Lecture 8: Algorithm Independent Principles - II Validation, Regularization, General Issues, Model Selection

Machine Learning, Summer Term 2019

Michael Tangermann Frank Hutter Marius Lindauer

University of Freiburg

The Big Picture

Lecture Overview

- Validation (cont'd)
- 2 Regularization
- General Considerations
- 4 Model Selection and Feature Selection
- Wrapup

Lecture Overview

- Validation (cont'd)
- Regularization
- General Considerations
- 4 Model Selection and Feature Selection
- Wrapup

Recap: Overfitting / Underfitting

Example of underfitting: validation and training error remain large

Recap: Overfitting / Underfitting

Example of underfitting: validation and training error remain large

Example of successful learning: validation error and training error monotonically decrease
→ good generalization

Recap: Overfitting / Underfitting

Example of underfitting: validation and training error remain large

Example of successful learning: validation error and training error monotonically decrease

or good generalization

Example of overfitting: validation error increases while training error decreases

Model Selection 1/2

Evaluation:

- We want our models to generalize
 - I.e., perform well on previously unseen data points
- What does it mean to perform well?
 - See metrics covered later today
 - Speed at training time, speed at test time, memory, accuracy, ...

Model Selection 2/2

To obtain estimates of generalization performance using a fixed dataset

- Split dataset into training set and test set
- Lock away test set for final assessment

Model Selection 2/2

To obtain estimates of generalization performance using a fixed dataset

- Split dataset into training set and test set
- Lock away test set for final assessment
- You can do anything you want on the training set
- E.g., split it further into training and validation
 - Train different models on training set
 - Pick the one with best performance on validation set

Model Selection 2/2

To obtain estimates of generalization performance using a fixed dataset

- Split dataset into training set and test set
- Lock away test set for final assessment
- You can do anything you want on the training set
- E.g., split it further into training and validation
 - Train different models on training set
 - Pick the one with best performance on validation set
- E.g., split it further into cross-validation (CV) folds and pick the model with best CV performance
 - CV performance is not an unbiased estimate of test performance
 - But better estimate than a single split into training/valid

Cross Validation Can Still Overfit 1/2

Single training-validation split (90% - 10%)

10-fold cross-validation

- Validation performance from single training-validation split is overconfident (overly optimistic)
- CV performance is still overconfident, but not as much
- In one of the next assignments, you will basically create these plots

Cross Validation Can Still Overfit 2/2

- To overfit least, when and how would you choose between different preprocessors (or feature selectors, data normalizers, etc) when you use k-fold cross-validation?
 - ★ Once: in the beginning, on all data
 - ★ Once: on all the training data
 - \star k times: on the training split of each CV fold \checkmark

Cross Validation Can Still Overfit 2/2

- To overfit least, when and how would you choose between different preprocessors (or feature selectors, data normalizers, etc) when you use k-fold cross-validation?
 - ★ Once: in the beginning, on all data
 - ★ Once: on all the training data
 - \star k times: on the training split of each CV fold
- Typical method trainModel
 - Normalizes data, drops unimportant features, etc
 - Then builds model on preprocessed data
 - Saves both these data transformations and the model

Cross Validation Can Still Overfit 2/2

- To overfit least, when and how would you choose between different preprocessors (or feature selectors, data normalizers, etc) when you use *k*-fold cross-validation?
 - ★ Once: in the beginning, on all data
 - ★ Once: on all the training data
 - \star k times: on the training split of each CV fold
- Typical method trainModel
 - Normalizes data, drops unimportant features, etc
 - Then builds model on preprocessed data
 - Saves both these data transformations and the model
- Typical method applyModel
 - First apply the transformations, then the model
 - Routine used for both the validation set and the test set alike

Stratified Cross Validation

- E.g., only 10 positive data points, 90 negative ones
- How many positive data points would standard 10-fold cross-validation put into each fold?
 - \star 1
 - **★** 10
 - \star Between 0 and 10, depends on the random split into folds \checkmark

Stratified Cross Validation

- E.g., only 10 positive data points, 90 negative ones
- How many positive data points would standard 10-fold cross-validation put into each fold?
 - \star 1
 - **★** 10
 - ★ Between 0 and 10, depends on the random split into folds

<u>Stratified</u> cross-validation would put exactly 1 positive and 9 negative data points into each fold

Lecture Overview

- Validation (cont'd)
- 2 Regularization
- General Considerations
- 4 Model Selection and Feature Selection
- Wrapup

Regularization

Approaches to improve generalization

Which approaches do you know / can you think of?

