SOLUÇÕES DO PRIMEIRO EXAME

Cada exercício vale 16 pontos, para um total de 80 pontos.

Exercício 1. (i) Defina o conceito de função injetiva.

(ii) Sejam $f\colon A\to B$ e $g\colon B\to C$ duas funções. Mostre que se $g\circ f$ é injetiva então f também é injetiva.

Demonstração. (i) Uma função $f: A \to B$ é injetiva se para todo $x, y \in A$ com $x \neq y$ temos

$$f(x) \neq f(y)$$
,

ou, equivalentemente, f é injetiva quando f(x) = f(y) implica x = y.

(ii) Tem-se $g \circ f : A \to C$. Sejam $x, y \in A$ e suponha que

$$f(x) = f(y)$$
.

Então

$$g(f(x)) = g(f(y)),$$

logo

$$(g \circ f)(x) = (g \circ f)(y).$$

Como $g \circ f$ é injetiva, segue que x = y. Concluímos que f é injetiva.

Exercício 2. Seja \mathbb{N}^* o conjunto de números naturais diferentes de 0, e considere o produto cartesiano

$$\mathbb{N} \times \mathbb{N}^* = \{ (m, n) \colon m, n \in \mathbb{N}, n \neq 0 \}.$$

Prove que a relação

$$(m,n) \sim (m',n')$$
 se $m \cdot n' = n \cdot m'$

é uma relação de equivalência em $\mathbb{N} \times \mathbb{N}^*$.

Demonstração. Vamos verificar que a relação \sim é reflexiva, simétrica e transitiva.

- Claramente $(m,n) \sim (m,n)$, já que $m \cdot n = n \cdot m$ (o produto de números naturais é comutativo). Logo \sim é reflexiva.
 - Sejam $(m, n), (m', n') \in \mathbb{N} \times \mathbb{N}^*$.

Então $(m, n) \sim (m', n')$ significa $m \cdot n' = n \cdot m'$,

enquanto $(m', n') \sim (m, n)$ significa $m' \cdot n = n' \cdot m$.

Claramente $m \cdot n' = n \cdot m'$ é equivalente a $m' \cdot n = n' \cdot m$ (porque o produto de números naturais é comutativo).

Logo $(m,n) \sim (m',n') \Rightarrow (m',n') \sim (m,n)$, ou seja, \sim é simétrica.

■ Vamos provar a transitividade. Sejam $(m,n),(m',n'),(m'',n'')\in\mathbb{N}\times\mathbb{N}^*$, então $n\neq 0$, $n'\neq 0$, $n''\neq 0$.

Suponha que $(m,n) \sim (m',n')$ e $(m',n') \sim (m'',n'')$.

Então

$$(1) m \cdot n' = n \cdot m'$$

$$(2) m' \cdot n'' = n' \cdot m''.$$

Multiplicando as duas identidades acima tem-se:

$$(m \cdot n') \cdot (m' \cdot n'') = (n \cdot m') \cdot (n' \cdot m'').$$

Usando as propriedades básicas da multiplicação (associatividade, comutatividade), temos:

$$m \cdot n'' \cdot m' \cdot n' = n \cdot m'' \cdot m' \cdot n'.$$

Dividindo os dois lados por $n' \neq 0$, tem-se

$$(m \cdot n'') \cdot m' = (n \cdot m'') \cdot m'$$

Temos dois casos.

- 1) Se $m' \neq 0$ então dividendo por m' temos que $m \cdot n'' = n \cdot m''$.
- 2) Se m'=0, então equação (1) implica $m \cdot n'=0$, logo m=0 (porque $n'\neq 0$).

Similarmente, equação (2) implica $n' \cdot m'' = 0$, logo m'' = 0 (porque $n' \neq 0$).

Portanto, $m \cdot n'' = 0 \cdot n'' = 0$ e $n \cdot m'' = n \cdot 0 = 0$, logo $m \cdot n'' = n \cdot m''$.

Em ambos casos provamos que $m \cdot n'' = n \cdot m''$, assim mostrando que $(m, n) \sim (m'', n'')$. \square

Exercício 3. (i) Defina o conceito de conjunto finito.

(ii) Sejam X, Y dois conjuntos finitos. Prove que o produto cartesiano $X \times Y$ também é finito e

$$\operatorname{card} (X \times Y) = \operatorname{card} X \cdot \operatorname{card} Y.$$

Demonstração. (i) Um conjunto X é finito se $X=\emptyset$ ou existem $n\geq 1$ e $\varphi:I_n\to X$ bijetiva, onde $I_n = \{1, ..., n\}.$

(ii) Sejam $n = \operatorname{card} Y$, $m = \operatorname{card} X$, $m, n \in \mathbb{N}$. Vamos provar por indução em n que

card
$$(X \times Y) = m \cdot n$$
.

■ 1º Passo: n=0. Neste caso $Y=\emptyset$, então claramente $X\times Y=\emptyset$ e

$$card(X \times Y) = 0 = m \cdot 0.$$

■ Passo indutivo: suponha que se Y é um conjunto (qualquer) com card Y = n então

$$\operatorname{card}(X \times Y) = m \cdot n.$$

Seja Z um conjunto com card Z = n + 1. Então $Z = \{z_1, \ldots, z_n, z_{n+1}\}$.

Seja $Y = \{z_1, \dots, z_n\}$. Então card Y = n e $Z = Y \cup \{z_{n+1}\}$.

Pela hipótese de indução, card $(X \times Y) = m \cdot n$.

