BANA 7051-002 Statistical Methods

Final Project on Professional Golfers Association Data

Submitted by:

Rashmi Prathigadapa

UC ID: M12853369

Introduction

Two avid golfers were having a debate over whether scores were lower on Sundays. One of the golfers believed that courses were made easier on Sunday for viewers who wanted to see low scores. The other golfer countered that all the pressure on the golfers on Sunday would surely raise their scores and, in fact, the television coverage would make things worse.

McDougall and Higgins discussed how they would use the data if they were accessible. Questions they raised and discussed included the following:

- Are scores different from the first to the last day?
- Are scores different across the four rounds?
- Are younger people doing better than who are older?
- Do long hitters have lower scores?
- How important is driving accuracy in determining one's score?
- Do people putt for 'Dough' and drive for 'show'?

Using a dataset from the 2011 season, various questions about golfers and golf tournament can be addressed. The dataset is available from the case author. It contained over 1000 responses made over four generations.

This data was modified to show 270 unique golfers and a summary of what they accomplished in all tournaments where they played four rounds.

Information on the dataset

PlayerNumber	Unique number identifying the player
Age	Player age
FedExCupPoints	FedEx Cup Points
Money	Average money won per tournament
Round1Score	Average strokes in Round 1
Round2Score	Average strokes in Round 2
Round3Score	Average strokes in Round 3
Round4Score	Average strokes in Round 4
Total Strokes	Average strokes per tournament
Average Drive	Average driving distance
Drive_Rank	Driving Rank
	Percent birdies made when green is hit in
Percent_Birdie_when_GIR	regulation
Percent_Fairways	Percent of drives in fairway
Percent_GIR	Percent greens hit in regulation
Putt_Round	Average Putts per round
Percent_10foot	Percent of Putts inside 10' made
Percent_Outside10	Percent of Putts outside 10' made

1. Are scores different from the first to the last day?

In order to say if the scores are different from the first to last day;

Checking assumptions:

- The two groups of data are dependent.
- The differences between round-1 and round-4 follow normal distribution.

Since these assumptions are satisfied, we will have to perform a Paired T-test on the round 1 and round 4 scores for each player. So, let's assume,

Ho: Scores are same on the first day and last day.

Ha: Scores are different on the first day and last day.

SAS Code:

```
data Work.Paired diffs ;
     set WORK.PGA;
     Difference =Round1Score - Round4Score;
     label Difference ="Difference: Round1Score - Round4Score";
run;
/* Test for normality */
proc univariate data=Work.Paired diffs normal mu0=0;
     ods select TestsForNormality;
     var _Difference ;
run;
/* t test */
proc ttest data=WORK.PGA sides=2 h0=0 plots(showh0);
     paired Round1Score*Round4Score;
run;
/* Clean up */
proc delete data=work. paired diffs ;
run;
```

Output:

From the output of the above code, we can say that the p value <0.0001, less than alpha value. Since the p value is significant, we fail to accept the null hypothesis. Therefore, there is difference in the scores of round-1 and round-4

				Test	s for	Norma	lity			
T	est				Sta	atistic			p Val	ue
S	hapiro	-Wilk		w		0.9523	393	Pr < W		<0.000
K	olmog	огоч-	-Smirno	ov D		0.0849	936	Pr > D		<0.010
С	ramer-	von l	Mises	W-	Sq	0.4758	884	Pr > W	-Sq	< 0.005
Α	nders	on-Da	arling	A-9	Sq.	2.9421	179	Pr > A	-Sq	< 0.005
		[Differenc	ce: Rou	nd1	Score -	Rou	nd4Sco	re	
	N			ce: Rou		Score -		nd4Sco		timum
	N 270	M			S		Mir		Max	imum 6.5000
	270	M -1.5	lean \$	Std Dev 2.3877	S	td Err 0.1453	Mir	nimum 3.0000	Max	6.5000
	270	-1.5	lean \$	Std Dev 2.3877 CL Mea	S	td Err).1453 Std [Mir -1: Dev	nimum	Max (6.5000

From the below graph, we can say that the difference in the scores of first and last rounds follow normal distribution.

The agreement plot below reveals that only very few players have higher round1scores than round4 scores.

The below QQ plot assesses the normality assumption.

