Configuration Synthesis for Programmable Analog Devices with Arco

Sara Achour MIT CSAIL

Rahul Sarpeshkar Dartmouth, MIT RLE

Martin C. Rinard MIT CSAIL

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S$$

$$-k_r \cdot ES$$

$$ES(0) = 0.423$$

Arco Compiler

Dynamical Systems

Dynamical Systems

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

$$ES(0) = 0.423$$

Dynamical Systems

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

$$ES(0) = 0.423$$

• state variables that model physical quantities (E, S, ES)

Dynamical Systems

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

$$ES(0) = 0.423$$

- state variables that model physical quantities (E, S, ES)
- differential equations that specify continuous dynamics of state variables over time

Modeling the Physical World

Dynamical Systems Model Biological Processes

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

$$ES(0) = 0.423$$

Goal: Simulate Dynamical System

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

$$ES(0) = 0.423$$

- Compute dynamics of state variables over time
- Show trajectory as function of time

Analog Computing circa 1950

direct mapping

- variables → properties of wires
- properties: voltage, current
- dynamics → circuit dynamics

straightforward simulation:

- power up circuit
- measure circuit properties over time
- 1970-2010: Age of Digital Computers
 - Analog computers out of fashion

Telefunken RAT 700

Analog Computers Are Back: Programmable Analog Devices

- modernized hardware
 - solid state devices
 - modern semiconductor technology
- new capabilities
 - powerful, heavily optimized analog components
 - digital reprogrammability
 - exploit analog noise

S. S. Woo, J. Kim, and R. Sarpeshkar. A cytomorphic chip for quantitative modeling of fundamental bio-molecular circuits. IEEE Trans. Biomed. Circuits and Systems, 9(4):527–542, 2015.

Analog Computers Are Back: Programmable Analog Devices

good abstraction for differential equations

- continuous (no discretization)
- direct mapping of dynamics
- circuit noise maps to reaction stochastics

benefits:

- energy efficient
- fast

S. S. Woo, J. Kim, and R. Sarpeshkar. A cytomorphic chip for quantitative modeling of fundamental bio-molecular circuits. IEEE Trans. Biomed. Circuits and Systems, 9(4):527–542, 2015.

What Does It Take To Manually Program These Devices?

- · domain expertise, hardware expertise, AND ability to manage details
 - understand system you want to simulate
 - Map parts of differential equations onto analog components
 - Choose constants to specialize components for specific computation
 - Connect analog components to implement system
 - Produce a binary file to implement configuration
- Net Result:
 - 4 to 8 hours for a single system of 4 differential equations

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S$$

 $-k_r \cdot ES$

$$ES(0) = 0.423$$

Dynamical Systems

Dynamical Systems

input components (DAC) in in W iadd z out x ◀ C0 **A**0 B0 kf kr rxn z out x ◀ В

output components (ADC)

analog computation components

voltage analog inputs

current analog inputs

voltage analog outputs

$$A_V = A0_V - C_V$$

$$B_V = B0_V - C_V$$

$$C_V(0) = C0_V$$

$$\partial C_V/\partial t = kf_I \cdot A_V \cdot B_V - kr_I \cdot C_V$$

Hardware Component Abstraction

$$A_V = A0_V - C_V$$

$$B_V = B0_V - C_V$$

$$C_V(0) = C0_V$$

$$\partial C_V/\partial t = kf_I \cdot A_V \cdot B_V - (kr_I) C_V$$

Hardware Component Abstraction

$$A_V = A0_V - C_V$$

$$B_V = B0_V - C_V$$

$$C_V(0) = C0_V$$

$$\partial C_V/\partial t = kf_I \cdot A_V \cdot B_V - kr_I \cdot C_V$$

Hardware Component Abstraction

$$A_V = A0_V - C_V$$

$$B_V = B0_V - C_V$$

$$C_V(0) = C0_V$$

$$\partial C_V/\partial t = kf_I \cdot A_V \cdot B_V - kr_I \cdot C_V$$

map dynamical system specification to analog device

Arco Compiler

- 1. Equation Selection
- 2. Hardware Selection
- 3. Unification
- 4. Relation Entanglement
- 5. Input & Output Components

