Next Token Generation

Nipun Batra

IIT Gandhinagar

July 29, 2025

Vocabulary Size:

26 letters + 1 hyphen = 27 characters

Word2Vec Analogy Example

Classic Word2Vec Relationship

Relationship: queen \approx king - man + woman

Analogy with Emotions

Emotional Expression Analogy

Relationship: child crying = child smiling + adult crying - adult smiling

Embedding Matrix/Table Concept

Embedding Table Structure

27 × K Embedding Matrix

Char	D1	D2		DK
а	0.2	-0.1		0.8
b	-0.3	0.5		-0.2
С	0.1	0.3		0.4
÷	:	:	· · .	:
Z	0.7	-0.4		0.1
-	0.0	0.9		-0.5

Key Point

Each character maps to a K-dimensional vector.

▶ Embedding Matrix: 27 × K parameters

- **▶ Embedding Matrix:** 27 × K parameters
 - ► Initially random

- **▶ Embedding Matrix:** 27 × K parameters
 - ► Initially random

- **▶ Embedding Matrix:** 27 × K parameters
 - ► Initially random
 - Updated during training via backpropagation

- **▶ Embedding Matrix:** 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - ► Learns meaningful character representations

- **► Embedding Matrix:** 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters

- **► Embedding Matrix:** 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - Transform concatenated embeddings to output

- **► Embedding Matrix:** 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - Transform concatenated embeddings to output
 - Learn classification patterns

- **▶ Embedding Matrix:** 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - ► Transform concatenated embeddings to output
 - Learn classification patterns
- Total Learnable Parameters:

- **► Embedding Matrix:** 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - ► Transform concatenated embeddings to output
 - Learn classification patterns
- ► Total Learnable Parameters:
 - Embedding: 27 × K

- **► Embedding Matrix:** 27 × K parameters
 - Initially random
 - Updated during training via backpropagation
 - Learns meaningful character representations
- Neural Network Weights: MLP parameters
 - ► Transform concatenated embeddings to output
 - Learn classification patterns
- ► Total Learnable Parameters:
 - ► Embedding: 27 × K
 - ▶ MLP: (context_size \times K) \rightarrow hidden \rightarrow ... \rightarrow 27

Example: 2D Embeddings for "abi"

Embedding Matrix (27
$$\times$$
 2)

Input: X = ["a", "b", "i"]

$$\begin{bmatrix}
D1 & D2 \\
a & 0.2 & -0.1 \\
b & -0.3 & 0.5 \\
... & ... & ... \\
i & 0.1 & 0.3 \\
... & ... & ... \\
z & 0.7 & -0.4 \\
- & 0.0 & 0.9
\end{bmatrix}$$
[0.2, -0.1]
[-0.3, 0.5]
[0.1, 0.3]

Concatenate the Embeddings

Feature Vector Construction

6D feature vector

Result

3 chars \times 2D embeddings = 6D input to neural network

Multi-Layer Perceptron Architecture

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

► Loss Function: Cross-entropy loss for multi-class classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

What we learn:

► Loss Function: Cross-entropy loss for multi-class classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

What we learn:

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification
- Training Process:

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - 1. **Embedding Matrix:** Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification
- Training Process:

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification
- Training Process:
 - 1. Forward pass: Input \rightarrow Embeddings \rightarrow Concatenate \rightarrow MLP \rightarrow Probabilities

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification
- Training Process:
 - 1. Forward pass: Input \rightarrow Embeddings \rightarrow Concatenate \rightarrow MLP \rightarrow Probabilities
 - 2. Compute cross-entropy loss

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification
- Training Process:
 - 1. Forward pass: Input \rightarrow Embeddings \rightarrow Concatenate \rightarrow MLP \rightarrow Probabilities
 - 2. Compute cross-entropy loss
 - 3. Backward pass: Update both embeddings and MLP weights

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification
- Training Process:
 - 1. Forward pass: Input \rightarrow Embeddings \rightarrow Concatenate \rightarrow MLP \rightarrow Probabilities
 - 2. Compute cross-entropy loss
 - 3. Backward pass: Update both embeddings and MLP weights

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{c=1}^{27} y_{i,c} \log(\hat{y}_{i,c})$$
 (1)

- What we learn:
 - Embedding Matrix: Character representations (27 × K parameters)
 - 2. MLP Weights: Neural network parameters for classification
- Training Process:
 - 1. Forward pass: Input \rightarrow Embeddings \rightarrow Concatenate \rightarrow MLP \rightarrow Probabilities
 - 2. Compute cross-entropy loss
 - 3. Backward pass: Update both embeddings and MLP weights
 - 4. Repeat for all training examples

Sampling from the Learned Model

Test Input: "abi"

Predicted Probability Distribution

Next Char	Probability	Next Char	Probability
а	0.01	n	0.05
b	0.01	О	0.02
С	0.03	р	0.01
d	0.60	q	0.00
е	0.02	r	0.03
f	0.01	S	0.08
-	0.05	z	0.01

