Комплексный анализ, ФН-12, ИУ-9, 4-й семестр. Ответы на вопросы к экзамену

Весна 2024

Содержание

1	Непрерывность и дифференцируемость функций коплексного переменного, их связь. Теорема Коши-Римана. Голоморфные функции.	4
2	Геометрический смысл комплексной производной. Конформные отображения, связь конформности и дифференцируемости, примеры.	7
3	Определить дробно-линейное отображение (ДЛО). Сформулировать и доказать конформность и групповое свойство ДЛО.	9
4	Дробно-линейные функции, их геометрическая интерпретация и свойство трёх точек.	12
5	Дробно-линейные функции, их геометрические свойства: круговое свойство и сохранение симметричности.	14
6	Стереографическая проекция. Расширенная комплексная плоскость и ее топология. Бесконечно удаленная точка, ее окрестности. Угол между кривыми в бесконечности. Дифференцируемость и конформность в бесконечности. Дробнолинейные функции как отображения расширенной комплексной плоскости.	17
7	Интеграл от функции комплексного переменного вдоль пути в С. Его свойства.	20
8	Теорема Коши для односвязных и многосвязных областей	23
9	Интегральная формула Коши для функции и ее производных.	2 5
10	Степенные ряды в $\mathbb{C},$ их свойства. Голоморфность суммы степенного ряда.	28
11	Теорема о разложении голоморфной функции в ряд Тейлора. Неравенства Коши для коэффициентов ряда Тейлора. Теорема Лиувилля.	31
12	Бесконечная дифференцируемость голоморфных функций. Единственность разложения в степенной ряд. Теорема Морера. Эквивалентность голоморфности в смысле Римана, Коши и Вейерштрасса.	33
13	Нули голоморфной функции, их свойства. Теорема единственности. Вычисление порядка нуля.	37
14	Ряды Лорана, их области сходимости. Теоремы о разложении голоморфной функции и о единственности разложения в ряд Лорана. Неравенство Коши для коэффициентов ряда Лорана.	39
15	Изолированные особые точки голоморфных функций, их классификация и характеризация в терминах рядо Лорана. Поведение голоморфных функций в окресности особых точек.	т- 43

16	Вычеты, их вычисление. Вычисление контурных интегралов с помощью вычетов.	48
17	Характеризация в терминах рядов Лорана изолированной особой точки ∞ . Вычет в бесконечности.	52
18	Логарифмический вычет, его вычисление. Приращение (полярного) аргумента вдоль пути. Принцип аргумента. Теорема Руше и ее применение.	57
19	Теорема о среднем и принцип максимума модуля. Принцип сохранения области.	61
20	Основные теоремы и приложения теории конформных отображений. Теорема Римана, принцип симметрии Римана-Шварца, принцип соответствия границ с обратным принципом соответствия границ.	
21	Вычисление несобственных интегралов с использование вычетов. Лемма Жордана и теорема о вычислении несобственного интеграла от рациональной функции с помощью вычетов.	
22	Определение преобразования Лапласа. Теорема о существовании изображения. Поведение изображения в бесконечно удаленной точке. Изображение элементарных функций (единичная функция Хевисайда, показательная и степенная функции). Теорема обращения.	
23	Основные свойства преобразования Лапласа. Теоремы линейности, подобия, затухания, запаздывания, опережения, дифференцирования и интегрирования оригинала, дифференцирования и интегрирования изображения. Свертка двух функций. Теорема умножения изображений. Доказать теоремы затухания и дифференцирования оригинала, сформулировать остальные теоремы.	
24	Три теоремы разложения. Доказать теоремы подобия и запаздывания.	74

1 Непрерывность и дифференцируемость функций коплексного переменного, их связь. Теорема Коши-Римана. Голоморфные функции.

ФКП $f:G\subset\overline{\mathbb{C}}\to\overline{\mathbb{C}}$ непрерывна в точке z_0 , если:

$$\lim_{z \to z_0} f(z) = f(z_0)$$

 Φ КП f(z) \mathbb{C} -дифференцируема в точке $z_0 \Leftrightarrow$

1. f определена в окрестности точки z_0 ;

2.
$$f(z_0 + \Delta z) - f(z_0) = A\Delta z + \alpha(\Delta z)\Delta z$$
,

где
$$A \in \mathbb{C}, \, \alpha(\Delta z) \to 0$$
 при $\Delta z \to 0$

Предел $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ называют **производной ФКП** f(z) **в точке** z_0 и обозначают $f'(z_0)$.

Теорема (1-ый критерий \mathbb{C} —дифференцируемости):

ФКП
$$f(z)$$
 дифференцируема в точке z_0

 \exists производная $f'(z_0)$ функции f в точке z_0 , при этом $f'(z_0) = A$.

Доказательство.

"⇒"
$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{A\Delta z + \alpha(\Delta z)\Delta z}{\Delta z} =$$

$$= \lim_{\Delta z \to 0} (A + \alpha(\Delta z)) = A (\alpha(\Delta z) \to 0 \text{ при } \Delta z \to 0) \Rightarrow$$

$$\Rightarrow \exists f'(z_0) = A.$$
"\(\Lefta\)"
$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z},$$

$$\alpha(\Delta z) = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} - f'(z_0) \to 0 \text{ при } \Delta z \to 0 \Rightarrow$$

$$\Rightarrow f(z_0 + \Delta z) - f(z_0) = A\Delta z + \alpha(\Delta z)\Delta z.$$

Функция w = f(z) называется **голоморфной (аналитиче-ской)** в точке $z_0 \in \mathbb{C} \Leftrightarrow f - \mathbb{C}$ – дифференцируема в окрестности точки z_0 .

Теорема (об условиях Коши-Римана):

Функция f(z) = u(x,y) + iv(x,y), где z = x + iy, \mathbb{C} – дифференцируема в точке $z_0 = x_0 + iy_0$ тогда и только тогда, когда:

- 1. Функции u(x,y) и v(x,y) \mathbb{R}^2 дифференцируемы в точке $M_0(x_0,y_0)$;
- 2. Выполняются условия (уравнения) Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x}(M_0) = \frac{\partial v}{\partial y}(M_0) \\ \frac{\partial u}{\partial y}(M_0) = -\frac{\partial v}{\partial x}(M_0) \end{cases}$$

При этом
$$f'(z_0) = \frac{\partial u}{\partial x}(M_0) + i \frac{\partial v}{\partial x}(M_0) = \frac{\partial v}{\partial y}(M_0) - i \frac{\partial u}{\partial y}(M_0).$$

Доказательство.

$$"\Rightarrow"$$

$$\Delta f(z_0, \Delta z) = A\Delta z + \gamma(\Delta z)\Delta z, \text{ но при этом:}$$

$$\Delta f(z_0, \Delta z) = \Delta u(x_0, y_0, \Delta x, \Delta y) + i\Delta v(x_0, y_0, \Delta x, \Delta y) =$$

$$= \alpha \Delta x - \beta \Delta y + i(\alpha \Delta y + \beta \Delta x) + \gamma(\Delta z)\Delta z \Rightarrow$$

$$\Rightarrow \begin{cases} \Delta u = \alpha \Delta x - \beta \Delta y + Re(\gamma(\Delta z)\Delta z) \\ \Delta v = \alpha \Delta y + \beta \Delta x + Im(\gamma(\Delta z)\Delta z), \end{cases}$$
где
$$\frac{\gamma(\Delta z)\Delta z}{|\Delta z|} \to 0 \text{ при } \Delta z \to 0 \ ((\Delta x, \Delta y) \to 0), \text{ так как}$$

$$\gamma(\Delta z) \to 0, \text{ а } \frac{\Delta z}{|\Delta z|} - \text{ограничена при } \Delta z \to 0 \Rightarrow$$

$$\begin{cases} Re(\gamma(\Delta z)\Delta z) = o(|\Delta z|) \\ Im(\gamma(\Delta z)\Delta z) = o(|\Delta z|) \end{cases} \Rightarrow 1);$$

$$\begin{cases} \Delta u = u'_x \Delta x + u'_y \Delta y + o(|\Delta z|) \\ \Delta v = v'_x \Delta x + v'_y \Delta y + o(|\Delta z|) \end{cases} \Rightarrow \\ \begin{cases} u'_x = \alpha = v'_y \\ u'_y = -\beta = -v'_x \end{cases} \Rightarrow 2) \\ \text{Тогда } f'_z = \alpha + i\beta \Rightarrow \Rightarrow f'(z_0) = \frac{\partial u}{\partial x}(M_0) + i\frac{\partial v}{\partial x}(M_0) = \\ \frac{\partial v}{\partial y}(M_0) - i\frac{\partial u}{\partial y}(M_0) \\ \text{"$\Leftarrow:$"} Аналогично} \qquad \square$$

2 Геометрический смысл комплексной производной. Конформные отображения, связь конформности и дифференцируемости, примеры.

Пусть задана кривая z=z(t)=x(t)+iy(t), имеющая касательную в точке t_0 с направляющим вектором $\xi=x'(t_0)+iy'(t_0)$. Назовем ξ касательным вектором в точке t_0 к кривой z.

Теорема (геометрический смысл комплексной про-изводной):

- 1. Любая голоморфная в т. $z_0 = z(t_0)$ функция f определяет линейное отображение касательных касательных векторов $\eta = f'(z_0)\xi$, где η образ касательного вектора ξ , являющийся касательным вектором к кривой f(z) в точке $f(z_0)$.
- 2. Это отображение касательных векторов состоит в растяжении с коэффициентом $|f'(z_0)|$ и повороте на угол $argf'(z_0)$.
- \square а) По правилу дифференцирования сложной функции (в смысле \mathbb{R}^2)

$$\eta = \frac{df(z(t))}{dt}(t_0) = f'(z(t_0))z'(t_0) = f'(z_0)\xi$$

б) $|\eta| = |f'(z_0)| \cdot |\eta|$ – растяжение с коэффициентом $|f'(z_0)|$; $arg\eta = argf'(z_0) + arg\xi \pm 2\pi$ – поворот на угол $argf'(z_0)$.

Отображение F называется **конформным** в точке $M_0(x_0, y_0)$ тогда и только тогда, когда касательное отображение в точке M_0 сохраняет углы.

Отображение F называется **конформным** в области $U \subset \mathbb{R}^2$ тогда и только тогда, когда оно конформно в любой из точек U.

 $U \subset \mathbb{C}, H(U)$ – множество голоморфных в U функций.

Теорема (о связи конформности и диффиренцируемости):

U – область в \mathbb{C} . Если $f \in H(U)$ и $\forall z \in U$ $f'(z) \neq 0$, тогда f – конформное в U отображение.

□ Доказательство следует из предыдущей теоремы:

В каждой точке $z_0 \in U$ лин.отображение $f'(z_0)$ растигивает в $|f'(z_0)| \neq 0$ и поворачивает на угол $arg\ f'(z_0) \Rightarrow$ лин.отображение в z_0 сохраняет углы.

Определение: Угол между кривыми γ_1 и γ_2 в точке ∞ равнен углу между касательными к $\hat{\gamma}_1$ и $\hat{\gamma}_2$ в точке 0, где $\hat{\gamma}_1 = \frac{1}{\gamma_1}$ и $\hat{\gamma}_2 = \frac{1}{\gamma_2}$.

Отображение F называется **конформным** в точке ∞ тогда и только тогда, угол между кривыми γ_1 и γ_2 в точке ∞ равен углу между кривыми $f(\gamma_1)$ и $f(\gamma_2)$ в точке ∞ .

3 Определить дробно-линейное отображение (ДЛО). Сформулировать и доказать конформность и групповое свойство ДЛО.

Дробно-линейные отображения — это функции вида:

$$w = \frac{az+b}{cz+d}$$
, где $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0, \ a,b,c,d \in \mathbb{C}$

Доопределим функцию выше следующим образом:

$$z = -\frac{d}{c}: \ w(-\frac{d}{c}) = \infty$$
$$z = \infty: \ w(\infty) = \begin{bmatrix} \frac{a}{c}, \ c \neq 0 \\ \infty, \ c = 0 \end{bmatrix}$$

Тогда ДЛО: $w: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Конформность:

Любое ДЛО — конформное отображение $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Доказательство.

1) Рассмотрим точки $z_0 \neq -\frac{d}{c}$, ∞ :

Тогда
$$w' = \frac{a(cz+d) - (az+b)c}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} \neq 0$$

Значит функция \hat{w} голоморфна в точках \hat{z}_0 и по теореме о конформности голоморфных отображений, она конформна в этих точках z_0 .

2) Рассмотрим точку $z_0 = -\frac{d}{c}$: $z \xrightarrow{L} w = \frac{az+b}{cz+d} \xrightarrow{L_0} \xi = \frac{1}{w}$

$$-rac{\mathbf{d}}{\mathbf{c}} \stackrel{L}{\longrightarrow} \infty \stackrel{L_0}{\longrightarrow} \mathbf{0}$$

Отображение $\xi = \frac{1}{w}$ сохраняет углы, то есть L_0 конформно.

Рассмотрим $L_0 \circ L$ в точке $z_0 = -\frac{d}{c}$:

$$(L_0 \circ L)'_{|z=-\frac{c}{d}} = \frac{cb - ad}{(az+b)^2}_{|z=-\frac{c}{d}} \neq 0$$

Значит отображение $L_0 \circ L$ конформно в точке $z_0 = -\frac{c}{d}$ $L = L_0^{-1} \circ (L_0 \circ L)$ конформно, так как композиция конформных и обратное к конформному отображению конформны.

