- Consider existing Lab testcase design "dtmf_recvr_core" to perform following tasks, describe what was done and publish results by capturing snapshots of tool.
 - a. Synthesis: Publish 3 worst timing paths (start and end points) in the design and respective timing slacks for Case-1 and Case-2.
 - i. Case-1: Clocks and respective frequencies are o refclk, m_clk are of 62.5 mhz o m_rcc_clk, m_spi_clk, m_dsram_clk, m_ram_clk, m_digit_clk are of 31.25 mhz
 - ii. Case-2: All clocks frequencies are increased by 2X (doubled).

constraints_case1.sdc

```
create_clock -name refclk -period 16.0 [get_ports refclk]

create_clock -name m_clk -period 16.0 [get_ports m_clk]

create_clock -name m_rcc_clk -period 32.0 [get_ports m_rcc_clk]

create_clock -name m_spi_clk -period 32.0 [get_ports m_spi_clk]

create_clock -name m_dsram_clk -period 32.0 [get_ports m_dsram_clk]

create_clock -name m_ram_clk -period 32.0 [get_ports m_ram_clk]

create_clock -name m_digit_clk -period 32.0 [get_ports m_digit_clk]
```

constraints_case2.sdc

```
create_clock -name refclk -period 8.0 [get_ports refclk]

create_clock -name m_clk -period 8.0 [get_ports m_clk]

create_clock -name m_rcc_clk -period 16.0 [get_ports m_rcc_clk]

create_clock -name m_spi_clk -period 16.0 [get_ports m_spi_clk]

create_clock -name m_dsram_clk -period 16.0 [get_ports m_dsram_clk]

create_clock -name m_ram_clk -period 16.0 [get_ports m_ram_clk]

create_clock -name m_digit_clk -period 16.0 [get_ports m_digit_clk]
```

run_case1.tcl

Load libraries

 $set_db \ / \ .library \{ \ ./LIB/slow.lib \ ./LIB/pll.lib \ ./LIB/CDK_S128x16.lib \ ./LIB/CDK_S256x16.lib \ ./LIB/CDK_R512x16.lib \}$

 $set_db \ / \ .lef_library \ \{ \ ./LEF/gsclib045_tech.lef \ ./LEF/gsclib045_macro.lef \ ./LEF/cdk_sclib045_macro.lef \ ./LE$

```
# Read HDL (explicit list)
read_hdl {
./RTL/pllclk.v ./RTL/accum_stat.v ./RTL/alu_32.v ./RTL/arb.v
./RTL/data_bus_mach.v ./RTL/data_sample_mux.v ./RTL/decode_i.v ./RTL/decoder.v
./RTL/digit_reg.v ./RTL/conv_subreg.v ./RTL/dma.v ./RTL/dtmf_recvr_core.v
./RTL/execute_i.v ./RTL/m16x16.v ./RTL/mult_32_dp.v ./RTL/port_bus_mach.v
./RTL/prog_bus_mach.v./RTL/ram_128x16_test.v./RTL/ram_256x16_test.v
./RTL/results_conv.v ./RTL/spi.v ./RTL/tdsp_core_glue.v ./RTL/tdsp_core_mach.v
./RTL/tdsp_core.v ./RTL/tdsp_data_mux.v ./RTL/tdsp_ds_cs.v
./RTL/test_control.v ./RTL/ulaw_lin_conv.v ./RTL/power_manager.v
}
# Elaborate the design with top-level module name
elaborate dtmf_recvr_core
check_design -unresolved
# Read constraints for Case-1
read_sdc constraints_case1.sdc
# Synthesis flow
set_db syn_generic_effort medium
syn_generic
set_db syn_map_effort medium
set_db syn_opt_effort medium
syn_map
syn_opt
# Outputs
write_hdl > design_syn_case1.v
```

```
write_sdc > design_syn_case1.sdc
report_timing -max_paths 3 > top3paths_case1.rpt
run_case2.tcl
# Load libraries
set_db / .library { ./LIB/slow.lib ./LIB/pll.lib ./LIB/CDK_S128x16.lib ./LIB/CDK_S256x16.lib
./LIB/CDK_R512x16.lib }
set_db / .lef_library { ./LEF/gsclib045_tech.lef ./LEF/gsclib045_macro.lef ./LEF/pll.lef
./LEF/CDK_S128x16.lef ./LEF/CDK_S256x16.lef ./LEF/CDK_R512x16.lef }
# Read HDL (explicit list)
read_hdl {
 ./RTL/pllclk.v ./RTL/accum_stat.v ./RTL/alu_32.v ./RTL/arb.v
 ./RTL/data_bus_mach.v./RTL/data_sample_mux.v./RTL/decode_i.v./RTL/decoder.v
 ./RTL/digit_reg.v ./RTL/conv_subreg.v ./RTL/dma.v ./RTL/dtmf_recvr_core.v
 ./RTL/execute_i.v ./RTL/m16x16.v ./RTL/mult_32_dp.v ./RTL/port_bus_mach.v
 ./RTL/prog_bus_mach.v ./RTL/ram_128x16_test.v ./RTL/ram_256x16_test.v
 ./RTL/results_conv.v./RTL/spi.v./RTL/tdsp_core_glue.v./RTL/tdsp_core_mach.v
 ./RTL/tdsp_core.v ./RTL/tdsp_data_mux.v ./RTL/tdsp_ds_cs.v
 ./RTL/test_control.v ./RTL/ulaw_lin_conv.v ./RTL/power_manager.v
}
# Elaborate the design with top-level module name
elaborate dtmf_recvr_core
check_design -unresolved
# Read constraints for Case-1
read_sdc constraints_case2.sdc
# Synthesis flow
set_db syn_generic_effort medium
syn_generic
```

```
set_db syn_map_effort medium
set_db syn_opt_effort medium
syn_map
syn_opt

# Outputs
write_hdl > design_syn_case1.v
write_sdc > design_syn_case1.sdc
report_timing -max_paths 3 > top3paths_case2.rpt
```

top3paths_case1.rpt

Generated by: Genus(TM) Synthesis Solution 23.13-s073_1

Generated on: May 10 2025 10:25:46 am

Module: dtmf_recvr_core

Operating conditions: slow

Interconnect mode: global

Area mode: physical library

Path 1: MET (771 ps) Setup Check with Pin TDSP_CORE_INST_EXECUTE_INST_acc_reg[15]/CK->D

