Exercise 2.1 Prove the "homogeneous Nullstellensatz," which says if $\mathfrak{a} \subseteq S$ is a homogeneous ideal, and if $f \in S$ is a homogeneous polynomial with deg f > 0, such that f(P) = 0 for all $P \in Z(\mathfrak{a})$ in \mathbf{P}^n , then $f^q \in \mathfrak{a}$ for some q > 0.

Solution: Let \mathfrak{a} be a homogeneous ideal of $k[x_0,\ldots,x_n]$. Then in \mathbf{P}^n , we have that

$$Z_{\mathbf{P}^n}(\mathfrak{a}) = \left\{ P \in \mathbf{P}^n \mid \text{ For all } f \in \mathfrak{a}, f(P) = 0 \right\}$$

while in \mathbf{A}^{n+1} , we have that

$$Z_{\mathbf{A}^{n+1}}(\mathfrak{a}) = \bigg\{Q \in \mathbf{A}^{n+1} \ \bigg| \ \text{For all} \ f \in \mathfrak{a}, f(Q) = 0 \bigg\}.$$

We can write a surjective map $\pi: Z_{\mathbf{A}^{n+1}}(\mathfrak{a}) \to Z_{\mathbf{P}^n}(\mathfrak{a})$ sending an affine point to its projective equivalence class. In addition, for a projective point $P \in Z_{\mathbf{P}^n}(\mathfrak{a})$, we can observe that $\pi^{-1}(P) \subset Z_{\mathbf{A}^{n+1}}(\mathfrak{a})$ (the elements of P's equivalence class).

Thus, if f is homogeneous with a nonzero degree and f(P)=0 for all $P\in Z_{\mathbf{P}^n}(\mathfrak{a})$, then f(Q)=0 for all $Q\in Z_{\mathbf{A}^{n+1}}(\mathfrak{a})$. By the usual Nullstellensatz, this implies that $f^q\in\mathfrak{a}$ for some q>0, which proves the result.

Exercise 2.2 For a homogeneous ideal $\mathfrak{a} \subseteq S$, show that the following conditions are equivalent:

- (i.) $Z(\mathfrak{a}) = \emptyset$ (the empty set);
- (ii.) $\sqrt{\mathfrak{a}} = \text{either } S \text{ or the ideal } S_+ = \bigoplus_{d>0} S_d;$
- (iii.) $\mathfrak{a} \supseteq S_d$ for some d > 0.

Solution:

- (i) \Longrightarrow (ii): Suppose $\mathfrak a$ is a homogeneous ideal and $Z(\mathfrak a)=\varnothing$. By the homogeneous Nullstellensatz, it is vacuously true that for every $f\in \oplus_{d>0}S_d$, f(P)=0 for all $P\in Z(\mathfrak a)$, and so for every such f there exists a q>0 such that $f^q\in \mathfrak a$. Therefore, $\oplus_{d>0}S_d\subseteq \sqrt{a}$. If $\mathfrak a$ contains a unit, then $\sqrt{\mathfrak a}=S$. If $\mathfrak a$ does not contain a unit, then $\sqrt{\mathfrak a}\subseteq \oplus_{d>0}S_d\Longrightarrow \oplus_{d>0}S_d=\sqrt{\mathfrak a}$.
- (ii) \Longrightarrow (iii): Suppose $\sqrt{a} = S$. Then this implies that $1 \in \mathfrak{a} \Longrightarrow \mathfrak{a} = S$. Hence $S_d \subset \mathfrak{a}$.

Alternatively, suppose $\sqrt{a} = \bigoplus_{d>0} S_d$. Then for every $f \in \bigoplus_{d>0} S_d$, there exists a q>0 such that $f^q \in \mathfrak{a}$. In particular, there exist r_1, \ldots, r_n such that

$$x_1^{r_1},\ldots,x_n^{r_n}\in\mathfrak{a}.$$

Take $d = r_1 + \cdots + r_n$. We claim that $S_d \subset \mathfrak{a}$. To see this, note that every degree-d homogeneous polynomial is of the form

$$\sum_{k\geqslant 0} c_k x_1^{\alpha_1(k)} \cdots x_n^{\alpha_n(k)}$$

where only finitely many summands are nonzero and $\alpha_1(k) + \cdots + \alpha_n(k) = d$ is a sum of nonnegative integers. Since $d = r_1 + \cdots + r_n$, we know that for any summand $x_1^{\alpha_1(k)} \cdots x_n^{\alpha_n(k)}$ at least one $\alpha_i(k) \ge r_i$. Hence, the summand is in \mathfrak{a} , and so the whole sum is in \mathfrak{a} . Therefore $S_d \subseteq \mathfrak{a}$.

