

US012385053B2

(12) United States Patent

Nuccio et al.

(10) Patent No.: US 12,385,053 B2

(45) **Date of Patent:** Aug. 12, 2025

(54) GENOMIC ALTERATION OF PLANT GERMLINE

(71) Applicant: INARI AGRICULTURE

TECHNOLOGY, INC., Cambridge,

MA (US)

(72) Inventors: Michael Lee Nuccio, Salem, NH (US);

Mircea Achiriloaie, Cambridge, MA

(US)

(73) Assignee: INARI AGRICULTURE

TECHNOLOGY, INC., Cambridge,

MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 397 days.

(21) Appl. No.: 17/754,973

(22) PCT Filed: Oct. 22, 2020

(86) PCT No.: PCT/US2020/056859

§ 371 (c)(1),

(2) Date: **Apr. 18, 2022**

(87) PCT Pub. No.: WO2021/081200

PCT Pub. Date: Apr. 29, 2021

(65) Prior Publication Data

US 2022/0389438 A1 Dec. 8, 2022

Related U.S. Application Data

- (60) Provisional application No. 62/924,542, filed on Oct. 22, 2019.
- (51) **Int. Cl.**

C12N 15/82 (2006.01)

(52) U.S. Cl.

CPC C12N 15/8213 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,583,210	A	12/1996	Neill et al.
5,602,321	A	2/1997	John
5,703,049	A	12/1997	Rao
5,885,801	A	3/1999	Rao
5,885,802	A	3/1999	Rao
5,990,389	A	11/1999	Rao et al.
6,453,242	B1	9/2002	Eisenberg et al.
6,479,626	B1	11/2002	Kim et al.
6,534,261	В1	3/2003	Cox et al.
6,794,136	B1	9/2004	Eisenberg et al.
6,903,185	B2	6/2005	Kim et al.
7,153,949	B2	12/2006	Kim et al.
10,113,163	B2	10/2018	Liu et al.
10,308,947	B2	6/2019	Yang et al.
2004/0082770	A1	4/2004	Castle et al.
2005/0050588	$\mathbf{A}1$	3/2005	Lucas et al.

2011/0093982 A	1 4/2011	Samuel et al.
2011/0247100 A	1 10/2011	Samboju et al.
2016/0208243 A	1 7/2016	Zhang et al.
2017/0342427 A	1 11/2017	Kragler et al.
2019/0264218 A	1* 8/2019	Shultz C12N 15/8213
2019/0292553 A	1 9/2019	Gao et al.
2019/0300890 A	1 10/2019	Brower-Toland et al.

FOREIGN PATENT DOCUMENTS

WO	WO-1998020133 A2	5/1998	
WO	WO-2003092360 A2	11/2003	
WO	WO-2017178633 A1	10/2017	
WO	WO-2017189308 A1	11/2017	
WO	WO-2018086623 A1	5/2018	
WO	WO-2018176009 A1	9/2018	
WO	WO-2021041001 A2 *	3/2021	C12N 15/11

OTHER PUBLICATIONS

NCBI GQ395500 2009, ncbi.nlm.nih.gov/nucleotide/GQ395500.1 (Year: 2019).*

Tang et al 2019, Plant Biotechnology Journal 17: 1431-1445; first published online Dec. 24, 2018 (Year: 2018).*

NCBI GQ395500 2009, ncbi.nlm.nih.gov/nucleotide/GQ395500.1 (Year: 2009).*

Ali et al., (2015). "Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System," Mol. Plant, 8:1288-1291. Baltes et al., (2014). "DNA Replicons for Plant Genome Engineering," Plant Cell, 26(1):151-63.

Cho et al., (2015). "Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA," J. Exp. Bot, 66:6835-6847.

Cody et al., (2017). "Multiplexed Gene Editing and Protein Overexpression Using a Tobacco mosaic virus Viral Vector," Plant Physiol., 175:23-35.

Dong et al., (2012). "A Gene Regulatory Network Model for Floral Transition of the Shoot Apex in Maize and Its Dynamic Modeling," PLoS One, 7(8):e43450, 11 pages.

Ezzat et al., (2011). "PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation," Nucleic Acids Res., 39:5284-5298.

(Continued)

Primary Examiner — Brent T Page Assistant Examiner — Aleksandar Radosavljevic (74) Attorney, Agent, or Firm — MORRISON & FOERSTER LLP

(57) ABSTRACT

Compositions containing chimeric RNA molecules which comprise meristem targeting sequences that are fused to RNA cargo sequences that include gene editing molecules are provided. Methods of using the compositions to efficiently edit plant genomes without intervening tissue culture steps are also provided. The solutions described here relate to engineered RNA molecules useful in producing plants with altered genomes. As such, it relates to substantially purified compositions, vectors, systems, as well as genomes of plants.

23 Claims, 2 Drawing Sheets

Specification includes a Sequence Listing.

(56) References Cited

OTHER PUBLICATIONS

Gao et al., (2019). "Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies," New Phytol., 223:2120-2133.

Guo et al., (2010). "Directed evolution of an enhanced and highly efficient Fokl cleavage domain for zinc finger nucleases," J. Mol. Biol., 400:96-107.

Haywood et al., (2005). "Phloem long-distance trafficking of Gibberellic Acid-Insensitive RNA regulates leaf development," Plant J., 42:49-68.

Huang et al., (2018). "Mobility of Antiflorigen and PEBP mRNAs in Tomato-Tobacco Heterografts," Plant Physiol., 178:783-794. International Search Report and Written Opinion received for International Patent Application No. PCT/US2020/056859 mailed on Feb. 10, 2021, 10 pages.

Jackson et al., (2012). "Systemic movement of FT mRNA and a possible role in floral induction," Front. Plant Sci., 3:127, 4 pages. Jarver et al., (2012). "Peptide-mediated Cell and In Vivo Delivery of Antisense Oligonucleotides and siRNA," Mol. Therapy Nucleic Acids, 1(6):e27, 17 pages.

Jiang et al. (2019). "Natural variations of FT family genes in soybean varieties covering a wide range of maturity groups," BMC Genomics, 20(1):230, 16 pages.

Kehr et al., (2018). "Long distance RNA movement," New Phytologist, 218(1):29-40.

Kong et al., (2010). "Two coordinately regulated homologs of Flowering Locus T are involved in the control of photoperiodic flowering in soybean," Plant Physiol., 154(3):1220-31.

Li et al., (2011). "Mobile FT mRNA contributes to the systemic florigen signaling in floral induction," Sci. Rep., 1:73, 6 pages.

Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, ed. Applewhite (American Oil Chemists Society, Champaign, III.), pp. 497-502

Lu et al., (2010). "Arginine-rich intracellular delivery peptides synchronously deliver covalently and noncovalently linked proteins into plant cells," J. Agric. Food Chem., 58:2288-2294.

Luo et al., (2016). "Generation of TALE nickase-mediated genetargeted cows expressing human serum albumin in mammary glands," Scientific Reports, 6:20657, 11 pages.

Maher et al., (2019). "Plant gene editing through de novo induction of meristems," Nature Biotechnology, 38(1):84-89, 17 pages.

Mahfouz et al., (2011). "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks," PNAS USA, 108:2623-2628

Mahfouz et al., (2011). "TALE nucleases and next generation GM crops," GM Crops, 2:99-103.

Mikami et al., (2017). "In Planta Processing of the SpCas9-gRNA Complex," Plant Cell Physiol., 58(11):1857-1867.

Mohanta et al., (2017). "Genome Editing Tools in Plants," Genes, 8:399, 24 pages.

Pausch et al., (2020). "CRISPR-Caso from huge phages is a hypercompact genome editor," Science, 369(6501):333-337, 11 pages.

Pedersen et al., (1986). "Sequence analysis and characterization of a high sulfur zein protein of Mr 15,000," J. Biol. Chem., 261:6279-6284.

Rodriguez-Leal et al., (2017). "Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing," Cell, 171(2):470-480.

Ruiz-Medrano et al., (1999). "Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants," Development, 126:4405-4419.

Sandhya et al., (2020). "The present and potential future methods for delivering CRISPR/Cas9 components in plants," Journal of Genetic Engineering and Biotechnology, 18(25):1-11.

Schubert et al., (1988). "Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in *Escherichia coli*," J. Bacteriol., 170:5837-5847.

Sun et al. (2011). "GmFT2a, a soybean homolog of Flowering Locus T, is involved in flowering transition and maintenance," PLoS One, 6(12):e29238, 12 pages.

Takeshima et al., (2019). "Functional divergence between soybean Flowering Locus T orthologues FT2a and FT5a in post-flowering stem growth," J Exp Bot., 70(15):3941-3953.

Unnamalai et al., (2004). "Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells," FEBS Letters, 566:307-310.

Wu et al., (2014). "TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus," Biochem Biophys Res Commun., 446(1):261-6.

Yan et al., (2019). "Functionally diverse type V CRISPR-Cas systems," Science, 363:88-91, 4 pages.

Zhang et al., (2016). "tRNA-Related Sequences Trigger Systemic mRNA Transport in Plants," Plant Cell, 28:1237-1249.

Kirihara et al., (1988). "Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize," Gene, 71:359-

Ali et al., (2018). "Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and *Arabidopsis*," Virus Res., 244:333-337, 5 pages.

Du et al., (2016). "Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9," J. Biotech, 217:90-97.

Fonfara et al., (2016). "The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA," Nature, 532:517-521, 19 pages.

Kim et al., (2001). "Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato," Science, 293:287-289.

Masumura et al., (1989). "cDNA cloning of an mRNA encoding a sulfur-rich 10 kDa prolamin polypeptide in rice seeds," Plant Mol. Biol., 12:123-130.

* cited by examiner

Aug. 12, 2025

KEY:	
5'-cap	
5'-UTR	
Cas	
DR	
g (gRNA	a) [
FT	
polyA	

FIGURE 1A

Aug. 12, 2025

KEY:	
5'-cap	
5'-UTR	
Cas	
polyA	
DR	
g (gRNA	A)
FT	

FIGURE 1B

GENOMIC ALTERATION OF PLANT GERMLINE

CROSS-REFERENCE TO RELATED APPLICATIONS

This international patent application claims the benefit of U.S. provisional patent application No. 62/924,542, filed Oct. 22, 2019 and incorporated herein by reference in its entirety.

ELECTRONICALLY REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

The content of the electronically submitted sequence listing in ASCII text file (Name: 10068_SEQ LST_ST25.txt; Size: 102655 bytes; and Date of Creation: Oct. 22, 2020) filed with the application is incorporated herein by reference in its entirety.

BACKGROUND

Development of new and improved varieties of plants 25 requires a genetically diverse parental pool. Traditional breeding programs are based on genetic variation that originates from exotic germplasm or from random mutagenesis. Selected individuals with potentially advantageous genetic traits are backcrossed into elite germplasm to develop 30 improved varieties.

With a growing understanding of plant genetics, many targets emerge for possible genetic modifications useful in making improved plant varieties. Yet traditional methods of random mutagenesis are time consuming and do not provide a convenient way to explore the full spectrum of potential benefit of genetic variation of candidate loci. Other methods like transgenesis or genome editing are more promising.

A drawback of specific genomic intervention, such as by genome editing, is our limited current ability to directly modify the genome of elite germplasm of the species of interest. Genome editing reagents are most often delivered to transformable rather than elite germplasm, which needs to be followed by prolonged backcrossing into commercial 45 germplasm before the phenotypic impact of individual edits can be assessed. The editing methods often require tissue culture and plant regeneration, which requires specific skills and equipment, and adds significant time and expense to the entire process. The methods are very complicated for most 50 plant species, sometimes requiring use of morphogenic regulators to facilitate successful gene editing reagent delivery using biolistic- or Agrobacterium-mediated methods. This is followed by a long process of selecting the putative edited cells and regenerating the edited plants via a complex 55 tissue culture process that is specific to each genotype for plant species of interest. The dedifferentiation required to produce regenerable callus using tissue culture often triggers seemingly random epigenetic modifications, which further complicates any phenotypic analyses of primary transfor- 60 mants and their progeny.

A need remains for robust and efficient reagents and methods for performing targeted genetic editing in plants. Ideally, the solutions are broadly applicable or easily adaptable to different species and varieties within each species. 65 Bypassing callus induction and/or tissue culture is preferable, to reduce the time and resources required to produce

2

edited events and to produce many targeted genetic variants plus their combinations in all relevant elite genetic backgrounds.

SUMMARY

The solutions described here relate to engineered RNA molecules useful in producing plants with altered genomes. As such, it relates to substantially purified compositions, vectors, systems, as well as methods, seeds, pollen, and plants useful at various steps in altering genomes of plants.

In their use, the RNA molecules are often needed in a substantially purified form. The RNAs are generally chimeric, meaning that they are made up of at least two different fused segments. One segment comprises a cargo RNA sequence, and another segment comprises a meristem transport RNA sequence.

The cargo segment is made up of RNA that, once inside meristematic cells, carries out the genome alteration function. In various embodiments, the cargo segment can be made up one or more of different sequences needed for the assembly in the plant cell cytosol of the genome-altering function, i.e. it has one or more DNA-modifying components. The DNA modifying components are typically RNAguided nuclease components, RNAi, a TALE, zinc finger, or meganuclease sequences. RNA-guided nuclease systems typically require at least one polypeptide nuclease effector and one or more guide RNAs. In some embodiments, the cargo segment has an expressible coding sequence of a polypeptide nuclease effector (e.g. Cas9, Cas12a, or Cas12i), such that the RNA is translated when inside a plant cell. In some embodiments, the cargo segment comprises guide RNAs that are flanked by processing elements designed so that, within a plant cell cytosol, they are excised from the chimeric molecule and function in conjunction with a polypeptide nuclease effector present in the same cell. In some embodiments, the same RNA molecule comprises both the effector polynucleotide-encoding sequence and one or more guide RNAs. In these cases, the guide RNA processing elements can be made up of direct repeat sequences of the bacterial CRISPR array of the RNA-guided polypeptide.

The meristem transport segment is made up of a sequence that allows for transport of a chimeric RNA through the plant (e.g., through the phloem of the vascular system) and into the meristem tissues or meristem cells. The transport segment sequence can occur in any RNA found in the plant vascular system that transits from the tissue/cell of origin to the meristem. In one embodiment, the transport segment sequence is generally based on Flowering Time (FT) genes of plants, and they sometimes correspond to fragments of FT transcripts. Flowering Time (FT) gene products are also referred to as "florigen." The chimeric RNAs are often arranged so that the meristem transport segment is often located 3' of the cargo segment. In another embodiment, the chimeric RNAs are arranged so that the meristem transport segment (MTS) is located 3' of the protein coding segment (e.g., a segment encoding an RNA-guided nuclease) in the chimeric RNA.

The RNAs can be used in methods of producing plants with altered genomes. Accordingly, a subj ect plant is contacted with RNAs as described, so that the RNAs typically reach the phloem of the plant. This step may be carried out at the vegetative stage of the plant life cycle. Germline cells of the treated plant and their progeny will have the genome alterations intended to be made by the introduced RNA. In certain embodiments, germline cells of the treated plant and their daughter cells will have the intended genome

alterations encoded by the introduced RNA prior to transitioning to reproductive development.

In certain embodiments, a composition comprising a substantially purified RNA molecule made up of a cargo segment fused to a meristem transport segment is provided. 5 In certain embodiments, the cargo segment comprises a DNA-modifying component. In certain embodiments, the DNA-modifying component is selected from an RNAguided nuclease component, an RNAi, a TALE, a zinc finger, and a meganuclease. In certain embodiments, the 10 RNA-guided nuclease component comprises an RNAguided polypeptide encoding sequence. In certain embodiments, the RNA-guided polypeptide encoding sequence can be translated if present in a plant cell cytosol. In certain embodiments, the meristem transport segment comprises an 15 FT-derived sequence. In certain embodiments, the FT-derived sequence is a fragment of an FT transcript. In certain embodiments, the meristem transport segment is located 3' of the cargo segment. In any of the aforementioned embodiments, the composition further comprise RNase inhibitors. A 20 method of producing a plant with an altered genome, comprising contacting a plant with any of the aforementioned compositions, and retrieving a progeny of the plant, wherein the progeny has an altered genome is provided. In certain embodiments, the contacting comprises phloem loading. In 25 certain embodiments, the contacting with the composition occurs at the vegetative stage of the plant life cycle. Also provided are plants made by the method of producing a plant with an altered genome, comprising contacting a plant with any of the aforementioned compositions, and retrieving a 30 progeny of the plant, wherein the progeny has an altered

A meristem-delivery vector made up of a chimeric RNA having an RNA-guided nuclease component-containing segment and a meristem transport segment is provided.

A recombinant DNA having a sequence capable of producing as a transcript a meristem-delivery vector made up of a chimeric RNA having an RNA-guided nuclease component-containing segment and a meristem transport segment or an RNA that can be purified to form a composition ⁴⁰ comprising a substantially purified RNA molecule made up of a cargo segment fused to a meristem transport segment is provided.

Also provided are compositions comprising at least one RNA molecule comprising a cargo segment fused to a 45 meristem transport segment (MTS), wherein the cargo segment comprises one or more guide RNAs for an RNA-guided nuclease. Use of the compositions to obtain a plant with an altered genome are provided.

Methods of producing a plant with an altered genome 50 comprising (i) contacting a plant with at least a first composition comprising a cargo segment fused to a meristem transport segment (MTS), wherein the cargo segment comprises one or more guide RNAs for an RNA-guided nuclease; and (ii) retrieving a progeny of the plant, wherein the 55 progeny has an altered genome, are provided. Plants comprising an altered genome made by the method are also provided.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

FIG. 1A, B is a diagram of the primary structure of an embodiment of an RNA sequence useful in methods for plant genomic alterations. g=guide RNA. In certain embodi-65 ments, the g or guide RNA segment may be made up of a spacer complementary to its genome target, and a crRNA,

4

which is part of the direct repeat sequences of Cas12a and/or Cas12j CRISPR arrays. The various labeled parts are not drawn to scale.

DETAILED DESCRIPTION

The phrase "allelic variant" as used herein refers to a polynucleotide or polypeptide sequence variant that occurs in a different strain, variety, or isolate of a given organism.

The term "and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. Thus, the term and/or" as used in a phrase such as "A and/or B" herein is intended to include "A and B," "A or B," "A" (alone), and "B" (alone). Likewise, the term "and/or" as used in a phrase such as "A, B, and/or C" is intended to encompass each of the following embodiments: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).

As used herein, the terms "Cas12a" and "Cpf1" are used interchangeably herein to refer to the same grouping of RNA directed nucleases.

As used herein, the terms "Cas12j" and "CasΦ" are used interchangeably herein to refer to the same grouping of RNA directed nucleases.

The term "fragment" refers to a contiguous set of polynucleotides or polypeptides. In one embodiment, a fragment is at least 10, 15, 20, or greater than 20 contiguous nucleotides. In other embodiments, a fragment is at least 10, 15, 20, or 50 to about 70, 90, 100, 120, 150, or 200 or more continuous nucleotides.

The term "isolated" as used herein means having been removed from its natural environment.

As used herein, the terms "include," "includes," and "including" are to be construed as at least having the features to which they refer while not excluding any additional unspecified features.

As used herein, the phrase "operably linked" or "fused" refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner. For instance, a promoter is operably linked to a coding sequence if the promoter affects its transcription or expression. In another non-limiting example, an RNA molecule comprising a "meristem transport sequence" (MTS) is operably linked or fused to a cargo RNA molecule if the MTS provides for delivery of the cargo RNA to meristem cells.

As used herein, the terms "orthologous" or "orthologue" are used to describe genes or the RNAs or proteins encoded by those genes that are from different species but which have the same function (e.g., encode RNAs which exhibit the same meristem transport function). Orthologous genes will typically encode RNAs or proteins with some degree of sequence identity (e.g., at least 40%, 50%, 60%, 70%, 80%, 90%, or 95% sequence identity) and can also exhibit conservation of sequence motifs, and/or conservation of structural features including RNA stem loop structures.

As used herein, the term "plant" includes a whole plant and any descendant, cell, tissue, or part of a plant. The term "plant parts" include any part(s) of a plant, including, for example and without limitation: seed (including mature seed and immature seed); a plant cutting; a plant cell; a plant cell culture; or a plant organ (e.g., pollen, embryos, flowers, fruits, shoots, leaves, roots, stems, and explants). A plant tissue or plant organ may be a seed, protoplast, callus, or any other group of plant cells that is organized into a structural or functional unit. A plant cell or tissue culture may be

capable of regenerating a plant having the physiological and morphological characteristics of the plant from which the cell or tissue was obtained, and of regenerating a plant having substantially the same genotype as the plant. Regenerable cells in a plant cell or tissue culture may be embryos, protoplasts, meristematic cells, callus, pollen, leaves, anthers, roots, root tips, silk, flowers, kernels, ears, cobs, husks, or stalks. In contrast, some plant cells are not capable of being regenerated to produce plants and are referred to herein as "non-regenerable" plant cells.

The phrase "substantially purified," as used herein defines an isolation of a molecule or compound in a form that is substantially free of contaminants normally associated with the molecule or compound in a native or natural environment and means having been increased in purity as a result 15 of being separated from other components of the original composition. The phrase "substantially purified RNA molecule" is used herein to describe an RNA molecule which has been separated from other contaminant compounds including, but not limited to polypeptides, lipids, and car- 20 bohydrates. In certain embodiments, a substantially purified RNA is at least 90%, 95%, 97%, 98%, 99%, 99.5%, or 99.9% free of contaminating compounds by weight. A substantially purified RNA molecule can be combined with other compounds including buffers, RNase inhibitors, sur- 25 factants, and the like in a composition.

To the extent to which any of the preceding definitions is inconsistent with definitions provided in any patent or non-patent reference incorporated herein by reference, any patent or non-patent reference cited herein, or in any patent or non-patent reference found elsewhere, it is understood that the preceding definition will be used herein.

The reagents and methods described provide a relatively easy and convenient solution for producing plants with altered genomes, i.e. individuals with designed mutations 35 (i.e., DNA sequence changes including insertions, deletions, and substitutions (Indels)). In most embodiments, the methods and systems rely on RNA molecules produced with established molecular biology techniques. The RNA molecules, which comprise genome-editing reagents, are then 40 introduced into a plant and taken up into meristematic cells. The meristematic cell genomes are thus altered, and the mutations (i.e., DNA sequence changes including Indels) are carried into germline cells and subsequent generations.

Meristem transport segments travel through the plant, 45 typically via the phloem, and are taken up into meristematic tissues. The examples below are sequences from individual species, which sometimes work across species. For example, Arabidopsis FT-based vectors work in Nicotiana benthamiana and Arabidopsis. But, vectors can be designed based on 50 alternative sequences, which can be based either on the species subject to genomic editing, or based on a closely related species.

While the transport segment is based on a plant-transported RNA, its actual sequence may be a fragment determined by characterizing a deletion series to make a smaller sequence retaining the desired transport (phloem mobility and/or meristem cell translocation) capabilities. In certain embodiments, the meristem transport segment is a subfragment of a plant transported RNA identified by assaying a deletion series for a smaller sequence retaining the desired transport (phloem mobility and/or meristem cell translocation) function. The initiator methionine codon or translation initiation codon of the base sequence may also be mutated in some cases.

The flowering time (FT) mRNA is useful as a meristem transport segment. SEQ ID NO: 2 shows the DNA sequence

6

that encodes the Arabidopsis FT RNA, and SEQ ID NO: 1 is a fraction of SEQ ID NO: 2 that encodes the RNA that functions as a transport segment. Alternative useful FTs may be ZCN8 (encoded by SEQ ID NO: 3), which may work across related monocot species. Alternative useful FTs may be GmFT2a (Sun et al. PLoS One. 2011; 6(12):e29238. doi:10.1371/journal.pone.0029238; Jiang et al. BMC Genomics. 2019; 20(1):230. doi: 10.1186/s12864-019-5577-5; Kong et al. Plant Physiol. 2010 November; 154(3): 1220-31. doi: 10.1104/pp.110.160796; Takeshima et al. J Exp Bot. 2019 Aug. 7; 70(15):3941-3953. doi: 10.1093/jxb/ erz199), which may work across related dicot species. FT RNA molecules that can be used include: (i) RNAs set forth in SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; (ii) allelic variants of SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; and (iii) FT RNAs from various plants set forth in U.S. 20190300890, which is incorporated herein by reference in its entirety, allelic variants thereof, and meristem transport-competent (MTC) orthologs thereof, MTC variants thereof, and/or MTC fragments thereof. FT RNA molecules that can be used include RNAs having at least 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or a meristem transport-competent (MTC) fragment thereof;

More generally, viral and cellular-derived RNA molecules that are useful as part of a transport segment include the mRNAs of FT, GAI, CmNACP, LeT6 a tomato KNOX gene, BEL5, or tRNA-like sequences (Ruiz-Medrano et al., 1999 Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405-4419; Kim et al., 2001 Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287-289; Haywood et al., 2005 Phloem long distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J. 42, 49-68; and Li et al., 2011 Mobile FT mRNA contributes to the systemic florigen signaling in floral induction. Sci. Rep. 1, 73; Cho et al., 2015, J. Exp. Bot, 66: 6835-6847; Zhang et al., 2016, Plant Cell, 28: 1237-1249; and WO2017178633). GAI RNAs that can be used include: (i) RNAs set forth in SEO ID NO: 26, a meristem transportcompetent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; (ii) allelic variants of SEQ ID NO: 26, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; and (iii) RNAs having at least 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 26, or a meristem transport-competent (MTC) fragment thereof. CmNACP RNAs that can be used include: (i) RNAs set forth in SEQ ID NO: 25, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; (ii) allelic variants of SEQ ID NO: 25, a MTC variant thereof, and/or a MTC fragment thereof; and (iii) RNAs having at least 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 25, or a meristem transport-competent (MTC) fragment thereof. LeT6 RNAs that can be used include: (i) RNAs set forth in SEQ ID NO: 27, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; (ii) allelic variants of SEQ ID NO: 27, a MTC variant thereof, and/or a MTC fragment thereof; and (iii) RNAs having at

least 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 27, or a meristem transport-competent (MTC) fragment thereof. BEL5 RNAs that can be used include: (i) RNAs set forth in SEQ ID NO: 28, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; (ii) allelic variants of SEQ ID NO: 28, a MTC variant thereof, and/or a MTC fragment thereof; and (iii) RNAs having at least 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 28, or a meristem transport-competent (MTC) fragment thereof. Examples of tRNA-like RNAs that can be used include: (i) RNAs set forth in SEQ ID NO: 29, 30, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; (ii) allelic variants of SEQ ID NO: 29, 30, a MTC variant thereof, and/or a MTC

8

fragment thereof, and (iii) RNAs having at least 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 29, 30, or a meristem transport-competent (MTC) fragment thereof. In certain embodiments, a TLS sequence, SEQ ID NO: 29 or 30, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or an MTC fragment thereof can comprise an RNA hairpin comprising a first stem of 8 to 12 nucleotides, at least one variable bulge, a second stem of 4 to 7 nucleotides, and a variable loop. TLS sequences suitable for RNA transport and the structural features of such RNAs are set forth in Zhang et al. Plant Cell. 2016 June; 28(6): 1237, doi.org/10.1105/tpc.15.01056.

Further description of biological sequences provided in the sequence listing is set forth in Table 1. RNA molecules set forth in SEQ ID NO: 9-30 are respectively encoded by the DNA molecules set forth in SEQ ID NO: 31-52.

