Fitting Distributions and Comparing Data Sets

Daniel A. Menascé, Ph.D.

Department of Computer Science
George Mason University

© 2002 D. A. Menascé. All rights reserved.

Comparing Data Sets

- Problem: given two data sets D1 and D2 determine if the data points come from the same distribution.
- Simple approach: draw a histogram for each data set and visually compare them.
- To study relationships between two variables use a scatter plot.
- To compare two distributions use a quantile-quantile (Q-Q) plot.

2

Histogram

- Divide the range (max value min value) into equal-sized cells or bins.
- Count the number of data points that fall in each cell.
- Plot on the y-axis the relative frequency, i.e., number of point in each cell divided by the total number of points and the cells on the x-axis.
- Cell size is critical!

© 2002 D. A. Menascé. All rights reserved.

3

Histogram

Data
-3.0
0.8
1.2
1.5
2.0
2.3
2.4
3.3
3.5
4.0
4.5
5.5

	Relative	
Bin	Frequency	Frequency
<=0	1	8.3%
0 <x<= 1<="" td=""><td>1</td><td>8.3%</td></x<=>	1	8.3%
1 <x<=2< td=""><td>3</td><td>25.0%</td></x<=2<>	3	25.0%
2 <x<=3< td=""><td>2</td><td>16.7%</td></x<=3<>	2	16.7%
3 <x<=4< td=""><td>3</td><td>25.0%</td></x<=4<>	3	25.0%
4 <x<=5< td=""><td>1</td><td>8.3%</td></x<=5<>	1	8.3%
>5	1	8.3%

In Excel:
Tools -> Data Analysis ->
Histogram

Histogram

Data			Relative
-3.0	Bin	Frequency	Frequency
0.8	<=0	1	8.3%
1.2	0 <x<= 0.5<br="">0.5<x<=1< td=""><td>0</td><td>0.0% 8.3%</td></x<=1<></x<=>	0	0.0% 8.3%
1.5	0.5 <x<=1 1<x<=1.5< td=""><td>2</td><td>16.7%</td></x<=1.5<></x<=1 	2	16.7%
2.0	1.5 <x<=2< td=""><td>1</td><td>8.3%</td></x<=2<>	1	8.3%
2.3	2 <x<=2.5< td=""><td>2</td><td>16.7%</td></x<=2.5<>	2	16.7%
2.4	2.5 <x<=3< td=""><td>0</td><td>0.0%</td></x<=3<>	0	0.0%
3.3	3 <x<=3.5< td=""><td>2</td><td>16.7%</td></x<=3.5<>	2	16.7%
3.5	3.5 <x<=4 4<x<=4.5< td=""><td>1</td><td>8.3% 8.3%</td></x<=4.5<></x<=4 	1	8.3% 8.3%
4.0	4.5 <x<=5< td=""><td>0</td><td>0.0%</td></x<=5<>	0	0.0%
4.5	>5	1	8.3%
5.5			

Same data, different cell size, different shape for the histograms!

© 2002 D. A. Menascé. All rights reserved.

Scatter Plot

- Plot a data set against each other to visualize potential relationships between the data sets.
- Example: CPU time vs. I/O Time
- In Excel: XY (Scatter) Chart Type.

6

0.020 0.150 0.500 0.023 0.160 0.450 0.170 0.550 0.018 0.600 0.145 0.530 0.021	0.043 1.516 1.037 0.141 1.635 0.900 1.744 1.132 0.037 1.229 1.479 1.102 0.094	2.0 1.8 - 1.6 - (so 1.4 - so) 1.2 - uni 1.0 - 1.0 - 0.8 - 0.4 - 0.2 -	,	/			***	• •	
0.480 0.155 0.560 0.018 0.600 0.167 0.025	1.019 1.563 1.171 0.131 1.236 1.703 0.103	0.0	0.1	0.2	0.3 CPU tir	0.4 ne (sec)	0.5	0.6	0.7

Plots Based on Quantiles

- Consider an ordered data set with n values $x_1, ..., x_n$.
- If p = (i-0.5)/n for $i \le n$, then the p quantile Q(p) of the data set is defined as

$$Q(p) = Q([i-0.5]/n) = x_i$$

- Q(p) for other values of p is computed by linear interpolation.
- A quantile plot is a plot of Q(p) vs. p.

