- 24 -

WHAT IS CLAIMED IS:

A compound of the formula

$$A(B)_{x}$$
 (I)

where x is an integer from 1 to 8,

A is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindolinone, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series, this radical being linked with x B groups via one or more heteroatoms, these heteroatoms being selected from the group consisting of N, O and S and forming part of the radical A, and

B is hydrogen or a group of the formula

although at least one B group is not hydrogen and when x is from 2 to 8 the B groups may be identical or different,

- E₁ is oxygen or is selected from the group consisting of methylene, methyleneoxy and ethylene, each member of the group being unsubstituted or substituted by one R₅ or by 2 radicals, R₅ and R₆, or is two separate radicals, R₂ and R₆, R₂ being attached to the same atom as R₁ and R₆ to the same atom as R₄,
- is selected from the group consisting of methylene, ethylene, propylene and butylene, each member of the group being unsubstituted or substituted by one R₉ or by 2 radicals, R₉ and R₁₀, or is two separate radicals, R₁₁ and R₁₂, R₁₁ being attached to the same atom as R₁ and R₁₂ to the same atom as R₄,
- G_1 is O or $N(R_{13})$,
- R₁ is hydrogen, methyl, ethyl, methoxy or ethoxy,

- R₂ and R₃ are independently hydrogen, C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈alkoxy-C₂-C₈alkylene or C₁-C₈alkoxy-C₂-C₈alkyleneoxy,
- R₄ is hydrogen, C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈alkoxy-C₂-C₈alkylene, C₁-C₈alkoxy-C₂-C₈alkyleneoxy, C₅-C₆cycloalkyl, C₅-C₆cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,
- R_5 , R_6 , R_9 , R_{10} and R_{12} are independently C_1 - C_8 alkyl or C_1 - C_8 alkoxy, or R_6 and R_9 together are a direct bond,
- R_7 and R_8 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,
- R₁₁ is hydrogen, C₁-C₈alkyl or C₁-C₈alkoxy,
- R₁₃ is methyl or ethyl, and
- R₁₄ is C₁-C₈alkyl, C₅-C₆cycloalkyl, phenyl or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

it being possible for two methoxies attached to the same carbon atom to combine and form 1,2-ethylenedioxy, or for methoxy to combine with ethoxy attached to the same carbon atom to form 1,2- or 1,3-propylenedioxy, or for methoxy or ethoxy to combine with ethoxy attached to α - or β -enchained carbon to form dimethylmethylene,

and where additionally

- a) R₁, R₂, R₃, R₇ or R₁₁ is hydrogen, and
- b) when E₁ is two separate radicals R₇ and R₈ and E₂ is methylene or ethylene at least one of the following further conditions applies:
 - R_1 , R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is methoxy or ethoxy;
 - R₂, R₃, R₄, R₇, R₈, R₉ or R₁₀ is secondary C₃-C₈alkyl or tertiary C₄-C₈alkyl or C₃-C₈alkoxy;
 - R_2 , R_3 , R_7 or R_8 is C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy;

or

- R₄ is C₅-C₆cycloalkyl, C₅-C₆cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered heterocyclic radical.
- 2. A compound according to claim 1, wherein B is selected from groups of the formulae

where R_{15} is $-CR_1R_7R_{11}$ and R_{16} is $-CR_2R_3-CR_4R_8R_{12}$ or $-CR_2R_3-G_1R_{14}$, and R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is secondary C_3-C_8 alkyl or tertiary C_4-C_8 alkyl, especially tert-butyl, tert-amyl or 2,4-dimethyl-2-pentyl.

- 3. A process for mass colouration of a polymer, which comprises adding at least one compound of the formula (I) according to claim 1 to the polymer before or during processing, the processing taking the form of extrusion, injection moulding or fibre spinning at 220 to 330°C.
- 4. An engineering plastic having a glass transition point (T_g) of 220 to 330°C, preferably polyolefin, polyester, polyamide or a polyimide, polysulfone, polyether sulfone, polyphenylene oxide, polyarylene, polyarylene sulfide, polyepoxide, polyphenylene oxide or ABS, pigmented according to claim 3.
- 5. An engineering plastic according to claim 4 in the form of a fibre.
- 6. A process for pigmenting a porous material, which comprises at least one compound of the formula (I) according to claim 1, in liquid form or dissolved in an inert liquid in a weight concentration of at least 25%, penetrating into the pores of the porous material and thereafter being thermally converted into a pigment of the formula A(H)_x (VI).
- 7. Material pigmented according to claim 6, selected from anodized aluminium and sintered boridic material.
- 8. High molecular weight organic material having a glass transition point (T_g) of 140°C to