TABLE 1

		Description of biological sequences.
SEQ ID NO:	TYPE	Comments
NO:	TIFE	Comments
1	DNA	Arabidopsis thaliana
2	DNA	NM_001334207.1 Arabidopsis thaliana PEBP
		(phosphatidylethanolamine-binding protein) family protein (FT), mRNA
3	DNA	EU241924.1 Zea mays ZCN8 (ZCN8) mRNA, complete cds
4	DNA	GmFT2a CDS, the soy FT ortholog according to Sun et al., 2011
		and Cai et al., 2018 (GenBank ID: EU287455)
5	RNA	RNA encoded by SEQ ID NO: 1
6	RNA	RNA encoded by SEQ ID NO: 2
7	RNA	RNA encoded by SEQ ID NO: 3
8	RNA	RNA encoded by SEQ ID NO: 4
9	RNA	DQ865290.1 Cucurbita maxima flowering locus T-like 1 (FTL1)
10	RNA	mRNA, complete cds DQ865291.1 Cucurbita maxima flowering locus T-like 2 (FTL2)
10	KINA	mRNA, complete cds
11	RNA	DQ871590.1 Vitis vinifera FT-like protein (FT) mRNA, complete
		cds
12	RNA	AB161112.1 Malus x domestica MdFT1 mRNA for flowering
		locus T like protein, complete cds
13	RNA	AB027456.1 Citrus unshiu CiFT mRNA, complete cds
14	RNA	AY186735.1: 2002-2199, 2287-2348, 4490-4530, 5586-5818
	DATA	Lycopersicon esculentum SP3D (SP3D) gene, complete cds
15	RNA	DQ387859.1 Populus tremula flowering locus T-like protein FT1
16	RNA	(FT1) mRNA, complete cds >DQ100327.1: 1332-1532, 1950-2011, 2121-2391 Hordeum vulgare
10	KNA	subsp. vulgare FT-like protein (FT1) gene, complete cds
17	RNA	DQ297407.1: 955-1164, 1235-1296, 3672-3712, 3808-4031
		Hordeum vulgare subsp. vulgare FT-like protein (FT2) gene,
		complete cds
18	RNA	AB052944.1 Oryza sativa Japonica Group Hd3a mRNA, complete
		cds, cultivar: Nipponbare
19	RNA	AB062676.1 Oryza sativa Japonica Group RFT1 mRNA for FT-
20	DATA	like protein, complete cds
20	RNA	EU178859.1 <i>Ipomoea nil</i> FT-like protein (FT1) mRNA, complete cds
21	RNA	AB027506.1 Arabidopsis thaliana TSF (TWIN SISTER OF FT)
21	10.11	mRNA, complete cds
22	RNA	LC128590.1: 3049-3243, 3377-3438, 3830-3870, 4102-4322 Glycine
		max FT5a gene for flowering locus T, complete cds, cultivar:
		Toyoharuka
23	RNA	ZmZCN9 NM_001112777.2 Zea mays ZCN9 protein
		(LOC100127520), mRNA
24	RNA	ZmZCN10
25	RNA	>EU241926.1 Zea mays ZCN10 (ZCN10) mRNA, complete cds CmNACP:
23	MNA	>FJ151402.1 Cucurbita maxima NAC-domain containing protein
		(NACP1) mRNA, complete cds
26	RNA	GAI:
		>Y15193.1 Arabidopsis thaliana GAI gene
27	RNA	LeT6 a tomato KNOX gene:
		>AF000141.1 Lycopersicon esculentum class I knotted-like
		homeodomain protein (LeT6) mRNA, complete cds

TABLE 1-continued

		Description of biological sequences.
SEQ II)	
NO:	TYPE	Comments
28	RNA	BEL5:
		>NM_001287992.1 Solanum tuberosum BEL1-related homeotic protein 5 (BEL5), mRNA
29	RNA	AT5G57885.1 (tRNA-Met)
30	RNA	AT1G71700 (tRNA-Gly)
31	DNA	DQ865290.1 Cucurbita maxima flowering locus T-like 1 (FTL1) mRNA, complete cds
32	DNA	DQ865291.1 Cucurbita maxima flowering locus T-like 2 (FTL2) mRNA, complete cds
33	DNA	DQ871590.1 Vitis vinifera FT-like protein (FT) mRNA, complete cds
34	DNA	AB161112.1 Malus x domestica MdFT1 mRNA for flowering locus T like protein, complete cds
35	DNA	AB027456.1 Citrus unshiu CiFT mRNA, complete cds
36	DNA	AY186735.1: 2002-2199, 2287-2348, 4490-4530, 5586-5818 Lycopersicon esculentum SP3D (SP3D) gene, complete cds
37	DNA	DQ387859.1 Populus tremula flowering locus T-like protein FT1
38	DNA	(FT1) mRNA, complete cds >DQ100327.1: 1332-1532, 1950-2011, 2121-2391 Hordeum vulgare
39	DNA	subsp. <i>vulgare</i> FT-like protein (FT1) gene, complete cds DQ297407.1: 955-1164, 1235-1296, 3672-3712, 3808-4031
		Hordeum vulgare subsp. vulgare FT-like protein (FT2) gene, complete cds
40	DNA	AB052944.1 Oryza sativa Japonica Group Hd3a mRNA, complete cds, cultivar: Nipponbare
41	DNA	AB062676.1 Oryza sativa Japonica Group RFT1 mRNA for FT-
42	DNA	like protein, complete cds EU178859.1 <i>Ipomoea nil</i> FT-like protein (FT1) mRNA, complete
43	DNA	cds AB027506.1 Arabidopsis thaliana TSF (TWIN SISTER OF FT)
44	DNA	mRNA, complete cds LC128590.1: 3049-3243, 3377-3438, 3830-3870, 4102-4322 Glycine
		max FT5a gene for flowering locus T, complete cds, cultivar: Toyoharuka
45	DNA	ZmZCN9 NM_001112777.2 Zea mays ZCN9 protein
46	DNA	(LOC100127520), mRNA ZmZCN10
47	DNA	>EU241926.1 Zea mays ZCN10 (ZCN10) mRNA, complete cds CmNACP:
		>FJ151402.1 Cucurbita maxima NAC-domain containing protein (NACP1) mRNA, complete cds
48	DNA	GAI:
49	DNA	>Y15193.1 Arabidopsis thaliana GAI gene LeT6 a tomato KNOX gene:
		>AF000141.1 Lycopersicon esculentum class I knotted-like homeodomain protein (LeT6) mRNA, complete cds
50	DNA	BEL5:
		>NM_001287992.1 Solanum tuberosum BEL1-related homeotic protein 5 (BEL5), mRNA
51	DNA	AT5G57885.1 (tRNA-Met)
52	DNA	AT1G71700 (tRNA-Gly)
53	PRO	FnCas12a (UniProtKB/Swiss-Prot: A0Q7Q2.1); US20160208243; and WO 2017/189308)
54	RNA	FnCas12aDR (Fonfara et al. Nature 532, 517-521 (2016).
		doi.org/10.1038/nature17945; US2016-0208243; WO 2017/189308)
55	PRO	LbCpfl (from Lachnospiraceae bacterium ND2006; UniProtKB: A0A182DWE3)
56	RNA	LbCpfl DR (from Lachnospiraceae bacterium ND2006; Zetsche et al., doi.org/10.1101/134015)
57	PRO	Cas12j-1protein (Pausch et al., 2020 Science 17 Jul. 2020:
58	RNA	Vol. 369, Issue 6501, pp. 333-337) Cas12j-2 DR sequence (Pausch et al., 2020 Science 17 Jul. 2020:
59	PRO	Vol. 369, Issue 6501, pp. 333-337) Cas12j-2 protein (Pausch et al., 2020 Science 17 Jul. 2020:
60	RNA	Vol. 369, Issue 6501, pp. 333-337) Cas12j-2 DR sequence (Pausch et al., 2020 Science 17 Jul. 2020:
00	14.1/1	Vol. 369, Issue 6501, pp. 333-337)
61	PRO	Cas12j-3 protein (Pausch et al., 2020 Science 17 Jul. 2020: Vol. 369, Issue 6501, pp. 333-337)
62	RNA	Cas12j-3 DR sequence (Pausch et al., 2020 Science 17 Jul. 2020:
		Vol. 369, Issue 6501, pp. 333-337)

The meristem transport-competence (MTC) potential can be determined for any variants, fragments, and/or orthologs of the aforementioned FT, GAI, CmNACP, LeT6 a tomato KNOX gene, BEL5, or tRNA-like RNAs. A side-by-side comparison with a known MTS as a positive control is useful. As such, a number of configurations can be used. One approach is to fuse candidate sequences to guide sequences of characterized editing potential for a species of interest. RNA sequences can be introduced into the phloem of an individual plant that expresses at least in the meristem a 10 nuclease capable of associating with the guide sequence and producing the intended genomic alteration. The RNA sequences can be expressed in vitro, and introduced into the phloem as purified molecules. For example, a concentrated solution of RNA molecules of interest can be applied to a 15 mechanically injured plant tissue, such as a cut or abraded leaf, stem, or meristem dome. RNAs can be coated on particles, such as micro or nano-scale particles such as gold or tungsten, for biolistic delivery. Alternatively, the RNA sequences could be incorporated into RNA viruses intro- 20 duced in the plants (Jackson et al. 2012, Front. Plant Sci. 3, 127; Ali et al. 2015, Mol. Plant 8, 1288-1291; Cody et al. 2017 Plant Physiol. 175, 23-35; Ali et al. 2018, Virus Res. 244, 333-337; Gao et al. 2019, New Phytol. 223, 2120-2133). or the MTC can be assayed by introducing RNAs by 25 grafting, i.e. the RNA molecules can be expressed in the rootstock of a grafted plant, and their effect observed in the scion (Zhang et al., 2016, Plant Cell, 28: 1237-1249; Huang et al, 2018, Plant Physiol. 178:783-794). MTS candidates can be assayed for longer and/or more complex RNA 30 molecules, or mixtures of RNA molecules, that comprise not only guide or processable guide regions, but also nucleaseencoding sequences.

11

A clear readout of MTC is detection of the expected genomic alterations in progeny plants, which can be done by 35 sequencing of the target genomic region, or even by whole genome sequencing. But alternative readouts can be designed that may be more convenient in some cases. For example, the guide sequences may be directed to disrupt or repair a reporter gene, such as a transgene encoding a 40 fluorescent polypeptide. The expected genetic changes can then be evaluated in the treated plants by measuring changes in the reporter. Another convenient genomic alteration target in many species is phytoene desaturase (PDS), with the albino phenotype serving as a readout.

The cargo segments of the engineered RNA deliver the genome-editing components. In general, these will be based on CRISPR-Cas systems, but some alternatives are possible. The alternatives include RNAi for heritable knock-down as affected by DNA methylation status, a TALEN, a zinc finger 50 nucleases (ZFN), and a meganuclease.

In certain embodiments, an RNA molecule comprising a RNA segment encoding a ZFN (e.g., a zinc finger nuclease or zinc finger nickase) that is operably linked to an RNA segment comprising an MTS to provide for ZFN-mediated 55 gene editing in a plant meristem. Zinc-finger nucleases are site-specific endonucleases comprising two protein domains: a DNA-binding domain, comprising a plurality of individual zinc finger repeats that each recognize between 9 and 18 base pairs, and a DNA-cleavage domain that com- 60 prises a nuclease domain (typically Fokl). The cleavage domain dimerizes in order to cleave DNA; therefore, a pair of ZFNs are required to target non-palindromic target polynucleotides. In certain embodiments, zinc finger nuclease and zinc finger nickase design methods which have been 65 described (Urnov et al. (2010) Nature Rev. Genet., 11:636-646; Mohanta et al. (2017) Genes vol. 8,12: 399; Ramirez et

12

al. Nucleic Acids Res. (2012); 40(12): 5560-5568; Liu et al. (2013) Nature Communications, 4: 2565) can be adapted for use in the methods set forth herein. The zinc finger binding domains of the zinc finger nuclease or nickase provide specificity and can be engineered to specifically recognize any desired target DNA sequence. The zinc finger DNA binding domains are derived from the DNA-binding domain of a large class of eukaryotic transcription factors called zinc finger proteins (ZFPs). The DNA-binding domain of ZFPs typically contains a tandem array of at least three zinc "fingers" each recognizing a specific triplet of DNA. A number of strategies can be used to design the binding specificity of the zinc finger binding domain. One approach, termed "modular assembly", relies on the functional autonomy of individual zinc fingers with DNA. In this approach, a given sequence is targeted by identifying zinc fingers for each component triplet in the sequence and linking them into a multifinger peptide. Several alternative strategies for designing zinc finger DNA binding domains have also been developed. These methods are designed to accommodate the ability of zinc fingers to contact neighboring fingers as well as nucleotide bases outside their target triplet. Typically, the engineered zinc finger DNA binding domain has a novel binding specificity, compared to a naturally-occurring zinc finger protein. Engineering methods include, for example, rational design and various types of selection. Rational design includes, for example, the use of databases of triplet (or quadruplet) nucleotide sequences and individual zinc finger amino acid sequences, in which each triplet or quadruplet nucleotide sequence is associated with one or more amino acid sequences of zinc fingers which bind the particular triplet or quadruplet sequence. See, e.g., U.S. Pat. Nos. 6,453,242 and 6,534,261, both incorporated herein by reference in their entirety. Exemplary selection methods (e.g., phage display and yeast two-hybrid systems) can be adapted for use in the methods described herein. In addition, enhancement of binding specificity for zinc finger binding domains has been described in U.S. Pat. No. 6,794, 136, incorporated herein by reference in its entirety. In addition, individual zinc finger domains may be linked together using any suitable linker sequences. Examples of linker sequences are publicly known, e.g., see U.S. Pat. Nos. 6,479,626; 6,903,185; and 7,153,949, incorporated herein by reference in their entirety. The nucleic acid cleavage domain is non-specific and is typically a restriction endonuclease, such as Fokl. This endonuclease must dimerize to cleave DNA. Thus, cleavage by Fokl as part of a ZFN requires two adjacent and independent binding events, which must occur in both the correct orientation and with appropriate spacing to permit dimer formation. The requirement for two DNA binding events enables more specific targeting of long and potentially unique recognition sites. Fokl variants with enhanced activities have been described and can be adapted for use in the methods described herein; see, e.g., Guo et al. (2010) J. Mol. Biol., 400:96-107.

In certain embodiments, an RNA molecule comprising a RNA segment encoding a TALEN (e.g., a TALE nuclease or nickase) that is operably linked to an RNA segment comprising an MTS to provide for TALEN-mediated gene editing in a plant meristem. Transcription activator like effectors (TALEs) are proteins secreted by certain Xanthomonas species to modulate gene expression in host plants and to facilitate the colonization by and survival of the bacterium. TALEs act as transcription factors and modulate expression of resistance genes in the plants. Recent studies of TALEs have revealed the code linking the repetitive region of TALEs with their target DNA-binding sites.

TALEs comprise a highly conserved and repetitive region consisting of tandem repeats of mostly 33 or 34 amino acid segments. The repeat monomers differ from each other mainly at amino acid positions 12 and 13. A strong correlation between unique pairs of amino acids at positions 12⁵ and 13 and the corresponding nucleotide in the TALEbinding site has been found. The simple relationship between amino acid sequence and DNA recognition of the TALE binding domain allows for the design of DNA binding domains of any desired specificity. TALEs can be linked to a non-specific DNA cleavage domain to prepare genome editing proteins, referred to as TAL-effector nucleases or TALENs. As in the case of ZFNs, a restriction endonuclease, such as Fokl, can be conveniently used. Methods for use of $_{15}$ TALENs in plants have been described and can be adapted for use in the methods described herein, see Mahfouz et al. (2011) Proc. Natl. Acad. Sci. USA, 108:2623-2628; Mahfouz (2011) GM Crops, 2:99-103; and Mohanta et al. (2017) Genes vol. 8,12: 399). TALE nickases have also been 20 described and can be adapted for use in methods described herein (Wu et al.; Biochem Biophys Res Commun. (2014); 446(1):261-6; Luo et al; Scientific Reports 6, Article No.: 20657 (2016)).

Plants comprising the RNA molecules that comprise 25 cargo segments that are operably linked to MTS sequences are also provided herein. In certain embodiments, such RNA molecules will be present at detectable concentrations in the plants for only a certain period of time following. For example, the concentrations of RNA molecules comprising 30 guide RNAs separated by processing elements comprising direct repeats (DR, i.e., pre-crRNAs comprising a full-length direct repeat (full-DR-crRNA)) which are capable of being processed (i.e., cleaved) by an RNA-guided nuclease are expected to decrease over time when the RNA-guided 35 nuclease is also present in the plant. The concentrations of RNA molecules comprising guide RNAs separated by processing elements comprising direct repeats which are capable of being processed by an RNA-guided nuclease are also expected to be decreased in tissues where the RNA- 40 guided nuclease is located. Nonetheless, the unprocessed RNA molecules can be detected by a variety of techniques that include reverse transcriptase PCR (RT-PCR) assays where oligonucleotide primers and optionally detection probes which specifically amplify and detect the unpro- 45 cessed RNA molecule comprising the cargo segments that are operably linked to MTS sequences are used. Such plants can comprise any of the RNA molecules or combinations of RNA molecules present in the compositions provided herein that are used to contact the plants. In certain embodiments, 50 an active form of the RNA guided nuclease is predominantly localized in meristem tissue of the plant. In certain embodiments, the RNA-guided nuclease can be encoded by an RNA molecule that is optionally further comprises an operably linked MTS sequence. In certain embodiments, the RNA- 55 guided nuclease can be encoded by DNA that is operably linked to promoters that include a meristem-preferred or meristem-specific promoter which is active in meristem cells. DNA encoding the RNA-guided nuclease can be provided in a transgene that is stably integrated in the 60 genome of the plant, in DNA that is not integrated into the plant genome, or in DNA provided in a viral vector (e.g., a geminivirus replicon). Geminivirus DNA replicons suitable for delivery of DNA molecules encoding an RNA-guided nuclease to plants include a Beet Yellow Dwarf Virus 65 replicon (Baltes, Nicholas J. et al. Plant Cell vol. 26,1 (2014): 151-63. doi:10.1105/tpc.113.119792).

14

It is understood that for all systems, the use of a nuclease activity for cutting DNA followed by repair by the endogenous cell machinery is one solution to generate useful mutants. The nuclease activity can be eliminated or altered, as in dCas or nCas, TALE or ZF versions of the polypeptides. The inactivated nucleases can be useful for targeting the desired DNA sequence, while editing can be performed by nucleobase editors attached to the altered nucleases. Examples are included in WO2018176009 and U.S. Pat. No. 10,113,163, incorporated herein by reference.

CRISPR-based RNA-guided nuclease systems typically require an effector polypeptide, and one or more guide RNAs. The guide RNAs are generally made up of an effector-binding region and a target DNA recognition region, and in some embodiments include tracrRNAs. Useful CRISPR-based RNA-guided nuclease systems have been described and are known from the literature as Cas9, Cas12a (Cpf1), Cas12e (CasX), Cas12d (CasY), C2c1, C2c2, and C2c3, (see WO2018176009) Cas12h, Cas12i (see Yan et al. 2019, Science Vol. 363, Issue 6422, pp. 88-91) and Cas12j (Pausch et al., 2020 Science 17 Jul. 2020: Vol. 369, Issue 6501, pp. 333-337).

The Cas nuclease or effector polypeptide is intended to be translated inside a plant meristem cell. As such, it is typically embedded within an mRNA component. A 5' cap and polyA tail are also useful in stabilizing the RNA. A 5' UTR has translation initiation sequences upstream of the Cas coding sequence. For example, an mRNA can comprise a 5'UTR comprising a 7-methylguanosine cap at its 5' terminus followed by an untranslated sequence and terminated by the translation initiation codon of the coding sequence (e.g., the CAS coding sequence).

Cargo containing guide RNA can be part of the same RNA (mRNA) capable of expressing the Cas nuclease. In one embodiment, one or more guide RNAs are flanked by direct repeats (DR) of the CRISPR array from which the Cas effector polypeptide was first isolated. For example, a translated and expressed active Cas12a nuclease can process the DR-flanked spacers of the cargo RNA to make guide RNAs. In certain embodiments, a translated and expressed active Cas12j nuclease can process Cas12j DR-flanked spacers of the cargo RNA to make guide RNAs. Alternatively, guide RNA suitable for matching expressed effector polypeptide can be flanked by processing elements, so that functional guide RNAs are excised inside the cells. Exemplary processing elements include hammerhead ribozymes, Csy4, and tRNAs (see Mikami et al. Plant Cell Physiol. 2017 November; 58(11): 1857-1867, and U.S. Pat. No. 10,308,947).

In certain embodiments, an MTS is operably linked to a cargo segment comprising an array of a plurality of guide RNAs (e.g., 2, 3, 4, or more guide RNAs) separated by processing elements to provide for gene editing at a plurality of genomic locations targeted by each guide RNA. In certain embodiments, the plurality of guide RNAs are separated by processing elements comprising direct repeats (DR; i.e., pre-crRNAs comprising a full-length direct repeat (full-DRcrRNA)) which are capable of being processed (i.e., cleaved) by an RNA-guided nuclease. Examples of such DRs include the Cas12a DR (e.g., SEQ ID NO: 54 or 56) which can be cleaved by a Cas12a guided nuclease (e.g., SEQ ID NO: 53 or 55, respectively). Cleavage of RNAs comprising Cas12a DRs by Cas12a has been described (Fonfara et al. Nature 532, 517-521 (2016). doi.org/10.1038/ nature17945); U.S. 20160208243; WO 2017/189308). Other examples of such DRs include the Cas12j DRs (e.g., SEQ ID NO: 58, 60, or 62) which can be cleaved by a Cas12j guided nuclease ((e.g., SEQ ID NO: 57, 59, or 61, respectively). In

such embodiments, the crRNA portion of the DR can remain as a part of the gRNA after processing and can be recognized by the RNA guided nuclease to provide for editing of genomic DNA recognized via hybridization of the gRNA to the targeted genomic site.

Compositions comprising: (i) RNA molecules comprising an MTS is operably linked to a cargo segment; (ii) nucleic acids encoding RNA guided nucleases; and/or (iii) donor DNA templates can further comprise components that include:

- (a) solvents (e.g., water, dimethylsulfoxide, dimethylformamide, acetonitrile, N-pyrrolidine, pyridine, hexamethylphosphoramide, alcohols, alkanes, alkenes, dioxanes, polyethylene glycol, and other solvents miscible or emulsifiable with water or that will dissolve phosphonucleotides in non-aqueous systems);
- (b) fluorocarbons (e.g., perfluorodecalin, perfluoromethyldecalin);
- (c) glycols or polyols (e.g., propylene glycol, polyethylene glycol);
- (d) surfactants, including cationic surfactants, anionic surfactants, non-ionic surfactants, and amphiphilic surfactants, e.g., alkyl or aryl sulfates, phosphates, sulfonates, or carboxylates; primary, secondary, or ter- 25 tiary amines; quaternary ammonium salts; sultaines, betaines; cationic lipids; phospholipids; tallowamine; bile acids such as cholic acid; saponins or glycosylated triterpenoids or glycosylated sterols (e.g., saponin commercially available as catalogue number 47036-50 g-F, Sigma-Aldrich, St. Louis, MO); long chain alcohols; organosilicone surfactants including nonionic organosilicone surfactants such as trisiloxane ethoxylate surfactants or a silicone polyether copolymer such as a copolymer of polyalkylene oxide modified heptamethyl trisiloxane and allyloxypolypropylene glycol methylether (commercially available as SILWET L-77™ brand surfactant having CAS No. 27306-78-1 and EPA Number CAL. REG. No. 5905-50073-AA, Momentive Per- 40 formance Materials, Inc., Albany, N.Y.); specific examples of useful surfactants include sodium lauryl sulfate, the Tween series of surfactants, Triton-X100, Triton-X114, CHAPS and CHAPSO, Tergitol-type NP-40, Nonidet P-40;
- (e) lipids, lipoproteins, lipopolysaccharides;
- (f) acids, bases, caustic agents; buffers;
- (g) peptides, proteins, or enzymes (e.g., cellulase, pectolyase, maceroenzyme, pectinase), including cell-penetrating or pore-forming peptides (e. g., (BO100)2K8, 50 Genscript; poly-lysine, poly-arginine, or poly-homoarginine peptides; gamma zein, see U.S. Patent Application publication 2011/0247100, incorporated herein by reference in its entirety; transcription activator of human immunodeficiency virus type 1 ("HIV-1 55 Tat") and other Tat proteins, see, e. g., www[dot] lifetein[dot]com/Cell_Penetrating_Peptides[dot]html and Järver (2012) Mol. Therapy-Nucleic Acids, 1:e27, 1-17); octa-arginine or nona-arginine; poly-homoarginine (see Unnamalai et al. (2004) FEBS Letters, 566: 60 307-310); see also the database of cell-penetrating peptides CPPsite 2.0 publicly available at crdd[dot] osdd[dot]net/raghava/cppsite/
- (h) RNase inhibitors;
- (i) cationic branched or linear polymers such as chitosan, 65 poly-lysine, DEAE-dextran, polyvinylpyrrolidone ("PVP"), or polyethylenimine ("PEI", e. g., PEI,

16

- branched, MW 25,000, CAS #9002-98-6; PEI, linear, MW 5000, CAS #9002-98-6; PEI linear, MW 2500, CAS #9002-98-6);
- (j) dendrimers (see, e. g., U.S. Patent Application Publication 2011/0093982, incorporated herein by reference in its entirety);
- (k) counter-ions, amines or polyamines (e. g., spermine, spermidine, putrescine), osmolytes, buffers, and salts (e. g., calcium phosphate, ammonium phosphate);
- (l) polynucleotides (e. g., non-specific double-stranded DNA, salmon sperm DNA);
- (m) transfection agents (e. g., Lipofectin®, Lipofectamine®, and Oligofectamine®, and Invivofectamine® (all from Thermo Fisher Scientific, Waltham, MA), PepFect (see Ezzat et al. (2011) Nucleic Acids Res., 39:5284-5298), TransIt® transfection reagents (Mirus Bio, LLC, Madison, WI), and poly-lysine, poly-homoarginine, and poly-arginine molecules including octo-arginine and nono-arginine as described in Lu et al. (2010) J. Agric. Food Chem., 58:2288-2294);
- (n) antibiotics, including non-specific DNA doublestrand-break-inducing agents (e. g., phleomycin, bleomycin, talisomycin);
- (o) antioxidants (e. g., glutathione, dithiothreitol, ascorbate); and/or
- (p) chelating agents (e. g., EDTA, EGTA).

Compositions comprising: (i) RNA molecules comprising an MTS is operably linked to a cargo segment; (ii) nucleic acids encoding RNA guided nucleases; and/or (iii) donor DNA templates can be delivered to the plant and/or meristem cells of the plant by particle mediated delivery, and any other direct method of delivery, such as but not limiting to, Agrobacterium-mediated transformation, polyethylene glycol (PEG)-mediated transfection to protoplasts, whiskers mediated transformation, electroporation, particle bombardment, and/or by use of cell-penetrating peptides.

In certain embodiments, plants are contacted either simultaneously or sequentially with one, two, three or more RNA molecules in one or more compositions where at least one of the RNA molecules comprises an MTS operably linked to a cargo segment comprising at least one guide RNA. In certain embodiments, one of the RNA molecules comprises an MTS operably linked to a cargo segment comprising at least one guide RNA and the other RNA molecule encoding an RNA guided nuclease and optionally an MTS, where the RNA guided nuclease can process the RNA comprising the guide RNA to release a functional guide RNA. In certain embodiments, one of the RNA molecules comprises an MTS operably linked to a cargo segment comprising at least one guide RNA and the other RNA molecule comprises an RNA guided nuclease and optionally an MTS, where the RNA guided nuclease cannot process the RNA comprising the guide RNA to release a functional guide RNA (e.g., processing elements present in the RNA molecule comprising the gRNA and the MTS are not recognized by the RNAguided nuclease). In certain embodiments, guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements (e.g., DRs) which are processed by different RNA-guided nuclease (e.g., a Cas12a nuclease can process the first RNA molecule and a Cas12j nuclease can process the second RNA molecule). In certain embodiments, the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the cargo segment second RNA molecule. Such distinct gRNAs provided by the first RNA molecule can provide for genome editing at one or more first genomic sites

in a meristem cell while the distinct gRNAs provided by the second RNA molecule can provide for genome editing at one or more second genomic sites in a meristem cell. Such contacting the plant with RNA molecules in a composition can occur sequentially such that the first gRNA(s) are 5 delivered, allowed sufficient time (e.g., about 6, 12, 18 or 20 to about 24, 30, or 36 hours) to effect desired genome edits, followed by contacting the plant with the second RNA molecules in a second composition to deliver the second gRNA(s) to effect additional desired genome edits, where 10 such desired genome edits are effected by providing the gRNA(s) and an RNA guided nuclease in at least the meristem cell. Without seeking to be limited by theory, it is believed that cutting chromosomes at multiple location simultaneously is cytotoxic and that such cytotoxicity can be 15 mitigated by delivering a limited number of guide RNAs at different times (e.g., about 6, 12, 18 or 20 to about 24, 30, or 36 hours apart). In certain embodiments, a plant can be contacted by one or more RNA molecules that comprise at least one gRNA operably linked to an MTS, optionally along 20 with an RNA encoding RNA guided nuclease, permitted a sufficient period of time to accumulate the RNA molecule in the meristem cells (e.g., about 6, 12, 18 or 20 to about 24, 30, or 36 hours apart), and then contacted with a different mixture of one or more RNA molecules that comprise at 25 least one different gRNA operably linked to an MTS, optionally along with an RNA encoding RNA guided nuclease, where the RNA guided nuclease can process the RNA comprising the guide RNA to release a functional guide RNA and/or effect a desired genomic edit with the gRNA in 30 the meristem cells.

