

Nuno Antunes Ribeiro Assistant Professor

 Explore neighbourhoods that would be impossible to analyse using exhaustive search

Integrates exact methods of optimization and local search

Start with an initial feasible solution

Select a very large neighbourhood

 Optimize the neighbourhood using exact methods of optimization

Repeat

Very-large Neighbourhood
Optimize using exact methods
Exhaustive Search (best descent) would take too much time

- Basic premise: There is a "limit" on the size and complexity to solve optimization problems using exact methods
- Runtime tends to increases exponentially with the size of the problem
- Decomposition of the problem:
 - Small enough subsets to ensure tractability of the model
 - Large enough subsets to capture interdependencies across variables

Travelling Salesman						
n	CPU Time	Opt. Value				
10	1.29 s	34993				
20						
25	1.21 s	39224				
50	49 s	57546				
75	91 s	70395				
100	178 s	78357				
200	2625 s	105404				
500	>6000 s	220704 (25.9%)				
-	-	-				
-	-	-				

Destroy and Repair Approach

3-Opt - we select 3 arcs

Very Large Neighbourhood Search - we select n arcs

Destroy and Repair Approach

3-Opt - we select 3 arcs

Very Large Neighbourhood Search - we select n arcs

Destroy and Repair Approach

- In designing local search metaheuristics, there is often a compromise between the size of the neighbourhood to use and the computational complexity to explore it.
- Considering small neighbourhoods bears two major risks.
 - First, the algorithms may converge to **local optima**, although this can be mitigated by introducing random perturbations.
 - Second, they might be ineffective for tightly constrained problems, where any deviation from a feasible solution involves complex interaction effects across many decision variables.

Difficulty to escape local optima

Multimodal with plateaus

Hard to solve: Plateaus are

Difficulty to escape local optima

Multimodal with plateaus

Hard to solve: Plateaus are tediously crossed by metaheuristics. Indeed, no information will guide the search toward better regions. Eventually the metaheuristic will converge to local optima solutions To cope with these cases, larger neighbourhoods may be considered (very large neighbourhood search tomorrow's class). Adding a secondary objective to the problem will help to shape the

Highly constrained landscapes

Highly constrained landscapes are harder to solve, they may require the use of constraint handling techniques, and/or larger neighbourhoods to avoid getting stuck in a constraint region

Highly constrained landscapes

Highly constrained landscapes are harder to solve, they may require the use of constraint handling techniques, and/or larger neighbourhoods to avoid getting stuck in a constraint region

Exhaustive Search vs Exact Methods

 Exhaustively search large neighbourhoods is time consuming. We can rely on exact methods o optimization to explore these neighbourhoods

VLNS in Airport Scheduling

Nuno Antunes Ribeiro

Assistant Professor

Airport Congestion Mitigation

 strategic interventions (several months in advance), aimed at limiting the demand for airport access through slot control mechanisms;

- tactical interventions (hours before operations),
 aimed at efficiently delaying flights on the ground before
 take-off to reduce chances of airborne delays at periods
 of expected airport capacity shortage;
- operational interventions (real time), aimed at controlling real-time air traffic operations through flow management solutions that ensure that aircraft fly safely and efficiently throughout the airspace.

IATA Slot Allocation Process

- IATA Guidelines
- Primary Criteria
 - Slot regularity: Allocate all slots within the same request at the same time of day, throughout the season
 - Connectivity: Maintain appropriate aircraft connecting times

Slot priorities

- Historic slots
- Change-to-historic slots
- New entrants
- Other slots

Rules and requirements result in complex slot allocation problems

Slot Allocation Rules

- Series of flights flight operation requested to take place during several days of the season – these flights should be allocated to the same slot time.
- Different types of capacities capacities for the runway, terminal, stands; capacities per hour, per 15 min, etc.
- Flight connections we should ensure that passenger connections remain feasible

Slot Conference

Slot Coordinators' room

Airlines' room

138th Slot Coference – Hamburg, 2016

Current Allocation Process

Treatment of slots, one by one, provides limited visibility into full set of requests and interdependencies between decisions

*Capacity: 1 flight every 5 minutes

Slot Request	Dayl	Day 2	Day3	Day 4	Day 5
1	9:00	9:00	9:00		9:00
2		9:00	9:00		9:00
3			9:00	9:00	
4	9:00			9:00	

