Análise Numérica Aula 1 — Erro e algoritmo

Prof. Adriano Barbosa

FACET — UFGD

07 de novembro de 2016

Erro de arredondamento e aritmética computacional

Aritmética computacional

$$\left(\sqrt{3}\right)^2 = 3?$$

Matemática: sim! Aritmética computacional: não precisamente...

Representação decimal no computador

$$\pm 0. \textit{d}_1 \textit{d}_2 \textit{d}_3 \dots \textit{d}_k \times 10^n$$
 com, $1 \leqslant \textit{d}_1 \leqslant 9$ e $0 \leqslant \textit{d}_i \leqslant 9, \forall i=2,\dots,k$.

Exemplos:

$$\qquad \qquad \frac{2}{5} = 0.4 \times 10^0$$

$$-\frac{5}{2} = -0.25 \times 10^{1}$$

$$\frac{1}{3} = ?$$

Arredondamento

$$y = 0.d_1d_2...d_kd_{k+1}d_{k+2}... \times 10^n$$

Truncamento:

$$fI(y) = 0.d_1d_2...d_k \times 10^n$$

Arredondamento: soma $(5 \times 10^{-(k+1)}) \times 10^n$ a y e trunca

$$\left\{ \begin{array}{l} \text{se } d_{k+1} \geqslant 5, \quad \text{soma 1 em } d_k \\ \text{se } d_{k+1} < 5, \quad \text{trunca} \end{array} \right.$$

Exemplo

Determine os valores dos cinco primeiros dígitos de π usando truncamento e arredondamento.

$$\pi = 3.14159265... = 0.314159265... \times 10^{1}$$

Truncamento:

$$fI(\pi) = 0.31415 \times 10^1$$

Arredondamento:

$$fI(\pi) = 0.31416 \times 10^1$$

Erro

Ao aproximar p por p* temos:

Erro absoluto: $|p - p^*|$

Erro relativo: $\frac{|p-p^*|}{|p|}$, $(p \neq 0)$

Exemplo

Calcule o erro absoluto e relativo:

$$p = 0.3000 \times 10^1 \text{ e } p^* = 0.3100 \times 10^1$$

absoluto: |3 - 3.1| = 0.1

relativo:
$$\frac{|3-3.1|}{|3|} = 0.033\overline{3}$$

$$p = 0.3000 \times 10^4 \text{ e } p^* = 0.3100 \times 10^4$$

absoluto: |3000 - 3100| = 100

relativo:
$$\frac{|3000 - 3100|}{|3000|} = 0.033\overline{3}$$

Aritmética computacional

Assumindo as operações

$$x \oplus y = fl(fl(x) + fl(y)), \quad x \otimes y = fl(fl(x) \times fl(y)),$$

$$x \ominus y = fl(fl(x) - fl(y)), \quad x \ominus y = fl(fl(x) \div fl(y)).$$

Perda de precisão

Devemos tomar muito cuidado ao efetuar cálculos como:

- Subtração de números muito próximos;
- Divisão por um número muito pequeno;
- Multiplicar por um número muito grande.

Exemplo

Dados $x = \frac{5}{7}$, u = 0.714251, v = 98765.9 e $w = 0.111111 \times 10^{-4}$, calcule $x \ominus u$, $(x \ominus u) \oplus w$, $(x \ominus u) \otimes v$ e $u \oplus v$ truncando no quinto dígito.

Erro absoluto:

$$\begin{aligned} |(x-u) - (x \ominus u)| &= |(x-u) - (fl(fl(x) - fl(u)))| \\ &= \left| \left(\frac{5}{7} - 0.714251 \right) - \left(fl\left(0.71428 \times 10^{0} - 0.71425 \times 10^{0} \right) \right) \right| \\ &= \left| 0.347143 \times 10^{-4} - fl\left(0.00003 \times 10^{0} \right) \right| = 0.47143 \times 10^{-5}. \end{aligned}$$

Erro relativo:

$$\left| \frac{0.47143 \times 10^{-5}}{0.347143 \times 10^{-4}} \right| \le 0.136$$

Exemplo

Operation	Result	Actual value	Absolute error	Relative error
$x \ominus u$	0.30000×10^{-4}	0.34714×10^{-4}	0.471×10^{-5}	0.136
$(x \ominus u) \oplus w$	0.27000×10^{1}	0.31242×10^{1}	0.424	0.136
$(x \ominus u) \otimes v$	0.29629×10^{1}	0.34285×10^{1}	0.465	0.136
$u \oplus v$	0.98765×10^{5}	0.98766×10^{5}	0.161×10^{1}	0.163×10^{-4}

Exercícios

Veja o exemplo do polinômio $x^2 + 62.10x + 1 = 0$ no livro.

Veja o exemplo da função $f(x) = x^3 - 6.1x^2 + 3.2x + 1.5$ no livro.

Algoritmos e convergência

Algoritmos

```
% calcula a soma dos n primeiros numeros naturais
  % entrada
  n = 100;
7
  % inicializacao
  soma = 0;
9
10
11 % calculo da soma
  for numero = 1:n
       soma = soma + numero;
  end
14
15
16 % exibe a soma na tela
17 disp(soma);
```

Algoritmos

```
2 % soma uma lista de numeros
3 %
5 % entrada
  numeros = [1, 5, 7, 9, 2, 13, 32, 23, 100];
 % inicializacao
  soma = 0;
10
  % calculo da soma
  for i = 1:length(numeros)
12
       soma = soma + numeros(i);
13
  end
14
15
 % exibe a soma na tela
  disp(soma);
```