

Model Predictive Control

4. Model Predictive Control without Constraints

Jun.-Prof. Dr.-Ing. Daniel Görges
Juniorprofessur für Elektromobilität
Technische Universität Kaiserslautern

Finite Horizon Control

System Model

• Discrete-Time Linear Time-Invariant (LTI) System

$$x(k+1) = Ax(k) + Bu(k) + w(k)$$
 state equation (4.1)
 $y(k) = Cx(k) + Du(k) + v(k)$ output equation (4.2)

Symbols

$$oldsymbol{x}(k) \in \mathbb{X} \subseteq \mathbb{R}^n$$
 state vector $oldsymbol{u}(k) \in \mathbb{U} \subseteq \mathbb{R}^m$ input vector $oldsymbol{y}(k) \in \mathbb{Y} \subseteq \mathbb{R}^p$ output vector $oldsymbol{w}(k) \in \mathbb{R}^n$ system disturbance vector $oldsymbol{v}(k) \in \mathbb{R}^p$ measurement noise vector $oldsymbol{A} \in \mathbb{R}^{n \times n}$ system matrix $oldsymbol{B} \in \mathbb{R}^{n \times m}$ input matrix $oldsymbol{C} \in \mathbb{R}^{p \times n}$ output matrix $oldsymbol{D} \in \mathbb{R}^{p \times m}$ feedthrough matrix

System Model

- Assumptions
 - (A, B) is stabilizable and (C, A) is detectable

No constraints $(\mathbb{X} = \mathbb{R}^n, \mathbb{U} = \mathbb{R}^m, \mathbb{Y} = \mathbb{R}^p)$

removed in Chapter 5

State feedback ($C = I_{n \times n}$)

removed in Chapter 7

No disturbance and noise (w(k) = 0, v(k) = 0)

removed in Chapter 7

- Regulation of the state to the origin $(x(k) \to 0 \text{ as } k \to \infty)$

removed in Chapter 7

No uncertainties (A, B, C, D known exactly)

removed in Chapter 8

Model Predictive Control WS 16/17 | 16.12.2016

Finite Horizon Control

Cost Function

• Discrete-Time Quadratic Cost Function

$$V_N(x(k), U(k)) = x^T(k+N)Px(k+N) + \sum_{i=0}^{N-1} x^T(k+i)Qx(k+i) + u^T(k+i)Ru(k+i)$$
 (4.3)

- Symbols
 - $\boldsymbol{U}(k) = (\boldsymbol{u}^T(k) \quad \boldsymbol{u}^T(k+1) \quad \cdots \quad \boldsymbol{u}^T(k+N-1))^T \in \mathbb{R}^{Nm}$

input sequence

- $Q \in \mathbb{R}^{n \times n}$ symmetric and positive semidefinite $(Q = Q^T \ge 0)$

state weighting matrix

 $\mathbf{R} \in \mathbb{R}^{m \times m}$ symmetric and positive semidefinite $(\mathbf{R} = \mathbf{R}^T \geqslant \mathbf{0})$

input weighting matrix

 $P \in \mathbb{R}^{n \times n}$ symmetric and positive semidefinite $(P = P^T \ge 0)$

terminal weighting matrix

- N ≥ 1 finite

prediction horizon

- Remarks
 - Besides quadratic cost functions also linear cost functions can be considered, cf. [Mac02, Section 5.4]
 - For linear cost functions the computation time is smaller but the behavior is different

Cost Function

- · Selection of the Weighting Matrices
 - **Q** punishes the state vector $\mathbf{x}(k+i)$ and thus state deviations from $\mathbf{x}(k+i) = \mathbf{0}$
 - **R** punishes the input vector $\mathbf{u}(k+i)$ and thus a large control energy
 - **P** punishes the terminal state vector $\mathbf{x}(k+N)$ and thus state deviations from $\mathbf{x}(k+N) = \mathbf{0}$
 - For receding horizon control **P** can be selected such that the closed-loop system is stable (cf. Ch. 6)
 - − For simplicity the weighting matrices Q and R are often selected as diagonal matrices with diagonal elements $q_v \ge 0, v \in \{1, ..., n\}$ and $r_w \ge 0, w \in \{1, ..., m\}$. For selecting the diagonal elements a good guess can be based on the magnitudes of the states and inputs, i.e.

good guess can be based on the magnitudes of the states and inputs, i.e.
$$x_v(k+i) \in \left[\underline{x}_v, \overline{x}_v\right], v \in \{1, \dots, n\} \qquad \rightarrow q_v = \frac{1}{\max\left(\underline{x}_v^2, \overline{x}_v^2\right)}$$
 Bryson's rule
$$u_w(k+i) \in \left[\underline{u}_w, \overline{u}_w\right], w \in \{1, \dots, m\} \qquad \rightarrow r_w = \frac{1}{\max\left(\underline{u}_w^2, \overline{u}_w^2\right)}$$

The diagonal elements are then fine-tuned according to the importance of the states and inputs.

