Lecture 6: Theoretical Fundamentals of MDPs and Dynamic Programming

Diana Borsa

30th January 2020, UCL

This Lecture

- ► Last lectures: MDP, DP, Model-free Prediction, Model-free Control (Sample-versions of VI/PI)
- ► This lecture:
 - Mathematical formalism behind the MDP framework.
 - ▶ Revisit the Bellman equations and introduce their corresponding operators.
 - Re-visit the paradigm of dynamic programming: VI and PI.
- Next lectures: approximate versions of these paradigms, mainly in the absence of perfect knowledge of the environment.

Preliminaries

(Quick Recap of Functional Analysis)

Normed Vector Spaces

- Normed Vector Spaces: vector space \mathcal{X} + a norm $\|.\|$ on the elements of \mathcal{X} .
- Norms are defined a mapping $\mathcal{X} \to \mathbb{R}$ s.t:
 - 1. $||x|| \ge 0, \forall x \in \mathcal{X}$ and if ||x|| = 0 then $x = \mathbf{0}$.
 - 2. $\|\alpha x\| = |\alpha| \|x\|$ (homogeneity)
 - 3. $||x_1 + x_2|| \le ||x_1|| + ||x_2||$ (triangle inequality)
- For this lecture:
 - ightharpoonup Vector spaces: $\mathcal{X} = \mathbb{R}^d$
 - Norms:
 - ightharpoonup max-norm/ L_{∞} norm $\|.\|_{\infty}$
 - (weighted) L_2 norms $||.||_{2,\rho}$

Contraction Mapping

Definition

Let \mathcal{X} be a vector space, equipped with a norm ||.||. An mapping $\mathcal{T}: \mathcal{X} \to \mathcal{X}$ is a α -contraction mapping if for any $x_1, x_2 \in \mathcal{X}$, $\exists \alpha \in [0, 1)$ s.t.

$$\|\mathcal{T}x_1 - \mathcal{T}x_2\| \le \alpha \|x_1 - x_2\|$$

- ▶ If $\alpha \in [0,1]$, then we call \mathcal{T} non-expanding
- Every contraction is also (by definition) Lipschitz, thus it is also continuous. In particular this means:

If
$$x_n \to_{\|.\|} x$$
 then $\mathcal{T}x_n \to_{\|.\|} \mathcal{T}x$

Fixed point

Definition

A point/vector $x \in \mathcal{X}$ is a fixed point of an operator \mathcal{T} if $\mathcal{T}x = x$.

Banach Fixed Point Theorem

Theorem (Banach Fixed Point Theorem)

Let $\mathcal X$ a complete normed vector space, equipped with a norm ||.|| and $\mathcal T: \mathcal X \to \mathcal X$ a γ -contraction mapping, then:

- 1. \mathcal{T} has a unique fixed point $x \in \mathcal{X}$: $\exists ! x^* \in \mathcal{X}$ s.t. $\mathcal{T}x^* = x^*$
- 2. $\forall x_0 \in \mathcal{X}$, the sequence $x_{n+1} = \mathcal{T}x_n$ converges to x^* in a geometric fashion:

$$||x_n - x^*|| \le \gamma^n ||x_0 - x^*||$$

Thus $\lim_{n\to\infty} ||x_n - x^*|| \le \lim_{n\to\infty} (\gamma^n ||x_0 - x^*||) = 0.$

(Recap) MDPs

► Markov Decision Processes (MDPs) formally describe an environment:

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r, \gamma)$$

- ▶ Almost all RL problems can be formalized as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

(Recap) Value functions

▶ State value function, for a policy π :

$$egin{aligned} oldsymbol{v_{\pi}(s)} &= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} | s_0 = s; \pi
ight] \end{aligned}$$

 \blacktriangleright Action value function, for a policy π :

$$q_{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} | s_0 = s ext{; } a_0 = a, \pi
ight]$$

 $lackbox{ Optimal value functions: } q^* = \max_{\pi} q_{\pi} \ (v^* = \max_{\pi} v_{\pi})$

(Recap) Bellman Equations

Theorem (Bellman Expectation Equations)

