Семинар 1

(Темы: Проективная резольвента, гомотопическая категория)

Вспомним, что в резольвенте (??) мы накрывали модуль свободным. Как мы увидели, категорным "аналогом"свободного модуля может быть проективный объект, причем утверждение ?? говорит о том, что эти два понятия не совпадают. Введём понятие, необходимое для повторения процесса (??) в абстрактной категории.

def 1.1. Говорят, что в категории достаточно много проективных (инъективных) объектов, если для любого объекта $A \in \mathcal{C}$ существует "накрывающий"его ("вкладывающийся"в него) проективный (инъективный) объект P с эпиморфизмом $\mathfrak{p}: P \to A$ (мономорфизмом $\mathfrak{i}: A \to I$).

Видно, что в категории модулей проективных объектов достаточно много. Тогда процесс построения проективной (инъективной) резольвенты абсолютно аналогичен (??). Опять же, верно аналогичное ?? утверждение о том, что объект квазиизоморфен всем своим проективным резольвентам. Еще раз посмотрим на какой-нибудь пример проективной резольвенты.

Ex 1.2. Рассмотрим модули над кольцом $R = \mathbb{C}[x]$. Построим проективную резольвенту 1 \mathbb{C} как R-модуля. 2

$$0 \longrightarrow \mathbb{C}[\mathbf{x}] \xrightarrow{\mathbf{x} \cdot} \mathbb{C}[\mathbf{x}] \xrightarrow{\epsilon_0} \mathbb{C} \longrightarrow 0$$

Ex 1.3. Пример поинтереснее состоит в построении бесконечной проективной резольвенты. Положим $\mathcal{A} = \mathbb{C}[x]/(x^2) - \text{mod}$. Тогда одной из проективных резольвент \mathbb{C} как $\mathbb{C}[x]/(x^2)$ -модуля будет выглядеть следующим образом:

$$\ldots \xrightarrow{\quad x \cdot \quad} \mathbb{C}[x]/(x^2) \xrightarrow{\quad x \cdot \quad} \mathbb{C}[x]/(x^2) \xrightarrow{\quad \epsilon_0 \quad} \mathbb{C} \xrightarrow{\quad 0 \quad} 0$$

Последний пример мотивирует ввести следующее определение³

def 1.4. Проективной размерностью объекта **pd** M называют длину его минимальной проективной резольвенты. Если объект не имеет конечной проективной резольвенты, то говорят, что **pd** $M = \infty$.

Вспомним дуальное понятие инъективного объекта ??. В отличие от проективных объектов, для них не существует общего аналога критерия ??. Попробуем рассмотреть инъективные объекты в категории модулей над кольцом \mathbb{Z} . В данной категории рассмотрим семейство объектов, являющихся группами. Оказывается, что все инъективные объекты в данном семействе исчерпываются делимыми группами.

 \mathbf{def} 1.5. Назовём G делимой группой, если $\forall x \in G, n \in \mathbb{N} \ \exists y \in G : \ ny = x.$

Prop 1.6. G — интективный \mathbb{Z} -модуль \iff G — делимая группа.

Доказательство. (\Rightarrow) Пусть G не делимая. Попытаемся поднять некоторый морфизм $f: \mathbb{Z} \to G$ до морфизма $\to G$ с естественным вложением $i: \mathbb{Z} \to \mathbb{Q}$.

Раз G не делимая, то существуют $x \in G, n \in \mathbb{Z}$ такие, что $\forall y \in G$ $nx \neq y$. В качестве морфизма f возьмём тот, что отправляет единичный элемент в найденный x. Тогда существование искомого морфизма $g: \mathbb{Q} \to G$ невозможно. Действительно, тогда x = f(1) = gi(1) = gi(n)/n = x, откуда nx = gi(n). (\Leftarrow) Теперь G — делимая группа. $i: A \to B$ — мономорфизм и $\phi: A \to G$ — какой-то морфизм, который мы хотим поднять. Приведём следующую конструкцию. Рассмотрим множество расширений (A', ϕ') нашего морфизма: $A \subset A' \subset B$, $\phi'|_A = \phi$. На данном множестве введём частичный порядок: $(A', \phi') \leqslant (A'', \phi'')$ если $A' \subset A''$ и $\phi''|_A' = \phi'$. По лемме Цорна существует максимальный элемент (B', ϕ_B) . Покажем, что B' = B, тогда окажется, что ϕ_B — искомый морфизм. Пусть B' и B не совпадают. Тогда существует $x \in B/B'$. Тут нам потребуется делимость G. Возможны два варианта.

- Пусть $\forall n \in \mathbb{Z} \ nx \notin B'$. Тогда полагая $\phi_B(x) = 0$ получаем продолжение ϕ_B на < B', x>, что противоречит максимальности.
- Пусть $\exists n \in \mathbb{Z}$ такой, что $nx \in B'$. Тогда $\phi_B(nx) = g$, причем в силу делимости G существует $g' \in G$ такое, что ng' = g. Полагая $\phi_B(x) = g'$ снова получим продолжение, противоречащее максимальности.

¹Это частный пример т. н. резольвенты Кошуля(Koszul)

 $^{^2 \}varepsilon_0 -$ evaluation at zero

 $^{^3}$ далее будет дано ещё одно определение проективной размерности $\ref{main_substitute}$

Prop 1.7. В категории \mathbb{Z} -модулей достаточно инъективных объектов.

