Binomiali

Si vuole generalizzare i binomiali sui numeri reali.

Permutazioni

Per n oggetti in quanti modi si possono mescolare? Per :

 a_1, a_2, a_3, \ldots

Si indica con $P_n=$ numero di permutazioni di lunghezza n

Per esempio se n=3

 a_1, a_2, a_3

 a_1, a_3, a_3

 a_2, a_1, a_3

. . .

 $P_3=6$ in questo caso.

Aggiungendo un numero le permutazioni saranno

$$P_{n+1} = (n+1)P_n$$

$$P_0 = P_1 = 1$$

Se si sviluppa fino a zero si ha:

$$(n+1)P_n=(n+1)n(n-1)\ldots P_0=(n+1)!$$

Quindi $P_n=n!$

Disposizioni

Per n oggetti quanti sono i gruppi dato k?

Si indicano con $D_{n,k}=$ numero di disposizioni di n oggetti in gruppi di k

Per esempio n=4 e k=2 di a,b,c,d cioè $D_{4,2}=12$

$$(a,b),(b,a),(a,c),(c,a),(a,d),(d,a),(b,c),(c,b),(b,a),(d,b),(c,d),(d,c)$$

$$D_{n,k}=n(n-1)(n-2)\dots(n-k+1)$$

Combinazioni

Si scelgo tra n oggetti gruppi di k senza contare I ordine.

 $C_{n,k}=$ numero di combinazioni di k oggetti su n a disposizione Si deve dividere per il numero di modi in cui si possono scambiare gli elementi nel gruppo, cioè le permutazioni di k cioè k!

$$C_{n,k} = rac{D_{n,k}}{k!} = rac{n(n-1)(n-2)\dots(n-k+1)}{k!}$$

Le combinazioni si indicheranno con il binomiale:

$$egin{pmatrix} n \ k \end{pmatrix} = C_{n,k}$$
 $egin{pmatrix} n \ k \end{pmatrix} = rac{n(n-1)(n-2)\dots(n-k+1)(n-k)(n-k-1)\dots1}{k!(n-k)(n-k-1)\dots(1)} = rac{n!}{k!(n-k)!}$

Proprietà dei binomiali

$$\binom{n}{k} = \frac{n(n-1)!}{k!(k-1)!(n-k)!} = \frac{n}{k} \binom{n-1}{k-1}$$
$$\binom{n}{k} = \binom{n}{n-k}$$

Binomiale su reali

Se si guarda
$$rac{D_{n,k}}{k!}=rac{n(n-1)(n-2)...(n-k+1)}{k!}$$

k deve essere per forza un intero ma il numeratore si può sviluppare anche sui reali

$${r \choose k} = rac{r(r-1)(r-2)...(r-k+1)}{k!}$$
 con r reale

Si chiamano binomiali per la relazione che c'è tra le potenze dei binomi.

$$(a+b)^n = \sum^n \binom{n}{k} a^k b^{n-k}$$

I binomi si possono anche scrivere come:

$$(a+b)^n = a^n (1 + (\frac{b}{a})^n)$$

Si usano gli sviluppi di Taylor

$$f(z) = (1+z)^r = \sum_{k \geq 0} rac{f^{(k)}(0)}{k!} z^k$$
 $f(z) = (1+z)^r$
 $f'(z) = r(1+z)^{r-1}$
 $f''(z) = r(r-1)(1+z)^{r-2}$
 $f^k(z) = r(r-1)(r-2)\dots(r-k+1)(1+z)^{r-k}$
 $f^k(0) = r(r-1)(r-2)\dots(r-k+1)$

Quindi

$$egin{align} f(z) &= (1+z)^r = \sum_{k \geq 0} rac{f^{(k)}(0)}{k!} z^k = \sum_{k \geq 0} rac{r(r-1)(r-2)...(r-k+1)z^k}{k!} \ &= \sum_{k \geq 0} inom{r}{k} z^k \end{aligned}$$

Ad esempio

$$\binom{1/2}{3} = \frac{1/2(1/2-1)(1/2-2)}{3!} = \frac{1}{16}$$

Proprietà per i reali

Numeri Negativi

Se ci da noia un numero negativo quindi si può trasformare

$$\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$$

Triangolo di Tartaglia

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Condizioni iniziali

$$\binom{n}{0} = \binom{n}{n} = 1$$

n/k	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	2	1	0	0	0
3	1	3	3	1	0	0
4	1	4	6	4	1	0
5	1	5	10	10	5	1

Si può vedere che il triangolo è simmetrico e che alla riga n la somma degli elementi corrisponde a 2^n . La riga rappresenta il numero totale di sottoinsiemi in un insieme di ${\bf n}$ elementi, che è ovviamente 2^n .

I numeri $c_n = \binom{2n}{n}$ sono chiamati binomiali centrali. Ad esempio Se 2n = 4 e n = 2 il binomiale centrale è 6.

Per calcolare il binomio $\binom{-\frac{1}{2}}{n}$ si usano i coef. centrali. $\binom{-\frac{1}{2}}{n}=\frac{(-1/2)(-3/2)...(-(2n-1)/2)}{n!}$

$$\binom{-\frac{1}{2}}{n} = \frac{(-1/2)(-3/2)...(-(2n-1)/2)}{n!}$$

$$\binom{-\frac{1}{2}}{n} = (-1)^n \frac{(\frac{1}{2})(\frac{3}{2})...((\frac{2n-1}{2}))}{n!}$$

Si mette in evidenza il 2 dei denominatori poi si moltiplica per i pari sopra e sotto. Si evidenzia i due dei pari.

$$\frac{(-1)^n}{2^n} \frac{1*3...(2n-1)}{n!} \frac{2*4*6...2n}{2*4*6...2n} = \frac{(-1)^n (2n)!}{2^n (n!) 2^n (n!)}$$

$$= \frac{(-1)^n (2n)!}{4^n (n!)(n!)} = \frac{(-1)^n (2n)!}{4^n (n!)(2n-n)!} = \frac{(-1)^n}{4^n} {2n \choose n}$$

In modo simile per altri valori sarà ad esempio:

$$\binom{1/2}{n} = \frac{(-1)^{n-1}}{4^n(2n-1)} \binom{2n}{n}$$

$$\binom{3/2}{n} = \frac{(-1)^n 3}{4^n (2n-1)(2n-3)} \binom{2n}{n}$$