2011/2012

Diseño VHDL de Procesadores con Técnicas de Paralelismo de Instrucciones

Alberto Manuel Mireles Suárez David Guillermo Morales Sáez

Práctica 1

Contenido

Introducción	
Análisis de prestaciones previo	
Propuesta de modificación de la microarquitectura	
Descripción de la microarquitectura mejorada	
Programa	5
Simulación	10
Resultados de la síntesis e implementación	11
Resultado del análisis de prestaciones	12

Introducción

En esta práctica, el primer paso ha sido comprender los diseños VHDL del procesador DLX32p suministrados. Una vez hecho esto, hemos creado una rutina que lleva a cabo la multiplicación rusa y la hemos utilizado para realizar el producto escalar de dos vectores. Tras esto, hemos realizado la correspondiente simulación en Xilinx con el fin de analizar la eficiencia del sistema implementado.

Una vez hecho esto, hemos modificado la instrucción de multiplicación de manera que permita realizar multiplicaciones de dos vectores de cuatro elementos cada uno. También hemos modificado el programa anterior para adaptarlo a esta nueva implementación, tomando los resultados de eficiencia obtenidos. A su vez, hemos intentado optimizar el código mediante la reorganización del mismo para evitar penalizaciones por dependencia de datos y comparado los datos de eficiencia con el resto de implementaciones.

Análisis de prestaciones previo.

Inicialmente el procesador está formado por un repertorio de instrucciones muy reducido (ADD, SUB, AND, ORI, SRA, SLL, LW, SW, BEQZ, J) por lo que para implementar el producto escalar se requiere un gran número de instrucciones, principalmente debido a la falta de una instrucción de multiplicación. Debido a esto hemos necesitado más de 200 instrucciones para llevar a cabo el producto escalar de dos vectores, con 10 valores cada uno.

Para esta implementación, el número de ciclos de reloj es de **786** a una frecuencia máxima de 11,244 MHz y un tiempo de ejecución de **7860 ns**.

Familia	XC4000XV		
Dispositivo	40110XVBG560		
	DLX32p	Main32p	
Número de CLBs	719 (17%)	1012 (24%)	
Frecuencia máxima	10,655 MHz	11,244 MHz	

Propuesta de modificación de la microarquitectura

Con el fin de mejorar el rendimiento del programa y aportar una instrucción que permita tener programas más pequeños que ocupen menos espacio en memoria, además de facilitar el diseño de los mismos, hemos creado una instrucción de tipo vectorial que lleva a cabo el producto escalar de dos vectores, cada uno con cuatro valores.

Esto nos permitiría reducir el número de operaciones ya que, hasta ahora, teníamos que realizar 10 productos y 10 sumas independientes mientras que con la propuesta se requerirán solamente tres productos y tres sumas.

Esperamos ver una reducción considerable en tiempo de ejecución ya que al ser capaces de disminuir el número de instrucciones, aun aumentando el tiempo de ciclo, se requerirán menos ciclos para obtener el resultado.

Descripción de la microarquitectura mejorada

Para llevar a cabo la modificación de la arquitectura hemos modificado 3 archivos: dlx_pack.vhd, ex.vhf y el fichero de sintaxis del compilador suministrado.

En el archivo de sintáxis se ha indicado que al introducir una instrucción "mult" se codificará con el código 101111 que corresponde con la nueva instrucción que se añadirá al hardware.

Dlx_pack.vhd

Hemos modificado uno de los códigos no definidos de función de las operaciones de la ALU para añadir la función de multiplicación vectorial (mult). Esto se indica de la siguiente forma:

```
Constant cALUFunc mult : TypeDLXFunc := "101111";
```

Ex.vhd

En este fichero se especifican las operaciones que se llevan a cabo en la etapa de ejecución (ALU), y es donde hemos añadido la rutina de ejecución de la función mult. Para ello hemos añadido el siguiente código:

Programa

El programa inicial que hemos diseñado para la realización del producto escalar de dos vectores empleando la multiplicación rusa es el siguiente:

PC	Destino Salto	Código ensamblador	Código máquina
0x0000		ori r30,r0,0	001101000001111000000000000000000
0x0004		ori r3, r0, 0	0011010000000110000000000000000
0x0008		ori r10, r0, 0x1F20	00110100000010100001111100100000
0x000C		ori r12, r0, 0x0720	00110100000011000000011100100000
0x0010		ori r11, r0, 1	001101000000101100000000000000001
0x0014		ori r14, r0, 0xFF	0011010000001110000000011111111
0x0018		ori r13, r0, 0x8	00110100000011010000000000001000
0x001C		nop	000000000000000000000000000000000000000
0x0020		and r1, r10, r14	0000001010011100000100000100100
0x0024		and r2, r12, r14	000000110001110000100000100100
0x0028	0x004C	j mrusa	000010000000000000000000000000000000000
0x002C		sra r10, r10, r13	0000001010011010101000000000111
0x0030		sra r12, r12, r13	0000001100011010110000000000111
0x0034		nop	000000000000000000000000000000000000000
0x0038	0x0094	beqz r10, siguientep1	00010001010000000000000001011000
0x003C		nop	000000000000000000000000000000000000000
0x0040		nop	000000000000000000000000000000000000000
0x0044	0x0020	j bucle	0000101111111111111111111111011000
0x0048		nop	000000000000000000000000000000000000000
0x004C		nop	000000000000000000000000000000000000000
0x0050		and r4, r2, r11	000000001001011001000000100100
0x0054		nop	000000000000000000000000000000000000000
0x0058		nop	000000000000000000000000000000000000000
0x005C	0x006C	beqz r4, desplazar	000100001000000000000000000001100
0x0060		nop	000000000000000000000000000000000000000
0x0064		nop	000000000000000000000000000000000000000
0x0068		add r3, r3, r1	0000000011000010001100000100000
0x006C		sra r2,r2,r11	0000000010010110001000000000111
0x0070		sll r1,r1,r11	0000000001010110000100000000100
0x0074		nop	000000000000000000000000000000000000000
0x0078		nop	000000000000000000000000000000000000000
0x007C	0x002C	beqz r2, sig	000100000100000011111111110101100
0x0080		nop	000000000000000000000000000000000000000
0x0084		nop	000000000000000000000000000000000000000
0x0088	0x004C	j mrusa	0000101111111111111111111111000000
0x008C		nop	000000000000000000000000000000000000000
0x0090		nop	000000000000000000000000000000000000000
0x0094		ori r10, r0, 0x2120	00110100000010100010000100100000
0x0098		ori r12, r0, 0x0D08	00110100000011000000110100001000
0x009C		ori r11, r0, 1	001101000000101100000000000000001
0x00A0		and r1, r10, r14	00000001010011100000100000100100

