

Today's Class

- Point Estimate
- Confidence Interval
 - Distribution: Normal vs. Not normal
 - Variance: known vs. unknown
 - Sample size: small vs. large

Estimating a Population Parameter

- What is the population mean?
 - Don't know μ? Estimate it.
 - How?
 - Take a sample (n=?)
 - Use \bar{X} to estimate μ
- o What is a point estimate?
 - A point estimate is a sample statistic used to estimate the corresponding population parameter

What is Point Estimate of the True Population Mean?

- Use the CLT to know
 - The sample mean ≈ the population mean
 - 68% of all possible sample means drawn from samples you took should be within one standard error of the mean
 - The Standard error = $\frac{\sigma_X}{\sqrt{n}}$
 - So take a large sample and you should have a sample mean very close to μ

• • • Normal Curve, revisit

 Approximate percentage of area within given standard deviations

• • • Confidence Intervals

- o Developed from sample data
- If all possible intervals of a given width were constructed, a percentage of these intervals, known as the *confidence level*, would include the true population parameter

Confidence Intervals Example

- The internal pressure strength of glass bottles used to package a carbonated beverage is an important quality characteristic
 - Standard deviation: 10 psiSample mean: 182 psi
 - Sample size: 25
 - Find the 95% two-sided confidence interval

Table 4.1 Standard Normal Percentiles and Critical Values

Percentile	90	95	97.5	99	99.5	99.9	99.95
α (tail area)	.1	.05	.025	.01	.005	.001	.0005
$z_{\alpha} = 100(1 - \alpha)$ th	1.28	1.645	1.96	2.33	2.58	3.08	3.27
percentile							

Solution

- o n = 25
- o \overline{X} = 182 psi, σ = 10 psi
- o 95% two-side confidence interval:
 - $\alpha = 0.05$
 - $z_{\alpha/2} = z_{.025} = 1.96$

$$\bar{x} \pm 1.96 \cdot \frac{\sigma}{\sqrt{n}} = 182 \pm 1.96 \cdot \frac{10}{\sqrt{25}}$$

$$= 182 \pm 3.92$$

$$= (178.08, 185.92)$$

(x

• • •

Confidence Intervals: Normal, STD known

• A 100(1- α)% confidence interval for the mean μ of a normal population when the value of σ is known:

Confidence Intervals: Example

o A 95% confidence interval
$$\overline{X} \pm Z_{(1-0.95)/2} \cdot \frac{\sigma}{\sqrt{n}} = \overline{X} \pm Z_{0.025} \cdot \frac{\sigma}{\sqrt{n}}$$

$$= \overline{X} \pm 1.96 \cdot \frac{\sigma}{\sqrt{n}}$$
1.96 σ/\sqrt{n}
1.96 σ/\sqrt{n}
 $\overline{X} + 1.96\sigma/\sqrt{n}$
1.96 σ/\sqrt{n}

Interpreting a Confidence Interval

- A correct interpretation of "95% confidence" relied on the long-run relative frequency interpretation of probability
- o Suppose we obtain another sample and compute another 95% interval, and so on. In the long run 95% of our computed CIs will contain μ .

Confidence Intervals Example

- The internal pressure strength of glass bottles used to package a carbonated beverage is assumed to be normal
 - Sample size: 25
 - Sample mean: 182 psi
 - Sample standard deviation: 10 psi
 - 95% two-sided confidence interval?

Solution

- on = 25
- \bar{X} = 182 psi, s = 10 psi
- o 95% two-sided confidence interval:
 - $\alpha = 0.05$
 - $\bar{x} \pm t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}} = 182 \pm t_{0.025,24} \cdot \frac{10}{\sqrt{25}}$

X:

Confidence Interval for Normal, STD Unknown

A 100(1-a)% two-sided confidence interval for the mean μ of a normal population with x̄, the sample mean and s, the sample standard deviation from a random sample of size n:

$$\overline{x}\pm t_{_{\alpha/2,n-1}}\cdot\frac{s}{\sqrt{n}}$$

T-distribution

o When \overline{X} is the mean of a random sample of size n from a Normal with mean μ , then

$$T = \frac{\overline{x} - \mu}{S / \sqrt{n}}$$

where S is sample standard deviation

• A t distribution (Appendix A.5) has one parameter, v = n-1 degrees of freedom

	$df/\alpha =$.40	.25	.10	.05	.025	.01	.005	.001	.0005
	1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.619
	2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
• • •	5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
•	8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	35	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591
	40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	50	0.255	0.679	1.299	1.676	2.009	2.403	2.678	3.261	3.496
	60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	120 inf.	0.254	0.677	1.289 1.282	1.658 1.645	1.980 1.960	2.358	2.617 2.576	3.160 3.090	3.373
	mI.	0.253	0.074	1.282	1.045	1.960	2.326	2.576	5.090	3.291