Доказательство. Построение инъективного объекта для М иллюстрируется диаграммой.

$$\begin{array}{ccc}
\operatorname{Ker} \pi & & & \\
\downarrow & & & \\
\oplus \mathbb{Z} e_{i} & \longrightarrow & \oplus \mathbb{Q} e_{i} & & \\
\pi \downarrow & & \downarrow & & \\
M & & \longrightarrow & \operatorname{Coker} f
\end{array} \tag{1}$$

Утверждение следует из следующего факта:

Prop 1.8. Факторгруппа делимой группы — тоже делимая группа.

Тогда Coker f будет делимым объектом как фактор $\oplus \mathbb{Q}e_i$

Остановимся в рассуждениях с инъективными и проективными объектами. Следующее определение является первым шагом к построению производной категории.

 \mathbf{def} 1.9. Морфизм $f^{\bullet}: \mathsf{K}^{\bullet} \to \mathsf{L}^{\bullet}$ называется гомотопным нулю $f \sim 0$, если существуют $h^n: \mathsf{K}^n \to \mathsf{L}^{n-1}$ такие, что $f^n = d^{n+1} \circ h^{n+1} + h^n \circ d^n$.

Два отображения f^{\bullet} , g^{\bullet} комплексов называются гомотопически эквивалентными $f \sim g$, если $f - g \sim 0$.

Prop 1.10.

- Гомотопные морфизмы образуют идеал. Если $f \sim 0$, то для любых компонуемых c ним морфизмов g, h верно $gf \sim 0$, $fh \sim 0$.
- Гомотопически эквивалентные морфизмы комплексов индуцируют одинаковые морфизмы на когомологиях.

Доказательство. Для ясности не обозначая индексов приведём для первого пункта следующие выкладки.

$$gf = g(hd + dh) = ghd + gdh = ghd + dgh,$$

где последнее равенство сделано из коммутативности дифференциалов с морфизмами комплексов. Тогда gh — морфизм, из которого следует гомотопичность нулю. Для второго пункта в силу линейности достаточно доказать, что гомотопное нулю отображение индуцирует нулевое отображение на когомологиях. Пусть $\mathbf{x} \in \operatorname{Ker} \mathbf{d}_{\mathbf{k}}^{i+1}$. Тогда

$$f^{\mathfrak{i}}(x)=d_{L}^{\mathfrak{i}}h^{\mathfrak{i}}(x)+h^{\mathfrak{i}+1}d_{L}^{\mathfrak{i}+1}(x),$$

где первый член в когомологиях будет равен нулю, т. к. $d_L^i h^i(x) \in Imd_L^i$, а второй — т. к. дифференциал действует на элемент из ядра.

Теперь заменим все наши морфизмы на соответствующие классы эквивалентности по отношению гомотопности и получим новую категорию.

 $\mathbf{def 1.11.} \ \Gamma \text{омотопичесокой категорией } \mathcal{K}(\mathcal{A}) \ \text{называется категория c объектами из } \mathsf{Kom}(\mathcal{A}) \ \text{и морфизмами } \mathrm{Hom}_{\mathcal{K}(\mathcal{A})}(\mathsf{K}^{\bullet},\mathsf{L}^{\bullet}) = \mathrm{Hom}_{\mathsf{Kom}(\mathcal{A})}(\mathsf{K}^{\bullet},\mathsf{L}^{\bullet})/\sim.$

Prop 1.12 (Лемма о зигзаге). *Пусть есть короткая точная последовательность*.

$$0 \longrightarrow \mathsf{K}^{\bullet} \stackrel{\mathsf{f}}{\longrightarrow} \mathsf{L}^{\bullet} \stackrel{\mathsf{g}}{\longrightarrow} \mathsf{M}^{\bullet} \longrightarrow 0$$

Тогда существуют связующие гомоморфизмы $\delta^i: H^i(M^{ullet}) \to H^{i+1}(K^{ullet})$, делающие следующую последовательность точной.

$$H^{i-1}(K^{\bullet}) \xrightarrow{f^*} H^{i-1}(L^{\bullet}) \xrightarrow{g^*} H^{i-1}(M^{\bullet})$$

$$H^{i}(K^{\bullet}) \xrightarrow{f^*} H^{i}(L^{\bullet}) \xrightarrow{g^*} H^{i}(M^{\bullet})$$

$$H^{i+1}(K^{\bullet}) \xrightarrow{f^*} H^{i+1}(L^{\bullet}) \xrightarrow{g^*} H^{i+1}(M^{\bullet})$$

Добавить доказательство в приложение

def 1.13. Пусть даны два комплекса K^{\bullet} и L^{\bullet} над \mathcal{A} . Комплексом морфизмов называется комплекс с объектами $\underline{\operatorname{Hom}}(K^{\bullet},L^{\bullet})^{i}=\prod_{n}\operatorname{Hom}(K^{n},L^{n+1})$. Дифференциал на нём будет действовать следующим образом. Элемент из члена i нашего комплекса можно представить как набор морфизмов $(\ldots,f_{-1},f_{0},f_{1},\ldots)$, действующих между членами K^{\bullet} и L^{\bullet} , отстоящих друг от друга на i. Тогда набор новых $(g_{n})_{n\in\mathbb{Z}}$ в i+1-м члене получим как:

$$d^{\mathfrak{i}}:f_{\mathfrak{n}}\rightarrow g_{\mathfrak{n}}=df_{\mathfrak{n}}-(-1)^{\mathfrak{i}}f_{\mathfrak{n}+1}d$$