

1.

1.1.
$$A = \{ P(x, y) : x \ge -2 \land y \le 4 \}; B = \{ P(x, y) : -3 \le y \le 2 \}$$

 $A \cap B = \{ P(x, y) : x \ge -2 \land -3 \le y \le 2 \}$

Resposta: (D) $\left(3, -\frac{5}{2}\right)$

1.2.
$$\left(\frac{1-k}{2}, 1-3k\right) \in A \Leftrightarrow \frac{1-k}{2} \ge -2 \land 1-3k \le 4 \Leftrightarrow 1-k \ge -4 \land -3k \le 3 \Leftrightarrow k \le 5 \land k \ge -1$$

Resposta: $k \in [-1, 5]$

2.

2.1.
$$A'(3,0)$$
 e $B'(0,4)$

Assim,
$$M\left(\frac{3+0}{2}, \frac{0+4}{2}\right)$$
, ou seja, $M\left(\frac{3}{2}, 2\right)$.

Resposta: As coordenadas do ponto M são $\left(\frac{3}{2}, 2\right)$.

2.2. O ponto *R* tem coordenadas do tipo
$$(x,0)$$
 e $\overline{AR} = \overline{BR}$.

$$\sqrt{(x-3)^2+4} = \sqrt{(x+1)^2+16} \iff x^2-6x+9+4 = x^2+2x+1+16 \iff -8x=4 \iff x=-\frac{1}{2}$$

Resposta: O ponto *R* tem coordenadas $\left(-\frac{1}{2},0\right)$.

2.3. O centro da circunferência é o ponto médio de [AB]. Seja C esse ponto.

$$C\left(\frac{3-1}{2}, \frac{-2+4}{2}\right)$$
, ou seja, $C(1,1)$.

Seja r o raio da circunferência.

$$r = \overline{CA} = \sqrt{(1-3)^2 + (1+2)^2} = \sqrt{13}$$

Equação da circunferência: $(x-1)^2 + (y-1)^2 = 13$

Resposta: $(x-1)^2 + (y-1)^2 = 13$

3. Circunferência: $(x-3)^2 + (y-2)^2 = 13$

O ponto A tem coordenadas do tipo (x,0), x>0, e pertence à circunferência.

$$(x-3)^2 + (0-2)^2 = 13 \Leftrightarrow (x-3)^2 = 9 \Leftrightarrow x-3=3 \lor x-3=-3 \Leftrightarrow x=0 \lor x=6$$

O ponto A tem coordenadas (6,0).

$$\overline{OA} = 6$$

Sabe-se que C tem coordenadas (3,2) e é o ponto médio de [OB].

Sendo (x, y) as coordenadas do ponto B, tem-se:

$$\begin{cases} \frac{0+x}{2} = 3 \\ \frac{0+y}{2} = 2 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ y = 4 \end{cases}$$

O ponto B tem coordenadas (6,4), logo $\overline{AB} = 4$.

O triângulo [OAB] é retângulo em A (ângulo BAO inscrito numa semicircunferência).

A medida da área do triângulo [OAB] é dada por:

$$\frac{\overline{OA} \times \overline{AB}}{2} = \frac{6 \times 4}{2} = 12$$

Resposta: A medida da área do triângulo [OAB] é 12.

4.

4.1. a) D(2,8,5)

A reta que passa em D e é paralela ao eixo Ox pode ser definida pela condição:

$$y = 8 \land z = 5$$

Resposta: $y = 8 \land z = 5$

b) D(2,8,5) e E(2,0,5).

O segmento de reta [DE] pode ser definido pela condição: $x = 2 \land z = 5 \land 0 \le y \le 8$

Resposta: $x = 2 \land z = 5 \land 0 \le y \le 8$

4.2. A(4,0,0) e D(2,8,5)

Seja
$$P(x, y, z)$$
 tal que $\overline{PA} = \overline{PD}$.

$$\overline{PA} = \overline{PD} \Leftrightarrow \sqrt{(x-4)^2 + y^2 + z^2} = \sqrt{(x-2)^2 + (y-8)^2 + (z-5)^2} \Leftrightarrow$$

$$\Leftrightarrow x^2 - 8x + 16 + y^2 + z^2 = x^2 - 4x + 4 + y^2 - 16y + 64 + z^2 - 10z + 25 \Leftrightarrow$$

$$\Leftrightarrow -4x + 16y + 10z - 77 = 0$$

Resposta: -4x + 16y + 10z - 77 = 0

5. O centro da esfera é o ponto C de coordenadas (0,0,2) e o raio é 2.

O círculo tem centro A(0,0,3) e raio r, sendo $1+r^2=2^2$.

Daqui resulta que $r = \sqrt{3}$.

Área do círculo: $\pi r^2 = 3\pi$

Resposta: (B) 3π

6.

6.1.
$$A(3,-3,-2)$$

$$x^2 + y^2 + (z-3)^2 \le 9$$

A esfera tem como centro o ponto de coordenadas (0,0,3) e raio 3.

Assim, o ponto S tem coordenadas (0,0,6).

Seja M o ponto médio de [AS].

$$M\left(\frac{3+0}{2}, \frac{-3+0}{2}, \frac{-2+6}{2}\right)$$
, ou seja, $M\left(\frac{3}{2}, -\frac{3}{2}, 2\right)$.

Resposta: $M\left(\frac{3}{2}, -\frac{3}{2}, 2\right)$

6.2. Volume da esfera: $\frac{4}{3} \times \pi \times r^3 = \frac{4 \times 27\pi}{3} = 36\pi$

$$\overline{OS} = 6 = \overline{AB} \text{ e } \overline{AF} = 2$$

Volume do prisma: $(\overline{AB})^2 \times \overline{AF} = 6^2 \times 2 = 72$

Volume da peça: $36\pi + 72 \approx 185,1$

Resposta: O volume da peça é 185,1.