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

$$ES(0) = 0.423$$

$$E = E_{tot} - ES$$

$$S = S_{tot} - ES$$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

$$ES(0) = 0.423$$

Arco Compiler

- 1. Equation Selection
- 2. Hardware Selection
- 3. Unification
- 4. Relation Entanglement
- 5. Input & Output Components

$$S = S_{tot} - ES$$

$$S = S_{tot} - ES$$

$$A_V = A0_V - C_V$$

$$B_V = B0_V - C_V$$

$$\partial C_V / \partial t = kf_I \cdot A_V \cdot B_C - kr_I \cdot C_V$$

$$C_V(0) = C0_V$$

$$A_V = A0_V - C_V$$

$$B_V = B0_V - C_V$$

$$\partial C_V / \partial t = kf_I \cdot A_V \cdot B_C - kr_I \cdot C_V$$

$$C_V(0) = C0_V$$

$$S = S_{tot} - ES \longmapsto A_V = A0_V - C_V$$

$$B_V = B0_V - C_V$$

$$\partial C_V / \partial t = kf_I \cdot A_V \cdot B_C - kr_I \cdot C_V$$

$$C_V(0) = C0_V$$

Arco Compiler

Arco Compiler

- 1. Equation Selection
- 2. Hardware Selection
- 3. Unification
- 4. Relation Entanglement
- 5. Input & Output Components

$$S = S_{tot} - ES \qquad A_V = A0_V - C_V$$

<u>Unification</u>: Maps variables, expressions onto hardware variables s.t. the relations are algebraically equivalent

$$S_{tot} - ES = A0_V - C_V$$

$$S_{tot} - ES = A0_V - C_V$$

 C_V and ES are entangled

Arco Compiler

- 1. Equation Selection
- 2. Hardware Selection
- 3. Unification
- 4. Relation Entanglement
- 5. Input & Output Components

Problem: C_V and ES are entangled

$$\partial C_V/\partial t = kf_I \cdot S \cdot B_V - kr_I \cdot ES$$

 $C_V(0) = C0_V$

Problem: C_V and ES are entangled

$$\partial C_V/\partial t = kf_I \cdot S \cdot B_V - kr_I \cdot ES$$

 $C_V(0) = C0_V$

$$\partial ES/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$$

 $ES(0) = 0.423$

Problem: C_V and ES are entangled

$$\partial C_V/\partial t = kf_I \cdot S \cdot B_V - kr_I \cdot ES$$
 \\
 $\partial C_V/\partial t = (Q + k_0) \cdot E \cdot S - k_r \cdot ES$

$$C_V(0) = C0_V \bigwedge$$
$$C_V(0) = 0.423$$

Solution: **detangle** C_V and ES through Unification

$$(Q + k_0) \cdot E \cdot S - k_r \cdot ES \mapsto kf_I \cdot S \cdot B_V - kr_I \cdot ES$$

$$0.423 \mapsto C0_V$$

$$(Q + k_0) \cdot E \cdot S - k_r \cdot ES \mapsto kf_I \cdot S \cdot B_V - kr_I \cdot ES$$

$$0.423 \mapsto C0_V$$

 B_{V} and E are entangled

$$O.423$$
 S_{tot}

$$Q + k_0$$
 kf rxn kr k_r

$$ES$$
 S E

$$E_{tot} - ES \mapsto B0_V - ES$$

specialized to model ES, S, E

Arco Compiler

- 1. Equation Selection
- 2. Hardware Selection
- 3. Unification
- 4. Relation Entanglement
- 5. Input & Output Components

Input Components (DACs): convert sequence of digital values to voltage or current

Input Components (DACs): convert sequence of digital values to voltage or current

Input Components (DACs): convert sequence of digital values to voltage or current

Output Components (ADCs): convert voltage or current to a measurable sequence of digital values

