0 Key Exchange

Write down the key-exchange experiment for a protocol Π with an adversary A.

Answer: The Key-Exchange Experiment $KE^{eav}_{\mathcal{A},\Pi}(n)$ is as follows:

- 1. Two parties, holding 1^n security parameter execute protocol Π . this results in a transcript trans, containing all the messages exchanged by the parties and a key k output by each of the parties.
- 2. A uniform bit $b \in \{0, 1\}$ is chosen.
 - if b = 0 set $\hat{k} := k$
 - if b = 1 choose $\hat{k} \in \{0, 1\}^n$ uniformly at random
- 3. \mathcal{A} is given the *trans* and \hat{k} and outputs a bit b'
- 4. \mathcal{A} wins the experiment if b' = b.

El Gamal 1

1. Suppose you are given an El Gamal encryption for some unknown message $m \in \mathbb{G}$. Show how to construct a different ciphertext that decrypts to the same m.

We have the El Gamal encryption for some unknown message $m \in \mathbb{G} :=$ $(R,C):=(g^r,m\cdot X^r)$ where X is the public key.

- We pick an arbitrary $r' \in \{0, 1\}$ $R' := R \cdot g^{r'} = g^r \cdot g^{r'} = g^{r+r'}$ $C' := C \cdot B^{r'} := X^{(r'+r)} \cdot m$

On Giving (R', C') to the oracle, we we will get back, m.

2. Show that, given two El Gamal encryptions for messages $m_1, m_2 \in \mathbb{G}$, how you can construct a ciphertext that decrypts to the product $m_1 \cdot m_2$.

We have the El Gamal encryption for some unknown message

$$m_1 \in \mathbb{G} := (R_1, C_1) := (g^{r_1}, m_1 \cdot X^{r_1})$$
 where X is the public key. $m_2 \in \mathbb{G} := (R_2, C_2) := (g^{r_2}, m_2 \cdot X^{r_2})$ where X is the public key.

•
$$R_3 := R_1 \cdot R_2 = g^{r_1} \cdot g^{r_2} = g^{r_1 + r_2} = g^{r_3}$$

Where r_1, r_2 are arbitrary. We define $r_3 := r_1 + r_2$, which we use to compute the following:

•
$$C_3 := C_1 \cdot C_2 = (m_1 \cdot X^{r_1}) \times (m_1 \cdot X^{r_2}) = m_1 \cdot m_2 \cdot X^{r_1 + r_2} = m_1 \cdot m_2 \cdot X^{r_3}$$

On Giving (R_3, C_3) to the oracle, we we will get back, $m_1 \cdot m_2$,

2 PKE

11.3 Katz/Lindell (part b)

Say a public-key encryption scheme (Gen, Enc, Dec) for n-bit messages is one-way if any PPT adversary \mathcal{A} has a negligible probability of success in the following experiment:

- $Gen(1^n)$ is run to obtain keys (pk, sk).
- A message $m \in \{0,1\}^n$ is chosen uniformly at random; a ciphertext $c \leftarrow \mathsf{Enc}_{pk}(m)$ is computed.
- \mathcal{A} is given pk and c, and outputs m'.
- If m' = m then \mathcal{A} succeeds.

Can a *deterministic* public-key encryption scheme be one-way? If not, prove impossibility; else, give a construction based on any of the assumptions introduced in this book.

Yes. A deterministic public-key encryption scheme Π can be one-way. We give the following construction for it.

CONSTRUCTION:

Let RSA be a public-key encryption scheme Π defined as follows.

- **Gen**: On input of a security parameter 1^n , run **RSA** to obtain N, e, and d. Where the public-key is $\langle N, e \rangle$ and private key is $\langle N, d \rangle$. Here N is the product of two n-bit prime numbers and e and e satisfy the equation $e \cdot d = 1 \mod \phi(N)$
- Enc: On input a public key $pk = \langle N, e \rangle$ and a message $\in \{0, 1\}$ choose $r \in \mathbb{Z}_{\mathbb{N}}^*$ where the least significant bit of r is m. Compute ciphertext as follows

$$c := r^e \mod N$$

• **Dec**: On input a private-key $sk = \langle N, d \rangle$ and a ciphertext c compute the r as follows.

$$r := c^d \mod N$$

Output least significant bit of r as message m

3 Key-Exchange Protocol

Consider the following key-exchange protocol:

- 1. Alice chooses uniform $k, r \leftarrow_{\$} \{0, 1\}^n$ and sends $s = k \oplus r$ to Bob.
- 2. Bob chooses $t \leftarrow_{\$} \{0,1\}^n$ and sends $u = s \oplus t$ to Alice.
- 3. Alice computes $w = u \oplus r$ and sends w to Bob.
- 4. Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob have outputted the same key. Is this scheme secure? If yes, prove its security, otherwise show a concrete attack.

Bob receives the following from Alice in the first message:

•
$$s = k \oplus r$$

Bob sends the following to Alice in the second message:

•
$$u = (k \oplus r) \oplus t$$

Bob receives the following from Alice in the third message:

$$\bullet \ w := ((k \oplus r) \oplus t) \oplus r \implies w := k \oplus t$$

Finally, Bob outputs $w \oplus t$ as his key

$$\implies k_{Bob} := (k \oplus t) \oplus t \implies k_{Bob} = k = k_{Alice}$$

∴ Alice and Bob output the same key.

The scheme is not secure, and we show the following $Man\ in\ the\ Middle\ (MITM)$ attack.

