SYSTEMATIC MONETARY POLICY APPROACH TO TAYLOR RULE

Alexander Vlasov (avlasov@nes.ru)

New Economic School - 2024-06-20

Available at https://github.com/avlsv/CheckingHank

RESEARCH QUESTION

SYSTEMATIC MONETARY POLICY IDENTIFICATION

Monetary Policy Rule Counterfactuals

 McKay and Wolf (2023); Barnichon and Mesters (2023) use the identified shocks and impulse responses to them to minimize a loss function.

FOMC Preferences

 Hack, Istrefi, and Meier (2023) use Istrefi (2019) data on preferences of FOMC members and using the FOMC rotation mechanism they are able to construct an IV.

EMPIRICAL APPROACH

STATE-DEPENDENT LP MODEL

Based on method of Hack, Istrefi, and Meier (2023).

I assume that the monetary policy rule is

$$(r - r^*)_{t+h} = \phi_t^h \mathbb{E} \left[\pi_{t+1} \mid \mathfrak{I}_t \right] + \psi_t^h \mathbb{E} \left[x_{t+1} \mid \mathfrak{I}_t \right] + \varepsilon_t.$$

 $\mathbb{E}_t \pi_{t+1}$ and $\mathbb{E}_t x_{t+1}$ are the expectations of monetary authority about inflation and output gap.

STATE-DEPENDENT LP MODEL [2]

Then I estimate the following State-Dependent LP-IV.

$$(r - r^*)_{t+h} = \alpha^h + \beta_\pi^h \hat{\pi}_t + \gamma_\pi^h \hat{\pi}_t \left(Hawk_t - \overline{Hawk} \right)$$
$$\beta_u^h \hat{x}_t + \gamma_u^h \hat{x}_t \left(Hawk_t - \overline{Hawk} \right)$$
$$+ \delta^h \left(Hawk_t - \overline{Hawk} \right) + \zeta^h Z + e_{t+h}^h,$$

where

- $Hawk_t$ is the Hack, Istrefi, and Meier (2023) index of FOMC hawkishness based on Istrefi (2019) estimate of preferences of each FOMC member.
- $\hat{\pi}_t$ is the FOMC (Tealbook) projection of future inflation.
- \hat{x}_t is the FOMC (Tealbook) projection of future output gap.

HAWK AND HAWK IV INDEXES FROM HACK, ISTREFI, AND MEIER (2023)

SHORT AND LONG MODELS

- Contemporaneous Tealbook projections of CPI inflation and GDP gap are available starting from 1979 Q4 and 1987 Q3, respectively.
- Tealbook projections are available up to 2018 Q4 due to the publication lag.
- That leaves only 126 quarters (122 obs accounting for 4 quarter-lags) and 18 parameters.

In order to increase the number of observation, I introduce Long model that uses Tealbook projections of Deflator inflation and unemployment gap $(u-u^*)$.

	Tealbook Projected			
Model	Inflation	Output Gap		
Short	CPI Inflation	GDP Gap		
Long	Deflator Inflation	Unemployment Gap		

IRFS

SHORT MODEL. $r-r^*$ response to projected CPI inflation

Notes: This figure reports the responses of the $(r-r^*)_t$ to an increase in the Tealbook CPI inflation projection and GDP gap projection of 1 p.p. The subfigure 1a reports the response of $(r-r^*)_t$ to projected CPI inflation for the HAWK index equal to the sample average; 1b is the addition to the response in case there are 2 (out of 12 in total) additional consistent hawks in the FOMC. The shaded areas correspond to 68%, 90% and 95% confidence intervals calculated with Andrews (1991) HAC estimator.

SHORT MODEL. $r-r^*$ RESPONSE TO PROJECTED GDP GAP

Notes: This figure reports the responses of the $(r-r^*)_t$ to an increase in the Tealbook GDP gap projection of 1 p.p. The subfigure 2a reports the response of $(r-r^*)_t$ to projected output gap increase for the Hawk index equal to the sample average; 2b is the addition to the previous response in case there are 2 (out of 12 in total) additional consistent hawks in the FOMC. The shaded areas correspond to 68%, 90% and 95% confidence intervals calculated with Andrews (1991) HAC estimator.

