Amendments to the claims

1. (Currently amended) A compound of formula (I):

wherein

 R^1 is selected from C_{1-6} alkyl substituted by one to three groups independently selected from oxo, cyano and $-S(O)_pR^4$, and a C_{3-7} cycloalkyl optionally-substituted by up-one to three groups independently selected from oxo, cyano, $-S(O)_pR^4$, OH, halogen, C_{1-6} alkoxy, $-NR^5R^6$, $-CONR^5R^6$, $-NCOR^5$, $-COOR^5$, $-SO_2NR^5R^6$, $-NHSO_2R^5$ and $-NHCONHR^5$,

R² is selected from hydrogen, C₁₋₆alkyl and -(CH₂)_q-C₃₋₇cycloalkyl, or (CH₂)_mR¹ and R², together with the nitrogen atom to which they are bound, form a four- to six-membered heterocyclic ring optionally containing one or two additional heteroatoms independently selected from oxygen, sulphur and N-R⁷, wherein the ring is optionally substituted by one or two groups independently selected from oxo, C₁₋₆alkyl, halogen and trifluoromethyl;

 R^3 is the group -CO-NH-(CH₂)_r- R^8 or -NH-CO- R^9 ;

 R^4 is selected from hydrogen, C_{1-6} alkyl, heterocyclyl optionally substituted by C_{1-4} alkyl, and phenyl wherein the phenyl is optionally substituted by up to two groups independently selected from C_{1-6} alkoxy, C_{1-6} alkyl and halogen;

 R^5 is selected from hydrogen, $C_{1\text{--}6}$ alkyl and phenyl wherein the phenyl group is optionally substituted by up to two substituents selected from $C_{1\text{--}6}$ alkyl and halogen,

R⁶ is selected from hydrogen and C₁₋₆alkyl, or

 R^5 and R^6 , together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic or heteroaryl ring optionally containing up to one additional heteroatom selected from oxygen, sulfur and nitrogen, wherein the ring is optionally substituted by up to two C_{1-6} alkyl groups;

R⁷ is selected from hydrogen and methyl;

when r is 0 to 2, R^8 is selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, CONHR⁵, phenyl optionally substituted by R^{10} and/or R^{11} , heteroaryl optionally substituted by R^{10} and/or R^{11} and heterocyclyl optionally substituted by R^{10} and/or R^{11} , and

when r is 2, R^8 is additionally selected from C_{1-6} alkoxy, NHCOR⁵, NHCONHR⁵, NR⁵R⁶ and OH;

 $\rm R^9$ is selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, -(CH₂)_s-C₃₋₇ cycloalkyl, trifluoromethyl, -(CH₂)_tphenyl optionally substituted by R¹² and/or R¹³, -(CH₂)_t heteroaryl optionally substituted by R¹² and/or R¹³, -(CH₂)_theterocyclyl optionally substituted by R¹² and/or R¹³ and -(CH₂)_tfused bicyclyl optionally substituted by R¹² and/or R¹³;

 R^{10} is selected from $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, -CONR $^6R^{14}$, -NHCOR 14 , -SO2NHR 14 , -NHSO2R 14 , halogen, trifluoromethyl, -X-(CH2)j-phenyl optionally substituted by one or more halogen atoms or $C_{1\text{-}6}$ alkyl groups, -X-(CH2)j-heterocyclyl or -X-(CH2)j-heterocyclyl or heterocyclyl or beterocyclyl or beter

R¹¹ is selected from C₁₋₆alkyl and halogen, or

when R^{10} and R^{11} are ortho substituents, then together with the carbon atoms to which they are bound, R^{10} and R^{11} may form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring that is formed by R^{10} and R^{11} optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

 R^{12} is selected from $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, - $(CH_2)_8$ - $C_{3\text{-}7}$ cycloalkyl, - $CONR^{15}R^{16}$, - $NHCOR^{16}$, - SO_2NHR^{15} , - $NHSO_2R^{16}$, halogen, - $(CH_2)_kNR^{17}R^{18}$, oxy, trifluoromethyl, phenyl optionally substituted by one or more R^{13} groups and heteroaryl wherein the heteroaryl is optionally substituted by one or more R^{13} groups,

 R^{13} is selected from $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halogen, trifluoromethyl and -NR $^{17}R^{18},$ or

 R^{12} and R^{13} , together with the carbon atoms to which they are bound, form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring that is formed by R^{12} and R^{13} optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

R¹⁴ is selected from hydrogen and C₁₋₆alkyl;