*Capacity: 1 flight every 5 minutes

Slot Request	Dayl	Day 2	Day3	Day 4	Day 5	Total Displacement
1	9:00	9:00	9:00		9:00	0x4=0
2		9:00	9:00		9:00	
3			9:00	9:00		
4	9:00			9:00		

*Capacity: 1 flight every 5 minutes

Slot Request	Dayl	Day 2	Day3	Day 4	Day 5	Total Displacement
1	9:00	9:00	9:00		9:00	0x4=0
2		9:05	9:05		9:05	5x3=15
3			9:00	9:00		
4	9:00			9:00		

*Capacity: 1 flight every 5 minutes

Slot Request	Dayl	Day 2	Day3	Day 4	Day 5	Total Displacement
1	9:00	9:00	9:00		9:00	0x4=0
2		9:05	9:05		9:05	5x3=15
3			8:55	8:55		5x2=10
4	9:00			9:00		

*Capacity: 1 flight every 5 minutes

Slot Request	Dayl	Day 2	Day3	Day 4	Day 5	Total Displacement
1	9:00	9:00	9:00		9:00	0x4=0
2		9:05	9:05		9:05	5x3=15
3			8:55	8:55		5x2=10
4	9:05			9:05		5x2=10

35 min

*Capacity: 1 flight every 5 minutes

Slot Request	Dayl	Day 2	Day3	Day 4	Day 5	Total Displacement
1	9:00	9:00	9:00		9:00	0x4=0
2		9:05	9:05		9:05	5x3=15
3			8:55	8:55		5x2=10
4	9:05			9:05		5x2=10
						35 min

Optimal Solution

Slot Request	Dayl	Day 2	Day3	Day 4	Day 5	Total Displacement
1	9:05	9:05	9:05		9:05	5x4=20
2		9:00	9:00		9:00	0x3=0
3			8:55	8:55		5x2=10
4	9:00			9:00		0x2=0

30 min

The Optimization Model

subject to:

$$\begin{split} & Y_{iT} = Z_i \quad , \forall i \in S \\ & \sum_{i \in I} \left(Y_{it} - A_{it} \right) = \left| X_i \right| + \sum_{i \in I} \left(1 - A_{it} \right) \times Z_i \quad , \forall i \in S \\ & \left| W_i \right| \geq Y_{it} - A_{it} + Z_i \quad \forall i \in S, t \in T \\ & \left| W_i \right| \geq -Y_{it} + A_{it} \quad \forall i \in S \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} \leq C_{sde}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall s \in T_c, d \in D, c \in C \\ & \sum_{i \in S_{orr}} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall t \in T, d \in D \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall t \in T, d \in D \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall t \in T, d \in D \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall t \in T, d \in D \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall t \in T, d \in D \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall t \in T, d \in D \\ & \sum_{i \in S_{orr}} \sum_{i \in T_c^*} \left(Y_{it} - Y_{i,t+1} \right) B_{id} I_{ik} S_i L F_i \leq P_{sdek}^{arr} \quad , \forall t \in T, d \in$$

Ribeiro, N. A., Jacquillat, A., & Antunes, A. P. (2019). A large-scale neighborhood search approach to airport slot allocation. *Transportation Science*, *53*(6), 1772-1797.

Exact Methods of Optimization

Airport	Madeira (FNC)	Porto (OPO)	Lisbon (LIS)	São Paulo (GRU)	Singapore (SIN)	Paris (CDG)
Season	S2014	S2014	S2015	W2018	S2019	S2018
Capacity per hour	14	20	38	53	70	110
No. slots	13696	41547	114176	161469	315226	348977
CPU Time	1 min	5 min	>7 days	Memory Error	Memory Error	Memory Error

Results

	Porto A	Airport	São Paulo Airport		
Main Indicators	Slot. Coord.	Opt. Model	Slot. Coord.	Opt. Model	
Max Displacement (min)	80	55 -31%	390	295 -24%	
Total Displacement (min)	53.2k	38,6k -27%	3270k	2,682k -18%	
No. Slots Displaced	2.5k	2,3k -7%	63,8k	32,275 -49%	

