Es01A: Uso dello strumento Analog Discovery 2.

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

8 ottobre 2021

2 Utilizzo del canale di alimentazione e del multimetro

2.d Accensione diodo

La tensione di alimentazione è stata variata nell'intervallo tra $0.5\,\mathrm{V}$ e $5\,\mathrm{V}$

Si osserva che la luminosità del diodo è proporzionale alla tensione erogata dal generatore, una volta superata una tensione di soglia per cui il LED inizia a emettere luce di intensità osservabile. La tensione di soglia varia per i diversi colori; in particolare $V_{\rm thr}$ risulta proporzionale alla frequenza del colore di luce emessa. Dunque rosso < giallo < verde < blu.

2.e Misura tensione

Utilizzando il multimetro si misura la tensione ai capi del diodo e si ottiene:

V+	σ V+	VD	$\sigma \text{ VD}$	I(R1)	σ I(R1)

Tabella 1: (2.e) Tensione e corrente ai capi del diodo. Tutte le tensioni in V.

3 Uso generatore di forme d'onda

Inserire commento sulle onde generate, ed eventualmente screenshot.

4 Oscilloscopio

4.e Uso del trigger

Inserire commento sulle prove effettuate

4.f Misura tensione massima ai capi del diodo

La tensione massima ai capi del diodo misurata con i cursori risulta essere $V_{\text{MAX}} = (\pm) V$. La funzione di misura automatica fornisce il valore $V_{\text{AUTO}} = xx V$

Inserire commento sulla accuratezza della misura.

Figura 1: (3.b) Onda quadra in ingresso $f \approx 10 \text{Hz}$ al diodo

Figura 2: (4.e) Relazione tra trigger e segnale

5 Caratteristica del diodo

5.c Caratteristica del diodo

5.d Fit curva del diodo

6 Partitore

6.b Partitore con resistenze da 1k

Si realizza un partitore con resistenze da $1\,\mathrm{k}\Omega$. Valori misurati con il multimetro: $R1=993\pm8\,\Omega$, $R2=993\pm8\,\Omega$ I valori di attenuazione attesi per il partitore risultano compatibili con quelli misurati per tutti i valori di tensione compresi nell'intervallo esplorato $(1-4\,\mathrm{V.})$

6.d Partitore con resistenze da circa 1M

Si realizza un partitore con resistenze da 1 M Ω . Valori misurati con il multimetro: R1= \pm 0.008 M Ω , R2= \pm 0.008 M Ω

La tensione in uscita dal partitore $R_1 + R_2$ risulta apprezzabilmente inferiore rispetto al suo valore atteso. Questo è dovuto al comportamento non ideale del voltmetro, per cui quando la sua impedenza in ingresso $10 \text{M}\Omega$

Figura 3: (5.c) Caratteristica corrente-tensione del diodo in modalità XY

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1.000					
2.000					
3.000					
4.000					

Tabella 2: (6.b) Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

(nom.) è paragonabile a quella della resistenza del partitore a cui si trova in parallelo durante la misura, ne abbassa la resistenza effettiva $R_2 \mapsto R_{\text{eff}} = (\frac{1}{R_{\text{in}}} + \frac{1}{R_2})^{-1}$. Di conseguenza aumenta la corrente che passa per il partitore, dunque la caduta di tensione ai capi di R_1 , per cui diminuiscono la tensione in uscita e quindi il valore di attenuazione, come osservato.

6.e Resistenza di ingresso del multimetro

Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_{IN}} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2}) \tag{1}$$

Con i dati con resistenze da 1k si ottiene

$$R_1/R_{IN} = \pm \rightarrow R_{IN} > k\Omega$$
 (2)

Con i dati con resistenze da 1M si ottiene

$$R_1/R_{IN} = \pm \longrightarrow R_{IN} = (\pm \pm)M\Omega$$

Quando la resistenza del multimetro $R_{IN} \gg R_2$ come visto al punto 6.b si ha $A \approx A_{\rm exp}$, per cui dalla (1)

$$\frac{1}{A} - \frac{1}{A_{\rm exp}} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2}) = \frac{R_1}{R_{IN}}$$

si vede come (a causa dell'incertezza sulla stima di R_{IN} dalla propagazione dell'errore sulla differenza) non sia possibile dare una misura soddisfacente del suo valore. Ne possiamo però dare una stima dal basso:

$$\frac{1}{A} \geq \frac{R_1}{R_{IN}} \implies R_{IN} \geq AR_1$$

come in (2).

Figura 4: (2.b) Grafico I_D vs. V_D e fit all'equazione di Schockley

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN

Tabella 3: (6.d) Partitore di tensione con resistenze da circa 1M. Tutte le tensioni in V.

7 Misure di tempo e frequenza

7.e Misure di frequenza

Misure con onda sinusoidale

Periodo T (s)	$\sigma T (s)$	Frequenza f (Hz)	σ f (Hz)	Misura oscilloscopio (Hz)	Differenza (Hz)

Tabella 4: (7.e) Misura di frequenza di onde sinusoidali e confronto con misurazione interna dell'oscilloscopio

7.f Misure di duty cyle

Misure con onda quadra

7.g Tempo di salita e di discesa

Misure su onda quadra

$$f = ($$
 \pm $)$ MHz, $t_{\text{salita}} = (35 \pm 6) \text{ns}, t_{\text{discesa}} = (37 \pm 6) \text{ns},$

La misura è un po' balorda, visto che il tempo di salita/discesa è dello stesso ordine di grandezza del periodo di

Inserire commento su altre caratteristiche del segnale ed eventualmente uno screenshot campionamento $^1\!/f_s = \Delta t \approx 10 \mathrm{ns}$.

Periodo T (s)	$\sigma T (s)$	Durata alto t_H (s)	σt_H (s)	Duty cycle D(%)	σ D (%)

Tabella 5: (7.f) Misura di duty cycle per onde quadre

8 Conclusioni e commenti finali

Inserire eventuali commenti e conclusioni finali
--

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.