Additions and Corrections

Vol. 2, 2000

Shinichi Saito,* Osamu Ohmori, Yoshinori and Yamamoto*

Palladium(0)-Catalyzed Cross-Benzannulation between Conjugated Enynes. Reactivity-Controlled Synthesis of Multifunctionalized Benzenes.

Page 3854, ref 8. The amounts given for 1 and 2 are incorrect. The first sentence of ref 8 should read Representative procedure: To a solution of 2 (102 mg, 0.75 mmol) and Pd(PPh₃)₄ (12 mg, 0.01 mmol) in dry toluene (1 mL) was slowly (3.5 h) added a solution of 1 (62 mg, 0.50 mmol) in dry toluene (1 mL) at 30 °C under Ar by a syringe pump.

Page 3854 (Table 1). The heading for column 2 should be 2.

Table 1. Cross-Benzannulation between 1 and 2

			yield (%)	
entry	2 (equiv)	3a	3b	3c
1	1 ^a	11	36	
2	1	61	10	3
3	1.3	69	11	4
4	1.5	75	5	10
^a A mixture	of 1 and 2 was hea	ted for 3 h.		

Page 3855 (Table 2). The footnotes refer to enynes listed under F.

Table 2. Cross-Benzannulation between Conjugated Enynes

(1 equiv., slow addition) (1.3 equiv.)

entry	E			\mathbf{F}			addition	temp	G			
	enyne	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	enyne	R ⁴	\mathbb{R}^5	\mathbb{R}^6	time (min)	(°C)		yield (%)
1	1	CO ₂ Et	Н	Н	2 ^a	Н	Н	n-C ₆ H ₁₃	210	30	3a	75
2	4	Η˜	CO ₂ Et	Н	2	Н	Н	n-C ₆ H ₁₃	60	65	9	64
3	1	CO ₂ Et	Н	Н	5	Н	Н	$(CH_2)_2C(CH_3)_2OH$	180	50	10	58
4	1	CO ₂ Et	Н	Н	6	Н	Н	H(CH ₂) ₉ OCH(OEt)CH ₃	210	30	11	48
5	1	CO ₂ Et	Н	Н	7^{b}	Н	CN	$n-C_5H_{11}$	15	55	12	46
6	7	Η˜	CN	$n-C_5H_{11}$	2	Н	Н	n-C ₆ H ₁₃	60	65	13	40
7	8	CN	Н	$n-C_5H_{11}$	2	Н	Н	n-C ₆ H ₁₃	20	65	14	51

OL015515P

10.1021/ol015515p

Published on Web 01/18/2001