Approaches to improve generalization

Approaches to improve generalization

Preference for small parameter values

- Early stopping
- Shrinkage methods

Approaches to improve generalization

Preference for small parameter values

- Early stopping
- Shrinkage methods

Better task description

- More training data
- Filter training data
- Use more / less / other input features

Approaches to improve generalization

Preference for small parameter values

- Early stopping
- Shrinkage methods

Better task description

- More training data
- Filter training data
- Use more / less / other input features

Ensemble techniques

Bagging

Regularization Techniques - Early Stopping

- Stop learning when error on validation set has reached its minimum
- Often, training is already stopped after a few epochs
 - typically combined with small initial weights
- Simple, popular heuristic
- Needs perpetual observation of the validation error

 Extend the loss function with extra term (penalty) to control overfitting

$$L(\mathbf{w}) = L_D(\mathbf{w}) + \lambda L_W(\mathbf{w})$$

 Extend the loss function with extra term (penalty) to control overfitting

$$L(\mathbf{w}) = L_D(\mathbf{w}) + \lambda L_W(\mathbf{w})$$

• Common example: sum-of-squares loss function with L2 regularization

$$L(\mathbf{w}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} \{ \underline{y_n} - \underline{\mathbf{w}}^T \phi(\mathbf{x}_n) \}^2}_{L_D(\mathbf{w})} + \underbrace{\frac{\lambda}{2} \mathbf{w}^T \mathbf{w}}_{\lambda L_W(\mathbf{w})}$$

- Allows for closed-form solution: $\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$. This is called ridge-regression or Tikhonov regularization in the literature.

• More general form:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

- Shrinkage: encourages weights to shrink towards zero
- Case q=2: L2 regularizer as before
- Case q=1: L1 regularizer as before (lasso in the literature) \rightarrow sparse solutions

$$L(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

- Which of these values of q encourages sparsity the most?
 - **★** q=0.5
 - **★** q=1

 - **★** q=4

$$L(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

- Which of these values of q encourages sparsity the most?
 - ★ q=0.5
 - **★** q=1
 - ★ q=2
 - **★** q=4

Regularization Techniques - More Data

- Data analysts' fundamental slogan: there's no data like more data!
- Try to get more data; if not possible directly, think about related sources of similar data
- Although trivial, one of the most important techniques to improve ML models

- Data augmentation is a common strategy for creating additional training data
- Example: computer vision
 - Translation, Scaling, Reflection, Rotation, Stretching

- Data augmentation is a common strategy for creating additional training data
- Example: computer vision
 - Translation, Scaling, Reflection, Rotation, Stretching

- Data augmentation is a common strategy for creating additional training data
- Example: computer vision
 - Translation, Scaling, Reflection, Rotation, Stretching

- Data augmentation is a common strategy for creating additional training data
- Example: computer vision
 - Translation, Scaling, Reflection, Rotation, Stretching

- Data augmentation is a common strategy for creating additional training data
- Example: computer vision
 - Translation, Scaling, Reflection, Rotation, Stretching

- Data augmentation is a common strategy for creating additional training data
- Example: computer vision
 - Translation, Scaling, Reflection, Rotation, Stretching

- Hypothesis learns representation invariant to the perturbations
 - Often yields very substantial improvements
 - However: 100x augmentation can slow down training 100x
 - Diminishing returns: rarely more than 100x data augmentation

- Data augmentation is a common strategy for creating additional training data
- Example: computer vision
 - Translation, Scaling, Reflection, Rotation, Stretching

- Hypothesis learns representation invariant to the perturbations
 - Often yields very substantial improvements
 - However: 100x augmentation can slow down training 100x
 - Diminishing returns: rarely more than 100x data augmentation
- What data do we apply these augmentations to?
 - ★ All data
- ★ Only the test data
 - ★ Only the validation data ★ Only the training data 🗸

- We only want to be invariant to certain degrees of transformations
 - Like the human visual system; not these:

- We only want to be invariant to certain degrees of transformations
 - Like the human visual system; not these:

- We only want to be invariant to certain degrees of transformations
 - Like the human visual system; not these:

- Hyperparameters: how much of each perturbation to apply?
 - Usually specify a distribution to sample from
 - E.g., zero-mean 5-dimensional Gaussian with degrees of translation, scaling, reflection, rotation, stretching to apply to original data
 - Best hyperparameter setting: most helpful invariants

- We only want to be invariant to certain degrees of transformations
 - Like the human visual system; not these:

- Hyperparameters: how much of each perturbation to apply?
 - Usually specify a distribution to sample from
 - E.g., zero-mean 5-dimensional Gaussian with degrees of translation, scaling, reflection, rotation, stretching to apply to original data
 - Best hyperparameter setting: most helpful invariants
- In computer vision, it is not hard to find useful image perturbations
- What could perturbations be in other applications? Domain-specific!
 - Could even lead to domain-specific insights about important invariants

Filtering Training Data

- Some training data points are much more helpful to learn the target concept than others
- Filtering means reducing the training set to the really important points that help adjusting the classification boundary/regression curve
- Techniques: oversampling, subsampling, outlier rejection, jittering
- Frequent problem: imbalanced data in classification

Balancing Data

- E.g., 93% negative data, 7% positive
 - You could trivially get 93% accuracy
 - But you may want also want high recall

Balancing Data

- E.g., 93% negative data, 7% positive
 - You could trivially get 93% accuracy
 - But you may want also want high recall

Subsampled majority class

Balancing Data

- E.g., 93% negative data, 7% positive
 - You could trivially get 93% accuracy
 - But you may want also want high recall

Subsampled majority class

- Solution 1: If your classifier supports it, weight your data
- Solution 2: Subsample the majority class
- Solution 3: Generate new data points of minority class

Regularization Techniques - Input Features

- Removing features may reduce overfitting by helping the model avoid fitting pseudo relationships
 - Extreme: think of a feature that is just random noise
- Dimensionality reduction is related: PCA, ICA

Regularization Techniques - Input Features

- Removing features may reduce overfitting by helping the model avoid fitting pseudo relationships
 - Extreme: think of a feature that is just random noise
- Dimensionality reduction is related: PCA, ICA
- Of course, adding features can also help improve performance
 - If they are related to the desired output
 - Very often, domain experts can come up with useful additional features
 - Can also add non-linear transformations of features

Regularization Techniques - Committee / Ensemble Approaches

- If you ask one expert, the expert may fail
- Ask a committee of experts: the majority has a better chance to be right

Regularization Techniques - Committee / Ensemble Approaches

- If you ask one expert, the expert may fail
- Ask a committee of experts: the majority has a better chance to be right
- Premise: experts are experienced and diverse

Committees - Bagging [Breimann, 1996]

- Train several models on bootstrap samples of the training data
 - Data is drawn randomly with replacements ⇒ some data points may occur twice or more, others don't occur at all
- Average the output of all trained models

Committees - Bagging [Breimann, 1996]

- Train several models on bootstrap samples of the training data
 - Data is drawn randomly with replacements ⇒ some data points may occur twice or more, others don't occur at all
- Average the output of all trained models

• Single members of the committee might produce a higher test-set error; but the committee error can still improve

Committees - Bagging [Breimann, 1996]

- Train several models on bootstrap samples of the training data
 - Data is drawn randomly with replacements ⇒ some data points may occur twice or more, others don't occur at all
- Average the output of all trained models

- Single members of the committee might produce a higher test-set error; but the committee error can still improve
- We'll cover committee methods / ensemble methods in more detail in the module on tree-based methods

Lecture Overview

- Validation (cont'd)
- 2 Regularization
- General Considerations
- 4 Model Selection and Feature Selection
- Wrapup

- In different applications, different metrics of success apply
- Example metrics for classification
 - \bullet E.g., 0/1 loss, higher loss for false positives than false negatives, etc
 - E.g., AUC, F1, precision/recall, ... (see next slide)

