Octave routines for network analysis

GB

September 28, 2012

Contents

0	Basic network routines						
	0.1	Basic 1	network theory	4			
	0.2	Routin	nes	5			
		0.2.1	getNodes.m	5			
		0.2.2	getEdges.m	6			
		0.2.3	numNodes.m	6			
		0.2.4	numEdges.m	6			
		0.2.5	linkDensity.m	6			
		0.2.6	selfLoops.m	7			
		0.2.7	multiEdges.m	7			
		0.2.8	averageDegree.m	7			
		0.2.9	numConnComp.m	8			
		0.2.10	findConnComp.m	8			
			giantComponent.m	8			
			tarjan.m [8][9]	9			
			graphComplement.m	9			
		0.2.14	graphDual.m	9			
		0.2.15	subgraph.m	10			
		0.2.16	leafNodes.m	10			
		0.2.17	leafEdges.m	10			
1	Dia	gnostic	croutines	10			
•	1.1			11			
		1.1.1		11			
		1.1.2	•	11			
		1.1.3	isSymmetric.m	11			
		1.1.4	isConnected.m	11			
		1.1.5	isWeighted.m	12			
		1.1.6	isRegular.m	12			
		1.1.7	isComplete.m	13			
		1.1.8	isEulerian.m	13			
		1.1.9	isTree.m	13			
				13			
			isBipartite.m	14			

2	Conversion routines				
	2.1 Graph	representations		. 15	
	2.2 Routin	nes		. 16	
	2.2.1	adj2adjL.m		. 16	
	2.2.2	adjL2adj.m		. 17	
	2.2.3	adj2edgeL.m		. 17	
	2.2.4	edgeL2adj.m		. 17	
	2.2.5	adj2inc.m		. 17	
	2.2.6	inc2adj.m			
	2.2.7	adj2str.m		. 18	
	2.2.8	str2adj.m		. 18	
	2.2.9	adjL2edgeL.m		. 18	
	2.2.10	edgeL2adjL.m			
		inc2edgeL.m			
	2.2.12	adj2simple.m		. 19	
	2.2.13	edgeL2simple.m		. 19	
		addEdgeWeights.m			
3	Controlity	measures. Distributions		20	
J		ality, distributions over the nodes/edges			
		nes			
	3.2.1	degrees.m			
	3.2.1 $3.2.2$	rewire.m			
	3.2.3	rewiseAssort.m			
	3.2.4	rewiseDisassort.m			
	3.2.4 $3.2.5$	aveNeighborDeg.m			
	3.2.6	closeness.m			
	3.2.0 $3.2.7$	nodeBetweennessSlow.m			
	0.2.1	nodeDetweeniessolow.iii		. 22	
4	Distances			22	
	4.0.8	Routines		. 22	
	4.0.9	simpleDijkstra.m		. 22	
5	Links			22	

Figure 1: Graph of functions in this toolbox. An edge points from routine A to routine B if routine A is used within routine B.

0 Basic network routines

0.1 Basic network theory

A graph is a set of nodes, and an associated set of links between them.

Networks are instantiations of graphs. They often represent real world systems that can be modeled as a set of connected entities.

Network theory is a modern branch of graph theory, concerned with statistics on practical instances of mathematical graphs. Graph theory and network theory references are abundant. Social science is probably the most recent instigator of the trend to see the world as a network. In 1967, Milgram conducted his famous small world experiment [1], and found that Omahans are on average six steps away by acquaintance from Bostonians. Other prominent first sources are Price's work on the graph of scientific citations in 1965 [2] and in 1998, Watts and Strogatz's paper on dynamics of small-world networks [3].

Nowadays, there is no shortage of books and reviews on networks. Below is a non-exhaustive list of good reads [4] [5] [6] [7].

- S. Wasserman and K. Faust, Social network analysis, Cambridge University Press, 1994
- Duncan J. Watts, Six degrees: The science of a Connected Age, W. W. Norton, 2004
- M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167-256 (2003)
- Alderson D., Catching the Network Science Bug: ..., Operations Research, Vol. 56, No. 5, Sep-Oct 2008, pp. 1047-1065

Here are some basic notions about graphs that are useful to understand the routines in Section 0.2.

Figure 1 illustrates a general **directed** graph. The nodes are functions from this toolbox. An edge points from function A to function B if $function\ A$ is called within $function\ B$. For example, strongConnComp is used within tarjan. Notice, also that strongConnComp points to itself, i.e. strongConnComp contains a recursion. Stand-alone functions, that use no other function, are **single nodes** in the graph, such as leafNodes, getEdges and graphDual.

A directed graph is a graph in which the links have a direction. In the functions graph one function can call another, but the call is usually not reciprocated.

A **single node** is a node without any connections to other nodes. *graphDual* is an example of a single node in Figure 1.

A **self-loop** is an edge which starts and ends at the same node. $(strongConnComp \rightarrow strongConnComp)$ is an example of a self-loop.

Multiedges are two or more edges which have the same origin and destination pair of nodes. This can be useful in some graph representations. In the functions graph this is equivalent to some function being called twice inside another function.

Basic graph statistics are the **number of nodes** (n) and the **number of edges** (m). The functions graph has 50 nodes and 29 edges.

The **link density** is derived directly from the number of nodes and number of edges: it is the number of edges, divided by the maximum possible number of edges.

$$density = \frac{m}{n(n-1)/2} \tag{1}$$

For the functions graph, the link density is about 0.02.

The average nodal degree is the average number of links per node. This is calculated as 2m/n (every edge is counted twice towards the total sum of degrees).

$$average \ degree = \frac{2m}{n} \tag{2}$$

The functions graph has 1.16 links per function on average.

A graph S is a **subgraph** of graph G, if the set of nodes (and edges) of S is subset of the set of nodes (and edges) of graph G.

A disconnected graph is a graph in which there are two nodes between which there exists no path of edges. In the functions graph there is no path between *averageDegree* and *subgraph*. So the functions graph is disconnected. Disconnected graphs consist of multiple connected components. The largest connected component (in number of nodes) is usually called the **giant component**.

In the context of **directed graphs**, the notion of strong and weak connectivity is important. A **strongly connected graph** is a graph in which there is a path from every node to every other node, where paths respect link directionality. In Figure 1, for example, there is a path from strongConnComp to tarjan, but no path in reverse. Therefore, the component (strongConnComp, tarjan) is not strongly connected. If, however, link directionality is disregarded, this subgraph is certainly connected. A **weakly connected graph** or subgraph is a graph which is connected if considered as undirected, but not connected if link directionality is taken into account.

0.2 Routines

0.2.1 getNodes.m

Returns the list of nodes for varying graph representations.

```
% Returns the list of nodes for varying graph representation types
% Inputs: graph structure (matrix or cell or struct) and type of structure (string)
         'type' can be: 'adj', 'edgelist', 'adjlist' (neighbor list), 'inc' (incidence matrix)
% Note 1: only the edge list allows/returns non-consecutive node indexing
% Note 2: no build-in error check for graph structure
%
% Example representations of a directed triangle: 1->2->3->1
%
            'adj' - [0 1 0; 0 0 1; 1 0 0]
            'adjlist' - {1: [2], 2: [3], 3: [1]}
%
%
            'edgelist' - [1 2; 2 3; 3 1] or [1 2 1; 2 3 1; 3 1 1] (1 is the edge weight)
            'inc' - [-1 0 1
%
                      1 -1 0
%
                      0 1 -1]
% GB: last updated, Sep 18 2012
```

0.2.2 getEdges.m

Returns the list of edges for varying graph representations.

```
% Returns the list of edges for graph varying representation types
% Inputs: graph structure (matrix or cell or struct) and type of structure (string)
% Outputs: edge list, mx3 matrix, where the third column is edge weight
% Note 1: 'type' can be: 'adj', 'edgelist', 'adjlist' (neighbor list), 'inc' (incidence matrix)
% Note 2: symmetric edges will appear twice, also in undirected graphs, (i.e. [n1,n2] and [n2,n1])
% Other routines used: adj2edgeL.m, adjL2edgeL.m, inc2edgeL.m
\% Example representations of a directed triangle: 1->2->3->1
            'adj' - [0 1 0; 0 0 1; 1 0 0]
            'adjlist' - {1: [2], 2: [3], 3: [1]}
%
            'edgelist' - [1 2; 2 3; 3 1] or [1 2 1; 2 3 1; 3 1 1] (1 is the edge weight)
            'inc' - [-1 0 1
%
                      1 -1 0
                      0 1 -1]
%
% GB: last updated, Sep 18 2012
```

0.2.3 numNodes.m

Number of vertices/nodes in the network.

```
% Returns the number of nodes, given an adjacency list, or adjacency matrix
% INPUTs: adjacency list: {i:j_1,j_2 ..} or adjacency matrix, ex: [0 1; 1 0]
% OUTPUTs: number of nodes, integer
%
% GB: last update Sep 19, 2012
function n = numNodes(adjL)
n = length(adjL);
```

0.2.4 numEdges.m

Number of edges/links in the network.

```
% Returns the total number of edges given the adjacency matrix
% INPUTs: adjacency matrix, nxn
% OUTPUTs: m - total number of edges/links
%
% Note: Valid for both directed and undirected, simple or general graph
% Other routines used: selfloops.m, issymmetric.m
% GB, last updated Sep 19, 2012
```

0.2.5 linkDensity.m

The density of links of the graph. $Density = \frac{m}{n(n-1)/2}$ (n is the number of nodes and m is the number of edges).

```
% Computes the link density of a graph, defined as the number of edges divided by
% number_of_nodes(number_of_nodes-1)/2 where the latter is the maximum possible number of edges.
%
% Inputs: adjacency matrix, nxn
% Outputs: link density, a float between 0 and 1
% Note: The graph has to be non-trivial (more than 1 node).
% Other routines used: numNodes.m, numEdges.m
% GB: last update Sep 19, 2012
0.2.6 selfLoops.m
Number of selfloops, i.e. nodes connected to themselves.
```

```
% Counts the number of self-loops in the graph
% INPUT: adjacency matrix, nxn
% OUTPUT: integer, number of self-loops
% Note: in the adjacency matrix representation loops appear as non-zeros on the diagonal
% GB: last updated, Sep 20 2012
```

0.2.7 multiEdges.m

An edge counts towards the multi-edge total if it shares origin and destination nodes with another edge.

```
% Counts the number of multiple edges in the graph
% Multiple edges here are defined as two or more edges that have the same origin and destination nodes.
% Note 1: This creates a natural difference in counting for undirected and directed graphs.
%
% INPUT: adjacency matrix, nxn
% OUTPUT: integer, number of multiple edges
% Examples: multiEdges([0 2; 2 0])=2, and multiEdges([0 0 1; 2 0 0; 0 1 0])=2
% Note 2: The definition of number of multi-arcs (node pairs that have multiple edges across them)
% would be: mA = length(find(adj>1)) (normalized by 2 depending on whether the graph is directed)
% GB: last updated, Sep 20 2012
```

0.2.8 averageDegree.m

The average degree (# links) across all nodes. Defined as: $\frac{2m}{n}$, where n is the number of nodes and m is the number of edges. Also, $linkDensity = \frac{averageDegree}{n-1}$.

```
% Computes the average degree of a node in a graph, defined as
% 2 times the number of edges divided by the number of nodes (every edge is counted in degrees twice).
% Inputs: adjacency matrix, nxn
% Outputs: float, the average degree, a number between 0 and max(sum(adj))
% Note: The average degree is related to the link density, namely:
        link_density = ave_degree/(n-1), where n is the number of nodes
```

```
%
% Other routines used: numNodes.m, numEdges.m
% GB: last update, September 20, 2012
```

0.2.9 numConnComp.m

Calculating the number of connected components in the graph by using the algebraic connectivity.

```
% Calculate the number of connected components using the Laplacian eigenvalues
% - counting the number of zeros
%
% INPUTS: adjacency matrix, nxn
% OUTPUTs: positive integer - number of connected components
%
% Other routines used: graph_spectrum.m
% GB: last updated: September 22, 2012
```

0.2.10 findConnComp.m

findConnCompI.m: Finds the connected component to which node "i" belongs to.

```
% Find the connected component to which node "i" belongs to
%
% INPUTS: adjacency matrix and index of the key node
% OUTPUTS: all node indices of the nodes in the same group
% to which "i" belongs to (including "i")
%
% Note: Only works for undirected graphs.
% Other functions used: kneighbors.m
% GB: last updated, Sep 22 2012
```

findConnComp.m: Find the connected components in an undirected graph.

```
% Algorithm for finding connected components in a graph
% Note: Valid for undirected graphs only
%
% INPUTS: adj - adjacency matrix, nxn
% OUTPUTS: a list of the components comp{i}=[j1,j2,...jk]
%
% Other routines used: findConnCompI.m, degrees.m
% GB: last updated, September 22, 2012
```

0.2.11 giantComponent.m

The largest connected component in a graph. Returns the set of nodes in the largest component, as well as its adjacency matrix.

```
% Extract the giant component of a graph;
% The giant component is the largest connected component.
%
% INPUTS: adjacency matrix, nxn
% OUTPUTS: giant component matrix and node indices
%
% Other routines used: findConnComp.m, subgraph.m
% GB: last updated: September 22, 2012
```

0.2.12 tarjan.m [8][9]

tarjan.m: Returns the strongly connected components in a directed graph.

```
% Find the stronly connected components in a directed graph
% Source: Tarjan, R. E. (1972), "Depth-first search and linear graph algorithms",
                                   SIAM Journal on Computing 1 (2): 146-160
% Wikipedia description: http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
% Input: graph, set of nodes and edges, in adjacency list format,
         example: L{1}=[2], L{2}=[1] is a single (1,2) edge
% Outputs: set of strongly connected components, in cell array format
% Other routines used: strongConnComp.m
% GB: last updated, Sep 22, 2012
strongConnComp.m: Support function for tarjan.m.
% Support function for tarjan.m
% "Performs a single depth-first search of the graph, finding all
% successors from the node vi, and reporting all strongly connected
% components of that subgraph."
% See: http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
% INPUTs: start node, vi;
          graph structure (list), L
          tarjan.m variables to update: S, ind, v, GSCC
% OUTPUTs: updated tarjan.m variables: S, ind, v, GSCC
% Note: Contains recursion.
% GB: last updated, Sep 22 2012
```

0.2.13 graphComplement.m

A graph with the same nodes, but "flipped" edges: where the original graph has an edge, the complement graph doesn't, and where the original graph doesn't have an edge, the complement graph does.

```
% Returns the complement of a graph
% The complement graph has the same nodes, but edges where the original graph doesn't and vice versa.
%
INPUTs: adj - original graph adjacency matrix, nxn
% OUTPUTs: complement graph adjacency matrix, nxn
%
% Note: Assumes no multiple edges
% GB: last updated, September 23, 2012
```

0.2.14 graphDual.m

The graph dual is the inverted nodes-edges graph.

```
% Finds the dual of a graph; a dual is the inverted nodes-edges graph
% This is also called the line graph, adjoint graph or the edges adjacency
%
% INPUTs: adjacency (neighbor) list representation of the graph (see adj2adjL.m)
```

```
% OUTPUTs: adj (neighbor) list of the corresponding dual graph and cell array of edges
%
% Note: This routine only works for undirected, simple graphs.
% GB: last updated, Sep 23, 2012

0.2.15 subgraph.m
% This function outputs the adjacency matrix of a subgraph
% given the supergraph and the node set of the subgraph.
%
% INPUTs: adj - supergraph adjacency matrix (nxn), S - vector of subgraph node indices
% OUTPUTs: adj_sub - adjacency matrix of the subgraph (length(S) x length(S))
%
% GB: last update, September 23, 2012
```

0.2.16 leafNodes.m

Leaf nodes are nodes connected to only one other node.

```
% Return the indices of the leaf nodes of the graph, i.e. all nodes of degree 1
%
% Note 1: For a directed graph, leaf nodes are those with a single incoming edge
% Note 2: There could be other definitions of leaves, for example: farthest away from a root node
% Note 3: Nodes with self-loops are not considered leaf nodes.
%
% Input: adjacency matrix, nxn
% Output: indices of leaf nodes
%
% GB: last updated, Sep 23, 2012
```

0.2.17 leafEdges.m

Leaf edges are edges with only one adjacent edge.

```
% Returns the leaf edges of the graph: edges with one adjacent edge only.
%
% Note 1: For a directed graph, leaf edges are those that "flow into" a leaf node.
% Note 2: There could be other definitions of leaves, for example: farthest away from a root node.
% Note 3: Edges that are self-loops are not considered leaf edges.
% Note 4: Single floating disconnected edges are not considered leaf edges.
%
% Input: adjacency matrix, nxn
% Output: set of leaf edges: a (num edges x 2) matrix
% where every row contains the leaf edge nodal indices
%
% GB: last updated, Sep 23, 2012
```

1 Diagnostic routines

These are functions that return boolean values depending on some property of the graph. They are often used by other algorithms whose output may vary with different graph types.

1.1 Routines

1.1.1 isSimple.m

A **simple graph** is a graph which contains no self-loops and no multiple edges, no directed and no weighted edges.

```
% Checks whether a graph is simple (undirected, no self-loops, no multiple edges, no weighted edges)
%
% INPUTs: adj - adjacency matrix
% OUTPUTs: S - a Boolean variable; true (1) or false (0)
%
% Other routines used: selfLoops.m, multiEdges.m, isDirected.m
% GB: last updated, September 23, 2012
```

1.1.2 isDirected.m

This routine checks whether a graph is directed or not.

```
% Checks whether the graph is directed, using the matrix transpose function
% INPUTS: adjacency matrix, nxn
% OUTPUTS: boolean variable, 0 or 1
%
% Note: one-liner alternative: S=not(issymmetric(adj));
% GB: last updated, Sep 23, 2012
```

1.1.3 isSymmetric.m

Checks whether a matrix is symmetric.

```
% Checks whether a matrix is symmetric (has to be square)
%
% INPUTS: adjacency matrix, nxn
% OUTPUTS: boolean variable, {0,1}
%
% GB: last update, Sep 23, 2012
```

1.1.4 isConnected.m

Checks whether a graph is connected.

Alternative 1 to isConnected.m

If the algebraic connectivity is >0 then the graph is connected.

```
a = algebraic\_connectivity(adj);

S = false; if a > 0; S = true; end
```

Alternative 2 to isConnected.m

Uses the fact that multiplying the adjacency matrix to itself k times give the number of ways to get from i to j in k steps. If the end of the multiplication in the sum of all matrices there are 0 entries then the graph is disconnected. Computationally intensive, but can be sped up by the fact that in practice the diameter is very short compared to n, so it will terminate in order of $\log(n)$? steps.

function S=isconnected(el):

```
S=false;
adj=edgeL2adj(el);
n=numnodes(adj); % number of nodes
adjn=zeros(n);
adji=adj;
for i=1:n
    adjn=adjn+adji;
    adji=adji*adj;

if length(find(adjn==0))==0
    S=true;
    return
    end
end
```

Alternative 3 to isConnected.m

Find all connected components, if their number is 1, the graph is connected. Use findConnComp.m 0.2.10.

1.1.5 isWeighted.m

Checks whether a graph has weighted links.

```
% Check whether a graph is weighted, i.e not all edges are 0,1.
%
% INPUTS: edge list, m x 3, m: number of edges, [node 1, node 2, edge weight]
% OUTPUTS: Boolean variable, 0 or 1
%
% GB: last updated, Sep 23, 2012
```

1.1.6 isRegular.m

A **regular graph** is a graph in which every node has the same number of links. *isRegular* checks whether a graph is regular.

```
% Checks whether a graph is regular, i.e. whether every node has the same degree.
%
INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean, 0 or 1
%
% Note: Defined for unweighted graphs only.
% GB: last updated, Sep 23, 2012
```

1.1.7 isComplete.m

A complete graph is a graph in which all nodes are connected to all other nodes.

```
% Check whether a graph is complete, i.e. whether every node is linked to every other node.
%
INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean variable, true/false
%
% Note: Only defined for unweighted graphs.
% GB: last updated, Sep 23, 2012
```

1.1.8 isEulerian.m

Find out whether a graph is **Eulerian**.

A connected undirected graph is Eulerian if and only if every graph vertex has an even degree.

A connected directed graph is Eulerian if and only if every graph vertex has equal in- and out- degree.

1.1.9 isTree.m

Check whether a graph is a tree. A **tree** is a connected graph with n nodes and (n-1) edges.

```
% Check whether a graph is a tree
% A tree is a connected graph with n nodes and (n-1) edges.
% Source: "Intro to Graph Theory" by Bela Bollobas
%
% INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean variable, 0 or 1
%
% Other routines used: isConnected.m, numEdges.m, numNodes.m
% GB: last updated, Sep 24, 2012
```

1.1.10 isGraphic.m

Check whether a sequence of number is graphic. A sequence of numbers is **graphic** if a graph exists with the same degree sequence [10].

```
% INPUTs: a sequence (vector) of numbers
% OUTPUTs: boolean, true or false
%
% Note: Not generalized to directed graph degree sequences.
% GB: last updated, Sep 24, 2012
```

1.1.11 isBipartite.m

Check whether a graph is bipartite. A **bipartite graph** is a graph for which the nodes can be split into two sets, A and B, such that any given edge connects a node from A to a node from B.

```
% Test whether a graph is bipartite. If so, return the two vertex sets.
% A bipartite graph is a graph for which the nodes can be split in two sets A and B,
% such that there are no edges that connect nodes within A or within B.
%
% Inputs: graph in the form of adjancency list (neighbor list, see adj2adjL.m)
% Outputs: true/false (boolean), empty set (if false) or two sets of vertices
%
% Note: This only works for undirected graphs.
% GB: last updated, Sep 24, 2012
```

2 Conversion routines

2.1 Graph representations

Most succintly, a graph is a set of edges. For example, $\{(n_1, n_2), (n_2, n_3), (n_4, n_4)\}$ is a representation which stands for a 4-node graph with 3 edges, one of which is a self-loop. It is also easy to see that this graph is directed and disconnected, and it has a 3-node weakly connected component (see 0.1), namely $\{n_1, n_2, n_3\}$.

For larger graphs, text or visual representation does not suffice to answer even simple questions about the graph. Below are the definitions of some common graph representations, used to represent graphs computationally. These should help with understanding and using the conversion routines in Section 2.2.

For the following discussion, assume that \mathbf{n} is the number of nodes in a given graph, and \mathbf{m} is the number of edges.

An **adjacency matrix** is a $n \times n$ matrix A, such that A(i,j) = 1 if i is connected to j and A(i,j) = 0, otherwise. The 1s in the matrix stand for the edges. If the graph is undirected, then the matrix is symmetric, because A(i,j) = A(j,i) for any i and any j. While usually this is a 0-1 matrix, sometimes edge weights can be indicated by using other numbers, so most generally the adjacency matrix has zeros and positive entries.

An **edge list** is a matrix representation of the set of edges. For the toy example $\{(n_1, n_2), (n_2, n_3), (n_4, n_4)\}$, the edge list representation would be $[n_1 \ n_2; n_2 \ n_3; n_4 \ n_4]$. Edge lists can have weights too, for example

$$edge \ list = \left[\begin{array}{ccc} n_1 & n_2 & 0.5 \\ n_2 & n_3 & 1 \\ n_4 & n_4 & 2 \end{array} \right].$$

The **adjacency list** is the sparsest graph representation. For every node, only its list of neighbors is recorded. In Octave, one can use the cell structure to represent the adjacency list. In other languages this is known as a dictionary. The adjacency list representation of the 4-node example above is: $adjList\{n_1\} = [n_2]$, $adjList\{n_2\} = [n_3]$, $adjList\{n_4\} = [n_4]$.

The **incidence matrix** I is a table of nodes (n) versus edges (m). In other words, the rows are node indices and columns correspond to edges. So if edge e connects nodes i and j, then I(i,e) = 1 and I(j,e) = 1. For directed graphs I(i,e) = -1 and I(j,e) = 1, if i is the source node and j the target. For the above example:

$$I = egin{array}{c|cccc} & e_1 & e_2 & e_3 \ \hline n_1 & -1 & 0 & 0 \ n_2 & 1 & -1 & 0 \ n_3 & 0 & 1 & 0 \ n_4 & 0 & 0 & 1 \ \hline \end{array}$$

There can be other representations depending on purpose, understanding, or algorithm implementation. Suppose that there is a reason to store graph information as text. Here is an example **string representation** that could be easily read and easily stored in a text file. It is essentially the adjacency list, with some string nomenclature. Nodes are indexed from 1 to n, and every node has a list neighbors (could be empty). Nodes and their lists are separated by commas (,), new neighbors by dots (.). Of course, this is arbitrary, but it is quite clear. The toy example representation is:

Four commas mean four nodes. Node 1 has one neighbor, namely node 2. Node 2 connects to node 3, node 3 has no neighbors (adjacent commas), and node 4 connects to itself. As an additional example, here

is the representation of an undirected triangle: "2.3,.1.3,.1.2,".

So there are many ways to write down and store a graph structure. Figure 2 shows one more example of all structures described above.

Figure 2: Most common graph representations: edge list, adjacency matrix, adjacency list and incidence matrix. Example of 7-node directed graph, with one self-loop. The string representation of this graph is ".2.3.4.5.6.7,.1,,.1,,.1,,.7,".

2.2 Routines

The functions in this section are conversion routines from one graph representation to another.

2.2.1 adj2adjL.m

Convert an adjacency matrix to an adjacency list.

```
% Converts an adjacency graph representation to an adjacency list.
% Note 1: Valid for a general (directed, not simple) graph.
% Note 2: Edge weights (if any) get lost in the conversion.
%
% INPUT: an adjacency matrix, nxn
% OUTPUT: cell structure for adjacency list: x{i_1}=[j_1,j_2 ...]
%
% GB: last updated, September 24 2012
```

2.2.2 adjL2adj.m

Convert an adjacency list to an adjacency matrix. This is the inverse function of adj2adjL.m 2.2.1

```
% Convert an adjacency list to an adjacency matrix.
%
INPUTS: adjacency list: length n, where L{i_1}=[j_1,j_2,...]
% OUTPUTS: adjacency matrix nxn
%
% Note: Assume that if node i has no neighbours, then L{i}=[];
% GB: last updated, Sep 25 2012
```

2.2.3 adj2edgeL.m

Convert an adjacency matrix to an edge list.

```
% Converts adjacency matrix (nxn) to edge list (mx3)
%
% INPUTS: adjacency matrix: nxn
% OUTPUTS: edge list: mx3
%
% GB: last updated, Sep 24, 2012
```

2.2.4 edgeL2adj.m

Converts edge list to adjacency matrix. This is the inverse routine of adj2edqeL.m 2.2.3.

```
% Converts edge list to adjacency matrix.
%
% INPUTS: edgelist: mx3, m - number of edges
% OUTPUTS: adjacency matrix nxn, n - number of nodes
%
% Note: information about nodes is lost: indices only (i1,...in) remain
% GB: last updated, Sep 25, 2012
```

2.2.5 adj2inc.m

Converts adjacency matrix to incidence matrix.

```
% Converts adjacency matrix to an incidence matrix
% Note: Valid for directed/undirected, simple/not simple graphs
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: incidence matrix: n x m (number of edges)
%
% Other routines used: isDirected.m
% GB: last updated, Sep 25 2012
```

2.2.6 inc2adj.m

Converts incidence matrix to adjacency matrix. This is the inverse function of adj2inc.m 2.2.5.

```
% Converts an incidence matrix representation to an
% adjacency matrix representation for an arbitrary graph.
%
INPUTs: incidence matrix, nxm (num nodes x num edges)
% OUTPUTs: adjacency matrix, nxn
%
% GB: last updated, Sep 25, 2012
```

2.2.7 adj2str.m

Converts adjacency matrix to a string graph representation.

2.2.8 str2adj.m

This is the reverse routine of adj2str.m 2.2.7. Converts a string graph representation to an adjacency matrix.

2.2.9 adjL2edgeL.m

Converts adjacency list to edge list.

```
% Converts adjacency list to an edge list.
%
% INPUTS: adjacency list
% OUTPUTS: edge list, mx3 (m - number of edges)
%
% GB: last updated, Sep 25 2012
```

2.2.10 edgeL2adjL.m

Converts an edge list to an adjacency list. This is the inverse routine of adjL2edqeL.m 2.2.9.

```
% Converts an edge list to an adjacency list.
%
% INPUTS: edge list, mx3, m - number of edges
% OUTPUTS: adjacency list
%
% Note: Information about edge weights (if any) is lost.
% GB: last updated, September 25, 2012
```

2.2.11 inc2edgeL.m

Converts incidence matrix to an edge list.

```
% Converts an incidence matrix to an edge list.
%
% Inputs: inc - incidence matrix nxm (number of nodes x number of edges)
% Outputs: edge list - mx3, m x (node 1, node 2, edge weight)
%
% Example: [-1; 1] <=> [1,2,1], one directed (1->2) edge
% GB: last updated, Sep 25 2012
```

2.2.12 adj2simple.m

Removes self-loops and multi-edges from an adjacency matrix. Also symmetrizes the matrix and removes edge weights to produce the matrix of the corresponding simple graph.

```
% Converts an adjacency matrix of a general graph to the adjacency matrix of a simple graph (symmetric, no loops, no double edges, no weights) %
% INPUTS: adjacency matrix, nxn
% OUTPUTs: adjacency matrix (nxn) of the corresponding simple graph %
% GB: last updated, Sep 25 2012
```

2.2.13 edgeL2simple.m

Removes self-loops and multi-edges from an edge list. Also symmetrizes the edge list and removes edge weights to produce the edge list of the corresponding simple graph.

```
% Convert an edge list of a general graph to the edge list of a
% simple graph (no loops, no double edges, no edge weights, symmetric)
%
% INPUTS: edgelist (mx3), m - number of edges
% OUTPUTs: edge list of the corresponding simple graph
%
% Note: Assumes all node pairs [n1,n2,x] occur once; if else see addEdgeWeights.m
% GB: last updated, Sep 25, 2012
```

2.2.14 addEdgeWeights.m

Adding edges that occur multiple times in an edge list; summing weights.

```
% Add multiple edges in an edge list
%
% INPUTS: original (non-compact) edge list
% OUTPUTS: final compact edge list (no row repetitions)
%
% Example: [1 2 2; 2 2 1; 4 5 1] -> [1 2 3; 4 5 1]
% GB: last updated, Sep 25 2012
```

3 Centrality measures. Distributions

3.1 Centrality, distributions over the nodes/edges

Betweenness centrality [11] is a centrality measure for a node which reflects how many paths go through that node. More precisely, if node k sits on a shortest path between some nodes i and j, then this path counts towards the *betweenness* of k. Suppose σ_{ij} is the number of shortest paths between i and j and $\sigma_{ij}(k)$ is the number of shortest paths between i and j that go through k. Then the betweenness of node k is defined as:

$$nodeBetw(k) = \sum_{\substack{all \ i, j \ s.t. \\ i \neq k \neq j}} \frac{\sigma_{ij}(k)}{\sigma_{ij}}$$
(3)

In practice, the betweenness is normalized by the number of node pairs $\binom{n}{2}$ (for directed graphs $2\binom{n}{2}$).

3.2 Routines

3.2.1 degrees.m

Returns the total degree, and in- and out-degree sequence of an arbitrary adjacency matrix. The **total degree** of a node is the number of all links adjacent to that node. The **in-degree** is the number of incoming links, and the **out-degree** is the number of outdoing links.

```
% Compute the total degree, in-degree and out-degree of a graph based on the adjacency matrix; % Note: Returns weighted degrees, if the input matrix is weighted % 
% INPUTS: adjacency matrix, nxn
% OUTPUTS: degree (1xn), in-degree (1xn) and out-degree (1xn) sequences % 
% Other routines used: isDirected.m 
% GB: last updated, Sep 26, 2012
```

3.2.2 rewire.m

Degree-preserving rewiring. A graph is rewired k number of times (edges are moved k times), while the degree of every node stays the same.

Other code on random rewiring by Maslov is available here http://www.cmth.bnl.gov/~maslov/matlab.htm.

```
% Degree-preserving random rewiring.
% Note 1: Assume unweighted undirected graph.
%
% INPUTS: edgelist, el (mx3) and number of rewirings, k (integer)
% OUTPUTS: rewired edgelist
%
% GB: last updated, Sep 26, 2012
```

3.2.3 rewiseAssort.m

Degree-preserving rewiring with increasing assortativity.

```
% Degree-preserving random rewiring
% Every rewiring increases the assortativity (pearson coefficient)
%
% Note 1: There are rare cases of neutral rewiring (coeff stays the same within numerical error)
% Note 2: Assume unweighted undirected graph
%
% INPUTS: edge list, el (mx3) and number of rewirings, k
% OUTPUTS: rewired edge list
%
% Other routines used: degrees.m
% GB: last updated, Sep 27 2012
```

3.2.4 rewiseDisassort.m

Degree-preserving rewiring with decreasing assortativity.

```
% Degree-preserving random rewiring.
% Every rewiring decreases the assortativity (pearson coefficient).
%
% Note 1: There are rare cases of neutral rewiring (pearson coefficient stays the same within numerical
% Note 2: Assume unweighted undirected graph.
%
% INPUTS: edge list, el and number of rewirings, k (integer)
% OUTPUTS: rewired edge list
% GB: last updated, Sep 27 2012
```

3.2.5 aveNeighborDeg.m

Computes the average degree of neighboring nodes for every vertex.

```
% Computes the average degree of neighboring nodes for every vertex.
% Note: Works for weighted degrees (graphs) also.
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: average neighbor degree vector, 1xn
%
% Other routines used: degrees.m, kneighbors.m
% GB: last updated, Sep 28, 2012
```

3.2.6 closeness.m

Computes the closeness centrality for all vertices.

```
% Computes the closeness centrality for every vertex: 1/sum(dist to all other nodes)
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: vector of closeness centralities, nx1
%
% Source: social networks literature (example: Wasserman, Faust, "Social Networks Analysis")
% Other routines used: simpleDijkstra.m
% GB: last updated, Sep 28, 2012
```

3.2.7 nodeBetweennessSlow.m

Returns the betweenness centrality of all vertices [11].

```
% This function returns the betweenness measure of all vertices.
% Betweenness centrality measure: number of shortest paths running though a vertex.
% Note: Valid for a general graph. Using 'number of shortest paths through a node' definition.
%
% INPUTS: adjacency or distances matrix (nxn)
% OUTPUTS: betweeness vector for all vertices (1xn)
%
% Other routines used: numNodes.m, shortestPathDP.m
% GB: Sep 28, 2012
```

4 Distances

4.0.8 Routines

4.0.9 simpleDijkstra.m

Computing distances from a given node to all other nodes in the graph, without remembering the paths.

```
% Implements a simple version of the Dijkstra shortest path algorithm
% Returns the distances from a single vertex to all others, doesn't save the path
%
% INPUTS: adjacency matrix, adj (nxn), start node s (index between 1 and n)
% OUTPUTS: shortest path length from start node to all other nodes, 1xn
%
% Note: Works for a weighted/directed graph.
% GB: last updated, September 28, 2012
```

5 Links

- Edward Scheinerman's Matgraph.
- Degree-preserving rewiring code by Sergei Maslov.

References

- [1] Milgram's small world experiment; source: http://en.wikipedia.org/wiki/Small_world_experiment, last accessed: Sep 23, 2012
- [2] D.J. de S. Price, Networks of scientific papers, Science, 149, 1965
- [3] D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks, Nature 393, 1998
- [4] S. Wasserman and K. Faust, Social network analysis, Cambridge University Press, 1994
- [5] Duncan J. Watts, Six degrees: The science of a Connected Age, W. W. Norton, 2004
- [6] M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167-256 (2003)
- [7] Alderson D., Catching the Network Science Bug: ..., Operations Research, Vol. 56, No. 5, Sep-Oct 2008, pp. 1047-1065
- [8] Tarjan, R. E. , Depth-first search and linear graph algorithms, SIAM Journal on Computing 1 (2): 146-160, 1972
- [9] Wikipedia description of Tarjan's algorithm; source: http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm, last accessed: Sep 23, 2012
- [10] Erdös, P. and Gallai, T. Graphs with Prescribed Degrees of Vertices [Hungarian]. Mat. Lapok. 11, 264-274, 1960.
- [11] Wikipedia article on node betweenness; source: http://en.wikipedia.org/wiki/Betweenness_centrality, last accessed: September 28, 2012