Model Predictive Control WS 16/17 | 16.12.2016

Finite Horizon Control

Optimization Problem

Problem 4.1 For the discrete-time linear time-invariant system (4.1) and the current state x(k) find an input sequence $U^*(k)$ such that the discrete-time quadratic cost function (4.3) is minimized, i.e.

$$\min_{U(k)} V_N(\boldsymbol{x}(k), \boldsymbol{U}(k))$$
 subject to $\boldsymbol{x}(k+i+1) = \boldsymbol{A}\boldsymbol{x}(k+i) + \boldsymbol{B}\boldsymbol{u}(k+i), i=0,1,\dots,N-1$

- Remarks
 - Problem 4.1 can be solved in a "recursive" way using dynamic programming (cf. Optimal Control)
 - Problem 4.1 can be solved in a "batch" way using quadratic programming (considered here)
- Solution based on Quadratic Programming
 - Construct a prediction model describing the states over the whole prediction horizon ("batch")
 - Reformulate the cost function $V_N(\mathbf{x}(k), \mathbf{U}(k))$ in terms of $\mathbf{x}(k)$, $\mathbf{U}(k)$ using the prediction model
 - Set $\partial/\partial U(k)V_N(x(k),U(k))=0$ and solve for $U^*(k)$ (analytical solution possible in unconstrained case)

Construction of the Prediction Model

• Solution of the State Equation (4.1)

$$x(k+1) = Ax(k) + Bu(k)$$

$$x(k+2) = Ax(k+1) + Bu(k+1) = A^2x(k) + ABu(k) + Bu(k+1)$$

$$x(k+3) = Ax(k+2) + Bu(k+2) = A^3x(k) + A^2Bu(k) + ABu(k+1) + Bu(k+2)$$

$$\vdots$$

$$x(k+N) = A^Nx(k) + A^{N-1}Bu(k) + \dots + ABu(k+N-2) + Bu(k+N-1)$$

• Representation in Matrix Form

$$\begin{pmatrix}
x(k+1) \\
x(k+2) \\
\vdots \\
x(k+N)
\end{pmatrix} = \begin{pmatrix}
A \\
A^2 \\
\vdots \\
A^N
\end{pmatrix} x(k) + \begin{pmatrix}
B & 0 & \cdots & 0 \\
AB & B & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A^{N-1}B & A^{N-2}B & \cdots & B
\end{pmatrix} \begin{pmatrix}
u(k) \\
u(k+1) \\
\vdots \\
u(k+N-1)
\end{pmatrix}$$

$$X(k) = \Phi \quad x(k) + \Gamma \qquad U(k)$$
(4.4)

Model Predictive Control WS 16/17 | 16.12.2016

Finite Horizon Control

Reformulation of the Cost Function

• Representation in Matrix Form

$$V_{N}(x(k), U(k)) = x^{T}(k+N)Px(k+N) + \sum_{l=0}^{N-1} x^{T}(k+l)Qx(k+l) + u^{T}(k+l)Ru(k+l) =$$

$$x^{T}(k)Qx(k) + \begin{pmatrix} x(k+1) \\ x(k+2) \\ \vdots \\ x(k+N) \end{pmatrix}^{T} \begin{pmatrix} Q & 0 & \cdots & 0 \\ 0 & Q & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P \end{pmatrix} \begin{pmatrix} x(k+1) \\ x(k+2) \\ \vdots \\ x(k+N) \end{pmatrix} + \begin{pmatrix} u(k) \\ u(k+1) \\ \vdots \\ u(k+N-1) \end{pmatrix}^{T} \begin{pmatrix} R & 0 & \cdots & 0 \\ 0 & R & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R \end{pmatrix} \begin{pmatrix} u(k) \\ u(k+1) \\ \vdots & \vdots & \ddots & \vdots \\ u(k+N-1) \end{pmatrix} =$$

$$x^{T}(k)Qx(k) + X^{T}(k) \qquad \Omega \qquad X(k) + U^{T}(k) \qquad \Psi \qquad U(k)$$

$$(4.5)$$

- Remarks
 - Note that P ≥ 0 and Q ≥ 0 implies Ω ≥ 0 and furthermore P > 0 and Q > 0 implies Ω > 0
 - Note that $R\geqslant 0$ implies $\Psi\geqslant 0$ and furthermore R>0 implies $\Psi>0$