Além disso, claramente $\varphi: X \to X \times \{z_{n+1}\}, \ \varphi(x) = (x, z_{n+1})$ é bijetiva, então

$$\operatorname{card} (X \times \{z_{n+1}\}) = \operatorname{card} X = m.$$

Ademais,

$$X \times Z = X \times (Y \cup \{z_{n+1}\})$$
$$= (X \times Y) \cup (X \times \{z_{n+1}\}).$$

Os conjuntos $X \times Y$ e $X \times \{z_{n+1}\}$ são disjuntos, então

$$\operatorname{card} (X \times Z) = \operatorname{card} (X \times Y) + \operatorname{card} (X \times \{z_{n+1}\})$$
$$= m \cdot n + m$$
$$= m(n+1),$$

provando a propriedade para conjuntos com n+1 elementos.

Pelo princípio da indução,

$$card(X \times Y) = m \cdot n$$

para todo $n \in \mathbb{N}$.

Exercício 4. Sejam $n, m \in \mathbb{N}$ onde $m \neq 0$. Prove que existem $q, r \in \mathbb{N}$ com r < m tais que

$$n = m \cdot q + r.$$

Demonstração. Fixe $m \in \mathbb{N}$, $m \neq 0$. Vamos usar indução em n.

■ 1° passo: n = 0. Claramente

$$0 = m \cdot 0 + 0,$$

então o resultado vale com q = 0 e r = 0 < m.

■ Passo indutivo: Suponha que

$$n = m \cdot q + r$$

onde $q, r \in \mathbb{N}$ e r < m. Então

$$n+1 = m \cdot q + (r+1).$$

Temos dois casos.

- 1) Se r+1 < m então a afirmação vale para n+1 com o mesmo q e r+1.
- 2) Se $r+1 \geq m$ então necessariamente r+1 = m (porque r < m, então $r+1 \leq m$). Neste caso

$$n+1 = m \cdot q + m = m(q+1) + 0$$

então a afirmação vale para n + 1 com q + 1 e 0.

Pelo princípio da indução, a afirmação vale para todo $n \in \mathbb{N}$.

Exercício 5. Prove que para todo $n \ge 1$,

$$6(1^2 + 2^2 + \dots + n^2) = n(n+1)(2n+1).$$

Demonstração. Vamos usar indução em $n \ge 1$ para provar a fórmula

$$6 \cdot (1^2 + \dots + n^2) = n(n+1)(2n+1).$$

• 1º passo: n=1. A fórmula se torna

$$6 \cdot 1^2 = 1 \cdot 2 \cdot 3.$$

que é verdadeira.

 \blacksquare Passo indutivo: Suponha que a fórmula valha para n, ou seja,

$$6(1^2 + \dots + n^2) = n(n+1)(2n+1).$$

Então

$$6(1^{2} + \dots + n^{2} + (n+1)^{2}) = 6(1^{2} + \dots + n^{2}) + 6(n+1)^{2}$$
(pela hipótese indutiva) = $n(n+1)(2n+1) + 6(n+1)^{2}$
= $(n+1)(2n^{2} + n + 6n + 6)$
= $(n+1)(2n^{2} + 7n + 6)$.

Por outro lado,

$$(n+1)(n+2)(2(n+1)+1) = (n+1)(n+2)(2n+3)$$
$$= (n+1)(2n^2+7n+6).$$

Portanto

$$6(1^2 + \dots + n^2 + (n+1)^2) = (n+1)(n+2)(2n+3),$$

assim provando a fórmula para n+1.

Pelo princípio da indução, a fórmula vale para todo $n \ge 1$.

Exercício 6. Seja X um conjunto finito com n elementos, onde $n \in \mathbb{N}$. Prove que $\mathcal{P}(X)$, o conjunto de todos os subconjuntos de X tem 2^n elementos.

Demonstração. Usamos indução matemática para provar que:

se card
$$X = n$$
 então card $\mathcal{P}(X) = 2^n$.

■ 1º passo: n=0. Neste caso $X=\emptyset$, então $\mathcal{P}(X)=\{\emptyset\}$ e

card
$$\mathcal{P}(X) = 1 = 2^0$$
.

■ Passo indutivo: suponha que dado qualquer conjunto X com card X = n, tem-se card $\mathcal{P}(X) = 2^n$.

Seja Y um conjunto com card Y = n + 1, então

$$Y = \{y_1, \dots, y_n, y_{n+1}\}.$$

Seja
$$X = \{y_1, \dots, y_n\}$$
, então card $X = n$ e $Y = X \cup \{y_{n+1}\}$.

Dado um subconjunto $A \subset Y$, ou A não contém y_{n+1} , e neste caso $A \subset X$, ou $y_{n+1} \in A$, e neste caso $A = A' \cup \{y_{n+1}\}$, onde

$$A' = A \setminus \{y_{n+1}\} \subset X.$$

Portanto

$$\mathcal{P}(Y) = \{A : A \subset X\} \cup \{A' \cup \{y_{n+1}\} : A' \subset X\}.$$

O conjunto $\{A:A\subset X\}=\mathcal{P}(X)$ tem cardinalidade 2^n pela hipótese indutiva.

Além disso, como a função $\varphi: \{A': A' \subset X\} \to \{A' \cup \{y_{n+1}\}: A' \subset X\},\$

$$\varphi(A') = A' \cup \{y_{n+1}\}$$

é claramente bijetiva, temos que

card
$$\{A' \cup \{y_{n+1}\} : A' \subset X\} = \text{card } \{A' : A' \subset X\} = \text{card } \mathcal{P}(X) = 2^n.$$

Concluímos que

card
$$\mathcal{P}(Y) = 2^n + 2^n = 2^{n+1}$$
.

Pelo princípio da indução, a conclusão segue.