Key ID: 019

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	1.22	1.37	1.33	1.14	1.22	1.29
sample 2:	1.21	1.63	1.1	1.01	1.07	0.81

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

1.	(a)				5	.[0	0	0
	(b)				2	.[5	7	0
	(c)				0	.[1	1	7
	(d)			-	0	.[4	2	1
	(e)				0	.[1	8	1
	(f)				1	.[0	2	2
	(g)				0	.[2	0	0
	(h)				1	.[0	0	0

(i) **no**

Key ID: 019

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.26$$

$$\overline{X_2} = 1.14$$

$$s_1 = 0.0842$$

$$s_2 = 0.275$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 6) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.57$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.0842)^2}{6} + \frac{(0.275)^2}{6}} = 0.117$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.421, 0.181)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.14 - 1.26) - 0}{0.117} = -1.02$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 1.02$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.2 < p$$
-value < 1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

Thus, we retain the null hypothesis. Also notice the confidence interval does contain 0.

- (a) 5
- (b) 2.57
- (c) 0.117
- (d) -0.421
- (e) 0.181
- (f) 1.022
- (g) 0.2
- (h) 1
- (i) no