Data Intake Report

Name: Bank Marketing (Campaign)

Report date: 06/19/2023 Internship Batch: LISUM21

Version: 1

Data intake by: Shiva Ramezani

Data intake reviewer:<intern who reviewed the report>

Data storage location: https://github.com/ShivaRamezani/BankMarketing

Tabular data details: bank.csv

Total number of observations	4522
Total number of files	N/A
Total number of features	17
Base format of the file	.csv
Size of the data	453 KB

Tabular data details: bank-full.csv

Total number of observations	45212
Total number of files	N/A
Total number of features	17
Base format of the file	.csv
Size of the data	4.5 MB

Tabular data details: bank-names.txt

Total number of observations	17
Total number of files	N/A
Total number of features	N/A
Base format of the file	.csv
Size of the data	4 KB

Tabular data details: bank-additional.csv

Total number of observations	4120
Total number of files	N/A
Total number of features	21
Base format of the file	.csv
Size of the data	571 KB

Tabular data details: bank-additional-full.csv

Total number of observations	41189
Total number of files	N/A
Total number of features	21
Base format of the file	.csv
Size of the data	5.6 MB

Tabular data details: bank-additional-names.txt

Total number of observations	N/A
Total number of files	N/A
Total number of features	N/A
Base format of the file	.csv
Size of the data	6 KB

Proposed Approach:

• Mention approach of dedup validation (identification)

Identify Key Fields: Determine the key fields that uniquely identify a customer. In this dataset, it could be a combination of attributes like name, contact number, or any other relevant information.

Data Sorting: Sort the dataset based on the key fields identified in the previous step. This step ensures that similar records are placed together.

Record Comparison: Compare consecutive records based on the key fields to identify potential duplicates. If the key fields match, it indicates a potential duplicate record.

Duplicate Identification: Flag or mark the potential duplicate records for further analysis or processing.

Data Quality Analysis: Perform an in-depth analysis of the potential duplicates to determine their validity. Some common techniques for deduplication include:

- a. Data Sampling: Randomly select a subset of potential duplicates and manually review them to confirm if they are indeed duplicates.
- b. Automated Methods: Utilize automated techniques like fuzzy matching, string similarity algorithms, or record linkage algorithms to compare and match potential duplicates.
- c. Domain Knowledge: Leverage domain knowledge and business rules to identify duplicate records based on specific criteria.

Duplicate Handling: Decide on the appropriate action to handle the duplicates. Options include removing duplicates, merging duplicate records, or keeping only the most recent or most complete record.

• Mention your assumptions (if you assume any other thing for data quality analysis

Missing Values: Assume that missing values exist in the dataset and devise strategies to handle them appropriately. This can involve techniques like imputation, deletion, or treating missing values as a separate category.

Outliers: Assume the presence of outliers in numerical variables and determine their impact on the analysis. Decide whether to remove outliers or transform variables to mitigate their influence.

Data Consistency: Assume that inconsistencies might exist within the dataset, such as conflicting values or data format discrepancies. Address such inconsistencies through data cleansing and standardization techniques.

Data Integrity: Assume that the dataset is reliable and represents accurate information. If there are concerns about data integrity, explore methods to verify the data's accuracy and rectify any inconsistencies.

Data Balance: Consider the possibility of class imbalance in the target variable ('y') and evaluate techniques to handle it during model building, such as oversampling, undersampling, or generating synthetic samples.