DM 29: ensembles multiplicatifs.

Il s'agit d'un sujet supplémentaire pour votre travail personnel. Il n'est pas à rendre.

Un corrigé sera fourni à la fin des vacances.

On dira qu'un sous-ensemble S d'un anneau A est multiplicatif si et seulement si, pour tout $(r,s) \in S^2, rs \in S$.

Pour tout entier $n \geq 1$, on note $S_n(A)$ l'ensemble des éléments x de l'anneau A qui peuvent s'écrire sous la forme $x = x_1^2 + \cdots + x_n^2$, avec x_1, \ldots, x_n dans A.

Si k est un sous-corps de \mathbb{C} , k[X] et k(X) désignent respectivement l'anneau des polynômes et le corps des fractions rationnelles à coefficients dans k.

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ ont les significations habituelles.

Partie I

 $\mathbf{1}^{\circ})$ Soient x,y,z,t quatre éléments d'un sous-anneau B du corps $\mathbb R$ des réels. En écrivant que

(*)
$$|x + iy|^2 . |z + it|^2 = |(x + iy)(z + it)|^2$$
,

démontrer que $S_2(B)$ est un ensemble multiplicatif.

- $\mathbf{2}^{\circ}$) L'égalité (*) peut être regardée comme une identité dans l'anneau B en les lettres x, y, z, t. Enoncer cette identité et la démontrer dans un anneau commutatif quelconque A. En déduire que $S_2(A)$ est un ensemble multiplicatif.
- 3°
- a) Montrer que le carré d'un entier relatif est congru à 0 ou à 1 modulo 4.
- b) Supposons qu'il existe $(x_1, x_2, x_3) \in \mathbb{Z}^3$ tel que $15 = x_1^2 + x_2^2 + x_3^2$. Montrer que x_1, x_2 et x_3 sont impairs.
- c) Montrer que $15 \notin S_3(\mathbb{Z})$ et en déduire que $S_3(\mathbb{Z})$ n'est pas un ensemble multiplicatif.
- $\mathbf{4}^{\circ}$) On note $\overline{0}$, $\overline{1}$, $\overline{2}$,..., $\overline{7}$ les huit éléments de l'anneau $E = \mathbb{Z}/8\mathbb{Z}$. Donner sans justification la liste des éléments de chacun des trois ensembles $S_1(E)$, $S_2(E)$ et $S_3(E)$.
- **5**°) Soient a, b, c, d dans \mathbb{Z} tels que $a^2 + b^2 + c^2 + d^2 \equiv 0$ modulo 8. Déduire de la question précédente que ces quatre nombres sont tous pairs.

- **6**°) En déduire que, si $n \in \mathbb{Z}$ est congru à -1 modulo 8, alors n n'appartient ni à $S_3(\mathbb{Z})$, ni à $S_3(\mathbb{Q})$.
- 7°) L'ensemble $S_3(\mathbb{Q})$ est-il multiplicatif?
- 8°) Soit $f \in \mathbb{R}[X]$ tel que, pour tout $x \in \mathbb{R}$, $f(x) \geq 0$.
- a) Si f est de degré 2, montrer que $f \in S_2(\mathbb{R}[X])$.
- b) Pour f de degré quelconque, montrer que les racines réelles de f sont de multiplicités paires, puis montrer que $f \in S_2(\mathbb{R}[X])$.
- c) Montrer que $S_2(\mathbb{R}[X]) = \{g \in \mathbb{R}[X] / \forall x \in \mathbb{R} \ g(x) \ge 0\}.$
- 9°) Démontrer que pour tout $n \geq 3$, on a $S_n(\mathbb{R}[X]) = S_2(\mathbb{R}[X])$. A-t-on aussi $S_n(\mathbb{R}(X)) = S_2(\mathbb{R}(X))$?

Partie II

Dans cette partie, k désigne un corps commutatif quelconque. On notera 0 et 1 ses éléments neutres.

- \diamond On appelle caractéristique de k et on note car(k) le plus petit entier $n \geq 1$ tel que n.1 = 0, si un tel entier n existe. Dans le cas contraire, on pose car(k) = 0.
- \diamond On appelle niveau de k et on note s(k) le plus petit entier $n \geq 1$ tel que $-1 \in S_n(k)$, si un tel entier n existe. Dans le cas contraire, on pose $s(k) = +\infty$.

On admet pour la suite du problème que, si k est un corps commutatif de caractéristique nulle, et si n est une puissance de 2, alors $S_n(k)$ est un ensemble multiplicatif.

- 1°) Calculer la caractéristique et le niveau des corps \mathbb{R} et \mathbb{C} .
- (2°) a) Si p est un nombre premier, calculer la caractéristique du corps $\mathbb{Z}/p\mathbb{Z}$.
- b) Quel est le niveau d'un corps de caractéristique 2? d'un corps de caractéristique 5?
- **3**°) On pose $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, où p est un nombre premier ≥ 3 .
- a) Quel est le noyau du morphisme $x \mapsto x^2$ du groupe multiplicatif \mathbb{F}_p^* des éléments non nuls du corps \mathbb{F}_p dans lui-même?
- b) Notons $A = \{\overline{1}, \overline{2}, \dots, \overline{\left(\frac{p-1}{2}\right)}\}.$

Montrer que A et -A constituent une partition de \mathbb{F}_p^* (où $-A = \{-x/x \in A\}$). On note E l'image du morphisme étudié au 3.a.

