Escuela Rafael Díaz Serdán

Ciencias y Tecnología: Química

3° de Secundaria (2022-2023) Examen de la Unidad 3

Prof.: Julio César Melchor Pinto

Nombre del alumno:

Fecha:

Instrucciones:

Lee con atención cada pregunta y realiza lo que se te pide. Desarrolla tus respuestas en el espacio determinado para cada solución. De ser necesario, utiliza una hoja en blanco por separado, anotando en ella tu nombre completo, el número del problema y la solución propuesta.

Reglas:

Al comenzar este examen, aceptas las siguientes reglas:

- × No se permite salir del salón de clases.
- × No se permite intercambiar o prestar ningún tipo de material.
- X No se permite el uso de celular o cualquier otro dispositivo.
- **X** No se permite el uso de **apuntes**, **libros**, notas o formularios. ■
- X No se permite **mirar** el examen de otros alumnos.
- × No se permite la comunicación oral o escrita con otros alumnos.

Si no consideraste alguna de estas reglas, comunícalo a tu profesor.

Aprendizajes a evaluar:

Argumenta acerca de posibles cambios químicos en un sistema con base en evidencias experimentales.

- Reconoce y valora el uso de reacciones químicas para sintetizar nuevas sustancias útiles o eliminar sustancias indeseadas.
- 🔽 Reconoce la utilidad de las reacciones químicas en el mundo actual.
- Explica, predice y representa cambios químicos con base en la separación y unión de átomos o iones, y se recombinan para formar nuevas sustancias.

Calificación:

??>7 ??>15 Run PTEX again to produce the table

1 [_de10 pts] Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

	s de sacarosa? Exp	resa la respuesta	con 3 cifras sig	inificativas.		
$[_$ de 20 pts $] \to $ C \mathbf{alcula} :	n un recipiente se int	roducen 15 g de	dióxido de carb	ono, CO_2 .		
	les de sustancia intro	ducidos.				
					_	
b) ¿Cuánt	as moléculas de CO ₂	y átomos de car	bono y de oxíge	eno hay en el reci	piente?	
					-	
[_ de 15 pts] H	alla la masa de ozono	O_3 , que contien	ne 1×10^{25} áton	nos de oxígeno.		

- [_ de 10 pts] Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.
 - (5a) 2 Na + ZnI₂ \longrightarrow 2 NaI + Zn
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (5b) $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (5c) Zn(s) + 2 HCl(ac) \longrightarrow ZnCl₂(ac) + H₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (5d) 2 C(s) + O₂(g) \longrightarrow 2 CO(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (5e) 2 Na + H₂O \longrightarrow 2 NaOH + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento

- 5f 2 Al(s) + 3 S(s) \longrightarrow Al₂S₃(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (5g) Mg(s) + H₂O(l) \longrightarrow Mg(OH)₂(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (5h) Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (5i) 2 NaCl(s) \longrightarrow 2 Na(s) + Cl₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (5j) SO₂(g) + H₂O(l) \longrightarrow H₂SO₃(ac)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento

		3.12 g/mol. ¿C ι			y on in the	
		1 . 6	 	,		
		la información potasio por r	?, ¿cual de lo	os siguientes	compuestos	contien
A . ¹	KNO_3					
	111, 0,					
В.]	KF					
	KF KClO					

OD 11 1	~		
Lahla L	Compuestos	que contienen	notagio
Tabla I.	Compacodo	que comment	polasio

${f Compuesto}$	$egin{array}{ll} {f Masa & molar} \ {f (g/mol)} \end{array}$	Porcentaje de potasio (%)
KNO_3	101.1	
KF	58.1	
KClO	90.6	
KBr	119.0	

Tabla 2: Tabla Periódica de los Elementos.