LONG MODEL. $r-r^*$ RESPONSE TO PROJECTED DEFLATOR INFLATION

(b) Differential Response to Deflator Inflation

Notes: This figure reports the responses of the $(r-r^*)_t$ to an increase in the Tealbook GDP gap projection of 1 p.p. The subfigure 3a reports the response of $(r-r^*)_t$ to projected deflator inflation increase of 1 p.p. for the Hawk index equal to the sample average; 3b is the addition to the previous response in case there are 2 (out of 12 in total) additional consistent hawks in the FOMC. The shaded areas correspond to 68%, 90% and 95% confidence intervals calculated with Andrews (1991) HAC estimator.

LONG MODEL. $r-r^*$ response to projected unemployment gap

Notes: This figure reports the responses of the $(r-r^*)_t$ to projected output gap increase for the Hawk index equal to the sample average; 4b is the addition to the previous response in case there are 2 (out of 12 in total) additional consistent hawks in the FOMC. The shaded areas correspond to 68%, 90% and 95% confidence intervals calculated with Andrews (1991) HAC estimator.

Horizon [1Q]

Horizon [1Q]

COMBINED IRF

HAWK AND HAWK IV INDEXES FROM HACK, ISTREFI, AND MEIER (2023)

HAWK INDEX DISECTED BY FED CHAIR

SHOCKS AND HAWK

Shocks

		Δ CPI inflation	Δ GDP gap	Δ Deflator inflation	Δ Unemployment gap
1	2008 Q3	-2.40	0.05	-0.05	0.49
2	2008 Q4	-1.45	-3.03	-0.57	1.14
3	2009 Q1	1.18	-2.05	-0.40	1.36
4	2009 Q2	1.10	-0.21	0.03	0.87

IRFS TO GFC

IN-SAMPLE PREDICTIVE ABILITY

ESTIMATES OF LIQUIDITY PREMIA

IN-SAMPLE PREDICTED $r - r^*$ PATHS

Notes: This figure shows the predictions of $r-r^st$ paths in each state calculated by short and long models.

IN-SAMPLE PREDICTED FFR PATHS

 $\it Notes:$ This figure shows the predictions of $\it r$ paths in each state calculated by short and long models.

ESTIMATES OF LIQUIDITY PREMIA

ESTIMATES OF LIQUIDITY PREMIA ZOMMED TO 2008-2019

SIZE-PERSISTENCE ESTIMATIONS

OUTCOMES OF KAPLAN, MOLL, AND VIOLANTE (2018) MODEL

Kaplan, Moll, and Violante (2018) Tradeoffs in HANK model:

- 1. **Size-Persistence Tradeoff:** Cumulative elasticity of aggregate consumption declines with the increase of persistence of monetary policy path in a nonlinear manner.
- 2. **Inflation-Output Tradeoff:** the same Taylor rule shocks lead to the increased effects in Inflation-Output tradeoff.

SIZE-PERSISTENCE IN RANK

Rate path:

$$r_t = \rho + \underbrace{\exp(-\eta t)(r_0 - \rho)}_{Persistence}.$$

NK consumption policy

$$C_0 = \bar{C} \exp\left(-\frac{1}{\gamma} \int_0^\infty (r_s - \rho) \ ds\right).$$

Size:

$$R_0 = \int_0^\infty (r_s - \rho) \ ds,$$

No Size-Persistence tradeoff in RANK:

$$\frac{-d\log C_0}{dR_0} = \frac{1}{\gamma}.$$

PREDICTED $r - r^*$ PATHS

Notes: This figure shows the predictions of $r-r^st$ paths in each state calculated by short and long models.

ESTIMATION OF SIZE AND PERSISTENCE

Size in Kaplan, Moll, and Violante (2018) is

$$Size_t = \frac{1}{H} \sum_{h=0}^{H} \widehat{(r - r^*)}_{t+h}$$

$$\widehat{(r-r^*)}_{t+h} = \exp(\mu_t h) \widehat{(r-r^*)}_t \exp(\varepsilon_t)$$

This can be rewritten as

$$\log\left(\frac{\widehat{(r-r^*)}_{t+h}}{\widehat{(r-r^*)}_t}\right) = \mu_t h + \varepsilon_{th},$$

and estimated with OLS. Persistence is then $Persistence = \exp(\hat{\mu}_t)$.

