Deep Learning with R

Chenshu Liu

April 2022

Contents

D.	L 01 Regression as a first step in deep learning	2
	Prediction from linear regression	2
	How to measure error in prediction	2
	How to potentially reduce prediction error	3
	Preview on next section	3
DL 02 Linear regression as a Simple Learner "SL"		4
	Related functions/calculations in prediction	4
	How to find the optimial parameters	4
	Gradient descent	5

DL 01 Regression as a first step in deep learning

Prediction from linear regression

```
# Scenario: predicting sales performance
sales <- c(3, 4, 2, 4, 5, 6, 3, 9, 1, 12)
```

In the simplest way possible, we can simple find the mean of all the observations, and use the mean as our prediction for future sales performances

$$Performance = \frac{\sum_{i=1}^{n} x_i}{n}$$

```
mean.sales <- mean(sales)
mean.sales</pre>
```

[1] 4.9

How to measure error in prediction

However, using only the mean as future prediction is not close to accurate, we are bound to make errors. Thus, to measure the magnitude of the error we are making using the mean, we introduce the concept of sum of squared errors (SSE):

$$SSE = \sum_{i=1}^{n} (x_i - \bar{X})^2$$

Where \bar{X} is the mean of the observations.

NOTE: There the differences are squared because there can be positive and negative numbers in the differences, and summing positive and negative differences together will make 0. Thus, we need to **square** the differences to make them significant.

```
SSE = sum((sales - mean.sales)^2)
SSE
```

[1] 100.9

However, the measurement of deviation from actual observations has some limitations:

- 1. In the calculation of SSE, we summed all the differences together, which means the sample size plays a role in the calculation of the deviation. Thus, in order to rule out the effect of sample size on SSE, we introduce the idea of **variance**: $var = \frac{\sum_{i=1}^{n} (x_i \bar{X})^2}{n-1}$, where n-1 is the degrees of freedom. Now, the standard deviation is a square-root version of the measurement of deviation, which makes more sense.
- 2. Because the differences are squared, it is hard for us to interpret the deviation, thus, we further introduce the idea of *standard deviation*: $s = \sqrt{\frac{\sum_{i=1}^{n}(x_i \bar{X})^2}{n-1}}$

Both the variance and standard deviation describes how bad the model's prediction is

```
variance <- (sum((sales - mean.sales)^2))/(length(sales) - 1)
variance</pre>
```

[1] 11.21111

```
# base R function
var(sales)
```

[1] 11.21111

```
standard.deviation <- sqrt((sum((sales - mean.sales)^2))/(length(sales) - 1))
standard.deviation</pre>
```

[1] 3.3483

```
# base R function
sd(sales)
```

[1] 3.3483

So, predictions are bound to have errors:

$$y_i = \bar{X} + \epsilon_i$$
$$target = model + error$$

Take away: After learning about how to measure the accuracy of a prediction model, we now need to know how to optimize the model and letting it to generate more accurate predictions. The task of optimizing the model that minimizes prediction error is the in the scope of Deep Learning!

How to potentially reduce prediction error

Assume that we have a base-line linear regression model that has a SSE we call *sst* (unsystematic variance), if we tune the slope and intercept of the base-line linear regression model, it has a new SSE we call *ssm* (systematic variance). Thus, in order to **measure the improvement in prediction accuracy brought** by tuning the parameters in the model, we introduce the measurement of R-squared:

$$R^2 = \frac{ssm}{sst}$$

 R^2 describes the amount of variance that can be described by the new, improved model, with respect to the base-line model.

Preview on next section

Thought question: we know that tuning the parameters in the model can lead to improvement in the prediction performance, but how can we find the optimal parameter that can minimize the prediction error (**core** goal in deep learning). This is what we will be covering in the next section

DL 02 Linear regression as a Simple Learner "SL"

Related functions/calculations in prediction

Prediction function

From last section, we introduced that predictions can be made with a linear function in the form of:

$$\hat{y_i}(x_i) = \beta_0 + \beta_1 x_i$$

Where \hat{y} is the predicted value based on the prediction function

Loss function

Loss function is used to measure the amount of error in one of our predictions using the model:

$$L(x_i) = [\hat{y}_i(x_i) - y_i]^2$$

The loss function is just the SSE that we introduced in the last section, where we take the square of the differences between observed and predicted value, at the ith position (because there are many observations and predictions)

Cost function

The cost function is a little from the loss function because the cost function is calculated from the persepective of the overall prediction, instead of each individual prediction's deviation (calculated by loss function):

$$C(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^n L$$

= $\frac{1}{n} \sum_{i=1}^n [\hat{y}_i(x_i) - y_i]^2$
= $\frac{1}{n} \sum_{i=1}^n [\beta_0 + \beta_1 x_i - y_i]^2$

How to find the optimial parameters

Say we find a cost function that is:

$$C = \frac{1}{5} \times [\beta_0 + \beta_1(1.3) - 0.7]^2 + \dots + [\beta_0 + \beta_1(3.3) - 3.5]^2$$

= 6.55 - 4.68\beta_0 + \beta_0^2 - 13.132\beta_1 + 5.08\beta_0\beta_1 + 7.002\beta_1^2

We can see that the cost function is composed of the two parameters β_0 and β_1 , and we also know that we want to minimize the cost function. So, our goal now is to find optimal values of β_0 and β_1 so that the cost function is at its minimum. The way to achieve so, its through using **partial derivatives**

$$\frac{\partial C}{\partial \beta_0} = 2\beta_0 + 5.08\beta_1 - 4.68\tag{1}$$

$$\frac{\partial C}{\partial \beta_1} = 5.08\beta_0 + 14.004\beta_1 - 13.132\tag{2}$$

By solving (1) and (2), we can obtain the following augmented matrix for the linear system:

$$\begin{bmatrix} 2 & 5.08 & 4.68 \\ 5.08 & 14.004 & 13.132 \end{bmatrix}$$

Then, we can reduce the augmented matrix which give us the final values for $\beta_0 = -0.532267$ and $\beta_1 = 1.13081$

Gradient descent

The case above is a two dimensional (having to variables), which is rather simple. However, in real-life scenarios, we often have many parameters and we still need to find the set of parameters that minimizes the cost function, so we ought to find a more generalized way to find optimal parameters, so we introduce the idea of **gradient descent**