Query Execution

Database Systems

Kevin C.C. Chang

Concepts You Will Learn

- Logical/physical operators
- Cost parameters and sorting
- One-pass algorithms
 - Nested-loop join
- Two-pass algorithms
 - Sort-merge join
 - Hash-based join
- Index-based algorithms
 - Index-based join

Why Do We Learn This?

The Big Picture: Where We Are

Relational

NonRelational

Database Systems

Toolkits

Query Language

Structured

Untructured SemiStructured

Data/Query Processing

Data Access

Transaction Management

Data Acquisition

Data Modeling

Relational Databases

- SQL
- Relational Algebra
- Query Optimization
- Query Execution
- Indexing
- Concurrency Control
- Logging Recovery

Databas

XML

NoSQL Databases

Map Reduce (Parallel)

Storm (Stream)

Information Extraction

ER → Relational Model

Overview

Logical v.s. Physical Operators

- Logical operators
 - what they do
 - e.g., union, selection, project, join, grouping
- Physical operators
 - <u>how</u> they do it
 - e.g., nested loop join, sort-merge join, hash join, index join

Query Execution Plans

SELECT S.sname
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
Q.city='urbana' AND
Q.phone > '5430000'

Query Plan:

- logical tree
- implementation choice at every node
- scheduling of operations.

Some operators are from relational algebra, and others (e.g., scan, group) are not.

How do We Combine Operations?

The iterator model.

- Each operation is implemented by 3 functions:
 - Open: sets up the data structures and performs initializations
 - GetNext: returns the next tuple of the result.
 - Close: ends the operations. Cleans up the data structures.
- Enables pipelining!

Cost Parameters

Cost parameters

- M = number of blocks that fit in main memory
- B(R) = number of blocks holding R
- T(R) = number of tuples in R
- V(R,a) = number of distinct values of the attribute a

Estimating the cost:

- Important in optimization (next lecture)
- Compute I/O cost only
- We compute the cost to read the tables
- We don't compute the cost to write the result (because pipelining)

Sorting

- Two pass multi-way merge sort
- Step 1:
 - Read M blocks at a time, sort, write
 - Result: have runs of length M on disk
- Step 2:
 - Merge M-1 at a time, write to disk
 - Result: have runs of length M(M-1)≈M²
- Cost: 3B(R), Assumption: B(R) \leq M²

Scanning Tables

- The table is *clustered* (I.e. blocks consists only of records from this table):
 - Table-scan: if we know where the blocks are
 - Index scan: if we have index to find the blocks
- The table is unclustered (e.g. its records are placed on blocks with other tables)
 - May need one read for each record

Cost of the Scan Operator

- Clustered relation:
 - Table scan: B(R); to sort: 3B(R)
 - Index scan: B(R); to sort: B(R) or 3B(R)
- Unclustered relation
 - T(R); to sort: T(R) + 2B(R)

Selection $\sigma(R)$, projection $\Pi(R)$

- Both are <u>tuple-at-a-Time</u> algorithms
- Cost: B(R)

Duplicate elimination $\delta(R)$

- Need to keep a dictionary in memory:
 - balanced search tree
 - hash table
 - etc
- Cost: B(R)
- Assumption: $B(\delta(R)) \leq M$

Grouping: $\gamma_{city, sum(price)}$ (R)

- Need to keep a dictionary in memory
- Also store the sum(price) for each city
- Cost: B(R)
- Assumption: number of cities fits in memory

Binary operations: $R \cap S$, $R \cup S$, R - S

- Assumption: min(B(R), B(S)) <= M
- Scan one table first, then the next, eliminate duplicates
- Cost: B(R)+B(S)

- Tuple-based nested loop $R \bowtie S$
- R=outer relation, S=inner relation

for each tuple r in R do
for each tuple s in S do
if r and s join then output (r,s)

Cost: T(R) T(S), sometimes T(R) B(S)

Block-based Nested Loop Join

```
for each (M-1) blocks bs of S do
for each block br of R do
for each tuple s in bs do
for each tuple r in br do
if r and s join then output(r,s)
```


- Block-based Nested Loop Join
- Cost:
 - Read S once: cost B(S)
 - Outer loop runs B(S)/(M-1) times, and each time need to read R: costs B(S)B(R)/(M-1)
 - Total cost: B(S) + B(S)B(R)/(M-1)
- Notice: it is better to iterate over the smaller relation first— i.e., S smaller

Two-Pass Algorithms

Two pass algorithms

Two-Pass Algorithms Based on Sorting

Duplicate elimination $\delta(R)$

Simple idea: like sorting, but include no duplicates

- Step 1: sort runs of size M, write
 - Cost: 2B(R)
- Step 2: merge M-1 runs,

but include each tuple only once

- Cost: B(R)
- Total cost: 3B(R), Assumption: B(R) <= M²

Q: What can sorting help? And, how?

