PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLIS	HED U	JN	DER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 7:		(1	1) International Publication Number: WO 00/61698
C09K 5/04	A1	(4	3) International Publication Date: 19 October 2000 (19.10.00)
(21) International Application Number: PCT/US (22) International Filing Date: 12 April 2000 ((81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 60/128,902 12 April 1999 (12.04.99)	Ţ	JS	Published With international search report.
(71) Applicant (for all designated States except US): A BOARD OF REGENTS [US/US]; Arizona State U Tempe, AZ 85287-6006 (US).	RIZON Iniversit	íA ty,	
(72) Inventors; and (75) Inventors/Applicants (for US only): ANGELL, Cl [US/US]; 2122 S. Paseo Loma, Mesa, AZ 85202 (LIKOV, Vesselin [BG/US]; 4533 S. Mill Avenue AZ 85282 (US).	(US). V	E-	
(74) Agents: SORELL, Louis, S. et al.; Baker & Botts Rockefeller Plaza, New York, NY 10112-0228 (U		30	
			DODDEROV DETRICIPATION ADDADATES AND A DESCRIPTION OF
(54) Title: TWO-PHASE REFRIGERATION FLUID FO PREVENTING CORROSION	K AN A	/RS	SORPTION REFRIGERATION APPARATUS AND A METHOD OF
(57) Abstract			
A novel two-phase refrigeration fluid for absorption the second phase is an aqueous solution of a fluorinated satemperatures and corrosion protection.	refriger alt of lit	atio hiu	on comprises a first phase that is an aqueous solution of lithium halide, m. The refrigeration fluid of the present invention offers high boiling
			·
			9
			·

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	. RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SR	Sweden		
EE	Estonia	LR	Liberia .	SG	Singapore		

WO 00/61698 PCT/US00/09796

TWO-PHASE REFRIGERATION FLUID FOR AN ABSORPTION REFRIGERATION APPARATUS AND A METHOD OF PREVENTING CORROSION

SPECIFICATION

5

10

15

20

25

BACKGROUND OF INVENTION

This invention relates to the field of absorption refrigeration.

Specifically, the invention provides a novel refrigeration fluid and a related method of preventing corrosion of internal parts in an absorption refrigeration apparatus.

Modern absorption refrigeration is based on a cooling effect obtained by connecting two vessels containing liquids with different vapor pressures. The cooling effect is produced in the vessel containing the liquid with higher vapor pressure when the vapors are drawn to the vessel containing the liquid with lower vapor pressure. Typically, an aqueous solution of lithium halide is used as the liquid with lower vapor pressure and water is used as the liquid with higher vapor pressure. The liquid with lower vapor pressure is called the refrigeration fluid. An aqueous solution of lithium bromide is the typical refrigeration fluid used in absorption refrigeration.

Figure 1 illustrates the operation of a typical absorption refrigeration cycle. An evaporator 1 contains a liquid with higher vapor pressure, usually water, and is connected to an absorber 2, which contains a refrigeration fluid, usually a solution of lithium bromide. The refrigeration fluid is sprayed in the absorber 2. Because of the difference in vapor pressures, the water vapors from the evaporator 1 are drawn into the absorber, producing a cooling effect in the evaporator. The refrigeration fluid is then transferred to a generator 3. In the generator, the refrigeration fluid is boiled to produce water vapors and a more concentrated solution of the refrigeration fluid. The concentrated refrigeration fluid is continuously returned from the generator 3 to the absorber 2 by spraying. The water vapors produced in the

10

15

20

25

30

generator 3 are condensed in a condenser 4. The condensed water is then transferred to the evaporator 1, completing the absorption refrigeration cycle.

The cooling effect produced in absorption refrigeration may be magnified by an increase in the vapor pressure gradient between the absorber 2 and the evaporator 1. In turn, the vapor pressure gradient may be increased by an increase in the boiling temperature of the refrigeration fluid in the generator 3. The higher boiling temperature decreases the vapor pressure of the refrigeration fluid, resulting in a larger vapor pressure gradient and a larger cooling effect in the evaporator. In effect, the absorption refrigeration is based on utilizing the heat supplied to the generator 3 to cool the evaporator 1.

It is known that stagewise utilization of heat improves the efficiency of absorption refrigeration. The process for stagewise utilization of heat is known as "double effect" and "triple effect" absorption refrigeration, depending on the number of heat utilization stages.