ESTIMATES OF SIZE OVER TIME

Notes: This figure presents the size and persistence, calculated as mean and the first autocorrelation of impulse-response function in each state, constructed as described in section 1 on page 28, over time.

SIZE-PERSISTENCE ESTIMATES

QUARTERS

DATA

- Projections of FED inflation (deflator, and CPI), GDP gap, unemployment and NAIRU are from Tealbook (average of 1 and 2 quarter quarters ahead following Coibion and Gorodnichenko (2011) and averaging of FOMC meetings per quarter).
- HAWK index from Hack, Istrefi, and Meier (2023).
- Natural rate of interest by Holston, Laubach, and Williams (2017); Holston, Laubach, and Williams (2023).
- Short-term rate (r) is Fed Funds Rate and Wu and Xia (2016) shadow rate.

RATES

TEALBOOK INFLATION PROJECTIONS

TEALBOOK UNEMPLOYMENT PROJECTIONS

TEALBOOK OUTPUT GAP PROJECTIONS

REFERENCES [1]

- Andrews, Donald W K (May 1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation". In: *Econometrica* 59(3), pp. 817–858. URL: http://www.jstor.org/stable/2938229.
- Barnichon, Regis and Geert Mesters (Nov. 2023). "A Sufficient Statistics Approach for Macro Policy". In: *American Economic Review* 113(11), pp. 2809–45. doi: 10.1257/aer.20220581. URL: https://www.aeaweb.org/articles?id=10.1257/aer.20220581.
- Coibion, Olivier and Yuriy Gorodnichenko (2011). "Monetary Policy, Trend Inflation, and the Great Moderation: An Alternative Interpretation". In: *The American Economic Review* 101(1), pp. 341–370. ISSN: 00028282. URL: http://www.jstor.org/stable/41038791 (visited on 01/12/2024).
- Hack, Lukas, Klodiana Istrefi, and Matthias Meier (Oct. 2023). *Identification of systematic monetary policy*. Working Paper Series 2851. European Central Bank. URL: https://ideas.repec.org/p/ecb/ecbwps/20232851.html.

REFERENCES [2]

Holston, Kathryn, Thomas Laubach, and John C. Williams (2017). "Measuring the natural rate of interest: International trends and determinants". In: Journal of International Economics 108. 39th Annual NBER International Seminar on Macroeconomics, S59–S75. ISSN: 0022-1996. DOI: https://doi.org/10.1016/j.jinteco.2017.01.004. URL: https://www.sciencedirect.com/science/article/pii/S0022199617300065.

- Holston, Kathryn, Thomas Laubach, and John C. Williams (2023). *Measuring the Natural Rate of Interest after COVID-19*. Staff Reports 1063. Federal Reserve Bank of New York.
- Istrefi, Klodiana (2019). In Fed Watchers' Eyes: Hawks, Doves and Monetary Policy. Working papers 725.

 Banque de France. URL: https://ideas.repec.org/p/bfr/banfra/725.html.
- Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante (Mar. 2018). "Monetary Policy According to HANK". In: *American Economic Review* 108(3), pp. 697–743. DOI: 10.1257/aer.20160042. URL: https://www.aeaweb.org/articles?id=10.1257/aer.20160042.

REFERENCES [3]

McKay, Alisdair and Christian K. Wolf (2023). "What Can Time-Series Regressions Tell Us About Policy Counterfactuals?" In: *Econometrica* 91(5), pp. 1695–1725. DOI:

https://doi.org/10.3982/ECTA21045.eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA21045.URL:

https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA21045.

Wu, Jing Cynthia and Fan Dora Xia (2016). "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound". In: *Journal of Money, Credit and Banking* 48(2-3), pp. 253–291. DOI:

https://doi.org/10.1111/jmcb.12300.eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/jmcb.12300.URL:

https://onlinelibrary.wiley.com/doi/abs/10.1111/jmcb.12300.