LATEX for dummies

Guida di sopravvivenza per fisici

Lezione 2 - Matematica

Leonardo Pacciani-Mori leonardo.pacciani@phd.unipd.it AISF - Comitato Locale di Padova 10 dicembre 2018

Domanda

Perché usare LATEX? In cosa conviene rispetto ad altri software?

Domanda

Perché usare LATEX? In cosa conviene rispetto ad altri software?

Risposta

È lo standard per scrivere documenti nel mondo scientifico (fisica e matematica in particolare)

Domanda

Perché usare LATEX? In cosa conviene rispetto ad altri software?

Risposta

- È lo standard per scrivere documenti nel mondo scientifico (fisica e matematica in particolare)
- Permette di scrivere equazioni in modo più semplice e personalizzabile

Domanda

Perché usare LATEX? In cosa conviene rispetto ad altri software?

Risposta

- È lo standard per scrivere documenti nel mondo scientifico (fisica e matematica in particolare)
- Permette di scrivere equazioni in modo più semplice e personalizzabile
- Gestisce automaticamente la numerazione di qualunque elemento

Domanda

Perché usare LATEX? In cosa conviene rispetto ad altri software?

Risposta

- È lo standard per scrivere documenti nel mondo scientifico (fisica e matematica in particolare)
- Permette di scrivere equazioni in modo più semplice e personalizzabile
- Gestisce automaticamente la numerazione di qualunque elemento
- Permette di creare documenti tipograficamente più "belli", e di livello professionale

Domanda

È possibile riscalare una tabella, come si può fare con le figure usando l'opzione scale in includegraphics?

Domanda

È possibile riscalare una tabella, come si può fare con le figure usando l'opzione scale in includegraphics?

Risposta

Sì, è possibile. Per farlo è necessario caricare il pacchetto graphics e applicare il comando \resizebox{larghezza}{altezza}{...} all'ambiente tabular:

Domanda

È possibile riscalare una tabella, come si può fare con le figure usando l'opzione scale in includegraphics?

Risposta

Sì, è possibile. Per farlo è necessario caricare il pacchetto graphics e applicare il comando \resizebox{larghezza}{altezza}{...} all'ambiente tabular:

```
\begin{table}
\centering
\resizebox{8em}{2em}{
\begin{tabular}{cc}
\hline
A & B\\
\hline
C & D\\
\hline
\end{tabular}
}
\end{tabular}
}
```


Risposta (continuazione)

Usando ! in uno dei due campi si mantiene il rapporto larghezza/altezza costante:

Risposta (continuazione)

Usando ! in uno dei due campi si mantiene il rapporto larghezza/altezza costante:

```
\begin{table}
\centering
\resizebox{10em}{!}{
\begin{tabular}{cc}
\hline
A & B\\
\hline
C & D\\
\hline
\end{tabular}
}
end{tabular}
```


In questa lezione

In questa lezione

1 Matematica in LATEX: aspetti generali

Aspetti generali

Aspetti generali

Pacchetti necessari: amsmath e amssymb. Qui un elenco nutrito di simboli esistenti.

Aspetti generali

Pacchetti necessari: amsmath e amssymb. Qui un elenco nutrito di simboli esistenti.

Le formule matematiche possono essere scritte in due modi diversi: in linea (all'interno di un testo) o in display (isolate al centro della pagina).

Aspetti generali

Pacchetti necessari: amsmath e amssymb. Qui un elenco nutrito di simboli esistenti.

Le formule matematiche possono essere scritte in due modi diversi: **in linea** (all'interno di un testo) o **in display** (isolate al centro della pagina).

- L'ambiente per le formule **in linea** è delimitato da due \$: \$...\$
- L'ambiente per le formule **in display** è equation per equazioni numerate, e equation* per equazioni non numerate

Volendo, equation* può essere sostituito con \[...\] (meglio di \$\$...\$\$)

Aspetti generali

Pacchetti necessari: amsmath e amssymb. Qui un elenco nutrito di simboli esistenti.

Le formule matematiche possono essere scritte in due modi diversi: **in linea** (all'interno di un testo) o **in display** (isolate al centro della pagina).