In certain embodiments, the RNA molecules comprising at least one gRNA fused to an MTS are provided in combination with the RNA guided nuclease and a donor DNA template to effect insertions of DNA elements in the 35 donor DNA template at the target editing site in the plant genome by homology dependent repair (HDR), non-homologous end joining (NHEJ), or microhomology-mediated end joining (MMEJ). Donor DNA template molecules used in the methods provided herein include DNA molecules 40 comprising, from 5' to 3', a first homology arm, a replacement DNA, and a second homology arm, wherein the homology arms containing sequences that are partially or completely homologous to genomic DNA (gDNA) sequences flanking a target site-specific endonuclease cleav- 45 age site in the gDNA. In certain embodiments, the replacement DNA can comprise an insertion, deletion, or substitution of 1 or more DNA base pairs relative to the target gDNA. In one embodiment, the donor DNA template molecule is double-stranded and perfectly base-paired through 50 all or most of its length, with the possible exception of any unpaired nucleotides at either terminus or both termini. In another embodiment, the donor DNA template molecule is double-stranded and includes one or more non-terminal mismatches or non-terminal unpaired nucleotides within the 55 otherwise double-stranded duplex. In an embodiment, the donor DNA template molecule that is integrated at the site of at least one double-strand break (DSB) includes between 2-20 nucleotides in one (if single-stranded) or in both strands (if double-stranded), e. g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 60 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides on one or on both strands, each of which can be base-paired to a nucleotide on the opposite strand of the targeted integration site (in the case of a perfectly base-paired double-stranded polynucleotide molecule). Such donor DNA templates can 65 be integrated in genomic DNA containing blunt and/or staggered double stranded DNA breaks by homology-di-

rected repair (HDR) or microhomology-mediated end joining (MMEJ). In certain embodiments, a donor DNA template homology arm can be about 20, 50, 100, 200, 400, or 600 to about 800, or 1000 base pairs in length. In certain embodiments, a donor DNA template molecule can be delivered to a plant cell in a circular (e.g., a plasmid or a viral vector including a geminivirus vector) or a linear DNA molecule. In certain embodiments, a circular or linear DNA molecule that is used can comprise a modified donor DNA template molecule comprising, from 5' to 3', a first copy of the target sequence-specific endonuclease cleavage site sequence, the first homology arm, the replacement DNA, the second homology arm, and a second copy of the target sequence-specific endonuclease cleavage site sequence. In other embodiments, DNA templates suitable for NHEJ insertion will lack homology arms that are partially or completely homologous to genomic DNA (gDNA) sequences flanking a target site-specific endonuclease cleavage site in the gDNA. Compositions comprising the donor templates can be delivered to the plant and/or meristem cells of the plant by particle mediated delivery, and any other direct method of delivery, such as but not limiting to, Agrobacterium-mediated transformation, polyethylene glycol (PEG)-mediated transfection to protoplasts, whiskers mediated transformation, electroporation, particle bombardment, and/or by use of cell-penetrating peptides. The donor DNA templates may be present transiently in the cell or it could be introduced via a viral replicon (e.g, a geminivirus replicon). Geminivirus DNA replicons suitable for delivery of donor DNA templates to plants include a Beet Yellow Dwarf Virus replicon (Baltes, N.J. et al. Plant Cell vol. 26,1(2014): 151-63. doi:10.1105/tpc.113.119792).

18

RNA guided nucleases can be provided to at least the meristem cell by a variety of methods that include stable expression with an integrated transgenes, expression from a viral vector, or transient expression such as by introducing an RNA that encodes the RNA guided nuclease or an that RNA that encodes the RNA guided nuclease that is operably linked an MTS. In certain embodiments, an active form of the RNA guided nuclease is predominantly localized in meristem tissue of the plant. Delivery of RNAs encoding the RNA guided nucleases or DNAs then encode those RNAs to the plant and/or meristem cells of the plant can be achieved by particle mediated delivery, and any other direct method of delivery, such as but not limiting to, Agrobacteriummediated transformation, polyethylene glycol (PEG)-mediated transfection to protoplasts, whiskers mediated transformation, electroporation, particle bombardment, and/or by use of cell-penetrating peptides. In certain embodiments, such predominant localization of the RNA guided nuclease can result in at least about 60%, 70%, 80%, 90%, 95%, 98%, or 99% of the active form of the RNA guided nuclease in the plant being localized in the meristem. In certain embodiments, the nucleic acid encoding the RNA guided nuclease can be delivered directly to the meristem by methods that include use of biolistic devices (e.g., as in U.S. 20200123554). In certain embodiments, the RNA guided nuclease can be operably linked to a vegetative stage, meristem-preferred or meristem-specific promoter including: (i) a pAt.Erecta, At.PNH, At.AN3, or At.MYB17 promoter or functional fragment thereof from Arabidopsis; (ii) promoter or functional fragment thereof from a Glyma10g38730, Glyma09g27950, Glyma06g05900, or Glyma17g34380 soybean gene; or (iii) receptor like kinase (RLK) gene promoters from a PGSC0003DMP400032802 or PGS C0003DMP400054040 gene of potato. Such vegetative stage, meristem-preferred or meristem-specific pro-

moters are set forth in U.S. 20190300890, which is incorporated herein by reference in its entirety. In certain embodiments, expression of the RNA guided nuclease can increased in floral meristems of maize plants by operable linkage to a floral meristem-enhanced promoters that include 5 Zap1a, Zap1b, ZLF1, ZLF2, or ZMM4 endogenous genes (Dong et al. 2012 PLoS ONE 7(8):e43450). Alternatively, the RNA guided nuclease can be expressed meristems and tissues other than the vascular tissues to mitigate cleavage of an RNA molecule comprising the gRNA and the MTS 10 during transit from the site of contact to the meristem.

In some embodiments, a plant expressing transgenically a Cas polypeptide may be genome edited by delivery of a cargo containing only guide RNAs suitable for the transgenically expressed Cas polypeptide.

The RNA sequences are generally made and assembled at first in DNA form as RNA expressing vectors using recombinant DNA technology. RNA expression is done in vitro, and purified according to well established methods. Addition of RNA 5' caps and polyA tails to mRNAs can be performed 20 according to methods established in the literature. Alternatively, some RNAs designed as described can be purchased from commercial providers.

A substantially purified RNA composition is understood to comprise a high concentration of an RNA molecule of 25 interest, although in some cases it may comprise two distinct RNAs. For example, one RNA may comprise a Cas nuclease while another may comprise a corresponding guide or guide array. In addition, a substantially purified RNA composition may comprise other added components, such as a pH buffer, 30 salt, surfactants, and/or RNase inhibitors.

Plants can be effectively contacted with the RNA vectors in many ways. Often it will be convenient to load them into the phloem of plants through the leaves, for example by nicking a leaf and submerging the injured tissue into a 35 solution of substantially purified RNAs. Other avenues are also possible, such as by injection into the stems with a needle or use of a handheld biolistics device. In some embodiments, a surfactant is added to the purified RNA, and the liquid is applied to a tissue like embryonic shoot, leaf, 40 stem, or inflorescence, with or without slight injury such as scratching.

The RNAs are often applied at the vegetative stage of the life cycle of a plant, so as to reach vegetative meristems before they convert to floral meristems. In some cases, 45 however, it may be convenient to apply the vectors, RNA molecules, or compositions comprising the RNA molecules or vectors, to floral meristems, especially at early stages of differentiation. In certain embodiments, a soybean plant is contacted at the vegetative stage with a composition com- 50 prising the RNA molecules or vectors at vegetative stage Ve, V1, or V2 to about the V4 V(n) stage where 1, 2, 3, 4, or n is the number of trifoliate leaves (Soybean Growth and Development, M. Licht, 2014, Iowa State University Extension and Outreach, PM 1945). In certain embodiments, a 55 maize plant is contacted at the vegetative stage with a composition comprising the RNA molecules or vectors at vegetative stage Ve, V1, or V2 to about the V4 V(n) stage (Corn Growth Stages, M. Licht, Iowa State University Extension and Outreach, on the https interne site "crops.ex- 60 tension.iastate.edu/encyclopedia/corn-growth-stages").

Very often, mutated seeds from plants edited with the reagents and methods described here are collected for phenotypic characterization. In some cases, pollen from edited plants is used in crosses with other individuals, or mutated 65 individuals are pollinated with pollen of unedited plants or wildtype plants.

20

There are numerous plant-endogenous targets (i.e., DNA sequence targets) for genome editing. Any defective allele found in elite germplasm can get edited to a non-deleterious version. The methods presented here can be applied to a promoter bashing or fine-tuning approach, to create a range of phenotypes based on promoter alterations of a gene of a certain sequence or gene of interest (Rodriguez-Leal et al., Cell. 2017 Oct. 5; 171(2):470-480).

Editing of coding sequences can be made using the methods disclosed herein to increase the level of preselected amino acids in the encoded polypeptide. For example, the gene encoding the barley high lysine polypeptide (BHL) is derived from barley chymotrypsin inhibitor, U.S. application Ser. No. 08/740,682, filed Nov. 1, 1996, and WO 98/20133, the disclosures of which are herein incorporated by reference. Other proteins include methionine-rich plant proteins such as from sunflower seed (Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, ed. Applewhite (American Oil Chemists Society, Champaign, Ill.), pp. 497-502; herein incorporated by reference); corn (Pedersen et al. (1986) J. Biol. Chem. 261:6279; Kirihara et al. (1988) Gene 71:359; both of which are herein incorporated by reference); and rice (Musumura et al. (1989) Plant Mol. Biol. 12:123, herein incorporated by reference). Other agronomically important genes encode latex, Floury 2, growth factors, seed storage factors, and transcription factors.

The methods disclosed herein can be used to modify herbicide resistance traits including genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides (e.g., the acetolactate synthase (ALS) gene containing mutations leading to such resistance, in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides that act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene); glyphosate (e.g., the EPSPS gene and the GAT gene; see, for example, U.S. Publication No. 20040082770 and WO 03/092360); or other such genes known in the art. The bar gene encodes resistance to the herbicide basta, the nptII gene encodes resistance to the antibiotics kanamycin and geneticin, and the ALS-gene mutants encode resistance to the herbicide chlorsulfuron. Additional herbicide resistance traits are described for example in U.S. Patent Application 2016/0208243, herein incorporated by reference.

Sterility genes can also be modified and provide an alternative to physical detasseling. Examples of genes used in such ways include male tissue-preferred genes and genes with male sterility phenotypes such as QM, described in U.S. Pat. No. 5,583,210. Other genes include kinases and those encoding compounds toxic to either male or female gametophytic development. Additional sterility traits are described for example in U.S. Patent Application 2016/0208243, herein incorporated by reference.

Genome editing can also be used to make haploid inducer lines as disclosed in WO2018086623 and U.S. 20190292553.

The quality of grain can be altered by modifying genes encoding traits such as levels and types of oils, saturated and unsaturated, quality and quantity of essential amino acids, and levels of cellulose. In corn, modified hordothionin proteins are described in U.S. Pat. Nos. 5,703,049, 5,885, 801, 5,885,802, and 5,990,389.

Commercial traits can also be altered by modifying a gene or that could increase for example, starch for ethanol production, or provide expression of proteins. Another impor-

tant commercial use of modified plants is the production of polymers and bioplastics such as described in U.S. Pat. No. 5,602,321. Genes such as .beta.-Ketothiolase, PHBase (polyhydroxyburyrate synthase), and acetoacetyl-CoA reductase (see Schubert et al. (1988) J. Bacteriol. 170:5837- 5 5847) facilitate expression of polyhyroxyalkanoates (PHAs).

Exogenous products include plant enzymes and products as well as those from other sources including prokaryotes and other eukaryotes. Such products include enzymes, cofactors, hormones, and the like. The level of proteins, particularly modified proteins having improved amino acid distribution to improve the nutrient value of the plant, can be increased. This is achieved by the expression of such proteins having enhanced amino acid content.

The methods disclosed herein can also be used for modification of native plant gene expression to achieve desirable plant traits. Such traits include, for example, disease resistance, herbicide tolerance, drought tolerance, salt tolerance, 20 insect resistance, resistance against parasitic weeds, improved plant nutritional value, improved forage digestibility, increased grain yield, cytoplasmic male sterility, altered fruit ripening, increased storage life of plants or plant parts, reduced allergen production, and increased or 25 decreased lignin content. Genes capable of conferring these desirable traits are disclosed in U.S. Patent Application 2016/0208243, herein incorporated by reference.

The present disclosure may be used for genomic editing of any plant species, including, but not limited to, monocots 30 and dicots (i.e., monocotyledonous and dicotyledonous, respectively). Examples of plant species of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago 35 sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), camelina (Camelina sativa), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (He- 40 1 to 6, wherein the cargo segment does not contain an lianthus annuus), quinoa (Chenopodium quinoa), chicory (Cichorium intybus), lettuce (Lactuca sativa), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gos- 45 sypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avo- 50 cado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccha- 55 rum spp.), oil palm (Elaeis guineensis), poplar (Populus spp.), eucalyptus (Eucalyptus spp.), oats (Avena sativa), barley (Hordeum vulgare), vegetables, ornamentals, and conifers.

The embodiments described methods and reagents can 60 have many advantages over other known solutions. The techniques presented generally bypass callus induction or tissue culture that are necessary for alternative or widely practiced genome editing procedures, thus speeding up (i.e., accelerating) and lowering or reducing the cost of the 65 process of producing plants with targeted mutations. Epigenetic resetting (i.e., interference) is also eliminated. The

22

editing can be performed in individuals of an elite genetic background, making lengthy backcrossing schemes unnecessarv.

Embodiments

Various embodiments of the compositions, vectors, recombinant DNAs, RNAs, and methods provided herein are set forth in the following set of numbered embodiments.

- 1. A composition comprising at least one RNA molecule comprising a cargo segment fused to a meristem transport segment (MTS), wherein the cargo segment comprises one or more guide RNAs for an RNA-guided nuclease or wherein the cargo segment comprises RNA encoding a TALEN or ZFN protein.
- 2. The composition according to embodiment 1, wherein the guide RNA is flanked by or comprises processing elements.
- 3. The composition according to embodiment 2, wherein the processing elements are direct repeat sequences of the bacterial CRISPR array of the RNA-guided nuclease or are direct repeat sequences that are processed by the RNAguided nuclease.
- 4. The composition according to embodiment 3, wherein the cargo segment comprises a plurality of guide RNAs.
- 5. The composition according to embodiments 3 or 4, wherein the guide RNAs and the direct repeat sequences of the bacterial CRISPR array are for a Cas12a or a Cas12j RNA-guided nuclease.
- 6. The composition according to embodiment 1, wherein the composition comprises both a first and a second RNA molecule each comprising a cargo segment fused to an MTS, wherein the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the second RNA molecule, optionally wherein the guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements which are processed by different RNA-guided nucleases.
- 7. The composition according to any one of embodiments RNA-guided nuclease polypeptide-encoding sequence.
- 8. The composition according to any one of embodiments 1 to 6, wherein the cargo segment further comprises an RNA-guided nuclease polypeptide-encoding sequence.
- 9. The composition according to embodiment 8, wherein RNA-guided nuclease polypeptide-encoding sequence can be translated in a plant cell cytosol.
- 10. The composition according to embodiment 8 or 9, wherein the RNA molecule further comprises at least one polyA region, wherein the polyA region is 3' of the RNAguided nuclease polypeptide-encoding sequence, and 5' of the guide RNA and/or wherein the polyA region is at the 3' end of the RNA molecule.
- 11. The composition according to any one of embodiments 1 to 10, wherein the composition comprises both a first and a second RNA molecule each comprising a cargo segment fused to an MTS, wherein at least the first RNA molecule comprises a cargo sequence further comprising an RNA-guided nuclease polypeptide-encoding sequence, wherein the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the second RNA molecule.
- 12. The composition according to embodiment 11, wherein the guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements which are processed by different RNA-guided nucleases, and optionally wherein the processing elements in the first

RNA molecule are not recognized by the RNA-guided nuclease polypeptide encoded by the first RNA molecule.

- 13. The composition according to any one of embodiments 1 to 12, wherein the MTS comprises:
 - (i) a Flowering Time (FT)-derived sequence, optionally wherein the FT-derived sequence is SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof;
 - (ii) a tRNA like sequence (TLS), optionally wherein the TLS sequence comprises SEQ ID NO: 29 or 30, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, MTC fragment thereof, and/or an RNA hairpin comprising a first stem of 8 to 12 nucleotides, at least one variable bulge, a second stem of 4 to 7 nucleotides, and a variable loop;
 - (iii) a GAI sequence, optionally wherein the GAI sequence comprises SEQ ID NO: 26, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof,
 - (iv) a BEL5 sequence optionally wherein the BEL5 sequence comprises SEQ ID NO: 28, a meristem transport-competent (MTC) ortholog thereof, a MTC variant 25 thereof, and/or a MTC fragment thereof;
 - (v) a CmNACP sequence optionally wherein the CmNACP sequence comprises SEQ ID NO: 25, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; 30 or
 - (vi) a LeT6 sequence optionally wherein the LeT6 sequence comprises SEQ ID NO: 27, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, a MTC fragment thereof.
- 14. The composition according to embodiment 13, wherein the MTS comprises a Flowering Time (FT)-derived sequence of SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or a meristem transport-competent (MTC) fragment thereof.
- 15. The composition according to any one of embodiments 1 to 14, wherein the MTS is located 3' of the cargo segment.
- 16. The composition according to any of embodiments 1 to 15, further comprising RNase inhibitors.
- 17. The composition according to any one of embodiments 1 to 16, wherein the RNA molecule is a substantially purified RNA molecule.
- 18. The composition according to any one of embodiments 1 to 17, wherein the RNA molecule is not operably 50 linked to a viral vector RNA and/or associated with a viral protein.
- 19. A meristem-delivery vector comprising a cargo segment fused to a meristem transport segment (MTS), wherein the cargo segment comprises one or more guide RNAs for 55 an RNA-guided nuclease.
- 20. A recombinant DNA having a sequence capable of producing as a transcript a vector according to embodiment 19, or producing an RNA that can be purified and combined with one additional component to form a composition 60 according to any one of embodiments 1 to 18.
- 21. A method of producing a plant with an altered genome comprising
 - (i) contacting a plant with at least a first composition according to any of embodiments 1 to 18, and
 - (ii) retrieving a progeny of the plant, wherein the progeny has an altered genome.

- 22. The method according to embodiment 21, wherein contacting comprises phloem loading.
- 23. The method according to embodiment 21 or 22, wherein the contacting with the composition occurs at the vegetative stage of the plant life cycle.
- 24. The method according to any one of embodiments 21 to 23, wherein contacting comprises contacting the plant with the first composition, and after a time interval contacting the plant with a second composition according to any one of embodiments 1 to 18, wherein the guide RNAs in the cargo segment of the RNA molecule in the first composition are different than the guide RNAs in the second cargo segment of the RNA molecule in the second composition.
- 25. The method according to embodiment 24, wherein the time interval is about 18 or 20 to about 24, 30, or 36 hours.

 26. The method according to any one of embodiments 21
- to 25, wherein the guide RNA(s) of the RNA molecule are flanked by or comprise processing elements which are processed by the RNA-guided nuclease.
- 27. The method according to any one of embodiments 21 to 26, wherein:
 - (i) wherein the RNA molecule does not contain an RNAguided nuclease polypeptide-encoding sequence; and
 - (ii) wherein the plant comprises a polynucleotide encoding the RNA-guided nuclease, optionally wherein the polynucleotide is integrated into the genome of the plant and/or optionally wherein an active form of the RNA guided nuclease is predominantly localized in meristem tissue of the plant.
- 28. The method of embodiment 27, wherein the RNA-guided nuclease is encoded by a DNA molecule, optionally wherein the DNA molecule is integrated into the genome of the plant, optionally wherein the DNA molecule is operably linked to a promoter which is preferentially expressed in target plant cells, and/or optionally wherein the target plant cells are meristem cells.
 - 29. The method according to any one of embodiments 21 to 28, wherein the composition comprises both a first and a second RNA molecule each comprising a cargo segment fused to an MTS, wherein the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the second RNA molecule, optionally wherein the guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements which are processed by different RNA-guided nucleases.
 - 30. The method according to embodiment 29, wherein the composition comprises both a first and a second RNA molecule each comprising a cargo segment fused to an MTS, wherein at least the first RNA molecule comprises a cargo sequence further comprising an RNA-guided nuclease polypeptide-encoding sequence, wherein the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the second RNA molecule.
 - 31. The method according to embodiment 29, wherein the guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements which are processed by different RNA-guided nucleases, and optionally wherein the processing elements in the first RNA molecule are not recognized by the RNA-guided nuclease polypeptide encoded by the first RNA molecule.
 - 32. A plant comprising:
 - (i) an RNA molecule comprising a cargo segment fused to a meristem transport segment, wherein the cargo segment comprises one or more guide RNAs for an RNA-guided nuclease or a vector encoding the RNA molecule or wherein the cargo segment comprises RNA encoding a TALEN or ZFN protein; and,

- (ii) a DNA molecule or RNA molecule encoding the RNA-guided nuclease.
- 33. The plant according to embodiment 32, wherein the cargo segment does not contain a sequence encoding the RNA-guided nuclease.
- 34. The plant according to embodiment 32 or 33, wherein the cargo segment comprises a plurality of guide RNAs.
- 35. The plant according to any one of embodiments 32 to 34, wherein the guide RNAs and the direct repeat sequences of the bacterial CRISPR array are for a Cas12a or a Cas12j RNA-guided nuclease.
- 36. The plant according to any one of embodiments 32 to 35, wherein the plant comprises both a first and a second RNA molecule each comprising a cargo segment fused to an MTS, wherein the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the second RNA molecule, optionally wherein the guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements which are 20 processed by different RNA-guided nucleases.
- 37. The plant according to any one of embodiments 32, or 34 to 36, wherein the cargo segment contains a sequence encoding a Cas12a or a Cas12j RNA-guided nuclease, optionally wherein the Cas12a RNA-guided nuclease comprises SEQ ID NO: 53 or 55, or optionally wherein the Cas12j RNA-guided nuclease comprises SEQ ID NO: 57, 59, or 61.
- 38. The plant according to any one of embodiments 32, or 34 to 36, wherein the cargo segment further comprises an 30 RNA-guided nuclease polypeptide-encoding sequence, optionally wherein a Cas12a or a Cas12j RNA-guided nuclease is encoded.
- 39. The plant according to embodiment 37 or 38, wherein RNA-guided nuclease polypeptide-encoding sequence can 35 be translated in a plant cell cytosol.
- 40. The plant according to any one of embodiments 37, 38, or 39, the RNA molecule further comprising a polyA region, wherein the polyA region is 3' of the RNA-guided nuclease polypeptide-encoding sequence, and 5' of the guide 40 RNA.
- 41. The plant according to any one of embodiments 32, or 34 to 40, wherein the composition comprises both a first and a second RNA molecule each comprising a cargo segment fused to an MTS, wherein at least the first RNA molecule 45 comprises a cargo sequence further comprising an RNA-guided nuclease polypeptide-encoding sequence, wherein the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the second RNA molecule.
- 42. The plant according to embodiment 41, wherein the guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements which are processed by different RNA-guided nucleases, and optionally wherein the processing elements in the first RNA 55 molecule are not recognized by the RNA-guided nuclease polypeptide encoded by the first RNA molecule.
- 43. The plant according to any one of embodiments 32 to 42, wherein the MTS comprises:
 - (i) a Flowering Time (FT)-derived sequence, optionally 60 wherein the FT-derived sequence is SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or a meristem transport-competent (MTC) fragment thereof;
 - (ii) a tRNA like sequence (TLS), optionally wherein the 65 TLS sequence comprises SEQ ID NO: 29, SEQ ID NO: 30, a MTC fragment thereof, and/or an RNA hairpin

26

- comprising a first stem of 8 to 12 nucleotides, at least one variable bulge, a second stem of 4 to 7 nucleotides, and a variable loop:
- (iii) a GAI sequence, optionally wherein the GAI sequence comprises SEQ ID NO: 26, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof,
- (iv) a BEL5 sequence optionally wherein the BEL5 sequence comprises SEQ ID NO: 28, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof,
- (v) a CmNACP sequence optionally wherein the CmNACP sequence comprises SEQ ID NO: 25, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, and/or a MTC fragment thereof; or
- (vi) a LeT6 sequence optionally wherein the LeT6 sequence comprises SEQ ID NO: 27, a meristem transport-competent (MTC) ortholog thereof, a MTC variant thereof, a MTC fragment thereof.
- 44. The plant according to embodiment 43, wherein the MTS comprises a Flowering Time (FT)-derived sequence of SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or a meristem transport-competent (MTC) fragment thereof.
- 45. The plant according to any one of embodiments 32 to 44, wherein the MTS is located 3' of the cargo segment.
- 46. The plant according to any one of embodiments 32 to 45, wherein an active form of the RNA guided nuclease is predominantly localized in meristem tissue of the plant.
- 47. The plant of any one of embodiments 32, or 34 to 46, wherein the RNA-guided nuclease is encoded by a DNA molecule and optionally wherein the DNA molecule is integrated into the genome of the plant.
- 48. The plant of embodiment 47, wherein the DNA molecule encoding the RNA-guided nuclease is operably linked to a promoter which is preferentially expressed in target plant cells and optionally wherein the target plant cells are meristem cells.
- 49. A plant comprising an altered genome made by the method of any one of embodiments 21 to 31.
- 50. The use of the composition of any one of embodiments 1 to 18 to obtain a plant with an altered genome.

EXAMPLES

Example 1—RNA Design

The basic plasmid design to produce the editing message starts with a standard high copy plasmid that contains a multiple cloning sites downstream of the T7 promoter, such as pBluescriptTM or pSP73. Each component can be easily introduced using an efficient assembly approach. The design consists of a plant codon optimized Cas12a coding sequence followed by the DR sequence of the Cas12a CRISPR array, in which the DNA-targeting spacer sequences are replaced a guide with soybean phytoene desaturase (PDS) gene as a visual marker (Du et al. J. Biotech 2016, 217:90-97; doi.org/ 10.1016/j.jbiotec.2015.11.005). The guide RNA region is followed by the an FT sequence derived from Arabidopsis (SEQ ID NO: 1). The DNA vector sequence ends in a unique restriction site to linearize the plasmid for runoff transcription. This arrangement enables production of high quantity editing mRNA.

Example 2—Production of the RNA Composition

To produce the mRNA for plant delivery the production vector above is linearized as template for in vitro transcrip-

28Example 4—Phenotyping

tion to produce tens of micrograms of editing mRNA using a system such as mScriptTM (CAMBIO, Cambridge, UK; on the world wide web https internet site "cambio.co.uk/20/431/21/products/t7-mscript-standard-mrna-production-system/"). The product is cleaned up and characterized to make 5 sure it is the expected size and to determine how much mRNA was produced. The purification process includes a DNAase treatment followed by a phenol chloroform extraction then ethanol precipitation and resuspension in RNase free water. RNAase inhibitor is also added (New England 10 Biolabs, Ipswich, MA, USA; on the world wide web https internet site "neb.com/products/m0314-rnase-inhibitor-murine#Product%20Information") to stabilize the editing mRNA during uptake by the plant.

Example 3—Phloem Loading

The in vitro transcription reaction of Example 2 produces 50 micrograms of editing mRNA. It is suspended in a mix at 0.2 micrograms per microliter (10 micrograms mRNA in 50 microliters of RNase free water) in nuclease-free EppendorfTM tubes (1.5 mL). These steps produce sufficient material for five replicates. A negative control contains everything but the editing mRNA. The soy plants are at the 2-3 trifoliate stage in small pots. Using sharp, clean & heat sterilized scissors to remove a leaf tip in the second trifoliate of each plant then the leaf tip is cut when submerged in sterile nuclease free water. Very gently the leaf is placed in the RNA solution and the setup stabilized so the plant can absorb the mRNA solution with no undue stress. Uptake of the editing mRNA takes several hours.

The treated leaves are removed from the editing mRNA tubes when the solution is depleted to minimize wounding. In 1-2 weeks for the intended phenotype will appear in new growth. The soy PDS knockout is lethal so the plants will likely not set seed, but the same method can be adapted to make non-lethal mutations that are transmissible through in the germline.