At present, the use of "double effect" and "triple effect" absorption refrigeration is not feasible due to insufficiently high boiling temperatures of conventional lithium bromide refrigeration fluids. So far, the efforts to produce higher boiling and practical refrigeration fluids have not been successful. The boiling temperatures are limited by chemical stability of refrigeration fluids and the ability of the internal parts of refrigeration equipment to withstand corrosion. For example, it is known that the addition of zinc bromide to the lithium bromide refrigeration fluid significantly increases the boiling temperature. The resulting solution of tetrabromozincate is also chemically stable in the range of temperatures used in absorption refrigeration. However, the lithium tetrabromozincate is corrosive to the internal parts of refrigeration equipment.

Therefore, there is a need for an absorption refrigeration fluid which is both stable to high temperatures and not corrosive.

It is an object of the present invention to provide a refrigeration fluid for an absorption refrigeration apparatus which is chemically stable within the range of temperatures used in absorption refrigeration and not corrosive to the internal parts and piping of an absorption refrigeration apparatus.

15

20

25

It is also an object of the present invention to provide a method of protecting absorption refrigeration equipment from corrosion.

SUMMARY OF THE INVENTION

The present invention fulfills this need by providing a refrigeration

fluid which is a two-phase liquid, wherein the first phase is an aqueous solution of
lithium halide and the second phase is an aqueous solution of a fluorinated salt of
lithium.

The present invention also provides an absorption refrigeration apparatus which includes an evaporator, an absorber, a generator, a condenser and a refrigeration fluid which is a two-phase liquid, wherein the first phase is an aqueous solution of lithium halide, the second phase is an aqueous solution of a fluorinated salt of lithium.

In addition, the present invention also provides a method for protecting internal parts of an absorption refrigeration apparatus by using the two-phase refrigeration fluid of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a general scheme of the absorption refrigeration cycle.

Figure 2 shows a phase diagram for a two-component system of lithium bis (trifluoro methane sulfonyl) imide ("LiTFMSI") and water.

Figure 3 shows a phase diagram for a two-component system of lithium bromide and water.

Figure 4 shows a plot of boiling temperatures and glass transition temperatures for aqueous solutions of LiBr and LiTFMSI as a function of salt concentrations.

DETAILED DESCRIPTION OF THE INVENTION

As discussed above, the desired increase in the boiling temperatures of refrigeration fluids for absorption refrigeration is limited by the chemical stability and corrosive nature of known refrigeration fluids. However, in this invention, a two-

10

15

20

25

30

phase liquid wherein the first phase is an aqueous solution of lithium halide and the second phase is an aqueous solution of a fluorinated salt of lithium is an excellent refrigeration fluid for absorption refrigeration which is both stable in the temperature range used in absorption refrigeration and minimally corrosive to the internal parts of an absorption refrigeration apparatus.

Without wishing to be bound to any one theory, this invention is based on a completely unexpected phenomena of immiscibility of aqueous solutions of fluorinated salts of lithium with aqueous solutions of lithium halides in a wide range of concentrations. Aqueous solutions are normally expected to mix and form a single continuous phase. However, for example, when the aqueous solution of lithium bis(trifluoro methane sulfonyl) imide was added to the aqueous solution of lithium bromide, the resulting liquid unexpectedly contained two aqueous phases.

The relevance of this phenomena to absorption refrigeration lies in the recognition that the fluorinated phase has lower surface tension than the lithium halide phase. It is well known that fluorinated groups are hydrophobic and that compounds containing fluorinated groups are often used as surfactants because of their lower surface tension. Indeed, when a metal or glass object was inserted into a two-phase liquid according to the present invention, for example, into the lithium bromide/lithium bis(trifluoro methane sulfonyl) imide solution, the fluorinated phase was qualitatively observed to exhibit a lower contact angle, and therefore, the lower surface tension of the fluorinated phase. It has also been shown by others that a dissolution of lithium bis(trifluoro methane sulfonyl) imide in water, in contrast to lithium halide salts, leads to a significant decrease in the surface tension of the resulting aqueous solution from 70 dyn/cm to about 35 dn/cm, see G. Perron et al., Can. J. Chem., 75, 1608-1614 (1997), incorporated herein by reference.

Further, when a two-phase liquid is placed in a vessel, the phase with lower surface tension will adhere to the surfaces of the vessel. Therefore, when the refrigeration fluid of the present invention is used in a refrigeration apparatus, the fluorinated phase positions itself between the internal surfaces of the apparatus and the lithium halide phase. As a result, it is believed that the fluorinated phase prevents contact between the internal surfaces and the lithium halide phase, protecting the

10

15

20

25

surfaces and minimizing corrosion. In addition, the fluorinated phase is likely to stabilize a thin film of NiF₂ or CuF₂ on nickel-containing copper materials, commonly used for piping in absorption refrigeration.

