Life Expectancy

Let the variable T_x track the remaining life (in years) of a person of current age x. Since the timing of death is uncertain, T_x can be modeled as a random variable with a probability density $f_{T_x}(t)$. Suppose mortality follows the Makeham law, we have

$$f_{T_x}(t) = (A + Bc^{x+t}) \exp\left(-At - \frac{B}{\log c}c^x(c^t - 1)\right)$$

For this assignment, let's assume A = 0.00022, B = 2.7e - 6, and c = 1.124. With these values, the probability of surviving beyond age 130 for anyone younger than 130 is practically zero.

The the expected future lifetime for a person of current age x is then

$$E(T_x) \approx \int_0^{130-x} t f_{T_x}(t) dt$$

The the expected age at death for a person of current age x is then

$$E(T_x) \approx x + \int_0^{130-x} t f_{T_x}(t) dt$$

[a] Base on the above model, code the Repeated Simpson's Rule for numerical integration (with n = 50) to calculate life expectancy values for a person at each current age in

np.linspace(0, 100, 11).

Let your code produce the following table.

	current age	expected future lifetime	expected age at death
0	0.0	85.564247	85.564247
1	10.0	75.745777	85.745777
2	20.0	65.913131	85.913131
3	30.0	56.079203	86.079203
4	40.0	46.277622	86.277622
5	50.0	36.591443	86.591443
6	60.0	27.209687	87.209687
7	70.0	18.510407	88.510407
8	80.0	11.103323	91.103323
9	90.0	5.652803	95.652803
10	100.0	2.400984	102.400984

The Repeated Simpson's Rule for numerical integration is

$$I = \int_{a}^{b} f(x)dx$$

$$I \approx \frac{h}{3} \Big(f(a) + 4 \sum_{j=1}^{n} f(a + (2j - 1)h) + 2 \sum_{j=1}^{n-1} f(a + 2jh) + f(b) \Big)$$

$$h = \frac{b - a}{2n}$$

Page 2 is the last page. 1 Please submit (*.ipynb and *.html) for your work [b] Based on your estimation in [a], use plotnine to produce the following chart.

