Cryptography

Corso di Laurea Magistrale in Informatica

Algebra, Number Theory and Related Assumptions

Ugo Dal Lago

Academic Year 2021-2022

Where Were We?

Constructing One-Way Functions

▶ We have given only a few examples of "presumed" one-way functions, without further discussion of their nature.

Constructing One-Way Functions

- ▶ We have given only a few examples of "presumed" one-way functions, without further discussion of their nature.
- ► The most interesting one-way functions are undoubtedly those of "mathematical" kind.
 - In particular, those coming from number theory and algebra.
- ▶ It's time to see what it is all about.
 - ▶ We will quickly recall the necessary notions of algebra and number theory, as we need them.
 - A cryptography course designed for maths students, by the way, would start right here.

Constructing One-Way Functions

- ▶ We have given only a few examples of "presumed" one-way functions, without further discussion of their nature.
- ► The most interesting one-way functions are undoubtedly those of "mathematical" kind.
 - ▶ In particular, those coming from number theory and algebra.
- ▶ It's time to see what it is all about.
 - ▶ We will quickly recall the necessary notions of algebra and number theory, as we need them.
 - ▶ A cryptography course designed for maths students, by the way, would start right here.
- ► The assumptions we will see will find *direct* application in public key cryptography, which we will discuss later.

Divisors, Primes, etc.

- $ightharpoonup \mathbb{Z}$ is the set of the integers, while \mathbb{N} is the set of natural numbers.
- ▶ Given two elements $a, b \in \mathbb{Z}$, we write a|b when there exists $c \in \mathbb{Z}$ such that ac = b.
- ▶ When a|b and a is positive, we say that a is divisor of b, and, when $a \notin \{1, b\}$, a is said to be factor of b.
- A number $p \in \mathbb{N}$ with p > 1 is called *prime* if it has no factors, otherwise is called *composite*.
- ▶ Given $n, m \in \mathbb{N}$ with m > 1, let us denote by $n \mod m$ the remainder of n upon division by m.

Lemma

If $n, m \in \mathbb{N}$ and m > 1, then n is invertible modulo m (there exists p such that $np \mod m = 1$) whenever $\gcd(n, m) = 1$, i. e. when n, m are coprime.

- ▶ Given a natural number $N \in \mathbb{N}$, we ask ourselves whether it is difficult to determine two integers $p, q \in \mathbb{N}$ such that N = pq.
 - ▶ There are algorithms that take time $O(\sqrt{N}(\lg(N))^k)$, i.e. exponential over the length of N.
 - ► This is a problem that has nothing to do with cryptography, but which mathematicians have been studying for centuries.

- ▶ Given a natural number $N \in \mathbb{N}$, we ask ourselves whether it is difficult to determine two integers $p, q \in \mathbb{N}$ such that N = pq.
 - ▶ There are algorithms that take time $O(\sqrt{N}(\lg(N))^k)$, i.e. exponential over the length of N.
 - ► This is a problem that has nothing to do with cryptography, but which mathematicians have been studying for centuries.
- ▶ We can therefore define the following experiment:

wFactor_A(n):

$$(x,y) \leftarrow \mathbb{N} \times \mathbb{N}$$
 with $|x| = |y| = n$;
 $N \leftarrow x \cdot y$;
 $(z,w) \leftarrow A(N)$;
Result: $z \cdot w = N$

▶ As usual, our assumption could be that for every PPT A there exists $\varepsilon \in \mathcal{NGL}$ such that

$$Pr(\mathsf{wFactor}_A(n) = 1) = \varepsilon(n)$$

- ▶ However, the assumption we have just made *does not hold*.
 - With probability equal to $\frac{3}{4}$ the number N will be even, because it is enough that one between x and y is even for N to be even.
 - ► Factoring an even number is very simple.

- ▶ However, the assumption we have just made *does not hold*.
 - With probability equal to $\frac{3}{4}$ the number N will be even, because it is enough that one between x and y is even for N to be even.
 - ► Factoring an even number is very simple.
- ightharpoonup It must be guaranteed that N is not (on average) trivially factorable.
 - An interesting idea is to modify wFactor so that x and y are always and only prime numbers (representable in n bits).
 - ▶ How do we generate prime numbers randomly?
 - \blacktriangleright What is the probability that a certain prime number p will be generated?

