This lab is going to have you run benchmark on isPrime0, isPrime1, and isPrime2 mentioned in lectures.

For compute $\pi(100)$, we can use the following program:

```
CountPiN.java
public class CountPiN {
    static boolean isPrimeO(int n) {
        if(n==1) return false;
        if(n<=3) return true;
        int m = n/2;
        for(int i=2; i<=m; i++) {
            if(n%i==0) return false;
        return true;
    public static void main(String[] args) {
        int count = 0;
        int N = 100;
        for (int n=1; n<N; n++) {
            if(isPrimeO(n)) count++;
        System.out.println("Pi("+N+")="+count);
    }
```

The output look like this:

```
>java CountPiN
Pi(100)=25
```

The method isPrimeO(n) take any positive integer and return true if it is a prime, false otherwise. The method run through all integer from 2 to n/2 and check if n is divisible by any of them.

There are two more methods, isPrime1(n) and isPrime2(n). The method isPrime1(n) is similar to isPrime0(n) but only run from 2 to \sqrt{n} . The method isPrime2(n) improves upon

isPrime1(n) by take out anything divisible by 2 and 3 and not going to test divisibility of number that are multiple of 2 and 3.

```
Method isPrime1(n) and isPrime2(n)
static boolean isPrime1(int n) {
    if(n==1) return false;
    if(n<=3) return true;
    int m = (int)Math.sqrt(n);
    for(int i=2; i<=m; i++) {
        if(n%i==0) return false;
    return true;
static boolean isPrime2(int n) {
    if(n==1) return false;
    if(n<=3) return true;
    if((n%2==0) | (n%3==0)) return false;
    int m = (int)Math.sqrt(n);
    for(int i=5; i<=m;i+=6) {
        if(n%i==0) return false;
        if(n%(i+2)==0) return false;
    return true;
```

To measure efficiency of these methods, we must modify our main method like this

```
New main()
public static void main(String[] args) {
    for(int N=100000; N<=1000000; N+=100000) {
        long start = System.currentTimeMillis();
        int count = 0;
        for(int n=1; n<N; n++) {
            if(isPrimeO(n)) count++;
        }
        long time = (System.currentTimeMillis()-
start);
        System.out.println(N+" \t"+count+" \t"+time);
    }
}</pre>
```

After the modification, the result of running with isPrimeO(n) should be like this:

>java C	ountPiN		
100000	9592	4218	
200000	17984	16854	
300000	25997	39087	
400000	33860	60526	
500000	41538	88313	
600000	49098	134878	
700000	56543	192198	
800000	63951	135660	
⁴ 900000	71274	96334	
1000000		78498	88927

Your first task: run the program with isPrime0, isPrime1, and isPrime2 and record your result into the following table

Running-time table					
-	ni(n)	time (milliseconds)			
n	n pi(n)	isPrime0	isPrime1	isPrime2	
100,000					
200,000					
300,000					
400,000					
500,000					
600,000					
700,000					
800,000					
900,000					
1,000,000					

Your second task: Plot two g	raphs, one is n vs.	isPrime0's time a	nd the other	is n vs. isPrime1's
time and isPrime2's time.				

n vs. isPrime0	n vs. isPrime1 and isPrime2	

Your final task: In your own words, describe trend of isPrime1, isPrime2, and isPrime3. Are you				
recorded times faster or slower than the recorded time shown in the lecture? Why?				

Hand in your work in MS Team assignment by fill in the answer in this file. Change the name of this file to assignment1_xxxxxxx.pdf where xxxxxx is your student id.