

HOJA DE TRABAJO 06 MOVIMIENTO RECTILÍNEO Y GRÁFICAS

PREGUNTAS

Movimiento rectilineo uniforme

El movimiento rectilineo uniforme (MRU) de una particula se caracteriza porque:

a) solamente se desplaza a lo largo del eje x

b) su aceleración es constante y apunta hacia el centro de la Tierra

c) su aceleración es constante y no nula

d) su velocidad es constante y no nula

- e) su desplazamiento es nulo cuando regresa a su posición inicial
- 2. Una particula se desplaza a lo largo del eje x con movimiento rectilineo uniforme. Entonces su gráfica $v_r - t$ es una recta:

a) inclinada con pendiente positiva

b) inclinada con pendiente negativa

c) con pendiente nula (horizontal) y con valor igual a la velocidad inicial ($v_x = v_0$)

d) con pendiente nula (horizontal) y con valor igual a cero ($v_x = 0$)

e) vertical y con valor igual a la velocidad inicial

3. Dos autos A y B se mueven a lo largo del eje x de acuerdo con el gráfico mostrado a continuación. Entonces es correcto afirmar que:

a) el movimiento del auto A es rectilíneo y el de B es curvilíneo

c) en el instante t2 los dos autos tienen la misma velocidad

d) los autos A y B tienen movimientos acelerados

e) los autos A y B tienen aceleraciones constantes y no nulas

Movimiento rectilineo uniformemente variado

4. Una partícula se mueve a lo largo del eje x de acuerdo con el gráfico mostrado en la figura. La aceleración media de la partícula para el intervalo de t1 a t2:

a) es igual a la aceleración instantánea en cualquier instante de dicho intervalo de dicho intervalo

b) es igual a la aceleración instantánea en t₁ pero diferente

c) es igual a la aceleración instantánea en t2 pero diferente que en t₁

d) no coincide con la aceleración instantánea de ninguna parte del intervalo analizado

e) no tiene relación con las aceleraciones instantáneas en t₁ ni en t₂

- 5. Un auto se mueve a lo largo de una carretera recta y horizontal. Si el gráfico v_x-t que corresponde a este movimiento es una parábola, entonces la magnitud de su aceleración
 - a) nula
 - b) constante
 - c) variable
 - d) igual a la aceleración normal
 - e) igual a la rapidez media dividida entre el tiempo
- 6. Una partícula se mueve a lo largo del eje $\mathbf x$ de acuerdo con el gráfico mostrado a continuación. Entonces es correcto afirmar que:

e) la aceleración en el intervalo de tiempo entre
$$t_1$$
 y t_2 es nula

7. Una partícula se mueve a lo largo del eje x de acuerdo con el siguiente gráfico de $v_{\mathbf{x}}$ contra \mathbf{t} . El desplazamiento realizado por la particula de 0 a 9 s es:

$$\Delta x = 15 \text{ cm}$$

- 8. La figura muestra el gráfico $v_x t$ para una partícula que parte del origen del sistema de coordenadas y que se desplaza a lo largo del eje x. Entonces es correcto afirmar que:
 - a) de 0 a 10 segundos la partícula describe un MRUVA
 - b) su aceleración es constante e igual a -2,5 i m/s²
 - c) la posición de la particula en t = 4 s es -20 i m
 - d) la particula se detiene momentaneamente en t = 5 s
 - e) el desplazamiento de la particula de 0 a 5 segundos es -25i m
- 9. De acuerdo con el gráfico x t que se indica en la figura (el cual forma una parábola) se puede afirmar que la partícula tiene un movimiento:
 - a) rectilineo uniforme
 - b) rectilíneo uniformemente variado acelerado y luego retardado
 - c) rectilineo uniformemente variado retardado y luego acelerado
 - d) variado adelerado
 - e) variado retardado

- 10. Una particula se mueve a lo largo del eje x con una velocidad inicial $\vec{v_0} = -2\vec{i}$ m/s y su movimiento es uniformemente variado retardado. Entonces la gráfica v_x-t para este movimiento es una recta:
 - a) inclinada con pendiente positiva
 - b) con pendiente nula (horizontal) y de valor igual a la velocidad inicial
 - c) inclinada con pendiente negativa
 - d) vertical de valor igual a la velocidad inicial
 - e) inicialmente con pendiente nula (horizontal) y luego inclinada con pendiente negativa
- 11. Una partícula se desplaza a lo largo del eje x de acuerdo con el gráfico mostrado a continuación. Entonces es correcto afirmar que la rapidez en el instante t1 comparada con la rapidez en el instante t2 es:

