НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФАКУЛЬТЕТ ІНФОРМАТИКИ І ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

РОЗРАХУНКОВА ГРАФІЧНА РОБОТА

з дисципліни "Комп'ютерна логіка 2. Комп'ютерна арифметика "

Виконав								
Лисенко Дмитро Вадимович								
Факультет IOT,								
Група ІО-61,								
Залікова книжка № 6116								
Керівник								
(підпис керівника)								

Вибір варіанту.

Перевести номер залікової книжки в двійкову систему. Записати два 10-розрядних двійкових числа:

$$X = -x_7x_61x_5x_40$$
, $x_31x_2x_1$ i $Y = +x_91x_8x_7x_6x_5$, $x_4x_3x_2x_1$,

де x_i - двійкові цифри номера залікової книжки у двійковій системі числення (x_1 - молодший розряд).

 $6116_{10} = 10111111100100_{2}$ $x_{10} = 1; x_{9} = 1; x_{8} = 1; x_{7} = 1; x_{6} = 1; x_{5} = 0; x_{4} = 0; x_{3} = 1; x_{2} = 0; x_{1} = 0.$ $X_{2} = -111000,1100$ $Y_{2} = +111110,0100$

Завдання.

- 1. Числа X_2 і Y_2 в прямому коді записати у формі з плаваючою комою у класичному варіанті (з незміщеним порядком і повною мантисою). На порядок відвести 4 розряди, на мантису 7 розрядів (з урахуванням знакових розрядів). Записати числа X і Y також за стандартом ANSI/IEEE 754-2008 в короткому 32-розрядному форматі).
- 2. Виконати 8 операцій з числами, що подані з плаваючою комою в класичному варіанті (чотири способи множення, два способи ділення, додавання та обчислення кореня додатного числа). Номери операцій (для п.3) відповідають порядку переліку, починаючи з нуля (наприклад, 0 множення першим способом; 5 ділення другим способом). Операндами для першого способу множення ϵ задані числа X та Y . Для кожної наступної операції першим операндом ϵ результат попередньої операції, а другим операндом завжди ϵ число Y . (Наприклад, для ділення першим способом першим операндом ϵ результат множення за четвертим способом, для операції обчислення кореня операндом ϵ результат додавання зі знаком плюс).

Для обробки мантис кожної операції, подати:

- 2.1 теоретичне обґрунтування способу;
- 2.2 операційну схему;
- 2.3 змістовний (функціональний) мікроалгоритм;

- 2.4 таблицю станів регістрів (лічильника), довжина яких забезпечує одержання 6 основних розрядів мантиси результату;
 - 2.5 обробку порядків (показати у довільній формі);
- 2.6 форму запису нормалізованого результату з плаваючою комою в пам'ять комп'ютера в прямому коді.

Вказані пункти для операції додавання виконати для етапу нормалізації результату з урахуванням можливого нулевого результату. Інші дії до етапу нормалізації результату можна проілюструвати у довільній формі.

- 3 Для операції з номером $x_3x_2x_1$ додатково виконати:
- 3.1 побудувати функціональну схему з відображенням управляючих сигналів, входів для запису операндів при ініціалізації пристрою і схем формування внутрішніх логічних умов;
- 3.2 розробити закодований (структурний) мікроалгоритм (мікрооперації замінюються управляючими сигналами виду W,SL,SR тощо);
- 3.3 для операції з парним двійковим номером $x_3x_2x_1$ додатково подати граф управляючого автомата Мура з кодами вершин, а для непарного номера $x_3x_2x_1$ автомата Мілі;
- 3.4 побудувати управляючий автомат на тригерах та елементах булевого базису. Вибрати *JK* тригери для автомата Мура та *RS* тригери для автомата Мілі.

Завдання №1

$$X_{IIK} = 1.111000,1100$$

 $Y_{\pi_K} = 0.111110,0100$

Представлення чисел у формі з плаваючою точкою з порядком і округленою мантисою:

 $Px=+110_2$; $Mx=-0,111001_2$;

Py=+110₂; My=+0,111110₂;

X_2 :							
0 1 1 0	1	1	1	1	0	0	1

 Y_2 : 0 1 1 0 0 1 1 1 0

Представлення чисел за стандартом ANSI/IEEE 754-2008 в короткому 32-розрядному форматі:

Ex = Px+
$$(2^{m-1}-1)$$
 =Px+ (2^7-1) =110₂+11111111₂=10000101₂
Ey = Py+ $(2^{m-1}-1)$ =Py+ (2^7-1) =110₂+1111111₂=10000101₂

X_2	:														
1	0	0	0	0	1	0	1	1	1	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Y_2 :															
1	0	0	0	0	1	0	1	0	1	1	1	1	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Завдання №2

2.1 Перший спосіб множення.