0x00A4 and r2, r12, r14 0000000110001110000100000000000000000	0,0004		and r2 r12 r14	00000011000111000100000100100
0x00AC Sra r10, r10, r13 00000001100110101010000000000111 0x00BB Sra r12, r12, r13 0000001100110101100000000000000000000	-	00066		
0x00B0 sra r12, r12, r13 0000001100110110110000000000111 0x00B4 nop 000000000000000000000000000000000000		UXUUCC	,	
0x00B4 nop 000000000000000000000000000000000000			· ·	
0x00BB 0x0114 beqz r10, siguientep2 0001000100000000000000000000000000000				
0x00BC nop 000000000000000000000000000000000000	-	00444		
0x00C0 nop 000000000000000000000000000000000000	-	0x0114		
0x00C4 0x00A0 j bucle1 0x001111111111111111111111111111111111			•	
0x00CS nop 000000000000000000000000000000000000	-	0.0010	·	
0x00CC nop 0x00000000000000000000000000000000000	-	UXUUAU	,	
0x00D0 and r4, r2, r11 0000000010111001000000101010 0x00D4 nop 000000000000000000000000000000000000	-		,	
0x00D4 nop 000000000000000000000000000000000000	-		•	
0x00DB nop 000000000000000000000000000000000000	-			
0x00DC 0x00EC beqz r4, desplazar1 0001000100000000000000000000000000000	-		,	
0x00E0 nop 000000000000000000000000000000000000			•	
0x00E4 nop 000000000000000000000000000000000000		0x00EC	•	
0x00E8 add r3, r3, r1 000000001100001000110000100001 0x00EC sra r2,r2,r11 000000001011100010000000000111 0x00F0 sll r1,r1,r11 000000000000000000000000000000000000			nop	
0x00EC srar2,r2,r11 0000000010010110001000000000111 0x00F0 sll r1,r1,r11 0000000001011100001000000000000000000			•	
0x00F0 sll r1,r1,r111 0000000001010110000100000000100 0x00F4 nop 000000000000000000000000000000000000			· · ·	
0x00F4 nop 000000000000000000000000000000000000	-			
0x00F8 nop 000000000000000000000000000000000000			sll r1,r1,r11	
0x00FC 0x00AC beqz r2, sig1 0001000010000011111111111110101100 0x0100 nop 000000000000000000000000000000000000	0x00F4		nop	000000000000000000000000000000000000000
0x0100 nop 000000000000000000000000000000000000	0x00F8		,	
0x0104 nop 000000000000000000000000000000000000	0x00FC	0x00AC	beqz r2, sig1	0001000001000000111111111110101100
0x0108 0x00CC j mrusa1 00001011111111111111111111111111000000 0x010C nop 000000000000000000000000000000000000	0x0100		nop	000000000000000000000000000000000000000
0x010C nop 000000000000000000000000000000000000	0x0104		nop	000000000000000000000000000000000000000
0x0110 nop 000000000000000000000000000000000000	0x0108	0x00CC	j mrusa1	0000101111111111111111111111000000
0x0114 ori r10, r0, 0x1F20 0011010000011000011111100100000 0x0118 ori r12, r0, 0x192C 0011010000011000001100100101100 0x011C ori r11, r0, 1 0011010000010110000000000000000000000	0x010C		nop	000000000000000000000000000000000000000
0x0118 ori r12, r0, 0x192C 001101000000110000011001001011010 0x011C ori r11, r0, 1 0011010000001011000000000000000000000			'	
0x011C ori r11, r0, 1 0011010000010110000000000000000000000	0x0114		ori r10, r0, 0x1F20	00110100000010100001111100100000
0x0120 and r1, r10, r14 0000001010011100001000010000100100 0x0124 and r2, r12, r14 0000001100011100001000000000000000000	0x0118		ori r12, r0, 0x192C	00110100000011000001100100101100
0x0124 and r2, r12, r14 0000000110001100001000000000000000000	0x011C		ori r11, r0, 1	001101000000101100000000000000001
0x0128 0x014C j mrusa2 0000100000000000000000000000000000000	0x0120		and r1, r10, r14	00000001010011100000100000100100
0x012C sra r10, r10, r13 00000001010011010101010000000000111 0x0130 sra r12, r12, r13 0000000110001101010100000000000000000	0x0124		and r2, r12, r14	00000001100011100001000000100100
0x0130 sra r12, r12, r13 0000001100011010110000000000000000000	0x0128	0x014C	j mrusa2	
0x0134 nop 000000000000000000000000000000000000	0x012C		sra r10, r10, r13	00000001010011010101000000000111
0x0138 0x0194 beqz r10, siguientep3 0001000101000000000000000000000000000	0x0130		sra r12, r12, r13	00000001100011010110000000000111
0x013C nop 000000000000000000000000000000000000	0x0134		•	000000000000000000000000000000000000000
0x0140 nop 000000000000000000000000000000000000	0x0138	0x0194	beqz r10, siguientep3	000100010100000000000000001011000
0x0144 0x0120 j bucle2 0000101111111111111111111111111111111	0x013C		nop	000000000000000000000000000000000000000
0x0148 nop 000000000000000000000000000000000000	0x0140		nop	000000000000000000000000000000000000000
0x014C nop 000000000000000000000000000000000000	0x0144	0x0120	j bucle2	0000101111111111111111111111011000
0x0150 and r4, r2, r11 0000000010010110010000000100100 0x0154 nop 000000000000000000000000000000000000	0x0148		nop	000000000000000000000000000000000000000
0x0154 nop 000000000000000000000000000000000000	0x014C		nop	000000000000000000000000000000000000000
0x0158 nop 000000000000000000000000000000000000	0x0150		and r4, r2, r11	000000001001011001000000100100
0x015C 0x016C beqz r4, desplazar2 0001000010000000000000000000000000000	0x0154		пор	000000000000000000000000000000000000000
0x0160 nop 000000000000000000000000000000000000	0x0158		nop	000000000000000000000000000000000000000
0x0164 nop 00000000000000000000000000000000000	0x015C	0x016C	beqz r4, desplazar2	00010000100000000000000000001100
	0x0160		nop	000000000000000000000000000000000000000
0x0168 add r3, r3, r1 0000000011000010001100000100000	0x0164		nop	000000000000000000000000000000000000000
i	0x0168		add r3, r3, r1	0000000011000010001100000100000