Generating Primes Efficiently

ightharpoonup A possible way to generate prime numbers, that can be represented in exactly n bits, is to proceed by trial and error:

Result: fail

Generating Primes Efficiently

ightharpoonup A possible way to generate prime numbers, that can be represented in exactly n bits, is to proceed by trial and error:

Result: fail

- ▶ However, there are two questions that need to be answered.
 - 1. How to value the parameter t?
 - ightharpoonup We would like to define t as a polynomial in n, for efficiency reasons.
 - We would like that for such a value of t the probability of obtaining fail is negligible (in n).
 - 2. How to test the primality of a number?
 - We would like to be able to test whether p is prime in polynomial time.

How to Value t?

Theorem

There exists a constant c such that for every n > 1 the number of primes that can be represented in exactly n bits is at least equal to $\frac{c \cdot 2^{n-1}}{n}$.

ightharpoonup At each iteration, therefore, the probability that p is actually prime will be at least equal to:

$$\frac{c \cdot 2^{n-1}/n}{2^{n-1}} = \frac{c \cdot 2^{n-1}}{n \cdot 2^{n-1}} = \frac{c}{n}$$

▶ Therefore, if $t = \frac{n^2}{c}$, the probability of getting fail will be at most equal to

$$\left(1 - \frac{c}{n}\right)^t = \left(\left(1 - \frac{c}{n}\right)^{\frac{n}{c}}\right)^n \le (e^{-1})^n = e^{-n}$$

whenever n > c

How to Test the Primality of a Number in Polynomial Time?

- ► There are **deterministic** algorithms for primality testing that take polynomial time.
 - ► The first one, the so-called AKS algorithm, has been developed by two Master's students of IIT-Kanpur, India.
 - ► The degree of the polynomial is *too high* to consider these algorithms interesting from a practical point of view.
- ► Instead, the so-called **Miller-Rabin test** is probabilistic, but it is PPT.
 - ▶ If the input is a prime number, the Miller-Rabin test returns prime with probability 1.
 - ▶ If the input p is a composite number, the Miller-Rabin test returns composite with probability $1 \varepsilon(|p|)$, where $\varepsilon \in \mathcal{NGL}$.
 - ► The degree of the polynomial that upper bounds the complexity of the test is relatively low.

The Assumption, Properly Formalised

- ▶ The assumption we are trying to define will be parameterised on an algorithm, called **GenModulus** which, on input 1^n , outputs a triple (N, p, q) where N = pq and p, q are primes with n bits.
- ► The experiment wFactor becomes the following one:

Factor_{A,GenModulus}(
$$n$$
):
 $(N, p, q) \leftarrow \text{GenModulus}(1^n)$;
 $(r, s) \leftarrow A(N)$;
Result: $r \cdot s = N$

▶ We say that factoring is hard relative to GenModulus iff for every algorithm A which is PPT there exists a negligible function $\varepsilon \in \mathcal{NGL}$ such that

$$Pr(\mathsf{Factor}_{A.\mathsf{GenModulus}}(n) = 1) = \varepsilon(n)$$

▶ This assumption is sufficient to obtain a one-way function, but not to prove the security of public-key schemes.

Group Theory

- ▶ A group is an algebraic structure (\mathbb{G} , \circ) where \circ is a binary operation that is associative, with identity e and where every $g \in \mathbb{G}$ has an inverse g^{-1} .
- ▶ A finite group (\mathbb{G}, \circ) is said to have **order** equal to $|\mathbb{G}|$.
- ▶ A group is said to be **abelian** if ∘ is a commutative operation.
- ▶ The binary operation is often denoted:
 - With the addition symbol +, in this case the group is called additive and if $m \in \mathbb{N}$ we can use the notation

$$mg = \underbrace{g + \dots + g}_{m \text{ times}}$$

▶ With the multiplication symbol ·, in this case the group is called **multiplicative**, and if $m \in \mathbb{N}$ we can write

$$g^m = \underbrace{g \cdot \dots \cdot g}_{m \text{ times}}$$

Exponentiation

- The computation of mg or g^m can be performed in a number of operations which is polynomial in |m|, i.e. logarithmic in m.
 - ightharpoonup Just proceed considering the binary representation of m. For example:

$$g^{11} = g^8 \cdot g^2 \cdot g^1 = g^{2^3} \cdot g^{2^1} \cdot g^{2^0}$$

and each of the factors, which are at most |m|, can be computed in time that is linear in |m|.

