$O\Pi$ «Политология», 2019-20

Математика и статистика, часть 2

Центральная предельная теорема – примеры задач. (23.04.2020)

А. А. Макаров, А. А. Тамбовцева, Н. А. Василёнок

Задача 1.

Генеральная совокупность описывается нормальным законом $N(a=2,\ \sigma=3)$. Из этой генеральной совокупности случайным образом извлекли выборку объема n=100 наблюдений. С какой вероятностью среднее извлеченной выборки превысит значение 3?

Решение. Согласно центральной предельной теореме, выборочное среднее, т. е. оценка среднего генеральной совокупности a, которую мы получаем на основе выборки, имеет нормальное распределение с математическим ожиданием a и стандартным отклонением $\frac{\sigma}{\sqrt{n}}$. Используя данные задачи, получаем, что выборочное среднее имеет распределение $N(a=2,\sigma=\frac{3}{\sqrt{100}})$ или $N(a=2,\sigma=0.3)$.

Обозначим выборочное среднее за X. Нам нужно найти вероятность P(X > 3), зная, что $X \sim N(a = 2, \sigma = 0.3)$. Задачи такого вида мы решать уже умеем:

$$P(X > 3) = P(Z > \frac{3-2}{0.3}) = P(X > 3.33) = 1 - \Phi(3.33) = 1 - 0.9996 = 0.0004.$$

Задача 2.

Время (в секундах), которое человек тратит на чтение текста из 150 слов на английском языке, имеет равномерное распределение на отрезке [20; 30] с математическим ожиданием 25 и дисперсией 8.33. Случайным образом выбирают 1600 человек, предлагают им прочитать текст, а затем по полученной выборке вычисляют среднее время, потраченное на чтение. Найдите вероятность того, что среднее выборки будет отличаться от среднего генеральной совокупности не более, чем на 0.1 секунды.

Решение. Генеральная совокупность имеет равномерное распределение с математическим ожиданием 25 и дисперсией 8.33. Отсюда стандартное отклонение генеральной совокупности равно $\sqrt{8.33}\approx 2.88$. Согласно центральной предельной теореме, выборочное среднее X имеет нормальное распределение $N(25,\sigma=\frac{2.88}{\sqrt{1600}})$, то есть $X\sim N(25,\sigma=0.07)$.

Если среднее выборки будет отличаться от среднего генеральной совокупности не более, чем на 0.1, значит, оно будет лежать на интервале 25 ± 0.1 , то есть на интервале от 24.9 до 25.1. Осталось посчитать вероятность:

$$P(24.9 \le X \le 25.1) = P(\frac{24.9 - 25}{0.07} \le Z \le \frac{25.1 - 25}{0.07}) = \Phi(1.43) - \Phi(-1.43) = 0.8472.$$