Mario Baseball Data Analysis

Iszy Hirschtritt Licht

12/1/2020

Load Libraries

```
library(tidyverse)
library(dplyr)
library(knitr)
library(weights)
library(scales)
library(gtargazer)
```

Load Data

```
#Load Data
mario_data <- read.csv("Mario_Baseball_Data.csv")</pre>
#Clean Data
mario_data <- mario_data %>%
 replace(is.na(.), 0) %>%
  rename(
    date = Date,
    player_name = Player.Name,
    played_game = Games.Played,
    at_bats = AB,
    hits = Hits,
    runs_batted_in = RBI,
    homeruns = HR,
    stolen_bases = SB,
    special_hitting = Special,
    innings_pitched = IP,
    hits_allowed = Hits.1,
    runs_allowed = Runs,
    strikeouts = SO,
    big_plays = Big.Plays,
    special_pitching = Special.1,
    player_type = Player.Type,
    captain = Capitan) %>%
  mutate(date = as.Date(date, "%m.%d.%y"),
         played_game = as.factor(played_game),
         captain = as.factor(captain))
```

Hiting Data Analysis

```
#Add Rate Data to Dataset
mario_data <- mario_data %>%
  group_by(player_name) %>%
  mutate(
    special_use_rate = sum(special_hitting)/sum(at_bats),
    batting_average = sum(hits)/sum(at_bats),
    era = (sum(runs_allowed)/sum(innings_pitched)*9),
    so9 = (sum(strikeouts)/sum(innings_pitched)*9),
    hip = sum(hits_allowed)/sum(innings_pitched))
#By Player Hitting
player_hitting <- mario_data %>%
  group_by(player_name) %>%
  summarise(batting_average = sum(hits)/sum(at_bats),
            special_use_rate = sum(special_hitting)/sum(at_bats))
kable(player_hitting, align = "lcc", col.names = c("Player", "Batting Average", "Special Use Rate"),
      digits = 3)
```

Player	Batting Average	Special Use Rate		
Baby Bowser	0.147	0.059		
Baby Luigi	0.176	0.059		
Baby Mario	0.276	0.000		
Birdo	0.343	0.260		
Boo	0.343	0.000		
Bowser	0.332	0.035		
Daisy	0.345	0.152		
Diddy Kong	0.053	0.105		
DK	0.409	0.100		
Drybones	0.286	0.006		
Flying Goomba	0.000	0.000		
Flying Koopa	0.325	0.007		
Goomba	0.316	0.000		
Grandpapa Toad	0.438	0.000		
Hammer/Etc. Bro	0.380	0.000		
King Boo	0.209	0.015		
Koopa	0.313	0.010		
Luigi	0.336	0.043		
Magikoopa	0.218	0.007		
Mario	0.454	0.430		
Monty	0.194	0.000		
Mumbo	0.248	0.000		
Noki	0.234	0.065		
Peach	0.254	0.099		
Petey	0.295	0.000		
Shy Guy	0.171	0.000		
Toad	0.391	0.000		
Toadette	0.211	0.000		
Waluigi	0.333	0.190		
Wario	0.182	0.091		
Yoshi	0.346	0.132		

Table 2: Hitting Stats by Player Type

Player Type	Total AB	Total Hits	Total RBIS	Total HR	Total SB	Batting Average	Special Use	SB/Hits
Balance	1798	646	195	6	61	0.359	0.144	0.094
Power	1368	448	181	43	29	0.327	0.031	0.065
Speed	485	136	36	2	17	0.280	0.089	0.125
Technique	1537	504	161	4	41	0.328	0.032	0.081

Table 3: Are Captains Better Hitters?

Captain Status	Batting Average
0	0.335
1	0.300

```
#Running Batting Averages
mario_data <- mario_data %>%
  mutate(
    cum_at_bats = cumsum(at_bats),
    cum_hits = cumsum(hits),
   running_avg = cum_hits / cum_at_bats) %>%
 replace(is.na(.), 0)
#Plot Running Batting Averages
king_toad <- mario_data %>%
  filter(player_name == "Grandpapa Toad")
waluigi <- mario_data %>%
  filter(player_name == "Waluigi")
peach <- mario_data %>%
  filter(player_name == "Peach")
toad <- mario_data %>%
 filter(player_name == "Toad")
petey <- mario_data %>%
 filter(player_name == "Petey")
mario <- mario_data %>%
 filter(player_name == "Mario")
#Plot of 6 Players
ggplot() +
  geom_line(king_toad, mapping = aes(x = cum_at_bats,
                                     y = running_avg,
                                     color = "King Toad")) +
  geom_line(waluigi, mapping = aes(x = cum_at_bats,
                                   y = running_avg,
                                   color = "Waluigi")) +
  geom_line(peach, mapping = aes(x = cum_at_bats,
                                 y = running_avg,
                                 color = "Peach")) +
  geom_line(toad, mapping = aes(x = cum_at_bats,
                                y = running_avg,
                                color = "Toad")) +
  geom_line(petey, mapping = aes(x = cum_at_bats,
                                 y = running_avg,
                                 color = "Petey")) +
  geom_line(mario, mapping = aes(x = cum_at_bats,
                                y = running_avg,
                                color = "Mario")) +
  scale_x_continuous(breaks = pretty_breaks(n = 20)) +
  scale_y_continuous(breaks = pretty_breaks(n = 10)) +
  labs(title = "Running Batting Averages for Mario Baseball",
       subtitle = "Running Batting Average Across At Bats",
       x = "At Bats",
       y ="Batting Average") +
  scale_colour_discrete("Players") +
  theme_fivethirtyeight()
```


Running Batting Averages for Mario Baseball Random Set of Player

Warning: The shape palette can deal with a maximum of 6 discrete values because ## more than 6 becomes difficult to discriminate; you have 31. Consider ## specifying shapes manually if you must have them.

Running Batting Averages for All Mario Baseball Players


```
#Leagewide running average
leaguewide_data <- mario_data %>%
  group_by(date) %>%
  summarise(
    total_hits = sum(hits),
    total_at_bats = sum(at_bats),
    total_average = sum(total_hits)/sum(total_at_bats)) %>%
  mutate(
    gameday = row_number(),
    cum_at_bats = cumsum(total_at_bats),
    cum_hits = cumsum(total_hits),
    running_avg = cum_hits / cum_at_bats)
#Leaguewide Average Plot
ggplot() +
  geom_line(leaguewide_data, mapping = aes(x=gameday, y=running_avg)) +
  labs(title = "Running Leaguewide Batting Average for Mario Baseball",
       x = "At Bats",
       y ="Batting Average")
```

Running Leaguewide Batting Average for Mario Baseball


```
#Leaguewide Hits plot
ggplot(leaguewide_data, mapping = aes(x=gameday, y=total_hits)) +
  geom_point() +
  geom_smooth(method = "loess") +
   labs(title = "Running Leaguewide Hits for Mario Baseball",
        x = "Gamedays",
        y = "Total Hits")
```

Running Leaguewide Hits for Mario Baseball

Table 4: Regression of Batting Average on Player Type with Controls

	Dependent variable:
	batting_average
Constant	0.306*** (0.004)
player_typePower	$-0.040^{***} (0.005)$
player_typeSpeed	$-0.131^{***} (0.005)$
player_typeTechnique	$-0.003 \ (0.005)$
special_use_rate	$0.253^{***} (0.020)$
captain1	$-0.011 \ (0.017)$
Observations	2,170
\mathbb{R}^2	0.354
Adjusted R^2	0.353
Residual Std. Error	0.083 (df = 2164)
F Statistic	$237.401^{***} (df = 5; 2164)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Pitching Data Analysis

Table 5: ERA for pitchers with 40+ Innings Pitched

Player	ERA
Boo	4.388
Flying Koopa	4.130
Koopa	3.207
Waluigi	4.750

```
player_era_2 <- mario_data %>%
  filter(sum(innings_pitched) >= 10 & sum(innings_pitched) < 40) %>%
  group_by(player_name) %>%
  summarise(era = (sum(runs_allowed)/sum(innings_pitched)*9))

kable(player_era_2, align = "lc", col.names = c("Player", "ERA"),
        caption = "ERA for pitchers with 10-40 Innings Pitched",
        digits = 3)
```

Table 6: ERA for pitchers with 10-40 Innings Pitched

Player	ERA
Baby Luigi	3.378
Daisy	4.670
Diddy Kong	2.544
DK	7.200
Peach	6.752
Toad	4.627

```
#Player Type Pitching
player_type_pitching <- mario_data %>%
  group_by(player_type) %>%
  summarise(
    total_innings = sum(innings_pitched),
    era = (sum(runs_allowed)/sum(innings_pitched)*9),
    total_strikeouts = sum(strikeouts),
    total_big_plays = sum(big_plays))

kable(player_type_pitching, align = "lcccc",
    col.names = c("Player Type", "Innings", "ERA", "Strikeouts", "Big Plays"),
    caption = "Pitching and Fielding Stats by Player Type",
    digits = 3)
```

Table 7: Pitching and Fielding Stats by Player Type

Innings	ERA	Strikeouts	Big Plays
460.597	3.556	407	146
34.650	9.091	25	81
71.600	3.142	42	41
687.890	4.475	579	62
	460.597 34.650 71.600	460.597 3.556 34.650 9.091 71.600 3.142	460.597 3.556 407 34.650 9.091 25 71.600 3.142 42

```
#Running Pitching Stats
mario_data <- mario_data %>%
  mutate(
    cum_runs_allowed = cumsum(runs_allowed),
    cum_innings = cumsum(innings_pitched),
    running_era = (cum_runs_allowed / cum_innings)*9) %>%
  replace(is.na(.), 0)
waluigi <- mario_data %>%
  filter(player_name == "Waluigi")
flying_koopa <- mario_data %>%
  filter(player_name == "Flying Koopa")
koopa <- mario_data %>%
  filter(player_name == "Koopa")
boo <- mario data %>%
  filter(player_name == "Boo")
#Plot Running Pitching
ggplot() +
  geom_line(koopa, mapping = aes(x = cum_innings, y = running_era, color = "Koopa")) +
  geom_line(boo, mapping = aes(x = cum_innings, y = running_era, color = "Boo")) +
  geom_line(flying_koopa, mapping = aes(x = cum_innings, y = running_era, color = "Flying Koopa")) +
  geom_line(waluigi, mapping = aes(x = cum_innings, y = running_era, color = "Waluigi")) +
  scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
  scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
  labs(title = "Running ERA for Mario Baseball",
       subtitle = "Players with 40+ Innings Pitched",
       x = "Innings Pitched",
       y ="ERA") +
  scale_colour_discrete("Players")
```

Running ERA for Mario Baseball

Players with 40+ Innings Pitched


```
#Leaguewide Pitching
leaguewide_pitching <- mario_data %>%
  group by(date) %>%
  summarise(
   total innings = sum(innings pitched),
   total_hits_allowed = sum(hits_allowed),
   total_runs_allowed = sum(runs_allowed),
   total_strikeouts = sum(strikeouts),
   total_era = ((sum(runs_allowed)/sum(innings_pitched))*9)
   ) %>%
 mutate(
   gameday = row_number(),
   cum_innings = cumsum(total_innings),
    cum_runs_allowed = cumsum(total_runs_allowed),
   cum_strikeouts = cumsum(total_strikeouts),
   running_so_9 = ((cum_strikeouts/cum_innings)*9),
   running_era = ((cum_runs_allowed / cum_innings)*9))
#Leaguewide ERA Plot
ggplot() +
  geom_line(leaguewide_pitching, mapping = aes(x=gameday,
                                               y=running_era,
                                               color = "ERA")) +
  geom_line(leaguewide_pitching, mapping = aes(x=gameday,
                                               y=running_so_9,
                                               color = "SO/9")) +
  scale_y_continuous("running_era", sec.axis = sec_axis(~ . * 1, name = "running_so_9")) +
  labs(title = "Running Pitching Stats for Mario Baseball",
      subtitle = "ERA and SO/9",
      x = "Gameday") +
   scale_colour_discrete("Pitching Stat")
```

Running Pitching Stats for Mario Baseball ERA and SO/9

write.csv(mario_data,'Mario_Baseball_Data_update.csv')
write.csv(leaguewide_data,'leaguewide_data.csv')