Exponentiation

- The computation of mg or g^m can be performed in a number of operations which is polynomial in |m|, i.e. logarithmic in m.
 - ightharpoonup Just proceed considering the binary representation of m. For example:

$$g^{11} = g^8 \cdot g^2 \cdot g^1 = g^{2^3} \cdot g^{2^1} \cdot g^{2^0}$$

and each of the factors, which are at most |m|, can be computed in time that is linear in |m|.

Theorem

If (\mathbb{G},\cdot) has order m, then for each $g \in \mathbb{G}$, it is true that $g^m = 1_{\mathbb{G}}$.

Corollary

If (\mathbb{G},\cdot) has order m>1, then for every $g\in\mathbb{G}$ and for every i, $g^i=g^{[i\mod m]}$.

- ▶ The set $\mathbb{Z}_N = \{0, \dots, N-1\}$ is a group if the underlying operation is addition modulo N, i.e. the map matching (a,b) with $a+b \mod N$.
 - ightharpoonup The identity is 0;
 - ▶ The inverse of $n \in \mathbb{Z}_N$ is N n.

- ▶ The set $\mathbb{Z}_N = \{0, \dots, N-1\}$ is a group if the underlying operation is addition modulo N, i.e. the map matching (a,b) with $a+b \mod N$.
 - ightharpoonup The identity is 0;
 - ▶ The inverse of $n \in \mathbb{Z}_N$ is N n.
- ▶ The set \mathbb{Z}_N becomes a group with multiplication modulo N when:
 - ▶ We eliminate 0 (which is not invertible) from the group.
 - ightharpoonup N is prime. This guarantees that every 1 < n < N is invertible modulo N.

- ▶ The set $\mathbb{Z}_N = \{0, \dots, N-1\}$ is a group if the underlying operation is addition modulo N, i.e. the map matching (a,b) with $a+b \mod N$.
 - ightharpoonup The identity is 0;
 - ▶ The inverse of $n \in \mathbb{Z}_N$ is N n.
- ▶ The set \mathbb{Z}_N becomes a group with multiplication modulo N when:
 - ▶ We eliminate 0 (which is not invertible) from the group.
 - ightharpoonup N is prime. This guarantees that every 1 < n < N is invertible modulo N.
- If we consider \mathbb{Z}_N with composite N, is there a way to make this set a group with respect to the multiplication modulo N:
 - Just consider $\mathbb{Z}_N^* \subseteq \mathbb{Z}_N$ defined as $\{n \in \mathbb{Z}_N \mid gcd(n, N) = 1\}.$

- ▶ The set $\mathbb{Z}_N = \{0, \dots, N-1\}$ is a group if the underlying operation is addition modulo N, i.e. the map matching (a,b) with $a+b \mod N$.
 - ightharpoonup The identity is 0;
 - ▶ The inverse of $n \in \mathbb{Z}_N$ is N n.
- ▶ The set \mathbb{Z}_N becomes a group with multiplication modulo N when:
 - ▶ We eliminate 0 (which is not invertible) from the group.
 - ightharpoonup N is prime. This guarantees that every 1 < n < N is invertible modulo N.
- ▶ If we consider \mathbb{Z}_N with composite N, is there a way to make this set a group with respect to the multiplication modulo N:
 - ▶ Just consider $\mathbb{Z}_N^* \subseteq \mathbb{Z}_N$ defined as $\{n \in \mathbb{Z}_N \mid gcd(n, N) = 1\}.$
- ► All groups considered are *abelian* groups.

