23	54.52	54.81	55.10
40	55.40	55.69	55.99	56.29	56.59	56.89	57.19	57.50	57.80	58.11
41	58.42	58.73	59.04	59.35	59.66	59.98	60.30	60.62	60.94	61.26
42	61.58	61.90	62.23	62.56	62.89	63.22	63.55	63.88	64.22	64.55
43	64.89	65.23	65.57	65.91	66.26	66.60	66.95	67.30	67.64	68.00
44	68.35	68.70	69.06	69.42	69.78	70.14	70.50	70.87	71.23	71.60
45	71.97	72.34	72.71	73.09	73.46	73.84	74.22	74.60	74.98	75.36
46	75.75	76.14	76.53	76.92	77.31	77.70	78.10	78.50	78.90	79.30
47	79.70	80.11	80.51	80.92	81.33	81.74	82.16	82.57	82.99	83.41
48	83.83	84.25	84.68	85.10	85.53	85.96	86.39	86.83	87.26	87.70
49	88.14	88.58	89.02	89.47	89.92	90.36	90.82	91.27	91.72	92.18
	0.	ı.	2.	3-	4.	5-	6.	7.	8.	9.
50	92.6	97·3	102.2	107.3	112.7	118.2	124.0	130.0	136.3	142.8
60	149.6	156.6	164.0	171.6	179.5	187.8	196.3	205.2	214.4	224.0
70	233.9	244.2	254.9	266.0	277.4	289.3	301.6	314.4	327.6	341.2
80	355.4	370.0	385.2	400.8	417.0	433.7	451.0	468.8	487.3	506.3
90	526.0	546.3	567.2	588.8	611.1	634.1	657.8	682.2	707.4	733.3
100	760.0	787.5	815.9	845.0	875.1	906.0	937.8	970.5	1004.2	1038.8
110	1074	1111	1149	1187	1227	1268	1310	1353	1397	1442
120	1489	1536	1585	1636	1687	1740	1794	1850	1907	1965
130	2025	2086	2149	2214	2280	2347	2416	2487	2559	2633
140	2709	2786	2866	2947	3030	3115	3201	3290	3381	3473
150	3568	3665	3763	3864	3967	4072	4180	4290	4402	4516
160	4632	4751	4873	4997	5123	5252	5383	5518	5654	5794
170	5936	6080	6228	6378	6532	6688	6847	7009	7174	7342
180	7513	7688	7865	8046	8230	8417	8608	8802	8999	9200
190	9404	9612	9823	10040	10260	10480	10700	10940	11170	11410
200	11650	11890	12140	12400	12650	12920	13180	13450	13730	14010
210	14290	14580	14870	15160	15470	15770	16080	16400	16720	17040
220	17370	17710	18050	18390	18740	19100	19450	19820	20190	20560
230	20950	21330	21720	22120	22520	22930	23350	23770	24190	24620
240	25060	25500	25950	26410	26870	27340	27810	28290	28780	29270
250	29770	30280	30790	31310	31830	32360	32900	33450	34000	34560
260	35130	35700	36280	36870	37470	38070	38680	39300	39920	40560
270	41200	41840	42500	43160	43840	44520	45200	45900	46600	47320
280	48040	48760	49500	50250	51000	51770	52540	53320	54110	54910
290	55710	56530	57360	58190	59040	59890	60750	61620	62510	63400
300	64300	65210	66130	67060	68000	68960	69920	70890	71870	72860
310	73870	74880	75910	76940	77990	79050	80120	81200	82290	83390
320	84500	85630	86760	87910	89070	90250	91430	92630	93840	95060
330	96290	97530	98790	100060	101350	102640	103950	105280	106600	108000
340	109300	110700	112100	113500	114900	116300	117800	119200	120700	122200
350 360 370	123700 139600 157000	125200 141200 158800	126800 142900 160700	128300 144600 162600	129900 146300 164400	131400	133000	134600 151600	136300	137900

TABLE 209 .- Weight in Grams of a Cubic Meter of Saturated Aqueous Vapor

	.743 0.677 .820 1.671	0.615	0.559 1.403	0.508 1.284	0.461	0.418	0.378
+0° 4.847 5.192 5.5 +10 9.401 10.015 10.6 +20 17.300 18.338 19.4 +30 30.371 32.052 33.8	559 5.947 664 11.348 430 20.578	3.534 6.36c 12.070 21.783 37.583	3.261 6.797 12.832 23.049 39.599	3.006 7.261 13.635 24.378 41.706	2.770 7.751 14.482 25.771 43.908	8.271 15.373 27.234 46.208	8.821 16.311 28.765 48.609

TABLE 210 .- Weight in Grains of a Cubic Foot of Saturated Aqueous Vapor

Temp.	o°	ı°	2°	3°	4°	5°	6°	7°	8°	9°
- 20° - 10 - 0 + 0° + 10 + 20 + 30 + 40 + 50 + 60 + 70 + 80 + 90	0.167 0.286 0.479 0.479 0.780 1.244 1.942 2.863 3.4108 5.800 8.066 11.056 14.951 19.966 26.343	0.158 0.272 0.455 0.503 0.818 1.301 2.028 2.970 4.255 5.999 8.329 11.401 15.400	0.150 0.258 0.433 0.529 0.858 1.362 2.118 3.082 4.407 6.203 8.600 11.756 15.858	0.141 0.244 0.411 0.556 0.900 1.425 2.200 3.196 6.413 8.879 12.121 16.328 21.723 28.563	0.134 0.232 0.391 0.584 0.943 1.490 2.286 3.315 6.630 9.165 12.494 16.810	0.126 0.220 0.371 0.613 0.988 1.558 2.375 3.436 4.891 6.852 9.460 9.460 9.260 12.878 17.305	0.119 0.208 0.353 0.644 1.035 1.629 2.466 3.563 5.062 7.082 9.761 13.272 17.812 23.611 30.940	0. 112 0. 107 0. 335 0. 676 1. 084 1. 703 2. 560 3. 603 5. 238 7. 317 10. 072 13. 676 18. 330	0.106 0.187 0.318 0.700 1.135 1.779 2.658 3.828 3.828 5.420 7.560 10.392 14.000 18.863	0.100 0.176 0.302 0.744 1.189 1.859 2.759 3.065 5.607 7.809 10.720 14.515 19.407

Tables are abridged from Smithsonian Meteorological Tables, fourth revised edition.

TABLE 211.-Pressure of Aqueous Vapor in the Atmosphere

For various altitudes (barometric readings).

The first column gives the depression of the wet-bulb temperature t_1 below the air temperature t. The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Table 208. The temperature corresponding to this vapor pressure taken from Table 208 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 212. Example: $t=35^\circ$, $t_1=30^\circ$, barometer 74 cm. Then 31.83 -2.46=29.37 mm = aqueous vapor pressure; the dew point is 28.6° C.

Abridged from Smithsonian Meteorological Tables, 1907.

1-0					Ва	rometri	c pressu	ıre in ce	ntimete	ers.				
$t - t_1$	74	72	70	68	66	64	62	60	58	56	54	52	50	48
1° 2 3 4 5 6 7 8	mm 0.50 0.98 1.47 1.97 2.46 2.95 3.45 3.95	mm 0.48 0.96 1.43 1.91 2.39 2.87 3.36 3.84	mm 0.47 0.93 1.39 1.86 2.32 2.79 3.26 3.73	mm 0.46 0.90 1.35 1.81 2.26 2.71 3.17 3.63	mm 0.44 0.88 1.32 1.75 2.19 2.63 3.08 3.53	mm 0.43 0.85 1.28 1.70 2.13 2.55 2.99 3.42	mm 0.42 0.82 1.24 1.65 2.06 2.47 2.89 3.31	mm 0.40 0.80 1.20 1.60 1.99 2.39 2.80 3.20	mm 0.39 0.77 1.15 1.54 1.93 2.32 2.71 3.10	mm 0.38 0.75 1.12 1.49 1.86 2.24 2.61 2.99	mm 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88	mm 0.35 0.69 1.04 1.38 1.73 2.08 2.43 2.78	mm 0.34 0.67 1.00 1.33 1.66 2.00 2.33 2.67	mm 0.32 0.64 0.96 1.28 1.60 1.92 2.24 2.56
9 10 11 12 13 14	4·44 4·94 5·44 5·94 6·45 6·95	4.81 5.30 5.78 6.27 6.76	4.68 5.15 5.62 6.10 6.58	4.09 4.54 5.00 5.46 5.92 6.39	3.97 4.41 4.86 5.30 5.75 6.20	3.85 4.28 4.71 5.14 5.57 6.01	3.73 4.14 4.56 4.98 5.40 5.83	3.61 4.01 4.42 4.82 5.23 5.64	3.88 4.27 4.66 5.05 5.45	3·37 3·74 4·12 4·50 4·88 5·26	3.25 3.61 3.97 4.34 4.70 5.07	3.13 3.48 3.83 4.18 4.53 4.88	3.00 3.34 3.68 4.02 4.36 4.70	3.21 3.53 3.85 4.18 4.51
15 16 17	7.46 7.96 8.47	7.26 7.75 8.24	7.06 7.54 8.02	6.85 7.32 7.79	6.65 7.11 7.56	6.45 6.89 7.33	6.25 6.68 7.10	6.05 6.46 6.87	5.85 6.24 6.64	5.64 6.03 6.41	5.44 5.81 6.18	5.24 5.60 5.95	5.04 5.38 5.72	4.84 5.17 5.50

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE;

This table gives the vapor pressure corresponding to various values of the difference $t-t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The difference $t-t_1$ is given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters. A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second.

				_	-			-				
t_1	$\begin{vmatrix} t - t_1 \\ = 0^{\circ} \end{vmatrix}$	20	4°	6°	8°	100	I2°	140	16°	18°	20°	Differ- ence for
Correct for B p		.013	.026	.040	.053	. 066	.079	.092	.106	.119	. 132	0.1° in $t-t_1$
-10 -9 -8 -7 -6	1.96 2.14 2.34 2.55 2.78	0.97 1.15 1.35 1.56 1.78	 0.16 0.35 0.66 0.79		=	Fro	$-t_1 = 7$	= 10.0; .2 6.17 -	mple. $B = 74$ 12×0.0	-	57	0.050 0.050 0.050 0.050 0.050
- 5 - 4 - 3 - 2 - 1	3.02 3.29 3.58 3.89 4.22	2.03 2.29 2.58 2.89 3.22	1.03 1.29 1.58 1.89 2.23	0.03 0.29 0.58 0.88 I.21		Her		_	=	= 5.	64	0.050 0.050 0.050 0.050
0 1 2 3 4	4.58 4.92 5.29 5.68 6.10	3.58 3.92 4.29 4.68 5.09	2.57 2.92 3.28 3.67 4.08	1.57 1.91 2.27 2.66 3.07	0.57 0.91 1.27 1.66 2.07	0.26 0.65 1.06	0.05	= =				0.050 0.050 0.050 0.050 0.050
5 6 7 8 9	6.54 7.01 7.51 8.04 8.61	5.53 6.00 6.50 7.03 7.60	4.52 4.99 5.49 6.02 6.58	3.51 3.98 4.48 5.01 5.57	2.51 2.97 3.47 4.00 4.56	1.50 1.96 2.46 2.98 3.54	0.49 0.95 1.45 1.97 2.53	- 0.43 0.96 1.52	0.50			0.050 0.050 0.050 0.050
10 11 12 13 14	9.21 9.85 10.52 11.24 11.99	8.20 8.83 9.50 10.22 10.97	7.18 7.81 8.49 9.20 9.95	6.17 6.80 7.47 8.18 8.93	5.15 5.78 6.45 7.16 7.91	4.14 4.77 5.44 6.14 6.90	3.12 3.75 4.42 5.13 5.83	2.11 2.73 3.40 4.11 4.86	1.09 1.72 2.38 3.09 3.84	0.03 0.70 1.37 2.07 2.82	- 0.35 1.05 1.80	0.050 0.051 0.051 0.051
15 16 17 18	12.79 13.64 14.54 15.49 16.49	11.77 12.62 13.52 14.46 15.46	10.75 11.60 12.49 13.44 14.44	9.73 10.58 11.47 12.42 13.41	8.71 9.96 10.45 11.39 12.39	7.69 8.53 9.42 10.37 11.36	6.67 7.51 8.40 9.34 10.34	5.65 6.49 7.38 8.32 9.31	4.63 5.47 6.36 7.30 8.29	3.61 4.45 5.33 6.27 7.26	2.59 3.43 4.31 5.25 6.24	0.051 0.051 0.051 0.051
20 21 22 23 24	17.55 18.66 19.84 21.09 22.40	16.52 17.64 18.82 20.06 21.37	15.50 16.61 17.79 19.03 20.34	14.47 15.58 16.76 18.00	13.44 14.56 15.73 16.97 18.27	12.42 13.53 14.70 15.94 17.24	11.39 12.50 13.67 14.91 16.21	10.36 11.47 12.64 13.88 15.18	9.34 10.45 11.62 12.85 14.15	8.31 9.42 10.59 11.82 13.12	7.29 8.39 10.57 10.79 12.09	0.051 0.051 0.051 0.051
25 26 27 28 29	23.78 25.24 26.77 28.38 30.08	22.75 24.20 25.73 27.34 29.04	21.71 23.17 24.70 26.31 28.00	20.68 22.14 23.66 25.27 26.97	19.65 21.10 22.63 24.24 25.93	18.62 20.07 21.60 23.20 24.89	17.59 19.04 20.56 22.17 23.86	16.56 18.00 19.53 21.13 22.82	15.52 16.97 18.49 20.10 21.78	14.49 15.94 17.46 19.06 20.75	13.46 14.90 16.42 13.02 19.71	0.052 0.052 0.052 0.052 0.052
30 31 32 33 34	31.86 33.74 35.70 37.78 39.95	30.82 32.70 34.66 36.73 38.90	29.78 31.66 33.62 35.69 37.86	28.75 30.62 32.58 34.65 36.82	27.71 29.58 31.54 33.61 35.78	26.67 28.54 30.50 32.57 34.73	25.63 27.50 29.46 31.53 33.69	24.60 26.46 28.42 30.49 32.65	23.56 25.42 27.38 29.44 31.61	22.52 24.38 25.34 28.40 30.57	21.48 23.34 25.30 27.36 29.52	0.052 0.052 0.052 0.052 0.052
35 36 37 38 39	42.23 44.62 47.13 49.76 52.51	41.18 43.57 46.03 48.71 51.46	40.14 42.53 45.04 47.66 50.41	39.10 41.48 43.99 46.61 49.37	38.05 40.44 42.94 45.57 48.32	37.01 39.40 41.90 44.52 47.27	35.97 38.35 40.85 43.47 46.22	34.92 37.31 39.81 42.43 45.17	33.88 36.26 38.76 41.38 44.12	32.83 35.22 37.71 40.33 43.08	31.79 34.17 36.67 39.29 42.03	0.052 0.052 0.052 0.052 0.052
40	55.40	54.35	53.30	52.25	51.20	50.15	49.10	48.05	47.00	45.95	44.00	0.052

RELATIVE HUMIDITY, VAPOR PRESSURE AND DRY TEMPERATURE

Vertical argument is the observed vapor pressure which may be computed from the wet and drybulb readings through Table 211 or 212. The horizontal argument is the observed air temperature (dry-bulb reading). Based upon Table 43, p. 142, Smithsonian Meteorological Tables, 3d Revised Edition, 1907.

	. 1							A i u	Т			dun b		Con	tione	do					-	
Pre	Vapor essure mm.	0	10 -	-1°	-2°	−3 °	-4			ърета в∘		dry b −8°					—12°	-13	-14	° -1	5° -	
																		_				
	0.25 0.50 0.75	11 17	.)	6 12 18	6 13 19	7 14 21	8 15 23	1		9 18 27	10 20 30	11 21 32	12 23 35	13 25 38	2	4 8 .2	15 30 46	17 34 50	18 37 55	20 40 60		32 64 96
	1.00 1.25 1.50 1.75	22 27 33 38	3 3	24 30 36 12	26 32 39 45	28 35 42 49	30 38 46 53	3. 4: 50 50	2 .	36 45 54 63	40 49 59 69	42 54 64 75	47 58 70 82	51 64 76 89	7 8	0	61 76 92	67 84 100	74 92	80		
1 2	2.00 2.25	44		18 53	52 58	56 63	61 69	66 7.		72 81	79 89	86 96	93			mı		0°	-19	· —:		-8 °
1	2.50 2.75	55	5 6	59 55	65 71	70 77	76 84	7. 8. 9		90 100	99	-	_			3.	75	77 82	83 89	90 97		98
	3.00 3.25 3.50	66 71 77	7	77	78 84 90	84 91 98	92 99 -	10	00 - -	=	-		- -			4.0	25	88 93 99	95	, -	- - -	-
	Vapor			_				Air	Ten	pera	tures,	dry b	ulb, ^c	Cen	tigra	ıde.						_
	mm.	0 0	1°	2°	3∘	4 °	5°	6°	7°	8°	9°	10°	11°	120	13°	145	150	16°	17°	18°	19°	20°
	0.5 1.0 1.5 2.0 2.5	11 22 33 44 55	10 20 31 41 51	9 19 28 38 47	9 18 27 35 44	8 16 25 33 41	8 15 23 31 38	7 14 22 29 36	7 13 20 27 33	6 13 19 25 31	6 12 18 23 29	5 11 16 22 27	5 10 15 20 26	5 10 14 19 24	4 9 13 18 22	4 8 13 17 21	4 8 12 16 20	4 7 11 15	3 7 10 14 17	3 7 10 13 16	3 6 9 12	3 6 9 12
	3.0 3.5 4.0 4.5 5.0	66 77 88 99	61 71 81 92	57 66 76 85 95	53 62 71 80 88	49 58 66 74 83	46 54 61 69 77	43 50 57 65 72	40 47 54 60 67	38 44 50 56 63	35 41 47 53 58	33 38 44 49 55	31 36 41 46 51	29 34 38 43 48	27 31 36 40 45	25 29 34 38 42	24 28 32 36 39	22 26 30 33 37	21 24 28 31 35	20 23 26 29 33	18 21 25 28 31	17 20 23 26 29
	5 5 6.0 6.5 7.0 7.5	11111	-		97 - - -	91 99 - -	85 92 100 -	79 86 93	74 80 87 94	69 75 81 85 94	64 70 76 82 88	60 66 71 77 82	56 61 67 72 77	53 58 62 67 72	49 54 58 63 67	46 51 55 59 63	43 47 51 55 59	41 44 48 52 55	38 42 45 49 52	36 39 42 46 49	34 37 40 43 46	3 ² 34 37 40 43
	8.0 8.5 9.0 9.5			-	-	-				100 - -	94 99 - -	88 93 98 -	82 87 92 97	77 82 86 91 96	72 76 81 85 90	67 72 76 80 84	63 67 71 75 79	59 63 67 70 74	56 59 62 66 69	52 55 59 62 65	49 52 55 58 61	46 49 52 55 57
111	11 0 .2.0 .3.0 .4 0 .5.0	11111		-	-	-		-	-	- - - -	-	-			94 - - -	93 - - -	87 94 - -	81 89 96 -	76 83 90 97	72 78 85 91	67 74 80 86 92	63 69 75 80 86
	L6.0 L7.0	-	-	_	-	-	<u>-</u>	-	-	-	=	-	-	_	-	-	-	-	_	-	98	92 98

RELATIVE HUMIDITY, VAPOR PRESSURE AND DRY TEMPERATURE

Vapor						-	Air	Ten	npera	tures,	dry b	oulb,	° Cei	ntigra	ade.						
Pressure.	20°	21	220	23°	240	250	26°	270	280	290	30°	31°	32°	33°	34°	35°	36°	37°	380	39°	400
1 2 3 4	6 12 17 23	5 11 16 22	5 10 15 20	5 10 14 19	5 9 14 18	4 8 13 17	4 8 12 16	4 8 11 15	4 7 11 14	3 7 10 13	3 6 10 13	3 6 9	3 6 9	3 5 8 11	3 5 8 10	3 5 7 10	2 5 7 9	2 4 6 9	2 4 6 8	2 4 6 8	2 4 5 7
5 6 7 8 9	29 34 40 46 52	27 32 38 43 49	25 31 36 41 46	24 29 34 38 43	23 27 32 36 41	21 26 30 34 38	20 24 28 32 36	19 23 26 30 34	18 21 25 29 32	17 20 24 27 30	16 19 22 25 29	15 18 21 24 27	14 17 20 23 25	13 16 19 21 24	13 15 18 20 23	12 14 17 19 22	11 14 16 18 20	11 13 15 17	10 12 14 16 18	10 12 13 15	9 11 13 15 16
10 11 12 13 14	57 63 69 75 80	54 60 65 70 76	51 56 61 66 71	48 53 58 62 67	45 50 54 59 63	43 47 51 55 60	40 44 48 52 56	38 42 45 49 53	36 39 43 46 50	34 37 40 44 47	32 35 38 41 44	30 33 36 39 42	28 31 34 37 40	27 29 32 35 37	25 28 30 33 35	24 26 29 31 33	23 25 27 29 32	21 24 26 28 30	20 22 24 26 28	19 21 23 25 27	18 20 22 24 26
15 16 17 18 19	86 92 98 -	81 87 92 97	76 82 87 92 97	72 77 81 86 91	68 72 77 81 86	64 68 72 77 81	60 64 68 72 76	57 60 64 68 72	53 57 61 64 68	50 54 57 60 64	48 51 54 57 60	45 48 51 54 57	42 45 48 51 54	40 43 45 48 51	38 41 43 46 48	36 38 41 43 45	34 36 38 41 43	32 34 36 39 41	30 32 34 37 39	29 31 33 35 36	27 29 31 33 35
20 21 22 23 24	-	-	_ _ _ _	96 - - - -	90 95 100 -	85 89 94 98	80 84 88 92 96	76 79 83 87 91	71 75 78 82 85	67 71 74 77 81	63 67 70 73 76	60 63 66 69 72	57 59 62 65 68	53 56 59 62 64	51 53 56 58 61	48 50 53 55 57	45 48 50 52 54	43 45 47 49 51	41 43 45 47 49	38 40 42 44 46	36 38 40 42 44
25 26 27 28 29	- - - -	-	1 1 2 1 1				100	94 98 - -	89 93 96 100	84 87 91 94 97	79 83 86 89 92	75 78 81 84 87	71 74 76 79 82	67 70 72 75 78	63 66 68 71 73	60 62 65 67 69	56 59 61 63 65	54 56 58 60 62	51 53 55 57 59	48 50 52 54 56	46 47 49 51 53
30 31 32 33 34	-	-		1 1 1 1	- - - -	-	- - - -				95 98 - - -	90 93 96 99	85 88 91 93 96	80 83 86 88 91	76 78 81 84 86	72 74 77 79 81	68 70 72 75 77	64 66 69 71 73	61 63 65 67 69	58 60 62 63 65	55 56 58 60 62
35 36 37 38 39	-	- - - -			- - - -	- - - -	- - - -	-	- - - -	-	-	- - - -	99 - - - -	94 96 99 -	89 91 94 96 99	84 86 89 91 93	79 81 84 86 88	75 77 79 81 83	71 73 75 77 79	67 69 71 73 75	64 66 67 69 71
40 41 42 43 44	-	- - - -	- - - -						- - - -	- - - -						96 98 100 -	90 93 95 97 99	86 88 90 92 94	81 83 85 87 89	77 79 81 83 84	73 75 77 78 80
45 46 47 48 49	-				-					- - - - -						-	-	96 99 - -	91 93 95 97 99	88 90	82 84 86 87 89
50 51 52 53 54	-	-	-	-			1 1 1 1 1			-	-		- - - -			-				100	91 93 95 97 98
55	-	-		-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100

TABLES 213 (concluded) AND 214

TABLE 213 (concluded) -Relative Humidity, Vapor Pressure and Dry Temperature

(Data from 20° to 60° C based upon Table 208.)

Vapor Pressure.	1						Air	Ten	pera	tures	, dry	bulb,	° Ce	ntigr	ade.						
mm.	40°	410	42°	43°	440	4 5°	469	47°	480	49 °	50	51°	520	53°	54°	55°	56∘	57°	58°	59°	60°
5 10 15 20 25	9 18 27 36 45	9 17 26 34 43	8 16 24 33 41	8 15 23 31 39	7 15 22 29 37	7 14 21 28 35	7 13 20 26 33	6 13 19 25 31	6 12 18 24 30	6 11 17 23 28	5 11 16 22 27	5 10 15 21 26	5 10 15 20 24	5 9 14 19 23	4 9 13 18 22	4 8 13 17 21	4 8 12 16 20	4 8 12 15	4 7 11 15 18	4 7 10 14 18	3 7 10 13 17
30 35 40 45 50	54 63 72 81 90	51 60 68 77 86	49 57 65 73 81	46 54 62 69 77	44 51 59 66 73	42 49 56 63 70	40 46 53 59 66	38 44 50 57 63	36 42 48 54 60	34 40 45 51 57	32 38 43 49 54	31 36 41 46 51	29 34 39 44 49	28 33 37 42 47	27 31 36 40 44	25 30 34 38 42	24 28 32 36 40	23 27 31 35 38	22 26 29 33 37	21 25 28 32 35	20 23 27 30 33
55 60 65 70 75	99 - - -	94 - - -	89 98 - -	85 93 100 -	81 88 95 -	76 83 90 97	73 79 86 92 99	69 75 82 88 94	66 72 78 84 90	62 68 74 80 85	59 65 70 76 81	57 62 67 72 77	54 60 64 68 74	51 56 61 65 70	49 53 58 62 67	46 51 55 59 64	44 48 52 56 60	42 46 50 54 58	40 44 48 51 55	39 42 46 49 53	37 40 43 47 50
80 85 90 95 100			- nm. .25	- 57° 96	- 58° 92	- - 59° 88	- 60° 84		96 - - - -	91 97 - -	86 92 97 -	82 87 93 98	78 84 88 94 98	75 79 84 89 93	71 75 80 84 89	68 72 76 80 85	64 69 73 77 81	62 65 69 73 77	59 62 66 70 73	56 60 63 67 70	54 57 60 64 67
105 110 115 120 125	-	1 1 1	30 35 40 45 50	001	95 99 - - -	91 95 98 	87 90 94 97	-	-	-	- - - -		- - - -	98	93 98 - - -	89 93 97 - -	85 89 93 97 -	81 85 88 92 96	77 81 84 88 92	74 77 81 84 88	70 74 77 80 84

TABLE 214.—Relative Humidity, Wet and Dry Thermometers

This table gives the relative humidity direct from the difference between the reading of the dry (t $^{\circ}$ C) and the wet (t₁ $^{\circ}$ C) thermometer. It is computed for a barometer reading of 76 cm. The wet thermometer should be ventilated about 3 meters per second. From manuscript tables computed at the U.S. Weather Bureau.

t ^O						Depre	ssion	of wet	-bulb	thermo	meter,	t ⁰ -t ₁ ⁰ .					
	0.29	0.40	0.60	0.8°	1.00	1.2°	1.40	1.60	1.80	2.00	2.50	3.0∘	3.5°	4.00	4.50	5.0≎	5.5°
-15 -12 -9 -6 -3 0 +3	90 92 94 95 96 96 97	91 85 88 89 91 92	72 77 81 85 87 89	62 69 75 80 82 85 87	53 62 70 74 78 81 84	44 54 62 69 74 78 81	35 47 56 64 69 74 78	25 39 50 59 66 71 75	16 32 44 54 61 67 72	7 25 39 49 57 64 69	7 23 36 46 55 62	9 25 36 46 54	- 13 26 38 46	- - 2 17 29 40	- - - 7 21 32	- - - - 13 25	6
	0.5°	1.00	1.50	2.0°	2.5°	3.0℃	3.5°	4.00	4.5°	5.00	6.00	7.00	8.0≎	9.00	10.0	11.0	12.0
+3 +6 +9 +12	92 94 94 94	84 87 88 89	76 80 82 84	69 73 76 78	62 66 70 73	54 60 65 68	46 54 59 63	40 47 53 58	32 41 48 53	25 35 42 48	12 23 32 38	- 11 22 30	- 12 21	3	- - - 4	-	
+15 +18 +21 +24	95 95 96 96	90 90 91 92	85 86 87 88	80 82 83 85	76 78 79 81	71 73 75 77	66 69 71 74	62 65 67 70	58 61 64 66	53 57 60 63	44 49 53 56	36 42 46 49	28 35 39 43	20 27 32 37	13 20 26 31	4 13 19 26	6 13 21
+27 +30 +33 +36 +39	96 96 96 97 97	93 93 93 93 94	90 90 90	86 86 86 87 88	82 82 83 84 85	79 79 80 81 82	76 76 77 78 79	72 73 74 75 76	68 70 71 72 74	65 67 68 70	59 61 63 64 66	53 55 57 57 61	47 50 52 54 56	41 44 47 50 52	36 39 42 45 47	31 35 37 41 43	26 30 33 36 39

1,063

THE INTERNATIONAL TEMPERATURE SCALE

(Adapted from G. K. Burgess, Bur. Standards Journ. Res., 1, 635, 1928.)

The Thermodynamic Centigrade Scale, on which the temperature of melting ice, and the temperature of condensing water vapor, both under the pressure of one standard atmosphere, are numbered o° and 100°, respectively, is recognized as the fundamental scale to which all temperature measurements should ultimately be referable.

The experimental difficulties incident to the practical realization of the thermodynamic scale have made it expedient to adopt for international use a practical scale designated as the International Temperature Scale. This scale conforms with the thermodynamic scale as closely as is possible with present knowledge, and is designed to be definite, conveniently and accurately reproducible, and to provide means for uniquely determining any temperature within the range of the scale, thus promoting uniformity in numerical statements of temperature.

Temperatures on the international scale will ordinarily be designated as "°C," but may be designated as "°C (Int.)" if it is desired to emphasize the

fact that this scale is being used.

The International Temperature Scale is based upon a number of fixed and reproducible equilibrium temperatures to which numerical values are assigned, and upon the indications of interpolation instruments calibrated according to a specified procedure at the fixed temperatures.

The basic fixed points and the numerical values assigned to them for the pressure of one standard atmosphere are given in the following table, together with formulas which represent the temperature (t_p) as a function of vapor pressure (p) over the range 680 to 780 mm of mercury.

Rasia Fixed Points of the International Temperature Scale

	Basic Fixed Foliats of the International Temperature Scare	°C
(a)	Temperature of equilibrium between liquid and gaseous oxygen at the pressure of one standard atmosphere (oxygen point).	- 182.97
	$t_{p} = t_{760} + 0.0126(p - 760) - 0.0000065(p - 760)^{2}$	
` '	Temperature of equilibrium between ice and air-saturated water at normal atmospheric pressure (ice point) Temperature of equilibrium between liquid water and its vapor at the pressure of one standard atmosphere (steam point)	0.000
		100.000
	$t_{\rm p} = t_{760} + +0.0367 (p-760) - 0.000023 (p-760)^2$	
(d)	Temperature of equilibrium between liquid sulphur and its vapor at the pressure of one standard atmosphere (sulphur point)	444.60
	$t_{\rm p} = t_{760} + 0.0909(p - 760) - 0.000048(p - 760)^2$	
	Temperature of equilibrium between solid silver and liquid silver at normal atmospheric pressure (silver point) Temperature of equilibrium between solid gold and liquid gold	960.5

at normal atmospheric pressure (gold point)......

Standard atmospheric pressure is defined as the pressure due to a column of mercury 760 mm high, having a mass of 13.5951 g/cm³, subject to a gravitational acceleration of 980.665 cm/sec.² and is equal to 1,013,250 dynes/cm².

It is an essential feature of a practical scale of temperature that definite numerical values shall be assigned to such fixed points as are chosen. It should be noted, however, that the last decimal place given for each of the values in the table is significant only as regards the degree of reproducibility of that fixed point on the International Temperature Scale. It is not to be understood that the values are necessarily known on the Thermodynamic Centigrade Scale to the corresponding degree of accuracy.

The means available for interpolation lead to a division of the scale into

four parts.

(a) From the ice point to 660° C the temperature t is deduced from the resistance R_t of a standard platinum resistance thermometer by means of the formula

$$R_{t} = R_{0} \left(\mathbf{I} + A_{t} + Bt^{2} \right)$$

The constants R_0 , A, and B of this formula are to be determined by calibration

at the ice, steam, and sulphur points, respectively.

The purity and physical condition of the platinum of which the thermometer is made should be such that the ratio R_t/R_0 shall not be less than 1.390 for $t=100^{\circ}$ and 2.645 for $t=444.6^{\circ}$.

(b) From -190° to the ice point, the temperature t is deduced from the resistance R_t of a standard platinum resistance thermometer by means of the formula

$$R_t = R_0[I + At + Bt^2 + C(t - 100)t^3]$$

The constants R_0 , A, and B are to be determined as specified above, and the additional constant C is determined by calibration at the oxygen point.

The standard thermometer for use below o° C must, in addition, have a ratio

 R_t/R_0 less than 0.250 for $t = -183^{\circ}$.

(c) From 660° C to the gold point, the temperature t is deduced from the electromotive force e of a standard platinum v. platinum-rhodium thermocouple, one junction of which is kept at a constant temperature of o° C while the other is at the temperature t defined by the formula

$$e = a + bt + ct^2$$

The constants a, b, and c are to be determined by calibration at the freezing point of antimony, and at the silver and gold points.

(d) Above the gold point the temperature t is determined by means of the ratio of the intensity J_2 of monochromatic visible radiation of wave length λ cm, emitted by a black body at the temperature t_2 , to the intensity J_1 of radiation of the same wave length emitted by a black body at the gold point, by means of the formula

$$\log_{e} \frac{J_{2}}{J_{1}} = \frac{c_{2}}{\lambda} \left[\frac{I}{I,336} - \frac{I}{(t+273)} \right]$$

The constant c_2 is taken as 1.432 cm degrees. The equation is valid if $\lambda(t+273)$ is less than 0.3 cm degrees.

Recommended Procedure for Calibration

I. OXYGEN

The temperature of equilibrium of liquid and gaseous oxygen has been best realized experimentally by the static method, the oxygen vapor-pressure thermometer being compared with the thermometer to be standardized in a suitable low temperature bath.

2. ICE

The temperature of melting ice is realized experimentally as the temperature at which pure, finely divided ice is in equilibrium with pure, air-saturated water under standard atmospheric pressure. The effect of increased pressure is to lower the freezing point to the extent of 0.007° C per atmosphere.

3. Steam

The temperature of condensing water vapor is realized experimentally by the use of a hypsometer so constructed as to avoid superheat of the vapor around the thermometer, or contamination with air or other impurities. If the desired conditions have been attained, the observed temperature should be independent of the rate of heat supply to the boiler, except as this may affect the pressure within the hypsometer, and of the length of time the hypsometer has been in operation.

4. Sulphur

For the purpose of standardizing resistance thermometers, the temperature of condensing sulphur vapor is realized by adherence to the following specifications relating to boiling apparatus, purity of sulphur, radiation shield, and procedure.

The boiling-tube is of glass, fused silica, or similar material, and has an internal diameter of not less than 4 nor more than 6 cm. The vapor column must be sufficiently long that the bottom of the radiation shield is not less than 6 cm above the free liquid surface and its top is not less than 2 cm below the top of the heat insulating material surrounding the tube. Electric heating is preferable, although gas may be used, but the source of heat and all good conducting material in contact with it must terminate at least 4 cm below the free surface of the liquid sulphur. Above the source of heat the tube is surrounded with insulating material. Any device used to close the end of the tube must allow a free opening for equalization of pressure.

The sulphur should contain not over 0.02 per cent of impurities. Selenium is the impurity most likely to be present in quantities sufficient to affect the temperature of the boiling point.

The radiation shield is cylindrical and open at the lower end, and is provided with a conical portion at the top, to fit closely to the protecting tube of the thermometer. The cylindrical part is 1.5 to 2.5 cm larger in diameter than the protecting tube of the thermometer and at least 1 cm smaller in diameter than the inside of the boiling tube. The cylinder should extend at least 1.5 cm

TABLE 216 (continued) .- Recommended Procedure for Calibration

beyond each end of the thermometer coil. There should be ample opening at the top of the cylindrical and below the conical portion to permit free circulation of vapor. The inner surface of the shield should be a poor reflector. The shield may be made of sheet metal, graphite, etc.

In standardizing a thermometer the sulphur is heated to boiling and the heating so regulated that the condensation line is at least I cm above the top of the insulating material. The thermometer with its radiation shield is inserted in the vapor, and when the line of condensation again reaches its former level simultaneous observations of resistance and barometric pressure are made. In all cases care should be taken to prove that the temperature is independent of vertical displacements of the thermometer and shield.

5. SILVER AND GOLD

For standardizing a thermocouple, the metal to be used at its freezing point is contained in a crucible of pure graphite, refractory porcelain, or other material which will not react with the metal so as to contaminate it to an appreciable extent.

Silver must be protected from access of oxygen while heated.

The crucible and metal are placed in an electric furnace capable of heating the contents to a uniform temperature.

The metal is melted and brought to a uniform temperature a few degrees above its melting point, then allowed to cool slowly with the thermocouple immersed in it as described in the next paragraph.

The thermocouple, mounted in a porcelain tube with porcelain insulators separating the two wires, is immersed in the molten metal through a hole in the center of the crucible cover. The depth of immersion should be such that during the period of freezing the thermocouple can be lowered or raised at least I cm from its normal position without altering the indicated e.m.f. by as much as I microvolt. During freezing, the e.m.f. should remain constant within I microvolt for a period of at least five minutes.

As an alternative to displacing the couple, as a means of testing the absence of the influence of external conditions upon the observed temperature, both freezing and melting points may be observed and if these do not differ by more than 2 microvolts, the observed freezing point may be considered satisfactory.

TABLE 217.—The Standard Platinum Resistance Thermometer

The diameter of the wire should not be smaller than 0.05 or larger than 0.2 mm.

The platinum wire of the thermometer must be so mounted as to be subject to the minimum of mechanical constraint, so that dimensional changes accompanying changes of temperature may result in a minimum of mechanical strain being imposed upon the platinum.

The design of the thermometer should be such that the portion, the resistance of which is measured, shall consist only of platinum, and shall be at the uniform temperature which is to be measured. This may be accomplished by either of the accepted systems of current and potential, or compensating leads.

After completion, the thermometer should be annealed at a temperature of at least 660°.

TABLE 218 .- The Standard Thermocouple

The platinum of the standard couple shall be of such purity that the ratio R_t/R_0 is initially not less than 1.390 for $t=100^\circ$. The alloy is to consist of 90 per cent platinum with 10 per cent rhodium. The completed thermocouple must develop an electromotive force, when one junction is at 0° and the other at the freezing point of gold, not less than 10,200 nor more than 10,400 international microvolts. The diameter of the wires used for standard thermocouples should lie between the values 0.35 and 0.65 mm.

The freezing point of antimony, specified for the standardization of the thermocouple, lies within the range of o° to 660° where the international scale is fixed by the indications of the standard resistance thermometer, and the numerical value of this temperature is therefore to be determined with the resistance thermometer. In the appendix the result of such determinations is given as 630.5°, but the temperature of any particular lot of antimony which is to be used for standardizing the thermocouple is to be determined with a standard resistance thermometer.

The procedure to be followed in using the freezing point of antimony as a fixed temperature is substantially the same as that specified for silver. Antimony has a marked tendency to undercool before freezing. The undercooling will not be excessive if the metal is heated only a few degrees above its melting point and if the liquid metal is stirred. During freezing the temperature should remain constant within 0.1° for a period of at least five minutes.

TABLE 219 .- Secondary Calibration Points

These points and their temperatures on the international scale are listed below. The temperatures correspond to a pressure of one standard atmosphere. The formulas for variation of vapor pressure with temperature are for the range from 680 to 780 mm.

Boiling hydrogen $t_{\rm p} = t_{700} + 0.0044 \ (p-760)$. -252.76 Equilibrium between solid and gaseous carbon dioxide $t_{\rm p} = t_{700} + 0.1443$ $(t_{\rm p} + 273.2) \log_{10} \ (p/760)$. -78.5 Freezing mercury . -38.87 Transition of sodium sulphate 32.38 Condensing naphthalene vapor $t_{\rm p} = t_{700} + 0.208 \ (t_{\rm p} + 273.2) \log_{10} \ (p/760)$. 217.96 Freezing tin . 231.85 Condensing benzophenone vapor $t_{\rm p} = t_{700} + 0.194 \ (t_{\rm p} + 273.2) \log_{10} \ (p/760)$. 305.9 Freezing cadmium . 320.9 Freezing lead . 327.3 Freezing ginc . 419.45 Freezing antimony . 630.5 Freezing antimony . 630.5 Freezing copper in a reducing atmosphere . $1,083$ Freezing palladium . $1,553$ Melting tungsten . $3,400$ Isopentane . -159.6 f* Li ₂ SO ₃ . $1202.$ m † Carbon dioxide . -111.6 f Nickel . $1455.$ m, f
Freezing mercury -38.87 Transition of sodium sulphate. 32.38 Condensing naphthalene vapor $t_p = t_{760} + 0.208$ ($t_p + 273.2$) \log_{10} ($p/760$) 217.96 Freezing tin 231.85 Condensing benzophenone vapor $t_p = t_{760} + 0.194$ ($t_p + 273.2$) \log_{10} ($p/760$) 305.9 Freezing cadmium 320.9 Freezing lead 327.3 Freezing zinc 419.45 Freezing antimony 630.5 Freezing copper in a reducing atmosphere $1,083$ Freezing palladium $1,553$ Melting tungsten $3,400$ Isopentane -159.6 f* Li_2SO_3 $1202.$ m †
Transition of sodium sulphate. 32.38 Condensing naphthalene vapor $t_{\rm p} = t_{760} + 0.208$ ($t_{\rm p} + 273.2$) \log_{10} ($t_{\rm p}/760$) 217.96 Freezing tin 231.85 Condensing benzophenone vapor $t_{\rm p} = t_{760} + 0.194$ ($t_{\rm p} + 273.2$) \log_{10} ($t_{\rm p}/760$) 305.9 Freezing cadmium 320.9 Freezing lead 327.3 Freezing zinc 419.45 Freezing antimony 630.5 Freezing antimony 1,083 Freezing copper in a reducing atmosphere 1,083 Freezing palladium 1,553 Melting tungsten 3,400 Isopentane -159.6 f* Li_2SO_3 1202. m †
Condensing naphthalene vapor $t_p = t_{760} + 0.208$ ($t_p + 273.2$) \log_{10} ($t_p / 760$) 217.96 Freezing tin 231.85 Condensing benzophenone vapor $t_p = t_{760} + 0.194$ ($t_p + 273.2$) \log_{10} ($t_p / 760$) 305.9 Freezing cadmium 320.9 Freezing lead 327.3 Freezing zinc 419.45 Freezing antimony 630.5 Freezing copper in a reducing atmosphere 1,083 Freezing palladium 1,553 Melting tungsten 3,400 Isopentane -159.6 f* Li ₂ SO ₃ 1202. m †
Freezing tin
Condensing benzophenone vapor $t_{\rm p} = t_{700} + 0.194 \ (t_{\rm p} + 273.2) \log_{10} \ (p/760)$. 305.9 Freezing cadmium . 320.9 Freezing lead . 327.3 Freezing zinc . 419.45 Freezing antimony . 630.5 Freezing copper in a reducing atmosphere . 1,083 Freezing palladium . 1,553 Melting tungsten . 3,400 Isopentane159.6 f* Li_2SO_3 . 1202. m †
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Freezing palladium 1,553 Melting tungsten 3,400 Isopentane -159.6 f* Li ₂ SO ₃ 1202. m \dagger
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Isopentane — 159.6 f* Li ₂ SO ₃ 1202. m†
Carbon dioxide
Toluene
Ethyl acetate
Carbon tetrachloride - 22 0 f

^{*} f, freezing. † m, melting.

DIRECTIONS FOR USE OF STANDARD THERMOELEMENT CALIBRATIONS

Deviation curves.—Standard tables such as are given on pages 245-247 have no absolute significance; they are reference curves that, while representing fairly well the e.m.f. functions for certain couples, are intended for use with an appropriate deviation curve. The correction curve is determined for each element by calibration at several fixed points—preferably three or more—given in the tables. It is constructed by plotting ΔE as ordinate ($\Delta E = E$ observed minus E standard) against $E_{\rm obs}$. In order to obtain the temperatures corresponding to the measured e.m.f., the appropriate value of ΔE (obtained from its deviation curve by inspection) is subtracted algebraically from the observed value of E before the latter is converted into degrees by means of the table. The required accuracy may be secured by plotting the deviation curve on a small scale; coordinate paper 20 by 20 cm is ample. There need be no fear of error with this method even with deviations of several hundred $\mu \mathbf{v}$, especially if sufficient calibration points are taken.

Fixed-junction correction.—Thermocouples have two junctions. The "business end" is usually called the hot junction, and the other, the cold junction.

The calibration tables are made on the assumption that the fixed junction is maintained at 0° C. The standard method is to use a vacuum-jacketed flask filled with ice into which is inserted the junction protected by a glass tube closed at one end and partly filled with kerosene. If it is not feasible to have the fixed junction at 0°, a fixed-junction correction must be applied. This correction, in general, is not equal to the temperature of the fixed junction and depends on both the temperature T_0 of the fixed junction and the temperature T of the variable junction. It may be applied by either of the following two methods.

(1) The e.m.f. corresponding to T_0 may be added directly to the e.m.f. E_{T-T_0} and the resultant e.m.f. E_T , converted into degrees by means of the proper table (Tables 221-225). Thus if a platinum-platinrhodium couple gives a reading of $6000\mu v$ (microvolts), T_0 being 50°, the value of E_{T_0} , according to Table 221, is $298\mu v$ which added to 6000 gives 6298 as the value of E_T , which by referring to the table corresponds to $T=703.6^\circ$. This method of correction is mathematically exact. (2) Multiply the fixed junction temperature by a factor, $f=(dE/dt)_0/(dE/dt)$, the ratio of the mean e.m.f. temperature gradient between 0° and t_f to the gradient at t, and add the product to t', the uncorrected temperature, or $t=t'+ft_f$. The e.m.f. temperature gradients may be obtained by taking the reciprocals of the numbers corresponding in successive vertical difference of the numbers in the vertical columns.

TABLE 221,-Standard Calibration Curve for Pt-PtRh (10% Rh) Thermoelement

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by calibration of the particular element at some of the following fixed points:

Water Naphthalene Tin Benzophenone Cadmium Zinc Sulphur	boiling-pt. melting-pt. boiling-pt. melting-pt. melting-pt. boiling-pt.	100.0 217.95 231.9 305.9 320.9 419.4	643mv 1585 1706 2365 2503 3430	Silver Gold Copper Li ₂ SiO ₃ Diopside Nickel	melting-pt	960.2 1062.6 1082.8 1201. 1391.5 1452.6	9111mv. 10296 10534 11941 14230 14973
Antimony Aluminum	melting-pt.	444.55 630.0 658.7	3672 5530 5827	Palladium Platinum	** **	1549.5 1755.	16144 18608

E	0	1000.	2000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.	Е
micro- volts.				7	CEMPERAT	URES, 0	C.				micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.0 17.8 34.5 50.3 65.4 80.0 94.1 107.8 121.2 134.3 147.1	147.1 159.7 172.1 184.3 196.3 208.1 219.7 231.2 242.7 254.1 265.4	265.4 276.6 287.7 298.7 309.7 320.6 331.5 342.3 353.0 363.7 374.3	374-3 384-9 395-4 405-9 416.3 426.7 437-1 447-4 457-7 467-9 478.1	478.1 488.3 498.4 508.5 518.6 528.6 538.6 548.6 558.5 568.4 578.3	578.3 588.1 597.9 607.7 617.4 627.1 636.8 646.5 656.1 665.7 675.3	675.3 684.8 694.3 703.8 713.3 722.7 732.1 741.5 750.9 760.2 769.5	769.5 778.8 788.0 797.2 806.4 815.6 824.7 833.8 842.9 852.0 861.1	861.1 870.1 879.1 888.1 897.1 906.1 915.0 923.9 932.8 941.6	950-4 950-2 968.0 976.7 985-4 994-1 1002.8 1011.5 1020.1 1028.7	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.
E	10000.	11000.	12000	D. 1300	00. 14	000.	15000.	16000.	17000.	18000.	E
micro- volts.					TEMPERA	rures, c	C.				micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	1037.3 1045.9 1054.4 1062.9 1071.4 1079.9 1088.4 1096.9 1105.4 1113.8 1122.2	1122.2 1130.6 1139.0 1147.4 1155.8 1164.2 1172.5 1180.9 1189.2 1197.6	1214- 1222- 1230- 1239- 1247- 1255- 1264- 1272- 1281-	2 129 6 130 9 131 3 132 6 133 9 133 3 134 6 135 0 136	7.7 13 6.0 13 4.3 13 2.6 14 0.9 14 9.2 14 7.5 14 5.8 14 4.1 14	80.7 89.0 97.3 05.6 13.8 22,0 30.2 38.4 46.6	1454.8 1463.0 1471.2 1479.4 1487.7 1496.0 1504.3 1512.6 1520.9 1529.2 1537.5	1537.5 1545.8 1554.1 1562.4 1570.8 1570.1 1587.5 1595.8 1604.2 1612.5 1620.9	1620.9 1629.2 1637.6 1645.9 1654.3 1662.6 1670.9 1679.3 1687.6 1696.0	1704.3 1712.6 1721.0 1729.3 1737.7 1746.0 1754.3	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.

TABLE 222 .- Standard Calibration Curve for Copper-Constantan Thermoelement

For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the

Water, boiling-point, 1000, 4276 microvolts; Naphthalene, boiling-point, 217.95, 10248 mv.; Tin, melting-point, 231.9, 11009 mv.; Benzophenone, boiling-point, 305.9, 15203 mv.; Cadmium, melting-point, 320.9, 16083 mv.

E. micro- volts.	0	1000.	2000.	3000.	4000. Tempe	5000.		7000.	8000.	9000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.00 2.60 5.17 7.73 10.28 12.81 15.33 17.83 20.32 22.80 25.27	27.72 30.15 32.57 34.98 37.38 39.77 42.15 44.51	49.20 51.53 53.85 56.16 58.46 60.76 63.04 65.31 67.58 69.83 72.08	72.08 74.31 76.54 78.76 80.97 83.17 85.37 87.56 89.74 91.91	94.07 96.23 98.38 100.52 102.66 104.79 106.91 109.02 111.12 113.22	115.31 117.40 119.48 121.56 123.63 125.69 127.75 129.80 131.84 133.88	135.91 137.94 139.96 141.98 143.99 146.00 148.00 150.00 151.99 153.97	155.95 157.92 159.89 161.86 163.82 165.78 167.73 169.68 171.62 173.56	175.50 177.43 179.36 181.28 183.20 185.11 187.02 188.93 190.83 192.73	194.62 196.51 198.40 200.28 202.16 204.04 205.91 207.78 209.64 211.50 213.36	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.
E micro- volts.	10000.	11000.	1	2000. 13000. 14000. 15000. 16000. 17000. 18000. Temperatures, °C.							E micro-volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	213.36 215.21 217.06 218.91 220.75 222.59 224.43 226.26 228.09 229.92 231.74	235.38 237.20 239.01 240.82 242.63 244.43 246.23	56 25 8 25 9 25 1 25 2 25 3 26 3 26 3 26 3 26	1.61 3.40	267.60 269.36 271.12 272.88 274.64 276.40 278.15 279.90 281.65 283.39 285.13	285.13 286.87 288.61 290.35 292.08 293.81 295.54 297.26 298.98 300.70 302.42	302.42 304.14 305.85 307.56 309.27 310.98 312.69 314.39 316.09 317.79 319.49	319.49 321.19 322.88 324.57 326.26 327.95 329.64 331.32 333.00 334.68 336.36	336.36 338.04 339.72 341.40 343.07 344.74 346.41 348.08 349.75 351.42 353.09	353.09	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.

TABLE 223.—Standard Calibration Curve for Copper—Constantan Thermoelement, Temperatures Below $0^{\circ}C$

E µV	-5000	-4000	-3000	-2000	-1000	o
0			- 87.86	-55.81	-26.82	0
100	-174.34	-128.47	- 91.28	-58.86		- 2.60
200	-179.74	-132.56	- 94.74	-61.94	-32.42	- 5.22
300		-136.74 4.28		-65.05	-35.26	- 7.85
400	-191.27	-141.02	-101.82	-68.20	-38.12	-10.50
500	-197.44	-145.4I	-105.45	-71.39	-41.01	-13.17
600	-203.95	-149.91	3.68 -109.13 3.74	-74.61	-43.91	-15.86
700	-210.92	-154.52	-112.87 3.80	-//.0/	-46.84 2.96	-10.5/
800	-218.47	-159.25 4.87	-116.67 3.86	-81.16	-49.80	-21.30 2.75
900		-164.12	-120.53 3.93 -124.46	-84.49	-52.79	-24.05
1000		-169.14	-124.46	-87.86	-55.81	-26.82

TABLE 224.-Melting Points of Some Purified Salts, 400-1300°C

(Roberts, some new standard melting points at high temperatures, Phys. Rev., 2d ser., 23, 386, 1924, which see for technique of their use.)

45 KCl + 55 Na ₂ SO ₄ by wt 517.1 30.5 NaCl + 69.5 Na ₂ SO ₄ by wt. 627.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
--	---

^{*} Potassium sulphate has sharp inversion point at 583° ± 1.

STANDARD CALIBRATION CURVE FOR CHROMEL-ALUMEL THERMOELEMENT*

_						
E mv	-0	0	10	20	30	40
0	0.0	0.0	250.1	490.5	733.8	991.3
0.5	- 12.7	12.6 12.6	263.I	502.4	746.3	1004.8
	13.1	12.4	12.9	12.0	12.5	13.6
1.0	- 25.8 13.4	25.0	276.0	514.4	758.8	1018.4
1.5	- 39.2	37.3	288.7	526.4	771.3	1032.2
2.0	- 53.0	49.5	301.2	538.4	783.9	13.8
	14.4	12.2	12.3	12.0	12.6	13.9
2.5	- 67.4 15.0	61.7	313.5	550.4	796.5	1059.9
3.0	- 82.4	73.8	325.6	562.4	809.2	1074.0
3.5	- 98.2	85.9	337.5	574.5	821.9	1088.1
	16.8	12.2	11.6	12.1	12.7	14.2
4.0	-115.0 18.1	98.1	349.1	586.6	834.6	1102.3
4.5	-133.1	110.3	360.6	598.7	847.4	1116.7
5.0	-153.2	12.4	372.I	610.8	860.2	14.5
	22.8	12.5	11.7	12.2	12.9	14.5
5.5	-176.0 28.5	135.2	383.8	623.0	873.1	1145.7
6.0	-204.5	147.8	395.6	635.2	886.0	1160.3
6.5		160.4	407.4	647.4	13.0 899.0	1175.0
		12.7	11.8	12.3	13.0	14.8
7.0		173.1	419.2	659.7	912.0	1189.8
7.5		185.8	431.0	672.0	925.1	1204.6
8.0		198.6	11.9	684.3	938.2	(1220.0)
0 -		12.8	11.9	12.3	13.2	15.0
8.5		211.4	454.8	696.6	951.4	(1235.0) 16.0
9.0		224.3	466.7	709.0	964.6	(1251.0)
9.5		237.2	478.6	721.4	977.9	(1267.0)
		12.9	11.9	12.4	13.4	16.0
10.0		250.1	490.5	733.8	991.3	(1283.0)

^{*}Standard calibration curve for chromel-alumel (Hoskins) thermocouple giving the temperature and temperature differences for every 0.5 millivolt. Fixed junction is at 0°. For use in conjunction with a deviation curve determined by calibration of the particular couple at some of the following fixed points:

	Degrees C	Milli- volts	Degrees C	Milli- volts
S, boiling point			Au, melting point 1063.0	42.60
Sb, melting point.			Cu (in air), melting	
Al, melting point.	660.0	27.00	point	42.68
Ag, melting point.	960.2	38.83	Cu (pure), melting point. 1082.8	43.31

OPTICAL PYROMETRY

(The following discussion is abbreviated from Dushman, Rev. Mod. Phys., 2, 387, 1930.)

Data on various substances are now available by which accurate determinations may be made of the temperature of an emitting surface. For a comprehensive review see Lax and Pirani, Handb. Phys., 19, 1-45; 21, 190-272, Julius Springer, Berlin, 1929. Data on total radiation from various bodies have been summarized by Coblentz (I.C.T. 5, 238-245, 1929).

Undoubtedly the most accurate method consists in determining the brilliancy (candles/cm²). The temperature coefficient (dB/B)/(dT/T) where B= brightness in international candles/cm², for W varies from 22.75 at 1000° K. to 8.45 at 3000° K. (Jones, Langmuir, Gen. Elec. Rev., 30, 310, 354, 408, 1927). With the exception of electron emission and the rate of evaporation, the candlepower shows the greatest temperature variation.

While the values of B as a function of T are available for several substances, a fair approximation is possible to the true T of a substance for which the average luminous emissivity is unknown by the following methods. (Average luminous emissivity means the ratio of the total normal brightness to that of a black-body at the same T. For W this value is from 0.464, $T = 1000^{\circ}$ K. to 0.440, $T = 3000^{\circ}$ K., Forsythe, Worthing, Astrophys. Journ., 61, 126, 1925).

With a photometer determine the temperature T_c at which substance emits light of the *same color* as a black-body—a value higher than the true temperature. The following table is due to Worthing-Forsythe:

T_c (tungsten)	True T	$(T_c - T)/T$	T_{s} (tungsten)
1006° K.	1000° K.	0.006	966° K.
1517	1500	.011	1420
2033	2000	.0165	1857
2557	2500	.023	2274
3094	3000	.031	2673

The brightness may be compared with a standard lamp for a given wave length, usually 0.665μ . The temperature found is called the brightness temperature, T_s , lower than the true temperature, increasingly so with decrease in e_λ , the emissivity for this wave length, and increasing with the temperature. Thus for w, e_λ for $\lambda = 0.665\mu$ varies from 0.456, $T = 1000^\circ$ K. to 0.415, $T = 3000^\circ$ K. and the observed values T_s are given in the preceding table. From these determinations of T_c and T_s fairly approximate values of T may be deduced.

It is possible to determine the actual value of e_{λ} by methods described by both Langmuir, Worthing and Forsythe, then calculate T, the true temperature from optical pyrometer measurements of T. See Forsythe, Journ. Opt. Soc. Amer., 16, 307, 1928; Journ. Amer. Ceram. Soc., 12, 780, 1929; Foote, Fairchild, Symposium on Pyrometer, Amer. Inst. Mining and Metallurg. Eng., 338, 324, 1920; also loc. cit., p. 291, 367, 285.

At temperatures below 1100-1200° K. optical methods become impractical, and radiation in watts radiated per unit area or resistance must be used. Data on energy radiated as a function of the temperature have been summarized by Lax and Pirani, Handb. Phys., 21, 236-240, for W, Mo, Ta, Pr, Os, Au, Ni, Fe, C, Ag, Cu, and Zr.

TABLE 227 .- Correction for Temperature of Emergent Mercurial Thermometer Thread

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to $n\beta(T-t)$, where n is the number of degrees in the exposed stem, β the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stem. For temperatures up to 100° C, the value of β is for Jena 16III or Greiner and Friedrich resistance glass, 0.000159, for Jena 59III, 0.000164, and when of unknown composition it is best to use a value of about 0.000155. The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (1) by a "fadenthermometer" (see Buckingham, Bulletin Bureau of Standards, 8, p. 239, 1912); (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to the stem, a single thermometer. Table 228 is taken from the Smithsonian Meteorological Tables.

TABLE 228 .- Stem Correction for Centigrade Thermometers

Values of 0.000155n(T-t).

				(T-	-t).			
n	10°	20°	30°	40°	50°	60°	70°	80°
10° C	0.02	0.03	0.05	0.06	0.08	0.09	0.11	0.12
20	0.03	0.06	0.09	0.12	0.16	0.19	0.22	0.25
30	0.05	0.09	0.14	0.19	0.23	0.28	0.33	0.37
40	0.06	0.12	0.19	0.25	0.31	0.37	0.43	0.50
50	0.08	0.16	0.23	0.31	0.39	0.46	0.54	0.62
60	0.09	0.19	0.28	0.37	0.46	0.56	0.65	0.74
70	0.11	0.22	0.33	0.43	0.54	0.65	0.76	0.87
80	0.12	0.25	0.37	0.50	0.62	0.74	0.87	0.99
90	0.14	0.28	0.42	0.56	0.70	0.84	0.98	1.12
100	0.16	0.31	0.46	0.62	0.78	0.93	1.08	1.24

TABLE 229.—Reduction of Gas Thermometers to Thermodynamic Scale

The final standard scale is Kelvin's thermodynamic scale, independent of the properties of any The final standard scale is Kelvin's thermodynamic scale, independent of the properties of any substance, a scale resulting from the use of a gas thermometer using a perfect gas. A discussion of this is given by Buckingham, Bur. Standards Bull., 3, 237, 1907: "The thermodynamic correction of the centigrade constant-pressure scale at the given temperature is very nearly proportional to the constant pressure at which the gas is kept" and "the thermodynamic correction to the centigrade constant-volume scale is approximately proportional to the initial pressure at the ice point." These two rules are very convenient, since from the corrections for any one pressure, one can calculate approximately those for the same gas at any other pressure.

The highest temperature possible is limited by the container for the gas. Day and Sosman carried a platinum-rhodium gas thermometer up to the melting point of palladium. For most work, however, the region of the gas thermometer should be considered as ending at ahout 1000° C (1273° K.).

Note: All corrections in the following table are to be added algebraically.

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907.

Scale Corrections for Gas Thermometers.

Temp.	Cons	tant pressure = 1	00 cm	Constant vol	ol., $p_0 = 100 \text{ cm}, t_0 = 0^{\circ}\text{C}$			
°C	Не	Н	N	He	Н	N		
- 240° - 200 - 100 - 50 + 25 + 50 + 75 + 150 + 200 + 450 + 1500		+1.0 + .26 + .03 + .02 003 003 003 + .01 + .02 +0.04		+0.02 + .01 .000 .000 .000 .000 -000 -000	+0.18 + .06 + .010 + .004 .000 .000 001 + .002 +0.01			

TABLE 230 PRACTICAL THERMOELECTRIC SCALES

(Comparisons)

(Adapted from Roeser, Bur. Standards Res. Paper 99, 1929, which see for details of use.)

Prior to the adoption of the International Temperature Scale, the Pt-Pt10% Rh thermocouple was almost universally used for scales 450° to 1100°C, and defining equations were quadratic or cubic depending upon the number of calibration points.

The scale based on the work of Holborn and Day was calibrated at the freezing point of Zn (419.0°C), Sb (630.6°C) and Cu (1084.1°C) and a quadratic equation, E = a + vt + ct, for interpolation. This was almost universally used from 1900-1909. Work of Waidner, Burgess, 1909, and Day, Sosman, 1910-1912, necessitated a readjustment. In 1912 the Bureau of Standards redefined its scale, assigning values determined with the resistance thermometer to the Zn and Sb points, while the freezing point of Cu was taken as 1083.0°C. This 1912 scale, used from 1912–1916, will be called the Zn,Sb,Cu temperature scale. A scale proposed by Sosman and revised by Adams (Journ. Amer. Chem. Soc., 36, 65,

1914) was realized by using a standard reference table, giving the average t,e.m.f. relation for thermocouple used by Day and Sosman. A deviation curve, determined by any other couple by calibration at several points would be plotted relating the difference between observed e.m.f. and the e.m.f. from the reference table against the obs. e.m.f. of the couple. This scale, although very convenient, is not completely defined and no comparison is made

In 1916, the Physikalische-Technische Reichsanstalt adopted a scale with the couple calibrated at the Cd point (320.9°C), Sb (630°C), An (1063°C) and Pd (1557°C). No comparison will be made here.

A scale adopted by the Bureau of Standards in 1916 was defined by calibration at the Zn and Al points with a Cu point (1083.0°C). This was used from 1916-1926 and is here

designated the Zn,Al,Cu scale.

The scale adopted by the P.T.R. and the Bureau of Standards in 1924 was calibrated

at Zn and Sb points (determined by resistance thermometer) and the Ag point (960.5°C) and the Au point (1063.0°C). It will be designated the Zn,Sb,Ag,Au scale.

The 1927 7th Annual Conference of Weights and Measures (31 nations) unanimously adopted what is between 660° and 1063°C the Zn,Sb,Ag,Cu scale with the Zn point omitted. The table below shows a comparison of the various scales. The following values for the freezing points were used:

Zn 419.47°C Al 659.23°C Sb 630.52°C Ag 960.5°C Al 659.23°C Au 1063.0°C Cu (reducing atm.e) 1083.0°C

Table 231 gives the corresponding difference of temperature.

Comparison of t°C—e.m.f. relations with International Temperature Scale. (Comparisons with two thermo-couples are given.)

	E.m.f. in	microvolts f Thermo		ure scales,	E.m.f. in	microvolts f Thermo	or temperat couple B	ure scales,
Tempera- ture (°C)	Zn, Sb, and Cu	Zn, Al, and Cu	Zn, Sb, Ag, and Au	Interna- tional tempera- ture scale	Zn, Sb, and Cu	Zn, Al, and Cu	Zn, Sb, Ag, and Au	Interna- tional tempera- ture scale
419-47 450 500 550 600 630.52 650 659.23 700 750 800 850 900 950 960.50	3438.2 3732.9 4222.6 4720.9 5227.9 5541.6 5743.5 5839.7 6267.8 6800.8 7342.5 7892.8 8451.8 9019.5 9139.8 9595.8 10180.8	3438.2 3732.8 4222.2 4720.4 5227.2 5540.9 5742.8 5838.9 6267 6800 7341.7 7892.1 8451.2 9019 9139.3 9595.5	3438.2 3733.4 4223.3 4721.6 5228.2 5541.6 5743.3 5839.3 6267 6799.3 7340.3 7890.2 8449.1 9017 9137.4 9594 10180.3	3447-5 3740-5 4227-6 4723-7 5228-8 5541-6 5743 5838-9 6266.1 6798-3 7339-4 7889-6 8448-8 9016-9 9137-4 9594-1 10180-3	3435.6 3729.8 4218.6 4716 5221.9 5535 5736.5 5832.4 6259.7 6791.5 7331.9 7880.9 8438.5 9004.8 9124.8 9579.6	3435.6 3729.6 4218.2 4715.4 5221.2 5534.2 5735.7 5831.6 6258.8 6790.6 7331 7880.1 8437.8 9004.2 9124.2 9579.2	3435.6 3730.2 4219.3 4716.6 5222.4 5535 5736.3 5832.1 6258.8 6790 7329.8 7878.4 8435.8 9002.3 9122.4 9577.8 10162.5	3444-7 3737-2 4223-5 4718-7 5222-9 5535 5736 5831-6 6258 6789 7328-9 7877-7 8435-5 9002-2 9122-4 9577-9 10162-5
1063 1083 1100	10334.4 10571.7 10774.5	10334.3 10571.7 10774.6	10334.2 10572.3 10775.8	10334.2 10572.1 10775.5	10316.1 10552.8 10755.1	10316 10552.8 10755.2	10316 10553.4 10756.4	10316 10553.3 10756.1

TABLE 231.—Temperature Differences between I.T.S. and various Older Scales

°C	I.T.S ZnSb- Cu	I.T.S ZnAl- Cu	I.T.S ZnSb- AgAu		I.T.S ZnSb- Cu	I.T.S ZnAl- Cu	l.T.S ZnSb- AgAu		I.T.S ZnSb- Cu	I.T.S ZnAl- Cu	I.T.S ZnSb- AgAu
600 700 750 800 850	24 28	08		950 960.5		81. – 61. –		1063		-	

TABLE 232 .- Conversion Factors for Units of Work

	Joules	Foot- pounds	Kilogram- meters	15° Calories	British thermal units	Kilowatt- hours
I Joule = I Foot-pound = I Kilogram-meter = I 15° Calorie = I British thermal unit = I Kilowatt-hour =	1.356* 9.807* 4.183	0.7376† I 7.234 3.085† 777.5† 2 655 000.†	0.1020† 0.1383 I 0.4267† 107.5† 367 200.†	0.3241* 2.345* 1	0.001286* 0.009302* 0.003965	0.2778 × 10 ⁻⁶ 0.3767 × 10 ⁻⁶ * 2.724 × 10 ⁻⁶ * 1.162 × 10 ⁻⁶ 0.0002928

The value used for g is the standard value, 980.665 cm. per sec. per sec. = 32.174 feet per sec. per sec. * The values thus marked vary directly with "g." † The values thus marked vary inversely with "g." For values of "g" see Tables 706-709.

TABLE 233.—Value of the English and American Horsepower (746 watts) in Local Foot-pounds and Kilogram-meters per Second at Various Altitudes and Latitudes

Kilogram-meters per second							Foot-pounds per second					
Altitude			Latitude			Latitude						
	o°	30°	45°	60°	90°	0°	30°	45°	60°	90°		
o km 1.5 " 3	76.297	76.197	76.095	75.995	75.873 75.895 75.918	551.86	551.13	550.41	549.52 549.68 549.85	548.95		

TABLE 234.-Nonflammable Liquids for Cryostats (Taken from Kanolt, Bur. Standards Sci. Paper, 520, 1926.)

Liquid		C	Cl ₄	CHCl ₃	4*	C ₂ H,	₅Br	32	39* N	No. 40
Freezing point	°C	_	-23	-63	-81	-11	9 -1	39 -	145	- 150土
*Compositions	: No. 4: CO	214. 49	.4%: (CHCĬ ₂ . •	50.6%.			0)	10	
	No. 32;	CHCI	. 10.7	%: C ₂ F	I.Br. 1	4.0%:	C ₂ H ₂ C	lo. T3.8	3%: C	HCla.
	21.6%.	011010	, +2.1	701 021	13221 4	4.2/01	021120	2, 23.	,,,,	2220-07
	No. 39;	CHCI.	14 5	07. C.F	L-Br 2	2 10%.	C.H.C	1. 10	10% · C	HCl.
	16.4%;	CH.C	1. 25	207	isDr, 3	3.4/01	C2112C	12, 10.2	+/0,	211013,
	N= 10.470,	LICI	12, 25.	370·	1 0 007	CIL	D	C. C	II Cl	- 2-07 .
	No. 40; C	ПСІ3,	17.9%	; $C_2\Pi_5C$	1, 9.3%	$; C_2\Pi_{5}$	br, 40.7	%; C2.	$\Pi_2 \subset I_2$,	12570;
	C_2HCl_3	, 19.6%	0.							
		-80°C	-90°	-100°	-110°	-120°	-130°	-140°	-145°	-150°
Viscosities in	C₂H₅Br	1.81	2.25	2.89	3.86	5.6				
centipoises:	No. 32		3.03	4.57	7.4	13.7	29.3	81		
· ·	No. 34	1.97	2.57	3.69	5.6	10	22.3	85	242	1480
	No. 40		2.88	3.89	5.9	10.2	22.5	71	170	631
	40			0.09	0.9		-2.5	1.	-10	-0-
* Because of	volatility	and o	xidatio	on of so	me, the	ese liar	iids sho	ould be	kept i	n well

stoppered bottles when not in use.

TABLE 235

MELTING AND BOILING POINTS OF THE CHEMICAL ELEMENTS

Element	Symbol and atomic no.	Melting point °C	Boiling point °C	Element	Symbol and atomic no.	Melting point °C	Boiling point °C
Aluminum Antimony	Al 13 Sb 51 A 18 As 33 Ba 56	659.7 630.5 - 189.2 (820) 850	1800 1380 - 185.7 615.8 1140	Molybdenum Neodymium Neon Nickel Nitrogen	Mo 42 Nd 60 Ne 10 Ni 28 N 7	2620 840 - 248.67 - 1455 - 209.86	3700 - 245.9 2900 - 195.81
Beryllium Bismuth Boron Bromine Cadmium	Be 4 Bi 83 B 5 Br 35 Cd 48	1350 271.3 2300 - 7.2 320.9	(1500) 1450 58.8 766	Osmium Oxygen Ozone Palladium Phosphorus	Os 76 O 8 O ₃ Pd 46 P 15	2700 - 218.4 - 251.4 1553 44.1	(>5300) - 183 - 112 2200 280
Calcium Carbon Cerium Cesium Chlorine	Ca 20 C 6 Ce 58 Cs 55 Cl 17	810 >3500 640 26 - 101.6	1170 (4200) 1400 670 - 34.7	Platinum Potassium Praseodymium Radium Radon	Pt 78 K 19 Pr 59 Ra 88 Rn 86	1773.5 62.3 940 960 — 110	4300 760 1140
Chromium Cobalt Columbium Copper Dysprosium	Cr 2.4 Co 27 Cb 41 Cu 29 Dy 66	1615 1480 1950 1083	2200 3000 2900 2300	Rhenium Rhodium Rubidium Ruthenium Samarium	Re 75 Rh 45 Rb 37 Ru 44 Sm 62	(3000) 1985 38.5 2450 >1300	>2500 700 >2700
Erbium Europium Fluorine Gadolinium Gallium	Er 68 Eu 63 F 9 Gd 64 Ga 31	- 22 ₃	- 187 >1600	Scandium Selenium	Sc 21 Se 34 Si 14 Ag 47 Na 11	1200 220 1420 960.5 97.5	(2400) 688 2600 1950 880
Germanium Gold	Ge 32 Au 79 Hf 72 He 2 Ho 67	958.5 1063 (1700) <-272	(2700) 2600 (>3200) - 268.94	Strontium Sulphur Tantalum Tellurium Terbium	Sr 38 S 16 Ta 73 Te 52 Tb 65	800 113-119 2850 452	1150 444.6 (>4100) 1390
Hydrogen Indium	H I In 49 I 53 Ir 77 Fe 26	- 259.14 155 113.5 2350 1535	- 252.8 >1450 184.35 (>4800) 3000	Thallium Thorium Thulium Tin Titanium	Tl 81 Th 90 Tm 69 Sn 50 Ti 22	303.5 1845 231.89 1800	1650 >3000 2260 (>3000)
Krypton Lanthanum Lead Lithium Lutecium	Kr 36 La 57 Pb 82 Li 3 Lu 71	- 169 826 327.4 186	- 151.8 1800 1620 >1200	Tungsten Uranium Vanadium Xenon Ytterbium	W 74 U 92 V 23 Xe 54 Yb 70	3370 <1850 1710 - 140	(3000) - 109.1
Magnesium Manganese Mercury	Mg 12 Mn 25 Hg 80	651 1260 - 38.87	1100 1900 356.90	Yttrium Zinc Zirconium	Y 39 Zn 30 Zr 40	1490 419.47 1900	(2500) 907 >2900

(Metals in heavy type are often used as standard melting points.)

TABLE 236 - Effect of Pressure on Melting Point

Substance.	Melting point at 1 kg/sq. cm	Highest experimental pressure: kg/sq. cm	dt/dp at r kg/sq. cm	Δt (observed) for 1000 kg/sq. cm	Reference
Hg K Na Bi Sn Bi Cd	-38.85 59.7 97.62 271.0 231.9 270.9 320.9 327.4	12,000 2,800 12,000 12,000 2,000 2,000 2,000 2,000	0.00511 0.0136 0.00860 -0.00342 0.00317 -0.00344 0.00609 0.00777	5.1* 13.8 +12.3† -3.5† 3.17 -3.44 6.09 7.77	1 2 4 4 3 3 3 3 3 3 3 3

* Δt (observed) for 10,000 kg/sq. cm is 50.8°.

† Na melts at 177.5° at 12,000 kg/cm²; K at 179.6°; Bi at 218.3°; Pb at 644°. Luckey obtains melting point for tungsten as follows: 1 atme, 3623° K; 8, 3594; 18, 3572; 28, 3564. Phys. Rev. 1917.

References: (1) P. W. Bridgman, Proc. Am. Acad. 47, pp. 391-96, 416-19, 1911; (2) G. Tammann, Kristallisieren und Schmelzen, Leipzig, 1903, pp. 98-99; (3) J. Johnston and L. H. Adams, Am. J. Sci. 31, p. 516, 1911; (4) P. W. Bridgman, Phys. Rev. 6, 1, 1915.

A large number of organic substances, selected on account of their low melting points, have

also been investigated: by Tammann, *loc. cit.*; G. A. Hulett, Z. physik. Chem. 28, p. 629, 1899; F. Körber, *ibid.*, 82, p. 45, 1913; E. A. Block, *ibid.*, 82, p. 403, 1913; Bridgman, Phys. Rev. 3, 126, 1914; Pr. Am. Acad. 51, 55, 1915; 51, 581, 1916; 52, 57, 1916; 52, 91, 1916. The results for water are given in the following table.

TABLE 237 .- Effect of Pressure on Freezing Point of Water *

Pressure: † kg/sq. cm	Freezing point.	Phases in Equilibrium.
1 1,000 2,000 2,115 3,000 3,530 4,000 6,000 6,380 8,000 12,000 16,000 20,000	0.0 -8.8 -20.15 -22.0 -18.40 -17.0 -13.7 -1.6 +0.16 12.8 37.9 57.2 73.6	Ice I — liquid. Ice III — liquid (triple point). Ice III — liquid (triple point). Ice III — ice V — liquid (triple point). Ice V — liquid. Ice V — liquid. Ice V I — liquid (triple point). Ice VI — liquid.

^{*} P. W. Bridgman, Proc. Am. Acad. 47, pp. 441-558, 1912. \dagger 1 atm. = 1.033 kg/sq. cm.

TABLE 238 .- Effect of Pressure on Boiling Point *

Metal.	Pressure.	° C	Metal.	Pressure.	° C	Metal.	Pressure.	° C
Bi	10.2 cm Hg.	1200	Ag	26.3 cm Hg.	1780	Pb	20.6 cm Hg.	1410
Bi	25.7 cm Hg.	1310	Cu	10.0 cm Hg.	1980	Pb	6.3 atme.	1870
Bi	6.3 atme.	1740	Cu	25.7 cm Hg.	2180	Pb	11.7 atme.	2100
Bi	11.7 atme.	1950	Sn	10.1 cm Hg.	1970	Zn	11.7 atme.	1230
Bi	16.5 atme.	2060	Sn	26.2 cm Hg.	2100	Zn	21.5 atme.	1280
Ag	10.3 cm Hg.	1660	Pb	10.5 cm Hg.	1315	Zn	53.0 atme.	1510

^{*} Greenwood, Pr. Roy. Soc., p. 483, 1910.

DENSITIES AND MELTING AND BOILING POINTS OF INORGANIC COMPOUNDS

	TING AND BOILING						_
Substance.	Chemical formula.	Density, about 20° C	Melting point C	Authority.	Boiling point C	Pres- sure mm	Authority.
Aluminum chloride	AlCl ₃		190.	I	183.°	752	I
" nitrate	$Al(NO_3)_3 + 9H_2O$		72.8	2	134.*		
" oxide	$\mathrm{Al_2O_3}$	4.00	2050.	28	_		_
Ammonia	$ m NH_3$	<u> </u>	-75.	3	-33.5	760	7
Ammonium nitrate	NH_4NO_3	I.72	165.		210.*		
" sulphate	$(NH_4)_2SO_4$	1.77	140.	4	_	-	
" phosphite	$NH_4H_2PO_3$		123.	5	150.*		_
Antimony trichloride	$SbCl_3$	3.06	73.		223.	760	
" pentachloride	SbCl ₅	2.35	3.	11	102.	68	14
Arsenic trichloride	AsCl ₃	2.20	-18.	8	130.2	760	23
Arsenic hydride	AsH_3		-113.5	6	-54.8	760	6
Barium chloride	$BaCl_2$	3.86	960.	11		·	—
" nitrate	$Ba(NO_3)_2$	3.24	575.	24			_
" perchlorate	$Ba(ClO_4)_2$		505.	10			_
Bismuth trichloride	BiCl₃	4.56	232.5		440.	760	—
Boric acid	H_3BO_3	1.46	185.			,	
" anhydride	B_2O_3	1.79	577.				
Borax (sodium borate)	$Na_2B_4O_7$	2.36	741.	27	_	l —	_
Cadmium chloride	$CdCl_2$	4.05	560.	25	900 ±		9
" nitrate	$Cd(NO_3)_2 + _4H_2O$	2.45	59.5	2	132.	760	4
Calcium chloride	CaCl ₂	2.26	774.0			700	
" chloride	$CaCl_2 + 6H_2O$	1.68	29.6	_			
" nitrate	$Ca(NO_3)_2$	2.36	499.	24		_	
" nitrate	$Ca(NO_3)_2 + 4H_2O$	1.82	42.3	26	132.*		
" oxide	CaO	3.3	2570.	28	132.		_
Carbon tetrachloride	CCl ₄		-24.	22	76.7	760	23
" trichloride	C_2Cl_6	1.59	184.		70.7	700	23
" monoxide	CO	1.63	-207.	6	-100.	760	6
" dioxide	CO_2	1.56	-57.		-80.	subl.	_
" disulphide	CS_2	1.26	-110.	3	46.2	760	_
	$HClO_4 + H_2O$	1.81		13	40.2	700	_
Chloric (per) acid Chlorine dioxide	ClO_2	1.01	50.	15		727	21
	$KCr(SO_4)_2 + 12H_2O$	1.83	-76. 89.	3	9.9	731	
Chrome alum	$Cr_2(NO_3)_6 + 18H_2O$	1.03	_	2	T.70	760	2
" nitrate	$Cr_2(NO_3)_6 + 1011_2O$ Cr_2O_3	ł	37.	28	170.	/00	
Chromium oxide	CoSO ₄	5.04	1990.	16	880.*	-	
Cobalt sulphate		3.53	97.		*		
Cupric chloride	CuCl ₂	3.05	498.	9			1
Cuprous chloride	Cu ₂ Cl ₂	3.7	421.		1000 ±	760	9
Cupric nitrate	$Cu(NO_3)_2 + 3H_2O$	2.05	114.5	2	170.*	760	2
Hydrobromic acid	HBr HCl	-	-86.7	3	-68.7	760	
Hydrochloric acid		_	-111.3	17	-83.I	755	17
Hydrofluoric acid		0.99	-92.3	6	-36.7	755	17
Hydriodic acid			-51.3	17	-35.7	760	
Hydrogen peroxide		1.5	-2.	18	80.2	47	20
" phosphide	PH_3	_	-132.5	6	_	_	
Sulphide	H ₂ S		-86.	3	-62.	-	i i
Iron chloride		2.80	301.	_	_	_	
" nitrate		1.68	47.2	2			_
Suipilate		1.90	64.	16	_	_	_
Lead chloride	PbCl ₂	5.8	500.	9	900 ±	760	_
" metaphosphate	$Pb(PO_3)_2$	-	800.	9	_	_	
Magnesium chloride	$MgCl_2$	2.18	708.	9	_	-	—
oxide	MgO	3.4	2800.	28	_	_	_
" nitrate	$Mg(NO_3)_2 + 6H_2O$	1.46	90.	2	143.	760	2
" sulphate	$MgSO_4 + 5H_2O$	1.68	150.	16	_	<u> </u>	—
Manganese chloride	$MnCl_2 + 4H_2O$	2.01	87.5	19	106.	760	19
" nitrate	$Mn(NO_3)_2 + 6H_2O$	1.82	26.	2	129.	760	2
" sulphate	$MnSO_4 + 5H_2O$	2.09	54.	16	_	—	—
Mercurous chloride	Hg_2Cl_2	7.10	450 ±	1 —		—	-
Mercuric chloride	$HgCl_2$	5.42	282.	—	305.	-	—
		1	1		1		

⁽¹⁾ Friedel and Crafts; (2) Ordway; (3) Faraday; (4) Marchand; (5) Amat; (6) Olszweski; (7) Gibbs; (8) Baskerville; (9) Carnelly; (10) Carnelly and O'Shea; (11) Ruff; (13) Wroblewski and Olszewski; (14) Anschütz; (15) Roscoe; (16) Tilden; (17) Ladenburg; (18) Staedel; (19) Clarke, Const. of Nature; (20) Bruhl; (21) Schacherl; (22) Tammann; (23) Thorpe; (24) Ramsay; (25) Lorenz; (26) Morgan; (27) Day; (28) Kanolt.

DENSITIES AND MELTING AND BOILING POINTS OF INORGANIC COMPOUNDS

0211011120 77712	TING AND BOILING			_			
Substance.	Chemical formula.	Density, about 20° C	Melting point C	Authority.	Boiling point C	Pres- sure mm	Authority.
Nickel carbonyl	NiC_4O_4 $Ni(NO_3)_2 + 6H_2O$	1.32	-25. 56.7	I 2	43.° 136.7	760 760	
" oxide	NiO	6.69	_	-	_	_	-
" sulphate	$ NiSO_4 + 7H_2O $ $ HNO_3 $	1.98	99.	3	86.	760	16
Nitric acid	N_2O_5	I.52 I.64	-42. 30.	4 5	48.	760	9
" oxide *	NO	I.27	-167.		-153.	760	6
" peroxide	N_2O_4	1.49	-9.6	8	21.6	760	
Nitrous anhydride	$egin{array}{c} m N_2O_3 \ m N_2O \end{array}$	1.45	-III. -IO2.4	7 8	-89.8	760 760	8
oxide Phosphoric acid (ortho).	H_3PO_4	1.88	40 ±	_		-	_
Phosphorous acid	H₃PO₃	1.65	72.		_	_	[]
Phosphorus trichloride	PCl ₃	1.61	-111.8	10	76.	760	19
" oxychloride	POCl ₃	1.68	+1.3		108.	760 760	
" disulphide " pentasulphide	P_3S_6 P_2S_5		297. 275.	12	522.	760	_
" sesquisulphide	P_4S_3	2.00	168.	-	400.	760	-
" trisulphide	P_2S_3	_	290 ±	14	490.	760	25
Potassium carbonate	K₂CO₃	2.29	909.	_		_	
" chlorate	KClO₃ K₂CrO₄	2.34	357.	15		_	
" cyanide	KCN KCN	1.52	975. red h't		_	_	
" perchlorate	KClO ₄	2.52	610.	15	410.†	760	
" chloride	KCI	1.99	772.		1500.	760	-
nitrate	KNO₃	2.10	341.	_	400.†		
" acid phosphate " acid sulphate	KH ₂ PO ₄ KHSO ₄	2.34	96. 205.	3	dec.		
Silver chloride	AgCl	5.56	451.	15		—	
" nitrate	$AgNO_3$	4.35	218.	_	dec.	-	
" perchlorate	AgClO ₄	_	486.	18			
" phosphate " metaphosphate	Ag_3PO_4 $AgPO_3$	6.37	849. 482.	15			
" sulphate	Ag_2SO_4	5.45	655 ±	-	1085.†	<u> </u>	
Sodium chloride	NaCl	2.17	800.	II	1490.	760	-
" hydroxide	NaOH	2.1	318.	27	+		-
Illitate	NaNO ₃ NaClO ₃	2.26	315.	28	380.†		
" chlorate perchlorate	NaClO ₄	2.40	482.	18			
" carbonate	Na ₂ CO ₃	2.48	852.	-	†	-	-
" carbonate	Na ₂ CO ₃ + 10H ₂ O	1.46	34.	3	_	-	-
phosphate	$Na_2HPO_4 + 12H_2O$ $NaPO_3$	1.54	38. 617.	15			
" metaphosphate. " pyrophosphate.	Na ₄ P ₂ O ₇	2.48	970.	30	_	_	
" phosphite	$(H_2NaPO_3)_2 + 5H_2O$	-	42.	20	_	-	-
" sulphate	Na ₂ SO ₄	2.67	884.	11	·—	-	-
" sulphate	$Na_2SO_4 + 10H_2O$	1.46	32.38		†		
" hyposulphite Sulphur dioxide	$Na_2S_2O_3 + 5H_2O$ SO_2	1.73	48.16		-10.	760	-
Sulphuric acid	H ₂ SO ₄	1.83	10.4	21	338.	760	22
acid	$12H_2SO_4 + H_2O$	-	-0.5	22	_	-	-
" acid (pyro)	$H_2SO_4 + H_2O$	- 0-	8.5	-	†	_	
" acid (pyro) Sulphur trioxide		1.89	35· 16.8	22	44.9	760	
Tin, stannic chloride	SnCl ₄	2.28	-33.	23	114.	760	19
" stannous chloride	SnCl ₂	-	250.	24	605.	760	-
Zinc chloride		2.91	365.	29	710.	760	
chioride	$ZnCl_2 + 3H_2O$ $Zn(NO_3)_2 + 6H_2O$	2.06	6.5	26	131.	760	2
" nitrate " sulphate		2.00	50.4	3 3		-	
	1 1		1 3.	1	1	1	لــــــــــــــــــــــــــــــــــــــ

References: (1) Mond, Langer, Quincke; (2) Ordway; (3) Tilden; (4) Erdmann; (5) R. Weber; (6) Olszewski; (7) Birhaus; (8) Ramsay; (9) Deville; (10) Wroblewski; (11) Day, Sosman, White; (12) Ramme; (13) Meyer; (14) Lemoine; (15) Carnelly; (16) Mitscherlich; (17) LeChateller; (18) Carnelly, O'Shea; (19) Thorpe; (20) Amat; (21) Mendelejeff; (22) Marignac; (23) Besson; (24) Clarke, Const. of Nature; (25) Isambert; (26) Mylius; (27) Hevesy; (28) Retgers; (29) Grünauer; (30) Richards and others.

DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS

Substance	Chemical formula	Temp.	Density	Melting point	Boiling point	Authority or pressure for boiling point if not 760 mm
(a) Pa	raffin Serie	s: C _n H _{2n} .	+2. Norm	al compou	inds only	
Methane Ethane Propane Butane Pentane Hexane Heptane Octane Nonane Decane Undecane Tridecane Tetradecane Heptadecane Heptadecane Heradecane Heradecane Heradecane Heradecane Heptadecane Tricosane Heneicosane Tricosane Tricosane Heneicosane Tricosane Tricosane Heracosane Hexacosane Heracosane Heracosane Heracosane Hertacosane Heptacosane	CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C11H24 C12H25 C14H30 C16H34 C17H36 C19H38 C19H40 C20H42 C22H46 C22H46 C22H46 C25H68 C25H68 C29H66 C30H62 C31H64 C22H66	-164 - 88 - 44 0 20 20 20 17 20 2	0.415 .546 .595 .6011 .631 .660 .684 .707 .718 .747 .741 .765 .775 .775 .777 .778 .777 .778 .777 .778 .779 .779	-184 -172.0 -189.9 -135.0 -94.3 -90.0 -56.5 -51 -32.0 -26.5 -12 -20 -22.5 -28 -32 -38 -40.4 -47.7 -54 -54 -60 -59.5 -63.6 -70 -68.1 -75	-161.4 - 88.3 - 44.5 + 0.6 - 36.2 - 69.0 98.4 124.6 150.6 174 197 216 234 252.5 287.5 303 317 330 205 215 224.5 320.7 324 284 296 270 318 348 235 302 310	15 mm 15 mm 15 mm 40 mm 40 mm 40 mm 40 mm 10 mm 15 mm 15 mm
Tetratriacontane Pentatriacontane Hexatriacontane	$C_{34}H_{70} \ C_{36}H_{72} \ C_{36}H_{74}$	75 76	.781 .782 .782	76.5 74.7 76.5	255 331 265	1.0 mm 15 mm 1.0 mm
(b) Olefines		1			1	
(b) Offilles	or the Eth	yrene sei	ics. Cnf1	2n. 1 OI IIIa	Compour	lide only
Ethylene	$C_{2}H_{4}$ $C_{3}H_{6}$ $C_{4}H_{8}$ $C_{5}H_{10}$ $C_{6}H_{12}$ $C_{7}H_{14}$	- 102 - 47 - 13.5 20 0	.566 .609 .635 .651 .76	-169.4 -185.2 -139	- 103.8 - 47.0 + 36.4 69 96-99	Sieben Wreden or Znatowicz Morgan or
Octylene. Nonylene Decylene Undecylene. Dodecylene Tridecylene Tetradecylene. Hexadecylene Octadecylene. Eicosylene Cerotene. Melene.	C ₈ H ₁₆ C ₉ H ₁₈ C ₁₀ H ₂₀ C ₁₁ H ₂₂ C ₁₂ H ₂₄ C ₁₃ H ₂₆ C ₁₄ H ₂₈ C ₁₆ H ₃₀ C ₁₆ H ₃₂ C ₁₈ H ₃₆ C ₂₀ H ₄₀ C ₂₇ H ₆₄ C ₃₀ H ₆₀	17 15 0 20 15 0 20 20 20 20 20	.722 .754 .763 .763 .762 .845 .775 .814 .789 .791 .871	- 31.5 - 12 + 4 + 18 58 63	123 149.9 172 188 96 232.7 246 247 274 179 395	Schorlemmer Möslinger 15 mm Bernthsen 15 mm Beilstein Bernthsen

DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS

) 								
Substance	Chemical formula	Temp.	Density	Melting point	Boiling point	Authority or pressure for boiling point if not 760 mm		
(c) A	cetylene Ser	ies: C _n H	1 _{2n-2} . Nor	mal comp	ounds onl	у		
AcetyleneAllyleneEthylacetylene	$C_2H_2 \\ C_3H_4 \\ C_4H_6$	-80 -13 0	.613 .660 .668	- 81.8 -104.7 -130	$ \begin{array}{r rrrr} - & 83.6 \\ - & 27.5 \\ + & 18.5 \end{array} $	Villard		
Propylacetylene Butylacetylene Amylacetylene Hexylacetylene	$ \begin{array}{c} C_5H_8\\C_6H_{10}\\C_7H_{12}\\C_8H_{14} \end{array} $	13	.722 .738 .770	- 95 -150 - 70	+ 40 71.5 110.5 125			
Undecylidene Dodecylidene Tetradecylidene Hexadecylidene		- 9 + 6.5	.810 .806	- 9 + 6.5	213 105 134	Bruylant Krafft, 15 mm		
Octadecylidene		30	.804	30	160 184	11 11 11		
(d) Mon	atomic alco	hols: C _n l	H _{2n+1} OH.	Normal o	compound	s only		
Methyl alcohol Ethyl alcohol Propyl alcohol	CH₃OH C₂H₅OH C₃H₁OH	20 20 20	.792 .789 .804	- 97.8 -117.3 -127	64.5 78.5 97.8			
Butyl alcohol	C ₄ H ₉ OH C ₅ H ₁₁ OH C ₆ H ₁₃ OH	20 20	.810 .817	- 89.8 - 78.5	117.7			
Hexyl alcohol	C ₇ H ₁₅ OH C ₈ H ₁₇ OH	20 22 20	.820 .817 .827	- 51.6 - 34.6 - 16.3	155.8 175.8 194			
Nonyl alcohol Decyl alcohol Undecyl alcohol	C ₉ H ₁₉ OH C ₁₀ H ₂₁ OH C ₁₁ H ₂₃ OH	20 20 20	.828 .829 .833	- 5 + 7 + 19	215 231 146	30 mm		
Dodecyl alcohol Tridecyl alcohol Tetradecyl alcohol.	C ₁₂ H ₂₅ OH C ₁₃ H ₂₇ OH C ₁₄ H ₂₉ OH	20 31 38	.831 .822 .824	30.5 38	259 156 167	15 mm		
Pentadecyl alcohol. Cetyl alcohol Octadecyl alcohol	C ₁₅ H ₃₁ OH C ₁₆ H ₃₃ OH C ₁₈ H ₃₇ OH	79 59	.798	46 49·3 58.5	344 210.5	15 mm		
	(e) Alc	1	hers: C _n		1 0			
Dimethyl ether	C ₂ H ₆ O	20	.6606	-138	- 24.9			
Diethyl ether Dipropyl ether Di-n-butyl ether	$\begin{array}{c} {\rm C_4H_{10}O} \\ {\rm C_6H_{14}O} \\ {\rm C_8H_{18}O} \end{array}$	20 20 20	.714 .747 .769	-116.3 -122	+ 34.5 89 149	β—123.3 b. pt.		
Di-sec-butyl ether Di-iso-butyl ether	(I	2 I 20	.756 .762		121			
Diamyl ether Di-iso-amyl ether Dihexyl ether	C ₁₀ H ₂₂ O C ₁₂ H ₂₆ O	20 12	·774 .783		190 172.2 208.8			
Diheptyl ether Dioctyl ether	C ₁₄ H ₃₀ O C ₁₆ H ₃₄ O	0 0	.815 .820		260 291.8			
(f) Ethyl ethers: C _n H _{2n+2} O								
Ethyl-methyl "-propyl	C ₃ H ₈ O C ₅ H ₁₂ O	20 20	.697	<-79	+ 7.9 61.4			
" -n. butyl " -iso-butyl	C ₆ H ₁₄ O	0 20 20	·745 ·752 ·751		54 91.4 80	Wurtz		
" -n. hexyl " -n. heptyl	C ₇ H ₁₆ O C ₈ H ₁₈ O C ₉ H ₂₀ O	16	.764		112 137 166.6	25		
" -n. octyl	C ₁₀ H ₂₂ O	17	•794		183	Möslinger		

Where no reference is given the data were compiled from the International Critical Tables.

DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS

(g) Miscellaneous

Substance	Chemical formula.	Density and temperature.	Melting point C	Boiling point C	Authority.
Acetic acid Acetone	CH₃COOH CH₃COCH₃ C₂H₄O	1.115 0° 0.812 0 0.806 0	16.7 -94.6 -120.	118.5 56.1 +20.8	Young, '09
Aniline Beeswax	$C_6H_5NH_2$	1.038 0	-8. 62.	183.9	
Benzoic acid Benzene Benzophenone	${ m C_7H_6O_2} \ { m C_6H_6} \ ({ m C_6H_5)_2CO}$	1.293 4 0.879 20 1.090 50	5.48 48.	249. 80.2 305.9	Richards Holborn- Henning
Butter Camphor Carbolic acid Carbon bisulphide "tetrachlor-	$C_{10}\mathrm{H}_{16}\mathrm{O} \ C_{6}\mathrm{H}_{5}\mathrm{OH} \ C\mathrm{S}_{2}$	0.86-7 0.99 I0 1.060 21 1.292 0	30 ± 176. 43. -110.	209. 182. 46.2	
ide	$\begin{array}{c} \operatorname{CCl_4} \\ \operatorname{C_6H_5Cl} \\ \operatorname{CHCl_3} \end{array}$	1.582 21 1.111 15 1.4989 15	-30. -40. -63.3	76.7 132. 61.2	Young
Cyanogen Ethyl bromide	$egin{array}{c} C_2N_2 \ C_2H_5Br \ C_2H_5Cl \ \end{array}$	1.45 15 0.918 8	-35. -117. -141.6	-21. 38.4 14.	
" ether " iodide Formic acid	$egin{array}{c} C_4H_{10}O \ C_2H_5I \ HCOOH \end{array}$	0.736 0 1.944 14 1.242 0	8.6	34.6 72. 100.8	
Gasolene	CHO(HCOH)4CH2OH C3H8O3 CHI3	0.68 ± 1.56 1.269 4.01 25	146. 20. 110.	70-90 — 290.	
Methyl chloride Methyl iodide	CH₃Cl CH₃I	0.992 -24 2.285 I5	29 ± -103.6 -64.	-24.I 42.3	TT-11
Naphthalene	$\mathrm{C_6H_4\cdot C_4H_4}$ $\mathrm{C_6H_5O_2N}$	1.152 15	8o. 5.	218.	Holborn- Henning
Nitroglycerine Olive oil	$\mathrm{C_3H_5N_3O_9}$	1.60 0.92			
Oxalic acid Paraffin wax. soft. " hard	$C_2H_2O_4 \cdot 2H_2O$	1.68	190. 38-52 52-56	350-390 390-430	
Pyrogallol Spermaceti	C ₆ H ₃ (OH) ₃	1.46 40 0.95 15	133. 45 ±	293.	
Starch Sugar, cane Stearine	$C_{6}H_{10}O_{5} \ C_{12}H_{22}O_{11} \ (C_{18}H_{35}O_{2})_{3}C_{3}H_{5}$	1.56 1.588 20 0.925 65	none 160. 71.	_	
Tallow, beef mutton	,	0.94 I5 0.94 I5	27-38 32-41	_	
Tartaric acid Toluene Xylene (o)	$\begin{array}{c} C_4H_6O_6 \\ C_6H_5CH_3 \\ C_6H_4(CH_3)_2 \end{array}$	1.754 0.882 00 0.863 20	170. -92. -28.	110.31 142.	Richards
" (m) " (p)	C ₆ H ₄ (CH ₃) ₂ C ₆ H ₄ (CH ₃) ₂	0.864 20 0.861 20	54. 15.	140. 138.	
		1			

MELTING POINTS

TABLE 241 .- Melting Point of Mixtures of Metals

	}				Malti	ng-point	° °C			¥		
												Reference.
Metals.				Percen	tage of r	netal in	second o	column.				fere
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100 %	Re
Pb. Sn.	326	295	276	262	240	220	190	185	200	216	232	I
Bı.	322	290	-	-	179	145	126	168	205	- 1	268	7
Te.	322	710	790	880	917	760	600	480	410	425	446	8
Ag.	328	460	545	590	620	650	705	775	840	905	959	9
Na.	2-6	360	420	400	370	330	290	250	200	130	96	13
Cu. Sb.	326 326	870	920	925	945	950	955	985	1005	1020	1084	2
Al. Sb.	650	250 750	275 840	330 925	395	440	490 970	525	560	600	632 632	16
Cu.	650	630	600	560	945 540	950 580	610	755	930	1010	1084	17
Au.	655	675	740	800	855	915	970	1025	1055	1055 675	1062	01
Ag.	650	625	615	600	590	580	575	570	650	750	954	17
Zn.	654	640	620	600	580	560	530	510	475	425	410	11
Fe.	653	860	1015	1110	1145	1145	1220	1315	1425	1500	1515	3
Sn.	650	645	635	625	620	605	590	570	560	540	232	17
Sb. Bi.	632	610	590	575	555	540	520	470	405	330	268	16
Ag.	630	595	570	545	520	500	505	545	680	850	959	9
Sn.	622	600	570	525	480	430	395	350	310	255	232	19
Zn.	632	555	510	540	570	565	540	525	510	470	419	17
Ni. Sn.	1455	1380	1290	1200	1235	1290	1305	1230	1060	800	232	17
Na. Bi.	96	425	520	590	645	690	720	730	715	570	268	13
Cd.	96	125	135	245	285	325	330	340	360	390	322	13
Cd. Ag.	322	420	520	610	700	760	805	850	895	940	954	17
ŢĪ.	321	300	285	270	262	258	245	230	210	235	302	14
Zn.	322	280	270	295	313	327	340	355	370	390	419	11
Au. Cu.	1063	910	890	895	905	925	975	1000	1025	1060	1084	4
Ag. Pt.	1064	1062	1991	1058	1054	1049	1039	1025	1006	982	963	5
K. Na.	1075	1125	1190	1250	1320	1380	1455	1530	1610	1685	1775	20
Hg.	02	17.5	-10	-3.5	_5	11	26	41	58 162	77	97.5	15
Tl.	62.5	133	165	188	205	90	220	135	280	265	-	13
Cu. Ni.	1080	1180	1240	1290	1320	1335	1380	1410	1430	305	301	14
Ag.	1082	1035	990	945	910	870	830	788	814	875	1455 960	17
Sn.	1084	1005	890	755	725	680	630	580	530	440	232	9
Zn.	1084	1040	995	930	900	880	820	780	700	580	419	6
Ag. Zn.	959	850	755	705	690	660	630	610	570	505	419	11
Sn.	959	870	750	630	550	495	450	420	375	300	232	9
Na. Hg.	96.5	90	80	70	60	45	22	55	95	215	-32	13

- Means, Landolt-Börnstein-Roth Tabellen.

- 1 Means, Landolt-Börnstein-Roth Tabellen.
 2 Friedrich-Leroux, Metal. 4, 1907.
 3 Gwyer, Zs. Anorg. Ch. 57, 1908.
 4 Means, L.-B.-R. Tabellen.
 5 Roberts-Austen Chem. News, 87, 2, 1903.
 6 Shepherd J. ph. ch. 8, 1904.
 7 Kapp, Diss., Königsberg, 1901.
 8 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov.

- TOOT. 9 Heycock and Neville, Phil. Trans. 189A, 1897.
- 194A, 201, 1900.
- 11 Heycock and Neville, J. Chem. Soc. 71, 1897.
 12 " Phil. Trans. 202A, 1, 1903.
- 13 Kurnakow, Z. Anorg. Chem. 23, 439, 1900.
- 15 " 30, 109, 1002. 16 Roland-Gosselin, Bul. Soc. d'Encour. (5) 1, 1896. 17 Gautier, " (5) 1, " 30, 109, 1902.
- 4f ff
- 17 Gautier, 18 Le Chatelier,
- 1895. 19 Reinders, Z. Anorg. Chem. 25, 113, 1896. 20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw. Sachsen. 1879, 17.

TABLE 242 .- Melting Point of Alloys of Lead, Tin, and Bismuth

					Per c	ent.				
Lead Tin Bismuth	32.0 15.5 52.5	25.8 19.8 54-4	25.0 15.0 60.0	43.0 14.0 43.0	33-3 33-3 33-3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.9 9.1 20.0
Solidification at	96°	1010	1250	1280	1450	1480	1610	1810	1820	234 ⁰

Charpy, Soc. d'Encours, Paris, 1901.

TABLE 243 .- Melting Point of Low-melting-point Alloys

							_	
		Per cent.						
Cadmium	10.8 14.2 24.9 50.1	10.2 14.3 25.1 50.4	14.8 7.0 26.0 52.2	13.1 13.8 24.3 48.8	6.2 9.4 34.4 50.0	7.1 - 39.7 53.2	6.7 - 43·4 49·9	
Solidification at	65.5°	67.50	68.5°	68.5°	76.5°	89.5°	95°	

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 244

MELTING POINT OF SOME REFRACTORY SUBSTANCES

(Compiled by F. C. Kracek, Geophysical Laboratory, Carnegie Institution, 1030.)

Symbols: m, melting point; r, reaction temperature, resulting in the break up of a compound into another and liquid; d, compound decomposes before melting with evolution of gas; vac, melting in vacuo.

	[1		1			
Compound	t°C	Type	Ref.	Compound	t°C	Туре	Ref.
Al_2O_3	2050 ± 10	m	22	BINARY			
BN	1240	d	37	ALUMINATES			
BaO	1923 ± 10	m	36	3CaO.Al ₂ O ₃	1535 ± 5	r	9
BeO	2400 ± 50	m	34		1455 ± 5	m	9
CaO Ce_2O_3	2572 ± 10	m	36	5CaO.3Al ₂ O ₃ CaO.Al ₂ O ₃	1690 ± 5	m	9
FeO?	1692 14 ₁₉	m vac	14	3CaO.5Al ₂ O ₃	1720 ± 10	m	9
Fe_2O_3	I 560	d	15 15	Li ₂ O.Al ₂ O ₃		m	18
Fe ₃ O ₄	1540	ď	15	$MgO.Al_2O_3$ $Na_2O.Al_2O_3$	2135 ± 20 1650	m	32
La_2O_3	>2000	m	39		1050	111	25
Li ₂ O		m	19	ALUMINO-			
MgO		m	22, 34	SILICATES			
MnO PbO	> 1650 888 ± 10	vac m	39 8	BaO.Al ₂ O ₃ .2SiO ₂			11
SiO_2	1713 ± 10	m	12, 16	2CaO.Al ₂ O ₃ .SiO ₂	0/ -	m	13, 32
SrO	2430 ± 10	m	36	CaO.Al ₂ O ₃ .2SiO ₂ K ₂ O.Al ₂ O ₃ .2SiO ₂	1550 ± 2	m m	9
ThO_2	3050 ± 25	m	35	K ₂ O.Al ₂ O ₃ .4SiO ₂	> 1755 1686 ± 5	m	4 6
TiO_2		d	39	K ₂ O.Al ₂ O ₃ .6SiO ₂	1170	r	27
Yt_2O_3		m	34	Li ₂ O.Al ₂ O ₃ .2SiO ₂	1388 ± 5	m	18
ZnO ZrO_2	1975 ± 25 2690	m m	7	$Li_2O.Al_2O_3.4SiO_2$	1400 ± 3	m	18
BINARY	2090	111	40	Na ₂ O.Al ₂ O ₃ .2SiO ₂	1526 ± 2	m	4
SILICATES				Na ₂ O.Al ₂ O ₃ .6SiO ₂ SrO.Al ₂ O ₃ .2SiO ₂	1100 ± 10 >1700	m	4
2BaO.SiO ₂				2SiO ₂ ,3Al ₂ O ₃	1810 ± 10	m r	5
BaO.SiO ₂	> 1755 1604 ± 5	m m	II	20102.3211203	1010 110	1	3
2BaO.3SiO ₂	1450 ± 2	m	11	TERNARY			
$BaO.2SiO_2$	1420 ± 4	m	11	CALCIUM			
$BeO.SiO_2$	>1755	m	21	SILICATES			
3CaO.SiO ₂	1900 ± 20	r	9	BaO.2CaO.3SiO ₂	1320 ± 4	r	11
2CaO.SiO ₂		m	9	$K_2O.CaO.SiO_2$		m	30
$3CaO.2SiO_2$ $CaO.SiO_2$	1475 ± 5 1540 ± 2	r m	9	2K ₂ O.CaO.3SiO ₂ K ₂ O.3CaO.6SiO ₂	1010 ± 5	r	30
2CdO.SiO ₂	1340 ± 2 1242 ± 2	m	20	4K ₂ O.CaO.1oSiO ₂	1015 ± 5 946 ± 1	m	30 30
CdO.SiO ₂	1242 ± 2	m	20	2K ₂ O.CaO.6SiO ₂	959 土 1	m	30
$K_2O.SiO_2$	976	m	26	K ₂ O.2CaO.6SiO ₂	1115 ± 5	r	30
$K_2O.2SiO_2$	1036 ± 1	m	24	K ₂ O.2CaO.9SiO ₂	1025 ± 5	r	30
K ₂ O.4SiO ₂	765 ± 0.5	m	24	MgO.CaO.SiO ₂	1498 ± 5	r	12
2Li ₂ O.SiO ₂ Li ₂ O.SiO ₂	1256 ± 5 1201 ± 2	r m	19	MgO.2CaO.2SiO ₂ . 2MgO.5CaO.6SiO ₂ .	1458 ± 2	m	12
$\text{Li}_2\text{O.2SiO}_2$	1032 ± 5	r	19	MgO.CaO.2SiO ₂	1365 ± 5 1391 ± 2	r m	12 10, 2
2MnO.SiO ₂	1323	r	20	2Na ₂ O.CaO. ₃ SiO ₂	1141 ± 5	r	29
$MnO.SiO_2$	1273 ± 5	m	20	Na ₂ O. ₂ CaO. ₃ SiO ₂	1284 ± 5	m	29
2MgO.SiO ₂	1890 ± 20	m	3	Na ₂ O. ₃ CaO. ₆ SiO ₂	1047	r	29
$MgO.SiO_2$	1557 ± 2	r	3	MICCEL			
$2Na_2O.SiO_2$ $Na_2O.SiO_2$	1120 ± 5	г	23	MISCEL-			
Na ₂ O.2SiO ₂ Na ₂ O.2SiO ₂	1088 ± 2 875 ± 1	m m	17, 23 28, 23	LANEOUS COMPOUNDS			
2PbO.SiO ₂	746 ± 10	m	8	2CaO.Fe ₂ O ₃	1426	_	28
$ PbO.SiO_2$	766 ± 10	m	8	$CaO.Fe_2O_3$	1436 ± 5 1216 ± 5	r	38 38
$ 2SrO.SiO_2$	>1755	m	21	2CaO.B ₂ O ₃	1304 ± 5	m	33
$SrO.SiO_2$	1580 ± 4	m	II	$CaO.ZrO_2$	2350 ± 25	m	35
2ZnO.SiO ₂	1512 ± 5	m	7	$K_2O.2TiO_2$	980	m	31
$ZnO.SiO_2$? $ZrO_2.SiO_2$	1437 2550 ± 50	r? m	21	$Na_2O.Fe_2O_3.4SiO_2$	990 ± 10	r	6
Z1O2.31O2		111	40				

Author List (References may be located in Abstract Journals): (1), Bowen, 1913. (2) Bowen, 1914. (3) Bowen, Andersen, 1914. (4) Bowen, 1917. (5) Bowen, Greig, 1924. (6) Bowen, Schairer, 1929. (7) Bunting, 1926. (8) Cooper et al., 1999. (9) Day, Shepherd, Rankin, Wright, 1909–15. (10) Day, Sosman, Allen, 1911. (11) Eskola, 1922. (12) Ferguson, Merwin, 1919. (13) Ferguson, Buddington, 1920. (14) Friedrich, Sitting, 1925. (15) Goeke, 1911. (16) Greig, 1927. (17) Jaeger, 1911. (18) Jaeger, Simek, 1914. (19) Jaeger, van Klooster, 1914. (20) Jaeger, van Klooster, 1916. (21) Jaeger, van Klooster, 1919. (22) Kanolt, 1914. (23) Kracek, 1930. (24) Kracek, Bowen, Morey, 1920. (25) Matignon, 1925. (26) Morey, 1917. (27) Morey, Bowen, 1922. (28) Morey, Bowen, 1924. (29) Morey, Bowen, 1925. (30) Morey, Kracek, Bowen, 1936. (31) Nigfet, 1916. (32) Rankin, Merwin, 1916. (33) Roberts, 1924. (34) Ruff et al., 1916. (35) Ruff et al., 1929. (36) Schumancher, 1926. (37) Slade, Higson, 1919. (38) Sosman, Merwin, 1916. (39) Tiede, Birnbrauer, 1914. (40) Washburn, Libman, 1920.

ENANTISTROPIC INVERSIONS IN CRYSTALS

(Arranged by F. C. Kracek, Geophysical Laboratory, Carnegie Institution, 1931.)

Values are given, for the more important crystals, of the inversion temperature in °C, the heat of inversion in cal./g and the inversion volume change in cm³/g. No monotropic inversions have been included.

h_i, inversion temperature on heating; m, metastable inversion temperature; e, estimated; g, gradual inversion (not to be confused with slow retarded inversions).

Substance	Phases	Inversion t°C	Pressure atm.	Inversion heat cal./g	Inversion volume change cm³/g	Refere nc e
AgClO ₄		158				I
AgBrO₃		98.5				2
AgI	1-11	∫146	I	5.72	.0086	3
1181		99.4	2720	4.95	1010.	3
	1-111	99.4	2720	4.22	.0140	3
1~8	11-111	99.4	2720	.76	.0241	3
Ag_2SAg_2Se		175 133		3.85		3 3 4 5 6
Ag_2SO_4		412		5.65		5
$AgNO_3$		159.5		3.37	.0025	7
AlBr₃		70				7 8
As_2O_3	2111	275		6		9
As_2S_2		267				IÓ
As_2S_3		170				10
Bi_2O_3		704*				11
BaCl ₂ BaClO ₄		924 284				I 2
BaSO ₄		1149				I I3
BaCO ₃		811 & 982				14
Br ₃ O ₈		-35				15
C	diamond-	25	>8000	16		16
	β graphite	Ü				17
CO	g	-212.8		5.4		18
CH4	g	-252.7		1.15		18
CH₃OH	g	-112		4.8		19
CCl ₄	I-II	$\{-48.5$	1 8460	7.1	.026(e)	20
	II-III	115	8460	9.8 .9	.0173 .0054	3
	I-III	115	8460	10.7	.0227	3 3
CD		∫ 46.2	1	5.04	.0205	3
CBr ₄	I-II	112.6	2110	4.58	.0150	3
	1-111	112.6	2110	.25	.0029	3 3
	11-111	112.6	2110	4.66	.0121	3
CH_2I_2	L-I-II	8.6	180			3 3
	L-II-III I-II-IV	42.8	1930			3
	II-III-IV	9.4 38	325 1825			3
CH ₄ N ₂ O	I-II	102.3	6535	2.34	.0480	3 3 3
(Urea)	Ī-ĪĪI	102.3	6535	10.14	.0486	3
	II-III	102.3	6535	7.80	.0006	3
CH₃COOH	L-I	∫16.68	I	45	.1560	3
C113COO11		\55∙7	2033	46.4	.0862	3
	L-II	55.7	2033	48.2	.0992	3
CH3CONH9.	I-II L-I	55.7	2033	1.85	.0130	3 3 3 3 7
(Acetamide		127	5220	60.9	.0319	7
(Acetainide	I-II	I 27 I 27	5220 5220	58.5	.0649	7
(CH ₃) ₂ CO†	I-11	-140 to	5220	2.4I <0.5	.0330	7
1 2 2 3 7 2 3 7 1 1		-150				19

^{*} Third modification at room temperature. † Acetone.

ENANTISTROPIC INVERSIONS IN CRYSTALS

Substance	Phases	Inversion t°C	Pressure atm.	Inversion heat cal./g	Inversion volume change cm³/g	Refer- ence
C ₂ Cl ₆	I-II	71.1	I	6.93	0.0280	7
(Perchlor ethane)		42.7	1	2.63	.0097	7
C₃H7NO₂ (Urethane	e) L-I	{ 47.9 66.2	2270	40.7 37.9	.0599 .0253	7
	L-II	66.2	2270	35.9	.0355	7
	L-III	\ 76.8 76.8	4090 4090	34·4 40.6	.0184 .0640	7
	I-II	66.2	2270	2.07	.0102	7
	1-11	25.5	3290	1.64	.0092	7 7 7 7 7 7 7 7 7
	II-III	{ 76.8 25.5	4090 3290	6.12 5.50	.0456 .0482	7
	I-III	25.5	3290	3.87	.0574	7
C ₆ H ₆ (Benzene)	I-II	∫100	11680	8.68	.0105	21
	7 7	\\ 218 5.4	11680 1	7.73(e) 30.2	.0132(e) .1317	21 21
	L-I	(218	11680	33.25(e)) .0369(e)	21
	L-II	218 ∫ 40.9	11680	25.5(e) 29.8	.0501 (e) .0567	21 22
C ₆ H ₆ OH (Phenol)	L-I	64	2015	24.8	.0307	
*	L-II	64	2015	30	.0825	7 7
OH OH OH (O	I-II	64 ∫ 30.8	2015 1	5.2 33.8	.0555 .0838	7 21
CH₃C ₆ H₄OH (o.Cre		103.2	5900	34.2	.0317	21
	L-II I-II	103.2	5900	35 .8	.0555	21
Camphor*	I-11 I-11	103.2 87.1	5900 I	.8 .25	.0238 .00187	21 7
C ₆ H ₁₁ OH†	I-II	- <u>9</u>	I	9.38		19
C ₆ H ₅ NH ₂ HNO ₃ † CaSO ₄		97.6 1193				23
CaCO ₃ §	Ï-ÏÏ	970	high CO ₂			13 14
CaO.SiO ₂		1190 ± 10		Ca. 10		25
2CaO.SiO ₂ Co	Curie point	1420, 675 ~ 1100		I.3	10%, 675	26 27
	Curie point I-II	1015				28
C ₀ O	II-III	400				28
C ₀ OH		350 ± 10 223		11.8		29 30
CsCl		460		8		31
CsClO ₄ Cs ₂ SO ₄		219 660				1 32
CsNO ₃		153.5	I	4.3	.00405	7
$Cs_2Ca_2(SO_4)_3$	1-11-111	722				32
Cu_2Br_2 Cu_2I_2	I-II-III	390, 470 402, 440	· · · · · I			33 33
	II-III	200	9600	1.091	.00485	3
Cu ₂ S	II-III	100	11560	.948	.00535	3
Cu ₂ Se		110		5.6 5.4		34 34
Cu ₂ Te		351, 387				35
Fe	Curie point β-γ	730 920		6.7 ±		27
7.0	γ - δ	1400		2		• :
${ m Fe_3O_4} \ { m Fe_2O_3}$	Curie point II-III	570土		2.25		36
1 6203	I-III I-II	-163 to -148 $500 \pm$		2.25		37
FeS		140				38
FeS ₂	pyrite, marcasite	e				39

^{*} Five other modifications; not accurately located. $\,$ † Cyclo-hexanol. $\,$ Very beautiful for demonstration purposes.

TABLE 245 (continued)

ENANTISTROPIC INVERSIONS IN CRYSTALS

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance	Phases	Inversion t°C	Pressure atm.	Inversion heat cal./g	Inversion volume change cm³/g	Refer- ence
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Hgs 1		red-vellow			1.3	0.00342	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
ICI			386±				39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ï-ii			•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ricios	11-111	P = 5500	+ 10.9 t			3
KyS	****	$\Delta v_i = 0.02510 -$		$h_i = 0.16$	55 at 0°, c	.281 at 20	00° 3
KNO3					765	00005	
I-III	K_2S	I-II				.00093	3
I-III	KNO.	1-11	£127.7	I	10.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	121,03						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V			-	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K.SO.	11-1 V					7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T TT					3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KHSU4	1-11		1773			3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		II-III	2			-	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		** ***					3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 - 7				3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_		3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KPO.	111-1 V					46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•			_	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		* * * *				-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K ₂ CrO ₄						48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		• • • •					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			327, 454, 477				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1-11		10000	7.15	.0378	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 \times 10^{10} \times $	*					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Li ₂ SO ₄		580				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(MgO) ₆ (B ₂ O ₃) ₈ MgC	1			1.8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MnSO ₄		860				55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
NH₄Cl 30.5(g) 57			-153 to -103 -237.6				56
I-II 184.3 16.3 .0985 3		\$122	- 30.5(g)				57
4,10		I-II	184.3		16.3	.0985	3

^{*} Leucite. † Probably pentamorphic, inv. at 1150 and 1300°.

ENANTISTROPIC INVERSIONS IN CRYSTALS

Substance	Phases	Inversion t°C	Pressure atm.	Inversion heat cal./g	Inversion volume change cm³/g	Refer- ence
NH ₄ Br	****	-38 (g)				57
NH4I	I-II	137.8 -42.5(g)		7.78	0.0647	3 57
	Ï-ÏÏ	-17.6	I	4.80	.0561	3 58
NH ₄ ClO ₄ NH ₄ HSO ₄	1-11-111	240 126.2	1800			58 3
	II-III-IV	176.9	5480			3
(NH ₄) ₃ H(SO ₄) ₂ NH ₄ CNS	ï-ii	134 120				59 60
	II-III	87.7	I	10.36	.0409	3
NH₄NO₃	L-I	169.5	I	16	.051	7
	I-II	{125.5 186.7	8730	12.9 12.6	.00475	7
	I-VI	186.7	8730	12.3	.00855	7
	II-VI	{169.2 {186.7	8870 8730	.27	.00309	7
	II-III	<i>§</i> 84	I	·33 4	.00380	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		\ 63.3	830	2.48	.00925	7
	III-IV	$\begin{cases} 3^2 \\ 63.3 \end{cases}$	830	4.67 4.03	.02026	7
	II-IV	∫ 63.3	830	6.51	.01210	7
	IV-VI	(169.2 169.2	8870 8870	11.84 12.1	.01267	7
	ĬV-V	- 1 8	1	1.6	.017	7
NaOH NaClO₄	• • • •	300 308		24.7		30
NaClO ₃	• • • •	248				58 61
Na ₂ SO ₄	IV-III III-I	185		8.6	,.0034	62
NaF.Na ₂ SO ₄	111-1	241 105		15.5	.0070	62
Na ₂ CO ₃		430				22
NaNO ₃ Na ₃ AlF ₆	• • • •	275(g) 568	• • • •	(8 ± 2) 59	(.0081)	45 63
Na ₂ MoO ₄		424, 585, 623				64
Na ₂ WO ₄	I-II I-III	588		33.6		45
	III-II	586m m		4·4 29.2		45 45
NaAlSiO ₄	neph.—carn.	1250				65
NaC ₂ H ₂ O ₂ *	carnegicite	226, 650–690 198†		ca I		65 58
Ni	Curie pt.	355				27
Ni_3S_2 Ni_5As_2	• • • •	545				66 67
Oxygen	I-II	970 229.5		6.2		18
	II-III	-249.5		.75		18
Phosphorus	L-I	{ 44.2 {196	6000	4.90 6.53	.0193	3
	I-II	0.1	6000	43.9	.00846	3 3 3
РьО	red-yellow	\ 68.4 587	12000	55.2	.00684	3 64
PbSO ₄	····	870		13.4		68
PbCrO ₄ PbWO ₄	• • • •	707, 78 <u>3</u> 877				64 64
RbOH		245		16.8		30
RbClO ₄		279 652				1
$\begin{array}{c} Rb_2SO_4 \\ Rb_2Ca_2(SO_4)_3 \end{array}$		653 787, 915				32 32
RbLiSO ₄		142				32

^{*} Acetate. † Sluggish.

TABLE 245 (concluded)

FNANTISTROPIC INVERSIONS IN CRYSTALS

Substance	Phases	Inversion t°C	Pressure atm.	Inversion heat cal./g	Inversion volume change cm³/g	Refer- ence
						-
RbNO₃	I-II	219				69
	II-III	164.4	1	7.12	0.00688	7
DI CI	• • • •	218.6	5810	5.93	.00434	7
RbC1		50	5525			70 70
RbBr RbI	• • • •	50 50	4925			70
	Ï-II		4050	2.7		71
Sulphur	L-I-II	95·5 155	1410			22
Sb	explcommon	133		19		72
Sb_2O_3	rhombreg.	570		19		73
SbCl ₃	I-II-III	65, 69.5				18
SiO ₂ *	1-11	573		2.6		45
SiO ₂ †	Î-ÎÎ	215		2.7		45
SiO ₂ §	Î-ÎÎ	150h		.63		45
0.028	IÎ-ÎÎI	104h		.96		45
SiO ₂	*\$	870		8.7(e)		74
	*— Ť	1250		25 (e)		7.5
	§—†	1470		7.5(e)		45
Sn	,	161		.2	small	77
		18		4.4		72
SnO ₂	,	430, 540				
SrSO ₄		1152				13
SrCO₃		925	high CO ₂			14
TICIO ₄		226				I
TH	22.22	173				79
T1NO ₃	I-II	144.6	I	2.86	.00244	7
	II-III	75	1	.89	.00073	7
Tl picrate		44			810.	80
TI Ti	D 411	230	-4-1-1114 -	.3±		77
TiO ₂	Rutile, an	atase, brookite,	stability	relations	unknown	
TiBr ₄		-15				81 82
W ₂ C		2400				
Zn Z-C+		175, 300				83
ZnS‡		1020				39
ZrO_2		ca 1000				84

(1) Vorländer, 1023. (2) Reedy, 1921. (3) Bridgman, 1015. (4) Rinne, 1024. (5) Bellatti, 1889, (6) Nacken, 1907. (7) Bridgman, 1916. (8) Kendall, 1923. (9) Rushton, Daniels, 1926. (10) Borodorvski, 1006. (11) Guertler, 1903. (12) Vortisch, 1914. (13) Grahmann, 1913. (14) Boeke, 1913. (15) Lewis, Schumacher, 1929. (16) Roth, 1925. (17) G. N. Lewis, 1923. (18) Clusius, 1929. (19) Kelley, 1929. (20) Latimer, 1922. (21) Bridgman, 1014. (22) Tammann, 1903. (23) Wallerant, 1915. (24) Bäckstrom, 1921, 1925. (25) White, 1919. (26) Day, 1906. (27) Various. (28) Hendrichs, 1930. (29) Emmett-Schulz, 1930. (30) Hevesy, 1910. (31) Zemcuzny, Rambach, 1910. (32) Müller, 1910. (33) Tubandt, 1928. (34) Bellati, 1880. (35) Chicaschigé, 1907. (36) Baudisch-Welo, 1925. (37) Müllar, 1928. (38) Rinne, Boeke, 1907. (30) Allen, 1912. (40) le Chatelier, 1900. (41) Königsberger, 1910. (42) Varet, 1896. (43) Stortenbeker, 1889. (44) Kracek, 1930. (45) Kracek, 1931. (46) Amadori, 1913. (47) Brand, 1912. (48) Hare, 1924. (49) Van Klooster, 1914. (50) Rinne, 1910. (51) Kraus, Burgess, 1927. (52) Kroeker, 1892. (53) Allen, White, 1900. (54) Perrson, Öhmann, 1920. (55) Friedrichs, 1910. (56) Eucken, 1924. (1931. (10) Versnevsky, (61) Retgers. (62) Kracek, Gibson, 1929. (63) Roth, 1929. (64) Jaeger, Germs, 1921. (65) Bowen, Greig, 1925. (66) Friedrichs, 1914. (67) Friedrichs, 1907. (68) Hare, 1924. (69) Schwarz, 1892. (70) Bridgman, 1928. (71) Mondain, Monval, 1926. (72) Cohen, 1915. (73) Fenwick, 1927. (74) Fenner, 1913. (75) White, 1909. (919. (76) Wietzel, 1921. (77) Werner, 1913. (78) Brönsted, 1913. (79) Gernez, 1904. (80) Cohen, 1920. (81) Baltz, Jelp, 1927. (82) Becker, 1928. (83) Saldan, 1930. (84) Böhm, 1925.

^{*}Quartz. † Cristobalite. ‡ Zincblende and wurtzite. § Tridymite.

TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES

The majority of these determinations are by G. A. Rankin. (Part unpublished.)

					-						
Substance.	% Car	O Al ₂	O ₃ S	SiO ₂		Transfor	mation	1.		Т	emp.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65. 65. 65. 58.2 73.6	37.	- 5 - 3 - 3 - 4 - 2 - 2 - 5 - 4 - 2 - 5 - 3 - 4 - 2 - 3 - 3 - 3 - 3 - 4 - 5 - 6 - 6 - 6 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	1.8 1.8 5. 5. 5. 5. 1.8 6.4	Melting					120 213 67 142 147 190 153 145 160 172 181 155	0 +10
I	UTECTIO	cs.					EU	TECT	ics.	1	
Crystalline Phases.	% CaO	$\mathrm{Al_2O_3}$	SiO ₂	Melting Temp.	Crys	talline Phase	s. 9	6 CaO	Al ₂ O ₃	SiO ₂	Melting Temp.
CaSiO ₃ ,SiO ₂ Ca,SiO ₃ 3CaO,2SiO ₂ Ca ₂ SiO ₄ CaO.	37· 54·5 67·5	_ _ _	63. 45·5 32·5	1436° 1455± 2065±	Ca Ca Ca Ca	Al ₂ Si ₂ O ₈ ₂ Al ₂ SiO ₇ ₂ SiO ₄ Al ₂ Si ₂ O ₈ ₂ Al ₂ SiO ₇)	8. 9.2	20 . 39.	42. 31.8	1265°
Al ₂ SiO ₅ ,SiO ₂ Al ₂ SiO ₅ ,Al ₂ O ₃ CaAl ₂ Si ₂ O ₈ (CaSiO ₃ (CaAl ₂ Si ₂ O ₈)	34.1	13. 64. 18.6	87. 36. 47·3	1610 1810 1299	Ca Ca	₂ O ₃ ₂ SiO ₄ Al ₂ O ₄ ₅ Al ₆ O ₁₄	3 4	9.5	43.7	6.8	1335
SiO ₂ { CaAl ₂ Si ₂ O ₈ } SiO ₂ ,CaSiO ₃ }	23.2	19.5	70. 62.	1359		QU	JINTU	JPLE	POINTS		
$\begin{array}{c c} Ca_2Al_2SiO_7 & \{\\ Ca_2SiO_4 & \{\\ Al_2O_3 & \{\\ CaAl_2Si_2O_8 & \{\\ \end{array}\} \end{array}$	49.6 19.3	23.7 39·3	26.7 41.4	1545	Ca	12Al2SiO7 13Si2O7 12SiO4	} 4	8.2	11.9	39.9	1 335
$CaAl_2Si_2O_8$ } Al_2SiO_5,SiO_2 } $Ca_2Al_2SiO_7$ }	9.8	19.8	70.4	1 345	Ca	12A12SiO7 12SiO4 1A12O4	{ 4	8.3	42.	9.7	1380
$Ca_3Al_{10}O_{18}$ { $Ca_2Al_2SiO_7$ { $CaAl_2O_4$ }	35· 37.8	50.8 52.9	9.3	1552	Ca Al	Al ₂ Si ₂ O ₈ ₂ O ₃ ₂ SiO ₅	}	5.6	36.5	47.9	1512
$ \begin{array}{c} Ca_{2}Al_{2}SiO_{7} \\ CaAl_{2}O_{4} \\ Ca_{3}Al_{10}O_{18} \end{array} $	37.5	53.2	9.3	1505	Ca Ca	$^{13}_{2}Al_{10}O_{18}$ $^{12}_{2}Al_{2}SiO_{7}$ $^{12}_{2}O_{3}$	} 3	1.2	44.5	24.3	1475
$\begin{array}{c} {\rm CaAl_2Si_2O_8} \\ {\rm Ca_2Al_2SiO_7} \\ {\rm Ca_2Al_2SiO_7} \\ {\rm Ca_3Si_2O_7} \end{array} \}$	30.2 47.2	36.8 11.8	33.	1385		QU	ADRU	JPLE	POINTS	S.	
$ \begin{array}{c c} Ca_3Si_2O_7 \\ CaSiO_3 \end{array} $ $ \begin{array}{c c} Ca_2Al_2SiO_7 \\ CaSiO_3 \end{array} $	45.7	13.2	41.1	1316	3C 2C	aO.2SiO ₂ aO.SiO ₂	} 5	5.5	_	44-5	1475

The accuracy of the melting-points is 5 to 10 units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 341, 1911.

LOWERING OF FREEZING POINTS BY SALTS IN SOLUTION

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing point; the freezing point is therefore the product of these two columns. After the chemical formula is given the molecular weight, then a reference number.

weight, then a							
g. mol. 1000 g. H ₂ O	Molecular Lowering.	g. mol.	Molecular Lowering.	g. mol.	Molecular Lowering.	_g. mol. 1000 g. H ₂ O	Molecular Lowering.
Dh/NO) ass as		0.0500	2 450	0.4078	2.002	N. (1)	
Pb(NO ₃) ₂ , 331.0:	1, 2.	0.0500	3.47°	0.4978	2,02	MgCl ₂ , 95.26: 6,	14.
0.000362	5·5°	.0001.	3.42	.8112	2.01	0.0100	5.1°
.001204	5.30	,2000	3.32	1.5233	2.28	.0500	4.98
.002805	5.17	.500	3.26	BaCl ₂ , 208.3: 3, 6	, 13.	.1500	4.96
.005570	4 97	000.1	3.14	0.00200	5.5°	.3000	5.186
.01737	4.69	LiNO ₃ , 69.07: 9.		.00498	5.2	.6099	5.69
.5015	2.99	0.0398	3.4°	.0100	5.0	KCl, 74.60: 9, 17-	10.
Ba(NO ₃) ₂ , 261.5:	I.	.1671	3.35	.0200	4.95	0.02910	3.54°
0.000383	5.60	.4728	3.35	.04805	4.80	.05845	3.46
.001259	5.28	1.0164	3.49	.100	4.69	.112	3.43
.002681	5.23	Al ₂ (SO ₄) ₃ , 342.4:	10.	.200	4.66	.3139	3.41
.005422	5.13	0.0131	5.6°	.500	4.82	.476	3.37
.008352	5.04	.0261	4.9	.586	5.03	1.000 *	3.286
Cd(NO ₃) ₂ , 236.5:	3.	.0543	4.5	.750	5.21	1.989	3.25
0.00298	5.4°	.1086	4.03		-	3.269	
.00689	5.25	.217	3.83	CdCl ₂ , 183.3: 3, 1.	4.		3.25
.01997	5.18	CdSO ₄ , 208.5: 1, 1		0.00299	5.00	NaCl, 58.50: 3, 20	, 12, 16.
.04873	5.15	0.000704	3.35°	.00690	4.8	0.00399	3.7°
AgNO ₃ , 167.0: 4,		.002685	3.05	.0200	4.64	.00010.	3 67
0.1506	3.32°	.01151	2.69	.0541	4.11	.0221	3.55
.5001	2.96			.0818	3 93	.04949	3.51
.8645	2.87	.03120	2.42	.214	3.39	.1081	3.48
	2.27	.1473	2.13 1.80	.429	3.03	.2325	3.42
1.749	1.85	.4129		.858	2.7 I	-4293	3.37
2.953 3.856	1.64	.7501	1.76	1.072	2.75	.700	3.43
0.0560	3.82	I.253		CuCl ₂ , 134.5:9		NH,Cl, 53.52: 6,	15.
		K ₂ SO ₄ , 174.4: 3, 5, 6	5, 10, 12.	0.0350	4.9°	0.0100	3.6°
.1401	3.58	0.00200	5.4°	.1337	4.81	.0200	3.56
.3490	-	.00398	5.3	.3380	4.92	.0350	3.50
KNO ₃ , 101.9: 6, 7.		.00865	4.9	.7149	5.32	.1000	3.43
.0200	3.5		4.76	CoCl ₂ , 129.9: 9.	3.0	.2000	3.396
	3.5	.0500	4.60	0.0276	5.0°	.4000	3.393
.0500	3.41	.1000	4.32	.1094	4.9	.7000	3.41
ł .	3.31		4.07	.2369	5.03	LiC!, 42.48: 9, 15.	
.200	3.19	.454	3.87	.4399	2 0	0.00992	3.7°
.250	3.08	CuSO ₄ , 159.7: 1, 4	, 11.	.538	5.30	.0455	3.5
.500	2.94	0,000286	3.3°		5.5	.09952	3.53
.750		.000843	3.15	CaCl ₂ , 111.0: 5, 13	-16.	.2474	3.50
1.000	2.66	.002279	3.03	0.0100	5.1°	.5012	3.61
NaNO ₃ , 85.09: 2,	0, 7	.006670	2.79	.05028	4.85	• 7 939	3.71
0.0100	3.60	.01463	2.59	.1006	4.79		3./ 1
.0250	3.46	.1051	2.28	.5077	5.33	BaBr ₂ , 297.3: 14	5.10
.0500	3.44	.2074	1.95	.946	5·3 8.2	0.100	
.2000	3.345	.4043	1.84	2.432		.150	4.9
.500	3.24	.8898	1.76	3.469	11.5		5.00
.5015	3.30	MgSO ₄ , 120.4: 1, 4		3.829	14.4	.500	5.10
1.000	3.15	0.000675	3.29	0.0478	5.2	AlBr ₃ , 267.0: 9.	- 0
1.0030	3.03	.002381	3.10	.153	4.91	0.0078	I.4°
NH ₄ NO ₃ , 80.11: 6	, 8. 3.6°	.01263	2.72	.331	5.15	.0559	1.2
0.0100		.0580	2.65	.612	5.47	.1971	1.07
.0250	3.50	.2104	2.23	.998	6.34	·4355	1.07
				rr Kahlanhara I			

1 Hausrath, Ann. Phys. 9, 1902.
2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
3 Jones, Z. Phys. Ch. 11, 1893.
4 Raoult, Z. Phys. Ch. 2, 1888.
5 Arrhenius, Z. Phys. Ch. 2, 1888.
6 Loomis, Wied. Ann. 57, 1896.
7 Jones, Am. Chem. J. 27, 1902.
8 Jones-Caldwell, Am. Chem. J. 25, 1901.
9 Biltz, Z. Phys. Ch. 40, 1902.
10 Jones-Mackay, Am. Chem. J. 19, 1897.
Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

LOWERING OF FREEZING POINTS BY SALTS IN SOLUTION

g. mol 1000 g. H ₂ O	Molecular Lowering.	g. mol. 1000 g. H ₂ O	Molecular Lowering.	g. mol 1000 g. H ₂ O	Molecular Lowering.	g mol.	Molecular Lowering.
CdBr 272 2: 2 14		KOH, 56.16: 1, 1		Na ₂ SiO ₃ , 122.5: 1	_	0.472	2.20°
CdBr ₂ , 272.3: 3, 14. 0.00324	5.1°	0.00352	3.60°	0.01052	6.4°	-944	2.27
.00718	4.6	.00770	3.59	.05239	5.86	1.620	2.60
.03627	3.84	-02002	3.44	.1048	5 28	(COOH)2, 90.02:	
.0719	3.39	.05006	3.43	.2099	4.66	0.01002	3.3°
	3.18	.1001	3.42	.5233	3.99	.02005	3.19
	2.96	.2003	3.424	HCl, 36.46:	.0	.05019	3.03
i i	2.76	230 .465	3.50	1-3, 6, 13, 0.00305	3.68°	.1006	2.83
	2.59	CH OH 22 02 : 2	3.57	.00695	3.66	.2022	2.64
CuBr ₂ , 223.5: 9.	5.1°	CH ₃ OH, 32.03: 2 0.0100	1.8°	.0100	3.6	.366 .648	2.56
	5. I	.0301	1.82	.01703	3.59		2.3
	5.27	.2018	1.811	.0500	3.59	C ₃ H ₅ (OH) ₃ , 92.06 0.0200	1.86°
	5.89	1.046	1.86	.1025	3.56	.1008	1.86
CaBr ₂ , 200.0: 14.		• 3.41	1.88	.2000	3.57	.2031	1.85
0.0871	5.1°	6.200	1.944	.3000 .464	3.612	.535	1.91
	5.18	C ₂ H ₅ OH, 46.04:		.516	3.79	2.40	1.98
	5.30	1, 12, 17 0.000402	1.67°	1.003	3.95	5.24	2.13
	5.64	.004993	1.67	1.032	4.10	$(C_2H_5)_2O$, 74.08:	24
MgBr ₂ , 184.28: 14.		.0100	1.81	1.500	4.42	0.0100	1.60
0.0517	5.4°	.02892	1.707	2.000	4.97	.0201	1.67
.103	5.16 5.26	.0705	1.85	2.115	4.52	.1011	1.72
.517	5.85	.1292	1.829	3.000	6.03	-	1.702
KBr, 119.1: 9, 21.	J. 5	.2024	1.832	3.053	4.90	Dextrose, 180.1: 0.0198	1.84°
0.0305	3.61°	.5252	1.834	4.065 4.657	5.67	.0470	1.85
	3.49	1.0891	1.826			.1326	1.87
.6801	3.30	3.901	1.92	HNO ₃ , 63.05: 3, 1	3.55°	.4076	1.894
.250	3.78	7.91	2.02	.05015	3.50	1.102	1.921
	3.56	11.11	2.12	.0510	3.71	Levulose, 180.1:	24, 25
CdI ₂ , 366.1: 3, 5, 22		18.76	1.81	.1004	3.48	0.0201	1.87°
0.00210 4	1·5°	0.0173	1.80	.1059	3.53	.2050	1.871
1	1.0 3.52	.0778	1.79	.2015	3.45	.554	2.01
	2.70	K ₂ CO ₃ , 138.30: 6	0	.250	3.50	1.384	2.32
	2.35	0.0100	5.1°	1.000	3.62 3.80	C ₁₂ H ₂₂ O ₁₁ , 342.2: 1	3.04
	2.13	.0500	4.93 4.71	2.000	4.17	0.000332	1.900
.684 2	2.23	.100	4.54	3.000	4.64	.001410	1.87
	2.51	.200	4.39	H ₃ PO ₂ , 66.0: 29.		.009978	1.86
KI, 166.0: 9, 2.		Na ₂ CO ₃ , 106.10:	5.	0.1260	2.90°	.0201	1.88
	3·5°	0.0100	5.1°	.2542	2.75	.1305	1.88
	3.50	.0200	4.93	.5171	2.59	H ₂ SO ₄ , 98.08:	
	3.42	.0500	4.64	1.071	2.45	13, 20,	31-33.
	3-37	.1000	4.42	H ₃ PO ₃ , 82.0: 4, 5	3.0°	0.00461	4.80
SrI ₂ , 341.3: 22.	5.10	.2000 Na ₂ SO ₃ , 126.2: 28	4.17	0.0745	2.8	.0100	4.49
	5.2	0.1044	4.51°	.2482	2.6	.0461	4.10
_ ~	5.35	-3397	3.74	1.00	2.39	.100	3.96
	5.52	.7080	3.38	H ₃ PO ₄ , 98.0: 6, 2:	2.	.200	3.85
NaOH, 40.06: 15.		Na ₂ HPO ₄ , 142.1:	22, 20	0.0100	2.8°	-400	3.98
	3.45°	0.01001	5.00	.0200	2.68	1.000	4.19
	3.45	.02003	4.84	.0500	2.49	1.500	4.96
	3.41	.05008	4.60	.1000	2.36	2.000	5.65
.2000	3.407	.1002	4.34	.2000	2.23	2.500	6.53

¹⁻²⁰ See page 217.
21 Sherrill, Z. Phys. Ch. 43, 1903.
22 Chambers-Frazer, Am. Ch. J. 23, 1900.
23 Noyes-Whitney, Z. Phys. Ch. 15, 1894.
24 Loomis, Z. Phys. Ch. 32, 1900.
25 Abegg, Z. Phys. Ch. 15, 1894.
26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

SMITHSONIAN TABLES.

²⁷ Pictet-Altschul, Z. Phys. Ch. 16, 1895. 28 Barth, Z. Phys. Ch. 9, 1892. 29 Petersen, Z. Phys. Ch. 11, 1893. 30 Roth, Z. Phys. Ch. 43, 1903. 31 Wildermann, Z. Phys. Ch. 15, 1894. 32 Jones-Carroll, Am. Ch. J. 28, 1902. 33 Jones-Murray, Am. Ch. J. 30, 1903.

RISE OF BOILING POINT PRODUCED BY SALTS DISSOLVED IN WATER

This table gives the number of grams of the salt which, when dissolved in roo grams of water, will raise the boiling point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

Salt	1 °C 2 °	33	4	5 °	7	10 ¹⁰	15°	20	25
BaCl ₂ + 2H ₂ O CaCl ₂	15.0 31. 6.0 11. 12.0 25. 4.7 9. 6.0 12.0	16.5 39.5 13.6	63.5 21.0 53.5 17.4 24.5	(71.6 g) 25.0 68.5 20.5 31.0	32.0 101.0 26.4 44.0		of temp 55.5 240.0 47.0 98.0	69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.2 16.7 11.5 22. 13.2 27.8 15.0 30.0 15.2 31.0	32.0 32.0 44.6 45.0	29.9 40.0 62.2 60.0 64.5	36.2 47·5 74·0 82.0	48.4 60.5 99.5 120.5	(57.4 78.5 134. 188.5	103.5 185.0 338.5	127.5	3°.5) 152.5 es 18°.5)
$\begin{array}{c} K_2C_4H_4O_6+\frac{1}{2}H_2O \ . \\ KNaC_4H_4O_6 \ . \ . \\ KNaC_4H_4O_6+4H_2O \\ LiCl \ . \ . \ . \\ LiCl+2H_2O \ . \ . \end{array}$	18.0 36.0 17.3 34.3 25.0 53.3 3.5 7.0 6.5 13.0	51.3 84.0 10.0	72.0 68.1 118.0 12.5 26.0	90.0 84.8 157.0 15.0 32.0	126.5 119.0 266.0 20.0 44.0	182.0 171.0 554.0 26.0 62.0	284.0 272.5 5510.0 35.0 92.0	390.0 42.5 123.0	510 0 50.0 160.5
$\begin{array}{ccccc} \mathrm{MgCl_2+6H_2O} & . & . \\ \mathrm{MgSO_4+7H_2O} & . & . \\ \mathrm{NaOH} & . & . & . \\ \mathrm{NaCl} & . & . & . \\ \mathrm{NaNO_3} & . & . & . \end{array}$	11.0 22.0 41.5 87.5 4.3 8.0 6.6 12.2 9.0 18.5	138.0	44.0 196.0 14.3 21.5 38.0	55.0 262.0 17.0 25.5 48.0	77.0 22.4 33.5 68.0	30.0 (40.7 g	170.0 41.0 gives 80	241.0 51.0 .8 rise) 222.0	334·5 60·1
$\begin{array}{c} NaC_2H_3O_2 + _3H_2O \ . \\ Na_2S_2O_3 \ . \ . \ . \\ Na_2HPO_4 \ . \ . \ . \\ Na_2C_4H_4O_6 + _2H_2O \ . \\ Na_2S_2O_3 + _5H_2O \ . \end{array}$	14.9 30.0 14.0 27.0 17.2 34.4 21.4 44.4 23.8 50.0	39.0 51.4 68.2	62.5 49.5 68.4 93.9 108.1	79.7 59.0 85.3 121.3 139.3	118.1 77.0 183.0 216.0	194.0 104.0 (237.3 400.0	480.0 152.0 gives 8 1765.0	6250.0 214.5 °.4 rise)	311.0
$\begin{array}{c} Na_{2}CO_{3} + IoH_{2}O & . \\ Na_{2}B_{4}O_{7} + IoH_{2}O & . \\ NH_{4}CI & . & . \\ NH_{4}NO_{3} & . & . \\ (NH_{4})_{2}SO_{4} & . & . \\ \end{array}$	34.1 86.7 39. 93.2 6.5 12.8 10.0 20.0 15.4 30.1	254.2 19.0 30.0	369.4 898.5 24.7 41.0 58.0	1052.9 (5555.5 29.7 52.0 71.8	gives 39.6 74.0 99.1	56.2	88.5 172.0 gives	248.0 108.2)	337.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0 40.0 24.0 45.0 17.0 34. 19.0 40.0 29.0 58.0	63.6 52.0 62.0	81.0 81.4 70.0 86.0 116.0	103.0 97.6 87.0 112.0 145.0	1 50.0 1 2 3.0 1 6 9.0 2 0 8.0	234.0 177.0 262.0 320.0	524.0 272.0 540.0 553.0	374.0 1316.0 952.0	484.0 50000.0
Salt 40	○ 60°	80°	100°	120	1 40 °	160	180	200	240°
CaCl ₂ 137 KOH 92 NaOH 93 NH ₄ NO ₃ 682 C ₄ H ₆ O ₆ 980	.5 121.7 .5 150.8 .0 1370.0		185.0 345.0 4099.0 y gives	526.3 8547.0	800.0				

^{*} Compiled from a paper by Gerlach, "Zeit, f. Anal. Chem," vol. 26.

FREEZING MIXTURES *

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (small calories when A is grams). Temperatures are in Centigrade degrees.

Substance.	А	В	С	D	E	F	G	Н
Substance. NaC ₂ H ₃ O ₂ (cryst.) NH ₄ Cl NaNO ₃ Na ₂ S ₂ O ₃ (cryst.) KI CaCl ₂ (cryst.) NH ₄ NO ₃ (NH ₄)2SO ₄ NH ₄ Cl CaCl ₂ KNO ₃ Na ₂ SO ₄ Na ₂ SO ₄ Na ₂ SO ₄ Na ₂ SO ₄ Na ₂ CO ₃ (cryst.) KNO ₃ CaCl ₂ NH ₄ Cl	85 30 75 110 250 60 25 25 25 25 25 25 25 25 25 25 25 25 25	## H2O-100 " " " " " " " " " " " " " " " " " "	C	D	E - 4.7 - 5.1 - 5.3 - 8.0 - 11.7 - 12.4 - 13.6	F 15.4 18.4 18.5 18.7 22.5 23.2 27.2 26.0 20.0 20.0 19.0 17.0 0.9 1.85 9.9 14.4 15.75 16.75 20.3 36.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35		H
NH ₄ NO ₃ .	I I I I	H ₂ O-1.20 Snow " H ₂ O-1.31 Snow " H ₂ O-3.61 Snow "	- - - -	0 10 0 10 0	- 14.0 - 14.0 - 17.5† - 17.5† - 8.0 - 8.0	- - - - -	- - - -	17.9 129.5 10.6 131.9 0.4 327.0

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.

[†] Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, AND DENSITIES OF GASES

Substance	θ	P	d	Ref.
Acetylene	36	62	0.231	I
Air	-	37.2	.35 (a)	ī
ΔΙΙ	-140.7	31.2	.35 (a)	1
Alcohol (C ₂ H ₆ O)	243.I	63.1	0 . ,	6, 7
Alcohol (CH ₄ O)		78.7	.2755	
	240.0 128		.272	7, 8
Allylene				I
Ammonia	132.4 -122	111.5	.235	I
Argon		48	.531	I
Benzene	288.5	47.7	.304	9
Bromine	302			9
iso-Butane	134	37		I
n-Butane	153	36		I
Carbon dioxide	31.1	73.0	.4681	I, 2
Carbon disulphide	273	76		9
Carbon monoxide	-139	35	.311	I
Chlorine	144.0	76.1	-573	I
Chloroform	263		.516	9
Cyanogen	128	59		I
Ethane	32.1	48.8	.21?	I
Ether (ethyl)	193.8	35.5	.2625	10, 11
Ethyl chloride	187.2	52	-33	I
Ethylene	9.7	50.9	.2159	1, 3
Helium	-267.9	2.26	.0693	1
Hydrogen	-239.9	12.8	.0310	I
Hydrogen bromide	90	84		I
Hydrogen chloride	51.4	81.6	.42	I
Hydrogen iodide	151	82		ī
Hydrogen sulphide	100.4	88.9		ī
Krypton	- 63?	54?	.78?	Ţ
Methane	- 82.5	45.8	.162	I
Methyl chloride	143.1	65.8	.37?	I
Neon	-228.7	25.9	.484	I
Nitric oxide	- 94?	65	.52?	I
Nitrogen	- I47.I	33.5	.3110	I
Nitrous oxide	36.5	33·3 71.7	.45?	I
Oxygen	-118.8		10	ī
	182	49·7	.430	- 1
Phosgene		56	-52	I
Propane	95.6	43		I
Propylene	92.3	45.0		I
Sulphur dioxide	157.4	77.8	.5240	1, 4, 5
Water	374.0	217.7	.4	9
Xenon	16.6	58.2	1.155	I

(a) "Plait point."(b) "Critical point of contact."

- 1. Pickering, Bur. Standards Sci. Paper No. 541,
- 2. Lowry and Erickson, Journ. Amer. Chem. Soc., 49, 2729, 1927.
 3. Mathias, Crommelin, and Watts, Compt. Rend.,
- 185, 1240, 1927. 4. Cardoso and Fiorentino, Journ. Chim. Phys., 23,
- 841, 1926
- 5. Cardoso and Sorrentino, Journ. Chim. Phys., 24, 77. 1927.
- 6. Ramsay and Young, Trans. Philos. Soc., London,

- Ramsay and Young, Trans. Philos. Soc., London, 177, 123, 1887.
 Young, Journ. Chem. Soc., 50, 903, 1891.
 Ramsay and Young, Trans. Philos. Soc., London, 178, 313, 1888.
 International Critical Tables. 3, 248, 1928.
 Ramsay and Young, Trans. Philos. Soc., London, 178, 57, 1888.
 Young, Proc. Roy. Soc., Dublin, 12, 374, 1910.

(Table prepared by Gas Chemistry Section, Bur. Standards, Feb. 19, 1929.)

THERMAL CONDUCTIVITY, METALS AND ALLOYS

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_0 [\mathbf{I} + \alpha(t - t_0)]$. k_0 is the conductivity at t_0 , the lower temperature of the bracketed pairs in the table, k_t that at temperature t, and α is a constant. k_t in g-cal. per degree C per sec. across cm cube = 0.239 $\times k_t$ in watts per degree C per sec. across cm cube.

Substance	ι°C	k t	а	Refer- ence.	Substance.	t°C	k t	а	Refer- ence.
Aluminum "" "" "" Antimony Bismuth "" Brass ", yellow , red Cadmium,pure "" Constantan (60 Cu+40 Ni) Copper,* pure "" German silver Gold Graphite Iridium Iron, wrought "" "" "" "" Lead, pure "" "" "" Magnesium Manganin "(84 CU+4 Ni 12 Mn)	-160 18 100 200 400 500 600 0 100 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18 100 -160 18	0.514 0.480 0.492 0.545 0.760 0.885 1.01 0.0442 0.0396 0.025 0.0194 0.0161 0.260 0.204 0.222 0.0540 0.222 0.0540 0.0640 1.079 0.918 0.908 0.070 0.705 0.037 0.141 0.151 0.151 0.152 0.144 0.163 0.163 0.070	+.0030 +.0030 +.00104 00104 0021 0021 0003 +.00227 00003 +.0027 00003 0005 0008 0001 0001 0001 0001 0001 0001 0001	I 2 3 3 4 5 5 2 I I 4 4 1 2 2 I 2 4 6 6 6 8 2 I 2 2 I 2 4 I 2 4 I 2 2 I 2 4 I 2 2 I 2 4 I 2 2 I 2 4 I 2 2 I 2 4 I 2 2 I 2 4 I 2 2 I 2 I 2 2 I	Mercury Molybdenum Nickel "" "" Palladium Platinum Pt 10% Rh. Platinoid Potassium Rhodium Silver, pure "" Tantalum "" Tin "" ", pure Tungsten Tungsten "" Wood's alloy Zinc, pure "" ""	0 0 50 177 -1600 188 1000 178 1600 178 1000 1718 1000 1718 1000 1718 1000 1718 1000 1717 1700 1700	0.0148	+ .0055 0001 00032 00095 00047 + .0010 + .0002 + .0002 0017 0012 00017 00017 00016	7 6 1 2 3 3 3 3 2 2 6 6 6 1 8 8 6 9 9 4 1 6 10 10 7 1 2 2

References: (1) Lees, Phil. Trans. 1908; (2) Jaeger and Diesselhorst, Wiss. Abh. Phys. Tech. Reich. 3, 1900; (3) Angell, Phys. Rev. 1911; (4) Lorenz; (5) Macchia, 1907; (6) Barratt, Pr. Phys. Soc. 1914; (7) H. F. Weber, 1879; (8) Hornbeck, Phys. Rev. 1913; (9) Worthing, Phys. Rev. 1914; (10) Worthing, Phys. Rev. 1917.

† Iron: 100-727° C, $k_t = 0.202$; 100-912°, 0.184; 100-1245°, 0.191 (Hering). SMITHSONIAN TABLES.

^{*} Copper: 100–197° C, k_t = 1.043; 100–268°, 0.969; 100–370°, 0.931; 100–541°, 0.902 (Hering; for reference see next page).

TABLE 252.—Thermal Conductivity of Insulators at High Temperatures

(See also Table 251 for metals; k in gram-calories per degree centigrade per second across a centimeter cube.)

Material.	Tempera- ture, ° C	k	Reference.	Material.	Tempera- ture, ° C	k	Reference
Amorphous carbon	37-163	.028003	ı	Brick: Carborundum	150-1200	.0032027	3
	170-330 240-523	.027004	I	Building Terra-cotta	15-1100	.00180038	3
	283-597	.011004	I	Fire-clay	125-1220	.00320054	3
	100-360	.089	2	Gas-retort	100-1125	.0038	3
	100-751	.124	2	Graphite	300-700	.024	3
C1:4- (4:6-:-1)	100-842	.129	2	Magnesia	50-1130	.00270072	3
Graphite (artificial)	100-390	.338	2	Silica	100-1000	.0020033	3
	100-546	.324	2	Granite	100	.00450050	4
l i	100-720	.306	2		200	.00430097	4
	30-2830	. 291	2	Limestone	500	.0040	4
1	2800-3200	.002	T T	Limetone	40	.00460057	4
	00-110	.5545	, T		350	.00390049	4
	180-120	.4434	T	Porcelain (Sèvres)	165-1055	.00320035	4 3
	500-700	.3122	ī	Stoneware mixtures.	70~1000	.00290053	3
l l	355 /55	.32 .22	1	Concrete mixtures.	75 1555	.0029 .0033	1 3

References: (1) Hansen, Tr. Am. Electrochem. Soc. 16, 329, 1909; (2) Hering, Tr. Am. Inst. Elect. Eng. 1910; (3) Bul. Soc. Encouragement, 111, 879, 1909; Electroch. and Met. Ind. 7, 383, 433, 1909; (4) Poole, Phil. Mag. 24, 45, 1912; see also Clement, Egy, Eng. Exp. Univers. Ill. Bull. 36, 1909; Dewey, Progressive Age, 27, 772, 1909; Woolson, Eng. News, 58, 166, 1907, heat transmission by concretes; Richards, Met. and Chem. Eng. 11, 575, 1913. The ranges in values under 1 do not depend on variability in material but on possible errors in method; reduced from values expressed in other units.

TABLE 253 .- Thermal Conductivity of Various Substances

		*			
Substance, temperature.	kŧ	Refer- ence.	Substance, temperature.	k t	Refer- ence.
Aniline BP 183° C, —160. Carbon, gas. Carbon, graphite. Carborundum Concrete, cinder Stone. Diatomaceous earth Earth's crust Fire-brick Fluorite, —190. Fluorite, o Glass: window crown, oss72, —190. crown, oss72, 100. h'vy flint oles, —100. h'vy flint oles, —100. Graniter Ice, —160. Ice, o. Iceland spar, —190. Lime. Limestones, calcite Marbles, dolomite Mca. Flagstone _ to cleavage. Micaceous to cleavage.	.000112 .010 .012 .00050 .00081 .00022 .00013 .004 .00028 .003 .0025 .00118 .0028 .00324 .00031 .00170 .00181 .00077 .0053 .00103 .0050 .038 .0103 .0029 .0047 to .0056 .0018 .0063 .0063	1 - 2 - 34 - 455 - 555 555 5 1 6 1 1 5 5 4 6 6 - 6 6	Naphthalene MP 70° C, -160 Naphthalene MP 70° C, 0 Naphthol, -2° C, -160 Naphthol, o Nitrophenol, MP 114° C, -160 Nitrophenol, o Paraffin, o Paraffin, o Porcelaim. Quartz \(\t \) to axis, -190 ", 100 Quartz \(\t \) to axis, 0 Rock salt, 0 Rock salt, 30 Rubber, vulcanized, -160 Rubber, para Sand, white, dry. Sandstone, dry. Sawdust Slate \(\t \) to cleavage Slate \(\t \) to cleavage Snow, fresh, dens. = 0.11 Suow, old. Soil, average, sl't moist Soil, very dry. Sulphur, rhombic, 0 Vaseline, 20 Vulcanite	.0013 .00081 .00068 .00062 .00106 .00062 .00059 .0025 .0386 .0173 .0133 .0325 .0167 .0150 .00033 .00037 .00045 .00003 .00012 .000003	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

References: (1) Lees, Tr. R. S. 1905; (2) Lorenz; (3) Norton; (4) Hutton, Blard; (5) Eucken, Ann. d. Phys., 1911; (6) Herschel, Lebour, Dunn, B. A. Committee, 1879; (7) Jansson, 1904; (8) Melmer, 1911; (9) Stefan.

THERMAL CONDUCTIVITY OF INSULATING MATERIALS

(Compiled from the International Critical Tables, which see for more complete data.)

No.	Material	Density g/cm³	t°C	Condu	ctivity
		g/cm²		joule/cm²/sec.	g-cal./cm²/sec.
1	Air, 76 cm Hg	.00129	0	.00023	.000055
2	Asbestos wool	.40	-100	.00068	.000162
3	44 46	.40	0	.00090	.000215
4		.40	+100	.00101	.00024
5 6	" with 85 per cent MgO Brick, very porous, dry	·3 .71	30	.00075	.000179
7 8	" machine made, dry " " moist	1.54	0	.00038	.000091
	1.2% vol		50	.00096	.00023
9	Calorox, fluffy mineral matter	.064	30	.00032	.000076
10	Celluloid, white	1.4	30	.00021	.000050
II	Cement mortar	2.0	90	.0055	.0013
I 2 I 3	Charcoal	.18	20	.0092	.0022
14	Coke dust	1.0	20	.0015	.00013
15	Concrete	1.6	0	.008	.002
16	Cork	.05	0	.00032	.000076
17		.05	100	.00041	.000098
18		-35	0	.00061	.000146
19	Cotton diabeter made d	-35	100	.00079	.000189
20	Cotton, tightly packed	.08 .08	-150	.00038	.000091
2 I 2 2		.08	+150	.00056	.000133
23	Cotton wool, tightly packed	.08	30	.00070	.00010
24	Diatomite, (binders may increase	.00	30	100042	.00010
	100%)	.20	0	.00052	.00012
25	Diatomite, ditto	.20	400	.00094	.00022
26		.50	0	.00086	.00021
27 28	Ebonite	.50 1.19	400 -190	.00157	.00037
29	Contic	1.19	- 78	.00157	.00038
30	44	1.19	0	.00160	.00038
31	Felt, flax fibers	.18	30	.00047	.00011
32	" hair	.27	30	.00036	.000086
33	" wool	.15	40	.00063	.000151
34		-33	30	.00052	.000124
35	Fuller's earth	.53	30	.00101	.00024
36	Glass, lead	2.59	15	.0060	.00143
37 38	" " "	2.59	100	.0072	.00172
39	" wool	.22	50	.00042	.001000
40	и и	.22	100	.00050	.000120
41	44 44	.22	200	.00065	.000155
42		.22	300	.00081	.000195
43	Graphite, 100 mesh	.48	40	.0018	.00044
44	" 40 "	.42	40	.0038	.00093
45 46	Horsehair, compressed	.70 .17	40 20	.00051	.0031
47	Ice	.92	0	.022	.0053
48	Leather, chamois	- ,-	85	.00063	.000151
49	" cowhide		85	.00176	.000421
50	" sole	1.0	30	.0016	.00038
51	Linen	_	20	.00086	.00021
52 53	Linoleum, cork	∙54	20 50	.00080	.000191
53	rica, average		50	.0050	.0012

THERMAL CONDUCTIVITY OF INSULATING MATERIALS

		Donaite		Condu	ctivity
No.	Material	Density g/cm³	t°C	joule/cm²/sec.	g-cal./cm²/sec.
54	Micanite		30	.0021-	.000050-
55	Mineral wool	.15	30	.0042	.00010
56 57	Paper, rice	.30	40	.00052	.00012
58	blotting	0.0	20	.00063	.00015
59 60	Paraffin wax Peat, dry	.89 .19	30 30	.0023	.00055
61	" blocks	.84	20	.0017	.00041
62	Porcelain		90	.0104	.0025
63 64	Rubber, rigid sponge, hard "sponge, vulcanized	.09	25 20	.00037	.000088
65	" commercial, 40% rubber.	.22	25	.00054	.00013
66	" 92% "		25	.0016	.00038
67	Sawdust	.20	30	.00060	.000143
68 69	ShellacSilk			.0023	.0006
70	" scrap from spinning mill	.10	-200	.00023	.00010
71		.10	-100	.00037	.000088
72	11 11 11 11 11 11 11 11 11 11 11 11 11	.10	0	.000495	.000118
73 74	Snow	.10 .25	50	.00056	.000134
75	Steel wool.	.15	55	.00080	.00038
76	44 44	.08	55	.00090	.00022
77 78	Wool, pure	.09	30	.00036	.000086
78	" " very loose packing Woods: Ash ⊥ to grain	.04	30	.00042	.00000
79 80	Woods. Asi I to grain	·74 ·74	20	.0031	.00041
81	Balsa"⊥ to grain	.11	30	.00045	.000084
82	Boxwood	.9 0	20	.0015	.00036
83 84	Cedar ⊥ to grain Cypress ⊥ to grain	.48	20	.00096	.00027
85	Fir \(\perp\) to grain	.46 ·54	30	.0014	.00023
86	" to grain	.54	20	.0035	.00081
87	Lignum vitae	1.16	20	.0025	.00060
88 89	Mahagany I to grain	1.16	100	.0030	.00072
90	Mahogany, <u>t</u> to grain " to grain	.70 .70	20 20	.0016	.00038
91	Oak, ⊥ to grain	.82	15	.0021	.00050
92	" to grain	.82	15	.0036	.00086
93	Pine, pitch, \(\perp\) to grain	F =	30	.0015	.00036
94 95	" Virginia, ditto " white, ditto	∙55 •45	30 60	.0014	.00033
96	" " to grain	·45	60	.0026	.00062
97	Spruce, ⊥ to grain	.41		1100.	.00026
98	Teak, \(\perp\) to grain	.64	15	.00175	.00042
99	"∥ to grain Walnut, ⊥ to grain	.64 .65	15	.0038	.00091
101	Rocks: Basalt	.00	20	.020	.0048
102	Chalk	0		.0092	.0022
103	Granite	2.8	20	.022	.0053
104	Limestone, very variable. Slate, \(\perp\) to cleavage	2.0	20 95	.010	.0024
106	" to cleavage		95	.025	.0060
107	Sandstone, air-dried	2.2	20	.013	.00031
108	" freshly cut	2.3	20	.017	.00041
			1	1	1

Running numbers arranged in order of increasing conductivity at room temperatures: .0002: 10, 1, 16, 9, 32, 77, 7, 63, 69, 30, 55, 78, 81, 37, 31, 50, 72, 81; .0005: 46, 24, 56, 34, 60, 64, 13, 21, 67, 18, 33, 58; .00075: 5, 52, 26, 51, 3, 76, 84; .001: 35, 83, 97, 85, 94, 100, 14, 82, 93, 30, 50, 66, 74, 89, 61, 79, 6, 43, 98, 54, 91, 59, 68; .0025: 87, 65, 80, 90, 86, 44, 36, 92, 99, 54; .005: 53, 36, 37, 15, 12, 102; .010: 104, 45, 107, 108, 101, 47, 103.

TABLE 255 .- Thermal Conductivity of Various Insulators

 k_t is the heat in gram-calories flowing in 1 sec. through a plate 1 cm thick per sq. cm for 1°C drop in temperature.

Substance. Asbestos fiber	Density.	°C	,00019	Substance. Asbestos paper	0.00043	Authority.
85% magnesia asbestos	.216	\$ 100 \$ 500	.00016	Blotting paper Portland cement Cork, t, o°C	.00015	Lees-Chorl- ton. Forbes.
Cotton	.021 .101 .0021	150	.000071	Chalk	.0007.	H, L, D, see p. 205. Various.
Lampblack, Cabot number 5	.193	\$ 100 \$ 500	.000046	Ice Leather, cow-hide	.002	Neumann.
Quartz, mesh 200 Poplox, popped Na ₂ SiO ₃ .	0.093	500 200 500	.00024	Linen	.00021	ton.
Wool fibers	.015 .054 .192	100	.000118	Free stone, sandstone	.0043	} H, L, D.

Left-hand half of table from Randolph, Tr. Am. Electroch. Soc. XXI., p. 550, 1912; kt (Randolph's values) is mean conductivity between given temperature and about 10°C. Note effect of compression (density). The following are from Barratt Proc. Phys. Soc., London, 27, 81, 1914.

Cultura	Density.	k	٤.	Substance.	Density.	1	κ _t
Substance.	Density.	at 20°C	at 100°C	Substance.	Delisity.	at 20°C	at 100°C
Brick, fire	1.73 1.42 1.19 1.29 2.59 2.17	.00110 .0085 .00014 .00112 .00172 00237	.00109 .0095 .00013 .00119 .00182	Boxwood Greenheart Lignumvitæ Mahogany Oak Whitewood	0.90 1.08 1.16 0.55 0.65 0.58	.00036 .00112 .00060 .00051 .00058	.00041 .00110 .00072 .00060 .00061

The following values are from unpublished data furnished by C. E. Skinner of the Westinghouse Co., Pittsburgh, Penn. They give the mean conductivity in gram-calories per sec. per cm cube per °C when the mean temperature of the cube is that stated in the table. Resistance in thermal ohms (watts/inch²/inch/°C) = $\frac{1}{10.6}$ conductivity.

Substance.	Grams.		(Conductivity	•		Safe
Substance.	per cm³	100° C	200 ⁰ C	300° C	400° C	500° C	temp.
Air-cell asbestos	0.232 .168 .326 .506 .321 .450 .362	0.00034 .00015 .00028 .00034 .00030 .00023 .00049	0 00043 .00019 .00032 .00032 .00029 .00025	0.00050 	.00036 .00090	0.00046 — — — — - -00102	320 180 600 400 300 600

TABLE 256 .- Thermal Conductivity of Water and Salt Solutions

Substance.	°C	k _t	Authority.	Solution in water.	Density.	°C	k _t	Authority.
Water {	0 II 25 20	0.00150 .00147 .00136 .00143	Goldschmidt, '11. { Lees, '98. Milner, Chattock, '98	CuSO ₄ KCl NaCl " H ₂ SO ₄ ZnSO ₄	1.160 1.026 1.178 	4.4 13. 4.4 26.3 20.5 21. 4.5	0.00118 .00116 .00115 .00135 .00126 .00130 .00118	H. F. Weber. Graetz. H. F. Weber. Chree. H. F. Weber.

TABLE 257. - Thermal Conductivity of Organic Liquids

Substance.	°C	k t	Refer.	Substance.	°C	k t	Refer.	Substance.	°C	k t	Refer.
Acetic acid. Alcohols: methyl " ethyl " amyl Aniline Benzene	0 0	.0352 .0346 .03345 .03434	2 3	Carbon disulphide. Chloroform Ether Glycerine Oils: petroleum " turpentine	9-15 9-15 25 13		1 1 2 5	Oils: olive. " castor. Toluene. Vaseline. Xylene.	0	.03395 .03425 .03349 .0344 .03343	4 3 2
Reference	es: (1) H. F.	We	ber; (2) Lees; (3) G	oldsc	hmidt;	(4)	Wachsmuth; (5) Gr	aetz.		

TABLE 258 .- Thermal Conductivity of Gases

The conductivity of gases, $k_t = \frac{1}{4}(9\gamma - 5)\mu C_v$, where γ is the ratio of the specific heats, C_p/C_v , and μ is the viscosity coefficient (Jeans, Dynamical Theory of Gases, 1916). Theoretically k_t should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm. It increases with the temperature.

Gas.	t° C	kı	Ref.	Gas.	t° C	kı	Ref.	Gas.	t° C	kt	Ref.
Air* Ar CO CO ₂	-191 0 100 -183 0 100 -78	0.000180 0.000566 0.000719 0.000142 0.000388 0.0000599 0.000542 0.000219 0.000332	I I I I I I I	CO ₂ C ₂ H ₄ He " " H ₂ " CH ₄	100 0 -193 0 100 -192 0 100	0.000496 0.000395 0.000146 0.000344 0.000398 0.000133 0.000416 0.000499 0.0000720	1 2 1 4 1 1 4	Hg N ₂	203 -191 0 100 -191 0 100 8	0.0000185 0.0000183 0.0000568 0.0000718 0.0000172 0.0000570 0.0000743 0.000046	3 1 1 1 1 1 2 4

References: (1) Eucken, Phys. Z. 12, 1911; (2) Winkelmann, 1875; (3) Schwarze, 1903; (4) Weber, 1917.

* Air: k₀ = 5.22 (10⁻⁸) cal. cm ⁻¹ sec. ⁻¹ deg. C⁻¹; 5.74 at 22°; temp. coef. = .0029; Hercus-Laby, Pr. R. Soc. A95, 1919.

TABLE 259.—Diffusivities

The diffusivity of a substance $=h^2=k/\epsilon\rho$, where k is the conductivity for heat, ϵ the specific heat and ρ the density (Kelvin). The values are mostly for room temperatures, about 18° C.

Material. Aluminum Antimony Bismuth Brass (yellow) Cadmium Copper Gold Iron (wrought, also mild steel) Iron (cast, also 1% carbon steel) Lead Magnesium Mercury	0.826 0.139 0.0678 0.339 0.467 1.133 1.132 0.173 0.121 0.237 0.883	Material. Coal	0.0058 0.006 0.0017 0.0010
Nickel. Palladium Platinum Silvet Tin Zinc Air Asbestos (loose) Brick (average fire) Brick (average building)	0.152 0.240 0.243 1.737 0.407 0.402 0.179 0.0035 0.0074 0.0050	Rock material (earth aver.). Rock material (crustal rocks). Sandstone. Snow (fresh). Soil (clay or sand, slightly damp). Soil (very dry). Water. Wood (pine, cross grain). Wood (pine with grain).	0.0118 0.0064 0.0133 0.0033 0.005 0.0031 0.0014 0.00068 0.0023

Taken from An Introduction to the Mathematical Theory of Heat Conduction, Ingersoll and Zobel, 1913.

SMITHSONIAN TABLES.

TABLE 260

THERMAL CONDUCTIVITY-LIQUIDS, PRESSURE EFFECT

(P. W. Bridgman, Proc. Amer. Acad., 59, 158, 1923.)

Methyl 30 .000505 1.201 1.342 1.557 1.724 1.864 1.986 2.043 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.133 2.045 2.157 2.15	of
alcohol	12000
2 Ethyl 30 .000430 1.221 1.363 1.574 1.744 1.888 2.014 2.070 2.070 2.022 2.217 2.000416 1.233 1.400 1.650 1.845 2.007 2.152 2.217 2.000363 1.230 1.390 1.638 1.812 1.962 2.093 2.154 2.088 2.091 2.000400 1.181 1.307 1.495 1.648 1.780 1.905 1.955 2.043 2.088 2.043 2.045 2.043 2.045 2.043 2.045	
alcohol	
3	
alcohol	2.278
4 Normal butyl alcohol	
alcohol.	
5 Isoamyl alcohol. 30 .000354 I.184 I.320 I.524 I.686 I.828 I.955 2.013 2.013 2.013 2.013 2.013 2.013 2.013 2.013 2.013 2.013 2.003	
alcohol. 75 .000348 1.207 1.348 1.557 1.724 1.868 1.998 2.063 2 2 2.088 2 2.088 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2.388 2 2 2 2.388 2 2 2 2 2 2 2 2 2	2.099
6 Ether	
75 .000322 1.313 1.518 1.814 2.043 2.231 2.394 2.469 2 7	
7 Acetone	
8 Carbon 75 .000403 1.181 1.325 1.554 1.738 1.891 2.024 2.083 2.094 2.083 2.094 2.083 2.094 2.083 2.094 2.083 2.094 2.083 2.094 2.083 2.094 2.083 2.094 2.095 2.09	
8 Carbon bisulphide. 75 .000362 1.174 1.310 1.512 1.663 1.783 1.880 1.923 1.300 1.300 1.300 1.300 1.301 1.301 1.310 1.31	
bisulphide 75 .000362 1.208 1.366 1.607 1.789 1.935 2.054 2.107 2 Ethyl 30 .000286 1.193 1.327 1.517 1.657 1.768 1.858 1.895 1 bromide 75 .000273 1.230 1.390 1.609 1.772 1.907 2.022 2.073 2 10 Ethyl 30 .000265 1.125 1.232 1.394 1.509 1.592 1.662 1.694 1 iodide 75 .000261 1.148 1.265 1.442 1.570 1.671 1.757 1.799 1 Water 30 .00144 1.058 1.113 1.210 1.293 1.366 1.428 1.456 1 75 .00154 1.065 1.123 1.225 1.308 1.379 1.445 1.476 1 12 Toluol 30 .000364 1.159 1.286 1.470 1.604 1.716 (2.394*) 75 .000339 1.210 1.355 1.573 1.738 1.872 1.982 2.039 2 13 Normal 900322 1.281 1.483 1.777 1.987 2.163 2.325 2.404 2 14 Petroleum 30 .000312 1.266 1.460 1.752 1.970 2.143 2.279 2.333 2	
9 Ethyl 30 .000286	
bromide 75 .000273	
10 Ethyl 30 .000265 1.125 1.232 1.394 1.509 1.592 1.662 1.694 1.694 1.148 1.265 1.442 1.570 1.671 1.757 1.799 1.148 1.265 1.442 1.570 1.671 1.757 1.799 1.158 1.258 1.308 1.379 1.445 1.476 1.258 1.123 1.225 1.308 1.379 1.445 1.476 1.258 1.258 1.308 1.379 1.445 1.476 1.258 1.258 1.308 1.379 1.445 1.476 1.258 1.258 1.308 1.379 1.445 1.476 1.258 1.258 1.358 1.378 1.872 1.987 2.039 1.258 1.258 1.358 1.573 1.738 1.872 1.987 2.039 1.258 1.258 1.358 1.377 1.258	
iodide 75 .000261 1.148 1.265 1.442 1.570 1.671 1.757 1.799 1	
11 Water	
Toluol 75 .00154 1.065 1.123 1.225 1.308 1.379 1.445 1.476 1 30 .000364 1.159 1.286 1.470 1.604 1.716 (2.394*) 75 .000339 1.210 1.355 1.573 1.738 1.872 1.987 2.039 2 1.281 1.483 1.777 1.987 2.163 2.325 2.404 2 1.281 1.2335 2.543 2.642 2 1.281 1.2	
12 Toluol 30 .000364	
75 .000339 1.210 1.355 1.573 1.738 1.872 1.987 2.039 2 Normal	
13 Normal pentane 30 .000322 1.281 1.483 1.777 1.987 2.163 2.325 2.404 2.404 14 Petroleum 30 .000312 1.266 1.460 1.752 1.970 2.143 2.279 2.335	
pentane 75 .000307 1.319 1.534 1.855 2.112 2.335 2.543 2.642 2 14 Petroleum 30 .000312 1.266 1.460 1.752 1.970 2.143 2.279 2.333 2	
14 Petroleum 30 .000312 1.266 1.460 1.752 1.970 2.143 2.279 2.333 2	2.740
ether	2.561
15 Kerosene 75 .000333 1.185 1.314 1.502 1.654 1.792 1.925 1.990 2	
1 0 111000 1110 1101 1101 1101 1101 1101	

^{1, 2, 6, 8, 12, 13,} extreme purity; 3, 4, 5, 7, 9, 10, 11, very pure; 14, 15, commercial. * Toluol freezes at 9900 kg/cm² at 30°. The figure at 11000 is for the solid.

TABLE 261.-The Unit of Thermal Resistance-the Fourier

The fourier is defined as that thermal resistance which will transfer heat energy at the rate of one joule per sec. (one watt) for each degree (centigrade) temperature difference between the terminal surfaces (equivalent roughly to a prism of Ag or Cu 4 cm long by 1 cm² cross section). (Harper, Journ. Wash. Acad. Sci., 18, 469, 1928.)

TABLE 262.—Factors to Reduce Heat Flow in Fouriers for a cm3 to Other Units

To v Gradient Multiples	vatts/cm² °C/cm I	cal./sec./cm ² °C/cm 4.18	kilocal./hr./m² °C/m .0116	hp./ft.² °C/in. 4.14	hp./ft.² °F./ft. 44	hp./ft.² °F./in. 3.67	watts/in.² °C/in. ·394
-------------------------------	-------------------------	--	----------------------------------	----------------------------	---------------------------	-----------------------	------------------------

TABLE 263.—Conversion Factors Between Units of Current Density of Heat Flow. Quantity of Heat Energy Transferred Through Unit Area per Unit Time

	Joules/ sec. cm ² watts/cm ²	Cal./sec. cm²	Kilocal./hr./m²	Hp./ft.²	Watt/in.²
I watt/cm ² = I cal./sec./cm ² = I kilocal./hr./m ² = I hp./ft. ² = I watt/in. ² =	1 4.183 .0001162 .8027 .1550	.2391 I .0000278 .1919 .03705	8606 36000 I 6908 1334	1.246 5.211 .0001448 1	6.452 26.99 .0007497 5.178

The calorie is taken as 4.183 absolute joules.

TABLE 264.—Thermal Resistivities at 20°C Expressed in Fouriers for a Centimeter Cube

Silver	0.239	Water 170	Rubber* (over
Copper	.258	Mica* (⊥ to	90%) 700
Aluminum	·49	laminations) 200	Wood (Virginia
Brass (30% Zn).	.93	Firebrick* 200	pine across
Iron	1.6	[Firebrick 25°C	grain) 710
Nickel	1.7	to 1000°C] 90	Paper*1000
Steel (1 % C)	2.I	Brick masonry*. 250	Asbestos* (wool) 1100
Constantan	4.4	Leather* 600	Cork*2000
Mercury	12.0	Hydrogen 600	Cotton batting
[Ice at o°C]		Hard rubber 610	(loose)2500
Glass*	133	Helium 690	Wool (loose)2500
Concrete*	140		Air 4100
			Carbon dioxide6700

^{*}Substances marked with the asterisk vary widely in thermal conductivity according to composition. For limits of such variation, consult International Critical Tables, Vol. 2. The figure listed above for any such material represents the author's estimate of the "best guess" for use in those cases where the composition of the material is not specified.

In preparing this table, the author has consulted Vol. 2, I.C.T. and has courteously been furnished advance values for some other materials by the editors of I.C.T. For still other materials, grateful acknowledgment is made to the staff of the Bureau of Standards, for advice in selecting most probable values in the light of present information.

TABLE 265.—Anti-Freezing Solutions (for automobile radiators, etc.)

(From Bur. Standards Letter Circulars No. 29, 1925.) Per cent by vol. in water with freezing points and specific gravities.

Distilled glycerine\(\)

^{* 90 %} by vol. indicates quality of alcohol (180° proof); if 188 proof (that is containing only 6 % water) amount required will be about 4% less.

† The vapor from wood alcohol is harmful, §Glycerine and ethylene glycol are practically nonvolatile and

LINEAR EXPANSION OF THE ELEMENTS

C is the true expansion coefficient at given temperature; R indicates reference to notes and authority, see page 282; M is the mean coefficient between given temperatures; where one temperature is given the true coefficient at that temperature is indicated; α and β are coefficients in formula $l_t = l_0$ ($1 + \alpha t + \beta \ell$); l_0 is length at 0° centigrade (unless otherwise indicated, when if x is standard temp., $l_t = l_x$ ($1 + \alpha (t - t_x) + \beta (t - t_x)^2$); l_t is length at t°C.

Aluminum 20° 2244 1													
Antimony	Element	Temp.	C × 104	R	Temp.	range	$M \times 10^4$	R	Temp	. range	α × 10 ⁴	β × 10 ⁶	R
Antimony	Aluminum	20°	.224	1		100°	.235	T		° 500°	.22	000	2
Antimony										, , , , , ,		.009	-
Arsenic. 20							.080						
Cadmium	Arsenic	20	.05		1			0-					
Cadmium	Bismuth		.014	за		20	.103	3b					
Carbon, O 20 4D -180, -140 .117 4D 20, 140 .214 Ab 20, 140 .214 .214 .204	Cadmium	0	∗54	4a	-180,	-140	.59	4a	20,	140	.526		4a*
Carbon, graphite 50 0.06 2 20, 100 0.068 30 6, 121 1.21 0.064 0.068 0.062 0.065 0.062 0.065 0.064 0.066 0.068 0.064 0.066 0.068 0.064 0.066 0.068 0.064 0.066 0.068 0.064 0.066 0.068 0.064 0.068 0.064 0.066 0.068 0.064 0.068 0.064 0.066 0.068 0.064 0.066 0.068 0.068 0.064 0.066 0.068 0.068 0.064 0.066 0.068 0.068 0.068 0.064 0.066 0.068 0.068 0.068 0.064 0.068 0.068 0.068 0.068 0.064 0.068 0.068 0.068 0.064 0.066 0.068 0.		0	.20	4b	-180,	-140	.117	4b	20,	140	.214		4b*
Carbon, graphite 50 0.66 2 20, 100 0.68 30 20, 500 0.86 0.66 121 1.21 0.0064 0.0065 0.0065 0.0065 0.0064 0.0065 0.0064		1											
Steel	diamond	50	.012	5					1				
Chomium			,	1									
Cobalt 20		50	.00	2									
Copper. 20	Chromium				20,	100	.068	30					30
Gold 200 1.70 9	Cobalt			7									7
Gold Color Color									0,	625	.161	.0040	8
Indium	Cald												
Indium	Gold	20	.140	2					0,	520	.142	.0022	II
Iodine	Indium	40	47.0	_	-191,	17	.132	10					
Iridium		40	.417	5			0.=						
Iron, soft		20	065		-190,	17	.837	12		0	-/-/		
Iron, soft	1.4	20	.005	13									13
" cast. 20		40	1010		' _	7.00			1070,	1720	.0079	.0011	14
" wrought 20				5	0,	100	.11	15	_		0		_
Steel 20								İ					8
Lead (99.9)													16
Magnesium 20 .291 17 20 .200 .295 17	Load (po.p)						-04						8
Magnesium 280 .343 9 -100, +20 .240 18 + 20, 500 .2480 .0096 .0096 .2480 .0096 .0096 .2480 .0096 .0096 .0096 .2480 .0096 .0096 .0096 .2480 .0096 <t< td=""><td>Lead (99.9)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100,</td><td>240</td><td>.209</td><td>110.</td><td>9</td></t<>	Lead (99.9)								100,	240	.209	110.	9
Magnesium					20,	200	.295	17					
Manganese 20 .233 2 20 100 .2260 18 6 20 .300 .216 .0121 Molybdenum†. 20 .053 2 0, 100 .052 6 20, 300 .216 .0121 Nickel 20 .126 2 25, 100 .049 20 19, +305 .0501 .0014 Nickel 20 .126 2 0, 100 .055 20 .0130 6 -142, 19 .0515 .0051 .0014 </td <td>Magnesium</td> <td></td> <td></td> <td></td> <td>700</td> <td>L 20</td> <td>240</td> <td>- 0</td> <td>1 00</td> <td>#00</td> <td>2480</td> <td>2026</td> <td>18</td>	Magnesium				700	L 20	240	- 0	1 00	#00	2480	2026	18
Manganese	Wagnesium	20	.254	19					+ 20,	500	.2480	.0090	18
Molybdenum†. 20	Manganese	20	222	2									
Molybdenum†. 20 .053 2 0, 100 .052 6 -142, 10 .0515 .0057 .25, 100 .055 .055 .0507 .0014 .0515 .0507 .0014 .0516 .0516 .0516 .0517 .0517 .0518 .0517 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0507 .0518 .0508	manganese	20	.233	-					20	700	276	0707	6
Nickel	Molybdenumt	20	052	2									20
Nickel 20 .126 2 25, 500 .055 20 .100 .130 6 -100, +20 .1308 .0166 .0066 .	mony odenami,	20	.053	-									20
Nickel 20									19,	1 303	.0301	.0014	20
Osmium	Nickel	20	126	2					_ 100	+ 20	1208	0.766	6
Osmium 40 .066 5 Palladium 20 .0887 19 Platinum 20 .0887 19 20 .0893 2 Potassium 40 .0850 5 Rhodium 40 .0850 5 Ruthenium 40 .0963 5 Selenium 0 .430 24 Silicon 40 .0763 5 Silver 20 .1846 16 0 100 .660 25 Sodium 20 .195 19 -190, -17 .622 12 20, 500 .1039 .00295 Steel, 36.4 Ni 20 .065 6 -78, 059 6 20 .055 6 Tallurium 20 .016 3a 20 .272 3b Tin 20 .214 26 .272 3b Tallurium 20 .214 26 .272 3b	111011011111111111111111111111111111111		,120	-	0,	100	.130	0					6
Osmium 40 .066 5 Palladium 20 .1173 2 Platinum 20 .0887 19 20 .0893 2 Potassium 0 .0850 5 Rhodium 40 .0850 5 Ruthenium 40 .0963 5 Selenium 0 .439 24 Siliven 20 .1846 6 0 100 .660 25 Silver 20 .1846 6 0 100 .197 19 0 875 .1827 .00479 Sodium 20 .195 19 -190 -17 .622 12 20 .500 .193 .0029 Tantalum† 20 .065 6 -78 0 .059 6 20 .72 3b Tellurium 20 .214 26 .010 .0655 6 20 .272 3b					ł								16
Palladium	Osmium	40	.066	5					300,	1000	.1340	.0033	10
Platinum. 20	Palladium					1		- 1	- 100	+100	.1752	.00517	21
Platinum		-	111,0	- 1		İ	1						16
Potassium	Platinum	20	.0887	10	-100	-100			-100	-100			10
Potassium					-,-,				0.	+ 80			13
Potassium									0.	1000			16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.	50	.83	22	,		1	32	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rhodium	40	.0850	5	6.		.0876		- 75.	-112	.0746		23*
	Ruthenium												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Selenium				0,	100	.660	25					
Solium	Silicon	40	.0763	5	- 3.	+ 18	.0249		- 75.				23*
Sodium	Silver		.1846	16	0,	100			0,			.00479	16
Sodium		20		19					20,		.1939		19
Steel, 36.4 Nf 20	Sodium				-190,				0,	50	.72		22*
Tantalum† 20 .065 6 -78, 0 .055 17 340, 500 .136 .0009 1	Steel, 36.4 Ni								260,				T7*
Tellurium 20 .065					20,								17*
Tellurium 20 0.16 3a 0, 100 0.655 6 1 3b 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tantalum†	20	.065	6	- 78,	0	.059		20,	400	.0646	.0009	6
Thallium					0,		.0655						
Tin	Tellurium	:				20	.272	3b					
20 305 3a . 20 154 3b	Thallium												
	Tin								8,	95	.2033	.0263	26
1 ungstent 27 .0444 27 0. 100 .045 6 -105. +502 .0428 .00058	T							3p					
		27	.0444	27	0,	100	.045						28
	Zinc				-140,				0,	400	-354	.010	29a
20 154 3b + 20, 100 .639 4a								4a					
20 358 29 + 20, 100 141 4b		20	.358	29	+ 20,	100	.141	4D					
	-				1								

^{*} For references, see page 282. † Molybdenum, t_3 00° to 2500° $l_t = l_{300} [1 + 5.00 \times 10^{-6} (t - 300) + 10.5 \times 10^{-10} (t - 300)^2]$ Worthing, 1926 Tantalum, 300° to 2800° $l_t = l_{300} [1 + 6.60 \times 10^{-6} (t - 300) + 5.2 \times 10^{-10} (t - 300)^2]$ Worthing, 1926 Tungsten, 300° to 2700° $\log_t = l_{300} [1 + 4.44 \times 10^{-6} (t - 300) + 4.5 \times 10^{-10} (t - 300)^2]$ Worthing, 1926

LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and Λ , the authority. For reference see page 282.

Substance. t								
Cast	Substance.	t	C × 104	Α.	Substance.	t	C × 104	Α.
Wire.			0		Dlatinum cilum			
71.5 Cu + 27.7 Zn + 0.3 Sn + 0.5 Pt 40	Wire	0-100				0-100	0 7/02	1
Bronze: 3 Cu + 1 Sn	"	11			Porcelain			
Bronze: 3 Cu + 1 Sn	71.5 Cu + 27.7 Zn +		11703 1193		" Bayeux			
Bronze: 3 Cu + 1 Sn	0.3 Sn + 0.5 Pb	40		3	()uo rta:	· ·		
Bronze: 3 Cu + 1 Sn	_71 Cu + 29 Zn	0-100	0.1906	4	Parallel to axis			
3 Cu 1 Si	Bronze:				D " " "		0.0521	
" " " " " 16.6-350	3 Cu + 1 Sn	10.0-100	0.1844	5	rerpend. to axis		0.1337	
Rock salt					Quartz glass			
Rock salt.	86 66 61 66 64	16 6-350	0.2116	5	" "			
16.6-057		55-			Rock salt	40		
Solid Gold		1			Rubber, hard	o°		
Solid Gold	26 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.6-957	0.1737	5	. ". "			
O7.6 Cu + cot 86.3 Cu + 9.7 Sn +		_ ==0 -		Speculum metal	0-100	0.1933	I	
Cautchouc.	4 ZII				Parallel to lessor			
Cautchouc.	2.2 Sn + hard	0-80	0.1713		horizontal axis	44	0.0822	8
Cautchouc.	o.2 P soft		0.1708	0	Parallel to greater		0.0032	
Constantan	Caoutchouc	_			horizontal axis	"	0.0836	8
Constantan	0		0.770	7	Parallel to vertical	44		
Fluor spar: CaFs	Constantan	4-29		_	Tourmoline:		C.0472	8
German silver Gold-platinum: 2 Au + 1 Pt Gold-platinum: 2 Au + 1 Pt Gold-copper: 2 Au + 1 Cu Gold-copper: Ca Au + 1 Cu Gold-copper: Gold-copper: Ca Au + 1 Cu Gold-copper:	Eluor spare CaFa	25.3-35.4		7 8	Parallel to longi-			
Gold-platinum: 2 Au + 1 Pt.		0 100			tudinal axis	44	0.0027	8
2 Au + 1 Cu.			0.1030		Parallel to horizon-		0.0937	
Cold-copper: 2 Au + 1 Cu. 0.1552 4 Vulcanite. 0-18 0.6360 25 25 25 25 25 25 25 2	2 Au + 1 Pt	44	0.1523	4	tal axis		0.0773	8
Class: C					Type metal		0.1952	
Tube		"	0.1552	4	Vulcanite			
Plate		14	0			0-100	0.0890	5
Plate		- 44	0.0033					
Crown (mean)						4.6	0.0051	2.3
Fint	Crown (mean)		0.0897	IO	Beech	2.34		
Fint		50-60			Chestnut	i :		
Maple	Fint	"		II	Elm			
" 59 ^{III} " - 191 to + 16	Jena ther- 16111	0-100	0.081	12	Manogany	66		
" " " — 191 to + 16					Oak	6.6		
" — 101 to + 16 O.424 13 O.404 13 O.405 14 O.40	" 59 ¹¹¹	66	0.058	12	Pine	6.6	0.0541	
Ce.	" "	- 191 to + 16	0.424	13	Walnut	44	0.0658	
Cecland spar:						"		
Parallel to axis.	Ice	- 20 to - 1	0.51	15		44		
Perpendicular to axis Cade tin Color Cale tin	Parallel to avis	0-80	0.2621	6				
						4.6		
2Pb + 1 Sh	Lead-tin (solder)				Maple			
Manganin. 0.181 Walnut. 0.484 24 Marble. 15-100 0.117 17 Wax: White. 10-26 2.300 25 Paraffin. 0-16 1.0662 18 " " 26-31 3.120 25 " 16-38 1.3030 18 " " 31-43 4.860 25 Platinum-iridium 10 Pt + 1 Ir. 40 0.0884 3 " " 31-43 4.860 25 Duralumin, .94 Al, 20-100°, Steel, .14 C, 34.5 Ni. 25-100°, .000023 20-300°, .000025 Hidnert, '22 Steel, .14 C, 34.5 Ni. 25-100°, .000037 25-600°, .0000136 "	2 Pb + 1 Sn				Oak			
Marble. 15-100 0.117 17 Wax: White. 10-26 2.300 25 Paraffin. 0-16 1.0662 18 " " 26-31 3.120 25 ". 16-38 1.3030 18 " " 31-43 4.860 25 Platinum-iridium 40 0.0884 3 " " 31-43 43-57 15.227 25 Duralumin, .94 Al,	Magnalium	12-39		16	Pine			
Paraffin. 0-16 I.0662 I8 "	Marble	T.T1.00		177	Way White			
Platinum-iridium 10 Pt + 1 Ir 40 0.0884 3 " " 43-57 15.227 25 Duralumin, .94 Al, 20-100°,	Paraffin	0-16	1.0662	18	11 dx. Wille,			
Platinum-iridium 10 Pt + 1 Ir 40 0.0884 3 " " 43-57 15.227 25 Duralumin, .94 Al, 20-100°,	41				11 11		4.860	
Platinum-iridium 10 Pt + 1 Ir 40 0.0884 3 Duralumin, .94 Al, 20-100°, .000023 20-300°, .000025 Hidnert, '22 Steel, .14 C, 34.5 Ni 25-100°, .000037 25-600°, .0000136 "	44					43-57		
Duralumin, .94 Al, 20-100°, .000023 20-300°, .000025 Hidnert, '22 Steel, .14 C, 34.5 Ni 25-100°, .000037 25-600°, .0000136 "								
Steel, .14 C, 34.5 Ni 25-100°, .0000037 25-600°, .0000136 "	10 Pt + 1 Ir	40	0.0884	3				
Steel, .14 C, 34.5 Ni 25-100°, .0000037 25-600°, .0000136 "								
Steel, .14 C, 34.5 Ni 25-100°, .0000037 25-600°, .0000136 "	Duralumin Al	20-100°	.0000	23	20*300°.	.000025	Hidner	, '22
23 000, 10000130	Steel, JAC 24 5 Ni	25-100°	0000					_
Monel metal, 25-100°, .000014 25-600°, .000016	Monel metal	25-100°	.0000		25-600°,	.0000130		
Monte metal, 25-100 ,	Monet metal,	25-100 ,	.0000	,14	25-000 ,	.000010		
Insulating materials, Souder-Hidnert, 1919:	Insulating materials	Souder-Hidne	ert. 1010:					
Bakelite, bleached, 20-60°,				,	Marble	25.100°	10 - 16	10-6
Celluloid, 20-70°,								
Limestone, 25-100°,	L'importance	20-70,						
[Limestone, 25-100, .000009 Hard rubber, 20-00, .00000	Limestone,	25-100 ,	,000000	,	riard rubber,	20-00 ,		20000

CUBICAL EXPANSION OF SOLIDS

If v_2 and v_1 are the volumes at t_2 and t_1 respectively, then $v_2 = v_1 (1 + C\Delta t)$, C being the coefficient of cubical expansion and Δt the temperature interal. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature. The coefficient of cubical expansion may be taken as three times the linear coefficient.

Antimony				
Beryl	Substance.	t or Δt	C X 104	Authority.
Bismuth	Antimony			
Copper	Beryl	0-100	0.0105	
Diamond Qo	Bismuth	0-100	0.3948	
Emerald	Copper	0-100	0.4998	
Common tube	Diamond	40		
Glass, common tube O-100 O.276 Regnault	Emerald	40		
" hard		0-100		
"Jena, borosilicate 59 III		0-100	0.276	Regnault
Scheel	nard	0~100	0.214	**
" pure silica 0-80 0.0129 Chappuis Gold 0-100 0.4411 Matthiessen Ice 1.1250 Brunner Iron 0-100 0.3550 Dulong and Petit Lead 0-100 0.8399 Matthiessen Paraffin 20 5.88 Russner Platinum 0-100 0.265 Dulong and Petit Porcelain, Berlin 20 0.814 Chappuis and Harker Potassium chloride 0-100 1.967 """" " sulphate 20 1.9754 Tutton Quartz 0-100 0.3840 Pfaff Rock salt 50-60 1.2120 Pulfrich Rubber 20 4.87 Russner Silver 0-100 0.5831 Matthiessen Sodium 20 2.1364 E. Hazen Stearic acid 33.8-45.5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 Matthiessen Tin 0-1	Jena, borosmeate			
Gold Gold			0.156	
Cc	" pure silica	0–80	0.0129	
Iron		0-100		
Lead	Ice	-201	1.1250	
Paraffin 20 5.88 Russner				
Platinum O-100 O.265 Dulong and Petit		0-100		
Porcelain, Berlin 20		20		
Potassium chloride				Dulong and Petit
" nitrate 0-100 1.967 " " " " sulphate 20 1.0754 Tutton Quartz 0-100 0.3840 Pfaff Rock salt 50-60 1.2120 Pulfrich Rubber 20 4.87 Russner Silver 0-100 0.5831 Matthiessen Sodium 20 2.1364 E. Hazen Stearic acid 33.8-45-5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 " Tin 0-100 0.6889 Matthiessen		20		Chappuis and Harker
" sulphate 20 1.0754 Tutton Quartz 0-100 0,3840 Pfaff Rock sait 50-60 1,2120 Pulfrich Rubber 20 4.87 Russner Silver 0-100 0.5831 Matthiessen Sodium 20 2,1364 E. Hazen Stearic acid 33.8-45-5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 " Tin 0-100 0.6889 Matthiessen		0-100		Playfair and Joule
Quartz 0-100 0.3840 Pfaff Rock salt 50-60 1.2120 Pulfrich Rubber 20 4.87 Russner Silver 0-100 0.5831 Matthiessen Sodium 20 2.1364 E. Hazen Stearic acid 33.8-45.5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 "" Tin 0-100 0.6889 Matthiessen		0-100	1.967	_ " " "
Rock salt 50-60 1.2120 Pulfrich Rubber 20 4.87 Russner Silver 0-100 0.5831 Matthiessen Sodium 20 2.1364 E. Hazen Stearic acid 33.8-45.5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 "" Tin 0-100 0.6889 Matthiessen	" sulphate			
Rubber 20 4.87 Russner Silver 0-100 0.5831 Matthiessen Sodium 20 2.1364 E. Hazen Stearic acid 33.8-45.5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 " Tin 0-100 0.6889 Matthiessen				
Silver				
Sodium 20 2.1364 E. Hazen Stearic acid 33.8-45.5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 " Tin 0-100 0.6889 Matthiessen				
Stearic acid 33.8-45.5 8.1 Kopp Sulphur, native 13.2-50.3 2.23 " Tin 0-100 0.6889 Matthiessen				
Sulphur, native 13.2-50.3 2.23 " Tin 0-100 0.6889 Matthiessen				
Tin o-100 o.6889 Matthiessen				Kopp
				"
Zinc 0-100 0.8928 "				
	Zinc	0-100	0.8928	**

References to Table 266, page 280: (1) Uffelmann, 1930. (2) Mean. (3a) Bridgman, 1924-5, parallel to axis. (3b) ditto, perpendicular to axis. (4a) Grüneisen, paral. axis, hexag. (4b) ditto, perpendicular. (5) Fizeau. (6) Disch, 1921. (7) Tutton, 1899. (8) Dittenberger, 1902. (9) Uffelmann, 1930. (10) Grüneisen, 1910. (11) Müller, 1916. (12) Dewar, 1902. (13) Benoit, 1889. (14) Holborn, 1897. (15) Le Chatelier, 1899. (16) Holborn, Day, 1900. (17) Hidnert, Sweeney, 1930. (18) ditto, 1928. (19) Scheel, 1921. (20) Hidnert, Shad, 1919. (21) Scheel, 1907. (22) Hagen, 1883. (23) Valentiner, Wallot, 1915. (24) Dorsey, 1908. (25) Spring, 1881. (26) Matthiessen. (27) Worthing, 1917. (28) Hidnert, Sweeney, 1925. (29) Schulze, 1921. (30) Hidnert, 1931.

References to Table 267, page 281: (1) Smeaton. (2) Various. (3) Fizeau. (4) Matthiessen. (5) Daniell. (6) Benoit. (7) Kohlrausch. (8) Pfaff. (9) Deluc. (10) Lavoisier and Laplace. (11) Pulfrich. (12) Schott. (13) Henning. (14) Russner. (15) Mean. (16) Stadthagen. (17) Fröhlich. (18) Rodwell. (19) Braun. (20) Deville and Troost. (21) Scheel. (22) Mayer. (23) Glatzel. (24) Villari. (25) Kopp. (26) Randall. (27) Dorsey.

Note: Crucibles of thorium oxide may be used for $t < 3000^{\circ}$ C; magnesium oxide, $< 1800^{\circ}$ C; beryllium oxide, $< 2000^{\circ}$ C. Swanger, Caldwell, Bur. Standards, Journ. Res., 6, 1131, 1931, which see for further information about use of crucibles.

CUBICAL EXPANSION OF LIQUIDS

If V_0 is the volume at 0° then at t° the expansion formula is $V_t = V_0 (1 + \alpha t + \beta t^2 + \gamma t^3)$. The table gives values of α , β and γ and of C, the true coefficient of cubical expansion, at 20° for some liquids and solutions. Δt is the temperature range of the observation and A, the authority.

						;
Liquid.	Δt	a 10 ³	B 106	γ 10 ⁸	C 103	Α.
		- 10	F 15	7 .0	al 20 ⁰	24.
Acetic acid	16-107	1.0630	0.12636	1.0876	1.071	3
Acetone	0-54	1.3240	3.8090	-0.87983	1.487	3
Alcohol:	3.	3.1	3.2.7	1-75-3	4-/	3
Amyl	1 5-80	0.9001	0.6573	1.18458	0.902	4a
Ethyl, 30% by vol	18-39	0.2928	10.790	-11.87	_	6
" 50% "	0-39	0.7450	1.85	0.730	-	6
" 99.3% "	27-46	1.012	2.20	_	1.12	6
" 500 atmo. press	0-40	0.866	-	-	-	I
" 3000 " " .	0-40	0 524	-	_	-	I
Methyl	0-61	1.1342	1.3635	0.8741	1.199	5a
Benzene ,	11-81	1.17626	1.27776	0.80648	1.237	5a
Bromine	0-59	1.06218	1.87714	-0.30854	1.132	2
5.8% solution	18-25	0.07878	4.05.40		0.050	_
40.9% "	17-24	0.07878	4.2742 0.8571	_	0.250	7
Carbon disulphide	-34-60	1.13980	1.37065	1.91225	1.218	7 4a
500 atmos. pressure	0-50	0.940	1.3/003	1.91223	1.210	I
3000 " " .	0-50	0.581	_	_	_	I
Carbon tetrachloride .	0-76	1.18384	0.89881	1.35135	1.236	4b
Chloroform	0-63	1.10715	4.66473	-1.74328	1.273	4b
Ether	1 5-38	1.51324	2.35918	4.00512	1.656	4a
Glycerine		0.4853	0.4895		0.505	8
Hydrochloric acid:						
33.2% solution	0-33	0.4460	0.215		0.455	9
Mercury	0-100	0.18182	0.0078	-	0.18186	13
Olive oil	-	0.6821	1.1405	-0.539	0.721	10
Pentane	0-33	1.4646	3.09319	1.6084	1.608	14
Potassium chloride:			2.080			
24.3% solution	16-25	0.2695			0.353	7
Petroleum:	36-157	0.8340	0.10732	0.4446	1.090	11
Density 0.8467	24-120	0.8994	1.396	_	0.955	12
Sodium chloride:	24 120	0.0994	1.390		0.933	12
20.6% solution	0-29	0 3640	1.237	_	0.414	9
Sodium sulphate:	V - 9	- 3-43	-11-37		0.4.4	9
24% solution	11-40	0.3599	1.258	_	0.410	9
Sulphuric acid:			,			
10.9% solution	0-30	0.2835	2.580	-	0.387	9
100.0%	0-30	0.5758	-0.432	-	0.558	9
Turpentine	- 9-106	0.9003	1.9595	- 0.44998	0.973	9 5b
Water	0-33	-0 06427	8.5053	-6.7900	0.207	13
					I	l

AUTHORITIES.

- I. Amagat: C. R. 105, p. 1120; 1887.
- 2. Thorpe: Proc. Roy. Soc. 24, p. 283; 1876.
- 3. Zander: Lieb. Ann. 225, p. 109; 1884.
- 4. Pierre: a. Lieb. Ann. 56, p. 139; 1845. b. Lieb. Ann. 80, p. 125; 1851.
- 5. Kopp: a. Lieb. Ann. 94, p. 257; 1855.
- b. Lieb. Ann. 93, p. 129; 1855. 6. Recknagel: Sitzber. bayr. Ak. p. 327, 2
- Abt.; 1866. 7. Drecker: Wied. Ann. 34, p. 952; 1888. 8. Emo: Ber. Chem. Ges. 16, 1857; 1883.

- 9. Marignac: Lieb. Ann., Supp. VIII, p. 335; 1872.

- 10. Spring: Bull. Brux. (3) 3, p. 331; 1882.
 11. Pinette: Lieb. Ann. 243, p. 32; 1888.
 12. Frankenheim: Pogg. Ann. 72, p. 422; 1847.
- 13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. 1;
- 14. Thorpe and Jones: J. Chem. Soc. 63, p. 273; 1893.

TABLE 270

THERMAL EXPANSION OF GASES

Pressures are given in centimeters of mercury.

Coefficient a	t Constant Volu	ıme.		Coefficient a	Constant Pres	sure.	
Substance.	Pressure cm.	Coefficient X	Reference.	Substance.	Pressure cm.	Coefficient X	Reference.
Air " " " " " " " " " " " " " " " " " "	.6 1.3 10.0 25.4 75.2 100.1 76.0 200.0 2000. 10000. 51.7 76.0 1.8 5.6 74.9 51.8 51.8 99.8 99.8 99.8 100.0 76. 56.7 .0077 .025 .47 .93 11.2 76.4 100.0 .06 .53 100.2 100.2 76007 .25 .51 1.9 18.5 75.9 76. 76.	.37666 .37172 .36630 .36580 .36580 .36660 .36693 .38866 .4100 .3668 .36856 .36952 .36981 .37264 .36985 .37242 .36981 .37335 .37242 .36972 .3654 .3656 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724 .3723 .3724	1 " " " 2 3 3 " " " " " " " " " " " " " "	Oxygen, $E = 0$ Nitrogen, $E = 0$	he calculation of and 100° Ce change of vectors of the change of vectors of the constant of the calculation	on of the C . Expand C column	e ex- nsion nder),),),),),

Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts.

Meas. 13, 1903.
3 Regnault, Ann. chim. phys. (3) 5, 1842.
4 Keunen-Randall, Proc. R. Soc. 59, 1896.

