LMO3D

XD-LAB-IMG-002

Lab2: 像素处理实验 1: 灰度

化和二值化

Joseph Xu

2018-4-1

修改记录

版本号.	作者	描述	修改日期
1.0	Joseph Xu	初稿	2018-4-1

Lab2: 像素处理实验 1

审核记录

姓名	职务	签字	日期

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	1 of 40
XINGDENG	作者	修改日期	,	·
	Joseph Xu	2018/4/1	/ /2	公廾

目录

修改	收记录	
	·····································	
	实验简介	
	1. 1 概述	
	1.2 实验目标	8
	1.3 实验条件	8
	1.4 实验原理	8
2.	PARTA: 灰度化实验流程	
	2.1 操作步骤	
3.	PARTA: 灰度化实验结果	27
4.	PARTB: 二值化实验流程	28
	4.1 操作步骤	28
5.	PARTB 二值化实验结果	40

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	2 of 40
XINGDENG	作者	修改目期	,	·\ ^
	Joseph Xu	2018/4/1	/2	公廾

图目录

图 1-1	彩色转灰度效果对比图	7
图 1-2	实验连接示意图	9
图 1-3	图像灰度化连接示意图	9
图 1-4	图像二值化连接示意图	9
图 1-5	Graying IP	9
图 1-6	Threshold IP	.10
图 2-1	Vivado 下创建新工程	.12
图 2-2	重命名实验目录	.12
图 2-3	图像处理 IP 库文件存放位置	.13
图 2-4	启动 Vivado	13
图 2-5	打开工程	.14
图 2-6	设置:添加 IP 库	.14
图 2-7	选择图像 IP 库	.15
图 2-8	图像处理 IP 库中的 IP 列表显示	.15
图 2-9	实验初始视图	.16
图 2-10	添加灰度化 IP	.16
图 2-11	断开 DVI2RGB IP 的 RGB 端口	17
图 2-12	断开端口后视图	17
图 2-13	展开 DVI2RGB IP 的 RGB 端口	.18
图 2-14	RGB 端口展开后视图	.18
图 2-15	连接端口	.19
图 2-16	添加 Concat IP	.19
图 2-17	添加 Concat IP 后的视图	.20
图 2-18	Concat IP 设置	.20
图 2-19	连接 Graying IP 后的视图	.21
图 2-20	端口连接检查	.21
图 2-21	保存设计	22
图 2-22	创建实验顶层 Wrapper 文件	22
图 2-23	自动更新顶层文件	22
图 2-24	Generate Bitstream	22
图 2-25	点击 Yes 确认生成 bit 文件	23

	标题	文档编号	版本	页
vinenche	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	3 of 40
XINGDENG	作者	修改目期		, , ,
	Joseph Xu	2018/4/1	/2	公开

图 2-26	打开 Hardware Manager	23
图 2-27	硬件连接对应位置	24
图 2-28	实际硬件连接	24
图 2-29	Open target	25
图 2-30	Program Device	25
图 2-31	烧写目标器件	26
图 2-32	编程进度条	26
图 3-1	灰度化显示结果	27
图 4-1	回到 Vivado 主界面继续添加 IP	28
图 4-2	添加二值化 IP:Threshhold	28
图 4-3	断开 RGB2DVI IP 的 vid_pVDE 端口	29
图 4-4	断开数据流后的 IP 视图	29
图 4-5	Thresh IP 配置	30
图 4-6	Concat IP 设置	30
图 4-7	端口连接检查	31
图 4-8	添加 Constant IP	31
图 4-9	第一个 Constant IP 设置	32
图 4-10	第二个 Constant IP 设置	32
图 4-11	两个 Constant IP 的连接	33
图 4-12	保存设计	33
图 4-13	创建顶层文件	34
图 4-14	自动更新顶层文件	34
图 4-15	Generate Bitstream	34
图 4-16	点击 Yes 确认生成 bit 文件	35
图 4-17	忽略提示信息并点击 OK	35
图 4-18	打开 Hardware Manager	36
图 4-19	硬件连接对应位置	37
图 4-20	实际硬件连接	37
图 4-21	Open target	38
图 4-22	Program Device	38
图 4-23	烧写目标器件	38
图 4-24	编程进度条	39

