

Interactive Model Construction for Tabular

Dylan Hutchison

Advisors Andy Gordon and Claudio Russo

15 August 2014

Wild_Propagate red	dord_ID_ Genus	Species	On_CITES	Country	conserve	_concern conserve_	priority price_USD
Р	1 Adenia	cladosepala	FALSE	ND	Н	Н	8.29
Р	2 Adenia	cladosepala	FALSE	ND	Н	Н	71.82
Р	3 Adenia	cladosepala	FALSE	DE	Н	Н	4.56
Р	4 Adenia	cladosepala	FALSE	ND	Н	Н	17.89
Р	5 Adenia	cladosepala	FALSE	CZ	Н	Н	1
Р	6 Adenia	cladosepala	FALSE	USA	Н	Н	38
Р	7 Adenia	cladosepala	FALSE	CYPRUS	Н	Н	7.58
Р	8 Adenia	cladosepala	FALSE	ND	Н	Н	17.85
Р	9 Adenia	cladosepala	FALSE	CZ	Н	Н	1
Р	10 Adenia	cladosepala	FALSE	DE	Н	Н	7.58
Р	11 Adenia	cladosepala	FALSE	UK	Н	Н	37.13
Р	12 Adenia	cladosepala	FALSE	DE	Н	Н	7.15
Р	13 Adenia	cladosepala	FALSE	CYPRUS	Н	Н	7.57
Р	14 Adenia	cladosepala	FALSE	DE	Н	Н	7.15
Р	15 Adenia	cladosepala	FALSE	ND	Н	Н	17.82
Р	16 Adenia	cladosepala	FALSE	CZ	Н	Н	1
Р	17 Adenia	cladosepala	FALSE	USA	Н	Н	38
Р	18 Adenia	cladosepala	FALSE	DE	Н	Н	4.54
Р	19 Adenia	cladosepala	FALSE	USA	Н	Н	9.95
Р	20 Adenia	cladosepala	FALSE	GE	Н	Н	1.37

```
int
                       input
                 string input
Country
                 string input
Genus
On CITES
                 bool input
Species
                 string input
Wild_Propagate
                 string input
conserve_concern string input
conserve_priority string input
price_USD
                 real input
redord ID
                 int input
```

```
W.TypeInfer "tmain" ""
W.ExactInfer "tmain" ["Genus"; "Species"]
W.NaiveBayes "tmain" "Wild_Propagate"

["conserve_priority"; "conserve_concern"; "On_CITES"]
|> List.map (W.Model "T_Genus_Species")
```

T_conserve_priority			
ID	int	input	
conserve_priority	string	input	pk
T_conserve_concern			
ID	int	input	
conserve_concern	string	input	pk
T_Wild_Propagate			
ID	int	input	
Wild_Propagate	string	input	pk
T_Species			
ID	int	input	
Species	string	input	pk
T_On_CITES			
ID	int	input	
On_CITES	string	input	pk
T_Genus			
ID	int	input	
Genus	string	input	pk
T_Country			
ID	int	input	
Country	string	input	pk
T. Comm. Commission	Mallala Halanaa Tabla		
T_Genus_Species	Visible Uniques Table		
ID Common	int	input	at.
Genus	link(T_Genus)	input	pk -t.
Species	link(T_Species)	input	pk CDiscrete (N-SixoCf/T conseque priority)
conserve_priority	link(T_conserve_priority)		CDiscrete(N=SizeOf(T_conserve_priority))
conserve_concern On_CITES	link(T_conserve_concern) link(T_On_CITES)		CDiscrete(N=SizeOf(T_conserve_concern)) CDiscrete(N=SizeOf(T_On_CITES))
OII_CITES	IIIIK(I_UII_CITE3)	output	CDISCIPLE(N=312EOI(1_OII_CTE3))
tmain			
ID	int	input	
Wild_Propagate	link(T_Wild_Propagate)		CDiscrete(N=SizeOf(T_Wild_Propagate))
Genus_Species	link(T_Genus_Species)	output	CDiscrete(N=SizeOf(T_Genus_Species))[Wild_Propagate]
Country	link(T_Country)		CDiscrete(N=SizeOf(T_Gents_Species))[Wild_Propagate]
Genus	link(T_Genus)		Genus_Species.Genus
On_CITES	link(T_On_CITES)		Genus_Species.On_CITES
Species	link(T_Species)		Genus_Species.Species
conserve_concern	link(T_conserve_concern)		Genus_Species.conserve_concern
conserve_priority	link(T_conserve_priority)		Genus_Species.conserve_concern Genus_Species.conserve_priority
price_USD	real		CGaussian(MeanMean=45.53844295,MeanPrec=0.0001470609862)[Wild_Propagate]
F12_000		Surpar	