3) Рассмотрим точку $z_0 = \infty$:

$$\xi = \frac{1}{z} \stackrel{L_0}{\longleftarrow} z \stackrel{L}{\longrightarrow} w = \frac{az+b}{cz+d}$$

$$\mathbf{0} \stackrel{L_0}{\longleftarrow} \infty \stackrel{L}{\longrightarrow} \frac{\mathbf{a}}{\mathbf{c}}$$

Рассмотрим отображение $L \circ L_0^{-1}$:

$$w = \frac{a \cdot \frac{1}{\xi} + b}{c \cdot \frac{1}{\xi} + d} = \frac{b \cdot \xi + a}{d \cdot \xi + c}$$
$$w'_{|0} = \frac{dc - da}{(d \cdot \xi + c)^2} \neq 0$$

Значит отображение $L \circ L_0^{-1}$ конформно в точке $\xi_0 = 0$. Тогда отображение $L = (L \circ L_0^{-1}) \circ L_0$ конформно в точке $z_0 = \infty$, так как композиция конформных и обратное к конформному отображению конформны.

Групповое свойство ДЛО:

Совокупность всех ДЛО Λ образует некоммутативную группу $(\Lambda; \circ)$ относительно операции композиции.

Доказательство.

0) Замкнутость:

$$w = \frac{az+b}{cz+d}; \ \xi = \frac{a_1w+b_1}{c_1w+d_1}$$

$$\xi = \frac{a_1 \cdot \frac{az+b}{cz+b} + b_1}{c_1 \cdot \frac{az+b}{cz+b} + d_1} = \frac{a_1(az+b) + b_1(cz+d)}{c_1(az+b) + d_1(cz+d)} = \frac{(a_a+b_1c)z + a_1b + b_1d}{(c_1a+d_1c)z + c_1b + d_1d}$$

Определитель $\begin{vmatrix} a_1a + b_1c & a_1b + b_1d \\ c_1a + d_1c & c_1b + d_1d \end{vmatrix}$ не равен 0, так как иначе композиция ДЛО была бы отображением в одну точку, но композиция биекций есть биекция.

- 1) Ассоциативность выполняется, так как композиция отображений ассоциативна
- 2) Существование единицы:

E:
$$w = z$$
, $\begin{pmatrix} a = 1 & b = 0 \\ c = 0 & d = 1 \end{pmatrix}$, $det = 1 \neq 0$

3) Существование обратного:

Пусть
$$L: w = \frac{az+b}{cz+d} - ДЛО.$$
 Построим обратное:

$$w(cz+d)=az+b$$

$$z(wc-a)=b-dw$$

$$L^{-1}:\ z=\frac{b-dw}{wc-a}-\text{ДЛО, так как}\ \begin{vmatrix} -d&b\\c&-a\end{vmatrix}=ad-bc\neq 0$$

4) Некоммутативность:

Приведем контрпример

$$L_1: w = z + a, L_2: w = \frac{1}{z}$$

$$L_1 \circ L_2: z \xrightarrow{L_2} w = \frac{1}{z} \xrightarrow{L_1} w = \frac{1}{z} + a$$

$$L_2 \circ L_1: z \xrightarrow{L_1} w = z + a \xrightarrow{L_2} w = \frac{1}{z + a}$$

Получили, что $L_1 \circ L_2 \neq L_2 \circ L_1$

4 Дробно-линейные функции, их геометрическая интерпретация и свойство трёх точек.

Дробно-линейные отображения — это функции вида:

$$w = \frac{az+b}{cz+d}$$
, где $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0, \ a,b,c,d \in \mathbb{C}$

Доопределим функцию выше следующим образом:

$$z = -\frac{d}{c}: \ w(-\frac{d}{c}) = \infty$$
$$z = \infty: \ w(\infty) = \begin{bmatrix} \frac{a}{c}, \ c \neq 0 \\ \infty, \ c = 0 \end{bmatrix}$$

Тогда ДЛО: $w: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Геометрическая интерпретация: ДЛО — взаимно-однозначное непрерывное отображение $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Теорема о трех точках

Для любых трех различных точек z_1, z_2, z_3 и других трех различных точек w_1, w_2, w_3 существует единственное ДЛО $L(z): L(z_i) = w_i$

Доказательство

1) Существование

Для любых 3-х точек z_1, z_2, z_3 существует ДЛО, отображающее их в $0, \infty, 1$ соответственно:

$$w = \frac{z - z_1}{z - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1}$$

Тогда рассмотрим отображения $L_1: \xi = \frac{z-z_1}{z-z_2} \cdot \frac{z_3-z_2}{z_3-z_1}$ и $L_2: \xi = \frac{w-w_1}{w-w_2} \cdot \frac{w_3-w_2}{w_3-w_1}$. Из группового свойства ДЛО следует, что L_2^{-1} – тоже ДЛО, и композиция ДЛО – тоже ДЛО. Тогда

получаем, что отображение $L = L_2^{-1} \circ L_1$ есть ДЛО, причем

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \stackrel{L_1}{\to} \begin{pmatrix} 0 \\ \infty \\ 1 \end{pmatrix} \stackrel{L_2^{-1}}{\to} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}, \tag{1}$$

то есть L есть искомое ДЛО.

2) Единственность Пусть λ – ДЛО, отличное от L, построенного в пункте 1, удовлетворяющее условиям теоремы. Рассмотрим отображение $\mu = L_2 \circ \lambda \circ L_1^{-1}$. Из группового свойства ДЛО полученное отображание – ДЛО, причем

$$\mu: \begin{pmatrix} 0 \\ \infty \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ \infty \\ 1 \end{pmatrix} \tag{2}$$

Теперь покажем, что $\mu = id$:

$$\mu = \frac{az + b}{cz + d}$$

a)
$$\mu(\infty) = \frac{a}{c} = \infty \Rightarrow c = 0$$

b)
$$\mu(0) = \frac{b}{d} = 0 \Rightarrow b = 0$$

c)
$$\mu(1) = \frac{a}{d} = 1 \Rightarrow a = d$$

В итоге получаем, что $\mu(z) = z \Rightarrow \mu = id$, то есть $L_2 \circ \lambda \circ L_1^{-1} = id \Rightarrow \lambda = L_2^{-1} \circ L_1 = L$, что и требовалось доказать.

5 Дробно-линейные функции, их геометрические свойства: круговое свойство и сохранение симметричности.

Дробно-линейные отображения — это функции вида:

$$w = \frac{az+b}{cz+d}$$
, где $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0, \ a,b,c,d \in \mathbb{C}$

Доопределим функцию выше следующим образом:

$$z = -\frac{d}{c}: \ w(-\frac{d}{c}) = \infty$$
$$z = \infty: \ w(\infty) = \begin{bmatrix} \frac{a}{c}, \ c \neq 0 \\ \infty, \ c = 0 \end{bmatrix}$$

Тогда ДЛО: $w: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Круговое свойство ДЛО

Любое ДЛО преобразует обобщенную окружность (окружность и ли прямая в $\overline{\mathbb{C}}$) в обобщенную окружность.

Доказательство.

1) случай, когда c = 0:

$$L: w = az + b$$

$$z \xrightarrow{L_1} z_1 = az \xrightarrow{L_2} z_2 = z_1 + b$$

 L_1 — растяжение с поворотом: окружность перейдет в окружность, а прямая в прямую

 L_2 — сдвиг: окружность перейдет в окружность, а прямая в прямую

2) случай, когда $c \neq 0$:

$$L: w = \frac{az+b}{cz+d} = \frac{a}{c} + \left(\frac{az+b}{cz+d} - \frac{a}{c}\right) = \frac{a}{c} + \frac{caz+bz - acz - ad}{c(cz+d)} = \frac{a}{c} + \frac{bc - ad}{c(cz+d)} = \frac{a}{c} + \frac{\frac{bc-ad}{c}}{z+\frac{d}{c}}$$

Обозначим
$$A = \frac{a}{c}, \ B = \frac{bc - ad}{c}, \ C = \frac{d}{c}$$
:

$$\begin{split} L: & w = A + \frac{B}{z+C} \\ z & \xrightarrow{L_1} z_1 = z + C \xrightarrow{L_2} z_2 = \frac{1}{z_1} \xrightarrow{L_3} z_3 = B \cdot z_2 \xrightarrow{L_4} w = A + z_3 \end{split}$$

Отображения L_1 и L_4 — сдвиги, L_3 — растяжение с поворотом. Они переводят окружности в окружности, а прямые в прямые.

Рассмотрим отображение L_2 : $w = \frac{1}{z}$

Общее уравнение обобщённой окружности на плоскости xOy:

$$E(x^{2} + y^{2}) + F_{1}x + F_{2}y + G = 0$$

$$E, F_{1}, F_{2}, G \in \mathbb{R}, (E, F_{1}, F_{2}, G) \neq (0, 0, 0, 0)$$

Запишем это уравнение через переменную z = x + iy:

$$x=rac{z+\overline{z}}{2},\;y=rac{z-\overline{z}}{2i}=irac{\overline{z}-z}{2}$$
 $Ez\overline{z}+F_1rac{z+\overline{z}}{2}+F_2irac{\overline{z}-z}{2}+G=0$ $Ez\overline{z}+Fz+\overline{F}\overline{z}+G=0,$ где $F=rac{1}{2}F_1-rac{1}{2}iF_2\in\mathbb{C},\;\overline{F}=rac{1}{2}F+rac{1}{2}iF_2$

Тогда кривая, полученная в результате преобразования L_2 задается уравнением:

$$E\frac{1}{z}\overline{\left(\frac{1}{z}\right)} + F\frac{1}{z} + \overline{F}\overline{\left(\frac{1}{z}\right)} + G = 0|\cdot z\overline{z}$$

$$E + F\overline{z} + \overline{F}z + Gz\overline{z} = 0,$$

что является уравнением обобщенной окружности. Значит отображение L_2 переводит обобщенную окружность в обобщенную окружность.

Свойство ДЛО сохранения симметричности

Произвольное ДЛО L преобразует любые точки z и z^* , симметричные относительно обобщенной окружности Γ , в точки

L(z) и $L(z^*)$, симметричные относительно обобщенной окружности $L(\Gamma)$.

Доказательство.

Пусть γ — произвольная обобщенная окружность, проходящая через точки L(z) и $L(z^*)$. Тогда $L^{-1}(\gamma)$ — обобщенная окружность по круговому свойству ДЛО.

Так как
$$L(z), L(z^*) \in \gamma$$
, то:
$$L^{-1}(L(z)) = z \in L^{-1}(\gamma) \text{ и } L^{-1}(L(z^*)) = z^* \in L^{-1}(\gamma).$$

По определению симметричных точек окружности Γ и $L^{-1}(\gamma)$ ортогональны. ДЛО L сохраняет углы, а значит $L(\Gamma)$ ортогональна $L(\gamma)$.

6 Стереографическая проекция. Расширенная комплексная плоскость и ее топология. Бесконечно удаленная точка, ее окрестности. Угол между кривыми в бесконечности. Дифференцируемость и конформность в бесконечности. Дробно-линейные функции как отображения расширенной комплексной плоскости.

Выберем ДСК с осями ξ, η, ζ , причем оси ξ, η совпадают с осями x,y. Рассмотрим сферу радиуса $\frac{1}{2}$ в этой системе коор-

динат, которая описывается уравнением

$$S^2: \xi^2 + \eta^2 + \left(\zeta - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2$$

а также луч, исходящий из точки N(0,0,1), и пересекающий плоскость 0xy в точке (x,y), заданный параметрически:

$$\begin{cases} \xi = 0 + tx \\ \eta = 0 + ty \\ \zeta = 1 + t \cdot (-1) \end{cases}$$

Точка пересечения луча со сферой (ξ, η, ζ) (подставляем в уравнение сферы уравнения луча):

$$t^{2}x^{2} + t^{2}y^{2} + \left(\frac{1}{2} - t\right)^{2} = \left(\frac{1}{2}\right)^{2}$$

$$t^{2}(x^{2} + y^{2} + 1) - t = 0 \quad | : t \neq 0$$

$$t = \frac{1}{1 + x^{2} + y^{2}} = \frac{1}{1 + |z|^{2}}$$

$$\begin{cases} \xi = \frac{x}{1 + x^{2} + y^{2}} = \frac{x}{1 + |z|^{2}} \\ \eta = \frac{y}{1 + x^{2} + y^{2}} = \frac{y}{1 + |z|^{2}} \\ \zeta = \frac{x^{2} + y^{2}}{1 + x^{2} + y^{2}} = \frac{|z|^{2}}{1 + |z|^{2}} \end{cases}$$
(3)

Обратное отображение:

$$\zeta = \frac{|z|^2 + 1 - 1}{1 + |z|^2} \Rightarrow \frac{1}{1 + |z|^2} = 1 - \zeta$$

$$\Rightarrow \xi = x(1 - \zeta), \eta = y(1 - \zeta) \Rightarrow$$

$$\begin{cases}
x = \frac{\xi}{1 - \zeta} \\
y = \frac{\eta}{1 - \zeta}
\end{cases}$$
(4)

Отображения (3) и (4) являются однозначными отображениями между \mathbb{C} и $S^2 \setminus N$, так как в преобразованиях не возникали неоднозначности.

 $\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$. $\overline{\mathbb{C}}$ называется расширенной комплексной плоскостью.

