БИЛЕТ № 16

- 1) Особенности задач, решаемых в ОС в системах массового распараллеливания.
- 2) Проблема управления памятью.

Функции системы управления памятью

Чтобы обеспечить эффективный контроль использования памяти, ОС должна выполнять следующие функции:

- отображение адресного пространства процесса на конкретные области физической памяти;
- распределение памяти между конкурирующими процессами;
- контроль доступа к адресным пространствам процессов;
- выгрузка процессов (целиком или частично) во внешнюю память, когда в оперативной памяти недостаточно места;
- учет свободной и занятой памяти.

В следующих разделах лекции рассматривается ряд конкретных схем управления памятью. Каждая схема включает в себя определенную идеологию управления, а также алгоритмы и структуры данных и зависит от архитектурных особенностей используемой системы. Вначале будут рассмотрены простейшие схемы. Доминирующая на сегодня схема виртуальной памяти будет описана в последующих лекциях.

Простейшие схемы управления памятью

Первые ОС применяли очень простые методы управления памятью. Вначале каждый процесс пользователя должен был полностью поместиться в основной памяти, занимать непрерывную область памяти, а система принимала к обслуживанию дополнительные пользовательские процессы до тех пор, пока все они одновременно помещались в основной памяти. Затем появился "простой свопинг" (система по-прежнему размещает каждый процесс в основной памяти целиком, но иногда на основании некоторого критерия целиком сбрасывает образ некоторого процесса из основной памяти во внешнюю и заменяет его в основной памяти образом другого процесса). Такого рода схемы имеют не только историческую ценность. В настоящее время они применяются в учебных и научно-исследовательских модельных ОС, а также в ОС для встроенных (embedded) компьютеров.

- 3) Влияние методов доступа на организацию файловой системы.
- Принципы управления процессами в многозадачной ОС. Ответ:

Доп.инфа:

Таблица 2.1. Некоторые поля типичного элемента таблицы процессов

Управление процессом	Управление памятью	Управление файлами
Регистры	Указатель на текстовый сегмент	Корневой каталог
Счетчик команд	Указатель на сегмент данных	Рабочий каталог
Слово состояния программы	Указатель на сегмент стека	Дескрипторы файла
Указатель стека		Идентификатор пользователя
Состояние процесса		Идентификатор группы
Приоритет		
Параметры планирования		
Идентификатор процесса		
Родительский процесс		•
Группа процесса		
Сигналы		
Время начала процесса		
Использованное процессорное вр	ремя	
Процессорное время дочернего про	оцесса	
Время следующего аварийного сиг	нала	

5) Процесс и система прерывания. Особенности функционирования.

Процесс — это теоретическое понятие, на основании которого можно описать то, что происходит в системе при выполнении некоторых действий (программы).

Прерывание — это нарушение последовательности выполнения действий (команд), т.е. после текущего действия (команды) выполняется не следующее (команда), а некоторое другое действие.

При появлении сигнала прерывания управление передается ОС, которая запоминает состояние прерванного процесса в области сохранения регистров РСВ. Далее ОС анализирует тип прерывания и передает управление соответствующей

программе обработки этого прерывания. Инициатором прерывания может быть выполняющийся процесс или оно может быть вызвано некоторым событием, связанным или даже не связанным с этим процессом.

Рассмотрим механизм передачи управления **программе обработки прерывания (IH)**. Как было сказано выше, ОС запоминает состояние прерванного процесса и передает управление IH. Эта операция называется **переключением**

КОНТЕКСТа. При реализации переключения используются **слова состояния программы (PSW)**, с помощью которых осуществляется управление порядком выполнения команд. В **PSW** содержится информация относительно состояния процесса, обеспечивающая продолжение прерванной программы на момент прерывания.

Выполнение функций ОС, связанных с управлением процессами, осуществляется с помощью **блока управления процессом** (РСВ). **Вход в процесс** (фиксация системой процесса) — это создание его блока управления (РСВ), а **выход из процесса** — это его уничтожение, т. е. уничтожение его блока управления.

Таким образом для каждого активизированного процесса система создает РСВ, в котором в сжатом виде содержится информация о процессе, используемая при управлении. РСВ — это системная структура данных, содержащая определенные сведения о процессе и имеющая следующие поля:

- 1. Уникальный индентификатор процесса (имя)
- 2. Текущее состояние процесса.
- 3. Приоритет процесса.
- 4. Указатели участка памяти выделенного программе, подчиненной данному процессу.
- 5. Указатели выделенных ему ресурсов.
- 6. Область сохранения регистров.
- 7. Права процесса (список разрешенных операций)
- 8. Связи зависимости в иерархии процессов (список дочерних процессов, имя родительского процесса)
- 9. Пусковой адрес программы, подчиненной данному процессу.

Когда ОС переключает процессор с процесса на процесс, она использует области сохранения регистров в РСВ для запоминания информации, необходимой для рестарта (повторного запуска) каждого процесса с точки прерывания, когда он в следующий раз получит в свое распоряжение процессор. Количество процессов в системе ограничено и определяется самой системой, пользователем во время генерации ОС или при загрузке. Неудачное определение количества одновременно исполняемых программ может привести к снижению полезной эффективности работы системы, т.к. переключение процессов требует выполнения дополнительных операций по сохранению и восстановлению состояния процессов. Блоки управления системных процессов создаются при загрузке системы. Это необходимо, чтобы система выполняла свои функции достаточно быстро, и время реакции ОС было минимальным. Однако, количество блоков управления системными процессами меньше, чем количество самих системных процессов. Это связано с тем, что структура ОС имеет либо оверлейную, либо динамически — последовательную структуру иерархического типа, и нет необходимости создавать для программ, которые никогда не будут находиться одновременно в оперативной памяти, отдельные РСВ. При такой организации легко учитывать приоритеты системных процессов, выстроив их по приоритетам заранее при инициализации системы. Блоки управления проблемными (пользовательскими) процессами создаются в процессе активизации процессов динамически. Все РСВ находятся в выделенной системной области памяти.