# Primeri napredne uporabe strojnega učenja

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

Maj 2019

Prosojnice uporabljajo slikovne materiale iz članka DOI:10.1126/science.aab3050 in vadnice snap.stanford.edu/deepnetbio-ismb/

# Pregled vsebine

## Hitro učenje razumljivih konceptov

- Širši nabor nalog strojnega učenja
- Strojno učenje Bayesovih programov

## Strojno učenje in omrežja

- Vložitve vozlišč omrežja
- Rekonstrukcija omrežij

# Omejitvi strojnega učenja

## Učenje iz peščice primerov

- Strojno učenje rabi tisoče ali milijone primerov
- Ljudje se lahko naučimo iz enega primera

#### Učenje strukture primerov in konceptov

- Strojno učenje večinoma uporablja vektorski zapis primerov
- Vektorski zapis nima strukture
- Ljudje razumemo (hierarhično) strukturo primerov
- Ljudje se iz strukture primerov naučimo koncepte

# Klasična naloga strojnega učenja: klasifikacija

## Razvrščanje primerov v razrede



# Tvorjenje novih primerov

Iz obstoječih primerov tvorimo nove primere



# Identifikacija konceptov

## Razčlenjevanje primerov v elemente in relacije



## Načrtovanje/Kreiranje novih konceptov

Iz obstoječih konceptov tvorimo nove koncepte



Todorovski, UL-FU, IJS-E8

## Razlika med konceptom in primerom

splošni koncept/tip črke trije specifični primeri (tipa) črke









# Hierarhično urejena knjižnica konceptov (tipov črk)

Od specifičnih prvin do splošnih konceptov (delov sestavljenih z relacijami)



4□▶ 4□▶ 4∃▶ 4∃▶ ∃ 90

# Koncept objekta in verjetnostna distribucija

## Koncept objekta $\psi$ je trojica $(\kappa, S, R)$

- $\kappa$  je število delov (potez) objekta (črke)
- $S = \{S_1, S_2, \dots, S_\kappa\}$  je množica delov
- $R = \{R_1, R_2, \dots, R_{\kappa}\}$  je množica relacij med deli

$$P(\psi) = P(\kappa) \prod_{i=1}^{\kappa} P(S_i) P(R_i|S_1, S_2, \dots, S_{i-1})$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

# Bayesov program za tvorjenje konceptov

# function GenerateType $\kappa \leftarrow P(\kappa)$ for i=1 to $\kappa$ do $n_i \leftarrow P(n_i|\kappa)$ $S_i \leftarrow \text{GenerateStroke}(i,n_i)$ $\xi_i \leftarrow P(\xi_i)$ $R_i \leftarrow P(R_i|\xi_i,S_1,\ldots,S_{i-1})$ $\psi = (\kappa,\{S_1,\ldots,S_\kappa\},\{R_1,\ldots,R_\kappa\})$ return $\psi$

Vzorči število delov (potez)

Vzorči število segmentov poteze iVzorči potezo  $S_i$  iz  $n_i$  segmentov Vzorči relacije do prejšnjih potez Vzorči podrobnosti relacij

Generativni model

# Hierarhično urejena knjižnica primerov (črk)

Od splošnih konceptov (tipov črk) do primerov (končnih, dejanskih črk)



◆ロト ◆個ト ◆差ト ◆差ト を めなべ

# Bayesov program za tvorjenje primerov črk

$$\psi \equiv (\kappa, \{S_1, S_2, \dots, S_\kappa\}, \{R_1, R_2, \dots, R_\kappa\})$$

## Strojno učenje: prvine

## Standardizacija posnetkov risanja črk

- Vzorčenje posnetkov na 50 ms
- Premik pisala manj kot eno piko označen kot pavza
- Kandidati za prvine so segmenti med pavzami

## Od kandidatov do prvin

- Normalizacija razdalje med dvema zaporednima lokacijama pisala: razdalja je vedno ena pika
- Tako dobimo obliko prvine neodvisno od hitrosti premikanja
- Razvrščanje kandidatov v skupine, vsaka predstavlja eno prvino

# Strojno učenje: verjetnostne porazdelitve

## Število delov (potez) in število segmentov





## Začetna pozicija potez glede na vrstni red

Start position for strokes in each position







2 ≥3

Todorovski, UL-FU, IJS-E8

# Strojno učenje: verjetnosti razčlenjevanja (konceptov)

#### Učni primer s petimi najverjetnimi razčlenjevanji (koncepti)



# Klasifikacija: klasifikacijska napaka









17 / 36

# Tvorjenje novih primerov: primerjava s človekom

Človek na levi (1).



