Sayısal Integrasyon Kavramı ve Çeşitleri

$$\int_a^b f(x). dx \approx yaklaşık hesaplama$$
 fikirlerinin bütününe sayısal integrasyon denir

Sayısal Analiz dersinde Newton Cotes formüllerine odaklanacağız

polinom
$$f_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

$$\int_a^b f(x) . dx \approx \int_a^b f_n(x) . dx \approx$$

Polinomu doğru, parabol, kübik bir ifade olarak uydurabiliriz. Bunların her biri de Newton Cotes için bir alt başlıktır

$$I = \int_{a}^{b} f(x) \, dx$$

İntegralin sınırları olan a ve b sayıları sabit ve fonksiyon bu aralıkta sürekli ise integralin sonucu da sabit olup, değeri y=f(x) eğrisinin altında ve x=a ile x=b doğruları arasında kalan alana eşittir

Sayısal Integral Çeşitleri

$$f_n(x) = a_0 + a_1 x$$

YAMUK Kuralı (Trapezoidal Rule) Parabol Uydurma

$$f_n(x) = a_0 + a_1 x + a_2 x^2$$

Simpson's 1/3 kuralı

Kübik Polinom Uydurma

$$f_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Simpson's 3/8 kuralı

4to 7/1/1/11

TRAPEZ (YAMUK) YÖNTEMİ

Bu yöntemde integral **n** sayıda dikdörtgen kullanılarak hesaplanır N ne kadar büyük ise gerçek değere o kadar yakın sonuç elde edilir

$$I = \sum h_i f_i$$
 $f_i \rightarrow f(x_i)$
 $h_i \rightarrow i$. dikdörtgenin genişliği
 $h_i = x_{i+1} - x_i$ olarak tanımlanır

Eğer dikdörtgenlerin genişliği sabit olduğundan h= $\frac{b-a}{n}$ olarak yazılır

 $\mathbf{I} = \int_a^b f(x). dx$ integralinin değerini hesaplamak üzere [a, b] kapalı aralığını **n** eşit parçaya ayıralım

Her bölme noktasından (xi) dik doğrular çıkarak, diklerin f(x) eğrisini kestiği noktaları birer doğru ile birleştirerek n tane yamuk elde edebiliriz x_0ABx_1 dik yamuğunun alanı :

Toplam Alan
$$S = S_{1+}S_{2+}S_3 + ... + S_n$$
 olacağından

$$S = \frac{1}{2} h(y_0 + y_1) + \frac{1}{2} h(y_1 + y_2) + \frac{1}{2} h(y_2 + y_3) + ... + \frac{1}{2} h(y_{n-1} + y_n)$$

$$S = h/2 [y_0 + 2y_1 + 2y_2 + 2y_3 + ... + 2y_{n-1} + y_n]$$

S =
$$h \left[\frac{(y_0 + yn)}{2} + y_1 + y_2 + y_3 + ... + y_{n-1} \right]$$

$$S = h \left[\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right]$$

$$a \rightarrow x_0$$
 $b \rightarrow x_n$ $h = \Delta x = (x_n - x_0)/n$ olarak kabul edersek

$$S = \Delta \mathbf{x} \left[\frac{f(x_0) + f(x_n)}{2} + \sum_{k=1}^{n-1} f(x_0 + k\Delta \mathbf{x}) \right]$$

$$\int_0^1 \frac{1}{1+x^2} \ dx$$

İntegralini n=4 alarak Trapez yöntemi ile hesaplayınız.

$$x_0 = 0$$
 $x_n = 1$ $h = (1 - 0)/4 = 0.25$

	х		f(x)
x0	0	+0,25	1
x1	0,25	+0,25	0,94118
x2	0,5	+0,25	0,8
х3	0,75	+0,25	0,64
x4	1		0,5

$$S = 0.25 \left[\frac{1 + 0.5}{2} + (0.9412 + 0.8 + 0.64) \right]$$

$$S = 0.78279 \text{ br}^2$$

Bu fonksiyon için gerçek integral

$$I = \int_0^1 \frac{1}{1+x^2} dx = \tan^{-1} x \Big|_0^1 = \arctan(x) \Big|_0^1$$

