PERANCANGAN APLIKASI MENENTUKAN BERAT BADAN IDEAL DENGAN MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING

Johan Candra Juliner Hutabarat

Mahasiswa Program Studi Teknik Informatika STMIK Budi Darma Medan JI. Sisingamangaraja No. 338 Simpang Limun Medan www. Stmik-budidarma.ac.id // E-Mail : JohanCJH@gmail.com

ABSTRAK

Penerapan komputer dalam pengolahan data untuk menentukan Berat Badan Ideal seseorang dengan membandingkan Berat Badan, Tinggi Badan serta Ukuran Kerangka. Berat badan ideal ini penting terutama pada kesehatan serta di bidang bidang kecantikan, atlit, atau bidang yang lain yang menuntut bentuk tubuh ideal seperti model, artis termasuk masalah BMI (Body Mass Index) dan Ukuran Kerangka (UK)seseorang. Pada penelitian ini, penulis mencoba membangun suatu perangkat lunak yang dapat digunakan untuk menentukan nilai BMI (Body Mass Index) dan Ukuran Kerangka (UK) seseorang dengan cara memasukkan nilai Tinggi Badan, Berat Badan, dan Ukuran Lingkar Lengan Bawah dari fisik orang tersebut. Pengelompokkan data dilakukan dengan menggunakan metode K-Means clustering yang merupakan salah satu metode data clustering non hirarki, yang berusaha mempartisi data yang ada ke dalam bentuk satu atau lebih cluster/kelompok, Metode ini mempartisi data ke dalam cluster/kelompok, sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain yaitu dengan mengelompokkan n buah objek ke dalam k kelas berdasarkan jaraknya dengan pusat kelas. Sehingga dari proses kerja tersebut dapat diketahui Berat Badan Ideal seseorang sesuai dengan nilai BMI-nya (Body Mass Index), apakah termasuk Kurus, Normal, serta Gemuk dan Ukuran Kerangkanya (UK), apakah Kerangka Kecil, Kerangka Sedang atau Kerangka Besar.

Kata Kunci: K-Means, Clustering, BMI, Kerangka

1. Pendahuluan

1.1. Latar Belakang

Body Mass Index (BMI) adalah perbandingan antara berat badan dengan tinggi badan. Ukuran Kerangka tubuh (UK) adalah perbandingan tinggi badan dan lingkar lengan bawah. Masalah penentuan nilai BMI danUK merupakan hal yang sering terlupakan seseorang yang pada umumnya selalu disibukkan dengan berbagai kegiatan sehari-hari. Sering ditemui seseorang tidak mengetahui berada di kelompok mana BMI sertaUK-nya. mengetahui kelompok dari BMInya maka seseorang dapat mengambil tindakan agar selalu berada dalam BMI normal. Sedangkan mengetahui ukuran kerangka, dapat menjaga berat badannya agar dapat selalu berada dalam keadaan ideal.

K-Means merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam bentuk satu atau lebih cluster/kelompok. Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Berdasarkan uraian di atas, algoritma *K-MeansClustering* dapat dimanfaatkan untuk memprediksikan berat badan ideal seseorang dengan menginputkan tinggi badan, berat badan serta ukuran kerangka seseorang tersebut.

1.2. Tujuan

Adapun tujuan yang ingin dicapai adalah:

1. Untuk merancang suatu aplikasi penentuan Berat Badan Ideal seseorang serta Ukuran Kerangkanya dengan metode *K-Means Clustering*.

ISSN: 2407-389X

- 2. Membuktikan *K-Means Clustering* dapat digunakan untuk mengetahui Berat Badan Ideal seseorang serta Ukuran Kerangkanya sesuai dengan jenis kelaminnya
- 3. Untuk mengetahui dengan mudah dan cepat Berat Badan Ideal seseorang serta Ukuran Kerangka berdasarkan nilai Tinggi Badan, Berat Badan, dan Ukuran Lingkar Lengan Bawahnya

1.3. Perumusan Masalah

Agar pembahasan tidak terlalu meluas dan tidak menyimpang dari tujuan maka maka unsur-unsur yang akan dibahas adalah sebagai berikut :

- 1. Bagaimana menentukan formulasi yang dipakai dalam perhitungan Algoritma *K-Means Clustering*.
- 2. Bagaimana proses perhitungan Berat Badan Ideal seseorang dan Ukuran Kerangkanya dengan metode *K-Mean Clustering*.
- 3. Bagaimana merancang aplikasi Penentuan Berat Badan Ideal.

1.4. Batasan Masalah

Agar pembahasan lebih fokus diberikan batasan yaitu Berat Badan Ideal seseorang dan Ukuran Kerangkanya dapat diketahui berdasarkan nilai Tinggi Badan, Berat Badan, dan Ukuran Lingkar Lengan Bawahnya dengan data ukuran secara manual diinput.

1.5. Metodologi Penelitian

Penyelesaian paper ini dilakukan dengan cara:

 Mengumpulkan data-data dengan cara obserasi pada bagian sumber data dan berbagai sumber seperti buku referensi, majalah, internet, dan sumber lainnya.