Given an MDP, $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, for any policy π , the value functions obey the following expectation equations:

$$v_{\pi}(s) = \sum_{a} \pi(s, a) \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) v_{\pi}(s') \right]$$
 (1)

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|a, s) \sum_{a' \in A} \pi(a'|s') q_{\pi}(s', a')$$
 (2)

(Recap) The Bellman Optimality Equation

Theorem (Bellman Optimality Equations)

Given an MDP, $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, the optimal value functions obey the following expectation equations:

$$v^*(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) v^*(s') \right]$$
 (3)

$$q^*(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|a, s) \max_{a' \in A} q^*(s', a')$$
 (4)

Bellman Operators

The Bellman Optimality Operator

Definition (Bellman Optimality Operator $T_{\mathcal{V}}^*$)

Given an MDP, $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, let $\mathcal{V} \equiv \mathcal{V}_{\mathcal{S}}$ be the space of bounded real-valued functions over \mathcal{S} . We define, point-wise, the Bellman Optimality operator $T_{\mathcal{V}}^* : \mathcal{V} \to \mathcal{V}$ as:

$$(T_{\mathcal{V}}^*f)(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) f(s') \right], \ \forall f \in \mathcal{V}$$
 (5)

As a common convention we drop the index ${\mathcal V}$ and simply use $T^*=T^*_{{\mathcal V}}$

Properties of the Bellman Operator T^*

1. It has one unique fixed point v^* .

$$T^*v^*=v^*$$

2. T^* is a γ -contraction wrt. to $\|.\|_{\infty}$

$$\|T^*v - T^*u\|_{\infty} \le \gamma \|v - u\|_{\infty}, \forall u, v \in \mathcal{V}$$

3. T^* is monotonic:

 $\forall u, v \in \mathcal{V}$ s.t. $u \leq v$, component-wise, then $T^*u \leq T^*v$

Properties of the Bellman Operator T^* (Proofs)

Prop. (2): T^* is a γ -contraction wrt. to $\|.\|_{\infty}$

Proof

$$|T^*v(s)-T^*u(s)| = |\max_{a} \left[r(s,a)+\gamma \mathbb{E}_{s'|s,a}v(s')\right] - \max_{b} \left[r(s,b)+\gamma \mathbb{E}_{s''|s,b}u(s'')\right]| \quad (6)$$

$$\leq \max_{a} \left| \left[r(s, a) + \gamma \mathbb{E}_{s'|s, a} v(s') \right] - \left[r(s, a) + \gamma \mathbb{E}_{s'|s, a} u(s') \right] \right| \tag{7}$$

$$= \gamma \max_{a} |\mathbb{E}_{s'|s,a} \left[v(s') - u(s') \right] | \tag{8}$$

$$\leq \gamma \max_{s'} |[v(s') - u(s')]| \tag{9}$$

Thus we get:

$$||T^*v - T^*u||_{\infty} \le \gamma ||v - u||_{\infty}, \forall u, v \in \mathcal{V}$$

Note: Step (6)-(7) uses: $|\max_a f(a) - \max_b g(b)| \le \max_a |f(a) - g(a)|$

Properties of the Bellman Operator T^* (Proofs)

Prop. (3): T^* is monotonic

Proof

Given
$$v(s) \leq u(s), \forall s \Rightarrow r(s, a) + \mathbb{E}_{s'|s,a}u(s') \leq r(s, a) + \mathbb{E}_{s'|s,a}v(s')$$
.

$$T^*v(s) - T^*u(s) = \max_{a} \left[r(s,a) + \gamma \mathbb{E}_{s'|s,a}v(s') \right] - \max_{b} \left[r(s,b) + \gamma \mathbb{E}_{s''|s,b}u(s'') \right]$$
(10)

$$\leq \max_{a} \left(\left[r(s,a) + \gamma \mathbb{E}_{s'|s,a} v(s') \right] - \left[r(s,a) + \gamma \mathbb{E}_{s'|s,a} u(s') \right] \right) \tag{11}$$

$$\leq 0, \forall s.$$
 (12)

Thus
$$T^*v(s) \leq T^*u(s), \forall s \in \mathcal{S}$$
.

