

Algoritmia e Programação

Trabalho Prático (2021-2022)

Enunciado

A empresa ABC regista anualmente o nível médio de água (em metros) numa àrea geográfica específica. A área geográfica é representada através de uma matriz (LxC), em que L e C representam a quantidade de linhas e colunas da matriz, respetivamente.

Cada célula da matriz contém o valor da cota do terreno, em metros. Valores nulos e positivos indicam que o solo está acima do nível da água. Valores negativos indicam que o solo está abaixo do nível da água.

Por exemplo:

-2	-1	O terreno em [0,0] está submerso 2 metros e em [0,1] está submerso 1 metro.
2	4	O terreno em [1,0] está acima da água 2 metros e em [1,1] está acima da água 4 metros.

Pretende-se efetuar algumas operações de manipulação sobre a informação da matriz para acompanhar a

Um terreno é definido pela seguinte estrutura:

evolução do nível da água no terreno em estudo.

- 1ª linha texto descritivo do terreno;
- 2ª linha dois inteiros (LC), separados por um espaço, indicando a dimensão do terreno em linhas (L) e colunas (C);
- L linhas, cada uma contendo C números inteiros representativos da cota dessa área de terreno, separados por um espaço.

Exemplo:

Parque urbano da Asprela 3 5 2 -2 -3 0 -2 1 1 -1 -1 3 3 -3 2 2 3

Com o objetivo de responder aos requisitos deste trabalho, recorra a modularização e estruturas de dados indexadas (arrays) e implemente um programa em Java (sem interação com o utilizador) com as seguintes funcionalidades:

- a) Ler a informação de um terreno e armazená-la em memória numa matriz (evitar variáveis globais);
- b) Imprimir o mapa do terreno (matriz) no ecrã, com os valores das colunas alinhados à direita;
- c) Obter um novo mapa do terreno para refletir uma alteração no nível da água de X metros (-1m);
- d) Visualizar a percentagem da área do terreno que está submerso (2 casas decimais);
- e) Visualizar a variação da área inundada (em m2);
- f) Visualizar o volume de água existente no terreno;

Algoritmia e Programação

Trabalho Prático (2021-2022)

- g) Visualizar quantos metros terá de subir a água para inundar todo o terreno;
- h) Visualizar os incrementos em m2 de área inundada, por cada subida de 1 metro da água, até ficar tudo submerso;
- i) Calcular as coordenadas do terreno (linha, coluna) ideais para colocar um cubo (com 3 m de lado), de forma que a parte superior do cubo fique na cota zero e a base completamente assente no solo. O melhor local do terreno é aquele que implica mobilizar (retirar e/ou colocar) menos quantidade de terra. Em caso de múltiplas opções, deve ser escolhida a opção com as coordenadas mais a Norte e a Oeste. Devem ser visualizadas as coordenadas (canto superior esquerdo do cubo) e a quantidade (em m2) de terra que é necessário mobilizar.
- j) Procurar um caminho seco, o mais a Este possível, para atravessar todo o terreno na vertical (da matriz). Visualizar a coluna do caminho ou a mensagem "não há caminho seco na vertical" no caso contrário.

OBS: O programa deve executar, de forma sequencial, todas as alíneas e mostrar no ecrã o respetivo resultado, exceto a alínea a) que não tem resultado no ecrã. O resultado de cada alínea deve ser apresentado da seguinte forma:

<alinea> <resultado>

Exemplo:

Exemplo:	
Input	output
Parque urbano da Asprela 3 5 2 -2 -3 0 -2 1 1 -1 -1 3 3 -3 2 2 3	
	1 2 2 1 3 2 4 3 5 3 i) coordenadas do cubo: (0,1), terra a mobilizar: 31 m2
	j) caminho seco na vertical na coluna (3)

Algoritmia e Programação

Trabalho Prático (2021-2022)

NOTA: Durante a realização deste trabalho poderão surgir novos requisitos. Desta forma, poderão ser requeridas funcionalidades adicionais.

Normas:

- O trabalho deverá ser realizado em grupos de dois alunos. A formação dos grupos tem de ser comunicada por email ao docente das aulas PL, até ao final da 8ª semana de APROG;
- O trabalho deve ser submetido, por todos os alunos, no Moodle até às 23:30 horas do dia 15 de dezembro de 2021. A partir da data indicada, a nota do trabalho será penalizada 20% por cada dia de atraso e não se aceitam trabalhos após dois dias das datas indicadas;
- Após a entrega, nas aulas práticas seguintes, cada grupo terá de defender o trabalho submetido, perante o professor, para avaliação;
- A submissão no moodle deve ser um ficheiro ZIP contendo toda a estrutura do projeto e ficheiros necessários ao seu funcionamento. O nome do ficheiro deve obedecer à seguinte norma: "APROG_LEI_<turma> <n°aluno1>_<n°aluno2>.zip";

Exemplo: "APROG_LEI_DA_11223344_55667788.zip"

A não defesa do trabalho implica a não avaliação do mesmo.

Na medida do possível, o trabalho deve ser realizado de forma equitativa pelos elementos do grupo. Nesse sentido, sugere-se a seguinte distribuição das funcionalidades pedidas:

ALUNO1: a) c) e) g) i) ALUNO2: b) d) f) h) j)

Critérios de avaliação:

Trabalho de grupo

\circ ι		
•	Funcionalidades	65%
•	Modularização	15%
•	Estruturas de dados	10%
•	Organização do código	10%

Desempenho individual 100%

Nota final individual = Desempenho individual * Trabalho de grupo