# Identifikacija konceptov: primerjava s človekom



19 / 36

# Tvorjenje novih primerov in konceptov: Turingov test



People BPL
BPL Lesion (no learning-to-learn)
BPL Lesion (no compositionality)

#### Literatura

(Lake in ost. 2015), DOI:10.1126/science.aab3050 Human-level concept learning through probabilistic program induction

# Dve nalogi učenja v omrežjih

- Učenje v vozliščih omrežja
- Rekonstrukcija omrežij iz časovnih vrst

# Definicija naloge

#### Podano

- Omrežje (graf) z vozlišči V in povezavami E
- Spremenljivke  $X_1, X_2, \dots X_p, Y$ , ki odražajo lastnosti vozlišča  $v, \forall v \in V$

## Najdi napovedni model za napovedovanje vrednosti Y, ki

- Velja v vsakem vozlišču podanega omrežja
- Upošteva strukturo omrežja

# Zakaj je naloga zahtevna?

## Vozlišča imajo različno število sosedov

- ullet Vsako vozlišče v ima različno število sosedov d(v)
- Če bi upoštevali še vrednosti sosedov, bi model za vozlišče v učili iz (d(v)+1)p napovednih spremenljivk

## Kaj pa če hočemo upoštevati sosede od sosedov?

- Število napovednih spremenljivk strmo narašča
- Še bolj se spreminja za različna vozlišča

## Kako lahko naslovimo te težave?

- Relacijsko učenje (domača naloga)
- Vložitve in avtokodirniki

# Ideja vložitev

$$similarity(u, v) \approx z_u^T z_v, \ z_u = ENC(u), z_v = ENC(v)$$



◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

# Učenje vložitev vozlišč

- Izberi koder oziroma obliko funkcije ENC
- 2 Izberi mero podobnosti vozlišč v omrežju similarity
- **3** Minimiziraj vrednost  $\sum_{(u,v)\in V\times V}\|similarity(u,v)-z_u^Tz_v\|$

Kot je pri vložitvah običaj, pod 1 izberemo nevronsko mrežo.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

# Osnovna ideja: združevanje okolic

#### Vložitve na osnovi okolice vozlišča

- Vhodni sloj: spremenljivke v vozliščih
- Skriti sloj k: vložitev po k-tih slojih združitve okolic
- Za vsakim skritim slojem povprečno vrednost spremenljivk



# Bolj formalno: struktura UNM in ciljna funkcija

$$h_{v}^{(0)} = \mathbf{x}_{v}$$

$$h_{v}^{(I)} = \phi \left( \mathbf{W}_{k}^{(I)} \frac{1}{|N_{v}|} \sum_{u \in N(v)} h_{u}^{(I-1)} + \mathbf{B}_{k}^{(I)} h_{v}^{(I-1)} \right)$$

$$z_{v} = h_{v}^{(L)}$$

N(v) je okolica vozlišča v

$$N(v) = \{u : (v, u) \in E\}$$

Ciljna funkcija za optimizacijo

$$E = \sum_{v \in V} \left( y_v \log \hat{y}_v + (1 - y_v) \log (1 - \hat{y}_v) \right)$$

# Po ena nevronska mreža za vsako (ciljno) vozlišče





# Definicija naloge

#### Podano

- Množica vozlišč V v omrežju z neznanimi povezavami E
- ullet Spremenljivka  $X_{v}$  v vsakem vozlišč, ki spreminja vrednost skozi čas
- Časovne vrste opazovanih vrednosti  $X_{\nu}(t)$

## Najdi povezave E med vozlišči iz V

Ki najbolj pojasnjujejo opazovane spremembe spremenljivk  $X_{\nu}$ .

# Osnovna predpostavka

## Visoka korelacija med

- **1** Verjetjem prisotnosti povezave  $e_{(u,v)}$
- ② Korelaciji med  $X_u(t)$  in  $X_v(t)$

Iz verjetij do povezav z odločitvenim pragom  $\theta$ 

$$(u,v) \in E \equiv e_{(u,v)} > \theta$$

## Dve odprti vprašanji

- Kako lahko merimo korelacijo med  $X_u(t)$  in  $X_v(t)$ ?
- Kako izberemo vrednost praga  $\theta$ ?

4 D > 4 A > 4 B > 4 B > B = 900

## Naivni pristop: Pearsonova korelacija

$$r_P(X_u, X_v) = \frac{\mathbb{E}[(X_u - \mathbb{E}[X_u])(X_v - \mathbb{E}[X_v])]}{\mathbb{E}[(X_u - \mathbb{E}[X_u])^2] \mathbb{E}[(X_v - \mathbb{E}[X_v])^2]}$$

Ne upošteva morebitnega vpliva vseh ostalih vozlišč.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

# Merjenje korelacije s strojnim učenjem

$$M_{v}: \hat{X}_{v}(t) = M_{v}(X_{1}(t), X_{2}(t), \dots, X_{v-1}(t), X_{v+1}(t), \dots X_{|V|}(t))$$

Učimo se model  $M_{\nu}$  za vsako vozlišče  $\nu \in V$  iz podatkovne množice  $S_{\nu}$ 

- Primeri  $S_v$  ustrezajo posameznim časovnim točkam t
- Napovedne spremenljivke so  $S_v$  so  $X_u(t-1): \forall u \in V: u \neq v$
- Ciljna spremenljivka je  $X_{\nu}(t)$

Iz  $M_v$  preberemo napovedno moč spremenljivk  $p_{(u,v)}$ 

Napovedna moč spremenljivke  $X_u(t-1)$  je enaka verjetju  $e_{(u,v)}$ .

- < □ > < □ > < 亘 > < 亘 > □ ■ 9 < @

## Kako se določimo vrednost $\theta$ ?

## Podobno kot odločitveni prag pri klasifikacijskih modelih

- Vsak prag določa prisotnost in odsotnost posameznih povezav
- Če poznamo strukturo omrežja lahko vstavimo prag v prostor ROC
- Nato se odločamo v tem prostoru ali narišemo krivuljo ROC za različne vrednosti praga  $\theta$

#### Literatura

(Kipf in Welling 2016), arXiv:1609.02907 Semi-supervised classification with graph convolutional networks