1. Solve Example 3.2.1 using **fem1d** with 4 linear, 2 quadratic and 4 quadratic elements. Compare the results with exact solution given in Table 3.2.1. Plot u(x) vs x and du/dx vs x.

With 4 linear elements (4L),

The solution of nodal value is,

U1 (0)	U2 (0.25)	U3 (0.50)	U4 (0.75)	U5 (1)
0	-0.023233	-0.040519	-0.039191	0

With 2 quadratic elements (2Q),

The solution of nodal value is,

U1 (0)	U2 (0.25)	U3 (0.50)	U4 (0.75)	U5 (1)
0	-0.023447E	-0.040779E	-0.039473	0

With 4 quadratic elements (4Q),

The solution of nodal value is,

U1 (0)	U2 (0.125)	U3 (0.250)	U4(0.375)	U5 (0.5)	U6(0.625)	U7(0.75)	U8(0.875)	U9(1)
0	-0.011927	-0.023375	-0.033450	-0.040760	-0.0435	-0.039417	-0.025907	0

Comparison of the finite element results with the exact solution (-10u) is shown below.

	F	Exact			
Х	4L	2Q	4Q	Solution	
0	0	0	0	0	
0.0625	0.058084	0.06435	0.060232	0.0598	
0.125	0.11617	0.12488	0.11927	0.1192	
0.1875	0.17425	0.18158	0.17711	0.1775	
0.25	0.23233	0.23447	0.23375	0.2337	
0.3125	0.27555	0.28353	0.28758	0.2866	
0.375	0.31876	0.32877	0.3345	0.3345	
0.4375	0.36198	0.37019	0.37451	0.3755	
0.5	0.40519	0.40779	0.4076	0.4076	
0.5625	0.40187	0.44031	0.42983	0.4283	
0.625	0.39855	0.44897	0.435	0.435	
0.6875	0.39523	0.43377	0.42311	0.4246	
0.75	0.39191	0.39473	0.39417	0.3942	
0.8125	0.29393	0.33182	0.34212	0.3402	
0.875	0.19595	0.24507	0.25907	0.259	
0.9375	0.097977	0.13446	0.14503	0.147	
1	0	0	0	0	