- L'ambiente per le formule in linea è delimitato da due \$: \$...\$
- L'ambiente per le formule **in display** è equation per equazioni numerate, e equation* per equazioni non numerate

Volendo, equation* può essere sostituito con $\[\ldots\]$ (meglio di \$\$...\$\$)

Un'espressione matematica verrà visualizzata in modo diverso a seconda se è in linea o in display.

Esempi

Ad esempio, confrontiamo una stessa formula in linea e in display:

in linea: [...] Sfruttando quindi la regola di de l'Hôpital è possibile dimostrare che si ha $\lim_{x\to+\infty}\frac{\sqrt{x}}{\ln x}=\lim_{x\to+\infty}\frac{\sqrt{x}}{2}=+\infty.$

in display: [...] Sfruttando quindi la regola di de l'Hôpital è possibile dimostrare che si ha

$$\lim_{x \to +\infty} \frac{\sqrt{x}}{\ln x} = \lim_{x \to +\infty} \frac{\sqrt{x}}{2} = +\infty . \tag{1}$$

Esempi

Lettere greche:

sintassi: \nomelettera per minuscolo, \Nomelettera per maiuscolo

codice: \alpha, \beta, \Gamma, \Omega

output: α , β , Γ , Ω

Esempi

```
Lettere greche:
```

```
sintassi: \nomelettera per minuscolo, \Nomelettera per maiuscolo
```

```
codice: \alpha, \beta, \Gamma, \Omega
```

output: α , β , Γ , Ω

Attenzione

Alcune lettere greche esistono in due diverse varianti minuscole:

lacktriangle \espilon e \varespilon: ϵ e ε

■ \theta e \vartheta: θ e ϑ

lacktriangle \pi e \varpi: π e ϖ

lacktriangle \rho e \varrho: ho e arrho

lacktriangle \sigma e \varsigma: σ e ς

lacktriangle \phi e \varphi: ϕ e φ

Esempi

Apici e pedici:

codice: a_1, x^2, e^{-\beta t}, a_{ij}^3, x_{n_k} output:
$$a_1$$
, x^2 , $e^{-\beta t}$, a_{ij}^3 , x_{n_k}

Esempi

```
Apici e pedici:
```

codice: a_1, x^2, e^{-\beta t}, a_{ij}^3, x_{n_k} output:
$$a_1$$
, x^2 , $e^{-\beta t}$, a_{ij}^3 , x_{n_k}

Spazi:

```
codice: a_1 \quad x^2 \qquad e^{-\beta t} \hspace{2em} a_{ij}^3 \; x_{n_k} 
 outpt: a_1 \quad x^2 \quad e^{-\beta t} \quad a_{ij}^3 x_{n_k}
```


Esempi

```
Apici e pedici:
```

```
codice: a_1, x^2, e^{-\beta t}, a_{ij}^3, x_{n_k} output: a_1, x^2, e^{-\beta t}, a_{ij}^3, x_{n_k}
```

Spazi:

codice: a_1 \quad x^2 \qquad e^{-\beta t} \hspace{2em} a_{ij}^3 \; x_{n_k} outpt:
$$a_1 \quad x^2 \quad e^{-\beta t} \quad a_{ij}^3 x_{n_k}$$

Radice quadrata:

```
sintassi: \sqrt[ordine]{contenuto} codice: \sqrt{x}, \sqrt[3]{x+y^2} output: \sqrt{x}, \sqrt[3]{x+y^2}
```



```
Frazioni:
```

```
sintassi: \frac{numeratore}{denominatore} codice: \frac{x}{x+y} , \frac{2}{3} , \frac{x}{1+\frac{1}{x}} output: \frac{x}{x+y}, \frac{2}{3}, \frac{x}{1+\frac{1}{x}}
```



```
Frazioni:
      sintassi: \frac{numeratore}{denominatore}
       codice: \frac{x}{x+y}, \frac{2}{3}, \frac{x}{1+\frac{1}{x}}
      output: \frac{x}{x+y}, \frac{2}{3}, \frac{x}{1+\frac{1}{2}}
Sommatoria:
      sintassi: \sum_{inizio}^{fine} sommando
       codice: \sum_{x=1}^n x = \frac{n(n+1)}{2},
                \sum_{n=1}^{infty \frac{x^n}{n!}} = e^x
      output: \sum_{k=1}^{n} x = \frac{n(n+1)}{2}, \sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x
Produttoria:
      sintassi: \prod_{inizio}^{fine} moltiplicando
       codice: \prod {x=1}^n x = n!
      output: \prod_{x=1}^{n} x = n!
```



```
Limiti:
```

```
sintassi: \lim_{x \to 0} f(x) = f(x_0) codice: \lim_{x \to 0} \frac{\sin x}{x} = 1 output: \lim_{x \to 0} \frac{\sin x}{x} = 1
```