All cited patents and patent publications referred to in this application are incorporated herein by reference in their entirety. All of the materials and methods disclosed and claimed herein can be made and used without undue experi-15 mentation as instructed by the above disclosure and illustrated by the examples. Although the materials and methods of this disclosure have been described in terms of embodiments and illustrative examples, it will be apparent to those of skill in the art that substitutions and variations can be applied to the materials and methods described herein without departing from the concept, spirit, and scope of the invention. For instance, while the particular examples provided illustrate the methods and embodiments described herein using a specific plant, the principles in these examples are applicable to any plant of interest. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as encompassed by the embodiments of the inventions recited herein and the specification and appended claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 62
<210> SEQ ID NO 1
<211> LENGTH: 103
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEOUENCE: 1
atgtctataa atataagaga ccctcttata gtaagcagag ttgttggaga cgttcttgat
                                                                       60
ccgtttaata gatcaatcac tctaaaggtt acttatggcc aaa
                                                                      103
<210> SEQ ID NO 2
<211> LENGTH: 975
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 2
agttaatgca aatccgaaac agtataaata tgtgtagagg gttcatgcct atgatacaaa
ttaaagaagc agaaacaaaa acaagtaaaa cagaaacaat caacacagag aaaccacctg
tttgttcaag atcaaagatg tctataaata taagagaccc tcttatagta agcagagttg
ttggagacgt tcttgatccg tttaatagat caatcactct aaaggttact tatggccaaa
                                                                      240
gagaggtgac taatggcttg gatctaaggc cttctcaggt tcaaaacaag ccaagagttg
                                                                      300
agattqqtqq aqaaqacctc aqqaacttct atactttqqt tatqqtqqat ccaqatqttc
                                                                      360
caagtectag caaccetcae etcegagaat atetecattg gttggtgact gatatecetg
                                                                      420
ctacaactgg aacaaccttt ggcaatgaga ttgtgtgtta cgaaaatcca agtcccactg
                                                                      480
caggaattca tegtgtegtg tttatattgt ttegacaget tggcaggeaa acagtgtatg
```

-continued

caccagggtg gcgccagaac ttcaacactc gcgagtttgc tgagatctac aatctcggcc	600
ttcccgtggc cgcagttttc tacaattgtc agagggagag tggctgcgga ggaagaagac	660
tttagatggc ttcttccttt ataaccaatt gatattgcat actctgatga gatttatgca	720
totatagtat tttaatttaa taaccatttt atgatacgag taacgaacgg tgatgatgcc	780
tatagtagtt caatatataa gtgtgtaata aaaatgagag ggggaggaaa atgagagtgt	840
tttacttata tagtgtgtga tgcgataatt atattaatct acatgaaatg aagtgttata	900
tttatacttt acgtgtattc atttcttttc gatgcaaaaa tcaggcagtg ggaagaatct	960
gctgttttac ttttg	975
<210> SEQ ID NO 3 <211> LENGTH: 762 <212> TYPE: DNA <213> ORGANISM: Zea mays	
<400> SEQUENCE: 3	
ttgagagtte taataagage aaeggeeaat aceattageg agttattttt etgeaatata	60
tgtcagcaac cgatcatttg gttatggctc gtgtcataca ggatgtattg gatcccttta	120
caccaaccat tccactaaga ataacgtaca acaataggct acttctgcca agtgctgagc	180
taaagccatc cgcggttgta agtaaaccac gagtcgatat cggtggcagt gacatgaggg	240
ctttctacac cctggtactg attgacccgg atgccccaag tccaagccat ccatcactaa	300
gggagtactt gcactggatg gtgacagata ttccagaaac aactagtgtc aactttggcc	360
aagagctaat attttatgag aggccggacc caagatctgg catccacagg ctggtatttg	420
tgctgttccg tcaacttggc agggggacag tttttgcacc agaaatgcgc cacaacttca	480
actgcagaag ctttgcacgg caatatcacc tcagcattgc caccgctaca catttcaact	540
gtcaaaggga aggtggatcc ggcggaagaa ggtttaggga agagtagaaa ccataggcca	600
ctgcatggtc acactataga aatatcatca ataatgtgca ctatattgaa tcaatgcacc	660
acctetatat getgaatgtt atgtatetea aactatgatt gtaetgaett gaaaggttga	720
gagettagte tettageaga atatageaca atattaetag ta	762
<210> SEQ ID NO 4 <211> LENGTH: 531 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 4	
atgeetagtg gaagtaggga teetetegtt gttgggggag taattgggga tgtattggat	60
ccttttgaat attctattcc tatgagggtt acctacaata acagagatgt cagcaatgga	120
tgtgaattca aaccetcaca agttgtcaac caaccaaggg taaatatcgg tggtgatgac	180
ctcaggaact tctatacttt gattgcggtt gatcccgatg cacctagccc aagtgacccc	240
aatttgagag aataceteca ttggttggtg actgatatee cagcaacaac aggggetagt	300
ttcggccatg aggttgtaac atatgaaagt ccaagaccaa tgatggggat tcatcgtttg	360
gtgtttgtgt tatttcgtca actgggtagg gagaccgtgt atgcaccagg atggcgccag	420
aatttcaaca ctaaagaatt tgctgaactt tacaaccttg gattgccagt tgctgctgtc	480
tatttcaaca ttcagaggga atctggttct ggtggaagga ggttatacta a	531
30 00 00	

<210> SEQ ID NO 5 <211> LENGTH: 103

-continued <212> TYPE: RNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 5 augucuauaa auauaagaga cccucuuaua guaagcagag uuguuggaga cguucuugau 60 ccguuuaaua gaucaaucac ucuaaagguu acuuauggcc aaa 103 <210> SEQ ID NO 6 <211> LENGTH: 975 <212> TYPE: RNA <213 > ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 6 aguuaaugca aauccgaaac aguauaaaua uguguagagg guucaugccu augauacaaa uuaaaqaaqc aqaaacaaaa acaaquaaaa caqaaacaau caacacaqaq aaaccaccuq uuuguucaag aucaaagaug ucuauaaaua uaagagaccc ucuuauagua agcagaguug 180 uuggagacgu ucuugauccg uuuaauagau caaucacucu aaagguuacu uauggccaaa 240 gagaggugac uaauggcuug gaucuaaggc cuucucaggu ucaaaacaag ccaagaguug 300 aqauuqquqq aqaaqaccuc aqqaacuucu auacuuuqqu uauqquqqau ccaqauquuc 360 caaquecuaq caacccucac cuccqaqaau aucuccauuq quuqquqacu qauaucccuq 420 cuacaacugg aacaaccuuu ggcaaugaga uuguguguua cgaaaaucca agucccacug 480 540 caqqaauuca ucququcquq uuuauauuqu uucqacaqcu uqqcaqqcaa acaququauq caccagggug gcgccagaac uucaacacuc gcgaguuugc ugagaucuac aaucucggcc 600 uucccguggc cgcaguuuuc uacaauuguc agagggagag uggcugcgga ggaagaagac 660 uuuagauggc uucuuccuuu auaaccaauu gauauugcau acucugauga gauuuaugca 720 ucuauaguau uuuaauuuaa uaaccauuuu augauacgag uaacgaacgg ugaugaugcc 780 uauaguaguu caauauauaa guguguaaua aaaaugagag ggggaggaaa augagagugu 840 uuuacuuaua uagugugaa ugcgauaauu auauuaaucu acaugaaaug aaguguuaua 900 uuuauacuuu acguguauuc auuucuuuuc gaugcaaaaa ucaggcagug ggaagaaucu 960 gcuguuuuac uuuug 975 <210> SEQ ID NO 7 <211> LENGTH: 762 <212> TYPE: RNA <213 > ORGANISM: Zea mays <400> SEQUENCE: 7 uugagaguuc uaauaagagc aacggccaau accauuagcg aguuauuuuu cugcaauaua ugucagcaac cgaucauuug guuauggcuc gugucauaca ggauguauug gaucccuuua caccaaccau uccacuaaga auaacguaca acaauaggcu acuucugcca agugcugagc 180 uaaagccauc cgcgguugua aguaaaccac gagucgauau cgguggcagu gacaugaggg 240 cuuucuacac ccugguacug auugacccgg augccccaag uccaagccau ccaucacuaa 300 gggaguacuu gcacuggaug gugacagaua uuccagaaac aacuaguguc aacuuuggcc 360 aagagcuaau auuuuaugag aggccggacc caagaucugg cauccacagg cugguauuug 420 ugcuguuccg ucaacuuggc agggggacag uuuuugcacc agaaaugcgc cacaacuuca 480 acugcagaag cuuugcacgg caauaucacc ucagcauugc caccgcuaca cauuucaacu 540 gucaaaggga agguggaucc ggcggaagaa gguuuaggga agaguagaaa ccauaggcca 600

-continued

-continued	
cugcaugguc acacuauaga aauaucauca auaaugugca cuauauugaa ucaaugcacc	660
accucuauau gcugaauguu auguaucuca aacuaugauu guacugacuu gaaagguuga	720
gagcuuaguc ucuuagcaga auauagcaca auauuacuag ua	762
<210> SEQ ID NO 8 <211> LENGTH: 531 <212> TYPE: RNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 8	
augccuagug gaaguaggga uccucucguu guugggggag uaauugggga uguauuggau	60
ccuuuugaau auucuauucc uaugaggguu accuacaaua acagagaugu cagcaaugga	120
ugugaauuca aacccucaca aguugucaac caaccaaggg uaaauaucgg uggugaugac	180
cucaggaacu ucuauacuuu gauugcgguu gaucccgaug caccuagccc aagugacccc	240
aauuugagag aauaccucca uugguuggug acugauaucc cagcaacaac aggggcuagu	300
uucggccaug agguuguaac auaugaaagu ccaagaccaa ugauggggau ucaucguuug	360
guguuugugu uauuucguca acuggguagg gagaccgugu augcaccagg auggcgccag	420
aauuucaaca cuaaagaauu ugcugaacuu uacaaccuug gauugccagu ugcugcuguc	480
uauuucaaca uucagaggga aucugguucu gguggaagga gguuauacua a	531
<210> SEQ ID NO 9 <211> LENGTH: 699 <212> TYPE: RNA <213> ORGANISM: Cucurbita maxima	
<400> SEQUENCE: 9	
ggggcuucaa aagagaauua ggucaccucc cagcucgguu ucgacacgcc augccgagaa	60
aucgugacce ucuagucguc gggagaguga ucggegacgu cgucgacucg uucucgaggu	120
ccaucucgau uaggguuguu uacgacucga gggaaguuaa caaugggugu gagcucaaac	180
ccucucaage ugucaacaag ccaagaguug agauuggugg cacugaccuu cgcaccuucu	240
ucacuuuggu uaugguggau cccgacgcuc cuagcccuag cgaucccaau cuaagagaau	300
acuugcauug guuagugacc gauauuccag cuacaaccga ggcaaccuuu ggacaagaga	360
uagugugcua cgagaaucca agaccaacgg uggguaucca ccguuuugug cuggucuugu	420
uccggcagcu cggaaggcaa acgguguaug cuccugggug gcgccagaac uucaacacca	480
gacacuuugc agagcuuuac aaucuugguu cgccagucgc cgccgucuau uucaauugcc	540
aaagggaaaa uggcuccggu ggaaggagaa gagccggcga ugaauguuca uaaaaacacu	600
ucacuucaca uuauauuauc aaccaauaua uuguaauaac augguucacg uuucuaucua	660
auagauuaua uauuuuuaau aaguucguga aaaaaaaaa	699
<210> SEQ ID NO 10 <211> LENGTH: 858 <212> TYPE: RNA <213> ORGANISM: Cucurbita maxima	
<400> SEQUENCE: 10	
gagacaauua cgcaucuuuu cagcucucuc acguacuacc auccucucga cgccaugccg	60
agagaccgug acccuuuggu cguugggaga gucaucggcg acguuaucga cucguucacg	120
aaguccauuu cgauuagggc uacuuacaac aacagggaaa uuagcaaugg cugugagcuc	180
aaacccucuc aaguugucaa ccagccaaga guugagauug guggcacuga ccuucgcacc	240

-continued

uucuucacuu ugguuauggu	ggauccugau	gcuccuagcc	cuagugaucc	uaaucuaagg	300
gaauacuugc auugguuggu	gacugauauc	ccagcuacaa	cuggagcgaa	cuuuggucaa	360
gagaucgugu gcuaugagag	cccaagaccc	acggugggua	uccaucgucu	ugugcuggug	420
uuguuucgac agcuuggaag	gcaaacggug	uacgcuccug	gguggcgcca	gaacuucaac	480
acaagagacu uugcagagcu	uuacaaucuu	ggcuugccgg	uggcagccgu	uuauuucaau	540
ugccaaaggg aaaguggguc	ugguggaagg	agaagaaccc	aagaugauuu	cuaagcccca	600
cuucacauua auuagauuaa	uauuauagcc	ccuaucaucu	auuaauccua	ccuugcuuuu	660
agauuaaccu uuauuuugag	uacacccaug	gaucauaaau	aagcccaaaa	ugcauuccua	720
auauugcucu uauacucguu	ucguaugaau	cacugucuuu	ucuucuuugu	uuuucuuguu	780
cgaguguuca uguugugcuu	uuuuuucgu	augaaucaaa	guagaagauc	aagauucgaa	840
aaaaaaaaa aaaaaaaa					858
<210> SEQ ID NO 11 <211> LENGTH: 596 <212> TYPE: RNA <213> ORGANISM: Vitis	vinifera				
<400> SEQUENCE: 11					
cccucuugua uuguaucggu	gaggugugug	ugaugccuag	ggaaagggau	ccucuuguug	60
uugggcgcgu ugucggggau	guucuggacc	ccuuucucag	guccaucacu	cugaggguga	120
ccuacaauaa uagagaagua	gcaaauggcu	gugaguucag	acccucucag	cuagucagee	180
aaccuagggu ggacauugga	ggggaugacu	ugaggaccuu	cuauacuuug	guuauggugg	240
acccugacgc uccaagcccc	aguaauccga	accuaaggga	guacuuacau	ugguugguga	300
cugauauucc agcaacuacu	ggggcaaacu	ucggccaaga	gauugugugu	uaugagagcc	360
cacgcccaac agcugggauu	caucgcuuug	uuuuuguauu	guuucgccaa	cuggguaggc	420
agacagugua ugcaccaggg	uggcgccaaa	auuucaacac	uagggacuuu	gcugagcuuu	480
auaaucuugg uuugccuguu	gcugcuguuu	auuuuaacug	ccaaagggag	ggcggcucgg	540
guggucgaag aucauaauca	auggauuuug	uacgcaaccu	ugcgacuuac	aaaggc	596
<210> SEQ ID NO 12 <211> LENGTH: 525 <212> TYPE: RNA <213> ORGANISM: Malus	domestica				
<400> SEQUENCE: 12					
augecuaggg auagggaeee	ccuuguuguu	ggacgagugg	uuggugaugu	uuuagacccc	60
uucacaaggu cuguuucucu	gagggugacc	uacgguacua	aggagguuaa	caaugguugu	120
gagcucaaac cuucugaagu	uguccaacaa	ccuagagcug	auauuggugg	agacgaucuc	180
aggacuuucu acacucuggu	caugguggau	ccugaugcac	ccagcccaag	ugaccccaac	240
cuaaaggaau auuugcauug	guugguuacc	gauauuccag	caacuacugc	ggcaagcuuc	300
gggcaagaga ucguguguua	ugaaagucca	cggccaacag	uggggauuca	ucgcuuuguu	360
uugguggugu uucgccaauu	ggguaggcaa	acgguguaug	cuccgggaug	gcgccagaac	420
uucaauacca gagacuucgc	cgagcuuuau	aaucuuggau	uaccgguguc	ugucgucuau	480
uuuaacugcc aaagggaggg	eggeueeggu	ggaaggagaa	gauaa		525

37

-continued <211> LENGTH: 745 <212> TYPE: RNA <213 > ORGANISM: Citrus unshiu <400> SEQUENCE: 13 ggcacgagga auagucuuac uacuuuugua ggcugugugu guauuuguuu gugcuuagug 60 uuguugagug uuuguuugug uuuaguguug uugauauguc uagcagggag agagauccuc 120 uuauuguugg ccgcguuguu ggugauguuc uugacaauuu uacaagaaca auuccaauga 180 ggauuaccua uucaaacaag gauguuaaua auggccguga gcucaaaccu ucugaaguuc ugaaccagcc uagggcugaa auugguggug augaucuuag gacauuuuau acuuugguaa 300 ugguugaucc ugaugcacca agcccaagug accccagccu uagggaguau uugcauuggu uggugacuga uauuccagca accacagggg ccagcuuugg ccaagagauu gugaacuaug aaagcccuaq gccaacgaug gggauucaca gguuugucuu uguguuguuc cggcaacuug 480 540 ggaggcagac uguuuaugca ccaggguggc gucagaacuu cagcacgagg gauuuugcug agcuuuacaa ucugggaccu ccgguggccg cugucuacuu caacugccag agggagagcg 600 gauccggcgg aaggccuguc agacgaugau ccauacaugc uuaauuugau aucaaauuac 660 720 745 uauauauaua uauauauaua uauau <210> SEQ ID NO 14 <211> LENGTH: 534 <212> TYPE: RNA <213 > ORGANISM: Lycopersicon esculentum <400> SEOUENCE: 14 augccuagag aacgugaucc ucuuguuguu ggucgugugg uaggggaugu auuggacccu 60 uucacaagaa cuauuggccu aagaguuaua uauagagaua gagaaguuaa uaauggaugc 120 gagcuuaggc cuucccaagu uauuaaccag ccaaggguug aaguuggagg agaugaccua 180 cguaccuuuu ucacuuuggu uaugguggac ccugaugcuc caaguccgag ugauccaaau 240 cugagagaau accuucacug guuggucacc gauauuccag cuaccacagg uucaaguuuu 300 gggcaagaaa uagugagcua ugaaagucca agaccaucaa ugggaauaca ucgauuugua 360 420 uuuguauuau ucagacaauu aggucggcaa acaguguaug cuccaggaug gcgucagaau uucaacacaa gagauuuugc agaacuuuau aaucuugguu uaccuguugc ugcugucuau 480 uuuaauuguc aaagagaga uggcaguggu ggacguagaa gaucugcuga uuga 534 <210> SEQ ID NO 15 <211> LENGTH: 525 <212> TYPE: RNA <213> ORGANISM: Populus tremula <400> SEQUENCE: 15 augucaaggg acagagaucc ucugagcguu ggccguguua uaggggacgu gcuggacccc 60 uucacaaagu cuauccegcu cagggucacc uacaacucca gagaggucaa caaugguugc gagcucaaac ccucucaggu ugccaaccag ccgaggguug auauuggcgg ggaagaucua 180 aggaccuucu acacucuggu uaugguggac ccugaugcac ccagcccaag ugaccccagc 240 cucaqaqaau auuuqcauuq quuqquqacu qauauuccaq caacaacqqq qqcaaqcuuu 300 ggccaugaaa cugugugcua ugagagcccg aggccgacga uggggauuca ucgguuuguu 360

uucqucuuqu uccqqcaacu qqqcaqqcaa acuququauq ccccuqqquq qcqccaqaac

-continued

uucaacacca	gagacuuugc	ugaggucuac	aaucuuggau	cgccgguggc	ugcuguuuau	480			
uucaacugcc	agagggagag	uggcucuggu	gguaggaggc	gauaa		525			
<211> LENG <212> TYPE	<210> SEQ ID NO 16 <211> LENGTH: 534 <212> TYPE: RNA <213> ORGANISM: Hordeum vulgare								
<400> SEQUI	ENCE: 16								
auggccggga	gggacaggga	uccgcugguu	gucggcaggg	uugugggga	cgugcuggac	60			
cccuucgucc	gaaccaccaa	ccucagggug	accuucggga	acagggccgu	guccaacggc	120			
ugcgagcuca	agccguccau	ggucgcccag	cagccgaggg	uggagguggg	cggcaaugag	180			
augaggaccu	ucuacacgcu	cgugauggua	gacccagaug	cuccaagucc	uagcgacccc	240			
aaccuuagag	aguaucucca	cugguuggug	acagauaucc	cggguacaac	uggggcgucg	300			
uucgggcagg	aggugaugug	cuacgagagc	ccucguccaa	ccauggggau	ccaccgcuuc	360			
gugcucgugc	ucuuccagca	gcuggggcgg	cagacggugu	acgcccccgg	guggcgccag	420			
aacuucaaca	ccagggacuu	ugccgagcuc	uacaaccucg	gccagcccgu	ugccgccguc	480			
uacuucaacu	gccagcgcga	ggccggcucc	ggcggcagga	ggauguacaa	uuga	534			
<210> SEQ : <211> LENG: <212> TYPE <213> ORGAI	ΓH: 537	um vulgare							
<400> SEQUI	ENCE: 17								
auggugggga	gcagcaugca	gcgcggggac	ccgcuggugg	uggggcgggu	gaucggcgac	60			
gugguggacc	cguucgugcg	gcggguggcg	cugcgggucg	gcuacgcguc	cagggacgug	120			
gccaacggcu	gcgagcuccg	geegueegee	aucgccgacc	agccgcgcgu	cgaggucggc	180			
ggcccggaca	ugcgcaccuu	cuacacccug	gugauggugg	auccggaugc	uccaagcccc	240			
agcgacccca	gccuuaggga	guacuugcac	uggcugguca	ccgacauccc	ggccacgaca	300			
ggagugucuu	uugguaccga	gguugugugc	uacgagggcc	cgcggccggu	gcucgggauc	360			
caccgacugg	uguuccugcu	cuuccagcaa	cucggccgac	agacggugua	cgccccgggg	420			
uggcggcaga	acuucagcac	ccgcgacuuu	geegageueu	acaaccucgg	ccugcccguc	480			
gccgccgucu	acuucaacug	ccagagggag	accggaaccg	gcgggagaag	gauguga	537			
<210> SEQ ID NO 18 <211> LENGTH: 847 <212> TYPE: RNA <213> ORGANISM: Oryza sativa									
<400> SEQUI	ENCE: 18								
ugcaccacac	acaguucagc	uagcagauca	ccuagcuaga	uagcugccuc	uaucacagua	60			
uauuugcucc	cugcaacuug	cugcugcugc	aauagcuagc	agcugcagcu	aguaagcaaa	120			
acuauaaacc	uucaggguuu	uuugcaagau	cgauggccgg	aaguggcagg	gacagggacc	180			
cucuuguggu	ugguaggguu	gugggugaug	ugcuggacgc	guucguccgg	agcaccaacc	240			
ucaaggucac	cuauggcucc	aagaccgugu	ccaauggcug	cgagcucaag	ccguccaugg	300			
ucacccacca	gccuaggguc	gaggucggcg	gcaaugacau	gaggacauuc	uacacccuug	360			
ugaugguaga	cccagaugca	ccaagcccaa	gugacccuaa	ccuuagggag	uaucuacauu	420			

				COILCII	iaca	
gguuggucac	ugauauuccu	gguacuacug	cagcgucauu	ugggcaagag	gugaugugcu	480
acgagagccc	aaggccaacc	auggggaucc	accggcuggu	guucgugcug	uuccagcagc	540
uggggcguca	gacaguguac	gcgcccgggu	ggcgucagaa	cuucaacacc	aaggacuucg	600
ccgagcucua	caaccucggc	ucgccggucg	ccgccgucua	cuucaacugc	cagegegagg	660
caggcuccgg	cggcaggagg	gucuaccccu	agcuaacgau	gaucccgauc	gaucugcugc	720
augcucacua	ucaucaucca	gcaugcuaua	cauugcaggu	ucagacaauu	gaaaugauuc	780
ucgacacaca	acauauauau	gaugguguaa	uuaauuaugc	aauuaaauag	cugagcaagg	840
cuaaggu						847
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN	TH: 866	sativa				
<400> SEQUE	ENCE: 19					
ccugucacug	uuuggcuagc	uuaaccuucc	ugacaucuau	ccucuggauu	gaacggcagg	60
agauaccuaa	gcuagcuagc	aaucucuauc	gaucuguuug	uuuacauguu	caguuaaagg	120
uuacugagaa	augccuagag	uuuuuccggc	uagcuucaua	aguuaguggg	uuagcugacc	180
uagauucaaa	gucuaauccu	uuuauuuauu	ugauauuaga	uauccuaacg	uuuuuaguua	240
gagguuauua	auuugacaug	gccggcagcg	gcagggacga	uccucuugug	guuggcagga	300
uuguggguga	ugugcuggau	ccauucgucc	ggaucacuaa	ccucaguguc	agcuauggug	360
caaggaucgu	cuccaauggc	ugcgagcuca	agccguccau	ggugacccaa	cagcccaggg	420
ucguggucgg	uggcaaugac	augaggacgu	ucuacacacu	cgugauggua	gacccggaug	480
cuccgagccc	aagcaacccu	aaccuuaggg	aguaucuaca	cuggcugguc	accgauauuc	540
cugguaccac	uggagcaaca	uuugggcaag	aggugaugug	cuacgagagc	ccaaggccaa	600
ccauggggau	ccaccggcug	guguucgugc	uguuccagca	gcuggggcgu	cagacggugu	660
acgcaccggg	guggcgccag	aacuucagca	ccaggaacuu	cgccgagcuc	uacaaccucg	720
gcucgccggu	cgccaccguc	uacuucaacu	gccagcgcga	ggccggcucc	ggcggcagga	780
gggucuaccc	cuagcuagcu	acgcaugcca	cccggccucc	augcaugcag	cagcuauagc	840
uaagcugaga	ccugccuagc	uguaua				866
	TH: 848 : RNA NISM: Ipomoe	ea nil				
<400> SEQUI						
	cacauauaua					60
uaggaugcga	aggggaacag	uagacccuuu	gguguugggg	cgugugaucg	gagacguugu	120
ggauccauuc	acgagguccg	uugagcuuag	ggugguuuac	aauaacgagg	uggauaucag	180
gaaugggugu	gagaugaggc	cuucucagcu	caucaaccca	ccuaggguug	aaaucggcgg	240
acacgaucuc	cguacuuucu	acacucuggu	uaugguggau	ccugaugcuc	caaguccaac	300
cucuccaacc	cugagggaau	accuccacug	guuggucacu	gauauaccag	gaacuacagg	360
