MPLS and GMPLS

Li Yin
CS294 presentation

Outline

Part I: MPLS

Part II: GMPLS

Part III: The reality check

Part I: MPLS

Why MPLS?

- MPLS stands for: "Multi-Protocol Label Switching"
- Goals:
 - Bring the speed of layer 2 switching to layer 3
 - May no longer perceived as the main benefit: Layer 3 switches
 - Resolve the problems of IP over ATM, in particular:
 - Complexity of control and management
 - Scalability issues
 - Support multiple layer 2 technologies

Basic Idea

MPLS is a hybrid model adopted by IETF to incorporate best properties in both packet routing & circuit switching

Basic Idea (Cont.)

- Packets are switched, not routed, based on labels
- Labels are filled in the packet header
- Basic operation:
 - Ingress LER (Label Edge Router) pushes a label in front of the IP header
 - LSR (Label Switch Router) does label swapping
 - Egress LER removes the label
- The key : establish the forwarding table
 - Link state routing protocols
 - Exchange network topology information for path selection
 - OSPF-TE, IS-IS-TE
 - Signaling/Label distribution protocols:
 - Set up LSPs (Label Switched Path)
 - LDP, RSVP-TE, CR-LDP

MPLS Operation

Main features

- Label swapping:
 - Bring the speed of layer 2 switching to layer 3
- Separation of forwarding plane and control plane
- Forwarding hierarchy via Label stacking
 - Increase the scalability
- Constraint-based routing
 - Traffic Engineering
 - Fast reroute
- Facilitate the virtual private networks (VPNs)
- Provide class of service
 - Provides an opportunity for mapping DiffServ fields onto an MPLS label
- Facilitate the elimination of multiple layers

Part II: GMPLS

Outline

- Why GMPLS?
- GMPLS and MPLS
- Control interfaces
- Challenges of GMPLS
- Several proposed techniques
 - Suggested label
 - Bi-direction LSP setup
 - LMP
- Summary

GMPLS

- GMPLS stands for "Generalized Multi-Protocol Label Switching"
- A previous version is "Multi-Protocol Lambda Switching"
- Developed from MPLS
- A suite of protocols that provides common control to packet, TDM, and wavelength services.
- Currently, in development by the IETF

Why GMPLS?

- GMPLS is proposed as the signaling protocol for optical networks
- What service providers want?
 - Carry a large volume of traffic in a cost-effective way
 - Turns out to be a challenge within current data network architecture

- Problems:
 - Complexity in management of multiple layers
 - Inefficient bandwidth usage
 - Not scalable
- Solutions: eliminate middle layers → IP/WDM
- Need a protocol to perform functions of middle layers

Why GMPLS? (Cont.)

Optical Architectures

- A control protocol support both overlay model and peer model will bring big flexibility
 - The selection of architecture can be based on business decision

Why GMPLS? (Cont.)

- What we need? A common control plane
 - Support multiple types of traffic (ATM, IP, SONET and etc.)
 - Support both peer and overlay models
 - Support multi-vendors
 - Perform fast provisioning
- Why MPLS is selected?
 - Provisioning and traffic engineering capability

GMPLS and MPLS

- GMPLS is deployed from MPLS
 - Apply MPLS control plane techniques to optical switches and IP routing algorithms to manage lightpaths in an optical network
- GMPLS made some modifications on MPLS
 - Separation of signaling and data channel
 - Support more types of control interface
 - Other enhancement

Control interfaces

- Extend the MPLS to support more interfaces other than packet switch
 - Packet Switch Capable (PSC)
 - Router/ATM Switch/Frame Reply Switch
 - Time Division Multiplexing Capable (TDMC)
 - SONET/SDH ADM/Digital Crossconnects
 - Lambda Switch Capable (LSC)
 - All Optical ADM or Optical Crossconnects (OXC)
 - Fiber-Switch Capable (FSC)
- LSPs of different interfaces can be nested inside another

Challenges

- Routing challenges
 - Limited number of labels
 - Very large number of links
 - Link identification will be a big problem
 - Scalability of the Link state protocol
 - Port connection detection
- Signaling challenges
 - Long label setup time
 - Bi-directional LSPs setup
- Management challenges
 - Failure detection
 - Failure protection and restoration

