## Foundations of Machine Learning

Module 3: Instance Based Learning and Feature Reduction

Part B: Feature Selection

Sudeshna Sarkar IIT Kharagpur

### Feature Reduction in ML

- The information about the target class is inherent in the variables.
- Naïve view:
  - More features
  - => More information
  - => More discrimination power.
- In practice:
  - many reasons why this is not the case!

# **Curse of Dimensionality**

number of training examples is fixed
=> the classifier's performance usually will degrade for a large number of features!



## Feature Reduction in ML

- Irrelevant and
- redundant features
  - can confuse learners.

- Limited training data.
- Limited computational resources.
- Curse of dimensionality.

### **Feature Selection**

Problem of selecting some subset of features, while ignoring the rest

#### **Feature Extraction**

• Project the original  $x_i$ , i = 1,...,d dimensions to new k < d dimensions,  $z_i$ , j = 1,...,k

Criteria for selection/extraction: either improve or maintain the classification accuracy, simplify classifier complexity.

## Feature Selection - Definition

- Given a set of features  $F = \{x_1, ..., x_n\}$  the Feature Selection problem is to find a subset  $F' \subseteq F$  that maximizes the learners ability to classify patterns.
- Formally F' should maximize some scoring function



## Subset selection

- d initial features
- There are  $2^d$  possible subsets
- Criteria to decide which subset is the best:
  - classifier based on these m features has the lowest probability of error of all such classifiers
- Can't go over all 2<sup>d</sup> possibilities
- Need some heuristics

## Feature Selection Steps

Feature selection is an **optimization** problem.

- Step 1: Search the space of possible feature subsets.
- Step 2: Pick the subset that is optimal or nearoptimal with respect to some objective function.



## Feature Selection Steps (cont'd)

#### **Search** strategies

- Optimum
- Heuristic
- Randomized

#### **Evaluation** strategies

- Filter methods
- Wrapper methods



# Evaluating feature subset

- Supervised (wrapper method)
  - Train using selected subset
  - Estimate error on validation dataset
- Unsupervised (filter method)
  - Look at input only
  - Select the subset that has the most information

# **Evaluation Strategies**

#### Filter Methods



#### Wrapper Methods



## Subset selection

- Select uncorrelated features
- Forward search
  - Start from empty set of features
  - Try each of remaining features
  - Estimate classification/regression error for adding specific feature
  - Select feature that gives maximum improvement in validation error
  - Stop when no significant improvement
- Backward search
  - Start with original set of size d
  - Drop features with smallest impact on error

### Feature selection

Univariate (looks at each feature independently of others)

- Pearson correlation coefficient
- F-score
- Chi-square
- Signal to noise ratio
- mutual information
- Etc.

Univariate methods measure some type of correlation between two random variables

- the label (y<sub>i</sub>) and a fixed feature (x<sub>ii</sub> for fixed j)
- Rank features by importance
- Ranking cut-off is determined by user

### Pearson correlation coefficient

- Measures the correlation between two variables
- Formula for Pearson correlation =

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

- The correlation r is between + 1 and -1.
  - + 1 means perfect positive correlation
  - -1 in the other direction

## Pearson correlation coefficient



# Signal to noise ratio

 Difference in means divided by difference in standard deviation between the two classes

$$S2N(X,Y) = (\mu_X - \mu_Y)/(\sigma_X - \sigma_Y)$$

Large values indicate a strong correlation

### Multivariate feature selection

- Multivariate (considers all features simultaneously)
- Consider the vector w for any linear classifier.
- Classification of a point x is given by  $\mathbf{w}^{\mathsf{T}}\mathbf{x}+\mathbf{w}_{0}$ .
- Small entries of w will have little effect on the dot product and therefore those features are less relevant.
- For example if w = (10, .01, -9) then features 0 and 2 are contributing more to the dot product than feature 1.
  - A ranking of features given by this w is 0, 2, 1.

### Multivariate feature selection

- The w can be obtained by any of linear classifiers
- A variant of this approach is called <u>recursive feature</u> <u>elimination</u>:
  - Compute w on all features
  - Remove feature with smallest w<sub>i</sub>
  - Recompute w on reduced data
  - If stopping criterion not met then go to step 2