Sample data and output:

```
*** ECHO OF THE INPUT DATA STARTS ***
Example 3.2.1: Solution of a differential equation (4L)
1 0 0
                     MODEL, NTYPE, ITEM
1 4
                     IELEM. NEM
1 0
                     ICONT, NPRNT
0.0 0.25 0.25 0.25 0.25
                           DX(I)
1.0 0.0
                      AXO, AX1
0.0 0.0
                      BXO, BX1
-1.0 0.0
                      CX0, CX1
0.0 0.0 -1.0
                        FX0, FX1, FX2
                    NSPV
2
1 1 0.0
                      ISPV(1,1), ISPV(1,2), VSPV(1)
5 1 0.0
                      ISPV(1,1), ISPV(1,2), VSPV(1)
0
                    NSSV
0
                    NNBC
                    NMPC
  **** ECHO OF THE INPUT DATA ENDS ****
   OUTPUT from program FEM1D by J N REDDY
Example 3.2.1: Solution of a differential equation (4L)
  *** ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM ***
       (see the code below)
 MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
 MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
 MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
 MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
 MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
 MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
 MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
 MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
 MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
 MODEL=4,NTYPE=0: A plane TRUSS problem
 MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
 MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
    Element type (0, Hermite, >0, Lagrange)..= 1
    No. of deg. of freedom per node, NDF....= 1
   No. of elements in the mesh, NEM..... 4
```

```
No. of total DOF in the model, NEQ.....= 5
   Half bandwidth of matrix [GLK], NHBW ...= 2
   No. of specified primary DOF, NSPV.....= 2
   No. of specified secondary DOF, NSSV....= 0
   No. of specified Newton B. C.: NNBC..... 0
   No. of speci. multi-pt. cond.: NMPC.....= 0
 Boundary information on primary variables:
    1 1 0.00000E+00
    5 1 0.00000E+00
 Global coordinates of the nodes, {GLX}:
 0.00000E+00 0.25000E+00 0.50000E+00 0.75000E+00 0.10000E+01
 Coefficients of the differential equation:
   AX0 = 0.1000E+01 AX1 = 0.0000E+00
   BX0 = 0.0000E+00 BX1 = 0.0000E+00
   CX0 = -0.1000E + 01 CX1 = 0.0000E + 00
   FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = -0.1000E+01
SOLUTION (values of PVs) at the NODES:
 0.00000E+00 -0.23233E-01 -0.40519E-01 -0.39191E-01 0.00000E+00
x is the global coord. if ICONT=1 and it is the local coord. if ICONT=0
        P. Variable S. Variable
 0.00000E+00 0.00000E+00 -0.92934E-01
 0.31250E-01 -0.29042E-02 -0.92934E-01
 0.62500E-01 -0.58084E-02 -0.92934E-01
 0.93750E-01 -0.87125E-02 -0.92934E-01
 0.12500E+00 -0.11617E-01 -0.92934E-01
 0.15625E+00 -0.14521E-01 -0.92934E-01
 0.18750E+00 -0.17425E-01 -0.92934E-01
 0.21875E+00 -0.20329E-01 -0.92934E-01
 0.25000E+00 -0.23233E-01 -0.92934E-01
 0.25000E+00 -0.23233E-01 -0.69144E-01
 0.28125E+00 -0.25394E-01 -0.69144E-01
 0.31250E+00 -0.27555E-01 -0.69144E-01
 0.34375E+00 -0.29716E-01 -0.69144E-01
 0.37500E+00 -0.31876E-01 -0.69144E-01
 0.40625E+00 -0.34037E-01 -0.69144E-01
```

```
0.43750E+00 -0.36198E-01 -0.69144E-01
0.46875E+00 -0.38359E-01 -0.69144E-01
0.50000E+00 -0.40519E-01 -0.69144E-01
0.50000E+00 -0.40519E-01 0.53143E-02
0.53125E+00 -0.40353E-01 0.53143E-02
0.56250E+00 -0.40187E-01 0.53143E-02
0.59375E+00 -0.40021E-01 0.53143E-02
0.62500E+00 -0.39855E-01 0.53143E-02
0.65625E+00 -0.39689E-01 0.53143E-02
0.68750E+00 -0.39523E-01 0.53143E-02
0.71875E+00 -0.39357E-01 0.53143E-02
0.75000E+00 -0.39191E-01 0.53143E-02
0.75000E+00 -0.39191E-01 0.15676E+00
0.78125E+00 -0.34292E-01 0.15676E+00
0.81250E+00 -0.29393E-01 0.15676E+00
0.84375E+00 -0.24494E-01 0.15676E+00
0.87500E+00 -0.19595E-01 0.15676E+00
0.90625E+00 -0.14697E-01 0.15676E+00
0.93750E+00 -0.97977E-02 0.15676E+00
0.96875E+00 -0.48989E-02 0.15676E+00
0.10000E+01 0.00000E+00 0.15676E+00
```

Stop - Program terminated.

*** ECHO OF THE INPUT DATA STARTS ***

```
Example 3.2.1: Solution of a differential equation (2Q)
100
```

MODEL, NTYPE, ITEM

```
2 2
                     IELEM, NEM
                     ICONT, NPRNT
1 0
0.0 0.5 0.5
                       DX(I)
1.0 0.0
                      AXO, AX1
0.0 0.0
                      BXO, BX1
-1.0 0.0
                      CX0, CX1
0.0 0.0 -1.0
                       FX0, FX1, FX2
2
                    NSPV
1 1 0.0
                      ISPV(1,1), ISPV(1,2), VSPV(1)
5 1 0.0
                      ISPV(1,1), ISPV(1,2), VSPV(1)
0
                    NSSV
0
                    NNBC
                    NMPC
 **** ECHO OF THE INPUT DATA ENDS ****
```

OUTPUT from program FEM1D by J N REDDY

```
Example 3.2.1: Solution of a differential equation (2Q)
  *** ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM ***
       (see the code below)
  MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
  MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
  MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
  MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
  MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
  MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
  MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
  MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
  MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
  MODEL=4,NTYPE=0: A plane TRUSS problem
  MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
  MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
    Element type (0, Hermite, >0, Lagrange)..= 2
    No. of deg. of freedom per node, NDF....= 1
    No. of elements in the mesh, NEM...... 2
    No. of total DOF in the model, NEQ.....= 5
    Half bandwidth of matrix [GLK], NHBW ...= 3
    No. of specified primary DOF, NSPV.....= 2
    No. of specified secondary DOF, NSSV....= 0
    No. of specified Newton B. C.: NNBC.....= 0
    No. of speci. multi-pt. cond.: NMPC.....= 0
 Boundary information on primary variables:
    1 1 0.00000E+00
    5 1 0.00000E+00
 Global coordinates of the nodes, {GLX}:
 0.00000E+00 0.25000E+00 0.50000E+00 0.75000E+00 0.10000E+01
 Coefficients of the differential equation:
    AX0 = 0.1000E+01 AX1 = 0.0000E+00
    BX0 = 0.0000E+00 BX1 = 0.0000E+00
    CX0 = -0.1000E + 01 CX1 = 0.0000E + 00
    FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = -0.1000E+01
```