⁵ Chappuis, Arch. Sc. phys. (3), 18, 1892.
6 Baly-Ramsay, Phil. Mag. (5), 38, 1894.
7 Andrews, Proc. Roy. Soc. 24, 1876.
8 Meleander, Acta Soc. Fenn. 19, 1891.
9 Amagat, C. R. 111, 1890.
10 Hirn, Théorie méc. chaleur, 1862.

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS

When one temperature is given the true specific heat is given, otherwise the mean specific heat between the given limits. See page 289 for references.

4.0	0.1.	T) (
Element t°C	Sp.ht.	Ref.	Element t°C	Sp.ht.	Ref.
Aluminum250	0.0039			0.0025	19
-200	.076		- 66	.053	19
-150	.1367	I	11	.112	19
-100	.1676	I	85	.177	19
- 50	.1914	I	896	.454	19
0	.2079	Ī	C, diamond o	.1044	20
100	.225		223	.264	20
300	.248	2	823	.428	20
					- (
600	.277	2	Cerium253, -196	.033	21
16, 100	.212	3	20, 100	.0511	22
Antimony* -207.1		4	Chlorine 0, 24	.226	23
-150	.0412	I	Chromium150	.0599	I
-100	.0448	1	-100	.0797	I
- 50	.0476	I	– 50	.0941	I
0	.0494	I	0	.1044	I
28	.0477	5	100	.112	25
20, 100	.0504	6	500	.150	7
500	.054	*	600	.187	25
Arsenic216	.032	4	18, 100	.III	24
-117.6		4	Cobalt150	.0672	i
18	.078	4	-100	.0809	1
Barium 185, +20			- 50 ⁻	.0914	I
Beryllium202	.017	7 8	0	.1028	ī
45, 50		9	20	.1001	*
0, 100		10	100	.1067	*
Bismuth*150	.0264	I	200	.1134	*
—100			Copper189		26
	.0273	I		.0506	26
- 50	.0282	I	-150	.0674	I
0	.0291	I	-100	.0783	1
20	.0294	*	- 5o	.0862	I
100	.0304	4	0	.0910	I *
fluid 297	.0292	4	100	.0939	
Boron 100	.287	ΙĮ	900	.1259	27
. 500	.472	ΙI	18, 100	.0928	24
900	.510	11	18, 600	.0994	24
-76, 6	.168	I 2	Gallium258.1	.0049	29
0, 100	.307	13	-213.1	.044	29
Bromine,(s) -253.1		14	- 73.1	.084	29
(s)173.1		14	Germanium o, 100	.074	10
(s) 73.1		14	Gold258.1	.0018	29
(s) 13.1		14	-252.8	.0040	29
(1) 13, 45		15	-209.5	.0211	29
Cadmium263	.0019	16	-150	.0266	29 I
-203.1	_	16	-100	.0281	I
	, ,	16			I
-103.1		16	- 50	.0293	
27.9		16	0	.0302	1
107.9	, ,			.0312	30
Coosium 277	.060	16	Indium 100	.0314	30
Caesium o, 2		17	Indium 0, 100	.057	31
Calcium 24	.168	18	Iodine −263.2	.0037	32
100	.1625	2	-255.9	.0118	32
300	.1832	2	-221.1	.0353	32
600	.188	2	-90,+17	.0485	33
Carbon, graph — 191, — 79	.057	12	Iridium $186,+18$.0282	34
- 76, o	.126	12	18, 100	.0323	34

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS

Element	t°C	C- 14	D - 6	F1	7.
II _		Sp.ht.	Ref.	Element t°C Sp.ht.	Ref.
Iron, pure			26	Molybdenum 34.5 0.0561	44
	-240.7	.00355	26	0 .0589	45
	-214.0	.0194	26	+ 5.3 .0589	44
	-172.6	.0512	26	+100 .0612	45
	- 67.5	.0939	26	250 .0632	45
	0	.1043		Nickel258 .0008	26
$a, \beta, \gamma \dots$	100	.115	27	-247.9 .0024	26
	500	.163	27	$-201.2 \cdot 0363$	42
	760	.320	27	-150 .0660	I
	1000	.162	27	-100 .0817	I
~	100	.127	26	- 50 .0940	Ī
7	700	.157	26	0 .1032	I
1	1000	.162	26	•	
Lanthanum				100 .1146	35
Lanthanum		.0448	36	500 .1270	35
Lead		10000.	37	800 .1413	35
	-267	.00086	38	Osmium 19, 98 .0311	46
	-259	.0073	38	Palladium180,+18 .0528	34
	- 150	.0279	I	0 .0538	47
	-100	.0283	I	100 .0564	47
	- 50	.0289	I	500 .0653	47
	0	.0297	I	900 .0717	47
	100	.0320	35	1500 .0766	47
	300	.0356	35	Phosphorus, yellow -136 .124	
(1)		.0375	35	- 40 .165	5 5 5 5 5
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	500	.0370	35	+ 9 .189	5
Lithium		.3	39	(red)136 .107	5
	-100	.600	40	- 40 .182	2
	50	.96			5
·	+190		39		
Magnasium		1.374	40	Platinum255.6 .00123	44
Magnesium		.1767	I	-237.7 .0073	44
	-100	.2025	I	-191.7 .0211	44
	- 50	.2228	I	-152.1 .0261	44
	0	.2316	I	- 64.8 .0307	44
	100	.257	2	0 .03162	I
	300	.279	2	500 .0349	47
	600	.311	2	750 .0365	47
(1)	650, 775	.284	41	1000 .0381	47
Manganese	188, -79	.0820	33	1300 .0400	47
_	-79, +15	1001.	33	20, 100 .0319	47
	60	.1211	33	20, 1000 .0346	47
	325	.1783	33	Potassium258.4 .032	44
	20, 100	.1211	33	-255.8 .045	44
	 100	.0979	33 40	$-255.0 \cdot .045$ $-201.3 \cdot .140$	
l .	- 100	.1072			44
	100		40		44
Mercury (s)		.1143	40		44
Mercury (s)		.00552	42		48
	-267.2	.00620	42	181 .196	48
	-259.8	.00783	42	Rhenium 0, 20 .035	49
	-245.6	.0172	42	Rhodium10, 97 .058	46
	-220.2	.0255	42	Rubidium (s) o .0802	50
	-163.7	.0298	42	(1) 50	50
	- 81.4	.0324	42	Ruthenium 0, 100	31
	- 43.1	.0337	43	Selenium 3 .072	51
(1)	- 33.1	.0338	43	16.5 .075	52
(See Table 276)	- 3.1	.0335	43	20.5 .077	52
	+ 17	.0333	43	29.5 .085	52
Molybdenum	-257	.0004	44	32 .127	52
	-239.1	.0034	44	38 .131	52
	-181.5	.0300	44	41.7 .130	52
	-152.7	.0399		20 .09	
	132./	.0399	44	20 109	

TABLE 271 (concluded).—Specific Heat of the Chemical Elements

	0.1.	D (70 0 1	D .
	Sp.ht.	Ref.	Element t°C Sp.ht.	Ref.
	0.029	53	Thorium253,-196 0.0197	21
-143.3	.087	53	0, 100 .0276	62
- 86.2	.126	53	Tin203.5 .0385	63
+ 13.9	.168	53	-186.7 .0422	63
18.2, • 99.1	.181	54	-150 .0450	I
18.0, 900.6	.210	54	-100 .0483	I
Silver238	.0146	28	- 50 .0512	I
-150	.0461	I	0 .0536	I
-100	.0505	1	+ 25 .0548	63
- 50	.0537	I	100 .0577	
0	.0557	I	1100 .0758	
100	.0564	*	Titanium $-185, +20$.082	7 1
300	.0601	2	0,100 .1125	
900	.0685	2	Tungsten247.1 .0012	
20-900	.0650	55	-218.4 .0098	
20-1200	.0880	55	-173.1 .0205	65
Sodium256.1	.026	44	- 73.I .0288	
-238.5	.108	44	+ 26.9 .0321	65
-155.5	.245	44	100 .0320	66
(1)	.32		500 .0344	
Sulphur 188, +18			1000 .0367	
	.137	57		1
(1)	.176	56 56	Uranium 0, 98 .0280	
rhom 15, 96		56	**	
monochin 0, 52	.18r	58		
Tantalum201.7	.0205	8	Zinc	::
+380	.035	59	-252.4 .0071	
900	.036	59	-201.3 .0573	
1100	.043	59	-150 .0740	
1400	.044	59	-100 .0814	
Tellurium188,+18	.047	57	- 50 .0871	
15, 100	.0483	60	0 .0913	I
15, 200	.0487	60	100 .0957	*
Thallium 135	.288		300 .1043	
28	.311	5	400 .1089) 2
20, 100	.0326	61		

TABLE 272 .-- Formulae for True Specific Heats

Element Antimony 0.0493 + 0.000012 t Bismuth 0.292 + 0.00012 t Chromium 1.055 + 0.0010 t - 0.00000015 t^2 Cobalt 1.000 + 0.00067 t Copper 0.915 + 0.00024 t Iron 1.060 + 0.00096 t Lead 0.295 + 0.0002 t Magnesium 0.2370 + 0.00142 t - 0.000001 t^2 Nickel 1.020 + 0.00118 t - 0.0000006 t^2 Platinum 0.3162 + 0.000617 t + 2.33 \times 101 Silver 0.556 + 0.00008 t Tin 0.525 + 0.00052 t Zinc 0.913 + 0.00014 t	0-400 0-300 0-400 0-300 0-400 0-300
---	--

Pt from Jaeger & Rosenbaum, 1928. Others recalculated by Dr. W. P. White (1931), mainly from Schübel.

SMITHSONIAN TABLES

HEAT CAPACITIES, TRUE AND MEAN SPECIFIC HEATS, AND LATENT HEATS **AT FUSION (SEE PP. 285-287)**

The following data are taken from a research and discussion entitled "Die Temperatur-Wärmeinhaltskurven der technisch wichtigen Metalle," Wüst, Meuthen und Durrer, Forschungsarbeiten herausgegeben vom Verein Deutscher Ingenieure, Springer, Heft 204, 1918. (a) There follow the constants of the equation for the heat capacity: $W = a + bt + ct^2$; for the mean specific heat: $s = at^{-1} + b + ct$; and for the true specific heat: s' = b + 2ct; also the latent heats at fusion. Much greater faith should be given to tables on pages 285 to 287.

Ele- ment	Tempera- ture range. ° C	а	ь	c × 106	La- tent heat. cal./g	Ele- ment	Tempera- ture range. ° C	а	ь	c×106	La- tent heat cal./g
Al	0-1500 0-1500 0-1500 0-1500 0-232 232-1000 0-270 270-1000 0-321 321-1000 0-327 327-1000 0-419 419-1000 0-630 630-1000 0-657 657-1000	14.33 10.31 6.30 6.07 14.34 39.42	0.22200	10.99 1.07 3.54 -18.30 5.22 5.41 6.28 6.37 11.47 -3.30 43.48 -16.10 3.00 2.96 38.57	13.8 10.2 10.8 - 10.8 - 23.0 38.9 94.0	Cu Mn	1064-1300 0-1084 1084-1300	53.17 26.35 130.74 -7.41 3.83 0.41 50.21 -22.00 57.72 -1.63 18.31 -77.18	0.12037 0.17700 0.19800 0.10950 0.12931 0.13380 0.09119 0.11043 0.14720 0.1592 0.1592	28.30 1.30 8.52 3.05 65.6 25.41 52.40 0.11 40.77 14.57 56.84 0.05	15.9 41.0 36.6 24.14* 56.1 1.33* 58.2 14.70*

^{*} Allotropic heat of transformation: Mn, 1070-1130°; Ni, 320-330°; Co, 950-1100°; Fe, $725-785^{\circ}$; $919^{\circ} = 1$; $1404.5^{\circ} = 0.5$.

(b) TRUE SPECIFIC HEATS

° C	Pb	Zn	Al	Ag	Au	Cu	Ni	Fe	Со	Silica glass
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500		0.0965 0.1052 0.1139 0.1226 0.1173 0.1141 0.1109 0.1076 0.1044	o. 2297 o. 2374 o. 2451 o. 2529 o. 2606 o. 2683 o. 2523 o. 2571 o. 2619 o. 2667	0.0583 0.0594 0.0605 0.0616 0.0627 0.0638 0.0660 0.0671 0.0637 0.0694	0.0320 0.0322 0.0325 0.0328 0.0330 0.0333 0.0335 0.0341 0.0343 0.0329	0. 1014 0. 1020 0. 1032 0. 1038 0. 1045 0. 1051 0. 1057 0. 1063 0. 1069 0. 1028 0. 1159	0.1200 0.1305 0.1409 0.1294 0.1294 0.1295 0.1295 0.1295 0.1296 0.1296 0.1296 0.1296	0.1168 0.1282 0.1396 0.1509 0.1623 0.1737 0.1850 0.1592 0.1592 0.1548 0.1448 0.1448 0.1444 0.1449	0.0993 0.1073 0.1154 0.1235 0.1316 0.1396 0.1477 0.1558 0.1639 0.1424 0.1454 0.1454	0.2372 0.2416 0.2460 0.2504 0.25248 0.2592 0.2636 0.2680 0.2768 0.2768 0.2812 0.2856 0.2900 0.2944

For more elaborate tables and for all the elements in upper table, see original reference. SMITHSONIAN TABLES.

ATOMIC HEATS (50°K.), SPECIFIC HEATS (50°K.), ATOMIC VOLUMES OF THE ELEMENTS

The atomic and specific heats are due to Dewar, Pr. Roy, Soc. 80A, 168, 1013

Ele- ment.	Specific heat -223° C.	Atomic heat -223°C.	Atomic volume.	Ele- ment.	Specific heat -223° C.	Atomic heat -223°C.	Atomic volume.	Ele- ment.	Specific heat - 223° C.	Atomic heat -223°C.	Atomic volume.
Li Gl B C * C † Na Mg Al Si ‡ Si § P yel. P red S Cl K Ca Ti	0.1924 0.0137 0.0212 0.0137 0.0028 0.1519 0.0713 0.0303 0.0303 0.0774 0.0431 0.0546 0.0967 0.1280 0.0714	1.35 0.125 0.24 0.16 0.03 3.50 1.74 1.12 0.86 0.77 2.40 1.34 1.75 3.43 5.01 2.86 0.99	13.0 4.9 4.5 5.1 3.4 23.6 14.1 10.0 14.2 11.4 17.0 13.5 16. 24.6 44.7 25.9 10.7	Cr Mn Fe Ni Co Cu Zn As Se Br Rb Sr T Mo Ru Rh Pd Ag Cd	0.0142 0.0229 0.0175 0.0208 0.0207 0.0245 0.0361 0.0453 0.0711 0.0550 0.0262 0.0141 0.0109 0.0134 0.0190 0.0242 0.0308	0.70 1.26 0.98 1.22 1.56 2.52 1.94 2.86 3.62 6.05 4.82 2.38 1.36 1.11 1.38 2.03 2.62 3.46	7.6 7.4 7.1 6.7 6.8 7.1 9.2 15.9 18.5 24.9 55.8 34.5 21.8 9.3 9.0 8.5 9.2 10.2	Sn Sb I Te Cs Ba¶ La Ce W Os Ir Pt Au Hg Tl Pb Bi Th U	0.0286 0.0240 0.0361 0.0288 0.0513 0.0350 0.0322 0.0330 0.0095 0.0078 0.0099 0.0135 0.0160 0.0232 0.0235 0.0240 0.0218 0.0197 0.0138	3.41 2.89 4.59 3.68 6.82 4.80 4.60 4.64 1.75 1.49 1.92 2.63 3.16 4.80 4.94 4.54 4.58 3.30	20.3 18.2 25.7 21.2 21.2 21.2 21.2 36.6 22.6 20.3 9.8 8.5 8.6 9.2 10.2 14.8 17.2 18.3 21.3 21.1 12.8

* Graphite.

† Diamond.

‡ Fused.

§ Crystallized.

¶ Impure.

References to Table 271: * Values derived from formulae recalculated by Dr. W. P. White from Schübel's results. The Pt formula is from Jaeger and Rosenbaum. (1) Schimpff values interpolated by White. (2) Eastman, William Young, 1924. (3) Magnus, 1910. (4) Anderson, 1930. (5) Ewald, 1914. (6) Linnayuori, 1922. (7) Nordmeyer, Bernoulli, 1907-8. (8) Simon-Rubeniann, 1927. (9) Humpidge, 1883. (10) Nilson, Pettersson, 1880. (11) Magnus and Danz, 1926. (12) Kosef, 1911. (13) Moisson, Gautier, 1896. (14) Suhrmann, Lüde, 1924. (15) Andrews, 1848. (16) Lange, Simon, 1928. (17) Eckardt, Graefe, 1900. (18) Eastman, Rodebush. (19) Nernst, Lindemann, 1011. (20) Magnus, Hodler, 1926. (21) Dewar, 1913. (22) Hirsch, 1912. (23) Kneitsch. (24) Schübel, 1914. (25) Adler, 1903. (26) Eucken, Werth, 1930. (27) Richards, 1893. (28) Griffiths, 1894. (29) Clusius, Harteck, 1928. (30) Jaeger, Diesselhorst, 1900. (31) Bunsen, 1870. (32) Lange, 1924. (33) Estreicher, Straniewski, 1912. (34) Behn, 1900. (35) Kleinkhardt, 1927. (36) Hillebrand, 1876. (37) Keesom, 1927. (38) v. d. Eude. (39) Bidwell, 1925. (40) Laemmel, 1905. (41) Zulinski, 1928. (42) Simon, 1922, 1923. (43) Carpenter, Stoodley, 1930. (44) Simon, Zeidler, 1926. (45) Cooper, Langstroth, 1929. (46) Regnault, 1849, 1861. (47) White, 1918. (48) Dixon, Rodebush, 1927. (49) Noddeck, 1928. (50) Rengade, 1913. (51) Tammann. (52) Gronow. (53) Anderson, 1930. (54) Magnus, 1923. (55) Umino, 1926. (56) Mondain, Monval, 1926. (57) Dewar, 1905. (58) Wilgard, 1906. (59) Pirani, 1912. (60) Tilden, 1904. (61) Schmitz, 1903. (62) Wilson, 1883. (63) Rodebush, 1923. (64) Pionchon, 1886. (65) Zwikker, 1928. (66) Jaeger, Rosenbaum, 1930. (67) Blümcke, 1885. (68) Mache, 1897. (69) Clusius, Harteck, 1928.

References to Table 276: R, Regnault. L, Lorentz. T, Tomlinson. JD, Jaeger, Diesselhorst. M, Mazotto. S, Schüz. P, Person. W, Wachsmuth. Z. Zouloff. HM, H. Meyer. B, Batelli. GT, Gee and Terry. RW, R. W. Weber.

TABLE 275 .- Specific Heat of Various Solids

Solid	Temperature °C	Specific heat	Authority See p. 289
Alloys:			
Bell metal.	15-98	0.0858	R
Brass, red.	0	.08991	L
" vellow	0	.08831	1.1
80 Cu + 20 Sn	-	.0862	R
Constanton 60 Cu 40 Ni	14–98 18	1	
Constantan, 60 Cu, 40 Ni	_	.0977	J _" D
German silver	100	.1018	Т
Lipowitz alloy: 24.97 Pb + 10.13 Cd + 50.66 Bi	0-100	.09464	1
			3.5
+ 14.24 Sn	5-50	.0345	M
Lipowitz alloy	100-150	.0426	
Manganin: 84 Cu, 4 Ni, 12 Mn	18	.0973	J _i D
M1	100	.1004	
Monel metal	20-1300	.127	_
Rose's alloy: $27.5 \text{ Pb} + 48.9 \text{ Bi} + 23.6 \text{ Sn}$	- 77-20	.0356	S
337 11 11 0 DI 1 6 01 1 DI	20-89	.0552	
Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi			
+ 14.73 Sn	5-50	.0352	M
Wood's alloy: (fluid)	100-150	.0426	**
Miscellaneous alloys:			
17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn	20-99	.05657	R
37.1 Sb + 62.9 Pb	10–98	.03880	14
39.9 Pb + 60.1 Bi	16–99	.03165	P
63.8 Bi + 36.2 Sn	20-99	.04001	R
46.9 Bi + 53.1 Sn	20-99	.04504	44
Gas coal	20-1040	.3145	_
Glass, normal thermometer 16111	19-100	.1988	W
" French hard thermometer		.1869	Z
" crown	10-50	.161	H M
" flint	10-50	.117	44
Ice	- 80	-350	B M
46	- 40	.434	4.6
"	- 20	.465	44
- 44	0	.487	44
India rubber (Para)	3-100	.481	GT
Mica	20	.10	_
Paraffin	- 20- + 3	.3768	RW
44	- 19- +20	.5251	
u	0-20	.6939	
"	35-40	.622	В
" fluid	60-63	.712	"
Woods	20	.327	
	20	327	

TABLE 276.—Specific Heat of Water and of Mercury

Specific Heat of Water.					Specific Heat of Mercury.					
Temper- ature, °C.	Barnes.	Rowland.	Barnes- Regnault.	Temper- ature, °C.	Barnes	Barnes- Regnault.	Temper- ature, °C.	Specific Heat.	Temper- ature, °C.	Specific Heat.
-5	1.0155	-	-	60	0.9988	0.9994	0	0.03346	90	0.03277
0	1.0001	1.0070	1.0094	65	•9994	1.0004	5	.03340	100	.03269
+5	1.0050	1.0039	1.0053	70	1.0001	1.0015	10	.03335	110	.03262
10	1.0020	1.0016	1.0023	80	1.0014	1.0042	15	.03330	120	.03255
15	1.0000	1.0000	1.0003	90	1.0028	1.0070	20	.03325	130	.03248
20	0.9987	1000	0.9990	100	1.0043	1.0101	25	.03320	140	.03241
25	.9978	•9989	.9981	120	-	1.0162	30	.03316	150	.0324
30	9973،	•9990	.9976	140	-	1.0223	35	.03312	170	.0322
35	.9971	•9997	•9974	160	-	1.0285	40	.03308	190	.0320
40	.9971	1.0006	•9974	180	_	1.0348	50	.03300	210	.0319
45	•9973	1.0018	.9976	200	-	1.0410	60	.03294	-	-
50	-9977	1.0031	.9980	220	-	1.0476	70	.03289	-	-
55	.9982	1.0045	.9985	-	-	- 1	80	.03284	_	-

Barnes's results: Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.)
Bousfield, Phil. Trans. A 211, p. 199, 1911.

Barnes-Regnault's as revised by Peabody; Steam Tables.
The mercury data from 0° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

TABLE 277 .- Specific Heat of Various Liquids

Liquid.	Temp. °C.	Spec. heat.	Au- thority.	Liquid.	Temp.	Spec. heat.	Au- thority.
Alcohol, ethyl	40 5-10 15-20 15 30 50 10 40 65 -15 0 +20 -20 0 +20 0 +20 12-15 12-14 13-17		R	Ethyl ether. Glycerine KOH + 30H ₂ O. " + 100" NaOH + 50H ₂ O. " + 100" NaCH + 10H ₂ O. " + 200" Naphthalene, C ₁₀ H ₈ . " Nitrobenzole. Oils: castor. citron. olive sesame turpentine. Petroleum. Sea water, sp. gr. 1.0043. " " " " 1.0235. " " " " 1.0463. Toluol, C ₆ H ₈ . " ZnSO ₄ + 50 H ₂ O. " + 200"	15-50 18 18 18 18 18 18 90-95 14 28 	0.409 0.350 0.362 0.434 0.438 0.471 0.387 0.411 0.980 0.938 0.938 0.364 0.490 0.534 0.842	E TH " " " " " " " " " " " " " " " " " "

References: (A) Abbot; (B) Batelli; (E) Emo; (G) Griffiths; (DMG) Dickinson, Mueller, and George; (H–D) de Heen and Deruyts; (Ma) Marignac; (Pa) Pagliani; (R) Regnault; (Th) Thomsen; (W) Wachsmuth; (Z) Zouloff; (HW) H. F. Weber.

TABLE 278.—Specific Heat of Liquid Ammonia under Saturation Conditions Expressed in Calories₂₀ per Gram per Degree C. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

Temp.	0	I	2	3	4	5	6	7	8	9
-40 -30 -20 -10 - 0 + 0 +10 +20 +30 +40	1.062 1.070 1.078 1.088 1.099 1.112 1.126 1.142 1.162	1.061 1.069 1.077 1.087 1.098 1.100 1.113 1.128 1.144 1.164	I.060 I.068 I.076 I.086 I.097 I.101 I.114 I.129 I.146 I.166	1.059 1.067 1.075 1.085 1.096 1.103 1.116 1.131 1.148	1.058 1.066 1.074 1.084 1.094 1.104 1.117 1.132 1.150	1.058 1.065 1.074 1.083 1.093 1.105 1.118 1.134 1.152	1.057 1.064 1.073 1.082 1.092 1.106 1.120 1.136 1.154	1.056 1.064 1.072 1.081 1.091 1.108 1.122 1.137 1.156	1.055 1.063 1.071 1.080 1.090 1.109 1.123 1.139 1.158	1.055 1.062 1.070 1.079 1.089 1.110 1.125 1.141 1.160

TABLE 279.- Heat Content of Saturated Liquid Ammonia

Heat content = $H = \epsilon + pv$, where ϵ is the internal or intrinsic energy. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

						1
Temperature $H = \epsilon + pv$	-50° -40° -53.8 -43.3	$\begin{vmatrix} -30^{\circ} \\ -32.6 \end{vmatrix} = -20$	0 8 -11.0 0.0	+10° +20° +11.1 +22.	+30° +40° 4 -33.9 -45.5	+50° -57·4

TABLE 280 .- Specific Heat of Minerals and Rocks

Substance.	Tempera- ture ° C.	Specific Heat.	Refer-	Substance.	Tempera-	Specific Heat.	Refer-
			- Circuit				
Andalusite	0-100	0.1684	1	Rock-salt	13-45	0.210	6
Anhydrite, CaSO ₄	0-100	.1753	ī	Serpentine	16-98	.2586	2
Apatite	I 5-99	.1903	2	Siderite	9-98	.1934	4
Asbestos	20-98	.195	3	Spinel	15-47	.194	6
Augite	20-98	.1931	3	Talc	20-98	.2092	3
Barite, BaSO ₄	10-98	.1128	4	Topaz	0-100	.2097	I
Beryl	15-99	.1979	2	Wollastonite .	19-51	.178	6
Borax, Na ₂ B ₄ O ₇ fused	16-98	.2382	4	Zinc blende, ZnS.	0-100	.1146	I
Calcite, CaCO ₃	0-50	.1877	T	Zircon	21-51	.132	6
11 11 11	0-100	.2005	ī	Rocks:	2. 5-	J. J.	
	0-300	.220.1	I	Basalt, fine, black	12-100	.1996	6
Cassiterite SnO ₂	16-98	.0933	4	" " "	20-470	.199	9
Chalcopyrite	15-99	.1291	2	66 66 66	470-750	.243	9
Corundum	9-98	.1976	4	66 66 66	750-880	.626	9
Cryolite, Al ₂ F ₆ .6NaF .	16-99	.2522	2	66 66 66	880-1190	-323	9
Fluorite, CaF ₂	15-99	.2154	4	Dolomite	20-98	.222	3
Galena, PbS	0-100	.0466	5	Gneiss	17-99	.196	10
Garnet	16-100	.1758	2	"	17-213	.214	10
Hematite, Fe ₂ O ₃	I 5-99	.1645	2	Granite	12-100	.192	7
Hornblende	20-98	.1952	3	Kaolin	20-98	.224	3
Hypersthene	20-98	.1914	3	Lava, Aetna .	23-100	.201	11
Labradorite	20-98	.1949		" "	31-776	.259	II
Magnetite	18-45	.156	3 6	" Kilauea .	25-100	.197	11
Malachite, Cu ₂ CO ₄ H ₂ O	15-99	.1763	2	Limestone	15-100	.216	12
Mica (Mg)	20-98	.2061	3	Marble	0-100	.21	_
" (K)"	20-98	.2080	3	Quartz sand .	20-98	.191	3
Oligoclase	20-98	.2048	3	Sandstone		.22	_
Orthoclase	15-99	.1877	2		1		
Pyrolusite, MnO2.	17-48	.1 59	6	I Lindner. 6 K	opp. I	1 Barto	li.
Quartz, SiO ₂	12-100	.188	7 8			2 Mora	
" "	0	.1737			ionchon.		
	350	.2786	8		oberts-Aus	ten, Riic	ker.
" "	400-1200	.305	8		. Weber.	,	
	l	1		J			

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 281 .- Specific Heat of Silicates

Silicate.	М	ean spe	ific hea	ts.	True specific heats. at					
	100°	500°	900°	1400°	o°C	100°	500°	1000°	1300°	
Albite "glass Amphibole, Mg. silicate "glass Andesine "glass Anorthite "glass Cristobalite Diopside "glass Microcline "glass Pyroxene Quartz Silica glass Wollastonite	.1948 .1977 .2033 .2040 .1925 .1934 .1901 .1883 .1883 .1924 .1939 .1871 .1919 .2039 .1868 .1845	.2363 .2410 .2461 .2474 .2330 - .2296 .2305 .2426 .2314 .2332 .2262 .2321 .2484 .2379 .2302	.2561 .2640 .2661 2525 .2615 02481 2568 .2500 2450 .2514 2596 .2512	.2731* .2674 .2680 .2604† .2598*	.178 - .185 - .174 - .176 - .171	.211219205207201206204202	.269 -279 -265 -265 -262 -258 .264 -258 .264 -294 .266	.294 	.318	
" glass . " pseudo .	. 1852 . 1844	.2206 .2170	.2344	.2448	.171	197	.243	.262	.272	

*o°-1100°; †o°-1250°; Taken from White, Am. J. Sc. 47, 1, 1919.

TABLE 282

SPECIFIC HEAT OF GASES AND VAPORS

Substance.	Range of temp. ° C	Sp. ht. constant pres- sure.	Authority.	Range of temp.	Mean ratio of specific heats. C_p/C_v .	Authority.
Acetone, C ₃ H ₆ O Air	26-110 -30-+10	0.3468	Wiedemann. Regnault.	20	1.4011	Moody.
All	0-200	0.2375	11	1	1.405	Koch, 1907.
(4	20-440	0.2366	Holborn and	-79.3		" 200 atm
44	20-630	0.2429	Austin.		1.828	66 66 66
"	20-800	0.2430	66	500	1.399	Fürstenau.
Alcohol, C ₂ H ₅ OH	108-220	0.4534	Regnault.	53	1.133	Jaeger.
46	_	_	_	100	1.134	Stevens.
" CH ₃ OH	101-223	0.4580	Regnault.	100	1.256	
Ammonia	23-100	0.5202	Wiedemann.	0	1.3172	Wüllner.
	27-200	0.5356	"	100	1.2770	
Argon	20-90	0.1233	Dittenberger.	0	1.667	Niemeyer.
Benzene, C ₆ H ₆	34-115	0.2990	Wiedemann.	20	1.403	Pagliani.
" " "	35-180	0.3325	D . 1	60	1.403	Charrana
******	116-218	0.3754	Regnault.	99.7	1.105	Stevens. Strecker.
Bromine	83-228	0.0555	44	20-388		Lummer and
Carbon dioxide, CO2	-28-+7	0.1843	66	4-11	1.2995	Pringsheim.
" " " "	15-100	0.2025	"	_	T 2002	Moody, 1912.
" monoxide, CO	11-214 23-99	0.2169	Wiedemann.	0	I. 3003	Wüllner.
" " " " " " " " " " " " " " " " " " "	25-198	0.2425	11 100001111111111111111111111111111111	100	1.395	"
" disulphide, CS ₂ .	86-190	0.1596	Regnault.	3-67	1.205	Beyme.
Chlorine	16-343	0.1125	Strecker.	0	1.336	Martini.
Chloroform, CHCl ₃	27-118	0.1441	Wiedemann.	22-78	1.102	Beyme.
" " " " " " " " " " " " " " " " " " "	28-180	0.1489	"	99.8	1.150	Stevens.
Ether, C ₄ H ₁₀ O	69-224	0.4797	Regnault.	42-45	1.029	Müller.
" "	25-111	0.4280	Wiedemann.	12-20	1.024	Low, 1894.
Helium				0	1.64	Mean, Jeans.
Hydrochloric acid, HCl	13-100	0.1940	Strecker.	20	1.389	Strecker.
" "	22-214	0.1867	Regnault.	100	1.400	T
Hydrogen	-28-+9	3.3996	"	4-16	1.4080	
"	12-198	3.4090				Pringsheim. Hartmann.
	21-100	3.4100	Wiedemann.		1.419	Capstick.
Suipinde, 1125	20-206	0.2451	Regnault.	10	1.324	Ramsay, '12.
Krypton	_			310	1.666	Kundt and
Mercury				310	1.000	Warburg.
Methane, CH4	18-208	0.5929	Regnault.	11-30	1.316	Müller.
Neon		- 3929		10	1.642	Ramsay, '12
Nitrogen	0-200	0.2438	Regnault.	_	1.41	Cazin.
"	20-440	0.2419	Holborn and		1.405	Masson.
"	20-630	0.2464	Austin.			
"	20-800	0.2497	- "			
Nitric oxide, NO	13-172	0.2317	Regnault.	-	1.394	
Nitrogen tetroxide, NO ₂ .		1.625	Berthelot and	-	1.31	Natanson.
66 66 66	27-150	1.115	Olger.			
	27-280	0.65	D			Wüllner.
Nitrous oxide, N ₂ O		0.2262	Regnault. Wiedemann.	100	1.311	Wuillet.
		0.2126	Wiedemann.	100	I. 272 I. 324	Leduc, '98.
	27-206	0.2241	Regnault.	5-14	1.324	
Oxygen	13-207	0.2175	Holborn and	3 14	1.3977	Pringsheim.
"	20-440	0.2300				3
Sulphur dioxide, SO ₂	16-202	0.1544	70 1.	16-34	1.256	Müller.
Water vapor, H ₂ O		0.4655	cru i	78	1.274	Beyme.
	100	0.421	44	94	1.33	Jaeger.
	180	0.51	44	100	1.305	Makower.
Xenon	_		_	19	1.666	Ramsay,' 12.
	1		-	1		

Compound

Cal./g

LATENT HEAT OF FUSION

The values indicated by * were chosen by Dr. W. P. White of the Carnegie Geophysical Laboratory.

Element	Temp. °C	Cal./g	Ref.	Element	Temp. °C	Cal./g	Ref.
Al	657	93	*	Li		33	(6)
Sb A	630 190	39 6.64	(1)	Mg Hg	650 -387	72 2.78	*
Bi	269	12.8	*	Hg Ni	1450	73	(7)
Br Cd	- ₇	16	(2)	N	-210	6.1	1
Cs	321 285	12.8	(3)	K	-219 58	3.33 14.6	1
Ca	809	3.8 78	(4)	Rb	39	6.1	ŧ
Cr Co	1600	70	(5)	Se	217	13	(8)
Cu	1489 1083	64 49.3	*	Ag Na	960 98	25.9 27	†
Au	1063	15.9	*	S, mc.	115	9.3	ŧ
H Fe	-249	14	† *	Sn	232	14.4	*
Pb	1528 327	49.3 6	*	Zn	420	26.6	

* Via Dr. W. P. White. † Mean of several. (1) Eucken-Hauck, 1928. (2) Regnault. (3) Rengade, 1913. (4) Zalesinski, Zulinski, 1928. (5) Umino, 1926. (6) Thun. (7) White, 1921. (8) Monval.

Compound

Cal./g

Ref.

Ref.

BaCl ₂	28	Plato,	1906	Ano	rthite	104	Bowen, 1922
CaCl ₂	54	4.6	""	Albi	te	48.	
KC1	86	4.6	4.4	Dio	oside	100	White
NaCl	124	4.4	4.6	Oua		50	Sosman
SrCl ₂	26	4.6	4.6		tobalite		
51 C12	20			CIIS	tobante	303	111acck, 1930
	Substance		Compo	sition	T	Cal./g	Authority
Alloys: 30.5	Pb + 69.5Sn		PbSn ₄		183	17	Spring
36.0	Pb + 63.1Sn		PbSn ₃		179	15.5	~P8
62.7	Pb + 36.3Sn		PbSn		177.5	11.6	4.6
77.8	Pb + 22.2Sn		Pb ₂ Sn			9.54	
Britannia m	etal, 9Sn + 1	Ph	1 02511		236		Ledebur
Rose's alloy	ctai, 9511 7 1	LD			230	20.0	Ledebui
	, .3Sn + 48.7B:				98.8	6.85	Mazzotto
2410 7 2/	.3311 7 40.7D	·			90.0	0.05	
Wood's allo	$y = \begin{cases} 25.8 \text{Pb} + 1 \\ + 52.4 \text{Bi} \end{cases}$	4.75n - 7Cd			75-5	8.40	"
Ammonia		• /	NH_3		-75	108	Massol
Benzole			C_6H_6		5.4	30.6	Mean
Ice			H ₂ O		0	79.63	Dickinson, Harper,
						17-0	Osborne ²
44			4.6		0	79.59	Smith ³
" (from sea	water)		$H_2O + $ of sol	3·535 lids	-8.7	54.0	Pettersson
Naphthalen	e		$C_{10}H_{8}$,	79.87	35.62	Pickering
Potassium r			KNO_3		333.5		Person
Phenol			C ₆ H ₆ O		25.37		Pettersson
Paraffin					52.40		Batelli
Sodium			Na		97	31.7	Joannis
" nitra	ite		NaNO ₃		305.8	64.87	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1			√Na ₂ HP				
" phos	phate		12H ₂		36.1	66.8	
Spermaceti					43.9	36.98	Batelli
Wax (bees)					61.8	42.3	Mean

 $^{^1}$ Total heat from o°C. 2 Bureau of Standards, 1913, in terms of 15° calorie. 3 1903, based on electrical measurements, assuming mechanical equivalent = 4.187, and in terms of the value of the international volt in use after 1911.

TABLE 284.—Latent Heat of Vaporization of Elements

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Element Sb A Ba, 1 Bi Br Cd Ca C1 F1 He H ₂	t°C 755 1 atm. 1537 920 60± 778 143.9 - 63 - 188.2 - 271.3 - 253	Cal./g 320 37.6 308 190 43 240 101 63 40.5 5.6	Ref. 1 2 3 1 † 4 3 † 5 6 †	Element I Kr Pb Li Mg Hg N O ₂ Sr X Zn	1°C 174 -151 1170 1336 1110 358 -195.6 -182.9 1336 -108.6 918	Cal./g 24 28 175 511 136 71 476 50.9 410 25.1	Ref. 7 8 1 3 † † 9 11 3 4
---	--	--	--	-----------------------------	---	--	---	---------------------------

[†] Mean; (1) Tait, 1914. (2) Eucken, 1916. (3) Hartmann, Schneider, 1929. (4) Egerton, 1917. (5) Cady Hildebrand, 1930. (6) Dana, Onnes, 1925. (7) Favre, Silbermann (old). (8) Peters, Weil, 1930. (9) Alt, 1906. (10) Peters, Weil, 1930.

TABLE 285.—Latent Heat of Vaporization of Liquids

Substance Formula	t°C	Latent heat vapori- zation cal./g	Total heat from o°C cal./g	Authority
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78.1 0 100 150 64.5 0 100 150 2200 238.5 184 80.1 -25 0 12.35 22.04 30.82 46.1 0 100 60.9 34.5 0 120 38.2 12.5 71 90 130 0 130 0 130 130 130 130 1	205 236 267 289 246 206 152 44.2 110 92.9 72.23 57.48 44.97 31.8 3.72 83.8 90 58.5 88.4 94 60.4 47 77.8 77.8 79.2 70.0 85.8 91.2 66.4 86.0	255 236 267 285 307 127.9 138.7 94.8 90 100.5 72.8 107 94 115.1 140 	Wirtz Regnault "" Wirtz Ramsay and Young "" " " "" " Mean Wirtz Favre Cailletet and Mathias "" Wirtz Regnault "" Wirtz Regnault "" Wirtz Regnault "" Cailletet and Mathias "" Cailletet and Mathias
Turpentine $C_{10}H_{10}$	159.3	74.04		Brix

TABLE 286 .- Latent and Total Heat of Vaporization, Formulae

r =latent heat of vaporization at t° C; H =total heat from fluid at o° to vapor at t° C. T° refers to Kelvin scale. Same units as preceding table.

Acetone, C ₃ H ₆ O	$H = 140.5 + 0.36644t - 0.000516t^2$ = 130.9 + 0.23356t + 0.00055358t^2	-3° to 147° -3° 147	R
Benzene C ₆ H ₆	$r = 139.9 - 0.27287t + 0.0001571t^2$ $H = 109.0 + 0.24429t - 0.0001315t^2$	-3 147 7 215	II R
Carbon dioxide	$r^2 = 118.485(31 - t) - 0.4707(31 - t)^2$	-25 31	R
Carbon bisulphide, CS2	$H = 90.0 + 0.14601t - 0.0004123t^2$	-6 I ₄₃	Ŕ
	$H = 89.5 + 0.16993t - 0.0010161t^2 + 0.05342t^3$	-6 I43	V
	$r = 89.5 - 0.06530t - 0.0010976t^2 + 0.05342t^3$	-6 143	N
Carbon tetrachloride, CCl ₄ .	$H = 52.0 + 0.14625t - 0.000172t^2$	8 163	R
	$H = 51.9 + 0.17867t - 0.0009599t^2 + 0.053733t^3$	8 163	V
Chloriforn CHCl	$r = 51.9 - 0.01931l - 0.0010505l^2 + 0.053733l^3$	8 163	Į/ R
Chloroform, CHCl3	H = 67.0 + 0.1375! $H = 67.0 + 0.14716! - 0.0000937!^2$	-5 I59	n V
	$r = 67.0 + 0.14710t - 0.0000337t^2$ $r = 67.0 - 0.08519t - 0.0001444t^2$	-5 I59 -5 I59	17
Ether, C ₄ H ₁₀ O	$H = 94.0 + 0.45000l - 0.0005556l^2$	-1 12I	Ŕ
Ether, Curio	$r = 94.0 - 0.07900t - 0.0008514t^2$	-1 121	R
Molybdenum	r = 177000 - 2.5T (cal/g-atom)		R L A
Nitrogen, N2	r = 68.85 - 0.2736T		A
Nitrous oxide, N2O	$r^2 = 131.75(36.4 - t) - 0.928(36.4 - t)^2$	-20 36	Ç
Oxygen, O2	r = 69.67 - 0.2080T		A
Platinum	r = 128000 - 2.5T (cal/g-atom)		L M
Sulphur dioxide	$r = 91.87 - 0.3842t - 0.000340t^2$ r = 217800 - 1.8T(cal/g-atom)	0 20	L
Tungsten	$H = 638.9 + 0.3745(t - 100) - 0.00099(t - 100)^2$		Ď
11 atti, 1120	$r = 94.210(365 - t)^{0.31249}$ (See Table 290)	0 100	й
	, 94.220(303 1) (Oct Table 290)	100	1.1

TABLE 287.- Latent Heat of Vaporization of Ammonia

CALORIES PER GRAM

°C	0	I	2	3	4	5	6	7	8	9
-40	331.7	332·3	333.0	333.6	334.3	334·9	335·5	336.2	336.8	337.5
-30	324.8	325·5	326.2	326.9	327.6	328·3	329.0	329.7	330.3	331.0
-20	317.6	318·3	319.1	319.8	320.6	321·3	322.0	322.7	323.4	324.1
-10	309.9	310·7	311.5	312.2	313.0	313.8	314.6	315.3	316.1	316.8
- 0	301.8	302·6	303.4	304.3	305.1	305·9	306.7	307.5	308.3	309.1
+ 0	301.8	300.9	300.I	299.2	298.4	297.5	296.6	295.7	294.9	294.0
+10	293.1	292.2	20I.3	290.4	289.5	288.6	287.6	286.7	285.7	284.8
+20	283.8	282.8	28I.8	280.9	279.9	278.9	277.9	276.9	275.9	274.9
+30	273.9	272.8	27I.8	270.7	269.7	268.6	267.5	266.4	265.3	264.2
+40	263.1	262.0	260.8	259.7	258.5	257.4	256.2	255.0	253.8	252.6

Osborne and van Dusen, Bul. Bureau Standards, 14, p. 439, 1918.

TABLE 288.—"Latent Heat of Pressure Variation" of Liquid Ammonia

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as Joules per gram per kg/cm². Osborne and van Dusen, loc. cit., p. 433, 1918.

ı	Temperature ° C	-44.1	-39.0	-24.2	-0.2	+16.5	+26.5	+35.4	+40.3
I	Latent heat	055	057	068	088	107	I 23	140	150
L						<u> </u>			

SMITHSONIAN TABLES.

THERMAL PROPERTIES OF SATURATED WATER AND STEAM

(Osborne, Stimson, Fiock, Bur. Standards Journ. Res., 5, 411, 1930.)

Accuracy: It is estimated that there is only one chance in 100 that the values given for H differ from the truth by as much as one part in 2000; it is equally unlikely that the values for L and H^1 are as much as 1.5 joules/g from the truth in the range of the experiments, 100°-270°C.

Temperature, °C	Heat content of liquid, H Int. joules/g	Latent heat, L Int. joules/g	Heat content of vapor, II ¹ Int. joules/g	Entro of liquid Φ Int. joules/g°C	of vapor Φ^1 Int.
0		2494.02	2494.02	0	9.132
10	83.83 125.59 167.34	2472.26 2450.17 2427.73 2404.90	2514.28 2534.00 2553.32 2572.24	.1511 .2962 .4363 .5719	8.884 8.656 8.446 8.253
60	250.90	2381.64 2357.91 2333.65	2590.75 2608.81 2626.40	.7032 .8305 .9543	8.074 7.909 7.756
90	376.65	2308.32 2283.38 2257.24	2643.48 2660.03 2675.99	1.0746 1.1918 1.3064	7.613 7.480 7.356
110	503.36 545.93 588.71	2230.35 2202.65 2174.04 2144.44 2113.76	2691.32 2706.01 2719.97 2733.15 2745.51	1.4177 1.5268 1.6335 1.7381 1.8407	7.240 7.130 7.027 6.929 6.837
160	675.06 718.66 762.72 807.15	2081.89 2048.72 2014.10 1977.89 1939.93	2756.95 2767.38 2776.82 2785.04 2791.95	1.9416 2.0406 2.1384 2.2348 2.3299	6.749 6.664 6.584 6.506 6.430
210	897-35 943-24 989-75	1900.00 1857.89 1813.33 1766.02 1715.59	2797.35 2801.13 2803.08 2802.99 2800.56	2.4239 2.5169 2.6091 2.7007 2.7919	6.357 6.285 6.213 6.143 6.072
260		1661.60 1603.51	2795.47 2787.83	2.8828 2.9746	6.000 5.927

SMITHSONIAN TABLES

Metric and Common Units 0° to 220° C

Reprinted by permission of the author and publishers from "Tables of the Properties of Steam," Cecil H. Peabody, 8th edition, rewritten in 1909. Calorie used is heat required to raise 1 Kg. water from 15° to 16° C. B. T. U. is heat required to raise 1 pd. water from 62° to 63° F. Mechanical Equiv. of heat used, 778 ft. pds. or 427 m. Kg. Specific heats, see Barness-Regnault-Peabody results, p. 227. Heat of Liquid, q. heat required to raise 1 Kg. (1 lb.) to corresponding temperature from 0° C. Heat of vaporization, r. heat required to provize 1 Kg. (1 lb.) at corresponding temperature to dry saturated vapor against corresponding pressure; see Henning, Ann. der Phys., 21, p. 849, 1906. Total Heat, H = r + q, see Davis, Tr. Am. Soc. Mech. Eng., 1908.

Temperature Degrees Centigrade.		Pressure.		Heat o Liqu	of the		at of ization.		quivalent of ll Work.	l emperature Degrees Fahrenheit.
Temp r De	Mm of Mercury, p.	kg per sq. cm p.	Pds. per sq. in. p.	Calories.	B. T U.	Calories.	B. T. U.	Calories.	Β. Τ. U. ρ.	Tem Fah
0	4.579	0.00623	0.0886	0.00	0.0	595.4	1071.7	565.3	1017.5	32.0
5	6.541	.00889	.1265	5.04	9.1	592.8	1067.1	562.2	1011.9	41.0
10	9.205	.01252	.1780	10:06	18.1	590.2	1062.3	559.0	1006.2	50.0
15	12.779	.01737	.2471	15.06	27.1	587.6	1057.6	555.9	1000.5	59.0
20	17.51	.02381	.3386	20.06	36.1	584.9	1052.8	552.7	994.8	68.0
25	23.69	.03221	.4581	25.05	45.1	582.3	1048.1	549.5	98 9.1	77.0
30	31.71	.04311	.6132	30.04	54.1	579.6	1043.3	546.3	98 3. 4	86.0
35	42.02	.05713	.8126	35.03	63.1	576.9	1038.5	543.1	977.6	95.0
40	55.13	.07495	1.0661	40.02	72.0	574.2	1033.5	539.9	971.7	104.0
45	71.66	.09743	1.3858	45.00	81.0	571.3	1028.4	536.5	965.7	113.0
50	92.30	.12549	1.7849	49.99	90.0	568.4	1023.2	533.0	959.6	122.0
55	117.85	.16023	2.279	54.98	99.0	565.6	1018.1	5 ² 9.7	953.5	131.0
60	149.19	.20284	2.885	59.97	108.0	562.8	1013.1	526.4	947.5	140.0
65	187.36	.2547	3.623	64.98	117.0	559.9	1007.8	523.0	941.3	149.0
70	233.53	.3175	4.516	69.98	126.0	556.9	1002.5	519.5	935.0	158.0
75	289.0	.3929	5.589	74.99	135.0	554.0	997·3	516.0	928.8	167.011
80	355.1	.4828	6.867	80.01	144.0	551.1	991.9	512.6	922.6	176.0
85	433.5	.5894	8.383	85.04	153.1	548.1	986.5	509.1	916.3	185.0
90	525.8	.7149	10,167	90.07	162.1	544.9	980.9	505.4	909.9	194.0
91	546.1	.7425	10.560	91.08	163.9	544.3	979.8	504.7	908.5	195.8
92	567.1	.7710	10.966	92.08	165.7	543.7	978.7	504.0	907.2	197.6
93	588.7	.8004	11.384	93.09	167.5	543.1	977.6	503.3	906.0	199.4
94	611.0	.8307	11.815	94.10	169.3	542.5	976.5	502.6	904.7	201.2
95	634.0	.8620	12.260	95.11	171.2	541.9	975-4	501.9	903.4	203.0
96	657.7	.8942	12.718	96.12	173.0	541.2	974-2	501.1	902.1	204.8
97	682.1	.9274	13.190	97.12	174.8	540.6	973-1	500.4	900.8	206.6
98	707.3	.9616	13.678	98.13	176.6	539.9	971-9	499.6	899.4	208.4
99	733.3	.9970	14.180	99.14	178.5	539.3	970-8	498.9	898.2	210.2
100	760.0	1.0333	14.697	100.2	180.3	538.7	969.7	498.2	896.9	212.0
101	787.5	1.0707	15.229	101.2	182.1	538.1	968.5	497.5	895.5	213.8
102	815.9	1.1093	15.778	102.2	183.9	537.4	967.3	496.8	894.1	215.6
103	845.1	1.1490	16.342	103.2	185.7	536.8	966.2	496.1	892.9	217.4
104	875.1	1.1898	16.923	104.2	187.6	536.2	965.1	495.4	891.6	219.2
105	906.1	1.2319	17.522	105.2	189.4	535.6	964.0	494·7	890.3	221.0
106	937.9	1.2752	18.137	106.2	191.2	534.9	962.8	493·9	889.0	222.8
107	970.6	1.3196	18.769	107.2	193.0	534.2	961.6	493·1	887.6	224.6
108	1004.3	1.3653	19.420	108.2	194.8	533.6	960.5	492·4	886.3	226.4
109	1038.8	1.4123	20.089	109.3	196.7	532.9	959.3	491·6	885.0	228.2
110	1074.5	1.4608	20.777	110.3	198.5	532·3	958.1	490.9	883.6	230.0
111	1111.1	1.5106	21.486	111.3	200.3	531.6	956.9	490.2	882.3	231.8
112	1148.7	1.5617	22.214	112.3	202.1	530.9	955.7	489.4	880.9	233.6
113	1187.4	1.6144	22.962	113.3	203.9	530.3	954.5	488.7	879.5	235.4
114	1227.1	1.6684	23.729	114.3	205.8	529.6	953.3	487.9	878.2	237.2
115 116 117 118	1267.9 1309.8 1352.8 1397.0 1442.4	1.7238 1.7808 1.8393 1.8993 1.9611	24.518 25.328 26.160 27.015 27.893	115.3 116.4 117.4 118.4 119.4	207.6 209.4 211.2 213.0 214.9	528.9 528.2 527.5 526.9 526.2	952.1 950.8 949.5 948.4 947.2	487.1 486.3 485.5 484.8 484.0	876.8 875.4 873.9 872.6 871.3	239.0 240.8 242.6 244.4 246.2

Metric and Common Units 0° to 220° C

If a is the reciprocal of the Mechanical Equivalent of Heat, p the pressure, s and σ the specific volumes of the Equid and the saturated vapor, $s = -\sigma$, the change of volume, then the heat equivalent of the external work is Apu = Ap(s = σ). Heat equivalent of internal work, $\rho = r - \text{Apu}$. For experimental sp. vols. see Knoblauch, Linde and Klebe, Mitt. über Forschungarbeiten, 2π , pc. 33, 1905. Entropy = S dQ/T, where dQ = amount of heat added at absolute temperature T. For pressures of saturated steam see Holborn and Henning, Ann. der Phys. 26, p. 833, 1908; for temperatures above 205° C corrected from Regnault.

	ire	Heat Equivalent of External Work.				Specific 1	Volume.	Der	isity.	it.
	mperati Jegrees ntigrad	Wo	rk.	Entropy of the Liquid.	Entropy of Evapo- ration.	Cubic Meters		Kilograms	Pounds	Temperature Degrees Fahrenheit.
ı	Ter C	Calories.	B.T.U.			per Kilo- gram.	per Pound.	per Cubic Meter	per Cubic Foot.	Ten L Fal
	t.	Apu.	Apu.	θ	T	s	s	1 s	1 s	t.
	5	30.1 30.6	54.2 55.2	0.0000	2.1804	206.3 147.1	3304. 2356.	0.00485	0.000303	32.0 41.0
	10 15 20	31.7 32.2	56.1 57.1 58.0	.0361	2.0850 2.0396 1.9959	77.9 57.8	1703. 1248. 926.	.00941	.000587 .000801	50.0 59.0 68.0
۱	25	32.8	59.0	.0878	1.9536	43.40	695.	.02304	.001439	77.0
۱	30 35 40	33.3	59.9 60.9 61.8	.1044 .1207 .1368	1.9126 1.8728 1.8341	32.95	528. 404.7	.03035	.001894	86.0 95.0
۱	45	34.8	62.7	.1526	1.7963	19.57	313.5 244.4	.0511	.003190	1040
١	50 55 60	35·4 35·9	63.6	.1682	1.7597	9.56	192.6	.0832	.00519	122.0
١	65	36.4 36.9 37.4	65.6 66.5 67.4	.1986 .2135 .2282	1.6899 1.6563 1.6235	7.66 6.19 5.04	99.2 80.7	.1305 .1615 .1984	.01008	140.0 149.0 158.0
١	7.5 So	38.0	68.5	.2427	1.5918	4.130	66.2	.2421	.01510	167.0
ı	85 90	38.5 39.0 39.5	69.3 70.2 71.0	.2570 .2711 .2851	1.5609 1.5307 1.5010	3.404 2.824 2.358	54·5 45·23 37·77	.2938	.01835	176.0 185.0 194.0
1	91	39.6	71.3	.2879	1.4952	2.275	36.45	-4395	.02743	195.8
	93	39·7 39·8	71.5 71.6 71.8	.2906	1.4894	2.197	35.19 34.00 32.86	·4552 ·4713 ·4878	.02842	197.6
ı	94 95	39.9	72.0	.2989	1.4779	2.050	31.75	.505	.03043	201.2
	96 97	40.1	72.I 72.3	.3016	1.4666	1.913	30.67	·523 ·541	.03260	204.8
	98 99	40.3	72.5	.3070	1.4552	1.787 1. 7 28	28.64 27.69	.560 ·579	.03492	208.4
	100	40.5 40.6	72.8	.3125	1.4441	1.671	26.78 25.90	.598 .618	.03734	212.0
Ì	103	40.6	73.2	.3179	1.4330	1.564	25.06	.639 .661 .683	.03990 .04124 .04261	215.6 217.4 219.2
ı	104	40.8	73.5	.3232	1.4220	1.465	23.47	.705	.04400	221.0
ı	106	41.0 41.1	73.8	.3286	1.4111	1.374	22.0I 21.3I	.728	.04543	222.8
	108	41.2	74.2	·3339 ·3365	1.4003	1.289	19.99	.776 .801	.0500	226.4
	111	41.4 41.4	74.5 74.6	·3392 ·3418	1.3895	1.209	19.37	.827 .853	.0516 .0533	230.0
	112	41.5 41.6 41.7	74.8 75.0 75.1	·3445 ·3471 ·3498	1.3789 1.3736 1.3683	1.136 1.101 1.068	18.20 17.64 17.10	.88o .908 .936	.0550 .0567 .0585	233.6 235.4 237.2
	115	41.8	75.3	.3490	1.3631	1.036	16.59	.965	.0603	239.0
	116 117 118	41.9	75.4 75.6	.3550 .3576	1.3579 1.3527	0 9746	16.09	.995 1.026	.0622	240.8 242.6 244.4
	119	42.1	75.8	.3628	1.3475 1.3423	0.9460	15.16	1.057	.0659	246.2

Metric and Common Units 0° to 220° C

ſ	1										
١	ature ses ade.		Pressure		Hea the L		Hea Vapori	t of zation.	Heat Equ Internal		rature ees nheit.
	Temperature Degrees Centigrade.	Mm of Mercury	Kg per sq. cm	Pds. per sq.	Calories.	в Т. U.	Calories.	B. T. U.	Calories	B. T U.	Temperature Degrees Fahrenheit.
	t.	p.	р.	p.	q.	q.	r.	r.	ρ	ρ.	t.
	120	1489	2.024	28.79	120.4	216.7	525.6	946.0	483.4	870.0	248.0
	121	1537	2.089	29.72	121.4	218.5	524.9	944.8	482.6	868.6	249.8
	122	1586	2.156	30.66	122.5	220.4	524.2	943.5	481.8	867.1	251.6
	123	1636	2.224	31.64	123.5	222.2	523.5	942.3	481.0	865.8	253.4
	124	1688	2.294	32.64	124.5	224.1	522.8	941.0	480.2	864.3	255.2
	125	1740	2.366	33.66	125.5	225.9	522.1	939.9	479.4	863.0	257.0
	126	1795	2.440	34.71	126.5	227.7	521.4	938.6	478.6	861.6	258.8
	127	1850	2.516	35.78	127.5	229.5	520.7	937.3	477.8	860.2	260.6
	128	1907	2.593	36.88	128.6	231.4	520.0	936.1	477.0	858.8	262.4
	129	1966	2.673	38.01	129.6	233.3	519.3	934.8	476.3	857.4	264.2
	130	2026	2.754	39.17	130.6	235.1	518.6	933.6	475.5	856.0	266.0
	131	2087	2.837	40.36	131.6	236.9	517.9	932.3	474.7	854.6	267.8
	132	2150	2.923	41.57	132.6	238.7	517.3	931.1	474.0	853.2	269.6
	133	2214	3.010	42.81	133.7	240.6	516.6	929.8	473.3	851.8	271.4
	134	2280	3.100	44.09	134.7	242.4	515.9	928.5	472.5	850.4	273.2
	135	2348	3.192	45.39	135.7	244.2	515.1	927.2	471.6	848.9	275.0
	136	2416	3.285	46.73	136.7	246.0	514.4	925.9	470.8	847.5	276.8
	137	2487	3.382	48.10	137.7	247.9	513.7	924.6	470.1	846.1	278.6
	138	2560	3.480	49.50	138.8	249.7	513.0	923.3	469.3	844.6	280.4
	139	2634	3.581	50.93	139.8	251.6	512.3	922.1	468.5	843.3	282.2
	140 141 142 143	2710 2787 2866 2948 3030	3.684 3.789 3.897 4.008 4.121	52.39 53.89 55.43 57.00 58.60	140.8 141.8 142.8 143.9 144.9	253.4 255.3 257.1 259.0 260.8	511.5 510.7 510.1 509.3 508.6	920.7 919.3 918.1 916.7 915.4	467.6 466.8 466.1 465.3 464.4	841.8 840.2 838.9 837.4 835.9	284.0 285.8 287.6 289.4 291.2
	145	3115	4.236	60.24	145.9	262.7	507.8	914.1	463.6	834·5	293.0
	146	3202	4.354	61.92	146.9	264.5	507.1	912.8	462.8	833·1	294.8
	147	3291	4.474	63.64	148.0	266.4	506.4	911.5	462.0	831·6	296.6
	148	3381	4.597	65.39	149.0	268.2	505.6	910.1	461.2	830·1	298.4
	149	3474	4.723	67.18	150.0	270.1	504.9	908.8	460.4	828·7	300.2
	150	3569	4.852	69.01	151.0	271.9	504.1	907.4	459.5	827.2	302.0
	151	3665	4.984	70.88	152.1	273.8	503.4	906.1	458.7	825.7	303.8
	152	3764	5.118	72.79	153.1	275.6	502.6	904.7	457.9	824.2	305.6
	153	3865	5.255	74.74	154.1	277.4	501.9	903.3	457.1	822.7	307.4
	154	3968	5.395	76.73	155.1	279.2	501.1	901.9	456.3	821.2	309.2
	155	4073	5.538	78.76	156.2	281.1	500.3	900.5	455.4	819.6	311.0
	156	4181	5.684	80.84	157.2	283.0	499.6	899.2	454.6	818.2	312.8
	157	4290	5.833	82.96	158.2	284.8	498.8	897.8	453.8	816.7	314.6
	158	4402	5.985	85.12	159.3	286.7	498.1	896.5	453.0	815.3	316.4
	159	4517	6.141	87.33	160.3	288.5	497.3	895.1	452.1	813.7	318.2
	160	4633	6.300	89.59	161.3	290.4	496.5	893.7	451.2	812.2	320.0
	161	4752	6.462	91.89	162.3	292.2	495.7	892.3	450.4	810.7	321.8
	162	4874	6.628	94.25	163.4	294.1	494.9	890.9	449.5	809.2	323.6
	163	4998	6.796	96.65	164.4	295.9	494.2	889.5	448.7	807.7	325.4
	164	5124	6.967	99.09	165.4	297.7	493.4	888.1	447.9	806.2	327.2
	165	5253	7.142	101.6	166.5	299.6	492.6	886.7	447.0	804.7	329.0
	166	5384	7.320	104.1	167.5	301.5	491.9	885.4	446.3	803.3	330.8
	167	5518	7.502	106.7	168.5	303.3	491.1	883.9	445.4	801.7	332.6
	168	5655	7.688	109.4	169.5	305.1	490.3	882.5	444.6	800.1	334.4
	169	5794	7.877	112.0	170.6	307.0	489.5	881.0	443.7	798.5	336.2

SMITHSONIAN TABLES,

Metric and Common Units 0° to 220° C

ture	es ade.		quivalent nal Work.	Entropy	Entropy	Specific	Volume.	Der	nsity.	ture es eit.
Tempera	Degrees Centigrade.	Calories.	B. T. U.	of the Liquid.	of Evapo- ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.
	t.	Apu.	Apu.	θ	T	s	s	1 s	1 8	t.
I	20 21 22 23 24	42.2 42.3 42.4 42.5 42.6	76.0 76.2 76.4 76.5 76.7	0.3654 .3680 .3705 .3731 .3756	1.3372 1.3321 1.3269 1.3218 1.3167	0.8914 .8653 .8401 .8158 -7924	14.28 13.86 13.46 13.07 12.69	1.122 1.156 1.190 1.226 1.262	0.0700 .0721 .0743 .0765 .0788	248.0 249.8 251.6 253.4 255.2
I	25 26 27 28 29	42.7 42.8 42.9 43.0 43.0	76.8 77.0 77.1 77.3 77.4	.3782 .3807 .3833 .3858 .3884	1.3117 - 1.3067 1.3017 1.2967 - 1.2917	.7698 .7479 .7267 .7063 .6867	12.33 11.98 11.64 11.32 11.00	1. 2 99 1.337 1.376 1.416 1.456	.0811 .0835 .0859 .0883	257.0 258.8 260.6 262.4 264.2
I I I	30 31 32 33 34	43.1 43.2 43.3 43.3 43.4	77.6 77.7 77.9 78.0 78.1	.3909 •3934 •3959 .3985 .4010	1.2868 1.2818 1.2769 1.2720 1.2672	.6677 .6493 .6315 .6142 ·5974	10.70 10.40 10.12 9.839 9.569	1.498 1.540 1.583 1.628 1.674	.0935 .0961 .0988 .1016	266.0 267.8 269.6 271.4 273.2
I	35 36 37 38 39	43.5 43.6 43.6 43.7 43.8	78.3 78.4 78.5 78.7 78.8	.4035 .4060 .4085 .4110 .4135	1.2623 1.2574 1.2526 1.2479 1.2431	.5812 .5656 .5506 .5361 .5219	9.309 9.060 8.820 8.587 8.360	1.721 1.768 1.816 1.865 1.916	.1074 .1104 .1134 .1165 .1196	275.0 276.8 278.6 280.4 282.2
I I I	40 41 42 43 44	43.9 43.9 44.0 44.0 44.2	78.9 79.1 79.2 79.3 79.5	.4160 .4185 .4209 .4234 .4259	1.2383 1.2335 1.2288 1.2241 1.2194	.5081 .4948 .4819 .4694 .4574	8.140 7.926 7.719 7.519 7.326	1.968 2.021 2.075 2.130 2.186	.1229 .1262 .1296 .1330 .1365	284.0 285.8 287.6 289.4 291.2
I I	45 46 47 48 49	44.2 44.3 44.4 44.4 44.5	79.6 79.7 79.9 80.0 80.1	.4283 .4307 .4332 .4356 .4380	1.2147 1.2100 1.2054 1.2008 1.1962	.4457 .4343 .4232 .4125 .4022	7.139 6.957 6.780 6.609 6.443	2.244 2.303 2.363 2.424 2.486	.1401 .1437 .1475 .1513 .1552	293.0 294.8 296.6 298.4 300.2
I I	50 51 52 53 54	44.6 44.6 44.7 44.8 44.8	80.2 80.4 80.5 80.6 80.7	.4405 .4429 .4453 .4477 .4501	1.1916 1.1870 1.1824 1.1778 1.1733	.3921 .3824 .3729 .3637 .3548	6.282 6.126 5.974 5.826 5.683	2.550 2.615 2.682 2.750 2.818	.1592 .1632 .1674 .1716 .1759	302.0 303.8 305.6 307.4 309.2
I I	55 56 57 58 59	44.9 45.0 45.0 45.1 45.2	80.9 81.0 81.1 81.2 81.4	•4525 •4549 •4573 •4596 •4620	1.1688 1.1644 1.1599 1.1554 1.1509	.3463 .3380 .3298 .3218 .3140	5.546 5.413 5.282 5.154 5.029	2.888 2.959 3.032 3.108 3.185	.1803 .1847 .1893 .1940 .1988	311.0 312.8 314.6 316.4 318.2
I	60 61 62 63 64	45·3 45·3 45·4 45·5 45·5	81.5 81.6 81.7 81.8 81.9	.4644 .4668 .4692 .4715 .4739	1.1465 1.1421 1.1377 1.1333 1.1289	.3063 .2989 .2920 .2855 .2792	4.906 4.789 4.677 4.571 4.469	3.265 3.345 3.425 3.503 3.582	.2038 .2088 .2138 .2188 .2238	320.0 321.8 323.6 325.4 327.2
I	65 66 67 68 69	45.6 45.6 45.7 45.7 45.8	82.0 82.1 82.2 82.4 82.5	.4763 .4786 .4810 .4833 .4857	1.1245 1.1202 1.1159 1.1115 1.1072	.2729 .2666 .2603 .2540 .2480	4.368 4.268 4.168 4.070 3.975	3.664 3.751 3.842 3.937 4.032	.2289 .2343 .2399 .2457 .2516	329.0 330.8 332.6 334.4 336.2

SMITHSONIAN TABLES.

Metric and Common Units 0° to 220° C

iture es ade.		Pressure.			it of	Hea Vapori:		Heat Eq	uivalent al Work.	ature ses heit.
Temperature Degrees Centigrade.	Mm of Mercury.	Kg per sq. cm	Pds. per sq in.	Calories.	В Т. U.	Calories.	B. T. U.	Calories.	B. T. U.	Temperature Degrees Fahrenheit.
t.	P	p.	p.	q.	q.	r.	r.	ρ.	ρ.	t.
170	5937	8.071	1148	171.6	308.9	488.7	879.6	442.8	797.0	338.0
171	6081	8.268	117.6	172.6	310.7	487.9	878.3	441.9	795.6	339.8
172	6229	8.469	1204	173.7	312.6	487.1	876.9	441.1	794.1	341.6
173	6379	8.673	123.4	174.7	314.5	486.3	875.4	440.2	792.5	343.4
174	6533	8.882	126.3	175.7	316.3	485.5	873.9	439.4	790.9	345.2
175	6689	9.094	129.4	176.8	318.2	484.7	872.4	438.5	789.3	347.0
176	6848	9.310	132.4	177.8	320.0	483.9	871.0	437.7	787.8	348.8
177	7010	9.531	135.6	178.8	321.8	483.1	869.5	436.8	786.2	350.6
178	7175	9.755	138.8	179.9	323.7	482.3	868.1	436.0	784.7	352.4
179	7343	9.983	142.0	180.9	325.6	481.4	866.6	435.0	783.1	354.2
180	7514	10.216	145.3	181.9	327.5	480.6	865.1	434.2	781.5	356.0
181	7688	10.453	148.7	183.0	329.3	479.8	863.6	433.3	779.9	357.8
182	7866	10.695	152.1	184.0	331.2	479.0	862.2	432.5	778.4	359.6
183	8046	10.940	155.6	185.0	333.0	478.2	860.7	431.6	776.9	361.4
184	8230	11.189	159.2	186.1	334.9	477.4	859.2	430.8	775.3	363.2
185	8417	11.44	162.8	187.1	336.8	476.6	857.7	429.9	773.7	365.0
186	8608	11.70	166.5	188.1	338.6	475.7	856.3	429.0	772.2	366.8
187	8802	11.97	170.2	189.2	340.5	474.8	854.7	428.0	770.5	368.6
188	8999	12.24	174.0	190.2	342.4	474.0	853.2	427.2	768.9	370.4
189	9200	12.51	177.9	191.2	344.2	473.2	851.7	426.3	767.4	372.2
190	9404	12.79	181.8	192.3	346.1	472.3	850.2	425.4	765.8	374.0
191	9612	13.07	185.9	193.3	347.9	471.5	848.7	424.5	764.2	375.8
192	9823	13.36	190.0	194.4	349.8	470.6	847.1	423.6	762.5	377.6
193	10038	13.65	194.1	195.4	351.7	469.8	845.6	422.8	761.0	379.4
194	10256	13.94	198.3	196.4	353.5	468.9	844.1	421.9	759.4	381.2
195	10480	14.25	202.6	197.5	355.4	468.1	842.5	421.0	757.7	383.0
196	10700	14.55	207.0	198.5	357.3	467.2	841.0	420.1	756.1	384.8
197	10930	14.87	211.4	199.5	359.2	466.4	839.5	419.2	754.6	386.6
198	11170	15.18	216.0	200.6	361.1	465.6	838.0	418.4	753.0	388.4
199	11410	15.51	220.6	201.6	362.9	464.7	836.4	417.4	751.3	390.2
200	11650	15.84	225.2	202.7	364.8	463.8	834.8	416.5	749.7	392.0
201	11890	16.17	223.0	203.7	366.7	462.9	833.3	415.6	748.1	393.8
202	12140	16.51	234.8	204.7	368.5	462.1	831.8	414.8	746.6	395.6
203	12400	16.85	239.7	205.8	370.4	461.2	830.2	413.8	744.9	397.4
204	12650	17.20	244.7	206.8	372.3	460.3	828.6	412.9	743.3	399.2
205	12920	17.56	249.8	207.9	374.1	459.4	827.0	412.0	741.6	401.0
206	13180	17.92	254.9	208.9	376.0	458.6	825.4	411.1	740.0	402.8
207	13450	18.29	260.1	210.0	377.9	457.7	823.8	410.2	738.3	404.6
208	13730	18.66	265.4	211.0	379.8	456.8	822.2	409.3	736.7	406.4
209	14010	19.04	270.8	212.0	381.6	455.9	820.6	408.4	735.1	408.2
210	14290	19.43	276.3	213.1	383.5	455.0	819.1	407.5	733.6	410.0
211	14580	19.82	281.9	214.1	385.4	454.1	817.4	406.6	731.9	411.8
212	14870	20.22	287.6	215.2	387.3	453.2	815.8	405.7	730.2	413.6
213	15170	20.62	293.3	216.2	389.2	452.4	814.3	404.9	728.7	415.4
214	15470	21.03	299.2	217.3	391.1	451.5	812.7	404.0	727.1	417.2
215	15780	21.45	305.1	218.3	392.9	450.6	811.0	403.I	725.4	419.0
216	16090	21.88	311.1	219.3	394.8	449.6	809.3	402.I	723.7	420.8
217	16410	22.31	317.3	220.4	396.7	448.7	807.7	401.2	722.1	422.6
218	16730	22.74	323.5	221.4	398.5	447.8	806.1	400.3	720.5	424.4
219	17060	23.19	329.8	222.5	400.4	446.9	804.5	399.4	718.9	426.2
220	17390	23.64	336.2	223.5	402.3	446.0	802.9	398.5	717.3	428.0

SMITHSONIAN TABLES.

Metric and Common Units 0° to 220° C

ture	Heat Ec	uivalent al Work.	Entropy	Entropy	Specific V	olume.	Dens	sity.	ature ses heit.
Temperature Degrees Centigrade.	Calories.	B. T. U.	of the Liquid.	of Evapo- ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Čubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.
t.	Apu.	Apu.	θ	$\frac{r}{T}$	s	s .	1 - 8	I 8	t.
170 171 172 173 174	45.9 46.0 46.0 46 I 40.I	82.6 82.7 82.8 82.9 83.0	0.4880 .4903 .4926 .4949 .4972	1.1029 1.0987 1.0944 1.0901 1.0859	0.2423 .2368 .2314 .2262 .2212	3.883 3.794 3.709 3.626 3.545	4.127 4.223 4.322 4.421 4.521	0.2575 .2636 .2696 .2758 .2821	338.0 339.8 341.6 343.4 345.2
175 176 177 178 179	46.2 46.2 46.3 46.3 46.4	83.1 83.2 83.3 83.4 83.5	.4995 .5018 .5041 .5064 .5087	1.0817 1.0775 1.0733 1.0691 1.0649	.2164 .2117 .2072 .2027 .1983	3.467 3.391 3.318 3.247 3.177	4.621 4.724 4.826 4.933 5.04	.2884 .2949 .3014 .3080 .3148	347.0 348.8 350.6 352.4 354.2
180 181 182 183 184	46.4 46.5 46.5 46.6 46.6	83.6 83.7 83.8 83.8 83.9	.5110 .5133 .5156 .5178 .5201	1.0608 1.0567 1.0525 1.0484 1.0443	.1941 .1899 .1857 .1817	3.109 3.041 2.974 2.911 2.849	5.15 5.27 5.38 5.50 5.62	.3217 .3288 .3362 .3435 .3510	356.0 357.8 359.6 361.4 363.2
185 186 187 188 189	46.7 46.7 46.8 46.8 46.9	84.0 84.1 84.2 84.3 84.3	.5224 .5246 .5269 .5291 .5314	1.0403 1.0362 1.0321 1.0280 1.0240	.1740 .1702 .1666 .1632 .1598	2.787 2.727 2.669 2.614 2.560	5.75 5.88 6.00 6.13 6.26	.3588 .3667 .3746 .3826 .3906	365.0 366.8 368.6 370.4 372.2
190 191 192 193 194	46.9 47.0 47.0 47.0 47.0	84.4 84.5 84.6 84.6 84.7	.5336 .5358 .5381 .5403 .5426	1.0200 1.0160 1.0120 1.0080 1.0040	.1565 .1533 .1501 .1470	2.507 2.456 2.405 2.355 2.306	6.39 6.52 6.66 6.80 6.94	.3989 .4072 .4158 .4246 .4336	374 ° 375.8 377.6 379.4 381.2
195 196 197 198	47.1 47.1 47.2 47.2 47.3	84.8 84.9 84.9 85.0 85.1	.5448 .5470 .5492 .5514 .5536	1,0000 0,9961 .9922 .9882 .9843	.1411 .1382 .1354 .1327 .1300	2.259 2.214 2.169 2.126 2.083	7.09 7.23 7.38 7.53 7.69	.4426 .4516 .4610 .4704 .4801	383.0 384.8 386.6 388.4 390.2
200 201 202 203 204	47·3 47·3 47·4 47·4	85.1 85.2 85.2 85.3 85.3	.5558 .5580 .5602 .5624 .5646	.9804 .9765 .9727 .9688 .9650	.1274 .1249 .1225 .1201 .1177	2.041 2.001 1.962 1.923 1.885	7.84 8.00 8.16 8.33 8.50	.4900 .4998 .510 .520 .531	392.0 393.8 395.6 397.4 399.2
205 206 207 208 209	47.4 47.5 47.5 47.5 47.5	85.4 85.4 85.5 85.5	.5668 .5690 .5712 .5733 .5755	.9611 ·9572 ·9534 ·9496 ·9458	.1153 .1130 .1108 .1086	1.847 1.810 1.774 1.739 1.705	8.67 8.85 9.03 9.21 9.39	.541 .552 .564 .575 .587	401.0 402.8 404.6 406.4 408.2
210 211 212 213 214	47·5 47·5 47·5 47·5 47·5	85.5 85.5 85.6 85.6 85.6	·5777 ·5799 ·5820 ·5842 ·5863	.9420 .9382 .9344 .9307 .9269	.1044 .1024 .1004 .0984 .0965	1.673 1.640 1.608 1.577 1.546	9.58 9.77 9.96 10.16 10.36	.598 .610 .622 .634 .647	410.0 411.8 413.6 415.4 417.2
215 216 217 218 219	47·5 47·5 47·5 47·5 47·5	85.6 85.6 85.6 85.6 85.6	.5885 .5906 .5927 .5948 .5969	.9232 .9195 .9157 .9120 .9084	.0947 .0928 .0910 .0893 .0876	1.516 1.486 1.458 1.430 1.403	10.56 10.78 10.99 11.20	.660 .673 .686 .699	419.0 420.8 422.6 424.4 426.2
220	47.5	85.6	.5991	.9047	.0860	1.376	11.62	.7 27	428.0

Common Units, 400° to 700° F.

Abridged from Steam Tables and Mollier's Diagram by Keenan. Printed by permission of the publisher, The American Society of Mechanical Engineers. For detailed discussion see Mechanical Engineering, Feb., 1929. v_1 , specific vol., ft. 3 /lb.; h_1 , total heat, enthalpy, B.t.u./lb.; s_1 , entropy, B.t.u./°F./lb. The strict definition of total heat (internal energy $^+$ 44/ $^ ^ ^-$ 1) is adhered to; zeros of both h_1 and s_2 are arbitrarily placed on the sat. liq. line at 32°F. No internal energy values are tabulated but may be easily found by subtracting 144 pv/J from the total heat. The energy unit, the B.t.u., is 778.57 ft.-lb. (J) is 1/180 of the change in total heat along the saturated liquid line between 32° and 212°F. (Osborne, Fiock, Stimson.)

		at along th							· · · · · · · · · · · · · · · · · · ·		
ı	Temp		Spe	cific Volu	me	Т	otal H	eat		Entropy	
ı	F.	Aus. p.	Sat. liq.	Evap. S	Sat. vapor	Sat. liq. 1	Evap.	Sat. vap.	Sat. liq.	Evap. S	at. vapor
ı	t	lb./in.²	vs	vsa	v _g	h_f	hfg	h_g	SS	Sfa	Sa
1	400	247.25	0.01865	1.8421	1.8608	375.0	826		0.5668	0.9602	1.5270
ı	405	261.67	.01873	1.7428	1.7615	380.4	821	1201	.5730	.9491	1.5221
ı	410	276.72	.01880	1.6493	1.6681	385.9	816	1202	.5792	.9381	1.5173
1	415	292.44 308.82	.01888	1.5615	1.5804	391.3 396.8	806	I 202 I 203	.5854	.9271	1.5125
П	420 425	325.91	.01904	1.4792	1.4212	402.4	801	1203	.5916	.9161 .9052	1.5077
1	425	343.71	.01904	1.3295	1.3486	407.9	796	1203	.5978	.8942	1.4982
1	435	362.27	.01919	1.2610	1.2802	413.5	790		.6101	.8833	1.4934
1	440	381.59	.01928	1.1965	1.2158	419.1	785		.6162	.8724	1.4887
ı	445	401.70	.01936	1.1356	1.1550	424.7	779	•	.6224	.8616	1.4839
1	450	422.61	.0195	1.0782	1.0977	430	774	1204	.6284	.8507	1.4792
ı	455	444.35	.0195	1.0241	1.0436	436	768	1204	.6346	.8398	1.4744
1	460	466.94	.0196	.9730	.9927	442	762	1204	.6407	.8290	1.4696
1	465	490.40	.0197	.9249	.9446	447	756	1204	.6468	.8180	1.4649
ı	470	514.76	.0198	.8793	.8991	453	750	1204	.6530	.8071	1.4601
П	475	540.04	.0199	.8361	.8560	459	744	1203	.6592	.7962	1.4554
П	480	566.26	.0200	.7951	.8151	465	738	1203	.6654	.7852	1.4506
1	485	593.47	.0201	.7563	.7764	471	731	1202	.6716	.7742	1.4458
П	490	621.67	.0202	.7195	.7398	477	725	1202	.6779	.7632	1.4410
П	495	650.87	.0204	.6847	.7050	483	718	1201	.6842	.7521	1.4362
ı	500	681.09	.0205	.6516	.6721	489	7 I I	1200	.6904	.7410	1.4314
П	505	712.40	.0206	.6201	.6408	495	704	1199	.6968	.7299	1.4266
ı	510	744.74	.0207	.5903	.6110	502	697	1198	.7031	.7187	1.4218
ı	515	778.16	.0209	.5618	.5826	508	690	1197	.7094		1.4170
П	520	812.72	.0210	.5347	.5557	514	682	1196	.7158		1.4121
Н	525	848.43	.0211	.5090	:5301	521	675	1195	.7222	.6851	1.4073
П	530	885.31 923.39	.0213	.4845 .4614	.5058 .4828	527 533	667 659	1193 1192	.7286 .7350		1.4024
Ш	535	923.39	.0214	.4394	.4610	533 540	651	1192	.7350	_	1.3975
	540 545	1003.4	.0218	.4184	.4401	547	643	1189	.7478		1.3920
П								1188			
Ш	550	1045.4	.0219	.3982 .3789	.4201 .4010	553 560	634 626	1186	·7543	.6285 .6170	1.3778
Н	555 560	1133.4	.0223	.3605	.3828	567	618	1184	.7672		1.3728
П	565	1179.7	.0225	.3429	.3654	574	609	1182	.7737		1.3677
Ш	570	1227.6	.0227	.3261	.3488	580	600	1180	.7802		1.3626
Ш	575	1276.7	.0229	.3101	.3330	587	591	1178	.7867		1.3576
П	580	1327.2	.0231	.2949	.3180	594	581	1176	.7932		1.3524
l	585	1379.2	.0234	.2804	.3037	602	572	1173	.7998		1.3472
L	590	1432.7	.0236	.2664	.2900	609	562	1171	.8064		1.3420
U	595	1487.8	.0239	.2530	.2769	616	552	1168	.8131	.5237	1.3368
H	600	1544.6	.0241	.2401	.2642	623	542	1166	.8198	.5118	1.3316
П	610	1663.2	.0247	.2159	.2406	638	521	1160	.8332	.4875	1.3208
Ш	620	1788.8	.0254	.1933	.2186	653	499	1153	.8470		1.3093
	630	1921.9	.0261	.1721	.1982	670	475	1144	.8612		1.2970
	640	2062.8	.0269	.1522	.1791	687	448	1135	.8763		1.2836
	650	2211.4	.0278	.1331	.1610	705	417	1122	.8924		1.2688
	660	2368.6	.0290	.1148	.1437	725	384	1109	.9097		1.2523
1	670 680	2534.2	.0304	.0966	.1269 .1102	748	344	1092 1071	.9287		1.2336
	690	2709.7 2896.8	.0322	.0781	.0936	773 803	299 24I	10/1	·9499 ·9755		1.1852
	700 705	3096.4 3202.0	.0394	.0353	.0747	846 888	157 73	1003 962	1.0117		1.1471
	706.1	3226.0	.0522	0	.0522	925	0	902	1.0472		1.0785
	700.1	322010	.0022		.0022	9-0	,	9~3	1.0703		, 55

PROPERTIES OF SUPERHEATED STEAM

Common Units, 212° to 3000°F.

(Abridged from Steam Tables and Mollier's Diagram by Keenan, 1930. Printed by permission of publisher, The American Society of Mechanical Engineers.)

Abs. P. lb./in.² (Sat. t. F.)	Sat. water	Sat. steam	200°F.	300°F	`. 400	°F. 5	500°F.	600°F.	700°F.	800°F.	900°F.	1000°F.
14.696		26.82 1150.2	27.16 1154.	30.52 1192	. 12	39.	38.75 1286.	42.83 1334.	46.91 1382.	50.97 1432.	55.03 1483.	59.09 1535.
(212.00)	0.3119	1.7564	1.762	1.815	_		1.925	1.972	2.016	2.057	2.096	2.133
	0.017	8.514	v	8.78			1.30	12.53	13.74	14.93	16.14	17.34
50		1173.5	h	1184			1283.	1331.	1381.	1431.	1482.	1534.
(281.01)	0.4111		S	1.672			1.787	1.836	1.880	1.922	1.961	1.998
	0.018	4.426	v	• • • •		.93	5.58	6.21	6.83	7.44	8.04	8.64
100 (327.83)	0.4742	1186.6	h s				1278. 1.708	1328. 1.757	1378. 1.802	1429. 1.844	1481. 1.884	1533.
(327.03)	0.018		v	• • • • •		-	3.68			4.94		
150	330.4	3.010 1194.	h			.22 19.	1273.	4.11	4·53 1376.	1427.	5·34 1479·	5.75 1532.
(358.43)	0.5140	1.569	S			-	1.659	1.710	1.756	1.799	1.838	1.876
(30 - 140)	0.018	2.285	v				2.722	3.06	3.38	3.69	4.00	4.30
200	355.	1198.	h				1268.	1321.	1373.	1426.	1478.	1531.
(381.82)	0.543	1.545	S				1.623	1.676	1.723	1.766	1.806	1.8438
	0.0189	1.541	v				1.765	2.002	2.224	2.438	2.646	2.849
300	394.	1202.	h				1257.	1313.	1368.	1422.	1475.	1529.
(417.33)	0.5883	1.510	S				1.569	1.626	1.675	1.719	1.760	1.798
	0.0194	1.160	v			1	1.283	1.474	1.647	1.812	1.970	2.125
400	424.	1204.	h				1244.	1306.	1362.	1418.	1472.	1527.
(444.58)	0.622	1.484	S				1.528	1.588	1.640	1.685	1.727	1.766
	0.0198	0.926		sp. vol			0.991	1.156	1.301	1.436	1.566	1.690
500	450.	1204.		total h			1230.	1297.	1357.	1414.	1469.	1525.
	0.649	1.463	2 =	entrop	У		1.491	1.558	1.611	1.659	1.701	1.740
	0.0202	0.768	500°F.				700°F.			v 1.29		1.400
600	472.	1202.	1215.		1289.				1409.	h 1466		1523.
(486.17)	0.673	1.445	1.458				1.587		1.636		9	
	0.0206	0.653	v	0.725	0.791	0.849	0.904		1.006 .	1.10	3	1.193
700	493.	1200.	h	1242.		1313.				1463	-	1521.
(503.04)	0.694	1.429	S	1.472	-	1.539	1.567		1.617 .	1.66	I	1.702
	0.0209	0.565	v	0.613			0.779			.916 0.95		
800	512.	1197.	h	1229.		1305.		• • • • •		430. 1460		
(518.18)	0.714	1.414	S				1.548			.623 1.64		
000	0.0213	0.497	V 7.	0.523				• • • • •		.807 0.84		
900 (531.95)	530. 0.731	1193. 1.401	h S	1214. 1.421		1297.	1332. 1.530		1396. 1	427. 1457 .607 1.63		
(331,93)	0.0217	0.442	v	0.450						.720 0.75		
1000	546.	1190.	$\overset{v}{h}$	1197.	1249.		1325.		1391. 1.		5 0.700 L. 1484.	
(544.58)	0.747	1.388	s	1.395					1.569 1		7 1.639	
, , ,	0.0239	0.274		v						.459 0.48		
1500	618.	1168.		h						402. 1438		
(596.08)	0.815	1.336		S						.537 1.56		
	0.0265	0.188			v	0.204	0.247	0.278	0.305 0	.327 0.34	9 0.367	0.384
2000	679.	1139.			h	1169.				380. 1421		
(635.61)	0.870	1.290	• •	• •	S	1.317				.493 1.52		
	0.0301	0.130	• •			v				.248 0.26		
2500 (667.08)	743.	1096.	• •	• •	• •	h				357. 140.		
(667.98)	0.925	1.238	• •	• •	• •	S	_			.456 1.49		
3000	0.0367	0.084	• •	• •	• •	v = h				1947 0.21		
(695.25)	823. 0.992	1026. 1.168				s				331. 138. .420 1.46		
=====	0.992	1.100	•••			3	1.203	1.310	1.3/4 1	.400 1.40	1.494	1.525

TABLE 293.—Properties of Mercury Vapor

402° to 1000° F.

_									
Pressure abs. lbs./in. ²	Tem- perature °F.	Heat of liquid above 32° F. B.t.u.	Heat of vapori- zation B.t.u.	Total heat B.t.u.	Entropy of liquid above 32° F.	Entropy of vapori- zation	Total entropy	Specific volume cu. ft./lb.	Weight lbs./cu.ft.
0.4 0.8 1.0 1.5 2.0 4.0 6.0 8.0	402 444 458 485 505 558 591 617	13.81 15.36 15.89 16.90 17.65 19.62 20.87 21,81	128.15 127.24 126.92 126.33 125.89 124.72 123.99	141.96 142.60 142.81 143.23 143.54 144.34 144.86 145.24	.0209 .0227 .0233 .0244 .0251 .0271 .0283	.1487 .1408 .1383 .1337 .1305 .1226 .1179	.1696 .1635 .1616 .1581 .1556 .1497 .1462	114.50 59.72 48.45 33.14 25.32 13.26 9.096 6.0630	0.008733 .016745 .02064 .03017 .03948 .07540 .10993 .14361
10.0 15.0 20.0 25.0 30.0 35.0 40.0	637 676 706 730 751 769 785	22.58 24.04 25.15 26.05 26.81 27.49 28.08	122.98 122.12 121.46 120.93 120.48 120.08	145.56 146.16 146.61 146.98 147.29 147.57 147.81	.0299 .0312 .0322 .0330 .0336 .0342 .0346	.1121 .1075 .1042 .1016 .0995 .0977	.1420 .1387 .1364 .1346 .1331 .1319	5.6610 3.8923 2.983 2.429 2.053 1.7815 1.5762	.17664 .25691 .3352 .4117 .4871 .5613
45.0 50 60 70 80 90	799 812 836 857 875 892 907	28.62 29.11 29.99 30.75 31.44 32.06 32.63	119.42 119.13 118.61 118.15 117.75 117.38 117.05	148.24 148.60 148.90 149.19 149.44 149.68	.0351 .0355 .0361 .0367 .0372 .0377 .0381	.0949 .0936 .0915 .0898 .0882 .0870	.1300 .1291 .1276 .1265 .1254 .1247 .1237	1.4147 1.284 1.086 .9436 .8349 .7497 .6811	.7069 .7788 .9204 I.0597 I.1977 I.3338 I.4682
170 120 130 140 150 180	921 934 947 958 969 1000	33.16 33.66 34.12 34.55 34.96 36.09	116.74 116.44 116.17 115.92 115.67 115.01	149.90 150.10 - 150.29 150.47 150.63 151.10	.0385 .0389 .0392 .0395 .0398 .0406	.0845 .0835 .0826 .0818 .0809	.1230 .1224 .1218 .1213 .1207 .1194	.6242 .5767 .5360 .5012 .4706 .3990	1.6020 1.7340 1.8656 1.9952 2.125 2.506

(Adapted from Emmet Mercury Vapor Process, Emmet and Sheldon, Amer. Soc. Mech. Eng., May, 1924.)

TABLE 294.—Properties of Liquid Ammonia

-100° to +250°F.

			Sat	uration			Latent	Variation of h with p	Compressi-
Temp. °F.	Pressure (abs.) lbs./in. ²	Volume ft.3/lb.	Density lbs./ft. ³	Specific heat B.t.u./lb. °F.	Heat content B.t.u./lb.	Latent heat B.t.u./lb.	heat of pressure variation B.t.u./lb. lb./in.²	$ \begin{array}{c} \text{if } h \text{ with } p \\ t \text{ constant} \\ \underline{\text{B.t.u./lb.}} \\ \underline{\text{lb./in.}^2} \\ \left(\frac{\partial h}{\partial p}\right)_t \end{array} $	bility per lb./in. $^2 \times 10^6$ $-\frac{1}{v} \left(\frac{\partial v}{\partial p}\right)_t$
-100 - 90 -80 -80 -80 -80 -80 -80 -80 -90 -40 -30 -10 -10 -420 -30 -40 -50 -60 -70 -70 -80 -90 -1155 -1550 -1755 -200 -250	1.24 1.86 2.74 3.94 5.55 7.67 10.41 13.90 23.74 30.42 38.51 48.21 59.74 73.32 89.19 107.6 128.8 153.0 180.6 211.0 307.8 433.2 593.5 794.7	.02107 .02216 .02236 .02256 .02258 .02299 .02342 .02369 .02369 .02446 .02474 .02503 .02553 .02564 .02507 .0268 .02707 .02747 .02608 .02707 .02747 .02608 .02095 .030303 .030303 .02504	45.52 45.12 44.72 44.32 43.91 43.49 43.65 42.22 41.78 40.89 40.43 39.96 39.49 39.49 39.49 39.49 39.49 39.49 31.65 36.49 33.39 36.49 33.39 36.49 33.39 36.49 33.49 36.49 33.49 36.49 37.48	(1.040) (1.043) (1.043) (1.046) (1.050) 1.054 1.058 1.066 1.075 1.080 1.085 1.091 1.097 1.104 1.112 1.120 1.138 1.147 1.156 (1.189) (1.23) (1.23) (1.23) (1.38) (1.90)	(-63.0) (-52.6) (-52.6) (-32.7) -21.18 -10.61 0.00 +10.66 +21.36 32.11 42.02 53.79 64.71 75.71 86.77 97.93 109.18 120.54 131.90 143.54 155.21 (185) (248) (248) (248) (248)	(633) (628) (622) (616) 610.8 604.3 597.6 590.7 583.6 576.4 568.9 561.1 533.6 527.3 518.1 508.6 498.7 488.5 477.8 (449) (416) (377) (332) (192)	001600170018001900200021002200240025002700290031003300380041	.0026 .0026 .0025 .0025 .0024 .0023 .0021 .0020 .0019 .0018 .0017 .0013 .0011	4.4 4.6 4.8 5.1 5.4 5.7 6.0 6.4 6.8 7.3 7.8 8.4 9.1 10.0 10.9 12.0

(Abridged from Bur. Standards, Circ. 142, 1923.)

TABLE 295 .- Heats of Combustion of Some Carbon Compounds

Given in kg.cal.₁₅ at constant pressure per gram-molecular weight in vacuo. When referred to constant volume the values should be 0.58 kg.cal.₁₅ smaller (at about 18°C) for each condensed gaseous molecule. Combustion products are CO₂, liquid H₂O, etc. Benzoic acid was adopted at Lyons as a primary standard, its heat of combustion, 6324 g.cal.₁₅per gram in air, 6319 in vacuo. This is tacitly assumed as heat of isothermal combustion at 20°C. In absolute joules, 26,466 and 26,445 respectively. The following ratios may be taken as standard: Naphthalene/benzoic acid = 1.5201 (air); benzoic acid/sucrose = 1.6028 (air); napthalene/sucrose = 2.4364 (air). The following values are from Kharasch, Bur. Standards, Journ. Res., 2, 359, 1929, which see for further values.

Compound	For- mula	Mole- cular weight	Kg.cal. ₁₅ per g.mol.	Compound	For- mula	Mole- cular weight	Kg. cal. ₁₅ per g.mol.
Methane (g). Ethane (g). Ethane (g). Propane (g). Isobutane (g). n-Hexane. n-Octane. Decane. Hexadecane (s). Eticosane (s). Ethylene (g). Propylene (g). Isobutylene (g). Amylene. Acetylene (g). Allylene (g). Trimethylene (g). Benzene. "(v). Toluene. Napthalene (s). Methyl-chloride (g). Methyl-chloride (g). Methylene (g). Carbon-tetrachloride (l). Carbon-tetrachloride (y). Carbon disulphide (l). Carbon disulphide (l). Wethyl alcohol Ethyl "(v). Allyl "(v).	CH4 CeH6 CeH6 CeH14 CeH14 CeH14 CeH14 CeH14 CeH18 CeH18 CeH18 CeH18 CeH19 CeH2 CeH2 CeH2 CeH40 CeH4O CeH4O CeH4O CeH4O CeH6O C	16 30 44 58 86.11 100.13 114.14 142.18 226.27 282.34 28 42 50 70 84.10 26.02 40 42 78.05 02.06 128.06 5.05 85.0 119.5 154.0 76.0 32.03 46.05 58.05	210.8 368.4 526.3 683.4 990.6 11343.6 1304.2 1610.2 2559.1 331.6 490.2 647.2 803.4 952.6 312.0 469.8 782.8 782.8 787.2 935.6 1231.4 168.7 106.8 89.2 70.3 37.3 44.5 394.5 246.6 170.9 328.5 442.4	Formaldehyde (g) Acetone (v) Camphor (s) Sucrose, cane (s) milk (s) anhd. malt (s) Starch Glycogen Cellulose. Formic acid Acetic "Propionic acid houtyric "nevaleric "Stearic (s) Lactic (s) Stearic (s) Aniline Urea (s) Nicotine Cyanogen (g) Trinitrotoluene (s) n-propy "nebutyl "octyl "octyl "octyl "octyl "octyl "Semental Stearic "otyl "octyl "o	CH2O2 C3H6O C10H16O C12H22O11 "" CH2O2 C2H4O2 C3H6O2 C3H6O2 C4H3O2 C5H10O2 C16H22O2 C3H6O2 C3H16O C16H24O2 C16H24O2 C16H24O2 C3H3O2 C2H6O2 C3H3O2 C4H10O	30.02 58 152.13 342.18 46.02 60.03 74.05 88.06 102.08 256.26 284.29 90.05 93.07 60.05 162.13 52.0 227.06 60.06 74.08 116.13 130.11 4242.27 156.16 94.05 150.11 46 60 74.08	134.1 435.8 1411 1349.6 1350.8 1351 4178.8 4186.8 4180.8 62.8 208.2 367.2 524.3 681.6 2391 2700 326.0 813.7 151.6 1427.7 260.0 826 482.0 639.4 1104.9 1262.0 2504.5 1508.8 1353.4 640.0
			t	11			

TABLE 296.—Heats of Combustion of Miscellaneous Compounds

Substance.	Small calories per g substance.	Reference.	Substance.	Small calories per g substance.	Reference.
Asphalt. Butter. Carbon: amorphous charcoal. diamond graphite. Copper (to CuO). Dynamite, 75%. Egg, white of Egg, yolk of. Fats, animal. Hemoglobin Hydrogen. Iron (to FegO ₃). Magnesium (to MgO). Oils cotton-seed. lard. olive.	9530 9200 8080 8100 7860 7900 590 1290 5700 8100 9500 5900 33900 1582 6080 9500 9300 9400	1 2 2 3 3 5 4 - - 2 - 2 - - - - - - - - - - - - - -	Oils: petroleum: crude light. heavy rape sperm. Paraffin (to CO ₂ , H ₂ O I) Paraffin (to CO ₂ , H ₂ O I) Paraffin (to CO ₂ , H ₂ O I) Pitch Sulphur, rhombic Sulphur, monoclinic. Tallow. Woods: beech, 13% H ₂ O oak, 13% H ₂ O pine, 12% H ₂ O	11500 10000 10200 9500 10000 11140 10340 8400 2200 2240 9500 4170 4210 3990 4420	2 2 2 6 7 6 6 - 2 5 6 8 8 8 8 8

References: (1) Slossen, Colburn; (2) Mean; (3) Berthellot; (4) Roux, Sarran; (5) Thomsen; (6) Stohmann; (7) Gibson; (8) Gottlieb.

TABLE 297 HEAT VALUES AND ANALYSES OF VARIOUS FUELS

HEA		ALUES	AND	Alle			<u> </u>	VAII					
				(a)	Co	ALS							
Coal.	Moisture.	Moisture. Volatile matter. Fixed Carbon.		Ash.		Sulphur.	Hydrogen.	Carbon.	Nitrogen.		Oxygen.	Calories per gram.	B. T. U.'s per pound.
Lignite { Low grade. High grade Sub-bitu- Low grade. minous High grade Bitu- Low grade. minous High grade Semi-bitu- Low grade minous High grade Semi-anthracite Low grade. cite High grade Oven Low grade. Coke High grade Low grade. 2.7 3.20 2.00 2.70 3.33 1.93	3.38 27.44 29.6 2.71 34.78 36.6 5.54 33.03 46.6 1.44 33.93 43.6 3.42 34.36 58.8		2 9. 5. 6. 5. 10. 3. 7. 9. 3. 9. 12. 9. 8. 7. 8. 8.	56 0 91 0 37 0 71 4 39 0 3 0 97 0 169 0 12 0	.97 .94 .29 .58 .94 .58 .99 .54 .74 .54 .60	7.09 6.77 6.14 5.89 5.39 5.25 4.58 4.76 3.62 2.23 3.08	41.33 52.55 60.08 60.08 77.98 80.69 84.62 80.28	0.67 1.03 1.05 1.02 3 1.29 5 1.82 1.02 1.02 1.02	40 34 27 17 11 4 5 3	.57 .75 .09 .03 .88 .51 .66 .09 .59	3526 3994 5115 5865 6088 7852 7845 8166 7612 6987 7417 7946 8006	6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351 14300 14410	
(b) Peats and Woods (air dried)													
	h		Fixed arbon.	Ash.	Sul- phur	H	ydro- gen.	Carbon.	Nitro- gen.	Oxyg	en.	Calories per gram.	B.T.U.'s per pound.
Sawyer Co., Wis Woods: Oak, dry Birch, dry	Franklin Co., N. Y 67.10 28.99 Sawyer Co., Wis 56.54 27.02			3.91 0.15 15.54 0.29 0.37 — 0.29 —		6 6	0.02 0.06 0.20	57.17 1.48 51.00 1.92 50.16 0.09 48.88 0.10 50.31 0.04		31.36 26.54 43.36 44.67 43.08		5726 4867 4620 4771 5085	10307 8761 8316 8588 9153
				(c) L10	QUID	Fu	ELS						
Fu	iel.			Spe	cific gr	avit;	у	Calories	per gran	n.		sh therm per pour	
Petroleum ether Gasoline. Kerosene. Fuel oils, heavy petro Alcohol, fuel or den cent water and de	leum o	or refiner with 7	y residue to 9 per		6846 7107 7908 9609	730 300 370		11100 11000 10200	0-12220 0-11400 0-11200 0-10500		1	1978-21 9980-20 9800-20 8360-18	520 160 900
				(d)	Gasi	ES							
Gas.	Gas. H ₂ CH ₄				- 'lur an	ni- ts.	CO ₂	СО	O ₂	1	N ₂	Cal. per m³	B.T.U. per cu. ft.
Natural gas, Pa Natural gas, France. Coal gas, high grade Coal gas, low grade	Natural gas, Cal. — 88. o Natural gas, Pa. — 53. 3 Natural gas, France. — 98. 81 Coal gas, high grade 34.80 28. 80 Coal gas, low grade 57. 2 18. 8 Water gas, low grade 52. 88 2 . 16			45.8* 9.50	I. 0. 3. 14.	70 8 47	0.58 0.20 2.00	10.40 3.20 36.8		0 14 18	.90 .90 .48 .20 .0	8339 12635 9364 6151 3736 2642 6140	937 1420 1052 657 399 283 657

 $^{^*}$ $\mathrm{C_2H_6}.$ Data from the Geological Survey, Poole's The Calorific Power of Fuels, and for natural gas from Snelling (Van Nostrand's Chemical Annual).

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES

Explosive.	Specific gravity.	Number of large calories developed by 1 kilogram of the explosive.	Pressure developed in own volume after elimination of surface influence.	Unit disruptive charge by ballistic pendulum.	Rate of detonation. Cartridges 14 in. diam.	Duration of flame from 100 grams of explosive.	Length of flame from 100 grams.	Cartridge 14 in. transmitted explosion at a distance of	Products of combustion from 200 grams; gaseous, solid, and liquid, respectively.	Ignition occurred in 4% fire damp & coal dust mixture with
			Kg per sq. cm.	Grams.	Meters per second.	Millisec- onds.	Inches.	Inches.	Grams.	Grams.
(A) Forty-per-cent nitro- glycerin dynamite	1.22	1221.4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25
(B) FFF black blasting powder	1,25	789.4	4817	374 [†] 458*	469.4‡	925.	54.32	-	154.4 126.9 4.1	25
(C) Permissible explo- sive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27.79	4	103.9 65.1 15.4	1000
(D) Permissible explo- sive; ammonium nitrate class	0.97	992.8	7300	279*	3438§	.483	25.68	ı	89.8 27.5 75.5	800
(E) Permissible explo- sive; hydrated class	1.54	610.6	6597	434*	2479	.338	17.49	3	86.1 56.0 33.0	Over 1000
		(Chemical	Analyse	s.					
(A) Moisture										0.23 83.10 0.46 2.61 1.89 2.54 2.64 6.53 2.34 30.85 9.94 1.75 11.98 7.64 8.96 6.89 19.65

^{*} One pound of clay tamping used. § Cartridges 13 in. diam.

[‡] Rate of burning.

One pound of clay tamping used. † Two pounds of clay tamping used. ‡ Rate of burning Cartridges 13 in. diam. † For 300 grammes.

Compiled from U. S. Geological Survey Results, — "Investigation of Explosives for use in Coal Mines, 1909." SMITHSONIAN TABLES.

TABLE 299.—Additional Data on Explosives

Explosive. (Ref. Young, Nature, 102, 216, 1918.)	Vol. gas per g in cc = V	Calories per g = Q	Coefficient = QV ÷ 1000	Coefficient $GP = \mathbf{I}$	Calculated Temperature Q/C C, sp. ht. gases = 0.24
Gunpowder. Nitroglycerine Nitroccllulose, 13% N2. Cordite, Mk. I. (NG, 57; NC, 38; Vaseline, 5) Cordite, MD (NG, 30; NC, 65; Vaseline, 5). Ballistite (NG, 50; NC, 50; Stabilizer, 5) Picric acid (Lyddite)	888	738 1652 931 1242 1031 1349 810	207 1224 859 1082 915 1102 710	1 6 4 · 3 5 · 2 4 · 4 5 · 3 3 · 4	2240° C 6880 3876 5175 4225 5621 3375

Shattering power of explosive = vol. gas per g × cals./g × V_d × density where V_d is the velocity of detonation. Trinitrotoluene: V_d = 7000 m/sec. Shattering effect = .87 picric acid. Amatol (Ammonium nitrate + trinitrotoluene, TNT): V_d = 4500 m/sec. Ammonal (Ammonium nitrate, TNT, Al): 1578 cal/g; 682 cc gas; V_d = 4000 m/sec. Sabulite (Ammonium nitrate, 78, TNT 8, Ca silicide 14): about same as ammonal.

TABLE 300.—Ignition Temperatures of Gaseous Mixtures

Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. McDavid, J. Ch. Soc. Trans. 111, 1003, 1917. Gases were mixed with air. Practically same temperatures as with O₂ (Dixon, Conrad, *loc. cit.* 95, 1909).

Benzene and air 1062° C Ether and air 1033° C Coal gas and air 878 Ethylene and air 1000 CO and air 931 Hydrogen and air 747
--

TABLE 301.-Time of Heating for Explosive Decomposition

Temperature ° C.	170	180	190	200	220	Ignition tem	perature.
Time.	sec.	sec.	sec.	sec.	sec.	°C†	° C‡
Black powder Smokeless powder A Smokeless powder B Celluloid Pyroxylin Collodion cotton Celluloid * Safety matches Parlcr matches Cotton wool	n 600 190 170 870 160 n n	n 195 130 60 165 100 340 n	n 130 — 67 60 240 n	n 45 90 21 56 50 150 590	n 23 25 9 18 30, 60 480	440 { 300 	450 —

n, failure to explode in twenty minutes. *The decomposition of nitrocellulose in celluloid commences at about 100°C; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions.

† Measured by contact with porcelain tube of given temperature. Average.

† Measured by contact with molten lead. Average.

Taken from Technologic Paper of Bureau of Standards; No. 98, 1917.

TABLE 302 .- Flame Temperatures

Measures made with optical pyrometer by Féry, J. de Phys. (4) 6, 1907.

Alcohol, with NaCl. Bunsen flame, no air. Bunsen flame, ½ air. Bunsen flame, full air. Illuminating gas-oxygen.	1705° C 1712 1812 1871 2200	Hydrogen flame Hydrogen-oxygen Acetylene burner Acetylene-oxygen Cooper-Hewlit Hg.	1900° C 2420 2458 3000 3500
---	---	--	---

THERMOCHEMISTRY, CHEMICAL ENERGY DATA

The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or $\operatorname{mol}(e)$; treat reaction equations like algebraic equations: $\operatorname{CO} + \operatorname{O} = \operatorname{CO}_2 + \operatorname{68} \, \operatorname{Kg-cal}$; subtract $\operatorname{C} + \operatorname{2} = \operatorname{CO}_2 + \operatorname{97} \, \operatorname{Kg-cal}$, then $\operatorname{C} + \operatorname{O} = \operatorname{CO}_2 + \operatorname{29} \, \operatorname{Kg-cal}$. We may substitute the negative values of the formation heats in an energy equation and solve $\operatorname{MgCl}_2 + 2\operatorname{Na} = 2\operatorname{NaCl} + \operatorname{Mg} + x \operatorname{Kg-cal}$; -151 = -196 + x; x = 45 Kg-cal. Heats of formation of organic compounds can be found from the heats of combustion since burned to $\operatorname{H_2O}$ and CO_2 . When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at $\operatorname{T}_K^{\circ}$ the energy of the substance is decreased (increased) by $\operatorname{0.002} \cdot \operatorname{N} \cdot \operatorname{T}_K \operatorname{Kg-cal}$. $\operatorname{H}_2 + \operatorname{O} = \operatorname{H}_2 \operatorname{O} + \operatorname{67.5} \operatorname{Kg-cal}$ at $\operatorname{18^oC}$ at constant volume; $\frac{1}{2}(2\operatorname{H}_2 + \operatorname{O}_2 - 2\operatorname{H}_2 \operatorname{O} = 135.0 + \operatorname{0.002} \times \operatorname{3} \times \operatorname{291} = 136.7) = 68.4 \operatorname{Kg-cal}$.

 $\frac{1}{2}$ (2 H₂+O₂-2 H₂O = 135.0 + 0.002 × 3 × 291 = 136.7) = 68.4 Kg-cal. The heat of solution is the heat, + or -, liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq. signifies

this amount of water; H₂O, one mol.; NH₃ + Aq = NH₄OH · Aq. + 8 Kg-cal.

Heats of Formation from Elements in Kilogram-Calories
At ordinary temperatures.

Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion.
Al ₂ O ₃ Ag ₂ O BaO BaO ₂ Bi ₂ O ₃ CO am CO gr CO ₂ di CaO CeO ₂ Cl ₂ O g CoO am CO gr Co ₃ O ₄ CrO ₃ Cs ₂ O CuO FeO Cu ₂ O CuO FeO Cu ₂ O CuO FeO Cu ₂ O CuO FeO MgO MnO MnO MnO MnO MnO MnO MnO MnO MnO Mn	380. 6.5 126. 142. 138. 29.0 26.1 97.0 94.8 94.3 152. 2225. -16.5 50.5 57.5 57.5 57.5 193.4 140. 91.3 42.3 37.2 65.7 196.5 270.8 68.4 46.8 22.2 21.4 91. 447. 141.6 90.8 123. 325. 143. 144. 147. 141.6 143.6 90.8 123. 325. 143. 174. -18.6 -2.16.6 -8.1 -2.6	HgO Na ₂ O Nd ₂ O ₃ NiO P ₂ O ₅ sgs PbO PbO ₂ Pr ₂ O ₃ Rb ₂ O SO ₂ rh sgg SiO ₂ SnO SnO ₂ cr SrO ₂ ThO ₂ TiO ₂ am TiO ₂ cr TlO ₂ WO ₃ ZnO AgCl AlCl ₃ AuCl y AuCl ₃ SaCl AlCl ₃ CCl ₄ am CaCl ₂ CdCl	21.4 100. 435. 57.9 370. 50.3 62.4 412. 89.2 70. 191.0 66.9 137.5 135. 326. 215.6 218.4 42.2 131. 194. 85.2 29.5 161.4 5.81 22.8 197. 90.6 21.0 187. 93.2 76.5 51.5 34.1 82.1 96.0 1155. 22.3 131. 195.	KCI LiCI MgCl ₂ MnCl ₂ NaCl NdCl ₂ NaCl NdCl ₂ NH,CI NiCl ₂ PbCl ₂ PbCl ₂ PtCl ₄ SrCl ₂ SrCl ₄ TiCl RbCl ZrCl ₂ HBr glg NH ₄ Br HI gsg HF ggg Ag ₂ S CS ₂ sgg CaS (NH ₄) ₂ S CU ₂ S CuS H ₂ S gsg K ₂ S CuS H ₂ S gsg K ₂ S CuS H ₂ S gsg K ₂ S CuS H ₂ S gsg K ₂ S CuS H ₂ S gsg K ₂ S CuS H ₂ S Gsg K ₂ S CuS H ₂ S Gsg K ₂ S CuS H ₂ S Gsg CaSO ₄ CuSO ₄ H ₂ SO ₄ H ₂ SO ₄ H ₂ SO ₄ H ₂ SO ₄ K ₂ SO ₄	105.7 93.8 151.0 112.3 97.8 250. 76.3 74.5 83.4 40.5 60.4 80.8 128. 185. 300. 48.6 105.9 97.3 8.6 66. -6.2 38. 21.3 11.6 2.73 103.4 79.4 79.4 79.4 79.4 111.5 193. 21.3 17.5 165. 344.3	Li ₂ SO ₄ (NII ₄) ₂ SO ₄ Na ₂ SO ₄ MgSO ₄ MgSO ₄ PbSO ₆ Tl ₂ SO ₄ ZnSO ₄ CaCO ₃ CuCO ₃ FeCO ₃ K ₂ CO ₃ MgCO ₃ Na ₂ CO ₃ ZnCO ₃ AgNO ₃ Ca(NO ₃) ₂ 6 H ₂ O HNO ₃ gggl KNO ₃ LiNO ₃ Na ₁ NO ₃ CH ₄ sgg C ₂ H ₆ sgg C ₂ H ₂ sgg HCN di gsgg NH ₃ ggg C ₂ H ₂ Sgg HCN di gsgg NH ₄ Ggg C ₂ H ₂ Sgg NH ₄ OH NaOH Na · H ₂ O · Aq — H ½(2 Na · O · H ₂ O) ½(Na ₂ O · H ₂ O · Aq) KOH K · H ₂ O · Aq — H ½(2 K · O · H ₂ O) ½(K ₂ O · H ₂ O · Aq)	334-2 283. 328.3 301.6 216.2 221.0 229.6 143. 179. 280. 267. 272. 194. 28.7 209. 92.9 41.6 119.2 112. 88.3 111.0 58.2 20. 25. -30.5 112.0 230. 88.8 102.4 44.* 66.* 30.* 45.* 69.* 35.5*

am = amorphous: di = diamond; gr = graphite; cr = crystal; g = gas; l = liquid; s = solid; y = yellow (gold); rh = rhombic (sulphur). * Heats of formation not from elements but as indicated.

SMITHSONIAN TABLES.

TABLE 304 .- Heats of Formation of Ions in Kilogram-Calories

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionisation of each gram-molecule of an element divide the numbers in the table by the valency, e. g., 9.03 gr. Al + 9.03 gr. Al + 40.3 Kg. cal. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows: FeCl₂Aq = + 22.2 + 2 \times 39.1 = 100.4 Kg. cal. CuSO₄Aq = - 15.8 + 214.0 = 108.2 Kg. cal.

TABLE 305 .- Heats of Neutralization in Kilogram-Calories

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 Kg. cal. plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base.

Base.	HCl-aq	HNO₃•aq	H₂SO₄·aq	HCN•aq	CH ₃ COOH·aq	H ₂ ·CO ₃ ·aq
KOH · aq NaOH · aq NH ₄ OH · aq ½ Ca(OH) ₂ · aq ½ Zn(OH) ₂ · aq ½ Cu(OH) ₂ · aq	13.7 13.7 12.4 14.0 9.9 7.5	13.8 13.7 12.5 13.9 9.9 7.5	15.7 15.7 14.5 15.6 11.7 9.2	2.9 2.9 1.3 3.2 8.1	13.3 13.3 12.0 13.4 8.9 6.2	10.1 10.2 8. 9.5 5.5

TABLE 306 .- Heats of Dilution of H2SO4

In Kilogram-calories by the dilution of one gram-molecule of sulphuric acid by m gram-molecules of water.

m	i 6.38	2 9.42	3	5	19 16.26	49 16.68	99 16.86	199 17.06	399 17.31	1599
		L		<u> </u>						

SMITHSONIAN TABLES.

TABLE 307 .- Radiation Constants and Formulae for Black Body

The radiation per cm² from a "black body" (exclusive of convection losses) at the temperature T° K. (Centigrade degrees) to one at T_0° K. is $J = \sigma$ ($T^4 - T_0^4$), (Stefan. Boltzman) where $\sigma = 2\pi^5 k^4/15$ $\sigma^2 k^3 = (5.713 \pm 0.006) \times 10^{-5}$ erg·cm⁻²·deg. 4 sec. (Birge) (indirect) = $(5.735 \pm 0.011) \times 10^{-5}$ erg·cm⁻²·deg. 4 sec. (Birge) (experimental). The distribution of this energy in the spectrum is represented by Planck's formula:

$$J_{\lambda} = c_1 \lambda^{-5} \left(e^{\frac{c_2}{\lambda T}} - 1 \right)^{-1} d\lambda$$

where J_{λ} represents the intensity at wave length λ

* $\epsilon_1 = (3.697 \pm 0.005) \times 10^{-6} \,\mathrm{erg \cdot cm^2 \cdot sec.^{-1}}$, unpolarized radiation over solid angle 2π .

 $= (3.194 \pm 0.004) \text{ erg} \cdot \text{cm}^2 \cdot \text{day}^{-1}$

= $(8.832 \pm 0.01) \times 10^{-13}$ g cal.₁₅ cm²· deg. = $(3.697 \pm 0.005) \times 10^{-12}$ watts·cm²

 $c_2 = (1.432 \pm 0.003) \text{ cm} \cdot \text{deg.}$

 $J \max X = 3.11 \times 10^{-6} T^5$ $\lambda \max T = c_2/4.9651 = (0.28836 \pm 0.00011) \text{ cm·deg.}$

 $*c_1 = 2\pi hc^2 = 3.697 \times 10^{-5} \text{ erg cm}^2 \text{ sec.}^{-1}$ when $E_{\lambda}d\lambda$ denotes the emission of unpolarized radiation in range $d\lambda$, per unit surface in all directions (2π solid angle).

 $c_1 = 8\pi hc = 4.932 \times 10^{-15}$ cm·deg., when $E_\lambda d\lambda$ denotes energy density of uppolarized

radiation.

 $c_1 = hc^2 = 0.5884 \times 10^{-5} \text{ erg cm}^2 \text{ sec.}^{-1}$, when $E_{\lambda}d\lambda$ denotes intensity of linearly polarized radiation in range $d\lambda$, perpendicularly to a surface, per unit surface, per unit solid angle.

TABLE 308.—Radiation in ergs $(R \times 10^n)$ and gram-calories $(R^1 \times 10^n)$ per cm² per sec. from a perfect radiator at t°C to absolutely cold space (-273°C)

Computed from Stefan-Boltzman formula, σ = 5.73 × 10-5 erg, cm.- ideg.-4

Temp.	erg/cm²/ sec. R n	cal./cm²/ sec.	Temp.	erg/cm²/ sec. R n	cal./cm²/ sec. R¹ n	Temp.	erg/cm²/ sec. R n	cal./cm²/ sec.
-270 -250 -200 -190 -180 -160 -150 -140 -130 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 -8 -6 -4 -2 -4 -2 -4 -2 -4	5.29 -3 1.61 1 1.64 3 2.73 3 4.31 3 1.31 4 1.82 4 2.40 4 4.05 4 5.15 4 4.05 4 5.15 4 4.05 4 5.15 4 6.44 4 7.97 4 1.18 5 1.42 5 1.69 5 2.35 5 2.35 5 2.74 5 2.83 5 2.92 5 3.00 5 3.09 5 3.19 5 3.19 5 3.19 5 3.28 5	1.27 —10 3.86 —7 3.94 —5 6.55 —5 1.03 —4 2.25 —4 3.14 —4 4.37 —4 4.37 —4 7.56 —4 9.72 —4 1.24 —3 1.51 —3 2.83 —3 3.41 —3 2.83 —3 3.41 —3 4.80 —3 5.64 —3 6.58 —3 7.01 —3 7.20 —3 7.42 —3 7.66 —3 7.87 —3	4 6 8 10 12 14 16 18 20 22 24 26 30 32 34 36 38 40 42 44 46 48 50 52 54 56	3.38 5 3.48 5 3.58 5 3.68 5 3.78 5 4.00 5 4.11 5 4.24 5 4.46 5 4.59 5 4.71 5 5.10 5 5.23 5 5.51 5 5.57 5 5.57 5 5.65 5 5.79 5 6.24 5 6.56 5 6.72 5	8.11 -3 8.35 -3 8.59 -3 8.83 -3 9.07 -3 9.33 -3 9.60 -3 1.01 -2 1.04 -2 1.07 -2 1.10 -2 1.16 -2 1.19 -2 1.22 -2 1.26 -2 1.29 -2 1.32 -2 1.36 -2 1.39 -2 1.46 -2 1.50 -2 1.51 -2 1.51 -2 1.51 -2 1.51 -2 1.51 -2 1.51 -2 1.51 -2	58 60 70 80 90 100 200 300 400 500 1000 1500 2000 3000 4000 5000 6000 7000 8000 9000 15000 20000 20000 20000 20000 20000 20000 2000	6.89 5 7.05 5 7.94 5 8.91 5 9.96 5 1.11 6 2.87 6 6.18 6 1.18 7 7.60 7 3.33 7 5.14 7 7.60 8 1.50 8 1.50 8 1.50 8 1.51 10 4.43 10 8.87 10 1.63 11 2.68 11 4.24 11 6.38 11 3.12 12 9.68 12 2.34 13	1.65 -2 1.69 -2 1.91 -2 2.14 -2 2.39 -2 2.66 -2 6.89 -2 1.48 -1 2.83 -1 4.92 -1 7.99 -1 1.23 0 1.82 0 2.66 0 3.60 0 1.36 +1 3.67 +1 1.58 +2 1.06 +3 2.13 +3 3.91 +3 3.91 +3 6.43 +3 1.02 +4 1.53 +4 7.49 +4 2.32 +5 5.62 +5

Note: Above table correct probably to one per cent.

BLACK-BODY SPECTRUM INTENSITIES $(J\lambda)$, 50° TO 20000°K.

Values of $J\lambda$ using for C_1 , 9.23×10^3 , C_2 , 14350., λ in μ . If the figures given for $J\lambda$ are plotted in cms as ordinates to a scale of abscissae of 1 cm to 1 μ , then the area in cm² between the smooth curve through the resulting points and the axis of abscissae is equivalent to the radiation in calories per sec. from 1 cm² of a black body at the corresponding temperature, radiating to absolute zero. The intensities when radiating to a body at a lower temperature may be obtained by subtracting the intensities corresponding to the lower temperature from those of the higher. The nature of the black-body formula is such that when λT is small, a small change in C_2 produces a great change in $J\lambda$; e.g., when $C_2/\lambda T$ is 100 or 10, the change is 100 and 10 fold respectively; as λT increases, the change becomes proportional; e.g., when $C_2/\lambda T$ is less than 0.05, the change in $J\lambda$ is proportional to the change in C_2 .

λ	50° K.	100° K.	150° K.	200° K.	250° K	273° K.	300° K.	373° K.	400° K.	500° K.	600° К.
μ											
1.0	_	. 0583	. 0372	. 0276	. O20 I	.0181	. O16 I	. 0122	. 01124	. O83I	.0638
1.5	_	. 038,3	. 0242	. 0172	0133	. 0127	. 0102	.088	.0749	.0558	.03143
2.0	.O59I	. 0282	. 0185	. 0137	. O9 I	.0911	. 0712	.0513	.0546	.03168	.00184
2.5	. O47 I	. O22 I	. 0142	. 0103	.0710	.077	. 0646	.0419	.0450	.0397	.0066
3.0	.0409	.0196	. 0125	, O ₈ 2	.0618	. 069	.0545	.03102	.03242	.00265	.0131
3.5	. 0344	.0163	. 0102	.072	.0513	. 055	. 0420	.0329	.03620	.00482	.0189
	2006	00		0.74	0.70	0.79	0.55	0.60	00774	6	
4.0 5.0	.0306	. O142	.094	.0614	.0552	.0418	.0457 .0321	.0360 .00134	.00115	.00690	.0229
6.0	. O20IQ	.0105	.0614	.058	,048	.0318	.0321	.00134	.00220	.01001	.0224
7.0	.01883	.096	.066	.0410	.0315	.0330	.0359	.00225	.00328	.00025	.0186
8.0	.01672	.085	.0518	.0436	.0322	.0339	.0371	.00232	.00321	.00801	.0149
9.0	.01422	.0718	.0538	.0454	.0327	.0345	.0377	.00220	.00205	.00672	.0118
									, ,	·	
10.0	. O133 I	. 0754	.0565	.0471	.0330	. 0348	.0378	.00201	.00262	.00554	.00929
12.0	.01115	.0824	.0413	. 0494	.033 I	.0347	.0370	.00157	.00196	.00374	.00585
14.0	. O102 I	.0661	.0418	.04102	.0329	.0341	.0358	.00117	.00144	.00254	.00380
16.0	.0914	.0511	. 0422	.04100	.0325	.0334	.0546	.0387	.00105	.00176	.00254
18.0	.0957	.0517	.0424	.0492	.0321	.0328	.03368	.03653	.03760	.00124	.00176
20.0	.0816	.0522	.0424	.0482	.0317	.03224	.03290	.01493	.03575	.03902	.00125
25.0	.0897	. 0530	.0421	.0457	.03122	.03131	.03164	.03258	.03295	.03430	.03589
30.0	.0726	. 0532	.0416	.0438	.0466	.0479	.0407	.03146	.03164	.03237	.03311
40.0	.0769	.0526	. O5Q	.0418	.04282	.0433	.04301	.04558	.04620	.04858	.03110
50.0	.0795	.0518	.0551	.0592	.04150	.04158	.04184	.04255	.04281	.04381	.04482
75.0	.0787	.0667	.0515	.0524	.05338	.05383	.05436	.05580	.05634	.05834	.04103
100.0	.0755	.0629	.0657	.0688	.05119	.05134	.05150	.05197	.05214	.05277	.05342
1	1	- 1									

λ	800° K.	1000° K.	1500° K.	2000° K.	3000° K.	4000° K.	5000° K.	6000° K.	8000° K.	10000° K.	20000° K.
μ 0. I	_			0.0226	0.01115	0.0624	0.0331	0.038	15.	540.	710000.
0.2	_		-	0.087	0.0012	0.46	15.4	184.	3660.	22100.	820000.
0.3				0.0315	0.44	24.2	263.	1310.	9640.	31000.	382000.
0.4	_		_	0.0145	5.75	115.	690.	2280.	10300.	25600.	180000.
0.5		.0648	0,014	0.172	20.6 40.8	226. 301.	952.	2490.	8400. 6200.	17800.	92300.
0.0	. 0640		0.064	0.757 I.93	59.2	328.	925.	2240. 1860.	4590.	8110.	51460. 30700.
0.8	.0651	.00045		3.58	71.5	321.	800.	1490.	3350.	5620.	19400.
0.9	.0434	.00183	0.100	5.35	77.3	295.	671.	1177.	2470.	3980.	12820.
0.9	1.0434	100103	0.370	3.33	177.3	293.	0/1.	11///	2470.	3900.	12020.
1.0	.00015	.00538	0.645	7.06	77.8	262.	554.	928.	1842.	2880.	8800.
1.5	.0775	.0848	2.07	10.25	52.2	122.	210.	300.	527.	758.	1980.
2.0	.0367	. 221	2.43	8.19	29.0	57.6	90.2	125.	198.	275.	668.
2.5	.0719	.305	2.10	5.68	16.4	29.5	43.9	58.9	90.1	121.9	284.
3.0	.0964	.320	1.64	3.82	9.66	16.4	23.7	31.1	46.4	61.9	140.7
3 - 5	.1050	. 296	I.22	2.60	6.02	9.84	13.8	17.9	26.3	34.7	77.3
	.1027	.256	0.007	1.80	3.00	6.20	8.59	11.0		20.0	
4.0 5.0	.0830		0.511	0.023	1.84	2.81	3.81	4.81	15.9 6.84	8.89	45.9 19.15
6.0	.0629		0.302	0.514	0.973	I.45	1.935	2.42	3.40	4.39	9.34
7.0	.0450		0.188	0.307	0.560	0.820	1.165	1.348	1.88	2.4I	5.00
8.0	.0335		0.122	0.104	0.344	0.408	0.653	0.808	1.20	1.43	3.00
0.0	.0247		0.0824	0.128	0.223	0.319	0.416	0.513	0.700	0.00	1.87
		0,						1 . 3 - 0	.,,,		
10.0	.0184		0.0575	0.0880	0.151	0.214	0.278	0.342	0.470	0.598	I.24
12.0	.01072		0.0304	0.0553	0.0757	0.107	0.1373	0.168	0.230	0.292	0.602
14.0	.00660		0.0175	0.0256	0.0421	0.0587	0.0754	0.0921	0.125	0.159	0.326
16.0	.00425		0.0108	0.0155	0.0253	0.0350	0.0448	0.0546	0.0742	0.0938	0.192
18.0	.00285		0.00697	0.00997	0.0160	0.0221	0.0282	0.0344	0.0466	0.0585	0.120
20.0	.00198	.00275	0.00470	0.00668	0.01068	0.0147	0.01868	0.0227	0.0307	0.0388	0.0789
25.0	00000	00122	0.00203	0.00284	0.00448	0.00612	0.00777	0.00041	0.0127	0.0160	0.0325
30.0	.0346.1		0.00101	0.00141	0.00220		0.00378	0.00455	0.00616		0.0157
40.0	.03150		0.03334	0.03450	0.03710	0.03060	0.00121	0.00146			0.00498
50.0	.04684		0.03140	0.03101	0.03204	0.03307	0.03400	0.03603	0.03808	0.00101	0.00204
75.0	.04144		0.04286	0.04387	0.04591	0.04794	0.04997	0.03120	0.03161	0.03201	0.03496
100.0	.05470	.05598	0.05919	0.04124	0.04188	0.04252	0.04317	0.04381	0.04510	0.04639	0.03128
	1					1					

See Forsythe, J. Opt. Soc., 4,331, 1920, relative values, 0.4 to 0.76 μ (steps 0.01 μ), 12 temperatures, 1000 to 5000 K.

TABLE 310 BLACK-BODY SPECTRUM INTENSITIES

 (J_{λ}) , 25° to 600°K.

Values computed by editor using for C_1 , 3.703×10^{-5} erg·cm²·sec.⁻¹, C_2 1.433 cm·°K, $J_{\lambda} = \text{tabular } J_{\lambda} \times 10^n$.

λ	25°K.	15°K.	75°K.	100°K.	150°K.	200°K.	250°K.	273°K.
^	J_{λ} n	J_{λ} n	J_{λ} n	J_{λ} n	J_{λ} n	J_{λ} n	J_{λ} n	J_{λ} n
1.0 1.5 2.0 2.5 3.0 3.5	3.7 -234 4.9 -152 3.9 -111 9.9 -87 1.6 -70 5.1 -59	1.3 -109 4.9 -69 6.8 -49 6.4 -37 5.0 -29 1.9 -23	4.I -68 2.3 -4I 3.8 -28 2.4 -20 3.3 -15 I.4 -II	2.2 -47 1.6 -27 8.8 -18 4.8 -12 2.7 -8 1.17 -5	I.2 - 26 I.I - 13 2.I - 7 9.6 - 4 2.26 - I 9.8 0	2.8 -16 8.8 -7 3.2 -2 1.36 I 6.5 2 9.1 3	4.7 -10 1.23 -2 4.2 1 4.2 3 7.7 4 5.4 5	5.9 -8 3.1 -1 4.6 2 2.88 4 3.84 5 2.16 6
4 5 6 7 8 9	2.I -50 I.9 -38 I.6 -30 6.I -25 8.6 -2I I.4 -17	2.8 -19 1.5 -13 8.6 -10 3.7 -7 3.1 -5 9.3 -4	6.5 -9 3.0 -5 7.1 -3 3.1 -1 4.8 0 3.8 1	1.00 -3 4.2 -1 2.03 I 2.84 2 1.88 3 7.6 3	1.54 2 5.9 3 5.8 4 2.60 5 7.4 5 1.55 6	6.0 4 7.1 5 3.11 6 7.87 6 1.46 7 2.19 7	2.16 6 1.25 7 3.38 7 6.13 7 8.75 7 1.08 8	7.2 6 3.26 7 7.56 7 1.22 8 1.60 8 1.84 8
10 12 14 16 18 20	4.7 -15 2.7 -11 1.1 -8 9.8 -7 2.90 -5 4.14 -4	1.32 -2 6.3 -1 8.9 0 5.9 1 2.39 2 6.9 2	1.87 2 1.81 3 8.1 3 2.30 4 4.84 4 8.2 4	2.21 4 9.7 4 2.46 5 4.56 5 6.84 5 8.95 5	2.63 6 5.20 6 7.50 6 9.02 6 9.76 6 9.83 6	2.87 7 3.81 7 4.15 7 4.06 7 3.73 7 3.31 7	1.20 8 1.26 8 1.16 8 1.01 8 8.47 7 6.99 7	1.96 8 1.90 8 1.66 8 1.38 8 1.12 8 9.04 7
25 30 40 50 75 100	4.18 -2 7.68 -1 2.16 I 1.25 2 7.5 2 1.20 3	4.00 3 1.08 4 2.80 4 3.85 4 3.50 4 2.24 4	1.82 5 2.62 5 3.07 5 2.65 5 1.32 5 6.43 4	1.23 6 1.30 6 1.04 6 7.15 5 2.71 5 1.16 5	8.49 6 6.58 6 3.62 6 2.06 6 6.06 5 2.32 5	2.28 7 1.52 7 7.24 6 3.71 6 9.77 5 3.54 5	4.26 7 2.65 7 1.13 7 5.52 6 1.36 6 4.78 5	5.29 7 3.21 7 1.33 7 6.38 6 1.54 6 5.37 5
λ	275°K.	300°K.	350°K.	373°	K. 40	oo°K.	500°K.	600°K.
	J_{λ} n	J_{λ} n	J_{λ}	$n J_{\lambda}$	n J_{λ}	n	J_{λ} n	J_{λ} n
1.0 1.5 2.0 2.5 3.0 3.5	8.8 -8 4.0 -1 5.6 2 3.37 4 4.36 5 2.41 6	6.7 -6 7.2 0 4.9 3 1.91 5 1.86 6 8.3 6	6.1 - 6.8 1.51 2.92 1.80 5.85	7.6 2 3.7 5 5.3 8.0 7 4.16 7 1.20	-2 1.0 3 2.0 5 1.9 6 2.2 7 9.9 8 2.5	8 4 2 3 6 6 7 7 4 4 7 1	.32 3 2.46 6 5.92 7 1.00 8 .08 9 .96 9	1.58 5 5.94 7 7.55 8 2.69 9 5.32 9 7.68 9
4 56 7 8 9	7.9 6 3.54 7 8.05 7 1.29 8 1.68 8 1.92 8	2.36 7 8.4 7 1.66 8 2.40 8 2.89 8 3.12 8	3.30 5.19 6.37 6.81	8 2.44 8 5.45 8 7.90 8 9.15 8 9.36 8 8.90	8 4.6 8 9.1 8 1.2 8 1.3 8 1.3	7 8 3 2 9 4 3 9 3 0 9 3	2.80 9 3.85 9 4.04 9 3.73 9 3.23 9	9.25 9 1.01 10 9.07 9 7.51 9 6.01 9 4.75 9
10 12 14 16 18 20	2.03 8 1.96 8 1.70 8 1.41 8 1.15 8 9.24 7	3.14 8 2.83 8 2.35 8 1.88 8 1.48 8 1.16 8	3.90 2.96 2.25	8 8.12 8 6.32 8 4.73 8 3.52 8 2.63 1.99	8 1.0 8 7.9 8 5.7 8 4.2 8 3.1 2.3	2 8 1 8 8 1 2 8 7 0 8 5	2.24 9 3.49 9 3.02 9 7.07 8 3.01 8 3.62 8	3.71 9 2.36 9 1.53 9 1.02 9 7.08 8 5.03 8
25 30 40 50 75 100	5.39 7 3.26 7 1.35 7 6.46 6 1.56 6 5.42 5	6.59 7 3.89 7 1.57 7 7.41 6 1.75 6 6.05 5	2.03 9.35	7 1.04 7 5.86 7 2.24 6 1.02 6 2.34 5 7.91	8 I.I 7 6.6 7 2.5 7 I.I 6 2.5 5 8.6	3 7 9 0 7 3 3 7 5 6 3	.77 8 0.53 7 3.45 7 5.53 7 3.36 6 1.12 6	2.37 8 1.25 8 4.43 7 1.94 7 4.17 6 1.37 6

TABLE 311

BLACK-BODY SPECTRUM INTENSITIES

 $(J\lambda)$, 800° to 25000°K.

(Same origin and data as Table 310.)

								<u> </u>
,	800°K.	1000°K.	1200°K.	1400°K.	1600°K.	1800°K.	2000°K.	2200°K.
λ	Jλ n	$J\lambda$ n	$\int \lambda n$	$ J\lambda \qquad n \\ 1.3-24 $	$ J\lambda n \\ 4.7 - 19 $	Jλ n 1.0-14	Jλ n 2.8 – I I	$J\lambda$ n 1.9 -8
0.10	6 - 58 $1.5 - 20$	2.1 - 42 $9 - 13$	5.1 - 32 $1.4 - 7$	6.9 - 4	4.7 - 19 $4.1 - 1$	6.0 I	3.2 3	8.3 4
.30	1.8 - 8	$\frac{1}{2.7}$ $\frac{1}{3}$	7.9 0	2.3 3	1.65 5	4.5 6	6.5 7	5.7 8
.40	1.28 - 2	I 2	3.9 4	2.8 6	6.8 7	8.2 8	6.0 9	3.08 10
.45	1.04 0	3 3	6.0 5	2.67 7	4.6 8	4.17 9	2.45 10	1.04 11
.50	3.3 I	4.2 4	5.0 6	1.53 8	i.97 9	1.44 10	7.1 10	2.60 11
-55	5.3 2	3.50 5	2.74 7	6.1 8	6.3 9	3.80 10	1.62 11	5.30 11
.60	5.2 3	2.02 6 8.5 6	1.08 8 3.36 8	1.86 9	1.56 10 3.31 10	8.2 IO 1.53 II	3.10 11 5.21 11	9.2 II 1.42 I2
.65	3.44 4 1.69 5	8.5 6 2.84 7	3.36 8 8.6 8	9.9 9	3.31 10 6.1 10	2.53 11	7.91 11	2.00 12
.75	6.6 5	7.9 7	1.90 9	1.84 10	1.02 11	3.83 11	1.11 12	2.64 12
.80	2.13 6	1.88 8	3.71 9	3.14 10	1.55 11	5.39 11	1.46 12	3.29 12
.90	1.43 7	7.6 8	1.08 10	7.21 10	2.99 11	9.03 11	2.19 12	4.51 12
1.00	6.17 7	2.21 9	2.41 10	1.33 11	4.78 11	1.29 12	2.86 12	5.50 12
1.50	3.18 9	3.46 10	1.70 11	5.30 II 6.98 II	1.25 12 1.33 12	2.43 12 2.20 12	4.15 12	6.44 12
2.00	1.49 IO 2.94 IO	8.96 10	2.96 II 3.22 II	6.43 11	1.08 12	1.64 12	3.31 12 2.29 12	4.63 12 3.03 12
3.00	3.90 10	1.29 11	2.90 11	5.20 11	8.11 11	1.15 12	1.52 12	1.96 12
4.00	4.16 10	1.04 11	1.93 11	3.03 11	4.31 11	5.72 11	7.24 11	8.83 11
5.00	3.39 IO 7.41 9	7.15 10	1.19 11	1.76 II 2.08 IO	2.37 11 2.56 10	3.03 11	3.71 11 3.54 10	4.42 II 4.03 IO
10.00 50.00	7.41 9	1.10 10	1.01 10	2.00 10	2.50 10	3.04 10	3.34 10	4.03 10
100.00								
	4000°K.	5000°K.	6000°K.	8000°K. J _λ n	10000°K. J _λ n	15000°K.	20000°K. J _λ n	25000°K. J _λ n
ο.10	J_{λ} n 1.02 5	J_{λ} n	J_{λ} n 1.57 10	J_{λ} n 6.2 12	J_{λ} n 2.21 14	J_{λ} n 2.63 16	2.86 17	1.20 18
.20	1.92 11	6.9 12	7.5 13	1.49 15	8.95 15	9.84 16	3.31 17	6.98 17
.30	9.9 12	1.08 14	5.32 14	3.90 15	1.30 16	6.58 16	1.52 17	2.64 17
•40	4.66 13	2.80 14	9.25 14	4.16 15	1.03 16	3.62 16	7.24 16	1.13 17
.45	7.00 13	3.45 14	9.98 14	3.82 15	8.67 15	2.73 16	5.13 16	7.79 16
.50	9.16 13	3.85 14	1.00 15	3.39 15	7.15 15	2.06 16	3.71 16	5.52 16
.55	I.09 I4 I.22 I4	4.04 14 4.05 14	9.72 14 9.06 14	2.95 15 2.53 15	5.87 15 4.80 15	1.57 16	2.74 16 2.07 16	4.00 16 2.98 16
.65	1.30 14	3.93 14	8.31 14	2.16 15	3.96 15	9.53 15	1.58 16	2.26 16
.70	1.32 14	3.74 14	7.51 14	1.84 15	3.26 15	7.55 15	1.23 16	1.73 16
.75	1.32 14	3.49 14	6.74 14	1.56 15	2.71 15	6.06 15	9.76 15	1.36 16
.80	1.30 14	3.23 14	6.01 14	1.34 15	2.26 15	4.91 15	7.80 15	1.08 16
.90	1.19 14	2.71 14	4.75 14	9.93 14	1.60 15	3.32 15	5.15 15	7.04 15
I.00 I.50	1.06 14	2.23 I4 8.47 I3	3.70 I4 1.24 I4	7.41 14 2.12 14	1.16 15 3.04 14	2.32 15 5.48 14	3.54 15 7.96 14	4.78 15
2.00	2.32 13	3.62 13	5.03 13		1.10 14	1.88 14	2.68 14	3.48 14
2.50	1.18 13	1.76 13	2.37 13	3.62 13	4.90 13	8.15 13	1.14 14	1.47 14
3.00	6.63 12	9.53 12	1.25 13	1.86 13	2.48 13	4.06 13	5.65 13	7.24 13
4.00 5.00	2.50 12 1.13 12	3.45 I2 1.53 I2	4.42 I2 1.93 12	6.40 12 2.75 12	8.40 12 3.57 12	1.34 13 5.62 12	7.70 12	2.34 I3 9.76 I2
10.00	8.60 10	1.12 11	1.37 11	1.88 11	2.40 11	3.66 11	4.98 11	6.28 11
50.00								
100.00								

SMITHSONIAN TABLES

TABLE 312.—Black Body Spectrum Intensities

Auxilliary table for I_{λ} at any temperature (Menzel, Harvard Observatory)

Let J_0 = intensity for T_0 = 10,000° K.; for another temperature T° K., we have the relationship

$$J/J_0 = \left[\lambda_0^5 \left(e^{c_2/\lambda_0}T_0 - \mathbf{I}\right)\right] / \left[\lambda_0^5 \left(e^{c_2/\lambda}T - \mathbf{I}\right)\right].$$

Let $\lambda = \lambda_0 T_0/T$. Then J_0 $(T/T_0)^6$. e.g., to find J_λ for 0.5 μ , 6000°K., we take 0.5 $\mu = \lambda_0 \times 10,000/6,000$ or $\lambda_0 = 0.3\mu$, J_0 for 0.3 $\mu = 1.2977 \times 10^{16}$, whence $J = 1.2977 \times 10^{16} \times (6000/10000)^6$ or 1.01 \times 10¹⁵.

In the following table J_{λ} is for 10,000° K.; $J_{\lambda} \times 10^{n}$ is intensity at wave length $\lambda \mu$. λ is given in μ but in plotting it should be used in cm (one $\mu = 10^{-4}$ cm) that the area under curve be in ergs.

blc/k = 1.43187; $2\pi hc^2 = 3.69728$ c.g.s. units. A change in c_1 may be allowed for by a constant factor, in c_2 by taking a different value for T so that 1.4319 \times 10,000 = c_2T . One erg·cm·2·sec. = 2.389 \times 10-8 cal. 15· cm-2· sec-1.

λ	J_{λ} (ergs) n	λ	J_{λ} (ergs) n	λ	J_{λ} (ergs) n	λ	J_{λ} (ergs) n
μ .0100 .0150 .0200 .0250 .0300 .0400 .0450 .0500 .0550	2.4131 -37 4.7932 -26 9.3330 - 1 5.0592 - 1 2.8437 2 1.2032 5 1.0261 7 3.0403 8 4.3245 9 3.6280 10 2.0556 11 8.6361 11	μ .1450 .1500 .1600 .1700 .1800 .1800 .2000 .2100 .2200 .2300 .2300 .2400 .2500	2.9673 15 3.4824 15 4.5367 15 5.7244 15 6.8702 15 7.9697 15 8.9902 15 9.9098 15 1.0711 16 1.1338 16 1.2365 16	# .5500 .6000 .6500 .77000 .77500 .8000 .9000 .9500 .1.1000 1.2000	5.8731 15 4.8153 15 3.9579 15 3.2677 15 2.7735 15 2.2620 15 1.9165 15 1.6018 15 1.3596 15 1.1601 15 8.5810 14 6.4670 14	μ 4.500 5.000 6.000 7.000 8.000 10.00 12.00 14.00 16.00	5.3480 12 3.5680 12 1.7645 12 9.6897 11 5.7562 11 3.6298 11 2.4018 11 1.1727 11 6.3824 10 3.7652 10 2.3634 10 1.5569 10
.0700 .0750 .0800	2.8766 12 7.9649 12 1.9021 13 4.0261 13 7.7120 13	.2600 .2700 .2800 .2900	1.2680 16 1.2883 16 1.2996 16 1.3023 16 1.2977 16	1.3000 1.4000 1.5000 1.6000 1.7000	4.9587 14 3.8600 14 3.0472 14 2.2038 14 1.9702 14	25.00 30.00 35.00 40.00 45.00	6.4241 9 3.1121 9 1.6858 9 9.9057 8 6.1974 8
.0050 .1000 .1050	1.3598 14 2.2355 14 3.4637 14 5.1028 14	.3200 .3400 .3600	1.2700 16 1.2246 16 1.1673 16 1.1031 16	1.8000 1.9000 2.0000	1.6096 14 1.3276 14 1.1046 14 7.8206 13	50.00 55.00 60.00 65.00	4.0718 8 2.7860 8 1.9697 8
.1150 .1200 .1250 .1300	7.1944 14 9.7255 14 1.2839 15 1.6394 15	.4000 .4200 .4400 .4600	1.0358 16 9.9002 15 9.0036 15 8.3551 15	2.400 2.600 2.800 3.000	5.6907 13 4.2361 13 3.2185 13 2.6973 13	70.00 80.00 90.00 100.00	1.0643 8 6.2476 7 3.9036 7 2.5640 7
.1400	2,4858 15	.5000	7.1589 15	4.000	8.3888 12		

TABLE 313 .- Values of Ja for Various Temperatures Centigrade

Ekholm, Met. Z. 1902, used $C_1 = 8346$ and $C_2 = 14349$, and for the unit of time the day. For 1000, the values for $J\lambda$ have been multiplied by 10, for the other temperatures by 100,

λ	<i>T</i> = 100° C	30° C	15° C	∘° C	-30° C	-80° C	λ	100° C	30° C	15° C	0° C	-30° C	80° C
2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17	1 80 469 1047 1526 1768 1810 1724 1573 1398 1225 1063 918 792 683 590	0 41 508 1777 3464 4954 5928 6382 6386 6127 5712 5222 4713 4220 3759 3340	0 18 272 1085 2296 3481 4352 4834 4979 4833 4633 4300 3930 3556 3198 2862	0 7 138 628 1454 2353 3088 3646 3781 3798 3676 3467 3215 2944 2674 2417	0 1 27 172 493 931 1372 1730 1971 2098 2114 2090 2004 1889 1760 1626	0 0 1 8 8 39 105 203 316 426 520 592 640 666 673 663 649	# 18 19 20 21 22 23 24 25 26 28 30 40 50 60 80 100	511 443 386 337 295 259 228 202 179 142 114 44 20 10	2961 2626 2329 2068 1840 1639 1462 1307 1170 947 771 311 146 77 12	2557 2281 2034 1816 1622 1448 1298 1165 1047 850 696 285 135 72 25 11	2175 1954 1754 1574 1413 1270 1141 1028 926 757 623 259 124 66 24 10	1491 1363 1242 1129 1026 931 846 768 698 579 482 209 102 55 20	623 594 561 - 527 494 460 428 398 317 272 130 67 38 14

SPECTRAL ENERGY DISTRIBUTION AND LUMINOSITY DATA

For use in computing light transmissions and relative brightnesses from spectrometric data. Range of color temperatures 2000°K. to 3000°K. Considerably abridged from Skogland, Bur. Standards, Misc. Publ., No. 86; see also No. 56, 1925, range, 1000° to 28000°K. Planck's formula used with C_2 , 14330 μ deg. The constant of Wien's displacement law has been determined as 2886.3 μ deg.

TABLE 314.—Relative J_{λ} , based on J at $\lambda = 0.59 \mu$ or 590 m μ

Example: At color temperature 2296°K. and λ , 0.65 μ , the energy radiated relative to that at 0.59 μ is 1.6361.

	_											
١.	λ in μ	2000°K.	2100°K.	2200°K.	2300°K.	2400°K.	2500°K.	2600°K.	2700°K.	2800°K.	2900°K.	3000°K.
Ш	.32	0.0007	0.0012	0.0019	0.0029	0.0042	0.0059	0.0080	0.0108	0.0141	0.0182	0.0230
11	.34	2 I	31	47	67	92	.0124	.0164	211	267	333	409
	.36	50	73	.0102	.0139	.0184	239	303	378	463	561	669
	.38	.0110	.0151	203	264	336	420	517	626	747	882	.1029
Ш	.40	218	287	369	463	571	691	826	973	.1134	.1306	.1492
ш	.42	402	507	628	762	910	.1073	.1248	.1435	.1634	.1844	.2060
Ш	.44	690	841	.1006	.1185	.1376	.1580	.1794	.2019	.2252	.2494	.2743
Ш	.46	.1122	.1321	.1533	.1755	.1988	.2228	-2477	.2731	.2991	.3254	.3520
Ш	.48	.1735	.1981	.2235	.2494	.2760	.3028	.3298	3570	.3843	.4116	.4388
Ш	.50	.2571	.2852	.3136	.3420	.3701	.3981	.4257	.4531	.4800	.5066	.5326
Ш	.52	.3667	.3964	.4254	.4538	.4815	.5085	.5347	.5602	.5849	.6090	.6322
ш	.54	.5058	.5336	.5602	.5856	.6100	.6333	.6556	.6739	.6973	.7170	.7356
ı	.56	.6773	.6986	.7186	.7373	.7549	.7714	.7871	.8017	.8156	.8289	.8413
	.58	.8835	.8923	.9006	.9080	.9148	.9213	.9272	.9327	.9379	.9428	.9473
ш	.59	.00007	.00013		.0004	,0006	.0008	.0012	.0017	.0024	.0032	.0043
	.60	1.1256	1.1148	1.1051	1.0963	1.0885	1.0810	1.0743	1.0681	1.0624	1.0571	.0523
П												
	.62	1.4044	1.3657	1.3314	1,3009	1.2734	1.2486	1.2263	1,2060	1.1875	1.1704	1.1549
ш	.64	1.7195	1.6435	1.5773	1.5193	1.4680	1.4223	1.3815	1.3449	1.3114	1.2812	1.2537
	.66	2.0698	1.9468	1.8410	1.7498	1.6699	1.5998	1.5378	1.4824	1.4329	1.3882	1.3479
	.68	2.4534	2.2727	2.1199	1.9895	1.8770	1.7792	1.6934	1.6177	1.5505	1.4905	1.4366
		a 96 ma	26.20	0.4170	0.0261	2,0869	7.0584	1.8468	7 7 402	7 6622	T # 9 m o	* #***
	.70	2.8679	2.6189 2.7986	2.4110	2.2361	2,2072	1.9584 2.1357	1.0408	1.7493 1.8757	1.6633	1.5872	1.5193
П	.72	3.310	3.360	3.020	2.4072	2.5068	2.3095	2.1413	1.0757	1.8710	1.7614	1.5955
Ш	.74	4.265	3.748	3.332	2.9931	2.7126	2.4786	2,2801	2,1105	1.0647	1.8380	1.7272
	. 70	4.203	3.740	3.332	219931	2,,120	2,4700	2,2001	2,1103	119047	210300	1.12/2
L												

TABLE 315.—Luminosity Relative to Maximum Value at Each Temperature

EXAMPLE: At color temperature 2680°K. and $\lambda = 0.55\mu$, the luminosity relative to that at 0.5720μ is 0.8874.

λinμ	2000°K.	2200°K.	2400°K.	2600°K.	2800°K.	3000°K.	Equal en = visibi
0.40	.0000	.0000	.0000	.0000	.0001	.0001	.0004
.42	.0002	.0003	.0005	.0006	.0008	.0010	.004
.44	.0021	.0029	.0040	.0050	.0062	.0074	.023
.46	.0087	.0123	.0149	.0182	.0215	.0248	.060
.48	.0314	.0397	.0480	.0561	.0640	.0716	.139
0.50	.1079	.1292	.1495	.1683	.1859	.2021	.323
.52	.3383	.3853	.4274	.4645	-4977	.5269	.710
-54	.6270	.6816	.7275	.7655	.7972	.8239	-954
.56	.8758	.0120	.9390	.9584	.9726	.9826	.995
.58	.9988	.9994	.9950	.9873	.9780	.9676	.870
0,60	.9231	.8897	.8585	.8299	.8035	.7796	.631
.62	.6954	.6473	.6066	.5722	.5422	.5166	.381
.64	.3910	-3524	.3212	.2960	.2751	.2576	.175
.66	.1641	-1433	.1273	.1148	.1048	.0966	.061
.68	.0542	.0460	.0399	.0352	.0316	.0287	.017
0.70	.0153	.0126	,0107	.0093	.0082	.0073	.0041
2	.0045	.0035	.0030	.0026	.0022	.0020	.0010
4	.0012	.0010	.0008	.0007	.0006	.0005	.0002
$\vec{6}$.0003	.0003	.0002	.0002	.0001	1000.	.0001
Sum	10.464	10.503	10.535	10.556	10.572	10.581	10.686
Max, at	.5818μ	.5788	.5758	.5730	.5705	.5682	-555

SPECTRAL ENERGY DISTRIBUTION AND LUMINOSITY DATA (concluded)

Factors proportional to the values of Table 315 adjusted so that the area of each complete curve of minosity factors between 0.40 and 0.76 μ is equal to unity. To obtain the light transmission of a screen. ultiply the spectrum transmission at each λ by the corresponding tabulated or interpolated factor, staining in each case an element of light transmission for the wave-length interval $\lambda - .01\mu$ to $\lambda + .01\mu$. he integral light transmission is obtained as the sum of these elements. The same process is followed r spectrum reflection.

TABLE 316 .- Luminosity Factors

λinμ	2000°K	2100°K	2200°K	2300°K.	2400°K.	2500°K.	2600°K.	2700°K.	2800°K.	2000°K.	3000°K.
0.40	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0,0000	0,0000	0.0000	0.0000	0.0000
.42	.0000	.0000	.0000	.0000	,0000	.0000	.0000	1000.	.0001	1000.	.0001
.44	.0002	.0002	.0003	.0003	.0004	.0004	.0005	.0005	.0006	.0007	.0007
.46	.0008	0100.	.0011	.0012	.0014	.0016	.0017	.0019	.0020	.002 I	.0023
.48	.0030	.0034	.0038	.0042	.0046	.0049	.0052	.0056	.0061	.0064	.0067
.50	.0103	.0114	.0123	.0133	.0142	.0151	.0160	.0168	.0176	.0184	.0191
.52	.0323	.0347	.0367	.0386	.0406	.0424	.0440	.0455	.0471	.0486	.0498
.54	.0599	.0627	.0649	.0669	.0690	.0710	.0725	.0740	.0754	.0768	.0779
.56	.0837	.0855	.0868	.0880	.0891	.0901	.0908	.0914	.0920	.0925	.0929
.58	.0954	.0954	.0954	.0949	.0944	.0939	.0935	.0930	.0925	.0919	.0914
.60	.0882	.0863	.0847	.0832	.0815	.0799	.0786	.0773	.0760	.0747	.0737
.62	.0664	.0638	.0616	.0596	.0576	.0558	.0542	.0527	.0513	.0499	.0488
.64	.0374	.0352	.0335	.0320	.0305	.0292	.0280	.0270	.0260	.0251	.0243
.66	.0157	.0145	.0136	.0129	.0121	.0115	.0109	.0104	.0099	.0095	.0091
.68	.0052	.0047	.0044	.0041	.0038	.0035	.0033	.0032	.0030	.0028	.0027
.70	.0015	.0013	.0012	.0011	.0010	.0009	.0009	.0008	.0008	.0007	.0007
.72	.0004	.0004	.0003	.0003	.0003	.0003	.0002	.0002	.0002	.0002	.0002
.74	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	1000.	.0000	.0000
.76	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
Max. value	.0956	.0953	.0952	.0950	.0949	.0948	.0947	.0947	.0946	.0945	.0945
Max. at μ :	= .5818	.5802	.5788	.5774	-5758	.5743	.5730	.5718	.5705	.5693	.5683
Cantroid µ	= .5830	.5814	.5800	.5786	.5770	-5757	.5742	-5730	.5717	.5705	.5695

TABLE 317.—Percentage Change in J for Change of \pm 30 in Planck's C_2 (14330)

EXAMPLE: At color temperature 2300°K., the value below for 0.44µ is 0.8%, due to a change of 30 in 2. For a change of 20 in C_2 the change in $J_{0.44}$ is $\frac{2}{3}$ of 0.8 = 0.5%; for a change of 15 in C_2 , $\frac{1}{2}$ of 0.8= 0.4%, etc. Algebraic sign of tabulated values:

Tabulated values 6 col. Next 6 col. ıst 6 col. + Change in C_2 —Increase..... Decrease.....

In line "all \(\) are given values for adjustment of the percentage values above in Table 315 to obtain the % change in the luminosity factors of Table 316. Each of these constants applies to all values given bove it in the table; that is, one constant for each temperature. Combine the given constant by algebraic

ddition with the individual values at each wave length.

EXAMPLE: Color temp. 2600° K.; $\lambda = 0.52\mu$; C_2 changed from 14330 to 14310. At 0.52 μ , 2600° K., 0.3% tabulated. Its sign is +, and C_2 is decreased. The corresponding constant in line "all λ " is -0.07, the linus sign corresponding to a decrease in C_2 . For a change of -30 in C_2 , the % change for Table 317 is -30.1%. For the assigned change of -20 in C_2 , the required adjustment to the value in Table 316 is $\frac{2}{3}$ $f_{0.2} = 0.1\%$. At $\lambda = .71\mu$, the adjustment would be $\frac{2}{3}(-0.3 - 0.1) = -0.2\%$, etc.

λinμ	2000°K.	2300°K.	2600°K.	2900°K.	3200°K.	λinμ	2000°K.	2300°K.	2600°K.	2900°K.	3200°K.
0.32	2.0%	1.9%	1.7%	1.5%	1.3%	0.60					
-34	1.8	1.6	1.5	1.3	I.I	.62			O.I	O.I	O. I
.36	1.6	1.4	1.3	I.I	I.O	.64		0.2	.2		
.38	1.4	1.2	1.1	.9	.9	.66	0.3			.2	.2
						.68	.3	-3	.3	.2	.2
.40	1.2	1.0	.9	.8	.8						
.42	1.0	.9	.8	.7	.7	.70	.4	.3	.3	-3	.2
.44	.9	.8	.7	.6	.6	.72	.4	.4	.4	.3	.3
.46 °	-7	.6	-5	-5	-5	.74	-5	-4	.4	•4	-3
.48	.6	-5	.4	.4	.4	.76	.6	-5	.4	.4	-4
						11.5					
.50	-5	-4	-4	-3	.3	all λ	.04	.06	.07	.07	.07
.52	-3	•3	.3	.2	.2						
.54	.2	.2	.2	.2	.2						
.56	. I	. I	. I	. I	. I						
.58	.0	.0	.0	.0	.0						

RADIATION EMISSIVITIES

TABLE 318.—Relative Emissive Powers for Total Radiation

Emissive power of black body = 1. Receiving surface platinum black at 25° C; oxidized surfaces oxidized at $600 + {\circ}$ C. Randolph and Overholzer, Phys. Review, 2, p. 144, 1913.

	Те	mperature, Deg	. C
	200	400	600
Silver	0.020	0.030	0.038
Platinum (1)	0.060	0.086	0.110
Oxidized zinc		0.110	
Oxidized aluminum	0.113	0.153	0.192
Calorized copper, oxidized	0.180	0.185	0,190
Cast iron	0.210	_	— ·
Oxidized nickel	0.369	0.424	0.478
Oxidized monel	0.411	0.439	0.463
Calorized steel, oxidized	0.521	0.547	0.570
Oxidized copper	0.568	0.568	0.568
Oxidized brass	0.610	0.600	0.589
Oxidized lead	0.631	_	_
Oxidized cast iron	0.643	0.710	0.777
Oxidized steel	0.790	0.788	0.787
Black body	1.00	1.00	1.00

Remark: For radiation properties of bodies at temperatures so low that the radiations of wave length greater than $^{20\mu}$ or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wave lengths or greater. For instance, see Tables 455 and 460 for the transparency of soot.

TABLE 319.- Emissivities of Metals and Oxides

Emissivities for radiation of wave-length 0.55 and 0.65 μ . Burgess and Waltenberg, Bul. Bureau of Standards,

I1, 591, 1914.

In the solid state practically all the metals examined appear to have a negligible or very small temperature coefficient of emission for $\lambda = 0.55$ and 0.65μ within the temperature range 20° C to melting point. Nickel oxide has a cent of emission for $\Lambda=0.55$ and 0.05 μ within the temperature range 20° C to melting point. Nickel oxide has a well-defined negative coefficient, at least to the melting point. There is a discontinuity in crainsivity, for $\lambda=0.65$ μ at the melting point for some but not all the metals and oxides. This effect is most marked for gold, copper, and silver, and is appreciable for platinum and palladium. Palladium, in addition, possesses for radiation a property analogous to suffusion, in that the value of emissivity ($\lambda=0.65$ μ) natural to the liquid state may persist for a time after solidification of the metal. The Violle unit of light does not appear to define a constant standard. Article contains bibliography.

	Metals	Cu	Ag	Au	Pd	Pt	Ir	Rh	Ni	Со	Fe	Mn	Ti
ı	e_{λ} , 0.55 μ solid 0.55 μ liquid	o.38 o.36	0.35	0.38	0.38	0.38	=	0.29	0.44	_	_	=	0.75
	0.65 μ solid liquid	0.10	0.04	0.14	0.33	0.33	0.30	0.29	0.36	0.36	0.37 0.37	0.59	0.63
İ	Metals	Zr	Th	Y	Er	Ве	Ср	V	Cr	Мо	W	U	
l	e_{λ} , 0.55 μ solid liquid	_	0.36	_	0.30	0.61	0.61	0.20	0.53	_	=	0.77	
I	0.65 μ solid liquid	0.32	0.36	0.35	0.55	0.61	0.49	0.35	0.39	0.43	0.39	0.54	
l	Oxides: 0.65 μ	NiO	C03O4	Fe ₃ O ₄	Mn ₃ O ₄	TiO ₂	${ m ThO_2}$	Y ₂ O ₃	BeO	CbO _x	V ₂ O ₃	Cr ₂ O ₃	U ₃ C ₈ .
	eλ, solid liquid	0.89	0.77	0.63	0.47	0.52	0.57	0.61	0.37	0.71	0.69	0.60	0.30

SOME INTRINSIC PROPERTIES OF TUNGSTEN

(Jones, Langmuir, Gen. Electr. Rev., July-August, 1927)

T°K.	Resistivity $\rho \times 10^6$ ohm.cm	Power radi- ated W watts/ cm²	Bright- ness B int. cand./ cm ²	Effi- ciency E	Electron emission $i \times 10^n$ $i \mid n$		Vapor pressure p baryes X 10"	Power emissivity black body = I	Thermal expan- sion in per cent l ₀ at 293°	Atomic heat cal./g- atom./°C	Heat content cal·10-2 gratom
300 400	5.65 8.06	3 × 10 ⁻⁵ 2 × 10 ⁻³			amp./cm	g/cm² sec.	dynes/cm ²	.017	.003	6.0 6.0	12
500 600 700 800 900	10.56 13.23 16.09 19.00 21.94	1 × 10 ⁻² .030 .076 .169			i n	M n	P n	.032 .043 .057 .072 .088	.086 .130 .175 .222 .270	6.1 6.1 6.2 6.2 6.3	24 30 36 42 48
1000 1100 1200 1300 1400	24.93 27.94 30.98 34.08 37.19	.602 1.027 1.66 2.57 3.83		17.3 15.6 14.2 13.1 12.0	1.07 -1 1.52 -1 9.73 -1 3.21 -1 6.62 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.98 -29 1.22 -25 1.87 -22 8.18 -20 1.62 -17	.105 .124 .141 .158	.320 .371 .424 .479 .535	6.4 6.4 6.5 6.7 6.8	54 60 66 75 82
1500 1600 1700 1800 1900	40.36 43.55 46.78 50.05 53.35	5.52 7.74 10.62 14.19 18.64	0.33 0.93 2.33 5.12 10.93	11.1 10.3 9.5 8.8 8.2	9.14 — 9.27 — 7.08 — 4.47 — 2.28 —	$ \begin{array}{c cccc} 7 & 1.25 & -18 \\ 6 & 4.17 & -17 \\ 5 & 8.81 & -16 \end{array} $	1.54 -15 8.43 -14 2.82 -12 6.31 -11 1.01 -9	.192 .207 .222 .237 .250	.593 .652 .713 .775 .839	7.0 7.1 7.2 7.4 7.6	89 96 103 110 118
2000 2100 2200 2300 2400	56.67 60.06 63.48 66.91 70.39	24.04 30.5 38.2 47.2 57.7	20.66 37.75 64.0 103.7 164.4	7.6 7.1 6.7 6.2 5.8	1.00 — 3.93 — 1.33 — 4.07 — 1.16 —	3 1.66 - 12 2 1.25 - 11 2 8.00 - 11	1.33 -8 1.28 -7 9.88 -7 6.47 -6 3.52 -5	.263 .274 .285 .295 .304	.904 .971 1.039 1.109 1.180	7.7 7.8 8.0 8.2 8.3	125 133 141 149 157
2500 2600 2700 2800 2900	73.91 77.49 81.04 84.70 88.33	69.8 83.8 99.6 117.6 137.8	248 364 532 732 987	5.5 5.1 4.8 4.5 4.2	3.54		1.71 -4 7.24 -4 2.86 -3 9.84 -3 3.00 -2	.312 .320 .327 .334 .340	1.253 1.328 1.404 1.479 1.561	8.4 8.6 8.7 8.9 9.0	166 174 183 192 201
3000 3100 3200 3300 3400	92.04 95.76 99.54 103.3 107.2	160.5 185.8 214.0 245.4 280.0	1326 1745 2252 2893 3660	4.0 3.7 3.5 3.3 3.1	1.42 + 2.64 + 4.78 + 8.44 + 1.42 +	1 2.60 -6 1 6.38 -6 1 1.56 -5	9.20 -2 2.50 -1 6.13 -1 1.51 0 3.41 0	.346 .352 .357 .362 .366	1.642 1.724 1.808 1.893 1.980	9.2 9.4 9.5 9.6 9.8	210 219 228 238 248
3500 3600 3655	111,1 115.0 117.1	318.0 360.0 382.6	4540 5530 6163	2.9 2.8 2.7	2.33 + 3.73 + 4.79 +	2 1.51 -4		.370 .374 .376	2.068 2.158 2.209	9.9 10.1 10.2	258 268 273

ITHSONIAN TABLES

TABLE 321.—Spectrum Emissivity of Tungsten (Percentage)

Weniger and Pfund (Phys. Rev., 14, 427, 1919) verified Drude's formula for tungsten, $100 - R_{\lambda} = e_{\lambda} = 3650 \sqrt{\rho/\lambda}$, valid for $\lambda > 2\mu$, where $R_{\lambda} =$ reflectivity, λ , the wave length in μ , ρ , the specific resistance at the temperature considered. The following u.v. data is from Hulburt (Astrophys. Journ. 45, 149, 1917, via Forsythe, Christison, Gen. Electr. Rev., p. 622, 1929), from which the data for 0.2 to 4.2 μ , 2800° are taken.

1800 2200 2600 3000 3400	0.34μ 49.3 48.7 48.3 48.0 47.7	0.38μ 49.2 48.5 48.0 47.7 47.4	0.42μ 48.8 47.8 47.2 46.8 46.5	0.48μ 48.0 46.7 46.0 45.4 44.8	0.50µ 46.0 45.0 44.2 43.5 42.7	0.54 <i>µ</i> 44.2 43.0 42.1 41.4 40.7					
2800°	0.2μ 51	0.6	1.0	1.4	1.8	2.2	2.6 2 I	3.0 19	3.4 18	3.8 17	4.2

TABLE 322.—Temperature Scale for Tungsten

Hyde, Cady, Forsythe, Journ. Franklin Inst. 181, 418, 1916. See also Phys. Rev. 10,395, 1917. The color temperature = temperature of black body at which its color matches the given radiation.

1729°K. 1875 1976 2056	1700° 1800 1900 2000 2100	12° 20 26 31 36	100° 115 128 142
1875 1976 2056	1900 2000	26 31	128 142
2056	2000	31	142
2125	2100	26	7.50
2125	2100	30	158
2184	2200	39	175
2238	2300	41	191
2286	2400	43	208
2332			
2272			
	2286 2332 2373	2332	2332

TABLE 323 .- Radiation Characteristics of Tungsten

(Forsythe, Worthing, Astrophys. Journ., 61, 146, 1925.)

Toma		Emiss	sivity		Te	mperature °	К.
Temp.	0.665μ	0.467μ	Average luminous	Color	Brightness 0.665μ	Color	Radiation
500 1000 1500 2000 2500 3000 3500	0.466 .456 .445 .435 .425 .415 (.405)	0.498 .486 .476 .469 .462 .455 (.449)	0.464 .457 .452 .446 .440 (.434)	0.396 .383 .370 .356 .343 (.329)	966 1420 1857 2274 2673 3053	1006 1517 2033 2557 3094 (3646)	581 991 1428 1859 2286 (2704)

SMITHSONIAN TABLES

TABLE 324 .- Radiation and Other Properties of Tantalum

(Worthing, Phys. Rev., 28, 190, 1926.)

	Emis	sivity		Γemperatu	ire	Resis- tivity	Radia-		T. 4-1
°K.	.665µ	.463µ	Bright- ness .665µ	Color	Radiation	μ-ohm- cm	tion Watt/ cm²	$\frac{Tdn}{ndT}$	Total emis- sivity
			°K.	°K.	°K.				
300	0.493	0.56				:	77		
1000	.459	.52	966				77		
1200	.450	.51	1149						
1400	.442	.50	1329						
1600	.434	•49	1506	1642	1062	67.6	7.3	4.80	0.194
1800	.426	.48	1680	1859	1222	74.1	12.8	4.80	.213
2000	.418	.47	1851	2075	1390	80.5	21.2	4.80	.232
2200	.411	.46	2018	2288	1556	86.9	33.4	4.80	.251
2400	.404	.45	2180	2497	1730	92.9	50.7	4.80	.269
2600	.397	.44	2339	2705	1901	99.1	75	4.80	.287
2800	.390		2495	2911	2080	105.0	106	4.80	.304
3000	.384		2647						
3300 mp	-375		2870						

TABLE 325 .- Radiation and Other Properties of Molybdenum

(Worthing, Phys. Rev., 28, 190, 1926.)

	Emis	sivity	Т	emperatui	e	Resis- tivity	Brighness	Radia-	Luminous
°K.	.665µ	·475#	Bright- ness S.665µ	Color	Radia- tion	μ-ohm- cm	normally candles/ cm ³	tion intensity watts/ cm ²	efficiency luniens/ watt
			°K.	°K.	°K.				
273	0.420	0.425				5.14			
1000	.390	.403	958	1004	557	23.9	0.0001	0.55	
1400	-375	-393	1316	1411	864	35.2	.089	3.18	0.093
1600	.367	.388	1489	1616	1024	41.1	.765	6.30	.40
1800	.360	.383	1658	1823	1187	47.0	4.13	11.3	1.22
2000	-353	.379	1824	2032	1354	53.1	15.9	19.2	2.75
2200	-347	-375	1986	2244	1523	59.2	48.5	30.7	5.28
2400	.341	.371	2143	2456	1693	65.5	123	47.0	8.70
2600	.336	.368	2297	2672	1866	71.8	270	69.5	13.0
2800	.331	.365	2448	2891	2039	78.2	540	98	18.4
2895	.328	.363	2519	2997	2122	81.4	730	116	

TABLE 326.—Relation between Brightness Temperature and Color Temperature for Various Substances

			Correspondin	g color temp	erature for—		
Brightness temperature	Untreated carbon	Gem	Platinum	Nernst glower	Osmium	Tantalum	Tungsten
1400°K.	1414 1515		1568°K. 1692	1538 1642	1444 1562	1507 1631	1492 1607
1600 1700	1616 1718	1620 1735	1821 1952	1747 1852	1680 1799	1758 1883	1723 1841
1800 1900	1820 1923	1852 1962	2086	1954 2053	1919 2045	2010 2137	1961 2082
2000 2200	2028 2240	2064 2255		2146 2310	2168 2427	2265 2500	2206 2457
2600		• • • •		• • • •	2688	2785	2988
2400					2688	2785	2718

TABLE 327 .- Color Minus Brightness Temperature for Carbon

(Hyde, Cady, Forsythe, Phys. Rev. 10, 395, 1917.)

Brightness temp. °K	1600°	1700°	1800°	1900°	2000°	2100°	2200°
Color - brightness	2	7	12	16	22	28	33

TABLE 328.—Percentage Emissivities of Metals and Oxides Emissivity of black body taken as 100

True temperature C.	500°	600°	700°	800°	9	00°	1000°	1100°	12	00°	Ref.
60 FeO.40 Fe ₂ O ₃ Total = Fe heated in air λ = 0.65 μ	8 ₅	8 ₅	86	87 98		87 97	88 95	88 93	1	39	1
NiO	=	54	62 98	68 96		72 94	75 92	81 88	8	36 37	2 2
App.* temp. C	- -	.1 6.	- -	<u> </u>	750 	1000	630	1400 780 15.5	1600 930 16.9	1700	3
Tungsten: True temp. K (abs.) $\lambda = 0.467$ $\lambda = 0.665$	200 51.8 48.2	600 50.8 47.2	1000 49.8 46.3	1400 48.9 45.3	1800 47.9 44.3	2200 47.0 43.3	46.0	3000 45.0 41.4	3400 44. I 40. 4	3800	4

^{*} As observed with total radiation pyrometer sighted on the platinum.

References: (1) Burgess and Foote, Bul. Bureau of Standards, 12, 83, 1915; (2) Burgess and Foote, loc. cit.

11, 41, 1914; (3) Foote, loc. cit. 11, 607, 1914; (4) Worthing, Phys. Rev. 10, 377, 1917.

TABLE 329.—Emissivities, Metals (Black body ± 1)

(Worthing, Phys. Rev., 28, 174, 1926.)

t°C 0.460μ 0.535μ 0.665μ	Т°К. 0.460µ 0.535µ 0.665µ
Gold	1275 0.632 0.448 0.140 1200-1650 .45 .425 .375 1400 .442 2100 .415 2800 .390

Platinum 0.665 1100°K. 0.292 1300° 0.297	1500° 0.302 1700° 0.307 1900° 0.312 1500° .370 1700° .381 1900° .392
--	--

Total radiation = C'Tⁿ watt/cm², nichrome values poor. Suydam, Phys. Rev., 5, 497, 1915.

Ag 610°-	Pt 640°-	Ni 463°–	Fe 700°-	Nichrome 325°-
980°K.	1150°K.	1280°K.	1300°K.	1310°K.
C' 3.0 × 10-13	2.3 × 10 ⁻¹⁵	1.0 × 10 ⁻¹⁴	3.2 × 10 ⁻¹⁷	1.8 × 10 ⁻¹²
n 4.1	5.0	4.65	5.55	4.1

Specific values are given in this paper for various temperatures of both radiator and absorber. Also for electrical resistances.

TABLE 330.—Total Radiation from Bare and Soot-Covered Nickel (Watts/cm²) (Barnes, Phys. Rev., 34, 1026, 1929.)

°K.	400	500	600	700	800	900	1000	1200	1400
Soot-covered Ni	.0.096 0092 0066	0.28 .032 .023	0.59 .079 .058	1.87 .166 .123	3 .31 .24	3 ⋅55 ⋅44	4.8 .91 .76		4·49 4·49

TABLES 331 AND 332

COGLING BY RADIATION AND CONVECTION

TABLE 331 .- At Ordinary Pressures

According to McFarlane * the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 140 C, can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^{2}$$

whe the surface of the sphere is blackened, or

$$e = .000168 + 1.08 \times 10^{-6}t - 1.7 \times 10^{-9}t^{2}$$

whe the surface is that of polished copper. In these equations e is the amount of heat lost in c. g. s. units, that is, the cuantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the euclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of	Valu	Ratio.	
tempera- ture t	Polished surface.	Blackened surface.	Katio.
5	.000178	.000252	.707
01	.000186	.000266	.699
15	.000193	.000279	.692
20	,000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TARLE 332 - At Different Pressures

Experiments made by L. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8º C.

Polishe	ed surface.	Blacken	ed surface.
t	t et		et
Pri	essure 76 cm	s. of Mer	CURY.
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455
Pres	SURE 10.2 CM	ts. of Me	RCURY.
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791
PR	ESSURE I CM	. of Merc	CURY.
65 60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446

SMITHSONIAN TABLES

^{* &}quot;Proc. Roy. Soc." 1872. † "Proc. Roy. Soc." Edinb. 1869. See also Compan, Annal. de chi. et phys. 26, p. 526.

COOLING BY RADIATION AND CONVECTION

TABLE 333.—Cooling of Platinum Wire in Copper Envelope

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

$$t = 408^{\circ}$$
 C, $et = 378.8 \times 10^{-4}$, temperature of enclosure 16° C.
 $t = 505^{\circ}$ C, $et = 720.1 \times 10^{-4}$, " " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosure 16° C, $t = 408^{\circ}$ C.		Temp. of enclosure 17° C, $t = 505^{\circ}$ C.			
Pressure in mm	et	Pressure in mm	et		
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051 .00007	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539 2 " 436.4 " 378.8 "	0.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached } but not measured }	1688.0 × 10 ⁻⁴ 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 "		

TABLE 334.—Effect of Pressure on Loss of Heat at Different Temperatures

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimeter per second.

	Temp. of wire in C°	Pressure in mm					
l v		10.0	1.0	0.25	0.025	About	
	1000	0.14	11.0	0.05	10.0	0.005	
1	200	.31	.24	11.	.02	.0055	
.	300	.50	.24 .38	.18	.0.1	.0105	
	400	-75	·53 .69	.25	.07	.025	
	500	_	.69	-33	.13	.055	
il	600		.85	.45	.23	.13	
	700	-	-	-	.37	.24	
	Soo	-		-	·37 ·56	.40	
	900			-	_	.61	

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

TABLE 335.—Conduction of Heat across Air Spaces (Ordinary Temperatures)

Loss of heat by air from surfaces takes place by radiation (dependent upon radiating power of surface; for small temperature differences proportional to temperature difference; follows Stefan-Boltzmann formula, see p. 313), conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical space.

Vertical spaces: The following table shows that for spaces of less than r cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less. The following table is from Dickinson and van Dusen, A. S. Refrigerat-

ing Engineers J. 3, 1916.

HEAT CONDUCTION AND THERMAL RESISTANCES, RADIATION ELIMINATED, AIR SPACE 20 CM HIGH

Air space,		Cal./hou	nduction. r/cm²/° C.			Same	resistance. units.			
cm.	10°	Temperature	25°	Temperature difference.						
0.5 1.0 1.5 2.0 3.0	0.46 0.24 0.160 0.161 0.172	0.46 0.24 0.172 0.178 0.196	0.46 0.24 0.182 0.200 0.208	0.46 0.24 0.192 0.217 0.217	2.17 4.25 6.25 6.20 5.80	2.17 4.20 5.80 5.60 5.10	2.17 4.15 5.50 5.00 4.80	2.17 4.10 5.20 4.60 4.60		

Variation with height of air space: Max. thermal resistance = 4.0 at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm, 20 cm high; 8.9 at 2.5 cm, 60 cm high.

TABLE 336 .- Convection of Heat in Air at Ordinary Temperatures

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (stream-line) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference, and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20° difference and a distance of 1.2 cm) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical.

Taken from White, Physical Review, 10, 743, 1917.

Heat Transfer, in the Usual C.G.S. Unit, i.e., Calories per Second per Degree of Thermal Head per Square Cm of Flat Surface, at 22.8° Mean Temperature.

Wh re two values are given, they show the range among determinations with different methods of getting the temterminature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

Thermal	8 mm	gap.	12 mn	n gap.	2.4	mm gap.
head.	Total.	Convection.	Total.	Convection	Total.	Convection.
0.99°		_	.000 083 9 }	_	.000 065	-
1.980	{ .000 109	-	.000 084 0 }	.000 000 I 000 4		_
4.95°	.000 III	.000 001	(.000 o86 6 88 I	.000 002 8	.000 090	over .000 025
9.89°	{ .000 II2	.000 003	.000 093 7	000 010 000.	.000 106	oto coo iano
19.76°	.000 116	.000 007	109 4	.000 024	.000 126	over .000 060

CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES *

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula $b \cdot \log b/a = 2B$, where B = constant for any gas, b = diameter of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and B, the other a function ϕ of the heat conductivity of the gas. If W = the energy loss in watts/cm, then $W = s(\phi_2 - \phi_1)$. s may be found from the relation

$$\frac{s}{\pi} e^{-\frac{2\pi}{s}} = \frac{a}{B}; \quad \phi = 4.19 \int_0^{\tau} k dt.$$

where k is the heat conductivity of the gas at temperature T in calories/cm $^{\circ}$ C. ϕ_2 is taken at the temperature T_2 of the wire, ϕ_1 at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

$$\begin{array}{lll} \text{For hydrogen} & & k = 28 \times 10^{-6} \sqrt{T} \{ (1 + .0002T)/(1 + 77T^{-1}) \} \\ & \text{air.} & & k = 4.6 \times 10^{-6} \sqrt{T} \{ (1 + .0002T)/(1 + 124T^{-1}) \} \\ & \text{mercury vapor.} & & k = 2.4 \times 10^{-6} \sqrt{T} \{ 1/(1 + 960T^{-1}) \}. \end{array}$$

To obtain the heat loss: B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air (see Table 338(b)) B may be taken as 0.43 cm; for Hz, 3.05 cm; for Hz vapor as 0.73. Obtain s from section (s) below from s/6; then from section (s) obtain s/6 and s/7 for the proper temperatures; the loss will be s/6 s/2 s/4 or s/4 in watts/cm.

(a) s as Function of a/B

s	a/B	s	a/B	s	a/B	s	a/B
0.0	0.0	5.0	0.453	10	1.696	30	7.738
0.5	0.735 × 10 ⁻⁶	5.5	0.558	12	2.263	32	7.738 8.370
1.0	0.504×10^{-3}	6.0	0.671		2.844	34	8.995
1.5	0.725×10^{-2}	6.5	0.788	16	3.438	36	9.622
2.0	2.75 × 10 ⁻²	7.0	0.908	14 16 18	4.040	38	10.25
2.5	0.0644	7.5	I.032	20	4.645	40	10.87
3.0	0.1176	8.0	1.160	22	5.263	42	11.50
3.5	0.185	8.5	1.291	2.4	5.877	44	12.14
4.0	0.265	9.0	I.424	26	6.505	46	12.77
4 - 5	0.354	9.5	1.561	28	7.122	48	13.14
5-0	0.453	10.0	1.696	30	7.738	50	14.03

(b) Table of ϕ in Watts per CM as Function of Absolute Temp. (°K.)

<i>T</i> ° K.	H_2	Air	Hg	T° K.	H ₂	Air	Hg
o°	0.0000	0.0000	_	1500°	4.787	0.744	0.1783
100	0.0329	0.0041	-	1700	5.945	0.931	0.228
200	0.1294	0.0168	_	1900	7 - 255	1.138	0.284
300	0.278	0.0387	_	2100	8.655	1.363	0.345
400	0.470	0.0669		2300	10.18	1.608	0.411
500	0.700	0.1017	0.0165	2500	11.82	1.871	0.481
700	1.261	0.189	0.0356	2700	13.56	_	0,556
900	1.961	0.297	0.0621	2900	15.54		0.636
1100	2.787	0.426	0.0941	3100	17.42	-	0.719
1300	3.726	0.576	0.1333	3300	19.50	_	0.807
1500	4.787	0.744	0.1783	3500	21.79		0.808

^{*} Langmuir Physical Review, 34, p. 401, 1912.

HEAT LOSSES FROM INCANDESCENT FILAMENTS

(a) Wires of Platinum Sponge Served as Radiators to Room-temperature Sur-ROUNDINGS, HARTMAN, PHYSICAL REVIEW, 7, p. 431, 1916

Diameter wire,				(A)		ved heat			per cm.					
cm.	900°	1000°	1100°	I 200°	1300°	1400°	1500°	1600°	1700°	1800°	1900°	2000°		
0.0690 0.0420 0.0275 0.0194	I.70 I.35 I.12 0.92	2.26 1.75 1.40 1.15	3.01 2.26 1.76 1.39	3.88 2.84 2.23 1.74	4.92 3.53 2.73 2.12	6.18 4.29 3.23 2.54	7.70 5.33 3.91 3.04	9.63 6.60 4.67 3.64	12.15 8.25 5.72 4.32	15.33 10.20 7.00 5.10	19 25 12.45 8.64 6.10	23.75 14.75 10.45 7.35		
	(B) Heat losses corrected for radiation, watts per cm (A-C).													
0.0690 0.0420 0.0275 0.0194	0.91 0.87 0.80 0.70	1.05 1.02 0.92 0.81	I. 23 I. 17 I. 05 0. 89	1.36 1.31 1.22 1.03	1.45 1.42 1.35 1.15	I.51 I.45 I.37 I.23	1.54 1.57 1.46 1.31	1.66 1.76 1.50 1.40	2.00 2.08 1.67 1.47	2 56 2.43 1.91 1.51	3.40 2.80 2.32 1.64	4.30 3.26 2.70 1.88		
	(C) Computed radiation, watts per cm, $\sigma = 5.61 \times 10^{-12}$.*													
0.0690 0.0420 0.0275 0.0195	0.79 0.48 0.32 0.22	1.21 0.73 0.48 0.34	1.78 1.09 0.71 0.50	2.52 1.53 1.01 0.71	3.47 2.11 1.38 0.97	4.67 2.84 1.86 1.31	6.16 3.74 2.45 1.73	7.97 4.84 3.17 2.24	10.15 6.17 4.05 2.85	12.77 7.77 5.09 3.59	15.85 9.65 6.32 4.46	19 45 11.85 7.75 5.47		
		(1	O) Con	duction	loss by	silver le	eads, wa	tts per	cm.					
0.0420 0.0275 0.0195	0.42 0.18 0.06	0.46 0.21 0.08	0.49 0.28 0.08	0.61	0.75 0.43 0.11	0.88 0.48 0.12	1.00 0.55 0.14	1.07 0.57 0.15	I.I3 0.60 0.22	I.22 0.67 0.23	_ _ _	=		
			(E) (Convect	ion loss	by air,	watts p	er cm.						
0.0420 0.0275 0.0195	0.45 0.62 0.64	0.56 0.71 0.73	0.63 0.77 0.81	0.70 0.87 0.94	0.67 0.92 1.04	0.57 0.89 1.11	0.59 0.91 1.17	0.69 0.93 1.25	0.95 1.07 1.29	1.21 1.24 1.30	=			
	* T}	nis valu	e is lowe	er than	the pres	sently (1919) ac	cepted	value of	5.72.				

(b) Wires of Bright Platinum 40–50 Cm Long Served as Radiators to Surroundings at 300° K. Langmuir, Physical Review, 34, p. 401, 1912

	1			Observe	d energy los	ses in watts	per cm.				
Diameter wire,		-				mperatures.	•				
cm.	500°	70	0° ()00°	1100°	1300°	1500°	1700°	1900		
0.0510 0.02508 0.01262 0.00691 0.00404	0.22 0.17 0.13 0.12 0.11	0.	39 C 31 C	0.90 0.68 0.53 0.48	1.42 1.02 0.79 0.72 0.61	2.03 1.45 1.11 0.99 0.84	2.89 2.00 1.46 1.33 1.14	4.10 2.68 1.95 1.79 1.54	5.65 3.55 2.71 2.48 2.13		
			Energ	y radiat	ed in watts	per cm.*					
0.0510 0.02508 0.01262 0.00691 0.00404	0.000	0.0	07 0	.049 .024 .012 .007	0.137 0.067 0.034 0.019 0.011	0.323 0.159 0.080 0.044 0.026	0.67 0.33 0.17 0.09 0.05	1.25 0.62 0.31 0.17 0.10	2.15 1.06 0.53 0.29 0.17		
			"Conve	ection"	ion" losses in watts per cm.						
0.0510 0.02508 0.01262 0.00691 0.00404	0.22 0.17 0.13 0.12 0.11	0.3	38 C 31 C 29 C	.85 .66 .52 .47	1.28 0.95 0.75 0.70 0.60	1.71 1.29 1.03 0.95 0.81	2.22 1.67 1.29 1.24 1.09	2.85 2.06 1.64 1.62 1.44	3.50 2.49 2.18 2.19 1.96		
			l'hickness	of theor	etical condu	cting air film	ι				
0.0510 0.02508 0.01262 0.00691 0.00404 Means.	0.28 0.30 0.42 0.31 0.27 0.31	0.30 0.37 0.42 0.32 0.43 0.37	0.33 0.37 0.44 0.38 0.43 0.39	0.3; 0.4; 0.4; 0.4; 0.4;	0.45 0.56 0.43 0.56	0.45 0.69 0.47 0.47	0.35 0.51 0.69 0.38 0.40 0.47	0.36 0.56 0.47 0.26 0.25 0.38	Means. 0.34 0.43 0.54 0.37 0.41 10.43		

* Computed with $\sigma = 5.32$, black-body efficiency of platinum as follows (Lummer and Kurlbaum): 492° K. 0.039; 654°, 0.060; 795°, 0.075; 1108°, 0.112; 1481°, 0.154; 1761° K., 0.180. † Weighted mean.

THE SENSITIVITY OF THE EYE

Definitions: A meter-candle is the intensity of illumination due to a standard candle at a meter distance. The millilambert (0.001 lambert) measures the brightness of a perfectly diffusing (according to Lambert's cosine law) surface diffusing .001 lumen/cm². A brightness of 10 meter-candles equals 1 millilambert. 0.001 ml corresponds roughly to night exteriors, 0.1, to night interiors, 10 ml to daylight interiors and 1000, to daylight exteriors. A brightness of 100,000 meter-candles is about that of a horizontal plane for summer day with sun in zenith, 500, on a cloudy day, 4, 1st magnitude stars just visible, 0.2, full moon in zenith, .001, by starlight; in winter the intensity at noon may drop about $\frac{1}{3}$.

TABLE 339.—Spectral Variation of Sensitiveness as a Function of Intensity

Radiation is easily visible to most eyes from 0.330 μ (violet) to 0.770 μ (red). At low intensities near threshold values (gray, rod vision) the maximum of spectral sensibility lies near 0.503 μ (green) for 95% of all persons. At higher intensities, after the establishment of cone vision, the max. shifts as far as 0.500 μ . See Table 346 for more accurate values of sensitiveness after this shift has been accomplished. The ratio of optical sensation to the intensity of energy increases with increasing energy more rapidly for the red than for the shorter wave-lengths (Purkinje phenomenon); i.e., a red light of equal intensity to the eye with a green one will appear darker as the intensities are equally lowered. This phenomenon disappears above a certain intensity (above ro millilamberts). Table due to Nutting, Bulletin Bureau of Standards.

The intensity is given for the spectrum at 0.535μ (green).

Intensity (meter-candles) = Ratio to preceding step =	.00024	.00225	.0360	· 575 16	2.30	9.22 4	36.9 4	147.6	590.4						
Wave-length, λ.		Sensitiveness.													
0.430 μ 0.450 0.470 0.490 0.505 0.525 0.535 0.555 0.575 0.590 0.005 0.625 0.650 0.670 λ, maximum sensitiveness	0.081 0.33 0.63 0.96 1.00 0.88 0.61 0.26 0.025 0.008 0.004 0.000 0.503	0.093 0.30 0.59 (0.89) 1.00 0.86 0.62 0.30 0.102 0.034 0.012 0.004 0.000 0.000	0.127 0.29 0.54 (0.76) 1.00 0.86 0.63 0.34 0.122 0.054 0.024 0.011 0.003 0.001	0.128 0.31 0.58 (0.89) 1.00 0.94 0.72 0.41 0.168 0.091 0.056 0.027 0.007 0.002 0.508	0.114 0.23 0.51 (0.83) 0.99 0.91 0.62 (0.39) 0.27 0.173 0.098 0.025 0.007	0.114 0.175 0.29 0.50 (0.76) (0.885) (0.98) 0.84 (0.63) 0.49 0.35 0.20 0.060 0.017	0.16 0.26 0.45 0.66 0.85 0.98 0.93 (0.76) 0.61 (0.45) 0.27 0.085 0.025		0.35 0.54 0.82 0.98 0.98 (0.84) 0.69 0.55 0.35 0.133 0.030 0.544						

TABLE 340.—Threshold Sensibility as Related to Field Brightness

The eye perceives with ease and comfort a billion-fold range of intensities. The following data were obtained with the eye fully adapted to the sensitizing field, B, the field flashed off, and immediately the intensity, T, of a test spot (angular size at eye about 5°) adjusted to be just visible. This table gives a measure of the brightness, T, necessary to just pick up objects when the eye is adapted to a brightness, B. Intensities are indicated log intensities in milliamberts. Blanchard, Physical Review, 11, p. 81, 1918.

Log B	-7.0	-6.0	-5.0	-4.0	-3.0	-2.0	-1.0	0.0	+1.0	+2.0	+3.0
$\left\{ \begin{array}{l} \operatorname{Log} T, \text{ white.} \\ T/B. \end{array} \right.$	_	-5.81	-5.42	-4.87	-4.17	-3.30	-2.59	-2.02	-1,42	-0.75	+0.28
Log T, blue	-						,				
Log T, green	-6.42	-6.20	-5.62	-5.00	-4.23	-3.39	-2.60	-2.08	-1.62	-0.90	-
Log T, yellow	-	-5.47	-5.17	-4.61	-4.03	-3.33	-2.57	-1.97	-1.62	-	-
Log T, red		-	-4.27	-4.00	-3.47	-2.96	-2.43	-I.92	-1.37	-0.90	

THE SENSIBILITY OF THE EYE

TABLE 341.—Heterochromatic Threshold Sensibility

The following table shows the decrease in sensitiveness of the eye for comparing intensities of different colors. The numbers in the body of the table correspond to the line marked T/B of Table 340. The intensity of the field was probably between 10 and 100 millilamberts (25 photons).

Comparison color.		ο.693 μ	ο.640 μ	ο. 575 μ	ο. 505 μ	ο. 475 μ	ο. 430 μ
Standard color: redyellowgreenblue	0.693 μ	0.044	0.088	0.165	0.180	0.197	0.150
	0.575 μ	0.174	0.160	0.032	0.166	0.174	0.134
	0.505 μ.	0.211	0.180	0.138	0.030	0.116	0.126
	0.475 μ	0.168	0.180	0.130	0.130	0.068	0.142

TABLE 342.- Contrast or Photometric Sensibility

For the following table the eye was adapted to a field of 0.1 millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye, $5 \times 2.5^{\circ}$) the two halves of which had the contrast indicated ($\frac{1}{2}$ transparent, $\frac{1}{2}$ covered with neutral screen of transparency = contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Blanchard, Physical Review, 11, p. 88, 1918. Values are log brightness of brighter field in millilamberts.

Time in seconds.	0	I	2	5	10	20	40	60
Contrast: 0.00	-2.80 -2.63 -2.40 -2.10 -1.20	-3.47 -3.36 -3.00 -2.46 -1.57		-3.22 -2.48	-3.2I -2.55	-4.60 -3.97 -3.33 -2.54 -1.63	-4.89 -4.06 -3.46 -2.67 -1.73	-5.03 -4.23 -3.48 -2.73 -1.78

TABLE 343 .- Glare Sensibility

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the later may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in milliamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in milliamberts. Angle of glare spot, 4°. Blanchard, Physical Review, log, cit.

Log.	field	-6.0 1.35	-4.0 1.90	-2.0 2.60	-I.0 2.90	0.0	+1.0	2.0	3.0 4 18	4.0
Log.	5.4		1.90	2.00	2.90	3.20	3,00	3.90	4 10	4.40

TABLE 344 .- Rate of Adaptation of Sensibility

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4,0°, viewed at 35 cm. Blanchard, loc. cit. Retinal light persists only 10 to 20 m when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

Sensitizing		Logarithmic thresholds in millilamberts after										
field.	o sec.	ı sec.	2 sec.	5 sec.	10 sec.	20 sec.	40 se€.	60 sec.	5 min.	30 m i n.	60 min.	
White, o. 1 ml. 1. o ml. 10. o ml. 100. o ml. Blue o. 1 ml. Green o. 1 ml. Yellow o. 1 ml. Red o. 1 ml.	-2.20 -1.60 -0.90 -2.82 -2.60 -2.61	-2.99 -2.30 -1.66 -3.92 -4.08 -3.84	-3.27 -2.53 -2.00 -4.36 -4.39 -4.17	-3.79 -3.08 -2.46 -4.91 -4.82 -4.41	-4.15 -3.54 -2.64 -5.27 -5.11 -4.65	-4.51 -3.94 -2.88 -5.53 -5.26 -4.78	-4.82 -4.31 -3.20 -5.68 -5.43 -5.02	-5.06 -4.61 -3.84 -5.81 -5.56 -5.09	-5.52 -5.22 -4.76 -6.23 -5.80 -5.39	-5.86 -5.83 -5.77 -	-6.04 -6.01	

VARIOUS PROPERTIES OF THE EYE

TABLE 345 .- Apparent Diameter of Pupil and Flux Density at Retina

Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various Flashinght measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm, ratio apparent to true pupil, 1.02, for the unaccommodated eye, 1.14. The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for 0.01 millilambert, 6.7 and 7.2 mm; for 0.6 ml, 5.3 and 6.5; for 6.3 ml, 4.1 and 5.7; for 12.6 ml, 4.1 and 5.7 mm for both and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about 1/16, whereas the light intensities investigated vary over 1,000,000-fold (Blanchard and Reeves, partly unpublished data).

Field millilamberts	Observed	(1.14/1.02) × Obs.	Effective area	Flux at retina, lumens per mm²
$\begin{array}{c} 0.00001 \\ 0.001 \\ 0.1 \\ 10 \\ 1000 \end{array}$	8 mm 7.6 6.5 4.0 2.07	8.96 mm 8.51 7.28 4.48 2.35	64 mm ² 57 42 16 4.3	$\begin{array}{c} 8.4 \times 10^{-12} \\ 7.6 \times 10^{-10} \\ 5.6 \times 10^{-8} \\ 2.1 \times 10^{-6} \\ 5.8 \times 10^{-5} \end{array}$

TABLE 346.—Relative Visibility of Radiation (International Standard—Geneva, 1924) (See Gibson, Tyndall, Bur. Standards Sci. Paper 475, 1923; Judd, Journ. Opt. Soc. Amer., 21, 267, 1931.)
This table gives the relation between luminous sensation (light) and radiant energy. Data determined for intensities above Purkinje effect. See Table 339. Ratio of light unit (lumens) to energy unit (watt) at .55\mu, 0.00162 (Ives, Coblentz, Kingsbury).

λμ	V_{λ}	λ	V_{λ}	λμ	V_{λ}	λ μ	V_{λ}	λ μ	V_{λ}	λ	V_{λ}
.380	,00004	5	.030	.510	.503	5	.915	.640	.175	.710	.0021
5	.00006	-450	.038	5	.608	.580	.870	5	.138	5	.0015
.390	.00012	5	.048	.520	.710	5	.816	.650	.107	.720	.00105
5	.0002	.460	.060	5	-793	.590	-757	5	.082	5	.00074
.400	.0004	5	.074	.530	.862	5	. 695	.660	.061	•730	.00052
5	.0006	.470	.091	5	.915	.600	.631	_ 5	.045	5	.00036
.410	.0012	_5	.113	•540	.954	. 5	.567	.670	.032	.740	.00025
5	.0022	.480	. 139	5	.980	.610	.503	5	.023	5	.00017
.420	.0040	5	. 169	.550	.995	_ 5	.441	.680	.017	.750	.00012
5	.0073	•490	.208	. 4		.620	.381	_ 5	.012	5	.00008
.430	.0116	5	.259	.560	.995	_ 5	.321	.690	.0082	.760	.00006
. 5	.0168	.500	.323	5	.979	.630	.265	5	.0057	5	.00004
.440	.023	5	.407	.570	.952	5	.217	,700 5	.0041	.770	.00003

TABLE 347.-Miscellaneous Eye Data

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm); (b) cornea (equivalent water path for energy absorption, .06 cm); (c.) back surface cornea (curv., 7.9 mm); (d) aqueous humour (equiv. HaO, .34 cm, n = 1.337); (e) front surface lens (c., 10 mm); (f) lens (equiv. HaO, .42 cm, n = 1.445); (g) back surface lens (c., 6 mm); (h) vitreous humour (equiv. HaO, 1.46 cm, n = 1.337). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.48 mm in front of (g), posterior principal focus 22.73 mm behind (a), anterior principal focus 12.83 mm. in front of (a), curvature, 5.125 mm. At the rear surface of the retina (.15 mm thick) are the rods (30 × 2μ) and cones (10 60 outside fovea) μ long). Rods are more numerous, 2 to 3 between 2 cones, over 3,000,000 cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm. Central depression, fovea centralis), 3 mm diameter, 7000 cones alone present, 6 × 2 or 3μ. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is 50° to 70° = 3.65 to 5.14μ at retina; 50 cones in 100μ here; 4μ between centers, 3μ to cone, 1μ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot, masal side, 2.5 mm from center of eye, 15 mm in diam.

Persistence of vision as related to color (Allen, Phys. Rev. 11, 257, 1900) and intensity (Porter, Pr. Roy. Soc. 70, 131, 1912) is measured by increasing speed of rotating sector until flicker disappears: for color, 4μ, 0.03 sec.; 45μ, 0.03 sec.; 5μ, 0.015 sec.; 5πμ, 0.00 sec.; 5πμ, 0.015 sec.; 6πμ, 0.015

I/I_0	1,000,000	100,000	10,000	1000	100	50	10	5	1	0.1	Io in mc
dI/I, white	.036	.019	.018 .016 .018	.018 .020 .018	.030 .028 .024 .025	.032 .038 025 .027	.048 .061 .036 .040	.059 .103 .049 .049	.123 .212 .080 .074	·377 ·133 ·137	.00072 .0056 .00017 .00012

PHOTOMETRIC DEFINITIONS AND UNITS

Radiant flux = Φ = rate of flow of radiation as energy, measured as ergs per second or watts. Luminous flux = F or Ψ = rate of flow of radiation measured according to power to produce visual sensation. Although strictly thus defined, for photometric purposes it may be regarded as an entity, since the rate of flow for such purposes is invariable. Unit is the *lumen*, the flux emitted in a unit solid angle (steradian) by a point source of unit candle power.

Visibility of radiation of wave-length $\lambda = K_{\lambda} = \text{ratio}$ of luminous to radiant flux for that $\lambda_{\lambda} = F_{\lambda}/\Phi_{\lambda}$.

Mechanical equivalent of light = ratio of Φ/F for the λ of max, visibility expressed in ergs/sec/lumen or watts/lumen; it is the reciprocal of max, visibility. See p. 335.

Luminosity at wave-length $\lambda = (K_{\lambda})$ (Φ_{λ}). Spectral luminosity curve expresses this as a function of λ and is different for various sources.

Luminous efficiency = F/Φ expressed in lumens/watt.

Luminous intensity of (approximate) point source = $I = \text{solid-angle }(\omega)$ density of luminous flux in direction considered = $dF/d\omega$, or F/ω when the intensity is uniform. Unit, the candle,

Illumination on surface = E = flux density on surface = dF/dS (S is surface area) = F/S when uniform. Units, meter-candle, foot-candle, phot, lux.

Lux = one lumen per m^2 ; phot one lumen per cm^2 .

Brightness of a luminous surface may be expressed in two ways:

- b_I = dI/dS. cos θ where θ is the angle between normal to surface and the line of sight; normal brightness when θ is zero.
- (2) b_F = dF/dS' assuming that the surface is a perfect diffuser, obeying cos. law of emission or reflection. Unit, the lambert.

Specific luminous radiation, $E' = \text{luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per cm². For surfaces obeying Lambert's cosine law, <math>E' = \pi b_0$.

The lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm². Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft² has a brightness of 1.076 millilamberts. Brightness in candles per cm² is reduced to lamberts by multiplying by π .

A uniform point source of one candle emits 4π lumens.

One lumen is emitted by .07958 spherical candle power.

One lumen emitted per ft² = 1.076 millilamberts (perfect diffusion).

One spherical candle power emits 12.57 lumens.

One lux = 1 lumen incident per m² = .0001 phot = .1 milliphot.

One phot = 1 lumen incident per cm² = 10,000 lux = 1000 milliphots.

One milliphot = .001 phot = .020 foot-candle.

One foot-candle = 1 lumen incident per $ft^2 = 1.076$ milliphots = 10.76 lux.

One lambert = 1 lumen emitted per cm² of a perfectly diffusing surface.

One millilambert = .929 lumen emitted per ft² (perfect diffusion).

One lambert = .3183 candle per cm² = 2.054 candles per in².

One candle per $cm^2 = 3.1416$ lamberts.

One candle per $in^2 = .4868$ lambert = 486.8 millilamberts.

Adapted from Reports of Committee on Nomenclature and Standards of Illuminating Engineering Society. 1916 to 1918.

TABLE 349 .- Photometric Standards

In Germany the Hefner lamp is most used; in England the Pentane lamp and sperm candles; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are largely employed in gas photometry. For the photometry of electric lamps, and in accurate photometric work, electric lamps, standardized at a national standardizing institution, are employed.

The "International candle" designates the value of the candle as maintained by cooperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this is given in the following table (Circular No. 15 of the Bureau of Standards).

- I International Candle = I Pentane Candle.
 I International Candle = I Bougie Decimale.
 I International Candle = I American Candle.
 I International Candle = I.II Hefner Unit.
 I International Candle = 0.104 Carcel Unit.
- I. Standard Pentane Lamp, burning pentane.10.0 candles.2. Standard Hefner Lamp, burning amyl acetate.0.9 candles.3. Standard Carcel Lamp, burning colza oil.9.6 candles.
- 4. Standard English Sperm Candle, approximately...... 1.0 candles.

TABLE 350 .- The Waidner-Burgess Standard of Light

The Waidner-Burgess standard light consists in immersing a hollow inclosure in a bath of molten platinum and observing the light from the inclosure during the period of freezing. The exceptionally pure Pt was in a thorium oxide crucible heated by an induction furnace. At all times before and after test the Pt was 99.997% pure. Reproducible to 0.1% the brightness is

58.84 International Candles per cm²

(Wensel, Roeser, Barbrow, Caldwell, Bur. Standards Journ. Res., 6, 1103, 1931.)

TABLE 351 .- Intrinsic Brightness of Various Light Sources

	Barrows.	Ives & Luckies	n.	National Electric Lamp Association.
	C. P. per Sq. 1n. of surface of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of sur- face of light.	C. P. per Sq. In. of surface of light.
Sun at Zenith	600,000 200,000 10,000-50,000 5,000 	750 485 400 750 485 400 325 	130. - 6.2 4-7 1.64 0.9 1.2 0.75 0.63 0.50	600,000 200,000 10,000-50,000 5,000 1,000 875 750 625 480 375 100-500 75-200
Acetylene flame (1 ft. burner). Acetylene flame (3/4 ft. burner) Welsbach mantle Welsbach (mesh) Cooper Hewitt mercury vapor lamp Kerosene flame Candle flame Gas flame (fish tail). Frosted incandescent lamp Moore carbon-dioxide tube lamp	75-100 	53:0 33:0 31:9 56:0 14:9 9:0 2:7	0.0057 0.048 0.067 0.023 0.014	20-50 17 3-8 3-4 3-8 2-5 0.3-1.75

Taken from Data, 1911.

BRIGHTNESS OF BLACK BODY, CROVA WAVE-LENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY AND EFFICIENCY OF BLACK BODY

The values of L, the luminous intensity, are given in light watts/steroradian/cm² of radiating surface = (r/π) $\int_{-\infty}^{\infty} V_{\lambda} E_{\lambda} d\lambda$, where V_{λ} is the visibility of radiation function.

