CS 161 Homework 1 Solutions

Yusu Qian

06/27/2019

Exercise 1 Set-up (2 pts)

- (a) Please do the following, if you haven't already, then answer "I did the things" for part (a).
 - Read the syllabus (at least up to the "Resources" section).
 - Join the course Piazza and Gradescope (hint: links are in the syllabus).
- (b) Set up Jupyter notebooks and make sure you can get lecture1_karatsuba.ipynb up and running:
 - Go to jupyter.org and choose either "Try it in your browser" or "Install the Notebook". Follow the instructions.
 - Get the files multHelpers.py and lecture1_karatsuba.ipynb from Canvas ("Files" tab, in Lecture Materials>Lecture 01) and run lecture1_karatsuba.ipynb in the Jupyter Notebook.
 - If you are using the Notebook in your browser, you can upload the files by using File>Open... and then clicking Upload.
 - If you are installing the Notebook, you should install Python 3.3 or higher, and you may need to install matplotlib separately if you do not go through Anaconda to install Python.
 - In lecture, we briefly mentioned that the Toom-Cook multiplication algorithm runs in time $O(n^{1.465})$. Find the cell where we compare the running time of grade-school multiplication to "Magic Multiplication" (Karatsuba). Add the following line, then re-run the cell to generate the new plot comparing Toom-Cook to the multiplication algorithms from class, and include a screenshot of it as your answer for part (b)!

Solution 1

Exercise 2 Basic Big-O (4 pts)

Using the definitions of $O(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$, formally prove the following statements:

- (a) $5\sqrt{n} + 3 = O(\sqrt{n})$.
- (b) $n^{100} = \Omega(n)$.
- (c) $2^{100} = \Theta(1)$.
- (d) 4^n is **not** $O(2^n)$.

Solution 2

(a) By definition, we need to prove that there are positive constants n_0 and c such that at and to the right of n_0 , the value of $5\sqrt{n} + 3$ always lies on or below $O(\sqrt{n})$.

When n > 9, $\sqrt{n} > 3$, $5\sqrt{n} + 3 < 5\sqrt{n} + \sqrt{n} = 6\sqrt{n}$ Thus we have $n_0 = 9$, c = 6, when $n > n_o$, $5\sqrt{n} + 3 < c\sqrt{n}$.

- (b) By definition, $n^{100} = \Omega(n)$ holds as there are positive constants $n_0 = 1$ and c = 1 such that at and to the right of n_0 , $n^{100} > 1 = c * n$. Thus $n^{100} = \Omega(n)$
- (c) 2^{100} lies between $(2^{100}+1)*1$ and $(2^{100}-1)*1$, thus, there exists positive constraints $c_1=2^{100}-1$ and $c_2=2^{100}+1$, such that the value of 2^{100} lies between c_1*1 and c_2*1 . Thus, $2^{100}=\Theta(1)$.
- (d) By definition, 4^n is $O(2^n)$ if there are positive constants n_0 and c such that at and to the right of n_0 , the value of 4^n always lies on or below $c * (2^n)$.

However, whatever value c is of, let n_0 be log(c) + 1. $\frac{4^n}{c*2^n} = \frac{2^n}{c}$. When $n > n_0$, $\frac{2^n}{c} > 2$, thus $4^n > c * 2^n$. Thus, 4^n is not $O(2^n)$.

Exercise 3 More Big-O: True or False? (8 pts)

In the following, suppose that f(n) and g(n) are strictly positive, strictly increasing functions. Formally prove or disprove the following statements:

- (a) If f(n) = O(q(n)) then $100 f^2(n) = O(q^2(n))$.
- (b) There exists a constant $\alpha > 0$ such that $\log n = \Omega(n^{\alpha})$. (You may assume, if it helps, that $\log n = O(n)$ but n is not $O(\log n)$.)
- (c) If f(n) = O(g(n)) then $\log(f(n)) = O(\log(g(n)))$. (You may assume $\log(f(n)), \log(g(n)) > 0$.)
- (d) If f(n) = O(g(n)) then $2^{f(n)} = O(2^{g(n)})$.

Solution 3

- (a) True. By definition, if f(n) = O(g(n)), there exists a positive constant c such that at and to the right of n_0 , the value of f(n) always lies on or below O(g(n)). $100f^2(n) = (10f(n))^2 < (10c * g(n))^2 = 100c^2 * g^2(n)$ when $n >= n_0$. To rephrase, there exists a positive constant $c_1 = 100c^2$ such that at and to the right of n_0 , the value of f(n) always lies on or below $O(g^2(n))$.
- (b) True. For $\log n = \Omega(n^{\alpha})$ to hold, there should be a constant c and a constant n_0 such that at and to the right of n_0 , the value of $\log n$ always lies on or above $c*n^{\alpha}$. When α is smaller than 1 while larger than 0, n^{α} is strictly decreasing. $\log n$, on the other hand, is strictly increasing. Let c = 1, alpha = 0.01 and n = 4. $\log 4 = 2 = 4^{0.5} > 4^{0.01}$. For all n > 4, $\log n > n^{0.01}$. Thus, there exists a constant $\alpha > 0$ such that $\log n = \Omega(n^{\alpha})$.
- (c) True. As f(n) = O(g(n)), we can rewrite f(n) as c * g(n) + a lower order term. Thus, $\log(f(n)) =$