VLNS – Slot Allocation Optimization

- Basic premise: There is a "limit" on the size and complexity of the slot allocation problem that can be solved with exact methods
- Decomposition of the problem to allocate a subset of all slot requests at each iteration
 - Small enough subsets to ensure tractability of the model
 - Large enough subsets to capture interdependencies across slot requests
- Algorithm using large-scale neighbourhood search principles, based on "destroy and repair" approach
 - Constructive Greedy Algorithm: Generates a feasible solution quickly
 - Local Search Algorithm: Finds iteratively local improvements within a large neighbourhood, while maintaining global feasibility

- Premise: Flights with higher frequency (i.e., taking place on more days during a season) are "harder" to allocate
 - Allocation of flights by decreasing order of frequency

- Arrange flights into groups of decreasing frequency
- 2. Allocate flights to each group sequentially Solve model for Group 1 Solve model for Group 2 Etc.
- 3. Other adjustments to maintain global feasibility
 Update capacity values
 Ensure feasibility of connections
 Ensure priorities among slot classes
 Etc.

- Premise: Flights with higher frequency (i.e., taking place on more days during a season) are "harder" to allocate
 - Allocation of flights by decreasing order of frequency

- Arrange flights into groups of decreasing frequency
- 2. Allocate flights to each group sequentially
 Solve model for Group 1
 Solve model for Group 2
 Etc.
- 3. Other adjustments to maintain global feasibility
 Update capacity values
 Ensure feasibility of connections
 Ensure priorities among slot classes
 Etc.

- Premise: Flights with higher frequency (i.e., taking place on more days during a season) are "harder" to allocate
 - Allocation of flights by decreasing order of frequency

- Arrange flights into groups of decreasing frequency
- 2. Allocate flights to each group sequentially Solve model for Group 1 Solve model for Group 2 Etc.
- Update capacity values
 Ensure feasibility of connections
 Ensure priorities among slot classes
 Etc.

- Premise: Flights with higher frequency (i.e., taking place on more days during a season) are "harder" to allocate
 - Allocation of flights by decreasing order of frequency

- Arrange flights into groups of decreasing frequency
- 2. Allocate flights to each group sequentially Solve model for Group 1
 Solve model for Group 2
 Etc.
- 3. Other adjustments to maintain global feasibility
 Update capacity values
 Ensure feasibility of connections
 Ensure priorities among slot classes
 Etc.

- Premise: Flights with higher frequency (i.e., taking place on more days during a season) are "harder" to allocate
 - Allocation of flights by decreasing order of frequency

- Arrange flights into groups of decreasing frequency
- 2. Allocate flights to each group sequentially Solve model for Group 1
 Solve model for Group 2
 Etc.
- 3. Other adjustments to maintain global feasibility
 Update capacity values
 Ensure feasibility of connections
 Ensure priorities among slot classes
 Etc.

Constructive Greedy Heuristic Results

Lisbon 2015, with terminal and apron

Slot allocation strategy	Displacement (min)	Gap (%)	CPU time	
SimRand	497,424	33.0	10 hr	
SimRandFreqs	399,310	6.8	10 hr	
10 groups	394,040	5.4	41 min	
8 groups	390,450	4.4	37 min	
7 groups	392,290	4.9	30 min	
6 groups	390,335	4.4	31 min	
5 groups	393,335	5.2	25 min	
4 groups	387,125	3.5	22 min	
3 groups	381,365	2.0	25 min	
2 groups	378,715	1.3	6 hr 15 min	
Direct CPLEX	374,005 ^a	0.0	>7 days	

VLNS Algorithm

- Decomposition of the problem to allocate a subset of all slot requests at each iteration
- Algorithm using large-scale neighborhood search principles, based on "destroy and repair" approach

0 h

Observation: Flights requested around the same time will compete with each other for the same slots

VLNS Algorithm

Decomposition over time:

- Coupling constraints apply across consecutive time periods of the day (e.g., airport capacity, aircraft connections, schedule regularity)
- Creation of time-based neighbourhood to capture interdependencies

- Coupling constraints apply across consecutive time periods of the day (e.g., airport capacity, aircraft connections, schedule regularity)
- Creation of time-based neighbourhood to capture interdependencies

