Slimme woning simulatie - Projectopdracht Python OOP

Inleiding

In deze opdracht bouw je in Python een **objectgeoriënteerde simulatie van een slimme woning**. Je modelleert bewoners, kamers en verbonden apparaten, en simuleert hoe deze met elkaar interageren. Je gebruikt de geziene **OOP-principes** zoals **compositie** en **overerving** om het systeem modulair en uitbreidbaar op te bouwen.

Je voorziet een **simulatiemodus** waarin bewoners zich verplaatsen en apparaten automatisch reageren. Daarnaast genereer je een **statische HTML-webpagina** die de actuele toestand van de woning en apparaten weergeeft.

Afhankelijk van je specialisatie (IoT, Cybersecurity of AI) werk je een **extra challenge** uit. Zie onderaan voor specifieke instructies.

Vereisten

Entiteiten

Je modelleert minstens de volgende klassen:

- Woning: bevat meerdere kamers en beheert de apparaten.
- Kamer: heeft een naam en bevat apparaten.
- Apparaat (abstracte klasse): basisklasse voor alle apparaten (status: aan/uit).
 - Lamp: kan aan/uit en helderheid aanpassen.
 - Thermostaat: kan temperatuur instellen.
 - Deurslot: kan vergrendelen/ontgrendelen.
 - Bewegingssensor: detecteert beweging.
 - Rookmelder: detecteert rook en kan alarm activeren.
 - Gordijn: kan automatisch openen/sluiten.
- Bewoner: beweegt door de woning.
- SmartHub: ontvangt meldingen van apparaten en voert regels uit.
- Logger: registreert gebeurtenissen.
- **HTMLGenerator**: maakt een statische site van toestanden per kamer en algemeen overzicht.

Structurering woning

 Je modelleert minstens zes verschillende kamers in de woning (bijvoorbeeld woonkamer, keuken, slaapkamer 1, slaapkamer 2, badkamer, gang).

Basisfunctionaliteit

- **Starttoestand**: Initialiseer woning met meerdere kamers, apparaten en bewoners.
- Simulatie:
 - Elke tijdstap beweegt een bewoner willekeurig naar een kamer.
 - Bewegingssensoren detecteren aanwezigheid.
 - De SmartHub activeert/deactiveert apparaten op basis van regels.

Logging:

Alle gebeurtenissen worden chronologisch gelogd.

HTML-output:

Toon actuele status per kamer en algemeen overzicht.

Terminal-interface:

Start simulatie en/of manuele acties.

Geavanceerde optie (bonuspunten ;-))

 Voeg scenario's toe ("nachtmodus", "vakantiemodus") waarin gedrag van apparaten verschilt.

Extra Challenges per Profiel (je kiest je eigen traject)

IoT Studenten

- Implementeer eenvoudige "device-to-device" communicatie via de SmartHub (publish/subscribe model).
- Simuleer externe toegang: bewoner kan op afstand status opvragen en apparaten bedienen.
- Reflectie: hoe kan echte IoT-externe toegang beveiligd worden?

Cybersecurity Studenten

- Implementeer authenticatie (bv. pincode) voor kritieke acties (deur openen, externe toegang).
- Simuleer hackingpoging: brute force op pincode, illegale toegang.
- Reflectie: hoe kun je smart homes beter beschermen?

Al Studenten

- Laat apparaten gedrag leren: verzamel data over aanwezigheid en pas automatisch acties aan (bv. lamp aanzetten als bewoner meestal om 21u in woonkamer is).
- Genereer HTML-pagina over geleerde gewoontes.

Reflectie: welke ethische risico's zijn er bij gedragspredictie?

Technische Richtlijnen

- Werk modulair: gebruik meerdere Python-bestanden/modules.
- Codeer duidelijk en volgens conventies.
- Werk met een virtual environment (venv) en maak een requirements.txt aan.
- Gebruik alleen zelfgeschreven code.

Inlevering

- Deadline: vrijdag 30 mei 2025, 23u55
- Bestand: zip-archief python_oop_slimmewoning_AchternaamVoornaam.zip
- Structuur:
 - Codebestanden (geen venv-folder meeleveren)
 - Reflectieverslag in Markdown (reflectie.md)
 - gegenereerde HTML-website in _site/ folder
 - Demonstratievideo (maximaal 60 seconden, geformatteerd als MP4 of opgenomen via Panopto)

Reflectieverslag

Je reflectieverslag beschrijft:

- Opbouw en werking van jouw toepassing.
- Belangrijke keuzes en uitdagingen.
- Welke zaken moeilijk of niet opgelost zijn.
- Specifiek antwoord op de challenge voor jouw profiel.
- Toevoeging: een korte demonstratievideo (max. 60 seconden) waarin je de werking van jouw project toont. Upload je video in MP4-formaat of via Panopto.

Hulpmiddelen

- Vraag hulp tijdens de labo's.
- Gebruik betrouwbare bronnen voor achtergrondonderzoek.
- Geen gebruik van generative Al tools voor code (zelf schrijven verplicht).

Veel succes!

Gebruik deze opdracht om te tonen dat je complexe systemen helder kunt modelleren, simuleren en presenteren!