HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIÊN THÔNG

KHOA: CÔNG NGHỆ THÔNG TIN I **BỘ MÔN**: KHOA HỌC MÁY TÍNH

ĐỀ THI KẾT THÚC HỌC PHẦN (Hình thức thi viết)

Học phần: Toán rời rạc 2 (Học kỳ 2 năm học 2017-2018)

Lóp: D16CN, D16AT

Thời gian thi: 90 phút

Đề số: 1

Câu 1 (1 điểm)

Cho đồ thị vô hướng G = <V, E> gồm 10 đỉnh được biểu diễn dưới dạng danh sách kề như sau:

$$Ke(1) = \{4, 7, 9, 10\}$$
 $Ke(6) = \{4, 5\}$
 $Ke(2) = \{3\}$ $Ke(7) = \{1, 10\}$
 $Ke(3) = \{2\}$ $Ke(8) = \{9, 10\}$
 $Ke(4) = \{1, 5, 6\}$ $Ke(9) = \{1, 8, 10\}$
 $Ke(5) = \{4, 6\}$ $Ke(10) = \{1, 7, 8, 9\}$

- a) Tìm bậc của mỗi đỉnh trên đồ thị.
- b) Biểu diễn đồ thị G dưới dạng ma trận kề.

Câu 2 (2 điểm)

- a) Viết hàm có tên BFS (int u) bằng C/C++ thực hiện thuật toán tìm kiếm theo chiều rộng bắt đầu từ đỉnh u trên đồ thị G = <V, E> được biểu diễn dưới dạng ma trận kề a[]].
- b) Sử dụng thuật toán duyệt theo chiều rộng (BFS) tìm số thành phần liên thông của đồ thị G cho trong Câu 1, chỉ rõ kết quả tại mỗi bước thực hiện của thuật toán?

Câu 3 (2 điểm)

Cho đồ thị có hướng G = <V, E> gồm 10 đỉnh được biểu diễn dưới dạng ma trận kề như sau:

	1	Z	1	Ç	5	_(ı	}	· Y	_1	<i>₩</i>
٨	0	1					0			0
V	0	0	1	1	1	0	0	0	Ó	0
)	0	0	0	0			0	0	1	1
Y	0	0	0	0	0	1	1	0	0	0
5.	0	0	0	0	0	1	0	0	0	0
(0	0	0	0	0	0	1	1	0	0
7	0	0	0	1	0	0	0	1	0	0
8	1	1	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	1
2	1	1	0	0	0	0	0	0	0	0

- a) Trình bày điều kiện cần và đủ để một đồ thị có hướng là Euler. Áp dụng chứng minh đồ thị có hướng G là Euler.
- b) Áp dụng thuật toán tìm chu trình Euler bắt đầu từ một đỉnh u trên đồ thị, tìm một chu trình Euler trên đồ thị G bắt đầu từ đỉnh 1, chỉ rõ kết quả sau mỗi bước thực hiện theo thuật toán.

Câu 4 (2 điểm)

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng ma trận trọng số như

sau:

	1	レ)	4	5	6	7	1	2	1
1	0	2	4	_∞	∞	_∞	00	∞	2	∞
ì	2	0	4	∞	2	2	∞	2	2	∞
)	4	4	0	4	4	· ∞	$\dot{\infty}$	∞	∞	∞
9	∞	∞	4	0	4	∞	∞	∞	∞	∞
5	∞	2	4	4	Ó	2	∞	∞	∞	∞
(∞	2	∞	∞	2	0	1	1	∞	∞
7	∞	တ်	∞	∞	∞	1	0	1	∞	3
8	∞	2	∞	∞	∞	1	1	0	1	1
<u>,</u>	2	2	∞	∞.	∞	∞	∞	1	0	1
W	8	∞	∞	∞	œ	∞	.3	1	1.	0

- a) Trình bày thuật toán Kruskal tìm cây khung nhỏ nhất trên đồ thị vô hướng, liên thông, có trọng số.
- b) Áp dụng thuật toán Kruskal tìm cây khung nhỏ nhất của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện thuật toán.

Câu 5: (3 điểm)

Cho đồ thị có hướng $G = \langle V, E \rangle$ như hình bên, trọng số được ghi bên mỗi cung.

- a) Viết hàm có tên DIJKSTRA(int u) trên C/C++ mô tả thuật toán Dijkstra tìm đường đi ngắn nhất xuất phát từ đinh u đến các đỉnh khác của đồ thị G=(V,E) được biểu diễn dưới dạng ma trận trọng số a[][].
- b) Áp dụng thuật toán Dijkstra tìm đường đi ngắn nhất từ định số 1 đến các định còn lại của đồ thị G, chỉ ra đường đi ngắn nhất từ định số 1 tới định số 6.

Ghi chú: Sinh viên không được tham khảo tài liệu