Detecção de aderência em campanha de call center

Pré-processamento

- Tratamento de variáveis faltantes
 - Número total de registros: 41.188
 - O Número de registros com alguma variável faltante: 10.700 (25,9%)

Pré-processamento

- Tratamento de variáveis faltantes
 - Número total de registros: 41.188
 - O Número de registros com alguma variável faltante: 10.700 (25,9%)
- Formas de lidar com o problema
 - Remover registros ou algum atributo
 - Substituir por uma constante ou valor nulo
 - O Tentar inferir: média, mediana, mais frequente

Pré-processamento

- Tratamento de variáveis faltantes
 - Número total de registros: 41.188
 - O Número de registros com alguma variável faltante: 10.700 (25,9%)
- Formas de lidar com o problema
 - Remover registros ou algum atributo
 - Substituir por uma constante ou valor nulo
 - O Tentar inferir: média, mediana, mais frequente

• Analisando se algum atributo é responsável por parte significativa das variáveis faltantes.

Atributo	Registros com variáveis Faltantes
profissao	330
emprestimo_pessoal	990
emprestimo_moradia	990
inadimplente	8.597
estado_civil	80
educacao	1731

• Analisando se algum atributo é responsável por parte significativa das variáveis faltantes.

Atributo	Registros com variáveis Faltantes
profissao	330
emprestimo_pessoal	990
emprestimo_moradia	990
inadimplente	8.597 (20,9%)
estado_civil	80
educacao	1731

• É necessário verificar o impacto da remoção do atributo "inadimplente".

• É necessário verificar o impacto da remoção do atributo "inadimplente".

- É feita a remoção do atributo "inadimplente" e verifica-se os registros com variáveis faltantes novamente:
 - Número total de registros: 41.188
 - O Número de registros com alguma variável faltante: 2.943 (7,1%)
- Novamente pode-se lidar com o problema de três formas
 - Remover registros ou algum atributo
 - Substituir por uma constante ou valor nulo
 - o Tentar inferir: média, mediana, mais frequente

- A base de dados têm vários atributos categóricos. Por isso é preciso transformá-los em atributos numéricos.
- Implementamos três técnicas para lidar com esses atributos:
 - Label Encoding
 - One Hot Encoding
 - Find and Replace

Label Encoding

```
def labelEncoding(categories):
id_count = 0
category_mapping = dict()
for category in categories:
    category_mapping[category] = id_count
    id_count += 1
return category_mapping
```

One Hot Encoding

```
def oneHotEncoding(categories list, register category):
category encoding = []
for category in categories list:
    if category == register category:
        category encoding.append(1)
    else:
        category encoding.append(0)
return category encoding
```

• Find and Replace

```
def findAndReplace(replace_mapping, register_category):
register_mapping = replace_mapping[register_category]
return register_mapping
```

Esse método trata casos específicos, p.ex., para um atributo com dois valores, "sim" e "não", podemos utilizar para substituir por 1 e 0, respectivamente.

- Os 18 atributos foram divididos em quatro categorias:
 - Numéricos: os atributos que já são numéricos.
 - Categórico binário: são aqueles atributos que têm apenas dois valores e, portanto, sua transformação pode ser simplificada.
 - Categórico não-binário: todos os atributos categóricos com três ou mais valores.
 - Atributo alvo: "aderencia_campanha"

- Transformação de atributos categóricos
 - Categórico binário: utilizamos o "Find and Replace" para mapear uma das classes para o e a outra para 1.
 - Categórico não-binário: utilizamos o "One Hot Encoding" para transformar os demais atributos categóricos em numéricos.
 - Atributo alvo: não é necessário fazer a transformação.

Análise da Base de Dados - Desbalanceamento

- Depois de realizar o pré-processamento, segue as informações básicas da base de dados:
 - Número total de registros: 38.245
 - Registros com a classe "SIM": 4.258 (11,1%)
 - Registros com a classe "NÃO": 33.987 (88,9%)
- Pontos importantes:
 - O Se o classificador sempre escolher "NÃO", acurácia já é 88%
 - O Importante utilizar outras métricas: precision, recall, F1

- Escolha dos modelos de predição:
 - Naive Bayes (base)
 - Random Forest: tende a ter bom desempenho em base de dados desbalanceadas
 - SVM: tende a funcionar bem quando os dados são esparsos (sendo o caso depois da transformação dos atributos categóricos utilizando o "One Hot Encoding")

