LIGHT EMITTING SEMI-CONDUCTING COMPONENT WITH HIGH ESD RIGIDITY AND METHOD FOR PRODUCTION **OF SAID COMPONENT**

Veröffentlichungsnummer W00122495

Auch veröffentlicht als

DE19945134 (A1)

63

Veröffentlichungsdatum: 2001-03-29

WIPIEJEWSKI TORSTEN (DE); HUBER WOLFGANG (DE)

OSRAM OPTO SEMICONDUCTORS GMBH (DE); WIPIEJEWSKI TORSTEN (DE); HUBER WOLFGANG

(DE)

Klassifikation:

Erfinder Anmelder: H01L27/15; H01S5/026; H01S5/042; H01S5/183; H01L27/15; H01S5/00; (IPC1-7): H01L27/15; H01S5/026

- Internationale: H01L27/15; H01S5/026; H01S5/042; H01S5/183; H01L2 - Europäische: H01L27/15; H01S5/026B

WO2000DE03266 20000920

Prioritätsnummer(n): DE19991045134 19990921

Anmeldenummer:

EP0933842
US5764679
JP10200159
JP9027657
JP62299092
Mehr >>

Zitierte Dokumente

Datenfehler hier melden

Zusammenfassung von WO0122495

The invention relates to a light-emitting semi-conducting component of a light-emitting segment (10), especially a VCSEL-semi-conducting laser diode and a protective diode segment (20) connected in parallel. Said protective diode (3b, 71) is a series circuit of a Schottky-contact (71) and a part of a (3b) pn-junction (3). At larger ESD-voltage loads, the protective diode (3b, 71) is triggered, so that a majority of said electrical current flows through said protective diode (3b, 71) and said laser diode is thereby protected.

Daten sind von der esp@cenet Datenbank verfügbar - Worldwide

Auch veröffentlicht

[] WO0122495 (A1)

DE19945134

Veröffentlichungsnummer DE19945134

Veröffentlichungsdatum: 2001-05-31

WIPIEJEWSKI TORSTEN (DE); HUBER WOLFGANG (DE) Erfinder

OSRAM OPTO SEMICONDUCTORS GMBH (DE) Anmelder:

Klassifikation:

H01L27/15; H01S5/026; H01S5/042; H01S5/183; **H01L27/15; H01S5/00**; (IPC1-7): H01L27/15; H01L23/62; H01L33/00; H01S5/323 - Internationale:

H01L27/15; H01S5/026B - Europäische:

DE19991045134 19990921 Anmeldenummer: DE19991045134 19990921 Prioritätsnummer(n): Datenfehler hier melden

Keine Zusammenfassung verfügbar für DE19945134

Daten sind von der esp@cenet Datenbank verfügbar - Worldwide

⑤ Int. Cl.⁷:

® BUNDESREPUBLIK DEUTSCHLAND

PATENT- UND
MARKENAMT

Offenlegungsschrift Offenlegungschrift Offenlegungsschrift Offenlegungschrift Offenlegungschrift Offenlegungschrift

[®] DE 199 45 134 A 1

② Aktenzeichen:

199 45 134.6

② Anmeldetag:

21. 9. 199931. 5. 2001

43 Offenlegungstag: 31. 5

H 01 S 5/323 H 01 L 23/62 H 01 L 33/00

H 01 L 27/15

(7) Anmelder:

OSRAM Opto Semiconductors GmbH & Co. oHG, 93049 Regensburg, DE

(74) Vertreter:

Epping, Hermann & Fischer, 80339 München

(72) Erfinder:

Wipiejewski, Torsten, Dr., 93049 Regensburg, DE; Huber, Wolfgang, Dr., 93059 Regensburg, DE

(56) Entgegenhaltungen:

DE 24 30 873 A1

EP 09 33 942 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Lichtemittierendes Halbleiterbauelement hoher ESD-Festigkeit und Verfahren zu seiner Herstellung
- Bei einem lichtemittierenden Halbleiterbauelement ist einem lichtemittierendem Abschnitt (10), insbesondere einer VCSEL-Halbleiterlaserdiode, ein Schutzdiodenabschnitt (20) parallel geschaltet. Die Schutzdiode (3b, 71) ist eine Reihenschaltung eines Schottky-Kontakts (71) und eines Teils (3b) des pn-Übergangs (3). Bei hoher ESD-Spannungs-Belastung schaltet die Schutzdiode (3b, 71) durch, so daß ein Großteil des elektrischen Stromes über die Schutzdiode (3b, 71) fließt und somit die Laserdiode geschützt ist.

Beschreibung

Die Erfindung betrifft ein lichtemittierendes Halbleiterbauelement nach dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zu seiner Herstellung nach Patentanspruch 10.

