Curs VI

ELEMENTE DE TEORIA GRUPURILOR

§ 3. RELAȚII DE ECHIVALENȚĂ PE UN GRUP ÎN RAPORT CU UN SUBGRUP AL SĂU

Fie G un grup şi H un subgrup al său. Considerăm pe G relațiile binare R_H^s şi R_H^d definite în modul următor: dacă x, y \in G, atunci

$$x R_H^s$$
 y dacă și numai dacă $x^{-1}y \in H$,

$$x R_H^d y$$
 dacă și numai dacă $xy^{-1} \in H$.

Aceste relații binare sunt relații de echivalență. Să demonstrăm, de exemplu, că prima relație binară este relație de echivalență, adică este reflexivă, simetrică și tranzitivă.

- 1) Dacă $x \in G$, atunci $x^{-1}x = e \in H$ și deci $x R_H^s$ x (reflexivitatea).
- 2) Dacă x R_H^s y, atunci x $^{-1}$ y \in H şi deci y $^{-1}$ x = (x $^{-1}$ y) $^{-1}$ \in H, de unde y R_H^s x (simetria).
- 3) Dacă x R_H^s y şi y R_H^s z, atunci x $^{-1}$ y \in H şi y $^{-1}$ z \in H. Deci x $^{-1}$ z = (x $^{-1}$ y)(y $^{-1}$ z) \in H, adică x R_H^s z (tranzitivitatea).

Analog se demonstrează că R_H^d este relație de echivalență.

Relațiile de echivalență R_H^s și R_H^d se numesc relații de congruență la stânga, respectiv la dreapta, în raport cu H (sau modulo H). Faptul că "x este în relația R_H^s cu y" (respectiv "x este în relația R_H^d cu y") se mai citește x este congruent cu y modulo H la stânga (respectiv x este congruent cu y modulo H la dreapta) și scriem

$$x \equiv_s y \pmod{H}$$
, respectiv $x \equiv_d y \pmod{H}$.

Să notăm cu $[x]_s$, respectiv $[x]_d$, clasa de echivalență a elementului $x \in G$ în raport cu R_H^s , respectiv R_H^d , și o vom numi *clasa de echivalență la stânga*, respectiv *clasa de echivalență la dreapta a lui x modulo H*.

Fie G/R_H^s și G/R_H^d mulțimile factor (cât) corespunzătoare lui R_H^s și R_H^d , adică mulțimile claselor de echivalență la stânga, respectiv la dreapta modulo H.

Exemple.

- 1) Dacă G este un grup, relațiile de congruență la stânga și la dreapta modulo $\{e\}$ coincid (adică x $R_{\{e\}}^s$ y dacă și numai dacă x $R_{\{e\}}^d$ y). De asemenea, relațiile R_G^s și R_G^d modulo G coincid.
- 2) Dacă G este un grup comutativ, iar H un subgrup oarecare al lui G, atunci relațiile de congruență la stânga și la dreapta modulo H coincid.
 - 3) Fie S₃ grupul permutărilor de 3 elemente, adică

$$\mathbf{S}_{3} = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} \right\}$$

$$\S{i}$$

$$H = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \right\}.$$

Este evident că H este un subgrup al lui S₃.

Să construim mulțimile claselor de echivalență la stânga și la dreapta modulo H. Dacă σ , $\tau \in \mathbf{S}_3$, atunci $\sigma^{-1}\tau \in H$ dacă și numai dacă $\sigma^{-1}\tau$ (3) = 3, dacă și numai dacă σ (3) = τ (3). Deci obținem trei clase de echivalență la stânga și anume:

$$C_{1}^{s} = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} \right\}, \quad C_{2}^{s} = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} \right\},$$

$$C_{3}^{s} = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \right\}.$$

Dacă σ , $\tau \in S_3$, atunci $\sigma \tau^{-1} \in H$ dacă și numai dacă $\tau^{-1}(3) = \sigma^{-1}(3)$. Deci clasele de echivalență la dreapta sunt:

$$C_{1}^{d} = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \right\}, \quad C_{2}^{d} = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} \right\},$$

$$C_{3}^{d} = \left\{ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \right\}.$$

Se observă că mulțimile factor $S_3 / R_H^s = \{C_1^s, C_2^s, C_3^s\}$ și $S_3 / R_H^d = \{C_1^d, C_2^d, C_3^d\}$ sunt diferite.

