Isaac Physics Skills

Linking concepts in pre-university physics

Lisa Jardine-Wright, Keith Dalby, Robin Hughes, Nicki Humphry-Baker, Anton Machacek, Ingrid Murray and Lee Phillips Isaac Physics Project

TABLE OF PHYSICAL CONSTANTS

Quantity & Symbol		Magnitude	Unit
Permittivity of free space	ϵ_0	8.85×10^{-12}	${\sf F}{\sf m}^{-1}$
Electrostatic force constant	$1/4\pi\epsilon_0$	8.99×10^{9}	N m 2 C $^{-2}$
Speed of light in vacuum	С	3.00×10^{8}	${\sf m}{\sf s}^{-1}$
Specific heat capacity of water	c_{water}	4180	$ m Jkg^{-1}K^{-1}$
Charge of proton	е	1.60×10^{-19}	С
Gravitational field strength on Earth	8	9.81	N ${ m kg}^{-1}$
Universal gravitational constant	G	6.67×10^{-11}	N m 2 kg $^{-2}$
Planck constant	h	6.63×10^{-34}	Js
Boltzmann constant	k_{B}	1.38×10^{-23}	$ m JK^{-1}$
Mass of electron	m_{e}	9.11×10^{-31}	kg
Mass of neutron	m_{n}	1.67×10^{-27}	kg
Mass of proton	m_{p}	1.67×10^{-27}	kg
Mass of Earth	M_{Earth}	5.97×10^{24}	kg
Mass of Sun	M_{Sun}	2.00×10^{30}	kg
Avogadro constant	N_{A}	6.02×10^{23}	mol^{-1}
Gas constant	R	8.31	$\rm J~mol^{-1}~K^{-1}$
Radius of Earth	R_{Earth}	6.37×10^{6}	m

OTHER INFORMATION YOU MAY FIND USEFUL

Electron volt	$1\mathrm{eV}$	=	$1.60 \times 10^{-19} \mathrm{J}$
Unified mass unit	1 u	=	$1.66 imes 10^{-27} ext{ kg}$
Absolute zero	0 K	=	−273 °C
Year	$1\mathrm{yr}$	=	$3.16 imes 10^7 ext{ s}$
Light year	1 ly	=	$9.46\times10^{15}~\text{m}$
Parsec	1 pc	=	$3.09 \times 10^{16} \text{ m}$

PREFIXES

1 km = 1000 m	$1 \text{Mm} = 10^6 \text{m}$	$1 \text{ Gm} = 10^9 \text{ m}$	$1 \text{ Tm} = 10^{12} \text{ m}$
1 mm = 0.001 m	$1 \mu \text{m} = 10^{-6} \text{m}$	$1 \text{ nm} = 10^{-9} \text{ m}$	$1 \text{ pm} = 10^{-12} \text{ m}$

23 Energy and fields - accelerator

It is helpful to be able to calculate the kinetic energy, momentum or speed of a charged particle which has been accelerated by a known voltage.

Example context: many particle accelerators, and the electron guns in older TVs and oscilloscopes, produce beams of charged particles using an electric field. A knowledge of the accelerating voltage enables the speed to be calculated.

$$\begin{array}{lll} \text{Quantities:} & \textit{m} \; \text{mass (kg)} & \textit{q} \; \text{charge (C)} \\ & \textit{p} \; \text{momentum (kg m s}^{-1}) & \textit{K} \; \text{kinetic energy (J)} \\ & \textit{u} \; \text{initial speed (m s}^{-1}) & \textit{V} \; \text{accelerating voltage (V)} \\ & \textit{v} \; \text{final speed (m s}^{-1}) & \textit{E} \; \text{electric field (N C}^{-1}) \\ & \textit{F} \; \text{force (N)} & \textit{L} \; \text{length of accelerating region (m)} \\ & \lambda \; \text{wavelength (m)} \end{array}$$