The fluorinated phase of the refrigeration fluid of the present invention includes a fluorinated salt of lithium, for example, a fluorinated salt of the formulas $LiC_nH_{2n+1}SO_2N$, $Li(C_nH_{2n+1}SO_2)_2N$ or $LiC_nH_{2n+1}PO_2$, wherein n is from 1 to 3. Preferably, the aqueous solutions of lithium bis (trifluoro methane sulfonyl) imide ("LiTFMSI"), lithium bis(perflouroethanesulfonyl)imide ("LiBETI"), $Li(CF_3)_2PO_2$. $Li(C_3F_7SO_2)_2N$, $Li(C_2F_5)_2PO_2$, as well as their mixtures, are used in the preparation of the fluorinated phase. In addition, the aqueous solutions of LiSbF₆, LiAsF₆ and lithium perfluoro benzene sulfonate, as well as their mixtures, may also be used in the preparation of the fluorinated phase.

The lithium halide phase of the refrigeration fluid of the present invention preferably includes either lithium bromide or lithium chloride. In a particularly preferred embodiment, the first phase is an aqueous solution of lithium bromide and the second phase is an aqueous solution of lithium bis (trifluoro methane sulfonyl) imide (LITFMSI).

To increase the boiling temperature of the refrigeration fluid of the present invention, a suitable inorganic salt additive, for example, zinc bromide $(ZnBr_2)$, may be utilized. The addition of zinc bromide produces tetrabromozincate in the lithium bromide phase, resulting in a stable, high-temperature boiling liquid. In contrast to the presently known use of tetrabromozincate in absorption refrigeration, the fluorinated phase will prevent contact between the tetrabromozincate-containing phase and the internal surfaces of the refrigeration apparatus, thereby minimizing corrosion. At the same time, the boiling temperature of the refrigeration fluid will increase, while heat transfer from the internal surfaces to the lithium bromide phase will not be affected by the presence of the fluorinated phase because both phases are aqueous. Thus both prevention of corrosion and higher boiling temperatures are achieved by utilizing the refrigeration fluid of the present invention.

10

15

20

25

30

Other suitable additives may also be used in the refrigeration fluid of the present invention, for example, lithium trifluoromethane sulfonate and lithium fluoride.

A solution of a lithium halide, for example, lithium bromide, may represent a major portion of the refrigeration fluid of the present invention.

Specifically, lithium halide may represent over 90% by weight with respect to the total weight of salt in the refrigeration fluid of the present invention. Preferably, lithium halide represents over 95% by weight with respect to the total weight of salts in the refrigeration fluid; most preferably, lithium halide represents 99% by weight. It is sufficient to provide a small layer of fluorinated protection between the lithium halide (e.g., lithium bromide) phase and the internal parts of the refrigeration apparatus. Preferably, the fluorinated salt is present in an amount of up to 5% by weight with respect to the total salt content. Most preferably, the fluorinated salt is present in an amount of 1% by weight with respect to the total salt content.

The vapor pressure of a liquid, and thus its boiling point, is proportional to the chemical potential of the liquid. Any two-phase system exists at an equilibrium where chemical potentials of the phases are identical. Therefore, the boiling point of a two-phase system is likely to be intermediate between the boiling points of each separate phase at the corresponding salt concentrations.

When two immiscible aqoues phases are mixed, water will redistribute itself to equalize the chemical potentials of the phases. The proper functioning of the refrigeration fluid requires similar boiling points for each liquid phase in the two-phase refrigeration fluid to prevent an excessive redistribution of water. Therefore, to evaluate the behavior of the two-phase refrigeration fluid of the present invention in the absorption refrigeration cycle, it is necessary to compare the boiling points of the lithium halide phase and the fluorinated phase at various salt concentrations.