Solution

•
$$\bar{X}$$
 = 182 psi, s = 10 psi

o 95% two-sided confidence interval:

•
$$\overline{x} \pm t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}} = 182 \pm t_{0.025,24} \cdot \frac{10}{\sqrt{25}}$$

$$= 182 \pm 2.064 \cdot \frac{10}{\sqrt{25}}$$

$$= (177.87, 186.13)$$

Properties of t Distributions

- Let t_n denote the t distribution with n df.
 - Each t_n curve is bell-shaped and centered at 0
 - Each t_n curve is more spread out than the standard normal (z) curve
 - As n increases, the spread of the corresponding t_n curve decreases
 - As n → ∞, the sequence of t_n curves approaches the standard normal curve (so the z curve is often called the t curve with df = ∞).

• • •

Example

 Consider the following sample of fat content (in percentage) of n = 10 randomly selected hot dogs ("Sensory and Mechanical Assessment of the Quality of Frankfurters," *J. of Texture* Studies, 1990: 395–409):

Assuming that these were selected from a normal population distribution, what is a 95% CI for the population mean fat content?

• • •

Solution

$$o n = 10$$

$$o X = 21.90, s = 4.134$$

o 95% two-sided confidence interval:

•
$$\alpha = 0.05$$

$$\bar{x} \pm t_{.025,9} \cdot \frac{s}{\sqrt{n}}$$

$$= 21.90 \pm 2.262 \cdot \frac{4.134}{\sqrt{10}}$$

$$= 21.90 \pm 2.96$$

$$= (18.94, 24.86)$$

	df/α =	.40	.25	.10	.05	.025	.01	.005	.001	.0005
	$dI/\alpha =$.40	.25	.10	.05		.01	.005	.001	.0005
	1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.619
	2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
-	8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9 —	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3,930	4.318
	13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3,646	3,965
	18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3,527	3.819
	22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3,792
	23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.467	3,745
	25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	35	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591
	40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	50	0.255	0.679	1.299	1.676	2.009	2.403	2.678	3.261	3.496
	60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.160	3.373
	inf.	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Large Sample CI: Not Necessarily Normal

o If n is sufficiently large (the CLT applies) then a large-sample confidence interval for μ with confidence level approximately $100(1-\alpha)\%$ is:

$$\overline{x}\pm z_{_{\alpha/2}}\cdot \frac{\sigma}{\sqrt{n}}$$

Generally about 30 observations

• • •

Large Sample CI: Not Necessarily Normal, STD Unknown

o If n is sufficiently large (the CLT applies) then a large-sample confidence interval for μ with confidence level approximately $100(1-\alpha)\%$ is:

$$\overline{\mathbf{X}} \pm \mathbf{Z}_{_{\boldsymbol{\alpha}/2}} \cdot \frac{\mathbf{S}}{\sqrt{\mathbf{n}}}$$

- Note that it uses the sample STD
- Generally at least 40 observations are needed

One-Sided Confidence Interval

o A large-sample upper confidence bound for μ:

$$\mu < \overline{x} + z_{_{\alpha}} \cdot \frac{s}{\sqrt{n}}$$

- - for μ:

Example One-sided CI

 A sample of 48 shear strength observations gave a sample mean strength of 17.17 N/mm² and a sample standard deviation of 3.28 N/mm². Find a lower confidence bound for true average shear strength μ with confidence level 95%.

Solution

- o N= 48
- \bullet \bar{X} =17.17 N/mm², S = 3.28 N/mm²
- α = 0.05, ∴ Z_{0.05}=1.645

$$\mu > \bar{x} - z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

$$\mu > 17.17 - 1.645 \frac{3.28}{\sqrt{48}}$$

$$\mu > 16.39$$