ID) Wild_Pro	pagate Genus	Species On_CI1	ES Country	conserve_concern	conserve_priority	price_USD	Genus_Species	ID	conserve_priority
	0	3		1	2		9	08	16 0	Н
	1	3			4			1.2	17 1	H-M
	2	3		1	2		33	42 :	17 2	L
	3	2		1	.6			80	24 3	М
	4	2		1	.6			35	21 4	U
L	5	2			7		93	57	18	
	6	2			6		123	85	21	
	7	2			5		3	85	33	
	8	2		1	.5		4	63	27	
	9	2		1	3		53	67	21	
	10	2			5		4	0.6	33	
	11	0		1	.6			75	3	
	12	3			5		4	54	16	
	13	2		1	2		50	36	21	
	14	2			7		38	53	33	
L	15	2		1	2		462	39	21	
	16	3		1	.5		5	89 :	16	
L	17	3			4		8	97	16	
	18	2			5		14	44	21	
	19	3			4		29	87	17	
	20	2		1	.6		10	99	24	

ID	conserve_concern
	0 H
	1 H-M
	2 L
	3 M
	4 M-H
	5 U

P
U
W
W-P

ID	Species		ID	Ωn	CITES
	0 abbreviata			0	FALSE
	1 aprevalii			1	TRUE
	2 borealis				
	3 cladosepala				
	4 cornigera				
	5 decaryi				
	6 ecirrosa				
	7 elephantop	hus			
	8 epigea				
	9 firingavaler	nsis			
	10 grandidieri				
	11 guillaumini				
	12 hirsutissim	3			
	13 humbertii				
	14 hyphaenoid				
	15 ihlenfeldtia	na			
	16 isaloensis				
	17 laza				
	18 leptocarpa				
	19 monadelph				
	20 monstruosa	3			

Genus		ID Country		ID Genu	s Specie	s conserv	e_priority conserve_	concern On_Cl
0 Adenia		0 AFRICA		0	0	3	0	0
1 Commiphe	ora	1 AFRICA ZA	1	1	0	6	4	5
2 Cyphoster	nma	2 AUSTRALIA		2	0	8	0	0
3 Operculica	arya	3 CYPRUS		3	0	9	0	0
4 Uncarina		4 CZ		4	0	16	0	0
		5 DE		5	0	19	0	0
		6 ES		6	0	21	0	0
		7 FR		7	0	25	3	3
		8 GE		8	0	31	1	1
		9 HUNGARY		9	1	1	1	1
		10 INDIA		10	1	11	1	0
		11 IT	1	11	1	13	1	0
		12 ND		12	1	20	1	0
		13 REUNION		13	1	22	1	0
		14 THAILAND		14	1	29	2	3
		15 UK		15	2	4	4	5
		16 USA		16	2	7	0	0
		17 ZA		17	2	17	0	4
				18	2	23	0	0
				19	2	27	2	0

Tabular: Probabilistic Models on Schemas

Get Data into Excel, clean data with tools like Power Query

2 Add in query-by-missing-value rows

(3) Write a Tabular Model

Compile to Infer.NET and profit!

Player	Name
	0 Alice
	1Bob
	2 Cynthia

	Match	Player1	Player2	1	Win1
		0	0	1	FALSE
		1	1	2	FALSE
		2	0	2	
_	L)				

Players

Skill real latent GaussianFromMeanAndPrecision(25.0,0.01)

Matches

Win1

Player1 link(Players) input

Player2 link(Players) input

Perf1 real latent GaussianFromMeanAndPrecision(Player1.Skill,0.01)

Perf2 real latent GaussianFromMeanAndPrecision(Player2.Skill,0.01)

Matches

bool

Ma	atch	Perf1	Perf2	Win1
	0	Gaussian(15.49, 129.1)	Gaussian(29.75, 123.6	Bernoulli(0)
	1	Gaussian(20.25, 123.6)	Gaussian(34.51, 129.1) Bernoulli(0)
	2	Gaussian(20.25, 182.3)	Gaussian(29.75, 182.3	Bernoulli(0.3092)

output Perf1 > Perf2

25/08/2014

MSR Confidential

-3

Tabular: Probabilistic N

Get Data into Excel, clean data wit

2) Add in query-by-missing-value

(3) Write a Tabular Model

Compile to Infer.NET and profit!

