Educational Investment in Spatial Equilibrium: Evidence from Indonesia

Allan Hsiao Princeton University

January 7, 2023

Motivation

- Governments invest \$3 trillion in education annually (World Bank 2022)
 - In Indonesia, 61,807 new primary schools (INPRES 1973-1978)
- Schools serve students locally
 - But graduates seek employment nationally
- How does migration shape educational investment?

This paper

- Aggregate and distributional effects of the INPRES program
 - Difference-in-difference with long-run outcomes (Duflo 2001)
 - Spatial equilibrium model to decompose effects and redesign program
- Complementarity between education and migration
 - Rural schooling depends on urban wages (non-local incentives)
 - Rural schools increase urban output (non-local effects)
- **Results:** aggregate output \uparrow (8%), inequality \updownarrow (people \downarrow 5%, places \uparrow 12%)
 - Tension between returns to education and regional convergence

This paper

- Aggregate and distributional effects of the INPRES program
 - Difference-in-difference with long-run outcomes (Duflo 2001)
 - Spatial equilibrium model to decompose effects and redesign program
- Complementarity between education and migration
 - Rural schooling depends on urban wages (non-local incentives)
 - 2 Rural schools increase urban output (non-local effects)
- Results: aggregate output \uparrow (8%), inequality \updownarrow (people \downarrow 5%, places \uparrow 12%)
 - Tension between returns to education and regional convergence

This paper

- Aggregate and distributional effects of the INPRES program
 - Difference-in-difference with long-run outcomes (Duflo 2001)
 - Spatial equilibrium model to decompose effects and redesign program
- Complementarity between education and migration
 - 1 Rural schooling depends on urban wages (non-local incentives)
 - Q Rural schools increase urban output (non-local effects)
- **Results:** aggregate output \uparrow (8%), inequality \updownarrow (people \downarrow 5%, places \uparrow 12%)
 - Tension between returns to education and regional convergence

Literature

- Education and migration at scale in general equilibrium
 - Education: Khanna 2021, Dinerstein et al. 2022 (no migration)
 - Migration: Dahl 2002, Bryan et al. 2014, Bryan & Morten 2019 (no education)
 - Both: Eckert & Kleineberg 2021, Agostinelli et al. 2022 (no school construction)
- INPRES program evaluation with aggregate effects and counterfactuals
 - Duflo 2001/2004, Martinez-Bravo 2017, Ashraf et al. 2020, Bazzi et al. 2021
- Place-based policy with portable human capital benefits
 - Glaeser & Gottlieb 2008, Kline & Moretti 2014, Busso et al. 2013, Austin et al. 2018

Data and Stylized Facts

INPRES built 62,000 new primary schools

Data

- Treatment at district level
 - INPRES school construction (1973-1978)
 - Pre-program primary schools, child populations, enrollment rates
- Long-run outcomes at individual level
 - SUSENAS household surveys (2011-2014)
 - Districts of residence and birth, years of schooling, monthly wages

Difference-in-difference variation (Duflo 2001)

$$Y_{ijk} = \delta_j + \delta_k + \beta S_j T_k + C_j T_k \phi + \varepsilon_{ijk}$$

- **1) Young vs. old** students by age cohort k

Long-run education and wage effects

Outcomes	Estimate	SE	Obs
Years of schooling	0.103**	(0.0424)	233,517
 For wage earners 	0.121**	(0.0495)	89,404
Log monthly wages	0.020**	(0.0092)	89,404

Driven by labor market access

$$\mathsf{MA}_d = \sum_{d'} \mathsf{w}_{d'} \mathsf{popden}_{d'} \quad \mathsf{for} \quad \mathsf{w}_{d'} \propto (1 + \mathsf{dist}_{dd'})^{-2}$$

- Captures access to high urban wages
 - ullet Population density in 1971 + Euclidean distances

Driven by labor market access

Migration rates are high

People benefit, but not places

	People		Places	
Outcomes	Estimate	SE	Estimate	SE
Years of schooling	0.103**	(0.0424)	0.052	(0.0452)
 For wage earners 	0.121**	(0.0495)	0.026	(0.0506)
Log monthly wages	0.020**	(0.0092)	0.011	(0.0076)

