

Algoritmica grafurilor III. Drumuri în grafuri

Mihai Suciu

Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică

Martie, 11, 2021

1 / 43

Continut

- Sortare topologica
- Componente tare conexe
- Orum de lungime minima
 - Sursa unica
 - Bellman-Ford
 - Grafuri orientate aciclice
 - Dijkstra
 - versiuni Floyd-Warshal

/ 43

DFS

DES(G)

DFS_VISIT(G, u)

 $\begin{array}{l} \textit{time} = \textit{time} + 1 \\ \textit{u.d} = \textit{time} \\ \textit{u.color} = \textit{gri} \\ \textbf{for} \ \textit{fiecare} \ \textit{v} \in \textit{G.Adj[u]} \ \textbf{do} \\ \textit{if} \ \textit{v.color} == \textit{alb then} \\ \textit{v.} \pi = \textit{u} \\ \textit{DFS_VISIT(G,v)} \\ \textit{u.color} = \textit{negru} \\ \textit{time} = \textit{time} + 1 \\ \textit{u.f} = \textit{time} \end{array}$

3 / 43

DFS (II)

Teorema (Teorema parantezelor)

în orice căutare în adâncime a unui graf G = (V, E) (orientat sau neorientat), pentru orice două vârfuri u și v, exact una din următoarele trei afirmații este adevărată:

- intervalele [u.d, u.f] și [v.d, v.f] sunt total disjuncte
- intervalul [u.d, u.f] este conținut în întregime în intervalul [v.d, v.f] iar u este descendent al lui v în arborele de adâncime
- intervalul [v.d, v.f] este conținut în întregime în intervalul [u.d, u.f] iar v este descendent al lui u în_{4/} arborele de adâncime

DFS (III)

Theorem (Teorema drumului alb)

într-o pădure de adâncime a unui graf G = (V, E) (orientat sau neorientat), vârful v este descendent al vârfului u dacă și numai dacă la momentul u.d, când căutarea descoperă vârful u, vârful v este accesibil din u printr-un drum format în întregime din vârfuri albe.

DFS - clasificarea muchiilor

• pentru un graf G = (V, E), fie $(u, v) \in E$, în funcție de timp tipul arcelor pentru DFS:

tip arc	d	f
t (tree)	u.d < v.d	u.f > v.f
b (back)	u.d > v.d	
f (forward)	u.d < v.d	u.f > v.f
c (cross)	u.d > v.d	u.f > v.f

- ullet u.d marchează timpul când a fost descoperit vârful u
- u.f marchează timpul când a fost explorat vârful u

Sortare topologica

- **®**
- folosind algoritmul DFS se poate sorta topologic un graf orientat fără circuite (DAG - directed acyclic graph)
- realizează o aranjare liniară a vârfurilor unui graf în funcție de arcele grafului

Sortare topologică

fie un graf orientat aciclic G=(V,E), sortarea topologică reprezintă ordonarea vârfurilor astfel încât dacă G contine arcul (u,v) atunci u apare înaintea lui v în însiruire.

 multe aplicații folosesc grafuri orientate fără circuite, 43 pentru a indica precedența între evenimente Sortare topologica

Sortare topologica (II)

- un set de acțiuni ce trebuie îndeplinite într-o anumită ordine
- unele sarcini trebuie executate înaninte ca alte acțiuni să înceapă
- în ce ordine trebuie executate sarcinile?
- problema poate fi rezolvată reprezentând sarcinile ca vârfuri într-un graf
- un arc (u, v) indică precedență între activități, activitatea u înaintea activitătii v
- sortând topologic graful se arată ordinea efectuării actiunilor

8 / 43

ortare topologica

Sortare topologica (III)

sortare_topologică(G)

- 1: apel DFS(G) pentru a determina timpii $v.f, v \in V$
- 2: sortare descrescătoare în funcție de timpul de finalizare (când fiecare vârf e terminat e inserat într-o listă înlănțuită)
- 3: return lista înlănțuită de vârfuri
- un graf se poate sorta topologic în timpul $\Theta(V+E)$
 - DFS durează $\Theta(V+E)$
 - pentru a insera un vârf $v \in V$ în listă e nevoie de O(1) timp

Sortare topolog

Sortare topologică (IV)

Lema 3.1

un graf orientat G este aciclic dacă și numai dacă DFS aplicat pe el nu găsește arce pentru care u.d > v.d și u.f < v.f.

Teorema 3.1

procedura sortara_topologică(G) produce o sortare topologică a unui graf orientat aciclic primit ca și parametru.