Search over tableaus

tableau: hardware state, remaining goals

goal: unmapped expression or relation

Start with an initial tableau

Apply transitions over the tableaus

Until a solved tableau is found

- 1. Initial Tableau
- 2. Solved Tableau
- 3. Tableau Transitions
- 4. Search Algorithm
- 5. Search Optimizations

1. Initial Tableau

Goals

1. Initial Tableau

Available Hardware Available Wires

1. Initial Tableau

Constrained Hardware

Configuration

$$W$$
 R $\langle B,U
angle \quad S=2\cdot T$ $\langle C,U
angle \quad \langle Z,A
angle$

- 1. Initial Tableau
- 2. Solved Tableau
- 3. Tableau Transitions
- 4. Search Algorithm
- 5. Search Optimizations

2. Solved Tableau

No Goals Left

2. Solved Tableau

Solution Configuration

$$\left\langle \begin{array}{cccc} \overline{R} & \dot{R} & W & \hat{R} & Z \\ F_I = \frac{E_I}{4} & C_I = \frac{T}{2} & \langle C, U \rangle & & T \mapsto X_D \\ Z_I = T & & S \mapsto W_D \\ U_I = S & & Z \bullet \bullet A \\ B_I = S & & U \bullet \bullet B \\ B_I = 2 \cdot T & & & \end{array} \right.$$

- 1. Initial Tableau
- 2. Solved Tableau
- 3. Tableau Transitions
- 4. Search Algorithm
- 5. Search Optimizations

Tableau Transitions

- 1. Unify
- 2. Connect
- 3. Variable Map

$$\frac{\mathbf{r} \in \overline{\mathbf{R}} \cup \dot{\mathbf{R}} \qquad \widetilde{\mathbf{r}} \in \widetilde{\mathbf{R}} \qquad \text{unify}(\mathbf{r}, \widetilde{\mathbf{r}}, \overline{\mathbf{R}}, \dot{\mathbf{R}}, \widetilde{\mathbf{R}}) = \langle \overline{\mathbf{R}}', \dot{\mathbf{R}}', \overline{\mathbf{R}}' \rangle}{\langle \overline{\mathbf{R}}, \dot{\mathbf{R}}, \mathbf{W}, \widetilde{\mathbf{R}}, \mathbf{Z} \rangle \rightarrow \langle \overline{\mathbf{R}}', \dot{\mathbf{R}}', \mathbf{W}, \widetilde{\mathbf{R}}', \mathbf{Z} \rangle}$$

$$\overline{R} \qquad \dot{R} \qquad \dot{R} \qquad \dot{R} \qquad \dot{R} \qquad Z$$

$$W_D = U_I$$

$$Z_I = X_D$$

$$B_I = 2 \cdot A_I$$

$$C_I = \frac{A_I}{2}$$

$$F_I = \frac{E_I}{4}$$

$$\langle B, U \rangle$$

$$\langle B, U \rangle$$
 $S = 2 \cdot T$

$$\langle C, U \rangle$$

$$\langle Z, A \rangle$$

$$\frac{\text{UNIFY}}{r \in \overline{R} \cup \dot{R}} \underbrace{\widetilde{r} \in \widetilde{R}} \quad \text{unify}(r, \widetilde{r}, \overline{R}, \dot{R}, \widetilde{R}) = \langle \overline{R}', \dot{R}', \widetilde{R}' \rangle}_{\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle \rightarrow \langle \overline{R}', \dot{R}', W, \widetilde{R}', Z \rangle}$$

UNIFY
$$r \in \overline{R} \cup \dot{R} \qquad \widetilde{r} \in \widetilde{R} \qquad \text{unify} (r, \widetilde{r}, \overline{R}, \dot{R}, \widetilde{R}) = \langle \overline{R}', \dot{R}', \widetilde{R}' \rangle$$

$$\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle \rightarrow \langle \overline{R}', \dot{R}', W, \widetilde{R}', Z \rangle$$