Suggested label

- Problem: it takes time for the optical switch to program switch
 - Long setup time
- Solution:
 - Each LSR selects a label (Suggested Label) and signals this label to downstream LSR, and start program its switch.
- reduce LSP setup overhead

No suggested label

Program Switch $\lambda 1 \times \lambda 2$ Request

Map Label = $\lambda 1$ Program Switch $\lambda 1 \times \lambda 2$ Reserved Label = $\lambda 1$ Program Switch $\lambda 1 \times \lambda 2$ Reserved Label = $\lambda 2$ Program Switch $\lambda 1 \times \lambda 2$ Make sure the programming

request has completed

Bi-Directional LSP setup

- Problem: How to set up bi-directional LSP?
- Solution:
 - Set up 2 uni-directional LSP
 - Signaling overhead
 - End points coordination
 - One single message exchange for one bi-directional LSP
 - Upstream Label.

Link Management Protocol

- Problem:
 - How to localize the precise location of a fault?
 - How to validate the connectivity between adjacent nodes?
- Solution: link management protocol
 - Control Channel Management
 - Link Connectivity Verification
 - Link Property Correlation
 - Fault Management
 - Authentication

GMPLS Summary

- Provides a new way of managing network resources and provisioning
- Provide a common control plane for multiple layers and multi-vendors
- Fast and automatic service provisioning
- Greater service intelligence and efficiency

Part III: The Reality Check

Question:

Will MPLS replace ATM?

Opinion 1:

- MPLS might replace ATM eventually however, the migration may be slow.
- Why MPLS will replace ATM eventually?
 - Future network is data-centric
 - IP instead of ATM
 - MPLS can act ATM's functionalities
 - Traffic engineering using MPLS
 - VPNs based on MPLS
 - From service provider's view, MPLS reduces the cost and provides operational efficiencies
 - Scalable

Opinion 1 (Cont.)

MPLS deployment status

- ISPs deploy/plan to deploy MPLS for traffic engineering and VPNs
 - UUNET, AT&T, Equant, Global Crossing, Cable & Wireless and etc..
- Equipment vendors are pushing MPLS to the market
- Lucent killed its next-generation ATM core switch and switch to MPLS-based switch

Opinion 1 (Cont.)

- Why the migration may be slow?
 - ATM is still the biggest revenue generator
 - The networks are installed already
 - Customers care about the price and the services only
 - MPLS is more expensive
 - ATM can provide most service MPLS can provide
 - ISPs care more about revenue than new technologies
 - ISPs have to grow their existing business. At this point, they are more concerned about leveraging existing services rather than migrating to new technologies for technology's sake.
 - The cost of migration
 - MPLS still has problems to be solved
 - Interoperability
 - It takes time for a protocol to be mature. (usually 5 years)

Opinion 2

- MPLS cannot COMPLETELY replace ATM
- Why?
 - Some customers may still choose ATM instead of MPLS
 - Traffic engineering of ATM
 - ATM provides better QoS than MPLS
 - For those customers care about delay and jitter, they may want to stick to ATM instead of trying a new technology
 - ATM based VPN
 - Customers maintain the routing table
 - MPLS based VPN: entail ISP handling all the routing on behalf of customers
 - Will customer trust ISP?
 - The size of the routing table.

GMPLS Questions

- Does the success of GMPLS depend on the success of MPLS?
 - No.
 - MPLS and GMPLS are proposed for different purposes.
 - GMPLS is proposed to support IP over WDM. After all, a signaling protocol is needed to perform provisioning.
- The future of GMPLS is unclear
 - GMPLS certainly will offer operational benefits to carriers
 - However, it is not necessarily provide immediate return on investment.
 - Need to prove the efficacy
 - GMPLS proposes an entirely new way of managing network resources and provisioning
 - More difficult to be adopted
- It may take some time to prove GMPLS.

Summary

- MPLS and GMPLS are promising technologies
- ISPs are interested in MPLS and GMPLS
- Whether the MPLS will replace ATM or not has no final answer
- The efficacy of GMPLS may take years to prove