${\rm Nr.~albumu:~}210254$

Imię i nazwisko: Patryk Lisik Nr. albumu: 210206

Imię i nazwisko: Paweł Jeziorski

Kierunek: Informatyka

sem. 2. Nr. zespołu 10

rok akademicki: 2016/2017

grupa II

Laboratorium elektroniki

Ćwiczenie E08

 $Wzmacniacz\ operacyjny$

Cel ćwiczenia

- 1. Poznanie właściwości wzmacniaczy operacyjnych
- 2. Poznanie możliwości realizacji bloków funkcjonalnych za pomocą wzmacniaczy operacyjnych
- 3. Doskonalenie techniki pomiarowej

Wykaz aparatury

- 1. Generator funkcyjny DF1641B
- 2. Oscyloskop cyfrowy SDS 1052DL I3/PRO/010/T8/77/3
- 3. Oscyloskop analogowy I3/T6/259
- 4. Zasilacz I3/RPO/010/T8/S0/2
- 5. Zasilacz do ZN I3/RPO/010/T8/43/2
- 6. Multimetr METEX I3/T8/2646/8 [5.1.1-5.1.3]
- 7. Multimetr METEX I3/T6/259/4 [5.1.4-5.3.3]
- 8. Multimetr Protek 506 WD 043.01-002-203
- 9. Zestaw źródeł sterujących (ZZS) nowy nie opatrzony numerem
- 10. Zestaw W-01

1 Wzmacniacz w układzie odwracającym

1.1 Wyznaczanie charakterystyki przejściowej wzmacniacza operacyjnego

Tabela 1: Wyniki pomiarów charakterystyki przejściowej

[V]	[V]	Uwo [V]	[V]
Uwe [V]	Uwy [V]	Uwe [V]	Uwy [V]
-11,95	14,149	0,523	-1,052
-11,06	14,138	1,003	-2,016
-10,05	14,138	1,47	-2,957
-9,01	14,138	2,013	-4,049
-8,03	14,139	2,515	-5,085
-7,04	14,126	3,01	-6,052
-6,02	12,105	3,49	-7,019
-5,57	12,208	4,01	-8,057
-5	10,068	4,43	-9,112
-4,48	9,022	5,05	-10,158
-4,02	8,084	5,56	-11,178
-3,48	7,008	6,03	-12,128
-3,04	6,112	6,49	-13,049
-2,554	5,101	7,05	-13,353
-2,009	4,04	8	-13,353
-1,527	3,071	9,06	-13,352
-1,03	2,072	10,01	-13,353
-0,467	0,939	11,02	-13,353
0,002	0,006	12,01	-13,353

Rysunek 1: Charakterystyka przejściowa wzmacniacza operacyjnego

1.2 Pomiar rezystancji wejściowej wzmacniacza operacyjnego

Tabela 2: Pomiary charakterystyki przejściowej wzmacniacza

Uwe [V]	Uwy [V]
12,79	-12,86
12,01	-12,08
11,02	-11,089
10,01	-10,087
9,06	-9,141
8	-8,053
7,05	-7,072
6,49	-6,539
6,03	-6,07
5,56	-5,595
5,05	-5,067
4,53	-4,554
4,05	-4,076
3,06	-3,085
1,998	-2,011
1,003	-1,009
-0,009	0,01
-1,005	1,012
-1,985	1,998
-3,01	3,03
-4,01	4,043
-5	5,035
-6,01	6,05
-7,01	7,057
-8	8,047
-9,01	9,071
-10,08	10,139
-11,14	11,206
-12,03	12,101

Rysunek 2: Charakterystyki przejściowe wzmacniacza operacyjnego

$$R_{we} = \frac{R_{S1}}{\frac{U_{wy}}{U_{wyR_{S1}}} - 1}$$
 Dla $U_{we} \approx 5VR_{we} = \frac{10k\Omega}{\frac{-10,158}{-5,067} - 1} \approx 9,95k\Omega$

Wnioski

- 1. Zadanie zostało wykonane inaczej niż przewiduje instrukcja. Zmierzono wiele wartości napięć wyjściowych.
- 2. Rezystancja wejściowa wzmacniacza jest bardzo bliska oporowi opornika RS1

