G05-FrenoBici

Simon Pelletier 2020

G05-FrenoBici

- Estudio de movimiento del sistema
- Estudios de resistencia de las piezas

Bike Cad Tomado De: https://grabcad.com/library/road-bike-15

Funcionamiento del sistema

Estudio de movimiento

G05-FrenoBici

Objetivos de la simulación de movimiento

Entradas

- Masa a frenar : 100 kg
- Velocidad de la bicicleta : 37 km/h
- · Diámetro de la rueda : 700 mm
- Tensión en el cable necesario para frenar : 100 N
- · Tensión máxima en el cable: 750 N
- Coeficiente de fricción entre disco y pastillas : 0.5
- Fricción del cable en la vaina : 1 N
- Tensión a mantener en el cable : 2 3 N
- Tiempo para frenar: 1 s
- Desplazamiento lineal del cable max: 30 mm

Salidas

- · Validación del diseño de la pinza.
- Determinación de los casos de carga de las diferentes piezas.
- Dimensionamiento del muelle interno del sistema.
- Dimensionamiento del rodamiento interno del sistema.

Comportamiento del disco

Validación del diseño de la pinza

Tensión en el cable necesario para frenar : 100 N

Validación del diseño de la pinza

Máximo desplazamiento lineal del cable = 30 mm

Validación del diseño de la pinza

Ajuste de las diferentes dimensiones para garantizar el buen funcionamiento

Determinación de los casos de carga de las diferentes piezas.

Caso de cargas 1. Carga elevada 2. Carga máxima (dentro de los límites (fuera de los límites de funcionamiento) de funcionamiento) Tensión en el cable. (N) 100 750 Fuerza axial de frenado (N) 1600 10000 Fuerza de contacto de las pastillas 1500 1500 con la pinza. (N) Fuerza generada por la rotación 270 2000 del pistón. (N)

Dimensionamiento del muelle y el rodamiento interno del sistema.

Muelle

reacción 26

0.20

0.40

0.60

Rodamiento	
	Carga (N)
Carga max real del rodamiento	10000
Límite estático del rodamiento	23500

Needle-Roller Thrust Bearing for 1/2" Shaft Diameter, 15/16" OD

Each	In stock \$3.33 Each 5909K31
ADD TO ORDER	5909K31

System of Measurement	Inch
Bearing Type	Roller
Roller Bearing Type	Needle
For Load Direction	Thrust
Seal Type	Open
For Shaft Type	Round
For Shaft Diameter	1/2"
ID	0.502"
ID Tolerance	0" to 0.005"
OD	15/16"
OD Tolerance	-0.02" to -0.01"
Thickness	5/64"
Thickness Tolerance	-0.0002" to 0"
Roller Material	Steel
Cage Material	Steel
Thrust Load Capacity, lbs.	
Dynamic	1,900
Static	5,300

https://www.mcmaster.com/5909k31-5909K31/

Estudio de resistencia de las piezas

G05-FrenoBici

Antes

Caso de carga máxima: - Tensión máxima en el cable = 750 N

- Palanca a 90 grados

Tensiones no aceptables

Material = AISI 316

Caso de carga máxima: - Tensión máxima en el cable = 750 N

- Palanca a 90 grados

Material = AISI 4340, normalized

Cambio de material

Caso de carga máxima: - Tensión máxima en el cable = 750 N

- Palanca a 90 grados

Material = 6061-T6

Antes

von Mises (N/mm^2 (MPa))

Caso de carga máxima: - Tensión máxima en el cable = 750 N

- Palanca a 90 grados

Material = 7075-T6

Cambio de material

Despues

Caso de carga máxima: - Tensión máxima en el cable = 750 N

- Palanca a 90 grados

Material = 6061-T6

→ Limite d'élasticité: 2,75e+02

Piezas 9001-001/002

Caso de carga máxima: - Tensión máxima en el cable = 750 N

- Palanca a 90 grados

Material = 6061-T6

Antes

Limite d'élasticité: 2,75e+02

Piezas 9001-001/002

Caso de carga máxima: - Tensión máxima en el cable = 750 N

- Palanca a 90 grados

Material = 7075-T6 **←**

Cambio de material

Despues

→ Limite d'élasticité: 5,05e+02

Piezas 9001-001/002

Caso de carga : - Tension en el câble = 100 N

- Palanca a 90 grados

Material = 7075-T6

Axis3

Conclusión

G05-FrenoBici

Evolución

Concepto inicial

Estudio de movimiento

Estudio de resistencia de las piezas

Evolución

Estudio de movimiento

Estudio de resistencia de las piezas