- (iii) \Longrightarrow (i): Suppose $S_d \subseteq \mathfrak{a}$ for d > 0. Then $Z(\mathfrak{a})$ must at least contain points P such that f(P) = 0 for all $f \in S_d$. This includes the polynomials x_1^d, \ldots, x_n^d . However, these n polynomials cannot all be simultaneously zero. Hence $Z(\mathfrak{a}) = \emptyset$.
- (i) \Rightarrow (ii). Since $Z(\mathfrak{a}) = \emptyset$, the zero set of \mathfrak{a} in affine space Did you mean projective space? is either \emptyset or $\{0\}$. In the first case, we certainly have $\sqrt{\mathfrak{a}} = S$. In the second case, we have $\sqrt{\mathfrak{a}} = \{p \in S : p(0) = 0\} = S_+$.
- (ii) \Rightarrow (iii). It suffices to show that there exists d such that all monomials of degree d lies in \mathfrak{a} . Since $S_+ \subset \sqrt{\mathfrak{a}}$, for each $0 \leq i \leq n$, there exists d_i such that $x_i^{d_i} \in \mathfrak{a}$. Let $d = n \sum_{i=0}^n d_i$. Then if a monomial has degree d, then there exists i such that the exponent of x_i in the monomial is at least $\sum_{i=0}^n d_i$, and therefore at least d_i , which implies that the monomial is in \mathfrak{a} .
 - (iii) \Rightarrow (i). If $S_d \subseteq \mathfrak{a}$ for some d > 0, then $x_i \in \sqrt{\mathfrak{a}}$ for every $0 \leq i \leq n$, which means that $Z(\mathfrak{a}) = Z(\sqrt{\mathfrak{a}}) = \emptyset$. \square

Exercise 2.3

(a) If $T_1 \subseteq T_2$ are subsets of S^h , then $Z(T_1) \supseteq Z(T_2)$.

- (b) If $Y_1 \subseteq Y_2$ are subsets of \mathbf{P}^n , then $I(Y_1) \supseteq I(Y_2)$.
- (c) For any two subsets Y_1, Y_2 of \mathbf{P}^n , $I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$.
- (d) If $\mathfrak{a} \subseteq S$ is a homogeneous ideal with $Z(\mathfrak{a}) \neq \emptyset$, then $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.
- (e) For any subset $Y \subseteq \mathbf{P}^n$, $Z(I(Y)) = \overline{Y}$.

Solution: I did (a) - (c), but I don't feel like T_EX-ing them.

(d) Suppose f is homogeneous and $f \in I(Z(\mathfrak{a}))$. Then f(P) = 0 for all $P \in Z(\mathfrak{a})$. By the homogeneous Nullstellensatz, we see that $f \in \sqrt{\mathfrak{a}}$.

Suppose $f \in \mathfrak{a}$. Then $f^q \in \mathfrak{a}$ for some q > 0. As $f^q(P) = 0$ for all $P \in Z(\mathfrak{a})$, f(P) = 0 for all $P \in Z(\mathfrak{a})$ (as k is an integral domain) and so it follows that $f \in I(Z(\mathfrak{a}))$. Our total work then shows that $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$, as desired.

(e) We first know that $Y \subset Z(I(Y))$; we show that it is the smallest closed set containing Y. Thus let Z(J) be a closed set where $Y \subset Z(J) \subset I(Z(Y))$. Then $I(Z(J)) \subset I(Y)$. Since $I(Z(J)) = \sqrt{J}$, we see that $J \subset I(Y)$. Therefore, $Z(I(Y)) \subset Z(J)$. Hence, Z(I(Y)) = Z(J), and so $Z(I(Y)) = \overline{Y}$.

Exercise 2.4

- (a) There is a one-to-one inclusion-reversing correspondence between algebraic sets in \mathbf{P}^n and homogeneous radical ideals of S not equal to S_+ given by $Y \mapsto I(Y)$ and $\mathfrak{a} \mapsto Z(\mathfrak{a})$. Note: Since S_+ does not occur in this correspondence, it is sometimes called te *irrelevant* maximal ideal of S.
- (b) An algebraic set $Y \subseteq \mathbf{P}^n$ is irreducible if and only if I(Y) is a prime ideal.
- (c) Show that \mathbf{P}^n itself is irreducible.

Solution:

Exercise 2.5

- (a) \mathbf{P}^n is a noetherian topological space.
- (b) Every algebraic set in \mathbf{P}^n can be written uniquely as a finite union of irreducible algebraic sets, no one containing another. These are called its *irreducible components*.

Solution:

2.6 If Y is a projective variety with homogeneous coordinate ring S(Y), show that $\dim S(Y) = \dim Y + 1$. [Hint: Let $\phi_i : U_i \to \mathbf{A}^n$ be the homeomorphism of (2.2), let Y_i be the affine variety $\phi_i(Y \cap U_i)$ and let $A(Y_i)$ be its affine coordinate ring. Show that $A(Y_i)$ can be identified with the subring of elements of degree 0 of the localized ring $S(Y)x_i$. Then show that $S(Y)_{x_i} \cong A(Y_i)[x_i, x_i^{-1}]$. Now use (1.7), (1.8A), and (Ex 1.10), and look at the transcendence degrees. Conclude also that dim $Y = \dim Y_i$ whenever Y_i is empty.]