- 2. Menganalisa permasalahan dan menyelesaikan dengan metode yang digunakan.
- 3. Menerapkan Algoritma K-Means Clustering dalam pengukuran berat badan ideal.
- 4. Merancang suatu aplikasi yang dapat digunakan sebagai media bantu bagi user.

2. Dasar Teoritis

2.1 Berat Badan Ideal

Formula menghitung berat badan ideal telah ada sebelumnya, rumus berat badan ideal yang pertama dibuat oleh seorang ahli bedah Perancis bernama Dr.P.P. Broca pada tahun 1897(Halls, 2005). Seiring dengan berjalannya waktu, Rumus Broca telah mengalami berbagai modifikasi. Hal ini setidaknya dapat dilihat dari tiga kutipan sebagai berikut. Rumus Broca seperti yang dikutip dari tulisan Steven B. Halls (2005) adalah:

Wanita : Berat Badan Ideal (kg)=Tinggi Badan (cm) – $100 \pm 15\%$. Pria : Berat Badan Ideal (kg) = Tinggi Badan (cm) – $100 \pm 10\%$.

Sedangkan Rumus Broca yang dikutip dari publikasi di Website Depkes RI (2004) adalah bobot badan ideal (kg) = 90% x {tinggi badan (cm) - 100} x 1 kg. Khusus untuk pria dengan tinggi badan kurang dari 160 cm dan wanita kurang dari 150 cm, digunakan rumus : Bobot badan ideal (kg) = {tinggi badan (cm) - 100} x 1 kg.

Lain lagi yang dipublikasikan di Pikiran Rakyat (2004), banyak orang menggunakan rumus yang sangat disederhanakan, yaitu : Berat Badan Ideal = (Tinggi Badan - 100) - 10% (Tinggi Badan - 100).

Rumus lain yang banyak digunakan untuk mengetahui status berat badan adalah Indeks Massa Tubuh (IMT) atau BMI (Body Mass Index). Rumus ini lazim digunakan di bidang kesehatan termasuk oleh WHO (World Health Organization). Pada rumus IMT, status berat badan dihitung dengan membandingkan berat badan (kg) dengan kuadrat tinggi badan (m).(WHO, 2000)

Rumusnya adalah : $IMT = \frac{BB(kg)}{TB(m)*TB(m)}$

Dimana : BMI=Nilai *Body Mass Index*; BB =Berat Badan dalam kilogram ; TB=Tinggi Badan dalam meter

Jika nilai IMT sudah didapat, hasilnya dibandingkan dengan ketentuan berikut :

Nilai IMT < 18,5 = Berat Badan Kurang

Nilai IMT 18,5 - 22,9 = Normal

Nilai IMT 23-24,9 = Obesitas Ringan

Nilai IMT 25.0 - 29.9 = Obesitas Sedang

Nilai IMT >= 30,0 = Obesitas Berat

Berdasarkan uraian di atas dalam menghitung Berat Badan Ideal, penulis akan menggunakan rumus IMT (Indeks Massa Tubuh) atau BMI (*Body Mass Index*) dalam menghitung Berat Badan Ideal dan ditambah dengan UK (Ukuran Kerangka). UK (Ukuran Kerangka) yaitu merupakan pengukuran yang membandingkan parameter tinggi badan (cm) dan ukuran lingkar lengan bawah (cm). (Tedy Rismawan dan Sri Kusumadewi, 2008). Rumusnya adalah : UK= TB (cm)

LLB (cm)

Dimana : UK=Ukuran Kerangka ; TB=Nilai Tinggi Badan ; LLB=Ukuran Lingkar Lengan Bawah.

ISSN: 2407-389X

Sehingga dengan perhitungan tersebut kita dapat mengetahui apakah kerangka kita termasuk golongan kerangka besar, sedang atau kecil.

Dengan mengetahui kelompok dari BMI-nya maka seseorang dapat mengambil tindakan agar selalu berada dalam kelompok BMI normal. Sedangkan dengan mengetahui Ukuran Kerangka, seseorang dapat menjaga berat badannya agar dapat selalu berada dalam keadaan ideal.

2.2 BMI (Body Mass Index)

BMI (Body Mass Index) merupakan suatu pengukuran yang membandingkan berat badan dengan tinggi badan. BMI merupakan teknik untuk menghitung index berat badan, sehingga dapat diketahui kategori tubuh kita apakah tergolong kurus, normal atau gemuk. BMI dapat digunakan untuk mengontrol berat badan agar dapat mencapai berat badan normal yang sesuai dengan tinggi badan.Dalam menghitung BMI diperlukan dua parameter, yaitu Berat Badan (kg) dan Tinggi Badan (m). BMI dapat dihitung dengan menggunakan persamaan berikut:

$$BMI = \frac{BB (kg)}{TB (m) * TB (m)}$$

Dimana: BMI=Nilai *Body Mass Index*; BB =Berat Badan dalam kilogram; TB=Tinggi Badan dalam meter