Notații. Fie G un grup și fie A, B două submulțimi nevide ale sale. Notăm prin $AB = \{ab \mid a \in A, b \in B\}.$

Dacă $A = \{a\}$, respectiv $B = \{b\}$, atunci în loc de AB scriem aB, respectiv Ab, adică $aB = \{ab \mid b \in B\}$, respectiv $Ab = \{ab \mid a \in A\}$.

Exercițiu. Fie G un grup și H, $K \le G$ două subgrupuri.

- (i) Arătați că HK este subgrup dacă și numai dacă HK = KH.
- (ii) Dați un exemplu din care să rezulte că, în general, HK nu este subgrup.

Lema 3.1. Fie G un grup și H un subgrup al său. Dacă x este un element oarecare al lui G, atunci

$$[x]_s = xH$$
şi $[x]_d = Hx$.

Demonstrație. Să arătăm doar prima egalitate, a doua demonstrându-se analog. Fie $y \in [x]_s$. Atunci $x R_H^s$ y, deci $x^{-1}y \in H$, adică $x^{-1}y = h \in H$, de unde $y = xh \in xH$.

Reciproc, dacă $y \in xH$, atunci y = xh cu $h \in H$, deci $x^{-1}y = h \in H$ sau $x R_H^s$ y, adică $y \in [x]_s$.

Observație. Observăm că $[e]_s = eH = H$ și de asemenea $[e]_d = He = H$.

Propoziția 3.2. Dacă G este un grup și H un subgrup al său, atunci funcția

$$\varphi: G/R_H^s \to G/R_H^d$$

dată prin $\varphi(xH) = Hx^{-1}$ este o funcție bijectivă.

Demonstrație. Să arătăm mai întâi că φ este bine definită, adică nu depinde de alegerea reprezentanților. Într-adevăr, dacă xH = yH, adică x R_H^s y, atunci x $^{-1}$ y \in H sau x $^{-1}$ (y $^{-1}$) $^{-1}$ \in H. Deci x $^{-1}$ R_H^d y $^{-1}$, adică Hx $^{-1}$ = Hy $^{-1}$ sau φ(xH) = φ(yH), ceea ce înseamnă că φ este bine definită.

Funcția φ este injectivă căci dacă $\varphi(xH) = \varphi(yH)$, atunci $Hx^{-1} = Hy^{-1}$, adică x^{-1} R_H^s y^{-1} , deci $x^{-1}(y^{-1})^{-1} \in H$, de unde $x^{-1}y \in H$ sau x R_H^s y, deci xH = yH.

Faptul că ϕ este surjectivă este clar, deoarece $\phi(x^{-1}H) = H(x^{-1})^{-1} = Hx$.

În particular, dacă una dintre mulțimile G/R_H^s sau G/R_H^d este finită, atunci și cealaltă este finită și au același număr de elemente. Se spune în acest caz că H are indice finit în G sau că H este un subgrup de indice finit al lui G, iar numărul de elemente al mulțimii G/R_H^s sau al mulțimii G/R_H^d , care este același, se numește indicele lui H în G și se notează [G:H].

Exercițiu. Fie G un grup și H, $K \le G$ subgrupuri de indice finit.

- (i) Arătați că $[G : H \cap K] \leq [G : H][G : K]$.
- (ii) Dacă c.m.m.d.c.([G : H], [G : K]) = 1, atunci $[G : H \cap K] = [G : H][G : K]$.
- (iii) Dați un exemplu în care c.m.m.d.c.([G : H], [G : K]) > 1 și [G : H \cap K] < [G : H][G : K].
 - (iv) Daţi un exemplu din care să rezulte că reciproca proprietăţii (ii) este falsă.

Se spune că un grup G este finit dacă mulțimea pe care este definită structura de grup (adică mulțimea subiacentă) este finită, iar numărul de elemente ale lui G se numește ordinul său și se notează ord G sau |G|.

