Machine learning techniques for a flow-based intrusion detection system

Auteur: Begeleider:

Axel Faes ir. Bram Bonne Begeleider: Begeleider:

Pieter Robyns Robin Marx

Promotor: Co-promotor:

Prof. Dr. Peter Quax Prof. Dr. Wim Lamotte

Research questions:

- Can machine learning be used for intrusion detection?
- How can IP Flows be used with this approach?
- Can an intrusion detection system work out-of-thebox?
- Which anomalies can be detected?
- Are these techniques applicable in real-life scenarios?

Traffic can contain attacks or anomalies:

- Malware
 - Botnets, viruses, worms, etc.
- External malicious behaviour
 - SSH scans, DDOS, etc.

Network traffic

- Aggregate network packets into IP flows
- Send IP Flows to the Intrusion detection system

- In normal conditions:
- DDOS
- Scans
- Worms
- Botnets

IP Flows: Source IP

- Destination IP IP Protocol
- Source port
- Starting time

Destination port

- Duration
- Amount packets
- Amount bytes

2. Prediction phase

Train a machine learning algorithm

Uses a labeled dataset containing:

Normal traffic

Malware traffic

1. Training phase

Predict to which classification an IP Flow belongs

External malicious behaviour

Afterwards checked whether the class is malicious or not

How to use IP Flows in algorithms?

Break IP Flows into a list of features

Feature = individual property vb duration of the flow

3 different sets were used: Standard feature set

Uses continuous values from IP Flows

- TCP feature set Also uses TCP Flags
- Country feature set Uses country-of-origin instead of IP

How did the validation happen?

- Labeled dataset Predictions can be checked with these labels
- Cegeka dataset Firewall logs
- EDM dataset Manual validation

Naive Bayes Classifier: **K-Nearest Neighbours: Decision tree classifier: Neural network** Hidden Is it raining? P(B|A)P(A)Input $P(A \mid B) = -$ Output P(B) Is it windy? Is it hot?

learn

Non-Linear Support Vector machine SVC with RBF kernel

Sepal length

Linear Support Vector machine 0 0

[10]

machine learning in Python [3]

How did the evaluation happen?

<u>Baseline</u> Random classifier All-non-malicious classifier

Learning curves

F-score

true positivePrecision (P) = true positive + false positive

true positive

 $\overline{true positive + false negative}$

F-score = $2\frac{PR}{P+R}$ All samples True negative (TN) True False False positive negative positive (TP) (FN) Positive Positive samples in samples by reality system

What can happen next?

- Intrusion prevention
- Combining algorithms
- Using packet data
- Binary classification

Source code from framework has been open-sourced on Github: https://github.com/TheAxeC/Machine-<u>learning-techniques-for-flow-based-</u> network-intrusion-detection-systems

Image sources:

[1]: https://upload.wikimedia.org/wikipedia/commons/ thumb/d/d7/Desktop_computer_clipart_-_Yellow_theme.svg/2000px-Desktop_computer_clipart_-_Yellow_theme.svg.png

[2]:https://pixabay.com/static/uploads/photo/ 2013/07/12/14/11/workstation-147953_960_720.png [3]:https://kaggle2.blob.core.windows.net/ competitions/kaggle/3428/media/scikit-learn-logo.png [4]: http://media.charlesleifer.com/blog/photos/ p1422977174.11.png

[5]: http://3.bp.blogspot.com/-ZsIDMqm5M9o/ T8ja_f_fALI/AAAAAAAAAA44/z7w55YAZXpw/s1600/ p1.png

[6]: https://www.packtpub.com/sites/default/files/ Article-Images/6053OS_03_05.png

[7]: https://upload.wikimedia.org/wikipedia/commons/ thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png

[8]: http://scikit-learn.org/stable/modules/ svm.html#svm-outlier-detection [9]: http://scikit-learn.org/stable/modules/svm.html

[10]: https://upload.wikimedia.org/wikipedia/commons/ thumb/b/b5/Svm_separating_hyperplanes_(SVG).svg/ 2000px-Svm_separating_hyperplanes_(SVG).svg.png [11]: https://upload.wikimedia.org/wikipedia/commons/ 1/17/ArtificialFictionBrain.png

