第七章 光辐射探测技术

- 7.1 光电探测器的物理效应
- 7.2 光电探测器
- 7.3 光电弱信号探测

光子效应分类

	效应	相应的探测器	
外光电效应	(1)光阴极反射电子	光电管	
	(2)光电子倍增 打拿极倍增 通道电子倍增	光电倍增管 像增强器	
内光电效应	(1)光电导	光导管或光敏电阻	
	(2)光生伏达 pn结和pin结(零偏) pn结和pin结(反偏) 雪崩 肖特基势垒	光电池 光电二极管 雪崩二极管 肖特基势垒光电二极管	
	(3)光电磁 光子牵引	光电磁探测器 光子牵引探测器	

7.1 光电探测器的物理效应

- 7.1.1 光电效应
- 7.1.2 光电导效应
- 7.1.3 光伏效应
- 7.1.4 光电转换定律

7.1.1 光电效应

7.1.2 光电导效应

Eg: 禁带宽度

二维硅晶结构和0 K下的能带图

(a)能量大于禁带宽度的光子可以将电子从价带激发到导带 (b)当光子使得一个Si-Si键断裂,产生一个自由电子和一个空穴

光生载流子在电压作用下形成电流

热平衡以及无光照时:

Mass action law:
$$np = N_c N_v \exp\left(-\frac{E_g}{k_B T}\right) = n_i^2$$

其中:
$$N_c = 2[2\pi m_e^* k_B T / h^2]^{3/2}$$

$$N_{v} = 2[2\pi m_{h}^{*}k_{B}T/h^{2}]^{3/2}$$

在纯(本征)半导体中, $n=p=n_i$, n_i 本征浓度

掺砷的n型硅和能带

非本征半导体:

掺杂使某一种载流子浓度远远超过另外一种的浓度

室温下,导带中电子的浓度 $n \approx N_d$, N_d 施主的浓度 $np = n_i^2$,空穴的浓度为 $p = n_i^2/N_d$,

(a)硅中掺硼的二维结构 (b)p型硅的能带结构

受主能级在价带上面B·周围,受主能级接受价带的电子并在价带形成空穴

能带图,
$$np = n_i^2$$

定义载流子迁移率µ为漂移速度v和电场E之比:

$$\mu_n = \frac{v_n}{E} = \frac{v_n l}{V}$$
 $(cm^2/V \cdot s)$
V是外电压, l 是电压
$$\mu_p = \frac{v_p}{E} = \frac{v_p l}{V}$$
 $(cm^2/V \cdot s)$
方向半导体的长度

$$J = ev_n n + ev_p p = \sigma E$$

电导率σ:
$$\sigma = en\mu_n + ep\mu_p$$
 $(\Omega^{-1} \cdot cm^{-1})$

电导(亦称为热平衡暗电导):

$$G = \sigma \frac{A}{I}$$
 (Ω^{-1}) 截面积是A

电阻
$$R_d$$
(亦称暗电阻):
$$R_d = \frac{l}{\sigma A} = \rho \frac{l}{A}$$

产生光电导示意图

光辐射每秒产生的电子一空穴对数为N

光生载流子密度:
$$\Delta n = \frac{N}{Al} \cdot \tau_n$$
 Al 为半导体总体积
$$\Delta p = \frac{N}{Al} \cdot \tau_p$$
 $\tau_n \pi \tau_p$ 为平衡寿命

电导增加:
$$\Delta G = \Delta \sigma \cdot \frac{A}{l} = e(\Delta n \mu_n + \Delta p \mu_p) \frac{A}{l} = \frac{eN}{l^2} (\mu_n \tau_n + \mu_p \tau_p)$$

电流增加:
$$\Delta i = V \Delta G = \frac{eNV}{l^2} (\mu_n \tau_n + \mu_p \tau_p) \neq eN$$
 每秒光激发的电荷量