Group: refclk

Startpoint: (R) TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/CK

Clock: (R) refclk

Endpoint: (F) TDSP_CORE_INST_EXECUTE_INST_acc_reg[15]/D

Clock: (R) refclk

Capture Launch

Clock Edge:+ 16000 0

Src Latency:+ 0 0

Net Latency:+ 0 (I) 0 (I)

Arrival:= 16000 0

Setup:- 322

Required Time:= 15678

Launch Clock:- 0

Data Path:- 14907

Slack:= 771

#		
# Timing Point	Flags Arc Edge Cell Fanout Load Trans	
Delay Arrival Instance		
#	(fF) (ps) (ps) Location	
#		
TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/CK R (arrival) 256 - 0 0 0 (-,-)		
TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/Q - CK->Q R SDFFRHQX1 4 12.4 203 339 339 (-,-)		
g72898/Y (-,-)	- A->Y F INVX1 2 6.9 138 140 479	
g72855105935/Y 825 1304 (-,-)	- A->Y F AND2X1 33 87.8 1450	
g729532346/Y 1174 2478 (-,-)	- B->Y R NOR2BX1 16 45.9 1366	
g726415107/Y 600 3078 (-,-)	- A1N->YR OAI2BB1X1 1 4.5 130	
g725995526/Y 679	- B0->Y R AO21X1 28 80.0 1188	

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3641/Y - B->Y R XNOR2X1 1 5.8 117 549 4305 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3624/CO - CI->COR ADDFX1 1 5.8 129 249 4554 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3623/CO - CI->CO R ADDFX1 1 5.8 128 253 4807 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3622/CO - CI->CO R ADDFX1 1 5.8 128 252 5060 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3621/CO - CI->COR ADDFX1 1 5.8 128 252 5312 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3620/CO - CI->CO R ADDFX1 1 5.8 128 252 5565 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3619/CO - CI->COR ADDFX1 1 5.8 128 252 5817 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3618/CO - CI->CO R ADDFX1 1 5.8 128 252 6070 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3617/CO - CI->CO R ADDFX1 1 5.8 128 252 6322 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3616/CO - CI->CO R ADDFX1 1 5.8 128 252 6575 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3615/CO - CI->COR ADDFX1 1 5.8 128 252 6827 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3614/CO - CI->COR ADDFX1 1 5.8 128 252 7080 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3613/CO - CI->CO R ADDFX1 1 5.8 128 252 7332 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3612/CO - CI->CO R ADDFX1 1 5.8 128 252 7585 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3611/CO - CI->COR ADDFX1 1 5.8 128 252 7837 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3610/CO - CI->CO R ADDFX1 1 5.8 128 252 8090 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3609/CO - CI->CO R ADDFX1 1 5.8 128 252 8342 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3608/CO - CI->CO R ADDFX1 1 5.8 128 252 8595 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3607/CO - CI->CO R ADDFX1 1 5.8 128 252 8847 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3606/CO - CI->CO R ADDFX1 1 5.8 128 252 9100 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3605/CO - CI->CO R ADDFX1 1 5.8 128 252 9352 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3604/CO - CI->CO R ADDFX1 1 5.8 128 252 9605 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3603/CO - CI->CO R ADDFX1 1 5.8 128 252 9857 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3602/CO - CI->CO R ADDFX1 1 5.8 128 252 10110 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3601/CO - CI->CO R ADDFX1 1 5.8 128 252 10362 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3600/CO - CI->CO R ADDFX1 1 5.8 128 252 10615 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3599/CO - CI->CO R ADDFX1 1 5.8 128 252 10867 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3598/CO - CI->COR ADDFX1 1 5.8 128 252 11120 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3597/CO - CI->CO R ADDFX1 1 5.8 128 252 11372 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3596/CO - CI->COR ADDFX1 1 5.8 128 252 11625 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3595/CO - CI->CO R ADDFX1 1 5.8 128 252 11877 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3594/CO - CI->COR ADDFX1 1 5.0 116 246 12124 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3593/Y - B->Y F XNOR2X1 1 4.8 107 197 12321 (-,-)

g103040_5107/Y - C1->Y R AOI222X1 2 7.8 453 260 12581 (-,-)

200 12001 (,)

g103033__1666/Y - B->Y F NOR2X1 3 9.9 382 263 12844 (-,-)

12044 (-,-)

g103023__1881/Y - A1->Y F OA21X1 31 88.1 1461

954 13798 (-,-)

g102980_5526/Y - B1->Y R AOI222X1 1 4.5 430 624 14422 (-,-)

g102911__6417/Y - D->Y F NAND4XL 1 4.7 1127 485 14907 (-,-)

TDSP_CORE_INST_EXECUTE_INST_acc_reg[15]/D - - F DFFRHQX1 1 - - 0 14907 (-,-)

#------

```
Path 2: MET (825 ps) Setup Check with Pin TDSP_CORE_INST_EXECUTE_INST_acc_reg[0]/CK->D
   Group: refclk
 Startpoint: (R) TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/CK
   Clock: (R) refclk
  Endpoint: (F) TDSP_CORE_INST_EXECUTE_INST_acc_reg[0]/D
   Clock: (R) refclk
       Capture Launch
   Clock Edge:+ 16000 0
  Src Latency:+ 0
  Net Latency:+ 0 (I) 0 (I)
    Arrival:= 16000 0
    Setup:- 322
  Required Time:= 15678
  Launch Clock:- 0
   Data Path: 14852
    Slack:= 825
_____
              Timing Point Flags Arc Edge Cell Fanout Load Trans
Delay Arrival Instance
                                               (fF) (ps) (ps) Location
TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/CK
                                                          - - R (arrival)
256 - 0 0 0 (-,-)
TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/Q - CK->Q R
SDFFRHQX1 412.4 203 339 339 (-,-)
                                     - A->Y F INVX1 2 6.9 138 140 479
g72898/Y
(-,-)
```

g72855105935/Y 825 1304 (-,-)	- A->Y F AND2X1 33 87.8 1450
g729532346/Y 1174 2478 (-,-)	- B->Y R NOR2BX1 16 45.9 1366
g726415107/Y 600 3078 (-,-)	- A1N->YR OAI2BB1X1 1 4.5 130
g725995526/Y 679	- B0->Y R AO21X1 28 80.0 1188

