Scan conversion Algorithm

Bresenham algorithm
Circle Symmetry
Mid point Circle

The Bresenham Line Algorithm

(for
$$|m| < 1.0$$
)

- 1. Input the two line end-points, storing the left end-point in (x_0, y_0)
- 2. Plot the point (x_0, y_0)
- 3. Calculate the constants Δx , Δy , $2\Delta y$, and $(2\Delta y 2\Delta x)$ and get the first value for the decision parameter as:

$$p_0 = 2\Delta y - \Delta x$$

4. At each x_k along the line, starting at k=0, perform the following test. If $p_k < 0$, the next point to plot is (x_k+1, y_k) and:

$$p_{k+1} = p_k + 2\Delta y$$

Otherwise, the next point to plot is (x_k+1, y_k+1) and:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

5. Repeat step 4 ($\Delta x - 1$) times

Circle Scan Conversion

The equation for a circle is: Pythagoras

$$x^2 + y^2 = r^2$$

• where r is the radius of the circle

 So, we can write a simple circle drawing algorithm by solving the equation for y at unit x intervals using:

$$y = \pm \sqrt{r^2 - x^2}$$

A Simple Circle Drawing Algorithm (cont...)

$$y_0 = \sqrt{20^2 - 0^2} \approx 20$$

$$y_1 = \sqrt{20^2 - 1^2} \approx 20$$

$$y_2 = \sqrt{20^2 - 2^2} \approx 20$$

$$y_{19} = \sqrt{20^2 - 19^2} \approx 6$$

$$y_{20} = \sqrt{20^2 - 20^2} \approx 0$$

Continue...

Parametric:

```
x = R \cos \theta
```

- by stepping the angle from 0 to 90

$$y = R \sin \theta$$

- avoids large gaps but still insufficient.

- However, unsurprisingly this is not a brilliant solution!
- Firstly, the resulting circle has large gaps where the slope approaches the vertical
- Secondly, the calculations are not very efficient
 - The square (multiply) operations
 - The square root operation try really hard to avoid these!
- We need a more efficient, more accurate solution

Circle Symmetry (cont...)

 The first thing we can notice to make our circle drawing algorithm more efficient is that circles centred at (0, 0) have eight-way symmetry

Mid-Point Circle Algorithm

MID-POINT CIRCLE ALGORITHM

Input radius r and circle centre (x_c, y_c) , then set the coordinates for the first point on the circumference of a circle centred on the origin as:

 $(x_0, y_0) = (0, r)$

2. Calculate the initial value of the decision parameter as:

$$p_0 = \frac{5}{4} - r$$

Starting with k = o at each position x_k , perform the following test. If $p_k < o$, the next point along the circle centred on (o, o) is (x_{k+1}, y_k) and:

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

Otherwise the next point along the circle is (x_k+1, y_k-1) and:

$$p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$$

Continue...

- 4. Determine symmetry points in the other seven octants
- Move each calculated pixel position (x, y) onto the circular path centred at (x_c, y_c) to plot the coordinate values:

$$x = x + x_c \qquad \qquad y = y + y_c$$

6. Repeat steps 3 to 5 until $x \ge y$