Halbleiter-Laserdioden, insbesondere sogenannte Vertikalresonator-Laserdioden (VCSELs), finden ein zunehmendes Interesse in der optischen Datenübertragung und in der Sensorik. Den vielen positiven Eigenschaften von VCSELs steht jedoch der Nachteil gegenüber, daß diese Bauelemente eine relativ geringe Festigkeit gegen ESD-(Electro Static Discharge) Schäden aufweisen. Gerade für Anwendungen im kommerziellen und industriellen Bereich werden von den Kunden jedoch ESD-sichere Bauelemente gefordert, d. h. in der Regel müssen die Bauelemente eine ESD-Spannung von 2000 V unbeschadet überstehen können. Dabei wird das sogenannte Human-Body-Modell zugrundegelegt, bei dem eine bestimmte Kapazität mit der entsprechenden Spannung aufgeladen wird und die Entladung der Kapazität 20 über das zu testende Bauelement erfolgt.

Die Bauelementeigenschaften dürfen sich trotz der kurzzeitigen hohen Strom-Spannung-Belastung nicht verändern. VCSELs besitzen je nach Bauform jedoch nur ESD-Festigkeiten im Bereich einiger 100 V. Belastungen in Spertrichtung der Diode ergeben dabei wesentlich kleinere ESD-Festigkeiten als in Flußrichtung. Daher sind für die ESD-Festigkeit von VCSELs die Belastungen in Spertrichtung entscheidend.

Um Bauclemente mit geringen ESD-Festigkeiten zu ver- 30 arbeiten, müssen spezielle ESD-Sicherheitsvorkehrungen getroffen werden, was in den meisten Anwendungsfällen von der Anwenderseite her nicht akzeptabel ist. Messungen an VCSEL-Bauelementen mit unterschiedlichem Durchmesser haben ergeben, daß die ESD-Festigkeit von VCSELs 35 abhängig von der Größe der aktiven Fläche ist. Dabei zeigte sich, daß eine größere aktive Fläche auch eine größere ESD-Festigkeit bewirkt. Da aber die aktive Fläche von VCSELs auch entscheidend andere Bauelemente-Eigenschaften, wie Schwellstrom, Widerstand, Strahlqualität, usw. bestimmt, 40 kann nicht einfach eine größere Bauelementsläche gewählt werden, um die ESD-Festigkeit zu verbessern. Diese Schwierigkeit tritt nicht nur bei VCSEL-Dioden, sondern auch bei anderen lichtemittierenden Halbleiterbauelementen, wie beispielsweise kantenemittierenden Laserdioden 45 und LEDs, auf.

Daher liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein lichtemittierendes Halbleiterbauelement hoher ESD-Festigkeit und ein Verfahren zu seiner Herstellung anzugeben, wobei die übrigen Bauelemente-Eigenschaften 50 nicht wesentlich beeinträchtigt werden sollen.

Diese Aufgabe wird mit den kennzeichnenden Merkmalen des Patentanspruchs 1 gelöst.

Demgemäß beschreibt die Erfindung ein lichtemittierendes Halbleiterbauelement, mit einem Halbleitersubstrat und einer auf dem Halbleitersubstrat aufgebrachten Halbleiterschichtenfolge, dadurch gekennzeichnet, daß die Halbleiterschichtenfolge einen einen lichtemittierenden pn-Übergang enthaltenden lichtemittierenden Abschnitt und einen eine Schutzdiode enthaltenden Schutzdiodenabschnitt aufweist, 60 die zusammenhängend nebeneinander ausgebildet sind, eine erste Kontaktmetallisierung auf der Substratoberfläche aufgebracht ist und eine zweite Kontaktmetallisierung auf der Halbleiterschichtenfolge aufgebracht ist, ein sich von der Zweiten Kontaktmetallisierung bis in eine bestimmte Tiefe des Bauelements erstreckender, den lichtemittierenden Abschnitt und den Schutzdiodenabschnitt elektrisch voneinan-

2

der isolierender Abschnitt ausgebildet ist, und der Schutzdiodenabschnitt und die Schutzdiode derart ausgebildet
sind, daß der Schutzdiodenabschnitt eine höhere Flußspannung als der lichtemittierende Abschnitt aufweist, und bei
einer zwischen den Kontaktmetallisierungen an das Bauelement angelegten Spannung, die höher als die Flußspannung
des Schutzdiodenabschnitts ist, einen geringeren elektrischen Widerstand als der lichtemittierende Abschnitt aufweist