Untuk mengukur apakah berat badan seseorang ideal atau tidak, dapat dilakukan dengan melihat nilai BMI (*Body Mass Index*) tubuhnya dan membandingkan nilainya dengan batas pengelompokkan yang ditunjukkan sesuai pada Tabel

Tabel 1. Aturan Perhitungan Berat Badan Ideal

Nilai BMI	Keterangan
<18,5	Berat Kurang
18,5 - 22,9	Berat Normal
23 - 24.9	Obesitas Ringan
25 - 29.9	Obesitas Sedang
>= 30	Obesitas Berat

Sumber: Tedy Rismawan dan Sri Kusumadewi : 2008

2.3 Ukuran Kerangka

Dalam mengukur kerangka tubuh manusia diperlukan 3 buah parameter, yaitu tinggi badan (cm), ukuran lingkar lengan bawah (cm) dengan cara menggunakan pita meteran, dan jenis kelamin. Jenis kelamin digunakan karena pengelompokkan ukuran rangka manusia antara laki-laki dan wanita berdeda. (Tedy Rismawan dan Sri Kusumadewi, 2008). Untuk menghitung nilai ukuran kerangka manusia, dapat dilihat dari ukuran lingkar lengan bawahnya sebagaimana terlihat pada Gambar 1.

Gambar 1. Lingkar Lengan Bawah Sumber:Tedy Rismawan dan Sri Kusumadewi : 2008

Rumus untuk menghitung ukuran kerangka manusia dapat di hitung dengan persamaan berikut : $UK = \frac{TB(cm)}{LLB(cm)}$

Dimana : UK=Ukuran Kerangka; TB=Nilai Tinggi Badan ; LLB=Ukuran Lingkar Lengan Bawah.

Setelah ukuran kerangka diperoleh dikelompokkan apakah termasuk kategori kecil, sedang atau besar dengan melihat jenis kelaminnya berdasarkan aturan yang ditunjukkan sesuai pada Tabel 2.

Tabel 2. Aturan Kategori Ukuran Kerangka

Jenis	Nilai Ukuran	Kategori Ukuran
Kelamin	Kerangka	Kerangka
Laki-Laki	< 9,6	Kerangka Kecil
Laki-Laki	9,6 - 10,4	Kerangka Sedang
Laki-Laki	>10,4	Kerangka Besar
Perempuan	<10,1	Kerangka Kecil
Perempuan	10,1 - 11,0	Kerangka Sedang
Perempuan	>11.0	Kerangka Besar

Sumber: Tedy Rismawan dan Sri Kusumadewi : 2008 **2.4 Algoritma** *K-Means Clustering*

K-Means Algoritma Clustering merupakan algoritma yang berulang serta cukup sederhana dan dalam pekerjaan pengelompokan (clustering). Prinsip utama dari teknik ini adalah dimulai dengan pemilihan secara acak K, K disini merupakan banyaknya cluster yang ingin dibentuk. Kemudian tetapkan nilai-nilai K secara random, untuk sementara nilai tersebut menjadi pusat dari cluster atau biasa disebut dengan centroid (rata-rata) atau "mean". Hitung jarak setiap data yang ada terhadap centroid masing-masing menggunakan "Euclidean" hingga ditemukan jarak yang paling dekat dari setiap data dengan centroid. Klasifikasikan setiap data berdasarkan kedekatannya dengan centroid. Lakukan langkah tersebut hingga nilai centroid tidak berubah atau stabil".(Tedy Rismawan dan Sri Kusumadewi, 2008).

2.5 Data Clustering

Data *Clustering* merupakan salah satu metode data mining yang bersifat tanpa arahan (*unsupervised*). Ada dua jenis data *clustering* yang sering dipergunakan dalam proses pengelompokan data yaitu *hierarchical* data *clustering* dan *non-hierarchical* data *clustering*. *K-Means* merupakan salah satu metode data *clustering* non hirarki yang berusaha mempartisi data yang ada ke dalam bentuk satu atau lebih *cluster*/ kelompok.

Metode ini mempartisi data ke dalam *cluster/* kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu *cluster* yang sama dan data yang mempunyai karakteristik yang berbeda di kelompokkan ke dalam kelompok yang lain.

Adapun tujuan dari data *clustering* ini adalah untuk meminimalisasikan *objective function* yang diset dalam proses *clustering*, yang pada umumnya berusaha meminimalisasikan variasi di dalam suatu *cluster* dan memaksimalisasikan variasi antar *cluster*.Data *clustering* menggunakan metode *K-Means* ini secara umum dilakukan dengan algoritma dasar sebagai berikut:

- 1. Tentukan jumlah *cluster*.
- 2. Alokasikan data ke dalam *cluster* secara random.
- 3. Hitung *centroid*(rata-rata) dari data yang ada di masing-masing *cluster*.
- 4. Alokasikan masing-masing data ke *centroid*(ratarata) terdekat.
- 5. Kembali ke Step 3, apabila masih terdapat perpindahan data dari satu *cluster* ke *cluster* yang

lain,atau apabila perubahan pada nilai *centroid* masih di atas nilai *threshold* yang ditentukan, atau apabila perubahan pada nilai *objective function* masihdi atas nilai *threshold* yang ditentukan.(YudiAgusta,2007)

