Notes for General Topology

Zhao Wenchuan

April 23, 2021

Chapter 1

Metric Spaces

Chapter 2

Topological Spaces

2.1 Topological Spaces

Definition 2.1.1 (topology). Let X be a set, and let a family $\mathcal{T} \subseteq \mathcal{P}(X)$. \mathcal{T} is called a topology on X iff

- (i) $\emptyset, X \in \mathcal{T}$;
- (ii) \mathcal{T} is closed under arbitrary union;
- (iii) \mathcal{T} is closed under finite intersection.

Definition 2.1.2 (topological spaces). Let X be any set, and let \mathcal{T} be a topology on X, then the pair (X, \mathcal{T}) is called a *topological space*. All subsets of X in \mathcal{T} are called *open sets* in (X, \mathcal{T}) .

Definition 2.1.3 (closed sets). Let (X, \mathcal{T}) be a topological space. A subset V of X is said to be *closed* iff there is an open set U in X such that

$$V = X \setminus V$$
.

Proposition 2.1.1. Let X be a set, and let \mathcal{C} be the family of all closed sets in X. Then

- (i) $\emptyset, X \in \mathcal{C}$;
- (ii) \mathcal{C} is closed under arbitrary intersection;
- (iii) C is closed under finite union.

Definition 2.1.4 (finer and coarser topology). Let X be any set, and let $\mathcal{T}, \mathcal{T}'$ be topologies on X. \mathcal{T} is said to be *finer* than \mathcal{T}' iff $\mathcal{T} \supseteq \mathcal{T}'$; respectively, \mathcal{T} is said to be *coarser* than \mathcal{T}' iff $\mathcal{T} \subseteq \mathcal{T}'$.

Definition 2.1.5 (neighbourhood). Given (X, \mathcal{T}) as a topological space and a point $x \in X$, a subset $N \subseteq X$ is called a *neighbourhood* iff it contains an open set U containing x.

Proposition 2.1.2. Given (X, \mathcal{T}) as a topological space and $U \subseteq X$, U is open iff for all $x \in U$, there is a neighbourhood N of x contained in U.

Proof. If U is open, then U itself is a neighbourhood of x contained in U.

Conversely, if for all $x \in U$, there is a neighbourhood N_x of x contained in U, then there is a open neighbourhood $U_x \ni x$ contained in N_x . Then we have

$$U \supseteq \bigcup_{x \in U} U_x.$$

Suppose U is not open, then U is a proper superset in the relation above. Then there exists $y \in U$ which is not in any U_x . This implies that such a y does not have any neighbourhood N_y in U, for such an N_y must contains an open $U_y \ni y$. For if it does, then there must be a U_x contains y. This is a contradiction. Thus,

$$U = \bigcup_{x \in U} U_x$$

is open.

2.2 Metrizable Spaces

2.3 Continuity

Definition 2.3.1 (continuous maps). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is said to be *continuous* iff for any open set U in Y, its preimage in X under f is open.

Proposition 2.3.1. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is continuous at $x \in X$ iff for any neighbourhood N_y of f(x), there is a neighbourhood N_x of x, such that $f[N_x] \subseteq N_y$.

Proof. Let N_y be a neighbourhood of f(x). Clearly, there exists an open set U_y contains y.

By Definition 2.3.1, f is continuous at x iff $x \in f^{-1}[U_y] \in \mathcal{T}_X$. Clearly, $f^{-1}[U_y]$ is a neighbourhood of x. We have $f[f^{-1}[U_y]] = U_y \subseteq N_y$.

By Proposition 2.1.2, there U_x must contains at least one neighbourhood N_x of x, thus, $f[N_x] \subseteq U_y$.

Proposition 2.3.2. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be metrizable spaces. A map $f: X \to Y$ is continuous at $p \in X$ iff for any $\varepsilon > 0$, there is a $\delta > 0$, such that for all $x \in B_X(p, \delta)$, $f(x) \in B_Y(f(p), \varepsilon)$, where B_X is defined by any metrics ρ_X induces \mathcal{T}_X , and B_Y is defined by any metrics ρ_Y induces \mathcal{T}_Y .

Proof. Clearly, for all $\varepsilon > 0$, $B_Y(f(x,),\varepsilon)$ is an open neighbourhood of f(x).

f is not necessarily be injective, so $f^{-1}[B_Y(f(x),\varepsilon)] = U \in x$. By Definition 2.3.1, U is open, so for some $\delta > 0$, $B_X(x,\delta) \subseteq U$. Thus, By Proposition 2.3.1, f is continuous iff $f[B_X(x,\delta)] \subseteq B_Y(f(x),\varepsilon)$. This satisfies the conditions we have.

