

INSTITUTO POLITECNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO

ANÁLISIS Y DISEÑO DE ALGORITMOS

PRÁCTICA 05

Rodrigo García Mayorga 2012630554

Introducción

Esta práctica implementa una interesante combinación de conceptos matemáticos y algorítmicos, trabajando con la secuencia de Fibonacci y números primos, utilizando un enfoque voraz (greedy) para resolver un problema de suma.

Secuencia de Fibonacci

La secuencia de Fibonacci es una serie de números donde cada número es la suma de los dos anteriores:

- F(0) = 0
- F(1) = 1
- F(n) = F(n-1) + F(n-2) para n > 1

Por ejemplo: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Números Primos

Un número primo es aquel que solo es divisible por 1 y por sí mismo. En esta práctica, se utiliza una función esPrimo() para identificar números primos mediante un algoritmo de verificación optimizado.

Algoritmo Voraz (Greedy)

El programa utiliza un enfoque voraz para encontrar una combinación de números de Fibonacci que sumen un valor K dado. Las características principales del algoritmo son:

- 1. Genera una secuencia de Fibonacci filtrada (excluyendo posiciones que son números primos)
- 2. Utiliza la estrategia de seleccionar siempre el número más grande posible
- 3. Va restando estos números de K hasta llegar a 0

Desarrollo

Particularidades del Código

El programa:

- Utiliza la fecha de nacimiento para generar el valor K
- Implementa un array para almacenar la secuencia de Fibonacci
- Maneja números grandes con el tipo long long
- Muestra los términos utilizados y el total de términos necesarios para la suma

Esta implementación demuestra cómo los algoritmos voraces pueden proporcionar soluciones eficientes para problemas de optimización combinatoria.

Estructura del Programa

El programa está compuesto por tres componentes principales:

1. Función esPrimo()

- o Verifica si un número es primo
- o Utiliza un algoritmo optimizado verificando hasta la raíz cuadrada del número
- o Retorna true si el número es primo, false en caso contrario

2. Función encontrarTerminosFibonacci()

- o Recibe un parámetro K que representa el número objetivo
- o Genera una secuencia de Fibonacci filtrada
- o Implementa un algoritmo voraz para encontrar la suma
- Características principales:
 - Usa un array fib[] para almacenar la secuencia
 - Excluye posiciones que corresponden a números primos
 - Almacena números usando long long para manejar valores grandes

3. Función main()

o Inicializa variables con la fecha de nacimiento:

```
dia = 17
mes = 01
año = 93
```

o Calcula K usando la fórmula: K = dia * 100 + mes * 10 + año

Llama a la función encontrarTerminosFibonacci()

Algoritmo de Solución

1. Generación de Secuencia

- Inicia con los valores base [0, 1, 1]
- o En cada iteración:
 - Verifica si la posición actual es prima
 - Si no es prima, genera el siguiente número de Fibonacci
 - Continúa hasta superar el valor de K

2. Búsqueda de Solución

- Utiliza un enfoque voraz (greedy)
- o Recorre la secuencia de mayor a menor
- o Selecciona números que pueden restarse de K
- Cuenta el total de términos utilizados

Salida del Programa

El programa muestra:

- El valor de K calculado
- Los términos de Fibonacci utilizados en la suma
- El total de términos necesarios

Complejidad

- Verificación de primos: O(√n)
- Generación de secuencia: O(K)
- Búsqueda de solución: O(log K)

Este programa demuestra una implementación eficiente que combina conceptos de teoría de números con algoritmos voraces para resolver un problema de suma específico.

```
t-321rsa44.plh' '--stderr=Microsoft-MIEngine-Error-qmlaprrc.g3g' '--pid=Microsoft-MIEngine-Pid-pnxrxozm.mv5' '--dbgExe=C:\MinGw\bin\gdb.exe' '--interpreter=mi'
PS c:\Users\4PF87LA_RS7\OneDrive\Documentos\ADA\Practica 6> gcc .\fibonacci.c -o .\fibonacci.exe
PS C:\Users\4PF87LA_RS7\OneDrive\Documentos\ADA\Practica 6> .\fibonacci.exe
K = 1803
Solucion para encontrar terminos de Fibonacci que suman K:
Terminos utilizados:
1597
144
55
5
2
0
Total de terminos: 6
PS C:\Users\4PF87LA_RS7\OneDrive\Documentos\ADA\Practica 6> [
```

Enlace del código (github): https://github.com/LowisN/Practica-6