1.3 Pomiar rezystancji wyjściowej wzmacniacza operacyjnego

Tabela 3: Pomiary napięć na wejściu i wyjściu wzmacniacza przy zmiennym oprze R_l

$R_L[k\Omega]$	Uwe [V]	Uwy[V]
∞	-5,97	11,992
4	-5,97	11,992
3	-5,97	11,992
2	-5,97	11,992
1	-5,97	11,992

$$R_{wy} = R_L (\frac{U_{wy}}{U_{wyRL}} - 1) \approx \begin{cases} RL1 = 2k\Omega & R_{wy} = 0\Omega \\ RL2 = 5k\Omega & R_{wy} = 0\Omega \\ RL3 = 10k\Omega & R_{wy} = 0\Omega \\ RL4 = 20k\Omega & R_{wy} = 0\Omega \end{cases}$$

Wnioski

1. Układ ma bardzo duże sprzężenie zwrotne, spadek napięcia powoduje jego natychmiastowy wzrost. Bardzo mała rezystancja wyjściowa sprawia, że napięcie na wyjściu nie zmienia się

1.4 Pomiar pasma przenoszenia wzmacniacza operacyjnego

CH1[mV]	CH2[mV]	f[Hz]	$k_u[dB]$	$20log \frac{U_{wy}}{U_{we}} [dB]$
200	-	300	-	-
194	-	260	-	-
114	54	250000	2,111111111	6,49022183
58	54	450000	1,074074074	0,6206846748
50	54	500000	0,9259259259	-0,6684751097
40	54	613400	0,7407407407	-2,60667537
30	54	755600	0,555555556	-5,105450102
24	54	893500	0,444444444	-7,043650362
20	54	1008000	0,3703703704	-8,627275283

Tabela 4: Pomiar współczynnika k_u

$$k_u^t = -\frac{Z_2}{Z_1} = -10$$

Rysunek 3: Charakterystyka przejściowa wzmacniacza operacyjnego

Wnioski

- 1. Szumy oscyloskopu cyfrowego uniemożliwiły wykonanie pomiarów dla niskich częstotliwości.
- 2. Otrzymane punkty nie pozwalają na określenie charakterystyki przejściowej badanego wzmacniacza.

1.5 Pomiar współczynnika wzmocnienia wzmacniacza operacyjnego dla zmiennych napięć

Tabela 5: Pomiary współczynnika wzmocnienia

$Z1[k\Omega]$	$Z2[k\Omega]$	CH1[mv]	Ch2[mv]	$k_u[dB]$	$k_u^a[dB]$	$k_u^t[\mathrm{dB}]$	$k_u^{at}[\mathrm{dB}]$
10	10	100	92	1,086	0,72	1	0
15	20	120	92	1,30	2,30	1,3	2,498774732
20	50	140	92	1,52	3,64	2,5	7,958800173
25	100	380	92	4,13	12,31	4	12,04119983

Wnioski

1. W zadaniu 1.5 jedynie 1 pomiar znacznie odbiega od wartości oczekiwanej

2 Wzmacniacz w układzie nieodwracającym

${f 2.1}$ Wyznaczanie charakterystyki przejściowej wzmacniacza operacyjnego

Tabela 6: Charakterystyka przejściowa wzmacniacza operacyjnego dla $Z_1=10k\Omega$ oraz $Z_2=20k\Omega$

$U_{-}we$	U_wy
-12	-13,367
-11	-13,367
-10,01	-13,667
-8,99	-13,366
-8,07	-13,364
-7,02	-13,363
-6,04	-13,362
-5,06	-13,362
-4,09	-12,313
-3,07	-9,26
-1,99	-5,987
-1,046	-3,148
0,008	0,028
1,011	3,045
1,986	5,38
3,019	9,087
4,01	12,072
5,93	14,151
6,97	14,151
8,07	14,154
10,43	14,158
12	14,158

