```
In [1]: #Experiment no.10
In [2]: #Aim :To perform and analysis of SVM

In [3]: #Name:Janvi R.Kale
#Roll no.:29
#sec:A
#sub:ET 1
#date:30-09-2025
```

Importing the Libraries

```
In [4]: import pandas as pd
import numpy as np
```

Data acquisitionuing Pandas

```
In [5]:
         import os
In [6]: os.getcwd()
Out[6]: 'C:\\Users\\This PC'
In [7]:
         os.chdir('C:\\Users\\This PC\\OneDrive\\Desktop\\dss practical datasets')
         data=pd.read_csv("heart.csv")
In [8]:
In [9]:
         data.head()
Out[9]:
                      cp trestbps chol fbs
                                             restecg
                                                     thalach exang
                                                                    oldpeak slope ca thal targ
                  sex
          0
              52
                    1
                        0
                               125
                                    212
                                           0
                                                   1
                                                         168
                                                                  0
                                                                         1.0
                                                                                 2
                                                                                     2
                                                                                          3
          1
              53
                    1
                        0
                               140
                                    203
                                           1
                                                   0
                                                         155
                                                                  1
                                                                         3.1
                                                                                 0
                                                                                     0
                                                                                          3
          2
              70
                    1
                        0
                               145
                                    174
                                           0
                                                   1
                                                         125
                                                                  1
                                                                         2.6
                                                                                 0
                                                                                     0
                                                                                          3
          3
              61
                    1
                        0
                               148
                                    203
                                           0
                                                         161
                                                                  0
                                                                         0.0
                                                                                 2
                                                                                     1
                                                                                          3
              62
                               138
                                    294
                                                         106
                                                                  0
                                                                         1.9
                                                                                 1
                                                                                     3
                                                                                          2
                    0
                        0
                                           1
```

In [10]: data.tail()

Out[10]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	1
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	
4												_		

In [11]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

#	Column	Non-N	ull Count [°]	Dtype
0	age	1025 1	non-null	int64
1	sex	1025 i	non-null	int64
2	ср	1025 i	non-null	int64
3	trestbps	1025 i	non-null	int64
4	chol	1025 i	non-null	int64
5	fbs	1025 i	non-null	int64
6	restecg	1025 i	non-null	int64
7	thalach	1025 i	non-null	int64
8	exang	1025 i	non-null	int64
9	oldpeak	1025 i	non-null	float64
10	slope	1025 i	non-null	int64
11	ca .	1025 i	non-null	int64
12	thal	1025 i	non-null	int64
13	target	1025 ו	non-null	int64
_	oc: float6			

dtypes: float64(1), int64(13)

memory usage: 112.2 KB

In [12]: data.describe()

Out[12]:

	age	sex	ср	trestbps	chol	fbs	res
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.00
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.52
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.52
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.00
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.00
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.00
4							•

```
In [13]: data.shape
Out[13]: (1025, 14)
In [14]: data.size
Out[14]: 14350
In [15]: data.ndim
Out[15]: 2
```

Data preprocessing _ data cleaning _ missing value treatment

```
In [16]: # check Missing Value by record
data.isna()
```

Out[16]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
0	False	False	False	False	False	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	False	False	False	False	False	Fa
2	False	False	False	False	False	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	False	False	False	False	False	Fa
4	False	False	False	False	False	False	False	False	False	False	False	Fa
1020	False	False	False	False	False	False	False	False	False	False	False	Fa
1021	False	False	False	False	False	False	False	False	False	False	False	Fa
1022	False	False	False	False	False	False	False	False	False	False	False	Fa
1023	False	False	False	False	False	False	False	False	False	False	False	Fa
1024	False	False	False	False	False	False	False	False	False	False	False	Fa
1025 ו	1025 rows × 14 columns											

```
In [17]:
         data.isna().any()
Out[17]: age
                     False
         sex
                     False
                    False
         ср
         trestbps False
         chol
                    False
         fbs
                     False
                    False
         restecg
                   False
         thalach
                   False
         exang
         oldpeak
                   False
                     False
         slope
                     False
         ca
         thal
                     False
                     False
         target
         dtype: bool
In [18]: data.isna().sum()
Out[18]: age
                     0
         sex
         ср
                     0
         trestbps
         chol
                     0
         fbs
                     0
                     0
         restecg
         thalach
                     0
         exang
                     0
         oldpeak
                     0
         slope
                     0
         ca
         thal
                     0
         target
         dtype: int64
```

Independent and Dependent Variables

```
In [19]: x=data.drop("target", axis=1)
y=data["target"]
```

Splitting of DataSet into train and Test

```
In [20]: #splitting the data into training and testing data sets
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2 ,random_st
```

Support Vector Classifier / Machine (SVC/SVM)

In [21]:	<pre>from sklearn import svm svm=svm.SVC() #svc=svm svm.fit(x_train, y_train) from sklearn.metrics import accuracy_score</pre>
In [22]:	<pre>y_pred3=svm.predict(x_test)</pre>
In [23]:	accuracy_score (y_test,y_pred3)
Out[23]:	0.6829268292682927

◆ Conclusion: In this practical, we implemented the Support Vector Machine (SVM) algorithm for classification. We learned how SVM separates data using a hyperplane and maximizes the margin between classes for better accuracy. This practical enhanced our understanding of kernel functions and how SVM effectively handles both linear and non-linear data in machine learning.

In []:	