- b) menor
- c) igual
- d) mayor o menor
- e) colineal

PROBLEMAS

Movimiento rectilineo uniforme

- 1. Un auto se mueve a lo largo del eje x de acuerdo con el gráfico x-t mostrado en la figura. Para el intervalo comprendido entre t = 0 h y t = 2 h, determine la:
 - a) la velocidad media $\left(R:30 \text{ i } \frac{\text{km}}{\text{h}}\right)$
 - b) la aceleración media del auto (R: 0 km/h²)

4 No hay aceleración porque es un MRV

- 2. Dos atletas A y B corren sobre una pista recta horizontal con rapideces constantes de 2 m/s y 5 m/s respectivamente. A parte al instante t = 0 s y B al instante t = 5 s. Para este movimiento:
 - a) determine el instante en que el corredor B alcanza al corredor A (R: 8,33 s)
 - b) elabore el gráfico x t para este movimiento desde que parte A hasta que es alcanzado por
- 3. Dos botes abandonan el puerto P simultáneamente en t =0 s y viajan con rapidez constante en las direcciones mostradas en la figura. Si $v_A = 40 \, m/s$ y $v_B = 30 \, m/s$, determine el tiempo para el cual la distancia entre los botes será de 1500 m. (R: 111,25 s)

Movimiento rectilineo uniformemente variado

- Una partícula se mueve de acuerdo con el gráfico x − t mostrado a continuación. Para este movimiento determine
 - a) velocidad inicial (R: -40 î m/s)
 - b) aceleración (R:21 m/s²)

- 5. Dos automóviles A y B están separados inicialmente una distancia horizontal de 2000 m. A parte directamente al encuentro de B con una rapidez inicial de 20 m/s y una aceleración constante a favor de su velocidad de magnitud igual a 4 m/s2. Ocho segundos más tarde, B parte directamente hacia A desde el reposo con aceleración constante de magnitud 7 m/s².
 - a) Determine la distancia medida desde la posición inicial de A donde ambos automóviles se encuentran (R: 1358,7 m)
 - b) Realice el gráfico x t para los automóviles A y B
- 6. Dos partículas A y B se mueven sobre el eje x de acuerdo con el siguiente gráfico de velocidad contra tiempo. Si parten al instante t = 0 s de la misma posición x = 2m, determine la posición en la cual las dos partículas se encuentran por primera vez luego de su partida.

 $R:-28\vec{1}m$

- 7. Un automovilista viaja por una carretera recta horizontal a 90 km/h cuando de repente ve un obstáculo 50 m adelante. Si tarda 0,4 s en aplicar los frenos, y cuando lo hace desacelera uniformemente a razón de 5 m/s².
 - a) ¿Choca o no con el obstáculo? (R: sí choca) En caso afirmativo, ¿cuál es la rapidez del impacto? (R: 15 m/s)
 - b) ¿Con qué magnitud debería frenar de manera uniforme para evitar el choque? (R: 7,81 m/s²)
- 8. Dos autos A y B se desplazan a lo largo del eje x de acuerdo V_{X} (m/s) con el siguiente gráfico $v_x - t$. En el instante t = 0 s, los autos se encuentran en el origen. Determine el instante (R: 7.46 s) y la posición (R: -74,7i m) en los cuales el auto B alcanza por primera vez al auto A.

3) Dos botes abandonan el puerto F	nimiltanamente en t-Os
viajan con una rapidez constante en la direc	cción senalada. Si Va = 40 m
Vo = 30 m/s. Determine el tiempo para el	and la distacia entre la
botes sera de 1500m	
1500 = 10 ² t ² + 30 ² t ² - 2(40t))(30f)
15002 = 1660 + 200 + 2 - 24	CO {2
$181,79 + \frac{1}{2} - 1500^2 = 0$	
t=111,25(s)	
Movimimiento reculineo uniformemente	rariado
4. Una partícula a muere de acuardo con el g	ráfico posicion os trempo
Determine	X USD m
a) Voluced inicial $\Delta x = -100 - 300$	X (Sh) m
	+300
VF = V6 + QAt	00 /2-
$\emptyset = V_0 + (\vec{a})(20)$	10 20 30 6 5
V ₀ = -20(21)	
V=-40;[m15]	-(00)
b) aceleración:	
2	
$\Delta x = V_0 \Delta t + \frac{1}{2} \vec{a} \Delta t$	
$-400 = -40(20) + 1 \tilde{a}(20^{2})$	
800 = 0 202	
a = +2 [m/s ²]	
WW GO	

