$$X_t = C + a_t$$

$$E[M_T] = E[X_T] = C$$
, $Var[M_T] = \frac{Ca^2}{N}$

Cov
$$[M_t, M_{t-k}] = \frac{\sigma_a^2}{N} - \frac{\sigma_a^2}{N} \times \frac{k}{N} = \sigma_a^2 (N-k)/N^2$$

$$\begin{bmatrix}
M+, M+1 \\
N \end{bmatrix} = \frac{N-k}{N} = 1-\frac{k}{N}$$

$$2 - (a)$$

$$E[S_T] = C+bT - \frac{1-\alpha}{\alpha}b = E[X_T] - \frac{1-\alpha}{\alpha}b$$
 (simple ES]

$$= \chi \sum_{i} ((-\alpha)^{i} E [(-b+b+0+1)]$$

$$= \alpha \cdot \frac{1}{1 - (1 - \alpha)} E[C + b + a + a]$$

$$= E[c+b++a_t]$$

$$\Rightarrow S_{T}^{(2)} = \alpha \cdot S_{T}^{(1)} + (1-\alpha) S_{T-1}^{(2)} = \alpha \cdot \sum_{i=0}^{N-1} (1-\alpha)^{i} S_{T-i}^{(i)} + (1-\alpha)^{T} S_{0}^{(2)}$$

(i)
$$\lim_{T\to\infty} \alpha \cdot \frac{n-1}{j=0} (1-\alpha)^{j} = \frac{\alpha}{1-(1-\alpha)} = 1$$

$$\lim_{T\to\infty} (-\alpha)^T S_o^{(2)} = 0$$

$$\begin{array}{c} \vdots \text{ By } (i), (ii), \leq \frac{c^{2}}{1} = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{n=1}^{\infty} 1 \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{j=0}^{\infty} (c-\alpha)^{j} \\ = \alpha \sum_{j=0}^{\infty} (c-\alpha)^{j} \sum_{$$

3-b) see the R code (HWI-3.r)

d=0-1

> dem	a.0.1							
[1]	NA	NA	303.8760	335.0434	345.5788	363.5981	366.8471	361.1570
[9]	365.7139	384.3167	398.2255	399.2304	400.3809	397.0976	390.6109	387.9053
[17]	390.0556	391.7193	393.7160	384.5247	369.4794	353.5900	340.0700	326.9778
Ford	222 4552	220 4450	244 7076	264 0267	440 6050	467 0070	E40 0004	630 7343

[25] 323.1553 330.1159 344.7976 364.0367 410.6952 467.8272 549.9281 638.7242 [33] 761.8976 932.2243 1095.0992 1183.7943 1230.3939 1248.2950 1279.1532 1305.0713

d=6.3

```
> dema.0.3
 [1]
                     NA 413.5080
                                   448.3529
                                            423.5889 431.7722 402.9831
                                                                          362.9033
 [9]
     364.9405
               406.1692
                         425.2023
                                   406.9973
                                            397.1183
                                                      380.1943
                                                                360.9494
                                                                          358.0831
[17]
                                            322.9006
               376.0024
                         381.9868
                                 356.5929
                                                      295.8832
                                                                281.3568
[25] 284.1304 320.7468 365.9039 409.9177 515.8455 622.3896 771.2169 904.4081
[33] 1104.3932 1390.1673 1596.2230 1572.2859 1472.1984 1350.4003 1319.8660 1301.9267
```

Graph

3-C) see the R code (HWI-3.r)

> forecast\$accurate

	SST	SSE	MSE	RMSE	MAPE	MPE	
	1.366073e+05	3.418239e+05	1.709119e+04	1.307333e+02	2.389962e+01	-3.634062e+00	
	MAE	ME	R.squared	R.adj.squared	RW.R.squared	AIC	
9	9.260834e+01	1.205199e+00	-1.502238e+00	-1.627350e+00	1.597243e+19	2.163222e+02	
	SBC	APC					
1	2.185043e+02	1.864494e+04					

4-a) See the R code (HWI-4.r) · L. = 1583.917 $b_0 = 21.968$ 4-6) See the R code CHW 1-4.r) L. = 2951.414 bo = 64.375 $5_1 = 301.413$ 52 = -211.3353 = -51.776 54 = -202.474-c) See the R code.