Solution: We follow the hints. Note that

$$S(Y)_{x_i} = \left\{ \frac{f(x_0, \dots, x_n) + I_{\mathbf{P}^n}(Y)}{x_i^j} \mid f + I_{\mathbf{P}^n}(Y) \in S(Y) \right\}.$$

In addition, an element of degree 0 will be of the form $(f+I(Y))/x_i^d$, where $\deg(f)=d$. Now in this case,

$$\frac{f(x_0, \dots, x_n) + I_{\mathbf{P}^n}(Y)}{x_i^d} = f\left(\frac{x_0}{x_i}, \dots, 1, \dots, \frac{x_n}{x_i}\right) + I_{\mathbf{P}^n}(Y) = f(x_0, \dots, 1, \dots, x_n) + I_{\mathbf{A}^n}(Y_i)$$

where 1 appears in the *i*-th coordinate. Therefore, the homogeneous representative f may be regarded as an ordinary polynomial which is not in $I(Y_i)$ (i.e., it at least does not vanish on Y if the *i*-th coordinate is fixed to be nonzero). Hence, we may identify the 0-degree element $(f + I(Y))/x_i^d$ as a member of $A(Y_i)$.

Alternatively, let $f + I_{\mathbf{A}^n}(Y_i) \in A(Y_i)$. Since f does not vanish on Y when x_i is fixed to 1, we

We may homogenize the representative to obtain the homogeneous polynomial $x_i^d f\left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right)$, where $d = \deg(f)$. Note that this can represent the degree d-element of $x_i^d f\left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right) + I(Y)$ in S(Y). This in turn corresponds to the degree 0-element of $S(Y)_{x_i}$:

$$\frac{x_i^d f\left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right) + I(Y)}{x_i^d} = f\left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right) + I(Y).$$

In this way we identify $f + I(Y_i) \in A(Y_i)$ with a degree 0 element of $S(Y)_{x_i}$.

2.7

- (a) dim $\mathbf{P}^n = n$.
- (b) If $Y \subseteq \mathbf{P}^n$ is a quasi-projective variety, then $\dim Y = \dim \overline{Y}$.

Solution:

- (a) By Exercise 2.6, $\dim \mathbf{P}^n = \dim S(\mathbf{P}^n) 1 = n$.
- (b)

2.8 A projective variety $Y \subseteq \mathbf{P}^n$ has dimension n-1 if and only if it is the zero set of a single irreducible homogeneous polynomial f of positive degree. Y is called a *hypersurface* in \mathbf{P}^n .

Solution: By Exercise 2.6, dim Y = n - 1 if and only if ht I(Y) = 1. By Theorem 1.12A, since polynomials rings are UFD, I(Y) is principal. Since I(Y) is prime and homogeneous, its generator must be an irreducible homogeneous polynomial f of positive degree.

- **2.9** If $Y \subseteq \mathbf{A}^n$ is an affine variety, we identify \mathbf{A}^n with an open set $U_0 \subset \mathbf{P}^n$ by the homeomorphism φ_0 . Then we can speak of \overline{Y} , the closure of Y in \mathbf{P}^n , which is called the *projective closure* of Y.
 - (a) Show that $I(\overline{Y})$ is the ideal generated by $\beta(I(Y))$, using the notation of the proof of (2.2).
 - (b) Let $Y \subset \mathbf{A}^n$ be the twisted cubic of $(Ex\ 1.2)$. Its projective closure $\overline{Y} \subset \mathbf{P}^n$ is called the *twisted cubic curve* in \mathbf{P}^3 . Find generators for I(Y) and $I(\overline{Y})$, and use this example to show that if f_1, \ldots, f_r generate I(Y), then $\beta(f_1), \ldots, \beta(f_r)$ do *not* necessarily generate $I(\overline{Y})$.

Solution:

- (a) Since $\overline{Y} = Z(I(\phi_o Y))$, $I(\overline{Y}) = I(\phi_o Y)$. So it suffices to show that $I(\phi_o Y) = \beta(I(Y))$. We have $I(\phi_0 Y) \supseteq \beta(I(Y))$ because $\phi_o(Y) \subseteq Z(\beta(I(Y)))$. Conversely, we have $I(\phi_0 Y) \subseteq \beta(I(Y))$ because any point of Y vanishes on $p(1, x_1, \ldots, x_n)$ for $p \in I(\phi_o(Y))$. In other words, if $p \in I(\phi_o(Y))$, then $p(1, x_1, \ldots, x_n) \in I(Y)$, which implies that $p \in \beta(I(Y))$.
- (b) Recall that the twisted cubic is the variety $Y = \{(t, t^2, t^3) : t \in k\}$. We claim that $I(Y) = J = (y x^2, z x^3)$. Since Z(J) = Y, it suffices to check that J is radical. Notice that $k[x, y, z]/J \cong k[x]$ has no nilpotents, which shows that J is radical. Let $f_1 = y x^2$ and $f_2 = z x^3$. We claim also that $\beta f_1 = wy x^2$ and $\beta f_2 = w^2z x^3$ don't generate $I(\overline{Y}) = I(\phi_o(Y))$. Since $\phi_o(Y) = \{[1 : t : t^2 : t^3] : t \in k\}$, we have $wz xy \in I(\overline{Y})$. But this cannot be generated by βf_1 and βf_2 since the only term involving z in βf_1 and βf_2 is w^2z .
- (a) Note that since $\overline{Y} = Z(I_{\mathbf{P}^n}(Y))$, we have that Do you mean $I_{\mathbf{P}^n}(\overline{Y})$? $I_{\mathbf{P}^n}(Y) = I(Z(I_{\mathbf{P}^n}(Y))) = I_{\mathbf{P}^n}(Y)$. Additionally, we have that

$$\beta(I_{\mathbf{A}^n}(Y)) \subset I_{\mathbf{P}^n}(Y) = I_{\mathbf{P}^n}(\overline{Y}).$$

Hence it remains to show the other inclusion. To do so, note that

$$I_{\mathbf{P}^n}(Y) = \{ f \in S^h \mid f(1, a_1, \dots, a_n) \quad (a_1, \dots, a_n) \in Y \}$$

= \{ f \in S^h \left| \alpha(f) \in I_{\mathbf{A}^n}(Y) \}.

If $f \in I_{\mathbf{P}^n}(Y)$, then $\alpha(f) \in I_{\mathbf{A}^n}(Y)$, in which case $\beta(\alpha(f)) \in \beta(I_{\mathbf{A}^n}(Y))$. Since $\beta(\alpha(f)) = f$, we see that $f \in \beta(I_{\mathbf{A}^n}(Y))$. Therefore $\beta(I_{\mathbf{A}^n}(Y)) = I_{\mathbf{P}^n}(Y) = I_{\mathbf{P}^n}(\overline{Y})$.

(b) Since $Y = \{(t, t^2, t^3) \mid t \in k\}$, we know that in \mathbf{P}^n

$$Y = \{(1, t, t^2, t^3) \mid t \in k\}.$$

Recall from Ex 1.2 that $I_{\mathbf{A}^n}(Y) = (x^2 - y, x^3 - z)$. By (a), we know that $I_{\mathbf{P}^n}(\overline{Y}) = \beta(I_{\mathbf{A}^n}(Y))$. Now observe that $xy - z \in I_{\mathbf{A}^n}(Y)$, so that $\beta(xy - z) = xy - zx_0 \in I(\overline{Y})$. However, this polynomial cannot be generated by the ideal

$$(\beta(x^2 - y), \beta(x^3 - z)) = (x^2 - yx_0, x^3 - zx_0^2).$$

Hence we see that $I(\overline{Y}) \neq (\beta(x^2 - y), \beta(x^3 - z)).$

2.10 Let $Y \subset \mathbf{P}^n$ be a nonempty algebraic set, and let $\theta \colon \mathbf{A}^{n+1} \setminus \{(0, \dots, 0)\} \to \mathbf{P}^n$ be the map which sends the point with affine coordinates (a_0, \dots, a_n) to the point with homogeneous coordinates $[a_0 : \dots : a_n]$. We define the *affine cone* over Y to be

$$C(Y) = \theta^{-1}(Y) \cup \{(0, \dots, 0)\}.$$

- (a) Show that C(Y) is an algebraic set in \mathbf{A}^{n+1} , whose ideal is equal to I(Y), considered as an ordinary ideal in $k[x_0, \dots, x_n]$.
- **(b)** C(Y) is irreducible if and only if Y is irreducible.
- (c) $\dim C(Y) = \dim Y + 1$.

Sometimes we consider the projective closure $\overline{C(Y)}$ of C(Y) in \mathbf{P}^{n+1} . This is called the *projective cone* over Y.

Solution:

(a) Let J be a set of homogeneous polynomials. Note that

$$\theta^{-1}(Z_{\mathbf{P}}(J)) = Z_{\mathbf{A}^{n+1}}(J) \setminus \{(0,\dots,0)\}$$

Thus we have that

$$Z_{\mathbf{A}^{n+1}}(J) = \theta^{-1}(Z_{\mathbf{P}^n}(J)) \cup \{(0,\dots,0)\} = C(Z_{\mathbf{P}^n}(J)).$$

Hence if Y is algebraic, so is C(Y). In addition, if $J = I_{\mathbf{P}^n}(Y)$, then

$$Z_{\mathbf{A}^{n+1}}(I_{\mathbf{P}^n}(Y)) = C(Z_{\mathbf{P}^n}(I_{\mathbf{P}^n}(Y))) = C(Y).$$

Since $I_{\mathbf{P}^n}(Y)$ is a radical ideal, this implies that $I(C(Y)) = I_{\mathbf{P}^n}(Y)$, regarded as an ideal of $k[x_0, \dots, x_n]$.