On the Cardinality of \mathbb{Z}_N^*

▶ The function that associates to every natural N > 1 the cardinality of \mathbb{Z}_N^* is called *Euler function* and is denoted by Φ :

$$\Phi(N) = |\mathbb{Z}_N^*|$$

- Of course, $1 \le \Phi(N) < N$. But can we say something more?
 - If N is a prime number p, then $\Phi(N) = p 1$ because every n between 1 and p 1 is coprime with p, i.e. gcd(n, p) = 1.
 - ▶ If N is the product of two primes p and q, then $gcd(a, N) \neq 1$ precisely when p|a or q|a. Therefore:

$$\Phi(N) = N - 1 - (p - 1) - (q - 1) = pq - p - q + 1$$
$$= p(q - 1) - 1(q - 1) = (p - 1)(q - 1)$$

Theorem

Theorem

- Let us observe that, given e and N, the value of $f_e(x)$ is efficiently computable from x.
 - ▶ Just apply the exponentiation algorithm.

Theorem

- Let us observe that, given e and N, the value of $f_e(x)$ is efficiently computable from x.
 - ▶ Just apply the exponentiation algorithm.
- We also observe that, given e and $\Phi(N)$, the inverse d of e modulo $\Phi(N)$ is efficiently computable.
 - ▶ The inversion modulo any integer is a problem that can be handled.

Theorem

- Let us observe that, given e and N, the value of $f_e(x)$ is efficiently computable from x.
 - ▶ Just apply the exponentiation algorithm.
- ▶ We also observe that, given e and $\Phi(N)$, the inverse d of e modulo $\Phi(N)$ is efficiently computable.
 - The inversion modulo any integer is a problem that can be handled.
- Finally, we observe that, given N as the product of two primes p and q, the value of $\Phi(N)$ is not easily computable.
 - ightharpoonup It would be if we could (efficiently) factorise N.

- ▶ In the so-called RSA Assumption we state that it is hard to invert $f_e : \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ when N is the product of two primes p and q, and $gcd(e, \Phi(N)) = 1$.
- ▶ Unlike the assumption on factoring, however, the problem we are assuming to be hard *becomes easy* if
 - \blacktriangleright we know not only N but also p and q;
 - \blacktriangleright or if we know an inverse d of e (modulo $\Phi(N)$).
- ▶ The RSA assumption is parametrized on a routine GenRSA which, given an input 1^n outputs:
 - A natural N which is the product of two primes p and q with |p| = |q| = n.
 - A natural e such that $gcd(e, \Phi(N)) = 1$.
 - ▶ A natural d such that $ed \mod \Phi(N) = 1$.

► The experiment RSAInv is parameterized on an adversary and on the routine GenRSA:

```
\begin{aligned} & \mathsf{RSAInv}_{A,\mathsf{GenRSA}}(n) \colon \\ & (N,e,d) \leftarrow \mathsf{GenRSA}(1^n); \\ & y \leftarrow \mathbb{Z}_N^*; \\ & x \leftarrow A(N,e,y); \\ & \mathbf{Result:} \ x^e \mod N = y \end{aligned}
```

► The experiment RSAInv is parameterized on an adversary and on the routine GenRSA:

```
\begin{aligned} & \mathsf{RSAInv}_{A,\mathsf{GenRSA}}(n) \colon \\ & (N,e,d) \leftarrow \mathsf{GenRSA}(1^n) ; \\ & y \leftarrow \mathbb{Z}_N^* ; \\ & x \leftarrow A(N,e,y) ; \\ & \mathbf{Result:} \ x^e \mod N = y \end{aligned}
```

▶ We say that the RSA problem is hard relative to GenRSA iff for every adversary A that is PPT there exists $\varepsilon \in \mathcal{NGL}$ such that

$$Pr(\mathsf{RSAInv}_{A,\mathsf{GenRSA}}(n) = 1) = \varepsilon(n)$$

► The experiment RSAInv is parameterized on an adversary and on the routine GenRSA:

```
\begin{aligned} & \mathsf{RSAInv}_{A,\mathsf{GenRSA}}(n) \colon \\ & (N,e,d) \leftarrow \mathsf{GenRSA}(1^n) ; \\ & y \leftarrow \mathbb{Z}_N^* ; \\ & x \leftarrow A(N,e,y) ; \\ & \mathbf{Result:} \ x^e \mod N = y \end{aligned}
```