电流增益:
$$M = \frac{\Delta I}{eN}$$

电流增益:
$$M = \frac{\Delta i}{eN} = \frac{V}{l^2} (\mu_n \tau_n + \mu_p \tau_p)$$

以N型半导体为例

光电导效应: 多数载流子形成电流

7.1.3 光伏效应

光生伏特效应 —— 如果半导体中存在内部势垒,当光激发电子一空穴对时,电势垒的内建电场将把电子一空穴对分开,从而在势垒两侧形成电荷堆积。

内部势垒: pn结、pin结、肖特基势垒结、异质结等

pn结的性质

p区空穴向n区扩散 n区电子向p区扩散 产生的内电场阻止扩散

SCL或耗尽层:载流子浓度低

pn结正向偏压

SCL层电场(势垒)下降 → 空穴扩散到n区的几率增加 电子扩散到p区的几率增加

多数载流子的扩散形成电流

pn结反向偏压

负极使p区耗尽层边沿的空穴离开耗尽层,

正极使n区耗尽层边沿的电子离开耗尽层,导致耗尽层变宽

少数载流子的扩散形成电流

pn结及其伏安特性

伏安特性:
$$i_d = i_{s0} (e^{eu/k_BT} - 1)$$

pn结的电阻:
$$R_0 = \frac{du}{di}\Big|_{u=0} = \frac{k_B T}{e i_{s0}}$$

少数载流子形成电流

- 7.1 光电探测器的物理效应
 - 7.1.1 光电效应
 - 7.1.2 光电导效应
 - 7.1.3 光伏效应
 - 7.1.4 光电转换定律

$$P(t) = h v \frac{dn_{photon}}{dt}$$

n_{photon}: 光子数

$$i(t) = e \frac{dn_{electron}}{dt}$$

n_{electron}: 电子数

量子效率:
$$\eta = \frac{dn_{electron}}{dt} / \frac{dn_{photon}}{dt}$$

$$\eta \frac{e}{h\nu} = \frac{dn_{electron}}{dt} \cdot e / \frac{dn_{photon}}{dt} \cdot h\nu$$

$$i(t) = \frac{e\eta}{h\nu} P(t)$$
 光电转换定律

光电转换因子:
$$D = \frac{e}{h\nu}\eta$$

7.2 光电探测器

- 7.2.1 光电倍增管
- 7.2.2 电荷耦合器件 (CCD)
- 7.2.3 微通道板(MCP)
- 7.2.4 硅光电池
- 7.2.5 光电二极管
- 7.2.6 pin光电二极管
- 7.2.7 雪崩光电二极管

7.2.1 光电倍增管

Δε: 逸出功

临界频率:

$$v_c = \Delta \varepsilon / h$$

光电倍增管的外形

发射电子的动能 ε_k

$$\varepsilon_k = \frac{1}{2}mv^2 = h v - \Delta \varepsilon$$

两种不同结构光电倍增管

光电倍增管原理示意图

光电倍增管的分压电路

光电倍增管的输出等效电路

HAMAMATSU的R5070A光电倍增管光谱灵敏度和量子效率分布曲线

7.2.2 电荷耦合器件 (CCD)

2009年诺贝尔物理学奖

威拉德·博伊尔和乔治·史密斯 发明电荷耦合器件(CCD)图像传感器1969年

Typical CCD Chip

Specification (no./size of pixels, etc.) varies according to chip model

*Charge that is output from the shift register may be summed either on- or off-chip, depending on the chip model.

26 square micron element or pixel 噪声: 热噪声(在-70°很小) 读出噪声

EMCCD外观

零下100度时的量子效率

CCD尺寸比较

型号			应部分 (mm)		
	尺寸比例	组件直径	对角线	寬	高
1/3.6"	4:3	7.056	5.000	4.000	3.000
1/3.2"	4:3	7.938	5. 680	4.536	3.416
1/3"	4:3	8.467	6.000	4.800	3.600
1/2.7"	4:3	9.407	6. 592	5. 270	3.960
1/2"	4:3	12.700	8.000	6.400	4.800
1/1.8"	4:3	14. 111	8. 933	7.176	5.319
2/3	4:3	16. 933	11.000	8.800	6.600
1"	4:3	25. 400	16.000	12.800	9. 600
4/3"	4:3	33.867	22.500	18.000	13.500
APS-C	3:2	r/a	30. 100	25. 100	16.700
35 mm	3:2	n/a	43.300	36.000	24.000
645	4:3	n/a	69.700	56.000	41.500

7.2.3 微通道板(MCP)

微通道板示意图

MCP-PMT Operation

7.2.4 硅光电池

光电池结构示意图

光电池的工作原理

光电池的等效电路

$$i_{\varphi} = \frac{e \, \eta}{h \, \nu} P \qquad \qquad i_{\varphi} = i_D + i_{Sh} + i$$

II区: 电压输出区

I区: 电流输出区

光电流区工作特性示意图

光电池用以探测慢变化光信号的基本变换电路

优点: 在某些情况下使用比较方便

价格便宜

光谱响应宽 (很适合近红外探测)

寿命长

稳定性好

接收面积可以比较大

缺点:响应慢、灵敏度低

7.2.5 光电二极管

加反向偏压的 光电二极管

Absorption coefficient (α) vs. wavelength (λ) for various semiconductors (Data selectively collected and combined from various sources.)