2.1.1 Теоретичне обгрунтування першого способу множення:

Під час множення *першим способом* в першому такті *i*-го циклу аналізується значення RG2[1] — молодшого (n-го) розряду регістру RG2, в якому знаходиться чергова цифра множника. Вміст RG3 додається до суми часткових добутків, що знаходяться в регістрі RG1, якщо RG2[1]=1, або не додається, якщо RG2[1]=0. В другому такті здійснюється правий зсув у регістрах RG1 і RG2, що еквівалентно множенню їхнього вмісту на 2^{-1} . При зсуві цифра молодшого розряду регістру RG1 записується у вивільнюваний старший розряд регістру RG2. Після виконання n циклів молодші розряди 2n-розрядного добутку будуть записані в регістр RG2, а старші — у RG1.

2.1.2 Операційна схема:

Рисунок 2.1.1 Операційна схема пристрою для множення першим способом

2.1.3 Змістовний мікроалгоритм:

Рисунок 2.1.2 Змістовний мікроалгоритм виконання операції множення першим способом.

2.1.4 Таблиця станів регістрів:

Таблиця 2.1.1. Таблиця станів регістрів пристрою множення першим способом

No	RG1→	RG2→	RG3	CT
П.С.	0000000	11100 1	111110	110
1	+	01110 0	111110	
	0011111			
	=			
	0011111			101
2	0011111	00111 0	111110	100
3	0011111	00011 1	111110	011
4	+			
	0111110			
	=			
	1000101			
	0100010	00001 1	111110	010
5	+			
	0111110			
	=			
	1100000			
	0110000	10000 1	111110	001
6	+			
	0111110			
	=			
	1101110	040000	111110	000
	0 110111	010000	111110	000
				кінець

2.1.5 Обробка порядків і нормалізація:

$$P_z = P_x + P_y = 110_2 + 110_2 = 1100_2.$$

Отримали результат: 0,110111010000

Округлена мантиса: $M_z = 0,110111$; $P_z = 1100$.

Знак мантиси: $1 \oplus 0 = 1$.

2.1.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2.2 Другий спосіб множення

2.2.1 Теоретичне обгрунтування другого способу множення:

Перед початком множення *другим способом* множник X записують в регістр RG2, а множене Y – в молодші розряди регістру RG3 (тобто в регістрі RG3 установлюють $Y_0 = Y2^{-n}$). В кожному i-му циклі множення додаванням

кодів RG3 і RG1 управляє цифра RG2[1], а в регістрі RG3 здійснюється зсув вліво на один розряд, в результаті чого формується величина $Y_i = 2Y_{i-1}$. Оскільки сума часткових добутків в процесі множення нерухома, зсув в регістрі RG3 можна виконати суміщення в часі з підсумовуванням (як правило, $t_{\Pi} \ge t_3$). В цьому випадку $t_{M} = nt_{\Pi}$. Завершення операції множення визначається за нульовим вмістом регістру RG2, що також приводить до збільшення швидкодії, якщо множник ненормалізований.

2.2.2 Операційна схема

Рисунок 2.2.1. Операційна схема пристрою множення другим способом

2.2.3 Змістовний мікроалгоритм

Рисунок 2.2.2. Змістовний мікроалгоритм пристрою множення другим способом

2.2.4 Таблиця станів регістрів:

В ЕОМ при роботі із дробовими числами часто потрібно обчислювати не 2n, а тільки (n+1) цифр добутку й округляти його до п розрядів. В цьому випадку при реалізації другого способу можна зменшити довжину SM і RG1, а при реалізації четвертого — зменшити довжину SM, RG1 і RG3. Для того щоб похибка від відкидання молодших розрядів не перевищила половини ваги n-го розряду результату, в перерахованих вузлах досить мати тільки по l додаткових молодших розрядів, де l вибирається з умови

$$l \ge 1 + \log 2(n - l - 1)$$
.