0,0160		cra r2 r2 r11	0000000010010110001000000000111
0x016C		sra r2,r2,r11	
0x0170		sll r1,r1,r11	0000000001010110000100000000100
0x0174		nop	000000000000000000000000000000000000000
0x0178	0.0120	nop	000000000000000000000000000000000000000
 	0x012C	beqz r2, sig2	000100000100000011111111110101100
0x0180		nop	000000000000000000000000000000000000000
0x0184	0.0146	nop	000000000000000000000000000000000000000
	0x014C	j mrusa2	000010111111111111111111111111000000
0x018C		nop	000000000000000000000000000000000000000
0x0190		nop	000000000000000000000000000000000000000
0x0194		ori r10, r0, 0x2120	00110100000010100010000100100000
0x0198		ori r12, r0, 0x020B	0011010000001100000001000001011
0x019C		ori r11, r0, 1	001101000000101100000000000000001
0x01A0		and r1, r10, r14	00000010100111000010000100100
0x01A4		and r2, r12, r14	000000110001110000100000100100
	0x01CC	j mrusa3	000010000000000000000000000000000000000
0x01AC		sra r10, r10, r13	000000101001101010100000000111
0x01B0		sra r12, r12, r13	00000001100011010110000000000111
0x01B4		nop	000000000000000000000000000000000000000
-	0x0214	beqz r10, siguientep4	00010001010000000000000001011000
0x01BC		nop	000000000000000000000000000000000000000
0x01C0		nop	000000000000000000000000000000000000000
	0x01A0	j bucle3	0000101111111111111111111111011000
0x01C8		nop	000000000000000000000000000000000000000
0x01CC		nop	000000000000000000000000000000000000000
0x01D0		and r4, r2, r11	000000001001011001000000100100
0x01D4		nop	000000000000000000000000000000000000000
0x01D8		nop	000000000000000000000000000000000000000
	0x01EC	beqz r4, desplazar3	00010000100000000000000000001100
0x01E0		nop	000000000000000000000000000000000000000
0x01E4		nop	000000000000000000000000000000000000000
0x01E8		add r3, r3, r1	0000000011000010001100000100000
0x01EC		sra r2,r2,r11	000000001001011000100000000111
0x01F0		sll r1,r1,r11	000000000101011000010000000100
0x01F4		nop	000000000000000000000000000000000000000
0x01F8		nop	000000000000000000000000000000000000000
	0x01AC	beqz r2, sig3	0001000001000000111111111110101100
0x0200		nop	000000000000000000000000000000000000000
0x0204		nop	000000000000000000000000000000000000000
	0x0ACC	j mrusa3	0000101111111111111111111111000000
0x020C		nop	000000000000000000000000000000000000000
0x0210		nop	000000000000000000000000000000000000000
0x0214		ori r10, r0, 0x1F20	00110100000010100001111100100000
0x0218		ori r12, r0, 0x0911	00110100000011000000100100010001
0x021C		ori r11, r0, 1	001101000000101100000000000000001
0x0220		and r1, r10, r14	00000001010011100000100000100100
0x0224		and r2, r12, r14	00000001100011100001000000100100
0x0228	0x024C	j mrusa4	000010000000000000000000000000000000000
0.0000		sra r10, r10, r13	00000001010011010101000000000111
0x022C		<u> </u>	