Value Iteration through the lens of the Bellman Operator

Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = T^*v_k$.

As
$$k \to \infty$$
, $v_k \to_{\|.\|_{\infty}} v^*$.

Proof: Direct application of the Banach Fixed Point Theorem.

$$\begin{split} \|v_k - v^*\|_\infty &= \quad \|T^*v_{k-1} - v^*\|_\infty \\ &= \quad \|T^*v_{k-1} - T^*v^*\|_\infty \quad \text{(fixed point prop.)} \\ &\leq \quad \gamma \|v_{k-1} - v^*\|_\infty \quad \text{(contraction prop.)} \\ &\leq \quad \gamma^k \|v_0 - v^*\|_\infty \quad \text{(iterative application)} \end{split}$$

The Bellman Expectation Operator

Definition (Bellman Expectation Operator)

Given an MDP, $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, let $\mathcal{V} \equiv \mathcal{V}_{\mathcal{S}}$ be the space of bounded real-valued functions over \mathcal{S} . For any policy $\pi : \mathcal{S} \times \mathcal{A} \to [0,1]$, we define, point-wise, the Bellman Expectation operator $\mathcal{T}^{\pi}_{\mathcal{V}} : \mathcal{V} \to \mathcal{V}$ as:

$$(T_{\mathcal{V}}^{\pi}f)(s) = \sum_{a} \pi(s, a) \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s)f(s') \right], \ \forall f \in \mathcal{V}$$

$$(13)$$

Properties of the Bellman Operator T^{π}

1. It has one unique fixed point v_{π} .

$$T^{\pi}v_{\pi}=v_{\pi}$$

2. T^{π} is a γ -contraction wrt. to $\|.\|_{\infty}$

$$\|T^{\pi}v - T^{\pi}u\|_{\infty} \le \gamma \|v - u\|_{\infty}, \forall u, v \in \mathcal{V}$$

3. T^{π} is monotonic:

 $\forall u, v \in \mathcal{V}$ s.t. $u \leq v$, component-wise, then $T^{\pi}u \leq T^{\pi}v$

Properties of the Bellman Operator T^{π} (Proofs)

Prop. (2): T^{π} is a γ -contraction wrt. to $\|.\|_{\infty}$

Proof

$$T^{\pi} v(s) - T^{\pi} u(s) = \sum_{a} \pi(a|s) \left[r(s,a) + \gamma \mathbb{E}_{s'|s,a} v(s') - r(s,a) - \gamma \mathbb{E}_{s'|s,a} u(s') \right]$$

$$= \gamma \sum_{a} \pi(a|s) \mathbb{E}_{s'|s,a} \left[v(s') - u(s') \right]$$

$$\Rightarrow |T^{\pi} v(s) - T^{\pi} u(s)| \leq \gamma \max_{s'} |\left[v(s') - u(s') \right]|$$
(14)

Thus we get:

$$\|T^{\pi}v - T^{\pi}u\|_{\infty} \le \gamma \|v - u\|_{\infty}, \forall u, v \in \mathcal{V}$$

Note: (14) gives us also Prop. (3), monotonicity of T^{π} .

Policy Evaluation

Policy Evaluation

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = T^{\pi}v_k$.

As $k \to \infty$, $v_k \to_{\|.\|_{\infty}} v_{\pi}$.

Proof: Direct application of the Banach Fixed Point Theorem.

(Summary) Dynamic Programming with Bellman Operators

Value Iteration

- \triangleright Start with v_0 .
- ▶ Update values: $v_{k+1} = T^*v_k$.

