WHAT IS CLAIMED IS:

1

2

1

2

3

4

1

2

1

2

1	1. A switchable optical filter comprising:
2	a first thin-film optical bandpass filter portion; and
3	a second thin-film optical bandpass filter portion, wherein both the first and second
4	thin-film optical bandpass filter portions are adjacent to each other and are parts of a single
5	integral structure, and wherein the first thin-film optical bandpass filter portion is thermally

- 6 tunable and is characterized by a passband that shifts as a function of temperature and
- 7 wherein the second thin-film optical bandpass filter portion is thermally non-tunable.
- 2. The switchable optical filter of claim 1, wherein the first and second thin-film optical bandpass filter portions are integrally formed one on top of the other.
- 3. The switchable optical filter of claim 1, wherein the second thin-film optical
 bandpass filter portion comprises a Fabry-Perot cavity.
 - 4. The switchable optical filter of claim 1, wherein the second thin-film optical bandpass filter portion comprises a plurality of cavities fabricated one on top of the other.
 - 5. The switchable optical filter of claim 1, wherein the second thin-film optical bandpass filter portion comprises an etalon that is characterized by multiple passbands spaced from each other and wherein the passband of first thin-film optical bandpass filter portion is thermally tunable over the multiple passbands of the etalon.
 - 6. The switchable optical filter of claim 1, wherein the first thin-film optical bandpass filter portion comprises a Fabry-Perot cavity.
- 7. The switchable optical filter of claim 1, wherein the first thin-film optical filter portion comprises a plurality of cavities fabricated one on top of the other.
 - 8. The switchable optical filter of claim 1 wherein the first thin-film optical bandpass filter portion includes a heating element for controlling a temperature of the first thin-film optical bandpass filter.

1 9. The switchable optical filter of claim 1 wherein the first thin-film optical bandpass 2 filter portion comprises a layer of amorphous silicon. 1 10. The switchable optical filter of claim 1 wherein the first thin-film optical 2 bandpass filter portion comprises multiple layers of amorphous silicon. 1 11. A switchable optical filter comprising: 2 a first thermally tunable thin-film optical bandpass filter portion; 3 a second thermally tunable thin-film optical bandpass filter portion, wherein both the 4 first and second tunable thin-film optical bandpass filters are arranged next to each other on 5 an optical path; and 6 a spacer separating and thermally isolating the first and second tunable thin-film 7 optical bandpass filter portions from each other so that either one of said first and second 8 optical bandpass filter portions can be thermally tuned independently of the other one of 9 them. 1 12. The switchable optical filter of claim 11 wherein the spacer is an air gap. 1 13. The switchable optical filter of claim 11 wherein the spacer is a solid dielectric 2 material. 1 14. The switchable optical filter of claim 13 wherein the spacer is made of silica. 1 15. The switchable optical filter of claim 11 wherein the first thermally tunable thin-2 film optical bandpass filter portion is characterized by a first passband that shifts as a 3 function of temperature, said first thermally tunable thin-film optical filter portion including 4 a first heater element for controlling a temperature of the first thermally tunable thin-film 5 bandpass filter portion so as to control a location of the first passband. 1 16. The switchable optical filter of claim 15 wherein the second thermally tunable 2 thin-film optical bandpass filter portion is characterized by a second passband that shifts as a 3 function of temperature, said second thermally tunable thin-film optical filter portion

including a second heater element for controlling a temperature of the second thermally

tunable thin-film bandpass filter portion so as to control a location of the second passband.

4

1	17. The switchable optical filter of claim 15, wherein the first thermally tunable thin-
2	film optical bandpass filter portion comprises a Fabry-Perot cavity.
1	18. The switchable optical filter of claim 15, wherein the first thermally tunable thin-
2	film optical bandpass filter portion comprises a plurality of cavities fabricated one on top of
3	the other.
1	19. The switchable optical filter of claim 16, wherein the second thermally tunable
2	thin-film optical bandpass filter portion comprises a Fabry-Perot cavity.
1	20. The switchable optical filter of claim 16, wherein the second thermally tunable
2	thin-film optical bandpass filter portion comprises a plurality of cavities fabricated one on
3	top of the other.
1	21. A switchable optical filter comprising:
2	a first optical bandpass filter portion; and
3	a second optical bandpass filter portion, wherein both the first and second optical
4	bandpass filter portions are arranged adjacent to each other to form a single
5	interferometrically-coupled optical filter structure, and wherein the first optical bandpass
6	filter portion is tunable and is characterized by a passband that shifts as a function of a
7	control parameter and wherein the second optical bandpass filter portion is non-tunable.
1	22. The switchable optical filter of claim 21, wherein the control parameter is
2	temperature.
1	23. A switchable optical filter comprising:
2	a first tunable optical bandpass filter portioin characterized by a first passband that
3	shifts as a function of a first control parameter; and
4	a second tunable optical bandpass filter portion characterized by a second passband
5	that shifts as a function of a second control parameter, wherein both the first and second
6	optical bandpass filter portions form a single integral interferometrically-coupled structure.

- 1 24. The switchable optical filter of claim 23, wherein the first control parameter is a 2 temperature of the first tunable optical bandpass filter portion and the second control 3 parameter is a temperature of the second tunable optical bandpass filter portion.
- 1 25. The switchable optical filter of claim 24 further comprising a spacer separating and isolating the first and second tunable optical bandpass filter portions from each other so 3 that either one of said first and second optical bandpass filter portions can be tuned 4 independently of the other one of them.

2

1

2

3

1

2

3

1

2

3

4

5

6

7

8

9

1

2

3

4

- 26. The switchable optical filter of claim 25 wherein the first tunable optical bandpass filter portion includes a heater element for controlling the temperature of the first tunable optical bandpass filter.
- 27. The switchable optical filter of claim 26 wherein the second tunable optical bandpass filter portion includes a heater element for controlling the temperature of the second tunable optical bandpass filter.
- 28. An add/drop optical circuit comprising a plurality of switchable thin-film optical filters each of which has a first optical terminal for receiving an optical signal, a second optical terminal for outputting an optical signal that is reflected by that switchable thin-film optical filter and a third optical terminal for carrying an optical add/drop signal, wherein the switchable thin-film optical filters of the plurality of switchable thin-film optical filters are connected in series via the first and second optical terminals of the plurality of switchable thin-film optical filters and wherein each of the switchable thin-film optical filters of the plurality of switchable thin-film optical filters comprises a thermally tunable thin-film optical bandpass filter portion having a passband that shifts as a function of temperature.
- 29. The add/drop optical circuit of claim 28 wherein each switchable thin-film optical filter of said plurality of switchable thin-film optical filters further comprises a second thin-film optical bandpass filter portion, wherein both the first and second thin-film optical bandpass filters form a single integral filter structure, and wherein the second thin-film optical bandpass filter portion is thermally non-tunable.

1	30. The add/drop optical circuit of claim 28 wherein each switchable thin-film
2	optical filter of said plurality of switchable thin-film optical filters further comprises:
3	a second thermally tunable thin-film optical bandpass filter portion; and
4	a spacer separating and thermally isolating the first-mentioned and second tunable
5	thin-film optical bandpass filter portions from each other so that either one of said first and
6	second optical bandpass filter portions can be thermally tuned independently of the other one
7	of them, wherein the first-mentioined and second tunable thin-film optical bandpass filter
8	portions and the spacer form a single integral filter structure.
	- · · · · · · · · · · · · · · · · · · ·