1. Einführung und Grundlagen

- 1.1 Architektur und Struktur des Internets
- 1.2 Physikalische Übertragungsmedien
- 1.3 Multiplexverfahren
- 1.4 Grundlegende Vermittlungsverfahren
- 1.5 Protokoll-Architektur und Schichtenmodell des Internets

1. Einführung und Grundlagen

- 1.1 Architektur und Struktur des Internets
- 1.2 Physikalische Übertragungsmedien
- 1.3 Multiplexverfahren
- 1.4 Grundlegende Vermittlungsverfahren
- 1.5 Protokoll-Architektur und Schichtenmodell des Internets

Internet und seine Komponenten

End Systems (Hosts)

 Millionen von verbundenen PCs und Servern auf denen Anwendungsprogramme laufen

IPC Server Wireless Smartphone

Communication Links

Kupfer, Faser, Funk, Satellit

Wired Links

Wireless inks

Packet Switches

- Weiterleitung von Paketen
- Router und Switche

Internet Service Provider (ISP)

Bieten Netzzugang und Dienste

Internet und seine Netze

Internet: "Netzwerk aus Netzwerken"

- miteinander verbundene ISPs
- öffentliches Internet
- privates Intranet (corporate networks)
- lokale, regionale und weltweite Netzwerke
- teilweise hierarchisch organisiert

Protokolle

 steuern das Senden, den Empfang und die Reihenfolge von Dateneinheiten (messages or protocol data units)

Internet Standards

- RFC: Request for comments
- IETF: Internet Engineering Task Force

Netzwerkstruktur

Network Edge

Hosts und ihre Anwendungen am "Netzwerkrand"

Zugangsnetze (Access Network)

- Residential Access Networks
 - Anschluss der Hosts an einen Router
- Corporate/Institutional Access Networks
 - Zugang für Firmen und Institutionen (TU-BS)
- Mobile Access Networks
 - WLAN, EDGE, LTE,...

Core Netzwerk (Backbone)

- Netzwerk von verbundenen Routern
- Netzwerk von Netzwerken

Network Edge - Kommunikationsmodelle

Client / Server Model

- Server
 - "always-on" Host (Datenzentrum)
 - permanente IP/DNS-Adresse
- Clients:
 - kommunizieren mit Server
 - nicht immer mit Internet verbunden
 - benötigen keine festen Adressen

Peer-to-Peer Model

- Endsysteme (Peers) kommunizieren direkt miteinander
 - benötigen gegenseitige Adressen
- Peers sind nur zeitweilig verbunden
- Minimale (keine) Benutzung dedizierter Server
 - z. B. Gnutella, BitTorrent,...

Netzwerktypen - geographische Klassifizierung

Distanz zwischen Endsystemen	lokalisiert	in Netztyp
10 m 100 m 1000 m	Raum Gebäude Gelände	Lokale Netze Local Area Networks (LAN)
10 km	Stadt Stadtnetze Metropolitan Area Networks (MAN, Metro)	
100 km 1000 km		Fernnetze Wide Area Networks WAN)

Verbundnetze (Internetwork) <-

- Kopplung unterschiedlicher Netze auf der Basis von Protokollen
- Das Internet als wichtigstes Beispiel

Internet und seine Netzwerke - Provider-Struktur

- Tier-1" ISPs
 - sind "Global ISPs" und haben nationale bzw. internationale Abdeckung
 - z. B. GEANT, MCI, Sprint, AT&T
 - sind in der Regel kommerzielle ISPs

Tier-1 Provider interconnect also at public IXPs (network access points (NAPs))

Internet und seine Netzwerke - Struktur (2)

- "Tier-2" ISP
 - kleinere ISPs (Regional ISPs)
 - ist mit einem oder mehreren Tier-1 ISPs verbunden
 - kann auch mit anderen Tier-2 ISPs verbunden sein

Quelle: J. Kurose, K. Ross "Computer Networking: A Top Down Approach Featuring the Internet"

Internet und seine Netzwerke - Struktur (3)

- "Tier-3" ISPs und lokale Access ISPs
 - Last hop ("Access") Netzwerk (den Endsystemen am dichtesten)

Internet und Content Provider Netzwerke

Content Provider Netzwerke

 Internationale Unternehmen (e.g., Google, Microsoft, ...) betreiben ihre eigenen Netzwerke, um Services und Content n\u00e4her an Endnutzer zu bringen

Access` Tier 3 **ISP** Tier 3 **ISP** Tier 3 Access **ISP** ISP **ISP** Tier-2 ISP Tier 1 ISP Access Content Provider Network **ISP** Access **ISP** Tier 1 ISP Tier 1 ISP Tier 3 Tier-2 ISP **ISP** Tier-2 ISP Tier-2 ISP Access ISP