- (b) Since $I_{\mathbf{A}^{n+1}}(C(Y)) = I_{\mathbf{P}^n}(Y)$, the result follows immediately.
- (c) Consider a maximal chain of closed, irreducible subsets of Y in \mathbf{P}^n .

$$Y_0 \subset Y_1 \subset \cdots \subset Y_r = Y$$
.

By (a) and (b), these are in bijection with closed, irreducible subsets in A^{n+1} :

$$C(Y_0) \subset C(Y_1) \subset \cdots \subset C(Y_r) = C(Y).$$

We can extend the chain by appending the single point $\{(0,\ldots,0)\}$:

$$\{(0,\ldots,0)\}\subset C(Y_0)\subset C(Y_1)\subset\cdots\subset C(Y_r)=C(Y).$$

Hence, $\dim C(Y) = \dim(Y) + 1$.

- **2.11** A hypersurface defined by a linear polynomial is called a *hyperplane*.
 - (a) Show that the following two conditions are equivalent for a variety $Y \subset \mathbf{P}^n$:
 - (i.) I(Y) can be generated by linear polynomials
 - (ii.) Y can be written as an intersection of hyperplanes.

In this case we say that Y is a linear variety in \mathbf{P}^n .

- (b) If Y is a linear variety of dimension r in \mathbf{P}^n , show that I(Y) is minimally generated by n-r linear polynomials
- (c) Let Y, Z be linear varieties in \mathbf{P}^n , with dim Y = r, dim Z = s. If $r + s n \ge 0$, then $Y \cap Z \ne \emptyset$. Furthermore, if $Y \cap Z \ne \emptyset$, then $Y \cap Z$ is a linear variety of dimension $\ge r + s n$ (Think of \mathbf{A}^{n+1} as a vector space over k, and work with its subspaces.)

(a) Let $H_i = Z(f_i)$ be hyperplanes, f_i a linear homogeneous polynomial, for i = 1, 2, ..., r. Then

$$Y = H_1 \cap \cdots \cap H_r = Z(f_1) \cap \cdots \cap Z(f_r) \iff I(Y) = I(Z(f_1) \cap \cdots \cap Z(f_r)) = I(Z(f_1, \dots, f_r)).$$

However, since f_1, \ldots, f_n are homogeneous polynomials of degree 1, it is prime. Therefore, $I(Z(f_1, \ldots, f_r)) = (f_1, \ldots, f_r) \implies I(Y) = (f_1, \ldots, f_r)$. Hence (i.) and (ii.) are equivalent.

(b) By Theorem 1.8A, we know that since Y is a linear variety,

$$\operatorname{ht}(I(Y)) + \dim(k[x_0, \dots, x_n]/I(r)) = n + 1 \implies \operatorname{ht}(I(Y)) + r + 1 = n + 1 \implies \operatorname{ht}(I(Y)) = n - r.$$

By (a), we know that I(Y) is generated by some linear homogeneous polynomials f_1, \ldots, f_s . This in turn creates a chain of prime ideals:

$$(0) \subset (f_1) \subset (f_1, f_2) \subset \cdots \subset (f_1, \ldots, f_s) = I(Y).$$

Since ht(I(Y)) = n - r, we see that some of the generators must be redundant, so that I(Y) is minimally generated by n - r elements.

(c) Since $r+s-n \ge 0$, we can conclude that $(n-r)+(n-s) \le n$. This implies that $Y \cap Z$ is a system of equations with less equations than unknowns. From linear algebra, we know that if such a system is homogeneous (i.e., set equal to zeroes), then there are infinitely many solutions. Therefore,

$$Y \cap Z = Z(f_1, \dots, f_{n-s}) \cap Z(g_1, \dots, g_{n-r}) = Z(f_1, \dots, g_{n-r}) \neq \emptyset.$$

In addition, we also see that this is a linear variety as claimed. Further, we know by (a) that $n - \dim(Y \cap Z) \leq (n-r) + (n-s) \implies \dim(Y \cap Z) \geq r+s-n$, as desired.

2.12 For given n, d > 0, let M_0, \ldots, M_N be all the monomials of degree d in the n+1 variables $x_0, \ldots x_n$, where $N = \binom{n+d}{n} - 1$. We define a mapping $\rho_d \colon \mathbf{P}^n \to \mathbf{P}^N$ by sending the point $P = (a_0, \ldots, a_n)$ to the point $\rho_d(P) = (M_0(a), \ldots, M_N(a))$ obtained by substituting the a_i in the monomials M_j . This is called the d-uple embedding of \mathbf{P}^n in \mathbf{P}^N . For example, if n = 1, d = 2, then N = 2, and the image Y of the 2-uple embedding of \mathbf{P}^1 in \mathbf{P}^2 is a conic.