Reformulation of the Cost Function

• Substitution of the Prediction Model (4.4)

$$V_{N}(x(k), U(k)) = x^{T}(k)Qx(k) + X^{T}(k)\Omega X(k) + U^{T}(k)\Psi U(k)$$

$$= x^{T}(k)Qx(k) + (\Phi x(k) + \Gamma U(k))^{T}\Omega(\Phi x(k) + \Gamma U(k)) + U^{T}(k)\Psi U(k)$$

$$= x^{T}(k)Qx(k) + x^{T}(k)\Phi^{T}\Omega\Phi x(k) + x^{T}(k)\Phi^{T}\Omega\Gamma U(k) + U^{T}(k)\Gamma^{T}\Omega\Phi x(k)$$

$$+ U^{T}(k)\Gamma^{T}\Omega\Gamma U(k) + U^{T}(k)\Psi U(k) \qquad x^{T}MU = (x^{T}MU)^{T} = U^{T}Mx \text{ Scalar!}$$

$$= x^{T}(k)(Q + \Phi^{T}\Omega\Phi)x(k) + U^{T}(k)(\Psi + \Gamma^{T}\Omega\Gamma)U(k) + 2U^{T}(k)\Gamma^{T}\Omega\Phi x(k)$$

$$= \frac{1}{2}U^{T}(k)2(\Psi + \Gamma^{T}\Omega\Gamma)U(k) + U^{T}(k)2\Gamma^{T}\Omega\Phi x(k) + x^{T}(k)(Q + \Phi^{T}\Omega\Phi)x(k)$$

$$= \frac{1}{2}U^{T}(k) \qquad H \qquad U(k) + U^{T}(k) \qquad F \qquad x(k) + x^{T}(k)(Q + \Phi^{T}\Omega\Phi)x(k)$$

$$(4.6)$$

- Remarks
 - Note that $\Psi \geqslant \mathbf{0}$ and $\Omega \geqslant \mathbf{0}$ implies $H \geqslant \mathbf{0}$. Then $V_N(x(k), U(k))$ is convex.
 - Note that $\Psi > 0$ and $\Omega > 0$ implies H > 0. Then $V_N(x(k), U(k))$ is strictly convex.

Model Predictive Control WS 16/17 | 16.12.2016

Finite Horizon Control

Analytical Solution

• Determination of the Derivative

$$\begin{split} \frac{\partial}{\partial U(k)} V_N \big(\boldsymbol{x}(k), \boldsymbol{U}(k) \big) &= \frac{\partial}{\partial U(k)} \Big(\frac{1}{2} \boldsymbol{U}^T(k) \boldsymbol{H} \boldsymbol{U}(k) + \boldsymbol{U}^T(k) \boldsymbol{F} \boldsymbol{x}(k) + \boldsymbol{x}^T(k) (\boldsymbol{Q} + \boldsymbol{\Phi}^T \boldsymbol{\Omega} \boldsymbol{\Phi}) \boldsymbol{x}(k) \Big) \\ &= \boldsymbol{H} \boldsymbol{U}(k) + \boldsymbol{F} \boldsymbol{x}(k) \\ &\stackrel{!}{=} \boldsymbol{0} \end{split}$$

• Optimal State Feedback Control Law

$$\boldsymbol{U}^*(k) = -\boldsymbol{H}^{-1}\boldsymbol{F}\boldsymbol{x}(k)$$

- Remarks
 - Note that $\Phi \in \mathbb{R}^{Nn \times n}$, $\Gamma \in \mathbb{R}^{Nn \times Nm}$, $\Omega \in \mathbb{R}^{Nn \times Nn}$, $\Psi \in \mathbb{R}^{Nm \times Nm}$, $H \in \mathbb{R}^{Nm \times Nm}$ and $F \in \mathbb{R}^{Nm \times n}$
 - $H = 2(\Psi + \Gamma^T \Omega \Gamma)$ is invertible if R > 0 (then $\Psi > 0$) or P > 0, Q > 0, Γ full rank (then $\Gamma^T \Omega \Gamma > 0$)
 - Γ full rank is guaranteed if (\emph{A} , \emph{B}) is controllable