▶ We say that the RSA problem is hard relative to GenRSA iff for every adversary A that is PPT there exists $\varepsilon \in \mathcal{NGL}$ such that

$$Pr(\mathsf{RSAInv}_{A,\mathsf{GenRSA}}(n) = 1) = \varepsilon(n)$$

As we have already argued, if A could factorize N, it would be able to compute $\Phi(N)$ and therefore compute d, thus inverting f_e .

How to Construct GenRSA?

- ▶ How can we construct the GenRSA algorithm so that it is efficiently computable?
- ▶ Of course, GenModulus helps, but obviously is not enough.
- ► For example, we could proceed as follows:

$$\begin{split} &(N,p,q) \leftarrow \mathsf{GenModulus}(1^n); \\ &M \leftarrow (p-1)(q-1); \\ &e \leftarrow \{1,\dots,M\} \text{ such that } \gcd(e,M) = 1; \\ &d \leftarrow e^{-1} \mod M; \\ &\mathbf{Result: } (N,e,d) \end{split}$$

▶ If GenRSA is constructed in this way from GenModulus, it is possible to prove that from the Assumption RSA *follows* the Factoring Assumption.

RSA Factoring Assumption

Cyclic Groups

▶ We consider a finite multiplicative group (G, \cdot) , one of its elements $g \in \mathbb{G}$ and we construct

$$\langle g \rangle = \{g^0, g^1, g^2, \ldots\} \subseteq \mathbb{G}$$

Cyclic Groups

▶ We consider a finite multiplicative group (G, \cdot) , one of its elements $g \in \mathbb{G}$ and we construct

$$\langle g \rangle = \{g^0, g^1, g^2, \ldots\} \subseteq \mathbb{G}$$

We know that $g^m = 1_{\mathbb{G}}$, so we can certainly write that $\langle g \rangle = \{g^1, \dots, g^m\}.$

Cyclic Groups

▶ We consider a finite multiplicative group (G, \cdot) , one of its elements $g \in \mathbb{G}$ and we construct

$$\langle g \rangle = \{g^0, g^1, g^2, \ldots\} \subseteq \mathbb{G}$$

- We know that $g^m = 1_{\mathbb{G}}$, so we can certainly write that $\langle g \rangle = \{g^1, \dots, g^m\}$.
- ▶ However, there might be an i < m such that $g^i = 1_{\mathbb{G}}$. For obvious reasons $\langle g \rangle = \{g^1, \dots, g^i\}$, and therefore $\langle g \rangle$ contains at most i elements.
 - ightharpoonup Actually, it has exactly i elements; if $1 \le k < j < i$, then

$$g^j = g^k \implies g^j \cdot g^{-k} = 1_{\mathbb{G}} \implies g^{j-k} = 1_{\mathbb{G}}.$$

Cyclic Groups

▶ We consider a finite multiplicative group (G, \cdot) , one of its elements $g \in \mathbb{G}$ and we construct

$$\langle g \rangle = \{g^0, g^1, g^2, \ldots\} \subseteq \mathbb{G}$$

- ▶ We know that $g^m = 1_{\mathbb{G}}$, so we can certainly write that $\langle g \rangle = \{g^1, \dots, g^m\}.$
- ▶ However, there might be an i < m such that $g^i = 1_{\mathbb{G}}$. For obvious reasons $\langle g \rangle = \{g^1, \ldots, g^i\}$, and therefore $\langle g \rangle$ contains at most i elements.
 - ightharpoonup Actually, it has exactly i elements; if $1 \le k < j < i$, then

$$g^j = g^k \implies g^j \cdot g^{-k} = 1_{\mathbb{G}} \implies g^{j-k} = 1_{\mathbb{G}}.$$

- ▶ The **order** of $g \in \mathbb{G}$ is the smallest natural i such that $q^i = 1$, i.e. the cardinality of $\langle g \rangle$.
- ▶ A finite group (\mathbb{G} , ·) is said to be **cyclic** if there exists $g \in \mathbb{G}$ with $\langle g \rangle = \mathbb{G}$. Such a g is said **generator** of \mathbb{G} .