2. Are young people doing better than those who are older?

Ho: Young people and old people have same scores.

Ha: Young people and old people have different scores.

SAS Code:

```
/* Test for normality */
proc univariate data=WORK.PGA_2 normal mu0=0;
    ods select TestsForNormality;
    class AGE_CATEGORY;
    var FedExCupPoints;
run;

/* t test */
proc ttest data=WORK.PGA_2 sides=2 h0=0 plots(showh0);
    class AGE_CATEGORY;
    var FedExCupPoints;
run;
```

Output:

	Tests for	Normality		
Test	St	atistic	p Val	ue
Shapiro-Wilk	W	0.948777	Pr < W	0.0126
Kolmogorov-Smirnov	D	0.105624	Pr > D	0.0892
Cramer-von Mises	W-Sq	0.179099	Pr > W-Sq	0.0094
Anderson-Darling	A-Sq	1.142507	Pr > A-Sq	0.0051
Variables	TotalStr	okoo (Totals	'trakan'	
AGE	_CATEG	okes (TotalS ORY = YOU		
AGE	_CATEG	ORY = YOU Normality	NG	
AGE	_CATEG	ORY = YOU		ue
AGE Test	_CATEG	ORY = YOU Normality	NG	ue 0.0003
AGE Test Shapiro-Wilk	_CATEG Tests for Sta	ORY = YOU Normality	NG p Val	
AGE	_CATEG Tests for Sta	Normality atistic 0.970108	p Val	0.0003

AGE_CATEGORY	Method	N	Mea	an St	td Dev	S	td Err	Mi	nimum	Maximum
OLD		61	284	.0	5.2285	0	.6694		269.0	298.0
YOUNG		199	283	.2	4.1215	0	.2922		269.0	296.0
Diff (1-2)	Pooled		0.869	94	4.4038	0	.6445			
Diff (1-2)	Satterthwaite		0.869	94		0	.7304			
AGE_CATEGORY	Method	Me	an	95% (CL Mea	n	Std E)ev	95% C	L Std Dev
OLD		28	4.0	282.7	28	5.4	5.22	285	4.4374	6.3653
YOUNG		28	3.2	282.6	28	3.8	4.12	215	3.7525	4.5717
Diff (1-2)	Pooled	0.86	94 -	0.3997	2.13	86	4.40	38	4.0544	4.8197
Diff (1-2)	Satterthwait	e 0.86	94 -	0.5831	2.32	19				
	Method	Varia	nces	D	F t V	alue	Pr:	- t		
	Pooled	Equal		25	8	1.35	0.1	785		
	Satterthwaite	Uneq	ual	84.10	9	1.19	0.2	373		
		Equa	lity of	Variar	ices					
	Method	Num D	F De	n DF	F Val	ıe	Pr > I	=		
	Folded F	6	n .	198	1.	31	0.016	1		

Conclusion:

From the output of the above code, we can say that the p value 0.01 < 0.05, less than alpha value so we refer to the unequal variances table. The probability of the unequal variances is 0.23 i.e., > 0.05. Therefore, we fail to reject the null hypothesis.

Therefore, the young people and old people have same scores.

3. Do Long hitters have low scores?

SAS Code:

```
ods graphics / reset width=6.4in height=4.8in imagemap;
proc sgplot data=WORK.PGA_2;
    scatter x=TotalStrokes y=Drive_rank /;
    xaxis grid;
    yaxis grid;
run;
ods graphics / reset;
```

Output:

There is only 13% correlation between Total scores and Drive rank. Therefore, we cannot say that long hitters have low score.

Let us also perform a t-test to validate the above results.

Ho: Long hitters have low scores.

Ha: Long hitters do not have low scores.