Illustrative Example

System Model

$$\emph{\textbf{A}}=\begin{pmatrix} 1.1 & 2 \\ 0 & 0.95 \end{pmatrix}$$
, $\emph{\textbf{B}}=\begin{pmatrix} 0 \\ 0.0787 \end{pmatrix}$, unstable due to $\rho(\emph{\textbf{A}})=1.1>1$, controllable

Cost Function

$$Q = P = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \ge 0$$
, $R = 0.01 > 0$, $N = 4$

• Construction of the Prediction Model

$$\boldsymbol{\Phi} = \begin{pmatrix} 1.1 & 2 \\ 0 & 0.95 \\ 1.21 & 4.1 \\ 0 & 0.9025 \\ 1.331 & 6.315 \\ 0 & 0.8574 \\ 1.4641 & 8.6612 \\ 0 & 0.8145 \end{pmatrix}, \boldsymbol{\Gamma} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0.0787 & 0 & 0 & 0 \\ 0.1574 & 0 & 0 & 0 \\ 0.0748 & 0.0787 & 0 & 0 \\ 0.3227 & 0.1574 & 0 & 0 \\ 0.0710 & 0.0748 & 0.0787 & 0 \\ 0.4970 & 0.3227 & 0.1574 & 0 \\ 0.4970 & 0.3227 & 0.1574 & 0 \\ 0.0675 & 0.0710 & 0.0748 & 0.0787 \end{pmatrix}$$

Model Predictive Control WS 16/17 | 16.12.2016

Finite Horizon Control

Illustrative Example

• Reformulation of the Cost Function

$$\boldsymbol{\Omega} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} , \boldsymbol{\Psi} = \begin{pmatrix} 0.01 & 0 & 0 & 0 & 0 \\ 0 & 0.01 & 0 & 0 & 0 \\ 0 & 0 & 0.01 & 0 & 0 \\ 0 & 0 & 0.01 & 0 \\ 0 & 0 & 0 & 0.01 / 0 \end{pmatrix}$$

$$\boldsymbol{H} = \begin{pmatrix} 0.5417 & 0.2448 & 0.0314 & -0.0676 \\ 0.2448 & 0.1727 & 0.0286 & -0.0396 \\ 0.0314 & 0.0286 & 0.0460 & -0.0130 \\ -0.0676 & -0.0396 & -0.0130 & 0.0324 \end{pmatrix} , \boldsymbol{F} = \begin{pmatrix} 1.9544 & 9.8505 \\ 0.7664 & 4.3479 \\ 0.0325 & 0.4378 \\ -0.2304 & -1.2351 \end{pmatrix}$$

Illustrative Example

· Optimal State Feedback Control Law

$$\boldsymbol{U}^*(k) = -\boldsymbol{H}^{-1}\boldsymbol{F}\boldsymbol{x}(k) = -\begin{pmatrix} 4.3563 & 18.6889 \\ -1.6383 & -1.2379 \\ -1.4141 & -2.9767 \\ -0.5935 & -1.8326 \end{pmatrix} \boldsymbol{x}(k)$$

Conclusions

- Finite Horizon Control
 - Appropriate for control problems with finite time (e.g. many motion control problems)
 - Inappropriate for control problems with infinite time (e.g. temperature control problems)
- Infinite Horizon Control
 - Feasible for LTI systems without constraints (cf. Slide 4-28f)
 - Infeasible for LTI systems with constraints, uncertain systems, hybrid systems, nonlinear systems, ...
 Note that there are some exceptions, see e.g. [BMD+02] and [BBM15, Section 12.3]!