Mechanical equivalent. The unit of power is the watt; of lumininous flux, the lumen. The ratio of these two quantities for light of maximum visibility, $\lambda = 0.556~\mu$, is the stimulus coefficient Vm; its reciprocal is the (least) mechanical equivalent of light, i.e., least since applicable to radiation of maximum visibility. A better term is "luminous equivalent of radiation of maximum visibility." One lumen = 0.001496 watts (Hyde, Forsythe, Cady); or 1 watt of radiation of maximum visibility ($\lambda = 0.556~\mu$) = 668 lumens. White light has sometimes bee a defined as that emitted by a black body at 6000° K. The Crova wave-length for a black body is that wave-length, λ , at which the luminous intensity varies by the same fractional part that the total luminous intensity varies for the same change in temperature.

TABLE 352.—Brightness, Crova Wave-length of Black Body, Mechanical Equivalent of Light *

TABLE 353 .- Luminous and Total Intensity and Radiant Luminous Efficiency of Black Body *

Temp.	Bright- ness, candles per cm ²	Crova wave- length, µ	Mech. equiv. watts per <i>l</i> .
1700° 1750 1850 1850 1950 2000 2050 2150 2250 2250 2350 2450 2450 2550 2550	5. I 7. 6 11. 3 16. 3 23. I 323. I 323. I 324. 3 60. 0 80. I 105. 7 137. 6 177. 226. 284. 354. 438. 537. 651. 785.	0.584 0.583 0.582 0.581 0.580 0.570 0.578 0.576 0.576 0.576 0.575 0.574 0.573 0.572 0.572 0.571	o.oo1478 o.oo1491 o.oo1498 o.oo1498 o.oo1497 o.oo1496 o.oo1497 o.oo1502 o.oo1501
2650 Mean.	939.	0.569	0.001311

T, degrees absolute.	Luminous intensity L watt/cm²	Total intensity σ ₀ T ⁴ watt/cm ²	Radiant luminous efficiency.
1,200 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,100 3,000 4,000 5,000 6,000 7,000 8,000	$\begin{array}{c} 2.34 \times 10^{-5} \\ 3.45 \times 10^{-3} \\ 8.46 \times 10^{-3} \\ 8.46 \times 10^{-3} \\ 8.5 \times 10^{-2} \\ 3.85 \times 10^{-2} \\ 1.32 \times 10^{-1} \\ 2.26 \times 10^{-1} \\ 3.69 \times 10^{-1} \\ 8.77 \times 10^{-1} \\ 1.29 \\ 4.66 \\ 3.85 \times 10 \\ 1.36 \times 10^{2} \\ 3.26 \times 10^{2} \\ 0.385 \times 10 \\ 1.36 \times 10^{2} \\ 0.3 \times 10^{2} \\ 9.59 \times 10^{2} \\ 1.84 \times 10^{3} \\ \end{array}$	3.762 1.189 1.515 × 10 1.905 × 10 2.305 × 10 2.305 × 10 2.903 × 10 3.520 × 10 4.250 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10 7.037 × 10 6.020 × 10	.00006 .000290 .00058 .00058 .00068 .00163 .00253 .00253 .00374 .00532 .00727 .00962 .0124 .0156 .0317 .0829 .1201 .1386 .1385 .1290 .1014

^{*} Hyde, Forsythe, Cady, Phys. Rev. 13, p. 45, roro.

Note. — Minimum energy necessary to produce the sensation of light: Ives, 38 × 10⁻¹⁰; Russell, 7.7 × 10⁻¹⁰; Reeves, 19.5 × 10⁻¹⁰; Buisson, 12.6 × 10⁻¹⁰ erg. sec. (Buisson, J. de Phys. 7, 68, 1917.)

Color temperature (temp. black-body same color) 500 w. gas-filled lamp (22 l/w) 3082°k; 900 w. gas-filled movie lamp, 22.7 l. w, 3086°k. crater 65v. 10 amp. arc, solid carbon, 3780°k; cored carbon 3420°k. Priest, 1922.

TABLE 354.—Color of Light Emitted by Various Sources *

Source.	Color, per cent white.	Hue.	Source.	Color, per cent white.	Hue.
Sunlight Average clear sky. Standard candle. Hefner lamp. Pentane lamp. Tungsten glow lamp, 1. 25 wpc. Carbon , low lamp, 3. 8 wpc. Nernst glower, 1. 50 wpc. N-filled tungsten, 1.00 wpc.	13 14 15 35 25 31	472 593 593 592 588 592 587 586	N-filled tungsten, 0, 50 wpc. N-filled tungsten, 0, 35 wpc. Mercury vapor arc. Heliam tube. Neon tube. Crater of carbon arc, 1, 8 amp. Crater of carbon arc, 3, 2 amp. Crater of carbon arc, 5, 0 amp. Acetylene flame (flat)	45 53' 70 32 6 59 62 67 36	584 584 490 598 605 585 585 585

^{*} Jones, L. A., Trans. Ill. Eng. Soc., Vol. 9 (1914).

^{*} Coblentz, Emerson, Bul. Bureau of Standards, 14, p. 255, 1917.

336 TABLE 355

RELATIVE BLUE BRIGHTNESS, B, AND BRIGHTNESS IN CANDLES PER CM. 2 C, OF SOME INCANDESCENT OXIDES AT VARIOUS RED (0.665 μ) BRIGHTNESS TEMPERATURES, S_R

			==							
	$S_R =$	1500	17	00	180	00	190	00	20	000
Material	B .	С	B	С	B	C	B	С	B	C
Black body	.026	0.79	0.27	5.0	0.74	II.	1.80	23.	3.9	44.
Tungsten	.038	.84	.41	5.9	1.11	14.	2.7	33.	6.3	74.
Urania, gas air and oxy-gas	.028	1.02	.31	6.6	.84	15.	2.0	35.	4.5	78.
Ceria, pure: Oxy-gas	.035	1.08	.32	6.3	.83	14.	1.9	31.	4.0	62.
" , yellow: "	.032	1.04	.32	7.I	.85	17.	2.0	40.	4.0	88.
" , brown: "	.033	1.15	.30	6.7	.83	15.	1.68	33.	3.5	68.
Oxides of Ce group: Oxy-gas.	.031	.97	-34	6.3	.92	14.	2.3	33.	5.0	71.
Neodymia: Oxy-gas	.032	1.17	-33	6.9	.92	15.	2.3	33.	5.0	64.
Lanthana: "	.033	1.11	-34	6.6	.89	15.	2.1	33.	4.5	64.
Erbia: "	.047	1.71	.45	8.1	1.17	16.	2.7	33.	5.6	63.
Yttria, pure: Oxy-gas	.067	1.18	.61	7.3	1.56	17.	3.6	32.	7.3	63.
", 95% pure: "	.047	1.20	.46	7.3	1.19	16.	2.8	36.	5.9	75.
Zirconia: Oxy-gas	.058	.73	-55	3.6	1.43	8.	3.3	15.	7.0	30.
Thoria: "	.033	1.44	.56	7.5	1.40	16.	3.1	32.	6.3	63.
Alumina: "	.076	1.45	.87	9.4	2.5	22.	6.1		13.6	1
Beryllia: "	.086	1.62	.99	9.7	2.8	22.	6.9		15.4	104.
Magnesia: "	.21	2.4	1.31	0.11	2.8	22.	5.6		10.2	79.
Thoria 1% ceria: Oxy-gas	.078	1.45	.70	8.6	1.71	19.	4.1	43.	8.4	90.
urania:	.069	1.33	.67	8.3	1.77	19.	4.I	44.	8.7	93.
trace urania:	.059	1.33	.68	8.3	1.93	19.	4.8	44.	10.5	93.
1% neodymia:	.046	1.43	.43	7.1	1.14	15.	2.6	29.	5.5	56.
" " Mn oxide: "	.035	1.13	-37	6. I	1.01	13.	2.4	28.	5.3	56.

Note.—1 microcalorie through 1 cm² at 1 m = 0.034 sperm calorie = 0.0385 Hefner unit (no diaphragm) = 0.043 Hefner unit (diaphragm 14×50 mm). Coblentz, Bull. Bur. of Stds., 11, 87, 1914.

EFFICIENCY OF VARIOUS ELECTRIC LIGHTS

Bryant and Hake, Eng. Exp. Station, Univ. of Ill.	Amperes.	Terminal Watts.	Lumens.	Kw-hours for 100,000 Lumen- hours.	Total cost per 100,000 Lumen-hours at 10 cts. per Kw-hour.
Regenerative dc., series arc Regenerative dc., multiple arc Magnetite dc., series arc Flame arc, dc., inclined electrodes Mercury arc, dc., inclined electrodes Flame arc, dc., inclined electrodes Flame arc, dc., vertical electrodes Luminous arc, dc., multiple Open arc, dc., series Magnetite arc, dc., series Flame arc, ac., inclined electrodes Inclosed arc, dc., series Luminous arc, dc., series Luminous arc, dc., multiple Tungsten, multiple Nernst, ac., 3-glower Nernst, dc., 3-glower Inclosed arc, ac., series Inclosed arc, ac., series Tantalum, dc., multiple Tantalum, ac., multiple Carbon, 3.1 w. p. c., multiple Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple	5.5 5.5 6.6 10.0 3.5 8.0 8.0 6.6 9.6 4.0 10.0 6.6 6.6 8.0 6.6 4.0 0.545 1.87 7.5 6.6 — 6.6 — 5.0 3.5	385 505 528 550 385 440 440 726 480 320 467 467 325 75 374 475 440 40 425 40 49.6 210 56 550 385 430	11,670 11,670 7,370 8,640 4,400 6,140 7,370 5,025 2,870 5,340 2,920 626 3,910 3,315 2,870 2,160 2,410 2,020 199 199 166 626 166 1,535 1,030	3.3 5.18 7.16 6.37 15.92 7.16 7.16 9.85 9.55 11.15 8.75 8.75 8.75 11.15 12.0 9.55 14.32 15.32 12.6 19.2 19.2 19.2 19.3 33.6 33.7 35.8 37.4 38.3	0.339 0.527 0.729 0.837 0.89 0.966 0.968 1.079 1.13 1.275 1.305 1.384 1.405 1.459 1.547 1.55 1.88 1.90 2.05 2.193 2.31 2.504 3.24 3.47 3.50 3.66 3.84 3.94
Inclosed arc, ac., multiple	4.0	285	688	41.4	4.265

Ives, Phys. Rev., V, p. 390, 1915 (see also VI, p. 332, 1915); computed assuming t lumen = 0.00159 watt.	Commercial Rating	Lumens per Watt.	Luminous Watts Flux · Watts In- put or True Efficiency.
Open flame gas burner Petroleum lamp Acetylene Incandescent gas (low pressure) Incandescent gas (high pressure) Nernst lamp Moore nitrogen vacuum tube Carbon incandescent (treated filament) Tungsten incandescent (vacuum) Carbon arc, open arc Mazda, type C Mazda, type C Magnetite arc, series Glass mercury arc Quartz mercury arc Enclosed white flame carbon arc """" Open arc """" Enclosed yellow flame carbon arc	Bray 6' high pressure 1.0 liters per hour .350 lumens per B. t. u. per hr578 lumens per B. t. u. per hr. 220-v. 60-cycle, 113 ft. 4-watts per mean hor. C. P. 1.25 watts per hor. C. P. 9.6 amp. clear globe 500-watt multiple .7 w. p. c. 600 C. P20 amp5 w. p. c. 6.6 amp. direct current 40-70 volt; 3.5 amperes 174-197 volt; 4.2 amperes 10 ampere, A. C. 6.5 ampere, D. C. 10 ampere, D. C. 10 ampere, D. C.	0.22 .26 .67 .2 .2.0 4.8 5.21 2.6 8. 11.8 15. 19.6 21.6 23. 42. 26.7 35.5 29. 27.7 31.4	0.00035 .0004 .0011 .0019 .0031 .0076 .0083 .0041 .013 .019 .024 .031 .034 .036 .067 .042
Open arc, " ", inclined	6.5 ampere, D. C. 10 ampere, A. C. 10 ampere, D. C.	34.2 41.5 44.7	.054 .066 .071

TABLE 357.—Color Temperature, Brightness Temperature, and Brightness of Various Illuminants

			Brightness
Source	$T_{\mathbf{c}}$	$S (\lambda = .665)$	c/cm²
Gas flame			
Batswing Candle shape about	2160		
10 cm high	1875		
Hefner as a whole	1880		
Candle			
Sperm	1930		
Paraffin	1925		
Pentane			
10-cp. std.	1920		
Kerosene			
Flat wick	2055	1500	1.27
Round wick	1920	1530	1.51
4 w p. c. carbon	2080	2030	54.9
3.1 w p. c. treated carbon	2165	2065	70.6
2.5 w p. c. gem	2195	2130	78.1
2 w p. c. osmium	2185	2035	60.8
2 w p. c. tantalum	2260	2000	53. I
Acetylene as a whole	2380	7660	((-
One spot Mees burner	2465	1660	6.69
2.2.2.2	2360	1730	10.8
1.25 w p. c. tungsten	2400	2150	125
2.3 w p. c. Nernst Sun	2400	2320	258
Outside atmosphere	6500		224000
At earth's surface	5600		165000
The careful of surface			10,000

TABLE 358.—Temperature, Efficiency, and Brightness of Vacuum Lamps

Lamp	Lumens per watt	Maximum temperature, K.	Maximum brightness candles/cm²
50-watt carbon 50-watt gem 50-watt tantalum 10-watt tungsten 25-watt tungsten 40-watt tungsten 60-watt tungsten	4.9 7.7 9.8 10	2115° 2180 2160 2355 2450 2460 2465	55 78 53 128 193 206 211

TABLE 359.—Temperature, Efficiency, and Brightness of Gas-Filled Tungsten Lamps

Lamp	Lumens per watt	Maximum temperature, K.	Average color temperature, K.	Maximum brightness of filament candles/cm²
Regular gas-filled lamps:				
50-watt	10.0	2685°	2670°	469
75-watt	11.8	2735	2705	563
100-watt	12.0	2760	2740	605
200-watt	15.2	2840	2810	781
300-watt	16.3	2870	2840	862
500-watt	18.1	2930	2920	1015
1000-watt	20.0	2990	2980	1225
2000-watt	21,2	3020	3000	1350
Special lamps:				
1000-watt stereopticon	24.2	3185	3175	2065
900-watt movie	27.3	3290	3220	2660
10-kw	31.0	3350	3300	3050
30-kw	31.0	3350	3300	3050
Daylight lamps:			4	
200-watt	10,0	2860		
500-watt	II.2	2960		
Photographic:				
750-watt		3065		
1500-watt		3105		
			1	

TABLE 360.—Energy Distribution for Some Tungsten Lamps

(Taken from Forsythe, Christison, Gen. Electr. Rev., p. 662, 1929.)

	500 w, 1000 hr.	o w, 1000 hr. 500 w, 100 hr.		tungsten arc*		
0.31-0.29μ below 0.325μ " 0.35	% milli- watts 0.011 0.00044 .032 .0013 .08 .003	% milliwatts 0.015 0.006 .042 .0017 .10 .004	% milliwatts 0.030 0.0028 .083 .0076 .18 .017	% milliwatts 0.095 0.0108 .26 .030 .52 .059		
" 0.40 0.40–0.76 Total	.31 .012	.38 .015 16.7 .67 4.0	.63 .058 19.4 1.8 9.2	1.53 .17 27.0 3.1		

^{*} Calculated for cm2 of molten tungsten.

TABLE 361,-Brightness of Filaments and Bulbs of Some Tungsten Lamps and of Some Other Sources for Comparison

Lamp	Brightness measured at—	Brightness candles/cm²
Kerosene flame. 4-watt per candle carbon lamp. 40-watt vacuum tungsten lamp. 40-watt vacuum tungsten lamp. 40-watt golden Mazda. 50-watt white Mazda. 50-watt white Mazda sprayed. 75-watt white Mazda sprayed. 75-watt white Mazda sprayed. 2000-watt gas-filled Mazda. 2000-watt gas-filled Mazda. 2000-watt gas-filled Mazda. Sun as observed at earth's surface. Clear sky, average.		1.2 55.0 206 2.5 2.0 408 1.3 563 2.1 1,350 3,000 130 165,000

TABLE 362.—Characteristics of Some Miniature Lamps

(Forsythe, Watson, Gen. Electr. Rev., 34, 734, 1031.)

	Automobile Mazda lamps				Flash-light lamps					
No.	Service	Volts	Candle power	Watts per sph. candle	Max. T °K.	No.	Volts	Candle power	Watts per sph. candle	Max. T °K.
67 81 87 89 1110 1129 1133 1141 1142 1150 1158	Rear, instrument bd Step, aux. headlight. Dome, panel Signal Dome, panel Headlight, depres. be Head and spotlight "" Headlight Motor coach Side and headlight. Ford 2 fil. headlight Headlight, depres. be		2.9 2.9 6.3 14.4 6.3 21.5 20.5 31.9 20.6 21.7 20.9 1.9 49.1 31	1.32 1.27 1.01 1.80 .99 .76 .70 .70 .80 .99 .81 2.2 .72 .73	2820 2810 2915 2980 2870 2975 2930 3045 2960 2885 2815 2925 2500 3055 2965	19 11 35 14 16 13 17 31 *	1.25 2.25 2.33 2.40 2.47 2.47 3.70 6.15 1.5 10 5 8.5 6	0.19 .40 .46 1.45 .54 .52 .98 1.02 2.14 .028 80 48 55 .60	4.10 1.39 1.35 1.41 1.39 1.11 1.06 .87 8 6.0 .62 .63 .62	2570 2665 2665 2635 2700 2565 2670 2595 2770 2115 3160 3200 3120 2485

^{*}Surgical (grain-o'-wheat) 2 mm diam., 8.7 mm long, 0.06 g. † RCA photophone photo-tube exciter. | R C A recorder. | Western Electric sound-picture photo-tube exciter. | ** Radio 40. | Feb., 1932. Gen. Electr. Rev., 50 K watt; 120 v; 3300°K.; 1,400,000 lumens; max. candle power 166,000 24 lumens/watt. | 10 K watt; 120 v; 3300°K.; 280,000 lumens; max. candle power 33,000; 24 lumens/watt.

TABLE 363.—Characteristics of Sunlight Mazda Lamp (S1) 300 Watts a.c. Combined Incandescent Tungsten, Mercury Arc, Special High Transmission Bulb

For more detailed data see Taylor, Journ. Opt. Soc. Amer., 21, 20, 1931; Forsythe, Barnes, Easley, loc.cit. p. 30, Gen. Electr. Rev., 33, 358, 1930.

Characteristics of SI lamp: distance between electrodes 5.4 mm. Current 3I + amp., voltage II volts; light output 5670 lumens. Efficiency, 17.6 lumens/watt; % light from mercury arc, 20; light from filament 100 lumens; max. temp. electrodes 3200° K, of filament 2330° K. Temp. of Hg 285° C, pressure of Hg vapor, 177 mm Hg.

Transmission of I mm of glass used:

 λ in Angstroms....... 2500 2600 2700 2800 2900 3100 3300 3500 4000 5000 % transmissible 10 20 33 52 67.5 88 89 90 92 92

Energy Flux in Microvolts/cm2

Sı Lamp*	Sunlamp Unit * †	Quartz Hg Arc * §	Sun ‡
Below 2000 A 0.6	2.6	37	0.0
2900-3000 2.4	12.	12	0.64
2800-3100 7.7	41.	3 9	24.
2900-3200 19.3	103.	70	140.

^{*} im from center of arc.

Per cent Total Energy Flux in various Spectrum Regions

	<3200A	3200-4000A	4000-7600A	7600-17000A	>17000A
Continuous spectrum Line spectrum Both		.22 .79 I.01	8.8 (1.37)* 10.2	45.8	42.0

^{*} Includes Hg red lines.

TABLE 364.—Characteristics of Photoflash Lamp

(Forsythe, Earley, Journ. Opt. Soc. Amer., 21, 685, 1931.)

G. E. Photoflash lamp burns electrically ignited 65 mg A1 foil, .00004 cm thick in closed glass bulb with excess of 02.

Light output, 47,000 lumens, sec.

Light equals that of 100-watt Mazda for 37 sec.

Over 3,000,000 for 0.005 sec.

Time to may 0.01 sec.

Flashes start in 0.01 sec. with 110 v. Flash lasts 0.066 sec. Time to max. 0.014 sec.

TABLE 365 .- Visibility of White Lights

D	Candle Power			
Range	1	2		
1 sea-mile = 1855 meters	•47	.41		
2 " "	1.9	1.6		
5 " "	11.8	10		

¹ Paterson, Dudding. 2. Deutsche Seewarte.

^{† 3.75} amp. 72 v in lamp, no reflector.

[§] In center of beam.

[‡] Directly overhead.

TABLE 366 .- Sensitometric Constants of Type Plates and Films, Definitions

Ordinates are density (D): abscissae, logs of exposure $(\log E)$.

Density (D) is the absorbing power of the

If F_0 is the luminous flux incident upon the deposit.

 F_1 the luminous flux transmitted,

T, the transmission, O, the opacity,

D, the density, then

 $T = F_1/F_0$; $O = I/T = F_0/F_1$

 $D = \log_{10} O = \log_{10} I/T = \log_{10} F_0/F_1$

Typical Characteristic Curves

Exposure (E): E = It (expressed in meter-candle seconds, mcs), I = illumination(meter-candles, mc) incident on the photographic material during exposure, $t = \exp(sure)$ time in seconds.

Speeds given in the following table were obtained with a light approximately equivalent

to mean noon sunlight in spectral composition.

Gamma (γ): Gamma is defined as the tangent of angle alpha (α). Gamma infinity (γ_{∞}): γ_{∞} is defined as a theoretical limiting value to which gamma approaches as the development time is increased.

$$\gamma_{\infty} = \frac{\gamma_1}{1 - e^{-Kt_1}}$$

Velocity Constant of Development $(K): K = \frac{1}{t} \log_e \frac{\gamma_1}{\gamma_2 - \gamma_2}$.

Time of Development for Gamma of Unity (1/2=1.0): A convenient practical specification of development rate.

Fog (F): Fog is the density produced when material is developed without exposure. Values in the table are when development is carried to a gamma of unity.

Latitude (L): L = length of the projection (expressed in exposure units) of the

straight line portion on the $\log_{10} E$ axis, assuming development to a gamma of unity. Inertia (i): i = the value of exposure where the straight line portion of the characteristic curve extended cuts the $\log_{10} E$ axis. The inertia is in general a function of the extent to which development is carried. Values of i given in the table were determined for

Speed
$$(S): S = \frac{1}{I} \times 10$$
.

a gamma of unity.

In the determination of the values given in Table 368 a developing solution made up according to the following formula was used:

TABLE 367 .- Formula for Laboratory Pyrogallol Developer

Solution A Na ₂ SO ₃	Solution B NaCO ₃ , anhyd
---	--------------------------------------

Temperature 20° C. For use, mix equal volumes of A and B.

Sheppard and Mees, Investigations on the theory of the photographic process. London, Longmans, 1907.

TABLE 368.—Sensitometric Constants of Type Plates and Films

Material	Fog	K	γ 處	$T\gamma = 1.0$	Lat.	i	Speed
Motion picture film:							
Extra fast	0.15	0.15	1.4	8.5	200	0.011	900
Normal	.10	.16	1.6	6.0	200	.020	500
Panchromatic	.12	.16	1.6	6.0	300	.017	600
Positive	.03	.30	2.7	1.5	50	-33	30
Portrait extra fast	.15	.14	1.4	8.5	200	.011	900
Portrait normal	.10	.15	1.8	6.0	200	.020	500
Amateur film	.10	.15	1.8	5-5	100	,025	400
"Focal plane" plate	.15	.15	1.8	5.5	100	.012	800
Commercial ordinary	.05	.17	2.2	3.5	75	.040	250
Commercial orthochromatic	.10	.17	2.2	3-5	75	.033	300
Commercial panchromatic	.12	.17	2.2	3.5	75	.025	400
Process ordinary	.03	.30	3.0	1.5	25	-33	30
Process panchromatic		.30	3.0	1.5	25	.10	100
Lantern slide plate	.03	-34	3.2	1.0	25	.65	15

TABLE 369.—Resolving Power, Sharpness, and Astro Gamma, Definitions

Resolving Power. (R). The capacity of a photographic plate or film to render fine detail is known as its resolving power. It is usually found by photographing a series of gratings of alternate parallel transparent and opaque lines, each line of a width equal to the space between the lines. The grating constant, (width of line plus width of space), is variable for different line groups over a relatively wide range. Resolving power is specified by stating the number of lines per mm resolvable by the material.^{1,2}

Resolving power depends upon exposure, development time, the developing solution, the spectrum composition of the exposing radiation, and the contrasts in the test object. The values of resolving power given are for the optimal exposure values and optimal time of development in a particular developing solution (laboratory pyrogallol). The exposing radiation used had a spectral composition close to that of average daylight and the contrast between the elements of the test object was very high (greater than 10,000).

Sharpness. The sharpness characteristics of a photographic material is defined as the differential of density (D) with respect to distance (s) in a direction perpendicular to the edge of the image; sharpness (S) = dD/ds, where s is expressed in microns (0.001 mm).

Images used are obtained by making a contact print of a very carefully prepared knife edge. The exposing radiation is carefully collimated and incident normal to the surface.

Sharpness of the developed image depends upon the extent to which development is carried and this is specified by one value of gamma (γ) , $dD/d \log E$. It is dependent upon the quality of radiation. The values given in the table were obtained by exposure to light, approximately equivalent to average daylight, and the exposure was so adjusted that development to a gamma of unity in pyrogallol at 20° C gave an image density of unity. These values of sharpness express the diffuse-density gradient (dD/ds) of the straight line portion of the sharpness curve obtained by plotting diffuse density (D) as a function of the distance (s) from the geometrical edge of the image.

Astro gamma. Astro gamma is defined as the coefficient (b) of log₁₀ E in the Scheiner equation, which gives the relation between the diameter (D) of a stellar image and the exposure (E).

 $D = a + b \log_{10} E$

Since exposure (E) = intensity (I) × time (t) this equation offers a means of determining the relative brightness of stars by measurement of the diameter of the stellar images obtained under known conditions of exposure and development.

In the table are given values of astro gamma for a group of typical photographic materials. These values were determined by photographing with a highly corrected lens, using a magnification of 0.05, a circular aperture (diameter of 0.56 mm). Exposing radiation was of daylight quality, and intensity was so adjusted that an exposure of 1 second was just above the threshold value. Keeping the intensity factor constant, the exposure time was increased by consecutive powers of 2 from 1 to 512 seconds. The exposed plates were developed to a gamma of unity in standard pyrogallol at 20°C.

Mees, Proc. Roy. Soc. (London), 83, 10, 1909.
 Ross, Physics of the developed photographic image, New York, Van Nostrand, 1924.

TABLE 370.—Resolving Power, Sharpness, and Astro Gamma

Material	Resolving Power	Sharpness	Astro gamma
Motion picture film extra fast	50	0.080	35
Motion picture film normal	55	.085	35
Motion picture film panchromatic	50	.080	35
Motion picture film positive	80	.120	25
Portrait extra fast	50	.065	40
Portrait normal		.070	50
Amateur film	65	.090	40
"Focal plane" plate	55	.080	45
Commercial ordinary	65	.092	35
Commercial orthochromatic		.097	40
Commercial panchromatic	60	.085	37
Process ordinary	90	.130	25
Process panchromatic	75	.110	30
Lantern slide plate	100	.140	20

TABLE 371.—Spectrographs Showing Relative Spectrum Sensitivity of Various Plates and Films

TABLE 372.—Spectrum Sensitivity of Photographic Materials

The spectrum distribution of sensitivity may be shown qualitatively by wedge spectrograms. These (see preceding page) are made with a spectrograph over whose slit is mounted a wedge of neutral gray glass, the transmission of which increases logarithmically from the thin to the thick end. The boundary of the exposed area outlines approximately a curve which is the resultant of the spectral sensitivity function of the material and the spectral distribution of energy in the radiation emitted by the source illuminating the slit of the instrument. The source used is an acetylene flame operating at a color temperature of 2360°K. All plates had the same exposure. By the application of a correction based on the spectral emission of a black body at 2360°K., an approximation to the actual spectral sensitivity of these materials may be obtained. The neutral glass wedge, while fairly non-selective in absorption for radiation of wave lengths longer than 450 m μ , increases in density for radiation of wave lengths shorter than 450 m μ . The apparent falling off in sensitivity at wave lengths less than 450 m μ is therefore due to excessive absorption of the neutral wedge rather than to a decrease in the spectral sensitivity of the materials. (Mees, Journ. Franklin Inst., 201, 525, 1926. Walters and Davis, Bur. Standards Bull., 17, 353, 1921.)

Note: Photo plates for spectroscopy and astronomy. Mees, Journ. Opt. Soc. Amer., 21, 753, 1931.

TABLE 373.—Relative Photographic Efficiency of Illuminants

C = luminous efficiency of source (lumen/watt). E_r = relative photographic efficiency of source evaluated on basis of equal visual intensities, sunlight = 100%. E_r = relative photographic efficiency of source evaluated on basis of equal energy consumption by the source, sunlight = 100%. (Jones, Hodgson, and Huse. Trans. Illum. Eng. Soc., 10, 963, 1915.)

			Ph	otograp	hic mater	ial	
Source		Orc	linary	Orthochromatic		Panchromatic	
		E_r	E e	E_r	E e	Er	E &
Sun			100	100	100	100	100
Sky		181	7.4	155	.21	130	24
Acetylene	.07	30 81	.037	44 85	.040	52 89	.042
Pentane		18	.053		.086		.13
Mercury arc in quartz		600	158	500	132	367	99
Mercury arc in nultra glass		218	50	195	46	165	39
Mercury arc in crown glass	37.0	324	79	275	68	249	62
Carbon arc, ordinary		126	10	112	9	104	8.5
Carbon arc, white flame		257	52	234	45	215	4.2
Carbon arc, enclosed	9.0	175	II	177	11	165	10
Carbon arc, "Aristo"	12.0	796 106	62	1070	86	744 82	10
Magnetite arc	0.81		_	115 32	.52	42	.68
Carbon glow lamp	3.2	23 25	·37	35	.74	45	.95
Tungsten (vacuum)	8.0	33	1.7	41	2.2	50	2.7
Tungsten (vacuum)	9.9	37	2.4	45	3.0	53	3.5
Tungsten (gas filled)		56	6.1	62	6.8	70	7.7
Tungsten (gas filled)	21.6	64	8.9	68	9.8	76	11
Tungsten (C ₃)	8.9	95	5.5	87	5.2	95	5.6
Tungsten (C ₃)	0.11	801	7.8	99	7.3	106	7.9
Mercury vapor	23.0	316	47	354	54.2	273	42.0
							l

^{*} Screened with Wratten No. 79 filter.

TABLE 374 .- Variation of Resolving Power with Plate and Developer

The resolving power is expressed as the number of lines per millimeter which is just resolvable, the lines being opaque and separated by spaces of the same width. The developer used for the comparison of plates was Pyro-soda; the plate for the comparison of developers, Seed Lantern. The numbers are all in the same units. Huse, J. Opt. Soc. America, July, 1917.

Plate.	Albumen.	Resolution.	Process.	Lantern.	Medium	High speed.
Resolving power	125	81	67	62	35	27

Developer.	Resolving power.	Developer.	Resolving power.	Developer,	Resolving power.
Pyro-caustic Glycin Hydroquinone Pyro MQ25 Metol Nepera	69 64 64 64 63	Pyrocatechin Pyro-metol Eikon-hydroquinone Ferrous oxalate Caustic hydroquinone. Eikonogen Kachin	62 61 61 57	Amidol Process hydroquinone Ortol Rodinal X-ray powders Edinol	49 49

TABLE 375.—Relative Intensification of Various Intensifiers

Bleaching solution.	Blackening solution.	Reference	Intensi- fication.
Mercuric bromide. Mercuric chloride Potassium bichromate + hydrochloric acid. Mercuric iodide. Lead ferricyanide. Uranium formula. Potassium permanganate + hydrochloric acid. Cupric chloride. Potassium ferricyanide + potassium bromide. Mercuric iodide	Amidol developer Ammonia Amidol developer Schlippe's salt Sodium sulphide Sodium stannate Sodium stannate Sodium stannate	HgBr ₂ solution (Monckhoven sol. A).* Bleach according to Bennett; blackener.* Piper.* Debenham, B. J., † p. 186, '17. B. J. Almanac.* Desalme, B. J.,† p. 215, '12. Ordinary sepia developer. HgI ₂ according to Bennett.	1.15 1.45 2.50 2.28 3.50 2.05 1.93 1.33 1.23

See Nietz and Huse, J. Franklin Inst. March 3, 1918.

* B. J. Almanac, see annual Almanac of British Journal of Photography.

† B. J. refers to British Journal of Photography.

TABLE 376 .- Reflection and Transmission by Photographic Plates

Plates used, Eastman 40, emulsion, 2637; for red, green, and blue light, Wratten filters customarily used for 3-color work, see Wratten light filters, Eastman Kodak Co.; for "actinic" data, average transmission of plate for a band of wave length corresponding to the sensitivity curve of the plate was obtained by photographing the transmission of light upon a plate of the same type. (McRae, R. C. Tolman, Journ. Opt. Soc. Amer., 20, 565, 1930.)

	Red	Green	Blue	"Actinic"
Per cent reflected " " transmitted " absorbed	43	57 34 9	25 9 66	28 15 57

For "Instruments and Methods used for Measuring Spectral Light Intensities by Photography," see George R. Harrison, Journ. Opt. Soc. Amer., 19, 267, 1929. This reference contains bibliography of subject matter.

The Eberhard effect is due to the fact that when a heavily exposed area of an emulsion is being developed, a large quantity of soluble bromide is set free which acts as a restrainer and slows the development of surrounding regions.

WAVE LENGTHS OF FRAUNHOFER LINES

For convenience of reference the values of the wave lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in International Angstrom units. The table is for the most part taken from St. John's revision of Rowland's table of standard wave lengths (1928).

$ \begin{array}{ c c c c c c c c c } \hline Index letter & Line due to- & Wave length in centimeters \times 10s & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Wave length in centimeters \times 1 & Index letter & Line due to- & Line due to$	
$ \begin{bmatrix} A \end{bmatrix} \begin{cases} O \\ O \\ 7594 \\ \end{bmatrix} \begin{bmatrix} G \\ Ca \\ 4307.749 \\ \end{bmatrix} $ $ \begin{bmatrix} A \\ B \end{bmatrix} \begin{bmatrix} A \\ $	Index letter
$ \begin{bmatrix} O & 7594 & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & $	[A]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[11]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[a]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[B]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[C] or H_{α}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α
$ \begin{bmatrix} D_3 \end{bmatrix} \qquad \text{He} \qquad 5875.618 \qquad \begin{bmatrix} N \end{bmatrix} \qquad \text{Fe} \qquad 3581.210 \\ \begin{cases} \text{Fe} \qquad 5270.390 \\ \text{Ca} \qquad 5270.270 \end{cases} \qquad \begin{bmatrix} O \end{bmatrix} \qquad \text{Fe} \qquad 3441.020 \\ \text{Pl} \qquad \text{Ti} \qquad 3361.194 \\ \end{bmatrix} $ $ \begin{bmatrix} E_2 \end{bmatrix} \qquad \text{Fe} \qquad 5269.557 \qquad \begin{bmatrix} Q \end{bmatrix} \qquad \text{Fe} \qquad 3286.773 \\ \end{bmatrix} $ $ \begin{bmatrix} b_1 \end{bmatrix} \qquad \text{Mg} \qquad 5183.621 \\ \end{bmatrix} \qquad \begin{bmatrix} Ca \qquad 3181.277 \\ Ca \qquad 3179.343 \end{bmatrix} $	$[D_1]$
$ \begin{bmatrix} E_1 \end{bmatrix} & \begin{cases} Fe & 5270.390 \\ Ca & 5270.270 \end{cases} & \begin{bmatrix} O \end{bmatrix} & Fe & 3441.020 \\ & 5270.270 & \begin{bmatrix} P \end{bmatrix} & Ti & 3361.194 \\ & & & & & & & & & & & & & & \\ E_2 \end{bmatrix} & Fe & 5269.557 & \begin{bmatrix} Q \end{bmatrix} & Fe & 3286.773 \\ & & & & & & & & & & \\ E_1 \end{bmatrix} & Mg & 5183.621 & & & & & & & \\ E_2 \end{bmatrix} & Mg & 5172.700 & & & & & & & \\ E_3 & & & & & & & & \\ E_4 & & & & & & & & \\ E_5 & & & & & & & & \\ E_7 & & & & & & & & \\ E_7 & & & & & & & \\ E_7 & & & & & & & \\ E_7 & & & & & & & \\ E_7 & & & & & \\ E_7 & & & $	$[D_2]$
$ \begin{bmatrix} E_1 \end{bmatrix} & \begin{cases} C_3 & 5270.270 & [P] & Ti & 3361.194 \\ E_2 \end{bmatrix} & Fe & 5269.557 & [Q] & Fe & 3286.773 \\ [b_1] & Mg & 5183.621 & [R] & \begin{cases} C_3 & 3181.277 \\ C_4 & 3179.343 \end{cases} $	$[D_3]$
	IF.1
	[12]
[b ₂] Mg 5172.700 [R] Ca 3179.343	$[E_2]$
[b ₂] Mg 5172.700 (Ca 3179.343	$[b_1]$
	$[b_2]$
$[b_3]$ Fe 5169.052 $[S_1]$ Fe 3100.683	[b _i]
Fe 5168.910 $[S_2]$ $[S_2]$	[03]
[b ₄] {Fe 5167.510 [Fe 3099.943	[h _i]
Mg 5167.330 [s] Fe 3047.623	
[F] or H _β H 4861.344 [T] Fe 3021.067	[F] or H_{β}
[d] Fe 4383.559 [t] Fe 2994	[d]
[G'] or H _γ H 4340.477 [U] Fe 2948	[G¹] or H_{γ}
[f] Fe 4325.777	[f]

The solar intensities of the lines of the 4th column are: G, 6, 3; g, 20; h, 40; H, 700; K, 1000; L, 25; M, 4; N, 30; O, 15; P, 3; Q, 7; R, 3, 5; S, 3, 4, 6; s, 20; T, 3.

STANDARD WAVE LENGTHS

TABLE 378 .- Primary Wave-Length Standard. Definition of Augstrom

The wave length of the red cadmium line in dry air, 15° C (hydrogen thermometer), 760 mm of Hg pressure, gravity at latitude 45° being 980.67, shall be taken as

6438.4696 Angstroms

The cadmium light shall be produced by a high-voltage, internal electrode vacuum tube, volume greater than 25 cm³, exciting current less than 0.05 amp., temperature not higher than 320° C. When connected to usual high voltage the tube shall be nonluminous at room temperatures. (Trans. Int. Union Solar Res., 2, 20, 1907. Trans. Int. Astron. Union, 2, 40, 1925.)

TABLE 379 .- International Secondary Standards. Iron Arc Lines

The wave lengths are observed in air at 15° C, 760 mm pressure. The arc should have its anode below, consisting of a bead of iron oxide supported in the hollowed upper end of a rod of iron or copper at least 10 or 15 mm diameter. The cathode is to be a rod of steel 6 or 7 mm in diameter having a massive cylinder of brass or copper fitted close to the end, so that only 2 or 3 mm of the rod protrude. The arc is to be not less than 12 mm long, preferably 15 to 18 mm. The line voltage may be 110 or more and the current strength 5 amperes or less. A horizontal central cone at right angles to the axis of the arc not exceeding 1.5 mm in vertical dimension is to be used. (See Trans. Int. Astron. Union, 3, 11, 1929, for further details.)

The wave lengths are in International Angstroms. They have been newly referred to the red cadmium line. The results indicate the need of a slight revision of the standards formerly adopted upon which all wave lengths in the International System hitherto made have been based. The corrections to be applied to the previously adopted standards and measures based upon them to reduce them to the new standards are:

λ 3370.	to \	4000. A.	- 0.001 А.
4005	to	5506	-0.002
6027	to	6085	-0.005
6127	to	6260	-0.006
6297	to	6430	-0.007
6475	to	6609	-0.008
6663	to	6750	-0.009

Significance of small letters in following table: (a) Low-temperature lines; always sharp and symmetrical; energy level low; pressure displacement small; limits of upper terms for Fe 19,700 to 32,500 cm⁻¹. (b) Symmetrical under pressure, but showing a slight dissymmetry toward red, or an unsymmetrical reversal under high pressure and in the high-current arc; energy level and pressure displacement medium; limits of upper terms for Fe 32,500 to 41,500 cm⁻¹. (d) High-temperature lines; asymmetrical toward violet; pole-effect large and negative; energy level high; pressure displacement large; limits of upper terms for Fe 53,500 to 55,000 cm⁻¹. (Carnegie Publ. 396, Mt. Wilson Obs.) The letters r and R indicate narrow and wide reversals, respectively, as observed by Burns.

STANDARD WAVE LENGTHS (Continued)

TABLE 379 (continued).—International Secondary Standards. Iron Arc Lines

Measured in air at 15°C, 760 mm

λ _{Fe} Int. Class	λ _{Fe} Int. Class	λ _{Fe} Int. Class	λ _{Fe} Int. Class
3370.787 6 3401.522 4 b	3797.517 5 b 3798.513 6r b	4107.492 5 b 4114.44 9 4 b	4494.568 5 b 4517.530 2 d?
3465.863 6R a	3799.549 6r b	4118.549 6 b	4528.619 7 b
3476.705 5r a	3805.345 6 b	4121.806 2 b	4531.152 5 b
3 497.844 5r a	3815.842 7R b	4127.612 4 b	4547.851 3 b
3513.820 5 b	3824.444 6R a	4132.060 7 b	4592.655 4 b
3521.264 5r b	3825.884 8R b 3827.825 6R b	4134.681 5 b 4143.871 7 b	4602.944 4 b 4647.437 4 b
3558.518 5r b 3565.381 6R b	3834.225 7R b	4147.673 4 b	4647.437 4 b 4667.459 4 b?
3576.760 4	3839.259 5 a?	4156.803 4 b	4678.852 5 b?
3581.195 8R b	3840.439 6R b	4170.906 2 b	4691.414 4 b?
3584.663 5	3841.051 6R b	4175.640 4 b	4707.281 5 d
3585.320 6r b	3843.259 5 b	4184.895 4 b	4710.286 3 b
3586.114 5 3589.107 4 b	3846.803 5 b? 3849.969 5 b	4202.031 7r b 4203.987 3 b	4733.596 3 b
33-3	0 1777 0	, , , ,	17 1 666 6
3608.861 6R b	3850.820 5 b 3856.373 6R a	4213.650 2 b	4745.806 3 b
3617.788 6 b	3856.373 6R a 3859.913 7R a	4216.186 4 a 4219.364 5 b	4772.817 3 b 4786.810 3 b
3618.769 6R b	3865.526 6R b	4219.364 5 b 4250.790 8 b	4789.654 3 b
3631.464 6R b	3867.219 3 b	4267.830 2 b	4859.748 5 d
3647.844 6R b	3872.504 6r b	4271.764 8r b	4878.218 5 d
3649.508 6	3873.763 4 b	4282.416 6 a	4903.317 5 d
3651.469 6 b	3878.021 6r b	4285.445 2 b	10 000
3669.523 6 b	3878.575 6R a 3886.284 7R a	4294.128 6 b 4298.040 2	4924.776 3 b
3070.314			1,00,00
3677.630 6 3679.915 5r a	3887.051 6r b 3888.517 7 b	4305.455 2 b 4307.906 8r b	4966.096 5 d 4994.133 3 a
3679.915 5r a 3687.458 6R b	3895.658 5r a	4315.087 5 a	5001.871 5 d
3695.054 3 b	3899.709 6r a	4325.765 9r b	5012.071. 4 a
3704.463 5 b	3902.948 7r b	4337.049 5 b	5041.759 4 a
3705.567 6R a	3906.482 5r a	4352.737 4 a	5049.825 5 b
3719.935 8R a	3907.937 3 b	4358.505 2 b	5051.636 4 a
3722.564 6R a 3724.380 6 b?	3917.185 5 b 3920.260 6r a	4369.774 3 b 4375.932 5 a	5083.342 4 a 5110.414 4 a
3724.380 6 b? 3727.621 6R b	3922.914 6R a	4383.547 IOR b	5123.723 4 a
37-7-1	3927.922 6r a	4390.954 3 b	5127.363 3 a
3732.399 6 b 3733.319 6R a	3927.922 of a 3930.299 7R a	4390.954 3 b 4404.752 8r b	5150.843 4 a
3734.867 9R b	3935.815 4 b	4408.419 4 b	5167.491 8 a
3737.133 7R a	3940.882 4 b	4415.125 8r b	5168.901 3 a
3738.308 4 b	3942.443 3 b	4422.570 4 b	5171.599 7 a
3748.264 6R a	3948.779 4 b	4427.312 5 a	5198.714 4 b
3749.487 8R b	3956.681 4 b 3966.066 7 b	4430.618 4 b 4442.343 5 b	5202.339 5 b 5216.278 5 a
	3967.423 4 b	4443.197 3 b	5216.278 5 a 5227.192 8 a
3760.052 5 b 3763.790 6R b	3969.261 7r b	4447.722 5 b	5242.495 3 a?
3765.542 6 b	4005.246 7 b	4454.383 3 b	5250.650 3 b 5270.360 8 a
3767.194 6R b	4014.534 4 b	4459.121 5 b	0 1 0
3787.883 6R b	4045.815 8R b	4461.654 4 a 4466.554 5 b	5307.365 4 a
3790.095 4 b 3795.004 6r b	4066.979 4 b 4067.275 3 b	4466.554 5 b 4489.741 3 a	5328.534 4 a 5341.026 5 a
3/93.004 01 0	400113 3	TT-7/1T* 0 "	00T30 0 W

STANDARD WAVE LENGTHS (concluded)

TABLE 379 (concluded).—International Secondary Standards. Iron Arc Lines

λFe	Int.	Class	λ_{Fe}	Int.	Class	λ_{Fe}	Int.	Class	λ_{Fe}	Int.	Class
5371.493 5397.131 5405.778 5429.699 5434.527	7 6 6 6 6	a a a a	5506.782 5569.625 5572.849 5586.763 5615.652		a d d d	6065.487 6136.620 6137.696 6191.562 6230.728	4 4 4 5 5	b b b b	6393.605 6421.355 6430.851 6494.985 6546.245	4 5 5	b b b b
5446.920 5455.613 5497.519 5501.469	6 4	a a a a	5624.549 5658.826 5662.525 6027.057	5 4 3 2	d d d b	6252.561 6265.140 6318.022 6335.335	4 3 4 4	ь ь ь ь	6592.919 6663.446 6677.993	4	b b b

(Values taken from Trans. Int. Astron. Union, 3, 86, 1929.)

TABLE 380.—Computed Wave Lengths of Iron Arc Lines

Based on Term Values derived from Table 379. As in air, 15°C, 760 mm.

λFo	Int.	Class	λFe	Int.	Class	λ_{Fe}	Int.	Class	λ_{Fe}	Int.	Class
2858.896 2874.172 2912.158 2929.007 2936.904	8	b b b b	2966.898 2983.571 3021.073 3037.389 3047.605	6R		3083.742 3091.577 3100.303 3100.666 3116.632	4r 4r 4r 4r 5	b b b b	3161.370 3171.343 3180.756 3184.895 3199.501	4	d d a a a
2941.342 2947.876 2953.940	8 5r 5r	ь ь ь	3057.448 3059.086 3067.245 3075.719	5r 5r 5r 5r	ь ь ь ь	3125.651 3129.333 3134.111 3143.243	6 4 5 2	b d b a	3226.714 3229.121 3236.223	4	a a a

(For significance of designations see preliminary remarks to next preceding table. Values taken from same source, 3, 92, 1929. The following actual measures of the lines of this table may be compared with the above figures: Buisson and Fabry, 1908, 2874.176; 2941.347; 3075.725; 3125.661. Burns, 1915, 2941.348; 3075.726; 3083.747; 3091.582; 3116.638; 3125.665; 3129.340; 3134.115; 3184.900; 3199.527; 3236.227.)

TABLE 381.-Neon Wave Lengths

The lines starred in the following table were adopted in 1922 and 1925 as standards by the International Astronomical Union.

Inten-	Wave	Inten-	Wave	Inten-	Wave	Inten-	Wave	Inten-	Wave
sity	length	sity	length	sity	length	sity	length	sity	length
5	3369.904	5	3515.192	2	5820.155	4	6217.280	5	6717.043
6	3417.906	8	3520.474	10	5852.488	7	6266.495	8	6929.468
6	3447.705	4	3593.526	6	5881.895	4	6304.789	3	7024.049
6	3454.197	4	3593.634	8	5944.834	8	6334.428	9	7032.413
5	3460.526	5	3600.170	4	5975.534	8	6382.991	3	7059.111
5 6 4 4	3464.340 3466.581 3472.578 3498.067 3501.218	5 8 7 6 4	3633.664 5330.779 5341.096 5400.562 5764.419	4 7 8 9 5	6029.997 6074.338 6096.163 6143.062 6163.594	10 9 4 5 8	6402.245 6506.528 6532.883 6598.953 6678.276	5 8 6 5 5	7173.939 7245.167 7438.902 7488.885 7535.784

International Units (Angstroms). Burns, Meggers, Merrill, Bull. Bur. Stds. 14, 765, 1918.

STANDARD SOLAR WAVE LENGTHS. INTERNATIONAL ANGSTROMS

Adopted at the Leyden Meeting of the International Astronomical Union.

See Trans. Int. Astron. Union. 3, 93, 1929.

The solar wave lengths in the Rowland Revision by St. John (and others) are based upon the former arc standards and require the following corrections to reduce them to the scale of the following adopted lines:

λ 3592 to λ 5625 A.	-0.002 A.	at λ 6350 A.	-0.007 A.
at 2850	003	6500	008
5950	004	6700	009
6050	005	6850	011
6200	006	7100	- 014

In the following table the + sign following the designation of an element indicates the state of ionization; an indication like Fe -, solar line too strong to be due to iron alone; Fe, Co, coincidences of like order; Fe Co, coincidence closer for preceding element; Fe Co, Fe line to the red, Co, to the violet; an italicized element indicates predominence of that element.

λ _{solar} 3592.027 3635.469 3650.538 3672.712 3695.056	Elements $V+$ Ti Fe Fe $-$ Fe	Int. 2 4 2 3 5	λ _{solar} 4079.843 4082.943 4091.557 4094.938 4107.492	Elements Fe MnV Fe Ca Fe	Int. 3 4 3 4 5	λ _{solar} 4439.888 4451.588 4454.388 4459.755 4470.485	Elements Fe Mn Fe Cr-V Ni	Int. I 3 3 I 2
3710.292 3725.496 3741.065 3752.418 3760.537	Y+ Fe Ti Fe Fe	3 4 3 4	4120.212 4136.527 4139.936 4154.814 4163.654	Fe Fe Fe Fe <i>Ti</i> +Cr-Fe	4 4 6 4 4	4481.616 4502.221 4508.289 4512.741 4517.534	Fe Mn Fe+ Ti Fe	1 2 4 3 3
3769.994 3781.190 3793.876 3804.015 3821.187	Fe Fe CrFe Fe Fe	4 3 2 3 4	4168.620 4178.859 4184.900 4191.683 4198.638	Fe Fe+ Fe, Cr Fe V-Fe	2 3 4 3 3	4525.146 4531.631 4534.785 4541.523 4547.853	Fe Fe Ti Cr <i>Fe</i> + Fe	5 2 4 2 3
3836.090 3843.264 3897.458 3906.752 3916.737	Ti+ Fe Fe FeV Fe	2 4 2 4 5	4208.608 4220.347 4233.612 4241.123 4246.837	Fe Fe Fe Fe – Sc +	3 6 2 5	4548.770 4550.773 4563.766 4571.102 4571.982	Ti Fe Ti+ Mg Ti+	2 2 4 5 6
3937.336 3949.959 3953.861 3960.284 3963.691	Fe Fe Fe Fe Cr	3 5 3 4 3	4257.661 4266.968 4267.680 4282.412 4291.472	Mn Fe Fe Fe Fe	2 3 2 5 2	4576.339 4578.559 4587.134 4589.953 4598.125	Fe+ Ca Fe Ti+ Fe	2 3 2 3 3
3977·747 3991.121 4003.769 4016.423 4029.642	$Fe \\ Cr - Zr + \\ FeCe + - Ti \\ Fe \\ Fe - Zr +$	6 3 3 2 5	4318.659 4331.651 4337.925 4348.947 4365.904	CaTi Ni Ti+ Fe Fe	4 2 4 2 2	4602.008 4602.949 4607.654 4617.276 4625.052	Fe Fe Ti Fe	3 6 4 3 5
4030.190 4037.121 4053.824 4062.447 4073.767	Fe Ti+Fe Fe FeCe+	2 2 3 5 4	4389.253 4398.020 4416.828 4425.444 4430.622	Fe Y+ Fe+ Ca Fe	2 I 2 4 3	4630.128 4635.853 4637.510 4638.017 4643.470	Fe Fe Fe Fe	4 2 5 4 4

STANDARD SOLAR WAVE LENGTHS. INTERNATIONAL ANGSTROMS

λ _{solar} 4647.442 4656.474 4664.794 4678.172 4678.854	Elements Fe Ti -CrNa? Fe	Int. 4 3 3 3 N 6	λ _{solar} 5415.210 5432.955 5445.053 5462.970 5473.910	Elements Fe Fe Fe Fe Fe Fe	Int. 5 2 4 3 3	λ _{solar} 6003.022 6008.566 6013.497 6016.647 6024.068	Elements Fe Fe Mn Mn Fe	Int. 6 6 6 6 7
4683.567 4690.144 4700.162 4704.954 4720.999	Fe — Fe Fe Fe	3 4 4 4 2	5487.755 5501.477 5512.989 5525.552 5534.848	Fe Fe Ca Fe Fe+	3 5 4 2 2	6027.059 6042.104 6065.494 6078.499 6079.016	Fe Fe Fe Fe	4 3 7 5 2
4728.552 4733.598 4735.848 4736.783 4741.535	Fe Fe Fe Fe	4 4 3 6 3	5546.514 5590.126 5601.286 5624.558 5641.448	Fe Ca Ca Fe Fe	2 3 3 4 2	6082.718 6085.257 6086.288 6089.574 6090.216	Fe Ti-Fe Ni Fe V	I 2 I I 2
4745.807 4772.823 4788.765 4789.658 4802.887	Fe Fe Fe Fe Fe	4 4 3 3 2	5655.500 5667.524 5679.032 5690.433 5701.557	Fe Fe Fe Si Fe	2 2 3 3 4	6093.649 6096.671 6102.183 6102.727 6111.078	Fe Fe Ca Ni	3 6 9 2
4824.143 4832.719 4839.551 4939.694 4983.260	Cr + -Fe $Ni - Fe$ Fe Fe Fe	3 3 3 3	5731.772 5741.856 5752.042 5760.841 5805.226	Fe Fe Fe Ni Ni	4 2 4 2 4	6116.198 6122.226 6127.912 6128.984 6136.624	Ni Ca Fe Ni Fe	4 10 3 1 8
4994.138 5002.798 5014.951 5028.133 5079.745	Fe Fe Fe Fe	3 2 3 2 4	5809.224 5816.380 5853.688 5857.459 5859.596	Fe Fe Ba+ Ca Fe	4 5 5 8 5	6137.002 6137.702 6141.727 6145.020 6149.249	Fe Fe Ba+-F	3 7 7 2 2 2
5090.782 5109.657 5150.852 5159.065 5198.718	Fe Fe Fe Fe Fe	5 2 4 2 3	5862.368 5866.461 5867.572 5892.883 5898.166	Fe Ti Ca Ni Atm.wv	6 3 2 4 4	6151.623 6154.230 6157.733 6161.295 6162.180	Fe Na Fe Ca Ca	4 2 5 4 15
5225.534 5242.500 5253.468 5273.389 5288.533	Fe Fe Fe <i>Fe</i> – Nd + Fe	2 2 2 2 2	5905.680 5916.257 5919.054 5919.644 5927.797	Fe Fe Atm.wv Atm.wv Fe	4 3 5 7	6165.363 6166.440 6169.564 6170.516 6173.341	Fe Ca Ca Fe – Ni Fe	3 5 7 6 5
5300.751 5307.369 5322.049 5332.908 5348.326	Cr Fe Fe Fe Cr	2 3 3 4 4	5930.191 5932.092 5934.665 5946.006 5952.726	Fe Atm.wv Fe Atm.wv Fe	6 5 5 3 4	6175.370 6176.816 6180.209 6186.717 6187.995	Ni Ni Fe Ni Fe	3 5 5 2 4
5365.407 5379.581 5389.486 5398.287 5409.799	Fe Fe Fe Cr	3 3 3 4	5956.706 5975.353 5976.787 5983.688 5984.826	Fe Fe Fe Fe	4 3 4 5 6	6191.571 6200.321 6213.437 6215.149 6216.358	Fe Fe Fe V	9 6 6 5 1

STANDARD SOLAR WAVE LENGTHS. INTERNATIONAL ANGSTROMS

λ _{solar}	Elements	Int.	λ_{solar}	Elements	Int.	$\lambda_{ m solar}$	Elements	Int.
6219.287	Fe	6	6301.508	Fe	7	6482.809	Ni	1
6226.740	Fe	I	6302.499	Fe	5	6493.788	Ca	6
6229.232	Fe	I	6302.764	Atm.O ₂	2	6494.994	Fe	8
6230.736	Fe - V	8	6305.810	Atm.O ₂	2	6498.945	Fe	1
6232.648	Fe	3	6306.565	Atm.O ₂	2	6499.654	Ca	4
6240.653	Fe	3	6309.886	Atm.O ₂	2	6516.083	Fe+	2
6244.476		2	6315.314	Fe	2	6518.373	Fe	2 2 5 6
6245.620	Sc+	I	6315.814	Fe	I	6569.224	Fe	5
6246.327	<u>F</u> e	8	6318.027	Fe	6	6592.926	Fe	6
6247.562	Fe+	2	6322.694	Fe	4	811.6099	Fe	3
6252.565	Fe	7	6327.604	Ni	2	6643.638	Ni	5
6254.253	Fe	5	6330.852	<u>F</u> e	2	6677.997	Fe	5 5 5 3 2
6256.367	FeNi		6335.337	Fe	6	6717.687	Ça	5
6258.110	Ti	2	6336.830	Fe	7	6810.267	Fe	3
6258.713	Ti	3	6344.155	Fe	4	6858.155	Fe	2
6265.141	Fe	5	6355.035	Fe	4	6870.946	Atm.O ₂	8
6270.231	Fe	5 3 3	6358.687	Fe	6	6879.928	Atm.O ₂	6
6279.101	Atm.O ₂		6378.256	Ni	2	6918.122	Atm.O ₂	9
6279.896	Atm.O2	2	6380.750	Fe	4	6919.002	Atm.O ₂	9
6280.393	Atm.O ₂	2	6393.612	Fe	7	6923.302	Atm.O ₂	9
6280.622	Fe	3	6400.009	Fe	8	6924.172	Atm.O ₂ C1	r 9
6281.178	Atm.O ₂	1	6400.323	Fe	2	6928.728	Atm.O ₂	4
6281.956	Atm.O ₂	2	6408.026	Fe	5	6934.422	Atm.O ₂	2
6283.796	Atm.O ₂	I	6411.658	Fe	7	6959.452	Atm.wv	3
6289.398	$Atm.O_2$	I	6419.956	Fe	4	6961.260	Atm.wv	4
6290.221	$Atm.O_2$	2	6421.360	Fe	7	6978.862	Fe	2
6292.162	Atm.O ₂	2	6430.856	Fe	5	6986.579	Atm.wv	3N
6292.958	Atm.O ₂	3	6449.820	Ca	6	6988.986	Atm.wv	3
6295.178	Atm.O ₂	3	6455.605	Ca	2	7022.957	Fe	2
6295.960	$Atm.O_2$	3	6456.391	Fe+	3	7023.504	Atm.wv	2
6297.799	Fe	5	6471.668	Ca	5	7027.478	Atm.wv	2
6299.228	$Atm.O_2$	3	6475.632	Fe	2	7034.910	–Fe	2N
						7122.206	Ni	4

PROVISIONAL ULTRA-VIOLET AND INFRA-RED SOLAR WAVE LENGTHS

Suggested at the 1928 meeting of the International Astronomical Union for further measurements leading to the use of them as standards. Trans. Int. Astron. Union, 3, 101 and 102, 1929. Wave lengths in International Angstroms.

^{\lambda_solar} 2990.421 2998.815 3005.061 3021.067 3035.745	Elements Fe Cr Cr Fe	Int. 1 2 3 3 5	λ _{solar} 3199.528 3210.226 3217.393 3225.805 3232.291	Elements Fe Co - Fe Fe Fe Ti+	Int. 4 3 2 3 2	λ _{solar} 3389.749 3396.982 3401.531 3412.350 3419.705	Elements Fe Fe Fe Co Fe	Int. 2 3 3 5 2
3046.676 3061.825 3070.266 3086.788 3094.898	Ti+ Co Mn Co Fe?-	5 3 4 4	3243.415 3254.762 3262.289 3273.053 3278.296	Fe Fe-V, V+ Fe Zr+ Ti+	5d? 3 2 5	3425.584 3431.587 3445.126 3450.335 3455.246	Co -Fe Fe Co-	2 4 5 5 5
3109.334 3121.161 3126.208 3140.758 3142.471	OH -Cr V+ Fe-V+ CoOH -Ca Fe-V+	3 4 5 3 5	3293.150 3295.825 3301.226 3318.032 3323.753	Fe -Fe+Mn Fe Ti+ Fe	2 6 1 6 3	3462.359 3466.505 3477.866 3485.903 3509.126	Fe Fe - Ni Ni Fe	3 4 5 2
3152.263 3161.775 3162.571 3170.345 3187.714	Ti+ Ti+ Ti+ Fe+Mo V+	5 3 4 2 2	3333.396 3344.524 3355.231 3365.774 3381.354	Co Ca-La+ Fe Ni Fe	2 2 4 6 2	3517.307 3540.127 3549.873 3564.127w 3583.340w	V+ Fe Fe VFe-Co VFe-	3 5 3 4 5
7005.903 7011.323 7052.776 7068.423 7090.390	Atm. Fe Atm. Fe Fe	I 2 I` 2 2	7583.796 7676.563 7677.618 7682.756 7696.868	Fe Atm. Atm. Atm. Atm.	1 4 4 3 0	8233.905 8252.727 8272.041 8289.533 8300.406	Atm. Atm. Atm. Atm. Atm.	5 2 4 4 3
7130.925 7181.509 7195.044 7204.306 7216.527	Fe Atm. Atm. Atm. Atm.	3 2 2 5 2	7714.309 7727.616 7742.722 7780.567 7797.587	Ni Ni Fe Fe Ni	3 3 2 3 2	8327.060 8329.682 8342.289 8357.041 8367.333	Fe Atm. Atm. Atm. Atm.	2 3 1 1 2
7227.493 7236.136 7245.676 7265.594 7303.197	Atm. Atm. Atm. Atm. Atm.	3 1 2 5 2	7807.915 7832.207 7849.984 7887.117 7901.780	Fe Fe Atm. Atm.	I 2 I I 3	8387.783 8426.518 8439.583 8468.420 8514.081	Fe Ti Fe Fe, Ti Fe	3 0 0 2 1
7323.972 7326.164 7335.334 7355.893 7369.208	Atm. Ca Atm. Cr Atm.	I O I I	7918.383 7937.149 7945.857 7984.343 8012.940	Si Fe Fe Atm. Atm.	I 3 2 I I	8515.121 8556.795 8582.271 8611.813 8621.619	Fe Si? Fe Fe Fe	1 1 0
7383.722 7389.391 7393.610 7405.790 7411.158	Atm. Fe Ni Si Fe	I 2 2 I I	8034.293 8046.056 8085.175 8107.841 8125.444	Atm. Fe Fe Atm. Atm.	I 2 2 I I	8648.472 8674.756 8688.642 8699.459 8717.832	Fe Fe Fe	2 I 2 I 0
7422.286 7445.755 7491.652 7511.030 7525.115	Ni Fe Fe Fe Ni	I 2 I 2 I	8139.718 8158.019 8176.976 8186.371 8194.835	Atm. Atm. Atm. Na	2 6 10 5 2	8736.043 8752.024 8763.974 8793.346 8806.768	Si Fe Fe Mg	1 1 1 1 4
7555.608 7568.906	Ni Fe	2 I	8212.132 8223.990	Atm. Atm.	4 5	8824.233	Fe	2

REDUCTION OF WAVE-LENGTH MEASURES TO STANDARD CONDITIONS

The international wave-length standards are measured in dry air at 15°C, 76 cm pressure. Density variations of the air appreciably affect the absolute wave-lengths when obtained at other temperatures and pressures. The following tables give the corrections for reducing measures to standard conditions, viz.: $\delta = \lambda_0(n_0 - n_0^6)$ $(d - d_0)/d_0$ in ten-thousandths of an Angstrom, when the temperature t^0 C, the pressure B in cm of Hg, and the wave-length λ in Angstroms are given; n and d are the indices of refraction and densities, respectively; the subscript $_0$ refers to standard conditions, none, to the observed; the prime ' to the standard wave-length, none, to the new wave-length. The tables were constructed for the correction of wave-length measures in terms of the fundamental standard $6_{13}8.4696$ A of the cadmium red radiation in dry air, 15° C, 76 cm pressure. The density factor is, therefore, zero for 15° C and 76 cm, and the correction always zero to 76 = $6_{13}8$ A. As an example, find the correction required for λ when measured as 3000.0000 A in air at 25° C and 72 cm. Section (a) of table gives $(d - d_0)/d_0 = -.085$ and for this value of the density factor section (b) gives the correction to λ of -0.038 A. A gain if λ under the same atmosphetic conditions, is measured as 3000.0000 A in terms of a standard λ of wave-length λ of wave-length λ because the measurement will require a correction of (0.0000 + 0.0000) = +.00000 A. Taken from Meggers and Peters, Bulletin Bureau of Standards, λ 1, λ 728, 1018.

(a)	100	0	/ 1	-2 \	1 2
(a)	TOO	υ×	(a -	$a_0)$	ao

B cm	60.0	62.5	65.0	67.5	70	71	72	73	7.4	75	76	77	78
9° C 11 13 15	-192 -200 -206 -211 -216	-160 -167 -172 -178 -184	-126 -133 -139 -145 -151	-92 -100 -106 -112 -118	-59 -67 -73 -79 -86	-46 -53 -60 -66 -73	-32 -40 -46 -53 -60	-19 -27 -33 -39 -47	-5 -13 -20 -26 -34	+8 0 -7 -13 -21	+22 +13 +6 0 -8	+35 +27 +20 +13 +5	+48 +40 +33 +26 +19
19	-222	-189	-156	-124	-92	-79	-66	-53	-40	-27	-14	-1	+12
21	-227	-195	-163	-130	-98	-85	-72	-59	-46	-33	-21	-8	+5
23	-232	-200	-168	-136	-104	-91	-78	-65	-52	-40	-27	-14	-1
25	-238	-206	-174	-143	-111	-98	-85	-72	-60	-47	-34	-22	-9
27	-243	-211	-179	-148	-116	-104	-91	-78	-66	-53	-40	-28	-15
29	-248	-216	-185	-154	-122	-100	-97	-8.4	-72	-59	-46	-34	-21
31	-253	-222	-190	-159	-128	-116	-103	-91	-78	-66	-54	-41	-29
33	-258	-227	-196	-165	-134	-121	-109	-97	-84	-72	-59	-47	-34
35	-262	-231	-200	-170	-130	-127	-114	-102	-90	-77	-65	-53	-41

(b). $-\delta = \lambda_0(n_0 - n_0)(d - d_0)/d_0$, in Ten-thousandth Angstroms

		Wave-lengths in Angstroms.													
$\frac{000 \times d_0}{d_0}$	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000	9000	10000
		Corrections in ten-thousandth Angstroms.													
-260 -240 -220 -200	-259 -239 -219 -199	-166 -154 -141 -128	-10 -08	7 - 7 $3 - 7$	3 — 5: 1 — 5:	7 - 41 $2 - 37$	-28 -26	-17	-7 -7	+1 +1 +1	+9 +9 +8 +7	+17 +16 +14 +13	+24 +22 +20 +19	+37 +35 +32 +29	+50 +46 +42 +38
-180 -160 -140 -120 -100	-179 -159 -139 -119	-115 -102 -90 -77 -64	-7: -6: -5:	r -5: 2 -4: 4 -3:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 3 & -27 \\ 3 & -27 \\ 3 & -27 \\ 3 & -27 \\ \end{array} $	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	-11 -10 -8		+o +i +i +i	+6 +6 +5 +4 +4	+12 +10 +9 +8 +7	+17 +15 +13 +11 +9	+26 +23 +20 +17 +14	+34 +31 +27 +23 +19
-80 -60 -40 -20	-80 -60 -40 -20	-51 -38 -26 -13	- 25 - 18 - 18	7 -16 3 -13 0 -6	9 -1. 3 -6 5 -5	-10 -7 5 -3	-5 7 -5 1 -2	7 — 3 — 3 2 — 1	-1 -1		+3 +2 +1 +1	+5 +4 +3 +r	+7 +6 +4 +2 0	+12 +9 +6 +3 0	+15 +11 +8 +4 0
+20 +40	+20 +40	+13 +26				5 +3 5 +7		+1 +3		-0 -0	-r -r	-2 -3	-2 -4	-3 -6	_4 _8

SPECTRA OF THE FLEMENTS

The following figure gives graphically the positions of some of the more prominent lines in the spectra of some of the elements. Flame spectra are indicated by lines in the lower parts of the panels, are spectra in the upper parts, and spark spectra by dotted lines.

Line spectra of the elements. For bibliography see Gibbs, Rev. Mod. Phys., 4, 205, 1932.

The following wave lengths are in Angstroms

Na	5889.965 5895.932	Rb	4202 4216	Cu	4023 4063	Mg	5168 5173
K Li	4044 4047 5802 7668 7702	Ţl	5648 5724 6207 6299 5351		5105.543* 5153.251* 5218.202* 5700 5782.090*	Sn	518.4 5529 4525 5563 5589
	4132 4602 6104 6707.846*	In Hg	4102 4511 4046.8 4078.1	Ag	5782.159* 4055 4212 4669	II	5799 6453 3970 4102
Cs	4555 4593 5664 5945		4358.3 4916.4 4959.7 5460.742*		5209.081* 5465.489* 5472 5623	He	4340 4861 6563 3187-743†
	6011 6213 6724 6974		5769.598* 5790.659* 6152 6232	Zn	4680.138* 4722.164* 4810.535* 4912		3888.646† 4026.189† 4471.477† 4713.143†
pectro	other elements, scopie. bry and Perot.			h der	4925 6103 6362.345*		4921.929† 5015.675† 5875.618† 6678.149† 7065.188†

TABLE 386.—Relationship between $n_X - n_D$ and $n_{G'} - n_D$

Abscissae are $n_{\rm X}-n_{\rm D}$, x=2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, .768, .656, .589, .535, 509, .486, .480, .468, .434, .361, .347, .327, .313, .308, .298, .288, 284, 276 μ . Ordinates $n_{\rm G'}-n_{\rm D}$ for glasses measured by Rubens and Simons. Various Schott glasses included: O1092, light barium crown, $(n_{\rm D}=1.51698)$; S204, borate glass, $(n_{\rm D}=1.51007)$; O1143, dense barium crown, $(n_{\rm D}=1.57422)$; O1151, high-dispersion crown, $(n_{\rm D}=1.52002)$; O451, light flint, $(n_{\rm D}=1.57524)$; O469, dense flint, $(n_{\rm D}=1.64985)$; O500, dense flint, $(n_{\rm D}=1.75130)$; S163, extra dense flint $(n_{\rm D}=1.88995)$.

TABLE 387 .- Effect of Composition on Index of Refraction

DERIVATION OF PARTIAL DISPERSIONS OF GLASS FROM $n_{ m E}$ - $n_{ m C}$

(F. E. Wright, Journ. Amer. Ceramic Soc., 3, 783, 1920; Journ. Opt. Soc. Amer., 4, 148, 195, 1920; 5, 389, 1921.)

The optical constants of a glass are generally stated as the index of refraction n_D , and the partial dispersions between the A (.768 μ), C (.856), D (.589), F (.486) and G' (.434 μ) lines and its ν value, $(n_0-1)/(n_F-n_C)$. The reciprocal of ν is called the average dispersive value. The following table is computed from $n_Y-n_X=a(n_F-n_C)-b$. The mean indices of refraction of two sets of glasses from which a and b were derived are:

 n_A n_C n_D n_F $n_{G'}$ $n_C - n_A$ $n_D - n_C$ $n_F - n_D$ $n_{G'} - n_F$

 1.539909
 1.543168
 1.545958
 1.552616
 1.557994
 a = .288936 .272167
 .727833
 .658443

 1.588807
 1.593565
 1.597767
 1.608201
 1.616995
 b = .000529 .000219
 -.000219
 -.000843

$n_{\rm F}$ — $n_{\rm C}$	$n_{\rm C}$ — $n_{\rm A}$		$n_{\rm F}$ — $n_{\rm D}$	$n_{\mathbf{G}'}$ — $n_{\mathbf{F}}$	n _F —n _C	n_{C} $-n_{A}$	n_D — n_C	$n_{\rm F}$ — $n_{\rm D}$	$n_{G'}$ — n_{F}
.0050	.00197	.00158	.00342	.00245	.0150	.00486	.00430	.01070	.00903
55	212	172	378	278	2	492	436	1084	917
.0060	226	185	415	311	4	498	441	1099	930
65	241	199	451	344	6	504	446	1114	943
.0070	255	212	488	377	8	509	452	1128	956
75	270	226	524	410	.0160	.00515	.00457	.01143	.00969
. 0080	284	240	560	442	2	521	463	1157	982
85	298	253	597	475	4	527	468	1172	996
.0090	313	267	633	508	6	533	474	1186	1009
.0100	.00342	.00294	.00706	.00574	8	538	479	1201	1022
2	348	300	720	587	.0170	.00544	.00485	.01215	.01035
4	353	305	735	600	2	550	490	1230	1048
6	359	310	750	614	4	556	495	1245	1001
8	365	316	764	627	6	561	501	1259	1075
.0110	.00371	.00321	.00779	.00640	8	567	506	1274	1088
2	377	327	793	653	.0180	.00573	.00512	.01288	.01101
4	382	332	808	666	.0185	587	525	1325	1134
6	388	338	822	679	.0190	602	539	1361	1167
8	394	343	837	693	5	616	553	1397	1200
.0120	.00400	.00349	.00851	.00706	.0200	631	566	1434	1233
2	405	354	866	719	5	645	58 o	1470	1266
4	411	359	881	732	.0210	660	593	1507	1298
6	417	365	895	745	5	674	607	1543	1331
8	423	370	910	759	.0220	689	621	1579	1364
.0130	.00429	.00376	.00924	.00772	5	703	634	1616	1397
2	434	381	9 3 9	785	.0230	717	648	1652	1430
4	440	387	953	798	5	732	661	1689	1463
6 8	446	392	968	811	.0240	746	675	1725	1496
l .	452	397	983	824	5	761	689	1761	1529
.0140	.00457	.00403	.00997	.00838	.0250	775	702	1798	1562
2	463	408	1012	851	_5	790	716	1834	1595
4	469	414	1026	864	.0260	804	730	1870	1628
8	475	419	1041	877	5	819	743	1907	1661
8	481	425	1055	890	.0270	.00833	.00757	.01943	.01693

TABLE 389.—Index of Refraction of Glasses (American)

Indices of refraction of optical glass made at the Bureau of Standards. Correct probably to 0.00001. The composition given refers to the raw material which went into the melts and does not therefore refer to the composition of the finished glass.

			Market State of State					
Melt	123	241	135	116	188	151	163	76
Wave-length	Ordinary crown.	Borosili- cate crown.	Barium flint.	Light barium crown.	Light flint.	Dense barium crown.	Medium flint.	Dense flint.
Hg 4046.8 Hg 4078.1 H 4340.7	1.53189 1.53147 1.52818	1.53817 1.53775 1.53468	1.58851 1.58791 1.58327	1.59137 1.59084 1.58698	1.60507 1.60430 1.59860	1.63675 1.63619 1.63189	1.65788 1.65692 1.64973	1.69005 1.68894 1.68079
Hg 4358.6 H 4861.5 Hg 4916.4	1.52798 1.52326 1.52283	1.53450 1.53008 1.52967	1.58299 1.57646 1.57587	1.58674 1.58121 1.58071	1.59826 1.59029 1.58958	1.63163 1.62548 1.62492	1.64931 1.63941 1.63854	1.68030 1.66911 1.66814
Hg 5461.0 Hg 5769.6 Hg 5790.5	1.51929 1.51771 1.51760	I.52633 I.52484 I.52475	1.57105 1.56894 1.56881	1.57657 1.57473 1.57460	1.58380 1.58128 1.58112	1.62033 1.61829 1.61817	1.63143 1.62834 1.62815	1.66016 1.65671 1.65650
Na 5893.2 Hg 6234.6 H 6563.0	1.51714 1.51573 1.51458	I.52430 I.52297 I.52188	1.56819 1.56634 1.56482	1.57406 1.57242 1.57107	1.58038 1.57818 1.57638	1.61756 1.61576 1.61427	1.62725 1.62458 1.62241	1.65548 1.65250 1.65007
Li 6708.2 K 7682.0	1.51412	1.52145	1.56423 1.56100	1.57054 1.56762	1.57567	1.61369 1.61047	1.62157 1.61701	1.64913 1.64405
			(Percenta	ge composit	ion)			
SiO ₂ Na ₂ O K ₂ O B ₂ O ₃ B ₃ O ZnO A ₅ O ₃ CaO PbO Sb ₂ O ₃	67.0 12.0 5.0 3.5 10.6 1.5 0.4	64.2 9.4 8.3 11.0 6.1 0.4 1.0	53.7 1.7 8.3 2.7 14.3 2.5 —	48.0 2.0 6.1 4.0 29.5 10.0 1.4	53.9 1.0 7.6 ———————————————————————————————————	37.0 2.7 5.0 47.0 7.7 —	45.6 3.4 4.1 — — 3.0 44.0	39.0 3.0 4.0 —————————————————————————————————

TABLE 390.-Dispersion of Glasses of Table 389

Melt.	123	241	135	116	188	151	163	76
n_D $n_F - n_C$	0.00868	0.00820	0.01164	1.57406 0.01014	1.58038 0.01391	1.61756	1.62725	1.65548
$\frac{n_D - 1}{n_F - n_C} = v$	59.6	63.9	48.8	56.6	41.7	22.1	36.9	34.4
$n_D - n_F$ $n_F - n_{G'}$	0.00612	0.00578	0.00827	0.00715	0.00991	0.00792	0.01216	0.01363
$n_D - n_C$	0.00256	0.00242	0.00337	0.00299	0.00400	0.00329	0.00484	0.00541

TABLE 391.-Index of Refraction of Glasses Made by Schott and Gen. Jena

The following constants are for glasses made by Schott and Gen, Jena: n_A , n_C , n_D , n_F , n_G , are The following constants are for glasses made by Schott and Gen, Jena: n_A , n_0 , n_p , n_p , n_e , are the indices of refraction in air for $A = 0.7682\mu$, $C = 0.6563\mu$, D = 0.5893, F = 0.4861, G' = 0.4341. $v = (n_p - 1)/(n_p - n_e)$. Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena Glass."

_							
Catal	одие Туре =	O 546	O 381	Ō 184	O 102	O 165	S 57
De	esignation =	Zinc-Crown.	Higher Dis- persion Crown.	Light Silicate Flint.	Heavy Silicate Flint.	Heavy Silicate Flint.	Heaviest Sili- cate Flint.
Melti	ing Number=	1092	1151	451	469	500	163
	v =	60.7	51.8	41.1	33.7	27.6	22.2
	Cd 0.2763µ	1.56759	_	_	_	_	_
1 4 1	Cd .2837	1.56372	-	-	-	-	
28	Cd .2980	1.55723	1.57093	1.65397	-	-	-
l el	Cd .3403	1.54369	1.55262	1.63320	1.71968	1.85487	-
, e	Cd .3610	1 53897	1.54664	1.61388	1.70536	1.83263	-
Wave-length	Η .4340μ	1.52788	1.53312	1.59355	1.67561	1.78800	1.94493
	H .4861	1.52299	1.52715	1.58515	1.66367	1.77091	1.91890
and	Na .5843	1.51698	1.52002	1.57524	1.64985	1.75130	1.88995
1 to 1	H .6563	1.51446	1.51712	1,57119	1.64440	1.74368	1.87893
Light	K .7682	1.51143	1.51368	1.56669	1.63820	1.73530	1.86702
	.800µ	1.5103		1.5659	1.6373		1.8650
40	I,200	1.5048	1,5131		1.0373	1.7339	
	1.600	1.5043	1.5024	1.5585	1.6277	1.7215	1.8481
Kind	2,000	1.4967		1.5535	1.6171	1.7151	1.8396
	2,400	1.4907	1 4973	1.5440	1.6131	1.7104	1.8286
	2.400		·	1.5440	1.0131	_	1.0200

Percentage composition of the above glasses:

- O 546, SiO₂, 65.4; K₂O, 15.0; Na₂O, 5.0; BaO, 9.6; ZnO, 2.0; Mn₂O₃, 0.1; As₂O₃, 0.4; O 540, S1O₂, 05.4; K_2O , 15.0; K_2O , 5.0; K_2O , 6.1; K_2O , 6.2. O 184, SiO₂, 53.7; PbO, 30.0; K_2O , 8.3; K_2O , 1.0; K_2O , 6.5; K_2O , 6.6; K_2O , 6.6; K_2O , 6.7; K_2O , 6.9;

TABLE 392 .- np. Dispersion and Density of Jena Glasses

No, and Type of Jena Glass.	n _D for D	$n_{\rm F}-n_{\rm C}$	$v = \frac{n_{\rm D} - 1}{n_{\rm F} - n_{\rm C}}$	$n_{\rm D} - n_{\rm A}$	$n_{\rm p}-n_{\rm D}$	$n_{\rm G}$, — $n_{\rm F}$	Specific Weight.
O 225 Light phosphate crown O 802 Boro-silicate crown UV 3199 Ultra-violet crown O 227 Barium-silicate crown O 114 Soft-silicate crown O 68 High-dispersion crown UV 2248 Ultra-violet flint	1.4967 1.5035 1.5399 1.5151 1.5149	.00737 0765 0781 0909 0910	70.0 64.9 64.4 59.4 56.6 54.6	.00485 0504 0514 0582 0577 0595	.00515 0534 0546 0639 0642 0666 0680	,00407 0423 0432 0514 0521 0543	2.58 2.38 2.41 2.73 2.55 2.60
O 381 High-dispersion crown O 602 Baryt light flint S 389 Borate flint O 726 Extra light flint O 154 Ordinary light flint	1.5262 1.5676 1.5686 1.5398	1026 1072 1102 1142 1327	55.4 51.3 53.0 51.6 47-3 43.0	0611 0644 0675 0712 0711 0819	0727 0759 0775 0810 0943	0553 0596 0618 0629 0669 0791	2.75 2.70 3.12 2.83 2.87 3.16
O 184 " " " O 748 Baryt flint	1.6235 1.6489 1.7174 7.7541 1.9170	1438 1599 1919 2434 2743 4289 4882	41.1 39.1 33.8 29.5 27.5 21.4	0882 9965 1152 1439 1607 2451 2767	1022 1142 1372 1749 1974 3109 3547	0861 0965 1180 1521 1730 2808	3.28 3.67 3.87 4.49 4.78 6.01 6.33

TABLE 393 .- Change of Indices of Refraction for 1° C in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	С	D	F	G′	$\frac{-\Delta n}{n}$ 100
S 57 Heavy silicate flint O 154 Light silicate flint O 327 Baryt flint light O 225 Light phosphate crown .	58.8°	1.204	1.447	2.090	2.810	0.0166
	58.4	0 225	0.261	0.334	0.407	0 0078
	58.3	0.008	0.014	0.080	0.137	0.0079
	58.1	0.202	0.190	—0.168	-0.142	0.0049

TABLE 394 .- Index of Refraction of Rock Salt in Air

λ(μ).	п.	Obser- ver.	λ(μ).	п.	Obser- ver.	λ(μ).	n.	Observer.
0.185409 .204470 .291368 .358702 .441587 .486149 .58902 .58932 656304 .706548 .766529 .76824 .78576 .88396	1.89348 1.76964 1.61325 1.57932 1.55962 1.55338 1.553496 1.5543399 1.544313 1.540672 1.540702 1.538633 1.536712 1.53666 1.536138 1.534011	M " " " L P L P L P P L P P P	0.88396 .972298 .98220 1.036758 1.1786 1.555137 1.7680 2.073516 2.35728 2.9466 3.5359 4.1252 5.0092	1.534011 1.532532 1.532435 1.531762 1.530372 1.528211 1.527440 1.527544 1.525863 1.525863 1.525849 1.524534 1.524534 1.521648 1.521648 1.521648	L P L P L P L P L P L P L P P L P	5.8932 6.4825 "7.0718 7.6611 7.9558 8.8398 10.0184 11.7864 12.9650 14.1436 14.7330 15.3223 15.9116 20 57 22.3	1.516014 1.515553 1.513628 1.513467 1.511062 1.508318 1.506804 1.502035 1.494722 1.481816 1.471720 1.460547 1.447494 1.441032 1.3735 1.340	P L P L P C C C C C C C C C C C C C C C

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$
where $a^{2} = 2.330165$ $\lambda_{2}^{2} = 0.02547414$ $b^{2} = 5.680137$ $M_{1} = 0.01278685$ $k = 0.0009285837$ $M_{3} = 12059.95$ $\lambda_{1}^{2} = 0.0148500$ $h = 0.000000286086$ $\lambda_{3}^{2} = 3600$. (P) $M_{2} = 0.005343924$

TABLE 395 .- Change of Index of Refraction for 1° C in Units of the 5th Decimal Place

Annais of the Astrophysical Observatory of the Smithsonian Institution, Vol. 1, 1900.

M Martens, Ann. d. Phys. 6, 1901, 8, 1902.

Mi Micheli, Ann. d. Phys. 7, 1902.

TARTE 206 - Index of Refraction of Swinter (Potaggium Chloride) in Air

λ(μ).	n.	Obser- ver.	λ(μ).	71.	Obser- ver.	λ(μ).	п.	Obser- ver.
0.185409 .200090 .21946 .257317 .281640 .308227 .358702 .394415 .467832 .508666 .58933 .67082 .78576 .88398 .98220	1.82710 1.71870 1.64745 1.58125 1.55836 1.54136 1.52115 1.51219 1.50044 1.49620 1.49044 1.48669 1.483282 1.481422	M	1.1786 1.7680 2.35728 2.9466 3.5359 4.7146 5.3°39 5.8932	1.478311 1.47824 1.475890 1.47589 1.474751 1.473834 1.47394 1.473049 1.471122 1.47129 1.470013 1.47001 1.468804 1.46880	P W P W P W P W P W	8.2505 8.8398 10.0184 11.786 12.965 14.144 15.912 17.680 20.60 22.5	1.462726 1.46276 1.460858 1.46092 1.45672 1.45673 1.44919 1.44346 1.44385 1.43722 1.42617 1.41403 1.3882 1.369	P W P W P W P W P W RN

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$

$$a^{2} = 2.174967 \qquad \lambda_{2}^{2} = 0.0255550 \qquad b^{2} = 3.866619$$

$$M_{1} = 0.08344206 \qquad k = 0.000513495 \qquad M_{3} = 5569.715$$

$$\lambda_{1}^{2} = 0.0119082 \qquad h = 0.00000167587 \qquad \lambda_{3}^{2} = 3292.47 \qquad (P)$$

$$M_{2} = 0.00698382$$
We would be seen the property of the property of a property of the property of t

W Weller, see Faschen's article. Other references as under Table 395, above. SMITHSONIAN TABLES.

TABLES 397-400

INDEX OF REFRACTION

TABLE 397 .- Index of Refraction of Fluorite in Air

λ (μ)	п	Obser- ver	λ (μ)	n	Obser- ver	λ (μ)	12	Obser- ver				
0.1856	1.50940	s	1 4733	1.42641	P	4.1252	1.40855	P				
.19881	1.49629 1.48462	16	1.5715	1.42596 1.42582	46	4.4199 4.7146	1.40559	66				
.22645	1.47762 1.46476		- 1.7680 1.9153	1.42507 1.42437	66	5.0092 5.3036	1.39898	66				
.32525	1.44987	. 66	1.9644	1.42413	66	5.5985	1.39142	66				
·34555 ·39681	1.44697 1.44214	66	2.0626 2.1608	1.42359	66	5.8932 6.4825	1.38719	66				
.48607	1.43713	P P	2.2100	1.42288 1.42199	"	7.0718 7.6612	1.3680 5 1.35680	46				
.65618 .68671	1.43257	S	2.5537 2.6519	1.42088 1.42016	66	8.2505 8.8398	1.34444 1.33079	66				
.71836 .76040	1.43157		2.7502 2.9466	1.41971 1.41826	66	9.4291 51.2	1.31612	r, RA				
.8840	1.42982	P	3.1430	1.41707	"	61.1	2.66	S				
1.1786 1.3756	1.42787	٠.	3.2413 3.5359	1.4161 <i>2</i> 1.41379	"		2.63					
1.4733	1.42641	44	3.8306	1.41120	4.6	References under Table 331.						

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda_{v}^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{r}^{2}}$$
where $a^{2} = 2.03882$ $f = 0.00002916$ $M_{3} = 5114.65$
 $M_{1} = 0.0062183$ $b^{2} = 6.09651$ $\lambda_{r}^{2} = 1260.56$
 $\lambda_{1}^{2} = 0.007706$ $M_{2} = 0.0061386$ $\lambda_{v} = 0.0940\mu$
 $\epsilon = 0.0031999$ $\lambda_{v}^{2} = 0.00884$ $\lambda_{r} = 35.5\mu$ (P)

TABLE 398 .- Change of Index of Refraction for 1°C in Units of the 5th Decimal Place C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

TABLE 399 .- Index of Refraction of Iceland Spar (CaCO.) in Air

λ (μ)	to ne	Obser- ver	λ (μ)	120	ne	Obser ver	λ (μ)	120	71 _e	Obser- ver
.208 1.8 .226 1.8 .293 1.7 .340 1.7 .361 1.6 .410 1.6	1.5780 1.5765 1.5654 1.30 1.5492 230 1.5151 1.5056 1.5056 1.5056 1.5022 1.4964 7.55 1.4943 1.4907	- C	0.508 ·533 ·589 ·643 ·656 ·670 ·760 ·768 ·801 ·905	1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6500 1.6497 1.6487 1.6458	1.4896 1.4884 1.4864 1.4849 1.4846 1.4843 1.4826 1.4826 1.4822	M	0.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324	1.6438 1.6393 1.6379 1.6346 1.6313 - 1.6280	1.4802 1.4787 1.4783 1.4774 1.4764 1.4757	C

Carvallo, J. de Phys. (3), 9, 1900. Martens, Ann. der Phys. (4) 6, 1901, 8, 1902. Paschen, Wied Ann. 56, 1895.

Pl Pulfrich, Wied. Ann. 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899. S Starke, Wied. Ann. 60, 1897.

TABLE 400,- Index of Refraction of Nitroso-dimethyl-aniline (Wood)

λ η	λ	n	λ.	72	λ	n	λ	n
0.497 2.14 .500 2.11 .506 2.07 .508 2.02 .516 1.98	4 .536 4 .546 5 .557	1.945 1.909 1.879 1.857 1.834	0.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.769	o .636 .647 .659 .669	1.647 1.758 1.750 1.743 1.723	0.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood.

Phil. Mag 1903.

TABLES 401 AND 402

INDEX OF REFRACTION

TABLE 401.—Index of Refraction of Quartz (SiO₂), 18°C

Wave leng t h	Index Ordinary Ray	Index Extra- ordinary Ray	Fused	Wave- length	Index Ordinary Ray	Index Extra- ordinary Ray	Fused
0.185 .193 .198 .206 .214 .219 .231 .257 .274 .340 .396 .410 .486 0.589	1.67582 .65997 .65999 .64038 .63041 .62494 .61399 .59622 .58752 .56748 .55815 .55650 .54968 I.54424	1.68999 .67343 .66397 .65300 .64264 .63698 .62560 .60712 .59811 .57738 .56771 .56600 .55896	1.5745 1.5603 1.55202 1.553388 1.52911 1.5194 1.5037 1.49623 1.4788	μ 0.656 .686 .760 1.160 .969 2.327 .84 3.18 .63 .96 4.20 5.0 6.45 7.0	1.54189 ·54099 ·53917 ·5329 ·5216 ·5156 ·5039 ·4944 ·4799 ·4679 ·4569 ·417 ·274 1.167	1.55091 .54998 .54811	1.45640

Except Rubens' values,-means from various authorities

TABLE 402.—Index of Refraction for Various Alums*

R	Index of refraction					fraction for	on for the Fraunhofer lines.					
K	Density.	Temp.	a	В	C	D	Е	ъ	F	G		
Aluminium Alums. RAl(SO ₄) ₂ +12H ₂ O.†												
Na NH ₃ (CH ₃) K Rb Cs NH ₄ Tl	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .45393 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 ·45749 ·45996 ·45999 ·46203 ·46288 ·50209	1.44412 .45941 .46181 .46192 .46386 .46481	1.44804 .46363 .46609 .46618 .46821 .46923		
	Chrome Alums. RCr(SO ₄) ₂ +12H ₂ O.†											
Cs K Rb NH ₄ Tl	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808		
	Iron Alums. R Fe(SO ₄) $_2$ + $_1$ 2 H_2 O $_2$ †											
K Rb Cs NH ₄ Tl	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112		

^{*} According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
† R stands for the different bases given in the first column.

For other alums see reference on Landolt-Börnstein-Roth Tabellen.

Selected Monorefringent or Isotropic Minerals

The values are for the sodium D line unless otherwise stated and are arranged in the order of increasing indices Selected by Dr. Edgar T. Wherry from a private compilation of Dr. E. S. Larsen of the U. S. Geological Survey.

Mineral.	Formula.	Index of refraction, $\lambda = 0.589\mu$.
Villiaumite	NaF	1.328 1.339
Opal	3NaF.3LiF.2AlF₃ SiO2.nH2O CaF₂	1.406-1.440
Alum	K ₂ O, Al ₂ O ₃ , 4SO ₃ , 24H ₂ O	1.434 1.456
Sodalite Cristobalite	3Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .2NaCl SiO ₂	1.483 1.486
Analcite	Na ₂ O. Al ₂ O ₃ . 4SiO ₂ . 2H ₂ O KCl	1.487
Noselite	5Na ₂ O. ₃ Al ₂ O ₃ .6SiO ₂ .2SO ₃ Like preceding + CaO	1.495 1.496
HauyniteLazurite	4 Na ₂ O. ₃ Al ₂ O ₃ .6SiO ₂ . Na ₂ S ₆	1.500 ±
Leucite	$K_2O.Al_2O_3.4SiO_2$ $_2Cs_2O2Al_2O_3.9SiO_2.H_2O$	I.500 I.525
Halite	NaČl Al ₂ O ₃ .nH ₂ O	1.544 1.570 ±
Bauxite	3Fe ₂ O ₈ .2As ₂ O ₅ .3K ₂ O.5H ₂ O	1.676
Spinel	MgO.Al ₂ O ₃ 3(Ca, Mg, Mn)O.As ₂ O ₅ MgO	1.723 ± 1.727
Periclasite	3CaO, Al ₂ O ₃ , 3SiO ₂	1.736
Helvite	3(Mn, Fe)O.3BeO.3SiO ₂ .MnS 3MgO.Al ₂ O ₃ .3SiO ₂	1.739
Pyrope	As_2O_3	1.755
Hessonite	3CaO.(Al, Fe) ₂ O ₃ .3SiO ₂ (Mg, Fe)O.Al ₂ O ₃	1.763 1.770 ±
Almandite	3FeO.Al ₂ O ₃ .3SiO ₂ FeO.Al ₂ O ₃	1.778 1.800 ±
Gahnite Spessartite	ZnO.Al ₂ O ₃ 3MnO.Al ₂ O ₃ ,3SiO ₂	1.800 ±
Lime	CaO 3CaO.Cr ₂ O ₃ .3SiO ₂	1.830 1.838
Andradite	3CaO.Fe ₂ O ₃ .3SiO ₂	1.857
Microlite	6CaO.3Ta₂O₅.CbOF₃ CuCl	1.925
Pyrochlore	Contains CaO, Ce ₂ O ₃ , TiO ₂ , etc. 3CaO.(Fe, Ti) ₂ O ₃ .3(Si, Ti)O ₂	1.960-2.000
Percylite	PbO.CuCl ₂ .H ₂ O	2.050
Picotite Eulytite	(Mg, Fe)O.(Al, Cr) ₂ O ₃ 2Bi ₂ O _{3.3} SiO ₂	2.050 ± 2.050
Cerargyrite Mosesite	AgCl Contains Hg, NH4, Cl, etc.	2.061
Chromite	FeO.Cr ₂ O ₃ Sb ₂ O ₃	2.070
Embolite	Ag(Br, Cl) MnO	2.150 ± 2.160
Bunsenite	NiO	2.18 (Li light)
Lewisite Miersite	5CaO.2TiO2.3Sb2O5 CuI.4AgI	2.200
Bromyrite Dysanalite	AgBr Contains CaO, FeO, TiO ₂ , etc.	2.253
Marshite Franklinite	CuI (Zn, Fe, Mn)O.(Fe, Mn) ₂ O ₃	2.346 2.360 (Li light)
Sphalerite	(7n Fo)S	2.370-2.470
Perovskite Diamond	CaO.TiO ₂	2.380
Eglesionite	HgO.2HgCl MnS ₂	2.490 (Li light) 2.690 (Li light)
Alabandite	MnS Cu ₂ O	2.700 (Li light) 2.849

TABLE 404

INDEX OF REFRACTION

Miscellaneous Monorefringent or Isotropic Solids

Substance.	Spectrum line.	Index of refraction.	Authority.
Albite glass. Amber Ammonium chloride Anorthite glass. Asphalt Bell metal Boric Acid, melted. """ Borax, melted. """ Camphor. Canada balsam. Ebonite Fuchsin. """ "" Gelatin, Nelson no. 1. "" various. Gum Arabic. Obsidian Phosphorus. Pitch Potassium bromide " chlorstannate. iodide Resins: Aloes. Canada balsam Colophony Copal. Mastic. Peru balsam Selenium. "" Sodium chlorate.	D D D D D D D D D D D D D D D D D D D	1. 4890 1. 546 1. 0422 1. 5755 1. 635 1. 621 1. 0052 1. 4623 1. 4623 1. 4624 1. 4624 1. 4630 1. 4702 1. 532 1. 546 2. 03 2. 19 2. 33 1. 97 1. 32 1. 540 1. 480 1. 514 1. 482 1. 530 1. 666 1. 619 1. 528 1. 535 1. 5524 1. 6666 1. 619 1. 528 1. 548 1. 528 1. 535 1. 535 1. 535 1. 5374 1. 6666 1. 619 1. 528 1. 548 1. 528 1. 535 1. 5393 2. 61 2. 68 2. 73 2. 93	Larsen, 1909 Mühlheim Grailich Larsen, 1909 E. L. Nichols """"""""""""""""""""""""""""""""""""
Strontium nitrate	D	1.5667	Fock

Selected Uniaxial Minerals

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise indicated. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. Esper S. Larsen of the U. S. Grological Survey.

Mineral.	Formula.	Index	of refraction.						
Mineral.	Formula.	Ordinary ray.	Extraordinary ray.						
(a) Uniaxial Positive Minerals.									
Ice Sellaite Chrysocolla Laubanite Chabazite Douglasite Hydronephelite Apophyllite Quartz Coquimbite Brucite Alunite Penninite Cacoxenite Eudialite Dioptasite Phenacite Phenacite Parisite Willemite Vesuvianite Xenotime Connellite Benitoite Ganomalite Scheelite Zircon Powellite Zircon Powellite Calomel Cassiterite Zircon Pomelite Phosgenite Penfieldite Indict Pospenite Penfieldite Poptylite Cabomel Cassiterite Zincite Phosgenite Penfieldite Poptylite Cabomel Cassiterite Calomel Cassiterite Zincite Phosgenite Penfieldite Poptylite Greenockite Butile Moissanite Moissanite Cinnabarite	H+O MgF2 CuO.SiO2.2H2O 2CaO.Al2O3.5SiO2.6H2O (Ca, Na2)O.Al2O3.4SiO2.6H2O 2CaO.Al2O3.4SiO2.6H2O 2CACL.FECI2.2H2O 2Na2O.3Al2O3.6SiO2.7H2O KxO.SCaO.16SiO2.16H2O SiO2 FexO3.3SO3.0H2O MgO.H2O KxO.3Al2O3.4SO3.6H2O 5(Mg, Fe)O.Al2O3.3SiO2.4H2O 2i*czO3.P2O3.12H2O 2i*czO3.P2O3.12H2O CuO.SiO2.H2O 2BeO.SiO2 2CeOF.CaO.3CO2 2LnO.SiO2 2(Ca, Mn, Fe)O.(Al, Fe)(OH, F)O.2SiO2 YxO3.P2O3 2oCuO.SO3.2 CuCl2.2oH2O BaO.TiO2.3SiO2 2CaO.MoCo CaO.WO 2SiO2 2CaO.MoCo CaO.WO 2SiO2 2FeXO3.SiO2 2CaO.MoCo CaO.WO 2SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2CaO.WO 2SiO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO2 2FeXO3.SiO3 2FeXO3.SiO2 2FeXO3.SiO3.SiO3.SiO3.SiO3.SiO3.SiO3.SiO3.Si	1.300 1.378 1.460 ± 1.475 1.480 ± 1.488 1.490 1.535 ± 1.544 1.550 1.572 1.576 1.582 1.604 1.654 1.654 1.654 1.676 1.694 1.716 ± 1.721 1.723 1.907 1.907 2.008 2.114 2.130 2.210 2.2506 2.616 2.654 2.854	1.313 1.390 1.570 ± 1.486 1.482 ± 1.500 1.502 1.553 1.556 1.550 1.555 1.556 1.550 1.592 1.579 1.645 1.611 1.707 1.670 1.757 1.723 1.718 ± 1.316 1.746 1.746 1.746 1.746 1.746 1.746 1.945 1.931 1.908 ± 1.978 2.650 2.093 2.020 2.140 2.210 2.220 2.150 (Li light) 2.378 2.510 (Li light) 2.529 2.903 2.697 3.201						
(b) Uniaxial Negative Minerals.									
Chiolite Hanksite Thaumasite Hydrotalcite Cancrinite Milarite Kaliophilite Mellite Marialite Nephelite	2NaF.AlF ₃ 11Na ₂ O. ₉ SO ₃ . ₂ CO ₂ .KCl 3CaO. CO ₂ .SiO ₂ .SO ₃ . ₁ SH ₂ O 6MgO. Al ₂ O ₃ .CO ₂ .15H ₂ O 4Na ₂ O. CaO. ₄ Al ₂ O ₃ .2CO ₂ . ₉ SiO ₂ . ₃ H ₂ O K ₂ O. ₄ CaO. ₂ Al ₂ O ₃ . ₂ SiO ₂ .H ₂ O K ₂ O. ₄ CaO. ₂ SiO ₂ .SiO ₂ Al ₂ O ₃ .2SiO ₂ Al ₂ O ₃ .18H ₂ O "Ma" = ₃ Na ₂ O. ₃ Al ₂ O ₃ .18SiO ₂ . ₂ NaCl Na ₂ O. ₄ Al ₂ O ₃ . ₂ SiO ₂	1.349 1.481 1.507 1.512 1.524 1.532 1.537 1.539 1.539	1.342 1.461 1.468 1.498 1.496 1.529 1.533 1.511 1.537 1.538						

TABLES 405 (continued) AND 406

INDEX OF REFRACTION

TABLE 405 (Continued). - Selected Uniaxial Minerals

	_	Index of refraction.						
Mineral.	Formula.	Ordinary ray.	Extraordinary ray.					
(b) Uniaxial Negative Minerals (continued).								
Wernerite Beryl. Torbernite Meionite. Melilite Apatite Calcite Gehlenite Tourmaline Dolomite Magnesite Pyrochroite Corundum Smithsonite Rhodochrosite Jarosite Siderite Pyromorphite Barysilite Mimetite Matlockie Stolzite Geikielite Vanadinite Wulfenite Octahedrite Massicotite Proustite Proustite Proustite Forustite Forustite Forustite Pyrargyrite Hematite	CuO. 2 UO3. P2O3.8H2O "Me" = 4CaO. 3Al2O3.6SiO2 Contains Na2O, CaO. Al2O3, SiO2, etc. gCaO.3P2O3.Ca(F, Cl)2 CaO.CO2 2 CaO. Al2O3.SiO2 Contains Na2O, FeO, Al2O3, B2O3, SiO2, etc. CaO.CO2 MnO.H2O MnO.H2O Al2O3 ZnO.CO2 MnO.CO2 PDO.3P2O3.PbCl2 3PbO.2SiO2 gPbO.3P2O5.PbCl2 pbO.DC2 PbO.WO3 The DC2 The DC3 T	1.578 ± 1.581 ± 1.592 1.592 1.597 1.634 1.634 1.638 1.669 ± 1.682 1.703 1.768 1.818 1.818 1.818 1.818 1.820 1.875 2.050 2.135 2.150 2.310 2.310 2.310 2.310 2.310 2.354 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402 2.554 2.402	1.551 1.575 ± 1.582 1.500 1.629 1.631 1.486 1.638 1.503 1.509 1.681 1.760 1.618 1.505 1.715 1.635 2.042 2.050 2.118 2.042 2.050 2.118 2.040 2.182 1.950 2.304 (Li light) 2.711 2.881 4.2940 4.493 4.49					

TABLE 406. - Miscellaneous Uniaxial Crystals

	C4	Index of			
Crystal.	Spectrum line.	Ordinary ray.	Extraordinary ray.	Authority.	
Ammonium arseniate NH ₄ H ₂ AsO ₄ . Benzil (CeH ₅ CO) ₂ . Corundum, Al ₂ O ₃ , sapphire, ruby. Ice at -8° C. Ivory. Potassium arseniate KH ₂ AsO ₄ . """ Sodium arseniate Na ₃ AsO _{4.12} H ₂ O. " nitrate NaNO ₃ . " phosphate Na ₃ PO _{4.12} H ₂ O. Nickel sulphate NiSO _{4.0} H ₂ O. """ Strychnine sulphate	D D D Li D F D C D	1.5766 1.6588 1.769 1.308 1.297 1.539 1.5762 1.5674 1.5632 1.457 1.586 1.447 1.5103 1.5103	1.5217 1.6784 1.760 1.313 1.304 1.541 1.5252 1.5179 1.5146 1.466 1.453 1.4930 1.4873 1.4844 1.599	T. and C.* Mean Osann Meyer Kohlrausch T. and C. """ Mean "" T. and C. """ Martin	

^{*} Topsöe and Christiansen.

Selected Biaxial Minerals

The values are arranged in the order of increasing β index of refraction and are for the sodium D line except where noted. Selected by Dr. Edgar T. Wherry from private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

Mineral.	Formula.	Inde	of refraction	on.					
Mineral.	i orintaa.	nα	$^{n}\beta$	n_{γ}					
(a) Biaxial Positive Minerals.									
Stercorite. Aluminite. Tridymite. Thenardite. Carnallite. Alunogenite Melanterite Natrolite Arcanite Struvite Heulandite. Thomsonite Harmotomite. Petalite. Nowberyite Gypsum Mascagnite Albite. Hydromagnesite. Wavellite Kieserite. Copiapite. Wavellite Variscite. Labradorite Gibbsite Wagnerite Anhydrite Colemanite. Fremontite Vivianite Petolite Calamine Chondrodite Turquois Topaz. Celestite Prehnite Barite Anhydlite Sillimanite Frosterite. Estatite Euclasite Triplite Euclasite Triplite Euclasite Triplite Euclasite Euclasite Triplite Euclasite Euclasite Triplite Euclasite Triplite Euclasite Triplite Euclasite Triplite Euclasite Euclasite Triplite Euclasite Triplite Euclasite Triplite	Na ₂ O. (NH ₄) ₂ O. P ₂ O _{5.9} H ₂ O Al ₂ O ₃ . SO ₃ -9H ₂ O SiO ₂ Na ₂ O. SO ₃ K.Cl. MgCl ₂ . 6H ₂ O Al ₂ O ₃ S ₀ O ₃ ToH ₂ O FeO. SO ₃ , TH ₂ O PeO. SO ₃ , TH ₂ O Na ₂ O. Al ₂ O ₃ . 3SiO ₂ . 2H ₂ O K ₂ O. SO ₃ (NH ₄) ₂ O. MgO. P ₂ O _{5.1} 2H ₂ O CaO. Al ₂ O ₃ . SSiO ₂ . 3H ₂ O (Na ₂ . Ca)O. Al ₂ O ₃ . SSiO ₂ . 3H ₂ O (K ₂ . Ba)O. Al ₂ O ₃ . SSiO ₂ . 3H ₂ O (K ₂ . Ba)O. Al ₂ O ₃ . SSiO ₂ . 2H ₂ O Li ₂ O. Al ₂ O ₃ . SSiO ₂ CaO. P ₂ O ₃ . H ₂ O (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ (NH ₄) ₂ O. SO ₃ . H ₂ O (NH ₄) ₂ O. SO ₃ . H ₂ O (NH ₄) ₂ O. SO ₃ . H ₂ O (NH ₂ O. SO ₃ . H ₂ O (SO ₃ O ₃ O ₄ O ₃ . H ₂ O (SO ₃ O ₄ O ₃ O ₄ O ₅ . H ₂ O (SO ₄ O ₃ O ₄ O ₅ . H ₂ O (SO ₄ O ₃ O ₄ O ₅ O ₅ O ₄ O ₅ O (Na ₂ O. Al ₂ O ₃ . SH ₂ O (Na ₂ O. Al ₂ O ₃ . SH ₂ O (Na ₂ O. Al ₂ O ₃ . SH ₂ O (Na ₂ O. Al ₂ O ₃ . SH ₂ O (SO ₄ O ₅ O ₅ O ₄ O ₅ O (SO ₄ O ₅ O ₅ O ₄ O ₅ O (SO ₄ O ₅ O ₅ O ₄ O ₅ O (SO ₄ O ₅ O ₅ O ₅ O ₄ O (SO ₄ O ₅ O ₅ O ₅ O ₅ O (SO ₄ O ₅ O ₅ O ₅ O (SO ₄ O ₅ O ₅ O ₅ O (SO ₄ O ₅ O ₅ O ₅ O (SO ₄ O ₅ O (SO ₄ O ₅ O (SO ₄ O ₅ O ₅ O (SO ₄ O ₅ O (SO ₄ O ₅ O ₅ O (SO ₄ O ₅ O ₅ O (SO ₄ O (SO ₄ O ₅ O (SO ₄ O (SO ₄ O ₅ O (SO ₄ O	1.439 1.459 1.469 1.466 1.474 1.471 1.480 1.495 1.498 1.497 1.503 1.504 1.515 1.514 1.522 1.523 1.523 1.523 1.525 1.523 1.521 1.525 1.523 1.520 1.521 1.520 1.521 1.521 1.522 1.523 1.530 1.401 1.551 1.550 1.500 1.500 1.501 1.500	1.441 1.464 1.470 1.474 1.475 1.476 1.478 1.482 1.495 1.490 1.503 1.503 1.503 1.503 1.523	1. 469 1. 470 1. 473 1. 483 1. 483 1. 486 1. 493 1. 497 1. 504 1. 505 1. 508 1. 516 1. 525 1. 533 1. 533 1. 533 1. 536 1. 552 1. 586 1. 555 1. 582 1. 588 1. 568 1. 582 1. 614 1. 614 1. 613 1. 633 1. 633 1. 633 1. 634 1. 634 1. 635 1. 636 1. 637 1. 648 1. 657 1. 648 1. 657 1. 658 1. 671 1. 672					
Spodumenite Diopside. Olivine	Li ₂ O.Al ₂ O ₃ .4SiO ₂ CaO.MgO. ₂ SiO ₂ ₂ (Mg, Fe)O.SiO ₂	1.660 1.664 1.662	1.666 1.671 1.680	1.676 1.694 1.699					
Tripbylite	Li ₂ O. ₂ (Fe, Mn)O.P ₂ O ₅	1.688	1.688	1.692					

TABLE 407 (continued)

INDEX OF REFRACTION

Selected Biaxial Minerals

Mineral.	Formula.	I	ndex of refi	action.
Armerat.	Formula.	n_{α}	$^n\beta$	n_{γ}
(a) B	IAXIAL POSITIVE MINERALS (contin	ued).		
Zoisite. Strengite. Diasporite Staurolite. Chrysoberyl. Azurite Scorodite Olivenite. Anglesite Titanite. Claudetite Sulfur. Cotunnite. Huebnerite. Manganite Raspite. Mendipite. Tantalite Wolframite Crocoite Pseudobrookite Stibiotantalite Montroydite Brookite	4CaO.3Al ₂ O ₃ .6SiO ₂ .H ₂ O Fe ₂ O ₃ .P ₂ O ₃ .4H ₂ O Al ₂ O ₃ .H ₃ O 2FeO ₅ .Al ₂ O ₃ .4SiO ₂ .H ₂ O BeO.Al ₂ O ₃ 3CuO.2CO ₂ .H ₂ O Fe ₂ O ₃ .As ₂ O ₃ .4H ₂ O 4CuO.As ₂ O ₃ .H ₂ O PbO.SO ₃ CaO.TiO ₂ .SiO ₂ As ₂ O ₃ S PbCl ₂ MnO.WO ₃ Mn ₂ O ₃ .H ₂ O PbO.WO ₃ 2PbO.PbCl ₂ (Fe, Mn)O.Ta ₂ O ₅ (Fe, Mn)O.Ta ₂ O ₅ (Fe, Mn)O.WO ₃ PbO.CrO ₃ 2Fe ₂ O ₃ .3TiO ₂ Sb ₂ O ₃ .Ta ₂ O ₅ HgO	1.700 1.710 1.710 1.702 1.736 1.747 1.735 1.772 1.877 1.900 1.871 1.950 2.200 2.170 2.240 2.270 2.240 2.270 2.310 2.310 2.380 2.374 2.370 2.583	1.702 1.710 1.722 1.741 1.748 1.758 1.774 1.810 1.882 1.907 1.920 2.043 2.217 2.220 2.240 2.270 2.320 2.360 2.370 2.390 2.404 2.500 2.586	1.706 1.745 1.750 1.746 1.757 1.838 1.797 1.863 1.894 2.010 2.240 2.260 2.320 2.330 (Li) 2.450 (Li) 2.460 (Li) 2.450 (Li) 2.420 (Li) 2.450 (Li) 2.450 (Li) 2.450 (Li) 2.450 (Li) 2.450 (Li)
Brookite	TiO ₂ PbO	2.583	2.586	2.741
	(b) BIAXIAL NEGATIVE MINERALS.			
Mirabilite Thomsenolite. Natron Kalinite Epsomite Sassolite. Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter. Kainite. Gaylussite Scolectie Laumontite Orthoclase Microcline Anorthoclase Glauberite Cordierite. Chalcanthite Oligoclase.	NagO.SO _{3.10} H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O NagO.CO _{2.10} H ₂ O K ₂ O.Al ₂ O _{4.4} SO _{3.24} H ₂ O M ₂ O.SO _{3.7} H ₂ O B ₂ O _{3.17} H ₂ O B ₂ O _{3.17} H ₂ O D ₃ O _{3.7} H ₂ O N ₃ O _{3.4} O _{3.2} SO _{3.2} H ₂ O N ₃ O _{3.4} O ₄ CO _{2.5} H ₂ O N ₃ O ₄ CO _{2.5} H ₂ O N ₃ O ₄ CO _{2.5} H ₂ O N ₃ O ₄ CO _{2.5} H ₂ O N ₃ O ₄ CO _{2.5} D ₄ O N ₃ O ₄ CO _{3.5} O _{3.5} D ₄ O N ₃ O ₄ CO _{3.5} D ₅ O ₅ O ₅ O ₅ O ₅ O ₅ D ₅ O ₅ O ₅ D ₅ D ₅ O ₅ D ₅ D ₅ O ₅ D ₅ D ₅ D ₅ D ₅ D ₅ D ₅ D ₅ D ₅ D ₅ D	1.394 1.407 1.405 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.494 1.494 1.513 1.518 1.522 1.523 1.515 1.534 1.539	1.396 1.414 1.425 1.452 1.455 1.450 1.470 1.480 1.488 1.495 1.498 1.505 1.505 1.505 1.516 1.519 1.524 1.526 1.522 1.538 1.539 1.533	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.483 1.489 1.542 1.518 1.500 1.506 1.516 1.523 1.519 1.525 1.526 1.530 1.530 1.540 1.540

TABLE 407 (Concluded)

INDEX OF REFRACTION

Selected Biaxial Minerals

Mineral.	Formula.	In	dex of refra	ction.				
Willeral.	$n_{\mathbf{\alpha}}$	$n\beta$	n_{γ}					
(b) BIAXIAL NEGATIVE CRYSTALS (continued).								
Beryllonite. Kaolinite Biotite Autunite. Autunite. Lanthanite Pyrophyllite Tale. Hopeite Muscovite Amblygonite Lepidolite. Phlogopite Tremolite. Actinolite. Wollastonite Lazulite Danburite Glaucophanite Andalusite Hornblende Datolite Erythrite Monticellite Strontianite Witherite Aragonite. Axanite Dumortierite Cyanite Epidote Atacamite Fayalite Caledonite Atacamite Fayalite Caledonite Malachite Lanarkite Leanarkite Leanarkite Leandillite Cerussite Laurionite Malacleite Baddeleyite Lepidocrocite Limonite. Baddeleyite Lepidocrocite Limonite. Goethite. Valentinite. Valentinite.	Na ₂ O _{.2} BeO _. P ₂ O _{.5} Al ₂ O ₃ , 25iO ₂ , 2H ₂ O Al ₂ O ₃ , 25iO ₂ , 2H ₂ O CaO _{.2} UO ₃ , P ₂ O ₅ , 8H ₂ O "An" = CaO _. Al ₂ O ₃ , 25iO ₂ La ₂ O ₁ , 3CO ₂ , 0H ₂ O Al ₂ O ₃ , 4SiO ₂ , H ₂ O 3ZnO, P ₂ O ₅ , 4H ₂ O 3ZnO, P ₂ O ₅ , 4H ₂ O 3ZnO, P ₂ O ₅ , 4H ₂ O 3ZnO, P ₂ O ₅ , 2LiF Al ₂ O ₃ , 3SiO ₂ , 2(K, Li)F K ₂ O _. Al ₂ O ₃ O ₅ SiO ₂ , 2H ₂ O Al ₂ O ₃ P ₂ O ₅ , 2LiF Al ₂ O ₃ , 3SiO ₂ , 2(K, Li)F K ₂ O _. Al ₂ O ₅ O ₅ SiO ₂ , 2H ₂ O CaO _{.3} MgO, A ₅ SiO ₂ CaO _{.5} iO ₂ Al ₂ O ₃ , 2SiO ₂ Al ₂ O ₃ , 2SiO ₂ Al ₂ O ₃ , 2SiO ₂ Al ₂ O ₃ , 3SiO ₂ CaO _{.5} iO ₂ Al ₂ O ₃ Sh ₂ O ₃ Sh ₂ O CaO _{.5} iO ₂ Al ₂ O ₃ Sh ₂ O ₃ Sh ₂ O CaO _{.5} iO ₂ BaO _. CO ₂ CaO _{.5} iO ₂ CaO _{.5} iO ₂ CaO _{.5} iO ₂ Al ₂ O ₃ SiO ₂ Al ₂ O ₃ Co ₃ Co ₂ Al ₂ O Al ₂ O ₃ Co ₃ O ₃ O ₃ Co ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O	1.552 1.561 1.553 1.561 1.553 1.576 1.552 1.561 1.572 1.561 1.572 1.561 1.572 1.602 1.603 1.703	1. 558 1. 563 1. 563 1. 574 1. 575 1. 584 1. 587 1. 588 1. 590 1. 590 1. 593 1. 606 1. 623 1. 623 1. 634 1. 638 1. 638 1. 642 1. 663 1. 638 1. 642 1. 666 1. 685 1. 667 1. 686 1. 720 1. 686 1. 720 1. 861 1. 866 1. 754 1. 866 1. 866 1. 754 1. 866 1. 875 1. 869 2. 076 2. 116 2. 1150 2. 1150 2. 1100 2. 2100 2. 2100 2. 2350	1.561 1.565 1.574 1.577 1.588 1.613 1.600 1.589 1.590 1.594 1.597 1.605 1.636 1.636 1.633 1.638 1.638 1.638 1.638 1.638 1.638 1.653 1.667 1.686 1.688 1.667 1.686 1.688 1.689 1.728 1.728 1.880 1.728 1.880 1.874 1.900 1.900 1.900 2.010 2.078 2.158 2.150 2.350 (Li) 2.350				
Turgite Realgar Terlinguaite.	₂ Fe ₂ O ₃ ,H ₂ O in part AsS Hg ₂ OCl	2.450 2.460 2.350	2.550 2.590 2.640	2.550 (Li) 2.610 (Li) 2.670 (Li)				
Hutchinsonite. Stibnite.	(Tl, Ag) ₂ S.PbS. ₂ As ₂ S ₃ Sb ₂ S ₃	3.078	3.176 4.303	3.188 4.460				

TABLE 408.-Miscellaneous Biaxial Crystals

Crystal.	Spectrum	Ind	ex of refract	ion.	Authority.
C153cai.	line.	n _a	$n\beta$	n_{γ}	Authority.
Ammonium oxalate, (NH ₄) ₂ C ₂ O ₄ .H ₂ O Ammonium acid tartrate,		1.4381	1.5475	1.5950	Brio
(NH ₄)H(C ₄ H ₄ O ₆) Ammonium tartrate, (NH ₄) ₂ C ₄ H ₄ O ₆	D D	1.5188	1.5614	1.5910	T. and C.* Cloisaux
Antipyrin, C ₁₁ H ₁₂ NO ₂	D	1.5697	1.6935	1.7324	Liweh
Codein, C ₁₈ H ₂₁ NO ₃ .H ₂ O	D	I.4932 I.5390	I.4977 I.5435	1.5089	Schrauf Grailich
Magnesium carbonate, MgCO _{3.3} H ₂ O	D	1.495	1.501	1.526	Genth
" sulphate, MgSO _{4.7} H ₂ O	D Cd, 0. 226µ	I.432 I.4000	I.455 I.5266	1.461	Means Borel
11 11	Η, ο.656μ	1.4307	I.5200 I.4532	1.5320	Bolei "
Potassium bichromate, K ₂ Cr ₂ O ₇	D	1.7202	1.7380	1.8197	Dufet
" chromate, K ₂ CrO ₄	red	1.6873	I.7254 I.722	1.7305	T. and C. Mallard
" nitrate, KNO3	D	1.3346	1.5056	1.5064	Schrauf
" sulphate, K ₂ SO ₄	F	1.4976	1.4992	1.5029	T. and C.
		I.4932 I.4911	1.4946	I.4980 I.4950	41 44 44
Racemic acid, C ₄ H ₆ O ₆ .H ₂ O			1.526		Groth
Resorcin, C ₆ H ₆ O ₂ Sodium bichromate, Na ₂ Cr ₂ O _{7,2} H ₂ O		1.6610	1.555	1.7510	Dufet
" acid tartrate, NaH(C4H4O6).2H2O	red		1.5332	_	Brio
Sugar (cane), C ₁₂ H ₂₂ O ₁₁		1.5422	I.5685	1.5734	Calderon
14 44	Li	I.5397 I.5379	1.5007	1.5716	44
Tartaric acid, C ₄ H ₆ O ₆ (right-)	D	I.4953	1.5353	1.6046	Means
Zinc sulphate, ZnSO _{4.7} H ₂ O	D D	1.4620	1.4860 1.4801	I.4897 I.4836	T. and C.
"		I.4544	1.4776	1.4812	66 68 64
* '	Topsöe and Chri	stiansen.			

TABLE 409.—Miscellaneous Liquids (see also Table 410), Liquefied Gases, Oils,
Fats and Waxes

Substance.	Temp.	Index for D o. 589 μ .	Refer- ence.	Substance.	Temp.	Index for D 0.589 μ .	Refer- ence.
Liquefied gases: Br2 Cl2 Cl2 C2N2 C2M4 H2S N2 NH3 NO O2 SO2 HCl HBr HI Oils: Almond Castor. Citronella. Clove. Cocoanut. Cod liver. Cotton seed Croton. Eucalyptus Lard	15 14 15 18 6 18.5 -190 16.5 -90 15 16.5 10.5 10.5 15 20 20 15.5 15 27 20 20 15.5 27 20	1.059 1.367 1.195 1.325 1.1384 1.205 1.325 1.330 1.194 1.221 1.350 1.252 1.325 1.325 1.476 1.475.38 1.4709-1.4803 1.477-1.48 1.5301-1.5360 1.4587 1.479-1.4783 1.479-1.4783 1.479-1.4783	a b b b b b b c b c b c b b b b d e e e d e e d	Oils: Lavendar. Linseed Maize. Mustard seed Neat's foot Olive Palm Peanut. Peppermint Poppy Porpoise Rape (Colza) Seal Sesame Soja bean Sperm Sunflower Tung Whale Fats and Waxes: Beef tallow Beeswax. Carnauba wax. Cacoa butter. Lard. Mutton tallow	20 15.5 15.5 15.5 15.5 60 15.5 20 15.5 25 15.5 15	I. 464-I. 466 I. 4820-I. 4852 I. 4757-I. 4768 I. 4750-I. 4768 I. 4750-I. 4768 I. 4703-I. 4708 I. 4703-I. 4708 I. 4703-I. 4708 I. 4703-I. 4708 I. 4710 I. 461-I. 468 I. 4770 I. 4677 I. 4748-I. 4752 I. 4741 I. 4742 I. 4742 I. 4765-I. 4672 I. 4768 I. 4580-I. 4548 I. 4520-I. 4548 I. 4520-I. 4548 I. 4580-I. 4561 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518 I. 4580-I. 4518	e e d d e d d e d e e e e e e e e e e e

References: (a) Martens; (b) Bleekrode, Pr. Roy. Soc. 37, 339, 1884; (c) Liveing, Dewar, Phil. Mag., 1892–3; (d) Tolman, Munson, Bul. 77, B. of C., Dept. Agriculture, 1005; (e) Seeker, Van Nostrand's Chemical Annual. For the oils of reference d, the average temperature coefficient is 0.000365 per °C.

Indices of Refraction of Liquids Relative to Air

				Indic	es of refrac	tion.		Author-
Substance.	Den- sity.	Temp.	ο.397μ Η	ο.434μ G'	ο. 486μ F	0. 589μ D	0.656μ C	ity.
Acetaldehyde, CH3CHO. Acetone, CH3COCH3. Aniline, CeH3.NH2. Alcohol, methyl, CH3.OH. "ethyl C2H3.OH. "an-propyl C3H7.OH. Benzene, CeH6. "CeH6. dn/dt. Bromnaphthalene, C10H7Br. Carbon disulphide, CS2. "tetrachloride, CC14. Chinolin, C9H7N. Chloral, CC13.CHO. Chloroform, CHC13. Decane, C10H22. Ether, ethyl, CeH3.O.C2H3. "dn/dt. Ethyl nitrate, C2H3.O.C2H3. "dn/dt. CH3.CHO. CH3.CHO. CH3.CHO. CH3.CHO. CH3.CHO. CH3.CHO. CH3.CHO. CH3.CH3.O. CH3.CH3.O. CH3.CH3.O. CH3.CH3.O. CH3.CH3.O. CH3.CH3.O. CH3.CH3.O. CH3.CH3.CH3.O. CH3.CH3.O. CH3.CH3.CH3.O. .O. CH3.CH3.CH3.CH3.O. CH3.CH3.CH3.CH3.O. CH3.CH3.CH3.CH3.CH3.O. CH3.CH3.CH3.CH3.CH3.O. CH3.CH3.CH3.CH3.CH3.CH3.CH3.CH3.CH3.CH3.	0.780 0.780 0.791 1.022 0.794 0.880 0.800 0.804 0.880 1.263 1.263 1.501 1.200 1.512 1.480 0.715 1.100 1.210 1.260 0.660 0.670 0.3318 0.962 1.012 0.902 0.90	° C 20 20 20 20 20 20 20 20 20 20 20 20 20	0.397# H	0.434µ 1.3394 1.3394 1.3678 1.6204 1.3362 1.3773 1.3703 1.52360007 1.7041 1.6920 1.6670 1.4670 1.4670 1.458 1.4200 1.3607 1.4938 1.4200 1.3607 1.4050 1.395 1.3804 1.4950	0.486µ F 1.3359 1.3639 1.3639 1.3631 1.3739 1.3668 1.3901 1.51320006 1.6819 1.6683 1.4676 1.4624 1.4530 1.4624 1.4530 1.4624 1.4784 1.3799 1.4007 1.76920007 1.60311046 1.3847 1.5743 1.5643 1.5623 1.3764 1.3799 1.4007 1.7692	0.589µ 1.3316 1.3593 1.5863 1.3693 1.3693 1.3693 1.3698 1.3698 1.3698 1.3698 1.6276 1.4697 1.44697 1.44697 1.4478 1.35538 1.3714 1.4730 1.3754 1.4730 1.3754 1.4747 1.5823 1.4297 1.4782 1.5577 1.4467 1.6245 1.4782 1.5475 1.4717 1.5823 1.4947 1.5823 1.494782 1.5577 1.44782 1.5577 1.44782 1.5577 1.44782 1.5577 1.44782 1.5577 1.44782 1.5577 1.44782 1.5577 1.4782 1.5577 1.4782 1.5577 1.4782 1.5577 1.4782 1.5577 1.4782 1.5577 1.4782 1.5577 1.4782 1.5475	0.656µ C 1.3298 1.3573 1.5703 1.3277 1.36750004 1.3834 1.49050006 1.6405 1.6161 1.4530 1.44530 1.44530 1.44530 1.4706 1.3834 1.4706 1.3734 1.3927 1.3734 1.3927 1.3734 1.3927 1.5508 1.5510 1.5301 1.5301 1.5301 1.5301 1.5301 1.5301	ity. Ia Means "the Means In Means
rock turpentine. Pentane, CH ₃ (CH ₂) ₃ CH ₃ . Phenol, C ₆ H ₃ OH. "Styrene, C ₆ H ₃ CH.CH ₂ . Thymol, C ₁₀ H ₁₄ O. Toluene, CH ₃ .C ₆ H ₅ . Water, H ₂ O.	0.87 0.87 0.625 1.060 1.021 0.910 0.982 0.86	0 10.6 20.7 15.7 40.6 82.7 16.6 ——————————————————————————————————	I.4939 I.4913 ————————————————————————————————————	1.3645 1.5684 1.5816 1.5170 1.3404 1.3413	1.4847 1.4793 1.3610 1.5558 1.5356 1.5659 1.5386 1.5070 1.3372 1.3380	1.4744 1.4721 1.3581 1.5425 1.5485 1.4955 1.3330 1.3338	1.4715 1.4692 1.3570 1.5369 1.5174 1.5419 1.5228 1.4911 1.3312 1.3319	9 8 1e 1g 1h 1i 1h 10 Means
46		40 80	I.3411 I.3332	I.3380 I.3302	I.3349 I.3270	I.3307 I.3230	1.3290 1.3313	66

References: 1, Landolt and Börnstein (a, Landolt; b, Korten; c, Brühl; d, Haagen; e, Landolt, Jahn; f, Nasini, Bernheimer; g, Eisenlohr; h, Eykman; i, Auwers, Eisenlohr); 2, Korten; 3, Walter; 4, Ketteler; 5, Landolt; 6, Olds; 7, Baden Powell; 8, Willigen; 9, Fraunhofer; 10, Brühl.

TABLE 411

Indices of Refraction for Solutions of Salts and Acids Relative to Air

			Indi	ces of refr	action for	spectrum l	lines.	
Substance.	Density.	Temp. C.	С	D	F	Нγ	н	Authority.
		(a) S	COLUTIONS	IN WAT	ER.			
Ammonium chlorice "Calcium chloride """	e 1.067 .025 .398 .215	27°.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	1.37936 .35050 .44279 .39652 .37369	.44938 .40206	_ _ _	1.39336 .36243 .46001 .41078 .38666	Willigen. " " " "
Hydrochloric acid Nitric acid Potash (caustic) . Potassium chloride " "	. 1.166 · · ·359 · · 416 · normal double	20.75 18.75 11.0 solution normal normal	1.40817 .39893 .40052 .34087 .34982 .35831		1.41774 .40857 .40808 .34719 .35645	- - 1.35049 •35994 •36890	1.42816 .41961 .41637 -	Fraunhofer. Bender.
Soda (caustic) . Sodium chloride . " ";	. 1.376	21.6 18.07 18.07 18.07	1.41071 .37562 .35751 .34000	1.41334 .37789 .35959 .34191	1.41936 .38322 .36442 .34628	- 1.38746 .36823 .34969	1.42872 - - - -	Willigen Schutt.
Sodium nitrate . Sulphuric acid . " " " " "	. 1.358 811 .632 .221	22.8 18.3 18.3 18.3 18.3	1.38283 .43444 .42227 .36793 .33663	1.38535 .43669 .42466 .37009 .33862		1111	1.40121 .44883 .43694 .38158 .34938	Willigen.
Zinc chloride	. 1.359	26.6 26.4	1.39977 .37292	.37515	1.40797 .38026	-	1.41738 .38845	"
		(b) Solut	rions in l	Етнуь А	LCOHOL.			
Ethyl alcohol "" Fuchsin (nearly sa	. 0.789 .932	25.5 27.6	1.3 5 791 ·35372	1.35971 .35556	1.36395 .3 5 986	-	1.37094 Willigen. .36662 "	
urated) Cyanin (saturated)	: -	16.0	.3918	.398	.361 .3705	-	·3759 ·3821	Kundt.
Note. — Cyan a 4.5 per cent. sol For a 9.9 per cent	ution #4=	= 1.4593, µ	$\iota_B = 1.46$	95, µF(9	reen) =	1.4514, /	u_G (blue) == 1.4554.
,	(c) Solution	ons of Pot	ASSIUM F	ERMANGA	NATE IN	WATER.*		
Wave- length in cms. \times 10 ⁶ . Spec- trum line. Inde: for 1 % se		Index for 3 % sol.	for	ength t	rum f		or f	odex or for 4 % sol.
68.7 B 1.332 65.6 C .333 61.7334 59.4335 58.9 D .335 56.8336 55.3336 52.7 E .336 52.2336	5 .3348 3 .3365 4 .3373 3 .3372 2 .3387 6 .3395	1.3365 .3381 .3393 -3412 .3417 -3388	1.3382 .3391 .3410 .3426 .3426 .3445 .3438	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	F .3 F .3 3 3 3 3	374 377 381 397 407 417	- 395 ·3 402 ·3 421 ·3	386 1.3404 3408 398 .3413 414 .3423 426 .3439 3452 457 .3468

^{*} According to Christiansen.

Indices of Refraction of Gases and Vapors

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - 1 \equiv \frac{n_0 - 1}{1 + at} \frac{p}{f_{00}}$, where n_t is the index of refraction for temperature t, n_0 for temperature zero, α the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimeters of mercury. For air see Table 413.

	(a) Indices of refraction.												
Spectrum	10 ³ (n-1)	Spectrum	103 (n-1)	Wave-		(n-1) 103.						
line.	Air.	line.	Air.	length.	Air.	0.	N.	н.					
A B C D E F G H K L	.2905 .2911 .2914 .2922 .2933 .2943 .2962 .2978 .2980 .2987	M N O P Q R S T U	.2993 .3003 .3015 3023 .3031 .3043 .3053 .3064 .3075	.4861 .5461 .5790 .6563 .4360 .5462 .6709 6.709 8.678	.2951 .2936 .2930 .2919 .2971 .2937 .2918 .2881 .2888	-2734 -2717 -2710 -2698 -2743 -2704 -2683 -2643 -2650 sons; the	.3012 .2998 -2982 co ₂ .4506 .4471 .4804 .4579	.1406 .1397 .1393 .1387 .1418 .1397 .1385 .1361 .1361					

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia	D white D D D	1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 Rayleigh.	Hydrogen Hydrogen sul-{ phide } Methane	white D D D white	1.000138-1.000143 1.000132 Burton. 1.000644 Dulong. 1.000623 Mascart. 1.000443 Dulong.
Bromine Carbon dioxide	D white D white D	1.001132 Mascart. 1.000449-1.000450 1.000448-1.000454 1.001500 Dulong. 1.001478-1.001485	Methyl alcohol. Methyl ether Nitric oxide.	D D D white D	1.000444 Mascart. 1.000549–1.000623 1.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.
Carbon mon- { oxide } Chlorine	white white white D D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436-1.001464	Nitrogen Nitrous oxide . Oxygen	white D white D white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen . , Ethyl alcohol . Ethyl ether Helium	white D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036 Ramsay.	Pentane Sulphur dioxide	D D white D white	I.000271-I.000272 I.001711 Mascart. I.000665 Dulong. I.000686 Ketteler. I.000261 Jamin.
Hydrochloric { acid }	white D	1.000449 Mascart. 1.000447 "		D	1.000249-1.000259

TABLE 413

INDEX OF REFRACTION

TABLE 413.—Index of Refraction of Air (15°C, 76 cm)

Corrections for reducing wave lengths and frequencies in air (15° C, 76 cm) to vacuo.

The indices were computed from the Cauchy formula $(n-1)10^7=2726.43+12.288/(\lambda^2\times 10^{-8})+0.3555/(\lambda^4\times 10^{-16})$. For o° C and 76 cm the constants of the equation become 2875.66, 13.412 and 0.3777 respectively, and for 30° C and 76 cm, 2589.72, 12.259 and 0.2576. Sellmeier's formula for but one absorption band closely fits the observations: $n^2=1+0.0057378\lambda^2/(\lambda^2-595260)$. If n-1 were strictly proportional to the density, then $(n-1)_0/(n-1)_t$ would equal 1+at where a should be 0.00367. The following values of a were found to hold: 0.85 μ 0.25 μ 0.25 μ

 λ 0.85 μ 0.75 μ 0.65 μ 0.65 μ 0.55 μ 0.45 μ 0.35 μ 0.35 μ 0.25 μ 0.03072 0.003072 0.003078 0.00308 0.00308 0.003072 0.003078 0.003078 0.003079 0.003078 0.003079 0.0

length, $(n-1)$ correction waves per λ in air λ length, λ 10° for λ in air cm λ 11° C $(n\lambda - \lambda)$. I λ 17 λ Ang-	(n-1) co	or λ in air $(n\lambda - \lambda)$ Add. Add. 1.524 1.551 1.578 1.604 1.631	Frequency waves per cm	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n\lambda} - \frac{1}{\lambda}\right)$. Subtract.
2100 3188 0.670 47/619 15.18 5000 2200 3132 0.689 45.454 14.23 5700 2300 3086 0.710 43.478 13.41 5800 2400 3047 0.731 41,666 12.69 5000	2769 2768 2766 2765 2763	1.551 1.578 1.604 1.631	17,857 17,543 17,241	4.94 4.85
2500 2014 0.754 40.000 12.05 6000		1	16,949	4.77
2000 2986 0.776 38.461 11.48 6100 2700 2962 0.800 37,037 10.97 6200 2800 2941 0.824 35,714 10.50 6300 2901 2900 2923 0.848 34,482 10.08 6400	2761 2760 2759	1.658 1.685 1.712 1.739 1.766	16,666 16,393 16,129 15,873 15,625	4.60 4.53 4.45 4.38 4.31
3000 2907 0.872 33,333 9.69 6500 3100 2893 0.897 32,258 9.33 6600 3200 2880 0.922 31,250 9.00 6700 3300 2869 0.947 30,303 8.69 6800 3400 2859 0.972 29,411 8.41 6900	2758	1.792	15,384	4.24
	2757	1.819	15,151	4.18
	2756	1.846	14,925	4.11
	2755	1.873	14,705	4.05
	2754	1.900	14,492	3.99
3500 2850 0.998 28,571 8.14 7000 2842 1.023 27,777 7.89 7100 2835 1.049 27,027 7.66 7200 3300 2829 1.075 26,315 7.44 7300 3900 2823 1.101 25,641 7.24 7400	2753	1.927	14,285	3.93
	2752	1.954	14,084	3.88
	2751	1.981	13,888	3.82
	2751	2.008	13,698	3.77
	2750	2.035	13,513	3.72
4000 2817 I.127 25,000 7.04 7500 4100 2812 I.153 24,390 6.86 7600 4200 2808 I.170 23,800 6.68 7700 4300 2803 I.205 23,255 6.52 7800 4400 2799 I.232 22,727 6.36 7900	2749	2.062	13,333	3.66
	2749	2.089	13,157	3.62
	2748	2.116	12,987	3.57
	2748	2.143	12,820	3.52
	2747	2.170	12,658	3.48
4500 2706 1.258 22,222 6.21 8000 4000 2702 1.284 21,739 6.07 8100 4700 2789 1.311 21,7276 5.93 4800 2786 1.338 20,833 5.80 8250 4900 2784 1.364 20,406 5.68 8500 8750	2746	2.197	12,500	3 · 43
	2746	2.224	12,345	3 · 39
	2745	2.265	12,121	3 · 33
	2744	2.332	11,764	3 · 23
	2743	2.400	11,428	3 · 13
5000 2781 1.391 20,000 5.56 9000 5100 2779 1.417 19,607 5.45 9250 5200 2777 1.444 19,230 5.34 9500 5300 2775 1.471 18,867 5.23 9750 5400 2773 1.497 18,518 5.13 10000	2742	2.468	11,111	3.05
	2741	2.536	10,810	2.96
	2740	2.604	10,526	2.88
	2740	2.671	10,256	2.81
	2739	2.739	10,000	2.74

MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE

TABLE 414.—Liquids, $n_D (0.589\mu) = 1.74$ to 1.87

In 100 parts of methylene iodide at 20° C the number of parts of the various substances indicated in the following table form saturated solutions having the refractive indices specified. When ready for use the liquids can be mixed to give intermediate refractions. Commercial iodoform (CHIs) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the SnI_4 will prevent discoloration.

CHI ₃ .	SnI ₄ .	AsI ₃ .	SbI ₃ .	S.	na at 20°.
40 35	25 25 30 27 27 27 31 31	13 16 14 16	12 12 7 8 8	6 10	1.764 1.783 1.806 1.820 1.826 1.842 1.853 1.868

TABLE 415.—Resinlike Substances, n_D (0.589 μ) = 1.68 to 2.10

Piperine, an inexpensive alkaloid, comes in very pure straw-colored crystals. Melted it dissolves the tri-iodides of Sb and As very freely. The solutions are fluid at slightly above 100° and when cold, resinlike. Three parts antimony iodide to one part of arsenic iodide with varying proportions of piperine are easier to manipulate than one containing either iodide alone. In preparing, the constituents, in powder of about 1 mm grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	00.	10.	20.	30.	40.	50.	60,	70.	80.
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 416.—Permanent Standard Resinous Media, n_D (0.589 μ) = 1.546 to 1.682

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

Per cent Rosin.	00.	10.	20.	30.	40.	50.	60.	70.	80.	90.	100.
Index of refraction	1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

All taken from Merwin, Journ. Washington Acad. Sci. 3, 35, 1913.

TABLE 417.—Substances, $n_D \equiv 1.39$ to 1.75

n-Heptane 1.39 p-Xylene Octylene 1.41 Chlorobenzene Cyclohexane 1.44 Eugenol d-Limonene 1.47 Nitrobenzene Anethole	n 1.50 1.53 1.54 1.55 1.56	o-Toluidine o-Bromophenol Bromoform Quinaldine Iodobenzene	11.57 1.58 1.59 1.61 1.62	α-Chloronaphthalene α-Bromonaphthalene α-Iodonaphthalene Methylene iodide	n 1.63 1.66 1.69
--	---	--	---------------------------------------	--	---------------------------

According to Fresnel, the amount of light reflected by the surface of a transparent medium $=\frac{1}{2}(A+B)=\frac{1}{2}\left\{\frac{\sin^2{(i-r)}}{\sin^2{(i+r)}}+\frac{\tan^2{(i-r)}}{\tan^2{(i+r)}}\right\}$; A is the amount polarized in the plane of incidence; B is that polarized perpendicular to this; i and r are the angles of incidence and refraction.

TABLE 418.—Light reflected when $i=0^{\circ}$ or Incident Light is Normal to Surface $(n-1)^2/(n+1)^2$

n.	$\frac{1}{2}(A+B)$.	n.	$\frac{1}{2}(A+B).$	n.	$\frac{1}{2}(A+B).$	n.	$\frac{1}{2}(A+B).$
1.00	0.00	1.4	2.78	2.0	11.11	5.	44.44
1.02	10.0	1.5	4.00	2.25	14.06	5.83	50.00
1.05	0.06	1.6	5.33		18.37	10.	66.67
I.I	0.23	1.7	6.72	2.75	22.80	100.	96.08
1.2	0.83	1.8	8.16	3.	25.00	∞	100.00
1.3	1.70	1.9	9.63	4.	36.00		
1.05 1.1 1.2	0.06 0.23 0.83	1.6 1.7 1.8	5.33 6.72 8.16	2.5 2.75	18.37 22.89 25.00	10.	66.67 96.08

TABLE 419.—Light reflected when n is near Unity or equals 1+dn

i.	Α.	В.	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$ *	
o°	1.000	1.000	1.000	0.0	The values for A and B
5	1.015	.985	1.000	1.5	are strictly (dn ² / ₄) sec ⁴ i
10	1.063	.939	1.001	6.2	and (dn ² / ₄) (1—tan ² i);
15	1.149	.862	1.005	14.3	In columns 2, 3, and 4
20	1.282	.752	1.017	26.0	dn ² /4 is omitted.
25	1.482	.612	1.047	41.5	/ .
30	1.778	.444	1.111	60.0	
35	2.221	.260	1.240	79.1	,
40	2.904	.088	1.496	94.5	
45	4.000	.000	2.000	100.0	
50	5.857	.176	3.016	94.5	
55	9.239	1.081	5.160	79.1	
60	16.000	4.000	10.000	60.0	
65	31.346	12.952	22.149	41.5	
70	73.079	42.884	57.981	26.0	
75 80	222.85	167.16	195.00	14.3	
80	1099.85	971.21	1035.53	6.2	
85	17330.64	16808.08	17069.36	1.5	
90	∞	∞	∞	0.0	

TABLE 420.—Light reflected when n=1.55

i.	r.	Α.	В.	dA.†	dB.†	$\frac{1}{2}(A+B)$.	$\frac{A-B}{A+B}$.
0 /	0 /						
0	0 0.0	4,65	4.65	0.130	0.130	4.65	0.0
5	3 13.4	4.70	4.61	.131	.129	4.65	1.0
10	6 25.9	4.84	4.47	.135	.126	4.66	4.0
15	9 36.7	5.09	4.24	.141	.121	4.66	9.1
20	12 44.8	5.45	3.92	.150	.114	4.68	16.4
25	15 49-3	5.95	3.50	.161	.105	4.73	25.9
30	18 49.1	6.64	3.00	.175	.094	4.82	37.8
35	21 43.1	7.55	2.40	191	.081	4.98	51.7
40	24 30.0	8.77	1.75	.210	.066	5.26	66.7
45	27 8.5	10.38	1.08	.233	•049	5.73	81.2
50	29 37.1	12.54	0.46	.263	.027	6.50	92.9
5.5	31 54.2	15-43	0.05	.303	.007	7.74	99.3
60	33 58.1	19.35	0.12	.342	013	9.73	98.8
65	35 47.0	24.69	1.13	-375	032	12.91	91.2
70	37 19.1	31.99	4,00	400	050	18.00	77.7
75	38 32.9	42.00	10.38	.410	060	26.19	61.8
80	39 26.8	55.74	23.34	.370	069	39 54	41.0
82 30	39 45.9	64.41	34.04	+320	067	49.22	30.8
85 0	39 59.6	74.52	49.03	.250	061	61.77	20.6
86 o	40 3.6	79.02	56.62	.209	055	67.82	16.5
87 0	40 6.7	83.80	65.32	.163	046	74.56	12.4
88 o	40 8.9	88.88	75.31	.118	036	82.10	8.3
89 0	40 10.2	94.28	86.79	,063	022	90.54	4.1
90 0	40 10.7	100.00	100.00	,000	000	100.00	0.0

Angle of total polarization = 57° 10'.3, A = 16.99.

^{*} This column gives the degree of polarization the Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of o.o.

Taken from E. C. Pickering's "Applications of Fresnel's Formula for the Reflection of Light."

OPTICAL CONSTANTS OF METALS

Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length, λ^1 measured in the metal, is reduced in the ratio $1:e^{-\frac{2\pi k}{\lambda}}$ or for any distance d, $1:e^{-\frac{2\pi k}{\lambda^1}}$; for the same wave-length measured in air this ratio becomes $1:e^{-\frac{2\pi dnk}{\lambda^1}}$. nk is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, ϕ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\overline{\phi}$ (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p, 546, 1889),

$$k\!=\!\tan 2\bar{\psi}\;(1-\cot^2\!\bar{\phi})\;\text{and}\;n=\frac{\sin\bar{\phi}\;\tan\bar{\phi}}{(1+k^2)^{\frac{1}{2}}}\;(1+\frac{1}{2}\cot^2\bar{\phi}).$$

For rougher approximations the factor in parentheses may be omitted. R = computed percentage reflection.

(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

		7	-		Compu	ited.		
Metal.	λ	φ	Ÿ	n	k	nk	R	Authority.
	μ						%	
Cobalt	0.331	64°31′	29°39	1.10	1,30	1.43 2.14	32. 46.	Minor.
	.275	70 22 77 5	29 59 31 53	1.93	1.93	3.72	66.	16
	.650	79 0	31 25	2.35	1.87	4.40	69.	Ingersoll.
	1.00	81 45	29 6	3.63	1.58	5.73	73	"
1	1.50 2.25	83 21 83 48	26 18 26 5	5.22	1.29	6.73 7.18	75· 76.	64
Copper	.231	65 57	26 14	1.39	1.05	1.45	29.	Minor.
	-347	65 6	28 16	1.19	1.23	1.47	32.	6.6
	.500	70 44 74 16	33 46	0.44	2.13	3.26	56. 86.	Ingersoll.
	.650 .870	74 16 78 40	41 30	0.35	11.0	3.85	91.	riigeison.
	1.75	84 4	42 30	0.83	11.4	9.46	96.	4.6
7	2.25	85 13	42 30	1.03	11.4	11.7	97.	" Pu - P - ()
	4,00	87 20 88 00	42 30	3.16	9.0	21.3 28.4		FörstFréed.
Gold	5.50	81 45	41 50 44 00	0,24	28.0	6.7		14 66
Join	2.00	85 30	43 56	0.47	26.7	12.5		66 65
	3.00	87 05	43 50	0.80	24.5	19.6		46 46
Iridium	1,00	88 15 82 10	43 25	3.85	18.1	33. 6.2		
Tridium	2.00	83 10	29 15 29 40	4.30	1.66	7.1		66 66
1	3.00	81 40	30 40	3.33	1.79	6,0		44 44
	5.00	79 00	32 20	2 27	2.03	4.6		(1 11
Nickel	0.420	72 20 76 I	31 42	1,41	1.79	2.53	54. 62.	Tool. Drude.
1	0.750	78 45	31 41 32 6	2.19	1,00	3.33 4.36	70.	Ingersoll.
λ.	1.00	80 33	32 2	2.63	2.00	5.26	74.	- "
71	2.25	84 21	33 30	3.95	2.33	9.20	85.	f4
Platinum	2.00	75 30	37 00	1.14	3.25 5.06	3.7		FörstFréed.
	3.00	74 30	39 50 41 00	0.70	6.52	3-5 3-4		66 66
	5.00	72 00	42 10	0.34	9.01	3.1		66 66
Silver	0.226	62 41	22 16	1.41	0.75	1,11	18.	Minor.
	.293	63 14	18 56	1.57	o 62 o.38	0.97	17.	44
	.316	52 28 52 I	15 38 37 2	0.13	1,61	0.43	32.	44
	•395	66 36	43 6	0.16	12.32	1.91	87.	44
	.500	72 31	43 29	0.17	17 1	2.94	93•	44
	.589	75 35 79 26	43 47 44 6	0.18	20.6 30.7	3.64 5.16	95.	Ingersoll.
	1.00	79 20 82 0	44 6	0.17	20.7	6.96	97.	- 44
	1.50	84 42	43 48	0.45	23.7	10.7	98.	
	2.25	86 18	43 34	0.77	19.9	15.4	99.	l l
	3.00 4.50	87 10 88 20	42 40 41 10	1.65 4.49	12.2 7.42	20.1 33·3		FörstFréed.
Steel	0.226	66 51	28 17	1,30	1.26	1.64	35.	Minor.
	.257	68 35	28 45	1.38	1.35	1.86	40.	64
	.325	69 57	30 9	1.37	1,53	2.09	45.	66
	.500	75 47 77 4 8	29 2 27 9	2.09	1.50	3.14 3.59	57·	Ingersoll.
	1.50	81 48	28 51	3.71	1.55	5.75	73.	- 44
	2.25	83 22	30 36	4.14	1.79	7.41	80.	64

Drude, Annalen der Physik und Chemie, 39, p. 481, 1890; 42, p. 186, 1891; 64, p. 159, 1898. Minor, Annaleu der Physik, 10, p. 581, 1903. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.

TABLE 422.—Optical Constants of Metals (Additional Data)

Metal.	λ.	n.	k.	R.	Ref.	Metal.	λ.	n.	k.	R.	Ref.
Al.* Sb.* Bi.†‡ Cd.* Cr.* Cb.* Au.† I. crys. Ir.* Fe.§	μ 0.589 -589 white -589 -579 -579 -257 -441 -89 -579 -257 -441	1.44 3.04 2.26 1.13 2.97 1.80 0.92 1.18 0.47 3.34 2.13 1.01 1.28	5.32 4.94 - 5.01 4.85 2.11 1.14 1.85 2.83 0.57 4.87 0.88 1.37	83 70 - 85 70 41 28 42 82 30 75 16 28	1 1 2 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Rh.* Se.‡ Si.* Na. (liq.) Ta.* Su.* W.* V.* Zn.*	μ 0.579 .400 .490 .589 .760 .589 1.25 2.25 2.25 .589 .579 .579 .579	1.54 2.94 3.12 2.93 2.60 4.18 3.67 3.53 .004 2.05 1.48 2.76 3.03	4.67 2.31 1.49 0.45 0.06 0.09 0.08 2.61 2.31 5.25 2.71 3.51	78 44 35 25 20 38 33 31 99 44 82 49 58	3 5 5 5 5 6 6 6 1 3 1 3 4
Pb.* Mg.* Mn.* Hg. (liq.)	.589 .589 .589 .579 .326	1.51 2.01 0.37 2.49 0.68	1.63 3.48 4.42 3.89 2.26	33 62 93 64 66	4 1 3 4	Z11.**	.257 .441 .589 .668	0.55 0.93 1.93 2.62	0.61 3.19 4.66 5.08	20 73 74 73	4 4 4 4
Fd.* Pt.† Ni.*	.441 .589 .668 .579 .257 .441 .589 .668 .275 .441 .589	1.01 1.62 1.72 1.62 1.17 1.94 2.63 2.91 1.09 1.16 1.30	3.42 4.41 4.70 3.41 1.65 3.16 3.54 3.66 1.16 1.23 1.97	74 75 77 65 37 58 59 59 24 25 43	4 4 4 3 4 4 4 4 4 4 4 4 4	λ = wave k = absor (1) Drude used, Ann. 36. p. 824, deutsch. Pl Meier, Ann (5) Wood, Ingersoll, se * solid, † as film in va	ption in see Ta der Phys 1889; (dysik. Gales der Phil. M Table electrol	idex, R ble 421 ik und 3) v. V es, 12, Physi ag. (6) 421.	= refl ; (2) K Chemi Varten p. 10 k, 10, p	ection. Lundt, p e, 34, p berg, V 5, 1910 o. 581, 1 7, 1902	orism 477, Verh. ; (4) 903; ; (6)

TABLE 423.—Reflecting Power of Metals (See page 379)

Wave- length	Al.	Sb.	Cd.	Co.	Graph-	Ir.	Mg.	Mo.	Pd.	Rh.	Si.	Ta.	Te.	Sn.	W	Va.	Zn.
μ								Pe	er cen	ts.							
.5 .6 .8 I.0 2.0 4.0 7.0 I0.0	- - 71 82 92 96 98	53 54 55 60 68 71 72	72 87 96 98 98 99	67 72 81 93 97 97	22 24 25 27 35 48 54 59	- 78 87 94 95 96 96	72 73 74 74 77 84 91	46 48 52 58 82 90 93 94 95	7 ² 81 88 94 97 97	76 77 81 84 91 92 94 95	34 32 29 28 28 28 28 28	38 45 64 78 90 93 94 -	49 48 50 52 57 68	54 61 72 81 84 85	49 51 56 62 85 93 95 96	57 58 60 61 69 79 88	80 92 97 98 98 99

Coblentz, Bulletin Bureau of Standards, 2, p. 457, 1906, 7, p. 197, 1911. The surfaces of some of the samples were not perfects that the corresponding values have less weight. The methods for polishing the various metals are described in the original articles. The following more recent values are given by Coblentz and Emerson, Bul, Bur, Stds. 14, p. 207, 1917; Stellite, an exceedingly hard and untarnishable alloy of Co, Cr, Mo, Mn, and Fe (C, S1, S, P) was obtained from the Haynes Stellite Co, Kokomo, Indiana.

TABLE 424.—Reflecting Power of Metals

Perpendicular Incidence and Reflection (See also Tables 426-428)

The numbers give the per cents of the incident radiation reflected.

805 5. 805 1. 805 1.	I I Silver-backed Glass,	I Mercury-backed Glass.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Brandes-Schünemann Alloy.	2.0. 68.2Cu+31.8Su.	Nickel, 5.25 6.88 Electrolytically Deposited,	Copper, Electrolytically Deposited.	Steel. Untempered.	Copper. Commercially Pure.	Platinum. So So Electrolytically Deposited.	Gold. Gold. Electrolytically Deposited.	Brass. (Trowbridge).	Silver. Silver. Chemically Deposited.
.305 .316 .326 .338 .357 .385		-	72.2 - 75.5 81.2 83.9	37.2 39.3 43.3 44.3	41.7 - - 51.0 53.1	44.2 - 45.2 46.5 48.8 49.6		37.2 40.3 45.0 47.8	25.3 24.9 27.3 28.6	39.8 - 41.4 - 43.4 45.4	31.8 - 28.6 - 27.9 27.1	-	9.1 4.2 14.6 55·5 74·5 81.4
.420 .450 .500 .550 .600 .650	85.7 86.6 88.2 88.1 89.1 89.6	72.8 70.9 71.2 69.9 71.5 72.8	83.3 83.4 83.3 82.7 83.0 82.7 83.3	47.2 49.2 49.3 48.3 47.5 51.5 54.9	56.4 60.0 63.2 64.0 64.3 65.4 66.8	56.6 59.4 60.8 62.6 64.9 66.6 68.8	48.8 53.3 59.5 83.5 89.0 90.7	51.9 54.4 54.8 54.9 55.4 56.4 57.6	32·7 37·0 43·7 47·7 71.8 80.0 83.1	51.8 54.7 58.4 61.1 64.2 66.5 69.0	29.3 33.1 47.0 74.0 84.4 88.9 92.3	-	86.6 90.5 91.3 92.7 92.6 94.7 95.4
.800 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0			84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.6 90.7 92.2	63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2	70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2	-	58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0	88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 97.9	70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4	94.9 97.3 96.8 96.9 97.0 98.3 98.0 98.3 97.9	91.0 93.7 95.7 95.9 97.0 97.8 96.6	96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3

Based upon the work of Hagen and Rubens, Ann. der Phys (1) 352, 1900; (8) 1, 1902; (11) 873, 1903. Taken partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 425.—Percentage Diffuse Reflection from Miscellaneous Substances

		Lar	np-bla	cks.			ves.	e.			er.	4:		vet.		
Wave- length	Paint.	Rosin	Sperm candle.	Acetylens	Camphor.	Pt. black electrol.	Green leav	Lead oxide.	Al. nxide.	Zinc oxide.	White Paper.	Lead carbonate.	Asphalt.	Black velv	Black felt.	Red brick.
*.60 *.95 4.4 8.8 24.0	3.2 3.4 3.2 3.8 4.4	1.3 1.3 3.0	1.1 .9 1.3 4.0	0.6 .8 1.2 2.1	1.3 1.2 1.6 5.7	1,1 1,4 2,1 4,2	25.	52. 51. 26. 10.	84. 88. 21. 2. 6.	82. 86. 8. 3. 5.	75. 18 5.	89. 93. 29. 11. 7.	15.	1.8 3.7 2.7	14.	30.

^{*}Not monochromatic (max.) means from Coblentz, J. Franklin Inst. 1912. Bulletin Bureau of Standards, 9, p. 283, 1912, contains many other materials.

TABLE 426 .- Percentage Reflection from Metals, Violet End of Spectrum

(Coblentz, Stair, Bur. Standards Journ. Res., 2, 343, 1929.)

Ways length in a	0.5	7.0		20		••				
Wave length in μ	.05	.10	.15	.20	.25			.40	. 50	.60
Ni electroplated	• •	• •	• •		40	44	51	53	56	(60)
" vac. fused					48	42	45	52	62	64
Ag (min. 7% , 33μ)					30	16	71	88	92	(94)
Stellite (Co, Cr, Mo)					46	49	55	60	64	(68)
Stainless steel, 13% Cr					40	47	52	56	59	(60)
Cobalt					43	46	52	58	62	(67)
Speculum					31	41	50	56	60	(62)
Beryllium (98.7%)			67	7 9	84	87				
Chromium on steel	69	63	65	71	78	82	86	88		

TABLE 427.—Ultra-violet Reflecting Power of Some Metals

(Coblentz, Stair, Bur. Standards Journ. Res., 4, 189, 1930.)

Aluminum, cast, polished "rolled Rhodium Tin, polished Duralumin "tarnished to	.2I .30 .33 .24	.300 .45 .28 .37 .38 .31 .26	.350 .54 .34 .44 .45 .44	.400 .62 .41 .50 .52 .46	.450 .68 .46 .53 .60	.500 .72 .50 .57 .67 .46	.550 .73 .53 .58 .72 .46	.600 •74 •56 •59 •73 •46
--	--------------------------	--	---	---	----------------------------------	---	---	---

TABLE 428 .- Infra-red Reflectivity of Tungsten (Temperature Variation)

Three tungsten mirrors were used, — a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, J. Franklin Inst.

Wave- length	Absolute reflec- tivity at room temperature			e in reflection temperati	
in μ.	in per cent.	1377° K.	1628° K.	1853° K	2056° K.
0.67 0.80 1.27 1.90 2.00 2.90 4.00	51 55 70 83 85 92	+6.0 -0.0 -6.6 -7.5 -7.7	+7·4 -0.0 -8.2 -9.3 -9.4	+8.7 -0.0 -9.6 -10.9 -11.1	+9.8 +8.2 0.0 -11.0 -12.3 -12.5 -12.5

See also Weniger and Pfund, Phys. Rev. 15, p. 427, 1919.

TABLE 429 .- Percentage Reflecting Power of Dry Powdered Pigments

Taken from "The Physical Basis of Color Technology," Luckiesh, J. Franklin Inst., 1917. The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.

Spectrum color.	Vio- let.	Bl	ue.		Green	١.	Yell	ow.	()rang	е.		Red.		. sun.	light.	Tungsten. lamp.
Wave-length in μ	0.44	0.46	0.48	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	Noon	Sky]	Tung
American vermilion Venetian red Tuscan red Indian red Burnt sienna	8 5 7 8 4	6 5 7 7 4	5 7 7 4	5 8 7 4	6 5 8 7 5	6 6 8 7 6	9 7 8 7 9	11 12 12 11	24 19 16 15	39 24 18 18	53 28 20 20 21	61 30 22 22 23	66 32 23 23 24	65 32 24 24 25	14 11 10 11	12 10 10 9	12 13 12 11 13
Raw sienna	12 22 8 20 5	13 22 9 20 5	13 23 7 21 6	13 27 7 24 8	18 40 10 32 18	26 53 19 42 48	35 63 30 53 66	43 71 46 63 75	46 75 60 64 78	46 74 62 61 79	45 73 66 60 81	44 73 82 59 81	45 73 81 59 81	43 72 80 59 81	33 58 33 49 54	30 55 29 46 50	37 63 40 53 63
Chrome yellow light Chrome green light Chrome green medium Cobalt blue Ultramarine blue	13 10 7 59 67	13 10 7 58 54	18 14 10 49 38	30 23 21 35 21	56 26 21 23 10	82 23 17 15 6	88 20 13 11 4	89 17 11 10 3	90 14 9 10 3	89 11 7 10 4	88 9 6 11 5	87 8 6 15 7	85 7 6 20 10	84 6 5 25 17	76 19 14 16 7	70 19 14 18 10	82 18 12 13 6

TABLE 430 .- Infra-red Diffuse Percentage Reflecting Powers of Dry Pigments

Wave- length in μ	Co2O3	CuO	Cr ₂ O ₃	PbO	Fe2O3	Y_2O_3	PbCrO4	Al ₂ O ₃	ThO2	ZnO	MgO	CaO	ZrO ₂	PbCOs	MgCO ₃	White lead	Zn oxide paint
0.60* 0.95* 4.4 8.8 24.0	3 4 14 13 6	24 15 4	27 45 33 5 8	52 51 26 10	26 41 30 4 9	74 34 11 10	70 41 5 7	84 88 21 20 6	86 47 7 10	82 86 8 3 5	86 16 2 9	85 22 4 6	86 84 23 5 5	88 93 29 10 7	85 89 11 4 9	76 79 —	68 72 — —

TABLE 431 .- Reflectivity of Snow, Sand, Etc.

(Hulburt, Journ. Opt. Soc. Amer., 17, 23, 1928.)

Mair sand		Crushed quartz	Snow	Plaster of paris		Sodium i carbon- ate		White cotton cloth §
0.3 to 0.4μ 8 0.4 to 0.8μ 25 0.8 to 2.6μ 33 2.6 to 7μ 31 7μ 48	15 40 50 30	40 50 53 28	35 40 15 18 26	40 53 60 63	8 30 30 15	14 28 35 18	38 49 54 55	26 42 40 20

^{*} Yellow white grains of many kinds.

^{*}Non-monochromatic means from Coblentz, Bul. Bureau Standards 9, p. 283, 1912.

For the Reflecting (and transmissive) power of ROUGHENED SURFACES at various angles of incidence, see Gotton, Physical Review, 7, p. 66, 1916. A surface of plate glass, ground uniformly with the finest emery and then silvered, used at an angle of 75°, reflected 90 per cent at 4\mu, approached 100 for longer waves, only 10 at 1\mu, less than 5 in the visible red and approached o for shorter waves. Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the finer the surface, the more suddenly it cuts off the short waves.

[†] Very white.

[‡] Anhydrous.

TABLES 432 AND 433

TABLE 432.—Reflecting Power of Powders (White Light)

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in per cent. Nutting, Jones, Elliott, Tr. Ill. Eng. Soc. 9, 593, r914.

Barium sulphate Borax	81.1 81.6	Magnesium oxide	97 • 5 85 · 7	Sodium chloride	77.9 80.3
Boric acid				Sugar	87.8
Calcium carbonate				Tartaric acid	79. I
Citric acid	81.5	Sodium carbonate	81.8		

TABLE 433.-Variation of Reflecting Power of Surfaces with Angle

Illumination at normal incidence, 14 watt tungsten lamp, reflection at angles indicated with normal. Ill. Eng. Soc., Glare Committee, Tr. Ill. Eng. Soc. 11, p. 92, 1916.

Angle of observation.	o°	10	3°	5°	100	15°	30°	45°	60°
Magnesium carbonate block Magnesium oxide Matt photographic paper White blotter Pot opal, ground Flashed opal, not ground Glass, fine ground Glass, course ground Matt varnish on foil Mirror with ground face	0.80 0.78 0.76 0.69 11.3 0.29 0.23 0.83	0.69 11.3 0.29 0.22	 0.69 11.3 0.29 0.21 0.78	0.88 0.80 0.78 0.76 0.69 0.31 0.29 0.20 0.72 4.55	0.88 0.80 0.78 0.76 0.69 0.22 0.27 0.19 0.62 3.86	0.87 0.80 0.78 0.76 0.69 0.21 0.20 0.16 0.49 3.03	0.83 0.77 0.78 0.73 0.68 0.20 0.14 0.11 0.28 0.78	0.72 0.75 0.76 0.70 0.66 0.20 0.13 0.11 0.21	0.68 0.66 0.72 0.67 0.62 0.18 0.12 0.16
The following figures, taken from Fowle, scattered on each side of the directly reflect reflected beam was taken as 100,000, and the Angle of reflection, 3° ±	ted bea	m from	a silver	ed mirr	or; the	licate the energy	e amou at the	nt of ercenter o	nergy f the

Wave-length of max. energy of Nernst lamp used as source about 2μ.

THE REFLECTING POWER OF BUILDING MATERIALS

Filter I (1.78 μ), Chance's blue-green contrast filter No. 6, 3.3 mm thick, with their orange contrast filter No. 4, 2.7 mm thick. Filter II (0.84 μ), 2 cm water-cell, Chance's orange contrast filter No. 4, and cobalt-blue glass, 1.8 mm thick. Filter III (0.61 μ), 1 cm K₂ Cr₂ O₇ sol. (72 g/l) and 1 cm cell CuSO₄ sol. (57 g of hydrated salt/l). Filter IV (0.50 μ), 2 cm cell CuSO₄ sol. sat. at 14.2° C. Gold film: radiation from "pointalight" through a thin gold film can be used in place of sunlight (compare with computed values). (Beckett, Proc. Phys. Soc., 43, 227, 1931.)

Description (1.78μ) (0.84μ) (0.61μ) (0.50μ) film pu Magnesium carbonate 0.63 0.99 0.98 0.96 0.96 0.96 CLAY TILES Dutch: light red 0.68 0.66 0.56 0.21 0.57 0. Machine-made: red .72 .42 .34 .11 .38 .38	m- ted
Description (1.78μ) (0.84μ) (0.61μ) (0.50μ) film pu Magnesium carbonate 0.63 0.99 0.98 0.96 0.96 0.96 CLAY TILES Dutch: light red 0.68 0.66 0.56 0.21 0.57 0. Machine-made: red .72 .42 .34 .11 .38 .38	ted
CLAY TILES Dutch: light red	
CLAY TILES Dutch: light red	
Dutch: light red. 0.68 0.66 0.56 0.21 0.57 0. Machine-made: red. .72 .42 .34 .11 .38 .38	
Machine-made: red	
ll tt	33
" lighter red	33
" dark purple	8
	39
" red-brown	31
CONCRETE TILES	
Uncolored	3.3
Brown	13
	II
Black	08
SLATES	
Dark gray: smooth	0
" fairly rough	0
rougn	0
	3
	3
011	5
OTHER ROOFING MATERIALS	
Asbestos cement: white	
	6
Enamelled steel: white	
" green26 .34 .17 .13 .24 .2 .2 .2 .18 .08 .19 .1	- 1
" blue	- 1
Galvanized iron: new	- 1
" very dirty	9
wintewasiled	
Special roofing sheet: brown	
" green	
Aluminized felt	
Weathered asphalt	- 1
Roofing lead: old	3
BRICKS	- 1
Gault: cream	I
Stock: light fawn	
Fletton: light portion	
" dark portion	
Wire cut: red	
Sand-lime: red	
Mottled purple	
Lime-clay (French)	
0, 0 0 17	

For classification of various light and radiation filters with bibliography, plots, and dis-

cussions, see Gibson, Spectral Filters, Journ. Opt. Soc. Amer., 13, 267-280, 1926.
Filters for the reproduction of sunlight and daylight and the determination of color temperatures, see Davis, Gibson, Bur. Standards Misc. Publ. 114, 1931.

TABLE 435.-Light Filters, Narrow Spectrum Regions

(Jones, Journ. Opt. Soc. Amer., 16, 259, 1928. Filters from the following components: Distilled H₂O; Aq. sol. CuSO₄, 5H₂O; NiSO₄, 7H₂O; Glasses, Corning G 986A, G 586, G 980A; dyed gelatin, Wratten filters 88A, 25, 61, 49.)

Filter and Absorbent	Concentration thickness	Wave lengths limits	Max.	Transmission at max.
88A				.80
88A, H ₂ O	2 cm	1 .720- 1.380	.800	.72
88A, G 986A	32 cm	1 .720- 1.020	.770	-35
25, CuSO₄ 5H₂O	5%, 2 cn	1 .590690	.630	.26
61. "		1 .490690	.530	.52
49, "			.460	.26
G 586, "	.32 cm; 10%, 2 cm	.330430	.380	.69
G 986, NiSO ₄ · 7H ₂ O	.32 cm; 50%, 1 cm	1 .260360	.310	.50

TABLE 436 .- Absorbing Power of Various Materials-Infra-red.

(Cartwright, Phys. Rev., 35, 415, 1930.)

The absorptive power is an integrated effect over the entire far infra-red. Litharge, powdered glass, white lead, copper sulphide, celestite, and red phosphorus were the best absorbers beyond 50 µ. A very thin coat of the absorbing material in most cases was an inefficient absorber of the extreme infra-red waves. A very poor absorbing material in most cases such as copper or platinum will absorb if the surface is sufficiently rough.

For radiometers, the absorbing material is better when mixed with turpentine and alcohol and painted on the vanes. For thermocouples, the absorbing material is better if it is mixed with lacquer. 60-fold sensitiveness and better steadiness comes from evacuation.

The high absorption of glass in the near infra-red suggests its use as a source of radiation. Two Pt wires separated by 4 mm and covered with glass were heated by an electric current; the hot portion of the glass between the wires served as a source of extreme infrared radiation. A convenient method of filtering out the near infra-red is to grind the windows with emery so that the pits are about 4µ deep. The apparatus may be adjusted with visible light by covering the rough surface with turpentine.

R. Substance	$\lambda < 5\mu$	$\lambda >$	rbed for	Radiation absorbed for $\lambda < 5\mu$ $\lambda > 50\mu$ Substance V I I/V
Litharge			.40 .40	Silver sulphide 12.8 4.4 .34 Copper sulphate crys-
Powdered glass White lead 2 Pb				tals from solution. 15.0 4.1 .27 Wellsbach mantle
CO ₃ ·Pb(OH) ₂				material 8.9 3.1 .35
White lead in lacquer Red phosphorus				Platinum black 18.2 4.4 .24 Tartaric acid and
Red phosphorus from	1			sugar 16.0 3.9 .24 Talc 12.5 3.8 .30
a match box Celestite, powdered				Water glass 12.1 3.7 .31
SrSO ₄	14.7	4.6	.31	Tellurium, powdered. 19.2 3.3 .17 India ink 18.8 3.8 .20
$Mg(OH)_2 \dots$	11.4	4.2	-37	Lacquer 8.6 3.0 .35
Angelsite, powdered PbSO ₄	14.2	4.2	.30	Glycerine 11.2 3.1 .28
Copper sulphide	17.1	5.2	.30	Turpentine 8.1 0.2 .02 Clean receiver 2.9 0.2 .07
Copper oxide	13.0	4.4	.32	Clean receiver 2.9 o.2 .07

TRANSMISSIBILITY OF RADIATION BY DYES

Percentage transmissions of aqueous solutions taken from The Physical Basis of Color-Technology, Luckiesh, J. Franklin Inst. 184, 1917.

Spectrum color →	Violet.	Blu	e.	(Green.		Yell	ow.	C)range	·.		Red.	
Wave-length in $\mu \rightarrow$	- 44	. 46	.48	. 50	.52	- 54	. 56	. 58	.60	.62	. 64	.66	. 68	. 70
Carmen ruby opt. Amido naphthol red. Coccinine. Erythrosine. Hematoxyline. Alizarinered. Acid rosolic (pure). Rapid filter red. Aniline red fast extra A Pinatype red fast. Eosine. Rose bengal. Cobalt nitrate.	6 1 4 — — 80 69	3 1 3 - 70 51	7 2 1 — 34 40			12 6 1 2 - 48	1 13 11 2 10 12 T 14 67		4 56 90 44 39 78 86 55 11 87 96 87	4 38 96 95 54 54 88 95 72 35 93 97	18 75 98 96 63 65 90 96 84 55 92 98	37 92 98 96 73 72 91 96 88 65 92 98	49 96 98 96 78 77 92 96 90 68 92 98	60 96 98 96 82 79 92 96 92 69 92 98 90
Tartrazine. Chrysoidin Aurantia Aniline yellow phosphine. Fluorescein Aniline jellow fast S Methyl orange indicator. Uranine Uranine naphthaline Orange B naphthol Safranine Martius gelb Naphthol yellow Potassium bichromate, sat. Cobalt chromate	15	I I I I I I I I I I I I I I I I I I I	I	7 1 4 1 18 82	7 	52 3 20 91 84 — 96 77 1 — 84 91 10 90	75 23 43 97 96 1 97 82 43 91 96 60 92	86 	91 82 67 98 96 70 97 84 95 3 95 98 88	95 23 92 75 98 96 79 97 85 96 27 95 98 89	96 50 96 81 98 96 80 97 86 97 64 95 98 89	97 71 96 85 98 96 81 97 86 97 85 98 98 98 99	98 79 96 86 98 96 81 97 87 97 93 95 98 89	98 79 96 87 98 96 81 97 87 97 93 95 98 88
Naphthol green Brilliant green Filter blue green. Malachite green Saurgrün Methylengrün Aniline green naphthol B. Neptune green. Cupric chloride.	2 4 35 3 28 2 77	4 39 49 12 29 31 6 40 84	7 69 64 20 57 32 14 63 89	21 52 70 8 57 26 24 41 92	30 23 60 1 39 17 34 13 92	36 4 37 19 7 40 1 89	29 13 4 2 32 80	16 1 14 67	7 52	2 — — — — — — 36	I — — — — — — — — — — — — — — — — — — —		23 12 4 3 —	64 50 30 28 - 5
Turnbull's blue. Victoria blau. Prussian blue (soluble) Wasser blau Resorcine blue Toluidin blau Patent blue. Dianil blue Filter blue Aniline blue, methyl	58 52 66 89 25 66 83 77 84 92	60 23 71 75 18 31 91 69 79 88	56 9 76 51 6 13 84 59 66 78	51 1 69 26 2 3 76 48 44 52	38 60 7 1 65 35 27 27	28 46 1 — 46 24 17 9	18 32 	9	5 12 1 1 - 2 5 36 2	3 7 2 2 — 5 56 4	1 4 5 6 14 1 7 74 8	21 3 18 41 4 6 14 81 16	49 3 37 64 16 42 29 88 25	73 60 72 40 78 53 92 45
Magenta Gentiana violet Rosazeine Iodine (dense). Rhodamine B Acid violet. Cyonine in alcohol. Xylene red Methyl violet B	89 50 81 84 7 39 25	8 83 28 71 76 1 23 4	64 2 	1 44 — 13 50 —	26 - 2 33 - -	19 - 26 - -	1 15 — 27 —	22 10 6 23 34 1	73 13 55 83 49 27	93 42 90 — 96 70 — 79	97 75 98 1 96 84 — 97 3	97 92 98 93 96 96 1 97 26	97 93 98 11 95 96 13 97 63	97 94 98 23 94 96 23 96 89

For the infra-red transmission (to 12µ) and reflection powers of a number of aniline dyes, see Johnson and Spence,

Phys. Rev. 5, p. 349, 1015. Scientific Paper 440 of the Bureau of Standards, 1922, gives spectrum transmission curves (0.24 to 1.36 μ) for the following dyes. Napthol Yellow S, Orange 1, Amaranth, Erythrosine, Indigo Disulpho Acid, Ponceau 3R, and Light Green S F Yellowish.

TABLE 438.—Transmissibility of Radiation by Jena Glasses

Coefficients, a, in the formula $I_t = I_0 a^t$, where I_0 is the Intensity before, and I_t after, transmission through the thickness t. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

				Сое	fficien	t of tr	ransı	nissio	n, a.				
Unit t=1 dm.	·375 µ	390 μ	.400 /	•434	μ .4	136 μ	•45	5 μ	477 H	.503	u .	.580 μ	.677 µ
O 340, Ord. light flint O 102, H'vy silicate flint O 93, Ord. " " O 203, " " crown O 598, (Crown)	.388	.456 .025 - .583	.463	.50)2 . - . - .	680 566 714 806 797	.8	53 .	.880 .700 .899 .860	.88c .782 .871 .872		.878 .828 .903 .872 .818	•939 •794 •943 •903 •860
Unit t=1 cm.	ο.7 μ	0.95 µ	1,1 μ	1.4 μ	1.7 /	2.0	ο μ	2.3 μ	2.5	μ 2.	7 H	2.9 μ	3.1 μ
S 204, Borate crown S 179, Med. phosp. cr. O 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " "	1.00 - .98 .99 .98 1.00 1.00	.99 .98 - .96 - - -	.94 .95 .97 .95 .99 .99 .98	.90 .90 - .99 .99 - -	.8; .9; .99 .95 .90 .99	4 .0	81 67 93 91 94 95 98 -	.699 .499 .900 .822 .902 .903 .903	.8 .8 .7 .7 .7 .7 .8 .9	7 4 1 9 4 9	29 18 71 60 75 78 90 92	.18 - -47 .48 .45 .54 .66 .74 .78	- .27 .29 .32 .34 .50 .53 .60

TABLE 439.—Transmissibility of Radiation by Jena Colored Glasses

Taken from Catalog 4213, 1931, Schott and Gen, (41 glasses). R is reflection factor yellow light for two surfaces. Values of transmission are for 1 mm thickness. Ordinary figures refer to wave lengths in μ , .281 to .775, black-faced to infra-red.

Glass durability	Density R	.281 .850	.3 ⁰² .950	·334 1.15	.366 1.30	.436 1.60	.480 2.00	.546 2.20	.578 2.40	.644 2.60	.700 2.80	.775 3.00
U G I	2.77 .911	.00	.17 .11	.69 . 05	.85 .04	.00	.00	.00	.00	.00 .15	.01 .19	·34 .17
B G 1	2.50 .915	.04 .97	.40 .93	·93	.97 .58	.86 .40	·44 .50	.04 .59	.05 .69	.01 .74	.51 .75	·94 .55
B G 4	2.41 .921	.00	.00	.04	·74 .12	.87 .14	·53 .21	.01 .45	.01 .59	.00 .63	.07 .45	.13 .40
B G 10	2.60 .916	.00	.00 .25	.14 .26	.64 .31	.93 .47	.95 . 55	.94 .56	.88 .58	·75	.62 .47	.42 .46
V G I	2.93 .905	.00 .05	.00	.00	.00	.02 .47	·47 .65	·77 .71	.56 . 76	.12 .77	.06 . 69	.04 .55
G G 2	2.58 .916	.00 1.00	.00 1.00	.00 1.00	.64 1.00	.99 1.00	1.00 .99	1.00 .99	.98	.94	.84	.70
G G 4	2.73 .913	.00 . 99	.00 . 99	.03	.01 .99	.67 .99	.92 .99	.97 .99	.96 . 98	.94 . 94	.96 .8 5	.99 . 64
G G 11	2.54 .913	.00 .97	.00 .96	.00 .96	.00 . 99	.01 .96	.24 .97	.99 .97	.99 . 95	.99 . 91	.99 .82	.98 . 66
R G 2	2.74 .913	.00 .98	.00 .98	.00 .98	.00 .98	.00 .98	.00 .98	.00 . 97	.00 . 95	.92 . 92	.98	.98 . 65
R G 5	2.74 .913	.00 .98	.00 .98	.00 . 99	.00 . 99	.00 . 99	.00	.00	.00	.02 .92	.96 .79	.98 .58
NG5	2.42 .919	.00 .61	.00 .59	.00 .61	.29 .65	·59 . 73	.63 .78	.66 .78	.68 .76	.70 .69	.70 .58	.65 .40
1	.717	.01	.37	.01	.00	.,,	.70	• 7 0	.70			10

U G 1 dark purple (u. v., extreme red). B G 1 blue (u. v., extreme red). B G 4 blue (i. r.). B G 10, light blue green, i. r. absorption. V G 1 yellow-green, G G 2 colorless, u. v. absorption. G G 4 almost colorless, strong u. v. absorption. G G 11 dark yellow for contrast filters. R G 2 pure red. R G 5 dark red. N G 5 light neutral.

TABLE 440.—Transmissibility of Radiation by Jena Ultra-violet Glasses

No. and Type of Glass.	No. and Type of Glass. Thickness.		ο.383 μ	0.361 μ	0.346 μ	0.325 μ	0.309 μ	0.280 μ
UV 3199 Ultra-violet " " " " " " " " " " " " " " " " "	I mm 2 mm I dm I mm 2 mm I dm	1.00 0.99 0.95 1.00 0.98 0.96	1.00 0.99 0.95 1.00 0.98 0.87	1.00 0.99 0.89 1.00 0.98 0.79	1.00 0.97 0.70 1.00 0.92 0.45	1.00 0.90 0.36 0.98 0.78 0.08	0.95 0.57 0.91 0.38	o.56 o.35

TABLE 441.—Transmissibility of Radiation by American Glasses

The following data giving the percentage transmission are selected from Coblentz, Emerson and Long, Bull. Bureau Standards, 14, 653, 1918.

-	ll. Bureau Standards, 14, 653, 19											
		Thick-				Wa	ave ler	gths i	nμ			
1	Glass or substance, manufacturer	ness, mm.	0.5	1.0	1.5	2.0	2.5	3.0	3 · 5	4.0	4.5	5.0
	Purple fluorite	4.98 — .007 .24	22 34 0	3 8 41 83	2 3 43 63	47 I 2 44 37	48 I I 46 II	48 I I 46 O	57 0 0 47 0	60 0 0 48 0	62 0 0 48 0	62 0 0 48 0
	H_2O	10	_	73 50	0	0	_	_	_	_	_	=
	Copper ruby, flashed G24, Corning, red, No. 243 Schott's red, No. 2745 G34, Corning, orange,	1.95 5.90 3.18	_	50 60 83	64 70 89	72 72 89	76 65 75	40 2 10	33 I IO	36 0 0	7 0 0	0 0
	No. 349	3·55 1·55 2.88	90 80	50 90 75	62 90 60	67 91 82	68 87 75	15 35 23	3 13 4	7 4	0 2 0	0 0
	dark-yellow	2.2 3.43 5.11	12 50	1 4 1	2 53 23	6 79 53	13 83 68	6 25 20	7 9 9	7 0 8	0 0	0 0
	absorbing	2.6 1.5 2.43 2.58 6.36	5 ²	2 0 74 0 0	4 1 43 1 15	5 63 2 50	19 10 79 31 61	3 36 11	4 5 27 5 1	6 6 28 4 2	0 0 0	0 0 0 0
	green, No. 428	3.70	_	0	24	60	75	45	20	20	I	0
	blue-green	3.23	-	23	60	74	78	45	13	12	I	0
	Corning	2.11	55	91	91	91	88	42	20	25	7	0
	red-purple	4·43 1.96	90	92	91	90 90	83 83	38	8 23	12 27	5	0
	A. O. Co	1.98 2.04 2.04 1.58	50 72 59 76	0 86 76 91	0 91 80 91	4 91 82 91	89 81 90	8 51 30 70	8 35 20 52	38 25 51	3 7 2 10	0 0 0 0

Manufacturers: Corning Glass Works, Corning, N. Y.; A. O. Co., American Optical Co., Southbridge, Mass.; J. K. O. Co., Julius King Optical Co., New York City. For other glasses see original reference. See also succeeding table, which contains data for many of the same glasses. For Corning Filters: Journ. Opt. Soc. Amer. 17, 40, 1928; Coblentz, Stair, Bur. Standards, Tech. Pap. 369, 1928; Sci. Pap., 113, 1929. Corning, Heat Transmitting, no. 254, 1 mm. transmits over 30%, 0.8 to 4μ; Sextant red, 2 mm. over 30% 0.8 to 4.2μ; Red Corex A, G986A, 3 mm., U. V. freely, visible to 0.4μ, i.r. with max. at 0.7 and 2.6μ.

TABLE 442.—Transmission of the Radiations from a Gas-filled Tungsten Lamp, the Sun, a Magnetite Arc, and from a Quartz Mercury Vapor Lamp (no Globe) through Various Substances, especially Colored Glasses.

Color.	Trade name.	Source.*	Thick- ness in mm	Gas- filled tung- sten,	Quartz mercury vapor.†	Mag- netite arc.†	Solar radia- tion.
Greenish-yellow """ """ """ Smoky green Yellow-green """ Amber Orange Yellow-green Yellow-green Blue-green Blue-green Blue-green Blue-green Blue-green Blue-green Coiorless Amethyst. Purple Blue-green	Fieuzal, B Fieuzal, 63 Fieuzal, 64 Euphos Euphos, B Akopos green Hallauer, 65 Hallauer, 64 G 124, IP Noviweld, shade 34 Noviweld, shade 44 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 7 Saniweld, dark G 34 Noviol, shade B Noviol, shade B Noviol, shade C Fetrous No. 30 No. 61 Lab. No. 50 G 124 JA Smoke, D Crookes, A Crookes, B Pfund Pfund Lab. No. 58 Lab. No. 57 Shade C Electric smoke G 55 A 62 Shade D G 53 G 171-IZ G 584 G 172 BW 5 G 585 Selenium Flashed Window Crown Mica Mica Mica Water	A. O. C. C. F. H. E. B. S. B. & L. J. K. B. S. F. H. E. G. W. C. G. W. Schotts B. S. B. S. B. S. B. S. B. S. B. S. B. S. B. S. B. S. B. S. S. S. S. S. S. S. S. S. S. S. S. S.	2. 04 1.80 1.65 3.27 3.12 1.58 2.36 1.35 2.81 2.14 2.20 2.27 2.17 2.17 3.12 2.17 2.17 3.12 2.50 2.88 2.00 2.20 2.20 2.17 2.17 2.17 3.12 2.50 2.88 2.00 2.20 2.21 1.53 2.10 1.53 2.11 1.89 2.01 1.53 2.11 1.85 2.00 2.85 2.10 1.85 2.00 3.12 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.13 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	71.6 75.5 50.7 78.8 78.8 78.8 78.8 78.8 78.8 79.4 5.1 3.4 5.1 3.4 5.1 3.4 5.1 3.4 5.3 58.7 74.1 83.3 50.9 85.3 60.9 85.3 60.9 85.3 60.9 81.3 60.9 82.8 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4	26.9 34.3 22.0 24.7 20.5 17.7 25.0 0.2 1.2 1.2 0.4 0.2 15.2 10.6 17.0	46.0 55.0 53.0 59.0 	63 72 ———————————————————————————————————

^{*}A. O. C., Amer. Optical Co., Southbridge, Mass.; C. G. W., Corning Glass Works, Corning, N. Y.; B. & L., Bausch & Lomb, Rochester, N. Y.; J. K., Julius King Optical Co., New York City; F. H. E., F. H. Edmonds, optician, Washington, D. C.; B. S., Bureau of Standards; scrap material, source unknown.

† Infra-red radiation absorbed by quartz cell containing r cm layer of water. Taken from Coblentz-Emerson & Long, Bul. Bureau Standards, 14, 653, 1918.

‡ Transmission of r cm cell having glass windows.

TABLE 443.—Ultra-violet Transparency (302 m_{μ})

Bur. Standards Res. Pap. no. 113, 3. 629, 1929, gives data for vitaglass, sunlit, helioglass uviol-Jena, neuglas, Corning Corex-D, quartz, celoglass, cellophane, tracing cloth. For various fabrics, see Res. Pap. no. 6. For depth of penetration of various wave lengths (u. v., i. r.) see Spectral Characteristics of Light Sources and Window Materials, Trans. Illum. Eng. Soc., 23, 251, 1928. Average per cent transmission of some glasses at 302 mµ when new and after 10 hr. exposure, distance 15 m, to 110 v tungsten u. v. quartz Hg lamp and sun 5 to 12 m. Qualities vary from sample to sample of glasses.

	Quartz glass	Corex-D	Neuglass	Uviol	Helio	Sunlit	Vitaglass
New	92	61	63	67	64	71	58
After lamp		59	50	48	45	41	33
After sun		60	57	53	53	51	42

TABLE 444(a).—Ultra-Violet Transparency Atmospheric Components

 $I = I_0 \text{ 10-}\alpha d$, d in cm O°C, 760 mm

Oxygen	Oxygen	Ozone	Ozone					
0.1900 μ α = 0.0014 .1920 .0007 .1929 .0022 .1947 .0007 .1950 .0021 .1955 .00075 .1962 .0020 .1970 .0007 .2000 .00043 .2050 .0003 .2100 .0002	.193 .0015 O ₂ , air, Kreusler Air 0.186 μ α = 0.0019	.2537 148.8 .2652 123 .2804 45.6 .2967 6.9 .3125 .96 .3341 .07	0.230µ 50 0.290µ 16.6 .240 95 .300 4.6 .250 120 .310 1.23 .260 120 .320 .35 .270 91 .330 .093 .280 46 .340 .024 Fabry, Buisson, 1913 Nitrogen 0.186 = 0.000478					

Air at sea-level (Washington), 400 m practically no absorption $\lambda > .3\mu$; $< .28\mu$ about that due to molecular scattering. Air transmission reduced by 1/100: 22 km at .28 μ ; 5 at 25 μ ; 0.57 at .22 μ ; 20 km at .205 μ . (Dawson, Granath, Hulburt, Phys. Rev., 33, 1073, 1929.)

(b).—Atmospheric Transparency for Ultra-Violet

(Zenith sun, Fabry, Buisson, C. R. 175, 156, 1922; Astrophys. Journ., 54, 297, 1921; joined to Abbot's, Annals Astrophys. Obs. Smithsonian Inst., 2, 112, 1908, via Forsythe-Christison, Gen. Elec. Rev., 662, 1929.)

TABLE 445.—Penetration Ultra-Violet Light into Sea Water

(Hulburt, 1928.)

The transparency of sea water declines rapidly with decreasing wave length (λ) in the u. v., becoming quite small below 3000 A. λ 3400 to 3000 A, CaSO₄ gives ½ the absorption, H₂O ½; 3000 to 2500 A, MgCl₂, CaSO₄, H₂O each about ½. I = I₀10^{-ax}, x in cm.

distilled water	mμ a	.030	.021	.015	.005	.002	.001	436 .00005	.00015	.00028	.0010
tap water sea water	"	.045	.032	.039	.007	.003	.0013	.00010	.00015	.0003	.0010

TRANSPARENCY OF THE VARIOUS SUBSTANCES OF **TABLES 394 TO 402**

Alum: Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05 \mu and 30 to 40 \mu.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a 1 cm. thick plate in %:

λ	9	10	12	13	14	15	16	17	18	19	20.7	23.7μ
%	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	9.6	0.6	0.

Pflüger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness: $280\mu\mu$, 95.5%; 231, 86%; 210, 77%; 186, 70%. Metallic reflection at 0.110 μ , 0.156, 51.2, and 87μ .

Sylvite: Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

λ	9	10	11	12	13	1.4	15	16	17	18	19	20.7	23.7μ
%	100.	98.8	99.0	99.5	99.5	97.5	95.4	93.6	92.	86.	76.	58.	15.

Metallic reflection at 0.114µ, 0.161, 61.1, 100.

Fluorite: Very transparent for the ultra-violet nearly to 0 1 \mu.

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

λ	8μ	9	10	ΙΙ	12μ
%	84.4	54.3	16.4	1.0	0

Metallic reflection at 24 \mu, 31.6, 40 \mu.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $i = i_o e^{-kd}$ (d in cm.):

For the ordinary ray:

λ	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2.60	2.65	2.74μ
k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	1.21	1.74	2.36

λ	2.83	2.90	2.95	3.04	3.30	3.47	3.62	3.80	3.98	4.35	4.52	4.83µ
k	1.32	0.70	1.80	4.71	22.7	19.4	9.6	18.6	8	6.6	14.3	6.1

For the extraordinary ray:

	λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	4.67μ
1	k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40

λ	4.91	5.04	5.34	5.50μ
k	1.25	2.13	4.41	12.8

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for a plate 1 cm. thick: at 0.222μ, 94.2%; 0.214, 92; 0.203, 83.6; 0.186, 67.2%.

Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar): For the ordinary ray:

λ	2.72	2.83	2.95	3.07	3.17	3.38	3.67	3.82	3.96	4.12	4.50µ
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray:

	2.74												
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1.88	1.83	1.62	2.22	3.35	8.0

For $\lambda > 7 \mu$, becomes opaque, metallic reflection at 8.50 μ , 9.02, 20.75-24.4 μ , then transparent again.

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.

TABLE 447.-Color Screens

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898 Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

Color.	Thick- ness. mm.	Water solutions of	Grammes of substance in 100 c.cm.	Optical centre of band.	Transmission.
Red "Yellow " Green " Bright { blue } Dark } blue }	20 20 20 15 15 20 20 20 20 20 20	Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, NiSO ₄ .7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl ₂ .2aq. Potassium monochromate Double-green, SF Copper-sulphate, CuSO ₄ .5aq. Crystal-violet, 5BO Copper sulphate, CuSO ₄ .5aq.	0.005 10. 30. 10. 0.025 60. 10. 0.02 15. 0.005	o.6659 o.5919 o.5330 o.4885 o.4482) begins about 0.718μ. (ends sharp at 0.639μ. 0.614-0.574μ, 0.540-0.505μ) 0.526-0.494 and (0.494-0.458μ 0.478-0.410μ

TABLE 448 .- Color Screens

The following list is condensed from Wood's Physical Optics:

Methyl violet, 4R (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365µ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359 µ, transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359µ.

Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916µ.

Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.579c and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + eosine transmits 0.5790µ. The former should be dilute and the eosine added until

the green line disappears.

Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a * are transparent to a more or less degree to the ultra-violet * Cobalt chloride: solution in water, — absorbs 0.50-.53\mu; addition of CaCl₂ widens the band to 0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40µ.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water,

above 0.595 and below 0.37 µ.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60µ, the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praseodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a

sharp band at 0.435-.485µ. Absorption below 0.34.

Picric acid absorbs 0.36-.42µ, depending on the concentration. Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23\mu.

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet. Chronium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33 μ . These limits vary with the concentration.

Aesculin: absorbs below 0.363μ, very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultra-violet.

 ${
m Very}$ dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS2 is opaque to the visible and transparent to the infra-red.

TABLE 449.—Transmission Percentages of Radiation Through Moist Air

The values of this table will be of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wave lengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wave lengths greater than 18 mu are tentative and doubtful. Fowle, Water-vapor Transparency, Smithsonian Misc. Coll., 68, No. 8, 1917; Fowle, The Transparency of Aqueous Vapor, Astrophys. Journ. 42, 394, 1915.

Range of wave lengths.					Precip	itable w	ater in	centime	eters.				
μ μ	.001	.003	.006	.01	.03	.06	.10	. 25	. 50	1.0	2.0	6.0	10.0
0.75 to 1.0 1.0 1.25 1.25 1.5 1.5 2.0 2 3 3 4 4 4 5 6 6 7 7 8 8 8 8 9 10 10 11 11 11 12 12 13 *14 15 *15 16 16 17 17 18 18 0		92 88 88 83 82 54 100 100 100 100	87 84 76 75 50 76 100 100 100 100 100	100 99 96 98 84 78 71 68 31 68 99 100 100 100	99 99 92 97 77 72 65 56 52 24 57 98 100 100 100 99 97 80 70	99 98 84 94 70 66 66 60 51 8 46 96 100 100 99 94 75 55 55 25	98 97 80 88 64 63 53 47 4 35 94 100 98 97 90 50 40 0	97 95 66 79 — 35 3 16 65 100 100 96 86 86 80 15 0	95 92 57 73 —————————————————————————————————	93 89 51 70 ———————————————————————————————————	90 85 44 66 	83 74 31 60 ———————————————————————————————————	78 69 28 57

†These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

TABLE 450.—Transparency of Water Vapor (steam)

(Hettner, Ann. Phys., 55, 476, 1918, places of greater absorption. Original article gives plot of absorption throughout range of wave lengths.)

Wave length	Steam	Absorp- tion	Wave length	Steam	Absorp- tion	Wave length	Steam	Absorp- tion
0.95µ 1.13 1.36 1.84 2.64	109 cm	7% 14 75 84 100	6.5µ 11 13 15 18	32.4 cm 104 104 104 32.4	80 % 15 35 55 55	20µ 22 26 30 34	32.4	80 % 22 30 50 80

TABLE 451.—Transparency of Water

Values of a in $I = I_0e^{ad}$, d in cm I_0 , I, intensity before and after transmission.

Wave length μ,	.186	.193	.200	.210	.220	.230	.240	.260	.300	.415
а	.0688	.0165	.009	.0061	.0057	.0034	.0032	.0025	.0015	.00035
Wave length μ,	.430	.450	.487	.500	.550	.600	.650	·779	.865	.945
a	.00023	.0002	1000.	.0002	.0003	.0016	.0025	.272	.296	.538

First 9; Kreusler, Drud. Ann. 6, 1901; next Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ann. 55, 1895; last 3, Nichols, Phys. Rev. 1, 1. See Rubens, Ladenburg, Verh. D. Phys. Ges., p. 19, 1909, for extinction coefs, reflective power and index of refraction, 1 µ to 18 µ.

INFRA-RED TRANSMISSION AND ABSORPTION

TABLE 452 .- Per Cent Transmission, Gases, 6.7 to 32.8 µ

(Strong, Phys. Rev., 37, 1565, 1931, restrahlung.) Length of cell, 4 inches.

Material	Pressure	6.7μ	8.7µ	20.75μ	22.9μ	27.3μ	29.4μ	32.8μ
NH ₃	760 mi	n 24	26	79	93	83	82	62
C_2H_2	760	95	92	99	101	IOI	100	98
H ₂ S	760	97	98	98	97	92	90	83
SO ₂	760	98	5	7	58	100	100	96
C_6H_6	96	65	97	102	99	100	98	95
CCl ₄	114	95	99	97	99	99	99	91
CS_2	361	30	98	100	86	98	99	96
CHCl ₃	200	93	90	99	98	98	97	97
$(C_2H_5)_2O$	526	17	6	61	45	69	71	61

TABLE 453.—Per Cent Transmission, Solids, 6.7 to 32.8 µ

Material	Description	6.7μ	8.7μ	20.75μ	22.9μ	27.3μ	29.4μ	32.8μ
Lacquer film	$\pm .55\mu$ thickness	96	93	97	98	99	99	100
Mica	10μ thickness	83	22	19	00	35	42	44
Soot on lacquer	Opaque to visible	25	22	67	53	60	67	60
Quartz, fused	10μ thickness	86	02	01	03	51	55	68
Glass	3μ thickness	93	07	12	14	48	51	56
Cellophane	25μ thickness	33	04	04	01	20	25	26
MgO	Deposit from burning							
	Mg ribbon	88	86	04	02	90	93	87
ZnO	Deposit from Zn arc	99	80	15	05	93	79	80

TABLE 454.—Per Cent Reflection, Solids, 22.9 and 32.8 µ

Description of reflector	22.9μ	32.8μ
Deposit of MgO from burning Mg ribbon	0	0
Reflection β-MgO	80	33
Mica	32	
Paraffin	04	
Pencil mark on paper	09	
(Soot coating	43	48
Silver severed with MgO coating	08	91
Silver covered with MgO coating ZnO coating.	OI	52
Optical black	31	
Gold foil blackened with bismuth	> 19	
$KBr + 1.5\mu CaF_2$ deposited by evaporation	10	
KI + 1.5μ CaF ₂ deposited by evaporation	13	

TABLE 455.—Per Cent Transmission, Various Substances, 20 to 130μ (Barnes, Phys. Rev., 30, 562, 1032, which see for special technique used for analysis in this region.)

(Barnes, 1 mys. Rev.,	037 0 7 - 30				_								
		20μ	30	40	50	60	70	85	90	100	110	120	1 30μ
Fused quartz	0.2 mm 1.0 "	0	0	2	20 0	35 0	51 0	53 5	52 6	8	30	22	27
Crystal "	1.0 "	0	I	7	42	57	62	59	72	71	78	70	72 38
Sulphur, rhombic Paraffin	0.9 " 2.0 "	30 19	40 35	10 42	6 51	39 58	37 64	52 65	58 75	51 85	56 79	58 76	70
Mica Cellophane	6μ 40μ	6	18 16	50 22	53	46 24	57 24	50 23	2 I 2 3	27 29	50 30	(55)	(55) 42
Celluloid	40μ Ιμ	92	93	95	23 96	96	97	97	98	98	99	99	99
Black paper Camphor soot	0.1 mm *	60	76	 79	2 80	5 81	13 82	19 84	22 85	23 86	26 87	28 89	30 90
Pfund Bi black	*	30	40	44	48	50	40	45	58	60	57	60	63
Lampblack, water glass	0.8†	0	(1)	(3)	7	12	21	20	26	30	25	30	30

^{*}On celluloid I_{μ} thick. † For Rubens, Hoffmann, lampblack-water-glass mixture see Berliner Ber. 424, 1922. For Pfund's Bi Black see Rev. Sci. Instr., 1, 307, 1930. A considerable number of bands appear in some of the curves from which the above values were read.

TABLES 456-458

FAR INFRA-RED, 20 TO 150μ

(John Strong, Phys. Rev., 38, 1818, 1931.)

TABLE 456.—Restrahlung bands

Number of reflections	Crystal mirrors	Filter (3 mm paraffin in each case)	Wave length in μ	Frequency in ~/cm
4	Quartz	ı cm KCl	20.7	483
3 1	Fluorite Metal	5 mm KCl	23	435
2	Fluorite	3 mm KBr	27.3	3 66
4	Calcite		29.4	340
3	Fluorite	0.4 mm quartz	32.8	305
I	Metal	1.2 mm KBr		
3 I	Aragonite Metal	0.4 mm quartz	41 * †	244
4	NaCl	2 mm quartz	52	192
4	K,C1	46 -	63	159
4	KBr	"	83	120
4	KI	**	94	106
4	TlBr	"	117	85
4	TiI	44	152	66

^{*} The use of a paraffin window about 3 mm thick stops the short wave length restrahlung of quartz at 8.7μ and of calcite at 6.7μ .
† Weak reflection at 41μ .

TABLE 457 .- Reflecting Power

$\lambda = 20\mu$ $\sim/\text{cm} = 500$	² 5 400	33 ¹ / ₃ 300	50 200	66 3	100	150μ 66 ² / ₃	
Rough brass 67	70	78	83	9 2	96	100	(1)
	33	42	58	68	81	99	(2)
" " I2	14	17	21	25	40	82	(3)
Galena 31	30	21	51	73	76	76	(4)
Zincite 50	35	18	21	18	20	15	(5)
β magnesia, fused 80	60	34	30	30	30	30	(6)
Stibnite21	20	4	39	48	52	3 9	
Sphalerite	15	29	20	19	18	17	(6)
	41	26	31	20	24	22	(6)
Cuprite	47	47	42	4I	42	46	•••

⁽¹⁾ Ground with No. 60 carborundum. (2) Ditto No. 220. (3) Ditto No. 400. (4) Surface 1 to cleavage plane, highly polished. (5) Natural crystal. (6) Qualitative only.

TABLE 458 .- Transmission

$\lambda = 20\mu$ $\sim/cm = 500$	25 400	33 ¹ / ₃ 300	50 200	66 2 150	100	150μ 66 ² / ₃	
KBr K1 Amorphous SiO2 3 CCl ₄ liquid (57) KC1 97	61 83 27 63 97	46 76 64 50 96	3 12 63 74 93	 62 74 80	70 (72) 98	87 ::	(7) (7) (8)

⁽⁷⁾ No corrections for reflections. (8) Evaporated on lacquer film.

REFLECTION AND ABSORPTION OF LONG-WAVE RADIATIONS

TABLE 459.-Long-wave Absorption by Gases

Unless otherwise noted, gases were contained in a 20 cm long tube. Rubens, Wartenberg, Verb. d. Phys. Ges. 13, p. 796, 1911.

	Percentage absorption.							E		Percen	tage abs	orption.	
Gas.	Pressure, cr	224	rou.	Long λ, Hg lamp.				Pressure, cm					ıg λ. lamp.
	Pres	23μ	52µ	110µ		Fil- tered, 314µ	Gas.	Pres	23µ	52µ	110μ		Fil- tered, 314µ
H ₂ Cl ₂ Br ₂ SO ₂ CO ₂ CO ₂ CO ₃ CO ₄ N ₂ O NO (CN) ₂	76 76 76 76 76 76 76 76 76 76	100 100 100 22.6 100 100 99.6 100	100 99.6 100 76.9 100 100 11.6 96.8 94 97.8	100 99.5 100 12.7 100 94.1 5.4 98.4 99	100 98.5 100 6 100 92.1 10.3 93.3 87.3 99.3	97.6 100 4.8 100 91.6 21.4 90.8 85.5	NH ₃ CH ₄ C ₂ H ₂ C ₂ H ₄ CS ₂ C ₂ H ₆ O. C ₄ H ₁₀ O. C ₅ H ₁₂ CH ₃ Cl. H ₂ O *	76 76 76 76 26 6 51 46 14 76	83.1 91 99.5 99 97.8 85.4 26.8 66.† 98 39.6	0.5 94.3 87.4 96.4 100 5.4 46 44.5	99. 2 99. 2 97. 3 92. 8 100 58 34 88. 8 100 19. 6	43·3 100 97·9 100 99·5 52·4 21.8 87 95·4 33.6	66.7 100 100 100 100 49.9 10.7 84.2 94.7 49.2

^{*} Steam 100° C passed through tube 40 cm long, 150° C; 0.06 cm ppt. H2O.

TABLE 460.—Properties with Wave-lengths $108 \pm \mu$

Rubens and Woods, Verh. d. Phys. Ges. 13, p. 88, 1911.

With quartz, 1.7 cm thick: 60 to 80μ , absorption very great; 63μ , 99%; 82μ , 97.5; 97μ , 83.

(a) Percentage Reflection.														
Wave-length.	Iceland spar.	Ma	rble.	Roc		ylvite	KBr	Kl	Fh rit	io- e. (Glass	. V	Vater.	Alcohol.
$\lambda = 82\mu *$ $\lambda = 108\mu \dagger .$	$\lambda = 82\mu *$ $\lambda = 108\mu \dagger$ 47.1 43.8 25.8 20.3				36.0 19.3	82.6 31.1			. 7			9.6 11.6	1.6	
* Restrahlung from KBr. † Isolated with qua										quartz	lens.			
	(b) Percentage Transparency. Uncorrected for reflections.													
Solid	d.	,	Thick	ness.	Trans	parency						Thick prec tal liqu	ipi- ble	Trans- parency.
Paraffin Mica Hard rubber. Quartz axis Quartz, amor Rock salt Fluorite. Diamond Quartz ax	ph.		3.0 0.4 2.6 3.8 0.2 0.5 1.2 2.6 4.0 7.2 11.7	0555 00 00 05 00 05 00 00 00 00 00 00 00	1 3 6 2 4 8 6 4 3	7.0 6.6 9.0 2.6 0 1.5 5.3 1.3 6.4 9.8 5.5	Ethy Ethy Wate Wate Vapo Alc Eth Bei	ene l alcohol l ether r r r r r r s: cohol cher nzene nzene ter ter		1.00 0.15 0.15 0.02 0.04 2.00 2.00 2.00 4.00	8 8 9 4	0.0	023 350 063	56.8 7.9 37.1 25.8 13.6 88 33.5 100 19.6
			((c) TI	RANSPA	RENCY	of Blac	k Absorb	ERS.					
Method and wave-length.						pa	k silk per, m thick.	Opaque pape o.11 mm	r,	b	ck ca oard, im th		10 CI	dle lamp- lack, n²= 1.8 mg
Fluorite "res Rock salt "re	Spectrometer 2 μ 4 6 6 12 Fluorite "reststrahlen" 26 Rock salt "reststrahlen" 52 Quartz lens isolation 108				2.	0.9 1.7 3.2 1.2 5.0	0 0 1.4 3.2 15.1 33.5			0 0 0 0 0			0.5 8.6 16.0 37.6 76.7 91.3	

[†] Pentane vapor, pressure 36 cm.

