

# Fuzzy Logic for Image Processing

What men really want is not knowledge but certainty. »
Bertrand Russel





## **Application to image processing**

- Segmentation of colour images
- Based on clustering techniques
  - Partition of a population (collection of data described by a set of features)
  - Assignment of each sample (data) to a cluster
- Some classical algorithms:
  - 1. HCM (Hard C-Means; not based on fuzzy logic);
  - 2. FCM (Fuzzy C-Means);
  - PCM (Possibilistic C-Means);
  - 4. Davé's algorithm.





# A basic approach

- C-Means algorithm = a clustering method (1967).
- Aim:
  - Partition of a population (collection of data described by a set of features)
  - Assignment of each sample (data) to a cluster
- C-Means algorithm is not a fuzzy logic-based method.





#### **C-means algorithm**

- Principle of the C-means algorithm
  - Partition of a population (collection of data described by a set of features)
  - □ Assignment without ambiguity (∈ or ∉) of each sample (data) to a cluster

#### Algorithm:

- 1. Ramdom selection of *c* samples: **centroïds.**
- Assignment of every sample at the closest centroid (using a distance). Constitution of the clusters.
- Calculation of new centroïds: we take the mean, component by component, for all the samples of a cluster.
- 4. Back to step #2 until stabilization of the borders between the clusters.



# C-means: step #1





# **C-means: final step**







#### **Method of C-means**

- Drawbacks:
  - Sensitive to the initialization
  - Problems when considering non-digital variables (required to possess a measure of distance)
    - Translation in numerical values
    - Construction of matrices of distances
  - Problem of the choice of the number of centroids c
  - Problem of the choice of the normalization in the calculation of the distance (the same weight for every component)
    - Weighting factors, normalization, aggregation





- Generalization of the C-means algorithm
  - Fuzzy partition of the data
  - Membership functions to the clusters
- Problematic: find a fuzzy pseudo-partition and the centers of the associated clusters which better represents the structure of the data.
  - Use of a criterion allowing ensure the strong association within the cluster and a low association outside the cluster.
    - Performance index





#### Fuzzy pseudo-partition

Set of non-empty fuzzy subsets  $\{A_1,A_2,\ldots,A_c\}$ Set of data (vector of k components):  $X=\{x_1,\ldots,x_n\}$  $\forall x_j \in X=\{x_1,\ldots,x_n\}, \sum\limits_{i=1}^c \mu_{A_i}(x_j)=1$ 

#### Fuzzy C-partition

□ A fuzzy c-partition (c>0) of X is a family of c fuzzy subsets such as:

$$P = \{A_1, A_2, \dots, A_c\}$$

$$\forall x_j \in X = \{x_1, \dots, x_n\}, \sum_{i=1}^c \mu_{A_i}(x_j) = 1$$

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\} \quad \mu_{A_i}(x_j) \in [0; 1] \quad 0 < \sum_{j=1}^n \mu_{A_i}(x_j) < n$$





Let be  $X = \{x_1, x_2, \dots, x_n\}$  a set of data.

Each  $x_j$  can be a vector of features, i.e.  $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$ .

Let  $P = \{A_1, A_2, \dots, A_c\}$  a fuzzy partition of the data set.

The centroïds (prototypes)  $\nu_1, \nu_2, \dots, \nu_c$  associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum\limits_{j=1}^n u_{ij}^m . x_j}{\sum\limits_{j=1}^n u_{ij}^m}$$

with  $m \in \mathbb{R}, m > 1$ , influence of the membership degrees (typically, m = 2).

U: matrix of the membership degrees of dimension  $c \times n$ 

 $\nu_i$ : center of the fuzzy cluster  $A_i$ 

- weighted mean of the data in  $A_i$
- The weight of data  $x_j$  is the mth power of its membership degree to  $A_i$ .



Computation of the membership degrees:

$$\forall i \in \{1, 2, \dots, c\}, \quad u_{ij} = \left[\sum_{k=1}^{c} \left(\frac{d^2(x_j, \nu_i)}{d^2(x_j, \nu_k)}\right)^{\frac{2}{m-1}}\right]^{-1}$$





#### Performance index of a fuzzy partition

Performance index of P:

$$J_{FCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ \mu_{A_i}(x_j) \right]^m ||x_j - \nu_i||^2 = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ u_{ij} \right]^m . d_{ij}^2$$

 $\|\|$ : norm on  $\mathbb{R}^k$ Lower is J(P), better is P.

- The index of performance is an objective function. Its aim is to optimize the data partition in *c* clusters.
- The algorithm is iterative. Several iterations are made until obtaining a stable partition of the data (minimization of  $J_{FCM}(P)$ ).

