LAB 4- "ADDING FUNCTIONALITY" REPORT

Authors: Long Nguyen and Chase Arline

ECE/CSE 474, Embedded Systems
University of Washington – Dept. of Electrical and Computer Engineering

Date: 29th February 2020

TABLE OF CONTENTS

1.0	SOFTWARE IMPLEMENTATION	4
2.0	CONTRIBUTIONS	18
	APPENDICES	18
	3.1 Code File Names	18

LIST OF FIGURES

Figure 1. System Block Diagram - showing the Atmega input and outp	
numbers) labeled per I/O component	
Controller	
Figure 3. Class diagram - showing the structure of the tasks within the S	
reflected in the Structure Diagram	
Figure 4. Data flow diagrams - shows data flow for inputs/outputs	
Figure 5. Activity Diagram - shows the System Controller's dynamic beh	avior from the initial
entry in the loop() function	8
Figure 6. Use Case Diagram for Measurement Screen	9
Figure 7. Sequence Diagram for Measurement Screen	
Figure 8. Front Panel Design for Measurement Screen	10
Figure 9. Use Case Diagram for Alarm Screen	11
Figure 10. Sequence Diagram for Alarm Screen	11
Figure 11. Front Panel Design for Alarm Screen	12
Figure 12. Use Case Diagram for Battery Screen	12
Figure 13. Sequence Diagram for Battery Screen	13
Figure 14. Front panel Design for Battery Screen	13
Figure 15. Use Case Diagram for Remote Terminal	14
Figure 16. Sequence Diagram for Remote Terminal	15
Figure 17. State Diagram for HVIL Alarm	16
Figure 18. State Diagram for Overcurrent Alarm	16
Figure 19. State Diagram for High Voltage out of Range Alarm	17
Figure 20. State Diagram for Contactor	17
Figure 21. State Diagram for Touch Screen Display	18

1.0 SOFTWARE IMPLEMENTATION

We did the extra credits for the Data Logging task.

Figure 1. System Block Diagram - showing the ATMega input and output ports (and port numbers) labeled per I/O component

Figure 2. Structure Diagram - showing functional decomposition of tasks within the System Controller

Figure 3. Class diagram - showing the structure of the tasks within the System Controller as reflected in the Structure Diagram.

Figure 4. Data flow diagrams - shows data flow for inputs/outputs

Figure 5. Activity Diagram - shows the System Controller's dynamic behavior from the initial entry in the loop() function

Figure 6. Use Case Diagram for Measurement Screen

Figure 7. Sequence Diagram for Measurement Screen

Figure 8. Front Panel Design for Measurement Screen

Figure 9. Use Case Diagram for Alarm Screen

Figure 10. Sequence Diagram for Alarm Screen

14.a: Alarm Screen when no alarm active

14.b: Alarm Screen when there is an active alarm

Figure 11. Front Panel Design for Alarm Screen

Figure 12. Use Case Diagram for Battery Screen

Figure 13. Sequence Diagram for Battery Screen

Figure 14. Front panel Design for Battery Screen

Figure 15. Use Case Diagram for Remote Terminal

Figure 16. Sequence Diagram for Remote Terminal

Figure 17. State Diagram for HVIL Alarm

Figure 18. State Diagram for Overcurrent Alarm

Figure 19. State Diagram for High Voltage out of Range Alarm

and HVIL switch closed Figure 20. State Diagram for Contactor

Figure 21. State Diagram for Touch Screen Display

2.0 CONTRIBUTIONS

We both worked equally on this project. Almost all of the time spent working on this project we were in a zoom call, so we were both providing the same amount of input.

3.0 APPENDICES

3.1 Code File Names

StarterFile.ino: file that the program starts in. This file includes the startUpTask and two ISR() function.

StarterFile.h: header file for StarterFile.ino

Alarm.c: code for the alarm task Alarm.h: header file for alarm.c

Contactor.c: code for the contactor task Contactor.h: header file for Contactor.c

Measurement.c: code file for the measurement task Measurement.h: header file for Measurement.c Soc.c: code file for the state of charge task

Soc.h: header file for Soc.c

Scheduler.c: code for the Scheduler task Scheduler.h: the header file for Scheduler.c

TaskControlBlock.h: header file defining TaskControlBlock struct

TouchScreenTask.ino: code file for the touch screen task TouchScreenTask.h: header file for TouchScreenTask.ino

DataLogging.h: header file for the data logging task DataLogging.ino: code file for the data logging task

RemoteTerminal.h: header file for the remote termial task

RemoteTerminal.ino: code file for the data remote terminal task