AMENDMENTS TO THE CLAIMS

The listing of the claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (currently amended): A method for analyzing multivariate images, comprising:
 - a) providing a data matrix **D** containing measured spectral data,
- b) transforming the data matrix \mathbf{D} , using a wavelet transform, to obtain a transformed data matrix $\widetilde{\mathbf{D}}$
- c) thresholding the wavelet coefficients of the transformed data matrix $\tilde{\mathbf{D}}_{\star}$
- e) d) performing an image analysis on the transformed data matrix $\tilde{\mathbf{D}}$ to obtain a transformed spatially compressed concentration matrix $\tilde{\mathbf{C}}$ and a spectral shapes matrix \mathbf{S} , and
- d) e) computing a concentration matrix $\bf C$ from the transformed spatially compressed concentration matrix $\tilde{\bf C}$.
- 2. (currently amended): The method of Claim 1, wherein the data matrix **D** comprises a total of j blocks of data \mathbf{D}_i , each data block \mathbf{D}_i thereby providing a concentration block \mathbf{C}_i in step [[a)]] $\underline{\mathbf{e}}$, and wherein steps a) through [[d)]] $\underline{\mathbf{e}}$) are repeated sequentially until the concentration matrix \mathbf{C} is accumulated blockwise, according to $\mathbf{C} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \cdots & \mathbf{C}_{i-1} & \mathbf{C}_i \end{bmatrix}$.
- 3. (original): The method of Claim 1, wherein the wavelet transform comprises a Haar transform.
- 4. (canceled)
- 5. (currently amended): The method of Claim [[4]] 1, wherein the thresholding comprises decimating the detail coefficients.
- 6. (currently amended): The method of Claim 1, wherein the image analysis of step [[c)]] d) comprises an alternating least squares analysis and the transformed

<u>spatially compressed</u> concentration matrix $\tilde{\mathbf{C}}$ and the spectral shapes matrix \mathbf{S} are obtained from a constrained least squares solution of $\min_{\tilde{\mathbf{C}},\tilde{\mathbf{S}}} \|\tilde{\mathbf{D}} - \tilde{\mathbf{C}}\mathbf{S}^{\mathsf{T}}\|_{\mathbf{F}}$.

- 7. (original): The method of Claim 6, wherein the alternating least squares analysis comprises a transformed non-negativity constraint.
- 8. (currently amended): The method of Claim 1, wherein the computing step [[d)]] \underline{e}) comprises applying an inverse wavelet transform to the transformed spatially \underline{c} compressed concentration matrix $\tilde{\mathbf{C}}$ to provide the concentration matrix \mathbf{C} .
- 9. (currently amended): The method of Claim 1, wherein the computing step [[d)]]
 e) comprises projecting the data matrix **D** from step a) onto the spectral shapes
 matrix **S** from step [[c)]] d), according to min **D** CS^T.
- 10. (currently amended): A method for analyzing multivariate images, comprising:
- a) providing a data factor matrix **A** and a data factor matrix **B** obtained from a factorization of measured spectral data **D**,
- b) transforming the data factor matrix \mathbf{A} , using a wavelet transform, to obtain a transformed data factor matrix $\tilde{\mathbf{A}}$,
- c) thresholding the wavelet coefficients of the transformed data factor $\underbrace{\text{matrix}\ \tilde{\mathbf{A}}}_{,}$
- e) d) performing an image analysis on the transformed data factor matrix $\tilde{\bf A}$ and data factor matrix ${\bf B}$ to obtain a transformed spatially compressed concentration matrix $\tilde{\bf C}$ and a spectral shapes matrix ${\bf S}$, and
- d) e) computing a concentration matrix $\bf C$ from the transformed spatially compressed concentration matrix $\tilde{\bf C}$.
- 11. (currently amended): The method of Claim 10, wherein the data factor matrix **A** comprises a total of j blocks of data factors \mathbf{A}_i and the data factor matrix **B** comprises k blocks of data factors \mathbf{B}_i , thereby providing a concentration block \mathbf{C}_i

in step [[d)]] <u>e</u>), and wherein steps a) through [[d)]] <u>e</u>) are repeated sequentially until the concentration matrix **C** is accumulated blockwise, according to $\mathbf{C} = \begin{bmatrix} \mathbf{C_1} & \mathbf{C_2} & \cdots & \mathbf{C_{i-1}} & \mathbf{C_i} \end{bmatrix}$.

- 12. (original): The method of Claim 10, wherein the wavelet transform comprises a Haar transform.
- 13. (canceled)
- 14. (currently amended): The method of Claim [[13]] 10, wherein the thresholding comprises decimating the detail coefficients.
- 15. (currently amended): The method of Claim 10, wherein the image analysis of step [[c)]] \underline{d}) comprises an alternating least squares analysis and the transformed spatially compressed concentration matrix $\tilde{\mathbf{C}}$ and the spectral shapes matrix \mathbf{S} are obtained from a constrained least squares solution of $\min_{\tilde{\mathbf{C}},\tilde{\mathbf{S}}} \|\tilde{\mathbf{A}}\mathbf{B}^\mathsf{T} \tilde{\mathbf{C}}\mathbf{S}^\mathsf{T}\|_F$.
- 16. (original): The method of Claim 15, wherein the alternating least squares analysis comprises a transformed non-negativity constraint.
- 17. (currently amended): The method of Claim 10, wherein the computing step [[d)]] e) comprises applying an inverse wavelet transform to the transformed spatially compressed concentration matrix $\tilde{\mathbf{C}}$ to provide the concentration matrix \mathbf{C} .
- 18. (currently amended): The method of Claim 10, wherein the computing step [[d)]] \underline{e}) comprises projecting the product of the data factor matrix \mathbf{A} and the data factor matrix \mathbf{B} from step a) onto the spectral shapes matrix \mathbf{S} from step [[c)]] \underline{d} , according to $\min_{\mathbf{C}} \|\mathbf{A}\mathbf{B}^\mathsf{T} \mathbf{C}\mathbf{S}^\mathsf{T}\|_{\mathbf{F}}$ and subject to appropriate constraints.
- 19. (original): The method of Claim 10, wherein the data factor matrix $\bf A$ comprises a scores matrix $\bf T$ and the data factor matrix $\bf B$ comprises a loadings matrix $\bf P$, and wherein $\bf T$ and $\bf P$ are obtained from a principal components analysis of the measured spectral data $\bf D$, according to $\bf D = \bf TP^T$.

- 20. (original): The method of Claim 19, wherein **T** and **P** represent the significant components of the principal components.
- 21. (new): The method of Claim 1, wherein the data matrix **D** is weighted.
- 22. (new): The method of Claim 10, wherein the data factor matrix **A** and the data factor matrix **B** are weighted.