Theory of Computation, Fall 2021 Assignment 3 Solutions

Exercises

- Q1. (a) True.
 - (b) False. $R\emptyset = \emptyset$.
 - (c) False. L(R) may not contain the empty string e. However, $L(R \cup \emptyset^*)$ contains e.
 - (d) True.
- Q2. $(a^*ba^*ba^*ba^*)^* \cup a^*$
- Q3. $b(ab \cup b)^*$

- Q4. It is easy to see that ba is in L(N') but is not in $(L(N))^*$.
- Q5. The NFA is as follows.

- Q6. (a) False. The non-regular language $\{a^ib^i: i \geq 0\}$ is a subset of the regular language $(a \cup b)^*$.
 - (b) True. It can be proved by recursively applying the theorem that the union of two regular languages are regular.
 - (c) True. A language that contains a finite number of strings can be seen as a union of a finite number of languages that contain only one string. By (b), such a language must be regular.
 - (d) False. For every $i \geq 0$, define $L_i = \{a^i b^i\}$. Clearly every L_i is regular. But their union

$$\bigcup_{i=0}^{\infty} L_i = \{a^i b^i : i \ge 0\}$$

is not regular.

(e) False. Consider any union of infinite number of regular languages $\bigcup_{i=0}^{\infty} L_i$. By De Morgan's Laws, we have

$$\cup_{i=0}^{\infty} L_i = \overline{\bigcap_{i=0}^{\infty} \overline{L_i}}.$$

We already know that the complement of a regular language is regular. If statement (e) is true, then by above formula, we can conclude that $\bigcup_{i=0}^{\infty} L_i$ is regular. But in (d), we know that $\bigcup_{i=0}^{\infty} L_i$ is not necessarily regular. Contradiction.