Лабораторная работа №1 Звуки и сигналы

Крынский Павел

26 мая 2021 г.

Оглавление

1	Упражнение 1.1	4
2	Упражнение 1.2	5
	2.1 Скачивание звука и работа с ним	. 5
	2.2 Спектр звука	
	2.3 Фильтрация звука	
3	Упражнение 1.3	9
	3.1 Создание сложного сигнала	. 9
	3.2 Добавление новой частоты	. 11
4	Упражнение 1.4	12
5	Выводы	14

Список иллюстраций

2.1	Исходный звук	6
2.2	Исходный звук	6
2.3	Спектр сегмента звука	7
	Спектр сегмента звука	
3.1	Спектр сегмента звука	10
3.2	Визуализация сегмента звука	11
4.1	Визуализация ускоренного звука	13

Листинги

2.1	Загрузка и прослушивание звука
2.2	Визуализация звука
2.3	Изменение и прослушивание звука 6
2.4	Визуализация укороченного звука 6
2.5	Спектр сегмента звука
2.6	Фильтрация и воспроизведение звука
2.7	Визуализация фильтрации
3.1	Создание сложного сигнала из 4 элементов 9
3.2	Воспроизведение сложного сигнала
3.3	Визуализация сигнала
3.4	Добавление новой частоты и воспроизведение
4.1	Загрузка и прослушивание звука
4.2	Функция stretch
4.3	Прослушивание ускоренного звука
4.4	Визуализация ускоренного звука

Упражнение 1.1

В данном упражнении нам нужно открыть chap01.ipynb , прочитать пояснения и запустить примеры. Поэтому здесь я изучил все примеры с комментариями и позапускал их.

Упражнение 1.2

2.1 Скачивание звука и работа с ним

С предложенного нам сайта скачан звук проезжающей машины. Ссылка на соответствующий звук:

https://freesound.org/people/14FValtrovaT/sounds/419691/. Далее я загрузил звук, прослушал его , и получил его визуализацию.

```
wave = read_wave('419691__14fvaltrovat__car-driving.wav')
wave.normalize()
wave.make_audio()
```

Листинг 2.1: Загрузка и прослушивание звука

1 wave.plot()

Листинг 2.2: Визуализация звука

Рис. 2.1: Исходный звук

Берем полусекундный сегмент.

- segment = wave.segment(start=8, duration=8)
- 2 segment.make_audio()

Листинг 2.3: Изменение и прослушивание звука

segment.plot()

Листинг 2.4: Визуализация укороченного звука

Рис. 2.2: Исходный звук

2.2 Спектр звука

Теперь рассмотрим спектр нашего полусекундного сегмента звука.

- spectr = segment.make_spectrum()
- 2 spectr.plot(high=500)

Листинг 2.5: Спектр сегмента звука

Рис. 2.3: Спектр сегмента звука

2.3 Фильтрация звука

Применим фильтр нижних частот.

- spectrum.low_pass(500)
- 2 spectrum.make_wave().make_audio()

Листинг 2.6: Фильтрация и воспроизведение звука

spectrum.make_wave().plot()

Листинг 2.7: Визуализация фильтрации

Рис. 2.4: Спектр сегмента звука

Видно, что график изменился, а звук стал, как из туннеля.

Упражнение 1.3

3.1 Создание сложного сигнала

Нужно создать сложный сигнал из объектов SinSignal и CosSignal.

```
from thinkdsp import CosSignal, SinSignal

signal = (thinkdsp.SinSignal(freq=200 , amp = 1.1)+
thinkdsp.SinSignal(freq=300 , amp = 1.5)+
thinkdsp.CosSignal(freq=400 , amp = 0.5)+
thinkdsp.SinSignal(freq=100 , amp = 1.1))
signal.plot()
```

Листинг 3.1: Создание сложного сигнала из 4 элементов

Рис. 3.1: Спектр сегмента звука

Теперь нужно получить звук.

```
wave = signal.make_wave(duration=2)
wave.apodize()
wave.make_audio()
```

Листинг 3.2: Воспроизведение сложного сигнала

Выведем спектр полученного звука.

```
spectrum = wave.make_spectrum()
spectrum.plot(high=1000)
```

Листинг 3.3: Визуализация сигнала

Рис. 3.2: Визуализация сегмента звука

3.2 Добавление новой частоты

Изменим наш сигнал.

- signal = signal + thinkdsp.SinSignal(freq=1100)
- 2 signal.make_wave().make_audio()

Листинг 3.4: Добавление новой частоты и воспроизведение

Теперь слышно добавленную новую частоту, при чём более высокую, потому что freq=1000.

Упражнение 1.4

```
Подготовим звук.
wave = thinkdsp.read_wave('419691__14fvaltrovat__car-driving.wav')
2 wave.normalize()
3 wave.make_audio()
             Листинг 4.1: Загрузка и прослушивание звука
    Теперь сделаем функцию stretch.
1 def stretch(wave , factor):
    wave.ts = wave.ts*factor
     wave.framerate = wave.framerate/factor
                      Листинг 4.2: Функция stretch
    Попробуем прослушать полученный звук, введя 0.5.
stretch(wave , 0.5)
2 wave.make_audio()
             Листинг 4.3: Прослушивание ускоренного звука
    По таймеру в колабе время сократилсь с 9 до 4 секунд.
1 wave.plot()
              Листинг 4.4: Визуализация ускоренного звука
```


Рис. 4.1: Визуализация ускоренного звука

Выводы

Во время выполнения лабораторной работы получены навыки работаты со звуками, волнами и спектрами.