УТЕШИТЕЛЬНАЯ КОНТРОЛЬНАЯ. 20.05.2018 ВАРИАНТ 1

1	2	3	4	5	6	7	8	9	10	\sum

Фамилия, имя студента ______ Группа ______ Фамилия преподавателя, ведущего семинары

Классического оформления решения требует только задача \mathbb{N} 8; в ней ответ без решения оценивается в 0 баллов. Все остальные задачи сформулированы в виде квестов: каждый пункт надо отметить буквой \mathbf{Y} , если Вы согласны с соответствующим утверждением, или буквой \mathbf{N} , если Вы не согласны. Если Вы не знаете правильного ответа, можете не отвечать — проверяющие имеют право попросить объяснить Ваши ответы на устной беседе. Проходной балл на устную часть — 20 очков из 32 возможных. Удачи!

При решении задач можно, где это необходимо, пользоваться без доказательства гипотезами

$$P \neq NP, P \neq co-NP, NP \neq co-NP$$

Задача 1. Даны две функции:

```
1 Function A(n):

2 | i=1, k=0

3 | while i \le n do

4 | k \leftarrow k+i

5 | i \leftarrow i+1

6 | end

7 | return k
```

```
1 Function B(n, i, k):
2 | if i \le n then
3 | return B(n, i+1, k+i)
4 | end
5 | return k
```

Какие из утверждений ниже верны?

- (A) A(n) = B(n, 1, 0).
- **(B)** $B(n, i, k) = \Omega(k^n)$.
- (C) Функция B(n,1,0) вычисляется за $\Theta(n)$ арифметических операций.

Задача 2. Дано рекуррентное уравнение $T(n) = kT(\frac{n}{2}) + 1$, где $k \in \mathbb{R}$ — некоторая фиксированная константа. Какие из утверждений ниже верны?

- (A) Если k = 1, то $T(n) = O(\log(n))$.
- **(В)** Если k = 2, то $T(n) = \Theta(\log(n))$.
- (C) При k = 4 имеем $T(n) = \Omega(n \log(n))$.

Задача 3. Симметричную монету подбрасывают шесть раз. Для каких событий корректно вычислена вероятность?

- (**A**) Орел выпадает не более трех раз с вероятностью более $\frac{1}{2}$.
- **(В)** Вероятность того, что орел выпал ровно три раза, равна $\frac{5}{16}$.
- (C) Ровно две решки выпадают с вероятностью $\frac{1}{8}$.

Задача 4. В списке троек языков $\{L_1, L_2, L_3\}$ ниже отметьте те, для которых выполнено условие: $L_1 \leqslant_p L_2, L_3 \leqslant_p L_2.$

(A)
$$L_1 = \{G = (V, E) | G - \text{связен}\}, L_2 = \{G = (V, E) | G - \text{содержит 100-клику}\}, L_3 = \mathbf{CLIQUE}.$$

(B)
$$L_1 = \mathbf{3} - \mathbf{SAT}, L_2 = \emptyset, L_3 = \{(a, b, c) | \gcd(a, b) = c\} \subset \mathbb{N}^3.$$

(C)
$$L_1 = \{3k + 2 | k \in \mathbb{N}\} \subset \mathbb{N}, L_2 = \{0, 1, 4, 9\} \subset \mathbb{N}, L_3 = (a+b)^*b^2(a+b)^*.$$

Задача 5. Некто доказал теорему, что $\mathbf{3} - \mathbf{SAT}$ разрешается детерминированной МТ за O(f(n)) тактов. Какие из утверждений ниже являются следствиями этой теоремы?

- (**A**) Если $f(n) = O(2^{\frac{n}{100}})$, то **P** = **NP**.
- **(В)** Если $3 \mathbf{SAT} \in \mathbf{P}$, то $f(n) = o(n^{1000})$.
- (C) Если $f(n) = \Theta(n^{100^{100}})$, то существует полиномиальный алгоритм, находящий хотя бы один набор значений, при которых данная на вход КНФ истинна.
- (**D**) Если $f(n) = O(n \log(n))$, то **3 SAT** \in **co**–**NP**.

Задача 6. Боб поместил в сеть модуль N=15 и открытый ключ e=9. Секретное сообщение Алисы Бобу равно x, по открытому каналу Алиса посылает Бобу y, зашифрованное по протоколу RSA. Чему могут равняться x и y?

- (A) x = 2, y = 4.
- **(B)** x = 3, y = 3.
- (C) x = 7, y = 8.
- **(D)** x = 8, y = 8.

Задача 7. Приведенным далее $mecmom \Phi epma$ проверяется простота числа n:

```
1 \ a = random \in [2; n-1];
 2 if HO\mathcal{A}(a,n) > 1 then
      return n составное;
 3
4 else
      if a^{n-1} \equiv 1 \pmod{n} then
 \mathbf{5}
         return n простое;
 6
 7
      else
         return n составное;
 8
      end
 9
10 end
```

Какие утверждения ниже корректны?

- (A) Если n простое, то тест Ферма всегда будет давать положительный результат.
- (B) За $\frac{n}{2}$ применений теста Ферма можно гарантированно установить простоту числа n.
- (C) Если бы n было составным числом, то тест Ферма рано или поздно выдал бы отрицательный результат.

Задача 9. На картинке слева изображен граф G. Какие из следующих утверждений верны?

- (A) Задача о принадлежности графа G языку **3-COLOR** является **NP**-полной.
- (B) В любом DFS-дереве графа G есть хотя бы одна вершина степени более 2.
- (C) В G любые две вершины могут быть соединены путем, состоящим из не более 7 ребер.
- (D) Подграф $G' \subset G$, данный на правой картинке, является некоторым BFS-деревом.

Задача 10. Дан взвешенный ориентированный граф (G, c).

Какие из утверждений верны?

- (A) Максимальный поток в этой сети из S в T равен 5.
- **(В)** Максимальный поток в этой сети из A в T равен 5.
- (C) В минимальном разрезе сети (G, c, S, T) обязательно присутствует ребро CE.

\Diamond

ЧЕРНОВИК