Vecteurs et équations de droites - Fiche d'exercices 3

Exercice 1

Dans le plan muni d'un repère (O; I; J) orthonormé, on considère les deux points suivants :

$$A(-4;-2)$$
 ; $B(-1;2)$

1. Placer les points A et B.

Le graphique sera complété au fur et à mesure des questions l'exercice.

- 2. On note K le milieu du segment [AB]. Montrer que le point K a pour coordonnées : K(-2,5;0).
- 3. On considère le point C de coordonnées (-2,5; -2,5).
 - a. Déterminer les longueurs AB et KC.
 - b. Que représente le segment [KC] pour le triangle ABC?
 - c. En déduire que le triangle ABC est rectangle en C.

Exercice 2

On considère les quatres points suivants caractérisés par leurs coordonnées dans un repère $(O\,;I\,;J)$ orthonormé :

$$A(-4;-1)$$
 ; $B(-3;-4)$; $C(3;-2)$; $D(2;1)$

Montrer que le quadrilatère ABCD est un rectangle.

Exercice 3

On considère le plan muni d'un repère (O; I; J) et le cercle \mathscr{C} de centre K(2; -3) et de rayon 5.

- 1. Justifier que le point A(6;-6) est un point du cercle \mathscr{C}
- 2. Considérons le point B diamétralement opposé au point A dans le cercle \mathscr{C} . Déterminer les coordonnées du point B.
- 3. Soit C le point du plan de coordonnés $\left(-\frac{14}{5}; -\frac{8}{5}\right)$. Justifier que le triangle ABC est rectangle en C.

Exercice 4

- 1. Pour chacun des quadrans ci-dessous :
 - a. Placer le point B translaté du point A par la transla-

tion de vecteur $\stackrel{\rightarrow}{u}$.

b. Tracer le point C translaté du point B par la translation de vecteur \overrightarrow{v} .

Dans chaque cadran, le point C obtenu s'appelle le translaté du point A par le vecteur u+v.

- 2. Dans le premier quadran :
 - a. Placer le point B' translaté du point A par le vecteur v.
 - b. Placer le point C' translaté du point B' par le vecteur J
 - c. Que pouvez-vous dire de la translation composé des translations de vecteurs \overrightarrow{u} puis celle de \overrightarrow{v} et de la translation composée des translations de vecteurs \overrightarrow{v} et \overrightarrow{u} ?

Exercice 5

Dans le repère orthonormé $(O\,;I\,;J)$ ci-dessous, sont représentés quatres vecteurs :

Graphiquement, déterminer les coordonnées de ces quatres vecteurs.

Exercice 6

Dans un repère orthonormé (O; I; J), on considère les quatres points suivants caractérisés par leurs coordonnées :

$$A\left(\frac{5}{3};\frac{7}{4}\right) \;\; ; \;\; B\left(\frac{11}{3};-\frac{5}{4}\right) \;\; ; \;\; C\left(\frac{16}{7};\frac{12}{5}\right) \;\; ; \;\; D\left(\frac{2}{7};\frac{27}{5}\right)$$

Justifier que le quadrilatère ABCD est un parallélogramme.

Exercice 7

Sur une droite graduée, on place les points A, B, C, D, E:

Pour chaque question, déterminer la valeur du nombre k vérifiant l'égalité :

a.
$$\overrightarrow{BC} = k \cdot \overrightarrow{AC}$$

b.
$$\overrightarrow{ED} = k \cdot \overrightarrow{AC}$$

$$\overrightarrow{AC} = k \cdot \overrightarrow{CA}$$

$$\overrightarrow{ED} = k \cdot \overrightarrow{CA}$$

e.
$$\overrightarrow{EA} = k \cdot \overrightarrow{AB}$$

f.
$$\overrightarrow{AC} = k \cdot \overrightarrow{BA}$$

Exercice 8

Dans le cas où les vecteurs $\stackrel{\rightarrow}{u}$ et $\stackrel{\rightarrow}{v}$ sont colinéaires, donner le coefficient de colinéarité du vecteur \overrightarrow{u} par rapport au vecteur

a.
$$\overrightarrow{u}(-2;-10)$$
 et $\overrightarrow{v}(4;20)$

a.
$$\overrightarrow{u}(-2;-10)$$
 et $\overrightarrow{v}(4;20)$ **b.** $\overrightarrow{u}(-6;9)$ et $\overrightarrow{v}(\frac{1}{4};-\frac{1}{2})$

c.
$$\overrightarrow{u}(0;5)$$
 et $\overrightarrow{v}(-5;0)$

c.
$$\overrightarrow{u}(0;5)$$
 et $\overrightarrow{v}(-5;0)$ d. $\overrightarrow{u}(-\frac{4}{3};4)$ et $\overrightarrow{v}(3;-9)$

e.
$$\overrightarrow{u}\left(\frac{1}{3}; \frac{2}{5}\right)$$
 et $\overrightarrow{v}(5; 6)$

e.
$$\overrightarrow{u}\left(\frac{1}{3};\frac{2}{5}\right)$$
 et $\overrightarrow{v}\left(5;6\right)$ f. $\overrightarrow{u}\left(6;-5\right)$ et $\overrightarrow{v}\left(\frac{14}{5};-2\right)$