При n=6 мінімальне 1, яке задовольняє дану умову дорівнює l=2. Отже розрядність RG1 та суматора замінюємо на n+l=6+2=8.

Таблиця 2.2.1. Таблиця станів регістрів пристрою множення другим способом

№	RG1	RG2→	RG3€
П.С.	00000000	11011 1	000000111110
1	+ 00000011 = 00000011	01101 1	000001111100
2	+ 00000111 = 00001010	00110 1	000011111000
3	+ 00001111 = 00011001	000110	000111110000
4	00011001	000011	001111100000
5	+ 00111110 = 01010111	000001	011111000000
6	+ 01111100 = 1101001 1 (n+1)	000000 кінець	111110000000

2.2.5 Обробка порядків і нормалізація

$$P_z = P_x + P_v = 1100_2 + 110_2 = 10010_2.$$

Отримали результат: 0,1101001

Округлена мантиса: $M_z = 0,110101$; $P_z = 10010$.

Знак мантиси: $1 \oplus 0 = 1$.

2.2.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2.3 Третій спосіб множення.

2.3.1 Теоретичне обгрунтування третього способу множення:

При множенні *третім способом* множник X записується в старші розряди RG2, при цьому RG2[1]=0. Вага молодшого розряду RG3 дорівнює 2^{-2n} , тому код в регістрі RG3 являє собою значення $Y2^{-n}$. В кожному циклі множення підсування виконується при RG2[n+1]=1. В регістрах RG1 і RG2 виконується лівий зсув. В результаті підсумовування вмісту RG3 і RG1 може виникнути перенос в молодший розряд регістру RG2, що реалізується на SM. Збільшення довжини RG2 на один розряд усуває можливість поширення переносу в розряди множника. Після виконання n циклів молодші розряди добутку будуть знаходитися в регістрі RG1, а старші — в регістрі RG2. Час множення третім способом визначається аналогічно першому способу.

2.3.2 Операційна схема

Рисунок 2.3.1. Операційна схема пристрою множення третім способом

2.3.3 Змістовний мікроалгоритм

Рисунок 2.3.2. Змістовний мікроалгоритм пристрою множення третім способом

2.3.4 Таблиця станів регістрів

Таблиия 2.3.1. Таблиия станів регістрів пристрою множення третім способом

	Тиолиця 2.3.1. Тиолиця стинів регістр	нь пристрою множен	пл третим спосооом	
№ ц.	RG2 ←	RG1 ←	RG3	CT
П.С.	1 101010	000000	111110	110
1	+	+		
	0000000	111110		
	=	=		
	1101010	111110		
	1 010101	111100	111110	101
	+	+		
	0000001	111110		
2	=	=		
	1010110	111010		
	0 101101	110100	111110	100
3	1 011011	101000	111110	011

	+	+		
4	0000001	111110		
	=	=		
	1011100	100110		
	0 111001	001100	111110	010
5	1 110010	011000	111110	001
	+	+		
	0000001	111110		
6	=	=		
0	1110011	010110		
	1100110	10110 0	111110	000
				кінець

2.3.5 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 10010_2 + 110_2 = 11000_2.$$

Отримали результат: 0,110011010110

Округлена мантиса: $M_z = 0,110011$; $P_z = 11000$.

Знак мантиси: $1 \oplus 0 = 1$.

2.3.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2.4 Четвертий спосіб множення.

2.4.1 Теоретичне обгрунтування четвертого способу множення:

Перед множенням *четвертим способом* множник записують в регістр RG2, а множене — в старші розряди регістру RG3 (тобто в RG3 установлюють $Y_0 = Y2^{-1}$). В кожнім циклі цифра RG2[n], що знаходиться в старшому розряді регістру RG2, управляє підсумовуванням, а в RG3 здійснюється правий зсув на один розряд, що еквівалентно множенню вмісту цього регістра на 2^{-1} . Час виконання множення четвертим способом складає $t_M = nt_{\Pi}$, визначається аналогічно другому способу.

