ANOVA: Indicator Variables Formulation

Sleuth3 Sections 5.2, 6.2, 9.3.2 and 9.3.3

Iris Data Again

Example 1: Sepal Width of Iris Flowers

Study Overview

We have measurements of the characteristics of 150 iris flowers, 50 each of three different species:

- Iris setosa is found in the arctic, including Alaska and Maine in the United States, Canada, Russia, northern China, Korea and other northern countries.
- Iris versicolor is found in the eastern United States and eastern Canada.
- Iris virginica is found in the eastern United States

Look at the Data:

```
head(iris)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                        1.4
                                                    0.2 setosa
## 2
              4.9
                          3.0
                                        1.4
                                                    0.2 setosa
## 3
              4.7
                          3.2
                                        1.3
                                                    0.2 setosa
              4.6
## 4
                          3.1
                                        1.5
                                                    0.2 setosa
## 5
              5.0
                          3.6
                                        1.4
                                                    0.2 setosa
## 6
              5.4
                          3.9
                                        1.7
                                                    0.4 setosa
# Calculate sample means and standard deviations separately for each species
  group_by(Species) %>%
  summarize(
    mean = mean(Sepal.Width),
    sd = sd(Sepal.Width)
  )
## # A tibble: 3 x 3
##
     Species
                mean
                                 sd
     <fct>
                <dbl>
                              <dbl>
## 1 setosa
                3.428 0.3790643691
## 2 versicolor 2.77 0.3137983234
## 3 virginica 2.974 0.3224966382
```

Parameters:

 μ_1 = Average sepal width among all setosa flowers (in the region where the flowers in the sample were found?)

 μ_2 = Average sepal width among all versicolor flowers (in the region where the flowers in the sample were found?)

 μ_3 = Average sepal width among all virginica flowers (in the region where the flowers in the sample were found?)

Indicator variable parameterization

R's output (and output from most other statistical packages) directly answers 3 questions:

- 1. What is an estimate of μ_1 ?
- 2. What is an estimate of $\mu_2 \mu_1$?
- 3. What is an estimate of $\mu_3 \mu_1$?

Verification:

```
anova_fit <- lm(Sepal.Width ~ Species, data = iris)
summary(anova_fit)</pre>
```

```
##
## Call:
## lm(formula = Sepal.Width ~ Species, data = iris)
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -1.128 -0.228 0.026 0.226 0.972
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
                     3.42800
                                0.04804 71.359 < 2e-16 ***
## (Intercept)
## Speciesversicolor -0.65800
                                0.06794
                                        -9.685 < 2e-16 ***
## Speciesvirginica -0.45400
                                0.06794 -6.683 4.54e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3397 on 147 degrees of freedom
## Multiple R-squared: 0.4008, Adjusted R-squared: 0.3926
## F-statistic: 49.16 on 2 and 147 DF, p-value: < 2.2e-16
```

1. Compare the Estimate labeled (Intercept) to:

• the group mean for setosa flowers: 3.428

2. Compare the Estimate labeled Speciesversicolor to:

- the difference in group means for setosa and versicolor flowers: 2.770 3.428 = -0.658
- the results of a hypothesis test that $\mu_2 \mu_1 = 0$:

```
fit.contrast(anova_fit, "Species", c(-1, 1, 0), conf = 0.95)
## Estimate Std. Error t value Pr(>|t|) lower CI upper CI
```

```
## Estimate Std. Error t value Pr(>|t|) lower CI upper CI ## Species c=(-1 1 0 ) -0.658 0.06793755 -9.685366 1.832489e-17 -0.7922604 -0.5237396 ## attr(,"class") ## [1] "fit_contrast"
```

3. Compare the Estimate labeled Speciesvirginica to:

- the difference in group means for setosa and virginica flowers: 2.974 3.428 = -0.454
- the results of a hypothesis test that $\mu_3 \mu_1 = 0$:

```
model_fit <- lm(Sepal.Width ~ Species, data = iris)
fit.contrast(model_fit, "Species", c(-1, 0, 1), conf = 0.95)</pre>
```

```
## Estimate Std. Error t value Pr(>|t|) lower CI upper CI ## Species c=( -1 0 1 ) -0.454 0.06793755 -6.682608 4.538957e-10 -0.5882604 -0.3197396 ## attr(,"class") ## [1] "fit_contrast"
```

Getting to estimates of means from the R output

We express the mean for a flower of a particular species as follows:

 $\mu = \beta_0 + \beta_1 Species versicolor + \beta_2 Species virginica$

Here, Speciesversicolor and Speciesvirginica are new indicator variables:

- $Species versicolor = \begin{cases} 1 \text{ if a flower is of the versicolor species} \\ 0 \text{ otherwise} \end{cases}$
- $Speciesvirginica = \begin{cases} 1 \text{ if a flower is of the virginica species} \\ 0 \text{ otherwise} \end{cases}$

In the background, R creates a new copy of our data frame with these indicator variables that looks like this:

· · -	augmented
11718	allomented

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	Speciesversicolor	Speciesvirginica
##	1	5.1	3.5	1.4	0.2	setosa	0	0
##	2	4.9	3.0	1.4	0.2	setosa	0	0
##	3	4.7	3.2	1.3	0.2	setosa	0	0
					:			
##	48	4.6	3.2	1.4	0.2	setosa	0	0
##	49	5.3	3.7	1.5	0.2	setosa	0	0
##	50	5.0	3.3	1.4	0.2	setosa	0	0
##	51	7.0	3.2	4.7	1.4	versicolor	1	0
##	52	6.4	3.2	4.5	1.5	versicolor	1	0
##	53	6.9	3.1	4.9	1.5	versicolor	1	0
					:			
					:			
##	98	6.2	2.9	9 4.3	3 1.3	3 versicolo	r 1	0
##	99	5.1	2.5	3.0	1.1	l versicolo	r 1	0
##	100	5.7	2.8	3 4.1	1 1.3	3 versicolo	r 1	0
##	10	1 6.3	3.3	6.0	2.5	virginica	a 0	1
##	102	2 5.8	2.7	7 5.1	1 1.9	virginica	a 0	1
##	103	3 7.1	3.0	5.9	9 2.1	l virginica	a 0	1

Express the mean for setosa flowers in terms of β_0 , β_1 , and/or β_2

Express the mean for *versicolor* flowers in terms of β_0 , β_1 , and/or β_2

Express the mean for *virginica* flowers in terms of β_0 , β_1 , and/or β_2

In the output from summary(anova_fit), we have:

- The row labeled (Intercept) is related to β_0 (estimate and test of $H_0: \beta_0 = 0$)
- The row labeled Speciesversicolor is related to β_1 (estimate and test of $H_0: \beta_1 = 0$)
- The row labeled Speciesvirginica is related to β_2 (estimate and test of $H_0:\beta_2=0$)

Changing the baseline category

Here's a thing you don't really need to know how to do; just showing that it is possible.

F-statistic: 49.16 on 2 and 147 DF, p-value: < 2.2e-16

Suppose that instead of using setosa for the baseline species, we want to use virginica as the baseline.

```
# What are the levels of the Species variable in the iris data frame, in order?
levels(iris$Species)
## [1] "setosa"
                   "versicolor" "virginica"
# Update the levels to be in the order "virginica" first, "versicolor" second, and "setosa" third
iris <- iris %>%
 mutate(
   Species = factor(Species, levels = c("virginica", "versicolor", "setosa"))
 )
# Fit with updated order of levels
fit2 <- lm(Sepal.Width ~ Species, data = iris)</pre>
summary(fit2)
##
## Call:
## lm(formula = Sepal.Width ~ Species, data = iris)
##
## Residuals:
##
             1Q Median
                           ЗQ
     Min
                                 Max
## -1.128 -0.228 0.026 0.226 0.972
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     0.06794 -3.003 0.00315 **
## Speciesversicolor -0.20400
## Speciessetosa
                     0.45400
                               0.06794
                                        6.683 4.54e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3397 on 147 degrees of freedom
## Multiple R-squared: 0.4008, Adjusted R-squared: 0.3926
```

For you to do:

Back in Lab 2 on RStudio, look at the output from calling summary on your linear model fit object. Answer the questions below.

• What is the baseline category for the explanatory variable in this model?

• What are the possible values of the JudgeSpock's variable, and in what circumstances does the variable equal each of those values?

• What is the Estimate labelled (Intercept) an estimate of? Be as precise as possible.

• What is the Estimate labelled JudgeSpock's an estimate of? Be as precise as possible.

• Use the output from summary conduct a test of the null hypothesis that $\mu_A = \mu_{Spock's}$.

• Could you use the output from summary conduct a test of the null hypothesis that $\mu_B = \mu_{Spock's}$? (The answer is no - why not?)