- In different applications, different metrics of success apply
- Example metrics for classification
 - \bullet E.g., 0/1 loss, higher loss for false positives than false negatives, etc
 - E.g., AUC, F1, precision/recall, ... (see next slide)
- Example metrics for regression
 - E.g., RMSE (root mean squared error)
 - E.g., MAE (mean absolute error)
 - Log-likelihood: log(P(observations | model))

- In different applications, different metrics of success apply
- Example metrics for classification
 - \bullet E.g., 0/1 loss, higher loss for false positives than false negatives, etc
 - E.g., AUC, F1, precision/recall, ... (see next slide)
- Example metrics for regression
 - E.g., RMSE (root mean squared error)
 - E.g., MAE (mean absolute error)
 - Log-likelihood: log(P(observations | model))
- Internal loss function being optimized often differs from external metric of success
 - E.g., internally, to fit the model, we may need a differentiable surrogate loss function, such as cross entropy
 - E.g., 0/1 loss is not differentiable

- Binary classification: detecting a signal (e.g., disease)
 - True positive rate, sensitivity or recall: percentage of positive data points that are classified as positive
 → want this to be high

- Binary classification: detecting a signal (e.g., disease)
 - True positive rate, sensitivity or recall: percentage of positive data points that are classified as positive
 → want this to be high
 - False positive rate:
 percentage of negative data points that are classified as positive
 → want this to be low

- Binary classification: detecting a signal (e.g., disease)
 - True positive rate, sensitivity or recall:
 percentage of positive data points that are classified as positive
 → want this to be high
 - False positive rate: percentage of negative data points that are classified as positive
 → want this to be low
 - Precision: percentage of positively-classified data points that are truly positive
 - ightarrow want this to be high

- Binary classification: detecting a signal (e.g., disease)
 - True positive rate, sensitivity or <u>recall</u>:
 percentage of positive data points that are classified as positive
 → want this to be high
 - False positive rate: percentage of negative data points that are classified as positive
 → want this to be low
 - <u>Precision</u>: percentage of positively-classified data points that are truly positive
 - \rightarrow want this to be high
 - F-measure or F_1 score: $F = 2 \cdot (\text{precision} \cdot \text{recall})/(\text{precision} + \text{recall})$

- Receiver operating characteristic (ROC curve)
 - Plots true positive rate vs. false positive rate
 - At various threshold settings of a classifier
 - Single number for a classifier: Area Under the ROC Curve (AUC)

ROC curve of three predictors of peptide cleaving in the proteasome. Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

- Receiver operating characteristic (ROC curve)
 - Plots true positive rate vs. false positive rate
 - At various threshold settings of a classifier
 - Single number for a classifier: Area Under the ROC Curve (AUC)

ROC curve of three predictors of peptide cleaving in the proteasome. Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

With which algorithm can you trivially achieve the diagonal?

- Receiver operating characteristic (ROC curve)
 - Plots true positive rate vs. false positive rate
 - At various threshold settings of a classifier
 - Single number for a classifier: Area Under the ROC Curve (AUC)

ROC curve of three predictors of peptide cleaving in the proteasome. Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

With which algorithm can you trivially achieve the diagonal?

• Another, similar type of curve: precision-recall curve

Metrics of Success: Take Home Message

- There are several metrics of success
- The correct metric depends on your application
- For example, for spam classification you should not only consider accuracy
 - The predictor should not classify an important message as spam
 - similar cases in medicine

Metrics of Success: Take Home Message

- There are several metrics of success
- The correct metric depends on your application
- For example, for spam classification you should not only consider accuracy
 - The predictor should not classify an important message as spam
 - similar cases in medicine
- In case of doubt, you should consider several metrics

- So far, we've assumed an underlying distribution $p(\mathbf{x}, y)$
- More precisely, we made the standard assumption in supervised learning: data points $p(\mathbf{x},y)$ are independently and identically distributed (i.i.d.)

