Matrix Groups: Homework #10

Based on multivariable calculus $\textit{Dr. Sachchidan} \ \textit{And Prasad}$

Problem 1

Let $f:\mathbb{R}^2\to\mathbb{R}$ be a function defined by $f(x,y)=\sqrt{|xy|}$. Show that f is not differentiable at (0,0).

Problem 2

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(x)| \leq ||x||^2$. Show that f is differentiable at x = 0.

Problem 3

Find f' for the following functions:

- 1. $f(x,y) = \sin(xy)$
- 2. $f(x, y, z) = (x^y, z)$
- $3. \ f(x,y,z) = x^y$
- 4. $f(x, y, z) = x^{y^z}$
- 5. $f(x,y)=\int_a^{x+y}g(t)\mathrm{d}t,$ where $g:\mathbb{R}\to\mathbb{R}$ is a continuous function.

Problem 4

Show (by an example) that the existence of all partial derivatives of a function does not imply differentiability of the function.

Problem 5

Let $U \subset \mathbb{R}^n$ be an open set and $f: U \to \mathbb{R}^n$ a continuously differentiable 1-1 function such that $\det df_x \neq 0$ for all x. Show that f(U) is an open set and $f^{-1}: f(U) \to U$ is differentiable. Show also that f is an open map, that is, for any open set $V \subset \mathbb{R}^n$ f(V) is open.

Problem 6

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuously differentiable function. Show that f is not 1-1.

Generalize this result in the case of a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ for m < n.

Problem 7

- 1. If $f: \mathbb{R} \to \mathbb{R}$ be a function such that $f'(a) \neq 0$ for all $a \in \mathbb{R}$, then show that f is 1-1.
- 2. Define

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) = (e^x \cos y, e^x \sin y).$$

Show that $\det df_{x,y} \neq 0$ for all $(x,y) \in \mathbb{R}^2$ but f is not 1-1.