Policy Iteration

- ightharpoonup Start with π_0 .
- ► Iterate:
 - Policy Evaluation: v_{π_i}
 - (E.g. For instance, by iterating T^{π} : $v_k = T^{\pi_i} v_{k-1} \Rightarrow v_k \to v^{\pi_i}$ as $k \to \infty$)
 - Greedy Improvement: $\pi_{i+1} = \arg \max_a q_{\pi_i}(s, a)$

Similarly for $q^\pi: \mathcal{S} imes \mathcal{A} o \mathbb{R}$ functions

Definition (Bellman Expectation Operator)

Given an MDP, $\mathcal{M}=\langle\mathcal{S},\mathcal{A},p,r,\gamma\rangle$, let $\mathcal{Q}\equiv\mathcal{Q}_{\mathcal{S},\mathcal{A}}$ be the space of bounded real-valued functions over $\mathcal{S}\times\mathcal{A}$. For any policy $\pi:\mathcal{S}\times\mathcal{A}\to[0,1]$, we define, point-wise, the Bellman Expectation operator $T_{\mathcal{Q}}^{\pi}:\mathcal{Q}\to\mathcal{Q}$ as:

$$(\mathcal{T}_{\mathcal{Q}}^{\pi}f)(s,a) = \mathit{r}(s,a) + \gamma \sum_{s'} \mathit{p}(s'|a,s) \sum_{a' \in \mathcal{A}} \pi(a'|s')\mathit{f}(s',a')$$
 , $\forall f \in \mathcal{Q}$

- This operator has unique fixed point which corresponds to the action-value function q_{π} in our MDP \mathcal{M} .
- ▶ Same properties as T^{π} : γ -contraction and monotonicity.

Similarly for $q^*: \mathcal{S} imes \mathcal{A} o \mathbb{R}$ functions

Definition (Bellman Optimality Operator)

Given an MDP, $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r, \gamma \rangle$, let $\mathcal{Q} \equiv \mathcal{Q}_{\mathcal{S}, \mathcal{A}}$ be the space of bounded real-valued functions over $\mathcal{S} \times \mathcal{A}$. We define the Bellman Optimality operator $T_{\mathcal{O}}^* : \mathcal{Q} \to \mathcal{Q}$ as:

$$(T_{\mathcal{Q}}^*f)(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|a,s) \max_{a' \in \mathcal{A}} f(s',a')$$
, $\forall f \in \mathcal{Q}$

- This operator has unique fixed point which corresponds to the action-value function q^* in our MDP \mathcal{M} .
- ▶ Same properties as T^* : γ -contraction and monotonicity.

Approximate Dynamic Programming

Approximate DP

- ➤ So far, we have assume perfect knowledge of the MDP and perfect/exact representation of the value functions.
- Realistically, more often than not:
 - We won't know the underlying MDP (like in the last two lectures)
 - ► We won't be able to represent the value function exactly after each update (lectures to come)

Approximate DP

- ► Realistically, more often than not:
 - ▶ We won't know the underlying MDP.
 - \Rightarrow sampling/estimation error, as we don't have access to the true operators T^{π} (T^*)
 - We won't be able to represent the value function exactly after each update.
 - ⇒ approximation error, as we approximate the true value functions within a (parametric) class (e.g. linear functions, neural nets, etc).
- Objective: Under the above conditions, come up with a policy π that is (close to) optimal.

(Reminder) Value Iteration

Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = T^*v_k$.

As $k \to \infty$, $v_k \to_{\|.\|_{\infty}} v^*$.

Approximate Value Iteration

Approximate Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = AT^*v_k$.

 $(v_{k+1} \approx T^* v_k)$

Question: As $k \to \infty$, $v_k \to_{\|.\|_{\infty}} v^*$? X

Answer: In general, no.

Hopeless?

Recall policy evaluation example (Lecture 3):

Simple MDP

$$A = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

Recall policy evaluation example (Lecture 3):

$$A = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

Simple MDP

$$\mathcal{A} = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

 $\pi = \text{uniform}$

q(s,a)

POLICY EVALUATION

$$q(s,a) \to r(s,a) + \gamma \mathbb{E}_{\pi}[q(s',a')]$$

Simple MDP

 $\mathcal{A} = \{\leftarrow, \rightarrow\}$

 $R_t = -1$

q(s,a)

POLICY EVALUATION

$$q(s,a)
ightarrow r(s,a) + \gamma \mathbb{E}_{\pi}[q(s',a')]$$
 K=1

 $\pi = \text{uniform}$

Simple MDP

$$\mathcal{A} = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

 $\pi = \text{uniform}$

q(s,a)

POLICY EVALUATION

$$q(s,a)
ightarrow r(s,a) + \gamma \mathbb{E}_{\pi}[q(s',a')]$$
 K=1

-1.9 -1.9 -1.0 -> -1.0 -1.9 -1.9 -

Question: Have we converged?