响应度R:

$$R = \frac{\text{光电流(A)}}{\text{入射光功率(W)}} = \frac{I_{ph}}{P_0}$$

$$\eta = \frac{I_{ph} / e}{P_0 / h\nu}$$

$$R = \eta \frac{e}{h\nu} = \eta \frac{e\lambda}{hc}$$

Responsivity (R) vs. wavelength (λ) for an ideal photodiode with QE = 100% (η = 1) and for a typica commercial Si photodiode.

Silicon PN Photodiodes

优点: 廉价

缺点: 结电容大

耗尽层薄,不利吸收

7.2.6 pin光电二极管

理想的pin光电二极管示意图

响应时间由载流子通过本征区的渡越时间 决定,增加本征区的厚度W可以提高量子效率, 同时也降低响应速度。

Drift velocity vs. electric field for holes and electrons in Si.

增加本征层厚度: 提高量子效率、减小结电容

增加渡越时间

提高响应速度方法:减小面积

减小本征层厚度

入射光波长很短时,吸收主要发生在p+区表面, 电子扩散时间远大于漂移时间

Silicon PINs-UV Enhanced

Silicon PIN Photodiodes and Modules

7.2.7 雪崩光电二极管

雪崩光电二极管:基于载流子雪崩效应,从而提供电流内增益的光电二极管称为雪崩光电二极管(APD: Avalanche photodiode)。

<u>对材料的要求</u>:由于雪崩效应的要求,必须选用高纯度, 高电阻律,而且均匀性非常好的硅或锗单晶材料制备。

反向偏压:几百伏量级。

<u>应用</u>:由于具有高速度和内部增益,雪崩光电二极管被广 泛应用于光通信领域。

Si reach-through APD 结构

未加电压时

(a) 雪崩二极管的结构 和回路

(b)净空间电荷密度

(c) 内建电场及吸收区 和放大区示意图

(a)雪崩放大图示,(b)导带中的电子与晶格碰撞将价电子激发至导带

响应时间:

- 1. 光电子穿过吸收区(π层)到达p层时间;
- 2. 雪崩过程产生电子一空穴对时间;
- 3. 雪崩过程产生的最后一个空穴穿过π区时间。

雪崩光电二极管

优点: 高量子效率、快响应、高灵敏度

缺点:价高、易损坏。

雪崩放大系数:
$$M = \frac{被放大的光电流}{最初的光电流} = \frac{I_{ph}}{I_{ph0}}$$

 I_{ph0} : 可以用一个很小的偏压来测量

$$M = \frac{1}{1 - \left(\frac{V_r}{V_{br}}\right)^n}$$

 $V_{\rm r}$: 反向偏压; $V_{\rm br}$: 雪崩击穿电压; n: 拟合参数。 $V_{\rm br}$ 和n强 烈依赖于温度

Si: M ~ 100; Ge: M ~ 10

- (a)没有保护环的硅雪崩光电二极管
- (b)更实际的硅雪崩光电二极管

Silicon Avalanche Photodiodes

Silicon Avalanche Photodiodes

单光子雪崩光电二极管

几种 光电二极管性 能 比较

Photodiode	$\lambda_{\text{range}} $ (nm)	λ_{peak} (nm)	Gain	t_r (ns)	I_{dark}
Si pn junction	200-1100	600-900	<1	0.5	0.01-0.1 nA
Si pin	300-1100	800-900	<1	0.03- 0.05	0.01-0.1 nA
Si APD	400-1100	830-900	10-100	0.1	1-10 nA
Ge pn junction	700-1800	1500- 1600	<1	0.05	0.1-1 μΑ
Ge APD	700-1700	1500- 1600	10-20	0.1	1-10 μΑ
InGaAs- InP pin	800-1700	1500- 1600	<1	0.03- 0.1	0.1-10 nA
InGaAs- InP APD	800-1700	1500- 1600	10-20	0.07- 0.1	10- 100nA

无放大电路的高速光电二极管接线图

7.3 光电弱信号探测

- 7.3.1 锁相放大器
- 7.3.2 取样平均器
- 7.3.3 单光子计数器

7.3.1 锁相放大器

信号和噪声频谱

利用斩波器将低频信号移频到高频:

单路斩波实验

锁相放大器(LIA)原理图

设输入信号为:
$$S_i(t) = A_i \cos[(\omega_0 + \Delta \omega)t + \varphi]$$

参考信号:
$$S_r(t) = A_r \cos \omega_0 t$$

经过相乘器:
$$S_0(t) = S_i(t)S_r(t)$$

$$= \frac{1}{2}A_iA_r\left\{\cos(\Delta\omega t + \varphi) + \cos[(2\omega_0 + \Delta\omega)t + \varphi]\right\}$$