Cyclic Groups and Order

Lemma

If \mathbb{G} has order m and $g \in \mathbb{G}$ has order i, then i|m

Cyclic Groups and Order

Lemma

If \mathbb{G} has order m and $g \in \mathbb{G}$ has order i, then i|m

▶ If this were not so, we would have that m = ik + j with j < i. But then

$$g^{j} = g^{j+ik-ik} = g^{m-ik} = g^{m}(g^{i})^{-k} = 1_{\mathbb{G}}(1_{\mathbb{G}})^{-k} = 1_{\mathbb{G}}$$

Cyclic Groups and Order

Lemma

If \mathbb{G} has order m and $g \in \mathbb{G}$ has order i, then i|m

▶ If this were not so, we would have that m = ik + j with j < i. But then

$$g^{j} = g^{j+ik-ik} = g^{m-ik} = g^{m}(g^{i})^{-k} = 1_{\mathbb{G}}(1_{\mathbb{G}})^{-k} = 1_{\mathbb{G}}$$

Theorem

If \mathbb{G} has prime order then \mathbb{G} is cyclic and every $g \in \mathbb{G}$ with $g \neq 1_{\mathbb{G}}$ generates \mathbb{G} .

Discrete Logarithm Assumption

- ▶ If \mathbb{G} is a cyclic multiplicative group, then there exists a "natural" biunivocal correspondence between \mathbb{G} and $\mathbb{Z}_{|\mathbb{G}|}$.
 - Every $h \in \mathbb{G}$ can be matched with a unique $x \in \mathbb{Z}_{|\mathbb{G}|}$ that is the one such that $g^x = h$. Let us call such x the **discrete** logarithm of h with respect to g, which we write $\log_q h$.
- ▶ The discrete logarithm problem is simply the problem of computing $log_g h$ given a cyclic group \mathbb{G} , a generator g for \mathbb{G} and a random element h.
- ▶ The experiment by which we will formalise the assumption of the discrete logarithm is parametrized, as usual, by a routine GenCG which, given 1^n , constructs a group \mathbb{G} , of order q, with |q| = n, and a generator $g \in \mathbb{G}$.

Discrete Logarithm Assumption

▶ The experiment DLog is defined as follows:

```
\begin{aligned} &\mathsf{DLog}_{A,\mathsf{GenCG}}(n) \colon \\ &(\mathbb{G},q,g) \leftarrow \mathsf{GenCG}(1^n); \\ &h \leftarrow \mathbb{G}; \\ &x \leftarrow A(\mathbb{G},q,g,h); \\ &\mathbf{Result:} \ \ q^x = h \end{aligned}
```

As usual, let us say that the discrete logarithm assumption is valid with respect to GenCG iff for every PPT adversary A there exists $\varepsilon \in \mathcal{NGL}$ such that that

$$Pr(\mathsf{DLog}_{A,\mathsf{GenCG}}(n) = 1) = \varepsilon(n)$$

Computational Diffie-Helmann Assumption

▶ Given a cyclic group \mathbb{G} and a generator $g \in \mathbb{G}$ for it, let us define the function $DH_g : \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ as follows:

$$DH_g(h,j) = g^{(\log_g h) \cdot (\log_g j)}$$

▶ We note how:

$$DH_g(g^x, g^y) = g^{x \cdot y} = (g^x)^y = (g^y)^x.$$

- ▶ The CDH problem consists in efficiently computing DH_g . given a group \mathbb{G} and a generator g for it (produced by GenCG).
- ► The assumption CDH (with respect to GenCG) holds when the problem CDH is hard (relative to GenCG).
- ▶ Every efficient algorithm for the discrete logarithm induces an efficient algorithm for CDH.
 - ▶ Just compute the logarithms of h and j, multiply the results and raise g to the product.

Decisional Diffie-Hellman Assumption

▶ Informally, the problem DDH consists in distinguishing $DH_g(h, j)$ from an arbitrary element of the group \mathbb{G} , given obviously h and j.