Die Schutzdiode des Schutzdiodenabschnitts ist somit dem pn-Übergang des lichtemittierenden Abschnitts parallel geschaltet und weist eine höhere Durchbruchs- oder Knickspannung als der pn-Übergang auf. Im normalen Arbeitsbetrieb des Halbleiterbauelements fließt praktisch der gesamte Strom über das Halbleiterbauelement, da die an das Halbleiterbauelement und die Schutzdiode parallel angelegte Spannung unterhalb der Durchbruchsspannung der Schutzdiode liegt. Während also bei normalem Betrieb praktisch kein Strom über die parallel geschaltete Schutzdiode fließt, bewirkt eine hohe Spannung während einer ESD-Belastung eine Durchschaltung der Schutzdiode. Aufgrund des dann sehr niedrigen elektrischen Widerstands des Schutzdiodenabschnitts mit dem lichtemittierenden Abschnitt sließt der überwiegende Teil des ESD-Belastungsstromes über die parallele Schutzdiode. Dadurch wird das eigentliche lichtemittierende Halbleiterbauelement geschützt.

Insbesondere ist vorgesehen, daß die Kennlinien einen Überkreuzungspunkt oberhalb der Knick- oder Durchbruchsspannung der Schutzdiode aufweisen.

In einer bevorzugten Ausführung ist vorgesehen, daß der pn-Übergang sich über die gesamte Breite des Halbleiterbauelements erstreckt und die Schutzdiode durch den in dem Schutzdiodenabschnitt befindlichen Abschnitt des pn-Übergangs und eine weitere Diode gebildet ist. Die weitere Diode ist dabei vorzugsweise durch einen Schottky-Kontakt zwischen dem zweiten elektrischen Kontaktanschluß und der Oberfläche der Halbleiterschichtstruktur des Schutzdiodenabschnitts gebildet.

Dabei können ferner der lichtemittierende Abschnitt und der Schutzdiodenabschnitt als freistehende oder sogenannte mesaförmige Strukturen oberhalb des pn-Übergangs ausgebildet sein und die den Seitenwänden der Strukturen benachbarten Abschnitte, insbesondere der isolierende Abschnitt zwischen dem lichtemittierenden Abschnitt und dem Schutzdiodenabschnitt können mit einem isolierenden Material aufgefüllt sein.

In einer speziellen Ausführungsform der vorliegenden Erfindung kann der lichtemittierende Abschnitt durch eine Vertikalresonator-Laserdiode (VCSEL) gebildet sein, bei der der pn-Übergang zwischen einer ersten Bragg-Reflektorschichtenfolge und einer zweiten Bragg-Reflektor-Schichtenfolge, von denen jede eine Mehrzahl von Spiegelpaaren aufweist, angeordnet ist, die beiden Bragg-Reflektor-Schichtenfolgen einen Laser-Resonator bilden und eine der beiden Bragg-Reflektor-Schichtenfolgen für die in dem lichtemittierenden Abschnitt des pn-Übergangs erzeugte Laserstrahlung teildurchlässig ist. Dabei kann zusätzlich vorgesehen sein, daß in einer der beiden Bragg-Reflektor-Schichtenfolgen mindestens eine Strom apertur zur Begrenzung des gepumpten aktiven Bereichs des lichtemittierenden Abschnitts des pn-Übergangs durch Bündelung des im Betrieb der Vertikalresonator-Laserdiode durch den lichtemittierenden Abschnitt des pn-Übergangs fließenden Betriebsstroms vorgesehen ist. Die Stromapertur kann in bekannter Weise bei einem Halbleiterbauelement auf der Basis des III-V-Materialsystems durch seitliche Oxidation von Schichten mit relativ hohem Aluminiumgehalt bei einer mesaförmig geätzten VCSEL-Laserstruktur hergestellt werden.

3

Die vorliegende Erfindung ist jedoch nicht auf VCSELs beschränkt, sondern kann ebenso auf andere oberflächenemittierende Laserdioden, kantenemittierende Laserdioden, wie auch auf LEDs, angewendet werden.

Die Erfindung beschreibt außerdem ein Verfahren zur 5 Herstellung eines lichtemittierenden Halbleiterbauelements, mit den Verfahrensschritten

- a) Bereitstellen eines Halbleitersubstrats;
- b) Aufwachsen einer Halbleiterschichtenfolge enthal- 10 tend einen pn-Übergang;
- c) Durchführung von Ätzschritten zur Erzeugung eines mesaförmigen, lichtemittierenden Abschnitts und eines mesaförmigen Schutzdiodenabschnitts, welche oberhalb des pn-Übergangs ausgebildet sind;
- d) Auffüllen der den mesaförmigen Strukturen benachbarten Abschnitte, insbesondere des zwischen den mesaförmigen Strukturen liegenden Abschnitts mit einem isolierenden Material;
- e) Aufbringen einer ersten Kontaktmetallisierung auf 20 der Substratoberfläche;
- f) Aufbringen einer zweiten Kontaktmetallisierung auf den der Substratoberfläche gegenüberliegenden Oberflächen der mesaförmigen Strukturen, wobei im Bereich des lichtemittierenden Abschnitts ein ohmscher 25 Kontakt und im Bereich des Schutzdiodenabschnitts ein Schottky-Kontakt erzeugt wird.

