Событийный алгоритм:

Выполняет только то, где возможны изменения, а не повторяет все, как итерационный алгоритм (то есть просчитываются только те элементы, на входах которых произошли изменения). Для этого нужна таблица будущих событий (ТБС) и таблица текущих событий (ТТС).

Алгоритм Начало установить начальное состояние схемы Подать нулевой входной набор Промоделировать схему по любому итерационному $\kappa := 1$ L:=1Да выходной сигнал L-тый изменил значение Нет последователи в Да Нет L=mL:=L+1ТБС перепис.0 вTTC ТБС:=0 j := 1i:=1R[j,TTC[i]] := F(x,y)R[j,TTC[i]]= R[j-Нет Да последователи в ТБС Да Нет i:=i+ТБС<>0 Да k=n

На одном наборе меняют значение 30-40% элементов.

 $k{:=}k{+}1$

Пример:

задержки Тили = 1 Ти = 2 Тили-не = 3

a	b	c	d	e	f	k	1	1	2	3	4	5	6	7	8	9	10	11	Т	TTC	ТБС	
								0	0	0	0	0	0	0	0	0	0	0				
1	0	1	1	0	0	1	0	0	1	0	1	1	0	0	1	0	0	0			1-4-6-10	
1	1	1	0	0	1	0	0	1			0		0				0		0	1-4-6-10	2-5	
									0			0							2	2-5	3-7-3	
										1				0					5	3-7		

Модели элементов.

Элементом называется конструктивно и функционально законченная часть устройства, не подлежащая дальнейшему расщеплению. В общем виде логические элементы описываются $E = \{\phi, A, \Delta\}$, где ϕ - функция, A – алфавит, Δ - динамические параметры. Обязательно нужно задать ϕ . Если Δ не задано, то модель – статическая. Если же элемент задан только $E = \{\phi\}$, то $A = \{0, 1\}$ – это. Любой элемент можно представить функциональным и динамическим блоком:

Такая модель предполагает временные характеристики. Если нет временных, то это аналитическая статическая модель (Л -модель).

Самое общее описание задержек — это задержка срабатывания. Δ - блок можно представить в виде задержки срабатывания, если $y(t+t\Delta)=f(x(t))$. Задержка срабатывания $t\Delta$ предполагает, что модель элемента обладает совершенной задержкой, т.е. временем переключения из одного состояния в другое. Для увеличения адекватности блок Δ может быть расширен с учетом времени фронта и задержки распространения сигнала с входа на выход: $t\Delta = t$ фр+ tp. Т.к. передний и задний фронт отличаются по длительности, то $t\Delta = t$ фр0+ t фр10+ t tp01+ t tp10.

Это ЛД (логико - динамическая) модель.

Необходимо учитывать инерционные свойства:

Тогда $t\Delta = t \phi p01 + t \phi p10 + tp01 + tp10 + tu01 + tu10$. Это ЛИД – модель.