Player	Name
	0 Alice
	1Bob
	2 Cynthia

	Match	Player1	Player2	2 V	Vin1	
		0	0	1	FALSE	
		1	1	2	FALSE	
		2	0	2		
_	L)					

	Log Evidence	Players		
(4)	-1.56	Player	Skill	
			0 Gaussian (20.2	5, 82.28)
Infer.NET 👚			1 Gaussian (25, 7	0.66)
			2 Gaussian (29.7	5, 82.28)

3: Easier than writing Infer.NET but still hard for Data Scientists.
Which models make sense?
Which perform best?

Players

Skill real latent GaussianFromMeanAndPrecision(25.0,0.01)

Matches

Player1 link(Players) input

Player2 link(Players) input

Perf1 real latent GaussianFromMeanAndPrecision(Player1.Skill,0.01)

Perf2 real latent GaussianFromMeanAndPrecision(Player2.Skill,0.01)

Win1 bool output Perf1 > Perf2

Matches

Match	Perf1	Perf2	Win1
	0 Gaussian (15.49, 129.1)	Gaussian(29.75, 123.6)	Bernoulli(0)
	1 Gaussian (20.25, 123.6)	Gaussian(34.51, 129.1)	Bernoulli(0)
	2 Gaussian (20.25, 182.3)	Gaussian(29.75, 182.3)	Bernoulli(0.3092)

Ex1: Clouds, Rain, Sprinklers, WetGrass

- 4 Boolean Variables
- Space of Models = Bayesian Networks
 - Let "→" mean "governs the distribution behind"
 - Rain → WetGrass?
 - Sprinklers → Rain??
- Use ModelWizard to explore & compare

sprinkler	rain	wetGrass
FALSE		FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	FALSE
TRUE	FALSE	FALSE
FALSE	FALSE	FALSE
TRUE	TRUE	TRUE
FALSE	FALSE	FALSE
	FALSE FALSE TRUE TRUE FALSE TRUE	FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

Classic model, taken from <u>Kevin Murphey 1998</u>. Data generated by sampling an Infer.NET program.

tmain

ID	int	input
cloudy	string	input
rain	string	input
sprinkler	string	input
wetGrass	string	input

1. TypeInfer

2. Model

tmain

ID	int	input
cloudy	link(T_cloudy)	output CDiscrete(N=SizeOf(T_cloudy))
rain	link(T_rain)	output CDiscrete(N=SizeOf(T_rain))
sprinkler	link(T_sprinkler)	<pre>output CDiscrete(N=SizeOf(T_sprinkler))</pre>
wetGrass	link(T_wetGrass)	<pre>output CDiscrete(N=SizeOf(T_wetGrass))</pre>

3. Approx

ID	int	input
cloudy	link(T_cloudy)	output CDiscrete(N=SizeOf(T_cloudy))
rain	link(T_rain)	output CDiscrete(N=SizeOf(T_rain))[cloudy]
sprinkler	link(T_sprinkler)	output CDiscrete(N=SizeOf(T_sprinkler))[cloudy]
wetGrass	link(T_wetGrass)	output CDiscrete(N=SizeOf(T_wetGrass))[sprinkler][rain]

T_wetGrass			
ID	int	input	
wetGrass	string	input	pk
T_sprinkler			
ID	int	input	
sprinkler	string	input	pk
T_rain			
ID	int	input	
rain	string	input	pk
T_cloudy			
ID	int	input	
cloudy	string	input	pk
tmain			
ID	int	input	
cloudy	link(T_cloudy)	input	
rain	link(T_rain)	input	
sprinkler	link(T_sprinkler)	input	
wetGrass	link(T_wetGrass)	input	