ISSN: 2407-389X

2.6 Distance Space Untuk Menghitung Jarak Antara Data dan Centroid

Beberapa distance space telah di implementasikan dalam menghitung jarak (distance) antara data dan centroid termasuk di antaranya L1 (Manhattan/City Block) distance space, L2(Euclidean) distance space, dan Lp (Minkowski) distance space. Jarak antara dua titik x_1 dan x_2 pada Manhattan/City Block distance space dihitung dengan menggunakan rumus sebagai berikut:

$$D_{L1}(x_2,x_1) = ||x_2-x_1|| = \sum_{j=1}^p |x_{2j} - x_{1j}|$$

dimana

 D_{Li} : Distance space (Manhattan/City Block); p: Dimensi data; ||: Nilai absolut; j: atribut data x dan y; \sum : Variance Covariance matriks.

Sedangkan untuk *L2* (*Euclidean*) *distance space*, jarak antara data dengan centroid dihitung menggunakan rumus sebagai berikut:

$$D_{L2}(x_2,x_1) = ||x_2-x_1|| = \sqrt{\sum_{j=1}^{p} (x_{2j} - x_{1j})^2}$$

dimana: D_{L2} : Distance space(Euclidean); p: Dimensi data

 $\|:$ Nilai absolut ; j :atribut data x dan y ; \sum :Variance Covariance matriks

Lp(Minkowski) distance space yang merupakan generalisasi dari beberapa distance spaceyang ada seperti L1 (Manhattan/City Block) dan L2 (Euclidean), juga telah di implementasikan. Tetapi secara umum distance space yang sering digunakan adalah Manhattan dan Euclidean. Euclidean sering digunakan karena penghitungan jarak dalam distance space ini merupakan jarak terpendek yang bisa didapatkan antara dua titik yang diperhitungkan. (YudiAgusta,2007).

3. Analisa dan Penerapan

3.1 Model Perhitungan

Penguraian ke dalam bagian komponennya untuk mengidentifikasi dan mengevaluasikan permasalahan maka klasifikasi pasien menurut *Body Mass Index* (BMI) dan Ukuran Kerangkanya berdasarkan data fisik dari pasien yang telah diambil sebelumnya.

Proses-proses yang dilakukan dalam melakukan pengelompokkan peserta dengan algoritma *K-Mean Clustering* adalah :

- 1. Hitung nilai *Body Mass Index* (BMI) semua peserta
- 2. Hitung Ukuran Kerangka (UK) semua peserta
- 3. Menentukan jumlah *cluster* dan nilai pada tiap-tiap *cluster* secara acak
- 4. Hitung iterasi ke *n* dengan menghitung jarak antara pusat *cluster* dengan data (BMI dan UK).
- 5. Menentukan masing-masing data ke nilai *cluster* yang paling kecil
- 6. Hitung *cluster* baru
- 7. Melakukan perulangan ke langkah 4, jika masih terdapat perpindahan data dari satu *cluster* ke *cluster* yang lain.

8. Jika tidak ada perpindahan data dari satu *cluster* ke cluster yang lain lagi hentikan iterasi.

BMI merupakan suatu pengukuran yang membandingkan berat badan dengan tinggi badan. Dalam menghitung BMI diperlukan dua parameter, yaitu Berat Badan (kg) dan Tinggi Badan (m). BMI dapat dihitung dengan menggunakan persamaan berikut:

$$BMI = \frac{BB(kg)}{TB(m)*TB(m)}$$

Dimana: BMI=Nilai Body Mass Index; BB =Berat Badan dalam kilogram ; TB=Tinggi Badan dalam meter.

Untuk mengukur apakah berat badan seseorang ideal atau tidak, dapat dilakukan dengan melihat nilai (Body Mass tubuhnya *Index*) membandingkan nilainya dengan ketentuan yang dapat dilihat pada pada Tabel 3.

Tabel 3. Nilai BMI

Nilai BMI	Keterangan	Ideal
<18,5	Berat Kurang	Tidak
18,5 - 22,9	Berat Normal	Ya
23 - 24,9	Obesitas Ringan	Tidak
25 – 29,9	Obesitas Sedang	Tidak
>= 30	Obesitas Berat	Tidak

Sumber: Tedy Rismawan dan Sri Kusumadewi: 2008

Pengukuran kerangka tubuh manusia merupakan pengukuran yang membandingkan parameter tinggi badan dan lingkar lengan bawah. Dalam mengukur kerangka tubuh manusia diperlukan 3 buah parameter, yaitu tinggi badan (cm), lingkar lengan bawah (cm) dan jenis kelamin. Rumus untuk menghitung ukuran kerangka manusia seperti ditunjukkan pada persamaan berikut: UK= $\frac{TB (cm)}{LLB (cm)}$

