# Lecture 23 EM Algorithm for Clustering ECEN 5283 Computer Vision

Dr. Guoliang Fan School of Electrical and Computer Engineering Oklahoma State University



#### Goals

- To revisit the missing data problem that involves two data likelihood functions
- To revisit a soft-clustering EM algorithm by looking into the likelihood function and the initialization

# Missing Data Problem Revisited



 $\Theta^* = \arg \max_{\Theta} \log p(Y \mid \Theta)$  (log - likelhood of incomplete data)

$$\Theta^* = \arg \max_{\Theta} \log p(X, Y | \Theta)$$
 (log - likelhood of complete data)



## Two Log-likelihood Functions

Incomplete data log-likelihood (without the labels X)

$$\log p(Y \mid \Theta) = \sum_{j=1}^{N} \log \left( \sum_{i=1}^{k} p(y_j \mid x_j = i, \Theta) \alpha_i \right)$$

Can be computed but not easy to optimize

Complete data log-likelihood (with the labels X)

$$\log p(X, Y | \Theta) = \sum_{j=1}^{N} \log \left( \sum_{i=1}^{k} x_{ji} p(y_j | x_j = i, \Theta) \alpha_i \right)$$
$$= \sum_{j=1}^{N} \sum_{i=1}^{k} x_{ji} \log p(y_j | x_j = i, \Theta) \alpha_i$$

$$x_{ji} = \begin{cases} 1 & \text{if state } i \text{ produces observation } j \\ 0 & \text{Otherwise} \end{cases}$$

Cannot be computed but can be optimized via a lower bound

# EM Algorithm: E-step



Initialization: set s=0 and

$$\Theta^{0} = (\alpha_{1}^{(0)}, \alpha_{2}^{(0)}, ..., \alpha_{k}^{(0)}, \theta_{1}^{(0)}, \theta_{2}^{(0)}, ..., \theta_{k}^{(0)}). \quad \theta_{i} = \{\mu_{i}, \sum_{i}\}$$

- Expectation (E-step):
  - Compute an expected value of for the complete data using the incomplete data and the current parameters.



# EM Algorithm: M-step



- Maximization (M-step):
  - Find the parameters by using the estimate of missing data.

$$\alpha_i^{(s+1)} = \frac{1}{N} \sum_{l=1}^{N} p(x_l = i \mid y_l, \Theta^{(s)})$$

$$\mu_i^{(s+1)} = \frac{\sum_{l=1}^{N} y_l p(x_l = i \mid y_l, \Theta^{(s)})}{\sum_{l=1}^{N} p(x_l = i \mid y_l, \Theta^{(s)})}$$

$$\Sigma_{i}^{(s+1)} = \frac{\sum_{l=1}^{N} p(x_{l} = i \mid y_{l}, \Theta^{(s)}) \{ (y_{l} - \mu_{i}^{(s)}) (y_{l} - \mu_{i}^{(s)})^{T} \}}{\sum_{l=1}^{N} p(x_{l} = i \mid y_{l}, \Theta^{(s)})}$$

#### Gaussian Likelihood Function



In the case of single variable x, the Gaussian distribution can be written as

$$N(x | \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

In a D-dimensional case, the multivariate Gaussian distribution is defined

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{\left|\boldsymbol{\Sigma}\right|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Mahalanobis distance

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$



All points along the same contour shares the same M-distance.

#### **Covariance Matrix**



▶ Given the covariance, eigen-value decomposition is defined as

$$\Sigma = \mathbf{U}\Lambda \mathbf{U}^{\mathrm{T}}$$

$$\mathbf{U} = (\mathbf{u}_{1}, \mathbf{u}_{2}) \quad \mathbf{U}^{\mathrm{T}} = \mathbf{U}^{-1}$$

$$\mathbf{v}_{i} = \lambda_{i}\mathbf{u}_{i}$$

$$\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i}$$

$$\mathbf{u}_{i} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Consider the 2D case, we can represent the covariance matrix by its eigenvectors as

$$\Sigma = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{pmatrix} = \begin{pmatrix} \lambda_1 \mathbf{u}_1 & \lambda_2 \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{pmatrix} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T$$

Then we represent the covariance matrix by its eigenvectors as

$$\Sigma = \mathbf{U}\Lambda \mathbf{U}^{\mathrm{T}} = \sum_{i=1}^{D} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T} \rightarrow \Sigma^{-1} = \mathbf{U}\Lambda^{-1} \mathbf{U}^{\mathrm{T}} = \sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$$

