

Linear Object Detection in Document Images using Multiple Object Tracking

P. Bernet, J. Chazalon, E. Carlinet, A. Bourquelot and E. Puybareau — EPITA Research Lab (LRE), France

ANR-18-CE38-0013

https://github.com/EPITAResearchLab/bernet.23.icdar DOI 10.5281/zenodo.7871318 DOI 10.5281/zenodo.7927611

Goal								
	Input: Document image							
	Output: Pixel-accurate instance segmentation with intersections and missing parts → for object removal							
	Optional output: Simplified vectorization start, end, intersection coordinates \rightarrow for deslanting							

Très modéré

Limitations of Existing Linear Object Detectors Applied to Document Images												
							ha	ındles	5	obje	ects	_
Family	Output accuracy	Segm. type	Quality	Training -free	Fast	Open implem.	Curved	rotated	erased	dashed	intersect.	Comment
Pixel-wise edge classifiers ▷ U-Net, HED, BDCN, EDTER	pixel-level classification	semantic		×	X	/	/	/	×	X	X	Good preprocessing for us
Hough-transform-based detectors ▷ HT, RHT, PHT	coordinates start-end	instance	•000		/		X		≈	*	X	Avoid on doc. img.
Region growing tracers > Canny, LSD, EDLine, AG3Line, ELSED	coordinates start-end, seq.	instance			/		/		≈	X	\approx	Tricky to use on doc. img.
Deep linear object detectors ▷ Faster-RCNN-like: L-CNN, HAWP, F-Clip	coordinates start-end	instance		×	X	partial	×		~	~	X	Lack of train. data/models
Vertex sequence generators/decoders ▷ <i>Polygon-RNN, LETR</i>	coordinates sequence	instance	ull	×	X	partial	/		/	/	\approx	Lack of train. data/models
(Linear) object trackers > Kalman filters: one forgotten approach	pixel-level connectivity	instance	ul		/	×	✓		✓	/		We re-implemented it.

Contributions and Takeaways

An open source tool which accurately segments instances of linear objects in document images.

A Multiple Object Tracking (MOT) framework which generalizes the original (forgotten) approach of [Poulain d'Andecy et al., ICPR'94].

Revised datasets and metrics to run benchmarks on two sub-tasks:

- coarse vectorization and
- pixel-level instance segmentation

Key findings:

- ⇒ Detection using MOT: best scores and almost the fastest among training-free approaches
- ⇒ Viable alternatives to Kalman filters for pixellevel instance segmentation: EMA, 1€...

Some **Qualitative** Results

Evaluations and Results Vectorization Task — comparison against other training-free approaches Expected output: start-end coordinates for each target linear object Metrics ▶ F-score from [Cho et al., TPAMI'18]

- public dataset of historical trade directories
- b train: 5 images, test: 190 images $(\approx 4.3 \text{ object/image})$
- ▶ F-score₂: same with fragmentation penalty

adapted to ensure precision $\in [0,1]$

avg (\pm stddev)	Time	F-s	core	F-score ₂			
	(ms)	Train	Test	Train	Test		
MOT (Kalman)	633	95.2 (±7.5)	90.1 (±24.0)	92.7 (±13.0)	87.6 (±24.6)		
AG3Line	434	66.2 (±23.8)	72.5 (±35.4)	$25.9 \ (\pm 9.9)$	$24.2 \ (\pm 13.7)$		
CannyLines	551	$81.2~(\pm 22.7)$	84.4 (\pm 24.2)	$39.0\ (\pm 13.5)$	$34.2\ (\pm 14.0)$		
EDLines	314	83.2 (\pm 23.6)	87.4 (\pm 24.0)	$35.5~(\pm 8.3)$	$30.5~(\pm 12.3)$		
ELSED	264	$91.1~(\pm 11.3)$	87.0 (\pm 26.6)	$45.3 \ (\pm 9.6)$	$35.2\ (\pm 13.7)$		
Hough	419	$80.5~(\pm 14.5)$	64.8 (± 30.0)	$23.5 \ (\pm 9.2)$	$18.2\ (\pm 10.1)$		
LSD	2338	$18.7\ (\pm 10.3)$	$12.5\ (\pm 8.5)$	$1.6~(\pm 1.5)$	$0.5\ (\pm 0.6)$		
LSD II	2206	$76.7\ (\pm 28.6)$	$53.3 (\pm 43.7)$	$47.6 \ (\pm 24.7)$	$20.7\ (\pm 17.9)$		

Instance Segmentation Task — comparison among tracking algorithms

Expected output: list of pixels contained by each target linear object

Dataset new

Dataset new

- ▷ ICDAR'13 competition on music staff removal with extra instance labeling
- b train: 5 images, test: 1995 images

Metrics

- mentation performance indicator

avg (\pm stddev)	Time	Panoptio	Quality	F-Score (ICDAR'13)			
	(ms)	Train	Test	Train	Test		
Last observation	323	86.3 (± 5.2)	83.7 (± 11.1)	95.9 (± 2.1)	95.4 (± 2.7)		
SMA	323	$67.6~(\pm~17.0)$	66.0 (\pm 17.6)	$90.7~(\pm~6.5)$	89.9 (± 7.4)		
EMA	322	74.0 (\pm 14.9)	$65.5~(\pm~18.4)$	$92.5~(\pm~4.7)$	89.6 (\pm 7.7)		
Double exp.	320	$55.4~(\pm~16.2)$	$51.7~(\pm~15.8)$	$87.3~(\pm~5.0)$	83.8 (\pm 8.6)		
One euro	327	87.2 (\pm 5.9)	85.1 (\pm 9.6)	$95.9~(\pm~2.1)$	95.7 (\pm 2.2)		
Kalman	328	85.0 (± 7.1)	$80.7~(\pm~15.6)$	95.3 (± 2.5)	94.1 (± 5.6)		