Топология $\overline{\mathbb{C}}$:

Открытое множество на $S^2-U\cap S^2,$ где U — открытое в $\mathbb{R}^3.$

Условимся, что точке N(0,0,1) соответствует точка ∞ поля $\overline{\mathbb{C}}$, тем самым определяется биекция между S^2 и $\overline{\mathbb{C}}$, точка ∞ называется **бесконечно удаленной точкой**.

Окрестностью U бесконечно удаленной точки называется множество точек z, удовлетворяющих неравенству

$$|z - z_0| > R, R \in \mathbb{R}$$

Функция $f:U\to\overline{\mathbb{C}},\infty\in U,$ дифференцируема в точке $\infty,$ если функция $\varphi(z)=f\left(\frac{1}{z}\right)$ дифференцируема в нуле.

Функция $f:U\to\overline{\mathbb{C}},\,\infty\in U,$ конформна в точке $\infty,$ если функция $\varphi(z)=f\left(\frac{1}{z}\right)$ конформна в нуле.

7 Интеграл от функции комплексного переменного вдоль пути в \mathbb{C} . Его свойства.

Путь – параметризованная кривая, возможно с самопересечением (непрерывное отображение $\gamma:[a,b]\subset\mathbb{R}\to\mathbb{C}$).

Пусть γ – гладкий путь, то есть $\gamma:z=z(t),\,t\in J=[\alpha,\beta]\subset \mathbb{R},\,z(t)\in \mathbb{C},\,z(J)\subset \mathbb{C},$ функция f(z) определена на z(J) и функция

 $f(z(t)): J \to \mathbb{C}$ непрерывна (говорят, что f непрерывна на γ).

Число $\int_{\alpha}^{\beta} f(z(t))z'(t)\,dt$ называют **интегралом от функ-**

ции f **вдоль пути** γ и обозначают $\int_{\gamma} f(z) \, dz$, где $z(t) = x(t) + iy(t), \, z'(t) = x'(t) + iy'(t).$

Свойства интеграла:

1. Линейность:
$$\int_{\gamma} [af(z) + bf(z)] \, dz = a \int_{\gamma} f(z) \, dz + b \int_{\gamma} f(z) \, dz;$$

2. Ориентированность:

$$\gamma : \frac{1}{t-d} = \frac{1}{t} - \gamma : \frac{1}{2} = \frac{1}{2} (\alpha + \beta - t)$$

$$\gamma : \frac{1}{2} = \frac{1}{2} (t)$$

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz;$$

3. Аддитивность:

$$\gamma_1 \cup \gamma_2 : z = \begin{cases} z_1(t), t \in [\alpha, \beta_1]; \\ z_2(t), t \in [\alpha_2, \beta]. \end{cases}$$
$$\int_{\gamma_1 \cup \gamma_2} f \, dz = \int_{\gamma_1} f \, dz + \int_{\gamma_2} f \, dz;$$

4. Независимость интеграла от выбора параметризации кривой:

Пусть $\gamma: z = z(t), t \in [\alpha, \beta], \gamma_1: z = z_1(\tau), \tau \in [\alpha_1, \beta_1]$ – два непрерывно дифференцируемых пути, $z_1(\tau) = z(t(\tau))$ $\forall \tau \in [\alpha_1, \beta_1],$ где $t = t(\tau): [\alpha_1, \beta_1] \to [\alpha, \beta]$ – непрерывно дифференцируемая возрастающая функция, f непрерывна на γ .

Тогда
$$\int_{\gamma} f \, dz = \int_{\gamma_1} f \, dz;$$

5. Оценка интеграла:

Если f – непрерывная функция на кусочно-гладком пути $\gamma:z=z(t),\,t\in[\alpha,\beta],\,$ то $|\int_{\gamma}f\,dz|\leq\int_{\gamma}|f(z)||z'(t)|\,dt$ (|z'(t)|dt=|dz| – дифференциал длины дуги).

Доказательство.

4. Независимость интеграла:

$$\int\limits_{\gamma} f dz = \int\limits_{\alpha}^{\beta} f(z(t))z'(t)dt =$$

$$\left|t = t(\tau), \ dt = t'(\tau)d\tau, \ \frac{dz(t(\tau))}{d\tau} = \frac{dt}{d\tau}\frac{dz(t(\tau))}{dt}\right|$$

$$= \int\limits_{\alpha_1}^{\beta_1} f(z(t(z))) \cdot z'(t(\tau))t'(\tau)d\tau = \int\limits_{\alpha_1}^{\beta_1} f(z_1(\tau))z'(\tau)d\tau = \int\limits_{\gamma_1} dz$$
 5. Оценка интеграла: Пусть $I = \int f dz \in \mathbb{C} = |I| \cdot \exp^{i\theta}$

$$|I| = \exp^{-i\theta} \cdot I = \int \exp^{-i\theta} f[z(t)]z'(t)dt$$
 Обозначим $g(t) = \exp^{-i\theta} f[z(t)]z'(t)$.
 Тогда $|I| = \int_{\alpha}^{\beta} Re \, g(t)dt + i \int_{\alpha}^{\beta} Im \, g(t)dt \leq \int_{\alpha}^{\beta} |g(t)|dt = \int_{\alpha}^{\beta} |\exp^{-i\theta}| \cdot |f(z(t))| \cdot |z'(t)|dt$

8 Теорема Коши для односвязных и многосвязных областей

Теорема 1 (Коши для односвязной области)

Если $D\subset\mathbb{C}$ — односвязная область, $f\in H(D)$ (f голоморфна), $\gamma\subset D$ — замкнутая кривая, то $\int_{\gamma}f\,dz=0$.

Доказательство.

Для случая, когда f'(z) непрерывная в D:

$$z = x + iy; f(z) = u(x, y) + iv(x, y)$$

$$I = \int\limits_{\gamma} f dz = \int\limits_{\alpha}^{\beta} f(z(t))z'(t)dt = \int [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1}{2} \int\limits_{\gamma} f(z(t))z'(t)dt = \int\limits_{\alpha} [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1}{2} \int\limits_{\gamma} f(z(t))z'(t)dt = \int\limits_{\alpha} [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1}{2} \int\limits_{\alpha} [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1$$

$$[x'(t) + it'(t)]dt = \int_{\alpha}^{\beta} [u \cdot x' - v \cdot y') + i(uy' + vx')]dt = \int_{\alpha}^{\beta} (ux' - v \cdot y') + i(uy' + vx')dt = \int_{\alpha}^{\beta} [u \cdot x' - v \cdot y'] dt = \int_{\alpha}^{\beta} [u \cdot x'$$

$$(vy')dt + i\int_{\alpha}^{\beta} (uy' + vx')dt = \int_{\gamma} udx - vdy + i\int_{\gamma} udy + vdx = \int_{\gamma} udx - vdy + i\int_{\gamma} udx - vdx + i\int_{\gamma} udx + vdx + i\int_{\gamma} udx + i\int_{\gamma} udx + i\int_{\gamma} udx$$

Разрежем γ на простые контуры γ_i :

$$\gamma = \bigcup_{j=1}^{\kappa} \gamma_j, \ G_j$$
 — область внутри γ_j

$$I = \sum_{j=1}^{k} \left[\oint_{\gamma_{j}} u \, dx - v \, dy + i \oint_{\gamma_{j}} v \, dx + u \, dy \right] =$$

$$= \sum_{j} \left[\iint_{G_{j}} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx \, dy + i \iint_{G_{j}} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx \, dy \right] = 0$$

Теорема 2 (Коши для многосвязной области)

Пусть многосвязная область D ограничена внешним конту-

ром L_0 и внутренними контурами $L_1, ..., L_n$, контуры $L_1, ..., L_n$ – кусочно-гладкие, $f \in H(D \cup L_0 \cup L_1 \cup ... \cup L_n)$.

Тогда $\int_L f \, dz = 0$, где $L = L_0 \cup L_1 \cup ... \cup L_n$, обход L_0 – против часовой стрелки, $L_1, ..., L_n$ – по часовой стрелке.

Замечание. $\oint_{L_0} f \, dz = \sum_{i=1}^n \oint_{L_i} f \, dz$, где обход $L_0, L_1, ..., L_n$ против часовой стрелки.

Доказательство.

С помощью разрезов $\gamma_1,...,\gamma_n$ получим односвязную область D^* . Тогда $D=D^*\cup\gamma_1\cup...\cup\gamma_n$.

Так как
$$D^*$$
-односвязная, то $0 = \int\limits_{D^*} f dz =$

Граница $D^* = L_0 \cup \gamma_1 \cup -\gamma_1 \cup L_1 \cup ... \cup \gamma_n \cup -\gamma_n \cup L_n$.

Тогда из аддитивности и ориентированности:

$$=\int\limits_{L_0}fdz+\sum\limits_{i=1}^n\left[\int\limits_{\gamma_i}fdz+\int\limits_{-\gamma_i}fdz+\int\limits_{L_i}fdz\right]=\int\limits_{L}fdz=0\quad \ \Box$$

9 Интегральная формула Коши для функции и ее производных.

Интегральная формула Коши для голоморфных функций:

Пусть D — односвязная область в \mathbb{C} , ∂D — граница D, $f \in H(D \cup \partial D)$.

Тогда для $z_0 \in D$:

$$f(z_0) = \frac{1}{2\pi i} \cdot \oint_{\partial D} \frac{f(z)}{z - z_0} dz$$

Доказательство.

1) Пусть L_1 – простой контур, $L_1 \subset D$ Пусть D_1 – область внутри L_1 , $G = D \backslash D_1 \backslash L_1$ – многосвязная область

По т. Коши для многосвязной области:

$$\int_{\partial G} \frac{f(z)}{z - z_0} dz = 0,$$

т.к.
$$\frac{f(z)}{z-z_0}\in H(G)$$

Имеем $\partial G=\partial D\cup (-L_1)$:

$$\oint \partial D \frac{f(z)}{z - z_0} dz - \oint \frac{f(z)}{z - z_0} dz = 0$$

2) Пусть
$$\gamma: z=z+r\cdot e^{it},\ t\in [0,2\pi],\ r>0$$
 $f(z)=(z-a)^n;\ n\in \mathbb{Z}$

$$\int_{\gamma} (z-a)^n dz = \int_{0}^{2\pi} (a+r\cdot e^{it}-a)^n \cdot r \cdot ie^{it} dt = r^{n+1} \cdot i \cdot \int_{0}^{2\pi} e^{it(n+1)} dt \Rightarrow$$

$$\Rightarrow \oint_{L_1} \frac{dz}{z-z_0} = 2\pi i$$
, где L_1 – окр-ть с центром в точке z_0

3) Пусть
$$\sigma_1$$
 – радиус L_1 и $L_1 \subset D$

$$I = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0}$$

$$= \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le \frac{1}{2\pi |i|} \oint_{L_1} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| z'(t) dt$$

4) Так как $f\in H(D)$, то $\forall \varepsilon>0\,\exists \delta(\varepsilon)>0:\,|z-z_0|<\delta\to|f(z)-f(z_0)|<\varepsilon$

Имеем $z \in L_1: |z - z_0| = \sigma_1$:

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| < \frac{\varepsilon}{\sigma_1}$$
: $\oint_{L_1} |z'(t)| dt$ – длина L_1 , то есть $2\pi\sigma_1$

Тогда $I \leq \frac{1}{2\pi} \cdot \frac{\varepsilon}{\gamma_1} \cdot 2\pi\sigma_1 = \varepsilon \Rightarrow$ не зависит от ε

Интегральная формула Коши для производных:

Пусть $f \in H(D)$: $G \cup \partial G \subset D$; D — область, ограниченная конечным числом замкнутых кривых, $z_0 \in G$

Тогда:

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\partial G} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$

Доказательство.

По теоремам о разложении голоморфной функции в степенной ряд и теореме о единственности разложения в степенной ряд:

$$c_n = \frac{1}{2\pi} \oint_{\gamma r} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}; \oint_{\gamma r} \dots = \oint_{\gamma G} \square$$

10 Степенные ряды в \mathbb{C} , их свойства. Голоморфность суммы степенного ряда.

Ряд
$$\sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 — **степенной** ряд, $c_n \in \mathbb{C}$.

Свойства:

1. Теорема Абеля:

Если степенной ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится в точке z_1 , то этот ряд сходится в круге $U=\{z\in\mathbb{C}:\,|z-z_0|<|z_1-z_0|\}$ и на любм компакте $K\subset U$ он сходится равномерно.

2. Теорема Коши-Адамара:

Пусть для ряда
$$A: \sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 имеем $\overline{\lim}_{n\to\infty} \sqrt[n]{|c_n|} = \frac{1}{R}$, где $1 \le \infty$.

Тогда в любой точке $z: |z-z_0| < R$ ряд сходится и в любой точке $z: |z-z_0| > R$ ряд расходится.

Голоморфность суммы степенного ряда:

Пусть в круге
$$U = \{z \in \mathbb{C} : |z - z_0| < R\}$$
 $S(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$.

Тогда
$$S \in H(U_R(z_0))$$
 и $S'(z) = \sum_{n=1}^{\infty} n \cdot c_n (z-z_0)^{n-1}$ (*)

Доказательство.

 $r: \ 0 < r < R$ — произвольные.