## **Mahalanobis Distance**



• Given a vector x, the M-distance is obtained as

$$\Delta^{2} = (\mathbf{x} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$= (\mathbf{x} - \boldsymbol{\mu})^{T} \left( \sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{T} \right) (\mathbf{x} - \boldsymbol{\mu})$$

$$= \sum_{i=1}^{D} \frac{1}{\lambda_{i}} (\mathbf{x} - \boldsymbol{\mu})^{T} \mathbf{u}_{i} \mathbf{u}_{i}^{T} (\mathbf{x} - \boldsymbol{\mu})$$

$$= \sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}} \quad \text{where } y_{i} = \mathbf{u}_{i}^{T} (\mathbf{x} - \boldsymbol{\mu}).$$



- We interpret  $\{y_i \mid i=1,2,...,D\}$  as a new coordinate system defined by the orthonormal vectors  $\mathbf{u}_i^T$ . What is the good thing about this new coordinate system?
  - Then in the 2D case, a new vector system is obtained

$$\mathbf{y} = \mathbf{U}^{\mathrm{T}}(\mathbf{x} - \boldsymbol{\mu})$$
 where  $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$  and  $\mathbf{U}^{\mathrm{T}} = \begin{pmatrix} \mathbf{u}_1^{\mathrm{T}} \\ \mathbf{u}_2^{\mathrm{T}} \end{pmatrix}$ 







https://www2.cs.duke.edu/courses/fall07/cps271/EM.pdf

#### Demo: 1st iteration





# Demo: 2<sup>nd</sup> iteration





# Demo: 3<sup>rd</sup> iteration





## Demo: 4<sup>th</sup> iteration





## Demo: 5<sup>th</sup> iteration



















# **EM Algorithm: Stop Condition**



Iteration still the stop criteria is satisfied, e.g., no much change of the incomplete data log-likelihood

$$p(\mathbf{Y} \mid \Theta^{(s+1)}) - p(\mathbf{Y} \mid \Theta^{(s)}) < \Delta \quad \rightarrow \log p(\mathbf{Y} \mid \Theta^{(s+1)}) - \log p(\mathbf{Y} \mid \Theta^{(s)}) < \Delta'$$
$$\log p(\mathbf{Y} \mid \Theta) = \sum_{j=1}^{N} \log \left( \sum_{i=1}^{k} p(y_j \mid x_j = i, \Theta) \alpha_i \right)$$

(or an easy way to fix the iteration number)

Decide the class label for data point

$$\mathbf{I}(l,m) = p(x_l = m \mid y_l, \Theta^{(s)})$$

$$x_l = \arg_{m \in \{1, \dots, g\}} \max \mathbf{I}(l, m)$$

# **EM Algorithm: Local Optimality**



- Both K-mean and EM can only converge to the local optimum of the objective function.
- In other words, both methods are sensitive to the initialization, especially EM.







Random initialize k centers for the k-means algorithm.

$$C^0 = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_k\}$$

Run the k-means algorithm until converge or with certain iteration number.

$$\Phi(\mathbf{X}, \mathbf{Y}) = \sum_{i=1}^{k} \left\{ \sum_{x_j=i} \left| y_j - \mathbf{c}_i \right|^2 \right\}$$

According to the class label of all samples  $\{x_1, x_2, ..., x_N\}$ , initialize the multivariate Gaussian models for the EM.

$$\alpha_{i} = \frac{\#(x_{j} = i \mid j = 1,...,N)}{N}$$

$$\sum_{x_{j} = i} y_{j}$$

$$\mu_{i} = \frac{\sum_{x_{j} = i} y_{j}}{\#(x_{j} = i \mid j = 1,...,N)}$$

$$\sum_{x_{j} = i} (y_{j} - \mu_{i})(y_{j} - \mu_{i})^{T}$$

$$\frac{\sum_{x_{j} = i} y_{j}}{\#(x_{j} = i \mid j = 1,...,N)}$$

#### K-mean vs. EM



Both K-mean and EM need to be initialized and involve two major steps during iteration.

|                | K-mean                                                                                                                                                                     | EM                                                                                                                         |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Initialization | Initialize k means (cluster centers) $\pmb{C}^0 = \{ \pmb{\mathbf{c}}_1, \pmb{\mathbf{c}}_2, \dots, \pmb{\mathbf{c}}_k \}$                                                 | Initialize k Gaussian models that have equal weights. $\Theta^0 = \left\{\alpha_i, \mu_i, \sum_i \mid i=1,\dots,k\right\}$ |
| Step I.        | Assume the cluster centers are known, and classify each data sample to the closest cluster center.                                                                         | Given the model parameters, estimate the missing data in terms of the posterior probability of each data sample.           |
| Step 2.        | Assume the allocation (the class label of each sample) is known, and choose a new set of cluster centers. Each center is the mean of all points allocated to that cluster. | From the estimated missing data, to obtain the maximum likelihood estimate of the model parameters.                        |