

S	TUDE	NTI	D NO	0

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

DET5068 – ANALOG ELECTRONICS 1

(Diploma in Electronic Engineering)

13 MARCH 2018 2:30 PM - 4:30 PM (2 HOURS)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 11 pages (5 pages with 5 questions and 6 pages for appendix).
- 2. Answer ALL questions. All necessary working steps must be shown.
- 3. Write all your answers in the answer booklet provided.

QUESTION 1 [20 Marks]

a) Materials on Earth can be classified into 3 broad categories which are conductor, semiconductor and insulator. Thus, define each of the terms, explain their electron valence characteristics and gives 2 examples for each of the material categories.

(6 marks)

- b) Estimate the force of attraction, $F_a \propto \frac{1}{d}$ and energy of electron, $E \propto d$ relationship for electron, e_1 and electron, e_2 with calculation base on the information below. State which electron have the higher possibility of escaping the valence band into the conduction band.
 - (i) Electron, e_1 has $d_1 = 2 \times 10^{-20} m$ and electron, e_2 has $d_2 = 4 \times 10^{-20} m$

(7 marks)

(ii) Electron, e_1 has $d_1 = 3 \times 10^{-25} m$ and electron, e_2 has $d_2 = 5 \times 10^{-25} m$

(7 marks)

QUESTION 2 [20 Marks]

Figure 1(a) and Figure 1(b) shows 2 types of diode application. Calculate the output voltage for each of the application using the given values.

(10 marks)

b) Draw the voltage-current characteristic curve of a normal diode and a Zener diode. Compare and state the difference between both voltage-current characteristic curve.

(10 marks)

QUESTION 3 [20 Marks]

- (a) A certain BJT has base current, $I_B = 50 \mu A$ and collector current, $I_C = 5.66 mA$. Determine the following:
 - (i) DC beta, β_{DC}
 - (ii) emitter current, I_{E}
 - (iii) DC alpha, α_{DC}

(6 marks)

(b)

Figure 2 shows a transistor circuit bias. Determine the followings, if $\beta_{DC} = 200$.

				G) I	
(5 marks)				(-) -B	
(1 mark)				(ii) <i>I_C</i>	
(3 marks)				(iii) I_E	
(2 marks)			CE	(iv) V_{CE}	
			B <i>E</i>	(v) V_{BE}	
(1 mark)			an.	(vi) V_{CB}	
(2 marks)	-	*	U.B	(14) CB	

QUESTION 4 [20 Marks]

An emitter bias circuit for BJT is having the following parameters: $R_C=4.2k\Omega$, $R_B=55k\Omega$, $R_E=9.5k\Omega$, $V_{CC}=20V$, $V_{EE}=-20V$ and $\beta_{DC}=130$. Based on the information given:

(a) Sketch the circuit diagram

(5 marks)

(b) Evaluate the Q-point of the circuit.

(15 marks)

QUESTION 5 [20 Marks]

Figure 3 shows a certain type of BJT amplifier. Given that $\beta_{ac}=90\,$ and $V_{in}=1.5mVrms$.

(a) Identify the amplifier

(1 mark)

(b) Calculate R_{in(tot)}

(7 marks)

(c) Calculate A,

(1 mark)

(d) Calculate A,

(10 marks)

(e) Calculate A_p

(1 mark)

FORMULAE LIST

	BJ	IT BIAS
TERMS		FORMULAE
DC load line equation		$I_C = -\frac{1}{R_C}V_{CE} + \frac{V_{CC}}{R_C}$
Voltage divider-bias:		
DC collector and emitter current		$I_C \cong I_E = \frac{V_E}{R_E}$
DC base voltage		$V_B = \frac{R_2 // R_{IN(BASE)}}{R_1 + (R_2 // R_{IN(BASE)})} \times V_{CC}$
		$V_B = \frac{R_2}{R_1 + R_2} \times V_{CC} \text{if, } R_{IN(BASE)} >> R_2$
DC collector voltage	-1-	$V_C = V_{CC} - I_C R_C$
DC collector-to-emitter voltage		$V_{CE} = V_{CC} - I_C (R_C + R_E)$
DC emitter voltage		$V_{E} = V_{B} - V_{BE}$
DC input resistance at the base		$R_{IN(BASE)} = \beta_{DC} R_E$
DC total resistance		$R_T = R_2 // \beta_{DC} R_E$
Base bias:		·
DC base current		$I_B = \frac{V_{CC} - V_{BE}}{R_B}$

