Design of Closely Coiled Helical Spring

Ex. Design the closely soiled helical concentric springs for the given conditions:

Fig Reference Spring Diagram

Load P = 6 kN; Corresponding spring deflection δ = 50 mm; Maximum permissible shear stress τ = 800 MPa; Spring index C = 6; Shear modulus of spring material G = 82 GPa

Assumptions:

- a) The springs are made of same material.
- b) Maximum induced shear stresses are equal in the springs.
- c) Both the springs have equal free length i.e. $l_1 = l_2$
- d) In principle, deflections are also equal in both springs.
- e) Helix angle = $10^0 \pm 2^0$.

Design Steps:

Step I: Estimate the axial load on each spring

- P = P_i (on inner spring) + P_o (on outer spring)
- Obtain another relationship between P_i and P_o by using the assumed conditions.
- Induced shear stresses in closely coiled helical spring is given by $\tau = K_w \left(\frac{8PD}{\pi d^3} \right), \text{ where } K_W \text{Wahl's stress factor; } P \text{axial}$

load; D - mean coil diameter; d - wire diameter.

• Axial deflection of the closely coiled helical spring is given by

$$\delta = \frac{8 P D^3 N_a}{G d^4}$$
, where N_a – number of active coils

Step II: Find out spring wires' and mean coil's diameters

- Use the above given formulas to obtain inner wire diameter d_i and outer wire diameter d_o, inner coil diameter D_i, and outer coil diameter D_o.
- Spring index C=D/d; Obtain the relationship between d_i and d_o; consider the diametral clearance (2c)
 between the coils is equal to the difference between the wire diameters.

Step III: Obtain the solid length and free length of the springs

- Solid length = d. N_t , where N_t total number of coils.
- Total number of coils may be obtained from the following chart: (Use any one type)

Number of active coils Na
$N_t - 1$
N_t-2

- Assuming the spring is fully compressed: Free length Solid length + δ
- Axial pitch = Free length/(N, -1)

Step IV: Draw the free length configuration of the springs.

Ex. Demonstrate the following welded joints with schematic sketches and corresponding symbols:

- a) Spot Weld
- b) Double-U Butt Joint
- c) Double-V Butt Joint
- d) Double-Bevel Butt Joint
- e) Fillet Weld
- N Edge Weld