

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY Część I

DATA: 19 maja 2021 r.
GODZINA ROZPOCZĘCIA: 9:00
CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

WYPEŁNIA ZDAJĄCY	WYBRANE:
	(system operacyjny)
	(program użytkowy)
	(środowisko programistyczne)

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 1–3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

n= esti8> ____

Zadanie 1. Cyfrowe dopełnienie

Niech n będzie nieujemną liczbą całkowitą, której najbardziej znacząca cyfra w zapisie dziesiętnym jest większa od 0 i mniejsza od 9. Cyfrowym dopełnieniem liczby n nazywamy liczbę całkowitą d, której zapis dziesiętny otrzymujemy z zapisu dziesiętnego liczby n przez zamianę każdej cyfry tego zapisu na cyfrę, która jest jej uzupełnieniem do 9.

Przykład:

Cyfrowym dopełnieniem liczby 2021 jest liczba 7978.

Zadanie 1.1. (0-2)

Podaj czterocyfrową liczbę *n* taką, że wartość bezwzględna różnicy liczby *n* i jej cyfrowego dopełnienia *d* jest:

a) najmniejsza

b) największa

n = 5000 n = 1000

Miejsce na obliczenia:

Zadanie 1.2. (0-4)

W postaci pseudokodu lub w wybranym języku programowania napisz algorytm, który dla dodatniej liczby całkowitej n obliczy jej cyfrowe dopełnienie d. O liczbie n wiadomo, że jej najbardziej znacząca cyfra jest większa od 0 i mniejsza od 9.

Uwaga: Twój algorytm może używać wyłącznie zmiennych przechowujących liczby całkowite oraz może operować wyłącznie na liczbach całkowitych. W zapisie algorytmu możesz korzystać tylko z instrukcji sterujących, operatorów arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia, dzielenia całkowitego i reszty z dzielenia; operatorów logicznych, porównań i instrukcji przypisywania lub samodzielnie napisanych funkcji i procedur wykorzystujących powyższe operacje. Zabronione jest używanie funkcji wbudowanych dostępnych w językach programowania. Nie wolno w szczególności korzystać z żadnych funkcji zamiany z typu znakowego lub napisowego na liczbowy i odwrotnie.

Specyfikacja:

Dane:

n – dodatnia liczba całkowita taka, że jej najbardziej znacząca cyfra jest większa od 0 i mniejsza od 9

Wynik:

d – dodatnia liczba całkowita, cyfrowe dopełnienie liczby n

Algorytm:

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt.	2	4
egzaminator	Uzyskana liczba pkt.		

Zadanie 2. Analiza algorytmu

Niech n będzie nieujemną liczbą całkowitą, a T[1..n] – tablicą zawierającą n liczb całkowitych. Dla n = 0 tablica T jest pusta (nie zawiera żadnego elementu).

Wykonaj analizę poniżej zapisanej funkcji d(x), która rozszerza tablicę T o liczbę całkowitą x, a następnie przeprowadza pewną reorganizację zawartości tej tablicy.

$$d(x):$$

$$n \leftarrow n + 1$$

$$T[n] \leftarrow x$$

$$s \leftarrow n$$

$$dopóki ((s \operatorname{div} 2) \ge 1) \operatorname{oraz} (T[s] > T[s \operatorname{div} 2]) \operatorname{wykonuj}$$

$$pom \leftarrow T[s]$$

$$T[s] \leftarrow T[s \operatorname{div} 2]$$

$$T[s \operatorname{div} 2] \leftarrow pom$$

$$s \leftarrow s \operatorname{div} 2$$

$$S \leftarrow S \operatorname{div} 2$$

Uwaga: w tym zadaniu przyjmujemy, że:

- tablica T może być powiększana;
- jeśli wartość lewego argumentu operatora oraz jest równa fałsz, to wartość prawego argumentu nie jest wyliczana;
- *div* jest operatorem oznaczającym część całkowitą z dzielenia.