SAS Code:

```
/* Test for normality */
proc univariate data=WORK.PGA_1 normal mu0=0;
    ods select TestsForNormality;
    class drive_pop;
    var TotalStrokes;
run;

/* t test */
proc ttest data=WORK.PGA_1 sides=2 h0=0 plots(showh0);
    class drive_pop;
    var TotalStrokes;
run;
```

Output:

drive_pop	Method	N	M	ean	Std	Dev	Sto	d Er	r Min	imum	Maximum
long hitters		133	28	32.9	4.	1093	0.3	356	3	269.0	296.0
short hitters		127	28	33.9	4.0	3638	0.	413	8	269.0	298.0
Diff (1-2)	Pooled		-1.0	327	4.3	3889	0.	544	5		
Diff (1-2)	Satterthwaite		-1.0	327			0.	546	1		
drive_pop	Method	M	lean	95	% CL	Mea	n	St	d Dev	95% C	L Std Dev
long hitters		2	82.9	2	82.2	28	3.6	4	.1093	3.6677	4.6727
short hitters		2	83.9	2	83.1	28	4.7	4	.6638	4.1522	5.3203
Diff (1-2)	Pooled	-1.0	327	-2.1	049	0.03	396	4	.3889	4.0408	4.8033
Diff (1-2)	Satterthwaite	-1.0	327	-2.1	082	0.04	129				
	Method	٧	arian	ces	D	F f	Valu	ie	Pr > t		
	Pooled	E	qual		25	8	-1.9	0	0.0590		
	Satterthwait	e U	Inequa	al	250	6	-1.8	9	0.0598		
		Е	qualit	ty of	Varia	nces					
	Method	Nun	n DF	Dei	n DF	F١	/alue		Pr > F		
	Folded F		126		132		1.29	0	.1512		

Conclusion:

The probability is 0.15 > 0.05 therefore, we refer to the equal variances. The equal variances value is 0.059 > 0.05. Therefore we can say that we accept null hypothesis and long hitters have low scores.

	Tests for	Normality		
Test	_	atistic	p Val	ue
Shapiro-Wilk	w	0.974506	Pr < W	0.0133
Kolmogorov-Smirnov	D	0.075115	Pr > D	0.0658
Cramer-von Mises	W-Sq	0.18164	Pr > W-Sq	0.0091
Anderson-Darling	A-Sq	1.10687	Pr > A-Sq	0.0068
		okes (Totals		
dri	ve_pop =	short hitte		
dri	ve_pop =			ue
dri Test	ve_pop =	Short hitter	rs	ue <0.0001
dri Test Shapiro-Wilk	ve_pop =	Normality	p Val	
dri	Tests for Sta	Normality atistic 0.947298	p Val	<0.0001

4. How important is driving accuracy in determining one's score?

1 With Variables:	Percent_Fairways
1 Variables:	TotalStrokes
Pearson Correlation	Coefficients, N = 260
Pearson Correlation	Coefficients, N = 260 TotalStrokes
Pearson Correlation	

There is 30% correlation between the variables Percent_Fairways and TotalStrokes.

Conclusion:

From the graph we can say that the population is concentrated at higher percentages of percent_fairways and at scores greater than 280. Therefore, higher driving accuracy leads to scores between 280-290 i.e., lower scores.

Appendix:

1. Are scores different from the first to the last day?

Code:

```
data Work.Paired diffs ;
     set WORK.PGA;
     Difference =Round1Score - Round4Score;
     label _Difference_="Difference: Round1Score - Round4Score";
run;
/* Test for normality */
proc univariate data=Work.Paired diffs normal mu0=0;
     ods select TestsForNormality;
     var Difference ;
run;
/* t test */
proc ttest data=WORK.PGA sides=2 h0=0 plots(showh0);
     paired Round1Score*Round4Score;
run;
/* Clean up */
proc delete data=work. paired diffs ;
run;
```

2. Are young people doing better than old?

Sas code:

```
proc univariate data=WORK.PGA_2 normal mu0=0;
    ods select TestsForNormality;
    class AGE_CATEGORY;
    var FedExCupPoints;

run;

/* t test */
proc ttest data=WORK.PGA_2 sides=2 h0=0 plots(showh0);
    class AGE_CATEGORY;
    var FedExCupPoints;

run;
```

3. Do Long hitters have low scores?

Sas code:

```
/* Test for normality */
proc univariate data=WORK.PGA_1 normal mu0=0;
    ods select TestsForNormality;
    class drive_pop;
    var TotalStrokes;
run;

/* t test */
proc ttest data=WORK.PGA_1 sides=2 h0=0 plots(showh0);
    class drive_pop;
    var TotalStrokes;
run;
```

Coclusion:

From our analysis on various questions, we have come to multiple conclusions and they are mentioned at the end of the each question.