10 / 43

Componente tare conexe

Componente tare conexe

componente_tare_conexe(G)

- 1: apel DFS(G) pentru a determina timpii $v.f, v \in V$
- 2: determină G^T
- 3: apel DFS(G^T) dar în bucla principala a DFS nodurile sunt sortate descrescător după v.f
- 4: fiecare arbore din pădurea găsită de DFS în pasul 3 este o componentă tare conexă
 - pentru $G = (V, E), G^T = (V, E^T)$ unde $E^T = \{(u, v) : (v, u) \in E\}$
- pentru reprezentarea sub formă de listă de adiacență, pentru a determină G^T e nevoie de O(V+E) timp
- fie G reprezentat ca listă de adiacență, pentru procedura componente_tare_conexe(G) complexitatea în timp este
 - $\Theta(V+E)$

Componente tare cone

Componente tare conexe (II)

Lema 3.2

fie C și C' două componente tare conexe din graful G=(V,E). $u,v\in C$, $u',v'\in C'$ și G conține un drum $u\leadsto u'$. Atunci G nu poate avea un drum $v'\leadsto v$.

 graful format din componente tare conexe este un graf orientat aciclic

12 / 43

Componente tare conexe (III)

Componente tare conexe (IV)

• fie $U \subseteq V$, putem defini $d(U) = min_{u \in U} \{u.d\}$ și $f(U) = max_{u \in U} \{u.f\}$

- d(U) reprezintă timpul pentru primul vârf descoperit de DFS din U
- ullet f(U) reprezintă timpul pentru ultimul vârf prelucrat de

Lema 3.3

fie C si C' două componente tare conexe distincte din graful orientat G = (V, E). Dacă există un arc $(u, v) \in E$, unde $u \in C$ și $v \in C'$ atunci f(C) > f(C').

Corolar 3.1

fie C și C' două componente tare conexe distincte din 13/4 graful orientat G = (V, E). Dacă există un arc $(u, v) \in E^T$, unde $u \in C$ și $v \in C'$ atunci f(C) < f(C').

Teorema 3.2

procedura componente_tare_conexe(G) găsește corect componentele tare conexe din graful orientat G.

Probleme de drum de lungime minimă

- o problema de drum minim de la un nod sursă s este mapată pe un graf orientat G = (V, E) ponderat, funcția $w: E \to \mathbb{R}$ mapează arcele la ponderi
- ponderea w(p) a drumului $p = \{v_1, v_2, ..., v_k\}$ este suma ponderilor arcelor ce compun drumul

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$

• se poate defini drumul cu pondere minimă $\delta(u, v)$ pentru un drum de la u la v:

$$\delta(u,v) = \begin{cases} \min\{w(p): u \leadsto v\} & \text{dacă există un drum de la } u \text{ la } v, \\ \infty & \text{în rest.} \end{cases}$$

Probleme de drum de lungime minimă ()

- un drum de lungime minimă de la vârful u la vârful v se definește ca un drum p cu ponderea $w(p) = \delta(u, v)$
- un drum minim nu poate conține un circuit cu pondere negativă
- un drum minim nu poate conține un circuit
- reprezentarea unui drum de lungime minimă
 - ullet pentru fiecare vârf $v \in V$ se menține predecesorul lui în drum, $v.\pi$

Exemplu

UK Pound	1.0000	0.6853	0.005290	0.4569	0.6368	208.100
Euro	1.4599	1.0000	0.007721	0.6677	0.9303	304.028
Japanese Yen	189.050	129.520	1.0000	85.4694	120.400	39346.7
Swiss Franc	2.1904	1.4978	0.011574	1.0000	1.3941	455.200
US Dollar	1.5714	1.0752	0.008309	0.7182	1.0000	327.250
Gold (oz.)	0.004816	0.003295	0.0000255	0.002201	0.003065	1.0000

Exemplu (II)

17 / 43

Exemplu (III)

0.004816 208.100 455.2) = -8.8304 0.7182 0.008309 129.520

0.5827

19 / 43

Algoritmul Bellman-Ford

 algoritmul Bellman-Ford rezolvă problema drumului minim de la un nod sursă s pentru cazul general când avem și ponderi negative

Bellman_Ford(G, w, s))

1: INITIALIZARE_S(G, s)

2: for i = 1 la |V| - 1 do

3: for fiecare arc $\{u, v\} \in E$ do

4: RELAX(u, v, w)

5: for fiecare arc $\{u, v\} \in E$ do

6: if v.d > u.d + w(u, v) then

7: return FALSE

8: **return** TRUE

Drum de lungime minim

ırsa unica

Bellman-Ford (II)

INITIALIZARE_S(G,s)

- 1: for $v \in V$ do
- 2: $v.d = \infty$ 3: $v.\pi = NIL$
- 3: $v.\pi = 0$

RELAX(u, v, w)