TABLES 461-462 ROTATION OF PLANE OF POLARIZED LIGHT

TABLE 461.—Tartaric Acid; Camphor; Santonin; Santonic Acid; Cane Sugar

" cubic centimeter "

_ active Right-handed rotation is marked +, left-handed

Line of spectrum	Wave length according to Angstrom in cm × 106	Tartaric acid,* $C_4H_6O_6$, dissolved in water. q = 50 to 95, temp. = 24°C	Camphor,* dissolved in $q = 50$ temp. =	alcohol. to 95,	Santonin,† C dissolved in ch q = 75 to temp. =	loroform. 96.5,
B C D E b ₁ b ₂ F	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	+2°.748 + 0.09446 q +1.950 + .13030 q + .153 + .17514 q 832 + .19147 q -3.598 + .23077 q - 9.657 + .31437 q	38°.549 — 51.945 — 74.331 — 79.348 — 99.601 — 149.696 —	.0964 q .1343 q .1451 q .1912 q	-140°.1 + -149.3 + -202.7 + -285.6 + -302.38 + -365.55 + -534.98 +	.1555 q .3086 q .5820 q .6557 q
	40.40	Santonin, † $C_{15}H_{18}O_{3}$,* dissolved in alcohol. $c = 1.782$ temp. = 20°C	dissolved in alcohol.	$C_{15}H_{18}O_3$ dissolved in chloroform. c = 3.1-30.5 temp. = 20°C	dissolved in chloroform.	Cane sugar,‡ C ₁₂ H ₂₂ O ₁₁ , dissolved in water. p=10 to 30
B C D E b ₁ b ₂ F e G	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.07 42.26	-110.4° -118.8 -161.0 -222.6 -237.1 -261.7 -380.0	442° 504 693 991 1053 1323 2011 2381	484° 549 754 1088 1148	- 49° - 57 - 74105112137197230	See Supple- mentary table below
	1	Chin Dhan (a) #4 79#9	4 Marini D	Ass doi Tie	2001 (2) 72 78	9 0

^{*} Arndtsen, Ann. Chim. Phys. (3) 54, 1858. † Narini, R. Acc. dei Lincei, (3) 13, 1882. ‡ Stefan, Sitzb. d. Wien. Akad. 52, 1865.

Supplementary to Table 461

Values obtained at the Bureau of Standards for the rotation of sucrose are given below.

Light Source	Rot. λ Rot. $\lambda = 5461$	$[\alpha]_{\lambda}^{20}$	Light Source	Rot. λ Rot. $\lambda = 5461$	$[\alpha]^{20}_{\lambda}$
Li 6708	.644	50.45	Cd 4678	1.403	109.9
Cd 6438	.711	55.70	Hg 4358	1.644	128.8
Na 5892.5	.84922	66.529	Ag 4208	1.786	139.9
Hg 5780	.8854	69.36	Hg 4047	1.95	152.8
Hg 5461	1.0000	78.342			
Ag 5209	1.108	86.80			
Cd 5086	1.167	91.43			
Cd 4800	1.323	103.65			

The above values are for a near normal solution, i.e. approximately 26 g of sucrose per 100 cc.

TABLE 462.—Sodium Chlorate; Quartz

Sodium chl	orate (Gu	ye, C. R.	108, 1889)	Quartz (Soret & Sarasin, Arch. de Gen. 1882, or C. R. 95, 1882)*						
Spectrum	Wave length	Temp.	Rotation per mm	Spectrum line	Wave length	Rotation per mm	Spectrum line	Wave length	Rotation per mm	
a B C D E F G G	7164A 6870 6563 5892	15°.0 17.4 20.6 18.3	2°.068 2.318 2.599 3.104	A a B	7604 7164 6870	12°.668 14.304 15.746	Cd ₉ N Cd ₁₀	3609 3582 3465 3441	63°.628 64.459 69.454 70.587	
F G G H	5270 4861 4340 4308 4101	16.0 11.9 10.1 14.5 13.3	3.841 4.587 5.331 6.005 6.754	D_1 D_2	5896 5890 5270	21.684 21.727 27.543	Cd ₁₁ P Q Cd ₁₂	3401 3360 3286 3247	72.448 74.571 78.579 80.459	
L M N	3820 3728 3581 3361	14.0 10.7 12.9 12.1	7.654 8.100 8.861 9.801	E F G h	4862 4308 4102	32.773 42.604 47.481	R Cd17 Cd18	3180 2747 2571	84.972 121.052 143.266	
Q R T Cd ₁₇ Cd ₁₈	3287 3180 3021 2747 2571	11.9 13.1 12.8 12.2 11.6	10.787 11.921 12.424 13.426 14.965	H K L M	3969 3934 3820 3728	51.193 52.155 55.625 58.894	Cd23 Cd24 Cd25 Cd26	2312 2264 2193 2143	190.426 201.824 220.731 235.972	

^{*} The paper is quoted from a paper by Ketteler in Wied. Ann. vol. 21, p. 444.

ELECTRICAL EQUIVALENTS

Abbreviations: int., international; e.m.u., electromagnetic units; e.s.u., electrostatic units; e.g.s., centimeter-gram-second units. (Taken from Circular 60 of U. S. Bureau of Standards, 1916, Electric Units and Standards, but made consistent with Birge's values, p. 77 et seq.)

Resistance:

- international ohm =
 - 1.00051 absolute ohms
 - 1.0001 int. ohms (France, before 1911) 1.00016 Board of Trade units (England,
 - 1903) 1.01358 B. A. units
 - 1.00283 "legal ohms" of 1884
 - 1.06300 Siemens units
- 1 absolute ohm =

 - 0.99949 int. ohms 1 "practical" e.m.u.
 - 109 c.g.s. e.m.u.
 - 1.11262×10^{-12} c.g.s. e.s.u.

CURRENT:

- I international ampere =
 - 0.99995 absolute ampere
 - 1.00084 int. amperes (U. S. before 1911) 1.00130 int. amperes (England, before
 - 1906) 1.00106 int. amperes (England, 1906-
 - 08)1.00010 int. amperes (England, 1909-
 - 10) 1.00032 int. amperes (Germany, before
 - 1.0002 int. amperes (France, before 1011)
- 1 absolute ampere =
- 1.00005 int. amperes
 1 "practical" e.m.u.

 - o.i c.g.s. e.m.u.
 - 2.99796 × 10° c.g.s. e.s.u.

Electromotive Force:

- international volt = 1.00046 absolute volts
- 1.00084 int. volts (U. S. before 1911) 1.00130 int. volts (England, before
 - 1006) 1.00106 int. volts (England, 1906-08)
 - 1.00010 int. volts (England, 1909-10) 1.00032 int. volts (Germany, before absolute gilbert = 1.00005 int. gilberts 1911)
- 1.00032 int. volts (France, before 1911)
- I absolute volt =
- 0.99954 int. volt
 - 1 "practical" e.m.u. 108 c.g.s. e.m.u.

 - 0.00333560 c.g.s. e.s.u.

QUANTITY OF ELECTRICITY:

- (Same as current equivalents.)
 - international coulomb =
 - 1/3600 ampere-hour
 - 1/06404 faraday

Capacity:

- international farad = 0.99949 absolute farad
- 1 absolute farad = I.00051 int. farads
 I "practical" e.m.u.
 - 10⁻⁹ c.g.s. e.m.u.
 - 8.98776 × 10¹¹ c.g.s. e.s.u.

INDUCTANCE:

- international henry = 1.00051 absolute henries
- i absolute henry =
- 0.00040 int. henry 1 "practical" e.m.u.
- 1.11262 × 10⁻¹² c.g.s. e.s.u.

ENERGY AND POWER:

- (standard gravity = 980.665 cm/sec./sec.)
- I international joule =
 - 1.00041 absolute joules
- I absolute joule =
- 0.00050 int. joule
- 10⁷ ergs
- 0.737560 standard foot-pound 0.101972 standard kilogram-meter
- 0.277778×10^{-6} kilowatt-hour

Resistivity:

- I ohm-cm = 0.393700 ohm-inch
 - = 10,000 ohm (meter, mm²)
 - = 12,732.4 ohm (meter, mm)
 - = 303,700 microhm-inch
 - = 1,000,000 microhm-cm
 - = 6,015,290 ohm (mil, foot)
- I ohm (meter, gram) = 5710.0 ohm (mile, pound)

MAGNETIC QUANTITIES:

1 maxwell

- I int. gilbert = 0.00005 absolute gilbert
- I int. maxwell = 1.00046 absolute maxwells
- I absolute maxwell = 0.99954 int. max
 - well = 0.7958 ampere-turn I gilbert
 - I gilbert per cm = 0.7958 ampere-turn
 - per cm = 2.021 ampere-turns
 - per inch
 - = 1 line
 - = 10⁻⁸ volt-second
 - ı maxwell per cm² = 6.452 maxwells per in.²

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS

The electromotive forces given in this table approximately represent what may be expected from cell in good working order, but, with the exception of the standard cells, all of them are subject to compare the compared to t siderable variation.

		(a) Double Fluid C	ells		
Name of cell	Negative pole	Solution	Positive pole	Solution	E.i
Bunsen	Amalg. Zn	1,H ₂ SO ₄ ; 12,H ₂ O	C	Fuming HNO ₃	Ι.
Chromate		12,K ₂ Cr ₂ O ₇ ; 25,H ₂ SO ₄ ;	44	HNO ₃ ; dens. 1.38 1,H ₂ SO ₄ ; 12,H ₂ O	1 2
44	41 11	100,H ₂ O 1,H ₂ SO ₄ ; 12,H ₂ O	4.6	12,K ₂ Cr ₂ O ₇ ; 100,H ₂ O	2
Daniell	66 66	1,H ₂ SO ₄ ; 4,H ₂ O	Cu	Sat. sol. CuSO ₄ ; 5, H ₂ O	I
4.6		1,H ₂ SO ₄ ; 12,H ₂ O 5% sol.ZnSO ₄ ; 6H ₂ O	4.4	44	I
" Grove	66 66	1 NaCl; 4 parts H ₂ O 1 H ₂ SO ₄ ; 12 H ₂ O	Pt	Fuming HNO ₃	I
"		Sol.ZnSO ₄	11	HNO3; dens. 1.33	I
11		H ₂ SO ₄ sol.; dens. 1.136 H ₂ SO ₄ ; dens. 1.136	"	Concent. HNO ₃ HNO ₃ ; dens. 1.33	I
"		H ₂ SO ₄ sol.; dens. 1.14	11	HNO ₃ ; dens. 1.19	1 1
	11 11	H ₂ SO ₄ sol.; dens. 1.06 NaCl sol.		" " 1.33	1
Partz		Sol.MgSO ₄	**	Sol.K ₂ Cr ₂ O ₇	2
		(b) Single Fluid C	ells		
Leclanche	Amalg. Zn	Sol.NH ₄ Cl	Carbon*		I
Chaperon Edison-Lelande		Sol.KOH	Copper**		
AgCl Law	Zn	23% sol.NH ₄ Cl	Silver*** Carbon		1
Dry cell	44	1 pt. ZnO, 1 pt. NH ₄ Cl, 3 pts. plaster of paris, 2 pts. ZnCl ₂ , and water	11		i
Poggendorff	Amalg. Zn	to make a paste Sol.K ₂ Cr ₂ O ₇	4.6		,
00 11		12K ₂ Cr ₂ O ₇ ; 25H ₂ SO ₄ ; 100,H ₂ O	4.6		2
Regnault	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	1H ₂ SO ₄ ; 12H ₂ O; 1CaSO ₄	Cd Cu		
Volta couple	Zn	H ₂ O	Cu		
		(c) Secondary Ce	lls		
Pb accumulator Regnier (1)	Pb Cu	H ₂ SO ₄ sol. of density 1.1 CuSO ₄ ; H ₂ SO ₄	PbO ₂		2
			6.6		to
(2)	Amalg. Zn	ZnSO ₄ sol.	in H ₂ SO ₃		1
Main Edison	Fe "	H_2SO_4 ; dens. about 1.1 KOH 20% sol.	A nickel		1
Laron		11011 20 /0 301.	oxide		n

^{*} Depolarizer: Manganese peroxide with powdered carbon. ** Depolarizer: CuO. *** Depolarizer: Silver chloride. † F. Streintz gives the following value of the temperature variation $\frac{dE}{dt}$ at different stages of charge:

i i i otremta gi	ves the ronowing	, varac or	the tempe	rature va	dt d	dincient.	seages or em	41501
	E. M. F.	1.9223	1.9828	2.0031	2.0084	2.0105	2.0779	2,2070
	$dE/dt \times 10^6$	140	228	335	285	255	130	73
Dolezalek gives	the following re	lation bet	ween E. N	I. F. and	acid concent	tration:		
		Per cent I	I2SO4	64.5 5	2.2 35.3	21.4	5.2	
		E. M. F.,	o°C	2.37 2	.25 2.10	2.00	1.89	

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS

Solids with Liquids and Liquids with Liquids in Air *

Temperature of substances during experiment about 16° C

	С	Cu	Fe	Pb	Pt	Sn	Zn	Amalg. Zn	Brass	Dis- tilled water
(.01	.269		(.285		ſ—.105			
H ₂ O	to	to	.148	.171	to	.177<	to	.100	.231	
	.17	.100			-345		+.156			
Alum. sat.sol CuSO ₄ sol.	• • •	127	 653	139	.246	225	536		.014	
sp.gr. 1.087		.103								
CuSO ₄ sat.sol.		.070								
Sea salt sol.										
1.18 at 20° C		475	605		856	334	565		435	
NH ₄ Cl, sat.sol.		396	652	189	.059	364	637		348	
ZnSO4 sol. 1.125										1
at 4° C							238			
ZnSO4 sat.sol							430	284		200
One part H2O +										
3, sat. ZnSO ₄							444			
Strong H2SO4 in										
water:										
1 to 20 by wt							344			
1	about									
I to Io by vol.	035							358		
1 to 5 by wt								.429		
	.O I									
5 to 1 by wt	to			I20		25			016	
	3.0									
	-55		(.72	1.3					1
Con. H ₂ SO ₄	to	1.113	J	to	to			.848		1.298
	.85)	1.252	1.6				• • • •	-1.2,0
C HNO	-			-)					
					.672		• • • •			
Mercurous sulpha		te, Hg, -	F .475.	Sat.CuSO ₄	sol., H	₂ O, — .0	43; sat.2	ZnSO₄sol.,	, +.095;	ı pt.
H ₂ O, 3 pt. ZnSO ₄ +	102.									
Concentrated H ₂	SO ₄ ,	H_2O , +	1.298; s	at.alum.sol	l., + 1.	456; Cr	SO _i sat.	+ 1.269;	ZnSO ₄ s	at.sol.,
+ 1.699.										

^{*} Everett, Units and physical constants: Table of Ayrton and Perry's results, prepared by Ayrton.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS

The following numbers are given by G. Magnanini* for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	h of the solution in n molecules per liter.	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.
No. of molecules.	Salt.		Differe	ence of poter	itial in centiv	olts.	
0.5 1.0 1.0 0.5	H ₂ SO ₄ NaOH KOH Na ₂ SO ₄ Na ₂ S ₂ O ₈	0.0 -32.1 -42.5 1.4 -5.9	36.6 19.5 15.5 35.6 24.1	51.3 31.8 32.0 50.8 45.3	51.3 0.2 —1.2 51.4 45.7	100.7 80.2 77.0 101.3 38.8	121.3 95.8 104.0 120.9 64.8
1.0 1.0 0.5 0.5	$\begin{array}{c} {\rm KNO_3} \\ {\rm NaNO_3} \\ {\rm K_2CrO_4} \\ {\rm K_2Cr_2O_7} \\ {\rm K_2SO_4} \end{array}$	11.8‡ 11.5 23.9‡ 72.8 1.8	31.9 32.3 42.8 61.1 34.7	42.6 51.0 41.2 78.4 51.0	31.1 40.9 40.9 68.1 40.9	81.2 95.7 94.6 123.6 95.7	105.7 114.8 121.0 132.4 114.8
0.5 0.25 0.167 1.0	$({ m NH_4})_2{ m SO_4} \ { m K_4FeC_6N_6} \ { m K_6Fe_2}({ m CN})_{12} \ { m KCNS} \ { m NaNO_3}$	-0.5 -6.1 41.0§ -1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 	125.7 87.8 124.9 72.5 104.6?
0.5 0.125 1.0 0.2 0.167	Sr(NO ₃) ₂ Ba(NO ₃) ₂ KNO ₃ KClO ₃ KBrO ₃	14.8 21.9 — ‡ 15–10‡ 13–20‡	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3	119.3 121.5 115.0 120.9 120.8
I.0 I.0 I.0 I.0	NH₄Cl KF NaCl KBr KCl	2.9 2.8 — 2.3	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6
0.5 - 1.0 0.5 0.5	$egin{array}{ll} Na_{2}SO_{3} & \\ NaOBr & \\ C_{4}H_{6}O_{6} & \\ C_{4}H_{6}O_{6} & \\ C_{4}H_{4}KNaO_{6} & \\ \end{array}$	-8.2 18.4 5.5 4.1 -7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6 ‡ 54.4\$ 57.6 42-47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7

^{* &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

¹ Not constant.

[§] After some time.

[#] A quantity of bromine was used corresponding to NaOH = 1.

THERMOELECTRIC POWER

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power at 0° C, B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When power = Q = aL/dt = A + Bt, where A is the thermoelectric power at 0° C, B is a constant, and t is the mean thermoerature of the junctions. The neutral point is the temperature at which dE/dt = o, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb = QT/π , in which Q is in volts per degree C, T is the absolute temperature of the junction, and T = 4.10. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per coulomb = $BT\theta/\pi$, in which B is notls per degree C, T is the mean absolute temperature of the junctions, and θ is the difference of temperature of the junctions. (BT) is Sir W. Thomsons "Specific Heat of Electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the hot junction to the cold. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power of a couple composed of two metals, I and I is given by subtracting the value for I from that for I; when this difference is positive, the current flows from the hot junction to the cold in I. In the follow

are given by Becquerel in the reference given below.

Substance.	A Microvolts.	B Microvolts.	Thermoelec at mean junctions (n	temp, of	Neutral point $-\frac{A}{B}$	Author- ity.
Aluminum. Antimony, comm'l pressed wire. " axial. " equatorial Argentan. Arsenic. Bismuth, comm'l pressed wire. " pure " " " crystal, axial. " equatorial Cadmium. Cobalt. Constantan. Copper. " commercial. " galvanoplastic. Gallium. Gold. Iron. " pianoforte wire. " commercial. " in galvanoplastic. Gallium. Wagnesium. Magnesium. Molybdenum. Mercury. Nickel. " (-18° to 175°). " (250°-30°). " (above 340°).	-11.94 -1.94 -1.94 -1.94 -1.94 -1.34 -1.34 -1.15	+0.0039	-0.68 +6.0 +22.6 +26.4 -12.95 -3.56 -97.0 -88.0 -65.0 -45.0 +3.48 -1 -22 +0.10 +3.8 -0.2 +3.0 +16.2 +17.5 -1 -0.00 +2.03 +5.9 -0.443 -22.8 -22.8	-0.56 -14.47 -12.7 -12.7 -14.75 +2.45 +8.9 -19.3 +1.81 -19.3 +1.75 -11.75 -3.30 -15.50 -24.33 -1.81	+195236	TM " " TB S'M TM " S TT TM B " TS B B T" "

TABLE 467 (continued) .- Thermoelectric Power

Substance.	A Microvolts.	B Microvolts.	Thermoelec at mean junctions (n	temp. of	Neutral point $-\frac{A}{B}$	Au- thorit y .
Palladium	-6.18	 0.0355	-6.9	 7.96	-174	T
Phosphorus (red)	-	_	+29.9	-	-	M
Platinum	-	-	+0.9	-	_	46
" (hardened)		-0.0074	+2.42	+2.20	347	T _"
" (malleable)	—o.6o	-0.0109	818	-1.15	 55	
" wire	-	_		+0.94	-	В
" another specimen	-	-	_	-2.14	_	44
Platinum-iridium alloys:			. 0			rn.
85% Pt + 15% Ir		+0.0062		+8.21	[—1274]	Т
90% Pt + 10% Ir		-0.0133		+5.23	444	"
95% Pt + 5% Ir	+6.15	+0.0055	+6.26	+6.42	[-1118]	
Selenium		-	+807.	- 06	_	M
Silver	+2.12	+0.0147	+2.41	+2.86	-144	T
" (pure hard)	_	_	+3.00		_	M
" wire	-	_		+2.18	_	В
Steel	+11.27	-0.0325	+10.62	+9.65	347	T
Tantalum	_	-	-2.6	_	_	
Tellurium β	-	-	+500.	_	-	H
<i>a</i>	-	_	+160.	_	_	H
Thallium	-	_	+0.8	1000	_	
Tin (commercial)	_	_	10.	+0.33		H
	_	-	+0.1	0.16	-0	T
	-0.43	+0.0055	-0.33	<u>-0.16</u>	78	1
Tungsten	10.00	10 0000	-2.0	12.51	-08	T
Zinc	+2.32	+0.0238		+3.51	- 98	M
" pure pressed	_	_	+3.7	-	_	WI

Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. S. Bureau of Standards.

TABLE 468 .- Thermoelectric Power of Alloys

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as a reference metal, the thermoelectric power of lead to copper was taken as -1.9.

Substance.	Relative quantity.	Thermoelec tric power in microvolts.	Substance.	Relative quantity.	Thermoelectric power in microvolts.	Substance.	Relative quantity.	Thermoelectric power in microvolts.
Antimony Cadmium Antimony Cadmium Zinc Antimony Cadmium Bismuth Antimony Zinc Antimony Zinc Antimony Zinc Antimony Cadmium Lead Zinc Antimony Cadmium Lead Zinc Antimony Cadmium Lead Zinc Antimony Cadmium Zinc Tin	806 } 696 } 4 } 1 } 806 } 696 } 4 } 1 } 1 } 1 } 1 } 1 } 1 } 1 } 1 } 1	227 146 137 95 8.1	Antimony Zinc Tin Antimony Cadmium Zinc Antimony Tellurium Antimony Bismuth Antimony Iron Antimony Magnesium Antimony Lead Bismuth Bismuth Antimony	2 \ 1 \ 1 \ 1 \ 3 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1	43 35 10.2 8.8 2.5 1.4 -0.4 -43.8 -33.4	Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Tin Bismuth Selenium Bismuth Zinc Bismuth Arsenic Bismuth Bismuth	4 } 1 } 8 } 10 } 12 } 11 } 10 } 11 } 12 } 11 } 12 } 11 } 12 } 11 }	-51.4 -63.2 -68.2 -66.9 60 -24.5 -31.1 -46.0 68.1

M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.
T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.
H Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of Teβ=0.04, Tea 1.7 c. m. units.) Swisher, 1917.

TABLE 469.—Thermal Electromotive Force of Metals and Alloys versus Platinum (millivolts)

One junction is supposed to be at 0°C; + indicates that the current flows from the 0° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Tempera- ture, ° C.	Au.	Ag.	90%Pt+ 10%Pd.	10%Pt+ 90%Pd.	Pd.	90%Pt+ 10%Rh.	90%Pt+ 10%Ru.	Ir.	Rh.
-185 -80 +100 +200 +300 +400 +500 +700 +800 +1000 +1100 +(1300) +(1500)	-0.15 -0.31 +0.74 +1.8 +3.0 +4.5 +6.1 +7.9 +9.9 +12.0 +14.3 +16.8	-0.16 -0.30 +0.72 +1.7 +3.0 +4.5 +6.2 +10.6 +13.2 +16.0	-0.11 -0.09 +0.26 +0.62 +1.0 +1.5 +1.9 +2.4 +2.9 +3.4 +4.3 +4.3	+0.24 +0.15 -0.19 -0.31 -0.37 -0.18 +0.12 +0.61 +1.2 +2.1 +3.1 +4.2	+0.77 +0.39 -0.56 -1.20 -2.0 -2.8 -3.8 -4.9 -6.3 -7.9 -11.5 -13.5	+2.3 +3.2 +4.1 +5.1 +6.2 +7.2 +8.3 +9.5 +10.6 +13.1 +15.6	-0.53 -0.39 +0.73 +1.6 +2.6 +3.6 +4.6 +5.7 +6.9 +8.0 +9.2 +10.4 +11.6 +14.2 +16.9	-0.28 -0.32 +0.65 +1.5 +2.5 +3.6 +4.8 +6.1 +7.6 +9.1 +10.8 +12.6 +14.5 +18.6 +23.1	-0.24 -0.31 +0.65 +1.5 +2.6 +3.7 +5.1 +6.5 +8.1 +9.9 +11.7 +13.7 +15.8 +20.4 +25.6

^{*} Holborn and Day.

TABLE 470.—Thermal Electromotive Force of Platinum-Rhodium Alloys versus Platinum

Temperature versus Electromotive Force in Millivolts

			Per	Cent Rho	dium			
Temp. °	C 0.5	1.0	5.0	10.0	20.0	40.0	80.0	100.0 *
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	+0.10	+0.18	+0.54	+0.64	+0.63	+0.65	+0.62	+0.70
200	.20	.37	1.16	1.43	I.44	1.52	1.49	1.61
300	.29	·57	1.82	2.32	2.40	2.55	2.55	2.68
400	· 3 9	.76	2.49	3.25	3.47	3.70	3.77	3.91
500	.48	.94	3.17	4.22	4.63	4.97	5.12	5.28
600	. 58	1.12	3.86	5.22	5.87	6.36	6.60	6.77
700	.67	1.30	4.55	6.26	7.20	7.85	8.20	8.40
800	.7 6	1.48	5.25	7.33	8.59	9.45	9.92	10.16
900	.85	1.66	5.96	8.43	10.06	11.16	11.76	12.04
1000	.94	1.84	6.68	9.57	11.58	12.98	13.73	14.05
1100	1.03	2.02	7.42	10.74	13.17	14.90	15.81	16.18
1200	1.13	2.20	8.16	11.93	14.84	16.91	17.99	18.42

^{*} Bur. Standards Journ. Res., 3, 1029, 1929.

TABLE 471.—Thermal Electromotive Force of Aluminum versus Platinum *
Temperature versus Electromotive Force

°C 0 20 40 60 80	Intern. mv 0.000 +0.062 0.135 0.218 0.312 0.416	°C 240 260 280 300 320 340	Intern. mv 1.374 1.538 1.708 1.884 2.065 2.252	°C 480 500 520 540 560 580	Intern. mv 3.703 3.931 4.164 4.403 4.647 4.896
140 160 180 200 220	0.651 0.781 0.919 1.064 1.216	360 380 400 420 440 460	2.444 2.641 2.843 3.050 3.262 3.480	620 640 660	5.150 5.409 5.673 5.942

^{*} Bur. Standards Circ. 346, 1927.

TABLE 472.—Thermal Electromotive Force of Zinc versus Platinum
Temperature versus Electromotive Force

°C ,	Intern. mv	°C	Intern. my	°C	Intern. mv
0	0.000	150	1.276	300	3.417
25	+0.153	175	1.572	325	3.853
50	0.331	200	1.894	350	4.310
75	0.533	225	2.240	375	4.786
100	0.758	250	2.610	400	5.290
125	1.005	275	3.002	415	5.604

TABLE 473.—Thermal Electromotive Force of Cadmium versus Platinum
Temperature versus Electromotive Force

°C	Intern. my	°C	Intern. my	°C	Intern. mv
0	0.000	125	1.211	250	3.255
25	+0.171	150	1.559	275	3.740
50	0.378	175	1.940	300	4.238
75	0.620	200	2.351	315	4.539
100	0.898	225	2.790		

TABLE 474.—Thermal Electromotive Force of Nickel versus Platinum *
Temperature versus Electromotive Force

°C 0 25 50 75 100 125	Intern. mv 0.000 -0.350 0.710 1.090 1.485 1.880 2.285	°C 400 425 450 475 500 525 550	Intern. mv 5 · 450 5 · 580 5 · 745 5 · 960 6 · 165 6 · 360 6 · 585	°C 800 825 850 875 900 925	Intern. mv 9.350 9.675 10.010 10.350 10.695 11.045 11.400
					, , ,
	•				
	1.485				
125		525	6.360	925	11.045
150		550	6.585	950	11.400
175	2.695	575	6.800	975	11.765
200	3.105	600	7.040	1000	12.130
225	3.505	625	7.290	1025	12.500
250	3.890	650	7.550	1050	12.875
275	4.255	675	7.825	1075	13.250
300	4.590	700	8.105	1100	13.625
325	4.880	725	8.415		
350	5.110	750	8.720		
375	5.290	775	9.030		

^{*} Bur. Standards Journ. Res., 5, 1291, 1930.

TABLE 475.—Thermoelectric Properties at Low Temperatures

(Borelius, Keesom, Johansson, Linde, Com. Phys. Lab. Leiden, no. 206, 1930.)

Thermoelectric Force in Microvolts per °K. against Silver Alloy

°C	Cu	Ag	Au	Pd	Pt	Fe	Pb
-255	+0.07	-0.10	-1.20	十0.75	+1.54	+0.05	—1.0 6
-240	0.45	+0.37	-0.05	2.10	3.60	I.40	-1.19
-220	0.90	0.39	十0.24	3.40	5.24	4.80	-1.25
-200	0.89	0.31	0.30	3.48	5.40	8.45	-1.29
— 180	0.72	0.25	0.30	2.14	4.36	11.5	-1.33
— 160	0.61	0.22	0.33	0.54	3.02	14.0	— I.42
-140	0.52	0.21	0.37	-ı.o6	1.72	15.8	-1.54
-120	0.47	0.20	0.40	-2.52	0.50	16.9	— 1.67
-100	0.44	0.20	0.44	-3.92	-0.70	17.5	-1.79
—8o	0.45	0.20	0.47	-5.27	— 1.76	17.5	-1.92
60	0.47	0.20	0.51	-6.52	-2.80	17.3	-2.05
-40	0.49	0.20	0.55	− 7.8o	-3.80	16.9	-2.17
-20	0.51	0.20	0.58	-9.05	-4.72	16.2	-2.29
0	0.53	0.21	0.62	-10.32	-5.62	15.8	-2.42
+20	0.56	0.22	0.65	-11.6	-6.56	15.3	-2.54

TABLE 476.—Thomson Effect in Microvolts per Degree

°K.	Cu	Ag	Au	Pd	Pt	Fe	Ni	Со	Pb
20	+0.59	+1.40	+2.83	+1.9	+3.2	+1.3			
25	1.04	1.23	2.09	2.6	3.6	2.7			
30	I.22	0.85	1.58	3.I	3.9	4.I	-4.5	-0.2	0.00
40	1.03	0.24	0.88	3.2	3.8	6.7	-5.4	-0.3	-0.04
50	0.67	-0.02	0.45	2.5	2.7	9.0	-5.0	-0.8	-0.06
60	0.18	-0.17	0.19	I.O	I.0	10.8	-4.5	-2.0	-0.09
70	-0.29	-0.24	0.07	-1.5	-1.1	11.9	-4.I	-3.7	-0.12
8o	-0.46	-0.25	0.05	-4.6	-3.3	12.6	-4.0	-5.5	-o.15
90	− 0.48	-o.17	0.17	-6.6	-5.I	12.9	-4.0	-7.0	-0.18
100	-0.45	-0.03	0.32	-7.8	-6.5	13.0	-4.5	-8.4	-0.20
110	-0.37	+0.12	0.45	-8.7	-7.5	13.0	-5.3	- 9.8	-0.23
120	-0.26	0.25	0.56	-9.3	-8.0	12.8	-6.4	-11.1	-0.26
130	-0.13	0.35	0.66	-9.7	-8.2	12.2	-7.4	-12.4	-0.29
140	+0.02	0.44	0.75	-10.I	-8.2	11.0	— 8.3	-13.5	-0.32
150	0.17	0.52	0.83	-10.3	-8.3	8.9	-9.0	-14.6	-0.34
160	0.31	0.59	0.91	-10.6	-8.4	6.1	-9.7	-15.7	-0.37
170	0.46	0.66		-10.9	-8.5	2,6	-10.3	-16.7	-0.40
180	0.59	0.72		-II.2	-8.7	-0.2	-10.9	-17.6	-0.42
200	0.79	0.84	-	-I2.I	-9.I	-3.5	-I2.I	-19.6	-0.46
220	0.96	0.96		-13.3	-9.8	-4.5	-13.3	-21.5	-0.49
240	1.10	1.08	I.43	-14.6	-10.6	-4.8	-14.5	-23.4	-0.52
260	I.24	I.20	1.54	-15.8	-11.4	-5.2	-15.7	-25.4	-o.54
280	1.38	1.32		-17.0	-12.3	-5.6			-o.55
300	+1.52	+1.44	+1.77	-18.2	-13.2	-5.9	• • • •		-o.57

TABLE 477 .- Peltier Effect

The coefficient of Peltier effect may be calculated from the constants A and B of Table 467, as there shown. With Q (see Table 467) in microvolts per °C and T= absolute temperature (K), the coefficient of Peltier effect= $\frac{QT}{C}$ cal. per coulomb=0.00086 QT cal. per ampere-hour=QT/1000the coefficient of Peltier effect= 2 cal. per coulomb=0.00080 QI cal. per ampere-nour=2171000 millivolts (=millijoules per coulomb). Experimental results, expressed in slightly different units, are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

				Calorie	s per amp	ere-houi	r.				
	Sb. ‡	Sb. com- mercial.	Bi. pure.	Bi. §	Cd.	German Silver.	FT G	zi.	Pt.	Ag.	Zn.
Jahn*	-	-	-	-	62	-	-3.61	4.36	0.32	41	58
Le Roux† .	13.02	4.8	19.1	25.8	0.46	2.47	2.5	-	-	-	.39

* "Wied. Ann." vol. 34, p. 767. † "Ann. de Chim. et de Phys." (4) vol. 10, p. 201. ‡ Becquerel's antimony is So6 parts $Sb+_{406}$ parts $Zn+_{121}$ parts Bi. § Becquerel's bismuth is 10 parts $Bi+_1$ part Sb.

TABLE 478.—Peltier Effect, Fe-Constantan, Ni-Cu, O° - 560°C

Temperature.	00	200	130 ⁰	240 ⁰	320 ⁰	360°	
Fe-Constantan	3.1	3.6	4.5	6.2	8.2	12.5	g. cal. × 10 ⁻³
Ni-Cu	1.92	2.15	2.45	2.06	1.91	2.38	per coulomb.

TABLE 479 .- Peltier Electromotive Force in Millivolts

Metal against Copper.	Sb.	F.e.	Cd.	Zn.	Ag.	An.	Pb.	Sn.	Al.	Pt.	Pd.	Ŋ.	Bi.
Le Roux .	-5.64	-2.93	53	45	-	-		_	-	-	-	-	+22.3
Jahn	-	-3.68	72	68	48	-	-	_	-	+.37	-	+5.07	-
Edlund	-	-2.96	16	01	+.03	+.33	+.50	+.56	+.70	+1.02	+2.17	-	+17.7
Caswell	-	-	-	-	+.03	-	-	-	+.70	+.85	-	+6.0	+16.1

Le Roux, 1867; Jahn, 1888; Edlund, 1870-71; Caswell, Phys. Rev. 33, p. 381, 1911.

TABLE 480 .- Thermoelectric Power; Pressure Effects

The following values of the thermoelectric powers under various pressures are taken from Bridgman, Pr. Am. Acad. Arts and Sc. 53, p. 269, 1918. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at \circ °C. The last two columns give the constants in the equation E = thermoelectric force against lead (\circ to 100°C) = $(AI + BI^2) \times 10^{-6}$ volts, at atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.

1				The	rmo-ele	ctric for	e, volts	× 109				
-					Pro	essure, k	g/cm²					mula
-	Metal.	20	00	40	00	80	00		12,000		coeff	icients.
					Те	mperatu	re, ° C					
		50°	100°	50°	100°	50°	100°	20°	50°	100°	A	В
	Bi † Zn † Tl ‡	6,200	14,100	13,000	28,500	26,100	58,100	14,400	38,500	87,400	+3.047	+.0160 00495
	Cd † Constantan‡	2,040 2,850	10,870 7,120 5,050	9,380 4,620 5,800	20,290 14,380 11,810	17,170 10,960 11,530	28,740	8,780 6,680 6,750	23,750 19,180 17,200	52,460 45,560 35,470	+12.002	00134 1 +.1619 0307
İ	Pd *	2,190	4,380 3,600	4,400	8,800	8,630 7,370		5,090	12,970	26,520	-34.76 -5.496 -3.092	01760
	W ‡	1,190	2,530 1,680	2,360 1,500	4,990	4,690	7,100	2,700 1,880	7,050	15,140	+1.594	+.01705 0178
-	Ag * § Fe †	840 390	1,870	1,720	3,720	3,350	7,190		4,950	10,560		+.00432 0080 ²
	Au *	460 456	1,050 1,052	920	2,120	1,860	4,210 3,974	+880 +990	281 2,627		_	+.004673
	Cu †	+292 -70	584 101	+580 -91	1,216 294	I,I24 32	2,420 929	+596 -68	1,616 312	3,546 1,962	+2.777 -0.416	+.00483 +.000084
1	§ Mo ‡ § Sn †	+93 +38	140 +87	+187 +58	278 +165	375 +70	+292	+146 -182	562 +10	833 +390	+0.230	+.02167 5 00067
	Manganin † Mg †	-123 -84	$-232 \\ -167$	-242 -181	-452 -362	-489 -395	-894 -791	-308 -259	-719 -648	-1,296	-0.095	+.000414 ⁶ +.00004
-	Co †	-156	-348	-316	-692	-630	-1,360	-352	-937	-2,061	-17.32	0390

TABLE 481 .- Peltier and Thomson Heats; Pressure Effects

The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive d^2E/d^2 means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference and notes as for preceding table.

r							-						
			106 >	Peltier	heat,	mb.			108 X	Thoms Joules,	on hea /coulor	.t, mb/° C	
ı	Metal.		P	ressure	kg/cm	2			F	ressur	e kg/c	m²	
۱	anctar.		6000			12,000		(12,000	0
ı			T	empera	ture°(2			Te	mpera	ture °	C	
I		o°	50°	100°	o°	50°	100°	o°	50°	100°	o°	100°	
	\$ Bi † \$ Zn † \$ Tl ‡ \$ Cd † Constantan † \$ Pd * \$ Pt * \$ W ‡ \$ Ni* Ag * \$ Î c † Pb ‡ Au * Cu † \$ Al † \$ Mo ‡ \$ Sn † \$ Manganin † Mg † \$ Co †	+1070 +988 +666 +199 +456 +355 +233 +177 +111 +133 -111 +77 +66 +44 -22 +11 -22 -23	+140 +95 +71	+190 +124 +118 +70 +52 +35 +32 +23 +23 +15 +16	+2580 +1990 +112 +81 +908 +45 +36 +24 +25 -38 +14 +13 +25 -35 -4 -35 -4 -35 -46	+171 +148	+412 +229 +221 +140 +103	+1150 +41 +38 +109 +5 +43 +49 +44 +79 +2 +4 +44 +66 +11 +66 +11	+650 +48 +28 +74 +6 +4 -6 -6 -7 +7 +58 +6 +4 +1 +9 -5 +0 -11		+105 +13 +9 +96 +16 +16 +7	+63 +92 +14 +9 +17 +14 +15 +8 +120 +8 +6 +3 +16 -11	

^{* † \$} Same significance as in preceding table.

^{*} Identical wire of Table 485. † Another wire of same sample. † Different sample. § Results too irregular for interpolation for values at other temperature and pressures; see original article. -.0456\(\text{0}\); (2) -.0486\(\text{0}\), annealed ingot iron; (3) -.05166\(\text{0}\); (4) -.041\(\text{0}\); (5) -.0425\(\text{0}\); (6) -.04112\(\text{0}\).

TABLE 482

THE TRIBO-ELECTRIC SERIES

In the following table it is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenon depends upon surface conditions and circumstances may alter the relative positions in the list.

Shaw, Pr. Roy. Soc. 94, p. 16, 1917; the original article shows the alterations in the series sequence due to varied conditions.

TABLE 483

AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES

For computing resistance in ohms per meter from resistivity, ρ , in michroms per cm. cube (see Table 484, etc.). ϵ . g. to compute for No. 23 copper wire when $\rho = 1.724$: I meter = 0.0387 + .0271 + .0008 + .0002 = 0.0668 ohms; for No. 11 lead wire when $\rho = 20.4$; I meter = 0.0479 + .0010 = 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per meter of No. N = 2(n-3) within 1 %: ϵ . g. resistance of meter of No. 18 = $2 \times$ No. 15.

						ρin	1 micro-o	hms per c	m. cube.			
Gage, No.	Diam. in mm.	Section mm ² .	1.	2.	3.	4.	5.	6.	7.	8.	٥.	10.
						Resistan	ce of wire	e i meter	long in oh	ms.		
0000	11.7	107.2	.04933	.03187	.03280	.03373	.03466	.08560	.03653	.03746	.03840	.0393
00	9.27	67.43	.03148	.03297	.03445	.03593	.03742	.0 ₃ 890	+02104	.02119	.02133	.0214
1	7-35	42.4I	.03236	.03472	.03707	.03943	.02118	-O2141	.02165	.02189	.O2212	.0223
,3	5.83	26.67	.03375	.03750	.02112	.02150	.02187	,O2225	.02262	.02300	.O2337	.0237
5	4.62	16.77	.03596	.02119	.02179	.02239	.02298	.0 ₂ 358	+02417	.02477	.O2537	•0259
7	3.66	10.55	.03948	.02190	.02284	.02379	.O2474	.02569	.0 ₂ 664	.02758	.02853	.0294
9	2.91	6.634	.02151	.02301	.02452	.02603	.02754	.02904	.0106	,0121	.0136	+0151
II	2.30	4.172	.02240	.02479	.02719	.02959	.0120	.0144	.0168	.0192	.0216	.0240
13	1.83	2.624	.02381	.02762	.0114	.0152	1010.	.0229	.0267	.0305	.0343	.0381
15	1.45	1.650	.02606	.0121	.0182	.0242	.0303	•0364	.0424	.0485	.0545	•0606
17	1.15	1.038	.02963	.0193	.0289	.0385	.0482	.0578	.0674	.077I	•0867	.0963
19	.912	.6527	.0153	.0306	.0460	.0613	.0766	.0919	.1072	.1226	-1379	.1532
21	.723	.4105	.0244	.0487	.073 I	.0974	.1218	.1462	.1705	.1949	.2192	.2436
23	•573	.2582	.0387	.0775	.1162	.1549	.1936	.2324	.2711	.3098	-3486	-3873
25	-455	-1624	.0616	.1232	.1847	.2463	.3079	.3695	.4310	.4926	-5542	.6158
27	.361	.1021	•0979	.1959	.2938	.3918	·4 ⁸ 97	.5877	.6856	·7835	.8815	•9794
29	.286	.0642	-1557	.3114	.4671	.6228	.7786	19343	1.090	1.246	1.401	1.557
31	.227	•0404	.2476	4952	.7428	-9904	1.238	1.486	1.733	1.981	2.228	2.476
3.3	.180	•0254	-3937	-7874	1.181	1.575	1.968	2.362	2.756	3.150	3.543	3.937
35	.143	.0160	.626 2	1.252	1.879	2.505	3.131	3.757	4.383	5.009	5.636	6.262
37	.113	.0100	.9950	1.990	2.985	3.980	4.975	5.970	6.965	7.960	8.955	9.950
39	.090	.0 063	1.583	3.166	4.748	6.331	7.914	9.497	11.08	12.66	14.25	15.83
40	.080	.0050	1.996	3.992	5.988	7.984	9.980	11.98	13.97	15.97	17.96	19.96

RESISTIVITY OF METALS AND SOME ALLOYS

The resistivities are the values of ρ in the equation $R = \rho l/s$, where R is the resistance in microhms of a length l cm of uniform cross section s cm². The temperature coefficient is a_s in the formula $R_t = R_s[1 + a_s(t - t_s)]$. The information of column 2 does not necessarily apply to the temperature coefficient. See also next table for temperature coefficients o° to 100°C, also page 413 for values on metals of high purity.

		Tempera-	Microhm-	Refer		ıre coefficien	t
Substance	Remarks	ture °C	em	ence	t _a	as	Refer- ence
Advance. Aluminum	see constantan see p. 421 c. p liquid drawn liquid solid liquid 99.57 pure see constantan 99.8 pure 60 % Cu, 40 % Ni annealed hard-drawn electrolytic pure very pure, ann'ld see constantan 18 % Ni 99.9 pure pure, drawn 99.9 pure pure, drawn 99.9 pure see constantan		2.828 .64 1.53 2.62 3.86 8.0 39.1 10.5 120 35 10.1 119.0 160.2 7 2.72 7.54 9.82 34.1 5.25 19 22.2 36.6 4.59 2.6 87 9.7 49 1.724 1.77 .144 2.92 4.10 1.602 92 53 33 8900068 2.22 2.44 3.77 8.37 1.92 6.10 8.3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 7 8 8 3 1 9 9 9 11 12 13 13 13 14 15 5 16 5 17 17 17 17 17 17 17 17 17 17 17 17 17	18° 25 100 500 — 20 — 20 100 ann'ld 500 " 1000 — 20 — 20 — 20 — 20 — 20 — 20 — 20	+ .00008 + .00306 0036 0036 0036 0038 0038 000020 + .000033 000020 + .00008 + .000062 000033 000020 + .00062 00062	5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4 1 5 5 5 4 4 4 4

Arranged in Order of Increasing Resistivity (ohm-cm³×10⁻⁶, 20°C)

Ag Cu	1.468 1.59 2.22	Mn Mo	5.± (5.3)	Pd Pt	10.21 10.96	Ga Os	53 56
Au	2,22	Zn	5.75	Rb	13	Hg	94.07
Al	2,6	Ir	6.10	Rb Sn	13	Bi	110
Cr	2.6	K	6.1	Ta	14.6	Graphite	8×10^{2}
Τi	3.2	Ni	6.93	Tl	17.6	Carbon	3×10^{3}
Na	4.3	Cd	7.04	Cs	19	Te	2 X IO5
Ca	4.3	In	8.37	Pb	20.4	P	1012
Mg	4.35	Li	8.37 8.55 8.8	Sr As	(23.5)	В	8 × 10 ¹²
Rh	4.69	Fe	8.8	As	35	Se	I O13
W	5	Co	9	Sb	39	S	1017

RESISTIVITY OF METALS AND SOME ALLOYS

	D .	Tempera-	Microhm-	Refer-	Temperatu	re coefficien	t .
Substance	Remarks	ture °C	cm	ence	t _a	a 8	Refer- ence
Iron	99.98% pure	20	10	5	20	+0.0050	5
46	pure, soft	-205.3	.652	17	0	+ .0062	5 21
**	+4 44	- 78 0	5.32 8.85	17 17	25 100	+ .0052 + .0068	4 4
**	** **	+ 98.5	17.8	17	500	+ .0052 + .0068 + .0147	4
44	** **	196.1	21.5	17	1000	+ .0050	4
44	electrolytic	400 0	43.3 10.0	3 34			_
**	• "	100	14.41	34	_	i —	_
steel	E. B. B. B. B.	20 20	10.4	5	20 see col. 2	+ .005 + .004	5 5
	Siemens-Martin	20	18	5 5	46 -6 66 64	+ .004 + .003	5 5
**	manganese	20	70	5	44 44 44	+ .001	5
**	35 % Ni, "invar." piano wire	20 0	81	22	o see col. 2		
44	tomp glace hard	0	45.7	23 23	" " " "	+ .0032 + .0016	23 23
**	", yellow	0	27	23		<u> </u>	
46	", blue ", soft	0	20.5 15.9	23 23	o see col. 2	+ .0033	23
Lead	_	20	22	5	20	+ .0039 + .0043	5
	cold pressed	-183 - 78	6.02 14.1	17 17	18	+ .0043	2
	66 66	0	19.8	33	_		_
	44 44	+ 90.4 196.1	28	17	_	_	-
4	_	318	36.9 94	17			
Lithium	solid	-187	1.34	12	_	_	-
	**	99.3	8.55 12.7	I 2 I 2			
"	liquid	230	45.2	25	_	_	
Magnesium	free from Zn´	20 -183	4.6	5	20	+ .004 + .0038	5
	41 41 14	- 78	1.00 2.97	17	25	+ .0038 + .0050	24 4
"	44 44 44	0	4.35	17	100	+ .0045	4
"	pure	+ 98.5 400	5.99 II.9	17	500 600	+ .0036 + .0100	4 4
Manganese	_	_	5.0 ±	15	_	_	l . —
Manganin	84 Cu, 12 Mn, 4 Ni	20	44	_5	12 25	+ .000000	4 4
::	_	_		_	100	000042	4
	_	_	_	_	250	000052	4
"	=	=	=		475 500	000000 - 11000	4 4
Mercury		20	95.783	5	20	+ .00089	5
	solid	-183.5 -102.9	6.97 15.04	17	°_	+ .00088	26
	44	- 50.3	21.3	17	$R_t = R_t(\mathbf{r} +$	_	_
4	liquid	- 39.2 - 36.1	25.5 80.6	17	.00089 t + .000001 t^2)		
	**	0	94.07	17	0000117)	_	_
	44	50	98.50	27	_	_	-
4	44	100 200	103.25	24 24	_		
44	**	350	135.5	24		_	_
Molybdenum.	very pure	0	5.14	35	25 100	+ .0033	4
"		_		l —	1000	+ .0034 + .0048 + .0020 + .0004	4 4 5 5 5
Monel metal Nichrome	_	20 20	42 100	5	20 20	+ .0020	5
Nickel	_	20	7.8	5 5	20	+ .0004 + .006	5
**	very pure	20	7.236	31	_	<u> </u>	
44	pure	-182.5 -78.2	1.44 4.31	28 28	0 25	+ .0062 + .0043	24 4
44	44	0	6.93	28	100	+ ,0043	4
**	_	94.9	11.1	28	500	+ .0030 + .0037	4 4
						1	, ,

RESISTIVITY OF METALS AND SOME ALLOYS

		Tempera-)(;	Defen	Temp	erature coeff	icient
Substance	Remarks	ture, °C	Microhm cm	Refer- ence	t.	a,	Refer- ence
Osmium. Palladium Palladium Platinum. Potassium Rhodium Silicium Silicium Silicium Silicium Tantalum Tantalum Therlo. Tin Titanium Tungsten. Zinc.	very pure """ wire """ solid """ liquid 99.98 pure electrolytic """ solid """ 11 12 13 14 15 15 15 15 15 15 15 15 15	20 20 20 20 20 20 20 20 20 20 20 20 20 2	9.5 11 2.78 7.17 10.21 13.79 9.83 2.44 6.87 10.96 14.85 26 4 6.1 8.4 .70 3.09 5.11 6.60 2.5 11.6 13.4 19.6 58± 1.629 .390 1.021 1.468 2.062 2.608 3.77 1.0 2.8 4.3 5.4 10.2 24.8 15.5 200,000 4.08 11.8 17.60 24.7 47 11.5 3.40 8.8 13 18.2 3.2 3.2 5.51 25.3 41.4 59.4 98.9 118 1.62 3.344 59.4 98.9 118	36 5 17 17 17 17 17 17 17 18 13 13 13 13 20 20 33 20 33 20 31 3 13 13 13 13 17 17 17 17 17 17 17 17 17 17 17 17 17	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a,	
	7	111			L		

References to Table 484; (1) See page 421. (2) Jäger, Diesselhorst, Wiss, Abh. D. Phys. Tech. Reich. 3, p. 269, 1900. (3) Nicolai, 1907. (4) Somerville, Phys. Rev. 31, p. 261, 1910; 33, p. 77, 1911. (5) Circular 74, Bureau of Standards, 1918. (6) Eucken, Gehlhoff. (7) De la Rive, (8) Matthiessen. (9) Jäger, Diesselhorst. (10) Lees, 1908. (11) Mean. (12) Guntz, Broniewski. (13) Hacksesen. (9) Jäger, Diesselhorst. (16) Reichardt, 1901. (17) Dewar, Fleming, Dickson, 1808. (18) Wolff, Dellinger, 1910. (19) Erhardt, 1881. (20) Broniewski, Hackspill, 1911. (21) Dewar, Fleming, 1893, 1896. (22) Circular 58, Bureau of Standards, 1916. (23) Strouhal, Barus, 1883. (24) Vincentini, Omodei, 1890. (25) Bernini, 1905. (26) Glazebrook, Phil. Mag. 20, p. 343, 1885. (27) Grimaldi, 1888. (28) Fleming, 1900. (29) Langmuir, Gen. Elec. Rev. 19, 1916. (30) Eucken-Gehlhoff, 1912. (31) Wenner-Lindberg, I. C. T., 1929. (32) Bidwell, 1922. (33) Mean. (34) Gumlich. (35) Worthing, I. C. T., 1929. (36) Blau, 1905.

^{*} See note to Table 467.

TABLE 485.—Resistance of Metals under Pressure (Bridgman)

The average temperature coefficients are per ° C between o° and 100° C. The instantaneous pressure coefficients The average temperature coemicients are per C between 0 and 100 C. The instantance toemicients are the values of the derivative $(1/r)[4r/dp]_t$, where r is the observed resistance at the pressure p and temperature t. The average coefficient is the total change of resistance between 0 and 12,000 kg/cm² divided by 12,000 and the resistance at atmospheric pressure and the temperature in question. Table taken from Proc. Nat. Acad. 3, p. 11, 1017. For coefficients at intermediate temperatures and pressures, see more detailed account in Proc. Amer. Acad. 52, p. 573, 1797. Sn, Cd, Zn, Kahlbaum's "K" grade; Tl, Bi, electrolytic, high purity; Pb, Ag, Au, Cu, Fe, Pt, of exceptional purity. Al better than ordinary, others only of high grade commercial purity.

					Pressure	coefficients.		
	Average ter	cient	I	nstantaneo	us coefficient	t.	Average	coefficient
	0 101		At	o° C	At re	oo° C	o to 12,0	ooo kg/cm²
	At o kg	At 12,000 kg	o kg	12,000 kg	o kg	12,000 kg	At o°	At 100°
In,	+.00406	+.00383	041226	041016	041510‡	041072‡	041021	041131 ‡
Sn	.00447	.00441	.041044	.040936	.041062	.040973	.040920	.040951
T1	.00517	.00499	.041319	.041180	.041456	.041200	.041151	.041226
Cd	.00424	.00418	. 041063	.040837	.041106	.040887	.040894	.040927
Pb	.00421	.004 T 2	. 041442	.041220	.041483	.041237	.041212	.041253
Zn	.00416	.00420	.040540	.040425	.040524	.040.107	.040470	.040454
Al	. 00434	. 00435	.040.416	.040365	.040397	.040373	. 040382	. 040377
Ag	.004074	.004069	. 040358	.040321	.040355	.040331	.040333	. 040336
Au	. 003968	.003964	.040312	.040170	.040304	.040292	.040183	.040292
Ni	.004293	.004855	.040201		.040163	.040175	.040147	.040158
Co	.003657	.003676		.040081	.040076	.040070	.040087	.040073
Fe	.006206	.006184		.040218	.040247	.040230	.040226	.040235
Pd	.003178	.003185			.040180	.040187	. 040100	.040186
Pt	.003868	.003873			.040100	.040182	.040187	.040184
Mo	.004336	.004340	.040133	.040126	.040130	.040125	. 0401 29	.040126
Ta	.002973	.002967	.040149	.040139	.040153	.0401.47	040143	.040149
W	.003219	. 003216		.040121	.040130	.040123	.040123	.040126
Mg	. 00390 *		. 04055	I. — ,		. —	. 04055	
Sb	. 00473	. 00403		+.041064		+.040723		+.040768
Bi	+.00.138	+.00395	+.04154	+.040213	+.04152 §	+.041895§	+.042228	+ 041980 §
Те	0063 †	_	03129	_	_	_		_

* o° to 20°. † o° to 24°. ‡ Extrapolated from 50°. § Extrapolated from 75°.

Additional data from P. Nat. Acad. Sc., 6, 505, 1920. Data are 10,000 × mean pressure coefficient, 0 - 12,000 kg, and 10,000 × instantaneous pressure coefficient at 0 kg. | = liquid; s = solid.

			cocincient at o its.					
Li, s, o°	十.0772	+ .068	Ca, oo	+ .106	+.129	Ti, oo	± .001 ?	
Li, l, 240°	+.093	十 .093	Sr, o°	+ .680	+ .502	Zr, o ^o	0040	004
Na, s, o ^o	345	663	Hg, s, o⁰	236b		Bi, l, 275°	101C	123
Na, 1, 200°	436	922	Hg, l, 25°	219	334	W, oo	0135	014
K, s, 25°	604	— 1.86	Ga, s, oo	0247	001	La, o°	0331	039
K, l, 165°	— .809a	— 1.68	Ga, 1, 30°	0531	064	P, black, oo	81	- 2.00

a, 0 - 9,000 kg; b, 7,640 - 12,000 kg; c, 0 - 7,000 kg. The Ga, Na, K, Mg, Hg, Bi, W, P, of exceptional purity.

TABLE 486.—Resistance of Mercury and Manganin under Pressure

Mercury, pure and free from air and with proper precautions, makes a reliable secondary electric-resistance pressure gauge. For construction and manipulation see "The Measurement of High Hydrostatic Pressure; a Secondary Mercury Resistance Gauge," Bridgman, Pr. Am. Acad. 44, p. 221, 1919.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pressure, kg/cm ²	_ 500	1000 1500 2000	2500 3000 4000 5	000 6000 6500
*	R(p, 25°)	1.0000 0.9836 1.0000 0.9854	5 0.9682 0.9535 0.9394 1 0.9716 0.9588 0.9462	1 0.9258 0.9128 0.8882 0. 2 0.9342 0.9228 0.9010 0.	8652 0.8438 0.8335 8806 0.8616 0.8527

*This line gives the Specific Mass Resistance at 25°, the other lines the specific volume resistance. The use of mercury as above has the advantage of being perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However, at o° C mercury freezes at 7500 kg/cm². Manganin is suitable over a much wider range. Over a temperature range o to 50° C the pressure resistance relation is linear within 1/10 per cent of the change of resistance up to 13,000 kg/cm². The coefficient varies slightly with the sample. Bridgman's samples (German) had values of $(\Delta R/pR_0) \times 10^6$ from 2205 to 2325. These are + instead of -, as with most of the above metals. See "The Measurement of Hydrostatic Pressure up to 20,000 Kilograms per Square Centimeter," Bridgman, Pr. Am. Acad. 47, p. 321, 1911.

EFFECT OF TENSION ON THE RESISTANCE OF METALS

(Bridgman, Proc. Amer. Acad. Arts and Sci., 57, 41, 1922.)

Generally hydrostatic pressure decreases the electrical resistance of metals. A few are abnormal (see Table 485)—Bi, Li, Ca, Sr, Sb. Unit stress, kg/cm². The tension coefficient of specific resistance is obtained by subtracting $(1 + 2\sigma)/E$ from the coefficient of observed resistance.

	Li	Ca	Sr	Sb	Bi	Mang.	Therlo	Со
Recip. Young's mod. X 106 Poisson ratio Tens. coef. spec. resist. X 106	.42	4.75 .30 + .8	7·5 .36 -21.2	1.25 .30? +3.0	4.2 ·37 -3.65	0.72 ·33 60	0.69 ·33 - ·73	0.5 .30 + .19

Supplementary Values to Table 484

Resistance temperature coefficient for a number of metals and alloys of high purity due to J. R. Caldwell (1931).

Metal $(R_{100}-R_0)/100R_0$	Alloy	$(R_{100}-R_0)/100R_0$
Ni 0.00667	95 Pt— 5 Rh	0.00215
Zn	90 Pt—10 Rh	0.00169
Cd	80 Pt—20 Rh	0.00140
Pt	60 Pt—40 Rh	0.00144
Rh	40 Pt—60 Rh	0.00194
	20 Pt—80 Rh	0.00260

Note to Table 491, p. 417: Superconductivity. Apparent only below about 10° K. (-263° C). The following metals are known to show it below the indicated temperatures. A low current density is necessary.

Titanium 1	3°.37 K.	Thallium 2°37 K.
Gallium 1	3.7	Lead 7.2
Niobium 8		Thorium 1.5
Molybdenum 1		Some alloys

Zn, Cd, Ge, Al, Pt, Na, Li do not show it. McLennan, Nature, 130, Dec. 10, 1932. Hill, Rev. Scientific Instr., 4, 3, 1933.

CONDUCTIVITY AND RESISTIVITY OF MISCELLANEOUS ALLOYS

TEMPERATURE COEFFICIENTS

Conductivity in mhos or $\frac{1}{\text{ohms per cm}^3} = \gamma \iota = \gamma_0 (1 - at + bt^2)$ and resistivity in microhms -cm $= \rho \iota = \rho_0(\mathbf{1} + a \iota - b^2).$

Metals and alloys	Composition by weight	70 104	a × 106	p 0	Author- ity
Gold-copper-silver	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.06	574* 529† 1830‡	13.2 14.6 3.6	I
Invar	0.05% Cu	1.33 6.25	2000 6000	75 18	10
Woods metal Brass " hard drawn	56Bi,17Cd,14Pb,13Sn Various	1.93 12.2–15.6 12.16	2900 1-2 X 10 ³	52 6.4–8.4 8.2	2 3
" annealed German silver	Various	14.35 3-5	_	7.0 20-33	3 2
	(60.16 Cu + 25.37 Zn + 14.03 Ni + .30 Fe with trace) of cobalt and manganese	3.33	360	30	4
Aluminum bronze Phosphor bronze		7.5-8.5	600	12-13 5-10	2 2
Silicium bronze Manganese-copper Nickel-manganese-	30 Mn + 70 Cu	41 1.00	40	2.4	5 4
copper	3 Ni + 24 Mn + 73 Cu 18.46 Ni + 61.63 Cu +	2.10	— 30	48	4
Nickelin	19.67 Zn + 0.24 Fe + 0.19 Co + 0.18 Mn	3.01	300	33	4
Patent nickel	25.1 Ni + 74.41 Cu + 0.42 Fe + 0.23 Zn + 0.13 Mn + trace of cobalt	2.92	190	34	4
Rheotan	53.28 Cu + 25.31 Ni + 16.89 Zn + 4.46 Fe + 0.37 Mn	1.90	410	53	4
Rheotan	53 Cu,25Ni,17Zn,5Fe	2.24	280	45	12
iron Copper-manganese- iron	91 Cu + 7.1 Mn + 1.9 Fe 70.6 Cu + 23.2 Mn + 6.2 Fe.	4.98	120	20	6
Copper-manganese- iron	69.7 Cu + 29.9 Ni + 0.3 Fe	2.60	120	77 38	7
Therlo	85 Cu,13Mn,2Al		10 6 8	46.5 44	10 2 8
Constantan		ssner.		49 10 I.C.T.	-

³ W. Siemens. ⁶ Blood. *, †, ‡, b × 10⁹ = 924, 93, 7280.

⁹ LeChatelier.

¹² Niccolai.

SMITHSONIAN TABLES

CONDUCTING POWER OF ALLOYS

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_o were obtained from the original results by assuming silver $=\frac{10^6}{1.585}$ mhos. The conductivity is taken as $C_t = C_o$ (1-at+ bt^2), and the range of temperature was from 0° to 100° C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between o° and 100° can be calculated from the formula $P = P_e \frac{l}{l^2}$, where l is the observed and l° the calculated conducting power of the mixture at 100° C and P_e is the calculated mean variation of the metals mixed.

	Weight %	Volume %	C _o		****	Variation	per 100° C.
Alloys.	of first	named.	104	a × 106	δ × 10 ⁹	Observed.	Calculated.
		Gi	ROUP I.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.04	83.96	7.57	3890	8670	30.18	29.67
	82.41	83.10	9.18	4080	11870	28.89	30.03
	78.06	77.71	10.56	3880	8720	30.12	30.16
	64.13	53.41	6.40	3780	8420	29.41	29.10
	24.76	26.06	16.16	3780	8000	29.86	29.67
	23.05	23.50	13.67	3850	9410	29.08	30.25
	7.37	10.57	5.78	3500	7270	27.74	27.60
		G	ROUP 2.				
Lead-silver (Pb ₂₀ Ag) .	95.05	94.64	5.60	3630	7960	28.24	19.96
Lead-silver (PbAg) .	48.97	46.90	8.03	1960	3100	16.53	7.73
Lead-silver (PbAg ₂) .	32.44	30.64	13.80	1990	2600	17.36	10.42
Tin-gold $(\operatorname{Sn}_{12}\operatorname{Au})$ $(\operatorname{Sn}_5\operatorname{Au})$	77·94	90.32	5.20	3080	6640	24.20	14.83
	59·54	79·54	3.03	2920	6300	22.90	5.95
Tin-copper	92.24 80.58 12.49 10.30 9.67 4.96 1.15	93·57 83.60 14.91 12:35 11.61 6.02	7.59 8.05 5.57 6.41 7.64 12.44 39.41	3680 3330 547 666 691 995 2670	8130 6840 294 1185 304 705 5070	28.71 26.24 5.18 5.48 6.60 9.25 21.74	19.76 14.57 3.99 4.46 5.22 7.83 20.53
Tin-silver	91.30	96.52	7.81	3820	8190	30.00	23.31
	53.85	75.51	8.65	3770	8550	29.18	11.89
Zinc-copper †	36.70	42.06	13.75	1370	1340	12.40	11.29
	25.00	29.45	13.70	1270	1240	11.49	10.08
	16.53	23.61	13.44	1880	1800	12.80	12.30
	8.89	10.88	29.61	2040	3030	17.41	17.42
	4.06	5.03	38.09	2470	4100	20.61	20 62

Note. — Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If α be the temperature coefficient at 0° C and s the corresponding specific resistance, $s(\alpha + m) = n$.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378.

For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

^{*} From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154 † Hard-drawn.

TABLE 489 (continued).—Conducting Power of Alloys

		Gr	ROUP 3.				
Alloys.	Weight %	Volume %	Co	a × 106	b× 109	Variation 1	per 100° C.
Alloys.	of first	named.	104	a × 10°		Observed.	Calculated.
Gold-copper †	99.23 90.55	98.36 81.66	35.42 10.16	265 0 749	, 4650 81	21.87 7.41	23.22 7·53
Gold-silver †	87.95 87.95 64.80 64.80	79.86 79.86 52.08 52.08 19.86	13.46 13.61 9.48 9.51 13.69	1090 1140 673 721 885 908	793 1160 246 495 531 641	10.09 10.21 6.49 6.71 8.23 8.44	9.65 9.59 6.58 6.42 8.62 8.31
Gold-copper †	31·33 34·83 1·52 33·33	19.17	13.73 12.94 53.02 4.22	864 3320	570 7300	8.07 25.90	8.18 25.86 3.21
" " ;	9.81 5.00	5.05 2.51	11.38 19.96	774 1240	656 1150	7.08	7.25
Palladium-silver †	25.00 98.08 94.40 76.74 42.75 7.14 1.31	23.28 98.35 95.17 77.64 46.67 8.25 1.53	5.38 56.49 51.93 44.06 47.29 50.65 50.30	324 3450 3250 3030 2870 2750 4120	7990 6940 6070 5280 4360 8740	26.50 25.57 24.29 22.75 23.17 26.51	4.21 27.30 25.41 21.92 24.00 25.57 29.77
Iron-gold †	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	27.92 17.55 3.84	14.70 11.20 13.40
Iron-copper †	0.40	0.46	24.51	1550	2090	13.44	14.03
Phosphorus-copper † . " † .	2.50 0.95	_	4.62 14.91	476 1320	145 1640	-	-
Arsenic-copper †	5.40 2.80 trace	-	3.97 8.12 38.52	516 736 2640	989 446 4830	- - -	- - -

^{*} Annealed.

TABLE 490.—Allowable Carrying Capacity of Rubber-covered Copper Wires

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

B+S Gage	18	16	14	12	10	8	6	5	4	3	2	I	0	00	0000
Amperes	3	6	12	17	24	33	46	54	65	76	90	107	1 27	150	210

500,000 circ. mills, 390 amp.; 1,000,000 c. m., 650 amp.; 2,000,000 c. m., 1,050 amp. For insulated al. wire, capacity = 84% of cu. Preece gives as formula for fusion of bare wires $I = ad^2$, where d = diam. in inches, a for cu. is 10,244; al., 7585; pt., 5172; German silver, 5230; platinoid, 4750; Fe, 3148; Pb., 1379; alloy 2 pts. Pb., 1 of Sn., 1318.

[†] Hard-drawn.

RESISTIVITIES AT HIGH AND LOW TEMPERATURES*

The electrical resistivity $(\rho, 0)$ nms per cm. cube) of good conductors depends greatly on chemical purity. Slight contamination even with metals of lower ρ may greatly increase ρ . Solid solutions of good conductors generally have higher ρ than components. Reverse is true of bad conductors. In solid state allotropic and crystalline forms greatly modify ρ . For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance (t, ρ) plot at low temperatures the graph is convex towards the axis of t and probably approaches tangency to it. However for extremely low temperatures Onnes finds very sudden and great drops in ρ . e.g. for Mercury, ρ_3 .6K < 4x10-10 ρ_0 and for Sn., ρ_3 .8K $< 10^{-1}\rho_0$. The t, ρ graph for an alloy may be nearly parallel to the t axis, cf. constants; for poor conductors ρ may decrease with increasing t. At the melting-points there are three types of behavior of good conductors: those about doubling ρ and then possessing nearly linear t, ρ graphs (Al., Cu., Sn., Au., Ag., Pb.); those where ρ suddenly increases and then the ρ -temp. coefficient is only approximately constant; $(Hg_c, Na_a, K.)$; those where ρ suddenly increases (Sb., Bi.). The values from different authorities do not necessarily fit because of different samples of metals. The Shimank values from different authorities do not necessarily fit because of different samples of metals. The Shimank values to tenths of θ) are for material of theoretical purity and are determined by the α rule (see his paper, also Nernst, Ann. d Phys. 36, p. 403, 1911 for temperature resistance thermometry). The Shimank and Pirrani values are originally given as ratios to ρ_0 . (Ann. d. Phys. 45, p. 706, 1014, 46, p. 176, 1915.) Resistivities are in micro-ohms per cm. cube unless stated. Italicized figures indicate liquid state.

uniess sta	tear Itan	cized light	es minicat	e liquid st	atc.						
	Gold.			Copper.			Silver.			Zinc.	
°C.	Ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	° C.	ρ _t	$\frac{\rho_{t}}{\rho_{o}}$	° C.	Pt	$\frac{\rho_t}{\rho_o}$	° C.	Pι	$\frac{\rho_t}{\rho_0}$
-252.8 -200192.5 -15077.6 -50. 0. 100. 200. 500. 1063. 1200. 1400. 1500.	0.018 .601 .520 .997 1.400 1.564 1.813 2.247 2.97 3.83 6.62 9.35 12:54 13:50 30.82 32.8 32.8 37.0	.0081 .267 .231 .444 .623 .696 1.00 1.32 1.70 2.94 4.16 5.58 6.01 13.7 14.6 15.8	-258.6 -252.8 -251.1 -206.6 -192.9 -15050. 500. 200. 750. 100. 1083. 1083. 1200. 1400.	0.014 .016 .028 .163 .249 .567 .904 1.240 1.578 2.28 2.96 5.08 7.03 9.42 10.20 21.30 22.36 22.36 24.62	.0091 .0103 .0178 .1035 .1580 .359 .573 .786 1.00 1.44 1.88 3.22 4.46 5.97 6.47 13.5 14.1 15.1	-258.6 -252.8 -189.5 -200. -150. -100. 200. 400. 750. 400. 750. 960. 1000. 1200. 1400. 1500.	0.009 .014 .334 .357 .638 .916 1.040 1.212 1.506 2.15 2.35 6.65 8.4 10.6 17.01 19.36 21.72 23.0	.0057 .0090 .2222 .237 .424 .609 .805 1.00 1.43 1.86 5.58 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.	-252.9 -200. -191.1 -150. - 77.8 - 50. 0. 100. 300. 415. 427. 450. 500. 600. 700. 800.	.05111 1.39 1.23 2.90 3.97 4.04 5.75 7.95 13.25 17.00 37.38 30.60 35.90 35.60 35.74	.0089 .242 .214 .348 .504 .691 .703 1.00 1.38 2.30 2.30 6.40 6.40 6.40 6.21
	Mercury			Potassiur	m.		Sodium.			Iron.	
°C.	$ ho_{t}$	$\frac{\rho_t}{\rho_0}$	°C	Ρt	$\frac{\rho_{t}}{\rho_o}$	°C.	ρ_{t}	$\frac{\rho_{t}}{\rho_{o}}$	°C.	ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$
-200, -150, -100, -50, -30, 0, 50, 100, 200, 300,	5.38 10.30 15.42 21.4 91.7 94.1 98.3 103.1 114.0 127.0	.057 .109 .164 .227 .975 1.000 1.045 1.096 1.212 1.350	-200. -150. -100. -50. 0. 20. 60. 65. 100.	1.720 2.654 3.724 5.124 7.000 7.116 8.790 13.40 15.31 16.70	.246 .379 .532 .732 1.00 1.016 1.256 1.914 2.187 2.386	-200. -150. -100. -50. 0. 20. 93.5 100.	0.605 1.455 2.380 3.365 4.40 4.873 6.290 9.220 9.724 10.34	.137 .330 .541 .764 1.000 1.107 1.429 2.005 2.200 2.349	-252.7 -200. -192.5 -100. - 75.1 - 50. - 0. 100. 200. 400.	0.011 2.27 .844 5.92 6.43 8.15 10.68 16.61 24.50 43.29	.0010 .212 .079 .554 .602 .763 1.00 1.554 2.293 4.052
	Manganir	ì.	G	erman Sil	ver.		Constanta	n-	90 %	Pt. 10	% Rh.
°C.	$\rho_{\mathbf{t}}$	$\frac{\rho_{\rm t}}{\rho_{\rm g}}$	°C.	P _t	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	ρ _t	Pt	°C.	ρ _t	$\frac{\rho_t}{\rho_0}$
-200. -150. -100. -50. 0. 100. 400.	37.8 38.2 38.5 38.7 38.8 38.9 38.3	•974 •985 •992 •997 1.000 1.003 •987	-200, -150, -100, -50, 0,	27.9 28.7 29.3 29.7 30.0 33.1	.930 .957 .977 .990 1.000	-200. -150. -100. -50. 0. 100. 400.	42.4 43.0 43.5 43.9 44.1 44.6 44.8	.961 .975 .986 .995 1.000 1.012 1.016	-200. -150. -100. - 50. 0.	14.49 16.29 18.05 19.66 21.14 24.20	.685 .770 .854 .930 1.000

Au. below o°, Niccolai, Lincei Rend. (5), 16, p. 757, 906, 1907; above, Northrup, Jour. Franklin Inst. 177, p. 85, 1914. Cu. below, Niccolai, I. c. above, Northrup, ditto, 177, p. 1, 1914. Ag. below, Niccolai, I. c. above Northrup, ditto, 178, p. 85, 1914. Zn. below, Dewar, Fleming, Phil. Mag. 36, p. 271, 1893; above, Northrup, 175, p. 153, 1913. Hg. below Dewar, Fleming, Proc. Roy. Soc. 66, p. 76, 1900; above, Northrup, see Cd. K. below Guntz, Broniewski, C. R. 147, p. 1474, 1908, 148, p. 204, 1909. Above, Northrup, Tr. Am. Electroch. Soc. p. 185, 1911. Na, below, means, above, see K. Fe., Manganin, Constantan. Niccolai, I.c. German Silver, 90% Pt. 90% Rh., Dewar and Fleming — Phil. Mag. 36, p. 271, 1893. * See also page 413.

TABLE 491 (continued).—Resistivities at High and Low Temperatures
(Ohms per cm cube unless stated otherwise.)

	Platinum	1.		Lead.			1	Bismuth.			(Cadmiu	m.
°C.	Ρt	$\frac{\rho_t}{\rho_a}$	°C.	ρ _t	$\frac{\rho_{\mathbf{t}}}{\rho_{0}}$		°C.	$ ho_{\mathbf{t}}$	ρ _t - ρ _o		°C.	$ ho_{\mathbf{t}}$	$\frac{\rho_t}{\rho_0}$
-265, -253, -233, -153, - 73,	0.10 .15 .54 4.18 7.82 11.05 14.1 17.9 25.4 40.3 47.0 52.7 58.0 63.0	.0092 .014 .049 .378 .708 1.00 1.28 1.62 2.30 3.65 4.25 4.77 5.25 5.70	-252.9 -203. -192.8 -103. -75.8 -53. 0. 100. 200. 319. 333. 400. 600. 800.	0.59 4.42 5.22 11.8 13.95 15.7 19.8 27.8 38.0 50.0 95.0 98.3 107.2 110.2	.0298 .223 .264 .598 .705 .702 1.00 1.403 1.919 2.52 4.80 4.90 5.41 5.86	-	200. 150. 100. 50. 17. 100. 200. 259. 263. 300. 500. 7750.	34.8 55.3 75.6 94.3 110.7 120.0 156.5 214.5 267.0 127.5 128.9 139.9 150.8	.314 .499 .683 .852 1.00 1.083 1.413 1.937 2.411 1.150 1.104 1.203 1.301 1.386	-2 -1 -1 -1 -1 -1 3 3 3 4 5	52.9 00. 90.2 83.1 39.2 00. 0. 00. 25. 50. 00.	0.17 1.66 2.00 2.22 3.66 4.88 7.75 16.56 33.76 33.66 33.76 35.12	5 .214 258 286 286 464 5 1.00 5 1.00 5 2.13 6 4.35 6 4.35 7 4.35 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9
	Tin.		Car	rbon, Grap	bon, Graphite.*		Fused silica.				Al	undum	cement.
°C.	ρt	$\frac{\rho_{\mathbf{t}}}{\rho_{\mathbf{q}}}$	°C.	ρ in ohms	ns, cm. cube.		°C.	$\rho = n$	ρ = megohms cr		hms cm.		ρ in ohms cm. cube.
-200. -100. 0. 200. 225. 235. 750.	2.60 7.57 13.05 20.30 22.00 47.60 61.22	.199 .580 1.00 1.55 1.69 3.05 4.69	0, 500. 1000. 1500. 2000.	Carbon 0.0035 .0027 .0021 .0015 .0011	Graphit 0,00080 .00083 .00087 .00090 .00100		15. 230. 300. 350. 450. 700. 850.		200,000,000 200,000 30,000 800 30 about 20).).).	80	ю.	>9×10 6 30800. 13600. 7600. 6500. 2300. 190.

Pt. low, Nernst, l. c. high, Pirrani, Ber. Deutsch. Phys. Ges. 12, p. 305, Pb. low, Schimank, Nernst, l. c. high. Northrup, see Zu. Bi. low, means, high, Northrup, see Zn. Cd. low, Euchen, Gehlhoff, Verh. Deutsch. Phys. Ges. 14, p. 169, 1912, high, Northrup, see Zn. Su. low, Dewar, Fleming, high, Northrup, see Zn. Carbon, graphite, Metallurg. Ch. Eng. 13, p. 23, 1915. Silica, Campbell, Nat. Phys. Lab. 11, p. 207, 1914. Alundum, Metallurg. Ch. Eng. 12, p. 125, 104.

2125, 1014. * Diamond 1030° C, ρ >10⁷; 1380°, 7.5 × 10⁵, v. Wartenberg, 1912.

TABLE 492.-Volume and Surface Resistivity of Solid Dielectrics

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity, ρ_i is the resistance between two opposite faces of a centimeter cube. The surface resistivity, σ_i is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity. (Curtis, Bul. Bur. Standards, 11, 350, 1915, which see for discussion and data for many additional materials.)

Material.	σ; megohms	σ; megohms	σ; megohms	ρ
	50% humidity.	70% humidity.	90% humidity.	Megohms-cms.
Amber Beeswax, yellow Celluloid Fiber, red Glass, plate " Kavalier Hard rubber, new Ivory Khotinsky cement Marble, Italian Mica, colorless Paraffin (parowax) Porcelain, unglazed Quartz, fused Rosin Sealing wax Shellac Slate Sulphur Wood, parafined mahogany	6 × 108 6 × 108 5 × 104 2 × 104 5 × 106 3 × 109 5 × 103 7 × 108 3 × 107 9 × 109 6 × 105 3 × 106 6 × 105 2 × 109 6 × 105 9 × 109 9 × 109 6 × 105 9 × 109 6 × 105 9 × 109 9 × 109 6 × 105 9 × 109 9 × 10	2 × 108 6 × 108 2 × 104 3 × 103 6 × 10 4 × 103 1 × 108 1 × 108 2 × 102 4 × 105 7 × 109 7 × 103 2 × 108 6 × 108 3 × 108 3 × 108 4 × 109 5 × 105	I × Io ⁵ 5 × Io ⁸ 2 × Io ³ 2 × Io ² 2 × Io 1 × Io ⁸ 2 × Io 5 × Io 5 × Io 5 × Io 5 × Io 6 × Io 5 × Io 5 × Io 7 × Io 1 × Io 1 × Io 7 × Io 7 × Io 7 × Io 8	$\begin{array}{c} 5 \times 10^{10} \\ 2 \times 10^9 \\ 2 \times 10^4 \\ 5 \times 10^3 \\ 2 \times 10^7 \\ 8 \times 10^9 \\ 1 \times 10^{12} \\ 2 \times 10^2 \\ 2 \times 10^2 \\ 2 \times 10^9 \\ 1 \times 10^{10} \\ 3 \times 10^8 \\ 5 \times 10^{11} \\ 1 \times 10^{10} \\ 3 \times 10^8 \\ 5 \times 10^{12} \\ 5 \times 10^{10} \\ 8 \times 10^9 \\ 1 \times 10^{19} \\ 1 \times 10^{19} \\ 1 \times 10^2 \\ 1 \times 10^7 \end{array}$

TABLE 493 .- Variation of Electrical Resistance of Glass and Porcelain with Temperature

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.*

No.	Kind of glass.		Density.	а	в		С	Range of temp. Centigrade.
I	Test-tube glass		_	13.86	0.4	4 .00	0065	0°-250°
2			2.458	14.24	05	.00	10	37-131
3	Bohemian glass		2.43	16.21	04	3 .00	00394	60-174
4	Lime glass (Japanese manu	facture).	2.55	13.14	03	100	0021	10-85
5			2.499	14.002	02	500	006	35-95
6	Soda-lime glass (French fla	sk) .	2.533	14.58	04	9 .00	0075	45-120
7	Potash-soda lime glass .		2.58	16.34	04	25 .00	00364	66-193
8	Arsenic enamel flint glass		3.07	18.17	05	5 .00	0088	105-135
9	9 Flint glass (Thomson's electrometer jar)			18.021	03	600	16000	100-200
10	Porcelain (white evaporating	ng dish) .	-	15.65	04	2 .00	005	68-290
	Composition	OF SOME OF	THE ABOV	e Speci	MENS OF	GLASS.		
	Number of specimen =	3	• 4		5	7	8	9
Sil	ica	61.3	57.2	7	0.05	75.65	54.2	55.18
Po	tash	22.9	21.1		1.44	7.92	10.5	1 3.28
So	da	Lime, etc.	Lime, e	etc.	4.32	6.92	7.0	-
Le	ad oxide	by diff.	by dif	f.	2.70	-	23.9	31.01
Lii	me	1 5.8	16.7	1	0.33	8.48	0.3	0.35
Ma	ignesia	-	-		-	0.36	0.2	0.06
Ar	senic oxide	-	-		-	-	3.5	-
Alı	umina, iron oxide, etc	-	-		1.45	0.70	0.4	0.67

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

TABLE 494.-Temperature Resistance Coefficients of Glass, Porcelain and Quartz dr/dt

Temperature.	450 ⁰	500°	575°	600°	7000	750°	800°	9000	10000
Glass Porcelain Quartz	—32. _ _	6. - -	-1.5 -16.	8 9.8	-0.17 -2.8	-0.1 -1.6 -10.	-0.06 70 -6.40	-0.30 -2.60	-0.12 -1.00

Somerville, Physical Review, 31, p. 261, 1910.

TABLE 495

TABULAR COMPARISON OF WIRE GAGES

Gage No.	American wire gage (B. & S.) mils.†	American wire gage (B. & S.) mm.†	Steel wire gage * mils.	Steel wire gage* mm.	Stubs' steel wire gage mils.	(British) standard wire gage mils.	Birming- ham wire gage (Stubs') mils.	Gage No.
7-0 6-0 5-0 4-0 3-0 2-0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	mils.f 460. 410. 365. 325. 289. 204. 182. 162. 144. 128. 114. 102. 91. 81. 72. 64. 57. 51. 45. 40. 36. 32. 22.6 20.1 17.9 15.9 14.2 12.6 11.3 10.0 8.9 8.0 7.1 6.3 5.6 5.0 4.5 4.0 3.5 3.1	mm.† 11.7 10.4 9.3 8.3 7.3 6.5 5.8 5.2 4.6 4.1 3.7 3.3 2.91 2.59 2.30 2.05 1.83 1.63 1.45 1.29 1.15 1.02 0.91 .81 .72 .62 .57 .51 .45 .40 .36 .32 .29 .25 .227 .202 .180 .160 .143 .127 .113 .101 .090 .080	### ### #### #### ####################	mm. 12.4 11.7 10.9 10.0 9.2 8.4 7.8 7.2 6.7 6.2 5.7 5.3 4.9 4.5 4.1 3.77 3.43 3.06 2.68 2.32 2.03 1.83 1.59 1.37 1.21 1.04 0.88 .81 .73 .66 .58 .52 .46 .439 .441 .381 .356 .325 .300 .264 .241 .229 .216 .203 .191 .178 .203 .191 .178 .203	mils. 227. 219. 212. 207. 204. 201. 199. 197. 194. 191. 188. 185. 182. 180. 175. 172. 164. 161. 157. 155. 153. 151. 148. 146. 143. 139. 134. 127. 120. 115. 112. 110. 108. 106. 103. 101. 99. 97. 95.	500. 464. 432. 400. 372. 348. 324. 300. 276. 252. 232. 212. 192. 176. 160. 144. 128. 116. 104. 92. 80. 72. 64. 56. 48. 40. 36. 32. 28. 24. 22. 20. 18. 16.4 11.6 10.8 10.0 9.2 8.4 7.6 6.8 6.0 5.2 8.4 4.4		7-0 6-0 5-0 4-0 3-0 2-0 0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 33 34 33 34 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38
42 43 44 45 46 47 48 49 50			5.8 5.5 5.2 5.0 4.8 4.6 4.4	.152 .147 .140 .132 .127 .122 .117	92. 88. 85. 81. 79. 77. 75. 72. 69.	4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2		42 43 44 45 46 47 48 49 50

tables.

^{*}The Steel Wire Cage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.

† The American Wire Gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 499 to 502. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4000 inch and of No. 36 as 0.0050 inch. The ratio of any diameter to the diameter of the next greater number $\sqrt[9]{\frac{30-4600}{0.0050}} = 1.1229322.$ Taken from Circular No. 31. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

Introduction to Wire Tables; Mass and Volume Resistivity of Copper and Aluminum

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the cooperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of 58×10^{-6} c.g.s. units, and a density of 8.89, at 20° C.

In the various units of mass resistivity and volume resistivity this may be stated as

0.15328 ohm (meter, gram) at 20° C. 875.20 ohms (mile, pound) at 20° C. 1.7241 microhm-cm at 20° C. 0.67879 microhm-inch at 20° C. 10.371 ohms (mil, foot) at 20° C.

The temperature coefficient for this particular resistivity is $\alpha_{20} = 0.00393$, or $\alpha_0 = 0.00427$. The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice-versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 microhm cm, and for mass resistivity is 0.000597 ohm (meter, gram).

The density of 8.89 grams per cubic centimeter at 20° C, is equivalent to 0.32117 pounds

per cubic inch.

The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Harddrawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

The following is a fair average of the chemical content of commercial high conductivity

copper:

Copper		Sulphur	0.002%
Silver	.03	Iron	.002
Oxygen	.052	Nickel	Trace
Arsenic	.002	Lead	"
Antimony	.002	Zinc	44

The following values are consistent with the data above:

Conductivity at o° C, in c.g.s. electromagnetic units	62.969×10^{-5}
Resistivity at o° C, in microhm-cms	1.5881
Density at o° C	8.90
Coefficient of linear expansion per degree C	0.000017
"Constant mass" temperature coefficient of resistance at o° C.	0.00427

The aluminum tables are based on a figure for the conductivity published by the U. S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 microhm-cm and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Conductivity at o° C in c.g.s. electromagnetic units	38.36×10^{-6}
Mass resistivity, in ohms (meter, gram) at 20° C	0.0764
" " (mile, pound) at 20° C	436.
Mass per cent conductivity relative to copper	200.7%
Volume resistivity, in microhm-cm at 20° C	2.828
" in microhm-inch at 20° C	1.113
Volume per cent conductivity relative to copper	61.0%
Density, in grams per cubic centimeter	2.70
Density, in pounds per cubic inch	0.0975

The average chemical content of commercial aluminum wire is

	99.57%
Silicon	0.29
Iron	0.14

COPPER WIRE

TABLE 497.—Temperature Coefficients of Copper for Different Initial Temperatures (Centigrade) and Different Conductivities

Ohms (meter. gram) at 20° C.	Per cent conductivity.	ao	a 15	a ₂₀	a ₂₅	a 30	a 50
0.161 34 .159 66	95% 96%	0.004 03	0.003 80	o.co3 73 .oo3 77	0.003 67 .003 70	0.003 60	o.co3 36 .oo3 39
.158 02 .157 53	97 % 97·3 %	.004 13	.003 89	.003 81 .003 82	.003 74 .003 75	.003 67 .003 68	.003 42 .003 43
.156 40 .154 82	98% 99%	.004 17 .004 22	.003 93	.003 85	.003 78 .003 82	.0c3 71 .003 74	.003 45
. 153 28 .151 76	100%	.004 27 .004 31	.004 01	.003 93	.003 85	.003 78 .003 82	.003 52

Note. — The fundamental relation between resistance and temperature is the following:

$$R_t = R_{t_1}(I + a_{t_1}[t - t_1]),$$

where at1 is the "temperature coefficient," and t1 is the "initial temperature" or "temperature of reference."

The values of α in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if per cent conductivity = 99 per cent, n = 0.99.)

$$a_{t_1} = \frac{1}{\frac{1}{\mu(0.00303)} + (t_1 - 20)}.$$

TABLE 498 .- Reduction of Observations to Standard Temperature (Copper)

	Correcti	ons to reduce	Resistivity t	o 20° C.	Factors to re			
Temper- ature C.	Ohm (meter, gram).	Microhm— cm.	Ohm (mile, pound).	Microhm— inch.	For 96 per cent con- ductivity.	For 98 per cent con- ductivity.	For 100 per cent con- ductivity.	Temper- ature C.
0 5	+0.011 94 + .008 96	+0.1361 + .1021	+ 68.20 + 51.15	+0.053 58 + .040 18	1,0816	1.0834	1.c853 1.o626	o 5
10	+ .005 97	+ .0681	+ 34.10	+ .026 79	1.0392	1.0401	1.0409	10
11 12 13	+ .005 37 + .004 78 + .004 18	+ .0612 + .0544 + .0476	+ 30.69 + 27.28 + 23.87	+ .024 11 + .021 43 + .018 75	1.0352 1.0311 1.0271	1.0359 1.0318 1.0277	1.0367 1.0325 1.0283	11 12 13
14	+ .003 58 + .002 99	+ .0408 + .0340	+ 20.46 + 17.05	+ .016 c7 + .013 40	1.0232	1.0237	I.0242 I.0200	14
16	+ .002 39	+ .0272	+ 13.64	+ .010 72	1.0153	1.0156	1.0160	16
17 18	+ .001 79 + .001 19 + .000 60	+ .0204 + .0136 + .0068	+ 10.23 + 6.82 + 3.41	+ .008 04 + .005 36 + .002 68	1.0114 1.0076 1.0038	1.0117 1.0078 1.0030	1.0119 1.0079 1.0039	17 18
	1 .000 00							-
20 2I	000 60	oo68	- 3.41	002 68	1.0000 0.0062	1.0000 c.0062	0.0000	20 21
22	001 19	0136	- 6.82	005 36	.9925	.9924	.9922	22
23	001 79	0204 0272	- 10.23 - 13.64	008 04 010 72	.9888	.9886 .9848	.9883	23 24
24 25	002 39 002 99	027 2 0340	- 13.04 - 17.05	013 40	.9815	.9811	.9807	25
26 27	003 58 004 18	0408 0476	- 20.46 - 23.87	016 07 018 75	.9779 .9743	-9774 -9737	.9770 .9732	26 27 28
28	004 78	0544	- 27.28	021 43	.9707	.9701	.9695	
29	005 37	0612	- 30.69	024 II 026 70	.9672 .9636	.9665	.9658	29 30
30	005 97 008 96	0681 1021	- 34.10 - 51.15	026 79 040 18	.9464	.9454	9443	35
40 45	011 94 014 93	1361 1701	- 68.20 - 85.25	053 58 066 08	.9298 .9138	.9285 .9122	.9271	40 45
50	017 92	2042	-102.30	080 37	.8983	.8964	.8945	50
55	020 90	2382	-119.35	093 76	.8833	.8812	.8791	55
60 65	023 89 026 87	2722 3062	-136.40 -153.45	107 16 120 56	.8689 .8549	.8665 .8523	.8642 .8497	60 65
70 75	029 86 032 85	3403 3743	-170.50 -187.55	133 95 147 34	.8413 .8281	.8385 .8252	.8358 .8223	70 75

American Wire Gage (B. & S.). English Units

			-				
Gage	Diameter	Cross-Sect	ion at 20° C.		Ohms per 1	ooo Feet.*	
No.	in Mils. at 20° C.	Circular Mils.	Square Inches.	(=32° F.)	(=68° F.)	(=122° F.)	75° C (=167° F.)
0000	460.0	211 600.	0.1662	0.045 16	0.049 01	0.054 79	0.059 61
	409.6	167 800.	.1318	.056 95	.061 80	.069 09	.075 16
	364.8	133 100.	.1045 =	.071 81	.077 93	.087 12	.094 78
0	324.9	105 500.	.082 89	.090 55	.098 27	.1099	.1195
I	289.3	83 690.	.065 73	.1142	.1239	.1385	.1507
2	257.6	66 370.	.052 13	.1440	.1563	.1747	.1900
3	229.4	52 640.	.041 34	.1816	.1970	.2203	.2396
4	204.3	41 740.	.032 78	.2289	.2485	.2778	.3022
5	181.9	33 100.	.026 00	.2887	.3133	.3502	.3810
6	162,0	26 250.	.020 62	.3640	.3951	.4416	.4805
7	144.3	*20 820	.016 35	.4590	.4982	.5569	.6059
8	128.5	16 510.	.012 97	.5788	.6282	.7023	.7640
11	114.4	13 090.	.010 28	.7299	.7921	.8855	.9633
	101.9	10 380.	.008 155	.9203	.9989	1.117	1.215
	90.74	8234.	.006 467	1.161	1.260	1.408	1.532
12	80.81	6530.	.005 129	1.463	1.588	1.775	1.931
13	71.96	5178.	.004 067	1.845	2.003	2.239	2.436
14	64.08	4107.	.003 225	2.327	2.525	2.823	3.071
15	57.07	3 ² 57·	.002 558	2.934	3.184	3.560	3.873
16	50.82	2583.	.002 028	3.700	4.016	4.489	4.884
17	45.26	2048.	.001 609	4.666	5.064	5.660	6.158
18	40.30	1624.	.001 276	5.883	6.385	7.138	7.765
19	35.89	1288.	.001 012	7.418	8.051	9.001	9.792
20	31.96	1022.	.000 802 3	9.355	10.15	11.35	12.35
21	28.45	810.1	.000 636 3	11.80	12.80	14.31	15.57
22	25.35	642.4	.000 504 6	14.87	16.14	18.05	19.63
23	22.57	509.5	.000 400 2	18.76	20.36	22.76	24.76
24	20.10	404.0	.000 317 3	23.65	25.67	28.70	31.22
25	17.90	320.4	.000 251 7	29.82	32.37	36.18	39.36
26	15.94	254.1	.000 199 6	37.61	40.81	45.63	49.64
27	14.20	201.5	.000 158 3	47·42	51.47	57.53	62.59
28	12.64	159.8		59.80	64.90	72.55	78.93
29	11.26	126.7		75.40	81 83	91.48	99.52
30	10.03	100.5	.000 078 94	95.08	103.2	115.4	125.5
31	8.928	79.70	.000 062 60	119.9	130.1	145.5	158.2
32	7.950	63.21	.000 049 64	151.2	164.1	183.4	199.5
33	7.080	50.13	.000 039 37	190.6	206.9	231.3	251.6
34	6.305	39.75	.000 031 22	240.4	260.9	291.7	317.3
35	5.615	31.52	.000 024 76	303.1	329.0	367.8	400.1
36	5.000	25.00	.000 019 64	382.2	414.8	463.7	504.5
37	4.453	19.83	.000 015 57	482.0	523.1	584.8	636.2
38	3.965	15.72	.000 012 35	607.8	659.6	737.4	802.2
39 40	3.531 3.145	12.47 9.888	.000 009 793	766.4 966.5	831.8	929.8 1173.	1012. 1276.

^{*} Resistance at the stated temperatures of a wire whose length is 1000 feet at 200 C.

American Wire Gage (B. & S.). English Units

ı								
ı		Diameter	Pounds	Feet		Feet per	Ohm.*	
	Gage No.	in Mils. at 20° C.	per 1000 Feet.	per Pound.	°° C (=32° F.)	20° C (=68° F•)	50° C (=122° F.)	(=167° F.)
	0000	460.0 409.6 364.8	640.5 507.9 402.8	1.561 1.968 2.482	22 140. 17 560. 13 930.	20 400. 16 180. 12 830.	18 250. 14 470. 11 480.	16 780. 13 300. 10 550.
	O	324.9	319.5	3.130	11 040.	10 180.	9103.	8367.
	I	289.3	253.3	3.947	8758.	8070.	7219.	6636.
	2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
	3	229.4	159.3	6.276	5508.	507 5.	4540.	4173.
	4	204.3	126.4	7.914	4368.	402 5.	3600.	3309.
	5	181.9	100.2	9.980	3464.	3192.	2855.	2625.
	6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
	7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
	8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
	10	114.4 101.9 90.74	39.63 31.43 24.92	25.23 31.82 40.12	1370. 1087. 861.7	1262. 1001. 794.0	1129. 895.6 710.2	1038. 823.2 652.8
	12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
	13	71.96	15.68	63.80	541.9	499.3	446.7	410.6
	14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
	15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
	16	50.82	- 7.818	127.9	270.3	249.0	222.8	204.8
	17	45.26	6.200	161.3	214.3	197.5	176.7	162.4
	18	40.30	4.917	203.4	170.0	156.6	140.1	128.8
	19	35.89	3.899	256.5	134.8	124.2	111.1	102.1
	20	31.96	3.092	323.4	106.9	98.50	88.11	80.99
	2I	28.46	2.452	407.8	84.78	78.11	69.87	64.23
	22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
	23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
	24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
	25	17.90	0.9699	1031.	33·53	30.90	27.64	25.40
	26	15.94	.7692	1300.	26.59	24.50	21.92	20.15
	27	14.20	.6100	1639.	21.09	19.43	17.38	15.98
	28	12.64	.4837	2067.	16.72	15.41	13.78	12.67
	29	11.26	.3836	2607.	13.26	12.22	10.93	10.05
	30	10.03	.3042	3287.	10.52	9.691	8.669	7.968
	31	8.928	.2413	4145.	8.341	7.685	6.875	6.319
	32	7.950	.1913	5227.	6.614	6.095	5.45 ²	5.011
	33	7.080	.1517	6591.	5.245	4.833	4.323	3.974
	34	6.305	.1203	8310.	4.160	3.833	3.429	3.152
	35	5.615	.095 42	10 480.	3.299	3.040	2.719	2.499
	36	5.000	.075 68	13 210.	2.616	2.411	2.156	1.982
	37	4.453	.060 01	16 660.	2.075	1.912	1.710	1.572
	38	3.965	.047 59	21 010.	1.645	1.516	1.356	1.247
	39 40	3.531 3.145	.037 74 .029 93	26 500. 33 410.	1.305	1.202 0.9534	1.075 0.8529	0.9886 .7840

^{*} Length at 20° C of a wire whose resistance is 1 ohm at the stated temperatures.

American Wire Gage (B. & S.). English Units

	Diameter		Ohms per Pound.		Pounds per Ohm.
Gage No.	in Mils. at 20° C.	°° C (=32° F.)	20° C (=68° F.)	(=122° F.)	20° C (=68° F.)
0000	460.0 409.6 . 364.8	0.000 070 51	0.000 076 52 .000 1217 .000 1935	0.000 085 54 .000 1360 .000 2163	13 070. 8219. 5169.
0	324.9	.000 2835	.000 3076	.000 3439	3251.
I	289.3	.000 4507	.000 4891	.000 5468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	1286.
3	229.4	.001 140	001 237	.001 383	808.6
4	204.3	.001 812	.001 966	.002 198	508.5
5	181.9	.002 881	.003 127	.003 495	319.8
6	162.0	.004 581	.004 972	.005 558	201.1
7	144.3	.007 284	.007 905	.008 838	126.5
8	128.5	.011 58	.012 57	.014 05	79·55
10	114.4	.018 42	.019 99	.022 34	50.03
	101.9	.029 28	.031 78	.035 53	31.47
	90.74	.046 56	.050 53	.056 49	19.79
12	80.81	.074 04	.080 35	.089 83	12.45
13	71.96	.1177	.1278	.1428	7.827
14	64.08	.1872	.2032	.2271	4.922
15	57.07	.2976	.3230	.3611	3.096
16	50.82	·4733	.5136	·5742	1.947
17	45.26	·7525	.816 7	·9130	1.224
18	40.30	1.197	1.299	1.452	0.7700
19	35.89	1.903	2.065	2.308	.4843
20	31.96	3.025	3.283	3.670	.3046
21	28.46	4.810	5.221	5.836	.1915
22	25.35	7.649	8.301	9.280	.1205
23	22.57	12.16	13.20	14.76	.075 76
24	20.10	19.34	20.99	23.46	.047 65
25	17.90	30.75	33·37	37.31	.029 97
26	15.94	48.89	53·06	59.32	.018 85
27	14.20	77·74	84.37	94.32	.011 85
28	12.64	123.6	134.2	1 50.0	.007 454
29	11.26	196.6	213.3	238.5	.004 688
30	10.03	312.5	339.2	379.2	.002 9.48
31	8,928	497.0	539·3	602.9	.001 854
32	7,950	790.2	857.6	958.7	.001 166
33	7.080	1256.	1364.	1 524.	.000 7333
34	6.305	1998.	2168.	2424.	.000 4612
35	5.615	3177.	3448.	3854.	.000 2901
36	5.000	5051.	5482.	6128.	.000 1824
37	4.453	8032.	8717.	9744.	.000 1147
38	3.965	12 770.	13 860.	15 490.	.000 072 15
39	3.531	20 310.	22 0.40.	24 640.	.000 045 38
40	3.145	32 290.	35 040.	39 170.	

American Wire Gage (B. & S.). Metric Units

	D:	Cours South		Ohms per	Kilometer.*	
Gage No.	Diameter in mm at 20° C.	Cross Section in mm ² at 20° C.	o° C.	20 ⁰ C.	50° C.	75° C.
0000	11.68	107.2	0.1482	0.1608	0.1798	0.1956
	10.40	85.03	.1868	.2028	.2267	.2466
	9.266	67.43	.2356	.2557	.2858	.3110
0	8.252	53.48	.2971	.3224	.3604	.3921
I	7.348	42.41	.3746	.4066	·4545	.4944
2	6.544	33.63	.4724	.5127	·5731	.6235
3	5.827	26.67	.5956	.6465	.7227	.7862
4	5.189	21.15	.7511	.8152	.9113	.9914
5	4.621	16.77	9471	1.028	1.149	1.250
6	4.115	13.30	1.194	1.296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	2.061	2.304	2.506
10 11	2.906 2.588 2.305	6.634 5.261 4.172	2.395 3.020 3.807	2.599 3.277 4.132	2.905 - 3.663 4.619	3.161 3.985 5.025
12	2.053	3.309	4.801	5.211	5.825	6.337
13	1.828	2.624	6.054	6.571	7·345	7.991
14	1.628	2.081	7.634	8.285	9.262	10.08
15	1.450	1.65c	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.024	0.8231	19.30	20.95	23.42	25.48
19	0.9116	.6527	24.34	26.42	29.53	32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
2I	.7230	.4105	38.70	42.00	46.95	51.08
22	.6438	•3255	48.80	52.96	59.21	64.41
23	·5733	.2582	61.54	66.79	74.66	81.22
24	.5106	.2047	77.60	84.21	94.14	102.4
25	·4547	.1624	97.85	106.2	118.7	129.1
26	·4049	.1288	123.4	133.9	149.7	162.9
27	.3606	.1021	155.6	168.9	188.8	205.4
28	.3211	.080 98	196.2	212.9	238.0	258.9
29	.2859	.064 22	247.4	268.5	300.1	326.5
30	.2546	.050 93	311.9	338.6	378.5	411.7
31	.2268	.040 39	393.4	426.9	477.2	519.2
32	.2019	.032 03	496.0	538.3	601.8	654.7
33	.1798	.025 40	625.5	678.8	7 58.8	825.5
34	.1601	.020 14	788.7	856.0	956.9	1041.
35	.1426	.015 97	994.5	1079.	1207.	1313.
36	.1270	.012 67	1254.	1361.	1522.	1655.
37	.1131	.010 05	1581.	1716.	1919.	2087.
38	.1007	.007 967	1994.	2164.	2419.	2632.
39	.089 69	.006 318	2514.	2729.	3051.	3319.
40	.079 87		3171.	3441.	3847.	4185.

^{*}Resistance at the stated temperatures of a wire whose length is 1 kilometer at 20° C.

American Wire Gage (B. & S.). Metric Units

Ī	6	Diameter	Kilograms	Meters		Meters p	er Ohm.*	1
1	Gage No.	in mm at 20° C.	per Kilometer.	per Gram.	о° С.	20° C.	50° C.	75° C.
	0000	11.68 10.40 9 266	953-2 755-9 599-5	0.001 049 .001 323 .001 668	6749. 5352. 4245.	6219. 4932. 3911.	5563. 4412. 3499.	5113. 4055. 3216.
	O	8.252	475.4	.002 103	3366.	3102.	2774.	2550.
	I	7.348	377.0	.002 652	2669.	2460.	2200.	2022.
	. 2	6.544	299.0	.003 345	2117.	1951.	1745.	1604.
	3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
	4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
	5	4.621	149.1	.006 706	1056.	972.9	870.2	799.9
	6 7 8	4.115 3.665 3.264	93.78 74.37	.008 457 .010 66 .013 45	837.3 664.0 526.6	771.5 611.8 485.2	690.1 547·3 434.0	634.4 503.1 399.0
	10 10	2.906 2.588 2.305	58.98 46.77 37.09	.016 96 .021 38 .026 96	417.6 331.2 262.6	384.8 305.1 242.0	344.2 273.0 216.5	316.4 250.9 199.0
	12	2.053	29.42	.034 00	208.3	191.9	171.7	157.8
	13	1.828	23.33	.042 87	165.2	152.2	136.1	125.1
	14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
	15	1.450	14.67	.068 16	103.9	95.71	8 5 62	78.70
	16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
	17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
	18	1.02.4	7.317	.1367	51.81	47.74	42.70	39.25
	19	0.9116	5.803	.1723	41.09	37.86	33.86	31.13
	20	.8118	4.602	.2173	32.58	30.02	26.86	24.69
	21	.7230	3.649	.27.40	25.84	23.81	21.30	19.58
	22	.6438	2.894	·3455	20.49	18.88	16.89	15.53
	23	·5733	2.295	·4357	16.25	14.97	13.39	12.31
	24	.5106	1.820	.5494	12.89	11 87	10.62	9.764
	25	•4547	1.443	.6928	10.22	9.417	8.424	7.743
	26	•4049	1.145	.8736	8.105	7.468	6.680	6.141
	27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
	28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
	29	.2859	.5709	1.752	4.042	3.725	3.332	3.063
	30	.2546	.4527	2.209	3.206	2.954	2.642	2.429
	31	.2268	.3590	2.785	2.542	2.342	2.095	1.926
	32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
	33 34 35	.1798 .1601 .1426	.22 58 .1791 .1420	4.429 5.584 7.042	1.599 1.268 1.006	1.473 1.168 0.9265	1.318 1.045 0.8288	0.9606 .7618
	36 37 38	.1270	.1126 .089 31 .070 83	8.879 11.20 14.12	0.7974 .6324 .5015	•7347 •5827 •4621	.6572 .5212 .4133	.6041 .4791 .3799
	39 40	.089 69 .079 87	.056 17 .044 54	17.80	·3977 ·3154	.3664 .2906	.3278 .2600	.3013

^{*}Length at 20° C of a wire whose resistance is 1 ohm at the stated temperatures.

American Wire Gage (B. & S.). Metric Units

Gage	Diameter in mm		Ohms per Kilogram.		Grams per Ohm.						
No.	at 20° C.	о° С.	20° C.	50° C.	20° C.						
0000	11.68	0.000 155 4	0.000 168 7	0.000 188 6	5 928 000.						
	10.40	.000 247 2	.000 268 2	.000 299 9	3 728 000.						
	9.266	.000 393 0	.000 426 5	.000 476 8	2 344 000.						
0	8.252	.000 624 9	000 678 2	.000 758 2	1 474 000.						
I	7.348	.000 993 6	.001 078	.001 206	927 300.						
2	6.544	.001 580	.001 715	.001 917	583 200.						
3 4 5	5.827	.002 512	.002 726	.003 048	366 800.						
	5.189	.003 995	.004 335	.004 846	230 700.						
	4.621	.006 352	.006 893	.007 706	145 100.						
6	4.115	.010 10	.010 96	.012 25	91 230.						
7	3.665	.016 06	.017 43	.019 48	57 380.						
8	3.264	.025 53	.027 71	.030 98	36 080.						
9	2.906	.040 60	.044 06	.049 26	22 690.						
10	2.588	.064 56	.070 07	.078 33	14 270.						
11	2.305	.1026	.1114	.1245	8976.						
12	2.053	.1632	.1771	.1980	56.45						
13	1.828	.2595	.2817	.3149	3550.						
14	1.628	.4127	.4479	.5007	2233.						
15	1.450	.6562	.7122	.7961	1.404.						
16	1.291	1.043	1.132	1.266	883.1						
17	1.150	1.659	1.801	2.013	555.4						
18	1.024	2.638	2.863	3.201	349·3						
19	0.9116	4.194	4.552	5.089	219·7						
20	.8118	6.670	7.238	8.092	138·2						
21	.7230	10.60	11.51	12.87	86.88						
22	.6438	16.86	18.30	20.46	54.64						
23	·5733	26.81	29.10	32.53	34.36						
24	.5106	42.63	46.27	51.73	21.61						
25	·4547	67.79	73.57	82.25	13.59						
26	.4049	107.8	117.0	130.8	8.548						
27	.3606	171.4	186.0	207.9	5.376						
28	.3211	272.5	295.8	330.6	3.381						
29	.2859	433.3	470.3	525.7	2.126						
30	.2546	689.0	747.8	836.0	1.337						
31	.2268	1096.	1189.	1329.	0.8410						
32	.2019	1742.	1891.	2114.	.5289						
33	.1798	2770.	3006.	3361.	.3326						
34	.1601	4404.	4780.	5344.	.2092						
35	.1426	7003.	7601.	8497.	.1316						
36	.1270	11140.	12090.	13510.	.082 74						
37	.1131	17710.	19220.	21480.	.052 04						
38	.1007	28150.	30560.	34160.	.032 73						
39	.089 69	44770.	48590.	54310.	.020 58						
40	.079 87	71180.	77260.	86360.	.012 94						

TABLE 501

WIRE TABLE, ALUMINUM

Hard-Drawn Aluminum Wire at 20° C (68° F.) American Wire Gage (B. & S.). English Units

		Cross	Section.	Ohms	Pounds		
Gage	Diameter	Circular	Square	per	per	Pounds	Feet
No.	in Mils.	Mils.	Inches.	1000 Feet.	1000 Feet.	per Ohm.	per Ohm.
0000	460.	212 000.	0.166	0.0804	195.	2420.	12 400.
	410.	168 000.	.132	,101	154.	1520.	9860.
	365.	133 000.	.105	,128	122.	957·	7820.
0	325.	106 000.	.0829	.161	97.0	602.	6200.
I	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3	229.	52 600.	.0413	.323	48.4	150.	3090.
4	204.	41 700.	.0328	.408	38.4	94.2	2450.
5	182.	33 100.	.0260	.514	30.4	59.2	1950.
6	162.	26 300.	.0206	.648	24.I	37·2	1 540.
7	144.	20 800.	.0164	.817	19.1	23·4	1 220.
8	128.	16 500.	.0130	1.03	15.2	14·7	970.
9	114.	13 100	.0103	1.30	12.0	9 .2 6	770.
	102.	10 400.	.008 15	1.64	9.55	5.83	610.
	91.	8230,	.006 47	2.07	7.57	3.66	484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.	.004 07	3.29	4.76	1.45	304.
14	64.	4110.	.003 23	4.14	3.78	0.91 t	241.
15	57·	3260.	.002 56	5.22	2.99	·573	191.
16	51·	2580.	.002 03	6.59	2.37	.360	152.
17	45·	2050.	.001 61	8.31	1.88	.227	120.
18	40.	1620.	.001 28	10.5	1,49	.143	95·5
19	36.	1290.	.001 01	13.2	1,18	.0897	75·7
20	32.	1020.	.000 802	16.7	0.939	.0564	60.0
21	28.5	810.	.000 636	21.0	.745	.0355	47.6
22	25.3	642.	.000 505	26.5	.591	.0223	37.8
23	22.6	509.	.000 400	33.4	.468	.0140	29.9
24	20.1	404.	.000 317	42.1	.371	.008 82	23.7
25	17.9	320.	.000 252	53.1	.295	.005 55	18.8
26	15.9	254-	.000 200	67.0	.234	.003 49	14.9
27	14.2	202.	.000 158	84.4	.185	.002 19	11.8
28	12.6	160.	.000 126	106.		.001 38	9.39
29	11.3	127.	.000 099 5	134.		.000 868	7.45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3.72
33	7.1	50.1	.000 039 4	339·	.0461	.000 136	2.95
34	6.3	39.8	.000 031 2	428.	.0365	.000 085 4	2.34
35	5.6	31.5	.000 024 8	540.	.0290	.000 053 7	1.85
36 37 38	5.0 4.5 4.0	25.0 19.8 15.7	.000 019 6	681. 858. 1080.	.0230 .0182 .0145	.000 033 8	1.47 1.17 0.924
39	3.5	12.5 9.9	.000 009 79	1360. 1720.	.0091	.000 008 40	·733 .581

TABLE 502

WIRE TABLE, ALUMINUM

Hard-Drawn Aluminum Wire at 20° C (68° F.)

American Wire Gage (B. & S.). Metric Units

Gage No.	Diameter in mm.	Cross Section in mm.²	Ohms per Kilometer.	Kilograms per Kilometer.	Grams per Ohm.	Meters per Ohm.
0000	11.7	107.	0.264	289.	1 100 000.	3790.
	10.4	85.0	·333	230.	690 000.	3010.
	9.3	67.4	.419	182.	434 000.	2380.
0	8.3	53·5	.529	144.	273 000.	1890.
I	7.3	42·4	.667	114.	172 000.	1500.
2	6.5	33·6	.841	90.8	108 000.	1190.
3 4 5	5.8	26.7	1.06	72.0	67 900.	943.
	5.2	21.2	1.34	57.1	42 700.	748.
	4.6	16.8	1.69	45.3	26 900.	593.
6	4.1	13.3	2.13	35.9	16 900.	47 0.
7	3.7	10.5	2.68	28.5	10 600.	373.
8	3.3	8.37	3.38	22.6	6680.	296.
10 11	2.91 2.59 2.30	6.63 5.26 4.17	4.26 5.38 6.78	17.9 14.2 11.3	4200. 2640. 1660.	235. 186. 148.
12 13 14	2.05 1.83 1.63	3.31 2.62 2.08	8.55 10.8 13.6	8.93 7.08 5.62	1050. 657. 413.	92.8 73.6
15	1.45	1.65	17.1	4 46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	0.02	0.823	34.4	2.22	64.7	29.1
19	0.91	.653	43.3	1.76	40.7	23.1
20	18.	.518	54.6	1.40	25.6	18.3
21	.72	.411	68.9	1.11	16.1	14.5
22	.64	.326	86.9	0.879	10.1	11.5
23	•57	.258	110.	.697	6.36	9.13
24	.51	.205	138.	·553	4.00	7-24
25	.45	.162	174.	·438	2.52	5-74
26	.40	.129	220.	·348	1.58	4-55
27	.36	.102	277·	.276	0.995	3.61
28	.32	.0810	349·	.219	.626	2.86
2 9	.29	.0642	440.	.173	·394	2.27
30	.25	.0509	555.	.138	.248	1.80
31	.227	.0404	700.	.109	.156	1.43
32	.202	.0320	883.	.0865	.0979	1.13
33	.180	.0254	1110.	.0686	.0616	0.899
34	.160	.0201	1400.	.0544	.0387	.712
35	.143	.0160	1770.	.0431	.0244	.565
36	.127	.0127	2230.	.0342	.0153	.448
37	.113	.0100	2820.	.0271	.00963	•355
38	.101	.0080	3550.	.0215	.00606	.282
39 40	.090 .080	.0063	4480. 5640.	.0171	.003 81	.223

ELECTROCHEMICAL EQUIVALENTS

Every gram-ion involved in an electrolytic change requires the same number of coulombs or ampere-hours of electricity per unit change of valency. This constant is 96.494 coulombs or 26.804 ampere-hours per gram-hour (a faraday) corresponding to an electrochemical equivalent for silver of 0.00111803 gram sec. -1 amp. -1. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0. The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity.

Ele- ment	Change of valency	Mg per coulomb	Coulombs per mg	Grams per amp. hour	Ele- ment	Change of valency	Mg per coulomb	Coulombs per mg	Grams per amp. hour
Al Cl	3 1 3 5 7 1 2 1 3 1 1 2 4 1 2	0.09317 .36746 .12249 .07349 .05249 .6588 .3294 2.044 .6813 .0104442 2.1475 1.07375 .53688 2.0790 1.0395	10.731 2.7213 8.1649 13.606 19.049 1.5179 3.0358 .4893 1.468 95.747 .46565 .93130 1.8626 .48100	3.8655 1.9328 7.4844	Ni " O " Pt " K Ag Na Sn " Zn	1 2 3 2 4 6 1 1 2 4 2	0.6082 .3041 .20273 .082909 .041454 I.01165 .50582 .33722 .4052 I.11803 .23833 .61505 .30752 .33875	1.6442 3.2884 4.9326 12.0611 24.1222 .98848 1.97696 2.9654 2.467 .894430 4.1958 1.6259 3.2518 2.9520	2.1895 1.0948 .7298 .298500 .149250 3.6419 1.8210 1.2140 1.4587 4.02491 .85799 2.2142 1.1071 1.21950

The electrochemical equivalent for silver is 0.00111803 g sec.-1 amp.-1.

For other elements the electrochemical equivalent = (atomic weight divided by change of valency) times 1/96494 g/sec./amp. or g/coulomb.

Note.—The change of valency for O2 is usually 2, etc.

TABLE 504 .- Conductivity of Electrolytic Solutions

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electro-chemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C, and relative to mercury at 0° C, the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:—

Let $K_{1s} = \text{conductivity of the solution at 18}^{\circ}$ C relative to mercury at 0° C. $K_{1s}^{w} = \text{conductivity of the solvent water at 18}^{\circ}$ C relative to mercury at 0° C. Then $K_{1s} - K_{1s}^{w} = k_{1s} = \text{conductivity of the electrolyte in the solution measured.}$

 $\frac{k_{10}}{k_{10}} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific$ molecular conductivity."

Value of k18 for a few Electrolytes

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

n	KCl	NaCl	$ m AgNO_3$	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
0.00001	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 505 .- Electro-Chemical Equivalents and Normal Solutions

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 506 may be convenient. They represent grains per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	112	Temp. C.	Density.	Salt dissolved.	Grams per liter.	m	Temp.	Density.
KCl	74-59 53-55 58-50 42-48 104-0 68-0 165-9 101-17 85-08 169-9 65-28 61-29 98.18	1.0 1.0009 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7 - 18.3 18.6	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542	$\begin{array}{c} \frac{1}{2}K_2SO_4\\ \frac{1}{2}Na_2SO_4\\ \frac{1}{2}Na_2SO_4\\ \frac{1}{2}Li_2SO_4\\ \frac{1}{2}MgSO_4\\ \frac{1}{2}CuSO_4\\ \frac{1}{2}K_2CO_3\\ \frac{1}{2}Na_2CO_3\\ \frac{1}{2}Na_2CO_3\\ \frac{1}{2}Na_2CO_3\\ \frac{1}{2}H_2SO_4\\ \end{array}.$	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.0041 1.0014	18.9 18.6 18.6 18.6 5.3 18.2 18.3 17.9 18.8 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0794 1.0776 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

SPECIFIC MOLECULAR CONDUCTIVITY OF SOLUTIONS MERCURY = 108

Salt dissolved.	m=10	5	3	ı	0 5	0.1	•05	.03	10.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - -	770 752	827 900 825 572	919 968 907 752	672 958 997 948 839	736 1047 1009 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- - - 351	487 - 150 448	658 - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
½ZnSO ₄	- - - 60 -	82 82 - 180 398	146 151 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 53 ² 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 - 660 0.5	240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	600	1420	2010	2780	3017	3244	3330	3369	3416
	610	1470	2070	2770	2991	3225	3289	3328	3395
	148	160	170	200	250	430	540	620	790
	423	990	1314	1718	1841	1986	2045	2078	2124
	0.5	2.4	3.3	8.4	12	31	43	50	92
Salt dissolved.	.006	.002	,001	•0006	.0002	1000.	.000006	•00002	100001
½K2SO4	1130	1181	1207	1220	1241	1249	1254	1266	1275
	1162	1185	1193	1199	1209	1209	1212	1217	1216
	1176	1197	1203	1209	1214	1216	1216	1216	1207
	1157	1180	1190	1197	1204	1209	1215	1209	1205
	1140	1173	1180	1190	1199	1207	1220	1198	1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031	1074	1092	1102	1118	1126	1133	1144	1142
	1068	1091	1101	1109	1119	1122	1126	1135	1141
	982	1033	1054	1066	1084	1096	1100	1114	1114
	740	873	950	987	1039	1062	1074	1084	1086
	1033	1057	1068	1069	1077	1078	1077	1073	1080
1ZnSO ₄	744	861	919	953	1001	1023	1032	1047	1060
	773	881	935	967	1015	1034	1036	1052	1056
	933	980	998	1009	1026	1034	1038	1056	1054
	939	979	994	1004	1020	1029	1031	1035	1036
	976	998	1008	1014	1018	1029	1027	1028	1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921	942	952	956	966	975	970	972	975
	891	913	919	923	933	934	935	943	939
	956	1010	1037	1046	988	874	790	715	697*
	3001	3240	3316	3342	3280	3118	2927	2077	1413*
	170	283	380	470	796	995	1133	1328	1304*
HCl	3438	3455	3455	3440	3340	3170	2968	2057	1254*
	3421	3448	3427	3408	3285	3088	2863	1904	1144*
	858	945	968	977	920	837	746	497	402*
	2141	2140	2110	2074	1892	1689	1474	845	747*
	116	190	260	330	500	610	690	700	560*

^{*} Acids and alkaline salts show peculiar irregularities.

SPECIFIC MOLECULAR CONDUCTIVITY OF SOLUTIONS

TABLE 507.—Limiting Values of μ

This table shows limiting values of $\mu = \frac{k}{m}$. 108 for infinite dilution for neutral salts, calculated from Table 305.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
½K2SO4 .	1280	½BaCl₂ .	1150	$\frac{1}{2}$ MgSO ₄ .	1080	½H ₂ SO ₄ .	3700
KCl	1220	₹KClO₃ .	1150	$\frac{1}{2}$ Na ₂ SO ₄ .	1060	HCl	3500
кі	1220	$rac{1}{2}\mathrm{BaN}_2\mathrm{O}_6$.	1120	$\frac{1}{2}$ ZnCl ₂	1040	HNO_3	3500
NH ₄ Cl	1210	½CuSO₄ .	1100	NaCl	1030	$\frac{1}{3}\mathrm{H}_{3}\mathrm{PO}_{4}$.	1100
KNO ₃	1210	AgNO ₃ .	1090	NaNO ₃ .	980	кон	2200
_	-	$\frac{1}{2}$ ZnSO ₄ .	1080	K ₂ C ₂ H ₃ O ₂	940	½Na₂CO₃ .	1400

If the quantities in Table 507 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 508 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_3PO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 508 .- Temperature Coefficients

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gram molecule of the salt.

Salı.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl	0.0221	кі	0.0219	$\frac{1}{2}$ K ₂ SO ₄ .	0.0223	½K2CO3	0.0249
NH ₄ Cl	0.0226	KNO ₃	0.0216	½Na₂SO₄ .	0.0240	$\frac{1}{2}$ Na ₂ CO ₃	0.0265
NaCl	0.0238	NaNO ₃	0.0226	½Li₂SO₄ .	0.0242	КОН	0.0194
LiCl	0.0232	AgNO ₃	0.0221	⅓MgSO ₄ .	0.0236	HCl	0.0194
½BaCl₂	0.0234	$\frac{1}{2}\mathrm{Ba}(\mathrm{NO_3})_2$	0.0224	½ZnSO ₄ .	0.0234	$\frac{1}{2}H_2SO_4$	0.0102
$\frac{1}{2}$ ZnCl ₂	0.0239	KClO ₃	0.0219	½CuSO₄ .	0.0229	⅓H₂SO₄ }	
$\frac{1}{2}$ MgCl ₂ .	0.0241	$KC_2H_3O_2$.	0.0229	_	_	for m = .001	0.01 59

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per liter of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or H₃PO₄, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

Concentration in gram equivalents.

Equivalent conductance in reciprocal ohms per centimeter cube grant equivalents per cubic centimeter

Substance.	Concentration.		Equiv	alent co	nductanc	e at the	follow	ing ° C	tempera	itures.	
	Col	180	25°	500	75°	1000	1280	1560	2180	2810	306°
Potassium chloride .	0	130.1	(152.1)	(232.5)	(321.5)	414	(519)	625	825	1005	1120
	2	126.3	146.4	-	-	393	-	58Š	779	930	1008
	10	122.4	141.5	215.2	295.2	377	470	560	741	874	910
" "	80	113.5	-	-		342	-	498	638	723	720
Sodium chloride	100	112.0	129.0	194.5	264.6	336	415	490			0
Sodium chioride	0	109.0	-	_	-	362	_	555	760	970	1080
	2	105.6	_		-	349	-	534	722	895	955 860
	10 80	93.5	_	_	_	336	-	511	685	820	680
"	100	93.5			_	301 296	_	450	500	674	000
Silver nitrate	0	115.8	_		_	367	_	442 570	780	965	1065
" "	2	112.2	_	_	_	353		539	727	877	
	10	108.0	_	_	_	337	_	507	673	790	935
"	20	105.1	_	_ '	_	326	_	488	639	750	0.0
66 66	40	101.3	-	_ [-	312		462	599	680	680
"	8o	96.5	_	_	-	294	-	432	552	614	604
	100	94.6	-	_	-	289			33		
Sodium acetate	0	78.1	_	-	-	285	-	450	660	-	924
" "	2	74-5		-		268		421	578	-	801
" "	10	71.2		-	-	253	-	396	542	_	702
	80	63.4	-	-	~	221	-	340	452		
Magnesium sulphate	0	114.1	-	-	-	426	-	690	1080		1
	2	94.3		-	-	302	-	377	260		
" "	10	76.1	-	-	-	234	- 1	241	143		
	20	67.5	_	-	-	190	-	195	110		
	40 80	59.3	_	_		160 136	_	1 58			
	100	52.0 49.8	_	_	_	130		133	75		
	200	43.I	_	_	_	110	_	100			1
Ammonium chloride	0	131.1	152.0	_	_	(415)		(628)	(841)	_	(1176)
" "	2	126.5	146.5	_	-	399	_	601	801	_	1031
"	10	122.5	141.7	-	-	382	_	573	758	_	
"	30	118.1		_	-	_	_	-	-	-	925 828
Ammonium acetate .	0	(99.8)	-		-	(338)	-	(523)			
" " .	10	91.7	-	-	- 1	300	~	456			
" " .	25	88.2		-	-	286	-	426			

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS

C. 1	ion.		Equiv	alent cor	ductanc	e at th	e follow	ing ° C	tempera	tures.	
Substance.	Concentration.	180	250	50°	75°	100 ⁰	1280	156°	2180	2810	306°
Barium nitrate	0	116.9	_	_	_	385	_	600	840	1120	1300 824
" "	2	109.7	-	-		352	-	536 481	715 618	828	824
" "	10	101.0	-	-	-	322	-			658	615
	40 So l	88.7	_	_	_	280 258		372	507 449	503 430	448
	100	79.1	_	_	_	249		3/2	449	430	
Potassium sulphate .	0	132.8		-	-	455	-	715	1065	1460	1725
	2	124.8	-	-		402	-	605	806	893	867
	10	115.7	-	- 1	-	365	-	537	672	687	637
" "	40 80	104.2	- 1	_	_	320	_	455	545 482	519 448	466 396
	100	97.2 95.0	_	_	_	294 286	_	415	402	440	390
Hydrochloric acid .	0	379.0	_	_	_	850	_	1085	1265	1380	1424
" "	2	373.6	-	- 1	-	826	-	1048	1217	1332	1337
" "	10	368.1	-	-	-	807	-	1016	1168	1226	1162
66 66	80	353.0	-	-	-	762	_	946	1044	1046	862
Nitric acid	100	350.6 377.0	421.0	570	706	754 826	945	1047	(1230)	_	(1380)
With acid	2	371.2	413.7	559	690	806	919	1012	1166	_	1156
44 46	10	365.0	406.0	548	676	786	893	978			
" "	50	353.7	393.3	528	649	750	845	917			
46 44	100	346.4	385.0	516	632	728	817	880	-	_	454*
Sulphuric acid	0	383.0	(429) 390.8	501	(746) 561	891 571	551	536	1505	_	(2030) 637
	. 10	353.9 309.0	337.0	406	435	446	460	481	533		03/
	50	253.5	273.0	323	356	384	417	448	502		
44 44	100	233.3	251.2	300	336	369	404	435	483	-	474*
Potassium hydrogen	2	455.3	506.0	661.0	7 54	784	773	754			1
sulphate	50	295.5	318.3	374.4	403	422	440	477		1	
Phosphoric acid	100	263.7 338.3	283.1 376	329.1	354 631	37.5 730	839	435 930		ļ	
" " "	2	283.1	311.9	401	464	498	508	489			
	10	203.0	222.0	273	300	308	298	274			
	50	122.7	132.6	157.8	168.6	168	1 58	142			
" "	100	96.5	104.0	122.7	129.9	128		108	(1165)		(1268)
Acetic acid	0 10	(347.0) 14.50	_	_	_	(773)	_	22.2	14.7		(1200)
"	30	8.50	_	_	_	14.7	_	13.0	8.65		
" "	80	5.22	-	-	_	9.05		8.00	5.34		
" "	100	4.67	-	-	-	8.10	-	0	4.82	-	1.57
Sodium hydroxide .	0	216.5	-	-	-	594	-	835	1060		
"	20	212.1	_	_	_	582	_	771	930		
"	50	200.6	_	_	_	540	-	738	873		
Barium hydroxide .	0	222	256	389	(520)	645	(760)	847			
" "	2	215	-	359	4	591	66				
" "	. 10	207	235	342	449	548	664	722			
" "	50	180.1	215.1	308	399 373	478	549	593 531			
	0	(238)	(271)	(404)	(526)	(647		(908)	(1141) –	(1406)
Ammonium hydrox-	10	9.66	-	-	-	23.2	-	22.3	15.6		
ide	30	5.66	-	-	_	13.6		13.0	0		
	100	3.10	3.62	5.35	6.70	7.47	_	7.17	4.82	-	1.33
	1		1			1				1	1

^{*} These values are at the concentration 80.0.

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

6.1	Concen-	E	Equivalent	conduct	ance at t	he follow	ing ° C 1	temperatu	re.
Substance.	tration.	o ^O	180	25°	50°	75°	100°	1280	1560
Potassium nitrate	0	80.8	126.3	145.1	219	299	384	485	580
" "	2	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551
	1 2.5 50	75·3 70.7	117.2	134.9	189.5	276.4 257.4	351.5 326.1	435.4	520.4 476.1
46 46	100	67.2	104.5	120.3	180.2	244.1	308.5	379.5	447.3
Potassium oxalate	0	79.4	127.6	147.5	230	322	419	538	653
46 46	2	74.9	119.9	139.2	215.9	300.2	389.3	489.1	587
46 46	12.5	69.3	111.1	129.2	199.1	275.1	354.1	438.8	524.3
" "	50	63	101	116.5	178.6	244.9	312.2	383.8	449.5
46 46	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
	200	55.8	88.4	102.3	155	210.9 282	265.1 369	321.9	372.1
Calcium nitrate	0 2	70.4 66.5	112.7	130.6	101.0	266.7	346.5	474 438.4	57.5 529.8
66 66	12.5	61.6	98.6	114.5	176.2	244	314.6	394.5	473.7
46 46	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.1
	100	51.9	82.6	95.8	1.46.1	199.9	255.5	315.1	369.1
	200	48.3	76.7	88.8	135.4	184.7	234.4	288	334.7
Potassium ferrocyanide.	0	98.4	1 59.6	185.5	288	403	527		
" "	0.5	91.6	_	171.1	0		6		İ
	2.	84.8	1 37	158.9	243.8	335.2	427.6		
	12.5	71 58.2	113.4	131.6	163.3	271	340 272.4		
46 66	100		93.7	98.4	148.1	198.1	245		
46	200	53 48.8	77.8	90.4	135.7	180.6	222.3		
66 46	400	45.4	72.1	83.3	124.8	165.7	203.1		
Barium ferrocyanide	0	91	150	176	277	393	521		
	2	46.9	75	86.2	127.5	166.2	202.3		
"	12.5	30.4	48.8	56.5	83.1	107	129.8		
Calcium ferrocyanide .	0	88	146	171	271	386	512		
	2	47.1	75-5	86.2	130				
"	12.5 50	31.2	49.9 38.5	57·4 44·4	64.6	81.9			
66 66	100	21.0	35.I	44.4	58.4	73.7	84.3		
"	200	20.6	32.9	37.8	55	68.7	77.5		
66 66	400	20.2	32.2	37.1	54	67.5	76.2		
Potassium citrate	0	76.4	124.6	144.5	228	320	420		
66 66	0.5	_	I 20. I	139.4			-0-		
" "	2	71	115.4	134.5	210.1	293.8	381.2		
" "	5	67.6	109.9	128.2	198.7	276.5	357.2		
	12.5		87.8	102.1	157.5	254.2	326 273		
	100	54.4	80.8	93.9	143.7	196.5	247.5		
	300	43.5	69.8	81	123.5	167	200.5		
Lanthanum nitrate	0		122.7	142.6	223	313	413	534	651
"	2	75.4 68.9	8.011	128.9	200.5	279.8	363.5	457.5	549
	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	.147.8
" "	50	54	86.1	99.7	152.5	207.6	261.4	315.8	357.7
66 44	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3 276.2
	200	46	72.I	83.5	126.4	170.2	210.8	249.6	2/0.2
	1								

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

SMITHSONIAN TABLES.

TABLE 511 .- The Equivalent Conductivity of the Separate Ions

Ion.	00	180	25°	500	75°	1000	128°	156°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.4 26 40.2 32.9 33 30 35	64.6 43.5 64.5 54.3 55 ² 51 ² 61	74·5 50·9 74·5 63·5 65 60 7 ²	115 82 115 101 104 98	159 116 159 143 149 142	206 155 207 188 200 191 235	263 203 264 245 262 252 312	317 249 319 299 322 312 388
$\begin{array}{c} \text{Cl} & \dots & \\ \text{NO}_3 & \dots & \\ \text{C}_2\text{H}_3\text{O}_2 & \dots & \\ \frac{1}{2}\text{SO}_4 & \dots & \\ \frac{1}{3}\text{C}_6\text{H}_5\text{O}_7 & \dots & \\ \frac{1}{4}\text{Fe}(\text{CN})_6 & \dots & \end{array}$	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 68 ² 63 ² 60 95	75.5 70.6 40.8 79 73 70	116 104 67 125 115 113	160 140 96 177 163 161 244	207 178 130 234 213 214 321	264 222 171 303 275	318 263 211 370 336
Н	240 105	314 172	350 192	465 284	565 360	644 439	722 525	777 592

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 512.—Hydrolysis of Ammonium Acetate and Ionization of Water

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concentration in pure water. Equivalents per liter.
t	100h	K _W ×10 ¹⁴ .	C _H ×10 ⁷
0	_	0.089	0.30
18	(0.35)	0.46	0.68
25	-	0.82	0.91
100	4.8	48.	6.9
156	18.6	223.	14.9
218	52.7	461.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

DIELECTRIC STRENGTH

TABLE 513.—Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes

Spark length. cm.	R = o Points.	R = 0.25 cm.	R = 0.5 cm.	R = 1 cm.	R=2 cm.	R=3 cm.	$R = \infty$ Plates.
0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0 5.0	- - - 3720 4680 5310 5970 6300 6840 8070 8670 9960 10140 11250 12210 13050	- - 5010 8610 11140 14040 15990 17130 18960 20670 22770 24570 28380 29580	1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060	1530 2430 3240 3990 4560 8490 11340 14340 17220 20070 24780 27810 37260 45480	2340 3060 3810 4560 8370 11190 14250 16650 20070 25830 29850	4500 7770 10560 13140 16470 19380 26220 32760	4350 7590 10650 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 514.—Alternating Current Potential required to produce a Spark in Air with various Ball Electrodes

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length.	R = r cm.	R = 1.92	R = 5	R = 7.5	R = 10	R=15
0.08	3770 4400 5990 7510 9045	4380 5940 7440 8970	4330 5830 7340 8850	4290 5790 7250 8710	4245 5800 7320 8760	4230 5780 7330 8760
0.30 •35 •40 •45 •50	10480 11980 13360 14770 16140	10400 11890 13300 14700 16070	10270 11670 13100 14400 15890	10130 11570 12930 14290 15640	10180 11610 12980 14330 15690	10150 11590 12970 14320 15690
0.6 .7 .8 0.9	18700 21350 23820 26190 28380	18730 21380 24070 26640 29170	18550 21140 23740 26400 28950	18300 20980 23490 26130 28770	18350 20990 23540 26110 28680	18400 21000 23550 26090 28610
1.2 1.4 1.6 1.8 2.0	32400 35850 38750 40900 42950	34100 38850 43400 - -	33790 38850 43570 48300	33660 38580 43250 47900 52400	33640 38620 43520	33620 38580

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

TABLES 515 AND 516

DIELECTRIC STRENGTH

TABLE 515.—Potential Necessary to produce a Spark in Air between more widely Separated Electrodes

cm.	Alter-		Steady pot	tentials.		cm.	Alter- nt.	Steady p	otentials.
Spark length,	bull points. Alternating current.	Ball elec	ctrodes.	rodes. Cup electr		Spark length,	ts.	Ball electrodes	
park	Dull points. nating cur	R=1 cm	R=2.5 cm.	Projec	ction.	park	Dull poin nating o	R=1 cm.	R=2.5 cm.
S	ă T	K-1 cm.	1C-2.5 Cm.	4.5 mm.	1.5 mm.	· · · · · · · · · · · · · · · · · · ·	ā	K-1 ciii.	10-2.5 cm.
0.3	~	_	_	_	11280	6.0	61000	_	86830
0.5	-	17610	17620	-	17420	7.0	-	52000	_
0.7	-	_	23050	-	22950	8.0	67000	52400	90200
0.1	I 2000	30240	31390	31400	31260	10.0	7 3000	74300	91930
1.2		33800	36810	-	36700	12.0	82600	-	93300
1.5	-	37930	44310	_	44510	14.0	92000	_	94400
2.0	29200	42320	56000	56500	56530	15.0	-	_	94700
2.5	~	45000	65180	_	68720	16.0	101000	_	101000
3.0	40000	46710	71200	80400	81140	20.0	119000		
3.5	-	_	75300	-	92400	25.0	140600		
4.0	48500	49100	78600	101700	103800	30.0	165700		
4.5		-	81540	_	114600	35.0	190900		
5.0 5.5	56500	50310	83800	_	126500				
5.5	_	_	_	_	135700				

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 28, p. 585, 1909.

The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm in diameter and having a height of 4.5 mm and 1.5 mm respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 516 .- Effect of the Pressure of the Gas on the Dielectric Strength

Voltages are given for different spark lengths l.

Pressure. cm Hg	l=0.04	l=0.06	<i>l</i> =0.08	l=0.10	l=0.20	<i>l</i> =0 30	l=0.40	<i>l</i> =0.50
2 4 6 10	-	- 483 582 771	567 690 933	- 648 795 1090	744 1015 1290 1840	939 1350 1740 2450	1110 1645 2140 3015	1266 1915 2505 3580
15	-	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-

For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO₂ in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

TABLES 517 AND 518 DIELECTRIC STRENGTH

TABLE 517 .- Dielectric Strength of Materials

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

Substance.	Kilovolts per cm	Substance.		Kilovolts per cm.	Substance.	Kilovolts per cm.
Ebonite	80-300 450 20 200-300 300-1500 90 80-200 20 30-60 100-200 40-90	Castor Cottonseed Lard Linseed, raw " boiled " "	1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 1.0 "	190 130 70 140 40 185 90 190 80 50 200 90 170 75 215 160 180 85 195 90 110	Varnished Paraffine : Melted	770 150 25 500 100-250 75 350 400 230 450 45-75 160-500 90-130

TABLE 518 .- Potentials in Volts to Produce a Spark in Kerosene

Spark length.	Electrodes Balls of Diam. d.							
mm.	0.5 cm.	ı cm.	2 cm.	3 cm.				
0.1	3800	3400	27 50	2200				
.2	7500	6450	4800	3500				
-3	10250	9450	7450	4600				
+4	11750	10750	9100	5600				
·5 .6	13050	1 2400	11000	6900				
.6	14000	13550	12250	8250				
.8	15500	15100	13850	10450				
1.0	16750	16400	15250	12350				

Determinations of the dielectric strength of the same substance by different observers do not agree well For a discussion of the sources of error see Mościcki, Electrotechn. Z. 25, 1904. For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 05, 1898.

TABLE 519.—Dielectric Constant (Specific Inductive Capacity) of Gases

Atmospheric Pressure

Wave lengths of the measuring current greater than 10000 cm

Gas	°C	Dielectric	constant	Ref.	Gas	°C	Dielectric	constant	Ref.	
		Vacuum = 1	Air = 1		-		Vacuum = 1	Air = 1		
Air NH ₃ CS ₂ '' CO ₂ CO C ₂ H ₄	0 20 0 100 0 0	1.000588 1.00718 1.00290 1.00239 1.000966 1.000692 1.00138	1.000000 1.00659 1.00231 1.00180 1.000377 1.000104 1.00079	(I) (2) (3) (2) (I) (I) (I)	HCl H ₂ CH ₄ N ₂ O SO ₂ H ₂ O, 4 atm.	100 0 0 0 0 0 145	1.00258 1.000264 1.000948 1.00108 1.00993 1.00705	1.00199 .999676 1.000360 1.00050 1.00934 1.00646	(2) (1) (2) (1) (2) (2) (2)	
(1) Mean. (2) Bädeker, 1901. (3) Klemenčič, 1885.										

TABLE 520.—Variation of the Dielectric Constant with the Temperature

If ϵ_{θ} = the dielectric constant at the temperature θ° C of the above table, ϵ_{t} at the temperature t° C, and α and β are quantities in the following table, then $\epsilon_{t} = \epsilon_{\theta} - \alpha (t - \theta) + \beta (t - \theta)^{2}$.

Ammonia $\alpha = 5.45 \times 10^{-5}$ Sulphur dioxide	1.86×10^{-7}	Range, 15–110°C 0–110 145
---	-----------------------	---------------------------------

The dielectric constant of air at 76 cm and varying temperature may be calculated since D-r is approximately proportional to the density.

TABLE 521.—Variation of the Dielectric Constant of Gases with the Pressure

	°C	Pressure atm.				°C	Pressure atm.		
Air	19	20	1.0108	(1)	Air	11	120	1.0579	(2)
"	11	40	1.0218	(1)	4.6	4.6	140	1.0674	(2)
6.4	4.6	60	1.0330	(1)	4.6		160	1.0760	(2)
6.6	4.4	80	1.0439	(1)	4.6	6.6	180	1.0845	(2)
6.6	- 66	100	1.0548	(1)	CO_2	1,5	10	1.008	(3)
4.6	11	20	1.0101	(2)	4.6	""	20	1.020	(3)
4.6	4.6	40	1.0196	(2)	4.6	- (40	1.060	(3)
4.4	6.6	60	1.0294	(2)	N_2O	1,5	io	1.010	(3)
6.6	4.6	80	1.0387	(2)	4.6		20	1.025	(3)
4.6	6.6	100	1.0482	(2)	44	66	40	1.070	(3) (3) (3) (3) (3)

TABLE 522.—Dielectric Constant of Liquids (ε). Pressure Effect (Danforth, Phys. Rev., 38, 1224, 1931.)

						-				
P		o°C	75	°C		P atm.	0	,C	30	o°C
atr	n. ε	Density	€	Density	C ₂ H ₅ OH	I	27.8	0.806	23.2	0.781
Carbon 100 bisulphide 400 800 1200 (C₂H₆)₂O Ethyl 100 ether 400 800 1200 C₂H₆Br Bromo- 50 benzene 100 800 C₂H₆Cl Chloro- 50 benzene 100 400 800 800	00	.796 .865 .907 I.24I I.332 I.487 I.60I I.689 .720	1.92 2.11 2.22 2.31 2.69 3.02 3.28 3.45 4.08 5.17 6.00 6.94 4.87 5.05 5.16 5.62 5.90 5.12 5.28 5.28 5.29 8.55 9.32 10.42 11.15	1.29 1.46 1.58 1.66 74 .87 .94 1.00 1.40 1.46 1.50 1.65 1.76 1.00 1.03 1.13 1.20 .78 .84 .92 .99	C ₄ H ₉ OH i-butyl alcohol	ol: o°C 2900 24.4 I 49.9		.864 1.031 1.082 .819 .877 1.031 1.080 1.272 1.305 1.367 1.429 247000 9680 27.4 4290 55.6 5081 11.09		

TABLE 523.—Dielectric Constant of Liquids

A wave length greater than 10000 centimeters is denoted by ...

Substance	Temp.	Wave- length, cm.	Dielectric constant.	Author- ity.	Substance.	Temp.	Wave- length, cm.	Dielectric constant.	Author- ity.
Alcohol: Amyl	frozen -100 -50 0 +20 18 18 frozen -120 -80 -40 0 +20 17 " " " frozen -100	200 73 00 10 10 10 10 10 10 10 10 10 10 10 10	2.4 30.1 23.0 17.4 16.0 10.8 4.7 2.7 54.6 44.3 35.3 28.4 23.0 20.6 8.8 5.0 3.07 58.0	I I I I I I I I I I I I I I I I I I I	Alcohol: Methyl " " " Propyl " " " Acetone " " Acetic acid " " " Amyl acetate Amylene	-50 0 +20 17 -120 -60 0 +20 0 15 -80 0 15 17 18 15 17	75 0 1200 1200 200 75 0 14	45.3 33.0 31.2 33.2 46.2 24.8 22.8 22.2 12.3 33.8 26.6 21.85 20.7 9.7 10.3 7.07 6.29 4.81 2.20	1 1 1 2 1 1 1 1 2 5 5 6 6 2 2 9 10

TABLE 523 (continued)

DIELECTRIC CONSTANT OF LIQUIDS

A wave length greater than 10000 centimeters is designated by ∞ .

Substance.	Temp.	Wave- length cm.	Diel.	Author- ity.	Substance.	Temp.	Wave- length cm.	Diel. const.	Author- ity.
Aniline Benzol (benzene) "" Bromine Carbon bisulphide " Chloroform Decane Decylene Ethyl ether "" "" "" "" "" "" "" "" "" "" "" "" ""	18 18 19 23 20 17 18 17 —80 0 18 20 100 140 180 Crit. temp 192 (frozen) 15 16 15 15 17 18	∞ 73 84 ∞ 73 ∞	7.316 2.288 2.26 3.18 2.626 2.64 5.2 4.95 5.67 4.68 4.368 4.363 3.65 3.12 2.66 2.12 1 53 4.35 19.0 62.0 58.5 56.2 39.1 25.4 4.4 2.6 1.880 84.7	11 2 12 13	Nitrobenzol	(frozen) -10 -10 -5 0 +15 30 18 17 17 20 11 20 14 21 13 -20 11.4 - 20 16 13.4 20 - 48 -83 +16 19 18 17 17 18 17	∞ " " " " " " " " " " " " " " " " " "	9.9 42.0 41.0 37.8 35.1 36.45 34.0 1.949 2.83 4.67 3.11 3.10 2.25 3.35 3.02 3.11 3.03 2.13 2.23 2.17 9.68 2.51 2.37 2.37 81.07 83.6	1 " " " " " " " " " " " " " " " " " " "
1 Abegg-Seitz, 1899. 2 Drude, 1896. 3 Marx, 1898. 4 Lampa, 1896. 1 Torner, 1903. 5 Abegg, 1897. 6 Thwing, 1894. 7 Drude, 1898. 1 Torner, 1909. 1 Torner, 1909. 1 Torner, 1909. 1 Torner, 1909. 1 Torner, 1909. 1 Torner, 1909. 2 Hopkinson, 1881. 2 Salvioni, 1888. 2 Tornaszewski, 1888. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896. 2 Heinke, 1896.									

DIELECTRIC CONSTANT OF LIQUIDS

TABLE 524.—Temperature Coefficients of the Formula:

$$D_{\boldsymbol{\theta}} = D_{\iota}[1 - \alpha(t - \theta) + \beta(t - \theta)^{2}]$$

Substance.	a	β	Temp.	Authority.
Amyl acetate	0.0024 0.00351 0.00106 0.000966	0.0000087	- - 10-40	Löwe. Ratz. Hasenöhrl. Ratz.
Chloroform Ethyl ether Methyl alcohol Oils: Almond	0.000922 0.00410 0.00459 0.0057 0.00163	0.00000060 0.000015 - 0.000026	20-181 22-181 - -	Tangl. "Ratz. Drude. Hasenöhrl.
Castor Olive Paraffine	0.01067 0.00364 0.000738 0.000921 0.000977	- 0.0000072 - 0.00000046	- - 0-13 20-181	Heinke, 1896. Hasenöhrl. Ratz. Tangl.
Water	0.004474 0.004583 0.00436 0.000817	0.0000117	5-20 0-76 4-25 20-181	Heerwagen. Drude. Coolidge. Tangl.

(See Table 520 for the signification of the letters.)

TABLE 525 .- Dielectric Constant of Liquefied Gases

A wave-length greater than 10000 centimeters is designated by ∞ .

							·		
Substance.	Temp.	Wave- length cm.	Diel. constant.	Authority.	Substance.	Temp.	Wave- length cm.	Diel. constant	Authority.
Air " Carbon dioxide " " " " Chlorine " " " Cyanogen Hydrocyanic acid Hydrogen sulph. " " " " " " " " " " " " " " " " " " "	-191 " -34 14 -5 0 +15 -60 -20 0 +14 23 21 10 50 90	∞ 75 75 130 ∞ " " " " " " " " " " " " " " " " " "	1.432 1.47-1.50 21-23 16.2 1.608 1.583 1.540 1.526 2.150 2.030 1.970 1.940 2.08 1.88 2.52 about 95 5.93 4.92 3.76	1 2 3 4 4 5	Nitrous oxide N ₂ O (N ₂ O (N ₂ O	-88 -5 +5 +15 -182 " 14.5 20 40 60 80 100 120 140 154.2	© "" "" "" "" "" "" "" "" "" "" "" "" ""	1.938 1.630 1.578 1.520 1.491 1.465 13.75 14.0 12.5 10.8 9.2 7.8 6.4 4.8 2.1	8 5
1 v. Pirani, 1903. 4 Coolidge, 1899. 7 Schlundt, 1901.									

- 2 Bahn-Kiebitz, 1904. 3 Goodwin-Thompson, 1899.

- 4 Coolidge, 1999. 5 Linde, 1895. 6 Eversheim, 1904.
- 7 Schlundt, 1901. 8 Hasenöhrl, 1900.
- 9 Fleming-Dewar, 1896.

TABLES 526 AND 527

DIELECTRIC CONSTANT

TABLE 526.—Standard Solutions for the Calibration of Apparatus for the Measuring of Dielectric Constant

Turner.			Dru	de.		Nei	rnst.
Substance.	Diel. const. at 18° . $\lambda = \infty$.	Aceto	one in benzene	at 19°. λ =	= 75 cm.	water a	cohol in t 19.5°.
Benzene		Per cent by weight.	Density 160.	Dielectric constant.	Temp. coefficient.	Per cent	Dielectric
Meta-xylene Ethyl ether		0 20 40 60 80	0.885 0.866 0.847 0.830 0.813 0.797	2.26 5.10 8.43 12.1 16.2 20.5	0.1% 0.3 0.4 0.5 0.5 0.6	100 90 80 70 60	26.0 29.3 33.5 38.0 43.1
		Wa	ter in acetone a	75 cm.			
*	0 20 40 60 80	0.797 0.856 0.903 0.940 0.973 0.999	20.5 31.5 43.5 57.0 70.6 80.9	0.6% 0.5 0.5 0.5 0.5 0.5			

TABLE 527.-Dielectic Constant of Solids

Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author- ity.	Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author- ity.
Asphalt	_	∞	2.68	I		Temp.			
Barium sul-		•~	2.00	•	Iodine (cryst.) .	23	7.5	4.00	2
phate	_	7.5	10.2	2	Lead chloride .	3	, ,	•	
Caoutchouc .	-	00	2.22	3	(powder)	-	66	42	2
Diamond	_	66	16.5	I	" nitrate .	-	66	16	2
"	-	75	5.50	2	" sulphate .	-	44	28	2
Ebonite	-	∞	2.72	4	" molybde-				
" · ·	_	44	2.86	5	nate	-	66	24	2
		1000	2.55	6	Marble	'	66	0 -	
Glass * Flint (extra	Density.				(Carrara)	_		8.3 5.66-5.97	2
1 1 1	4.5	∞	9.90	7	Mica	_	×	5.80-5.97	5
Flint (very	4.5	33	9.90	/	Madras, brown		"	2.5-3.4	15
light)	2.87	44	6.61	7	" green		44	3.9-5.5	16
Hard crown	2.48	66	6.96	7	" ruby .	_	"	4.4	16
Mirror	_	6.6	6.44-7.46		Bengal, yellow	-	44	2.8	16
"	_	66	5.37-5.90	8	" white.	_	46	4.2	16
"	-	600	5.42-6.20	8	" ruby .	-	66	4.2-4.7	16
Lead (Pow-					Canadian am-				
ell)	3.0-3.5	∞	5.4-8.0	9	ber	-	- 44	3.0	16
Jena		66			South America	-	66	5.9	16
Boron .	_		5.5-8.1	10	Ozokerite (raw)	-	••	2.21	I
Barium . Borosili-	-		7.8-8.5	10	Paper (tele- phone)		66	2.0	
cate .		6.6	6	I	" (cable) .		66	2.0-2.5	17
Gutta percha.		_	6.4-7.7 3.3-4.9	11	Paraffine	26.30	66	2.46	18
Gutta perena.	Temp.		3.3-4.9	1 1	f arannic	Melting point.	66	2.32	19
Ice	<u>-5</u>	1200	2.85	12	"	44-46	66	2.10	20
4	-18	5000	3.16	13	"	54-56	46	2.14	20
	-190	7.5	1.76-1.88	14		74-76	66	2.16	20
<u> </u>	<u> </u>				II.				

References on p. 447.

^{*} For the effect of temperature, see Gray-Dobbie, Pr. Roy. Soc. 63, 1898; 67, 1900.
" " wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

DIELECTRIC CONSTANT

TABLE 527 (continued) .- Dielectric Constant of Solids

Substance.	Condi- tion.	Wave- length, cm.	Diel. constant,	Author- ity.	Substance.	Condi- tion.	Wave- length, cm.	Diel. constant.	Author- ity.
Paraffine Phosphorus: Yellow Solid Liquid Porcelain: Hard (Royal B'l'n) Seger " Figure " Selenium "	47.°6 56.°2	61 61 75 80 80 80	2.16 2.25 3.60 4.1 3.85 5.73 6.61 6.84 7.44 6.60 6.13 6.14	21 21 22 22 22 22 15 15 15 12 23 23	Sulphur Amorphous Cast, fresh " " Cast, old . Liquid . Strontium sulphate Thallium carbonate	- - - - - near melting- point	75 % 75 % 75 % 75 75	3.98 3.80 4.22 4.05 3.95 3.60 3.90 3.42	I 2 1 18 2 18 2 1 1 2 2 2
Shellac	- - -	8	3.10 2.95–3.73 3.67 2.86	4 24 25 18	" nitrate . Wood Red beech . " " . Oak	fibres " " "	75 ∞ " "	16.5 dried 4.83-2.51 7.73-3.63 4.22-2.46 6.84-3.64	2
1 v. Pirani, 2 Schmidt, 3 Gordon, 1	1903.		10 Löw 11 (sub 12 Thw	marii	ne-data).	19 B	allinger, oltzman ietkowsl	n, 1875.	

- 4 Winklemann, 1889.

- 5 Elsas, 1891. 6 Ferry, 1897. 7 Hopkinson, 1891. 8 Arons-Rubens, 1891.

- 13 Abegg, 1897.
- 14 Behn-Kiebitz, 1904. 15 Starke, 1897. 16 E. Wilson.
- 17 Campbell, 1906.
- 21 Hormell, 1902.
- 22 Schlundt, 1904. 23 Vonwiller-Mason, 1907. 24 Wüllner, 1887. 25 Donle.

TABLE 528 .- Dielectric Constant of Crystals

 $D\alpha$, $D\beta$, $D\gamma$ are the dielectric constants along the brachy, macro and vertical axes respectively.

Substance.	Wave- length,	Diel.		uthor- ity.	Substance.	Wave- length,	Da	iel. cons	st. Dγ	Author- ity.
UNIAXIAL: Apatite Beryl Calcite Loeland spar Quartz Ruby (Siam) Rutile (TiO ₂) Tourmaline Zircon	75 % 75 75 75 % 1000 - 75 %	9.50 7.85 7.10 6.05 8.49 8.78 7.80 8.50 4.38 4.27 13.3 89 7.13 6.75 12.8	7.40 7.44 6.05 5.52 7.56 8.29 6.800 5.06 4.46 4.34 1.73 6.54 5.65 12.6	1 2 3 1 4 5 1 1 4 6 6 6 4 1 1 1 1	RHOMBIC: Aragonite Barite Celestite MgSO ₄ +7H ₂ O K ₂ SO ₄ Rochelle salt* Sulphur Topaz Topaz * See page 448.	∞ 75 ∞ 75 75 75 75 75 75 75	9.14 9.80 6.97 7.65 7.70 25.46 6.09 6.70 3.81 3.65 3.62 6.65 6.25	_	7.13 6.55 7.00 7.70 8.30 19 2 8.28 4.48 8.89 4.77 4.66 4.66 6.30 6.44	4 1 4 1 1 7 7 7 8 7 1 1 4
					ger, 1902, 1919. .ni, 1903.		orel, i	189 3. ann, 18	375-	

- 3 Curie, 1889.
- 6 Ferry, 1897.

ELECTROSTRICTION. PIEZO-ELECTRICITY

Electrostriction is a phenomenon observed when an isotropic dielectric is placed in an electrostatic field (F), the form and volume of the dielectric altering. Similar effects occur in anisotropic materials but are obscured by piezo-electric effects. Piezo-electricity occurs when a crystal dielectric is mechanically strained becoming electrically polarized. The magnitude and direction of the polarization (P) depends on the crystal used, the amount of strain and its direction relative to the axes of the crystal. Pyro-electricity is of the nature of a temperature-coefficient dp/dt. For fuller discussion and more extensive data see I.C.T., 6, 207, 1918 (Cody).

TABLE 529.—Electrostriction (Means)

	Glass	Paraffin	Ebonite	Rubber (vulc	anized)
$\Delta 1/1E^2$.4 × 10 ⁻¹²	90 × 10 ⁻¹²	600 × 10 ⁻¹²	6000×10^{-12}	cm ² /c.g.s.e ²

These values divided by 1.11×10^{-5} for values in cm²/volt².

TABLE 530 .- Piezo-electricity

```
17 \times 10^{-8} (es/cm^2)/(dyne/cm^2)
                                                                                                        - 70° C
Rochelle salt, KNaC_4H_4O_6 \cdot 4H_2O d_{14} =
                                                        8100
                                                                                                        + 20
                                                                    66
                                                        1100
                                                                                                        +30
                                                                    66
                                                          400
                                                                                                        + 40
                                                           24
Benzil, C14H10O2
                                                d_{11} =
LiNa<sub>3</sub>(MoO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O
                                                d_{33} =
                                                                    66
Rb. tartrate, Rb2C4H4O6
                                                d_{11} =
                                                            8
                                                                    66
Tartaric acid, C4H6O6
                                                d_{14} = -24
                                                d_{15} = +28
                                                d_{25} = -36
                                                d_{31} =
                                                            2.
        66
                       66
                                                                    66
                                                            6.
                                                d_{32} =
        66
                       66
                                                            6.
                                                d_{33} =
        66
                                                d_{36} =
                                                            4.
                                                            5.78
Tourmaline
                                                d_{33} =
                                                d_{15} =
                                                           11.0
        66
                                                d_{22} = -0.7
                                                d_{31} =
                                                            0.7
Patchouli camphor, C<sub>15</sub>H<sub>26</sub>O
                                                d_{11} =
                                                             .14
Diamond, C
                                                                    66
Quartz, SiO<sub>2</sub>
Sodium chlorate, NaClO<sub>3</sub>
                                                d_{11} = -6.9
                                                d_{14} = -4.8
Fenchoneoxene, C10H17NO
                                                d_{33} = -10.2
```

Addenda to Table 528, p. 447, Dielectric Constant of Rochelle Salt:

The polarization of the Rochelle salt dielectric in an electric field is somewhat analagous to the behavior of the magnetization of iron in a magnetic field, showing both saturation and hysteresis. The dielectric constant D depends on the initial and final fields and the hysteresis.

The last value may be fair value for ordinary purposes. The electrodes were tinfoil attached with shellac. The field was applied perpendicular to the a axis. Like piezo-electric properties, the dielectric constant varies with different crystals. It depends on the temperature as follows: (field o to 880 v/cm)

$$-70^{\circ}$$
 C, D = 12; -40° , 14; -20° , 48; 0° , 174; $+20^{\circ}$, 88; $+30^{\circ}$, 52.

(Data from Valesek, University of Minnesota, 1921.)

THE CALCULATION OF THE HIGH-FREQUENCY RESISTANCE OF CONDUCTORS

(By Dr. F. W. Grover, Consulting Physicist, Bur. Standards, 1931.)

The resistance of a conductor to high frequency alternating currents is not the same as it offers to direct or low frequency currents. The linkages of flux with the inner portions of the conductor are more numerous than with the outer portions. That is, the reactances of the inner filaments are greater than those of the outer filaments. Consequently, the current density decreases from the outside toward the center of the conductor.

This tendency of the current to crowd toward the outer portions of the cross section becomes more pronounced the higher the frequency, and at very high frequencies the current density is sensibly zero everywhere except in the surface layer of the conductor. This phenomenon is called the "skin effect." It causes an increase in the effective resis-

tance of the conductor over its resistance to a direct current.

What is of interest in the calculation of the high frequency resistance is the resistance ratio, the quotient of the resistance at the given frequency by the direct current resistance. The resistance ratio depends upon the distribution of current density in the cross section, and this is a function of the frequency and the shape of the cross section. In general,

however, the resistance ratio is a function of the parameter $\frac{\sqrt{f}}{R_0}$, in which f is the frequency, and R_0 is the direct current resistance per unit length. In what follows R_0 will be taken as the direct current resistance per 1000 ft. of conductor.

The distribution of current in the cross section is affected by a neighboring conductor carrying high frequency currents. This proximity effect finds an explanation in that the value of the mutual inductance of any filament A of one conductor on a filament B of the other conductor depends upon the positions of A and B in their respective cross sections. The proximity effect may be very appreciable for conductors nearly in contact; falling off rapidly as their distance is increased, it is negligible for moderate ratios of distance apart to cross sectional dimensions. In such cases the resistance is sensibly the same as for an isolated conductor.

Beside the spacing factor of the conductors, the proximity effect depends upon the frequency, and in lesser degree upon the shape of the cross sections. Quantitatively, the proximity effect may be expressed by the proximity factor, which is the quotient of actual resistance of the conductor by the resistance which it would have if removed to a great distance from the disturbing conductor, both values of resistance being referred to the same frequency.

That is, if

 R_0 = the direct current resistance

 R_1 = the resistance of the conductor when isolated, frequency f R_2 = the resistance in the presence of the disturbing conductor

at frequency f

then the proximity factor is $P = \frac{R_2}{R_1}$, and the resistance ratio $\frac{R_2}{R_0}$, in the presence of the

disturbing conductor, is obtained from the resistance ratio $\frac{R_1}{R_0}$ when isolated by the relation $\frac{R_2}{R_0} = P \frac{R_1}{R_0}$. Resistance ratio may be obtained in any case if the resistance ratio

when isolated is known, together with the value of the proximity factor.

Formulas for the high-frequency resistance ratio have been developed in only a few simple (but important) cases, and even then very complicated formulas result. For practical work tables are necessary for simplifying the calculations. The following tables cover

the most important cases.

Formulas have been derived for the high-frequency resistance ratio of single-layer coils wound with round wire. Generally, these differ from one another and from measured values, because, simplifying assumptions are made which are not sufficiently realized in practice. No tables of values for coils such as are met in practical radio work are available. As a rough guide, the high-frequency resistance ratio for a single-layer coil is often from two to five times as great as the resistance ratio of the same wire stretched out straight and carrying current of the given frequency. The experimental work available indicates that this factor due to the coiling of the wire, that is, the total proximity effect of the turns of the coil, is largely dependent upon the frequency and the ratio of wire diameter to pitch of winding, and in lesser degree to the ratio of length to diameter.

(Calculated by Dr. F. W. Grover, Consulting Physicist, Bur. Standards, 1931.)

TABLE 532.—Resistance Ratio "F" for Isolated Round Wires

Resistance ratio F of isolated round wire, as a function of the square root of the frequency divided by the direct current resistance per 1000 ft. of conductor.

$\sqrt{f/R_0}$ F	0 0.000	1.000	20 1.0005 140 1.631	30 1.0025	40 1.008	50 1.019	60 1.038	70 1.069	80 1.114	90 1.173	100 1.247
F	100 1.247	120 1.427	140 1.631	160 1.836	180 2.036	200 2.23I	250 2.715	300 3.201	350 3.688	400 4.176	500 5.152

TABLE 533.—Values of Resistance Ratio for Isolated Tubular Conductors t, thickness of wall of tube; d, outer diameter of tube.

$\sqrt{\frac{f}{R_0}}$	$\frac{t}{d} = 0.01$	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	1,000	1.000	1.000	1.001	1.001	1.001	1.001	1.001	1.001	1.001
100	1.001	1.001	1.002	1.002	1.004	1.008	1.007	1.009		1.014
150	1.001	1.003	1.006	I.OII	1.017	1.024	1.033	1.044	1.056	1.070
200	1.002	1.008	1.019	1.034	1.053	1.076	1.104	1.134	1.167	1.204
250	1.005	1.020	1.046	1.081	1.125	1.176	1.233	1.296	1.365	1.440
300	1.011	1.042	1.095	1.163	1.25	1.34	1.44	1.55	1.65	1.75
350	1.020	1.076	1.167	1.285	1.42	1.56	1.70	1.83	1.97	2.09
400	1.032	1.127	1.27	1.44	1.66	1.81	1.99	2.13	2.28	2.42
450	1.051	1.198	1.41	1.63	1.87	2.08	2.28	2.44	2.60	2.74
500	1.079	1.30	1.57	1.86	2.14	2.34	2.56	2.73	2.88	3.03
$\sqrt{\frac{f}{R_0}}$	$\frac{t}{d}$ = 0.10	0.12	0.15	0.20	0.25	0.30	0.35	0.40	0.45	Solid 0.50
0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	1.001	1.001	1.002	1.004	1.006	800.1	1.012	1.015	1.017	1.019
100	1.014	1.021	1.032	1.063	1.094	1.132	1.175	1.202	1.224	1.247
150	1.070	1.102	1.155	1.266	1.39	1.51	1.60	1.68	1.71	1.733
200	1.204	1.294	1.42	1.65	1.845	1.995	2.095	2.15	2.20	2.231
250	1.44	1.585	1.79	2.11	2.32	2.45	2.536	2.64	2.68	2.715
300	1.75	1.94	2.19	2.51	2.735	2.90	3.03	3.12	3.17	3.201
350	2.09	2.33	2.57	2.90	3.15	3.35	3.495	3.59	3.66	3.688
400	2.42	2.66	2.92	3.27	3.58	3.80	3.96	4.07	4.14	4.176
450	2.74	3.00	3.27	3.66	4.00	4.25	4.43	4.55	4.63	4.664
500	3.03	3.33	3.62	4.07	4.42	4.69	4.90	5.03	5.12	5.152

TABLE 534.—Coefficients in Formula for Proximity Factor of Equal Parallel Round Wires

The proximity factor of two equal parallel conductors may be calculated by the formula

 $P=\mathrm{I}+[G.d^2/s^2]/[F(\mathrm{I}-Hd^2/s^2)]$ in which the coefficient F is to be obtained from Table 532 for the given value of f/R_0 and the coefficients G and H are to be taken from the table below for the given value of f/R_0 . In the table below the values of H apply to currents in the same direction; in the case of currents in opposite directions H^1 is to be used. In the above formula d is the diameter of the wires and s their axial spacing. The proximity factor for two equal parallel tubular conductors does not differ much from the value for two solid wires with the same axial spacing and a value of f/R_0 one-half the value for two solid wires of the same diameter, except for conductors very close together.

			-10				
$\sqrt{f/R_0}$	G	H	H^{1}	$\sqrt{f/R_0}$	G	H	H^{1}
0	0	+0.0417	+0.0417	200	0.8491	-0.1904	0.5530
25	0.0036	.0395	.0443	250	1.0959	2017	.5932
50	.0519	+ .0109	.0798	300	1.340	2093	.6200
75	.1903	- .0659	.1838	350	1.585	2149	.6389
100	.3562	1379	.3112	400	1.830	2191	.6530
125	.4914	1685	.4114	450	2.073	2224	.6639
150	.6096	1776	.4787	500	2.319	2231	.6722
175	.7277	1839	.5228				

TABLE 535.- Ratio of Alternating to Direct Current Resistances for Copper Wires

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in	$\operatorname{Frequency} f =$									
millimeters.	60	100	1000	10,000	100,000	1,000,000				
0.05	_		_	·	_	*1.001				
0.1		_	_	_	*1.001	1.008				
0.25		_	_	_	1.003	I. 247				
0.5	_	_	<u> </u>	*1.001	1.047	2.240				
1.0		_	_	1.008	1.503	4.10				
2.0	-	_	1.001	I.I20	2.756	8.10				
3.	-	_	1.006	1.437	4.00	12.0				
4.		. —	I.02I	1.842	5.24	17.4				
4· 5·	- 1	*1.001	1.047	2,240	6.49	19.7				
7.5	1.001	I.002	1.210	3.22	7.50	29.7				
10.	1.003	1.008	1.503	4.19	12.7	39.1				
15.	1.016	1.038	2.136	6.14	18.8					
20.	1.044	I.I2O	2.756	8.10	25.2	_				
25.	1.105	1.247	3.38	10.1	28.3	_				
40.	I.474	1.842	5.24	17.4						
100.	3.31	4.19	13.7	39.1	_	_				

Values between 1.000 and 1.001 are indicated by *1.001.

The change of resistance of wire other than copper (iron wires excepted) may be calculated from the above table

by taking it as proportional to $d\sqrt{f/\rho}$ where d= diameter, f the frequency and ρ the resistivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 536 .- Maximum Diameter of Wires for High-frequency Resistance Ratio of 1.01

Frequency ÷ 106	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wave-length, meters	3000	1500	750	500	375	300	250	200	150	100
Material.				Di	ameter i	n centim	eters.			
Copper Silver. Gold Platinum. Mercury Manganin. Constantan. German silver Graphite. Carbon Iron μ = 1000. μ = 500. μ = 100.	0.0345 0.0420 0.1120 0.264 0.1784 0.1892 0.1942 0.765 1.60 0.00263 0.00373	0.0793 0.187 0.1261 0.1337 0.541 1.13 0.00186 0.00264	o. o560 o. 132 o. o892 o. o946 o. o970 o. 383 o. 801 o. o0131 o. o0187	0.0729 0.0772 0.0792 0.312 0.654 0.00108 0.00152	0.0036 0.0631 0.0664 0.0692 0.271 0.566 	0.00118	0.00108	0.0089 0.0108 0.0290 0.0683 0.0461 0.0488 0.0500 0.197 0.414	0.00084	0.00068

Bureau of Standards Circular 74, Radio Instruments and Measurements, 1918.

The values are for wires having an assumed conductivity of 1.60 microhm-cms; for copper wires at room temperatures the values are slightly less than as given in table.

TABLES 537 AND 538 WIRELESS TELEGRAPHY

TABLE 537 .- Radiation Resistances for Various Wave-Lengths and Antenna Heights

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by E= constant (h^2/λ^2) I^2 , where h is the length of the oscillator, λ , the wave-length and I the current at its center. For a flat-top antenna E= 1600 (h^2/λ^2) I^2 watts; 1600 h^2/λ^2 is called the radiation resistance.

(h = height to center of capacity of conducting system.)

h= Wave- Length λ	40 Ft.	60 Ft.	80 Ft.	100 Ft.	120 Ft.	160 Ft.	200 Ft.	300 Ft.	450 Ft.	600 Ft.	1200 Ft.
971	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohni	ohm	ohm
200	6.0	13.4	24.0	37.0	54.0	95.0					
300	2.7	6.0	10.6	16.5	23.8	42.4					
400	1.5	3.4	6.0	9.3	13.4	23.8	76.4	27.4	84.0	149.0	
600	0.66	1.5	2.7	4.I	6.0	6.0	16.4	37·4 21.0	47.0	84.0	
800	0.37	0.84	1.5	2.3	3.4	3.8	9.2 6.0	13.5	30.0	54.0	215.0
1000	0.24	0.54	0.95	1.5	2.1	2.6	4.1	9.3	21.0	37.0	149.0
1200	0.17	0.37	0.66	1.03 0.66	0.95	1.7	2.6	6.0	13.4	24.0	95.0
1 500	0.11	0.24	0.42	0.37	0.54	0.95	1.5	3.4		13.4	54.0
2000		0.13	0.15	0.24	0.34	0.61	0.95	2.2	7·5 4.8	8.6	34.0
3000			0.11	0.17	0.24	0.42	0.66	1.5	3.4	6.0	24.0
4000			0.06	0.00	0.13	0.24	0.37	0.84	1.9	3.4	13.4
5000					3		0.24	0.53	1.20	2.2	8.6
6000							0.16	0.37	0.84	1.5	6.0
7000							0.12	0.27	0.61	1.1	4.4

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 1911.

TABLE 538.—The Dielectric Properties of Nonconductors Phillips Thomas, J. Franklin Inst. 176, 283, 1913.

Results of tests at unit area a	and unit thic	kness of die	lectric.	
At 1000 cycles.	Mica.	Paper.	Celluloid.	Ice.
Max. breakdown volts per cm. Specific induc. capacity Max. absorbable energy, watts-sec/cm ³ 90°-angle of lead Equiv. resistance ohms/cm ³ ×10 ¹¹ Conductivity per cm. cube×10 ⁻¹⁰ Percent change in cap. per cycle×10' Percent change in resistance per cycle.	4.00 0.198 0°57' 3.91 2.56 2.18	0.71×10 ⁶ 4.90 0.108 2° 10' 9.84 1.02 14.31 0.146		.011×10 ⁶ 86.40 .00040 13° 39' 1400 .00722 70.0 0.127
At 15 cycles. Specific inductive capacity	0.203	5.77 0.126 0.306	18.60 0.90 1.74 71.5×10 ⁻¹⁴	429.0 0.002 1.59

TABLE 539 POWER FACTOR AND DIELECTRIC CONSTANT

(See also Table 540 on page 454.)

From the range of the values given, an approximate figure can be taken for a particular material and its relative position with respect to other materials seen. Data of this kind are much effected by the condition and past treatment of the samples, and by the conditions of the tests.

The power factor and dielectric constant of dry air may be taken as zero and 1.00. Fused quartz has the lowest power factor among the solid insulating materials, and is used for

supporting the insulated plates of standard air condensers.

TABLE 539.—Values for Power Factor in Per Cent for Several Electrical Insulating Materials at Radio-Frequencies

	Frequency		Measure	ments repo	rted by—	
Material	kc	I	2	3	4	5
	-0	0.450				
Amber	187.5	0.459				
	300	.476				
	600	.495				
	1000	.513				
Glass	30				0.35-2.98b	
	600	0.040-0.653				
Cobalt glass	500		0.70			
Flint glass	500		.42			
	890		.40			
Plate glass	14			0.97		
	100			-77		0.93
	500		.70	.66		
	635					.82
	1000			.62		
Pyrex glass	14			.88		
1 Jion grant in	30				0.56 and 0.2	6
	100			.74		.58
	420					.50
	500		.42	.67		
	750			.68		
Photographic	100					.95
						.86
glass	235					.77
Hand nubber	1700		• • • •			.68
Hard rubber	135				• • • • • .	.70
	315	60				
	600	.62				
	625					.70
	710		.88			
	1000	.68				
	1085					.74
	1126		1.05			
Marble ^e						0.35 -4.72
Mica	600	.017				.00793 f
Laminated d	190		3.85-7.35			2.62- 8.0
Pilotio	, 1000		4.20-6.65			3.85- 5.6
insulation	, 1000		7.20 0.03			3.30 3.3
Moulded d	190					1.64-10.9
phenolic } · · ·	-					1.56- 8.4
insulation	1000					
Wood (oak)	300		3.68			13.8, 2.94°
	635		3.85			10.1, 3.24 ^e
	1060		4.20			
(maple)	500		3.33			3.63
(birch)	500		6.48			
(baywood)	870					3.76
Paraffin	14			.042		
	100			.031		.017
	500			.026		
	1070					.034
	10,0					

⁽¹⁾ Schott, Erich, Hochfrequenzverluste von Gläsern und einigen anderen Dielektricis. Jahrb. Drahtlosen Tele. u. Tele., 18, 82–122, August, 1921. (2) Hoch, E. T. Power losses in insulating materials. Bell System Tech. Journ., 1, No. 2, Nov., 1922. (3) MacLeod, H. J. Power losses in dielectrics. Phys. Rev., 21, 53–73, 1023. (4) Decker, William C., Power losses in commercial glasses. Electr. World, 89, 601–603, March 19, 1927. (5) Data from the Bureau of Standards.

^a Range of 27 samples. ^b Range of 9 samples. ^c Range of 10 samples. ^d Range of severalsamples. ^e After drying 48 hours at 80°C. ^f Range of a number of samples from different localities.

TABLE 540.—Values of Dielectric Constant for Several Electrical Insulating
Materials at Radio-Frequencies

Material	Frequency,	I	Measurements 2	s reported by—	4
Glass	30			5.1-7.9ª	
Crown glass	230 800	6.3 6.2	• • •		• • •
Flint glass	500		7.0		• • •
	890	• • •	7.0 6.8		
Plate glass	500 500		6.8 7.3	• • •	7.6
Pyrex glass	30			4.8	
Photographic glass	500 100		4.9		5.8 7.5
	1700				7.4
Hard rubber	135 210		3.0	• • •	3.7
37 11	1126		3.0	• • •	3.7
Marble	44 80-650	8.4			9.2-11.70
	1400	7.3			
Mica				• • •	5.8-8.7
phenolic insulation	1000	• • •	5.4-5.8 5.1-5.6	• • •	5.0-7.4 4.7-7.0
Moulded phenolic insulation	190 1000				4.3-7.6 4.9-7.0
Wood (oak)	300		3.2		6.7, 3.1 ^b
	425 635		3·3 3·3		6.5, 3.0 ^b
	1060		3.3		
(maple) (birch)	500 500		4·4 5·2		4.4
(baywood)	870		5.2		3.8

⁽¹⁾ Bairsto, G. E., Conductivity and dielectric constant of dielectrics for high-frequency oscillations. Proc. Roy. Soc. London, A. 96, 363–382, Jan., 1920. (2) Hoch, E. T., Power losses in insulating materials. Bell System Tech. Journ., 1, No. 2, Nov., 1922. (3) Decker, William C., Power losses in commercial glasses. Electr. World, 89, 601–603, March 19, 1927. (4) Data from the Bureau of Standards.

TABLE 541.—Absorption Factors for Radio Propagation

For frequencies up to 1000 kc and transmission over sea water the semiempirical transmission formulas of Austin-Cohen, Austin, Fuller, and Espenschied, Anderson and Bailey take the form

$$F (\mu \text{ volts/meter}) = (377/\lambda)(hI/d) \sqrt{\theta/\sin \theta} \cdot e^{\frac{-\alpha d}{\lambda x}}$$

where the coefficient $377hI/\lambda d$ represents the simple Hertzian radiation field over a perfectly conducting plane surface, the factor $\sqrt{\theta/\sin\theta}$ corrects the formula for the curvature of the earth, and the factor $e^{-\alpha d/\lambda x}$ is the absorption factor, α the damping factor, and x is determined experimentally. d, the distance from the transmitter, and λ , the wave length, both are measured in kilometers. The following tabulation completes the information concerning these formulas. (See next page.)

a Range of 9 samples of various chemical compositions reported. b After drying sample for 48 hours at 80°C. c Range of 10 samples of various kinds of marble.

TABLE 541 (continued).—Absorption Factors for Radio Propagation

Name of formula	Damping factor	х	Nature of path	Distance km	Frequency kc	Remarks
Austin-Cohen Austin revised. Fuller E, A, and B.	.0014	.6 1.4	Sea water Sea water		80-1000 12-1000 25.4-100 17-60	

⁽a) Honolulu to Sau Francisco. (b) Omitted factor $\sqrt{\theta/\sin\theta}$, E, A, and B, Espenschied, Anderson and Bailey.

Bown and Gillet substituting their measured values of F, at 640 kc taken within 150 km of Washington, D. C., in the Austin-Cohen formula get

 $\alpha = 0.028$ for dry sandy soil; 0.009 for moist soil; 0.0025 for $\frac{1}{2}$ salt water (Chesapeake

Bay).

Austin concludes that for frequencies greater than 60 kc over land, absorption is considerably greater than over sea water. From 60 kc to 20 kc overland absorption decreases and approaches that over sea water. In these results the total field received in the day time is considered. In the following results the ground wave only is considered.

Over land especially at the higher frequencies there are so many variables that no simple complete formula is available for F. We may write Fxd = a constant from the Hertzian formula and modify it by a factor A for absorption and quote some results, i.e.

$$F = (377hI/\lambda D)A$$

Smith, Rose, and Barfield calculated from Sommerfeld's theory and approximately checked at some broadcast frequencies the following results.

TABLE 542.—Transmission Path Over Sea Water Whose Conductivity Was Assumed = 1.1×10^{-11} e.m.u.

Frequency, kc	50 km	100 km	150 km
10000		0.92 I	0.80 I

TABLE 543.—Transmission Path Over Land Whose Conductivity Was Assumed = 1.1×10^{-13} e.m.u.

Frequency,	1.5 km	4 km	5 km	Absorpti 10 km	on factor 15 km	at a dist	ance of— 50 km	75 km	100 km	150 km
300						0.56	0.98	0.20	0.93	0.82
3000			0.40	0.20	0.10		,			
10000	0.10	0.03	• • • •	• • • •					• • • •	••••

Rolf calculates from Sommerfeld's theory the following:

TABLE 544.—Transmission Path Over Land Whose Inductivity $\epsilon = 15$ e.s.u. and Whose Conductivity $\delta = 10^{-13}$ e.m.u. (Good Conducting Ground)

Frequency, kc	2 km	Absorption 5 km	factor at a dis	tance of— 40 km	100 km
300					0.90
1000			0.80		.25
3000			.30	0.04	
10000	0.16	0.05	.02		••••

TABLE 545.—Transmission Path Over Ground With Inductivity $\epsilon = 15$ e.s.u. and Conductivity $\sigma = 10^{-15}$ e.m.u. (Bad Conducting Ground)

Frequency,	1	at a distance of—	100 km	
kc	10 km	20 km	50 km	100 Km
75				0.90
150				.70
300			0.50	.10
500	0.90	0.40	.10	
1000	.40			• • • •

TABLE 546

WIRELESS TELEGRAPHY

KILOCYCLE-METER CONVERSION TABLE

Velocity of propagation, 299820 km/sec.

The number of kilocycles (kc) is the number of thousands of times the rapidly alternating current in the antenna repeats its direction of flow per sec. The smaller the wave length, the larger the frequency. To obtain approximate kc divide 300000 by the number of m (see next table). For accurate conversion the constant is 299820. The wave length is equal to the velocity divided by the frequency. The velocity of radio waves in space, according to the best available data, is 299820 km/sec. This table and the next are entirely reversible, i.e., 50 kc is 5996 m, and also 50 m is 5996 kc. The range of the table is easily extended by shifting the decimal point in opposite directions for each pair of values—e.g., 2230 kc or m is equivalent to 134.4 m or kc; whence 223 kc or m is equivalent to 1344 m or kc. (Taken from Bur. Standards, Misc. Publ., 67, 1925.)

kc or m	m or kc	ke or m	m or kc	kc or m	m or kc	kc or m	m or kc	kc or m	m or kc
1,010	296.9	1,410	212.6	1,810	165.6	2,210	135.7	2,610	114.9
1,020	293.9	1,420	211.1	1,820	164.7	2,220	135.1	2,620	114.4
1,030	291.1	1,430	209.7	1,830	163.8	2,230	134.4	2,630	114.0
1,040	288.3	1,440	208.2	1,840	162.9	2,240	133.8	2,640	113.6
1,050	285.5	1,450	206.8	1,850	162.1	2,250	133.3	2,650	113.1
1,060	282.8	1,460	205.4	1,860	161.2	2,260	132.7	2,660	112.7
1,070	280.2	1,470	204.0	1,870	160.3	2,270	132.1	2,670	112.3
1,080	277.6	1,480	202.6	1,880	159.5	2,280	131.5	2,680	111.9
1,090	275.1	1,490	201.2	1,890	158.6	2,290	130.9	2,690	111.5
1,100	272.6	1,500	199.9	1,900	157.8	2,300	130.4	2,700	111.0
1,110	270.1	1,510	198.6	1,910	157.0	2,310	129.8	2,710	110.6
1,120	267.7	1,520	197.2	1,920	156.2	2,320	129.2	2,720	110.2
1,130	265.3	1,530	196.0	1,930	155.3	2,330	128.7	2,730	109.8
1,140	263.0	1,540	194.7	1,940	154.5	2,340	128.1	2,740	109.4
1,150	260.7	1,550	193.4	1,950	153.8	2,350	127.6	2,750	109.0
1,160	258.5	1,560	192.2	1,960	153.0	2,360	127.0	2,760	108.6
1,170	256.3	1,570	191.0	1,970	152.2	2,370	126.5	2,770	108.2
1,180	254.1	1,580	189.8	1,980	151.4	2,380	126.0	2,780	107.8
1,190	252.0	1,590	188.6	1,990	150.7	2,390	125.4	2,790	107.5
1,200	249.9	1,600	187.4	2,000	149.9	2,400	124.9	2,800	107.1
1,210	247.8	1,610	186.2	2,010	149.2	2,410	124.4	2,810	106.7
1,220	245.8	1,620	185.1	2,020	148.4	2,420	123.9	2,820	106.3
1,230	243.8	1,630	183.9	2,030	147.7	2,430	123.4	2,830	105.9
1,240	241.8	1,640	182.8	2,040	147.0	2,440	122.9	2,840	105.6
1,250	239.9	1,650	181.7	2,050	146.3	2,450	122.4	2,850	105.2
1,260	238.0	1,660	180.6	2,060	145.5	2,460	121.9	2,860	104.8
1,270	236.1	1,670	179.5	2,070	144.8	2,470	121.4	2,870	104.5
1,280	234.2	1,680	178.5	2,080	144.1	2,480	120.9	2,880	104.1
1,290	232.4	1,690	177.4	2,090	143.5	2,490	120.4	2,890	103.7
1,300	230.6	1,700	176.4	2,100	142.8	2,500	119.9	2,900	103.4
1,310	228.9	1,710	175.3	2,110	142.1	2,510	119.5	2,910	103.0
1,320	227.Í	1,720	174.3	2,120	141.4	2,520	119.0	2,920	102.7
1,330	225.4	1,730	173.3	2,130	140.8	2,530	118.5	2,930	102.3
1,340	223.7	1,740	172.3	2,140	140.1	2,540	118.0	2,940	102.0
1,350	222.I	1,750	171.3	2,150	139.5	2,550	117.6	2,950	101.6
1,360	220.4	1,760	170.4	2,160	138.8	2,560	117.1	2,960	101.3
1,370	218.8	1,770	169.4	2,170	138.1	2,570	116.7	2,970	100.9
1,380	217.3	1,780	168.4	2,180	137.5	2,580	116.2	2,980	100.6
1,390	215.7	1,790	167.5	2,190	136.9	2,590	115.8	2,990	100.3
1,400	214.2	1,800	166.6	2,200	136.3	2,600	115.3	3,000	99.94

WIRELESS TELEGRAPHY KILOCYCLE-METER CONVERSION TABLE

Velocity of propagation, 299820 km/sec.

ke or m	m or kc	kc or m	m or kc	kc or m	m or kc	kc or m	m or kc	kc or m	m or kc
3,010	99.61	3,510	85.42	4,010	74-77	4,510	66.48	5,010	59.84
3,020	99.01	3,520	85.18	4,020	74.58	4,520	66.33	5,020	59.73
	98.95	3,530	84.94	4,030	74.40	4,530	66.19	5,030	59.73
3,030	98.62	3,540	84.70	4,040	74.40	4,540	66.04		
3,040	98.30	3,550	84.46				65.89	5,040	59.49
3,050	97.98	3,560	84.22	4,050	74.03 73.85	4,550	65.75	5,050	59.37
3,060	97.96			4,060		4,560	65.61	5,060	59.25
3,070		3,570	83.98	4,070 4,080	73.67	4,570		5,070	59.13
3,080	97·34 97·03	3,580	83.75 83.52	4,090	73.49	4,580	65.46 65.32	5,080	59.02 58.90
3,100	96.72	3,600	83.28	4,100	73.31	4,600	65.18	5,100	58.79
				4,100	73.13			3,100	
3,010	96.41	3,610	83.05	4,110	72.95	4,610	65.04	5,110	58.67
3,120	96.10	3,620	82.82	4,120	72.77	4,620	64.90	5,120	58.56
3,130	95.79	3,630	82.60	4,130	72.60	4,630	64.76	5,130	58.44
3,140	95.48	3,640	82.37	4,140	72.42	4,640	64.62	5,140	58.33
3,150	95.18	3,650	82.14	4,150	72.25	4,650	64.48	5,150	58.22
3,160	94.88	3,660	81.92	4,160	72.07	4,660	64.34	5,160	58.10
3,170	94.58	3,670	81.70	4,170	71.90	4,670	64.20	5,170	57.99
3,180	94.28	3,680	81.47	4,180	71.73	4,680	64.06	5,180	57.88
3,190	93.99	3,690	81.25	4,190	71.56	4,690	63.93	5,190	57.77
3,200	93.69	3,700	81.03	4,200	71.39	4,700	63.79	5,200	57.66
3,210	93.40	3,710	80.81	4,210	71.22	4,710	63.66	5,210	57.55
3,220	93.11	3,720	80.60	4,220	71.05	4,720	63.52	5,220	57.44
3,230	92.82	3,730	80.38	4,230	70.88	4,730	63.39	5,230	57.33
3,240	92.54	3,740	80.17	4,240	70.71	4,740	63.25	5,240	57.22
3,250	92.25	3,750	79.95	4,250	70.55	4,750	63.12	5,250	57.11
3,260	91.97	3,760	79.74	4,260	70.38	4,760	62.99	5,260	57.00
3,270	91.69	3,770	79.53	4,270	70.22	4,770	62.86	5,270	56.89
3,280	91.41	3,780	79.32	4,280	70.05	4,780	62.72	5,280	56.78
3,290	91.13	3,790	79.11	4,290	69.89	4,790	62.59	5,290	56.68
3,300	90.86	3,800	78.90	4,300	69.73	4,800	62.46	5,300	56.57
3,310	90.58	3,810	78.69	4,310	69.56	4,810	62.33	5,310	56.46
3,320	90.31	3,820	78.49	4,320	69.40	4,820	62.20	5,320	56.36
3,330	90.04	3,830	78.28	4,330	69.24	4,830	62.07	5,330	56.25
3,340	89.77	3,840	78.08	4,340	69.08	4,840	61.95	5,340	56.15
3,350	89.50	3,850	77.88	4,350	68.92	4,850	61.82	5,350	56.04
3,360	89.23	3,860	77.67	4,360	68.77	4,860	61.69	5,360	55.94
3,370	88.97	3,870	77.47	4,370	68.61	4,870	61.56	5,370	55.83
3,380	88.70	3,880	77.27	4,380	68.45	4,880	61.44	5,380	55.73
3,390	88.44	3,890	77.07	4,390	68.30	4,890	61.31	5,390	55.63
3,400	88.18	3,900	76.88	4,400	68.14	4,900	61.19	5,400	55.52
3,410	87.92	3,910	76.68	4,410	67.99	4,910	61.06	5,410	55.42
3,420	87.67	3,920	76.48	4,420	67.83	4,920	60.94	5,420	55.32
3,430	87.41	3,930	76.29	4,430	67.68	4,930	60.82	5,430	55.22
3,440	87.16	3,940	76.10	4,440	67.53	4,940	60.69	5,440	55.11
3,450	86.90	3,950	75.90	4,450	67.38	4,950	60.57	5,450	55.01
3,460	86.65	3,960	75.71	4,460	67.22	4,960	60.45	5,460	54.91
3,470	86.40	3,970	75.52	4,470	67.07	4,970	60.33	5,470	54.81
3,480	86.16	3,980	75.33	4,480	66.92	4,980	60.20	5,480	54.71
3,490	85.91	3,990	75.14	4,490	66.78	4,990	60.08	5,490	54.61
3,500	85.66	4,000	74.96	4,500	66.63	5,000	59.96	5,500	54.51
					- 11				

TABLE 546 (continued)

WIRELESS TELEGRAPHY KILOCYCLE-METER CONVERSION TABLE

Velocity of propagation, 299820 km/sec.

ı										
	kc or m	m or kc	ke or m	m or ke	kc or m	m or kc	kc or m	m or kc	kc or m	m or ke
-	5,510	54.41	6,010	49.89	6,510	46.06	7,010	42.77	7,510	39.92
-1	5,520	54.32	6,020	49.80	6,520	45.98	7,020	42.71	7,520	39.87
- 1	5,530	54.22	6,030	49.72	6,530	45.91	7,030	42.65	7,530	39.82
-1	5,540	54.12	6,040	49.64	6,540	45.84	7,040	42.59	7,540	39.76
-1	5,550	54.02	6,050	49.56	6,550	45.77	7,050	42.53	7,550	39.71
ı	5,560	53.92	6,060	49.48	6,560	45.70	7,060	42.47	7,560	39.66
	5,570	53.83	6,070	49.39	6,570	45.63	7,070	42.41	7,570	39.61
Ш	5,580	53.73	6,080	49.31	6,580	45.57	7,080	42.35	7,580	39.55
	5,590	53.64	6,090	49.23	6,590	45.50	7,090	42.29	7,590	39.50
	5,600	53.54	6,100	49.15	6,600	45.43	7,100	42.23	7,600	39.45
H	5,610	53.44	6,110	49.07	6,610	45.36	7,110	42.17	7,610	39.40
	5,620	53.35	6,120	48.99	6,620	45.29	7,120	42.11	7,620	39.35
П	5,630	53.25	6,130	48.91	6,630	45.22	7,130	42.05	7,630	39.29
П	5,640	53.16	6,140	48.83	6,640	45.15	7,140	41.99	7,640	39.24
	5,650	53.07	6,150	48.75	6,650	45.09	7,150	41.93	7,650	39.19
	5,660	52.97	6,160	48.67	6,660	45.02	7,160	41.87	7,660	39.14
	5,670	52.88	6,170	48.59	6,670	44.95	7,170	41.82	7,670	39.09
Ш	5,680 5,690	52.79 52.69	6,180 6,190	48.51	6,680 6,690	44.88	7,180	41.76	7,680	39.04
Ш	5,700	52.60	6,200	48.36	6,700	44.82	7,190	41.70	7,690	38.99
ľ						44.75	7,200	41.64	7,700	38.94
Ш	5,710	52.51	6,210	48.28	6,710	44.68	7,210	41.58	7,710	38.89
	5,720	52.42	6,220	48.20	6,720	44.62	7,220	41.53	7,720	38.84
Ш	5,730	52.32	6,230	48.13	6,730	44.55	7,230	41.47	7,730	38.79
	5,740	52.23	6,240	48.05	6,740	44.48	7,240	41.41	7,740	38.74
Ш	5,750 5,760	52.14 52.05	6,250 6,260	47.97 47.89	6,750 6,760	44.42	7,250	41.35	7,750	38.69
ı	5,770	51.96	6,270	47.82	6,770	44.35 44.29	7,260 7,270	41.30	7,760	38.64
П	5,780	51.87	6,280	47.74	6,780	44.29	7,270	41.24	7,770 7,780	38.59 38.54
Ш	5,790	51.78	6,290	47.67	6,790	44.16	7,290	41.13	7,790	38.49
H	5,800	51.69	6,300	47.59	6,800	44.09	7,300	41.07	7,800	38.44
ı	5,810	51.60	6,310	47.52	6,810	44.03	7,310	41.02	7,810	38.39
	5,820	51.52	6,320	47.44	6,820	43.96	7,320	40.96	7,820	38.34
	5,830	51.43	6,330	47.36	6,830	43.90	7,330	40.90	7,830	38,29
	5,840	51.34	6,340	47.29	6,840	43.83	7,340	40.85	7,840	38.24
	5,850	51.25	6,350	47.22	6,850	43.77	7,350	40.79	7,850	38.19
	5,860	51.16	6,360	47.14	6,860	43.71	7,360	40.74	7,860	38.14
	5.870 5,880	51.08	6,370	47.07	6,870 6,880	43.64	7,370	40.68	7,870	38.10
	5,890	50.99	6,380	46.99	6,890	43.58	7,380	40.63	7,880	38.05
	5,900	50.82	6,400	46.85	6,900	43.52	7,390 7,400	40.57	7.890 7,900	38.00
										37.95
	5,910	50.73	6,410	46.77	6,910	43.39	7,410	40.46	7.910	37.90
	5,920	50.65	6,420	46.70	6,920	43.33	7,420	40.41	7,920	37.86
	5,930	50.56	6,430	46.63	6,930	43.26	7,430	40.35	7,930	37.81
	5,940	50.47	6,440	46.56	6,940	43.20	7,440	40.30	7,940	37.76
	5,950 5,960	50.39	6,450	46.48	6,950	43.14	7,450	40.24	7,950	37.71
	5,970	50.31	6,460	46.41	6,960	43.08	7,460	40.19	7,960	37.67
	5,980	50.14	6,480	46.27	6,980	43.02	7,470	40.08	7,980	37.62 37.57
	5,990	50.05	6,490	46.20	6,990	42.89	7,490	40.03	7,990	37.52
	6,000	49.97	6,500	46.13	7,000	42.83	7,500	39.98	8,000	37.48
				. 0	'	, ,			1	
										'.

WIRELESS TELEGRAPHY

KILOCYCLE-METER CONVERSION TABLE

Velocity of propagation, 299820 km/sec.

		1			1				
ke or m	m or kc	kc or m	m or kc	ke or m	m or ke	kc or m	m or kc	kc or m	m or ke
9 0 1 0	27.42	9 470	27.67	8,810	24.02	0.210	20.55	0.610	
8,010	37.43	8,410	35.65	8,820	34.03	9,210	32.55	9,610	31.20
8,020	37.38	8,420	35.61		33.99	9,220	32.52	9,620	31.17
8,030	37.34	8,430	35.57	8,830	33.95	9,230	32.48	9,630	31.13
8,040	37.29	8,440	35.52	8,840	33.92	9,240	32.45	9,640	31.10
8,050	37.24	8,450	35.48	8,850	33.88	9,250	32.41	9,650	31.07
8,060	37.20	8,460	35.44	8,860	33.84	9,260	32.38	9,660	31.04
8,070	37.15	8,470	35.40	8,870	33.80	9,270	32.34	9,670	31.01
8,080	37.11	8,480	35.36	8,880	33.76	9,280	32.31	9,680	30.97
8,090	37.06	8,490	35.31	8,890	33.73	9,290	32.27	9,690	30.94
8,100	37.01	8,500	35.27	8,900	33.69	9,300	32.24	9,700	30.91
8,110	36.97	8,510	35.23	8,910	33.65	9,310	32.20	9,710	30.88
8,120	36.92	8,520	35.19	8,920	33.61	9,320	32.17	9,720	30.85
8,130	36.88	8,530	35.15	8,930	33.57	9,330	32.14	9,730	30.81
8,140	36.83	8,540	35.11	8,940	33.54	9,340	32.10	9,740	30.78
8,150	36.79	8,550	35.07	8,950	33.50	9,350	32.07	9,750	30.75
8,160	36.74	8,560	35.03	8,960	33.46	9,360	32.03	9,760	30.72
8,170	36.70	8,570	34.98	8,970	33.42	9,370	32.00	9,770	30.69
8,180	36.65	8,580	34.94	8,980	33.39	9,380	31.96	9,780	30.66
8,190	36.61	8,590	34.90	8,990	33.35	9,390	31.93	9,790	30.63
8,200	36.56	8,600	34.86	9,000	33.31	9,400	31.90	9,800	30.59
			01	1	000	1	0 /	''	
8,210	36.52	8,610	34.82	9,010	33.28	9,410	31.86	9,810	30.56
8,220	36.47	8,620	34.78	9,020	33.24	9,420	31.83	9,820	30.53
8,230	36.43	8,630	34.74	9,030	33.20	9,430	31.79	9,830	30.50
8,240	36.39	8,640	34.70	9,040	33.17	9,440	31.76	9,840	30.47
8,250	36.34	8,650	34.66	9,050	33.13	9,450	31.73	9,850	30.44
8,260	36.30	8,660	34.62	9,060	33.09	9,460	31.69	9,860	30.41
8,270	36.25	8,670	34.58	9,070	33.06	9,470	31.66	9,870	30.38
8,280	36.21	8,680	34.54	9,080	33.02	9,480	31.63	9,880	30.35
8,290	36.17	8,690	34.50	9,090	32.98	9,490	31.59	9,890	30.32
8,300	36.12	8,700	34.46	9,100	32.95	9,500	31.56	9,900	30.28
8,310	36.08	8,710	34.42	9,110	32.91	9,510	31.53	9,910	30.25
8,320	36.04	8,720	34.38	9,120	32.88	9,520	31.49	9,920	30.22
8,330	35.99	8,730	34.34	9,130	32.84	9,530	31.46	9,930	30.19
8,340	35.95	8,740	34.30	9,140	32.80	9,540	31.43	9,940	30.16
8,350	35.91	8,750	34.27	9,150	32.77	9,550	31.39	9,950	30.13
8,360	35.86	8,760	34.23	9,160	32.73	9,560	31.36	9,960	30.10
8,370	35.82	8,770	34.19	9,170	32.70	9,570	31.33	9,970	30.07
8,380	35.78	8,780	34.15	9,180	32.66	9,580	31.30	9,980	30.04
8,390	35.74	8,790	34.11	9,190	32.62	9,590	31.26	9,990	30.01
8,400	35.69	8,800	34.07	9,200	32.59	9,600	31.23	10,000	29.98
						1	1		

TABLE 547

WIRELESS TELEGRAPHY

Wave-Length in Meters, Frequency in periods per second, and Oscillation Constant LC in Microhenries and Microfarads

The relation between the free wave-length in meters, the frequency in cycles per second, and the capacity-inductance product in microfarads and microhenries are given for circuits between 1000 and 10,000 meters. For values between 100 and 1000 meters, multiply the columns for n by to and move the decimal point of the corresponding LC column two places to the left (dividing by 100); for values between 10,000 and 100,000, divide the n column by 10 and multiply the LC column by 100. The relation between wave-length and capacity-inductance may be relied upon throughout the table to within one part in 200.

Example 1: What is the natural wave-length of a circuit containing a capacity of 0.001 microfarad, and an inductance of 454 microhenries? The product of the inductance and capacity is 454 × 0.001 = 0.454. Find 0.454 under LC; opposite under meters is 1270 meters, the natural

wave-length of the circuit.

Example 2: What capacity must be associated with an inductance of 880 microhenries in order to tune the circuit to 3500 meters? Find opposite 3500 meters the LC value 3.45; divide this by

880, and the quotient, 0.00397, is the desired capacity in microfarads.

Example 3: A condenser has the capacity of 0.004 microfarad. What inductance must be placed in series with this condenser in order that the circuit shall have a wave-length of 600 meters? From the table, the LC value corresponding to 600 meters is 0.101. Divide this by 0.004, the capacity of the condenser, and the desired inductance is 25.2 microhenries.

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1000 1010 1020 1030 1040 1050 1060 1070 1080	300,000 297,000 294,100 291,300 285,700 283,600 280,400 277,800 275,200	0.281 0.287 0.293 0.299 0.305 0.310 0.316 0.322 0.328	1300 1310 1320 1330 1340 1350 1360 1370 1380 1390	230,800 229,000 227,300 225,600 223,900 222,200 220,600 218,900 217,400 215,800	0.476 0.483 0.499 0.498 0.505 0.513 0.521 0.536 0.544	1600 1610 1620 1630 1640 1650 1660 1670 1680 1690	187,500 186,300 185,200 184,100 182,900 181,800 180,700 179,600 178,600	0.721 0.730 0.739 0.748 0.757 0.766 0.776 0.785 0.794 0.804
1100 1110 1120 1130 1140 1150 1160 1170 1180	272,700 270,300 267,900 265,500 263,100 260,900 258,600 256,400 254,200 252,100	0.341 0.347 0.353 0.359 0.366 0.372 0.379 0.385 0.392 0.399	1400 1410 1420 1430 1440 1450 1460 1470 1480	214,300 212,800 211,300 209,800 208,300 206,900 205,500 204,100 202,700 201,300	0.552 0.559 0.567 0.576 0.584 0.592 0.600 0.608 0.617 0.625	1700 1710 1720 1730 1740 1750 1760 1770 1780	176,500 175,400 174,400 173,400 172,400 171,400 170,500 169,400 168,500 167,600	0.813 0.823 0.833 0.842 0.852 0.862 0.872 0.882 0.892 0.902
1200 1210 1220 1230 1240 1250 1260 1270 1280 1290	250,000 247,900 245,900 243,900 241,900 241,000 238,100 236,200 231,400 232,600	0.405 0.412 0.419 0.426 0.433 0.440 0.447 0.454 0.461 0.468	1500 1510 1520 1530 1540 1550 1570 1570 1580 1590	200,000 198,700 197,400 196,100 194,800 193,600 192,300 191,100 189,900 188,700	0.633 0.642 0.650 0.659 0.668 0.676 0.685 0.694 0.703	1800 1810 1820 1830 1840 1850 1860 1870 1880 1890	166,700 165,700 164,800 163,000 163,000 162,200 161,300 160,400 159,600 158,700	0.912 0.923 0.933 0.943 0.953 0.963 0.974 0.985 0.995

Adapted from table prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

WIRELESS TELEGRAPHY

Wave-Length, Frequency and Oscillation Constant

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1900	1 57,900	1.016	2800	107,100	2.21	7000	42,860	13.8
1910	157,100	1.026	2820	106,400	2.24	7100	42,250	14.2
1920	156,300	1.037	2840	105,600	2.27	7200	41,670	14.6
1930	155,400	1.048	2860	104,900	2.30	7300	41,100	15.0
	1 54,600	1.059	2880	104,200	2.33	7400	40,540	15.4
1940								
1950	153,800	1.070	2900	103,400	2.37	7 500	40,000	1 5.8
1960	153,100	1.081	2920	102,700	2.40	7600	39,470	16.3
1970	152,300	1.092	2940	102,000	2.43	7700	38,960	16.7
1980	151,500	1.103	2960	101,300	2.47	7800	38,460	17.1
1990	1 50,800	1.114	2980	100,700	2.50	7900	37,980	17.6
1990							371900	
2000	150,000	1.126	3000	100,000	2.53	8000	37,500	18.0
2020	148,500	1.148	3100	96,770	2.70	8100	37,040	18.5
2040	147,100	1.171	3200	93,750	2.88	8200	36,590	18.9
2060	145,600	1.194	3300	90,910	3.07	8300	36,140	19.4
2080	144,200	1.218	3400	88,240	3.26	8400	35,710	19.9
	142,900	1.241				8500		
2100			3500	85,910.	3.45		35,290	20 3
2120	141,500	1.265	3600	83,330	3.65	8600	34,880	20.8
2140	140,200	1.289	3700	81,080	3.85	8700	34,480	21.3
2160	138,900	1.313	3800	78,950	4.06	SSoo	34,090	21.8
2180	137,600	1.338	3900	76,920	4.28	8900	33,710	22.3
2222		1 262	4000	7.5.000	4.50	0000	22 220	22.8
2200	1 36,400	1.362	4000	75,000	4.50	9000	33,330	
2220	135,100	1.387	4100	73,170	4.73	9100	32,970	23.3 23.8
2240	1 33,900	1.412	4200	71,430	4.96	9200	32,610	23.8
2260	132,700	1.438	4300	69,770	5.20	9300	32,260	24.3
2280	131,600	1.463	4400	68.180	5.45	9400	31,910	24.9
2300	1 30,400	1.489	4500	66,670	5.70	9500	31,590	25.4
			4600	65,220	5.96	9600	31,250	25.9
2320	129,300	1.515						
2340	128,200	1.541	4700	63,830	6.22	9700	30,930	26.5
2360	127,100	1.568	4800	62,500	6.49	9800	30,610	27.0
2380	126,000	1.594	4900	61,220	6.76	9900	30,310	27.6
2400	125,000	1.621	5000	60,000	7.04	10000	30,000	28.1
		1.648	5100	58,820	7-32		3-,	
2420	124,000							1
2440	129,000	1.676	5200	57,690	7.61			1/1
2460	121,900	1.703	5300	56,600	7.91			
2480	121,000	1.731	5400	55,560	8.21			1
2500	120,000	1.759	5500	54,550	8.51			
2520	119,000	1.787	5600	53,570	8.83			
2540	118,100	1.816	5700	52,630	9.15			
		1.845						
2560	117,200	1.845	5600	51,720	9.47			
2580	116,300	1.874	5900	50,850	9.81			
2600	115,400	1.903	6000	50,000	IO.I			
2620	114,500	1.932	6100	49,180	10.5			
2640		1.962	6200	48,550	10.8			
	113,600							
2660	112,800	1.991	6300	47,620	II.I			
2680	111,900	2.02	6400	46,870	11.5			
2700	111,100	2.05	6500	46,150	11.9			
2720	110,300	2,08	6600	45.450	12.3			
2740	109,500	2.11	6700	44,780	12.6			
2760	108,700	2.14	6800	44,120	13.0			
2780	107,900	2.18	6900	43,480	13.4			
2800	107,100	2,21	7000	42,860	13.8			
	,,		/	,	3			
1								

TABLE 548

SKIP-DISTANCE AND RANGE TABLE

For frequencies between 1500 and 30000 kc

(This table was prepared by the Naval Research Laboratory.)