Пусть
$$z_1 \in U_R(z_0)$$
: $|z - z_0| > r$
 $\forall z \in U_r(z_0) = \{z : |z - z_0| < r\} :$
 $|n \cdot C_n(z - z_0)^{n-1}| = n \left| C_n \frac{(z - z_0)^{n-1}}{(z_1 - z_0)^n} \right| \cdot |(z_1 - z_0)^n| = n \frac{1}{|z_1 - z_0|} \cdot$

$$|C_n(z_1-z_0)^n|\cdot \left|\frac{z-z_0}{z_1-z_0}\right|^{n-1} \le n\frac{M}{|z_1-z_0|}\rho^{n-1},$$
 где $M>|C_n(z_1-z_0)^n|,\; \rho=\left|\frac{z-z_0}{z_1-z_0}\right|$ То есть ряд $\sum_{n=1}^\infty n\frac{M}{|z_1-z_0|}\rho^{n-1}=\frac{M}{|z_1-z_0|}\sum_{n=1}^\infty n\rho^{n-1}$ — мажорирующий для ряда $(*).$

Ряд $\sum_{n=1}^{\infty} n \rho^{n-1}$ сходится при $\rho \in (0;1)$ как ряд из производных

ряда $\sum_{n=1}^{\infty} \rho^n$. Тогда по признаку Вейерштрасса ряд (*) сходится равномерно и абсолютно в $U_r(z_0)$.

Для любой замкнутой кривой $\gamma \subset U_r(z_0)$ по теореме Коши:

$$\oint_{\gamma} \left(\sum_{n=1}^{\infty} nC_n (z - z_0)^{n-1} \right) dz = \sum_{n=1}^{\infty} C_n \oint_{\gamma} (z - z_0)^{n-1} dz = 0$$

Значит функция $g(z) = \sum_{n=1}^{\infty} n \cdot C_n (z-z_0)^{n-1}$ имеет первообразную в $U_r(z_0)$, которая равна:

$$\int_{z_0}^{z} g(\xi)d\xi = \int_{z_0}^{z} \sum_{n=1}^{\infty} n \cdot C_n(\xi - z_0)^{n-1}d\xi = \sum_{n=1}^{\infty} nC_n \frac{(z - z_0)^n}{n} = S(z) - S(z_0) = S(z) - C_0.$$

Следовательно $S \in H(U_r(z_0)) \forall r \in (0; R)$.

Поэтому
$$S \in H(U_R(z_0))$$
 и $S' = g$.

Следствия из этой теоремы:

1. Производная функции $f \in H(D)$ голоморфна в D Доказательство.

 $z_0 \in D$ — произвольная точка множества $D \Rightarrow z_0$ — внутренняя точка D, так как D — открытое множество \Rightarrow

$$\exists R > 0 : U_R(z_0) \subset D \Rightarrow$$

(теорема о разложении голоморфной функции в ряд)

$$f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n \Rightarrow$$
 (голом. степенного ряда)

- $\Rightarrow f'(z)$ сумма степенного ряда, значит голоморфна \Box
- 2. Если функция f в области D первообразную, то $f \in H(D)$
- 3. $f \in H(D) \Rightarrow f$ бесконечно дифференцируема и все ее производные голоморфны

11 Теорема о разложении голоморфной функции в ряд Тейлора. Неравенства Коши для коэффициентов ряда Тейлора. Теорема Лиувилля.

Теорема о разложение голоморфной функции в ряд Тейлора:

Пусть
$$D$$
 – область в \mathbb{C} $f \in H(D), \ z_0 \in D, U_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\} \subset D.$

Тогда
$$f(z) = \sum_{n=0}^{\infty} c_n \cdot (z-z_0)^n$$
, $z \in U_R(z_0)$, $c_n = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\xi)}{(\xi-z)^{n+1}} d\xi$, $\gamma_r = 0$

$$\{z \in \mathbb{C} : |z - z_0| = r\}$$

Доказательство.

По интегральной формуле Коши:

$$f(z) = rac{1}{2\pi i} \int\limits_{\gamma_r} rac{f(\xi)}{\xi - z} d\xi \, \, \mathrm{ec}$$
ли $|z - z_0| < r$

$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0 - (z - z_0)} = \frac{1}{\xi - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} (=)$$

$$\frac{|z - z_0|}{|\xi - z_0|} = \frac{|z - z_0|}{r} < 1$$

$$(=) \frac{1}{z-z_0} \cdot \sum_{n=0}^{\infty} \left(\frac{z-z_0}{\xi-z_0}\right)^n, \ \frac{1}{2\pi i} f(z)$$
 – непрерывна.

Тогда
$$\frac{1}{2\pi i}f(z)\cdot\frac{1}{\xi-z}=\frac{1}{2\pi i}\sum\frac{f(\xi)(z-z_0)^n}{0}$$
 – сходится равномерно, значит можно интегрировать почленно.

Тогда получаем утверждение теоремы:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \sum_{n=0}^{\infty} \frac{f(\xi)(z-z_0)^n}{(\xi-z_0)^{n+1}} d\xi = \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z-z_0)^n \int_{\gamma_r} \frac{f(\xi)}{(z-z_0)^{n+1}} d\xi$$

Неравенство Коши для коэффициентов ряда Тейлора:

Пусть функция $f \in H(\overline{U})$, где $U = \{z : |z - z_0| d \le r\}$ и $\partial \overline{U} = \gamma_r, |f(z) \le M.$

Тогда коэффициенты ряда Тейлора f удовлетворяют следующему неравеству: $|c_n| \leq \frac{M}{r^n}$

Доказательство.

$$|c_n| = |\frac{1}{2\pi i} \int\limits_{\gamma_r} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi| \le \frac{1}{2\pi} \cdot \frac{M}{r^{n+1}} \cdot 2\pi r = \frac{M}{r^n},$$
 так как $|f(\xi)| \le M$ и $(\xi - z)^{n+1} \le r^{n+1}$

Теорема Лиувилля:

 $f \in H(\mathbb{C})$ и f – ограниченная функция $\Rightarrow f = const$

Доказательство. По теореме о разложении голоморфной функции в ряд Тейлора функция f представима в виде $f=\sum_{n=0}^{\infty}c_n(z-z_0)^n$ внутри окружности любого радиуса R, причем по этой же теореме коэффициенты ряда не зависят от R.

Тогда из неравенства Коши для коэффициентов ряда Тейлора:

$$|c_n| \le \frac{M}{R^n}$$

Из того что R произвольный следует, что $c_n=0$ для любого n, а значит f=const

12 Бесконечная дифференцируемость голоморфных функций. Единственность разложения в степенной ряд. Теорема Морера. Эквивалентность голоморфности в смысле Римана, Коши и Вейерштрасса.

Голоморфность суммы степенного ряда:

Пусть в круге
$$U = \{z \in \mathbb{C} : |z - z_0| < R\}$$
 $S(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$.

Тогда
$$S \in H(U_R(z_0))$$
 и $S'(z) = \sum_{n=1}^{\infty} n \cdot c_n (z-z_0)^{n-1}$ (*)

Доказательство.

 $r: \ 0 < r < R$ — произвольные.

Пусть
$$z_1 \in U_R(z_0) : |z - z_0| > r$$

$$\forall z \in U_r(z_0) = \{z : |z - z_0| < r\} :$$

$$|n \cdot C_n(z - z_0)^{n-1}| = n \left| C_n \frac{(z - z_0)^{n-1}}{(z_1 - z_0)^n} \right| \cdot |(z_1 - z_0)^n| = n \frac{1}{|z_1 - z_0|} \cdot |(z_1 - z$$

$$|C_n(z_1-z_0)^n| \cdot \left|\frac{z-z_0}{z_1-z_0}\right|^{n-1} \le n \frac{M}{|z_1-z_0|} \rho^{n-1},$$

где
$$M > |C_n(z_1 - z_0)^n|, \ \rho = \left|\frac{z - z_0}{z_1 - z_0}\right|$$

То есть ряд
$$\sum_{n=1}^{\infty} n \frac{M}{|z_1-z_0|} \rho^{n-1} = \frac{M}{|z_1-z_0|} \sum_{n=1}^{\infty} n \rho^{n-1}$$
 — мажо-

рирующий для ряда (*).

Ряд $\sum_{n=1}^{\infty} n \rho^{n-1}$ сходится при $\rho \in (0;1)$ как ряд из производных

ряда $\sum_{n=1}^{\infty} \rho^n$. Тогда по признаку Вейерштрасса ряд (*) сходит-

ся равномерно и абсолютно в $U_r(z_0)$.

Для любой замкнутой кривой $\gamma \subset U_r(z_0)$ по теореме Коши:

$$\oint_{\gamma} \left(\sum_{n=1}^{\infty} nC_n (z - z_0)^{n-1} \right) dz = \sum_{n=1}^{\infty} C_n \oint_{\gamma} (z - z_0)^{n-1} dz = 0$$

Значит функция $g(z) = \sum_{n=1}^{\infty} n \cdot C_n (z-z_0)^{n-1}$ имеет первооб-

разную в $U_r(z_0)$, которая равна:

$$\int_{z_0}^{z} g(\xi)d\xi = \int_{z_0}^{z} \sum_{n=1}^{\infty} n \cdot C_n(\xi - z_0)^{n-1}d\xi = \sum_{n=1}^{\infty} nC_n \frac{(z - z_0)^n}{n} = S(z) - S(z_0) = S(z) - C_0.$$

Следовательно $S \in H(U_r(z_0)) \forall r \in (0; R)$.

Поэтому
$$S \in H(U_R(z_0))$$
 и $S' = g$.

Следствие из этой теоремы: Производная функции $f \in H(D)$ голоморфна в D

Доказательство.

 $z_0 \in D$ – произвольная точка множества $D \Rightarrow z_0$ – внутренняя точка D, так как D – открытое множество \Rightarrow

$$\exists R > 0 : U_R(z_0) \subset D \Rightarrow$$

(теорема о разложении голоморфной функции в ряд)

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \Rightarrow$$
 (голом. степенного ряда)

$$\Rightarrow f'(z)$$
 – сумма степенного ряда, значит голоморфна \Box

Из следствия 1 теоремы о разложении функции в степенной ряд следует бесконечная дифференцируемость голоморфных функций.

Теорема о единственности разложения в степенной ряд:

Если в
$$U_R(z_0)$$
 $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$, то $c_n = \frac{f^{(n)}(z_0)}{n!}$

Доказательство.

$$f(z_0) = c_0$$

$$f'(z_0) = \sum_{n=1}^{\infty} nc_n (z - z_0)^{n-1} = c_1$$

$$f^{(k)} = \sum_{n=k}^{\infty} n(n-1)\dots(n-k+1)c_n(z-z_0)^{n-k} =$$

$$= k(k-1)\dots 1 = k!c_k \Rightarrow$$

$$\Rightarrow c_k = \frac{f^{(k)}(z_0)}{k!}$$

Теорема Морера:

Пусть $D \subset \mathbb{C}$ – область, $f \in C(D)$ и $\int = 0$ для произвольного треугольника Δ при $\Delta \cup \partial \Delta \subset D$.

Тогда $f \in H(D)$

Доказательство.

Пусть $a \in D$ — призвольная точка.

Так как D – открытое, то $\exists r: U_r(a) \subset D$

Рассмотрим функцию
$$F = \int_{[a,z]} f(\xi)d\xi, z \in U_r(z_0)$$

Аналогично доказательству теоремы о первообразной $F \in$ H(D) и F'(z) = f(z)

Из голоморфности производной голоморфной функции следует утверждение теоремы

Теорема об эквивалетности трех определений голоморфности: 3 следующих утверждения эквивалентны: R) функция f в некоторой окрестности U(a) имеет комплексную производную (Риман)

C) $f \in C(U(a))$ и $\int\limits_{\partial \Delta} f(z)dz = 0$ для любого треугольника

 $\Delta \subset U(a)$ (Коши) $\overset{\circ \Delta}{\mathrm{W}}$ функция f разложима в степенной ряд в окрестности точки a по (z-a) (Вейерштрасс)

Доказательство.

- $R)\Rightarrow C)$ из теоремы Коши
- $R)\Rightarrow W)$ по теореме о разложении голоморфной функции степенной ряд
- $W)\Rightarrow R)$ теорема о голоморфности суммы степенного ряда

$$(C) \Rightarrow R$$
) – по теореме Морера

13 Нули голоморфной функции, их свойства. Теорема единственности. Вычисление порядка нуля.

Определение:

Нулем функции f называется точка $a \in \mathbb{C}$: f(a) = 0 **Теорема:**

Если f(a)=0, f голофорфна в точке a, и $f\equiv 0$ в какой то окрестности точки a, то $\exists n\in\mathbb{N}: f(z)=(z-a)^n\varphi(z)$, где $\varphi(z)\neq 0$ и φ голоморфна в точке a

Доказательство.

По теореме о разложении голоморфной функции в степенной ряд:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
 в некоторой окрестности точки a

$$f(a) = c_0 = 0, \ \exists n \in \mathbb{N} \ c_n \neq 0 \ ($$
иначе $f(z) \equiv 0)$

Пусть $n \in \mathbb{N}$ – такое, что $c_0 = c_1 = \cdots = c_{n-1} = 0$. Тогда

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n = \sum_{k=n}^{\infty} c_k (z-a)^k = (z-a)^k \sum_{k=n}^{\infty} c_k (z-a)^{k-n}$$

Функция $\varphi = \sum_{n=k}^{\infty} c_k (z-a)^{k-n}$ и есть искомая функция (голоморфна и не ноль в a)

Следствие:

Если f(a)=0, f голоморфна в точке a, то существует выколотая окрестность точки a, где функция не имеет нулей, то есть ее нули – изолированные точки

Теорема о порядке нуля голомофрной функции:

Порядок нуля $a \in \mathbb{C}$ голоморфной функции f совпадает с n в формуле $f(z) = (z-a)^n \varphi(z)$

Доказательство.