Esempi

```
Limiti:
```

```
sintassi: \lim_{x \to 0} f(x) = f(x_0) codice: \lim_{x \to 0} \frac{\sin x}{x} = 1 output: \lim_{x \to 0} \frac{\sin x}{x} = 1
```

Derivate:

codice: f'(x), \frac{dy}{dx}, \dot{x}, \dot{x},
 \frac{\partial f}{\partial x}

output: f'(x), $\frac{dy}{dx}$, \dot{x} , \ddot{x} , $\frac{\partial f}{\partial x}$

Esempi

```
Limiti:
```

```
sintassi: \lim_{x \to 0} f(x) = f(x_0) codice: \lim_{x \to 0} \frac{\sin x}{x} = 1 output: \lim_{x \to 0} \frac{\sin x}{x} = 1
```

Derivate:

codice: f'(x), \frac{dy}{dx}, \dot{x}, \dot{x}, \frac{\partial f}{\partial x} output: f'(x), $\frac{dy}{dx}$, \dot{x} , $\frac{\partial f}{\partial x}$

Integrali:

sintassi: \int_{inizio}^{fine} integrando
codice: \int_{-\infty}^{+\infty} e^{-x^2} dx =
 \frac{\sqrt{\pi}}{2}

Esempi

```
Integrali multipli:
```

```
codice: \int, \iint, \iiint, \idotsint, \oint
```

output: \int , \int , \int , \int , \int , \int , \int


```
Integrali multipli:
    codice: \int, \iint, \iiint, \iiint, \idotsint, \oint
    output: ∫, ∫∫, ∫∫∫, ∫∫∫, ∫ ... ∫, ∮
Operatori:
    codice: \sin, \cos, \tan, \exp, \log, \ln,
        \operatorname{NomeOperatore}
    output: sin, cos, tan, exp, log, ln, NomeOperatore
```



```
Integrali multipli:
       codice: \int, \iint, \iiint, \iiint, \idotsint, \oint
      output: ∫, ∫∫, ∫∫∫, ∫∫∫, ∫ · · · ∫, ∮
Operatori:
       codice: \sin, \cos, \tan, \exp, \log, \ln,
                \operatorname{NomeOperatore}
      output: sin, cos, tan, exp, log, ln, NomeOperatore
Barre e accenti:
      sintassi: \nomesimbolo {carattere}
       codice: \bar{x}, \overline{x_y^z}, \vec{A},
                \overrightarrow{A_b^c}, \hat{\gamma},
                \widehat{\Xi_\delta^\epsilon}, \tilde{y},
                \widetilde{Y v^w}
      output: \bar{x}, \overline{X_{V}^{z}}, \vec{A}, \overrightarrow{A_{h}^{c}}. \hat{\gamma}, \widehat{\Xi_{x}^{e}}, \tilde{y}, \widetilde{Y_{W}^{w}}
```


Esempi

```
Frecce:
```

```
codice: \longrightarrow, \rightarrow, \leftarrow,
  \leftrightarrow, \to, \mapsto, \Longrightarrow,
  \Rightarrow, \Leftarrow, \LeftRightarrow
```

 $\mathsf{output} \colon \longrightarrow, \to, \leftarrow, \leftrightarrow, \to, \mapsto, \Longrightarrow, \Rightarrow, \Leftarrow, \Leftrightarrow$

Esempi

```
Frecce:
```

```
codice: \longrightarrow, \rightarrow, \leftarrow,
  \leftrightarrow, \to, \mapsto, \Longrightarrow,
  \Rightarrow, \Leftarrow, \LeftRightarrow
```

output:
$$\longrightarrow$$
, \rightarrow , \leftarrow , \leftrightarrow , \rightarrow , \mapsto , \Longrightarrow , \Leftrightarrow , \Leftrightarrow