Dimana : UK=Ukuran Kerangka ; TB=Nilai Tinggi ;

Badan; LLB=Lingkar Lengan Bawah

Dengan batas pengelompokkan Laki-laki:

< 9.6: kerangka kecil; 9.6 - 10.4: kerangka sedang;

>10,4 : kerangka besar

Perempuan:

<10,1 : kerangka kecil ; 10,1 – 11,0 : kerangka sedang ; >11,0 : kerangka besar

Distance Space (euclidean distance) adalah jarak antara data dengan centroid dihitung dengan rumus :

$$D_{L2}(x_2,x_1) = ||x_2-x_1|| = \sqrt{\sum_{j=1}^{p} (x_{2j} - x_{1j})^2}$$

Dimana : D_{L2} : Distance space (Euclidean) ; p :

Dimensi data ; \parallel : Nilai absolut ; j :atribut data x dan y ; \sum : Variance Covariance matriks

Sedangkan menurut Ir. Rinaldi Munir dalam Strategi Algoritmik, 2004 untuk distance space, jarak antara dua buah titik adalah $p_1 = (x_1, y_1)$, dan $p_2 = (x_2, y_1)$ y₂), adalah jaraknya di setiap cluster. Dan dapat dihitung dengan menggunakan rumus Euclidean sebagai berikut:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Dimana : d : Distance space ; x_1 : Nilai data pertama pada $\mathit{cluster}$ pertama ; y_1 : Nilai data kedua pada cluster pertama ; x2, y2 : Nilai rata-rata di setiap

3.2 Pengujian Data

Data awal peserta berisi tinggi badan, berat badan serta ukuran lingkar lengan bawah sebelum dilakukan perhitungan untuk mencari nilai BMI dan Ukuran Kerangka dari masing-masing data seperti Tabel 4.

ISSN: 2407-389X

Tabel 4. Peserta kategori Dewasa

			\mathcal{C}		
Pese	Jenis	Umur	Tinggi	Berat	LLB
rta	Kelamin		Badan	Badan	(cm)
			(Cm)	(Kg)	
1.	Laki-Laki	18	160	55	15
2.	Perempuan	20	159	58	14
3.	Perempuan	35	172	60	15
4.	Laki_laki	20	172	57	18
5.	Perempuan	28	168	70	17

Ket: LLB: Lingkar Lengan Bawah.

3.3 Perhitungan Nilai BMI dan Nilai UK

Perhitungan Nilai BMI (Body Mass Index) yaitu dengan menggunakan rumus seperti pada persamaan

[1] sebagai berikut :
$$BMI = \frac{BB(kg)}{TB(m)*TB(m)}$$

Dimana: BMI=Nilai Body Mass Index; BB =Berat Badan dalam kilogram ; TB=Tinggi Badan dalam meter.

- 1. Peserta $1 = BB/(TB)^2 = 55/(160/100)^2 = 21.48$
- 2. Peserta2 = $BB/(TB)^2 = 58/(159/100)^2 = 22.94$

- Peserta3 = BB/(TB)² = 50/(172/100)² = 20.28
 Peserta4 = BB/(TB)² = 57/(172/100)² = 19.26
 Peserta5 = BB/(TB)² = 70/(168/100)² = 24.80

Perhitungan Nilai Ukuran Kerangka (UK) yaitu dengan menggunakan rumus seperti pada persamaan

[2] sebagai berikut :
$$UK = \frac{TB (cm)}{LLB (cm)}$$

Dimana: UK=Ukuran Kerangka; TB=Nilai Tinggi Badan dalam centimeter ; LLB=Ukuran Lingkar Lengan Bawah dalam centimeter.

- 1. Peserta 1 = TB/LLB = 160/15 = 10.66
- 2. Peserta2 = TB/LLB = 159/14 = 11.35
- 3. Peserta3 = TB/LLB = 172/15 = 11.46
- 4. Peserta4 = TB/LLB = 172/18 = 9.55
- 5. Peserta5 = TB/LLB = 168/17 = 9.88

Dari data pada Tabel 4 kemudian dihitung dengan menggunakan rumus persamaan [1] dan [2]. Hasil perhitungan data di atas dimasukkan ke dalam tabel seperti pada Tabel 5.

Tabel 5. Inisial Cluster

	1 doct 5. Hilbiai Claster								
No.Pe	Tinggi	Berat	LLB	BMI	UK				
serta	Badan	Badan	(cm)						
	(Cm)	(Kg)							
1.	160	55	15	21.48	10.6				
2.	159	58	14	22.94	11.35				
3.	172	60	15	20.28	11.46				
4.	172	57	18	19.26	9.55				
5.	168	70	17	24.80	9.88				

Ket: LLB: Lingkar Lengan Bawah; BMI: Body Mass Index UK : Ukuran Kerangka

3.4 Penentuan Jumlah Cluster dan Iterasi

Tahap awal perhitungan K-Mean Cluster adalah dengan cara menentukan jumlah cluster dan nilai pada tiap-tiap cluster secara acak, berdasarkan data yang ada mulai dari nilai data terkecil sampai terbesarnya

antara 19.26 s/d 24.80. Disini kita akan mengelompokkan menjadi 3 kelompok (cluster), misalnya diperoleh C1 = (20.6); C2 = (21.7); dan C3 = (27.8).