SOLUTION (values of PVs) at the NODES:

```
x is the global coord. if ICONT=1 and it is the local coord. if ICONT=0
         P. Variable S. Variable
 0.00000E+00 0.00000E+00 -0.10602E+00
 0.62500E-01 -0.64350E-02 -0.99902E-01
 0.12500E+00 -0.12488E-01 -0.93788E-01
 0.18750E+00 -0.18158E-01 -0.87673E-01
 0.25000E+00 -0.23447E-01 -0.81558E-01
 0.31250E+00 -0.28353E-01 -0.75443E-01
 0.37500E+00 -0.32877E-01 -0.69329E-01
 0.43750E+00 -0.37019E-01 -0.63214E-01
 0.50000E+00 -0.40779E-01 -0.57099E-01
 0.50000E+00 -0.40779E-01 -0.71106E-01
 0.56250E+00 -0.44031E-01 -0.32940E-01
 0.62500E+00 -0.44897E-01 0.52262E-02
 0.68750E+00 -0.43377E-01 0.43392E-01
 0.75000E+00 -0.39473E-01 0.81558E-01
 0.81250E+00 -0.33182E-01 0.11972E+00
 0.87500E+00 -0.24507E-01 0.15789E+00
 0.93750E+00 -0.13446E-01 0.19606E+00
 0.10000E+01 0.00000E+00 0.23422E+00
Stop - Program terminated.
  *** ECHO OF THE INPUT DATA STARTS ***
Example 3.2.1: Solution of a differential equation (4Q)
100
                     MODEL, NTYPE, ITEM
2 4
                     IELEM, NEM
1 0
                     ICONT, NPRNT
0.0 0.25 0.25 0.25 0.25
                             DX(I)
                      AXO, AX1
1.0 0.0
0.0 0.0
                      BXO, BX1
-1.0 0.0
                      CX0, CX1
0.0 0.0 -1.0
                        FX0, FX1, FX2
2
                    NSPV
1 1 0.0
                      ISPV(1,1), ISPV(1,2), VSPV(1)
9 1 0.0
                      ISPV(1,1), ISPV(1,2), VSPV(1)
0
                    NSSV
0
                    NNBC
                    NMPC
  **** ECHO OF THE INPUT DATA ENDS ****
```

0.00000E+00 -0.23447E-01 -0.40779E-01 -0.39473E-01 0.00000E+00

Example 3.2.1: Solution of a differential equation (4Q)

*** ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM ***

```
(see the code below)

MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
MODEL=3,NTYPE>0: A Euler-Bernoulli BEAM problem
MODEL=3,NTYPE=0: A Euler-Bernoulli Circular plate
MODEL=4,NTYPE=0: A Flane TRUSS problem
MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
```

```
Element type (0, Hermite,>0, Lagrange)...= 2
No. of deg. of freedom per node, NDF....= 1
No. of elements in the mesh, NEM......= 4
No. of total DOF in the model, NEQ.....= 9
Half bandwidth of matrix [GLK], NHBW ...= 3
No. of specified primary DOF, NSPV.....= 2
No. of specified secondary DOF, NSSV....= 0
No. of specified Newton B. C.: NNBC....= 0
No. of speci. multi-pt. cond.: NMPC....= 0
```

Boundary information on primary variables:

```
1 1 0.00000E+00
```

9 1 0.00000E+00

Global coordinates of the nodes, {GLX}:

```
0.00000E+00 0.12500E+00 0.25000E+00 0.37500E+00 0.50000E+00 0.62500E+00 0.75000E+00 0.87500E+00 0.10000E+01
```