(This table was prepared by the Navar Nesearch Laboratory.)													
Frequency	Range	-	Skip-d	istance			Maxir	num relia	ble rang	e			
in kilocycles	of ground	Sum	mer	Wii	nter	Sum	mer		Winte	r			
Knocycles	wave	Day	Night	Day	Night	Day	Night	Day	Night	Note			
1500- 1715	100					100	100	150	300	b, g			
1715- 2000	90					120	175	170	600	b, c, h, d			
2000- 2250	85					130	250	200	750	b, c, i			
2250- 2750	80					150	350	220	1500	b, j			
2750- 2850	70					170	500	300	2500	c, k			
2850- 3500	65					200	900	350	3000	b, c, l			
3500- 4000	60					250	1500	400	4500	b, c, d, h			
4000- 5500	55					300	4000	500	7000	b, c, m			
5500- 5700	50					400	4000	600	8000	b			
5700- 6000	50	50	50	50	60	450	5000	650	8000	С			
6000- 6150	50	60	70	60	90	500	5500	700	8000	e			
6150- 6675	45	70	115	80	175	550	6500	750	8000	b			
6675- 7000	45	80	185	100	290	650	7000	820	8000	С			
7000- 7300	45	90	220	115	360	700	7500	900	8000	d			
7300- 8200	40	140	290	175	465	750	8000	1100	8000	С			
8200-8550	40	160	370	200	570	800	8000	1300	8000	b			
8550- 8900	40	170	420	230	630	900	8000	1460	8000	b, c			
8900-9500	40	200	485	270	710	950	8000	1680	8000	С			
9500- 9600	40	220	530	280	740	1000	8000	1820	8000	e			
9600-11000	35	260	625	325	860	1100	8000	2140	8000	С			
11000-11400	35	300	750	380	1000	1200	8000	2460	8000	b			
11400-11700	35	315	800	400	1080	1300	8000	2700		e			
11700-11900	35	335	835	420	1120	1500	8000	2800		С			
11900-12300	30	350	870	430	1170	1550	8000	3000		C			
12300-12825	30	370	940	460	1240	1600	8000	3200		b			
12825-13350	30	390	1000	485		1700	8000	3440		b, c			
13350-14000	30	420	1075	510		1800		3660		C			
14000-14400	30	440	1150	545		1950		4060		d			
14400-15100	30	460	1230	580		2200		4360	_	С			
15100-15350	30	475	1300	610		2300		4640	Not useful	e			
15350-16400	30	500	1370	640	p	2500	_	5060	se	C			
16400-17100	25	550		700	Not reflected	3000	Not useful	5600	n	b			
17100-17750	25	580		740	He	3500	Ise	6200	ot	b, c			
17750-17800	25	600	þ	755	re	4000	ב ב	6450	Z	e			
17800-21450	20	660	cte	835)t	5000	To To	7000		С			
21450-21550	20	750	fle	1050	Z	6000	4	7000		e 1			
21550-22300	20	780	re	1090		7000		7000		b			
22300-23000	20	835	Not reflected	1130		7000		7000		b, c			
23000-28000	15	900	ž	1200		un-		un-		I			
20000 2000		1000		7.100		known		known		a			
28000-30000	10	1000		1400		un-		un-		d			
						known		known					
·						'							

Skip-distance—Shortest distance beyond the ground wave at which communication is possible, or the point where the sky wave first comes to earth. On certain frequences and at certain seasons communication is possible within the skip-distance due to echoes and around the world signals. Skip-distance variations are not so very large in the day time but they may be quite variable at night. It should be noted that the ground wave variations ranges are based upon overland data; the ranges over sea are considerably greater. Useful working ranges are, however, based entirely upon the sky wave.

The above table was obtained from the general average of a large number of observations. For the night ranges given it is assumed that the greater part of the path between the trans-

mitting and receiving stations is in darkness.

As the distances given in this table are general averages many discrepancies may be found in practice due to seasonal changes, sun spot activities, geographical location, local weather conditions, etc.

(a) For approximate wave lengths use Table 547. (b) Mobile, ships and coastal stations, aircraft, railroad stock, etc. (c) Fixed, permanent stations handling point to point traffic. (d) Amateur. (e) Broadcast. (f) Not reserved. (g) 1601 experimental, 1600-1652-1664-1680-1704-1712, portable. (h) U. S. entirely amateur. (i) U. S. 2002-2300 experimental visual broadcasting. (j) 2308 experimental. (k) 2750-2950 experimental visual broadcasting. (l) 3088 experimental.

MAGNETIC PROPERTIES

DEFINITIONS AND GENERAL DISCUSSION

Unit pole is a quantity of magnetism repelling another unit pole with a force of one dyne; 4π lines of force radiate from it. M, pole strength; $4\pi M$ lines of force radiate from pole of strength M.

H, field strength, = no. of lines of force crossing unit area in normal direction; unit = gauss =

one line per unit area.

M, magnetic moment, = Ml, where l is length between poles of magnet.

I, intensity of magnetization or pole strength per unit area, $= \mathbf{M}/\bar{V} = M/A$ where A is cross section of uniformly magnetized pole face, and V is the volume of the magnet. $4\pi M/A = 4\pi I =$ no. lines of force leaving unit area of pole.

J, specific intensity of magnetism, = I/ρ where ρ = density, g/cm³.

 ϕ , magnetic flux, = $4\pi M + HA$ for magnet placed in field of strength H (axis parallel to field).

Unit, the maxwell.

B, flux density (magnetic) induction, = $\phi/A = 4\pi I + H$; unit the gauss, maxwell per cm. μ , magnetic permeability, = B/H. Strength of field in air-filled solenoid = $H = (4\pi/10) ni$ in gausses, i in amperes, n, number of turns per cm length. If iron filled, induction increased, i.e., no. of lines of force per unit area, B, passing through coil is greater than H; $\mu = B/H$. κ , susceptibility; permeability relates to effect of iron core on magnetic field strength of coil;

if effect be considered on iron core, which becomes a magnet of pole strength M and intensity of magnetism I, then the ratio $I/II = (\mu - 1)/4\pi$ is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field.

 $\mu = 4\pi\kappa + I$.

 χ , specific susceptibility (per unit mass) = $\kappa/\rho = J/H$.

 $\chi_{\rm A}$, atomic susceptibility, = $\chi \times$ (atomic weight); $\chi_{\rm M}$ = molecular susceptibility.

 $J_{\rm A}, J_{\rm M}$, similarly atomic and molecular intensity of magnetization.

Hysteresis is work done in taking a cm3 of the magnetic material through a magnetic cycle $= \int H dI = (1/4\pi) \int H dB$. Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is aB^{1-6} where B is the max, induction and a is a constant (see Table 575). The retentivity (B_r) is the value of B when the magnetizing force is reduced to zero. The reversed

field necessary to reduce the magnetism to zero is called the coercive force (H_c).

Ferromagnetic substances, μ very large, κ very large: Fe, Ni, Co, Heusler's alloy (Cu 62.5, Mn 23.5, Al 14. See Stephenson, Phys. Rev. 1910), magnetite and a few alloys of Mn. μ for Heusler's alloy, 90 to 100 for B=2200; for Si sheet steel 350 to 5300.

Paramagnetic substances, $\mu > 1$, very small but positive, $\kappa = 10^{-3}$ to 10^{-6} : oxygen, especially

at low temperatures, salts of Fe, Ni, Mn, many metallic elements. (See Table 580.)

Diamagnetic substances, $\mu < 1$, κ negative. Most diamagnetic substance known is Bi, -14 \times 10⁻⁶. Volume susceptibility (see Table 580).

Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength.

For Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc

effect (thermomagnetic difference of temperature), see Tables 593 and 594.

Magneto-strictive phenomena:

Joule effect: Mechanical change in length when specimen is subjected to a magnetic field. With increasing field strength, iron and some iron alloys show first a small increment $\Delta l/l$ (7 to 35) \times 10⁻⁷, then a decrement, and for H = 1600, $\Delta l/l$ may amount to -(6 to $8) \times$ 10⁻⁶. Cast cobalt with increasing field first decreases, $\Delta l/l = -8 \times 10^{-6}$, H = 150, then increases in length, $\Delta l/l = +5 \times 10^{-6}$, II = 2000; annealed cobalt steadily centracts, $\Delta l/l = -25 \times 10^{-6}$, II = 2000. Ni rapidly then slowly contracts, $\Delta l/l = -30 \times 10^{-6}$, II = 100; -35×10^{-6} , II = 300; -36×10^{-6} , II = 2000 (Williams, Phys. Rev. 34, 44, 1912). A transverse field generally gives a reciprocal effect.

Wiedemann effect: The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances (see Williams, Phys. Rev. 32, 281, 1911). A reciprocal effect is observed in that when a rod of soft

iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced.

Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when above that value.

TABLE 550.—Magnetic Properties of Various Types of Iron and Steel From tests made at the Bureau of Standards. B and H are measured in cgs units.

	2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
$_{\mu}^{\mathrm{H}}$			l l					1		
$_{\mu}^{\mathrm{H}}$				_					135 .	325 .
Η μ	5.0								142. 127	=
	μ Η μ Η	H 2.00 μ 2.00 μ 1000 Η 5.0	H 2.00 2.90 μ 1000 1380 H 5.0 8.8	H 2.00 2.90 4.30 μ 1.00 1.380 1.400 H 5.0 8.8 13.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H $_{\mu}$ 2.00 2.90 4.30 6.46 9.82 15.1 $_{1000}$ 1.38 13.1 18.6 25.8 35.8	H $_{\mu}$ $_{2470}$ $_{3480}$ $_{3750}$ $_{3670}$ $_{3270}$ $_{2700}$ $_{1930}$ H $_{1000}$ $_{1380}$ $_{1400}$ $_{1240}$ $_{1020}$ $_{795}$ $_{563}$ H $_{5.0}$ 8.8 13.1 18.6 25.8 35.8 50.5	H 2.00 2.90 4.30 6.46 9.82 15.1 24.9 50.5 $_{100}$ $_{138}$ $_{1400}$ $_{1240}$ $_{1240}$ $_{1380}$ $_{1400}$ $_{1240}$ $_{1240}$ $_{1020}$ $_{795}$ $_{563}$ $_{317}$ $_{317}$ $_{1400}$ $_{1280}$ $_{1480}$ $_{1488}$	H 2.00 2.90 4.30 6.46 9.82 15.1 24.9 50.5 135. H 5.0 8.8 13.1 18.6 25.8 35.8 50.5 76.0 142.

TABLE 551.-Magnetic Properties of a Specimen of Very Pure Iron (.017% C)

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Very pure iron as received	$_{\mu}^{\mathrm{H}}$	3.30			0.0		18.9 635		47.0 340		240 .
Annealed in vacuo from 900° C	Η μ	.46 4350						3.20 4380		72.0 250	194 . 103

As received: H_{max} 150 B_{max} 18,900 B_r 7,650 H_c 2.8

After annealing: H_{max} 150 B_{max} 19,500

 H_c 0.53

TABLE 552 .- Magnetic Properties of Electrical Sheets

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Dynamo steel	Η μ	1.00	1 / 1		2.00			9.20 1520		114 .	=
Ordinary trans- former steel	$_{\mu}^{\mathrm{H}}$.60			1.48 5400			10.9 1280	43.0 37 ²	149. 121	=
High silicon trans- former steel	$_{\mu}^{\mathrm{H}}$.50						9.80 1430	_	165 .	_

TABLE 553 .- Magnetic Properties of Two Types of American Magnet Steel

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Tungsten steel.	$_{\mu}^{II}$	35.0 57	53·3 75	63.3	72.0	83.4	100	200 70	_	_	=
Chrome steel	$_{\mu}^{H}$	34·5 58	49.0 82	63.5	88.4 91	143 70	270 45	_	=	=	=

TABLE 554.- Magnetic Properties of a Ferro-Cobalt Alloy, Fe2Co (35% Cobalt)

From tests at the Bureau of Standards. B and II are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
As received	$_{\mu}^{II}$	3.10 645	4.28 935	5.50	7.17	9.65 1040	13.4	19.1 730	27.3 590	40.0 450	65.0 310
Annealed at }	$_{\mu}^{H}$	3.00 670	4.11 970	5.05 1190	6.45 1240	8.40	11.3	15.4 910	21.9 730	31.7 570	50.6 400
Quenched from 1000° C	$_{\mu}^{H}$	10.8 185	13.8	19.1 314	28.7 279	43.4	65.8 182	104 135	163 98	262 69	=

As received Annealed at 1000° C $_{15,000}^{Bmax}$ $\left\{ \begin{array}{l} 15,000 \\ 15,000 \end{array} \right.$ H_{max} $\left\{ \begin{array}{l} 22.9 \\ 18.3 \end{array} \right.$ B_r $\left\{ \begin{array}{l} 7750 \\ 7460 \end{array} \right.$ H_e $\left\{ \begin{array}{l} 3.95 \\ 3.95 \\ 14.3 \end{array} \right.$

TABLE 555.—Magnetic Properties of a Ring Sample of Transformer Steel in Very Weak Fields

From tests made at the Bureau of Standards. B and H are measured in cgs units.

Values of μ

TABLE 556.-Magnetic Properties of Iron in Very Weak Fields

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100H, or $I = 15H + 100H^2$ The experiments were made on an annealed ring of round bar 1.013 cms radius, the ring having a radius of 9.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 + 5.1H, or $I = 6.4H + 5.1H^2$. The forces were reduced as low as 0.00004 cgs, the relation of k to H remaining constant.

F	irst experiment.	Second experiment.		
H	k		II	k
.01580 .03081 .07083 .13188	16.46 17.65 23.00	2.63 5.47 16.33 38.15	.0130 .0847 .0946 .1864	15.50 18.38 20.49
.2301r .38422	28.90 39.81 58.56	91.56 224.87	. 2903	25.07 32.40 35.20

COMPOSITION AND MACNETIC

This table and Table 558 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by 4π . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

No.					Chemic	al analys	is.	
of Test.	Description of specimen.	Temper.	Total Carbon.	Manga- nese.	Sulphur.	Silicon.	Phos- phorus.	Other substances.
I	Wrought iron	Annealed	-	-	_	-	~	-
2	Malleable cast iron	_			_	_		_
3 4	Gray cast iron Bessemer steel		0.045	0.200	0.030	None	0.040	_
	Whitworth mild steel .	Annealed	0.090	0.153	0.016	66	0.042	-
5 6	66 66	4.6	0.320	0.438	0.017	0.042	0.035	-
7		∫ Oil-hard-	"	46	66	"	61	-
) ened	0 800	0.165	0.001	0.081	0.010	
8		Annealed Oil-hard-	0.890	0 165	0.005		0.019	_
9		ened		46	66	1.6	"	-
	Hadfield's manganese (1.005	12.360	0.038	0.204	0.070	
10	steel }				-			
11	Manganese steel	As forged	0.674	4.7.30	0.023	0.608	0.078	-
12		Annealed (Oil-hard-		"			.6	_
13		ened	"	' '	44	44		-
1.4		As forged	1.298	8 740	0.024	0.094	0.072	-
15		Annealed	44	**	66	66	4.6	
16		Soil-hard-	66	66	46	66	46	-
	Silicon steel	As forged	0.685	0.694	66	3.438	0.123	
17	" "	Annealed	"	"	66	3.430	"	_
	66 46	6 Oil-hard-	46		46	16	44	
19		ened						_
20	Chrome steel	As forged	0.532	0.393	0.020	0.220	0.041	0.621 Cr.
21		Annealed (Oil-hard-						
22		ened	- "	66	44	66	66	6.6
23	" "	As forged	0.687	0.028	44	0.134	0.043	1.195 Cr.
24		Annealed	"	- "	66	""	"	- "
25		Oil-hard-	"	66	44	"	**	44
	Tungatan steel	As forged	1 257	0.036	None.	0.043	0.047	4.649 W.
26 27	Tungsten steel	Annealed	1.357	0.030	"	6.043	0.04/	4.049 11.
-/		(Hardened						
28	46	in cold	66	66	"	66	"	"
		water						
	66 66	Hardened	- 66	66	44	61	44	46
29		in tepid water						
	" " (T21)	(Oil-hard-	0.11	26-	None	0.000	0.5=0	2 11 337
30	" " (French) .	ened	0.511	0.625	None.	0.021	0.028	3.444 W.
31	" "	Very hard	0.855	0.312	-	0.151	0.089	2.353 W.
32	Gray cast iron	_	3.455	0.173	0.042	2.044	0.151	2.064 C.†
33	Mottled cast iron White " "	_	2.581	0.610	0.105	0.764	0.435	1.477 C.†
34	Spiegeleisen	_	4.510	7.970	Trace.	0.502	0.128	_
33	1 -8		1 3.0	1 11		3-3		

^{*} Phil. Trans. Roy. Soc. vol. 176.

† Graphitic carbon.

PROPERTIES OF IRON AND STEEL

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated" was calculated from the formula:— Energy dissipated \equiv coercive force \times maximum induction $\frac{1}{2}$.

				1	lagnetic p	propertie:	s.	
No.	Description of	Temper.	Specific electri-				1	Energy dis- sipated per
Test.	specimen.	Temper.	calresis- tance.	Maxi- mum in-	Residual induc-	Coer- cive	Demag- netizive	cycle.
				duction.	tion.	force.	force.	
I	Wrought iron	Annealed	.01278	18251	7248	2.30		13356
2	Malleable cast iron	"	.03254		7479	8.80	_	34742
3	Gray cast iron	-	.10560		3928	3.80	-	1 3037
4	Bessemer steel		.01050		7860	2.96	-	17137
5	Whitworth mild steel .	Annealed	.01080		7080	1.63	-	10289
6		(Oil-hard-	.01446	18736	9840	6.73	-	40120
7	46 66	ened	.01390	18796	11040	11.00	-	65786
8		Annealed	.01559	16120	10740	8.26	-	42366
9		Oil-hard-	.01695	16120	8736	19.38	-	99401
10	Hadfield's manganese (.	_	.06554	310	_	_		_
11	Manganese steel	As forged	.05368	4623	2202	23.50	37.13	34567
12	" "	Annealed	.03928		5848	33.86	46.10	113963
13		{ Oil-hard- } ened	.05556	4769	2158	27.64	40.29	41941
14	** **	As forged	.06993	747	-	-	_	_
15	46 66	Annealed	.06316		540	24.50	50.39	15474
16		{ Oil-hard- } ened	.07066	733	-	-	-	-
17 18	Silicon steel	As forged		15148	11073	9.49	12.60	45740
		Annealed Oil-hard-	.06185		8149	7.So	10.74	36485
19		} ened	.06195	14696	8084	12.75	17.14	59619
20	Chrome steel	As forged		15778	9318	12.24	13.87	61439
21		Annealed	.01942	14848	7 57 0	8.98	12.24	42425
22	" "	{ Oil-hard- } ened	.02708	13960	8595	38.15	48.45	169455
23		As forged	.01791	14680	7 568	18.40	22.03	85944
24		Annealed	.01849	13233	6489	15.40	19.79	64842
25	" "	Soil-hard-	.03035	12868	7891	40.80	56.70	167050
26	Tungsten steel	As forged	.02249	15718	10144	15.71	17.75	78568
27	" "	Annealed		16498	11008	15.30	16.93	80315
	46 66	(Hardened		.,				
28	46 46 + + +	in cold	.02274	-	-	-	-	-
		(water (Hardened						
29	" "	in tepid	.02249	15610	9482	30.10	34.70	149500
29	• •	water	.02249	13010	9402	30.10	34./0	149500
20	" (French) .	∫ Oil hard-	02604	14480	8642	47 07	64.46	216864
30	" (French).	ened	.03604		8643	47.07		· ·
31		Very hard	.04427		6818	51.20	70.69	197660
32	Gray cast iron	-	.11400	9148	3161	13.67	17.03	39789
33	White " "	_		10546	5108	12.24	20.40	41072
34	Spiegeleisen	_	.05661	9342	5554	12.24	20.40	36383
33	oprogotoliseit		.10320	303	77			
	SONIAN TABLES.							

TABLE 558 .- Permeability of Some of the Specimens in Table 557

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 557. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetizing force. Specimen 1 (iron).		Specim (annealed	en 8 steel).	Specimen 9 8 tempe	(same as red).	Specimen 3 (cast iron).		
H H	В	μ	В	μ	В	μ	В	μ
1 2 3 5 10 20 30 40 50 70 100 150 200	- 200 - 10050 12550 14550 15200 15800 16000 16360 17400 17950	- 100 - 2010 1255 727 507 395 320 234 168 116	1525 9000 11500 12650 13300 13800 14350 14900 15700	- - 300 900 575 422 332 276 205 149 105 80	7 50 16 50 587 5 98 7 5 11 600 1 2000 1 3 400 1 4 500 1 5800 1 61 00	- - 150 165 294 329 290 240 191 145 105 80	265 700 1625 3000 5000 6500 7100 7350 7900 8500 9500	265 350 542 600 500 300 217 177 149 113 85 63 51

Fables 559-563 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and 0.6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 782. (2) Hard English cast steel yellow tempered at 230° C; density 7.78. (3) Hard drawn best nickel containing 90 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co = 93.1. Ni = 5.8, Fe = 0.8, Cu = 0.2, Si ≡ 0.1, and C = 0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per columner. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

TABLE 559.-Magnetic Properties of Soft Iron at 0° and 100° C

Soft iron at o° C.					Soft iron at 100° C.					
Н	S	I	В	μ	Н	S	1	В	μ	
100	180.0 194.5	1408	17790	177.9 96.5	100	180.0	1402 1511	17720 19190	177.2 96.0	
400 700	208.0 215.5	1627 1685	20830 21870	52.I 31.2	400 700	207.0	1613 1663	20660 21590	51.6 29.8	
1000	218.0 218.5	1705	22420 22670	22.4 18.9	1000 1200	215.0	1674 1679	22040 22300	21.0 18.6	

TABLE 560 .- Magnetic Properties of Steel at 0° and 100° C

	Steel at 6° C.					Steel at 100° C.				
Н	S	I	В	μ	Н	S	I	В	μ	
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0 212.0	1283 1408 1500 1552 1583 1595	16240 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1278 1395 1480 1527 1543 1573 1593 1612	16170 17730 19000 19890 20380 21270 23020 25260	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1	

^{* &}quot;Phil. Mag," 5 series, vol. xxix.

† The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants." p. 480.)

MAGNETIC PROPERTIES OF METALS

TABLE 561 .- Cobalt at 0° and 100° C

(
Н	S	1	В	μ
200	106	848	10850	54.2
300	116	928	11960	39.9
500	127	1016	1 3260	26.5
700	131	1048	13870	19.8
1000	134	1076	14520	14.5
1500	138	1104	15380	10.3
2500	143	1144	16870	6.7
4000	145	1164	18630	4.7
6000	147	1176	20780	3.5
9000	149	1192	23980	2.6

At o° C this specimen gave the following results:

154 | 1232 | 23380 |

7900

TABLE 562 .- Nickel at 0° and 100° C

H	S	I	В	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	6043	I 2.I
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1 500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
босо	59.2	522	12561	2.1
9000	59-4	524	15585	1.7
12000	59.6	526	18606	1.5
At o° C		pecimer		e fol-
		ng resu		
12300	67.5	595	19782	1.6

TABLE 563 .- Magnetite

3.0

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500	3 ² 5	4580	9.16
1000	345	5340	5.34
2000	350	6400	3.20
12000	350	16400	1.37

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of root c.g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, \(\alpha B \) if \(\alpha B \) is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 564.—Lowmoor Wrought Iron

Н	I	В	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 565.—Vicker's Tool Steel

	2 5480	μ 4.ΙΩ
	25480	4.10
12120 1550 14660 1580	29650 31620 34550 35820	2.97 2.60 2.36 2.31

TABLE 566.—Hadfield's Manganese Steel

Н	I	В	μ
1930	5.5	2620	1.36
2380	55 84	3430	1.44
3350	84	4400	1.31
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 567 .- Saturation Values for Steels

	Н	I	В	μ
	17600 18000		39880 38860	2.27 2.16
cent carbon	19470 18330 19620 18700	1480 1580 1440 1590	38010 38190 37690 38710	1.95 2.08 1.92 2.07

^{* &}quot; Phil. Mag." 5 series, vol. xxix, 1890.

^{† &}quot; Phil. Trans. Roy. Soc." 1885 and 1889.

DEMAGNETIZING FACTORS FOR RODS

TABLE 568

H= true intensity of magnetizing field, H'= intensity of applied field, I= in-

The true intensity of magnetization, H = H' - NI. Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of I to about I/I the value when unsaturated; for values of I (I less than 10000, I is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for I which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically express. tically agree.

			Values	of N×104.			
		Cylinder,					
Ratio				Ballistic Step Method.			
Length to Diameter.	Ellipsoid.	Ellipsoid. Uniform Magneti-	Magneto- metric	Dubois. Shuddemagen for Range of Practical Constancy.			Range of ancy.
		zation.	Method (Mann).		Diame	ter.	
				0.158 cm.	0.3175 cm.	1.111 cm.	1.905 cm.
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 266 181 132 101 80 65 54 26 16	630 280 160 70 39 25 18 13 9.8 7.8 6.3 2.8 1.57 0.70	6800 2550 1400 898 460 274 182 131 99 78 63 51.8 25.1 15.2 7.5	2160 1206 775 393 238 162 118 89 69 55 45 20 11 5.0 2.8	- - - 388 234 160 116 88 69 56 46 23 12.5	350 212 145 106 66 41 21	1960 1075 671 343 209 149 106 63 41 21

TABLE 569

Shuddemagen also gives the following, where B is determined by the step method and H=H'-KB.

Ratio of	Values of K×104.		
Length to Diameter.	Diameter 0.3175 cm.	Diameter 1.1 to 2.0 cm.	
15 20 25 30 40 50 60 80 100	- 36.9 18.6 12.7 9.25 5.5 3.66 1.83	85.2 53.3 36.6 27.3 16.6 11.6 8.45 5.05 3.26 1.67	

C. R. Mann, Physical Review, 3, p. 359; 1896. H. DuBois, Wied. Ann. 7, p. 942; 1902. C. L. B. Shuddemagen, Proc. Am Acad Arts and Sci. 43, p. 185, 1907 (Bibliography).

TABLE 570.-Magnetic Properties of Iron and Steel

	Electro-	Good	Poor Cast	Steel.	Cast	Electrical Sheets.	
	lytic Iron.	Cast Steel.	Steel.	Steen.	Iron.	Ordinary.	Silicon Steel.
Chemical composition in per cent Si Mn P S	0.024 0.004 0.008 0.008 0.001	0.044 0.004 0.40 0.044 0.027	0.56 0.18 0.29 0.076 0.035	0.99 0.10 0.40 0.04 0.07	3.11 3.27 0.56 1.05 0.06	0.036 0.330 0.260 0.040 0.068	0.036 3.90 0.090 0.009 0.006
Coercive force {	2.83 [0.36]	1.51 [0.37]	7.1 (44.3)	16.7 (52.4)	11.4 [4.6]	[1.30]	[0.77]
Residual B }	11400 [10800]	10600	10500	13000 (7500)	5100 [5350]	[9400]	[9850]
Maximum permeability {	1850 [14400]	3550 [14800]	700 (170)	375 (110)	240 [600]	[3270]	[6130]
B for H=150 {	19200 [18900]	18800 [19100]	17400 (15400)	16700 (11700)	10400 [11000]	[18200]	[17550]
$4\pi I$ for saturation . $\}$	21620 [21630]	21420 [21420]	20600 (20200)	19800 (18000)	16400	[20500]	[19260]

E Gumlich, Zs für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at 800° C in vacuum. Parentheses indicate hardening by quenching from cherry-red.

TABLE 571 .- Cast Iron in Intense Fields

	Soft Cast	Iron.		Hard Cast Iron.				
Н	В	I	μ	Н	В	I	μ	
114	9950	782	87.3	142	7860	614	55.4	
172	10800	846	62.8	254	9700	7.52	55·4 38.2	
433	13900	1070	32.1	339	10850	836	30.6	
744	1 57 50	1 200	21.2	684	13050	983	19.1	
1234	17300	1280	140	915	1.4050	1044	15.4	
1820	18170	1300	10.0	1570	15900	1138	10.1	
12700	31100	1465	2.5	2020	16800	1176	8.3	
13550	32100	1475	2.4	10900	26540	1245	2.4	
13800	32500	1488	2.4	1 3200	28600	1 2 2 6	2.2	
15100	33650	1472	2.2	14800	30200	1226	2.0	

B. O. Peirce, Proc. Am. Acad. 44, 1909.

TABLE 572 .- Corrections for Ring Specimens

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of Radial	Ratio of Ave H at Mean		Ratio of Hysteresis for Uniform Distribution to Actual Hysteresis.			
Width to Diameter of Ring.	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section.	Circular Cross-section.		
1/2	1.0986	1.0718	1.112	1.084		
1/3	1.0397	1.0294	1.045	1.033		
1/4	1.0216	1.0162	1.024	1.018		
1/5	1.0137	1.0102	1.015	1.011		
1/6	1.0094	1.0070	1.010	1.008		
1/7	1.0069	1.0052	1.008	1.006		
1/8	1.0052	1.0040	1.006	1.004		
1/10	1.0033	1.0025	1.003	1,002		
1/19	1.0009	1.0007	1.001	1.001		

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

TABLE 573 .- Energy Losses in Transformer Steels

Determined by the wattmeter method.

Loss per cycle per $cc = AB^x + bnB^y$, where B = flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

		Ergs p	er Gran	nme per (Cycle.					er Pound d 10000 G	
Designation.	Thick- ness. cm.	10000 G	5000 Gausses. 5000 Gaus			x	y	а	rent		
	Cin.	Hyste- resis.	Eddy Currents at	Hyste- resis.	Eddy Currents at				Eddy Current Loss for Gage No. 29. ‡	Hyste- resis.	Total.
Unannealed A B C D	0.0399 .0326 .0422 .0381	1599 1156 1032 1009	186 134 242 184	562 384 356 353	46 36 70 48	1.51 1.59 1.51 1.52	2.02 1.89 1.79 1.94	0.00490 .00358 .00319	0.41 0.44 0.47 0.44	4·35 3·14 2·81 2·74	4.76 3.58 3.28 3.18
Annealed E F G H* I K* L B M N P	.0476 .0280 .0394 .0307 .0318 .0282 .0346 .0338 .0335 .0340	735 666 563 412 341 394 381 354 372 321 334	236 100 210 146 202 124 184 200 178 210	246 220 193 138.5 111.5 130 125 116 127 105	58 27 54 39 55 32 50 57 46 56 50	1.58 1.60 1.54 1.58 1.62 1.61 1.61 1.55 1.62	2.02 1.88 1.96 1.90 1.88 1.90 1.88 1.81 1.95 1.90	.00227 .00206 .00174 .00127 .00105 .00122 .00118 .00110 .00115 .00099	0.36 0.44 0.47 0.54 0.70 0.54 0.535 0.61 0.555 0.63 0.34	2.00 1.81 1.53 1.12 0.93 1.07 1.035 0.96 1.01 0.87	2.36 2.25 2.00 1.66 1.63 1.61 1.57 1.57 1.56 1.50
Silicon steels Q† R S T U V* W* X	.0361 .0315 .0452 .0338 .0346 .0310 .0305	303 288 278 250 270 251.5 197 200	54 42 72 60 42 47 43 65	98 93 90 78 86 79 62.3 64.2	15 11 18 18 12 13 12.4 16.6	1.63 1.64 1.63 1.68 1.66 1.68 1.67	-	.00094 .00089 .00086 .00077 .00084 .00078 .00061	0.14 0.15 0.12 0.18 0.12 0.17 0.16 0.12	0.825 0.78 0.755 0.68 0.735 0.685 0.535	0.965 0.93 0.875 0.86 0.855 0.855 0.695 0.665

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

Note. - For formulæ and tables for the calculation of mutual and self inductance see Bulletin Bureau of Standards, vol. 8, p. 1-237, 1912.

TABLE 574.-Magnetic Properties of Permalloy

(Yensen, Nickel-Iron Alloys, Journ. Franklin Inst., 199, 340, 1925; Arnold, Elmen, Permalloy, loc. cit., 195, 621, 1923.)

411	Perm	Permeability		Hys- teresis			Elec- trical resis-	
Alloy	Initial B/H $H=0$	B/H max.	tion 4I (gausses)	B = 10000 Erg/C ³ /cycle	tivity gausses	force gilbert/ cm	tance mi- crohms per cm ³ 20°C	Den- sity
Fe, 3 mm thick	700 440 3,000 5,850	26,000 15,500 70,000 74,000	22,600 20,000 15,500 10,500	600 500 220 200	8,600 5,200 7,300 5,500	0.20 .15 .05 .05	10 55 46 21	7.9 7.6 8.3 8.6

^{*} Permallov.

^{**} German. † English.
‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm (Gage No. 29), assuming the loss proportional to the thickness.

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e = aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed \pm 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.

Values of Constant "

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	Value of a.
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Iron	Norway iron Wrought bar Commercial ferrotype plate Annealed Thin tin plate Medium thickness tin plate Soft galvanized wire Annealed cast steel Soft annealed cast steel Very soft annealed cast steel Very soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water " " tempered in oil " " annealed (Same as 12, 13, and 14, after having been subjected to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization Gray cast iron " " " containing \frac{1}{2} \(\phi \) aluminium " " " " containing \frac{1}{2} \(\phi \) aluminium (County, New York, stated to be a very pure sample) Soft wire Annealed wire, calculated by Steinmetz from Ewing's experiments Rod containing about 2 \(\phi \) of iron, also calculated from Ewing's experiments by Steinmetz Consisted of thin needle-like chips obtained by milling grooves about \(\precede min. wide across a pile of thin sheets clamped together. About 30 \(\phi \) by volume of the specimen was iron. Ist experiment, continuous cyclic variation of m. m. f. 180 cycles per second 3d "79-91 cycles per second 3d "79-91 cycles per second	.00227 .00326 .00326 .00548 .00458 .00286 .00425 .00349 .00848 .00457 .00318 .02792 .07476 .02670 .01899 (.06130 .02700 (.01445 .01300 .01365 .01459 .02348 .0122 .0156 .0385 .0120

^{* &}quot;Trans Am. Inst. Elect. Eng." January and September, 1892.
† See T. Gray, "Proc. Roy. Soc." vol. lvi.

TABLE 576.-Magnetism and Temperature, Critical Temperature

The magnetic moment of a magnet diminishes with increasing temperature. Different specimens vary widely. In the formula $M t/M_0 = (1 - at)$ the value of a may range from .0003 to .001 (see Tables 559-560). The effect on the permeability with weak fields may at first be an increase. There is a critical temperature (Curie point) above which the permeability is very small (paramagnetic?). Diamagnetic susceptibility does not change with the temperature. Paramagnetic susceptibility decreases with increase in temperature. This and the succeeding two tables are taken from Dushman, "Theories of Magnetism," General Electric Review, 1916.

Substance.	Critical temperature, Curie point.	Refer- ence.	Substance.	Critical temperature, Curie point.	Reference.
Iron, α form " β form " γ form. Magnetite (Fe ₃ O ₄) " Cobalt-ferrite (Fe ₂ Co)	756° C 920 1280 536 589 555	1 1 1 1 2 3 3	MnBi. MnSb. MnAs. MnP Heusler alloy Nickel Cobalt	310 " 320 45 " 50 18 " 25 310 340 376	4 4 4 4 5 1 6 6

References: (1) P. Curie; (2) see Williams, Electron Theory of Magnetism, quoted from Weiss; (3) du Bois, Tr. Far. Soc. 8, 211, 1912; (4) Hilpert, Tr. Far. Soc. 8, 207, 1912; (5) Gumaer; (6) Stifler, Phys. Rev. 33, 268, 1911.

TABLE 577.—Temperature Variation for Paramagnetic Substances

The relation deduced by Curie that $\chi = C/T$, where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law (Honda and Owen, Ann. d. Phys. 32, 1027, 1910; 37, 657, 1912). See the following table.

Substance.	C × 106	Range ° C	Refer- ence.	Substance.	C × 10 ⁶	Range ° C	Refer- ence.
Oxygen Air. Palladium. Magnetite. Cast iron.	33,700 7,830 1,520 28,000 38,500	20° to 450° C 20 to 1370 850 " 1360 850 " 1267	I I I I	Gadolinium sulphate. Ferrous sulphate Ferric sulphate Manganese chloride.	11,000	-259° to 17 -259 " 17 -208 " 17 -258 " 17	2 2 3 3

References: (1) P. Curie, London Electrician, 66, 500, 1912; see also Du Bois, Rap. du Cong. 2, 460, 1900; (2) Perrier, Onnes, Tables annuelles, 3, 288, 1914; (3) Oosterhuis, Onnes, l.c. 2, 389, 1913.

TABLE 578 .- Temperature Effect on Susceptibility of Diamagnetic Elements

No effect:

B Cryst. 400 to 1200°	P white	Se —	Sb -170 to 50°
C Diamond, +170 to 200°	S Cryst.; ppt.	Br -170 to 18°	Cs and Au
C "Sugar" carbon	Zn -170 to 300°	Zr Cryst170 to 500°	Hg -39 to +350°
Si Cryst.	As —	Cd —170 to 300°	Pb 327 to 600°

Increase with rise in Temperature:

ise with rise in Temperature:		
Ве —	C Diamond, 200 to 1200°	I -170 to 114°
B Cryst. +170 to 400°	Ag —	Hg -170 to -30°

Decrease with rise in Temperature:

C Amorphous	Gd -179 to 30°	In -170 to 150°	TI —
C Ceylon graphite	Ge -170 to 900°	Sb +50 to +631°	Pb -170 to 327°
Cu —	Zr 500 to 1200°	Те —	Bi -170 to 268°
Zn +300 to 700°	Cd 300 to 700°	I +114 to +200°	

TABLE 579.—Temperature Effect on Susceptibility of Paramagnetic Elements

No effect:

Increase with rise in Temperature:

Decrease with rise in Temperature:

SMITHSONIAN TABLES.

Tables 578 and 579 are due to Honda and Owen; for reference, see preceding table.

MACNETIC SUSCEPTIBILITY

If ${\mathfrak T}$ is the intensity of magnetization produced in a substance by a field strength ${\mathfrak P}$, then the magnetic susceptibility $H={\mathfrak T}/{\mathfrak P}$. This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if H_0 is the susceptibility of water, (p/100) H+(1-p/100) H_0 .

Substance.	H×108	Temp.	Remarks	Substance.	H×106	Temp. C.	Remarks
Ag	-0.19	ıS°		K ₂ CO ₃	-0.50	20°	Sol'n
AgCl	<u>-0.28</u>			Li	+0.38		
Air, I Atm	+0.024	18		Mo	+0.04	18	
$Al_{2}K_{2}(SO_{4})_{4}2_{4}H_{2}O$	+0.65 -1.0	10	Crus	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.55	18	
A, I Atm	-0.10	0	Crys.	$MgSO_4$ Mn	—0.40 +11.	18	
As	—0.70 —0.3	18		MnCl ₂	+122.	18	Sol'n
Au	-0.15	18		MnSO ₄	+100.	18	66
В	-0.7 i	18		N_2 , I Atm	0.001	16	
$BaCl_2$	 0.36	20		$NH_3 \dots$	1.1—		
Be	+0.79	15 18	Powd.	Na	+0.51	18	
Bi	-1.4			NaCl	-0.50	20	T 1
Br	-0.38 -2.0	18 18		Na ₂ CO ₃	-0.19	17	Powd.
C, diamond	-0.49	18		Na ₂ CO ₃ . 10 H ₂ O . Nb	-0.46 +1.3	17	
CH ₄ , I Atm	+0.001	16		NiCl ₂	+40.	18	Sol'n
CO_2 , I Atm	+0.002	16		NiSO ₄	+30.	20	"
CS_2	-0.77	18		O ₂ , 1 Atm	+0.120	20	ja.
CaO	-0.27	16	Powd.	Os	+0.04	20	
$CaCl_2$	-0.40	19	66	P, white	-0.90	20	
CaCO ₃ , marble	-0.7	-0		P, red	-0.50	20	
$Cd \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	-0.17 +6.3	18		PbCl ₂	-0.12 -0.25	20	Powd.
Cl_2 , I Atm	-0.3	16		Pd	 0.25 +5.8	15	Towu.
CoCl ₂	+ 90.	18	Sol'n	PrCl ₃	+13.	18	Sol'n
CoBr ₂	+47.	18	66	Pt	+1.1	18	
Col_2	+33.	18	66	PtCl ₄	0.0	22	Sol'n
$CoSO_4$	十57.	19	66	Rh	+1.1	18	
$Co(NO_3)_2 \dots$	+,57.	18	"	S	-0.48	18	
Cr	+3.7	18	Powd.	SO_2 , I Atm	-0.30	16	
Cu	-0.28 -0.09	17 18	rowd.	Sb	-0.94 -0.32	18	
$CuCl_2$	—0.09 +12.	20	Sol'n	Si	-0.32 0.12	18	Crys.
CuSO ₄	+10.	20	Sol'n	SiO ₂ , Quartz	-0.44	20	0.70.
CuS	+0.16	17	Powd.	—Glass	- 0.5±		
FeCl ₃	+90.		Sol'n	Sn	+0.03	20	
FeCl ₂	+90.	18	66	SrCl ₂	-0.42	20	Sol'n
$FeSO_4 \dots \dots$	+82.	20	66	Ta	+0.93	18	
$Fe_2(NO_3)_6.$ FeCn ₆ K ₄	+50. -0.44	18	Powd.	Te	-0.32 +0.18	20 18	
$FeCn_6K_4$ FeCn ₆ K ₃	+9.1		1 0 W C.	Ti	+3.1	18	
He, I Atm	-0.002	0		Va	+1.5	18	
H ₂ , 1 Atm	0.000	16		Wo	+0.33	20	1
H ₂ , 40 Atm	0.000	16		Zn	-0.15	18	
$\mathrm{H}_{2}\mathrm{O}$	-0.79	20		$ZnSO_4$	-0.40	- 0	1
HCl	-0.80	20		Zr	-0.45	18	
H_2SO_4	+0.78	20		$CH_3OH \dots C_2H_5OH \dots$	-0.73 -0.80		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.70 -0.10	20 20		$C_{2}H_{5}OH$	0.80 0.80)
I	-0.19	20		$C_2H_5OC_2H_5$	-0.60	20	
In	0.1	18		CHCl ₃	<u>0.58</u>		
<u>Ir.</u>	+0.15	18		C_6H_6	0.78		
K	+0.40	20		Ebonite	+1.1		
KCl	0.50	20		Glycerine	-0.64	22	
KBr	-0.40 -0.38	20		Sugar	0.57 0.58		
KOH	0.38 0.35	20	Sol'n	Petroleum	-0.30		
K_2SO_4	-0.35 -0.42	20	COLI	Toluene	-0.91 -0.77		
KMnO ₄	+2.0			Wood	-0.2-5		
KNO ₃	- 0.33	20		Xylene	-0.81		
	-						

Values are mostly means taken of values given in Landolt-Börnstein's Physikalisch-chemische Tabellen. See especially Honda, Annalen der Physik (4), 32, 1910.

TABLE 581

MAGNETO-OPTIC ROTATION

GENERAL DISCUSSION

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently tound to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula-

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, i the length of the path through the substance, i the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If i be different, at different parts of the path, i is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential r, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's con-"* and a number of values of it are given in Tables 582-586. For variation with temperature the following formula is given by Bichat: -

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used:—

$$\frac{\theta_1}{\theta_2} = \frac{{\mu_1}^2({\mu_1}^2 - 1){\lambda_2}^2}{{\mu_2}^2({\mu_2}^2 - 1){\lambda_1}^2},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C, Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet,† H. Becque-

rel,† Quincke, § Koepsel, || Arons, ¶ Kundt,** Jahn,†† Schönrock,‡† Gordon, §§ Rayleigh and Sidgewick,|| || Perkin,¶¶ Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35), p. 137, 1888.

† "Ann. de Chim. et de Phys." [3] vol. 52, p. 120, 1858.

‡ "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols 90, p. 1407, 1880, and 100, p. 1374, 1885.

§ "Wied. Ann." vol. 24, p. 606, 1885.

† "Wied. Ann." vol. 25, p. 161, 1885.

** "Wied. Ann." vol. 23, p. 161, 1885.

** "Wied. Ann." vol. 23, p. 228, 1884, and 27, p. 191, 1886.

†† "Wied. Ann." vol. 43, p. 280, 1891.

‡ "Zeits. für Phys. Chem." vol. 11, p. 753, 1893.

§ "Proc. Roy. Soc." 36, p. 4, 1883.

¶ "Jour. Chem. Soc." 36, p. 4, 1885.

¶ "Jour. Chem. Soc."

** "Jour. Chem. Soc." 176, p. 343, 1885.

MAGNETO-OPTIC ROTATION

Solids, Verdet's Constant

Formula.	Wave- length.	Verdet's Constant. Minutes.	Temp. C.	Authority.
Z_{nS} C PbB_2O_4 Se $Na_2B_4O_7$ Cu_2O	μ 0.589 " " 0.687 0.589 0.687	0.0095 0.2234 0.0127 0.0600 0.4625 0.0170 0.5908	18-20° 15 15 15 15 15	Quincke. Becquerel. "" "" "" "" ""
CaFl₂	0.2534 .3655 .4358 .4916 .589 1.00 2.50 3.00	0.05989 .02526 .01717 .01329 .00897 .00300 .00049	20	Meyer, Ann. der Physik, 30, 1909.
O451 . O500 .	0.589	0.0161 0.0220 0.0317 0.0608 0.0888	18 " "	DuBois, Wied. Ann. 51, 1894.
	0.313 0.405 0.436	0.0674 .0369 .0311	16 "	Landau, Phys. ZS. 9, 1908.
SiO_2	0.2194 .2573 .3609 .4800 .5892	0.1587 .1079 .04617 .02574 .01664	20 " " "	Borel, Arch. sc. phys. 16, 1903.
NaCl	.6439 0.2599 .3100 .4046 .4916 .6708 1.00	.01308 0.2708 .1561 .0775 .0483 .0245 .01050	20 "" "" "" "" "" "" "" "" "" "" "" "" ""	Meyer, as above.
C ₁₂ H ₂₂ O ₁₁	4.00 0.451 .540 .626	.00069 .0122 .0076 .0066	" 20 " "	Voigt, Phys. ZS. 9, 1908.
- KCl	0.451 .540 .626 0.4358	0.0129° .0084 .0075 0.0534	" " 20	Meyer, as above.
	.5461 .6708 .90 1.20 2.00 4.00	.0316 .02012 .01051 .00608 .00207 .00054	66 66 66	
	ZnS C PbB ₂ O ₄ Se Na ₂ B ₄ O ₇ Cu ₂ O CaFl ₂ caFl ₂ siO ₂ NaCl	ZnS C " PbB ₂ O ₄ Se 0.687 Na ₂ B ₄ O ₇ Cu ₂ O 0.589 CaFl ₂ 0.2534 .3655 .4358 .4916 .589 1.00 2.59 3.00 osphate crn. rn, O1143 . O451 . O500 . S163 . " S163 . " S102 0.2194 .2573 .3609 .4800 .5892 .6439 NaCl 0.2599 .3100 .4046 .4916 .6708 1.00 2.00 C ₁₂ H ₂₂ O ₁₁ 0.451 .540 .626 VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VOO VASI VASI VASI VASI VASI VASI VASI VASI	Formula. Wave-length. Constant. Minutes.	Formula. Wave-length. Constant. Minutes. Temp. C.

TABLES 583 AND 584 MAGNETO-OPTIC ROTATION

TABLE 583.—Liquids, Verdet's Constant for $\lambda = 0.589 \mu$

Substance	Chemical formula	Density in grams per cm³	Verdet's constant in minutes	Temp.	Authority
Acetone	C_3H_5O	0.7947	0.0113	20°	Jahn
Acids: Formic	CH_2O_2	1.2273	.0105	15	Perkin
Acetic	$C_2H_4O_2$	1.0561	.0105	21	**
Hydrochloric	HC1	1.2072	.0224	1,5	"
Hydrobromic	HBr	1.7859	.0343		4.6
Hydroiodic	HI	1.9473	.0515	**	44
Nitric	HNO_3	1.5190	.0070	13	**
Alcohols: Methyl	СН₃ОН	.7920	.0093	20	Jahn
Ethyl	C_2H_5OH	.7900	.0112	**	16
Benzene	C_5H_6	.8786	.0297	**	11
Bromides: Methyl	CH₃Br	1.7331	.0205	0	Perkin
Ethyl	C_2H_5Br	1.4486	.0183	15	4.6
Carbon bisulphide	CS_2	1.26	.0420	18	Rayleigh
Chlorides: Carbon	CC1 ₄	1.60	.0321	15	Becquerel
Chloroform	CHCl₃	1.4823	.0164	20	Jahn
Ethyl	C_2H_5Cl	.9169	.0138	6	Perkin
Iodides: Methýl	CH_3I	2.2832	.0336	1,5	11
Ethyl	C_2H_5I	1.9417	.0296		4.6
Nitrates: Methyl	$CH_3O.NO_2$	1.2157	.0078	4.6	4.4
Ethyl	$C_2H_5O.NO_2$	1.1149	.0091	4.4	4.4
Paraffins: Pentane	C_5H_{12}	.6332	.0118	4.6	4.4
Hexane	C_6H_{14}	.6743	.0125	4.6	11
Toluene	C_7H_8	.8581	.0269	28	Schönrock
Water, = 0.2496μ	H_2O		.1042		See Meyer,
.275			.0776		Ann. der
.4046			.0293		Physik, 30,
.589			.0131		1909
1.000			.00410		
1.300			.00264		
Xylene	C ₈ H ₁₀	.8746	.0263	27	Schönrock

TABLE 584.—Solutions of Acids and Salts in Water. Verdet's Constant for $\lambda = 0.589\mu$

					III Water: Verd				
Chemical formula	Density grams per cm³	Verdet's constant in minutes	Temp.	*	Chemical formula	Density grams per cm³	Verdet's constant in minutes	Temp. C	*
HBr HCl	1.3775 1.1573	0.0244	20°	P	Fe ₂ Cl ₆		-0.2026 1140	iĭ	В "
" HI		.0168	44	11	11	0.0	0015		4.4
	1.1760	.0205	- 44	44		1.0232	.0122	"	
HNO ₃ NH ₃	1.3560	.0105	1,5		HgCl ₂ NiCl ₂		.0137		S B
NH ₄ Br BaBr ₂	1.2805	.0226	20	ı,	KC1	1.2432	.0196	4.	4.4
$CdBr_2$	1.3291	.0192	11	J.,	NaCl	1.0418	.0144	4.4	J.
CaBr ₂ KBr	1.2491 1.1424	.0189	44	4.6	SrCl ₂ SnCl ₂	1.1921	.0162 .0266	**	V
NaBr	1.0876	.0151	66	"	ZnCl ₂ NH ₄ I	1.2851	.0196 .0396		ri P
"	1.0824	.0152	44	44	44	1.2341	.0235		4.4
K_2CO_3 Na_2CO_3	1.1906	.0140	**		KI		.0338	.,	В
NH ₄ Cl BaCl ₂	1.0718	.0178 .0168	15 20	V	KNO₃ NaNO₃	1.0634	.0130	20	J
CdCl ₂	1.3179	.0185	11	Į,	$U_2O_3N_2O_5\dots$	2.0267	.0053		В
CaCl ₂		.0160	44		BaSo ₄		.0115	"	J _"
	1.0832	.0152		и В	K_2SO_4 Na_2SO_4	1.0475	.0133		
FeCl ₂		.0025	1,5	D ii	1142504	1.0001	.0133		

^{*}P, Perkin; J, Jahn; V, Verdet; B, Becquerel; S, Schönrock; see p. 476 for references.

MAGNETO-OPTIC ROTATION

TABLE 585 .- Gases, Verdet's Constant

Substan	nce.			Pressure.	Temp.	Verdet's constant in minutes.	Authority.
Atmospheric air Carbon dioxide Carbon disulphide Ethylene Nitrogen Nitrous oxide . Oxygen . Sulphur dioxide			•	Atmospheric 74 cms. Atmospheric " " " 246 cms.	Ordinary 70° C Ordinary " " " 20° C	6.83 × 10 ⁻⁶ 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " Bichat.

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 586 .- Verdet's and Kundt's Constants

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

N	Magnetic	Verdet's co	nstant.	Wave-length	Kundt's
Name of substance.	susceptibility.	Number.	Authority,	of light in cms.	constant.
Cobalt Nickel	+ 0.0126 × 10 ⁻⁵ - 0.0751 " - 0.0694 " - 0.0633 " - 0.0566 " - 0.0541 " - 0.0876 " - 0.0716 " - 0.0982 "	0.000179 × 10 ⁻⁵ 0.302 " 0.377 " 0.356 " 0.330 " 0.315 " 1.222 " 1.738 "	Becquerel. Arons Becquerel. De la Rive. Becquerel. Rayleigh. Becquerel.	6.44×10 ⁻⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 -4.00 -5.4 -5.6 -5.8 -5.8 -14.9 -17.1 -17.7

TABLE 587 .- Values of Kerr's Constant *

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

C. L. C. L.	Spectrum	Wave- length in cms. × 106	Kerr's constan	nt in minutes per	r c. g. s. unit of	nagnetization.
Color of light.	line.		Cobalt.	Nickel.	Iron.	Magnetite.
Red	Li a	67.7	0.0208	-0.0173	-0.0154	+0.0096
Red	_	62.0	-0.0198	-0.0160	-0.0138	+0.0120
Yellow	D	58.9	-0.0193	-0.0154	-0.0130	+0.0133
Green	ь	51.7	-0.0179	-0.0159	0.0111	+0.0072
Blue	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026
Violet	G	43.1	-0.0182	-0.0175	-0.0089	-

^{*} H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 588 .- Dispersion of Kerr Effect

Wave-length.	0.5μ	1.0μ	1.5μ	2.0μ	2.5μ
Steel	—II'.	—16 [′] .	-14'.	—ıı'.	<u>9′.0</u>
Cobalt	- 9.5	-11.5	— 9 5	—II.	-6.5
Nickel	— 5⋅5	— 4.0	0	+1.75	+3.0

Field Intensity = 10,000 C. G. S. units. (Intensity of Magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

TABLE 589 .- Dispersion of Kerr Effect

Mirror.	Field (C. G. S.)	.41μ	.44/4	.4Sµ	.52μ	.56μ	.60μ	.64μ	.66μ
Iron	21,500	25	26	28	31	36	42	44	- .45
Cobalt	20,000	- .36	35	34	− .35	35	− .35	- ⋅35	36
Nickel	19,000	— .16	15	13	13	14	14	14	14
Steel	19,200	27	28	31	− .35	38	40	44	45
Invar	19,800	22	23	24	23	23	22	23	23
Magnetite	16,400	07	02	+.04	+.06	+.08	+.06	+.04	+.03

Foote, Phys. Rev. 34, p. 96, 1912.

See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

RESISTANCE OF METALS. MAGNETIC EFFECTS

TABLE 590 .- Temperature Variation of Resistance of Bismuth, Transverse Magnetic Field

Proportional Values of Resistance.											
Н	-192°	-135°	-100°	-37°	o°	+18°	+60°	+1000	+183°		
0 2000 4000 6000 8000 10000 12000 16000 20000 25000 35000	0.40 1.16 2.32 4.00 5.90 8.60 10.8 12.9 15.2 17.5 19.8 25.5 30.7 35.5	0.60 0.87 1.35 2.06 2.88 3.80 4.76 5.82 6.95 8.15 9.50 13.3 18.2 20.35	0.70 0.86 1.20 1.60 2.00 2.43 2.93 3.50 4.11 4.76 5.40 7.30 9.8	0.88 0.96 1.10 1.29 1.50 1.72 1.94 2.16 2.38 2.60 2.81 3.50 4.20	1.00 1.08 1.18 1.30 1.43 1.57 1.71 1.87 2.02 2.18 2.33 2.73 3.17 3.62	1.08 1.11 1.21 1.32 1.42 1.54 1.67 1.80 1.93 2.06 2.20 2.52 2.86 3.25	1.25 1.26 1.31 1.39 1.46 1.54 1.62 1.70 1.79 1.88 1.97 2.22 2.46 2.69	1.42 1.43 1.46 1.51 1.57 1.62 1.67 1.73 1.80 1.87 1.95 2.10 2.28	1.79 1.80 1.82 1.85 1.87 1.89 1.92 1.94 1.96 1.99 2.03 2.09 2.17 2.25		

TABLE 591.—Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at 0° and H=0

Н	-190°	-75°	00	+180	+1000	+1820
0 1000 2000 3000 4000 6000 8000 10000 12000 14000 16000 20000 25000 30000 35000	+0 +0.20 +0.17 -0.00 -0.17 -0.19 -0.18 -0.18 -0.17 -0.17 -0.16 -0.14 -0.12 -0.10	0 +0.23 +0.16 -0.05 -0.15 -0.20 -0.23 -0.27 -0.30 -0.32 -0.35 -0.41 -0.49 -0.56 -0.63	0 +0.07 +0.03 -0.34 -0.00 -0.70 -0.76 -0.82 -0.87 -0.91 -0.94 -0.98 -1.03 -1.12 -1.22 -1.32	0 +0.07 +0.03 -0.36 -0.72 -0.83 -0.90 -0.95 -1.00 -1.04 -1.09 -1.13 -1.17 -1.29 -1.40 -1.50	0 +0.96 +0.72 -0.14 -0.70 -1.02 -1.15 -1.23 -1.37 -1.44 -1.51 -1.59 -1.76 -1.95 -2.13	0 +0.04 -0.07 -0.60 -1.15 -1.53 -1.66 -1.76 -1.85 -2.05 -2.05 -2.25 -2.25 -2.25 -2.73 -2.98

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 592.—Change of Resistance of Various Metals in a Transverse Magnetic Field.

Room Temperature

Metal.	Field Strength in Gausses.	Per cent Increase.	Authority.
Nickel "Cobalt Cadmium Zinc Copper Silver Gold Tin Palladium Platinum Lead Tantalum Magnesium Manganin Tellurium Antimony Iron {	diverse results, crease in weak f in strong.	-1.2 -1.4 -1.0 -1.4 -0.53 +0.01 +0.004 +0.003 +0.001 +0.0005 +0.0003 +0.001 +0.0003 +0.001 +0.00003 +0.001 +0.002 to 0.34 +0.02 to 0.16 mens show very usually an in- fields, a decrease	Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Atti Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906. "" "" "" "" "" "" "" "" "" "" "" "" "

TABLE 593 .- Transverse Galvanomagnetic and Thermomagnetic Effects

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.

E = difference of potential produced; T = difference of temperature produced; I = primary

current; $\frac{dt}{dx}$ = primary temperature gradient; B = breadth, and D = thickness, of specimen H = intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential), $E = R \frac{HH}{D}$ " Temperature), $T = P \frac{HI}{D}$ Ettingshausen eftect (" " Potential), $E = QHB\frac{dt}{dx}$ Nernst effect (Thermomagnetic " Temperature), $T = SHB \frac{dt}{dx}$

Substance.	Values of R.	P×106.	Q × 10 ⁶ .	S× 108.
Tellurium	+400 to 800	+200	+360000	+400
Antimony	+ 0.9 " 0.22	+2	+9000 to 18000	+200
Steel	+.012 " 0.033	-0.07	- 700 " 1700	+69
Heusler alloy	+.010 " 0.026	_ ′	+1600 " 7000	1 - 7
Iron	+.007 " 0.011	-0.06	-1000 " I 500	+39
Cobalt	+.0016 " 0.0046	+0.01	+1800 " 2240	+13
Zinc		· –	—54 " ₂₄₀	+13
Cadmium	+.00055		, ,	, 3
Iridium	+.00040	_	up to 5.0	+5
Lead	+.00009	-	-5.0 (?)	1 3
Tin	00003	-	-4.0 (?)	
Platinum	0002	-	- '	-2
Copper	—.000 ₅₂	-	—90 to 270	—ı8
German silver	00054			
Gold	000 57 to .0007 I			
Constantine	0009			
Manganese	00093			
Palladium	— 0007 to .0012	-	+50 to 130	— ₃
Silver	0008 " .0015	-	-46 " 430	-4ī
Sodium	0023			
Magnesium	00094 to .0035			
Aluminum	00036 " .0037			
Nickel	0045 " .024	+0.04 to 0.19	+2000 " 9000	-45
Carbon	017	+5.	+100	
Bismuth	- up to 16.	+3 to 40	+ up to 132000	-200
	L		1	

TABLE 594.-Variation of Hall Constant with the Temperature

		Bis	muth.1					An	timony	2		
Н	-182°	—90°	-23°	+11.50	+100	. I	[-186	0	—79°	+21.50	+580
1000 2000 3000 4000 5000 6000	62.2 55.0 49.7 45.8 42.6 40.1	28.0 25.0 22.9 21.5 20.2 18.9	17.0 16.0 15.1 14.3 13.6 12.9	13.3 12.7 12.1 11.5 11.0 10.6	7.28 7.17 7.06 6.95 6.84 6.72	390	oo	0.26 0.25 0.24	2	0.249 0.243 02.35	0.211	
					Bism	ıth.3						
Н	+14.5°	+104	0 12	25°	189 ⁰	2120	:	239 ⁰	2	59 ⁰	269 ⁰	270 ⁰
890	5.28	2.57	2.	12 1	1.24	1	.11	0.	.97	0.83	0.77*	

¹ Barlow, Ann. der Phys. 12, 1903.

Leduc effect (

² Everdingen, Comm. Phys. Lab. Leiden, 58.

³ Traubenberg, Ann. der Phys. 17, 1905. * Melting-point.

Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik. 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

TABLE 595

INTERNATIONAL ATOMIC WEIGHTS, ATOMIC NUMBERS AND VALENCIES

Quoted from the 1st Report of the Committee on Atomic Weights of the International Union of Chemistry (Journ. Amer. Chem. Soc., 3, 1637, 1931).

-					· · · ·		
Element	Symbol and atomic number	Relative atomic weight oxygen = 16	Valencies	Element	Symbol and atomic number	Relative atomic weight oxygen = 16	Valencies
Aluminum Antimony Argon Arsenic Barium	A 18 As 33	26.97 121.76 39.944 74.93 137.36	3 3, 5 0 3, 5	Molybdenum. Neodymium . Neon Nickel Nitrogen	Mo 42 Nd 60 Ne 10 Ni 28 N 7	96.0 144.27 20.183 58.69 14.008	4, 6 3 0 2, 3 3, 5
Beryllium Bismuth Boron Bromine Cadmium	Bi 83 B 5 Br 35	9.02 ° 209.00 10.82 79.916 112.41	2 3, 5 3 1 2	Osmium Oxygen Palladium Phosphorus Platinum	Os 76 O 8 Pd 46 P 15 Pt 78	190.8 16.0000 106.7 31.02 195.23	6, 8 2 2, 4 3, 5 2, 4
Calcium Carbon Cerium Cesium Chlorine	Ca 20 C 6 Ce 58 Cs 55 Cl 17	40.08 12.000 140.13 132.81 35.457	2 4 3, 4 I	Potassium Praseodymium Radium Radon Rhenium	K 19 Pr 59 Ra 88 Rn 86 Re 75	39.10 140.92 225.97 222 186.31	1 3 2 0
Chromium Cobalt Columbium Copper Dysprosium	Co 27 Cb 41 Cu 29	52.01 58.94 93.3 63.57 162.46	2, 3, 6 2, 3 5 1, 2 3	Rhodium Rubidium Ruthenium Samarium Scandium	Rh 45 Rb 37 Ru 44 Sm 62 Sc 21	102.91 85.44 101.7 150.43 45.10	3 1 6, 8 3 3
Erbium Europium Fluorine Gadolinium Gallium	Eu 63 F 9 Gd 64	167.64 152.0 19.00 157.3 69.72	3 3 1 3 3	Selenium Silicon Silver Sodium Strontium	Se 34 Si 14 Ag 47 Na 11 Sr 38	79.2 28.06 107.880 22.997 87.63	2, 4, 6 4 1 1 2
Germanium Gold Hafnium Helium Holmium		72.60 197.2 178.6 4.002 163.5	4 1, 3 0 3	Sulphur Tantalum Tellurium Terbium Thallium	S 16 Ta 73 Te 52 Tb 65 Tl 81	32.06 181.4 127.5 159.2 204.39	2, 4, 6 5 2, 4, 6 3 1, 3
Hydrogen Indium Iodine Iridium Iron	In 49 I 53 Ir 77	1.0078 114.8 126.932 193.1 55.84	I 3 1 4 2, 3	Thorium Thulium Tin Titanium Tungsten	Th 90 Tm 69 Sn 50 Ti 22 W 74	232.12 169.4 118.70 47.90 184.0	4 3 2, 4 4 6
Krypton Lanthanum Lead Lithium Lutecium	La 57 Pb 82 Li 3	82.9 138.90 207.22 6.940 175.0	0 3 2, 4 1 3	Uranium Vanadium Xenon Ytterbium Yttrium	Xe 54 Yb 70	238.14 50.95 130.2 173.5 88.92	4, 6 3, 5 0 3 3
Magnesium Manganese Mercury	Mn 25	24.32 54.93 200.61	2 2, 3, 7 1, 2	Zinc Zirconium		65.38 91.22	2 4

TABLE 596

ISOTOPES. PACKING FRACTIONS

(See Table 851)

This table contains several sets of values. Those followed directly by figures in parentheses, e.g., Sn, 118.72 (-7.13 ± 2) , taken from Aston, Proc. Roy. Soc., 115A, 487, 1927, give first the atomic mass referred to oxygen $(O_{18}+O_{17})$ determined by the mass spectroscope and often of greater probable accuracy than the corresponding atomic weight determination (see Birge, p. 81 ff.). The figures following in parentheses are "packing fractions". The protons and electrons are so closely packed that their electromagnetic fields interfere and a certain fraction of the combined mass is destroyed. The mass destroyed corresponds to energy released. The greater this is the more tightly are the charges cemented and the more stable the nucleus. The "fraction" measures the divergence from the "whole number" rule divided by the mass number, expressed in parts per 10,000. The numbers in braces are ordinary atomic weights from page 483. Numbers in brackets are % abundance. The other numbers are the nearest whole numbers to the mass of the corresponding isotope. Aston, Philos. Mag., 49, 1199, 1925. See page 486 for the radioactive isotopes.

```
1.00778(77.8 \pm 1.5) Abundance of 2, 1/800 4.00216(5.4 \pm 1)
 He
                                                6.012(20.0 \pm 3), 7.012(17.0 \pm 3)
                         3
                                               0.012(20.0 ± 3), 7012(17.0 ± 3)

[9.02] (Aston)

10.0135(13.5 ± 1.5), 11.0110(10.0 ± 1.5)

12.0036(3.0 ± 1), 13 (Birge, 1929) [Relative abundance, 400-1]

14.008(5.7 ± 2), 15 (Naudé, 1929) [Relative abundance, 700-1]

16.0000, 17, 18, (Giauque, Johnston, 1929)[Abundance O<sub>16</sub>/O<sub>17</sub> = 8600, O<sub>16</sub>/O<sub>18</sub> = 1100]
 Be
B
C
N
O
F
Ne
Na
Mg
                                               20.0004(0.2 \pm 1), 22.0048(2.2?) [22.997] (Aston)
                     10
                     II
                                                24, 25, 26 (Dempster)
[26.97] (Aston)
                     12
Al
Si
P
                     13
                                   1 [26.97] (Aston)
2 82, 92, 30 (Aston)
1 30.9825(-5.6 ± 1.5)
3 32, 97% of whole; 34, 33 (Aston)
2 34.983(-4.8 ± 1.5), 36.980(-5.0 ± 1.5)
2 39.971(-7.2 ± 1), 35.976(-6.6 ± 5), 1% of whole
2 39, 41 (Aston)
2? 40, 44? (Dempster)
1 [45.10] (Aston)
1 [47.90] (Aston)
1 [50.96] (Aston)
1 [50.96] (Aston)
4 [52.911] 52(-10)[82], 53[10], 59[5], 54[3], Aston, 10
ŝ
Čl
Ă
Ca
Sc
                     20
                     21
 Ti
                     22
                                 1 [47.90] (Aston)

1 [50.06] (Aston)

4 [52.011] 52(-10)[82], 53[10], 50[5], 54[3], Aston, 1930

1 [54.93] (Aston)

2 [56.54] (Aston)

2 [58.60] (Aston)

2 [58.60] (Aston)

4 [65.380] (-9.9), 64[48], 66[26], 68[17], 65[2], 67[5], 69[1], 70[0.4]

1 [74.934(-8.8 ± 1.5)]

2 [78.929(-9.0 ± 1.5)], 80.926(-8.6 \pm 1.5)

6 [83.928(-8.5 ± 2)[57], 85.929(-8.2 \pm 1.5)[17], 81.927(-8.8 \pm 1.5)[12]

82.927(-8.17 ± 1.5)[12], 79.926(-9.4 \pm 2)[2], 77.926(-9.4 \pm 2)[.4]

2 [85.87] (Aston)

2 [88.92] (Aston)

3 [91.22] (Aston)

7 [95.97(-5.5), 98(-5.5)[23], 96[18], 95[15], 92[14], 94[10], 100(-5.5)[10], 97[10]

7 [102[30], 101[122], 104[17], 100[14], 99[12], 96[5], 98, (Aston, 1931)

1 [114.8] (Aston)

11 [118.72(-7.3 ± 2), 120[27.0], 118[21], 116[14.1], 124[6.2], 119[11.0], 117[9.8], 122[5.0], 122[3.0], 112[1.1], 114[7], 115[0.4] (Probably all the same packing fraction.)
                    23
Ċr
Mn
                    25
26
Fe
Ni
Zn
                     28
                    30
As
Se
                     33
 Br
Kr
                    35
36
 Rb
Sr
Yt
                      38
                      30
 Zr
                      40
 Mo
                    42
 Ru
                      44
 Ιn
                     50 II
 Sn
                                               121[3.0], 112[1.1], 114[.7], 115[0.4] (Probably all the same packing fraction.) 121, 123 (Aston) 128, 130, 126 (Aston) 126.032(-5.13\pm2) 131.27(-5.3), 120[27.1], 132[26.4], 131[20.7], 134[10.3], 136[8.8], 130[4.2], 128]2.3] 126[.1], 124[.1] (Probably all the same packing fraction.) [132.81] (Aston) [140.02] (Aston) (Aston)
                     51
 Te
                      52
 I
Xe
                      54
                                      0
                      5.5
 Pr
Nd
                                                142. 144. 146. (145) (Aston) 190.31(-1.0 \pm 2.0), 192[42.6], 190[25.1], 189[17.3], 188[13.5], 186[1.0], 187[0.6] (Aston, 1931) 200.62(+.08), 202[9.27], 200[23.77], 199[16.4], 198[10], 201[13.7], 204[6.8], 196[.1] (All same packing fraction.)
                      60
 Os
                       76
  Hg
                      80
                                      6
  TI
                      8 т
                                       8 207, 205, 211, 203, 201, 209, 213, 215, Goslin, Allison
8 238, 239, 240, 234, 237, 235, 233, 236, Goslin, Allison
                      92
```

Corrections (Nature 192, 477, Mar. 26, 1932.

Kr 83.7, Xe 131.3.
Calculation of atomic weights from mass spectra leads to the following: (O = 16): Ratio isotopes O16: O18: O17: 619: 10.2.

O18:O17::6301:0.2; Li 6.923, Cs 132.91, B 10.806, Ge 72.65, Se 78.96, Te 128.03, W 183.96, Br 79.916, Re 186.22, Ru 101.1, Os 190.31.

For isotopes of Pb (201 to 216), Bi (205 to 217, 219), Ra (226, 228, 230, 232), Th (229 to 236); Bishop, Lawrenz, Dollins, Allison, Goslin, Phys. Rev. 43, 1933.

TABLE 597 .- Periodic System of the Elements

0	I	II	III	ſV	v	VI	VII	
-	R ₂ O	RO	R ₂ O ₃	RO ₂	R ₂ O ₅	ROI	R ₂ O ₇	RO4 Oxides.
-	_	_	_	RH4	RH.	RH	RH	— # Hydrides.
He 4	Li 7	Gl 9	B 11	C 12	N 14	O 16	F 19	=
Ne 20	Na 23	Mg 24	Al 27	Si 28	P 31	S 32	Cl 35	=
A 40	K 39	Ca 40	Sc 44	Ti 48	V SI	Cr 52	Mn 55	Fe Ni Co 56 59 59
=	Cu 64	Zn 65	Ga 70	Ge 72	As 75	Se 79	Br 80	=
Kr 82	Rb 85	Sr 88	Yt 89	Zr 91	Съ 94	Mo 96	=	Ru Rh Pd 102 103 107
=	Ag 108	Cd 112	In 115	Sn 119	Sb 120	Te 128	I 127	=
X 128	Cs 133	Ba 137	La 139	Ce 140	Pr 141	Nd 144	=	=
=	Sa 150	Eu 152	Gd 157	Tb 15 9	Ds 162	Er 168	=	=
=	Tm 168	Yb 174	Lu 175	Ξ	Ta 181	W 184	=	Os Ir Pt 191 193 195
=	Au 197	Hg 201	Tl 204	Pb 207	Bi 208	Po 210	=	=
Em (222)	=	Ra 226	Ac (227)	Th 232	UrX; 234	U 238	=	

TABLE 598 .- Atomic Numbers

	Hydrogen
2	Helium
3	Lithium
4	Beryllium †
5	Boron
6	Carbon

Nitrogen

Oxygen

Q Fluorine

12

13

14

10 Neon

21 Scandium 22 Titanium 23 Vanadium 24 Chromium 25 Manganese 26 Iron

20 Calcium

27 Cobalt 28 Nickel 29 Copper 30 Zine 31 Gallium 32 Germanium

Sodium II Magnesium Aluminum Silicon 33 Arsenic 34 Selenium 15 Phosphorus 16 Sulphur

35 Bromine 17 Chlorine 36 Krypton 18 Argon 37 Rubidium 38 Strontium 19 Potassium

39 Yttrium 40 Zirconium 41 Niobium ‡ 42 Molybdenum

43 Masurium 44 Ruthenium 45 Rhodium 46 Palladium 47 Silver

48 Cadmium 49 Indium 50 Tin 51 Antimony 52 Tellurium 53 Iodine

54 Xenon 55 Cesium 56 Barium 57 Lanthanum

† Glucinium.

58 Cerium 59 Praseodymium 60 Neodymium

61 Illinium 62 Samarium 63 Europium 64 Gadolinium Terbium

66 Dysprosium 67 Holmium 68 Erbium 69 Thulium 70 Ytterbium

71 Lutecium 72 Hafnium

73 Tantalum 74 Tungsten 75 Rhenium *

89 Actinium 90 Thorium 91 Protactinium 92 Uranium

‡ Columbium.

76 Osmium

77 Iridium 78 Platinum

79 Gold 80 Mercury 81 Thalium 82 Lead

83 Bismuth 84 Polonium

85 Alabamine 86 Radon 87 Virginium 88 Radium

SMITHSONIAN TABLES

* Bohemium

PERIODIC SYSTEM AND THE RADIOACTIVE ISOTOPES*

	4	5A	6A	7A)	1A	2A	зА	4	
Vb IVb IIIb IIb	82 Pb 50 Sn 32 Ge 14 Si 6 C	83 Bi 51 Sb 33 As 15 P	Non-meta 84 Po 52 Te 34 Se 16 S 8 O 1	85 53 I 35 Br 17 Cl 9	Inert- 80 N 54 X 33 K 14 A	t e e o r o e	87 	ght-met 88 Ra 56 Ba 38 Sr 20 Ca 12 Mg 4 Be	89 Ac 57 La 39 Y 21 Sc 13 Al	90 Th 58 Ce 20 Zr 22 Ti 14 Si 6	VI Va IVa IIIa IIa
III' IV'	22 Ti 40 Zr	23 V 41 Cb	24 Cr 42 Mo	25 Mn 43		metals. 7 28 Co N 5 46 Ch Po	i 29 i Cu 47 d Ag	30 Zn 48 Cd	31 Ga 49 In	32 Ge 50 Sn	III'
V"	58 5 Ce 1	59 60 Pr Nd	61 62 — Sa	63 Eu	64 65 Gd Tb	66 Dy	67 68 Ho Ei	69 Ad	70 Cp	71 72 Yb Lu	V"
V' VI	72 Lu 90 Th	73 Ta 91 Bv	74 W 92 U	75	76 Os	77 78 Ir Pt	79 Au	80 Hg	81 Tl	82 Pb	V' VI
	4	5B	6B	7B			тΒ	2 B	3B	4	
(Ti 81	82 { PbR { PbTh RaD	83 A A A A A A A A A A A A A	(Po) 84	() 85	adioactive (Nt) 86 ThEm AcEm RaEm	(87) ← {	(Ra) 88 ThX AcX Ra	⊢ MsT″ Ac	$\begin{cases} RaTh \\ RaAc \\ Io \end{cases}$ $\leftarrow Th \\ Uy \\ Ux' \end{cases}$	}	(U) 92 U ₂

Indicates the loss of an alpha particle (producing He); the element becomes more electro-positive and the atomic weight decreases by 4, position changing 2 columns to the left.

✓ Indicates beta radiation (loss of electron); the element becomes more electro-negative, atomic weight remains the same, position changes one column to the right and up.

Isotopes of an element have the same valency and the same chemical properties (solubility, reactivity, etc.), although their atomic weights may differ. The isotopes of Bi are, e.g., RaE. ThC, AcC, RaC.

In the upper half of the table are the elements possessing high electro-potential, simple spectra, colorless ions. The properties are analogous in the vertical direction (groups). In the lower half are the elements with low electro-potential, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements where more propouged in the horizontal direction (periods).

tial, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements being more pronounced in the horizontal direction (periods).

On the test side of the table are the electro-negative elements, those of the upper half torming strong acids, those of the lower half weak oxyacids.

On the right side of the table are the electro-positive elements, forming bases, oxysalts, sulfides, etc.

The center of the lower half is occupied by the amphoteric elements forming weak acids and bases, many complex compounds and double salts, many insoluble and mostly colored compounds weak acids and bases, many complex in the vertical direction, and in the lower half in the horizontal direction. This justifies the use of the expressions group-relation and period-relation.

* Table adapted from Hackh, J. Am. Chem. Soc. 40, 1023, 1918, Phys. Rev. 13, 169, 1910. Note: See Radioactive Families with isotopes, Edna Bishop. The Physical Review, 43, 38, 1933.

ATOMIC STRUCTURE

(Harkins, Science, 70, 433, 463, 1929.)

If weight of proton (p) + electron (e) = 1, atomic wt. = no. of protons + electrons in atom. $(pe)_w = \text{composition}$ of complete atom, atomic weight (w). P, no. of protons in atom, = W. N = total number electrons in nucleus; P - N = Z = atomic number. 2N - P = isotopic number; electronic number = no. electrons.

The structure of the loosely bound nonnuclear electrons decides various chemical and physical properties. The tightly bound nuclear atoms should produce periodic properties. Abundance of atomic species reveals nuclear stability (possibility of other factors). High stability shown by abundance of even electronic numbers. Species of odd electronic number are so rare that only four have been discovered. There is high stability for isotopic numbers divisible by 4, a secondary stability when by 2. When N and P even, Z odd, earth's crust 87.4%; meteorites, 95.4; when N even, P, Z odd, 10.8, 2.1; Z even, P, N odd, 1.8, 2.5; P even, N, Z odd, 0.0007, 0.0. Lower left-hand rectangle of lower figure constitutes 99.9% of all known material.

ELECTRON CONFIGURATIONS IN NORMAL ATOM

Individual electrons in an atom may be designated by two quantum numbers, "azimuthal" and "total". The first is expressed by s, p, d, etc.; the last numerically in specific cases, by n in general.

Designation of quantum numbers:

Azimuth quantum: literal, s; number, o; Bohr, k, 1; The total quantum number is equal to or greater than 1+1, i.e., 1, 2, 3, for s electrons, 2, 3, 4,— for p 2 3 electrons, etc. 3 4

h etc. 5

An electron is called, e.g., a 6p electron, 6 for the total quantum number, p implying an 1 value of 1. Note that 4p, 5s, 3d, etc., electrons are equivalent to Bohr's 42, 51, 33 electrons. The number of electrons for a given type in an atom may be expressed by an exponent, e.g., 3d⁵. For more detailed connection between configurations and spectroscopic terms see Hund's book. The lower-case letters n, l, s, j, m should be used for the quantum numbers of an electron, and the capitals L, S, J, M for the quantum numbers of a term (or level) of an atom, ionized or neutral. A specification of atomic structure would include all the inner electrons, e.g., for Fe in its normal state 1s²2s²2p⁶3s²3p⁶3d⁶4s². For short only those electrons "outside" an inert gas shell need be considered. A complete np⁶ group, and all the groups which are normally completed earlier in the periodic table, can be neglected. Thus the notation for the normal state of Fe becomes 3d⁶4s².

Examples of the notation for a level and the configuration from which it arises is 3d6 4s2 ⁵D₄, the normal state of the iron atom; 2s² 2p³ ⁴S⁰_{11/2}, the low level of O II. The total quantum numbers may be omitted when they are the lowest which the particular sort of electron can have if not belonging to already completed shells. For example, 4s, 4p, 3d, 4f in spectra from K I to Zn I and Ca II to Ga II, etc., are the s, p, d, and f electrons of lowest quantum numbers not belonging to completed groups. The 3p⁶ group is completed and the 3s² and all

the groups of smaller n have been previously completed, leaving 4s, 4p, 3d, 4f still to be added. These last can therefore be represented by s, p, d and f.

The normal state of Fe I would thus be designated as d⁶s² ⁵D₄, that of O II as s²p³ ⁴S⁰_{1,1/2}. For Ge I, in which the electron groups 3d10 and 4s2 may be regarded as completed, the electrons to be represented by the letters alone would be the 5s, 4p, 4d, and 4f electrons; and so on.

Odd terms arise when the sum of the l values for all electrons is odd, even terms from configurations for which the I sum is even. Since the I sum for completed groups is always even, only outer uncompleted groups need be considered. Even (odd) terms are those in which the number of p and f electrons together is even (odd). In the parts of the periodic table where s and d groups are being completed the lowest terms of all the atoms are even. Where p groups are being completed (and also in the rare earth f-group) the lowest terms are alternately odd and even. Except in the rare earth group the only spectra for which the normal state corresponds to an odd term are B I, N I, F I and C II, O II, Ne II etc. and the homologous spectra in later periods.

Permitted transitions are those in which the l of one electron changes by one unit, (and the l of another electron by 0 or 2 units, if two electrons change) so that all such transitions

are between even and odd terms.

Electron Configurations1

Ele- ment	K 1,0 Is	2,0 2s	2,I 2p	3,0 3s	M 3.1 3P	3,2 3d	4,0 4s	4,1 4P	4,2 4d	4.3 4f	5,0	O 5,1 5P	5.2 5d	Nor- mal term	Atomic No.
H He	1 2													$\frac{^{2}S_{1/2}}{^{1}S_{0}}$	I 2
Li Be	2 2	I 2											• •	² S _{1/2} ¹ S ₀	3
B C	2 2	2 2	I 2		• •	• •		• •	• •					² P _{1/2} ³ P ₀	4 5 6
N O	2 2	2	3					• •						${}^{4}S_{3/2}$ ${}^{3}P_{2}$	7 8
F Ne	2 2	2	5									• •		${}^{2}P_{3/2}$ ${}^{1}S_{0}$	9
Na Mg	Sam	e as fo	r neon	I 2										${}^{2}S_{1/2}$ ${}^{1}S_{0}$	I I I 2
Al Si P		44		2	I 2									² P _{1/2} ³ P ₀	13
S Cl		44		2 2 2	3 4							• •		⁴ S _{3/2} ³ P ₂ ² P _{3/2}	15 16 17
A	1	44		2	5 6		• •		• •	••		• •		${}^{1}S_{0}^{3/2}$	18

¹ Based by permission upon table by Ruark and Urey. Atoms, molecules, and quanta, 1930.

ELECTRON CONFIGURATIONS IN NORMAL ATOM

nt	K L		М			1	1			0		1	P	Nor-	No.
Element		3,0	3,1	3,2	. 4,0	4,1	4.2	4.3	5,0	5,1	5,2	6,0	6,1	mal	nic
ĕ		38	3 P	3d	48	4P	4d	4f	5s	5P	5d	6s	6р	term	Atomic No.
K	Same as	for A	rgon		I									² S _{1/2}	19
Ca		"			2									¹ S ₀	20
Sc Ti		44		I 2	2 2			• •			• •			² D _{3/2} ³ F ₂	21
V		"		3	2			• •	٠.	٠.	• •			⁴ F _{3/2}	22
Čr		11		5	I									$^{1}_{7}S_{3}^{3/2}$	23 24
Mn		11		5 5 6	2		: :							6S _{5/2}	25
Fe		4.4		6	2									5D ₄	26
Со	Į.			7	2									4F9/2	27
Ni		11		8	2									3F4	28
Cu		••		10	I	٠.					• •	• •	• •	$^{2}S_{1/2}$	29
Zn	i	4.4		10	2									¹ S ₀	30
Ga		11		10	2	I								² P _{1/2}	31
Ge		44		10	2	2					٠.			$^{3}P_{0}$	32
As		14		10	2	3								4S _{3/2}	33
Se				10	2	4								$^{3}P_{2}$	34
Br Kr		11		10	2	5								² P _{3/2}	35
				10	2	О				• •	• •	• •		¹ S ₀	36
Rb	Same as	for k	rypt	on					I					² S _{1/2}	37
Sr Y							٠.		2	• •			• •	¹ S ₀	38
Zr		ıı					I 2		2		• •			$^{2}\mathrm{D}_{3/2}$ $^{3}\mathrm{F}_{2}$	39
СЪ	4	11							I					⁶ D _{1/2}	40 41
Mo							Ŧ		ì			• •		7S ₃	42
		16					4 5 (6)		(1)					$(^{6}D_{9/2})$	43
Ru		14					7 8		I					⁵ F ₅	44
Rh		14						٠.	I					4F _{9/2}	45
Pd	1	11					10					٠.		¹ S ₀	46
Ag Cd	Same as	for p	alla	lium					I					2S _{1/2}	47
Cd		14							2					¹ S ₀	48
In		14							2	I	٠.			² P _{1/2}	49
Sn		. 6							2	2		٠.		³ P ₀	50
Sb Te		14						٠.	2	3				⁴ S _{3/2}	51
Ie	4							• •	2	4				³ P ₂	52
Xe		16						• •	2	5	• •		• •	² P _{3/2} ¹ S ₀	53
210									2	U			• •	.50	54

TABLE 601 (concluded)

ELECTRON CONFIGURATIONS IN NORMAL ATOM

		ï		_					7					
ıt l	KLM		1	N			0			P		Q	Nor-	o N
Element		4,0	4.1	4.2	4.3	5,0 5,1	5,2	5,3	6,0	6,1	6,2	7,0	mal term	nic
Ele		48	4p	4d	4f	5s 5p	5d	5f	6s	6р	6d	7s	term	Atomic No.
Cs	Xenon	confi ls 1s t				Shell			I 2				² S _{1/2} ¹ S ₀	55
Ba La		46 el				5s to	 I		2				$^{2}D_{3/2}$	56 57
Ce	Cam	6.6		,,,,,,,	I	5P	ī		2				3H4	58
Pr		44			2	con-	1		2	. ,			4K _{11/2}	59
Nd		"			3	tain 8	I		2	٠.			⁵ L ₆ ⁶ L _{9/2}	60
II Sa		4.4			4	elec-	I I		2 2		• •		7K4	61
Eu		6.6			5	trons	1		2				8113/2	63
Gd		4.4			7 8		I		2				$^{9}D_{2}$	64
Tb		"					I		2				8H _{17/2}	65
Dy Ho		4.4			9		I		2 2	• •			⁷ K ₁₀ ⁶ L _{19/2}	66 67
Er		4.4			11		I		2				⁵ L ₁₀	68
Tu					12		I		2				$^{4}K_{17/2}$	69
Yb		"			13		I		2	٠.			3H6	70
Lu	C111- ·			4 - :-	14		I		2				$^{2}D_{3/2}$	71
Hf Ta	Snens	is to	5р сс	mtan "	1 08 ei	ectrons	3		2 2		• •		³ F ₂ ⁴ F _{3/2}	72 73
W				"			4		2				$^{5}D_{0}^{3/2}$	74
Re				4.4			5		2				$^{6}S_{5/2}$	75
				44			6		I				6D _{9/2}	
Os				"			6		2				⁵ D ₄ ⁵ F ₅	76
Ir				"			7		I 2		• •		⁴ F _{9/2}	77
11				4.4			7 8		I				4F 9/2	
Pt				"			9		I				$^{3}D_{3}$	78
Au	Shells	sto	5d co	ntaii	1 78 el	ectrons			I				² S _{1/2}	79
Hg Tl				44				• •	2		• •		${}^{1}S_{0}$ ${}^{2}P_{1/2}$	80
Pb				4.6					2	2	• •		³ P ₀	82
Bi				4.6					2	3			4S3/2	83
Po				44					2	4			³ P ₂	84
- D				"					2	5			² P _{3/2}	85
Rn —	Radon	confi			Shelle	s is to 5d			2 T	he		· · I	${}^{1}S_{0}$ ${}^{2}S_{1/2}$	86 87
Ra	cont	ain 7	8 ele	ctron	S	, 13 10 50				ells		2	$^{1}S_{0}$	88
Ac		,		6.6					6s t	о 6р	I	2	$^{2}D_{3/2}$	89
Th				"				1		tain	I	2	3H ₄	90
UX				"						8 trons	2	2	³ F ₂ ⁴ K _{11/2}	
UX				"				2	eiec	trons	3	2	⁴ F _{3/2}	91
U				"				3			3 1	2	5L ₆	92
				"							4	2	5 D ₀	

EFFECTIVE ATOMIC RADII

Goldschmidt, on the basis of reasonable though empirical assumptions, has calculated effective radifatoms in various charged conditions; Pauling, on the basis of wave-mechanics, has presented theoretical alues for most of the elements, the two series agreeing well in many cases. The latter values are printed bold-faced type; the values considered nontypical are in parentheses; e.g., for silicon we have: Si⁺0.22 -) 0.39-0.41. Si⁰(1.12 -) 1.18. Si⁻⁴(1.98); 2.71, signifying silicon, carrying 4 + charges, has parent radius between 0.22 and 0.41; but the lower values relate to compounds where the atoms ppear to be deformed; so Goldschmidt gives 0.39 as most significant. Wave-mechanics yields 0.41 leutral, the radius ranges from 1.12, in abnormal compounds, to 1.18 in those typical; when carrying - charges, the value is 1.98, according to calculations deemed faulty, 2.71 according to theory.

In applying the data to replacements, halides and oxides are usually ionized, and the values in the uter columns apply. Thus in fluorite the value for Ca⁺² should be added to that for F-1, giving between 32 and 2.42, or 2.37 as a mean; and the observed Ca-F distance in the crystal is 2.36 Angstrom units a the remaining types of compounds the atoms appear to be largely neutral and the first column should

e used. The units are Angstroms. Wherry, Amer. Mineralog., 14, 54, 1929.

		-									
Atomic no.; element	}	adius neutral atom Angstroms	Charge	cha	s positively rged ion gstroms	Atomic no.; element		adius neutral atom Angstroms	Charge	cha	s positively rged ion gstroms
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne	1.05(-)1.56 -1.15) -)0.77 -)0.71 -0.65)	1 2 3 4 5 6 7	0.60-0.7 0.31-0.3 0.20 0.15 0.11 0.09 0.07	8(-0.82) 34	42 Mo Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb	1.45-	-)1.44 -)1.49(-1.60	3	(0.78 -) 0.81-0.9	1.13-1.26 0.97-1.03
11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 A 19 K 20 Ca	(1.42 (1.16 (1.12 0.93 1.02- 1.05- (1.54	1.07	1 2 3 4 5 6 7	0.65-0.7 0.50-0.5 (0.22-) 0.34 0.29-0.3 0.26		Sb 52 Te Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce	1.33- 1.36- (1.90 (2.37 2.10) -)2.55	3 6 4 7 5	0.90 0.56 0.81-0.8 0.50 0.94 1.65-1.6 1.35-1.4 1.15-1.2 1.01-1.6	99(-1.75) 13(-1.49)
21 Sc 22 Tl 23 V V 24 Cr 25 Mn Mn Mn 26 Fe Fe	1.32((1.17 (1.17	-)1.49(-1.53) -1.43) -)1.25(-1.54) -)1.29(-1.59) -)1.26(-1.45)	5 4 6 7 4 2	0.81-0.8 (0.58-) 0.59 0.59-0.6 0.52-0.6 0.46 0.50-0.5 (0.49-) 0.75-0.8	0.64 -0.68 1.55 2.2 1.0 0.67	Ce 59 Pr Pr 60 Nd 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho			3 4 3 3 3 3 3 3 3 3 3 3 3	1.18 0.92-1.0 1.16 1.15 1.13 1.11 1.09 1.07	00
27 Co Co 28 Ni Ni 29 Cu Cu 30 Zn 31 Ga 32 Ge 33 As	1.24((1.22 1.31- (1.28 1.22	-1.39) -1.39) -)1.27(-1.37) -1.34 -)1.33(-1.45) -)1.16(-1.26)) I 2 3 4	0.29-0.4 0.72-0.8 0.35 0.69-0.7 0.70 (0.58-) 0.74-0.8 0.62 0.44-0.5 0.47	8 0.96 3	68 Er 69 Tm 70 Yb 72 Hf 73 Ta 74 W W 76 Os 77 Ir 78 Pt	1.66 1.42- 1.37 1.30- 1.35 1.38(3 3 3 6 4 4 4	0.88 0.66-0.6 0.65-0.6	57
As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Cb Cb	1.95) -)2.36	3 6 7 1 2 3 4 5 4	1.13-1.2 0.93-1.0	0.80-0.89 70	79 Au 80 Hg 81 Tl Tl 82 Pb Pb 83 Bi 90 Th 92 U -NH4	1.74(-1.49 -)1.99(-2.25) 1.90))1.46(-1.55	1 2 3 1 4 2 5 4 4 1	1.37 1.10-1.1 0.95-1.0 1.44-1.5 0.84 (0.98-) 0.74 1.02-1.1 0.97-1.0	0.5 6.1 1.21-1.32
	Charge	Radius negative ion		Charge	Radius negative ion		Charge	Radius negative ion		Charge	Radius negative ion
1 H 6 C 7 N 8 O 9 F	-1 -4 -3 -2 -1	(1.27); 2.08 2.60 1.71 1.32-1.40 1.33-1.36	14 Si 15 P 16 S 17 C	-3 -2	(1.98); 2.71 2.12 1.74–1.84 1.81	32 Ge 33 As 34 Se 35 Br	-4 -3 -2 -1	2.72 2.22 1.91-1.98 1.95-1.96	50 S 51 S 52 T 53 I 82 P	e -3 -2 -1	(2.15); 2.94 2.45 2.03-2.21 2.16-2.20 2.15

ELECTRONS, PROTONS, ATOMIC STRUCTURE

Free negative electron (corpuscle, J. J. Thomson).—Mass, spectroscopic (bound) 9.035×10^{-28} g; free, 8.994×10^{-28} g; atomic weight, 5.479 and 5.454×10^{-4} respectively, probably all electrical, due to inertia of self-induction. Theory shows that when speed of electron = 1/10 velocity of light, its mass should be appreciably dependent upon that speed. If m_0 be the mass for small velocity, m, the transverse mass for v, and $v/(\text{velocity of light, } c) = <math>\beta$ then $m = m_0 (1 - \beta^2)^{-\frac{1}{2}}$ (Lorentz, Einstein).

0.10 0.2 0.3 0.5 0.6 0.4 0.7 8.0 0.9 m/m_0 , 1.00005 1.005 1.048 1.001 1.155 1.250 1,400 1.667 2.294

Radium ejects electrons with 3/10 to 98/100 of c. m, due to charge $= 2E^2/3a$, where E = charge, a, radius, whence radius of electron is 2×10^{-13} cm = 1/50,000 atomic radius. Cf. (radius earth/radius Neptune's orbit) = 1/360,000. Collisions with a particles show diameter of electron must be less than 4×10^{-13} cm (Chadwick, Bieler, Philos. Mag., 1921).

Positive electron or proton.—Heavy, extraordinarily small, never found associated with mass less than that of the H atom; mass, 1.6609×10^{-24} g. Specific charge, 9579.7 abs-emunits · g⁻¹. Ratio mass proton to mass electron, 1838 (spectroscopic), 1847 (deflection). If mass is all electrical, radius must be 1/2000 that of electron. No experimental evidence as with the latter since high enough speeds not available. Penetrability of atom by β particle (may penetrate 10,000 atomic systems before it happens to detach an electron) and α particle (8000 times more massive than negative electron, passes through 500,000 atoms without apparent deflection by nucleus more than 2 or 3 times) shows extreme minuteness. Upper limit of nucleus not larger than 10^{-12} cm for Au (heavy atom) and 10^{-13} cm for H (light atom) (Rutherford). Cf. (radius sun)/(radius Neptune's orbit) = 1/3000 but sun larger than planets. Hg atoms by billions may pass through thin-walled, highly-evacuated glass tube without impairing vacuum, therefore massive parts of atoms must be extremely small compared to volume of atom.

Rutherford atom.—Atoms of all elements are somewhat similarly built. At the center a charged nucleus of minute dimensions, responsible for most of the mass of the atom; this is surrounded by a distribution held in equilibrium by the force from the nucleus. Resultant nuclear charge = atomic or ordinal no., varies from 1 for H to 92 for U. These atomic nos. represent the number of planetary electrons which surround the nucleus. By the action of light, the electric charge, bombardment by α particles, one or more of the planetary electrons may be driven away from the nucleus; by X rays or the swift β rays some of the more strongly bound may be removed. New electrons are generally soon captured to replace these. The nucleus is much more stable and when disrupted (radioactive changes, bombardment with α particles) shows no tendency to revert to original state.

Moseley (Philos. Mag., 26, 1912: 27, 1914) photographed and analyzed X-ray spectra, showing their exact similarity in structure from element to element, differing only in frequencies, the square roots of the frequencies forming an arithmetical progression from element to element. Moseley's series of increasing X-ray frequencies is with one or two

ELECTRONS, PROTONS, ATOMIC STRUCTURE

exceptions that of increasing atomic weights, and these exceptions are less anomalous for the X-ray series than for the atomic-weight series. It seems plausible that there are 92 elements (from H to U) built up by the addition of some electrical element. Moseley assigned successive integers to this series (see Table 598) known now as atomic numbers.

Moseley's discovery may be expressed in the form

$$n_1/n_2 = E_1/E_2$$
 or $\lambda_2/\lambda_1 = E_1^2/E_2^2$

where E is the nuclear charge and λ the wave length. Substituting for the highest frequency line of W, $\lambda_2 = 0.167 \times 10^{-8} \text{cm}$ (Hull), $E_2 = 74 = Nw$, and $E_1 = 1$, then $\lambda_1 =$ highest possible frequency by element which has one + electron; $\lambda_1 = 91.4 \text{m}\mu$. Now the H ultra-violet series highest frequency line = $91.2 \text{m}\mu$ (Lyman); i. e., this ultra-violet line of H is nothing but its K X-ray line. Similarly, it seems equally certain that the ordinary Balmer series of H (head at $365 \text{m}\mu$) is its L X-ray series and Paschen's infra-red series its M X-ray series.

The application of Newton's law to Moseley's law leads to $E_1/E_2 = a_2/a_1$, where the a's are the radii of the inmost — electronic orbits, i. e., the radii of these orbits are inversely proportional to the central charges or atomic numbers.

There are other negative electrons on the nucleus with corresponding + charges to make the atom neutral electrically. The negative nuclear charges may serve to hold the positive ones together. He, atomic no. = 2, has two free + charges, on nucleus; the nucleus has 4 + protons held together by 2 - electrons with 2 - electrons outside nucleus. H has one + proton and one - electron.

If the — electron is designated as e (charge — I, mass negligible) and the + proton as p (charge + I, mass I except in H) then the formula for the nucleus of any element from He to U may be written as $(p_{2e})_N(pe)_N$ where N is the atomic number and n has values from 0 to 54. If n be taken as — I, then H may be included. (Masson, Philos. Mag., 4I. 1921.) If brackets are used to designate the nucleus then the complete element becomes $[(p_{2e})_N(pe)_n]e_N$. In the formation of ions only the part exterior to the brackets is affected. For the α -transformation (emission of + charged He nucleus) $2(p_{2e}) = (p_{2e})_2 / 1$, the subchemical equation may be written $[(p_{2e})_N(pe)_n]e_N = [(p_{2e})_N - 2(pe)_n]e_N + (p_{2e})_2 / 1$ (He nucleus); the new elements upon discharge of its — charge becomes $[(p_{2e})_N - 2(pe)_n]e_N - 2$ showing the characteristic α -ray change with the atomic weight lowered by 2 and the mass by 4. The β -ray $2(pe) = (p_{2e}) + e / 2$ gives the equation

$$[(p_2e)_N(pe)_n]e_N = [(p_2e)_N + I(pe)_{n-2} + e]$$

mass unchanged and forms the singly - charged ion of an isobar.

From the emission of nuclear α particles, $2(p_2c) = p_4c_2$, it seems probable that the nuclei are compounds of He and I nuclei. By the bombardment of the nuclei of atoms up to atomic number 40 with α particles Rutherford has obtained H but only where H and He nuclei should both occur in the nucleus (Bo, N, Fl, Na, Al, P, see Table 638). Harkins has

TABLE 603(A) (concluded).—Electrons, Protons, Atomic Structure

developed this idea (Journ. Franklin Inst., 194, 213 et seq., 1922) and shown the much greater frequency in nature of the even-atomic numbered elements (97.6 per cent in stony meteorites, 99.2 Fe meteorites, 85.6 lithosphere, 5 unknown elements all odd, even radioactive most stable). Elements below atomic number 30 make up 99.99 per cent of all meteorites, 99.85 igneous rocks, 99.95 shale, 99.95 sandstones, 99.85 lithosphere. The stability of the He nucleus may be judged by the energy set free in the formation of He from H. According to "relativity" I g-mass = 9×10^{20} ergs ($E = mc^2$). The change of mass involved in the formation of I g-atom of He (4,000 g) from 4 g-atoms of H₂(4 × 1.0078 g) = 2.81 × 10¹⁹ ergs = 6.71×10^{11} calories. I lb. H₂ changed to He equals heat from 10,000 tons coal. The nuclei of light even numbered atoms (most abundant isotope) up to Fe (26) almost wholly of He nuclei. To a 1st approximation the α particle behaves in collision like an elastic oblate spheroid, semi-axes, 8×10^{-12} and 4×10^{-13} cm (Chadwick, Bieler, Philos. Mag. 1921).

TABLE 603(B) .- Atomic Structure, Bohr Atom

No mechanism was described to show how the energy of rotation was transferred into energy of radiation nor why only certain orbits could be occupied. He evidently used non-radiating orbits at variance with Maxwell's equations.

Two independent predictions from these assumptions were verified: the predicted and observed values of Rydberg's constant within $\frac{1}{4}\%$ and the differences in ν for the H and the He + lines due to the 4-fold mass of the He + nucleus.

Relativistic considerations.—Sommerfeld (1916) applied Einstein's relativity considerations together with the variation of mass with the speed of the revolving electrons and brought further support to the idea of orbits through prediction and the verification of the "fine structure of spectrum lines." Bohr considered only circular orbits in which the speed of rotation is constant, but elliptical orbits are possible with the same $h/2\pi$ as the circular and in them the speeds of revolution of the electrons change in different portions of the orbit as with classical mechanics but these speeds are such that a relativity

TABLE 603(B) (continued).—Atomic Structure, Bohr Atom

correction to the mass is necessary. Their quantization brought another quantum number; the so-called total quantum number, n, now becomes the sum of two since both the radii (r) and azimuth (ϕ) of the electron vary. The orbit is usually designated by two quantum numbers, the total, n, and the azimuthal (ϕ) viz: 1.1, 2.3 (p orbit, circular), 2.1 (s orbit, elliptical), 3.3, 3.2, 3.1.... The following figure illustrates the first four sets of orbits of the hydrogen atom. The table indicates the modes of the quantum numbers (a₂ radius inner orbit, a, b, varying).

nk	total n	azim. k	radial nr	a/a_2	b/a ₁
I.I	I	I	0	I	I
2.I	2	I	I	4	2
2.2	2	2	0	4	4
3. I	3	I	2	9	3
3.2	3	2	I	9	6
3.3	3	3	0	9	9

The resonance potentials for the circular orbits are (hydrogen atom):

1.1 orbit to →	2.2	3.3	4.4	5.5	6.6	7.7	 00
Volts observed	10.15	12.05	12.70	13.00		13.27	 13.54
λ Lyman series, μ	.1216	.1026	.0972	.0950			 0912μ
" Balmer 2.2 orbit		.6563	.4861	.4340	.4102	.3970	 .36.46μ
" Paschen 3.3 orbit			1.8756	1.2821	1.0939	1.0052	
" Brackett 4.4 orbit				4.05	2.63	2.16	 1.16u

The remarkable prediction and consequent observation of the "fine-structure of spectrum lines resulted from this postulate." Thus all the lines of the Balmer series, consisting of jumps into the state of total quantum 2, possessing 2 orbits, a circle and an ellipse, should show a fine structure due to energy differences of these circular and elliptical orbits. Approximately they should be all doublet lines of wave length predictable elliptical orbits. Approximately they should be all doublet lines of wave length predictable from laws of orbital mechanics. The separations should be .365 cm⁻¹; actually .36 cm⁻¹ (Houston) was found. The separation should vary as the 4th power atomic no. Paschen (1916) actually found for He+, 16 × .365 cm⁻¹. Further remarkable results came from Epstein's (Ann. Phys., 50, 489, 1916) work on the Stark effect and the prediction of the separation of the so-called L doublets of X-ray spectra. If actually a relativity doublet, one must multiply the H separation by 71 millions (924); also checked with experiment.

Inner quantum numbers. —It became necessary (1920, Sommerfeld, Ann. Phys., 63, 221, 1920) to account for further fine structure. e. g.: In X rays the L orbits or levels correspond to n=2, permitting only two different orbits, 2.2 (circle) and 2.1 (ellipse); but lines of 3 close wave lengths were observed—two being the regular expected doubtlet whose frequency varies with 2^4 as expected. These two levels are indicated by the two diverging lines, L_2 , L_3 in the following figure.

¹ Millikan, Proc. Amer. Philos. Soc., 66, 211, 1927, from which much of the accompanying description is condensed.

TABLE 603(B) (continued).—Bohr Atom

The third level L1 is seen to follow an entirely different law: it runs parallel to L2.

Bohr and Sommerfeld introduced the idea of two orbits of the same shape but different orientations, something different in the central field giving these orbits slightly different energies. A so-called inner quantum number, J, was introduced. The difference in the frequencies of the familiar doublets in Li was supposed due to jumps to a common orbit (s orbit) from 2 orbits differing only in the "inner" quantum number, i. e., orbits of different orientations but same shapes, in this case circles, or 2.2 orbits, known as the p_1p_2 orbits. The s orbit into which the 2 electrons jumped to form the Li doublet was the third possible of total quantum 2, the 2.1 orbit. The two circular (p orbits) differed slightly in frequency, but the changes from either p to the s orbit was ² too large for the relativity effect. Bohr (Ann. Phys., 71, 228, 1923) suggested that the anomaly

was due to the penetration of orbits of outer electrons within the field of action of inner orbits.

TABLE 603(C).—The Spinning Electron and Summary

The spinning electron.—A disconcerting element existed in that the difference of energy between two circular p_2p_2 orbits varied with the atomic number precisely as demanded by the relativity consideration, though it could not be due to relativity since the p_1p_2 orbits had no difference in shape but only of orientation. A new conception by Uhlenbeck and Goudsmit (Nature, 117, 264, 1926) came to the rescue assuming that every electron rotates upon its axis. Two possible directions of spin are assumed 180° apart, but the moment of momentum is assumed always the same, exactly $\frac{1}{2}$ unit or $\frac{1}{2}$ $h/2\pi$. This introduces exactly the right amount of energy difference between the p_1p_2 circular orbits. It is superposed upon the relativity effect, making the fine structure (even in H and He+without inner electronic orbits) somewhat more complex.

In the case of each individual electron there are four moments of momentum—four elements to describe an electron's orbital motion:

- (1) The size of its orbit—the total moment of momentum characterized by its total quantum number n (Bohr) fixing the major axis of orbit.
- (2) The azimuthal quantum number, k, which with a given n or major axis, fixes the shape (minor axis). It has been found expedient to reduce by unity all values of k heretofore assigned. Since we are not ready to discard entirely the old interpretation, this reduced value of k is for convenience denoted by a new letter, l, so that l = k 1. Thus for an sorbit l = 0; p orbit, 1; d orbit, 2; etc.
- (3) The projection of the moment of momentum l upon any fixed direction, which, in considering the Zeeman effect is the direction of the external magnetic field, is quantized (m_1) . The projection fixes the orientation in space. The significance that this projection is quantized is that only certain definite orientations are possible (Stern, Gerlach experiments).
- (4) The projection of the moment of momentum of spin upon this fixed direction is designated by the symbol m_r . In each atom only two possible directions of spin 180° apart are taken so that m_r determines in what direction the electron is spinning. m_l and m_r are usually called magnetic quantum numbers because of their use in connection with magnetic fields.

(Most of the above is abbreviated from Millikan, Proc. Amer. Philos. Soc., 66, 211, 1927.)

ENERGY OF BINDING OF AN ELECTRON-NEUTRAL ATOMS

(Adapted from paper by Henry Norris Russell, Astrophys. Journ., 70, 1929.)

The electrons in an atom, neutral or ionized, are bound in different states (a preferable term to "orbits"). The more firmly bound inner ones which form parts of the completed shells concern the spectroscopy of X rays but not of ordinary light. The two following tables give a study of the energy of binding of an electron, in different atoms, in the same state, the state characterized by the same total and azimuthal quantum numbers, denoted in Bohr's notation by I1, 21, 31,—; 22, 32, 42;—; 33, 43,—; 44,—, or more commonly at present, Is, 2s, 3s,—; 2p, 3p, 4p,—; 3d, 4d,—; 4f,—. The energy in volts is given required to remove an electron in the given state from the atom or liberated when it returns. Among the energy levels resulting from different space quantizations of the same electronic configuration, that with the greatest binding energy is given regardless of the multiplicity. Most values are derived from spectrum series and are fully reliable; those in (), two decimals, are extrapolations from series formulae and should be substantially correct; those in (), one decimal and in [] are interpolated and should be accurate to 0, to 0.2 v.

EI.	Is	28	2p	3 s	3P	3 d	4s	4p	4d	58	5 P	5d
Н	13.54	3.38	3.38	1.50	1.50	1.50	0.81	0.81	18.0	0.54	0.54	0.54
He	24.48	4.75	3.61	1.86	1.57	1.51	.99	.87	.85	.61	.56	.54
Li			_		٠.	-		.87	.85	.64		
		5.36	3.40	2.01	1.55	1.51	1.05		O	•	∙55	.54
Be		9.29	6.57	2.86		1.62	1.32		.90	.76		.57
В			8.28	3.34		1.52	1.49		.87			.57
C			11.22	3.78	2.42	1.57		1.19				
N			14.50	4.20	2.78	1.55	1.69		.87	.93		.56
0			13.56	4.45	2.86	1.52	1.77	1.32	.86	.95		-55
F			[17.3]	(4.7)	(3.0)							
Ne			21.47	4.93	3.17	1.53	1.86	1.41	.86	1.00	.80	-55
Na				5.11	3.02	1.51	1.94	1.38	.85	1.02	.79	.54
Mg				7.61	4.92	1.88	2.52	1.70	1.05	1.21	.92	.66
Al					5.95	1.95	2.83	1.89	1.15	1.31	.99	-75
Si					8.14	1.93	3.08		1.16	1.37		.,,,
P					[10.5]		(3.5)					ļ
Ś					. 0,	(1.00)				(7.50)	7 70	6.
					10.31	(1.98)	3.82	2.48	1.06	(1.59)	1.19	.65
ÇI					[12.9]	;	(3.9)	[2.6]				
A					15.69	(1.93)	4.19	2.84	1.06	1.69	1.29	.65
K						1.65	4.33	2.72	.94	1.72	1.27	-59
Ca						3.57	6.09	4.21	1.42	2.19	1.57	18.
Sc						5.13	6.57	4.59	1.66	2.40		
Ti						5.95	6.80	4.76	1.60	2.32		
V						6.68	7.04	4.92		2.35		
Cr						8.24	7.28	5.05		2.43		
Mn						5.76	7.40	5.09	1.64	2.54		
Fe						6.98	7.83	5.45	1.63	2.55		
Co						7.82	8.25	5.33		2.62		
Ni								0 00	1.65			
Cu						8.63	8.65	5.25		2.55		
						10.41	9.02	5.58	1.65	2.69		
Zn							9.36	5.30	1.66	2.72	1.80	.89
Ga								5.98	1.68	2.92	1.89	.94
Ge								7.89	1.87	3.26		1.04
As								[9.6]	; · · ;	(3.4)		;
Se								[9.4]	(1.9)	(3.4)		(0.8)
Br								[11.4]		(3.6)		
Kr								[13.9]		(3.9)		
Rb									1.76	4.13	2.60	.88
Sr									3.42	5.65	3.82	1.34
Yt									5.04	6.40	4.55	1.61
									0 1		, 00	

ENERGY OF BINDING OF AN ELECTRON-SINGLY IONIZED ATOMS

(Adapted from Henry Norris Russell, Astrophys. Journ., 70, 1929.)

This table companions the preceding one. A number of entries have been derived in various ways and may be in error by .5 volt; Li +, 3-4 v. The lines of a diagram made from the data of these two tables, with atomic numbers as abscissae and energy of binding as ordinates, a separate line for each state, are strikingly similar. The familiar "displacement law" applies not only to the multiplicities present in the spectrum, but also to the energy relations—the spark spectrum for any element resembling in both respects that of the arc of the preceding element.

The energy of binding, for a given state, increases with the atomic number. For the s states the increase is steady; for the p and d states it is interrupted by fluctuations remark-

ably similar.

The increase of energy is most rapid (1) when electrons of a given type are building up a complete shell; (2) when s electrons are being added. The fluctuations are most conspicuous when a shell is half full (half of the 6p electrons in N, P, As, O⁺, S⁺, and of the 10d electrons in Cr, Mn^+).

Energy of Binding of an Electron-Singly Ionized Atoms

El.	IS	28	2 p	3s	3Р	3d	4 s	4P	4d	5s	5p	5d
He ⁺	54.16	13.54	13.54	6.02	6.02	6.02	3.38	3.38	3.38	2.16	2.16	2.16
Li+	(80)	16.58	14.70	6.83	6.24	6.03	3.72	3.48	3.39	2.33	2.22	2.17
Be ⁺		18.13	14.18	7.25	6.27	6.03	3.88	3.47	3.40	2.41	2.2 I	2.17
B+		23	20.41	9.00	7.27	6.43	4.52		3.56			
C+			24.28	9.90	8.01	6.31	4.87	4.22	3.52	2.85		2.24
N+			29.50	11.10	8.93	6.45	5.22		3.54	3.04		
O+			34.94	12.09	9.76	6.37	5.44			3.10		
F+			[34.9]	(13.1)								
Ne ⁺			40.89	13.74	10.40	6.33	5.98					
Na ⁺			47.02	14.31	10.83	6.20	6.18					
Mg ⁺				14.97	10.56	6.13	6.33	5.01	3.34	3.51	2.94	2.20
A1 ⁺				18.74	14.12	8.19	7.48	5.73	5.15	3.92	3.22	3.34
Si ⁺					16.27	6.46	8.24	6.25	3.80	4.18	3.44	2.40
P+					19.81	6.95	9.11	7.08	4.07	4.58		
S ⁺					23.32	9.70	9.80	7.51	4.54	4.75		
Ci+					[23.9]	10.25	10.56	7.98	4.79	5.08		
A+					27.62	11.23	11.00	8.42	4.90	5.16		
K ⁺					31.68	11.50	11.62	9.07	5.43	5.08		
Ca+						10.14	11.82	8.72	4.80	5.37	4.35	2.84
Sc ⁺						12.19	12.80	9.58	5.40	5.68		
Ti ⁺						13.45	13.60	9.98	5.55	5.90		
V+						(14.7)	(14.4)	(10.3)				
Cr+						` '	(15.1)	(10.7)				
Mn ⁺						13.93	15.70	10.91	5.85	6.50		
Fe ⁺							(16.5)	(11.7)				
Co+						\ '	(16.8)	(11.7)				
Ni ⁺						18.19	17.15	11.75		7.20		
Cu ⁺						20.34	17.62	12.13		6.99		
Zn+							17.89	11.79	5.92	6.97	5.40	3.35
Ga ⁺							(18.8)	14.00	5.68	7.14	6 0	
Ge ⁺								15.98	6.00	8.28	6.21	3.62

FIRST IONIZATION POTENTIALS OF THE ELEMENTS

(Russell, Astrophys. Journ., 70, 1929; Mt. Wilson Contr. 383.)

In discussing the relative strength of the arc and enhanced lines a knowledge of ionization potentials is necessary. These are implicitly contained in Tables 604 and 605. Generally the energy difference between the normal states of the neutral atom and ion is required; complications arise in the Fe group. Table 604 gives the energy difference between the 4s state of the ion (dn-2s) and the various states of the neutral atom, of which we must evidently choose the lowest, whether it be $4s(d^{n-2}s^2)$ or $3d(d^{n-1}s)$. Sometimes the $3d(d^{n-1})$ state of the ion is the lowest, and the values of Table 604 must be corrected. For the 2nd ionizations no such complication arises. Both tables include heavier elements for which data are at hand. Each is divided into two sections, corresponding to the "building on" of shells of s and d, or of p electrons. He, Be, Mg are put on line with Zn, Cd, Hg, because their spectra resemble those of the latter much more closely than those for Ca, Sr, Ba. The line below La marks the position of the rare earths, where 14 4f electrons are added which are listed separately.

While each shell of outer electrons is being completed, the ionization potential increases (minor irregularities occur for space quantization or interchange of s and d configurations. Maximum occurs when a shell is filled). The drop after the filling of an s shell in Be and Mg is between I and 2 volts; after completion of the combined s and d shells in Zn, Cd, Hg, it is 3 or 4 volts, while that following the completion of a p shell in the inert gases is much greater—8 to 16 volts. For the 2nd ionization, these discontinuities are greater in absolute value, but are a smaller fraction of the potentials themselves. (Continued on next page.)

First Ionization Potentials of the Elements

Н	13.59	Li	5.36	Na	5.11	K Ca Sc	4·33 6.09 6.57	Rb Sr Yt	4.13 5.65 6.5	Cs Ba La	3.86 5.19 5.5	Ce Pr Nd	6.9 5.8 6.3
٠						Ti V Cr Mn Fe Co	6.80 6.76 6.74 7.40 7.83 7.81 7.64	Zr Cb Mo Ma Ru Rh Pd	7.35 7.7 7.7 8.28	Hf Ta W Re Os Ir Pt	8.I 9.2	II Sa Eu Gd Tb Dy Ho	6.6 6.7 6.7 6.8
Не	24.48	Ве	9.29	Mg	7.61	Cu Zn	7.69 9.36	Ag Cd	7·33 8.95	Au Hg	9.20	Er Tu	
		B C N O F Ne	8.28 11.22 14.50 13.56 [17.3] 21.47	Al Si P S Cl A	5.95 8.14 [10.5] 10.31 [12.8] 15.69	Ga Ge As Se Br Kr	5.98 7.89 [9.6] [9.4] [11.4] [13.9]	In Sn Sb Te I Xe	5.76 7.37 8.35 [8.7] [10.2] [12.1]	Tl Pb Bi Po Rn	6.08 7.38 7.25	Yb Lu	7.1

TABLE 607

SECOND IONIZATION POTENTIALS OF THE ELEMENTS

(Russell, Astrophys. Journ., 70, 1929, Mt. Wilson Contr. 383.)
(Continued from previous page)

The general character of the spectra of most of the heavier elements can be deduced from Tables 604 and 605. For the 2nd long period (Rb-Xe) the ionization potentials are nearly the same as for homologous elements in the first, but average a little lower. The same is true, in general, regarding the other energy levels, so that the arc and spark spectra of these elements show high- and low-excitation lines in the same regions for those of the first long period, but on the whole, a little farther to the red.

At the start of the next period, we find the lowest-known ionization potentials (Cs and Ba + for the second stage), which remain lower than in other periods until the rare-earth group begins. In these elements the outer electrons are two 6s, one 5d, and from one to 14 4f electrons, the ionization potential slowly rising as the 4f group is built up. For the earlier members, the lines of the ionized atom are the main features of the arc spectrum; those of the neutral atom are best brought out in the furnace; first ionization potentials are very low. The strong lines of the first spark spectrum shift towards the violet with increasing atomic numbers, practically proving that the second ionization potential also increases. The number of atomic-energy states should be much greater among the rare earths than for other elements. Their spectra are very intricate.

The shell of 4f electrons completed, the ionization potential ceases to have any important effect on the properties of the elements; note their chemical behavior and what is known of their spectra (Hf+,W). A considerable fall in the ionization potential should occur between the last rare earth, Lu, and Hf, and a gradual rise to Au and Hg. For Au and Hg ionization is more difficult than for the homologous elements in the preceding periods.

Second Ionization Potentials

He ⁺ 54.16	Be ⁺ 18.13	Mg ⁺ 14.97	Ca ⁺ Sc ⁺ Ti ⁺ V ⁺ Cr ⁺ Mn ⁺ Fe ⁺ Co ⁺ Ni ⁺	11.82 12.80 13.60 (14.7) (16.6) 15.70 (16.5) (17.2) 18.19 20.34	Sr ⁺ Yt ⁺ Zr ⁺ Cb ⁺ Mo ⁺ Ma ⁺ Ru ⁺ Rh ⁺ Ag ⁺	10.98 12.3 19.8 21.9	Ba ⁺ La ⁺ Hf ⁺ Ta ⁺ W ⁺ Re ⁺ Os ⁺ Ir ⁺ Pt ⁺ Au ⁺	9.96	Ra ⁺ Ac ⁺ Th ⁺ Pa ⁺ U ⁺	10.2
Li+ (80)	B ⁺ (23) C ⁺ 24.28 N ⁺ 29.50 O ⁺ 34.94 F ⁺ [34.9] Ne ⁺ 40.89 Na ⁺ 47.02	Al ⁺ 18.74 Si ⁺ 16.27 P ⁺ 19.81 S ⁺ 23.32 Cl ⁺ [23.9] A ⁺ 27.62 K ⁺ 31.68	Zn+	17.89 (18.8)	Sn+ Sb+ Te+ I+ Xe+ Cs+	14.5	Hg ⁺ Tl ⁺ Pb ⁺ Bi ⁺ Po ⁺ Rn ⁺	14.96		

TABLE 608.—Radiation Units

Radio, Radiation, Colorimetry, Spectroscopy,	X rays,	γ rays,
meter micron millimicron Angstrom 1	milliangstrom	microangstrom

Units		I	owers-o	f-10 equ	ivalent c	of units l	isted in o	column 1	U
Name	Symbol	μ	mμ	A	mA	μA	c.g.s. unit cm	mm	m
Micron. Millimicron. Angstrom. Milliangstrom. Microangstrom.	μ mμ A mA μA	1 10 ⁻³ 10 ⁻⁴ 10 ⁻⁷ 10 ⁻¹⁰	IO ³ I IO ⁻¹ IO ⁻⁴ IO ⁻⁷	10-6 10-3 10 10	10 ⁷ 10 ⁴ 10 ³ 1	10 ¹⁰ 10 ⁷ 10 ⁶ 10 ³	IO-4 IO-7 IO-8 IO-11 IO-14	IO ⁻³ IO ⁻⁶ IO ⁻⁷ IO ⁻¹⁰ IO ⁻¹³	IO-6 IO-9 IO-13 IO-16

TABLE 609.—Spectrum Ranges of Various Radiations

TABLE 610.—The Mechanical Effects of Radiation

(Jeans, Nature, 118, 1926, taken from Bull. 80, Nat. Res. Council, 1931.)

Wave lengths, cm	Nature of radiation	Effect on atom	Temperature (degrees absolute)	Where found
$ \begin{array}{c} 7500 \times 10^{-8} \\ 3750 \times 10^{-8} \end{array} $	Visible light	Disturbs outermost electrons.	3880 to 7700	Stellar atmospheres.
250×10 ⁻⁸	X rays	Disturb inner electrons.	115,000 to 29,000,000	Stellar interiors.
5×10-9	Soft γ rays	Strip off all or nearly all electrons.	58,000,000 to 290,000,000	Central regions of dense stars.
4×10 ⁻¹⁰	γ rays of RaB	Disturb nuclear arrangement.	720,000,000	3
5×10-11	Hardest γ rays		58×10^{8}	
4.5×10 ⁻¹²	?	Building of He atom out of H.	64×109	
2×10 ⁻¹²	Highly penetrating	Disintegrates nuclei.	15×10 ¹⁰	
1.3×10 ⁻¹³	}	Annihilation or creation of proton and accompanying electron.		

TABLE 611

NORMAL SERIES RELATIONS IN ATOMIC SPECTRA

(From manuscript by Henry Norris Russell, 1932.)

Every spectral line is believed to be emitted (or absorbed) in connection with the transition of an atom between two definite (quantized) states, of different energy-content—the frequency of the emitted or absorbed radiation being exactly proportional to the change of energy. The wave number (or frequency) of the line may therefore be expressed as the difference of two *spectroscopic terms* which measure, in suitable units, the energies of the initial and final states. It is customary to use in place of true frequency (sec.⁻¹) the wave number (cm⁻¹), i. e., the number of waves in one centimeter in a vacuum. All quantities of the nature of frequency or energy are most conveniently expressed in cm⁻¹ units. The multiplication of such values by $c = 2.99796 \times 10^{-10}$ cm. sec.⁻¹) gives the true frequency in sec.⁻¹ and by $hc = 1.9658 \times 10^{-10}$ erg cm) gives the true energy in ergs. Combinations between these terms occur according to definite laws, which enable us to classify them into systems, each containing a number of series of terms, which are usually multiple. The energy is often measured in "electron volts," one of which = 8106 cm^{-1} .

Terms, and the corresponding energies, may be measured either *upward* from the lowest energy state of the atom (in a given degree of ionization), or *downward* from a series limit (see below).

Series of terms are found in many spectra which satisfy the relation

$$y = s^2 R/(n+x)^2$$

Here y is the term-value, measured downward from the appropriate limit; z=1, 2, 3... for neutral, singly, doubly, ionized atoms; R is the Rydberg constant, and n a "running" integer, which changes by I from one member of the series to the next. The "residual" x is often nearly constant (Rydberg's formula). Ritz's formula $x=\mu+\alpha y$ (μ , α , constants) is usually a good approximation though not rigorous.

In the simplest spectra (e. g., Na, Ca⁺) all the series have the same limit (corresponding to an isolated lowest energy state of the atom in its next higher degree of ionization) and long series of terms are known. But in most spectra there are many limits, corresponding to different states of the more highly ionized atom: few members of any given series are observed, and these perturb one another so that the Ritz formula no longer holds good.¹ The interpretation of these spectra depends upon the combination relations, formulated mainly by Sommerfeld and Landé, and the relations between electron configurations and term structure which have been put into definitive form by Hund.² These relations may be summarized as follows:

(a) The terms (or energy levels) of any given atom fall into two main groups of different parity (odd and even). Transitions producing spectral lines normally occur only between an odd and an even term. Those between terms of the same parity are "forbidden" but may occur under exceptional circumstances (as in gaseous nebulae).

(b) Terms of the same parity fall into systems—singlets, doublets, triplets, etc., characterized by the multiplicity R—the maximum number of components which a term may possess.

(c) In each system are found terms of various types denoted by the letters S, P, D, F, G, H, I.... The number of components increases along the series 1, 3, 5, but stops short at the maximum R (whether odd or even) characteristic of the system. The successive terms of a given series are always of the same multiplicity, type, and parity: but other terms of the same sort may be interpolated among them.

² Linienspektren der Elemente, 1927.

¹ Compare Shenstone and Russell, Phys. Rev., 39, 415, 1932.

NORMAL SERIES RELATIONS IN ATOMIC SPECTRA (continued)

(d) The components of a term are characterized by inner quantum numbers J, and the terms themselves by quantum numbers L, according to the following scheme.

Type L	L			Values of J for						
		Singlets	Doublets	Triplets	Quartets	Quintets	Septets			
S P D F	0 1 2 3 4	0 I 2 3 4	1/2 1/2 1 1/2 1 1/2 2 1/2 2 1/2 3 1/2 4 1/2	I O I 2 I 2 3 2 3 4 3 4 5	1½ ½ 1½ 2½ ½ 1½ 2½ 3½ ½ 1½ 2½ 3½ 4½ 2½ 3½ 4½ 5½	2 I 2 3 O I 2 3 4 I 2 3 4 5 2 3 4 5 6	2½ 1½ 2½ 3½ ½ 1½ 2½ 3½ 4½ ½ 1½ 2½ 3½ 4½ 5½ 1½ 2½ 3½ 4½ 5½			

TABLE 612 .- Inner Quantum Numbers

Line-producing combinations occur only between components for which the difference ΔJ is o or $\pm \tau$. The combination of two multiple terms thus gives rise to a group of lines called a *multiplet*.

- (e) In such a group the lines for which $\Delta J = \Delta L$ are the strongest (often called the diagonal lines) and the line for which the J's are largest is the strongest of these. These intensity relations (which have been calculated in detail) are of great practical importance. The successive separations of the components of a multiple term are normally proportional to the larger value of J involved; (Landé's interval rule). The factor of proportionality is different for different terms. It increases rapidly with the atomic number Z, and is roughly proportional to Z^2 for similar elements, such as Ca, Sr, Ba. The character of the Zeeman effect for any line is completely defined by the numbers R, L, J, for the two levels involved. It is usually possible to work backward from a completely resolved Zeeman pattern and find the nature of the terms involved—a great aid in the analysis of complex spectra.
- (f) In the simplest spectra, all the terms for which L is even or odd are themselves even or odd, so that $\Delta L = \pm i$ for all lines. But in complex spectra all values of L appear among both odd and even terms, and transitions for which $\Delta L = 0$ also give strong multiplets. Transitions for which $\Delta L = \pm 2$, and a few for which it is ± 3 , are known, but usually give faint lines. Lines for $\Delta J = \pm 2$ are however extremely rare (except in strong magnetic fields).
- (g) In arc spectra—that is, the spectra of neutral atoms—the multiplicities of the various systems are always even if the atomic number is odd, and vice versa, so that odd and even multiplicities alternate. The spectrum of a singly ionized atom is similar in general structure to that of the element of next preceding atomic number; of a doubly ionized atom to the element preceding this, and so on (the displacement law). In consequence the alternation of odd and even multiplicities is found for successive ionizations of the same element.
- (h) The maximum multiplicity in arc spectra is 2 for elements in which there is but one electron outside "completed shells" (Li, Na, K, Rb, Cs; also B, Al, Ga, In, Tl). From these elements it increases by steps of a unit till the "shell" is half completed and then diminishes in the same way—the maximum values being 5 for O, S, Se (Te) and 8 for Mn, (Ma) Re. (Parentheses denote predictions for incompletely analyzed spectra.) In the rare earths it probably rises to 11. When the maximum multiplicity increases with

NORMAL SERIES RELATIONS IN ATOMIC SPECTRA (continued)

increasing atomic number the spectroscopic terms have the components with small J-values the lowest. Beyond the maximum they are "inverted" with the large J's low. The higher the maximum multiplicity the greater, generally speaking, is the complexity of the spectrum. The terms of lowest energy are even in all arc spectra except those of B, N, F, and their homologues, and of some of the rare earths.

- (i) Inter-system combinations between terms of different multiplicities are common when $\Delta R = 2$, and a few are known for which $\Delta R = 4$. They are faint for elements of small atomic number, but often strong when this is large. Deviations from the interval and intensity rules, and the usual rules for the Zeeman effect, also become great in this case. In extreme instances classification by term-types is hardly practicable, though parity and inner-quantum number remain definite.
- (j) Arc lines originating in the lowest energy-level in the atom are strong at low temperatures, and usually easily reversed, and are strengthened in the sun-spot spectrum; while those arising from high levels do not reverse, are produced only at higher temperatures, and are little affected, or even weakened, in the spots. The gradation of these properties follows the energy-levels so closely that the temperature classification of the lines ranks with the frequency-differences and the Zeeman effect as a fundamental guide in the interpretation of many-lined spectra.

The raics ultimes, which are the last to disappear when the quantity of the element is diminished, are strong lines arising from the lowest level (or occasionally the next).

Resonance lines are those corresponding to the transition from the lowest level to the next lowest with which it can combine. Intersystem combinations, which are usually faint in the arc and spark, very rarely appear as raics ultimes, although they are often very strong in the furnace, and important resonance lines.

In spark spectra, lines arising from the lowest levels are strong in the arc, sometimes appear in the furnace, and tend to reverse in the spark, while those from high levels are faint in the arc (if present) and are usually diffuse in the spark.

TABLE 613.—Spectroscopic Notation

Until recently great diversity has prevailed, but an informal committee of American spectroscopists, after extensive correspondence with a large number of workers here and abroad, have suggested a notation which has been generally adopted.

The successive spectra of an element are denoted by Roman numberals, e. g., Ti I, Ti II, Ti III for the spectra of neutral, singly, and doubly ionized titanium. (Lines of Rb IX have been identified.)

The type of term is denoted by letters, corresponding to the quantum numbers L of Hund's theory as follows:

(Values of L greater than 6 have not yet been met with, but are anticipated among the rare earths.)

The multiplicity is denoted by a superscript at the left 1, 2... for singlet, doublet terms. The inner quantum number is used as a subscript at the right, and the parity indicated by superscript ° at the right for odd terms e. g., ${}^4P_{23}$ ° read "quartet P odd $2\frac{1}{2}$ ".

¹ Phys. Rev., 33, 900, 1929.

NORMAL SERIES RELATIONS IN ATOMIC SPECTRA (continued)

Terms of the same sort are distinguished by prefixing a lower case letter— a^3D , b^3D , etc. Lines are represented as the difference of two terms—the lower one coming first, e.g., $a^3D_2 - y^3F_2^{\circ}$.

It is recommended that the lowest terms in the spectrum, and others of the same type, multiplicity, and parity be lettered a, b, c—beginning with the lowest. Terms of the opposite parity should be lettered z, y, x—beginning with the lowest. In this way all resonance lines will be designated as a (-z).

In most spectra there is a group of low metastable terms of the same parity as the lowest term, separated by a considerable interval from higher terms of the same parity. The letters a, b, c, d should be reserved for the low terms and the high terms should begin uniformly with e.

In a good many spectra, energy levels have been detected whose reality is proved by their combinations, but which can not (at present) be fitted definitely into the scheme of multiple terms. Such levels are to be denoted by Arabic numbers (beginning at the lowest level). It can always be told whether such a level is odd or even, and the inner quantum number can usually, and the multiplicity sometimes be assigned. The corresponding indices are then added to the number, e.g., *233.*.

This notation suffices for the formal description of even the most complex spectra. A further analysis giving the electron configurations responsible for each term should be made so far as possible. Following Hund the individual electrons in an atom may be defined by two quantum numbers, "azimuthal" 1 and "total" n. The latter is denoted by a numerical prefix, the former by the letters s, p, d, ... as follows:

TABLE 614.—Comparison Azimuthal and Bohr's Quantum Numbers

Letter		s	p	đ	f
Azimuthal quantum number	1	0	I	2	3
Bohr's quantum number		I	2	3	4

A 6d electron (for example) has n=6, l=2. This is exactly equivalent to Bohr's notation 6s—the subscript by the value of k. Similarly 4p=4s, 5s=5i. (Note that n = 1 + i.)

The spin of the electron s, being always $\frac{1}{2}$, need not be specified.

The number of electrons of a given type in an atom is represented by an exponent, e.g., 3d5.

The quantities s and 1 are vectors, of the dimensions of angular momentum. By space quantization they combine to give the vectors S, L, and J which define the spectroscopic properties of the energy levels. The multiplicity R = S + I. The details are discussed in Hund's book. The total quantum numbers n are not vectors and do not give a resultant.

A complete specification of an electron configuration would include all the inner electrons—the normal state of iron, for example is 1s²2s²2p³3s²3p³3d⁴4s². For ordinary spectroscopic purposes the complete shells may be omitted, reducing the foregoing to 3d⁴4s². For brevity the total quantum numbers may be omitted when their values are the lowest which the electron can have without belonging to already complete shells. For example, for spectra from K I to Zn I, and Ca II to Ga II, these electrons are 4s, 4p, 3d, 4f. The normal state of Fe I is then represented by d⁵s² ⁵D₄ and that of O II by s²p³ ⁴S₂⅓•

Odd and even terms are those in which the sum of the l's for all electrons is odd or even; i.e., in which the number of p or f electrons together is odd or even. Completed shells always give an even sum and may be disregarded.

NORMAL SERIES RELATIONS IN ATOMIC SPECTRA (concluded)

Series of terms arise from configurations in which one electron, keeping the same value of l, has successively higher values of n, the total quantum number. A configuration such as 3d4s4p theoretically belongs therefore to three different series in which either the d, the s, or the p electron takes higher total quantum numbers. In practice this complication is rare as there is almost always one electron which is more easily detached than the others, and is therefore the one to take the higher quantum numbers and give the series. An electron whose total quantum number is higher than those of the electrons discussed in the last section may always be regarded as the most easily detached, as may also one belonging to a group which is not represented in the configurations giving the low terms of the spectrum.

The limiting configuration (i.e., the one obtained by the removal of the electron which takes successively higher values of n to give the series) usually gives multiple terms. Each separate level of these terms is the limit of certain sets of the individual levels of the multiple terms converging to the limit. The configuration of the limit is to be represented as above, followed in parentheses by the notation for the particular type of term which is the limit for the series under consideration, than by the "running" electron, then by the notation for the term (or particular level) given by the whole configuration. For instance the s²p³ configuration of O II gives 'S°, 'D° and 'P° terms. If we add to this one np electron to get terms of O I the 'S° term gives 'P and 'P, the 'D° gives 'P, 'D, 'P, 'D, 'F and the 'P° gives 'S, 'P, 'D, 'S, 'P, 'D terms. Thus, theoretically, the s²p³np configuration gives three 'P terms, two 'D terms, two 'P terms and two 'D terms. For distinguishing between them it is most convenient to use the notation suggested above. The three P terms would be written s²p³('S°)np³P, s²p³('D°)np³P, and s²p³('P°)np³P.

The notation here described may be considerably simplified for many of the simpler spectra. The abbreviations employed should in all cases be clearly explained by the author.

TABLE 615 .- Comparison of Notations

Among the earlier systems of notation which are frequently met with are the following:

Even terms	S	P'	D	F'	G
Odd terms	S'	P	D'	F	G'

Adopted notation	Fowler	Paschen-Götze
¹ S ₀	S	S
$^{1}P_{1}$	P	P
$^{1}\mathrm{D}_{2}$	D	D
$^{1}\mathrm{F}_{3}$	F	F
² S ₁	a	s
${}^{2}P_{11} {}^{2}P_{1}$	π_1 π_2	$p_1 p_2$
$^{2}D_{^{2}\frac{1}{2}}^{^{2}} \ ^{2}D_{^{1}\frac{1}{2}}^{^{2}}$	δ_1 δ'	$d_1 d_2$
${}^{2}\mathrm{F}_{^{3}\frac{2}{1}}^{^{2}}{}^{^{2}}\mathrm{F}_{^{2}\frac{2}{1}}^{^{2}}$	$\phi_1 \not o'$	f_1 f_2
³ S ₁	S	s
${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{0}$	P ₁ P ₂ P ₃	p ₁ p ₂ p ₃
$^{3}\mathrm{D}_{3}$ $^{3}\mathrm{D}_{2}$ $^{3}\mathrm{D}_{1}$	d d' d"	$d_1 d_2 d_3$
${}^{3}F_{4}$ ${}^{3}F_{3}$ ${}^{3}F_{2}$	f f' f"	f_1 f_2 f_3

As regards the total quantum numbers Fowler usually designates the lowest members of the series by 1s, 1p, 2d, 3f and Paschen-Götze by 1s, 2p, 3d, etc.

The current notation uses Bohr's values which differ from element to element: thus the lowest term in Li is 2°S, in Na 3°S, in K 4°S, in Rb 5°S, and in Cs 6°S.

ULTIMATE SPECTRUM LINES AND RAIES ULTIMES*

(See p. 508 for explanation.)
(Selected by permission from I. C. T., 5, 322, Meggers.)

			CI	##04 F4	⁵ S ₂ – ⁵ P ₁	La II	4123.23	3D2-3F3
ΑI	, , , , ,	$-p_2$	Cr I		${}^{5}S_{2}-{}^{5}P_{2}$	Li I	3232.67	${}^{2}S_{1}-{}^{2}P_{1,2}$
	7067.22 S ₅	-p ₃			5S2-5P3		6707.86	${}^{2}S_{1}-{}^{2}P_{1,2}$
Λ Ι	7503.87 S ₂ 3280.67 ² S	$-p_1$ $S_1-^2P_2$	Cs I	1555 2	${}^{2}S_{1}-{}^{2}P_{2}$	Lu I	4518.54	- 1
Ag I	3382.89 25	$S_1^1 - {}^2P_1^2$		4593.2	${}^{2}S_{1}-{}^{2}P_{1}$	Lu II	3397.02	1
Al I	2082 16 21	2,-2D.	Cu I	3247.55	${}^{2}S_{1}-{}^{2}P_{2}$		3472.49	- 1
11111	3092.72 ² I	$P_2^{-2}D_3$ $P_2^{-2}D_2$ $P_1^{-2}S_1$		3273.96	${}^{2}S_{1}-{}^{2}P_{1}$	Ma I	3554.43	³ P ₀ - ³ D ₁
	3092.85 ² I	$P_2 - 2D_2$	Dy I	4000.50		Mg I	3829.36 3832.31	³ P ₁ - ³ D ₂
	3944.03 ² I 3961.54 ² I	$P_1 = {}^2S_1$		4046.00			3838.29	³ P ₂ - ³ D ₃
		$P_2 - 2S_1$		4077.98 4167.99		Mn I	4030.76	6S3-6P4
BII	3452.33	P ₂ – ³ D ₃		4211.74			4033.07	6S3-6P3
Ba I	5424.63	$P_1 - {}^3D_2$	Er I	3499.12			4034.49	6S ₃ -6P ₂
	5535.53	$S_0^{-1}P_1$		3692.65		Mo I	3798.26	⁵ S ₂ - ⁵ P ₃
	E777 7 31	P ₀ -3D ₁		3906.34			3864.12	⁵ S ₂ - ⁵ P ₃
Ba II	4554.04	S_1 - 2P_2	Eu I	4129.72		NT T	3902.96	⁵ S ₂ - ⁵ P ₁
	4934.09	S_1 - 2P_1	T. T	4205.03	⁴ P ₃ – ⁴ D ₄	ΝI	4099.96 4109.94	² P ₁ - ² D ₂ ² P ₂ - ² D ₃
Be I	3321.01 3	$P_0 = {}^3S_1$	FΙ	6856.01	${}^{4}P_{3} - {}^{4}D_{4}$ ${}^{4}P_{2} - {}^{4}D_{3}$	NII	5666.6	${}^{3}P_{1}^{-3}D_{2}^{3}$
	3321.09	P_1 - 3S_1	Fe I	6902.46 3719.94	$^{5}D_{4}-^{5}F_{5}$	11 11	5675.9	$^{3}P_{0}-^{3}D_{1}$
		P_2-3S_1	rei		5D ₃ -5F ₄		5679.5	³ P ₂ - ³ D ₃
Be II		$S_1^{-2}P_2$ $S_1^{-2}P_1$		3737.14 3745.56	⁵ D ₂ - ⁵ F ₃	NIII	4097.3	${}^{2}P_{1}$ – ${}^{2}S_{1}$ ${}^{2}P_{2}$ – ${}^{2}S_{1}$
Bi I		$S_1 = 1$ $S_2 = 4P_1$		3748.26	5D1-5F2		4103.4	² P ₂ – ² S ₁
	?)4704.83			3745.90	⁵ D ₀ - ⁵ F ₁	Na I	3302.34	${}^{2}S_{1} - {}^{2}P_{2}$
D:	4785.48		Ga I	4033.01 4172.05	² P ₁ - ² S ₁		3302.94 5889.97	${}^{2}S_{1}^{-2}P_{1}^{2}$ ${}^{2}S_{1}^{-2}P_{2}^{2}$
	4816.72				${}^{2}P_{2}-{}^{2}S_{1}$		5895.93	${}_{2}S_{1}^{1} - {}_{2}P_{1}^{2}$
CII	4267.02 2	$D_2-^2F_3$	Gd I	3646.19		Nd I	3951.15	
	4267.27 2	2D ₃ -2F ₄	Co I	3768.40 3039.08	¹ D ₂ – ¹ P ₁	1101	4177.34	
Ca I	4226.73	¹ S ₀ - ¹ P ₁ ³ P ₀ - ³ D ₁	Ge I	3269.49	$^{1}\mathrm{D}_{2}^{2}$ $^{3}\mathrm{P}_{1}^{1}$		4303.61	
1	4454.78	$^{3}P_{1}-^{3}D_{1}$		4226.61	${}^{1}S_{0}-{}^{1}P_{1}$	Ne I	5400.56	s ₄ -p ₁
	4456 62 3	3P3D.	ΗI	6562.79	$R(\frac{1}{2} - \frac{1}{3})$		5832.49	s ₂ -p ₁
Ca II	3933.67	${}^{2}S_{1}^{2}-{}^{2}P_{2}$		4861.33	$R(\frac{1}{2}2-\frac{1}{4}2)$	3.77 T	6402.25	$^{s_5-p_9}_{^3D_3-^3F_4}$
Ca 11	3068.48	${}^{2}S_{1}-{}^{2}P_{1}$	He I	3888.64	${}^{3}S_{1} - {}^{3}P_{2}$ ${}^{3}P_{2} - {}^{3}D_{3}$	Ni I	3414.77	$^{3}D_{2}-^{3}P_{1}$
СЬІ	4058.97	$^6\mathrm{D}_5$ – $^6\mathrm{F}_6$		5875.63	$^{3}P_{2} - ^{3}D_{3}$		3492.97 3515.06	$^{3}D_{2}^{2}-^{3}F_{3}$
<u> </u>		⁶ D ₄ - ⁶ F ₅	He II	4685.81	$4R(\frac{1}{3}2-\frac{1}{4}2)$		3524.54	³ D ₃ - ³ P ₂
li .	4-11 21	⁶ D ₃ − ⁶ F ₄	Hf I	3072.88		Os I	3262.30	
		$^{6}\mathrm{D}_{2}$ $^{6}\mathrm{F}_{3}$ $^{6}\mathrm{D}_{1}$ $^{-6}\mathrm{F}_{2}$	Hf II	4093.17			3267.94	
Ch II	T-01-0	⁵ F ₅ -G ₆	Hg I	3650.15	$^{3}P_{2}-^{3}D_{3}$		3301.56	
СР П	3130.78	⁵ F ₄ – ⁵ G ₅	*** *	3654.83	$^{3}P_{1}-^{3}D_{2}$		3752.54	
l l	3163.37	5F ₃ -5G ₄		3662.88	${}^{3}\mathrm{P}_{0}-{}^{3}\mathrm{D}_{1}$	D1 I	3782.20	³ P ₁ - ³ P ¹ ₁
	3194.95	⁵ F ₂ - ⁵ G ₃	Ho I	3748.19		РЬ I	3639.58	
	3225.47	5F1-5G2	T 7	3891.02			3683.47 4057.83	
Cd I	3403.65	³ P ₀ - ³ D ₁	ΙΙ	5161.2		Pd I	3404.59	3D ₃ -3F ₄
	3466.20	³ P ₁ - ³ D ₂	In I	5464.6 4101.76	${}^{2}P_{1}-{}^{2}S_{1}$		3421.23	$^{3}\mathrm{D}_{2}$ $-^{3}\mathrm{D}_{2}$
Call		$^{3}P_{2}-^{3}D_{3}$	111 1	4511.31	${}^{2}P_{2}^{-2}S_{1}$		3516.95	$^{3}\mathrm{D}_{2}$ $^{-3}\mathrm{P}_{1}$
Ce II	4012.40 4040.76		Ir I	3220.79	-		3609.55	3D2-3F3
	4165.61			3437.05		Y .	3634.68	
	4186.60			3513.67	ac an	Pr I	4062.83	
C1 I	4794.5		ΚI	4044.16			4179.43	
	4810.0		77 7	4047.22		Pt I	3064.71	
	4819.4	4E 4C	Kr I	5570.29		Ra I	4825.94	$^{1}S_{0}-^{1}P_{1}$
Co I	3453.51	4F ₅ -4G ₆	La I	5870.92 5455.11				2S1-2P2
1	3465.79	⁴ F ₅ - ⁴ G ₆ ⁴ F ₄ - ⁴ G ₅	La 1	5930.59	² D ₃ - ² F ₄		4682.20	$^{2}S_{1}-^{2}P_{1}$
Cr I	3529.81 4254.34	${}^{7}S_{3} - {}^{7}P_{4}$		6249.92	100		4201.81	
Cr 1	4254.80	${}^{7}S_{3} - {}^{7}P_{3}$	La II	!:	$^{3}D_{3}-^{3}F_{4}$	Rb I	4215.58	${}^{2}S_{1}-{}^{2}P_{1}$
	4289.73	${}^{7}S_{3}^{3} - {}^{7}P_{2}^{3}$		4077.35	0.0			
	4-55.10	-						

^{*} Printed in bold-face type.

ULTIMATE SPECTRUM LINES AND RAIES ULTIMES *

(Selected by permission from I. C. T., 5, 322, Meggers.)

Raies Ultimes.—The strongest lines of any element (the last to disappear when the quantity present is diminished) usually arise from transitions from the lowest level to middle levels of the same multiplicity and belonging to the same family. Among the various lines in a multiplet, that involving the highest inner quantum number is the most persistent; among transitions to terms of the same family, the term of the greatest azimuthal quantum number has the advantage; and the larger multiplicities are preferred to the smaller. In a few cases, the combination of these influences causes a line originating from a level a little above the lowest to be the most persistent of all.

Rh I	3323.10	⁴ F ₄ − ⁴ G ₅	Та I	3311.14		VI	3102.30	5F ₄ -5G ₅
	3396.82	4F ₅ -4F' ₅		3318.85			3110.71	5F ₃ -5G ₄
	3434.90	4F 5-4G 6		3406.65			3118.38	5F ₂ -5G ₃
	3657.99	${}^{4}F_{4}-{}^{4}D_{3}$	ТЬ I	3509.18			3125.29	5F1-5G2
	3692.35	${}^{4}\mathrm{F}_{5} - {}^{4}\mathrm{D}_{4}$		3561.75		· W I	4008.76	$^{7}S_{3}-^{7}P_{4}$
Ru I	3436.74	5F ₄ -5G ₅		3848.76			4294.62	$^{7}S_{3}-X_{2}$
	3498.95	${}^5{ m F}_{5} - {}^5{ m G}_{6}$		3874.19			4302.12	$^{7}S_{3}-^{5}P_{3}$
	3596.17	${}^5\mathrm{F}_{3}\!\!-\!{}^5\mathrm{G}_{4}$	Th I	3538.75		WII	3613.79	
SI	4694.2	${}^{5}\mathrm{S}_{2} - {}^{5}\mathrm{P}_{3}$		3601.05		Xe I	4500.98	
	4695.5	${}^{5}\mathrm{S}_{2} - {}^{5}\mathrm{P}_{2}$		4019.14			4624.28	
	4696.3	${}^{5}\mathrm{S}_{2}\!\!-\!\!{}^{5}\mathrm{P}_{1}$	Th II	3290.59			4671.23	
Sa I	4390.87		Ti I	3635.47	${}^{3}F_{2}-{}^{3}G_{3}$	Yt I	4643.69	$^{2}D_{2}-^{2}F_{3}$
	4424.35			3642.68	${}^{3}\mathrm{F}_{3}$ $-{}^{3}\mathrm{G}_{4}$		4674.84	$^{2}D_{3}-^{2}F_{4}$
	4434.34			3653.49	${}^{3}F_{4}-{}^{3}G_{5}$	Yt II	3710.30	$^{3}\mathrm{D}_{3}$ $^{-3}\mathrm{F}_{4}$
Sb I	3232.52	${}^{2}\mathrm{P}_{2}^{1}-{}^{2}\mathrm{P}_{1}$		4981.73	${}^{5}F_{5} - {}^{5}G_{6}$		3774.33	$^{3}D_{2}-^{3}F_{3}$
	3267.48	² P' ₇ - ² P ₁		4991.07	${}^{5}\mathrm{F}_{4}$ $-{}^{5}\mathrm{G}_{5}$		3788.69	$^{3}D_{1}-^{3}F_{2}$
Sc I	3907.49	$^{2}\mathrm{D}_{2}$ $^{-2}\mathrm{F}_{3}$		4999.51	${}^{5}F_{3} - {}^{5}G_{4}$	Yb I	3289.37	
	3911.81	$^{2}\mathrm{D}_{3}^{-2}\mathrm{F}_{4}$		5007.21	${}^{5}\mathrm{F}_{2}$ ${}^{-5}\mathrm{G}_{3}$		3694.20	
Sc II		³ D ₃ − ³ F ₄	ent ve	5014.25	${}^{5}F_{1} - {}^{5}G_{2}$		3988.01	
	3630.75	$^{3}\mathrm{D}_{2}-^{3}\mathrm{F}_{3}$	Ti II	3349.03	${}^{4}F_{5} - {}^{4}G_{6}$	Zn I	3282.32	$^{3}P_{0}-^{3}D_{1}$
	3642.81	$^{3}D_{1}$ $^{-3}F_{2}$		3361.22	4F ₄ -4G ₅		3302.6	$^{3}P_{1}-^{3}D_{2}$
Se I	4730.9	⁵ S ₂ - ⁵ P ₃		3372.80	4F ₃ -4G ₄		3344.5	$^{3}P_{2}-^{3}D_{3}$
	4739.1	⁵ S ₂ - ⁵ P ₂	CD1 I	3383.77	4F ₂ -4G ₃	Zr I	3519.61	³F₄−³G₅
0. 1	4742.3	⁵ S ₂ - ⁵ P ₁	Tl I	3775.73	${}^{2}P_{1}-{}^{2}S_{1}$		3547.69	³F₃-³G₄
Si I	3905.52	${}^{1}S_{0} - {}^{1}P_{1}$	m r	5350.47	${}^{2}\mathrm{P}_{2}$ – ${}^{2}\mathrm{S}_{1}$		3601.19	³ F ₂ - ³ G ₃
Sn I	3009.14	³ P ₁ - ³ P' ₁	Tu I	3462.21			4687.80	⁵ F ₅ - ⁵ G ₆
	3034.12	³ P ₁ - ³ P' ₀		3761.34			4710.08	⁵ F ₄ - ⁵ G ₅
	3175.05	³ P ₂ - ³ P' ₁	** 1	3761.91			4739.48	⁵ F ₃ - ⁵ G ₄
	3262.33	$^{1}D_{2}-^{1}P_{1}$	U J	3552.20			4772.31	⁵ F ₂ - ⁵ G ₃
C 7	4524.74	${}^{1}S_{0} - {}^{1}P_{1}$		3672.59		7	4815.62	⁵ F ₁ - ⁵ G ₂
Sr I	4607.34	¹ S ₀ - ¹ P ₁	3.7 T	4241.68	4E 4C	Zr II	3391.98	⁴ F ₅ − ⁴ G ₆
	4832.07	${}^{3}P_{2} - {}^{3}D_{3}$	VI	3183.42	⁴ F ₃ - ⁴ G ₄		3438.23	⁴ F ₄ − ⁴ G ₅
	4872.48	³ P ₁ - ³ D ₂		3183.96	⁴ F ₄ - ⁴ G ₅		3496.21	⁴ F ₃ - ⁴ G ₄
C. II	4962.25	³ P ₀ - ³ D ₁		3184.00	4F ₂ -4G ₃		3572.47	4F ₂ -4G ₃
Sr II		${}^{2}S_{1}-{}^{2}P_{2}$		3185.41	${}^{4}\mathrm{F}_{5} - {}^{4}\mathrm{G}_{6}$			
	4215.52	${}^{2}S_{1}-{}^{2}P_{1}$						
1								

^{*} Printed in bold-face type.

PERSISTENT LINES, ARC SPECTRA

(Taken from Russell, Astrophys. Journ. 70, 11, 1929.)

The most persistent lines of the ultimate lines. In table 616 only those in visible spectrum are given. Often the most persistent line lies in the ultra-violet. When appearing in Table 616 they are in heavy type.

Wave Lengths in I. A.

2S, 2P, 2D, 2P, 4D, 2P, 4D, 2P, 4D, 2P, 4D, 2P, 4D, 4D, 4D, 4D, 4D, 4D, 4D, 4D, 4D, 4D	50-18-18-18-18-18-18-18-18-18-18-18-18-18-	2P_2-2S_1 2P_1-3P_1 3P_3-3P_1 4S_2-4P_1 2P_2-2P_1 2P_2-2P_2 1S_0-1P_1
4825.9		
Ra Ac Th Pa U	: : : :	::::::
*8943.46 *5535.53 *4093.17† 5053.30‡ *3220.79\$	*2427.98 1849.57 *2536.52	*5350.46 2833.07 4057.83 *3067.69
Cs La La Hf Hf Ta W W Re Os	Au Hg	TI Pb :: Bi Po Rn
7947.64 4607.34 4102.38 *3601.18 *4058.99 *3798.26 *3798.95 *3498.95 *3434.90	3034.09 *3280.66 *2288.02 *3261.04	*4511.27 *2863.32 3175.04 *2311.50 1642.5 1295.7
Rb Ku Ku Ku Ku Ku Ku Ku Ku Ku Ku Ku Ku Ku	Ag Cd	Sh Te Te Te Xe
7699.01 4226.73 3911.81 *3653.49 *4379.24 *4254.34 *4230.76 *3581.20 *3581.20	3524.54 *3247.55 *2138.61 3075.88	*4172.06 2709.63 2754.59 1972.0 1960.2 1488.6 1164.9
S C Z Z S S S S S S S S S S S S S S S S	Cu Su	Ga Ge Ge Se Br Kr
*5895.93	*2852.11 4571.10	*3961.54 *2524.12 *2528.52 1787.5 1807.4 1347.2
Na	Mg	A CL
*6707.85	2348.63	*2497.7 1657.01 1658.13 1200.7 1302.25 954.7 735.8
	Be	NHON: CB
1215.7	584.4	
H	Не	

* Recorded by De Gramont (C. R., 171, 1105, 1920) or Meggers and Kiess (Journ. Opt. Soc. Amer., 12, 417, 1926) as rairs ulimes, which actually have been observed to persist in the manner supposed.

† Spectroscopic classification unknown (Meggers, Bur. Standards Journ. Research, 1, 187, 1928).

† 5D₁—SP., Excitation potential.

§ Spectroscopic classification unknown.

PERSISTENT LINES, SPARK SPECTRA TABLE 618

Wave Lengths in I. A.

(Taken from Russell, Astrophys. Journ., 70, 11, 1929.)

25, 2P ₂ 3D ₃ -3F ₄ 4F ₆ -4G ₆ F ₆ -5G ₆ 0D ₆ -6F ₆ 7S ₃ -7P ₄ 0D ₆ -6F ₆ F ₆ -5G ₆ 4F ₆ -5G ₆ 4F ₆ -4G ₆ 3D ₃ -3P ₂	$^{2}S_{1}^{-2}P_{2}^{2}$ $^{1}S_{0}^{-1}P_{1}^{1}$	² P ₂ – ² S ₁ ³ P ¹ ₂ – ³ D ¹ ₃ ⁴ S ¹ ₂ – ⁴ P ¹ ³ P ¹ ₂ – ³ P ³ ² P ₂ – ² P ¹ ² C ₂ – ² P ¹ ² C ₂ – ² P ¹ ² C ₂ – ³ P ² ³
3814.43		
Ra+ Ac+ Th+ Pa+ U+		
*4554.04 *3949.10 *2773.37†	1942.3	*2203.5
Ba ⁺ La ⁺ Hff ⁺ Ta ⁺ W ⁺ Re ⁺ Os ⁺ Ir ⁺ Ptt ⁺	Hg ⁺	Pb ⁺ Bi ⁺ Po ⁺ Rn ⁺
*4077.71 *3710.30 *3391.96 *3094.20 *2816.16	*2265.04 1586.4	1900.05
Sr ⁺ Yt ⁺ Zr ⁺ Cb ⁺ Mo ⁺ Mo ⁺ Ru ⁺ Rh ⁺ Pd ⁺	Cd+ In+	Sn ⁺ Sb ⁺ Te ⁺ I ⁺ Xe ⁺ Cs ⁺
*3933.66 *3613.84 *3383.76 *3093.10 *2576.12 *2576.12 *2576.12 *2576.12	2061.96	1649.27
Ca+ Cr+ Cr+ Co+ Co+ Co+ Cu+	Zn ⁺ Ga ⁺	Ge ⁺ As ⁺ Se ⁺ Br ⁺ Kr ⁺ Rb ⁺
*2795.52	1670.98	1533.55 1542.29 1259.53 1071.03 919.69 612.61
Mg+	AI^{+}	St. P. P. P. P. P. P. P. P. P. P. P. P. P.
*3130.42	1362.46	858.56 1085.70 834.46 606.81 460.72 376.34
Be+	B+	C+ C+ Ne+ Na+ Na+
303.8	(192)‡	
He+	ri+	

* Recorded by De Gramont (C. R., 171, 1105, 1920) or Meggers and Kiess (Journ. Opt. Soc. Amer., 12, 417, 1926) as raies ultimes, which actually have been observed to persist in the manner supposed.

‡ See note for IIf in Table 617,

‡ Not yet observed; estimated by extrapolation of series.

TABLE 619.—Resonance Lines

(LaPorte, Meggers, Journ. Opt. Soc. Amer., 11, 462, 1925.)

An electron jump which involves the lowest term and gives rise to the line of greatest wave length, i. e., the first transition which is connected with emission and requires the least energy for excitation, in spectra where there is no metastable level lying close to the lowest term gives a resonance line.

Z Element		1	Arc	Spark		
L	Element	Terms	λ	Terms	λ	
19	K	² S₁ − ² P₂	7664.94			
37	Rb	01 11	7800.29			
20	Ca	¹S₀ −³P₁	6572.78	² S ₁ - ² P ₂	3933.66	
38	Sr		6892.62		4077.71	
21	Sc	(2D ₃ -4F ₄)	>6413	³D₃ −³F₄	3613.86	
39	Y.		>6933		3710.30	
22	Ti	3F4-5G5	6295.30	4F5-4G6	3349.41	
40	Zr		?		3391.96	
23	V	4F5-6D4, 6G6?	5632.47	5F6 −5G6	3093.10	
41	Cb		3		3094.20	
24	Cr	7S3 −7P4	4254.34	6D ₅ −6F ₆	2835.64	
42	Mo		3798.26		2816.16	
25	Mn	6S3-8P4	5394.68	⁷ S₃ − ⁷ P₄	2576.12	
43 26	Fe	_	5166.29; 4375.93		2382.04	
		$^5\mathrm{D}_4-^7\overline{\mathrm{D}}_6,\ ^7\mathrm{F}_6$		6D₅ −6F6		
44	Ru Co		3		?	
27	CO	4F5-6F6, 6G6		(5F5-5G6)	2388.93	
45 28	Rh		3	(2.0 00)	3	
28	Ni	(3F ₄ -5F ₅ , 5G ₅)		(IE AC)	2416 16	
46	Pd	(°F4 — °F5, °G5)	?	(4F ₅ -4G ₆)	?	

TABLE 620.—Electron Impacts in Gases

(Langmuir, Jones, Rev. Mod. Phys., 2, 233, 1930.)

Probabilities that an electron, while going through gas at 1 mm pressure, 20°C, will collide inelastically, Pk, elastically, Pe, so as to produce 1st excited state, Pr, or so as to ionize Pi

TABLE 621.—Average Life for Various Quantum States of Excited Atoms

Theoretical values of ionized helium (Maxwell, Sugiura, Stack.)

Levels	Average Life $T(n, l,)$ (sec.)	Mean av. life T(n), (sec.)
20, 21 30, 31, 32 40, 41, 42, 43 50, 51, 52, 53, 54 60, 61, 62, 63, —, 65 70, 71, 72, 73, —, 76	$\begin{array}{c} \hline \\ 1.01 \times 10^{-3}, 3.38 \times 10^{-10}, 0.93 \times 10^{-10} \\ 1.46 & ", 7.80 & ", 2.32 \times 10^{-9}, 4.66 \times 10^{-9} \\ 2.2 & ", 1.49 \times 10^{-9}, 4.33 \times 10^{-9}, 8.73 \times 10^{-9}, 1.45 \times 10^{-8} \\ 3.3 & ", 2.44 & ", 7.20 & ", 1.47 \times 10^{-8}, -, 3.91 & " \\ 5.0 & ", 3.65 & ", 1.18 \times 10^{-9}, 2.4 \times 10^{-8}, -, 8.80 & " \\ \end{array}$	1.36 × 10-10 6.4 " 2.13 × 10-9 5.4 × 10-9 1.18 × 10-8 2.24 × 10-8

The values for H are 16 X those for He (Sugiura, 1927, 1929). It is to be noted that the

average life is longer for progressively higher quantum states.

Maxwell 1931 obtains 1.1 ± 0.2 × 10-8 sec. for av. life 6th quantum state (cf. 1.18 × 10-8) given above. Maxwell's qualitative observation on first four lines of 4686 He + series, $4 \geqslant 3$, $5 \geqslant 3$, $6 \geqslant 3$, $7 \geqslant 3$, show definitely the longer life for higher quantum states. Poole (Phys. Rev., 33, 22, 1929) metastable Hg atom (Z^3P_0), max. time 4.2×10^4 sec.

(6.8 mm).

See Ann. Phys., 83, 294, 1927, for early summary, including following:

O spark, 467, 459 $\mu\mu$, 1.53 \times 10-8 sec. Ca spark 3933A, 3968A, 0.65 \times 10-8 sec. O arc, 6158, 4368A, 14.9 "Ca arc 4226A, 3.4 "

Koenig, Ellett. (Phys. Rev., 39, 576, 1932) give for 23P1 state Cd, 2.5 X 10-8 sec.

MOLECULAR CONSTANTS OF DIATOMIC MOLECULES

(From manuscript by E. D. McAlister, 1932.)

Energy levels for molecules can be evaluated from their spectra, just as for atoms. Widely spaced levels in molecules correspond roughly to those known for atoms, are similarly designated (see "Notation for Spectra of Diatomic Molecules," R. S. Mulliken, Phys. Rev., 36, 611, 1930) and are said to be related to the electronic configuration. A system of bands arise from transitions from one (often multiple) electronic configuration to another.

Diatomic molecules have two other sets of levels in addition to the electronic. One is due to the energy of mutual vibration of the two nuclei and the other to the energy of rotation of the molecule as a whole. A distinct set of vibrational levels is associated with each electronic state. The energy difference corresponding to each level of such a set from that of the associated electronic state is obtained (approximately) by giving successive positive integral values to n in the expression $n(\omega_0 - \omega_0 \times n + \ldots)$; x a positive constant. The frequency of vibration (ω) is obtained by differentiating this with respect to n; $\omega = \omega_0 (1 - 2xn + \ldots)$. At the lowest level where the amplitude and energy of vibration are vanishingly small, n = 0 and $\omega = \omega_0$. A transition from one vibrational level to another gives rise to a single band.

A distinct set of rotational levels is associated with each vibrational level. The presence of large numbers of these closely spaced rotational levels gives rise to the many individual lines of the band. The rotational energy, relative to the associated vibrational level is given (approximately) by $Bm^2(1-m^2u^2+\ldots)$; where $u=\frac{2B_0}{\omega_0}$ and m is a parameter which is zero for zero rotation. Usually $BI=h/8\pi^2c=27.70\times 10^{-40}$ g. cm, where I= moment of inertia of the molecule about an axis through its center of mass and perpendicular to the line joining its nuclei. For multiple levels this relation is not accurately true. I varies with the vibrational energy, and becomes I_0 when it is zero; the corresponding nuclear separation is $\gamma_0 = \sqrt{I_0/\mu}$ where $\mu = \frac{m_0 m_1 m_2}{(m_1 + m_2)}$. $m_0 =$ mass of an atom of unit atomic weight = 1.650×10^{-24} g. m_1 , m_2 are the atomic weights of the two atoms composing the molecule.

The heat of dissociation is $D^v = \int_0^{n_0} \omega dn$, where n_0 is the value of n for $\omega = 0$. If the bands can be experimentally followed to $\omega = 0$, D^v can be determined from spectroscopic data. Usually this cannot be done but Birge and Sponer (Phys. Rev., 28, 259, 1926) have found that, for the normal state of certain types of molecules, fairly trustworthy values of D^v can be obtained by assuming $\omega = \omega_0 (1-2 \times n)$ throughout the range n=0 to $n=n_0$; then $D=\omega_0^2/4\omega_0 x$. In the accompanying table D is D^v plus the electronic energy for the particular state in question. Each horizontal line in the table is for one electronic state. The second column labelled energy (volts) is the electronic energy above the normal level which is assumed to have zero electronic energy. The heat of dissociation is tabulated in the same units which is the number of volts potential change an electron must undergo in order to acquire the corresponding energy. One electron volt per molecule $= 2.306 \times 10^4 \text{ g} - \text{cal.}_{15}$ per g-mole $= 8100 \text{ cm}^{-1}$ per molecule. The data in the table are taken from compilations by Birge, Nat. Res. Council Bull. 57, "Molecular Spectra in Gases" and Mulliken, Phys. Rev., 32, 206, 1928, and ibid., 33, 738, 1929, and are calculated with the "old mechanics" formulae.

MOLECULAR CONSTANTS OF DIATOMIC MOLECULES

Molecule	Energy (volts)	(cm × 108)	$I_0 \ ({ m g}\ { m cm}^2 \ { m \times} \ { m io}^{40})$	ω ₀ (cm ⁻¹)	ω ₀ Λ΄ (cm ⁻¹)	Dv (volts)	D (volts)	State
Ag H	o 3.69	1.630 1.665	4.38 4.57	(16 (14				¹ Σ ¹ Σ
Al H	0 2.90 5.51	1.658 1.690 1.65	4.41 4.58		25) 82) 26)			$^{1}\Sigma$ $^{1}\pi$ $^{1}\Sigma$
Au H	0 3·37 4·72	1.54 1.69 1.71	3.93 4.74	2249.4 1630 (15	34.0 79 48)	4·59 1.04	4.59 4.41	1 <u>S</u> 1 <u>S</u> 1 <u>S</u>
Be F	o 4.10			1253 1156	10.2 8.4	4.8 4.9	4.8 9	$^2\Sigma_{^2\pi}$
Ве Н	o 2.48	1.35 1.34		2026 2053				$^2\Sigma \over ^2\pi$
Be O	0 2.62	1.33 1.36		1465 1354	12.7 8.9	6.4 5.2	6.4 7.8	1Σ 1Σ
B ₁₁ O	0 2.91 5.30	1.21 1.36 1.31	15.68 20.03 18.53	1874 1249 1270	11.7 10.6 10.1	9.3 4.6 5.0	9·3 7·5 10·3	$^2\Sigma \atop ^2\pi_i \atop ^2\Sigma$
C ₂	0 2.39	I.31 I.27	17.03 15.84	1630 1773	11.7 19.4	7.0 6.4	7.0 8.8	$\frac{^3\pi}{^3\pi}$
Cd H	o 2.75, 2.88	1.776 1.674	5.201 4.65, 4.59	(13	74)			$^2\Sigma^2\pi_{ m n}$
СН	0 2.86 3.18	I.I3 I.II I.20	1.95 1.90 2.21	(28	806) 806)			$^2\pi_{ extbf{n}}$ $^2\Delta_{ extbf{i}}$ $^2\Sigma$
C N	o 1.78 3.18	1.17 1.23 1.15	14.65 14.14	2056 1729 2144	13.8 13.5 21.3	9.5 6.8 6.7	9.5 8.6 9.9	$^2\Sigma \atop ^2\pi_{{f i}} \atop ^2\Sigma$
СО	o 5.98 7.14	1.15	14.9	2155 1725 1173	12.7 14.5 9	6.4 4.6	11.2 12.4 11.9	$^{1}\Sigma$ $^{3}\pi$ $^{3}\Sigma$ $^{1}\pi$
	7.99 10.35 10.73 11.35	1.12	17.31	2132	17.2 214) 50	2.8	13.5	$^3\Sigma$ $^1\Sigma$ $^1\Sigma$
	11.46				19.8	.6	12.9	$^{1}\Sigma$ $^{1}\pi$
CO +	14.2 16.7 19.8	1.11 1.25 1.17	14.05 17.7 15.4	2197 1550 1698	15.2 14.1 24.3	9.8 7.1 3.7	9.8 9.6 9.3	² Σ ² π i ² Σ

MOLECULAR CONSTANTS OF DIATOMIC MOLECULES

Molecule	Energy (volts)	(cm × 108)		ω ₀ (cm ⁻¹)	$\omega_0 X$ (cm ⁻¹)	Dv (volts)	D (volts)	State
Cu H	0 2.88 5.51	1.471 1.582 1.50	3.544	1903.7 1655.7	37. 3 6 44.63	3.02 1.89	3.02 4.77	$^{1}\Sigma$ $^{1}\Sigma$ $^{1}\pi$
H ₂	0 11.12 11.70	.76 1.55 .97	.480 1.99 .78	4262 1325 2390	113.5 15.9 73	4.42	4.42	$^{1}\Sigma$ $^{1}\Sigma$ $^{3}\pi$
He ₂	0 20.3 20.6 20.9	1.052 1.047 1.071	3.650 3.62 3.784	(173 (179				¹ Σ ¹ Σ ¹ Σ ¹ π
Hg H	0 3.08 3.56 4.18	1.763 1.593 2.02	$ \begin{cases} 5.143 \\ 4.22 \\ 4.18 \end{cases} $	1308 025.7 ⁽¹⁹³ (19	104 (8.7) 43.8 40)	.369 2.90	.369 6.46 }	$^2\Sigma$ $^2\pi_{ m n}$ $^2\Sigma$
Mg H	0 2.38 5.09	1.74 1.70 1.70	4.86 4.62	1462.2 1568.7 (16	31.25 34.75 222)	2.I2 2.I8	2.12 4.56	$^2\Sigma^2\pi_{ m n}^2\pi$
N ₂	0 8.18 8.50 9.35 13.00	1.21 1.15	16.98 15.24	2345 1446 1679 1718 2019	14.4 13.9 13.8 14.4 26.0	3.7 5.7 5.3 1.6	11.7 11.9 14.2 14.6 14.6	$ \begin{array}{c} ^{1}\Sigma \\ ^{3}\Sigma \\ ^{1}\pi \\ ^{3}\pi_{n} \\ ^{3}\pi_{n} \end{array} $
N ₂ +	16.9 20.1	1.12 1.08	14.41 13.35	2187 2392	16.3 22.8	9.1 8	9.1 11	$^2\Sigma \over ^2\Sigma$
NH	o 3.67	1.08 +80.1	1.81					$^3\Sigma$ $^3\pi$
NO	o 5.45 5.60 6.45 6.58	1.15 1.07 1.42	16.29 14.05 24.80	1892 2352 1030 (23 2324	14.4 13 7.5 47) 27	7.9 14 4.4 6.2	7.9 19 10	$^{2}\pi_{ ext{n}}^{ ext{n}} \ ^{2}\Sigma \ ^{2}\pi_{ ext{n}}^{ ext{2}} \ ^{2}\Sigma$
NO+	9.4 21 22							$\frac{1\Sigma}{3\Sigma}$ $\pi(?)$
O_2	0 1.62 6.09	1.21 1.23 1.61	19.2 19.8 34.22	1565 1415 708	11.4 11.9 12.4	5.1	5.1	³ ∑ ¹ ∑ ³ ∑
O ₂ +	13.5 18.7 18.7 20.8			1926 855 1026 1180	16.5 13.7 11.1 17.8	6.9	6.9	$\frac{^{2}\pi_{n}}{^{2}\pi_{n}}$ $\frac{\pi(?)}{\Sigma(?)}$
ОН	0 4.00	.979 1.022	1.500 1.634	(356 3084.7		5·4 3.0	5·4 7·0	$^2\pi_{\mathrm{i}}$ $^2\Sigma$
Zn H	0 2.87	1.608 1.522	4.234 3.78	(15	52)			$^2\Sigma$ $^2\pi_{ m n}$

VARIOUS ATOMIC AND SPECTRUM FUNCTIONS

I. In black body unpolarized radiation the energy transmitted per sec per sq em per unit solid angle per unit frequency band is, by Planck's radiation formula, $K_V = (hv^3/c^2)/(e^{hv/kT}-1)$; per unit wave-length band it is $E_A = (hc^2/a^2)/(e^{hc/kKT}-1)$. The values $hv/kT = 2.82144 \equiv a$ and $hc/\lambda kT = 4.96511 \equiv b$ make K_V and E_A take their maximum values, whence the temperature of the radiation that has its maximum K_V or E_A at a particular frequency or wave length can easily be computed.

frequency or wave length can easily be computed.

2. Electron speed + 1846 12 = speed of a proton having the same energy, with negligible error at low energiaths that the same energy, with negligible error at low energiaths 1.8% low at $v = 3 \times 10^{10}$, low at $v = 3 \times 10^{10}$, low at $v = 3 \times 10^{10}$, and should not be used at all for higher frequencies. For convenience, .6568 \div 1.846 12 = .01622; 20.89 \div 1846 12 = .4863; 66.07 \div 1846 12 = 1.538; .2203 \div 1846 12 = .005129

3. Frequency is used as the fundamental quantity with Birge's values (Physical Review Supplement 1, 1, July 1929) of the physical constants, and the final calculation rounded off to four figures.

Speed of light, c = 2.99796 × 10¹⁰ cm sec⁻¹
Electronic charge, e = 4.770 × 10⁻¹⁰ abs esu
Electronic mass (by deflection), m₀ = 8.994 × 10⁻²⁸ g
Planck's constant, h = 6.547 × 10⁻²⁷ erg sec
Molecular gas constant, k = 1.3708₃ × 10⁻¹⁶ erg deg⁻¹
299.796 abs vints = 1 abs esu of potential
1 15° calorie, U₁₅ = 4.1852 abs joules
Avogadro's number, N₀ = 6.064 × 10²³ mole⁻¹
Atomic weight of helium = 4.0022
Atomic weight of helium = 4.0027

Atomic weight of hydrogen = 1.00777
4. Corresponding to first ionization potentials, Cs 3.88 V,
He 24.48 V.

Compiled by W. Edwards Deming Drawn by Mrs. C. Sherry Revised, August 1929 U. S. Department of Agriculture
Bureau of Chemistry & Soils
Washington, D. C.

RADIOACTIVITY

INTRODUCTION. THE URANIUM FAMILY

(References: Kovarik, McKeehan, Nat. Res. Council, Bull. 51 (reprint 1929); Andrade, Structure of the atom, 3rd ed., 1926; Rutherford, Radiations from radioactive substances, 1930; Kohlrausch, Radioactivität, 1929; Radioactive constants of 1930, Report International Radium-Standards Commission, Rev. Mod. Phys., 3, 427, 1931.)

Certain elements (about 40) of high atomic weight (also slightly K and Rb) are unstable in that they spontaneously change to elements of lower atomic weight with the production of heat and the emission of α , β , or γ rays. Radioactivity is an additive property of the atom, dependent only on the particular element and not on the chemical compound into which this element enters nor on the physical conditions controlling ordinary reactions—temperature, whether solid, gaseous or liquid, etc. The lives of these elements vary from 1010 yrs. to 10-11 sec. (See Table 625.)

TABLE 625.—The Uranium Family, T, λ , τ

At. Wt. = atomic weight; P. No. = proton number; At. No. = atomic number; yr = years; d = days; h = hours; m = minutes; s = seconds; T = half-period; $\tau = average$ life; $\lambda = \text{decay constant}$.

		Т	λ	τ	Rays and end product
Uranium I	UI At. Wt. 238.14 At. No. 92	4.4·10 ⁹ yr 1.4·10 ¹⁷ s	1.6·10 ⁻¹⁰ yr ⁻¹ 5.0·10 ⁻¹⁸ s ⁻¹	6.3·10 ⁹ yr 2.0·10 ¹⁷ s	α, UX ₁
Uranium X1	P. No. 238 UX ₁ At. No. 90 P. No. 234	24.5d 2.12·10 ⁶ s 23.8d 2.06·10 ⁶ s	2.83·10 ⁻² d ⁻¹ 3.28·10 ⁻⁷ s ⁻¹ 2.90·10 ⁻² d ⁻¹ 3.37·10 ⁻⁷ s ⁻¹	35.4d 3.05·10 ⁶ s 34.4d* 2.97·10 ⁶ s*	β, UX ₂ .9965 UZ .0035
Uranium X ₂ (Brevium) ca 99.65%	At. Wt. — UX ₂ At. No. 91	1.14m 68.4s	0.61 m ⁻¹ 1.01 · 10 ⁻² s ⁻¹	1.64m 98.7s	β, UII
Uranium Z ca 0.35%	P. No. 234 At. No. 91 P. No. 234	6.7h 2.4·10 ⁴ s	0.103h ⁻¹ 2.87·10 ⁻⁵ s ⁻¹	9.7h 3.5·10 ⁴ s	β, UII
Uranium II	At. No. 92 P. No. 234	3·10 ⁵ yr 9.4·10 ¹² s	2.3·IO ⁻⁶ yr ⁻¹ 7·4·IO ⁻¹⁴ s ⁻¹	4.3·10 ⁵ yr 1.4·10 ¹³ s	α, Io .970 UY .030
Uranium Y ca 3%	At. No. 90 P. No. 231 or 230	24.6h 1.03d 8.88·10 ⁴ s	2.82·10 ⁻² h ⁻¹ 0.675d ⁻¹ 7.81·10 ⁻⁶ s ⁻¹	35.5h 1.48d 1.28·10⁵s	β, Ac.

^{*} Earlier values still in use.

Notes on Decay Constants: For U_1 the calculation is based on Z = no. of α particles from I g Ra per sec. = 3.70×10^{10} ; Ra/U = 3.40×10^{-7} ; Avogadro's No. = 6.064×10^{23} ; no account is taken of the branching Ac series. The values given are for T and τ , upper, for λ lower limits.

For UX₁, the lowest value T = 23.8 is mentioned as well as the one preferred by the Commission.

UII. The adoption of 3 \times 10⁵ yr. is recommended. ThC'. Mme. Curie has recently calculated λ = about 10⁹sec⁻¹. (Geiger-Nuttal Law). In view of the uncertainty of the values, $T < 10^{-6}$ sec. has been proposed. AcC". 150 curves give T = 4.71 min., 9, T = 4.76 min. Both values are given.

RADIOACTIVITY

IONIUM-RADIUM FAMILY T, λ , τ

(Taken from 1930 Report International Radium Standards Commission, Rev. Mod. Phys., 3, 427, 1931.)

		T	λ	τ	Rays and end product
Ionium	Io At. No. 90	8.3·10 ⁴ yr 2.6·10 ¹² s	8.3·10 ⁻⁶ yr ⁻¹ 2.6·10 ⁻¹³ s ⁻¹	1.2·10 ⁵ yr 3.8·10 ¹² s	α, Ra
Radium	P. No. 230 Ra At. No. 88	1590 yr 5.02·10 ¹⁰ s	4.36·10 ⁻⁴ yr ⁻¹ 1.38·10 ⁻¹¹ s ⁻¹	2295 yr 7.24·10 ¹⁰ s	α, Rn
Radon	P. No. 226 Rn At. No. 86 P. No. 222	3.825d 3,305·10 ⁵ s 3.823d	0.1812d ⁻¹ 2.097·10 ⁻⁶ s ⁻¹ 0.1813d ⁻¹ 2.098·10 ⁶ s ⁻¹	5.518d* 4.768·10 ⁵ s* 5.515d*	α, RaA
Radium A	RaA At. No. 84 P. No. 218	3.303·10 ⁵ s 3.05m 183s	0.227m ⁻¹ 3.78·10 ⁻³ s ⁻¹	4.765·10 ⁵ s* 4.40m 264s	α, RaB
Radium B	RaB At. No. 82 P. No. 214	26.8m 1.61·10³s	2.59·10 ⁻² n ⁻¹ 4.31·10 ⁻⁴ s ⁻¹	38.7m 2.32·10 ³ s	β, RaC
Radium C	RaC At. No. 83 P. No. 214	19.7m 1.18·10³s	3.51·10 ⁻² m ⁻¹ 5.86·10 ⁻⁴ s ⁻¹	28.5m 1.17·10³s	β, α, .9996 RaC' .0004 RaC"
Radium C' 99.96% (99.97%)	RaC' At. No. 84 P. No. 214	ca10 ⁻⁶ s	10 ⁶ S ⁻¹	10 ⁻⁶ s	α, RaD
Radium C" 0.04% (0.03%)	RaC" At. No. 81 P. No. 210	1.32m 79.2s	0.525m ⁻¹ 8.7·10 ⁻³ s ⁻¹	1.9m 115s	β, RaD
Radium D	RaD At. No. 82 P. No. 210	22yr 6.94·10 ⁸ s	0.0315yr ⁻¹ 1.00·10 ⁻⁹ s ⁻¹	31.7yr 1.00·10 ⁹ s	β, RaE
Radium E	RaE At. No. 83 P. No. 210	4.9d 4.26·10 ⁵ s 5.0d 4.32·10 ⁵ s	0.141d ⁻¹ 1.63·10 ⁻⁶ s ⁻¹ 0.139d ⁻¹ 1.61·10 ⁻⁶ s ⁻¹	7.07d* 6.13·10 ⁵ s* 7.2d* 6.22·10 ⁵ s*	β, RaF
Radium F Polonium	RaF(Po) At. No. 84 P. No. 210	140d 1.21·10 ⁷ s	4.95·10 ⁻³ d ⁻¹ 5.73·10 ⁻⁸ s ⁻¹	202d 1.75·10 ⁷ s	α, RaG
Radium G (Uranium lead)	RaG At. Wt. 206.016 At. No. 82 P. No. 206				

^{*} Earlier values still in use.

RADIOACTIVITY

ACTINIUM FAMILY

(Taken from 1930 Report International Radium Standards Commission, Rev. Mod. Phys., 3, 427, 1931.)

		Т	λ	τ	Rays and end product
Actinium Uranium Uranium Y (see Uranium Family)	AcU	ca 10 ⁸ to 10 ⁹ yr			
Protactinium	Pa At. No. 91 P. No. 231	3.2·10 ⁴ yr 1.01·10 ¹² s	2.17·10 ⁻⁵ yr ⁻¹ 6.86·10 ⁻¹³ s ⁻¹	4.6·10⁴yr 1.46·10¹²s	α, Ac
Actinium	Ac At. No. 89 P. No. 227	13.5yr 4.23·10 ⁸ s 20yr	5.15·10 ⁻² yr ⁻¹ 1.63·10 ⁻⁹ s ⁻¹ 3.4·10 ⁻² yr ⁻¹ 1.1·10 ⁻⁹ s ⁻¹	19.4yr 6.12·10 ⁸ s 29yr*	β, RaAc
Radio- actinium	RaAc At. No. 90 P. No. 227	6.3·10 ⁸ s 18.9d 1.63·10 ⁶ s	3.66·10 ⁻² d ⁻¹ 4.24·10 ⁻⁷ s ⁻¹	9.2·10 ⁸ s* 27.3d 2.36·10 ⁶ s	α, AcX
Actinium X	AcX At. No. 88 P. No. 223	11.2d 9.7·10⁵s 11.4d 9.85·10⁵s	6.17·10 ⁻² d ⁻¹ 7.14·10 ⁻⁷ s ⁻¹ 6.08·10 ⁻² d ⁻¹ 7.06·10 ⁻⁷ s ⁻¹	16.2d* 1.40·10 ⁶ s* 16.4d* 1.42·10 ⁶ s*	α, An
Actinon	An At. No. 86 P. No. 219	3.92s	0.177s ⁻¹	5.66s	α, AcA
Actinium A	AcA At. No. 84 P. No. 215	2·10 ⁻³ s	374s ⁻¹	2.88·10 ⁻³ s	α, AcB
Actinium B	AcB At. No. 82 P. No. 211	36.0m 2.16·10³s	1.93·10 ⁻² m ⁻¹ 3.21·10 ⁻⁴ s ⁻¹	51.9m 3.12·10³s	β, AcC
Actinium C	AcC At. No. 83 P. No. 211	2.16m 130s	0.321m ⁻¹ 5.35·10 ⁻³ s ⁻¹	3.12m 187s	α, β, .9984 AcC" .0016 AcC'
Actinium C'	AcC' At. No. 84 P. No. 211	ca5·10-3s	ca140s-1	ca7·10 ⁻³ s	α, AcD
Actinium C" 99.68%	AcC" At. No. 81 P. No. 207	4.76m 286s 4.71m 283s	0.145m ⁻¹ 2.43·10 ⁻³ s ⁻¹ 0.146m ⁻¹ 2.44·10 ⁻³ s ⁻¹	6.87m* 412s* 6.83m* 410s	β, AcD
Actinium D Actinium Lead Pb207	AcD At. Wt. 207.016 (?) At. No. 82 P. No. 207				

^{*} Earlier values still in use.

THORIUM FAMILY: POTASSIUM, RUBIDIUM

		T	λ	τ	Rays and end product
Thorium	Th At. Wt. 232.12 At. No. 90	1.8·10 ¹⁰ yr 5.6·10 ¹⁷ s	4.0·10 ⁻¹¹ yr ⁻¹ 1.2·10 ⁻¹⁸ s ⁻¹	2.5·10 ¹⁰ yr 8.0·10 ¹⁷ s	α, MsTh ₁
Mesothor- ium 1	P. No. 232 MsTh ₁ At. No. 88 P. No. 228	6.7yr 2.1·10 ⁸ s	0.103yr ⁻¹ 3.26·10 ⁻⁹ s ⁻¹	9.7yr 3.05·10 ⁸ s	β, MsTh ₂
Mesothor- ium 2	MsTh ₂ At. No. 89 P. No. 228	6.13h 2.21·10 ⁴ s	0.113h ⁻¹ 3.14·10 ⁻⁵ s ⁻¹	8.84h 3.18·10 ⁴ s	β, RdTh
Radiothorium	RdTh At. No. 90 P. No. 228	1.90yr 6.0·10 ⁷ s	0.365yr ⁻¹ 1.16·10 ⁻⁸ s ⁻¹	2.74yr 8.65·10 ⁷ s	α, ThX
Thorium X	ThX At. No. 88 P. No. 224	3.64d 3.14·10 ⁵ s	0.190d ⁻¹ 2.20·10 ⁻⁶ s ⁻¹	5.25d 4.54·10 ⁵ s	α, Tn
Thoron	Tn At. No. 86 P. No. 220	54.5s	1.27·10 ⁻² s ⁻¹	78.7s	α, ThA
Thorium A	ThA At. No. 84 P. No. 216	0.14s	4.95s-1	0.20s	α, ThB
Thorium B	ThB At. No. 82 P. No. 212	10.6h 3.82·10 ⁴ s	6.54·10 ⁻² h ⁻¹ 1.82·10 ⁻⁵ s ⁻¹	15.3h 5.51·10 ⁴ s	β, ThC
Thorium C	ThC At. No. 83 P. No. 212	60.5m 3.63·10³s	I.15·10 ⁻² m ⁻¹ I.9I·10 ⁻⁴ s ⁻¹	87.3m 5.24·10³s	β, α, .65ThC' .35ThC"
Thorium C' 65% 65.7%	ThC' At. No. 84 P. No. 212	< 10-6s < 10-6s	$> 10^{9} \text{s}^{-1}(?)$	<10-6s	α, ThD
Thorium C" 35% 34.3%	ThC" At. No. 81 P. No. 208	3.1m 186s	2.24·10 ⁻¹ m ⁻¹ 3.73·10 ⁻³ s ⁻¹	4.47m 286.3s	β, ThD
Thorium D Thorium lead Pb208	ThD At. Wt. 208.016 (?) At. No. 82				
	P. No. 208				

Potassium (K19) and rubidium (Rb37) emit β rays; the β -ray activity of rubidium is 1/15 that of uranium; T is about 10¹¹ years. Cesium (55Ce) has been found to have an activity less than 1/90 of potassium. Hoffman considers neither sodium nor cesium radioactive. Be, av. period 10¹⁴ years, (Langer, Raitt, 1933).

Note—The following data is from Holmes, Lawson, Nature, 117, 620, 1926:

	Ur	Th	K	Rb
N, atoms per g T, half-value period, years \(\lambda\), disintegration constant,			15.5×10^{21} 15×10^{11}	7.09×10^{21} 1×10^{11}
years-1			4.6 × 10 ⁻¹³	69 × 10- ₁₃
per years, $n\lambda$			7.1 × 109	49 × 10 ⁹
β ray Energy per g, per year.				2.04 × 10 ⁻⁷
$nE/(4.19 \times 10^7)$ cal	(7900 × 10 ⁻⁴)	(2300 × 10 ⁻⁴)	1.24 × 10 ⁻⁴	2.38 × 10 ⁻⁴

RADIOACTIVITY UNITS

(Taken from 1930 Report International Radium Standards Commission, Rev. Mod. Phys., 3, 427, 1931.)

Radium content is expressed in g or mg of radium, regardless of its chemical combination. It is always desirable to know the total weight and nature of the compound.

Radon (radium emanation).—A curie: Quantity of Rn in equilibrium with 1 g Ra. One curie Rn has a vol. 0.66 mm³ at 0° C 760 mm. One curie (Rn without decay products) can with complete utilization of the α -particles keep by its ionization of air a saturation current of 2.75×10^6 e.s.u. (0.92 milliampere).

Sub-units: Millicurie, microcurie, milli-microcurie (10-9).

Eman. = 10⁻¹⁰ curie per 1 (10⁻¹³ curie/cm³)—concentration unit used for Rn content of the atmosphere.

Mache Unit (M. E.): Concentration unit referred to the Rn content of 1 1, = quantity Rn/1 which without decay products and with complete utilization of the α particles can maintain by its ionization of air a saturation current of 10^{-3} e.s.u. One M. E. corresponds to 3.64×10^{-10} curie/liter = 3.64 eman.

It is recommended that the curie be extended to include the equilibrium of any decay product of radium, specifying the element as I curie Rn. The unit quantity of any radioactive element may be expressed in terms of the mass equivalent to I g Ra with respect to the effect of the rays as to the number of atoms decaying per sec., e.g., I mg Ra equivalent is that amount of an element whose number of atoms decaying per sec. equals that of I mg Ra $(3.7 \times 10^7 \text{ atoms/sec.})$.

Polonium.—" I curie Po" = amount equiv. to I g Ra emitting 3.7×10^{10} a particles per sec. = quantity in radioactive equilibrium with I g Ra = 2.24×10^{-4} g Po.

That quantity of Po whose α radiation directed to one side only is fully utilized to ionize air and which can support a current of 1 e.s.u. corresponds to 1.68×10^{-10} g Po or 0.75×10^{-6} curie Po. 1 curie Po would, in the utilization of its rays in all directions, support a saturation current in air of 2.66×10^{-6} e.s.u., 1 microcurie (one-sided radiation) = 1.33 e.s.u.

Mesothorium.—"1 mg MsTh" usually signifies that γ-ray equivalent of 1 mg Ra-RaC, compared after absorption by 5 mm of lead. (This definition is inexact and open to criticism.)

All determinations of content of Ra, Ru, Ms, Th, Po, etc., must be dated. (Condensed from Report of the International Radium Standards Commission, Rev. Mod. Phys., 1931.)

TABLE 630.-Miscellaneous Radioactivity Constants

(Recommended by International Radium Standards Commission, 1930, Rev. Mod. Phys., 1931.)

 $m_0c^2 = 5.9303 \times 10^{-3}$, a particles. m_0 , a particle = 6.598×10^{-24} g. $m_0c^2/2e = 6.2162 \times 10^6$, a particles. $m_0c^2 = 8.1207 \times 10^{-7}$, β particles. m_0 , electron = 9.040×10^{-28} g. $m_0c^2/e = 1.7034 \times 10^3$, for ditto.

Kinetic energy = $E = m_0 C^2 (\eta - 1) = 5.9303 \times 10^{-3} (\eta - 1)$ erg. for a particles

 β = velocity particle/velocity light; $\eta = (1 - \beta^2)^{-\frac{1}{2}}$, $m = m_0 \eta$. $E = 8.1252 \times 10^{-7} (\eta - 1)$ erg, β particles. $E = 5.9303 \times 10^{-3} (\eta - 1)$ erg, α particles.

Velocity in equivalent volts, $p = 299.80E/2c = 3.1426 \times 10^{11}E$, α particles. $= 299.80E/e = 6.2851 \times 10^{11}E$, β particles.

Product of magnetic field strength × radius of curvature of the path:

log $R = (m_0c^2/2e) ηβ = 6.2162 × 10^8ηβ$, α particles. $= (m_0c^2/e) ηβ = 1.7034 × 10^3ηβ$, β particles. $λ = hc/E = 1.9628 × 10^{16}/E$ for $h = 6.547 × 10^{-21}$ erg.sec. $1.9637 × 10^{16}/E$ for $h = 6.55 × 10^{-21}$ erg.sec. Z = no. α particles emitted per sec. from one g Radium = $3.7 × 10^{10}$.

(The chief source of error lies in the Ra equivalent of the preparation (e.g., RaC). This arises from the decay-curve of RaB-RaC. Moreover in washing with alcohol to remove residual radon, RaB is dissolved in excess of RaC. The error causes a minimal value of Z.)

Ratio Ra/U in old unaltered minerals = 3.4×10^{-7} ; U/Ra = 2.94×10^{6} . Basic values for calculation of number of ion pairs produced by one α particle:

 $k = k_0 R_3^2$ and velocity from $v^3 = a_0 R_0$ (all data 0° C, 760 mm). As basis for $k_0 = Zk = 8.18 \times 10^{15}$ (Meyer-Schweidler, 1927) and $Z = 3.7 \times 10^{10}$ For RaC' $R_0 = 6.58$ cm $k = 8.18 \times 10^{15}/3.7 \times 10^{10} = k_0 \times 6.58^{\circ}$, $k_0 = 6.296 \times 10^4$. Recommended value: $k_0 = 6.3 \times 10^4$.

For a_0 , different values are obtained according to the choice of RaC', ThC' or Po as reference. This may mean that $v^s = aR$ is not exact and that the definition of the range as the intercept of the descending line of the Bragg curve with the abscissa has no theoretical basis.

RaC'	$R_0 = 6.58$	$v = 1.022 \times 10^9$	$a_0 = 1.0790 \times 10^{27}$	$a_{03}^{-1} = 1.026 \times 10^{9}$
TnC'	8.168	2.054 "	1.0609 "	1.020 "
Po	3.67	1.593 "	1.1015 "	1.032 "
In use	6.60	1.922 "	1.0758 "	1.0246 "
Recomm	ended		1.08 "	1.026 "

TABLE 631.—Relative Phosphorescence Excited by Radium

(Becquerel, C. R. 129, 912, 1899.)

Calcium nuoride		44 44	Hexagonal zinc blende . Pt. cyanide of barium . Diamond . Double sulphate Ur and K Calcium fluoride	:	:	:	13.36 1.99 1.14 1.00	With screen		:	:	.04
-----------------	--	-------	---	---	---	---	-------------------------------	-------------	--	---	---	-----

The screen of black paper absorbed most of the a rays to which the phosphorescence was greatly due. For the last column the intensity without screen was taken as unity. The γ rays have very little effect.

TABLE 632.—Vapor Pressure of the Radium Emanation in cm of Mercury

(Rutherford and Ramsay, Philos. Mag. 17, 723, 1909, Gray and Ramsay, Trans.

Chem. Soc. 95, 1073, 1909.)

Temperature C° $-127^{\circ} - 101^{\circ} - 65^{\circ} - 56^{\circ} - 10^{\circ} + 17^{\circ} + 49^{\circ} + 73^{\circ} + 100^{\circ} + 104^{\circ}$ (crit.) Vapor Pressure 0.9 5 76 100 500 1000 2000 3000 4500 4745

RADIOACTIVITY

a Particles: Range, Velocity, Ionization

RaC' (84 RaII) taken as standard: $V_{std} = 1.922 \times 10^9$ cm/sec.

(Table taken from Report International Radium Standards Commission, 1930, Rev. Mod. Phys., 1931.)

As an a particle passes through matter, energy is dissipated, principally in ionization; its velocity diminishes. Ultimately the a particle can not be detected. Rutherford was able to detect by their scintillations, a particles of velocity 0.15 Vs and Blackett in his study of cloud-tracks of RaC' α rays found tracks corresponding to a velocity greater than 0.04 V_s . When the kinetic energy becomes equal to that of an electron fallen a p.d. of 13.5 volts, then an α particle should not produce even a single pair of ions.

When α particles encounter successive thin layers nearly the same number emerge as enter up to a certain thickness. Beyond, the number transmitted decreases rapidly with small increments in the thickness. If the ionization in a thin layer of gas at increasing distance is plotted against distance, the decrease from max. ionization is rapid, the ionization tion descending nearly to zero along a steeply sloping line, becoming asymptotic to the distance axis. Marsden-Perkins have defined the range as the abscissa of the point where

distance axis. Marsden-Perkins have defined the range as the abscissa of the point where the straight line portion of the curve, produced, intersects the distance axis. For the discussion of ranges see especially Rosenblum, C. R., 190, 1124, 1930, and Rutherford, Chadwick, Ellis, "Radiations from Radioactive Substances," 1930, pages 82 et seq. and 86. For two decimal places the relation $v^3 = aR$ gives sufficient accuracy for normal ranges. The basic value for ion production of α particles is that for RaC'; $K = 2.2 \times 10^5$. For the velocity of α particles from ThC, Rutherford, Chadwick, Ellis chose 1.701, while Mmes. Curie and Joliet-Curie propose 1.698 \times 10° cm/sec.

Ranges, Velocities and Ion Productions

In the Table for R, v, k (range, velocity, ion production) the directly observed values are denoted by +. The calculation of the other values for v and k was made by using the basic values denoted ++.

RANGES AT 0° C AND 760 MM HG IN AIR (R_0) ; AT 15° C (R_{15}) . VELOCITY (v) AND ION Production (k)

Ranges at o°			_
2.53	Ranges at 15° 2.67	Velocity 1.40 · 10°	Ion production 1.16·10 ⁵
2.59 2.96	2.73 3.12	I.4I I.47	(1.18) 1.29 ⁺
3.11 3.03 3.21	3.19	1.48	(1.33) 1.31 1.36 ⁺
3.91 4.48	4.12 4.72	1.61 1.69	1.55
6.600++	6.96	1.01	1.55 2.20 ⁺⁺
3.67 (3.72)	3.87 (3.92)	1.593 ⁺ (1.58) (1.59)	I.49 (I.50)
4.43	4.68	1.55 1.68	I.44 I.69
4.14 5.49	4.37	1.65	1.67 1.61 1.95
6.24 5.22	6.58 5.51	1.89 1. 7 8	2.12 1.88
(6.2)?	(6.5)?	(1.9)?	1.79 ca 2
3.81	4.02	1.60	1.15 1.53 1.61
4.80 5·39	5.06 5.68	1.73 1.80	1.78 1.92
4·53 4·47 8.17	4.78 4.72 8.62	(1.098) (1.703)1.701 ⁺ 2.052 ⁺	1.71 1.70 2.54
	2.59 2.96 3.11 3.03 3.21 3.91 4.48 3.9 6.600** (6.58) 3.67 (3.72) 3.48 4.43 and 4.77 4.14 5.49 6.24 5.22 and 4.82 (6.2)? 2.5 3.81 4.13 4.80 5.39 4.53 4.47	2.59 2.73 2.96 3.12 3.11 3.28 3.03 3.19 3.21 3.39 3.91 4.12 4.48 4.72 3.9 4.1 6.600 ⁺⁺ 6.96 (6.58) (6.94) 3.67 3.87 (3.72) (3.92) 3.48 3.67 4.43 4.68 and 4.77 4.34 4.14 4.37 5.49 5.79 6.24 6.58 5.22 5.51 and 4.82 5.09 (6.2)? (6.5)? 2.5 2.6 3.81 4.02 4.13 4.35 4.80 5.06 5.39 5.68 4.53 4.78 4.47	2.59

RADIOACTIVITY. a PARTICLES

TABLE 634.—Relative Ranges of α Particles of RaF in Gases

All values are at n. t. p.; the accepted value for the α particle in air is 3.721 cm and the following values are merely relative. (After van der Merwe.)

Gas Range, cm Molec. stopping power	Air 3.58	H ₂ 16.28	H ₂ O	CH ₄ 3.96	N ₂ 3.62	CO 3.51	O ₂ 3.32	N ₂ O ₃ 3.26	CO ₂ 2.36	SO ₂ (CH ₃ Br 1.76
power	1.00	.22	-77	.91	.99	1.02	1.08	1.11	1.52	1.82	2.04

TABLE 635.—Relative Ranges of α Particles of RaC' in Solid Elements (After Rausch von Traubenberg.)

Element.. Li Mg Al Ca Fe Ni Cu Zn Ag Cd Sn Pt Au Tl Pb cm × 10-3, 12.9 5.8 4.1 7.9 1.9 1.8 1.8 2.3 1.9 2.4 2.9 1.3 1.4 2.3 2.4

TABLE 635 (a).—Long-Range α Particles. Relative Numbers

Scintillations at abnormally great distances from thorium active deposit were first observed by Rutherford-Wood. The range in air of the particles producing these was 11.3 cm and it was shown by Rutherford that their mass was that of helium atoms, i. e., that they were a particles. It now appears certain that some of the particles of long range must have been H nuclei from Hydrogen or its compounds or protons from artificial disintegration.

RaC' (84 RaII) Range 7.0 cm, 1 000 000 ThC' (84 ThII) 8.6 cm, 1 000 000	9.3 cm, 20 9.5 cm, 70	11.2 cm, 70 11.5 cm, 200
---	--------------------------	-----------------------------

TABLE 636.—Atomic Stopping Powers, S, for α Particles of RaC', Z, Atomic Number (After Rausch von Traubenberg.)

The ability of atoms and molecules to stop α particles or, more briefly, their stopping power, was first investigated by Bragg, and, more recently, by others. The atomic stopping power for elements may be given by the formula $S = R_{0}\rho_{0}A/R_{\rho}A_{0}$, where R_{0} , ρ_{0} , A_{0} are the range, density and atomic weight for the standard and R, ρ , A, the corresponding quantities for the element considered. The stopping power therefore varies inversely as the range and the density but directly as the atomic weight.

H He Li Be C N	Z 1 2 3 4 6 7 8	\$ 0.200 .380 .519 .750 .864 .939	SZ-2/3 0.20 .24 .25 .30 .28 .26	Si Cl A Ca Fe Ni Cu	Z 14 17 18 20 26 28 29	S 1.23 1.76 1.80 1.69 1.96 1.89 2.00	SZ-2/3 0.21 .27 .26 .23 .22 .21	Ag Cd Sn I Pt Au Tl	Z 47 48 50 53 78 79 81	s 2.74 2.75 2.86 3.55 3.64 3.73 3.76	SZ-2/3 0.21 .21 .21 .25 .20 .20
O Mg Al											

TABLE 637.—Atomic Stopping Powers of Molecules for the α Particles of RaC' (84RaII) Relative to that of the Oxygen Atom

(After Rausch von Traubenberg, Philipp.)

|--|

RADIOACTIVITY H PARTICLES

Marsden first observed the long-range particles due to the impact of α particles on matter, now known to be H particles, i.e., hydrogen nuclei or protons set in motion by α rays. Rutherford made a thorough study of this phenomenon, measured the ranges in H_2 of H particles due to α particles of various speeds, counted the relative number of α and H particles by the scintillation method; measured the magnetic and electrostatic deflection of the H particles and proved them to be hydrogen nuclei (protons) in motion. He was able to produce them by bombardment of substances rich in H_2 . When the α particles have a 7 cm air range, the H particles have a maximum air range of 29 cm.

H Particles from Atomic Nuclei Bombarded by α Particles from RaC'

(Taken from Kovarik, McKeehan, Nat. Res. Council Bull. 51, 1925.)

RANGES IN CM IN AIR AT 15° C IN DIRECTIONS INCLINED TO THE a RAYS

At.	Nucleus			T 11 -1		
No.	Symbol	At. Wt.	o°	Inclination 90°	180°	Ref., Remarks
3	Li	6, 7		10		ı, (2, doubtful)
4	Ве	9		18		I, (2, doubtful)
5	В	10, 11	58		38	3
6	С	12		6		I, (2, none)
7	N	14	40		18	3
9	Fl	19	65		48	3
10	Ne	20, 22		16		2, very few
11	Na	23	58		36	3
12	Mg	24, 25, 26		13 (18–30)		1, (2, very few)
13	Al	27	90		67	4
14	Si	28, 29, 30		12 (18–30)		1, (2, very few)
15	Р	31	65		49	3
16	S	32		18–30		2, very few
17	C1	35, 37, 39		18-30		2, very few
18	А	36, 40		18–30		2, very few
19	К	39, 41		18–30		2, very few

¹ Kirsch-Pettersson, 1924. ² Rutherford-Chadwick, 1924. ³ Rutherford-Chadwick, 1922. ⁴ Rutherford-Chadwick, 1921.

TABLE 639.—Relative Total Ionization by α Rays in Various Gases (After Bragg, Taylor, Laby, Hess-Hornyak.)

Gas	Mean relative total ionization	Gas	Mean relative total ionization	Gas	Mean relative total ionization
Air	100	C_2H_4	122	CH₄	117.3
H_2	99.5	C_2H_6	130	CH₄O	122
N_2	96.3	C_5H_{12}	134.8	C_2H_2	126.5
O_2	112	C_2H_6O	123	CH₃I	133
CO	101.5	$C_4H_{10}O$	132.3	C_2H_5I	128
CO_2	107	C_6H_6	129	CHCl ₃	129
NH_3	90	C_2H_4O	105	C_2H_5C1	129.5
N_2O	102	HBr	129	CCl₄	132
CS_2	137.5	HI	129	CH₃Br	132,
SO_2	103	HC1	129		

TABLE 640.-Delta Rays

Delta rays are electronic rays (β rays) produced by bombarding a substance with α particles, an ionization of a comparatively infrequent type. δ rays are of various velocities, some corresponding to a few volts; others have a velocity, 3×10^{9} cm/sec. (2400 volts); the number of δ rays produced by bombarding metals is of the order of δ to 10 per α particle.