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3641/Y - B->Y R XNOR2X1 1 5.8 117 549 4305 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3624/CO - CI->CO R ADDFX1 1 5.8 129 249 4554 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3623/CO - CI->CO R ADDFX1 1 5.8 128 253 4807 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3622/CO - CI->CO R ADDFX1 1 5.8 128 252 5060 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3621/CO - CI->COR ADDFX1 1 5.8 128 252 5312 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3620/CO - CI->CO R ADDFX1 1 5.8 128 252 5565 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3619/CO - CI->COR ADDFX1 1 5.8 128 252 5817 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3618/CO - CI->COR ADDFX1 1 5.8 128 252 6070 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3617/CO - CI->COR ADDFX1 1 5.8 128 252 6322 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3616/CO - CI->CO R ADDFX1 1 5.8 128 252 6575 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3615/CO - CI->CO R ADDFX1 1 5.8 128 252 6827 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3614/CO - CI->COR ADDFX1 1 5.8 128 252 7080 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3613/CO - CI->CO R ADDFX1 1 5.8 128 252 7332 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3612/CO - CI->COR ADDFX1 1 5.8 128 252 7585 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3611/CO - CI->COR ADDFX1 1 5.8 128 252 7837 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3610/CO - CI->CO R ADDFX1 1 5.8 128 252 8090 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3609/CO - CI->CO R ADDFX1 1 5.8 128 252 8342 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3608/CO - CI->CO R ADDFX1 1 5.8 128 252 8595 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3607/CO - CI->CO R ADDFX1 1 5.8 128 252 8847 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3606/CO - CI->CO R ADDFX1 1 5.8 128 252 9100 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3605/CO - CI->CO R ADDFX1 1 5.8 128 252 9352 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3604/CO - CI->CO R ADDFX1 1 5.8 128 252 9605 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3603/CO - CI->CO R ADDFX1 1 5.8 128 252 9857 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3602/CO - CI->CO R ADDFX1 1 5.8 128 252 10110 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3601/CO - CI->CO R ADDFX1 1 5.8 128 252 10362 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3600/CO - CI->CO R ADDFX1 1 5.8 128 252 10615 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3599/CO - CI->CO R ADDFX1 1 5.8 128 252 10867 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3598/CO - CI->CO R ADDFX1 1 5.8 128 252 11120 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3597/CO - CI->COR ADDFX1 1 5.8 128 252 11372 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3596/CO - CI->COR ADDFX1 1 5.8 128 252 11625 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3595/CO - CI->CO R ADDFX1 1 5.8 128 252 11877 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3594/CO - CI->COR ADDFX1 1 5.0 116 246 12124 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3593/Y - B->Y F XNOR2X1 1 4.8 107 197 12321 (-,-)

g103040_5107/Y - C1->Y R AOI222X1 2 7.8 453 260 12581 (-,-)

g103033__1666/Y - B->Y F NOR2X1 3 9.9 382 263 12844 (-,-)

g103023__1881/Y - A1->Y F OA21X1 31 88.1 1461 954 13798 (-,-)

g102986__1705/Y - A1->Y R AOI22X1 1 4.5 414 575

g102961__5115/Y - D->Y F NAND4XL 1 4.7 1127 480 14852 (-,-)

14372 (-,-)

```
TDSP_CORE_INST_EXECUTE_INST_acc_reg[0]/D
                                                 - - F DFFRHQX1
1 - - 0 14852 (-,-)
#------
Path 3: MET (1232 ps) Setup Check with Pin TDSP_CORE_INST_EXECUTE_INST_acc_reg[8]/CK-
>D
   Group: refclk
 Startpoint: (R) TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/CK
   Clock: (R) refclk
  Endpoint: (F) TDSP_CORE_INST_EXECUTE_INST_acc_reg[8]/D
   Clock: (R) refclk
       Capture Launch
  Clock Edge:+ 16000 0
  Src Latency:+ 0
  Net Latency:+ 0 (I) 0 (I)
   Arrival:= 16000
    Setup:- 118
 Required Time:= 15882
  Launch Clock:- 0
   Data Path: 14651
    Slack:= 1232
             Timing Point Flags Arc Edge Cell Fanout Load Trans
Delay Arrival Instance
#
                                             (fF) (ps) (ps) Location
```

#-----

TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/CK - - R (arrival) 256 - 0 0 0 (-,-)

TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[0]/Q - CK->Q R SDFFRHQX1 412.4 203 339 339 (-,-)

g72898/Y - A->Y F INVX1 2 6.9 138 140 479 (-,-)

g72855__105935/Y - A->Y F AND2X1 33 87.8 1450 825 1304 (-,-)

g72953__2346/Y - B->Y R NOR2BX1 16 45.9 1366 1174 2478 (-,-)

g72641__5107/Y - A1N->YR OAI2BB1X1 1 4.5 130 600 3078 (-,-)

g72599_5526/Y - B0->Y R AO21X1 28 80.0 1188 679 3756 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3641/Y - B->Y R XNOR2X1 1 5.8 117 549 4305 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3624/CO - CI->COR ADDFX1 1 5.8 129 249 4554 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3623/CO - CI->CO R ADDFX1 1 5.8 128 253 4807 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3622/CO - CI->COR ADDFX1 1 5.8 128 252 5060 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3621/CO - CI->CO R ADDFX1 1 5.8 128 252 5312 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3620/CO - CI->COR ADDFX1 1 5.8 128 252 5565 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3619/CO - CI->COR ADDFX1 1 5.8 128 252 5817 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3618/CO - CI->CO R ADDFX1 1 5.8 128 252 6070 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3617/CO - CI->COR ADDFX1 1 5.8 128 252 6322 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3616/CO - CI->CO R ADDFX1 1 5.8 128 252 6575 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3615/CO - CI->COR ADDFX1 1 5.8 128 252 6827 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3614/CO - CI->COR ADDFX1 1 5.8 128 252 7080 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3613/CO - CI->CO R ADDFX1 1 5.8 128 252 7332 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3612/CO - CI->CO R ADDFX1 1 5.8 128 252 7585 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3611/CO - CI->CO R ADDFX1 1 5.8 128 252 7837 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3610/CO - CI->CO R ADDFX1 1 5.8 128 252 8090 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3609/CO - CI->CO R ADDFX1 1 5.8 128 252 8342 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3608/CO - CI->CO R ADDFX1 1 5.8 128 252 8595 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3607/CO - CI->CO R ADDFX1 1 5.8 128 252 8847 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3606/CO - CI->CO R ADDFX1 1 5.8 128 252 9100 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3605/CO - CI->COR ADDFX1 1 5.8 128 252 9352 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3604/CO - CI->CO R ADDFX1 1 5.8 128 252 9605 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3603/CO - CI->CO R ADDFX1 1 5.8 128 252 9857 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3602/CO - CI->CO R ADDFX1 1 5.8 128 252 10110 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3601/CO - CI->COR ADDFX1 1 5.8 128 252 10362 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3600/CO - CI->CO R ADDFX1 1 5.8 128 252 10615 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3599/CO - CI->COR ADDFX1 1 5.8 128 252 10867 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3598/CO - CI->COR ADDFX1 1 5.8 128 252 11120 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3597/CO - CI->CO R ADDFX1 1 5.8 128 252 11372 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3596/CO - CI->CO R ADDFX1 1 5.8 128 252 11625 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3595/CO - CI->COR ADDFX1 1 5.8 128 252 11877 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3594/CO - CI->COR ADDFX1 1 5.0 116 246 12124 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 3593/Y - B->Y F XNOR2X1 1 4.8 107 197 12321 (-,-)