Equations:
$$p = mv \quad \Delta K = K_{\rm final} - K_{\rm initial} = \frac{1}{2}mv^2 - \frac{1}{2}mu^2 \quad \Delta K = qV$$

$$\lambda = \frac{h}{p} \quad F = qE \quad \Delta K = FL \quad 1~{\rm eV} = 1.6 \times 10^{-19}~{\rm J}$$

- 23.1 Use the equations to derive expressions for
 - a) the momentum p in terms of V, m and q if u=0,
 - b) the speed v in terms of V, m and q if u=0,
 - c) the speed v if $u \neq 0$,
 - d) the additional kinetic energy ΔK in terms of E, L and q,
 - e) the electric field E in terms of V and L,
 - f) the momentum p in terms of E, L, m and q if u=0,
 - g) the wavelength λ in terms of V, m and q when u=0.

Example – Calculate the voltage needed to accelerate an electron to $1.2 \times 10^7 \, \text{m s}^{-1}$ from rest.

$$K = \frac{1}{2}mv^2 = \frac{1}{2} \times 9.11 \times 10^{-31} \times \left(1.2 \times 10^7\right)^2 = 6.552 \times 10^{-17} \text{ J}$$

$$V = \frac{K}{q} = \frac{6.552 \times 10^{-17}}{1.60 \times 10^{-19}} = 410 \text{ V}$$

23.2 Calculate the voltage needed to accelerate a proton to $3.5 \times 10^6~{\rm m\,s^{-1}}$ from rest.

- 23.3 Calculate the voltage needed to accelerate an electron to 3.5×10^6 m s $^{-1}$ from rest.
- 23.4 A 1.00 MeV proton has a kinetic energy of 1.0×10^6 eV.
 - a) Express this energy in joules.
 - b) Calculate the speed of the proton.
 - c) What is the accelerating voltage needed to produce it?
 - d) Calculate its momentum.
 - e) Calculate its wavelength.
- 23.5 The electron gun in an old TV accelerates electrons from rest with 3.0 kV.
 - a) Calculate the final speed of the electrons.
 - b) Calculate the momentum of the electrons.
 - c) Calculate the wavelength of the electrons.
- 23.6 Fill in the missing entries in the table below.

	•		
Particle	Energy / MeV	Momentum / $kg m s^{-1}$	Speed $/ \mathrm{m}\mathrm{s}^{-1}$
Electron	0.001 50	(a)	(b)
Proton	10.0	(c)	(d)
Electron	(e)	4.55×10^{-24}	(f)
Proton	(g)	8.35×10^{-21}	(h)
Alpha particle	5.0	(i)	(j)

- 23.7 Calculate the final speed of a proton which was travelling at 2.5×10^6 m s $^{-1}$ before being accelerated through 1.4 MV.
- 23.8 Calculate the accelerating voltage required to accelerate particles from rest to achieve the desired wavelength.
 - a) Electrons of wavelength 2.0 nm.
 - b) Electrons of wavelength 20 nm.
 - c) Protons of wavelength $1.5 \times 10^{-13} \ \text{m}.$
 - d) Alpha particles of wavelength 1.5×10^{-14} m.

30 Vectors and fields – mass spectrometer

A mass spectrometer is used to measure the mass/charge ratio of ions or particles. An understanding of electric and magnetic fields enables us to analyse the data.

Example context: the radius of the path in a magnetic field, coupled with a knowledge of the accelerating voltage, enables us to measure the mass of a carbon ion. Multiple measurements allow a measurement of the fraction of $^{14}_{6}\mathrm{C}$ in the sample.

Quantities:

Equations:

$$F=ma$$
 $F_{\rm E}=qE$ $F_{\rm B}=Bqv$ $qV_{\rm a}=\frac{1}{2}mv^2$ (see page 45) $E=\frac{V_{\rm s}}{d}$ $a=\frac{v^2}{r}$

- 30.1 Use the equations to derive expressions for
 - a) the radius r of the path in the magnetic field in terms of B, v, q and m,
 - b) the radius r in terms of B, V_a , q and m,
 - c) the specific charge q/m in terms of B, r and v,
 - d) the specific charge q/m in terms of B, r and V_a ,
 - e) the voltage $V_{\rm S}$ across the plates in the velocity selector so that particles of speed v are not deflected.
- 30.2 Calculate the speed electrons emerge from a 95 V accelerator. Assume that the electrons start from rest.
- 30.3 Calculate the radius of curvature of a 2.5 \times 10^6 m s $^{-1}$ electron in a 1.5 mT magnetic field.