The existence of swift δ rays in hydrogen gas has been proved by Burnstead (cloudtrack method). From the wide column of droplets (a-ray track) there are short, narrow tracks nearly at right angles. Wilson obtained similar δ-ray tracks in air near the beginning of the α-ray tracks. These experiments show that some δ rays are capable of ionizing air along a path of considerable length. Bianu (ionization method) was able to show that δ rays ionize the gas and determined the velocity of the swiftest δ rays as 2.0×10^9 cm/sec. This velocity corresponds to 2400 volts. C. T. R. Wilson suggests that the δ rays may be due to expulsion of electrons from inner orbits of the bombarded atoms, which would agree with Kapitza's observation that the average energy lost by an α particle in producing a pair of ions is greater at high velocities than at low. Bianu shows that the number of low-speed δ rays produced is 40 times as great as the number of high-speed δ rays and that each α ray from RaF produces, on the average, 10 of the more numerous class. His work also shows the δ-ray emission to be independent of the nature of the metal bombarded, an observation in agreement with earlier investigations. The usual explanation offered for the production of δ rays is that an α particle entering a substance loses energy in ionization and that some of the electrons liberated possess speeds which enable them to escape.

TABLE 641.—Heating Effect of Radium and Its Emanation

(Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

Heating effect in gram-calories per hour per gram radium.										
			1	a rays.	β rays.	γ rays.	Total.			
Radium . Emanation	:	:	:	25.1 28.6	-		25.1 28.6			
Radium A Radium B+	ċ			30.5 39.4	4.7	6.4	30.5 50.5			
Totals .			•	123.6	4.7	6.4	134.7			

Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25 2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. 1, 1910; Schweidler and Hess, Ion. 1, p. 161, 1909; Angström, Phys. ZS. 6, 685, 1905, etc. SMITNSONIAN TABLES.

RADIOACTIVITY

BETA RAYS

 β rays are negatively charged particles (electrons) of the same nature as other electrons. It seems settled that the β particle is emitted first; the γ ray is emitted from the atom resulting after the disintegration of the nucleus caused by the emission of the β particle. In

It seems settled that the β particle is emitted first; the γ ray is emitted from the atom resulting after the disintegration of the nucleus caused by the emission of the β particle. In emitting β rays (random in direction) the original element is shifted one place to a next higher atomic number. Therefore one emitted electron is nuclear. Recent work proves some to be extra-nuclear. The velocity of the β particles is such that it is necessary in dealing with them to consider the Lorentz-Einstein equation, $m = m_0 (1 - \beta^2)^{-1/2}$; m_0 being the mass of a very slowly moving electron, β , the ratio of the velocity of the particle to that of light, V_0 .

The β and γ rays are best designated by their spectra. A complete compilation of these would be beyond the scope of these tables. See Kovarik and McKeehan, Nat. Res. Council, Bull. 51, 1929; or Rutherford, Chadwick, Ellis, radiations from radioactive substances.

The absorption coefficients (μ) are not precisely defined by the relation $I = I_0 e^{-\mu x}$, but they are of great value in practical work and for the rapid diagnosis of a radioactive substance. It appears desirable to include them and to give also the limits of velocity of the β -ray spectra.

Substance	Type of decay	cm-1 Al	μ/ρ	D cm Al	Magnetic spectrum velocity limits in 1010 cm/sec.	Remarks	Accompanying γ rays
$\begin{array}{c} \mathrm{UX_1} \\ \mathrm{UX_2} \\ \mathrm{UZ} \end{array}$	β β β	460 18 270 to	170 6.75 100 to	0.0015 .038 .0026 to	1.44-1.74 2.46-2.88 ?	3L, 1B 2B ?	No nuclear Weak nuclear ?
Ra RaB	αβ	36 312 890 80 13	13.5 116 330 29.5 4.84	.019 .00222 .00078 .0087 .053	1.56-2.04 1.08-2.47	3L 31L	1 nuclear line 9 nuclear lines
RaC+C"	$\alpha + \beta$	50	18.5	.0139	1.14-2.96	63L	II nuclear lines
RaD RaE	ββ	5500 45.5	4.84 2037 16.9	.053 .000126 .0152	.96-1.20 2.05-2.84	5L 1B	ı nuclear line Weak nuclear
UY Pa Ac	β α β	ca 300	110 47 ?	.0023	? 1.47-2.35	? 12L	? 3 nuclear lines
RdAc AcX AcB AcC+C"	α α β α + β	175 ? ca 1000 29	65 ? 370 10.7	.004	.66-2.3 .88-2.22 1.49 2.25-2.56	49L 21L 1L? 8L	10 lines 5 lines 3 nuclear lines
MsTh ₁ MsTh ₂	β β	? 40 to	? 14.8 to	.018 to	? 1.09-2.90	31L	? 8 lines
RdTh ThB ThC ThC"	$\alpha \beta \beta \alpha + \beta \beta$	20 420 153 14.4 21.6	7.4 150 57 5.35 8.0	.034 .0017 .0045 .048 .032	1.19-1.53 1.88-2.99	6L 5L	2 lines 2 nuclear lines 11 nuclear lines
K Rb	ββ	74 49 700 190 900	27.4 18 260 70 333	.0094 .014 .001 .0037 .0077			Weak

^{*}B = band, L = line. Bands originate in the primary (nuclear) rays; lines in the photo-electrons of the gamma rays.

gamma rays. μ/ρ is the mass absorption coefficient (ρ = density); D is the thickness in which the radiation is reduced to half value and = 0.60315 μ . All data refer to aluminum as the absorbing material.

RADIOACTIVITY

WORK OF EXTRACTION OF BETA PARTICLES

(After Bohr-Coster. Taken from Kovarik, McKeehan, Nat. Res. Council Bull. 51, 1929.)

Works of extraction V_i in volts \times 10⁵; $V_i = E(T/R)$; they have been interpolated assuming linear-variation of $(T/R)^{\frac{1}{2}}$ with z in values given. In computing V_i , $\log_{10} E = 6.13129 - 10$; values not depending on interpolation italicized. M values, average of M_I and M_V ; to get M_I add, M_V , subtract correction term. Similarly with N, mean of N_I and N_{VII} ; O, mean of O_I and O_V .

Ato	omi	c				Levels		
N	lo.	K	L_{I}	L_{II}	L_{III}	M	N	0
ç)2	1.1469	0.2169	0.2088	0.1711	0.0453 ± 100	0.0090 ± 54	0.0022 ± 14
9	1(1.1195	0.2106	0.2025	0.1666	0.0438 ± 96	0.0086 ± 52	
9	0(1.0922	0.2043	0.1964	0.1624	0.0424 ± 93	0.0082 ± 50	
8	39	1.0636	0.1981	0.1905	0.1582	0.0410 ± 90	0.0078 ± 48	
8	38	1.0353	0.1921	0.1846	0.1540	0.0396 ± 86	0.0074 ± 47	
8	37	1.0073	0.1862	0.1789	0.1499	0.0382 ± 83	0.0071 ± 45	
8	36	0.9797	0.1804	0.1733	0.1458	0.0368 ± 80	0.0067 ± 44	
8	35	0.9525	0.1746	0.1677	0.1418	0.0354 ± 77	0.0064 ± 42	
8	34	0.9257	0.1690	0.1622	0.1378	0.0342 ± 74	0.0060 ± 41	-
8	3	0.8993	0.1634	0.1569	0.1339	0.0330 ± 70	0.0057 ± 39	
8	32	0.8744	0.1582	0.1518	0.1330	0.0316 ± 68	0.0052 ± 37	0.0008 ± 6
8	31	0.8509	0.1532	0.1467	0.1263	0.0305 ± 66	0.0049 ± 36	0.0008 ± 6
8	80	0.8275	0.1481	0.1419	0.1226	0.0293 ± 63	0.0046 ± 35	
7	9	0.8037	0.1434	0.1372	0.1189	0.0282 ± 60	0.0043 ± 34	0.0006 ± 5
7	78	0.7798	0.1389	0.1324	0.1153	0.0270 ± 58	0.0039 ± 32	o.ooo6 ± 5

TABLES 644 AND 645

RADIOACTIVITY

TABLE 644.—Effective Range of Beta Particles from RaE in a Few Elements

(After Gray-Douglas. Taken from Kovarik, McKeehan, Nat. Res. Council Bull. 51, 1929.)

Element	С	Al	Cu	Sn	Pb
Effective range, g/cm²	.474	.460	.432	.395	.354

TABLE 645.—Absorption of Characteristic Beta Particles in Air and CO₂
(After Kovarik.)

μcm ⁻¹ 0.12 0.0065 0.0047 0.097 0.64	(μ/ρ)cm ² /g 100 5.43 (Friman) 81 535	μcm ⁻¹ 0.23 0.0114 0.183	(μ/ρ) cm ² /g 126. 6.26
0.0065 0.0047 0.097	5.43 (Friman) 81	0.0114	6.26
0.0047	(Friman) 81	0.183	101.
0.097	81	_	
		_	
0.64	535	× 60	
	555	1.69	930.
0.0152	12.70	0.0297	16.31
0.31	260		
0.0091	7.60	0.0175	9.62
0.090	75	0.142	78.
0.0068	5.68	0.0129	7.08
	0.31 0.0091 0.090	0.31 260 0.0091 7.60 0.090 75	0.31 260 0.0091 7.60 0.0175 0.090 75 0.142

RADIOACTIVITY GAMMA RAYS

 γ rays are extremely penetrating, nondeviable by electric and magnetic fields, produce ionization of gases, act on the photographic plate, excite phosphorescence. Like X rays, they are similar to light. γ rays are merely X rays produced in the radioactive atoms. The reflection of X rays and γ rays from crystals leaves no doubt that the wave theory of light is applicable. There are to be solved the same problems, as indicated by Bragg for the corpuscular theory of X rays. The same difficulties exist as in the case of visible radiation. Theoretical investigations on γ rays, based on the electromagnetic theory, lead to conclusions not very different from those of a corpuscular theory.

Emission of gamma rays.—The number of γ rays per sec. from RaB and RaC in equilibrium with 1 g of Ra, is 1.43×10^{10} and 1.49×10^{10} (Hess-Lawson). The mean value obtained by Kovarik for the number of γ rays per sec. from Ra(B+C) in equilibrium with 1 g of Ra was 7.28×10^{10} , which is nearly (within 2%) one γ ray per atom disintegrating. The random emission in time of penetrating γ rays from radium has been

proved.

Energy and wave length of gamma rays.—The energies and wave lengths of γ rays have been obtained variously; much further research is required. The direct experimental determination of γ -ray wave lengths by reflection from a crystal (NaCl) was first made by Rutherford-Andrade for the γ rays of RaB and RaC. Both surface planes and internal planes were utilized. They showed that certain strong lines of the RaB γ -ray spectrum are identical with characteristic X rays (L series) of nonradioactive lead. The shortest wave length measured was that of a γ ray of RaC reflected at a grazing angle of 44' having a wave length of about 70 X.U. (I X.U. = 10^{-11} cm = 10^{-3} A.U.). The counting method was applied by Kovarik to high frequency γ rays of RaC reflected from calcite. The shortest measured wave length was about 28 X.U.

The determination of γ -ray wave lengths from mass absorption is made on the supposition that the relation between mass absorption and wave length found for X rays may be applied to γ rays. For X rays, outside regions of selective absorption, $\mu/\rho = k\lambda^n$ where λ is the wave length and n has a value 2.5 to 3. Rutherford found that as the mass absorption coefficient, μ/ρ , of γ rays approaches the order of magnitude of the mass scattering coefficient τ/ρ , it varies more slowly with λ , probably as the first power; from his X-ray data he concluded that the very penetrating γ rays have most probably a wave length between 20 and 7 X.U. Minna Lang applied her work on the absorption of hard X rays to the γ rays of all known radio-elements and found that many are probably characteristic X rays (K, L, and M series).

The energies of γ rays have been obtained also by measuring the energy of β rays "excited" by them in various elements. The velocity of the β particles emitted by the γ rays from the atom of any element depends upon the frequency of the γ rays and upon the work necessary to separate the emitted electron from the rest of the atom. The photoelectric equation $E = h\nu - W$, is applicable. (E is the energy of the "excited" β ray measured outside the atom, ν is the frequency of the exciting γ rays and W is the work of separation.) The energy E is the value of Hr in magnetic deflection experiments, the work W, the energy corresponding to the appropriate absorption edge in the X-ray spectrum of the atom in the electronic structure of which the β ray arises. The work of separation W will have different values for different energy levels in the same atom and different values for the same energy level in different atoms. The soft γ rays of RaB are the L-series X rays of Pb. Some of the γ rays of radio-elements belong to the K, K, K, or other series of K rays of the atoms concerned in the K-ray disintegration considered. Evidently, some of the K-rays are of extra-nuclear source. The most penetrating K-rays can not be so accounted for and must therefore be of nuclear origin.

Connection between gamma rays and beta rays (or alpha rays).—The more recent work has established: (1) some of the β rays are of photoelectric origin (extranuclear) "excited" by the γ rays; (2) some of the γ rays originate in rearrangements of electrons in the same part of the atom (ordinary X-ray types); (3) the change in nuclear charge requires some β rays in disintegration to be of nuclear origin; (4) some of the γ rays, all of the very penetrating rays, are of nuclear origin. The principal point in dispute is whether emission of nuclear β rays precedes or follows the emission of nuclear γ rays.

RADIOACTIVITY

GAMMA RAYS

Nuclear analysis.—Analysis of nuclear γ rays show evidence for energy levels in the nucleus analogous to those in the extra-nuclear structure as found by X-ray analysis. When instability arises in the nucleus an electron occupying a level of higher energy falls to a level of less energy, the excess energy being emitted as a γ ray; since several changes of this kind are possible, γ rays of several different but definite frequencies may be emitted from this nucleus; further, different groups of frequencies may be emitted from different individual nuclei. Some of the γ rays cause (photo-electric) emission of electrons from various extra-nuclear levels, thus producing the β -ray lines in the β -ray spectrum, and rearrangement of the extra-nuclear electrons produces the γ rays which correspond in frequency to characteristic X rays. The nuclear electron finally arrives in a stationary state in which it is not permanently stable and it flies out from the nucleus. The nuclear electrons, one per atom disintegrating, thus leave the atom with different energies and form the continuous β -ray spectrum.

The absorption of γ rays by gases has not been studied at all exhaustively. Chadwick investigated the absorption of the γ rays from radium, i.e., from RaC, in air and in CO₂ by varying the gas pressure, and in air by varying the distance from the source. Hess made measurements in air by varying the distance. Chadwick's value for μ in air, reduced to atmospheric pressure and 15° C, is 6.0×10^{-6} /cm and Hess' value is 4.47×10^{-6} cm.

Ahmad and Ahmad-Stoner find that the absorption coefficient per atom can be expressed as the sum of two terms, $aZ + bZ^4$, which corresponds to a similar expression for the absorption of X rays, $aZ + \beta \lambda^3 Z^4$, the first term representing scattering and the second term true absorption.

Ionization by gamma rays.—With the development of the theory of atomic structure by study of X rays and γ rays, of ionizing potentials, and by applications of the quantum theory, views on ionization by γ rays have become more definite. When an X ray or a γ ray traverses matter its energy $h\nu$ may be absorbed ($h\nu=E+W$), an electron requiring energy W to remove it from the atom being ejected with residual kinetic energy E. Such an electron has generally been called a secondary β ray. It in turn may react with another atom, losing energy equivalent at least to the ionizing potential of a particular energy level in the atom ionized, repeating the process until its energy is dissipated, and leaving electrons and positive ions in its trail. Each of the ejected tertiary electrons if possessing sufficient energy, loses energy in the same manner.

Moseley-Robinson's values for the total number of pairs of ions produced per sec. in air at n.p.t. by γ rays from quantities of RaB and RaC in equilibrium with 1 g of Ra are 0.84×10^{14} and 11.34×10^{14} , respectively. From Chadwick's value for the coefficient of absorption in air the mean "range" is $1/\mu = 1.6 \times 10^4$ cm. This gives as a mean value 7.5×10^{10} pairs of ions/sec./cm of path in air for all the penetrating γ rays from 1 g of radium in equilibrium, and, taking one γ ray per atom of RaB and RaC disintegrating (Kovarik), this means about one pair of ions per cm of path in air for each penetrating γ ray.

RADIOACTIVITY

GAMMA RAYS

It is evident from the quantum relation, $h\nu=E+W$, that γ rays of given frequency will cause the emission of β particles of definite velocities, one for each energy level that can be ionized, from an atom of a given element (including all its isotopes). This has been proved experimentally and has been used in determining the energy of the exciting γ rays. A discussion of the subject of photoelectron emission by X rays has been given by A. H. Compton.

When γ rays pass through thin layers the β radiation leaving the layer on the side where the X ray beam emerges is more intense than that on the side where the X ray beam is incident. The asymmetry of this β radiation was more marked for light atoms than for heavy atoms; also for hard than for soft γ rays.

Scattering of gamma rays.—When γ rays are incident on matter γ rays may be detected on all sides of the piece as if emitted by it. γ rays so re-radiated were called "secondary" γ rays. These secondary γ rays appear to be really a mixture of two types: (1) scattered primary γ rays; (2) fluorescent or characteristic X rays produced in the atoms of the secondary radiator by high velocity electrons liberated photoelectrically by the primary γ rays.

Ishino's values of the mass scattering coefficient for A1, Fe, and Pb are respectively, 0.045, 0.042, and 0.034 (cm²/gm). The softening of the "secondary" γ rays is undoubtedly due to (1) the production of fluorescent radiation which may be in part (Compton) similar to the general "white" radiation emitted by an X-ray tube, and (2) a modification of the true primary scattered radiation. The scattering of γ rays by thin sheets indicates that the scattering per atom is nearly proportional to the atomic number, and that each electron appears therefore to act as an independent center for scattering whether it is one of a small number of electrons (A1) or one of a larger number (Pb). The scattered radiation on the emergent side is greater in amount than that on the incident side.

Comparison of gamma-ray sources.—The relative ionizing powers of different types of γ radiation need to be known if the quantity of any γ -ray emitter is to be determined by comparison with a radium standard. The amount of MsTh₂ in equilibrium with 1 g of Th, e.g., one month after separation of MsTh₁, gives a γ -ray ionization equivalent to that from 0.524 × 10⁻⁷ g Ra in equilibrium with its γ -ray products. The amount of ThC" in equilibrium with 1 g Th gives a γ -ray ionization equivalent to that from 0.956 × 10⁻⁷ g Ra in equilibrium with its γ -ray products. Since MsTh₁ and Ra are isotopes, chemical separation is impossible, and since the γ rays compared are of nearly the same quality the detection and estimation of mesothorium impurities in radium by γ -ray measurements (usually used for standardization) is somewhat difficult. Hahn and Bothe have shown how to distinguish between these materials by absorption experiments. Mme. Curie has shown that the ratio of the total heating effect to the γ -ray activity is also characteristic of the proportion of mesothorium in a mixture of the two.

TABLE 649

RADIOACTIVITY ABSORPTION OF CHARACTERISTIC GAMMA RAYS

			In Aluminus	m		In Lead	
Source and type of decay	Level assumed	Half value thickness	Absorption coefficient		Half value thickness	Absorption coefficient	Mass absorption coefficient
		$\frac{D}{\mathrm{cm}}$	μ cm ⁻¹	μ/ ho cm ² /gm	$\frac{D}{\mathrm{cm}}$	μ cm-1	$\frac{\mu/ ho}{ m cm^2/gm}$
$UX_1 \beta$	L K	0.029 .99	24 .70	8.9 .26	0.30	2.3	0.20
$UX_2 \beta$ Io α	* M	4.95 .00064	.140	.052	.96	.72	.064
	L K	.0307 1.7	22.7 .41	8.35 .15			
Ra α	M L	.0020	354 16.3	130 6			
RaB β	* M	2.6	.27 230	. <i>I</i> 85	.015	46	4.1
	L K	.0173 1.22	40 ∙57	.21	.15 .46	4.6 1.5	.41 .13
RaC + C α , β	*	.0030	230 40	85 15	.015 .15	46 4.6	4.I .4I
D D 0	*	3 5.46	.230 .127	.085 .047	.46 1.30	1.496 ∙535	.132 .047
RaD β	L K	.0154 .70	45 1.17	16.7 ∴37			
RaE β	*	.0154 .70	45 .99	16.7 ∙37			
RaF β	M	2.79 .00120	2700	.092 215			
RdAC α	L L *	.28	46 25	9.3			
АсВ в	$_{\rm L}^{\rm M}$	3.65 .0058	.190 120	.070 44			
ΑςΟ" β	K *	1.54 3.50	31 .45 .198	.167			
$MsTh_2 \beta$	L	.027	26°	.073 9.6	.061 ·25	11.3	1.00
RdTh	*	6.0	.116	.043	.99 small	.70 great	.25 .062
ThB β	M L	.0043	160 32	59 11.9	əman	great	great
ThC'' β	K *	1.9	.36	.133	1.5	.46	.041
1	n, β rays, $\mu_{\rm F}$	•	0.14; μ _{A1} , 0.06;		0	.7-	****

^{*} Nucleus.

RADIOACTIVITY

TABLE 650.—Characteristic Gamma-Ray Wave Lengths and Energies Estimated from Absorption and Scattering

(Taken from Kovarik, McKeehan, Nat. Res. Council Bull., 51, 1929.)

		λ	Ene	rgy	
So	urce	cm × 10-11	volts X 105	ergs × 10-7	Reference
UX_1	90 UI	903	0.137	0.217	Lang, '21
		220	.562	.894	
UX_2	91 U	115	1.069	1.701	"
Io	90 Ra	4140	.030	.047	**
		880	.140	.223	44
		176	.699	1.112	"
Ra	88 Ra	2640	.047	.074	"
		771	.160	.260	"
		150	.822	1.308	"
RaB	82 RaI	2230	.055	.088	44
		1110	III.	.177	"
		202	.610	.970	44
RaC	83 RaI	141	.877	1.395	44
		111	1.112	1.769	
		27.5	4.483	7.135	Compton, '21
		20	6.165	9.810	Owen-Fleming, Fage, '24
	. 5 **	17	7.252	11.54	Ahmad, '24
RaD	82 RaII	1160	.106	.169	Lang, '21
		1063	.116	.184	O, F, F, '24
		252	.489	.778	Lang, '21
	0 D 111	290	.425	.677	Meitner, '22
RaF	84 RaIII	3230	.038	.061	Lang, '21
RdAc	90 Ac	918	.134	.214	44
4 D	O A T	130	.946	1.506	66
AcB	82 AcI	1720	.072	.114	44
		1000	.123	.192	44
1 011	0. 4	184	.670	1.066	**
AcC"	81 Ac	132	.931	1.481	44
MsTh ₂	89 Th	932	.132	.210	44
TI D	0 - 701 T	107	1.153	1.834	44
ThB	82 ThI	1930	.064	.102	**
		1010	.122	.194	"
TI CII	0 - 771	168	.733	1.166	"
ThC"	83 Th	99	1.243	1.978	

TABLE 651.—Nuclear Energy Deduced from Gamma-Ray Spectra

(Kovarik, McKeehan, Nat. Res. Council Bull., 51, 1925.)

Nucleus	Energy of level volts × 105	No. of γ rays accounted for twice)	Nucleus	Energy of level volts × 105	No. of γ rays accounted for (each counted twice)
RaB RaC	0 ·537 ·625 (0.628) 2·571 (2·572) 2·942 4·048 5·31 0 ·59 ·70 3·07 3·30 4·45	4 6 4 4 3 3 4 2 4 1 2 2 1	TnC"	0 .41 .56 2.28 2.48 2.54 2.74 5.11 9.02	7 5 2 2 4 3 3 5 3

Ellis, Skinner, 1924; values in 3rd column of TnC" supplied by Kovarik, McKeehan.

RADIOACTIVITY

GAMMA-RAY WAVE LENGTHS AND ENERGIES MEASURED BY CRYSTAL REFLECTION

(Taken from Kovarik, McKeehan, Nat. Res. Council Bull., 51, 1929.)

Reflection from (100) Planes of Rock Salt $(d=2.814 \times 10^{-8} \text{cm})$ Source θ 0×10^{-11} RaB 82 RaI $14^{\circ}-02'$ 1365 0.0903 0.1437 $13^{\circ}-52'$ 1349 0.0914 1455 $0.13^{\circ}-14'$ 1288 0.0957 0.1523 0.1437 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 $0.13^{\circ}-14'$ 0.138 0.138 0.138 0.138 0.138 0.138 0.1437 0.1492 0.149	Ref. I I I I I I I I I I I I I I I I I I I
Source θ cm \times 10-11 volts \times 105 ergs \times 10-7 Int. RaB 82 RaI 14° — $02'$ 1365 0.0903 0.1437 m. 13° — $52'$ 1349 .0914 .1455 m. 13° — $31'$ 1315 .0937 .1492 w. 13° — $14'$ 1288 .0957 .1523 w. 13° — $00'$ 1266 .0974 .1550 w. 12° — $31'$ 1220 .1011 .1609 w. 12° — $10'$ 1196 .1031 .1641 m. 12° — $03'$ 1175 .1049 .1670 s. 11° — $10'$ 1141 .1080 .1719 m. 11° — $10'$ 1101 .1120 .1782 w. 11° — $00'$ 1074 .1148 .1827 w. 10° — 10° 1055 .1169 .1860 w. 10° — 10° 1055 .1169 .1860 w. 10° — $32'$ 1029 .1198 .1907 m.	I I I I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I I I I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I I I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I
$12^{\circ}-16'$ 1196 $.1031$ $.1641$ m. $12^{\circ}-03'$ 1175 $.1049$ $.1670$ s. $11^{\circ}-42'$ 1141 $.1080$ $.1719$ m. $11^{\circ}-17'$ 1101 $.1120$ $.1782$ w. $11^{\circ}-00'$ 1074 $.1148$ $.1827$ w. $10^{\circ}-48'$ 1055 $.1169$ $.1860$ w. $10^{\circ}-32'$ 1029 $.1198$ $.1907$ m.	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
11° — $42'$ 1141 .1080 .1719 m. 11° — $17'$ 1101 .1120 .1782 w. 11° — $00'$ 1074 .1148 .1827 w. 10° — $48'$ 1055 .1169 .1860 w. 10° — $32'$ 1029 .1198 .1907 m.	1
11°—17′ 1101 .1120 .1782 w. 11°—00′ 1074 .1148 .1827 w. 10°—48′ 1055 .1169 .1860 w. 10°—32′ 1029 .1198 .1907 m.	I
11°—00′ 1074 .1148 .1827 w. 10°—48′ 1055 .1169 .1860 w. 10°—32′ 1029 .1198 .1907 m.	I
10°—48′ 1055 .1169 .1860 w. 10°—32′ 1029 .1198 .1907 m.	I
10°—32′ 1029 .1198 .1907 m.	ī
	ī
	1
10°03′ 982 .1255 .1998 s.	1
9°-45′ 953 .1294 .206 m.	1
9°-23′ 918 .1344 .214 w.	I
8°-43′ 853 .1446 .230 m.	I
8°-34′ 838 .1471 .234 m.	1
8°—16′ 809 .1524 .242 m.	I
8°06' 793 .1555 .247 m. 4°22' 428 .288 .458	I
	2, 3
10 01	2, 3
$3^{\circ}-18'$ 324 .381 .606 $3^{\circ}-00'$ 294 .419 .666	2, 3 2, 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2, 3
2°—28′ 242 .509 .810	2, 3
2°—20′ 229 .538 .856	2, 3
2°—00′ 196.4 .628 .999	2, 3
$(1^{\circ}-43')$ 168.6 .731 1.164	2, 3
$1^{\circ}-37'$ 158.8 .776 1.236	2, 3
I°—24′ 137.5 .897 1.427	2, 3
RaC 83 RaI 1°—10′ 114.6 1.076 1.712	2, 3
1°—00′ 98.2 1.255 1.998	2, 3
0°—43′ 70.4 1.752 2.79	2, 3
PART 2	
Reflection from (111) Planes of Calcite ($d = 3.028 \times 10^{-8} \text{ cm}$)	
	4 Note
0°—37.5′ 66.1 1.866 2.772	4 N-40
$0^{\circ} - 33' \qquad 58.1 \qquad 2.121 \qquad 3.375$	4 Note
	4
	4
Note.—Possibly second order.	4

References: 1 Rutherford-Andrade (s. strong, m. medium, w. weak), '14. 2 Rutherford-Andrade, '14. 3 Rutherford, '14. 4 Kovarik, '22.

RADIOACTIVITY

QUANTITIES IN RADIOACTIVE EQUILIBRIUM

(Taken from 1930 Report International Radium Standards Commission, Rev. Mod. Phys., 3, 427, 1931.)

	•		M (mass	s units)
		T	for Ra = 1	for UI = 1
	UI	1.39·10 ¹⁷ s	2.94.106	1.00
	UX_1	2.12.106	4.4.10-5	1.5.10-11
		$(2.06)10^6$	$(4.3) \cdot 10^{-5}$	0
99.65%	UX_2	68.4	1.4.10-9	5.10-16
.35%	UZ	2.4.104	1.7.10-8	6.10-16
	UII	$9.4 \cdot 10^{12}$	$2.0 \cdot 10^{2}$	6.7.10-5
3%	UY	$8.88 \cdot 10^4$	5.6.10-8	1.9.10-14
97%	Io	2.6·10 ¹² s	52.7	
1 70	Ra	$5.02 \cdot 10^{10}$	1.00	
	Rn	$3.303 \cdot 10^{5}$	6.47.10-6	
	RaA	183	$3.52 \cdot 10^{-9}$	
	RaB	1.61·10 ³	3.04 · 10 -8	
	RaC	1.18.10	2.23.10-8	
99.96%	RaC'	ca 10 ⁻⁶	ca 2·10 ⁻¹⁹	
.04%	RaC"	79.2	6-10-13	
	RaD	6.94.108	1.28.10-2	
	RaE	4.26·10 ⁵ (4.9d)	7.9.10-6	
D.	D - F2	4.32·10 ⁵ (5.0d)	8.0.10-6	
Po	= RaF	1.21.107	2.24 · 10 - 4	
			for Ra = 1 ar	nd 3% branching
			fraction	070
	Pa	I.0I·I0 ¹² s	.62	
	Ac	4.23.108	2.5·10 ⁻⁴	
	110	$(6.3 \cdot 10^8 = 20 \text{ yr})$	$(3.7 \cdot 10^{-4})$	
	RdAc	1.63·10 ⁶	$9.8 \cdot 10^{-7}$	
	AcX	$9.7 \cdot 10^5$	5.8.10-7	
	An	3.92	2.27.10-12	
	AcA	2.10-3	1.14.10-15	
	AcB	2.16·10 ⁻³	1.21.10-9	
	AcC	130	7.2.10-11	
.32%	AcC'	ca 10 ⁻³	ca 2·10 ⁻¹⁸	
99.68%	AcC"	286	1.57.10-10	
		(283)	1.55-10-10	
			for Th = 1	for $MsTh_1 = 1$
	Th	5.6·10 ¹⁷ s	1.00	2.7.109
	MsTh	2.1.108	3.68·10 ⁻¹⁰	1.00
	MsTh ₂	= 2.21·10 ⁴	3.88.10-14	1.05.10-4
	RdTh	6.0.107	1.05.10-10	.286
	ThX	3.14.105	5.41.10-13	1.47.10-3
	Tn	54.5	9.23.10-17	2.50·10-7
	ThA	.14	2.32.10-19	6.31 · 10 · 10
	ThB	3.82.104	6.23.10-14	1.69·10-4
. ~	ThC	$3.63 \cdot 10^3$	$5.92 \cdot 10^{-15}$	1.61.10-5
65%	ThC'	ca 10 ⁻⁹	ca 10 ⁻²⁷	ca 3·10 ⁻¹⁸
01	TLC//	or 10-6	10-14	3.10-12
35%	ThC"	186	1.04.10-16	2.83.10-7

TABLE 654 CATHODE RAYS

Prepared by W. W. Nicholas, Bur. Standards

Cathode rays are swiftly moving electrons, and thus are of the same nature as β rays (see tables on radioactivity, pages 526 to 528). They are produced in gas discharge tubes. At comparatively low pressures the cathode rays thus produced have a nearly uniform velocity. Free electrons are emitted from hot bodies (Table 667), especially if the heated substance is coated with barium, calcium, or strontium oxide (Wehnelt cathode). These electrons can be given any desired speed if the heated substance (usually in the form of a wire) be enclosed in an evacuated tube and the difference of potential (V) applied between the wire (cathode) and another electrode (anode, anticathode, or target). The speed (v) of the cathode rays, expressed as a fractional part (β) of the speed of light $(\beta = v/c)$, where c is the speed of light), when they have fallen through the entire potential difference, is given by the formula (corrected for the relativity change of mass)

$$V = 508.1 \{ (1 - \beta^2)^{\frac{1}{2}} - 1 \}$$

where V is in absolute kilovolts. The equivalent power series,

 $V = 254.0 \left\{ \beta^2 + \left(\frac{3}{4} \right) \beta^4 + \left(\frac{5}{8} \right) \beta^6 + \left(\frac{35}{4} \right) \beta^8 \dots \right\},$

is useful for calculations at low and intermediate speeds (error is about 1% for $\beta = 0.60$, using terms given here). A tabulation of the corresponding values of V (absolute kilovolts) and β follows. An electron speed of 0.2 cm/sec, is spoken of, e.g., as a 10.5 kilovolt electron, or as having an equivalent voltage of 10.5 ky.

β	V	β	V	β	V	β	V	β	V
0.02	0.1017	0,22	12.76	0.42	51.77	0.62	139.5	0.82	379.6
.04	.4070	.24	15.30	•44	57.7I	.64	153.2	.84	428.3
.06	.9170	.26	18.10	.46	64.13	.66	168.2	.86	487.6
.08	1.634	.28	21.17	.48	71.08	.68	184.9	.88	561.6
.10	2.560	.30	24.53	.50	78.60	.70	203.4	.90	657.5
.12	3.699	.32	28.20	.52	86.75	.72	224.I	.92	788.3
.14	5.054	•34	32.19	-54	95.58	.74	247.3	.94	981.1
.16	6.631	.36	36.51	.56	105.2	.76	273.7	.96	1307
.18	8.436	.38	41.20	.58	115.6	.78	303.8	.98	2045
.20	10.48	.40	46.28	.60	127.0	.80	338.7		,,,

Cathode rays whose direction of motion is perpendicular to the direction of a uniform magnetic field (H) describe a circular path of radius (r) according to the formula (corrected for relativity change of mass of electron)

 $Hr = 1695 \{ \beta (1 - \beta^2)^{\frac{1}{2}} \}$

where H is expressed in gauss and r in cm.

When they impinge on matter, eathode rays are deflected from their original direction of motion. These deflections grade all the way from 180° "reflections" to the "diffusion" corresponding to deflections through very small angles. The large-angle deflections are ordinarily comparatively infrequent. However, when the substance struck by the cathode rays is crystalline, certain directions may be preferred by the deflections. Here the beam of cathode rays behaves as though it consisted of a train of waves of wave length $\lambda_e = 0.02428/\beta$, where λ_e is in Angstroms. The preferred directions for the "reflected" cathode ray beams may be calculated from the Bragg formula (see Siegbahn's "X-ray Spectroscopy"). The simple Bragg formula is quite limited in application here, however, since refraction in the crystal is very appreciable for the cathode ray beams. In general, the cathode rays which have been deflected by matter will have lost speed, but the rays which have undergone these "preferred" deflections remain of the same speed as the primary cathode beam.

Cathode rays lose speed on penetrating matter. The losses of speed by individual cathode particles grade from complete stoppage to no loss of speed. The majority of the cathode particles, however, lose speed according to the relation (Thomas-Whiddington-

Bohr law) $\beta_0^4 - \beta^4 = ax$

where β_0 is the initial speed, and β the speed after traversing a path length x in the material (x to be measured in cm along the actual curved path), and a is a constant roughly equal to 6.5ρ where ρ is the density of the material in g/cm³. A convenient form for the expression is the following. Note that the two forms are not equivalent except at very low speeds (experiment has not yet decided between the two):

 $V_0^2 - V^2 = bx$

where V_0 and V are the initial and final "equivalent voltages" (see above) of the cathode rays, in kv, and b is a constant roughly equal to $40 \times 10^4 p$. A tabulation of experimental values of a and b for various materials follows:

TABLES 655 AND 656 RÖNTGEN RAYS (X RAYS)

TABLE 655 .- Constants for Cathode-Ray Speeds in Matter

Material	а	ь
Beryllium Aluminum Copper Silver Gold Moist air, 76 cm, 18° C.	. 17. . 56. . 66.	0.75×10^{6} 1.1 " 3.6 " 4.2 " 9.0 " 0.44 × 10 ³

TABLE 656.-X-Ray Emission

X Rays are generated whenever and wherever swiftly moving electrons (cathode rays) strike matter. This process occurs in gas discharge tubes at moderately low pressures (about 0.001 to 0.01 mm Hg); the gas-filled X-ray tube is based on this principle. The Coolidge tube, in which the gas pressure is so low (less than 10⁻¹ mm Hg) as not to play a part, is superior for most purposes: the electrons, supplied by a hot filament incorporated in the cathode, are given a high velocity by the application of a high potential (as high as 300,000 v, in certain types); these cathode rays are directed against an area ("focal spot") on the anode ("target," "anticathode") where the X rays are generated.

These X rays are of two types: continuous spectrum rays ("heterogeneous," "general,"

"white" radiation) and characteristic rays (line spectra).

Continuous spectrum X rays are a direct result of the acceleration of the cathode rays due to their close contacts with the atoms of the anticathode. The spectrum energy distribution of this radiation, from a tube whose electrodes are maintained at a constant potential difference (V), is described very roughly by the formula (for a more accurate type of formula, see the I.C.T. vol. 6)

$$J_{\nu}d\nu = C(\nu_0 - \nu)e^{-c/\nu^3}d\nu \qquad \qquad \nu \leq \nu_0 \tag{1}$$

for an energy-frequency graph, or by

$$J_{\lambda}d\lambda = (K/\lambda^2) \left\{ 1/\lambda_0 - 1/\lambda \right\} e^{-k\lambda^3} d\lambda \qquad \lambda \ge \lambda_0$$
 (2)

for an energy-wave length graph. In these two formulae, J_{ν} or J_{λ} is the energy between for an energy-wave length graph. In these two formulae, J_{ν} or J_{λ} is the energy between frequencies, ν and $\nu + d\nu$, or wave lengths λ and $\lambda + d\lambda$, respectively, e, the base of natural logarithms, and ν_0 and λ_0 the highest frequency and shortest wave length, respectively of the spectrum ("high frequency limit," "short wave-length limit," "spectrum limit"). For X rays generated inside the anticathode e and e are zero; this simplifies the formulae, the exponential term becoming unity. For the X ray obtained outside the tube, e and e have values, estimates of which are tabulated in Table 660. The factor, e or e0 determines the energy of the X rays; the convenient way to evaluate this energy is, instead of assigning numerical values to e0 or e1, to evaluate e1 and e1 (Table 660). e10 and e20 depend only on the voltage (e1), the relations being:

$$\lambda_0 = 12.336/V$$
 (3)
 $\nu_0 = 243.0 \times 10^{15}V$ (4)

(λ and λ_0 are expressed throughout this section in Augstrom units, 10⁻⁸ cm, and ν and ν_0

are in sec. $^{-1}$, and V is in kilovolts absolute.)

The energy of the continuous spectrum X rays, E1, produced in the anticathode ordinarily comprises a major fraction of the total X-ray energy generated: the energy of the characteristic rays, E_2 , comprises the minor fraction. $(E_1 + E_2)$ is only an exceedingly small fraction of the electrical energy, E_3 , supplied to the tube. E_1/E_3 is called the efficiency of production of continuous spectrum X rays, and is closely represented by the formula

$$E_1/E_3 = ZV \times 13 \times 10^{-7}$$
.

where Z is the atomic number of the material of the anticathode, and V is expressed in kilovolts. On account of losses by absorption in the anticathode and in the walls of the tube only a small part of this energy generated inside the anticathode gets outside the tube. Table 660 supplies some numerical values of this "usable" energy, for tubes similar to the standard commercial types.

Characteristic X rays result from the ionization of atoms, either (1) by direct cathode ray impact, or (2) by absorption of X rays. In the anticathode of an X-ray tube both these processes occur. With a silver anticathode, for example, at any voltage between 35 and 80 ky, process (1) accounts for about 65% of the energy of the characteristic rays.

RÖNTGEN RAYS (X RAYS)

EMISSION LINES AND CRITICAL ABSORPTION LIMITS

(in Angstroms)

The characteristic rays group themselves naturally into several groups, K, L, M, etc.; for any given element the lines in one group differ from each other in wave length by amounts which are small compared with the differences between separate groups. The wave lengths of the characteristic rays vary only with the material of the anticathode; these wave lengths, for some of the more prominent lines are given in the table below.

 λ_a is the wave length of the critical absorption limit associated with the emission lines listed in the same subgroup. Taken by permission from Compton, "X-rays and Electrons."

Atomic			К		t	L	Group
number, Element	,		K			Lı	Sub-group
	λα	γ1	βι	α_1	α_2	λα	
I H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 A 19 K 20 Ca 21 Sc 22 Ti 23 Va	λ _a 911.76 524 235 133 84 49.3 36.5 24.6 18.6 14.5 9.5112* 7.9470 5.7580 5.0123 4.3844 3.8657 3.4345 3.0633 2.7517 2.4937 2.29553	2.4937 2.2646	absent 11.591 9.5345 7.9405 6.7393 5.7890 5.0213 4.3946 3.08343 2.77394 2.50898 2.27972	18.3 11.8 9.8 8.3 7.1		2500 1360 580 380 300 250 210 180 146 117 101 84 69 56 46 37 33.1 28.9 25.4 22.5	I H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Na 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 A 19 K 20 Ca 21 Sc 22 Ti 23 Va
24 Cr 25 Mn 26 Fe	2.0648 1.8893 1.7377	2.0670 1.8932 1.7406	2.08045 1.90591 1.75272	2.28484 2.09732 1.93230	2.28895 1.93651	17.7 16.0 14.6	24 Cr 25 Mn 26 Fe

^{*}The values in italics are observed values. Other critical absorption limits are computed or interpolated.

EMISSION LINES AND CRITICAL ABSORPTION LIMITS

(in Angstroms)

Atomic			К			L	Group
number, Element			Lı	Sub-group			
	λα	γ1	β_1	αι	α_2	λα	
24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Ga 31 Ga 32 Ge 33 As 34 Br 37 Rb 38 Sr 40 Nb 42 Mo 44 Ru 45 Pd 47 Ag 48 Cd 49 In 50 Sh 51 Cs 53 Ea 57 Ce 53 Ea 64 Gd 65 Ch 66 Dy 67 Ho 68 Eru 70 Yb 71 Cp 72 Hf 73 W 76 Os 77 Pt 78 Pt 78 Pt 79	2.0648 1.8893 1.7377 1.6018 1.4890 1.3785 1.2963 1.1902 1.1146 1.0435 .9790 .9179 .8143 .7693 .6184 .5330 .5057 .4850 .4632 .4434 .4242 .4065 .3896 .3737 .3444 .3307 .3186 .3065 .2949 .2376 .2949 .2376 .2301 .2216 	2.0670 1.8932 1.7406 1.6054 1.4854 1.3780 1.28097 1.11463 1.04290 .99792 .91827 .81484 .76917 .72663 .68835 .65255 .61969 .56048 .53313 .50963 .48607 .46438 .44409 .42485 .40711 .39935 .37483	2.08045 1.90591 1.75272 1.61713 1.49703 1.38933 1.29260 1.20591 1.12671 1.05518 .99027 .93085 .82703 .78151 .73932 .70048 .66449 .63124 .57143 .54470 .51972 .49630 .47428 .45373 .43439 .41624 .39924 .38341 .352 .314 .301 .292 	2.28484 2.09732 1.93230 1.78528 1.65461 1.53730 1.43206 1.33785 1.25130 1.17344 1.10241 1.03756 92360 87360 .82700 .78429 .74457 .70780 .64181 .61201 .58419 .55821 .53386 .51103 .48948 .46933 .45037 .43249 .398 .388 .372 .355 .342 .330 	2.28895 1.93651 1.78956 1.65854 1.54116 1.43587 1.34161 1.25521 1.17741 1.10642 1.04160 -92772 8.7754 8.83118 -78850 -74882 -71208 6.64615 6.1637 -58858 -56264 -53829 -51546 -49396 -47386 -45491 -43703 -402 -393 -376 -360 -347 -335	17.7 16.0 14.6 13.2 12.1 11.0 4.303 3.598 3.2605 2.6327 2.5026 2.3819 2.1605 2.0602 1.971 1.887 1.808 1.736 1.598 1.537 1.477 1.419 1.367 1.316 1.270 1.220 1.177 1.316 1.270 1.220 1.177 1.316 1.270 1.220 1.177 1.316 1.270 1.220 1.775 1.316 1.270 1.220 1.777 1.316 1.270 1.220 1.777 1.316 1.270 1.220 1.777 1.316 1.270 1.220 1.777 1.316 1.270 1.220 1.777 1.316 1.270 1.220 1.777 1.316 1.270 1.220 1.777 1.316 1.270 1.220 1.777 1.377 1.098 1.060 1.024	24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Zn 30 Ga 31 Ga 32 Ge 33 As 34 Se 35 Br 37 Rb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Pd 47 Ag 49 In 50 Sn 51 Sb 52 Te 53 Cs 56 Ba 57 Ce 59 Pr 60 Nd 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Cp 77 Ir 78 Pt 79 Cp 77 Ta 74 Nos 77 Tr 78 Pt 79 Cp 77 Tr 78 Pt 79 Au 81 Tl 82 Pbi 83 Th 92 U

EMISSION LINES AND CRITICAL ABSORPTION LIMITS (IN ANGSTROMS)

25 Mn 26 Fe 27 Co 28 Ni	λa 21.2 18.7 17.1	L _{II} γ ₁	β_1		L	III		Sub-group	
25 Mn 26 Fe 27 Co 28 Ni	21.2 18.7 17.1		β_1		L _{III}				
25 Mn 26 Fe 27 Co 28 Ni	18.7 17.1			λα	αι	α_2	β_2		
30 Zn 31 Ga 32 Ge 33 Se 33 Se 34 Se 35 Rb 37 Rb 38 Y 40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Cd 49 Sn 51 Sb 52 I 55 Rb 53 Cs 56 Ba 57 Le 53 Cs 56 Ba 57 Le 53 GC 59 Pr 60 Nd 62 SEu 64 Tb 66 Dy 67 Tm 70 Yb 71 Cp 72 Hf 73 Ta 74 W 76 Os 77 Pt 79 Au 80 Hg 81 Tl 82 Pb	15.3 14.6 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	5.3730 5.0241 4.7111 4.17282 3.9357 3.71636 3.51485 3.32800 3.15529 2.99493 2.84507 2.57748 2.34252 2.23660 2.13720 2.04433 1.95681 1.87383 1.72309 1.6543 1.55863 1.72309 1.4142 1.3623 1.3127 1.2648 1.2203 1.1765 1.13471 1.09553 1.02247 9.8841 9.95545 9.92437 9.8935 8.86529 8.83708	19.17 17.27 11.951 9.3940 8.7172 8.1076 7.0604 5.8228 5.4796 5.1658 4.61100 4.1221 4.13730 3.92664 3.73008 3.54783 3.37792 3.21836 3.73098 3.54783 3.37792 3.21836 1.79268 1.79357 1.91631 1.84246 1.77268 1.70658 1.64350 1.58344 1.5268 1.4207 1.3711 1.32354 1.27917 1.19459 1.11722 1.08093 1.0458 1.01266 97990	21.6 19.0 17.5 15.2 14.9 13.1 5.577 5.228 4.897 3.6844 2.9945 2.8470 2.7124 2.4678 2.3577 2.250 2.158 2.072 1.902 1.841 1.773 1.709 1.646 1.588 1.532 1.480 1.431 1.383 1.393 1.294 1.251 1.2136 1.0704 1.0393 1.0067 9776 97497	5.7113 5.3943 4.83567 4.58778 4.35850 4.14564 3.94782 3.76367 3.59218 3.43177 3.28199 2.4576964 2.65968 2.55600 2.45770 2.36531 2.19501 2.11633 2.04193 1.97149 1.90460 1.84098 1.78040 1.7228 1.66779 1.61551 1.56607 1.51825 1.47348 1.38816 1.34834 1.31008 1.27355 1.20471 1.17202	21.69 19.48 17.60 13.309 12.222 10.413 9.6503 8.9706 8.3566 7.3027 6.8478 6.4349 6.0559 5.717 5.400 4.84367 4.59556 4.36660 4.15382 3.95636 3.77242 3.60108 3.44075 3.29100 3.15087 2.89560 2.77904 2.66893 2.56511 2.46763 2.37563 2.20568 2.12733 2.05262 1.98231 1.91564 1.7339 1.62636 1.77140 1.7339 1.62636 1.57704 1.48452 1.3982 1.35939 1.32121 1.28489 1.22497 1.21603 1.18352	5.5734 5.2253 4.9092 4.3619 4.1221 3.9007 3.69383 3.5064 3.31679 3.0166 2.8761 2.74608 2.5064 2.3993 2.2980 2.2041 2.1148 2.0314 1.8781 1.8082 1.7419 1.6790 1.6198 1.5637 1.5106 1.4602 1.4128 1.3672 1.3235 1.2810 1.24191 1.16838 1.13287 1.09950 1.06775 1.00786 97990	24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 35 Rb 37 Rb 38 Y 40 Nr 41 Nb 42 Ru 45 Pd 47 ACd 49 In 50 Sn 51 Sb 52 I 53 Cs 56 Ba 63 Cs 57 Lce 59 Pr 60 Sm 63 Eu 64 Ca 65 Dy 67 Ho 68 Er 69 Tm 70 Cp 71 Ta 74 No 76 Os 77 Rb 78 No 77 Rb 78 No 79 No 70 Cr 70 Cr 71 Cp 72 Hf 73 No 74 No 75 No 76 No 77 Rb 78 No 79 No 70 Cr 70 Cr 71 Cp 72 Hf 73 No 74 No 75 No 76 No 77 No 77 No 78 No 78 No 79 No 70 No 70 No 70 No 71 Co 72 No 73 No 74 No 75 No 76 No 77 No 78	
82 Pb 83 Bi 90 Th 92 U			.97990 .94930 .76259			1.18352 1.1533 .96524	.97990 .95293 .79108 .75268	82 Pb 83 Bi 90 Th	

TABLE 657 (Concluded).—Emission Lines and Critical Absorption Limits (in Angstroms)

 λ_{α} is the wave length of the critical absorption limit associated with the emission lines listed in the same subgroup. The italicized values are observed; other critical absorption limits are computed or interpolated.

	М									Group	
Atomic number, Element	MI	Мп	MIII		M _{IV}		Mv			Sub-group	
	λα	λα	λα	γ	λα	β	λα	α1	α2		
13 Al 25 Mn 42 Mo 52 Te 66 Dy 67 Ho 68 Er 70 Yb 71 Lu 72 Hf 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 81 TI 82 Pb 83 Bi 90 Th 92 U	79 24.2 12.2 6.042 5.797 5.567 5.151 4.963 4.746 4.557 4.392 3.746 3.605 3.213 3.081 2.388	6.699 6.403 6.190 5.621 5.427 5.216 5.038 4.827 4.083 3.895 3.597 3.477 3.333	6.254 6.067 5.864 5.674 5.447 4.700 4.518 4.160 4.035		52.4 21.11 9.28 8.85 8.50 7.83 7.542 7.19 6.87 6.617 5.618 5.386 4.934 4.786 4.569 3.552	9.323 8.943 8.573 7.891 7.286 6.256 6.256 6.256 6.233 5.065 4.894	5.830 5.594 5.157 4.982	8.011 7.803 6.952 6.459 6.223 6.026 5.812 5.427 5.250 5.078 4.097	9.150 8.783 8.125 7.820 7.521 7.238 6.973 6.481 6.250 6.041 5.831 5.443 5.273 5.107	70 Yb 71 Lu 72 Hf 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 81 TI 82 Pb 83 Bi	

TABLE 658.—Probabilities of Ionization in K and L Shells

An atom ionized, in the K shell, say, by one of the two processes described, can either (a) radiate a quantum of K characteristic radiation, or it can (b) convert an equivalent amount of energy into an ionization (with photoelectric emission) of its own outer shells L, M, etc. (compound photoelectric effect). The probability (u) of occurrence of process (a) subsequent to the ionization of an atom depends on the atom, and on the particular shell ionized. Some numerical values for the probability u are given in the table below.

Values in parentheses are comparatively uncertain.

Ionization in the K shell

Element A Cr Fe Co Ni Cu Zn Se Br Kr Sr Mo Ag I Xe u .07 .23 .28 (.39) .36 .38 .41 .54 .56 (.51) .62 .68 (.86) (.75) (.71)

Ionization in the L shell

Element Kr Xe (.13) (.25)

TABLE 659.—Energy and Efficiency of Production of Characteritsic X Rays

The energy, E_2 , of the characteristic rays, as produced inside the anticathode for a given tube and a given type of characteristic ray, varies with the material of the anticathode and the voltage applied to the tube. The rays in a particular subgroup (see Table 657) do not appear at all until a certain critical voltage, V_0 , is reached, then all the rays of the subgroup appear at once. V_0 is given by the formula: $V_0 = 12.336/\lambda_a$, where V_0 is in absolute kilovolts and λ_a in Angstroms. In Table 657 values of λ_a associated with the various subgroups of emission lines are tabulated to the left of the particular lines with which they are associated.

The efficiency of production of the characteristic rays, which may be taken as E_2/E_3 , is given roughly by the formula:

$$E_2/E_3 = G[(V - V_0)^2/V]$$
 $V > V_0$

where G is a constant whose dependence on the anticathode material and type of characteristic ray has not yet been broadly investigated. For a silver anticathode and a tube voltage of 50 kv, E_2/E_3 for the K rays is about 0.48 × 10⁻³. Due to losses by absorption in the anticathode and walls of the tube only a part of the energy generated in the anticathode reaches the outside of the tube. The following table supplies some estimates of this "usable" energy for tubes similar to the standard commercial types. I_2 , which is a measure of the useful characteristic ray energy, varies with voltage in a different manner than E_2 , on account of the variation with voltage of the absorption in the anticathode. For $V_0 < V < 2V_0$, I_2 is roughly proportional to $(V - V_0)^n$, where n is usually between 3/2 and 2; but at higher voltages some measurements indicate that I_2 increases more slowly with voltage, approaching a limiting value in the neighborhood of $V = 6V_0$.

The relative intensities of the lines in a particular subgroup are independent of voltage for a given element; the variation from element to element is often negligible over long ranges of atomic number. In the K series, and at least for atomic numbers greater than 30, about 5/6 of the energy is contained in the two α lines; of these two, α_1 is the more intense in the ratio 2:1. In the L series of tungsten, at 22.75 kv, the ratio of the intensities α_1 : α_2 is 10:1; $\beta_1:\beta_2:\beta_3:\beta_4$ have relative intensities 100:55:15:1; and $\gamma_1:\gamma_2:\gamma_3:\gamma_4$ have 100:14:18:6.

Type of tube	V	i	E1	с	k	(E ₂) _K	<i>I</i> ₁	I 2
(anticathode)	kv	ma	ergs/sec.	• sec3	A3	ergs/sec.	/sec. at o	
Tungsten	40	1.0	1.23×10^{6}	0.15×10^{57}	5.5		2.2	0
	69	- 44	3.66 "	.17 "	6.3		10	0
4.4	100	4.6	7.20 "	.20 "	7.4		22.5	7.3
44	. 150	4.6	17.3 "	.25 "	9.2		50	24.2
Silver	50					.24 X 10 ⁶		

TABLE 660.—Energy and Quality of Emission X Rays

Note: V is the constant direct current potential difference maintained across the terminals of the tube. For varying voltages (as with a tube supplied directly from a transformer, or with a mechanical rectifier), where V is the peak voltage and i is the average current as read by a milliameter, all the values tabulated are decreased by an extent dependent on the voltage and current wave forms for the particular outfit used, and therefore difficult to specify here. i is the milliamperage tube current for tubes of the Coolidge type, but not for gas-filled tubes, where there are complicating factors. E_1 is the energy converted per sec., inside the anticathode, into continuous spectrum X rays. $(E_2)_K$ is a similar quantity for the K characteristic rays.

TABLE 660(continued).- Energy and Quality of Emission X Rays

 I_1 is the intensity in the continuous X rays obtained outside the tube at a distance of 1 meter from the focal spot, supposing no filtration other than the unavoidable filtration due to the walls of the tube (assumed equivalent to 1.23 mm of A1), anticathode, etc. For practical purposes, until more thorough data is at hand, I_1 may be assumed proportional to the atomic number of the material of the anticathode. It is expressed in ergs per sec. falling on a 1 cm² surface perpendicular to the X-ray beam. The orientation of the tube is supposed to be the usual one, with X rays taken off perpendicular to the cathode stream, and target face inclined at 45°. I_2 is a similar quantity for the K characteristic rays.

c and k are quantities contained in p. 537, which describe the spectrum distribution of the intensity I_1 .

 E_1 and E_2 are probably within 5% and 10%, respectively, of their correct values. I_1 and I_2 depend on the tube walls, the roughness of the target surface, etc., and on such accounts an estimate of accuracy is difficult to make; for a smooth target surface, inclined at 45°, and tube walls of 0.7 mm soda glass, the above values of I_1 and I_2 are probably correct to within 20%.

TABLE 661 .- X-Ray Spectroscopy

When an X-ray beam is incident on a crystal in such a manner as to make a glancing angle θ with certain sets of parallel planes within the crystal (adjacent planes, containing large numbers of atoms, for best efficiency), these planes having an interplane spacing d, components of the beam of wave lengths λ , $\lambda/2$, $\lambda/3$, ... λ/n will be diffracted (or "reflected") according to the relation (Bragg law): $\lambda = 2d \sin \theta$. The angle between the directions of the original beam and the deviated beam is 2θ . Refraction in the crystal would introduce an additional factor in the above formula, but the effect is negligible for all ordinary work.

Values for d, the "lattice constant," for some of the commonly used crystals are tabulated below.

_		d in Angstroms
Crystal	Surface	at 18° C
Carborundum	(111)	2.49
Rock salt	Cleavage face	2.814
Calcite	Cleavage face	3.029
Quartz	Prism face	4.247
Gypsum	Cleavage face	7 · 577
K₄FeCN ₆	(100)	8.408
Mica	Cleavage face	9.993
Sugar	(100)	10.57
Al ₂ O ₃	(100)	11.23

TABLE 662.-Lattice Constants of Crystals

For an extensive tabulation of X-ray data on crystals see the I. C. T., vol. 1.

TABLE 663 .- Absorption and Scattering of X Rays; Fluorescence

A beam of X rays loses energy as it traverses matter. For monochromatic rays, this loss of energy is given by the formula: $I/I_0 = e^{-\mu x}$ where I_0 and I represent respectively incident and emergent intensities of a parallel beam normal to a plate of absorbing material of thickness x, e is the base of natural logarithms, and μ is a constant depending only on the wave length of the x rays and the material of the plate.

For the most used range (wave lengths 0.1 to 1.4 Angstroms, and atomic numbers greater than 5; outside this range there are systematic deviations from the formulae) μ is approximated to about 5% or better by the formulae: (See next page.)

RÖNTGEN RAYS (X RAYS)

TABLE 663 (continued) .- Absorption and Scattering of X Rays; Fluorescence

$$\mu/\rho = (1/A) (0.0136Z^4\lambda^3 + 0.32Z)$$
 $\lambda < \lambda_k$
 $\mu/\rho = (1/A) (0.0020Z^4\lambda^3 + 0.32Z)$ $\lambda_k < \lambda < \lambda_{L_1}$

 ρ is the density, Z, the atomic no., A, the atomic weight of the material of the plate, λ , the wave length of the X rays, Angstrom units; x is in cm. Values for λk and λ_L , wave lengths at which materials have "critical absorption discontinuities," are listed in Table 657 under "X-ray Emission" as λ_a . Numerical values for μ/ρ , the "mass absorption coefficient," (A. H. Compton "X-rays and Electrons") are given in Table 665.

The first term in the brackets represents energy losses from "fluorescent," or "true," absorption; this first appears as energy of ionization of atoms and of photoelectrons. The ionized atoms then either emit characteristic X rays or use their energy for the photoelectric process; the quantitative relations between these are described in Table 660 under "X-ray Emission."

The second term is the energy lost by the X-ray beam by scattering. Except for the (usually small) amount of energy which goes into the production of "recoil electrons," it remains as X-ray energy which is simply redistributed as to direction of propagation, being radiated in all directions from the plate. The scattered radiation is of two parts, an "unmodified" (or "unshifted") part, and a "modified" (or "shifted") part. The former has the wave length of the original beam. The wave length of the modified part is longer ("Compton shift") than that of the original beam by an amount $\delta\lambda$ which varies with δ , the angle between the direction of the primary beam (of wave length λ), and the direction of that portion of the modified rays of wave length $\lambda + \delta\lambda$. The relation between $\delta\lambda$ and ϕ is $\delta\lambda$ (Angstrom units) = 0.02428(I - $\cos\phi$).

TABLE 664.-X-Ray Absorption and Chemical Combination

The wave lengths of the critical absorption limits of an element depend, to a very small extent, on the chemical combination of the "absorbing" element. The K absorption limit for phosphorus follows for various chemical combinations: R stands for any one of several metals.

Wave lengths, λ, in Angstroms

(RO):PO (RO):HPO	λ 5.7507 5.7541	Δλ	(RN) ₈ PO (RC) ₈ PS	λ 5.7565 5.7632	Δλ 0.0058 .0125
(RO)H₂PO. (RO)₂(RC)PO (RO)(RC)₂PO. (RC)₃PO. (RC)₄POR. (RN)(C)₃PO.	5.7591	.0068 .0044 .0084 .0097 .0123	RO(RC)(H)PO. (RO) ₃ P (RC) ₃ P (RO)Cl ₂ P (RO)Cl ₂ P (RO) ₃ P,CuCl	5.7581 5.7599 5.7676 5.7602 5.7645 5.7589	.0074 .0092 .0169 .0095 .0138
(RN)(RO)(Cl)PO (RN)(RO) ₂ PO (RN) ₂ (RO)PO	5.7559 5.7512 5.7541	.0052 .0005 .0034	P (violet) P (black) P (white)	5.7714 5.7715 5.7769	.0207 .0208 .0262

There result some conclusions probably of general application: $(\Delta\lambda)$ in its value for some particular compound, depends only on what atoms are directly attached to the absorbing atom (e.g., the phosphorus limit $(RO)_aP$ does not depend on what metal is used for R). $\Delta\lambda$ depends on the *kind* of atom directly attached (compare $(RO)_aP$ with $(RC)_aP$) and on the *number* of these atoms (compare $(RO)_aP$ with $(RO)_aPO)$. If any addition (any kind of atom) is made to a given set of atoms directly attached to the absorbing one, the limit is shifted toward a shorter λ (cf., $(RC)_aP$ with $(RC)_aPO)$. Further, the wave length for the element when uncombined is usually greater than when attached chemically to other atoms (true for all of 11 elements investigated except sulphur). A variation of wave length is also usually shown for allotropic modifications of an element.

Atomic number,	Wave lengths in Angstroms 0.017 0.057 0.080 0.100 0.125 0.150 0.175 0.200 0.250 0.300 0.350 0.400
Element	0.017 0.057 0.080 0.100 0.125 0.150 0.175 0.200 0.250 0.300 0.350 0.400
I H	0.117 0.3 0.4 0.4 0.4 0.39 0.42 0.44 0.45
3 Li 6 C	.060 0.140 0.146 .152 .160 .162 .170 .184 .197 .216 .240
7 N 8 O	
12 Mg	.059146 .163 .174 .183 .208 .240 .285 .338 .057162 .175 .202 .232 .311 .430 .612 .875
13 Al	.058 0.07 .143 .164 .178 .201 .231 .269 .370 .531 .756 1.05
16 S 26 Fe	.058 .152 .190 .204 .272 .333 .42 .63 .93 1.32 1.78 .058 .08 .232 .265 .399 .572 .79 1.07 1.93 3.18 4.94 7.17
27 Co	42 .60 .84 1.17 2.12 3.52
28 Ni 29 Cu	.059 .261 .328 .475 .68 I.00 I.40 2.50 4.10 6.22 .057 .263 .323 .49 .77 I.10 I.53 2.75 4.47 6.91 I0.1
30 Zn	.057305 .38 .60 .92 1.28 1.77 3.15 5.10 7.90 11.6
42 Mo	1 1.35 1.96 2.83 4.02 7.42 12.7 19.1 26.7
47 Ag 50 Sn	.05672
74 W	2.35 3.40 5.42 8.10 2.92 3.20 5.60 8.60 13.2 19.8
78 Pt	068 2.46 3.69 5.70 4.30 3.04 4.16 7.32 11.5 17.0 24.5
79 Au 82 Pb	2.39 3.64 5.37 3.60 3.09 4.28 7.65 2.068 .50 2.47 3.78 4.32 2.0 2.93 4.62 8.46 13.9 21.9 32.7
83 Bi	.070 2.44 3.78 3.8 2.44 3.59 5.10 9.3 14.8 22.8
90 Th	.081 3.88 1.85 2.69 2.87 5.47 9.67
	K limit
	0.500 0.600 0.700 0.800 0.900 1.00 1.10 1.32 1.40 1.76 2.25
т Н	0.45 0.44 0.51 0.57 0.63
3 Li 6 C	.245 .306 .403
8.0	.498 .746 1.10 1.55 2.12 2.87
12 Mg	1.56 16 35 63 126
16 S	5.9 9.5 K
26 Fe	14.3 23.3 36.3 51.7 69.6 95 126 220 270 60 104 limit
28 Ni 29 Cu	18 30 45.0 82 118 159 253 288 69 135 18.8 31.6 49.2 97 133 181 265 40 75 143
30 Zn	18.8 31.6 49.2 97 133 181 265 40 75 143 22.2 37.2 57.0 107 152 188 40 48 91 170
42 Mo	48.6 80.7 18.8 27.2 37.5 51
46 Pd	60 17.0
47 Ag	11.0 18.7 25.6 57 75 92 155 176 320 590
50 Sn 74 W	13.1 21.6 31 65 87 115 198 223 400 725 L 38.0 65.0 113 141 limit
78 Pt	45.5 75.5 112 158 165 92 145 161 282 520
79 Au	51 77 116 154 110 98 148 173 300 500
82 Pb	59.3 91 133 140 77 100 166 185 340
	L limit

PHOTOGRAPHIC EFFECTS OF X RAYS

X rays affect a photographic plate (or film) in much the same way as does light, except that that part, D_x , of the photographic density which is due to the radiation depends on radiation intensity, I, and the time of exposure, t, in a simpler way. The relation for monochromatic X rays is

$$Dx \equiv D - D_0 = k(\mathbf{1} - e^{-\alpha It}), \qquad 0 < D < 4 \tag{1}$$

where e is the base of natural logarithms, and k and α are constant for a given plate and given X-ray wave length. D and D_0 are the photographic densities of the exposed and unexposed parts of the plate. These densities are measurable with a photometer, photographic density being defined as the common logarithm of the reciprocal of the transmission T, i.e., density $\equiv \log_{10}(I/T)$, where T is the ratio (transmitted light)/(incident light) for a beam of light normal to the developed plate.

The limits of applicability of formula (I) probably depend on the characteristics of the plate used and on the development, as well as on the wave length of the X rays. Experimental tests indicate that the relation holds within a few per cent up to a density of at least 4, for X-ray plates, if the plate is fully developed and if the wave length of the X rays is between 0.4 and I.I Angstroms. Effects due to intermittency, and to the failure of the reciprocity law are negligible in the X-ray region.

Note: The phenomena of electron emission, photoelectric effect and contact (Volta) potential treated in the following tables are extremely sensitive to surface condition of the metal. The most consistent observations have been made in high vacua with freshly cut metal surfaces. (See Dushman, Rev. Mod. Phys., 2, 381, 1930.)

TABLE 667.—Electron Emission from Hot Solid Elementary Substances

(Most of the following is taken from Dushman, loc. cit., 1930.)

Among the free electrons within a metal some may have velocities great enough to escape the surface attraction. The number reaching the surface with velocities above this critical velocity = $N = (RT/2\pi M)^{1/2} e^{-w^{t}r^{t}}$ where N = no. of electrons/cm³ of metal, R the gas constant (83.14 \times 106 erg-dyne), T, the absolute temperature, M, the atomic weight of an electron (.000545, O = 16), w the work done when a gram-molecule of electrons (6.06 \times 10²³ electrons or 96,500 coulombs) escape. It seems probable that this work is done against the attraction of the electron's own induced image in the surface of the conductor. When a sufficiently high + field is applied to escaping electrons so that none return to the conductor, then the saturation current has been found to follow the equation $i=a\sqrt{T}\cdot e^{-b/T}$ (Richardson's equation)

assuming N and W constant with T. This is equivalent to the equation for N just given. The equation

 $I = A T^2 e^{-b_0/T}$ (Laue's equation) is just as valid theoretically and Dushman (Phys. Rev., 21, 623, 1923) considers A should be a universal constant (60.2 amp./cm²/deg.²/and bo dependent upon the emitter. The data is not accurate enough to distinguish between the two formulas. b or b_0 is a measure of the latent heat of evaporation of the electrons, i. e., the energy needed to get the electrons through the surface. While used in ${}^{\circ}K$. in the above equation, it is customary to express it in volts by the relation $b_0k = \phi_0e$ where k = Boltzmann's constant, e, the electronic charge, and ϕ_0 is known as the work function, whence

 $\phi_0 = 8.62 \times 10^{-5} b_0 \text{ (volts)}$

The experimental values of A do not seem to be independent of the substance.

Element Mo Pt Ta Tn	5.26 4.98	60.2 1.7 × 10 ⁴ 60.2 60.2	$ \begin{array}{c} b_0 \times 10^{-4} \\ \hline 5.15 \\ 7.25 \\ 4.72 \\ 3.89 \end{array} $	φ ₃ 4.44 6.27 4.07 3.35	I _T 1.6 × 10 ⁻³ 9.2 × 10 ⁻¹⁰ 1.38 × 10 ⁻² 4 × 10 ⁻³	7 2000 1600 2000 1600	Dushman, 1925 DuBridge, 1928 Dushman, 1925 Zwikker, 1926
W Zr		60.2	5.240 4.79	4.52 4.13	1 × 10 ⁻³ 8 × 10 ⁻⁵	2000 1600	Average Zwikker, 1929

(Above table of best authenticated values is from Dushman, loc. cit., p. 394, 1930. His table contains values for C, Ca, Cs, Hf, Ni. See also I.C.T.)

TABLE 668.—Electron Emission from Thorium-Coated Filaments (Monomolecular), $f(\theta)$

Values given for Dushman with W filaments coated with monomolecular films of thorium. $\theta = (b_0 - b_w)/(b_{\rm Th} - b_w)$ where b_0 , $b_{\rm Th}$ and b_w represent values of b_0 in the emission equation for partly covered, completely covered, and pure tungsten surface.

 I_0 and ϕ_0 refer to 1900°.

$\begin{array}{ccccccc} \theta = 1,00 & A\theta = 3.0 \\ 0.95 & 1.50 \\ .72 & 3.74 \\ .43 & 10.86 \\ .25 & 15.81 \end{array}$	$b_{\theta} = 30,500$ $31,460$ $36,570$ $42,840$ $47,050$	$I_{\theta} = 1.166$ 0.349 0.594 0.064 0.0010	$\Phi_{\theta} = 2.63$ 2.71 3.15 3.69 4.06
---	---	---	--

TABLE 669.—Emission Current, I, Emission Efficiency I/W, Diffusion, D, I_0 for Zero Field. Completely Activated Surface, Th on W

T	I (amp./cm²)	I/W (amp./watt)	D (cm²/sec.)	E (atoms/ sec./cm²	I_0
1000° 1200 1400 1500 1600 1700 1800 1900 2000	1.73 × 10-7 3.95 × 10-5 2.03 × 10-3 1.00 × 10-2 4.06 × 10-2 1.40 × 10-1 4.28 × " 1.164 2.864	2.87 × 10 ⁻⁷ 2.38 × 10 ⁻⁵ 5.30 × 10 ⁻⁴ 1.81 × 10 ⁻³ 5.24 × 10 ⁻³ 1.32 × 10 ⁻² 3.09 × 10 ⁻² 6.24 × 10 ⁻² 1.19 × 10 ⁻¹	2.4 × 10-15 2.2 × 10-14 1.6 × 10-13 9.2 × 10-13 4.3 × 10-12 1.7 × 10-11 5.9 × 10-11	0.445 58.5 4.2 × 10 ³ 1.8 × 10 ⁵ 5.2 × 10 ⁶ 1.0 × 10 ⁸ 1.5 × 10 ⁹	8.0 × 10 ⁻⁹ 5.3 × 10 ⁻⁶ 5.4 × 10 ⁻⁶ 3.5 × 10 ⁻³ 1.8 × 10 ⁻² 7.9 × 10 ⁻³ 2.9 × 10 ⁻¹ 9.5 × 10 ⁻¹

TABLE 670.—Electron Emission from Other Than Th-Coated Filaments

Monatomic films of other rare earths (and alkaline earth metals absorbed on tungsten and molybdenum). $D \text{ cm}^2/\text{sec.}^{-1}$ for T = 2000. Q_D , heat of diffusion (g cal./g-atom), E, the rate of evaporation in atoms/cm²sec. at 2000° K. A, b_0 refer to formulas on page 547.

Emitter	A	<i>b</i> ₀	D×1011	Q_D	E×100
Ce-W	8.0	31,500.	95.	83,000	1450
La-W	8.0	31,500.			
U-W	3.2	33,000.	1.3	100,000	>Th
Yt-W	7.0	31,300.	324.	78,000	68.
Zr-W	5.0	36,500.	1820.	62,000	
Th-W		30,500.	5.9	94,000	1.53
Th-Mo	1.5	30,000.	102000.	52,000	5400.

TABLE 671.-Photoelectric Effect

A negatively charged body loses its charge under the influence of ultra-violet light because of the escape of negative electrons freed by the absorption of the energy of the light. The light must have a wave length shorter than some limiting value λ_0 characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity v of the expelled electron and the frequency v of the light is $(\frac{1}{2})mv^2 = hv - P$ (Einstein's equation) where h is Planck's constant $(6.58 \times 10^{-27} \, {\rm erg. \, sec.})$; hv sometimes taken as the energy of a "quanta," P, the work which must be done by the electron in overcoming surface forces. $(\frac{1}{2})mv^2$ is the maximum kinetic energy the electron may have after escape. Richardson identifies the P of Einstein's formula with the vv of electron emission of the preceding table. The minimum frequency v_0 (corresponding to maximum wave length λ_0) at which the photoelectric effect can be observed is determined by hv = P. P applies to a single electron, whereas vv applies to one coulomb $(6.062 \times 10^{23} \, {\rm electrons})$; therefore vv = NP = .00399v ergs. $\phi = (12.4 \times 10^{-5})\lambda_0$ volts. See Millikan, Proc. Nat. Acad. 2, 78, 1916; Phys. Rev. 7, 355, 1916; 4, 73, 1914; Hennings, Phys. Rev. 4, 228, 1914.

TABLE 672.—Contact (volta) Potentials

	Pt	Fe	Cu	Au	Ag	A1	Mg	Zn	Рь	Sn
SiO ₂ Glass	+2.22 +1.15	+1.99 +1.15	$+1.60 \\ +0.58$	+1.60 +0.58	+1.42 +0.58	+.93 +.14	+.93 +.14	+.45 29	+.16 60	30 -1.14
					ı Cr					
W +.08 +.11382117 SiO ₂ , Glass Polednik, Z. Phys 66, 619, 1930. \ W Kosters, " 66, 807, 1930. \										

(This Table Supplements Table 677.)

3 Li 3.00 13 Al 2.70 4 Gl 2.30 14 Si 2.35 6 C 1.54 16 S 2.05 7 N 1.30 17 Cl 2.10 8 O 1.30 18 A 2.05* 9 F 1.35 19 K 4.15 10 Ne 1.30* 20 Ca 3.40 11 Na 3.55 22 Ti 2.80 12 Mg 2.85 24 Cr 2.80†	25 Mn 2.95† 26 Fe 2.80 27 Co 2.75 28 Ni 2.70 29 Cu 2.75 30 Zn 2.65 33 As 2.52 34 Se 2.35 35 Br 2.38	36 Kr 2.35* 37 Rb 4.50 38 Sr 3.90 47 Ag 3.55 48 Cd 3.20 50 Sn 2.80 51 Sb 2.80 52 Te 2.65 53 I 2.80	54 Xe 2.70* 55 Cs 4.75 56 Ba 4.20 81 Tl 4.50 82 Pb 3.80 83 Bi 2.96
---	---	--	---

^{*} Outer electron shell.

Broughall (Phil. Mag. 41, p. 872, 1921) computes in the same units from Van der Waal's constant "b" the diameters of He, N, A, Kr, and X as 2.3, 2.6, 2.9, 3.1, and 3.4. These inert elements correspond to Langmuir's completely filled successive electron shells. The corresponding atomic numbers are 2, 10, 18, 36 and 54. For Langmuir's theory see J. Am. Ch. Soc., p. 868, 1919, Science 54, p. 59, 1921,

[†] Cr, "electronegative," 2.35; Mn., ditto, 2.35.

TABLE 672 .- Contact (Volta) Potentials

There has been considerable controversy over the reality and nature of the contact differences of potential between two metals. At present, due to the studies of Langmuir, there is a decided tendency to believe that this Volta difference of potential is an intrinsic property of metals closely allied to the phenomena just given in Tables 667 to 671 and that the discrepancies among different observers have been caused by the same disturbing surface conditions. The following values of the contact potentials with silver and the relative photo-sensitiveness of a few of the metals are from Henning, Phys. Rev. 4, 228, 1914. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces are more electro-positive and grow more electro-negative with age. That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electro-positive a metal is the greater the actual velocity of emission of electrons from its surface.

Contact potential with Ag	Ag o 50	Cu .05 60	Fe .19 65	Brass	Sn .27 70	Zn .59 80	Al .99 500	Mg 1.42 1000
---------------------------	---------------	-----------------	-----------------	-------	-----------------	-----------------	------------------	--------------------

From the equation $w = RT \log(N_A/N_B)$, where w is the work necessary per gram-molecule when electrons pass through a surface barrier separating concentrations N_A and N_B of electrons, it can be shown (Langmuir, Tr. Am. Eletroch. Soc. 29, 142, 1916, et seq.) that the Volta potential difference between two metals should be

$$v_1 - v_2 = \frac{1}{F} \{ w_2 - w_1 + RT \log(N_A/N_B) \} = \frac{w_2 - w_1}{F} = \phi_2 - \phi_1$$

(see Table 671 for significance of symbols), since the number of free electrons in different metals per unit volume is so nearly the same that $RT \log (N_A/N_B)$ may be neglected. The contact potentials may thus be calculated from photoelectric phenomena (see Table 671 for references). They are independent of the temperature. The following table gives a summary of values of ϕ in volts obtained from the various phenomena where an electron is torn from the attraction of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface.

TABLE 673 .- (a) The Electron Affinity of the Elements, in Volts

Metal.	Thermionic. (Langmuir.)	Photo- electric and contact. (Millikan.)	Photo- electric. (Richardson)	Miscel- laneous.	Single- line spectra.	Adjusted mean.
Tungsten. Platinum. Tantalum Molybdenum Carbon. Silver. Copper. Bismuth. Tin. Iron. Zinc. Thorium Aluminum Magnesium Titanium. Lithium. Sodium.	 4.52 4.31 4.31 4.14 —————————————————————————————————	2.35 1.82	4.1 3.7 3.5 3.4 2.8 3.2 ———————————————————————————————————	4.45		4.52 4.4? 4.3 4.1 4.0 3.7 3.7 3.4 4.0 3.7 3.7 3.4 3.0 2.7 2.4 2.35 1.82

(b) It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the electrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line the electrode potential e_h of the corresponding metals (in solutions of their salts containing normal ion concentration) on assumption of no contact emf at the junction of the metals. The second line, $\phi - e_h - 3.7$ volts, gives an idea of the electrode potentials (arbitrary zero) exclusive of contact emf.

Metal	Ag	Cu	Bi	Sn	Fe	Zn	Mg	Li	Na
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.80 -0.40	+0.34	+0.20 +0.20	-0.10 -0.20	-0.43 -0.43	-0.76 -0.46	-1.55 -0.55	-3.03 -1.65 *	-2.73 -0.85

TABLE 674.-Molecular Velocities

The probability of a molecular velocity x is $(4/\sqrt{\pi})x^2e^{-z^2}$, the most probable velocity being taken as unity. The number of molecules at any instant of speed greater than c is $2N(hm/\pi)^{\frac{3}{2}} \left\{ \int_{c}^{e^{-h}me^2} dc + ce^{-hme^2} \right\}$ (see table), where N is the total number of molecules. The mean velocity G (sq. rt. of mean sq.) is proportional to the mean kinetic energy and the pressure which the molecules exert on the walls of the vessel and is equal to 15,800 $\sqrt{T/m}$ cm/sec, where T is the absolute temperature and m the molecular weight. The most probable velocity is denoted by W, the average arithmetical velocity by Ω .

$$G = W \sqrt{3/2} = 1.225W;$$
 $\Omega = W \sqrt{4/\pi} = 1.128W;$ $G = \Omega \sqrt{3\pi/8} = 1.086\Omega.$

The number of molecules striking unit area of inclosing wall is $(1/4)N\Omega$ (Meyer's equation), where N is the number of molecules per unit volume; the mass of gas striking is $(1/4)\rho\Omega$ where ρ is the density of the gas. For air at normal pressure and room temperature (2° C) this is about 1/4 g/cm²/sec. See Languir, Phys. Rev. 2, 1013 (vapor pressure of W) and J. Amer. Ch. Soc. 37, 1915 (Chemical Reactions at Low Pressures), for fertile applications of these latter equations. The following table is based on Kinetic Theory of Gases, Dushman, Gen. Elec. Rev. 18, 1915, and Jeans, Dynamical Theory of Gases, 1916.

Gas.	Molecular Sq. rt. mean sq. $G \times 10^{-2}$ cm/sec.			Arithmetical average velocity, $\Omega imes ext{ro}^{-2}$ cm/sec.								
Gas.	weight.	273°	293°	373°	223°	273°	293°	373°	1000°	1500°	2000°	6000°
Air Ammonia. Argon. Carbon monoxide. Carbon dioxide. Helium. Hydrogen. Krypton. Mercury. Molybdenum. Neon. Nitrogen. Oxygen. Tungsten. Water vapor. Xenon.	82,92 200.6 96.0 20.2 28.02 32.00 184.0	485 633 413 493 393 1311 1838 286 184 — 584 493 461 — 615 228	502 655 428 511 408 1358 1904 296 191 — 605 511 478 637 236	567 740 483 576 459 1533 2149 335 215 683 577 539 720 267	404 527 344 410 327 1092 1534 238 154 486 410 384 512 190	447 583 381 454 362 1208 1696 203 170 — 538 454 425 — 566 210	463 604 395 471 376 1252 1755 272 176 — 557 471 440 — 587 218	522 681 445 531 434 1412 1980 308 199 — 629 531 497 — 6626	855 1115 729 870 694 2300 3241 502 325 469 1030 869 813 339 1084 400	1047 1367 892 1065 850 2840 3970 618 398 575 1260 1064 996 416 1317 493	1209 1577 1030 1230 981 3270 4583 712 459 664 1460 1229 1150 480 1533 570	2094 2734 1784 2130 1700 5680 7940 1236 796 1150 2520 2128 1992 832 2634 986

Free electron, molecular weight = 1/1835 when H = 1; G = 1.114 \times 10 7 at 0 $^\circ$ C and Ω = 1.026 \times 10 7 at 0 $^\circ$ C.

TABLE 675 .- Molecular Free Paths, Collision Frequencies, and Diameters

The following table gives the average free path L derived from Boltzmann's formula μ (.3502 $\rho\Omega$), μ being the viscosity, ρ the density, and from Meyer's formula μ (.3007 $\rho\Omega$). Experimental values (Verh. d. Phys. Ges. 14, 506, 1912; 15, 373, 1913) agree better with Meyer's values, although many prefer Boltzmann's formula. As the pressure decreases, the free path increases, at one bar (ordinary incandescent lamp) becoming 5 to 10 cm. The diameters may be determined from L by Sutherland's equation $\{1.402/\sqrt{2\pi NL}(1+C/T)\}^{\frac{1}{2}}$, N being the number of molecules per unit vol. and C Sutherland's constant; from van der Waal's b. $\{3b/2NV\pi\}^{\frac{1}{2}}$; from the heat conductivity k, the specific heat at constant volume cv, $\{1.46\rho Gev/Nk\}^{\frac{1}{2}}$ (Laby and Kaye); a superior limit from the maximum density in solid and liquid states (Jeans, Sutherland, 1916) and an inferior limit from the dielectric constant D, $\{(D-1)2/\pi N\}^{\frac{1}{2}}$. The table is derived principally from Dushman, Lc.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			× 106 (cm		Collision	109 × Molecular diameters (cm):					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cas	f			frequency.	From L	From		Limiting		
Ammonia	Gas.				X 10-6	cosity)	Waal's	conduc- tivity	density	Min. D or n	
Xenon. 5.6 - - - 4.02 3.42 3.55 (3.18)	Argon Carbon monoxide. "dioxide. Helium. Hydrogen. Krypton. Mercury. Nitrogen. Oxygen.	5. 92 8. 98 8. 46 5. 56 25. 25 16.00 9. 5 8. 50 9. 05	6.60 9.88 9.23 6.15 27.45 17.44 (14.70)	5.83 8.73 8.16 5.44 33.10 15.40 (13.0) 8.21	4000 5100 6120 4540 10060	2.97 2.88 3.19 3.34 1.90 2.40	2.94 3 12 3.23 2 65 2.34 (3.69) 3.01 3.15 2.92	2.86 3.40 2.30 2.32 3.14 3.53	2.87 3.27 3.35 1.98 2.40 3.35 3.23 2.99	2.66 2.74 2.90 1.92 2.17 (2.70)	

^{*} Pressure = 10^6 bars = 10^6 dynes \div cm² = 75 cm Hg.

TABLE 676 .- Cross-Sections and Lengths of Some Organic Molecules

According to Langmuir (J. Am. Ch. Soc. 38, 2221, 1916) in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the $-\text{COOH}_{+}$ or or -OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the $-\text{COOH}_{+}$ groups are attracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface antil all the $-\text{COOH}_{+}$ groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzene will not mix with water. When a limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight w of oil spreads over water surface A, the area covered by each molecule is AM/WN where M is the molecular weight of the oil M/WN where M is the molecular weight of the oil density and M/WN where M is the molecular weight of the oil density and M/WN where M is the molecular weight of the oil density and M/WN where M is the molecular weight of the oil density and M/WN where M/WN w

Substance.	Cross section in cm ² × 10 ¹⁸	l in cm (length) × 108	Substance.	Cross section in cm ² × 10 ¹⁸	l in cm (length) × 108
Palmitic acid C ₁₅ H ₃₁ COOH. Stearic acid C ₁₇ H ₃₅ COOH. Cerotic acid C ₂₅ H ₃₁ COOH. Oleic acid C ₁₇ H ₃₅ COOH. Linoleic acid C ₁₇ H ₃₁ COOH. Linolenic acid C ₁₇ H ₂₅ COOH. Ricinoleic acid C ₁₇ H ₂₅ COOH.	24 24 25 48 47 66 90	19.6 21.8 29.0 10.8 10.7 7.6 5.8	Cetyl alcohol C16H33OH	21 29 21 69 137 145 280 143	21.9 35.2 44.0 23.7 11.9 11.2 5.7 11.0

TABLE 677 .- Size of Diffracting Units in Crystals ¶

The use of crystals for the analysis of X-rays leads to estimates of the relative sizes of molecular magnitudes. The diffraction phenomenon is here not a surface one, as with gratings, but one of interference of radiations reflected from the regularly spaced atomic units in the crystals, the units fitting into the lattice framework of the crystal. In cubical crystals [100] this framework is built of three mutually perpendicular equidistant planes whose distance apart in crystallographic parlance is d₁₀₀. This method of analysis from the nature of the diffraction pattern leads also to a knowledge of the structure of the various atoms of the crystal. See Bragg and Bragg, X-rays and Crystal Structure,

Crystal.	Elementary diffracting element.	Side of cube.	Molecules or atoms in unit cube.
KCl	Face-centered cube * " " † " † † " * " §	6.28 × 10 ⁻⁸ 5.628 × 10 ⁻⁸ 5.628 × 10 ⁻⁸ 5.43 × 10 ⁻⁸ 5.46 × 10 ⁻⁸ 5.38 × 10 ⁻⁸	4 molecules
Fe. Al. Na. Ni. "	Body-centered cube Face-centered cube Body-centered cube "Face-centered cube	2.86 × 10 ⁻⁸ 4.05 × 10 ⁻⁸ 4.30 × 10 ⁻⁸ 2.76 × 10 ⁻⁸ 3.52 × 10 ⁻⁸	2 atoms 4 " 2 " 2 " 4 "

^{*} Each atom is so nearly equal in diffracting power (atomic weight) in KCl that the apparent unit diffracting element * Each atom is so nearly equal in diffracting power (atomic weight) in KCI that the apparent unit diffracting element is a cube (simple) of \(\frac{1}{2}\) this size. Elementary body-centered cube, — atom at each corner, one in center; e.g., Fe, Ni (in part), Na, Li? Elementary face-centered cube, — atom at each corner, one in center of each face; e.g., Cu, Ag, Au, Pb, Al, Ni (in part), etc. Simple cubic lattice, — atom in each corner. Double face-centered cubic or diamond lattice — C (diamond); Si, Sb, Bi, As?, Te?.
† Diamond lattice. † Cubic-holohedral. \$ Cubic-pyritohedral.

Metals taken from Hull, Phys. Rev. 10, p. 661, 1917
¶ See page 543 for best values of calcite and rock-salt grating spaces.

Note:—(Hull, Science 52, 227, 1920). Ca, face-centered cube, side 5.56 A, each atom 12 neighbors 3.93 A distant. Ti, centered cube, cf. Fe, side 3.14 A, 8 neighbors 2.72 A. Zn, 6 nearest neighbors in own plane. 2.67 A, 3 above, 3 below, 2.92 A. Cd, cf. Zn, 2.08 A, 3.30 A. In, face-centered tetragonal, 4 nearest 3.24 A, 4 above, 4 below, 3.33 A. Ru, cf. Zn, 2.69 A, 2.64 A. Pd, face-centered cube, side 3.02 A, 12 neighbors. 2.77 A. Ta, centered cube, side 3.02 A, 12 neighbors. 2.77 A. Ta, centered cube, side 3.27 A, 8 neighbors 2.83 A. Ir, face-centered cube, side 3.80 A, 12 neighbors, 2.69 A (A = 10⁻⁸ cm). Note:—(Bragg, Phil. Mag. 40, 166, 1920). Crystals empirically considered as tangent spheres of diameter in table, atom at center of sphere. When lattice known allows estimation of dimensions of crystal unit. Table foot of page 548 (2000) cumplers, elements, diameter in Angstroms. 10⁻⁸ cm).

⁽atomic numbers, elements, diameter in Angstroms, 10-8 cm).

IONIC MOBILITIES AND DIFFUSIONS

The process of ionization is the removal of an electron from a neutral molecule, the molecule thus acquiring a resultant + charge and becoming a + ion. The negative carriers in all gases at high pressures, except inert gases, consist for the most part of carriers with approximately the same mobilities as the + ions. The negative electrons must, therefore, change initially to ions by union with neutral molecules.

The mobility, U, of an ion is its velocity in cm/sec, for an electrical field of one volt per cm. The rates of diffusion, D, are given in cm³/sec. U = DP/Ne, where P is the pressure, N, the number of molecules per unit volume of a gas

By are given in encryses. O = DT/NC, where T is the pressure T in an analysis of the cleatronic charge. Nature of the gas and the mobilities: (r) The mobilities are approximately proportional to the inverse sq. rts. of the molecular weights of the permanent gases; better yet when the proportionality is divided by the 4th root of the dielectric constant minus unity; (2) The ratio $U + /U - \text{seems to be greater than unity in all the more electro$ negative gases

Mobilities of Gaseous Mixtures: Three types: (1) Inert gases have high mobilities; small traces of electro negative gases make values normal. (2) Mixed gases: lowering of mobilities is greater than would be expected from simple law of mixture. (3) Abnormal changes produced by addition of small quantities of electro-negative gases:

e.g.: normal mobility	U + = r.37	U − 1.80	Wellisch, Pr.
6 mm C ₂ H ₅ Br gave	1.37	1.80	Roy. Soc. 82A,
6 mm C ₂ H ₃ I "	1.37	1.80	p. 500, 1909.
ro mm C2H5OH "	0.91	1.10	
9 mm C₃H6O ''	1.15	1.37	

Temperature Coefficient of Mobility: There is no decided change with the temperature. Pressure Coefficient of Mobility: Mobility varies inversely with the pressure in air from 100 to 1/100 atmosphere for — ion, to 1/1000, for + ion; below 1/100 atmosphere all observers agree that the negative ion in air increases abnormally rapidly.

Free Electrons: In pure He, Ar, and N, the negative carriers have a high mobility and are, in part at any rate, free electrons; electrons become appreciable in air at 100 cm pressure.

TABLE 678 .- Ionic Mobilities

Dry gas.	Mobilities.		Mobilities.		Mobilities.		Mobilities.		Mobilities.		Mobilities.		Mobilities.		Mobilities.		К — 1	Observer.	Dry gas	Mobilities.		К — 1	Observer.
H	1.37 1.27 1.36 0.81	7.95 6.31 — 1.80 0.85 0.80 1.78	.000273 .000074 .000100 .000590 .000540 .000960 .000770 .000590	Zeleny Franck " Zeleny Wellisch Mean	Dry gas. Nitrous oxide. Ethyl alcohol. CCl4. Ethyl chloride Ethyl ether Methyl bromide Ethyl formate Ethyl iodide.	0.30	0.90 0.27 0.31 0.31 0.28 0.31 0.16	.00107 .00940 .00426 .01550 .00742 .01460 .00870	Wellisch														

Franck, Jahr. d. Rad. u. Elek. 9, p. 2, 1912; Wellisch, Pr. Roy. Soc. 82A. p. 500, 1909. The following values are from Yen, Pr. Nat. Acad. 4, 10 8,

	H_2	N ₂	Air	SO ₂	C5H12	C ₂ H ₆ O	C ₂ H ₄ O	C ₂ H ₅ Cl	CH₃I	C ₂ H ₅ I
$ \begin{array}{c} U + \dots \\ U - \dots \\ U - / U + \dots \end{array} $	8.45	1.30 1.80 1.38	1.37 1.81 1.34	.412 .414 I.00	.385 .451 1.17	.363 .373 1.03	.307 .331 I.07	.304 .317 I.04	.216 .226 1.05	1.81 1.81 1.00

TABLE 679 .- Diffusion Coefficients

The following table gives the observed and computed $(D=300UP/Ne=very\ nearly\ 0.0236U)$ values of the diffusion coefficients. The diffusion coefficients are given for some neutral molecules as actually determined for some gases into gases of nearly equal molecular weight. Table taken from Loeb, "The Nature of the Gaseous Ion," J. Franklin Inst. 184, p. 775, 1917.

Gas, diffusing.	Gas diffused	D	U +	D + for ions.		
January and and angle	into	molecules.		Computed.	Observed.	
Ar. Hi2 Air O2. CO2 CO2 C2H3OH Air H2O NH3.	He N2 O2 N2 N2 N2O CO CO2 Ethyl acetate Air NH3	0.706 .739 .178 .171 1.5-1.0 1.31 0.0693 .093 .246 .190 ‡	5.09 6.02 1.35 1.27 .82 .81 .34 .30† 1.35	1.20 0.143 0.0319 .0299 .0193 .0193 .00805 .0071 .0319 .0174	O. I23 O. O. 28 O. O. 25 O. O. 23 *	

* CO2 into CO2. † Ethyl formate. t Estimated.

COLLOIDS

TABLE 680.—General Properties of Colloids

For methods of preparing colloids, see The Physical Properties of Colloidal Solutions, Burton, 1916; for general properties, see Outlines of Colloidal Chemistry, Journ. Franklin Inst. 185, p. 1, 1918 (contains bibliography).

The colloidal phase is conditioned by sufficiently fine division $(1 \times 10^{-4} \text{ to } 10^{-7} \text{ cm})$. Colloids are suspensions (in gas, liquid, solid) of masses of small size capable of indefinite suspension; suspensions in water, alcohol, benzole, glycerine, are called hydrosols, alcosols, benzols, glycerosols, respectively.

The suspended mass is called the disperse phase, the medium the dispersion medium.

Colloids fall into 3 quite definite classes: 1st, those consisting of extremely finely divided particles (Cu, Au, Ag, etc.) capable of more or less indefinite suspension against gravity, in equilibrium of somewhat the same aspect as the gases of the atmosphere, depending as in the Brownian movement upon the bombardment of the molecules of the medium; 2nd, those resisting precipitation (hæmoglobin, etc.) probably hecause of charged nuclei and which may be coagulated and precipitated by the neutralization of the charges; 3rd, colloidal as distinguished from the crystalloidal condition, the colloid being very slowly diffusible and incapable (unlike crystalloids) of penetrating membranes (gelatine, silicic acid. caramel, glue, white of egg, gum, etc.).

Lyophile, marked affinity between two phases. c.f., hydrophile. Lyophobe, "absent. c.f., hydrophobe. Smallest particle of Δu observed by Zsigmody (ultramicroscope) 1.7×10^{-7} cm. "visible in ordinary microscope about 2.5×10^{-5} cm. "ultramicroscope, with electric arc 15×10^{-7} cm. "with direct sunlight 1×10^{-7} cm.

Viscosity of Lyophile Sols

Gelatine	20° C.,	concentration	Ι,	viscosity	0.021
Silicic acid	"	46	1.00,	44	0.016
66 66	6.6	44	2.00.	6.6	0.035

TABLE 681 .- Molecular Weights of Colloids

Determined from diffusion	Determined from freezing	ng Particle wt. Svedberg
Gum arabic 1750 Tannic acid (322)* 2730 Egg albumen 7420 Caramel 13200 (Due to Graham)	Tungstic acid (250)*. Gum	1800 Phycoerthin 20800 2400 6000 4000

^{*} Formula weight.

TABLE 682 .- Brownian Movement

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft and De Broglie found, respectively, 70, 64, 63 and 64 × 10 22 as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

Material.	Diameter × 105 cm	Medium.	Temp.	Velocity × 10 ⁵ cm/sec.	Observer.
Dust particles Gold Gold Gold Platinum Platinum Rubber emulsion Mastic Gamboge.	2.0 0.35 0.1 0.06 .4 to .5 10. 10.	Water "" Acetone Water "" "" "" "" "" "" "" "" "" "" "" ""	20? "" 18 20 17 20?	none 200. 280. 700. 3900. 3200. 124. 1.55 2.4 3.4	Zsigmody " " Svedberg, 1906–9 Henri, 1908 Perrin, Dabrowski, 1909. Chaudesaignes, 1908.

The movement varies inversely as the size of the particles; in water, particles of diameter greater than 4μ show no perceptible movement; when smaller than $.\tau\mu$, lively movement begins, while at 10 $m\mu$ the trajectories amount up to 20 $m\mu$.

TABLES 683-685

COLLOIDS

TABLE 683.-Adsorption of Gas by Finely Divided Particles

Fine division means great surface per unit weight. All substances tend to adsorb gas at surface, the more the higher the pressure and the lower the temperature. Since different gases vary in this adsorption, fractional separation is possible. Pt black can absorb 100 vols. H₂, 800 vols. O₂, Pd 3000 vols. H₂. In gas analysis Pd, heated to 100°, is used to remove H₂ (higher temperature used for faster adsorption, will take more at lower temperature). Pt can dissolve several vols. of H₂, Pd. nearly 100 at ordinary temperatures; but it seems probable that the bulk of the 100 vols. of H₂ taken by Pt and the 3000 by Pd must be adsorbed. In 1848 Rose found the density 21 to 22 for Pt foil, but 26 for receipitated Pt.

The film of adsorbed air entirely changes the behavior of very small particles. They flow like a liquid (cf. fog). With substances like carbon black as little as 5 per cent of the bulk is C; a liter of C black may contain 2.5 liters of air. Mitscherlich calculated that when CO₂ at atmospheric pressure, 12° C, is adsorbed by boxwood charcoal, it occupies 1/56 original vol. Apparent densities of gases adsorbed at low temperatures by cocoanut charcoal are of the same order (sometimes greater) as liquids.

order (sometimes greater) as liquids.

Cm³ of Gas	Cm³ of Gas Adsorbed by a Cm³ of Synthetic Charcoal (corrected to o° C, 76 cm?) (Hemperl and Vater).											
° C	H ₂	Ar	N ₂	O ₂	СО	CO ₂	NO	N ₂ O				
+20° -78 -185	7·3 19·5 284·7	12.6 92.6	21.0 107.4 632.2	25.4 122.4	26.8 139.4 697.0	83.8 568.4	103.6	109.4 330.1				
	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂	NH ₃	H ₂ S	Cl ₂	SO ₂				
+20° -78	41.7 174.3	119.1 275.5	139.2 360.7	135.8 488.5	197.0	213.0	304.5	337.8				
Cm ³	of Gas Adso	rbed by a (Cm³ of Cocoa	nut Charcoal	(corrected	to o° C, 7	6 cm) (Dewa	ar).				
°C	H	le l	H ₂	N_2	0	2	СО	Ar				
-185		5	4 135	15 155	23	8	2I 190	12 175				

See Langmuir, J. Am. Ch. Soc. 40, 1361, 1918; Richardson, 39, 1829, 1916.

TABLE 684 .- Heats of Adsorption

Adsorber.	Amylene.	Water.	Acetone.	Methyl alcohol.	Ethyl alcohol.	Aniline.	Amyl alcohol.	Ethyl ether.	Chloro- form.	Benzene.	Carbon disulphide.	Carbon tetra- chloride.	L'exane.
Fuller's earth * Bone charcoal * Kaolin * Fuller's earth †	57.I 78.8	30.2 18.5 — .683	27.3 19.3 .684	21.8 17.6 27.6 .679	17.2 16.5 24.5	13.4	10.9	10.5	8.4 14.0 15.7 .611	4.6 11.1 9.9 .610	4.6 8.4 9.9 .621	4.2 13.9 9.4 .625	3.9 8.9 7.2

^{*} Small calories liberated when 1 g of the adsorbent is added to a relatively large quantity of the liquid. † Volume adsorbed from saturated vapor by 1 g of fuller's earth. Gurvich, J. Russ. Phys. Ch. Soc. 47, 805, 1915.

TABLE 685,-Molecular Heats of Adsorption and Liquefaction (Favre)

		Molecular h	eats of			Molecular h	eats of
Adsorber.	Gas.	adsorption.	lique- faction.	Adsorber.	Gas.	adsorption.	lique- faction,
Platinum	H ₂ H ₂ NH ₃ CO ₂ N ₂ O	46200 18000 5900-8500 6800-7800 7100-10900	(5000) 6250 4400	Charcoal	SO ₂ HCl HBr HI	10000-10900 9200-10200 15200-15800 21000-23000	5600 (3600) (4000) (4400)

TABLE 686.—Transmission of Solar Radiation by Earth's Atmosphere

(Kimball, Monthly Weath. Rev., 56, 393, 1928; 58, 43, 1930.)

Upper curves give transmission (sea-level) by the general scattering by dust-free moist air summed over all wave lengths (w = precipitable water in beam); lower curves, the added fractional depletion in the selectively absorbing water-vapor bands. No allowance is indicated for dust. (See also Table 767.)

TABLE 687 .- Ultra-Violet Solar Radiation at Earth's Surface

Average ultra-violet solar radiation of wave lengths <313 m μ on the clearest days in Washington during 1930-31. Data in g-cal./cm²/min. \times 10⁵ (Coblentz, Stair, Bur. Standards Journ. Research, 6, 971, 1931).

	1930:													1:
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.
9 a. m.		3	12	22	35	4 I	42	41	33	16	2	0	0	I
10 "	ΙI	24	37	49	58	63	63	59	50	35	21	11	ΙI	29
11 "	23	37	49	60	70	76	76	71	61	48	32	19	22	42
12 noon	30	43	57	67	76	82	81	76	66	5.3	38	22	30	5.1

0.0008 cal./cm²/min. = 56 microwatts. Data are also given for greater elevations. At high elevations the spectrum quality of the u.-v. region is richer in the shorter wave lengths than at sea-level; but owing to sky-scattering, the total amount of u.-v. light less than 313 m μ at sea-level, on the clearest days, is almost as large as at high elevations.

RELATIVE INTENSITY OF SOLAR RADIATION

TABLE 688.— Mean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation A, in terms of the solar radiation, A_0 , at earth's mean distance from the sun.

Date.		Motion of the sun			RELATI	VE MEA	N VERT	ICAL IN	TENSITY	$\left(\frac{J}{A_0}\right)$	•		
Jan. I 0.99 0.303 0.265 0.220 0.169 0.117 0.066 0.018 1.0 Feb. I 31.54 .312 .282 .244 .200 .150 .100 .048 0.006 1.0 Mar. I 59.14 .320 .303 .279 .245 .204 .158 .108 .056 0.013 1.0 Apr. I 89.70 .317 .319 .312 .295 .269 .235 .195 .148 .101 .0082 1.0 May I 119.29 .303 .318 .330 .329 .320 .325 .255 .259 .090 July I 179.39 .283 .312 .334 .345 .349 .345 .356 .373 .379 .090 July I 179.39 .283 .316 .330 .334 .330 .318 .300 .282	Date.	in longi-	00	100	000		T			700	900	000	$\frac{A}{A_0}$
Year 0.305 0.301 0.289 0.268 0.241 0.209 0.173 0.144 0.133 0.126	Feb. 1 Mar. 1 Apr. 1 May 1 June 1 July 1 Aug. 1 Sept. 1 Oct. 1 Nov. 1 Dec. 1	31.54 59.14 89.70 119.29 149.82 179.39 209.94 240.50 270.07 300.63	0.303 .312 .320 .317 .303 .287 .283 .294 .310 .317 .312	0.265 .282 .303 .319 .315 .312 .316 .318 .308 .286	0.220 .244 .279 .312 .330 .334 .330 .316 .289 .251	0.169 .200 .245 .295 .329 .345 .347 .334 .305 .261 .211	0.117 .150 .204 .269 .320 .349 .352 .330 .285 .225 .164	0.066 .100 .158 .235 .302 .345 .351 .318 .256 .183 .114	0.018 .048 .105 .278 .337 .345 .300 .220 .135 .003	0.006 .056 .148 .253 .344 .356 .282 .180 .084	0.013 .101 .255 .360 .373 .295 .139	0.082 .259 .366 .379 .300	1.0335 1.0288 1.0173 1.0009 0.9841 0.9714 0.9666 0.9709 0.9828 0.9995 1.0164 1.0288

Average annual solar energy received per square dekameter of horizontal surface in kilowatt hours. U. S.: Lincoln, 160,906; Mt. Weather, 148,824; Washington, 145,403; New York, 106,460; Chicago, 97,856. Other countries: Toronto, 139,523; Dohannesburg, 175,696; Davos Platz, 174,043; So. Kensington, 78,569; Stockholm, 79,267. (Kimball, Monthly Weather Rev., Apr. 1927.)

TABLE 689 .- Mean Monthly and Yearly Temperatures

Mean temperatures of a few selected American stations, also of a station of very high, two of very low temperature, and one of very great and one of very small range of temperature.

	Jan. Fe	eb. Mar.	Apr.	May. Ju	e. July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
4 Boston 5 Chicago 6 Denver 7 Washington 8 Pikes Peak 9 St. Louis 10 San Francisco 11 Yuma 12 New Orleans 13 Massaua 14 Ft. Conger (Greenl'd) 15 Werchoiansk	-21.6 -1 -10.2 8 - - 2.8 - - 4.8 - - 2.1 + - 0.7 + - 16.4 -1 - 0.8 + + 10.1 +1 + 12.3 +1 + 12.1 +1 + 25.6 +2 - 39.0 -4 - 51.0 -4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 1.9 + 4.8 + 7.3 + 7.9 + 8.3 + 11.7 - 10.4 + 13.4 + 12.6 + 21.0 + 20.6 + 29.0 - 25.3 - 13.7	10.9 + 1 11.6 + 1 11.3.6 + 1 11.3.6 + 1 11.7.7 + 2 - 5.3 + 1 11.8.8 + 2 11.7.7 + 1 25.1 + 2 12.1 + 2 13.7 + 1 13.1 + 3 13.1	7.1 + 18.9 3.3 + 20.5 3.7 + 21.8 9.7 + 22.2 9.1 + 22.1 2.9 + 24.9 9.4 + 4.5 4.0 + 26.0 4.7 + 14.6 9.4 + 33.1 5.8 + 27.0 3.5 + 34.8 2.2 + 2.8 2.3 + 15.5	+17.6 +19.3 +20.6 +21.6 +21.2 +23.7 +3.6 +24.9 +14.8 +32.6 -27.5 -34.7 +1.0 +10.1	+11.6 +14.7 +16.9 +16.6 +19.9 -0.3 +20.8 +15.8 +29.1 +25.7 +33.3 -9.0 +2.5	+ 4.1 + 7.8 + 11.1 + 10.3 + 13.4 - 5.8 + 14.2 + 15.2 + 22.8 + 21.0 + 31.7 - 22.7 - 150	- 7.6 - 0.2 + 4.8 + 3.6 + 3.3 + 6.9 + 11.8 + 16.6 + 15.9 + 29.0 - 30.9 - 37.8	-15.7 - 7.1 - 0.5 - 1.5 0.0 + 2.3 + 12.0 + 10.8 + 13.3 + 13.1 + 27.0 - 33.4 - 47.0	+ 0.0 + 5.5 + 9.2 + 9.1 + 12.6 + 12.6 + 13.1 + 13.2 + 22.3 + 20.4 + 30.3 - 20.0 - 16.7

Lat., Long., Alt. respectively: (1) $+58^{\circ}.5, 63^{\circ}.0$ W, -; (2) +49.9, 97.1 W, 233m.; (3) +45.5, 73.6 W, 57m.; (4) +42.3, 71.1 W, 38m.; (5) +41.9, 87.6 W, 251m.; (6) +39.7, 105.0 W, 1613m.; (7) +38.9, 77.0 W, 34m.; (8) +38.8, 105.0 W, 4308m.; (9) +38.6, 90.2 W, 173m.; (10) +37.8, 122.5 W, 47m.; (11) +32.7, 114.6 W, 43m.; (12) +30.9, 90.1 W, 16m.; (13) +15.6, 37.5 E, 9m.; (14) +81.7, 64.7 W, -; (15) +67.6, 133.8 E, 140m.; (16) -6.2, 106.8 E, 7m.

Taken from Hann's Lehrbuch der Meteorologie, 2'nd edition, which see for further data.

Note: Highest recorded temperature in world = 57° C in Death Valley, California, July 10, 1913. Lowest recorded temperature in world = -68° C at Verkhoyansk, Feb. 1892.

TABLE 690.—Temperature Variation over Earth's Surface (Hann)

Latitude.			Temperatu	ires ° C			Mean	Land surface
Latitude.	Jan.	Apr.	July.	Oct.	Year.	Range.	ocean temp.	%
North pole +80° 70 60 50 40 30 20 +10 Equator -10 20 30 40 50 60 70 80 South pole	-41.0 -32.2 -26.3 -16.1 -7.2 +5.5 14.7 21.0 25.8 26.4 25.3 21.6 15.4 8.4 3.2 -1.2 (-4.3) (-6.0)	-28.0 -22.7 -14.0 -2.8 +5.2 13.1 20.1 25.2 26.6 25.9 24.0 18.7 12.5 5.4	-1.0 +2.0 7.3 14.1 17.9 24.0 27.3 28.0 27.0 25.7 23.0 19.8 14.5 8.8 3.0 -9.3 -21.0 (-28.7) (-33.0)	-24.0 -19.1 -9.3 +0.3 6.9 15.7 21.8 26.4 26.5 25.7 22.8 18.0 11.7 4.8	-22.7 -17.1 -10.7 -1.1 +5.8 14.1 20.4 25.3 26.8 26.3 25.5 23.0 18.4 11.9 5.4 -3.2 -12.0 (-20.6)	40.0 34.2 33.6 30.2 25.1 18.5 6.1 1.4 0.9 3.4 5.5 7.1 6.6 5.4 12.8 (24.4) (27.0)	-I.7 -I.7 +0.7 +0.8 7.9 II.41 21.3 25.4 27.2 27.1 25.8 24.0 19.5 II.3 -1.3 -1.3	20 53 61 58 43.5 31.5 24 22 20 4 2.2 20 71 100 (100)

TABLE 691.—Temperature Variation with Depth (Land and Ocean)

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below 20–30 m (nearer the surface in tropics) there is no annual variation. Increase downwards at greater depths, 0.03 ± °C per m (1° per 35 m) l.c. At Pittsburgh, 1524 m, 40.4°. 0.294 per m; Oberschlesien, 2003 m, 70°, 0.034° per m; Or W. Virginia, 2200 m, 70°, 0.34° per m (Van Orstrand). Mean value outflow heat from earth's center, 0.0000172 g-cal/cm²/yec. or 54 g-cal/cm²/year (39 Laby). Open ocean temperatures: Greatest mean annual range (Schott) 40° N, 4.2° C; 30° S, 5.1°; but 10° N, only 2.2°; 0° S, 2.0°. Mean surface temp, whole ocean (Krümmel) 17.4°; all depths, 30°. Below 1 km nearly isothermal with depth. In tropics, surface 28°; at 183 m, 11°, 80% all water less than 4.4°. Deep-sea (bottom) temps. range -0.5° to +2.6°. Soundings in S. Atlantic: 0 km, 18.0°; .25 km, 15°; .5 km, 8.3°; 1 km, 3.3°; 3 km, 1.7°; 4.5 km, 0.0°.

Depth,					Tempe	erature, c	entigrade					
m	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0	1 4 6 9 11 14 15 15	4 4 6 8 10 12 13 14	10 9 8 9 10 12 12 13	14 13 12 11 11 11 12 13 14	21 18 15 14 13 13 12 13	29 23 20 18 16 14 13 13	32 26 24 21 19 16 14 14	32 28 26 23 21 17 16 14	24 24 23 22 21 18 16 15	16 18 18 18 18 18 18 17 16	9 12 14 15 16 17 17 16	16 16 16 16 15

TABLES 692-694 THE EARTH'S ATMOSPHERE

TABLE 692.-Miscellaneous Data, Variation with Latitude

Optical ev, lence of atmosphere's extent: twilight 63 km, luminous clouds 83, meteors 200, aurora 44–360. Jeans computes a density at 170 km of 2 × 10¹³ molecules per cm³, nearly all H (5% He); at 810 km, 3 × 10¹³ molecules per cm³ almost all H. When in equilibrium, each gas forms an atmosphere whose density decrease with altitude is independent of the other components (Dalton's law, HeO vapor does not). The lighter the gas, the smaller the decrease rate. A homogeneous atmosphere, 76 cm pressure at sea-level, of sea-level density, would be 7901 m high. Average sea-level barometer is 74 cm; corresponding homogeneous atmosphere (truncated cone) 7790 m, weighs (base, m²) 10,120 kg; this times earth's area is 52 × 10¹⁴ metric tons or 10⁻⁶ of earth's mass. The percentage by vol. and the partial pressures of the dry-air components at sea-level are: N2, 78.03, 593.02 mm; O2, 20.09, 159.52; Å, 0.94, 7.144; CO2, 0.03, 0.228; Hz, 0.07, 0.075; Ne, 0.0012, 0.009; He, 0.0004, 0.003 (Hann). The following table gives the variation of the mean composition of moist air with the latitude (Hann).

Equatorso° N.	N ₂ 75.99 77.32	O ₂ 20.44	A 0.92	H ₂ O 2.63	CO ₂ 0.02
70° N		20.94	0.94	0.22	0.03

TABLE 693.- Variation of Percentage Composition with Altitude (Humphreys)

Computed on assumptions: sea-level temperature 11°C; temperature uniformly decreasing 6° per km up to 11 km, from there constant with elevation at -55°. J. Franklin Inst. 184, p. 388, 1917.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tal e, mm
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0040
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0052
$ \begin{bmatrix} 60 & 0.03 & 81.22 & 0.15 & 7.69 & - & 10.68 & 0.23 & 0. \\ 50 & 0.12 & 86.78 & 0.10 & 10.17 & - & 2.76 & 0.07 & 0. \\ 40 & 0.22 & 86.42 & 0.06 & 12.61 & - & 0.67 & 0.02 \\ 30 & 0.35 & 84.26 & 0.03 & 15.18 & 0.01 & 0.16 & 0.01 & 8. \\ 20 & 0.59 & 81.24 & 0.02 & 18.10 & 0.01 & 0.04 & - & 40. \\ 15 & 0.77 & 79.52 & 0.01 & 19.66 & 0.02 & 0.02 & - & 89. \\ \end{bmatrix} $	0067
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0935
30 0.35 84.26 0.03 15.18 0.01 0.16 0.01 8. 20 0.59 81.24 0.02 18.10 0.01 0.04 — 40. 15 0.77 79.52 0.01 19.66 0.02 0.02 — 89.	103
20 0.59 81.24 0.02 18.10 0.01 0.04 — 40. 15 0.77 70.52 0.01 19.66 0.02 0.02 — 89.	34
15 0.77 79.52 0.01 19.66 0.02 0.02 — 89.	53
	99
$\begin{bmatrix} 11 & 0.94 & 78.02 & 0.01 & 20.99 & 0.03 & 0.01 & - & 168. \end{bmatrix}$	00
5 0.94 77.89 0.18 20.95 0.03 0.01 — 405.	
0 0.93 77.08 1.20 20.75 0.03 0.01 — 760.	

TABLE 694.-Variation of Temperature, Pressure and Density with Altitude

Average data from sounding balloon flights (65 for summer, 52 for winter data) made at Trappes (near Paris), Uccle (near Brussels), Strassburg and Munich. Compiled by Humphreys, 16 to 20 m chiefly extrapolated.

		Summer.			Winter.	
Elevation, km	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm³	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm³
20.0	-51.0	44.1	0.000092	-57.0	39.5	0.000085
19.0	-51.0	51.5	.000108	-57.0	46.3	.000100
18.0	-51.0	60.0	.000126	-57.0	54.2	.000117
17.0	-51.0	70.0	.000146	-57.0	63.5	.000137
16.0	-51.0	81.7	.000171	-57.0	74.0	. 000160
15.0	-51.0	95.3	.000199	-57.0	87.1	. 000187
14.0	-51.0	111.1	.000232	-57.0	102.1	.000220
13.0	-51.0	129.6	.000270	-57.0	119.5	.000257
12.0	-51.0	151.2	.000316	-57.0	140.0	.000301
11.0	-49.5	176.2	.000366	-57.0	164.0	.000353
0.0	-45.5 -37.8	205.1	.000419	-54.5	224.I	. 000408 . 000466
8.0	-37.8 -29.7	274.3	.000470	-49·5	260.6	. 000526
7.0	-29.7 -22.1	314.0	.000524	-43.0 -35.4	301.6	.000500
6.0	-15.1	360.2	. 000503	-28. I	347.5	.000590
5.0	-8.g	410.6	.000722	-21.2	398.7	.000735
4.0	-3.0	166.6	.000803	-15.0	455.9	.000821
3.0	+2.4	528.0	.000802	-9.3	519.7	.000015
2.5	+5.0	562.5	.0000.12	-6.7	554.3	.000067
2.0	+7.5	598.0	.000000	-4.7	590.8	.001023
1.5	+10.0	635.4	.001043	-3.0	629.6	.001083
1.0	+12.0	674.8	.001100	-1.3	670.6	.001146
0.5	+14.5	716.3	.001157	0.0	714.0	.001215
0.0	+15.7	760.0	.001223	+0.7	760.0	.001290

760 mm = 29.921 in. = 1013.3 millibars. 1 mm = 1.33322387 millibars. 1 bar = 1,000,000 dynes; this value, sanctioned by International Meteorological Conferences, is 1.000,000 times that sometimes used by physicists.

SMITHSONIAN TABLES.

THE EARTH'S ATMOSPHERE

Standard Atmosphere

A standard atmosphere is defined by an altitude-temperature-pressure relation. It is an aeronautic necessity in evaluating the performance of airplanes and for the calibration of instruments. The following standard has been officially adopted by the Army Air Corps, Bureau of Standards, National Advisory Committee for Aeronautics, and the Weather Bureau. However, in the evaluation of flights made to break international records, the Fédération Aéronautique Internationale Standard Atmosphere is used. The altitude-temperature assumption is a slight modification of that proposed by Toussaint and closely approximates the average observed values of air temperature at all altitudes at latitude 40° in the United States. Adapted from M 78 (Brombacher) published by the Bur. Standards. The formulae defining this standard atmosphere follow:

Z = standard altitude. $Z_{55} = \text{altitude lower limit isothermal layer}$.

T = absolute temperature of air at altitude Z.

 $T_0 = \text{standard sea-level temperature, } 288^{\circ} \text{ absolute, } 15^{\circ} \text{ C.}$

 T_m = mean absolute temperature of air column below altitude Z.

 $T_{m55} = \text{ditto for } Z_{55}, 251.378^{\circ} \text{ absolute.}$

 $p = \text{air pressure at altitude } Z. p_0$, standard sea-level pressure, 760 mm.

 $\rho = \text{density air at altitude } Z. \rho_0, \text{ ditto sea-level}, 1.2255 \text{ kg/m}^3.$

 $Z = (KT_m/T_0) \log_{10}(p_0/p)$. K is 19,413.3 for Z in meters, or 63,691.8 in feet. $\rho = \rho_0(p/p_0) \ (T_0/T)$.

(1) Up to the isothermal layer (below 10,769 m):

T = 288 - aZ. $T_m = aZ/\log_e[T_0/(T_0 - aZ)]$. a = 0.0065000 for Z in meters; 0.0019812 in feet.

(2) At the lower limit of the isothermal layer (10,769 m):

 $T=218^{\circ}$ absolute or -55° C. $Z_{55}=35,322$ feet or 10,769 meters. (3) In the isothermal layer (above 10,769 meters):

 $T_m = Z/[Z_{55}/T_{m55} + (\hat{Z} - Z_{55})/218].$

(See Nat. Adv. Comm. Aeronautics Techn. Rep., Nos. 147, 218, and 246 of the committee for further data and complete tables.)

ſ								
۱	Alti	tude	Pres	sure	Der	nsity	Temper- ature	Mean tempera-
ı	Meters	Feet	mm Hg	in Hg	kg/m³	lb./ft.3	°C	ture °C
ı	0	0	760.0	29.921	1.2255	0.07650	15.0	15.0
ı	1000	3281	674.1	26.54	1.1120	.06942	8.5	11.7
ı	2000	6562	596.2	23.47	1.0068	.06286	+ 2.0	8.4
ı	3000	9842	525.8	20.70	.9094	.05678	- 4.5	5. i
1	4000	13123	462.3	18.20	.8193	.05115	-11.0	+ 1.8
ı	5000	16404	405.1	15.95	.7363	.04597	-17.5	- 1.6
١	6000	19685	353.8	13.93	.6598	.04119	-24.0	- 5.0
ı	7000	22966	307.9	12.12	.5896	.03681	-30.5	- 8.4
ı	8000	26247	266.9	10.51	.5252	.03279	-37.0	-11.9
ı	9000	29528	230.4	9.07	.4664	.02912	-43.5	-15.4
I	10000	32808	198.2	7.80	.4127	.02577	-50.0	-18.9
ı	11000	36089	169.7	6.68	.3614	.02256	-55.o	-22.4
1	12000	39370	145.0	5.71	.3090	.01929	-55.0	-25.5
ı	13000	42651	124.0	4.88	.2642	.01649	-55.0	-28.1
1	14000	45932	106.0	4.17	.2259	.01410	-55.0	-30.2
I	15000	49212	90.6	3.57	.1931	.01206	-55.0	-32.0
ŀ	0	О	760.0	29.921	1.2255	.07651	15.0	15.0
ı	1524	5000	632.3	24.89	1.0559	.06592	+ 5.1	10.0
ı	3048	10000	522.6	20.58	.9048	.05649	- 4.8	+ 5.0
1	4572	15000	428.8	16.88	.7711	.04814	-14.7	1
I	6096	20000	349.1	13.75	.6527	.04075	-24.6	- 5.3
ı	7620	25000	281.9	11.10	.5489	.03427	-34.5	-10.5
	9144	30000	225.6	8.88	.4583	.02861	-44.4	-15.9
	10668	35000	178.7	7.04	-3795	.02369	-54.3	-21.3
ı	12192	40000	140.7	5.54	.2998	.01872	-55.0	-26.0
ı	13716	45000	110.8	4.36	.2361	.01474	-55.0	-29.6
	15240	50000	87.3	3.44	.1860	.01161	-55.0	-32.4
L								

The following condensed tables (Maris, Terr. Mag. and Atmosph. Elec., 33, 233, 1928) of the upper atmosphere of the earth result from attempts at including further factors than usually considered. They should be taken as tentative because of approximate theory and ignorance of much necessary data for the discussion. Meteors, reflection of sound and radio waves, the aurora, ozone, ionization, and optical phenomena continually give us further probes into the upper air. The gases are uniformly mixed below a height of roughly 100 km; above 150 km each gas is in equilibrium with its own partial pressure; between these heights there is for each gas a transition from uniform mixture with the air to equilibrium with its own partial pressure at a height which depends on the temperature and previous wind currents of the atmosphere, but which averages about 110 km. Apparently above 300 km the atmosphere can not be assumed in equilibrium; the percentage of very high-energy molecules is far higher than indicated by a Maxwellian curve for thermal equilibrium.

TABLE 696.—Pressure in Dynes/cm², Summer and Winter, Day and Night (Maris)

Alti-				Pressure =	= p × 10 ⁿ (lynes/cm²			
tude	N ₂	O ₂	A	CO ₂	Kr	He	H ₂	То	tals
Km	_							No H2	with H2
	<i>p n</i>	p n	p n	p n	p n	p n	p n	p n	p n
					ummer day				
0	79 4	22 4	96 2	30 I	98 -2	40 -1	II I	10 5	10 5
40	32 2 61 -1	85 1	39 0	72 —I	39 -4 76 -7	16 -3 31 -6	41 -2	40 2	4I 2 78 —I
100 200	11 -4	17 -5	74 -3	24 -4 38 -0	53 -15	31 -6 18 -8	78 -5 31 -7	78 -1 13 -4	
300	33 -8	14 -9	17 -12	93 -15	89 -26	56 -9	17 -7	40 -8	13 -4
				St	ımmer nigl	nt			
0	79 4	22 4	96 2	30 I	98 -2	40 -1	II I	10 5	10 5
40	23 2	62 I	28 0	89 -2	29 -4	12 -3	30 -2	30 2	30 2
100	39 -2	10 -2	48 -4	15 -5	48 -8	20 -7	50 -6	50 -2	50 2
200	48 -8	21 -9	56 -12	19 -14	34 -25	58 -9 88 -10	15 -7 58 -8	56 -8 88 -10	21 -6
300	73 -14	52 -16	54 -20	16 -23	27 -42		58 -8	88 -10	59 -8
					Vinter day				
0	79 4	22 4	96 2	30 I	98 -2	40 -1	II I	10 5	10 5
40	22 2	60 I	27 0	86 -2	28 -4 86 -8	12 -3	29 -2	29 2	29 2
100 200	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 -4	27 -5 24 -13	26 -23	$\begin{vmatrix} 36 & -7 \\ 64 & -9 \end{vmatrix}$	89 -6	89 -2 26 -7	64 -3 73 -8
300	12 -12	12 -14	12 -18	12 -21	51 -39	16 -0	71 -8	16 -0	30 -8
300		1	,		Vinter nigh		172	1 2 9	30 0
0	79 4	22 4	96 2	30 I	98 -2	40 -1	III I	111 5	10 5
40	16 2	60 1	10 0	60 -2	20 -4	80 -4	111 -2	20 2	20 2
100	20 -2	53 -3	24 -4	76 -6	25 -8	10 -7	25 -6	25 -2	13 -3
200	12 -8	57 -10	58 -13	32 -15	17 -26	62 -9	12 -7	19 -8	14 -7
300	11 -14	86 -17	18 -21	14 -24	40 -44	87 -10	39 -8	87 -10	39 -8

TABLE 697.—Molecular Densities in Atmosphere (Maris)

	-0				-													
Alti-							Nu	mber o	of mo	lecule	sper	cm³						
tude	N	T a		۱۵		A		O ₂	1	ζr	1	Ie	,	Н		To	tals	
Km	_ ^`	2		-				-			_	10				H_2		n H ₂
	<i>p</i>	п	P	n	Þ	n	Þ	n	Þ	n	Þ	п	Þ	n	Þ	n	P	n
		Summer day																
40	84	15	23	15	10	14	32	I 2	10	10	43	10	ΙI	12	II	16	11	16
80	80	13	22	13	96	II	30	10	10	8	41	8	10	10	10	14	10	14
100 200	12	13	32 32	12 8	15 45	6	46 75	9	15	7	63	7 5	16	9	16	13	16 25	13
300	64	5	28	4	33	I	18	-1	16	-12	11	5	34	6	77	5	41	9
								Sı	ımm	er nigl	nt							
40	73	15	20	15	89	13	28	12	10	9	38	10	94	ΙI	94	15	94	15
80	22	13	59	12	27	11	84	9	27	7	14	8	28	9	28	13	28	15 13
100	12	12	33	ΙI	15	10	48	8	15	6	63	6	16		16	12	16	12
200	15 23	6	66	4 -2	2I 17	-6	49 52	-10	86	-10 -20	18	5	48 18	6	18	6	66	6
300	23		17		1.7	-0_	1 52					4	1 10		20	4	19	
1									_	er day								
40	67	15	18	15	82	13	26	12	84	9	34	10	86	ΙI	86	15	86	15 13 12
80	29	13	78 54	I 2	35	11	78	10	36 26	7	15	8 7	37 26	9	37 26	13	37 26	13
200	60	6	39	5	13	3	71	0	75	-10	18	5	49	6	74	6	12	7
300	36	I	34	-1	35	-5	35	-8	15	-25	45	4	21	6	45	4	2 I	7 6
								V	Vinte	r nigh	t							
40	51	15	14	15	62	13	20	II	63	9	26	10	65	II	65	15	65	15
80	.14	13	34	12	15	II	48	9	16	7	65	7	16	9	17	13	17	13
100	65	II	17	II	79	9	25 10	8 -1	81	5	33	6	83	7	83 61	11	83	11
200 300	39	5 - I	19	$-\frac{4}{3}$	58	_8	46	-11	57	-13 -30	20	5 4	39 13	6	23	5 4	45	6
300			1 20	3	1 30		1 40		1 -3	30	5	-4						

TABLE 698.—Geopotential, Dynamic Heights

The "geopotential" or "gravity potential" of a point is its potential energy relative to sea-

level of a unit-mass situated at the point.

In comparisons of vertical positions in dynamical meteorology, advantages result by giving the heights above sea-level in terms of the potential energy possessed by a unit-mass at these positions. The use of geopotential for heights is better realized in that surfaces of equal geopotential are identical with horizontal or level surfaces, and, due to the geographical variation of gravity, are not surfaces equally distant from sea-level.

Heights measured thus are called "dynamic heights." Defined more precisely, geopoten.

$$\Gamma = -\int_{0}^{n} dh \tag{1}$$

where Γ = geopotential in absolute units, g = acceleration of gravity in meters, h =

geometric height above sea-level in meters.

Thas the dimensional formula $[L^2T^{-2}]$, and is expressed in absolute units, the "geodecimeter" when g is expressed in m/sec.², and h in meters. The derived unit adopted by the Commission Internationale de la Haute Atmosphère is the "dynamic meter" H_d , 10 m²/sec.², after Prof. V. Bjerknes¹. Then H_d = dynamic height (geopotential in dynamic meters) is

$$H_d = - (1/10) \int_0^a dh$$
 (2)

Helmert's equation (3) is substituted in (2)

 $g = -(g_{\phi} - 0.000003086 \ h)$, where, $g_{\phi} = g$ at latitude $_{\phi}$ sea-level, below given point (in m/sec.²), g = acceleration of gravity at point in m/sec.2, h = geometric height of point above sea-level in meters. (2) may then be integrated, giving

 $H_d = [g_{\phi}/10]h - 1.543 \times 10^{-7}h^2$.

The following table results from (4) using go computed from the U. S. Coast and Geodetic Survey formula:

 $g_{\phi}=9.78039~(1+0.005294~\sin^2\phi-0.000007~\sin^22\phi)$ Neglecting the h^2 term, $H_d=0.98~h$, approximately, whence, $h=1.02~H_d$, approximately; substituting this in (4) for the h^2 term we have $h=(10/g_{\phi})H_d+(10/g_{\phi})I.543(1.02)^210^{-7}H_d^2$. For simplification, 9.8062, the mean value of g at lat. 45° and sea-level is substituted for g_{ϕ} in the second term and then approximately, $h = (10/g_{\phi})H_d + 1.637 \times 10^{-7} H_d^2$

Table 699 is computed from (5) and values of g obtained as before.

References: Dynamical Meteorology and Hydrography, V. Bjerkness and collaborators, Carnegie Institution, 1910; Avant-propos of the C. R. des Jours internationaux 1923, Commission internationale de la haute atmosphere, 1927, Secretary of the commission, c/o Royal Meteorological Society, London.

TABLE 699.—Equivalents, in Geodynamic Kilometers, of Geometric Heights in Kilometers for Various Latitudes

Geometric hts. in km		Latitude (degrees) Geodynamic heights								
	o°	10°	20°	30°	40°	50°	60°	70°	80°	90°
30	29,202	29.207	29.220	29.241	29.266	29.293	29.318	29.339	29.353	29.358
25	24.354	24.358	24.370	24.387	24.408	24.430	24.451	24.469	24.480	24.484
20	19.499	19.502	19.511	19.525	19.542	19.560	19.576	19.590	•19.600	19.603
15	14.636	14.638	14.645	14.655	14.668	14.681	14.694	14.704	14.711	14.713
10	9.765	9.767	9.771	9.778	9.786	9.795	9.804	9.811	9.815	9.817
5 0	4.886	4.887	4.889	4.892	4.897	4.901	4.906	4.909	4.911	4.912
0	0	Ó	0	0	0	0	0	Ó	0	0

TABLE 700.—Equivalents, in Geometric Kilometers, of Dynamic Heights in Geodynamic Kilometers for Various Latitudes

Dynamic hts.						(degrees) ic heights				
Geodynamic km	o°	10°	20°	30°	40°	50°	60°	70°	80°	90°
30	30.820	30.815	30.801	30.780	30.754	30.726	30.699	30.677	30.663	30.658
25	25.663	25.659	25.647	25.629	25.608	25.584	25.562	25.544	25.532	25.528
20	20.515	20.512	20.503	20.488	20.470	20.452	20.434	20.420	20.411	20.407
15	15.373	15.371	15.364	15.354	15.340	15.325	15.313	15.302	15.295	15.293
10	10.241	10.239	10.234	10.227	10.218	10.209	10,200	10.193	10.189	10.187
5	5.116	5.115	5.113	5.100	5.105	5.101	5.096	5.092	5.090	5.089
0	0	0	0	0	0	0	0	0	0	0

THE EARTH'S ATMOSPHERE

TABLE 701.—Temperature Variation of Lower 25 Km with Latitude and Altitude, Northern Hemisphere (Ramanathan)

From figure adapted from Nature (Ramanathan, 123, 834, 1929) by Samuels (Monthly Weath. Rev., 57, 382, 1929). gkm, at right of figure indicates geodynamic kilometers (see Tables 698-700 for geodynamic kilometers). The tropopause is the boundary between the lower stratosphere and the upper troposphere. There have been incorporated by Samuels as indicated at the bottom of the plot certain values observed at aerological stations in the United States. The agreement is good. The differences are probably due to greater extremes found in continental America. The broken lines are based on few observations and are mainly conjectural. It is to be noted that:

(1) The stratosphere is not isothermal over any particular place; above a certain level there is a tendency for the temperature to increase with height. (2) The coldest air over the earth, about 185° K.,* lies at the height of some 17 gkm over the equator, a flat ring surrounded by rings of warmer air. (3) The tropopause surface has a relatively steep slope toward the pole between latitudes 30° and 50° in summer, 25° and 45° in winter. (4) The ring of lowest temperature is displaced towards the summer hemisphere. (5) There is a ridge of high temperature in the tropopause between latitudes 20° and 40° N. in summer corresponding to the ridge of high pressure at 8 km over these latitudes.

TABLE 702.—Seasonal Variation of Tropopause at Agra and Batavia

Mar. Apr. May June July Aug. Sept. Oct. Dec. Batavia °K. 184 185 186 187 188 192 193 104 193 100 187 184 203 203 203 203 200 195 193 193 193 194 204

TABLE 703.—Seasonal Variation Height of Tropopause over Batavia (km)

(Bemmelen, Proc. Roy. Acad. Amsterdam, 20., 1313.)

Jan. Feb. Mar. Apr. May June July Oct. Aug. Nov. Dec. 17.8 17.6 16.5 17.3 17.0 16.5 16,2 16.0 17.0 17.4 17.6 17.7

^{*} In the Figure, °A is used equivalent to °K.

THE EARTH'S ATMOSPHERE

TABLE 704.—Atmospheric Ozone

This table shows the variation of atmospheric ozone (layer about 40 to 50 km above the earth's surface), with latitude and time of the year, from measures in long-wave portions of Hartley ultra-violet band 0.230 to 0.310 μ , by Doctor Dobson and his associates (Proc. Roy. Soc. 110A, 660, 1926 and 122A, 456, 1929); prepared partly from unpublished data. Measures are in cm of ozone at n. t. p. As only one year's observations are available for most stations these figures must be regarded as approximate.

Latitude	Jan.	Mar.	May	July	Sept.	Nov.
60°N.	0.305	0.350	0.330	0.285	0.250	0.255
40 N.	.260	.280	.270	.250	.225	.220
20 N.	.205	.220	.225	.220	.205	.200
0	.190	.195	.200	.205	.205	.200
20 S.	.210	.205	.210	.215	.220	.220
40 S.	.240	.230	.250	.290	.310	.280

Values are very steady from day to day in equatorial regions; in temperate latitudes large variations occur (up to 0.1 cm) which are apparently associated with meteorological conditions (Dobson).

TABLE 705.-Mean Free Path, Air Molecules

(Mavis, Terr. Mag., 1928-29.)

Values of mean free path, λ , of air molecules, at different heights, for the density conditions of Table 697, col. 9.

Z	Sum	imer	Winter			
	Day	Night	Day	Night		
km 0 20 40 60 80 100 120 140	$\begin{array}{c} 6.32 \times 10^{-6} \\ 8.52 \times 10^{-5} \\ 1.50 \times 10^{-3} \\ 1.63 \times 10^{-2} \\ 1.57 \times 10^{-1} \\ 1.04 \\ 6.29 \\ 3.66 \times 10^{1} \\ 2.11 \times 10^{2} \\ \end{array}$	$\begin{array}{c} 6.32 \times 10^{-6} \\ 8.48 \times 10^{-5} \\ 1.72 \times 10^{-3} \\ 3.19 \times 10^{-2} \\ 5.76 \times 10^{-1} \\ 1.02 \times 10^{1} \\ 1.51 \times 10^{2} \\ 2.56 \times 10^{3} \\ 4.21 \times 10^{4} \end{array}$	$\begin{array}{c} 6.04 \times 10^{-6} \\ 8.75 \times 10^{-5} \\ 1.88 \times 10^{-3} \\ 2.90 \times 10^{-2} \\ 4.36 \times 10^{-1} \\ 6.24 \\ 8.70 \\ 1.15 \times 10^{3} \\ 1.47 \times 10^{4} \end{array}$	$\begin{array}{c} 6.04 \times 10^{-6} \\ 1.09 \times 10^{-4} \\ 2.48 \times 10^{-3} \\ 5.02 \times 10^{-2} \\ 9.41 \times 10^{-1} \\ 1.95 \\ 3.81 \times 10^{2} \\ 7.10 \times 10^{3} \\ 1.21 \times 10^{5} \end{array}$		
180 200 300 400	$\begin{array}{c} 1.20 \times 10^{3} \\ 6.52 \times 10^{3} \\ 2.10 \times 10^{7} \\ 1.29 \times 10^{9} \end{array}$	6.47 × 10 ⁵ 9.09 × 10 ⁶ 1.67 × 10 ⁹	1.83 × 10 ⁵ 2.17 × 10 ⁶ 1.03 × 10 ⁹	$\begin{array}{c} 2.22 \times 10^{6} \\ 2.65 \times 10^{7} \\ 2.06 \times 10^{9} \\ \dots \dots \dots \end{array}$		

TABLE 706

ACCELERATION OF GRAVITY

For Sea-Level and Different Altitudes

Calculated from U. S. Coast and Geodetic Survey formula, p. 134 of Special Publication No. 40 of that Bureau. $g = 9.78039 \ (1 + 0.005204 \sin^2\phi - 0.000007 \sin^22\phi) \ \text{im}$ $g = 32.08783 \ (1 + 0.005294 \sin^2\phi - 0.000007 \sin^22\phi) \ \text{ft}.$

			*				
	1	1	1	II	l		
Latitude	0		0	Latitude	ρ	,	P
ϕ	cm/sec ²	log g	ft./sec2	φ	cm/sec2	log g	ft./sec2
Ψ	CIII/ Sec-		10.7500	Ψ	CIII/ SCC		10.7 300
1							
							1
c°	078.030	2.0003562	32.0878	50°	981.071	2.9917004	32.1873
5	.078	. 9993735	.0801	51	.150	.9917394	.1002
10	.195	.9904254	.0929	52	. 247	.9917784	. 1931
12	. 262	.9904552	.0051	53	.336	.9918177	1060
				54	.422	.0018558	. 1988
14	. 340	. 9904898	.0977	34	.422	.9910330	. 1900
15	078.384	2,0005004	32.0001		981.507	2.0018034	32.2016
16				55 56	.592	.9919310	2044
	. 430	. 9905298	.1007				
17	.480	.9905520	.1023	57	.675	.9919677	. 2071
18	. 532	. 9905750	.1040	58	. 757	. 9920040	2098
19	. 585	.9905985	.1057	59	.839	. 9920403	.2125
					0 6		
20	978 641	2.9906234	32.1076	60	981.918	2.9920752	32.2151
2 I	.701	. 9906500	.1095	61	.995	. 9921073	.2176
22	.763	. 9906775	.1116	62	982.070	.0021424	. 2201
2.3	.825	.0007050	.1136	6.3	. 145	. 9921756	.2225
2.4	.802	.9907348	.1158	6.1	.218	.9922079	. 2240
24	.092	.990/340	.1130	0.4	.2.0	.9922079	
25	978.960	2.9907649	32.1180	65	082.288	2.9922388	32.2272
26	979.930	. 9907960	. 1203	66	.356	. 9922689	. 2205
	.101	.9908275	.1227	67	.422	.0022081	.2316
27 28				68	.487	. 9922961	
	.175	. 9908603	.1251				. 2338
29	251	.9908940	.1276	69	. 549	.9923542	. 2358
	000 000	2.9909286	32.1302	70	082,608	2.9923803	32.2377
30	979.329				.665		
31	.407	. 9909632	.1327	71		.9924055	. 2396
32	. 487	.9909987	. 1353	72	.720	.9924298	. 2414
33	. 569	.9910350	. 1380	73	.772	.9924528	. 243I
34	.652	.9910718	.1407	74	.822	.9924749	. 2448
		1			0.010		
35	979.737	2.9911095	32.1435	75 76	982.868	2.9924952	32.2463
36	.822	.9911472	. 1463		.912	. 9925147	. 2477
37	. 908	.0011853	.1491	77	.954	.9925332	. 2491
38	. 995	.9912238	.1520	77 78	.992	.9925500	. 2503
39	080.083	.9912628	.1540	79	983.027	.9925655	. 2515
39	900.003	19922020	549	19	,-57	. 99-3-33	3 - 3
40	080.171	2.9913018	32,1578	80	983.059	2.9925796	32.2525
41	, 261	.0013417	.1607	81	.089	.9925929	. 2535
42	.350	.9913812	.1636	82	.115	.0026043	. 2544
	.440	.9913312	.1666	83	.139	.9926149	. 2552
43		.9914210	.1696	84	.160	. 9926242	.2558
4.1	.531	.9914013	. 1090	04	.100	.9920242	. 2550
45	080.621	2.0015011	32.1725	85	983.178	2.9926321	32.2564
45	.711	. 9915410	.1755	85 86	.101	.9926379	. 2560
	.802	.0015814	.1785	87	. 203	.9926432	.2572
47 48				88			
	.892	.9916212	.1814		.211	.9926467	·*2575
49	. 981	. 9916606	. 1844	90	983.217	.9926494	.2577
				1			

To reduce log g (cm. per sec. per sec.) to log g (ft. per sec. per sec.) add log 0.03280833 = 8.5159842 — 10.

The standard value of gravity, used in barometer reductions, etc., is 980.665. It was adopted by the International Committee on Weights and Measures in 1901. It corresponds nearly to latitude 45° and sea-level.

FREE-AIR CORRECTION FOR ALTITUDE

-0.0003086 cm/sec²/m when altitude is in meters. -0.00003086 ft/sec²/ft when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.
200 m.	-0.0617 cm/sec ²	200 ft.	-0.000617 ft./sec² .000926 .001234 .001543 .001543 .001852 .002160 .002469 .002777
300	.0026	300	
400	.1234	400	
500	.1543	500	
600	.1552	600	
700	.2100	700	
800	.2469	800	
900	.2777	900	

ACCELERATION OF GRAVITY, VARIOUS WORLD STATIONS

The following more recent gravity determinations (Potsdam System) serve to show the accuracy which may be assumed for the values in Table 706, except for the three stations in the Arctic Ocean. The error in the observed gravity is probably not greater than 0.010 cm/sec², as the observations were made with the half-second invariable pendulum,

using modern methods.

In recent years the Coast and Geodetic Survey has corrected the computed value of gravity for the effect of material above sea-level, the deficiency of matter in the oceans, the deficiency of density in the material below sea-level under the continents and the excess of density in the earth's crust under the ocean, in addition to the reduction for elevation. Such corrections make the computed values agree more closely with those observed. See special publica-tion No. 40 of the U. S. Coast and Geodetic Survey entitled, "Investigations of Gravity and Isostasy," by William Bowie, 1917; also Special Publication No. 10 of same bureau entitled, "Effect of Topography and Isostatic Compen-sation upon the Intensity of Gravity," by J. F. Hayford and William Bowie, 1912.

Name. Latitude. Elevation, mcters. Gravity, cm/sec2 Reference.
Ootacamund, India II 25 225.4 977.738 978.427 2 Madras, India I3 4 6 978.712 078.281 2 Jamestown, St. Helena -15 55 10 978.712 078.715 2 Cuttack, India 20 20 28 978.659 078.668 2 Amraott, India 20 20 28 978.659 078.668 2 Jubbulpur, India 23 0 447 978.719 078.856 2 Gaya, India 24 48 IIO 978.884 078.918 2 Siliguri, India 26 42 118 079.082 079.143 2 Galveston, Texas 20 18 3 079.272 079.273 2 Rajpur, India 30 24 1012 979.082 079.143 2 St. Georges, Bermuda 32 21 2 979.420 979.436 2 St. Georges, Bermuda
Hatnarfjordr, Iceland 64 3 4 982 266 982 267 1 Niantilik, Cumberland Sound 64 54 7 982 273 982 275 3 Glaesibaer, Iceland 65 46 10 982 342 982 345 1 Sorvagen, Norway 67 54 19 982 622 982 628 2 Umanak, Greenland 70 40 10 982 590 982 593 3 Danes Island, Spitzbergen 79 46 3 983 .078 983 .079 1 Arctic Sea 84 12 0 983 .109 983 .109 1 Arctic Sea 84 52 0 983 .174 983 .174 1 Arctic Sea 85 55 0 983 .155 1

References: (1) Report 16th General Conference International Geodetic Association, London and Cambridge, 1909, 3d Vol. by Dr. E. Borráss, 1911; (2) U. S. Coast and Geodetic Survey, Special Publ. No. 40; * (3) U. S. Coast and Geodetic Survey, Report for 1897, Appendix 6.*

^{*}For references (2) and (3), values were derived from comparative experiments with invariable pendulums, the value for Washington being taken as 980.112. For the latter, Appendix 5 of the Coast and Geodetic Survey Report for 1901, and pages 25 and 244 of the 3d vol. by Dr. E. Borráss in 1911 of the Report of the 16th General Conference of the Intern. Geodetic Association, London and Cambridge, 1902. As a result of the adjustment of the net of gravity base stations throughout the world by the Central Bureau of the Intern. Geodetic Association, the value of the Washington and the 28th Parameters are the second to 28th Parameters. ington base station was changed to 980.112.

ACCELERATION OF GRAVITY (a) IN THE UNITED STATES

The following table is abridged from one for 210 stations given on pp. 50 to 52, Special Publication No. 40, U. S. Coast and Geodetic Survey. The observed values depend on relative determinations and on adopted value of 980.112 for Washington (Coast and Geodetic Survey Office, see footnote, Table 707). There are also given terms necessary in reducing the theoretical value (Table 565) to the proper elevation (free-air) and to allow for topography and isostatic compensation by the Hayford method (see introductory note to Table 707).

To a certain extent, the greater the bulk of material below any station, the less its average density. This phenomenon is known as isostatic compensation. The depth below sea-level to which this compensation extends is about 96 km. Below this depth any mass element is subject to equal (fluid) pressure from all directions.

			-	And the second		
					Corre	ection.
Station.	Latitude.	Longitude.	Eleva- tion, meters.	Observed g cm/sec²	Elevation, cm/sec ²	Topography and com- pensation, cm/sec ²
Key West, Fla. New Orleans, La. Austin, Tex. university El Paso, Tex. Yuma, Ariz Charleston, S. C. Birmingham, Ala. Arkansas City, Ark. Atlanta Ga. capitol. Beaufort, N. C. Little Rock, Ark Memphis, Tenn. Charlotte, N. C. Little Rock, Ark Memphis, Tenn. Charlotte, N. C. Las Vegas, N. Mex. Knoxville, Tenn. Grand Canyon, Ariz. Cloudland, Tenn. Mount Hamilton, Cal., Obs'y. Richmond, Va. San Francisco, Cal. St. Louis, Mo., university. Pike's Peak, Col. Colorado Springs, Col. Washington, D. C., Bur. St'ds. Wallace, Kans. Green River, Utah Cincinnati, Ohio, obs'y. Baltimore, Md., university. Terre Haute, Ind. Denver, Col., university obs'y. Philadelphia, Pa., university. Wheeling, W. Va. Princeton, N. J. Pittsburg, Pa. Salt Lake City, Utah New York, N. Y., university. Winnemucca, Nev. Cleveland, Ohio, Chicago, Ill, university. Worcester, Mass. Cambridge, Mass. observatory Ithaca, N. Y., university. Worcester, Mass. Cambridge, Mass. observatory Ithaca, N. Y., university. Fort Dodge, Iowa. Grand Rapids, Mich. Madison, Wis., university. Boise, Idaho Mitchell, S. Dak. university Lancaster, N. H. Grand Canyon, Wyo. Minneapolis, Minn. Calais, Me. Miles City, Mont. Seattle, Wash. university. Pembina, N. Dak.	20 57.0 30 17.2 31 46.3 32 43.3 32 43.3 32 43.3 33 30.8 33 36.5 36 6.2 20.4 33 7.2 34 4.6 34 47.4 42 16.5 43 37.2 46 24.2 47 30.6	81° 48.4′ 90 4.2 97 44.2 106 29.0 114 37.0 79 56.0 86 48.8 91 12.2 84 23.3 76 39.8 92 16.4 90 3.3 80 50.8 112 6.8 82 7.9 121 38.6 77 26.1 122 25.7 90 12.2 105 2.0 104 49.0 77 4.0 101 35.4 110 9.9 84 25.3 87 23.8 104 56.9 75 11.7 80 43.4 74 39.5 87 36.1 71 48.5 71 7.8 87 36.1 71 48.5 71 7.8 87 36.1 71 48.5 71 7.8 87 36.1 71 48.5 71 7.8 87 36.1 71 48.5 71 7.8 88 24.0 94 11.4 85 40.8 86 24.0 16 12.3 98 1.8 71 34.3 110 29.7 93 13.9 96 7 16.9 105 50.	1 2 189 1146 54 6 179 44 1 1 89 80 228 81960 280 1282 30 1154 4293 1154 4293 1243 245 1638 1311 210 182 270 821 170 112 247 340 236 270 821 408 261 2386 256 38 718 58 58	978.970 979.324 979.324 979.283 979.124 979.526 979.536 979.536 979.536 979.524 979.727 979.727 979.727 979.727 979.720 979.712 979.965 980.001 978.954 979.755 979.755 979.755 979.755 979.755 979.755 979.755 979.755 979.755 979.755 979.755 979.755 979.755 979.636 980.001 978.954 979.490 980.997 980.997 980.301 980.324	0.0000010583540170020550141000250700862625833960350481,3255680323100700860350481,325568032310070073081075081736073081736075	+0.035 +.013001 +.001 +.001 +.016 +.017 +.005 +.014 +.036 +.001 +.002 +.015 +.017001 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.010 +.011 +.003 +.001 +.003 +.003 +.001 +.003 +.003 +.003 +.001 +.003

SOME PLACES OF ANOMALOUS GRAVITY

With their longitudes, latitudes, and heights above sea-level

(See Borrass, Verh. 16 allgem. Konferenz der Intern. Erdmessung, Berlin, 1911, 1914. The departures are from the values of gravity normally expected from Table 706.)

Longitude east of Greenwich	Latitude	Altitude above sea-level m	Gravity cm/sec. ²	Departure from value of table	Place
14 59.9 - 5 43.8 - 157 51.8 0 8 - 16 14.4 6 52 77 27.9 - 61 4.5 - 25 20.6 10 37 15 4.7 13 56.6 15 44.6 - 75 50.8 - 78 50.0 141 19 - 121 38.7 140 52 15 33.4	37 44.3 -15 55.4 21 18.1 42 55.8 28 28.1 45 50 10 13.8 14 36.0 37 44.2 51 48.0 37 30.2 40 44.5 50 44.2 20 .8 - 0 14.0 40 16 37 20.4 38 15 38 11.5	2943 10 4 2877 11 4807 2346 4 19 1140 43 35 1604 4 2825 104 1282 33 5	979.350 978.682 978.660 979.779 979.431 977.645 978.520 980.118 981.015 980.065 980.348 980.761 978.756 977.281 980.270 979.648 980.111	+287 +260 +243 +223 +188 +164 +155 +152 +136 +127 +122 +119 +115 +114 +107 +106 +103 +102	Etna St. Helena Honolulu Pic du Midi Santa Cruz Mont Blanc Kodaikanal Fort de France Ponta Delgada Catania Ischia Schneekoppe Santiago de Cuba Quito Fukuoka Lick Observatory Messina
10 23 6 52 35 11.5 9 11.5 69 17.7 68 15.3 78 3.2 11 24.1 48 18.5 115 15.4 12 2.8 77 54.0 -122 20.1 11 21.3 88 44.2	63 25.9 45 55 47 48.5 45 28.0 41 19.5 58 11.4 30 19.5 47 16.2 42 3.1 -31 57.2 44 13.5 29 52.3 47 36.6 44 29.8 26 31.3	37 1050 49 176 478 56 683 576 -26 58 26 264 74 51 82	982.114 980.323 980.802 980.562 980.082 981.697 979.065 980.280 979.378 980.441 979.131 980.726 980.450 978.924	- 53 - 57 - 58 - 58 - 59 - 59 - 77 - 78 - 83 - 88 - 102 - 106 - 110 - 118	Milan-Brera Tashkent Tobolsk Dehra-Dun Innsbruck Derbent Perth Forli Roorkee Seattle Bologna

TABLE 710.—Length of Seconds Pendulum at Sea-Level and for Different Latitudes

	Length in cm	Log.	Length in inches.	Log.		Length in cm	Log.	Length in inches.	Log.
0 5 10 15 20 25 30 35 40 45	99.0961 .1000 .1119 .1310 .1571 99.1894 .2268 .2681 .3121	1.996056 .996074 .996126 .996210 .996324 1.996465 .996629 .996810 .997002 .997201	39.0141 .0157 .0204 .0279 .0382 39.0509 .0656 .0819 .0992 .1171	1.591222 .591239 .591292 .591375 .591490 1.591631 .591976 .592168 .592367	50 55 60 65 70 75 80 85 90	99.4033 -4475 -4891 -5266 -5590 99.5854 -6047 -6168 -6207	1.997401 .997594 .997776 .997939 .998081 1.998196 .998280 .998332 .998350	39.1351 .1525 .1689 .1836 .1964 39.2068 .2144 .2191 .2207	1.592566 .592760 .592941 .593104 .593246 1.593361 .593446 .593498 .593515

Calculated from Table 706 by the formula $l=g/\pi^2$. For each 100 ft. of elevation subtract 0.000533 cm or 0.000375 in. or 0.0000313 ft. This table could also have been computed by either of the following formulae derived from the gravity formula at the top of Table 706. $l=0.990061 + 0.005240 \sin^2\phi - 0.000007 \sin^2\phi) \text{ meters } l=0.990061 + 0.005240 \sin^2\phi - 0.000007 \sin^2\phi) \text{ meters } l=39.014135(1+0.005294 \sin^2\phi - 0.000007 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^2\phi) \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 \text{ inches } l=30.014135 + 0.206535 + 0.206535 \text{ inches } l=30.014135 + 0.206535 + 0.206535 + 0.206535 + 0.206535 + 0.206535 + 0.206535 + 0.2$

TABLE 711.-Miscellaneous Geodetic Data

(Replaced by Table 716)

TABLE 712.—Miscellaneous Geographical Data (see page 650)

(The data on this page were compiled by R. W. Goranson, Geophysical Laboratory, Carnegie Institution, 1930.)

Land area, 148,847,000 km²; Ocean area, 361,254,000 km².

Mean elevation land above sea-level, 825 m.

Mean depth oceans, 3,680 m.

Highest known mountain, Mt. Everest, India, 87° E., 28° N., 8840 meters.

Greatest known sea-depths: Mindanao deep 10,430 meters, <10° N., 127° E.; Puerto Rico deep 8,525 meters, 19°35′ N., 67°43′ W.

Thermal gradient: Not well-known; from Van Orstrand's data average is 30°C per km

depth but may be very different; variations observed are from 9 (Johannesburg, S. Africa) to 54 (Queensland) degrees C per km depth. Max. depth measured, 2,286 m.

TABLE 713.—Densities and Pressures of Earth's Interior

Depth	Density	Pressure	Rock type
o km	2.7 g/cm³		Granitic
01	2.7	$0.0027 \times 10^6 \text{kg/cm}^2$	
30	3.0	.0067	Basaltic
60	3.4	.0171	Peridotitic
120	3.5	.0381	
400	3.75	.131	
800	4.0	.30	
1200	4.25	·47 .68	
1700	4.4 5.8		
2000	5.8	.84	
2450	7.25	1.135	
2900	9.0	1.5	Transition layer
3200	9.6	1.7	
4800	10.25	2.8	Ni-Fe core
6370	10.7	3.1	

(Below 800 km, due to Adams, Williamson.)

TABLE 714.—Velocities of Earthquake Waves

 V_p is the velocity in km/sec. of the primary or condensational wave, V_s , of the secondary or distortional wave. Turner speaks of them as the push and shake waves.

Layer:	V₂, km/sec.	I's, km/sec.
o to 20 ± 10 km depth, depending on locality 20 ± 10 to 45 ± 10 km depth, depending on locality Between 45 ± 10 and 2900 km depth:	5.4 to 5.6, depending on locality. May reach 6.1 6.25 to 6.75*, depending on locality	3.2 ± 0.3 $3.5 \pm 0.3^*$
45 ± 10 1300 2400 < 2900	8.0 ± 0.1 $12.5 \pm .1$ $13.5 \pm .1$ $13.5 \pm .1$	4.4 ± 0.2 $6.9 \pm .2$ $7.5 \pm .2$ $7.4 \pm .2$
Core, 2700 to 6370 km (center): > 2900 6000	8.7 ± .2 10.9 ± .2	7

^{*} B. Gutenberg, H. Jeffreys, K. Suda, A. and S. Mohorovicic, V. Conrad.

TABLE 715.—Elastic Constants of Earth's Interior

		1	1	1	
Depth km	Bulk modulus × 10 ⁻¹² dynes/cm ²	Rigidity X 10 ⁻¹² dynes/cm ²	Depth km	Bulk modulus × 10-12 dynes/cm ²	Rigidity X 10 ⁻¹² d ynes/cm²
0 0-20 20-45 45-120 120-400	$\begin{array}{c} 0.415 \\ .5 \pm 0.05 \\ .7 \pm .1 \\ 1.4 \pm .2 \\ 1.6 \pm .2 \end{array}$	0.26 .3 ± 0.5 .4 ± .1 .6 ± .1 1.0 ± .2	1200 1700 2850 2900 6370	$ 3.6 \pm 0.3 4.2 \pm 0.3 8 \pm 2 7 \pm 1 ? 12 ± 10 ? $	2.2 ± 0.3 $2.7 \pm .3$ 4.0 ± 1.0 Smaller than at surface, perhaps zero.

MISCELLANEOUS GEOPHYSICAL DATA

Equatorial radius of earth, a, 6,378,388 m \pm 18. Ellipticity, flattening, (a-b)/a, 1/207 or 0.003,367,003.4.

(Adopted at International Geodetic and Geophysical Union, 1924.)

Polar radius, b, 6,356,911.946 m. Square of the eccentricity, e^2 , or $(a^2-b^2)/a^2$, 0.006,722,670,0.

Quadrant of equator, 10,019,148.4 m; ditto of meridian, 10,002,288.3 m. Area of ellipsoid, 510,100,934 km²; volume of ditto, 1,083,319,780,000 km³. Radius of sphere having same area, 6,371,227.7 m.

Radius of sphere having same volume, 6,371,221.3 m.

Difference between geographical latitude, Φ , and geocentric latitude: Φ' . $\Phi - \Phi' = 695\rlap.^\circ6635 \sin 2\Phi - 1\rlap.^\circ1731 \sin 4\Phi + 0\rlap.^\circ0026 \sin 6\Phi \\ = 695\rlap.^\circ6635 \sin 2\Phi' + 1\rlap.^\circ1731 \sin 4\Phi' + 0\rlap.^\circ0026 \sin 6\Phi'$

Newtonian constant of gravitation, G, $(6.664 \pm 0.002) \times 10^{-8}$ dyne cm²g⁻² (Heyl).

Mean density of the earth, 5.522 (Lambert).

Continental surface density of the earth, 2.67. (Harkness.)

Mean density outer 10 miles of crust, 2.40. Rigidity, μ , 8.6 \times 10¹¹ c.g.s. units. Viscosity, 10.9 \times 10¹⁶ c.g.s. units (comparable to steel). Michelson, Astrophys. Journ., 39, 105, 1914.

Moments of inertia of the earth, the principal moments being taken as A, B, and C, and C

 $C - A = 0.0010021 \times Ea^2$.

Heiskanen

the greatest (De Sitter, 1924): $A = B = 0.33235 \times Ea^2$ C = 0.3 (C - A)/C = 0.0032774, from precession. $\dot{C} = 0.33344 \times Ea^2$

.052

Mass of the earth = $E = 5.983 \times 10^{24} \text{ kg}$; a = equatorial semidiameter.

Formulae for theoretical gravity at the surface of the ellipsoid (which is assumed to be an equipotential surface):

> $\gamma = \gamma_e (1 + 0.005288 \sin^2 \Phi - 0.000006 \sin^2 2\Phi) \text{ cm/sec}^2$. $= \gamma_{45} (1 + 0.002637 \cos^2 \Phi + 0.000006 \cos^2 2\Phi) \text{ cm/sec}^2$. $\gamma_e =$ sea-level gravity at equator $\gamma_{45} =$ sea-level gravity at lat. 45° = 978.038 cm/sec². Bowie = 980.621 cm/sec². Bowie .052 Helmert Helmert

.630

There is a systematic difference between gravity determinations over land or over sea, the latter being greater; this leads Bowie to favor a value of 978.52 ± .008 for the value above.

Heiskanen

This systematic difference has led to the formula:

 $g = 978.052 \{ 1 + 0.005288 \sin^2 \phi - 0.000006 \sin^2 2\phi + 0.000023 \cos^2 \phi \cos 2(\lambda + 5^\circ) \},$ where $\lambda = \text{east longitude}$. This longitude term has appeared to be indicated by the results of several observers.—Clarke, 1878, Helmert, 1915, and Heiskanen, 1928. It could be taken as indicating that the earth had three unequal axes.

Mean linear velocity of the earth in its orbit, 29.77 km/sec. Mean linear velocity of rotation of earth at equator, 0.465 km/sec. Rotational energy lost by tidal friction, 1.1 × 1019 erg/sec. (Jeffreys). Angular velocity of rotation, 72.921 × 10⁻⁶ radians/mean-solar-second.

Rotational energy, 2.160 × 10³⁰ ergs/sec.

(See Lambert, Science, 63, 242, Mar. 5, 1926; Journ. Wash. Acad. Sci., 18, 571, 1928.)

TABLE 717 .-- Age of Earth, Moon, and Strata

(See The Earth, by Jeffreys, 1929.)

The age of the earth is probably from $(1.3 \text{ to } 3) \times 10^9$ years (radioactive data). Its liquefaction was probably complete within 5000 years, solidification within 15,000 years from start. The age of the earth's crust may be taken as roughly 2000 million years,

Ages of Geologic Strata

" Cretaceous (?) 59,000,000 " Permian-Carboniferous . 204,000,000 " Permian to Devonian 239,000,000 to	Late pre-Cambrian (?) . 587,000,000 yrs. Upper pre-Cambrian . 640,000,000 " Middle pre-Cambrian . 987,000,000 to 1,087,000,000 yrs. Lower pre-Cambrian . 1,257,000,000 "
--	--

Note (Science 73 (Suppl.), 10, Mar. 13, 1931): An age of the earth of at least 2,000,000,000 years was adopted by a committee (Kovarik, Holmes, Knopf, Brown, Lane) appointed by the National Research Council; the age of the oldest rock, a uranite from Sinyaya Palo, Carelia, Russia, 1,852,000,000.

TABLE 718(a).—Geologic Age Determinations Based on the Lead Method

(Knopf, Nat. Res. Council Bull. 80, 1931.)

Geologic age.	$\begin{array}{c} & \text{(Millions} \\ & \text{Based on} \\ & \text{Tu} = 4.56 \times 10^9 \\ \text{Mineral,} & \text{Locality.} & \text{$T_{Th} = 1.28 \times 10^{10}$} \end{array}$	$\begin{array}{c} \text{age} \\ \text{of years)} \\ \text{Based on} \\ \text{Tu}=4.56 \times 10^9 \\ \text{Tth}=1.65 \times 10^{10} \end{array}$
Carboniferous. Latest Cambrian Pre-Cambrian Pre-Cambrian	Thorite Norway 224 Kolm Sweden 450 Bröggerite Norway 915 Cleveite Norway 967	310 910 964
Pre-Cambrian	CleveiteNorway 986 UraniniteS. Dakota 1,465 UraniniteRussia 1,852	965 1,462 1,852

TABLE 718(b) .- The Age of the Earth

(Taken from Nat. Res. Council Bull. 80, 1031,)

Radioactive disintegration presents the only reliable measure. No trace of a beginning can yet be found. "The oldest rocks have everywhere been made from preexisting and therefore still older materials of which no other relics now survive. . . . The earth is older than the oldest granitic intrusion. It is impossible with the data available to know whether the highest reliable lead ratio so far obtained (Keystone uraninite, Black Hills, S. Dak.) represents the oldest granitic rocks. Accepting a ratio of 0.216 as an index of its age this is 1460 million years old. Before the oldest granites were intruded into the crust at least one cycle of denudation and sedimentation occurred indicated by the rocks into which the granites were injected. To the 1460 we should add perhaps 140, giving as the age some 1600 million years, as indicated by above mean. An upper limit assuming all rock lead of radioactive origin is 1600 million. The estimate of the total life of the earth (Russell, Holmes, loc. cit. p. 8) is some 3000 million years.

(Russell, Holmes, loc. cit. p. 8) is some 3000 million years.

Strata accumulated: Max. since beginning of Cambrian from America data—260,000 ft.;

111,000 of this deposited during Paleozoic time, 86 are Mesozoic, 61,000 during Cenozoic.

TABLE 719

GEOCHEMICAL DATA

Eighty-three chemical elements (86 including Po, Ac and UrX₂) are found on the earth. Besides the eight occurring uncombined as gases, 23 may be found native, Sb, As, Bi, C, Cu, Au, Ir, Fe, Pb?, Hg, Ni, Os, Pd, Pt, Rh, Ru, Sz, Ag, S, Ta?, Te, Sn?, Zn?. Combined the elements form about 1000 known mineral species. Rocks are in general aggregates of these species. Some few (c. g., quartzite, limestone, etc.) consist of one specie. We have some knowledge of the earth to a depth of 10 miles. This portion may be divided into three parts: the innermost of crystalline or plutonic rocks, the middle, of sedimentary or fragmentary rocks, the outer of clays, gravels, etc. 03% of it is solid matter, 7% liquid, and the atmosphere amounts by weight to 0.05% of it. Besides the 9 major constituents of igneous rock (see 7th Col. of table) 3 are notable by their almost universal occurrence, TiO₂, P₂O₅, and MnO. Bo, Gl, and Sc are also widely distributed.

The density of the earth as a whole is 5.52 (Burgess); continental surface, 2.67 and outer 10 miles of crust, 2.40 (Harkness). Computed from average chemical composition: outer ten miles as a whole, 2.77; northern continents 2.73; southern, 2.76; Atlantic basin, 2.83; Pacific basin, 2.88.
Data of Geochemistry, Clarke, Bul. 616, U. S. Geological Survey, 1916; Washington, J. Franklin. Inst. 190,

p. 757, 1920.

AVERAGE COMPOSITION OF KNOWN TERRESTRIAL MATTER.

	Avera	age compo	sition.		Ave	erage com	position o	of lithosp	here.	
Atomic number and element.	Litho- sphere, 93%	Hydro- sphere, 7%	Average including atmosphere.	Igneous rocks.	Compound.	Igneous rocks, 95%	Shale, 4%	Sand- stone, 0.75%	Lime- stone, 0.25%	Weighted average.
8 O 14 Si 13 Al 26 Fe 20 Ca 12 Mg 11 Na 19 K 1 H 22 Ti 6 C Cl 35 P 16 Sa 25 Mn 38 Sr 7 Fl etc.	47.33 27.74 7.85 4.50 3.47 2.26 2.46 0.22 0.46 19 .06 	85.79	46.43 27.77 8.14 5.12 2.63 2.63 2.62 0.127 .620 .027 .055 -130 .052 .048 .096 .018	47.29 28.02 7.96 4.56 3.47 2.29 2.55 2.47 0.16 13 .063 -13 .092 .078 .033 -100 .091	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ MgO. CaO MagO. CaO MagO. CaO MagO. CaO MagO. CoO ₂ PeO ₅ So ₅ Cl. Fe So ₆ Cl. Fr. San MnO. SiO ₃ MnO. NiO ₃ Cr ₂ O ₃ V ₂ O ₃ Li ₂ O Cr ₂ O ₃ V ₂ O ₃ Li ₂ O C.	59.09 15:35 3.08 3.80 3.49 5:08 3.84 3.13 1.14 1.02 .003 .053 .053 .055 .022 .125 .022 .025 .022 .025	\$8.10 15.40 4.02 2.45 2.44 3.11 1.30 3.24 5.00 .65 2.63 .17 .64 	78.33 4.77 1.07 .30 1.16 5.50 .45 1.31 1.63 .25 5.03 .08 .07	5.19 0.81 .54 7.89 42.57 .05 .33 .77 .06 .41.54 .09 .05 .02	59.77 14.80 2.69 3.39 3.74 4.86 3.25 2.98 2.02 77 .02 .70 .28 .10 .06 .09 .09 .04 .09 .025 .05 .025 .01

AVERAGE COMPOSITION OF METEORITES: The following figures give in succession the element, atomic number (bracketed), and the percentage amount in stony meteorites (Merrill, Mem. Nat. Acad. Sc. 14, p. 28, 1916). The "iron" meteorites contain a much larger percentage of iron and nickel, but there is a tendency to believe that with such meteorites the composition is altered by the volatilization or burning up of the other material in passing through Note the greater abundance of elements of even atomic number (97.2 per cent). the air.

O (8) 36.53 Fe Ca Na (11) 1.60 Cr C (6) 0.15 Co H (1) 0.09 Ru (44) tr.	(20) 1.72 Al (13) (24) 0.32 Mn (25) (27) 0.12 Ti (22) (29) 0.01 Cl (17)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
--	--	--

THE EARTH'S ROTATION: ITS VARIATION

(Jeffreys, The Earth, Macmillan, 1929. Innes, Changes in the Length of the Day, Scientia, 42, 69, 1927; Brown, Nature, 119, 200, 1927; Journ. Roy. Astron. Soc. Canada, 24, 177, 1930.)

From eclipses, occultations, Fotheringham (M. N., 81, 104, 1920) deduces as the best value of the apparent solar acceleration 3.0"/(century)²; lunar 21.6"/(century)². Lunar theory predicts 12.2"/(century)² leaving part attributable to tidal friction 9"/(century)². Estimates of tidal friction losses (Jeffreys, Philos. Trans. A 221, 230, 1920);

	0.6×10 ¹⁸ erg/sec.	So. China Sea -× 1018 erg/sec.	Hudson Str. 0.2×1018 erg/sec.
Eng. Channel	1.1 " "	Okhotsk " o.4 " "	" Bay " "
North Sea	1.7 " "	Bering " 15.0 " "	Fox Strait 1.4 " "
Yellow Sea	1,1 " "	Mallacca Str. 1.1 " "	Bay Fundy 0.4 " "

Other contributions are small. Total for spring tides 22×10^{18} erg/sec. 1.1×10^{19} erg/sec. average, corresponding to about 7" secular acceleration per century per century. If Ω is earth's angular velocity of rotation, $d\Omega/dt = -2.5 \times 10^{-22}/\text{sec}^2$. $\Omega = 7.3 \times 10^{-5}/\text{sec}$. Ω changes by 10^{-5} of its amount in 3×10^{12} sec. or 10^5 years. The day should have lengthened by 1 sec. in 120,000 years.

The fluctuations in the earth's rate of rotation indicated by astronomical evidence are of a quite greater order of magnitude. Moreover the changes vary in sign whereas frictional effects should not. The observations come from deviations of the sun and moon from their gravitational orbits, the transits of Mercury, and eclipses of Jupiter's satellites. Changes in the speed of rotation of the earth rotation seem the only explanation. This may be due to shifts of matter within or on the earth. The following figure by Brown indicates that in 1928 the earth was about 25 sec. ahead of its average rotational motion during the last three centuries. The greatest apparent change is the loss or gain of one sec. in a whole year. (I part in 30,000,000.)

IRREGULARITIES IN THE EARTH'S ROTATION DERIVED FROM THE MOON'S MOTION.

Tidal friction should make the earth rotate more slowly and the moon recede from the earth. The rate of dissipation of energy by friction is about $1.4 \times 10^{19} \, \mathrm{erg/sec}$. The earth's rotation from this cause should have slowed by 4 hours during geologic time. The moon should continue to recede until its period of revolution and that of the earth's rotation are equal to 47 of our present days. The moon should then gradually approach the earth, ultimately coming within Roche's limit (about twice the earth's radius) breaking up possibly into a ring like Saturn's.

TABLE 721.-Tides, Sea-Level, Level Net

(Nat. Res. Council Bull. 78, 1931.)

Spring tides: When moon (new or full) is in line with sun (large).

Neap tide: When moon is in quadrature with sun (small).

Generally two high and two low each day. Variation in heights of two high and two low = "diurnal inequality."

River type tide, steep short period graph for flood, more inclined and longer for ebb. Extreme case = "bore," tide rises so rapidly it assumes form of wall several feet high. Most famous bores, Tsientang Kiang, China; Turnagain Arm, Alaska; Severn and the

Wye, England; Seine in France; Hoogly, India; Petitcodiac, Canada.

Mean sea-level (geodetic): The equipotential surface which the oceans would assume if undisturbed by the tides and effects of wind and weather. Starting with mean sea-level at any given initial point the geodesist can determine by precise spirit leveling, the

equipotential surface.

Mean sea-level (geographic): Determined by averaging actual tidal heights over a sufficient period. It is a local or geographic value. It is much disturbed by prevalent winds and local contours. Note difference between average of hourly readings (mean sea-level) and half-tide point (because of the shape of the tide height as related to time). On Atlantic coast ½ tide level lies below mean by about 1/10 ft.; on Pacific above by 1/20 ft. Mean tide near rivers varies with rainfall. Nineteen years' observation used for full tide cycle. A fundamental level net has been connected with mean sea-level at Portland, Me., via Boston, Mass., Ft. Hamilton, N. Y., Sandy Hook and Atlantic City, N. J., Old Point Comfort and Norfolk, Va., Brunswick, Ga., Fernandina, St. Augustine, and Cedar Keys, Fla., Biloxi, Miss., Galveston, Tex., San Diego, San Pedro, San Francisco, Calif., Ft. Stevens, Oreg., and Seattle, Wash. The accuracy of high precision leveling is measured by the correction necessary to close circuits, about 0.00063 foot/mile. Mean sea-level differences:

Portland 16.94 cm higher than Ft. Hamilton. Vancouver 10.28 cm higher than Seattle. Galveston 24 cm higher than St. Augustine. San Diego 40 cm higher than Galveston. Fort Stevens 79 cm higher than San Diego.

Isthmus Panama, Pacific coast 20 cm higher than Atlantic. Death Valley is 276 ft. (84.1 m) below sea-level, Mount Whitney 14,496 ft. (4418.4 m)

above.

TABLE 722.-Magnetic and Electric Data for Sun and Earth

(Chapman, Cosmical magnetic phenomena, Nature, 124, 19, 1929.)

Sun's magnetic field too small to be measured by direct effects on earth; measured by Zeeman effect on spectrum lines.

Earth's magnetic axis inclined 12° to rotation axis. Sun's magnetic axis inclined 4° to rotation axis. Polarity of both same relation to direction of rotation. Earth's field rotates at same speed as nearly rigid earth.

Sun's field and magnetic axis rotate more slowly than solar surface (31, 26 days, respectively).

Earth: Polar intensity of field \(\frac{2}{3} \) gauss.

Sun: Estimated 50 gauss in reversing layer. Intense local fields frequent, 3000 gauss. The magnetic field of spots reverses each cycle (Proc. Astron. Soc. Pacific, 41, 136, 1929). The polarity of leading spot in a bipolar group in N. hemisphere is opposite that in the S. hemisphere—relationship reverses each new sun-spot cycle ... complete magnetic cycle is double sun-spot cycle.

Specific resistances: Earth

Heaviside layer, 1010 1015 to 1016 Dry earth, Sea water, 2×10^{10} 200-600 m deep, 3 × 10¹²

(Chapman loc. cit.) Sun Reversing layer, 3×10^{10} Photosphere, 10^8 , T, 10000° K.

 $3 \times 10^{3}, T, 4 \times 10^{7}$ Center,

Drift currents in sun, + ions easterly. Further characteristics of spots: (Milne, M. N. 90, 487, 1930; Russell.) Umbra (dark center), 800 (very small) to 80,000 km across: penumbra may reach 240,000 km. Generally short-lived. A few last several (3) rotations, very rarely 6; one in 1840, 18 months. Most occur in 2 belts 5° to 40° N. and S. latitudes, often occur in pairs (see above). Umbra temperature 4000° K. Evershed gives velocity of outburst from spot 2 km/sec.

TABLE 723 .- Magnetic Constants of the Earth

(Prepared by J. A. Fleming, Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

If V be the magnetic potential of the earth, then

$$V/R = \sum c_m^n P_m^n \sin \phi \cos (m\lambda + a_m^n)$$

where R = earth's mean radius (6.37 \times 10⁸ cm), $\phi = \text{latitude}$, $\lambda = \text{east longitude}$, μ varies from I to ∞ , and m from 0 to n. The field-components of total intensity F designated, X positive towards geographic north, Y positive towards geographic east, and Z positive towards nadir, are

$$X = -(1/R) \left(\frac{\partial V}{\partial \phi} \right) = -\sum_{cm^n} (\partial P_m^n / \partial \phi) \cos(m\lambda + \alpha_m^n)$$

$$Y = -(1/R \cos \phi) (\partial V / \partial \lambda) = (1/\cos \phi) \sum_{m \in m} P_m^n \sin(m\lambda + \alpha_m^n)$$

$$Z = -\sum_{cm} (n+1) c_m^n P_m^n \cos(m\lambda + \alpha_m^n)$$

L. A. Bauer (Terr. Mag., 28, 1-28, 1923) made an analysis based on the latest values of the magnetic elements, epoch 1922, between the parallels 60° N. and 60° S. He found the following for the uniform portion of the earth's X, Y, and Z magnetic systems:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	poch 1922, c.g.s. units. Y06235	Z +.30699 +.30084 +.06113
--	----------------------------------	------------------------------------

where M is the earth's moment, and M_P and M_P are its axial and equatorial components.

$$M = 8.04 \times 10^{25} \text{ c.g.s.}$$
 $M_p = 7.88 \times 10^{25} \text{ c.g.s.}$ $M_e = 1.60 \times 10^{25} \text{ c.g.s.}$

where M is the earth's moment, and Mp and Me are its axial and equatorial components. For the same date Bauer deduced the following values in magnetic units: $M = 8.04 \times 10^{25} \, \text{c.g.s.}$ $M_p = 7.88 \times 10^{25} \, \text{c.g.s.}$ $M_e = 1.60 \times 10^{25} \, \text{c.g.s.}$ The magnetic field of the earth approximates that of a uniformly magnetized sphere, its magnetic axis inclined to that of geographical rotation. The equivalent axis intercepts the northern hemisphere in latitude 78° 32′ N. and longitude 69° 08′ W.

The intensity of the earth's magnetic field above the surface may be expressed as a first intensity of the carth's magnetic field above the surface may be expressed as a first

approximation (according to Schmidt) by F(1-3h/R) where h is the elevation and R the earth's radius; that is, for each 2 km the field diminishes by approximately 0.1 per cent

while the direction is practically unchanged.

If the earth's magnetism were distributed uniformly throughout its volume, the average intensity of magnetization would be 0.074 c.g.s. The equivalent intensity of magnetization has been steadily diminishing during the past 80 years at the average annual rate of about 1/1,500 part.

A. Nippoldt (Veröff. Preus. Meteor. Inst., Berlin, no. 372, 137-143, 1930) gives the

following positions based on observations:

TABLE 724.-North Magnetic Pole

Year.	Latitude.	Longitude.	Source.
1831	70 05.4 N.	96 53.5 W.	Ross
1903	70 30 N.	95 30 W.	Amundsen

TABLE 725 .- South Magnetic Pole

Year.	Latitude.	Longitude,	Source,
1841	75 05 S.	154 08 E.	Ross
1903	72 41 S.	156 25 E.	1st British Antarctic expedition
1909	72 25 S.	154 00 E.	2d British Antarctic expedition

The magnetic poles are not diametrically opposite, each being approximately 2300 kilometers (Gutenberg, Lehrb. Geophys., 400, 1929) from the antipodes of the other. These poles are defined as the points at which magnetic lines of force are normal to the earth's surface, and are to be distinguished from the extremities of the magnetic axis derived from analysis.

TABLE 726.—World Isogonic Lines, Epoch 1930 (Lines of Equal Declination (D))

TABLE 727.—World Isoclinic Lines, Epoch 1930 (Lines of Equal Inclination (1)).
Solid Lines Indicate North End Dipping; Broken, South End Dipping

TABLE 728.—World Isodynamic Lines, Epoch 1930 (Lines of Equal Horizontal Intensity (H))

The annual changes in position of isomagnetic lines shown in Tables 7.26-7.28 are most conveniently represented by the isoporic charts, Tables 7.29-7.31. To these are added also similar charts showing lines of equal annual change in vertical force (Z) and total force (F), Tables 7.35 and 7.36. The difficulty of securing data suitably distributed over the entire surface of the earth is such that only approximate positions of isopors are known, although there is sufficient evidence to show that these positions change with relative and the accelerations in those rates can be derived for regions where there are magnetic observatories by reference to Table 7.37, "Mean annual values of magnetic elements at observatories."

TABLE 729.—World Isoporic Lines for D (Lines of Equal Annual Change)
Approximate Epoch 1920-1925

TABLE 730.—World Isoporic Lines for I (Lines of Equal Annual Change)
Approximate Epoch 1920-1925

TABLE 731.—World Isoporic Lines for H (Lines of Equal Annual Change)
Approximate Epoch 1920-1925

TERRESTRIAL MAGNETISM

APPROXIMATE VALUES FOR ANNUAL RATES OF SECULAR CHANGE IN THE MAGNETIC ELEMENTS DECLINATION (D), INCLINATION (I), AND HORIZONTAL INTENSITY (H) FOR THE EPOCH 1925 $^{\rm I}$

(Because of the different intervals covered by available data and the known large accelerations in some parts, the values given for the annual secular-changes at intersections of parallels and meridians indicated are approximate except for those localities near magnetic observatories; in some cases there is great uncertainty and the values for these are enclosed in parentheses. The signs of the values given are in the algebraic sense for extrapolation considering east declination, north inclination, and horizontal intensity is positive and west declination and south inclination as negative.

TABLE 732.—Annual Change in Magnetic Declination (D)

Lati-	Longitude east of Greenwich																	
tude	0°	20°	40°	60°	80°	100°	120°	140°	160°	180°	200°	220°	240°	260°	280°	300°	320°	340°
60 N. 40 N. 20 N. 0 20 S. 40 S. 60 S.	+13 +10 +8 +6 +2 0 +2	+12 +10 + 8 + 9 +10 +10 +7	+ 7 + 7 + 4 + 8 + 10 + 9 + 6	0 0 - I - 6 - II - 4 + 2	, - 3 - 3 - 3 - 5 - 14 - 12 0	-4 -4 -2 -2 -6 -7 -1	, -6 -3 -1 0 +1 0 -1	/ -6 -2 -1 +1 +1 +1 +1	, -4 -2 0 +1 +2 +3 +4	, -3 0 +1 +3 +5 +6	0 +1 +2 +2 +3 +6 +7	0 0 +3 +2 +4 +6 +6	, -2 -1 +4 +2 +3 +4 +4	, -3 -2 +4 +3 +2 +2 +2	, 0 -4 +1 0 -3 -3 +2	+ 5 - 2 - 6 -12 - 10 - 8 - 4	+ 9 + 2 - 4 - 12 - 9 - 7 - 4	+12 + 8 + 2 - 5 - 4 - 2

TABLE 733.—Annual Change in Magnetic Inclination (I)

	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
60 N.	+ 1	+ 2	+ 3	+ 4	+ 3	+2	+2	+1	+1	+1	0	0	0	0	- I	- 2	- 2	0
40 N.	- 2	+ 1	+ 4	+ 7	+ 4	+2	+1	0	0	- I	-1	0	0	+1	+1	0	- 5	- 4
20 N.	- 6	- I	+ 5	+ 8	+ 3	0	-1	-2	-2	I	+1	+2	+1	+3	+7	+ 3	- 8	-11
	-12	- 4	+ 4	+ 6	+ 1	- I	-3	-4	-4	— I	+1	+4	+2	+4	+9	+ 6	-10	-15
	-11	- 7	— I	+ 2	+ 1	— I	-2	-4	-4	-2	0	+4	+2	+3	+5	0	-11	-14
40 S.	- 9	- 8	- 5	- 2	+ 1	0	-1	-2	-1	— I	0	+2	+2	+2	+2	- I	- 7	-10
60 S.	- 6	- 6	- 5	- 3	0	0	0	0	-1	0	(+1)	(+1)	(+1)	(+1)	(+2)	+ 1	- 2	- 4
	- 1	- 1													1			li

TABLE 734.—Annual Change in Magnetic Horizontal Intensity (H)

60 N. 40 N. 20 N. 0 20 S.	$ \begin{array}{c} \gamma \\ -10 \\ +5 \\ +10 \\ -25 \\ -55 \\ -05 \end{array} $	γ -30 -10 +15 -15 -70	γ -45 -25 0 -10 -50 -05	$ \begin{array}{c} \gamma \\ -60 \\ -35 \\ +5 \\ 0 \\ -40 \\ -70 \\ \end{array} $	γ -50 -35 +35 +25 -30 -50	-20 +30 +25 -20	$ \begin{array}{c} \gamma \\ -25 \\ -10 \\ +15 \\ +10 \\ -25 \\ -35 \\ \end{array} $	0 +10 0 -25	γ +10 0 -10 -25 -30	$ \begin{array}{c} \gamma \\ +10 \\ -10 \\ -20 \\ -10 \\ -20 \\ -25 \\ \end{array} $	γ 0 -15 -30 -15 -15 -20	γ -10 -20 -35 -25 -15	γ - 5 -25 -45 -30 -15 -25	γ 0 -30 -60 -35 -20 -30	$ \begin{array}{c} \gamma \\ +10 \\ -40 \\ -90 \\ -25 \\ -20 \\ -50 \\ \end{array} $	γ +20 -25 -60 - 5 -25 -85	$ \begin{array}{c} \gamma \\ +20 \\ +5 \\ 0 \\ -30 \\ -70 \end{array} $	γ + 5 + 25 + 20 - 15 - 40 - 70
40 S. 60 S.	-95 (-70)		-95 (-80)	-70	-50	-45 (-35)	-35 (-30)		-30	-25 -15	-20 -20					-85 -50		-70 -65

¹ Prepared by H. W. Fisk, of the Department of Terrestrial Magnetism, Carnegie Institution of Washington.

TERRESTRIAL MAGNETISM

TABLE 735.—World Isoporic Lines for Vertical Intensity (Lines of Equal Annual Change) Approximate Epoch 1920-1925

TABLE 736.—World Isoporic Lines for Total Intensity (Lines of Equal Annual Change) Approximate Epoch 1920-1925

In order to show the change of the annual rates of secular variation with geographical position and with time and the accelerations in those rates without unduly extending the tables, the values of the elements have been given for each fifth year beginning with 1900, and for consecutive years from 1925 or 1930. When the observatory was established subsequent to 1900, values obtained during the first year of the operation are given.

The lack of uniformity in the distribution of magnetic observatories should be taken into account. The satisfactory computation of the so-called magnetic constants of the earth, the investigation of the laws of secular variation and daily variation, the study of the manner of propagation of magnetic storms and their relation to other world-wide phenomena, require additional observatories in the southern hemisphere, specifically in Africa, and on favorably

located islands in the southern Pacific and Atlantic oceans.

				Declination	Inclination	Inte	nsity
Observatory	Latitude	Longitude	Year	(D)	(1)	Hor. (H)	Ver. (Z)
	0 /	· ,		0 /	0 /	0 0 0	
Matotchkin Shar	73 16 N.	56 24 E.	1924	20 37.5 E.	80 05.4 N.	c. g. s, .09491	c. g. s.
Sodankylä	67 22 N.	26 39 E.	1915	0 27.2 E.	75 22.1 N.	.12853	.49232
			1920 1925	I 04.1 E. I 53.2 E.	75 35.8 N. 75 48.4 N.	.12638	.49211
			1930	2 35.5 W.	76 02.4 N.	.12228	.49216
Godhavn	he te N	53 30 W.	1931	2 45.0 W. 58 28.4 W.	76 05.0 N. 81 34.7 N.	.08259	.49220 .55788
Lerwick	65 15 N. 60 08 N.	1 11 W.	1923b	15 44.5 W.	72 33.6 N.	.14655	.46650
			1925b	15 17.7 W.	72 37.2 N.	.14621	.46712
			1926	15 02.8 W. 14 11.2 W.	72 37.1 N. 72 41.6 N.	.14618	.46699
			1931	13 59.6 W.	72 42.3 N.	.14517	.46623
Pavlovsk (Sloutzk)	59 41 N.	30 29 E.	1900	o 37.6 E. o 59.8 E.	70 37.4 N. 70 36.1 N.	.16548	.47050
(Cioutzk)			1910	1 30.0 E.	70 41.9 N.	.16420	.46975
			1915	2 06.8 E.	70 54.9 N.	.16210	.46850
			1920 1925	2 42.7 E. 3 25.3 E.	71 11.2 N. 71 27.1 N.	.15978	.46897
			1927	3 42.6 E.	71 34.8 N.	.15675	.47068
			1928 1929	3 50.2 E. 3 57.4 E.	71 38.6 N. 71 42.3 N.	.15630	.47106 .47145
Lovö	59 21 N.	17 50 E.	1928	3 18.6 W.		.15617	•4/145
Sitka	57 03 N.	135 20 W.	1929	3 08.3 W.	71 24.9 N.	.15584	.46344
Sitka	5/ 03 14.	135 20 11.	1902	29 51.1 E. 29 59.1 E.	74 47.8 N. 74 43.2 N.	.15441	.56822
			1910	30 16.4 E.	74 32.2 N.	.15577	.56312
			1915 1920	30 23.2 E. 30 28.2 E.	74 26.5 N. 74 22.1 N.	.15593	.56008
			1925	30 27.0 E.	74 22.0 N.	.15574	.55662 .55491
			1928	30 20.0 E.	74 22.4 N. (74 22.7 N.)	.15485	.55357
			1929 1930	(30 17.7 E.) (30 15.6 E.)	(74 22.7 N.) (74 22.8 N.)	(.15465) (.15448)	(.55307) (.55255)
77.41		(0 D	1931	(30 I3.I E.)	(74 23.5 N.)	(.15454)	(.55190)
Katharinenburg (Swerdlovsk)	56 50 N.	60 38 E.	1900 1905	10 04.0 E. 10 27.2 E.	70 40.3 N. 70 48.3 N.	.17789 .17692	.50718
(0.101010101)			1910	10 48.7 E.	71 00.7 N.	.17476	.50786
			1915 1920	11 02.6 E. 11 01.0 E.	71 21.2 N. 71 42.1 N.	.17142	.50797
			1925	11 01.9 E.	72 03.0 N.	.16513	.50843
			1927	10 59.5 E.	72 12.2 N.	.16389	.51053
Rude Skov	55 51 N.	12 27 E.	1929	(10 57.2 E.) 9 48.4 W.	(72 20.3 N.) 68 44.0 N.	(.16285) .17423	(.51145)
			1910	9 27.1 W.	68 45.0 N.	.17375	.44648
			1915	8 42.7 W. 7 55.6 W.	68 50.6 N. 68 59.6 N.	.17257 .17124	44591
			1925	6 57.7 W.	69 07.2 N.	.17124	.44596 .44631
			1930	6 00.4 W.	69 19.0 N.	.17893	.44747
Kasan	55 50 N.	48 51 E.	1931 1915 ^b	5 50.4 W. 8 24.3 E.	69 20.5 N. 69 28.8 N.	.17879	·44747 ·47635
(Saimistsche)			1920b	8 39.6 E.º	69 48.1 N.º	.17530°	.47650°
			1925 1930	8 57.0 E. 9 06.8 E.	70 12.2 N. 70 36.3 N.	.17260	.47951
Tr	()		1931	9 07.3 E.	70 39.1 N.	.16953	.48279
Koutchino	55 46 N.	37 58 E.	1926 1927	6 25.9 E. 6 36.1 E.	68 51.1 N. 68 59.5 N.	.17965	.46442
Eskdalemuir	55 19 N.	3 12 W.	1908d	18 33.3 W.	69 37.3 N.	.16830	.46545
			1910p	18 23.3 W.	69 37.8 N.	.16836	.45343
			1915	17 35.9 W. 16 49.7 W.	69 36.9 N. 69 39.5 N.	.16786 .16706	.45173
			1925	15 48.4 W.	69 39.3 N.	.16665	.44943
			1930 1931	14 47.1 W. 14 38.4 W.	69 43.2 N. 69 43.7 N.	.16585	.44881
			1931	14 30.4 11.	09 43.7 14.	.10303	.44090

a See also tables for previous and intermediate years in Terr. Mag., 4, 135; 5, 128; 8, 7; 12, 175; 16, 209; 20, 131; 22, 169; 23, 191; 25, 179; 26, 147; 27, 157; 20, 149; 31, 27; 32, 27; 33, 95; and 35, 165. Unless otherwise Indicated values are from continuous magnetograph records. Preliminary values, pending final reductions, are Indicated by parentheses. Observatories marked by an asterisk (*) are incgions of local disturbance, by alues from absolute observations only. No observations in February and March. Absolute observations during June and July only.

				Declination	Inclination	Inte	nsity
Observatory	Latitude	Longitude	Year	(D)	(1)	Hor. (H)	Ver. (Z)
Meanook	6 / 54 37 N.	° ', 113 20 W.	10160	° , 27 46.7 E.	° ', 77 55.2 N.b	c. g. s.	c. g. s. .60481 ^b
Stonyhurst	53 51 N.	2 28 W.	1920 1925 ^f 1926 1928 1930	27 38.6 E. 27 10.7 E. 27 04.2 E. 26 48.5 E. 26 39.2 E. 18 10.9 W.	77 53.6 N.b 77 53.8 N.b 77 53.8 N.b 77 54.6 N.b 77 56.1 N.b 68 50.3 N.b 68 46.5 N.b	.12923 ^b .12852 ^b .12832 ^b .12790 .12755 .17312	.60246 ^b .59934 ^b .59844 ^b .59719 ^b .59675 ^b .44720
			1905 1910 1915 1920 1925 1926 1927 1928 1929 1930	17 20.0 W. 16 38.0 W. 15 52.9 W. 14 53.4 W. 14 39.7 W. 14 26.5 W. 14 14.5 W. 14 03.1 W. 13 51.1 W. 13 39.4 W.	68 42.2 N.b 68 41.4 N.b 68 43.5 N.b 68 42.2 N.b 68 44.6 N.b 68 43.5 N.b 68 46.5 N.b 68 46.2 N.b 68 47.3 N.b	.17368 .17407 .17342 .17303 .17263 .17240 .17231 .17209 .17201 .17190a .17181a	.44718 .44605 .44457 .44433 .44282 .44316 .44251 .44310 .44275 .44311b .44271b
Wilhelmshaven	53 32 N.	8 09 E.	1900 1905 1910	12 27.7 W. 12 08.2 W. 11 37.0 W. 11 28.2 W.	67 44.0 N. 67 40.2 N. 67 30.5 N. 67 30.7 N.b	.18095 .18169 .18124 .18110	.44193 .44235 .43773 .43747
Irkutsk* (Zouy)	52 28 N.	104 02 E.	1916 1920 1925 1926 1928	1 20.7 E. 1 02.3 E. 0 45.5 E. 0 42.9 E. 0 30.6 E.	71 02.5 N. 71 06.6 N. 71 15.6 N. 71 16.8 N. 71 17.8 N.	.19396 .19277 .19070 .19025 .19061	.56463 .56337 .56212 .56141 .56303
Potsdam	52 23 N.	13 04 E.	1929 1900 1905 1910 1915 1920 1925 1926 1927 1928	0 20.2 E. 9 56.3 W. 9 34.5 W. 9 02.9 W. 8 17.1 W. 6 33.0 W. 6 20.6 W. 6 09.1 W. 5 58.2 W.	71 19.2 N. 66 24.2 N. 66 19.3 N. 66 19.7 N. 66 25.1 N. 66 33.5 N. 66 39.7 N. 66 42.6 N. 66 44.0 N. 66 45.8 N.	.19038 .18844 .18879 .18828 .18726 .18606 .18532 .18503 .18489	.56310 .43138 .43050 .42948 .42899 .42912 .42951 .42982 .43012
Seddin	52 17 N.	13 01 E.	1929 1908 1910 1915 1920 1925 1926 1927 1928 1929	(5 47.8 W.) 9 19.2 W. 9 04.3 W. 8 18.6 W. 7 31.2 W. 6 34.7 W. 6 22.3 W. 6 10.9 W. 5 59.6 W. 5 49.1 W. 5 38.6 W.	(66 48.6 N.) 66 16.2 N. 66 16.6 N. 66 22.1 N. 66 30.6 N. 66 36.8 N. 66 39.7 N. 66 41.1 N. 66 42.8 N. 66 45.6 N.	(.18442) .18890 .18866 .18765 .18645 .18570 .18539 .18526 .18505 .18480 .18456	(.43049) .42974 .42933 .42885 .42899 .42938 .42968 .42987 .42995 .43034 .43072
Irkutsk ^g (Old site)	52 16 N.	104 16 E.	1931 1900 1905 1910	(5 28.9 W.) 2 01.3 E. 1 58.1 E. 1 47.0 E. 1 27.0 E.	(66 49.8 N.) 70 14.8 N. 70 25.0 N. 70 36.0 N. 70 45.8 N. 70 51.9 N.	(.18450) .20129 .20011 .19824 .19621	(.43108) .56053 .56250 .56293 .56228
Swider ^b	52 07 N.	21 15 E.	1920 1921 1925 1926 1927 1928 1929	1 02.8 E. 3 30.3 W. 2 46.6 W. 2 35.1 W. 2 25.2 W. 2 15.3 W. 2 06.3 W.	66 34.4 N. 66 45.0 N. 66 48.3 N. 66 50.3 N. 66 54.2 N. 66 57.6 N.	.19458 .18712 .18620 .18584 .18563 .18536	.56081 .43185 .43339 .43369 .43390 .43464 .43517
De Bilt	52 06 N.	5 II E.	1930 1900 1905 1910 1915 1920 1925 1926 1927 1928 1929 1930	1 49.1 W. 13 50.6 W. 13 28.5 W. 12 58.2 W. 12 12.5 W. 11 24.2 W. 10 25.4 W. 10 13.1 W. 10 01.0 W. 9 48.8 W. 9 37.3 W. 9 26.3 W. 9 15.7 W.	67 03.2 N. 66 57 N. 66 48.5 N. 66 46.5 N. 66 48.0 N. 66 51.8 N. 66 53.5 N. 66 55.9 N. 66 55.9 N. 66 55.4 N. 67 00.4 N. 67 00.8 N.	.18463 .18508 .18560 .18541 .18481 .18397 .18339 .18330 .18313 .18300 .18282	.43608 .4349 .4332 .43208 .43117 .43056 .43026 .43040 .43041 .43053 .43063 .43084 .43089

^e Last 4 months only. ^f No values in September. ^g 1915, New site at Zouy; values for 1915, 1920 determined from Zouy by applying corrections, D, +0'.5(E); I, -14'.7; H, +181 γ . ^b Built in 1914; World War prevented operation until 1921.

						_	
Observatory	Latitude	Longitude	Year	Declination	Inclination	Inter	nsity
observatory	zamu			(D)	(1)	Hor. (H)	Ver. (Z)
Valencia ^b	° ′ 51 56 N.	° '	1900	。 , 21 30.0 W.	68 29.6 N.	c. g. s.	c. g. s.
(Cahirciveen)	3- 3-		1905	21 10.4 W. 20 44.6 W.	68 19.2 N. 68 13.0 N.	,17848 .17892	.44893 .44771
			1915	20 03.8 W. 19 17.9 W.	68 07.9 N.i 68 05.3 N.	.17869	.44519 ⁱ .44353
			1925	18 22.4 W.	68 00.0 N. 67 59.8 N.	.17849	.44177
Bochum	51 29 N.	7 14 E.	1931	17 16.8 W. 12 47.2 W.	67 58.7 N.	.17815	.44048
	09		1905	12 27.2 W. 11 56.4 W.			
			1915 1920	11 08.9 W.1			
			1925	9 25.9 W. 8 35.2 W.b			
Kew	51 28 N.	0 19 W.	1931	8 23.8 W.b 16 52.7 W.	67 11.8 N.	.18422	.43818
12011	3		1905	16 32.9 W. 16 03.2 W.	67 03.8 N. 66 58.7 N.	.18504	.43727 .43546
			1915	15 18.4 W. 14 31.0 W.	66 56.6 N. 66 57.9 N.	.18463	.43376
Greenwichk	51 28 N.	0 00	1924	13 45.1 W. 16 29.0 W.	66 56.5 N. 67 08.8 N.	.18392 .1846	.43205
Greenwen	30		1905	16 09.9 W. 15 41.2 W.	66 56.3 N. 66 52.8 N.	.1854	·4355 ·4344
			1915	14 56.5 W. 14 08.6 W.	66 52.0 N. 66 53.6 N.	.1851	.4333
Abinger	51 11 N.	o 23 W.	1925	13 09.9 W. 13 22.7 W.	66 51.4 N. 66 35.1 N.	.18414	.43080
110111301	3		1926 1927	13 10.4 W. 12 58.4 W.	66 36.3 N. 66 36.2 N.	.18581	.42947
			1928	12 47.0 W. 12 35.8 W.	66 37.3 N. 66 37.2 N.	.18564	.42941
			1930	12 24.6 W. 12 13.7 W.	66 38.2 N. 66 38.1 N.	.18542	.42924
Uccle	50 48 N.	4 21 E.	1900	14 13.6 W. 13 53.7 W.	66 09.8 N. 66 03.8 N.	.18952	.42896
			1910	13 22.2 W. 12 38.3 W.	66 00.8 N. 66 01.2 N.ª	.10028	.42764 .42690 ^m
			1920	11 50.6 W. 10 52.7 W.	66 04.1 N.		
Hermsdorf	50 46 N.	16 14 E.	1930	9 54.6 W. 8 13.6 W.			
Tree models	30 40 111	10.14	1905	7 55.0 W. 7 23.9 W. 6 37.8 W.			
			1915	6 37.8 W. 5 53.1 W.			
			1925	4 54.3 W. 4 10.6 W.			
Beuthen	50 21 N.	18 55 E.	1900	6 53.7 W. 6 27.9 W.			
Beuthen-Mikilow	50 09 N.	18 54 E.	1908	6 12.3 W. 3 37.8 W.			
		04 3.	1926	3 26.7 W. 3 16.0 W.			
			1928	3 06.2 W. 2 56.6 W.			
Falmouth ^o	50 09 N.	5 05 W.	1930	2 46.7 W. 18 29.1 W.	66 45.2 N.b		.43507b
		0 -0 -11	1905	18 08.4 W. 17 41.6 W.	66 45.2 N.b 66 36.1 N. 66 29.1 N.	.18749	.43328
Prague	50 05 N.	14 25 E.	1912	17 24.2 W. 8 57.6 W.	66 26.6 N.	.18799	.43118
		, = 0 = 3.	1905	8 43.3 W. 8 09.6 W.			
			1915	7 24.2 W. 6 35.6 W.			
			1925	5 39.9 W. 5 27.7 W.			
Cracow	50 04 N.	19 58 E.	1907	5 47.9 W. 5 27.4 W.			
			1913	5 03.3 W.	64 18.4 N.		

¹II months, no observations in May. ¹Mean values from magnetograms at $8^{\rm b}$ and $14^{\rm b}$ daily; other values given are means of all hourly scalings. ¹Because of electric railway, superseded in 1926 by observatory at Abinger. ¹Means, 10 months, February to November. ¹Mean, 10 months, January to October. ¹Magnetograph for D only. ²Discontinued in 1912.

Observatory	Latitudo	Langituda	Voce	Declination	Inclination	Inte	nsity
Observatory	Latitude	Longitude	Year	(D)	(I)	Hor. (H)	Ver. (Z)
Val Joyeux	6 , 48 49 N.	2 OI E.	1901 1905 1910 1915 1920 1925	15 12.0 W. 14 55.7 W. 14 25.7 W. 14 25.7 W. 13 40.5 W. 12 53.0 W. 11 55.8 W.	64 58.9 N. 64 50.7 N. 64 43.0 N. 64 43.8 N. 64 41.6 N. 64 38.7 N.	c. g. s. .19680 .19728 .19738 .19715 .19666	c. g. s. .42167 .42008 .41789 .41607 .41591 .41485
Maisach	48 12 N.	11 15 E.	1930 1931 1927 1930	10 59.3 W. 10 49.0 W. 6 52.5 W. 6 20.2 W.	64 42.0 N. 64 43.4 N. 63 32.5 N. 63 39.7 N.	.19631 .19636 .20314 .20279	.41529 .41584 .40817 .40963
Munich	48 09 N.	11 37 E.	1931 1900 1905 1910 1915 1920	6 12.2 W. 10 27.9 W. 10 04.3 W. 9 31.5 W. 8 49.3 W. 8 03.8 W. 7 06.7 W.	63 41.1 N. 63 18.5 N.b 63 10.2 N.b 63 08.4 N.b	.20288 .20610 .20651 .20638	.41022 .40993 .40828 .40750
Ó-Gyalla (Pesth)	47 53 N.	18 12 E.	1926 1900 1905 1910	6 54.7 W. 7 28.8 W. 7 03.0 W. 6 34.5 W. 5 49.3 W.	62 31.2 N.	.21151	.40532
Ó-Gyalla (Stara Dala)	47 52 N.	8 11 E.	1918 1924 1925 1926 1928	5 21.1 W. 4 18.6 W. 4 08.9 W. 3 57.2 W. 3 36.7 W.		.20917	
Nantesp	47 15 N.	1 34 W.	1930 1923 1924 1925 1926	3 18.8 W. 13 23.5 W. 13 11.6 W. 12 59.6 W. 12 48.2 W.	63 45.8 N. 63 41.6 N. 63 39.0 N. 63 40.3 N	.20212 .20240 .20234 .20227	.41009 .40940 .40850 .40876
Otomarib	46 39 N.	142 46 E.	1928 1930 1931 1920 1925 1926 1927 1928	12 23.6 W. 12 04.6 W. 11 54.6 W. 8 11.3 W. 8 25.9 W. 8 29.0 W. 8 30.8 W. 8 32.6 W.	63 41.2 N. 63 43.3 N. 63 43.3 N.	.20220 .20226 .2024I	.40886
Odessa	46 26 N.	30 46 E.	1929 1900 ^m 1910	8 34.8 W. 4 29.9 W. 3 35.9 W. 1 36.4 W.	62 18.0 N. 62 26.9 N.	.21876	.41659 .41606
Pola	44 52 N.	13 51 E.	1925 1900 1905 1910 1915 1919	1 36.4 W. 9 25.8 W. 9 00.1 W. 8 28.0 W. 7 39.0 W. 7 01.6 W. 6 38.6 W.	63 18.9 N. 60 15.9 N. 60 07.6 N. 60 04.7 N. 60 05.1 N. 60 09.3 N. 60 10.3 N.	.21213 .22192 .22227 .22194 .22166 .22111	.42206 .38852 .38695 .38562 .38526 .38539 .38537
Agincourt	43 47 N.	79 16 W.	1922 1900 1905 1910 1915 1920 1925 1926 1927 1928 1929 1930	6 28.0 W. 5 28.8 W. 5 28.8 W. 6 43.1 W. 6 04.8 W. 6 29.4 W. 7 10.4 W. 7 10.4 W. 7 10.4 W. 7 20.3 W. 7 24.0 W. 7 24.0 W.	60 12.8 N. 74 31.6 N. 74 33.4 N. 74 38.6 N. 74 42.8 N. 74 44.6 N. 74 44.6 N. 74 44.6 N. 74 44.7 N. 74 44.9 N. 74 45.4 N. 74 45.4 N.	.22090 .16497 .16411 .16248 .16034 .15865 .15727 .15602 .15664 .15528	.38591 .59594 .59404 .59163 .58664 .57628 .57527 .57412 .57315 .57196
Karsani (New site) Tiflis (Karsani, old site)	41 50 N.	44 42 E. 44 48 E.	1931 1926 1927 1928 1929 1900 1905	7 31.9 W. 4 12.3 E. 4 15.5 E. 4 18.8 E. 4 10.7 E. 2 16.4 E. 2 41.6 E. 2 52.7 E.	74 46.3 N. 58 03.0 N. 58 08.1 N. 58 13.5 N. 58 19.0 N. 55 53.2 N. 56 02.8 N. 56 35.5 N.	.15520 .24694 .24673 .21646 .24627 .25594 .25451 .25343	.57010 .39595 .39693 .39788 .39901 .37783 .37799
			1913	3 09.1 E.	56 51.1 N.	.25217	.37612

p Electrical disturbances, especially in Z. q No observations during 1920 to August, 1921; values for 1921 are for four months, September to December.

