

Decision Tree Algorithm

What is Decision Tree?

- Supervised learning method
- Decision support tool that uses a tree-like graph or model of decisions and their possible consequences
- Various variations such as Boosted Decision Tree, Random Forest
- Can be used for categorical as well as continuous variables

Loan ID	Income Level	Credit Score	Employment	Approved?
L1	Medium	Low	Self-Employed	No
L2	High	Low	Self-Employed	Yes
L3	High	High	Salaried	Yes
L4	Medium	Low	Salaried	Yes
L5	Low	High	Salaried	No
L6	Low	Low	Self-Employed	No
L7	High	Low	Salaried	Yes
L8	Medium	Low	Self-Employed	No
L9	High	High	Self-Employed	Yes
L10	Medium	High	Self-Employed	Yes
L11	High	Low	Salaried	Yes
L12	Medium	High	Salaried	Yes
L13	Medium	High	Self-Employed	Yes
L14	Low	Low	Self-Employed	No
L15	Low	High	Self-Employed	No
L16	Medium	High	Salaried	???

LID	IL	CS	ET	Status
L2	High	Low	SE	Yes
L3	High	High	Salaried	Yes
L7	High	Low	Salaried	Yes
L9	High	High	SE	Yes
L11	High	Low	Salaried	Yes

LID	IL	CS	ET	Status
L5	Low	High	Salaried	No
L6	Low	Low	SE	No
L14	Low	Low	SE	No
L15	Low	High	SE	No

LID	IL	CS	ET	Status
L1	Medium	Low	SE	No
L4	Medium	Low	Salaried	Yes
L8	Medium	Low	SE	No
L10	Medium	High	SE	Yes
L12	Medium	High	Salaried	Yes
L13	Medium	High	SE	Yes

Pure Subset

Pure Subset

Split Further

Decision Tree Terms

Adult Income Dataset

age	wc	education	marital status	race	gender	hours per week	IncomeClass
38	Private	HS-grad •	Divorced	White	Male	40	<=50K
28	Private	Bachelors .	Married	Black	Female	40	<=50K
37	Private	Masters	Married	White	Female	40	<=50K
31	Private	Masters	Never-married	White	Female	50	>50K
42	Private	Bachelors	Married	White	Male	40	>50K

Prediction task is to determine whether a person makes over 50K a year.

max_depth

splitter

criterion

• min_samples_split

max_features

min_impurity_decrease

min_samples_leaf

max_leaf_nodes

max_depth – max depth of the tree

- min_samples_split
- min_samples_leaf
- max_leaf_nodes

- max_depth
- min_samples_split Min Samples required for the split
- min_samples_leaf
- max_leaf_nodes

- max_depth
- min_samples_split
- min_samples_leaf Min samples required at the leaf
- max_leaf_nodes

- max_depth
- min_samples_split
- min_samples_leaf
- max_leaf_nodes max number of leaf nodes

max_depth

splitter

criterion

• min_sam'__aplit

max_features

min_impurity_decrease

• , ples_leaf

max_leaf_nodes

Loan ID	Income Level	Credit Score	Employment	Gender	Approve
L1	Medium	Low	Self-Employed	Male	No
L2	High	High	Self-Employed	Male	Yes
L3	High	High	Salaried	Female	Yes
L4	Medium	Low	Salaried	Male	Yes
L5	Low	Low	Salaried	Female	No
L6	Low	High	Self-Employed	Male	No
L7	High	High	Salaried	Male	Yes
L8	Medium	Low	Self-Employed	Female	No
L9	High	High	Self-Employed	Female	Yes
L10	Medium	High	Self-Employed	Female	Yes
L11	High	Low	Salaried	Male	No
L12	Medium	High	Salaried	Female	Yes
L13	Medium	High	Self-Employed	Male	Yes
L14	Low	Low	Self-Employed	Male	No
L15	Low	Low	Self-Employed	Female	No
L16	High	Low	Salaried	Female	No