g103040__5107/Y - C1->Y R AOI222X1 2 7.8 453 260 12581 (-,-)

g103033_1666/Y
12844 (-,-)
g103023_1881/Y
954 13798 (-,-)
g102994_4733/Y
14377 (-,-)
g102954_2802/Y
1TDSP_CORE_INST_EXECUTE_INST_acc_reg[8]/D
1 - 0 14651 (-,-)

- B->Y F NOR2X1 3 9.9 382 263

- A1->Y F OA21X1 31 88.1 1461

- A1->Y R AOI22X1 1 4.8 380 579

- C->Y F NAND3X1 1 4.7 364 274

top3paths_case2.rpt

Generated by: Genus(TM) Synthesis Solution 23.13-s073_1

Generated on: May 10 2025 10:34:42 am

Module: dtmf_recvr_core

Operating conditions: slow
Interconnect mode: global

Area mode: physical library

Path 1: MET (1 ps) Setup Check with Pin TDSP_CORE_INST_EXECUTE_INST_p_reg[31]/CK->D

Group: refclk

Startpoint: (R) TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[2]/CK

Clock: (R) refclk

Endpoint: (R) TDSP_CORE_INST_EXECUTE_INST_p_reg[31]/D

Clock: (R) refclk

```
Clock Edge:+ 8000 0
  Src Latency:+ 0
  Net Latency:+ 0 (I) 0 (I)
   Arrival:= 8000 0
    Setup:- 137
 Required Time:= 7863
  Launch Clock:- 0
   Data Path: 7862
    Slack:= 1
      Timing Point Flags Arc Edge Cell Fanout Load Trans Delay Arrival
Instance
                               (fF) (ps) (ps) Location
TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[2]/CK - - R (arrival) 256 - 0 0
0 (-,-)
TDSP_CORE_INST_EXECUTE_INST_sel_op_b_reg[2]/Q - CK->Q F SDFFRHQX1 4 15.9
274 366 366 (-,-)
                     - A->Y R INVX1 2 8.0 156 166 532 (-,-)
g106202/Y
                        - A->Y F NOR2X2 1 8.4 99 108 639 (-,-)
g73359__9945/Y
                        - B->Y R NAND2X6 621.9 98 72 711 (-,-)
g73278__4319/Y
                     - A->Y F CLKINVX6 8 26.9 94 82 793 (-,-)
g73250/Y
                        - B1->Y R AOI22X4 110.4 195 93 886 (-,-)
g73169__8246/Y
g73009_3680/Y
                  - B->Y F NAND3X8 26 78.0 527 355 1241 (-,-)
g72987__7482/Y
                  - B->Y R NOR2X4 213.9 219 228 1469 (-,-)
                    - A->Y F INVX3 2 9.5 93 113 1582 (-,-)
g106282/Y
g72946__3680/Y
                  - A1N->YF AOI2BB1X2 1 5.3 87 170 1752 (-,-)
```