0x0234		nop	000000000000000000000000000000000000000
0x0238	0x0294	begz r10, fuera	00010001010000000000000001011000
0x023C		nop	000000000000000000000000000000000000000
0x0240		nop	000000000000000000000000000000000000000
0x0244	0x0220	j bucle4	0000101111111111111111111111011000
0x0248		nop	000000000000000000000000000000000000000
0x024C		nop	000000000000000000000000000000000000000
0x0250		and r4, r2, r11	000000001001011001000000100100
0x0254		nop	000000000000000000000000000000000000000
0x0258		nop	000000000000000000000000000000000000000
0x025C	0x026C	beqz r4, desplazar4	00010000100000000000000000001100
0x0260		nop	000000000000000000000000000000000000000
0x0264		nop	000000000000000000000000000000000000000
0x0268		add r3, r3, r1	0000000011000010001100000100000
0x026C		sra r2,r2,r11	000000001001011000100000000111
0x0270		sll r1,r1,r11	000000000101011000010000000100
0x0274		nop	000000000000000000000000000000000000000
0x0278		nop	000000000000000000000000000000000000000
0x027C	0x022C	beqz r2, sig4	000100000100000011111111110101100
0x0280		nop	000000000000000000000000000000000000000
0x0284		nop	000000000000000000000000000000000000000
0x0288	0x024C	j mrusa4	0000101111111111111111111111000000
0x028C		nop	000000000000000000000000000000000000000
0x0290		nop	000000000000000000000000000000000000000
0x0294		nop	000000000000000000000000000000000000000

A continuación, se muestra el código ensamblador del nuevo programa con la instrucción vectorial:

PC	Código ensamblador	Código máquina
0x0000	ori r7, r0, 16	00110100000001110000000000010000
0x0004	ori r1, r0, 0x1F20	0011010000000010001111100100000
0x0008	ori r2, r0, 0x0720	0011010000000100000011100100000
0x000C	ori r3, r0, 0x1F20	0011010000000110001111100100000
0x0010	sll r1, r1, r7	000000000100111000010000000100
0x0014	sll r2, r2, r7	000000001000111000100000000100
0x0018	ori r4, r0, 0x192C	0011010000001000001100100101100
0x001C	ori r1, r1, 0x2120	00110100001000010010000100100000
0x0020	ori r2, r2, 0x0D08	00110100010000100000110100001000
0x0024	sll r3, r3, r7	0000000011001110001100000000100
0x0028	sll r4, r4, r7	0000000100001110010000000000100
0x002C	ori r5, r0, 0x1F20	00110100000001010001111100100000
0x0030	ori r3, r3, 0x2120	00110100011000110010000100100000
0x0034	ori r4, r4, 0x020B	0011010010000100000001000001011
0x0038	ori r6, r0, 0x0911	00110100000001100000100100010001
0x003C	mult r8,r1,r2	0000000001000100100000000101111
0x0040	mult r9,r3,r4	0000000011001000100100000101111
0x0044	mult r10,r5,r6	0000000101001100101000000101111
0x0048	nop	000000000000000000000000000000000000000
0x004C	add r11, r8, r9	000000100001001011100000100000
0x0050	nop	000000000000000000000000000000000000000
0x0054	nop	000000000000000000000000000000000000000
0x0058	add r11, r11, r10	00000001011010100101100000100000

Como podemos observar, este es el programa optimizado mediante la reorganización del código para reducir las penalizaciones por dependencias de datos.

Para realizar el producto escalar de dos vectores lo subdividimos en 6 subvectores, ya que la multiplicación solo admite vectores de 4 valores como máximo. Además, para cargar cada subvector, primero cargamos los bits más significativos, los desplazamos y luego cargamos el resto de valores. Esto se debe a que la instrucción ori solo admite cargas de 16 bits.

Finalmente, llevamos a cabo las multiplicaciones y sumamos los resultados.

