四川大学期末考试试题 (闭卷)

(2016~2017 学年第1学期)

A卷

课程	星号: _	311076040 课程名	称: 数据约	构与算法		任课教	效师:		
适用	用专业年	三级: 软件工程 2015	级	学号	:	姓名:			
				考生承诺					
我已	已认真阅读	卖并知晓《四川大学考场规!	则》和《四川大学	学本科学生考试	违纪作弊处分	规定(修订)》,	『重承诺:		
1、	己按要求		品或与考试有关的	勺物品放置在指	定地点;				
		几进入考场;							
3,	考试期间	ョ遵守以上两项规定,若有i	违规行为,同意 拉	安照有关条款接	受处理。				
	考生签名:								
题	号	(30%)	二(:	16%)	三(3	34%)	四(20%)		
得	分								
卷	面总分		教师签名		阅卷时间				
注意	意事项:	1. 请务必将本人所在学	院、姓名、学号	号、任课教师	姓名等信息准	确填写在试题纸	玩和添卷纸上;		
		2. 请将答案全部填写在	<u>答题纸</u> 上;本i	式题纸上的答	案一律不计分) ;			
		3. 考试结束,请将试题	纸、添卷纸和	草稿纸一并交	给监考老师。				
* <	*	****	****	****	***	***	> **********		
ì	 平阅教师	一、单项	选择题(本	大题共 15 /	小题,每小	题2分,共3	30分)		
.					有一个是符合	ì题目要求的,i	请将其代码写在答题纸		
i		上。错选、	多选或未选均	无分。					
1.	The ti	me required to access	and insert an	element in a	ın array-base	ed list respecti	vely is ()		
	(A)	O(n) $O(n)$ (B)	O(n) O(1)	(C) (O(1) $O(n)$	(D) O(1) O(1)		
2.	Given	the input order of a st	ack is 1,2,3,4	,5, () is	a possible v	alid output or	der.		
	(A) 5 1 2 3 4 (B) 4 5 1 3 2 (C) 4 3 1 2 5 (D) 3 2 1 5 4								
3.	An alg	gorithm must be or do	all of the foll	owings EXC	CEPT ()			
	(A) c	orrect	(B) compose	d of concret	te steps				
	(C) a	mbiguous	(D) compose	ed of a finite	number of	steps			
4.	Assun	ne the preorder of a bi	nary tree T is	EFHIGJK,	the inorder i	s HFIEJKG, t	then the root of the		
	right s	subtree in T will be ().						
	(A) E	E (B) F ((C)G	D) H					
5.	In the	following sorting algo	orithms, which	h has the hig	ghest space o	complexity? ()		
	(A) I	nsertion Sort (F	B) Bubble Son	t (C)	Heapsort	(D) Mer	gesort		
6.	` ′	nost effective way to re	,	` ′	•				
		mprove the basic oper		-	=		of disk accesses.		
		Eliminate the recursive			` '	main memory			
	` /				, ,	•			