Simple MDP

$$\mathcal{A} = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

VALUE ITERATION

$$q(s, a) \leftarrow r(s, a) + \gamma \max_{a'} q(s', a')$$

$$oxed{S_0}$$

$$\mathcal{A} = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

VALUE ITERATION

	-1.9	-1.9	-1.0	\rightarrow
	-1.0	-1.9	-1.9	\leftarrow

Question: Have we converged?

Simple MDP

$$\mathcal{A} = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

VALUE ITERATION

 $\arg\max_a q(s,a)$

-1.0 -1.0 -1.0
$$\rightarrow$$

-1.9 -1.9 -1.0
$$\rightarrow$$

Example (Other value functions?)

Simple MDP $\mathcal{A} = \{\leftarrow, \rightarrow\}$ $R_t = -1$ S_0 q(s,a)-1.3 | -1.3 | -1.0 -1.0 | -1.3 | -1.3 -1.8 | -1.9 | -1.1 -1.0 | -1.9 | -1.7

Example (Other value functions?)

Simple MDP

$$\mathcal{A} = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

q(s,a)

-1.8	-1.7	-1.1	\rightarrow
-1.0	-1.9	-1.7	\leftarrow

	4.0	-1 0	4-	,
	-1.8	-1.9	-1.1	\rightarrow

Performance of a Greedy Policy

Theorem (Value of greedy policy)

Consider a MDP. Let $q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be an arbitrary function and let π be the greedy policy associated with q, then:

$$\|q^*-q^\pi\|_\infty \leq rac{2\gamma}{1-\gamma}\|q^*-q\|_\infty.$$

where q^* is the optimal value function associated with this MDP.

Performance of a Greedy Policy (Proof)

Statement:
$$\|q^*-q^\pi\|_\infty \leq rac{2\gamma}{1-\gamma}\|q^*-q\|_\infty$$

Proof

$$\|q^{*} - q^{\pi}\|_{\infty} = \|q^{*} - T^{\pi}q + T^{\pi}q - q^{\pi}\|_{\infty}$$

$$\leq \|q^{*} - T^{\pi}q\|_{\infty} + \|T^{\pi}q - q^{\pi}\|_{\infty}$$

$$= \|T^{*}q^{*} - T^{*}q\|_{\infty} + \|T^{\pi}q - T^{\pi}q^{\pi}\|_{\infty}$$

$$\leq \gamma \|q^{*} - q\|_{\infty} + \gamma \underbrace{\|q - q^{\pi}\|_{\infty}}_{\leq \|q - q^{*}\|_{\infty} + \|q^{*} - q^{\pi}\|_{\infty}}$$

$$\leq 2\gamma \|q^{*} - q\|_{\infty} + \gamma \|q^{*} - q^{\pi}\|_{\infty}$$

$$\leq 2\gamma \|q^{*} - q\|_{\infty} + \gamma \|q^{*} - q^{\pi}\|_{\infty}$$

$$(15)$$

Re-arranging:
$$(1-\gamma)\|q^*-q^\pi\|_\infty \leq 2\gamma\|q^*-q\|_\infty$$
.