Simulación

Tras implementar el programa, se ha de llevar a cabo la simulación del mismo para comprobar su correcto funcionamiento siguiendo la traza a lo largo de su ejecución. Como podemos comprobar el resultado final es 0x14E6, que corresponde a 5350 en decimal.

Sabemos que se trata del resultado correcto ya que a priori sabemos el resultado del producto escalar y a su vez, podemos comprobar las entradas a la ALU para asegurarnos que los datos que cargamos son correctos.

235ns 240ns	245ns 250ns	255ns 260ns	265ns 270ns	275ns 280ns	285ns 290ns	295ns 300ns	305ns 310ns	315ns 320
handandanda	<u>ınlımlımlımlı</u>	<u>uluuluuluulu</u>	<u>uluuluuluuli</u>	<u>ındınıdınıdınıdı</u>	<u>uluuluuluule</u>	<u>ındınıdınıdınıdın</u>	<u>dandandanda</u>	<u>uluuluu uu</u> uu
(00000000	(01095820	(00000000		(016A5820	(00000000			
(00001F20	(00000000	(00000786	(00000000)	(00000000		
)()()	(00000000	X	(00000000		(00000337	(00000000		
(00000786	(00000A29	(00000337	(00000000	(000011AF	(00000000		(00001486	

Resultados de la síntesis e implementación

A continuación se muestran los resultados obtenidos del análisis del diseño propuesto para el programa que multiplica los vectores mediante la multiplicación rusa y el programa con la instrucción vectorial.

Resultados de la ejecución del programa sin instrucción vectorial:

Familia	XC4000XV		
Dispositivo	40110XVBG560		
	DLX32p	Main32p	
Número de CLBs	719 (17%)	1012 (24%)	
Frecuencia máxima	10,655 MHz	11,244 MHz	

Resultados de la ejecución del programa con instrucción vectorial:

Familia	XC4000XV		
Dispositivo	40110XVBG560		
	DLX32p	Main32p	
Número de CLBs	994 (24%)	1006 (24%)	
Frecuencia máxima	18,01 Mhz	10,627 MHz	

Como podemos observar, al añadir la instrucción de multiplicación vectorial, la frecuencia máxima del diseño ha disminuído, al igual que la complejidad del mismo, aunque no de manera significativa. A pesar de la disminución de la frecuencia, se espera que a la hora de analizar las prestaciones se observe una mejora en la instrucción vectorial ya que debería ejecutarse más rápido que el programa original.

Resultado del análisis de prestaciones

Para analizar las prestaciones de cada una de las implementaciones, se analizará la complejidad del diseño, al igual que la frecuencia máxima a la que funciona el sistema. A su vez, se realiza la comparativa del número de instrucciones que se ejecutan, los ciclos de reloj necesarios para completar la ejecución y el tiempo que se tarda en obtener el resultado.

Modelo escalar:

Familia	XC4000XV		
Dispositivo	40110XVBG560		
	DLX32p	Main32p	
Número de CLBs	719 (17%)	1012 (24%)	
Frecuencia máxima	10,655 MHz	11,244 MHz	
Número de instrucciones	187	187	
Ciclos de reloj	786	786	
Tiempo de ejecución	7860 ns	7860 ns	

Modelo vectorial:

Familia	XC4000XV		
Dispositivo	40110XVBG560		
	DLX32p	Main32p	
Número de CLBs	994 (24%)	1006 (24%)	
Frecuencia máxima	18,01 Mhz	10,627 MHz	
Número de instrucciones	23	23	
Ciclos de reloj	25	25	
Tiempo de ejecución	250 ns	250 ns	

Como se observa, el modelo escalar ha de ejecutar muchas más instrucciones que el modelo vectorial, lo cual afecta mucho al tiempo de ejecución del programa.

Si analizamos las prestaciones de las dos implementaciones, obtenemos que la implementación con la instrucción vectorial es 31,44 veces más rápida que la inicial. A su vez, por cada instrucción que realiza la implementación vectorial, se obtiene un promedio de 7,48 instrucciones del modelo escalar.