- $\log(c*g(n) + \log$ (a lower order term)) $< \log(c*g(n) + g(n)) = \log((c+1)*g(n)) = \log(g(n)) + \log(c+1) = O(\log(g(n)))$. Thus $\log(f(n)) = O(\log(g(n)))$.
- (d) False. By definition, if f(n) = O(g(n)), there exists a positive constant c such that at and to the right of n_0 , the value of f(n) always lies on or below c * g(n). If $2^{f(n)} = O(2^{g(n)})$ then $2^{f(n)} < c_1 * 2^{g(n)} = 2^{logc_1} * 2^{g(n)} = 2^{g(n) + logc_1}$. Compare these two, we see that it only holds when c < 1.

Exercise 4 Recurrence Relations (6 pts)

Using either the Master Theorem or the "tree" method (show your work), give the best big-O bound possible on the following recurrences:

- (a) $T(n) = 5T(\frac{n}{3}) + n$ with T(n) = 1 for n < 3.
- (b) $T(n) = 2T(\frac{n}{2}) + n^2$ with T(n) = 1 for n < 2.
- (c) T(n) = T(n-2) + n with T(n) = 1 for n < 2.
- (d) $T(n) = 4T(\sqrt[4]{n}) + \log n$ with T(n) = 1 for n < 2.

Solution 4

- (a) a = 5, b = 3, d = 1, thus $a > b^d$, thus $O(n^{\log_3(5)})$
- (b) a = 2, b = 2, d = 2, thus $a < b^d$, thus $O(n^2)$
- (c) When n=2k+1, $T(n)=1+3+\ldots+n=\frac{(1+n)n}{4}$, $T(n)=T(\frac{n}{2})+\frac{3n^2}{16}+\frac{8}{n}$, when n>2, $\frac{n^2}{16}>\frac{n}{8}$, so $T(n)< T(\frac{n}{2})+\frac{n^2}{4}$. When n=2k, $T(n)=1+2+\ldots+n=\frac{(2+n)n}{4}+1$, $T(n)=T(\frac{n}{2})+\frac{3}{16}n^2+\frac{n}{4}$, when n>4, $\frac{n^2}{16}>\frac{n}{4}$, so $T(n)< T(\frac{n}{2})+\frac{n^2}{4}$. Thus, for every n>4, $T(n)< T(\frac{n}{2})+\frac{n^2}{4}$. $a=1,b=2,d=2,a< b^d$, thus $O(n^2)$
- (d) We can change variables. $T(n) = 4T(\sqrt[4]{n}) + \log n$ can be changed into $T(2^m) = 4T(2^{\frac{m}{4}}) + m$. Now rename $S(m) = T(2^m)$ to get the new recurrence $S(m) = 4S(\frac{m}{4}) + m$. This recurrence has a solution of S(m) = O(m * log m). Thus, $T(n) = T(2^m) = S(m) = O(m * log m) = O(log n log log n)$.

Exercise 5 Generalized Karatsuba (6 pts)

In class, we saw that Karatsuba's Algorithm breaks up the problem of integer multiplication of two n-digit numbers into 3 sub-problems of size $\frac{n}{2}$. We also mentioned that the Toom-Cook Algorithm breaks up integer multiplication into 5 sub-problems of size $\frac{n}{3}$.

Suppose that, for any integer $k \geq 2$, we can break up one integer multiplication xy into 2k-1 subproblems of size $\frac{n}{k}$ in time O(n). Furthermore, suppose that by simple addition and subtraction of the correct sub-problems, we can calculate $\frac{2n}{k}$ -digit numbers q_0, \ldots, q_{2k-2} such that $xy = q_{2k-2}10^{(2k-2)n/k} + \cdots + q_210^{2n/k} + q_110^{n/k} + q_010^0$.

- (a) Argue that, for any constant k, the number of one-digit operations required to reassemble the subproblems into the overall product xy is O(n).
- (b) Give a recurrence relation representing the run-time of this generalized-Karatsuba algorithm for arbitrary k, and solve the recurrence relation to give the tightest-possible big-O bound.
- (c) Your friend, Ms. Take, is very excited about this problem and tells you she's come up with an $O(n \log n)$ algorithm for integer multiplication—the fastest ever discovered! Here is her reasoning:
 - i. We know that for any k, we can break up an n-digit multiplication into 2k-1 sub-problems of size $\frac{n}{k}$.