Der Schottky-Kontakt in dem Schutzdiodenabschnitt kann insbesondere dadurch erzeugt werden, daß im Verfahrensschritt b) eine oberste relativ stark dotierte Halbleiterschicht aufgebracht wird, im Verfahrensschritt f) vor dem Aufbringen der zweiten Kontaktmetallisierung die oberste Schicht im Bereich des Schutzdiodenabschnitts abgeätzt wird, so daß zwischen der zweiten Kontaktmetallisierung und der unter der abgeätzten Schicht befindlichen Halbleiterschicht ein Schottky-Kontakt und im Bereich des lichtemittierenden Abschnitts ein ohmscher Kontakt gebildet wird.

Im folgenden werden Ausführungsbeispiele der vorlie- 40 genden Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1 ein Ausführungsbeispiel der vorliegenden Erfindung in Form einer VCSEL-Halbleiterlaserdiode mit parallel geschalteter Schutzdiode, bestehend aus dem pn-Über- 45 gang und einer Schottky-Diode;

Fig. 2a ein elektrisches Ersatzschaltbild der in Fig. 1 dargestellten VCSEL-Halbleiterlaserdiode und

Fig. 2b eine schematische Darstellung der Strom-Spannungs-Kennlinien der in Fig. 1 dargestellten VCSEL-Halb- 50 leiterlaserdiode und der Schutzdiode.

Das erfindungsgemäße Halbleiterbauelement ist aus einem lichtemittierenden Abschnitt 10 und einem Schutzdiodenabschnitt 20 aufgebaut. Im folgenden wird zuerst der lichtemittierende Abschnitt 10 beschrieben.

Die in Fig. 1 dargestellte VCSEL-Halbleiterlaserdiode mit parallel geschalteter Schutzdiode ist auf der Basis des III-V-Materialsystems aufgebaut. Auf einem GaAs-Substrat 6 befindet sich eine erste, untere Bragg-Reflektor-Schichtenfolge 2, die aus einzelnen identischen Spiegelpaaren aufgebaut ist. Die Spiegelpaare bestehen jeweils aus zwei Al-GaAs-Schichten unterschiedlicher Aluminiumkonzentration. In gleicher Weise ist eine zweite, obere Bragg-Reflektor-Schichtenfolge 4 aus entsprechenden Spiegelpaaren aufgebaut. Zwischen der unteren und der oberen Bragg-Reflektor-Schichtenfolge ist eine den pn-Übergang bildende aktive Schichtenfolge 3 eingebettet. Diese kann entweder aus einem einfachen pn-Übergang aus Volumenmaterial oder eine

4

Einfach-Quantentrogstruktur oder eine Mehrfach-Quantentrogstruktur sein. Das Material der aktiven Schichtenfolge 3 bzw. die Schichtdicken von Quantentrogstrukturen können beispielsweise derart gewählt sein, daß die Emissionswellenlänge der Laserdiode 850 nm beträgt. Auf der oberen Oberfläche der Laserdiode befindet sich eine erste Metallisierungsschicht 7, die für den elektrischen Anschluß der pdotierten Seite der Laserdiode verwendet wird. Die erste Metallisierungsschicht 7 weist in dem lichtemittierenden Abschnitt eine zentrale Apertur- oder Lichtaustrittsöffnung 7a für den Durchtritt der Laserstrahlung auf. Die n-dotierte Seite des Bauelements wird üblicherweise über eine am Substrat 6 kontaktierte zweite Metallisierungsschicht 8 elektrisch angeschlossen.

Die obere Bragg-Reflektor-Schichtenfolge 4 enthält in dem Ausführungsbeispiel ein Spiegelpaar, welches eine sogenannte Stromapertur 41 enthält. Der Stromapertur 41 sorgt für eine laterale Strombegrenzung und definiert damit den eigentlichen aktiven gepumpten Bereich in dem lichtemittierenden Abschnitt des pn-Übergangs 3. Der Stromfluß wird auf den Öffnungsbereich der Stromapertur 41 beschränkt. Wie durch das Stromprofil 9 angedeutet ist, kann somit der aktive gepumpte Bereich auf einen sehr kleinen Abschnitt 3a des pn-Übergangs begrenzt werden. Somit liegt der gepumpte Bereich im wesentlichen direkt unterhalb dieses Öffnungsbereichs in dem pn-Übergang 3. Die Stromapertur 41 kann in bekannter Weise durch partielle Oxidation der AlGaAs-Schichten des betreffenden Spiegelpaares oder durch Ionen- oder Protonenimplantation hergestellt werden. Es können auch gewünschtenfalls mehrere Stromaperturen angeordnet werden.