1. Einführung und Grundlagen

- 1.1 Architektur und Struktur des Internets
- 1.2 Physikalische Übertragungsmedien
- 1.3 Multiplexverfahren
- 1.4 Grundlegende Vermittlungsverfahren
- 1.5 Protokoll-Architektur und Schichtenmodell des Internets

Übertragungsrate

- Local host überträgt Pakete in Zugangsnetze mit einer Übertragungsrate (transmission rate) R oder $v_{\scriptscriptstyle B}$
 - Auch durch Linkkapazitäten oder Link Bandwidth gekennzeichnet

Packet Transmission Delay time needed to transmit
$$L$$
-bit packet into link $t_T = t_T = t_T = t_T = t_T = t_B$

Übertragungsmedien: Kupferader

Twisted Pair (Kupferdoppelader)

- verdrilltes, isoliertes Adernpaar
- Ursprünglich im Anschlussbereich für analoge
 Sprachsignale gedacht (Frequenzbereich bis 4 kHz).

- DSL mit zwischen 1 Gbit/s (G.Fast, 50m) und 1,4 Mbit/s (ADSL2+, 5 km)
- Bis zu 2000 Doppeladern (bei Telefonie) in einem gemeinsamen Kabel

LAN-Bereich

- 4 paariges Kabel: UTP / STP: Unshielded/Shielded Twisted Pair
 - CAT 5 bis 100 MHz (für 1 Gbps)
 - CAT 6 bis 500 MHz (für 10 Gbps)
 - CAT 7 bis 1 GHz (für 10 Gbps)
 - erzielbare Datenrate abhängig von Länge

typisch bis 100m (5m+90m+5m) spezifiziert

Übertragungsmedien: Koaxialkabel

- Ebenfalls zweiadrig, aber eine Kupferseele und eine Kupferummantlung
- Ausgelegt für die Übertragung höherer Frequenzen bis zu mehreren GHz
- Bandbreite typisch 300 MHz bei Kabelfernsehanlagen
- Regenerator für die Signalregeneration alle 1 10 km
- erzielbare Bitfehlerwahrscheinlichkeit: typisch 10 -7

- 1: Kupferader
- 2: Isolierung
- 3: Abschirmung und Außenleiter
- 4: Schutzhülle

Übertragungsmedien: Glasfaser

- Höchste Übertragungsraten mit sehr geringer Dämpfung
 - störarm, unempfindlich gegen elektromagnetische Beeinflussung
 - erfordert jedoch elektrisch/optische Wandlung.
- Wavelength Division Multiplexing, WDM
 - heute bis zu 40 Wellenlängen gleichzeitig über eine Faser
 - Datenrate typisch 25 Gbit/s bis 100 Gbit/s je Wellenlänge
 - neuer Standard für >= 400Gbit/s
- Aktuelle Forschung: Optical OFDM Technik "wireless meets optical"
 - mehr als 1000 optische Sub-Träger parallel auf einer Faser

1. Einführung und Grundlagen

- 1.1 Architektur und Struktur des Internets
- 1.2 Physikalische Übertragungsmedien
- 1.3 Multiplexverfahren
- 1.4 Grundlegende Vermittlungsverfahren
- 1.5 Protokoll-Architektur und Schichtenmodell des Internets

Prinzip des Multiplexens

- Ziel: Mehrfachnutzung des gemeinsamen Mediums (Ressource)
 - kleinere Portionen des Mediums werden parallel genutzt
 - dies wird als Multiplexen bezeichnet und durch Multiplexer (MUX) und Demultiplexer (DEMUX) realisiert
- Multiplexen ist in vier Dimensionen möglich
 - Raum (r), Frequenz (f) und Code (c) und Zeit (t)
 - → im Rahmen dieser Vorlesung wird vor allem die Zeit betrachtet

Asynchronous Time Division Multiplex, ATDM

- Daten einer Quelle werden nur bei Bedarf übermittelt (anisochron)
 - wird auch als **statistisches** Multiplexen bezeichnet
 - variable Übertragungsrate für jede Verbindung möglich
- Daten werden in Paketen (oder Rahmen) übertragen.
- Bei belegter Multiplexleitung müssen andere Pakete warten
- Effiziente Ausnutzung der Multiplexleitung
 - überträgt eine Quelle keine Daten, können andere die Leitung nutzen
 - → Multiplexgewinn

