Differential Evolution based Multi-Agent Formation Fault Reconstruction

Authors: Zirui Liao, Shaoping Wang, Jian Shi, Qiwang Weng

Organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

- > 1. Background
- > 2. Problem Statement
- > 3. Differential Evolution Algorithm
- > 4. Simulation and Discussion
- > 5. Summary

1. Background

Application Scenarios

Bionic Ant Colony

Widespread Applications

Agriculture Protection

Light Show

Cooperative Operations

1. Background

Actual Influence Factors

1. Background

Challenges

> Communication Fault:

> Single Agent Fault:

- > 1. Background
- > 2. Problem Statement
- > 3. Differential Evolution Algorithm
- > 4. Simulation and Discussion
- > 5. Summary

2. Problem Statement

Mission Description

Description of the Tracking Task

> Relative Position Consistency:

$$\lim_{t \to \infty} \frac{1}{N} \sum_{i} p_i(t) - c_p(t) = 0$$

> Relative Velocity Consistency:

$$\lim_{t \to \infty} \frac{1}{N} \sum v_i(t) - c_v(t) = 0$$

> Ideal state:

$$\lim_{t \to \infty} (\xi_i(t) - h_i(t) - c(t)) = 0 (i = 1, 2, \dots, N)$$

Variables	Meaning
<i>p</i> , <i>v</i>	Position and Velocity of UAV
\boldsymbol{c}	Tracked Target
ξ	Actual state matrix of UAV
h	Ideal state matrix of UAV
N	The Number of UAV

2. Problem Statement

Fault Mode Analysis

Communication Fault

> State Equation of Formation:

$$\dot{\xi}(t) = (I_N \otimes (BK_1 + A) - L \otimes (BK_2))\xi(t) + (I_N \otimes B)\dot{\mathbf{h}}(t)$$
$$- (I_N \otimes (BK_1) - L \otimes (BK_2))h(t)$$

Single UAV Fault

- > 1. Background
- > 2. Problem Statement
- > 3. Differential Evolution Algorithm
- > 4. Simulation and Discussion
- > 5. Summary

Fault Scenario I

> Communication link is interrupted due to terrain and environmental.

Reconstruction Strategy

> Communicate another agent to construct the new topology.

Fault Scenario II

> An agent fails and is unable to keep the formation.

Reconstruction Strategy

> Abandon this agent and adjust the remaining formation shape.

Reconstruction Flow Chart

Topology

Optimization Problems

Name	Meaning	Formula
Objective Functions	Highest network connectivity	$\max(R)$
	Highest Communication Quality	max(Q)
	Lowest Conversion Cost	$\min(C)$
Decision Variables	Status Between Two Nodes	a_{ij}
Constraint Equations	Network Connectivity Equation	$R = g(a_{ij})$
-	Link Attenuation Constraint	$Q = f(\sqrt{\Delta S_x^2 + \Delta S_y^2})$
	Maximum Distance Constraint	$\sqrt{\Delta S_x^2 + \Delta S_y^2} < d_{\text{max}}$
	Conversion Cost Formula	$C = k \times \sum \Delta a_{ij}$

 $S_x S_y$: Flight position, m

 $V_x V_y$: Flight velocity, m/s

 a_{ij} : Connection status

 d_{max} : Maximum distance, m

k: Topology cost, m

Formation

Optimization Problems

Name	Meaning	Formula
Objective Function	Minimal Enclosure Error	$\min(E)$
Decision Variables	Circle Radius	r
	Round Phase Angle	heta
	Tangential Velocity	V_{i_t}
Constraint Equations	1 Error Calculation	$E = f(\theta, d, V_{i_t})$
	2 Speed Constraint	$V_{\rm max} < M_v$
	3 Safety Constraint	$\sqrt{\Delta S_x^2 + \Delta S_y^2} < M_S$

 $S_x S_y$: Flight Position, m

 $V_x V_y$: Flight Velocity, m/s

r: Circle Radius, m

 θ : Round Phase Angle, rad

 M_s : Safe Distance, m

 M_v : Maximum Velocity, m/s

DE (Differential Evolution) Algorithm

Biological Evolution

Optimization

1 Optimization problems characterized by continuous variables

FormationParameters r φ

2 Optimization problems based on discrete variable characteristics

 \longrightarrow Topology L

DE Example

- > 1. Background
- > 2. Problem Statement
- > 3. Differential Evolution Algorithm
- > 4. Simulation and Discussion
- > 5. Summary

4. Simulation and Discussion

Scenario 1: Link Fading

4. Simulation and Discussion

- > 1. Background
- > 2. Problem Statement
- > 3. Differential Evolution Algorithm
- > 4. Simulation and Discussion
- > 5. Summary

5. Summary

1. Two specific scenarios of fault in dynamic tracking mission are considered;

2. Differential evolution algorithm is introduced to solve the reconstruction problems;

3. Simulation results are given to verify the effectiveness of the method.

Oct. 23-25, 2020, Tianjin, China

ICGNC 2020 International Conference on Guidance, Navigation and Control

Thank you so much for your listening!

Reporter: Zirui Liao

