Přednáška 7, 14. listopadu 2014

Uvedeme bez důkazu klasické zobecnění Leibnizova kritéria (v němž $b_n = (-1)^{n+1}$).

Tvrzení (Dirichletovo a Abelovo kritérium). Nechť $(a_n), (b_n) \subset \mathbb{R}$, přičemž $a_1 \geq a_2 \geq a_3 \geq \cdots \geq 0$. Pak platí, že

- 1. (Dirichletovo kritérium) když $\lim a_n = 0$ a $\sum b_n$ má omezené částečné součty, pak $\sum a_n b_n$ konverguje a
- 2. (Abelovo kritérium) když $\sum b_n$ konverguje, pak $\sum a_n b_n$ konverguje.

 $Peter\ L.\ Dirichlet\ (1805–1859)$ byl německý matematik (dokázal, že každá aritmetická posloupnost $a, a+m, a+2m, \ldots$, kde $a, m \in \mathbb{N}$ jsou nesoudělná čísla, obsahuje nekonečně mnoho prvočísel) a $Niels\ Henrik\ Abel\ (1802–1829)$ byl norský matematik (dokázal obecnou neřešitelnost rovnic pátého stupně v odmocninách). Příkladem řady, jejíž konvergence plyne z Dirichletova kritéria, je

$$\sum \sin(n)/n = \sin 1 + \frac{\sin 2}{2} + \frac{\sin 3}{3} + \dots$$

(Návod: omezenost posloupnosti (sin $1 + \sin 2 + \cdots + \sin n$) dokažte ze vzorce pro tyto součty, který odvodíte sečtením vztahů $e^{i\varphi} = \cos \varphi + i \sin \varphi$, $\varphi = 1, 2, \ldots, n$).

Dokážeme, jak jsme slíbili, že pro s>1 je $\zeta(s)<+\infty$, tedy že $\sum n^{-s}$ konverguje. Nechť $n\in\mathbb{N}$ je dáno a $r\in\mathbb{N}$ je libovolné číslo, pro něž $2^{r+1}>n$. Pak, označíme-li $q=2^{1-s}<1$,

$$s_n = \sum_{i=1}^n \frac{1}{i^s} \le \sum_{k=0}^r \sum_{i=2^k}^{2^{k+1}-1} \frac{1}{i^s} < \sum_{k=0}^r \frac{2^k}{(2^k)^s} = \sum_{k=0}^r (2^{1-s})^k < \sum_{k=0}^\infty q^k = \frac{1}{1-q} ,$$

podle vzorce pro součet geometrické řady. Posloupnost částečných součtů $s_1 < s_2 < \ldots$ má tedy horní mez $1/(1-2^{1-s})$ a $\sum n^{-s}$ konverguje. (Proč platí první a druhá nerovnost? Sčítací obor $i=1,2,\ldots,n$ jsme pokryli disjunktními intervaly $2^k, 2^k+1,\ldots, 2^{k+1}-1$, kde $k=0,1,\ldots,r$. Počet sčítanců $1/i^s$ v k-tém intervalu je $2^{k+1}-1-2^k+1=2^k$ a největší z nich je $1/(2^k)^s$. Je to podobná metoda jako v důkazu divergence harmonické řady. Geometrická řada zde triumfuje nad zeta funkcí.) Argument se lehce následovně zobecní.

Tvrzení (Cauchyho kondenzační kritérium). $Kdy\check{z} \ a_1 \geq a_2 \geq a_3 \geq \cdots \geq 0$, pak řada $\sum 2^n a_{2^n} = 2a_2 + 4a_4 + 8a_8 + \cdots$ konverguje, právě $kdy\check{z}$ konverguje řada $\sum a_n$.

 $D\mathring{u}kaz$. Úloha — kdo pochopil předchozí důkaz, nebude mít s tímto žádný problém.

Porovnávání řad, hlavně s geometrickou. Zapišme si užitečné pozorování: když pro dvě posloupnosti $(a_n), (b_n) \subset \mathbb{R}$ platí $a_n = b_n$ pro každé $n > n_0$, pak řada $\sum a_n$ konverguje, právě když konverguje řada $\sum b_n$. (Jsou-li totiž s_n a t_n částečné součty těchto řad, pak pro každé $n > n_0$ je $s_n = t_n + (s_{n_0} - t_{n_0})$, takže se posloupnosti (s_n) a (t_n) pro indexy $n > n_0$ liší jen přičtením konstanty $s_{n_0} - t_{n_0}$. Takové dvě posloupnosti současně konvergují či současně divergují.)

Tvrzení (srovnání řad). Reálná čísla a_n, b_n buďte nezáporná.

