Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №3.4.2

Закон Кюри-Вейса.

Автор:

Глеб Уваркин 615 группа Преподаватель:

Андрей Александрович Заболотных

Цель работы:

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются:

Катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теоретические сведения.

Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствии поля располагались в пространстве хаотичным образом. При повышении температуры Tвозрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле) - по закону Кюри:

$$\chi = \frac{C}{T},\tag{1}$$

где С - постоянная Кюри.

Для парамагнитных веществ, которые при понижении температуры становятся ферромагнитными формула (1) должна быть видоизменена. Эта формула показывает, что температура T=0 является особой точкой температурной кривой, в которой χ неограничено возрастает.

При $T \to 0$ тепловое движение все меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках - под влиянием обменных сил - это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков закон Кюри должен быть заменен законом Кюри-Вейсса:

$$\chi \sim \frac{1}{T - \Theta_p},\tag{2}$$

где Θ_p - температура, близкая к температуре Кюри.

Эта формула хорошо описывает поведение ферромагнитных веществ после их перехода в парамагнитную фазу при заметном удалении температуры от χ , но недостаточна точна при $T \approx \chi$.

В нашей работе мы изучаем температурную зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Для гадолиния точка Кюри лежит в пределах комнатных температур.

Рис. 1: Зависимость обратной величины магнитной восприимчивости от температуры

2 Экспериментальная установка.

Рис. 2: Схема экспериментальной установки
1 - Катушка с образцом, 2 - стеклянный сосуд с трансформаторным маслом, 3 - вода в термостате, 4 - ртутный термометр, 5 - термостат

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (~ 50 кГц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером около 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регуляруется с помощью термостата.

Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 - её самоиндукцию в отсутствии образца, получим

$$(L - L_0) \sim \chi. \tag{3}$$

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},\tag{4}$$

где C - ёмкость контура автогенератора.

Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C},\tag{5}$$

Из (4) и (5) имеем

$$(L-L_0) \sim (\tau^2 - \tau_0^2).$$

Таким образом,

$$\chi \sim (\tau^2 - \tau_0^2). \tag{6}$$

Из формул (2) и (6) следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)}.$$
 (7)

Параметры установки: k=24 град/мВ , $\tau_0=6,95636$ мкс.

3 Обработка результатов.

Нашей задачей является проверка выполнения закона Кюри-Вейса. Зная, что при изменении температуры должна меняться магнитная восприимчивость гадолиния, а, следовательно, и самоиндукция катушка, будем замерять период колебания τ в колебательном контуре в зависимости от температуры вещества T. Разность между температурой в термостате $T_{\text{изм.}}$ и реальной температурой вещества можно оценить с помощью термопары ΔU и коэффициента установки k. Проверим выполнение соотношения (7).

T _{изм.} , °C	16.000	18.100	20.100	22.100	24.100	26.060	28.050	30.050	32.000	34.000	36.000	38.000	40.000
ΔU , mB	-0.003	-0.020	-0.020	-0.020	-0.013	-0.015	-0.018	-0.016	-0.015	-0.010	0	0,010	0,010
T , $^{\circ}$ C	15.928	17.620	19.620	21.620	23.788	25.700	27.618	29.666	31.640	34.240	36.000	38.240	40.240
$ au, exttt{MKC}$	7.880	7.770	7.590	7.390	7.210	7.130	7.090	7.060	7.040	7.030	7.018	7.009	7.003
$\tau^2 - \tau_0^2$, mkc ²	13.703	11.982	9.217	6.221	3.593	2.446	1.877	1.453	1.171	1,029	0.861	0.735	0.651
$1/(\tau^2 - \tau_0^2), 1/\text{mkc}^2$	0.073	0.083	0.108	0.161	0.278	0.409	0.533	0.688	0.854	0.971	1.161	1.360	1.536
ΔT , °C	0.010	0.881	0.981	1.081	1.829	1.713	1.534	1.854	2.109	3.424	0.010	3.824	4.024

Таблица 1: Данные с установки

Построим график зависимости $au^2 - au_0^2 = f(T)$.

Рис. 3: График зависимости $au^2 - au_0^2 = f(T)$.

По данному графику сложно определить температуру Кюри, так как было снято слишком мало точек при низкой температуре (установка позволила провести измерения лишь при температуре $> 16^{\circ}\mathrm{C}$.)

Рис. 4: График зависимости $1/(\tau^2 - \tau_0^2) = f(T)$.

C помощью метода наименьших квадратов определим значение Θ_p и её погрешность:

$$\Theta_p \simeq (19.97 \pm 0.51) \, ^{\circ}\text{C} \, (\varepsilon \simeq 3\%)$$

Табличное значение парамагнитной температуры Кюри для гадолиния $\Theta_p=16^{\circ}{\rm C}.$

4 Вывод.

Полученное значение температуры Кюри близко к табличному, но все же не совпадает с ним. Причиной этому могла послужить неисправность установки, неточность измерений, вызванная разницей температур установки и образца, а также небольшое количество измерений в окрестности точки Кюри.