Model Predictive Control WS 16/17 | 16.12.2016

Receding Horizon Control

Receding Horizon Principle

1. Measure the current state x(k)

Receding Horizon Control

Receding Horizon Principle

- 1. Measure the current state x(k+1)
- 2. Solve Problem 4.1 to determine the optimal input sequence $\boldsymbol{U}^*(k+1)$
- 3. Implement the first element of input sequence $\mathbf{u}^*(k+1) = (\mathbf{I}_{m \times m} \quad \mathbf{0}_{m \times m} \quad \cdots \quad \mathbf{0}_{m \times m}) \mathbf{U}^*(k+1)$
- 4. Increment the time instant $k+1 \coloneqq k+2$ and go to 1. "ma

"masking" matrix

Jun.-Prof. Dr.-Ing. Daniel Görges Juniorprofessur für Elektromobilität Technische Universität Kaiserslautern Model Predictive Control WS 16/17 | 16.12.2016

Receding Horizon Control

Receding Horizon Controller

- Observations
 - Problem 4.1 only depends on the current state $oldsymbol{x}(k)$ but not on the time instant k
 - Problem 4.1 is therefore time-invariant
 - The matrices H and F characterizing the solution of Problem 4.1 are therefore also time-invariant
- Optimal State Feedback Control Law

$$\mathbf{u}^{*}(k) = (\mathbf{I}_{m \times m} \quad \mathbf{0}_{m \times m} \quad \cdots \quad \mathbf{0}_{m \times m}) \mathbf{U}^{*}(k)$$

$$= \underbrace{-(\mathbf{I}_{m \times m} \quad \mathbf{0}_{m \times m} \quad \cdots \quad \mathbf{0}_{m \times m}) \mathbf{H}^{-1} \mathbf{F} \mathbf{x}(k)}_{\mathbf{R} \mathbf{H} \mathbf{C}}$$

$$= \underbrace{\mathbf{K}_{\mathbf{R} \mathbf{H} \mathbf{C}}}_{\mathbf{K} \mathbf{C} \mathbf{K} \mathbf{C}} \mathbf{x}(k)$$

- Remarks
 - A receding horizon controller is an LTI state feedback controller in the unconstrained case
 - The feedback matrix $K_{
 m RHC}$ can be calculated offline in the unconstrained case
 - The closed-loop system is globally asymptotically stable iff $ho(A+BK_{
 m RHC})<1$ (cf. Theorem 2.3)

Receding Horizon Control

Illustrative Example (Cont'd)

Interpretation

Non-minimum phase system (due to zero at z=3.1) The control demand is underestimated for a small $\it N$

Conclusions

N must be sufficiently large to capture the relevant dynamics N should ideally approach ∞ Can $N \to \infty$ be realized?

Jun.-Prof. Dr.-Ing. Daniel Görges Juniorprofessur für Elektromobilität Technische Universität Kaiserslautern Model Predictive Control WS 16/17 | 16.12.2016

Infinite Horizon Control

Optimization Problem

Tutorial

Problem 4.2 For the discrete-time linear time-invariant system (4.1) and the current state x(k) find an input sequence $U^*(k)$ such that the discrete-time quadratic cost function (4.3) for $N \to \infty$ is minimized, i.e.

$$\min_{\pmb{U}(k)} V_{\infty}(\pmb{x}(k), \pmb{U}(k))$$
 subject to $\pmb{x}(k+i+1) = \pmb{A}\pmb{x}(k+i) + \pmb{B}\pmb{u}(k+i), i=0,1,...$

Remarks

- Problem 4.2 can be solved based on linear-quadratic control theory
- The resulting controller is denoted as linear-quadratic regulator (LQR)
- For a detailed discussion on linear-quadratic control theory see Optimal Control

Assumptions

- $(Q^{1/2}, A)$ is detectable \rightarrow state vector must be "detectable" through the cost function
- R > 0 \rightarrow to ensure invertibility later on

Solution based on Linear-Quadratic Control Theory

Tutorial

• Algebraic Riccati Equation (ARE)

$$(A + BK_{LQR})^T P_{LQR} (A + BK_{LQR}) - P_{LQR} + Q + K_{LQR}^T RK_{LQR} = 0$$

$$(4.7)$$

• Optimal State Feedback Control Law

$$u^*(k) = \underbrace{(R + B^T P_{LQR} B)^{-1} B^T P_{LQR}}_{\text{LQR}} x(k)$$
 where P_{LQR} is the pos. semidefinite solution of the ARE $x(k) = \frac{(R + B^T P_{LQR} B)^{-1} B^T P_{LQR}}{(R + B^T P_{LQR} B)^{-1} B^T P_{LQR}} x(k)$