В ходе доказательства теоремы о представлении голоморфной функции имеющей нуль было показано,

что
$$c_0 = \dots c_{n-1}$$
. Из того что $c_k = f^{(k)}(a)$ следует доказательство теоремы

Теорема единственности:

Если D – область в \mathbb{C} ; $f_1, f_2 \in H(D)$, $\forall z \in \mathcal{E} \subset D$: $f_1 = f_2$, a – предельная точка множества \mathcal{E} и $a \in D$, то $f_1 = f_2$ на всем D

Доказательство.

$$f = f_1 - f_2 \in H(D), \ \mathcal{R} = \{z \in D : f_1 = f_2\}.$$

Тогда a – предельная точка множества $\mathcal R$

Тогда есть последовательность $\{z_n\},\ z_n \to a$ при $n \to \infty$.

Из непрерывности f следует что $\lim_{z_n} f(z_n) = 0$, а

Из того что a – предельная точка множества \mathcal{R} и следствия теоремы следует, что

 $f\equiv 0\Rightarrow f_1=f_2$ в некоторой окрестности точки a

Из того что a — произвольная предельная точка имеем, что \mathcal{R} — замкнутное подмножество D

Из связности D следует, что $Int \mathcal{R} = D$

14 Ряды Лорана, их области сходимости. Теоремы о разложении голоморфной функции и о единственности разложения в ряд Лорана. Неравенство Коши для коэффициентов ряда Лорана.

Ряд Лорана:

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n = \sum_{n=-1}^{-\infty} c_n (z-a)^n + \sum_{n=0}^{\infty} c_n (z-a)^n$$

Первая сумма, с отрицательными коэффициентами,

$$\sum_{n=-1}^{-\infty} c_n (z-a)^n$$
, называется **главной частью**.

Вторая сумма называется правильной частью.

Ряд Лорана сходится, когда сходятся оба ряда.

Ясно, что правильная часть сходится, если

$$|z - a| < R_1$$

где R — некоторое действительное число. Аналогичным образом при замене $\xi = \frac{1}{z-a}$ главная часть преобразуется к обычному ряду

$$\sum_{n=-1}^{-\infty} c_n \xi^{-n} = \sum_{k=1}^{\infty} c_{-k} \xi^k$$

откуда $\xi < R_2$, где R_2 — некоторое действительное число, откуда

$$|z - a| > R_2$$

Таким образом получаем два условия сходимости ряда Лорана, оба из которых должны выполняться для сходимости ряда, а значит областью сходимости ряда Лорана (за исключением граничных случаев) является кольцо:

Теорема Лорана.

Пусть $0 \le R_2 < R_1 \le \infty$, $V = \{z \in \mathbb{C} \mid R_2 < |z - a| < R_1\}$, $f \in H(V)$.

Тогда
$$f(z) = \sum_{-\infty}^{+\infty} c_n (z-a)^n$$
, где

$$c_n = \frac{1}{2\pi i} \oint_{|z-a|=\rho} \frac{f(\xi)}{(\xi-a)^{n+1}} d\xi$$

 $n \in \mathbb{Z}, R_2 < \rho < R_1$

Доказательство.

Пусть r, R — такие, что $R_2 < r < R < R_1$. Тогда $V' = \{z \in \mathbb{C} : r < |z - a| < R\}$

$$\gamma V' = \gamma_r(a) \cup \gamma_R(a) \subset V, a \in V'$$

Интегральная формула Коши: $f(z) = \frac{1}{2\pi i} \cdot \int\limits_{\gamma V'} \frac{f(\xi)}{\xi - z} d\xi =$

$$\frac{1}{2\pi i} \oint_{\gamma_R(a)} \dots - \frac{1}{2\pi i} \oint_{\gamma_r(a)} \dots (=)$$

На $\gamma_R(a)$ обход против часовой стрелки:

$$\frac{1}{\xi - z} = \frac{1}{(\xi - a)(1 - \frac{z - a}{\xi - a})} = \sum_{n=0}^{\infty} \frac{(z - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(\xi - a) - (z - a)} = \frac{1}{(\xi - a)(1 - \frac{z - a}{\xi - a})} = -\frac{1}{z - a} \sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^{n+1}} = \frac{1}{(z - a)(1 - \frac{\xi - a}{z - a})} = -\frac{1}{z - a} \sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(z - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(z - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(z - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(\xi - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(\xi - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(\xi - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(\xi - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(\xi - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = \frac{1}{(\xi - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^n} = -\sum_{n=0}^{\infty} \frac{(\xi - a)^n}{(\xi - a)^{n+1}} = -\sum_{n=0}$$

Теорема о единственности разложения в ряд Лорана.

Если в кольце $V = \{z \in \mathbb{C} \mid r < |z - a| < R\}$

$$(*)f(z) = \sum_{-\infty}^{+\infty} c_n(z-a)^n$$

ТО

$$c_n = \frac{1}{2\pi i} \oint_{|z-a|=\rho} \frac{f(\xi)}{(\xi-a)^{n+1}} d\xi$$

где $n \in \mathbb{Z}, r < \rho < R$

Доказательство.

Ряд сходится равномерно на γ , т.к.:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n + \sum_{k=1}^{\infty} c_{-k} (z-a)^{-k}$$

1.

$$|c_n(z-a)^n| = |c_n| \cdot |z-a|^n = |c_n|\rho^n < |c_n|R^n, z = a + \rho e^{it}$$

 $r < r_1 < \rho < R_1 < R$

 $\sum_{n=0}^{\infty} |c_n| R^n$ — сходится, значит по признаку Вейерштрасса первая часть f(z) сходится равномерно.

2.

$$|c_{-k}(z-a)^{-k}| = \frac{|c_{-k}|}{|z-a|^k} = \frac{|c_{-k}|}{\rho^k} < \frac{|c_{-k}|}{r_1^k};$$

 $\sum \frac{|c_{-k}|}{r_1^k}$ сходится, значит вторая часть сходится равномерно.

$$f(z) \cdot (z-a)^{-k-1} = \sum_{n=-\infty}^{\infty} c_n (z-a)^{n-k-1} \Rightarrow \oint_{\gamma} \frac{f(z)}{(z-a)^{k+1}} dz =$$

$$\sum_{n=-\infty}^{+\infty} c_n \oint_{\gamma} (z-a)^{n-k-1} dz = \begin{cases} 0, \text{ если } n-k \neq 0 \\ 2\pi i, \text{ если } n-k = 0 \end{cases} = c_k \cdot 2\pi i$$

Неравенство Коши для коэффициентов Лорана.

Пусть
$$V=\{z\in\mathbb{C}\ |\ r<|z-a|< R\},\, f\in H(V),$$
 $\gamma=\{z\ |\ |z-a|=\rho\},\, \rho\in(r,R)$ $\forall z\in\gamma\ |f(z)|\leq M,\,$ тогда

$$|c_n| \le \frac{M}{\rho^n}, \forall n \in \mathbb{Z}$$

42

Изолированные особые точки голоморфных функций, их 15 классификация и характеризация в терминах рядо Лорана. Поведение голоморфных функций в окрестности особых точек.

Точка $\mathbf{z_0}$ — изолированная особая точка функции f, если:

$$\exists r > 0: \ f \in H(\overset{\circ}{U_r}(z_0))$$

Разложение в ряд лорана в окрестности z_0 :

$$f(z)=\sum_{n=-\infty}^{+\infty}c_nz^n$$
, обл. сход. содержит $U_r(z_0)$

Главная часть:
$$\sum_{n=-\infty}^{-1} c_n z^n$$
 Правильная часть: $\sum_{n=0}^{+\infty} c_n z^n$

Правильная часть:
$$\sum_{n=0}^{\infty} c_n z^n$$

Классификация особой точки a (характеризация):

- 1. Устранимая, если существует конечный предел функции в этой точке.
- 2. Полюс, если предел функции равен бесконечности в этой точке.
- 3. Существенно особая, если не существует предела функции в этой точке.

Характеризация устранимой особой точки:

Если точка $a \in \mathbb{C}$ — изолированная особая точка функции f, то следующие условия эквивалентны:

- 1. а устранимая особая точка
- 2. Лорановское разложение функции f в окрестности точки а не содержит главной части.

3. Функция f ограничена в окрестности точки a.

Доказательство.

"2)
$$\rightarrow$$
 1)":

Разложение в ряд Лорана в $\overset{\circ}{U_{\delta}}(a)$:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n \to c_0$$
 при $z \to a \Rightarrow 1)$

"1)
$$\rightarrow$$
 3)":

 $\lim z \to af(z) = A \in \mathbb{C} \Rightarrow f$ – ограниченная в некоторой окрестности точки a.

"3)
$$\rightarrow$$
 2)":

 $\exists \delta_1 > 0 f \in H(\overset{\circ}{U}_{\delta_1}(a)) \Rightarrow$ по теореме Лорана

$$\Rightarrow f = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n \text{ B } \overset{\circ}{U}_{\delta_1}(a).$$

Пусть $\delta_1 > 0$; f ограниченна M > 0 в $\overset{\circ}{U}_{\delta_1}(a), \rho \in (0; \delta_1) \Rightarrow$ по неравенству Коши $\Rightarrow \forall n \in \mathbb{Z} |c_n| \leq \frac{M}{\rho^n}$

Если n < 0, то $\frac{M}{\rho^n} \to 0$ при $\rho \to 0$. Но $|c_n|$ не зависит от выбора ρ . Поэтому $c_n = 0$ при $n < 0 \Rightarrow 2$).

Характеризация полюса:

Если точка $a \in \mathbb{C}$ — изолированная особая точка функции f, то следующие условия эквивалентны:

- 1. а устранимая особая точка
- 2. Главная часть Лорановского разложения функции f в окрестности точки a содержит конечное (>0) число слагаемых:

$$f(z) = \sum_{n=-N}^{\infty} c_n (z-a)^n,$$

где $N > 0, c_{-N} \neq 0$

3. $f = \frac{1}{\varphi}$, где φ — голоморфная в точке a и $\varphi(a) \neq 0$.

Доказательство.

"2)
$$\rightarrow$$
 1)":

$$f(z) = \sum_{n=-N}^{\infty} c_n (z-a)^n = \frac{1}{(z-a)^N} \sum_{n=-N}^{\infty} c_n (z-a)^{n+N},$$

где
$$\frac{1}{(z-a)^N} o \infty$$
 при $z o a$ и $\sum_{n=-N}^\infty c_n (z-a)^{n+N}$ — степенной

ряд
$$\Rightarrow c_{-N} \neq 0$$
.

"1)
$$\rightarrow$$
 3)":

$$arphi(z) = egin{cases} rac{1}{f(z)}, \ ext{если} \ z
eq a \ 0, \ ext{если} \ z = a \end{cases}$$
 — голоморфнаяв точке a

Функция $\frac{1}{f(z)}$ имеет устарнимую особую точку в $a \Rightarrow \frac{1}{f(z)} =$

$$\sum_{n=0}^{\infty} a_n (z-a)^n$$

$$\lim_{z \to a} \frac{1}{f(z)} = 0 \Rightarrow a_0 = 0$$

"3)
$$\to$$
 2)": Пусть N – такое, что $a_0 = 0 = a_1 = \dots =$

$$a_{N-1},\ a_N
eq 0.$$
 Тогда $\dfrac{1}{f(z)} = \sum_{n=N}^\infty a_n (z-a)^n = arphi(z) \Rightarrow$

$$\Rightarrow f(z) = \frac{1}{\sum_{n=N}^{\infty} a_n (z-a)^n} = \frac{1}{(z-a)^N} \cdot \frac{1}{\sum_{n=N}^{\infty} a_n (z-a)^{n-N}},$$

где
$$\sum_{n=N}^{\infty} a_n (z-a)^{n-N}$$
 – голоморфна в точке a , равна $a_N \neq 0$;

$$\frac{1}{\sum_{n=N}^{\infty} a_n (z-a)^{n-N}}$$
 – голоморфна в окрестности точки a .

$$\Rightarrow f(z) = \frac{1}{(z-a)^N} \sum_{k=0}^{\infty} c_k (z-a)^k = \sum_{k=0}^{\infty} c_k (z-a)^{k-N} =$$

$$= \sum_{n=-N}^{\infty} \tilde{c_n} (z-a)^n; \tilde{c_{-N}} = c_0 \neq 0$$

Характеризация существенно особой точки:

Изолированная особая точка a функции f является существенно особой

Главная часть Лорановского разложения функции f в окрестности точки a имеет бесконечное число слагаемых.

Доказательство.

Следует из характеризаций устранимой особой точки и вычета.

Поведение голоморфных функций в окрестности особых точек. Теорема Сохоцкого:

Если a — существенная особая точка функции f, то $\forall A \in \overline{\mathbb{C}}$ $\exists \{z_n\}$:

$$z_n \to z_0$$
 при $n \to \infty, f(z_n) \to A$

.

Доказательство.

Пусть $A=\infty$. Так как f не может бысть ограниченной в проколотой окрестности $\{0<|z-a|< r\}$ (из характеризации устранимой особой точки), то найдется в этой окрестности такая точка z_1 , в которой $|f(z_1)|>1$. Точно так же в $\{0<|z-a|<\frac{|z_1-a|}{2}\}$ найдется точка z_2 , в которой $|f(z_2)|>2$ и т.д., в $\{0<|z-a|<\frac{|z_1-a|}{n}\}$ найдется точка z_n ,

в которой $|f(z_n)| > n$. Очевидно, $z_n \to a$ и $\lim_{n \to \infty} f(z_n) = \infty$.