- 1. Když pro každé $n > n_0$ je $a_n \leq b_n$ a řada $\sum b_n$ konverguje, pak konverguje $i \sum a_n$.
- 2. Nechť $\lim a_n/b_n = l$. Pak (i) pro $0 < l < +\infty$ máme, že $\sum a_n$ konverguje $\iff \sum b_n$ konverguje, (ii) pro l = 0 máme, že $\sum b_n$ konverguje $\Rightarrow \sum a_n$ konverguje a (iii) pro $l = +\infty$ máme, že $\sum a_n$ konverguje $\Rightarrow \sum b_n$ konverguje.
- Důkaz. 1. Částečné součty řad $\sum a_n$ a $\sum b_n$ označíme jako s_n a t_n . Podle hořejšího pozorování můžeme předpokládat, že nerovnost $a_n \leq b_n$ platí dokonce pro každé $n=1,2,\ldots$ (prvních n_0 sčítanců mohu libovolně změnit). Takže i $s_n \leq t_n$ pro každé n. Podle předpokladu existuje c>0, že $t_n < c$ pro každé n. Tedy i $s_n < c$ pro každé n a řada $\sum a_n$ konverguje.
- 2. (i) Pro $n > n_0$ je $l/2 < a_n/b_n < 2l$, tedy $a_n < 2lb_n$ a $b_n < (2/l)a_n$. Ekvivalence konvergencí řad $\sum a_n$ a $\sum b_n$ tedy plyne z první části (a tvrzení o lineární kombinaci řad). (ii) Pro $n > n_0$ je $a_n/b_n < 1$, tedy $a_n < b_n$ a použijeme první část. (iii) Pro $n > n_0$ je $1 < a_n/b_n$, tedy $b_n < a_n$ a použijeme první část.

Věta (odmocninové kritérium). Reálná čísla a_n buďte nezáporná.

- 1. Když existuje q, 0 < q < 1, $a n_0$, že pro $n > n_0$ je $a_n^{1/n} < q$, pak řada $\sum a_n$ konverguje.
- 2. $Kdy\check{z} \limsup a_n^{1/n} < 1$, $pak \check{r}ada \sum a_n konverguje$.

- 3. $Kdy\check{z} \lim a_n^{1/n} < 1$, $pak \check{r}ada \sum a_n konverguje$.
- 4. $Kdy\check{z} \limsup a_n^{1/n} > 1$, $pak \check{r}ada \sum a_n diverguje$.
- 5. $Kdy\check{z} \lim a_n^{1/n} > 1$, $pak \check{r}ada \sum a_n diverguje$.

Důkaz. 1. Pro $n > n_0$ je tedy $a_n < q^n$ a podle tvrzení o srovnání řad řada $\sum a_n$ konverguje (srovnáváme ji s konvergentní geometrickou řadou).

- 2. Podle definice limsupu existuje n_0 a číslo q<1, že pro $n>n_0$ je $a_n^{1/n}< q$, takže podle části 1 jsme hotovi.
 - 3. Když limita existuje, rovná se limsupu, jsme hotovi podle 2.
- 4 a 5. Zde je jasné, že existuje q > 1, že pro nekonečně mnoho indexů n (v části 5 dokonce pro každé $n > n_0$) je $a_n^{1/n} > q$. Pro tato n tedy $a_n > q^n > 1$ a není splněna nutná podmínka konvergence řady, že $\lim a_n = 0$.

Věta (podílové kritérium). Reálná čísla a_n buďte kladná.

- 1. Když existuje q, 0 < q < 1, $a n_0$, že pro $n > n_0$ je $a_{n+1}/a_n < q$, pak řada $\sum a_n$ konverguje.
- 2. $Kdy\check{z} \limsup a_{n+1}/a_n < 1$, $pak \check{r}ada \sum a_n konverguje$.
- 3. $Kdy\check{z} \lim a_{n+1}/a_n < 1$, $pak \check{r}ada \sum a_n konverguje$.
- 4. Existuje posloupnost (b_n) , $b_n > 0$, že $\limsup b_{n+1}/b_n > 1$ a řada $\sum b_n$ přesto konverguje.
- 5. $Kdy\check{z} \lim a_{n+1}/a_n > 1$, $pak \check{r}ada \sum a_n diverguje$.

 $D\mathring{u}kaz$. 1. Jak víme, prvních n_0 členů řady lze libovolně změnit (aniž by se cokoli stalo s konvergencí), a můžeme tak předpokládat, že $a_{n+1}/a_n < q$ platí pro každé $n \in \mathbb{N}$. Vynásobením n nerovností $a_1 \leq a_1, a_2/a_1 < q, a_3/a_2 < q, \ldots, a_n/a_{n-1} < q$ dostaneme nerovnost $a_n \leq a_1q^{n-1}$ a jsme hotovi díky tvrzení o srovnání řad (opět srovnáváme s konvergentní geometrickou řadou).

2 a 3. Dokazuje se stejně jako v předešlé větě.