- (a) Let $\theta: k[y_0, \ldots, y_N] \to k[x_0, \ldots, x_n]$ be the homorphism defined by sending y_i to M_i , and let \mathfrak{a} be the kernel of θ . Then \mathfrak{a} is homogeneous prime ideal, and so $Z(\mathfrak{a})$ is a projective variety in \mathbf{P}^N .
- (b) Show that the image of ρ_d is exactly $Z(\mathfrak{a})$.
- (c) Now show that ρ_d is a homeomorphism of \mathbf{P}^n onto the projective variety $Z(\mathfrak{a})$.
- (d) Show that the twisted cubic curve in \mathbf{P}^3 (Ex. 2.9) is equal to the 3-uple embedding of \mathbf{P}^1 in \mathbf{P}^3 , for suitable choice of coordinates.

Solution:

(a)

(b) We prove the harder direction that $Z(\mathfrak{a}) \subseteq \operatorname{im}(\rho_d)$. We may index the N+1 coordinates of a point in \mathbf{P}^n by tuples of the form (a_0, a_1, \ldots, a_n) where $a_i \in \mathbb{Z}_+$ and the sum of all a_i 's is d. Given $\mathbf{y} \in Z(\mathfrak{a})$, I claim that there exists $0 \le i \le n$ such that $y_{d\mathbf{e}_i} \ne 0$. Indeed, suppose towards the contrary. Then since for any index $\mathbf{v} = (a_0, a_1, \ldots, a_n)$, $p(\mathbf{y}) = y_{\mathbf{v}}^d - \prod_{i=0}^n y_{d\mathbf{e}_i}^{a_i} \in \mathfrak{a}$, we have that $p(\mathbf{y}) = y_{\mathbf{v}}^d = 0$, which implies that $y_{\mathbf{v}} = 0$ for arbitrary \mathbf{v} , which is absurd.

To give an example to make this proof clearer, consider the example when n=1 and d=3. Then if $\mathbf{y}=(y_{30},y_{21},y_{12},y_{03})\in Z(\mathfrak{a})$, suppose WLOG that $y_{30}=1$. Then $\mathbf{y}=\rho_d(1,y_{21})$. We check that since $y_{30}y_{12}-y_{21}^2=0$, indeed $y_{12}=y_{21}^2$. Similarly, since $y_{03}y_{30}^2-y_{21}^3$, indeed $y_{03}=y_{21}^3$.

(c) The map ρ_d is clearly a bijection between \mathbf{P}^n and im $\rho_d = Z(\mathfrak{a})$. So it suffices to show that ρ_d is bicontinuous, or equivalently, that it identifies the closed sets in \mathbf{P}^n and $Z(\mathfrak{a})$.

 $(\rho_d \text{ continuous.})$ We claim that for any ideal $I \subset k[y_0, \dots, y_N]$,

$$\rho_d^{-1}(Z(I)) = Z(\theta(I)).$$

Notice that if $(x_0, \ldots, x_n) \in \rho_d^{-1}(Z(I))$, then $p(M_0(\mathbf{x}), \ldots, M_N(\mathbf{x})) = 0$ for all $p(y_0, \ldots, y_N) \in I$. If $(x_0, \ldots, x_n) \in Z(\theta(I))$, then for all $p(y_0, \ldots, y_N) \in I$, $\theta(p)(x_0, \ldots, x_n) = 0$. But $\theta(p)(x_0, \ldots, x_n) = p(M_0(\mathbf{x}), \ldots, M_N(\mathbf{x}))$. So these two conditions are equivalent.

 $(\rho_d^{-1} \text{ continuous.})$ We claim that for any ideal $J \subset k[x_0, \ldots, x_n]$,

$$\rho_d(Z(J)) = Z(\theta^{-1}J) \cap Z(\mathfrak{a}).$$

Indeed, if $\mathbf{y} = \rho_d(\mathbf{x})$ where $\mathbf{x} \in Z(J)$, then for any $p \in \theta^{-1}J$, $p(\mathbf{y}) = p(\rho_d(\mathbf{x})) = 0$ because $p \circ \rho_d = \theta(p) \in J$. Conversely, if $\mathbf{y} \in Z(\theta^{-1}J) \cap Z(\mathfrak{a})$, then by part (ii), since $Z(\mathfrak{a}) = \text{im } \rho_d$, there exists \mathbf{x} such that $\mathbf{y} = \rho_d(\mathbf{x})$. We check that $\mathbf{x} \in Z(J)$: for all q such that $q \circ \rho_d \in J$, we have that $q(\mathbf{y}) = q(\rho_d(\mathbf{x})) = 0$. In other words, for all $p \in J$, $p(\mathbf{x}) = 0$.