- Coupling constraints apply across consecutive time periods of the day (e.g., airport capacity, aircraft connections, schedule regularity)
- Creation of time-based neighbourhood to capture interdependencies

- Coupling constraints apply across consecutive time periods of the day (e.g., airport capacity, aircraft connections, schedule regularity)
- Creation of time-based neighbourhood to capture interdependencies

- Coupling constraints apply across consecutive time periods of the day (e.g., airport capacity, aircraft connections, schedule regularity)
- Creation of time-based neighbourhood to capture interdependencies

- Coupling constraints apply across consecutive time periods of the day (e.g., airport capacity, aircraft connections, schedule regularity)
- Creation of time-based neighbourhood to capture interdependencies

Size of the neighbourhood

- Size of the Time Window
 - Small time windows small neighbourhoods local optima
 - Large time windows larger neighbourhoods longer runtime

Size of the neighbourhood

- Size of the Time Window
 - Small time windows small neighbourhoods local optima
 - Large time windows larger neighbourhoods longer runtime

Time for Optimization

 t_o: maximum optimization runtime at each iteration (the most congested time windows take several hours to solve – we aim to avoid getting stuck in a given neighbourhood)

- Time window characteristics
 - Probabilistic approach to slot selection within time window
 - Initially, all slots are selected in each time window
 - If optimization does not terminate within t_o , reduction of the number of slots selected in next iteration by a factor ρ
 - Priority is given to slots that were requested fewer times ---

Long Term Memory Continuous Diversification

- Probabilistic approach to time window selection
 - If improvements found at an iteration, selection probabilities unchanged
 - If no improvement found in time window w, selection probability of time window w reduced governed by a parameter δ

Adaptive Neighbourhood Selection

:	Window	Optimal	Solution	Proportion	on of slots sele	ected (R_w^q)	Probability of time window selection (PT_w^q)		
	selected	solution?	improved? ⁻	1	2	3	1	2	3
0	-	-	-	1	1	1	25.0%	50.0%	25.0% -
1	2	No	Yes	1	0.8	1	25.0%	50.0%	25.0%
2	2	No	No	1	0.64	1	27.8%	44.4%	27.8%
3	1	Yes	No	1	0.64	1	0.3%	61.4%	38.4%
4	3	No	Yes	1	0.64	0.8	0.3%	61.4%	38.4%
5	2	Yes	No	1	0.64	0.8	0.3%	56.0%	43.7%
6	3	Yes	Yes	1	0.64	0.8	0.3%	56.0%	43.7%
7	2	Yes	No	1	0.64	0.8	0.3%	50.4%	49.2%
8	2	Yes	No	1	0.64	0.8	0.4%	44.9%	54.8%
9	3	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%
10	2	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%

Initial contribution to the objective value

g w	W	Optimal	Solution	Proportion of slots selected (R_w^q)			Probability of time window selection (PT_w^q)		
9	9 ,,	solution?	improved?	1	2	3	1	2	3
0	-		-	1	1	1	25.0%	50.0%	25.0%
1	2	No	Yes	1	0.8	1	25.0%	50.0%	25.0%
2	2	No	No	1	0.64	1	27.8%	44.4%	27.8%
3	1	Yes	No	1	0.64	1	0.3%	61.4%	38.4%
4	3	No	Yes	1	0.64	0.8	0.3%	61.4%	38.4%
5	2	Yes	No	1	0.64	0.8	0.3%	56.0%	43.7%
6	3	Yes	Yes	1	0.64	0.8	0.3%	56.0%	43.7%
7	2	Yes	No	1	0.64	0.8	0.3%	50.4%	49.2%
8	2	Yes	No	1	0.64	0.8	0.4%	44.9%	54.8%
9	3	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%
10	2	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%