- Parâmetros avaliados em cada um deles:
 - Naive Bayes: iremos utilizar os parâmetros padrões
 - Random Forest: vamos aumentar o número de estimadores de 100 para 1000 e iremos variar a profundidade das árvores
 - SVM: vamos variar o kernel e o parâmetro C

• Resultado base do Naive Bayes

Accuracy	Precision	Recall	F1
0,77	0,65	0,61	0,56

		Prediction	
		Não	Sim
A 1	Não	27.642	6.345
Actual	Sim	2.558	1.700

• Resultado do SVM -- variando o kernel

Kernel	Accuracy	Precision	Recall	F1
linear	0,79	0,68	0,56	0,56
rbf	0,90	0,81	0,61	0,64
sigmoid	0,88	0,68	0,59	0,58

• Resultado do SVM -- variando o kernel

Kernel	Accuracy	Precision	Recall	F1
linear	0,79	0,68	0,56	0,56
rbf	0,90	0,81	0,61	0,64
sigmoid	0,88	0,68	0,59	0,58

Então agora vamos variar o parâmetro C fixando o kernel.

• Resultado do SVM -- kernel "rbf" e variando o parâmetro C

С	Accuracy	Precision	Recall	F1
0.01	0.90	0.76	0.60	0.61
0.1	0.90	0.81	0.62	0.64
1	0.90	0.81	0.61	0.64
10	0.90	0.80	0.62	0.65
100	0.87	0.78	0.62	0.63

• Resultado do SVM -- kernel "sigmoid" e variando o parâmetro C

С	Accuracy	Precision	Recall	F1
0.01	0.90	<mark>0.86</mark>	<mark>0.58</mark>	0.59
0.1	0.90	0.80	0.58	0.59
1	0.88	0.68	0.59	0.58
10	0.84	0.59	0.59	0.59
100	0.84	0.58	0.59	0.59

 Dentre todas as execuções, segue o melhor resultado com a respectiva matriz de confusão do SVM (kernel="rbf" e C = 10)

С	Accuracy	Precision	Recall	F1
10	0.90	0.80	0.62	0.65

		Prediction	
		Não	Sim
Actual	Não	33.217	770
	Sim	3.113	1.145

 Resultado do Random Forest variando a profundidade máxima das árvores.

Max Depth	Accuracy	Precision	Recall	F1
1	0.89	0.45	0.50	0.47
2	0.85	<mark>0.47</mark>	0.53	0.49
4	0.68	0.44	0.46	0.39
6	0.57	0.45	0.41	0.34
8	0.49	0.43	0.37	0.30
10	0.49	0.43	0.36	0.30

 Dentre todas as execuções, segue o melhor resultado com a respectiva matriz de confusão no Random Forest (Max Depth = 2)

Accuracy	Precision	Recall	F1
0.85	<mark>0.47</mark>	0.53	0.49

		Prediction		
		Não	Sim	
A 1	Não	32.362	1.625	
Actual	Sim	4.036	222	

Normalização dos atributos numéricos

- Normalização dos atributos:
 - Realizamos a normalização de forma que os valores de todos os atributos numéricos fiquem no intervalo [0,1].
- Caso anômalo:
 - Os valores do atributo "dias_ultimo_contato" ou estava entre 1 e 27 ou era 999. O valor 999, muito superior dos demais, acabava tornando a diferença entre registros com valores menores insignificante, perdendo o valor da informação. Assim, substituímos o valor 999 por 54 (dobro do segundo maior valor observado nesse atributo).

- Vamos reavaliar os modelos de predição para a base normalizada.
 - Utilizaremos os mesmos três classificadores e os mesmos padrões de variação de parâmetros.

• Resultado base do Naive Bayes

Accuracy	Precision	Recall	F1
0,77	0,65	0,61	0,56

			Prediction		
		Não	Sim		
A -4 - 1	Não	27.781	6.206		
Actual	Sim	2.564	1.694		

• Resultado do SVM variando o kernel

Kernel	Accuracy	Precision	Recall	F1
linear	<mark>0.79</mark>	0.73	0.56	0.54
rbf	<mark>0.74</mark>	0.59	0.48	0.45
sigmoid	0.77	0.57	0.52	0.5

Piora significativa dos resultados depois da normalização. Um atributo importante para o modelo possivelmente estava tendo um peso maior e melhorando o resultado.