Rysunek 4: Charakterystyka przejściowa wzmacniacza operacyjnego

2.2 Pomiar rezystancji wejściowej wzmacniacza operacyjnego

Tabela 7: Pomiary charakterystyk przejściowych wzmacniacza

Rezytor	RS_1	Rezystor	RS_3
$U_{-}we[V]$	$U_{-}wy[V]$	$U_{-}we[V]$	U_wy[V]
-12,18	-13,353	U_we	U_we
-10,07	-13,356	-12,18	-12,18
-8,07	-13,358	-10,07	-10,07
-6,04	-13,359	-8,07	-8,07
-4,14	-12,467	-6,04	-6,04
-3	-9,026	-4,14	-4,14
-2,011	-6,049	-3	-3
-1,006	-3,025	-2,011	-2,011
0,141	0,418	-1,006	-1,006
1,018	3,064	0,141	0,141
2,022	6,086	1,018	1,018
2,985	8,983	2,022	2,022
3,05	12,201	2,985	2,985
5,04	14,151	3,05	3,05
8,01	14,152	5,04	5,04
9,03	14,153	8,01	8,01
11,17	14,155	9,03	9,03
12,04	14,155	11,17	11,17

Rysunek 5: Charakterystyka przejściowa wzmacniacza operacyjnego

$$R_{wy} = \frac{R_{Sx}}{\frac{U_{wy}}{U_{wyR_{Sx}}} - 1} \approx \begin{cases} RS1 = 10k\Omega & R_{wy} = \frac{10k\omega}{\frac{-9,26V}{-9,026} - 1} = 386\Omega \\ RS3 = 10M\Omega & R_{wy} = \frac{10M\omega}{\frac{9,087}{7,592} - 1} = 51G\Omega \end{cases}$$

2.3 Pomiar rezystancji wyjściowej wzmacniacza operacyjnego

Tabela 8: Pomiar rezystancji wyściowej

R_L	V
1	12,056
2	12,056
3	12,056
4	12,056
∞	12,056

$$R_{wy} = R_L (\frac{U_{wy}}{U_{wyRL}} - 1) \approx \begin{cases} RL1 = 2k\Omega & R_{wy} = 0\Omega \\ RL2 = 5k\Omega & R_{wy} = 0\Omega \\ RL3 = 10k\Omega & R_{wy} = 0\Omega \\ RL4 = 20k\Omega & R_{wy} = 0\Omega \end{cases}$$

Wnioski

1. Układ ma bardzo duże sprzężenie zwrotne, spadek napięcia powoduje jego natychmiastowy wzrost. Bardzo mała rezystancja wyjściowa sprawia, że napięcie na wyjściu

2.4 Pomiar pasma przenoszenia wzmacniacza operacyjnego

Tabela 9: Pomiary rezystancji wyjściowej dla $Z_1=5k\Omega$ oraz $Z_2=50k\Omega$

CH1[v]	CH2[v]	f[Hz]
1,06	0,096	300
1,06	0,096	596
1,06	0,096	3000
1	0,096	20000
0,6	0,096	100000
0,22	0,096	306000
0,16	0,096	411000
0,08	0,096	808000

Przełącznik Z_1 zgodnie z treścią polecenia był w pozycji 1, Z_2 w 3. $k_u^t=-\frac{Z_2}{Z_1}=\frac{50k\Omega}{10k\Omega}=-10$

Rysunek 6: Charakterystyka przejściowa wzmacniacza operacyjnego

2.5 Pomiar współczynnika wzmocnienia wzmacniacza operacyjnego dla zmiennych napięć

Tabela 10: Pomiar współczynnika wzmocnienia

$Z1[k\Omega]$	$Z2[k\Omega]$	CH1[mv]	Ch2[mv]	$k_u[dB]$	$k_u^a[\mathrm{dB}]$	$k_u^t[\mathrm{dB}]$	$k_u^{at}[\mathrm{dB}]$
5	0	0,28	0,09	2	0	3,11	9,85
5	20	0,46	0,096	4	9,542425094	4,79	13,60
5	50	1,06	0,096	10	19,08485019	11,0	20,86
15	50	0,44	0,096	3,3	7,359535706	4,583	13,22
20	100	0,56	0,096	5	12,04119983	5,83	15,31

Wnioski

- 1. W zadaniu 2.3 układ ma bardzo duże sprzężenie zwrotne, spadek napięcia powoduje jego natychmiastowy wzrost. Bardzo mała rezystancja wyjściowa sprawia, że napięcie na wyjściu nie zmienia się.
- 2. W zadaniu 2.4 uzyskano znacznie lepszy wykres niż w 1.4 dzięki użyciu oscyloskopu analogowego, którego poziom szumów był znacznie niższy.
- 3. W zadaniu 2.5 różnice między wsóczynnikami są większe niż w 1.5.

