Kap 1

 $p_{\Delta}(t) = \frac{1}{\Delta}$ då $0 < t < \Delta$ annars
0 $\int_{-\infty}^{\infty} p_{\Delta}(t) dt = 1$

Om f är deriverbar utom i punkterna a_1,\ldots,a_n där den har språng av höjder b_1,\ldots,b_n så är

$$f'(t) = f_p'(t) + b_1 \delta(t - a_1) + \ldots + b_n (t - a_n)$$
(1)

där f_p' är derivatan som vi kan läsa av från graf med heavside funktion

Kap 4 - Inverslaplace

Kap 6

Faltning: $f * g(t) = \int_{-\infty}^{\infty} f(t - \tau) * g(\tau) d\tau$

Kap 8

$$trA = \lambda_1 + \ldots + \lambda_n \tag{2}$$

$$det A = \lambda_1 * \dots * \lambda_n \tag{3}$$

$$p(D) = diag(p(\lambda_1), \dots, p(\lambda_n))$$
(4)

p är vårt polynom, t.ex om vi har e^A så blir det, $p(x) = e^x$

$$p(A) = Sp(D)S^{-1} \tag{5}$$

Kap 9 - Lösa diffekvationer

Olika sätt att lösa diff ekvationer av matriser

Laplacetransformation

Poler hos $V(s)$	Bidrag till $v(t) = \mathcal{L}^{-1}V$
Enkel pol i $s = p$	$Ae^{pt}\theta(t)$
Pol av ordning k i $s = p$	$(A_0 * t^0 + \ldots + A_{k-1} * t^{k-1})e^{pt}\theta(t)$
Enkla poler i $s=\sigma\pm i\omega$	$e^{\sigma t}(A_0 * t^0 + \dots + A_{k-1} * t^{k-1})e^{pt}\theta(t) = Ce^{\sigma t}\cos(\sigma t + \alpha)\theta(t)$

Tabell 1: Ansats till invers transform, kan också användas för ansats till homogen lösning i diff ekvationer

Diagonalisering genom variabelbyte

Om A är en diagonaliserbar matris så har det homogena systemet $\frac{du}{dt}=Au$ den allmänna lösningen

$$u = C_1 e^{\lambda_1 t} s_1 + \ldots + C_n * e^{\lambda_n t} s_n \tag{6}$$

där λ är egenvärden till $A,\,s$ är motsvarande egenvektorer och C är godtyckliga konstanter.

Exponential matris

$$e^{tA} = Se^{tD}S^{-1} = Sdiag(e^{\lambda_1 t}, \dots, e^{\lambda_n * T})S^{-1}$$

$$\tag{7}$$

det homogena systemet $\frac{du}{dt} = Au$ har lösningen $u(t) = e^{tA}u(0)$

Kontrollfrågor

$$\delta(t) = \lim_{\Delta \to 0} p_{\Delta}(t) \tag{8}$$

$$\Delta(t)' = \delta(t) \tag{9}$$

Har alla funktioner en Laplace transformation? - Funktioner vars integral av laplace inte konvergerar saknar Laplace
transformation. Ensidig laplace = TODO:

 $\delta * f(t) = f(t)$

Finish this

System

Vad menas med:

- Linjärt: $S(\alpha w_1 + \beta w_2) = \alpha Sw_1 + \beta Sw_2$
- Tidsinvariant: Om Sw(t) = y(t) så är S*w(t-a) = y(t-a)
- \bullet Stabilt: Varje begränsad insignal w(t) ger upphov till en begränas utsignal v(t).

Detta kan testas med följande sats:

Om ett LTI system S har impulssvaret h(t) så är S stabilt om och endast om integralen $\int_{-\infty} \infty |h(t)dt|$ konvergerar Det kan också testas med följande sats:

—Om $H(s) = \frac{Q(s)}{P(s)}$ så är Systemet S stabilt om och endast om $degQ(s) \leq degP(s)$ och För varje pol s_j gäller $Res_j \leq 0$.

 $\theta(t)$ Kausalt: Om Sw(t) = y(t) och w(t) = 0 för $t < t_0$ så gäller att y(t) = 0 för $t < t_0$

Detta kan testas med följande sats:

Ett LTI system är kausalt om och endast om impulssvaret h(t) är en kausal funktion.

Bra satser:

- System kan beskrivas som faltningar med en fix funktion h(x).
- Impulssvaret är derivatan av stegsvaret: $h(t) = (S\theta(t))'$
- Överföringsfunktionen: $H(s) = \frac{Se^{st}}{e^{st}}$
- Frekvensfunktion H(t) ger oss följande:
- $Ssin(wt) = A(w)sin(wt + \phi(w))$ med amplitud
funktionen A(w) = |H(iw)| och fasfunktionen $\phi(w) = arg(H(iw))$
- För LTI system så är $\mathcal{L}h(t) = H(s)$
- $S(e^{st}) = H(s)e^{st}$

Matriser

Det finns diagonaliserbara matriser med flera av samma egenvärden, t.ex A = I har egenvärden $\lambda_1 = \lambda_2 = 1$ och är diagonal.

Satser:

- $e^{At} = \sum_{k=0}^{\infty} \frac{A^k * t^k}{k!}$
- Ortogonal matris: $A^{-1} = A^T$, $AA^T = A^TA = I$,

Låt A vara en symmetrisk matris med egenvärden $\lambda_1,\dots,\lambda_n,$ det gäller då att A är:

- Positivt definit Om alla egenvärden är positiva (>)
- Positivt semidefinit Om alla egenvärden är icke negativa (<)
- Negativt definit Om alla egenvärden är negativa(<)
- Negativt semidefinit Om alla egenvärden är icke positiva(≥)
- indefinit Om det finns både positiva och negativa egenvärden