Perhitungan iterasi adalah menghitung jarak pusat *cluster* dengan data yang telah di inputkan dengan menggunakan rumus *Euclidean* seperti pada persamaan [4] sebagai berikut :

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Dimana : d : Distance space ; x_1 : Nilai data pertama pada cluster pertama ; y_1 : Nilai data kedua pada cluster pertama ; x_2 , y_2 : Nilai rata-rata di setiap cluster.

- 1. Menghitung jarak data pertama pada pusat *cluster*
 - a. Jarak ke pusat *cluster* pertama : D11=4.83
 - b. Jarak ke pusat *cluster* kedua: D12=3.63
 - c. Jarak ke pusat *cluster* ketiga: D13=2.65
- 2. Menghitung jarak data kedua pada pusat *cluster*.
 - a. Jarak ke pusat *cluster* pertama : D21=6.10
 - b. Jarak ke pusat *cluster* kedua: D22=4.76
 - c. Jarak ke pusat cluster ketiga: D23=3.47
- 3. Menghitung jarak data ketiga pada pusat cluster.
 - a. Jarak ke pusat *cluster* pertama: D31=5.46
 - b. Jarak ke pusat *cluster* kedua: D32=4.51
 - 2. Jarok ke pusat chaster kedud. D32=4.51
 - c. Jarak ke pusat *cluster* ketiga: D33=12.09
- 4. Menghitung jarak data keempat pada pusat *cluster*.
 - a. Jarak ke pusat *cluster* pertama: D41=3.62
 - b. Jarak ke pusat *cluster* kedua: D42=3.08
 - c. Jarak ke pusat *cluster* ketiga: D43=3.14
- 5. Menghitung jarak data kelima pada pusat *cluster*.
 - a. Jarak ke pusat *cluster* pertama: D51=6.17
 - b. Jarak ke pusat *cluster* kedua: D52=4.76
 - c. Jarak ke pusat *cluster* ketiga: D53=3.37

Hasil perhitungan di atas dimasukkan ke dalam tabel pusat *cluster*, sehingga diperoleh seperti pada Tabel 6.

Tabel 6. Pusat Cluster Iterasi 1

No.Peserta	BMI	UK	C1	C2	C3
1.	21.48	10.6	4.83	3.63	2.65
2.	22.94	11.35	6.10	4.76	3.47
3.	20.28	11.46	5.46	4.51	12.09
4.	19.26	9.55	3.62	3.08	3.14
5.	24.80	9.88	6.17	4.76	3.37

Dari Tabel 6 di atas, pilih *cluster* yang paling kecil sehingga hasilnya diperoleh seperti pada Tabel 7.

Tabel 7. Pusat Cluster Terkecil Iterasi 1

No.Peserta	BMI	UK	C1	C2	C3
1.	21.48	10.6			*
2.	22.94	11.35			*
3.	20.28	11.46		*	
4.	19.26	9.55		*	
5	24.80	9.88			*

Menentukan pusat cluster yang baru:

Pada tahap ini hasil dari perhitungan data di atas, sejumlah data akan menjadi anggota dari suatu *cluster* yang memiliki jarak terkecil menjadi pusat *cluster* yang baru. Pada *cluster* pertama tidak ada data yang menjadi anggotanya, sehingga: C1 = 0, maka nilai pada *Cluster*-1 = 0; *Cluster*kedua adalah data pasien nomor3 dan 4 sehingga: C2 = (20.28 + 19.26) / 2 =

19.77, maka nilai pada *Cluster*-2 =19.7; *Cluster*ketiga adalah data pasien nomor1, 2, 5 sehingga: C3 = (21.48 + 22.94 + 24.80) / 3 = 23.07, maka nilai pada *Cluster*-3 = 23.0; Melakukan Iterasi yang kedua dengan langkah 4 di atas berdasarkan data dari pusat *cluster* yang baru diperoleh:

ISSN: 2407-389X

Cluster-1 = 0; Cluster-2 = 19.7; Cluster-3 = 23.0

- 1. Menghitung jarak data pertama pada pusat *cluster*.
 - a. Jarak ke pusat *cluster* pertama: D11=23.95
 - b. Jarak ke pusat *cluster* kedua: D12= 4.37
 - c. Jarak ke pusat *cluster* ketiga: D13= 10.70
- 2. Menghitung jarak data kedua pada pusat *cluster*.
 - a. Jarak ke pusat *cluster* pertama: D21= 25.59
 - b. Jarak ke pusat *cluster* kedua: D22= 5.86
 - c. Jarak ke pusat *cluster* ketiga: D23= 11.35
- 3. Menghitung jarak data ketiga pada pusat cluster.
 - a. Jarak ke pusat *cluster* pertama: D31=23.29
 - b. Jarak ke pusat *cluster* kedua: D32=4.64
 - c. Jarak ke pusat *cluster* ketiga : D33=11.77
- 4. Menghitung jarak data keempat pada pusat *cluster*.
 - a. Jarak ke pusat *cluster* pertama: D41=21.49
 - b. Jarak ke pusat *cluster* kedua : D42=2.56
 - c. Jarak ke pusat *cluster* ketiga: D43=10.25
- 5. Menghitung jarak data kelima pada pusat cluster.
 - a. Jarak ke pusat *cluster* pertama: D51=26.69
 - b. Jarak ke pusat *cluster* kedua: D52=6.47
 - c. Jarak ke pusat *cluster* ketiga: D53=10.04