Coefficients of the differential equation:

```
FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = -0.1000E+01
SOLUTION (values of PVs) at the NODES:
 0.00000E+00 -0.11927E-01 -0.23375E-01 -0.33450E-01 -0.40760E-01
 -0.43500E-01 -0.39417E-01 -0.25907E-01 0.00000E+00
x is the global coord. if ICONT=1 and it is the local coord. if ICONT=0
        P. Variable S. Variable
 0.00000E+00 0.00000E+00 -0.97329E-01
 0.31250E-01 -0.30266E-02 -0.96371E-01
 0.62500E-01 -0.60232E-02 -0.95414E-01
 0.93750E-01 -0.89900E-02 -0.94457E-01
 0.12500E+00 -0.11927E-01 -0.93500E-01
 0.15625E+00 -0.14834E-01 -0.92543E-01
 0.18750E+00 -0.17711E-01 -0.91586E-01
 0.21875E+00 -0.20558E-01 -0.90629E-01
 0.25000E+00 -0.23375E-01 -0.89671E-01
 0.25000E+00 -0.23375E-01 -0.91657E-01
 0.28125E+00 -0.26153E-01 -0.86128E-01
 0.31250E+00 -0.28758E-01 -0.80599E-01
 0.34375E+00 -0.31190E-01 -0.75070E-01
 0.37500E+00 -0.33450E-01 -0.69542E-01
 0.40625E+00 -0.35537E-01 -0.64013E-01
```

0.43750E+00 -0.37451E-01 -0.58484E-01 0.46875E+00 -0.39192E-01 -0.52955E-01 0.50000E+00 -0.40760E-01 -0.47426E-01 0.50000E+00 -0.40760E-01 -0.49199E-01 0.53125E+00 -0.42085E-01 -0.35556E-01 0.56250E+00 -0.42983E-01 -0.21914E-01 0.59375E+00 -0.43454E-01 -0.82709E-02 0.62500E+00 -0.43500E-01 0.53718E-02 0.65625E+00 -0.43119E-01 0.19015E-01 0.68750E+00 -0.42311E-01 0.32657E-01 0.71875E+00 -0.41077E-01 0.46300E-01 0.75000E+00 -0.39417E-01 0.59943E-01 0.75000E+00 -0.39417E-01 0.58492E-01 0.78125E+00 -0.37202E-01 0.83287E-01 0.81250E+00 -0.34212E-01 0.10808E+00 0.84375E+00 -0.30447E-01 0.13288E+00 0.87500E+00 -0.25907E-01 0.15767E+00 0.90625E+00 -0.20593E-01 0.18246E+00 0.93750E+00 -0.14503E-01 0.20726E+00 0.96875E+00 -0.76391E-02 0.23205E+00

```
0.10000E+01 0.00000E+00 0.25685E+00

Stop - Program terminated.
```

2. Solve Example 4.3.1 using <u>fem1d</u> with 3 linear elements and compare the results with those obtained using hand calculations.

Solution at nodes:

```
U1 = 200^{\circ}C U2 = 199.58^{\circ}C U3 = 198.67^{\circ}C U4 = 195.76^{\circ}C
```

The FEM solution matches well with the results of Example 4.3.1.