Proposition 2.3.3. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A function $f: X \to Y$ is said to be continuous iff for any closed set V in Y, its preimage in X under f is closed.

Proof. Let U_Y be any open set in Y, let U_X be the preimage of U_Y under f. By Definition 2.3.1, U_X is open in X. Let

$$V_X = f^{-1}[Y \setminus U_Y] = X \setminus U_X,$$

Then V_X is closed.

2.4 Cover

Definition 2.4.1 (cover). Let (X, \mathcal{T}) be a topological space, and let $U \subseteq X$, then a family $\mathcal{C} \subseteq \mathcal{P}(X)$ is called a *cover* of U iff the union of all sets in \mathcal{C} is a superset of U. That is,

$$U\subseteq\bigcup\mathcal{C}.$$

If $C \subseteq \mathcal{T}$, then we call C an open cover of U.

Let $S \subseteq C$, iff the union of S is still a superset of U, then we call S a subcover of C.

Definition 2.4.2 (basis). Let (X, \mathcal{T}) be a topological space, let $U \subseteq X$, and let \mathcal{B} be a open cover of X. We call \mathcal{B} a base of X iff the union of \mathcal{B} is precisely U itself, i.e.,

$$U = \bigcup \mathcal{B}.$$

Definition 2.4.3 (synthetic basis). Let (X, \mathcal{T}) be a topological space, and let \mathcal{B} be a base of X. \mathcal{B} is said to be *synthetic* iff for any $A, B \in \mathcal{B}$,

$$A \cap B = \bigcup_{i=1}^{n} B_i, \quad B_i \in \mathcal{B}.$$

2.5 Untitled

Definition 2.5.1 (subspace topology). Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. The *subspace topology* \mathcal{T}_A on A is defined to be the family of the intersections of open sets in (X, \mathcal{T}) and A. That is,

$$\mathcal{T}_A = \{ U \cap A : U \in \mathcal{T} \}.$$

Definition 2.5.2 (quotient topology). Let (X, \mathcal{T}) be a topological space and let \sim be an equivalence relation on X. The *quotient topology* is a topology on $\mathcal{P}(X/\sim)$; it is defined as

$$\mathcal{T}_{X/\sim} = \{ U \in \mathcal{P}(X/\sim) : \{ x \in X : [x] \in U \} \in \mathcal{T}_X \}.$$

Definition 2.5.3 (homeomorphisms). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A bijection $f: X \to Y$ is called a *homeomorphism* iff it is continuous and its inverse is also continuous.

Definition 2.5.4 (homeomorphic). Two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are said to be *homeomorphic* or *topologically equivalent*, denoted $X \cong Y$, iff there is an homeomorphism between them.

Definition 2.5.5 (compactness). A topological space (X, \mathcal{T}) is said to be *compact* iff every open cover of X has a finite subcover. That is,

$$\forall \mathcal{C} \subseteq \mathcal{T}: \bigcup \mathcal{C} = X: \exists \mathcal{S} \subseteq \mathcal{C}: \bigcup \mathcal{S} = X: |\mathcal{S}| < \aleph_0.$$

Definition 2.5.6 (connectedness). Let (X, \mathcal{T}) be a topological space. (X, \mathcal{T}) is said to be *connected* iff X is not empty and it it not the union of any disjoint open sets. That is,

$$\forall U, V \in \mathcal{T} : X = U \cup V : U \cap V \neq \emptyset.$$

Definition 2.5.7 (path-connectedness). Let (X, \mathcal{T}) be a topological space.

- (i) A map $\gamma: [0,1] \to X$ is called a *path* in X iff it is continuous. If $\gamma(0) = x$ and $\gamma(1) = y$, we say that γ is path from x to y in X.
- (ii) X is said to be path-connected iff for all $x, y \in X$ there is a path from x to y in X.

Definition 2.5.8 (topologically indistinguishable). Let (X, \mathcal{T}) be a topological space. Two points $x, y \in X$ are said to be topologically indistinguishable iff they share all their neighbourhoods. That is, let \mathcal{N}_x be the family of all neighbourhoods of x and let \mathcal{N}_y be the family of all neibourhoods of y, we have

$$\mathcal{N}_x = \mathcal{N}_y$$
.

Respectively, x, y are said to be topologically distinguishable iff they are not topologically distinguishable; i.e.,

$$\mathcal{N}_x \neq \mathcal{N}_y$$
.