Пусть теперь $A \neq \infty$. Либо точки, в которых f равна A имеют a своей предельной точкой, и тогда из них можно выбрать последовательности $z_n \to a$, на которой $f(z_n) = A$, либо существует проколотая окрестность $\{0 < |z-a| < r'\}$, в которой $f(z) \neq A$. В этой окрестности голоморфна функция $\varphi(z) = \frac{1}{f(z) - A}$, для которой a также является суще-

ственно особой точкой (т.к. $f(z) = A + \frac{1}{\varphi(z)}$ и если бы φ при $z \to a$ стремилась к конечному или бесконечному пределу, то f – также). По доказанному существует последовательность $z_n \to a$, по которой $\varphi(z_n) \to \infty$, но по этой последовательности:

$$\lim_{n \to \infty} f(z_n) = A + \lim_{n \to \infty} \frac{1}{\varphi(z_n)} = A$$

16 Вычеты, их вычисление. Вычисление контурных интегралов с помощью вычетов.

Вычетом функции f в точке z_0 называют число:

$$res f(z_0) = \frac{1}{2\pi i} \oint_{\partial r} f(z) dz$$

Вычисление вычетов: Теорема о связи вычета с рядом Лорана:

Пусть f — голоморфна в выколотой окрестности точки a. Тогда:

$$res f(a) = c_{-1},$$

где
$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n$$

Доказательство.

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n$$
 в $\overset{\circ}{U}_{\delta}(a)$, где $f \in H(\overset{\circ}{U}_{\delta}(a))$

$$\gamma_r = \{z : |z-a| = r\}, r \in (0,\delta), \text{ r.e. } \gamma_r \subset \overset{\circ}{U}_{\delta}(a)$$

Значит ряд сходится равномерно на $\gamma_r \Rightarrow$

$$\Rightarrow res f(z) = \frac{1}{2\pi i} \oint_{\gamma_r} f(z) dz = \frac{1}{2\pi i} \sum_{-infty}^{+\infty} \oint_{-infty} \gamma_r c_n (z-a)^n dz =$$

$$\frac{1}{2\pi i}c_{-1}\cdot 2\pi i.$$

Следствие:

В устранимой особой точке z_0 : $res f(z_0) = 0$

Формула вычисления вычета в полюсе

Пусть z_0 — полюс функции f. Тогда:

$$res f(z) = \frac{1}{(n-1)!} \lim_{z \to z_0} (f(z)(z-z_0)^n)^{(n-1)}$$

Доказательство.

Разложение f в ряд Лорана:

$$f(z) = \frac{c_{-n}}{(z-a)^n} + \dots + \frac{z_{-1}}{z-a} + c_0 + c_1(z-a) + \dots$$

$$f(z) \cdot (z-a)^n = c_{-n} + c_{-(n-1)}(z-a) + \dots + c_{-1}(z-a)^{n-1} + c_0(z-a)^n + \dots$$

$$[f(z)\cdot(z-a)^n]^{(n-1)} = c_{-1}\cdot(n-1)! + \frac{n!}{1!}\cdot c_0\cdot(z-a) + \dots$$

При $z \to a$:

$$[f(z) \cdot (z-a)^n]^{(n-1)} \to c_{-1} \cdot (n-1)! = (n-1)! res f(a) \qquad \Box$$

Следствие:

Если $f(z)=\frac{\varphi(z)}{\psi(z)}$, где φ,ψ – голоморфны в точке $a,\,\psi(a)=0,\psi'(a)\neq 0.$

To
$$res f(a) = \frac{\varphi(a)}{\psi'(a)}$$

Доказательство.

1.

$$arphi(a)=0\Rightarrow\lim_{a o a}f(z)=\lim_{z o a}rac{arphi'(z)}{\psi'(z)}=rac{arphi'(a)}{\psi'(a)}\in\mathbb{C}\Rightarrow a$$
 – устранимая ос.т. $\Rightarrow res\,f(a)=0=rac{arphi(a)}{\psi'(a)}$

2.

 $arphi(a)
eq 0 \Rightarrow rac{1}{f(z)} = rac{\psi(z)}{arphi(z)}$ имеет в точке a нуль первого порядка. Значит a — полюс 1-ого порядка. Тогда:

$$res f(a) = \lim_{z \to a} \frac{\varphi(z)}{\psi(z)}(z - a) = \frac{\lim_{z \to a} \varphi(z)}{\lim_{z \to a} \frac{\psi(z)}{z - a}} = \frac{\varphi(a)}{\psi'(a)}.$$

Теорема Коши о вычетах (вычисление контурных интегралов):

Пусть $f \in H(D \setminus \{a_1...a_n\})$, где $a_1...a_n$ — изолированные особые точки $f, G \cup \partial G \subset D, \partial D$ не содержит особых точек f.

Тогда:

$$\oint_{\partial G} f(z)dz = 2\pi i \sum_{i=1}^{n} res f(a_i)$$

(обход положительный)

Доказательство.

Следует из теоремы Коши для многосвязной области:

Окружности, окружающие $a_1,...,a_{\nu}$ не пересекаются и лежат

внутри
$$\gamma G$$
.
 $\tilde{G} = G \setminus (D_1 \cup ... \cup D_{\nu}), f \in H(\tilde{G})$

$$\int_{\gamma \tilde{G}} f(z) dz = 0 \Rightarrow \int_{\gamma G} ... + \sum_{j=1}^{\nu} \int_{-\gamma D_j} ... = 0 \Rightarrow$$

$$\Rightarrow \int_{\gamma G} \dots -\sum_{j=1}^{\nu} 2\pi i \cdot res \, f(a_j) = 0 \Rightarrow \int_{\gamma G} f(z) dz = 2\pi i \sum_{j=1}^{\nu} res \, f(a_j).$$

51

Характеризация в терминах рядов Лорана изолированной 17 особой точки ∞ . Вычет в бесконечности.

Точка ∞ — изолированная особая точка функции f, если:

$$\exists R>0:\ f\in H(\overset{\circ}{U_R}(\infty))$$

Разложение в ряд Лорана в окрестности ∞ :

$$f(z)=\sum_{n=-\infty}^{+\infty}c_nz^n$$
, обл. сход. содержит $U_R(\infty)$

Главная часть:
$$\sum_{n=1}^{+\infty} c_n z^n$$
Правильная часть: $\sum_{n=0}^{-\infty} c_n z^n$

Правильная часть:
$$\sum_{n=0}^{\infty} c_n z^n$$

Классификация особой точки ∞ (характеризация):

- 1. Устранимая, если существует конечный предел функции в этой точке.
- 2. Полюс, если предел функции равен бесконечности в этой точке.
- 3. Существенно особая, если не существует предела функции в этой точке.

Характеризация устранимой особой точки:

Если точка $a \in \mathbb{C}$ — изолированная особая точка функции f, то следующие условия эквивалентны:

- 1. а устранимая особая точка
- 2. Лорановское разложение функции f в окрестности точки а не содержит главной части.
- 3. Функция f ограничена в окрестности точки a.

Доказательство.

"2)
$$\rightarrow$$
 1)":

Разложение в ряд Лорана в $\overset{\circ}{U_{\delta}}(a)$:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n \to c_0$$
 при $z \to a \Rightarrow 1)$

"1)
$$\rightarrow$$
 3)":

 $\lim z \to af(z) = A \in \mathbb{C} \Rightarrow f$ – ограниченная в некоторой окрестности точки a.

"3)
$$\rightarrow$$
 2)":

 $\exists \delta_1 > 0 f \in H(\overset{\circ}{U}_{\delta_1}(a)) \Rightarrow$ по теореме Лорана

$$\Rightarrow f = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n \text{ B } \overset{\circ}{U}_{\delta_1}(a).$$

Пусть $\delta_1 > 0$; f ограниченна M > 0 в $\overset{\circ}{U}_{\delta_1}(a), \rho \in (0; \delta_1) \Rightarrow$ по неравенству Коши $\Rightarrow \forall n \in \mathbb{Z} |c_n| \leq \frac{M}{\rho^n}$

Если n < 0, то $\frac{M}{\rho^n} \to 0$ при $\rho \to 0$. Но $|c_n|$ не зависит от выбора ρ . Поэтому $c_n = 0$ при $n < 0 \Rightarrow 2$).

Характеризация полюса:

Если точка $a \in \mathbb{C}$ — изолированная особая точка функции f, то следующие условия эквивалентны:

- 1. a устранимая особая точка
- 2. Главная часть Лорановского разложения функции f в окрестности точки a содержит конечное (>0) число слагаемых:

$$f(z) = \sum_{n=-N}^{\infty} c_n (z-a)^n,$$

где $N > 0, c_{-N} \neq 0$

__

3. $f = \frac{1}{\varphi}$, где φ — голоморфная в точке a и $\varphi(a) \neq 0$.

Доказательство.

"2)
$$\rightarrow$$
 1)":

$$f(z) = \sum_{n=-N}^{\infty} c_n (z-a)^n = \frac{1}{(z-a)^N} \sum_{n=-N}^{\infty} c_n (z-a)^{n+N},$$

где
$$\frac{1}{(z-a)^N} o \infty$$
 при $z o a$ и $\sum_{n=-N}^{\infty} c_n (z-a)^{n+N}$ — степенной

ряд
$$\Rightarrow c_{-N} \neq 0$$
.

"1)
$$\rightarrow$$
 3)":

$$arphi(z) = egin{cases} rac{1}{f(z)}, \ ext{если} \ z
eq a \ 0, \ ext{если} \ z = a \end{cases}$$
 — голоморфнаяв точке a

Функция $\frac{1}{f(z)}$ имеет устарнимую особую точку в $a\Rightarrow \frac{1}{f(z)}=$

$$\sum_{n=0}^{\infty} a_n (z-a)^n$$

$$\lim_{z \to a} \frac{1}{f(z)} = 0 \Rightarrow a_0 = 0$$

"3)
$$\to$$
 2)": Пусть N – такое, что $a_0 = 0 = a_1 = \dots =$

$$a_{N-1},\ a_N \neq 0$$
. Тогда $\dfrac{1}{f(z)} = \sum_{n=N}^{\infty} a_n (z-a)^n = \varphi(z) \Rightarrow$

$$\Rightarrow f(z) = \frac{1}{\sum_{n=N}^{\infty} a_n (z-a)^n} = \frac{1}{(z-a)^N} \cdot \frac{1}{\sum_{n=N}^{\infty} a_n (z-a)^{n-N}},$$

где
$$\sum_{n=N}^{\infty} a_n (z-a)^{n-N}$$
 – голоморфна в точке a , равна $a_N \neq 0$;

$$\frac{1}{\sum_{n=N}^{\infty} a_n (z-a)^{n-N}}$$
 – голоморфна в окрестности точки a .

$$\Rightarrow f(z) = \frac{1}{(z-a)^N} \sum_{k=0}^{\infty} c_k (z-a)^k = \sum_{k=0}^{\infty} c_k (z-a)^{k-N} =$$

$$= \sum_{n=-N}^{\infty} \tilde{c_n} (z-a)^n; \tilde{c_{-N}} = c_0 \neq 0$$

Характеризация существенно особой точки:

Изолированная особая точка a функции f является существенно особой

Главная часть Лорановского разложения функции f в окрестности точки a имеет бесконечное число слагаемых.

Доказательство.

Следует из характеризаций устранимой особой точки и вычета.

Вычетом функции f в точке ∞ называют число:

$$\operatorname{res} f(\infty) = \frac{1}{2\pi i} \oint_{-\gamma_R} f(z) dz,$$

где $\gamma_R = \{a: |z| = R\}, R$ – такое, что вне γ_R нет особых точек, кроме, может быть ∞ .

Теорема о связи вычета в бесконечности с рядом Лорана:

Если в некоторой выколотой окрестности ∞ функция f голоморфна, то:

$$res f(\infty) = -c_{-1},$$

где c_{-1} — коэффициент разложения f в ряд Лорана в окрестности ∞ .

Доказательство.

$$res\,f(\infty)=rac{1}{2\pi i}\oint\limits_{-\gamma_R}f(z)dz=rac{1}{2\pi i}\sum_{n=-\infty}^{+\infty}\oint\limits_{-\gamma_R}c_nz^ndz=$$
 $=rac{1}{2\pi i}c_{-1}\oint\limits_{-\gamma_R}rac{dz}{z}=-c_{-1}$ Прим.: $\oint\limits_{-\gamma_R}rac{dz}{z}=-2\pi i$, т.к. обход по часовой стрелке.

18 Логарифмический вычет, его вычисление. Приращение (полярного) аргумента вдоль пути. Принцип аргумента. Теорема Руше и ее применение.

Пусть $f \in H(\mathring{U}_r(a)), a \in \mathbb{C}, r > 0$. Тогда вычет функции $\frac{f'(z)}{f(z)} = \frac{d}{dt} Lnf(z)$ в точке a называют **логарифмическим** вычетом функции f в точке a.

Лемма о логарифмическом вычете в нуле и в полюсе:

Логарифмический вычет ф. f(z) в точке a равен:

- 1. порядку нуля a, если a нуль
- 2. пордяку полюса a, если a полюс

Доказательство.