Sample data and output:

```
*** ECHO OF THE INPUT DATA STARTS ***
Example 4.3.1: Heat transfer in a composite wall
 100
                     MODEL, NTYPE, ITEM
 1 3
                     IELEM, NEM
 0 0
                     ICONT, NPRNT
 4
                     NNM
     2 0.02
                       NOD(1,J), GLX(1)
 70.0 0.0
                       AX0, AX1 | Data for
 0.0 0.0
                       BX0, BX1 | Element 1
 0.0 0.0
                       CX0, CX1 |
 0.0 0.0 0.0
                        FX0,FX1,FX2 |
     3 0.025
                        NOD(2,J), GLX(2)
 40.0 0.0
                       AX0, AX1 | Data for
 0.0 0.0
                       BX0, BX1 | Element 2
 0.0 0.0
                       CX0, CX1 |
 0.0 0.0 0.0
                        FX0,FX1,FX2 |
     4 0.04
                       NOD(2,J), GLX(3)
                       AX0, AX1 | Data for
 20.0 0.0
 0.0 0.0
                       BX0, BX1 | Element 3
 0.0 0.0
                       CX0, CX1 |
 0.0 0.0 0.0
                        FX0,FX1,FX2 |
                     NSPV
1 1 200.0
                        ISPV(1,1), ISPV(1,2), VSPV(1)
0
                     NSSV
                     NNBC (with convection)
```

```
1 10.0 50.0
                           INBC(1,1),INBC(1,2),VNBC(1),UREF(1)
0
                      NMPC
 **** ECHO OF THE INPUT DATA ENDS ****
  OUTPUT from program FEM1D by J N REDDY
Example 4.3.1: Heat transfer in a composite wall
*** ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM ***
      (see the code below)
MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
MODEL=4,NTYPE=0: A plane TRUSS problem
MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem
  Element type (0, Hermite, >0, Lagrange)..= 1
  No. of deg. of freedom per node, NDF....= 1
  No. of elements in the mesh, NEM...... 3
  No. of total DOF in the model, NEQ.....= 4
  Half bandwidth of matrix [GLK], NHBW ...= 2
  No. of specified primary DOF, NSPV.....= 1
  No. of specified secondary DOF, NSSV....= 0
  No. of specified Newton B. C.: NNBC.....= 1
  No. of speci. multi-pt. cond.: NMPC.....= 0
Boundary information on primary variables:
   1 1 0.20000E+03
Boundary information on mixed boundary cond.:
   4 1 0.10000E+02 0.50000E+02
```

Properties of Element = 1

```
Element length, H ..... = 0.2000E-01
   AX0 = 0.7000E+02 AX1 = 0.0000E+00
   BX0 = 0.0000E+00 BX1 = 0.0000E+00
   CX0 = 0.0000E+00 CX1 = 0.0000E+00
   FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = 0.0000E+00
  Properties of Element = 2
   Element length, H ..... = 0.2500E-01
   AX0 = 0.4000E+02 AX1 = 0.0000E+00
   BX0 = 0.0000E+00 BX1 = 0.0000E+00
   CX0 = 0.0000E+00 CX1 = 0.0000E+00
   FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = 0.0000E+00
  Properties of Element = 3
   Element length, H ..... = 0.4000E-01
   AX0 = 0.2000E+02 AX1 = 0.0000E+00
   BX0 = 0.0000E+00 BX1 = 0.0000E+00
   CX0 = 0.0000E+00 CX1 = 0.0000E+00
   FX0 = 0.0000E+00 FX1 = 0.0000E+00 FX2 = 0.0000E+00
SOLUTION (values of PVs) at the NODES:
 0.20000E+03 0.19958E+03 0.19867E+03 0.19576E+03
x is the global coord. if ICONT=1 and it is the local coord. if ICONT=0
        P. Variable S. Variable
 0.00000E+00 0.20000E+03 -0.14576E+04
 0.25000E-02 0.19995E+03 -0.14576E+04
 0.50000E-02 0.19990E+03 -0.14576E+04
 0.75000E-02 0.19984E+03 -0.14576E+04
 0.10000E-01 0.19979E+03 -0.14576E+04
 0.12500E-01 0.19974E+03 -0.14576E+04
 0.15000E-01 0.19969E+03 -0.14576E+04
 0.17500E-01 0.19964E+03 -0.14576E+04
 0.20000E-01 0.19958E+03 -0.14576E+04
 0.00000E+00 0.19958E+03 -0.14576E+04
 0.31250E-02 0.19947E+03 -0.14576E+04
 0.62500E-02 0.19936E+03 -0.14576E+04
 0.93750E-02 0.19924E+03 -0.14576E+04
```

```
0.12500E-01 0.19913E+03 -0.14576E+04
0.15625E-01 0.19901E+03 -0.14576E+04
0.18750E-01 0.19890E+03 -0.14576E+04
0.21875E-01 0.19879E+03 -0.14576E+04
0.25000E-01 0.19867E+03 -0.14576E+04
0.00000E+00 0.19867E+03 -0.14576E+04
0.50000E-02 0.19831E+03 -0.14576E+04
0.10000E-01 0.19794E+03 -0.14576E+04
0.15000E-01 0.19758E+03 -0.14576E+04
0.20000E-01 0.19685E+03 -0.14576E+04
0.25000E-01 0.19685E+03 -0.14576E+04
0.30000E-01 0.19649E+03 -0.14576E+04
0.35000E-01 0.19612E+03 -0.14576E+04
0.35000E-01 0.19576E+03 -0.14576E+04
```

Stop - Program terminated.