Halloween Mini-Project

Marcus Lau

```
##Importing Candy data

candy_file <- "candy-data.csv"

candy = read.csv("candy-data.txt", row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511	46.11650	
Air Heads	0	0	()	0.906	0	.511	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
[1] 38
##Favorite Candies
     Q3. What is your favorite candy in the dataset and what is it's winpercent value?
  candy["Twix", ]$winpercent
[1] 81.64291
  candy["3 Musketeers", ]$winpercent
[1] 67.60294
     Q4. What is the winpercent value for "Kit Kat"?
  candy["Kit Kat", ]$winpercent
[1] 76.7686
     Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
  candy["Tootsie Roll Snack Bars", ]$winpercent
[1] 49.6535
  library("skimr")
  skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12

Table 1: Data summary

Column type frequency:
numeric 12

Group variables None

Variable type: numeric

skim_variable n_	_missingcon	nplete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

skimr::skim(candy)

Table 3: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset? yes, the winpercent

Q7. What do you think a zero and one represent for the candycolor 2 whether its chocolate or not

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent


```
library(ggplot2)
ggplot(candy)+
  aes(winpercent)+
  geom_histogram(bins=10, col="yellow", fill="blue")
```


Q9. Is the distribution of winpercent values symmetrical? no the distribution is not symmetrical

Q10. Is the center of the distribution above or below 50%? below 50%

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
chocolate.inds <- as.logical(candy$chocolate)
chocolate.wins <- candy[chocolate.inds,]$winpercent
chocolate.wins</pre>
```

```
[1] 66.97173 67.60294 50.34755 56.91455 38.97504 55.37545 62.28448 56.49050 [9] 59.23612 57.21925 76.76860 71.46505 66.57458 55.06407 73.09956 60.80070 [17] 64.35334 47.82975 54.52645 70.73564 66.47068 69.48379 81.86626 84.18029 [25] 73.43499 72.88790 65.71629 34.72200 37.88719 76.67378 59.52925 48.98265 [33] 43.06890 45.73675 49.65350 81.64291 49.52411
```

```
#Average Chocolate mean(chocolate.wins)
```

[1] 60.92153

```
fruity.inds <- as.logical(candy$fruity)</pre>
  fruit.wins <- candy[fruity.inds,]$winpercent</pre>
  fruit.wins
 [1] 52.34146 34.51768 36.01763 24.52499 42.27208 39.46056 43.08892 39.18550
 [9] 46.78335 57.11974 51.41243 42.17877 28.12744 41.38956 39.14106 52.91139
[17] 46.41172 55.35405 22.44534 39.44680 41.26551 37.34852 35.29076 42.84914
[25] 63.08514 55.10370 45.99583 59.86400 52.82595 67.03763 34.57899 27.30386
[33] 54.86111 48.98265 47.17323 45.46628 39.01190 44.37552
  #Average Fruity
  mean(fruit.wins)
[1] 44.11974
     On average, chocolate is ranked higher than fruit candy.
     Q12. Is this difference statistically significant?
Yes it is significant since p-value = 2.871e-08
  t.test(chocolate.wins, fruit.wins)
    Welch Two Sample t-test
data: chocolate.wins and fruit.wins
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
     Q13. What are the five least liked candy types in this set?
  head(candy[order(candy$winpercent),], n=5)
```

	chocolate	fruity	cara	nel	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	hard	bar	pluribus	sugar	rpercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	t						
Nik L Nip	22.44534	1						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.1274	1						

Q14. What are the top 5 all time favorite candy types out of this set?

$\label{tail} \verb| tail(candy[order(candy$winpercent),], n=5)|$

	chocolate	fruity	caran	nel j	peanutyaln	nondy r	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
ReeseÕs Miniatures	1	0		0		1	0
ReeseÕs Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugarı	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
ReeseÕs Miniatures		0	0	0	0		0.034
ReeseÕs Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent winp	percer	ıt			
Snickers	0.6	551 76	6.6737	78			
Kit Kat	0.5	511 76	3.7686	60			
Twix	0.9	906 83	1.6429	91			
ReeseÕs Miniatures	0.2	279 83	1.8662	26			
ReeseÕs Peanut Butter cup	0.6	551 8 ⁴	1.1802	29			

##Overall Candy Rankings >Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```



```
ggsave("tmp.png")
```

Saving 5.5 x 3.5 in image

- Q17. What is the worst ranked chocolate candy? Sixlets
- Q18. What is the best ranked fruity candy? Starburst

##Price Percents

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck? Reeses Minature

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

5 most expensive candies are Nik L Nip, Ring Pop, Nestle Smarties, Hershey Krackel and Hersheys Milk Chocolate. Least popular is Nik L Nip.

##Exploring Correlation Structure

```
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


- Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? 2 variables with anti correlation are chocolate and fruity.
- Q23. Similarly, what two variables are most positively correlated? 2 variables most positively correlated is chocolate and winpercent.

##Principal Component Analysis

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369 PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

pca\$rotation[,1]

peanutyalmondy	caramel	fruity	chocolate
-0.2407155	-0.2299709	0.3683883	-0.4019466
bar	hard	crispedricewafer	nougat
-0.3947433	0.2111587	-0.2215182	-0.2268102
winpercent	pricepercent	sugarpercent	pluribus
-0.3298035	-0.3207361	-0.1083088	0.2600041

#Comparing PC1 vs PC2

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```



```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 60 unlabeled data points (too many overlaps). Consider

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

```
#library(plotly)
#ggplotly(p)

par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you? Fruity,hard, and pluribus are in a positive direction.