Procesamiento de Señales

Algunos conceptos para el primer trabajo práctico

Diego Milone

Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL

10 de marzo de 2008

Una nueva descripción, un nuevo modelo

Señales

que son

Transformadas

por

Sistemas

Señal: fenómeno o variable que representa información.

Señal: fenómeno o variable que representa información.

Ruido: fenómeno que perturba la percepción o interpretación de una señal.

Señal: fenómeno o variable que representa información.

Ruido: fenómeno que perturba la percepción o interpretación de una señal.

La diferencia entre señal y ruido es artificial, y depende solamente del criterio del observador.

Señal: fenómeno o variable que representa información.

Ruido: fenómeno que perturba la percepción o interpretación de una señal.

La diferencia entre señal y ruido es artificial, y depende solamente del criterio del observador.

Medicion objetiva: relación señal a ruido (SNR) $\xi = \frac{P_s}{P_r}$

$$\xi_{dB} = 10 \log \left(\frac{P_s}{P_r} \right)$$

Operaciones básicas con señales

- Operadores binarios
 - Adición, sustracción, ...
 - Productos: por un escalar, punto a punto, interno / externo, ...
 - ...

Operaciones básicas con señales

- Operadores binarios
 - Adición, sustracción, ...
 - Productos: por un escalar, punto a punto, interno / externo, ...
 - ...
- Operadores unarios
 - Operaciones sobre el rango
 - Operaciones sobre el dominio
 - Interpolación
 - Muestreo (o decimación)
 - ...

Operaciones sobre el rango

$$x_{nuevo}(t) = \rho(x_{viejo}(t)) = (\rho \circ x_{viejo})(t)$$

Operaciones sobre el rango

$$x_{nuevo}(t) = \rho(x_{viejo}(t)) = (\rho \circ x_{viejo})(t)$$

Ejemplos: amplificación, rectificación, cuantificación uniforme...

$$\rho(x) = \begin{cases} 0 & x < 0 \\ H int(x/H) & 0 \le x < (N-1)H \\ (N-1)H & x \ge (N-1)H \end{cases}$$

Operaciones sobre el dominio

$$x_{nuevo}(t) = x_{viejo}(\tau^{-1}(t))$$

Operaciones sobre el dominio

$$x_{nuevo}(t) = x_{viejo}(\tau^{-1}(t))$$

Ejemplo: $\tau^{-1}(t) = \alpha t$

- $\alpha > 1 \Rightarrow$: compresión,
- $0 < \alpha < 1 \Rightarrow$: expansión,
- $\alpha = -1 \Rightarrow$: reversión.

Operaciones sobre el dominio

$$x_{nuevo}(t) = x_{viejo}(\tau^{-1}(t))$$

Ejemplo: $\tau^{-1}(t) = \alpha t$

- $\alpha > 1 \Rightarrow$: compresión,
- $0 < \alpha < 1 \Rightarrow$: expansión,
- $\alpha = -1 \Rightarrow$: reversión.

Otro ejemplo: traslación

$$\tau^{-1}(t) = t + \theta$$

Interpolación

$$x(t) = \sum_{n} x^*(nT) I\left(\frac{t - nT}{T}\right)$$

Interpolación

$$x(t) = \sum_{n} x^*(nT) I\left(\frac{t - nT}{T}\right)$$

Ejemplo: función de interpolación escalón

$$I_{escalon}(t) = \left\{ egin{array}{ll} 1 & 0 \leq t < 1 \\ 0 & ext{en otro caso} \end{array}
ight.$$

Muestreo

Muestreo

$$\chi(t) = \sum_{n} x(nT)\delta(t - nT)$$

Muestreo

$$\chi(t) = \sum_{n} x(nT)\delta(t - nT)$$

notación:

$$x[n] = x_n \qquad \longleftarrow \qquad \chi(nT)$$