 $C_I = \frac{A_I}{2}$

 $F_I = \frac{E_I}{4}$

$$\widetilde{r}: S = 2 \cdot T \quad \longmapsto \quad r: B_I = 2 \cdot A_I$$

UNIFY

$$r \in \overline{R} \cup \dot{R}$$

$$\widetilde{\mathbf{r}} \in \mathbf{R}$$

$$r \in \overline{R} \cup \dot{R}$$
 $\widetilde{r} \in \widetilde{R}$ $unify(r, \widetilde{r}, \overline{R}, \dot{R}, \widetilde{R}) = \langle \overline{R}', \dot{R}', \widetilde{R}' \rangle$

$$\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle \rightarrow \langle \overline{R}', \dot{R}', W, \widetilde{R}', Z \rangle$$

$$egin{aligned} \overline{R}' \ \overline{R}' \ W_D = U_I \ Z_I = X_D \end{aligned}$$

$$\dot{R}'$$
 $B_I = S$
 $B_I = 2 \cdot T$
 $C_I = \frac{T}{2}$

$$S = 2 \cdot T \longmapsto B_I = 2 \cdot A_I$$

$$\langle R' \ R \ W_D = U_I \ Z_I = X_D \ F_I = rac{E_I}{4}$$

$$\dot{R}'$$
 $B_I = S$
 $B_I = 2 \cdot T$
 $C_I = \frac{T}{2}$

$$S = 2 \cdot T \longmapsto B_I = 2 \cdot A_I$$

$$\langle R' \atop W_D = U_I \atop Z_I = X_D \atop F_I = \frac{E_I}{4}$$

$$\dot{R}'$$
 $B_I = S$
 $B_I = 2 \cdot T$
 $C_I = \frac{T}{T}$

$$S = 2 \cdot T \longmapsto B_I = 2 \cdot A_I$$

$$\langle R' \atop W_D = U_I \atop Z_I = X_D \atop F_I = \frac{E_I}{4}$$

$$\dot{R}'$$
 $B_I = S$
 $B_I = 2 \cdot T$
 $C_I = \frac{T}{2}$

$$S = 2 \cdot T \longmapsto B_I = 2 \cdot A_I$$

$$egin{aligned} \overline{R} \ \overline{R} \ W_D &= U_I \ Z_I &= X_D \ F_I &= rac{E_I}{4} \ B_I &= 2 \cdot A_I \end{aligned}$$

$$\dot{R}'$$
 $B_I = S$
 $B_I = 2 \cdot T$
 $C_I = \frac{T}{2}$

$$S = 2 \cdot T \longmapsto B_I = 2 \cdot A_I$$

$$egin{aligned} \overline{R}' \ \overline{R}' \ W_D = U_I \ Z_I = X_D \end{aligned}$$
 $F_I = rac{E_I}{4} \ B_I = 2 \cdot A_I$

$$\dot{R}'$$
 $B_I = S$
 $B_I = 2 \cdot T$
 $C_I = \frac{T}{2}$

$$S = 2 \cdot T \longrightarrow B_{I} = 2 \cdot A_{I}$$

$$B_{I} = 2 \cdot A_{I} \longrightarrow B_{I} = S$$

$$B_{I} = 2 \cdot T$$

$$A$$

$$B_{I} = S$$

$$C_{I} = \frac{E_{I}}{4}$$

$$C_{I} = \frac{T}{2}$$

$$S = 2 \cdot T \longmapsto B_I = 2 \cdot A_I$$

$$egin{aligned} \overline{R}' \ \overline{R}' \ W_D = U_I \ Z_I = X_D \end{aligned}$$
 $F_I = rac{E_I}{4}$
 $C_I = rac{A_I}{2}$

$$R'$$
 $B_I = S$
 $B_I = 2 \cdot T$
 $C_I = \frac{T}{2}$

$$S = 2 \cdot T \mapsto B_{I} = 2 \cdot A_{I}$$

$$C_{I} = \frac{A_{I}}{2} \longrightarrow C_{I} = \frac{T}{2}$$

$$\begin{cases} \overrightarrow{R}' & \overrightarrow{R}' \\ W_{D} = U_{I} \\ Z_{I} = X_{D} \end{cases}$$