2.4.2 Операційна схема

Рисунок 2.4.1. Операційна схема пристрою множення четвертим способом

2.4.3 Змістовний мікроалгоритм

Рисунок 2.4.2. Змістовний мікроалгоритм пристрою множення четвертим способом

2.4.4 Таблиця станів регістрів

Замінюємо розрядність RG1, RG3 та SM на n+l+1=6+2+1=9

Таблиця 2.4.1. Таблиця станів регістрів пристрою множення четвертим способом

№ ц.	RG1	RG2 ←	RG3→
П.С.	00000000	1 10011	011111000
1	+ 011111000 = 011111000	1 00110	001111100
2	+ 001111100 = 101110100	0 01100	000111110
3	101110100	0 11000	000011111
4	101110100	110000	000001111
5	+ 000001111 = 110000011	100000	000000111
6	+ 000000111 = 1100010 10 (n+1)	000000 кінець	000000011

2.4.5 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 11000_2 + 110_2 = 11110_2.$$

Отримали результат: 0,1100010

Округлена мантиса: $M_z = 0.110001$; $P_z = 11110$.

Знак мантиси: $1 \oplus 0 = 1$.

2.4.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2.5 Перший спосіб ділення

2.5.1 Теоретичне обгрунтування способу

При реалізації ділення за першим варіантом здійснюється зсув вліво залишку при нерухомому дільнику. Чергова остача формується в регістрі RG2(у вихідному стані в цьому регістрі записаний X). Виходи RG2 підключені до

входів суматора SM безпосередньо, тобто ланцюги видачі коду з RG2 не потрібні. Дільник Y знаходиться в регістрі RG1. Результат формується в регістрі RG3 за (n+1) циклів. Знак остачі визначається розрядом RG2[n+2]. Розряд RG3[n+1] використовується для визначення кінця операції, ознакою цього є маркерний нуль на виході розряду. Максимальний час одержання цифри результату визначається виразом $t_{IJ} = t_{IJ} + t_{IJ}$, де t_{IJ} — тривалість виконання мікрооперації додавання/віднімання; t_{IJ} — тривалість виконання мікрооперації зсуву. Час для одержання n+1 цифри частки визначається виразом t=(n+1) t_{IJ} .

2.5.2 Операційна схема

Рисунок 2.5.1. Операційна схема пристрою ділення першим способом

2.5.3 Змістовний мікроалгоритм

Рисунок 2.5.2. Змістовний мікроалгоритм пристрою ділення першим способом

2.5.4 Таблиця станів регістрів

Таблиця 2.5.1. Таблиця станів регістрів пристрою ділення першим способом

№ циклу	RG3 ←	RG2←	RG1
П.С.	0000000	00110001	00111110
1	0000001*	0 1100010 +	00111110
		11000010	
		=	
		00100100	
2	000001*1	0 1001000	00111110
		+	
		11000010	
		=	
3	00001*11	00001010 0 0010100	00111110
3	00001 11	+	00111110
		11000010	
		=	
		11010110	
4	0001*110	1 0101100	00111110
		+	
		00111110	
		= 11101010	
5	001*1100	1101010 11010100	00111110
	001 1100	+	00111110
		00111110	
		=	
		00010010	
6	01*11001	0 0100100	00111110
		+	
		11000010 =	
		11100110	
7	1*110010	1 1001100	00111110
	кінець	+	
		00111110	
		=	
		00001010	

2.5.5 Обробка порядків і нормалізація

$$P_z = P_x - P_y = 111110_2 - 110_2 = 11000_2. \label{eq:pz}$$

Мантиса: $M_z = 0,110010$; $P_z = 11000$.

Знак мантиси: $1 \oplus 0 = 1$.

2.5.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3	н.Р _Z	Z		P_{Z}			3	н.М	Z		M	I_{Z}		
	0.	1	1	0	0	0		1.	1	1	0	0	1	0

2.6. Другий спосіб ділення.

2.6.1 Теоретичне обгрунтування другого способу ділення:

При реалізації ділення другим способом (із зсувом дільника) збільшується розрядність регістрів RG2, RG3 і суматора SM (рис. 3.2). В даному випадку процеси додавання/віднімання і зсуву можуть бути суміщені у часі. Отже, для ділення за другим способом час одержання цифри результату дорівнює $t_{II} = t_{II}$. Цифра результату формується на виході переносу суматора SM(p). Загальний час ділення визначається як $t = (n+1)t_{II}$.

