MESH n PROCESSORI: lato $\sqrt{\mathbf{n}}$

ORDINAMENTO

INPUT n numeri distribuiti uno per processore

OUTPUT n numeri ordinati secondo il percorso a *serpente*

ORDINAMENTO LS3

ORDINAMENTO LS3: DIVIDI

ORDINAMENTO LS3: ORDINA

ORDINAMENTO LS3: FOND!

ORDINAMENTO LS3 parallelo

```
procedure LS3sort( M )
   if(|M| == 1)
       return M;
   else
      LS3sort(M_1);
                               //in parallelo
      LS3sort(M_2);
      LS3sort( M<sub>3</sub> );
      LS3sort(M_4);
      LS3merge(M_1, M_2, M_3, M_4);
                                                come
                                                costruirla?
```

ROUTINE PARALLELE PER LS3merge: SHUFFLE

ROUTINE PARALLELE PER LS3merge: ODD-EVEN

ODD-EVEN(i, i + 1)

LS3merge

procedure LS3merge(
$$M_1$$
 , M_2 , M_3 , M_4) $M = \begin{bmatrix} M_1 & M_2 \\ M_3 & M_4 \end{bmatrix}$ for i := 1 to $\sqrt{\mathbf{n}}$ pardo SHUFFLE(i); ordinate

for i := 1 to
$$\sqrt{n}/2$$
 pardo
ODD-EVEN(2i - 1, 2i);

esegui i primi $2\sqrt{n}$ passi di ODD-EVEN sull'intera mesh (a serpente);

LS3merge(M_1 , M_2 , M_3 , M_4): SHUFFLE TIME

LS3merge(M_1 , M_2 , M_3 , M_4): ODD-EVEN TIME

LS3merge(M_1 , M_2 , M_3 , M_4): FINAL ODD-EVEN

」 la parte "disordinata" sta in una striscia di altezza 2

TEMPO PER LS3merge parallela

mesh (a serpente);

Tempo for i := 1 to
$$\sqrt{n}$$
 pardo SHUFFLE(i); $O(\sqrt{n})$ for i := 1 to $\sqrt{n}/2$ pardo ODD-EVEN(2i - 1, 2i); $O(\sqrt{n})$ esegui i primi $2\sqrt{n}$ passi di ODD-EVEN sull'intera $O(\sqrt{n})$

$$T_{\text{merge}}(n) = h\sqrt{n}$$

RISOLVIAMO
$$T(n) = \begin{cases} 1 & \text{se } n = 1 \\ T\left(\frac{n}{4}\right) + h\sqrt{n} & \text{altrimenti} \end{cases}$$

$$T(n) = T\left(\frac{n}{4}\right) + h\sqrt{n} = T\left(\frac{n}{4^2}\right) + h\sqrt{\frac{n}{4}} + h\sqrt{n} =$$

$$= T\left(\frac{n}{4^3}\right) + h\sqrt{\frac{n}{4^2}} + h\sqrt{\frac{n}{4}} + h\sqrt{n} = \dots = \sum_{i=0}^{\log_4 n - 1} h\sqrt{\frac{n}{4^i}} + 1 =$$

$$= h\sqrt{n} \sum_{i=0}^{\log_4 n - 1} \sqrt{\frac{1}{4^i}} + 1 = h\sqrt{n} \sum_{i=0}^{\log_4 n - 1} \frac{1}{2^i} + 1 = h\sqrt{n} \sum_{i=0}^{\log_4 n - 1} \left(\frac{1}{2}\right)^i + 1$$

$$= h\sqrt{n} \left(\frac{1 - \left(\frac{1}{2}\right)^{\frac{\log n}{2}}}{\frac{1}{2}}\right) + 1 = 2h\sqrt{n} \left(1 - \frac{1}{\sqrt{n}}\right) + 1 = 0 \left(\sqrt{n}\right)$$
Solveine serie geom.

CONCLUDENDO: ORDINAMENTO LS3 parallelo

processori:
$$p(n) = n$$
 tempo: $T(n) = O(\sqrt{n})$

efficienza:
$$\frac{n \log n}{n \sqrt{\mathbf{n}}} \longrightarrow 0 \qquad minimo teorico$$

Possiamo migliorare l'efficienza riducendo i processori

con una versione del

BITONIC SORT su mesh

processori:
$$p(n) = O(log^2 n)$$

efficiente

tempo: T(n) = O(n / log n)