

FIG. -1-





```
START
                                                          - 10
INPUT: GAMMA: CHARACTERISTIC OF COMPUTER MONITOR (RANGE 1 TO 3)
         WICK: CHARACTERISTIC OF CARPET SUBSTRATE (RANGE 0 TO 3)
      DENSITY: CHARACTERISTIC OF CARPET SUBSTRATE (RANGE 0 TO $\infty$5)
           C: RELATIVE CONCENTRATION OF DYE : USED IN BLEND
               i_i = 1.2....N (RANGE 0 TO 1)
  RGB SUBSTRATE: RED, GREEN, BLUE OF SUBSTRATE (RANGE 0 TO 255)
        RGB: TABLE OF RED, GREEN, BLUE VALUES FOR DYE i
               USED IN BLEND i = 1, 2, ..., N (RANGE 0 TO 1)
            N: NUMBER OF DYES IN BLEND
                                                             15
COMPUTE TOTAL DYE CONCENTRATION BY SUMMING INDIVIDUAL PERCENTAGES
  CONC_{TOTAL} = C_1 + C_2 + C_3 + ... + C_N
                                                             20
       CALCULATE UNUSED SUBSTRATE DYE CAPACITY FROM TOTAL
       DYE CONCENTRATION
       CONCUNUSED =1-CONC TOTAL
                                                                  - 25
CALCULATE AN "EFFECTIVE" UNUSED SUBSTRATE DYE CAPACITY BY USING
SUBSTRATE WICK VALUE
                          E(C)=C[1-C\cdot(1-C)WICK]
                          E UNUSED = E(CONC UNUSED)
                                                               30
 CALCULATE THE "EFFECTIVE" CONCENTRATION OF EACH DYE & USED
IN THE BLEND BY USING THE SUBSTRATE WICK PROPERTY
 (NOTE: EACH "EFFECTIVE" DYE CONCENTRATION DEPENDS, IN A LINEAR
 WAY, UPON THE EFFECTIVE DYE CONCENTRATIONS OF THE DYE PLACED
 ON THE CARPET PRIOR TO THE CURRENT ONE)
 E_1 = E(CONC_{UNUSED} + C_1) - E_{UNUSED}
E_2 = E(CONC_{UNUSED} + C_1 + C_2) - E_1
E_3 = E(CONC_{UNUSED} + C_1 + C_2 + C_3) - E_2
E_N = E(CONC_{UNUSED} + C_1 + C_2 + C_3 + ... + C_N) - E_{N-1}
                                           FIG -3A-
```



COMPUTE THE K/S VALUE FOR EACH SUBSTRATE COLOR COMPONENT (RGB)

- 1. NORMALIZE VALUE (RANGE 0.0 TO 1.0)=  $\frac{RGB_{SUBSTRATE}}{255}$
- 2. APPLY GAMMA CORRECTION FOR MONITOR=  $\left(\frac{RGB_{SUBSTRATE}}{255}\right)^{CAMMA}$  = RGB <sub>VAL</sub>

 $\mathsf{RGB}_\mathsf{VAL}$  IS THE NORMALIZED, GAMMA—CORRECTED VALUE OF  $\mathsf{RGB}_\mathsf{SUBSTRATE}$  . THEN

3.  $(K/S)_{SUBSTRATE} = \frac{(1-RGB_{VAL})^2}{2 \cdot RGB_{VAL}}$ , WHERE K=ABSORPTION COEFICIENT S=SCATTERING COEFICIENT

**/ 40** 

COMPUTE THE K/S VALUE FOR EACH DYE  $\it i$  COLOR COMPONENT (RGB)

- 1. NORMALIZE VALUE (RANGE 0.0 TO 1.0)=  $\frac{\text{RGB}_{i}}{255}$
- 2. APPLY GAMMA CORRECTION FOR MONITOR=  $\left(\frac{\text{RGB}}{255}\right)^{\text{GAMMA}}$  =RGB <sub>VAL</sub>

 $\mathsf{RGB}_\mathsf{VAL}$  IS THE NORMALIZED, GAMMA CORRECTED VALUE OF RGB FOR DYE  $\iota$  . THEN

3. 
$$(K/S)_{i} = \frac{(1-RGB_{VAL})^2}{2 \cdot RGB_{VAL}}$$



FIG. -3B-











FIG. -6-



*FIG.* −7-



FIG. −8−



FIG. -9-







FIG. -12-





| SKU ABC         | CODE COLOR | RED<br>BLUE                    | -15C- |  |  |
|-----------------|------------|--------------------------------|-------|--|--|
| SKI             | CODE       | <b>∢</b> ₪                     | FIG.  |  |  |
| CONFIG.         | BAR        | -0×4                           | -15B- |  |  |
| MACHINE CONFIG. | COLOR      | RED<br>BLUE<br>GREEN<br>YELLOW | FIG.  |  |  |
| BASE WXYZ       | F          | 10<br>10<br>15<br>15           | -154- |  |  |
| BASE            | BAR        | -0m4                           | FIG.  |  |  |

| SKU ADE         | COLOR | 50% RED, 50% BLUE<br>GREEN     | 7. –16C– |  |  |
|-----------------|-------|--------------------------------|----------|--|--|
|                 | CODE  | <b>∢</b> ∪                     | FIG      |  |  |
| CONFIG.         | BAR   | - 0 m 4                        | -16B-    |  |  |
| MACHINE CONFIG. | COLOR | RED<br>BLUE<br>GREEN<br>YELLOW | FIG.     |  |  |
| BASE WXYZ       | E     | 5 2 2 5 5                      | -164-    |  |  |
|                 | BAR   | -2m4                           | FIG.     |  |  |

|              |   | 1    | 2     | 3     | 4      |        |    | 1   | 2    | 3    | 4         | _    |
|--------------|---|------|-------|-------|--------|--------|----|-----|------|------|-----------|------|
| C<br>0       | A | 10MS | 0     | 0     | 0      |        | ١  | 5MS | 5MS  | 0    | 0         | _    |
| CODES        | В | 0    | 10MS  | 0     | 0      |        | С  | 0   | 0    | 20MS | 0         | _    |
| J            |   |      |       |       |        |        |    |     |      |      |           | _    |
|              |   |      |       |       |        |        |    |     |      |      |           |      |
| FIG15D- FIG. |   |      |       |       |        | G.     | -1 | 6D  | _    |      |           |      |
|              |   |      |       |       |        |        |    |     |      |      |           |      |
| LUT'S        |   |      |       | LUT'S |        |        |    |     |      |      |           |      |
|              |   | 1    | 2     | 3     | 4      |        |    | 1   | 2    | 3    | 4         | 5    |
|              | Α | 0    | 0     | 20MS  | 0      | —<br>А |    | 0   | 0    | 0    | 0         | 10MS |
|              | В | 0    | 10MS  | 0     | 0      | - В    |    | 0   | 10MS | 0    | 0         | 0    |
|              | С | 5MS  | 2.5MS | 0     | 3.75MS | -<br>S |    |     |      |      |           |      |
|              |   |      |       |       |        |        | ı  |     |      | 1    |           |      |
|              |   | ı    | l     | I     | 1      |        |    |     |      |      |           |      |
|              |   | FIC  | G.    | -10   | 6E-    | _      |    | FI  | G.   | -1   | <i>6F</i> | 7_   |

LUT'S

LUT'S