Der lichtemittierende Abschnitt 10 des Bauelements ist in Form einer Mesa-Struktur oberhalb des pn-Übergangs 3 strukturiert. Das bedeutet, daß durch vertikale Ätzprozesse bis zu einer Tiefe knapp oberhalb des pn-Übergangs 3 eine bestimmte Größe und Struktur des lichtemittierenden Abschnitts 10 auf der darunterliegenden Halbleiterschichtstruktur erzeugt wird. Nach diesen Ätzprozessen kann die mindestens eine Stromapertur 41 durch Oxidation der Al-GaAs-Schichten gebildet werden. Im Anschluß daran werden die geätzten Bereiche durch einen Isolator, wie eine geeignete Passivierungsschicht 11, aufgefüllt.

Ein isolierender Abschnitt 15 dieser Passivierungsschicht 11 trennt den lichtemittierenden Abschnitt 10 von dem Schutzdiodenabschnitt 20 des Halbleiterbauelements. Dieser geht aus derselben Halbleiterschichtstruktur hervor wie der lichtemittierende Abschnitt 10. Er besteht ebenfalls aus einer mesaförmigen Struktur, die zugleich mit der Herstellung der mesaförmigen Struktur des lichtemittierenden Abschnitts 10 hergestellt wird. Die Mesa-Struktur des Schutzdiodenabschnitts 20 weist eine bedeutend größere laterale Ausdehnung auf als die Mesa-Struktur des lichtemittierenden Abschnitts 10. Ebenso wie der lichtemittierende Abschnitt 10 enthält auch der Schutzdiodenabschnitt 20 den pn-Übergang 3, der sich über die gesamte Breite des Halbleiterbauelements erstreckt. Dieser hat jedoch in dem Schutzdiodenabschnitt 20 nicht die Funktion einer Lichtemission, sondern nur eine elektrische Funktion. Zusätzlich weist der Schutzdiodenabschnitt 20 noch eine Schottky-Diode 71 auf, die durch den Kontakt zwischen der oberen Metallisierungsschicht 7 mit der obersten Halbleiterschicht des Schutzdiodenabschnitts 20 erzeugt wird. Die Schottky-Diode 71 wird folgendermaßen hergestellt. Bei dem Wachstumsprozeß der Halbleiterschichtstruktur wird als letzte Schicht eine stark p-dotierte GaAs-Schicht abgeschieden, damit die nachfolgende Abscheidung der oberen Metallisierungsschicht 7 in dem lichtemittierenden Abschnitt 10 einen ohmschen Kontakt zwischen der Metallisierung und dem 5

Halbleiter hervorruft. Vor der Abscheidung der oberen Metallisierungsschicht 7 wird jedoch in dem Schutzdiodenabschnitt 20 die hochdotierte GaAs-Schicht abgeätzt, so daß in diesem Bereich die Metallisierungsschicht 7 auf den schwachdotierten Halbleiterschichten einen Schottky-Kontakt bildet. Der Schottky-Kontakt besitzt eine diodenartige Kennlinie. Erst ab einer gewissen Flußspannung fließt ein nennenswerter Strom über diesen Übergang.

Anstelle der Mesaätzung und der Auffüllung der geätzten Bereiche mit einer Passivierungsschicht 11 kann der isolierende Abschnitt auch durch eine Ionen- oder Protonenimplantation hergestellt werden.

Wie dargestellt, kann auch der Schutzdiodenabschnitt 20 mit einer Stromapertur versehen sein.

In Fig. 2a ist ein elektrisches Ersatzschaltbild des Halblei- 15 terbauelements der Fig. 1 dargestellt. Die Schottky-Diode 71 ist mit dem im Schutzdiodenabschnitt 20 befindlichen Abschnitt des pn-Übergangs 3 in Reihe geschaltet und beide genannten Bauelemente sind mit dem lichtemittierenden Abschnitt 10 parallel geschaltet. Die gesamte Anordnung 20 wird mit einer Spannungsquelle 30 verbunden. Die Serienschaltung des pn-Übergangs 3 und der Schottky-Diode 71 in dem Schutzdiodenabschnitt 20 soll nach Möglichkeit eine elektrische Strom-Spannungs-Kennlinie ergeben, wie sie in Fig. 2b als Schutzdioden-Kennlinie dargestellt ist. Die 25 Kennlinie des VCSEL-Halbleiterlasers ist ebenfalls dargestellt. Für den normalen Betrieb des Halbleiterbauelements wird ein Arbeitspunkt, d. h. eine Spannung der Spannungsquelle 30 eingestellt, die unterhalb der Durchbruchsspannung der Schutzdioden-Kennlinie liegt. In diesem Fall fließt 30 nur ein sehr geringer Strom durch den Schutzdiodenabschnitt 20 und der weitaus größte Anteil des Stroms fließt durch die VCSEL-Halbleiterlaserdiode und führt zu der gewünschten Lichtemission. Die Spannung kann gewünschtenfalls über den normalen Arbeitspunkt hinaus bis zur 35 Durchbruchsspannung der Schutzdioden-Kennlinie erhöht werden. Wenn jetzt eine Spannungspitze oder eine ESD-Spannungsbelastung stattfindet, die weit oberhalb des normalen Arbeitspunktes liegt, so führt dies dazu, daß ein Großteil des elektrischen Stromes über den Schutzdiodenab- 40 schnitt 20 fließt und nicht über die VCSEL-Halbleiterlaserdiode.

