мых a_i , входящих в член $A_n = \sum_{l=p_n}^{p_{n+1}-1} a_l$ ($1=p_1 < p_2 < \ldots$), ограничено.

2658. Доказать, что сумма сходящегося ряда не изменится, если члены этого ряда переставить так, что ни один из них не удаляется от своего прежнего положения больше чем на *m* мест, где *m* — некоторое заранее ваданное число.

Доказать сходимость следующих рядов и найти их суммы:

2659.
$$1 - \frac{3}{2} + \frac{5}{4} - \frac{7}{8} + \dots$$

2660. $1 + \frac{1}{2} - \frac{1}{4} + \frac{1}{8} + \frac{1}{16} - \frac{1}{32} + \dots$
2661. $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{2} - \frac{1}{6} + \dots$

Указание. Применить формулу $1+\frac{1}{2}+\ldots+\frac{1}{n}=$ = $C+\ln n+\varepsilon_n$, где C- постоянная Эйлера и $\lim_{n\to\infty}\varepsilon_n=0$.

2662. Зная, что $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$, найти суммы рядов, полученных из даиного в результате перестановки его членов:

a)
$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$$

И

6)
$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots$$

2663. Члены сходящегося ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+2}}{\sqrt{n}}$ переста-

вить так, чтобы он стал расходящимся.

Исследовать сходимость знакопеременных рядов:

2664.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n(n-1)/2}}{2^n}.$$