Chapter 2: Eigenvalues and eigenvectors

Fall 2020

- 1.- Let A be an n-by-n matrix, and let λ be an eigenvalue of A.
 - a) If B is an n-by-n matrix such that $\lambda \notin \operatorname{Spec}(B)$, prove that $\|(B \lambda I)^{-1}(A B)\| \ge 1$ (hint: $\rho(A) \le \|A\|$).
 - b) Use a) to prove the Gerschgorin Theorem (hint: choose B appropriately).
- 2.- Consider the matrix

$$A = \left(\begin{array}{rrr} -3.0 & 0.1 & 0.1 \\ 0.2 & 0.0 & -0.1 \\ -0.1 & 0.2 & 3.0 \end{array}\right).$$

- a) Use the Gerschgorin Theorem to determine a region $\Omega \subset \mathbb{C}$ such that all the eigenvalues of A lie in Ω .
- b) Can you conclude that all eigenvalues of A are real? If so, find an interval for each eigenvalue.
- **3.-** Let A be a symmetric n-by-n matrix, and let us denote by λ one of its eigenvalues. If $\|.\|_F$ denotes the Frobenius norm and B is a matrix such that $\|B\|_F = 1$, show that there is an eigenvalue λ_{ε} of $A + \varepsilon B$ such that $|\lambda_{\varepsilon} \lambda| = O(\varepsilon)$. Give an explicit bound on $|\lambda_{\varepsilon} \lambda|$ (hint: show that, for any vector $v \in \mathbb{R}^n$, $\|v\|_1 \leq \sqrt{n} \|v\|_2$).
- **4.-** Assume that A is a symmetric matrix. Let us select a fixed $x \in \mathbb{R}^n \setminus \{0\}$, and let us define the map $\lambda \in \mathbb{R} \mapsto f(\lambda) = ||Ax \lambda x||_2$. Prove that the Rayleigh quotient for the vector x,

$$\lambda_x = \frac{x^T A x}{x^T x},$$

is a local minimum of f (hint: consider $f(\lambda)^2$ and its derivatives with respect to λ).

- 5.- Is it possible to apply the power method to matrix A in Exercise 2? And the shifted power method? Explain how to use these two methods to compute all eigenvalues and eigenvectors of A.
- **6.-** Consider the matrix

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ 1 & 8 & -1\\ 1 & -1 & -2 \end{array}\right).$$

- a) Prove that it has a unique eigenvalue of largest modulus, which is real.
- b) Use the power method to determine this eigenvalue and its eigenvector.
- c) Use the trace and determinant of the matrix to obtain all eigenvalues.

7.- Consider the matrix

$$A = \left(\begin{array}{ccc} 0 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{array}\right).$$

- a) Apply the power method to A. Explain what happens.
- b) Apply the inverse power method to A. Use the trace and determinant of A to obtain all of its eigenvalues.
- **8.-** Let T be an n-by-n matrix of the form

$$T = \left(\begin{array}{cc} T_{11} & T_{12} \\ 0 & T_{22} \end{array}\right),\,$$

where T_{11} and T_{22} are squared matrices.

- a) Prove that $\operatorname{Spec}(T) = \operatorname{Spec}(T_{11}) \cup \operatorname{Spec}(T_{22})$.
- b) Explain the relationship between the eigenvectors of T_{11} and T_{22} and the ones of T.
- **9.-** Let A be an $n \times n$ matrix such that $A = U\Sigma V^{\top}$, where $U, V, \Sigma \in \mathbb{R}^{n \times n}$, U and V are orthogonal and $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_i \geq 0$, for $1 \leq i \leq n$. Suppose that $||A^T A I||_2 = \epsilon < 1$.
 - 1. Prove that $1 \epsilon \le \sigma_i \le 1 + \epsilon$, where $1 \le i \le n$.
 - 2. Prove that there exists an orthogonal matrix Q such that $||A Q||_2 \le \epsilon$.
 - 3. Prove that $1 \epsilon \le \rho(A) \le 1 + \epsilon$.
 - 4. We define the disks $D(q_{ii}, r_i)$, such that $r_i = \sum_{j=1, j \neq i}^n |q_{ij}|$, for $1 \leq i \leq n$, and $Q = (q_{ij})_{1 \leq i, j \leq n}$. Prove that if there exists j such that $D(q_{jj}, r_j) \cap D(q_{ii}, r_i) = \emptyset$, for all $i \neq j$, $1 \leq i \leq n$, and det A > 0, then 1 is a simple eigenvale of Q.
- **10.-** Let A be a symmetric matrix of dimension n, with Spec $(A) = \{\lambda_1, \ldots, \lambda_n\}$.
 - a) Assume $\lambda_1 = \lambda_2$ and $|\lambda_1| > |\lambda_j|$ if j > 2, and study the behaviour of the power method in this case. Is it possible to compute the eigenvectors corresponding to λ_1 and λ_2 ?. If the power method converges, discuss the speed of convergence of the Rayleigh quotioent.
 - b) Discuss the same questions as in a) but for the case $\lambda_1 = -\lambda_2$, $|\lambda_1| > |\lambda_j|$ if j > 2.
- **11.-** If A denotes a n-by-n matrix, let us denote by $A_{k,\alpha}$ the matrix obtained by multiplying row k of A by α and dividing then column k by α (of course, $1 \le k \le n$, $\alpha \in \mathbb{R} \setminus \{0\}$).
 - a) Show that $\operatorname{Spec}(A_{k,\alpha}) = \operatorname{Spec}(A)$.