Decisional Diffie-Hellman Assumption

- ▶ Informally, the problem DDH consists in distinguishing $DH_g(h,j)$ from an arbitrary element of the group \mathbb{G} , given obviously h and j.
- ▶ Formally, we say that the problem DDH is hard (or that the assumption DDH is valid with respect to GenCG) iff for every PPT A there exists ε negligible such that

$$|Pr(A(\mathbb{G}, q, g, g^x, g^y, g^z) = 1) - Pr(A(\mathbb{G}, q, g, g^x, g^y, g^{xy}))| \le \varepsilon(n)$$

where (\mathbb{G}, q, g) is the result of $\mathsf{GenCG}(1^n)$ and $x, y, z \in \mathbb{Z}_q$ are random.

- Every efficient algorithm for CDH trivially induces an efficient algorithm for DDH.
 - ▶ A needs only to compute $DH_g(h, j)$ where h and j are the fourth and fifth parameter. The result must then be compared with the sixth parameter.

DH Assumptions on Specific Groups

- ▶ First of all it should be noted that the use of groups with a prime number of elements is to be preferred, this is because:
 - ▶ Testing whether an element is or is not a generator is trivial.
 - It is possible to show that if \mathbb{G} is a group of prime order q with $|q| = \Theta(2^n)$ then

$$Pr(DH_g(h, j) = y) = \frac{1}{q} + \varepsilon(n)$$

- ▶ We then consider the groups \mathbb{Z}_p^* where p is a *prime*.
 - ▶ An algorithm GenCG that generates groups of this type exists and it is efficient. The discrete logarithm assumption applies to this groups.
 - ▶ DDH is *not* believed to be hard for these groups.
 - ▶ However, there is a different algorithm GenCG' which returns a subset of \mathbb{Z}_p^* and for which DDH is also believed to be hard.

From Factoring to One-Way Functions

- Consider a function GenModulus that takes as input at most p(n) random bits of length n, where p is a polynomial.
- We construct an algorithm that computes a function $f_{\mathsf{GenModulus}}$ as follows:
 - ightharpoonup The input is a string x;
 - Compute an integer n such that $p(n) \le |x| \le p(n+1)$;
 - Compute (N, p, q) as the result of GenModulus (1^n) using as random bits those in x, that are enough.
 - ightharpoonup Return N.

From Factoring to One-Way Functions

- Consider a function GenModulus that takes as input at most p(n) random bits of length n, where p is a polynomial.
- We construct an algorithm that computes a function $f_{\mathsf{GenModulus}}$ as follows:
 - ightharpoonup The input is a string x;
 - Compute an integer n such that $p(n) \le |x| \le p(n+1)$;
 - Compute (N, p, q) as the result of GenModulus (1^n) using as random bits those in x, that are enough.
 - ightharpoonup Return N.
- ▶ We observe now how the following distributions are identical for each $m \in \mathbb{N}$
 - The result N of $f_{\mathsf{GenModulus}}(x)$ where $x \in \{0,1\}^m$ is randomly chosen.
 - The result N of GenModulus (1^n) where $p(n) \le m \le p(n+1)$.

From Factoring to One-Way Functions

- Consider a function GenModulus that takes as input at most p(n) random bits of length n, where p is a polynomial.
- We construct an algorithm that computes a function $f_{GenModulus}$ as follows:
 - ightharpoonup The input is a string x;
 - ▶ Compute an integer n such that $p(n) \le |x| \le p(n+1)$;
 - Compute (N, p, q) as the result of GenModulus (1^n) using as random bits those in x, that are enough.
 - ightharpoonup Return N.
- ▶ We observe now how the following distributions are identical for each $m \in \mathbb{N}$
 - ▶ The result N of $f_{\mathsf{GenModulus}}(x)$ where $x \in \{0,1\}^m$ is randomly chosen.
 - The result N of GenModulus (1^n) where $p(n) \le m \le p(n+1)$.

Theorem

If factoring is hard relative to GenModulus, then $f_{\mathsf{GenModulus}}$ is a one-way function.

Summing Up