- ullet So far, we've assumed an underlying distribution $p(\mathbf{x},y)$
- More precisely, we made the standard assumption in supervised learning: data points $p(\mathbf{x},y)$ are independently and identically distributed (i.i.d.)
 - Independent: learning the label A of one data point doesn't tell you anything about the label B of another data point:

$$P(x \ge A) = P(x \ge A \mid y \ge B)$$
, for all x and y

- ullet So far, we've assumed an underlying distribution $p(\mathbf{x},y)$
- More precisely, we made the standard assumption in supervised learning: data points $p(\mathbf{x},y)$ are independently and identically distributed (i.i.d.)
 - Independent: learning the label A of one data point doesn't tell you anything about the label B of another data point:

$$P(x \geq A) = P(x \geq A \mid y \geq B), \text{ for all } x \text{ and } y$$

 Identically distributed: data points (including their labels) are drawn from the same probability distribution:

$$P(x \ge A) = P(x \ge B)$$
, for all x

- ullet So far, we've assumed an underlying distribution $p(\mathbf{x},y)$
- ullet More precisely, we made the standard assumption in supervised learning: data points $p(\mathbf{x},y)$ are independently and identically distributed (i.i.d.)
 - Independent: learning the label A of one data point doesn't tell you anything about the label B of another data point:

$$P(x \geq A) = P(x \geq A \mid y \geq B), \text{ for all } x \text{ and } y$$

 Identically distributed: data points (including their labels) are drawn from the same probability distribution:

$$P(x \ge A) = P(x \ge B)$$
, for all x

- In practice, especially independence can be broken in many ways
- Example: weather prediction: one data point per day
 - ★ Data points from consecutive days are independent.
 - ★ Data points from consecutive days are dependent.

Validation for the Non-i.i.d. Setting

 We want to obtain an unbiased estimate of the performance that we would achieve in practice (on a hold-out private test set)

Validation for the Non-i.i.d. Setting

- We want to obtain an unbiased estimate of the performance that we would achieve in practice (on a hold-out private test set)
- Example: weather forecast
 - To predict tomorrow's weather, we cannot use data from the future
 - Standard option: when predicting for validation data point at time t, use training set up to t-1

Validation for the Non-i.i.d. Setting

- We want to obtain an unbiased estimate of the performance that we would achieve in practice (on a hold-out private test set)
- Example: weather forecast
 - To predict tomorrow's weather, we cannot use data from the future
 - Standard option: when predicting for validation data point at time t, use training set up to $t-1\,$
- Example: 50 data points measured for each of 100 patients
- What would the right 10-fold cross-validation protocol be to get an unbiased estimate of how well we'll predict on a new patient?
 - ★ Split data randomly into 10 folds of 500 data points each
 - ★ In each fold: use 5 data points of each of the 100 patients
 - ★ In each fold: use all 50 data points of 10 patients each ✓ ১০০

Lecture Overview

- Validation (cont'd)
- 2 Regularization
- General Considerations
- 4 Model Selection and Feature Selection
- Wrapup

Feature Selection

- Feature selection: pick a subset of features that performs best
- Exactly the same problem of generalization as for model selection
- Special mechanisms exist to evaluate feature importance, etc
 - Here a quick preview

Forward Selection

- Build up your feature set step by step
- Iterate:
 - Evaluate the predictor performance by adding each of the unused features
 - 2 Add the feature with the highest performance improvements

Forward Selection

- Build up your feature set step by step
- Iterate:
 - Evaluate the predictor performance by adding each of the unused features
 - 2 Add the feature with the highest performance improvements
- small feature set, but dependencies between features are maybe missed

Forward Selection

- Build up your feature set step by step
- Iterate:
 - Evaluate the predictor performance by adding each of the unused features
 - 2 Add the feature with the highest performance improvements
- small feature set, but dependencies between features are maybe missed

Example:					
Iteration	selected	$ f_1 $	f_2	f_3	f_4
1st	{}	20.0	17.7	30.2	20.1

Forward Selection

- Build up your feature set step by step
- Iterate:
 - Evaluate the predictor performance by adding each of the unused features
 - 2 Add the feature with the highest performance improvements
- small feature set, but dependencies between features are maybe missed

Iteration	selected	f_1	f_2	f_3	f_4
1st	{}	20.0>	17.7	30.2	20.1
2nd	$\{f_3\}$	5.1	8.2	_	4.9

Forward Selection

- Build up your feature set step by step
- Iterate:
 - Evaluate the predictor performance by adding each of the unused features
 - 2 Add the feature with the highest performance improvements
- small feature set, but dependencies between features are maybe missed