Exercice 9

On munit le plan d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$:

- 1. Montrer que les points suivants sont alignés : A(0;-1) ; B(2;0) ; C(-2;-2)
- 2. Déterminer si les points suivants sont alignés : K(3;-4) ; L(2;-2) ; M(-1;3)
- 3. On considère les points ci-dessous :

$$O\left(3\,;2\right)$$
 ; $P\left(4\,;5\right)$; $Q\left(1\,;-202\right)$; $R\left(101\,;98\right)$

Déterminer si les droites (OP) et (QR) sont parallèles.

Exercice 10

Dans un un repere $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère les points :

$$A(3;-5)$$
 ; $B(-2;0)$; $C(147;-13)$; $D(-53;187)$

Etablir que les droites (AB) et (CD) sont parallèles.

Exercice 11

On considère le plan muni du repère $(O; \overrightarrow{i}; \overrightarrow{j})$ représenté ci-dessous:

On considère les quatres vecteurs ci-dessous :

$$\frac{\rightarrow}{u}\left(\frac{9}{4}; -\frac{3}{4}\right) \quad ; \quad \frac{\rightarrow}{v}\left(\frac{7}{2}; -\frac{3}{2}\right) \quad ; \quad \frac{\rightarrow}{w}\left(-\frac{15}{4}; \frac{5}{4}\right)$$

- 1. Représenter les trois vecteurs $\stackrel{\rightarrow}{u}$, $\stackrel{\rightarrow}{v}$ et $\stackrel{\rightarrow}{w}$ avec pour origine le point O.
- 2. a. Graphiquement, émettre une conjecture sur la colinéarité de couples de vecteurs parmi $\stackrel{\rightarrow}{u}$, $\stackrel{\rightarrow}{v}$ et $\stackrel{\rightarrow}{w}$.
 - b. Etablir votre conjecture.

Exercice 12

Soit A, B, C et D quatre points du plan. Dans chaque cas, démontrer que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} , vérifiant la relation imposée, sont colinéaires:

a.
$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

b.
$$5 \cdot \overrightarrow{AD} = 2 \cdot \overrightarrow{AC} + 3 \cdot \overrightarrow{BD}$$

c.
$$\overrightarrow{AD} + \overrightarrow{BD} + 2 \cdot \overrightarrow{CB} = \overrightarrow{0}$$
 d. $3 \cdot \overrightarrow{AD} + 4 \cdot \overrightarrow{BC} = 7 \cdot \overrightarrow{AC}$

d.
$$3 \cdot \overrightarrow{AD} + 4 \cdot \overrightarrow{BC} = 7 \cdot \overrightarrow{AC}$$

Exercice 13

On considère le plan muni d'un repère (O; I; J). Soit A, B, C et D quatre points du plan de coordonnées :

$$A(-5;1)$$
 ; $B(2;4)$; $C(-1;-2)$; $D(3;y_D)$

Déterminer les coordonnées du point D tel que les droites (AB) et (CD) soient parallèles et que le point D ait 3 pour abscisse.

Exercice 14

Dans le plan muni d'un repère (O; I; J) orthonormé, on considère les trois points suivants :

$$A(-1;1)$$
 ; $B(-3;-1)$; $C(2;3)$

- 1. Les points A, B et C sont-ils alignés? Justifier votre réponse.
- 2. Déterminer les coordonnées de l'unique point D ayant pour abscisse -2 tel que les droites (AB) et (CD) soient parallèles.

Exercice 15

On considère le plan muni d'un repère orthonormé (O; I; J):

1. Placer les trois points A, B, C dans le repère ci-dessous :

$$A(3;-3)$$
 ; $B(-4;3)$; $C(-5;-1)$

- 2. Déterminer les coordonnées du milieu M du segment [AB].
- 3. a. Déterminer les longueurs AB et MC
 - b. Etablir que le triangle ABC est rectangle en C.
- 4. Soit N un point de l'axe des ordonnées. Déterminer les coordonnées du point N afin que les vecteurs \overline{BN} et \overline{CM} soient colinéaires.