Scaling up k-NN search by storing data in a KD-tree

Complexity of search

Complexity of brute-force search

Given a query point, scan through each point

- O(N) distance computations per 1-NN query!
- $O(N \log k)$ per k-NN query!

What if *N* is huge??? (and many queries)

KD-tree representation

KD-trees

Structured organization of documents

 Recursively partitions points into axis aligned boxes.

Enables more efficient pruning of search space

Works "well" in "low-medium" dimensions

- We'll get back to this...

Start with a list of d-dimensional points.

Pt	x [1]	x [2]
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85

Split points into 2 groups

Continue splitting points at each set

- Creates a binary tree structure

Each leaf node contains a list of points

Keep one additional piece of info at each node:

The (tight) bounds of points at or below node

KD-tree construction choices

Use heuristics to make splitting decisions:

- Which dimension do we split along?

– Which value do we split at?

```
median (or center point of box, ignoring data in box)
```

- When do we stop?

Many heuristics...

median heuristic

center-of-range heuristic

NN search with KD-trees

Traverse tree looking for nearest neighbor to query point

1. Start by exploring leaf node containing query point

1. Start by exploring leaf node containing query point

1. Start by exploring leaf node containing query point

- 1. Start by exploring leaf node containing query point
- 2. Compute distance to each other point at leaf node

- 1. Start by exploring leaf node containing query point
- 2. Compute distance to each other point at leaf node

- 1. Start by exploring leaf node containing query point
- 2. Compute distance to each other point at leaf node
- 3. Backtrack and try other branch at each node visited

- 1. Start by exploring leaf node containing query point
- 2. Compute distance to each other point at leaf node
- 3. Backtrack and try other branch at each node visited

Use distance bound and bounding box of each node to prune parts of tree that cannot include nearest neighbor

Use distance bound and bounding box of each node to prune parts of tree that cannot include nearest neighbor

Use distance bound and bounding box of each node to prune parts of tree that cannot include nearest neighbor

Complexity

For (nearly) balanced, binary trees...

- Construction
 - Size: 2N-1 nodes if I datapt at each leaf -> O(N)
 - Depth: O(log N)
 - O(N) at every level of the tree Median + send points left right:
 - Construction time: O(N log N)
- 1-NN query
 - Traverse down tree to starting point: O(log N)
 - Maximum backtrack and traverse: (N) in worst case
 - Complexity range: O(log N)→ O(N)

Under some assumptions on distribution of points, we get O(logN) but exponential in d

Complexity

pruned many (closer to O(log N))

pruned few (closer to O(N))

Complexity for N queries

Ask for nearest neighbor to each doc

• Brute force 1-NN:

kd-trees:

Inspections vs. N and d

k-NN with KD-trees

Exactly same algorithm, but maintain distance to furthest of current *k* nearest neighbors

Approximate k-NN search

Approximate k-NN with KD-trees

Before: Prune when distance to bounding box > r

Now: Prune when distance to bounding box $> r/\alpha$

Prunes more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α

Saves lots of search time at little cost in quality of NN!

Bound loose...In practice, often closer to optimal.

Closing remarks on KD-trees

Tons of variants of kd-trees

- On construction of trees
 (heuristics for splitting, stopping, representing branches...)
- Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search

Distance metric and data representation crucial to answer returned

For both, high-dim spaces are hard!

- Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N >> 2^d$... Typically useless for large d.
- Distances sensitive to irrelevant features
 - Most dimensions are just noise → everything is far away
 - Need technique to learn which features are important to given task