30.4 Repeat question 30.3 for a proton of the same speed in the same field.

Example – Calculate the radius of curvature of a proton accelerated to 25 MV in a 0.75 T magnetic field.

We use
$$qV_{\rm a}=\frac{1}{2}mv^2$$
 to calculate the speed $v=\sqrt{\frac{2qV_{\rm a}}{m}}$

$$v = \sqrt{\frac{2 \times 1.60 \times 10^{-19} \times 2.5 \times 10^7}{1.67 \times 10^{-27}}} = 6.921 \times 10^7 \,\mathrm{m}\,\mathrm{s}^{-1}.$$

In the magnetic field
$$F_{\rm B}=ma$$
 so $Bqv=rac{mv^2}{r}$ and $r=rac{mv}{Bq}$

$$r = \frac{1.67 \times 10^{-27} \times 6.921 \times 10^7}{0.75 \times 1.60 \times 10^{-19}} = 0.96 \, \mathrm{m} \ \mathrm{to} \ \mathrm{2sf}.$$

30.5 Fill in the missing entries in the table below for a proton with $B = 2.2 \,\text{T}$.

V_{a} / V	v / m s $^{-1}$	<i>r</i> / m
	2.5×10^5	(a)
1.2×10^6	(b)	(c)
	(d)	0.014
(e)		0.12

- 30.6 Calculate the specific charge q/m of a particle travelling at 2.0×10^6 m s⁻¹ in a magnetic field if r=11.9 mm and B=0.175 T.
- 30.7 Calculate V_s needed in a velocity selector to pass 1.6×10^6 m s⁻¹ electrons in a 2.2 T magnetic field if d=6.5 cm.
- 30.8 Protons pass through a velocity selector with $B=1.5\,\mathrm{T}$ and $d=8.0\,\mathrm{cm}$ when $V_\mathrm{s}=420\,\mathrm{kV}$. Calculate their speed.
- 30.9 Repeat question 30.8 for electrons with the same values for B, d and V_s .
- 30.10 Calculate the radius of the path of a $^{235}_{92}$ U nucleus travelling at 4.2×10^6 m s $^{-1}$ in a 1.25 T magnetic field. Assume that m=235 u where 1 u $=1.66 \times 10^{-27}$ kg.
- 30.11 A singly charged ion is accelerated by a $650~\rm kV$ potential before passing into a region with a $1.25~\rm T$ magnetic field. It curves with a radius of $0.322~\rm m$. Calculate its mass.
- 30.12 Express your mass from question 30.11 in terms of atomic mass units u where 1 u = 1.66×10^{-27} kg.
- 30.13 Calculate the radius of curve expected for a singly charged ion of ${}^{14}_{6}\mathrm{C}$ in the mass spectrometer of question 30.11. Assume that $m=14\,\mathrm{u}$.

22 Electromagnetic induction - rotating coil

(a)
$$\phi = BA = BA_0 \cos \omega t$$

(b)
$$\varepsilon = -N \frac{d\phi}{dt} = -N \frac{d}{dt} (BA_0 \cos \omega t) = -NBA_0 \frac{d}{dt} \cos \omega t$$

