Regular points

Given a function $\mathbf{h} \colon \mathbb{R}^n \to \mathbb{R}^m$, and an assocated level set

$$\mathcal{H} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{h}(\mathbf{x}) = \mathbf{c} \},$$

a point $\mathbf{x} \in \mathcal{H}$ is regular if the set

$$\{\nabla h_1(\mathbf{p}), \nabla h_2(\mathbf{p}), \dots, \nabla h_n(\mathbf{p})\}\$$

is linearly independent.

- 1. For each of the functions $h_i : \mathbb{R}^2 \to \mathbb{R}$ below, sketch the level set that contains the point $\begin{pmatrix} 1 & 1 \end{pmatrix}^T$, and decide whether $\begin{pmatrix} 1 & 1 \end{pmatrix}^T$ is a regular point.
 - (a) $h_1(x_1, x_2) = x_1 x_2$
 - (b) $h_2(x_1, x_2) = x_1^2 x_2^2$
 - (c) $h_3(x_1, x_2) = (x_1 x_2)^2$

The method of Lagrange

Given $f: \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^k$, the Lagrangian of f and \mathbf{h} is the function \mathcal{L} defined by

$$\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^T h(\mathbf{x}).$$

Lagrange's multiplier theorem then states that if \mathbf{x}^* is a minimiser of $f(\mathbf{x})$ subject to $\mathbf{h}(\mathbf{x}) = \mathbf{0}^T$ and \mathbf{x}^* is a regular point of \mathbf{h} , then there exists $\boldsymbol{\lambda}$ such that $D\mathcal{L}(\mathbf{x}^*;\boldsymbol{\lambda}) = \mathbf{0}^T$, where the derivatives are with respect to \mathbf{x} and $\boldsymbol{\lambda}$; i.e.,

$$D\mathcal{L}(\mathbf{x};\lambda) = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial x_1} & \cdots & \frac{\partial \mathcal{L}}{\partial x_n} & \frac{\partial \mathcal{L}}{\partial \lambda_1} & \cdots & \frac{\partial \mathcal{L}}{\partial \lambda_k} \end{pmatrix}$$

Thus, to find candidates for local minimisers, state the Lagrangian of f and \mathbf{h} and then solve $D\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda}) = \mathbf{0}^T$ for \mathbf{x} and $\boldsymbol{\lambda}$. The SOSC can then be used to deduce the status of those points:

- If $D\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda}) = \mathbf{0}^T$ and $D^2\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda})$ is positive definite on $T\mathcal{H}(\mathbf{x}^*)$, then \mathbf{x}^* is a strict local minimiser.
- If $D\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda}) = \mathbf{0}^T$ and $D^2\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda})$ is negative definite on $T\mathcal{H}(\mathbf{x}^*)$, then \mathbf{x}^* is a strict local maximiser.

For this condition, the derivatives are with respect to **x** only; i.e.,

$$D^{2}\mathcal{L}(\mathbf{x}) = \begin{pmatrix} \frac{\partial^{2}\mathcal{L}}{\partial x_{1}^{2}} & \cdots & \frac{\partial \mathcal{L}}{\partial x_{n}\partial x_{1}} \\ \vdots & & \vdots \\ \frac{\partial^{2}\mathcal{L}}{\partial x_{1}x_{n}} & \cdots & \frac{\partial \mathcal{L}}{\partial x_{n}^{2}} \end{pmatrix} (\mathbf{x})$$

2. Consider the nonlinear optimisation problem

minimise
$$f(\mathbf{x}) = x_1^2 + 2x_1x_2 + 3x_2^2 + 4x_1 + 5x_2 + 6x_3$$

subject to $h_1(\mathbf{x}) = x_1 + 2x_2 = 3$,
 $h_2(\mathbf{x}) = 4x_1 + 5x_3 = 6$.

Let $\mathbf{h}(\mathbf{x}) = (h_1(\mathbf{x}) - 3 \quad h_2(\mathbf{x}) - 6)^T$ and let \mathcal{H} denote the feasible set.

- (a) Write down $\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda})$, the Lagrangian of f and \mathbf{h} .
- (b) Find the unique point $\mathbf{x} = \mathbf{x}^*$ in the feasible set for which $D\mathcal{L}(\mathbf{x}; \boldsymbol{\lambda}) = \mathbf{0}^T$.
- (c) Show that \mathbf{x}^* is regular.
- (d) Determine the tangent space of \mathcal{H} at \mathbf{x}^* .
- (e) Show that $D^2\mathcal{L}(\mathbf{x};\boldsymbol{\lambda})$ is positive definite on the tangent space $T\mathcal{H}(\mathbf{x}^*)$. What do you conclude?
- 3. Consider the nonlinear optimisation problem

maximise
$$f(\mathbf{x}) = 4x_1 + x_2^2$$

subject to $h(\mathbf{x}) = x_1^2 + x_2^2 = 9$.

Find, and classify, all local extremisers.