- 1: **if** v.d > u.d + w(u, v) **then**
- v.d = u.d + w(u, v)
- 3: $\mathbf{v}.\pi = \mathbf{u}$
- Exemplu click

Bellman-Ford (III)

- algoritmul rulează în O(VE) timp
- pasul de inițializare (linia 1) durează $\Theta(V)$
- parcurgerea din liniile 2-4 durează O(VE)
- bucla for din liniile 5-7 durează O(E)

21 / 43

22 / 43

rum de lungime minima

ursa unica

Bellman-Ford (IV)

Lema 3.4

fie G=(V,E) un graf ponderat orientat cu nodul sursă s și funcția de pondere $w:E\to\mathbb{R}$, presupunem că G nu conține circuite de pondere negativă accesibile din vârful s. După |V|-1 iterații ale buclei for din liniile 2-4 a procedurii $Bellman_Ford(G)$ avem $v.d=\delta(s,v)$ pentru toate vârfurile v accesibile din s.

Corolar 3.2

fie G=(V,E) un graf ponderat orientat cu nodul sursă s și funcția de pondere $w:E\to\mathbb{R}$. Pentru fiecare vârf $v\in V$ există un drum de la s la v dacă și numai dacă procedura $Bellman_Ford(G)$ se termină cu $v.d<\infty$.

Bellman-Ford (V)

Sursa unica

Teorema 3.2 (corectitudine Bellman-Ford)

fie procedura $Bellman_Ford(G)$ care este rulată pe un graf orientat și ponderat G=(V,E) din nodul sursă s și funcția de pondere $w:E\to\mathbb{R}$. Dacă G nu conține circuite de pondere negativă accesibile din s algoritmul va întoarce TRUE, $v.d=\delta(s,v) \forall v\in V$ iar graful predecesorilor G_{π} este un arbore minim cu rădăcina în s. Dacă G conține un circuit de pondere negativă accesibil din s, algoritmul întoarce FALSE.

Bellman-Ford - corectitudine

Operația de relaxare este sigură

algortimul de relaxare menține $v.d \ge \delta(s, v) \forall v \in V$.

Demonstrație.

- prin inducție
- considerăm relax(u.v)
- prin inducție $u.d \ge \delta(s, u)$
- din inegalitatea triunghiului

$$\delta(s,v) \leq \delta(s,u) + \delta(u,v)$$

$$\delta(s,v) \leq u.d + w(u,v)$$

Bellman-Ford - corectitudine (III)

Teorema

dacă G = (V, E, w) nu are circuite negative, la sfârșitul algoritmului, $v.d = \delta(s, v) \forall v \in V$.

Demonstrație.

- fără circuite negative, drumurile de cost minim sunt simple
- fiecare drum minim are $\leq |V|$ arce, deci $\leq |V|-1$
- afirmație $\Rightarrow |V| 1$ iterații fac $v.d \le \delta(s, v)$

Bellman-Ford - corectitudine (II)

Afirmație

după iterația i a algoritmului v.d are cel mult valoarea ponderilor drumurilor de la s la v de cel mult i arce $\forall v \in V$.

Demonstrație.

- prin inducție pe i
- înainte de iterația $i, v.d \leq$ $min\{w(p) : |p| \le i - 1\}$
- relax() doar scade v.d
- iterația i consideră toate drumurile de $\leq i$ arce când se aplică relax() pe arcul lui v.

Bellman-Ford - corectitudine (IV)

Bellman-Ford raportează corect circuitele negative accesibile din s.

Demonstrație.

- dacă nu există circuite negative $v.d = \delta(s, v)$ și din inegalitatea triunghiului $\delta(s, v) \leq \delta(s, u) + w(u, v)$, Bellman-Ford nu va raporta greșit existența unor circuite negative
- dacă există un circuit negativ atunci unul din arcele sale poate fi relaxat, Bellman-Ford va raporta acest

Grafuri orientate aciclice

drum_minim_dag(G)

- 1: sortate_topologica(G)
- 2: INITIALIZARE_S(G,s)
- 3: for fiecare vârf v sortat topologic do
- for $v \in G.Adj[u]$ do
- RELAX(u,v,w)5:
- timp de rulare
 - sortate topologică: $\Theta(V + E)$
 - INITIALIZARE_S: Θ(V)
 - bucla for (liniile 4-5) relaxează fiecae arc o singură dată
 - timpul total de rulare $\Theta(V + E)$

Grafuri orientate aciclice (II)

Teorema 3.3 (corectitudine drum_minim_dag(G))

dacă un graf orientat, ponderat și aciclic G = (V, E) are ca și sursă vârful s, la terminarea procedurii $drum_minim_dag(G) \ v.d = \delta(s, v) \forall v \in V \ \text{iar graful}$ predecesorilor G_{π} este un arbore minim.