$$n_w^{(q+1)} = \rho \cdot n_w^{(q)}$$

$$R_w^{(q)} = \frac{n_w^{(q)}}{|S_W|}.$$

	W	Optimal	Solution	Proporti	on of slots sele	ected (R_w^q)		Probability of time window selection (
9	VV	solution?	improved?	1	2	3	1	2	3	
0	-	-	-	1	1	1	25.0%	50.0%	25.0%	
1	2	No	Yes	1	0.8	1	25.0%	50.0%	25.0%	
2	2	No	No	1	0.64	1	27.8%	44.4%	27.8%	
3	1	Yes	No	1	0.64	1	0.3%	61.4%	38.4%	
4	3	No	Yes	1	0.64	0.8	0.3%	61.4%	38.4%	
5	2	Yes	No	1	0.64	0.8	0.3%	56.0%	43.7%	
6	3	Yes	Yes	1	0.64	0.8	0.3%	56.0%	43.7%	
7	2	Yes	No	1	0.64	0.8	0.3%	50.4%	49.2%	
8	2	Yes	No	1	0.64	0.8	0.4%	44.9%	54.8%	
9	3	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%	
10	2	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%	

 λ is a calibration parameter, and s_i^q indicates the number $\overline{}$ of times slot request i was — selected up to iteration q. The larger the λ , the more the algorithm favors slot requests that were selected fewer times before. If $\lambda = 0$, slot requests are selected completely at random; if $\lambda = \infty$ we select slot requests exclusively among those that were explored the least numbers of times in previous iterations.

$$PS_i^{(q)} = \frac{e^{-\lambda s_i^{(q)}}}{\sum_{j \in S} e^{-\lambda s_j^{(q)}}} , \forall i \in S_{W_-}$$

Long Term Memory Continuous Diversification

q	W	Optimal	Solution	Proporti	on of slots sele	ected (R_w^q)	Probability of time window selection (PT_w^q)		
9	VV	solution?	improved?	1	2		3		
0	-	-	-	1	1	1	25.0%	50.0%	25.0%
1	2	No	Yes	1	0.8	1	25.0%	50.0%	25.0%
2	2	No	No	1	0.64	1	27.8%	44.4%	27.8%
3	1	Yes	No	1	0.64	1	0.3%	61.4%	38.4%
4	3	No	Yes	1	0.64	0.8	0.3%	61.4%	38.4%
5	2	Yes	No	1	0.64	0.8	0.3%	56.0%	43.7%
6	3	Yes	Yes	1	0.64	0.8	0.3%	56.0%	43.7%
7	2	Yes	No	1	0.64	0.8	0.3%	50.4%	49.2%
8	2	Yes	No	1	0.64	0.8	0.4%	44.9%	54.8%
9	3	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%
10	2	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%

$$PT_{w}^{(q)'} = PT_{w}^{(q-1)} \times e^{-\beta \left(R_{w}^{(q)}\right)^{\gamma_{q}}};$$

$$PT_{w'}^{(q)} = \frac{PT_{w}^{(q)'}}{\sum_{u \in W} PT_{u}^{(q)'}}, \forall w' \in W;$$

If the solution improved, $^-$ then probabilities PT_w^q are not updated. Otherwise, they are updated. β and γ_q are calibration parameters, and R_w^q denotes the ratio of the number of slots selected at iteration *q* to the total number of slots requested in time window w

$$PT_{w}^{(q)'} = PT_{w}^{(q-1)} \times e^{-\beta \left(R_{w}^{(q)}\right)^{\gamma_{q}}}; \qquad PT_{2}^{(3)'} = 0.5 \times e^{-5(0.64)^{6.97}} = 0.400,$$

$$PT_{w'}^{(q)} = \frac{PT_{w}^{(q)'}}{\sum_{u \in W} PT_{u}^{(q)'}}, \forall w' \in W; \qquad PT_{2}^{(3)} = \frac{0.25}{0.25 + 0.4 + 0.25} = 0.278,$$

$$PT_{2}^{(3)} = \frac{0.4}{0.25 + 0.4 + 0.25} = 0.444.$$

Adaptive Neighbourhood Selection

g w	Optimal	Solution	Proporti	on of slots sele	ected (R_w^q)	Probability of time window selection (PT_w^q)			
9		solution?	improved?	1	2	3	1	2	3
Ο	-	-	-	1	1	1	25.0%	50.0%	25.0%
1	2	No	Yes	1	0.8	1	25.0%	50.0%	25.0%
2	2	No	No	1	0.64	1	27.8%	44.4%	27.8%
3	1	Yes	No	1	0.64	1	0.3%	61.4%	38.4%
4	3	No	Yes	1	0.64	0.8	0.3%	61.4%	38.4%
5	2	Yes	No	1	0.64	0.8	0.3%	56.0%	43.7%
6	3	Yes	Yes	1	0.64	0.8	0.3%	56.0%	43.7%
7	2	Yes	No	1	0.64	0.8	0.3%	50.4%	49.2%
8	2	Yes	No	1	0.64	0.8	0.4%	44.9%	54.8%
9	3	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%
10	2	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%

