

Submodular maximization for random streams

Paul Liu, Aviad Rubinstein, Jan Vondrák, Junyao Zhao NeurIPS 2021

Aviad Rubinstein Jan Vondrák Junyao Zhao

Submodular functions

• A function f is submodular if

$$f(S \cup \{e\}) - f(S) \ge f(T \cup \{e\}) - f(T)$$

when $S \subseteq T$.

..and monotone if

$$f(S) \le f(T)$$
 when $S \subseteq T$.

 Captures the notion of convexity and diminishing returns for discrete functions

McDonald's Deals

Sensor placement

Determinantal Point Processes

Submodularity: $f(S \cup \{e\}) - f(S) \ge f(T \cup \{e\}) - f(T)$ when $S \subseteq T$.

Submodularity in Everyone's Backyard

Submod. Optimization on Modern Datasets

 Our goal: cardinality constrained submodular maximization on modern datasets

 $\max_{|S| \le k} f(S)$ for submodular f

- Offline setting: NP-Hard
 - Can approximate within 1 1/e for monotone $f \approx 1/e$ for non-monotone
- Modern data often comes in the form of a stream ← Our focus

Streaming Submodular Optimization

- Memory is limited
 - $-\tilde{O}(k)$ memory (elements stored)
- Random access is not possible
 - Algorithm chooses to store or ignore an element the moment that it is seen
- Assume a random ordering of the stream
 - A generalization of drawing i.i.d. data

Prior Work

Authors	Memory	Approximation	Notes
Badanidiyuru et al. '14	$O\left(\frac{k\log k}{\epsilon}\right)$	$\frac{1}{2} - \epsilon$	Adversarial order
Norouzi-Fard et al. '18	$O(k \log k)$	$\frac{1}{2} + c, 0 < c \le 10^{-13}$	Random order, also gives 1/2 l.b.for adversarial order
Agrawal et al. '19	$O(k \exp(\text{poly}(1/\epsilon))$	$1 - \frac{1}{e} - \epsilon$	Optimal approx.; constant of $> 2^{100}$ for $\epsilon < 0.2$.
Our paper	$O(k/\epsilon)$	$1-rac{1}{e}-\epsilon$	Works in practice; also $\frac{1}{e}$ for non-mono.

Our algorithm vs prior work. Salsa is the $\frac{1}{2} + c$ approximation by Norouzi-Fard et al. Lazy greedy is an optimal **offline** algorithm.

Our algorithm

Solution Cascade

Random window partitioning

Random window partitioning

- Pick a random partition of stream E into $m = O(k/\epsilon)$ windows
 - i.e. window sizes have $\frac{|E|}{m}$ elements on average and sum to |E|
 - Windows with optimal elements are called *active windows*
 - Choice of m ensures $(1 \epsilon)k$ active windows

Solution Cascade

• A pyramid of solutions $\{L_1, L_2, ..., L_k\}$ where $|L_i| = i$.

 Greedily add one element to each level per window, choosing from window + H (initially empty).

 At the end of each window, the elements of the pyramid are added to H.

Add e (and replace L_{i+1}) if $f(L_i \cup \{e\}) \ge f(L_{i+1})$.

Intuition

- Good solutions percolate up the cascade, until it reaches the top
- On each active window, elements at least as good as an average optimal element are added
 - On *i*-th active window, we get $\frac{1}{k}(f(0) f(L_i))$.
 - After k active windows, $f(L_k) \ge 1 \left(1 \frac{1}{k}\right)^k \approx 1 1/e$.

Non-monotone algorithm

- The same algorithm essentially works for non-monotone submodular functions
- However, a subsampling of the elements is needed for theoretical guarantees
- 1/e-approximation in $O(k/\epsilon)$ memory.

Open questions / Future work

- Extension of our framework to more general constraints
 - E.g. what is the best algorithm for matroid constraints?
 (Possible to do slightly worse than 1/2)
 - Alternatively, can we prove lower bounds?

Multi-pass algorithms for various constraints (upcoming paper!)

Thanks for listening!