1) Пусть a — нуль порядка n ф-ии f(z), тогда:

$$f(z) = a_n(z-z)^n + a_{n+1}(z-a)^{n+1} + \dots = (z-a)^n \cdot \varphi(z)$$
, где

 $\varphi(z)$ — сумма степенного ряда, откуда следует, что $\varphi \in H$

$$\varphi(z) = c_n \neq 0 \Rightarrow \frac{f'(z)}{f(z)} = \frac{n(z-a)^{n-1} \cdot \varphi(z) + (z-a)^n \varphi'(z)}{(z-a)^n \varphi(z)} =$$

$$\frac{1}{z-a}(n+(z-a)\cdot\frac{\varphi'(z)}{\varphi(z)})\Rightarrow a$$
 — полюс 1-ого порядка функции

$$\frac{f'}{f} \Rightarrow C_{-1} = n$$
, т.к. $\frac{n}{z-a}$ — главная часть.

2) Пусть a — полюс порядка p, тогда по теорему о полюсе a — нуль порядка p функции $\frac{1}{f(z)} = g(z)$.

$$\frac{f'(z)}{f(z)} = -\frac{d}{dz} Ln \frac{1}{f(z)}$$

Тогда логарифмический вычет функции g в точке a равен p, а функции f в точке a равен -p.

Теорема о логарифмическом вычете:

Пусть f мероморфна в области $D \subset \mathbb{C}, G \cup \partial G \subset D, \partial G$ не содержит ни нулей, ни полюсов функции f, N и P – количество нулей и полюсов с учетом их порядков функции f в G.

Тогда
$$\frac{1}{2\pi i}\int\limits_{\partial G} \frac{f'(z)}{f(z)}\,dz = N-P$$
 (обход ∂G против часовой

стрелки),

где $\int\limits_{\partial G} \frac{f'(z)}{f(z)}\,dz$ — логарифмический вычет функции f вдоль кривой $\partial G.$

Доказательство.

Особые точки $\frac{f'(z)}{f(z)}$ в области G:

- 1. полюса $a_1,..,a_l$ с порядками $p_1,...,p_l$
- 2. нули $b_1,..,b_m$ с порядками $n_1,...,n_m$

Тогда по лемме о логарифмическом вычете $\frac{f'}{f}(a_j) = -p_j,$

$$res\frac{f'}{f}(b_s) = n_s$$

По теореме Коши:

$$\frac{1}{2\pi i} \int_{\partial G} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \cdot 2\pi i \left(\sum_{j=1}^{l} res \frac{f'}{f}(a_j) + \sum_{s=1}^{m} res \frac{f'}{f}(b_s) \right) =$$

$$= -\sum_{j=1}^{l} p_j + \sum_{s=1}^{m} n_s = N - P$$

 $\Delta_{\gamma} arg f = 2\pi k, \ k$ – количество обходов точки О f(z), $z \in \gamma$, с учетом приращения.

Принцип аргумента. Пусть f мераморфна в $D \subset \mathbb{C}, G \cup$ $\partial G \subset D, \, \partial G$ не содержит ни нулей, ни полюсов f. Тогда $N-P=\frac{1}{2\pi}\Delta_{\partial G}argf.$

Доказательство.

Пусть ∂G : $z=z(t),\ t\in [\alpha,\beta],\ \Phi(t)=\ln f(z(t)),$ где $\ln f$ непрерывно меняется при росте t от α до β . Тогда $\Phi'(t) =$ $\frac{f'(z(t))}{f(z(t))} \cdot z'(t)$ и поэтому

$$\begin{split} \int\limits_{\partial G} \frac{f'}{f} dz &= \int\limits_{\alpha}^{\beta} \frac{f'(z(t))}{f(z(t))} z'(t) dt = \Phi(\beta) - \Phi(\alpha) = \\ &= \ln f(z(\beta)) - \ln f(z(\alpha)) = \ln |f(z(\beta))| + i \arg f(z(\beta)) - \ln |f(z(\alpha))| - \\ &- i \cdot \arg f(z(\alpha)) = i \Delta_{\partial G} \arg f = \text{ (по т. 0 логар.выч.) } N - P = \\ &= \frac{1}{2\pi i} \int\limits_{\partial G} \frac{f'(z)}{f(z)} dt = \frac{i \Delta_{\partial G} \arg f}{2\pi i} \end{split}$$

Теорема Руше:

Пусть $f, g \in H(G \cup \partial G)$ и $\forall z \in \partial G : |f(z)| > |g(z)|$. Тогда функции f и f+g имеют одинаковое количество нулей в G.

Доказательство.

$$\forall z \in \partial G : |f(z)| > |g(z)| \ge 0 |(f+g)(z)| \ge |f(z)| - |g(z)| > 0$$

Отсюда следует, что функция f и f+g не имеют нулей на

 ∂G .

По принципу аргумента $\Delta_{\partial G} arg(f+g) = N_{f+g}$ (количество нулей функции f+g в G).

С другой стороны:

$$\Delta_{\partial G} arg f (1 + \frac{g}{f}) = \Delta_{\partial G} arg f + \Delta_{\partial G} (1 + \frac{g}{f}) = N_f$$

Применение:

Найти число корней уравнения $z^8 - 4z^5 + z^2 - 1 = 0$ в области |z| < 1.

На границе области |z|=1, тогда т.к. $|z^8+z^2-1|\leq |z|^8+|z|^2+|-1|=3<|-4z^5|=4$ и уравнение $-4z^5=0$ имеет 5 корней в этой области, то исходное уравнение также иммеет 5 корней в этой области.

19 Теорема о среднем и принцип максимума модуля. Принцип сохранения области.

Теорема о среднем: Пусть $f \in H(D), z_0 \in D, \partial U_\rho(z_0) \subset D$

Тогда
$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt$$

Доказательство.

По интегральной формуле Коши:

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial U_{\rho}(z_0)} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + \rho e^{it})}{\rho e^{it}} i\rho e^{it} dt =$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + \rho e^{it}) dt$$

Параметр $\partial U_{\rho}(z_0): z = z_0 + \rho e^{it}: t \in [0; 2\pi], z' = i\rho e^{it}$

Принцип сохранения области:

Функция f голоморфна в области D и $f \neq const$

Образ f(D) есть область

Доказательство.

Нужно показать, что множество D^* связно и открыто.

1) Пусть w_1, w_2 — две произвольные точки D^* , а z_1, z_2 — их прообразы.

Так как множество D линейно связно, то существует путь $\gamma: [\alpha; \beta] \to D$, связывающий точки z_1, z_2 . В силу непрерывности функции f образ $\gamma^* = f \circ \gamma$ будет путем, связывающим точки w_1, w_2 . Таким образом D^* — линейно связно.

2) Пусть w_0 произвольная точка D^* и z_0 — один из ее прообразов в D. Так как D открыто, то сущестует круг $\{|z-z_0| \le c_1\}$

$$r$$
 $\subset D$.

Будем уменьшать r пока круг не перестанет содержать других точек, в которых функция f равна w_0 (это возможно, т.к. она не постоянная).

Обозначим $\gamma = \{|z - z_0| = r\}$ границу этого круга и

$$\mu = \min_{x \in \gamma} |f(x) - w_0|, \ \mu > 0$$

Если бы $\mu = 0$, то на γ существовала бы точка, в которой функция f равна w_0 .

Теперь докажем, что $\{|w - w_0| < \mu\} \subset D^*$.

Пусть w_1 — произвольная точка этого круга, то есть $|w_1 - w_0| < \mu$. Тогда:

$$f(z) - w_1 = f(z) - w_0 + (w_0 - w_1).$$

Так как на γ в силу выбора μ имеем $|f(z) - w_0| \ge \mu$, то по теорему Руше функция $f(z) - w_1$ имеет внутри γ столько же нулей, сколько и $d(z) - w_0$, то есть по крайней мере один нуль z_0 , а значит функция f внутри γ принимает значение w_1 , то есть $w_1 \in D^*$. В силу произвольности выбора w_1 весь круг лежит в D^* , а значит оно является открытым множеством.

Принцип максимума модуля:

Модуль голоморфной функции не может достигать строгого локального максимума внутри области.

Доказательство.

Пусть функция достигает максимума в некоторой точке z_0 . Воспользуемся принципом сохранения области. Если $f \neq const$, то она преобразует z_0 в точку w_0 области D^* .

Существует круг $\{|w-w_0| < \mu\} \subset D^*$, а в нем найдется точка w_1 такакя, что $|w_1| > |w_0|$. Значение w_1 принимается функ-

цией f в некоторой окрестности точки z_0 , а это противоречит тому, что |f| достигает максимума в этой точке. \square

20 Основные теоремы и приложения теории конформных отображений. Теорема Римана, принцип симметрии Римана-Шварца, принцип соответствия границ с обратным принципом соответствия границ.

Основные теоремы и приложения конформных отображения:

- 1. **Теорема Римана** (о возможности конформного и взаимно однозначного отображения одной односвязной области на другую)
 - Пусть D односвязная область в $\overline{\mathbb{C}}$, граница которой содержит не менее двух точек. Тогда:
 - (a) \exists голоморфная в D функция w=f(z), которая отображает D конформно и однозначно на единственный круг G:|w|<1;
 - (b) эту функцию можно выбрать так, что $f(z_0) = w_0$, arg $f'(z_0) = \alpha$, где $Z_0 \in D$, $w_0 \in G$ заданные точки, α заданное действительное число.

Функция f, удовлетворяющая 1. и 2. единственная.

2. Принцип симметрии Римана-Шварца

Пусть D_1 — односвязная область, лежащая в верхней полуплоскости Imz>0, граница Γ_1 , которая содержит интервал γ действительной оси Imz=0, область D_2 симметрична D_1 относительно действительной оси, функция f(z) непрерывна на D_1 , Γ_1 , голоморфна на D_1 и принимает действительные занчения на γ . Тогда функция f может голоморфно продолжить в область $D_1 \cup \gamma \cup D_2$ по формуле:

$$f(z) = \begin{cases} f_1(z), & \text{если} z \in D_1 \cup \gamma, \\ \overline{f_1(\overline{z})}, & \text{если} z \in D_2. \end{cases}$$
 (5)

3. Принцип соответствия границ

Пусть Γ и Γ^* – простые контуры, D и D^* – односвязные области, ограниченные Γ и Γ^* соответственно, функция f(z) однолистно и конформно отображает D на D^* . Тогда

- (a) $\underline{f}(z)$ имеет непрерывное продолжение \overline{f} на Γ , то есть $\overline{f}:\overline{D}=D\cup\Gamma\to\mathbb{C}$ непрерывна и $\overline{f}|_D=f$
- (b) \overline{f} отображает Γ на Γ^* взаимно однозначно, причемположительному обходу Γ соответствует положительный обход Γ^* .

4. Обратный принцип соответствия границ

Пусть D – односвязная область в \mathbb{C} , ограниченная кусочногладким контуром Γ . $\overline{D} = D \cup \Gamma$, $f \in H(D)$, функция f(z) отображает контур Γ взаимно однозначно на простой кусочно-гладкий контур Γ^* .

Тогда f(z) отображает D конформно и однозначно на область D*, ограниченную контуром Γ^* , причем положительному обходу Γ соответствует положительный обход Γ^* .

21 Вычисление несобственных интегралов с использование вычетов. Лемма Жордана и теорема о вычислении несобственного интеграла от рациональной функции с помощью вычетов.

Лемма Жордана:

Пусть f(z) — непрерывная функция в $\{Im \, z \geq 0\}$ за исключением изолированного множества точек;

$$\gamma_R=\{z\in\mathbf{C}:\,|z|=R,\,Im\,z\geq 0\};\\ M(R)=\max_{z\in\gamma_R}\lvert f(z)\rvert,\,M(R)\to 0\text{ при }R\to\infty;$$

Тогда
$$\forall \lambda > 0 \int\limits_{\gamma_R} f(z) e^{i\lambda z} dz \to 0$$

Теорема о вычислении несобственного интеграла от рациональной функции с помощью вычетов:

Пусть $f(x) = \frac{P_m(x)}{Q_n(x)}$, где $P_m(x), Q_n(x)$ – многочлены степени m и n соответственно, $n \ge m+2$;

 $Q_n(x) \neq 0$ при $x \in \mathbb{R}$ (не имеет действительных корней);

Тогда
$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{j=1}^{k} res f(z_j),$$

где $z_1,...,z_k$ – все полюса f в области $Im\,z>0$

Доказательство.