 R^{15} is selected from hydrogen, $C_{1\text{-}6}$ alkyl and phenyl wherein the phenyl group may be optionally substituted by one or more R^{13} groups,

R¹⁶ is selected from hydrogen and C₁₋₆alkyl, or

 R^{15} and R^{16} , together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N-R⁷, wherein the ring is optionally substituted by up to two C_{1-6} alkyl groups;

 $\rm R^{17}$ is selected from hydrogen, C $_{1\text{-}6}$ alkyl and -(CH $_2)_8$ -C $_3$ -7 cycloalkyl optionally substituted by C $_{1\text{-}6}$ alkyl,

 R^{18} is selected from hydrogen and C_{1-6} alkyl, or

 R^{17} and R^{18} , together with the nitrogen atom to which they are bound, form a three- to seven-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N-R⁷, wherein the ring may contain up to one double bond and the ring is optionally substituted by one or more R^{19} groups;

 R^{19} is selected from C_{1-6} alkyl, oxy, -CH2OC1-6alkyl, trichloromethyl and -N(C1-6alkyl)2;

X is selected from -O- and a bond;

U is selected from methyl and halogen;

W is selected from methyl and chlorine;

V and Y are each selected independently from hydrogen, methyl and halogen;

m is selected from 0, 1, 2, 3 and 4, and when m is 1 to 4 wherein each at least one carbon atom of the resulting carbon chain is optionally substituted with one or two groups selected independently from C_{1-6} alkyl, and wherein the C_{1-6} alkyl group is optionally substituted by up to three OH groups;

n, p, r and j are independently selected from 0, 1 and 2; q and k are independently selected from 0, 1, 2 and 3; and s and t are independently selected from 0 and 1;

with the proviso that when R^1 is unsubstituted C_3 -7eyeloalkyl, m is not selected from 0, 1, 2, 3 and 4 and wherein each earbon atom of the resulting earbon chain may be optionally substituted with one or two groups selected independently from C_1 6alkyl; or a pharmaceutically acceptable derivative thereof.

- 2. (original) A compound according to claim 1 wherein R^1 is selected from C_{2-6} alkyl substituted by one or two groups independently selected from oxo, cyano and $-S(O)_t R^4$, and C_{3-6} cycloalkyl optionally substituted by one or two groups independently selected from OH and cyano.
- 3. (previously presented) A compound according to claim 1 wherein R² is hydrogen.
- 4. (previously presented) A compound according to claim 1 wherein R⁸ is C₃₋₆cycloalkyl.
- 5. (previously presented) A compound according to claim 1 wherein m is selected from 0 and 1 and wherein the carbon chain is optionally substituted by one or two methyl groups which are optionally substituted by OH.
- 6. (original) A compound according to claim 1 as defined in any one of Examples 1 to 11, or a pharmaceutically acceptable derivative thereof.

7. (Currently amended) A process for preparing a compound according to claim 1 which comprises:

(a) reacting a compound of formula (XXII)

$$(U)_n$$
 $(U)_n$
 $(U)_n$
 $(U)_n$
 $(XXII)$

wherein R^1 , R^2 , U, W, V, Y, m and n are as defined in claim 1, with a compound of formula (XXIII)

$$R^8$$
-(CH₂)_r-NH₂ (XXIII)

wherein R⁸ and r are as defined in claim 1, under amide forming conditions optionally converting the acid compound (XXII) to an activated form of the acid before reaction with the amine compound (XXIII);

(b) reacting a compound of formula (XXIV)

$$(U)_n$$
 $(U)_n$
 R^3
 $(XXIV)$

wherein R³, U, W, V, Y and n are as defined in claim 1, with a compound of formula (XXV)

$R^{1}(CH_{2})_{m}NR^{2}H$

(XXV)

wherein R^1 , R^2 , m and n are as defined in claim 1, under amide forming conditions;

(c) reacting a compound of formula (XXVI)

$$(U)_n$$
 $N=N$
 R^3
 $(XXVI)$

wherein R³, U, W, V, Y and n are as defined in claim 1, with a compound of formula (XXV) as defined above;

(d) reacting a compound of formula (XXVII)

wherein W, V, Y and R^3 are as defined in claim 1, with a compound of formula (XXVIII)

$$(U)_{n} \xrightarrow{R^{2} \atop N - (CH_{2})_{m} = R^{1}} (XXVIII)$$

wherein R^1 , R^2 , U, m and n are as defined above and hall is halogen, in the presence of a catalyst; or

(e) reacting a compound of formula (XXIX)

$$(U)_n$$
 $(U)_n$
 N
 $(CH_2)_m$
 $-R^1$
 NH_2
 $(XXIX)$

wherein R^1 , R^2 , U, W, V, Y, m and n are as defined in claim 1, with a compound of formula (XXX)

$$R^9CO_2H$$
 (XXX)

wherein R⁹ is as defined in claim 1,

under amide forming conditions optionally converting the acid compound (XXX) to an activated form of the acid before reaction with the amine compound (XXIX)) (XXIX).