3 Wzmacniacz w układzie nieodwracającym - wtórniki - wersja rozszerzona

3.1 Wyznaczanie charakterystyki przejściowej wzmacniacza operacyjnego

Tabela 11: Pomiary charakterystyki przejściowej

Uwe[V]	Uwy[V]
-12,66	-12,65
-10,06	-10,097
-7,94	7,9
-4,84	-4,863
-2,217	-2,223
0,163	0,165
2,056	2,064
3,922	3,936
5	5,024
7	7,034
9,01	9,051
12,06	12,107

Rysunek 7: Charakterystyka przejściowa wzmacniacza operacyjnego

3.2 Pomiar rezystancji wejściowej wzmacniacza operacyjnego

Tabela 12: Pomiar rezystancji wejściowej

Opornk:	RS_2	Opornik:	RS_3
U_we	U_wy	U_we	U_wy
12.06	12,409	-12,59	-11,679
10,4	10,447	-10,07	-9,202
7,89	7,931	-8,07	-7,256
5,25	5,39	-6,29	-5,523
2,87	2,294	-4,19	-3,485
0,958	0,978	-2,048	-1,407
-1,357	-1,341	0,099	0,667
-3,284	-3,273	2,075	2,582
-5,01	-5,013	4,04	4,49
-7,11	-7,112	6,022	6,609
-9,02	-9,033	8,13	8,453
-11,9	-11,916	10,05	10,32
		12,53	12,713

Rysunek 8: Charakterystyka przejściowa wzmacniacza operacyjnego

Pomiary rezystancji wejściowej tabela (11) nie pokrywają się z pomiarami rezystancji wejściowej dla opornika RS2 można jednak zauważyć, że wartość wejścia jest równa

wartości wyjścia jak pokazuje wykres charakterystyki przejściowej. W ten sposób możemy otrzymać dodatkowy punkt $U_{we}=U_{wy}=-9.02$

$$R_{wy} = \frac{R_{Sx}}{\frac{U_{wy}}{U_{wyR_{Sx}}} - 1} \approx \begin{cases} RS2 = 300k\Omega & R_{wy} = \frac{300k\Omega}{\frac{-9.02}{-9.033} - 1} = -208453k\Omega \\ RS3 = 10M\Omega & R_{wy} = \frac{10M\Omega}{\frac{-10.097V}{-9.202}} = 103M\Omega \end{cases}$$

Wnioski

- 1. Otrzymano niedodania wartość rezystancji wyjściowej dla opornika RS2 świadczy o błędzie w wykonaniu ćwiczenia.
- 2. Można zauważyć, że punkty pomiarowe wyznaczone przy badaniu rezystancji wyjściowej leżą niemal na tej samej prostej co punty charakterystyki przejściowej. Przez to nawet mały błąd systematyczny może spowodować uzyskanie ujemnych wartości $R_w y$.

3.3 Pomiar rezystancji wyjściowej wzmacniacza operacyjnego

Tabela 13: Pomiar rezystancji wyjściowej

RL	$U_{we}[V]$	$U_{wy}[V]$
1	12,08	12,126
2	12,08	12,126
3	12,08	12,126
4	12,08	12,126
inf	12,08	12,126

$$R_{we} = R_L (\frac{U_{wy}}{U_{wyRL}} - 1) \approx \begin{cases} RL1 = 2k\Omega & R_{we} = 0\Omega \\ RL2 = 5k\Omega & R_{we} = 0\Omega \\ RL3 = 10k\Omega & R_{we} = 0\Omega \\ RL4 = 20k\Omega & R_{we} = 0\Omega \end{cases}$$