TAMK
Kone- ja tuotantotekniikka
I111-4
K-12204 Värähtelymekaniikka
Harjoitustehtävä n:o 2

Palautus 07.10.2008

a) Sylinterin muotoinen kiekko on kiinnitetty molemmista päistään jäykästi tuettuun akseliin kuvan mukaisesti. Kiekon massa on $m=60\,\text{kg}$ ja säde $r=0,22\,\text{m}$. Akselin mitat ovat $d=0,052\,\text{m}$, $a=0,5\,\text{m}$ ja $b=0,3\,\text{m}$ sekä sen ma-

teriaalin $\rho=7850\,\text{kg/m}^3$, $G=80\,\text{GPa}$ ja $E=210\,\text{GPa}$. Määritä systeemin aksiaalisen (xsuunta), taivutus- (y-suunta) ja vääntövärähtelyn (θ -suunta) ominaiskulmataajuudet ja ominaistaajuudet. **Esitä perustellut suuruusluokka-arviot akselin massan vaikutuksesta ominaistaajuuksiin.** 1,5 p.

b) Kuvan taontaa kuvaavassa laskentamallissa on iskuvasaran massa $m_v = 160\,\text{kg}$ ja alasimen massa $m_a = 800\,\text{kg}$. Alasin on kiinnitetty perustukseen joustavalla tuennalla, jonka $k = 7\,\text{MN/m}$ ja $c = 12\,\text{kNs/m}$.

Iskuvasara pudotetaan levosta korkeudelta h = 2m levossa olevan alasimen päälle ja törmäyksessä palautumiskerroin on $\epsilon=0,4$. Määritä törmäyksestä aiheutuva alasimen alkunopeus. Ohje: Käytä törmäykseen voiman impulssilausetta ja palautumiskertoimen määritelmää [$v_{a2}-v_{v2}=\epsilon\cdot(v_{v1}-v_{a1})$].

Laske alasimen ja sen tuennan muodostaman systeemin ominaiskulmataajuus, ominaistaajuus, ominaisvärähdysaika, vaimennussuhde, vaimennettu ominaiskulmataajuus ja logaritminen dekrementti.

Esitä alasimen törmäyksen jälkeisen siirtymän x lauseke, piirrä sen kuvaaja ja etsi siirtymän suurin arvo. Piirrä myös alasimen törmäyksen jälkeisten nopeuden ja kiihtyvyyden kuvaajat ja selvitä nopeuden ja kiihtyvyyden suurimmat itseisarvot. **2,5 p.**