

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 2

Durée: 4 heures

Les calculatrices sont autorisées.

* * *

NB : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

* * *

QUELQUES UTILISATIONS DES PROJECTEURS

Notations et objectifs :

Dans tout le texte E désigne un \mathbb{R} -espace vectoriel de dimension finie $n \geqslant 1$. On note id l'endomorphisme identité de E, $\mathcal{M}_n(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices réelles carrées de taille n

Si E_1 et E_2 sont des sous-espaces vectoriels de E supplémentaires, c'est-à-dire $E=E_1\oplus E_2$, on appelle projecteur sur E_1 parallèlement à E_2 l'endomorphisme p de E qui, à un vecteur x de E se décomposant comme $x=x_1+x_2$, avec $(x_1,x_2)\in E_1\times E_2$, associe le vecteur x_1 .

On rappelle que si A est une matrice de $\mathcal{M}_n(\mathbb{R})$, la matrice exponentielle de A est la matrice :

$$\exp(A) = \sum_{k=0}^{+\infty} \frac{A^k}{k!}.$$

De même si u est un endomorphisme de E, l'exponentielle de u est l'endomorphisme :

$$\exp(u) = \sum_{k=0}^{+\infty} \frac{u^k}{k!}.$$

Dans les parties II. et III., on propose une méthode de calcul d'exponentielle de matrice à l'aide de projecteurs spectraux dans les cas diagonalisable et non diagonalisable. Dans la dernière partie IV., on utilise les projections orthogonales pour calculer des distances à des parties.

Les quatre parties sont indépendantes.

I. Questions préliminaires

- 1. Soit les matrices $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Calculer $\exp(A)$, $\exp(B)$, $\exp(A) \exp(B)$ et $\exp(A+B)$ (pour $\exp(A+B)$, on donnera la réponse en utilisant les fonctions ch et sh).
- 2. Rappeler sans démontration, une condition suffisante pour que deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ vérifient l'égalité $\exp(A)\exp(B)=\exp(A+B)$.

II. Un calcul d'exponentielle de matrice à l'aide des projecteurs spectraux, cas diagonalisable

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonalisable dont les valeurs propres sont :

$$\lambda_1 < \lambda_2 < \cdots < \lambda_r$$

où r désigne un entier vérifiant $1 \leq r \leq n$.

3. Polynôme interpolateur de Lagrange : on note $\mathbb{R}_{r-1}[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à r-1.

On considère l'application linéaire ϕ de $\mathbb{R}_{r-1}[X]$ dans \mathbb{R}^r définie par :

$$P \mapsto (P(\lambda_1), P(\lambda_2), \dots, P(\lambda_r)).$$

Déterminer le noyau de ϕ , puis en déduire qu'il existe un unique polynôme L de $\mathbb{R}_{r-1}[X]$ tel que pour tout $i \in \{1, \ldots, r\}, \ L(\lambda_i) = e^{\lambda_i}$.

4. Pour $i \in \{1, ..., r\}$, on définit le polynôme l_i de $\mathbb{R}_{r-1}[X]$ par :

$$l_i(X) = \prod_{\substack{k=1\\k \neq i}}^r \frac{X - \lambda_k}{\lambda_i - \lambda_k}.$$

- (a) Calculer $l_i(\lambda_j)$ selon les valeurs de i et j dans $\{1, \ldots, r\}$.
- (b) En déduire une expression du polynôme L comme une combinaison linéaire des polynômes l_i avec $i \in \{1, ..., r\}$.
- 5. Une propriété de l'exponentielle : soit P une matrice inversible de $\mathcal{M}_n(\mathbb{R})$ et D une matrice de $\mathcal{M}_n(\mathbb{R})$.
 - (a) Justifier que l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $M \mapsto PMP^{-1}$ est une application continue.
 - (b) En déduire que :

$$\exp(PDP^{-1}) = P\exp(D)P^{-1}.$$

- 6. Déduire des questions 3. et 5. que $\exp(A) = L(A)$.
- 7. On suppose que E est munie d'une base \mathcal{B} et on désigne par v l'endomorphisme de E dont la matrice par rapport à \mathcal{B} est A. Soit λ une valeur propre de v, et x un vecteur propre associé. Démontrer que pour tout polynôme $P \in \mathbb{R}[X]$, on a :

$$P(v)(x) = P(\lambda)x.$$

- 8. Soit $i \in \{1, ..., r\}$, on note $E_i = \text{Ker}(v \lambda_i \text{ id})$ le sous-espace propre de v associé à λ_i .
 - (a) Démontrer que l'endomorphisme de $E, p_i = l_i(v)$ est le projecteur sur E_i , parallèlement
 - à $\bigoplus_{k=1}^r E_k$ (on dit que les p_i sont les projecteurs spectraux de v).
 - (b) En déduire une expression de $\exp(A)$ comme une combinaison linéaire de matrices de projecteurs.