- 220°C and containing in its bulk 0.1 to 10% by weight of a compound of the formula (I), based on the total weight.
- 9. A thermochromic material comprising a polymer coloured in the mass by a product obtainable by partial thermal decomposition of a compound of the formula (I) or by two compounds, selected from the group consisting of compounds of the formula (I) and pigments of the formula A(H)_x (VI).
- 10, A thermochromic material according to claim 9, which is comprised within a composite, preferably within a security item.
- 11. A compound according to claim 1, wherein E_1 is oxygen, methylene or two separate radicals R_7 and R_8 .
- 12. A compound according to claim 11, wherein E_1 is methylene or two separate radicals R_7 and R_8 .
- 13. A compound according to claim 1, wherein E_2 is ethylene or two separate radicals R_{11} and R_{12} .
- 14. A compound according to claim 1, wherein G₁ is O.
- 15. A compound according to claim 1, wherein R_1 is hydrogen, methyl, ethyl, methoxy or ethoxy.
- 16. A compound according to claim 1, wherein R₂, R₃ and R₄ are hydrogen or C₁-C₅alkyl.
- 17. A compound according to claim 1, wherein R_5 , R_6 , R_9 , R_{10} and R_{12} are methyl, secondary C_3 - C_8 alkyl or tertiary C_4 - C_8 alkyl.
- 18. A compound according to claim 1, wherein R_7 , R_8 and R_{11} are hydrogen or methyl, especially hydrogen.
- 19. A compound according to claim 18, wherein R₇, R₈ and R₁₁ are hydrogen.
- 20. A compound according to claim 1, wherein R₁₄ is C₁-C₈alkyl.

- 21. A compound according to claim 1, wherein said B groups exclusively of the carboxyl group contain at most 3 further oxygen atoms.
- 22. A compound according to claim 21, wherein said B groups contain no or 1 further oxygen atom.
- 23. A compound according to claim 21, wherein said B groups exclusively of the carboxyl group contain 2 or 3 further oxygen atoms and no carbon atom in this B group other than in the carboxyl group is bonded to more than one oxygen atom.
- 24. A compound according to claim 1, wherein said groups of the formulae (II) or (III) are asymmetrical.
- 25. A binary or ternary mixture including 60 to 99.9% by weight of a compound of the formula (I) and 0.1 to 40% by weight of one or two thermally more labile compounds of the same chromophore class with an A' that differs from A.
- 26. A mixture according to claim 27, which is a binary mixture of 99.5 to 95% by weight of a compound of the formula (I) and 0.5 to 5% by weight of a thermally more labile compound of the same chromophore class with an A' that differs from A.
- 27. A compound according to claim 25, wherein the thermally more labile compound of the same chromophore class with an A' that differs from A is a compound of the formula

$$A' \begin{bmatrix} O \\ - O - R_{17} \end{bmatrix}_{x'} (VII),$$

where x' is an integer from 1 to 8 and A' is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindolinone, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series, this radical being linked with x'-COOR₁₇ groups via one or more heteroatoms, these heteroatoms being selected from the group consisting of N, O and S and forming part of the radical A' and R₁₇ being any desired tertiary group.

28. A compound according to claim 27, wherein said R_{17} radicals are selected from the group consisting of tert-butyl, tert-amyl, 2-methyl-3-buten-2-yl, 2-methyl-3-butyn-2-yl, 4-oxa-

2-pentyl and 4,7-dioxa-1-methyl-2-octyl.

- 29. A compound according to claim 1, wherein said B groups are -COOR₁₈ wherein R₁₈ stands for (-)-2-isopropyl-5-methyl-cyclohexyl, (-)-bornyl, 1-(2'-furyl)-2-propyl, 1-methoxy-2-propyl, 1-phenyl-2-propyl, 2-(2-methoxy-ethoxy)-cyclohexyl, 2,4-di-tert-butyl-cyclohexyl, 2-ethoxy-cyclohexyl, 2-heptyl, 2-nonyl, 2-octyl, 2-pentyl, 2-tert-butylcyclohexyl, 4-heptyl, 4-tert-butylcyclohexyl, thujyl, caryl, pinyl, bornyl, norcaryl, norpinyl or norbornyl.
- 30. A compound according to claim 29, wherein R₁₈ stands for (-)-2-isopropyl-5-methyl-cyclohexyl, (-)-bornyl, 2-(2-methoxy-ethoxy)-cyclohexyl, 2,4-di-tert-butyl-cyclohexyl, 2-ethoxy-cyclohexyl, 2-tert-butylcyclohexyl or 4-heptyl.
- 31. A compound according to claim 29, wherein R_{18} stands for (-)-2-isopropyl-5-methyl-cyclohexyl or 4-heptyl.