CPL

DC collector current	$I_C = \frac{\beta_{DC}(V_{CC} - V_{BE})}{R_B}$
DC collector-to-emitter voltage	$V_{CE} = V_{CC} - I_C R_C$
Collector-feedback bias:	
DC base current	$I_B = \frac{V_C - V_{BE}}{R_B}$
DC collector current	$I_C = \frac{V_{CC} - V_{BE}}{\frac{R_B}{\beta_{DC}} + R_C}$
DC collector-to-emitter voltage	$V_{CE} = V_{CC} - I_C R_C$
Emitter bias:	
DC base current	$I_{B} \cong \frac{I_{E}}{\beta_{DC}}$
DC collector current	$I_C \cong \frac{-V_{EE} - V_{BE}}{\frac{R_B}{\beta_{DC}} + R_E}$
DC emitter current	$I_E = \frac{-V_{EE} - V_{BE}}{\frac{R_B}{\beta_{DC}} + R_E}$
DC base voltage	$V_B = V_E + V_{BE}$
DC collector voltage	$V_C = V_{CC} - I_C R_C$
DC collector-to-emitter voltage	$V_{CE} = V_C - V_E$

DC '44		
DC emitter voltage	$V_E = V_{EE} + I_E R_E$	
BJT A	MPLIFIERS	
TERMS	FORMULAE	
r Parameters:		
ac base resistance	$r_b' = h_{ie} - \frac{h_{re} \left(h_{fe} + 1 \right)}{h_{oe}}$	
ac collector resistance	$r_c = \frac{h_{re} + 1}{h_{oe}}$	
ac emitter resistance	$r'_e = \frac{h_{re}}{h_{oe}}$	
Common-base amplifier:		
DC emitter current	$I_E = \frac{V_E}{R_E}$	
DC base voltage	$V_B = \frac{R_2}{R_1 + R_2} \times V_{CC}$	
DC emitter voltage	$V_E = V_B - V_{BE} $	
ac output voltage	$V_{out} = V_c$	
ac input voltage	$V_{in} = V_e$	
ac resistance at emitter	$R_{in(emitter)} \cong r_e$	
ac output resistance	$R_{out} \cong R_C$	

Current gain	$A_i \cong 1$
Voltage gain	$A_{\nu} \cong \frac{R_c}{r_e'}$
Power gain	$A_p = A_v$
Common-collector amplifier:	
ac input current	$I_{in} = \frac{V_{in}}{R_{in(tot)}}$
ac emitter current	$I_e = \frac{V_e}{R_e}$
ac emitter voltage	$V_e = A_v V_b$
ac input resistance at base	$R_{ln(base)} \cong eta_{ac} R_e$
ac total input resistance	$R_{in(tot)} = R_1 // R_2 // R_{in(base)}$
ac output resistance	$R_{out} \cong \left(\frac{R_s}{\beta_{ac}}\right) / / R_E$
Current gain	$A_i = \frac{I_e}{I_{in}}$

Voltage gain

Power gain

 $A_{_{\boldsymbol{\nu}}}\cong 1$

 $A_p = A_i$

Common-emitter amplifier:

DC collector current

 $I_C \cong I_E$

DC base voltage

$$V_B = \frac{R_2}{R_1 + R_2} \times V_{CC}$$

DC collector voltage

$$V_C = V_{CC} - I_C R_C$$

DC collector-to-emitter voltage

$$V_{CE} = V_C - V_E$$

DC emitter current

$$I_E = \frac{V_E}{R_E}$$

DC emitter voltage

$$V_E = V_B - V_{BE}$$

DC input resistance at base

$$R_{IN(BASE)} = \beta_{DC} R_E$$

ac base current

$$I_b \cong \frac{I_e}{\beta_{ac}}$$

ac base voltage

$$\begin{aligned} \boldsymbol{V}_b &= \frac{\boldsymbol{R}_{in(tot)}}{\boldsymbol{R}_s + \boldsymbol{R}_{in(tot)}} \times \boldsymbol{V}_s \\ &= \boldsymbol{I}_e \boldsymbol{r}_e \end{aligned}$$

ac collector voltage

$$V_c = A_v' V_x$$

ac total current signal

$$I_s = \frac{V_s}{R_{in(tot)} + R_s}$$

ac input resistance at base

 $R_{in(base)} = \beta_{ac} r^{\scriptscriptstyle \dagger}_{e}$

ac total input resistance

 $R_{in(tot)} = R_1 // R_2 // R_{in(base)}$

ac output resistance

 $R_{out} \cong R_C$

Current gain

Voltage gain

 $A_{v} = \frac{R_{C}}{r_{e}} \text{ if } C_{2} \text{ exists}$ $A_{v} = \frac{R_{C}}{r_{e} + R_{E}} \text{ if } C_{2} \text{ does not exist}$

Overall voltage gain

Power gain