Somit wird die Laserdiode wirksam vor hohen ESD-Spannungsbelastungen geschützt, ohne daß Einbußen im normalen Betrieb hingenommen werden müssen.

Die gezeigte Halbleiterschichtstruktur des Bauelements kann in verschiedener Weise variiert werden. So kann beispielsweise die Dotierungsfolge der Halbleiterschichten geändert werden, um eine Diode mit einem n-dotierten oberen Bragg-Reflektor zu erzeugen. Auch der Schottky-Übergang 50 kann anders ausgebildet werden. Die oberste Halbleiterschicht kann z. B. auch undotiert oder n-dotiert sein. Im Bereich der großflächigen Schutzdiode ergibt sich damit ein zumindest teilweise sperrender Übergang mit einer Dioden-Charakteristik, so daß ein Abätzen der obersten Halbleiter- 55 schicht nicht erforderlich ist. Im Bereich der VCSEL-Halbleiterlaserdiode wird ein ohmscher Widerstand dann entweder durch Abätzen der obersten Halbleiterschichten bis auf die p-dotierten Schichten erzeugt, oder es wird eine Diffusion eines p-Dotierstoffes, wie Zn, durchgeführt, um den 60 Metallkontakt an die p-dotierten Bragg-Reflektor-Schichten anzuschließen.

Anstelle einer VCSEL-Halbleiterlaserdiode kann auch eine andere Halbleiterlaserdiode, wie eine kantenemittierende Laserdiode, oder eine Lumineszenzdiode (LED) ver- 65 wendet werden.

Es kann auch vorgesehen sein, daß der pn-Übergang 3 sich nicht über die gesamte Breite des Halbleiterbauele-

6

ments erstreckt, somit nicht Teil des Schutzdiodenabschnitts 20 ist. Stattdessen kann Vorgesehen sein, den Schutzdiodenabschnitt 20 in einem eigenen Wachstumsverfahren mit einem gesonderten pn-Übergang zu versehen. Dies erlaubt die maßgeschneiderte Herstellung einer Schutzdiode mit einer gewünschten Kennlinie.

Insbesondere ist es insofern auch nicht zwingend erforderlich, den Schutzdiodenabschnitt 20 – wie im Ausführungsbeispiel der Fig. 1 vorgeschen – mit erheblich größerer lateraler Ausdehnung im Vergleich mit dem lichtemittierenden Abschnitt auszubilden, da der Schutzdiodenabschnitt mit anderen Materialien und/oder Dotierungen versehen sein kann, um den geforderten niedrigen elektrischen Widerstand im durchgeschalteten Zustand zu halten.

Bezugszeichenliste

2 Bragg-Reflektor-Schichtenfolge

3 pn-Übergang

4 Bragg-Reflektor-Schichtenfolge

6 Substrat

7 Kontaktmetallisierung

7a Lichtdurchtrittsöffnung

8 Kontaktmetallisierung

9 Stromprofil

10 lichtemittierender Abschnitt

11 isolierendes Material

15 isolierender Abschnitt

20 Schutzdiodenabschnitt

30 Spannungsquelle

41 Stromapertur

71 Schottky-Kontakt

Patentansprüche

- 1. Lichtemittierendes Halbleiterbauelement, mit
 - einem Halbleitersubstrat (6) und
 - einer auf dem Halbleitersubstrat aufgebrachten Halbleiterschichtenfolge,