$$F_{I} = \frac{E_{I}}{4} \longrightarrow C_{I} = \frac{T}{2}$$

$$C_{I} = \frac{T}{2}$$

$$C_{I} = \frac{T}{2}$$

$$A_{I} = T$$

$$S \mapsto B_{I}$$

$$\frac{\text{UNIFY}}{r \in \overline{R} \cup \dot{R}} \underbrace{\widetilde{r} \in \widetilde{R}}_{\text{Vector}} \text{unify}(r, \widetilde{r}, \overline{R}, \dot{R}, \widetilde{R}) = \langle \overline{R}', \dot{R}', \widetilde{R}' \rangle}_{\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle \rightarrow \langle \overline{R}', \dot{R}', W, \widetilde{R}', Z \rangle}$$

Tableau Transitions

- 1. Unify
- 2. Connect
- 3. Variable Map

$$\begin{split} & \widetilde{r}: \overline{i}_q = \overline{o}_q \in \widetilde{R} & w: \langle \overline{o}, \overline{i} \rangle \in W \\ & \overline{\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle} \to \langle \overline{R}, \dot{R}, W - \{w\}, \widetilde{R} - \{\overline{r}\}, Z \cup \{\overline{o} - \overline{i}\} \rangle \end{split}$$

$$\begin{split} &\widetilde{r}:\overline{i}_{q}=\overline{o}_{q}\in\widetilde{R} & w:\langle\overline{o},\overline{i}\rangle\in W \\ &\overline{\langle\overline{R},\dot{R},W,\widetilde{R},Z\rangle} \to \overline{\langle\overline{R},\dot{R},W-\{w\},\widetilde{R}-\{\widetilde{r}\},Z\cup\{\overline{o}\bullet\bullet\overline{i}\}\rangle} \end{split}$$

Tableau Transitions

- 1. Unify
- 2. Connect
- 3. Variable Map

INPUT-VAR-MAP
$$\widetilde{r} : \overline{\mathbf{i}}_{d} = \widehat{i} \in \widetilde{R} \qquad \widehat{i} \in \widehat{I} \qquad \overline{\mathbf{i}} @ \overline{\mathbf{c}} \qquad \overline{\mathbf{c}} \in \overline{\mathbf{IC}}$$

$$\overline{\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle} \to \langle \overline{R}, \dot{R}, W, \widetilde{R} - \{ \overline{r} \}, Z \cup \{ \widehat{i} \mapsto \overline{\mathbf{i}}_{d} \} \rangle$$

$$\left\langle \begin{array}{cccc} \overline{R} & \dot{R} & W & \widetilde{R} & Z \end{array} \right\rangle$$
 $W_D = U_I & C_I = \frac{T}{2} & \langle B, U \rangle & S \mapsto B_I & Z \bullet \bullet A$
 $F_I = \frac{E_I}{4} & B_I = S & \langle C, U \rangle & X_D = T$
 $B_I = 2 \cdot T$
 $Z_I = T$

INPUT-VAR-MAP
$$\widetilde{r} : \overline{i}_{d} = \widehat{i} \in \widetilde{R} \qquad \widehat{i} \in \widehat{I} \qquad \overline{i} @ \overline{c} \qquad \overline{c} \in \overline{IC}$$

$$\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle \rightarrow \langle \overline{R}, \dot{R}, W, \widetilde{R} - \{ \overline{r} \}, Z \cup \{ \widehat{i} \mapsto \overline{i}_{d} \} \rangle$$

$$\left\langle \begin{array}{cccc} \overline{R} & \dot{R} & W & \hat{R} \\ W_D = U_I & C_I = \frac{T}{2} & \langle B, U \rangle & S \mapsto B_I & Z \bullet \bullet A \\ F_I = \frac{E_I}{4} & B_I = S & \langle C, U \rangle & X_D = T \\ & B_I = 2 \cdot T & & & & & \\ & Z_I = T & & & & & \end{array} \right.$$