Simple MDP

$$\mathcal{A} = \{\leftarrow, \rightarrow\}$$
$$R_t = -1$$

ple MDP
$$\mathcal{A} = \{\leftarrow$$
 S_0 $R_t = -$

a^*	(s,	a
\mathbf{q}	$(\circ,$	u_j

_	. (-	, ,			
		-2.71	-1.9	-1.0	\rightarrow
		-1.0	-1.9	-2.71	\leftarrow

q(s,a)

	-1.8	-1.9	-1.1	\rightarrow
	-1.0	-1.9	-1.7	\leftarrow

	-1.8	-100	-1.1	\rightarrow
	-1.0	+100	-1.7	\leftarrow

Simple MDP

q(s,a)

	-1.8	-1.9	-1.1	\rightarrow
	-1.0	-1.9	-1.7	\leftarrow

	-1.8	-100	-1.1	\rightarrow
	-1.0	+100	-1.7	\leftarrow

$q^*(s,a)$	q^*	(s,	a)
------------	-------	-----	----

)	-2.71	-1.9	-1.0	\rightarrow
	-1.0	-1.9	-2.71	\leftarrow

$$\|q^* - q\|_{\infty}$$

$$\|q^* - q^\pi\|_{\infty}$$

Simple MDP

$q^*(s,a)$	-2.71	-1.9	-1.0	
	-1.0	-1.9	-2.71	

q(s,a)

	-1.8	-1.9	-1.1	\rightarrow
	-1.0	-1.9	-1.7	\leftarrow

-1.8	-100	-1.1	\rightarrow
-1.0	+100	-1.7	\leftarrow

$$\|q^* - q\|_{\infty}$$

$$\|q^*-q^\pi\|_\infty$$

small

0

HIGH

0

Simple MDP

q(s, a)

	+100	-1.9	-100	\rightarrow
	-1.0	-1.9	-1.7	\leftarrow

	-1.8	-100	-1.1	\rightarrow
	-1.0	+100	-1.7	\leftarrow

$q^*(s,a)$	-2.71	-
	-1.0	

	-2.71	-1.9	-1.0	\rightarrow
	-1.0	-1.9	-2.71	\leftarrow

$$\|q^* - q\|_{\infty}$$

$$\|q^*-q^\pi\|_\infty$$

Simple MDP

$q^*(s,a)$	-2.71	-1.9	-1.0	
	-1.0	-1.9	-2.71	

q(s,a)

	+100	-1.9	-100	\rightarrow
	-1.0	-1.9	-1.7	\leftarrow

	-1.8	-100	-1.1	\rightarrow
	-1.0	+100	-1.7	\leftarrow

$$\|q^* - q\|_{\infty}$$

$$\|q^* - q^\pi\|_{\infty}$$

HIGH

HIGH

 Ω

HIGH

0

(Reminder) Policy Iteration

Policy Iteration

- ▶ Start with π_0 .
- ► Iterate:
 - Policy Evaluation: $q_i = q_{\pi_i}$
 - Greedy Improvement: $\pi_{i+1} = \arg \max_a q_{\pi_i}(s, a)$

As $i \to \infty$, $q_i \to_{\parallel,\parallel_{\infty}} q^*$. Thus $\pi_i \to \pi^*$.

Approximate Policy Iteration

Approximate Policy Iteration

- Start with π_0 .
- Iterate:
 - Policy Evaluation: $q_i = \mathcal{A}q_{\pi_i}$ $(q_i pprox q_{\pi_i})$
 - Greedy Improvement: $\pi_{i+1} = \arg \max_a \frac{q_i(s, a)}{q_i(s, a)}$

Question 1: As $i \to \infty$, does $q_i \to_{\parallel,\parallel_{\infty}} q^*$? X

Answer: In general, no.

Question 2: Or does π_i converge to the optimal policy? X

Answer: In general, no.

Hopeless? In some cases, no, depending on the nature of A. (More: Next lecture)

(Summary) Approximate Dynamic Programming

Approximate Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = AT^*v_k$.

Approximate Policy Iteration

- ightharpoonup Start with π_0 .
- ► Iterate:
 - Policy Evaluation: $q_i = Aq_{\pi_i}$
 - Greedy Improvement: $\pi_{i+1} = \arg \max_a \frac{q_i(s, a)}{q_i(s, a)}$

 $(v_{k+1} \approx T^* v_k)$

 $(q_i \approx q_{\pi_i})$

The only stupid question is the one you were afraid to ask but never did. -Rich Sutton

For questions that arise outside of class, please use Moodle!