- Feste periodische Zuordnung (isochron) einer Quelle zu einem Zeitschlitz
 - wird auch als **statisches** Zeitmultiplexen bezeichnet
 - feste Übertragungsrate für jeden Zeitschlitz (Kanal)
- Nicht belegte Zeitschlitze sind von anderen Quellen nicht nutzbar
- Multiplexer und Demultiplexer müssen zeitlich (Bit) synchron arbeiten
- Mehrere Zeitschlitze werden zu einem Zeitrahmen zusammengefasst
 - SYN-Zeitschlitz dient zur Synchronisation des (Zeit)-Rahmens

1. Einführung und Grundlagen

- 1.1 Architektur und Struktur des Internets
- 1.2 Physikalische Übertragungsmedien
- 1.3 Multiplexverfahren
- 1.4 Grundlegende Vermittlungsverfahren
- 1.5 Protokoll-Architektur und Schichtenmodell des Internets

Verzögerungsdauern und Laufzeit

Die Zeitdauer, die eine Dateneinheit von der Quelle zur Senke benötigt, besteht aus den folgenden wesentlichen Komponenten:

Ausbreitungsverzögerung (Propagation Delay) :

$$\tau = d / v_A$$

$$\rightarrow typisch 10^{-6} ... 0.1s$$

Ausbreitungsgeschwindigkeit v_A

$$v_A = 3.0 \times 10^8 \text{ m/s im Vakuum}$$

= 2.0 x 10⁸ m/s in Glasfaser

■ Übertragungsverzögerung (Transmission Delay) : $t_T = \text{Anzahl Bits L / v}_R[s]$

Übertragungsgeschwindigkeit v_B oder Bitrate (Bandbreite) R [bit/s, bps]

- Bearbeitungsdauer im Netzknoten t_s
 - Queuing Delay im Puffer und Processing der Daten im Knoten (Router)

Circuit Switching (CS) (Leitungsvermittlung)

Prinzip:

- Durchschalten eines "physikalischen" Kanals (circuit). Ein Kanal kann sein:
 - Zeitschlitz im STDM System
 - Frequenz im FDM System
 - Wellenlänge im WDM System

Verbindungsaufbau:

- Es wird ein Weg durch das Netz zum Ziel gesucht (Routing)
- Ressourcen werden belegt

Informationstransfer:

- Verbindung benutzt w\u00e4hrend ihrer Dauer
 - einen oder mehrere parallele Kanäle
 - eine feste Datenrate
 - konstante Übertragungsdauer

Verbindungsabbau:

- Abbau der Verbindung
- Freigabe belegter Ressourcen

Beipiel: Optische Netzwerke

Store-and-Forward Packet Switching

- Packet Switching (PS)
 - Daten werden in Pakete begrenzter Größe zerlegt und übertragen
 - Pakete werden abschnittsweise (Hop) von Router zu Router übertragen
- Store and Forward
 - Pakete werden vollständig empfangen und zwischengespeichert (store) bevor sie weiter übertragen (forward) werden.

Packet Switching

- Paket (Header, Trailer und Nutzlast (Payload)) hat eine maximale Länge (# Bytes).
 - Der Header enthält Weginformationen (Adressen) zum Ziel bzw. Zwischenzielen
 - Die Nutzlast enthält Nutzinformationen
 - Der Trailer existiert in der Link Layer und bei speziellen Protokollen
- Routing: bestimmt den Weg des Pakets vom Quell- zum Zielknoten
- Forwarding: Weiterleiten von Paketen vom Eingang des Knotens zum entsprechenden Ausgang des Knotens

Virtual Circuit (VC) Packet Switching

Verbindungsaufbau:

- Routing für Setup Pakete anhand der Quell- und Zieladresse
- Der Verbindung wird in jedem Knoten eine virtuelle (kurze) Kanalnummer zugeordnet, die den Weg kennzeichnet.
- Aufbau eines virtuellen Pfades

Informationstransfer:

- Datenpakete entlang des virtuellen Pfades.
- Datenpakete enthalten nur virtuelle Kanalnummer
- Alle Pakete folgen gleichem Weg

Verbindungsabbau:

- durch spezielles Release Pakete
- durch Timeout (Soft State)

Beispiele: SDN, MPLS

VC Implementierung

- Ein Virtual Circuit (VC) ist definiert durch
 - einen bi- oder unidirectionalen Pfad von einer Quelle zu einem Ziel
 - VC-Identifier (VCI, virtuelle Kanalnummern), jeweils ein VCI je Link des Pfades
 - Einträge in Forwarding-Tabelle des Vermittlungsknotens (Router)
- VCIs können auf jedem Link geändert werden
- Router speichert Zustandsinformationen für jeden VC
 - Forwarding-Tabelle, belegte Ressourcen wie Bandbreite, Bufferplatz