SIMPSON YÖNTEMİ (1/3 kuralı)

$$f(x) = ax^2 + bx + c$$
 şeklinde verilmiş ise

$$S = \int_{a}^{b} f(ax^{2} + bx + c) dx$$

Analitik olarak incelersek

$$S = a \frac{x^3}{3} + b \frac{x^2}{2} + cx \begin{vmatrix} h \\ -h \end{vmatrix} = a \frac{h^3}{3} + b \frac{h^2}{2} + ch - [-a \frac{h^3}{3} + b \frac{h^2}{2} - ch]$$

$$S = \frac{2}{3}ah^3 + 2ch = \frac{h}{3}(2ah^2 + 6c)$$

Denklemin katsayıları bilinmediğinden S eşitliğini y_0, y_1, y_2 cinsinden bulalım

$$x = -h$$
 için $f(x) = y_0 = ah^2 - bh + c$
 $x = 0$ için $f(x) = y_1 = c$
 $x = h$ için $f(x) = y_2 = ah^2 + bh + c$

$$y_0 + y_2 = ah^2 - bh + c + ah^2 + bh + c = 2ah^2 + 2c$$

c =
$$y_1$$
 olduğundan:
 $2ah^2 + 2y_1 = y_0 + y_2$
 $2ah^2 = y_0 - 2y_1 + y_2$

$$S = h/3 (y_0 - 2y_1 + y_2 + 6y_1)$$

 $S = h/3 (y_0 + 4y_1 + y_2)$

Simpson yönteminde çubuklar ikişer ikişer alındığından aralık sayısı ÇİFT olmalıdır

Simpson formülünde $h = (x_n - x_0) / n$ alınarak

$$S = \frac{h}{3} \left[f(x_0) + f(x_n) + 4 \sum_{k=1,3,5}^{n-1} f(x_0 + k * h) + 2 \sum_{i=2,4,6}^{n-2} f(x_0 + i * h) \right]$$

 $y = x^3$ eğrisinin x=-1, x=2 ve Ox ekseni ile sınırlı bölgenin alanı nedir?

$$S_1 = -\int_{-1}^0 x^3 \, dx$$

n=4 h=0,25

	X	f(x)
х0	-1	1
x1	-0,75	0,4218
x2	-0,5	0,125
х3	-0,25	0,0156
х4	0	0

 $S_1 = 0.25/3 [(1 + 0) + 2*(0.125) + 4*(0.4218 + 0.0156)] = 0.2499$

$$S_2 = \int_0^2 x^3 \, dx$$

n=4 h=0,5

	Х	f(x)
x0	0	0
x1	0,5	0,125
x2	1	1
х3	1,5	3,375
x4	2	8

$$S = 4 + 0,2499 = 4,25 \text{ br}^2$$

$$S_2 = 0.5/3 [(0 + 8) + 2*1 + 4*(0.125 + 3.375)] = 4$$

 $f(x) = (x^2 - 1)(x + 2)$ eğrisinin altında ve Ox ekseninin üstünde kalan bölgenin alanını bulunuz n=4 alarak bulunuz.

Analitik çözüm

$$I = \int_{-2}^{-1} (x^3 + 2x^2 - x - 2) dx$$

$$I = \frac{1}{4} x^4 + \frac{2}{3} x^3 - \frac{1}{2} x^2 - 2x \begin{vmatrix} -1 \\ -2 \end{vmatrix} = 0,41 \text{ br}^2$$

Trapez Yöntemi ile çözüm

$$S_T = \int_{-2}^{1} (x^2 - 1) (x + 2) dx$$

$$h=(-1-(-2))/4=0.25$$

	X	f(x)
x0	-2	0
x1	-1,75	0,5156
x2	-1,50	0,625
х3	-1,25	0,4218
х4	-1	0

$$S_{T} = h \left[\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right]$$

$$S_T = 0.25 \left[\frac{0+0}{2} + (0.5156 + 0.625 + 0.4218) \right]$$

$$S = 0.391 \, br^2$$

Simpson Yöntemi ile çözüm

$$S_T = \int_{-2}^{1} (x^2 - 1) (x + 2) dx$$

$$h=(-1-(-2))/4=0.25$$

	х	f(x)
x0	-2	0
x1	-1,75	0,5156
x2	-1,50	0,625
х3	-1,25	0,4218
х4	-1	0

$$S_{s} = \frac{h}{3} \left[f(x_{0}) + f(x_{n}) + 4 \sum_{k=1,3,5}^{n-1} f(x_{0} + k * h) + 2 \sum_{i=2,4,6}^{n-2} f(x_{0} + i * h) \right]$$

 $Ss = 0.25/3 [(0 + 0) + 2*0.625 + 4*(0.4218 + 0.0156)] = 0.4166 br^{2}$

Simpson's 3/8 kuralı

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f^{3}(x) dx$$

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{3}(x) dx = (b-a) \cdot \frac{f(a) + 3 \cdot f(x_{1}) + 3 \cdot f(x_{2}) + f(b)}{8}$$

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{3}(x) dx = (b-a) \cdot \frac{f(a) + 3 \cdot f(x_{1}) + 3 \cdot f(x_{2}) + f(b)}{8}$$