agcaagcuuc	ggcaaugaag	cgauauucua	cgagccucca	aggccgucaa	ugggaaucca	420
ccguuuugug	uuugugcuuu	uccggcaacu	uggccggcag	acaguuuaug	caccgguuug	480
gcgccagaau	uucaacacuc	gaaacuuugc	ugagauuuac	aaucuugguu	ugccaguggc	540

-continued

cgucacuuac	uuuaacggcc	aaagggaggg	uggcaccggc	ggucgaucuc	cggcagagcc	600		
cugggcagcc	gauuaauuac	ccugcuccuu	cccguuaauu	ucaugcaugc	augcaugcua	660		
ucuauagcau	aacauacaua	uaguauauau	cauaaauaaa	uaagaccaca	ugcauuaaca	720		
uguuuaauuu	ucccaugaau	auauguuaaa	guuguucuag	aagaacuacg	uacuccauua	780		
uauuacccuu	uauauauggc	aaugaagaug	guuucaucuc	uauuuagaag	cuaaaaaaaa	840		
aaaaaaaa						848		
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAN	TH: 798	dopsis thal:	iana					
<400> SEQU	ENCE: 21							
uuuauugaga	uacuugagau	ccaagauaaa	uaugucuuua	gucguagaga	uccucuugug	60		
gucggcagug	uuguuggaga	uguucuugau	ccuuucacga	gguuggucuc	ucuuaagguc	120		
acuuauggcc	auagagaggu	uacuaauggc	uuggaucuaa	ggccuucuca	aguucugaac	180		
aaaccaauag	uggagauugg	aggagacgac	uucagaaauu	ucuacaccuu	gguuauggug	240		
gauccagaug	ugccgagucc	aagcaacccu	caccaacgag	aauaucucca	cugguuggug	300		
acugauauac	cugccaccac	uggaaaugcc	uuuggcaaug	agguggugug	cuacgagagu	360		
ccacgucccc	ccucgggaau	ucaucguauu	guguugguau	uguuccggca	acucggaaga	420		
caaacgguuu	augcaccggg	guggcgccaa	caguucaaca	cucgugaguu	ugcugagauc	480		
uacaaucuug	gucuuccugu	ggcugccucu	uacuucaacu	gccagaggga	gaauggcugu	540		
gggggaagaa	gaacguagau	gcguaccuac	uuacguuaac	uaauaaucua	aucguauaau	600		
auucccuuaa	ugaaguauuu	aagcaucuau	gucaauguaa	uaagaauuua	aagauacgag	660		
cuaaaaaaaa	ugaugcauau	gcugacaucg	auguaaagua	guuuacacuu	uuaauguaau	720		
aacuagguuu	uaacccgcgg	uacaccgcga	gacuauuuug	uuuuuuaag	aauaaaaaua	780		
uaauuuguuu	agucgauu					798		
<211> LENG' <212> TYPE	<210> SEQ ID NO 22 <211> LENGTH: 519 <212> TYPE: RNA <213> ORGANISM: Glycine max							
<400> SEQU	ENCE: 22							
auggcacggg	agaacccucu	uguuauuggu	ggugugauug	gggauguucu	caacccuuuu	60		
acaagcuccg	uuucuuugac	uguuucaauc	aauaauaggg	cgauuagcaa	uggcuuggaa	120		
cucaggcccu	cucaaguugu	uaaucgcccu	aggguuacug	uuggugguga	agaccuaagg	180		
accuucuaca	cucugguuau	gguggaugca	gaugcaccua	gcccuagcaa	cccugucuug	240		
agggaauacc	uucacuggau	ggugacagau	auuccagcua	ccacaaaugc	aagcuuuggg	300		
agagagguug	uguuuuauga	gagcccgaac	ccuucaguag	ggauucaucg	aaucguguuc	360		
guauuguucc	agcaauuggg	cagagacacu	gucaucaccc	cagaauggcg	ccauaauuuc	420		
aauuccagaa	acuuugcuga	aauuaauaac	cuugcaccug	uugcagcagc	uuaugccaac	480		
ugccaaagag	agcgugguug	cgguggaagg	agauauuaa			519		

<210> SEQ ID NO 23 <211> LENGTH: 901 <212> TYPE: RNA

		43					40
				-contir	nued		
<213> ORGAN	ISM: Zea ma	ays					
<400> SEQUE	NCE: 23						
agagcacauc	cguagugugu	gcaugcauca	cagucacaca	cacacagcag	aagaagaaga	60	
aaccgaacga	ggguuuagcu	agcaaaauaa	acagaagcaa	gcaagcuagc	uagagcuaag	120	
gaucgagauc	gagaucgacc	gaccgacgac	gaucagcuag	cauggcgcgc	uucguggauc	180	
cgcugguggu	ggggcgggug	aucggcgagg	ugguggaccu	guucgugccu	uccaucucca	240	
ugaccgucgc	cuaugauggc	cccaaggaca	ucagcaacgg	cugccuccuc	aagccguccg	300	
ccaccgccgc	gccgccgcuc	guccgcaucu	ceggeegeeg	caacgaccuc	uacacgcuga	360	
ucaugacgga	ccccgaugcg	ccuagcccca	gcaacccgac	caugagggag	uaccuccacu	420	
ggauagugau	uaacauacca	ggaggaacag	augcuacuaa	aggugaggag	gugguggagu	480	
acaugggccc	geggeegeeg	guggguaucc	accgcuacgu	gcuggugcug	uucgagcaga	540	
agacgcgcgu	gcacgcggag	gcccccggcg	accgcgccaa	cuucaagacg	cgcgcguucg	600	
cggcggcgca	cgagcucggc	cuccccacug	ccgucgucua	cuucaacgcg	cagaaggagc	660	
ccgccagccg	ccgccgcuag	cuagcagcuc	cucucugagg	caugccagau	gcaugcgugu	720	
gcgugcaggu	gcaaccaccg	cacugeegge	ggcuacguau	gaccggugaa	uaaaaaguuu	780	
uacugcaccg	uaagcaugcu	cgcccuguug	cuauugguau	auguuagcag	uguggcaguc	840	
uguauguagu	agcuauucgc	uugcaucuau	gcacucuaug	uuaguaugcg	uacguguggu	900	
u						901	
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	H: 1069 RNA ISM: Zea ma	ays					
<400> SEQUE	NCE: 24						
uggcaaaaac	ccagcgcuuu	gugeegeege	cguccgccgg	ccccucugcc	cuuguacgcg	60	
caccuagaca	caucgucauc	gaucaucaca	cgcaaucgac	acaagaaguu	aauaaacagc	120	
ccaaggacgc	agagaucagc	ugaucgagaa	ggacuuguac	uacuacucag	uauugucguc	180	
acaugcacau	auauguacau	aaagagcuag	cuaccugagc	ucuacccaag	gucgcguuga	240	
ucgaucgauc	auggcgcggu	ucguggaccc	gcugguggug	gggcggguga	ucggcgaggu	300	
gguggaccug	uucgugcccu	ccgucuccau	gaccgucgcc	uauggcccca	aagacaucag	360	
caacggcugc	cuccucaagc	cguccgccac	cgccgcgccg	ccgcucgucc	gcaucuccgg	420	
ccgccgcgac	gaccucuaca	cgcugaucau	gacggaccca	gaugegeeua	gccccagcga	480	
cccgaccaug	agggaguacc	uccacuggau	agugacuaac	auaccaggag	gaacggaugc	540	
aaacaaaggu	gaggaggugg	uggaguacau	gggcccgcgg	ccgccggucg	gaauccaccg	600	
cuacgugcug	gugcuguucg	agcagaagac	gcgugugcac	gcggaggguc	ccggugagcg	660	
cgccaacuuc	aacacacgcg	cguucgcggc	ggcgcacgag	cucggccucc	ccaccgccgu	720	
cguguacuuc	aacgcgcaga	aagagccggc	caaccaccgc	cgccgcuagc	uaguagcucc	780	
aacaagggcg	cgccagcuga	gcugcgugcg	ugcaacccac	cacacagccg	ccggcgaagg	840	
cugccuauau	gaccggcgaa	uaaaaagucu	uacugcaccg	uccguaagcg	uacucucugu	900	
ugguauaugc	uugucuucag	gcucuugagu	cuaucuacuu	aaaugugguu	accacugagu	960	
aauagaagca	guuggegeuu	cgaucgauca	uucuaauauc	cguacguguc	aaucauuccu	1020	
guuuccauca	ucuugcauuu	gaagacgcau	ugguucuaca	ccaaggugu		1069	

-continued

<210> SEQ ID NO 25 <211> LENGTH: 1288 <212> TYPE: RNA <213> ORGANISM: Cucurbita maxima <400> SEQUENCE: 25 gacuuuuuau ucaacaaucu cucucucuc cucucaacuu ccgaucaagu cucuccgccg 60 ucuuuucacc ggagcugaca auuccgauca uuuuuugcuu cccuuaaauu uccggcaugg 120 aggaaccacc gccaaacgcc uuggauuugc ccccuggcuu cagauuccac cccaccgacg aggagaucgu cacuuauuac cugauacaua agaucaccga cgccgccuuc acugccaccg ccaucggaga agcugaccug aauaagugug aaccuuggga uuugccacau aaagcuaaga 300 360 uqqqqqaaaa aqaauqquau uuuuuuqcc aqaqaqaccq qaaauauccq accqqqauqa 420 qaacqaaccq qqcqacucaq accqquuacu qqaaaqcqac cqqqaaaqac aaqqaqauuc 480 ucaagggaag aacgguucug gcugguauga agaaaacgcu gguuuuuuuac aaaggaagag 540 cucccaaaqq uqaaaaqacc aauuqqquca uqcauqaauu ucqacucqaa cccaaauucu uucaquuucu uqquuuuccc aaqcccauua aqqcuqauuq qquuquauqu cqqquuuuuc 600 acaaqaacac aacqaacacq qucqqaquaq uqaaaaaqau ucaaacuucu qauuuuucuu 660 cuucucucce accucuaaua gaucceacaa cugcucauac uccaaucagu ggcagauucg 720 780 auaauqquqa aqucaacuqq aqquuaucaq uaccauucqa uaauuauqca aauqauuacc auuaucaucg gccuuuuuca gcgacgaaua cugcagugac aaugauuucg ucguacccau 840 cgucuguccc cgacgacgaa uucuucucau uugaucaacu agacgucggu ggaacaaugu 900 caauggcggc ggcgacgaca acaacaacaa caacuaugga gugcaaaaua gaacaaguuu 960 cauggucaac gaugageggu gugacacegg agauaucauc gucgauugac aacgaggeag 1020 cucucgaguu cugggacuac ugaaaauuga aaguagaugu uaugaucgaa caauggcgau 1080 gcuuuguuuu aaaugggcau uucccauauu gaacguuuaa acaaugauua auugauugcu 1140 aauuauuauu auuuuuuuu uuugguuaca uaguccuuuu ugggaaggaa uauuagaacu 1200 uucauggguu ugguuuguug auuguauuga uauguagcaa ugugacauug uauauagcuu 1260 cuuuaucuuu uauuuuaacc guugcaaa 1288 <210> SEQ ID NO 26 <211> LENGTH: 1964 <212> TYPE: RNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 26 uaauaaucau uuuuuucuu auaaccuucc ucucuauuuu uacaauuuau uuuguuauua 60 qaaquqquaq uqqaquqaaa aaacaaaucc uaaqcaqucc uaaccqaucc ccqaaqcuaa 120 agauucuuca ccuucccaaa uaaagcaaaa ccuagauccg acauugaagg aaaaaccuuu 180 uagauccauc ucugaaaaaa aaccaaccau gaagagagau caucaucauc aucaucaaga 240 uaagaagacu augaugauga augaagaaga cgacgguaac ggcauggaug agcuucuagc 300 uguucuuggu uacaagguua ggucaucgga aauggcugau guugcucaga aacucgagca 360 gcuugaaguu augaugucua auguucaaga agacgaucuu ucucaacucg cuacugagac 420 uguucacuau aauccggcgg agcuuuacac guggcuugau ucuaugcuca ccgaccuuaa 480

uccuccgucg ucuaacgccg aguacgaucu uaaagcuauu cccggugacg cgauucucaa

		49				
				-contir	nued	
ucaguucgcu	aucgauucgg	cuucuucguc	uaaccaaggc	ggcggaggag	auacguauac	600
uacaaacaag	cgguugaaau	gcucaaacgg	cgucguggaa	accaccacag	cgacggcuga	660
gucaacucgg	cauguugucc	ugguugacuc	gcaggagaac	ggugugegue	ucguucacgc	720
gcuuuuggcu	ugcgcugaag	cuguucagaa	ggagaaucug	acuguggcgg	aagcucuggu	780
gaagcaaauc	ggauucuuag	cuguuucuca	aaucggagcu	augagaaaag	ucgcuacuua	840
cuucgccgaa	gcucucgcgc	ggcggauuua	ccgucucucu	ccgucgcaga	guccaaucga	900
ccacucucuc	uccgauacuc	uucagaugca	cuucuacgag	acuuguccuu	aucucaaguu	960
cgcucacuuc	acggcgaauc	aagcgauucu	cgaagcuuuu	caagggaaga	aaagaguuca	1020
ugucauugau	uucucuauga	gucaaggucu	ucaauggccg	gcgcuuaugc	aggcucuugc	1080
gcuucgaccu	ggugguccuc	cuguuuuccg	guuaaccgga	auugguccac	cggcaccgga	1140
uaauuucgau	uaucuucaug	aaguugggug	uaagcuggcu	cauuuagcug	aggcgauuca	1200
cguugaguuu	gaguacagag	gauuuguggc	uaacacuuua	gcugaucuug	augcuucgau	1260
gcuugagcuu	agaccaagug	agauugaauc	uguugcgguu	aacucuguuu	ucgagcuuca	1320
caagcucuug	ggacgaccug	gugcgaucga	uaagguucuu	ggugugguga	aucagauuaa	1380
accggagauu	uucacugugg	uugagcagga	aucgaaccau	aauaguccga	uuuucuuaga	1440
ucgguuuacu	gagucguugc	auuauuacuc	gacguuguuu	gacucguugg	aagguguacc	1500
gaguggucaa	gacaagguca	ugucggaggu	uuacuugggu	aaacagaucu	gcaacguugu	1560
ggcuugugau	ggaccugacc	gaguugagcg	ucaugaaacg	uugagucagu	ggaggaaccg	1620
guucgggucu	gcuggguuug	cggcugcaca	uauugguucg	aaugcguuua	agcaagcgag	1680
uaugcuuuug	gcucuguuca	acggcgguga	ggguuaucgg	guggaggaga	gugacggcug	1740
ucucauguug	gguuggcaca	cacgaccgcu	cauagccacc	ucggcuugga	aacucuccac	1800
caauuagaug	guggcucaau	gaauugaucu	guugaaccgg	uuaugaugau	agauuuccga	1860
ccgaagccaa	acuaaauccu	acuguuuuuc	ccuuugucac	uuguuaagau	cuuaucuuuc	1920
auuauauuag	guaauugaaa	aauuucuaaa	uuacucacac	uggc		1964
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	TH: 1556	ersicon esc	ılentum			
<400> SEQU	ENCE: 27					
aaagaaaaaa	ggaauauugu	guguuugcuu	uuuuuucuga	cuaguaguau	ugcuaacuau	60
guauuccauu	aaggauuugc	ugugaaaaag	ccugauauca	guaagcauaa	aacucgggag	120
aucacuuaca	cacacacaca	cccuccuaaa	aaagagaaga	gagauuuacu	guuaaacaga	180
gguuuuuuuc	cauuucuuuu	uuuuuucag	ugugugugug	agagaaagag	augauuuuca	240
uaggcacaaa	caaauagaaa	ggaacaaaau	uuagagugaa	gaagaaagug	ugugagagaa	300
uaauggaggg	ugguucuagu	ggaaauacua	guacaucuug	uuuaaugaug	augggauaug	360
gagaucauga	aaacaacaac	aacaacaaug	gaaaugguaa	uggaaaugga	aauggaaaug	420
uaacaauuug	ugcuccucca	augaugauga	ugaugecuce	uccuccuccu	ucuuuaacua	480
acaauaacaa	ugcagaaaca	agcaacaaca	acauccuuuu	ucuuccuuuc	auggacaaca	540
acaacaacaa	uaauccucaa	gaagacaaca	acucuucuuc	uucuuccauc	aagucaaaga	600
minidachea	uccucacuac	canconcuci	ndachachna	າເຕາເຕລອນນຸດນ	caaaadallad	660

uuauggcuca uccucacuac caucgucucu ugacugcuua ucucaauugu caaaagauag

gagcuccgcc agaaguggug gcaaggcuag aggaaauaug ugccacguca gcaacaaugg

660

-continued

gccguagcag	uaguaguagu	ggugguggaa	ucauuggaga	agauccugca	cuagaucagu	780		
ucauggaggc	uuauugugag	augcugacaa	aauaugaaca	agaacucuca	aaacccuuca	840		
aggaagccau	gguuuuucuu	ucaagaauug	agugucaguu	caaagcuuua	acucuugcac	900		
cuaauucuuc	ucaugaaucu	gcuuugggcg	aggcaaugga	uagaaaugga	ucaucugaug	960		
aagagguuga	cgugaauaac	aguuucaucg	acccccaggc	ugaggauaga	gagcucaaag	1020		
gucaauuguu	gcguaaguac	agcgguuacu	ugggaagccu	uaagcaggag	uucaugaaga	1080		
agaggaagaa	aggcaagcug	ccuaaggaag	caaggcaaca	auugguggau	ugguggcuua	1140		
gacauauuaa	auggccauau	ccaucggaau	cucagaagcu	ugcacuagcu	gaaucaacgg	1200		
gauuggacca	gaagcaaaua	aacaacuggu	uuaucaauca	aagaaagagg	cauuggaaac	1260		
caucagaaga	uaugcaguuu	guugugaugg	augcugcuca	uccacauuac	uauauggaua	1320		
auguucuugc	uaaccauuuc	ccaauggaua	ugacacccuc	ucuccucuga	auuaagauuu	1380		
gucauuauua	auaucaagga	uguuuaauua	auuugcauau	uacuugugug	cauguaguag	1440		
uacaagcuau	ugugacacaa	ucaacuuuuu	auuagaccaa	auauauaaag	ugcuuguaau	1500		
agaucuuucu	auuaucaucu	uuaauuaugg	aauuaaauag	uuuguacuug	cuaaaa	1556		
<210> SEQ ID NO 28 <211> LENGTH: 2735 <212> TYPE: RNA <213> ORGANISM: Solanum tuberosum								
	uaaaaauaua	gaucagucug	acaagaaggc	aacuucucaa	agcuuagaga	60		
caugcagaga						60 120		
caugcagaga	uaaaaauaua	aguuaguuac	auguacuguu	auagauaaaa	ggagaaaucc			
caugcagaga gcuaccaccc gaagaagaaa	uaaaaauaua gaagauagac	aguuaguuac ugcagauaug	auguacuguu uacuaucaag	auagauaaaa gaaccucgga	ggagaaaucc uaauacuaau	120		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug	uaaaaauaua gaagauagac gaauuuuuuu	aguuaguuac ugcagauaug acgucauaau	auguacuguu uacuaucaag caugggaaua	auagauaaaa gaaccucgga guaauaauaa	ggagaaaucc uaauacuaau uaauauucag	120 180		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca	aguuaguuac ugcagauaug acgucauaau uaacaauuau	auguacuguu uacuaucaag caugggaaua augcaaggcu	auagauaaaa gaaccucgga guaauaauaa acacuacuuc	ggagaaaucc uaauacuaau uaauauucag ugacacacag	120 180 240		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau	120 180 240 300		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca	120 180 240 300 360		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgcaugug	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa	120 180 240 300 360 420		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc gaucaaucuc	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc acgaucagau	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau aguaccaucg	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac ucgacggggg	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgcaugug uuucugccac	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa gucauguggc	120 180 240 300 360 420		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc gaucaaucuc	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc acgaucagau agcaggugau	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau aguaccaucg	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac ucgacggggg	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgcaugug uuucugccac ggccgauucc	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa gucauguggc gacaccacaa	120 180 240 300 360 420 480		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc gaucaaucuc gggaucacca caccgacagc	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc acgaucagau agcaggugau cggacuuggc	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau aguaccaucg gucucaauug	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac ucgacggggg gcguuucaga cuaucucuaa	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgcaugug uuucugccac ggccgauucc	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa gucauguggc gacaccacaa ucagcuacaa	120 180 240 300 360 420 480 540		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc gaucaaucuc gggaucacca caccgacagc	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc acgaucagau agcaggugau cggacuuggc agcaacaaca	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau aguaccaucg gucucaauug gcaaggcggu caauauuuca	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac ucgacggggg gcguuucaga cuaucucuaa uccucaucac	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgaugug uuucugccac ggccgauucc ccaaggacaaa	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa gucauguggc gacaccacaa ucagcuacaa uaauguuacu	120 180 240 300 360 420 480 540 600		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc gaucaaucuc gggaucacca caccgacagc cagcaaauua auuaggggaa	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc acgaucagau agcaggugau cggacuuggc agcaacaaca guuucaauaa	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau aguaccaucg gucucaauug gcaaggcggu caauauuuca aaguucuagc	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac ucgacggggg gcguuucaga cuaucucuaa uccucaucac aacaugguuu	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgaugug uuucugccac ggccgauucc gccuuucucc caaggacaaa uaggcucuaa	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa gucauguggc gacaccacaa ucagcuacaa uaauguuacu guaucugaaa	120 180 240 300 360 420 480 540 600 720		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc gaucaaucuc gggaucacca caccgacagc cagcaaauua auuaggggaa gcugcacaag	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc acgaucagau agcaggugau cggacuuggc agcaacaaca guuucaauaa cauuagaugg	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau aguaccaucg gucucaauug gcaaggeggu caauauuuca aaguucuagc ugaaguuguu	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac ucgacggggg gcguuucaga cuaucucuaa uccucaucac aacaugguuu aauauuguug	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgauucc ggccgauucc gccuuucucc caaggacaaa uaggcucuaa gaaaaagcau	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa gucauguggc gacaccacaa ucagcuacaa uaauguuacu guaucugaaa caaaggagau	120 180 240 300 360 420 480 540 600 660 720		
caugcagaga gcuaccaccc gaagaagaaa auacaagcug acacuuuauu cagcagcagc gcgaauauac guaaguuugc gaucaaucuc gggaucacca caccgacagc cagcaaauua auuaggggaa gcugcacaag	uaaaaauaua gaagauagac gaauuuuuuu aucaucaaca ugaugaaccc aguuacuuuu aacacgcgcc acgaucagau agcaggugau cggacuuggc agcaacaaca guuucaauaa cauuagaugg agcuucuuga	aguuaguuac ugcagauaug acgucauaau uaacaauuau ccugaauucu gcugcaacag caaucaucau aguaccaucg gucucaauug gcaaggcggu caauauuuca aaguucuagc ugaaguuguu aaugaauaaa	auguacuguu uacuaucaag caugggaaua augcaaggcu ucaccagcag cagcacuuug ggacuuuuac ucgacggggg gcguuucaga cuaucucuaa uccucaucac aacaugguuu aauauuguug gaaucaaugc	auagauaaaa gaaccucgga guaauaauaa acacuacuuc caagcaacgc ucggugugcc agcgcaugug uuucugccac ggccgauucc gccuuucucc caaggacaaa uaggcucuaa gaaaaagcau cuuuggcuag	ggagaaaucc uaauacuaau uaauauucag ugacacacag gcuuugccau ucuuccggca gaacaaccaa gucauguggc gacaccacaa ucagcuacaa uaauguuacu guaucugaaa caaaggagau ugaugucaac	120 180 240 300 360 420 480 540 600 720 780 840		

gaagaggugg agcaaaggua cagacaguac caucaccaaa ugcaaauaau uguauuauca

uuugagcaag uagcaggaau uggaucagcc aaaucauaca cucaauuagc uuugcaugca

auuucgaagc aauucagaug ccuaaaggau gcaauugcug agcaaguaaa ggcgacgagc aagaguuuag gugaagagga aggcuuggga gggaaaaucg aaggcucaag acucaaauuu

1080

-continued

-conclinued	
guggaccauc aucuaaggca acaacgegeg cugcaacaga uaggaaugau gcaaccaaau	1320
gcuuggagac cccaaagagg uuuaccugaa agagcugucu cuguccuucg ugcuuggcuu	1380
uucgagcauu uucuucaucc uuacccaaag gauucagaca aaaucaugcu ugcuaagcaa	1440
acggggcuaa caaggagcca ggugucuaac ugguucauaa augcucgagu ucgauuaugg	1500
aagccaaugg uagaagaaau guacuuggaa gaagugaaga aucaagaaca aaacaguacu	1560
aauacuucag gagauaacaa aaacaaagag accaauauaa gugcuccaaa ugaagagaaa	1620
cauccaauua uuacuagcag cuuauuacaa gaugguauua cuacuacuca agcagaaauu	1680
ucuaccucaa cuauuucaac uuccccuacu gcaggugcuu cacuucauca ugcucacaau	1740
uucuccuucc uugguucauu caacauggau aauacuacua cuacuguuga ucauauugaa	1800
aacaacgcga aaaagcaaag aaaugacaug cacaaguuuu cuccaaguag uauucuuuca	1860
ucuguugaca uggaagccaa agcuagagaa ucaucaaaua aaggguuuac uaauccuuua	1920
auggcagcau acgcgauggg agauuuugga agguuugauc cucaugauca acaaaugacc	1980
gcgaauuuuc auggaaauaa uggugucucu cuuacuuuag gacuuccucc uucugaaaac	2040
cuagecauge cagugageca acaaaauuae cuuucuaaug acuugggaag uaggucugaa	2100
auggggaguc auuacaauag aaugggauau gaaaacauug auuuucagag ugggaauaag	2160
