Introduction to Computer Networks

Routing Overview

Where we are in the Course

- More fun in the Network Layer!
 - We've covered packet forwarding
 - Now we'll learn about <u>routing</u>

Application
Transport
Network
Link
Physical

Routing versus Forwarding

 Forwarding is the process of sending a packet on its way

Routing is the process
 of deciding in which
 direction to send traffic

Improving on the Spanning Tree

- Spanning tree provides basic connectivity
 - e.g., some path B→C

- Routing uses all links to find "best" paths
 - e.g., use BC, BE, and CE

Perspective on Bandwidth Allocation

 Routing allocates network bandwidth adapting to failures; other mechanisms used at other timescales

	Mechanism	Timescale / Adaptation
	Load-sensitive routing	Seconds / Traffic hotspots
	Routing	Minutes / Equipment failures
	Traffic Engineering	Hours / Network load
-	Provisioning	Months / Network customers

Delivery Models

Different routing used for different delivery models

Goals of Routing Algorithms

 We want several properties of any routing scheme:

	Property	Meaning
>	Correctness	Finds paths that work
	Efficient paths	Uses network bandwidth well
	Fair paths	Doesn't starve any nodes
	Fast convergence	Recovers quickly after changes
<u> </u>	Scalability	Works well as network grows large

Rules of Routing Algorithms

- Decentralized, distributed setting
 - All nodes are alike; no controller
 - Nodes only know what they learn by exchanging messages with neighbors
 - Nodes operate concurrently
 - May be node/link/message failures

Topics

Pv4, IPv6, NATs and all that time

Shortest path routing

Distance Vector routing

Flooding

Link-state routing

Equal-cost multi-path

Inter-domain routing (BGP)

This time

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey