Программа минимум по электродинамике

Записать формулы и построить графики (без вывода), объяснить используемые в них обозначения: дать требуемые определения

- 1) Запись функции, определяющей зависимость полей и векторных потенциалов гармонической плоской волны в линии передачи от времени t и продольной координаты z. Понятия частоты, временного периода, продольного волнового числа, длины волны, фазовой и групповой скорости.
- 2) Волновое уравнение для векторного потенциала в отсутствие источников при произвольной и гармонической зависимости от времени. Дифференциальное уравнение для функций поперечных координат $\varphi^{(e)}$ и $\varphi^{(m)}$. Понятие поперечного волнового числа.
- 3) Понятие о ТЕ, ТМ и ТЕМ волнах. Импедансная связь поперечных компонент полей. Определение поперечного волнового импеданса.
- 4) Граничные условия для полей и функций $\varphi^{(e)}$ и $\varphi^{(m)}$ в линиях передачи с идеально проводящими границами. Математическая формулировка задачи отыскания собственных волн различных типов в идеальной линии.
- 5) Дисперсионное уравнение для волн в идеальных линиях. Понятие критической частоты и критической длины волны. Графики зависимости полей от продольной координаты в различные моменты времени при частотах, больших или меньших критической. Зависимости длины волны, фазовой и групповой скорости в линии передачи от частоты.
- 6) В каких линиях могут существовать главные (ТЕМ) волны? Поля ТЕМ волны в коаксиальной линии.
- 7) Спектр поперечных волновых чисел прямоугольного волновода. Низшая мода (поперечное волновое число, графики поля, картина силовых линий). Низшая мода круглого волновода (поперечное волновое число, картина силовых линий).
- 8) Причины затухания волн в линиях передачи. Описание затухания, обусловленного потерями энергии в заполняющей среде. Графики зависимости поля в линии передачи с потерями от продольной координаты в различные моменты времени.

- 9) Описание главных волн в линиях передачи в терминах тока и напряжения: определения величин тока и напряжения, погонной емкости и индуктивности, определения волнового сопротивления, импеданса нагрузки, импеданса в любом сечении линии с произвольной нагрузкой на конце.
- 10) Коэффициент отражения волны от нагрузки на конце линии. Понятие согласования линии с нагрузкой.
- 11) Спектр собственных частот идеального прямоугольного резонатора. Низшая мода прямоугольного резонатора (собственная частота, структура поля).
- 12) Причины затухания колебаний в реальных резонаторах. Описание затухания, обусловленного потерями энергии в заполняющей среде. График зависимости поля собственного колебания в реальном резонаторе от времени
- 13) Представление полей, создаваемых в волноводе заданными сторонними токами, в виде суперпозиции полей собственных мод (общий вид формул возбуждения волноводов)
- 14) Представление полей, создаваемых в резонаторе заданными сторонними токами, в виде суперпозиции полей собственных колебаний (общий вид формул возбуждения резонатора). Резонансные свойства полей.
- 15) Способы возбуждения волноводов и резонаторов при помощи штыря и петли.
- 16) Определения дифференциального и полного сечений рассеяния тела. Выражение для амплитуды поля и плотности потока энергии рассеянной волны в дальней зоне через дифференциальное сечение рассеяния.
- 17) Условие применимости приближения геометрической оптики в задачах дифракции.

Задачи № 10.1 (а), 10.2, 10.4(а,б), 10.5(а,б), 10.7, 10.8, 10.16, 10.18(6), 10.19, 10.22, 10.23, 10.31(а,б), 10.33 (резонатор без плазмы), 10.35(а), 10.36, 10.38, 10.48, 11.1(1,2,3) (В.Б. Гильденбург, М.А. Миллер, Сборник задач по электродинамике, 2001 г.).

Для плоской гармонической волны (TEM) функция, определяющая зависимость полей, задается следующим образом

$$\vec{A}^e = \varphi^e(\vec{r}_\perp)e^{-ihz}\vec{z}_0$$

Где \vec{A}^e – векторный потенциал поля, а $\varphi^e(\vec{r}_\perp)$ называется поперечной волновой функцией. Поля \vec{E} и \vec{H} определяются следующим образом

$$\vec{H} = \frac{1}{\mu} \operatorname{rot} \vec{A}^e$$

$$\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}^e}{\partial t} - \nabla \varphi$$

 Γ де φ – скалярный потенциал поля.

Используя условие калибровки Лоренца

$$\operatorname{div} \vec{A}^e + \frac{\varepsilon \mu}{c} i\omega \varphi = 0$$

Получим выражения для нахождения полей \vec{E} и \vec{H} в случае гармонической волны:

$$\vec{H} = \frac{1}{\mu} \operatorname{rot} \vec{A}^e$$

$$\vec{E} = \frac{1}{ik_0 \varepsilon \mu} (\nabla \operatorname{div} + k^2) \vec{A}^e$$

$$k_0 = \frac{\omega}{c}, \quad k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Понятие частоты ω – равна количеству повторений или возникновения событий (процессов) в единицу времени.

Понятие временного периода $T=\frac{2\pi}{\omega}$ – время, за которое совершается полное колебание.

Понятие продольного волнового числа $h=\frac{2\pi}{\lambda}$ – волновым числом называется быстрота роста фазы волны по пространственной продольной координате.

Понятие длины волны λ – пространственный период колебаний. Расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе.

Понятие фазовой v_{Φ} и групповой скорости $v_{\rm rp}$. Фазовая скорость – скорость перемещения поверхности постоянной фазы. Групповая скорость – скорость перемещения квазимонохроматического пакета.

$$v_{\Phi} = \frac{\omega}{h}, \quad v_{\Gamma p} = \frac{\partial \omega}{\partial h} \Big|_{\omega = \omega_0}$$

Где ω_0 – несущая частота группового пакета.

Волновое уравнение для векторного потенциала в случае произвольной зависимости от времени и отсутствия сторонних источников

$$\Delta \vec{A} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = 0$$

Волновое уравнение для векторного потенциала в случае гармонической зависимости от времени и отсутствия сторонних источников

$$\Delta \vec{A} + k^2 \vec{A} = 0$$

$$\frac{\partial}{\partial t} \to i\omega, \quad k^2 = \frac{\omega^2}{c^2} \varepsilon \mu$$

Дифференциальное уравнение для функций поперечных координат $\varphi^{(e)}$ и $\varphi^{(m)}$. Понятие поперечного волнового числа.

$$\vec{A}^e = \varphi^e(\vec{r}_\perp)e^{-ihz}\vec{z}_0$$

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \Delta_{\perp} + \frac{\partial^2}{\partial z^2}$$

– для декартовой системы координат.

$$\Delta A_z^e + k^2 A_z^e = \Delta_\perp \varphi^e + (k^2 - h^2) \varphi^e = 0$$

Тогда дифференциальное уравнение для функций поперечных координат $\varphi^{(e)}$ и $\varphi^{(m)}$ выглядит следующим образом

$$\Delta_{\perp} \varphi^{(e,m)} + \varkappa^2 \varphi^{(e,m)} = 0$$

 Γ де \varkappa – поперечное волновое число.

Если функции $\varphi^{(e)}$ и $\varphi^{(m)}$ удовлетворяют двумерному уравнению Гельмгольца, то поля удовлетворяют уравнению Максвелла.

Используем выражения для полей через векторный потенциал

$$\vec{H} = \frac{1}{\mu} \operatorname{rot} \vec{A}^e$$

$$\vec{E} = \frac{1}{k_0 \varepsilon \mu} (\nabla \operatorname{div} + k^2) \vec{A}^e$$

Вычислим $\nabla div \vec{A}^e$ и $rot \vec{A}^e$ при условии $\vec{A}^e = \varphi^e(\vec{r}_\perp) e^{-ihz} \vec{z}_0$

$$\operatorname{div} \vec{A}^e = -ih\varphi^e(\vec{r}_\perp)e^{-ihz}$$

$$\nabla \operatorname{div} \vec{A}^e = (-h^2\varphi^e\vec{z}_0 - ih\nabla_\perp\varphi^e)e^{-ihz}$$

$$\operatorname{rot} \vec{A}^e = [\nabla A_z^e, \vec{z}_0] = [\nabla_\perp\varphi^e, \vec{z}_0]e^{-ihz}$$

Тогда получим следующие выражения для комплексных амплитуд полей ТМ волны

$$e^{-ihz} \cdot \begin{cases} E_z = \frac{\varkappa^2}{k_0 \varepsilon \mu} \varphi^e(\vec{r}_\perp) \\ \vec{E}_\perp = -\frac{h}{k_0 \varepsilon \mu} \nabla_\perp \varphi^e(\vec{r}_\perp) \\ \vec{H}_\perp = \frac{1}{\mu} [\nabla_\perp \varphi^e(\vec{r}_\perp, \vec{z}_0)] \\ H_z = 0 \end{cases}$$

 ${
m TM}$ - поперечная магнитная волна. Магнитное поле чисто поперечно пути распространения, но поле $\vec{E}=\vec{E}_{\parallel}+\vec{E}_{\perp}$ имеет продольную и поперечную составляющую.

Уравнения Максвелла симметричны относительно полей, но мы получили неравноправные выражения для векторов. Это объясняется тем, что мы нашли одно из решений. Воспользовавшись принципом двойственности $\vec{E} \to \vec{H}$, $\vec{H} \to -\vec{E}$, можно получить выражения для комплексных амплитуд полей ТЕ волны.

$$e^{-ihz} \cdot \begin{cases} H_z = \frac{\varkappa^2}{k_0 \varepsilon \mu} \varphi^e(\vec{r}_\perp) \\ \vec{H}_\perp = -\frac{h}{k_0 \varepsilon \mu} \nabla_\perp \varphi^e(\vec{r}_\perp) \\ \vec{E}_\perp = -\frac{1}{\varepsilon} [\nabla_\perp \varphi^e(\vec{r}_\perp, \vec{z}_0)] \\ E_z = 0 \end{cases}$$

функция φ не обязана быть такой же, поэтому изменяется верхний индекс на m, эта функция также должна удовлетворять уравнению Гельмгольца

$$\Delta_{\perp}\varphi^m + \varkappa^2\varphi^m = 0$$

Таким образом для системы уравнений Максвелла возможны два решения TM и TE волны. Но есть случай, когда поля чисто поперечны это случай TEM волны. Когда $\varkappa=0$, то есть k=h, продольные компоненты магнитного и электрического полей отсутствуют это и есть TEM волна.

$$e^{-ihz} \cdot \begin{cases} H_z = E_z = 0\\ \vec{E}_{\perp} = -\frac{1}{\varepsilon \mu} \nabla_{\perp} \varphi(\vec{r}_{\perp})\\ \vec{H}_{\perp} = \frac{1}{\mu} [\nabla_{\perp} \varphi(\vec{r}_{\perp}, \vec{z}_0)] \end{cases}$$

arphi – поперечная волновая функция, удовлетворяющая уравнению $\Delta arphi = 0$. Из формул выше видно, что поперечные компоненты полей удовлетворяют импедансному соотношению

$$ec{E}_{\perp}=\eta_{\perp ext{ iny B}}[ec{H}_{\perp},ec{z}_0]$$

где $\eta_{\perp_{\rm B}}$ называется поперечным волновым сопротивлением

$$\eta_{\perp_{
m B}} = \sqrt{rac{\mu}{arepsilon}} \left(rac{k}{h}
ight)^{\pm 1}$$

«+» – соответствует волне типа TE, а «-» – волне типа TM. Для TEM волны $\eta_{\perp \rm B} = \sqrt{\frac{\mu}{\varepsilon}}$

Рис. 1. Линия передачи

Поперечные волновые функции удовлетворяют двумерному уравнению Гельмгольца

$$\Delta_{\perp} \varphi^{(e,m)} + \varkappa^2 \varphi^{(e,m)} = 0$$

На границе проводящих стенок справедливы следующие граничные условия

$$E_{\tau} = 0|_{S}, \quad B_{n} = 0|_{S}$$

Рассмотрим граничные условия для функций $\varphi^{(e,m)}$ для различных типов волн.

TM-волна. φ^e

 $E_z=0,\quad, E_{\perp au}=0$ на границе. $E_z\sim arphi^e(\vec{r}\perp)\Rightarrow arphi^e|_S=0$

$$E_z \sim \varphi^e(\vec{r}\perp) \Rightarrow \varphi^e|_S = 0$$

Граничное условие для ТМ волны.

 TE -волна. φ^m

 $E_{\perp \tau} = 0$ на границе.

$$E_{\perp \tau} \sim ([\nabla \varphi^m(\vec{r} \perp), \vec{z}_0], \vec{\tau}) \Rightarrow \frac{\partial \varphi^e}{\partial n} \Big|_S = 0$$

Граничное условие для ТЕ волны.

 ${
m TEM}$ -волна. φ

$$\vec{E}_{\perp} \sim \nabla \varphi$$

$$\frac{\partial \varphi}{\partial n}\Big|_{S} = 0 \Rightarrow \varphi|_{S} = \text{const}$$

Граничное условие для ТЕМ волны.

Важно, что эта const может быть разной на разных проводниках (пример коаксиальная линия).

Математическая формулировка задачи описания волн в линии передач.

ТМ

$$\Delta_\perp arphi^e + \varkappa^2 arphi^e = 0$$
 $arphi^e|_L = 0$ Условие Дирихле.

$$\Delta_{\perp}\varphi^m + \varkappa^2\varphi^m = 0$$

$$\frac{\partial \varphi}{\partial n}|_{L}=0$$
 Условие Неймана.

 $\frac{\Delta_\perp \varphi^m + \varkappa^2 \varphi^m = 0}{\frac{\partial \varphi^m}{\partial n}}|_L = 0 \text{ Условие Неймана.}$ Где \vec{n} – нормаль к контуру L на границе поперечного сечения.

TEM

$$\Delta_{\perp}\varphi = 0$$

$$\varphi|_{L_i} = C_i$$

Таким образом описание волн в линии передач сводится к двумерной задачи Гельмгольца с следующими граничными условиями на контуре, охватывающим поперечное сечение волновода.

Дисперсионное соотношение

$$\varkappa^2 = k^2 - h^2 = \frac{\omega^2}{c^2} \varepsilon \mu - h^2$$

Где \varkappa – поперечное волновое число, а h - продольное волновое число.

Рис. 2. Зависимость реальной части поперечного волнового числа от частоты

Любая мода в линии передачи характеризуется поперечным волновым числом, а поперечное волновое число определяет продольное.

Можем ввести критическую длину волны (продольное волновое число h равно нулю):

$$\varkappa^{2} = \frac{\omega^{2}}{c} \varepsilon \mu$$

$$\omega_{cr} = \frac{\varkappa c}{\sqrt{\varepsilon \mu}}$$

$$\lambda = \frac{2\pi c}{\omega_{cr}} = \frac{2\pi}{\varkappa \sqrt{\varepsilon \mu}}$$

 $\omega < \omega_{cr}$ дисперсионное уравнения не имеет действительных решений – режим нераспространяющейся волны.

При $\omega > \omega_{cr}$ – режим распространяющейся волны.

Если волна бежит вправо, то h>0; если бежит влево, то h<0

$$Re\vec{E}, Re\vec{H} \sim \cos(\omega t - hz)$$

При $\omega < \omega_{cr}$

$$h = \pm i|h|$$

$$ReE_x \sim \cos(\omega t + \varphi_0) \exp\{\mp |h|z\}$$

Рис. 3. Распространение волны (h > 0)

Рис. 4. Режим нераспространения (h < 0)

Рис. 5. Экспоненциальное нарастание амплитуды (при h < 0)

Бегучести нет. Зависимость экспонентальная

Картинка зависит от способа создания волны, то есть у экспоненты « +» или «-». В зависимости от того, где источник можем сказать, куда бежит волна. То есть определить знак.

Источник может порождать несколько мод, но не все, а какие-то конкретные. Изобразим числовую ось. Пусть задана ω , а то есть $k=\frac{\omega}{c}\sqrt{\varepsilon\mu}$

Если $k<\varkappa_1$ - все моды нераспространяющиеся.

Когда k перейдёт через \varkappa_1 появится низшая мода.

Когда перейдём через \varkappa_2 появится ещё одна критическая частота.

Рис. 6. Моды в линии передачи с источником

!!Можно дополнить описание числовой прямой!!

Кинематические соотношения

Определяют кинематические параметры волны.

1) Временной период

$$T = \frac{2\pi}{\omega}$$

2) Длина волны в волноводе (подразумевают линию передачи или трубу, когда говорят волновод)

$$\lambda_v = \frac{2\pi}{h} = \frac{2\pi}{\sqrt{k^2 - \varkappa^2}} = \frac{2\pi}{k} \frac{1}{\sqrt{1 - \frac{\varkappa^2}{k^2}}} = \frac{\lambda_0}{\sqrt{1 - \frac{\omega_c r^2}{\omega}}} > \lambda_0$$

Когда $\omega \to \omega_{cr} \ \lambda_v \to \infty$

 λ_0 - длина волны в пространстве без волновода в той же среде.

 λ_v - пространственный период.

3) Фазовая скорость - скорость перемещения плоскости постоянной фазы.

Поверхность постоянной фазы - это когда фаза константа.

$$faza = \omega t - hz + \varphi_0$$

При данном времени можно найти координату:

$$z = \frac{\omega t + \varphi_0}{h}$$

Координата будет перемещаться со скоростью:

$$v_f = \frac{\omega}{h}$$

$$v_f = \frac{\omega}{\sqrt{k^2 - \varkappa^2}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{k^2}{\varkappa}}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{\omega_{cr}^2}{\omega}^2}} > v_f^{(0)}$$

$$v_f^{(0)} = \frac{c}{\varepsilon \mu} = \frac{\omega}{k}$$

Фазовая скорость может быть больше скорости света.

4) Групповая скорость - скорость перемещения квазимонохроматического волнового пакета.

Рис. 7. Квазимонохроматический волновой пакет

Сигнал характеризуется высокочастотным заполнением и огибающей.

По сути это радиоимпульс.

Пакет движется со скоростью $v_{gr} = \frac{\partial \omega}{\partial k}|_{\omega=\omega_0}$ - это при малом или отсутствующем поглощении. (Это в пространстве, а не в линии передачи).

При большом поглощении это понятие теряет смысл.

По мере перемещения по волноводу форма сигнала будет меняться.

 $v_{gr}=rac{\partial \omega}{\partial h}|_{\omega=\omega_0}$ - формула для волновода.

$$k^2 = h^2 + \varkappa^2 \tag{1}$$

$$k = -\frac{\omega}{c}\sqrt{\varepsilon\mu} \tag{2}$$

Берём дифференциал от правой и левой части. и не зависит от частоты.

$$2kdk = 2hdh$$

$$\frac{\partial \omega}{\partial h} = \frac{c}{\sqrt{\varepsilon \mu}} \frac{h}{k}$$

$$h = +\sqrt{\frac{\omega^2}{c^2} \varepsilon \mu - \varkappa_n^2}$$

$$\frac{\partial \omega}{\partial h} = \frac{c}{\sqrt{\varepsilon \mu}} \frac{c}{\omega \sqrt{\varepsilon \mu}} \sqrt{\frac{\omega^2}{c^2} \varepsilon \mu - \varkappa_n^2} = \frac{v_f^{(0)^2}}{v_f}$$

$$v_f = \frac{\omega}{h}$$

$$v_f^{(0)} = \frac{c}{\omega \sqrt{\varepsilon \mu}}$$

$$v_f v_{gr} = v_f^{(0)2}$$

$$v_{gr} = v_f^{(0)} \sqrt{1 - \frac{\omega_{cr}^2}{\omega}}$$

Всё это справедливо для сред без временной дисперсии.

$$\varepsilon \neq f(\omega), \mu \neq f(\omega)$$

 $v_{gr} < c$ - она несёт информацию.

Рис. 8. Распространение волнового пакета

Главные (TEM) волны в линиях передачи с идеальными границами У TEM-волн поперечное волновое число $\varkappa = 0$:

$$\varkappa = 0 \Rightarrow h = k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Поля таких воли выражаются следующим образом через функцию φ :

$$ec{E}_{\perp} = -rac{1}{\sqrt{arepsilon\mu}}
abla_{\perp}arphi$$
 $ec{H}_{\perp} = -rac{1}{\mu}[
abla_{\perp}arphi,ec{z}_{0}]$

При этом выполняются **граничные условия**: на каждом из проводников (допустим, есть набор проводников, вдоль которых распространяется волна)

$$\varphi|_{l_i} = C_i,$$

причем константа не обязана быть одна для всех проводников.

Рис. 9. Набор проводников в задаче

Внутренняя задача

Рис. 10. Случай одного проводника

Пусть у нас есть только один проводник, в котором есть цилиндрическая полость (рис. 10). Рассмотрим внутреннюю задачу, т.е. распространение волны внутри цилиндрической полости. Оказывается, для граничного условия $\varphi_{\perp}|_{l}=C_{1}$ существует только тривиальное решение $\varphi_{\perp}=C_{1}$. Для доказательства необходимо воспользоваться теоремой и минимуме и максимуме для гармонической функции.

Внешняя задача

Зададимся вопросом о решении той же задачи:

$$\Delta_{\perp}\varphi = 0, \quad \varphi|_l = \text{const}$$

Только теперь будем рассматривать её в области вне проводника

Для начала рассмотрим задачу попроще, поле нити (рис. 11). Её решение известно:

$$\Delta_{\perp}\varphi = 0 \quad \Rightarrow \quad \varphi \sim \ln r$$

Характер убывания полей здесь $E_r \sim \frac{1}{r}$, а для магнитного поля в силу импедансного соотношения $\frac{E_r}{H_{\wp}} = \eta_{\perp {\scriptscriptstyle B}} = 1, \quad H_{\varphi} \sim \frac{1}{r}$:

$$E_r = H_{\varphi} \sim \frac{1}{r}$$

Рис. 11. Поле бесконечной проводящей нити

Посмотрим на поведение полей при $r \to \infty$. Говорят, нужно поставить граничные условия (или закон убывания) на бесконечности. Чем плох закон $\frac{1}{r}$?

Посчитаем средний по времени поток энергии через поперечное сечение, в котором распространяется волна. Сечение бесконечно, за исключением конечной площади проводника.

Сначала вычислим вектор Пойнтинга (средний по времени и в проекции на z):

$$\overline{S}_z = \frac{c}{8\pi} \text{Re}(E_r \cdot H_{\varphi}^*) \sim \frac{1}{r^2}$$

$$\Pi = \iint_{\Sigma} \overline{S}_z ds \sim \iint_{\Sigma} \frac{1}{r^2} (2\pi r \, dr) \sim \int_{a}^{\infty} = \ln \frac{\infty}{a} = \infty$$

Интеграл расходится на бесконечности. Говорят, что расходимость носит логарифмический характер. Получили бесконечную мощность волны: такую волну невозможно создать реальным источником — волна не удовлетворяет критерию энергетической реализуемости.

Можно сделать важный вывод: **вдоль одиночного проводника ТЕМ-волна с конечной энергией распространятся не может**. Распространение возможно, если количество проводников будет больше одного. Например, в линии из двух проводников (рис. 12) ТЕМ-волна уже возможна.

Рис. 12. Закрытая линия из двух проводников

Можно модифицировать задачу с нитью (рис. 13):

Рис. 13. Поле двухпроводной линии

В поперечном разрезе это поле диполя, а оно спадает быстрее, $\sim \frac{1}{r^2}$. Тогда

$$E_{\perp} \sim H_{\perp} \sim \frac{1}{r^2} \quad \Rightarrow \quad \overline{S}_z \sim \frac{1}{r^4}, \quad \Pi \sim \int\limits_{L_{\mathrm{xapakt}}}^{\infty} \frac{1}{r^3} \, \mathrm{d}r$$

Мощность волны конечна, значит, в модифицированной задаче ТЕМ-волна энергетически реализуема.

Конечный вывод: ТЕМ-волна в идеальной линии передачи возможна, если число проводников ≥ 2 .

Например, в коаксиальной линии (рис. 14) ТЕМ-волна возможна.

Рис. 14. Поле в коаксиальном кабеле

Зададимся вопросом: возможны ли в такой линии ТЕ и ТМ волны? Сформулируем утверждение, пока без доказательства: в открытых линиях передачи ТЕ и ТМ волны не существуют.