III. Un calcul d'exponentielle de matrice à l'aide des projecteurs spectraux, cas non diagonalisable

Soit u un endomorphisme de E dont le polynôme minimal est $(X-1)^2(X-2)$.

- 9. L'endomorphisme u est-il diagonalisable? Justifier la réponse.
- 10. Écrire, sans justifier, un exemple de matrice triangulaire de $\mathcal{M}_3(\mathbb{R})$ dont l'endomorphisme canoniquement associé a pour polynôme minimal $(X-1)^2(X-2)$.
- 11. Démontrer, sans aucun calcul, que $E = \text{Ker}(u \text{id})^2 \oplus \text{Ker}(u 2 \text{id})$.
- 12. On considère les endomorphismes de $E: p = (u id)^2$ et $q = u \circ (2 id u)$. Calculer p + q.
- 13. Démontrer que l'endomorphisme p est le projecteur sur $\operatorname{Ker}(u-2\operatorname{id})$, parallèlement à $Ker(u-id)^2$. Que dire de l'endomorphisme q?
- 14. Soit x un élément de E.
 - (a) Préciser (u-2 id)(p(x)).
 - (b) Déterminer un nombre réel α tel que pour tout entier naturel $k, u^k \circ p = \alpha^k p$.
 - (c) En déduire que $\exp(u) \circ p = \beta p$ où β est un réel à déterminer.
- 15. Que vaut pour tout entier $k \ge 2$, $(u \mathrm{id})^k \circ q$? Démontrer que $\exp(u) \circ q = \gamma u \circ q$ où γ est un réel à déterminer (on pourra écrire en justifiant que $\exp(u) = \exp(id) \circ \exp(u - id)$).
- 16. Écrire enfin l'endomorphisme $\exp(u)$ comme un polynôme en u.

IV. Calcul de distances à l'aide de projecteurs orthogonaux

Dans cette partie, on suppose en plus que l'espace E est muni d'un produit scalaire $\langle \cdot, \cdot \rangle$, ce qui lui confère une structure d'espace euclidien. On rappelle que la norme euclidienne associée, notée $\|\cdot\|$, est définie par :

$$\forall x \in E, \quad \|x\| = \sqrt{\langle x, x \rangle}.$$

Si F est un sous-espace vectoriel de E, on note F^{\perp} son orthogonal, et on appelle projecteur orthogonal sur F, noté p_F le projecteur sur F, parallèlement à F^{\perp} .

Enfin, si x est un vecteur de E, la distance euclidienne de x à F, notée d(x, F) est le réel :

$$d(x,F) = \inf\{\|x - y\| \mid y \in F\}.$$

- 17. Théorème de la projection orthogonale : soit F un sous-espace vectoriel de E et x un vecteur de E. Rappeler sans démonstration, la formule permettant de calculer d(x, F) à l'aide du vecteur $p_F(x)$.
- 18. Cas des hyperplans : soit n un vecteur non nul de E et H l'hyperplan de E orthogonal à n, c'est à dire $H = (\text{Vect }\{n\})^{\perp}$. Exprimer pour $x \in E$, la distance d(x, H) en fonction de < x, n > et de ||n||.
- 19. Une application: dans cette question uniquement, $E = \mathcal{M}_n(\mathbb{R})$ muni de son produit scalaire canonique: si A et B sont dans $\mathcal{M}_n(\mathbb{R})$, en notant Tr la trace,

$$\langle A, B \rangle = \text{Tr}(^t A B).$$

Enfin on note H l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont la trace est nulle.

- (a) Justifier que H est un hyperplan de $\mathcal{M}_n(\mathbb{R})$ et déterminer H^{\perp} .
- (b) Si M est une matrice de $\mathcal{M}_n(\mathbb{R})$, déterminer la distance d(M, H).
- 20. Et pour une norme non euclidienne? Dans cette question $E = \mathbb{R}^2$ est muni de la norme infinie notée N_{∞} : si $x = (x_1, x_2) \in \mathbb{R}^2$, $N_{\infty}(x) = \max\{|x_1|, |x_2|\}$. On pose $F = \text{Vect}\{(1, 0)\}$ et x = (1, 1). Déterminer la distance «infinie» du vecteur x à F, c'est-à-dire le réel :

$$d_{\infty}(x, F) = \inf\{N_{\infty}(x - y) \mid y \in F\},\$$

et préciser l'ensemble des vecteurs m pour lesquels cette distance est atteinte, c'est-à-dire $d_{\infty}(x, F) = N_{\infty}(x - m)$. Commenter.

Fin de l'énoncé