BÀI TẬP CHƯƠNG 1

Câu 1: Cho mạch khuếch đại tín hiệu như hình vẽ. Các tụ C₁, C₂ và C₃ có giá trị rất lớn.

Hình 1: Các giá trị $R_1 = 500$ k, $R_2 = 1.4$ M, $R_S = 33$ k, $R_D = 82$ k, $V_{DD} = 16$ V. Mosfet có $K_n = 250 \,\mu\text{A/V}^2$, $V_{TN} = 1.2$ V và $V_A = \infty$.

Hình 2: Các giá trị $R_1 = 2.2$ M, $R_2 = 2.2$ M, $R_S = 22$ k, $R_D = 18$ k và $V_{DD} = 20$ V. Fet có $K_p=400\mu\text{A/V}^2$, $V_{TP}=-1.5$ V và $V_A=\infty$.

Ở mỗi hình, hãy:

a) Vẽ VTC của mạch và tìm điểm hoạt động Q của fet.

Đặt $v_I = V_m sin(\omega t)$ vào mạch.

- b) Tìm A_{vo} , A_v , G_v , R_i , R_o của mạch.
- c) Tìm biên độ lớn nhất của V_m để sóng ngõ ra không méo dạng.
- d) Lựa chọn các tụ C_1 , C_2 và C_3 để mạch có $f_L = 100 Hz$.

Câu 2: Cho mạch khuếch đại tín hiệu như hình vẽ. Các tụ C_1 , C_2 có giá trị rất lớn. BJT có hệ số $\beta = 80\,$ và có mã là 2N2907

- Lecturer: Hieu Nguyen
- a) Vẽ VTC của mạch (kiểm chứng sử dụng mô phỏng) và tìm điểm hoạt động Q của BJT. Đặt $v_s = V_m sin(\omega t)$ vào mạch.
- b) Tìm A_{vo}, A_v, G_v, R_i, R_o của mạch.
- c) Lựa chọn các tụ C_1 , C_2 để mạch có $f_L=100$ Hz.

Câu 3: Cho mạch khuếch đại tín hiệu như hình vẽ. Giả sử các tụ có giá trị rất lớn. BJT có $\beta = 100 \text{ và V}_A = \infty$.

a) Tìm điểm hoạt động Q của BJT.

Đặt $v_s = V_m sin(\omega t)$ vào mạch. Ngõ ra nối với tải $R_L = 1k\Omega$.

- b) Tìm Avo, Gv, Ri, Ro của mạch.
- c) Tìm biên độ lớn nhất của V_m để v_s là tín hiệu nhỏ.
- d) Lựa chọn các tụ C_{C1} , C_{C2} để mạch có f_L =100Hz.

Câu 4: Cho mạch khuếch đại tín hiệu như hình vẽ. Giả sử các tụ có giá trị rất lớn. BJT có $\beta = 100 \text{ và V}_A = \infty$.

a) Tìm điểm hoạt động Q của BJT.

Đặt $v_s = V_m \sin(\omega t)$ vào mạch. Ngõ ra nối với tải $R_L = 1k\Omega$.

- b) Tìm $A_{vo},\,G_v,\,R_i,\,R_o$ của mạch.
- c) Bỏ tụ C_B ra khỏi mạch. Lập lại câu a và b.

Từ đó, nêu vai trò của tụ C_B.

Câu 5: Cho mạch khuếch đại tín hiệu được ghép liên tầng như hình vẽ. Trong đó, Q_1 là BJT có $\beta = 100$ và mã 2SC1815; và Q_2 có $\beta = 80$ và mã 2N2907.

- a) Sử dụng phần mềm mô phỏng, vẽ VTC của mạch (ngõ vào V_i và ngõ ra là V_o).
- b) Lựa chọn điểm phân cực của cả mạch trên VTC và thiết kế mạch ghép vào phía trước VTC để có được điểm phân cực đó.
- c) Lựa chọn tụ C_1 (ghép tín hiệu) và C_2 (ghép tải) để mạch có f_L =200Hz. Giả sử tín hiệu có nội trở 100Ω và tải có điện trở 100Ω . Sử dụng phần mềm mô phỏng, vẽ đáp ứng tần số của mạch.
- d) Đặt vào mạch tín hiệu xoay chiều có biên độ 5 mV và tần số 10 KHz. Sử dụng phần mềm mô phỏng, cho biết tín hiệu tại V_{o1} và V_{o2} . Giải thích

Câu 6: Cho mạch khuếch đại tín hiệu được ghép liên tầng như hình vẽ. Giả sử các tụ có điện dung rất lớn. Các thông số β = 100, K_n =1 mA/V², V_{TN} = 1 V. BJT có V_A = ∞ và FET có λ = 0.

a) Tìm điểm hoạt động Q của các transistor.

