Display and Color Part 3

John Keyser

Goal For Last Week and This

- Understand display and perception
 - What the human visual system can perceive
 - In terms of color, patterns, etc.
 - Based on the structure of the eye and the processing within the brain
 - What is possible to display/see/understand
 - Can influence how we design visualizations
 - Today we will discuss applications based on color
- Much of the material drawn from Ware chapters 2-6.

Color Selection

- When a user needs to select a color (e.g. to label parts of a visualization), we want to provide an interface that allows straightforward selection of colors
- Separate lightness/brightness control from chromaticity control
- Lay out red-green and yellow-blue axes on a plane
 - Orthogonal axes provide good perceptual separation
- If possible, allow color selection to be displayed against different backgrounds

Color Selection Example

- https://color.adobe.com/create/color-wheel
- Note the color distribution is more similar to the CIELAB layout (red-green/yellowblue), and intensity is separated

Color Labeling

- When labeling nominal categories, need to choose a set of colors to use for labeling
 - Note: no ordering
- Key idea is that color can be remembered, recognized, and matched to the correct legend
- Colors should be distinct; spaced far apart in perceptual color space
 - Does not need to be maximally separate, just clearly distinct

Color Labeling (continued)

- For large areas of color, low saturation colors can be used
- For small marks, use higher saturation
- Should have luminance difference in foreground/background
 - Thin white/black borders around shapes will tend to reduce contrast effects

Example

- Notice that low saturation background with high saturation foreground is much easier to read, while still allowing comparison of background material
- Generated at https://colorbrewer2.org/

Color Labeling (continued)

- For color blind viewers, ensure variation in the yellow-blue axis
 - For most common type of color blindness.
- No more than 10 different colors can be reliably used
 - Assumes same luminance value for each
 - Some estimates are lower than 10
- Color "families" (same hue, different saturation/lightness) can be used
 - Only about 3 levels of saturation/lightness are reliable

Pseudocolor Sequences

- We often want to have a pseudocolor scale
 - Also called Color map, Color sequence
- Map each value to some color along a scale
 - What scale is good?
 - Plot these on the map/diagram
- For many 2D images, this is called a choropleth diagram

Data Visualization: Display and Color

Color Scales

- Many possible color scales have been used
- Can be of several types
 - Sequential
 - Divergent
 - Cyclic

Data Visualization: Display and Color

Common color scales

Color Scales

- What do we want to do with color scales?
 - Resolving features: can we perceive aspects in the map?
 - Identifying patterns: can we find highs/lows, positive/negative values, compare gradients, identify saddle points, elongated features, etc.?
 - Read values from key: can we determine what value a point has by comparing to some key?
 - Classify regions: can we determine what contiguous area meets some criteria?

Perceptual Properties of Colormaps

- Resolving power: How fine of features (variations in value) can be detected?
 - Uniformity: How uniform is this resolving power over the range of the scale?
- Perceptual monotonicity
- How readily are colors in the scale categorized?

Uniformity and Resolving Power

 Different scales, have different ability to distinguish features across values

Data Visualization: Display and Color

Some Scales for Comparison

Grey ramp: A uniform grey colormap.

Viridis: colormap prized for its uniformity. More accurate compared to the grey ramp when a key is used.

Green-Red: Approximately equiluminous green-red colormap.

Not a good choice but theoretically interesting.

Cool-Warm: Divergent colormap from Moreland.

Extended Cool-Warm: Divergent colormap from Samsel. Has very good feature resolving power, becease it doubles the luminance range.

Rainbow: A much derided colormap. This version comes from Paraview software.

Thermal: A colormap sometimes used in thermal imaging. Confusing, but outstanding feature resolution because of luminance variation

Uniformity and Resolving Power

 Different color scales have different resolution and uniformity

Notes about Resolution

- Rainbow scale is very nonuniform
- Grayscale, Viridis, Green-red are very uniform
- Thermal has some of the best resolving power

 Generally, luminance variation is good for helping improve resolving power

Perceptual Monotonicity

- We want the scale to be clearly ordered (monotonic) from low to high
- Grayscale (pure luminance) is the best at allowing this, and can be adjusted for perception very precisely
 - But, recall that it is *not* good for maps of data due to contrast effects; hue is needed to allow accurate reading
- Color scales that have smooth luminance ramps will produce better results

Form Perception

 Consistency and clarity of patterns varies by scale

Categorization

- If a scale is used to categorize (i.e. to identify one region vs. another), perceptual smoothness an uniformity is not needed.
- Want distinctive regions to appear distinctive
 - Rainbow scale sometimes actually works well for this
- Especially true around zero (to identify positive/negative); diverging scales work well here
 - Neutral color in middle; opposing at edges

Contours and Discrete Color Sequence

- Contours can help categorize regions
 - Help group regions that "belong" togehter
- A discrete color sequence (rather than a color scale) can make it even easier to detect discrete regions

Contours and Discrete Color Sequence

Bivariate Scales

- Since color is 3 dimensional, we could potentially map any 3 variables into color space
 - e.g. one to Red, one to Green, one to Blue
- However, this is not perceptually uniform
 - It is very difficult to distinguish across 3 channels
- But, bivariate has worked
 - Hue for one channel, lightness or saturation for the other
 - Still, can be VERY difficult to read

Bivariate Scales

- Good scale:
 - Hue for one channel, usually discrete
 - Lightness or Saturation for the other
- Sometimes have a "mixed" hue grid
 - Often just a 3x3 grid of values along 2 scales
 - Much more than this is too difficult to read
 - Might get better with experience

Saturation for One Axis

Data Visualization: Display and Color

Two Hue Scales

Overall Takeaways for Color Scale

- The rainbow (spectral) scale is really not good for use as a color scale
 - Unless identifying discrete colors is the main task
- Viridis is a pretty good/safe choice for a color map, but is not the only one