Practice quiz: Train the model with gradient descent

Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100%

To pass 70% or

higher

Go to next item

1.

1/1 point

Gradient descent is an algorithm for finding values of parameters w and b that minimize the cost function J.

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

When $\frac{\partial J(w,b)}{\partial w}$ is a negative number (less than zero), what happens to w after one update step?

- left w increases.
- \bigcirc It is not possible to tell if w will increase or decrease.
- $\bigcirc w$ stays the same
- $\bigcirc w$ decreases

Correct

The learning rate is always a positive number, so if you take W minus a negative number, you end up with a new value for W that is larger (more positive).

2.

1/1 point

For linear regression, what is the update step for parameter b?

$$igcircle b = b - lpha rac{1}{m} \sum_{i=1}^m (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$igotimes b = b - lpha rac{1}{m} \sum_{i=1}^m (f_{w,b}(x^{(i)}) - y^{(i)})$$

igotimes Correct The update step is $b=b-lpharac{\partial J(w,b)}{\partial w}$ where $rac{\partial J(w,b)}{\partial b}$ can be computed with this expression: $\sum_{i=1}^m (f_{w,b}(x^{(i)})-y^{(i)})$

$$\sum_{i=1}^m (f_{w,b}(x^{(i)}) - y^{(i)})$$