Spatial equilibrium model

- Government constructs schools
 - Build human capital that is portable (aggregate output)
- Individuals invest in education
 - ullet In a district, more schools o better access o lower costs of education
- Individuals migrate for work
 - Mobility gives rural students access to high urban wages (person-based inequality)
 - But rural students leave after graduation (place-based inequality)

Spatial equilibrium model

- Government constructs schools
 - Build human capital that is portable (aggregate output)
- 2 Individuals invest in education
 - In a district, more schools \rightarrow better access \rightarrow lower costs of education
- Individuals migrate for work
 - Mobility gives rural students access to high urban wages (person-based inequality)
 - But rural students leave after graduation (place-based inequality)

Spatial equilibrium model

- Government constructs schools
 - Build human capital that is portable (aggregate output)
- 2 Individuals invest in education
 - In a district, more schools \rightarrow better access \rightarrow lower costs of education
- Individuals migrate for work
 - Mobility gives rural students access to high urban wages (person-based inequality)
 - But rural students leave after graduation (place-based inequality)

Education and migration frictions

- Individual i, origin j(i), age cohort k(i), destinations ℓ
- Choose education for future labor

$$U_i(e) = \mathbb{E}[\max_{\ell} U_{i\ell}(e, \epsilon_{i\ell})] - \frac{\tau_{jk}^e}{e}$$

2 Choose labor migration given education and skill draws (Fréchet)

$$U_{i\ell}(e,\epsilon_{i\ell}) = \left(\frac{a_{\ell}w_{\ell}s_{jk\ell}}{\tau_{jk\ell}^m}\right)e^{\eta}\epsilon_{i\ell}$$

Migration, education, and wages

- Closed form for $m_{jk\ell}$, e_{jk} , and $w_{jk\ell}$ (data)
- Labor market access $\uparrow \Rightarrow$ migration \uparrow , education \uparrow , wages \uparrow

$$MA_{jk} \equiv \sum_{\ell} \left(rac{a_{\ell} w_{\ell} s_{jk\ell}}{ au_{jk\ell}^m}
ight)^{ heta}$$

Equilibrium and output

$$H_\ell^{\mathsf{supply}}(w_\ell) = H_\ell^{\mathsf{demand}}(w_\ell) \quad orall \ \ell$$

- ullet Supply: individuals choose e_{jk} and $m_{jk\ell}$ in response to w_ℓ
- Demand: firms set w_ℓ to marginal product
- Production uses human capital $(0 < \kappa < 1)$

$$Y_{\ell} = A_{\ell} H_{\ell}^{\kappa}$$
, $w_{\ell} = \kappa A_{\ell} H_{\ell}^{\kappa - 1}$, $Y = \frac{1}{\kappa} \sum_{j,k,\ell} N_{jk} m_{jk\ell} w_{jk\ell}$ (Y^{U}, Y^{R})

1. Education and migration costs (INPRES as DD)

$$\frac{w_{jk\ell}}{e_{jk}} = \frac{\tau_{jk}^e \tau_{jk\ell}^m}{\eta a_{\ell}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{w}_{jk\ell} - \tilde{e}_{jk} = -\tilde{\eta} - \sigma \tilde{S}_{jk} + \delta \tilde{D}_{j\ell} - \tilde{a}_{\ell} + \tilde{\tau}_j + \tilde{\tau}_k + \tilde{\epsilon}_{jk}^{\tau}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{\sigma} = 0.110^{**} (0.047) , \quad \hat{\delta} = 0.042^{***} (0.004)$$

1. Education and migration costs (INPRES as DD)

$$\frac{w_{jk\ell}}{e_{jk}} = \frac{\tau_{jk}^e \tau_{jk\ell}^m}{\eta a_\ell}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{w}_{jk\ell} - \tilde{e}_{jk} = -\tilde{\eta} - \sigma \tilde{S}_{jk} + \delta \tilde{D}_{j\ell} - \tilde{a}_\ell + \tilde{\tau}_j + \tilde{\tau}_k + \tilde{\epsilon}_{jk\ell}^{\tau}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{\sigma} = 0.110^{**} (0.047) , \quad \hat{\delta} = 0.042^{***} (0.004)$$