注: 试题字迹务必清晰,书写工整。

本题共04页,本页为第1页

教务处试题编号: 311-09

7.	The average time complexity for search operation in a binary search tree with n nodes is ().								
	(A) $\Theta(1)$ (B) $\Theta(\log_2 n)$ (C) $\Theta(n)$ (D) $\Theta(n^2)$								
8.	Given an undirected graph $G=(V,E)$, $V=\{a,b,c,d,e,f\}$ and $E=\{(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)\}$,								
	we traverse the nodes in the graph using a Depth-First Search(DFS) algorithm, then the possible								
	traverse sequence is().								
	$(A) a,b,e,c,d,f \qquad \qquad (B) a,c,f,e,b,d \qquad \qquad (C) a,e,b,c,f,d \qquad \qquad (D) a,e,d,f,c,b$								
9.	The correct traversal to use on a BST to visit the nodes in sorted order is () traversal.								
	(A) preorder (B) inorder (C) postorder (D) level order								
10.	We use the parent pointer representation for general trees to solve which problem? ()								
	(A) Shortest paths (B) General tree traversal								
	(C) Equivalence classes (D) Exact-match query								
11.	The primary difference between a B-tree and a B+-tree is()								
	(A) The B+-tree store records only at the leaf nodes.								
	(B) The B+-tree has a higher branching factor.								
	(C) The B+-tree is hight balanced.								
	(D) The B+-tree is smaller.								
12.	Dijkstra's algorithm requires that vertices be visited in()								
	(A) Depth-first order. (B) Breadth-first order.								
	(C) Order of distance from the source vertex. (D) No particular order.								
13.	What is the best definition of a collision in a hash table? ()								
	(A) Two entries are identical except for their keys.								
	(B) Two entries with different data have the exact same key.								
	(C) Two entries with different keys have the same exact hash value.								
	(D) Two entries with the exact same key have different hash values.								
14.	An arithmetic expression a*b-(c+d)/e can be changed to the postfix expression ()								
	(A) $abc*d+e-$ (B) $ab*cd+e-$ (C) $ab*cd+e-$ (D) $ab*cde+/-$								
15.	If a Huffman tree has 199 nodes, the Huffman tree has () leaf nodes.								
	(A) 99 (B) 100 (C) 101 (D) 102								

评阅教师	得分

二、名词解释题(本大题共4小题,每小题4分,共16分)。

提示: 解释每小题所给名词的含义, 若解释正确则给分, 若解释错误则无分, 若解释不准 确或不全面,则酌情扣分。

1. Huffman Tree

- 2. Equivalence Class
- 3. Binary Search Tree
- 4. Recursion

注: 试题字迹务必清晰,书写工整。 本题共04页,本页为第2页 教务处试题编号: 311-09

评阅教师	得分	三、应用题(本大题共 4 小题,1-2 每小题 8 分,3-4 每小题 9 分,共	34
		分)	
		是示: 有求解过程的要尽量给出解题步骤,只有最终答案会酌情扣分。	

- 1. A 12 elements CBT is represented according Breadth-First traversal by the array [5, 10, 12, 8, 15, 6, 17, 2, 4, 7, 18, 3].
 - 1) Draw the complete binary tree. (2 points)
 - 2) Is this complete binary tree a max heap? If not, construct the max heap. (6 points)
- Build the Huffman coding tree and determine the codes for the following set of letters and weights.
 (6 points)

Letter	A	В	C	D	E	F	G	Н	I
Frequency	5	5	9	12	19	20	36	51	60

What is the expected length in bits of a message containing n characters for this frequency distribution? (2 points)

- 3. Determine Θ for the following code fragments, and write out the analysis steps briefly.
 - (1) s=0; for (i=0; i <= n; i++) for (j=0; j <= i; j++) for (k=0; k <= j; k++)

s++;

Determine Θ for this code fragments in the average case. (4 points)

```
 \begin{array}{lll} \text{(2)} & \text{void } f1(\text{int } n) \{ \\ & \text{for}(\text{int } i=0; i < n; i++) & \text{f2(i)}; \\ & \text{for}(\text{int } i=0; i < n; i++) & \text{for}(\text{int } i=0; i < n; i++) & \text{for}(\text{int } i=0; i < m; i++) & \text{sum } += i; \\ & \text{printf(``\%d \%d \n'', i, k);} & \text{printf(``\%d \n'', sum);} \\ \end{array}
```

Assume that **printf** takes constant time. Determine Θ for function f1(n) in the average case. (5 points)

4. Insert 42, 51 and then delete 20 from the following B+ tree of order four. The leaf node can store at most 5 records.

注: 试题字迹务必清晰,书写工整。

本题共04页,本页为第3页

教务处试题编号: 311-09

- Assume there are two ascending ordered lists L1 and L2, please merge L1 and L2 into a new list L3. There will be no duplicate items in L3. Then please reverse the L3 into a descending ordered list.(8 points)
- 2. Please give the complete declaration of Queue in circle model, then write the **insert** algorithm and **delete** algorithm. (12 points)

注: 试题字迹务必清晰, 书写工整。 本题共 04 页, 本页为第 4 页