The LiBr/LiTFMSI system was chosen as an example. The boiling behavior for the LiBr/ LiTFMSI two-phase system may be estimated from the plots for boiling points of the individual LiBr/water and LiTFMSI/water systems at different salt concentrations, as shown in Figures 2 and 3, excerpted from G. Perron et al., Can. J. Chem., 75, 1608-1614 (1997) and A. Sivaraman, H. Senapati, C.A. Angell,

10

15

20

J. Phys. Chem., B, 103(20), 4159 (1999), which are incorporated herein by reference. Figure 4 combines the data shown in Figures 2 and 3 and demonstrates that boiling behaviors of LiBr and LiTFMSI phases are very similar. The closeness of boiling points for LiBr and LiTFMSI solutions at identical salt concentrations indicates that mixing of the phases is unlikely to result in an unreasonably large redistribution of water. It should be noted that suitable additives may be used to modify the refrigeration fluid in order to prevent excessive redistribution of water. These addivives may include, for example, lithium fluoride, lithium trifluoromethane sulfonate, as well as any of the fluorinated salts shown above.

The present invention is further demonstrated by reference to the examples that follow. The examples are given for the purpose of illustration, and are not meant to be limiting in any way.

Preparation of the refrigeration fluid

Example 1.

Approximately 8.61 g of LiTFMSI was dissolved in 1.39 ml of distilled water with stirring to produce an aqueous solution of LiTFMSI. Similarly, 6.52 g of LiBr were dissolved in 3.48 ml of water to produce an aqueous solution of lithium bromide. 9 g of the LiBr solution was added to 2.5 g of the LiTFMSI solution with stirring. The resulting liquid contained two aqueous phases. The two-phase liquid was heated in an Erlenmeyer flask until the boiling has commenced in the flask. On visual observation, the phase separation and the volumes of the LiBr and LiTFMSI phases remained unaffected. The boiling commenced in the LiTFMSI phase, which then initiated the boiling of the LiBr phase.

Example 2.

28 mole % solutions of LiTFMSI and LiBr were prepared by using the appropriate amounts of corresponding salts and distilled water. 5.4 g of the LiTFMSI solution were added to 19.5 g of the LiBr solution resulting in a molar ratio of LiTFMSI to LiBr of 1:9. After stirring and heating to below the boiling point, the solution

10

15

20

remained separated into two phases.

Example 3

0.11 g of the LiTFMSI solution obtained in Example 2 were added to 5 g of the LiBr solution, resulting in a molar ratio of LiTFMSI to LiBr of 0.7: 99.3. After vigorous stirring and heating the two aqueous phases are still immiscible.

Example 4.

16.7 mole % aqueous solutions of lithium bis(perflouroethanesulfonyl)imide ("LiBETI") and LiBr were prepared by adding the salts to the appropriate amounts of distilled water. Upon dissolution, 8.32 g of the LiBr solution was added to a vial containing 5.71 g of the BETI solution, resulting in a ratio of LiBETI to LiBr of 1:4. The resulting liquid contained two aqueous phases. The two-phase liquid was heated in an Erlenmeyer flask. On visual observation, the phase separation and the volumes of the LiBr and LiBETI phases remained unaffected by heating.

Detection of immiscibility limits (plait point)

Example 5

The solution from example 2 was subjected to stepwise dilution by adding about 2.5 g of water at a time. As the overall molar concentration of the solution decreased to 22.6 %, 18.9 %, and 16.3 %, the two phases remained separated and unaffected by stirring and heating. The added water was absorbed predominantly by the LiBr phase. At an overall composition of 13.9 mole %, upon heating and vigorous stirring, the cloudiness disappeared at about 82-86°C and the two phases mixed together. Thus, 13.9 mole% is the plait point for this temperature. Upon cooling, the solution became turbid and the two phases separated at room temperature.

10

15

20

25

Example 6

The solution obtained in Example 3 was subjected to dilution with 0.5 g of water at a time to determine the plait point for the two-phase liquid with low relative concentration of LiTFMSI salt. At an overall molar concentrations of 23.0 % and 19.6 %, the two aqueous phases are immiscible at all temperatures up to just below the boiling point. At 17.2 mole % of salt, upon vigorous stirring, the solution clears up at room temperature, indicating that the plait point at room temperature lies between 19.6 and 17.2 mole %.

Hypothetical Example 1A.

Approximately 70 g of lithium perfluoro benzene sulfonate was dissolved in 50 ml of distilled water with intensive stirring to produce approximately 120 g of the fluorinated phase. Separately, 50 g of lithium bromide was dissolved in 50 ml of water to produce 100 g of stock LiBr solution. 20 g of the resulting solution of LiBr was weighed and transferred into a 100 ml round-bottom flask and charged with mechanical stirrer. After the stirring was started, approximately 2 g of the lithium perfluoro benzene sulfonate solution was added to the flask. Stirring continued for approximately 10 min. The solution was allowed to settle. After settling, approximately 1 g of ZnBr₂ and 2 g of LiF were added to the flask. The flask was charged with a reflux condenser and the liquid was heated to reflux. On observation, both lithium halide and the fluorinated phase are expected to boil simulteniously. The resulting two-phase liquid can be used as a refrigeration fluid.