Capture Launch

```
g72881 9315/Y
                               B->Y R XOR2X4
                                                 9 33.0 171 258 2011 (-,-)
csa_tree_SUB_TC_OP_groupi_g7384/Y
                                         A->Y F CLKINVX6
                                                            4 14.6 77 88 2098
(-,-)
csa_tree_SUB_TC_OP_groupi_g7306/Y
                                         A1->Y R AOI22X2
                                                             2 8.0 181 132
2230 (-,-)
csa_tree_SUB_TC_OP_groupi_g7193/Y
                                         B1->Y F OAI22X2
                                                            1 6.1 180 144 2375
csa_tree_SUB_TC_OP_groupi_g6989/S
                                         CI->S R ADDFHX1
                                                             1 6.8 132 326
2700 (-,-)
csa_tree_SUB_TC_OP_groupi_g6947/CO
                                           B->CO R ADDFHX2
                                                                1 6.0 87 231
2932 (-,-)
csa_tree_SUB_TC_OP_groupi_g6914/CO
                                           CI->COR ADDFHXL
                                                                2 9.3 203 254
3185 (-,-)
csa_tree_SUB_TC_OP_groupi_g6903/Y
                                      - A1->Y F AOI21X4
                                                            2 8.0 122 134 3319
(-,-)
g106176/Y
                            A1N->YF AOI2BB1X4 2 7.5 70 170 3489 (-,-)
g106182/Y
                            A1->Y F OA21X2
                                               3 12.4 135 200 3689 (-,-)
csa_tree_SUB_TC_OP_groupi_g6836/Y
                                         B->Y R NOR2X4
                                                            2 9.7 108 96 3784
(-,-)
csa_tree_SUB_TC_OP_groupi_g6823/Y
                                         B->Y F NAND2X4
                                                             1 7.0 91 85 3869
(-,-)
                                                             1 6.9 90 86 3955
csa tree SUB TC OP groupi g6799/Y
                                         A1->Y R AOI21X4
(-,-)
csa_tree_SUB_TC_OP_groupi_g6797/Y
                                         A1->Y F OAI21X4
                                                            1 7.0 100 92 4047
(-,-)
csa_tree_SUB_TC_OP_groupi_g7519/Y
                                         B->Y R NAND2X4
                                                             3 12.7 90 69
4116 (-,-)
csa_tree_SUB_TC_OP_groupi_g7499/Y
                                         B->Y F NAND2X4
                                                             2 8.2 99 84 4199
(-,-)
csa_tree_SUB_TC_OP_groupi_g6790/Y
                                         B->Y R NOR2X2
                                                            1 5.5 110 89 4288
                                         A1->Y F OAI21X2
csa tree SUB TC OP groupi g6785/Y
                                                            1 7.0 158 129 4417
(-,-)
csa_tree_SUB_TC_OP_groupi_g6783/Y
                                         A1->Y R AOI21X4
                                                             1 6.9 93 107 4524
(-,-)
csa_tree_SUB_TC_OP_groupi_g6782/Y
                                         B->Y F NOR2X4
                                                            2 9.5 65 64 4588
(-,-)
```

```
csa_tree_SUB_TC_OP_groupi_g6780/Y
                                     - B->Y R NOR2X4
                                                           2 8.2 91 67 4655
(-,-)
csa_tree_SUB_TC_OP_groupi_g7399/Y
                                        B->Y F NAND2BX2 1 7.0 144 108
4763 (-,-)
csa_tree_SUB_TC_OP_groupi_g6772/Y
                                        A1->Y R AOI21X4
                                                           1 6.9 91 102 4866
csa_tree_SUB_TC_OP_groupi_g6770/Y
                                        A1->Y F OAI21X4
                                                           1 8.4 117 98 4964
(-,-)
csa_tree_SUB_TC_OP_groupi_g6769/Y
                                        B->Y R NAND2X6
                                                            3 13.5 85 68
5032 (-,-)
csa_tree_SUB_TC_OP_groupi_g6767/Y
                                        B->Y F NAND2X6
                                                            2 7.9 79 71 5102
(-,-)
csa_tree_SUB_TC_OP_groupi_g6762/Y
                                        A1->Y R OAI21X2
                                                           1 4.8 113 88 5190
(-,-)
csa_tree_SUB_TC_OP_groupi_g6758/Y
                                        A1->Y F AOI21X1
                                                           1 5.5 222 165 5355
csa_tree_SUB_TC_OP_groupi_g6756/Y
                                        A1->Y R OAI21X2
                                                           1 6.1 145 145
5500 (-,-)
csa_tree_SUB_TC_OP_groupi_g6755/CO
                                          CI->COR ADDFHX2
                                                               1 6.1 88 224
5723 (-,-)
csa_tree_SUB_TC_OP_groupi_g6754/CO
                                          CI->COR ADDFHX2
                                                               1 6.1 88 204
5928 (-,-)
csa_tree_SUB_TC_OP_groupi_g6753/CO
                                          CI->COR ADDFHX2
                                                               1 6.1 88 204
6132 (-,-)
                                          CI->COR ADDFHX2
csa_tree_SUB_TC_OP_groupi_g6752/CO
                                                               1 6.1 88 204
6336 (-,-)
csa_tree_SUB_TC_OP_groupi_g6751/CO
                                                               1 6.4 90 206
                                          CI->COR ADDFHX2
6542 (-,-)
csa_tree_SUB_TC_OP_groupi_g6750/CO
                                          CI->CO R ADDFHX4
                                                               1 6.0 74 201
6743 (-,-)
csa_tree_SUB_TC_OP_groupi_g6749/S
                                     - CI->S F ADDFHXL
                                                          1 5.2 141 285
7029 (-,-)
g73510__1617/Y
                              S0->Y F MXI2X2
                                                2 7.4 79 258 7287 (-,-)
SUB_UNS_OP2_g769/Y
                              - A->Y R INVX1
                                                   1 5.2 87 73 7360 (-,-)
SUB_UNS_OP2_g709/CO
                                  A->CO R ADDHX1
                                                       1 5.0 99 171 7530 (-,-)
SUB_UNS_OP2_g708/Y
                                  B->Y R XNOR2X1
                                                     1 4.5 95 166 7696 (-,-)
g103681__5477/Y
                           - A1N->YR OAI2BB1X1 1 4.7 134 165 7862 (-,-)
```

```
TDSP_CORE_INST_EXECUTE_INST_p_reg[31]/D - - R DFFRHQX1 1 - - 0
7862 (-,-)
#-----
Path 2: MET (14 ps) Setup Check with Pin TDSP_CORE_INST_EXECUTE_INST_acc_reg[30]/CK->D
   Group: refclk
 Startpoint: (R) TDSP_CORE_INST_DECODE_INST_ir_reg[8]/CK
   Clock: (R) refclk
  Endpoint: (F) TDSP_CORE_INST_EXECUTE_INST_acc_reg[30]/D
   Clock: (R) refclk
      Capture Launch
  Clock Edge:+ 8000 0
  Src Latency:+ 0
  Net Latency:+ 0 (I) 0 (I)
   Arrival:= 8000 0
    Setup:- 234
 Required Time: 7766
 Launch Clock:- 0
  Data Path: 7752
    Slack:= 14
            Timing Point
                                 Flags Arc Edge Cell Fanout Load Trans
Delay Arrival Instance
#
                                         (fF) (ps) (ps) Location
#------
```

TDSP_CORE_INST_DECODE_INST_ir_reg[8]/CK - - R (arrival) 256 - 0 0 0 (-,-)

TDSP_CORE_INST_DECODE_INST_ir_reg[8]/Q - CK->Q F SDFFSHQX8 46 144.9 320 453 453 (-,-)

TDSP_CORE_INST_TDSP_CORE_GLUE_INST_sll_120_49_g1540/Y - A->Y R CLKINVX16 21 61.7 123 141 594 (-,-)

g106174/Y - B1->Y R AO22X4 2 7.8 74 176 770 (-,-)

g106154/Y - AN->Y R NOR2BX2 2 10.3 251 182 952 (-,-)