Так как f непрерывна на компакте γ_R , то $\exists \max_{z \in \gamma_R} |f(z)|$.

$$\max \frac{|P_m(z)|}{|Q_n(z)|} = \max_{|z|=R, Im} \frac{|d_m z^m + \ldots|}{|a_n z^n + \ldots|} \sim \max_{|z|=R, Im} \frac{|b_m||z|^m}{|a_n||z|^n} =$$

R-Takoe, 200
bee occorre T. J
bee occorre T. J
bee occorre T. J
bee occorrer
box Im 2 >0
pachoroxetur
box pour nonyupyro

$$=\max_{|z|=R}rac{|b_m|}{|a_n|}\cdotrac{1}{|z|^{n-m}}\simrac{|b_m|}{|a_n|}\cdotrac{1}{R^{n-m}}$$
 при $R o\infty$

Пусть $L(\gamma_R)$ – длина γ_R . Тогда:

$$\left|\int\limits_{\gamma_R} f(z)dz\right| \leq \max_{a \in \gamma_R} \lvert f(z) \rvert \cdot L(\gamma_R) \, \sim \, c \frac{1}{R^{n-m}} \pi R \, = \, \frac{c\pi}{R^{n-m-1}} \, \to \, 0$$
 при $R \to \infty, n-m-1 > 0$

Откуда следует, что $\left|\int\limits_{\gamma_R} f(z)dz\right| o 0$ при $R o \infty.$

По теореме Коши: $\oint\limits_{\gamma D_R} f(z)dz = 2\pi i \sum_{j=1}^k res\, f(z_j)$ не зависит от R, при $R \to \infty$:

$$\oint_{\gamma D_R} f(z)dz = \int_{\gamma_R} f(z)dz + \int_{-R}^R f(x)dx \to 0 + \int_{-\infty}^{-\infty} f(x)dx. \qquad \Box$$

Пример вычисления несобственного интеграла от тригонометрических функций:

Вычислить интеграл
$$\int_{-\infty}^{+\infty} \frac{x \cos x dx}{x^2 - 2x + 10}$$

Функция $f(z)=\frac{ze^{iz}}{z^2-2z+10}$ удовлетворяет условиями леммы Жордана. Здесь t=1 и $F(z)=\frac{z}{z^2-2z+10}$. Особыми точками функции f(z) являются полюсы первого порядка $z=1\pm 3i$. В верхней полуплоскости иммется единственная особая точка z=1+3i. Вычислим относительно этой точки вычет функции f(z):

$$res f(1+3i) = \frac{ze^{iz}}{(z^2 - 2z + 10)'} = \frac{(1+3i)e^{-3+i}}{6i}$$

Следовательно,
$$\int_{-\infty}^{+\infty} \frac{xe^{ix}dx}{x^2 - 2x + 10} = 2\pi i \frac{(1+3i)e^{-3+i}}{6i} = \frac{\pi}{3}e^{-3}(1+2i)e^{-3+i}$$

$$3i)(\cos 1 + i\sin 1) = \frac{\pi}{3}e^{-3}(\cos 1 - 3\sin 1) + i\frac{\pi}{3}e^{-3}(3\cos 1 + \sin 1).$$

Сравнивая в обеисх частях этого равенства действительные и мнимые части с учитывая, что

$$\int_{-\infty}^{+\infty} \frac{xe^{ix}dx}{x^2 - 2x + 10} = \int_{-\infty}^{+\infty} \frac{x\cos x \, dx}{x^2 - 2x + 10} + i \int_{-\infty}^{+\infty} \frac{x\sin x \, dx}{x^2 - 2x + 10}$$

получим

$$\int_{0}^{+\infty} \frac{x \cos x \, dx}{x^2 - 2x + 10} = \frac{\pi}{3} e^{-3} (\cos 1 - 3 \sin 1),$$

$$\int_{-\infty}^{+\infty} \frac{x \sin x \, dx}{x^2 - 2x + 10} = \frac{\pi}{3} e^{-3} (3 \cos 1 + \sin 1),$$

22 Определение преобразования Лапласа. Теорема о существовании изображения. Поведение изображения в бесконечно удаленной точке. Изображение элементарных функций (единичная функция Хевисайда, показательная и степенная функции). Теорема обращения.

Пусть f(t) — функция, $t \in \mathbb{R}$

 Π реобразование Π апласа функции f — это

$$F(p) = \int_{0}^{+\infty} f(t)e^{-pt}dt, \in \mathbb{C}$$

Обозначение: $F(p) \rightleftharpoons f(t), f(t) \rightleftharpoons F(p)$

Функцию f(t) называют **оригиналом**

- 1. f(t) кусочно-непрерывная при $t \ge 0$
- (2. f(t)) = 0 при t < 0
- 3. $\exists M > 0$: $\exists \alpha \in \mathbb{R}$: $|f(t)| \leq Me^{\alpha t}$

Теорема о существования изображения:

Пусть f(t) — оригинал

Тогда: 1) интеграл $F(p)=\int\limits_0^{+\infty}f(t)e^{-pt}dt$ сходится абсолютно в области $\{p\in\mathbb{C}:Re\ p>\alpha\}$

2) изображение F(p) — аналитическая функция в U_{α} .

Доказательство.

 $|f(t)| \le Me^{\alpha t}$ — условие 3) из определения оригинала Пусть $p = \delta + is$, тогда:

$$|f(t)e^{-pt}| = |f(t)| \cdot |e^{-\delta t}| \cdot |e^{-ist}| \le Me^{\alpha t}e^{-\delta t} = Me^{(\alpha - \delta)t}$$

$$|F(p)| = \lim_{b \to +\infty} \left| \int_0^b f(t) e^{-pt} dt \right| \leq \text{по теореме об оценке}$$

$$\leq \lim_{b \to +\infty} \int_0^b |f(t) e^{-pt}| dt \leq \lim_0^b M e^{(\alpha - \delta)t} dt = \lim_{b \to +\infty} \frac{M}{\alpha - \delta} e^{(\alpha - \delta)t} |_0^b =$$

$$= \lim_{b \to +\infty} \frac{M}{\alpha - \delta} (e^{(\alpha - \delta)b} - 1) = -\frac{M}{\alpha - \delta} = \frac{M}{\delta - \alpha}, \text{ значит по признаку Вейерштрасса сходится равномерно.}$$

Значит
$$Re\left(p=\delta+is\right)=\delta\Rightarrow Re\,pj>\alpha\Rightarrow F'(p)=\int\limits_0^{+\infty}(-t)f(t)e^{-pt}dt\Rightarrow$$
 $F(p)$ — аналитическая функция.

Поведение изображения в бесконечности:

Если изображение F(p) аналитическая функция в ∞ , то $F(\infty) = 0$.

Доказательство.

Из доказательства теоремы 1:

$$|F(p)| \le \frac{M}{\delta - \alpha},$$

где $\alpha=const,\ \delta=Re\ p.$ Если $Re\ p\to\infty,\ {\rm To}\ \frac{M}{\delta-\alpha}\to 0 \Rightarrow |F(p)|\to 0,\ {\rm т.к.}\ F(p)\to F(\infty).$

Изображение элементарных функций:

1. Функция Хевисайда ν

$$\nu(t) = \begin{cases} 1, \text{ при } t \ge 0 \\ 0, \text{ при } t \ge 0 \end{cases}$$

$$\int_{0}^{\infty} 1e^{-pt} dt = -\frac{e^{-pt}}{p}|_{0}^{+\infty}$$

При
$$p=\delta+is$$
 : $|e^{-pt}|=|e^{-\delta t}\cdot e^{-ist}|$ Тогда $1 \stackrel{.}{=} \frac{1}{p}$

2. Показательная функция

$$e^{\alpha t} \stackrel{.}{=} \frac{1}{p - \alpha}$$

По теореме затухания $\forall \alpha \in \mathbb{C} : e^{\alpha t} f(t) \rightleftharpoons F(p - \alpha)$

Так как $1 \stackrel{\cdot}{=} \frac{1}{p}$, то имеем:

$$e^{\alpha t} \cdot 1 \stackrel{\longrightarrow}{=} \frac{1}{p-a}$$

3. Степенная функция

$$t^n \stackrel{\cdot}{=} \frac{n!}{p^{n+1}}$$

Докажем по индукции:

По теореме об интегрировании оригинал $\int\limits_0^t f(\tau)d\tau \ensuremath{
ightarrow} rac{F(p)}{p}$

При n=0 : выполняется. Пусть выполнено для n=k, тогда:

$$f(\tau) = \tau^k \stackrel{.}{=} \frac{k!}{p^k}$$

$$t^{k+1} = (k+1) \cdot \int_0^t \tau^k d\tau = (k+1) \cdot \frac{k!}{p^k \cdot p} = \frac{(k+1)!}{p^{k+1}}$$

Теорема обращения:

Если f(t) — оригинал с постоянной α ;

$$F(p) \coloneqq f(t); t$$
 – точка, в которой $f(t)$ – непрерывная. $\gamma + i\infty$

To
$$f(t)=rac{1}{2\pi i}\int\limits_{\gamma-i\infty}^{\gamma+i\infty}F(p)e^{pt}dp$$
 — интеграл по прямой $Re\ p=\gamma,\ \gamma>\alpha$

23 Основные свойства преобразования Лапласа. Теоремы линейности, подобия, затухания, запаздывания, опережения, дифференцирования и интегрирования оригинала, дифференцирования и интегрирования изображения. Свертка двух функций. Теорема умножения изображений. Доказать теоремы затухания и дифференцирования оригинала, сформулировать остальные теоремы.

Свойства преобразования Лапласа:

1. Теорема линейности:

$$\forall A, B \in \mathbb{R} : Af(t) + Bg(t) \rightleftharpoons A \cdot F(p) + B \cdot G(p)$$

2. Теорема подобия:

$$\forall \lambda > 0 : f(\lambda t) \stackrel{\cdot}{=} \frac{1}{\lambda} F\left(\frac{b}{\lambda}\right)$$

3. Теорема затухания (смещения):

$$\forall a \in \mathbb{C} : e^{at} f(t) \rightleftharpoons F(p-a)$$

Доказательство.

$$e^{at}f(t) = \int_{0}^{+\infty} e^{at}f(t)e^{-pt}dt = \int_{0}^{+\infty} f(t)e^{-(p-a)t}dt = F(p-a)$$

4. Теорема запаздывания:

$$\forall \tau > 0 : f(t - \tau) \rightleftharpoons e^{-p\tau} \cdot F(p)$$

5. Теорема опережения:

$$\forall \tau > 0: f(t+\tau) \stackrel{\cdot}{=} e^{p\tau} [F(p) - \int_{0}^{\tau} f(t)e^{pt}dt]$$

6. Теоерема дифференцирования интеграла:

$$f'(t) \rightleftharpoons p \cdot F(p) - f(0)$$

72

Доказательство.

7. Теорема об интегрировании оригинала:

$$\int_{0}^{t} f(\tau)d\tau \stackrel{.}{=} \frac{F(p)}{p}$$

8. Теорема о дифференцировании изображения: $-t \cdot f(t) \rightleftharpoons F'(p)$

9. Теорема об интегрировании изображения:

$$\frac{f(t)}{t} = \int\limits_{p}^{\infty} F(z)dz$$

Сверткой функций f,g называется:

$$f \star g = \int_{0}^{t} f(\tau)g(t-\tau)d\tau$$

Теорема умножения изображений:

$$(f \star g)(t) \rightleftharpoons F(p) \cdot G(p)$$

24 Три теоремы разложения. Доказать теоремы подобия и запаздывания.

Три теоремы разложения:

1. Если $F(p) = \sum_{n=0}^{\infty} \frac{a_n}{p^{n+1}}$ сходится при |p| > R, то:

$$f(t) = \sum_{n=0}^{\infty} \frac{a_n}{n!} t^n$$

2. Второй метод построения оригинала по изображению: Каждая рациональная функция F(p), у которой степень числителя меньше степени знаменателя, является изображением:

$$F(p) = \frac{R(p)}{Q(p)}, \deg Q > \deg R$$

3. Пусть $f(t) \neq F(p)$; F(p) — аналитическая функция при $Re \ p > \sigma_0$, а при $Re \le \sigma_0$ имеет конечное число изолированных особых точек $p_1, ..., p_n$. Тогда:

$$f(t) = \sum_{k=1}^{n} res(e^{pt} \cdot F(p))(p_k)$$

Теорема подобия:

$$\forall \lambda > 0 : f(\lambda t) \stackrel{\cdot}{=} \frac{1}{\lambda} F\left(\frac{b}{\lambda}\right)$$

Доказательство.

$$f(\lambda t) \stackrel{:}{=} \int_{0}^{+\infty} f(\lambda t) e^{-pt} dt = \begin{vmatrix} \tau = \lambda t \\ t = \frac{\tau}{\lambda} \\ dt = \frac{1}{\lambda} d\tau \end{vmatrix} = \int_{0}^{+\infty} f(\tau) e^{-\frac{p}{\lambda}\tau} \frac{1}{\lambda} d\tau =$$

$$\frac{1}{\lambda} \int_{0}^{+\infty} f(\tau) e^{-\frac{p}{\lambda}\tau} d\tau = \frac{1}{\lambda} F\left(\frac{b}{\lambda}\right)$$

Теорема запаздывания:

$$\forall \tau > 0 : f(t - \tau) \rightleftharpoons e^{-p\tau} \cdot F(p)$$

Доказательство

$$f(t-\tau) = \int_{0}^{+\infty} f(t-\tau)e^{-p\tau}dt = \begin{vmatrix} t_{1} = t - \tau \\ dt_{1} = dt \\ t = t_{1} + \tau \end{vmatrix} = \int_{-\tau}^{+\infty} f(t_{1}) \cdot e^{-pt_{1} - p\tau}dt_{1} = \int_{-\tau}^{+\infty} f(t_{1}) \cdot e^{-pt_{1} - p\tau}dt_{1} = \int_{-\tau}^{+\infty} f(t_{1}) \cdot e^{-pt_{1} - p\tau}dt_{1} + \int_{-\tau}^{0} f(t_{1}) \cdot e^{-pt_{1} - p\tau}dt_{1}$$

Из определения оригинала: $f(t_1) = 0$ при $t_1 < 0$. Тогда:

$$f(t-\tau) \stackrel{+}{\rightleftharpoons} e^{-p\tau} \int_{0}^{+\infty} f(t_1)e^{pt_1}dt_1 = e^{-p\tau} \cdot F(p)$$