Exercice 11

1. Montrons par récurrence ces deux résultats en même temps. Pour $n \in \mathbb{N}$, on pose :

$$P_n : «e^2 \le u_{n+1} \le u_n »$$

Initialisation : Montrons P_0 , c'est à dire que : $e^2 \le u_0 \le u_1$. $u_0 = e^3$ et $u_1 = e\sqrt{e^3} = e^{2.5}$ donc $e^2 \le u_1 \le u_0$. Donc P_0 est vraie.

Hérédité : Supposons que P_n est vraie pour un entier naturel n. Montrons alors que P_{n+1} est vraie :

$$e^2 \le u_{n+1} \le u_n \iff \sqrt{e^2} \le \sqrt{u_{n+1}} \le \sqrt{u_n}$$
 par croissante de la fonction racine
$$\iff e \le \sqrt{u_{n+1}} \le \sqrt{u_n}$$

$$\iff e \times e \le e\sqrt{u_{n+1}} \le e\sqrt{u_n} \qquad \text{car } e \ge 0$$

$$\iff e^2 \le u_{n+2} \le u_{n+1}$$

Donc P_{n+1} est vraie et (P_n) est héréditaire.

Conclusion : P_0 est vraie et (P_n) est héréditaire donc P_n est vraie pour tout entier naturel n.

2. D'après la question précédente, on a que (u_n) est décroissante et minorée par e^2 donc elle converge. Pour déterminer la limite, on utilise le théorème du point fixe vu au chapitre 11. Il s'agit de regarder l'expression $u_{n+1} = e\sqrt{u_n}$ à la limite. Si on note $l = \lim_{n \to +\infty} u_n$, alors l'expression vue à la limite donne que $l = e\sqrt{l}$. On résout cette

équation pour trouver que $l = e^2$.

- 3. **a.** $a_n = \ln(u_n) 2 \iff \ln(u_n) = a_n + 2 \iff u_n = \exp(2 + a_n)$.
 - **b.** Pour tout $n \in \mathbb{N}$, on a :

$$a_{n+1} = \ln(u_{n+1}) - 2 = \ln(e\sqrt{u_n}) - 2 = \ln(e) + \ln(\sqrt{u_n}) - 2 = 1 + \frac{1}{2}\ln(u_n) - 2 = \frac{1}{2}\ln(u_n) - 1 = \frac{1}{2}(\ln(u_n) - 2) = \frac{1}{2}\ln(u_n) - 2 = \frac{1}{2}\ln(u_$$

Donc $a_{n+1} = \frac{1}{2}a_n$, ainsi (a_n) est géométrique, de raison $\frac{1}{2}$ et $a_0 = \ln(e^3) - 2 = 3 - 2 = 1$.

c. D'après la question précédente, pour tout $n \in \mathbb{N}$, on a $a_n = a_0 \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^n$.

Ainsi,
$$u_n = \exp(2 + a_n) = \exp\left(2 + \left(\frac{1}{2}\right)^n\right)$$
.

d.
$$0 < \frac{1}{2} < 1$$
, et alors $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ donc $\lim_{n \to +\infty} u_n = \exp(2 + 0) = e^2$.

Exercice 19

- **1**. Pour tout $x \in \mathbb{R}$, on a $e^x > 0$ donc $1 + e^x > 0$ donc f est bien définie sur \mathbb{R} .
- 2. Pour $x \in \mathbb{R}$, on écrit $f(x) = \ln(u(x))$ avec $u(x) = 1 + e^x$. u est dérivable sur \mathbb{R} puisque exp est dérivable sur \mathbb{R} . Ainsi, comme ln est dérivable sur \mathbb{R}^*_+ , et par composition, on a finalement que f est dérivable sur \mathbb{R} .

Ainsi, pour
$$x \in \mathbb{R}$$
, on a $f'(x)$ $\frac{u'(x)}{u(x)} = \frac{e^x}{1 + e^x}$.

3. Premièrement, on a $1 + e^x \xrightarrow[x \to -\infty]{} 1$ et $1 + e^x \xrightarrow[x \to +\infty]{} + \infty$. Donc $\lim_{x \to -\infty} f(x) = \ln(1) = 0$ et $\lim_{x \to +\infty} f(x) = +\infty$.

Ensuite, d'après la question précédente, on a pour $x \in \mathbb{R}$ que $f'(x) = \frac{e^x}{1 + e^x} > 0$. Ainsi, f est croissante sur \mathbb{R} et on a donc le tableau de variation suivant :

x	$-\infty$	+∞
f'(x)	+	
f	0	+∞

4. **a.** Soit $x \in \mathbb{R}$, on a

$$g(x) = f(x) - x = \ln(1 + e^x) - x = \ln(1 + e^x) + (-x) = \ln(1 + e^x) + \ln(e^{-x}) = \ln(1 + e^x) = \ln$$

b. On remarque que pour tout $x \in \mathbb{R}$, on a g(x) = f(-x) et donc :

$$\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} f(x) = +\infty \qquad \text{et} \qquad \lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} f(x) = 0$$

5. **a.** D'après ce qui précède, g est dérivable et pour tout $x \in \mathbb{R}$, on a g'(x) = -f'(-x) < 0. On construit alors le tableau de variation suivant :

x	$-\infty$ $+\infty$
g'(x)	_
g	+∞0

b. On voit sur le tableau de variation que g est positive sur $\mathbb R$ tout entier. Donc pour tout $x \in \mathbb R$, on a :

$$g(x) \ge 0 \iff f(x) - x \ge 0 \iff f(x) \ge x$$

6.