Most Likely Continuation

"abi" \rightarrow "abid" (60

Generation Tree Structure

Recursive Process: Sample next character, append, repeat until end token

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

► Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

► Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/I}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (3)

Temperature Effects:

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
(3)

- **▶** Temperature Effects:
 - ightharpoonup T = 1: Standard probabilities

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
(3)

- ► Temperature Effects:
 - ightharpoonup T = 1: Standard probabilities
 - ightharpoonup T
 ightarrow 0: More peaked (deterministic)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
(3)

- ► Temperature Effects:
 - ightharpoonup T = 1: Standard probabilities
 - ightharpoonup T
 ightarrow 0: More peaked (deterministic)

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (2)

► Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
(3)

- ► Temperature Effects:
 - ightharpoonup T = 1: Standard probabilities
 - ightharpoonup T
 ightarrow 0: More peaked (deterministic)
 - $ightharpoonup T
 ightharpoonup \infty$: More uniform (random)

Temperature Variations

 $\textbf{Context: "abi"} \rightarrow \text{Next character probabilities}$

Char	T=0.5	T=1.0	T=2.0
	(Low)	(Default)	(High)
а	0.001	0.01	0.08
d	0.95	0.60	0.25
S	0.01	0.08	0.12
h	0.005	0.03	0.09
-	0.02	0.05	0.11
others	0.015	0.23	0.35

► Low T: Conservative, predictable

Temperature Variations

Context: "abi" \rightarrow Next character probabilities

Char	T=0.5	T=1.0	T=2.0
	(Low)	(Default)	(High)
а	0.001	0.01	0.08
d	0.95	0.60	0.25
S	0.01	0.08	0.12
h	0.005	0.03	0.09
-	0.02	0.05	0.11
others	0.015	0.23	0.35

► Low T: Conservative, predictable

Temperature Variations

Context: "abi" → Next character probabilities

Char	T=0.5	T=1.0	T=2.0
	(Low)	(Default)	(High)
а	0.001	0.01	0.08
d	0.95	0.60	0.25
S	0.01	0.08	0.12
h	0.005	0.03	0.09
-	0.02	0.05	0.11
others	0.015	0.23	0.35

► Low T: Conservative, predictable

► **High T:** Creative, diverse

▶ Core Idea: Next token prediction as classification

▶ Core Idea: Next token prediction as classification

- ▶ Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity

- ▶ Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity

- Core Idea: Next token prediction as classification
- ► **Representation Learning:** Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling

- Core Idea: Next token prediction as classification
- ► **Representation Learning:** Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ Training: Joint learning of embeddings and classifier weights

- Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ **Training:** Joint learning of embeddings and classifier weights

- ▶ Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ Training: Joint learning of embeddings and classifier weights
- ► **Generation:** Autoregressive sampling with temperature control

- ▶ Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ Training: Joint learning of embeddings and classifier weights
- ► **Generation:** Autoregressive sampling with temperature control

- ▶ Core Idea: Next token prediction as classification
- ▶ Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ Training: Joint learning of embeddings and classifier weights
- ► **Generation:** Autoregressive sampling with temperature control
- ▶ **Applications:** Foundation for modern language models

- Core Idea: Next token prediction as classification
- ▶ Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ Training: Joint learning of embeddings and classifier weights
- ► **Generation:** Autoregressive sampling with temperature control
- ▶ **Applications:** Foundation for modern language models
 - GPT models use the same principle

- ▶ Core Idea: Next token prediction as classification
- ▶ Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- ▶ **Applications:** Foundation for modern language models
 - ► GPT models use the same principle
 - Scaled to words/subwords instead of characters

- ▶ Core Idea: Next token prediction as classification
- ▶ Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ▶ Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- ▶ **Applications:** Foundation for modern language models
 - ► GPT models use the same principle
 - Scaled to words/subwords instead of characters

- ▶ Core Idea: Next token prediction as classification
- ► **Representation Learning:** Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ► Training: Joint learning of embeddings and classifier weights
- ► **Generation:** Autoregressive sampling with temperature control
- ▶ **Applications:** Foundation for modern language models
 - ► GPT models use the same principle
 - Scaled to words/subwords instead of characters
 - Transformer architecture instead of MLP

- ▶ Core Idea: Next token prediction as classification
- Representation Learning: Character embeddings capture similarity
- ► **Architecture:** Embeddings + MLP for sequence modeling
- ► Training: Joint learning of embeddings and classifier weights
- Generation: Autoregressive sampling with temperature control
- ▶ **Applications:** Foundation for modern language models
 - ► GPT models use the same principle
 - Scaled to words/subwords instead of characters
 - ► Transformer architecture instead of MLP
 - Billions of parameters instead of thousands

From Character-Level to ChatGPT

Same fundamental principle: Predict the next token!