

WHAT IS CLAIMED IS:

- 1 1. A method for calibrating one or more printheads, the method
2 comprising:
 - 3 printing a first reference image using a first portion of image forming
4 points of a first printhead;
 - 5 printing a first diagnostic image using a second portion of image
6 forming points of either the first printhead or a second printhead;
 - 7 detecting a first optical density of the combined first reference image
8 and the first diagnostic image; and
 - 9 determining a compensation value based upon the first optical density.
- 1 2. The method of Claim 1, wherein the first portion of image forming
2 points comprises a first segment of a column of image forming points and wherein the
3 second portion comprises a second segment of the column of image forming points on
4 the first printhead.
- 1 3. The method of Claim 1, wherein the first portion comprises a first
2 segment of a first column of image forming points of the first printhead and wherein
3 the second portion comprises a second segment of a second column of image forming
4 points of the second printhead.
- 1 4. The method of Claim 1, wherein the first diagnostic image is printed
2 using the second portion of image forming points of the first printhead.
- 1 5. The method of Claim 1, wherein the first diagnostic image is printed
2 using the second portion of image forming points of the second printhead.
- 1 6. The method of Claim 1 including advancing the print media a distance
2 such that the first reference image and the diagnostic image are in vertical alignment.
- 1 7. The method of Claim 1 including adjusting a time at which the first
2 portion dispenses ink based upon the compensation value.

1 8. The method of Claim 1 including forming images using the first
2 portion and the second portion at different times based upon the compensation value.

1 9. The method of Claim 1, wherein the first reference image is printed
2 while the first printhead is at a first horizontal position and wherein the first
3 diagnostic image is printed while said one of the first printhead and the second
4 printhead is at the first horizontal position.

1 10. The method of Claim 9 including:
2 printing a second reference image with the first portion of the first
3 printhead while the first printhead is at a second horizontal position;
4 printing a second diagnostic image with the second portion while said
5 one of the first printhead and the second printhead is at a third horizontal position
6 positively offset from the second horizontal position by a first offset distance;
7 detecting a second optical density of the combined second reference
8 image and the second diagnostic image, wherein the compensation value is
9 additionally based upon the second optical density.

1 11. The method of Claim 10, wherein the first reference image includes at
2 least one mark having a width and wherein the first offset distance is no greater than
3 the width.

1 12. The method of Claim 10, wherein the first horizontal position and the
2 second horizontal position have a common location.

1 13. The method of Claim 10 including:
2 printing a third reference image with the first portion while the first
3 printhead is at a fourth horizontal position;
4 printing a third diagnostic image with the second portion while said
5 one of the first printhead and the second printhead is at a fifth horizontal position
6 positively offset from the fourth horizontal position by a second offset distance
7 greater than the first offset distance; and

8 detecting a third optical density of a combination of the third reference
9 image and the third diagnostic image, wherein the compensation value is determined
10 based additionally upon the third optical density.

1 14. The method of Claim 13, wherein the third reference image includes at
2 least one mark, wherein each mark has a width and wherein the third offset distance is
3 less than the width.

1 15. The method of Claim 13, wherein the third horizontal position is offset
2 from the second horizontal position in a first direction and wherein the fifth horizontal
3 position is offset from the third horizontal position in the first direction.

1 16. The method of Claim 15 including:
2 printing a fourth reference image with the first portion while the first
3 printhead is at a sixth horizontal position;

4 printing a fourth diagnostic with the second portion while said one of
5 the first printhead and the second printhead are at a seventh horizontal position
6 negatively offset from the sixth horizontal position by a third distance offset; and

7 detecting a fourth optical density of a combination of the fourth
8 reference image and the fourth diagnostic image, wherein the compensation value is
9 determined based additionally upon the fourth optical density.

1 17. The method of Claim 16 including:
2 printing a fifth reference image using the first portion while the first
3 printhead is at an eighth horizontal position;

4 printing a fifth diagnostic image using the second portion while said
5 one of the first printhead and the second printhead is at a ninth horizontal position
6 negatively offset from the eighth horizontal position by a fourth distance greater than
7 the third distance; and

8 detecting a fifth optical density of a combination of the fifth reference
9 image and the fifth diagnostic image, wherein the compensation value is determined
10 based additionally upon the fifth optical density.

1 18. The method of Claim 1, wherein the first portion and the second
2 portion comprise identical portions of the first printhead, wherein the first portion is
3 printed during overall movement as the first printhead in a forward direction and
4 wherein the second portion is printed during overall movement the first printhead in a
5 reverse direction.

1 19. The method of Claim 1 wherein the first reference image has a first
2 color and wherein the first diagnostic image has a second color distinct from the first
3 color.

1 20. The method of Claim 1, wherein a plurality of horizontal printhead
2 error compensation values are determined by printing the first reference image and the
3 first diagnostic image each a plurality of times while the first printhead and said one
4 of the first printhead and the second printhead are scanned across the medium at a
5 plurality of different print speeds.

1 21. The method of Claim 20, wherein at least one image forming points is
2 in both the first portion and the second portion.

1 22. The method of Claim 1, wherein the first portion and the second
2 portion have mutually exclusive image forming points.

1 23. The method of Claim 1, wherein the first portion is designed to be
2 spaced from the second portion by a predetermined distance in a first direction,
3 wherein the first diagnostic image is printed on the print medium using the first
4 portion while the first printhead is at a first horizontal position and wherein the second
5 diagnostic image is printed upon the print medium using the second portion while said
6 one of the first printhead and the second printhead is at a second horizontal position
7 spaced from the first position by the predetermined distance in the first direction.