Hasil perhitungan di atas dimasukkan ke dalam tabel pusat cluster, sehingga diperoleh seperti pada Tabel 8

Tabel 8. Pusat Cluster Itarasi 2

No.Peserta	BMI	UK	C1	C2	C3
1.	21.48	10.6	23.95	4.37	11.70
2.	22.94	11.35	25.59	5.86	11.35
3.	20.28	11.46	23.29	4.64	11.77
4.	19.26	9.55	21.49	2.56	10.25
5.	24.80	9.88	26.69	6.47	10.04

Dari Tabel 8 di atas, pilih *cluster* yang paling kecil sehingga hasilnya diperoleh seperti pada Tabel 9.

Tabel 9. Pusat Cluster Terkecil Iterasi 2

No.Peserta	BMI	UK	C1	C2	C3
1.	21.48	10.6		*	
2.	22.94	11.35		*	
3.	20.28	11.46		*	
4.	19.26	9.55		*	
5.	24.80	9.88		*	

Melakukan perulangan ke langkah 4:

Pada Tabel 7 di atas dapat dibandingkan dengan Tabel 3.7, posisi *cluster* masih berubah, maka iterasi 3 dilanjutkan.

1. Hitung pusat *cluster*.

Pada *cluster* pertama tidak ada data yang menjadi anggotanya, sehingga: C1 = 0, maka nilai pada *Cluster*-1 = 0; *Cluster* kedua adalah data pasien nomor 1, 2, 3, 4 dan 5 sehingga: C2 = (21.48 + 22.94 + 20.28 + 19.26 + 24.80) / 5 = 21.75, maka nilai pada

Cluster-2 = 21.7; Cluster ketiga tidak ada data yang menjadi anggotanya sehingga: C3 = 0, maka nilai pada Cluster-3 = 0

2. Lakukan Iterasi yang ketiga dengan langkah 4 di atas berdasarkan data dari pusat *cluster* yang baru diperoleh : *Cluster*-1=0 ; *Cluster*-2=21.7 ; *Cluster*-3=0

- a. Menghitung jarak data pertama pada pusat cluster.
 - 1. Jarak ke pusat *cluster* pertama:D11= 23.95
 - 2. Jarak ke pusat *cluster* kedua:D12=3.63
 - 3. Jarak ke pusat *cluster* ketiga:D13=23.95
- b. Menghitung jarak data kedua pada pusat cluster.
 - 1. Jarak ke pusat *cluster* pertama: D21=25.59
 - 2. Jarak ke pusat *cluster* kedua: D22=4.76
 - 3. Jarak ke pusat cluster ketiga: D23=25.59
- c. Menghitung jarak data ketiga pada pusat *cluster*.
 - 1. Jarak ke pusat *cluster* pertama:D31=23.29
 - 2. Jarak ke pusat *cluster* kedua: D32=4.51
 - 3. Jarak ke pusat *cluster* ketiga:D33=23.29
- d. Menghitung jarak data keempat pada pusat cluster.
 - 1. Jarak ke pusat *cluster* pertama: D41=21.49
 - 2. Jarak ke pusat *cluster* kedua: D42=3.08
 - 3. Jarak ke pusat *cluster* ketiga: D43=21.49
- e. Menghitung jarak data kelima pada pusat cluster.
 - 1. Jarak ke pusat *cluster* pertama: D51=26.69
 - 2. Jarak ke pusat *cluster* kedua: D52=4.76
 - 3. Jarak ke pusat *cluster* ketiga: D53=26.69

Hasil perhitungan di atas dimasukkan ke dalam tabel pusat *cluster*, sehingga diperoleh seperti pada Tabel 10.

Tabel 10 Pusat Cluster Iterasi 3

No.Peserta	BMI	UK	C1	C2	C3
1.	21.48	10.6	23.95	3.63	23.95
2.	22.94	11.35	25.59	4.76	25.59
3.	20.28	11.46	23.29	4.51	23.29
4.	19.26	9.55	21.49	3.08	21.49
5.	24.80	9.88	26.69	4.76	26.69

Dari Tabel 10 di atas, pilih *cluster* yang paling kecil sehingga hasilnya diperoleh seperti pada Tabel 11.

