Math 3B: Lecture 1

Noah White

January 9, 2017

Syllabus

Take a copy of the syllabus as you walk in

or

find it online at math.ucla.edu/~noah

Class website

There are a few places where you will find/receive information about Math 3B:

- The class website: www.math.ucla.edu/~noah
- Email
- Piazza
- CCLE (not in use)

Instructor and TAs

Instructor Noah White

office hours MS 6304, W,F 10:30am-12pm

TA Max Zhou office hours TBA, TBA

Yuejiao Sun TBA, TBA

Mengyuan Ding TBA, TBA

Communication

- Mathematical questions should be asked on Piazza
- Administrative questions should be directed to your TA initially
- If you need to email me include math3b-w17 in the subject

Textbook

S. J. Schreiber, Calculus for the Life Sciences, Wiley

Problem sets, homework, and quizzes

Problem sets

Assigned every week. Long list of problems. Not graded, but recommended!

Problem sets, homework, and quizzes

Problem sets

Assigned every week. Long list of problems. Not graded, but recommended!

Homework

Due every second week. A small number of questions drawn from the problem sets. There will be 4.

Problem sets, homework, and quizzes

Problem sets

Assigned every week. Long list of problems. Not graded, but recommended!

Homework

Due every second week. A small number of questions drawn from the problem sets. There will be 4.

Quizzes

Administered every other week in discussion session. There will be 6.

 Homework will be collected at the start of the lecture on the dues date.

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.
- You may collaborate in small groups if:

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.
- You may collaborate in small groups if:
- you aknowledge your collaborators,

- Homework will be collected at the start of the lecture on the dues date.
- Late homework will not be accepted.
- You may collaborate in small groups if:
- you aknowledge your collaborators,
- write up your own solutions, in your own words.

There will be two midterms and a final exam

• Midterm 1 8-8:50am Monday, 30 January, 2017

There will be two midterms and a final exam

- Midterm 1 8-8:50am Monday, 30 January, 2017
- Midterm 2 8-8:50am Monday, 27 February, 2017

There will be two midterms and a final exam

- Midterm 1 8-8:50am Monday, 30 January, 2017
- Midterm 2 8-8:50am Monday, 27 February, 2017
- Final 8-11am Monday, 20 March, 2017

There will be two midterms and a final exam

- Midterm 1 8-8:50am Monday, 30 January, 2017
- Midterm 2 8-8:50am Monday, 27 February, 2017
- Final 8-11am Monday, 20 March, 2017

Cheatsheets and calculators

You will be allowed a small cheatsheet in each exam. Must be self-written and one side, half a letter size piece of paper. You are also allowed to use non-programmable, non-graphing calculators.

Grading

Your final grade will be calculated using the maximum of the following two grading schemes.

Schedule

See website

Where to get help

Piazza

Here you can ask questions and answer others' questions. Lets take a look. . .

Where to get help

Piazza

Here you can ask questions and answer others' questions. Lets take a look. . .

Office hours

Use them wisely! Prepare and seek information first. If you learn something, post it to Piazza!

Where to get help

Piazza

Here you can ask questions and answer others' questions. Lets take a look. . .

Office hours

Use them wisely! Prepare and seek information first. If you learn something, post it to Piazza!

Student Math Center (SMC)

Location: MS 3974, times: M-R 9am-3pm.

The SMC offers free, individual and group tutoring for all lower division math courses. This service is available on a walk-in basis; no appointment is necessary. Students may ask any of the TAs in attendance for assistance with math problems.

A nonexhaustive list:

• Definitions and properties of basic functions.

- Definitions and properties of basic functions.
- How to calculate limits.

- Definitions and properties of basic functions.
- How to calculate limits.
- You should have a good feel for what the derivative means.
 I.e. derivative at a point = tangent slope.

- Definitions and properties of basic functions.
- How to calculate limits.
- You should have a good feel for what the derivative means.
 I.e. derivative at a point = tangent slope.
- You need to understand differentiation algebraically as well as geometrically.