Đặt $v_s = 5\sin(\omega t)$ (mV) vào mạch.

- b) Tìm Av, Gv, Ri, Ro của mạch.
- c) Vẽ dạng sóng ngõ v_s và v_o khi đi qua từng tầng (vị trí trước khi đi qua tụ ghép)

Câu 7: Cho mạch khuếch đại tín hiệu như hình vẽ. BJT Q1 có hệ số β = 50 và Q2 có hệ số β = 100. Các hệ số $V_A = \infty$.

a) Tìm điểm hoạt động Q1 và Q2 của BJT.

Đặt nguồn $v_s = V_m sin(ωt)$ có nội trở $R_S = 100 k\Omega$ vào mạch. Ngõ ra nối với tải $R_L = 1 k\Omega$.

- b) Tìm A_{vo} , Av, Gv, Ri, Ro của mạch. Biết nguồn dòng có điện trở nội $10k\Omega$.
- c) Tìm biên độ lớn nhất của V_m để để v_s là tín hiệu nhỏ ở cả hai tầng.

Lecturer: Hieu Nguyen

Câu 8: Cho mạch khuếch đại tín hiệu như hình vẽ. Mạch có R_{in} =400 $K\Omega$ và V_{DD} =5V. M1, M2 có K_{nI} = 200 μ A/ V^2 , V_{TNI} =0.6V, K_{p2} = 1 mA/ V^2 , V_{TP2} =-0.6V và V_{A1} = V_{A2} = ∞ . Giả sử các tụ có giá trị rất lớn.

a) Thiết kế mạch để M_1 có $Q_1(I_{DS1}=0.2mA;\ V_{DS1}=2V);\ M_2$ có $Q_2(I_{DS2}=0.5mA;\ V_{SD2}=3V)$ và điện áp DC trên R_{S1} là 0.6V.

Đặt $v_s = 2\sin(\omega t)$ (mV) vào mạch. Ngõ ra nối với tải $R_L=1k\Omega$.

- b) Tìm Av, Gv, Ri, Ro của mạch.
- c) Vẽ ngõ ra vo.
- d) Lựa chọn các tụ C_C , C_{S2} để mạch có f_L =100Hz.

Câu 9: Cho mạch khuếch đại tín hiệu như hình vẽ. Mạch có V_{CC} =9V. BJT Q1 và Q2 có hệ số β = 100 . Các hệ số V_A = ∞ .

a) Thiết kế mạch để có $Q_1(0.5mA; 3V); Q_2(2mA; 6V)$.

Đặt nguồn $v_s = V_m sin(ωt)$ có nội trở $R_S = 100 k\Omega$ vào mạch. Ngõ ra nối với tải $R_L = 1 k\Omega$.

- b) Tìm Avo, Av, Gv, Ri, Ro của mạch.
- c) Tìm biên độ lớn nhất của V_m để để v_s là tín hiệu nhỏ ở cả hai tầng.
- d) Thiết kế mắc thêm tụ C để cải thiện độ lợi của mạch. Tính lại Gv, Ri, Ro của mạch.

Câu 10: Cho mạch khuếch đại tín hiệu như hình vẽ. Mạch có V_{CC} =9V. BJT Q1 và Q2 có hệ số β = 100. Các hệ số $V_A = \infty$.

- a) Thiết kế mạch để có Q₁(0.5mA; 6V); Q₂(2mA; 6V).
- Đặt nguồn $v_s = V_m sin(\omega t)$ có nội trở $R_S = 100 k\Omega$ vào mạch. Ngõ ra nối với tải $R_L = 1 k\Omega$.
- b) Tìm Avo, Av, Gv, Ri, Ro của mạch.
- c) Tìm biên độ lớn nhất của V_m để để v_s là tín hiệu nhỏ ở cả hai tầng.