8. (previously presented) A pharmaceutical composition comprising at least one compound according to any claim 1 or a pharmaceutically acceptable derivative thereof, in association with one or more pharmaceutically acceptable excipients, diluents and/or carriers.

(currently amended) A method for treating a condition or disease state mediated by p38 kinase activity or mediated by cytokines produced by the activity of p38 kinase comprising administering to a patient in need thereof a compound according to claim 1 or a pharmaceutically acceptable salt or solvate thereof, and wherein the disease or condition mediated by p38 kinase activity or by cytokines produced by the activity of p38 kinase are selected from rheumatoid arthritis, osteoarthritis, asthma, psoriasis, eczema, allergic rhinitis, allergic conjunctivitis, adult respiratory distress syndrome, chronic pulmonary inflammation, chronic obstructive pulmonary disease, chronic heart failure, silicosis, endotoxemia, toxic shock syndrome, inflammatory bowel disease, tuberculosis, atheroselerosis, neurodegenerative disease, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, epilepsy, multiple sclerosis, aneurism, stroke, irritable bowel syndrome, muscle degeneration, bone resorption diseases, osteoporosis, diabetes, reperfusion injury, graft vs. host reaction, allograft rejections, sepsis, systemic cachexia, cachexia secondary to infection or malignancy, cachexia secondary to acquired immune deficiency syndrome (AIDS), malaria, leprosy, infectious arthritis, leishmaniasis, Lyme disease, glomerulonephritis, gout, psoriatic arthritis, Reiter's syndrome, traumatic arthritis, rubella arthritis, Crohn's disease, ulcerative colitis, acute synovitis, gouty arthritis, spondylitis, non-articular inflammatory conditions, pain, osteoporosis, restenosis, thrombosis, and angiogenesis.

- 10. (cancelled)
- 11. (cancelled)
- 12. (new) The method according to claim 9 wherein the p38 mediated disease state is rheumatoid arthritis, psoriasis, asthma, chronic pulmonary inflammation, chronic obstructive pulmonary disease (COPD), Crohn's disease, neurodegenerative disease, inflammatory bowel disease, toxic shock syndrome, and osteoporosis.

13. (new) The method according to claim 12 wherein the p38 mediated disease state is rheumatoid arthritis, and psoriasis.

- A compound according to claim 1 wherein R³ is the group -CO-NH-(CH₂)_r-R⁸.
- \(^{\mathcal{O}}\) 15. (new) A compound according to claim 14 wherein R⁸ is selected from C₁₋₄alkyl or C₃₋₆cycloalkyl, CONHR⁵, phenyl optionally substituted by R¹⁰ and/or R¹¹, thiazolyl, pyrazolyl, thiadiazolyl, or pyridyl all optionally substituted by R¹⁰ and/or R¹¹.
- 16. (new) A compound of formula (I):

wherein

R¹ is a C₃₋₇cycloalkyl;

 R^2 is selected from hydrogen, $C_{1\text{-}6}$ alkyl and - $(CH_2)_q$ - $C_{3\text{-}7}$ cycloalkyl, or $(CH_2)_m R^1$ and R^2 , together with the nitrogen atom to which they are bound, form a four- to six-membered heterocyclic ring optionally containing one or two additional heteroatoms independently selected from oxygen, sulphur and N- R^7 , wherein the ring is optionally substituted by one or two groups independently selected from oxo, $C_{1\text{-}6}$ alkyl, halogen and trifluoromethyl;

 R^3 is the group -CO-NH-(CH₂)_T- R^8 or -NH-CO- R^9 ;

 R^4 is selected from hydrogen, C_{1-6} alkyl, heterocyclyl optionally substituted by C_{1-4} alkyl, and phenyl wherein the phenyl is optionally substituted by up to two groups independently selected from C_{1-6} alkoxy, C_{1-6} alkyl and halogen;

 $m R^5$ is selected from hydrogen, $\rm C_{1-6}$ alkyl and phenyl wherein the phenyl group is optionally substituted by up to two substituents selected from $\rm C_{1-6}$ alkyl and halogen,