- Definitions and properties of basic functions.
- How to calculate limits.
- You should have a good feel for what the derivative means.
 I.e. derivative at a point = tangent slope.
- You need to understand differentiation algebraically as well as geometrically.
- You should also know the definition of the derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right)=nx^{n-1}$$

exponentials

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(e^{x}\right)=e^{x}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

• polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right)=nx^{n-1}$$

exponentials

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{x})=\mathrm{e}^{x}$$

logarithms

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$$

You should be able to differentiate many of the standard functions we will see in this course. This includes:

• polynomials/power functions

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right)=nx^{n-1}$$

exponentials

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x}$$

logarithms

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$$

trig functions

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

Example

Let's differentiate the function $f(x) = e^x \sin x$.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x}e^{x}\right)\sin x + e^{x}\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin x\right)$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

Example

Let's differentiate the function $f(x) = e^x \sin x$.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x}e^{x}\right)\sin x + e^{x}\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin x\right)$$
$$= e^{x}\sin x + e^{x}\cos x$$

The product rule lets us differential functions of the form f(x) = g(x)h(x). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=g'(x)h(x)+g(x)h'(x)$$

Example

Let's differentiate the function $f(x) = e^x \sin x$.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x}e^x\right)\sin x + e^x\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin x\right)$$
$$= e^x\sin x + e^x\cos x$$
$$= e^x(\sin x + \cos x)$$

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=h'(x)g'(h(x))$$

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

$$h'(x) = e^x$$
 and $g'(x) = \cos x$

The chain rule is very important! It allows us to differentiate functions of the form f(x) = g(h(x)). It says

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = h'(x)g'(h(x))$$

Example

Let's differentiate $f(x) = \sin(e^x)$. In this example

$$h(x) = e^x$$
 and $g(x) = \sin x$

so

$$h'(x) = e^x$$
 and $g'(x) = \cos x$

SO

$$f'(x) = e^x \cos(e^x)$$

The quotient rule is stupid

The quotient rule says

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{g(x)}{h(x)}\right) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}$$

The quotient rule is stupid

The quotient rule says

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{g(x)}{h(x)}\right) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}$$

This is annoying to remember (where does that minus sign go again?). Luckily we can notice

$$\frac{g(x)}{h(x)} = g(x)k(x) \quad \text{where} \quad k(x) = (h(x))^{-1}$$

So we can just use the product rule!

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

$$h'(x) = -x^{-2}$$
 and $g'(x) = \cos x$

Question

Differentiate

$$f(x) = \sin\frac{1}{x}$$

Solution

We should use the chain rule. Notice f(x) = g(h(x)) where

$$h(x) = x^{-1}$$
 and $g(x) = \sin x$

so

$$h'(x) = -x^{-2}$$
 and $g'(x) = \cos x$

$$f'(x) = h'(x)g'(h(x))$$

= $-\frac{1}{x^2}\cos(x^{-1})$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1}$$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$

Question

Differentiate

$$f(x) = \frac{x-1}{x+1} = (x-1)(x+1)^{-1}$$

Solution

We should use the product/quotient rule. Notice f(x) = g(x)h(x) where

$$h(x) = (x+1)^{-1}$$
 and $g(x) = x-1$
 $h'(x) = -(x+1)^{-2}$ and $g'(x) = 1$

SO

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$
$$= \frac{1}{x+1} - \frac{x-1}{(x+1)^2} = \frac{2}{(x+1)^2}$$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

$$f'(x) = g'(x)f'(g(x))$$

Question

Differentiate

$$F(x) = \frac{\sin x^2 - 1}{\sin x^2 + 1}$$

Solution

We should notice that F(x) = f(g(x)) so we can use the chain rule!

$$f(x) = \frac{x-1}{x+1}$$
 and $g(x) = \sin x^2$
 $f'(x) = \frac{2}{(x+1)^2}$ and $g'(x) = 2x \cos x^2$

$$f'(x) = g'(x)f'(g(x))$$

= $2x \cos x^2 \frac{2}{(\sin x^2 + 1)^2}$