П	1 IA																	18 VIIIA
1 High	. 1.0079 Hidrógeno	2 IIA			Sim	Simbología:	zía:						13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	$\overset{\text{2}}{H_{\text{elio}}}_{\text{Helio}}$
2 3	6.941 L	$\overset{\iota}{B}\overset{9.0122}{e}$			$\mathbf{S}^{ ext{Ar}}$	Negro: Naturales Gris: Sintéticos	laturales téticos						5 10.811 Boro	$\bigcup_{\text{Carbono}}^{6}$	$\sum_{\text{Nitrogeno}}^{7} 14.007$	8 15.999 Oxígeno	9 18.998 Fluor	$N_{\text{eón}}^{20.180}$
3	$\overset{1}{\overset{22.990}{\overset{1}{\overset{1}{\overset{1}{\overset{22.990}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$	${ m Mg}^{22-24.305}_{ m Magnesio}$	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	$\bigwedge_{\text{Aluminio}}^{13} \underbrace{\text{26.982}}_{\text{Aluminio}}$	$\overset{14}{S}\overset{28.086}{\text{Silicio}}$	$\overset{15}{P}^{30.974}$	$\overset{16}{S}\overset{32.065}{S}$	$\bigcup_{Cloro}^{17\ 35.453}$	$\Lambda_{\mathbf{r}}^{18}$
4 Po		$\overset{20}{\text{Ca}}\overset{40.078}{\text{a}}$	$\overset{21}{S}^{44.956}_{C}$ Escandio	22 47.867 Titanio	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	$\overset{24}{\overset{51.996}{\mathbf{\Gamma}}}$ Cromo	$\overset{25}{N}\overset{54.938}{\text{Mangan ∞}}$	$\overset{26}{Fe}_{\text{D5.845}}$	$\overset{27}{\overset{58.933}{\bigcirc}}$	28 58.693 Niquel	$\overset{29}{\text{Cobre}}$	\sum_{Zinc}^{30}	$\overset{31}{ ext{Galio}}_{ ext{Galio}}$	${\overset{32}{G}}^{72.64}$	$\overset{33}{ ext{AS}}$ 74.922 Arsénico	$\overset{34}{\mathrm{Se}}$	\Pr_{Bromo}^{35}	$\overset{36}{K_{riptón}}$
5 Handa	7 85.468 3 Rb	$\overset{88}{\mathbf{Sr}}$	$\sum_{\text{ltrio}}^{39-88.906}$	$\overset{40}{Z}\overset{91.224}{r}$ Circonio	$\overset{41}{N}\overset{92.906}{\text{Niobio}}$	$\stackrel{42}{\text{Nolybdeno}}$	$\prod_{ m Tecnecio}^{43}$	${\overset{44}{R}}_{uthenio}^{101.07}$	$\mathop{^{45}}\limits_{\text{Rodio}}$	$\overset{\textbf{46}}{P}\overset{106.42}{d}$	$^{47}_{ m Ag}$	$\overset{48}{\text{Cdmio}}$	$\overset{49}{\text{Indo}}$	$\mathbf{\hat{S}_{n}}^{118.71}$ Estaño	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\prod_{\text{Tellurio}}^{52}$	53 126.9 T Yodo	$\sum_{\text{Xenón}}^{54}$
9	55 132.91 5 Cesio	$\overset{56}{\mathrm{Bario}}_{\mathrm{Bario}}^{137.33}$	57-71 * Lantánido	$\overset{72}{\text{Hafnio}}$	$\overset{73}{ ext{Tantalo}}$	\overline{W}	$\mathop{Re}\limits^{75}_{\text{Renio}}$	$\overset{76}{\text{Osmio}}$	$\overline{\Gamma}$ 192.22 $\overline{\Gamma}$ Iridio	$\Pr^{78}_{\text{Platino}}$	$\mathop{\mathrm{Au}}\limits_{Oro}^{79}$	$\overline{Hg}^{80}_{\mathrm{Mercurio}}$	81 204.38 Talio	\Pr_{Pkmo}^{82}	$\overset{83}{\text{Bismuto}}_{\text{208.98}}$	$\overset{84}{Po}\overset{209}{\text{Polonio}}$	$\overset{85}{\mathrm{At}}_{\dot{\mathrm{t}}}^{210}$	$\mathop{Rn}\limits^{s6}_{\text{Radón}}$
78 7 Fr.	Francio	$\mathop{\mathrm{Radio}}^{8}$. 89-103 Actinido	$\underset{\text{Rutherfordio}}{R4}$	$\bigcup_{\text{Dubnio}}^{105} \bigcup_{\text{Dubnio}}^{262}$	$\overset{106}{Sg}_{\overset{266}{S}}$	$\overset{107}{Bh}$	$\overset{108}{H}\overset{277}{S}$	$\frac{109}{\text{NM}} \frac{268}{\text{therio}}$	$\overset{110}{\text{Darmstadtio}}$	$\mathop{RS}\limits_{\text{Poentgenio}}$	$\overset{\text{1.1.2}}{\bigcirc} \overset{285}{\text{D}}$	$\overset{113}{N}\overset{284}{h}$ Nihonio	114 289 Flerovio	${\stackrel{115}{ M }}{\stackrel{288}{ C }}$	$\frac{116}{L} \frac{293}{L}$ Libermonio	$\frac{117}{\mathrm{Ts}}$ 292 Teneso	$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
Metal Metal	tales A tales A tal	Metales Alcalinos Metales Alcalino-terreos Metal	terreos	$\overset{57}{\operatorname{La}}_{ ext{138.91}}^{138.91}$	$\bigcap_{Cerio}^{58} \bigoplus_{Cerio}^{140.12}$	$\Pr^{\mathbf{59-140.91}}_{\mathbf{\Gamma}}$ Praseodymio	$\overset{60}{\text{Neodimio}}_{\text{Neodimio}}$	$\underset{\text{Prometio}}{P_{m}}$	$\mathop{\mathrm{Smar}}^{62}$ 150.36	$\stackrel{63}{\mathrm{Europio}}$	$\overset{64}{\text{Gadolinio}}$	65 158.93 Terbio	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$ \underset{Holmio}{\overset{67}{7}} \overset{164.93}{\overset{1}{60}} $	$\frac{68}{\mathbf{E}_{\mathbf{I}}}$	$\prod_{\text{Tulio}}^{69}$	$\sum_{\text{Yterbio}}^{70} \sum_{\text{173.04}}^{173.04}$	$\overset{71}{\text{Luterio}}$
Me No Hal	Metaloide No metal Halógeno		are a service a service.	$\overset{89}{ ext{AC}}$	$\prod_{T \text{ or io}}^{90-232.04}$	${ m Pa}_{ m Protactinio}^{91-231.04}$	$\bigcup_{\text{Uranio}}^{92} 238.03$	$\frac{93}{N} \frac{237}{p}$	$\overset{94}{P}\overset{244}{u}$	$\frac{95}{Am}$	$\frac{96}{Cm}$	$\frac{97}{BK}$ Berkelio	$\overset{98}{Cf}_{\text{Californio}}$	99 252 Einsteinio	100 257 Frmio	$\frac{101}{258}$ Mendelevio	102 259 Nobelio	103 262 In In I
Gag Lan	Gases Nobles Lantánidos/A	Gases Nobles Lantánidos/Actínidos	idos															