2.6.2 Операційна схема

Рисунок 2.6.1. Операційна схема пристрою ділення другим способом

2.6.3 Змістовний мікроалгоритм

Рисунок 2.6.2. Змістовний мікроалгоритм пристрою ділення другим способом 2.6.4 Таблиця станів регістрів

Таблиця 2.6.1. Таблиця станів регістрів пристрою ділення другим способом

№ ц.	RG3←	RG2	RG1→
П.С.	1111111	0 110010000000	0111110000000
1		+	
		1000010000000	
	1111110*	= 1 110100000000	0011111000000
2		+	
		0011111000000 =	
	111110*1	0 010011000000	0001111100000
3		+	
		1110000100000 =	
	11110*11	0 000011100000	0000111110000
4		+	
		1111000010000 =	
	1110*110	1 111011110000	0000011111000
5		+	
		0000011111000 =	
	110*1100	1 111111101000	0000001111100
6		+	
		0000001111100 =	
	10*11001	0 000001100100	000000111110
7		+	
		1111111000010 =	
	0* 110011	000000100110	000000011111
	кінець		

2.6.5 Обробка порядків і нормалізація

$$P_z = P_x - P_y = 11000_2 - 110_2 = 10010_2.$$

Мантиса: $M_z = 0,110011$; $P_z = 10010$.

Знак мантиси: $1 \oplus 0 = 1$.

2.6.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2.7 Операція додавання чисел

2.7.1 Теоретичне обґрунтування способу

В пам'яті числа зберігаються у ПК.

На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком.

На другому етапі виконують додавання мантис. Додавання мантис виконується у *доповняльних кодах*.

Додавання виконується порозрядно на n-розрядному суматорі з переносом. Останній етап — нормалізація результату. Виконується за допомогою зсуву мантиси результату і коригування порядку результату. Порушення нормалізації можливо вліво і вправо, на 1 розряд вліво і на n розрядів вправо.

2.7.2 Операційна схема

Pисунок 2.7.1. Операційна схема пристрою додавання/віднімання у MДK

2.7.3 Змістовний мікроалгоритм

Рисунок 2.7.2. Змістовний мікроалгоритм пристрою додавання/віднімання у МДК

2.7.4 Таблиця станів регістрів

Вирівнювання порядків:

$$P_x > P_y \rightarrow P_z = P_x = 10010_2,$$

 $P_x - P_y = 10010_2 - 110_2 = 1100_2 = 12_{10}.$

Мантиси з вирівняними порядками:

Mx = 0.110011

 $My = 0.000000000000111110 \approx 0.000000$

Числа у модифікованому ДК:

 $X_{MJK} = 11.001101$

 $Y_{MJK} = 00.000000$

Таблиця 2.7.1. Таблиця станів регістрів пристрою додавання/віднімання у МДК двох чисел

RG1	RG2	RG3
11.001101	00.00000	11.001101
		+
		00.0000
		=
		11.001101

2.7.5 Обробка порядків

$$P_z = 10010_2$$

Мантиса: $M_z = 0,110011$; $P_z = 10010$.

Знак мантиси: 1.

2.7.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2.8 Операція добування кореня додатного числа

2.8.1 Теоретичне обгрунтування способу

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргумента. З мантиси добувається корінь завдяки нерівностям:

$$Z_i \le \sqrt{X} \le Z_i + 2^{-i}$$
;
 $Z_i^2 \le X \le Z_i^2 + 2^{-i}Z_i + 2^{-2i}$;
 $0 \le 2^{i-1}(X - Z_i^2) \le Z_i + 2^{-i-1}$.

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$

- 2. Якщо $R_{i+1} \geq 0$, то $Z_{i+1} = 1$, $R_{i+1} = R_{i+1}$. 3. Якщо $R_{i+1} < 0$, то $Z_{i+1} = 0$, $R_{i+1} = R_{i+1} + Z_i 2^{-i-2}$.

Відновлення остачі додає зайвий такт, але можна зробити інакше:

 $R_{i+2} = 2R_{i+1}^{'} + Z_i + 2^{-i-2} + 2^{-i-3}$, тоді корінь добувається без відновлення залишку.

Для цього R_i зсувається на 2 розряди ліворуч, а Z_i - на 1 розряд ліворуч, і формується як при діленні.