- (a) First, it is prime since θ maps into an integral domain. Now recall that we may uniquely express any multivariate polynomial in y_1, \ldots, y_N into homogeneous components. Since $y_i \notin \ker(\theta)$, no single monomial of any degree in $k[y_1, \ldots, y_N]$ maps to zero. Therefore, if for a multivariate polynomial f we have that $\theta(f) = 0$, then it must be that each of the homogeneous components of $\theta(f_i)$ must map to zero, by individually canceling each other out (in their own degree). In other words, a polynomial is in \mathfrak{a} if and only if its homogeneous components are in \mathfrak{a} . Thus, \mathfrak{a} is homogeneous.
- (b) $[\operatorname{im}(\rho_d) \subset Z(\mathfrak{a})]$. If $q \in \operatorname{im}(\rho_d)$, then $q = (M_0(P), \dots, M_N(P))$ for some $P \in \mathbf{P}^n$, and so for any $f \in \mathfrak{a}$, we have that $f(q) = f(M_0(P), \dots, M_N(P)) = 0$. Therefore, $q \in Z(\mathfrak{a})$.

 $[Z(\mathfrak{a}) \subset \operatorname{im}(\rho_d)]$. In order to show this direction we must understand what is contained in $Z(\mathfrak{a})$. First, denote y_m as the coordinate which corresponds to the monomial $M_m(x_0,\ldots,x_n)=x_0^{\alpha_1^m}\cdots x_n^{\alpha_n^m}$ where α_i are nonnegative and sum to d. In particular, denote

$$y_0 = x_0^d$$
, $y_1 = x_1^d$, ..., $y_n = x_n^d$.

We make some observations.

- Observe that $y_m^d y_0^{\alpha_0^m} \cdots y_n^{\alpha_n^m} \in \mathfrak{a}$. The polynomial is nonzero when m > n. Thus if $Q = (b_0, \ldots, b_n, b_{n+1}, \ldots, b_N) \in Z(\mathfrak{a})$, then for each $n < m \le N$, we see that $b_m^d = b_0^{\alpha_0^m} \cdots b_n^{\alpha_n^m}$, so that at least one $b_0, \ldots, b_n \ne 0$.
- Next, observe that for any x_j with j = 0, 1, ..., n, we have that

$$M_m(x_0, \dots, x_n) \cdot (x_j^{d-1})^d = M_m(x_j^{d-1}x_0, \dots, x_j^{d-1}x_n)$$

for all m. In terms of y's, this translates to the relation $y_m \cdot y_j^{d-1} - M_m(y_{m_0}, \dots, y_{m_n}) \in \mathfrak{a}$, where y_{m_i} corresponds to $x_j^{d-1}x_i$.

• Since one of $b_0, \ldots, b_n \neq 0$, suppose that it is b_0 . Let $c \in \mathbf{P}^N$ be such that $c_i = b_0^{d-1}b_i$. Then by the above relation we have that

$$b_m \cdot b_0^{d-1} = M_m(c_0, \dots, c_n).$$

Hence,

$$(b_0, \dots, b_n, \dots, b_N) = (b_0^{d-1} \cdot b_0, \dots, b_0^{d-1} \cdot b_n, \dots, b_0^{d-1} \cdot b_N)$$

= $(M_0(c_0, \dots, c_n), \dots, M_n(c_0, \dots, c_n), \dots, M_N(c_0, \dots, c_n)).$

Therefore, $(b_0, \ldots, b_N) \in \operatorname{im}(\rho_d)$.

(c) We show it is a homeomorphism. First, it is surjective onto $Z(\mathfrak{a})$. By our work from the last part, it is also injective, for we constructed the map

$$\rho_d^{-1}: Z(\mathfrak{a}) \to \mathbf{P}^n \qquad (b_0, \dots, b_n, b_{n+1}, \dots, b_N) \mapsto (b_0^{d-1}b_0, \dots, b_0^{d-1}b_n).$$

We now show that ρ_d is a closed bijection. Suppose $Y \subset \mathbf{P}^n$ is closed, and that Y = Z(T) for some family of homogeneous polynomials in (n+1)-variables. Then

$$\rho_d(Y) = \left\{ (M_0(P), \dots, M_N(P)) \mid P \in Y \right\} =$$

2.13 Let Y be the image of the 2-uple embedding of \mathbf{P}^2 in \mathbf{P}^5 . This is the *Veronese surface*. If $Z \subseteq Y$ is a closed curve (a *curve* is a variety of dimension 1), show that there exists a hypersurface $V \subseteq \mathbf{P}^5$ such that $V \cap Y = Z$.

Solution:

2.14 Let $\psi \colon \mathbf{P}^r \times \mathbf{P}^s \to \mathbf{P}^N$ be the map defined by sending the ordered pair $(a_0, \dots, a_r) \times (b_0, \dots, b_s)$ to $(\dots, a_i b_j, \dots)$ in lexicographic order, where N = rs + r + s. Note that ψ is well-defined and injective. It is called the *Segre embedding*. Show that the image of ψ is a subvariety of \mathbf{P}^N .

