Real Analysis I: Assignment 1

Chris Hayduk

September 1, 2019

Problem 1.

Suppose $f: X \to Y$ is onto.

Let $B \subset Y$ be nonempty. Thus, $\exists b \in B$.

Suppose $f^{-1}(B) = \emptyset$. This implies that there is no $x \in X$ such that f(x) = b.

However, by the definition of onto, $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y.$ Since $b \in B \subset Y$ and f is assumed to be onto, this definition applies.

Thus, we have a contradiction and $f^{-1}(B) \neq \emptyset$.

Problem 2.

Let \mathscr{A} be a collection of sets and assume properties (ii) and (iii) from the question.

Let $A, B \in \mathcal{A}$. By property (ii), $\tilde{A}, \tilde{B} \in \mathcal{A}$ as well.

Thus, by property (iii),

$$\tilde{A}\,\cap\,\tilde{B}\in\mathscr{A}$$

Then, by (ii) and DeMorgan's Laws, we have,

$$\widetilde{\tilde{A} \cap \tilde{B}} \in \mathcal{A}$$

$$\Longrightarrow \widetilde{\tilde{A}} \cup \widetilde{\tilde{B}} \in \mathcal{A}$$

$$\Longrightarrow A \cup B \in \mathcal{A}$$

Thus, by properties (ii) and (iii), whenever $A, B \in \mathcal{A}$, $A \cup B \in \mathcal{A}$ as well.

Problem 3.

Let \mathscr{F} be the family of all σ -algebras that contain the collection \mathscr{C} of subsets of X.

We know that P(X) is an algebra containing \mathscr{C} . Let there be a sequence of sets (X_i) in P(X). Since P(X) contains only possible subsets of X, then $x \in X_k \implies x \in X$ for every $X_k \in (X_i)$. Hence, every element of each set in the sequence (X_i) is contained in X.

Thus, if we take the union of all sets in the sequence (X_i) , every element of $\bigcup_{i=1}^{\infty} X_i$ is an element of X. In other words,

$$\bigcup_{i=1}^{\infty} X_i \subset X$$

Since P(X) contains all possible subsets of X,

$$\bigcup_{i=1}^{\infty} X_i \subset P(X)$$

Since this holds for an arbitrary sequence (X_i) , we know that P(X) is a σ -algebra. Thus, $P(X) \in \mathscr{F}$ and \mathscr{F} is nonempty.

Let
$$\mathscr{A} = \cap \{\mathscr{B} : \mathscr{B} \in \mathscr{F}\}$$

Since each $\mathscr{B} \in \mathscr{F}$ contains \mathscr{C} , then \mathscr{C} is a subcollection of \mathscr{A} .

If
$$A, B \in \mathcal{A}$$
, then $\forall \mathcal{B} \in \mathcal{F}, A, B \in \mathcal{B}$.

Since each \mathscr{B} is a σ -algebra, then $A \cap B$, $A \cup B \in \mathscr{B} \ \forall \mathscr{B} \in \mathscr{F}$. So we see that $A \cap B$ and $A \cup B \in \mathscr{A}$.

Similarly, given an $A \in \mathcal{A}$, $A \in \mathcal{B} \ \forall \mathcal{B} \in \mathcal{F}$.

Since each \mathcal{B} is a σ -algebra, then $X \setminus A \in \mathcal{B}$ and because this holds $\forall \mathcal{B} \in \mathcal{F}$, then $X \setminus A \in \mathcal{A}$ as well.

Therefore, \mathscr{A} is an algebra.

Now let there be a sequence of sets $(A_i) \in \mathcal{A}$. We have that $\forall \mathcal{B} \in \mathcal{F}, (A_i) \in \mathcal{B}$.

Since every $\mathscr{B} \in \mathscr{F}$ is a σ -algebra, $\bigcup_{i=1}^{\infty} A_i \subset \mathscr{B} \ \forall \mathscr{B} \in \mathscr{F}$. Thus, we see that $\bigcup_{i=1}^{\infty} A_i \subset \mathscr{A}$.

Hence, \mathscr{A} is a σ -algebra.

Now, let \mathscr{B} be a σ -algebra containing \mathscr{C} . Then $\mathscr{B} \in \mathscr{F}$.

Since $\mathscr{A} \subset \bigcap_{\mathscr{B} \in \mathscr{F}} \mathscr{B}$, then $\mathscr{A} \subset \mathscr{B}$, so \mathscr{A} is the smallest such σ -algebra.