Model Improvement: Predicting Cloudy

cloudy	link(T_cloudy)	output CDiscrete(N=SizeOf(T_cloudy))
rain	link(T_rain)	output CDiscrete(N=SizeOf(T_rain))[cloudy]
sprinkler	link(T_sprinkler)	output CDiscrete(N=SizeOf(T_sprinkler))[cloudy]
wetGrass	link(T_wetGrass)	<pre>output CDiscrete(N=SizeOf(T_wetGrass))[sprinkler][rain]</pre>

25/08/2014 MSR Confidential 7

Ex2: Naive Bayes Classifier: Gender

ID	gender	height	weight	footsize
0	1	6	180	12
1	1	5.92	190	11
2	1	5.58	170	12
3		5.92	165	10
4	0	5	100	6
5	0	5.5	150	8
6	0	5.42	130	7
7		5.75	150	9

tmain

ID	int	input
footsize	int	input
gender	int	input
height	real	input
weight	int	input

1. NaiveBayes

T_gender

ID	int	input
gender	string	input pk

ID	int	input	
gender	link(T_gender)	output	CDiscrete(N=SizeOf(T_gender))
footsize	real	output	CGaussian (Mean Mean = 9.375, Mean Prec = 0.01667) [gender]
height	real	output	CGaussian(MeanMean=5.63625,MeanPrec=0.1)[gender]
weight	real	output	CGaussian(MeanMean=154.375,MeanPrec=0.00111)[gender]

```
NaiveBayes tmain (+)
  ReorderColumns tmain
  Type tmain gender Nominal
 Model tmain gender
  Model tmain footsize
  Model tmain height
  Model tmain weight
  Approx tmain gender footsize
  Approx tmain gender height
  Approx tmain gender weight
  EstimateHyper tmain (+)
    EstimateHyper tmain weight
    EstimateHyper tmain height
    EstimateHyper tmain footsize
```

Ex3: Exact Functional Dependencies: Plant Sales in Madagascar

Genus	Species	On_CITES	Country	conserve	_concern conserve_	_priority price_USD
Adenia	olaboensis	TRUE	ND	Н	Н	22
Adenia	olaboensis	TRUE	DE	Н	Н	5.91
Adenia	olaboensis	TRUE	CZ	Н	Н	8.96
Adenia	perrieri	FALSE	FR	M	M	16.51
Adenia	perrieri	FALSE	ND	M	M	17.81
Adenia	perrieri	FALSE	ND	M	M	17.81

Thanks to Matt Smith for the dataset!

T_conserve_priority			
ID	int	input	
conserve_priority	string	input	pk
T_conserve_concerr	1		
ID	int	input	
conserve_concern	string	input	pk
T_Wild_Propagate			
ID	int	input	
Wild_Propagate	string	input	pk
T_Species			
ID	int	input	
Species	string	input	pk
T On CITES			
ID	int	input	
On_CITES	string	input	pk
T_Genus			
ID	int	input	
Genus	string	input	pk
T_Country			
ID	int	input	
Country	string	input	pk
tmain			
ID	int	input	
Country	link(T_Country)	input	
Genus	link(T_Genus)	input	
On_CITES	link(T_On_CITES)	input	
Species	link(T_Species)	input	
Wild_Propagate	link(T_Wild_Propagate)	input	
conserve_concern	link(T_conserve_concern)		
conserve_priority	link(T_conserve_priority)	input	
price_USD	real	input	

1. TypeInfer tmain

T_Genus_Specie	s Visible Uniques Table	9
ID	int	input
Genus	link(T_Genus)	input pk
Species	link(T_Species)	input pk
conserve_priorit	y link(T_conserve_pric	ority) input
conserve_conce	rn link(T_conserve_con	cern) input —
On_CITES	link(T_On_CITES)	input

tmain ID int input Country string input Genus string input On CITES bool input Species string input Wild_Propagate string input string input conserve_concern conserve_priority string input price USD real input

Columns exactly determined by (Genus, Species)