• Resultado do SVM mantendo o kernel "rbf" e variando C

С	Accuracy	Precision	Recall	F1
0.01	<mark>0.89</mark>	0.47	0.52	0.49
0.1	0.8	0.74	0.55	0.52
1	0.74	0.59	0.48	0.45
10	0.72	0.56	0.48	0.45
100	0.71	0.55	0.48	0.46

• Resultado do SVM mantendo o kernel "rbf" e variando C

С	Accuracy	Precision	Recall	F1
0.01	0.89	0.47	0.52	0.49
0.1	Mesmo variando o parâmetro C e obtendo uma acurácia maior, as outras métricas continuam com valores muito			
1	o.74 baixos.59 0.48			0.45
10	0.72	0.56	0.48	0.45
100	0.71	0.55	0.48	<mark>0.46</mark>

 Dentre todas as execuções, segue o melhor resultado com a respectiva matriz de confusão do SVM (kernel= "rbf" e C = 10)

С	Accuracy	Precision	Recall	F1
0.01	0.8	0.74	0.55	0.52

		Prediction	
		Não	Sim
Actual	Não	29.580	4.407
	Sim	3.318	940

• O resultado do Random Forest independe da normalização e por isso não vamos mostrar nessa etapa.

Seleção de features

- A piora dos resultados com a normalização é um outro indício da necessidade da seleção de features.
 - Possibilidade dos atributos antes destacados voltarem a contribuir para melhores resultados.
 - Utilizamos o método SelectKBest para fazer a seleção do conjunto de features.

• Resultado do Naive Bayes variando o número de **K** (atrb. selec.)

K	Accuracy	Precision	Recall	F1
2	0.9	0.78	0.61	0.62
4	0.89	0.78	0.63	0.63
6	0.89	0.78	0.65	0.64
8	0.89	0.80	0.70	0.70
10	0.88	0.78	0.69	0.69

• Melhor resultado do Naive Bayes - Top 8 atributos utilizados

Accuracy	Precision	Recall	F1
0.89	0.80	0.70	0.70

		Prediction	
		Não	Sim
Agtual	Não	31.970	2.017
Actual	Sim	2.334	1.924

• Resultado do Random Forest mantendo **K** (atrb. selec.) igual a 10

Max Depth	Accuracy	Precision	Recall	F1
1	0.89	0.50	0.54	0.52
2	0.74	0.52	0.50	0.41
4	0.72	0.59	0.51	0.42
6	0.58	0.45	0.44	0.34
8	0.58	0.46	0.44	0.34
10	0.55	0.55	0.42	0.33

• Resultado do Random Forest mantendo **K** (atrb. selec.) igual a 10

Max Depth		Accuracy	Precision	Recall	F1	
1		0.89	0.50	0.54		0.52
2	С	omo os resultados	s ficaram ruins, va	mos variar també	m o	0.41
4		número 0.72	K de features sele	ecionadas.		0.42
6		0.58	0.45	0.44		0.34
8		0.58	0.46	0.44		0.34
10		0.55	0.55	0.42		0.33

- Resultado do Random Forest variando **K** (atrb. selec.)
 - \circ max_depth = 2

K	Accuracy	Precision	Recall	F1
2	0.89	<mark>0.76</mark>	<mark>0.59</mark>	<mark>0.59</mark>
4	0.73	0.47	0.50	0.40
6	0.74	0.47	0.50	0.40
8	0.83	0.48	0.54	0.48
10	0.74	0.54	0.51	0.41

• Melhor resultado do Random Forest - Top 2 atributos utilizados

Accuracy	Precision	Recall	F1
0.89	<mark>0.76</mark>	0.59	0.59

		Prediction	
		Não	Sim
Agtual	Não	33.314	673
Actual	Sim	3.396	862

- Resultado do SVM mantendo **K** (atrb. selec.) igual a 10 e variando C
 - Kernel sendo utilizado: "rbf"

С	Accuracy	Precision	Recall	F1
0.01	0.88	0.73	<mark>0.59</mark>	0.59
0.1	0.87	0.72	0.58	0.57
1	0.85	0.62	0.57	0.54
10	0.85	0.61	0.56	0.53
100	0.85	0.6	0.56	0.52

- Resultado do SVM mantendo **K** (atrb. selec.) igual a 10 e variando C
 - Kernel sendo utilizado: "sigmoid"

С	Accuracy	Precision	Recall	F1
0.01	0.90	<mark>0.79</mark>	<mark>0.59</mark>	0.60
0.1	0.90	0.67	0.62	0.60
1	0.87	0.62	0.63	0.60
10	0.81	0.67	0.61	0.57
100	0.80	0.67	0.61	0.58

- Resultado do SVM mantendo **K** (atrb. selec.) igual a 10 e variando C
 - Kernel sendo utilizado: "linear"

