2

CLAIMS

1	1. A system for combining spatial and linear (attribute) data in a single
2	relational database, comprising:
3	a computing device having a user interface;
4	a relational database connected to the computing device and accessible by
5	structured query language, the database comprising spatial and attribute data related to
6	geographic information; and
7	means for providing dynamic segmentation of permanent anchor sections, an
8	anchor section defining a spatial reference for a geographic element in the relational
9	database.
1	2. A system as recited in claim 1, wherein the relational database is
2	accessed via an object-oriented front-end.
1	3. A system as recited in claim 1, wherein the relational database further
2	comprises:
3	integrated temporal data for maintaining historical records.
1	4. The system as recited in claim 1, wherein the relational database is also

accessible by a graphical information system viewing application.

SAIC0041-US

1	5. A system as recited in claim 1, further comprising means for
2	performing automated database maintenance, making the multiple databases of road
3	network data consistent with one another.
1	6. A system as recited in claim 1, further comprising:
2	at least one additional computing device connected to the relational database,
3	wherein the relational database is stored in a distributed data environment.
1	7. A method for combining spatial and linear (attribute) data in a single
2	relational database, comprising:
3	providing permanent anchor sections representing physical sections of a
4	roadway, an anchor section defining a spatial reference in road data, the anchor
5	sections also integrated with linear data to form a road network;
6	associating attributes and linear events with positions in the road network;
7	storing linear event data related to anchor sections in a relational table;
8	storing road attribute data by associating each attribute with locations specified
9	in terms of a linear referencing method (LRM);
10	implementing a dynamic segmentation function for conducting dynamic
11	segmentation on a selective basis;
12	maintaining historical data related to anchor sections and linear event data;

1

2

11.

SAIC0041-US

13

14	interior intersection to an anchor section is defined by offsets from an end of the
15	anchor section;
16	synchronizing spatial and linear data, for tying spatial data to a physical
17	location represented by the road network; and
18	utilizing meta-data definitions for database elements in a data dictionary, the
19	data dictionary defining an implementation of the relational database, resulting in an
20	extensible relational database model.
1	8. A method as recited in claim 7, further comprising:
2	dynamically segmenting permanent anchor sections by adding interior
3	intersections using offset information.
1	9. A method as recited in claim 7, wherein the database model uses an
2	open architecture.
1	10. A method as recited in claim 7, wherein linear event data is stored by
2	storing each value anchored linear event combination in a separate table record.

enabling the creation of an interior intersection within the road data, where an

storing each value anchored linear event combination in a different table record with

A method as recited in claim 7, wherein linear event data is stored by