ID	int	input
Genus_Species	link(T_Genus_Species)	<pre>output CDiscrete(N=SizeOf(T_Genus_Species))</pre>
Country	link(T_Country)	input
Genus	link(T_Genus)	output Genus_Species.Genus
On_CITES	link(T_On_CITES)	output Genus_Species.On_CITES
Species	link(T_Species)	output Genus_Species.Species
Wild_Propagate	link(T_Wild_Propagate)	input
conserve_concern	link(T_conserve_concern)	output Genus_Species.conserve_concern
conserve_priority	link(T_conserve_priority)	output Genus_Species.conserve_priority
price_USD	real	input

3. NaiveBayes tmain

4. Model T_Genus_Species ...

```
T_Genus_Species
                   Visible Uniques Table
                   int
                                            input
                   link(T Genus)
                                            input pk
Genus
Species
                   link(T Species)
                                           input pk
                   link(T_conserve_priority) output CDiscrete(N=SizeOf(T_conserve_priority))
conserve_priority
                   link(T conserve concern) output CDiscrete(N=SizeOf(T conserve concern))
conserve_concern
On CITES
                   link(T On CITES)
                                            output CDiscrete(N=SizeOf(T On CITES))
```

ID	int	input
Wild_Propagate	link(T_Wild_Propagate)	output CDiscrete(N=SizeOf(T_Wild_Propagate))
Genus_Species	link(T_Genus_Species)	output CDiscrete(N=SizeOf(T_Genus_Species))[Wild_Propagate]
Country	link(T_Country)	output CDiscrete(N=SizeOf(T_Country))[Wild_Propagate]
Genus	link(T_Genus)	output Genus_Species.Genus
On_CITES	link(T_On_CITES)	output Genus_Species.On_CITES
Species	link(T_Species)	output Genus_Species.Species
conserve_concern	link(T_conserve_concern)	output Genus_Species.conserve_concern
conserve_priority	link(T_conserve_priority)	output Genus_Species.conserve_priority
price_USD	real	output CGaussian(MeanMean=45.5384,MeanPrec=0.00014706)[Wild_Propagate]

Better Models by Capturing Exact FDs

Without EFDs With EFDs

type State = Schema * Data type Operation = State -> State option

Primitive Operations

Type

- JoinDomain
- ModelExact
- Approx

Matrix

Factorization

- Clustering
- Time

Later... • Regression

Compound Operations

- TypeInferNaiveBayes
- EstimateHyperExactInfer

Future: ModelWizard GUI

- Related to 2002 VIBES graphical model builder by John Winn
- Integration with existing tools
 - Excel Data Model, Factor Graph view
- → Default models within reach of Data Scientists

MODELWIZARD

Interactive Model Construction

New abstraction to simultaneously refine...

Your Expertise

- + Automation & Search
- + Default Models
- = Discovery √

```
State = Schema * Data
PrimOp = State -> State option
```

Backup

Bayesian Network: Inferred Parameters

All-independent model: Marginal Distributions

P(S=F) P(S=T)

0.5

0.1

0.5

0.9

cloudy_V	Dirichlet(490 512)	0.51
rain_V	Dirichlet(489 512)	0.51
sprinkler_V	Dirichlet(698 304)	0.30
wetGrass_V	Dirichlet(355 647)	0.65

P(C=F)	P(C=T)
0.5	0.5

С	P(R=F) P(R=T)
F	8.0	0.2
Т	0.2	8.0

All-Independent
Model

S R	P(W=F)	P(W=T)
FF	1.0	0.0
ΤF	0.1	0.9
FΤ	0.1	0.9
тт	0.01	0.99

Full model: Conditional Distributions

cloudy_V	Dirichlet(490 512)	0.51
rain_V_0	Dirichlet(390 101)	0.21
rain_V_1	Dirichlet(100.6 412)	0.80
sprinkler_V_0	Dirichlet(239 252)	0.51
sprinkler_V_1	Dirichlet(460 53)	0.10
wetGrass_V_0_0	Dirichlet(278.7 1)	0.00
wetGrass_V_1_0	Dirichlet(25 188)	0.88
wetGrass_V_0_1	Dirichlet(53.34 368)	0.87
wetGrass_V_1_1	Dirichlet(1 93)	0.99

Final Model


```
= Schema * Data
type State
```

type **Program** = Operation list

Primitive Operations

Type JoinDomain

Exact

- Model
- Approx

Compound Operations

- TypeInferNaiveBayes
- EstimateHyper
 ExactInfer

- Later... Regression Clustering
- Matrix **Factorization**