Introdução à Eletrônica Digital

(Vinícius Luis Trevisan de Souza)

A eletrônica pode ser subdividida em dois grandes ramos: a eletrônica analógica e a eletrônica digital.

A analógica é a que trata de vários sinais de tensão e corrente diferentes, com vários componentes dedicados a tratar esse sinal e gerar uma saída adequada a cada situação. Os exemplos práticos mais comuns da eletrônica analógica são as fontes de alimentação, filtros de sinal, circuitos ligados à acústica, entre outros.

A eletrônica digital, por sua vez, trata apenas de dois níveis de sinal e com eles faz combinações de entradas e saídas de acordo com sua lógica. Ela é a parte central dos computadores, sistemas microcontrolados e, com certeza, do cérebro de um robô.

Existem circuitos digitais especiais que podem fazer contagens, armazenar dados (memória) ou até mesmo processar informações.

Níveis Lógicos

Na eletrônica digital consideramos apenas dois tipos de sinal, chamados de níveis lógicos: o nível lógico alto (high) que indica que há tensão na linha e o nível lógico baixo (low), que indica que não há tensão. Esses níveis são representados pelos números 1 e 0, respectivamente. O fato de a eletrônica digital ser representada por dois dígitos é o que justifica seu nome "digital" – que trabalha entre 0 e 1.

O estado de uma lâmpada ou led ilustra bem o sentido dos níveis lógicos: quando a lâmpada está ligada, pode-se dizer que está em nível lógico 1 e quando desligada, no nível 0.

Para um estudo mais completo da eletrônica digital é necessário ter conhecimento no <u>sistema</u> <u>de numeração binário</u>

Entrada e saída (Input/Output)

A tarefa principal dos circuitos digitais é comparar dados, processá-los e tomar uma atitude em relação a eles. Os sinais (dados) externos que o circuito recebe para comparar são chamados de sinais de entrada (input) e, a partir dele, o circuito gera sinais de saída (output) que são resultados desse processamento.

Portas lógicas

Todos os circuitos digitais, desde os mais simples até os mais complexos, utilizam portas lógicas na sua construção. Elas são a forma mais simples de se processar um sinal.

Falarei brevemente das três mais comuns.

Porta lógica "E" (AND)

Essa porta lógica compara dois sinais de entrada e apenas deixa a saída em 1 quando ambos os sinais de entrada estão em 1 simultaneamente.

A saída só é ligada se a entrada A **E** a entrada B estão ligadas. Para comprar um livro eu preciso encontra-lo **E** ter dinheiro suficiente. Para o robô andar para a frente ele deve estar longe de uma parede **E** receber o comando do controle remoto. Esses são exemplos de aplicações da porta lógica.

Uma forma de analisar o funcionamento de um circuito digital, mesmo que ele seja composto apenas de uma porta lógica, é a tabela-verdade. Como a que está a seguir:

Tabela da verdade da porta lógica E

Definindo-se A e B como entradas e X como uma saída, vemos que a saída só será definida em 1 no caso em que A **E** B estão em 1 simultaneamente. Se qualquer entrada estiver em 0, a saída será 0.

O símbolo da porta lógica E é este:

E sua lógica é equivalente à do circuito:

Porta lógica "OU" (OR)

A porta lógica OU só define a saída como 1 quando qualquer entrada estiver em 1.

A saída será ligada se A **OU** B estiverem ligados. Para passar de ano eu preciso de bastante estudo **OU** de uma prova muito fácil. O robô irá fazer uma curva se sair do trajeto **OU** se encontrar um obstáculo. Só vou ao show se comprar o ingresso **OU** se eu ganha-lo.

Sua tabela-verdade é a seguinte:

Tabela da verdade da porta lógica OU

Podemos ver que nesse caso, a saída estará em 1 se qualquer entrada estiver em 1, independentemente do nível lógico da outra.

Seu símbolo é:

$$\frac{A}{B} \xrightarrow{OR} X$$

E sua lógica equivale à do circuito:

Porta lógica "NÃO" (NOT)

É chamada de porta inversora, pois sua função é mudar o nível lógico da entrada, como na tabela-verdade a seguir:

Tabela da verdade da porta lógica NOT

Como visto, ela inverte a entrada, transformando o que era 0 em 1 e vice-versa. Seu símbolo é:

E ela pode ser combinada com as portas mostradas anteriormente para criar as portas NAND e NOR:

Que são, basicamente, a inversão das portas lógicas E (AND) e OU (OR).