cgauuuccga cucaacuauu accagauuuu guuacaggua aucuaggaac augaauacca	2220
gaaagucucg uauugauagc ugaaaagaua aaaggaaguu agggauacuc uuauauugug	2280
ugaggccuuc uggcccaagu cggaggaccc aauuugauac aaccuaucau aggagaaaag	2340
aaguggagac uaaauuaaag uaacaaaauu uuaaagcaca cuuucuagua uauauacuuc	2400
uuuuuuuuau aguauagaaa agaagagauu uugugcuuua guguauagau agagucuacu	2460
uaguauaggu uauacuucua guuccuugag aagauugaua caacuaguag uauuuuuuu	2520
cuuuuggguu ggcuuggagu acuauuuuaa guuauuggaa acuagcuaua guaaauguug	2580
uaaaguugug auauuguucc ucucaauuug cauauaauuu gaaauauuuu guaccuacua	2640
gcuagucucu aaauuauguu uccauugcuu guaauugcaa uuuuauuuga auuuugugcu	2700
aucauuauua gauuagcaaa aaaaaaaaa aaaaa	2735
<210> SEQ ID NO 29 <211> LENGTH: 72 <212> TYPE: RNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 29	
aucagagugg cgcagcggaa gcgugguggg cccauaaccc acagguccca ggaucgaaac	60
cuggcucuga ua	72
<210> SEQ ID NO 30 <211> LENGTH: 71 <212> TYPE: RNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 30	
gcaccagugg ucuaguggca ugauaguacc cugccacggu acagacccgg guucaauucc	60
cggcuggugc a	71

<210> SEQ ID NO 31 <211> LENGTH: 699 <212> TYPE: DNA <213> ORGANISM: Cucurbita maxima

-continued <400> SEQUENCE: 31 ggggcttcaa aagagaatta ggtcacctcc cagctcggtt tcgacacgcc atgccgagaa 60 atcgtgaccc tctagtcgtc gggagagtga tcggcgacgt cgtcgactcg ttctcgaggt 120 ccatctcgat tagggttgtt tacgactcga gggaagttaa caatgggtgt gagctcaaac 180 cctctcaagc tgtcaacaag ccaagagttg agattggtgg cactgacctt cgcaccttct 240 tcactttggt tatggtggat cccgacgctc ctagccctag cgatcccaat ctaagagaat 300 acttgcattg gttagtgacc gatattccag ctacaaccga ggcaaccttt ggacaagaga 360 tagtgtgcta cgagaatcca agaccaacgg tgggtatcca ccgttttgtg ctggtcttgt tccggcagct cggaaggcaa acggtgtatg ctcctgggtg gcgccagaac ttcaacacca gacactttgc agagetttac aatettggtt egecagtege egeegtetat tteaattgee aaagggaaaa tggctccggt ggaaggagaa gagccggcga tgaatgttca taaaaacact tcacttcaca ttatattatc aaccaatata ttgtaataac atggttcacg tttctatcta 660 atagattata tatttttaat aagttogtga aaaaaaaaa 699 <210> SEQ ID NO 32 <211> LENGTH: 858 <212> TYPE: DNA <213 > ORGANISM: Cucurbita maxima <400> SEQUENCE: 32 gagacaatta egeatetttt eagetetete aegtactace ateetetega egecatgeeg 60 agagaccgtg accctttggt cgttgggaga gtcatcggcg acgttatcga ctcgttcacg 120 aagtccattt cgattagggc tacttacaac aacagggaaa ttagcaatgg ctgtgagctc 180 aaaccctctc aagttgtcaa ccagccaaga gttgagattg gtggcactga ccttcgcacc 240 ttcttcactt tggttatggt ggatcctgat gctcctagcc ctagtgatcc taatctaagg 300 gaatacttgc attggttggt gactgatatc ccagctacaa ctggagcgaa ctttggtcaa 360 gagatcgtgt gctatgagag cccaagaccc acggtgggta tccatcgtct tgtgctggtg 420 ttgtttcgac agcttggaag gcaaacggtg tacgctcctg ggtggcgcca gaacttcaac 480 acaagagact ttgcagagct ttacaatctt ggcttgccgg tggcagccgt ttatttcaat 540 tgccaaaggg aaagtgggtc tggtggaagg agaagaaccc aagatgattt ctaagcccca 600 cttcacatta attagattaa tattatagcc cctatcatct attaatccta ccttgctttt 660 agattaacct ttattttgag tacacccatg gatcataaat aagcccaaaa tgcattccta atattgctct tatactcgtt tcgtatgaat cactgtcttt tcttctttgt ttttcttgtt cgagtgttca tgttgtgctt tttttttcgt atgaatcaaa gtagaagatc aagattcgaa 840 aaaaaaaaa aaaaaaaa 858

<210> SEQ ID NO 33 <211> LENGTH: 596

<400> SEOUENCE: 33

ccctcttgta	ttgtatcggt	gaggtgtgtg	tgatgcctag	ggaaagggat	cctcttgttg	60
ttgggcgcgt	tgtcggggat	gttctggacc	cctttctcag	gtccatcact	ctgagggtga	120
cctacaataa	tagagaagta	gcaaatggct	gtgagttcag	accctctcag	ctagtcagcc	180

<212> TYPE: DNA

<213> ORGANISM: Vitis vinifera

-continued

<210> SEQ ID NO 36 <211> LENGTH: 534 <212> TYPE: DNA <213> ORGANISM: Lycopersicon esculentum

-continued

<400> SEQUENCE	E: 36					
atgcctagag aad	cgtgatcc	tcttgttgtt	ggtcgtgtgg	taggggatgt	attggaccct	60
ttcacaagaa cta	attggcct	aagagttata	tatagagata	gagaagttaa	taatggatgc	120
gagettagge ett	cccaagt	tattaaccag	ccaagggttg	aagttggagg	agatgaccta	180
cgtacctttt tca	actttggt	tatggtggac	cctgatgctc	caagtccgag	tgatccaaat	240
ctgagagaat acc	cttcactg	gttggtcacc	gatattccag	ctaccacagg	ttcaagtttt	300
gggcaagaaa tag	gtgagcta	tgaaagtcca	agaccatcaa	tgggaataca	tcgatttgta	360
tttgtattat tca	agacaatt	aggtcggcaa	acagtgtatg	ctccaggatg	gcgtcagaat	420
ttcaacacaa gag	gattttgc	agaactttat	aatcttggtt	tacctgttgc	tgctgtctat	480
tttaattgtc aaa	agagagag	tggcagtggt	ggacgtagaa	gatetgetga	ttga	534
<210> SEQ ID N <211> LENGTH: <212> TYPE: DN <213> ORGANISN	525 NA M: Populu	ıs tremula				
<400> SEQUENCE						
atgtcaaggg aca						60
ttcacaaagt cta						120
gageteaaae eet	ctcaggt	tgccaaccag	ccgagggttg	atattggcgg	ggaagatcta	180
aggacettet aca	actctggt	tatggtggac	cctgatgcac	ccagcccaag	tgaccccagc	240
ctcagagaat att	tgcattg	gttggtgact	gatattccag	caacaacggg	ggcaagcttt	300
ggccatgaaa ctg	gtgtgcta	tgagagcccg	aggccgacga	tggggattca	tcggtttgtt	360
ttcgtcttgt tcc	eggcaact	gggcaggcaa	actgtgtatg	cccctgggtg	gcgccagaac	420
ttcaacacca gag	gactttgc	tgaggtctac	aatcttggat	cgccggtggc	tgctgtttat	480
ttcaactgcc aga	agggagag	tggctctggt	ggtaggaggc	gataa		525
<210> SEQ ID 1 <211> LENGTH: <212> TYPE: DN <213> ORGANISN	534 NA M: Hordeu	ım vulgare				
<400> SEQUENCE						
atggccggga ggg	gacaggga	tccgctggtt	gtcggcaggg	ttgtggggga	cgtgctggac	60
cccttcgtcc gaa	accaccaa	cctcagggtg	accttcggga	acagggccgt	gtccaacggc	120
tgcgagctca ago	ccgtccat	ggtcgcccag	cagccgaggg	tggaggtggg	cggcaatgag	180
atgaggacct tct	tacacget	cgtgatggta	gacccagatg	ctccaagtcc	tagcgacccc	240
aaccttagag agt	tatctcca	ctggttggtg	acagatatcc	cgggtacaac	tggggcgtcg	300
ttcgggcagg agg	gtgatgtg	ctacgagagc	cctcgtccaa	ccatggggat	ccaccgcttc	360
gtgctcgtgc tct	tccagca	gctggggcgg	cagacggtgt	acgcccccgg	gtggcgccag	420
aacttcaaca cca	agggactt	tgccgagctc	tacaacctcg	gccagcccgt	tgccgccgtc	480
tacttcaact gco	cagegega	ggccggctcc	ggcggcagga	ggatgtacaa	ttga	534
<210> SEQ ID N						

<211> LENGTH: 537
<212> TYPE: DNA
<213> ORGANISM: Hordeum vulgare

	U1					02	
			-contir	nued			
<400> SEQUENCE: 39							
atggtgggga gcagcatgca	gcgcggggac	ccgctggtgg	tggggcgggt	gatcggcgac	60		
gtggtggacc cgttcgtgcg	gcgggtggcg	ctgcgggtcg	gctacgcgtc	cagggacgtg	120		
gccaacggct gcgagctccg	gccgtccgcc	atcgccgacc	agccgcgcgt	cgaggtcggc	180		
ggcccggaca tgcgcacctt	ctacaccctg	gtgatggtgg	atccggatgc	tccaagcccc	240		
agcgacccca gccttaggga	gtacttgcac	tggctggtca	ccgacatccc	ggccacgaca	300		
ggagtgtctt ttggtaccga	ggttgtgtgc	tacgagggcc	cgcggccggt	gctcgggatc	360		
caccgactgg tgttcctgct	cttccagcaa	ctcggccgac	agacggtgta	cgccccgggg	420		
tggcggcaga acttcagcac	ccgcgacttt	gccgagctct	acaacctcgg	cctgcccgtc	480		
gccgccgtct acttcaactg	ccagagggag	accggaaccg	gcgggagaag	gatgtga	537		
<210> SEQ ID NO 40 <211> LENGTH: 847 <212> TYPE: DNA <213> ORGANISM: Oryza	sativa						
<400> SEQUENCE: 40							
tgcaccacac acagttcagc	tagcagatca	cctagctaga	tagctgcctc	tatcacagta	60		
tatttgctcc ctgcaacttg	ctgctgctgc	aatagctagc	agctgcagct	agtaagcaaa	120		
actataaacc ttcagggttt	tttgcaagat	cgatggccgg	aagtggcagg	gacagggacc	180		
ctcttgtggt tggtagggtt	gtgggtgatg	tgctggacgc	gttcgtccgg	agcaccaacc	240		
tcaaggtcac ctatggctcc	aagaccgtgt	ccaatggctg	cgagctcaag	ccgtccatgg	300		
tcacccacca gcctagggtc	gaggtcggcg	gcaatgacat	gaggacattc	tacacccttg	360		
tgatggtaga cccagatgca	ccaagcccaa	gtgaccctaa	ccttagggag	tatctacatt	420		
ggttggtcac tgatattcct	ggtactactg	cagcgtcatt	tgggcaagag	gtgatgtgct	480		
acgagagccc aaggccaacc	atggggatcc	accggctggt	gttcgtgctg	ttccagcagc	540		
tggggcgtca gacagtgtac	gegeeegggt	ggcgtcagaa	cttcaacacc	aaggacttcg	600		
ccgagctcta caacctcggc	tegeeggteg	ccgccgtcta	cttcaactgc	cagcgcgagg	660		
caggeteegg eggeaggagg	gtctacccct	agctaacgat	gatcccgatc	gatctgctgc	720		
atgotoacta toatoatoca	gcatgctata	cattgcaggt	tcagacaatt	gaaatgattc	780		
tcgacacaca acatatatat	gatggtgtaa	ttaattatgc	aattaaatag	ctgagcaagg	840		
ctaaggt					847		
<210> SEQ ID NO 41 <211> LENGTH: 866 <212> TYPE: DNA <213> ORGANISM: Oryza	sativa						
<400> SEQUENCE: 41							
cctgtcactg tttggctagc	ttaaccttcc	tgacatctat	cctctggatt	gaacggcagg	60		
agatacctaa gctagctagc	aatctctatc	gatctgtttg	tttacatgtt	cagttaaagg	120		
ttactgagaa atgcctagag	tttttccggc	tagcttcata	agttagtggg	ttagctgacc	180		
tagattcaaa gtctaatcct	tttatttatt	tgatattaga	tatcctaacg	tttttagtta	240		
gaggttatta atttgacatg	geeggeageg	gcagggacga	tcctcttgtg	gttggcagga	300		
ttgtgggtga tgtgctggat					360		
caaggategt etecaatgge					420		
	2523450004	5 5 - 5 - 5 - 6 - 6	Jargarraa	5			

-continued

togtggtogg tggcaatgac atgaggacgt totacacact ogtgatggta gaccoggatg	480
ctccgagccc aagcaaccct aaccttaggg agtatctaca ctggctggtc accgatattc	540
ctggtaccac tggagcaaca tttgggcaag aggtgatgtg ctacgagagc ccaaggccaa	600
ccatggggat ccaccggctg gtgttcgtgc tgttccagca gctggggcgt cagacggtgt	660
acgcaccggg gtggcgccag aacttcagca ccaggaactt cgccgagctc tacaacctcg	720
gctcgccggt cgccaccgtc tacttcaact gccagcgcga ggccggctcc ggcggcagga	780
gggtctaccc ctagctagct acgcatgcca cccggcctcc atgcatgcag cagctatagc	840
taagctgaga cctgcctagc tgtata	866
<210> SEQ ID NO 42 <211> LENGTH: 848 <212> TYPE: DNA <213> ORGANISM: Ipomoea nil	
<400> SEQUENCE: 42	60
cacacacaca cacatatata tacagagaaa ggttagtttt gatcgaggag ctgagctagc	
taggatgcga aggggaacag tagaccettt ggtgttgggg cgtgtgatcg gagacgttgt	120
ggatccattc acgaggtccg ttgagcttag ggtggtttac aataacgagg tggatatcag qaatgggtt gagatgaggc cttctcagct catcaaccca cctagggttg aaatcgggg	180 240
	300
acacgatoto ogtactitot acactotggt tatggtggat cotgatgoto caagtocaac ctotocaaco otgagggaat acotocaotg gitggtcact gatataccag gaactacagg	360
	420
agcaagcttc ggcaatgaag cgatattcta cgagcctcca aggccgtcaa tgggaatcca ccgttttgtg tttgtgcttt tccggcaact tggccggcag acagtttatg caccggtttg	480
gcgccagaat ttcaacactc gaaactttgc tgagatttac aatcttggtt tgccagtggc	540
	600
cgtcacttac tttaacggcc aaagggaggg tggcaccggc ggtcgatctc cggcagagcc ctgggcagcc gattaattac cctgctcctt cccgttaatt tcatgcatgc atgcatgcta	660
tctatagcat aacatacata tagtatatat cataaataaa taagaccaca tgcattaaca	720
tgtttaattt toccatgaat atatgttaaa gttgttotag aagaactacg tactocatta	780
tattaccett tatatatggc aatgaagatg gtttcatctc tatttagaag ctaaaaaaaa	840
aaaaaaaa	848
addudad	010
<210> SEQ ID NO 43 <211> LENGTH: 798 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 43	
tttattgaga tacttgagat ccaagataaa tatgtcttta gtcgtagaga tcctcttgtg	60
gtcggcagtg ttgttggaga tgttcttgat cctttcacga ggttggtctc tcttaaggtc	120
acttatggcc atagagaggt tactaatggc ttggatctaa ggccttctca agttctgaac	180
aaaccaatag tggagattgg aggagacgac ttcagaaatt tctacacctt ggttatggtg	240
gatecagatg tgccgagtec aagcaaccet caccaacgag aatateteca etggttggtg	300
actgatatac ctgccaccac tggaaatgcc tttggcaatg aggtggtgtg ctacgagagt	360
ccacgtcccc cctcgggaat tcatcgtatt gtgttggtat tgttccggca actcggaaga	420
caaacggttt atgcaccggg gtggcgccaa cagttcaaca ctcgtgagtt tgctgagatc	480

05					UU	
		-contin	ued			
tacaatettg gtetteetgt ggetgeetet	tacttcaact gco	cagaggga	gaatggctgt	540		
gggggaagaa gaacgtagat gcgtacctac	ttacgttaac taa	ataatcta	atcgtataat	600		
attcccttaa tgaagtattt aagcatctat	gtcaatgtaa taa	agaattta	aagatacgag	660		
ctaaaaaaaa tgatgcatat gctgacatcg	atgtaaagta gt	ttacactt	ttaatgtaat	720		
aactaggttt taacccgcgg tacaccgcga	gactattttg tt	tttttaag	aataaaaata	780		
taatttgttt agtcgatt				798		
<210> SEQ ID NO 44 <211> LENGTH: 519 <212> TYPE: DNA <213> ORGANISM: Glycine max						
<400> SEQUENCE: 44						
atggcacggg agaaccctct tgttattggt	ggtgtgattg ggg	gatgttct	caaccctttt	60		
acaageteeg tttetttgae tgttteaate	aataataggg cga	attagcaa	tggcttggaa	120		
ctcaggccct ctcaagttgt taatcgccct	agggttactg tto	ggtggtga	agacctaagg	180		
accttctaca ctctggttat ggtggatgca	gatgcaccta gco	cctagcaa	ccctgtcttg	240		
agggaatacc ttcactggat ggtgacagat	attccagcta cca	acaaatgc	aagctttggg	300		
agagaggttg tgttttatga gagcccgaac	ccttcagtag gga	attcatcg	aatcgtgttc	360		
gtattgttcc agcaattggg cagagacact	gtcatcaccc cag	gaatggcg	ccataatttc	420		
aattocagaa actttgctga aattaataac	cttgcacctg ttg	gcagcagc	ttatgccaac	480		
tgccaaagag agcgtggttg cggtggaagg	agatattaa			519		
<210> SEQ ID NO 45 <211> LENGTH: 560 <212> TYPE: DNA <213> ORGANISM: Zea mays						
<400> SEQUENCE: 45						
agagcacatc cgtagtgtgt gcatgcatca	cagtcacaca cad	cacagcag	aagaagaaga	60		
aaccgaacga gggtttagct agcaaaataa	acagaagcaa gca	aagctagc	tagagctaag	120		
gatcgagatc gagatcgacc gaccgacgac	gatcagctag cat	tggcgcgc	ttcgtggatc	180		
cgctggtggt ggggcgggtg atcggcgagg	tggtggacct gt	tegtgeet	tccatctcca	240		
tgaccgtcgc ctatgatggc cccaaggaca	tcagcaacgg cto	gcctcctc	aagccgtccg	300		
ccaccgccgc gccgccgctc gtccgcatct	ccggccgccg caa	acgacctc	tacacgctga	360		
tcatgacgga ccccgatgcg cctagcccca	gcaacccgac cat	tgagggag	tacctccact	420		
ggatagtgat taacatacca ggaggaacag	atgctactaa ag	gtgaggag	gtggtggagt	480		
acatgggccc gcggccgccg gtgggtatcc	accgctacgt gct	tggtgctg	ttcgagcaga	540		
agacgcgcgt gcacgcggag				560		
<210> SEQ ID NO 46 <211> LENGTH: 1069 <212> TYPE: DNA <213> ORGANISM: Zea mays						
<400> SEQUENCE: 46						
tggcaaaaac ccagcgcttt gtgccgccgc	cgtccgccgg cc	ectetgee	cttgtacgcg	60		
cacctagaca catcgtcatc gatcatcaca	cgcaatcgac aca	aagaagtt	aataaacagc	120		
ccaaggacgc agagatcagc tgatcgagaa	ggacttgtac tac	ctactcag	tattgtcgtc	180		

acatgcacat atatgtacat aaagagctag ctacctgagc tctacccaag gtcgcgttga	240
togatogate atggcgcggt togtggacce gotggtggtg gggcgggtga toggcgaggt	300
ggtggacctg ttcgtgccct ccgtctccat gaccgtcgcc tatggcccca aagacatcag	360
caacggctgc ctcctcaagc cgtccgccac cgccgcgccg	420
ccgccgcgac gacctctaca cgctgatcat gacggaccca gatgcgccta gccccagcga	480
cccgaccatg agggagtacc tccactggat agtgactaac ataccaggag gaacggatgc	540
aaacaaaggt gaggaggtgg tggagtacat gggcccgcgg ccgccggtcg gaatccaccg	600
ctacgtgctg gtgctgttcg agcagaagac gcgtgtgcac gcggagggtc ccggtgagcg	660
cgccaactte aacacacgcg cgttcgcggc ggcgcacgag ctcggcctcc ccaccgccgt	720
cgtgtacttc aacgcgcaga aagagccggc caaccaccgc cgccgctagc tagtagctcc	780
aacaagggcg cgccagctga gctgcgtgcg tgcaacccac cacacagccg ccggcgaagg	840
ctgcctatat gaccggcgaa taaaaagtct tactgcaccg tccgtaagcg tactctctgt	900
tggtatatgc ttgtcttcag gctcttgagt ctatctactt aaatgtggtt accactgagt	960
aatagaagca gttggcgctt cgatcgatca ttctaatatc cgtacgtgtc aatcattcct	1020
gtttccatca tcttgcattt gaagacgcat tggttctaca ccaaggtgt	1069
<210> SEQ ID NO 47 <211> LENGTH: 1288 <212> TYPE: DNA <213> ORGANISM: Cucurbita maxima	
<400> SEQUENCE: 47	
gactttttat tcaacaatct ctctctctc ctctcaactt ccgatcaagt ctctccgccg	60
tetttteace ggagetgaca atteegatea ttttttgett eeettaaatt teeggeatgg	120
aggaaccacc gccaaacgcc ttggatttgc cccctggctt cagattccac cccaccgacg	180
aggagatogt cacttattac ctgatacata agatcacoga ogcogootto actgocacog	240
ccatcggaga agctgacctg aataagtgtg aaccttggga tttgccacat aaagctaaga	300
tgggggaaaa agaatggtat tttttttgcc agagagaccg gaaatatccg accgggatga	360
gaacgaaccg ggcgactcag accggttact ggaaagcgac cgggaaagac aaggagattc	420
tcaagggaag aacggttctg gctggtatga agaaaacgct ggttttttac aaaggaagag	480
ctcccaaagg tgaaaagacc aattgggtca tgcatgaatt tcgactcgaa cccaaattct	540
ttcagtttct tggttttccc aagcccatta aggctgattg ggttgtatgt cgggtttttc	600
acaagaacac aacgaacacg gtcggagtag tgaaaaagat tcaaacttct gatttttctt	660
cttctctccc acctctaata gatcccacaa ctgctcatac tccaatcagt ggcagattcg	720
ataatggtga agtcaactgg aggttatcag taccattcga taattatgca aatgattacc	780
attatcatcg gcctttttca gcgacgaata ctgcagtgac aatgatttcg tcgtacccat	840
cgtctgtccc cgacgacgaa ttcttctcat ttgatcaact agacgtcggt ggaacaatgt	900
caatggcggc ggcgacgaca acaacaacaa caactatgga gtgcaaaata gaacaagttt	960
catggtcaac gatgagcggt gtgacaccgg agatatcatc gtcgattgac aacgaggcag	1020
ctctcgagtt ctgggactac tgaaaattga aagtagatgt tatgatcgaa caatggcgat	1080
gctttgtttt aaatgggcat ttcccatatt gaacgtttaa acaatgatta attgattgct	1140
aattattatt attittitti titggitaca tagicciitt igggaaggaa tattagaaci	1200

-continued

ttcatgggtt tggtttgttg attgtattga tatgtagcaa tgtgacattg tatatagctt	1260
ctttatcttt tattttaacc gttgcaaa	1288
<210> SEQ ID NO 48 <211> LENGTH: 1964 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 48	
taataatcat tttttttctt ataacettee tetetatttt tacaatttat tttgttatta	60
gaagtggtag tggagtgaaa aaacaaatcc taagcagtcc taaccgatcc ccgaagctaa	120
agattettea eetteeeaaa taaageaaaa eetagateeg acattgaagg aaaaaeettt	180
tagatccatc tctgaaaaaa aaccaaccat gaagagagat catcatcatc atcatcaaga	240
taagaagact atgatgatga atgaagaaga cgacggtaac ggcatggatg agcttctagc	300
tgttcttggt tacaaggtta ggtcatcgga aatggctgat gttgctcaga aactcgagca	360
gcttgaagtt atgatgtcta atgttcaaga agacgatctt tctcaactcg ctactgagac	420
tgttcactat aatccggcgg agctttacac gtggcttgat tctatgctca ccgaccttaa	480
tecteegteg tetaaegeeg agtaegatet taaagetatt eeeggtgaeg egatteteaa	540
tcagttcgct atcgattcgg cttcttcgtc taaccaaggc ggcggaggag atacgtatac	600
tacaaacaag cggttgaaat gctcaaacgg cgtcgtggaa accaccacag cgacggctga	660
gtcaactcgg catgttgtcc tggttgactc gcaggagaac ggtgtgcgtc tcgttcacgc	720
gcttttggct tgcgctgaag ctgttcagaa ggagaatctg actgtggcgg aagctctggt	780
gaagcaaatc ggattettag etgtttetea aateggaget atgagaaaag tegetaetta	840
cttcgccgaa gctctcgcgc ggcggattta ccgtctctct ccgtcgcaga gtccaatcga	900
ccactetete tecgatacte tteagatgea ettetaegag aettgteett ateteaagtt	960
cgctcacttc acggcgaatc aagcgattct cgaagctttt caagggaaga aaagagttca	1020
tgtcattgat ttctctatga gtcaaggtct tcaatggccg gcgcttatgc aggctcttgc	1080
gcttcgacct ggtggtcctc ctgttttccg gttaaccgga attggtccac cggcaccgga	1140
taatttegat tatetteatg aagttgggtg taagetgget eatttagetg aggegattea	1200
cgttgagttt gagtacagag gatttgtggc taacacttta gctgatcttg atgcttcgat	1260
gcttgagctt agaccaagtg agattgaatc tgttgcggtt aactctgttt tcgagcttca	1320
caagetettg ggacgaeetg gtgegatega taaggttett ggtgtggtga atcagattaa	1380
accggagatt ttcactgtgg ttgagcagga atcgaaccat aatagtccga ttttcttaga	1440
toggtttact gagtogttgc attattactc gacgttgttt gactogttgg aaggtgtacc	1500
gagtggtcaa gacaaggtca tgtcggaggt ttacttgggt aaacagatct gcaacgttgt	1560
ggettgtgat ggaeetgaee gagttgageg teatgaaaeg ttgagteagt ggaggaaeeg	1620
gttcgggtct gctgggtttg cggctgcaca tattggttcg aatgcgttta agcaagcgag	1680
tatgettttg getetgttea aeggeggtga gggttategg gtggaggaga gtgaeggetg	1740
tctcatgttg ggttggcaca cacgaccgct catagccacc tcggcttgga aactctccac	1800
caattagatg gtggctcaat gaattgatct gttgaaccgg ttatgatgat agatttccga	1860
ccgaagccaa actaaatcct actgtttttc cctttgtcac ttgttaagat cttatctttc	1920
attatattag gtaattgaaa aatttctaaa ttactcacac tggc	1964