Observatory Latitude Longitude Year Declination Inclination (D) (I)	Intensity
(D) (I)	1
	Hor. (II) Ver. (Z)
Capodimonte 40 52 N. 14 15 E. 1900 9 10.2 W. 56 23.8 N.	c. g. s. c. g. s.
(Naples) 1905 8 45.3 W. 56 15.0 N. 1910 8 13.0 W. 56 11.9 N.	.24164 .36164 .24160 .36088
1922 (6 25.7 W.) (57 02.6 N.)	(.23705) (.36563)
Ebro (Tortosa) 40 49 N. 0 31 E. 1905 13 56.9 W. 58 07.6 N. 1910 13 25.9 W. 57 57.3 N.	.23230 .37359 .23251 .37145
1915 12 46.0 W. 57 47.1 N. 1920 11 59.3 W. 57 39.4 N.	.23277 .36941 .23291 .36781
1025 11 08.8 W. 57 28.4 N. 1928 10 37.7 W. 57 20.8 N.	.23367 .36642 .23386 .36633
1930 10 20.1 W. 57 25.3 N.	.23401 .36621
Coimbra 40 12 N. 8 25 W. 1900 17 20.1 W. 59 24.3 N.	.22768 .38506
1905 17 01.5 W. 59 06.4 N. 1910 16 34.5 W. 58 50.1 N.	.22900 .38273
1915 15 57.5 W. 58 34.7 N. 1920 15 21.5 W. 58 22.8 N.	.23053 .37734 .23087 .37496
1925 14 38.2 W. 58 13.9 N.	.23143 .37368
1930b 13 55.3 W. 57 50.4 N. 1931b 13 45.5 W. 57 52.2 N.	.23179 .37001 .23196 .36931
Baldwin ^r 38 47 N. 95 10 W. 1901 8 21.9 E. 68 34.5 N. 1905 8 27.6 E. 68 43.0 N.	.21931 .55890 .21821 .56016
Cheltenham 38 44 N. 76 50 W. 1901t 5 05.0 W. 70 21.5 N.	.21644 .55908 .20195 .56586
1905 5 17.8 W. 70 25.4 N.	.20064 .56418
1910 5 41.4 W. 70 35.4 N. 1915 6 04.0 W. 70 46.8 N.	.19806 .56209 .19417 .55694
1920 6 18.5 W. 70 55.4 N. 1925 6 39.4 W. 71 00.2 N.	.19118 .55285 .18874 .54824
1930 6 55.9 W. 71 08.0 N. 1931 (7 00.2 W.) (71 09.3 N.)	.18591 .54402 (.18539) (.54317)
1932 (7 o3.8 W.) (71 11.2 N.)	(.18485) (.54247)
1905 5 18.2 W. 52 09.5 N.	.26063 .33514 .26140 .33598
San Miguel* 37 46 N. 25 39 W. 1913 19 53.2 W. 60 49.5 N.	.26197 .33613 .23059 ^b .41283 ^b
(Ponta 1915 19 53.2 W.b 60 49.5 N.b Delgada) 1920 19 20.2 W. 60 26.0 N.b	.23059b .41282b
1925 18 56.5 W. 60 03.0 N.	.23256b .40378b
1931 18 23.1 W. 59 41.1 N.b	.23351b .39936b
Zinsen ^b 37 30 N. 126 38 E. 1918 5 41.0 W 1926 5 57.8 W. 53 09 N.	
1927 5 59.1 W. 53 08 N. 1928 6 00.8 W. 53 13 N.	.29971
1929 6 02.4 W. 53 16.1 N.	.29923 .40099
1931 6 03.9 W. 53 12 N.	.29831
San Fernando 36 28 N. 6 12 W. 1900 15 59.3 W. 55 09.2 N.b	.24631 .35378 .24762 .35237
1910 15 13.6 W. 54 38.1 N.b 1915 14 36.0 W. 54 19.1 N.b	.24879 .35053 .24978 .34784
1920 14 01.0 W. 53 37.5 N.b 1925 13 15.1 W. 53 40.0 N.b	
1930 12 32.8 W. 53 29.9 N.b	.25072 .33881b
Kakioka ^u 36 14 N. 140 11 E. 1931 12 25.9 W. 53 27.9 N. ^b	.25106 .33885 ^b .29749 .34851
1914 5 12.9 W. 49 29.8 N. 1915 5 15.6 W. 49 31.3 N.	.29783 .34868 .29752 .34863
1916 5 17.6 W. 49 31.7 N. 1924 5 31.6 W. 49 29.5 N.	.29743 .34859 .29708 .34774
1925 5 34.4 W. 49 27.8 N.	.29716 .34749
1926 5 36.6 W. 49 27.7 N. 1928 5 40.5 W. 49 27.0 N.	.29694 .34721 .29707 .34721
Tsingtao 36 04 N. 120 19 E. 1930 5 42.4 W. 49 27.9 N. 1916 4 04.7 W. 52 07.1 N.	.29713 .34746 .30842 .39644
1920 4 12.9 W. 52 07.0 N. 1925 4 22.6 W. 52 05.9 N.	.30817 .39610 .30831 .39603
1930 4 32.8 W. 52 06.8 N. 1931 4 32.1 W. 52 05.1 N.	.30868 .39673 .30880 .39646
1931 4 32.1 W. 52 05.1 N.	.30000 .39040

^{&#}x27;Superseded by Tucson, October, 1909. Means, 10 months, January to October. Means, 6 months July to December. Destroyed by earthquake, September 1, 1923; all records, January, 1917 to August, 1923. lost by fire.

				Declination	Inclination	Inter	nsity
Observatory	Latitude	Longitude	Year	(D)	(I)	Hor. (H)	Ver. (Z)
Tokyov	° ′ 35 41 N.	° ',	1900	。, 4 33.7 W.	。 , 49 00.7 N.	c. g. s.	c. g. s. .3442I
2011,0			1905 1910	4 46.2 W. 4 58.2 W.	48 56.1 N. 49 07.3 N.	.29952 .30007	.34376 .34668
Tucson	32 15 N.	110 50 W.	1912 1910 1915	5 03.4 W. 13 25.8 E. 13 42.5 E.	48 53.7 N. 59 19.6 N. 59 24.7 N.	.29996 .27379 .27119	.34379 .46160 .45879
			1920	13 48.0 E. 13 45.2 E.	59 27.6 N. 59 30.3 N.	.26910	.45610 .45334
T 1	N	707 00 F	1930	(13 47.7 E.) (13 49.5 E.) 2 58.6 W.	(59 37.0 N.) (59 37.5 N.)	(.26432) (.26398)	(.45081) (.45038)
Lukiapang	31 19 N.	121 02 E.	1909 1910 1915	2 58.6 W. 3 01.1 W. 3 13.2 W.	45 34.8 N. 45 34.3 N. 45 32.1 N.	.33187 .33201 .33190	.33879 .33883 .33839
			1920 1925 ^b	3 21.4 W. 3 30.5 W.	45 30.7 N. 45 28.3 N.	.33155	·33773 ·33709
Zikawei*	31 12 N.	121 26 E.	1930 1931 1900	(3 37.4 W.)b (3 37.0 W.)b 2 22.2 W.	(45 25.1 N.)b (45 22.5 N.)b 45 45.5 N.	(.33264)b (.33313)b .32859	(.33753)b (.33751)b .33741
			1905 1907	2 30.3 W. 2 33.6 W.	45 37.1 N. 45 36.6 N.	.33009 .33056	.33729 .33768
Dehra-Dun	30 19 N.	78 03 E.	1903 1905 1910	2 41.6 E. 2 39.9 E. 2 31.9 E.	43 14 N. 43 24.2 N. 43 54.8 N.	.33430 .33383 .33257	.31429 .31572 .32019
			1915	2 15.5 E.	44 30.6 N.	.33083x	.32522×
			1920 1925 1930	1 52.0 E. 1 30.5 E. 1 11.9 E.	44 59.9 N. 45 21.0 N. 45 34.5 N.	.32951 .32948 .32963	.32949 .33353 .33631
Helwan	29 52 N.	31 20 E.	1931 1903 ^b	(1 08.6 E.) 3 21.4 W.	(45 35.9 N.) 40 31.2 N.	(.33001)	(.33698) .25819
			1905 ^b	3 12.7 W. 2 41.5 W.	40 36.2 N. 40 40.5 N.	.30159	.25852
			1915 1920 1925	2 03.0 W. 1 23.7 W. 0 44.8 W.	40 54.8 N. 41 12.8 N. 41 25.7 N.	.30012 .29956 .29986	.26009 .26236 .26463
			1930 1931	(0 14.7 W.)b (0 10.5 W.)b	(41 43.8 N.)b (41 45.6 N.)b	(.30078)b (.30126)b	
Taihokub	25 02 N.	121 31 E.	1919 1920 1925	1 56.4 W. 1 57.5 W. 2 04.9 W.			
			1926	2 06.4 W. 2 07.6 W.			
Barrackpore ^y	22 46 N.	88 22 E.	1928	2 08.6 W. 2 08.6 W. 1 22.4 E.	30 20.0 N.	27024	
Barrackpores	22 40 14.	00 22 E.	1904 1905 1910	1 18.0 E. 0 55.5 E.	30 22.5 N. 30 42.2 N.	.37224 .37242 .37329	.21828
Au Tau ^b , ^z	22 27 N.	114 03 E.	1914 1927 ⁸⁸	o 32.2 E. o 44.4 W.	30 58.9 N.	.37403 .37433	.22459
			1928 1929 1930	0 43.1 W. 0 43.5 W. 0 43.6 W.	30 38.8 N. 30 38.7 N. 30 37.3 N.	.37478 .37481 .37485	.22207 .22206 .22187
Hong Kongbb	22 18 N.	114 10 E.	1931 1900	0 43.3 W. 0 18.5 E.	30 34.4 N. 31 24.7 N.	.37522 .36728	.22164
			1905 1910 1915	o o8.9 E. o oo.4 E. o 11.7 W.	31 06.6 N. 30 58.8 N. 30 52.2 N.	.36975 .37108 .37166	.22317 .22279 .22217
			1920 1925	0 20.7 W. 0 30.2 W.	30 46.4 N. 30 41.0 N.	.37174 .37220	.22137
			1926 1927 1928	o 32.6 W. o 34.7 W. o 33.3 W.	30 41.6 N. 30 39.1 N. 30 36.3 N.	.37218 .37271 .37219	.22092 .22085 .22016
			1920	9 3313 771	32 3013 211	137229	

v, w Because of electric car disturbances, superseded in January, 1913, by Kakioka and in 1908 by Lukiapang, respectively. * New constants determined in 1914, used thereafter, gave for that year smaller values in H by 31 γ and in Z by 31 γ than those based on the constants previously used. * Observations discontinued Apr. 26, 1915, * New site of Hong Kong observatory. Corrections to reduce Au Tau values to the Hong Kong series from 1884 are +9'.8 in D (i.e., west D is numerically less), -2'.5 in I, -159γ in H, -191γ in Z. * Means, 10 months, March to December. * bb Original observing hut replaced in 1921; values from 1925 reduced to basis of original hut; superseded by Au Tau in 1927.

				Declination	Inclination	Inter	nsity
Observatory	Latitude	Longitude	Vear	(D)	(1)	Hor. (<i>II</i>)	Ver. (Z)
Honolulucc	° , 21 19 N.	° ', 158 04 W.	1902 1905 1910 1915 1920 1925 1930 1931	9 19.1 E. 9 21.7 E. 9 29.7 E. 9 41.6 E. 9 53.2 E. 10 01.9 E. (10 04.4 E.) (10 04.3 E.)	0 14.5 N. 40 05.8 N. 39 47.2 N. 39 29.1 N. 39 25.1 N. 39 25.4 N. (39 29.2 N.) (39 24.4 N.)	c. g. s. .29255 .29197 .29132 .29005 .28847 .28714 (.28542) (.28551)	c. g. s. .24758 .24583 .24259 .23897 .23711 .23606 (.23516) (.23458)
Teoloyucan Toungoo ^{dd}	18 56 N.	99 11 W.	1932 1919 ^b 1925 1926 1928 1930 1931 1905	(10 05.0 E.) 9 04.6 E. 9 14.7 E. 9 18.1 E. 9 22.2 E. 9 25.4 E. (9 27.2 E.) ^b 0 48.4 E.	22 58.3 N.		.33343 (.33375)b .16394
Colabass (Bombay) Alibag	18 54 N. 18 38 N.	72 49 E. 72 52 E.	1910 1915 1920 1921 1922 1923 1900 1905 1904 1905	0 24.9 E. 0 03.1 W. 0 23.7 W. 0 26.8 W. 0 29.7 W. 0 31.9 W. 0 24.5 E. 0 14.0 E. 1 09.4 E. 1 06.5 E.	23 02.1 N. 23 07.2 N. 23 07.7 N. 23 07.0 N. 23 07.2 N. 23 06.1 N. 21 22.4 N. 21 58.5 N. 22 54.7 N. 23 01.6 N.	.38801 .39005ee .39114 .39132 .39156 .39207 .37438 .37377 .36882 .36872	.16498 .16653°° .16707 .16704 .16717 .16725 .14652 .15083 .15588 .15671
			1910 1915 1920	o 57.7 E. o 40.6 E. o 20.2 E.	23 39.6 N.bh 24 21.1 N. 24 54.7 N.	.36845 .36870 .36922	.16143 ^{bb} .16688 .17147
San Juan ⁱⁱ	18 23 N.	66 07 W.	1925 1930 1931 1927 ^{kk} 1928 1929 1930	0 03.4 E. 0 08.0 W. (0 10.5 W.) 4 21.0 W. (4 35.6 W.) (4 41.9 W.) (4 50.5 W.)	52 10.6 N. (52 20.6 N.) (52 24.8 N.) (52 29.2 N.)	.37065 ⁱⁱ .37253 (.37323) .27743 (.27644) (.27551) (.27493)	.17527 ¹¹ .17777 (.17806) .35737 (.35824) (.35795) (.35813)
Vieques ¹¹	18 09 N.	65 27 W.	1931 1903 ¹¹ 1905 1910 1915 1920 1923	(4 58.8 W.) 1 23.2 W. 1 38.3 W. 2 20.6 W. 3 10.1 W. 3 46.1 W. 4 08.3 W.	49 10.0 N. 49 17.0 N. 49 52.0 N. 50 45.9 N. 51 22.7 N. 51 37.8 N.	(.27451) .29336 .29221 .28834 .28279 .27827 .27632	(.35780) .33946 .33952 .34202 .34630 .34832 .34900
Antipolo	14 36 N.	121 10 E.	1924 ¹¹ 1911 1915 1920 1925 1930 1931	4 15.0 W. 0 41.3 E. 0 37.3 E. 0 35.9 E. 0 29.8 E. (0 26.7 E.) ¹ (0 27.3 E.) ¹	(15 48.2 N.)b	.27571 .38072 .38095 .38100 .38211 (.38244)b (.38270)b	.34907 .11140 .11057 .11065 .10925 (.10812)b (.10832)b
Manila ^{mm} Kodaikanal ^{dd}	14 35 N. 10 14 N.	120 59 E. 77 28 E.	1900 1904 1903 1905 1910	o 527.5 E. o 521.4 E. o 23.4 W. o 31.9 W. o 55.0 W.	16 15.9 N. 16 00.2 N. 3 05 N. 3 16.7 N. 3 45.2 N.	.38029 .38215 .37367 .37403 .37485	.11095 .10960 .02013 .02142 .02459
			1915 1920 1921 1922 1923ff	1 22.3 W. 1 49.9 W. 1 54.2 W. 1 58.7 W. 2 00.7 W.	4 17.0 N. 4 36.1 N. 4 38.5 N. 4 40.1 N. 4 41.3 N.	.37614 ⁿⁿ .37787 .37832 .37878 .37950	.02817 ⁿⁿ .03042 .03071 .03093 .03112

** 1913, change of earth inductors; the values with the inductor used previously appear to be 3′.0 too high. dd Discontinued 1923. ** New constants determined in 1914, used thereafter, gave for that year smaller values in H by 18γ and in Z by 7γ than those based on the constants previously used. ** Means, 9 months, January to September. ** Superseded by Alibag in 1906. ** his In 1909 an earth inductor replaced the Kew dip-circle; observations of 1909–11 appear to show that the old values of I are about 2′ and of Z about 30γ too low. ** New 1923 constants make a change of −21γ and −10γ, respectively, necessary for values of H and Z given from 1904–22. ** il Superseding Vieques Observatory. ** Five months means, January to May. ** Il Discontinued October 31, 1924; values for 1903, means for 9 months, April to December and those for 1924, 10 months, January to October. ** ms Superseded by Antipolo because of electric car disturbances. ** nn 1914, new constants, thereafter used, gave for that year larger values in H by 33γ and in Z by 3γ.

Observatory	Latitude	Longitude	Year	Declination	Inclination		tensity
				(D)	(I)	Hor. (H)	Ver. (Z)
	0 /	0 /		0 /	0 /	c. g. s.	c. g. s.
Palaub	7 20 N.	134 29 E.	1926	2 00.5 E.			
			1927	2 00.2 E. 1 59.9 E.			
Detect.	6 6	P	1929	1 59.8 E.			
Batavia- Buitenzorg	6 II S.	106 49 E.	1902°° 1905	1 02.4 E. 0 55.0 E.	30 17.6 S. 30 39.7 S.	.36717	21450 21752
			1910	0 48.7 E.	31 12.0 S.	.36660	22202
			1915	0 46.1 E. 0 47.0 E.	31 33.6 S. 31 53.7 S.	.36676 .36796	22528 22899
			1925	0 53.2 E.	32 06.0 S.	.36819	23097
			1926 1927 ^b	0 51.6 E. 0 52.5 E.	32 09.6 S. 32 10.5 S.	.36826 .36853	23154 23185
			1928	o 53.0 E.	32 14.0 S.	.36834	23239
Huancayo	12 03 S.	75 20 W.	1925b	7 59.1 E.	1 01.5 N. 1 09.8 N.	.29750	.00532
			1926b 1927b	7 55.5 E. 7 50.7 E.	l 1 17.3 N.	.29725	.00604
			1928b	7 47.2 E.	I 25.8 N.	.29667	.00741
			1929 ^b 1930	7 42.3 E. 7 36.5 E.	1 33.9 N. 1 42.7 N.	.29675	.00811
Apia	13 48 S.	171 46 W.	1905	9 37.0 E.	29 11.8 S.	.35675	19935
(Samoa)			1910	9 45.6 E. 9 57.0 E.	29 29.8 S. 29 52.8 S.	.35550 .35386	20110 20331
			1920	10 11.2 E.	30 03.5 S.	-35273	20413
			1925 1926	10 22.8 E. 10 26.2 E.	30 07.9 S. 30 08.0 S.	-35239	20453 20449
			1927	10 29.5 E.	(30 07.0 S.)	.35228	20449
-			1928	10 32.1 E.		.35225	20408
			1929	10 33.5 E. 10 34.2 E.	30 07.9 S.	.35209 .35196	20418 20428
Tononovinovino	-0 0	10	1931	10 35.2 E.	30 09.3 S.b 54 06.8 S.	.35171	20434
Tananarive*b	18 55 S.	47 32 E.	1902 ^{pp} 1903	10 15.0 W. 10 07.0 W.	54 06.8 S. 54 06.5 S.	.23168	32021 31939
			1905	9 47.9 W.	54 07.6 S.	.22940	31721
			1910	9 01.3 W. 8 19.2 W.	53 58.9 S. 53 34.4 S.	.22585	31065 30376
			1916	8 14.0 W.	53 32.8 S.	.22366	30277
			1917	8 09.1 W. 8 04.2 W.	53 29.8 S. 53 23.6 S.	.22306	30141 29966
			1919	8 04.2 W.	53 21.2 S.	.22218	29866
Mauritius	20 06 S.	57 33 E.	1900	9 29.0 W.	54 11.0 S.	.23826	33015
			1905	9 11.3 W. 9 18.1 W.	53 55.5 S. 53 34.7 S.	.23584	32371 31615
			1915	9 41.1 W. ^{qq} 10 20.3 W.	53 00.2 S. ^{qq} 52 40.1 S.	.23226	30833 ^{qq} 30278
			1925	10 20.3 W. 11 09.6 W.	52 31.0 S.	.22906	29867
			1926	11 19.8 W. 11 32.0 W.	52 33.6 S. 52 28.8 S.rr(?)	.22852	29849 29701 ^{rr} (?)
6			1928	11 42.7 W. 11 53.9 W.	52 44.6 S. 52 45.0 S.	.22768	29934 29893
			1930	12 05.5 W.	52 39.6 S.	.22697	29750
La Quiacab	22 07 S.	65 35 W.	1931	(12 17.2 W.) 6 03.3 E.	(52 38.3 S.) 12 39.6 S.	(.22673) .26621	(29696) 05979
2		-3 33 711	1925	5 29.1 E.	12 28.2 S.	.26435	05848
			1930	4 40.7 E. 4 31.7 E.	12 23.8 S. 12 22.8 S.	.26266	05774 05763
Vassouras	22 24 S.	43 39 W.	1931	10 28.1 W.	14 44.1 S.	.24700	06496
			1920	11 17.7 W.	15 21.6 S. 16 15.6 S.	.24494	06728 07097
			1925	12 03.5 W. 12 10.5 W.	16 31.2 S.	.2433388	07205
			1927	12 10.5 W. 12 19.6 W.	16 39.7 S.	.24276	07265
Rio de	22 55 S.	43 II W.	1928 1900	12 28.7 W. 7 55.7 W.	16 47.4 S. 13 17.1 S.	.24221 ^{tt}	07308 0592
Janeirouu			1905	7 55.7 W. 8 46.6 W.	13 51.7 S.	.24777	06098
			1910	9 40.0 W.	• • • • • • •		

oo Means, 6 months, July to December. PP Means, 8 months, May to December. qq The D values from 1912 to be decreased by 5'.1 for comparison with values in previous years; in 1914 an earth inductor replaced the dipcircle on another pier and values are referred to dip-circle pier. Trouble experienced with galvanometer; earth inductor replaced by dipcircle in 1928; the values of I and Z for 1927 are indicated as only approximate. No data in June, and only 4 days in May and 7 days in July. No data in January. Superseded about 1913 by Vassouras.

Observatory	Latitude	Longitude	Year	Declination (D)	Inclination (I)	Inte	ensity Ver. (Z)
Watheroo	° / 30 19 S.	° , 115 52 E.	1919 1920 1925 1926 1927 1928 1929 1930	4 22.8 W. 4 22.1 W. 4 17.6 W. 4 17.2 W. 4 16.3 W. 4 15.0 W. 4 12.1 W. 4 08.0 W. 4 03.2 W.	63 51.4 S. 63 54.7 S. 64 07.8 S. 64 10.7 S. 64 11.8 S. 64 13.8 S. 64 15.5 S. 64 17.7 S. 64 18.1 S.	c. g. s. .24925 .24889 .24719 .24681 .24671 .24656 .24646	C. g. s507805083250977510075103051070511165117451215
Pilar	31 40 S.	63 53 W.	1905 1910 1914 1916 1920 1925 1930	9 51.7 E. 9 13.9 E. 8 40.4 E. 8 22.9 E. 7 48.6 E. 7 06.2 E. 6 26.8 E.	26 03.0 S. 25 52.8 S. 25 41.5 S. 25 40.9 S. 25 41.2 S. 25 41.3 S. 25 50.6 S. 25 51.2 S.	.25894 .25694 .25597 .25495 .25297 .25012 .24695	12657 12465 12315 12260 12168 12031 11961 11950
Santiagob	33 27 S.	70 42 W.	1902 1905 1909	14 41.6 E. 14 27.0 E. 13 57.9 E.	30 55.8 S. 30 25.0 S. 29 57.2 S.		
Melbourneb,vv	37 50 S.	144 58 E.	1916	8 06.7 E.	67 48.9 S.	.22998	56397
Toolangi	37 32 S.	145 28 E.	1919 1920 ^b 1925 1930 ^b 1931 ^b	8 01.0 E. 8 00.8 E. 8 10.4 E. 8 21.6 E. (8 24.5 E.	67 53.8 S. 67 55.1 S. 67 44.5 S. 67 52.4 S. (67 51.1 S.)	.22895 .22874 .22948 .22851 (,22890)	56374 56384 56071 56198 (56232)
Amberley	43 10 S.	172 44 E.	1929	17 45.0 E.	67 57.8 S.	.22365	•55252
Christchurchww	43 32 S.	172 37 E.	1930 1902 1905 1910 1914 1917 1920 1925	17 51.0 E. 16 15.1 E. 16 25.4 E. 16 37.6 E. 16 44.8 E. 16 53.0 E. 17 01.7 E. 17 21.1 E. 17 48.3 E.	67 58.4 S. 67 40.8 S. 67 45.8 S. 67 54.8 S. 67 59.8 S. 68 04.8 S. 68 09.2 S. 68 14.2 S. 68 18.3 S.	.22351 .22694 .22628 .22515 .22414 .22328 .22261 .22166 .22108	.55246 55277 55348 55485 55486 55525 55522 55570
New Year's Island	54 39 S.	64 09 W.	1902** 1905 1910 1915 1916	15 57.3 E. 15 45.7 E. 15 26.3 E. 15 06.6 E. 15 02.4 E.	50 13.8 S. 50 06.6 S. 49 41.6 S. 49 39.4 S.	.27306 .27196 .27040 .26821 .26771	32808 32536 32114 ^{xx} 31619 31520
Orcadas	60 43 S.	44 47 W.	1910 1905 1909 1912	5 16.6 E.yy 4 56.6 E. 4 46.5 E.	54 31.0 S.yy,b 54 27.4 S.b 54 26.0 S.b		35442b

vv Superseded in 1920 by Toolangi. vv January 1, 1923, the variation observatory was transferred to Amberly but all results subsequently are referred to basis of the old station at Christchurch. xx Means, 10 months, March to December in 1902 for all elements, and 9 months, January to September in 1910 for Z. xy Mean, II months, February to December. 22 Mean, 10 months, March to December.

TABLE 738.—Bibliography

Gauss, K. F. 1839. Theorie der Erdmagnetismus. Resultate des Magnetischen Vereins. Gesammelte Werke, vol. 5, Göttingen, 1867.
Lamont, J. 1849. Handbuch des Erdmagnetismus.
Günther, S. 1897. Handbuch der Geophysik, vol. 1, pt. 1, Stuttgart.
Schmidt, A. 1898. Der magnetische Zustand der Erde. Archiv der Deutschen Seewarte, Hamburg.
Mascart, E. 1900. Traité de magnétisme terrestre. Paris.
Chree, C. 1911. Terrestrial magnetism. Encyclopedia Britannica, 11th ed. 1912. Studies in terrestrial magnetism.

netism. London.

netism. London.
Schmidt, A. 1917. Erdmagnetismus. Encyklopädie der mathematischen Wissenschaften, vol. 6, Leipzig.
Auerbach, F. 1920. Magnetismus. Graetz, Handbuch der Elektrizität und Magnetismus, vol. 4.
Nippoldt, A. 1921. Erdmagnetismus, Erdstrom, Polarlicht, Sammlung Göschen, no. 175, Berlin.
Chapman, S. 1922. Theories of terrestrial magnetism. Dictionary of Applied Physics, London.
Angenheister, G. 1927. Erdmagnetismus. Geiger und Scheel, Handbuch der Physik, vol. 15, Berlin.
Nippoldt, A. 1928. Der Erdmagnetismus. Müller-Pouillets Lehrbuch der Physik, vol. 5, Braunschweig.
Angenheister, G., and Bartels, J. 1928. Das Magnetfeld der Erde. Wein und Harms, Handbuch der Experimentalnbysik, vol. 25, Dt. 1.

Angenheister, G., and Bartels, J. 1928. Das Magnetfeld der Erde. Wein und Harms, Handbuch der Experimentalphysik, vol. 25, pt. 1.

Bartels, J. 1929. Erdmagnetismus, Erdstrom und Polarlicht. Gutenberg, Lehrbuch der Geophysik.

Hazard, D. L. 1929. The earth's magnetism. U. S. Coast and Geodetic Survey.

Nippoldt, A. 1929. Erdmagnetismus und Polarlicht. Einführung in die Geophysik II.

Hazard, D. L. 1930. Directions for magnetic measurements. U. S. Coast and Geodetic Survey.

Journal of Terrestrial Magnetism and Atmospheric Electricity, Baltimore, from 1896, vol. 38 in progress.

Zeitschrift für Geophysik, Braunschweig (from 1924).

Caractère magnétique de chaque jour, De Bilt (from 1906); Caractère magnétique numérique des jours, De Bilt (from 1929).

Bilt (from 1930).

Atlas des Erdmagnetismus, Neumayer, Gotha, 1891. Reports and publications of Department of Terrestrial Magnetism, Carnegie Institution of Washington, and of individual observatories (see table of mean annual values) Isomagnetic charts, Deutsche Seewarte, 1920; British Admiralty, 1927; U. S. Hydrographic Office, 1930.

SECULAR CHANGE OF MAGNETIC DECLINATION

Changes in the magnetic declination between 1820, or the date of the earliest observations, and 1930, based on tables in "Magnetic Declination in the United States in 1925" published by the U. S. Coast and Geodetic Survey (Special Publication No. 126) in 1926.

Ct-t-	Y -4	Lang	7000	*0.00	7940	7970	×960	7 9 70	7000	* P 00	7000			
State		Long.	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920	1930
A4	٥	40	0	0	0 0337	0	0	0	o 76 aVV	0	0 0337	0	0 -377	0
At sea Me.	44 46	68 68	12.2W 14.8W	13.0W 15.6W	13.8W 16.4W	14.6W 17.3W	15.4W 18.0W	18.5W	16.2W 18.0W	10.5W	10.8W	17.5W	18.3W 20.7W	19.1W
Canada	48	68	17.6W	18.5W	19.4W	20.2W		21.5W	21.8W	21.9W				21.3W
At sea	40	72	5.oW	5.5W	6.2W	6.9W	7.6W	8.2W	8.7W	9.2W	9.7W	10.6W		
Conn.	42	72	6.5W	7.oW	7.7W	8.4W	9.1W	9.7W		10.8W		12.1W	12.9W	13.7W
N. H.	44	72	8.3W	8.9W	9.6W	10.4W	II.IW		12.3W	12.7W		14.0W		15.7W
Canada At sea	46	72 76	10.9W 1.2E	0.9E	12.2W 0.4E	13.0W 0.2W	13.7W 0.8W	14.3W 1.4W	15.0W 2.0W	15.3W 2.6W	15.8W 3.1W	16.6W 3.7W	4.2W	18.0W
N. C.	34 36	76	0.2E	0.9E	0.6W	1.2W	1.8W	2.5W	3.1W	3.6W	4.2W	4.8W	5.4W	5.9W
Md.	38	76	0.4W	0.8W	1.3W	1.9W	2.5W	3.2W	3.8W	4.4W	5.oW	5.6W	6.3W	6.9W
Pa.	40	76	1.6W	2.0W	2.5W	3.1W	3.7W	4.4W	5.oW	5.6W	6.2W	7.0W	7.6W	8.4W
Pa.	42	76	3.4W	3.8W	4.3W	4.9W	5.5W	6.2W	7.0W	7.5W	8. IW	8.9W	9.6W	10.4W
N. Y.	44 26	76 80	4.7W	5.1W 5.1E	5.7W 4.7E	6.3W	7.0W 3.7E	7.6W 3.1E	8.5W 2.6E	9.0W 2.0E	9.6W 1.5E	10.4W 1.3E		12.0W
At sea At sea	28	80	5.4E 4.9E	4.6E	4.7E 4.3E	4.2E 3.8E	3.7E	2.7E	2.1E	1.5E	1.0E	0.8E	1.4E 0.7E	1.5E 0.8E
At sea	30	80	4.6E	4.3E	3.9E	3.5E	2.9E	2.3E	1.7E	1.1E	0.6E	0.3E	0.2E	0.1E
At sea	32	80	4.0E	3.8E	3.4E	3.0E	2.4E	2.3E 1.8E	1.2E	0.6E	0,0	0.3W 0.8W	0.5W	0.7W
S. C.	34	80	3.7E	3.4E	3.1E	2.6E	2.0E	1.4E	0.8E	0.2E	0.4W	0.8W	1.1W	1.4W
N. C.	36	80	2.6E 2.0E	2.4E 1.8E	2.0E	1.5E	1.0E	0.3E 0.3W	0.4W 1.0W	1.0W 1.6W	1.5W 2.2W	2.0W 2.7W	2.4W	2.8W
Va. Pa.	38 40	80 80	0.9E	0.7E	1.4E 0.3E	0.9E 0.2W	0.3E 0.8W	1.4W	2.1W	2.8W	3.4W	4.0W	3.2W 4.5W	3.7W 5.1W
Pa.	42	80	0.6E	0.4E	0.0	0.5W	I.IW	1.8W	2.5W	3,2W	3.8W	4.4W	5.1W	5.8W
Canada	44	80	0.8W	I.IW	1.5W	2.0W	2.6W	3.3W	4.1W	4.8W	5.4W	6.1W	6.8W	7.6W
Fla.	30	84	6.2E	6.1E	5.9E	5.5E	5.0E	4.5E	3.9E	3.2E	2.8E	2.7E	2.8E	2.9E
Ga.	32	84	5.7E	5.6E	5.3E	5.0E	4.5E	3.9E	3.3E	2.6E 2.1E	2.1E 1.6E	2.0E	2.0E	2.0E
Ga. Tenn.	34 36	84 84	5.3E 4.0E	5.2E 3.9E	4.9E 3.6E	4.5E 3.2E	4.0E 2.7E	3.4E 2.1E	2.8E 1.4E	0.8E	0.2E	1.4E 0.0	1.3E 0.2W	1.2E 0.5W
Ky.	38	84	4.7E	4.6E	4.3E	3.9E	3.4E	2.8E	2.1E	1.4E	0.9E	0.6E	0.3E	0.1W
Ohio	40	84	4.3E	4.2E	3.8E	3.4E	2.9E	2.4E	1.7E	1.0E	0.4E	0.0	0.4W	0.9W
Mich.	42	84	3.1E	2.9E	2.6E	2.2E	1.7E	1.1E	0.4E	0.4W	1.0W	1.4W	1.8W	2.5W
Mich.	44	84	2.8E	2.6E	2.3E	1.9E	1.4E	0.8E	0.0	0.8W	1.4W	1.8W	2.4W	3.1W
Mich. Ala.	46	84 88	1.5E	1.4E	1.0E 7.2E	0.6E	0.1E 6.6E	0.5W 6.1E	1.3W 5.6E	2.1W 4.9E	2.7W 4.5E	3.2W 4.6E	3.8W 4.9E	4.7W 5.1E
Ala.	30 32	88	7.3E 7.1E	7.3E 7.1E	7.0E	7.0E 6.7E	6.4E	5.9E	5.3E	4.6E	4.5E	4.2E	4.4E	4.5E
Ala.	34	88	7.4E	7.4E	7.2E	7.0E	6.6E	6.1E	5.5E	4.8E	4.3E	4.3E	4.4E	4.4E
Tenn.	36	88	7.2E	7.2E	7.1E	6.8E	6.4E	5.9E	5.2E	4.6E	4.1E	4.0E	4.0E	3.8E
Ind.	38	88	7.2E	7.2E	7.0E	6.7E	6.3E	5.8E	5.1E	4.4E	3.9E	3.8E	3.7E	3.3E
III. III.	40	88 88	6.9E	6.9E	6.7E	6.4E 6.0E	6.0E	5.5E 5.1E	4.8E	4.1E	3.6E 3.1E	3.4E 2.9E	3.2E 2.6E	2.7E 1.9E
Wis.	42 44	88	6.5E 6.3E	6.5E 6.3E	6.4E 6.2E	5.8E	5.6E 5.4E	4.9E	4.4E 4.2E	3.7E 3.4E	2.8E	2.5E	2.1E	1.4E
Mich.	46	88	5.9E	6.0E	5.8E	5.5E	5.0E	4.5E	3.7E	3.0E	2.4E	2.1E	1.6E	0.7E
Lake	48	88	5.6E	5.7E	5.5E	5.2E	4.8E	4.2E	3.4E	2.6E	2.0E	1.7E	1.1E	0.2E
Ļа.	30	92	8.3E	8.5E	8.5E	8.4E	8.1E	7.8E	7.2E	6.7E	6.3E	6.6E	7.0E	7.2E
La.	32	92	8.5E	8.7E	8.6E	8.5E	8.3E	7.9E	7.4E	6.8E	6.4E	6.6E	6.9E 6.9E	7.1E
Ark. Ark.	34 36	92 92	8.8E 8.8E	8.9E 8.9E	8.9E 8.9E	8.8E 8.7E	8.5E 8.4E	8.1E 8.0E	7.6E 7.5E	7.0E 6.8E	6.6E 6.4E	6.7E 6.5E	6.7E	6.9E 6.5E
Mo.	38	92	9.0E	0.9E	9.1E	9.0E	8.6E	8.2E	7.7E	7.0E	6.5E	6.6E	6.6E	6.4E
Mo.	40	92	9.2E	9.4E	9.3E	9.1E	8.8E	8.4E	7.8E	7.1E	6.6E	6.6E	6.5E	6.1E
Iowa	42	92	9.5E	9.7E	9.7E	9.5E	9.2E	8.7E	8.1E	7.4E	6.9E	6.8E	6.6E	6.0E
Minn.	44	92	9.2E	9.3E	9.3E	9.1E	8.8E	8.4E	7.7E	7.0E 6.8E	6.4E	6.4E	6.1E	5.4E
Minn. Minn.	46 48	92	9.1E 8.7E	9.2E 8.9E	9.2E 8.9E	9.0E 8.7 E	8.7E 8.4E	8.3E 8.0E	7.6E	6.5E	6.3E 5.9E	6.3E 5.9E	5.9E	5.1E
At sea	28	96	8.5E	8.8E	8.9E	8.9E	8.8E	8.6E	7.2E 8.2E	7.8E	7.6E	8.oE	5.5E 8.5E	4.5E 8.8E
Tex.	30	96	9.0E	9.2E	9.3E	9.3E	9.2E	9.0E	8.6E	8.1E	7.9E	8.3E	8.7E	8.9E
Tex.	32	96	9.2E	9.4E	9.6E	9.6E	9.4E	9.2E	8.8E	8.2E	8.0E	8.3E	8.7E	8.8E
Okla.	34	96	9.6E	9.8E	9.9E	9.9E	9.8E	9.5E	9.1E	8.6E	8.2E	8.5E	8.8E	8.8E
Okla. Kans.	36	96	10.2E 11.1E	10.4E 11.3E	10.5E 11.4E	10.5E 11.4E	10.4E 11.2E	10.1E 11.0E	9.7E 10.5E	9.1E 9.9E	8.8E 9.5E	9.0E 9.8E	9.2E 9.9E	9.1E 9.6E
Kans.	38 40	96	11.1E	11.4E	11.4E	11.4E	11.2E	11.0E	10.5E	9.9E	9.5E	9.5E	9.9E 9.7E	9.3E
Iowa	42	96	11.5E	11.7E	11.8E	11.8E	11.6E	11.3E	10.8E	10.1E	9.7E	9.8E	9.8E	9.2E
Minn.	44	96	11.6E	11.9E	12.0E	12.0E	11.8E	11.4E	10.9E	10.2E	9.8E	9.9E	9.7E	9.1E
Minn.	46	96	12.4E	12.7E	12.8E	12.7E	12.5E	12.2E	11.6E	10.9E	10.5E	10,6E	10.4E	9.6E
Minn.	48	96	12.4E	12.7E	12.8E	12.7E	12.5E	12,2E	11.6E	10.8E	10.4E	10.5E	10.2E	9.3E

SECULAR CHANGE OF MAGNETIC DECLINATION

State	Lat.	Long.	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920	1930
	0	0	0	a	0	0	٥	0	٥	0	0	0	0	0
Mexico	28	100		9.6E	9.8E	9.9E	9.9E	9.8E	9.5E	9.1E	9.0E	9.5E	10.0E	10.3E
Tex.	30	100		9.9E	10.1E	10.2E	10.2E	10.1E	9.8E	9.3E	9.2E	9.7E	10.2E	10.4E
Tex.	32	100		10.6E	10.8E	10.8E	10.8E 11.2E	10.7E 11.1E	10.4E 10.8E	9.9E 10.3E	9.8E 10.1E	10.2E 10.5E	10.6E	10.7E
Okla.	34	100		11.0E 11.7E	11.2E 11.9E	12.0E	11.2E	11.1E	11.4E	11.0E	10.1E	11.1E	10.8E 11.4E	10.8E 11.3E
Kans.	38	100		12.2E	12.4E	12.4E	12.4E	12.2E	11.8E	11.3E	11.1E	11.4E	11.6E	11.4E
Kans.	40	100		12.8E	13.0E	13.0E	13.0E	12.8E	12.4E	11.8E	11.6E	11.9E	12.0E	11.6E
Nebr.	42	100		13.1E	13.3E	13.3E	13.2E	13.1E	12.6E	12.1E	11.8E	12.0E	12.1E	11.6E
S. Dak. N. Dak.	44 46	100		14.2E 15.0E	14.4E 15.2E	14.4E 15.3E	14.3E 15.2E	14.1E 15.0E	13.7E 14.5E	13.0E 13.9E	12.8E 13.5E	13.0E 13.8E	13.0E 13.7E	12.4E 13.0E
N. Dak.	48	100		15.6E	15.8E	15.8E	15.8E	15.5E	15.0E	14.4E	14.0E	14.3E	14.1E	13.3E
Tex.	30	104		10.6E	10.8E	11.0E	11.1E	11.1E	10.9E	10.5E	10.5E	11.0E	11.5E	11.7E
Tex.	32	104		11.3E	11.6E	11.7E	11.8E	11.8E	11.6E	11.2E	11.1E	11.6E	12.0E	12.1E
N. Mex. N. Mex.	34	104		12.0E	12.2E	12.4E	12.5E	12.5E	12.2E	11.8E	11.7E	12.2E	12.6E	12.6E
Colo.	36 38	104 104				13.1E 13.7E	13.2E 13.8E	13.2E 13.8E	13.0E 13.5E	12.5E 13.0E	12.4E 12.0E	12.9E 13.4E	13.2E 13.6E	13.1E 13.4E
Colo.	40	104				14.4E	14.5E	14.5E	14.2E	13.7E	13.6E	14.0E	14.2E	13.8E
Nebr.	42	104				15.6E	15.7E	15.7E	15.4E	14.8E	14.7E	15.1E	15.2E	14.8E
S. Dak.	44	104				16.4E	16.4E	16.3E	16.0E	15.5E	15.4E	15.8E	15.8E	15.3E
N. Dak. N. Dak.	46 48	104 104				17.3E 18.5E	17.3E 18.6E	17.2E 18.4E	16.9E 18.0E	16.3E 17.5E	16.2E 17.3E	16.6E 17.7E	16.5E 17.5E	15.9E 16.8E
Mexico	30	104				11.5E	11.7E	11.8E	11.7E	11.4E	17.3E	12.1E	17.5E	12.6E
N. Mex.	32	108				12.3E	12.5E	12.6E	12.5E	12.2E	12.2E	12.8E	13.2E	13.2E
N. Mex.	34	108				13.0E	13.2E	13.3E	13.1E	12.8E	12.8E	13.4E	13.8E	13.7E
N. Mex.	36	108				13.7E	13.9E	14.0E	13.8E	13.5E	13.5E	14.1E	14.4E	14.3E
Colo.	38 40	108				14.5E 15.5E	14.7E 15.7E	14.8E 15.8E	14.6E 15.6E	14.2E 15.2E	14.2E 15.2E	14.8E 15.7E	15.0E 15.9E	14.8E 15.6E
Wyo.	42	108				16.4E	16.6E	16.7E	16.4E	16.1E	16.1E	16.6E	16.7E	16.3E
Wyo.	44	108				17.6E	17.8E	17.8E	17.6E	17.2E	17.2E	17.7E	17.7E	17.3E
Mont.	46	108				18.7E	18.9E	19.0E	18.7E	18.3E	18.3E	18.8E	18.8E	18.2E
Mont. Ariz.	48	108				20.2E 12.6E	20.4E 12.9E	20.4E	20.1E	19.7E	19.7E	20.2E	20.1E	19.4E
Ariz.	32 34	II2 II2				13.3E	13.6E	13.1E 13.8E	13.1E 13.7E	12.9E 13.6E	13.0E 13.6E	13.8E 14.4E	14.2E 14.7E	14.2E 14.6E
Ariz.	36	112				14.1E	14.4E	14.6E	14.5E	14.3E	14.4E	15.1E	15.4E	15.3E
Utah	38	112				15.2E	15.4E	15.6E	15.6E	15.4E	15.4E	16.1E	16.3E	16.2E
Utah	40	112				16.3E	16.6E	16.8E	16.7E	16.5E	16.6E	17.2E	17.4E	17.1E
Utah Idaho	42 44	112 112				17.4E 18.5E	17.7E 18.8E	17.9E 19.0E	17.8E 18.8E	17.6E 18.6E	17.7E 18.7E	18.2E 19.3E	18.4E 19.4E	18.1E 19.0E
Mont.	46	112				19.4E	19.8E	19.0E	19.8E	19.5E	10.6E	20.2E	20.2E	19.8E
Mont.	48	112				21.0E	21.3E	21.5E	21.3E	21.0E	21.1E	21.7E	21.7E	21.2E
Mexico	32	116	11.4E	11.8E	12.3E	12.6E	13.0E	13.3E	13.4E	13.4E	13.6E	14.4E	14.8E	14.7E
Calif.	34 36	116	12.3E	12.8E 13.6E	13.2E 14.0E	13.5E 14.4E	13.9E 14.8E	14.2E 15.1E	14.3E 15.1E	14.2E 15.1E	14.4E 15.3E	15.2E 16.0E	15.6E 16.3E	15.5E
Nev.	38	116	13.115	13.015	15.0E	15.4E	15.8E	16.1E	16.1E	16.1E	16.3E	17.0E	17.2E	16.2E 17.1E
Nev.	40	116			15.9E	16.2E	16.6E	16.9E	17.0E	16.9E	17.1E	17.8E	18.0E	17.8E
Nev.	42	116			17.2E	17.5E	17.9E	18.2E	18.2E	18.2E	18.4E	19.0E	19.2E	19.0E
Idaho Idaho	44	116			18.2E 19.9E	18.6E 20.3E	19.0E 20.7E	19.3E 21.0E	19.3E 21.0E	19.2E 20.9E	19.4E 21.2E	20.1E 21.8E	20.2E 21.9E	19.9E
Mont.	46 48	116			21.1E	21.5E	21.9E	21.0E	22.2E	20.9E	22.4E	23.0E	21.9F. 23.1E	21.5E 22.6E
At sea	34	120	12.5E	12.8E	13.1E	13.5E	14.0E	14.4E	14.6E	14.6E	14.9E	15.8E	16.1E	16.0E
Calif.	36	120	13.5E	13.8E	14.2E	14.6E	15.0E	15.4E	15.6E	15.6E	15.9E	16.8E	17.1E	16.9E
Calif.	38	120	14.2E	14.5E	14.9E	15.3E	15.8E	16.2E	16.4E	16.4E	16.7E	17.5E	17.8E	17.6E
Calif. Calif.	40 42	I 20 I 20	15.3E 16.5E	15.7E 17.0E	16.0E 17.4E	16.5E 17.8E	17.0E 18.3E	17.4E 18.7E	17.5E 18.8E	17.6E 18.9E	17.8E 19.1E	18.6E 19.9E	18.8E 20.1E	18.6E 19.9E
Oreg.	44	120	18.0E	18.5E	18.9E	19.4E	19.8E	20.2E	20.3E	20.4E	20.7E	21.5E	21.7E	21.4E
Wash.	46	120	18.9E	19.4E	19.9E	20.3E	20,8E	21.2E	21.3E	21.4E	21.7E	22.4E	22.6E	22.2E
Wash.	48	120	19.8E	20.5E	20.9E	21.4E	21.9E	22.3E	22.4E	22.5E	22.9E	23.6E'	23.7E	23.3E
At sea Calif.	38	124	14.2E 15.3E	14.6E 15.6E	14.9E 16.0E	15.4E 16.5E	16.0E 17.1E	16.5E	16.7E 17.8E	16.8E 17.9E	17.2E 18.3E	18.0E 10.1E	18.3E 10.4E	18.2E 10.2E
Calif.	40	124	16.5E	16.9E	17.3E	17.8E	17.1E 18.4E	17.6E 18.8E	17.8E	17.9E 19.2E	19.6E	20.4E	20.7E	19.2E 20.5E
Oreg.	44	124	17.5E	18.0E	18.4E	18.9E	19.5E	20.0E	20.2E	20.4E	20.8E	21.6E	21.9E	21.6E
Oreg.	46	124	18.4E	19.0E	19.5E	20.0E	20.6E	21.1E	21.3E	21.5E	21.9E	22.8E	23.0E	22.7E
Wash.	.48	124	19.5E	20.2E	20.6E	21.2E	21.8E	22.3E	22.5E	22.8E	23.2E	24.0E	24.2E	23.8E

TABLE 740.—Dip or Inclination, United States

This table gives for the epoch January 1, 1925, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

•	•	51.5 53.8 56.3 58.6 60.6	50.6 53.0 55.4 57.8	\$49.6 52.1 54.5 56.9	50.9 53.4	 52.2		•	•	•		
		53.8 56.3 58.6	53.0 55.4 57.8	52.I 54.5	50.9							
		56.3 58.6	55.4 57.8	54.5	-							
	• • • •	58.6	57.8		53.4	52.2						
				E6.0			50.9	50.0				
• • • •	• • • •	60.6			55.9	54.8	53.5	52.4	51.3	50.2		
			60.0	59.1	58.3	57.1	55.9	54.8	53.7	52.5	51.5	
	62.1	62.6	62.1	61.3	60.5	50.4	58.1	57.0	55.9	54.8	53.8	
	_											
		66.1		_ 0 0	_				~			
	67.5	67.9	67.6	66.9	66.5	65.6	64.5	63.4	62.3	61.0	60.1	
	69.3	69.6	69.2	69.1	68.4	67.5	66.6	65.3	64.3	63.0	62.1	
	70.8	71.0	70.9	70.8	70.3	69.4	68.4	67.3	66.2	65.0	63.9	62.7
	72.2	72.5	72.7	72.4	71.9	71.1	70.2	69.0	68.0	66.7	65.6	64.3
	73.6	73.9	74.2	73.9	73.6	72.7	71.9	70.8	69.8	68.4	67.4	66.1
74.0	74.7	75.3	75.6	75.6	75.2	74.5	73.6	72.6	71.3	70.2	69.0	67.8
75.3	76.1	76.7	77.1	77.1	76.8	76.1	75.2	74.3	72.9	71.7	70.7	69.4
76.3	77.2	77.9	78.4	78.6	78.3	77.7	76.8	75.8	74.6	73.2	72.0	70.9
	74.0	64.0 65.8 67.5 69.3 70.8 72.2 73.6 74.0 74.7 75.3 76.1	64.0 64.3 65.8 66.1 67.5 67.9 69.3 69.6 70.8 71.0 72.2 72.5 73.6 73.9 74.7 75.3 76.1 76.7	64.0 64.3 64.0 65.8 66.1 65.7 67.5 67.9 67.6 69.3 69.6 69.2 70.8 71.0 70.9 72.2 72.5 72.7 73.6 73.9 74.2 74.0 74.7 75.3 75.6 75.3 76.1 76.7 77.1	64.0 64.3 64.0 63.5 65.8 66.1 65.7 65.2 67.5 67.9 67.6 66.9 69.3 69.6 69.2 69.1 70.8 71.0 70.9 70.8 72.2 72.5 72.7 72.4 73.6 73.9 74.2 73.9 74.0 74.7 75.3 75.6 75.6 75.3 76.1 76.7 77.1 77.1	64.0 64.3 64.0 63.5 62.6 6.6 65.8 66.1 65.7 65.2 64.4 67.5 67.9 67.6 66.9 66.5 69.3 69.6 69.2 69.1 68.4 67.2 72.2 72.5 72.7 72.4 71.9 73.6 73.9 74.2 73.9 73.9 74.0 74.7 75.3 75.6 75.6 75.2 75.3 76.1 76.7 77.1 76.8	64.0 64.3 64.0 63.5 62.6 61.5 65.6 65.8 66.1 65.7 65.2 64.4 63.5 67.5 67.9 67.6 66.9 66.5 65.6 69.3 69.6 69.2 69.1 68.4 67.5 69.3 69.6 69.2 69.1 68.4 67.5 67.2 72.2 72.5 72.7 72.4 71.9 71.1 73.6 73.9 74.2 73.9 73.6 72.7 74.0 74.7 75.3 75.6 75.6 75.2 74.5 75.3 76.1 76.7 77.1 76.8 76.1	64.0 64.3 64.0 63.5 62.6 61.5 60.5 65.8 66.1 65.7 65.2 64.4 63.5 62.6 67.5 67.9 67.6 66.9 66.5 65.6 64.5 69.3 69.6 69.2 69.1 68.4 67.5 66.6 70.8 71.0 70.9 70.8 70.3 69.4 68.4 72.2 72.5 72.7 72.4 71.9 71.1 70.2 73.6 73.9 74.2 73.9 73.6 72.7 71.9 74.0 74.7 75.3 75.6 75.6 75.2 74.5 73.6 75.3 76.1 76.7 77.1 76.8 76.1 75.2	64.0 64.3 64.0 63.5 62.6 61.5 60.5 59.2 65.8 66.1 65.7 65.2 64.4 63.5 62.6 61.3 67.5 67.9 67.6 66.9 66.5 65.6 64.5 63.4 69.3 69.6 69.2 69.1 68.4 67.5 66.6 65.3 70.8 71.0 70.9 70.8 70.3 69.4 68.4 67.3 72.2 72.5 72.7 72.4 71.9 71.1 70.2 69.0 73.6 73.9 74.2 73.9 73.6 72.7 71.9 70.8 74.7 75.3 75.6 75.6 75.2 74.5 73.6 72.6 75.3 76.1 76.7 77.1 76.8 76.1 75.2 74.3	$\begin{array}{c} \dots & 64.0 & 64.3 & 64.0 & 63.5 & 62.6 & 61.5 & 60.5 & 59.2 & 58.2 \\ \dots & 65.8 & 66.1 & 65.7 & 65.2 & 64.4 & 63.5 & 62.6 & 61.3 & 60.1 \\ \dots & 67.5 & 67.9 & 67.6 & 66.9 & 66.5 & 65.6 & 64.5 & 63.4 & 62.3 \\ \dots & 69.3 & 69.6 & 69.2 & 69.1 & 68.4 & 67.5 & 66.6 & 65.3 & 64.3 \\ \dots & 70.8 & 71.0 & 70.9 & 70.8 & 70.3 & 69.4 & 68.4 & 67.3 & 66.2 \\ \dots & 72.2 & 72.5 & 72.7 & 72.4 & 71.9 & 71.1 & 70.2 & 69.0 & 68.0 \\ \dots & 73.6 & 73.9 & 74.2 & 73.9 & 73.6 & 72.7 & 71.9 & 70.8 & 69.8 \\ 74.0 & 74.7 & 75.3 & 75.6 & 75.6 & 75.2 & 74.5 & 73.6 & 72.6 & 71.3 \\ 75.3 & 76.1 & 76.7 & 77.1 & 77.1 & 76.8 & 76.1 & 75.2 & 74.3 & 72.9 \\ \end{array}$	$\begin{array}{c} \dots & 64.0 & 64.3 & 64.0 & 63.5 & 62.6 & 61.5 & 60.5 & 59.2 & 58.2 & 57.0 \\ \dots & 65.8 & 66.1 & 65.7 & 65.2 & 64.4 & 63.5 & 62.6 & 61.3 & 60.1 & 59.2 \\ \dots & 67.5 & 67.9 & 67.6 & 66.9 & 66.5 & 65.6 & 64.5 & 63.4 & 62.3 & 61.0 \\ \dots & 69.3 & 69.6 & 69.2 & 69.1 & 68.4 & 67.5 & 66.6 & 65.3 & 64.3 & 63.0 \\ \dots & 70.8 & 71.0 & 70.9 & 70.8 & 70.3 & 69.4 & 68.4 & 67.3 & 66.2 & 65.0 \\ \dots & 72.2 & 72.5 & 72.7 & 72.4 & 71.9 & 71.1 & 70.2 & 69.0 & 68.0 & 66.7 \\ \dots & 73.6 & 73.9 & 74.2 & 73.9 & 73.6 & 72.7 & 71.9 & 70.8 & 69.8 & 68.4 \\ 74.0 & 74.7 & 75.3 & 75.6 & 75.6 & 75.2 & 74.5 & 73.6 & 72.6 & 71.3 & 70.2 \\ 75.3 & 76.1 & 76.7 & 77.1 & 77.1 & 76.8 & 76.1 & 75.2 & 74.3 & 72.9 & 71.7 \\ \end{array}$	$\begin{array}{c} \dots & 64.0 & 64.3 & 64.0 & 63.5 & 62.6 & 61.5 & 60.5 & 59.2 & 58.2 & 57.0 & 55.9 \\ \dots & 65.8 & 66.1 & 65.7 & 65.2 & 64.4 & 63.5 & 62.6 & 61.3 & 60.1 & 59.2 & 58.1 \\ \dots & 67.5 & 67.9 & 67.6 & 66.9 & 66.5 & 65.6 & 64.5 & 63.4 & 62.3 & 61.0 & 60.1 \\ \dots & 69.3 & 69.6 & 69.2 & 69.1 & 68.4 & 67.5 & 66.6 & 65.3 & 64.3 & 63.0 & 62.1 \\ \dots & 70.8 & 71.0 & 70.9 & 70.8 & 70.3 & 69.4 & 68.4 & 67.3 & 66.2 & 65.0 & 63.9 \\ \dots & 72.2 & 72.5 & 72.7 & 72.4 & 71.9 & 71.1 & 70.2 & 69.0 & 68.0 & 66.7 & 65.6 \\ \dots & 73.6 & 73.9 & 74.2 & 73.9 & 73.6 & 72.7 & 71.9 & 70.8 & 69.8 & 68.4 & 67.4 \\ 74.0 & 74.7 & 75.3 & 75.6 & 75.6 & 75.2 & 74.5 & 73.6 & 72.6 & 71.3 & 70.2 & 69.0 \\ 75.3 & 76.1 & 76.7 & 77.1 & 77.1 & 76.8 & 76.1 & 75.2 & 74.3 & 72.9 & 71.7 & 70.7 \\ \end{array}$

TABLE 741.—Secular Change of Dip, United States

Values of the magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1, of the years in the heading. The degrees are given in the third column and the minutes in the succeeding columns.

Lati- tude	Long- tude		1855	1865	1875	1885	1895	1900	1905	1910	1915	1920	1925
25 25 25 25 31 31	80 90 100 80 90	55+ 53+ 51+ 62+ 60+	, 29 17 15 45 52	27 23 33 43 60	, 22 34 50 37 67	, 12 40 49 22 58	, 16 34 61 18 60	25 44 71 23 68	, 42 73 87 35 81	, 77 106 107 57 104	, 114 136 126 81 124	, 144 157 140 101 140	, 171 177 151 120 155
31 31 37 37 37	100 110 80 90 100	59+ 57+ 68+ 67+ 65+	01 05 60 34 45	15 16 55 40 54	26 24 49 42 61	22 28 31 33 55	28 38 20 27 56	36 43 21 32 61	48 49 27 40 70	62 56 39 53 79	74 63 53 65 86	83 67 65 75 91	91 71 75 83 95
37 37 43 43 43	110 120 70 80 90	63+ 61+ 73+ 73+ 73+	52 117 106 36	54 107 100 36	53 57 90 92 35	54 61 67 73 26	60 69 45 55 16	63 67 38 52 17	66 64 38 54 20	70 64 38 59 26	73 63 38 65 32	76 65 37 68 35	78 66 36. 70 38
43 43 43 47 47	100 110 120 70 80	71+ 69+ 67+ 76+ 77+	 109 66	97 60	48 44 26 80 50	41 42 29 57 31	37 44 33 32 11	39 45 29 25 07	43 46 26 22 06	47 46 24 19 06	50 46 22 15 07	53 48 22 10 06	55 49 22 05 04
49 49 49 49	90 100 110 120	78+ 76+ 74+ 72+	53	50	45 62 47 18	36 55 44 19	24 49 43 19	21 48 41 15	20 47 40 11	20 46 37 06	20 45 35 02	20 45 35 01	20 46 35 00

TABLE 742.—Horizontal Magnetic Intensity, United States

This table gives for the epoch January 1, 1925, the horizontal intensity, H, expressed in c.g.s. units, corresponding to the longitudes in the heading and the latitudes in the first column.

λ φ	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
19			.286	.294	.302	.308	.315	.320					
21			.280	.286	.294	.301	.307	.312	.313	.313			
23 25			.272	.279	.285	.293	.300	.304	.305	.306	208	• • • •	• • • •
27			.254	.260	.267	.273	.280	.286	.289	.291	.298	.292	
29		.240	.244	.249	.257		.270	.276	.280	.283	.284	.285	
31		.230	.234	.238	.245	.253	.260 .248	.266	.271 .260	.274	.276 .268	.277 .268	
35		.209	.211	.215	.223	.228	.235	.242	.247	.252	.256	.258	
37	• • • •	.197	.198	.202	.208	.214	.222	.227	.235	.240	.245	.249	• • • •
39		.186	.187	.190	.193	.200	.207	.215	.223	.228	.235	.239	.242
41	• • • • • • • • • • • • • • • • • • • •	.174	.175	.176	.182	.187	.193	.202	.209	.216	.223	.228	.232
43	.165	.163	.162	.163	.167	.171	.178	.187	.195	.203	.211	.217	.222
45	.155	.153	.151	.150	.152	.157	.163	.172	.181	.190	.198	.205	.212
47 49	.145	.130	.126	.130	.123	.139	.134	.157	.152	.176	.185	.192	.189

TABLE 743.—Secular Change of Horizontal Intensity, United States

Values of horizontal intensity in c.g.s. units for the places designated by the latitude and longitude in the first two columns for January 1 of the years in the heading.

Lat.	Long.	1855	1865	1875	1885	1895	1900	1905	1910	1915	1920	1925
0	0											
25	80	.3064	.3054	.3034	.3003	.2968	.2946	.2916	.2870	.2805	.2749	.2704
25	90						.3026					.2825
25	100			.3188	.3157	.3125	.3108	.3086	.3055	.3017	.2980	.2950
31	80	.2652	.2650	.2644	.2624	.2606	.2591	.2567	.2526	.2465	.2419	.2382
31	90	.2817	.2787	.2752	.2750	.2728	.2710	.2687	.2653	.2603	.2561	.2527
31	100	.2922	.2887	.2852	.2838	.2816	.2802	.2784	.2755	.2720	.2688	.2662
31	110	.2963	.2933	.2903	.2876	.2855	.2847	.2832	.2809	.2784	.2760	.2738
37	80	.2184	.2187	.2197	.2189	.2182	.2177	.2159	.2130	.2086	.2049	.2022
37	90	.2332	.2314	.2292	.2302	.2292	.2284	.2266	.2239	.2198	.2167	.2142
37	100		• • • •	.2407	.2403	.2391	.2383	.2368	.2345	.2317	.2292	.2272
37	110			.2519	.2502	.2488	.2481	.2471	.2453	.2433	.2414	.2396
37	120										.2506	
43	70	.1612	.1631	.1654	.1667	.1682	.1689	.1692	.1680	.1662	.1644	.1632
43	80	.1682	.1682	.1692	.1710	.1718	.1718	.1710	.1693	.1667	.1647	.1632
43	90			.1792	.1798	.1794	.1791	.1783	.1766	.1741	.1723	.1708
43	100			.1958	.1956	.1952	.1949	.1940	.1924	.1905	.1888	.1873
43	110										.2043	
43	120										.2183	
47	70	.1365									.1422	
47	80		.1367	.1367	.1387	.1397	.1402	.1404	.1394	.1380	.1369	.1362
49	90			.1280	.1286	.1291	.1294	.1295	.1287	.1276	.1268	.1262
49	100										.1431	
49	110										.1609	
49	120			.1847	.1838	.1831	.1832	.1834	.1831	.1825	.1816	.1808

TABLE 744.—Total Magnetic Intensity, United States

This table gives for the epoch January 1, 1925, the values of total intensity, F, expressed in c.g.s. units, corresponding to the longitudes in the heading and the latitudes in the first column.

À	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
19 21			.460 ·474	.463 ·475	.465 ·477								
23 25 27		• • • • •	.491 .504 .516	.491 .508 .521	.490 .505 .521	.491 .504 .520	.488 .503 .516	.482 .496 .510	·475 ·487 ·501	.477 .491	.466 .479	 .469	
29 31 33 35 37		.513 .526 .537 .545 .558	.529 .540 .551 .560 .568	·533 ·543 ·552 ·563 ·571	·535 ·549 ·558 ·570 ·583	.536 .549 .559 .571 .582	.531 .543 .556 .569	.522 .541 .552 .562 .572	.514 .529 .541 .553 .561	.504 .519 .530 .542 .553	·493 ·507 ·522 ·528 ·540	.482 ·493 ·507 ·518 ·533	
39 41 43 45 47 49	 .562 .570 .568	.565 .569 .578 .581 .588	.576 .583 .586 .594 .599 .603	.582 .589 .598 .603 .608	.586 .601 .602 .608 .620	.593 .602 .606 .613 .606	.589 .596 .597 .609 .619	.584 .598 .603 .608 .614	·577 ·584 ·594 ·605 ·609 ·617	.565 .577 .588 .592 .601	.556 .564 .573 .583 .588	.542 .551 .564 .573 .581	.529 .536 .548 .561 .572 .577

TABLE 745.—Secular Change of Total Intensity, United States

Values of total intensity in c.g.s. units for places designated by the latitudes and longitudes in the first two columns for January 1 of the years in the heading.

					-			-	-		-	
Lat.	Long.	1855	1865	1875	1885	1895	1900	1905	1910	1915	1920	1925
	0											
25	80	5407	.5385	.5339	.5262	.5200	.5100	.5175	.5170	.5136	.5102	.5081
25	90								.5134			
25	100	1							.5051			.4961
31	80		.5781						.5554			.5434
31	90			.5697								
31	90	13700	13143	.5091	.,,,,,,	.5027	.0010	.04	.0	.0001	.00	.04.0
31	100	.5676	.5647	.5608	.5570	.5543	.5537	.5535	.5516	.5470	.5430	.5400
31	110			.5388								
37	80			.6080				.5878			.5739	
37	90	.6111	.6080	.6040	.6028	.5077			.5947			.5814
37	100			.5922								.5717
31	100			.55	.0009	.5005	.55	.0	-0-0-	-0170	.070-	-07-7
37	110			.5722	.5687	.5676	.5670	.5657	.5629	.5593	.5560	.5525
37	120	.5539	.5524	.5512								.5326
43	70	.6208		.6189								.5780
43	80	.6402		.6345								.5981
43	90			.6341	.6306	.6231	.6227	.6217	.6194	.6142	.6097	.6061
10				0,	U	Ü	·	·		•		
43	001			.6269	.6224	.6190	.6191	.6184	.6155	.6110	.6072	.6034
43	110			.6091	.6053	.6039	.6030	.6020	.5985	.5948	.5917	.5881
43	120			.5842	.5818	.5806	.5784	.5767	.5740	.5706	.5673	.5644
47	70	.6468		.6298	.6209	.6115	.6106	.6126	.6100	.6025	.5947	.5883
47	80		.6575	.6486	.6417	.6298	.6288	.6289	.6244	.6189	.6132	.6085
49	90								.6364			
49	100								.6334			.6212
49	110								.6129			.6019
49	120			.6075	.6051	.6028	.6009	.5994	.5957	.5916	.5882	.5851
		!										

TABLE 746.—Agonic Line, United States

The line of no declination (agonic line) is moving westward in the northern part of the country, but south of latitude 30° it is nearly stationary.

Lat.			Longitudes	of the agon	ic line for t	he years—		
N.	1800	1850	1875	1890	1905	1915	1920	1925
0	0	۰	•	0	0	0	0	0
25				75.5	76.1	77.4	77.4	77.1
30			• • • •	78.6	79.7	80.0	80.1	79.7
35		76.7	79.0	79.9	81.7	82.7	82.8	83.0
6	75.2	77.3	79.7	80.5	82.8	84.4	84.5	84.4
7 8	76.3	77.7	80.6	82.2	83.5	84.0	84.0	84.0
8	76.7	78.3	81.3	82.6	83.6	84.1	84.1	84.0
9	76.9	78.7	81.6	82.2	83.6	83.9	84.0	84.2
40	77.0	79.3	81.6	82.7	84.0	84.3	84.5	84.6
I	77.9	80.4	81.8	82.8	84.6	85.1	85.2	85.2
2	79.1	81.0	82.6	83.7	84.8	85.3	85.4	85.8
3 4	79.4	81.2	83.1	84.3	85.0	85.4	85.6	85.8
4	79.8	• • • •	83.3	84.9	85.5	85.8	86.0	86.1
45			83.6	85.2	86.0	86.2	86.4	86.6
6			84.2	84.8	86.4	86.3	86.6	86.8
7 8			85.1	85.4	86.4	86.6	86.8	87.1
			86.0	85.9	86.5	87.2	87.6	87.7
9			86.5	86.3	87.2	88.0	88.2	88.2

TABLE 747.—Mean Magnetic Character of Each Month in the Years 1906 to 1930*

Means derived from daily magnetic characters based upon the following scale; o, no disturbance; 1, moderate disturbance, and 2, large disturbance.

Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year Mean
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919	0.45 .69 .64 .76 .58 .78 .42 .51 .46 .53 .61 .81 .63 .78	0.90 .83 .71 .63 .71 .89 .53 .50 .64 .56 .69 .78 .81	0.68 .58 .87 .78 .45 .53 .62 .68 .86 .59 .78 .78 .68	0.63 .55 .68 .49 .68 .76 .54 .50 .61 .68 .63 .79 .65 .67	0.58 .72 .82 .59 .72 .70 .47 .45 .37 .58 .75 .66 .82 .57 .83	0.56 .67 .66 .54 .53 .53 .47 .45 .52 .61 .67 .55 .56 .56	0.69 .67 .49 .53 .55 .61 .41 .42 .61 .47 .62 .61 .54	0.63 .66 .77 .65 .81 .53 .49 .46 .61 .60 .75 .85 .77 .70	0.79 .68 .89 .70 .80 .50 .47 .58 .53 .59 .75 .61 .88 .83	0.59 .71 .53 .69 .96 .57 .64 .77 .76 .74 .85 .91	0.55 .61 .60 .49 .77 .49 .45 .42 .60 .82 .83 .53 .57 .52 .58	0.71 .53 .47 .58 .76 .45 .43 .36 .46 .54 .65 .72 .88 .56 .65	Mean 0.65 .66 .68 .62 .72 .63 .46 .48 .54 .67 .71 .67 .76 .72
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931	.65 .48 .64 .44 .84 .62 .44 .47 .65	.74 .61 .56 .42 .85 .66 .62 .82 .49	.79 .53 .64 .42 .85 .80 .48 .85 .35	.75 .44 .43 .52 .75 .60 .52 .54 .38 .45	·57 ·47 ·54 ·47 ·60 ·65 ·75 ·61 ·37 ·54	.62 .50 .64 .74 .53 .47 .72 .56 .29	.66 .42 .55 .55 .49 .56 .72 .66	.71 .36 .41 .61 .50 .61 .56 .55 .25	.69 .52 .67 .71 .75 .77 .75 .75 .32 .82	.68 .55 .52 .82 .67 .84 .83 .85 .34 .95	.47 .42 .54 .48 .46 .35 .65 .71 .36 .83	.42 .50 .40 .57 .54 .63 .54 .71 .26	.65 .48 .54 .56 .65 .63 .63 .67 .37

^{*} Compiled from annual reviews of the "Caractère magnétique de chaque jour," prepared by the Royal Meteorological Institute of the Netherlands for the International Commission for Terrestrial Magnetism.

TABLE 748.—Elements and Constants of Atmospheric Electricity

(Prepared by O. H. Gish, Department of Terrestrial Magnetism, Carnegie Institution of Washington, 1930.)

The elements of atmospheric electricity show variations, both regular and irregular. Over land the irregular variations are very pronounced and the regular variations differ notably from place to place, in marked contrast to the corresponding characteristics over the ocean. Therefore, and because of the wider and more uniform geographical distribution of ocean observations, it seems best to give the greater weight to the ocean data when attempting to arrive at values characterizing world-wide conditions. Because of the wide variation from place to place in the means from land stations, due to local factors, a general mean of these is of questionable significance. Hence it seems better to indicate the extremes of station means in the case of elements for which the data are sufficiently abundant.

Certain disparities which will be found between these and other published tables [see references (2) and (21)] arise largely from the inclusion of more recent data. The references to authorities have been selected with a view to being helpful in following up the literature

rather than to assigning due credit for the original investigations.

Of the atmospheric-electric elements the potential gradient has been the most extensively observed. The sign of the average gradient is everywhere such as to drive positive ions toward the earth. The periodic variations in this element are of great interest because of their apparent relation with cosmic phenomena. Thus the potential gradient apparently increases with increase in the Wolfer sun-spot numbers, varies throughout the year, the maxima in monthly means occur everywhere, with few exceptions, at the time of northern winter, and the corresponding minima occur at the time of northern summer. The diurnal variation observed over the oceans is everywhere in phase when considered on a commontime basis, except for a minor phase-shift that depends upon the season. This diurnal variation derived from observations made on the *Carnegie* during 1915 to 1921 is given by the Fourier expression $\Delta P/P = 0.15 \sin{(\theta + 186^\circ)} + 0.03 \sin{(2\theta + 237^\circ)}$ where θ is reckoned at 15° per hour beginning at 0h Greenwich mean civil time.

No general expression that will approximately characterize the diurnal variation over land can b given. There variations determined by local factors are apparently superimposed upon a variation of the same world-wide character as that found to prevail over the oceans [see reference (5)].

¹ From revised calculations in unpublished manuscript of the Department of Terrestrial Magnetism.

TABLE 749.—Atmospheric-Electric Data

Element	Symbol	Means	Units	Variations	Author- ity
Potential gradient	P	Land: 67 to 317 Sea: 128 Free air	volts/m "	Range Per cent of mean Annual 22 to 145 Diurnal 35 to 120 Annual 13 Diurnal 35 Percentage of surface values at various altitudes 0 km 100 6 km 8 3 " 17 9 " 4	3 4, 5 1, 2 1
Air-conductivity total	$\lambda = \lambda_{+} + \lambda_{-}$	Sea: 2.6	44 44	Variations determined chiefly by local factors Variations small and chiefly irregular Ratio of value at various altitudes to that at surface 0 km 1 6 km 20 3 "8 9 "38	3, 6 I
Ratio of positive to negative conductivity	.,	Land: 1.12 Sea: 1.26		3 6 9 30	3, 6
density Density of small	$i = \lambda P/30000$	Land: 7.0 Sea: 11.0	c.g.s.e. × 10-7		3 1
ions: Positive Negative		Land: 750 Sea: 600 Land: 650 Sea: 500 Free air	ions/cm³	Values at various altitudes 2 km 1300 4 " 1900 5 " 2300	3, 6 1 3, 6 1
Ratio of positive to negative ionic density	$p = n_+/n$	Land: 1.23 Sea: 1.23		5 " 2300	3, 6 1

TABLE 749 (continued).—Atmospheric-Electric Data

Element	Symbol	Means	Units	Authority
Space-charge, over land	p dP	At surface:* - 2000 to + 1900	10-10 c.g.s.e./cm ³	
	$\rho = -\left(\frac{dP}{dh}/1.2\pi\right) \times 10^{-10}$ (For $h = \text{height in km}$)	Free air: 0 to 3 km 9.0 3 to 6 0.9	 	
Mobility of small	$k_+ = \lambda_+/300 \ en_+$	6 to 9 0.4		3
Positive	k+	Land: 0.9 Sea: 1.6	cm/sec./volt/cm	3, 6
Negative	k	Land: 1.0 Sea: 1.7	4.6	3, 6
Rate of formation of ion-pairs	q	Over land: Ra and Th products in air		
		α rays 4.6 β rays 0.2 γ rays 0.15	ions/cm³/sec.	
		Radioactive matter in the Earth's crust		
		β rays 0.1 γ rays 3.0	14	
		Penetrating radiation 1.5	"	
	=	Total 9.55	4.6	3, 6
		At sea: Penetrating radiation 1.5 (?) 0.7	44	
		Total 2.2	4.4	8

^{*} The sign and magnitude of surface values are exceedingly variable from place to place.

TABLE 750.—Ionic equilibrium in the atmosphere

Equilibrium for atmospheric ionization occurs when $q = \alpha n^2 + \eta_1 N_0 n + \eta_2 N n$, where n and N are the number of pairs of small and large ions, and N_0 the number of uncharged nuclei; α , η_1 , η_2 , are coefficients of recombination of small ions with small ions, with uncharged nuclei, and with large ions. If for both small and large ions the positive and negative are equally abundant, then $N_0/N = \eta_2/\eta_1 = 1.28$ [reference (12)]. When $n/N \ll 2\eta_2/\alpha$, the equilibrium-condition is expressed by $q = \beta n$; β is designated the diminution-constant; $1/\beta = \Theta$ is the "average life" of a small ion in air which contains an abundance of large ions; Θ varies inversely as N.

```
      \alpha: 1.55 \times 10^{-6} cm³/sec. [see reference (11)]

      \eta_1: 5 \times 10^{-6} "}
      [see references (8), (12), (13)]

      \theta: Over land,
      Average, 30 sec.

      Extremes, 10 to 60 sec.
      [see reference (8)]

      Over sea, 230 sec.
      N: Over land, 500 to 50,000 ions/cm³ [see references (13), (14)]

      Aitken nuclei, number per cm³:
      Over open country, up to 10^5 [see reference (16)]

      Over mid-ocean, about 800 [see reference (15)]
      In free air,

      Altitude I km 6,000 5 km 50 3 km 200 8.5 km 3bout 5 see reference (17)
```

TABLE 751.—Thunderstorm Electricity

Quantity discharged by a lightning flash: 10 to 50 coulombs; average 20 coulombs.

Energy of a lightning flash: 1017 ergs.

Potential difference between discharge points: 10° volts.

Potential gradient at earth's surface beneath a thundercloud: 10⁴ [see reference (18)]. volts/meter.

(The charge producing this field more frequently negative than positive).

Number of lightning discharges over entire earth each second: At least 100.

Duration of lightning flash: More than 0.001 sec [see reference (19)].

TABLE 752.—Charge on Rain and Snow

Specific net charge on precipitation:

Average, 0.5 c.g.s.e./gm.

Maximum observed, 20 c.g.s.e./gm.

[see reference (3)].

Specific charge on individual raindrops or snowflakes:

Rain,
$$+ 2.7 \text{ to} - 3.2 \text{ c.g.s.e./gm.}$$

Snow, $+ 11.6 \text{ to} - 8.1 \text{ c.g.s.e./gm.}$ [see reference (20)].

References

(1) Res. Dep. Terr. Mag., 5, 361-424, 1926. (2) Res. Dep. Terr. Mag., 6, 425-460, 1927. (3) Müller-Pouillet, Lehrb. Phys., 5, Hälfte I, II. Aufl., 1927. (4) H. Norinder, Vet.-Ak. Handl., 58, No. 4, 1918. (5) Mauchley, S. J., Terr. Mag., 28, 61-81, 1923. (6) Hess. V. F., The electrical conductivity of the atmosphere and its causes. Translation by L. W. Codd, 1928. (7) Wigand, A., Ann. Phys., 66, 81-109, 1921. (8) Hess, V. F., Beitr.-Geophys., 22, 256-314, 1929. (9) Geiger-Scheel, Handb. Phys., 14, 1927. (10) Wigand, A., Phys. Zs., 22, 36-46, 1921. (11) Schuster, A., Manchester, Mem. Lit. Philos. Soc., 48, no. 12, 1904. (12) Nolan, J. J., Boylan, R. K., and de Sachy, G. P., Proc. Roy. Irish Acad., 37, A, 1-12, 1925. (13) Nolan, P. J., and O'Brolchain, C., Proc. Roy. Irish Acad., 38, A, 40-48, 1929. (14) Gockel, A., Neue Denkschr. Schweiz. Naturf. Ges., 54, Abh. 1, 1917. (15) Wait, G. R., Carnegie Inst. Washington, Year Book, No. 28, 274-275, 1929. (16) Aitken, J., Collected Scientific Papers, Cambridge, 1923. (17) Wigand, A., Ann. Phys., 59, 689-742, 1919. (18) Wilson, C. T. R., Journ. Franklin Inst., 208, 1-12, 1929. (19) Appleton, E. V., Watson Watt, R. A., and Herd, J. F., Proc. Roy. Soc. (A), 111, 615-677, 1926. (20) Schwend, P. G., Jahrb. Radioak., 17, 62-79, 1921; Beilage, Jahresber. d. Kantonalen Lehranstalt, Sarnen, 1921-1922, 1922. (21) International Critical Tables, 6, 442-445, 1929.

For current literature consult Journal of Terrestrial Magnetism and Atmospheric Electricity, Baltimore (vol. 38 in progress 1933), and Zeitschrift für Geophysik, Braunschweig.

TABLE 753 .- Ionization in the Upper Atmosphere of the Earth

(Hulburt, Phys. Rev., 34, 1167, 1929; 35, 24, 1930; 37, 1, 1931.)

Each cm³ of the upper atmosphere is assumed approximately electrically neutral. Above 60 km the ionization is assumed to be caused by solar ultra-violet light; below, by cosmic radiation. At any height z km above sea-level, let the numbers per cm³ of singly-charged positive ions, negative ions and electrons be y_+ , y_- and y_e . Then $y_+ = y_- + y_e$, and since y_e is in general small compared to y_- , the values of y_+ and y_- are nearly equal. Above 60 km the positive ion densities y_+ are given in Table 754. The electron density y_e increases with z to a max. value y_e at a height z_m ; y_e max. and z_m are given in Table 754a. Above and below the max. y_e can not yet be estimated with certainty. The values for y_+ and y_- max. may be correct within a factor of z; a zero value means a small value. The tables are for average equinoctial conditions and solar quiescence, halfway between the periods of max. and min. solar activity. The values should be increased and reduced by roughly $z \le w$ to refer to epochs of max. and min. solar activity. During magnetic storms the ionization increases, being perhaps double the tabular values for a severe storm. In polar regions it is probably not greatly different from that for latitude 60° . The seasonal changes are small at the equator. In temperate latitudes for winter and summer use the values for latitudes about $z \ge w$ higher and lower. Below 60 km the ionization due to cosmic radiation is independent of the latitude, hour of the day, solar activity, etc., and y_- is $8 \times 10^\circ$, $1.6 \times 10^\circ$, 1.9×10^3 , 2.2×10^3 , 2.9×10^3 , and 3.5×10^5 at 0, 10, 20, 30, 40, and 50 km.

TABLE 754.—Ion Density v. in the Upper Atmosphere

			C1: 1:1-	
	~	o°	Geographic latitude.	60°
NT	2		0	0
Noon	200 km	0	4.0×10^{9}	0
	190	4.7×10^{9}	4.0×10^{9}	0
	180	4.7×10^{9}	4.0×10^{9}	3.1×10^{9}
	170	4.7×10^{9}		3.1×10^{9}
	160	4.7×10^{9}	4.0×10^{9} 4.0×10^{9}	3.1×10^9
	150	4.7×10^{9}	4.0×10^{8}	3.1×10^{9}
	140	7.0×10^{8}	4.0 × 10	3.1×10^{9}
	130	2.3×10^{8}	1.4×10^{8} 6.7×10^{7}	5.1×10^7
	120	9.1×10^7	0.7 × 10	2.3×10^7
	110	3.6×10^{7}	2.7×10^7	7.1×10^{6}
	100	1.4×10^{7}	1.2×10^7	2.7×10^{6}
	90	5.8×10^6	5.4×10^{6} 1.6×10^{6}	1.1×10^6
	8o	2.1×10^{6}	1.0 × 10	1.1 × 10
3 p. m. or 9 a. m.	200 km	0	0	0
J pr mi or y ar mi	190	3.0×10^{9}	0	0
	180	3.0×10^{9}	2.8×10^{9}	0
	170	3.0×10^{9}	2.8×10^{9}	2.3×10^{9}
	160	3.0×10^{9}	2.8×10^{9}	2.3×10^{9}
	150	3.0×10^{9}	2.8×10^{9}	2.3×10^{9}
	140	2.8×10^{8}	2.8×10^{9}	2.3×10^{9}
	130	1.1×10^8	4.0×10^{8}	2.3×10^{9}
	120	4.6×10^{7}	1.0×10^8	1.1×10^8
	110	1.9×10^7	3.4×10^7	3.7×10^{7}
	100	9.1×10^{6}	1.2×10^7	1.1×10^7
	90	2.8×10^{6}	4.5×10^{6}	3.1×10^{6}
	8 o	1.2×10^6	1.8 × 10 ⁶	1.0×10^{6}
6 p. m. or 6 a. m.	150 km	0	0	0
o p. m. or o a. m.	140	1.7 × 10 ⁹	0	0
	135	1.7 × 10°	1.7×10^{9}	1.6×10^{9}
	130	1.7 × 10°	1.7×10^{9}	1.6×10^{9}
	120	1.7×10^9	1.7 × 10°	1.6 × 10°
	115	1.7×10^9	1.7×10^{9}	$1.6 \times 10^{\circ}$
	110	5.1×10^7	1.7×10^9	1.6×10^{9}
	100	1.3×10^7	1.9×10^7	1.4×10^7
	90	2.9×10^{6}	3.9×10^{6}	3.4×10^{6}
	80	8.0×10^{5}	8.4×10^5	8.1×10^{5}
		/ (

TABLE 754 (continued).—Ion Density y, in the Upper Atmosphere

	z	0*	Geographic latitude.	60°
9 p. m.	170 km	0	0	0
9 12	160	1.7×10^{9}	0	0
	150	1.7 × 109	0	0
	140	0	1.7 × 109	1.6 × 10°
	130	0	1.7 × 10°	1.6 × 10°
	120	0	0	0
	115	5.2×10^7	0	0
	110	2.4×10^7	3.8×10^{7}	3.3×10^7
	001	5.9 × 10 ⁶	1.0×10^7	9.2×10^{6}
	90	1.3×10^6	2.1 × 106	1.9×10^6
	80	3.8×10^5	5.1 × 10 ⁵	4.6×10^{5}
		5.0 / 10	3.1 / 10	4.0 / 10
Midnight	170 km	0	0	0
	160	1.6×10^{9}	0	0
	150	1.6×10^{9}	0	0
	145	0	1.2×10^{9}	1.1 × 109
	135	0	1.2×10^9	1.1 × 109
	125	0	0	0
	115	3.4×10^7	0	0
	110	1.6×10^7	2.3×10^{7}	2.1×10^7
	100	3.6×10^{6}	2.3×10^{6}	6.5×10^{6}
	90	8.7×10^{5}	1.8 × 10 ⁶	1.3×10^{6}
	8o	4.6×10^{5}	3.7×10^5	3.1×10^{5}
3 a. m.	170 km	0	0	0
3 a. III.	160	1.5 × 10°	0	0
	150	1.5 × 10°	0	0
		0	1.0 × 109	9.0×10^{8}
	145	0	1.0×10^{9}	9.0×10^{8}
	135 125	0	0	0
	115	2.4×10^{7}	0	0
	110	1.0×10^{7}	1.5×10^7	1.4×10^{7}
	100	3.1 × 10 ⁶	5.3 × 106	4.9×10^{6}
	90	5.5 × 10 ⁵	1.1 × 10 ⁶	9.4×10^{5}
}	80	1.9×10^{5}	2.8×10^5	2.2×10^{5}
		1.9 /\ 10	2.0 / (20	/\ .0

TABLE 754A.—Maximum Electron Density ye Max. in the Upper Atmosphere

			Geographic la	atitude		
		o°		40°		60°
	Z_m	y _e max.	Z_m	y_e max.	Z_m	y_e max.
Noon	195 km	3.2×10^{5}	195 km	2.4×10^{5}	175 km	1.6×10^{5}
3 p. m.	195	2.5×10^{5}	195	1.9×10^{5}	175	1.3×10^{5}
6 p. m.	144	1.2×10^{5}	140	0.9×10^{5}	140	0.6×10^{5}
9 p. m.	165	1.1×10^5	145	0.1×10^{5}	145	0
Midnight	165	1.0×10^{5}	145	0	145	0
3 a. m.	165	0.8×10^{5}	1.45	0	145	0
6 a. m.	144	1.0×10^{5}	140	0.8×10^{5}	140	0.5×10^{5}
9 a. m.	195	2.0×10^{5}	195	1.5×10^{5}	175	1.0×10^{5}

TABLE 755

MISCELLANEOUS ASTRONOMICAL DATA

```
= \{365.24219879 - 0.00000000614 (t - 1900)\} days.
Tropical (ordinary) year
Sidereal year
                                      = \{365.25636042 + 0.00000000011(t - 1900)\} days.
Anomalistic year
                                      = \{365.25964134 + 0.0000000304 (t - 1900)\}  days.
Eclipse year
                                      = \{346.620000 + 0.00000036
                                                                                 (t - 1900) days.
Synodical (ordinary) month = \{29.530588102 - 0.000000000294 (t - 1900)\} days.
Sidereal month
                                      = \{27.321660890 - 0.000000000252 (t - 1900)\} days.
Sidereal day (ordinary, two successive tran-
sits of vernal equinox, might be called equi-
noctial day)
                                                            = 86164.09054 mean solar seconds.
                                                           = 23 h. 56 m. 4.09054 mean solar time.
Two successive transits of same fixed star
                                                           =86164.09966 mean solar seconds.
1930, Julian Period = 6643.
January 1, 1933, Julian-day number = 2427074. See p. 603.
Solar parallax = 8.7958'' \pm 0.002'' (Weinberg).
                       8.807 \pm 0.0027 (Hincks, Eros).
8.799 (Sampson, Jupiter satellites; Harvard observations).

8.80 Paris conference; 8.8032'' \pm 0.0013.*

Lunar parallax = 3422.63'' = 57' 2.63'' (Newcomb).

" " = \pi' = 3422.519'' \pm 0.009 (De Sitter).*
                                      = 1495000000 kilometers = 929000000 miles.
Mean distance earth to sun
Mean distance earth to moon = 60.2678 terrestrial radii.
                                       = 384411 kilometers = 238862 miles.
Light traverses mean radius of earth's orbit in 498.7 sec.
Velocity of light (mean value) in vacuo, 299796 \pm 4 km/sec. (Michelson). Constant of aberration = 20.4874'' \pm 0.005''.
                                          20.47 Paris conference (work of Doolittle and others
                                             indicates value not less than 20.51).
                                      = 9.5 \times 10^{12} kilometers = 5.9 \times 10^{12} miles.
Light year
Parsec, distance star whose parallax is 1 sec. = 31 \times 10^{12} km = 19.2 \times 10^{12} miles.
                                      = 50.2564'' + 0.000222 (t - 1900)'' (Newcomb).

50.2486'' \pm 0.0010 (De Sitter, 1927).
General precession
General precession
                                      =\lambda = 0.1228'' \pm 0.0012 (De Sitter, 1927).
Planetary precession
                                       = p' = 50.3714'' \pm 0.0016 (De Sitter, 1927).
Lunar-solar precession
                                          Of this 0.0191", Einstein, orbital motion earth.*
True lunar-solar precession = p = 50.3523, sun, moon, earth's attraction.*

Obliquity of ecliptic = 23^{\circ} 27' 8.26" - 0.4684 (t - 1900)" (Newcomb).

Constant of nutation = 9.21" (Paris conference); 9.208" \pm 0.003.*

Constant in long. = \Delta \phi = (-17.2234" - .017"\text{T}) \sin \Omega Jackson,
                                      = \Delta \epsilon = (+9.218 + .0009 \text{T}) \cos \Omega \int M. N., 1930.
   Constant in obliquity
   Latter has relativity correction; T centuries from 1900.
Gravitation constant
                                       = (6.670 \pm 0.002) \times 10^{-8} \text{ dyne cm}^2 \text{ g}^{-2} \text{ (Heyl, 1930)}.
                                      = c = 0.01675104 - 0.0000004180 (t - 1900) - 0.0000000000126 (t - 1900)^{2}.
Eccentricity earth's orbit
                                       = e_2 = 0.05490056 (Brown).
= I = 5^{\circ} 8' 43.5'' (Brown).
Eccentricity moon's orbit
 Inclination moon's orbit
Delaunay's \gamma = \sin \frac{1}{2}I = 0.04488716 (Brown).

Lunar inequality of earth = L = 6.454''; 6.459 \pm 0.005.*

Parallactic inequality moon = Q = 124.785'' (Brown).
Mean sidereal motion of moon's node in 365.25 days = -19^{\circ} 21' 19.3838" + 0.001294 (t-1900)". Pole of Milky Way = R. A., 12 h. 48 m.; Dec., +27°. See p. 604
                                      = R. A., 12 h. 48 m.; Dec., + 27°. See p. 604.
d (lunar perigee)
                                       = +6.386".
 d (lunar node)
                                       =-5.977''
```

^{*} De Sitter, Bull. Astron. Inst., Netherlands, 4, 57, 1927.

MISCELLANEOUS ASTRONOMICAL DATA AND FORMULAE

If δ = declination, t, hour angle measured west from meridian, h. altitude, ϕ , latitude and A, azimuth measured from S. point through W. Then

$$\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t
\cos h \cos A = -\cos \phi \sin \delta + \sin \phi \cos \delta \cos t
\cos h \sin A = \cos \phi \sin h - \cos \phi \cos h \cos A
\cos \delta \cos t = \cos \phi \sin h - \cos \phi \cos h \cos A
\cos \delta \cos t = \cos \phi \sin h + \sin \phi \cos h \cos A
\cos \delta \sin t = \cos \phi \sin h + \sin \phi \cos h \cos A
\cos \delta \sin t = \cos \phi \sin h + \cos \phi \cos h \cos A$$

Refraction.— r in (") = $[983 \times (barometer in in.)/(460 + t^{\circ} F.)] \tan Z$, where Z =

zenith distance. Error < 1'', $Z < 75^{\circ}$, ordinary t and pressure.

Twilight.—Considered to end when 1st mag. star is visible in zenith. Lasts until sun is about 18° below horizon; lat. 40°, equivalent to about 1½ to 2 hr.; latitude > 50°, lasts until midnight.

Dip of horizon.—In minutes of arc = Velevation in ft.

Horizon.—Distance at sea is approximately, miles = $\sqrt{(\frac{3}{4})h}$ in feet; no account taken of refraction, actual distance greater.

Date line.—180° from meridian of Greenwich. Ships crossing it from the east, skip a

day; going east, count same day twice.

Velocity, equatorial point on earth.—Because of rotation: 1000 mi./hr. = 1500 ft./sec.

= 1600 km/m = 450 m/sec. In orbit: 18.5 mi./sec. = 30 km/sec.

Latitude variation.—Direction of axis of the earth in space is invariable but a variation in latitude is caused by a shift of the earth's body about this axis. There are two components, one, annual (narrow ellipse, varying in form and position, about 10 m long on the earth's surface) probably meteorological in origin; the other, circular, about 8 m in diameter, period 433 days, due to noncoincidence of axis of figure and of rotation.

Magnitudes.—(Apparent, m). The light of an average 1st magnitude star was found to be physically 100 times as intense as that of a 6th. $\sqrt[6]{100}$ or 2.512 has been adopted as the light ratio between two stars differing in magnitude by unity $(\log_{10} 0.400 = 2.512)$. If $l_m =$ approximate brightness of star of magnitude m, l_n of n, then, $l_n/l_m = (2.512)^{m-n}$ whence

m-n=2.5 (log $l_n-\log l_m$); if $l_0=$ brightness o mag. star log (log m/\log_0) = -0.4 m.

Magnitudes.—("Absolute," M.) The "absolute" magnitude of a star is its magnitude reduced to a standard distance, 10 parsecs (Int. Astron. Union, 1922). M-m=2.5 (log annt. light rec'd)/(log annt. if at unit distance) = $5 \log p - 5 \log p_0$ where p, p_0 are observed parallax and that for standard distance; $p_0 = 0.1 \cdot M = m + 5 + 5 \log p$. β Orionis, M = -5.5 is brightest star.

Color index.—We have visual, photographic, and bolometric (radiometric) magnitudes. The zero of the photographic scale is taken so that both the photographic and visual scale coincide, on the average, for stars of spectrum class AO and m = 5.5 to 6.5. Difference of magnitudes on the two scales is the color index, photovisual is + for red, - for blue stars

and may amount to + 2.0 mag.

Heat index.—Radiometric (heat or bolometric), zero taken to agree with Class AO,

(radiometric - visual magnitude) = head index, + for red stars.

Purkinje effect.—Two colored lights appearing equally bright at a certain brightness, when brightness decreased equally physically, the bluer appears brighter.

Tables 757 and 758 CALENDARS

TABLE 757.- Julian Day Calendar

Proposed by Scaliger, 1582. Days are numbered consecutively from Greenwich mean noon on January 1, 4713 B. C. Advantage: difference between two dates becomes merely difference between two Julian day numbers. As our civil and astronomical days begin at midnight, the numbers from the table must be increased by one after noon of date.

Julian Day No. = 2420000 + no. in table. Jan. 0, etc., at head of col. means Jan. 0 until

noon, then Jan. 1, etc.

Year	Jan. o	Feb. o	Mar. o	Apr. o	May o	June o	July o	Aug. o	Sept. o	Oct. o	Nov. o	Dec. o
1920	2324 2690 3055 3420 3785 4151 4516	2355 2721 3086 3451 3816 4182 4547 4912 5277 5643 6008 6373	2384 2749 3114 3479 3845 4210 4575 4940 5306 5671 6036 6401	2415 2780 3145 3510 3876 4241 4606 4971 5337 5702 6067 6432	2445 2810 3175 3540 3906 4271 4636 5001 5367 5732 6097 6462	2476 2841 3206 3571 3937 4302 4667 5032 5398 5763 6128 6493	2506 2871 3236 3601 3967 4332 4697 5062 5428 5793 6158 6523	2537 2902 3267 3632 3998 4363 4828 5093 5459 5824 6189 6554	2568 2933 3298 3663 4029 4394 4759 5024 5490 5855 6220 6585	2598 2963 3328 3693 4059 4424 4789 5154 5520 5885 6250 6615	2629 2994 3359 3724 4090 4455 4820 5185 5551 5916 6281 6646	2659 3024 3389 3754 4120 4485 4850 5215 5581 5946 6311 6676
1932 1933 1934 1935 1936 1937 1938 1929 1940	6707 7073 7438 7803 8168 8534 8899 9264 9629	6738 6738 7104 7469 7834 8199 8565 8930 9295 9660	6767 7132 7497 7862 8228 8593 8958 9323 9689	6798 7163 7528 7893 8259 8624 8989 9354 9720	6828 7193 7558 7923 8289 8654 9019 9384 9750	6859 7224 7589 7954 8320 8685 9050 9415 9781	6889 7254 7619 7984 8350 8715 9080 9445 9811	6920 7285 7650 8015 8381 8746 9111 9476 9842	6951 7316 7681 8046 8412 8777 9142 9507 9873	6981 7346 7711 8076 8442 8807 9172 9537 9903	7012 7377 7742 8107 8473 8838 9203 9568 9934	7042 7407 7772 8137 8503 8868 9233 9598 9964

TABLE 758.—Perpetual Calendar

To find the calendar for any year, e.g., 1924, divide century part of year (19) by 4 and with the remainder (3) enter Dominical Letters table. Use line (3) of lower sections of table corresponding to value of remainder, taking the Dominical Letter corresponding to the column in upper parts of table containing the last two figures of the year in question (24). This being a leap year we find two letters (F) to be used with Jan. and Feb., (E) with the rest of the year. In the second part of the table this Dominical Letter indicates which schedule of week days is to be used with the month in question. E.g., Jan. 1, 1924, comes on Tuesday; July 4 on Friday.

Year No.	{00	01 29 57 85	02 30 58 86	03 31 59 87	04 32 60 88	05 33 61 89	06 34 62 90	07 35 63 91	08 36 64 92	09 37 65 93	10 38 66 94	39 67 95	12 40 68 96	13 41 69 97	14 42 70 98	15 43 71 99
(1) (2) (3) (4)	C E G BA	B D F G	A C E F	G B D E	FE AG CB DC	D F A B	C E G A	B D F G	AG CB ED FE	F A C D	E G B C	D F A B	CB ED GF AG	A C E F	G B D E	F A C D
Year No.	{	16 44 72	17 45 73	18 46 74	19 47 75	20 48 76	21 49 77	22 50 78	23 51 79	24 52 80	25 53 81	26 54 82	27 55 83	28 56 84		
(1) (2) (3) (4)		ED GF BA CB	C E G A	B D F G	A C E F	GF BA DC ED	E G B C	D F A B	C E G A	BA DC FE GF	G B D E	F A C D	E G B C	DC FE AG BA		
	Mont	h							Do	minica	l le tt e	r				
Fe Ap M: Ju Au	r., Jul ay ne	r., No	v.] (]]	A D G B E C F	B E A C F D G		C F B D G E A	D G C E A F B		E A D F B G C	F H C C	Berry	G C F A D B	
1 2 3 4 5 6 7	9 10 11 12 13	15 2: 16 2: 17 2: 18 2: 19 2: 20 2: 21 2:	3 30 4 31 5 6		Sun. Mon. Tues. Wed. Thur Fri. Sat.	s. V	Sat. Sun. Mon. Tues. Ved. Thurs.	Tu	t. n. on. ies.	Thui Fri. Sat. Sun. Mon Tues Wed		Wed. Thurs. Fri. Sat. Sun. Mon. Tues.	. W T Fi Sa Si	ues. 'ed. hurs. ri. at. un. lon.	Mor Tue Wed Thu Fri. Sat. Sun.	s. l. rs.

Note-For general discussion of calendars, see British Nautical Almanac, p. 734 et seq., 1931.

RIGHT ASCENSION, DECLINATION INTO GALACTIC COORDINATES

Condensed from Tavole calcolate dal Emanuelli (1929), Secretario della Specola Vaticano. Galactic pole, R. A., 191.1°, dec. $+26.6^\circ$ (Newcomb, 1904). The zero point of the tables takes the longitude of the solar apex as o° (R. A., 270°, dec., $+30^\circ$, 1900). To reduce the galactic longitude as reckoned from the intersection of the galactic plane with equator, add 23.6° to "Long."; as reckoned from α Cygni (proposed by Int. Astron. Union, 1925), add +27.9, 1900, (+23.7, 1930).

idu +27.9,										
R. A.	0,1	1	1	h	2	h		2 b		4 ^h
Dec.	Long.	Lat.	Long.	Lat.	Long.	Lat.	Long.	3 ^h Lat.	Long.	Lat.
	0	0	0	0	0	0	0	0	•	0
+90		+26.8		+26.8	66.4	+26.8	66.4	+26.8	66.4	+26.8
+80		+17.0		+16.8		+17.3		+18.4		+20.0
+70	62.6	+ 7.1		+ 6.8	72.8	+ 7.7		+9.8	81.7	+12.9
+60		- 2.7		- 3.1	75-7	- 1.8		+ 1.2		+ 5.6
+50	_	-12.6		-13.1		-11.4		7.5	95.4	- 1.8
+40	57.2	-22.4	69.7		81.8	-20.9	92.8	-16.1	102.2	- 9.2
+30	55.0	-32.2	70.4	-33.1	85.4	-30.4		-24.6	109.3	-16.4
+20	52.3	-42.0	71.4	-43.1	89.7	-39.7		-32.8	116.9	-23.4
+10	48.6	-51.6	72.8	-53.0	95.4	-48.9		-40.6		-30.0
0	42.9	-61.1	75.0	-62.9		-57.6		-47.8	134.9	-35.9
-10	32.4	-70.2	79.5	-72.8		-65.5		-53.9	146.0	-41.0
-20	7.8	-77.8	94.9	-82.3		-71.4		-58.2	158.6	-44.9
-30	315.7	-79.7	200.3	-85.3		-73.I		-60.I	172.6	-47.2 -47.2
-40 -50	278.5	-73.9 -65.2	233.6	-76.4 -66.6	201.3	-69.5 -62.7		-59.0 -55.3	187.4	-47.7 -46.3
-50 -60	263.6 256.3	-65.3	240.I 242.9	-56.7	230.3	-52.7 -54.4		-55.3 -49.5	215.3	-40.3 -43.1
-70	250.3	-55.9 -46.3	244.5	-36.7 -46.7	237.3	-45.4		-42.6	227.I	-38.6
-8o		-36.6	245.6			-36.2		-34.9	237.4	-33.1
-90	246.4			-26.8		-26.8		-26.8	246.4	-26.8
	240.4	20.0								
R. A.										
	Long. 5 ¹			Lat.		Lat.	Long.	8 ^h Lat.		9 ^h Lat.
R. A.	51	1	6	,b	7	, h		8 ^h		9 ^h
R. A.	Long. 5 ^t	Lat.	Long.	Lat.	Long.	Lat.	Long.	8h Lat.	Long.	9 ^h
R. A.	Long. 5 ^t	Lat.	Long.	Lat. +26.8	Long. 7	Lat.	Long.	8h Lat.	Long.	9 ^h Lat.
R. A. Dec. +90	Long. 5!	Lat. +26.8	Long. 66.4	Lat. +26.8	Long. 766.477.688.8	Lat. +26.8	Long. 66.4	8h Lat. +26.8	Long. 66.4 76.2	9 ^h Lat.
R. A. Dec. +90 +80 +70 +60	Long. 51 66.4 76.1	Lat. +26.8 +22.1 +16.8 +11.2	Long. 66.4 77.2	Lat.	Long. 7.6 66.4 77.6 88.8 99.8	Lat. +26.8 +27.0 +26.4 +24.9	66.4 77.3 88.7	8h Lat. +26.8 +29.6 +31.5 +32.3	Long. 66.4 76.2 87.1 99.1	9 ^h Lat. +26.8 +32.0 +36.4 +39.7
R. A. Dec. +90 +80 +70 +60 +50	Long. 51 66.4 76.1 85.1 93.7 101.8	Lat. +26.8 +22.1 +16.8 +11.2 + 5.3	Long. 66.4 77.2 87.5 97.4 106.9	Lat.	Long. 766.477.688.899.8	Lat. +26.8 +27.0 +26.4 +24.9 +22.6	66.4 77.3 88.7 100.5 112.3	8h Lat. +26.8 +29.6 +31.5 +32.3 +32.1	Long. 66.4 76.2 87.1 99.1 112.0	9 ^h Lat. +26.8 +32.0 +36.4 +39.7 +41.7
R. A. Dec. +90 +80 +70 +60 +50 +40	Long. 51 66.4 76.1 85.1 93.7 101.8	Lat. +26.8 +22.1 +16.8 +11.2 + 5.3 - 0.6	66.4 77.2 87.5 97.4 106.9	Lat.	Long. 7.6 66.4 77.6 88.8 99.8 110.4 120.6	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7	Cong. 66.4 77.3 88.7 100.5 112.3 123.9	8 ^h Lat. +26.8 +29.6 +31.5 +32.3 +32.1 +30.7	Long. 66.4 76.2 87.1 99.1 112.0 125.5	9 ^h Lat. +26.8 +32.0 +36.4 +39.7 +41.7 +42.1
+90 +80 +70 +60 +50 +40 +30	Long. 51 66.4 76.1 85.1 93.7 101.8 109.9 117.9	Lat. +26.8 +22.1 +16.8 +11.2 + 5.3 - 0.6 - 6.6	66.4 77.2 87.5 97.4 106.9 116.0 124.9	Lat. +26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4	Long. 7.6 66.4 77.6 88.8 99.8 110.4 120.6 130.5	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1	66.4 77.3 88.7 100.5 112.3 123.9 135.1	8h Lat. +26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8	9 ^h Lat. +26.8 +32.0 +36.4 +39.7 +41.7 +42.1 +41.0
+90 +80 +70 +60 +50 +40 +30 +20	Long. 51 66.4 76.1 85.1 93.7 101.8 109.9 117.9 126.2	Lat. +26.8 +22.1 +16.8 +11.2 + 5.3 - 0.6 - 6.6 -12.4	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7	+26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4 - 0.4	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2	Long. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7	8h Lat. +26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4 +25.2	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4	9 ^h Lat. +26.8 +32.0 +36.4 +39.7 +41.7 +41.0 +38.5
+90 +80 +70 +60 +50 +40 +30 +20 +10	Long. 51 66.4 76.1 85.1 93.7 101.8 109.9 117.9 126.2 134.8	Lat. +26.8 +22.1 +16.8 +11.2 + 5.3 - 0.6 -12.4 -18.0	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4	+26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4 - 0.4 - 5.2	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 +7.9	Long. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7	8h Lat. +26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4 +25.2 +21.3	Long. 66.4 76.2 87.1 112.0 125.5 138.8 151.4 162.9	9 ^h Lat. +26.8 +32.0 +36.4 +39.7 +41.7 +42.1 +41.0 +38.5 +34.6
+90 +80 +70 +60 +50 +40 +30 +20 +10 0	Long. 51	Lat. +26.8 +22.1 +16.8 +11.2 + 5.3 - 0.6 - 12.4 - 18.0 - 23.1	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3	Lat.	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2	Lat.	66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7 165.2	8 ^h Lat. +26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4 +25.2 +21.3 +16.8	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3	9 ^h Lat.
+90 +80 +70 +60 +50 +40 +30 +20 +10 0 -10	Cong. 5 66.4 76.1 85.1 93.7 101.8 109.9 117.9 126.2 134.8 144.0 153.8	Lat.	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3	Lat.	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 +7.9 +3.5 -1.1	Cong. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7 165.2 174.2	8 ^b Lat. +26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4 +25.2 +21.3 +16.8 +11.9	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3	9 ^h Lat. +26.8 +32.0 +36.4 +39.7 +41.7 +42.1 +41.0 +38.5 +29.8 +24.3
+90 +80 +70 +60 +50 +40 +30 +20 +10 0 -10 -20	c 66.4 76.1 85.1 93.7 101.8 109.9 117.9 126.2 134.8 144.0	Lat.	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3 160.5 170.1	Lat.	Long. 766.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2 167.1 176.0	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 +7.9 +3.5 -1.1 -5.6	Long. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7 165.2 174.2 182.9	8 ^h Lat. +26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4 +25.2 +21.3 +16.8	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3	9 ^h Lat.
R. A. Dec. +90 +80 +70 +60 +50 +40 -10 0 -10 -20 -30	66.4 76.1 85.1 93.7 101.8 109.9 117.9 126.2 134.8 144.0 153.8 164.4 175.8	Lat. +26.8 +22.1 +16.8 +16.8 -23.1 -6.6 -12.4 -18.0 -23.1 -27.7 -31.5 -34.4	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3	Lat. +26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4 - 5.2 - 9.9 -14.3 -18.4	Long. 766.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2 167.1 176.0	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 +7.9 +3.5 -1.1	Long. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7 165.2 174.2 182.9 191.4	8 ^b Lat.	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3 182.6 191.2	9 ^h Lat. +26.8 +32.0 +36.4 +39.7 +41.7 +42.1 +41.0 +38.5 +29.8 +24.3
+90 +80 +70 +60 +50 +40 +30 +20 +10 0 -10 -20	66.4 76.1 85.1 93.7 101.8 109.9 117.9 126.2 134.8 144.0 153.8 164.4 175.8	Lat.	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3 160.5 170.1 180.0	Lat. +26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4 - 5.2 - 9.9 -14.3 -18.4 -22.0	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2 167.1 176.0 185.1	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 + 7.9 + 3.5 - 1.1 - 5.6 - 9.9	Long. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7 165.2 174.2 182.9 191.4	8b Lat.	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3 182.6 191.2	9 ^h Lat. ° +26.8 +32.0 +36.4 +39.7 +41.7 +42.1 +38.5 +34.6 +29.8 +24.3 +11.9
R. A. Dec. +90 +80 +70 +60 +50 +40 -10 0 -10 -20 -30 -40	66.4 76.1 85.1 109.9 117.9 126.2 134.8 144.0 153.8 164.4 175.8 187.9	Lat.	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3 160.5 170.1 180.0	Lat.	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2 167.1 176.0 185.1	+26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 +7.9 + 3.5 - 1.1 - 5.6 - 9.9 - 14.1	Cong. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7 155.2 174.2 182.9 191.4 199.8 208.4	8b Lat.	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3 182.6 191.2 199.1 206.7 214.2 221.6	9 ^h Lat. , +26.8 +32.0 +36.4 +39.7 +41.7 +42.1 +41.6 +38.5 +34.6 +29.8 +24.3 +11.9 +5.2
R. A. Dec. +90 +80 +70 +60 +50 +40 -10 -20 -30 -40 -50 -60 -70	Long. 5 ¹ 66.4 76.1 85.1 93.7 101.8 109.9 117.9 126.2 134.8 144.0 153.8 164.4 175.8 187.9 200.3	Lat.	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3 160.5 170.1 180.0 190.4 201.3	Lat. +26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4 - 0.4 - 5.2 - 9.9 -14.3 -18.4 -22.0 -24.9 -27.1 -28.5 -28.9	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2 167.1 176.0 185.1 194.4 204.1 214.1 224.5	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 + 7.9 + 3.5 - 5.6 - 9.9 - 14.1 - 17.8 - 23.8	Long. 66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 155.7 165.2 182.9 191.4 199.8 208.4 217.2 226.4	8b Lat. -26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4 +25.2 +21.3 +16.8 + 1.4 - 3.9 - 9.2 -14.2 -19.0	Long. 66.4 76.2 87.1 199.1 112.0 125.5 138.8 151.4 162.9 173.3 182.6 191.2 199.1 206.7 214.2 221.6 229.3	9 ^h Lat6.8 +32.0 +36.4 +39.7 +41.7 +42.1 +41.0 +38.5 +34.6 +29.8 +11.9 +5.2 -1.5 -8.1 -14.7
R. A. Dec. +90 +80 +80 +70 +60 +50 +40 -10 -20 -30 -40 -50 -60 -70 -80	66.4 76.1 85.1 193.7 101.8 109.9 117.9 126.2 134.8 144.0 153.8 164.4 175.8 187.9 200.3 212.7 224.7 235.9	Lat.	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3 160.5 170.1 180.0 190.4 201.3 212.5 223.9 235.3	Lat. +26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4 - 0.4 - 5.2 - 9.9 -14.3 -18.4 -22.0 -24.9 -27.1 -28.5 -28.9 -28.3	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2 167.1 176.0 185.1 194.4 204.1 214.1 224.5 235.3	+26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 +7.9 +3.5 -1.1 -9.9 -14.1 -17.8 -21.1 -23.8 -25.7	66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 165.2 174.2 182.9 191.4 199.8 208.4 217.2 226.4 236.1	**Lat.	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3 182.6 191.2 199.1 206.7 214.2 221.6 229.3 237.5	9 ^h Lat.
R. A. Dec. +90 +80 +70 +60 +50 +40 -10 -20 -30 -40 -50 -60 -70	66.4 76.1 85.1 193.7 101.8 109.9 117.9 126.2 134.8 144.0 153.8 164.4 175.8 187.9 200.3 212.7 224.7 235.9	Lat. +26.8 +22.1 +16.8 +11.2 + 5.3 - 0.6 -12.4 -18.0 -23.7 -31.5 -34.4 -36.2 -36.7 -35.9 -33.9	66.4 77.2 87.5 97.4 106.9 116.0 124.9 133.7 142.4 151.3 160.5 170.1 180.0 190.4 201.3 212.5 223.9	Lat. +26.8 +24.5 +21.4 +17.7 +13.6 + 9.1 + 4.4 - 0.4 - 5.2 - 9.9 -14.3 -18.4 -22.0 -24.9 -27.1 -28.5 -28.9	Long. 7 66.4 77.6 88.8 99.8 110.4 120.6 130.5 140.0 149.2 158.2 167.1 176.0 185.1 194.4 204.1 214.1 224.5 235.3	Lat. +26.8 +27.0 +26.4 +24.9 +22.6 +19.7 +16.1 +12.2 + 7.9 + 3.5 - 5.6 - 9.9 - 14.1 - 17.8 - 23.8	66.4 77.3 88.7 100.5 112.3 123.9 135.1 145.7 165.2 174.2 182.9 191.4 199.8 208.4 217.2 226.4 236.1	8b Lat. -26.8 +29.6 +31.5 +32.3 +32.1 +30.7 +28.4 +25.2 +21.3 +16.8 + 1.4 - 3.9 - 9.2 -14.2 -19.0	Long. 66.4 76.2 87.1 99.1 112.0 125.5 138.8 151.4 162.9 173.3 182.6 191.2 199.1 206.7 214.2 221.6 229.3 237.5	9 ^h Lat.

N. B.—The reductions for plus and minus 90° are independent of the right ascension and declination and respectively: 66°.4, +26°.8 and 246°.4, -26°.9. The Galactic pole has been variously taken: Newcomb 12^h44^m, +26°.6; Gould, 12^h42^m, +32°; Scarle, 12^h40^m, +28°, for tables of conversion see Harvard Annals, 56, 1912; Kapteyn, 12^h41^m, +27°.3; Van Rhijn, 12^h56^m, +25°, for tables, see Gröningen Publications, 43, 1929.

RIGHT ASCENSION, DECLINATION INTO GALACTIC COORDINATES

	1				
	Long. Lat.	Long. Lat.	Long. Lat.	Long. Lat.	Long. 14h Lat.
+80 +70 +60 +50 +40 +30 +20 +10 0 -10 -20 -30 -40 -50 -60 -70	Long. Lat. 74.3 +34.1 83.7 +40.8 95.0 +46.6 108.6 +51.6 124.5 +53.6 141.4 +53.9 157.7 +51.8 171.9 +47.8 183.7 +42.3 193.5 +35.7 201.7 +28.5 208.9 +20.9 215.3 +13.0 221.3 + 5.0 227.2 - 3.1 233.2 -11.2			Long. Lat. 65.6 +36.8 64.5 +46.7 62.9 +56.7 60.1 +66.6 53.6 +76.4 20.3 +85.3 274.9 +82.3 259.5 +72.8 255.0 +62.9 252.8 +53.0 251.4 +43.0 250.4 +33.1 249.7 +23.1 249.0 +13.1 248.4 + 3.1 247.7 - 6.8	62.4 +36.2 57.3 +45.4 50.3 +54.4 39.5 +62.7 21.3 +69.5 351.7 +73.1 319.0 +71.4 296.7 +65.5 283.6 +57.6 275.4 +48.9 269.7 +39.7 265.4 +30.4 261.8 +20.9 258.7 +11.4 252.8 - 7.7
	239.5 -19.1	241.8 -17.7	244.4 -17.0	247.1 -16.8	249.8 -17.3
	15 ^h	10p	17 ^h	0 0	10p
+80 +70 +60 +50 +40 +30 +20 +10 0 -10 -20 -30 -40 -50 -60 -70 -80	59.6 +34.9 51.4 +42.6 40.9 +49.5 27.4 +55.3 10.3 +59.0 350.6 +60.1 331.3 +58.2 315.2 +53.9 302.6 +47.8 292.8 +40.6 285.0 +32.8 278.5 +24.6 272.8 +16.1 267.6 + 7.5 262.6 - 1.2 257.6 - 9.8 252.3 -18.4	57.4 +33.1 47.1 +38.6 35.3 +43.1 21.9 +46.3 7.4 +47.7 352.6 +47.2 338.6 +44.9 326.0 +41.0 314.9 +35.9 305.4 +30.0 296.9 +23.4 289.3 +16.4 282.2 + 9.2 275.4 + 1.8 268.7 - 5.6 261.7 -12.9 254.4 -20.0	54.8 +31.2 44.7 +33.9 32.7 +35.9 20.3 +36.7 7.9 +36.2 355.8 +34.4 344.4 +31.5 333.8 +27.7 324.0 +23.1 314.8 +18.0 306.2 +12.4 297.9 + 6.6 289.9 + 0.6 281.8 - 5.3 273.7 -11.2 265.1 -16.8 256.1 -22.1	5.3 +28.3 43.9 +28.9 32.5 +28.5 21.3 +27.1 10.4 +24.9 0.0 +22.0 350.1 +18.4 340.5 +14.3 331.3 + 9.9 322.4 + 5.2 313.7 + 0.4 304.9 - 4.4 296.0 - 913.6 277.4 -17.7 267.5 -21.4 257.2 -24.5	55.3 +25.7 44.5 +23.8 34.1 +21.1 24.1 +17.8 14.4 +14.1 5.1 + 9.9 356.0 + 5.6 347.1 + 1.1 338.2 - 3.5 329.2 - 7.9 320.0 -12.2 310.5 -16.1 300.6 -19.7 290.4 -22.6 279.8 -24.9 268.8 -26.4 257.6 -27.0
	20 ^h	2 I h	22 ^h	23 ^h	24 ^h
+80 +70 +60 +50 +40 +30 +20 +10 0 -10 -20 -30 -40 -50 -60 -70 -80	56.1 +23.2 46.4 +19.0 37.2 +14.0 28.4 + 9.2 19.8 + 3.9 11.4 - 1.4 2.9 - 6.8 35.411.9 345.2 -16.8 335.7 -21.3 325.7 -25.2 315.1 -28.4 303.9 -30.7 292.3 -32.1 280.5 -32.3 268.7 -31.5 257.3 -29.6	57.5 +20.9 49.3 +14.7 41.6 + 8.1 34.2 + 1.5 26.7 - 5.2 19.1 -11.9 11.2 -18.3 2.6 -24.3 353.3 -29.8 342.9 -34.6 331.4 -38.5 318.8 -41.0 305.5 -42.1 292.0 -41.7 279.1 -39.7 267.1 -36.4 256.2 -32.0	59.5 +19.1 53.2 +11.2 47.2 + 3.1 41.3 - 5.0 35.3 -13.0 28.9 -20.9 21.7 -28.5 13.5 -35.7 3.7 -42.3 351.9 -47.8 337.7 -51.8 321.4 -53.9 304.5 -53.6 288.6 -51.1 275.0 -46.6 263.7 -40.8 254.3 -34.1	61.8 +17.7 57.7 + 8.6 53.7 - 0.6 49.7 - 9.8 45.5 -18.9 40.9 -27.9 35.3 -36.8 28.4 -45.3 19.0 -53.3 5.8 -60.2 346.7 -65.1 322.3 -66.9 298.4 -64.7 280.1 -59.4 267.5 -52.3 258.6 -44.3 251.8 -35.7	64.4 + 17.0 62.6 + 7.1 60.9 - 2.7 59.2 - 12.6 57.2 - 22.4 55.0 - 32.2 52.3 - 42.0 48.6 - 51.6 42.9 - 61.1 32.4 - 70.2 7.8 - 77.8 315.7 - 79.7 278.5 - 73.9 263.6 - 65.3 256.3 - 55.9 251.9 - 46.3 248.8 - 36.6

TABLE 760.—Planetary Data

Body	Reciprocals of masses	Mean distance from the sun. km	Sidereal period. Mean days	Inclination of orbit	Mean density. H ₂ O = 1	Gravity at surface
Sun	I				1.42	28.0
Mercury	6000000	58×10^{6}	87.97	7°.003	5.61	.4
Venus	408000	108 "	244.70	3.393	5.16	.9
Earth*	329390	149 "	365.26		5.52	1.00
Mars	3093500	228 "	686.98	1.850	3.95	.4
Jupiter	1047.35	778 ''	4332.59	1.308	1.34	2.7
Saturn	3501.6	1426 "	10759.20	2.492	.69	I.2
Uranus	22869	2869 "	30685.93	.773	1.36	1.0
Neptune	19700	4495 "	60187.64	1.778	1.30	1.0
Pluto		5900 "	908.85	17.1		
Moon	†81.45	38×10^{4}	27.32	5.145	3.36	.17

^{*}Earth and moon. † Relative to earth. Inclination of axes: Sun 7°.25; Earth 23°.45; Mars 24°.6; Jupiter 3°.1; Saturn 26°.8; Neptune 27°.2. Others doubtful. Approximate rates of rotation: Sun 25½d; Moon 27½d, Mercury 88d; Venus 225d; Mars 24b 37^m; Jupiter 9b 55^m; Saturn 10b 14^m. Asteroids (planetoids): Sept. 28, 1931, 1183 had been numbered, inclination Pallas orbit 34° 43′, Hidalgo 43°; c, Albert, 0.54; Hidalgo 0.65. Heaviest meteorite (So, Africa) 50 tons.

TABLE 761.—Satellites of the Solar System

TABLE 701:	Datemites of the		
	Mean distance	Sidereal period	Diameter
Earth's: Moon	384,400 km	27 ^d 7 ^h 43 ^m 11	.58 3476 km
Martian: Phobos	9,380		.85 15?
Deimos	23,460		.9 8 ?
Jovian: 5th	181,200		.70 160 ?
1, Io	421,300	_ 0,	3.51 3730
2, Europa	670,500	, ,	2.05 3150
3, Ganymede	1,069,300		3.35 5150
4, Callisto	1,881,000	7. 0 1 00	.21 5180
6th	11,450,000	250.68 d	130 ?
7th	11,730,000	260.06 d	40 ?
8th	23,500,000	738.9 d	* 25 ?
9th	24,100,000	745.ó d	* 25?
Saturnian: 7, Mimas	185,700		650 ?
6, Enceladus	237,900		.82 800 ?
5, Tethys	294,500		1300 ?
4, Dione	377,200	2 17 41 9	0.53 1200 ?
2, Rhea	526,700	4 12 25 12	1.23
ı, Titan	1,220,000	15 22 41 26	.82 4200
8, Hyperion	1,480,000	21 6 38 24	0 500 ?
3, Iapetus	3,558,000	79 7 56 24	.4 1800 ?
9, Phoebe	12,930,000	550.44 d	* 250 ?
Uranian: 1, Ariel	191,700	2 12 29 20	.8 900 ?
2, Umbriel	267,000	4 3 27 36	5.7 700 ?
3, Titania	438,000		1700 ?
4, Oberon	586,000		1500 ?
Neptune's: 1	354,000	5 21 2 38	3.1* 5000 ?

^{*} Motion retrograde. Notes: Jovian; 1st 4 called Galilean; eccentricity 6, 7, 8, 9; 0.15, 0.21, 0.38, 0.25; masses 1, 2, 3, 4; 1.00, 0.65, 2.10, 0.58 of moon. 6, 7 orbits angle 29° and 28° to Jupiter's; 8, 32° or more properly, 148°. 9, inclination of orbit 156° to planets. Saturnian; Hyperion, mass., 1.86 × moon; Phoebe, eccentricity 0.17; inclination 5°3′ or 174°7′. Uranus; orbits inclined 82°.2 to ecliptic, in that plane revolve backward = 97°.8 to ecliptic and direct motion. Neptune; inclination, 40°. All other satellites are small eccentricity, mass and inclinations. The mass of Saturn's ring < 1/1000000 Saturn's mass.

TABLE 762.—Diameters of the Planets

From critical review by Rabe, Astron. Nach., 234, 154, 1928. Solar parallax taken as 8".800, earth's radius 6738 km. Order of p.e. \pm 0.04 for planets.

	At		Diamete:	r		At		Diamete	r
Object	dis- tance	ap- parent	km	earth = 1	Object	dis- tance	ap- parent	km	earth = 1
MercuryVenusEarthMars: EquatPolarJupiter: EquatPolar	44	7".09 17.40 17.60 9.47 9.42 38.09 35.76	5140 12620 12756 6860 6820 143600 134800	0.403 .989 1.000 .538 .535 11.26	Saturn: Equat Polar Outer ring Crepe ring Uranus Neptune		17.44 15.77 40.29 20.83 3.84 2.28	1 20600 109000 278500 144000 53400 49700	9.45 8.55 21.84 11.29 4.19 3.89

Cas-

well's

law

10.6

15.3

27.2

61.2

83.1

83.1

187.0

712.0

10.6

15.3

27.2

Bode's

law

16

52

100

196

772

10

16

New

law

15

28

66

78

78

190

703

10

15

2 I

28

TABLE 763.—Planetary and Satellite Distances as Connected by Bode's Law; Later Developments

It is notable that the planetary and satellite distances from their primaries approximately follow Bode's law or some modification thereof. Bode's law: Write a series of fours; to the 2nd add 3; to the ard, 3×2 or 6; to the 4th, 6×2 , or 12; etc., doubling the added number each time. Jeans states: "It is note than likely that Bode's law is a mere coincidence" (1929). Penniston (Science, 71, 513, 1930) suggests idding to the square of the integer the integer itself, thus assuming that the terms differ from the square of the integers by a progressively changing amount. See also Caswell, Science, 60, 384, 1929; Armellini, Scientia, 12, 1, 1918; 1, 1922.*

2	System	Satellite	Relative distance		Bode's law	Cas- well's law	System
5	Sun	Mercury	3.87	3 6	4	3.82	Saturn
	4.4	Venus	7.23	6	7	6.80	4.4
	4.6	Earth	10.0	10	10	10.6	4.4
	6.6	Mars	15.2	15	16	15.3	6.6
	* *	Ceres	27.7	28	28	27.2	6.0
	14	Jupiter	52.0	5.5	52	51.4	14
	14	Saturn	95.3	91	100	95.6	**
	4.6	Uranus	191.0	190	196	187.0	**
		Neptune	300.0	300	*::	310.0	**
1	64	"Pluto" {		406	388	408.0	
Ι.				435	388	435.0	Uranus
1	Mars	Phobos	1.00	I		1.70?	
1		Deimos	3.22	3	4	3.82	
J	upiter	V	2.71	3 3 6	4	3.82	
	11	I_	6.27		7	6.80	
1	44	II	10.0	10	10	10.6	
	**	III	15.8	15	16	15.3	* See
	**	IV	27.9	28	28	27.2	note b
	**	VI	169.4	171		170.0	Bode's
	64	VII	173.0	171	196	170.0	Blagg,
	**	VIII	348.5	351	1	357.0	Astron
		IX	371.0	378	388	382.0	

* See also Narlicker, Philos. Mag. 12, 67, 1931, with te by Larmor. Sir G. Darwin was inclined to regard ode's Lawa subject for serious discussion. See Turner, agg, M. N. R. A. S. 73, 414, 1913. See Pruett, Pop. stron. 39, 360, 1931.

Relative

distance

10.0

12.8 15.8

20.3

28.0

66.0

78.1

70.0 190.0

698.0

10.0

14.1

22.8

30.4

Satellite

Enceladus

Mimas

Tethys

Rhea Titan Themis

Hyperion

Iapetus

Phoebe

Ariel Umbriel

Titania

Oberon

Dione

TABLE 764.—Albedos

The albedo, according to Bond, is defined as follows: "Let a sphere S be exposed to parallel light. Then ts albedo is the ratio of the whole amount reflected from S to the whole amount of light incident on it. n the following table, m = the stellar magnitude at mean opposition; g = magnitude it would have at ull phase and unit distance from earth and sun; $\sigma =$ assumed mean semi-diameter at unit distance; $\sigma =$ ratio of observed brightness at full phase to that of a flat disk of same size and same position, illumiated and viewed normally and reflecting all the incident light according to Lambert's law; g depends n law of variation of light with phase; albedo = pq. Russell, Astrophys. Journ., 43, 173, 1916.

Albedo of the earth: A reduction of Very's observations by Russell gives 0.45 in close agreement with

he recent value of Aldrich of 0.43 (see Aldrich, Smithsonian Misc. Coll., vol. 69, no. 10, 1919).

Object	m	g	σ	Þ	q	Visual albedo	Color index	Photo- graphic albedo
Moon Mercury Venus Mars Jupiter Saturn Uranus Neptune	-12.55 -2.94 -2.12 -4.77 -1.85 -2.29 +.89 +5.74 +7.65	+0.40 88 06 -4.06 -1.36 -8.99 -8.67 -6.98 -7.06	2.40" 3.45 3.45 8.55 4.67 95.23 77.95 36.0 34.5	0.105 .164 .077 .492 .130 .375 .420 .42	0.694 .42 .72 I.20 I.II I.5: I.5: I.5:	0.073 .069 .055 .59 .154 .56: .63: .63:	+1.18 + .78 +1.38 + .50 +1.12	0.051

TABLE 765.—Equation of Time

The equation of time when + is to be added to the apparent solar time to give mean time. When the lace is not on a standard meridian (75th, etc.) its difference in longitude in time from that meridian out be subtracted when east, added when west to get standard time (75th meridian time, etc.). The quation varies from year to year cyclically, and the figure following the \pm sign gives a rough idea of his variation.

Min. Sec.		Min. Sec.		Min. Sec.		Min. Sec.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	May 1 2 15 4 June 1	+4 2 ± 7 +0 8 ± 5 -2 54 ± 3 -3 49 ± I -2 28 ± 3 +0 8 ± 4	July 1 15 Aug. 1 15 Sept. 1 15	+3 3I ± 5 +5 42 ± 3 +6 9 ± 3 +4 24 ± 5 +0 2 ± 7 -4 4I ± 9	Oct. 1 15 Nov. 1 15 Dec. 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLES 766-769 SOLAR RADIATION

TABLE 766 .- The Solar Constant

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.932 calories = mean 696 determinations 1902-12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute; from λ max. = 2930 and max. = 0.470 μ , 6230°; from total radiation, $J = 76.8 \times 10^{-12} \times T^4$,

5830°.

TABLE 767.—Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from em = eoam, where em is the intensity of solar energy after transmission through a mass of air m; m is unity when the sun is in the zenith, and approximately = sec. zenith distance for other positions (see table 778); eo = the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

ч	Т	ransmis		ef-				Intens	ity Sola	ar Ene	rgy A	rbitrary Unils	,		
Wave length	Wash- ington	Mount Wilson	Mount	One mile nearest earth		Mount † Whitney			Wilson 1675 n				ashing sea-leve		
	₩ a	Mo	M° W	Ö	m = 0		m = 1	2	4	6	m = 1	2	3	4	6
0.30 .32 .34 .36 .38 .40 .46 .50 .60 .70 .80 I.50 2.00	(.380) .560 .690 .733 .779 .858 .886 .922 .938	(.460) .520 .580 .635 .676 .729 .832 .862 .900 .950 .970 .980 .976* .970*	(.550) .615 .692 .741 .784 .809 .887 .919 .940 .964 .976 .975 .965	.562 .768 .829 .850 .866 .903 .915 .941	54 111 232 302 354 414 618 606 504 364 266 166 63 25	30 68 160 224 278 335 548 557 474 351 260 162 61 23	25 58 135 192 239 302 514 522 454 346 258 163 61* 24*	11 30 78 122 162 220 428 450 409 329 250 160 60* 23*	2 8 26 49 74 117 296 334 331 297 235 154 57* 21*	2 9 20 34 62 205 248 268 268 221 147 55* 19*	134 232 426 441 393 312 236 153 59 23	51 130 294 323 306 268 209 141 55 21	19 73 203 237 238 230 185 130 52	7 41 140 174 185 197 164 120 49	3 13 67 94 112 145 145 102 43 14

Transmission coefficients are for period when there was apparently no volcanic dust in the air. * Possibly too high because of increased humidity towards noon.

† Altitude 4420 m.

TABLE 768 .- The amount of Solar Radiation in different sections of the spectrum, ultra-violet, visual infra-red. Calories

Wave len	gth.		Mou	ınt Whi	tney.			Mount	Wilson		,	Washin	gton.	
μ μ 0.00 to 0.45 0.45 to 0.70 0.70 to ∞ 0.00 to ∞		.31 .71 .91	.25 .67 .87 1.78	.19 .62 .85	. 16 . 58 . 82 1. 56	.13 .54 .80	.23 .65 .69	. 16 . 57 . 68 1.42	.12 .51 .66	.00 .45 .63	.13 .53 .69	.06 .40 .62	.04 .30 .57	.02 .24 .53

TABLE 769 .- Distribution of intensity (Radiation) over the Solar Disk (These observations extend over only a small portion of a sun-spot cycle.)

Wave length.	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ
	D 323	0.386	0 433	0.456	0.481	0.501	0.534	0.604	0.670	0.699	0.866	1.031	1.225	1.655	2.097
Fraction Radius, 0.00 0.40 0.75 0.875 0.92 0.95	144 128 120 112 99 86 76 64 49	338 312 289 267 240 214 188 163 141	456 423 395 368 333 296 266 233 205	515 486 455 428 390 351 317 277 242	511 483 456 430 394 358 324 290 255	489 463 437 414 380 347 323 286 254	463 440 417 396 366 337 312 281 254	399 382 365 348 326 304 284 259 237	333 320 308 295 281 262 247 227 210	307 295 284 273 258 243 229 212 195	174 169 163 159 152 145 138 130	111 108 105.5 103 99 94.5 90.5 86 81	77.6 75.7 73.8 72.2 69.8 67.1 64.7 61.6 58.7	39·5 38·9 38·2 37·6 36·7 35·7 34·7 33·6 32·3	14.0 13.8 13.6 13.4 13.1 12.8 12.5 12.5

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906.

TABLE 770.—The Solar Constant,* Decade Means (See Tables 771 and 772)

Decade	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929
Jan. 1		1.948	1.967	1.953	1.946		1.943	1.939	I.944 I.943 I.933	1.938	1.931	1.941
Feb. 1 2 3		1.962 1.951	1.958 1.954	1.952	1.911 1.947	1.934 1.951	1.938 1.943	1.951	1.938 1.939 1.929	1.936 1.946	1.947 1.941	1.937 1.925
Mar. 1		I.950 I.942	1.959 1.948	1.954 1.940	1.949 1.939	1.929 1.936	1.947 1.944	1.941 1.936	1.941 1.948 1.932	 1.944	1.950 1.945	1.932 1.931
Apr. I		I.943 I.957	1.948 1.956	1.951 1.941	1.930 1.937	I.934 I.928	1.942 1.948	1.945 1.950	I.927 I.937 I.939	1.941 1.945	1.946 1.940	1.932 1.942
May I		1.953 1.921	1.950 1.961	1.946 1.939	I.924 I.925	I.934 I.935	I.944 I.948	1.946 1.950	1.937 1.938 1.942	1.947 1.944	1.943 1.951	1.936 1.941
June 1		I.957 I.938	I.943 I.934	1.933 1.936	1.910 1.913	1.918 1.934	1.957 1.956	1.943 1.943	1.939 1.946 1.945	1.950 1.943	1.947 1.948	1.938 1.932
July 1		1.951 1.961	1.945 1.940	1.960 1.957	1.904 1.913	1.934 1.928	1.946 1.951	1.952 1.954	1.942 1.949 1.944	1.949 1.942	1.943 1.942	1.935 1.931
Aug. I	1.955 1.945	1.961 1.942	1.930 1.927	1.944	1.919	I.942 I.940	1.950 1.940	1.949 1.941	1.945 1.942 1.942	1.942 1.941	1.943 1.937	1.931 1.932
Sept. 1	1.942 1.946	1.938 1.942	1.951 1.944		1.931	1.948 1.947	1.941 1.950	1.956 1.946	1.942 1.940 1.943	1.940 1.942	1.938	1.926 1.928
Oct. I	1.951	1.947	1.942 1.950	1.959 1.969	1.926 1.929	I.942 I.944	I.953 I.949	1.942 1.949	1.938 1.937 1.929	I.945 I.944	1.930	1.928 1.934
Nov. 1 2 3	1.928	1.958	1.951 1.946	1.953 1.949	1.929 1.935	1.935	1.948 1.951	1.944	1.931 1.926 1.930	1.945 1.943	1.924 1.932	1.932
Dec. 1 2 3	1.962	1.944 1.949	1.957 1.957	1.956 1.937	1.912 1.916	1.942	I.942 I.947	1.944 1.945	1.935	1.949 1.935	1.930 1.924	1.941
	1											

TABLE 771.—The Solar Constant, Monthly and Yearly Means

Month	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929
Jan.		1.943	1.964	1.955	1.948	1.946	1.942	1.943	1.941	1.938	1.940	1.938
Feb.		1.949										
Mar.		1.941										
Apr.		1.953	1.952	1.944	1.931	1.932	1.946	1.947	1.934	1.944	1.942	1.937
May		1.940	1.953	1.943	1.925	1.936	1.948	1.950	1.939	1.945	1.947	1.938
June		1.955	1.939	1.939	1.914	1.928	1.956	1.945	1.944	1.946	1.948	1.934
July		1.954	1.945	1.956	1.912	1.936	1.946	1.951	1.944	1.945	1.942	1.933
Aug.	1.954	1.953	1.930	1.944	1.919	1.941	1.940	1.945	1.944	1.941	1.937	1.931
Sept.	1.944	1.939	1.947	1.969	1.923	1.947	1.946	1.950	1.942	1.944	1.927	1.928
Oct.		1.953										
Nov.	1.941	1.953	1.948	1.951	1.929	1.942	1.948	1.946	1.929	1.944	1.929	1.936
Dec.	1.962	1.950	1.957	1.953	1.915	1.933	1.942	1.945	1.932	1.942	1.926	1.940
Yearly												
mean		1.949	1.948	1.952	1.927	1.937	1.946	1.946	1.938	1.943	1.938	1.934

^{*}In calories/cm²/min. at earth's mean distance from sun (Smithsonian Astrophysical Observatory).

TABLES 772-774

TABLE 772.—The Solar Constant, 1930, 1931

		Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year
1930	I	1.938	1.933	1.940	1.941	1.945	1.949	1.945	1.946	1.942	1.939	1.943	1.945	1.942
Decades	2	1.937	1.939	1.937	1.938	1.948	1.944	1.949	1.947	1.929	1.941	1.943	1.948	1.942
	3	1.929	1.942	1.940	1.941	1.942	1.941	1.947	1.943	1.939	1.939	1.949	1.945	1.941
Means											1.940			1.942
1931	I	1.944	1.942	1.932	1.948	1.936	1.943	1.954	1.948	1.946	1 939	1.943	1.945	1.943
Decades	2	1.944	1.945	1.945	1.948	1.948	1.948	1.949	1.948	1.948	1.941	1.943	1.948	1.946
	3		1.941	1.948	1.936	1.947	1.946	1.943	1.943	1.945	1.939	1.949	1.945	1.944
Means											1.940			1.945

TABLE 773.-Wolf's Observed Sun-Spot Numbers. Annual Means

Sun-spot number = $k(10 \times \text{number of groups and single spots observed} + \text{total number of spots in groups and single spots}). <math>k$ depends on condition of observation and telescope, equaling unity for Wol with 3-in. telescope and power of 64. Wolf's numbers are closely proportional to spotted area on sun 100 corresponds to about 1/500 of visible disk covered (umbras and penumbras). Periodicity: mean 11.13, extremes, 7.3 and 17.1 years. Terr. Magn. 30, 83, 1925, monthly means 1749–1924. See A. Wolfe in Astronomische Mitteilungen and Zeitschrift für Meteorologie, daily and monthly values. See als Bull. for Character Figures of Solar Phenomena, Int. Astron. Union, Eidgen, Zurich, for spots and othe solar phenomena. Also, Terr. Magn. and Atm. Elec., 33, 223, 1928, for central spots, 1917 to 1927.

					, 00,	0, ,	_			
Year	0	I	2	3	4	5	6	7	8	. 9
1750	83	48	48	31	12	10	10	32	48	54
1760	63	86	61	45	36	21	II	38	70	54 106
1770	101	82	66	35	31	7	20	92	154	126
1780	85	68	38	23	10	24	83	132	131	118
1790	90	67	60	47	41 48	2 I	16	6	<i>4</i> 8	7
1800	14 0	34	45	43	48	42	28	10	8	2
1810	0	I	5	12 2 8	14 8	35	46	41	30	24
1820	16	7 48	4 28	2		17	36	50	62	24 67
1830	71				13	57	122	138	103	86
1840	63	37	24	II	15	40	62	98	124	96
1850	66	64	54	39	21	7	4 16	23	55	94
1860	96	77	59	44 66	47	30		7	37	74 6 6
1870	139	III	102	66	45	17	ΙΙ	12	3	6
1880	32	54	60	64	45 64 78	52	25	13	7	
1890	7	36	73	85	78	64	42	26	27	I 2
1900	10	3 6	5	24	42	63	54	62	48	44
1910	19		4	24 <i>I</i> 6	10	47	57	104	18	64
1920	38	26	1.4	6	17	44	64	69	78	65
1930	36	2 I	II.							

Note—The sun's apparent magnitude is -26.5, sending the earth 90,000,000,000 times as much light as the star Aldebaran. Its absolute magnitude is +4.8.

Ratio of total radiation of sun to that of moon about 100,000 to I light " " " " " 400,000 to I Langley.

TABLE 774.—Duration of Sunshine

Declination of sun:	-23° 27′	-15°	-10°	-5°	o°	+5°	+10°	+15°	+20°	+23° 27′
Approx.	Dec. 22	Feb. 9 Nov. 3	Feb. 23 Oct. 19	Mar. 8 Oct. 6	Mar. 21 Sept. 23	Sept. 10 Apr. 3	Apr. 16 Aug. 28	May 1 Aug. 13	May 20 Jan. 24	June 21
Latitude	h m	h m	h m	h m	h m	h m	h m	lı m	h m	h m
o°	12 07	12 07	12 07	12 07	12 07	12 07	12 07	12 07	12 07	12 07
100	11 32	11 45	11 53	12 00	12 07	12 14	12 21	12 29	12 36	12 43
20°	10 55	II 22	11 38	11 53	12 07	12 22	12 37	12 52	13 08	13 20
30°	10 13	10 57	II 2I	II 44	12 08	12 31	12 55	13 19	13 46	14 05
40°	9 19	10 25	11 01	11 35	12 09	12 43	13 17	13 53	14 32	15 01
50°	8 04	9 43	10 34	II 23	12 10	12 58	13 48	14 40	15 38	16 23
55°	7 09	9 12	10 15	11 14	12 12	13 09	14 09	15 13	16 26	17 23
60°	5 52	8 34	9 52	11 04	12 13	13 23	14 36	15 57	17 31	18 52
65°	3 34	7 39	9 19	10 50	12 16	13 43	15 15	17 01	19 19	22 03
70°		6 10	8 31	10 29	12 19	14 11	16 15	18 50		
75°		2 37	7 04	9 55	12 26	15 00	18 05			
80°			3 10	8 46	12 38	16 44				

For more extensive table, see Smithsonian Meteorological Tables

ATMOSPHERIC TRANSPARENCY AND SOLAR DATA

TABLE 775 .- Transmission of Radiation Through Moist and Dry Air

This table gives the wave-length, λ ; a the transmission of radiation by dry air above Mount Wilson (altitude = 1730 m. barometer, 620 mm.) for a body in the zenith; finally a correction factor, a_w , due to such a quantity of aqueous vapor in the air that if condensed it would form a layer r.m. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering. a_w is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e.g. for altitudes greater than 1000 meters. If B =

the barometric pressure in mm., w, the amount of precipitable water in cm., then $a_B=a^{6\overline{20}}~a_w^w.$ w is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p. 359, 1913) other-

wise by formula derived from Hann, $w = 2.3e_w 10^{-22000}$, e_w being the vapor pressure in cm. at the station, h, the altitude in meters. See Table 449 for long-wave transmission.

λ (μ) a a _w	.360 (.660) .950	.384 .713 .960	.413 .783 .965	.452 .840 .967	.503 .885 .977	·535 .898 .980	.905	.929	.938	.720 .970 .988		1.74 .990 .990
a _W	.950	.900	.903	.907	.977	.900	-9/4	.970	.903	.900	.990	.990

Fowle, Astrophysical Journal, 38, 1913.

TABLE 776.—Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Flint Island (sea-tevel)

Zenith dist. of zone			0-150	15-35°	35-50 ⁰	50-60 ⁰	60-70 ⁰	70-80°	80-900	-	Sun
108 X mean ratio sky/sun Mt. Wilson			1500*	400	520	610	660	700	720	-	-
" Flint Island			115	122	128	150	185	210	460	-	-
Ditto X area of zone Mt Wilson			51.0	58.8	91.5	87.2	104.3	117.6	125.3	-	636
" Flint Island			3.9	17.9	22.5	21.4	29.2	35.3	80.0	-	210
Altitude of sun			-	-	50	150	25°	35°	4720	65°	8220
Sun's brightness, cal. per cm.2 per min.			-	-	-533	,900	1.233	1.358	1.413	1.496	1.521
Ditto on horizontal surface			-	-	.046	.233	-524	.780	1.041	1.355	1.507
Mean brightness on normal surface sky	$< 10^{8}$	/sui	1 -	-	423	403	.385	365	346	3 26	310
Total sky radiation on horizontal cal. pe	r cm	1.2 .		1						-	_
per m.			-	-	.056	.110	.162	.189	.205	.225	.240
Total sun + sky, ditto			-		.102	-343	.686	.969	1.246	1.581	1.747

^{*} Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the island and on the mountain, respectively, were 636 × 10-8 and 210 × 10-8, on a horizontal surface, 305 × 10-8 and 77 × 10-8; for the whole sky, at normal incidence, 0.57 and 0.20; on a horizontal surface 0.27 and 0.07. Annals of the Astrophysical Observatory of the Smithsonian Institution, vols. If and III, and unpublished researches (Abbot).

TABLE 777.—Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson Zenith distance about 50°.

	μ	μ	μ	μ	μ	μ	С	D	ь	F
Place in Spectrum Intensity Sunlight Intensity Sky-light Ratio at Mt. Wilson Ratio computed by Rayleigh Ratio observed by Rayleigh		0.457 232 986 425 -	0.491 227 701 309	0.566 211 395 187 -	0.614 191 231 121 -	0.660 166 174 105 -	102 102 102	143 164 168	246 258 291	316 328 369

TABLE 778 .- Air Masses

See Table 767 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	00	20 ⁰	40 ⁰	6o ⁰	7º ⁰	75°	80°	85°	88°
Secant Forbes Bouguer Laplace Bemporad	1.00 1.00 1.00 1.00	1.064 1.065 1.064	1.305 1.306 1.305	2.000 1.995 1.990 1.993 1.995	2.924 2.902 2.900 2.899 2.904	3.864 3.809 3.805	5.76 5.57 5.56 5.56 5.60	11.47 10.22 10.20 10.20 10.39	28.7 18.9 19.0 18.8 19.8

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913: the others, Radau's Actinometric, 1877.

TABLE 779 SOLAR DATA

58 Elements Known in the Sun's Atmosphere

Taken, with additions and corrections, from St. John's Revision of Rowland. Papers of Mount Wilson Observatory, vol. 3 (Carnegie Inst. Publ. 396, 1928).

			tonne s	Atomic state								
Reversing layer. Chromosphere or spots.‡								Band lines				
No. lines	Max.	Ele.+	No. lines	Max.	No. lines	Maz int	Locus	Source	Locus			
6	40	†			30 30 1	100 40 4	Chr { Chr Spots	OH; NH; CH MgH; CaH	D, S Spots			
9 1 5	$0 \\ -2 \\ 2$	De+	3	1				BO CN; CH; (C-) NH; CN OH; TiO §	Spots D, S D, S Spots			
22 25 8 22 3	30 30 20 12 -1	Mg+ Al+? Si+	2 I 5	0 -2 2				MgH	Spots			
115	0 15	Ca+	12	200				СаН	Spots			
74 769 470 859 440	2 7 4 5 7			5 12 5 5 6	5 16 8 1	2 3 1 -1	Spots Spots Spots Spots	TiO §	Spots			
3157 773 611 26 10	40 6 20 10 3 -1	Fe+ Co+ Ni+	131 10 17	6 0 2	2	0	Spots					
5 22 47 126 12 38 24 20 21	0 -1 0 -1 -2 -2 0 -2 0	Sr+ Y+ Zr+ Cb+ Mo+	7 69 238 6 8	8 3 2 -1 0	2 4 4 7	-1 5 0	Spots Spots Spots Spots					
2 3	-1 -2 -3N				I	— I	Spots					
6	-2	Nd+ Sa+ Eu+ Gd+ Dy+ Er+	107 67 ? 5 ? 15 12	-1; -1; -1; 0 -1 0 -1								
	lines 6	6 40 1 0 2 -3 9 0 1 -2 5 2 22 30 8 20 22 12 3 -1 5 0 115 15 74 2 769 7 470 4 859 5 440 7 3157 40 26 10 10 3 2 -1 5 0 22 -1 47 0 126 -1 12 -2 38 -2 21 0 2 0 1 -1 2 -2 3 -3 N 2 1	6 40 1 0 † 2 -3 Be+ 9 0 1 -2 5 2 22 30 25 30 Mg+ 8 20 22 12 Si+ 3 -1 5 0 115 15 Ca+ 74 2 Sc+ 74 2 Sc+ 740 4 Cr+ 470 4 Cr+ 470 7 3157 40 73 6 611 20 26 10 10 3 2 -1 5 0 22 -1 Sr+ 47 0 Y+ Cb+ Mn+ Fe+ Cb+ Mo+ 126 -1 12 -2 38 -2 1 Ba+ La+ Ce+ Pr+? Nd+ Sa+ Eu+ Gd+ Dy+ Er+? Yb+ Hf+ 6 -2 3 1 2 -2	6 40 1 0 † 2 -3 Be+ 3 9 0 1 -2 5 2 22 30 25 30 Mg+ 2 22 12 Si+ 5 3 -1 5 0 115 15 Ca+ 12 74 2 Sc+ 71 769 7 Ti+ 300 470 4 V+ 140 859 5 Wn+ 18 3157 40 Cr+ 168 440 7 Mn+ 18 3157 40 Fe+ 131 73 6 C0+ 10 10 3 2 -1 5 0 22 -1 Sr+ 7 47 0 Y+ 69 126 -1 Sr+ 238 Cb+ 6 38 -2 24 0 20 20 1 -1 2 -2 3 -3N 2 1 Ba+ 9 La+ 100 Ce+ 249 Pr+? 18 Nd+ 107 Sa+ 67 Eu+? 5 Gd+? 15 Dy+ 12 Er+? 2 Yb+? 2 Hf+ 12	6 40 1 0 † 2 -3 Be+ 3 1 9 0 1 -2 5 2 22 30 25 30 Mg+ 2 0 8 20 Al+? I -2 Si+ 5 2 3 -1 5 0 115 15 Ca+ 12 200 74 2 Sc+ 71 5 769 7 Ti+ 300 12 470 4 V+ 140 859 5 Cr+ 168 5 440 7 Mn+ 18 6 73 6 611 20 26 10 10 3 2 -1 5 0 22 -1 Sr+ 7 8 47 0 Y+ 69 37 126 -1 12 -2 38 -2 21 0 20 1 -1 2 -2 3 -3N 2 1 Ba+ 9 8 La+ 100 I Ce+ 249 0 Pr+? 18 -1 Nd+ 107 0 Sa+ 67 -1 Eu+? 5 I Gd+? 15 0 Dy+ 12 0 Er+? 2 -1 Yb+? 2 -1 Hf+ 12 -1	6 40 1 0 † 2 -3 Be+ 3 1 9 0 1 -2 5 2 22 30 25 30 Mg+ 2 0 8 20 Al+? I -2 Si+ 5 2 3 -1 5 0 115 15 Ca+ 12 200 74 2 Sc+ 71 5 769 7 Ti+ 300 12 470 4 V+ 140 5 859 5 Cr+ 168 5 440 7 Mn+ 18 6 73 6 Co+ 10 0 10 3 2 -1 5 0 22 -1 Sr+ 7 8 4 47 0 Y+ 69 3 2 -1 5 0 22 -1 Sr+ 238 2 7 47 0 Y+ 69 3 2 -1 38 -2 1 Sr+ 238 2 7 1	6 40 1 0 † 2 -3 Be+ 3 I 9 0 1 -2 5 2 22 30 25 30 Mg+ 2 0 8 20 25 30 Mg+ 2 0 8 20 21 12 Si+ 5 2 3 -1 5 0 115 15 Ca+ 12 200 74 2 Sc+ 71 5 769 7 Ti+ 300 12 470 4 V+ 140 5 440 7 Mn+ 18 6 73 6 Co+ 10 0 10 3 2 -1 5 0 116 20 26 10 10 3 2 -1 5 0 122 -1 5 0 22 -1 5 0 124 0 20 1 1 -1 2 -2 38 -2 21 0 20 1 1 -1 2 -2 3 -3N 2 I Ba+ 9 8 La+ 100 I Ce+ 249 0 Pr+? 18 -1 Nd+ 107 0 Sa+ 67 -1 Eu+? 5 I Gd+? 15 0 Dy+ 12 0 Er+? 2 -1 Yb+? 2 -1? Hf+ 12 -1 6 -2 3 1 2 -2	6 40 1 0 † 2 -3 Be+ 3 1 9 0 1 -2 5 2 22 30 25 30 25 30 8 20 25 30 115 15 5 0 115 15 5 0 115 15 769 7 Ti+ 300 12 470 4 V+ 140 5 859 5 Cr+ 168 5 440 7 Mn+ 18 6 773 6 Fe+ 131 6 773 6 Fe+ 131 6 773 6 Ni+ 17 2 26 10 10 3 2 -1 5 0 22 -1 Sr+ 7 8 47 0 Ni+ 17 2 Sr+ 69 3 2 -1 12 -2 3 8 -2 24 0 20 -2 21 0 20 1 -1 2 -2 3 -3N 2 1 Ba+ 9 8 La+ 100 1 Ce+ 249 0 Pr+? 18 -1 Nd+ 107 0 Sa+ 67 -1 Eu+? 5 1 Gd+? 15 0 Dy+ 12 0 Dy+ 12 0 Er+? 2 -1 Yb+? 2 -1? Hf+ 12 -1 6 -2 3 1 2 -2 Hf+ 12 -1	6 40 1 0 † 1 0 † 2 -3 Be+ 3 1 9 0 11 -2 5 2 22 30 25 30 Mg+ 2 0 8 20 Al+? I -2 22 12 Si+ 5 2 3 -1 5 0 115 15 Ca+ 12 200 74 2 Sc+ 71 5 8 1 Spots 74 2 Sc+ 71 5 8 1 Spots 769 7 Ti+ 300 12 16 3 Spots 440 7 Mn+ 18 6 773 6 Co+ 10 0 0 10 3 2 -1 5 0 22 -1 Sr+ 7 8 4 -1 Spots 440 7 Ni+ 17 2 26 10 10 3 2 -1 5 0 22 -1 Sr+ 7 8 4 -1 Spots 47 0 Ni+ 17 2 26 10 10 3 2 -1 5 0 22 -1 Sr+ 7 8 4 -1 Spots 47 0 Ni+ 17 2 26 10 10 3 2 -1 5 0 26 10 10 3 2 -1 5 0 27 12 Sr+ 7 8 4 -1 Spots 7 0 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots 1 -1 Spots 7 0 Spots			

^{*\(\}lambda\) 5875.618 He often present (absorption) over disturbed regions of disk. \(\tau\) \(\lambda\) 4685.81 He+1N, present in chromosphere. \(\tau\) Only in chromosphere or spots. \(\xi\) Possibly TiO2 in red. \(\tau\) Present in disk and spots.

TABLE 780 SOLAR DATA

Quantitative Estimates of Composition of Solar Atmosphere

(Taken from Russell, Astrophys. Journ., 70, 11, 1929.)

In the *chromosphere* a deep layer of gases is held up by radiation pressure. The (gas) pressure, p, and density, d, increase slowly downwards as gravity gradually balances the radiation pressure. At the base p may be about 10⁻⁷ atmosphere. At lower levels is the *reversing layer* in which gravity is dominant, p increases rapidly, and temperature remains nearly constant at 5000° K., as long as the gases are transparent. When p < 0.01 atm. general absorption by electron collisions make gas hazy. Opacity gains greatly with p, passes rapidly to the *photosphere*. When opacity important, temperature rises (radiative equilibrium, Schwarzschild, Eddington). Observed photospheric temperature = mean value of the radiating layers (Russell, Stewart, Astrophys. Journ. 59, 197, 1924).

The presence and absence of lines of different elements depends on the excitation potential. Almost all the elements for which this is less than 5 volts appear. There are very few other lines except the strong ones of H. The level of ionization in solar atmosphere is such that those of 8.3 volts are 50% ionized.

ones of H. The level of ionization in solar atmosphere is such that those of 8.3 volts are 50% ionized.

Na, Mg, Si, K, Ca, and Fe are 95% of the whole mass. Number of metallic atoms above cm² of surface = 8 × 10²0. 80% are ionized. Mean atomic weight = 32, total mass 42 mg/cm². Even atomic weights 10 times as abundant as odd. Heavy metals (Ba onwards) little less abundant than those beyond Sr. Hypothesis that heavy metals sink below photosphere thus not confirmed. Metals Na-Zn far most common. Most elements not appearing in the table would hardly be expected to show spectral lines under solar conditions.

Nonmetal abundance difficult to estimate. O is as abundant by weight as all metals together. Atmosphere = 60 H by vol., 2 He, 2 O, 1 of metallic vapors, 0.8, free electrons. Temperature of reversing layer =

5600° K.; pressure at its base 0.005 atm.

In the following table, S_0 = whole no. neutral atom/cm²; S_i , no. ionized; T, total no. both stages of ionization; Q, total mass/cm² = $T \times$ at. wt. :, ::, indicate less accuracy; ?, origin doubtful.

Comparison of above values with values of Payne by a very different process show good agreement except for H (Payne 12.9, Russell, 11.5, the latter uncertain) and K, (Payne 5.3, Russell 6.8; the former probably too low).

TABLES 781 AND 782

SOLAR DATA

TABLE 781.—Abundance of Elements in Sun, Earth, and Meteorites

(Taken from Russell, Astrophys. Journ., 70, 66, 1929.)

^{1:} indicates less accuracy.
2? indicates doubtful origin.

f indicates doubtful origin.

TABLE 782.—Abbot-Priest Solar Energy Curve (Sea-Level)

STELLAR DATA

TABLE 783.—Constellation Abbreviations (Astron. Union, 1922)

AndromedaAnd	CircinusCir	LacertaLac	Pisces AustrPsA
Antlia Ant	ColumbaCol	LeoLeo	PuppisPup
ApusAps	Coma Beren. Com	Leo MinorLMi	PyxisPyx
AquariusAgr	Corona Aust. CrA	LepusLep	Reticulum Ret
AquilaAqI	Corona BorCrB	Libra Lib	SagittaSge
AraAra	CorvusCrv	LupusLup	SagittariusSgr
Aries.`Ari	Crater Crt	LynxLyn	ScorpiusSco
AurigaAur	CruxCru	LyraLyr	Sculptor ScI
BoötesBoo	CygnusCyg	MensaMen	ScutumSct
CaelumCae	Delphinus Del	Microscopium, Mic	SerpensSer
Camelopardalis. Cam	DoradoDor	Monoceros Mon	SextansSex
Cancer Cnc	DracoDra	Musca Mus	TaurusTau
Canes VenaticiCVn	EquuleusEqu	NormaNor	Telescopium Tel
Canis MajorCMa	Eridanus Eri	OctansOct	TriangulumTri
" Minor CMi	FornaxFor	OphiuchusOph	" AustrTrA
CapricornusCap	GeminiGem	OrionOri	TucanaTuc
CarinaCar	GrusGru	PavoPav	Ursa Major UMa
Cassiopeia Cas	Hercules Her	Pegasus Peg	" Minor UMi
CentaurusCen	HorologiumHor	Perseus Per	VelaVel
CepheusCep	HydraHya	PhoenixPhe	VirgoVir
CetusCet	HydrusHyi	PictorPic	VolansVol
ChamaeleonCha	IndusInd	PiscesPsc	VulpeculaVul

TABLE 784.—Occurrence and Abundance of Elements in the Stars

(Shapley, 1931. Payne, Stellar atmosphere, 1925. I, II, III, IV denote the occurrence of the neutral, once, twice, and thrice ionized atom. For the sun see Tables 780 and 781.)

At. no., ele- ment	State in star	Abund- ance	no el	.t. o., e- ent	State in star	Abund- ance	n e	ut. D., le- ent	State in star	ne el	ut. o., le- ent	State in star
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Ma 12 Mg 13 Al 14 Si 15 P 16 S 17 CI	I II III IV II ? HI !II IV III !II III III III !II !II !II	12.9 10.2 1.9 6.4 8.0 7.1 7.5 6.9 7.5	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	A K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Sc		5.3 6.7 6.0 4.9 5.8 6.5 6.7 	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Br Kr Rb Sr Y Zr Cb Mo Ma Ru Rh Pd Ag Cd In Sn Sb		52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	Te I Xe Cs Ba La Ce Pr Nd II Sa Eu Gd Tby Ho Er	II ?

Elements of higher atomic number than 68 have not been noted.

^{*} Abundance 3.5. † Abundance, 3.0.

STELLAR SYSTEMS

(See Shapley, Harvard Reprint 68, 1931, Harvard Explorations, Science, 74, 207, 1931.)

The solar neighborhood distance of 50 light-years, explored chiefly through the motions of nearby stars. A large majority are of less than solar luminosity, most below naked eye visibility. Only 40% of the stars known to be nearer than 16 light-years are brighter than the 6th magnitude. Exploring the solar neighborhood therefore involves a search for telescopic dwarf stars. Any body 1/100 of sun's mass within 1,000 astronomical units (.015 light year) would be detected by its disturbance on Neptune and Uranus even if invisible (Russell). Nearest known star is 4 light-years distant (Proxima centauri, m=11, M=15.5).

Region of brighter stars extending 500 light-years. The great majority of naked-eye stars lie in this region, though some of unusually high intrinsic luminosity are farther away. It includes probably 500,000 telescopic stars. Studied by proper motions, trigono-

metric and spectroscopic parallaxes, and photometry.

The local system.—Its diameter is several thousand light-years. There is good but not incontrovertible evidence of a localized star cloud in our part of the galaxy. Its population is in the tens or hundreds of millions of stars. Shapley considers it may be comparable in dimensions and composition with Magellanic clouds or a typical spiral nebula. Investigated principally statistically by spectra, magnitudes, and positions, and explored by spectroscopic parallaxes, star counts, and structure of variable stars and galactic clusters.

The Milky Way with a radius much greater than 5000 light-years. The stars within 5000 light-years of the sun are a trifling part of the galactic system outlined by the globular clusters and Milky Way clouds. The stars are so remote that proper motions and spectroscopic analyses hopelessly fail. Statistical counts are of some help in the nearer parts. But most of our knowledge comes from eclipsing binaries, long-period variables, and Cepheids. The period-luminosity relation for Cepheid variables is the key

to practically all distances > a few 1000 light-years.

The Clouds of Magellan, nearly 100,000 light-years distant, nearest of all external galaxies and the most easily studied. Great advantage; all of its varied manifestations are seen at practically the same distance. These phenomena include gaseous nebulae, star clusters, giant and supergiant stars, some 1500 known Cepheids in the Larger Cloud. In this cloud 750 stars brighter than — 5.0 abs. mag. and over 200,000 brighter than the 0.0 have been estimated. The following gives an indication of the classes of stars measured in and in front of the Larger Cloud and adjacent field.

Class	0	В	A	F	G	К	M
Cloud	8	28	66	153	771	768	385
Field Difference	8	0 28	56	35 118	206 565	172 596	77 308
<u> </u>							

The Super-Galaxies, 1,000,000 to 100,000,000 light-years distant. Composed of clusters of extra-galactic nebulae. The relative diameters and brightnesses have been determined for some of the super-galaxies. The most conspicuous is the Coma-Virgo cloud A, a stream of several hundred bright spiral, spheroidal, and irregular galaxies, about 10⁷ light-years distant; its greatest length about ½ this. One of the richest and most distinct super-

galaxies is in Centaurus.

The Meta-Galaxy.—Great irregularity is found in the distribution of the objects exterior to our galaxy—perhaps partly due to obscuring clouds in our system but much attributable to aggregation of galaxies into super-systems and large indefinite streams. We find no evidence that we have approached the limits of a populated universe—no falling off in the number per cubic million light-years. The red-shift in the spectra of distant galaxies may be taken as an observational, relativistic indication of an expanding finite universe, "but so far as the present census of the meta-galaxy goes, the total number of galaxies and the radius of space may both be infinite" (Shapley).

TABLE 786.—Stellar Spectra and Related Characteristics

The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With one unimportant exception, the sequence is linear. According to the now generally adopted Harvard system of classification, certain principal types of spectrum are designated by letters—O, B, A, F, G, K, M, R, S, N, P, and Q—and the intermediate types by suffixed numbers. A spectrum halfway between classes B and A is denoted B5, while those differing slightly from Class A in the direction of Class B are called B8 or B9. In Classes M and O the notation Ma, Mb, Mc, etc., is employed. Classes R and N apparently form a side chain branching from the main series near Class K.

The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way, and the average magnitudes of their peculiar velocities in space, referred to the center of gravity of the naked-eye stars as a whole, all show important correlations with the spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The correlation in the other two cases, though statistically important, is by

no means as close.

Examples of all classes from O to M are found among the bright stars. The brightest star of Class N is of magnitude 5.3; the brightest of Class R, 7.0. About 1% show bright lines.

TABLE 787.—The Harvard Spectrum Classification

Class	Principal spectral lines (dark unless otherwise stated)	Example	Number brighter than 6.25, mag.	Per cent in galactic region	Color index	Effective surface tempera- ture, K.	Mean peculiar velocity, km/sec.
0	Bright H lines, bright						
В	spark lines of He, N, O, C H, He, spark lines of N and O, a few spark	γ Velorum	20	100	-0.3	• •	
A	lines of metals H series very strong,	ε Orionis	696	82	-0.30	20,000°	6
F	spark lines of metals.	Sirius	1885	66	0.00	11,000°	10
G G	H lines fainter. Spark andarclines of metals Arc lines of metals,	Canopus	720	57	+0.33	7,500°	14
К	spark lines very faint	The sun	609	58	+0.70	5,000°	15
M	spectrum faint in violet Bands of TiO ₂ , flame	Arcturus	1719	56	+1.12	4,200°	17
	and arc lines of metals	Antares	457	54	+1.00	3,100°	17
R	Bands of carbon, flame		407	34	11.00	3,100	1/
S	and arc lines of metals Bands ZrO ₂ , metal flame and arc lines; in S _e , bright H and	B. D. -10° 5057	0	63	+1.7	3,000°	15
	metallic lines of high excitation. Latter are always long						
N	period variables Bands of carbon,	η ₁ Gruis	0			3,000°?	
Р	bright lines, very little violet light Isolated bright lines,	19 Piscium	8	87	+2.5	2,300°	13
Q	gaseous nebulae Novae (see Russell,						
×	Dugan and Stewart, Astronomy, p. 780).						

Compiled mainly from the Harvard Annals. Temperatures based on the work of Wilsing and Scheiner (see also pp. 632-3). Radial velocities from Campbell. Data for classes R and N from Curtis and Rufus. The peculiar velocities are in the radial direction (towards or from the sun). The average velocities in space should be twice as great. The "galact ic region" here means the zone between galactic latitudes ± 30°, and including half the area of the heavens, 06°% of the stars of known spectra belong to classes A, F, G, K, 99,7°% including B and M (Innes, 1910). Henry Draper Catalogue, o vols., 1918-24, with later volumes give positions, magnitudes and spectra of more than 225,000 stars. See also Catalogue of Bright Stars. Schlesinger, Yale Univ. Obs., 1930.

TABLE 788.—Values of Log (no. stars)/(sq. degree) Brighter Then Photographic Magnitude, m, at Stated Galactic Latitudes

171	+90° -	⊦40° +	-20°	+10°	0°	-10°	-20°	-40°	-90°	suc	tio necessi	ve	Ra nos o° to	. at
										+90°	o°	-90°	+90°	-90°
5.0	8.15 8	.24 8.	37 8	.49	8.77	8.65	8.50	8.25	8.07				4. I	5.0
6.0	8.59 8			.95	9.22		8.94			2.8	2.8	3.5	4.3	4.0
7.0	9.02 9				9.64		9.35			2.7	2.6	2.9	4.1	3.6
8.0	9.44 9				0.09		9.79			2.6	2.8	2.6	4.5	3.9
9.0	9.86 0				0.55		0.23			2.6	2.9	2.6	4.9	4.3
10.0	0.25 0				1.02		0.67			2.5	3.0	2.5	5.9	5.0
12.0	1.01 1				1.49		1.11			2.4	3.0	2.5	7.2 8.7	5.9 6.8
13.0	1.38 1				2.39		1.95			2.4	2.9	2.5	10	8.1
14.0	1.70 1				2.82		2.34			2.1	2.7	2.0	13	11
15.0	1.98 2				3.22		2.72			1.9	2.5	1.7	17	16
16.0	2.26 2				3.60		3.07			1.9	2.4	1.7	22	22
17.0	2.53 2	.90 3.	36 3	.64	3.96	3.76	3.40	2.92	2.48	1.9	2.3	1.7	27	30
18.0	2.79 3	.15 3.	67 3	.97	4.32	4.10	3.68	3.18	2.70	1.8	2.3	1.7	34	42
19.0								(0		[1.6	2.0			
20.0								(Sea	rs)	1.5	1.9			
21.0	l									1.4	1.9			

Taken from Publ. Groningen, van Rhijn, 1929, which see for far more detailed values for both latitude and longitude. An excess of stars, especially S. of o° latitude, between longitudes 240° and 60°, and a deficit elsewhere (Sears, Mt. Wilson Contributions, 301, 346, 347, also Publ. Astron. Soc. Pacific, 40, 303, 1928).

TABLE 789.—Numbers and Equivalent Light of the Stars

The total of starlight is a sensible but very small amount. This table by Chapman, shows that up to the 20th magnitude the total light emitted is equivalent to 687 Ist-magnitude stars, equal to about the hundredth part of full moonlight. If all the remaining stars are included, following the formula, the equivalent addition would be only three more Ist-magnitude stars. The summation leaves off at a point where each additional magnitude is adding more stars than the last. But, according to the formula, between the 23d and 24th magnitudes there is a turning point, after which each new magnitude adds less than before. The actual counts have been carried so near this turning point that there is no reasonable doubt of its existence. Given its existence, the number of stars is probably finite, a conclusion open to very little doubt. Van Rhijn estimates the total number of stars at 30,000,000,000. Equivalent to 1440 stars of 1st visual magnitude in zenith, 1674 outside earth's atmosphere. Density of radiation = 0.8 × 10-13 erg/cm³. Millikan's cosmic radiation density = 4 × 10-15 erg/cm³.

Magnitude,	Number	Equiva- lent 1st mag. stars	Totals to magni- tude, m	Magnitude,	Number	Equiva- lent 1st mag. stars	Totals to magni- tude, m
	a Carinae a Centauri 8 27 73 189 650 2,200 6,600 22,550	11 6 2 14 17 18 19 26 35 42 56 65	33 50 68 87 113 148 190 246 311	9.0-10.0	174,000 426,000 961,000 2,020,000 3,960,000 7,820,000 14,040,000 25,400,000 54,600,000	69 68 60 51 40 31 22 16 10 6	380 448 508 559 599 630 652 668 678 684 687

Practically all the stars visible to the naked eye lie within 1000 parsecs of the sun, and most of them are more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within two or three hundred parsecs of the galactic plane; but along this plane the star-filled region extends far beyond 1000 parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

TABLE 790.—The First-Magnitude Stars

No.	Star	m Mag.	Spec- trum.	R.A. 1900	Dec. 1900	Annual proper motion,	P.A. of μ	π Parallax	Abs, mag,	Radial velocity km.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Achernar. Aldebaran‡ Capella†‡ Rigel*† Betelgeuse†§. Canopus Sirius* Procyon* Pollux§. Regulus‡. α Crucis* β Crucis† Spica† β Centauri† Arcturus. α Centauri* Antares‡† Vega§. Altair§. Deneb§. Fomalhaut	0.6 1.1 0.2 0.3 0.6–1.2 -0.0 -1.6 0.5 1.2 1.3 1.1 1.5 1.2 0.9 0.2 0.3 1.2 0.3 1.3 1.3 1.3	B5 K5 G B8 Ma F A F5 K B8 B1 B2 B1 K G Ma A A A 5 A 2 A 3	1 ^h 34.0 ^m 4 30.2 5 9.3 5 9.7 6 49.8 6 21.7 6 40.7 7 34.1 7 39.2 10 3.0 112 21.0 113 19.9 13 56.8 14 11.1 14 32.8 16 23.3 18 33.6 19 45.9 20 38.0 22 52.1	-57° 45' +16 18 +45 54 -8 19 +7 23 -52 38 -16 35 +5 29 +28 16 +12 27 -62 33 -59 53 -59 53 -60 25 -26 13 +38 41 +8 36 +44 55 -30 9	0.094" 203 437 -001 029 018 1.316 1.242 -625 -247 -048 -055 -041 -2.282 3.680 -034 -055 -041 -365 -065 -065 -065 -065 -065 -066 -065 -065	108° 160 168 135 74 56 204 214 269 240 229 219 209 281 192 36 54 180 117	+0.051" +.062 +.075 +.075 +.007 +.019 +.0376 +.064 +.033 +.047 +.008 +.037 +.037 +.037 +.039 +.0	-0.9 -0.0 -0.5 -5.5 -2.7 -6.7 -1.2 +3.0 +0.2 -1.1 -0.5 +4.7 -1.3 -0.5 +4.7 -0.1 +2.5 -7.2 +2.0	 +55.1 +30.2 +22.6 +21.8 -7.4 -3.5 +3.9 -9.1 +7.0 +13.0 -7.0 -3.0 -3.0 -3.0 -3.1 -3.3 -3.3 -3.3 -4.0 +6.7

^{*} Visual binary. † Spectroscopic binary. ‡ Pair with common proper motion. § Wide pair probably optical Mass relative to sun of (7) is 3.1; of (8), 1.5; of (16), 2.0. For description of types, see Table 787 or Annals of Harvard College Observatory, 28, p. 146, or more concisely 56, p. 66, and 91, p. 5. The light ratio between successive stellar magnitudes is $\sqrt[4]{100}$ or the number whose logarithm is 0.4000, viz., 2.512. The absolute magnitude of a star is its magnitude reduced to a distance corresponding to 0.1" parallax = $5+5\log \pi$.

TABLE 791.—Stars Known to be Within Five Parsecs of the Sun

The number of stars (doubles counted as singles) per cubic parsec in the neighborhood of the sun has been estimated as 0.0451 (Kapteyn, Van Rhijn, Astron. Journ., 52, 32, 1920). This gives as expectance of 24 within 5 parsecs and 12 nearer than 4. The numbers actually known are 28 and 19. It seems improbable that we should already know practically all within these limits. (Van Maanen, Mt. Wilson, 1930.) See note bottom page 620.

See Luyten, Ann. Harvard Obs., 85, 1923, for stars within 10 parsecs.

See Eusten, Ann. Harvard Obs.	, 03, 1923, 1	or ottaro wren	m to par	0000			
Star	Right Ascension 1900	Declination 1900	App. mag.	Parallax	Abs. mag.	Spectrum class	Proper motion
α Centauri A α " Bα C (Barnard's star) C Wolf 359. Lalande 21185. α Canis Majoris A α " BB A Barnard's Star. BD - 12°4523. A α Canis Minoris A α Canis Minoris A α Canis Minoris A β T Ceti B Zc 5h 243. 61 Cygni A δ1 Cygni A B ε Eridani E B ε Indi Groombr. 34 A Krüger 60 A A B Lacaille 9352 Van Maanen's star Lacaille 8760 Gou 32416 WB 10h 234 Lalande 25372 Oe Arg 17415-6 Wolf 562 Groombr. 1618 BD + 43°4305 A A W Tidani A A	h m 14 32.8 14 32.8 14 32.8 14 32.8 17 52.9 10 51.6 10 57.9 6 40.7 11 12.0 16 24.8 7 34.1 7 34.1 1 39.4 5 7.7 21 2.4 21 2.4 3 28.2 18 41.8 18 41.8 21 55.7 0 12.5 0 12.5 22 24.5 22 25.5 10 14.2 23 59.5 10 14.2 13 40.7 17 37.0 15 14.2 10 5.3 22 42.5 4 10.7 4 10.7 4 10.7	-60 25 -60 25 -60 25 -60 25 + 4 28 + 7 37 +36 38 -16 34 -16 34 -17 22 -2 24 + 5 29 + 5 29 + 3 29 + 38 15 -9 48 -16 28 -14 32 -17 12 +57 20 +58 20 +68 26 +68 26 +7 49 +7 49	0.33 1.70 (10.5) 9.67 13.5 7.60 0.48 (12.5) 9.5 0.48 (12.5) 3.65 8.3 5.57 6.28 3.81 9.33 10.01 4.74 4.798 11.05 9.64 11.34 7.44 12.34 6.65 9.2 9.6 9.2 10.7 6.82 9.2 9.6 9.2 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.74 6.11 14.9 13.32 16.5 10.5 1.19 11.21 2.99 15.0 6.16 10.8 7.99 6.21 11.7 12.4 7.08 7.09 13.26 11.7 13.40 9.48 14.38 8.44 11.1 16.0 11.2 10.8 11.2 10.8 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11	G6 K4 (M) Mb M4e Ma A0 (A) M5 F3 K2 K2 K7 K8 K1 Mb (M) K5 Ma (M) M5 Ma (M) M5 M0 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M2 M1 M1 M3 M4 M4 M5 M4 M5 M4 M5 M4 M5 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6	3,66 3,66 (3,66) (10,30 4,87 4,77 1,32 1,32 2,69 1,24 1,24 1,24 1,92 8,70 5,21 1,24 1,92 2,28 2,28 2,28 2,28 4,67 2,28 2,28 4,67 4,02 3,01 3,53 1,45 1,40 1,40 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,5
Our sun			-26.72		+ 4.85	Go	

SPECTROSCOPIC DATA

(Mostly derived by permission from Russell, Dugan, and Stewart, Astronomy, Ginn & Co., 1917.)

TABLE 792.—Percentage of Stars of Various Spectrum Classes (Henry Draper Catalogue)

Visual magnitude	(Bo to B5)	(B8 to A3)	(A5 to F2)	(F5 to Go)	K (G5 to K2)	M (K5 to M8)
Brighter than 2.2 2.25 to 3.24		28 10	7 10	I0 I2	15 22	12 12
3.25 to 4.24	1б	22	7	12	35	8
4.25 to 5.24 5.25 to 6.24	· · · · · 5	27 38	12 13	12 10	30 28	6
6.25 to 7.24 7.25 to 8.24		30 - 26	12 11	14 16	33 37	7 8
8.25 to 9.24 Below 9.25		27 33	10 8	2I 25	34	7 4
All together		29	9	21	33	6

Among 6000 brighter than 6.25 m only 20 are recorded at Harvard as Class O, 8 of N. The brightest stars of Class O are γ Velorum (2.22 m) and ζ Puppis (2.27 m); of Class N, 19 Piscium (5.30 m); only about 70 of Class R and 20 of S known. Brightest R, $-10^{\circ}5057$, (7.04 m); S, 2 Gruis (6.65 m).

TABLE 793.—Galactic Concentration of Various Spectrum Classes (Henry Draper Catalogue)

Above 7.0 mag. B	A	F	G	K	M	All
40° to 90° 0.2	6.6	3.0	3.4	10.2	1.5	24.9
0° 10.8	21.1	5.1	5.1	15.1	3.9	61.1
7.0 to 8.25 mag. 40° to 90° 0.1 0° 18.9	6.6 75.8	9.5 13.6	16.4 20.9	32.8 53.9	6.1 13.6	71.5 196.7

Star density per 100 sq. degrees. O stars entirely confined to Milky Way. N stars also strong galactic concentration.

TABLE 794.—Distribution of Binaries as to Spectrum Class

Brighter 8.75 mag. No. All stars 98675 Visual pairs 3939 Eclipsing pairs 132 Visual orbits 110		B9—A ₃ 24 32 58 16	A ₅ —F ₂ 11 14 12 15	F ₅ —G ₂ 19 28 8 47	G ₅ —K ₂ 35 21 3 17	K5—M 8 1 1
--	--	-------------------------------	---	---	---	---------------------

TABLE 795.-Masses of Spectroscopic Binaries, Sun = 1

Class O8	Bo to B2	B3 to B5	B8 to A3	As to F3	F3 to G5
No. of stars	8	8	22	12	12
Inferior limit M ₁ sin ³ i 75	12.2	4.9	2.3	1.4	1.2
" " M ₂ sin ³ i 63	9.4	3.5	2.0	I.I	1.1
Ratio84	.77	.7 I	.87	·79	.89

Note.—16 Urs. Maj., spec. binary, F8 dwarf, RA $9^h 6^m$, dec. $+61^\circ 51'$, annual p. m. 0.032'', M+4, π 0.06, rad. veloc. -15.0 km/sec. in about 10^6 yrs will pass within 2 parsecs of sun. Barnard's star and α Centauri are only two stars known closer than 2 parsecs. They will pass the sun distant 1.1 and 0.93 parsecs. Kapteyn's star was distant 1.6 parsecs 10,000 years ago; 270 Sagittarii, 1.4 parsecs, 35,000 years hence. (Pop. Astron. 32, 324, 1924.)

RUSSELL DIAGRAM

Absolute magnitudes (ordinates) of 3,915 stars of different spectrum types (abscissae) determined by the spectroscopic method by Dr. W. S. Adams and his associates. (Courtesy

-3 . . : : ----LATE-TYPE DWARFS Mo ----+5 +6 +8 +9 +10 +11 +12

of Mt. Wilson Observatory, 1932.) The diagram shows the division of types G, and later, into giants (high luminosity stars) and dwarfs (low luminosity) with few or no intermediate stars. It resembles an inverted 7, and with the addition of much new material confirms fully that first drawn by Russell in 1913.

The stars may be divided into dwarfs, giants and supergiants. In each class the absolute magnitude progresses nearly linearly with spectral type except for the coolest stars; the direction of change is opposite for the dwarfs from that for the giants and super-giants. The luminosity of the dwarfs decreases regularly with advancing type (reduced surface temperature); it drops abruptly for the coolest. Among the giants and probably supergiants the the luminosity increases with decreasing temperature at least as far as the early subdivisions of type M.

of The sequence normal congiants, spicuous in types G, K, M, is almost missing for F5 and Go, the luminous stars of these latter types being Tf supergiants. sequence is present in type A stars, they are intermingled with the dwarf sequence; the two sequences appear to cross in near type Fo. If so, the more luminous stars of types

earlier than A should be those of the main dwarf series sequence. The tendency of both giants and dwarfs, especially giants, to group around definite values of absolute magnitude is remarkable. About 90 per cent of the Ko stars fall within limits of less than one magnitude. The hottest stars extend dwarf sequence up and to the left (Table 797). The white dwarfs belong to the lower left corner (Table 828), F to A, M 15 ±.

(Strömberg, Mt. Wilson, Astrophys. Journ., 72, 111, 1930; 73, 40, 1931; 74, 110 and 342, 1931. See also Wilson, Astron. Journ., 41, 169, 1932.)

Statistical discussion of distribution of absolute magnitudes among the various spectrum groups. Figures marked** relate to supergiants,* normal giants,† dwarfs,*† normal giants and dwarfs, and refer to the groups of which the numbers thus marked are maxima. The subscripts are the percentages in the various groups. The first line of the table shows the number of stars used in the discussion for the column, but the figures in the columns are reduced so that the distribution is for 1000 stars in each group.

									_		
Num- ber	124	246	152	351	416	558	622	601	1058	375	539
Abs. Mag.	Bo to B2	В3	В5	B8 to B9	Ao	A ₂ to A ₅	Fo to F9	Go to G9	Ko to K2	K3 to K9	М
-9.2 8.8	1 7										
8.4	11										
8.0	122**										
7.6	9										
7.2	5										
6.8	ő										
6.4	0	3			3						
6.0	2	3 8 ₂ **			7						
5.6	1418**	4			7 8 ₄ **				0	4	I
5.2	10	ŏ			8		2	3	0	10	12
4.8	2	17	8	4	6	I		9	0	14	24
4.4	38		32	17	3	8	3 6	14	2	15,**	289**
4.0	80	43 53 ₁₈ **	5017**	33	o	19	14	22	8	13	23
3.6	116	53	50	3815**	0	28	189**	27	14	11	4
3.2	230	16	26	32	0	3215**	15	2719**	20	8	o
2.8	26280 **	0	2	22	0	29	13	25	25	12	0
2.4	107	16	4	6	0	22	16	31	2614**	2 I	2
2.0	39	120	103	0	0	9	3	27	23	33	26
1.6	13	228	23283*	0	1	I	0	2	6	46	74
1.2	I	22980*	219	22	5	0	0	0	10	66	116
0.8	4	125	131	210	13	0	0 .	0	23	III	148
-0.4	20*	64	86	248 ₈₅ *	34	I	I	I	99	171	15791*
0.0	13	19	37	206	167	34	23	88	235	18590*	149
+0.4	4	2	13	100	25496*	132	56	23849*	26978*	112	135
0.8			6	43	249	189	91	133	III	58	62
1.2			1	17	162	19285*†	12045*	30	24	36	22
1.6				2	53	160	109	10	17	25	5
2.0					22	98	46	32	14	15	
2.4		• •			5	28	38	48	15	7	
3.2	• •					8	100 139 ₄₅ †	5323,9*†	186†*	3	• •
3.6						5		50	14	0	• •
4.0						3	111	38	4	0	• •
4.0						I	52	36	0	0	
4.4							19	32 18	0	0	
5.2							5		1	0	
5.4						• •	0	5	3	2	
5.8							U	,	3 4 ₁ †	3	
6.2									4	6	
6.6									4 I	72†	
7.0									0	5	
7.4									o	I	
										-	

		Summary	(mean abs. r	nagnitude)		
Spectrum	No. stars	Super- giants	Bright giants	Normal giants	Faint giants	Dwarfs
Mo to Mo	247	-4.5(9)		-0.2(91)		
K3 " K9 Ko " K2	*378 1058	-4.5(7)	-2.5(14)	-0.1(91) +0.3(78)	+2.7(7)	+6.7(2) +6.1(1)
Go " G9	601	-3.0		+0.4(49)	+2.8(23)	+4.2(9)
Fo "F9 A2 "A5	622	-3.0		+1.2(25)		2(46)
A2 " A5	478	-3.2	(15)		+1.:	2(85)

The small percentage of dwarf stars is due to the fact that their apparent magnitudes in most cases are fainter than the set limit of 6.o.

TABLE 798 .- Brightness of the Stars

Stellar magnitudes give the apparent brightness of the stars on a logarithmic scale,—a numerical increase of one magnitude corresponding to a decrease of the common logarithm of the light by 0.400, and a change of five magnitudes to a factor of 100. The brightest objects have negative stellar magnitudes. The visual magnitude of the Sun is — 26.7; of the mean full Moon, — 12.5; of Venus at her brightest, — 4.3; of Jupiter, at opposition, — 2.3; of Sirius, — 1.6; of Vega, +0.2; of Polaris, +2.1. (The stellar magnitude of a standard candle 1 m distant is — 14.18.) The faintest stars visible with the naked eye on a clear dark night are of about the sixth magnitude (though a single luminous point as faint as the eighth magnitude can be seen on a perfectly black background). The faintest stars visible with a telescope of aperture A in. are approximately of magnitude $9 + 5 \log_{10} A$. The faintest photographed with the 100-inch reflector at Mt. Wilson are of about the 22nd magnitude. A standard candle, of the same color as the stars, would appear of magnitude +0.8 at a distance of one kilometer.

The actual luminosity (absolute magnitude) is the stellar magnitude which the star would have if placed at a distance of ten parsecs. The faintest star at present known (Innes), a distant companion to a Centauri, has the (visual) absolute magnitude + 15.4, and a luminosity 0.00006 that of the sun. The brightest so far definitely measured, β Orionis, has (Kapteyn) the abs. mag. —5.5 and a luminosity abs. mag. probably > —8.

The absolute magnitudes of 6 planetary nebulae average 9.1; average diameter, 4000 astronomical units (Solar system to Neptune = 60 astr. units), van Maanen, Proc. Nat. Acad. Sci. 4, p. 394, 1918.

TABLE 799 .- Giant and Dwarf Stars

The stars of Class B are all bright, and nearly all above the absolute magnitude zero. Stars of comparable brightness occur in all the other spectral classes, but the inferior limit of brightness diminishes steadily for the "later" or redder types. The distribution of absolute magnitudes conforms to the superposition of two series, in each of which the individual stars of each spectral class range through one or two magnitudes on each side of the mean absolute magnitude. Absolute magnitude supergiants — 2 to — 8; giants roughly o to +1; dwarfs A, I to 2; F. 2 to 4; G, 4 to 6; K. 6 to 9; M, 9 to 11. The two series overlap in Classes A and F, are fairly well separated in Class K, and sharply so in Class M. Two very faint stars of Classes A and F fall into neither series.

The majority of the stars visible to the naked eye are giants since these, being brighter, can be seen at much greater distances. The greatest percentage of dwarf stars among those visible to the eye is found in Classes F and G. The dwarf stars of Classes K and M are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

naked eye.

TABLE 800 .- Masses and Densities

Stars differ less in mass than in any other characteristic. The most massive star known is the brighter Stars differ less in mass than in any other characteristic. I he most massive star known is the brighter component of the spectroscopic binary B.D. 6'1309, 86 times the sun's mass, 113 times its luminosity, and spectrum Oe. The smallest known mass is that of the faint component of the visual binary Krueger 60, whose mass is 0.15, and luminosity 0.0004 of the sun's, and spectrum M. Note: Plaskett notes giant double star 184 sun's mass.

The giant stars are in general more massive than the dwarfs. According to Russell (Publ. Astron. Soc. America, 3, 327, 1917) the mean values of Binary systems are:

Spectrum B2 Ao Ratio of mass to Sun 12 6.5 F5 giant K5 giant F2 dwarf G2 dwarf K8 dwarf 3.0

The densities can be determined only for eclipsing variables. Stars of Classes B and A have densities averaging about one tenth that of the sun and a relatively small range; Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.000002 (W Crucis).

range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.000002 (W Crucis).

The surface brightness probably diminishes by at least one magnitude for each step along the Harvard scale from B to M. It follows that the dwarf stars are, in general, closely comparable with the sun in diameter, while the stars of Classes B and A, though larger, rarely exceed ten times the sun's diameter. The redder giant stars must be much larger, and a few, such as Antares, may have diameters exceeding that of the earth's orbit. The densities of these stars must be exceedingly low.

Arranged in order of increasing density, the stars form a single sequence starting with the giant stars of Class M, proceeding up that series to Class B, and then down the dwarf series to Class M.

Star	Type	Mag.	Diam.	Parallax	Mass	Density	Brightness	Diameter (km)
Antares Betelgeuse a Hercules Aldebaran Arcturus Rigel Capella Vega Sirius Procyon Our Sun Krueger 60 Prox. Cent. Barnard's	Map Ma Mb K5 K0 B8 G0 A0 A0 F5 G Mb N	1.2 0.9 3.5 1.5 0.2 0.3 0.2 0.1 - 1.6 0.5 - 26.5 9.3 11.0	".038 .044 .015 .027 .023 .0019 .0082 .0026 .0057 .0048 9600011 .0017	".013 .018 .007 .075 .005 .007 .071 .094 .376 .328 —	30. 30. 30. 10. 10. 30. 4.6 5. 2.5 2. 1. .42 .055	.0000010 .0000012 .0000020 .00017 .0007 .0012 .006 .21 .62 .60 1. 4.0 4.0	1600. 1450. 710. 36. 78. 13500. 78. 86. 26. 5. 1. 0.002. .0006.	440,000,000 378,000,000 320,000,000 53,000,000 40,000,000 42,000,000 2,300,000 2,300,000 1,301,000 580,000 333,000 249,000

Computed by Plaskett, Publ. Ast. Soc. Pac. 1922; Interferometer measurements, Antares, 0.024", 30,600,000 km; Betelgeuse, 0.047", 386,000,000 km. (1921).

TABLE 801.—Parallax and Mean Apparent Magnitude

(Reprinted by permission from Russell, Dugan, and Stewart, Astronomy, Ginn & Co., 1927.)

Magnitude	Mean parallax	2772	P	m	P
I	0".083	6	0".0120	11	0′′.0018
2	.056	7	.0082	12	.0013
3	.038	8	.0056	13	.0009
4	.026	9	.0039		
5	.018	10	.0027		

TABLE 802.—Spectrum Type and Mean Absolute Magnitude

(Trumpler, Bull. Lick Obs., No. 420, 1930.)

	Mean absolu	te magnitude		D (Mean absolu	te magnitude	
		branch			branch	Gia	
Type	Vis.	Phtgr.	Type	Vis.	Phtgr.	Vis.	Phtgr.
0	-4.0	-4.3	A ₃	+2.0	+2.1		
Во	-3.1	-3.4	A5	+2.3	+2.5		
Bl	-2.5	-2.8	Fo	+2.9	+3.2	+0.5	+0.9
B2	- ı . š	-2.1	F2	+3.2	+3.5		. ,
Вз	-1.2	- I.4	F5	+3.6	+4.0	+ .5	+1.0
B5	– .8	-1.0	F8	+4.2	+4.7		
B5 B8	2	3	Go	+4.5	+5.1	+ .5	+1.2
Bo	+ .3	+ .3	G5	+5.0	+5.7	+ .5	+1.4
Ao	+ .9	+ .9	Ko	+6.2	+7.0	+ .5	+1.6
A ₂	+1.7	+1.7				_	
-		7 3.5	33771 (C T	1 1 75 1.1	Α .

Based on Adams, Joy, Mt. Wilson Contr. 199, 244, 262; Lundmark, Publ. Astron. Soc. Pacific, 34, 1922; Malmquist, Meddel. Lund. II, 32, 1924; Hess, Seeliger Festschrift, p. 265, 1924.

TABLE 803.—Reduction of Visual to Bolometric Magnitude

Eddington (M. N. 177, 605) gives the corrections from visual to bolometric magnitudes for the cooler stars. For the hotter stars the data are not so certain. The values are to be added algebraically to the absolute visual magnitudes.

TABLE 804.—Summary, Elements of Solar Motion (Campbell, 1928)

(Publ. Lick Obs., vol. 16, 1928.)

Charlier a	o, 269.3° δο	$+30.8^{\circ}$	v ₀ , 19.0 km/sec.	1986 r. v.; 4182 p. m.;	646π
Strömberg	272.1	+29.5	20.6	Space veloc. 1026, A6-	М.
Wilson	270.8	+27.1	19.0	2748, 2305, r. v. and p.	
Campbell, Moore	270.58	+29.24	19.65	2149 r. v. B-M stars	-
Mean	270.70	+29.16	19.55	• •	į.
Dwarf stars decide	dly higher s	pace velo	city than giants	(Strömberg).	
Class B (Oo5-B5) v	$_{0} = 22.7 \text{ km}$	sec. K = -	+4.9 K (G5-K4	$v_0 = 18.0 \text{ km/sec. K} =$	+0.3
A (B8-A3)	18.6	-	+1.7 M (K5-M	b) 22.I	+ .7
F (A5-F4)	19.7		+ .3 B-M	•	+1.26
G (F5-G4)	18.6		2		
Dwarfs appear only	in classes	F, G; rem	ove 3 from G, vo	= 16.6 km/sec.	

TABLE 805.—Elements of Solar Motion (Charlier, 1926)

(Charlier, The motion and the distribution of the stars, Mem. Univ., California, vol. 7, 1926)

Radial velocities lead to conclusion stars are receding.
Galactic coordinates of apex.

Туре	No. stars	Galac.	Galac. lat.	Mag.	No. stars	Galac.	Galac.
(4 astr.units/yr.	.). 1986	(rad. v.)), 646 (par	5.0-5.9		20 29 55 37 55 69 s apex.	+22 +16 +17 +24 +23 +24 Galac.

TABLE 806.—Stars of Large Proper Motion

Mag, p, m, spect.	Mag. p. m. spect.
Barnard's. 9.7 10.2 M5 Kapteyn's. 9.2 8.8 M0 Gr. 1830. 6.5 7.0 G5 Lacaille 9352 7.4 6.9 M0 Cordoba 32416. 8.3 6.1 M3 61 Cygni (double) 6.3 5.2 K8 Wolf 359. 13 4.8 Lalande 21185. 7.6 4.8 M2	Wolf 489

In case of multiple stars the magnitudes and spectra of the brightest star are indicated. See Lick Obs. Bull. 344; Harvard Circular 283; also Luyten, Astronom. Journ. 42, 69, 1932. List of stars, p. m. > 0".5 annually. The following stars, Van Maanen's, 3".01, Ross 619, R. A. 8ho6m, Dec. + 92, annual p. m. 5".40, may be added to the above list.

TABLE 807.—Spectrum Class and Proper Motions

(Reprinted by permission from Russell, Dugan, and Stewart, Astronomy, Ginn & Co., 1927.)

Limits of p. m.	0	В	.\	F	G	К	М	N
o".oo to o".o2	13	238	392	97	107	218	48	3
0 .02 to 0 .04	6		533	115	91	327	54	4
o .04 to o .10	I	88	476	23 I	168	393	99	2
0 .10 to 0 .20			160	245	70	242	27	I
0 .20 to 0 .45		I	31	168	56	88	8	
o .45 to o .80			I	46	20	23	I	
0 .80 to 2 .00			I	12	19	13		
Over 2".00				I	6	6		
Mean p. mo'	.22	0".03	0".06	0".17	0".18	0''.12	0".07	0".04
Percentage of stars with								
$\mu > 0$ ".20	O	0.2	5	25	18	10	4	0

TABLE 808.-Equipartition of Energy in Stellar Motions

(Jeans, Nature, 122, 689, 1928.)

Туре.	Mean mass.	Mean velocity.	Mean energy.	Corresponding temperature.
B3 B8.5 A0 A2 A5 F0 F5 G0 G5 K0 K5	12.9 " 12.1 "	14.8 × 10 ⁵ cm/sec. 15.8 " 24.5 " 27.2 " 29.9 " 35.9 " 47.9 " 64.6 " 77.6 " 79.4 " 74.1 "	1.95 × 10 ⁴⁶ 1.62 " 3.63 " 3.72 " 3.55 " 3.24 " 3.55 " 4.07 " 4.57 " 4.27 " 3.39 " 3.55 "	1.0 × 10 ⁶² °K. 0.8 " 1.8 " 1.8 " 1.7 " 1.6 " 1.7 " 2.0 " 2.2 " 2.1 " 1.7 "

"This equality of energy can be attributable only to the gravitational interaction of the stars. For if it were produced by any physical agency, such as pressure of radiation, bombardment by molecules, atoms, or high-speed electrons, this agency, as the last column shows, would have to be in thermodynamical equilibrium with matter at a temperature of the order of 2×10^{62} °K. Since no such temperatures are known the observed equality must be due to gravitational interactions over millions of years. Such evidence suggests a general age of the stars of 5 to 10 million-million years."

TABLE 809.—Stars of Large Space Velocity, Greater Than 300 km/sec.

Right ascension and declination 1900	App. mag- ni- tude	Paral- lax π	Apex of motion Right ascension and declination	Ve- locity km/ sec.	Right ascension and declination 1900	App. mag- ni- tude	Paral- lax π	Apex of motion Right ascension and declination	Ve- locity km/ sec.
8.5 + 2.6 15.8 +61.0 32.4 - 1.7 62.2 +22.1 72.8 +34.1 116.8 +30.9 127.3 -31.2 128.6 + 6.1 135.4 +23.4 138.8 +34.8 145.9 +14.2 153.6 +20.4 176.8 +38.4 180.0 - 1.0 182.0 +10.6 192.0 -18.0 222.0 +19.2	7.4 7.8 9.2 8.9 8.0 8.2 6.4 7.8 {6.3 7.1 3.3 8.1 3.2 6.5 8.4 8.0 8.3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	° ° ° 100 +23 149 -46 121 - 3 97 - 4 150 -11 257 -64 57 +27 213 -59 48 + 3 49 + 6 187 -50 239 -27 243 -49 92 + 7 256 -58 273 -67 55 +66	543 369 362 448 465 333 786 799 371 501 787 420 346 617 408 418 414	223.6 -21.6 226.2 -16.0 226.2 -15.9 227.1 +19.7 234.4 -10.6 245.4 +19.1 246.9 +48.2 262.5 + 6.1 263.5 +18.6 264.1 +37.3 304.4 -21.7 308.6 +42.5 314.8 + 2.6 341.6 +13.4 355.0 +29.0	8.5 9.9 9.4 7.3 7.0 8.5 9.1 8.6 8.2 7.1 8.0 8.9	" 0.009 .034 .034 .006 .012 .002 .003 .008 .002 .013 .012 .003 .003 .003	° ° ° 145 -45 189 -69 187 -69 124 +24 123 - 8 205 -69 220 -42 143 +37 167 -51 302 -35 92 -41 90 +44 228 -51 78 +28 80 + 6	429 590 583 509 479 409 482 395 364 480 306 767 440 466

This and the following table are taken from Katalog von 1937 absoluten Sterngeschwindigkeiten, Klumak, Hecht, Astron. Nachr. no. 5696–7, 238, 116, 1930. See also Wilson, Raymond, Astron. Journ. 40, 121, 1930, 4233 stars.

TABLE 810.—Stars of Small Space Velocity, 5 km/sec. or less

Same reference and designations as for preceding table.

Right ascension and declination 1900	App. mag- ni- tude	Paral- lax π	Apex of motion Right ascension and declination	Ve- locity km/ sec.	Right ascension and declination 1900	App. mag- ni- tude	Paral- lax π	Apex of motion Right ascension and declination	Ve- locity km/ sec.
8.7 +56.0 16.0 +35.1 18.1 -69.4 41.0 +26.9 66.6 +42.8 69.1 +22.8 73.6 +60.3 92.7 +46.4 99.5 +25.2 110.2 -31.6 112.2 +56.0 131.1 +33.7 156.4 +81.0 183.6 +28.7	2.5 2.4 5.0 3.7 6.8 4.3 4.2 6.5 3.2 5.4 6.0 6.2 6.6	" 0.016 .045 .160 .031 .018 .008 .004 .035 .007 .035 .013 .038 .005	345 +34 95 -18 315 - 6 299 -57 306 -61 12 +45 284 + 9 243 -26 230 +26 145 -14 238 - 6 274 +41 271 -44 355 -76	5 3 5 5 4 4 5 5 4 5 4 5 4 5 4 5 4 5 4 5	185.2 +39.6 207.1 +18.4 224.6 -24.9 241.4 +45.2 255.8 +54.6 268.9 +16.8 274.1 +36.0 277.9 +52.3 297.3 - 8.5 297.4 + 8.2 299.3 +27.5 305.0 +31.9 325.4 -16.6 349.0 +37.6	5.2 5.7 3.4 4.3 5.8 4.7 4.3 5.4 6.5 4.9 4.6 3.0 5.8	" 0.021 .010 .025 .014 .041 .011 .042 .007 .010 .038 .030 .016 .114	180 + 9 126 + 7 193 +27 41 +68 157 +15 125 -11 146 - 1 197 -31 16 +50 0 -27 121 + 9 353 +31 245 - 2 330 -56	4 4 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5

TABLE 811.—Motions of the Stars

The individual stars are moving in all directions, but, for the average of considerable groups, there is evidence of a drift away from the point in the heavens towards which the sun is moving (solar apex). The best determinations of the solar motion, relative to the stars as a whole, are given in Table 804. In round numbers this motion of the sun may be taken as 20 km/sec, towards the point R. A. 18 h. o. m., Dec. + 30.0°.

After allowance is made for the solar motion, the motions of the stars in space, relative

to the general mean, present marked peculiarities. If from an arbitrary origin a series of vectors are drawn, representing the velocities of the various stars, the ends of these vectors do not form a spherical cluster (as would occur if the motions of the stars were at random), but a decidedly elongated cluster, whose form can be approximately represented either by the superposition of two intermingling spherical clusters with different centers (Kapteyn's two-stream hypothesis) or by a single ellipsoidal cluster (Schwarzschild), the actual form, however, being more complicated than is indicated by either of these hypotheses. The direction of the longest axis of the cluster is known as that of preferential motion. The two opposite points in the heavens at the extremities of this axis are called the vertices. The components of velocity of the stars parallel to this axis average considerably larger than those parallel to any axis perpendicular to it.

The preferential motion varies greatly with spectral type, being practically absent in Class B, very strong in Class A, and somewhat less conspicuous in Classes F to M, on account of the greater mean velocities of these stars in all directions. The positions of the

vertices are nearly the same for all.

Numerous investigators, from the more distant naked-eye stars, find substantially the same position for the vertex, the mean being R. A. 6 h. 6 m., Dec. $+9^{\circ}$. The nearer stars, of large proper motion, give a mean of 6 h. 12 m., $+25^{\circ}$. (See Strömberg's discussion, cited

above.)

In addition to these general phenomena, there are numerous clusters of stars whose members possess almost exactly equal and parallel motions,—for example, the Pleiades, the Hyades, and certain large groups in Ursa Major, Scorpius, and Orion. The vertices, and the directions toward which these clusters are moving, are all in the plane of the galaxy.

The greatest known p. m. star is Barnard's 9th m. in Ophiuchus, 10.3" per year, position angle 356°, parallax 0.52", radial velocity about -117 km/sec.

The average radial velocity of the globular clusters is 100 km/sec. The globular clusters as a class are approaching the sun. The spiral nebulae are receding. A general card catalogue of radial velocities is kept at the Lick Observatory. See Campbell, Radial velocities of 2600 stars, Lick Obs. Publ., vol. 16, 1928; of 741 stars, Adams, Joy, Strömberg, Sanford—Astroph. Journ. 70, 1929.

TABLE 812.—Known Stars of Radial Velocities Greater Than 100 km/sec.

Star	Mag.	Spectrum class	R. A. h. m.	o Dec.	Proper motion	Velocity km/sec.
(I) RZ Lyrae						+385
(2) Washington 5583	9.1	G5			3.68	+307
(3) Washington 5584	8.9	Go			3.68	+295
(4) S Carinae	var.	Md	10 06	-61 4		+289
(5) Kapteyn's star	9.2	Mo			8.76	+242
(6) Van Maanen No. 2	12.3	dF3	0 45	+ 5 2	3.01	+238
(7) Cord. 5.243		G-K	5 8	-45 59		+225
(8) R Pictoris	var.	Md	4 44	-49 26		+207
(9) A G Wash. 3498	9.4	A7	8 37	-16 4	.56	+200
(10) 41312 Boss 1511	5.2	G5	5 59	-26 17		+184
(11) ω Pavonis	5. I	Ko	18 50	-60 20		+181
(12) Luyten 680	10.8	dGo	21 52	+32 17	-73	-178
(13) BD +34° 2476	9.3	A3sp	13 56	+34 16	-54	- 164
(14) V Urs. Min	7.5-8.7	gM5	13 37	+74 41		- ı <u>5</u> 8
$(15) BD + 35^{\circ} 3659 \dots$	9.5	Fos	19 28	+36 I	.56	-172
(16) BD +6° 2932	9.5	dGı	14 40	+69	.93	-139
(17) AGC 27600	5.3	K5	20 5	-36 21		-130
(18) Barnard star	9.7	M 5			10.25	-117
(19) μ Columbae	5.2	B ₂	5 42	-32 21		+110
(20) BD -3° 3746	9.2	dMo	15 10	- 3 32	.69	-106
(21) β GC 10404 br	8.5	gK4	20 36	+21 27		-106
(22) Cin. 2750	8	dF9	21 9	+23 51	.46	-103
(23) 172 G Puppis	5.4	F8	7 42	-33 59		+102
(24) γ 31 Aquilae	5.2	G ₅	19 20	+11 44		-101
(25) Boss 4188	5.4	Ma	16 22	- 7 22		+101
(26) δ Leporis	3.9	Ko	5 47	-20 53		100

(Tables abridged by permission from Russell, Dugan, and Stewart, Astronomy, Ginn & Co., 1927.)

TABLE 813.—Visual Binary Stars

Burnham's General Catalogue, 1906, 3,665 pairs. Card catalogue kept by Aitken at Lick Observatory. Of stars brighter than 6.5 mag., one in 9 visual double. See also Aitken, The binary stars, McMurtrie, 1918, and New General Catalogue, Carnegie Institution, 1932; Innis, Southern double star catalogue, 1927.

e is eccentricity, a major axis in seconds of arc, A in astronomical units of orbit.