1. Education and migration costs (INPRES as DD)

2. Human capital and skill (INPRES as IV)

$$w_{jk\ell} = w_{\ell} s_{jk\ell} e_{jk}^{\eta} m_{jk\ell}^{-\frac{1}{\theta}} \gamma$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{v}_{jk\ell} = \tilde{\gamma} + \eta \tilde{e}_{jk} - \frac{1}{\theta} \tilde{m}_{jk\ell} + \tilde{w}_{\ell} + \tilde{s}_{j} + \tilde{s}_{k} + \tilde{\varepsilon}_{jk}^{s}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{\eta} = 0.688^{**} (0.311) , \quad \hat{\theta} = 21.31^{***} (10.52)$$

2. Human capital and skill (INPRES as IV)

$$\begin{split} w_{jk\ell} &= w_\ell s_{jk\ell} e_{jk}^{\eta} m_{jk\ell}^{-\frac{1}{\theta}} \gamma \\ & \qquad \qquad \psi \\ \tilde{w}_{jk\ell} &= \tilde{\gamma} + \eta \tilde{e}_{jk} - \frac{1}{\theta} \tilde{m}_{jk\ell} + \tilde{w}_\ell + \tilde{s}_j + \tilde{s}_k + \tilde{\varepsilon}_{jk\ell}^s \\ & \qquad \qquad \psi \\ \\ \widehat{\eta} &= 0.688^{**} (0.311) \,, \quad \widehat{\theta} = 21.31^{***} (10.52) \end{split}$$

2. Human capital and skill (INPRES as IV)

3. Production (INPRES as IV)

$$Y_{\ell} = A_{\ell} H_{\ell}^{\kappa}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{Y}_{\ell}' = \tilde{\kappa} + \kappa \tilde{H}_{\ell} + \tilde{A}_{\ell}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{\kappa} = 0.767^{***} (0.101)$$

3. Production (INPRES as IV)

$$Y_{\ell} = A_{\ell} H_{\ell}^{\kappa}$$

$$\downarrow \downarrow$$

$$\tilde{Y}_{\ell}' = \tilde{\kappa} + \kappa \tilde{H}_{\ell} + \tilde{A}_{\ell}$$

$$\downarrow \downarrow$$

$$\hat{\kappa} = 0.767^{***} (0.101)$$

3. Production (INPRES as IV)

$$Y_{\ell} = A_{\ell} H_{\ell}^{\kappa}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{Y}_{\ell}' = \tilde{\kappa} + \kappa \tilde{H}_{\ell} + \tilde{A}_{\ell}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{\kappa} = 0.767^{***} (0.101)$$

Goals

- **Evaluate** relative to zero-construction counterfactual
 - Aggregate and distributional effects
- **Decompose** effects of mobility by mechanism
 - And separate each from the general equilibrium effects
 - Diff-in-diff avoids model but only captures net effects
- Study program design
 - By simulating alternative allocations of school construction

The program increased aggregate output by 8%

	Aggregate output
Zero construction	1.00
+ Direct effect of construction	1.03
+ Migration	1.05
+ Migration-induced schooling	1.09
+ New equilibrium wages	1.08

- Small gains without migration (direct effect) or without education (sorting)
 - Complementarity between education and migration
 - Gains from sorting are already large (Bryan et al. 2014)

With especially large benefits for rural students

	Inequality (people)
Zero construction + INPRES construction	1.00 0.95

- Expanded opportunity for rural students with high marginal returns
 - \bullet Decreased inequality between rural and urban students by 5%

But also increased inequality across places by 12%

	Inequality (places)
Zero construction + INPRES construction	1.00 1.12

- The program explicitly aimed to encourage regional convergence
 - But mobility places convergence in tension with output gains
 - Rural regions still enjoy net gains, but urban regions gain more

Equity-efficiency tradeoff for policymaker

• Targeting rural areas: output \uparrow , but rural-urban gap \uparrow (implied 50-50 weight)

Equity-efficiency tradeoff for policymaker

ullet Especially with schools + roads, but roads drain rural areas

Summary

- Evaluating large-scale educational investment in spatial equilibrium
 - Indonesia's INPRES program built 62,000 primary schools in 1970s
 - Aggregate output \uparrow (8%), person-based inequality \downarrow (5%), place-based \uparrow (12%)
- Education and migration are complementary
 - Big gains for rural students who leave rural regions behind