dadurch gekennzeichnet, daß

- die Halbleiterschichtenfolge einen einen lichtemittierenden pn-Übergang (3) enthaltenden lichtemittierenden Abschnitt (10) und einen eine Schutzdiode (3b, 71) enthaltenden Schutzdiodenabschnitt (20) aufweist, die zusammenhängend nebeneinander ausgebildet sind,
- eine erste Kontaktmetallisierung (8) auf der Substratoberfläche aufgebracht ist und eine zweite Kontaktmetallisierung (7) auf der der Substratoberfläche gegenüberliegenden Oberfläche der Halbleiterschichtenfolge aufgebracht ist,
- ein sich von der zweiten Kontaktmetallisierung (7) bis in eine bestimmte Tiefe des Bauelements erstreckender, den lichtemittierenden Abschnitt (10) und den Schutzdiodenabschnitt (20) elektrisch voneinander isolierender Abschnitt (15) ausgebildet ist, und
- der Schutzdiodenabschnitt (20) und die Schutzdiode (3b, 71) derart ausgebildet sind, daß der Schutzdiodenabschnitt (20) eine höhere Flußspannung als der lichtemittierende Abschnitt (10) aufweist, und bei einer zwischen den Kontaktmetallisierungen (7, 8) an das Bauelement angelegten Spannung, die höher als die Flußspannung des Schutzdiodenabschnitts (20) ist, einen geringeren elektrischen Widerstand als der lichtemittierende Abschnitt (10) aufweist.
- 2. Lichtemittierendes Halbleiterbauelement nach An-

10

7

spruch 1, dadurch gekennzeichnet, daß

- der lichtemittierende pn-Übergang (3a) ein Teil eines sich über den lichtemittierenden Abschnitt (10) und den Schutzdiodenabschnitt (20) erstrekkenden pn-Übergangs (3) ist,
- der isolierende Abschnitt (15) sich bis vor den pn-Übergang (3) erstreckt, und
- die Schutzdiode (3b, 71) aus dem anderen Teil des pn-Übergangs (3) und einer weiteren Diode gebildet ist.
- 3. Lichtemittierendes Halbleiterbauelement nach Anspruch 4, dadurch gekennzeichnet, daß
 - die Schutzdiode (3b, 71) durch eine Reihenschaltung von einem zwischen der zweiten Kontaktmetallisierung (7) und der Oberfläche der 15 Halbleiterschichtenfolge des Schutzdiodenabschnitts (20) gebildeten Schottky-Kontakt (71) und dem sich über den Schutzdiodenabschnitt (20) erstreckenden Teil (3b) des pn-Übergangs (3) gebildet ist.
- 4. Lichtemittierendes Halbleiterbauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
 - der Schutzdiodenabschnitt (20) eine erheblich größere laterale Ausdehnung als der lichtemittierende Abschnitt (10) aufweist, so daß insbesondere
 - der andere Teil (3b) des pn-Übergangs (3) eine erheblich größere Fläche aufweist als der eine Teil (3a) des pn-Übergangs (3).
- 5. Lichtemittierendes Halbleiterbauelement nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß
 - der lichtemittierende Abschnitt (10) und der Schutzdiodenabschnitt (20) als freistehende oder 35 mesaförmige Strukturen oberhalb des pn-Übergangs (3) ausgebildet sind, und
 - die den Seitenwänden der Strukturen benachbarten Abschnitte, insbesondere der isolierende
 Abschnitt (15), mit einem isolierenden Material 40 (11) aufgefüllt sind.
- Lichtemittierendes Halbleiterbauelement nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß
 - der isolierende Abschnitt (15) durch Ionen- 45 oder Protonenimplantation hergestellt ist.
- 7. Lichtemittierendes Halbleiterbauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
 - der lichtemittierende Abschnitt (10) durch eine 50
 Vertikalresonator-Laserdiode (VCSEL) gebildet ist, bei der
 - der pn-Übergang (3a) zwischen einer ersten Bragg-Reflektor-Schichtenfolge (2) und einer zweiten Bragg-Reflektor-Schichtenfolge (4), von 55 denen jede eine Mehrzahl von Spiegelpaaren aufweist, angeordnet ist,
 - die beiden Bragg-Reflektor-Schichtenfolgen (2,
 4) einen Laser-Resonator bilden,
 - eine (4) der beiden Bragg-Reflektor-Schichten folgen (2, 4) für die in dem pn-Übergang (3a) erzeugte Laserstrahlung teildurchlässig ist.
- 8. Lichtemittierendes Halbleiterbauelement nach Anspruch 7, dadurch gekennzeichnet, daß
 - in einer (4) der beiden Bragg-Reflektor-Schichtenfolgen (2, 4) mindestens eine Stromapertur (41) zur Begrenzung des gepumpten aktiven Bereiches des pn-Übergangs (3) durch Bündelung