4. Nechť $(a_n) = ((1/2)^{n-1})$ (geometrická posloupnost, pro každé n je $a_n/a_{n-1} = 1/2$) a posloupnost (b_n) získáme z (a_n) tak, že si zvolíme libovolnou posloupnost indexů $1 < n_1 < n_2 < \ldots$, ovšem splňující $n_{i+1} > n_i + 1$ (tj. žádné dva zvolené indexy nesousedí), a pro $n \neq n_i$ položíme $b_n = a_n$ a pro $n = n_i$ položíme $b_n = 4a_n$. Pro $n = n_i$ pak je $b_n/b_{n-1} = 4a_n/a_{n-1} = 2$, takže

 $\limsup b_n/b_{n-1} \ge 2$ (fakticky se rovná dvěma). Ovšem $\sum a_n$ je konvergentní geometrická řada (s kvocientem q=1/2) a pro každé n je $b_n \le 4a_n$, takže i $\sum b_n$ konverguje.

5. Máme q>1 a n_0 , že pro $n>n_0$ je $a_{n+1}/a_n>q$. Podobně jako v části 1 můžeme předpokládat, že že $a_{n+1}/a_n>q$ platí pro každé $n\in\mathbb{N}$. Vynásobením n nerovností $a_1\geq a_1,a_2/a_1>q,a_3/a_2>q,\ldots,a_n/a_{n-1}>q$ dostaneme nerovnost $a_n\geq a_1q^{n-1}\geq a_1>0$ — řada $\sum a_n$ diverguje, protože není splněna nutná podmínka konvergence řady, že $\lim a_n=0$.

Důležitá poznámka: když limsup popř. limita z $a_n^{1/n}$ či a_{n+1}/a_n vyjde 1, pak kritéria neříkají nic a řada může konvergovat nebo divergovat. Např. $\zeta(s) = \sum a_n = \sum n^{-s}$ má pro každé pevné $s \in \mathbb{R}$ lim $a_n^{1/n} = \lim a_{n+1}/a_n = 1$ (dokažte si to). Odmocninové kritérium se často spojuje se jménem A.-L. Cauchyho a podílové se jménem Jeana-Baptisty le Ronda d'Alemberta (1717–1783), podle Wikipedie francouzského matematika, mechanika, fyzika, filosofa, hudebního teoretika a encyklopedisty.

Přerovnání řad. Přerovnáním řady $\sum a_n$ rozumíme řadu $\sum a_{p(n)} = a_{p(1)} + a_{p(2)} + a_{p(3)} + \dots$ danou nějakou permutací p množiny přirozených čísel $\mathbb{N} = \{1, 2, \dots\}$, což je jakákoli bijekce $p: \mathbb{N} \to \mathbb{N}$ (bijekce je zobrazení, jež je prosté i na). Prostě nějak zpřeházíme sčítance v $\sum a_n$.

Věta (Riemannova o přerovnání řad). Nechť řada $\sum a_n$ konverguje, ale ne absolutně. Pak pro každé $\alpha \in \mathbb{R}$ nebo $\alpha = -\infty$ nebo $\alpha = +\infty$ existuje permutace $p : \mathbb{N} \to \mathbb{N}$, že

$$\sum a_{p(n)} = \alpha .$$

 $D\mathring{u}kaz$. Jen naznačený. Nechť $\sum b_n$, resp. $\sum c_n$, je podřada řady $\sum a_n$ sestávající z nezáporných, resp. záporných, sčítanců a_n . Pak $\sum b_n = +\infty$ a $\sum c_n = -\infty$, avšak $\lim b_n = \lim c_n = 0$. Nechť $\alpha \in \mathbb{R}$, pro nekonečné α se následující postup snadno upraví. Ze $\sum b_n$ vezmeme takový nejkratší částečný součet t_{m_1} , že $t_{m_1} > \alpha$. Pak ze $\sum c_n$ vezmeme takový nejkratší částečný součet u_{n_1} , že $t_{m_1} + u_{n_1} < \alpha$. Ze zbytku $\sum b_n$ vezmeme takový nejkratší částečný součet $t_{m_2} - t_{m_1}$, $t_{m_1} < t_{m_2}$, že $t_{m_1} + t_{m_1} + t_{m_2} - t_{m_1}$) $> \alpha$. Ze zbytku $\sum c_n$ vezmeme takový nejkratší částečný součet $t_{m_2} - t_{m_1}$, $t_{m_2} - t_{m_2}$, že $t_{m_1} + t_{m_1} + t_{m_2} - t_{m_1}$) $+ t_{m_2} - t_{m_2}$

Příkladem řady, na níž se vztahuje Riemannova věta, je třeba střídavá harmonická řada

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log 2$$
.

Věta (o přerovnání AK řady). Nechť je řada $\sum a_n$ absolutně konvergentní. Pak pro každou permutaci $p: \mathbb{N} \to \mathbb{N}$ je přerovnaná řada $\sum a_{p(n)}$ absolutně konvergentní a má týž součet jako $\sum a_n$.

Důkaz. Příště. □