Let us define

$$A = \left(\begin{array}{rrr} 2.14 & -0.10 & 0.00 \\ -0.10 & 4.34 & 0.20 \\ 0.00 & 0.20 & 4.48 \end{array}\right).$$

- b) Use Gerschgorin Theorem to give an approximation (with an error bound) to the smallest eigenvalue of A.
- c) Choosing suitable values of k and α , use a) to produce a better (that is, with smaller error bound) approximation to the smallest eigenvalue.
- d) Discuss if it is possible to use the same technique as in b) to improve the error bound of the remaining eigenvalues.
- **12.-** Let A be a $n \times n$ matrix.
 - a) Assume that i) the value $\delta = \min_{i \neq j} \{|a_{ii} a_{jj}|\}$ is different from zero; and ii) there exist n real values λ_j (j = 1, ..., n) such that $||Ae_j \lambda_j e_j||_{\infty} < \varepsilon < \frac{\delta}{2n}$, where $\{e_1, ..., e_n\}$ is the standard basis of \mathbb{R}^n .
 - a.1) Does A have n different real eigenvalues?
 - a.2) Bound the difference between the values $\lambda_1, \ldots, \lambda_n$ and the eigenvalues of A.
 - b) Assume now that A is a symmetric matrix and that we (only) know that the first vector of the standard basis, e_1 , satisfies $||Ae_1 \lambda e_1||_2 < \varepsilon$ for a given value λ . Show that, if ε is small enough, the matrix A has an eigenvalue near λ . Bound the distance between this eigenvalue and λ .
- **13.-** Let A be a squared matrix of dimension 11, with Spec $(A) = \{\lambda_1, \ldots, \lambda_{11}\} \subset \mathbb{R}$. We assume that there exist 11 vectors of \mathbb{R}^{11} , v_1, \ldots, v_{11} , such that
 - $Av_i = \lambda_i v_i, i = 1, ..., 11.$
 - $v_i^T v_i = 1, i = 1, \dots, 11.$
 - $|v_i^T v_j| \le 10^{-2} \text{ si } i, j = 1, \dots, 11, i \ne j.$
 - a) Show that v_1, \ldots, v_{11} are a basis of \mathbb{R}^{11} .
 - b) Let us define C as the matrix of the change of variables diagonalizing A. Show that the condition number of C in $\|.\|_2$ norm, $k_2(C) = \|C^{-1}\|_2 \|C\|_2$, satisfies $k_2(C) \leq \frac{\sqrt{11}}{3}$. Hint: Show that, if E and F are squared matrices, then $\operatorname{Spec}(EF) = \operatorname{Spec}(FE)$.
 - c) If we define $A_{\varepsilon} = A + \varepsilon B$, where $||B||_F = 1$ and ε is small enough, give a bound on the distance between the eigenvalues of A_{ε} and A.
- **14.-** Consider the matrix

$$A = \left(\begin{array}{cc} 7 & 6 \\ 3 & 4 \end{array}\right).$$

- a) Compute the QR factorization of A.
- b) Use the QR iteration to compute the eigenvalues of A, with an error lower than 10^{-6} .
- 15.- Use the QR factorization to solve, in the least squares sense, the overdetermined system

10

$$\left(\begin{array}{cc} 2 & 3\\ 1 & 3\\ 2 & 3 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right) = \left(\begin{array}{c} 5\\ 4\\ 4 \end{array}\right).$$

- **16.-** Let $\lambda_1 < \lambda_2 < \ldots < \lambda_n$ be real numbers and $\varepsilon > 0$. We consider $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. We want to study the eigenvalues of the matrix $A_{\varepsilon} = D + \varepsilon B$ where $\operatorname{diag}(B) = 0$ and $\|B\|_F = 1$, for ε small.
 - a) Prove that, if ε is small enough, for each $j \in \{1, ..., n\}$ there exist $\lambda_{\varepsilon}^{j} \in \operatorname{Spec}(A_{\varepsilon})$ and a constant $\kappa_{1} > 0$ such that $|\lambda_{\varepsilon}^{j} \lambda_{j}| \leq \kappa_{1} \varepsilon$.
 - b) Prove that, if ε is small enough, for each $j \in \{1, ..., n\}$ there exist $\lambda_{\varepsilon}^{j} \in \operatorname{Spec}(A_{\varepsilon})$ and a constant $\kappa_{2} > 0$ such that $|\lambda_{\varepsilon}^{j} \lambda_{j}| \leq \kappa_{2} \varepsilon^{3/2}$.
 - c) Is it possible to improve the bound of the previous item? That is, are there constants $\kappa_3 > 0$ and $\alpha > 3/2$ such that $|\lambda_{\varepsilon}^j \lambda_j| \le \kappa_3 \varepsilon^{\alpha}$?

Hint: Multiply or divide rows/columns by suitable values.

- 17.- Let A, C and D be $n \times n$ matrices such that AC = CD, and D is diagonal.
 - a) Suppose that $C = Q + \epsilon E$ where Q is orthogonal, $||E||_F = 1$ and $|\epsilon| < 1$. Prove that C is invertible and $\kappa_2(C) = ||C||_2 ||C^{-1}||_2 \le \frac{1+|\epsilon|}{1-|\epsilon|}$.
 - b) Let C = QR be the QR factorization of C. If $||R I||_F < 1$, prove that C is invertible and find an upper bound of $\kappa_2(C)$ depending on $||R I||_F$.
 - c) Let C = QR be as in b), but now R = I + U, where U is upper triangular withe zeros in the diagonal. See that C is also invertible and find an upper bound of $\kappa_2(C)$ depending on $||U||_F$.
 - d) If we define $A_{\delta} = A + \delta B$, where $||B||_F = 1$, C as in a), and $|\delta|$ small enough, give a bound of the distance between the eigenvalues of A and A_{δ} . Why do we need $|\delta|$ to be small enough?