Name: Hongda Li Class: CSE 546 HW2B

B.1

Objective: Given the definition for the L2, L1 and the Infinity norm of real vector, show that $||x||_{\infty} \le ||x||_{2} \le ||x||_{1}$.

First we are going to show that $||x||_2^2 \le ||x||_1^2$, starting from the definition of the norms we have:

$$||x||_{1}^{2} = \left(\sum_{i=1}^{n} |x_{i}|\right)^{2}$$

$$= \sum_{i=1}^{n} \left(|x_{i}| \sum_{j=1}^{n} |x_{j}|\right)$$

$$= \sum_{i=1}^{n} \left(|x_{i}|^{2} + |x_{i}| \sum_{j=1, j \neq i}^{n} |x_{j}|\right)$$

$$= \sum_{i=1}^{n} |x_{i}|^{2} + \sum_{i=1}^{n} |x_{i}| \left(\sum_{j=1, j \neq i}^{n} |x_{j}|\right)$$

$$= ||x||_{2}^{2} + \sum_{i=2}^{n} \sum_{j=1}^{i-1} 2|x_{i}||x_{j}|$$

$$\implies ||x||_{2}^{2} \leq ||x||_{1}^{2}$$
(B.1.1)

And now we are going to shoe that $\|x\|_{\infty}^2 \leq \|x\|_2^2$. By the definition of the infinity norm, we know that therde exists $1 \leq m \leq n$ such that $x_m = \|x\|_{\infty} = \max_{1 \leq i \leq n} (x_i)$. Then it can be said that:

$$x_{m}^{2} \leq x_{m}^{2} + \underbrace{\sum_{i=1, i \neq m}^{n} x_{i}^{2}}_{\geq 0}$$

$$x_{m}^{2} = \|x\|_{\infty} \leq \sum_{i=1}^{n} x_{i}^{2} = \|x\|_{2}^{2}$$
(B.1.2)

And then combing together, we can take the square root because the function $\sqrt{\bullet}$ is monotone increase, hence it preserves the inequality, which will give us $||x||_{\infty} \leq ||x||_{2}^{2} \leq ||x||_{1}$.

B.2

B.2.a

Objective: The function ||x|| is a convex function.

$$\|\lambda x + (1 - \lambda)y\| \le \|\lambda x\| + \|(1 - \lambda)y\|$$

= $\lambda \|x\| + (1 - \lambda)\|y\|$ (B.2.a.1)

Note, I just directly apply the Triangular inequality of the norm to get the inequality, and then becaues $\lambda \in [0, 1]$, so there is no absolute value, and notice that the resulting expression is the definition of Convexity the given function.

B.2.b

Objective: Show that the set $\{x \in \mathbb{R}^n : \|x\| \le 1\}$ is a convex set. Let the set be denoted as S Let's take any 2 points in the set like $x \in S$, $y \in s$, then $\|x\| \le 1$ and $\|y\| \le 1$ for any line defined by the 2 points:

$$\|\lambda x + (1 - \lambda)y\| \le \lambda \underbrace{\|x\|}_{\le \lambda} + \underbrace{(1 - \lambda)\|y\|}_{\le 1 - \lambda}$$

$$\implies \|\lambda x + (1 - \lambda)y\| \le 1$$

$$\implies \lambda x + (1 - \lambda)y \in S$$
(B.2.b.1)

The first by the inequality of norm, and the second is by the definition of the fact that $x, y \in S$, and the third is by the definition of the set.