TDSP_CORE_INST_TDSP_CORE_GLUE_INST_sll_120_49_g1477/Y - B->Y R NOR2X2 1 7.0 164 109 1198 (-,-)

g73437__4733/Y - B->Y F NAND2X4 1 7.0 108 104 1302 (-,-)

g73421__5122/Y - B->Y R NAND2X4 5 18.5 138 82 1384 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1578/Y - S0->Y R MXI2X1 2 7.5 273 222 1606 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1492/Y - B->Y F NAND2X1 2 8.1 298 244 1850 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1435/Y - B0->Y R OAI21X2 2 8.3 165 144 1995 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1431/Y - A->Y F INVX2 1 6.9 82 98 2092 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1429/Y - A1->Y R OAI21X4 2 8.3 122 83 2176 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1428/Y - A->Y F INVX2 1 6.9 75 81 2257 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1426/Y - A1->Y R OAI21X4 3 10.8 129 90 2347 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1425/Y - A->Y F INVX2 1 6.9 76 84 2431 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1423/Y - A1->Y R OAI21X4 1 6.1 103 73 2504 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1420/CO - CI->CO R ADDFHX2 2 7.6 99 215 2719 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1418/Y - A1N->YR OAI2BB1X4 3 11.1 126 174 2893 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1415/Y - A1->Y F AOI21X2 2 8.4 189 144 3038 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1412/Y - B->Y R NOR2X2 3 10.0 184 152 3190 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1407/Y - A1->Y R AO21X2 3 10.9 114 241 3431 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1399/Y - B1->Y F AOI221X2 2 8.4 222 147 3578 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1395/Y - B->Y R NOR2X2 3 10.0 189 163 3741 (-,-)

g106166/Y - AN->Y R NOR4BBX1 1 4.5 362 328 4069 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1388/Y - B->Y R OR2X1 2 7.8 130 232 4301 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1380/Y - A1->Y R OAI221X2 1 5.8 179 115 4506 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1375/CO - CI->COR ADDFX1 1 5.8 128 270 4776 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1374/CO - CI->CO R ADDFX1 1 5.8 128 253 5029 (-,-) TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1373/CO - CI->CO R ADDFX1 1 5.8 128 253 5282 (-,-) TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1372/CO - CI->CO R ADDFX1 1 5.8 128 253 5534 (-,-) TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1371/CO - CI->COR ADDFX1 1 5.0 116 246 5780 (-,-) TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1370/Y - B->Y F XNOR2X1 1 4.8 107 197 5978 (-,-) g103651 5477/Y A1->Y R AOI21X1 2 7.5 262 179 6157 (-,-) g103539 3680/Y - B->Y R OR2X1 3 9.7 166 213 6369 (-,-) - B0->Y F OAI2BB1X1 1 4.5 178 g103523_2346/Y 157 6526 (-,-) g103477__5122/Y - B->Y F AND2X2 31 87.8 736 490 7016 (-,-) g103400__9945/Y - B->Y R NAND2X1 1 4.5 217 316 7332 (-,-) - D->Y F NAND4XL 1 4.7 798 g103209_5107/Y

TDSP_CORE_INST_EXECUTE_INST_acc_reg[30]/D - - F DFFRHQX1 1 - - 0 7752 (-,-)

#------

Path 3: MET (14 ps) Setup Check with Pin TDSP_CORE_INST_EXECUTE_INST_acc_reg[29]/CK->D

Group: refclk

421 7752 (-,-)

```
Endpoint: (F) TDSP_CORE_INST_EXECUTE_INST_acc_reg[29]/D
   Clock: (R) refclk
       Capture Launch
  Clock Edge:+ 8000 0
  Src Latency:+ 0
  Net Latency:+ 0 (I) 0 (I)
   Arrival:= 8000 0
    Setup:- 234
 Required Time:= 7766
  Launch Clock:- 0
   Data Path: 7752
    Slack:= 14
-----
            Timing Point Flags Arc Edge Cell Fanout Load Trans
Delay Arrival Instance
                                          (fF) (ps) (ps) Location
#------
TDSP_CORE_INST_DECODE_INST_ir_reg[8]/CK
                                                 - - R (arrival) 256
- 0 0 0 (-,-)
TDSP_CORE_INST_DECODE_INST_ir_reg[8]/Q
                                                - CK->Q F
SDFFSHQX8 46 144.9 320 453 453 (-,-)
TDSP_CORE_INST_TDSP_CORE_GLUE_INST_sll_120_49_g1540/Y - A->Y R
CLKINVX16 21 61.7 123 141 594 (-,-)
g106174/Y
                                 - B1->Y R AO22X4 2 7.8 74 176
770 (-,-)
g106154/Y
                                 - AN->Y R NOR2BX2 2 10.3 251 182
952 (-,-)
```

Clock: (R) refclk

TDSP_CORE_INST_TDSP_CORE_GLUE_INST_sll_120_49_g1477/Y - B->Y R NOR2X2 1 7.0 164 109 1198 (-,-)

g73437_4733/Y - B->Y F NAND2X4 1 7.0 108 104 1302 (-,-)

g73421__5122/Y - B->Y R NAND2X4 5 18.5 138 82 1384 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1578/Y - S0->Y R MXI2X1 2 7.5 273 222 1606 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1492/Y - B->Y F NAND2X1 2 8.1 298 244 1850 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1435/Y - B0->Y R OAI21X2 2 8.3 165 144 1995 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1431/Y - A->Y F INVX2 1 6.9 82 98 2092 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1429/Y - A1->Y R OAI21X4 2 8.3 122 83 2176 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1428/Y - A->Y F INVX2 1 6.9 75 81 2257 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1426/Y - A1->Y R OAI21X4 3 10.8 129 90 2347 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1425/Y - A->Y F INVX2 1 6.9 76 84 2431 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1423/Y - A1->Y R OAI21X4 1 6.1 103 73 2504 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1420/CO - CI->CO R ADDFHX2 2 7.6 99 215 2719 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1418/Y - A1N->YR OAI2BB1X4 3 11.1 126 174 2893 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1415/Y - A1->Y F AOI21X2 2 8.4 189 144 3038 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1412/Y - B->Y R NOR2X2 3 10.0 184 152 3190 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1407/Y - A1->Y R AO21X2 3 10.9 114 241 3431 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1399/Y - B1->Y F AOI221X2 2 8.4 222 147 3578 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1395/Y - B->Y R NOR2X2 3 10.0 189 163 3741 (-,-)

g106166/Y - AN->Y R NOR4BBX1 1 4.5 362 328 4069 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1387/Y - A->Y F INVX2 2 8.3 87 90 4391 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1380/Y - A1->Y R OAI221X2 1 5.8 179 115 4506 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1375/CO - CI->COR ADDFX1 1 5.8 128 270 4776 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1374/CO - CI->COR ADDFX1 1 5.8 128 253 5029 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1373/CO - CI->COR ADDFX1 1 5.8 128 253 5282 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1372/CO - CI->CO R ADDFX1 1 5.8 128 253 5534 (-,-)

TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1371/CO - CI->COR ADDFX1 1 5.0 116 246 5780 (-,-) TDSP_CORE_INST_ALU_32_INST_sub_84_22_Y_TDSP_CORE_INST_ALU_32_INST_add_81_22_g 1370/Y - B->Y F XNOR2X1 1 4.8 107 197 5978 (-,-) g103651 5477/Y A1->Y R AOI21X1 2 7.5 262 179 6157 (-,-) g103539_3680/Y B->Y R OR2X1 3 9.7 166 213 6369 (-,-) g103523__2346/Y - B0->Y F OAI2BB1X1 1 4.5 178 157 6526 (-,-) g103477__5122/Y B->Y F AND2X2 31 87.8 736 490 7016 (-,-) g103398__6161/Y B->Y R NAND2X1 1 4.5 217 316 7332 (-,-) g103215_3680/Y - D->Y F NAND4XL 1 4.7 798 421 7752 (-,-) TDSP_CORE_INST_EXECUTE_INST_acc_reg[29]/D - F DFFRHQX1 1 - - 0 7752 (-,-)

Top-3 worst paths (summary)

Case	Slack #1	Slack #2	Slack #3	Meets timing?
1	0.771 ns	0.825 ns	1.232 ns	Comfortable margin
2	0.001 ns (1 ps)	0.014 ns	0.014 ns	Barely – borderline

b. DFT: Insert seperate scan chains for positive edge and negative edge flipflops in the design. And publish number of scan flops, number of scan chains and length of each scan chain.

run_dft.tcl
=========
Load Libraries
=========
set_db / .library [list \

```
./LIB/slow.lib \
./LIB/pll.lib \
./LIB/CDK_S128x16.lib \
./LIB/CDK_S256x16.lib \
./LIB/CDK_R512x16.lib]
set_db / .lef_library [list \
./LEF/gsclib045_tech.lef \
./LEF/gsclib045_macro.lef \
./LEF/pll.lef \
./LEF/CDK_S128x16.lef \
./LEF/CDK_S256x16.lef \
./LEF/CDK_R512x16.lef]
# ==============
# Read Synthesizable RTL Files
read_hdl [list \
./RTL/pllclk.v\
./RTL/accum_stat.v \
./RTL/alu_32.v \
./RTL/arb.v \
./RTL/data_bus_mach.v \
./RTL/data_sample_mux.v \
./RTL/decode_i.v \
./RTL/decoder.v \
./RTL/digit_reg.v \
./RTL/conv_subreg.v \
./RTL/dma.v \
 ./RTL/dtmf_recvr_core.v \
 ./RTL/execute_i.v \
```

```
./RTL/m16x16.v\
./RTL/mult_32_dp.v \
./RTL/port_bus_mach.v \
./RTL/prog_bus_mach.v \
./RTL/ram_128x16_test.v \
./RTL/ram_256x16_test.v \
./RTL/results_conv.v \
./RTL/spi.v\
./RTL/tdsp_core_glue.v \
./RTL/tdsp_core_mach.v \
./RTL/tdsp_core.v \
./RTL/tdsp_data_mux.v \
./RTL/tdsp_ds_cs.v \
./RTL/test_control.v \
./RTL/ulaw_lin_conv.v \
./RTL/power_manager.v ]
# ==============
# Elaborate and Load Constraints
# ===========
elaborate
read_sdc ./constraints/dtmf_recvr_core_gate.sdc
current_design dtmf_recvr_core
# DFT Setup
set_db / .dft_scan_style muxed_scan
set_db / .dft_prefix DFT_
set_db "design:dtmf_recvr_core" .dft_mix_clock_edges_in_scan_chains false
```

```
define_test_clock -name scanclk -period 18000 scan_clk
define_shift_enable -name se -active high scan_en
define_test_mode -name tm -active high test_mode
define_scan_chain -name top_chain -sdi scan_in -sdo scan_out -shift_enable se -create_ports
# --- Ensure scan FFs are inserted ---
set_db "design:dtmf_recvr_core" .dft_scan_map_mode tdrc_pass
set_db / .use_scan_seqs_for_non_dft false
set_db "design:dtmf_recvr_core" .dft_connect_shift_enable_during_mapping tie_off
set_db "design:dtmf_recvr_core" .dft_connect_scan_data_pins_during_mapping loopback
# ===============
# Synthesis
# ===============
set_db syn_generic_effort medium
syn_generic
set_db syn_map_effort medium
syn_map
set_db syn_opt_effort medium
syn_opt
# Scan Chain Setup
check_dft_rules -advanced
convert_to_scan
connect_scan_chains -auto_create_chains
# ==========
```

```
# Reports and Output
# ==========
report_scan_chains
report_scan_registers
report_scan_setup
write_scandef dtmf_recvr_core > scan_chain.def
write_design -base_name synthesized_netlist
dft_summary
Summary:
Total registers that pass DFT rules: 517
Total registers that fail DFT rules: 0
Total registers that are marked preserved or dont-scan: 0
Total registers that are marked Abstract Segment dont-scan: 0
Total registers that are part of shift register segments: 0
Total registers that are lockup elements: 0
Total registers that are level-sensitive: 0
Total registers that are misc. non-scan: 3
Total registers that pass dft rule checks and are not a part of scan chains: 0
Total abstract segments that pass dft rule checks and are not a part of scan chains: 0
@file(run\_dft.tcl) 102: report\_scan\_setup
# Design Name
dtmf_recvr_core
# Scan Style
```

```
muxed_scan
```