Este clar că dacă G este de ordin finit, atunci orice subgrup al său este de ordin finit și, mai mult, indicele oricărui subgrup este finit.

Lema 3.3. Fie G un grup și H un subgrup al său. Atunci funcția

$$\psi: H \to xH$$
,

dată de $\psi(h) = xh$, este bijectivă.

Demonstrație. Dacă $\psi(h) = \psi(h')$, atunci xh = xh', de unde prin simplificare, h = h'; deci ψ este injectivă.

Funcția ψ este evident surjectivă și deci este bijectivă.

În particular, dacă H este un subgrup finit, atunci toate clasele de echivalență la stânga ale lui G modulo H sunt mulțimi finite și au același număr de elemente ca și H.

Observație. Afirmația din lema precedentă referitoare la clasele de echivalență la stânga este valabilă și pentru clasele de echivalență la dreapta.

Teorema 3.4. (Lagrange) Dacă G este un grup finit și H un subgrup al său, atunci ord G = [G : H] ord H.

Demonstrație. Conform propoziției de mai sus putem să facem demonstrația considerând, de exemplu, numai relația de echivalență R_H^s pe G.

Fie x_1H, \dots, x_kH clasele de echivalență la stânga modulo H; deci k=[G:H]. Atunci

$$G \ = \bigcup_{i=1}^k x_i H \text{ \mathfrak{s} i x_i $H} \ {\textstyle \bigcap} \ x_j H = \varnothing \text{ pentru orice i $\neq j$,}$$

de unde $|G| = \sum_{i=1}^{k} |x_i H|$. Având în vedere lema precedentă, rezultă că |G| = k|H|. Deci

ord
$$G = [G : H]$$
 ord H .

Corolarul 3.5. Dacă G este grup finit și H un subgrup al său, atunci ord H | ord G. În particular, dacă ord G este un număr prim, atunci G nu are subgrupuri proprii, deci este ciclic.

Observații.

- 1) Dacă G este un grup finit și $d \mid \text{ord } G$, nu rezultă numaidecât că există H un subgrup al lui G cu ord H = d.
 - 2) Dacă G este grup *abelian* finit și d | ord G, atunci există $H \le G$ cu ord H = d.
- 3) Pentru cazul neabelian există totuși o reciprocă parțială a teoremei lui Lagrange: Fie G un grup finit și p un număr prim cu proprietatea că p \mid ord G. Atunci există $H \leq G$ cu ord H = p. (Teorema lui Cauchy)

§ 4. ORDINUL UNUI ELEMENT

G fiind un grup și $a \in G$ un element oarecare, am numit $\langle a \rangle = \{a^k \mid k \in \mathbf{Z}\},$ subgrupul ciclic generat de a.

Reamintim că un grup G se numește *ciclic* dacă există $a \in G$ astfel încât $G = \langle a \rangle$. Elementul a este un *generator* al grupului ciclic G.

Am văzut că grupul aditiv \mathbf{Z} este ciclic, generat de 1 sau -1. De asemenea, fiecare grup aditiv \mathbf{Z}_n este ciclic, un generator al său fiind, de exemplu, [1].

Definiția 4.1. Spunem că un element a al grupului G este de *ordin finit*, dacă există i, $j \in \mathbb{Z}$, $i \neq j$, astfel încât $a^i = a^j$. În caz contrar, adică dacă toate puterile lui a sunt distincte, spunem că a este element de *ordin infinit*.

Fie G un grup și $a \in G$ un element al său. Să considerăm funcția $\phi: \mathbf{Z} \to G$ definită prin $\phi(n) = a^n$. Avem, evident, Im $\phi = \langle a \rangle$. Elementul a este de ordin finit dacă funcția ϕ nu este injectivă și este de ordin infinit dacă funcția ϕ este injectivă.