Dijkstra

- algoritmul lui Dijkstra rezolvă problema drumului minim pentru un graf orientat ponderat G = (V, E) în care $w(u, v) \ge 0, \{u, v\} \in E$
- algoritmul menține un set *S* de vârfuri pentru care drumul minim de la sursa *s* a fost determinat
- în implementarea prezentata se folosește o coadă cu priorități pentru vârfuri, cheia fiind v.d

Dijkstra_queue(G)

Algoritmul Dijkstra

1: INITIALIZARE_S(G,s)

2: $S = \emptyset$

3: Q = V

4: while $Q \neq \emptyset$ do

5: $u = \mathsf{EXTRACT_MIN}(Q)$

6: $S = S \cup \{u\}$

7: **for** $v \in G.Adj[u]$ **do**

8: RELAX(u,v,w)

32 / 43

31 / 43

rsa unica

Dijkstra (II)

Teorema 3.4 (corectitudine Dijkstra)

fie procedura $Dijkstra_queue(G)$ rulată pe un graf orientat, ponderat G=(V,E) ce nu conține ponderi negative și s vârful sursă. La terminare $u.d=\delta(s,u)\forall u\in V.$

33 / 43

Dijkstra - analiză

a

Cât de rapid este algoritmul Dijkstra_queue?

- menţine o coadă cu priorităţi Q prin apelul operaţiilor: INSERT (implicit în linia 3), EXTRACT_MIN (linia 5) şi DECREASE_KEY (implicit în RELAX, linia 8)
- algoritmul apelează INSERT și EXTRACT_MIN pentru fiecare vârf
- fiecare vârf este adăugat în setul S o singură data, fiecare arc din Adj[u] este examinat o singură dată pe liniile 7-8
- numărul total de arce din lista de adiacență este |E|, bucla for iterează de |E| ori (liniile 7-8), algoritmul_{34/43} apelează DECREASE_KEY de cel mult |E| ori
- timpul total de rulare depinde de implementarea cozii cu priorități

Orum de lungime minima

ursa unica

Dijkstra - analiză (II)

- ullet dacă vârfurile sunt numerotate de la 1 la |V|
 - *v.d* e stocat pe poziția *v*
 - fiecare operație INSERT și DECREASE_KEY necesită O(1) timp iar operația EXTRACT_MIN necesită O(V) timp
 - pentru un timp total $O(V^2 + E) = O(V^2)$
- dacă graful este suficient de rar, coada se poate implementa ca și binary min-heap
 - fiecare operație EXTRACT_MIN durează $O(\lg V)$, există |V| astfel de operații
 - ullet timpul necesar construirii binary min-heap este O(V)
 - fiecare operație DECREASE_KEY necesită $O(\lg V)$ timp, există |E| astfel de operații
 - timpul total de rulare este $O((V+E)\lg V)$, dacă toate vârfurile sunt accesibile din sursă timpul este $O(E\lg V)^{5/43}$

Drum de langime milima

Sursa unica

Dijkstra - analiză (III)

• se poate obține un timp de rulare $O(V \lg V + E)$ dacă coada cu priorități este implementată cu un heap Fibonacci

FloydWarshall(D_0)

 $\begin{aligned} \text{DYDWARSHam.}, \\ D &:= D_0 \\ \text{for } k &:= 1 \text{ to } n \text{ do} \\ \text{for } i &:= 1 \text{ to } n \text{ do} \\ \text{for } j &:= 1 \text{ to n do} \\ \text{if } d_{ij} &> d_{ik} + d_{kj} \text{ then} \\ d_{ij} &:= d_{ik} + d_{kj} \\ p_{ij} &:= p_{kj} \end{aligned}$

Floyd-Warhsall

Floyd-Warshall pentru a determina nr de drumuri

FW(A, n)

- $W \leftarrow A$
- 2. **for** $k \leftarrow 1$ **to** n
- for $i \leftarrow 1$ to n
- for $j \leftarrow 1$ n
- **do** $w_{ij} \leftarrow w_{ij} + w_{ik}w_{kj}$
- 6. **return** *W*

Exemplu

Rezultat FW :

Floyd-Warshal-latin

Floyd-Warshall-Latin(A, n)

1.
$$\mathcal{W} \leftarrow \mathcal{A}$$

2. for $k \leftarrow 1$ to n
3. for $i \leftarrow 1$ to n
4. for $j \leftarrow 1$ to n
5. if $W_{ik} \neq \emptyset$ and $W_{kj} \neq \emptyset$
6. $W_{ij} \leftarrow W_{ij} \cup W_{ik} \cdot W_{kj}$
7. return \mathcal{W}

Exemplu

Drum de lungime minima

versioni Floyd-Warsha

Exemplu (II)

