Tópicos de Matemática Discreta

Lic. em Engenharia Informática

Dep. Matemática e Aplicações Universidade do Minho

2011/2012

Grafos

Definição. Um **grafo** (finito) é um terno $G = (V, A, \varepsilon)$ em que

- V é um conjunto finito não vazio cujos elementos são chamados vértices
- A é um conjunto finito cujos elementos são chamados arestas
- ▶ ε : $A \to \mathcal{P}(V)$ é uma função tal que, para todo o $a \in A$, $\varepsilon(a)$ tem 1 ou 2 elementos, chamados **extremidades** de a.

Uma aresta que tem uma só extremidade é chamada lacete.

Representação gráfica:

Exemplo. $G = (V, A, \varepsilon)$ com

$$V = \{a, b, c, d\}, \quad A = \{ab, ac, ad, bc, bd, cd\}$$

e $\varepsilon:A o \mathcal{P}(V)$ dada por

$$\varepsilon(ab) = \{a, b\}, \ \varepsilon(ac) = \{a, c\}, \ \varepsilon(ad) = \{a, d\}, \\ \varepsilon(bc) = \{b, c\}, \ \varepsilon(bd) = \{b, d\}, \ \varepsilon(cd) = \{c, d\}.$$

Outra representação

Este grafo é denotado por W_3 (roda (wheel) com 3 raios).

Da mesma forma define-se a roda W_n com n raios:

Definição. Um grafo $G = (V, A, \varepsilon)$ diz-se **simples** se não tem lacetes e se ε é injetiva (ou seja, não há arestas diferentes com as mesmas extremidades).

Exemplo. Os grafos W_3 e W_5 são simples. Os grafos W_1 e W_2 não são simples.

Outros exemplos:

 \triangleright Os grafos P_n (path)

▶ Os grafos *C_n* (cycle)

ightharpoonup Os grafos completos K_n

Definição. Seja $G = (V, A, \varepsilon)$ um grafo e seja $v \in V$ um vértice. Chamamos **grau** de v, e denotamos por gr(v), ao número de arestas que admitem v como extremidade, contando a dobrar os lacetes.

Exemplo.

Tem-se

$$gr(a) = 2$$
, $gr(b) = 1$, $gr(c) = 0$, $gr(d) = 3$.

Observações.

- Num grafo, a soma dos graus dos seus vértices é igual ao dobro do número de arestas. Em particular, a soma dos graus é um número par.
- Num grafo, o número de vértices de grau ímpar é par.

Exercício 1. Indique, ou justifique que não existe, um grafo simples cujos vértices têm graus

- (a) 2, 2 e 2
- (b) 3, 3, 3, 3 e 3
- (c) 1, 2, 2, e 3
- (d) 2, 5 e 5
- (e) 7, 6, 5, 4, 3, 3 e 2
- (f) 6, 6, 5, 4, 3, 3 e 1

Definição. Seja $G = (V, A, \varepsilon)$ um grafo. Uma sequência

$$(v_0, a_1, v_1, ..., a_n, v_n)$$

em que

- $\forall i \in \{0,...,n\} \quad v_i \in V$
- $\forall i \in \{1,...,n\} \quad a_i \in A \in \varepsilon(a_i) = \{v_{i-1},v_i\}$

é designada por **caminho de** v_0 **para** v_n no grafo G. Para $v \in V$, o caminho (v) é o caminho **trivial**.

Exemplo. No grafo $W_3 = K_4$ um caminho de *a* para *d* é (a, ab, b, bd, d).

Definição. Seja $G = (V, A, \varepsilon)$ um grafo. Um caminho $(v_0, a_1, v_1, ..., a_n, v_n)$ em G diz-se

- **fechado** se as suas extremidades v_0 e v_n forem iguais,
- simples se n\u00e3o tiver v\u00e9rtices repetidos excepto eventualmente as extremidades,
- trilho se não tiver arestas repetidas,
- ciclo se for um trilho fechado simples não trivial.

Exemplo 1. No seguinte grafo:

$$\varepsilon(a) = \{v\}$$
 (lacete)

(v) não é um ciclo, (v, a, v) é um ciclo.

Exemplo 2. No grafo $W_3 = K_4$,

- ► (a, ab, b, bd, d, ad, a) é um ciclo.
- ► (a, ab, b, bd, d, ad, a, ac, c) é um trilho, não simples, não fechado.
- ► (a, ab, b, ab, a) é um caminho fechado simples que não é um ciclo.

Exercício 2. Considere o grafo $G = (V, A, \varepsilon)$ definido por $V = \{a, b, c, d, e\}$, $A = \{ab, ac, bc, bd, ca, cd, ce, de, ee\}$ e $\varepsilon(ab) = \{a, b\}$, $\varepsilon(ac) = \{a, c\}$, $\varepsilon(bc) = \{b, c\}$, $\varepsilon(bd) = \{b, d\}$, $\varepsilon(ca) = \{c, a\}$, $\varepsilon(cd) = \{c, d\}$, $\varepsilon(ce) = \{c, e\}$, $\varepsilon(de) = \{d, e\}$, $\varepsilon(ee) = \{e\}$.

- 1. Represente G graficamente.
- 2. Determine um caminho em G com 10 arestas.
- 3. Determine um trilho em G com 6 arestas.
- 4. Determine um trilho simples em G com 4 arestas.
- 5. Qual o número de caminhos diferentes de a para e?
- 6. Determine um ciclo em G com 1 (respectivamente 2,3,4,5) arestas.

Definição. Um grafo G diz-se **conexo** se, para cada dois vértices v e w, existe um caminho em G de v para w.

Exemplos.

Para todo o n, o grafo completo K_n é conexo.

Definição. Uma **árvore** é um grafo conexo sem ciclos.

Exemplos.

Proposição. Uma árvore com pelo menos 2 vértices tem um vértice de grau 1.

Ideia: Considera-se o trilho simples mais comprido. As extremidades deste trilho devem ser de grau 1 pois, caso contrário, o trilho seria prolongável o que contradiz o seu carácter máximal.

Teorema. Seja $n \in \mathbb{N}$. Uma árvore com n vértices tem n-1 arestas.

Ideia: Prova por indução.

- ▶ Verdadeiro para n = 1.
- Supõe-se o resultado verdadeiro para n (sendo $n \ge 1$) e considera-se uma árvore A_{n+1} com n+1 vértices. Pela proposição anterior, esta árvore tem um vértice de grau 1. Retirando este vértice e a aresta correspondente obtem-se uma árvore A_n com n vértices. Pela hipótese de indução A_n tem n-1 arestas. Logo A_{n+1} tem n arestas.

O problema dos 7 pontes de Königsberg

É possível fazer um passeio passando exactamente 1 vez por cada ponte e voltando ao ponto inicial?

Resolução por L. Euler em 1736.

fonte:wikipedia

Definição. Seja $G = (V, A, \varepsilon)$ um grafo. Um caminho fechado que passa exactamente uma vez por cada aresta de G é chamado **trilho euleriano** de G.

Proposição. Se um grafo conexo $G = (V, A, \varepsilon)$ admite um trilho euleriano então não existem vértices de grau ímpar.

Teorema de Euler. Um grafo conexo admite um trilho euleriano se e só se todos os vértices têm grau par.