Iteration	selected	f_1	f_2	f_3	f_4
1st	{}	20.0	17.7	30.2	20.1
2nd	$\{f_3\}$	5.1	8.2	_	4.9
3rd	$\{f_3,f_2\}$	0.8	_	_	0.5

Forward Selection

- Build up your feature set step by step
- Iterate:
 - Evaluate the predictor performance by adding each of the unused features
 - 2 Add the feature with the highest performance improvements
- small feature set, but dependencies between features are maybe missed

Iteration	selected	f_1	f_2	f_3	f_4
1st	{}	20.0	17.7	30.2	20.1
2nd	$\{f_3\}$	5.1	8.2	_	4.9
3rd	$\{f_3, f_2\}$	0.8	_	_	0.5
4th	$\{f_3, f_2, f_1\}$	_	_	_	-0.2

Forward Selection

- Build up your feature set step by step
- Iterate:
 - Evaluate the predictor performance by adding each of the unused features
 - 2 Add the feature with the highest performance improvements
- small feature set, but dependencies between features are maybe missed

Example:

_,					
Iteration	selected	f_1	f_2	f_3	f_4
1st	{}	20.0	17.7	30.2	20.1
2nd	$\{f_3\}$	5.1	8.2	_	4.9
3rd	$\{f_3, f_2\}$	0.8	_	_	0.5
4th	$\{f_3, f_2, f_1\}$	_	_	_	-0.2

 \rightsquigarrow we could also consider to stop after the second iteration, if the improvement by adding f_1 is considered too small.

Backward Elimination

- Reduce your feature set step by step
- Iterate:
 - Evaluate the predictor performance by removing each of the considered features
 - Remove the feature with the smallest performance loss
- → "larger" feature set, but dependencies between features are preserved

Backward Elimination

- Reduce your feature set step by step
- Iterate:
 - Evaluate the predictor performance by removing each of the considered features
 - Remove the feature with the smallest performance loss

 \rightsquigarrow "larger" feature set, but dependencies between features are preserved

Iteration	selected	f_1	f_2	f_3	f_4
1st	$\{f_1, f_2, f_3, f_4\}$	0.8	0.0	-10.0	0.2

Backward Elimination

- Reduce your feature set step by step
- Iterate:
 - Evaluate the predictor performance by removing each of the considered features
 - Remove the feature with the smallest performance loss
- → "larger" feature set, but dependencies between features are preserved

Iteration	selected	f_1	f_2	f_3	f_4
1st	$\{f_1, f_2, f_3, f_4\}$	0.8	0.0	-10.0	0.2
2nd	$\{f_2, f_3, f_4\}$	_	-0.5	-12.3	-2.3

Backward Elimination

- Reduce your feature set step by step
- Iterate:
 - Evaluate the predictor performance by removing each of the considered features
 - Remove the feature with the smallest performance loss
- → "larger" feature set, but dependencies between features are preserved

Example:

Iteration	selected	f_1	f_2	f_3	f_4
1st	$\{f_1, f_2, f_3, f_4\}$	0.8	0.0	-10.0	0.2
2nd	$\{f_2, f_3, f_4\}$	_	-0.5	-12.3	-2.3
3rd	$\{f_3, f_4\}$	_	_	-18.3	-8.5

→ Forward selection and backward elimination often do not recover the same set of features.

Feature Selection: Correlation Analysis

 highly correlated features often hurt the training process more than they help

Feature Selection: Correlation Analysis

- highly correlated features often hurt the training process more than they help
- you should consider to remove correlated features all but one
 - a PCA is implicitly doing something similar

Feature Selection: Correlation Analysis

- highly correlated features often hurt the training process more than they help
- you should consider to remove correlated features all but one
 - a PCA is implicitly doing something similar
- Pearson correlation coefficient

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Lecture Overview

- 1 Validation (cont'd)
- 2 Regularization
- General Considerations
- 4 Model Selection and Feature Selection
- Wrapup

Summary by learning goals

Having heard this lecture, you can now ...

- Explain how to check performance using cross-validation
- Identify over- and underfitting based on learning curves
- Explain different regularization approaches
- Select features (using basic approaches)
- Explain the i.i.d. assumption and where it can break down
- Handle imbalanced data
- Choose the right metric of success for a new application
- Explain the appropriate cross-validation splits for several settings