Fie $a \in G$ un element de ordin finit și i < j astfel încât $a^i = a^j$. Atunci $a^{j-i} = e$ și deci există o putere pozitivă a lui a egală cu elementul neutru. Așadar mulțimea

$$\mathbf{M} = \{\mathbf{k} \in \mathbf{N}^* \mid \mathbf{a}^{\mathbf{k}} = \mathbf{e}\}$$

este nevidă. Cum M este o submulțime nevidă de numere naturale, iar mulțimea numerelor naturale este bine ordonată, atunci M are un cel mai mic element. Numim *ordinul* elementului a si-l notăm ord(a), cel mai mic număr întreg pozitiv n astfel încât $a^n = e$.

Deci ord(a) =
$$\min\{k \in \mathbf{N}^* \mid a^k = e\}$$
.

Propoziția 4.2. Fie a un element de ordin finit al unui grup G și n un număr natural nenul. Atunci n = ord(a) dacă și numai dacă sunt satisfăcute condițiile:

- 1) $a^{n} = e$,
- 2) dacă $a^k = e, k \in \mathbb{Z}$, atunci $n \mid k$.

Demonstrație. Fie n = ord(a). Din definiția ordinului lui a rezultă 1). Fie acum $k \in \mathbb{Z}$ astfel încât $a^k = e$. Conform teoremei împărțirii cu rest în mulțimea numerelor întregi, există $q, r \in \mathbb{Z}$ astfel încât k = nq + r, $0 \le r < n$; atunci

$$a^r = a^{k-nq} = a^k a^{-nq} = a^k (a^n)^{-q} = ee^{-q} = e.$$

Cum n este cel mai mic număr natural nenul astfel încât $a^n = e$, iar $0 \le r < n$, rezultă că r = 0 și deci n divide k.

Reciproc, dacă n satisface 1) și 2), iar $a^k = e$ cu $k \ge 1$, din 2) rezultă că n divide pe k, deci $n \le k$. Așadar, n este cel mai mic dintre numerele naturale nenule k astfel încât $a^k = e$, de unde n = ord(a).

Propoziția 4.3. Fie G un grup. Dacă $a \in G$ este un element de ordin n, atunci subgrupul ciclic generat de a are exact n elemente și anume:

$$\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}.$$

Demonstrație. Să demonstrăm mai întâi că $a^i \neq a^j$ oricare ar fi $i \neq j, \ 0 \leq i, j \leq n-1$. Într-adevăr, dacă am avea $a^i = a^j$ cu $0 \leq i < j \leq n-1$, atunci $a^{j-i} = e$ și 0 < j-i < n, contradicție cu faptul că n este cel mai mic număr natural nenul astfel încât $a^n = e$.

Fie acum n = ord(a) iar k un număr întreg. Din teorema împărțirii cu rest există q, $r \in \mathbf{Z}$ astfel încât k = nq + r cu $0 \le r \le n - 1$. Atunci $a^k = a^{nq + r} = (a^n)^q$ $a^r = a^r$ și deci $a^k \in \{e, a, \dots, a^{n-1}\}$.

Corolarul 4.4. Dacă G este un grup finit, atunci ordinul oricărui element al său divide ordinul lui G.

Demonstrație. Rezultă din teorema lui Lagrange și propoziția precedentă.

Corolarul 4.5. Dacă G este un grup finit cu ord G = n, atunci $a^n = e$ pentru orice $a \in G$.

Demonstrație. Rezultă din corolarul precedent.

Exemple.

- 1) Fie (\mathbb{C}^* , •) grupul multiplicativ al numerelor complexe nenule. Elementul $i \in \mathbb{C}^*$ are ordinul patru, iar $\langle i \rangle = \{1, -1, i, -i\}$.
- 2) Numărul complex $z_n = \cos(2\pi/n) + i \sin(2\pi/n)$ este un element de ordin n al grupului (\mathbb{C}^* , •). Mai mult, $\langle z_n \rangle = \{\cos(2k\pi/n) + i \sin(2k\pi/n) \mid k = 0, 1, ..., n-1\}$.
- 3) Elementul [3] din grupul aditiv (\mathbb{Z}_6 , +) al claselor de resturi modulo 6 este de ordin 2.
- 4) Numărul complex nenul z = a + bi cu $a^2 + b^2 \neq 1$ este element de ordin infinit al grupului (\mathbb{C}^* , •).

