חישוביות וסיבוכיות

'מועד א

פתרון לדוגמא

ד"ר יוחאי טוויטו, , ד"ר ירמיהו מילר, סמסטר א, תשפ"ה'

מסמך זה כולל פתרון לדוגמא של המבחן. הפתרונות לשאלות הינן פתרונות לדוגמא. ניתן לפתור חלק בדרכים נוספות/אחרות, מלבד הדרך המוצעת בפתרון לדוגמא.

שאלה 1: מכונת טיורינג 20 נקודות

'סעיף א

כעיף ב'הפונקציה שאותה המכונה מחשבת היא הפונקציה:

$$f(x) = x \mod 3 \ .$$

. כלומר, המכונה מחשבת את שארית החלוקה ב-3 של המספר האונרי הנתון כקלט

סעיף ג' הפונקציה שאותה המכונה מחשבת היא הפונקציה:

$$f(1^i \# 1^j) = 1^{|i-j|}$$
.

כלומר, המכונה מחשבת את הערך המוחלט של ההפרש בין שני מספרים $1^i,1^j$, הנתונים בקלט. הסבר:

$$q_0$$
 1#1 \vdash q_1 #1 \vdash # $1q_1$ \vdash # q_2 1 \vdash q_0 # \vdash q_0 # \vdash acc .
$$f(1$$
#1) = 0

$$q_0$$
 11#1 \vdash q_1 1#1 \vdash ** 1#1 q_1 \vdash 1# q_2 1 \vdash ** q_{back} 1# \vdash q_0 1# \vdash q_1 # \vdash # q_1 \vdash q_2 # \vdash q_4 \vdash 1 \vdash 2 acc 1

 $i\geqslant j$ נסתכל על קלט כללי 1^i #1 j כאשר

לכן

$$f(1^i \# 1^j) = 1^{i-j} , \qquad i \geqslant j .$$
 (*1)

i < j נסתכל על קלט כללי 1^i #1 כאשר

לכן

$$f(1^i \# 1^j) = 1^{j-i}$$
, $i < j$. (*2)

-המשוואות (1*) ו- (2*) אומרות ש

$$f(1^i \# 1^j) = 1^{|i-j|}$$
 . (*3)

שאלה 2: וריאציות על מכונת טיורינג 20 נקודות

שאלה 3: התזה של צ'רץ' טיורינג 20 נקודות

שאלה 4: אי-כריעות 20 נקודות

:מוגדרת מוגדרת השפה $L_{M_1\cup M_2}$

$$L_{M_1 \cup M_2} = \{ \langle M_1, M_2, w \rangle \mid w \in L(M_1) \cup L(M_2) \}$$

. לפחות. $L(M_2)$ או $L(M_1)$ השפה שייך לאחת שייך לאחת השפות ל (M_1,M_2,w) לפחות. ז"א $M_1\cup M_2$ אוייך לאחת השפות לפחות.

כלומר גריך, $L_{M_1 \cup M_2}$ לשפה בין השפה בין התאמה בין כלומר איימת רדוקציה התאמה בין להוכיח:

$$A_{TM} \leqslant L_{M_1 \cup M_2}$$
.

הגדרת הרדוקציה:

בהינתן $\langle M,w
angle$ קלט של $\langle M_1,M_2,w
angle$ ניצור $\langle A_{TM}$ ניצור $\langle M,w
angle$ קלט של בהינתן

$$\langle M, w \rangle \in A_{TM} \quad \Rightarrow \quad \langle M_1, M_2, w \rangle \in L_{M_1 \cup M_2} ,$$

 $\langle M, w \rangle \notin A_{TM} \quad \Rightarrow \quad \langle M_1, M_2, w \rangle \notin L_{M_1 \cup M_2} .$

נגדיר את פונקציית הרוקציה באופן הבא:

".rej
$$\leftarrow M_1 \; x$$
 על כל קלט" $= M_1$

$$x$$
 על כל קלט " = M_2

. מריצה M על w ועונה כמוה ullet

נכונות הרדוקציה:

$$\langle M,w
angle \in A_{TM}$$
 אם

$$w \in L(M) \Leftarrow$$

$$.w \in L(M_2) \Leftarrow$$

$$w \in L(M_2) \cup \emptyset \Leftarrow$$

$$w \in L(M_2) \cup L(M_1) \Leftarrow$$

$$\langle M_1, M_2, w \rangle \in L_{M_1 \cup M_2} \Leftarrow$$

⇒ כיוון

$$\langle M,w
angle
otin A_{TM}$$
 אם

$$.w \notin L(M) \Leftarrow$$

$$.w \notin L(M_2) \Leftarrow$$

$$(\varnothing)$$
 וגם M_1 היא (כי השפה של $w\notin L(M_1)$ היא $w\notin L(M_2)$

$$\langle M_1, M_2, w \rangle \notin L_{M_1 \cup M_2} \Leftarrow$$

שאלה 5: סיבוכיות זמן 20 נקודות

פונקצית הרדוקציה:

 $\langle VC \rangle$ (הקלט של $\langle G',k' \rangle \in VC$, יוצרת יוצרת אין, (הקלט של $\langle G,k \rangle \in IS$), והקלט של שבהינתן זוג אשר מקיימת את התנאי:

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in VC \ .$$
 (*2)

הפונקציית הרדוקציה מוגדרת כך שהתנאים הבאים מתקיימים:

$$G=(V,E)$$
 הוא אותו גרף $G=(V,E)$, אז הגרף (1

$$.k' = |V| - k$$
 (2

נכונות הרדוקציה

 $.\langle G,k
angle \in IS \quad \Leftrightarrow \quad \langle G',k'
angle \in VC$ כעת נוכיח שמתקיים:

⇒ כיוון

$$.k$$
 בהינתן גרף $G=(V,E)$ ושלם $.\langle G,k
angle \in IS$ נניח כי

- $|S|\geqslant k$ מכיל קבוצה בלתי תלוייה S בגודל לפחות: G
 - $.(u_1,u_2)\notin E$ אם $u_1,u_2\in S$ אם \Leftarrow .G -כלומר, כל שני קדקודים ב- S לא מחוברים בצלע ב-
 - ⇒ השלילה הלוגית של הגרירה הזאת:

$$.u_2 \notin S$$
 או $u_1 \notin S$ אז $(u_1,u_2) \in E$ אם

$$.u_{2}\in Vackslash S$$
 או $u_{1}\in Vackslash S$ אז $(u_{1},u_{2})\in E$ אם \Leftarrow

.G היא כיסוי קודקודים של V ackslash S התת-קבוצה \leftarrow

$$|V \backslash S| \leqslant |V| - k$$
 לכן | $V \backslash S| = |V| - S$ -1 ו

. לכל היותר מכיל כיסוי קודקודים ע בגודל $K' = \leqslant |V| - k$ בגודל ע מכיל כיסוי קודקודים $G' = G \ \Leftarrow$

$$\langle G', k' \rangle \in VC \Leftarrow$$

⇒ כיוון

$$.k^\prime$$
 בהינתן גרף G^\prime ושלם

$$\langle G',k'
angle \in VC$$
 נניח כי

$$|U|\leqslant k'$$
 מכיל כיסוי קדקודים U בגודל מכיל היותר: $G'=(V,E)$

$$u_2 \in U$$
 או $u_1 \in U$ אז $(u_1, u_2) \in E$ אם \Leftarrow

$$(u_1,u_2)\notin E$$
 אם $u_1\notin U$ וגם $u_1\notin U$ אם $u_1\notin U$

$$.(u_1,u_2)
otin E$$
 אז $u_2\in Vackslash U$ וגם $u_1\in Vackslash U$ אם

. היא קבוצה בלתי תלויה.
$$S = V \backslash U$$
 התת-קבוצה \Leftarrow

$$|S|\geqslant |V|-k'$$
 אז $|U|\leqslant k'$ -1 $|S|=|V|-|U|$

ת. לפחות אכיל קבוצה אויה
$$|V|-k'=k$$
 בגודל מכיל קבוצה בלתי מלויה לפחות מכיל קבוצה בלתי

$$\langle G, k \rangle \in IS \Leftarrow$$