Datagramm Switching

Kein Verbindungsaufbau

Adressen in jedem Paket

Transfer von Datenpakete

- Routing kann sich für jedes Paket ändern
- Je Paket anderer Weg möglich
 - Paketreihenfolge nicht gesichert

Vorteile

- keine verbindungsbezogeneInformation in Knoten gespeichert
- Netzknoten weniger komplex
- höhere Geschwindigkeiten
- höhere Protokolle robust gegenüber Ausfällen von Netzknoten

Nachteile

- Paketreihenfolge muss ggf. wiederherstellt werden
- Verzögerungszeiten variabel

Beispiel: Internet (IP)

Datagramm versus VC Switching

Datagramm (Internet)

- Ursprung im ARPAnet
- Datenaustausch zwischen Computern:
 - "Elastic Service", keine strikten Zeitbedingungen
- "Smart" End Systems (Computer)
 - adaptive Anwendungen mit Kontroll- und Fehlerkorrekturmechanismen
 - einfache Technik im Netz, Komplexität am "Netzrand"
- Viele Linktypen
 - verschiedene Charakteristiken
 - einheitliche Quality of Service (QOS) schwer realisierbar

Virtual circuits (SDN, MPLS)

- Ursprung in der Telefonie
- Menschliche Konversation:
 - strikte Zeitvorgaben, hohe Anforderung an Zuverlässigkeit
 - Garantierter QOS
- Einfachere Endsysteme
 - Telefone
 - Komplexität im Netzwerk
- Netzressourcen (Link Bandbreite, Buffer im Router) werden je VC zugeteilt (dedicated resources = predictable service)
- Heute: Software Defined Neworking (SDN) or MPLS vereinigt beide Welten

Paket Switching - Processing and Queueing

- Paketbearbeitung im Router
 - Überprüfung auf Bitfehler
 - Protokollbearbeitung
 - Forwarding
 - Router bearbeitet heute Pakete mit Leitungsgeschwindigkeit

- Queueing im Router
 - Paket wartet bis Ausgangslink frei ist
 - Wartedauer abhängig von Auslastung

Paket Switching - Verluste

- Die Queue im Router hat nur endlich viele Bufferplätze
- Falls bei Ankunft eines Paketes alle Bufferplätze belegt sind, wird das Paket gelöscht → Paketverlust
- Paketverluste treten vorzugsweise bei Überlast (Congestion) auf
 - Bei Überlast kommen die Pakete schneller in der Queue an, als sie übertragen werden können

Paket Switching - Durchsatz

- Durchsatz (Throughput)
 - Ende-zu-Ende Rate (bps, [bits/s]) die zwischen dem Sender und dem Empfänger erzielt werden kann
 - Unmittelbare (Instantaneous): Rate zu einem bestimmten gegebenen Zeitpunkt
 - Mittlere (Average): Rate über einen längeren Zeitraum

Packet versus Circuit Switching

- Übertragungsleitung (Link): $C = 1920 \text{ kbit/s}, \tau = 0$
- Je Quelle
 - nur 10 % der Zeit aktiv
 - 64 kbit/s Datenrate falls aktiv
- Circuit Switching
 - Je Quelle ein Kanal zu v = 64 kbit/s
 - N = C / v = 30 Quellen gleichzeitig
 - Kanal belegt auch falls Quelle keine Daten erzeugt
 - keine Datenverluste
- Packet Switching
 - N = 65 Quellen
 - Paketverlustwahrscheinlichkeit: 0.0022
 - Wahrscheinlichkeit(> 30 Quellen gleichzeitig aktiv) = 0.025
 - → Aber: hohe Paketverzögerungszeit möglich

1. Einführung und Grundlagen

- 1.1 Architektur und Struktur des Internets
- 1.2 Physikalische Übertragungsmedien
- 1.3 Multiplexverfahren
- 1.4 Grundlegende Vermittlungsverfahren
- 1.5 Protokoll-Architektur und Schichtenmodell des Internets

Internet Dienstmodell und Entwurfsprinzipien

Best Effort Service

"IP makes every effort to deliver datagrams, but it makes no guarantees"

Entwurfsprinzipien (RFC 1985)

- Zustandslose Router
 - Router im Internet benötigen keine "verbindungsbezogenen" Informationen
- Dezentralisierte Kontrolle
 - keine globalen Kontrollmechanismen im Internet
- Heterogene Zugangsnetze berücksichtigen
 - "IP should run over anything"

TCP/IP-Referenzmodell

Vergleich der Referenzmodelle

