Lec 9/8

Thursday, September 8, 2016 9:04 AM

Questions for future consideration.

Let $f:[0,\infty) \to \mathbb{R}$ and $f(x) = \chi^{3/2} = (\sqrt{x})^3$

Q1: is f continuous at 0?

Q1: is it true that lim f(x) = 0?

QZ: is f differentiable at 0?

Q2: is it true that $\lim_{x\to 0} \frac{f(x)-f(0)}{x-o} = 0$?

Problem: What is the slope of the tangent line to the graph of the parabola $y = x^2$ at (2,4)?

Solution approximate the tangent line at P by Pa

m & Slope of PQ

 $m = \lim_{\alpha \to \rho} \text{ slope } \rho \alpha$ $= \lim_{\chi \to 1} \frac{\chi^2 - y}{x - 2}$

Implicit fallacy: $\frac{(x-2)(x+2)}{(x-2)} = (x+2)$ (the same function)

but dom $f(x) = \frac{(x-2)(x+2)}{(x-2)} \neq dom g(x) = (x+2)$

domf=R\23 domg=R

Rationale for crucial ster:

Some theorem this one works:

Theorem: if $f(x) = g(x) \forall x \in \mathbb{R} \setminus \{a\}$ then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ (provided the limits exist).

 $\left| \lim_{n \to \infty} \frac{\chi^2 - 1}{n} \right| = \lim_{n \to \infty} \frac{\chi^2}{n} = \lim_{n \to \infty} \frac{1}{n} = \frac{1}{n}$

$$\left[\frac{\chi^{2}-1}{\chi^{4}-5\chi^{2}+4} = \lim_{\chi \to 1} \frac{\chi^{2}-1}{(\chi^{2}-1)(\chi^{2}-4)} - \lim_{\chi \to 1} \frac{1}{\chi^{2}-4} = \frac{1}{1-4} = \frac{1}{-3} \right]$$

$$f(x) = \frac{x^2 - 1}{(x^2 - 1)(x^2 - 4)}$$
 $g(x) = \frac{1}{x^2 - 4}$

· excluded

Localization principle:

Theorem: If
$$\alpha \in C \subset b$$
 and $g(x) = f(x) \forall x \in (a,c) \cup (c,b)$
and $\lim_{x \to c} g(x) = L$ then $\lim_{x \to c} f(x) = L$.

$$4x: \text{ (et } f(x) = \frac{x^2 - 3|x + i| + 8}{3x^2 - |x^2 - x - 20| + 6}$$

Find Lim f(x), if it exists. Justify using localization principle.

Note that
$$f(2) = \frac{4-3\cdot4+8}{3\cdot4-18+6} = \frac{6}{0}$$

Intermediate value theorem: if h(x) = 0 at $x_1 < x_2 < \dots < y_n$ then either |h(x)| = h(x) for all x in (x_{i-1}, y_i) or |h(x)| = -h(x) "

$$\chi + 2 = 0$$
 at $\chi = -2$ $\frac{(\infty, -2)}{(\infty, -2)}$

$$|\chi+2|=\begin{cases} -(\chi+2) & \text{for } \chi\in (-\infty,-1) \\ \chi+2 & \text{for } \chi\in (-2,\infty) \end{cases}$$

$$x^{2}-x-20=0$$
 when $x=5$ or $x=-4$ $(-\infty,-4)$ $(4,5)$ $(5,\infty)$

$$|x^{2}-x-20| = 0 \quad \text{when} \quad |x=3 \text{ or } N-\frac{1}{2}$$

$$|x^{2}-x-20| = \begin{cases} |x^{2}-x-20| & \text{for } x \in (-\infty, -4) \\ -(x^{2}-x-20) & \text{for } x \in (-4, 5) \\ |x^{2}-x-20| & \text{for } x \in (5, \infty) \end{cases}$$

$$|x^{2}-x-20| = \begin{cases} |x^{2}-x-20| & \text{for } x \in (-\infty, -4) \\ |x^{2}-x-20| & \text{for } x \in (-\infty, -4) \end{cases}$$

tentative simplification intertais: (-2,2) u(2,5)

then the numerator is
$$\chi^2 - 3(\chi + 2) + 8 = \chi^2 - 3\chi + 2 = (\chi - 1)(\chi - 2)$$

the denominator is $3\chi^2 + (\chi^2 - \chi - 20) + 6 = 4\chi^2 - \chi - 14 = (4\chi + 7)(\chi - 2)$

5

$$f(x) = \frac{(x-1)(x-2)}{(4x+7)(x-7)} \quad \forall x \in (-2, 2) \cup (2, 5)$$

$$q(x) = \frac{x-1}{4x+7} \quad \text{but} \quad \frac{-\frac{7}{4} \, \epsilon \, (-7, 2) \, \upsilon(2, 5)}{4} \quad \sqrt{f(x) = q(x)} \quad \forall x \in (-7, 2) \, (7, 5)}$$

so
$$f(x) = g(x)$$
 for $x = (-\frac{7}{4}, 2) \cup (1, 5)$