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{3}(x) dx = (b-a) \cdot \frac{f(a) + 3 \cdot f(x_{1}) + 3 \cdot f(x_{2}) + f(b)}{8}$$

$$y = \{(x)$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{(x)\}$$

$$y = \{$$

$$n = 2 i \sin \int_{a}^{a+b} f(x) dx + \int_{a+b}^{b} f(x) dx$$

$$\int_{1+x^4}^{6} dx ile veriler integralin sayisal gözülmünü Simpson $\frac{3}{8}$
lewali ile $n=1$ ve $n=2$ için yapınız.$$

$$0=2 \implies \int_{0}^{3} \frac{1}{1+x^{\frac{1}{4}}} dx + \int_{2}^{6} \frac{1}{1+x^{\frac{1}{4}}} dx = 1$$

$$3 \cdot \frac{\frac{1}{2}(0) + 3 \cdot \frac{1}{2}(1) + 3\frac{1}{2}(2) + \frac{1}{2}(3)}{8} + 3 \cdot \frac{\frac{1}{2}(1) + 3\frac{1}{2}(4) + 3 \cdot \frac{1}{2}(5) + \frac{1}{2}(6)}{8}$$

$$= \left(3 \cdot \frac{1+3 \cdot \left(\frac{1}{2}\right)}{8} + 3 \cdot \frac{\frac{1}{4}}{123} + 3 \cdot \frac{1}{253} + 3 \cdot \frac{1}{125} + 3 \cdot \frac{1}{125} + \frac{1}{125} + \frac{1}{255}$$

İki Katlı Integralin Sayısal Çözümü

$$I = \int_2^3 \int_x^{2x^3} (x^2 + y) dy dx$$

$$I = \int_{2}^{3} g(x) dx$$
 n=4

$$h = (b-a)/n = (3-2)/4 = 0.25$$

	Х	g(x)
х0	2	g0
x1	2,25	g1
x2	2,5	g2
х3	2,75	g3
x4	3	g4

1. Adım
$$x_0 = 2$$
 için

$$I = \int_{2}^{16} (x_o^2 + y) dy$$

$$h = (16-2)/4 = 3.5$$

$$g_0 = 3.5/3 [(6 + 20) + 2*13 + 4*(9.5 + 16.5)] = 182$$

	у	f(y)
y0	2	6
у1	5,5	9,5
y2	9	13
уЗ	12,5	16,5
у4	16	20

$$I = \int_{2,25}^{22,78} (x_1^2 + y) dy$$
 h = (22,78-2,25)/4 = 5,13

$$g_1 = 5,13/3 [(7,31 + 27,76) + 2*17,57 + 4*(12,44 + 22,7)]$$

 $g_1 = 360,417$

	У	f(y)
y0	2,25	7,31
у1	7,38	12,44
y2	12,51	17,57
у3	17,64	22,7
y4	22,77	27,76

3.Adım $x_2=2,5$ için

$$I = \int_{2,5}^{31,25} (x_2^2 + y) dy$$
 h = (31,25-2,5)/4 = 7,19

$$g_2 = 7,19/3 [(8,75 + 37,51) + 2*23,13 + 4*(15,94 + 30,32)]$$

 $g_2 = 665,22$

	У	f(y)
yO	2,5	8,75
у1	9,69	15,94
y2	16,88	23,13
у3	24,07	30,32
у4	31,26	37,51

$$I = \int_{2,75}^{41,59} (x_3^2 + y) dy$$

$$g_3$$
 = 9,71/3 [(10,31 + 49,15) + 2*29,73 + 4*(20,02 + 39,44)] g_3 = 1154,7

	У	f(y)
y0	2,75	10,31
у1	12,46	20,02
у2	22,17	29,73
у3	31,88	39,44
у4	41,59	49,15

5.Adım x₄=3 için

$$I = \int_3^{54} (x_4^2 + y) dy$$

$$g_4$$
 = 12,75/3 [(12 + 63) + 2*37,5 + 4*(24,75 + 50,35)] g_4 = 1912,5

	У	f(y)
y0	3	12
y1	15,75	24,75
y2	28,5	37,5
у3	41,25	50,35
у4	54	63
7 '	3 1	

Ss = h/3 [
$$g_0 + g_4 + 4*(g_1 + g_3) + 2*g_2$$
]
Ss = 0,25/3 [182 + 1912,5 + 4*(360,417 + 1154,7) + 2*665,22] = 790,451

$$S_{\text{analitik}} = 790,55$$

 $S_{\text{s}} = 790,451$

Hata = |790,451 - 790,55| = 0,099