Montrer que l'application $\begin{pmatrix} A & \longrightarrow & E \\ x & \longmapsto & x^2 \end{pmatrix}$ est une bijection.

- c) T désignant l'ensemble des éléments de \mathbb{F}_p de la forme -1-y avec $y \in S_1(\mathbb{F}_p) = E \cup \{0\}$, démontrer que l'intersection $T \cap S_1(\mathbb{F}_p)$ n'est pas vide. d) En déduire que $s(\mathbb{F}_p) \leq 2$.
- 4°) On suppose que k est un corps (fini ou infini) de caractéristique n non nulle.
- a) Montrer que l'application $\overline{h} \longmapsto h.1$ est un morphisme d'anneaux injectif

de $\mathbb{Z}/n\mathbb{Z}$ dans k.

- b) En déduire que n est un nombre premier.
- c) Montrer que $s(k) \leq 2$.
- 5°) On suppose, dans cette question, que le corps k est de caractéristique nulle et de niveau $s \neq +\infty$. Il existe donc x_1, \ldots, x_s dans k tels que $-1 = x_1^2 + \cdots + x_s^2$. Soit *n* la plus grande puissance de 2 telle que $n \le s$ et soit $x = x_1^2 + \cdots + x_n^2$. Etablir que $x \neq 0$, puis successivement que -x, $-x^2$ et -1 appartiennent à $S_n(k)$.
- 6°) Démontrer que le niveau d'un corps commutatif quelconque est égal ou bien à $+\infty$ ou bien à une puissance de 2.

Partie III

Dans cette partie, k désigne un sous-corps de \mathbb{C} . On note A = k[X] et K = k(X), de sorte que $k \subset A \subset K$.

- $\mathbf{1}^{\circ}$) Démontrer que $S_1(A) = A \cap S_1(K)$.
- 2°) On fixe un entier n avec $n \geq 2$.

Soient a_1, \ldots, a_{n-1}, b dans K. Simplifier l'expression $(b+1)^2 + \sum_{i=1}^{n-1} (a_i(b-1))^2$ lorsque

$$\sum_{i=1}^{n-1} a_i^2 = -1.$$

- $\mathbf{3}^{\circ}) \;$ En déduire que, s'il existe $n \geq 2$ tel que $-1 \in S_{n-1}(k),$ alors $S_n(k) = k,$ $S_n(A) = A$ et $S_n(K) = K$.
- 4°) Pour quels entiers $n \geq 1$ les ensembles $S_n(\mathbb{C}(X))$ sont-ils multiplicatifs?
- **5**°) Soit n un entier tel que $n \geq 2$ et $-1 \notin S_{n-1}(k)$.

Soient R_1, \ldots, R_n des polynômes dans A.

Démontrer que si $R_1^2 + \cdots + R_n^2 = aX$ avec $a \in k$, alors R_1, \ldots, R_n sont tous nuls.

6°) Soient $P, Q, P_1, \dots, P_n, Q_1, \dots, Q_n$ dans A, où on a encore $n \in \mathbb{N}$ avec $n \geq 2$.

On pose
$$S = P - \sum_{i=1}^{n} Q_i^2$$
, $T = PQ - \sum_{i=1}^{n} P_i Q_i$, $Q' = 2T - QS$ et $P'_i = 2Q_i T - P_i S$ pour tout $i \in \{1, ..., n\}$.

a) Démontrer que, si l'on a l'égalité:

(1)
$$Q^2P = \sum_{i=1}^n P_i^2$$
,

alors on a aussi les deux égalités :

(2)
$$Q'^2 P = \sum_{i=1}^n P_i'^2$$
 et

(3)
$$QQ' = \sum_{i=1}^{n} (P_i - QQ_i)^2$$
.

b) On suppose, outre l'égalité (1), que $-1 \notin S_{n-1}(k)$, que $Q \neq 0$ et que Q' = 0. Prouver l'égalité :

(4)
$$P = \sum_{i=1}^{n} Q_i^2$$
.

Indication: on pour autiliser la question 5 avec a = 0.

 7°) Soit $n \geq 2$ tel que $-1 \notin S_{n-1}(k)$ et soient P, Q, P_1, \ldots, P_n dans A vérifiant l'égalité (1) ci-dessus et les conditions

(5)
$$PQ \neq 0$$
 et $deg(Q) \geq 1$.

Démontrer que l'on peut trouver Q'', P''_1, \dots, P''_n dans A vérifiant

(6)
$$Q''^2 P = \sum_{i=1}^n P_i''^2$$
 et

(7)
$$PQ'' \neq 0$$
 et $deg(Q'') < deg(Q)$.

Indication : on pourra utiliser la question précédente en prenant pour Q_i le quotient de la division euclidienne de P_i par Q.

- 8°) Démontrer que, pour tout $n \ge 1$, on a $S_n(A) = A \cap S_n(K)$.
- 9°) a) Démontrer que les corps k et K ont le même niveau.
 - b) En supposant que ce niveau commun s est fini, démontrer que $S_s(K) \neq S_{s+1}(K)$.
- $\mathbf{10}^{\circ}$) Etablir que, si n est une puissance de 2, alors l'ensemble $S_n(A)$ est multiplicatif.