

1η Σειρά Ασκήσεων

Every great magic trick consists of three parts or acts. The first part is called "The Pledge". The magician shows you something ordinary: a deck of cards, a bird or a man. He shows you this object. Perhaps he asks you to inspect it to see if it is indeed real, unaltered, normal. But of course... it probably isn't.

Christopher Priest, "The Prestige"

1^η Ασκηση – Εξάσκηση στο Matlab

Δίνεται ο πίνακας $\mathbf{A} = \begin{bmatrix} 1 & 3 & 4 \\ 5 & 7 & 6 \\ 9 & 2 & 8 \end{bmatrix}$.

- Α) Γράψτε τις απαιτούμενες εντολές Matlab για να:
 - i) Δημιουργήσετε ένα διάνυσμα x διάστασης 3 x 1 που να περιέχει τα στοιχεία της πρώτης στήλης του πίνακα A
 - ii) Δημιουργήστε ένα διάνυσμα \mathbf{y} διάστασης 1 x 3 που να περιέχει τα στοιχεία της τρίτης γραμμής του πίνακα \mathbf{A}
 - iii) Δημιουργήστε ένα πίνακα **B** διάστασης 2 x 3 που να περιέχει τις δύο τελευταίες γραμμές του πίνακα **A**.
- B) Με βάση τους παραπάνω πίνακες και διανύσματα, καθορίστε ποιες από τις παρακάτω πράξεις θα εκτελεστούν σωστά και δώστε το αποτέλεσμα. Αν θεωρείτε ότι κάποια πράξη δεν θα εκτελεστεί σωστά, εξηγήστε γιατί.

$$i) x + y$$

ii)
$$x + y'$$

iii) [x'; y]

iv) [x' y]

 $\mathbf{v}) \mathbf{x} + \mathbf{A}$

vi) $\mathbf{B} + [\mathbf{x} ; \mathbf{v}]$

vii) $\mathbf{B} + [\mathbf{x}'; \mathbf{y}]$

viii) A + 3

ix) A * B

 $\mathbf{x}) \mathbf{A} * \mathbf{B}'$

2η Ασκηση – Αριθμοί Fibonacci και χρυσός αριθμός

Η ακολουθία των αριθμών Fibonacci, ορίζεται από τις ακόλουθες σχέσεις:

$$F_n = 1$$
, $\gamma 100 n = 1,2$

$$F_n = F_{n-2} + F_{n-1}$$
, $\gamma 100$ $n=3,4,...$

- α) Γράψτε πρόγραμμα τύπου function που να δέχεται ως όρισμα το n και να επιστρέφει τον n-οστό αριθμό Fibonacci
- β) Για τους πρώτους 10 αριθμούς Fibonacci, υπολογίστε το λόγο $\frac{F_n}{F_{n-1}}$. Σχεδιάστε τα αποτελέσματα σε γραφική παράσταση. Το όριο του παραπάνω λόγου καθώς το n προσεγγίζει το άπειρο, $\lim_{n\to\infty}\frac{F_n}{F_{n-1}}$, ονομάζεται «χρυσός αριθμός» φ , και συναντάται

πολύ συχνά στην φύση. Η τιμή του αριθμού φ είναι ίση με $\frac{\sqrt{5}+1}{2}$. Συμφωνούν τα αποτελέσματα σας με αυτή την τιμή;

Bonus material:

- www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/fibnat.html
- www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/phi.html

3η Ασκηση – Σχεδίαση κυματοδηγού με επίλυση μη γραμμικής εξίσωσης

Στο παρακάτω σχήμα δίνεται η διατομή ενός επίπεδου διηλεκτρικού κυματοδηγού (slab line). Ο συγκεκριμένος κυματοδηγός αποτελείται από έναν εξωτερικό και έναν εσωτερικό αγωγό και χρησιμεύει για την διάδοση εγκάρσιων ηλεκτρομαγνητικών κυμάτων (Transverse ElectroMagnetic – TEM). Ο εξωτερικός αγωγός αποτελείται από δυο παράλληλες επαγωγικές πλάκες ιδίου δυναμικού που απέχουν μεταξύ τους απόσταση b. Ο εσωτερικός αγωγός είναι ένας κύλινδρος με διάμετρο d. Ανάμεσα

στους δύο αγωγούς υπάρχει διηλεκτρικό υλικό με σχετική διηλεκτρική σταθερά ε_r και σχετική μαγνητική διαπερατότητα μ_r .

Η χαρακτηριστική αντίσταση Z_0 αυτού του κυματοδηγού είναι συνάρτηση των γεωμετρικών χαρακτηριστικών του (b και d), καθώς και των παραμέτρων ε_r και μ_r .

Έχει βρεθεί ότι η χαρακτηριστική αντίσταση μπορεί να υπολογιστεί προσεγγιστικά από τον ακόλουθο τύπο¹:

$$Z_0\left(\frac{d}{b}\right) = 59.952\sqrt{\frac{\mu_r}{\varepsilon_r}}\left(\ln\frac{\sqrt{X}+\sqrt{Y}}{\sqrt{X-Y}} - \frac{R^4}{30} + 0.014R^8\right), \quad \Omega$$

όπου:

$$R = \frac{\pi}{4} \frac{d}{h}$$
, $X = 1 + 2 \sinh^2(R)$, $Y = 1 - 2 \sin^2(R)$, $\varepsilon_r = 3.78$, $\mu_r = 1$

Υλοποιήστε στο Matlab ένα πρόγραμμα function το οποίο θα δέχεται ως όρισμα εισόδου την επιθυμητή χαρακτηριστική αντίσταση του κυματοδηγού Z_{target} και να επιστρέφει ως έξοδο το λόγο $\frac{d}{b}$ που οδηγεί στην επιθυμητή χαρακτηριστική αντίσταση Z_{target} . Με τη βοήθεια του function που κατασκευάσατε, υπολογίστε το λόγο $\frac{d}{b}$ που οδηγεί σε χαρακτηριστική αντίσταση: i) 20Ω , ii) 40Ω , iii) 60Ω .

Προκειμένου να υπολογιστεί ο λόγος $\frac{d}{b}$, θα πρέπει να επιλυθεί η μη γραμμική εξίσωση $Z_0\bigg(\frac{d}{b}\bigg)-Z_{\it target}=0$.

Ένας τρόπος για να επιλυθεί μια μη γραμμική εξίσωση αριθμητικά (δηλαδή χωρίς την εύρεση της αναλυτικής λύσης) είναι με τη μέθοδο της «χρυσής τομής»:

Η μέθοδος της χρυσής τομής

Έστω ότι επιθυμούμε να επιλύσουμε τη μη γραμμική συνάρτηση f(x) = 0 όταν το x βρίσκεται ανάμεσα στις τιμές x_{\min} και x_{\max} , δηλαδή $x \in [x_{\min}, x_{\max}]$. Στο διάγραμμα ροής της επόμενης σελίδας απεικονίζεται ο αλγόριθμος της χρυσής τομής. Με φ

¹S. Rosloniec, "Fundamental numerical methods for electrical engineering", Springer

συμβολίζεται ο χρυσός αριθμός $(\frac{\sqrt{5}+1}{2})$, ενώ με e συμβολίζεται ένας μικρός αριθμός που επιλέγεται αυθαίρετα.

Bonus material:

- https://en.wikipedia.org/wiki/Golden-section_search
- http://www.allaboutcircuits.com/vol_2/chpt_14/8.html
- http://www.radio-electronics.com/info/antennas/waveguide/waveguide-basics-tutorial.php