Punti:

codice: \dots, \cdot, \cdots, \vdots, \ddots

output: \dots , \cdot , \cdots , \vdots , \cdots

Esempi

```
Frecce:
```

```
codice: \longrightarrow, \rightarrow, \leftarrow,
    \leftrightarrow, \to, \mapsto, \Longrightarrow,
    \Rightarrow, \Leftarrow, \LeftRightarrow
```

$$\textbf{output:}\ \longrightarrow\text{,}\ \rightarrow\text{,}\ \leftarrow\text{,}\ \leftrightarrow\text{,}\ \rightarrow\text{,}\ \mapsto\text{,}\ \Longrightarrow\text{,}\ \Leftarrow\text{,}\ \Leftrightarrow$$

Punti:

codice: \dots, \cdot, \cdots, \vdots, \ddots

output: ..., ·, ···, i, ···

Parentesi di dimensione adattabile:

sintassi: \left(...\right), \left[...\right], ecc. Per non
 visualizzare alcun simbolo si usa . al posto delle parentesi.

codice: 2 \cdot \left(1+\frac{1}{1+x}\right)

output: $2 \cdot \left(1 + \frac{1}{1+x}\right)$

Esempi

Matrici:

sintassi: le matrici e i vettori si scrivono usando diversi ambienti disponibili. Ad esempio, pmatrix si usa per le matrici con parentesi tonde, e bmatrix per le parentesi quadre. Il corpo si compila riga per riga come una tabella.

output:
$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
, $\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Equazioni su più righe:

sintassi: per dividere un'equazione su più righe esistono diversi ambienti, ognuno con proprietà diverse.

codice: \begin{multline} \int \frac{d}{dx}[f(x)g(x)]dx = \\
 \int[f'(x)g(x)+f(x)g'(x)]dx = \\= \int[f'(x)f(x)]dx
 + \int[f(x)g'(x)] dx\end{multline}

$$\int \frac{d}{dx} [f(x)g(x)]dx =$$

$$= \int [f'(x)g(x) + f(x)g'(x)]dx =$$

$$= \int [f'(x)g(x)]dx + \int [f(x)g'(x)]dx \quad (2)$$

Equazioni su più righe:

sintassi: per dividere un'equazione su più righe esistono diversi ambienti, ognuno con proprietà diverse.

$$\int \frac{d}{dx} [f(x)g(x)] dx =$$
 (2)

$$= \int [f'(x)g(x) + f(x)g'(x)]dx =$$
 (3)

$$= \int [f'(x)g(x)]dx + \int [f(x)g'(x)]dx \tag{4}$$

Equazioni su più righe:

sintassi: per dividere un'equazione su più righe esistono diversi ambienti, ognuno con proprietà diverse.

$$\int \frac{d}{dx} [f(x)g(x)] dx =$$
 (2)

$$= \int [f'(x)g(x) + f(x)g'(x)]dx =$$
 (3)

$$= \int [f'(x)g(x)]dx + \int [f(x)g'(x)]dx \tag{4}$$

Esempi

Equazioni su più righe:

sintassi: per dividere un'equazione su più righe esistono diversi ambienti, ognuno con proprietà diverse.

```
codice: \begin{subequations}
  \begin{equation} e^{i\pi} + 1 = 0 \end{equation}
  \begin{equation} E=mc^2 \end{equation}
  \end{subequations}
```

$$e^{i\pi} + 1 = 0 \tag{2a}$$

$$E = mc^2 (2b)$$

Esempi

```
Stile del testo:
```

output: $\sin(x)$ vs. $\sin(x)$, $\log(x)$ vs. $\log(x)$, x/y vs. x/y

Esempi

```
Stile del testo:
```

```
codice: \operatorname{mathrm}\{\sin(x)\}, \operatorname{mathtt}\{\log(x)\}, \operatorname{boldsymbol}\{x/y\}
output: \sin(x) vs. \sin(x), \log(x) vs. \log(x), x/y vs. x/y
```

Inserimento di testo:

```
sintassi: \text{ testo } codice: \sum_{n=1}^N x_n v_n\text{ con }\sum_{n=1}^n x_n = 1 output: \sum_{n=1}^N x_n v_n con \sum_{n=1}^n x_n = 1
```

Per oggi è tutto!

Prossimo appuntamento: 12 dicembre 2018, aula LUF2 ore 14:30

Prossima lezione: Le classi article, report e book