Highly Impure

Less Impure

Highly Impure Less Impure

Parameters of Decision Tree relation to splitting

- splitter Split strategy for Best feature or Random feature
- max_features

Yes	= 1	No	= 7
res	= 1	NO	= /

Credit Score	Approved?
Low	No
Low	Yes
Low	No
12%	88%

Yes =	= 7	No = 1	

Credit Score	Approved?		
High	Yes		
High	Yes		
High	No		
High	Yes		

88%

12%

Low

Parameters of Decision Tree relation to splitting

- splitter Split strategy for Best feature or Random feature
- max_features Number of features to search before Best splitter is found

Yes = 1	No = 7
103 - 1	140 - /

Credit Score	Approved?
Low	No
Low	Yes
Low	No
12%	88%

Yes	= 7	No = 1	

High

Credit Score	Approved?
High	Yes
High	Yes
High	No
High	Yes
	4.704

88% 12%

Low

Parameters of Decision Tree relation to splitting

- splitter Split strategy for Best feature or Random feature
- max_features Number of features to search before Best splitter is found

Yes = 1 No = 7

Credit Score	Approved?
Low	No
Low	Yes
Low	No
12% 88%	

Yes = 7No = 1

Credit Score	Approved?
High	Yes
High	Yes
High	No
High	Yes

88%

12%

What should be the criterion?

es =	1	No =	7

Credit Score	Approved?
Low	No
Low	Yes
Low	No
12%	88%

Yes =	7 1	No =	1

Credit Score	Approved?
High	Yes
High	Yes
High	No
High	Yes
88%	12%

How to decide which Feature has the Best Split?

Entropy

What should be the criterion?

Our aim is to get lower entropy values

High entropy means impure data

How to decide which Feature has the Best Split?

Corrado Gini

$$Entropy = -1 * \sum_{i=1}^{n} p_i \log_2 p_i$$

Highly Impure Classes

$$Entropy = -1 * \sum_{i=1}^{n} p_i \log_2 p_i$$

$$S = -1 * (0.5*log_2 0.5 + 0.5*log_2 0.5)$$

$$Entropy = -1 * \sum_{i=1}^{n} p_i \log_2 p_i$$

$$S = -1 * (0.5*log_2 0.5 + 0.5*log_2 0.5)$$

$$= -1 * (0.5 * (-1) + 0.5 * (-1))$$

$$= 0.5 + 0.5$$

$$= 1$$

$$Entropy = -1 * \sum_{i=1}^{n} p_i \log_2 p_i$$

$$Entropy = -1 * \sum_{i=1}^{n} p_i \log_2 p_i$$

Gini

$$Gini = 1 - \sum_{i=1}^{n} p_i^2$$

Less value of Gini is better

Corrado Gini

Demo: Create ML model using Decision tree to predict if customer will buy the product.

Demo: Create ML model using Decision

tree to predict the income.

Ensemble Learning / Random Forest

Everyday Ensemble Learning

Is this price fair?

Construction Quality?

Location appropriate?

Appreciation of price?

Neighbourhood?

Broker or real estate portal to check fair price, price appreciation

Friend or colleague who stays nearby or stayed in the neighbourhood

Inspection by an architect for quality checks and structural defects.

Construction Quality?

Location appropriate?

Neighbourhood?

Is this price fair?

Construction Quality?

Location appropriate?

Neighbourhood?

Ensemble Learning

- All algorithms have errors
- Collective wisdom is higher than the individual intelligence
- Generate a group of base learners and combined result gives higher accuracy

- · Different base learners can use different,
 - Parameters
 - Sequence
 - Training sets etc
- Two major Ensemble Learning Methods
 - Bagging
 - Boosting

Bagging

- · Various models are built in parallel
- · All models vote to give the final prediction

Boosting

Train the Decision Tree in a sequence

Learn from the previous tree by focussing on incorrect observations

 Build new model with higher weight for incorrect observations from previous sequence

Boosted Model

Demo: Create ML model using Random Forest to predict if customer will buy the product.

