

Term End Examination - November 2013

Course : MAT101 - Multivariable Calculus and Differential Slot: F1+TF1

Equations

Class NBR : 2204 \ 2216 \ 2217 \ 2223 \ 2244 \ 2258 \ 2272 \ 2277 \ 2280 \ 2337 \ 2463 \ 3604 \ 5498

Time : Three Hours Max.Marks:100

PART - A (10 X 3 = 30 Marks)Answer <u>ALL</u> Questions

1. If U = 2x - 3y, V = 5x + 4y, then find $\frac{\partial (U,V)}{\partial (x,y)}$.

2. Locate the stationary points of $f = x^4 + y^4 - 2x^2 + 4xy - 2y^2$

3. Change into polar coordinates and then evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$

4. Evaluate $\int_{0}^{\pi/2} \sqrt{\cot \theta} d\theta$ by Beta-Gamma functions.

5. Find the constants a, b, c if the vector

 $\vec{F} = (2x + 3y + az)\vec{i} + (bx + 2y + 3z)\vec{j} + (2x + cy + 3z)\vec{k}$ is irrotational.

6. Find the directional derivative of $f(x, y, z) = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of the vector $\vec{u} = 2\hat{i} - \hat{j} - 2\hat{k}$.

7. Solve $(D^3 - 6D^2 + 11D - 6)y = 0$

8. Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$.

9. Find $L(te^{-4t}\sin 3t)$

10. Find the inverse Laplace transform of $\frac{1}{s(s+a)}$

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

11. a) Expand $f(x, y) = e^{x+2y}$ in a Taylor's series about (x, y) = (0, 0) up to second degree terms. [7]

b) Find the volume of the greatest rectangular parallelopied that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. [7]

- 12. a) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x \, dy \, dx}{x^2 + y^2}$ and hence evaluate it. [7]
 - b) Find the value of $\iint x^{m-1}y^{n-1}dxdy$, over the positive quadrant of the ellipse [7] $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, in term of Gamma functions.
- 13. a) Verify divergence theorem for $\vec{F} = (x^2 yz)\vec{i} + (y^2 xz)\vec{j} + (z^2 xy)\vec{k}$ taken over the **[10]** rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$ $0 \le z \le c$.
 - b) Find the work done by the force $\vec{F} = x^2 \vec{i} + yx \vec{j}$ along the line joining the points (0,0) [4] to (1,1).
- 14. a) Use method of undetermined coefficients to solve the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} = e^{3x} + \sin x$ [7]
 - b) Solve the differential equation $\frac{d^2y}{dx^2} + y = \sec x$, using the method of variation of parameters. [7]
- 15. a) Using Laplace Transform, solve $y'' + y = 6 \cos 2x \text{ where } y = 3, \ y' = 1 \text{ at } x = 0.$
 - b) Find the Laplace Transform of the periodic function known as saw tooth wave [4] $f(t) = \frac{kt}{T} \quad 0 < t < T, \quad f(t+T) = f(t).$
- 16. a) Find the maximum value of $x^m y^n z^p$, when x+y+z=a [7]
 - b) Evaluate $\iiint xyz \, dx \, dy \, dz$ taken through the positive octant of the sphere [7] $x^2 + y^2 + z^2 = a^2$ by transforming in to spherical coordinates.
- 17. a) Verify Green's theorem for $\oint_C (xy + y^2)dx + x^2 dy$ where C is bounded by y = x and $y = x^2$.
 - b) Solve $\left(D^2 + 2\right) y = e^x \cos x$ [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$