- Selection?
- Projection?
- Set operations?
- Join?
- Duplicate elimination?
- Grouping?

Two-Pass Algorithms Based on Sorting

Grouping: $\gamma_{city, sum(price)}$ (R)

- Same as before: sort, then compute the sum(price) for each group
- As before: compute sum(price) during the merge phase.
- Total cost: 3B(R)
- Assumption: B(R) <= M²

Two-Pass Algorithms Based on Sorting

Binary operations: $R \cap S$, $R \cup S$, R - S

- Idea: sort R, sort S, then do the right thing
- A closer look:
 - Step 1: split R into runs of size M, then split S into runs of size M. Cost: 2B(R) + 2B(S)
 - Step 2: merge all x runs from R; merge all y runs from S;
 ouput a tuple on a case by cases basis (x + y <= M)
- Total cost: 3B(R)+3B(S)
- Assumption: B(R)+B(S)<= M²

Sort-Merge Join

Join $R \bowtie S$

- Start by sorting both R and S on the join attribute:
 - Cost: 4B(R)+4B(S) (because need to write to disk)
- Read both relations in sorted order, match tuples
 - Cost: B(R)+B(S)
- Difficulty: many tuples in R may match many in S
 - If at least one set of tuples fits in M, we are OK
 - Otherwise need nested loop, higher cost
- Total cost: 5B(R)+5B(S)
- Assumption: $B(R) \le M^2$, $B(S) \le M^2$

Q: Why is sorting-based "two" pass?

• Pass 1?

• Pass 2?

Two Pass Algorithms Based on Hashing

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

- Does each bucket fit in main memory ?
 - Yes if $B(R)/M \le M$, i.e. $B(R) \le M^2$

Q: What can hashing help? And, how?

- Selection?
- Projection?
- Set operations?
- Join?
- Duplicate elimination?
- Grouping?

Hash Based Algorithms for $\,\delta\,$

- Recall: $\delta(R) = \text{duplicate elimination}$
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption:B(R) <= M²

Hash Based Algorithms for γ

- Recall: $\gamma(R)$ = grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: B(R) <= M²

Hash-based Join

 $R\bowtie S$

- Simple version: main memory hash-based join
 - Scan S, build buckets in main memory
 - Then scan R and join
- Requirement: min(B(R), B(S)) <= M

Partitioned Hash Join

$R \bowtie S$

- Step 1:
 - Hash S into M buckets
 - send all buckets to disk
- Step 2
 - Hash R into M buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

Partitioned Hash-Join

 Partition both relations using hash fn
 h: R tuples in partition i will only match S tuples in partition i. Original Relation

OUTPUT Partitions

INPUT

hash
function

M-1

Disk

B main memory buffers

Disk

 Read in a partition of S, hash it using h2 (<>> h!). Scan matching partition of R, search for matches.

Two-Pass Algorithms (14 of 15)

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: At least one full bucket of the smaller rel must fit in memory: min(B(R), B(S)) <= M²

Index-based Algorithms (Zero-Pass)

Indexed Based Algorithms

• In a clustered index all tuples with the same value of the key are clustered on as few blocks as possible.

a a a

aaaaa

a a

Index Based Selection

- Selection on equality: $\sigma_{a=v}(R)$
- Clustered index on a: cost B(R)/V(R,a)
- Unclustered index on a: cost T(R)/V(R,a)

Index Based Selection

- Example: B(R) = 2000, T(R) = 100,000, V(R, a) = 20, compute the cost of $\sigma_{a=v}(R)$
- Cost of table scan:
 - If R is clustered: B(R) = 2000 I/Os
 - If R is unclustered: T(R) = 100,000 I/Os
- Cost of index based selection:
 - If index is clustered: B(R)/V(R,a) = 100
 - If index is unclustered: T(R)/V(R,a) = 5000
- Notice: when V(R,a) is small, then unclustered index is useless

Index Based Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Assume R is clustered. Cost:
 - If index is clustered: B(R) + T(R)B(S)/V(S,a)
 - If index is unclustered: B(R) + T(R)T(S)/V(S,a)

Index Based Join

- Assume both R and S have a sorted index (B+ tree) on the join attribute
- Then perform a merge join (called zig-zag join)
- Cost: B(R) + B(S)