q	W	Optimal	Solution	Proportion	on of slots sele	ected (R_w^q)		Probability o ndow selecti	
<u> </u>	7	solution?	improved?	1	2	3	1	2	3
0	-	-	-	1	1	1	25.0%	50.0%	25.0%
1	2	No	Yes	1	0.8	1	25.0%	50.0%	25.0%
2	2	No	No	1	0.64	1	27.8%	44.4%	27.8%
3	1	Yes	No	1	0.64	1	0.3%	61.4%	38.4%
4	3	No	Yes	1	0.64	0.8	0.3%	61.4%	38.4%
5	2	Yes	No	1	0.64	0.8	0.3%	56.0%	43.7%
6	3	Yes	Yes	1	0.64	0.8	0.3%	56.0%	43.7%
7	2	Yes	No	1	0.64	0.8	0.3%	50.4%	49.2%
8	2	Yes	No	1	0.64	0.8	0.4%	44.9%	54.8%
9	3	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%
10	2	Yes	Yes	1	0.64	0.8	0.4%	44.9%	54.8%

Adaptive VLNS - Results

	Exact Mo	ethods	Heuristic Approach			
CPU Time	Total Disp. (min)	Gap %	Total Disp. (min)	Gap %		
30 min	N/A	4	432,500	3.51%		
1 hour	N/A	4	429,995	2.91%		
6 hours	N/A	4	418,165	0.08%		
1 day	N/A	4	417,840	0.00%		
2 days	458,620	9.76%	417,840	0.00%		
4 days	430,415	3.01%	417,840	0.00%		
7 days	419,845	0.48%	417,840	0.00%		

Observation: The heuristic approach generates, in a few hours, near optimal solutions in instances where exact methods do not find the optimal solution after several days

Size of the Neighbourhood

- Sweet spot in length of time windows
 - Large neighbourhoods take too much time in each iteration
 - Small neighbourhoods require too many iterations before convergence
- Validates our large-scale neighbourhood search approach

Neighborood Selection

- Completely random time window selection yields poor results
- Sweet spot between exploration and exploitation approaches
 - Validation of probabilistic time window selection that orients the search toward more "promising" neighbourhoods

	Initial	Initial CPU Time								
Value of solution δ	solution	1 hour		3 hours		6 hours		10 hours		Avg. no. iterations
	Avg. gap (%)	Avg. gap (%)	Gap range (%)	Avg. gap (%)	Gap range (%)	Avg. gap (%)	Gap range (%)	Avg. gap (%)	Gap range (%)	
0.3	3.51	2.23	1.2-3.5	0.66	0.1-1.4	0.13	0.0-0.5	0.06	0.0-0.2	94
0.5	3.51	2.43	1.3-3.5	0.44	0.1-1.5	0.11	0.0-0.4	0.06	0.00.3	83
0.7	3.51	2.49	1.6-3.5	0.58	0.0-2.0	0.09	0.0-0.4	0.06	0.0-0.3	88
0.8	3.51	2.07	1.2-3.5	0.61	0.1-2.8	0.03	0.0-0.1	0.02	0.0-0.1	83
0.9	3.51	2.38	1.3-3.5	1.00	0.0-2.5	0.12	0.0-0.4	0.05	0.0-0.3	77
1	3.51	2.33	1.3-3.5	0.92	0.0-1.9	0.31	0.0-0.7	0.04	0.0-0.1	84
No PD _w	3.51	2.12	0.4-3.0	0.76	0.2-1.3	0.45	0.1-1.3	0.26	0.0-0.4	116

Exploration vs Exploitation

- Sweet spot in time for optimization
 - if t_o is set too high, the improvement heuristic spends much time searching - poor exploration
 - if t_o is set too low, improvement heuristic stops before significant improvements are obtained, leading to bad convergence solutions - poor exploitation