Tabel 11 Pusat *Cluster* Terkecil Iterasi 3

٠	ioei i i i asat cinsici i entecni iterasi						
	No.Peserta	BMI	UK	C1	C2	C3	
	1.	21.48	10.6		*		
	2.	22.94	11.35		*		
	3.	20.28	11.46		*		
	4.	19.26	9.55		*		
	5.	24.80	9.88		*		

Iterasi di hentikan

Karena pada Iterasi-2 ke iterasi-3 posisi *cluster* sudah tidak berubah lagi, maka iterasi dihentikan dan hasil yang diperoleh adalah satu *cluster*:

Cluster21 =

(21.48+22.94+20.28+19.26+24.80)/5=21.75

Cluster 22 = (10.6+11.35+11.46+9.55+9.88)/5=10.56

Dari data yang sudah di inputkan, maka diperoleh 1 kelompok berdasarkan BMI=21.75 dan Ukuran Kerangka=10.56. Maka ini dapat diartikan sebagai kelompok peserta dengan berat normal dan kerangka besar untuk laki-laki, serta kerangka sedang untuk perempuan. Untuk melakukan pengelompokan data peserta dengan *cluster-cluster* pada proses iterasi-8, maka digunakan Tabel 3 dengan hasil seperti pada Tabel 12.

Tabel 12 Hasil Pengelompokan Peserta

W. D. D. L. L. L. L. L. L.										
	Kategori : Berat Badan dan Ukuran Kerangka									
No.Peserta	JenisKelamin	BMI	UK	Berat	Kerangka	Ideal				
1	Laki-Laki	21.48	10.6	Normal	Besar	Ya				
2	Perempuan	22.94	11.35	Normal	Sedang	Ya				
	_				_					
3	Perempuan	20.28	11.46	Normal	Besar	Ya				
4	Laki_laki	19.26	9.55	Normal	Kecil	Ya				
5	Perempuan	24.80	9.88	Obesitas	Kecil	Tidak				
1		l				l				

ISSN: 2407-389X

4. Algoritma dan Implementasi

4.1. Algoritma K-Means Clustering

Adapun proses yang dilakukan dalam algoritma *K-Mean Clustering* untuk menentukan Berat Badan Ideal adalah sebagai berikut:

4.2. Implementasi

1. Halaman Menu Utama

Gambar 2. Menu Utama

2. Halaman Program Peserta dan Tampilan Data Peserta

Gambar 3. Program Peserta

3. Proses Cluster

Data peserta yang diproses berjumlah 20 peserta. Cluster acak adalah cluster yang diperoleh dengan cara mengacak data BMI dan ukuran kerangka.

Gambar 4. Proses Cluster

4. Penutup

a. Kesimpulan

Dari pembahasan di atas dapat diambil beberapa kesimpulan sebagai berikut:

- 1. Algoritma K-Means Clustering cocok digunakan untuk mengolah Berat Badan Ideal seseorang serta Ukuran Kerangkanya berdasarkan nilai Tinggi Badan, Berat Badan, danUkuran Lingkar Lengan Bawahnya sehingga dapat memperoleh berat badan yang ideal.
- 2. Aplikasi ini dapat digunakan untuk menentukan Berat Badan Ideal seseorang serta Ukuran Kerangkanya sesuai dengan jenis kelaminnya.

b. Saran

Pengembangan lebih lanjut bagaimana aplikasi ini dapat dikembangkan untuk *Clustering* yang tidak hanya berdasarkan nilai BMI dan Ukuran Kerangka saja, namun juga dapat berdasarkan status gizi, tekanan darah, status sosial dan aktifitas seseorang..

Daftar Pustaka

- Munzir Umran dan Taufik Fuadi Abidin, "Pengelompokkan Dokumen Menggunakan K-Means Dan Singular Value Decomposition: Studi Kasus Menggunakan Data Blog", SESINDO, 2009, Banda Aceh.
- 2. Putrisia Hendra Ningrum Adiaty, "*K-Mean Clustering*", Universitas Gajah Mada, 2010, Yogyakarta.

3. Prof. Dr. dr. Azrul Azwar MPH, "Tubuh Sehat Ideal Dari Segi Kesehatan", Senat Mahasiswa Fakultas Kesehatan Masyarakat UI, Februari, 2004, Depok.

ISSN: 2407-389X

- Tedy Rismawan dan Sri Kusumadewi, "Aplikasi K-Means Untuk Pengelompokkan Mahasiswa Berdasarkan Nilai *Body Mass Index* (BMI) dan Ukuran Kerangka", SNATI, Juni, 2008, Yogyakarta.
- 5. Yudi Agusta, PhD, "K-Means-Penerapan, Permasalahan dan Metode Terkait", Jurnal Sistem dan Informatika Vol.3 Pebruari 2007, Denpasar.
- 6. Hartono Andry, "Terapi Gizi dan Diet Rumah Sakit", 2006, ECG, Jakarta.
- 7. Eddy Prasetyo Nugroho, Komala Ratnasari dan Kurniawan Nur Ramadhani, "Rekayasa Perangkat Lunak", Politeknik Telkom, 2009, Bandung.