Minimum Cost

$$V_{\infty}^{*}(x(k)) = x^{T}(k)P_{LQR}x(k)$$
 where P_{LQR} is the pos. semidefinite solution of the ARE

- Remarks
 - A linear-quadratic regulator is an LTI state feedback controller
 - The feedback matrix $m{K}_{
 m LQR}$ can be calculated offline (MATLAB [$m{K}_{
 m LQR}$, $m{P}_{
 m LQR}$, \sim] = dlqr ($m{A}$, $m{B}$, $m{Q}$, $m{R}$))
 - The closed-loop system is always globally asymptotically stable

Model Predictive Control WS 16/17 | 16.12.2016

Infinite Horizon Control

Relationship between RHC and LQR

- Motivation
 - An infinite horizon is desirable to ensure stability and improve performance of RHC
 - A solution in a "batch" way usually used for RHC is only possible for a finite horizon

- Approach
 - Consider an infinite prediction horizon but only a finite input sequence subject to optimization
 - Use a dual mode control law for this purpose

$$m{u}(k+i) = egin{cases} m{u}^*(k+i) & \text{for } i=0,1,\dots,N-1 \\ \widetilde{\pmb{K}} \pmb{x}(k+i) & \text{for } i=N,N+1,\dots \end{cases}$$
 mode 1 (optimal control law) mode 2 (stabilizing control law)

Partition the cost function

$$V_{\infty}\big(\boldsymbol{x}(k)\big) = \sum_{i=0}^{N-1} \left[\boldsymbol{x}^T(k+i)\boldsymbol{Q}\boldsymbol{x}(k+i) + \boldsymbol{u}^T(k+i)\boldsymbol{R}\boldsymbol{u}(k+i)\right] + V_{\infty}\big(\boldsymbol{x}(k+N)\big)$$

Relationship between RHC and LQR

Tutorial

Theorem 4.1 For the discrete-time linear time-invariant system (4.1) under the stabilizing control law $u(k+i) = \widetilde{K}x(k+i)$ the discrete-time quadratic cost (4.3) for $N \to \infty$ and current state x(k) is given by $V_{\infty}(x(k)) = x^T(k)\widetilde{P}x(k)$

where \widetilde{P} is the positive definite solution of the discrete-time Lyapunov equation (DLE)

$$\widetilde{A}^T \widetilde{P} \widetilde{A} - \widetilde{P} = -\widetilde{Q}$$
 with $\widetilde{A} = A + B \widetilde{K}$ and $\widetilde{Q} = Q + \widetilde{K}^T R \widetilde{K}$ (4.8)

- Proof
 - Pre- and post-multiplying (4.8) by $\mathbf{x}^T(k+i)$ and $\mathbf{x}(k+i)$ leads to $\mathbf{x}^T(k+i) (\mathbf{A} + \mathbf{B}\widetilde{\mathbf{K}})^T \widetilde{\mathbf{p}} (\mathbf{A} + \mathbf{B}\widetilde{\mathbf{K}}) \mathbf{x}(k+i) \mathbf{x}^T(k+i) \widetilde{\mathbf{p}} \mathbf{x}(k+i) = -\mathbf{x}^T(k+i) \mathbf{Q} \mathbf{x}(k+i) \mathbf{x}^T(k+i) \widetilde{\mathbf{K}}^T \mathbf{R} \widetilde{\mathbf{K}} \mathbf{x}(k+i)$
 - Defining $V_{\infty}(x(k+i)) = x^T(k+i)\widetilde{P}x(k+i)$ and utilizing $u(k+i) = \widetilde{K}x(k+i)$ and $x(k+i+1) = (A+B\widetilde{K})x(k+i)$ yields $V_{\infty}(x(k+i+1)) V_{\infty}(x(k+i)) = -x^T(k+i)Qx(k+i) u^T(k+i)Ru(k+i)$

Jun.-Prof. Dr.-Ing. Daniel Görges Juniorprofessur für Elektromobilität Technische Universität Kaiserslautern Model Predictive Control WS 16/17 | 16.12.2016