Zadanie 2.1. (0-2)

Uzupełnij tabelę – wpisz zawartość tablicy T po wykonaniu d(x) z podanym parametrem x:

n	<i>T</i> [1 <i>n</i>]	X	<i>T</i> po wykonaniu <i>d(x)</i>
4	26, 3, 5, –4	5	26, 5, 5, –4, 3
4	36, 15, 17, 3	– 5	36, 15, 17, 3, -5
7	27, 6, 13, 4, -3, -2, -3	30	30, 24, 13, 6, -3,-2,-3,4

Miejsce na obliczenia:

Zadanie 2.2. (0-2)

Podaj zawartość tablicy *T* po wykonaniu wszystkich sześciu wywołań funkcji *d* kolejno z parametrami: 6, –4, 12, 27, 26, 8, przy początkowo pustej tablicy *T*.

27, 26, 8, -4, 12, 6 Miejsce na obliczenia:

Zadanie 2.3. (0-2)

Do początkowo pustej tablicy T wstawiono za pomocą funkcji d kolejno liczby całkowite od 1 do k-1. Wstawiamy teraz do tablicy T kolejną liczbę k za pomocą d(k).

Zapisz, ile razy w trakcie wykonywania d(k) sprawdzany jest warunek pętli dopóki: "(s div 2) ≥ 1) oraz (T[s] > T[s div 2])" dla podanych wartości k.

	k	lle razy sprawdzany jest warunek pętli <i>dopóki</i> podczas wykonywania <i>d</i> (<i>k</i>)?
1	4	3 razy
max(i)X	16	5
l	1025	11

	Nr zadania	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt.	2	2	2
egzaminator	Uzyskana liczba pkt.			

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F** – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Dana jest następująca funkcja:

funkcja f(n): jeżeli n > 0 wypisz n

f(n-2)

wypisz n

1.	W wyniku wywołania <i>f</i> (5) otrzymamy ciąg 5 5 5 5 5 5.	Р	(E)
2.	W wyniku wywołania f(6) otrzymamy ciąg 6 4 2 2 4 6.	(<u>P</u>)	F
3.	W wyniku wywołania f(7) otrzymamy ciąg 7 5 3 1 1 3 5 7.	(P)	F
4.	W wyniku wywołania f(8) otrzymamy ciąg 8 6 4 2 0 0 2 4 6 8.	Р	F

Zadanie 3.2. (0-1)

1.	(10000000) ₂ jest liczbą większą od liczby (A9) ₁₆	Р	(F)
2.	(1111) ₄ jest liczbą większą od liczby (1111111) ₂	Р	F
3.	(3003) ₄ jest liczbą większą od liczby (C2) ₁₆	P	F
4.	(333) ₈ jest liczbą większą od liczby (10100101) ₂	(a)	F

A - 10 B - 11 C = 12

Zadanie 3.3. (0-1)

W bazie danych istnieje tabela *produkty(id_produktu, produkt, sztuk, cena)*, zawierająca następujące dane:

id_produktu	produkt	sztuk	cena
1	zeszyt	160	2
2	okładka	100	3
3	ołówek	250	1
4	długopis	178	5
5	pióro	100	12
6	gumka	250	1
7	piórnik	125	8
8	cyrkiel	130	4

1.	Wynikiem zapytania SELECT produkt FROM produkty WHERE (cena = 2 OR cena = 4) jest cyrkiel	Р	F
2.	Wynikiem zapytania SELECT AVG(cena) FROM produkty WHERE sztuk IN (125, 160) jest 5	P	F
3.	Wynikiem zapytania SELECT SUM(sztuk) FROM produkty WHERE (cena = 1 OR cena = 2) jest 660	(<u>a</u>)	F
4.	Wynikiem zapytania SELECT COUNT(cena) FROM produkty WHERE cena BETWEEN 2 AND 4 jest 2	Р	F

	Nr zadania	3.1.	3.2.	3.3.
Wypełnia	Maks. liczba pkt.	1	1	1
egzaminator	Uzyskana liczba pkt.			

BRUDNOPIS (nie podlega ocenie)