- ii. You showed in part (a) that recombining these sub-problems takes O(n) time.
- iii. Therefore, just let $k = \sqrt{n}$. This gives us the recurrence relation $T(n) = (2\sqrt{n} 1)T(\sqrt{n}) + O(n)$.
- iv. This recurrence solves to $O(n\log n)$. First, notice that there are $\log\log n$ levels of the recursion tree, because that's how many times you have to take the square root of n to get down to O(1). At the 0th level, there is 1 sub-problem of size n. At the 1st level, there are fewer than $2\sqrt{n}$ sub-problems of size \sqrt{n} . At the 2nd level, there are fewer than $2\sqrt{n}\times 2n^{1/4}=4n^{3/4}$ sub-problems of size $n^{1/4}$. In general, at the t'th level, there are fewer than $2^t n^{1-\frac{1}{2^t}}$ sub-problems of size $n^{1/2^t}$, for a total of $2^t O(n)$ work at level t. Finally, observe that $\sum_{t=0}^{\log\log n} 2^t O(n) = O(2^{\log\log n} n) = O(n\log n)$, as claimed!

What big conceptual error has Ms. Take made?

Solution 5

- (a) There are 2k-1 subproblems, each with $\frac{2n}{k}$ digits, $(2k-1)*\frac{2n}{k}<4n$, time needed to reassemble is O(n).
- (b) We divide n times, and eventually have $(2k-1)^{\log_k n} = n^{\log_k(2k-1)}$ subproblems. $T(n) = (2k-1)T(\frac{n}{k}) + O(n)$. $T(n) = O(n^{\log_k(2k-1)})$.
- (c) n is a fixed number, and k should be too. However, it seems Ms. Take changes the value of k in every step and uses square root of the new digit length. Thus the calculation of levels is incorrect.

Exercise 6 Preview of Selection (6 pts) answer on the next page

In lecture 03 we will discuss the selection problem: given an unsorted list of n elements and an integer k, return the k'th smallest element—i.e., when k = 1 return the min, when k = n return the max, etc.

In this problem, we are instead given two **sorted** lists, each of length n; assume that all the elements are distinct. Give a divide-and-conquer algorithm that returns the k'th smallest element in the union of the two lists, in time $O(\log n)$. Provide an informal argument that your algorithm has the correct runtime, and a concise proof by induction that your algorithm returns the correct answer.

Solution 6

```
\begin{aligned} & \text{n} = \text{len(input)} \\ & \text{sequence}_1 = \text{list}_1[first \frac{k}{2}elements] \\ & \text{sequence}_2 = \text{list}_2[first \frac{k}{2}elements] \\ & \text{for } k >= 1 \\ & \text{if } sequence}_1[\frac{k}{2}] < sequence}_2[\frac{k}{2}] \\ & max = sequence}_1[\frac{k}{2} - th] \\ & \text{list}_1 \quad delete \quad first \quad \frac{k}{2} \quad elements \\ & k = \frac{k}{2} \\ & \text{else if } sequence}_1[\frac{k}{2}] > sequence}_2[\frac{k}{2}] \\ & max = sequence}_2[\frac{k}{2} - th] \\ & \text{list}_2 \quad delete \quad first \quad \frac{k}{2} \quad elements \\ & k = \frac{k}{2} \\ & \text{return max} \end{aligned}
```

Explanation:

I divide this problem to first finding the $\frac{k}{2}$ smallest elements in the union of the two lists, and then finding the $\frac{k}{4}$ smallest elements, till the last step when k=1 and we find the only one we need. This element is the k-th smallest element in the union of the two lists.

Let's take a closer look at the first step. Take out the smallest $\frac{k}{2}$ elements in both lists, and compare the $\frac{k}{2} - th$ elements. If the $\frac{k}{2} - th$ element in $list_1$ is smaller than than in $list_2$, it means that the first $\frac{k}{2}$ elements in $list_1$ are among the first k smallest elements in the union of the two lists. The $\frac{k}{2} - th$ element in $list_1$ is so far the largest element we have collected, and we give its value to a variable we call max. Repeat this step and reduce k by 2 all the way down to when k = 1. The last element we collect and assign to max is the k-th smallest element we are finding.

Running time: There are log_2k steps. In each step, we compare the largest elements in the two sub-lists, assign a value to the variable max, and use $\frac{k}{2}$ to replace the original k. Thus, $T(k) = T(\frac{k}{2}) + \Theta(1)$ when k > 1 and $T(k) = \Theta(1)$ when k = 1. The total cost therefore is $c * \log k + ck$. As k < 2n, $(c * \log k + ck) < (c * \log 2n + 2cn) = c * \log n + 2cn + c * \log 2 = O(\log n)$