Plonk Arithmetization

January 09, 2025

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Plan

1 Multiplicative Subgroup. Primitive Roots

Multiplicative Subgroup. Primitive Roots

Multiplicative Subgroup. Primitive Roots

Motivation

In the Groth16, recall that we needed to interpolate expressions in the following form

$$P(i) = a_i, \quad a_i \in \mathbb{F}, \quad i = 1, \dots, N$$

Recall

The interpolation formula in given by:

$$P(x) = \sum_{i=1}^{N} a_i \cdot \ell_i(x), \quad \ell_i(x) = \prod_{j=1, j \neq i}^{N} \frac{x-j}{i-j}$$

The complexity of this formula is $\mathcal{O}(N^2)$. But can we do better?

Multiplicative Subgroup.

We know that \mathbb{F}_p is a **field**: we have a usual arithmetic $+, \times$.

Question

Does (\mathbb{F}_p, \times) form a group?

No, since 0 does not have an inverse. But, if we consider $(\mathbb{F}_p \setminus \{0\}, \times)$, we do have a group structure!

Definition

A multiplicative group of a finite field \mathbb{F} , denoted as \mathbb{F}^{\times} , is a multiplicative group $(\mathbb{F} \setminus \{0\}, \times)$.

Number of Elements

The number of elements in \mathbb{F}_p^{\times} is p-1.

Primitive Root

Theorem

Multiplicative group of a finite field \mathbb{F}^{\times} is cyclic. The generators ω of this group are called **primitive roots**.

Example

 $\omega = 3$ is the primitive root of \mathbb{F}_7 . Indeed,

$$3^1 = 3$$
, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$.

Clearly, $\langle \omega \rangle = \mathbb{F}_7^{\times}$.