Design has a valid DFT rule check status

Global Constraints

Minimum number of scan chains: no_value

Maximum length of scan chains: no_value

Lock-up element type: preferred_level_sensitive

Mix clock edges in scan chain: false

Prefix for unnamed scan objects: DFT_

Test signal objects

shift_enable:

object name: se

pin name: scan_en

hookup_pin: scan_en

hookup_polarity: non_inverted

function: shift_enable

active: high

ideal: false

user defined: true

test_mode:

object name: tm

pin name: test_mode

hookup_pin: test_mode

```
active: high
   ideal: false
   user defined: true
test_mode:
   object name: reset
   pin name: reset
   hookup_pin: reset
   hookup_polarity: non_inverted
   function: async_set_reset
   active: low
   ideal: false
   user defined: false
test_mode:
   object name: spi_fs
   pin name: spi_fs
   hookup_pin: spi_fs
   hookup_polarity: non_inverted
   function: async_set_reset
   active: low
   ideal: false
   user defined: false
# Test clock objects
test_clock:
   object name: scanclk
```

hookup_polarity: non_inverted

function: test_mode

test_clock_domain: scanclk

user defined: true

source: scan_clk

root source: scan_clk

root source polarity: non_inverting

hookup_pin: scan_clk

period: 18000.0

DFT controllable objects

DFT don't scan objects

DFT abstract don't scan objects

DFT scan segment constraints

DFT scan chain constraints

User Chain:

object name: top_chain

scan-in: scan_in_1

scan-in hookup_pin: scan_in_1

scan-out: scan_out_2

scan-out hookup_pin: scan_out_2

shared out: false

shift_enable object name: se

max length: no_value

complete: false

DFT actual scan chains

Actual Chain: object name: top_chain scan-in: scan_in_1 scan-in hookup_pin: scan_in_1 scan-out: scan_out_2 scan-out hookup_pin: scan_out_2 shared out: false shift_enable: scan_en length: 129 segment objects: none analyzed: false test_clock domain: scanclk test_clock edge: fall

Actual Chain:

```
object name: AutoChain_1
scan-in: DFT_sdi_1
scan-in hookup_pin: DFT_sdi_1
scan-out: DFT_sdo_1
scan-out hookup_pin: DFT_sdo_1
shared out: false
shift_enable: scan_en
length: 388
segment objects: none
analyzed: false
test_clock domain: scanclk
```

test_clock edge: rise

 $@file(run_dft.tcl)$ 104: write_scandef dtmf_recvr_core > scan_chain.def

@file(run_dft.tcl) 105: write_design -base_name synthesized_netlist

(write_design): Writing Genus content. Constraint interface is 'smsc'

Exporting design data for 'dtmf_recvr_core' to ./synthesized_netlist...

%# Begin write_design (05/10 11:44:33, mem=2002.28M)

Setting attribute of root '/': 'set_boundary_change' =

File ./synthesized_netlist.mmmc.tcl has been written.

Finished SDC export (command execution time mm\:ss (real) = 00:01).

Info: file ./synthesized_netlist.default_emulate_constraint_mode.sdc has been written
Info: file ./synthesized_netlist.default_emulate_constraint_mode.sdc has been written

** To load the database source ./synthesized_netlist.genus_setup.tcl in an Genus(TM)
Synthesis Solution session.

Finished exporting design data for 'dtmf_recvr_core' (command execution time mm\:ss cpu = 00:00, real = 00:02).

.

%# End write_design (05/10 11:44:35, total cpu=03:00:00, real=03:00:02, peak res=999.20M, current mem=2004.28M)

\#@ End verbose source ./run_dft.tcl

Scan-DFT Statistics for dtmf_recvr_core

Item	Value
Total scan-enabled flip-flops	517
Total scan chains	2
Chain #1 (negative-edge flops)	129 FFs (clock edge = fall)
Chain #2 (positive-edge flops)	388 FFs (clock edge = rise)

Chain	Clock edge (via report_scan_chains)	Length (flip-flops)
top_chain	Falling edge of scanclk	129
AutoChain_1	Rising edge of scanclk	388

c. LEC: run flat LEC between synthesis netlist and post scan netlist. Publish results snippet.

```
flat_lec.tcl
tclmode
vpxmode
set undefined cell black_box -noascend -both
add notranslate modules \
CDK_S256x16 \
 CDK_R512x16 \
 CDK_S128x16 \
 pll \
 -library -both
read library -statetable -liberty \
 ./LEC/libs/gsclib045_v3.5/timing/slow.lib \
 ./LEC/libs/macro_libs/pllclk_slow.lib \
 ./LEC/libs/macro_libs/CDK_S128x16.lib \
 ./LEC/libs/macro_libs/CDK_S256x16.lib \
 ./LEC/libs/macro_libs/CDK_R512x16.lib \
 -both
read design -verilog ./design_syn_case1.v -golden -lastmod
set root module dtmf_recvr_core -golden
read design -verilog ./synthesized_netlist.v -revised -lastmod
```

uniquify -all -nolib

set root module dtmf_recvr_core -revised

```
set flatten model -seq_constant -seq_constant_x_to 0
set flatten model -nodff_to_dlat_zero -nodff_to_dlat_feedback
set system mode lec
add compared points -all
compare
report compare data -class nonequivalent -class abort -class notcompared >
lec_compare_data.txt
report verification -verbose > lec_verification.txt
report statistics > lec_statistics.txt
report unmapped points -summary > lec_unmapped_summary.txt
report unmapped points -extra -unreachable -notmapped > lec_unmapped_detailed.txt
tclmode
puts "No of compare points = [get_compare_points -count]"
puts "No of diff points = [get_compare_points -diff -count]"
puts "No of abort points = [get_compare_points -abort -count]"
puts "No of unknown points = [get_compare_points -unknown -count]"
exit
Summary
Extra
        2 2 4
______
// Command: add compared points -all
// 557 compared points added to compare list
// Command: compare
```

```
Compared points PO DFF BBOX Total
Equivalent 36 0 4 40
-----
Non-equivalent 0 517 0 517
______
========
// Warning: (COMP3) There are extra POs in Revised
// Command: report compare data -class nonequivalent -class abort -class
notcompared > lec_compare_data.txt
// Command: report verification -verbose > lec_verification.txt
// Command: report statistics > lec_statistics.txt
// Command: report unmapped points -summary > lec_unmapped_summary.txt
// Command: report unmapped points -extra -unreachable -notmapped >
lec_unmapped_detailed.txt
// Command: tclmode
// Command: puts "No of compare points = [get_compare_points -count]"
No of compare points = 557
// Command: puts "No of diff points = [get_compare_points -diff -count]"
No of diff points = 517
// Command: puts "No of abort points = [get_compare_points -abort -count]"
No of abort points = 0
// Command: puts "No of unknown points = [get_compare_points -unknown -count]"
No of unknown points = 0
// Command: exit
```