2.8.2 Операційна схема

Рисунок 2.8.1. Операційна схема пристрою знаходження кореня

2.8.3 Змістовний мікроалгоритм

Рисунок 2.8.2 Змістовний мікроалгоритм пристрою знаходження кореня

2.8.4 Таблиця станів регістрів

Таблиця 2.8.1. Таблиця станів регістрів пристрою добування кореня

Таолиця 2.8.1. Таолиця станів регістрів пристрою дооування кореня						
№ ц.	RGZ←	RGR←	RGX←	CT		
ПС	000000	00000000 110011		110		
		0 0000011	001100			
		+				
		11111111				
1		=				
		0000010				
	000001	0 0001000	110000	101		
		+				
		11111011				
2		=				
		00000011				
	000011	0 0001111	000000	100		
		+				
		11110011				
3		=				
		0000010				
	000111	0 0001000	000000	011		

		+		
		11100011		
4		=		
		11101011		
	001110	1 0101100	000000	010
		+		
		00111011		
_				
5		=		
		11100111		
	011100	1 0011100	000000	001
	011100		00000	001
		+		
6		01110011		
		=		
		00001111		
	111001			
	111001	00111100	000000	000
				кінець

2.8.5 Обробка порядків

$$P_Z = \frac{P_X}{2} = \frac{10010_2}{10_2} = 1001_2$$

Мантиса: $M_z = 0,111001$; $P_z = 1001$.

Шукали корінь з модуля, тоді знак мантиси: 0.

2.8.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3. Управляючий автомат Мура на тригерах

 $x_3x_2x_1 = 100$ — операція ділення першим способом.

3.1 Функціональна схема з відображенням управляючих сигналів

Рисунок 3.1. Функціональна схема пристрою ділення другим способом

3.2 Закодований мікроалгоритм

Рисунок 3.2. Змістовний мікроалгоритм пристрою ділення першим способом

За закодованим мікроалгоритмом складемо таблицю:

STOP

 Сигнали операційного автомата
 Сигнали управляючого автомата

 R3, W1
 Y1

 SL3, SL2
 Y2

 W2
 Y3

 i
 Y4

 x
 X1

Таблиця 3.1 Таблиця кодування сигналів

*X*2

Закодований мікроалгоритм з управляючими сигналами автомата

Рисунок 3.3. Змістовний мікроалгоритм пристрою ділення першим способом з управляючими сигналами автомата

3.3 Граф управляючого автомата Мура

Рисунок 3.4 Граф автомата Мура

3.4 Побудова автомата

Таблиця 3.2. Структурна таблиця автомата

Перехід	$Q_3Q_2Q_1$	$Q_3Q_2Q_1$	x_1x_2	y ₄ y ₃ y ₂ y ₁	J_3K_3	J_2K_2	J_1K_1	
$z_1 \rightarrow z_2$	000	010	-	0000	0-	1-	0-	0
$z_2 \rightarrow z_3$	010	110	-	0101	1-	-0	0-	
$z_3 \rightarrow z_4$	110	111	0-	0010	-0	-0	1-	C
$z_3 \rightarrow z_5$	110	100	1-	0010	-0	-1	0-	1
$z_4 \rightarrow z_3$	111	110	-0	1100	-0	-0	-1	1
$z_4 \rightarrow z_6$	111	101	-1	1100	-0	-1	-0	
$z_5 \rightarrow z_3$	100	110	-0	0100	-0	1-	0-	
$z_5 \rightarrow z_6$	100	101	-1	0100	-0	0-	1-	

Мінімізація за допомогою діаграм Вейча:

Рисунок 3.5 Діаграми Вейча

Y4 = Q1

 $Y3 = \overline{Q1} \vee \overline{Q3} Q2 \vee Q3 \overline{Q2}$

 $Y2 = Q3Q2\overline{Q1}$

 $Y1 = \overline{Q3}Q2$

J3 = Q2

K3 = 0

 $J2 = \overline{Q3} \vee \overline{X2}$

 $K2 = Q1X2VQ3\overline{Q1}X1$ $J1 = Q3Q2\overline{X1}VQ3\overline{Q2}X2$ $K1 = \overline{X2}$ Управляючий автомат:

Рисунок 3.6 Управляючий автомат та пристрій для ділення другим способом

Висновок: Таким чином, виконуючи дану розрахункову роботу, я повторив такі операції над числами в двійковому коді, як множення, ділення, додавання та знаходження кореня. Для кожної операції була подана операційна схема та змістовний мікроалгоритм. Був синтезований управляючий автомат для операційного пристрою ділення першим способом, згідно з варіантом, даний операційний пристрій був побудований на JK-тригерах.