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	4 of 40
XINGDENG	作者	修改日期		
	Joseph Xu	2018/4/1	/2	公廾

		_
上海星以	T智能科技有限公司	1

图 16-1 二值化显示结果......40

Lab2: 像素处理实验 1

	标题	文档编号	版本	页
vinenche	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	5 of 40
XINGDENG	作者	修改日期	,	
	Joseph Xu	2018/4/1	/	公开

上海星灯	智能科技	も有限公司	51
上/学生ハ			-,,

表目录

表 1-1	Graying IP 端口列表1	0
表 1-2	Threshold IP 端口列表1	0

Lab2: 像素处理实验 1

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	6 of 40
XINGDENG	作者	修改日期		
	Joseph Xu	2018/4/1	/	公开

1. 实验简介

该实验以实验 1 为基础,其中灰度化部分为按照一定的时钟频率将 24 位彩色像素数据转换为 8 位的灰阶数据;二值化部分为设定阈值后,以阈值为界限对每个像素进行比较,从而转换为单一的黑白图像。

- > 对于初学者,整个实验预计耗时1小时。
- > 对于熟练者,整个实验预计耗时 20 分钟。

1.1 概述

在摄影和计算机图像学等领域,灰度图指的是每个像素均用单一采样的明亮度来表示的图像,也就是说,灰度图中只包含亮度(intensity)信息,视觉上呈现不同程度的灰色效果。早期的黑白摄影照片即为灰度图的一种形式。到了彩色照片时期,每个像素采用了红绿蓝三原色(简称 RGB)来表示。但在图像处理上,一般仍然是先将彩色图片先转换成灰度图然后在进行处理,处理完成后,再由灰度图转换回彩色图。这样做的原因是因为一个彩色像素的数据宽度通常为 24 位(RGB888)或 16 位(RGB565),而一个灰度像素的数据宽度为 8 位,从数据处理带宽上来说,灰度图数据计算量能减少到彩色图数据计算量的 1/2 到 1/3。从彩色图像转换到灰度图像的操作称之为灰度化。

在灰度图的基础上,将像素的灰度按某个范围分割为黑(最暗)或白(最亮)的图像称为黑白图。将灰度图转换为黑白图的操作称之为二值化。

图 1-1 彩色转灰度效果对比图

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	7 of 40
	作者	修改目期	,	·\
	Joseph Xu	2018/4/1	2	公廾

1.2 实验目标

本实验的目标为 SWORD4.0 能够正常地在 HDMI 显示器上输出视频画面,其中:

Lab2: 像素处理实验 1

- A. 1280x720@60Hz——灰度视频画面;
- B. 1280x720@60Hz——黑白二值视频画面;

1.3 实验条件

类别	名称	数量	说明
	SWORD4.0	1	
	HDMI 信号源	1	如笔记本 HDMI 输出/台式计算
硬件			机 HDMI 输出/带 HDMI 输出的 视频机顶盒
	带 HDMI 接口的显示器	1	
	HDMI 视频线	2	
软件	Vivado Design Suite	1	版本: 2014.4
7八十	视频接□ IP 库	1	FPGA-Image-Library.zip*

*注:FPGA-Image-Library 为戴天宇开发的一个开源图像处理 IP 库,该 IP 库遵循 LGPL,

详情请见:http://fil.dtysky.moe

1.4 实验原理

该实验的连接方式如下图所示:

	标题	文档编号	版本	页
vinenche	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	8 of 40
XINGDENG	作者	修改目期	,	
	Joseph Xu	2018/4/1	/	公开

HDMI信号源A

说明:本实验中HDMI输入视频的分辨率和输出视频的分辨率相同

图 1-2 实验连接示意图

HDMI输入

实验利用了 2 个 IP 来分别实现灰度化和二值化:Graying, Threshold。其中:灰度化的实验 IP 连接示意图如下图所示:

图 1-3 图像灰度化连接示意图

二值化的实验 IP 连接示意图如下图所示:

图 1-4 图像二值化连接示意图

Graying 这个 IP 的作用是将 24 位宽的 RGB 彩色数据转换为 8bit 的灰度数据。

图 1-5 Graying IP

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	9 of 40
XINGDENG	作者	修改日期	,	·/^
	Joseph Xu	2018/4/1	/ /2	公开

该 IP 的端口信号定义如下表所示:

表 1-1 Graying IP 端口列表

Lab2: 像素处理实验 1

信号名	方向	宽度	含义
clk	输入	1	Clock.
rst_n	输入	1	复位,低有效。
in_enable	输入	1	输入数据使能,在流水线模式下,它是另一个复位信号,在请求响应模式下,只有在它有效的时候 in_data 才会被真正地改变。
in_data	output	color_width - 1:0	输入数据,必须和 in_enable 同步输入。
out_ready	output	1	输出数据有效,在两种模式下,这个信号都会在 out_data 可以被读取的时候有效。
out_data	输入	color_width - 1:0	输出数据,将会和 out_ready 同步输出。

而 Threshold 这个 IP 的作用是将 8 位宽的图像数据按照设定的阈值转换为 0 或 1。

 ${\tt Threshold_v1_0 \ (Pre-Production)}$

图 1-6 Threshold IP

该 IP 的端口信号定义如下表所示:

表 1-2 Threshold IP 端口列表

次 12 Threshold II 利口が入				
信号名	方向	宽度	含义	
clk	输入	1	Clock.	
rst_n	输入	1	复位,低有效。	
th_mode	input	0 为基本全局阈值化 1 为等高线阈值化	操作方法。	
th1	input	color_width - 1:0	阈值 1,用于两种模式。	
th2	input	color_width - 1:0	阈值 2,只能用于等高线阈值化模式。	

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	10 of 40
	作者	修改目期	,	·
	Joseph Xu	2018/4/1	2	公廾

上海星灯智能科技有限公司

_海星灯智能科技	有限公司		Lab2: 像素处理实验 1
信号名	方向	宽度	含义
in_enable	输入	1	输入数据使能,在流水线模式下,它是另一个复位信号,在请求响应模式下,只有在它有效的时候 in_data 才会被真正地改变。
in_data	输入	color_width - 1:0	输入数据,必须和 in_enable 同步输入。
out_ready	output	1	输出数据有效,在两种模式下,这个信号都会在 out_data 可以被读取的时候有效。
out_data	output	color_width - 1 : 0	输出数据,将会和 out_ready 同步输出。

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	11 of 40
	作者	修改日期	,	
	Joseph Xu	2018/4/1	/2	公廾

2. PARTA: 灰度化实验流程

本章将详细描述如何在 Vivado 2014.4 的环境下完成实验。请耐心阅读,仔细按照图示和文字说明进行操作。

2.1 操作步骤

1. 由于本实验是在实验 1 的基础上进行扩展,所以我们先将之前的实验部分复制 1 份,具体做法为在 D:\ImageLabs 文件夹下,将鼠标左键选中 lab1,然后按住 Ctrl 键不放,并拖拽到空白处,这样得到一个 lab1 的副本,如下图所示:

图 2-1 Vivado 下创建新工程

然后将 lab1 的副本重命名为 lab2,如下图所示,至此我们就可以在 lab2 文件 夹甲开始我们的实验内容:

图 2-2 重命名实验目录

2. 将实验提供的开源 IP 库 FPGA-Image-Library.zip 解压到 D:\ImageLabs 下 和 repo, lab2 等文件夹同一级,如下图所示:

提示:如果是初学者,请按照此路径存放,如果是 Vivado 的使用熟练者,可按照自己的习惯来选择 IP 库的存放位置。

	标题	文档编号	版本	页
vinceco	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	12 of 40
XINGDENG	作者	修改日期		,, , , ,
	Joseph Xu	2018/4/1	/	公廾

图 2-3 图像处理 IP 库文件存放位置

3. 接着启动 Vivado 2014.4,在启动界面选择 Open Project,如下图所示:

图 2-4 启动 Vivado

4. 然后在选择对话框中,找到之前的 lab2 (即 D:\ImageLabs\lab2), 然后选择 lab1.xpr 文件,点击 OK,打开工程,整个过程如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	13 of 40
	作者	修改目期	//	
	Joseph Xu	2018/4/1	/2	公廾

图 2-5 打开工程

5. 接着我们将 FPGA-Image-Library IP 库添加进来,在 Vivado 的主界面点击 Project Settings,接着在新开对话框中点击 IP,点击 Add Repository,过程如下图所示:

图 2-6 设置:添加 IP 库

6. 在对话框中找到 D:\ImageLabs\FPGA-Image-Library-Pubulish, 然后点击 Select,

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	14 of 40
XINGDENG	作者	修改目期	//	
	Joseph Xu	2018/4/1	2	公廾

如下图所示:

图 2-7 选择图像 IP 库

添加好 IP 库后,能看到 Vivado 会自动扫描库中的 IP,如果能看到如下图所示的一些 IP,则表示 IP 库添加成功,此时点击 OK 继续:

图 2-8 图像处理 IP 库中的 IP 列表显示

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	15 of 40
XINGDENG	作者	修改日期	/\	
	Joseph Xu	2018/4/1	/2	公廾

Lab2: 像素处理实验 1

7. 回到 Vivado 的主界面后,点击 Open Block Design,这时会在主界面右边区域看到之前实验 1的 IP 结构,如下图所示:

图 2-9 实验初始视图

8. 在此基础上,我们开始添加 IP,点击左边栏的 Add IP 图标,然后在弹出的搜索框中,输入 gray,这时能看到搜索结果中有个 Graying 的 IP,双击它进行添加,整个过程如下图所示:

图 2-10 添加灰度化 IP

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	16 of 40
	作者	修改日期	/\	
	Joseph Xu	2018/4/1	/	公廾

9. 由于我们要将灰度化 IP 接入到图像数据流中,因此在模块化设计视图中,我们需要现将之前的数据流先断开,为此我们先用鼠标左键选中 DVI2RGB IP 的 RGB端口,此时会看到 RGB 信号高亮为浅黄色(注意一定不要选中整个 IP),然后鼠标右键单击,在弹出菜单中选择 Disconnect Pin,整个过程如下图所示:

图 2-11 断开 DVI2RGB IP 的 RGB 端口

图像数据流断开后的 IP 视图如下图所示:

图 2-12 断开端口后视图

10.接着我们开始将灰度化 IP 接入,现将 DVI2RGB IP 的 RGB 端口展开,将鼠标移动到 DVI2RGB 的 RGB 端口 此时鼠标指针会变成一个 ≥ 的符号 如下图所示:

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	17 of 40
XINGDENG	作者	修改日期	,	
	Joseph Xu	2018/4/1	/2	公廾

图 2-13 展开 DVI2RGB IP 的 RGB 端口

左键点击即可展开,如下图所示:

图 2-14 RGB 端口展开后视图

我们将按照如下方式先对 Graying IP 进行部分连接:

Graying_0:clk → dvi2rgb_0:PixelClk

Graying_0:rst_n → clk_wiz_0:resetn

Graying_0:in_enable → dvi2rgb_0:vid_pVDE

	标题	文档编号	版本	页
vinceco	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	18 of 40
XINGDENG	作者	修改目期	<i>N</i>	
	Joseph Xu	2018/4/1	2	公开

连接的操作如下图所示,鼠标光标移动到对应端口,然后点击不放并拖拽到与之对应的连接端口上,如果符合连接规则,端口会自动显示绿色的勾。

图 2-15 连接端口

11. 由于灰度化后的像素数据为 8 位宽,而显示输出端接收的数据宽度为 24 位宽, 所以需要将 8 位转换成 24 位, 我们直接调用一个 concat 的 IP 来实现转换,这个 IP 的作用是多端口的位宽拼接,点击 Add IP 图标,在弹出的搜索栏中输入 concat,然后在结果栏中双击 Concat 这个 IP 进行添加,整个过程如下图所示:

图 2-16 添加 Concat IP

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	19 of 40
XINGDENG	作者	修改日期	<i>//</i> *	
	Joseph Xu	2018/4/1	/	公廾

添加后的 IP 视图如下图所示:

Lab2: 像素处理实验 1

图 2-17 添加 Concat IP 后的视图

接着双击 xlconcat_0 这个 IP 进行配置,在配置对话框中,进行如下设置:

Number of Ports: 3 Manual In0 Width: 8 Manual In1 Width: 8 Manual In2 Width: 8

完成设置后,点击 OK 确认,整个拖成如下图所示:

图 2-18 Concat IP 设置

12. 之后将 Graying_0 和 xlconcat_0 这两个 IP 进行连接,连接方式如下: Graying 0:out ready → rgb2dvi 0: vid pVDE

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	20 of 40
	作者	修改日期	/\	
	Joseph Xu	2018/4/1	/	公廾

Graying_0:out_data[7:0] \rightarrow xlconcat_0:ln0[7:0]

Graying_0:out_data[7:0] → xlconcat_0:ln1[7:0]

Graying 0:out data[7:0] → xlconcat 0:In2[7:0]

xlconcat_0:dout[23:0] → rgb2dvi_0:vid_pData[23:0]

dvi2rgb_0:vid_pHSync → rgb2dvi_0:vid_pHSync

dvi2rgb_0:vid_pVSync → rgb2dvi_0:vid_pVSync

连接好后的 IP 视图如下图所示:

图 2-19 连接 Graying IP 后的视图

13. 请仔细检查各 IP 的端口连接是否正确,为了方便核对,本文特别准备了各种连接的高亮色图以示区别,如下图所示:

提示:下图仅作为检查连接使用,读者完全不必也按照图示颜色进行标注!!!

图 2-20 端口连接检查

14. 连接检查无误后,即可保存 IP 模块化设计,在 Vivado 主界面点击保存图标,如下图所示:

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	21 of 40
XINGDENG	作者	修改日期	<i>N</i> - T *	
	Joseph Xu	2018/4/1	/2	公廾

图 2-21 保存设计

接着在 Source 子窗口中展开 design_1_wrapper,选中 design_1.bd,鼠标右键单击,在弹出的菜单中选择 Create HDL Wrapper,整个过程如下图所示:

图 2-22 创建实验顶层 Wrapper 文件

接着在弹出的对话框中,保持默认的选项不变,即选择 Let Vivado manage wrapper and auto-update,然后点击 OK,如下图所示:

图 2-23 自动更新顶层文件

在 Vivado 主界面点击 Generate Bitstream, 生成 bit 文件, 如下图所示:

图 2-24 Generate Bitstream

	标题	文档编号	版本	页
vinences	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	22 of 40
XINGDENG	作者	修改日期		<i>!!</i> *
	Joseph Xu	2018/4/1	/2	公廾

Lab2: 像素处理实验 1

在弹出的提示框中直接点 Yes 确认并继续,如下图所示:

图 2-25 点击 Yes 确认生成 bit 文件

大约经过 10 分钟后, Vivado 会弹出 Bitstream Generation Completed 的提示框,表示 bit 文件完成,选择 Open Hardware Manager,然后点击 OK,如下图所示:

图 2-26 打开 Hardware Manager

接着我们需要对 SWORD4.0 硬件平台进行连接,根据下图示意依次进行如下操作:

- 1) 将电源线接上 SWORD4.0, 注意此时 SWORD4.0 的开关不要打开;
- 2) 将下载器模块插到 SWORD4.0 的 CN7-JTAG 处,并将下载器的 USB 端口连 到电脑;
- 3) 用一根 HDMI 线将 SWORD4.0 和 HDMI 信号源连接上;
- 4) 用一根 HDMI 线将 SWORD4.0 和 HDMI 显示器连接上;
- 5) 打开电源开关

	标题	文档编号	版本	页
XINGDENG	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	23 of 40
	作者	修改目期		
	Joseph Xu	2018/4/1	/2	公开

图 2-27 硬件连接对应位置

连接好后的效果如下图所示:

图 2-28 实际硬件连接

15. 接着在 Hardware Manager 界面下,点击 Open target,在随之弹出的菜单中选择 Auto Connect,整个过程如下图所示:

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	24 of 40
	作者	修改日期	<i>//</i>	
	Joseph Xu	2018/4/1	2	公廾

图 2-29 Open target

接着 Hardware Manager 会自动连接下载器并扫描 JTAG , 一切正常的话 , 会显示出扫描到的目标器件:xc7k325t , 鼠标右键单击目标器件,在弹出的窗口中选择 Program Device , 整个过程如下图所示:

图 2-30 Program Device

16. 在弹出的对话框中,保持默认设置,直接点击 Program,如下图所示:提示:如果 Debug probe file 这一栏有输入,可忽略之。

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	25 of 40
XINGDENG	作者	修改日期	<i>!\</i>	
	Joseph Xu	2018/4/1	/2	公廾

图 2-31 烧写目标器件

随着如下图所示进度条显示 100%,即表示目标器件烧写完毕。即可进入实验现象观察阶段。

图 2-32 编程进度条

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	26 of 40
XINGDENG	作者	修改日期	/\	
	Joseph Xu	2018/4/1	/	公廾

3. PARTA: 灰度化实验结果

首先我们让 HDMI 信号源显示一幅素材图片(位于同文件夹下的 J20.png),接着我们将连接 HDMI 输入端口的 HDMI 线在信号源端重新插拔一次,以便让信号源设备重新检测(Detect)一下接收设备,一切正常的话,我们即可在 HDMI 显示器上看到显示画面。

图 3-1 灰度化显示结果

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	27 of 40
XINGDENG	作者	修改目期	/\	
	Joseph Xu	2018/4/1	/	公开

4. PARTB: 二值化实验流程

4.1 操作步骤

1. 完成了灰度化部分的实验后,我们继续进行二值化部分的时候,回到 Vivado 的主界面,点击 Open Block Design 图标,然后在打开的 IP 设计视图的左边栏,点击 Add IP 的图标,过程如下图所示:

图 4-1 回到 Vivado 主界面继续添加 IP

在搜索栏中输入 Thresh,在搜索结果中双击 Threshold_v1_0,添加二值化 IP,过程如下图所示:

图 4-2 添加二值化 IP: Threshhold

2. 添加 Thresh IP 后,和前面部分的实验一样,为了将这个 IP 接入数据流,我们需要断开之前的图像数据流,为此,鼠标选中 RGB2DVI IP 的 vid_pVDE,当该端口高亮为浅黄色之后,鼠标右键单击,在弹出的菜单中选择 Disconnect Pin,过程如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	28 of 40
	作者	修改日期	/\	
	Joseph Xu	2018/4/1	/2	公廾

图 4-3 断开 RGB2DVI IP 的 vid_pVDE 端口

3. 按同样的方式,断开 RGB2DVI IP 的 vid_pData[23:0]端口和 Concat IP 的 In0, In1, In2端口,断开后的效果如下图所示:

图 4-4 断开数据流后的 IP 视图

4. 双击 Thresh IP 进行配置,在配置窗口中,将 Color Width 设置为 8,点击 OK 确认,如下图所示:

	标题	文档编号	版本	页
vinceco	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	29 of 40
XINGDENG	作者	修改日期		<i>(</i> /
	Joseph Xu	2018/4/1	/	公廾

Copyright © 2018 XingDeng, Inc. All rights reserved.

图 4-5 Thresh IP 配置

5. 双击 xlconcat_0 IP 进行配置,在配置窗口中,将 Number of Ports 改为 24,然后将下面的每个输入端口模式都改为 Manual,Width 设置为 1,完成设置后点 OK 继续,如下图所示

图 4-6 Concat IP 设置

6. 完成对 Thresh 和 xlconcat 这两个 IP 的配置后,进行 IP 的连接,连接后的效果如下图所示,请仔细检查各 IP 的端口连接是否正确,为了方便核对,下图各种连接的高亮色图以示区别:

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	30 of 40
XINGDENG	作者	修改目期	<i>N</i> 37	
	Joseph Xu	2018/4/1	/2	公开

Lab2: 像素处理实验 1

提示:下图仅作为检查连接使用,读者完全不必也按照图示颜色进行标注!!!

图 4-7 端口连接检查

- 7. 注意到上图中 Thresh IP 还有 3 个端口未连接,分别是 th_mode, th1 和 th2。根据 IP 的端口定义, th_mode 为阈值模式(0 为全局模式,1 为等高线模式), th1 为全局阈值输入, th2 为等高线阈值输入。本实验中我们使用的是全局模式。因此我们添加 2 个 constant IP 来作为输入,连接 th mode 和 th1。
- 8. 点击 IP 视图左边栏的 Add IP 图标,在弹出的搜索栏中输入 constant,在搜索结果中**双击 Constant 两次**,以添加 2 个这样的 IP,如下图所示:

图 4-8 添加 Constant IP

9. 添加好后,在 IP 设计视图中双击 xlconstant_0 这个 IP, 这个 IP 是作为阈值模式的输入。在配置对话框中将 Const Width 设置为 1,将 Const Val 设置为 0,完成设置后,点击 OK 继续,如下图所示;

	标题	文档编号	版本	页
XINGDENG	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	31 of 40
	作者	修改日期	/\	
	Joseph Xu	2018/4/1	2	公开

图 4-9 第一个 Constant IP 设置

10. 接着在 IP 设计视图中双击 xlconstant_1 这个 IP ,这个 IP 是作为全局阈值的输入。在配置对话框中将 Const Width 设置为 8 ,将 Const Val 设置为 200 ,完成设置后 ,点击 OK 继续 ,如下图所示 ;

图 4-10 第二个 Constant IP 设置

完成设置后,将 xlconstant_0 和 xlconstant_1 两个 IP 连接到 Thresh IP , 连接方式 如下图所示:

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	32 of 40
XINGDENG	作者	修改日期	<i>N</i>	
	Joseph Xu	2018/4/1	/	公廾

图 4-11 两个 Constant IP 的连接

11. 连接检查无误后,即可保存 IP 模块化设计,在 Vivado 主界面点击保存图标,如下图所示:

图 4-12 保存设计

12. 接着在 Source 子窗口中展开 design_1_wrapper,选中 design_1.bd,鼠标右键单击,在弹出的菜单中选择 Create HDL Wrapper,整个过程如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	33 of 40
	作者	修改目期	/\	
	Joseph Xu	2018/4/1	/2	公廾

图 4-13 创建顶层文件

13. 接着在弹出的对话框中,保持默认的选项不变,即选择 Let Vivado manage wrapper and auto-update,然后点击 OK,如下图所示:

图 4-14 自动更新顶层文件

14. 在 Vivado 主界面点击 Generate Bitstream, 生成 bit 文件, 如下图所示:

图 4-15 Generate Bitstream

在弹出的提示框中直接点 Yes 确认并继续 , 如下图所示:

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	34 of 40
XINGDENG	作者	修改日期	/\	
	Joseph Xu	2018/4/1	2	公廾

图 4-16 点击 Yes 确认生成 bit 文件

之后会有一个提示框,提示 th2 未连接,忽略这条信息,直接点 OK 继续,如下图所示:

图 4-17 忽略提示信息并点击 OK

大约经过 10 分钟后, Vivado 会弹出 Bitstream Generation Completed 的提示框,表示 bit 文件完成,选择 Open Hardware Manager,然后点击 OK,如下图所示:

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	35 of 40
XINGDENG	作者	修改目期	/\	
	Joseph Xu	2018/4/1	/2	公开

Lab2: 像素处理实验 1

图 4-18 打开 Hardware Manager

- 15. 接着我们需要对 SWORD4.0 硬件平台进行连接,根据下图示意依次进行如下操作:
 - 1) 将电源线接上 SWORD4.0, 注意此时 SWORD4.0 的开关不要打开;
 - 2) 将下载器模块插到 SWORD4.0 的 CN7-JTAG 处,并将下载器的 USB 端口连 到电脑;
 - 3) 用一根 HDMI 线将 SWORD4.0 和 HDMI 信号源连接上;
 - 4) 用一根 HDMI 线将 SWORD4.0 和 HDMI 显示器连接上;
 - 5) 打开电源开关

	标题	文档编号	版本	页
vinence	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	36 of 40
XINGDENG	作者	修改目期	<i>N</i> T	
	Joseph Xu	2018/4/1	2	公廾

图 4-19 硬件连接对应位置

连接好后的效果如下图所示:

图 4-20 实际硬件连接

接着在 Hardware Manager 界面下,点击 Open target,在随之弹出的菜单中选择 Auto Connect,整个过程如下图所示:

xingdeng	标题	文档编号	版本	页
	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	37 of 40
	作者	修改日期	<i>//</i>	
	Joseph Xu	2018/4/1	/	公开

图 4-21 Open target

接着 Hardware Manager 会自动连接下载器并扫描 JTAG , 一切正常的话 , 会显示出扫描到的目标器件:xc7k325t , 鼠标右键单击目标器件, 在弹出的窗口中选择 Program Device , 整个过程如下图所示:

图 4-22 Program Device

在弹出的对话框中,保持默认设置,直接点击 Program,如下图所示:

提示:如果 Debug probe file 这一栏有输入,可忽略之。

图 4-23 烧写目标器件

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	38 of 40
	作者	修改目期	,	
	Joseph Xu	2018/4/1	/	公开

随着如下图所示进度条显示 100%,即表示目标器件烧写完毕。即可进入实验现象观察阶段。

图 4-24 编程进度条

xingdeng	标题	文档编号	版本	页
	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	39 of 40
	作者	修改日期	<i>N</i> 33	
	Joseph Xu	2018/4/1	/2	公廾

5. PARTB 二值化实验结果

首先我们让 HDMI 信号源显示一幅素材图片(位于同文件夹下的 J20.png),接着我们将连接 HDMI 输入端口的 HDMI 线在信号源端重新插拔一次,以便让信号源设备重新检测(Detect)一下接收设备,一切正常的话,我们即可在 HDMI 显示器上看到显示画面。

图 5-1 二值化显示结果

	标题	文档编号	版本	页
xingdeng	Lab2: 像素处理实验 1	XD-LAB-IMG-002	1.0	40 of 40
	作者	修改日期	/\	
	Joseph Xu	2018/4/1	/2	公开