1 24. The method of Claim 23, wherein the second portion is on the first
2 printhead.

1 25. The method of Claim 1, wherein the first reference image includes a
2 first plurality of marks, wherein each of the first plurality of marks is printed upon the
3 medium using the first portion of the first printhead and wherein the first diagnostic
4 image includes a second plurality of marks, wherein each of the second plurality of
5 marks is printed upon the medium using the second portion of said one of the first
6 printhead and the second printhead.

1 26. The method of Claim 1, wherein the first portion and the second
2 portion each include a plurality of image forming points.

1 27. The method of Claim 1, wherein the first reference image is printed by
2 dispensing a material from the first portion of image forming points.

1 28. The method of Claim 1, wherein the first reference image is printed by
2 applying heat with the first portion of image forming points.

1 29. The method of Claim 1, wherein the first reference image and the first
2 diagnostic image at least partially overlap.

1 30. The method of Claim 1 including moving the first printhead along a
2 single scan axis while printing both the first reference image and the first diagnostic
3 image.

1 31. The method of Claim 1, wherein the first reference image and the first
2 diagnostic image each include at least one mark having a major height in a first
3 direction and a minor width and wherein the first reference image and the first
4 diagnostic image are offset from one another perpendicular to the first direction.

1 32. A printing system comprising:
2 a printhead having image forming points;
3 a sensor; and
4 a controller, wherein the controller is configured to generate first
5 control signal and a second control signal, wherein the printhead is configured to print
6 a reference image upon the print medium using a first portion of the image forming

7 points and a diagnostic image upon the print medium using a second portion of the
8 image forming points in response to the first control signal, wherein the sensor is
9 configured to determine an optical density of a combination of the reference image
10 and the diagnostic image in response to the second control signal and the controller is
11 configured to determine a compensation value based upon the optical density.

1 33. The system of Claim 32, wherein the controller is configured to
2 generate a third control signal based upon the determined compensation value and
3 wherein the carriage mechanism is configured to move the printhead in response to
4 the third control signals.

1 34. The system of Claim 32, wherein the controller is configured to
2 generate third control signals and wherein the media handling system is configured to
3 advance the print medium between printing of the reference image and the diagnostic
4 image in response to the third control signals.

1 35. The system of Claim 32 including moving the first printhead along a
2 single scan axis while printing both the reference image and the diagnostic image.

1 36. The system of Claim 32, wherein the reference image and the
2 diagnostic image each include at least one mark having a major height in a first
3 direction and a minor width and wherein the reference image and the diagnostic
4 image are offset from one another perpendicular to the first direction.

1 37. A printing system comprising:
2 a first printhead having first image forming points;
3 a second printhead having second image forming points;
4 an optical sensor; and
5 a controller, wherein the controller is configured to generate first
6 control signal and a second control signal, wherein the first printhead is configured to
7 print a reference image upon the print medium using a first portion of the first image
8 forming points, wherein the second printhead is configured to print a diagnostic image
9 upon the print medium using a second portion of the second image forming points in

10 response to the first control signal, wherein the sensor is configured to determine an
11 optical density of a combination of the first reference image and the first diagnostic
12 image in response to the second control signal and the controller is configured to
13 determine a compensation value based upon the optical density.

1 38. The system of Claim 37, wherein the controller is configured to
2 generate a third control signal based upon the determined horizontal printhead error
3 compensation value and wherein the carriage mechanism is configured to move the
4 second printhead in response to the third control signals.

1 39. The system of Claim 37, wherein the controller is configured to
2 generate third control signals and wherein the media handling system is configured to
3 advance the print medium between printing of the first diagnostic image and the
4 second diagnostic image in response to the third control signals.

1 40. A computer-readable media comprising:
2 executable instructions configured to direct a printing system to:
3 print a reference image on a print medium using a first portion
4 of image forming points of a first printhead;
5 print a diagnostic image on the print medium using a second
6 portion of image forming points of one of the first printhead and a second printhead;
7 detect an optical density of a combination of the reference
8 image and the diagnostic image; and
9 determine a compensation value for at least one of the first
10 portion and the second portion based on the optical density.

1 41. A printing system comprising:
2 at least one printhead configured to form reference and diagnostic
3 images using a first portion and a second portion of the at least one printhead;
4 a sensor configured to detect optical densities of the images;
5 a processor configured to determine a compensation value for the
6 second portion relative to the first portion from the optical densities; and

7 a carriage drive configured to be calibrated based upon the
8 compensation value.

1 42. A printing system comprising:
2 means for printing a reference image extending along an axis on a print
3 medium;
4 means for printing a diagnostic image extending along the axis on the
5 print medium;
6 means for detecting an optical density of a combination of the
7 reference image and the diagnostic image; and
8 means for determining a compensation value based on the optical
9 density.

1 43. A method for calibrating one or more printheads, the method
2 comprising:
3 printing patches of reference images and diagnostic images across a
4 range of relative offsets between the reference images and their corresponding
5 diagnostic images, wherein each reference image is formed using a first portion of
6 image forming points of a first printhead and wherein each diagnostic image is
7 formed using a second portion of image forming points of either the first printhead or
8 a second printhead;
9 detecting optional densities of the patches; and
10 determining a compensation value for the second portion based upon
11 the detected optical densities.