8

- des im Betrieb der Vertikalresonator-Laserdiode durch den pn-Übergang (3a) fließenden Betriebsstrom vorgesehen ist.
- 9. Lichtemittierendes Halbleiterbauelement nach Anspruch 1, dadurch gekennzeichnet, daß
 - die zweite Kontaktmetallisierung (7) die Oberfläche des lichtemittierenden Abschnitts (10) derart teilweise bedeckt, daß ein unbedeckter Bereich als Lichtdurchtrittsöffnung (7a) verbleibt.
- 10. Verfahren zur Herstellung eines lichtemittierenden Halbleiterbauelements, mit den Verfahrensschritten
 - a) Bereitstellen eines Halbleitersubstrats (6);
 - b) Aufwachsen einer Halbleiterschichtenfolge enthaltend einen pn-Übergang (3);
 - c) Durchführung von Ätzschritten zur Erzeugung eines mesaförmigen, lichtemittierenden Abschnitts (10) und eines mesaförmigen Schutzdiodenabschnitts (20), welche oberhalb des pn-Übergangs (3) ausgebildet sind;
 - d) Auffüllen der den mesaförmigen Strukturen benachbarten Abschnitte, insbesondere des zwischen den mesaförmigen Strukturen liegenden Abschnitts (15) mit einem isolierenden Material (11);
 - e) Aufbringen einer ersten Kontaktmetallisierung (8) auf der Substratoberfläche;
 - f) Aufbringen einer zweiten Kontaktmetallisierung (7) auf den der Substratoberfläche gegenüberliegenden Oberflächen der mesaförmigen Strukturen, wobei im Bereich des lichtemittierenden Abschnitts (10) ein ohmscher Kontakt und im Bereich des Schutzdiodenabschnitts (20) ein Schottky-Kontakt (71) erzeugt wird.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß
 - im Verfahrensschritt (b) eine oberste relativ stark dotierte Halbleiterschicht aufgebracht wird;
 - im Verfahrensschritt f) vor dem Aufbringen der zweiten Kontaktmetallisierung (7) die oberste Schicht im Bereich des Schutzdiodenabschnitts (20) abgeätzt wird, so daß zwischen der zweiten Kontaktmetallisierung (7) und der unter der abgeätzten Schicht befindlichen Halbleiterschicht ein Schottky-Kontakt (71) und im Bereich des lichtemittierenden Abschnitts (10) zwischen der zweiten Kontaktmetallisierung (7) und der relativ stark dotierten Halbleiterschicht ein ohmscher Kontakt gebildet wird.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß
 - die oberste Schicht eine GaAs-Schicht und die nachfolgende Schicht eine AlGaAs-Schicht ist und infolge einer relativ hohen Aluminiumkonzentration als Ätzstoppschicht wirkt.
- 13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß
 - im Verfahrensschritt b) die oberste Schicht nominell undotiert ist oder einen zu dem in diesem Bereich des pn-Übergangs (3) vorgesehenen Dotierungstyp entgegengesetzten Dotierungstyp aufweist,
 - und im Verfahrensschritt f) die oberste Schicht im Bereich des lichtemittierenden Abschnitts (10) abgeätzt wird, so daß zwischen der zweiten Kontaktmetallisierung (7) und der unter der abgeätzten Schicht befindlichen Halbleiterschicht ein ohmscher Kontakt und im Bereich des Schutzdio-

9.

10

denabschnitts (20) zwischen der zweiten Kontaktmetallisierung (7) zwischen der zweiten Kontaktmetallisierung (7) und der obersten Schicht ein Schottky-Kontakt (71) gebildet wird.

- 14. Verfahren nach Anspruch 10, dadurch gekenn- 5 zeichnet, daß
 - im Verfahrensschritt b) die oberste Schicht nominell undotiert ist oder einen zu dem in diesem Bereich des pn-Übergangs (3) vorgesehenen Dotierungstyp entgegengesetzten Dotierungstyp auf- 10 weist, und
 - im Verfahrensschritt f) die oberste Schicht im Bereich des lichtemittierenden Abschnitts (10) mit einem Dotierstoff dotiert wird, dessen Dotierungstyp in diesem Bereich des pn-Übergangs (3) 15 vorgesehen ist.
- 15. Verfahren einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß
 - im Verfahrensschritt b) die Halbleiterschichtenfolge im wesentlichen nachfolgend aus einer ersten Bragg-Reflektor-Schichtenfolge (2), dem pn-Übergang (3) und einer zweiten Bragg-Reflektor-Schichtenfolge (4) zusammengesetzt ist, wobei
 - die Bragg-Reflektor-Schichtenfolgen (2, 4) jeweils eine Mehrzahl von Spiegelpaaren aufwei- 25 sen,
 - die beiden Bragg-Reflektor-Schichtenfolgen (2,
 4) einen Laser-Resonator bilden, und
 - eine (4) der beiden Bragg-Reflektor-Schichtenfolgen (2, 4) für die in dem pn-Übergang (3) erzeugte Laserstrahlung teildurchlässig ist.

Hierzu 2 Seite(n) Zeichnungen

35

40

45

50

55

60

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 199 45 134 A1 H 01 L 27/1531. Mai 2001

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 45 134 A1 H 01 L 27/15 31. Mai 2001

FIG 2B