Star	Magnitude	Spectra	Period	е	а	A	$m_1 + m_2$	m_1, m_2	Abs. mag.
α Aur. δ Equ. α CMi. α CMa. ξ UMa. α Cen. ξ Boo. ο 2 Eri. α Gem. η Cas.	0.8, 1.1 5.2, 5.7 0.5, 13 -1.6, 8.4 4.4, 4.9 0.3, 1.7 4.8, 6.7 9.7, 11.4 2.0, 2.8 3.7, 7.4	Go, F5 F5 F5 Ao, F0 F9, G2 Go, K5 G6, K4 Ao, M6 Ao, Ao F8, Ko	0 ^y .285 5.70 39.0 50.0 59.8 78.8 152.8 248 306 346	0.01 ·39 ·32 ·60 ·41 ·51 ·51 ·40 ·56 ·33	0".054 0.27 4.05 7.57 2.51 17.65 4.83 6.89 6.06	0.85 4.5 13.0 20.4 17 23.3 29 34 80 55	7.5 2.8 1.5 3.4 1.4 2.04 1.0 0.64 5.5	4.2, 3.3 1.1, .4 2.44, .96 0.7, .7 1.10, .94 .53, .47 .44, .20 	-0.2, 0.1 4.1, 4.6 3.0, 15.5 1.3, 11.3 5.2, 5.7 4.7, 6.1 5.9, 7.8 11.4, 12.9 1.4, 2.2 5.0, 8.7

TABLE 814.—Spectroscopic Binary Stars

Stars so close not yet visually double. Discovered and studied through shift of spectrum lines (Doppler effect). *i* is inclination of orbit to "plane of sky," *m*, masses of components. The percentage with periods < 10 d: 71 for O and B stars; 64, A; 52, F-G; 16, K-M; periods > 100 d, percentages are 12, 6, 18, 61. See Lick Obs. Bull. No. 355.

Star	App. mag.	Class	Period days	Eccen- tricity	Orbital velocity	Asin i	m ₁ sin³i m ₂ sin³i	$\frac{m^{3}2 \sin^{3}i}{(m_{1}+m_{2})^{2}}$	Abs. mag.
μ Sco	3.1	Вз	1.45	0.05	480	9.5	16.5		-2.2, -1.8
β Per		В8	2.87 688	.004	44	1.73		0.025	-0.7
α Gem B	2.8	Ào	2.93	.13	10 32	93 1.28		.070 .0097	• • • • • • • • • • • • • • • • • • • •
" A	2.0	Ao	9.22	.50	13.6	1.49		.0015	
α Vir	1.2	B2	4.01	.10	126, 208	6.9, 4.4	9.6, 5.8		-2.6, -2.2
+ 6°1309	6.4	08	14.41	.04	206, 247	41, 49	76, 63	13.2	
ζ U MaA	2.4	A2	20.54	.54	69	16.4	1.66	.41	1.4
α Aur	0.2	Go	104	.01	26, 32	37, 46	1.2, 0.9	.18	
ξ U MaA	4.4	Go	665	.41	7.0	58.3		.018	
β Cap	3.2	Go	1375	-44	22.2	377		1.13	

TABLE 815.—Spectroscopic Eclipsing Binaries

Some 200 known. Last column, distance between center of two stars = radius of relative orbit. See Shapley Contr. 3, Princeton Univ. Obs.

Name	Max. mag.	Sp. class	Period days	e	i	Radii sun = 1	Density sun = 1	Masses sun = r	106 km
SW Lac. WU Ma S Ant α Gem C. ν Pup ω Her U Cep β Pes TX Cas. β Aur RS Vul. S Cnc W Cru RZ Oph.	8.6 7.9 6.3 9.0 4.1 4.6 6.9 2.3 9.3 2.1 6.9 8.2 8.7 9.7	G2p G0 F0 M B1p B3 A0 B8 B3 Aop B8 A0 G0p cG0	0.32 .33 .65 .81 1.45 2.05 2.49 2.87 2.93 3.96 4.48 9.48	0.78 .85 .75 .88 .93 .96 .99 .93 .99 .98	73° 76 62 86 74 74 86 82 88 77 79 85 76 87	0.42, 0.46* .78, .78 1.7, 1.3 .58, .58 8.4, 7.7 4.6, 5.4 .20, .32* .21, .24* .57, .30* 2.8, 2.8 4.3, 5.6 .10, .18* .61, .34* .53, .47*	1.6, 1.2 2.1, 1.5 .31, .38 2.6, 2.6 .04, .06 .09, .02 .14, .03 .13, .03 .006, .02 .11, 111 .06, .01 .10, .01 (1.3 × 10-6, 3.	0.69, 0.49 .75, .42 .52, .52 19 19 7.7, 2.9 2.4, 2.4 4.6, I.4 I × 10-6) .001, .0000	1.53 2.30 2.58 8.83 10.3 1.76† 12.3 14.5

^{*} Radii in terms of the relative orbit as unit. † Radius of relative orbit.

PERIODS OF KNOWN BINARY STARS WITHIN 10 PARSECS OF THE SUN

There is no reliable evidence (1930) for favored orientation of planes of double-star orbits. Kepler 3rd law gives $(p, \text{ period in yrs.})^2 = (a, \text{ major axis, astr. units})^3/(M, \text{ in solar masses})$. There is an apparei statistical relation between eccentricity and period, viz.:

Eccentricity....... 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Period (logs)......... .62 .66 .71 .76 .80 .83 .85

Using the mass-luminosity law (see p. 631) Luyten obtains: Log period in yrs. = 1.460 $\log d - 0.48 \log (M)$, in solar air-masses) + 0.168 ± 0.35 where d is observed distance between stars at right angle to line of sight in astronomical units.

From the data of the following groups the median-mean log of the periods (median-geometrical mea of actual periods) is probably about 2.5 (a little more than 300 yrs.). Half of the binaries in space make expected to have periods between the limits of 20 and 4000 yrs.

								-		
Star	d		Mass sun = I			d	Paral- lax	Mass sun = 1	Log	
β 733 ζ Her (Σ 2084) α CMi MIb 4 AB μ Her BC Krü 60 AB α CMa AB ξ UMa AB-CD.	1.2 3 ± 1.26 .74 1.36	.112 .307 .140 .107 .258 .366	1.0 1.2 2.1 1.5 1.6 1.6 1.1 1.6 1.1 1.6 2.45 1.6 3.4 1.7	54 34.5 60 40.2 62 42.2 63 43.0 65 44.3 70 50.0	α Cen AB. 70 Oph Brsb 13 ξ Boo Δ 5 (p Eri) ο ₂ Eri Bc η Cas	6.56 3.60 3.01 9.22 4.52	0.757 .194 .140 .173 .165 .200 .180	2.04 1.7 .8 1.0 2.32 .64 1.4	1.94 2.11 2.18 2.34	87.7 130.? 151 219 248
binaries	δ Tri ξ UMa χ Drac	CD		1.57 1.56 0.11		Bo o UMa A		g p: +	0.13	p: 1.36 1.82
Star		d	Paral- lax π	d Astro- nomical units	Abs. ma	gnitudes		Mass sun =1	Log period	Period years
Lac 353 CD. Brs 5 (P 342y?). Sh 243 AB. Millb 377. K Tuc AB (h344 h 5173. Hu 1128. OΣ 547 AB. Σ 2398. Σ 1280. 61 Cyg (Σ 2758) Sh 190. OΣ 539 AC. Σ 1321. Bo 187. MIb 4 AB-C. μ Her A-BC. Ο2 Eri A-BC. γ Lep (HV 50). Chri 2448. Lpz II 961. K Tuc-Lac 353 & Ret. OΣ 547 AB-C. 36 Oph–30 Sco AW-Ott 5811. α Cen AB-C.	23) AB-CD	. 1.5 4.3 2.3 5.0 5.0 4.8 16 1.6 5.2 21 1.4.2 7.3 9.3 1.9 4.3 9.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	" 111? 1100 174 1115 1117 1141 1100 1100 1100 1100 1100 1100	11 ± 15.7 24.8 20 46 ± 37 48 48 54.4 52 70 78.8 87 119 139 215 305 415 639 670 1060 2875 ± 3100 ± 3300 4200 3210 8860	8.0, 8.0 6.5, 6.5 10, 13 5.2, 7.4 7.2, 13.2 5.6, 14 9.3, 9.4 11.1, 11.7 8.0, 8.7 7.1, 10.2 7.3, 9.7 9.1, 9.1 10.4, 13.0 11.1, + max 3.7, + max 6.0, + max 4.7, 7.3 8.8, 10.5 6.6, 12.2 5.2, 7.4, 7 5.2, 5.5	SS 1.1. SS 0.9. SS 0.64.		1.03 1.00 1.36 .51 1.50 .78 .99 .77 .55 .86 .95 .94 .95 .84 .51 1.40 2.20 1.38 1.58 .76 .91 2.53 1.8 1.11 1.89	1.58 1.91 2.14 2.31 2.51 2.51 2.62 2.68 2.87 2.95 3.01 3.24 3.51 3.64 3.92 4.17 4.35 4.60 5.02 5.13 5.28 5.32 5.41 5.77	38 82 138 204 324 324 417 480 680 500 740 890 1020 1740 2700 3200 4400 8300 15000 22000 40000 105000 135000 190000 210000 250000 590000

Luyten, W. J. (Harvard College Obs., Proc. Nat. Acad. Sci., 10, 252, 257, 1930.

TABLES 817 AND 818

TABLE 817.—Masses and Absolute Magnitudes of Binary Stars

(Pitman, Astron. Journ. 39, 57, 1929.)

This paper contains a discussion of the orbits of 104 binary stars and of the relationship between stellar masses and luminosities (Eddington, M. N., March, 1924). In the following table of averages the magnitudes are visual. Values in blacker type are averages of greater weight. Six planetary nebulae give in average mass of 16.7, absolute magnitude 8.1.

		Visual	binaries			Eclipsin	g binaries		S	pectrosc	opic binar	ies
	T	rig.	Si	pec.	Т	Trig.		Spec.		ig.	Sp	ec.
	Mass	Mag.	Mass	Mag.	Mass	Mag.	Mass	Mag.	M. Mass	Mag.	M. Mass	Mag.
О-Во							70.1	-4.26	17.4	2.39	85.0	-4.36
В1-В3			12.9	-1.14	20.87	-0.24	35.0 15.24	-2.68 -1.54	8.7	3.96 .64	42.5 9.91	$-3.55 \\ -1.73$
B ₄ –B8			6.45	27	10.44 7.87	60 74	7.62 7.18	81 04	7.75 1.58	1.29 2.72	5.22 11.21	84 80
В9-А1	2.65	2.80	2.69	2.23	3.94 4.71	1.26 -1.47	3.59 4.61	1.04	.79 1.88	3.50	5·37 2.60	.25
A2-A6	1.52 6.76	3.25 1.54	1.51 5.47	2.94 1.16	2.37	72	2.36 4.29	1.52 1.30	.94 3.20	1.66	1.30 2.52	1.92 1.42
A7-F2	3.15 3.57	2.41	2.74 5.17	2.07 1.88			2.15 1.17	2.23	1.60 2.95	3.89	1.26 1.73	2.43 1.26
F3-F7	1.59 2.44	4.15 3.26	2.41 2.12	3.32 3.15	2.90	4.82	.58 2.76	1.30	1.48	4.57 2.67	.86 2.56	2.00
G0-G2	1.31 2.11	4.50 3.76	1.34 2.22	4.54 3.70	1.45	5.58 5.60	1.59	2.83	1.01 2.01	3.64 4.34	1.28	3.02
G3-G9	1.06 4.75	4.94 4.91	1.13	4.75 4.92	.63	5.83	1.08	5.09	1.00	5.16	1.06	3.18
K	4.75 2.28 1.54	6.11	1.35	5.84 5.38					.69	5.61	.69	5.41
M	.78 .64	7.43	2.01 1.16	6.38 9.97	1.20	8.32	I.74 I.20	3.94 8.20				
141	.31	10.43	.51	11.02	.60	9.02	.60	8.90				
141									1			

TABLE 818.—Mass-Luminosity Curve

(Prepared by Doctor Shapley, 1931.)

Masses are stated as logarithms of masses in terms of the sun's mass; the magnitudes absolute bolometric.

Log mass	Abs. mag.	Log mass	Abs. mag.	Log mass	Abs. mag.
1.6	-5.5:	1.0	-2.92	0.0	+ 4.41
1.4	- 4.6:	.8	-1.97	-0.2	+ 6.22
1.2	-3.84	.6	─ ·74	-0.4	+ 8.19
		.4	+ .72	-0.6	+10.20
		.2	+2.57	-0.8	+12.29

Notes added in press.—(Aitken, M. N., 92, 596, 1932.) At least one star in every 18 to 9th mag. is a lose visual double; 1 in 4 or 3, a spectroscopic binary; 1495 of latter known, surely physical doubles. Or bits known for 120 pairs.

 Spectrum
 B
 A
 F
 G
 K
 M
 B
 A
 F
 G
 K
 M
 sun

 % distribution 1.7
 21.4
 15.3
 33.
 15.6
 1.4
 masses 10.6
 5.2
 2.6
 2.4
 2.2
 0.6
 1.0

Visual

Spectroscopic

Periods e 2.7d 7.6 14.1 30.6 102.5 3.2y 16.8y 37.1 73. 138 274 2000 5000 e .05 .16 .22 .35 .30 .31 .43 .40 .53 .57 .62 .61 .76

TABLE 819.—Stellar Radiation Measurements (Pettit, Nicholson, 1928)

Radiometric magnitude = apparent magnitude of an Ao star which will give same radiometric deflection. Heat index = visual — radiometric magnitudes. Heat index — color index = zero for Ao star. Water-cell-absorption is fraction of radiation eliminated by water-

cell expressed in magnitudes.

Giants, F5-Mo, have greater heat indices than dwarfs of same classes. Red stars deviate from black-body conditions. The radiation received at earth's surface at Mount Wilson from star in zenith of zero radiometric magnitude, 17.1 × 10-12 cal./cm²/min. Radiometric magnitude Hefner lamp at 1 meter is -20.00; International candle is 1.11 Hefner unit = -20.11; its heat index is 5.82 mag. (1900°K.).

(All measures reduced to zenith at Mount Wilson, 2 reflections from fresh silver in tele-

scope: rock-salt window over thermocouple.)

TABLE 820.—Spectrum Classes and Temperatures

	Obse	erved	Temperature							
Spectral type	Heat	Water-cell	Heat	index	Water-cell	Color	Ioniza-			
	index	absorption	λ 0.555μ	λ 0.529μ	absorption	index*	tion†			
_	Mag.	Mag.								
Bo	0.05	0.20				23000°	20000			
B5	.01	.23				15000	15000			
Ao	.00	.26				11200	10000			
A5	.02	.30			7500°	8600	8400			
Fo	.15	.36	6750°	7300°	6200	7400	7500			
F5	.30	.41	5760	6160	5450	6500	7000			
gGo	.47	.50	5000	5450	4700	5500	5600			
gG5	.65	.60	4550	4870	4140	4700	5000			
gKo	.90	.70	4020	4300	3750	4100	4000			
gK5	1.57	.93	3240	3480	3130	3300	3000			
gMo	1.86	1.01	3030	3250	2980	3050	3000			
gM2	2.2	1.14	2810	3000	2810					
gM4	3.1	1.30	2400	2590	2550					
gM6	4.2	1.46	2050	2200	2390					
gM8	5.2	1.62	1780	2000	2250					
Me Max	4.4	1.5	1990	2160	2350					
Me Min	8.9	2.2			1830					
dGo	.32	.42	5700	6100	5350	6000				
dG5	.39	.47	5350	5750	4920	5600				
dKo	.55	.54	4820	5100	4460	5100				
dK5	1.10	.76	3720	3980	3550	4400				
dMo	1.40	.87	3400	3650	3260	3400				
dM2	2.1	1.14	2870	3060	2780					

^{*} Russell, Dugan, and Stewart, Astronomy, 2, 734, 1927. † Payne, Stellar atmospheres, 1925. Note—Hottest known stars 20,000 to 30,000 °K, O type, abs. mag. -4, masses 10-80 suns, (Plaskett).

TABLE 821.—Visual and Radiometric Magnitudes and Total Radiations

		htest st al magr				htest sta etric ma			Brightest sta Total radiat reaching t solar syste	tion he
	Star	Type	Vis.	Rad. mag.	Star	Type	Rad. mag.	Vis.	Star	Cal. cm- ² min- ¹ ×10 ¹²
Co A A R Pi	rius	A2s F3 {G6 K4 A1s G0 K0 B8p F3 B5 B1	86 + .33 +1.70 + .14 + .21 + .24	+ .70 + .10 38 98 + .23 + .22 + .60	Sirius Canopus γ Crucis Arcturus Aldebaran	M2 M1 A2s F3 M3 K0 K5 G0 M6e {G6 K4	-1.32 -1.27 -1.09 -1.0 98 60 38 2	+0.92 +1.22 -1.58 86 +1.61 + .24 +1.06 + .21 +3.6 + .33 +1.70	Betelgeuse. Antares β Centauri. Canopus γ Crucis	145 132 96 83 77 69 64 51 50 48

STELLAR RADIATION MEASUREMENTS

TABLE 822.—Energy Spectra of the Stars (Abbot, 1929)

Measures made with radiometer at the Coudé focus of the Mt. Wilson 100-inch reflecting telescope (arbitrary units). Astrophys. Journ., 69, 293, 1929.

Stellar energy spectrum distribution; normal scale, outside the atmosphere.

Object	Date			Place	e in wav	ve lengt	hs, micr	ons		
	Date	0.437	0.472	0.520	0.589	0.700	0.905	1.316	1.751	2.224
β Orionis* α Lyrae α Cygni α Aquilae α Canis Min α Persei γ Cygni α Aurigae Mars Jupiter β Ceti γ Aquilae α Boötis	13† 26 13 25 13 26 13 26 13 26 13 26 13 25 25 26 25 26 25	990 1355 990 616 	0.472 I140 446 642 502 363 474 139 390 28	584 334 367 434 267 267 167 234 184 434 284 317 134	233 644 377 455 266 355 277 189 244 244 388 366 178 155 166 33 200	89 287 267 297 247 436 267 228 208 455 337 238 297 198 109 228	21 91 105 121 206 121 149 231 177 149 369 256 241 263 298 199 376	77 17 86 172 17 17 17 159 73 125 206 95 	29 43 38 60 119 41 6 35 43 93 183	8 37
a Tauri. a Orionis. β Andromedae. β Pegasi. δ Sagittae. a Herculis. σ Ceti.	25 25 26 25 26 25 26 25 26 25 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27				255 311 189 155 89 111 144 233 166 166 67 144	238 485 228 257 218 99 168 406 257 287 337 188	461 844 312 177 241 312 170 369 334 220 319 192	456 1010 189 202 176 120 150 417 387 331 396 185	345 597 104 104 145 171 128 348 342 299 194 116	124 172 65 29 80 32 12 83 163 107 61 26

^{*} Additional observations for β Orionis: 0.423μ, 505; 0.454μ, 738; 0.494μ, 827. † The dates refer to August 25, 26, and September 13, 1928, respectively.

TABLE 823.—Stellar Temperatures, Radiation, and Diameters

	Absolute	N*	Parallar	Sun's diameter = 1†					
Star	temperature °K	Unit = 10-11	Parallax	Radiometer	Interferom- eter	Russell			
Sun. β Orionis. a Lyrae. a Can. Maj. a Can. Min. a Aurigae. a Tauri. β Pegasi. β Orionis. a Herculis.		3.20 6.10 6.60 1.24 2.20 2.54 1.10 7.90 3.60	0".007 .130 .370 .315 .071 .053 .026 .017 { .007 .013	20 2 1.2 1.1 13 70 94 510 900 480	39 82 280	28 3 1.6 9 230			

^{*} Ratio of stellar to solar radiation outside earth's atmosphere. † To express in kilometers, multiply by 1.42×10^6 ; to express in miles, multiply by 0.865×10^6 .

TABLE 824

VARIABLE STARS-GENERAL CHARACTERISTICS

(See Russell, Dugan, and Stewart, Astronomy, 1927; Ludendorff, Stratton, Das Sternsystem, Handb. Astrophys., 6, Berlin, 1928; Payne, Stars of high luminosity, Chap. 14, 1930.)

Perhaps 5% of all stars are variable; number known, over 5000. Astronomische Gesellschaft acts as central bureau; when a variable star is confirmed it there receives a definite designation, e.g., R. T. Persei. Most recent list Astron. Nachr., 244, 82, 1931, contains 873 additional thus named variables. The Harvard College Observatory (Doctor Shapley, Cambridge, Mass.) keeps a record of variable-star data. A yearly list of stars with known periods is published by the Berlin-Babelsberg Observatory. Note added in press: 5826 in 1933 volume.

CLASSIFICATION

I. Periodic Variables.

- (1) Eclipsing variables: Generally B and A stars. Not true variables, See Table 815.
- (2) Short period: 100 to 10,000 sun's luminosity, large mass. Types B to M. Preferably F and G.
 - (a) Period range about ½ day; about 10% of variables of regular period. Generally called *cluster variables*; quick rise in light, slow decline, visual range generally less than 1.5 mag.; photographic range averages 50% greater; ½ day generally of class A; peculiar velocities average 70 km/sec.; variable radial velocity range small, proportional to range in mag. Max. of approach invariably near max. mag., max. of recession near min. mag. Galactic concentration small. Shortest period known (1932), 0.69746 days, 15 mag., range 1 mag. (8h 19m 38s R. A., 18° 45' S. dec. van Gent).
 - (b) Periods 1 to 32 + days; 15% of regular variables. Cepheids. Much like (2a) but periods 4 d, class F5; 8 d, G0; 20 d, G5. Peculiar velocities average about 12 km/sec. Galactic concentration strong. About 120 known. Long-period Cepheids are among the brightest stars known, 20,000 times brightness of sun. The following table 825 is due to Shapley, 1931.
- (3) Long-period variables: Nearly all red stars 87% class M, 6% class N, 5% class S, a few G and K. o Ceti typical. Abs. mag. -2.0 (Oort, 1927); periods 100 to 150 d, M = -2.3; 250 to 340, M = -1.1; > 340, +0.3 (Gerasimovič, 1928). Periods often irregular, proper motions small (0.03"±), radial velocities large (mean 35 km/sec.). For S Librae, 385 km/sec. Heat radiation diminishes by 1 or 2 mag. while light by 5 or so.

II. Irregular variables.

- (1) R V Tauri: Resembles Cepheids somewhat irregularly. 12 known (Gerasimovič, 1929). 19 given by Ludendorff (1928).
- (2) R Coronae Borealis: About 11 known. Typical R. Cor. Bor. remains often for years of 6th mag.; then may rapidly drop 6 mag. for indefinite period then returns to original mag. Ludendorff gives 11.
- (3) U Geminorum (type): Normally faint but brighten up at irregular intervals to drop back to original magnitude. Some analogy to Novae. Ludendorff gives 20.
- (4) T Pyxidis: Resemble Novae. Ludendorff gives 5.

TABLE 825 .- The Cepheid Period-Luminosity Curve

Logarithm of period.	Mean spectrum.*	Absolute photographic magnitude.**	.\bsolute bolometric magnitude.
0.0 0.2 0.4 0.6 0.8 1.0 1.2	F 2.5 F 5.5 F 7.5 G 0 G 2 G 6 G 6 G 8	- 0.31 - 0.61 - 0.93 - 1.22 - 1.53 - 1.89 - 2.26 - 2.68	- 0.82 - 1.25 - 1.67 - 2.16 - 2.65 - 3.15 - 3.71 - 4.34
1.6 1.8 2.0	K 0.5 K 2.5 M o	- 3.19 - 3.81 - 4.60	- 5.13 - 6.11 - 8.2:

^{*} Shapley, Harvard Bull., 861, 1928.

TABLE 826.-Novae

Novae (temporary stars): Between 10 to 20 brighter than the 9th app. mag. occur in a year (Bailey). Numerous in spiral nebulae. More than 80 in Andromeda nebula (Hubble); 30 per year estimated. Mean parallax of five, 0.01"; abs. mag. +8.5 to -3.1 (Russell). Nova Aquilae, 1918, class A before outbreak; then appears as rapidly expanding gas 1700 to 2300 km/sec.; fades to Wolf-Rayet, class O (T Coronae Bor. changed finally to gM); gaseous envelope visible 1918 to 1926, reached diameter 16"; abs. mag. +3 to -8.8; distant 1200 light years. Nova Persei: Diffuse cloud faint light expanding 6' to 7' in 7 months. Six weeks later moved 35" to 65"—apparently due to illumination of dark nebulous matter near star by outgoing light (Russell). See Milne, Nature, 128, 715, 1931. If after outburst it has dwindled to previous magnitude but spectrum shows a higher temperature, then radius must have decreased, say 10-fold, and the density would be much greater (compare white dwarfs, Table 828).

TABLE 827.—Observed Maxima of Spectrum Lines in the Giant Sequence

(Shapley.)

Line.	Atom	Ionization potential volts.	Excitation potential volts.	Maxi- mum.	No. of effective atoms at max. per cm ² surface	Source.
4340	Н	13.54	10.15	Ao F5*	4.2×10^{19} 1.0×10^{18}	Contour of line Contour of line
4026	He	24.41	20.81	B1.5	1.6×10^{17}	Estimate
4481	Mg +	14.97	8.83	A ₃		Estimate
3933	Ca +	11.82	0.0	K2	2.4×10^{19}	Contour of line
				G5 *	2.4×10^{19}	Contour of line
4444	Ti +	13.6	1.16	F_5	1.3×10^{17}	Line depth
4416	Fe +	16.5	2.82	F_5	1.7×10^{17}	Line depth
4215	Sr +	10.98	0.0	K2	6.9×10^{17}	Line depth
4554	Ba +	9.96	0.0	Mo?		Estimate

^{*} Data for the supergiant sequence.

^{**} Shapley, Harvard Monogr., 2, 1930.

TABLE 828.—High-Density Stars. White Dwarfs

	Class	Visual abs. mag.	Density	Radius sun = 1	Mass
Sirius B	F	11.3	$0.5 \times 10^5 \mathrm{g/cm}^3$.034	
02 Eridani B	Ao	11.2	1.0 × 105 "	.019	
Procyon B		16.			
Van Maanen's *	F	14.3	4 × 10 ⁵	.007	

^{*} Smallest star known, about the size of the earth.

TABLE 829.—Low-Density Stars. Giants

	Class	Visual abs. mag.	Density	Radius sun = 1	$ \text{Mass} \\ \text{sun} = 1 $
α Scorpii A	сМо	- 4.0	3×10^{-7}	480	(30)
a Orionis	cMo	— 2.9	6×10^{-7}	290	(15)
β Pegasi	gM_5	— 1.4	2×10^{-6}	170	(9)
α Tauri	gK5	- 0.1	2×10^{-5}	60	(4)

(Taken by permission from Russell, Dugan, and Stewart, Astronomy, Ginn & Co., 1927.)

TABLE 830.—High-Temperature Stars. High-Luminosity Stars

(Plaskett, M. N. 90, 616, 1930. Payne, Stars of high luminosity, 1930. Pearce, Pub. Dom. Astron. Obs., 3, 302, 1926.)

Draper Catalogue, 0.1% O; 0.3% Bo to B2; 1% B3-B5. Stars of highest temperature, greatest mass, highest luminosity, greatest distance from sun. Masses 5, O type, $43 \times \text{sun's}$; 10, Bo to B2, $15 \times \text{sun's}$; 12, B3, B5, $6 \times \text{sun's}$.

Type.	Temp.	Surface brightness.	M _v M _b	M_{Ψ}	Density.
O ₅	35,000° K.	- 4.15 M	3.61 M		
O6	33,000	- 4.10	3.41		
07	31,000	- 4.03	3.20		• • •
				 3.84	.0 49
O8	29,000	— 3.96	2.98		• • •
O9	27,000	— 3.88	2.76		• • •
Во	25,000	- 3.78	2.52	- 3.16	• • •
Ві	22,000	- 3.61	2.13	- 2.72	.0 56
B2	19,000	— 3.38	1.73	— 2.59	
В3	16,000	- 3.08	1.28	— 1.44	.071
B5	14,000	 2.80	0.98	— 1.86	

Note.—See Russell, The Constitution of the Stars, Science, 77, 65, 1933.

TABLE 831.—Properties and Classification of Star Clusters

Star clusters fall into two distinctly different types:

Globular: Typical, Messier 13; open, Messier 4; elongated, Messier 19. Have strong central condensations, rich in faint stars. Scattered widely in latitude, restricted in longitude. Many variables—nearly 900 in 45 clusters. Radial velocities > 100 km/sec. All distant > 10,000, \(\frac{1}{8}\) > 100,000 light-years. Very few new ones found—about 103 known. Very definitely part of galaxy. Although concentrated towards its plane, only 2 within 4° of it (cloud obstruction probably). Diameters about 35 parsecs. Many stars, tens and hundreds of thousands. Many giants and supergiants. Max. luminosity about — 2.5.

Galactic: Very varied: rich, M 11; irregular, M 35; nebulous, Pleiades, M 16; accidental, M 103. Almost exclusively in Milky Way, all longitudes; apparently no variables. Radial velocities rarely > 40 km/sec., generally less. Almost all < 4000 light-years distant. Almost exclusively in galactic region devoid of globulars. Tens and hundreds, rarely thousands of stars. Hyades type, yellow stars as dominant as A type. Pleiades

type, almost all B's and A's, on Russell's main branch.

TABLE 832.—Distribution of Open Star Clusters

(Trumpler, Bull. Lick Obs., no. 420, 1930. Contains classification in diameters, distances, and distribution of 334 open clusters.)

The plane of symmetry of open clusters is inclined 2°.3 to the adopted galactic plane. Its pole lies at R. A. 12^h 50^m. Dec. 27°.7 (1900). Forms much flattened disklike system 1000 parsecs thick, diameter 10,000 parsecs.

La - 90° to - 30 - 20 - 15 - 10 - 8 - 6 - 4 - 2 0 + 2 + 4 + 6 + 8 + 10 + 15 + 20 + 30 Total		In galactic latitu Long. 90°-270°. 0 3 5 8 4 3 12 19 34 34 27 12 9 2 7 4 1 3 187	de. Long. 270°-90°. I 0 4 2 8 16 38 28 27 10 2 5 1 3 I 0 147	Total. 1 3 5 12 6 11 28 57 62 61 37 14 14 3 10 5 2 3 3334	In plane L to concentra Mean distance parsecs. — 850 — 750 — 650 — 450 — 350 — 250 — 150 — 50 + 150 + 250 + 150 + 250 + 350 + 250 + 750 + 450 + 750 - 750 - 750 - 750 - 750 - 750 - 750 - 750	
Long. 0°-40° 40 -80 80 -120 120 -160	In gala No. 12 34 40 28	actic longitude. Long. 160°-200° 200 -240 240 -280 280 -320 320 -360	No. 46 41 51 41 41	par	3000 77 4000 38 (2 5000 16 (3	Density per 10° parsecs². 28 12 5 28)

TABLE 833.—Globular Star Clusters

Table contains those distant greater than 40,000 and less than 10,000 parsecs. For complete list see Shapley, Star clusters, p. 224, McGraw-Hill, 1930.

1 kiloparsec = 31×10^{15} km = 3×10^{3} light-years. Proper motions:

M13, R.A. +0.0005", dec. +0.0008; M56, -0.0013, +0.0066; M2, +0.0082, +0.0026; Van Maanen, 1927

N. G. C.	R. A. 1900	Dec. 1900	Galactic Long. Lat.	Angular diam- eter	No. vari- ables	Distance kilo- parsecs
6397 (∆366) 104 (47 Tuc.) 5139 (ω Cen.) 6656 (M22) 6121 (M4) 6752 (∆295) 6809 (M55) 6809 (M55) 6541 (∆473) 3201 (∆445) 4372 6205 (M13) 6342 6528 6342 6528 6344 6453 6440 6453 6517 7006	17 32.7 0 19.6 13 20.8 18 30.3 16 17.5 19 2.0 19 33.7 18 .8 10 13.5 12 20.1 16 38.1 17 15.3 17 58.4 17 11.9 20 .2 17 17.8 17 43 17 44.7 17 56.4 20 56.8	-53 37 -72 38 -46 47 -24 0 -26 17 -60 8 -31 10 -43 44 -45 54 -72 7 +36 39 -19 29 -30 4 -23 38 -22 12 -17 43 -20 20 -34 36 -8 57 +15 48	304.5 -12.5 272 -45 277 +15 337 -9 319 +15 303 -26.5 336 -25 317 -12 244 +9 269 -10 27 +40 333 +8 328.5 -5 327.5 +6 347 -27 334 +9 335 +2 322.5 -5.5 347 +6 32 -21	19.0 23 23 17.3 14.0 13.3 10.0 6.3 7.7 12.0 10.0 .5 .5 .7 1.9 1.7 .7 .4 1.1	2 7 132 21 33 1 61 7 	5.65 6.8 6.8 6.8 7.2 8.4 8.8 8.9 9.2 9.6 10.3 40 44.4 46 48.5 50 50 50 50 56.8

TABLE 834.—Galactic Star Clusters

Selected as having the best determined distances from list of 248 clusters in Shapley, Star clusters, p. 228, McGraw-Hill, 1930.

1 kiloparsec = 31×10^{15} km = 3×10^{3} light-years

1	R. A.		Dec	c.	Galactic		Diameter		No.	Dis- tance
N. G. C.	b b	900 m	0	,	Long.	Lat.	Ang.	Linear kps.	stars	kilo- parsecs
663. 869. 884. Pleiades. Hyades. 1960. 2099. 2632. Mel III. 6705. 7654.	1 2 2 3 4 5 5 8 12 18 23	39.2 12 15.4 41 14 29.5 45.8 34.3 20 45.7 19.8	+60 +56 +56 +23 +15 +34 +32 +20 +26 -6	44 41 39 48 23 4 31 20 40 23 3	98 102.5 103 134.5 147 143 145 173.5 200 355 80.5	- 0.4 - 3.1 - 3.1 - 22.3 - 22.6 + 2.4 + 4.5 + 34 + 85.4 - 4.2 + .5	11 36 36 12 20 10	2.5 26.3 26.3 10: 10: 4 8.4 3.6 4.1	80 60 150 200 120	0.79 2.51 .15 .04 1.16 1.45 .18 .1

TABLES 835, 836A AND 836B

TABLE 835.—Classification of Nebulae

(Hubble, Astrophys. Journ., 64, 321, 1926; Contr. Mt. Wilson Obs., no. 324.)

I Galactic nebulae—	A Planetaries	Symbol P D	e. g. N.G.C. 7662
II Extra-galactic nebulae—	(1) Predominantly luminous (2) "obscure (3) Conspicuously mixed A Regular	DL DO DLO	N.G.C. 6618 Barnard 92 N.G.C. 7023
,	(1) Elliptical	EN	N.G.C. 3379 E0 " 221 E2 " 4611 E5 " 2117 E7
	(2) Spirals (a) Normal spirals (1) Early (2) Intermediate	S Sa Sb	N.G.C. 4594 " 2841
	(3) Late (b) Barred spirals (1) Early (2) Intermediate	Sc SB SBa SBc	5457 N.G.C. 2859 " 3351
Extra-galactic nebulae too	(3) Late	SBc Irr	" 7479 N.G.C. 4449

TABLE 836a.—Galactic Nebulae

(Russell, Dugan, and Stewart, Astronomy, 1927; Russell, Atkinson, Nature, 127, 661, 1931.)

TABLE 836b.—Data on Six Planetary Nebulae

(Van Maanen, Proc. Nat. Acad. Sci., 4, 304, 1918.)

		Magi	nitude		Diameter	
N.G.C.	Parallax	App. m	Abs. M	Angula	r Astr. units	Light-years
2392	+0.022	+10.0	+ 6.7	46′	2100	0.03
6720	+ .008	+14.7	+ 9.2	80	10000	.16
6804	+ .022	+13.4	+10.1	32	1450	.02
6905	+ .015	+14.5	+10.4	47	3100	.05
7008	4 .016	+12.8	+ 8.8	95	5900	.09
7662	+ .023	+12.9	+ 9.7	31	1350	.02
			adial velocity Diameter Nep		Campbell, Mo tr. units.)	ore, Proc.

TABLES 837-839

TABLE 837.—Diffuse Galactic Nebulae, Dimensions

(Trumpler, Proc. Astron. Soc. Pacific 43, 255, 1931.)

	Orion neb.	Pleiades	N.G.C. 2237	6514	6523 (Mes. 8)	6611 (Mes, 16)
Distance parsecs Diameter (') parsecs		150 360' 16	1340 60' 23	980 23' 6.5	1090 35 × 55' 11 × 17	2050 20' 12

TABLE 838.—Nongalactic Nebulae

(Hubble, Astrophys. Journ., 64, 1926.)

Some 400 considered. Distribution of magnitudes appears uniform throughout sequence. For each stage in the sequence the total magnitude (M_T) is related to the max. diameter (d) by the formula: $M_T = C - 5 \log d$. When minor diameter is used, C approx. constant throughout sequence (C = 10.1). Mean absolute visual magnitude -15.2. The statistical expression for distance in parsecs is $\log D = 4.04 + 0.2 M_T$. Masses appear to be of the order of $2.6 \times 10^8 \times \text{our}$ sun's. Apparently nebulae as far as measured are distributed uniformly in space, one to 10^{17} parsecs³ or 1.5×10^{-31} in C.G.S. units.

Corresponding radius of curvature of the finite universe of general relativity is of order

Corresponding radius of curvature of the finite universe of general relativity is of order of 2.7×10^{10} parsecs, about 600 times the distance at which normal nebulae can be detected with the Mt. Wilson 100-inch reflector.

TABLE 839.—The Magellanic Clouds and N.G.C. 6822, Dimensions

(Hubble, Astrophys. Journ., 62, 409, 1925.)

		Large cloud	Small cloud	N	I.G.C. 6822
Angular size: App. luminosity: Surface brightness: Distance Linear dimensions: Volume: Absolute luminosity: Mean density:	Total Core Core Total Core Total Core Total Core Total Core Total Core Total Core	$\begin{array}{c} 7.2^{\circ} \times 7.2^{\circ*} \\ 3.6^{\circ} \times 1.2^{\circ} \\ 3.6^{\circ} \times 1.2^{\circ} \\ 1.2 \\ 1.9 \\ 21.0 \\ 34.500^{*} \\ 4.300^{\$} \\ 2150 \times 715 \\ 4.2 \times 10^{10} \\ 9.2 \times 10^{\$} \\ -16.5^{\$} \\ -15.8 \\ -10.0 \\ 6.6 \end{array}$	3.6° × 3.6° 1.8° × 0.9° 2.0‡ 2.7 21.0 31,600† 2,000† 1100 × 500 4.2 × 10° 2.3 × 10° - 15.5 - 14.8 8.5 6.1	$\begin{array}{c} 20' \times 10' \\ 8' \times 3' \\ 9.0 \\ 9.7 \\ 22.1 \\ 214,000 \\ 1250 \times 625 \\ 500 \times 190 \\ 3.8 \times 10^{8} \\ 1.7 \times 10^{7} \\ -12.7 \\ -12.0 \\ 8.8 \\ 6.1 \end{array}$	phtg. mags. mag./('')² parsecs "" (parsecs)³ phtg. mag. abs. mag./parsecs³

^{*} Harvard Coll. Obs. Circ. no. 268. † loc. cit. 255. ‡ loc. cit. 260. § Harvard Coll. Obs. Bull. no. 816.

MAGNITUDES, RADIAL VELOCITIES, AND DISTANCES OF EXTERNAL GALAXIES

The following table is due to Shapley (Proc. Nat. Acad. Sci., 15, 565, 1929). The velocities (mainly Slipher data) are from Hubble (loc. cit., 15, 169, 1929); the velocities are also given corrected for the sun's motion towards the apex A, 277°, D, +36°, and a velocity of 280 km/sec. (Hubble, loc. cit.), i.e., corrected for "galactic rotation". Color indices are not very reliable but the mean values for various groups serve to indicate negligible absorption of light in space. Mean difference phtg.-vis. mag., +0.23; Hubble's 7619, the faintest, fastest, probably most remote, shows the largest color index, +2.8.

Class	N.G.C.	R. A. 1900 h m	Dec.	Radial velocity km/sec.	v ₀ km/sec.	Apparent photo- graphic magnitude mean (Harvard)	Holetsche	Distance in mega- k parsecs (Hubble)
Peculiar E2 Sb Sc E0	205 221 224 278 404	0 35 0 37 0 37 0 46 I 4	+41 8 +40 19 +40 43 +47 1 +35 11	- 300 - 185 - 220 + 650 - 25	- 195 - 85 - 120 + 760 + 40	8.7 6.0 11.7 11.6	10.0 8.8 5.0 12.0	0.275 .275
E4	584 598 936 1023 1068	I 26 I 28 2 23 2 34 2 38	$ \begin{array}{rrrr} - 7 & 23 \\ + 29 & 8 \\ - 1 & 36 \\ + 38 & 38 \\ - 0 & 26 \end{array} $	+1800 - 70 +1300 + 300 + 920	+1725 - 40 +1185 + 310 + 795	9.0 11.2 11.2 9.8	10.9 7.0 11.1 10.2 9.1	.263
Sc	1700 2681 2683 2841 3031 3034 3115	4 52 8 46 8 46 9 15 9 47 9 48	- 5 I +51 4I +33 48 +51 24 +69 32 +70 9 - 7 I4	+ 800 + 700 + 400 + 600 - 30 + 290 + 600	+ 580 + 710 + 335 + 620 + 75 + 395 + 495	12.1 11.3 11.3 10.5 8.5 8.6 9.9	12.5 10.7 9.9 9.4 8.3 9.0 9.5	.9
Sa. Eo. Sb. Sc. Sb.	3368 3379 3489 3521 3623 3627	10 41 10 43 10 55 11 1 11 14 11 15	+12 20 +13 6 +14 26 + 0 30 +13 39 +13 33	+ 940 + 810 + 600 + 730 + 800 + 650	+ 870 + 745 + 550 + 635 + 765 + 590	9.8 10.2 10.5 9.8 9.8	9.5 10.0 9.4 11.2 10.1 9.9 9.1	.9
E7SbSbSbE4Irreg	4111 4151 4214 4258 *4382 4449	12 2 12 5 12 11 12 14 12 20 12 23	+43 38 +39 58 +36 53 +47 52 +18 45 +44 39	+ 800 + 960 + 300 + 500 + 500 + 200	+ 895 +1050 + 385 + 455 + 570 + 230	11.0 10.9 10.6 9.8 9.7 9.5	10.1 12.0 11.3 8.7 10.0 9.5	1.7 .8 1.4
E1 E0 Sa Sb Sa E2	*4472 *4486 *4526 4565 4594 *4649	12 25 12 26 12 29 12 31 12 35 12 39	+ 8 33 +12 57 + 8 15 +26 33 -11 4 +12 6	+ 850 + 800 + 580 + 1100 + 1140 + 1090	+ 870 + 835 + 600 +1175 +1115 +1130	9.1 9.2 10.3 10.4 9.4 9.8	8.8 9.7 11.1 11.0 9.1 9.5	
Sb Sb Sc Sb	4736 4826 5005 5055 5194 5195	12 46 12 52 13 6 13 11 13 26 13 26	+41 40 +22 13 +37 35 +42 33 +47 43 +47 47	+ 290 + 150 + 900 + 450 + 270 + 240	+ 410 + 230 + 1030 + 590 + 450 + 410	8.8 9.3 10.6 10.0 8.3 10.5	8.4 9.0 11.1 9.6 7.4 8.9	.5 .9 1.1 .5
Sc	5236 5457 5866 6822 7331 7619	13 31 14 0 15 4 19 39 22 33 23 15	-29 21 +54 49 +56 9 -15 0 +33 54 + 7 39	+ 500 + 200 + 650 - 130 + 500 + 3780	+ 470 + 385 + 865 + 35 + 685 + 3910	8.8 10.2 11.2 11.3 10.1 14.6	10.4 9.9 11.7	.9 .45 .214 1.1

TABLE 841.—Extra-Galactic Nebulae, High Velocities

(Hubble, Humason, Astrophys. Journ., 74, 43, 1931.)

Velocity (km/sec.)=(Distance in parsecs)/1790

Object.	Distance.	Mean velocity.	Notes.
Virgo cluster 1.8		890 km/sec.	Several nebulae, 12° × 11°
Pegasus " 7.25		3800	100 ± nebulae
Pisces group 7.		4630	25 "
Cancer cluster 9.		4800	150 "
Perseus " II.		5200	500 "
Coma " 13.8		7360	800 " *
Urs. Maj. " 21.4		11800	300 "
Leo " 32.		19600	300 "

Extra-galactic nebulae.—(Analysis of 900 plates with 60- and 100-in. Mt. Wilson reflectors, Hubble, Science, 75, 24, 1931.) (1) None found in low galactic latitudes; avoidance zone irregular, 10° to 40° width—apparently due to known obscuring clouds in Taurus, Cassiopeia, Ophiuchus, etc. Inclined belt of bright B stars and diffuse nebulosity reaches highest latitude in Taurus and Ophiuchus. (2) Avoidance zone bordered by partial obscuration to — 40° in general direction of center of galactic system (long. 330° to 340°); very limited in opposite direction (except in Taurus) long. 140°, lat. — 35° to — 40°. (3) Lat. > 40° (and in lower lat. towards anti-center) nebulae approx. uniform distribution log number per sq., degree = 2.375. Variation with exposure time indicates uniform distribution also in depth. (4) Appreciable absorption of light in extra-galactic space appears inadmissible. (5) Mean abs. pltg. mag. — 13.8. Density one neb./6 × 10⁻³¹ parsec³. Mean mass 5 × 10⁸ sun's. Mean density in observable space 5 × 10⁻³¹ g/cm³. (6) It may be hazarded that clustered nebulae (in 1 hr. plates) may be expected one per square degree.

TABLE 842 .- Rotation of Stars

Values derived for the components, in the line of sight, of the equatorial velocities of rotation for single stars, o to 250 km/sec. Assuming that the axes of the stars having the largest rotational velocities are at right angles to the line of sight, it appears that these stars are still stable. "Our analysis of the spectra of giants and dwarfs shows that all single stars belonging to the later spectrum classes show little rotation. On the other hand, a number of spectroscopic binaries of late type, such as W Urs. Maj. have a very rapid rotation. In fact, Adams and Joy have in a number of cases successfully predicted that stars of spectrum classes F or G showing diffuse lines are close spectroscopic binaries. It is probable that we have here a real difference in behavior: in the early spectrum types rapid axial rotation is observed in single stars about as frequently as in spectroscopic binaries; while in the later types rapid rotation occurs only in close binaries. This may have a bearing on the problem of the origin of double stars. (Struve-Elrey, M. N. 26, 91, 663, 1931.)

TABLE 843.—The Galaxy, its Center and Rotation

The center of the galaxy lies apparently among the dense clouds in Sagittarius 40,000 light-years (13,000 parsecs). About this center the sun revolves with a period of about 250,000,000 years, an orbital speed of 200–300 km/sec. Amount of matter within sun's orbit must have mass about 200 billion times our sun's. In following table based partly on Redman, M.N. 92, 113, 1931, r = mean distance in parsecs from center of objects. A = about.017 km/sec./parsecs. I_0 longitude galactic center. The sun is about +33 parsecs from galactic plane (Gerasimovič, Luyten, Proc. Nat. Acad. Sci., 1927).

Type	m	Approx. dis- tance	No. objects	rA	lo	Source
(1) O-B2	3.98 4.64 6.60 5.3 6.4 5.1 5.4 5.3 7.3	250 135 330 180 210 160 190 160 230	78 241 222 122 88 250 714 304 392 790 103	2.8 1.0 3.2 7 10 2.1 3.8 5.0 1.9 4.3 5.3*	290° 300 346 345 337 334 346 319 17 321 325	Plaskett, Pearce """ Oort, B.A.N., 1927 Lindblad, M.N., 1930 """ Redman, loc. cit., 1931 Pearce, 1931 Gerasimovič, Struve
(12) Same stars			103	12.0*	330	Astrophys. Journ., 1929

^{*} These values seem consistent on the supposition that the Ca is more or less evenly distributed between the stars and us, so that r for Ca should be $\frac{1}{2}$ that for the stars.

Lindblad (Scientia, 61, 325, 1932) gives a more recent summary of various workers. With Plaskett's A = +0.0155 km/sec./parsec, time of revolution = 200,000,000 years; $h_0 = 327^\circ$. With a linear speed of 275 km/sec, our distance to center is 9,400 parsecs (about 30,000 light-years). Total mass of stellar system = 16×10^{10} solar masses.

TABLE 844.—Transmission of Light Across Space; Theoretical

(Russell, Proc. Nat. Acad. Sci., 8, 115, 1922; Nature, 110, 81, 1922.)

Let radius of particle = r', density, ρ , (random distribution); quantity of matter per unit vol. = d. The extinction of a beam of light will be e stellar magnitudes per unit distance where $e = 0.814 \ qd/\rho r$. q is a numerical factor independent of physical units, taking account of complications when 2r becomes near the wave length, λ , of the light; when 2r = 2 or 3λ , q = sensibly unity. q increases for small particles to a max. 2.56, when circumference = $1.12 \times \lambda$; then rapidly decreases, = nearly $(14/3) \times 2\pi r/\lambda^4$ for particles less than 1/2 this diameter. q/r is max. 2.42, when circumference = λ .

Clouds, same mean density, d, opacity reaches sharp max. when particles of this size, at the same time becomes selective $(1/\lambda^4)$. Visual max. when $r = 0.086\rho$. A cloud of this size dust, (density 2.7), absorbs 1 magnitude if 1/86 mg./cm² regardless of cross section. If 1/2 this or smaller, selective absorption almost as complete as for a gas. Best size particles for opaqueness also best for light pressure.

Rayleigh's formula for gas is $I = I_0 e^{-k}$

$$k = \frac{32\pi^3}{3N} \frac{(n-1)}{\lambda^4}$$
 where *n* is the index of refraction, *N*, Loschmidt's number.

TABLE 845.—Transmission of Light Across Space; Observed Estimates

Kapteyn, 19040.0016 mag./parsec Seeliger, 19110003 Halm, 19170030	Van Rhijn, 19280.000035* Shalen, 19290005 Lundmark, 192500000007 Shapley, 192900000007	mag./parsec
---	--	-------------

^{*} Equivalent to 4.7 × 10-14 g/cm². Bull. Astron. Soc. of Netherlands, 4, 123, 1928. Eddington computed 0.00007 per 100 parsecs as scattering coefficient. For Ca Gerasimovič, 1929, obtained 1.1 × 10-12 as the scattering coefficient.

Absorption and space reddening in the Galaxy as shown by the colors of globular clusters. Stebbins, Proc. Nat. Acad. Sci. 19, 222, 1933.

TABLES 846-848

TABLE 846.—Amount of Matter in Interstellar Space

(Eddington, Proc. Roy. Soc., A3, 424, 1926. Note also Table 848.)

Whether or not matter exists in space is important in estimating absolute magnitudes (Cepheids), and, as a resisting medium, for its dynamical effects,

Density at average point, 10⁻²⁴ g/cm³ (Eddington, dynamical reasons, star velocities).

(Gerasimovič, Struve, Gaseous substratum of galaxy, Astrophys. Journ., 69, 7, 1929.)

Interstellar density of Ca probably about $\rho_{\text{Ca}} = 3.6 \times 10^{-32} \,\text{g/cm}^3$ For all gases

Assuming matter of about atomic weight 20, doubly ionized so that there will be about one free electron per cm, then

Free path for ions, roughly 108 km, duration 1 year.

Free path for electrons, roughly 5.2×10^8 km, duration 10 days.

An ion encounters and deflects an electron once in 5 days.

Central density of typical diffuse nebula, estimated, 10⁻²⁰ g/cm³. Hubble (Astrophys. Journ., 1926) estimates if all matter within 100 light-years uniformly distributed, density of order 10-31 g/cm3. Eddington (Nature, 128, 702, 1931), 1079 electrons and protons in universe.

TABLE 847 .- Radii of Curvature of Space

Radius of curvature of the finite universe of general relativity is of the order of 2.7×10^{10} parsecs (Hubble, Astrophys. Journ., 64, 1926).

Radius of Curvature of de Sitterian space time:

 3.63×10^{11} astr. units = 5.74×10^6 light-years = 1.8×10^6 parsecs 20 Cepheids 3.0 35 O stars 3.2

(Silberstein, Nature, 9, 50, 1930.)

TABLE 848.-Interstellar Gases (Calcium, Sodium)

Since excited atoms are exceedingly rare, the only strong absorption lines will be the principal lines. Na, Ca, and Ca + have principal lines in the observable spectrum. If we take a 12000° K. temperature for the interstellar medium, ionization potential may be taken as 20 volts = ψ_0 . For electrons of ionization potential ψ the fraction ionized is $x/(1-x) = e^{(\psi-\psi_0)/RT}$. For Na, $\psi = 5.1$ v. and 30.35 v., T = 12000, RT = 10.3 v.

whence

 $x/(1-x) = 2 \times 10^6$ for 1st ionization; 10^{-6} for 2nd ionization.

Thus the Na + (which is undetectable) is but one part in 2,000,000 of Na. For Ca with ionization potential 6.1 and 11.8 v. we have nearly all Ca as Ca + +, but one part in 3000 of Ca +, one in 2×10^9 of Ca.

Certain brighter stars show these lines of Ca (fewer those of Na), which when corrected for solar motion indicate a stationary (relative to sun) absorber, whereas other lines indicate a definite radial velocity for the star (Plaskett). Struve gives the following table indicating definitely the increase of this absorption with the distance:

200-300 62 3.I 800 33 3.I 300-400 47 3.3

Note .- Max. intensity K corresponds closely to outside boundary of local cluster (He B stars). The interstellar Ca apparently shares in the rotation of the galaxy (see Table 843). Note added 1933.—Plaskett, Pearce consider best value of interstellar density of matter

as 10⁻²⁵ g/cm³.

TABLE 849.—Temperature of Interstellar Space

(Eddington, Proc. Roy. Soc., A3, 424, 1926.)

Total light from stars equivalent to 1000 1st (visual) mag. or heat from about 2000 (bolometric) 1st mag. stars. Star abs. mag. 1 radiates $36 \times \text{sun} = 1.37 \times 10^{35}$ erg/sec. At std. distance 10 parsecs $(3.08 \times 10^{19} \text{ cm})$ gives flow of $1.15 \times 10^{-6} \text{ erg/cm}^2/\text{sec}$. Energy density due to star app. bolometric mag. 1.0, is $3.8 \times 10^{-10} \text{ erg/cm}^3$ or energy of starlight = $7.7 \times 10^{-13} \text{ erg/cm}^3$. The effective temperature of space from Stefan's law is $3^{\circ}.2 \text{ K}$.

In a region away from prepondering influence of a star a black body will take up a temperature 3°.2 K.; then its radiation will balance that which it absorbs. But if the receiving matter be a strongly selectively absorbing gas, higher temperatures may result. See Fabry., Astrophys. Journ., 45, 264. Then the temperature will be governed by 4 considerations:

(1) Line absorption (excitation of atoms); energy held about 10⁻⁸ sec. and then lost by reradiation. An atom meets an electron only once in 5 days. So negligible chance (10⁻¹⁰) of thermal agitation by an encounter. (2) Scattering of free electrons; retards an electron 1 mm/sec./yr.—not cumulative and negligible. (3) Continuous absorption during encounters of electrons with atoms (orbit switches). (4) Photoelectric effect (ionization of atoms). Velocity depends on quality and not intensity of radiation. Forms an electron gas with temperature determined by the mean energy of expulsion. The temperature defined by the mean molecular speed is of the order 10,000° K.*

The temperature of the electron gas will be the same in space as close to the star. The rate of production of electrons but not their speed will be diminished. The heat of the electrons will be continually renewed and the atoms will gradually be brought to the same temperature. This high temperature is a typical quantum effect.

*15,000° K. is considered a better value from more recent data. Plaskett, Pearce, The problems of the diffuse matter in the galaxy, Publ. Dominion Astrophys. Obs., 5, 167, 1923.

TABLE 850 .- Matter and Energy

(Donnan, Nature, 128, 290, 1931. Dushman, Gen. Elec. Rev., 33, 327, 1930; Eddington, Nature, May 1, 1926.)

Jeans proposed the annihilation and transformation of an electron and a proton into radiation to account for the immense output of radiation from the stars. Einstein's special relativity theory gives as the energy corresponding to a mass of m grams of matter mc^2 ergs (c = velocity of light). If E = energy in ergs, then this transformed to matter $=E/c^2$ grams. The mass of a proton + electron = 6.06×10^{23} g. Applying Einstein's development of Planck's quantum theory, then the coalescence of a proton and electron produces one quantum of monochromatic radiation (photon); and since $mc^2 = h\nu$, $\nu = 2.2 \times 10^{23}$ or $\lambda = 1.3 \times 10^{-13}$ cm. Formerly such short waves were not known but the discovery of cosmic rays shows their possibility.

Now the reaction $P + E \rightleftharpoons$ radiation can occur only under unusual conditions. Imagine a proton-electron gas, only photons of $\nu \not\equiv 2.2 \times 10^{23}$ could change into a matter pair. Donnan shows that the black-body temperature of a hohlraum radiation necessary would be 2.2×10^{12} °K. By another method (equation for variation with the temperature of the

MATTER AND ENERGY

equilibrium constant of an ideal gas reaction, $d \cdot \log K/dT = Q/RT^2$) he derives a T of 10^{12} °K. Milne yields another solution. If n = no, of protons (electrons) present per cm³ at statistical equilibrium, then $n = 0.96 \times 10^{18} \ T^{\frac{1}{2}} \times 10^{-(2.35 \times 10^{12})/T}$.

T	n/cm³	$\rho_m (\mathrm{g/cm^3})$	$\rho_r(g/cm^3)$
1010	IO ⁻²⁰²	1.65×10^{-226}	0.85×10^{5}
1011	I 0 ¹¹	1.65×10^{-13}	0.85×10^{9}
10 ¹²	10 ₆₂	1.34×10^{10}	0.85×10^{13}
10-	10	1.34 × 10	0.85 × 10

We have the following picture: As T rises, molecules will be ionized and finally all dissociated to atoms; then the atoms become ionized with finally a proton-electron gas. At some very high temperature $P+E \rightarrow$ radiation sets in. Milne's equation shows that at $T=10^{10}$ this reaction is practically complete. As T rises yet higher the birth of matter will commence and we see that $T=10^{12}$, the equilibrium density of matter becomes equal to 1.34×10^{10} g/cm³. $T=10^{12}$ corresponds to enormous densities for both matter and radiation. Enormous voltages $(9 \times 10^8 \text{ volts})$ may give the attainment of such reactions.

Compton effect.—X rays are supposed to consist of streams of energy quanta. While each quantum carries the energy equivalent to $h\nu$, one may also specify each of these photons (light units) by the momentum which, according to the theory of quanta, is equal to $h\nu/c$. When this photon collides with a free or loosely bound electron there is an interchange of both energy and momentum in accordance with the laws of conservation of energy and of momentum. Consequently the photon suffers a recoil in one direction with loss of momentum, while the electron moves off in another direction with added momentum. The decrease in momentum of the scattered X-ray photon corresponds to an increase in wave length. (Dushman, Gen. Elec. Rev., 33, 334, 1930.)

De Broglie phase waves.—De Broglie was led to the conception that associated with a particle of mass m_0 (rest mass, zero velocity) and velocity v, there is a wave motion of wave length given by

$$\lambda = h\sqrt{1 - v^2/c^2}/m_0v = h/m_0v$$

for small values of v; c is the velocity of light. The theory of relativity gives as the total energy, E, of a particle of mass m_0

$$E = m_0 c^2 / \sqrt{1 - v^2 / c^2} = mc^2$$

with m the mass for velocity v. According to the quantum theory, the frequency associated with E is given by E/h. Hence the phase velocity or velocity of the individual waves constituting the group is given by

$$u = \nu \lambda = mc^2/mv = c^2/v$$
.

The value of h is 6.55×10^{-7} erg/sec. For a mass of 1 g moving at 1 cm/sec, the associated wave length is 6.55×10^{-27} cm—too small to be measured at present. Wave lengths 10^{-10} to 10^{-7} cm are measurable with crystal lattices. With de Broglie's assumption we would expect corpuscular motion to exhibit phenomena like those associated with light waves under conditions where the momenta of the particles are of the order of magnitude

MATTER AND ENERGY

 $mv = h/10^{-10}$ to $h/10^{-7}$; i.e., for mv ranging from 6.55×10^{-17} to 6.55×10^{-20} . According to kinetic theory a H₂ molecule ($m = 3.7 \times 10^{-24}$) has a v of about 2×10^{5} cm/sec. at room temperature. mv is then 6.6×10^{-19} , within the above-mentioned range. An electron falling through 100 volts acquires a v of 5.9×10^{8} cm/sec, and $mv = 5.3 \times 10^{-19}$ and $\lambda = 1.24 \times 10^{-8}$ cm. For cathode rays of 25,000-volt velocity, λ comes out 0.75×10^{-9} cm, approximately. Several observers have found for diffracted electrons values of λ in accordance with De Broglie's relation. (Dushman, Gen. Elec. Rev., 33, 335, 1930.)

Neutrons.—Bothe and Becker (1930) bombarded various elements with Po α particles (range 3.9 cm in air, 76 cm, 0° C, initial kinetic energy 5.25×10^6 electron volts). Mg, Al, give trace of a resulting radiation, Li, Bo, Fe, notable effects, Be tremendous results—a very penetrating radiation. Joliot and Curie-Joliot (1931) detected it through 30 cm Pb. First considered photons but finally neutrons. Speed of neutrons from Be, 7 to 35×10^8 cm/sec. Curie and Joliot found two groups 29 and 38×10^8 cm/sec. Becker and Bothe found Be to eject 19 photons to 1 neutron. Mass of neutron = $B^{77} + He^4 - N^{14} = 1.0051 \pm 0.005$ (O = 16). (Darrow, Rev. Sci. Instr., 4, 58, 1933, contains bibliography.) May be considered element of atomic number 0; close combination of electron and proton. Effective collision radius 1.31×10^{-13} cm. (Rabi, Phys. Rev., 43, 828, 1933.)

Positron.—Positive electron (Anderson, 1932) + charge < 2e, probably exactly equal to e and a mass comparable to a free negative electron. Probably results from the disintegration of atomic nuclei (in Anderson's case by cosmic rays). Out of total of 25,000 exposures, 1,450 cosmic ray photographs were obtained: particles of + and − charge occur in about equal numbers. Energies range > 10° volts down to few million. Mass probably less than of proton. Anderson < 20 times mass of electron (Anderson, Science, 77, 494, 1933; Darrow, Rev. Sci. Instr., 4, 263, 1933, bibliography).

PACKING FRACTIONS (ASTON)

(See Table 596.)

A reason for the failure of the additive law within the nucleus in atom building is because the protons and electrons become so closely packed that their electromagnetic fields interfere and a certain fraction of the mass is destroyed and appears as an electromagnetic radiation. The greater this loss, the more stable is the resulting nucleus. A convenient and informative expression for this loss is the "packing fraction," the mean gain or loss of mass per proton when the nuclear packing is changed from that of oxygen to the atom under consideration. These are given in Table 596 as parts per 10,000, and their run is indicated in the following plot (ordinates). It is a measure of the forces binding together the protons and electrons of the nucleus. The abscissae are mass numbers. It is to be noted that the more stable (even atomic numbers) lie on the lower of the two lines drawn. (See Millikan, Phys. Rev., 32, 535, 1928, for the following use of this curve.)

Aston's curve indicates that only very heavy elements can evolve energy by disintegration and there are no abundant elements above at. wt. 80 (less than 1% of all matter).

The condition necessary that even a heavy atom may liberate energy through the emission of an a particle may be seen at once from Aston's curve. Such liberation can happen only where the curve is rising so rapidly with increasing atomic weight that

$$n\Delta y > 4 \times (0.00054 - y_n).$$

n is the at. wt. of the active atom, Δy , the difference in ordinate between (n-4) and n, y_n , the ordinate for the at. wt. n, and 0.00054 the value of y for He., i.e., it is the mass of the H nucleus within the α particle.

Therefore, not only very heavy atoms alone can disintegrate with the ejection of a rays and the evolution of energy, but we can compute the max. hardness, or penetrating power,

of any radiations producible by radioactive disintegration. When thorium, e.g., throws off an α particle (n = 232, $y_n = 0.00031$), the increase in the mass of the α particle per gram-atom, because it has escaped from the nucleus, is 4(0.00054-0.00031) = 0.00092. The loss in mass of the residue of the Th atom $n\Delta y = 0.000034 \times 2.28 = 0.007752$. Therefore the total loss in mass through the emission of the α ray is 0.00775 - 0.00092 = 0.00683 grams per gram-atom. By Einstein's equation the energy available for emission from this loss of mass is $0.00683c^2$ ergs/g-atom. The total energy from each ejection of an α particle is this divided by the Avogadro number or 1.004×10^{-5} ergs. The highest speed α ray known to be given off from Ra has an energy of 8.800,000 volts (1.2×10^{-5} ergs). ThC ejects in one instance an α ray with 14% more energy than this. Similarly the "upper limit" for the speed of a β ray ejected by any of the disintegration products of Th or Ra is 7.540,000 volts or again 1.2×10^{-5} ergs. Einstein's equation predicts quite within the limits of reliabilty of Aston's measurements of mass, the maximum energy available in the radioactive process.

TABLE 852.—Cosmic Rays

(Millikan, Cameron, Phys. Rev., 31, 921, 1928; 32, 533, 1928.)

The measurements on the absorption coefficients for the cosmic rays indicate a complex set of entering rays which may be analyzed into separate rays with mean absorption coefficients (μ) per meter of water of 0.02, 0.04, 0.08, and 0.30.

Formation of He nucleus from hydrogen: From Einstein's equation and Aston's curve (Table 851) the loss of mass in the formation in a single act of the nucleus of He from four + electrons and two — electrons is $4 \times 1.00778 - 4 \times 1.00054 = 0.029$ g/g-atom, and the radiant energy released each time this act occurs is

$$(0.029 \times 9 \times 10^{20})/(6.062 \times 10^{23}) = 4.3 \times 10^{-5} \text{ ergs.}$$

 $\nu = (4.3 \times 10^{-5})/(6.547 \times 10^{-27}) = 6.57 \times 10^{-21}$, $\lambda = 0.00046$ A. From Dirac's relativity-quantum-mechanics formula $\mu = 0.30$ per meter H₂O.

Oxygen from hydrogen: $16 \times 0.00778 = 0.1245$ g/g-atom $\mu = 0.074$ per m H₂O. Nitrogen " 0.108 g/g-atom = 0.086.

Mean of these two corresponds to 0.08.

Silicon gives $\mu = 0.041$. Iron " $\mu = 0.019$.

So that the observed μ of the cosmic ray may correspond to the creation from hydrogen of He ($\mu = 30$), O (.08), Si (.04) and Fe (.02).

Cosmic rays (A. H. Compton, Phys. Rev., 43, 387, 1933).—Intensity vs. altitude curves indicate not only a rapid increase in ionization intensity with altitude but also that at each alt. the intensity is greater for high lat. than near the Equator. At sea-level the intens. at high lat, is 14% greater than at Equator; at 2000 m alt., 22%, at 4360 m, 33% greater. With arbitrary constants corresponding to 1.605 ions due to rays unaffected by the earth's magnetic field (neutral rays or electrons of energies > 4 × 10¹⁰ electron-volts), and a band of electrons approaching the earth with energies between 0.5 × 10¹⁰ and 1.3 × 10¹⁰ electron-volts reaching the earth at lat. > 50° and producing 0.235 ion, but failing to reach the earth at the Equator, Compton's observations will bear out the theory of Lemaitre and Vallarta (Phys. Rev., 42, 914, 1932). The extra component appearing at high lat, is more rapidly absorbed than the main body of rays. This would be anticipated if rays unaffected by earth's magnetic field were of electrons of greater energy; or a uniform background due to neutral rays such as photons, neutrons, or high speed neutral atoms. Average intensity lat. 0° to 22°, sea-level, 1.620 ± 0.006 ions per cm per sec.; lat. > 48°, 1.839 ± 0.006 ions.

Cosmic rays (Millikan, État actuel de nos connaissances sur le lieu et la mode de production des Rayons Cosmiques, Congrès international d'Electricité, 1932; Phys. Rev., 43, 661, 1933; 43, 695, 1933; Science, 77, 494, 1933; 77, May 5, 1933).—Most distinctive results: (A) Ionization-altitude curve (to 18 km or 92% through the atmosphere) does not rise exponentially clear to top with apparent absorption coefficient about 0.6 per m H_2O (all observers get this, say 5 to 9 km) but shows a marked decrease 9 km to top (about 12 km), actually becoming concave downward. This is inconsistent with (1) incoming rays primarily of charged particles, (2) photons in complete equilibrium with their secondaries, (3) rays of the penetrating power of γ rays or rays between these and the least energetic cosmic rays. They show non-ionizing primary entering rays not yet in equilibrium with secondaries.

The rays show a rapid softening with altitude (essentially the same in temperate and equatorial latitudes); best interpreted by cosmic photon bands of widely differing penetrating powers as from the production of He, O, Si, Fe, etc. More than $\frac{3}{4}$ of the cosmic rays at 7.6 km have energy < 350,000,000 volts. Millikan considers that the "cosmic rays" found at low altitudes are secondaries formed in the earth's atmosphere by collisions of photons with air atoms. Anderson has caught the cosmic rays, which cannot themselves be photographed, in the act of smashing atoms, setting loose + and - charged particles. So all but a small fraction of the cosmic rays at sea-level are secondaries produced in the earth's atmosphere.

TABLES 853-856

OCEANOGRAPHY

(See Nat. Res. Council Bull. 85, 1932.)

TABLE 853 .-- Area of Ocean Depths (Littlehales)

Area of total water surface is about 365,500,000 km². (Land surface about 153,500,000 km².)

Meters	0-200	200-1000	1000-2000	2000-3000	3000-4000	4000-5000	5000-6000	>6000
km ² × 10 ⁶	30.60	16.40	18.05	36.45	79.01	112.72	66.88	5.38
%	8.4	4.4	4.9	9.9	21.7	30.8	18.4	1.5

The continental shelf dips gradually (depth contour about 200 m); then a steeper continental slope (talus), the seat of many deposit slips, seismic disturbances. Insular shelves and taluses, then troughs, trenches, basin deeps.

TABLE 854 .- Oceanic Gradients

Ocean bottom gradients, Atlantic Ocean between Equator and 47° N. latitude.

Zone, N. lat	0-10°	10-20°	20-25°	25-30°	30-35°	35-40°	40-47°
Gradient	20'.7	28'.7	28'.7	23'.9	24'.1	36'.2	37'.1

Island gradients often great; St. Helena, up to 40°; St. Paul (Atlantic Ocean), 62°. Gradients for volcanic and coral islands also great, generally in upper 300 m. Great Caldera of Santorin > 50°. S. of Cuba, 76° W., to depth 2625 m, 35° 30′. Compare Fujiyama, Japan, fine volcanic peak, 35°; 12° at base. Steep gradients (Alpine conditions) westward of British, French, Iberian coasts (av. angle 13° to 14°) and W. of continental slope of California (San Diego to Point Conception) 14° between 2000 and 4000 m isobaths.

TABLE 855 .- Atlantic Ocean Basin. Areas and Depths (Littlehales)

Depths, km	0-2	2-4	4-6	6-8	Over 8	Total area
Areas, 10 ⁶ km ²	29.49	19.50	50.60	7.38	0.039	107.014900
% of whole	27.6	18.2	47.3	6.9	0.4	100

Remarkable feature: Mid-Atlantic Rise, of median course and continental extent, from Iceland to S. polar border; throughout its more than 13 km, the general rise of its crest is some 3 km above the basin bottom on each side. W. Atlantic trough 6 km deep over large area of N. portion; other troughs and basins of similar depth. European isolated depth of 6 km. Near Equator lessened depth, 1.9 km, and extension along Equator 34° to 15° W. long., cut by narrow gap 18° W., 4 to 5 km deep. Passage through gap leads to Brazilian basin, 7.4 km deep. Ridge < 1 km deep leads from Greenland (Iceland is a volcanic rise) to British Isles.

Greatest depths: 54° 30′ S., 28° 30′ W., 8.050 km; 19° 36′ N., 66° 26′ W., 8.351 km; 19° 35′ N., 67° 43′ W., 8.525 km; 19° 38′ N., 68° 17′ W., 8.198 km. See also page 651. Greatest depth in Mediterranean, 4.400 km at 35° 45′ N., 21° 46′ E.; Black Sea, entire central basin below 2 km; North Sea < 200 m throughout.

TABLE 856.—Indian Ocean Basin. Areas and Depths (Littlehales)

Depths, km 0-2	2-4	4-6	Over 6	Total area
Areas, 10 ⁶ km ² 8.192	18.569	44.569	4.656	75.986000
% of whole10.8	24.4	58.7	6.1	100

Compared with Atlantic the bottom relief of the Indian Ocean is much simpler. 7 km deep 250 km S. of Java 10° 1′ S., 108° 65′ E. Persian Gulf, order of 0.09 km deep. Red Sea, about 2 km.

TABLES 857-858

OCEANOGRAPHY

(See Nat. Res. Council Bull., 85, 1932.)

TABLE 857.—Pacific Ocean Basin. Areas and Depths (Littlehales)

Depths, km	0-2	2-4	4-6	6-8	Over 8	Total area
Areas, 10 ⁶ km ²	18.580	31.632	115.593	11.426	0.521	177.752
% of whole	10.5	17.8	65.0	6.4	0.3	100

With much more steeply sloping shores on the E. and W., this ocean, with its Polynesian characteristics, presents a very irregular depth map. Along W. coasts of both N. and S. America steep slopes are remarkable, descending from great heights of Rocky Mts. and the Andes to depths of 4 km or more within short distances; off S. A., between 10° and 35° S., depths to 8 km near coast. All soundings > 8 km near land, off S. A., Aleutian Is., Kurtle Is., Japan, etc. There are numerous isolated volcanic formations, e. g., Hawaiian chain. The largest and deepest depressions are in the gigantic Pacific basin. Tuscarora deep, 8.513 km; 3 elongated tracts 45°, 38°, 31° lat. > 8 km for 38 km². Manchu deep, 31° N., 142° E., 9.435 km for 4 km²; Fleming deep, 23° 48′ N., 144° 6′ E., 8.650 km deep; Tonga deep, 23° 39′ N., 175° 4′ E., 9.184 km; Aleutian deep > 6 or 7 km near S. A., 25° 42′ S., 71° 31′ W., 7.635 km. These deeps are as a rule not associated with the pits of great basins but are nearer land.

Note: The Arctic basin is about $\frac{1}{6}$ of Atlantic Ocean in extent; greatest depths about 4 km. The Antarctic Ocean basin falls steeply from its continent to 2 km.

TABLE 858.—Physical Properties of Sea Water (Thompson)

Temperatures.—Tropical, surface up to 28°C, < 0°C at bottom. Northern Pacific, extreme variation < 6° throughout. Generally decreases with depth.

Pressure.—Atmospheric surface pressure generally neglected, called zero. Pressure is f(wt.) = f(temperature, chlorinity, compressibility, latitude). Gravity = f(latitude). Bjerknes (1909) proposed a "bar" as unit of pressure = that due to column of water 10 m high.

Concentration.—Dilute solution of several strong electrolytes. An ionizing medium better than distilled water; dielectric constant is greater. Composition much the same, varying mainly in dilution.

Salinity (s) is defined as the total amount of solid material in one kg of sea water when all the carbonates have been converted into oxides, the Br and I replaced by Cl and all organic matter completely oxidized. Chlorinity (Cl) = total amount chlorine in one kg when all the Br and I have been replaced by Cl. S = 0.03 + 1.805 Cl. Thus chlorinity may be reduced to salinity (Knudsen, Hydrographical Tables, Copenhagen, 1901). The principal ions, chlorinity 19.374% are (Ditmar, 1884):

Cations		Na+	Mg^{++}	Ca++	K+	Anions	Ce-	SO4	HCO3-	CO ₃ -	Br-
g/kilo		10.722	1.207	0.417	0.382	g/kilo	19.337	2.705	0.097	0.007	0.066
moles/1		.4662	.0533	.0104	.0098	moles/1	-5453	.0281	.0016	.0001	.0008
	7	Γotals:		12.818	g/kilo		Totals:		22.212	g/kilo	
				0.5397	moles/l				0.5759	moles/	

For fresh water Ca⁺, HCO₃⁻, and CO₃⁻ predominate.

OCEANOGRAPHY

(See Nat. Res. Council Bull., 85, 1932.)

TABLE 858 (continued).—Physical Properties of Sea Water (Thompson)

Adiabatic cooling for sea water, chlorinity 19.29%, 2° C, when brought from various depths to the surface (Ekman, Schott, Amer. Hydrogr. 321, 1014);

Depth, meters	1000	2000	4000	6000	8000	10000
Cooling, °C	0.06	. 14	.36	.63	. 96	1.33

Color and transparency.—(See Atkins, Journ. Conseil, 1, 99, 1926.) Optically pure water becomes bluer with depth. Green tints due to suspended matter. A rough measure may be taken as the depth where a white immersed disk becomes just invisible; coastal water, 5 to 25 m, often 45 to 60 m. Max. record 66 m (Sargasso Sea).

Density taken as So, sp. gr. at o° referred to distilled water at 4°. Density expressed as $\sigma_0 = (S_0 - I)1000$. $\sigma_0 = -0.069 + I.4708 Cl - 0.00157 Cl² + 0.0000308 Cl³.$

Chlorinity	5%	10%	15%	20%				
Densityo° C	5.45	10.90	20.35					
"20° C	5.00	10.40	15.75	25.15				
Max. density°C	2.I	+0.1	-1.9	— 3.8				
Freezes°C	0.5	-1.0	-1.5	-2.0				
Conductivityo° C	.0085	.0160	.0235	.0305	Reciprocal ohms			
"20° C	.0140	.0265	.0385	.0500				
Refractive indexo° C	1.3358	1.3376	1.3394	1.3412				
" " 20° C	1.3347	1.3364	1.3381	1.3397				
Sp. heat17.5 C	.9971	.9954	.9942	.9930	Atm. pressure			
Conductivity17°.5 C	1370.	1356.	1348.	1341.	Thermal, all \times 10°			
Surface tensiono° C	77.3	<i>77</i> .5	77.7	77.85	Dynes/cm			
" "20° C	73.7	73. 9	74.I	74.3	11 11			
Sp. viscosityo° C	1.015	1.030	1.045	1.060	Referred to dis-			
	.74	·755	.765	.78	tilled H2O, 1.00			
" "20° C	-57	.58	•59	.605	at o° C			
Velocity of sound: Chlorinity, 19.37%; salinity, 35.00%								
Depth, meters				4000	6000 8000			
Velocity m/sec	[1630]2	0° C [15	560 1590	1625	1660 1695]0° C			

TABLE 859.—Chemical Composition of Sea Water (Thompson, Robinson)

Concentration as millimols or milligram atoms per kilogram

C1	535.0	CO_2	2.25	В	0.037	Cu	0.002	Zn 0.00003
Na	454.0	Br	.81	Li	.015		.0015	H ion .00001
Sulphate	82.88	Sr	.15	Nitrate	.014	I	.00035	Au .00000025
Mg	52.29	A1	.07?	Fe	.0036		.0002	
Ca	10.19	F	.043	Mn	.003?	Nitrite	1000.	
K	9.6	Si	.04	P	,002	As	,00004	

TABLE 860

OCEANOGRAPHY

(See Nat. Res. Council Bull. 85, 1932)

TABLE 860 .- Waves of the Sea (Patton, Marmer)

Wave forms.—Progression of wave form across a stretch of water; actual cyclic movement (circular in deep water; elliptical, long axis horizontal, in shallow) of particle; there also may be a forward propagation of particles. Form of ocean wave, trochoid or prolate cycloid. If a = height of crest, b = depth of trough, both from undisturbed water level, b = depth and b = depth of wave, then b = depth of water b = depth of wave, then b = depth of water $b = \text{de$

Wind waves in deep water are surface waves. Particle motions decrease rapidly with depth; halved for each 1/9 l of depth. If height of wave = vertical distance between crest and trough, l, distance between consecutive same phases, v, velocity, p, period, v = l/p; $v = (g/2\pi) l$; p = gravity; $p = (2\pi/g) l = (2\pi/g) v$; $l = (g/2\pi) p^2 = (2\pi/g) v^2$.

Principal factors: Strength and duration of wind, fetch exposed to wind. Highest (hurricane) waves in open sea, about 15 m; may be higher through interference, etc., over 30 m. No fixed relation between l and h. Some observed ratios (Gaillard): h, 0.6 to 1.5 m, 30; 3 to 6 m, 20; > 9 m, 14. 150 m long not uncommon; some up to 300 m.

Swell.—As waves pass from disturbed area they degenerate to a gentle swell; not important in mid-ocean but may be dangerous to exposed coasts and harbors. Periods (Morocco coasts) 7 to 20 sec., height 0.45 to 4.5 m.

Waves in shallow water are considerably different. If depth of water greater than length of wave, water deep; less, shallow. Wave of translation (Russell, Rep. British Assoc., 8, 417, 1838; 14, 311, 1845).—All the water is above the undisturbed level; there is actual translation of the water particles; due to sudden addition of water, as with breaking of a wave.

Wave pressure may be as great as 3.3×10^6 dyne/cm².

Seismic waves: Lisbon tidal wave, 1755, 18.3 m; Krakatoa, 1883, 21 m at Telok Betong.

TABLES 861-863

TABLE 861 .- Properties of Carboloy

(Hoyt, Hard metal carbides and cemented tungsten carbides, Trans. Amer. Inst. Metals, Inst. of Metals Division, p. 9, 1930.)

Carbolov is a cemented tungsten carbide, WC + 13% Co. At, vol. of the C atoms indicates that they assume the structure of the diamond. Especially adapted to high-speed cutting tools—long life, great hardness and strength.

Per cent cobalt	6 14.82 90 1450a 21.1	9 14.56 1365a 22.3 .0043	13 14.10 87 1255b 19.6	20 12.54 755b 29.2 .0038	280b 9.84 .0036
-----------------	-----------------------------------	--------------------------------------	------------------------------------	--------------------------------------	-----------------------

Carboloy:

Modulus of rupture, cross bending, 20° C, about 225000; 800° C, 183000; 850°, 170000; 900°, 141000 lb./in².

Expansion coefficient per °C, 20 to 400° C, .000006

Thermal conductivity, watts/cm/°C, .65.

Specific heat, cal./g, .052.

Wiedermann-Franz constant (watts/ohm/°C) × 106, 20°C, 12.2.

Hardness at high temp. Brinell, 1100° C, 36; 1300° C, 2.7.

Magnetizing force, gilberts/cm..... 100 Induction, kilogauss 0.58 300 200 500 700 000 1000 1.10 1.50 2.17 2.67 3.10 3.29

TABLE 862 .- Properties of Dekhotinsky Cement

Dekhotinsky cement for air-tight joints. Sp. resistance 2×10^{15} ohm cm and inductive capacity higher than of mica; adhesion great. For cementing glass and metals. Nitric, sulphuric, hydrochloric acids, bisulphide of carbon, benzene, gasoline, turpentine do not attack it. Very little affected by ether, chloroform, caustic alkalies, etc.

TABLE 863.—Properties of Fused Quartz (Vitreous Silica)

Fused quartz (vitreous silica). Can be used to a working temperature of 1000° C. Softens about 1400°, melts about 1756° C. Can be used intermittently to 1700° but above 1000° devitrification commences.

.0000005 per ° C up to 1000°. Thermal expansion low,

Invar, .0000009.

Chemical pyrex, .0000032.

Jena glass 59, .0000057. Expands on continued cooling to 80° C.

Specific gravity: clear fused, 2.21, translucent, 2.1. Hardness, Moh's scale, fused, 4.9, crystal, 6.3.

Modulus of elasticity, 9,400,000 lbs./in.2

Tensile strength, 7,000 lbs./in.2

Compression strength, 190,000 lbs./in.2

Impermeability. Not porous to common gases at high T and ordinary pressures. Helium diffuses through even at low T. Non-hygroscopic.

Transparent to radiation about .1850 to 1µ.

Thermal conductivity at 20° C .0024 for clear fused quartz, increases rapidly with rise in temperature.

> Resistivity electrical, 5×10^{18} ohm · cm 25° C. Dielectric constant, 100000 cycles, 25° C, 60% humidity = 4.4.

Most acids, neutral salts, refractory oxides, either no chemical action or less than with glass, Pt, or porcelain. Hot solutions and fusions of the caustic alkalies readily attack. (Vitreous silica, Sosman, 1927; Fused quartz, Gen. Elec. Co., 1928.)

TABLE 864.—Properties of Phenol-Resinoid Products

	Pure		Molded		Lami	nated
Quality	hardened resinoid	Wood floor filler	Fabric filler	Asbestos filler	Paper	Fabric
Molding qualities	none	excellent	good	fair		tubes,
After molding		perm	anently inf	usible		nently
Machining	good none	fair	fair	fair	fair	fair
Cold flowTransparency	transparent translucent		none opaque	none	none opa	que que
Refractive index	1.56-1.70		орацие		ора	que
Specific gravity	1.2-1.3 5,000 to	1.3-1.4 6,000 to	1.3-1.4 6,000 to	1.8-2.0 3,500 to	1.3-1.4 8,000 to	1.3-1.4 8,000 to
Fig. 8 test piece	11,000 negligible	12,000	12,000	5,000	20,000	12,000
Elongation	10-25		negligible		negli	
transverse lbs./in.² Modulus of rupture	\times 10 ⁵ 12,000 to	10,000 to	8,000 to	8,000 to	flat or ed	dre-wise
transverse lbs./in.2	20,000	20,000	15,000	20,000	75,0	000
Electrical resist. ω·cm³	10 ¹⁰ to 10 ¹²	10 ¹⁰ to 10 ¹¹	10 ¹⁰ to 10 ¹¹	108 to 109	to 30,000 10 ¹⁰ to 10 ¹¹	to 25,000
Breakdown volts,* V/mil	250-700	300-500	20-500	150-400†	500-1300	200-500
Power factor 106 cycles	4.5 to 7 3-4	4.5 to 8 4-6	4.5 to 7 4-6	5 to 20 12-20	4.5 to 6 5–8	4.5 to 7 5-8
cal./sec. cm° C Sp. heat	× 10 ⁻⁴	X 10-4	X 10 ⁻⁴	X 10-4	× 10-4	X 10-4
Burning	extremel		nonfla		extreme	

Instantaneous at 60 cycles. † Mica filler.

nimal, vegetable, mineral oils, hydrocarbons, esters, ketones, no effect; alcohols, practically none; k alkalies, slowly softened, strong, disintegrates; decomposed by strong nitric and sulphuric acids by hydrochloric and hydrofluoric which attack fillers. Withstands 250° F. (Data from Mory and lor, Bakelite Corporation, 1920.)

TABLE 865.—High Vacuum Technique

eferences: Dunoyer, Vacuum practice, London, Bell and Sons, 1926; Newman, The production measurement of low pressures, New York, Van Nostrand, 1925; Kaye, High vacuum, Longmans, en & Co., 1927; Dushman, High vacuum, Gen. Elec. Rev., 1922; Goetz, Physik und Technik der hvakuums, Vierveg und Sohn, Akt. Ges., Braunschweig, 1926; Langmuir, Phys. Rev., 2, 450, 1930; s. Zeitschr., 15, 516, 1914.

hvakuums, Vierveg und Sohn, Akt. Ges., Braunschweig, 1926; Langmuir, Phys. Rev., 2, 450, 1930; s. Zeitschr., 15, 516, 1914.

he following is taken from Dushman, Rev. Mod. Phys., 2, 381, 1930, whence the above references. stop-cocks, greased joints, etc., should be avoided in connection with the exhaust and preparation libes containing cathodes for which electron emissivity are to be determined. While the evaporation with the bulb immersed in liquid air was used by Langmuir, other "getters" have come into use. Ca, Ba, and alloys of rare-earth metals have been used. Ba cleans up practically all residual gases rdinary temperatures, while Mg is ineffective for H2 and Ca does not take up N to any great extent. The remely low pressures may be obtained with a side tube containing charcoal (which has been well usted) immersed in liquid air. Care should be taken that the liquid air is maintained at constant during the series of measurements.

HSONIAN TABLES

TABLE 866.—Relative Viscosity of Water; High Pressure Variation (Bridgman, 1025.)

kg/cm²							8000	10000	11000
0° C	.779	.755	.743	-754	.842	.981	1.152	1.058	1.126
70°	.222	.222	.239	.258	.302	.367	•445		

TABLE 867.—Viscosity of Mercury; High Pressure Variation (Bridgman, 1927.)

Pressure kg/cm² Abs. visc. 30° "75°	0.01516 .01341	2000 0.01588 .01399	4000 0.01663 .01463	6000 0.01742 .01528	8000 0.01825 .01599	10000 0.01913 .01675	12000 0.02008 .01757
% increase 30° 75°						26.3 24.7	

TABLE 868 .- Viscosity of Some Glasses at High Temperatures

(Washburn, Shelton, Libmann, Bull. Univ. Illinois, 140, 1924.)

С	ompositio	on		tension			Visco	sities		
SiO ₂	Na ₂ O	CaO	1 206°	s/cm² 1454°	800°C	900°	1000°	1200°	1400°	1500°
49.7	50.3					2.32	1.62	0.93		
6 0.0	40.0		156	149	4.51	3.68	3.04	2.05	1.26	0.91
70.0	30.0		164	154	5.14	4.30	3.64	2.62	1.89	1.58
82.6	17.4			154			5.4	3.69	2.64	2.33
54.25	38.0	7.75	115	I 54		(6.05)	3.42	1.64	.88	
60.0	30.0	10.0				(3.5)	3.02	2.18	1.44	1.08
60.0	20.0	19.5	160	128			4.95	2.14	1.32	.93
63.0	13.6	23.4	164	159			5.16	2.63	1.51	1.19
64.95	19.3	15.75	150	139		4.92	3.88	2.58	1.75	1.41
67.5	15.5	17.0	159	145		5.50	4.37	2.89	1.91	1.57
68.1	21.9	10.0	150	146	5.18	4.44	3.76	2.59	1.80	I.44
70.0	20.0	0.01	154	140	5.63	4.68	3.93	2.78	1.94	1.58
70.0	10.0	20.0	164	156				3.84	2.16	1.77
72.25	15.1	12.1		152		5.46	4.36	3.03	2.09	1.64
73.5	16.5	10.0	167	159	5.73	5.09	4.46	3.26	2.18	1.68
73.0	12.0	15.0						3.71	2.80	2.43
		Ü								

TABLE 869.—Some Possible Accuracies, 1928

(Journ. Wash. Acad. Sci., 18, 503, 1928.)

Pienkowsky:

30 national prototype kgm (and probably the international kilogram) are remaining constant within 0.02 mg or less.

10-6 kg measurable to 1 part in 104.

I " " " " " " 10⁸.

103 " " " " " " " 10".

With one type of microbalance 100 mg to 1 mg, 1 part in 108 to 106.

Curtis:

- I ohm, I to 2 parts in 10⁷; I millimicrohm with 10%, also megamegohm.
- I volt, I in 107; I microvolt, 1%; I megavolt, 10%.
- I ampere, I in 106; micromicroampere 10%; kiloampere I in 104.
- I millihenry, I in 105; millimicrohenry, 10%; kilohenry 1%.
- I microfarad, I in 105; micromicrofarad, 1%; millifarad 1%.

PROPERTIES OF MALLEABLE CAST IRON

(From Proc. Amer. Soc. for Testing Materials, 31, pt. 2, 1931; Malleable Iron Research Institute.)

Malleable iron is the product produced by the annealing or graphitization of "white iron" castings in which all carbon should be present in the combined form, such that the final structure of the malleable casting consists of ferrite and free carbon (temper carbon) with practically no combined carbon as free cementite or pearlite. Where strength, ductility, machineability, and resistance to shock are important, malleable iron castings are of wide application.

Chemical composition: C 1.00 to 2.00; Si 0.60 to 1.10; Mn < .30; P < .2; S .06 to .15%. Density: 7.15 to 7.45. Thermal expansion: 20°-400° C, about 0.000012 per °C.

Sp. Ht.: Mean 20°-100° C, 0.122 per g per °C; 20°-200°, 0.125; 20°-500°, 0.139; 20°-700°, 0.159.

Thermal conductivity: Kt, 50° C, 0.145 g. cal./sec./°C/cm; 100° C, 0.137; 200° C, 0.115. Tensile strength: 54,000 lbs./in.²; range 45,000 to 63,000; yield point 36,000 lb./in.² Elongation in 2 in. 18%. Modulus of elasticity in tension 25,000,000 lb./in.²

Compressive strength: Material flows indefinitely.

"Special" tensile 57,690; yield point 38,000; elongation 25% in 2 in.

Ultimate shearing strength 48,000 lb./in.²; yield point 23,000 lb./in.²; elasticity mod. 12,500,000 lb./in.²

Modulus rupture in torsion 58,000 lb./in.2; yield point in torsion 24,000 lb./in.2

Brinell hardness 115, range 100 to 140. Charpy impact value 7.75 ft. lb.

Note: If malleable iron is heated above its lower critical point (about 760° C), carbon redissolves and the character of the iron changes.

Resistivity: 28 to 37 microhms · cm³ $R_{100}/R_0 = 1.1$ $R_{500}/R_0 = 2.3$.

Magnetizing force, H, gilberts/cm..... 2.5 5 7.5 10 15 20 30 Induction, B, gausses (mean)....... 5800 7600 9200 10000 11000 11400 11900

Comparative machineability. Relative power required (means of planing, drilling, and milling):

Dow metal, type E 19	Gun metal 55	Copper annealed 131
Bearing bronze 36	Cast iron 60	Tool steel 1.03% C 145
Aluminum alloy no. 31. 37	Manganese bronze 61	Stainless Cr, iron, ann. 158
Red brass 38	Malleable cast iron 70	Monel metal 165
Sheet brass 41	Unleaded brass 85	Nickel "A" 193

DEFINITIONS OF UNITS

ACTIVITY. Power or rate of doing work; unit, the watt. •

AMPERE. Unit of electrical current. The international ampere, "which is one-tenth of the unit of current of the c.g.s. system of electromagnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications, deposits silver at the rate of 0.00111800 of a gram per second."

The ampere = 1 coulomb per second = 1 volt through 1 ohm = 10^{-1} e.m.u. = 3×10^{9}

Amperes = volts/ohms = watts/volts = $(watts/ohms)^{\frac{1}{2}}$.

Amperes \times volts = amperes² \times ohms = watts. ANGSTROM. Unit of wave length = 10-10 meter.

ASTRONOMICAL UNIT. Mean distance earth to sun, 149,500,000 km.

ATMOSPHERE. Unit of pressure.

English normal = 14.7 pounds per sq. in. = 29.929 in. = 760.18 mm Hg. 32° F. French "= 760 mm of Hg. 0° C = 29.922 in. = 14.70 lbs. per sq. in. AVOGADRO NUMBER. Number of molecules per mole 6.064 × 10²³ mole⁻¹. BAR. International unit of pressure 10° dyne/cm², g = 980.616 cm/sec².

BARYE. c.g.s. pressure unit, one dyne/cm².
BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, 1° F. = 252 gram-calories.

CALORIE. Small calorie = gram-calorie = therm = quantity of heat required to raise one gram of water at its maximum density, one degree Centigrade.

Large calorie = kilogram-calorie = 1000 small calories = one kilogram of water raised one degree Centigrade at the temperature of maximum density.

For conversion factors see page 251.

CANDLE, INTERNATIONAL. The international unit of candlepower maintained jointly by national laboratories of England, France and United States of America. CARAT. The diamond carat standard in U. S. = 200 milligrams. Old standard = 205.3 milligrams = 3.168 grains.

The gold carat: pure gold is 24 carats; a carat is 1/24 part. CIRCULAR AREA. The square of the diameter = 1.2733 × true area.

True area = $0.785398 \times \text{circular area}$.

CIRCULAR INCH. Area of circle one inch in diameter.

COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second = 10⁻¹ e.m.u. $= 3 \times 10^{9} \text{ e.s.u.}$

Coulombs = (volts-seconds)/ohms = amperes \times seconds.

CUBIT = 18 inches.

DALTON. Unit of mass, 1/16 mass of oxygen atom. 1.65 × 10⁻²⁴ g.

DAY. Mean solar day = 1440 minutes = 86400 seconds = 1.0027379 sidereal day. Sidereal day = 86164.10 mean solar seconds.

DIGIT. \(\frac{3}{4}\) inch; 1/12 the apparent diameter of the sun or moon.

DIOPTER. Unit of "power" of a lens. The number of diopters = the reciprocal of the focal length in meters.

DYNE. c.g.s. unit of force = that force which acting for one second on one gram produces a velocity of one cm per sec. = Ig ÷ gravity acceleration in cm/sec./sec.

Dynes = wt. in g \times acceleration of gravity in cm/sec./sec. ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.

DEFINITIONS OF UNITS

FOOT-POUND. The work which will raise one pound one foot high.

For conversion factors see page 251.

FOOT-POUNDALS. The English unit of work = foot-pounds/g.

For conversion factors see page 251. EQUATION OF TIME. Excess of mean time over true time.

ERG. c.g.s. unit of work and energy = one dyne acting through one centimeter.

For conversion factors *see* page 251. FLUIDITY. Reciprocal of viscosity.

g. The acceleration produced by gravity. GAUSS. A unit of intensity of magnetic field = 1 e.m.u. = $\frac{1}{3} \times 10^{-10}$ e.s.u

GRAM. See page 6.
GRAM-CENTIMETER. The gravitation unit of work = g. ergs.

GRAM-MOLECULE = x grams where x = molecular weight of substance.

GRAVITATION CONSTANT = G in formula $G \frac{m_1 m_2}{r^2} = 666.4 \times 10^{-10} \text{ dyne} \cdot \text{cm}^2 \cdot \text{g}^{-2}$.

HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without selfinduction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs × volts)/4.181 in small calories.

The heat in small or gram-calories per second = (amperes² × ohms)/4.181 = volts²/

 $(\text{ohms} \times 4.181) = (\text{volts} \times \text{amperes})/4.181 = \text{watts}/4.181.$

HEAT. Absolute zero of heat $= -273^{\circ}.18$ C.

HEFNER UNIT. Photometric standard; see page 334. HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second" = 10^9 e.m.u. = $1/9 \times 10^{-11}$ e.s.u.

HORSEPOWER. The English and American horsepower is defined by some authorities as 550 foot-pounds per second and by others as 746 watts. The continental horsepower is defined by some authorities as 75 kilogrammeters per second and by others as 736 watts. See page 251.

JOULE. Unit of work = 10⁷ ergs. For electrical Joule see page xlv.

Joules = (volts² × seconds)/ohms = watts × seconds = amperes² × ohms × sec.

For conversion factors see page 251.

JOULE'S EQUIVALENT. The mechanical equivalent of heat. See page 86.

KILODYNE. 1000 dynes. About 1 gram.

KINETIC ENERGY in ergs = grams × (cm/sec.)²/2.

LITER. See page 6.

LOSCHMIDT NUMBER. Number of molecules per unit vol. ideal gas at o° C and normal pressure, 2.705 × 10¹⁹ cm⁻³.

LUMEN. Unit of flux of light-candles divided by solid angles.

MEGABAR. Unit of pressure = 1,000,000 bars = 0.987 atmospheres. MEGADYNE. One million dynes. About one kilogram.

METER. See page 6.
METER CANDLE. The intensity of lumination due to standard candle distant one meter. MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.

MICRO. A prefix indicating the millionth part.

MICROFARAD. One-millionth of a farad, the ordinary measure of electrostatic capacity.

MICRON. (μ) = one-millionth of a meter.

MIL. One-thousandth of an inch.

MILE. See pages 5, 6.
MILE, NAUTICAL or GEOGRAPHICAL = 6080.204 feet.

MILLI. A prefix denoting the thousandth part. MOLE. Mass equal to molecular weight of substance.

DEFINITIONS OF UNITS

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same

node again = 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days

(mean value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 10° units of resistance of the c.g.s. system of electromagnetic units, and "is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters" = 10^9 e.m.u. = $1/9 \times 10^{-11}$ e.s.u.

International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms.

Siemens' ohm = 0.94080 international ohms. PARSEC. Distance of star whose parallax is 1".

PENTANE CANDLE. Photometric standard. See page 334.

 $PI = \pi = \text{ratio}$ of the circumference of a circle to the diameter = 3.14159265359. POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound.

RADIAN = $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ}$ 17' 45'' = 206265''. REAMUR. Thermometric scale. 0° C = 0° R. 100° C = 80° R. SECOHM. A unit of self-induction = 1 second \times 1 ohm.

SLUG. Unit of mass. Mass acquiring acceleration 1 ft./sec.2 when continuously acted upon by 1 lb. wt.

SLUG. (Metric) ditto accel. 1 m/sec.2, 1 kg weight.

TENTH-METER. 10-10 meter = 1 Angstrom.

THERM = small calorie = (obsolete).

THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit = 252 gramcalories.

VOLT. The unit of electromotive force (e.m.f.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere. The value of the e.m.f. of the Weston Normal cell is taken as 1.0183 international volts at 20° C = 108 e.m.u. = 1/300 e.s.u. *Sce* page 80. VOLT-AMPERE. Equivalent to Watt/Power factor.

WATT. The unit of electrical power = 107 units of power in the c.g.s. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule

 \hat{W} atts = volts \times amperes = amperes² \times ohms = volts²/ohms (direct current or alternating current with no phase difference).

For conversion factors see page 251.

Watts \times seconds = Joules.

WEBER. A name formerly given to the coulomb.

WORK in ergs = dynes \times cm. Kinetic energy in ergs = grams \times (cm/sec.)²/2.

YEAR. See page 601.

Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds. Sidereal "= 365" 6 " 9 " 9.314"

" 9.314 " 6 " 9 " " " 48 " = 365" 46+ Ordinary 5 48

" same as the ordinary year. Tropical

INDEX

(References in parentheses marked I.C.T., followed by volume and page number, are to the first edition of the International Critical Tables.)

PAGE	PAGE
a particles: atomic stopping powers 523	Albedos 607
ionization	Alcohol density ethyl aqueous
in various gases 525	methyl, " 174
masses, 6,60 × 10 ⁻²⁴ g each 105	methyl, " 174 viscosity, aqueous 205
masses, 6.60×10^{-24} g each 105 miscellaneous data 521	Alloys: conductivity, electrical414, 415
molecular stopping power 523	Alloys: conductivity, electrical414, 415 thermal
range, gases522-523	density
long-range 523	Hall effect (l. C. T., 6, 417) Kerr " (I. C. T., 6, 435)
solids 523	Kerr " (I. C. T., 6, 435)
stopping powers, atomic, molecular 523	magnetic susceptibility (I. C. T., 6, 365)
velocities	mechanical properties: aluminum 117
Abbot-Priest sea-level solar energy, $f(\lambda)$	brasses (Cu, Zn) 120
Abbreviations	bronzes (Cu, Sn) 120
Aberration constant 601	copper, nomenclature 119
Absolute international units	iron III
magnitudes (M) to apparent (m), to re-	miscellaneous121-125
duce 602	steel 113
ohm	Nernst effect (I. C. T., 6, 420)
volt	Alpha particles (see a particles)
	Altitude-azimuth to right ascension, formulae 602
zero, -273°.18 C85-86	Altitude by barometer
Absorption: air, moist and dry, for radiation 611	Aluminum: alloys, mechanical properties 117
alpha particles522-523	mechanical properties 117
atmospheric for radiation 608	solder 12d
, ultra-violet, for radiation. 389	wire tables English units 429
beta particles 528	metric '' 430
crystals, for radiation 390	metric " 430 American candle
dyes, for radiation	Ammonia: p, v, t,
filters, for radiation	thermat properties (liquid)
gases by liquids	Ampere definition 658
glasses, American, for radiation 387	Ampere-turn units liv
colored, " " 386	Ampere-turn units liv Angstrom, definition 658
Jelia, 300	
Schott, " " 386	Anomalistic year 601
ultra-violet, Jena, for radia-	Antenna heights
tion 387	Antifreeze mixtures
good absorbers of radiation 391	Antilogarithms
mass, X rays544-545	Apparent magnitudes, m, to absolute, M 602
ultra-violet for radiation, various ma-	Aqueous solution densities: (general)170, 171
terials393-395	ethyl alcohol172, 173
Acceleration of gravity: anomalous 567 f(latitude, altitude) 564	methyl "
I (latitude, attitude) 504	sugar174, 175
U. S. stations 566 world stations 565	sulphuric acid 174
world stations 505	vapor: in atmosphere, wet and dry 234, 235
Accuracies possible	relative humidity236, 238
Acoustics (see sound)190-195	weight 23-
Actinium 518	Arc-spectrum lines 509
Activity, definition	Areas, ocean650-651
Adaptability of eye, rate of 331	Asteroids 600
Adsorption: gases by particles 554	Astrogamma (photography) 34;
heats 554	Astronomical tables (see under stars, sun) 601 et seq
molecular heats	unit, definition
Aerodynamics: (general) (1. C. T., 1, 402)195-203	Atlantic Ocean basins, areas and depths 650
air forces on cylinders 200 flat plates198-199	Atmosphere: altitude, variation with 55
flat plates198-199	density, 55% heights, dynamic 56%
miscellaneous201-202	heights, dynamic
spheres 201	geometric
resistance on flat plates198-199	latitude variation 55
skin friction 203	(Mayls)
velocity pressure vs. air speed 195	path, f(height, season) 56
Aeronautics, standard atmosphere for 559	path, I (height, season) 50,
Age, earth's 578	normal (Birge)84, 8
Agonic line 595	ozone
Air: (see also atmosphere)	temperature variations as f(ait.) 55
conditioning with moisture (I. C. T., 2, 321). 179	lower as km
convection, conduction, thermal 327	lower 25 km 56.
masses, f(altitude)	Atmosphores and pressures to
moist, maintenance of (I. C. T., 2, 321) 179	Atmospherics, gage pressures to
retractive index	Atmospheric electricity, (general)
resistance (see under aerodynamics)	Atmospheres, gage pressures to
thermal conductivity	space 59

PAGE	PAGE
Atmospheric electricity: conductivity 596	Bohr atom: Hund notation 504
constants, elements 596	magneton
ionic equilibrium 597	orbits for hydrogen
ionization upper atmos-	orbits for hydrogen
phere599, 600	Boiling points: elements
potential gradient 596	inorganic compounds 254
rain, charge on 598	organic compounds 256
snow, "" " 598	solvents 220
rain, charge on 598 snow, 598 space charge 597	solvents 220 rise of, by salt solutions 269
thunder storms 598	water, f(barometric pressure) 188
transparency to solar radiation, moist	Bolometric magnitudes of stars, corrections 624 Boltzmann constant, k , 1.3708×10 ⁻¹⁶ erg/deg 104
and dry air608, 611	Boltzmann constant, k, 1.3708×10-16 erg/deg 104
Atom mass hydrogen, 1.66×10 ⁻²⁴ g	Bougie decimale
Atomic heats	Brasses: mechanical properties
	naval, mechanical properties 121 yellow, red, mechanical properties121, 122
nacking fractions404, 051	Break-down voltages, dielectrics439-441
radil	Bricks, mechanical properties
specific heat constant	Brightness: black body
spectra, series relations 502	blue-, incandescent oxides. 336 eandle-, " 336 candles/cm², lamps, sky, sun. 339
spectrum functions 515	candle-, " " 336
volumes	candles/cm2, lamps, sky, sun 339
volumes	various sources 338
Atoms: atomic numbers483, 485	electric lights, vacuum and gas-filled 338
weights81-85, 483	intrinsic, various sources 334
Bohr	photometric
electron configurations	photometrie 332 sky, candles/cm ² 339 sun, '' 339
isotones	
. radioactive 486	temperature: miscellaneous 323
noriodia system (Nondelegii) 4XE	tantalum 222
quantum numbers	molybdenum 323 tantalum 323 tantalum 323 tantalum 322 Experiment 110 et seq.
	Brinell hardness
radioactive atoms, isotopes	Britannia metal, mechanical properties 124
Rutherford	British thermal unit
spectrum-series relations 502	
structure	Brix figure for cane sugar
Audibility, sound	Brix figure for cane sugar
Automobile: antifreeze solutions	Brownian movement
lights, characteristics of 339	Brownian movement
Avogadro's number, 6.064×10 ²³ /mol104, 658	
A mantipless observation in air CO	c, 2.99796×1010 cm/sec., velocity of light 74
β particles: absorption in air, CO ₂	e', 2.99779×1010 cm/sec., electromagnetic value 74
effective range 528 work of extraction 527	c_1 , powers of 103 c_1 , radiation constant 107 c_2 , 1107 c_2 , 1107 c_2 , 1107 c_2 , 129 c_2 /Cadmium red line, wave length, international primary attended.
Robbit metal mechanical data	c ₁ , radiation constant
Bakelite, physical and mechanical data	C2, C. (2000)
Ballistics (I. C. T., 7, 496)	Cadmium red line wave length international primary
Balmer series formula	standard104
Balmer series formula	
Bar, definition	Calcium, interstellar 644 Caleindar, Julian (day) 603 perpetual 603
Barnett effect (1. C. T., 6, 347)	Calcium, interstellar 644
	Calendar, Julian (day) 603
boiling point determinations of altitude. 188	perpetual
eapillarity	
gravity, standard, reduction to;	Calorie ₁₅ , definition
altitude term 182 latitude term, English185, 186	Candle: (general)
metric 182 184	energy from
metric183, 184 meniscus values 187	energy from 336 foot-333 meter-333
temperature, reduction to standard 181	spherical
Barye, definition658	standards, American
Batterles, composition, voltages 398	Bougie decimale 334
Baumé scale to specific gravities, densities 158	English sperm 334
cane-sugar values	International 334
Bel 193	pentane 334
Bell metal, mechanical properties120	stellar magnitude of 623
Belting leather, mechanical properties 130	Capacity, carrying, covered copper wire 416
Bessel equation	electrical, equivalents
Beta particles (see β particles)527-528	gases, f(t, p) 442
Riavial crystals: + refractive indices	liquefied gases 445
Biaxial crystals: + refractive indices367-368	liquids443—445
miscellaneous	solids
Binary stars: (see also under stars)629-631	standard solutions 446
masses vs. spectrum classes 620	Carat, metric
spectrum classes 620	Carboloy, mechanical and physical properties 654
Binding energy of electrons; lonized atoms 498	Carbon dioxide, compressibility
neutral " 497	steels, heat treatments 112
Birge's physical constants73 et seq.	mechanical properties 112
Black absorbers, transparency	Carrying conseity covered copper wire
Black body: brightness	Carrying capacity, covered copper wire
radiation total	Castor oll, density, viscosity
temperature, auxiliary for any 317	Cathode rays536, 537
Blind spot of eye	Cells, volta, e.m.f
Bode's law	Westonxlix

PAGE	PAGE
Cement, Dekhotinsky, physical, mechanical data 654 mechanical properties	Conductivity, electrolytic
mechanical properties	electrochemical equiva-
Centipoises 205	Conductivity, electrolytic
Cepheids, variable stars	electrolytic solutions 432
Characteristic X rays	equivalent:
Centingoises 205 Cepheids, variable stars 634 Characteristic X rays 542 Characteristics of lights: automobile flash 339 flash 339	acids, aqueous solu-
miniature 220	tions 435 bases, aqueous solu-
miniature 339 movie 339 surgical 339	tions 435
surgical 339	ions, separate 438
Charcoal, adsorption by (I. C. T., 3, 250; 5, 139). 554	salts435-437
Charge, electronic (elementary)88, 92, 103	tions
Chemical composition of earth	ionization of water 428
Sin 673-674	K ₁₈
Charcoal, adsorption by (I. C. T., 3, 250; 5, 139). 554 Charge, electronic (elementary). 88, 92, 103 Chemical composition of earth. 572 meteors 614 Sum 612-614 electrical equivalents 431 energy 311 Circular area, definition 658 Clay products, mechanical properties 128, 129 Clouds of Magellan 616 Cluster variables 634 Clusters, galactic 637, 638 globular 637, 638 globular 637, 638 star, properties of 637 Coals, heats of combustion, analyses 308 Cobalt, mechanical properties 124	ionization of water 438 K_{18}
energy	morecular, specime, f(t)
Circular area, definition	μ
Clay products, mechanical properties128, 129	thermal272 et seq.
Clouds of Magellan	conversion factors 270
Chetage galactic 629	gases 277
globular	insulators274-276
open, distribution of	
star, properties of	, pressure variation 278
Coals, heats of combustion, analyses 308	metals 273
Cobalt, mechanical properties	organic liquids 277
Colleida: (missellaneous deta) (I.C. T	salt solutions 276
Contoins: (miscentaneous data) (1. C. 1., 1, 354, 2,	Include
adsorption heats	Cones number and distance apart in ave
molecular heats 554	Conifer woods, mechanical properties
of gases 554	Constants: mathematical 14
Brownian movement 553	physical, Birge
molecular volumes	Constellations, abbreviations
Color, Indices: stellar	Contract consitivity of the eye
screens: 20 to 40μ	Gonvection cooling by
20 to 150μ	Cones, number and distance apart in eye. 33.2
$108 \pm \mu$	Conversion factors
block shearhers 284	horsepower to foot-pounds 251 work into various units 251
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cooling by radiation and convection325-327
glass386–388	Copper: alloys: brasses, mechanical properties 120
good absorbers 384	bronzes, " 120
narrow spectrum regions 384	Copper: alloys: brasses, mechanical properties
sensitivity of eye to small changes	three components, mechanical prop-
temperature: miscellaneous318, 319, 323	two components, mechanical prop-
molybdenum 323	erties
tantalum	mechanical properties118-123
various courses	plates, mechanical properties
Combination, heats of	wire carrying canacity
Combustion, " "	mechanical properties118-119
Compressibility: carbon dioxide 145	tables, English 423
crystals140, 157	Metric 420
ethylene	(radians)37-40
gases	natural (°')32-36
o° C, 76 cm	(radians)37-40
tungsten 323 Combination, heats of. 311, 312 Combustion, "307, 308 Compressibility carbon dioxide 145 crystals 140, 157 elements, linear, cubic 140 ethylene 145 gases 143 o° C, 76 cm 144 100 to 1,000 atm 145 bifth pressures 147	hyperbolic, logarithmic, natural41-46
100 to 1,000 atm.	Cotangents, eircular logarithmic (°')
nitrogen 146	(radians)37-40
liquids 154	natural (°')32-36
petroleum oils	(radians)37-40
solids (see also mechanical prop-	hyperbolic, logarithmic, natural41-46
Compton chift	Couples thermal
Concrete mechanical properties 126 127	Critical constants of gases
Conduction, heat across air	Crova wave length
Compton shift erries)	Crucibles
Conductivity, electric: (see resistivity)	Cryostats, nonflammable liquids
alloys409, 414	electicity 128, 120, 140
temperature coeffi- cients415, 416	
atmosphere	of metallic 140 indices of refraction, blaxial 366-368, 370 uniaxial 336-366 inversions, enantistropic 261-265
dielectrics 418	uniaxial336-366
gases *	inversions, enantistropic261-265
high-frequency 449 pressure effects 412	heats of
tension effects 412	elastic constants 140
super, of metals 433	linear compressibility 140

^{*} Phenomenon too complex for insertion in book. See J. J. and G. P. Thomson, Conductivity of electricity through gases, 1928; K. T. Compton and Langmuir, Electrical discharge in gases, Rev. Mod. Phys., 2, 123, 1930.

PAGE	PAGE
Cubes of numbers	Diffusion: gases 217
Cubical expansion acofficients: gases 284	integral 6c
Cubical expansion coefficients: gases	ionic 552 metals into metals 217 molecules 547, 552 vapors 216-217
liquids 203	10Intc
solids 282	metals into metals 217
Cubit, definition	molecules547, 552
Curie: point, magnetic 107	vapors216-217
radium standard	Diffusivities, thermal
Curie: point, magnetic 107 radium standard 520 Current: electric equivalents 397 Curvature of space 644 Cylindrical harmonics 68-70	vapors 216-217
Characture of appea	Dilution heat of H-SO.
Curvature of space	Dimensional formulas (general)
Cylindrical harmonics	Dimensional formulae: (general)xxxi, 3, 4
, roots 70	electric unitsxxxvi
	electromagnetic unitsxxxi
δ rays 525	electrostatic unitsxxxvi
Dalton 658	geometrical unitsxxxi
Date line 602	heat unitsxxxv
Date line	near units
Day	magnetic unitsxxxvi
, sidereal oii	mechanical unitsxxxi
De Broglie 514	reasoningxxxi
Decibel 193	Diopter, definition
Decibel 193 Declination, magnetic: annual change 579	Diopter, definition 658 Dip, horizon 60 magnetic: annual change 57 magnetics annual change at observatories.581-586
equal 576	magnetic annual change
isogonic lines 576	of change of a particular and a second of the second of th
isoporic " 577	at observatories. 501-509
secular change, U. S 590	decimation576-592
	isogonic lines (world)
(see also magnetic ele-	declination 576-59 isogonic lines (world) 576 isoporic " 577
ments)581-589	latitude and longitude variations 59:
R. A., to altazimuth	secular variation
Dekhotinsky cement, properties of	secular variation
Delta metal, mechanical properties 127	Dispersion glasses 356-355
rave rave	properties glasses
rays	, partial356, 35;
Demagnetizing factors for rods 470	Jena glasses
Density: air, moist	Displacement constant, Wien's
Density: air, moist	laws, spectrum series 50
	Distance earth to moon
methyl, " 174	sun
alloys	
aqueous solutions 170, 171 Baumé equivalents 158	star clusters: galactic 633 globular 633 open 633
Raumá equivalents 158	alabulan (
cane sugar, aqueous	grobutar
castor oil, f(t)	open
castor on, I(t)	stars 61 sun from center of galaxy 64
critical, of gases	sun from center of galaxy
earth, 5.522 (Birge)	Dominical letter 60.
interior 569	Doublet H constant
elements, chemical 159	Doublet H constant 100
gases	Dyes transmission of light 28
glycerol, aqueous solution 206	Dyna definition
inorganic compounds	Dyne, demittion
liquids	e, base of natural logarithms, 2.71828
mercury to 160° C	e, elementary charge, 4.770×10 ⁻¹⁰ abs. es
minorala 164	unite 88 0
microlleneous solids	units
miscellaneous solids	a/m bound v m6 v v v v 7 obs and v
moist air177, 178	e/m, bound, 1.761×10 ⁷ abs. em/g 93, 9.
organic compounds256-258	free, 1.769 \times 10 ⁷ abs. em/y 92, 9. e^x , e^{-x} and their logs, $x=0$ to 1048-5. x fractional50
planets 606	e^x , e^{-x} and their logs, $x=0$ to 10
solids, various	x fractional 50
solutions, water	e^{x^2} , e^{-x^2} , logs, $x=0.1$ to 5.0
stars 623	
cuerose equenus colution 154 155	$e^{\pi x/4}$, $e^{-\pi x/4}$, logs, $x=1$ to 20
sulphuric acid, aqueous solution174, 175	$e^{\pi^{\frac{1}{2}}x/4}$, $e^{-\pi^{\frac{1}{2}}x/4}$, logs, $x=1$ to 20
water, o° to 41° C	e , c , logs, x=1 to 20
sulphuric acid, aqueous solution 174, 175 water, 0° to 41° C. 166 ———————————————————————————————————	$\frac{e^x + e^{-x}}{2}$, $\frac{e^x - e^{-x}}{2}$ and their logs
woods	$\frac{1}{2}$, $\frac{1}{2}$ and their logs
Developer pyrogallol 2.41	Earth: age 57
Development, photographic 341	angular velocity 57
Diamagnetism	
Diameter clements	atmospheric electricity 506 60
Diameter, elements 548 molecules 550, 551	composition
Distance and the formation of the state of t	atmospheric electricity 596–60 ecomposition 57 econductivity, thermal 55 constants, various 57 density, 5,522 569, 57 depths, ocean 56 dimensions 57
Dielectric eonstants: (general) xxxii erystals 447 gases, f(p, t) 442 liquefied 445 liquids, pressure effect 443	conductivity, thermal 55
erystals 447	constants, various 570
gases, f(p, t) 442	density, 5.522
liquefied 445	depths, ocean
liquids, pressure effect 443	dimensions 57
temperature effect 445	dimensions
radio-frequencies 454	elastic constants 56
Rochelle salt 444	electricity, atmospheric596-600
solids	elements, % composition572, 61
standard solutions 446	elevations, mountain
strength (and also aparking	energy, rotational
strength (see also sparking	ganehamical data
potentials)439-441 properties, nonconductors, radio-frequen-	geochemical data 57
properties, nonconductors, radio-frequen-	geodetical data564-56
cies	gravity
Dielectrics, surface and volume resistance of solid 418	interior: density, pressure 56
Differential formulae 12	land area
Diffraction units, crystals 551	linear rotational velocity 57
Diffuse reflecting powers	linear rotational velocity 576 magnetic constants 57
Diffusion: aqueous solution into water 215	poles 57
coefficients, gaseous ions 552	magnetism (see also magnetism, ter-
molecules547, 552	restrial)

PAGE	PAGE
Earth: mountain elevation 569	Electron: mass, 9.0×10 ⁻²⁸ g
ocean areas 569	volt energy, speed. 107 volts 502
depths 569	volts 502
orbital velocity 570 pressures, interior 569	wave lengths
rotation, variation of	Elements: atomic numbers
rotational energy 570	weights
standard time	boiling points
thermal gradient (wells)	compressibility
tidal frictions	compressibility 140 densities
velocity at equator (rotational) 602	diameters 548
in orbit 570 Earthquakes, wave velocity 567	earth, abundance in
Eberhard effect (photography)	electron affinities 549
Eccentricity of star orbits	configurations
Eclipsing binaries 629	emissions547 et seq. expansion, thermal280
Efficiency, luminous, of lamps	hardness
of black bodies 335	hardness
Elastic constants of earth	vaporization295 specific285-287
limits (mechanical data)to et seq.	specific
Elacticity: erystals 128 120	ionizing potentials 499
Elasticity: crystals	melting points
Electric arcs (I. C. T., 6, 51)	spectra
conductivity: (see also resistivity) 408 et seq.	stars, abundance in
alloys (temp.	sun's atmosphere, abundance
coef.)409, 414, 415	in
auxiliary computing table 408	thermal expansion
dielectrics	Elliptic integral 71
high-frequency	Emanation 520
super, of metals 433	, heat due to
tension effects 414	rapor pressure
light efficiencies	E.m.f. (see under electromotive forces) Emission, electron (see electron emission)
equivalent of heat86, 87	Emissivities: (general)320 et seq.
equivalents	miscellaneous 324
quantity 397	miscellaneous
series, tribo	tantalum
units, " xlv	tungsten
Electricity, piezo	Energy: black-body radiation313-317
Electrochemical equivalents 431	earth, rotational
, definition 658	minimum for light sensation 335
Electrolytic conductivity: (general)431 et seq.	vs. matter 645
electrochemical equiva- lents, normal solu-	English abbreviations
tions 432	sperm candle
equivalent:	Equation of time
acids, aqueous solu-	Equivalent, mechanical, of heat 86 light 335
tions 435	Erg, definition
bases 435	
electrochemical 431 ions, separate 438	From probable least squares
salts435, 437	
hydrolysis, ammonium	Ettinghausen galvanomagnetic effect
acetate 438	Eulerian 2nd integral
ionization of water 438	Eutectics, lime-alumina-silica compounds 266
K ₁₈	points, 266
molecular, specific 433 temp. coef 434	Evaporation rates
$\mu \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
Electromagnetic dimensional formulaexxxvii, xxxix	Expansion, thermal: elements
Electromotive force: pressure effects 407	gases
thermo401 et seq.	liquids
, against Pb 401	miscellaneous 281
neutral points 401 voltaic cells398, 400	oil, petroleum 155
Electron: (general)	solids 282
affinity of elements	Explosives309, 310
affinity of elements. 549 atomic weight, 5.5×10^{-4} . 105	Exponential functions: (general)48-63 e, base of natural logarithms,
binding energies, ionized 498	2.71828 14
neutral	$e^{\pm x}$ $e^{\pm x}$ and their logs.
specific e/m 102	x=0 to $1048-53$
specific, e/m	x fractional 50
inelastic 511	e^{x^2} , e^{-x^2} , logs,
ionizations 511	$x = 0.1 ext{ to } 5.0 ext{ } 54$
configurations	$e^{\pi x/4}$, $e^{-\pi x/4}$, $\log s$, $x=1$ to 20 55
diffusion 547 emission: coated filaments 548	x=1 to 20 55
elements, hot solid 547	$\pi^{\frac{1}{2}} x/4 - \pi^{\frac{1}{2}} x/4$
Laue's equation 547	
	$r=1 \text{ 10 20 } \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $
photoelectric effect547, 548	$x = 1 \text{ to } 20 \dots \dots 55$ $e^{x} + e^{-x} e^{x} - e^{-x}$
photoelectric effect547, 548 Richardson's equation 547	$x = 1 \text{ to } 20 \dots \dots 55$ $\frac{e^x + e^{-x}}{2}, \frac{e^x - e^{-x}}{2} \text{ and their}$
photoelectric effect547, 548	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

666 INDEX

PAGE	PAGE
Eye and radiation: (general)	L'unational assume
Eye and radiation: (general)330 et seq.	r unctions: gamma 64
adaptation rate 331	hyperbolic
blind spot, vision in 332	probability56-61
cones 332	trigonometric, circular (°') 32
contrast sensitivity 331	(radians) 37
dimensions of points 332	Functions: gamma 64 hyperbolic 41 probability 56-61 trigonometric, circular (°') 32 conal harmonics 66 Fundamental standards 76
flux density at retina 332	Fundamental standards xli
glare sensitivity 331	Tunidamental standardus
heterochromatic sensibility 331	Fusion, current for
persistence of vision	latent heats of elements
photometric sensibility 221	various 204
nunil diameters 222	volume change on (I C T 2 450' 4 0)
pupil diameters 332 sensitiveness as function of ra-	101ame change on (1. c. 1., 2, 459, 4, 9)
Sensitiveness as function of fa-	or your face gamma roug and radioactivity)
diation 330 to color differences. 332	γ rays (see gamma rays and radioactivity)
to color differences. 332	Gage pressures to true pressures
visibility of radiation, $f(\lambda)$ 332	Gages, wire
	Galactic concentration, stars vs. spectra and m 620
Factorials: γ function $n=1$ to 2	coordinates to R. A., decl604-605
logs, n=t to 20	pole
n!, $n=1$ to 20	Galaxies, external: mag., rad. v., distances 641
Factors, conversion	rotation 643 Galaxy, and super-, meta- 616
Faraday87–89	Galaxy, and super-, meta 616
Fechner's law 332 Ferromagnetism 463 Field, magnetic: earth's, components 574-595	Galvanometric effect482
Ferromagnetism	Gamma function, n, 1 to 264, 65
Field, magnetic; earth's, components574-595	, photographic
metals, behavior in463-475	rays: (see also radioactivity)516 et seq.
resistance in 481	absorption
rotation of polarization plane476-480	absorption 532 emission of 529
thermogalvanomagnetic effects 482	energy529, 534
Filaments, heat losses from	ionization 530
Films, oil, thickness of	nuclear analysis 530
photographic	energy from spectra 534
photographic	centiaring continue spectra 534
Filters: (see also color-screens, absorption)	scattering
light asso color-screens, absorption)	sources, comparison of 531
light	spectra
narrow spectrum regions	Gas constant
First magnitude stars	
Flame temperatures	thermometer corrections to thermodynamic
Flammable, non-, liquids (for cryostats) 251	scale
Flash-lights, characteristics	Gases, absorption by Indias
Flash points (I. C. T., 2, 150, 161, 211)	Gases: absorption by liquids
Fluidity, definition	accommodation coefficients (I. C. T., 5, 53)
Fluorescence (1. C. T., 5, 390, 391)	adsorption (I C T 2 240)
Pluy luminous (1. C. 1., 5, 390, 391)	adsorption (I. C. T., 3, 249)
Flux, luminous 333 magnetic, definition 463	collisions, elastic, electronic 511
radiont 222	inelastic 511 compressibilities
radiant	compressibilities
	high pressures 1.12
100 100	high pressures 147 100-1000 atm. 145 low temperatures 144
Poot-noundel 650	low temperatures 143
Poot-nounds definition 650	conductivity, thermal
be meters	critical constants
to homophway	densities
to horsepower	dielectric constants 442
orbidden lines (spectrum series)	electron imports
orces, wind: cylinders	entropy (1 C T) = 0.15 511
Forces, wind: cylinders 200 flat plates 198-199 miscellaneous 202	ouponsion thousand -0.
miscellaneous 202	flow (I.C.T. r. oxer a)
spheres	now (1, C, T., 1, 91; 5, 1)
Formulae, conversion, dimensionalxxxi, 3, 4	free energy (1. C. T., 5, 87; 7, 224)
spheres	dielectric constants 442 electron impacts 511 entropy (1. C. T., 5, 84; 7, 224) expansion, thermal 284 flow (1. C. T., 1, 91; 5, 1) free energy (1. C. T., 5, 87; 7, 224) fugacity (1. C. T., 7, 224) 146 ignition temperatures of mixtures 310 interstellar 644
least squares56-59	ignition temperatures of mixtures 310
least squares	interstellar 644 ionization by impact. 511 Joule-Thomson effect (I. C. T., 5, 144)
Courier 279 Craumhofer lines, wave lengths 346 Cree energy (I. C. T., 5, 87; 7, 224) paths, molecules 550 Creeze, anti-, mixtures 279	Joula Thomas offset (I C T
raumnoter tines, wave lengths 346	Julie-Industria discontibility
ree energy (1. C. T., 5, 87; 7, 224)	magnetic susceptibility 475
paths, molecules	magnetic susceptibility 475 magneto-optic rotation 479 20 Trigitions general
reeze, anti-, mixtures	p, v, T relations, general
reezing mixtures	(I. C. T., 3, 3)141-142
DOING	SO ₂ , NH ₃ 148
, lowering of in salt solutions267, 268	refractive indices
water, pressure effect 253	resistance, aerodynamical196-203
Frequencies, corresponding to wave lengths 374	solubility in water
in air, reduction to vacuo	solubility in water 219 sound, velocity of, in. 191 viscosity 213, 214
requency, molecular collisions 550	VISCOSILY
resistance, high	volume changes, various pressures 142 volumes, correction to 760 mm o° C 143
unit potential, associated with, e/h 105	volumes, correction to 760 mm o C 143
Fresnel formula: reflection of light 376	f(t)149-152 logs153 et seq.
Friction: (general)	logs
internal 137 skin, in air 203	Gasolines, fluidities
skin, in air	Gauss 659
Frietional algetricity carios AOX	Gaussian units xliii
Fugacities (gases)	Geochemical data
Functions: Bessel, general formulae 70	Geodetic data
Pugacities (gases) 146 Functions: Bessel, general formulae 70 (roots 70) 68-70	Gaussian units xliii Geochemical data 572 Geodetic data 564-568 Geographical data, land areas, mountain elevation 569 ocean areas 569 sea denths 569
cylindrical	ocean areas 569
elliptic integrals 71	sea depths
exponential48-56	thermal gradients 569

Garatan Jan 1 Aska	PA	MI
Geophysical data569-574	Heat: fusion, latent, of (I. C. T. 4, 9; 4, 172; 5,	
Geopotential	130)	294
German silver, mechanical properties	alloys and metals (I. C. T.,	194
Giant stars 623-624 Gilbert 397		
Gilbert	2, 458)	.00
Glare sensitivity of eye	clements (I. C. T., 1, 103) 2	.00
(Huge: absorption of guess (I C T 2 257)	index (stars)	002
V roug (I C T 6 cm)	latent, of fusion	
A lays (1, C, 1., 0, 20)	elements 2	588
dispersion 356-358 Fresnel reflection formula 376 indices of refraction 356-359	vaporization: ammonia 3	306
indicate of refraction	elements 2	294
indices of refraction350–359	formulae 2	296
Jena, temperature variation	steam297, 298 et s	eq.
permeability to gases (1. C. 1., 5, 76)	various liquids 2	295
renection of light by	mechanical equivalent of	86
retraction indices	neutralization, H_2SO_4	312
resistance, electric; temp, variation 419	specinc: (general)	seq.
transmission of	alloys 2	290
refraction indices 356-359 resistance, electric; temp, variation 419 transmission of 386-388 vessels, volume of 108	ammonia 2 atomic constant 1	291
viscosity at high temperatures 656	atomic constant	106
Glycerol-water viscosities 206	electricity 4 elements	101
Gold, mechanical properties 124	elements	280
Gradient, earth's thermal 569	gases, also C_n/C_v ,	20.3
Gram-centimeter (g · ergs) unit of work 659	liquids	201
-molecule	liquids 2 mercury 2	200
Crating space calcite or of	minerals, rocks 2 silicates 2	202
Gravitation, acceleration of: anomalous 567	silicates 2	202
Gravitation, acceleration of: anomalous	SOURS	200
United States stations, 566	vapors 2 water 2	20.2
world stations 565	water	200
world stations 565 constant, 666.4×10 ⁻¹⁰ dyne·cm²·g⁻², definition 75, 659 Gravity, specific (see also density) 158–179 Gudermanians 41–46 Constinuition 41–46	treatment of steels	110
definition 75 650	Hefner unit	5 = 0
Cravity specific (see also density) 158-170	Heights harometric determination of	259
Cudermanians	holling point of water determination of	00
Gyration, radii of	dynamic	.09
dylation, tadir of	geometria	,61
07	geometric 5	,01
h, 6.547×10 ⁻²⁷ erg · sec94-99	Hartgian ways langths	559
powers of	Hotorophyomotic consitirity of our	, 15
powers of 103 h/c, powers of 103 th/c, powers of 103 th atom mass, 1.66×10^{-24} g. 105 , radius Bohr orbit 106	Nertzian wave lengths 5 Heterochromatic sensitivity of eye. 3 Horizon, dip of 6 Horizontal intensity, terrestrial magnetism:	331
11 atom mass, 1.00×10-24 g	Horizontal intensity terrestrial magneticm	102
, radius Bonr orbit	annual change, H	
Hall magnetic enect	f (lat., long.) U. S., 1925 5	2/9
Hall magnetic effect	isodynamia world shart	
Princil	secular change, H. S., 1885-1025 5	503
Brinell 110 elements 137	Horsepower to foot-pounds251, 6	550
scleroscope	Secular change, U. S., 1885-1925. 5 Horsepower to foot-pounds	235
various	constant, maintenance of air at (I. C. T.,	03
various	I, 67; 3, 385)	70
roots	relative	238
sound193	term density of moist air	70
zonal spherical	Hund's Bohr spectra notation 5	504
zonal spherical	quantum numbers 5	504
Heat: adsorption molecular (colloidal) 554	Hydrogen atom, Bohr orbit 1	106
atomic, of elements	doublet constant 1	107
Heat: adsorption, molecular (colloidal)	doublet constant 1	107
tungsten	doublet constant 1 electron speed 1 mass, 1.66×10^{-24} g 1	106 105
tungsten 321 capacities285-288	doublet constant 1 electron speed 1 mass, 1.66×10^{-24} g 1	106 105
tungsten 321 capacities285-288	doublet constant 1 electron speed 1 mass, 1.66×10−24 g 1 series 4 thermometer 2	106 105 195 240
tungsten 321 capacities 285-288 combination 311-312 combustion: carbon compounds 307	doublet constant 1 electron speed 1 mass, 1.66×10−24 g 1 series 4 thermometer 2	106 105 195 240
tungsten 321 eapacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g. 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1	106 105 195 249 138 180
tungsten 321 capacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41	106 105 195 249 138 180
tungsten 321 eapacities	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41	106 105 195 249 138 180
tungsten 321 capacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310 gases 308 liquid fuels 308	$ \begin{array}{c cccc} doublet & constant & & 1 \\ electron & speed & & & 1 \\ mass, & 1.66 \times 10^{-24} & g. & & 1 \\ series & & 4 \\ thermometer & & 2 \\ Hydrolysis, & ammonium & acetate. & 4 \\ Hydrostatic & pressures, & Hg & and & H_2O & columns & & 1 \\ Hyperbolic & functions, & natural & and & logarithmic. & 41- \\ \end{array} $	106 105 195 249 138 180
tungsten 321 eapacities	$ \begin{array}{c cccc} doublet & constant & & 1 \\ electron & speed & & & 1 \\ mass, & 1.66 \times 10^{-24} \text{ g.} & & 1 \\ series & & 4 \\ thermometer & & 2 \\ Hydrolysis, & ammonium & acetate. & & 4 \\ Hydrostatic & pressures, & Hg & and & H_2O & columns & & 1 \\ Hyperbolic & functions, & natural & and & logarithmic. & & 41-\\ Hysteresis & & & 463, & 4 \\ transformer & steels & & 4 \\ \end{array} $	106 105 195 249 138 180 -46 173
tungsten 321 eapacities 255-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperholic functions, natural and logarithmic 41 ⁻ Hysteresis 463, 4 transformer steels 4 Ice: allotropic modifications 2	106 105 195 249 138 180 -46 173 172
tungsten 321 eapacities 285288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272 bad conductors 276	doublet constant 1 electron speed 1 mass, 1.66×10-24 g 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41- Hysteresis 463, 4 transformer steels 4 Ice: allotropic modifications 2 freezing point, pressure effects 2	106 105 195 249 138 180 -46 173 172
tungsten 321 eapacities 285288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272 bad conductors 276	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41 Hysteresis 463, 4 transformer steels 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 8 8 8 8 8 8 8 8 8	106 105 195 249 138 180 -46 173 172 253
tungsten 321 capacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41 Hysteresis 463, 4 transformer steels 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 8 8 8 8 8 8 8 8 8	106 105 195 249 138 180 -46 173 172 253
tungsten 321 eapacities 255-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272 bad conductors 276 diffusivities 277 Fourier 279 gases 277	doublet constant 1	106 105 1495 2499 180 -46 1473 1472 253 103 103 129
tungsten 321 eapacities	doublet constant 1	106 105 1495 2499 180 -46 1473 1472 253 103 103 129
tungsten 321 eapacities	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g. 1 series 4 Hydrolysis, ammonium acetate. 4 Hydrolysis, ammonium acetate. 4 Hydrostatic pressures, Hg and H ₂ O columns. 1 Hyperbolic functions, natural and logarithmic. 41— Hysteresis 463, 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 85–86, I Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 Inclination, magnetic: f(lat., long.), U. S., 1025, 5 Inclination, magnetic: f(lat., long.), U. S., 1025, 5	106 105 1495 1495 1495 1495 1473 1472 253 103 103 1329 1336
tungsten 321 eapacities	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41 Hysteresis 463 4 Ice: allotropic modifications 5 freezing point, pressure effects 2 point on thermodynamic scale 85-86, I Ignition temperatures, gas mixtures 3 locandescent filaments, heat losses 3 ncandescent filaments, heat losses 3 Inclination, magnetic: f(lat., long.), U. S., 1925 5 I (or dip): annual change. 5	106 105 1495 1495 1495 1495 1495 1473 1472 253 103 103 1310 1495 1495 1495 1495 1495 1495 1495 1495
tungsten 321 eapacities	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106 105 1495 1495 1495 1495 1495 1473 1472 253 103 103 103 103 103 103 103 103 103 10
tungsten 321 eapacities	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106 105 1495 1495 1495 1495 1495 1473 1472 253 103 103 103 103 103 103 103 103 103 10
tungsten 321 eapacities	doublet constant 1 electron speed 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperholic functions, natural and logarithmic 41 Hysteresis 463, 4 transformer steels 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 85 - 86, 1 Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 oxides, brightness 3 Inclination, magnetic: f(lat., long.), U. S. 1025 S isoclinic lines, world chart 5 isoporie 5 secular change, U. S. 5 secular change, U. S. 5	106 105 1495 1495 1495 1495 1496 1473 1472 153 163 163 163 163 163 163 163 163 163 16
tungsten 321 eapacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 39-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272 bad conductors 276 diffusivities 277 Fourier 279 gases 277 high temperatures 273, 328 insulators 274-275 liquids, f(pressure) 277-278 metals 272 miscellaneous 273 resistance to, Fourier 279 salt solutions 273 resistance to, Fourier 279 salt solutions 273	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g. 1 series 4 thermometer 2 Hydrolysis, ammonium acetate. 4 Hydrolysis, ammonium acetate. 4 Hydrostatic pressures, Hg and H ₂ O columns. 1 Hyperholic functions, natural and logarithmic. 41— Hysteresis 463, 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 85–86, I Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 oxides, brightness 3 Inclination, magnetic: f(lat., long.), U. S., 1925, 5 I (or dip): annual change 5 isoclinic lines, world chart 5 isoporie "" 5 secular change, U. S. 5 Index. color (stars)	106 105 1495 1495 1495 1495 1495 1495 1495 149
tungsten 321 eapacities	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g. 1 series 4 thermometer 2 Hydrolysis, ammonium acetate. 4 Hydrolysis, ammonium acetate. 4 Hydrostatic pressures, Hg and H ₂ O columns. 1 Hyperholic functions, natural and logarithmic. 41— Hysteresis 463, 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 85–86, I Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 oxides, brightness 3 Inclination, magnetic: f(lat., long.), U. S., 1925, 5 I (or dip): annual change 5 isoclinic lines, world chart 5 isoporie "" 5 secular change, U. S. 5 Index. color (stars)	106 105 1495 1495 1495 1495 1495 1495 1495 149
tungsten 321 eapacities	doublet constant 1 electron speed 1 mass, 1.66×10 ⁻²⁴ g. 1 series 4 thermometer 2 Hydrolysis, ammonium acetate. 4 Hydrolysis, ammonium acetate. 4 Hydrostatic pressures, Hg and H ₂ O columns. 1 Hyperholic functions, natural and logarithmic. 41— Hysteresis 463, 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 85–86, I Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 oxides, brightness 3 Inclination, magnetic: f(lat., long.), U. S., 1925, 5 I (or dip): annual change 5 isoclinic lines, world chart 5 isoporie "" 5 secular change, U. S. 5 Index. color (stars)	106 105 1495 1495 1495 1495 1495 1495 1495 149
tungsten 321 eapacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 309-310 gases 308 liquid fuels 308 conduction: air spaces, across 327 alloys 272 bad conductors 276 diffusivities 277 Fourier 279 gases 277 high temperatures 273, 328 insulators 274-275 liquids, f(pressure) 277-278 metals 273 metals 273 resistance to, Fourier 279 salt solutions 273 resistance to, Fourier 279 salt solutions 273 resistance to, Fourier 279 salt solutions 276 temperature, high 273, 328 content of tungsten, f(t) 321 convection losses of, in air 327, 329	doublet constant 1 electron speed 1 series 4 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41 Hysteresis 463, 4 Ice: allotropic modifications 5 freezing point, pressure effects 2 point on thermodynamic scale 85-86, 1 Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 notandescent filaments, heat losses 3 Inclination, magnetic: f(lat., long.), U. S., 1925 5 isoporic 1 secular change 5 secular change, U. S. secular change, U. S. secular change, U. S. heat 6 of refraction: air, 76 cm, 15° C. 3 alums 3	106 105 1495 1495 1495 1495 1495 1495 1495 149
tungsten 321 eapacities	doublet constant 1 electron speed 1 series 4 thermometer 2 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperholic functions, natural and logarithmic 41 Hysteresis 463,	106 105 1495 1495 1495 1473 1472 153 163 163 163 163 163 163 163 163 163 16
tungsten 321 eapacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 399-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272 bad conductors 276 diffusivities 277 Fourier 279 gases 273 high temperatures 273, 328 insulators 274-275 liquids, f(pressure) 277-278 metals 273 metals 273 metals 273 resistance to, Fourier 279 salt solutions 273 resistance to, Fourier 279 salt solutions 273 content of tungsten, f(t) 321 convection losses of, in air. 327, 329 diffusivities 273 dilution of, HsSO4 312	doublet constant 1 electron speed 1 series 4 Hydrolysis, ammonium acetate 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 4 Hysteresis 463, 4 Ice: allotropic modifications 2 freezing point, pressure effects 2 point on thermodynamic scale 85-86, 1 Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 oxides, brightness 3 Inclination, magnetic: f(lat., long.), U. S., 1925 isoporic 5 isoporic 5 secular change, U. S. secul	106 105 1495 1495 1495 1473 1472 153 163 163 163 163 163 163 163 163 163 16
tungsten 321 eapacities	doublet constant 1 electron speed 1 series 4 thermometer 2 Hydrolysis, ammonium acetatet 4 Hydrostatic pressures, Hg and H ₂ O columns 1 Hyperbolic functions, natural and logarithmic 41 Hysteresis 463, 4 transformer steels 463, 4 Ice: allotropic modifications 5 freezing point, pressure effects 2 point on thermodynamic scale 85 86, 1 Ignition temperatures, gas mixtures 3 Incandescent filaments, heat losses 3 noxides, brightness 3 Inclination, magnetic: f(lat., long.), U. S., 1925 5 I (or dip): annual change 5 isoclinic lines, world chart 5 isoporie 5 secular change, U. S. 5 heat 6 of refraction: air, 76 cm, 15 ° C. 3 alums 3 crystals: (see also 367-3 blaxial: miscel-	106 105 1495 1495 1473 153 163 163 163 163 163 163 163 163 163 16
tungsten 321 eapacities 285-288 combination 311-312 combustion: carbon compounds 307 coals 308 explosives 399-310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272 bad conductors 276 diffusivities 277 Fourier 279 gases 276 diffusivities 277 high temperatures 273 328 insulators 274-275 liquids, f(pressure) 277-278 metals 273 metals 273 metals 273 resistance to, Fourier 279 salt solutions 273 resistance to, Fourier 279 salt solutions 273 content of tungsten, f(t) 273 diffusivities 273 temperature, high 273, 328 content of tungsten, f(t) 321 convection losses of, in air 327, 329 diffusivitles 277 dilution of, H ₂ SO ₄ 312 dimensional formulae xxxvi dissociation of, for molecules 512	doublet constant	106 105 1495 1495 1473 1473 153 163 163 163 163 163 163 163 163 163 16
tungsten 321 eapacities 252–288 combination 311–312 combustion: carbon compounds 307 coals 308 explosives 309–310 gases 308 liquid fuels 308 woods 308 conduction: air spaces, across 327 alloys 272 bad conductors 276 diffusivities 277 Fourier 279 gases 277 Fourier 279 inguids, f(pressure) 277–278 inguids, f(pressure) 277–278 metals 273 miscellaneous 273 miscellaneous 273 resistance to, Fourier 279 salt solutions 276 content of tungsten, f(t) 321 convection losses of, in air 327, 329 diffusivities 377 dimensional formulae 327 dimensional formulae 327 dienensional formulae 327 dienensional formulae 327 dienensional formulae 327 discribed 372 dienensional formulae 327 dienensional formulae	doublet constant 1 electron speed 1 mass, 1.66×10-24 g 1 series 4 thermometer 2 thermometer 2 thermometer 2 thydrolysis, ammonium acetate 4 thydrostatic pressures, Hg and H ₂ O columns 1 thyperbolic functions, natural and logarithmic 41 thysteresis 463 4 transformer steels 463 4 transformer steels transformer steels transformer steels transformer steels transformer steels transfo	106 105 149 149 149 149 149 149 149 149 149 149
tungsten 321 eapacities	doublet constant	106 105 149 149 149 149 149 149 149 149 149 149
tungsten 321 eapacities	doublet constant 1 electron speed 1 series 4	106 105 149 149 149 147 147 153 163 163 163 163 163 163 163 163 163 16
tungsten 321 eapacities	doublet constant	1065 1095 1498 1498 1472 1533 1533 1533 1533 1533 1533 1533 153

PAGE	PAGE
Index, of refraction: crystals: uniaxial: miscel-	Ionization potentials, first499, 614
laneous, 366	Н, Не+ 106
negative 365	
positive 365	star space
doubly refractive min- erals366 et seq.	atmospheric, upper
fats 370	equilibrium, atmospheric electricity 597
fluorite, f(t) 361	gamma rays 530
gases 373	heat of formation
glass356, 358	mobilities 552
Schott-Jena, I(t) 359	Iron: alloys, mechanical properties
Iceland spar, CaCO ₃ 361	arc lines
isotropic solids 364	Isobar
liquefied gases 370	Isodynamic (H) world lines
liquids	Isogonic world lines, equal declination (D) 576
minerals: hiavial 267-270	Isonoric world chart: D declination
metals	H, horizontal force. 578 I, inclination 578 total intensity 580
monorefringent 363	total intensity #80
uniaxial365-366	vertical intensity 580
nitroso-dimethyl aniline 361	Isostasy 567
oils 370	Isotopes: packing fractions484, 648
potassium permanganate 372	radioactive
quartz, amorphous, crystaline. 362	
rock salt, f(t) 360	Jena glasses: dispersion, f(t)
solutions, acids, salts 372	transparency
standard media 375	ultra-violet 387 Joule, definition 659
vapors 373 waxes 370	equivalents
Indian Ocean basin, areas, depths	magnetic effect
Induction: equivalents	Julian day calendar 603 number 601
magnetic, definition 463	number 601
mutual, self 472	period 601
Inductive capacity, specific: crystals 447	L' Doltamonn constant y come v come dos
gases, f(t, p) 442	K, Boltzmann constant, 1.3078×10 ⁻¹⁶ erg/deg 104 K X-ray spectrum
liquefied gases 445	Kerr's constant
liquids, f(t, p)443, 445	dispersion
solids	Kg-meter to ftlbs 251
Inertia: moments of	Kilocycle-meter conversion table (radio)456-460
photographic	Kilodyne
Inerganic compounds: boiling points 254	Kinetic energy 659 Kundt's constant 478
densities 254	Kunut s Constant 4/0
melting points 254	L X-ray series538-539
solubilities 218	Lambert, definition
Insulators: break-down potentials439-441	Lamps: brightness in candles/cm ² of various338, 339
dielectric properties439-441, 442-447 resistance, electrical418, 419	energy, distribution, of tungsten 339
thermal273, 274, 276, 279	miniature, characteristics: automobile 339
Integral: diffusion	movie 339 surgical 339
elliptic	photoflash, characteristics 340
exponential62, 63	photographic efficiency of some 344
formulae 12	sunlight mazda, characteristics 340
gamma function	Land area of earth
probability56-57	Landé's interval rule (spectra) 503
Intensification of photographic plates 345	Latent heat of fusion: elements288, 294-295 pressure variation296
Intensity, horizontal magnetic: f(lat., long), U. S.,	vaporization: ammonia
1925 593 I: annual change 579	elements 295
isodynamic lines,	formulae 296
world 577	liquids 295
isoporic lines,	steam298–305 water297
world 578 secular change,	Latitude, photographic
II. S 502	variation
U. S	Laue's equation, electron emission 547
isoporic lines, world 580	Least squares: formulae 59
isoporic lines, world 580	probability integral, arg. hx 56
secular change, U. S 594	x/r 57 inverse 60
vertical magnetic: annual change 580 isoporic lines, world 580	
international dietrical units All	$0.6745\sqrt{1/(n-1)} \dots 57$
standards xlvi	$0.6745\sqrt{1/n(n-1)}$
to absolute units77-81	$0.8453\sqrt{1/n(n-1)}$
volt xlix	0.845.3 $[1/n\sqrt{n-1}]$ 58 probable errors 57-59 Leather belting, mechanical properties 130
temperature scale	probable errors57-59
matter	Leather beiting, mechanical properties
space 644	Legal electrical unitsxlvi
	Length standards vyviv e
Intrinsic brightness, various light sources 334	Light: flux 333
Intrinsic brightness, various light sources	Light: flux 333 intensity on various days 556, 608 lambert 333
Ionium-radium family 517	lambert
Tomam-radium rammy .,, 517	iumen ,,.,,,, 333

PAGE	
Light: luminosity	Logarithms, anti, four-place
mechanical equivalent	
photometric standards	Longitudes of selected stations565-567, 581-589
	Long-wave transmissions of energy 393 Loselmidt's number, 2.705×10 ⁴⁰ cm ⁻³ 107, 659
polyrized reflection of	Loschmidt's number, 2.705 × 102 cm
rotation of plane by substances 390	
(magnetic) 470-400)	noises
reflecting power, metals377-380	Lowering of freezing points by salts
pigments 381	Lubricants (I. C. T., 2, 104)
pigments	Lumen
scattered light 379	Luminosity
temperature variation W 300	Luminosity
reflection of, f (index of refraction) 370	black-body 335 molybdenum 322
formulae Eresnet 370	tungsten, $.665\mu$, $.467\mu$
sensitivity of eye to330-332	
minimum energy 335	Lunar parallax
standards: Bougie decimale 334	
eandle, American 334 Hefner 334	Lux
international 231	
international	M X-ray spectrum 541
sperm, English 334	
Coreel unit 334	
Waidner-Burgess 334 transparency to: air, moist 392 transparency to: air, moist 392 transparency to: 555, 668	
transparance to: air maist	Maclauren's theorem 616 Magellan, clouds of 117
atmosphere. 389, 392, 555, 608	
orugtale 300	
dues	Magnetic constants of sun
gases, infra-red	permeability 575 poles of earth 153
glasses384-388	properties: (general)
colored386, 388	atomic, demittion 403
ultra-violet 387	properties: (general) atomic, definition 463 cobalt, o°, 100° C. 469 alloys 465
solids, infra-red 393	corrections for ring specimens. 464
steam 392	critical temperatures 474
water 392	
sea 652	demagnetizing factors, rods. 470
ultra-violet 389	
velocity of (2.99796×1010 cm/sec.) 74	
wave lengths: cadmium standard 347	(eiii), (diation, 4/4
elements	elements
Fraunhofer lines 346	Ettinghausen effect 482
neon lines 349 solar standards350-353	ferromagnetism, definition 403
standard iron 317-340	for the density delibition 403
standard, iron347-349 solar350-353	galvanometric 482
Lights: (see also under lamps)	galvanometric
brightness in candles/cm ² of various338, 339	hysteresis 463, 470–473 induction 463 et seq. iron and steel 464
efficiency of various electric	induction403 et seq.
photographic efficiency of some	iron and steel
temperature, brightness 338	pure 464 soft, o° 100° C 468 soft, obe 6alds 165
color 338	very weak fields 465
visibility of white	urought (Lowmoor) 400
Tight grown 001	Toula 403
Limits, spectrum series. 502	Leduc effect 482 magnet steel 465
Limits, spectrum series. 502 Lines, resonance (spectroscopy) 504 ultimate 504 Liquids: absorption of gases. 221 equilibrity of 222-223	magnet steel 465
ultimate " 504	magnetic resistance 481
Liquids: absorption of gases	magnetic resistance 481 magnetite 469
capillarity of	magneto-optic rotation, delini-
compressibilities	striction, definition 403
anductivity thermal	maxwell, definition 403
density 150, 165, 166	
	Nornet offeet
mercury, f(t)	paramagnetism: definition
Baume scale	paramagnetism, definition 433 elements, f(t) 474
dielectric constants443, 443	472
strengths44	permalloyxxii, 463 et seq.
diffusion adulents southfulls	beimeannity
expansion coefficients	ring specimens corrections. 471
magnetic optic rotation 47 susceptibility 47	ring specimens, corrections. 471 sheets, electrical
susceptibility	eteel: 0° 100° C
notential differences with substances399-40	magnet 465
refractive indices370-37	
sound velocity190, 19	caturation values 409
	tool. Vicker's 469
specific heats	tool, Vicker's 469 transformer, weak fields. 465
	striction, magneto-, definition, 463
	susceptibility474, 475
unner procedures	definition 463 temperature changes .468, 469, 475
viscosities, absolute	temperature changes. 468, 469, 475
viscosities, ansolute 23-2-21 specific 210-21 Llter, equals 1.000027 dm ³ . 7	, critical 475
Llter, equals 1.000027 dms	thermomagnetic effects 482
Logarithmic factorials	

PAGE 1	PAGE
Magnetic properties: Villari effect	Magnitudes: absolute, cephelds
Wiedemann effect 463 units	dwarf stars 636
unitslii, liv	first magnitude stars 619
equivalents	glant stars
Magnetism, terrestrial: agonic line, U. S.,	high-density stars 636
1800-1925 595 charts: isoclinic, I, world 576 isodynamic, H,	high-temperature stars 636 nearer stars 619
isodynamie H.	nearer stars
world 577	Russell diagram 621
isogonic, D, world 576	vs. parallax, π
isoporic:	spectrum class. 621, 622, 624
D 577	apparent: binaries629, 630
H 577	bolometric, visual to 624
I 578 total intensity 580	definition
vertical intensity, 580	Magellanic clouds 640
constants of earth574, 575	moon
declination:	nebulae, planetary 639
annual change, world 579	radial velocity stars 628
isogonic lines, " 576 isoporic " " 577	radiometric 632
isoporie 577 secular change, U. S 590	space (large) velocity stars. 627 (small) " 627 stars, near sun 619
dip: annual change, world. 579	stars, near sun
f (lat., long.), U. S 592	per magnitude 620
isoclinic lines, world 576	sun
isoporic " · · · 578	Venus 623
secular change, U.S 592	vs. parallax
horizontal intensity:	spectrum class 620
annual change, world 579 f(lat., long.), U. S 593	visual to bolometric, correc-
isodynamic lines, world 577	tions
isoporie " 578	Malleable cast iron, physical properties 657
secular change, U. S 593	Mass: alpha particle
inclination (see dip)	Mass: alpha particle 105 electronic, 9.0 × 10 ⁻²⁸ g 105 H atom 105
isoclinic lines, I, world	H atom105
chart 576	proton
isodynamic lines, H, world chart 577	Masses: spectroscopic, binaries
isogonic lines, D, world	stellar
chart 576	Mathematical constants 14
isoporic lines:	tables: antilogarithms, 4-place28-30
D, world chart 577	Recel's functions 70
H, "" 578 I, "" 578	circular "32-40
intensity, total, world. 580	circular " 32-40 constants 14 cubes 15
vertical, world 580	cylindrical harmonics68-70
mean annual observatory ele-	derivatives 12
ments 581	differentials 12
mean annual observatory ele-	diffusion integral 60
ments, bibliography 589	ellintic integrals 71
mean monthly magnetic characters, 1906-1930 595	exponential functions48-64 integral62
observatories, mean annual	factorials, 1 to 20 47
elements 581	gamma function 64
elements	hyperbolic functions 41
elements, bibliography 589	integrals 12
poles, magnetic 575	least squares56-59
secular change, declination, U. S.,	logarithms, 4-place24-27 probability integral56, 57
1820-1930 590	inverse. 60, 61
dip, U. S., 1855-1925. 592	reciprocals 15
horizontal intensity,	series
U. S., 1855-1925 593	square roots 15
inclination, U. S.,	squares
1855-1925 592 total intensity:	Matter, interstellar
f(lat., long.), U. S.,	no energy 64c
1925 594	Maxwell 397, 403, 463 Mean free path, air molecules 563 molecules 550
isoporic lines, world	Mean free path, air molecules 563
chart 580	molecules550
secular change, U. S., 1855-1925 594	Measurements, theory of
vertical intensity:	Mechanical effects of radiation501
isoporic lines, world 580	equivalent of heat86, 87
Magneton, Bohr (I. C. T., 6, 346)	light
Magneto-optic rotation: gases 479	properties: (general)110 et seq.
Kerr constant	alloys, miscellaneous 124
Kundt " 479 liquids 478	aluminum
solids 478	alloys 117 solder 124
solutions 477	Babbit metal 125
Verdet's constant476 et seq.	bell " 120
Magneto-optics 575	belting, leather 130
Magnitudes: absolute (M) to apparent (m) 602	brasses120 et seq.
, binary stars629, 631	naval 121 red121-122
bolometric to visual 624	yellow 121
candle, of standard 623	100000 11111111111111111111111111111111

Methanical properties: bricks 1-20 Refittania metals 1-20 Transpringence 1-20 Transpringen	Machanical properties	brieks 120	Melting points: minerals
horonzes	Mechanical properties.	Brittania metal 124	miscellaneous
According to the common comm		bronzes	organic compounds 256
According to the common comm		phosphor 122	paraffin series
carion steeks, heat treat		Vietor 122	Mendeleeff periodic system 185
cement		carbon steels, heat treat-	Meniseus, volume of mercury
cement		ments 122	Mereury: density and volume, -10° to +360° C 169
clay products		castings steel 112	electric resistance, standard xlvi
cobalt		cement 126	meniscus, volume of
Countere		cohalt 124	I specific heat
Metallic reflection 3.77-381		concrete	thermometer 249
Metallic reflection 3.77-381		copper	vapor pressure 229
Metallic reflection 3.77-381		alloys119, 121-123	thermal properties
Metals: conductivity, thermal 272 distriction of the properties of the propert		definitions:	Metallic reflection 277-281
elastic limit		Brinnell hardness 110	Metals: conductivity, thermal
hardness 110 rupture modulus 110 selecusopope hardness 111 selecusopope hardness 112 selecusopope hardness		elastic limit 110	diffusion 217
rupture modulus 110		Erickson value 110	electrical conductivity (see resistance)
Withmate strengths		rupture modulus 110	optical constants
Withmate strengths		scleroscope hardness 110	reflection of light by377-380
Yield point		strength 110	metals, ultra-violet 380
delta metal 121 duralumin 117 elastic moduli 136 German silver 121 gold 124 least treatments, carbon steels 112 least problem 124 least treatments, carbon steels 112 least problem 124 least treatments 124 least treatments 125 least treatments 126 least problem 126 least problem 127 least problem 128 least problem 128 least problem 128 least problem 128 least problem 128 least problem 124 least problem 125 least problem 126 least p		ultimate strengths 110	
delta metal 121 duralumin 117 elastic moduli 136 German silver 121 gold 124 least treatments, carbon steels 112 least problem 124 least treatments, carbon steels 112 least problem 124 least treatments 124 least treatments 125 least treatments 126 least problem 126 least problem 127 least problem 128 least problem 128 least problem 128 least problem 128 least problem 128 least problem 124 least problem 125 least problem 126 least p		Young's modulus 110	resistance 400
duralumin		delta metal	, pressure effect 413
Meteorites, radioactive (I. C. T., 1, 380)		duralumin 117	temperature coefficient409, 414
Beat treatments, carbon steels			volta e.m.f
Seels 112 street 112 stree			
Steels			atmosphere, gases, f(height), Humphreys 558
iron, iron alloys. 113 leather belting 130 magnalium 117 metals, miscellaneous 124 moduli, elastic 136 moduls, rupture 110 et seq. Young's 110 et seq. Muntz metal 120 naval brass 121 nickel 124 phosphor bronze 122 platinum 124 rope, manilla 131 rubber 130 rupture modulus 110 et seq. silver 130 rupture modulus 110 et seq. silver 130 rupture modulus 110 et seq. silver 130 rupture modulus 110 et seq. silver 130 rupture modulus 112 eastings 112 heat treatments 112 semi 114 wire 114 wire 114 wire 114 stellite 124 stellite 124 stellite 124 stellite 124 stones, building 125 stones, building 128 stones, building 129 tungten 129 stones, building 129 stones, building 129 stones, building 129 stones, building 129 stones, building 129 soft, conifer, common units 34 woods, hard, common units 34 woods, ha			Mavis 560
magnalium 117 metals, miscellaneous 124 modull, elastie 136 modulus, rupture 110 et seq.		iron, iron alloys 111	miscellaneous data, f(lat.). 558
modulis, elastic 136 modulis, parture 110 et seq. Young's 110 et seq. Muntz metal 120 naval brass 121 nickel 124 phosphor bronze 122 platinum 124 temperature var. f(lat., mint) 556 platinum 124 temperature var. f(lat., alt.) 559 platinum 124 temperature var. f(lat., alt.) 550 rupture modulus 110 et seq. sther 130 rupture modulus 110 et seq. sther 130 carbon 112 castings 112 heat treatments 112 semi 144 wire 144 steel, alloys 112 heat treatments 112 semi 144 wire 144 steel, alloys 112 steel, alloys 112 heat treatments 112 stones, building 128 terra cotta 129 temperature var. f(lat., alt.) 1, lower 25 km 567 troppaus seasonal change, Agra, Batavia 562 Meteros, chemical composition 614 Meter-candle 333.6 so Metric abbreviations 125 woods, hard, common units 134 metric 124 tungsten 125 woods, hard, common units 134 metric 124 tungsten 125 woods, hard, common units 134 metric 216 tungsten 125 december 125 alcohols, monatomic 257 alco			molecular densities, Mavis. 500
modulis, elastic 136 modulis, parture 110 et seq. Young's 110 et seq. Muntz metal 120 naval brass 121 nickel 124 phosphor bronze 122 platinum 124 temperature var. f(lat., mint) 556 platinum 124 temperature var. f(lat., alt.) 559 platinum 124 temperature var. f(lat., alt.) 550 rupture modulus 110 et seq. sther 130 rupture modulus 110 et seq. sther 130 carbon 112 castings 112 heat treatments 112 semi 144 wire 144 steel, alloys 112 heat treatments 112 semi 144 wire 144 steel, alloys 112 steel, alloys 112 heat treatments 112 stones, building 128 terra cotta 129 temperature var. f(lat., alt.) 1, lower 25 km 567 troppaus seasonal change, Agra, Batavia 562 Meteros, chemical composition 614 Meter-candle 333.6 so Metric abbreviations 125 woods, hard, common units 134 metric 124 tungsten 125 woods, hard, common units 134 metric 124 tungsten 125 woods, hard, common units 134 metric 216 tungsten 125 december 125 alcohols, monatomic 257 alco		magnalium 117	geodynamic vs. geometric heights, 561
modulus, rupture 110 et seq. mean free paths 553 solar radiation, f (lat., month) 556 maral brass 121 mickel 124 phosphor bronze 124 phosphor bronze 122 platinum 124 rope, manilla 131 rubber 130 rupture modulus 110 et seq. silver 124 steel, alloys 113 carbon 112 castings 112 heat treatments 112 heat treatments 112 sem! 114 wire 114 wire 114 wire 114 sterro metal 121 sterro metal 121 tungsten 124 tungsten 125 woods, hard, common units 134 metric 135 soft, conifer metric units 135 soft, conifer metric units 135 soft, conifer metric units 135 soft, conifer metric units 135 soft, conifer metric units 135 soft, conifer metric units 135 soft, conifer metric units 136 soft,		moduli elastie	geopotential, dynamic heights 561
Young's 110 et seq. 120 120 121 121 121 122 121 122 122 122 123 122 123 124 124 124 124 124 124 124 125		modulus, rupture 110 et seq.	mean free paths
naval brass		Young's 110 et seq.	solar radiation, I (lat., month) 556
mickel		Muntz metal 120	ultra-violet at
Phosphor bronze 124 standard, for aeronautics 559 temperature var., f (lat., alt.) 562 transmission of solar radiation 555 transmission of solar rad			earth FFF
platinum			standard, for aeronautics 559
rope, manilla rubber rubber rubber rubber rubber rubber rubber rubber rubber rubber rubber rubber rubber rubber rubber silver silver silver steel, alloys 113 carbon 112 castings 112 heat treatments 112 semi- 114 wire 114 wire 114 sterro metal 121 stellite rope 115 stellite 124 sterro metal 121 tungsten 125 woods, hard, common units 134 metric 132 soft, conifer metric units 133 Young's modulus 110 et seq. 2inc 124, 125 Megadyne 250 Melting points: acetylene series 250 Melting points: acetylene series 250 ethylene series 250 ethylene series 250 ethylene series 256 ethylene series 2		platinum	temperature var., I (lat., alt.) 562
rupture modulus		rope, manilla 131	ozone, atmospheric 563
Silver Steel, alloys 1124 steel, alloys 1135 carbon 1112 castings 1124 heat treatments 1112 heat treatments 1114 wire 1114 wire 1114 wire 1115 stellite 1204 sterro metal 121 stones, building 128 transcribed 129 transcribed 129 transcribed 129 transcribed 129 transcribed 129 transcribed 129 transcribed 129 transcribed 1204 transformation, melting 129 transcribed 1205 transcribe		rubber 130	temperature: depth variation 557
Meters 112		silver	f (lat., alt.), lower 25 km 562
Meters 112		steel, alloys 113	monthly, yearly 556
heat treatments 112 semi 114 wire 114 wire 114 measures to English measures 8-11 measures 8-11 measures 8-11 measures 8-11 measures 8-11 measures		carbon 112	tronopause, seasonal change, Agra, Batavia 562
Metric abbreviations 333, 659			Meteors, chemical composition. 614
Metric 114 Stellite 124 Sterro metal 124 Sterro metal 125 U.S. 5-7		Semi-	Meter-candle
Stellite		wire 114	Metric abbreviations
Stones, building 128 Micron, \(\mu, \) definition 659 Milky way 659 Milky way 616 M			measures to English measures8-11
Stones, building 128 Micron, \(\mu, \) definition 659 Milky way 659 Milky way 616 M		sterro metal	Mho. definition
Micron, \(\mu\), definition 659		stones, building 128	Micro, dennition
Woods, hard, common units		terra cotta 129	Mieron, μ , definition
Woods, hard, common units		Tobin bronze	Mil, definition
Minerals: densities 154		woods, hard, common units, 124	1 Milky way 616
Minerals: densities 154		metric ". 132	
Megabarye, 1.020 kg/em² 154		soft, confer, common	Minerals: densities 164
Megabarye, 1.020 kg/em² 154		units 135	refractive indices, biaxial367-368
Megabarye, 1.020 kg/em² 154		units netric	ISOTROPIE
Megabarye, 1.020 kg/em² 154		Young's modulus 110 et seq.	specific heats
Megabarye, 1.020 kg/em² 154		zinc	transformation, melting temperatures. 261-266
Megadyne	Megabar, 0.987 atm.	e	Williatille electric light characteristics 11.1.1.339
	Megadarye, 1.020 kg	/ cm" 154	
alcoholic ethers 257 humidity term 179 alcohols, monatomic 257 maintenance of 179 alloys, low melting 259 transparency to radiation, Ph. Sn. Bi 259 .36 to 1.7μ .392, 555, 608, 611 elements: chemical 252 to 20μ 392 pressure effect 253 steam 392 ethers, alcoholic 257 Mole, normal conditions 75, 77, 659 ethylene series 256 enductivities 433—438 inorganic compounds 254 specific 433—434			Molst air density of
alcohols, monatomic 257 maintenance of 179	alcoh	olic ethers	, humidity term 179
Pb, Sn, Bi 259 .36 to 1.7μ392, 555, 608, 611 elements: chemical 252 to 20μ392 pressure effect 253 steam 392 ethers, alcoholic 257 Mole, normal conditions	alcoh	ols, monatomic 257	maintenance of
elements: chemical 252	alloys	, low melting 259	transparency to radiation,
pressure effect 253 steam 392	eleme	ents: chemical	10 204
ethers, alcoholic 257 Mole, normal conditions	Cicino		steam 392
ethyl 257 Molecular collision frequencies 550 ethylene series 256 conductivities, equivalent 435-438 inorganic compounds 254 specific 433-434	ether	s. alcoholic 257	Mole, normal conditions
inorganic compounds 254 specific433-434		ethyl 257	Molecular collision frequencies 550
metal mixtures			specific
	meta	mixtures 259	diameters

PAGE	
	PAGE
Molecular free paths	Ocean: tides
heats of adsorption 554	wind waves
liquefaction 554	Oersted liv Ohm, absolute xlvii, 77, 397, 660
magnitudes	Ohm, absolutexlvii, 77, 397, 660
in cm ³ A_{v} , 0° C. 2.705 × 10 ¹⁹ , 107	electric equivalents
in cm ³ , An , 0° C, 2.705×10 ¹⁹ . 107 Loschmidt's, 2.705×10 ¹⁹ cm ⁻³ . 107	Oils compressibility, petroleum 155 films, thickness 551 thermal expansion, petroleum 155 viscosity easter
organic cross-sections 551	thermal expansion, petroleum. 155
spectra: diatomic molecules,	viscosity: castor 206 gasoline, kerosene 207
constants512-513 energy levels512-513	gasoline, kerosene 207
heats of dissociation512-513	Optical constants of metals377-378
rotational levels512-513	rotary power (I C T 2 152 2211 7
velocities	353)
weights of colloids	pyrometry 248 rotary power (I. C. T., 2, 153, 334; 7, 353) 396 rotation, magnetic 476-480
Moments of inertia: earth 570	thermometry
Month, definition 660	Orbital velocity of earth
Siderear, Symbolical	Organic compounds: boiling points
Moon: albedo	densities256-258
distance from earth	melting points256-258
magnitude — 12 g	molecules, cross-sections 551
magnitude, —12.5	salts: solubilities
Mountain, highest 560 L	Oscillation constants, wireless telegraphy 460 times of wires, temperature variation 137
Movie-lights, characteristics 339 Multiplicity, spectrum series 502, 503	Overtones (sound)
Multiplicity, spectrum series502, 503	, musical instruments 104
Musical instruments: loudness	speech 195 Oxides: brightness, incandescent 336
partials 194	Uxides: brightness, incandescent
peak power 194	emissivities (radiation)320, 324
scales 192	π , 3.14159265359
Nebulae: classification	P limit, mechanical property 110 et seq.
dark	Packing fractions
diffuse 639 dimensions 640	Parallax, first magnitude stars
distance	lunar
external galaxies	nearer stars 619
extra-galactic 642	small velocity stars
galactic	solar
Magellanic clouds	Paramagnetism
magnitudes	Parsec
N. G. C. 6822, dimensions	Partials, musical instruments 194
nongalactic	Particle, smallest visible
radial velocities 641	Peltier phenomenon
velocities, high	pressure effect
velocities, high	Pendulum, length of seconds 568
Neon, standard wave lengths	Pentane candle334, 660
Nernst, thermomagnetic potential difference	Period, Julian
Newtonian gravitation constant	Periodic system: Hackh
6.664×10 ⁻⁸ dyne·em²·g⁻² 75 Nickel: Kerr's constants 383 magnetic properties, o°, 100° C 469 mechanical properties 124	Permalloy
Nickel: Kerr's constants	Permeability, magneticxxxii, 559
magnetic properties, 0°, 100° C 409	Persistence of vision
resistance in magnetic field	Persistent spectrum lines 507
Nitrogen, compressibility	arc 509 spark 510
gas thermometer	Petroleum oils: compressibility
Nitroso-dimethyl-aniline, refractive index 361 Noises, loudness levels 193	Petroleum oils: compressibility
Novae	Phenol-resinoid products: physical properties 655
Nuclear charge, atomic	Phonetic power of conversation
Nuclei, Aitken, atmospheric, 507	spoken vowels 195 Phosphorescence, radium 321
Number: atomic	Phot 321
magnetic character, month and year 595	Phot 333 Photoelectricity (I. C. T., 6, 67) 547, 548
stars	Photography: astrogamma 343
first magnitude 619	definitions 343
known within 5 parsecs	developer, pyrogallol 342
Sun-spot, yearly	development velocity constant 341 Eberhard effect 345
	efficiency various illuminants 344
Observatories, magnetic: bibliography 589 positions and magnetic ele-	fog
positions and magnetic ele-	gamma
0cean: areas	inertia
basins	intensification341, 345
chemical properties	latitude 341
depths	photometry
	spectrum sensitiveness
physical properties	plates
seismic waves	pyrogaliol development 342
swell	reflection of light by plates 342

PAGE	PAGE
Photography: resolving powers	
f (developer) 345	Protons
sensitometric constants 341	specific charge
sharpness 342	Pupil diameter
spectrum sensitivity343, 344	Purkinje effect (stellar magnitudes) 602
transparency of plates 342	Pyrometry, optical
velocity constant 341	Quantum: azimuthal numbera
Photometric measures: electric lamps338-340	Quantum: azimuthal numbers
photographic plates 345	inner numbers495, 503, 504
standards: Bougie decimale	L. M. DHIIDERS 504
International 334	life, average, various states
pentane 334	mechanles (I. C. T., 1, 47; 5, 393)
sperm (English) 334	numpers
Carcel unit 334	summary 496
Hefner " 334	
Waidner-Burgess 334	quartz: physical properties
units: brightness 333	Quartz: physical properties
candle	transmission of radiation by 390
flux (lumen)	390
lambert	p, Poisson's fatio
lumen	o. Polsson's fatio
luminosity 333	Radial velocity of stars
luminous flux 333	Radial velocity of stars 619, 628 Radian 40, 656 circular functions in terms of 37-40
lux 333	Positions functions in terms of
mechanical equivalent of light 333	Radiant flux
phot 333	radiation constant, C1, Figures
radiant flux 333	C ₂ ,
spherical candle 333	black-body data, f(\lambda, T) 314-317 total 313
Physical constants, Birge	total 313
Piezo-electricity	cooling by, across air spaces 327
Pigments, reflectivity	high temperatures 328
Planck's black-body radiation 211-217 1	ordinary temperatures 326
h. 6.547 × 10 ⁻²⁷ erg · sec	pressure effect
h. 6.547×10^{-27} erg sec. $94-99$ radiation formula, constants. 313	emissivities: partial; metals, oxides320-324
Frame, air resistance	total 320
Planetary data 606	tungsten
Planets, diameters 606	eye, sensitivity to 330
Plates, photographic, sensitivity, $f(\lambda) \dots 343-344$	visibility, relative 332
Platinum, mechanical properties	limits of various types, wave lengths 501
Poises	mechanical effects of
Polarization, rotation of plane	solar: at earth's surface 555
magnetic476-479	atmospheric transmission of 555
Pole of galaxy (milky way)	at top of atmosphere, f(month,
Poles, magnetic, of earth	lat.) 556
Potassium, radioactive constants	ultra-violet
	alum 392
first ionization	atmosphere 555
ionization, II, He+	uv 389
second ionization 500	color screens 391
volta contact	erystals, $f(\lambda)$ 390 dyes, $f(\lambda)$ 385
Poundal 660	filters, narrow regions. 384
Power, electrical equivalent 397	fluority $f(\lambda)$ 300
resolving, of photographic plates 343	gases 393
Power factor, insulating materials, radio frequencies. 453	fluorite, f(λ) 390 gases 393 glass, f(λ) 386–388
Precession	leeland spar 390
earth, internal 569	lamp black 395
vapor alcohol ethyl	long-wave, $f(\lambda) \cdot 393-395$
vapor: alcohol, ethyl 227 methyl 227	moist air 392 quartz, f(λ) 390
aniline	rock salt, $f(\lambda)$ 390
bromobenzene	sea water 389
bremenaphthalene	solids 393
carpenbishphide	ir 393
chlorobenzene	solutions 396
evaporation rate 223	steam 392 various mate-
low temperature 226	rials384, 394
mercury	various materiais,
organie liquids225-226	20μ to 130μ 393
salt, aqueous solutions230-231	water, $f(\lambda)$ 392
tungsten	tungsten 321
Primary standard, red Cd line	units, conversion table
Probable error57-50	wave-length limits of various types 501
Probability integral	Radiations, wave lengths of various 501
inverse	Radii of gyration 72
Proper motion: first magnitude stars 619	Radio data (see wireless telegraphy)452-462
f (spectrum class)	Radioactive atomic changes
stars of large	lsotopes

	12.01		,
Radioactivity:	α (alpha) particles:	Refraction: astronomical index: air, 15° C, 76 cm	60
	atomic stopping powers for 523	index: air, 15° C, 76 cm	37
	constants, miscellaneous 521	alums, various	36
	ionization 522	crystals: biaxial, miscellaneous	37
	total in various	negative	36
	georg far	negative positive	26
	gases 525	isotronic (monore-	, -
	long-range 523	isotropic, (monore- fringent) unlaxial, miscellaneous.	26
	molecular stopping powers 523	missis missellensons	30
	range 522	uniaxiai, miscelianeous.	30
	velocity 522	negative positive	36
	actinium family: average lives 516	positive	36
	decay constant 516	fatsfluorite, f(t)	37
	neriod. & values 516	fluorite, f(t)	36
	avenage lives	TRSPS	27
	average lives	gases glasses: American, dispersions	25
	D (beta) rays	grasses. American, dispersions	35
	absorption coemcients	effect of composition	35
	(air, UU ₂) 528	Jena, dispersion f(t)	35
	range, effective in a	f(t)	35
	range, effective in a few elements 528	$n_X - n_D$, $n_{G'} - n_D$	2 5
	work of extraction 527	"A "D) "G "D	35
	constants various 520 521	n_F — n_C	
	constants, various520, 521	Iceland spar	36
	Curie 520	liquefied gases	27
	decay values516-519	liquide miscellaneous	27
	emanation 520	liquids, miscellaneous relative to air	3/
	γ (gamma) rays	telative to all	3/
	absorption, Al, Pb. 532	media for microscopic determina-	
		tions	37
	and energy 533, 534 crystal reflection 534	minerals (see under crystals	
	crystal reflection 534	above)	
	emission of	nitroso-dimethyl	36
	emission of 529 energy of529, 533 ionization 530	oils	27
	energy of529, 533	potassium permanganate, aqueous.	3/
	ionization 530	potassium permanganate, aqueous.	31
	ionization 530 nuclear analysis by 530	quartz: amorphous	30
	energy 534	crystal	30
	scattering 531	rock salt, temperature variation.	36
	scattering	salt solutions sea water	37
	wave lengths 520	sea water	65
	U partieles	silica	2 1
	host effects Do Em	shilos	26
	H particles	standard media	27
	ionium family: average lives 517	auluite 1700	3/
	decay constants 517	sylvite, KCl	30
	perious, * values 51/	vapors water, sea	37
	lives, average516-519	water, sea	65
	lives, average	waxes	37
		Relative humidity: vapor pressure, dry reading	23
	phosphorescence 321	wet and dry reading	23
	potaggium	visibility of radiation	22
	potassium 519	Deletizity connection Deby stem	33
	radioactive equilibrium	Relativity correction, Bohr atom	
	radium and products (see ionium	mass	49
	family)	Resinoid, physical properties	65
	radon 520	Resistance, air195-	20
	rubidium519	of cylinders	20
	rubidium	of cylinders200, flat plates198–	T O
	thorium: average life 510	miscellaneous bodies	20
	decay constants		
	decay constants 519 periods, ½ values 519	spheres	
	units, miscellaneous, constants520-521	skin friction	20
	units, miscerianeous, constants520-521	electrical: (see also under conduc-	
	uranium family: average life 516	tivity)	
	decay constants 516	alloys, pressure coefficient	41
	periods, ½ values 516	temperature coeffi-	•
	vapor pressure, Ra emanation 521		4 T
tadium: averag	ge life, decay constants, b period 517	cient409, tension effect	11
emana	ation, vapor pressure 521	alternating aument values	+-
heat	generated (plus emanation) 525	alternating current values,	
phosn	horescence	.cu wire449-	45
ladine of curva	eture of space 644	Cu wire449- aluminum, mass and volume.	42
Radon	520	wire tables:	
Paine ultimae		English units.	42
daire alactrica		metric "	43
vain, electrica	Charge off	antennae (wireless)	45
cange table	(wireless)462	auxiliary computation table	40
teamur	660 15-23 le, variation with 382	auxiliary computation to standard	40
Reciprocals		copper, correction to standard	
Reflection: ang	le, variation with	temperature	42
bui	lding materials 383	copper wire tables,	
diff	use, miscellaneous 379	English units	42
fin	1)	English units	42
form	nulae, Fresnel	dielectrics, solid, surface	41
1011	ce curfo occ	electrical equivalents	20
gia	ss surfaces	mlana 6/4)	29
met	als377–380	glass, f(t)	41
pho	tographic plates 345	high-frequency values	44
pig	ments 381	alt, to direct, ratio.	45
pol	arization by	isolated tubes	45
rog	vders 382	wires	15
ron	gh surfaces 381	provinity factor	15
san	d. snow 381	low-temperature values	13
stel	llite 378	proximity factor low-temperature values. 417, magnetic field effect	+8
tun	gsten 380	magnetic field effect	40
tun	300	manganin, f(p)	4Ι.

675

PAGE	PAGE
Solids: refraction indices	Spectrum: black-body, 50° to 20000° K
resistivity 408-410	of to food V
resistivity408-419 velocity of sound190	25 to 000 K 315
Verdet's constant	800° to 25000° K 316
Yeluct's constant	
Solubility: 1(p)	classes, stars: distribution by magni-
velocity of sound. 190 Verdet's constant 477 Solubility: f(p) 220 gases in liquids 221 water, f(t) 219 inorganic salts in water, f(t) 218 organic """ 219 Solutions: boiling point rise by salts in 269 conductivity, electrolytic 632	tudes
water, 1(t) 219	distribution of binaries 620
inorganic salts in water, f(t) 218	galactic concentration 620
organic " " " " 210	Harvard 617
Solutions: boiling point rise by salts in 260	proper motions 626
conductivity, electrolytic 632	proper motions 626 temperatures632, 633
densities of aqueous	temperatures032, 033
dislocative constants collibration standards	elements 355 persistent lines, arc 509 spark 510 resonance lines 511
dielectric constants, calibration standards. 446	persistent lines, are 509
diffusion of aqueous	spark 510
freezing point lowering by salts in 267	resonance lines 511
magneto-optic rotation 478	untilinate filles
retractive indices	emissivity, tungsten 322 energy of stars 633
specific heats 201	energy of stars 622
specific heats	sun
surface tensions	gamma rays: emission 529
Surface tensions	gamma rays, emission 529
thermal conductivity 276 vapor pressures 291 Verdet's constant 478	energy529, 532
Tapor pressures	ionization
verdet's constant 478	scattering 531
VISCOSITIES	sources 531
specific 212 sucrose 206	wave lengths529, 532, 534
sucrose 206	molecular512-513
folvents, organic, boiling points 220	diatomic constants512-513
Sound: andibility 104 1	energy levels512-513
bel 193 decibel 193 harmonics 193 loudness levels, musical instruments 194	sensitivity photographic plates and
degihal	films
harmoniae	films
loudness levels musical instance of	series, atomic: arc lines 504
roddiess levels, musical instruments 194	atomic relations 502
HOISES	Bohr-Hund notation 502
miscellaneous data193, 194	combinations, interseries. 504
miscellaneous data 193, 194 musical instruments	Bohr-Hund notation . 502 combinations, interserles. 504 configuration, electron . 505 displacement law 503 electron configurations . 505
scales	displacement law 503
noises 193	electron configurations 505
overtones 193	volts 502
speech	forbidden gombinstions are
supersonics	forbidden combinations355 Hund quantum numbers504
thresholds 1	nuna quantum numbers 504
velocity 193 velocity 190, 191 waves, energy of 193 space amount of matter, interstellar 644	hydrogen series 495
velocity190, 191	inner quantum num-
waves, energy of	bers503, 504
space: amount of matter, interstellar 644	Landé's interval rule 503
Ca, Na, in interstellar	life, average, of some
charge, atmospheric electricity 597	terms 511
temperature, interstellar	terms 511 limits 502 lines, average life 511
transparency, " 643	lines average life EII
transparency, " 643 parking potentials: alternating, in air 439	metaetable terme
hall elegtrodes	metastable terms 505 multiplicity502, 503, 504
ball electrodes439-440	normal relations so
kerosene 441	normal relations 502
large spark gaps, f(pressure) 440	notation 504
steady, in air. 439 various materials 441 specific charge, a particle 105	, Bohr-Hund 502
various materials 441	parity notation 504
specine enarge, a particle	persistent lines, arc,
proton	spark509, 510
proton 105 gravity (see also densities)158-179	quanta and term type
to A. P. I. scale 158	(Hund) 504
Baumé " 158	quanta, inner503, 501
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	quanta, inner 503, 504 raies ultimes 504 resonance lines 504, 511 Rydberg 502 terms 502 ultimate lines 507 volts electron 502
atomic, constant	reconance lines for five
elements 285-285	Rudherg roa
formula for true.	terms "00
gases: also C _n /C	plimate lines
liquide	urtimate tines 507
man man	
mean	wave numbers 502
mercury 290 minerals and rocks 292	wave numbers 502 Zeeman effect 503
minerals and rocks 292	molecular:
silicates 202	diatomic constants511, 512
silicates 292 solids, miscellaneous 290 true 287, 288	energy levels 512
true287, 288	solar-energy curve, Abbot-Priest, sea-
vapors 293 water 290	level 614
water	level
inductive capacities: crystals 447	rad wave lengths
gacas f/t n)	red wave lengths
gases, $f(t, p)$ 442 liquefied 445	solar: standard wave lengths350-352
inquened 445	standard wave lengths: primary 347
liquids, f (t, p) 443	secondary,
S011dS	computed arc. 349
Standard colutions 446 1	Fe arc347-349
molecular conductivity	vs. absolute magnitudes of stars621, 622
resistance (see resistivity)	X-ray: characteristic 542
viscosity	critical absorption limits 538
pectroscopic mary stars	emission lines 538
	spectroscopy 543
band constants	Speech
black-body, constants formulae 212 217	conversation
in arge and colorine total	
in cigo and calories, total, , 313	vowel resonance

677

	PAGE	PA	GE
Speed	photographic plates 342	Stars: Magellan, clouds of	40
Charm	endia	magnitude: absolute, apparent, defini-	
Spheric	al candle	tion	23
Dpinerre	harmonics, zonal	bolometric 66 brightest 67	24
Sninnin	g electron 406	hrightest	32
Square	al candle 334 harmonics, zonal 66, 67 g electron 496 roots 15-23	distribution by galactic lat. and long 6 magnitudes, 618, 6	
Squares	, 10 to 999	long 6	816
Standar	ds. fundamental xli	magnitudes, 618, 6	20
Deaman	ds, fundamental	spectrum class 6	520
	of light: Bougie decimale 334	first.	919
	candles, American, English	galactic concentrations	20
	sperm 334	mean apparent vs. parallax 6	24
	sperm 334 Hefner, international,	moon	>23
	pentane 334	number per square degree	018
	Hefner unit 334	radiometric	332
	Waidner-Burgess 334	spectrum class rs. mean mag t	017
	radium 520	sun	23
	refractive media for microscope 375	visible vs. bolometric	024
	resistance, mercury xlvi	mass	31
	wave lengths	cmall	023
Stars:	(see also sun for solar data)601 et seq.	vs. luminosity	31
	absolute magnitude: binaries 631	meta-galaxy	916
	absolute magnitude: binaries 631 definition 602	milky way	310
	density, high, white	nearer than 5 parsecs	319
	dwarfs 636	nearest androaches to sull	120
	low, giants 636	novae	35
	dwarfs, white 636	number	518
	first magnitude stars 619	THE CONTROL OFFICE	310
	giants, low	parallax vs. mean apparent magnitude	524
	density621, 622, 636	period we luminosity centrells	0.15
	high temperature 636	periodic variables	034
	nearer stars 619	periodic variables proper motion	620
	Russell 621	large	626
	spectrum type (vs.). 624 Strömberg 622 temperature, high 636	vs. spectrum class	600
	Strömberg 622	Purkinje effect	6.2
	temperature, high 636	radial velocity, great	622
	white dwarfs 636	radiation	622
	binaries	Purkinje effect radial velocity great 632. (radiation 632. (radiometric magnitudes	612
	eccentricities vs. periods 631	rotation of galaxy	612
	eclipsing	galaxy	622
	magnitudes, absolute 631	size	645
	masses	space, temperature of	620
	spectroscopic 620	space, temperature of spectra: binaries energy of spectra of spect	622
	nearer, < 10 parsecs 630	first magnitude stars	610
	periods	Harvard notation	617
	vs. eccentricity 631	magnitudes as related to	620
	spectroscopic	nearer	610
	spectrum distribution620, 631	proper motion as related to	626
	visual	temperature as related to	632
	cepheids: classification		
	period-luminosity relation 635	stellar systems	614
	clusters: classification	sun (see also under sun)	612
	galactic	temperatures	633
	galactic	high	636
	properties		
	variables	A	635
	color indices	variable: cepheids	634
	density, high	period vs. luminosity	033
	low	10.41	621
	diameters	alucton	034
	distances	edipsing eclipsing irregular	029
	distribution vs. magnitudes	irregular	034
	double (see stars; binaries)629-631	novae	635
	dwarf	novae 629, temporary 617,	034
	sequence 622	temporary	034
	white		
	eclipsing		
	elcments, chemical, in	vs. spectrum class.	020
	energy spectra	radial, > 100 km/sec	620
	equipartition of energy in	radial, > 100 km/sec	627
	equivalent 1st magnitude	< 5 km/sec	620
	first magnitude	sun	623
	galactic concentration spectrum classes 620	l cicual ac radiometric magnifiaces	032
	galaxy, center of 643	Steam tables: 0°-222° C, saturated298-	303
	mass 643	400°-700° F., saturated	304
	rotation 643	Steam tables: °-222° C, saturated298- 400°-700° F., saturated 212°-3000° F., superheated	305
	giant sequence		
	spectrum line, max. in 634	Chools allows machanical properties	113
	super 622	carbon, " heat treatments.	112
	Harvard spectrum classes	castings, magnetic properties463-	172
	indices, color 617	magnetic properties	114
	irregular variable	semi, mechanical properties	
	light, total	wire, " wire rope, mechanical properties	III
	luminosity, definition	Stefan-Boltzmann constant	312
	high	tables, ergs and cal	212
	mass relationship 631	tables, ergs and car	3 - 3

PAGE	PAGE
Steinmetz constant, magnetism	Taylor's series
steller temperature of space (see also stars) 045	Temperature: black-body scale for tungsten 322
Stallite mechanical properties 124	brightness, black body, $f(T)$ 335
	tungeten 221 222
Stem correction to thermometers	various lights 338
Sterro-metal, mechanical properties	color scale for electric lights 338
Sterro-metal, mechanical properties. 121 Stores, building, mechanical properties. 128 Stopping powers: atomic, for a particles. 523	gas-filled tungsten lamps 338
	lamps
ar	molybdenum 323 tantalum 323
aution)	tungsten 323
Striction, magneto	various lights 338
Sucrose, viscosities of aqueous	critical: gases
Sulphur diovide p. v. t. relations	magnetism 475
Sulphuric acid, densities174, 175	earth's gradient with depths 557 surface: mean monthly tem-
heats of dilution 312	peratures over 556
Suerose, viscosities of aqueous 206 Sugar, aqueous, densities 174 Sulphur dioxide, p. v. t. relations 148 Sulphuric acid, densities 174, 175 heats of dilution 312 Sun: apex of solar motion 625 brightness, candles per cm² 339 constants, decades, monthly and yearly means 609-610	mean yearly tem-
brightness, candles per cm	peratures over 556
means	variation over sea and
disk, energy distribution. 608 distance to earth. 601 elements in atmosphere of 612, 613	land 557
distance to earth	electric lights
elements in atmosphere of612, 613	ignition, gaseous mixtures 310
energy spectrum Abhot-Priest, at sea-level 614	low, superconductivity of metals 433
at Mt. Wilson 608	melting: (see also melting
Washington 608	points)252-266
in uv., visible, lr 000	lime-alumina-silica com-
outside earth	pounds
parallax 601	points (secondary). 243 International
radiation (see also energy just above)	International 339
at earth's surface	thermocouple, standards 243
atmospheric transmission of 555	thermoelement calibration 244
atmospheric transmission of 555 compared to moon 623	chromel-alumel 247 Cu-constantan, >0° C. 245
ultra-violet	
-spot numbers, Wolf's, annual means 610	Pt-PtRh 245
stellar magnitude	stollon 61m
wave length i -r and u -v. provisional 353	Tension, surface, liquids222-223
velocity	Tension, surface, liquids. 222-223
Sunshine, duration of 610	series (spectroscopy)
Sunshine, duration of 610 Superconductivity, low temperature 655	spectra cotta, mechanical properties
Supersonics 191 Surface resistivities, solid dielectrics 418 tensions, liquids 2222, 223 Suriael large glargeristics 222, 223	Terra cotta, mechanical properties 129
Surface resistivities, some dielectrics	Terrestrial magnetism: agonic line, U. S., 1800-
Surgical lamps characteristics	1925 595 charts:
Surgical lamps, characteristics	in alimin T mould and
elements 475 molecular, definition 463	isodynamic, H, " 576 isogonic, D, " 576
molecular, definition 463	isogonic, D, " 576
Synodical month 601	1SODOFIC:
m 11thtical antilogorithms (-nless 28-20	D, world 577
Tables, mathematical: antilogarithms, 4-place28-30 Ressel's functions	H, "
Bessel's functions	total intensity, world. 580
constants 14	vertical intensity,
cubes 15	world 580 constants of earth574, 575
cylindrical harmonics68-70	declination. D.
derivatives 12 differentials 12 diffusion integral 60	annual, world 579 isogonic lines, world 576 isoporic "" 577
diffusion integral 60	isogonic lines, world 576
elliptic integrals 71	isoporic 577
exponential function 48-64 integral 62	secular change, U. S 590 dip, I, annual change, world. 579 f(lat., long.), U. S.,
factorials, 1 to 20 47	f (lat., long.). II. S.,
gamma function	1925 592
hyperbolic functions 41	1925 592 isoclinic lines, world. 576 isoporic " 578
integrals 12	
least squares56-59	secular change, U. S. 592
logarithms24-27 probability integral56, 57	annual change, world., 570
inverse, 60. 61	horizontal intensity, H, annual change, world. 579 f (lat., long.), U. S 593
reciprocals 15	isodynamic lines, world, 577
series 15	isoporic " " 578
square roots 15	secular change, U. S 593 inclination, I (see dip)
squares	isoclinic lines, I, world
steam: 0°-220° C. saturated208-202	chart 576
steam: 0°-220° C, saturated298-303 400°-700° F., saturated304 212°-3000° F., superheated305	isodynamic lines, H, world
212°-3000° F., superheated 305	chart 577
Tangents, circular, nat., logs., I(',') 32	isogonic lines, D, world
f (radians) 37	chart 576 isoporic lines,
hyperbolic, nat., logs	D. world chart 577
resistivity	Н, " " 578
total radiation, f(t) 323	Ĩ, " " 578

PAGE	PAGE
Terrestrial magnetism: isoporic lines,	Thermoelectricity: e.m.f401-406
intensity, total, world 580	against Pb: alloys,
vertical, world. 580	metals 401-402
mean annual observatory ele- ments 581	Pt: Al 404
ments 581 mean annual observatory ele-	Cd 404
ments, bibliography 589	metals 403 Ni 404
mean monthly magnetic char-	
acteristic 595	August A
mean yearly magnetic char-	low temperatures, e.m.f 405
acteristic 595 observatories, mean annual	neutral point 400
elements 581	pressure effect400, 407
elements 581 observatories, mean annual	Thomson "404, 407
elements, bibliography 589	Thermomagnetic effects
poles, magnetic 575	Thermometry:
secular changes,	International scale
declination, U. S., 1820-	calibration procedure 241 secondary points 243
1930 590 dip, U. S., 1855-1925. 592	secondary points 243
horizontal intensity,	correction for emerged Hg thread
U. S., 1855-1025 593	optical pyrometry 248
U. S., 1855-1925 593 inclination, U. S., 1855-	standard platinum resis-
1925 592	tance 243
total intensity,	thermocouple 243, 244
f(lat., long.), U. S.,	Cu-constan-
isoporic lines, world	tan .245, 246 Pt-PtRh 245
chart 580	stem correction 249
secular change, U. S.,	thermodynamic scale reduc-
1855-1925 594	tion for gas 249
Therm 660	thermoelectric scales, com-
Thermal conductivity: air	parisons250, 251
high temperature, 328	Thomson effect, thermoelectric
incandescent	Thorium radioactive family
wires 329	Thorium radioactive family 515 average life 515 degree value
alloys 272	
Fourier, conversion factors 279	period, ½
resistances 279	Intestignation sensitivity of eye, I (field brightness) 330
unit	Thunderstorm electricity heterochromatic
high temperatures 273	Tidal friction, earth
insulators274-276	moon
liquids, f(p) 278	Tides 574
organic277	Time: earth's rotation as measure of 573
metals	equation of
miscellaneous 273 organic liquids 277	Tobin bronze, mechanical properties 121
salt solutions 276	Transformation temperature: lime-alumina-silica compounds
sea water 652	Transparency: air moist
water	atmosphere
, sea	black absorbers 395
couples: e.m.f. calibration244-247	color screens
chromel-alumel 247 copper-constantan, $>$ 0° C. 245	dvac 28:
<0° C. 246	dyes
Pt-PtRh 245	glasses, American
effect: Ra+Em	various sources 388
expansion, cubical, liquids 283	Jena, colored 300
gases	narrow regions 38
linear, elements 280	long waves: 20 to 130 μ , various
liquids 283	screens 39.
miscellaneous 281	20 to 150μ 39.
tungsten 321	$108 \pm \mu$ 39.
gradlent, earth's interior 569	photographic plates
properties: ammonia (liquid) 306	star space
mercury vapor 306	steam
saturated steam (Peabody). 298-303 400°-700° F 304	Jena glass 38 sea water 38 various materials 38
superheated steam,	sea water 38
212°-300° F 305	various materials 388
unit, British 660	water
Thermochemistry: heat of combustion: carbon com-	Vapor
pounds 307 , coals 308	Tribo-electric series
cokes 308	radians
gases 308	radians32–30 hyperbolic, nat., logs 4
liquid fuels. 308	radians, nat., logs.,
miscellaneous 307	degrees37-4
peats 308	Tropical year
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tropopause, seasonal variation
neutralization 312	gas-filled lamps 33
Thermodynamic temperature scale239, 249	gas-filled lamps
Thermoelectric scale comparisons	temperature

PAGE	PAGE
Tungsten: color temperature 322	
electron emission 321	Vessels, vol. of glass, via Hg or H ₂ O (I. C. T., 6, 439)
emissivity, luminous, color 322	Villari magnetic effect, definition
expansion coefficient 321	Viscosity: air
heat, atomic	alcohol (aqueous), f(t, dilution) 209
machanical properties 321	castor oil
mechanical properties	earth
radiation	gases, f(t, p)213, 214
resistivity 321	glasses, high temperature
spectrum emissivity	glycerol, dilution variation 206
vapor pressure	liquids
Twilight	f(p)208-200
Ultimate lines of elements (spectrum)504, 507-508	mercury
strength of materials	sea water
Ultimes, raies, of elements (spectrum)504, 507-508	specific, of solutions212
Units: (general)xxxi et seq.	sucrose (aqueous), f(t, dilution) 206
ampere turn liv	vapors
derivedxxxii electricalxlvi et seq., 397	water, f(high pressure)
electricalxlvi et seq., 397	f(t)
fundamental	Visibility of radiation
International xliv	white light
standardsxlvi et seq.	persistence of
magnetic	Voice, pitch limits194-195
photometric	Volt, absolute 1
radioactivity520-521	definition
Uranium radioactive family: (general) 516	international xlix
average life 516	Volt-ampere, definition
decay value 516 half period 516	electron 502
nair period 516	energy 106 speed 106
v. ratio e.m u. to e.s u	Speed
v, ratio e.m.u. to e.s.u	wave length
weighings to	Voltages: contact
Vacuum technique of high 655	electrical equivalents
Valencies of the elements	Peltier 406
Valencies of the elements. 483 Vapor pressure: alcohol, ethyl 227 methyl 227	primary cells
methyl 227	salt solutions and metals 400
anne	secondary cells
aqueous solutions230-231	solids and liquids
of salts 230 vapor in atmosphere,	standard cells
f (altitude)234, 235	thermoelectric: (general)401 et seq against Pb401
bromobenzene	Pt
carbon disulphide 228	alloys402, 402
chlorobenzene 228	Al-Pt 402
elements 224	Cd-Pt 402
low temperature 226	metals 40:
mercury 229	low temperatures. 402
organic liquids225–226 salts in water230	neutral points 401
tungsten 321	Ni-Pt 40. pressure effect 40;
water in atmosphere234, 235	Pt-PtRh 40;
, water; weight per m ³ and ft. ³	Zn-Pt
Vaporization, latent heat of	tribo-electric series 408
ammonia 296	tribo-electric series
elements, theoretical 295	Weston cellsxlix-1
formulae 296	Voltameter, silverxlviii, 77 et seq
mercury 306 steam tables297-306	Volts, electrical equivalents
rate of	Volume, atomic
Vapors: densities	critical, for gases
diffusion of	gases, f(t) with logs149-152, 155
heats of vaporization295-296, 298-306	glass vessels, determination of 108
, specific	mercury, -10° to +360° C 169
pressures (see vapor pressures) 223 et seq.	perfect gas 10 resistance of dielectrics 418
refractive indices	resistance of dielectrics
specific heats 293 viscosities 213	water, f(t, p)
water, transparency to radiation 392	Vowels, resonance of spoken
Variable stars (see under stars)634-635	
Velocities: earth: linear, rotation 570	Waidner-Burgess standard light 334
orbital 570	Water: boiling point, f(pressure)
light, 2 · 99796×10 ¹⁰ cm/sec 74	density: f(t) o° to 41° C 160
molecules 550	-10° to +250° U 168
sound190–191	maximum, 0.999973 g/cm³
in sea water	solutions: alcohol ethyl 172, 173
stellar: greater proper motions 628 mean 617	methyl 172
radial > 100 km/sec 628	glycerol 200
space v., large and small 627	Sucrose
sun 625	sulphuric acid 17/ freezing point, f (pressure)
Verdets' constant	freezing point, f(pressure) 25;
Vertical intensity, earth's magnetic field (world	ionization
chart) 580	melting point, f(pressure) 25;

	PAGE	PAG	ï
Water:	pressure, hydrostatic, of columns of 180	PAC	śε
		X rays	16
	chemical composition 652	numbers	5 2
	ehlorinity	energy, h/c) 5
	color	velocity, earthquakes 56	50
	concentration	Waves: seismic	53
	conduction, electrical, thermal 651	sound, energy of):
	density	swell	53
	freezing point	translation	53
	index of refraction	wind	5:
	pressure	Weber 66	00
	refractive index 652	Weighings, reduction to vacuo	00
	sammy	Weights and measures: customary to metric	
	sound velocity	imperial to metric10-1	I I
	curface tension 652	metric to customary	1
	temperature 6	imperial	
	transparence ago 672	(British)	5
	velocity of sound 652	(British) miscellaneous (U. S. to	
	chemical composition 652 chlor inity 651, 652 color 652 concentration 651 conduction, electrical, thermal 651 density 652 index of refraction 652 pressure 651 refractive index 652 salinity 652 salinity 651 sound velocity 190, 652 specific heat 652 surface tension 652 temperature 651 transparency 389, 652 velocity of sound 652 solubility of gases (I. C. T. 3, 255) 221 solutions: boiling points 651 chlorinity of sea water 651 diffusions 215	metric) (c. s. to metric) atomic	0
	solubility of gases (I. C. T., 2, 255) 221	atomic	3
	solutions: holling points	Birge	0,
	chlorinity of sea water	columns water or mercury	36
	diffusions	various geometric volumes	1 0
	electrolytic conduction	Weiss magneton (I. C. T., 6, 346)	٠.,
	freezing points	Weston cell	. 4.2
	diffusions 215 electrolytic conduction 432 freezing points 367 salinity, sea water. 651	Weston cell xl White lights, visibility of 3- Wiedermann magnetic effect (1. C. T., 6, 439) 46 Wien displacement constant 18	40
	viscosities	Wiedermann magnetic effect (1. C. T., 6, 439) 40	,
	sound, velocity of, in	wien displacement constant	77
	sea water 652	Wind pressures198-20	2
	thermal conductivity	Wind pressures 198-22 Wind pressures 198-22 Wire gages, comparison of 4 mechanical properties of copper 118-11 steel 1 rope and cable. 1	20
	transparency to radiation 392	mechanical properties of copper	Y
	sea 389	Steel	7 1
	staam 202	Tope and cause. It	
	vapor: atmospheric, relative humidity236-238 wet and dry bulh ther- mometers231, 235	resistance, auxiliary table for computing 40 tables: aluminum (see also introduction to	,,
	vapor: atmospheric, relative humidity236-238	tables: aluminum (see also introduction to	
	wet and dry bulb ther-	wire tables) 43	20
	mometers234, 235 determination, sea level, via wet and	English measures 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	20
	determination, sea level, via wet and	conner (acc also introduction to wire	٥,
	dry bulb thermom-	tables) . A	2
	eters234-235 various altitudes, via wet and dry bulb	tables 4 English measures 4 metric temperature coefficients 4 temperature coefficients 4	2
	various altitudes, via	metric "	21
	wet and dry build	temperature coefficients 4	2:
	thermometers 234	reduction to stand-	
	in atmosphere, f(altitude)558, 560	ard 4	2:
	pressure232-233 relative humidity via dry and vapor	ard 4: Wireless telegraphy: absorption factors in propaga-	
	programs 226	tion454, 4.	5
	pressure 236 wet and dry 238	absorption factors in propaga-	
	transparency, ordinary temperature 392	tion over land 4	5
	cteam 202	tion over land	
	steam 392 weight 234 saturated, per m³ and ft.³ 234	tion over sea 4:	5
	saturated, per m ³ and ft ³ 234		
	viscosity, f(temperature) 205	length elegates vs. wave length elegates 4. resistances 4. wave lengths 4. dielectric constant 4. properties, nonconductors	5
	high-pressure	resistances 4:	5
	volume, f(t, p), o° to 40° C	wave lengths 4	5
	-10° to +250° C	dielectric constant 4.	5.
	weight of columns of 180	properties, noncon-	
	vapor	ductors	5
Watt		frequency vs. wave length and	,
Wave	filters, sound (1. C. T., 6, 458)	oscillation constant 4	01
	forms: deep water	ground, transmission over 4.	5.
	shallow water	insulating materials, dielectric	_
	lengths: angstrom, definition 347	eonstants 4: kilocycle-m conversions,	54
	viscosity, f(temperature) 205 high-pressure 656 volume, f(t, p), o° to 40° C 167 —10° to +250° C 168 weight of columns of 180 vapor 234 filters, sound (1. C. T., 6, 458) forms: deep water 653 shallow water 653 lengths: angstrom, definition 347 cadmium red line 104, 347 Crova 335	v=299820 4.	5
	Crova	1-299020 4	6
	elements	v=30000 4 land, transmission over 4 noneonductors, dielectric prop-	5
	Fraumoier solar lines 340	noneonductors dielectric prop-	٥,
	inco one cocondone standard solar 353	erties	5
	limits wireless V rous etc 347-349	oscillation constant 4	6
	man etandarde	power factor, insulating mate-	
	neon standards 349	[1818]	5.
	solar Framphofer lines 246	modintion populatores f()	
	Röntgen	antenna) 4	5
	standards, Rowland- St. John350-352	range table 4	6.
		skip distance 4	6
	15° C. 76 em	transmission over ground 4	5
	standards: primary Cd line104, 347	sea water 4	5
	15° C, 76 em	antenna) . 4 range table 4 skip distance 4 transmission over ground . 4 transmission over ground . 4 wave length, frequency, oscilla-	
	neon 349	tion constant456-4	6
	solar standards,	Wires: alternating current resistance of 4	5
	infra-red 353	wate length, requestly, oscillation constant	I
	Rowland St. John. 350-352	heat Iosses from incandescent 3	2
	infra-red 353 Rowland St. John 350-352 ultra-violet 353		
	vacuo, reduction to	of	5

INDEX

PAGE	PAGE
Woods, densities	X (Röntgen) rays: fluorescence 543
mechanical properties, conifers,	K group538-540
common units 135 metric " 133	L group538-540
metric " 133	lattice constants, crystals 543
common units 134	M group 541 mass absorption coefficient,
metric " 132	μ/ρ
Work, conversion factors	μ/ρ
definition	photographic effects 546
function, electron emission 547	scattering 544
Tulletion, covered conservation	spectroscopy of 543
X (Röntgen) rays: absorption543, 544	
coefficients (mass). 545	Year: anomalistic
limits, critical. 538-541	light 601
lines 538	sidereal
cathode rays536-537	tropical
characteristic537-538 efficiency of pro-	solar constants
duction 542	sun spots
chemical combination, effect of. 544	temperature
continuous spectrum 537	Yield point, mechanical propertyiro et seq.
critical absorption limits538-541	Young's modulus, mechanical propertyiio et seq.
crystals, lattice constants 543	
efficiency in production of char-	Zeeman displacement
acteristic 542	effect (I. C. T., 5, 418) 503
emission 537	Zero, absolute, —273.°18 C85-86
energy in continuous spectrum. 537	Zinc, mechanical properties124, 125
relations 543	Zonal spherical harmonics