8

Example of a Quantile Plot

i	p=(i-0.5)/n	xi = Q(p)
1	0.05	10.5
2	0.15	24.0
3	0.25	28.0
4	0.35	29.0
5	0.45	34.0
6	0.55	36.5
7	0.65	40.3
8	0.75	44.5
9	0.85	50.3
10	0.95	55.3

9

© 2002 D. A. Menascé. All rights reserved.

Quantile-Quantile (Q-Q plots)

- Used to compare distributions.
- "Equal shape" is equivalent to "linearly related quantile functions."
- A Q-Q plot is a plot of the type
 (Q₁(p),Q₂(p)) where Q₁(p) is the quantile
 function of data set 1 and Q₂(p) is the
 quantile function of data set 2. The values
 of p are (i-0.5)/n where n is the size of the
 smaller data set.

10

Q-Q Plot Example

i	p=(i-0.5)/n	Data 1	Data 2
1	0.033	0.2861	0.5640
2	0.100	0.3056	0.8657
3	0.167	0.5315	0.9120
4	0.233	0.5465	1.0539
5	0.300	0.5584	1.1729
6	0.367	0.7613	1.2753
7	0.433	0.8251	1.3033
8	0.500	0.9014	1.3102
9	0.567	0.9740	1.6678
10	0.633	1.0436	1.7126
11	0.700	1.1250	1.9289
12	0.767	1.1437	1.9495
13	0.833	1.4778	2.1845
14	0.900	1.8377	2.3623
15	0.967	2.1074	2.6104

A Q-Q plot that is reasonably linear indicates that the two data sets have distributions with similar shapes.

11

© 2002 D. A. Menascé. All rights reserved.

Theoretical Q-Q Plot

- Compare one empirical data set with a theoretical distribution.
- Plot $(x_i, Q_2([i-0.5]/n))$ where x_i is the [i-0.5]/n quantile of a theoretical distribution $(F^{-1}([i-0.5]/n))$ and $Q_2([i-0.5]/n)$ is the i-th ordered data point.
- If the Q-Q plot is reasonably linear the data set is distributed as the theoretical distribution.

© 2002 D. A. Menascé. All rights reserved.

12

Examples of CDFs and Their Inverse Functions

Exponential
$$F(x) = 1 - e^{-x/a}$$
 $-a \operatorname{Ln}(1-u)$

Pareto $F(x) = 1 - x^{-a}$ $\frac{1}{(1-u)^{1/a}}$

Geometric
$$F(x) = 1 - (1 - p)^x$$

$$\left[\frac{\text{Ln}(u)}{\text{Ln}(1 - p)} \right]$$

13

© 2002 D. A. Menascé. All rights reserved.

Example of a Quantile-Quantile Plot

• One thousand values are suspected of coming from an exponential distribution (see histogram in the next slide). The quantile-quantile plot is pretty much linear, which confirms the conjecture.

14

Data for Quantile-Quantile Plot

qi	yi	хi
0.100	0.22	0.21
0.200	0.49	0.45
0.300	0.74	0.71
0.400	1.03	1.02
0.500	1.41	1.39
0.600	1.84	1.83
0.700	2.49	2.41
0.800	3.26	3.22
0.900	4.31	4.61
0.930	4.98	5.32
0.950	5.49	5.99
0.970	6.53	7.01
0.980	7.84	7.82
0.985	8.12	8.40
0.990	8.82	9.21
1.000	17.91	18.42

© 2002 D. A. Menascé. All rights reserved.

16

What if the Inverse of the CDF Cannot be Found?

- Use tables and interpolate.
- Approximation for N(0,1):

$$x_i = 4.91[q_i^{0.14} - (1 - q_i)^{0.14}]$$

• For $N(\mu, \sigma)$ the x_i values are scaled as $m + Sx_i$ before plotting.

18