= $NBA_0 \omega \sin \omega t$

(c) maximum value $\sin \omega t$ can take is 1, so $\varepsilon_{\rm max} = NBA_0\omega$

$$\begin{split} \text{(d)} & \qquad \qquad \varepsilon^2 = N^2 B^2 A_0^2 \omega^2 \sin^2 \omega t \\ & \qquad \qquad \left(\varepsilon^2\right)_{\text{mean}} = N^2 B^2 A_0^2 \omega^2 \left(\sin^2 \omega t\right)_{\text{mean}} = N^2 B^2 A_0^2 \omega^2 \times \frac{1}{2} \\ & \sqrt{\left(\varepsilon^2\right)_{\text{mean}}} = \varepsilon_{\text{rms}} = N B A_0 \omega \times \sqrt{0.5} = \frac{1}{\sqrt{2}} N B A_0 \omega \quad \text{hence,} \\ & \qquad \qquad \varepsilon_{\text{rms}} = \frac{1}{\sqrt{2}} \varepsilon_{\text{max}} \end{aligned}$$

23 Energy and fields - accelerator

(a)
$$p = mv = m\sqrt{\frac{2K}{m}} = \sqrt{2mK} = \sqrt{2mqV}$$

(b)
$$v = \sqrt{\frac{2K}{m}} = \sqrt{\frac{2qV}{m}}$$

(c)
$$v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2}{m}\left(\frac{mu^2}{2}+qV\right)}=\sqrt{u^2+\frac{2qV}{m}}$$

(d)
$$\Delta K = FL = qEL$$

(e)
$$E = \frac{F}{q} = \frac{\Delta K}{qL} = \frac{V}{L}$$

(f)
$$p = mv = m\sqrt{\frac{2K}{m}} = \sqrt{2mK} = \sqrt{2mqV} = \sqrt{2mqEL}$$

(g)
$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{m\sqrt{2K/m}} = \frac{h}{\sqrt{2Km}} = \frac{h}{\sqrt{2mqV}}$$

29 Vectors and fields - helix in magnetic field

(a)
$$F=ma$$
, so $qv_{\perp}B=rac{mv_{\perp}^2}{r}$ and $qvB\sin\theta=rac{mv^2\sin^2\theta}{r}$. Rearranging gives $r=rac{mv\sin\theta}{qB}$

(b) From a):
$$r=\frac{mv\sin\theta}{qB}$$
 and $v_{\perp}=\frac{2\pi r}{T}=v\sin\theta.$ So $r=\frac{mv\sin\theta}{qB}=\frac{T}{2\pi}v\sin\theta.$ Therefore $T=\frac{2\pi m}{qB}$

(c)
$$\begin{split} v_\perp^2 + v_\parallel^2 &= v^2 \sin^2\theta + v^2 \cos^2\theta = v^2 \left(\sin^2\theta + \cos^2\theta\right) = v^2. \end{split}$$
 Thus $v = \sqrt{v_\perp^2 + v_\parallel^2}.$

(d) From c):
$$T=\frac{2\pi m}{qB}$$
 and $s_{\rm p}=v_{\parallel}T=v\cos\theta\frac{2\pi m}{qB}$. Re-arranging gives $q/m=\frac{2\pi}{Bs_{\rm p}}v\cos\theta$.

30 Vectors and fields - mass spectrometer

(a)
$$F_{\rm B}=ma~{
m so}~Bqv=rac{mv^2}{r}.$$
 Rearranging gives $r=rac{mv}{Bq}$

(b)
$$qV_{\rm a}=\frac{1}{2}mv^2$$
 so $v=\sqrt{\frac{2qV_{\rm a}}{m}}$. Now using our result for r from (a), $r=\frac{mv}{Bq}=\frac{m}{Bq}\sqrt{\frac{2qV_{\rm a}}{m}}=\sqrt{\frac{2mV_{\rm a}}{B^2q}}$

(c) From (a):
$$r = \frac{mv}{Bq}$$
 so $\frac{q}{m} = \frac{v}{Br}$

(d) From (b):
$$r^2 = \frac{2mV_a}{B^2q}$$
 so $\frac{q}{m} = \frac{2V_a}{B^2r^2}$

(e)
$$F_{\mathsf{E}} = F_{\mathsf{B}}$$
 so $qE = qvB$ and $E = vB$. So $V_{\mathsf{S}} = Ed = vBd$