Hypothetical Example 1B.

The refrigeration fluid was prepared using LiSbF₆ and LiCl using the procedure shown in hypothetical Example 1A.

Hypothetical Example 1C.

The refrigeration fluid was prepared using $\text{Li}(C_3F_7SO_2)_2N$ and LiBr using the procedure shown in hypothetical Example 1A.

WO 00/61698 PCT/US00/09796

10

The above embodiments have shown various aspects of the present invention. Other variations be evident to those skilled in the art and such modifications are intended to be within the scope of the invention as defined by the appended claims.

20

CLAIMS

- 1. A refrigeration fluid comprising a two-phase liquid, wherein the first phase comprises an aqueous solution of lithium halide, and the second phase comprises an aqueous solution of a fluorinated salt of lithium.
- 5 2. The refrigeration fluid according to claim 1, wherein the first phase comprises an aqueous solution of lithium bromide.
 - 3. The refrigeration fluid according to claim 1, wherein the fluorinated salt of lithium is selected from the group consisting of lithium bis (trifluoro methane sulfonyl) imide, lithium bis(perflouroethanesulfonyl)imide, LiSbF₆, LiAsF₆, Li(CF₃)₂PO₂, Li(C₃F₇SO₂)₂N, Li(C₂F₅)₂PO₂ and lithium perfluoro benzene sulfonate.
 - 4. The refrigeration fluid according to claim 3, wherein the fluorinated salt of lithium is lithium bis (trifluoro methane sulfonyl) imide.
 - 5. The refrigeration fluid according to claim 1, wherein the first phase represents a major portion of the refrigeration fluid.
- 15 6. The refrigeration fluid according to Claim 1, further comprising ZnBr₂.
 - 7. An absorption refrigeration apparatus comprising
 - (a)an evaporator for evaporating water;
 - (b) an absorber wherein water is absorbed into a refrigeration fluid comprising a two-phase liquid wherein the first phase comprises an aqueous solution of lithium halide and the second phase comprises an aqueous solution of a fluorinated salt of lithium;
 - (c)a generator connected to the absorber, wherein the refrigeration fluid is transferred from the absorber, and is heated to release water vapor; and
- (d) a condenser wherein water is condensed and transferred to the evaporator.

- 8. The refrigeration apparatus according to claim 7, wherein the first phase comprises an aqueous solution of lithium bromide.
- 9. The refrigeration apparatus according to claim 7, wherein the fluorinated salt of lithium is selected from the group consisting of lithium bis (trifluoro methane sulfonyl) imide, lithium bis(perflouroethanesulfonyl)imide, LiSbF₆, LiAsF₆, Li(CF₃)₂PO₂ Li(C₃F₇SO₂)₂N, Li(C₂F₅)₂PO₂ and lithium perfluoro benzene sulfonate.
 - 10. The refrigeration apparatus according to claim 9, wherein the fluorinated salt of lithium is lithium bis (trifluoro methane sulfonyl) imide.
- 10 11. The refrigeration apparatus according to claim 7, wherein the first phase represents a major portion of the refrigeration fluid.
 - 12. The refrigeration apparatus according to Claim 7, wherein the refrigeration fluid further comprises ZnBr₂.
- 13. A method of protecting internal parts of an absorption refrigeration apparatus comprising providing a refrigeration fluid which comprises a two-phase liquid, wherein the first phase has a higher surface tension than the second phase, thereby the second phase adheres to the internal parts of the refrigeration apparatus and thereby the second phase is positioned between the internal parts of the refrigeration apparatus and the first phase.
- 20 14. A method of protecting internal parts of an absorption refrigeration apparatus comprising providing a refrigeration fluid which comprises a two-phase liquid wherein the first phase comprises an aqueous solution of lithium halide, and the second phase comprises an aqueous solution of a fluorinated salt of lithium, and the second phase is positioned between the internal parts of the refrigeration apparatus and the first phase.

- 15. The method according to claim 14, wherein the first phase comprises an aqueous solution of lithium bromide.
- 16. The method according to claim 14, wherein the fluorinated salt of lithium is selected from the group consisting of lithium bis (trifluoro methane sulfonyl) imide, lithium bis(perflouroethanesulfonyl)imide, LiSbF₆, LiAsF₆, Li(CF₃)₂PO₂, Li(C₃F₇SO₂)₂N, Li(C₂F₅)₂PO₂ and lithium perfluoro benzene sulfonate.