-continued <210> SEQ ID NO 49 <211> LENGTH: 1556 <212> TYPE: DNA <213> ORGANISM: Lycopersicon esculentum <400> SEOUENCE: 49 aaagaaaaaa ggaatattgt gtgtttgctt ttttttctga ctagtagtat tgctaactat 60 gtattccatt aaggatttgc tgtgaaaaag cctgatatca gtaagcataa aactcgggag 120 atcacttaca cacacacaca ccctcctaaa aaagagaaga gagatttact gttaaacaga 180 ggtttttttc catttctttt tttttttcag tgtgtgtgtg agagaaagag atgattttca 240 taggcacaaa caaatagaaa ggaacaaaat ttagagtgaa gaagaaagtg tgtgagagaa taatggaggg tggttctagt ggaaatacta gtacatcttg tttaatgatg atgggatatg gagatcatga aaacaacaac aacaacaatg gaaatggtaa tggaaatgga aatggaaatg taacaatttg tgctcctcca atgatgatga tgatgcctcc tcctcctcct tctttaacta 480 acaataacaa tqcaqaaaca aqcaacaaca acatcctttt tcttcctttc atqqacaaca 540 acaacaacaa taatcctcaa qaaqacaaca actcttcttc ttcttccatc aaqtcaaaqa 600 ttatggctca tcctcactac catcgtctct tgactgctta tctcaattgt caaaagatag 660 qaqctccqcc aqaaqtqqtq qcaaqqctaq aqqaaatatq tqccacqtca qcaacaatqq 720 gccgtagcag tagtagtagt ggtggtggaa tcattggaga agatcctgca ctagatcagt 780 tcatggaggc ttattgtgag atgctgacaa aatatgaaca agaactctca aaacccttca 840 aggaagccat ggtttttctt tcaagaattg agtgtcagtt caaagcttta actcttgcac 900 960 ctaattette teatgaatet getttgggeg aggeaatgga tagaaatgga teatetgatg aagaggttga cgtgaataac agtttcatcg acccccaggc tgaggataga gagctcaaag 1020 gtcaattgtt gcgtaagtac agcggttact tgggaagcct taagcaggag ttcatgaaga 1080 agaggaagaa aggcaagctg cctaaggaag caaggcaaca attggtggat tggtggctta 1140 gacatattaa atggccatat ccatcggaat ctcagaagct tgcactagct gaatcaacgg 1200 gattggacca gaagcaaata aacaactggt ttatcaatca aagaaagagg cattggaaac 1260 catcagaaga tatgcagttt gttgtgatgg atgctgctca tccacattac tatatggata 1320 atgttcttgc taaccatttc ccaatggata tgacaccctc tctcctctga attaagattt 1380 gtcattatta atatcaagga tgtttaatta atttgcatat tacttgtgtg catgtagtag 1440 tacaagctat tgtgacacaa tcaacttttt attagaccaa atatataaag tgcttgtaat 1500 agatetteet attateatet ttaattatgg aattaaatag tttgtaettg etaaaa 1556 <210> SEQ ID NO 50 <211> LENGTH: 2735 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEOUENCE: 50 catgcagaga taaaaatata gatcagtctg acaagaaggc aacttctcaa agcttagaga 60 gctaccaccc gaagatagac agttagttac atgtactgtt atagataaaa ggagaaatcc 120 gaagaagaaa gaatttttt tgcagatatg tactatcaag gaacctcgga taatactaat 180 atacaagctg atcatcaaca acgtcataat catgggaata gtaataataa taatattcag 240

acactttatt tgatgaaccc taacaattat atgcaaggct acactacttc tgacacacag

cagcagcagc agttactttt cctgaattct tcaccagcag caagcaacgc gctttgccat

300

		13					
				-contir	nued		
gcgaatatac	aacacgcgcc	gctgcaacag	cagcactttg	teggtgtgce	tcttccggca	420	
gtaagtttgc	acgatcagat	caatcatcat	ggacttttac	agcgcatgtg	gaacaaccaa	480	
gatcaatctc	agcaggtgat	agtaccatcg	tegaeggggg	tttctgccac	gtcatgtggc	540	
gggatcacca	cggacttggc	gtctcaattg	gcgtttcaga	ggccgattcc	gacaccacaa	600	
caccgacagc	agcaacaaca	gcaaggcggt	ctatctctaa	gcctttctcc	tcagctacaa	660	
cagcaaatta	gtttcaataa	caatatttca	tcctcatcac	caaggacaaa	taatgttact	720	
attaggggaa	cattagatgg	aagttctagc	aacatggttt	taggctctaa	gtatctgaaa	780	
gctgcacaag	agcttcttga	tgaagttgtt	aatattgttg	gaaaaagcat	caaaggagat	840	
gatcaaaaga	aggataattc	aatgaataaa	gaatcaatgc	ctttggctag	tgatgtcaac	900	
actaatagtt	ctggtggtgg	tgaaagtagc	agcaggcaga	aaaatgaagt	tgctgttgag	960	
cttacaactg	ctcaaagaca	agaacttcaa	atgaaaaaag	ccaagettet	tgccatgctt	1020	
gaagaggtgg	agcaaaggta	cagacagtac	catcaccaaa	tgcaaataat	tgtattatca	1080	
tttgagcaag	tagcaggaat	tggatcagcc	aaatcataca	ctcaattagc	tttgcatgca	1140	
atttcgaagc	aattcagatg	cctaaaggat	gcaattgctg	agcaagtaaa	ggcgacgagc	1200	
aagagtttag	gtgaagagga	aggcttggga	gggaaaatcg	aaggctcaag	actcaaattt	1260	
gtggaccatc	atctaaggca	acaacgcgcg	ctgcaacaga	taggaatgat	gcaaccaaat	1320	
gcttggagac	cccaaagagg	tttacctgaa	agagetgtet	ctgtccttcg	tgcttggctt	1380	
ttcgagcatt	ttcttcatcc	ttacccaaag	gattcagaca	aaatcatgct	tgctaagcaa	1440	
acggggctaa	caaggagcca	ggtgtctaac	tggttcataa	atgctcgagt	tcgattatgg	1500	
aagccaatgg	tagaagaaat	gtacttggaa	gaagtgaaga	atcaagaaca	aaacagtact	1560	
aatacttcag	gagataacaa	aaacaaagag	accaatataa	gtgctccaaa	tgaagagaaa	1620	
catccaatta	ttactagcag	cttattacaa	gatggtatta	ctactactca	agcagaaatt	1680	
tctacctcaa	ctatttcaac	ttcccctact	gcaggtgctt	cacttcatca	tgctcacaat	1740	
ttctccttcc	ttggttcatt	caacatggat	aatactacta	ctactgttga	tcatattgaa	1800	
aacaacgcga	aaaagcaaag	aaatgacatg	cacaagtttt	ctccaagtag	tattctttca	1860	
tctgttgaca	tggaagccaa	agctagagaa	tcatcaaata	aagggtttac	taatccttta	1920	
atggcagcat	acgcgatggg	agattttgga	aggtttgatc	ctcatgatca	acaaatgacc	1980	
gcgaattttc	atggaaataa	tggtgtctct	cttactttag	gacttcctcc	ttctgaaaac	2040	
ctagccatgc	cagtgagcca	acaaaattac	ctttctaatg	acttgggaag	taggtctgaa	2100	
atggggagtc	attacaatag	aatgggatat	gaaaacattg	attttcagag	tgggaataag	2160	
cgatttccga	ctcaactatt	accagatttt	gttacaggta	atctaggaac	atgaatacca	2220	
gaaagtctcg	tattgatagc	tgaaaagata	aaaggaagtt	agggatactc	ttatattgtg	2280	
tgaggccttc	tggcccaagt	cggaggaccc	aatttgatac	aacctatcat	aggagaaaag	2340	
aagtggagac	taaattaaag	taacaaaatt	ttaaagcaca	ctttctagta	tatatacttc	2400	
tttttttat	agtatagaaa	agaagagatt	ttgtgcttta	gtgtatagat	agagtctact	2460	
tagtataggt	tatacttcta	gttccttgag	aagattgata	caactagtag	tattttttt	2520	
cttttgggtt	ggcttggagt	actattttaa	gttattggaa	actagctata	gtaaatgttg	2580	
taaagttgtg	atattgttcc	tctcaatttg	catataattt	gaaatatttt	gtacctacta	2640	
gctagtctct	aaattatgtt	tccattgctt	gtaattgcaa	ttttatttga	attttgtgct	2700	
atcattatta	gattagcaaa	aaaaaaaaa	aaaaa			2735	

<210> SEQ ID NO 51	
<pre><210 SEQ ID NO 91 <211 > LENGTH: 72 <212 > TYPE: DNA</pre>	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 51	
atcagagtgg cgcagcggaa gcgtggtggg cccataaccc acaggtccca ggatcgaaac 60)
ctggctctga ta 72	2
<210> SEQ ID NO 52	
<211> LENGTH: 71 <212> TYPE: DNA	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 52	
gcaccagtgg tctagtggca tgatagtacc ctgccacggt acagacccgg gttcaattcc 60)
cggctggtgc a 71	L
<210> SEQ ID NO 53	
<211> LENGTH: 1230 <212> TYPE: PRT	
<213> ORGANISM: Francisella tularensis	
<400> SEQUENCE: 53	
Ile Ser Glu Asp Leu Leu Gln Asn Tyr Ser Asp Val Tyr Phe Lys Leu 1 5 10 15	
Lys Lys Ser Asp Asp Asp Asn Leu Gln Lys Asp Phe Lys Ser Ala Lys 20 25 30	
Asp Thr Ile Lys Lys Gln Ile Ser Glu Tyr Ile Lys Asp Ser Glu Lys 35 40 45	
Phe Lys Asn Leu Phe Asn Gln Asn Leu Ile Asp Ala Lys Lys Gly Gln 50 55 60	
Glu Ser Asp Leu Ile Leu Trp Leu Lys Gln Ser Lys Asp Asn Gly Ile 65 70 75 80	
Glu Leu Phe Lys Ala Asn Ser Asp Ile Thr Asp Ile Asp Glu Ala Leu 85 90 95	
Glu Ile Ile Lys Ser Phe Lys Gly Trp Thr Thr Tyr Phe Lys Gly Phe 100 105 110	
His Glu Asn Arg Lys Asn Val Tyr Ser Ser Asn Asp Ile Pro Thr Ser 115 120 125	
Ile Ile Tyr Arg Ile Val Asp Asp Asn Leu Pro Lys Phe Leu Glu Asn 130 135 140	
Lys Ala Lys Tyr Glu Ser Leu Lys Asp Lys Ala Pro Glu Ala Ile Asn 145 150 155 160	
Tyr Glu Gln Ile Lys Lys Asp Leu Ala Glu Glu Leu Thr Phe Asp Ile 165 170 175	
Asp Tyr Lys Thr Ser Glu Val Asn Gln Arg Val Phe Ser Leu Asp Glu 180 185 190	
Val Phe Glu Ile Ala Asn Phe Asn Asn Tyr Leu Asn Gln Ser Gly Ile 195 200 205	
Thr Lys Phe Asn Thr Ile Ile Gly Gly Lys Phe Val Asn Gly Glu Asn 210 215 220	
Thr Lys Arg Lys Gly Ile Asn Glu Tyr Ile Asn Leu Tyr Ser Gln Gln 225 230 235 240	
Ile Asn Asp Lys Thr Leu Lys Lys Tyr Lys Met Ser Val Leu Phe Lys	

				245					250					255	
Gln	Ile	Leu	Ser 260	Asp	Thr	Glu	Ser	Lys 265	Ser	Phe	Val	Ile	Asp 270	Lys	Leu
Glu	Asp	Asp 275	Ser	Asp	Val	Val	Thr 280	Thr	Met	Gln	Ser	Phe 285	Tyr	Glu	Gln
Ile	Ala 290	Ala	Phe	Lys	Thr	Val 295	Glu	Glu	Lys	Ser	Ile 300	Lys	Glu	Thr	Leu
Ser 305	Leu	Leu	Phe	Asp	Asp 310	Leu	Lys	Ala	Gln	Lys 315	Leu	Asp	Leu	Ser	Lys 320
Ile	Tyr	Phe	Lys	Asn 325	Asp	ГÀа	Ser	Leu	Thr 330	Asp	Leu	Ser	Gln	Gln 335	Val
Phe	Asp	Asp	Tyr 340	Ser	Val	Ile	Gly	Thr 345	Ala	Val	Leu	Glu	Tyr 350	Ile	Thr
Gln	Gln	Ile 355	Ala	Pro	Lys	Asn	Leu 360	Asp	Asn	Pro	Ser	365	Lys	Glu	Gln
Glu	Leu 370	Ile	Ala	Lys	Lys	Thr 375	Glu	Lys	Ala	Lys	Tyr 380	Leu	Ser	Leu	Glu
Thr 385	Ile	Lys	Leu	Ala	Leu 390	Glu	Glu	Phe	Asn	Lys 395	His	Arg	Asp	Ile	Asp 400
ГÀа	Gln	Cys	Arg	Phe 405	Glu	Glu	Ile	Leu	Ala 410	Asn	Phe	Ala	Ala	Ile 415	Pro
Met	Ile	Phe	Asp 420	Glu	Ile	Ala	Gln	Asn 425	Lys	Asp	Asn	Leu	Ala 430	Gln	Ile
Ser	Ile	Lys 435	Tyr	Gln	Asn	Gln	Gly 440	Lys	Lys	Asp	Leu	Leu 445	Gln	Ala	Ser
Ala	Glu 450	Asp	Asp	Val	Lys	Ala 455	Ile	Lys	Asp	Leu	Leu 460	Asp	Gln	Thr	Asn
Asn 465	Leu	Leu	His	ГÀЗ	Leu 470	ГÀЗ	Ile	Phe	His	Ile 475	Ser	Gln	Ser	Glu	Asp 480
Lys	Ala	Asn	Ile	Leu 485	Asp	ГÀЗ	Asp	Glu	His 490	Phe	Tyr	Leu	Val	Phe 495	Glu
Glu	Cys	Tyr	Phe 500	Glu	Leu	Ala	Asn	Ile 505	Val	Pro	Leu	Tyr	Asn 510	Lys	Ile
Arg	Asn	Tyr 515	Ile	Thr	Gln	Lys	Pro 520	Tyr	Ser	Asp	Glu	Lys 525	Phe	Lys	Leu
Asn	Phe 530	Glu	Asn	Ser	Thr	Leu 535	Ala	Asn	Gly	Trp	Asp 540	Lys	Asn	Lys	Glu
Pro 545	Asp	Asn	Thr	Ala	Ile 550	Leu	Phe	Ile	Lys	Asp 555	Asp	Lys	Tyr	Tyr	Leu 560
Gly	Val	Met	Asn	Lys	Lys	Asn	Asn	Lys	Ile 570	Phe	Asp	Asp	Lys	Ala 575	Ile
Lys	Glu	Asn	580 580	Gly	Glu	Gly	Tyr	Lys 585	Lys	Ile	Val	Tyr	Lys 590	Leu	Leu
Pro	Gly	Ala 595	Asn	Lys	Met	Leu	Pro 600	Lys	Val	Phe	Phe	Ser 605	Ala	Lys	Ser
Ile	Lys 610	Phe	Tyr	Asn	Pro	Ser 615	Glu	Asp	Ile	Leu	Arg 620	Ile	Arg	Asn	His
Ser 625	Thr	His	Thr	Lys	Asn 630	Gly	Ser	Pro	Gln	Lys 635	Gly	Tyr	Glu	Lys	Phe 640
Glu	Phe	Asn	Ile	Glu 645	Asp	Cys	Arg	Lys	Phe 650	Ile	Asp	Phe	Tyr	Lys 655	Gln
Ser	Ile	Ser	Lys 660	His	Pro	Glu	Trp	Lys 665	Asp	Phe	Gly	Phe	Arg 670	Phe	Ser
			-					-					-		

Asp	Thr	Gln 675	Arg	Tyr	Asn	Ser	Ile 680	Asp	Glu	Phe	Tyr	Arg 685	Glu	Val	Glu
Asn	Gln 690	Gly	Tyr	ГÀа	Leu	Thr 695	Phe	Glu	Asn	Ile	Ser 700	Glu	Ser	Tyr	Ile
Asp 705	Ser	Val	Val	Asn	Gln 710	Gly	Lys	Leu	Tyr	Leu 715	Phe	Gln	Ile	Tyr	Asn 720
rya	Asp	Phe	Ser	Ala 725	Tyr	Ser	ГЛа	Gly	Arg 730	Pro	Asn	Leu	His	Thr 735	Leu
Tyr	Trp	Lys	Ala 740	Leu	Phe	Asp	Glu	Arg 745	Asn	Leu	Gln	Asp	Val 750	Val	Tyr
Lys	Leu	Asn 755	Gly	Glu	Ala	Glu	Leu 760	Phe	Tyr	Arg	Lys	Gln 765	Ser	Ile	Pro
Lys	Lys 770	Ile	Thr	His	Pro	Ala 775	Lys	Glu	Ala	Ile	Ala 780	Asn	Lys	Asn	Lys
Asp 785	Asn	Pro	ГЛа	Lys	Glu 790	Ser	Val	Phe	Glu	Tyr 795	Asp	Leu	Ile	Lys	800
ГÀа	Arg	Phe	Thr	Glu 805	Asp	Lys	Phe	Phe	Phe 810	His	CAa	Pro	Ile	Thr 815	Ile
Asn	Phe	Lys	Ser 820	Ser	Gly	Ala	Asn	Lys 825	Phe	Asn	Asp	Glu	Ile 830	Asn	Leu
Leu	Leu	Lys 835	Glu	Lys	Ala	Asn	Asp 840	Val	His	Ile	Leu	Ser 845	Ile	Asp	Arg
Gly	Glu 850	Arg	His	Leu	Ala	Tyr 855	Tyr	Thr	Leu	Val	Asp 860	Gly	Lys	Gly	Asn
Ile 865	Ile	Lys	Gln	Asp	Thr 870	Phe	Asn	Ile	Ile	Gly 875	Asn	Asp	Arg	Met	880 Fàa
Thr	Asn	Tyr	His	Asp 885	ГÀз	Leu	Ala	Ala	Ile 890	Glu	ГÀз	Asp	Arg	Asp 895	Ser
Ala	Arg	Lys	Asp 900	Trp	ГÀз	ràa	Ile	Asn 905	Asn	Ile	Lys	Glu	Met 910	ГЛа	Glu
Gly	Tyr	Leu 915	Ser	Gln	Val	Val	His 920	Glu	Ile	Ala	ràa	Leu 925	Val	Ile	Glu
Tyr	Asn 930	Ala	Ile	Val	Val	Phe 935	Glu	Asp	Leu	Asn	Phe 940	Gly	Phe	Lys	Arg
Gly 945	Arg	Phe	ГÀа	Val	Glu 950	ràa	Gln	Val	Tyr	Gln 955	ràa	Leu	Glu	ГЛа	Met 960
Leu	Ile	Glu	ГÀа	Leu 965	Asn	Tyr	Leu	Val	Phe 970	ràa	Asp	Asn	Glu	Phe 975	Aap
Lys	Thr	Gly	Gly 980	Val	Leu	Arg	Ala	Tyr 985	Gln	Leu	Thr	Ala	Pro 990	Phe	Glu
Thr	Phe	Lys 995	Lys	Met	Gly	Lys	Gln 1000		Gly	y Ile	∋ Ile	€ Ty:		∕r Va	al Pro
Ala	Gly 1010		e Thi	r Sei	: Lys	101		ys Pi	ro Va	al Ti		ly 1 020	Phe V	/al /	Asn
Gln	Leu 1025	_	r Pro	D Lys	Tyr	Glu 103		∍r Va	al S	er Ly		er (Gln (3lu I	Phe
Phe	Ser 1040	_	Phe	e Asp	Lys	104	_	/s Ty	/r A	sn Le		ep 1 050	ŗàs (Gly :	Гуr
Phe	Glu 1055		e Sei	r Phe	e Asp	106		ys As	en Pl	ne G		sp 1	Lys 1	Ala A	Ala
Lys	Gly 1070		Tr) Thi	: Ile	Ala 107		er Pl	ne G	ly Se		rg 1 080	Leu :	Ile A	Asn

Phe																
	Arg 1085		Ser	Asp	Lys	Asn 109		is A	sn '	Trp	Asp	Thr 1095		Glu	Val	
Tyr	Pro 1100		Lys	Glu	. Leu	Glu 110		la T	eu :	Leu	ГЛа	Asp 1110		Ser	Ile	
Glu	Tyr 1115	-	His	Gly	Glu	Cys 112		le L	iya i	Ala	Ala	Ile 1125	-	Gly	Glu	
Ser	Asp 1130		Lys	Ph∈	Phe	Ala 113		ys L	eu '	Thr	Ser	Val 1140		Asn	Thr	
Ile	Leu 1145		Met	Arg	J Asn	Ser 115		/s T	hr (Gly	Thr	Glu 1155		Asp	Tyr	
Leu	Ile 1160		Pro	Val	. Ala	Asp 116		al A	sn (Gly	Asn	Phe 1170		Asp	Ser	
Arg	Gln 1175		Pro	Lys	Asn	Met 118		ro G	ln i	Asp	Ala	Asp 1185		Asn	Gly	
Ala	Tyr 1190		Ile	Gly	Leu	Lys 119		Ly L	eu 1	Met	Leu	Leu 1200		Arg	Ile	
Lys	Asn 1205		Gln	Glu	Gly	Lys 121		a T	eu i	Asn	Leu	Val 1215		Lys	Asn	
Glu	Glu 1220		Phe	Glu	. Phe	Val 122		ln A	sn i	Arg	Asn	Asn 1230				
<213 <213 <213 <400	D> SE L> LE 2> TY 3> OR D> SE	NGTH PE: GANI QUEN	: 38 RNA SM: CE:	Fran						an an						38
gggı	ıcuaa	ga a	cuuu	aaau	ıa au	uucu	acuç	a uu	.aua	cau						38
								,	_							
<213 <213 <213 <220	D> SE L> LE 2> TY B> OR D> FE B> OT	NGTH PE: GANI ATUR	: 12 PRT SM: E:	28 Unkr		Lac	hnos				pacto	erium				
<213 <213 <213 <220 <223	L> LE 2> TY 3> OR 0> FE	NGTH PE: GANI ATUR HER	: 12 PRT SM: E: INFO	28 Unkr RMAT		Lac	hnos				oact:	erium				
<213 <213 <213 <220 <223 <400	1 > LE 2 > TY 3 > OR 0 > FE 3 > OT 0 > SE	NGTH PE: GANI ATUR HER QUEN	: 12 PRT SM: E: INFO CE: Lys	28 Unkr RMAT 55	: NOI			spir	ace	ae b				u Se: 15	r Lys	
<211 <211 <221 <220 <221 <400 Ala	l > LE 2 > TY 3 > OR 0 > FE 3 > OT 0 > SE Ala	NGTH PE: GANI ATUR HER QUEN Ser	: 12 PRT SM: E: INFO CE: Lys	28 Unkr RMAT 55 Leu 5	ION:	Lys	Phe	spir Thr	Asi	ae b n Cy	/s T		r Le	15		
<211 <212 <213 <220 <220 <400 Ala 1 Thr	L> LE 2> TY 3> OR 0> FE 3> OT 0> SE Ala Leu	NGTH PE: GANI ATUR HER QUEN Ser	: 12 PRT SM: E: INFO CE: Lys Phe 20	28 Unkr RMAT 55 Leu 5	'ION: Glu Ala	Lys Ile Val	Phe Pro	Thr Val 25	Ass 10	ae k n Cy y Ly	vs Ti	yr Se	r Le n Gli 30	15 u Ası	n Ile	
<211 <212 <213 <220 <223 <400 Ala 1 Thr	l> LE 2> TY 3> OR 0> FE 3> OT 0> SE Ala Leu	NGTH PE: GANI ATUR HER QUEN Ser Arg	: 12 PRT SM: E: INFO CE: Lys Phe 20 Arg	28 Unkr RMAT 55 Leu 5 Lys Leu	Glu Ala Leu Leu	Lys Ile Val	Phe Pro Glu 40	Thr Val 25	Ass 10 . Gly	ae h Cy y Ly u Ly	vs Ti vs Ti	yr Se hr Gl rg Al 45 eu Se	r Len n Glu 30 a Glu	15 u Ası u Ası	n Ile	
<211;<212;<213;<220;<2223;<400	L> LE 2> TY 3> OR 0> FE 3> OT 0> SE Ala Leu Asn Gly 50	NGTH PE: GANI ATUR HER QUEN Ser Lys 35	: 12 PRT SM: E: INFO CE: Lys Phe 20 Arg	28 Unkr RMAI 55 Leu Lys Leu	Glu Ala Leu	Lys Ile Val Leu 55	Phe Pro Glu 40 Asp	Thr Val 25 Asp	As: 10 Gl;	ae k n Cy y Ly u Ly r Ty	vs Tivs Aivs Aivs Aivs Aivs Aivs Aivs Aivs A	yr Se hr Gl rg Al 45 eu Se	r Let 30 a Glu	15 u Ası u Ası	n Ile o Tyr e Asn	
<21: <21: <21: <22: <22: <400 Ala 1 Thr Asp Lys	1> LE 2> TY 3> OR 70	NGTH PE: GANI ATUR HER QUEN Arg Lys 35 Val	: 12 PRT SM: E: SINFO CE: Lys Phe 20 Arg His	28 Unkr. RMAI 55 Leu 5 Lys Leu Lys	CION: Glu Ala Leu Leu Ile 70	Lys Ile Val Leu 55 Lys	Phe Pro Glu 40 Asp	Thr Val 25 Asp Arg	Ass 10 Gl;	ae h Cy Ly Ly Ly T Ty T Le 75	vs Tivs A	yr Se hr Gl rg Al 45 eu Se 0	r Len n Gli 30 a Gli r Pho	15 u Ası u Ası e Il.	n Ile p Tyr e Asn	
<211 <211 <221 <222 <222 <400 Ala 1 Thr Asp 65 Leu	l> LE 22 TY 33 OR 33 OR 33 OT 33 OT Ala Leu Asn Gly 50 Val	NGTH PE: GANI ATUR HER QUEN Ser Lys 35 Val Leu Arg	: 12 PRT SM: E: INFO CE: Lys Phe 20 Arg Lys	28 Unkr. RMAI 55 Leu 5 Lys Leu Lys Ser Lys	Glu Ala Leu Leu Thr	Lys Ile Val Leu 55 Lys Arg	Phe Pro Glu 40 Asp Leu	Thr Val 25 Asp Lys	Assistance 10 Gly Ty:	ae k n Cy y Ly y Ly u Ly r Ty n Le 75	ys Tyys Ti	yr Se hr Gl rg Al 45 eu Se 0 sn As	r Let 30 a Gl r Ph n Ty:	15 u Ası u Ası e Il. r Il. 95 e Ly:	n Ile Tyr Asn Ser 80	
<211:<211/<212/<212/<212/<212/<222/<222/	l> LE 2	NGTH PE: GANI GANI ATUR HER QUEN Ser Lys 35 Val Leu Arg	: 12 PRT SM: E: INFO CE: Lys Phe 20 Arg Lys His	28 Unkr. RMAT 55 Leu 5 Lys Leu Lys Ser Lys Asn	Glu Ala Leu Ile 70 Thr	LLys Ile Val Leu Lou Arg Arg	Phe Pro Glu 40 Asp Leu Thr	Thr Val 25 Asp Arg Glu Glu 105	Assistance	ae k n Cy y Ly y Ly r Ty r Ty r Ts s Gl	vs Tivs A.	yr Se hr Gl rg Al 45 eu Se 0 sn As	n Gli 30 a Gli r Pho n Ty: s Gli a Ph 11:	15 Asiu Asiu Asiu Asiu Asiu Asiu Asiu Lee Illu Lee 95 ee Ly:	n Ile o Tyr e Asn e Ser 80 u Glu	
<211 <211 <212 <222 <400 Ala 1 Thr Asp Lys Asp 65 Leu Asn Ala	l> LE LE 2	NGTH PE: GANI ATUR HER QUEN Ser Arg Lys 35 Val Leu Arg Glu Gly 115	: 12 PRT PRT SE: E: E: E: Lys Phe 20 Arg Lys Lys Lys Ile Info Tyr	28 Unkr. RMAI 55 Leu 5 Lys Lys Lys Lys Asn Lys	Glu Ala Leu Ile 70 Thr Leu Ser	LLys Ille Val Leu 55 Lys Arg Arg	Phe Pro Glu 40 Asp Leu Thr Lys	Thr Val 25 Asp Lys Glu Glu 105	Assistantial	ae k n Cy y Ly y Ly Tr Ty Te 75 S Gl e Al	vs Tivs A. Vr L. 60 A. Lu A. Li a Li	yr Se hr Gl 45 eu Se 0 Assn As ssn Ly ys Al	r Lee n Gl: 30 a Gl: Tr Ph n Ty: S Gl: 11: e Gl: 5	15 Asia Asia Asia Asia Asia Asia Asia Asia	Tyr Asn Ser R0 Glu Glu TIle	

Asn	Met	Phe	Ser	Glu 165	Glu	Ala	Lys	Ser	Thr 170	Ser	Ile	Ala	Phe	Arg 175	Сув
Ile	Asn	Glu	Asn 180	Leu	Thr	Arg	Tyr	Ile 185	Ser	Asn	Met	Asp	Ile 190	Phe	Glu
Lys	Val	Asp 195	Ala	Ile	Phe	Asp	Lys 200	His	Glu	Val	Gln	Glu 205	Ile	Lys	Glu
Lys	Ile 210	Leu	Asn	Ser	Asp	Tyr 215	Asp	Val	Glu	Asp	Phe 220	Phe	Glu	Gly	Glu
Phe 225	Phe	Asn	Phe	Val	Leu 230	Thr	Gln	Glu	Gly	Ile 235	Asp	Val	Tyr	Asn	Ala 240
Ile	Ile	Gly	Gly	Phe 245	Val	Thr	Glu	Ser	Gly 250	Glu	Lys	Ile	Lys	Gly 255	Leu
Asn	Glu	Tyr	Ile 260	Asn	Leu	Tyr	Asn	Ala 265	Lys	Thr	Lys	Gln	Ala 270	Leu	Pro
Lys	Phe	Lys 275	Pro	Leu	Tyr	Lys	Gln 280	Val	Leu	Ser	Asp	Arg 285	Glu	Ser	Leu
Ser	Phe 290	Tyr	Gly	Glu	Gly	Tyr 295	Thr	Ser	Asp	Glu	Glu 300	Val	Leu	Glu	Val
Phe 305	Arg	Asn	Thr	Leu	Asn 310	ГÀа	Asn	Ser	Glu	Ile 315	Phe	Ser	Ser	Ile	Lys 320
Lys	Leu	Glu	ГÀв	Leu 325	Phe	ГЛа	Asn	Phe	Asp 330	Glu	Tyr	Ser	Ser	Ala 335	Gly
Ile	Phe	Val	Lys 340	Asn	Gly	Pro	Ala	Ile 345	Ser	Thr	Ile	Ser	350 Lys	Asp	Ile
Phe	Gly	Glu 355	Trp	Asn	Leu	Ile	Arg 360	Asp	ГÀа	Trp	Asn	Ala 365	Glu	Tyr	Asp
Aap	Ile 370	His	Leu	ГÀв	ГÀв	Lys 375	Ala	Val	Val	Thr	Glu 380	ГÀв	Tyr	Glu	Asp
385	Arg	Arg	Lys	Ser	Phe 390	Lys	Lys	Ile	Gly	Ser 395	Phe	Ser	Leu	Glu	Gln 400
Leu	Gln	Glu	Tyr	Ala 405	Asp	Ala	Asp	Leu	Ser 410	Val	Val	Glu	Lys	Leu 415	Lys
Glu	Ile	Ile	Ile 420	Gln	Lys	Val	Asp	Glu 425	Ile	Tyr	Lys	Val	Tyr 430	Gly	Ser
Ser	Glu	Lys 435	Leu	Phe	Asp	Ala	Asp 440	Phe	Val	Leu	Glu	Lys 445	Ser	Leu	Lys
ГÀа	Asn 450	Asp	Ala	Val	Val	Ala 455	Ile	Met	Lys	Asp	Leu 460	Leu	Asp	Ser	Val
Lys 465	Ser	Phe	Glu	Asn	Tyr 470	Ile	Lys	Ala	Phe	Phe 475	Gly	Glu	Gly	Lys	Glu 480
Thr	Asn	Arg	Asp	Glu 485	Ser	Phe	Tyr	Gly	Asp 490	Phe	Val	Leu	Ala	Tyr 495	Asp
Ile	Leu	Leu	Lys 500	Val	Asp	His	Ile	Tyr 505	Asp	Ala	Ile	Arg	Asn 510	Tyr	Val
Thr	Gln	Lys 515	Pro	Tyr	Ser	Lys	Asp 520	Lys	Phe	Lys	Leu	Tyr 525	Phe	Gln	Asn
Pro	Gln 530	Phe	Met	Gly	Gly	Trp 535	Asp	Lys	Asp	Lys	Glu 540	Thr	Asp	Tyr	Arg
Ala 545	Thr	Ile	Leu	Arg	Tyr 550	Gly	Ser	Lys	Tyr	Tyr 555	Leu	Ala	Ile	Met	Asp 560
Lys	Lys	Tyr	Ala	Lув 565	Сув	Leu	Gln	Lys	Ile 570	Asp	Lys	Asp	Asp	Val 575	Asn

Gly	Asn	Tyr	Glu 580	Lys	Ile	Asn	Tyr	Lys 585	Leu	Leu	Pro	Gly	Pro 590	Asn	Lys
Met	Leu	Pro 595	ГЛа	Val	Phe	Phe	Ser 600	Lys	Lys	Trp	Met	Ala 605	Tyr	Tyr	Asn
Pro	Ser 610	Glu	Asp	Ile	Gln	Lys 615	Ile	Tyr	Lys	Asn	Gly 620	Thr	Phe	Lys	Lys
Gly 625	Asp	Met	Phe	Asn	Leu 630	Asn	Asp	Cys	His	Lys 635	Leu	Ile	Asp	Phe	Phe 640
Lys	Asp	Ser	Ile	Ser 645	Arg	Tyr	Pro	Lys	Trp 650	Ser	Asn	Ala	Tyr	Asp 655	Phe
Asn	Phe	Ser	Glu 660	Thr	Glu	Lys	Tyr	Lys 665	Asp	Ile	Ala	Gly	Phe 670	Tyr	Arg
Glu	Val	Glu 675	Glu	Gln	Gly	Tyr	Lys	Val	Ser	Phe	Glu	Ser 685	Ala	Ser	Lys
Lys	Glu 690	Val	Asp	Lys	Leu	Val 695	Glu	Glu	Gly	Lys	Leu 700	Tyr	Met	Phe	Gln