1Hz和1.1Hz信号的乘积:

经过低通滤波器:
$$S_0' = \frac{1}{2} A_i A_r \cos(\Delta \omega t + \varphi)$$

经过低通滤波器信号:
$$S_0' = \frac{1}{2} A_i A_r \cos(\Delta \omega t + \varphi)$$
 噪声: $S_n = \frac{1}{2} A_n A_r \cos[(\omega_n - \omega_0)t + \varphi_n]$ $+ \frac{1}{2} A_n A_r \cos[(\omega_n + \omega_0)t + \varphi_n]$

去噪声:

- 1. $\Delta \omega \neq 0$ 的噪声成分,被低通滤波器去除;
- 2. $\Delta \omega = 0$ 但相位随机的噪声成分,被相敏检波截止。

乘法器的输出信号波形

乘法器的输出信号波形

测量φ:

设输入信号为:
$$S_i(t) = A_i \cos(\omega_0 t + \varphi)$$

$$S_r(t) = A_r \cos \omega_0 t$$

$$S'_r(t) = A_r \cos(\omega_0 t + \frac{\pi}{2})$$

$$S_0(t) = \frac{1}{2} A_i A_r \cos \varphi$$

$$S'_0(t) = \frac{1}{2}A_iA_r\cos\left(\varphi - \frac{\pi}{2}\right) = \frac{1}{2}A_iA_r\sin\varphi$$

$$tan\varphi = \frac{S'_0}{S_0}$$

$$S = \left[S_0^2(t) + S'_0^2(t)\right]^{\frac{1}{2}} = \frac{1}{2}A_i A_r$$

斩波器所使用的调制盘

双路斩波实验

7.3.2 取样平均器

取样平均器(Boxcar平均器):利用取样和平均化技术测定 深埋在噪声中的周期性信号的测量装置。

(a)取样门电路

(b)取样后波形

若信号为 S_i ,进行 N_s 次取样,并加以累计(假设是线性的),则信号值将增加到: $S_0 = N_s S_i$

噪声值为 n_i ,累计结果为: $n_0 = \sqrt{N_s} n_i$

输出信噪比:
$$SNR_0 = \frac{S_0}{n_0} = \sqrt{N_s} \frac{S_i}{n_i} = \sqrt{N_s} SNR_i$$

取样平均原理示意图

几个时间参数

 T_g 一门宽, T_b 一时基宽度,T — 信号周期 T_c — 积分时间, T_s — 慢扫描时间

7.3.3 单光子计数器

光子计数器 (Photon counter):利用光子的粒子性,通过对单光子产生的电脉冲计数的方法测量极微弱光信号的技术。

探测器: 光电倍增管、雪崩光电二极管

当可见光的功率低于10⁻¹⁰W,即光子的流量在10⁹/s以下时,光探测器(通常是光电倍增管或雪崩光电二极管)所产生的光电流不再是连续的,输出为离散的电脉冲信号。

设光电倍增管的量子效率为1,增益为106,

渡越时间为 $t_0 = 10$ ns,阳极脉冲为矩形,单光子电流:

$$I_p = \frac{q}{t_0} = \frac{10^6 \times 1.6 \times 10^{-19}}{10 \times 10^{-9}} = 16(\mu A)$$

$$R_L = 50\Omega$$
, $C = 20$ pF, 时间常数 $\tau = 1$ ns $<< t_0$,

$$U_p = I_p \cdot R_L = 16 \times 10^{-6} \times 50 = 0.8 mV$$

光电倍增管输出成分:

- 阴极光子脉冲
- 热电子脉冲
- 第一倍增极热电子脉冲
- 第二倍增极热电子脉冲
- 多光子脉冲

室温热能: $\sim 25 \text{ meV}$

光电倍增管的输出脉冲和鉴别器工作波形

基本的光子计数系统

光源补偿的光子计数系统

有背景补偿能力的光子计数系统

门控光子计数器

时间相关单光子计数技术

前提条件:

低强度、高重复频率 的脉冲信号;一个信号周 期内探测到一个光子的概 率远小于一。

时间响应受探测器输出脉冲的渡越时间涨落的限制,而不受单电子脉冲宽度的限制。

- ✓ 使用微通道板光电倍增管或APD时,仪器响应函数的 半高全宽为25~60ps。
- ✔ 平均每个信号周期探测到的光子数为0.1~0.01个之间。