Solution:

- **2.15** Consider the surface Q (a surface is variety of dimension 2) in \mathbf{P}^3 defined by the equation xy zw = 0.
 - (a) Show that Q is equal to the Segre embedding of $\mathbf{P}^1 \times \mathbf{P}^1$ in \mathbf{P}^3 , for suitable choice of coordinates.
 - (b) Show that Q contains two families of lines (a line is a linear variety of dimension 1) $\{L_t\},\{M_t\}$, each parametrized by $t \in \mathbf{P}^1$, with the properties that if $L_t \neq L_u$, then $L_t \cap L_u = \emptyset$; if $M_t \neq M_u$, $M_t \cap M_u = \emptyset$, and for all $t, u, L_t \cap M_u =$ one point.
 - (c) Show that Q contains other curves besides these lines, and deduce that the Zariski topology on Q is not homeomorphic via ψ to the product topology on $\mathbf{P}^1 \times \mathbf{P}^1$ (where each \mathbf{P}^1 has its Zariski topology).

Solution:

2.16

- (a) The intersection of two varieties need not be a variety. For example, let Q_1 and Q_2 be the quadric surfaces in \mathbf{P}^3 given by the equations $x^2 - yw = 0$ and xy - zw = 0, respectively. Show that $Q_1 \cap Q_2$ is the union of a twisted cubic curve and a line.
- (b) Even if the intersection of two varieties is a variety, the ideal of the intersection may not be the sum of the ideals. For example, let C be the conic in \mathbf{P}^2 given by the equation $x^2 - yz = 0$. Let L be the line given by y=0. Show that $C\cap L$ consists of one point P, but that $I(C)+I(L)\neq I(P)$.

Solution:

2.17 A variety Y of dimension r in \mathbf{P}^n is a (strict) complete intersection if I(Y) can be generated by n-r elements. Y is a set-theoretic complete intersection if Y can be written as the intersection of n-r hypersurfaces.

- (a) Let Y be a variety in \mathbf{P}^n , let $Y = Z(\mathfrak{a})$; and suppose that \mathfrak{a} can be generated by q elements. Then show that $\dim Y \geqslant n - q$.
- (b) Show that a strict complete intersection is a set-theoretic complete intersection.
- (c) The converse of (b) is false. For example let Y be the twisted cubic curve in ${\bf P}^3$ (Ex. 2.9). Show that I(Y)cannot be generated by two elements. On the other hand, find hypersurfaces H_1, H_2 of degrees 2, 3 respectively, such that $Y = H_1 \cap H_2$.
- (d) It is an unsolved problem whether every closed irreducible curve in \mathbf{P}^3 is a set-theoretic intersection of two surfaces.

Solution:

(a) Let $\mathfrak{a} = (f_1, \ldots, f_q)$. It suffices to show that ht $\mathfrak{a} \leq q$. Consider the homomorphism

$$\phi: k[y_1,\ldots,y_n] \to k[x_0,\ldots,x_n]$$

via $y_i \mapsto f_i$. By construction, im $\phi = \mathfrak{a}$. Since ϕ is surjective onto \mathfrak{a} , if $\mathfrak{p}_i \subsetneq \mathfrak{p}_{i+1}$, then $\phi^{-1}\mathfrak{p}_i \subsetneq \phi^{-1}\mathfrak{p}_{i+1}$. Taking preimages also preserves prime ideals. Therefore, ht $\mathfrak{a} \leq \dim k[y_1, \ldots, y_q] = q$.

- (b) If $I(Y) = (f_1, \ldots, f_q)$, then $Y = Z(f_1, \ldots, f_q) = \bigcap_{i=1}^q Z(f_i)$. (c) Recall that the twisted cubic contains $W = \{[1:t:t^2:t^3]:t\in k\}$ as an open dense subset. Let $H_1 = \{[1:t]:t^2:t^3\}$ $Z(x^2 - yw), H_2 = Z(x^3 - zw^2).$ Since

$$W \subset H_1 \cap H_2$$
,

we have $Y \subset H_1 \cap H_2$. tbc.....

3.15

(a) As hinted, let $X_i = \{x \in X \mid x \times Y \subseteq Z_i\}$ for i = 1, 2. We first prove that $X = X_1 \cup X_2$. If this doesn't happen, then there exists $y_1, y_2 \in Y$ such that $(x, y_1) \in Z_1 \setminus Z_2$, $(x, y_2) \in Z_2 \setminus Z_1$. However, this implies that $Z_1 \cap x \times Y$ and $Z_2 \cap x \times Y$ are both (non-empty) proper subsets of $x \times Y$. But they are both closed, and $\{x\} \times Y$ is irreducible, which is a contradiction.