Amendments to the Specification:

On page 5, add the following paragraphs following paragraph [0018]:

[0018A] In accordance with one aspect, the present invention is a method of transmitting data in a wireless MC-CDMA system to a set of M users. The method includes providing a transmitter system with N sub-carriers divided into G groups, N and G being integers; determining an instantaneous group SNR that is calculated using an effective channel function for each user in each group of subcarriers; and for each user and in each group of sub-carriers, using the instantaneous SNR of an equivalent single sub-carrier as a metric for resource allocation at the transmitter.

[0018B] In accordance with another aspect, the present invention is a transmitter for wirelessly transmitting data to a set of M users. The transmitter includes a modulator, circuitry for calculating, and resource allocation means. The modulator is for modulating N sub-carriers that are divided into G groups, where N and G are integers. The calculation circuitry is for calculating an instantaneous group SNR using an effective channel function for each user in each group of sub-carriers. The resource allocation means is for allocating, using the instantaneous SNR of an equivalent single sub-carrier as a metric, at least one resource for each user and in each group of sub-carriers.

[0018C] In accordance with another aspect, the present invention is a program of machine-readable instructions, tangibly embodied on an information bearing medium and executable by a digital data processor, to perform actions directed toward transmitting data in a wireless multi-carrier spread spectrum communication system. The actions include providing a transmitter system with N subcarriers divided into G groups, where N and G being integers. They further include determining an instantaneous group SNR that is calculated using an effective channel function for each user in each group of sub-carriers. They also include, for each user and in each group of sub-carriers, using the instantaneous SNR of an equivalent single sub-carrier as a metric for resource allocation at the transmitter.

Replace the paragraph [0053] at page 12, with the following rewritten paragraph:

[0053] That is, an N sub-carrier MC-CDMA system (consisting of G groups of N/G sub-carriers) may be interpreted as an equivalent OFDM system with N/G G sub-carriers. Such an interpretation effectively turns a MC-CDMA system (in its current configuration) into a multi-carrier system similar to a conventional OFDM system. Equation (6) allows the effective sub-channel power to noise ratio to be evaluated and conventional bit loading schemes based on channel state information to be implemented; i.e. bits will be loaded into the N/G sub-carriers in a group as though they were a single sub-carrier.

Replace the paragraph 78 at page 18, with the following rewritten paragraph:

[0078] Now, the optimization problem may be stated as,

Now, the optimization problem may be stated as,

$$\underline{\frac{\text{minimize}}{-\sum_{k=1}^{G} b_{k}}} - \sum_{k=1}^{G} P_{k} - P_{total} \le 0$$

$$\underline{\text{i.}} \qquad \underline{\text{subject to}} - \sum_{k=1}^{G} P_{k} - P_{total} \le 0$$

$$\underline{\varepsilon_{k} - \overline{\varepsilon}_{0}} \le 0$$
(10)

Replace the paragraph 79 at page 18, with the following rewritten paragraph:

[0079] where b_k is the number of bits allocated to the k^{th} (equivalent) sub-carrier, P_k is the power assigned to the k^{th} (equivalent) sub-carrier, P_{total} is the total power available to the user, ε_k and $\overline{\varepsilon}_k$ is the BER and BER bound respectively, and $\overline{N/G}$ G is the total number of (equivalent) sub-carriers. The problem written as a Lagrangian is,

Replace the paragraph 80 at page 18, with the following rewritten paragraph:

[0080]
$$\frac{J_R = \sum_{k=1}^{N/G} b_k + \lambda \sum_{k=1}^{N/G} P_k}{J_R = -\sum_{k=1}^G b_k + \lambda \sum_{k=1}^G P_k}$$
 (11)

Replace the paragraph 81 at page 18, with the following rewritten paragraph:

[0081] where λ is the Lagrange multiplier. After solving for P_k and λ , the expression for P_k that maximizes the data rate is,

$$\frac{1}{1.6|H_{eff.k}|^2} + \frac{\sigma^2 \ln(\bar{\epsilon}_k/0.2)}{N/G} + \frac{P_{total}}{N/G} - \frac{1}{N/G} \sum_{i=1}^{N/G} \frac{\sigma^2 \ln(\bar{\epsilon}_i/0.2)}{1.6|H_{eff.i}|^2}$$

where λ is the Lagrange multiplier. After solving for P_k and λ , the expression for P_k that maximizes the data rate is,

$$\underline{i.} P_{k} = \frac{\sigma^{2} \ln(\overline{\varepsilon}_{k}/0.2)}{1.6 \left| H_{eff.k} \right|^{2}} + \frac{P_{total}}{G} - \frac{1}{G} \sum_{i=1}^{G} \frac{\sigma^{2} \ln(\overline{\varepsilon}_{i}/0.2)}{1.6 \left| H_{eff.i} \right|^{2}}$$
(12)