INPUT-VAR-MAP
$$\widetilde{r}: \overline{i}_{d} = \widehat{i} \in \widetilde{R} \qquad \widehat{i} \in \widehat{I} \qquad \overline{i} @ \overline{c} \qquad \overline{c} \in \overline{IC}$$

$$\overline{\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle} \rightarrow \overline{\langle \overline{R}, \dot{R}, W, \widetilde{R} - \{ \overline{r} \}, Z \cup \{ \widehat{i} \mapsto \overline{i}_{d} \} \rangle}$$

$$\left\langle \begin{array}{cccc} \overline{R} & \dot{R} & W & \tilde{R} & Z \\ W_D = U_I & C_I = \frac{T}{2} & \langle B, U \rangle & S \mapsto B_I & Z \bullet A \\ F_I = \frac{E_I}{4} & B_I = S & \langle C, U \rangle & X_D = T & T \mapsto X_D \end{array} \right\}$$

 $Z_I = T$

- 1. Initial Tableau
- 2. Solved Tableau
- 3. Tableau Transitions
- 4. Search Algorithm
- 5. Search Optimizations

- Frontier (F): Tableau configurations to explore
- choose: chooses the tableau t in F to explore.
- select: chooses the set of transitions to apply to t

Algorithm:

```
F = initial tableau
while F, choose t in F:
  if t is terminal return Z
  otherwise:
```

select **T**: set of t' where **t**→t' remove **t** from **F**, add **T** to **F**

- 1. Initial Tableau
- 2. Solved Tableau
- 3. Tableau Transitions
- 4. Search Algorithm
- 5. Search Optimizations

Search Optimizations

Search Heuristics

- choose lowest complexity tableau configuration.
- select a simple goal, and prioritize transitions that solve it.

Algorithm:

```
F = initial tableau
while F, <u>choose</u> t in F:
if t is terminal return Z
otherwise:

<u>select</u> T: set of t' where t→t'
remove t from F, add T to F
```

Search Optimizations

- Component Aggregation: aggregate instances of the same component
 - Pro: smaller search space
 - Con: instance constraints must be handled separately
- Partial Configuration Caching
- Compact Search Tree Data Structure

Evaluation

Methodology

- 1. Implemented Arco Compiler
- 2. Specified Analog Hardware
- 3. Selected Benchmarks
- 4. Synthesized Hardware Configurations
- 5. Analyzed Configurations

Analog Hardware Components

selection of analog components from collaborators, textbooks and publications

Component	Quantity	Description Relation	
iin	25	current input	$Z_{\rm I} = X_{\rm D}$
vin	125	voltage input	$Z_{V} = X_{D}$
outi	10	current output	$Z_D = X_I$
vout	75	voltage output	$Z_D = X_V$
vgain	40	voltage gain	$O_{V} = (X_{V} \cdot Z_{V})/(Y_{V} \cdot 25)$
iadd	30	current adder	$O_{I} = A_{I} + B_{I} + C_{I} + D_{I}$
vadd	35	voltage adder	$\partial O2_V/\partial t = 0.1(A_V + B_V - C_V - D_V \cdot O2_V)$
			$O1_V = 0.1(A_V + B_V - C_V - D_V)$
vtoi	30	voltage to current converter	$O_{I} = X_{V}/K_{V}$
itov	30	current to voltage converter	$O_I = K_V \cdot X_I$
ihill	8	hill function for activation/repression	$S_{I} = M_{V}(S_{I}/K_{I})^{n_{V}}/((S_{I}/K_{I})^{n_{V}} + 1)$
			$R_{\rm I} = M_{\rm V}/((S_{\rm I}/K_{\rm I})^{\rm n_{\rm V}} + 1)$
igenebind	8	gene binding	$O_{I} = M_{I}/(1 + K_{I} \cdot T_{I})$
switch	15	genetic switch	$O_{\rm I} = M_{\rm I}/(S_{\rm I}/K_{\rm I}+1)^{\rm n_{\rm V}}$
mm	2	Michaelis-Menten dynamics	$X_V = Xt_V - XY_V$
			$Y_{V} = Yt_{V} - XY_{V}$
			$\partial XY_{V}/\partial t = K_{I} \cdot X_{V} \cdot Y_{V} - R_{I} \cdot XY_{V}$

G. Cowan, R. Melville, and Y. Tsividis. A VLSI analog computer/digital computer accelerator. *Solid-State Circuits*, *IEEE Journal of*, 41(1):42–53, Jan 2006. ISSN 0018-9200. doi: 10.1109/JSSC.