#### Algorithme du FCM :

- 1. Choisir le nombre de classes : c // Information à priori, algorithme supervisé.
- 2. Initialise la matrice de partition U, ainsi que les centres  $c_k$  (initialisation aléatoire );
- 3. Faire évoluer la matrice de partition et les centres suivant les deux équations :
  - (1)  $u_{ik} = \mathbf{1} \ / \ \left( \sum_{j=1,c} (d_{ik} / d_{ij})^{(2/(m-1))} \right)$ , // mise à jour des degrés d'appartenances, où :  $d_{ij} = ||x_i c_j||$ ,
  - (2)  $c_k = (\sum_i (u_{ik})^m, x_i) / (\sum_i (u_{ik})^m)$ , // mise à jours des centres.
- 4. Test d'arrêt :  $|J^{(t+1)}-J^{(t)}| < seuil$ .



#### Some comments

- FCM algorithm minimizes a weighted sum of the squared distances between vectors to group together and the centers of the clusters.
- The membership degree of any element (vector) to a given cluster has to be all the more raised that the vector is a typical element of the cluster.
- Gustafson and Keller have proposed a modified version of FCM for nonspherical distributions of data.





RGB color space









Segmented image



RGB color space





RGB color space





Segmented image





Noisy Image



RGB color space





21





## **HCM (Hard C-Means)**

#### Some steps backward

Let be  $X = \{x_1, x_2, \dots, x_n\}$  a set of data.

Each  $x_j$  can be a vector of features, i.e.  $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$ .

Let  $P = \{A_1, A_2, \dots, A_c\}$  a partition of the data set.

The centroïds (prototypes)  $\nu_1, \nu_2, \dots, \nu_c$  associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum_{j=1}^n u_{ij}^m . x_j}{\sum_{j=1}^n u_{ij}^m}$$





## **HCM (Hard C-Means)**

#### Some steps backward

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum_{j=1}^{m} \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum_{j=1}^{n} \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum_{j=1}^{m} u_{ij}^m . x_j}{\sum_{j=1}^{n} u_{ij}^m}$$

Computation of the membership degrees:

$$\forall i \in \{1,2,\ldots,c\}, \forall j \in \{1,2,\ldots,n\} \quad u_{ij} = \left\{ \begin{array}{ll} 1 \text{ iif } d^2(x_j,\nu_i) < d^2(x_j,\nu_k) & \forall k \neq i \\ 0 \text{ otherwise} \end{array} \right.$$

Hard assignment:  $x_j \in A_i$  or  $x_j \notin A_i$ 





#### **HCM (Hard C-Means)**

#### Performance index

Performance index of P:

$$J_{HCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ u_{ij} \right]^{m} \|x_{j} - \nu_{i}\|^{2} = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ u_{ij} \right]^{m} d_{ij}^{2}$$

 $\| \|$  : norm on  $\mathbb{R}^k$ 

m=1

Lower is J(P), better is P.

- The index of performance is an objective function. Its aim is to optimize the data partition in *c* clusters.
- The algorithm is iterative. Several iterations are made until obtaining a stable partition of the data (minimization of  $J_{FCM}(P)$ ).





#### Introduction

PCM (Possibilistic C-Means) is a variant of the FCM algorithm [Krishnapuram & Keller].

Aim: to be more robust in presence of noise.

#### Comments:

- The PCM algorithm aims to overcome the relative behaviour of the membership degrees provided in FCM: a vector is « shared » between the different clusters.
- Krishnapuram and Keller replace the notion of membership by the notion of typicality.
- ■The result of a clustering should describe the absolute relationship between a vector and each of the c clusters independently of the relationship between the vector and the (c-1) other clusters .





#### **Details**

- The membership degrees given by PCM are not relative degrees, they are absolute values reflecting the strength with which each vector belongs to all the clusters.
- The elimination of the interferences between the different prototypes needs to define a new objective function (performance index) for the optimization of the partition.
- Remark: only one of the membership degrees of a vector to be classified has to be not equal to zero.





Let be  $X = \{x_1, x_2, \dots, x_n\}$  a set of data.

Each  $x_j$  can be a vector of features, i.e.  $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$ .

Let  $P = \{A_1, A_2, \dots, A_c\}$  a fuzzy partition of the data set.

The centroïds (prototypes)  $\nu_1, \nu_2, \dots, \nu_c$  associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum\limits_{j=1}^n u_{ij}^m . x_j}{\sum\limits_{j=1}^n u_{ij}^m}$$

with  $m \in \mathbb{R}, m > 1$ , influence of the membership degrees (typically, m = 2).

U : matrix of the membership degrees of dimension c imes n

 $\nu_i$ : center of the fuzzy cluster  $A_i$ 

- weighted mean of the data in  $A_i$
- The weight of data  $x_j$  is the mth power of its membership degree to  $A_i$ .