R⁶ is selected from hydrogen and C₁₋₆alkyl, or

 R^5 and R^6 , together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic or heteroaryl ring optionally containing up to one additional heteroatom selected from oxygen, sulfur and nitrogen, wherein the ring is optionally substituted by up to two C_{1-6} alkyl groups;

R⁷ is selected from hydrogen and methyl;

when r is 0 to 2, R^8 is selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, CONHR⁵, phenyl optionally substituted by R^{10} and/or R^{11} , heteroaryl optionally substituted by R^{10} and/or R^{11} and heterocyclyl optionally substituted by R^{10} and/or R^{11} , and

when r is 2, R^8 is additionally selected from $C_{1\text{-}6}$ alkoxy, NHCOR⁵, NHCONHR⁵, NR⁵R⁶ and OH;

 R^9 is selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, - $(CH_2)_s$ - $C_{3\text{-}7}$ cycloalkyl, trifluoromethyl, - $(CH_2)_t$ phenyl optionally substituted by R^{12} and/or R^{13} , - $(CH_2)_t$ heteroaryl optionally substituted by R^{12} and/or R^{13} , - $(CH_2)_t$ heterocyclyl optionally substituted by R^{12} and/or R^{13} and - $(CH_2)_t$ fused bicyclyl optionally substituted by R^{12} and/or R^{13} ;

 R^{10} is selected from C_{1-6} alkyl, C_{1-6} alkoxy, -CONR⁶R¹⁴, -NHCOR¹⁴, -SO₂NHR¹⁴, -NHSO₂R¹⁴, halogen, trifluoromethyl, -X-(CH₂)_j-phenyl optionally substituted by one or more halogen atoms or C_{1-6} alkyl groups, -X-(CH₂)_j-heteroaryl wherein the heterocyclyl or heteroaryl group is optionally substituted by one or more substituents selected from C_{1-6} alkyl,

 R^{11} is selected from C_{1-6} alkyl and halogen, or

when R^{10} and R^{11} are ortho substituents, then together with the carbon atoms to which they are bound, R^{10} and R^{11} may form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring

that is formed by R^{10} and R^{11} optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

 R^{12} is selected from $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, - $(CH_2)_8$ - $C_{3\text{-}7}$ cycloalkyl, - $CONR^{15}R^{16}$, - $NHCOR^{16}$, - SO_2NHR^{15} , - $NHSO_2R^{16}$, halogen, - $(CH_2)_kNR^{17}R^{18}$, oxy, trifluoromethyl, phenyl optionally substituted by one or more R^{13} groups and heteroaryl wherein the heteroaryl is optionally substituted by one or more R^{13} groups,

 R^{13} is selected from $C_{1\text{-6}}$ alkyl, $C_{1\text{-6}}$ alkoxy, halogen, trifluoromethyl and -NR $^{17}R^{18},$ or

 R^{12} and R^{13} , together with the carbon atoms to which they are bound, form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring that is formed by R^{12} and R^{13} optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

R¹⁴ is selected from hydrogen and C₁₋₆alkyl;

 R^{15} is selected from hydrogen, $C_{1\text{-}6}$ alkyl and phenyl wherein the phenyl group may be optionally substituted by one or more R^{13} groups,

R¹⁶ is selected from hydrogen and C₁₋₆alkyl, or

R¹⁵ and R¹⁶, together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N-R⁷, wherein the ring is optionally substituted by up to two C₁₋₆alkyl groups;

 R^{17} is selected from hydrogen, $C_{1\text{-}6}$ alkyl and -(CH₂)_s-C₃₋₇cycloalkyl optionally substituted by $C_{1\text{-}6}$ alkyl,

 R^{18} is selected from hydrogen and C_{1-6} alkyl, or

 R^{17} and R^{18} , together with the nitrogen atom to which they are bound, form a three- to seven-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N-R⁷, wherein the ring may contain up to one double bond and the ring is optionally substituted by one or more R^{19} groups;

 R^{19} is selected from C_{1-6} alkyl, oxy, -CH₂OC₁₋₆alkyl, trichloromethyl and -N(C_{1-6} alkyl)₂;

X is selected from -O- and a bond;

U is selected from methyl and halogen;

W is selected from methyl and chlorine;

V and Y are each selected independently from hydrogen, methyl and halogen;

m is selected from 1, 2, 3 and 4, and wherein at least one carbon atom of the resulting carbon chain is substituted with one or two groups selected independently from a C_{1-6} alkyl substituted with one to three OH groups;

n, p, r and j are independently selected from 0, 1 and 2; q and k are independently selected from 0, 1, 2 and 3; and s and t are independently selected from 0 and 1; or a pharmaceutically acceptable derivative thereof.