Div Operator

Rylan W. Yancey

10/1/2023

Definition & Gradient

The Division Operator is defined as $f(u,v) = \frac{u}{v}$. To find the gradient w.r.t x and y, we will use the quotient rule of derivatives, which is defined as:

$$\frac{\delta}{\delta x}(\frac{u}{v}) = \frac{(u\frac{\delta}{\delta x})v - u(v\frac{\delta}{\delta x})}{v^2}$$

To find the gradient w.r.t u, we will set u as our x and treat v as constant, which gives us the following:

$$\frac{\delta}{\delta u}(\frac{u}{v}) = \frac{v\frac{\delta u}{\delta u} - u\frac{\delta v}{\delta u}}{v^2} = \frac{v - u\frac{0}{\delta u}}{v^2} = \frac{v}{v^2} = \frac{1}{v}$$

To find the gradient w.r.t v, we will set v as our x and treat u as constant, which gives us the following:

$$\frac{\delta}{\delta v}(\frac{u}{v}) = \frac{v\frac{\delta u}{\delta v} - u\frac{\delta v}{\delta v}}{v^2} = \frac{v\frac{0}{\delta v} - u}{v^2} = -\frac{u}{v^2}$$

Therefore, we can say that the gradient w.r.t u is $\frac{1}{v}$, and the gradient w.r.t v is $-\frac{u}{v^2}$.