Assume an eavesdropper is collecting the messages in the trans. The eaves dropper would have the following messages: $\langle s, u, w \rangle$ and can easily distinguish a key \hat{k} as being truly random or being the actual k

This means that \exists PPT Distinguisher D that distinguishes as follows:

Attack:

- Receive trans and \hat{k}
- Compute $u \oplus w := r$
- Compute $r \oplus s := k$

• If $k = \hat{k}$ output 1 else output 0

Case Analysis:

- Case b' := 1
 - In this case $Pr[D(KE_{\mathcal{A},\Pi}^{eav}(n) = 1)] = 1$
- Case b' := 0
 - In this case $Pr[D(KE_{\mathcal{A},\Pi}^{eav}(n)=0)]=1$

Since, the distinguisher D can distinguish between the two keys k, the Key-Exchange Protocol is not secure.

4 CPA, key-agreement

Show that a 2-message key-agreement protocol exists iff CPA-secure public-key encryption exists.

I.e., show how to construct a CPA-secure encryption scheme from any 2-message KA protocol, and vice-versa. Prove the security of your constructions.

Assumptions: We are assuming here the following points.

• We have Alice communicating with Bob, with Alice starting the communication.

We have the following message exchanges for a 2-message agreement protocol.

- Alice picks a \mathbb{G} and uniformly random r_1
 - Alice computes a one-way function, X using r_1 as its parameter. and sends this computed element along with \mathbb{G} to Bob
- Bob would too pick an uniformly random r_2 and compute another one-way function Y, which it would forward it to Alice.
- At the end of the conversation between Alice, and Bob, both will have the same set of parameters i.e., $\langle \mathbb{G}, A, B \rangle$

We use the above 2 key-agreement protocol, to construct some real encryption scheme $\Pi \implies \mathbf{Gen}$, \mathbf{Enc} , \mathbf{Dec} as follows

- Key Generation:
 - $\mathbb{G} \xleftarrow{\$} \{0,1\}^n$
 - Compute and send some X from the group $\mathbb G$
- Challenge phase:
 - On receiving two messages m_0, m_1 , Pick a bit $b \in \{0, 1\}$
 - Pick $r_2 \leftarrow \$\{0,1\}^n$
 - Compute $Y := \langle \mathbb{G}, r_2 \rangle$
 - A key k is chosen between the communicating parties from (\mathbb{G}, X, Y, r_1) .
 - Ciphertext c_b for message m_b is computed as $c_b := Enc_k(m_b)$
 - Send $\langle c_b, Y \rangle$ to Bob

We have $Pr[A \text{ wins } CPA_{Game}] = \frac{1}{2} + p(n)$; where p(n) is non-negl(n)

Ideal Scheme $\tilde{\Pi}$: In this we have the same phases as the above scheme but with some slight modifications.

• Key Generation:

- $\mathbb{G} \stackrel{\$}{\leftarrow} \{0,1\}^n.$
- Compute and send some X* from the group \mathbb{G}

• Challenge phase:

- On receiving two messages m_0, m_1 , Pick a bit $b \in \{0, 1\}$
- Alice picks a \mathbb{G} and uniformly random r_1
- Pick $r_2 \leftarrow \$\{0,1\}^n$
- Compute $Y* := \langle \mathbb{G}, r_2 \rangle$
- A uniformly random key k is chosen between the communicating party and exchanged.
- Ciphertext c_b for message m_b is computed as $c_b := Enc_k(m_b)$

We can tell that for any A, the probability that the A wins this ideal game is as follows:

$$Pr[A \ wins \ \tilde{\Pi}] = \frac{1}{2} + \frac{q}{2^{\lambda}}$$

Where $\frac{q}{2^{\lambda}}$ is the probability that there occurs a collision in picking the same k over q polynomial queries.

Reduction: Since we see that the \mathcal{A} can break the scheme Π , we now use it via distinguisher D to break the key selection algorithm with $\langle \mathbb{G}, X, Y, r_1 \rangle$.

- D would get access to the Oracle, which is either (\mathbb{G}, X, Y, r_1) or truly random.
- GEN:
 - Select $r_1 \leftarrow \$\{0,1\}^n$
 - Compute and send $\langle \mathbb{G}, X \rangle$ to \mathcal{A}
 - $* X := \langle \mathbb{G}, r_1 \rangle$

• Challenge:

- On receiving two messages m_0, m_1 , Pick a bit $b \in \{0, 1\}$
- Pick $r_2 \leftarrow \$\{0,1\}^n$
- Compute $Y := \langle \mathbb{G}, r_2 \rangle$
- Forward $\langle \mathbb{G}, X, Y, r_2 \rangle$ to the Oracle to receive the key k
- Compute $c_b := \mathsf{Enc}_k(m_b)$ and send $\langle c_b, Y \rangle$ to \mathcal{A}
- Finally, if $b = b' \mathcal{A}$ wins.

• Analysis

- Case 1: Pseudorandom
 - * Here the view of \mathcal{A} is exactly like the CPA_{game} with encryption scheme Π

$$Pr[A \ wins \ CPA_{Game}] = Pr[D(n) = 1 | O = pseudorandom] = \frac{1}{2} + p(n))$$

- Case 2: Truly Random
 - * Here the view of \mathcal{A} is exactly like the CPA_{game} with encryption scheme $\tilde{\Pi}$

$$Pr[A \ wins \ \tilde{\Pi}] = Pr[D(n) = 1|O = TRF] = \frac{1}{2} + \frac{q}{2^n}$$

∴ we have $Pr[D(n) = 1|O = pseudorandom] - Pr[D(n) = 1|O = TRF] = p(n) - \frac{q}{2^n}$ which is non-negligible. But that would be a contradiction to our initial assumption, hence Π is a secure scheme.