С	Accuracy	Precision	Recall	F1
0.01	<mark>0.89</mark>	<mark>0.79</mark>	<mark>0.59</mark>	0.59
0.1	0.88	0.78	0.60	0.59
1	0.88	0.78	0.60	0.59
10	0.88	0.78	0.60	0.59
100	0.88	0.78	0.60	0.59

- Melhor resultado dentre as execuções do SVM:
 - \circ kernel: 'sigmoid', C = 0.01
 - O Vamos considerar esse cenário e variar o valor de **K**

K	Accuracy	Precision	Recall	F1
2	0.90	0.79	0.59	0.60
4	0.90	0.79	0.59	0.60
6	0.90	0.79	0.59	<mark>0.60</mark>
8	0.88	0.69	0.58	0.58
10	0.89	0.71	0.52	0.50

- Melhor resultado dentre as execuções do SVM:
 - \circ kernel: 'sigmoid', C = 0.01
 - O Vamos considerar esse cenário e variar o valor de **K**

K	Accuracy	Precision	Recall	F1
2	0.90	0.79	0.59	0.60
4	riar o valor de K n eterminado valor	()	= () = ()	$\alpha = 0$
6	0.90	0.79	0.59	0.60
8	0.88	0.69	0.58	0.58
10	0.89	0.71	0.52	0.50

- Melhor resultado dentre as execuções do SVM:
 - \circ kernel: 'sigmoid', C = 0.01 e K=6

Accuracy	Precision	Recall	F1
0.90	0.79	0.59	0.60

		Prediction		
		Não	Sim	
Actual	Não	33.474	467	
	Sim	3.434	824	

Redução de Dimensionalidade

- Vamos utilizar o PCA
 - Redução do tempo para modelos de predição (SVM principalmente)
 - O aumento de dimensões devido a utilização do "One Hot Encoding" possivelmente está prejudicando os resultados

 Melhor resultado obtido para cada modelo depois de variar o número de componentes do PCA

Modelo	Accuracy	Precision	Recall	F1
Naive Bayes	0.77	0.65	0.61	0.56
Random Forest	0.85	0.47	0.53	0.49
SVM	0.81	0.62	0.54	0.52

 Melhor resultado obtido para cada modelo depois de variar o número de componentes do PCA

Modelo	Accuracy Realizamos um	Precision número maior d	Recall e experimentos v	ariando o	
Naive Bayes	número de com	ponente do PCA, 1	nas como os resu	ltados não	
foram satisfatórios, reportamos apenas estes. Os outros Random Forest experimentos estão descritos no notebook e na planilha de 49					
SVM	0.81	resultado 0.62	0.54	0.52	

Melhores resultados

• Melhor resultado obtidos entre todas as avaliações

Id	Modelo	Parâmetro	Normalizada	Accuracy	Precision	Recall	F1
1	SVM	kernel=rbf C=10	Não	0.90	0.80	0.62	0.65
2	SVM	kernel=sigmoid C=0.01 Top 6 Features	Sim	0.89	0.79	0.59	0.59
3	Naive Bayes	Top 8 features	Sim	0.89	0.80	0.70	0.70

Melhores resultados

Id 1		Prediction		
		Não	Sim	
Actual	Não	33.217	770	
	Sim	3.113	<mark>1.145</mark>	

Id 2		Prediction		11.		Prediction	
	.u. 2	Não	Sim	Id 3		Não	Sim
Agtual	Não 33.474 467	467	Actual	Não	31.970	2.017	
Actual	Sim	3.434	824	Actual	Sim	2.334	1.924
	·	·					

Escolha do modelo a ser utilizado

- Depende das prioridades da empresa:
 - É importante conseguir identificar boa parte dos clientes que vão aderir à campanha mesmo correndo o risco de ter mais falsos positivos?
 - Modelo Id 3 (Naive Bayes)
 - É importante conseguir identificar boa parte dos clientes que vão aderir à campanha, mesmo que a geração de FP gere um custo muito alto para a empresa?
 - Modelo Id 1 (SVM)

Desenvolvimento de melhorias

- Pré-processamento:
 - Tratamento das variáveis faltantes
 - O Utilizar outros métodos para encoding de atributos categóricos
- Seleção de features
 - Utilizar outros métodos para seleção de features
 - P.ex., remoção de features com pouca variância
- Utilização de outros classificadores e técnicas
 - Boosting (uma forma de dar mais peso para os FN)
 - GridSearch