Definition 2.5.9 (saperated sets). Let (X, \mathcal{T}) be a topological space, and let $A, B \in \mathcal{P}(X)$.

- (i) A and B are said to be separated iff each is disjoint from other's closure.
- (ii) A and B are said to be separated by neighbourhoods iff there are neighbourhoods N_A of A and N_B of B such that N_A and N_B are disjoint.
- (iii) A and B are said to be separated by closed neighbourhoods iff there are closed neighbourhoods \overline{N}_A of A and \overline{N}_B of B such that \overline{N}_A and \overline{N}_B are disjoint.
- (iv) A and B are said to be separated by a continuous function iff there is a continuous function $f: X \to \mathbb{R}$, such that $f[A] = \{0\}$ and $f[B] = \{1\}$.
- (v) A and B are said to be precisely separated by a continuous function iff there is a continuous function $f: X \to \mathbb{R}$, such that $f^{-1}[\{0\}] = A$ and $f^{-1}[\{1\}] = B$

See Wikipedia.org

Definition 2.5.10 (T_0 spaces). A topological space (X, \mathcal{T}) is said to be T_0 or Kolmogorov, iff all distinct points $x, y \in X$ are topologically distinguishable.

Definition 2.5.11 (R_0 spaces). A topological space (X, \mathcal{T}) is said to be R_0 iff any two topologically distinguishable points in X are separated.

Definition 2.5.12 (T_1 spaces). A topological space (X, \mathcal{T}) is said to be T_1 or *Fréchet* iff any two distinct points in X are separated.

Proposition 2.5.1. All singletons in a T_1 space are closed, That is, if a topological space (X, \mathcal{T}) is T_1 , then

$$\forall x \in (X, \mathcal{T}) : \exists U \in \mathcal{T} : \{x\} = X \setminus U.$$

Definition 2.5.13 (T_2 spaces). A topological space (X, \mathcal{T}) is said to be T_2 or *Hausdorff* or *separated* iff any two distinct points in (X, \mathcal{T}) are separated by neighbourhoods.

Definition 2.5.14 ($T_{2^{1/2}}$ spaces). A topological space (X, \mathcal{T}) is said to be $T_{2^{1/2}}$ or Urysohn iff two distinct points in X are separated by closed neighbourhoods.

Definition 2.5.15 (T_3 spaces). A topological space (X, \mathcal{T}) is said to be T_3 or regular iff it is T_0 and given any point $x \in (X, \mathcal{T})$ and closed set $V \subseteq X$ with $x \notin V$ are separated by neighbourhoods.

Definition 2.5.16 $(T_{3^{1}/2} \text{ spaces})$. A topological space (X, \mathcal{T}) is said to be $T_{3^{1}/2}$, or *Tychonoff* or, *completely* T_3 , or *completely regular*, iff it is T_0 and given any point x and closed set $V \subseteq X$ with $x \notin V$, they are separated by a continuous function.

Definition 2.5.17 (T_4 spaces). A topological space (X, \mathcal{T}) is said to be T_4 or *normal* iff it is Hausdorff and any tow disjoint closed subsets of X are separated by neighbourhoods.

Proposition 2.5.2 (Urysohn's lemma). A topological space is normal iff any two disjoint closed sets are separated by a continuous function.

Definition 2.5.18 (T_5 spaces). A topological space (X, \mathcal{T}) is said to be T_5 or completely T_4 iff it is T_1 any two separated sets are separated by neighbourhoods.

Proposition 2.5.3. Every subspace of a T_5 space is normal.

Definition 2.5.19 (T_6 spaces). A topological space (X, \mathcal{T}) is said to be T_6 , or perfectly T_4 or perfectly normal iff it is T_1 and any two disjoint closed sets are precisely separated by a continuous function.

Proposition 2.5.4 (Tietze extension theorem). Let (X, \mathcal{T}) be normal topological space, and let $f: A \to (\mathbb{R}, \mathcal{T}')$ be a continuous map where A is a closed subset of X and \mathcal{T}' is the standard topology (induced by Euclidean metric). Then there exists a continuous map

$$F:(X,\mathcal{T})\to(\mathbb{R},\mathcal{T}'),$$

such that

$$\forall x \in A : f(x) = g(x).$$

2.6 Boundaries

Definition 2.6.1 (interiors). The *interior* of a set A, denoted A° , is defined to be the union of all open subsets of A.

Definition 2.6.2 (closure). The *closure* of a set A, denoted \overline{A} , is defined to be the intersection of all closed supersets of A.