Ile 705	Tyr	Asn	Lys	Asp	Phe 710	Ser	Asp	Lys	Ser	His 715	Gly	Thr	Pro	Asn	Leu 720
His	Thr	Met	Tyr	Phe 725	Lys	Leu	Leu	Phe	Asp 730	Glu	Asn	Asn	His	Gly 735	Gln
Ile	Arg	Leu	Ser 740	Gly	Gly	Ala	Glu	Leu 745	Phe	Met	Arg	Arg	Ala 750	Ser	Leu
Lys	Lys	Glu 755	Glu	Leu	Val	Val	His 760	Pro	Ala	Asn	Ser	Pro 765	Ile	Ala	Asn
ГЛа	Asn 770	Pro	Asp	Asn	Pro	Lys 775	Lys	Thr	Thr	Thr	Leu 780	Ser	Tyr	Asp	Val
Tyr 785	Lys	Asp	ГÀв	Arg	Phe 790	Ser	Glu	Asp	Gln	Tyr 795	Glu	Leu	His	Ile	Pro 800
Ile	Ala	Ile	Asn	Fys	CAa	Pro	Lys	Asn	Ile 810	Phe	ГÀа	Ile	Asn	Thr 815	Glu
Val	Arg	Val	Leu 820	Leu	ГÀз	His	Asp	Asp 825	Asn	Pro	Tyr	Val	Ile 830	Gly	Ile
Asp	Arg	Gly 835	Glu	Arg	Asn	Leu	Leu 840	Tyr	Ile	Val	Val	Val 845	Asp	Gly	Lys
Gly	Asn 850	Ile	Val	Glu	Gln	Tyr 855	Ser	Leu	Asn	Glu	Ile 860	Ile	Asn	Asn	Phe
Asn 865	Gly	Ile	Arg	Ile	Lys 870	Thr	Asp	Tyr	His	Ser 875	Leu	Leu	Asp	Lys	880 Lys
Glu	Lys	Glu	Arg	Phe 885	Glu	Ala	Arg	Gln	Asn 890	Trp	Thr	Ser	Ile	Glu 895	Asn
Ile	Lys	Glu	Leu 900	ГЛа	Ala	Gly	Tyr	Ile 905	Ser	Gln	Val	Val	His 910	ГÀв	Ile
Cys	Glu	Leu 915	Val	Glu	ГÀв	Tyr	Asp 920	Ala	Val	Ile	Ala	Leu 925	Glu	Asp	Leu
Asn	Ser 930	Gly	Phe	Lys	Asn	Ser 935	Arg	Val	Lys	Val	Glu 940	Lys	Gln	Val	Tyr
Gln 945	Lys	Phe	Glu	Lys	Met 950	Leu	Ile	Asp	Lys	Leu 955	Asn	Tyr	Met	Val	Asp 960
Lys	Lys	Ser	Asn	Pro 965	Cys	Ala	Thr	Gly	Gly 970	Ala	Leu	Lys	Gly	Tyr 975	Gln
Ile	Thr	Asn	Lys	Phe	Glu	Ser	Phe	Lys 985	Ser	Met	Ser	Thr	Gln 990	Asn	Gly
Phe	Ile	Phe	Tyr	Ile	Pro	Ala	Trp	Let	ı Thi	r Se:	r Ly:	s Ile	e As	sp Pi	ro Ser

-continued

-continued
995 1000 1005
Thr Gly Phe Val Asn Leu Leu Lys Thr Lys Tyr Thr Ser Ile Ala 1010 1015 1020
Asp Ser Lys Lys Phe Ile Ser Ser Phe Asp Arg Ile Met Tyr Val 1025 1030 1035
Pro Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr Lys Asn Phe 1040 1045 1050
Ser Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys Leu Tyr Ser 1055 1060 1065
Tyr Gly Asn Arg Ile Arg Ile Phe Ala Ala Lys Lys Asn Asn 1070 1075 1080
Val Phe Ala Trp Glu Glu Val Cys Leu Thr Ser Ala Tyr Lys Glu 1085 1090 1095
Leu Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly Asp Ile Arg 1100 1105 1110
Ala Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr Ser Ser Phe 1115 1120 1125
Met Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn Ser Ile Thr 1130 1135 1140
Gly Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val Lys Asn Ser 1145 1150 1155
Asp Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala Gln Glu Asn 1160 1165 1170
Ala Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala Tyr Asn Ile 1175 1180 1185
Ala Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys Lys Ala Glu 1190 1195 1200
Asp Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser Asn Lys Glu 1205 1210 1215
Trp Leu Glu Tyr Ala Gln Thr Ser Val Lys 1220 1225
<210> SEQ ID NO 56 <211> LENGTH: 36 <212> TYPE: RNA <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: Lachnospiraceae bacterium <400> SEQUENCE: 56
guuucaaaga uuaaauaauu ucuacuaagu guagau 36
<210> SEQ ID NO 57 <211> LENGTH: 707 <212> TYPE: PRT <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: bacteriophage
<400> SEQUENCE: 57
Met Ala Asp Thr Pro Thr Leu Phe Thr Gln Phe Leu Arg His His Leu 1 5 10 15
Pro Gly Gln Arg Phe Arg Lys Asp Ile Leu Lys Gln Ala Gly Arg Ile 20 25 30
Leu Ala Asn Lys Gly Glu Asp Ala Thr Ile Ala Phe Leu Arg Gly Lys 35 40 45

Ser Glu Glu Ser Pro Pro Asp Phe Gln Pro Pro Val Lys Cys Pro Ile

	50					55					60				
Ile 65	Ala	Сув	Ser	Arg	Pro 70	Leu	Thr	Glu	Trp	Pro 75	Ile	Tyr	Gln	Ala	Ser 80
Val	Ala	Ile	Gln	Gly 85	Tyr	Val	Tyr	Gly	Gln 90	Ser	Leu	Ala	Glu	Phe 95	Glu
Ala	Ser	Asp	Pro 100	Gly	Cys	Ser	Lys	Asp 105	Gly	Leu	Leu	Gly	Trp 110	Phe	Asp
Lys	Thr	Gly 115	Val	Сув	Thr	Asp	Tyr 120	Phe	Ser	Val	Gln	Gly 125	Leu	Asn	Leu
Ile	Phe 130	Gln	Asn	Ala	Arg	Lуз 135	Arg	Tyr	Ile	Gly	Val 140	Gln	Thr	ГЛа	Val
Thr 145	Asn	Arg	Asn	Glu	Lys 150	Arg	His	Lys	Lys	Leu 155	Lys	Arg	Ile	Asn	Ala 160
ГÀа	Arg	Ile	Ala	Glu 165	Gly	Leu	Pro	Glu	Leu 170	Thr	Ser	Asp	Glu	Pro 175	Glu
Ser	Ala	Leu	Asp 180	Glu	Thr	Gly	His	Leu 185	Ile	Asp	Pro	Pro	Gly 190	Leu	Asn
Thr	Asn	Ile 195	Tyr	CÀa	Tyr	Gln	Gln 200	Val	Ser	Pro	ГÀа	Pro 205	Leu	Ala	Leu
Ser	Glu 210	Val	Asn	Gln	Leu	Pro 215	Thr	Ala	Tyr	Ala	Gly 220	Tyr	Ser	Thr	Ser
Gly 225	Asp	Asp	Pro	Ile	Gln 230	Pro	Met	Val	Thr	Lys 235	Asp	Arg	Leu	Ser	Ile 240
Ser	Lys	Gly	Gln	Pro 245	Gly	Tyr	Ile	Pro	Glu 250	His	Gln	Arg	Ala	Leu 255	Leu
Ser	Gln	Lys	Lys 260	His	Arg	Arg	Met	Arg 265	Gly	Tyr	Gly	Leu	Lys 270	Ala	Arg
Ala	Leu	Leu 275	Val	Ile	Val	Arg	Ile 280	Gln	Asp	Asp	Trp	Ala 285	Val	Ile	Asp
Leu	Arg 290	Ser	Leu	Leu	Arg	Asn 295	Ala	Tyr	Trp	Arg	Arg 300	Ile	Val	Gln	Thr
105 305	Glu	Pro	Ser	Thr	Ile 310	Thr	Lys	Leu	Leu	Lys 315	Leu	Val	Thr	Gly	Asp 320
Pro	Val	Leu	Asp	Ala 325	Thr	Arg	Met	Val	Ala 330	Thr	Phe	Thr	Tyr	Lys 335	Pro
Gly	Ile	Val	Gln 340	Val	Arg	Ser	Ala	Lys 345	Сув	Leu	Lys	Asn	Lys 350	Gln	Gly
Ser	Lys	Leu 355	Phe	Ser	Glu	Arg	Tyr 360	Leu	Asn	Glu	Thr	Val 365	Ser	Val	Thr
Ser	Ile 370	Asp	Leu	Gly	Ser	Asn 375	Asn	Leu	Val	Ala	Val 380	Ala	Thr	Tyr	Arg
Leu 385	Val	Asn	Gly	Asn	Thr 390	Pro	Glu	Leu	Leu	Gln 395	Arg	Phe	Thr	Leu	Pro 400
Ser	His	Leu	Val	Lys 405	Asp	Phe	Glu	Arg	Tyr 410	Lys	Gln	Ala	His	Asp 415	Thr
Leu	Glu	Asp	Ser 420	Ile	Gln	Lys	Thr	Ala 425	Val	Ala	Ser	Leu	Pro 430	Gln	Gly
Gln	Gln	Thr 435	Glu	Ile	Arg	Met	Trp 440	Ser	Met	Tyr	Gly	Phe 445	Arg	Glu	Ala
Gln	Glu 450	Arg	Val	СЛа	Gln	Glu 455	Leu	Gly	Leu	Ala	Asp 460	Gly	Ser	Ile	Pro
Trp 465	Asn	Val	Met	Thr	Ala 470	Thr	Ser	Thr	Ile	Leu 475	Thr	Asp	Leu	Phe	Leu 480

Ala Arg Gly Gly Asp Pro Lys Lys Cys Met Phe Thr Ser Glu Pro Lys 490 Lys Lys Lys Asn Ser Lys Gln Val Leu Tyr Lys Ile Arg Asp Arg Ala Trp Ala Lys Met Tyr Arg Thr Leu Leu Ser Lys Glu Thr Arg Glu Ala Trp Asn Lys Ala Leu Trp Gly Leu Lys Arg Gly Ser Pro Asp Tyr Ala 535 Arg Leu Ser Lys Arg Lys Glu Glu Leu Ala Arg Arg Cys Val Asn Tyr Thr Ile Ser Thr Ala Glu Lys Arg Ala Gln Cys Gly Arg Thr Ile Val Ala Leu Glu Asp Leu Asn Ile Gly Phe Phe His Gly Arg Gly Lys Gln Glu Pro Gly Trp Val Gly Leu Phe Thr Arg Lys Lys Glu Asn Arg Trp 600 Leu Met Gln Ala Leu His Lys Ala Phe Leu Glu Leu Ala His His Arg 615 Gly Tyr His Val Ile Glu Val Asn Pro Ala Tyr Thr Ser Gln Thr Cys 630 Pro Val Cys Arg His Cys Asp Pro Asp Asn Arg Asp Gln His Asn Arg 645 Glu Ala Phe His Cys Ile Gly Cys Gly Phe Arg Gly Asn Ala Asp Leu 665 Asp Val Ala Thr His Asn Ile Ala Met Val Ala Ile Thr Gly Glu Ser 680 Leu Lys Arg Ala Arg Gly Ser Val Ala Ser Lys Thr Pro Gln Pro Leu 695 Ala Ala Glu 705 <210> SEQ ID NO 58 <211> LENGTH: 36 <212> TYPE: RNA <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: bacteriophage <400> SEQUENCE: 58 ggagagaucu caaacgauug cucgauuagu cgagac <210> SEQ ID NO 59 <211> LENGTH: 757 <212> TYPE: PRT <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: bacteriophage <400> SEQUENCE: 59 Met Pro Lys Pro Ala Val Glu Ser Glu Phe Ser Lys Val Leu Lys Lys 10 His Phe Pro Gly Glu Arg Phe Arg Ser Ser Tyr Met Lys Arg Gly Gly 25 Lys Ile Leu Ala Ala Gln Gly Glu Glu Ala Val Val Ala Tyr Leu Gln 40 Gly Lys Ser Glu Glu Glu Pro Pro Asn Phe Gln Pro Pro Ala Lys Cys

His 65	Val	Val	Thr	Lys	Ser 70	Arg	Asp	Phe	Ala	Glu 75	Trp	Pro	Ile	Met	Eys
Ala	Ser	Glu	Ala	Ile 85	Gln	Arg	Tyr	Ile	Tyr 90	Ala	Leu	Ser	Thr	Thr 95	Glu
Arg	Ala	Ala	Сув 100	Lys	Pro	Gly	Lys	Ser 105	Ser	Glu	Ser	His	Ala 110	Ala	Trp
Phe	Ala	Ala 115	Thr	Gly	Val	Ser	Asn 120	His	Gly	Tyr	Ser	His 125	Val	Gln	Gly
Leu	Asn 130	Leu	Ile	Phe	Asp	His 135	Thr	Leu	Gly	Arg	Tyr 140	Asp	Gly	Val	Leu
Lys 145	Lys	Val	Gln	Leu	Arg 150	Asn	Glu	Lys	Ala	Arg 155	Ala	Arg	Leu	Glu	Ser 160
Ile	Asn	Ala	Ser	Arg 165	Ala	Asp	Glu	Gly	Leu 170	Pro	Glu	Ile	Lys	Ala 175	Glu
Glu	Glu	Glu	Val 180	Ala	Thr	Asn	Glu	Thr 185	Gly	His	Leu	Leu	Gln 190	Pro	Pro
Gly	Ile	Asn 195	Pro	Ser	Phe	Tyr	Val 200	Tyr	Gln	Thr	Ile	Ser 205	Pro	Gln	Ala
Tyr	Arg 210	Pro	Arg	Asp	Glu	Ile 215	Val	Leu	Pro	Pro	Glu 220	Tyr	Ala	Gly	Tyr
Val 225	Arg	Asp	Pro	Asn	Ala 230	Pro	Ile	Pro	Leu	Gly 235	Val	Val	Arg	Asn	Arg 240
Cys	Asp	Ile	Gln	Lys 245	Gly	Cys	Pro	Gly	Tyr 250	Ile	Pro	Glu	Trp	Gln 255	Arg
Glu	Ala	Gly	Thr 260	Ala	Ile	Ser	Pro	Lys 265	Thr	Gly	Lys	Ala	Val 270	Thr	Val
Pro	Gly	Leu 275	Ser	Pro	Lys	Lys	Asn 280	Lys	Arg	Met	Arg	Arg 285	Tyr	Trp	Arg
Ser	Glu 290	Lys	Glu	Lys	Ala	Gln 295	Asp	Ala	Leu	Leu	Val 300	Thr	Val	Arg	Ile
Gly 305	Thr	Asp	Trp	Val	Val 310	Ile	Asp	Val	Arg	Gly 315	Leu	Leu	Arg	Asn	Ala 320
Arg	Trp	Arg	Thr	Ile 325	Ala	Pro	Lys	Asp	Ile 330	Ser	Leu	Asn	Ala	Leu 335	Leu
Asp	Leu	Phe	Thr 340	Gly	Asp	Pro	Val	Ile 345	Asp	Val	Arg	Arg	Asn 350	Ile	Val
Thr	Phe	Thr 355	Tyr	Thr	Leu	Asp	Ala 360	Cha	Gly	Thr	Tyr	Ala 365	Arg	Lys	Trp
Thr	Leu 370	Lys	Gly	ГÀа	Gln	Thr 375	Lys	Ala	Thr	Leu	Asp 380	Lys	Leu	Thr	Ala
Thr 385	Gln	Thr	Val	Ala	Leu 390	Val	Ala	Ile	Asp	Leu 395	Gly	Gln	Thr	Asn	Pro 400
Ile	Ser	Ala	Gly	Ile 405	Ser	Arg	Val	Thr	Gln 410	Glu	Asn	Gly	Ala	Leu 415	Gln
CÀa	Glu	Pro	Leu 420	Asp	Arg	Phe	Thr	Leu 425	Pro	Asp	Asp	Leu	Leu 430	Lys	Asp
Ile	Ser	Ala 435	Tyr	Arg	Ile	Ala	Trp 440	Asp	Arg	Asn	Glu	Glu 445	Glu	Leu	Arg
Ala	Arg 450	Ser	Val	Glu	Ala	Leu 455	Pro	Glu	Ala	Gln	Gln 460	Ala	Glu	Val	Arg
Ala 465	Leu	Asp	Gly	Val	Ser 470	Lys	Glu	Thr	Ala	Arg 475	Thr	Gln	Leu	Сув	Ala 480

-continued

Asp Phe Gly Leu Asp Pro Lys Arg Leu Pro Trp Asp Lys Met Ser Ser Asn Thr Thr Phe Ile Ser Glu Ala Leu Leu Ser Asn Ser Val Ser Arg Asp Gln Val Phe Phe Thr Pro Ala Pro Lys Lys Gly Ala Lys Lys 520 Ala Pro Val Glu Val Met Arg Lys Asp Arg Thr Trp Ala Arg Ala Tyr Lys Pro Arg Leu Ser Val Glu Ala Gln Lys Leu Lys Asn Glu Ala Leu Trp Ala Leu Lys Arg Thr Ser Pro Glu Tyr Leu Lys Leu Ser Arg Arg Lys Glu Glu Leu Cys Arg Arg Ser Ile Asn Tyr Val Ile Glu Lys Thr Arg Arg Arg Thr Gln Cys Gln Ile Val Ile Pro Val Ile Glu Asp Leu 600 Asn Val Arg Phe Phe His Gly Ser Gly Lys Arg Leu Pro Gly Trp Asp Asn Phe Phe Thr Ala Lys Lys Glu Asn Arg Trp Phe Ile Gln Gly Leu His Lys Ala Phe Ser Asp Leu Arg Thr His Arg Ser Phe Tyr Val Phe 645 650 Glu Val Arg Pro Glu Arg Thr Ser Ile Thr Cys Pro Lys Cys Gly His 665 Cys Glu Val Gly Asn Arg Asp Gly Glu Ala Phe Gln Cys Leu Ser Cys Gly Lys Thr Cys Asn Ala Asp Leu Asp Val Ala Thr His Asn Leu Thr 695 Gln Val Ala Leu Thr Gly Lys Thr Met Pro Lys Arg Glu Glu Pro Arg 715 710 Asp Ala Gln Gly Thr Ala Pro Ala Arg Lys Thr Lys Lys Ala Ser Lys Ser Lys Ala Pro Pro Ala Glu Arg Glu Asp Gln Thr Pro Ala Gln Glu Pro Ser Gln Thr Ser 755 <210> SEQ ID NO 60 <211> LENGTH: 36 <212> TYPE: RNA <213 > ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: bacteriophage <400> SEQUENCE: 60 36 gucggaacgc ucaacgauug ccccucacga ggggac <210> SEQ ID NO 61 <211> LENGTH: 766 <212> TYPE: PRT <213> ORGANISM: Unknown <220> FEATURE: <223> OTHER INFORMATION: bacteriophage <400> SEQUENCE: 61 Met Glu Lys Glu Ile Thr Glu Leu Thr Lys Ile Arg Arg Glu Phe Pro

Asn	Lys	Lys	Phe 20	Ser	Ser	Thr	Asp	Met 25	Lys	Lys	Ala	Gly	30 Lys	Leu	Leu
ГÀа	Ala	Glu 35	Gly	Pro	Asp	Ala	Val 40	Arg	Asp	Phe	Leu	Asn 45	Ser	Cys	Gln
Glu	Ile 50	Ile	Gly	Asp	Phe	Lys 55	Pro	Pro	Val	Lys	Thr 60	Asn	Ile	Val	Ser
Ile 65	Ser	Arg	Pro	Phe	Glu 70	Glu	Trp	Pro	Val	Ser 75	Met	Val	Gly	Arg	Ala 80
Ile	Gln	Glu	Tyr	Tyr 85	Phe	Ser	Leu	Thr	Lys 90	Glu	Glu	Leu	Glu	Ser 95	Val
His	Pro	Gly	Thr 100	Ser	Ser	Glu	Asp	His 105	Lys	Ser	Phe	Phe	Asn 110	Ile	Thr
Gly	Leu	Ser 115	Asn	Tyr	Asn	Tyr	Thr 120	Ser	Val	Gln	Gly	Leu 125	Asn	Leu	Ile
Phe	Lys 130	Asn	Ala	Lys	Ala	Ile 135	Tyr	Asp	Gly	Thr	Leu 140	Val	Lys	Ala	Asn
Asn 145	Lys	Asn	Lys	Lys	Leu 150	Glu	Lys	Lys	Phe	Asn 155	Glu	Ile	Asn	His	Lys 160
Arg	Ser	Leu	Glu	Gly 165	Leu	Pro	Ile	Ile	Thr 170	Pro	Asp	Phe	Glu	Glu 175	Pro
Phe	Asp	Glu	Asn 180	Gly	His	Leu	Asn	Asn 185	Pro	Pro	Gly	Ile	Asn 190	Arg	Asn
Ile	Tyr	Gly 195	Tyr	Gln	Gly	CÀa	Ala 200	Ala	Lys	Val	Phe	Val 205	Pro	Ser	ГÀв
His	Lys 210	Met	Val	Ser	Leu	Pro 215	Lys	Glu	Tyr	Glu	Gly 220	Tyr	Asn	Arg	Asp
Pro 225	Asn	Leu	Ser	Leu	Ala 230	Gly	Phe	Arg	Asn	Arg 235	Leu	Glu	Ile	Pro	Glu 240
Gly	Glu	Pro	Gly	His 245	Val	Pro	Trp	Phe	Gln 250	Arg	Met	Asp	Ile	Pro 255	Glu
Gly	Gln	Ile	Gly 260	His	Val	Asn	Lys	Ile 265	Gln	Arg	Phe	Asn	Phe 270	Val	His
Gly	Lys	Asn 275	Ser	Gly	Lys	Val	Lys 280	Phe	Ser	Asp	Lys	Thr 285	Gly	Arg	Val
ГÀа	Arg 290	Tyr	His	His	Ser	Lys 295	Tyr	Lys	Asp	Ala	Thr 300	ГЛа	Pro	Tyr	Lys
Phe 305	Leu	Glu	Glu	Ser	Lys 310	Lys	Val	Ser	Ala	Leu 315		Ser	Ile	Leu	Ala 320
Ile	Ile	Thr	Ile	Gly 325	Asp	Asp	Trp	Val	Val 330	Phe	Asp	Ile	Arg	Gly 335	Leu
Tyr	Arg	Asn	Val 340	Phe	Tyr	Arg	Glu	Leu 345	Ala	Gln	ГÀа	Gly	Leu 350	Thr	Ala
Val	Gln	Leu 355	Leu	Asp	Leu	Phe	Thr 360	Gly	Asp	Pro	Val	Ile 365	Asp	Pro	ГÀа
Lys	Gly 370	Val	Val	Thr	Phe	Ser 375	Tyr	Lys	Glu	Gly	Val 380	Val	Pro	Val	Phe
Ser 385	Gln	Lys	Ile	Val	Pro 390	Arg	Phe	Lys	Ser	Arg 395	Asp	Thr	Leu	Glu	Lys 400
Leu	Thr	Ser	Gln	Gly 405	Pro	Val	Ala	Leu	Leu 410	Ser	Val	Asp	Leu	Gly 415	Gln
Asn	Glu	Pro	Val 420	Ala	Ala	Arg	Val	Cys 425	Ser	Leu	Lys	Asn	Ile 430	Asn	Asp
Lys	Ile	Thr	Leu	Asp	Asn	Ser	Cys	Arg	Ile	Ser	Phe	Leu	Asp	Asp	Tyr

100

-continued

_															
		435					440					445			
Ly	450	Gln	Ile	Lys	Asp	Tyr 455	_	Asp	Ser	Leu	Asp 460	Glu	Leu	Glu	Ile
Ly:	s Ile	Arg	Leu	Glu	Ala 470	Ile	Asn	Ser	Leu	Glu 475	Thr	Asn	Gln	Gln	Val 480
Glı	ı Ile	Arg	Asp	Leu 485		Val	Phe	Ser	Ala 490	Asp	Arg	Ala	Lys	Ala 495	Asn
Th:	r Val	Asp	Met 500		Asp	Ile	Asp	Pro 505	Asn	Leu	Ile	Ser	Trp 510	Asp	Ser
Me	Ser	Asp 515		Arg	Val	Ser	Thr 520	Gln	Ile	Ser	Asp	Leu 525	Tyr	Leu	Lys
Ası	n Gly 530	_	Asp	Glu	Ser	Arg 535		Tyr	Phe	Glu	Ile 540	Asn	Asn	Lys	Arg
I16 54!	e Lys	Arg	Ser	Asp	Tyr 550		Ile	Ser	Gln	Leu 555	Val	Arg	Pro	Lys	Leu 560
Se:	r Asp	Ser	Thr	Arg 565		Asn	Leu	Asn	Asp 570	Ser	Ile	Trp	Lys	Leu 575	Lys
Ar	g Thr	Ser	Glu 580	Glu	Tyr	Leu	ГЛа	Leu 585	Ser	Lys	Arg	Lys	Leu 590	Glu	Leu
Se:	r Arg	Ala 595	Val	Val	Asn	Tyr	Thr	Ile	Arg	Gln	Ser	605	Leu	Leu	Ser
Gl	y Ile 610		Asp	Ile	Val	Ile 615	Ile	Leu	Glu	Asp	Leu 620	Asp	Val	Lys	Lys
Lу: 62!	Phe	Asn	Gly	Arg	Gly 630		Arg	Asp	Ile	Gly 635	Trp	Asp	Asn	Phe	Phe 640
Se:	r Ser	Arg	ГЛа	Glu 645	Asn	Arg	Trp	Phe	Ile 650	Pro	Ala	Phe	His	Lys 655	Ala
Phe	e Ser	Glu	Leu 660	Ser	Ser	Asn	Arg	Gly 665	Leu	Сув	Val	Ile	Glu 670	Val	Asn
Pro	o Ala	Trp 675		Ser	Ala	Thr	Cys	Pro	_	CÀa	Gly	Phe	CÀa	Ser	Lys
Glı	ı Asn 690	_	Asp	_		Asn 695	Phe	Thr	Cys	Arg	Lys 700	CÀa	Gly	Val	Ser
Ту: 70!	r His		Asp		_		Ala	Thr	Leu	Asn 715	Ile	Ala	Arg	Val	Ala 720
Va:	l Leu	Gly	Lys	Pro 725		Ser		Pro			_		Arg		Gly
Asj	o Thr	ГÀа	Lys 740	Pro	Arg	Val	Ala	Arg 745	Ser	Arg	Lys	Thr	Met 750	Lys	Arg
Ly	a Asp	Ile 755	Ser	Asn	Ser	Thr	Val 760	Glu	Ala	Met	Val	Thr 765	Ala		
<2: <2: <2: <2: <2:	10 > S: 11 > L: 12 > T 13 > O: 20 > F: 23 > O:	ENGTI YPE : RGAN: EATUI THER	H: 3 RNA ISM: RE: INF	6 Unk: ORMA		: ba	cter	ioph	age						
	caaaa				ug c	ccagi	uacg	c ug	ggac						
		_		_	_			٠.							

What is claimed is:

1. A composition comprising at least one RNA molecule 65 the RNA molecule is a substantially purified RNA molecule. comprising a cargo segment fused to a meristem transport segment (MTS), wherein the cargo segment comprises one

or more guide RNAs for an RNA-guided nuclease, wherein

 $\boldsymbol{2}.$ The composition according to claim $\boldsymbol{1},$ wherein the guide RNA is flanked by or comprises processing elements.

- 3. The composition according to claim 2, wherein the processing elements are direct repeat sequences of a bacterial CRISPR array of the RNA-guided nuclease or are direct repeat sequences that are processed by the RNA-guided nuclease.
- **4.** The composition according to claim **3**, wherein the cargo segment comprises a plurality of guide RNAs.
- **5**. The composition according to claim **3**, wherein the guide RNAs and the direct repeat sequences of the bacterial CRISPR array are for a Cas12a or a Cas12j RNA-guided nuclease.
- **6.** The composition according to claim **1**, wherein the composition comprises both a first and a second RNA molecule each comprising a cargo segment fused to an MTS and wherein the cargo segment of the first RNA molecule comprises one or more guide RNAs for an RNA-guided nuclease.
- 7. The composition according to claim $\bf 6$, wherein the cargo segment of the first RNA molecule comprises guide RNAs which are distinct from the guide RNAs of the second RNA molecule.
- **8**. The composition according to claim **1**, wherein the cargo segment does not contain an RNA-guided nuclease polypeptide-encoding sequence.
- 9. The composition according to claim 1, wherein the cargo segment further comprises an RNA-guided nuclease polypeptide-encoding sequence.
- 10. The composition according to claim 6, wherein the cargo segment of the first RNA molecule comprises guide RNAs and wherein the cargo segment of the second RNA molecule comprises an RNA-guided nuclease polypeptide-encoding sequence.
- 11. The composition according to claim 9, wherein the RNA-guided nuclease polypeptide-encoding sequence can 35 be translated in a plant cell cytosol.
- 12. The composition according to claim 11, wherein the RNA molecule further comprises a polyA region.

102

- 13. The composition according to claim 12, wherein the poly A region is 3' of the RNA-guided nuclease polypeptide-encoding sequence, and 5' of the guide RNA.
- 14. The composition according to claim 7, wherein the guide RNAs of the first and second RNA molecule are flanked by or comprise processing elements which are processed by different RNA-guided nucleases.
- 15. The composition according to claim 1, wherein the MTS comprises:
- (i) a Flowering Time (FT)-derived sequence or
- (ii) a tRNA like sequence (TLS).
- 16. The composition according to claim 15, wherein the MTS comprises a Flowering Time (FT)-derived sequence of SEQ ID NO: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or a meristem transport-competent (MTC) fragment thereof.
- 17. The composition according to claim 1, wherein the MTS is located 3' of the cargo segment.
- 18. The composition according to claim 1, further comprising an RNase inhibitor.
- 19. The composition according to claim 1, wherein the RNA molecule is not operably linked to a viral vector RNA and/or associated with a viral protein.
- 20. A method of producing a plant or plant part with an altered genome comprising:
- (i) contacting a plant or plant part with at least a first composition according to claim 1; and
- (ii) retrieving a progeny or descendant of the plant or plant part, wherein the progeny or descendent has an altered genome.
- 21. The method according to claim 20, wherein contacting comprises phloem loading.
- 22. The method according to claim 20, wherein the contacting with the composition occurs at the vegetative stage of the plant life cycle.
- 23. A plant or plant part comprising an altered genome made by the method of claim 20.

* * * * *