- 17. The method according to claim 16, wherein the fluorinated salt of lithium is lithium bis (trifluoro methane sulfonyl) imide.
- 18. The method according to claim 14, wherein the first phase represents a major portion of the refrigeration liquid.
 - 19. The method according to Claim 14, wherein the refrigeration fluid further comprises ZnBr₂.
- 20. In an absorption refrigeration apparatus, the improvement which comprises a refrigeration fluid comprising a two-phase liquid wherein the first phase is an aqueous solution of a lithium halide, and the second phase is an aqueous solution of a fluorinated salt of lithium.

FIGURE 1

LiTFMSI + H₂O Phase Diagram

FIGURE 2

250
200
T_B
150
150
T_{UQ}
100
T_{UQ}
150
-100
-150
0%
20%
40%
60%

FIGURE 3

mol % LiBr

Boiling Points and Glass Transition Temperatures for Aqueous Solutions of LiBr and LiTFMSI

FIGURE 4

INTERNATIONAL SEARCH REPORT

In .ilonal Application No PCT/US 00/09796

		PCT/US	5 00/09796
A CLASSIF	CATION OF SUBJECT MATTER C09K5/04		
A dim a . ta	International Patent Classification (IPC) or to both national classification	n and IPC	
B. FIELDS S Minimum doc IPC 7	currentation searched (classification system followed by classification C09K	symbols)	
Documentati	on searched other than minimum documentation to the extent that such	h documents are included in the	fields searched
	ta base consulted during the international search (name of data base ternal, WPI Data, PAJ, CHEM ABS Data	and, where practical, search terr	ms used)
C DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to daim No.
A	EP 0 751 199 A (KAWASAKI HEAVY IND ;KAWASAKI THERMAL ENG (JP)) 2 January 1997 (1997-01-02) the whole document	LTD	1,2,7,8
A	US 5 723 058 A (SCHUURMAN EIKO A) 3 March 1998 (1998-03-03) figure 1; examples II,III		1,7
A	US 5 653 117 A (KUJAK STEPHEN A) 5 August 1997 (1997-08-05)		1,2,6-8, 12,14, 15,19
	the whole document		
А	US 3 541 013 A (MACRISS ROBERT A E 17 November 1970 (1970-11-17) the whole document	ET AL)	1,2
	-/	/	
X Fu	ther documents are listed in the continuation of box C.	Patent family members	are listed in annex.
'A' docum cons 'E' earlier fiting 'L' docum which citati 'O' docum other	nent defining the general state of the art which is not idered to be of particular relevance document but published on or after the international date lent which may throw doubts on priority claim(s) or in is cited to establish the publication date of another on or other special reason (as specified) lent referring to an oral disclosure, use, exhibition or means	cited to understand the princ invention X* document of particular releval cannot be considered novel involve an inventive step wh Y* document of particular releval cannot be considered to involve document is combined with	inflict with the application but iple or theory underlying the nce; the claimed invention or cannot be considered to en the document is taken alone nce; the claimed invention plve an inventive step when the one or more other such docu- ing obvious to a person skilled
	e actual completion of the international search	Date of mailing of the interne	ational search report
	21 July 2000	28/07/2000	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Puetz, C	
1			

1

INTERNATIONAL SEARCH REPORT

ir. itional Application No PCT/US 00/09796

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	101/03 00/03/30			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	GB 1 208 467 A (WORTHINGTON CORPORATION) 14 October 1970 (1970-10-14) the whole document	1,2,6-8,			
A	US 5 806 337 A (HONDA TAKASHI ET AL) 15 September 1998 (1998-09-15) the whole document	1,2,7,8			

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/US 00/09796

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
EP 0751199	A	02-01-1997	JP 2750834 B JP 9014784 A US 5766504 A	13-05-1998 17-01-1997 16-06-1998
US 5723058	Α.	03-03-1998	NONE	
US 5653117	Α	05-08-1997	NONE	
US 3541013	Α	17-11-1970	NONE	
GB 1208467	A	14-10-1970	AT 287034 B DE 1813896 A ES 361089 A FR 1594278 A NL 6817985 A US 3478530 A	11-01-1971 16-10-1969 16-10-1970 01-06-1970 17-06-1969 18-11-1969
US 5806337	Α	15-09-1998	JP 9159326 A US 5964103 A	20-06-1997 12-10-1999