#### **Formulas**

$$P = \{A_1, A_2, \dots, A_c\}$$

$$\forall x_j \in X = \{x_1, \dots, x_n\}, \sum_{i=1}^c \mu_{A_i}(x_j) = \sum_{i=1}^c u_{ij} = 1$$

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\} \quad \mu_{A_i}(x_j) \in [0; 1]$$

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\}$$

$$\begin{cases} 0 < \sum_{j=1}^n u_{ij} < n \\ \max_i u_{ij} > 0 \end{cases}$$





#### Performance index

Performance index of P:

$$J_{PCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ u_{ij} \right]^{m} \|x_{j} - \nu_{i}\|^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{j=1}^{n} \left[ 1 - u_{ij} \right]^{m}$$
$$J_{PCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ u_{ij} \right]^{m} .d_{ij}^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{j=1}^{n} \left[ 1 - u_{ij} \right]^{m}$$

A penality term which avoids the trivial solution  $u_{ij} = 0 \quad \forall i \text{ and } \forall j$ 

 $\eta_i$ : squared distance between the center of the cluster  $A_i$  and the set of vector having a membership degree to this cluster equal to 0.5

The membership degree of a vector to a specific cluster only depends on the distance to the cluster (degree of typicality). It allows to detect absurd data (outliers).

29





#### Performance index

Performance index of P:

$$J_{PCM}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ u_{ij} \right]^{m} . d_{ij}^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{j=1}^{n} \left[ 1 - u_{ij} \right]^{m}$$

In practice: 
$$\eta_i = \frac{\sum\limits_{j=1}^n u_{ij}^m.d_{ij}^2}{\sum\limits_{j=1}^n u_{ij}^m}$$

Also: 
$$\eta_i = \frac{\sum\limits_{x_j \in (\Pi_i)_{\alpha}} d_{ij}^2}{|(\Pi_i)_{\alpha}|}$$
 with  $(\Pi_i)_{\alpha}$  an  $\alpha$ -cut of  $\Pi_i$ 



Computation of the membership degrees:

$$\forall i \in \{1, 2, \dots, c\}, \forall j \in \{1, 2, \dots, n\} \quad u_{ij} = \frac{1}{1 + \left(\frac{d^2(x_j, \nu_i)}{\eta_i}\right)^{\frac{1}{m-1}}} = \frac{1}{1 + \left(\frac{d^2(x_j, \nu_i)}{\eta_i}\right)^{\frac{1}{m-1}}}$$





RGB color space









Segmented Image



RGB color space





Noisy Image



RGB color space





Noisy Image



Segmented image





Let be  $X = \{x_1, x_2, \dots, x_n\}$  a set of data.

Each  $x_j$  can be a vector of features, i.e.  $x_j = \left\{x_{j,1}, x_{j,2}, \dots, x_{j,k}\right\}^t$ .

Let  $P = \{A_1, A_2, \dots, A_c\}$  a fuzzy partition of the data set.

The centroïds (prototypes)  $\nu_1, \nu_2, \dots, \nu_c$  associated to the fuzzy partition are computed as it follows:

$$\forall i \in \{1, 2, \dots, c\}, \quad \nu_i = \frac{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m . x_j}{\sum\limits_{j=1}^n \left[\mu_{A_i}(x_j)\right]^m} = \frac{\sum\limits_{j=1}^n u_{ij}^m . x_j}{\sum\limits_{j=1}^n u_{ij}^m}$$

with  $m \in \mathbb{R}, m > 1$ , influence of the membership degrees (typically, m = 2).

U: matrix of the membership degrees of dimension  $c \times n$ 

 $\nu_i$ : center of the fuzzy cluster  $A_i$ 

- weighted mean of the data in  $A_i$
- The weight of data  $x_j$  is the mth power of its membership degree to  $A_i$ .





Introduction of a "noisy" cluster (rejection option):

$$\forall j \in \{1, 2, \dots, n\}$$
  $u_{\star j} = 1 - \sum_{i=1}^{c} u_{ij}$ 

The cluster of noise (rejection) allows to collect outliers (absurd data) which seem to be different compared with « normal » data.





#### Performance index

Performance index of P:

$$J_{Dav}(P) = \sum_{i=1}^{c} \sum_{j=1}^{n} \left[ u_{ij} \right]^{m} ||x_{j} - \nu_{i}||^{2} + \sum_{j=1}^{n} \delta^{2} \left( 1 - \sum_{i=1}^{c} u_{ij} \right)^{m}$$

 $\delta$ : a fixed distance of the cluster of noise to all the vectors.

 $\delta$  allows to control the ratio of outliers (absurd data).

$$\delta^2 = \lambda \cdot \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} \left[ d_{ij} \right]^2}{n \cdot c}$$

 $\delta^2$  has to be updated at each iteration.







#### This is the end of this part!