Definition 2.6.3 (dense sets). Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$. A is said to be dense, iff $\overline{A} = X$.

Definition 2.6.4 (nowhere dense sets). A set A is said to be *nowhere dense* iff the interior of its closure is empty.

Definition 2.6.5 (boundaries). Let A be any set, the *boundary* of A, denoted ∂A , is defined to be the complement of the interior of A in the closure of A; i.e.,

$$\partial A = \overline{A} \setminus A^{\circ}.$$

Proposition 2.6.1 (properties of interiors). Let (X, \mathcal{T}) be any topological space and $A, B \subseteq X$.

- (i) (Intensive) $A^{\circ} \subseteq A$.
- (ii) A is open iff $A = A^{\circ}$.
- (iii) (Idempotence) $(A^{\circ})^{\circ} = A^{\circ}$.
- (iv) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- (v) $A \subseteq B \implies A^{\circ} \subseteq B^{\circ}$.
- (vi) If B is open, then $B \subseteq A$ iff $B \subseteq A^{\circ}$.

Proof.

- (i) By Definition 2.6.1, naturally, $A^{\circ} \subseteq A$.
- (ii) By Definition 2.1.2, A° is the union of open sets hence it is open. A is open iff it is the union of all open subsets of A. Thus $A = A^{\circ}$.
- (iii) A° is open, thus $(A^{\circ})^{\circ} = A^{\circ}$.
- (iv) By Definition 2.6.1, we have

$$\begin{split} (A\cap B)^\circ &= \left\{ \bigcup U : U \in \mathcal{T} \wedge U \subseteq A \cap B \right\} \\ &= \left\{ \bigcup U : (U \in \mathcal{T} \wedge U \subseteq A) \wedge (U \in \mathcal{T} \wedge U \subseteq B) \right\} \\ &= \left\{ \bigcup U : U \in \mathcal{T} \wedge U \subseteq A \right\} \cap \left\{ \bigcup U : U \in \mathcal{T} \wedge U \subseteq B \right\} \\ &= A^\circ \cap B^\circ. \end{split}$$

(v) Clearly, $A^{\circ} \subseteq A$, thus,

$$A \subseteq B \implies A^{\circ} \subseteq B$$

Suppose $A^{\circ} \not\subseteq B^{\circ}$, then $A^{\circ} \setminus B^{\circ}$ is not empty (\emptyset is the subset of any set, so A° is not empty).

Then there exists $x \in A^{\circ}$ with $x \in \partial B$ ($x \in B$ but $x \notin B^{\circ}$). Then there exists neighbourhood $N_x \ni x$, and $N_x \cap \partial B \neq \emptyset$. But this is impossible, for $A^{\circ} \subseteq B$ implies that $A^{\circ} \cap \partial B = \emptyset$ (This is a straight consequence of $A^{\circ} \cap \partial A = \emptyset$. See Proposition 2.6.3), so such N_x does not exist. Thus,

$$A^{\circ} \subset B^{\circ}$$
.

(vi) If B is open, then $B = B^{\circ}$. Then $B \subseteq A$ iff $B^{\circ} \subseteq A^{\circ}$.

Proposition 2.6.2 (properties of closures). Let (X, \mathcal{T}) be a topological space, and let $A, B \subseteq X$.

- (i) \overline{A} is closed.
- (ii) A is closed iff $A = \overline{A}$.
- (iii) $A \subseteq B$ implies $\overline{A} \subseteq \overline{B}$.

(iv) If A is closed, then $A \supseteq B$ iff $A \supseteq \overline{B}$

Proof.

- (i) By Definition 2.6.2, \overline{A} is the intersection of closed sets. By Proposition 2.1.1, \overline{A} is closed.
- (ii) Proposition 2.1.1 implies that any closed set is the intersection of closed sets, this is precisely what Definition 2.6.2 says.

(iii)

$$A \subseteq B \implies X \setminus A \supseteq X \setminus B$$

Proposition 2.6.3 (properties of boundaries). Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$.

- (i) ∂A is closed.
- (ii) $A^{\circ} \cap \partial A = \emptyset$.
- (iii) $\overline{A} = A^{\circ} \cup \partial A$.
- (iv) A is closed iff $\partial A \subseteq A$.
- (v) ∂A is nowhere dense.
- (vi) $\partial \overline{A} \subseteq \partial A \subseteq \partial A^{\circ}$.
- (vii) $\partial A = \partial (X \setminus A)$.
- (viii) A is dense iff $\partial A = X \setminus A^{\circ}$.