Aplicație. Am văzut că dacă se consideră monoidul multiplicativ \mathbf{Z}_n , al claselor de resturi modulo n, $n \geq 1$, atunci mulțimea $U(\mathbf{Z}_n)$ a elementelor inversabile din \mathbf{Z}_n formează un grup multiplicativ. Mai mult, am demonstrat că $[a] \in U(\mathbf{Z}_n)$ dacă și numai dacă (a, n) = 1 și deci $|U(\mathbf{Z}_n)| = \phi(n)$, unde ϕ este indicatorul lui Euler.

Dacă a, $n \in \mathbf{Z}$, $n \ge 1$ și (a, n) = 1, atunci $[a] \in U(\mathbf{Z}_n)$ și deci ord(a) $| \phi(n)$. Prin urmare, există $m \in \mathbf{N}^*$ astfel încât $\phi(n) = m$ ord([a]), de unde rezultă că $[a^{\phi(n)}] = [a]^{\phi(n)} = ([a]^{\operatorname{ord}([a])})^m = [1]^m = [1]$. Deci $[a]^{\phi(n)} = [1]$, ceea ce este echivalent cu $a^{\phi(n)} \equiv 1 \pmod n$, adică am obținut o demonstrație pentru *teorema lui Euler*.

Teorema 4.6. (Cauchy) Fie G un grup finit și p un număr prim cu proprietatea că $p \mid \text{ord } G$. Atunci există $a \in G$ cu ord(a) = p.

Demonstrație. Fie n = ord G și definim $S = \{(a_1, \ldots, a_p) \mid a_i \in G$ și $a_1 \cdots a_p = e\}$. Avem $|S| = n^{p-1}$ și cum $p \mid n$ rezultă că $|S| \equiv 0 \pmod{p}$. Să mai observăm că o permutare ciclică a unui p-uplu $(a_1, \ldots, a_p) \in S$ este tot un element al lui S.

Vom numi două p-upluri din S *echivalente* dacă unul este permutare ciclică a celuilalt. Astfel, $(a_1, \ldots, a_p) \in S$ este echivalent cu exact p p-upluri distincte, excepție facând cazul în care $a_1 = \ldots = a_p$. Clasa de echivalență a unui p-uplu de forma (a, \ldots, a) are un singur element. Evident, S conține un astfel de p-uplu, și anume pe (e, \ldots, e) . Dacă acesta este singurul p-uplu de forma (a, \ldots, a) din S, atunci $|S| \equiv 1 \pmod{p}$, contradicție. Așadar există un element $a \neq e$ cu proprietatea că $(a, \ldots, a) \in S$, deci $a^p = e$. Se consideră acum $H = \langle a \rangle$ și demonstrația este încheiată.

Propoziția 4.7. Dacă G este un grup și $x \in G$ este un element de ordin n (finit), atunci $ord(x^k) = n/(n,k)$, pentru orice $k \in \mathbb{Z}$, $k \ne 0$.

Demonstrație. Fie d=(n, k). Atunci putem scrie n=dm, k=dl, cu (m,l)=1. Trebuie să arătăm că $ord(x^k)=m$.

Evident $(x^k)^m = x^{km} = x^{dlm} = x^{nl} = (x^n)^l = e^l = e$, decarece ord(x) = n.

Fie $r \in \mathbf{Z}$ cu proprietatea că $(x^k)^r = e$. Atunci $x^{kr} = e$, de unde $n \mid kr$, deci dm $\mid dlr \Rightarrow m \mid lr \Rightarrow m \mid r$, deoarece (m, l) = 1.

O consecință imediată este faptul că ord([k]) = n/(n,k) pentru orice $[k] \in \mathbf{Z}_n$.

Exercițiu. Determinați elementele de ordin 30 din Z₂₄₀.

Exercițiu. (i) Fie G_1 , G_2 două grupuri și $x_1 \in G_1$, $x_2 \in G_2$ elemente de ordin finit. Arătați că ord $(x_1, x_2) = [ord(x_1), ord(x_2)]$.

(ii) Determinați ord ([3], [4]) în grupul \mathbb{Z}_{24} x \mathbb{Z}_{36} .