R. Daniel, S. S. Woo, L. Turicchia, and R. Sarpeshkar. Analog transistor models of bacterial genetic circuits. In *Biomedical Circuits and Systems Conference (BioCAS)*, 2011 IEEE, IEEE, 2011.

R. Sarpeshkar. Ultra Low Power Bioelectronics: Funda- mentals, Biomedical Applications, and Bio-Inspired Systems. Cambridge University Press, 2010. ISBN 0521857279.

J. J. Y. Teo, S. S. Woo, and R. Sarpeshkar. Synthetic biology: A unifying view and review using analog circuits. *IEEE Trans. Biomed. Circuits and Systems*, 9(4):453–474, 2015.

S. S. Woo, J. Kim, and R. Sarpeshkar. A cytomorphic chip for quantitative modeling of fundamental bio-molecular circuits. *IEEE Trans. Biomed. Circuits and Systems*, 9(4):527–542, 2015.

Dynamical Systems Benchmarks

selection of published artifacts from well-cited computational biology papers from Biomodels database

Benchmark	Parameters	Functions	Differential Equations
menten	3	0	4
gentoggle	9	3	2
repr	7	3	6
osc	16	16	9
apop	87	48	27

- <u>menten</u>: Michaelis-Menten equation reaction. D. R. F. PhD. Biochemistry (Lippincott Illustrated Reviews Series). LWW, 2013. ISBN 1451175620.
- **gentoggle**: genetic toggle switch in E.col. T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle switch in escherichia coli. *Nature*, 403(6767): 339–342, 2000.
- **repri**: synthetic oscillatory network of transcriptional regulators. M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. *Nature*, 403(6767):335–338, 2000.
- **osc**: circadian oscillation utilizing activator / repressor. J. M. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-resistance in genetic oscillators. *Proceedings of the National Academy of Sciences*, 99(9):5988–5992, 2002
- **apop**: protein stress response. K. Erguler, M. Pieri, and C. Deltas. A mathematical model of the unfolded protein stress response reveals the decision mechanism for recovery, adaptation and apoptosis. *BMC systems biology*, 7(1):16, 2013.

Connections

Component Types

Components

Arco Runtime

$PERK^{-4}$ term in apop

$$PERK^{-4}$$

$$\frac{1}{(\frac{PERK+0-1-0}{1}+1)^4}$$

Related Work

Analog Neural Network Accelerators for Approximate Computations

- 1. Esmaeilzadeh, Sampson, Ceze, Burger. Neural acceleration for generalpurpose approximate computations. MICRO 2012
- 2. Amant, Yazdanbakhsh, Park, Thwaites, Esmaeilzadeh, Hassibi, Ceze, Burger. General-purpose code acceleration with limited-precision analog computation. ISCA 2014

Arco

approximate acceleration of digital subcomputations

exact mapping of dynamical systems

training phase

no training

analog computation for neural networks

analog computation for dynamical systems

Related Work

<u>Discrete Models</u>: Formalisms for modeling digital computing systems, repurposed to model biological systems

- 1. Fisher, Henzinger. Executable Cell Biology. Nature Biotechnology, 2007
- 2. Fisher, Harel, Henzinger. Biology as Reactivity. CACM 2011

Arco

causality of events, no modeling of time

continuous time analog models based on differential equations

general-purpose digital hardware

energy efficient analog hardware

Conclusion

- same model of computation for the last half century
- programmable analog devices: new and powerful model of computation
 - powerful, energy efficient primitives
 - compelling initial application (biology)
- programming language techniques are a key enabling technology
 - we have presented first compiler for this platform
 - deep research area; decades of new and compelling results