Proof.

(i) \overline{A} is closed, and $X \setminus A^{\circ}$ is also closed. Thus

$$\partial A = \overline{A} \setminus A^{\circ} = \overline{A} \cap (X \setminus A)$$

is closed.

(iii) We have

$$\begin{split} \partial A &= \overline{A} \setminus A^\circ \iff \partial A \cup A^\circ = \overline{A} \setminus A^\circ \cup A^\circ = \overline{A} \cap (X \setminus A^\circ \cup A^\circ) \\ &\iff \partial A \cup A^\circ = \overline{A} \cap X|_{\text{for } A^\circ \subset X} = \overline{A}. \end{split}$$

- (iv) As A is closed, $A = \overline{A}$ (this can be straightly proved by Definition 2.6.2). By Definition 2.6.5, it is clear that $\partial A \subseteq \overline{A}$, thus $\partial A \subseteq A$.
- (v) By Definition 2.6.4, ∂A is nowhere dense iff $\overline{\partial A}^{\circ}$ is empty. We have

$$\overline{\partial A}^{\circ} = \overline{\overline{A} \setminus A^{\circ}}^{\circ}$$

$$= (\overline{A} \setminus A^{\circ}) \cup (\overline{A} \setminus A^{\circ}) \setminus (\overline{A} \setminus A^{\circ})$$

$$= \emptyset.$$

(vi) $\overline{A} \supseteq A^{\circ}$ implies $\overline{A}^{\circ} \supseteq (A^{\circ})^{\circ} = A^{\circ}$, then we have,

$$\partial \overline{A} = \overline{\overline{A}} \setminus \overline{A}^{\circ} \subset \overline{A} \setminus A^{\circ} = \partial A.$$

 $A^{\circ} \subseteq A$ implies $\overline{A^{\circ}} \subseteq \overline{A}$, then we have,

$$\partial A^{\circ} = \overline{A^{\circ}} \setminus (A^{\circ})^{\circ} \supseteq \overline{A} \setminus A^{\circ}.$$

(vii) We have

$$\partial(X \setminus A) = \overline{X \setminus A} \setminus (X \setminus A)^{\circ}$$

$$= X \setminus A^{\circ} \setminus (X \setminus \overline{A})$$

$$= X \setminus A^{\circ} \cap \overline{A}$$

$$= \overline{A} \setminus A^{\circ}$$

$$= \partial A.$$

(viii) By Definition 2.6.3, A is dense in X iff $\overline{A} = X$. Then we have,

$$\overline{A} = X \iff \overline{A} \setminus A^{\circ} = X \setminus A^{\circ}$$
$$\iff \partial A = X \setminus A^{\circ}.$$

2.7 Limit Points

Definition 2.7.1 (limit points). Let (X, \mathcal{T}_X) be a topological space, and let $A \subseteq X$. A point $x \in X$ is called a *limit point* of A iff for all neighbourhood N_x of $x, N_x \setminus \{x\}$ intersects A.

Proposition 2.7.1. Let A be any set, and let x be a limit point of A, then x is an element of the closure of A.

Proof. If A is empty, then this is vacuously true. So, suppose A is not empty. By Definition 2.7.1, for all neighbourhood N_x of x, $N_x \setminus \{x\} \cap A$ is not empty. Naturally, $N_x \cap A$ is not empty.

Assume that $x \notin \overline{A}$, then $X \setminus \overline{A}$ is a neighbourhood of x, by Definition 2.1.5, and is disjoint from A. This is contradicted to the conditions.

Note 2.7.1. In this proof, the proposition also holds for $N_x \cap A^{\circ} = \emptyset$. Because if it is true, then

$$N_x \cap \partial A \supseteq (N_x \cap A) \setminus (N_x \cap A^\circ) = N_x \cap A.$$

This implies that $A \subseteq \partial A$. In this case, $\overline{A} = \partial A$, for

Assume that $x \notin \partial A$, then we have the same conclusion.

Then
$$A^{\circ} = A \setminus \partial A = \emptyset$$
.

Proposition 2.7.2. A set is closed iff it contains all its limit point.

Proof. Let A be a set. By proposition 2.7.1, for every limit point of A, it is also an element of the closure \overline{A} . And A is closed iff $A = \overline{A}$.

Definition 2.7.2 (convergent sequences). Let (X, \mathcal{T}_X) be a topological space. A sequence $\{x_n\}$ in X is said to be *convergence* in X iff there is an open set U contains all but finite terms of $\{x_n\}$.