Infinite Horizon Control

Relationship between RHC and LQR

Tutorial

- Proof
 - Summing over i=0 to $i=\infty$ results in

$$\underline{V_{\infty}(\mathbf{x}(k+1))} - V_{\infty}(\mathbf{x}(k)) + \underline{V_{\infty}(\mathbf{x}(k+2))} - \underline{V_{\infty}(\mathbf{x}(k+1))} + \dots = -\sum_{i=0}^{\infty} \mathbf{x}^{T}(k+i)\mathbf{Q}\mathbf{x}(k+i) + \mathbf{u}^{T}(k+i)\mathbf{R}\mathbf{u}(k+i)$$

- Using that $V_{\infty}(x(k+i)) = x^T(k)(A + B\widetilde{K})^{T^i}\widetilde{P}(A + B\widetilde{K})^ix(k) \to 0$ for $i \to \infty$ due to the assumption of a stabilizing control law (i.e. $\rho(A + B\widetilde{K}) < 1$) finally leads to

$$V_{\infty}(\boldsymbol{x}(k)) = \sum_{i=0}^{\infty} [\boldsymbol{x}^{T}(k+i)\boldsymbol{Q}\boldsymbol{x}(k+i) + \boldsymbol{u}^{T}(k+i)\boldsymbol{R}\boldsymbol{u}(k+i)]$$

- Remarks
 - The discrete-time Lyapunov equation (4.8) has a unique solution \tilde{P} iff $\rho(A+B\tilde{K})<1$
 - $\widetilde{P} > 0$ if either $Q + \widetilde{K}^T R \widetilde{K} > 0$ or Q is chosen such that $(Q^{1/2}, A + B \widetilde{K})$ is observable

Relationship between RHC and LQR

- · Approach (Cont'd)
 - Rewrite the cost function using $V_{\infty}(x(k+N)) = x^{T}(k+N)\widetilde{P}x(k+N)$ as

$$V_{\infty}(\boldsymbol{x}(k)) = \sum_{i=0}^{N-1} [\boldsymbol{x}^{T}(k+i)\boldsymbol{Q}\boldsymbol{x}(k+i) + \boldsymbol{u}^{T}(k+i)\boldsymbol{R}\boldsymbol{u}(k+i)] + \boldsymbol{x}^{T}(k+N)\widetilde{\boldsymbol{P}}\boldsymbol{x}(k+N)$$

- Solve Problem 4.1 for a finite prediction horizon N with the terminal weighting matrix $extbf{ extit{P}} = \widetilde{ extbf{ extit{P}}}$
- Conclusion
 - An infinite prediction horizon can be "emulated" by selecting the terminal weighting matrix P as the solution \widetilde{P} of the Lyapunov equation (4.8)
- Observation
 - The Lyapunov equation (4.8) corresponds to the Riccati equation (4.7) for $\tilde{K} = K_{LOR}$
 - Then also $\widetilde{\textbf{\textit{P}}}=\textbf{\textit{P}}_{\mathrm{LQR}}$ holds

Model Predictive Control WS 16/17 | 16.12.2016

Infinite Horizon Control

Relationship between RHC and LQR

Theorem 4.2 If ${\pmb P}={\pmb P}_{\rm LQR}$ in Problem 4.1, then ${\pmb K}_{\rm RHC}={\pmb K}_{\rm LQR}.$

- Proof
 - The proof follows immediately from the discussion on the previous slides
 - Optimality is given for both mode 1 and mode 2 if ${m P}={m P}_{
 m LOR}$
 - Optimality then overall follows from Bellman's principle of optimality
- Remarks
 - The closed-loop and predicted state and input sequences are identical for $extbf{\emph{P}} = extbf{\emph{P}}_{ ext{LQR}}$ and arbitrary N
 - RHC for ${m P}={m P}_{
 m LQR}$ essentially provides a method for determining an LQR in a "batch" way
- Conclusion
 - For LTI systems without constraints an LQR is the method of choice

Illustrative Example (Cont'd)

Prediction horizon N=2

Terminal weight ${\it P}={\it P}_{\rm LQR}$

$$x(0) = (0.5 - 0.5)^{T}$$

 $y(k) = (-1 \ 1)x(k)$

$$R = 0.01$$

Closed-loop system stable Perfect prediction accuracy Optimal performance

Jun.-Prof. Dr.-Ing. Daniel Görges Juniorprofessur für Elektromobilität Technische Universität Kaiserslautern Model Predictive Control WS 16/17 | 16.12.2016

Literature

Miscellaneous

[BMD+02] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos. The explicit linear quadratic regulator for constrained systems. *Automatica*, 38(1):3-20, 2002.