18.745: Lecture 5

Professor: Victor Kač Scribe: Zhongtao Wu

Definition 1. If \mathfrak{h} is a Lie algebra and $\pi: \mathfrak{h} \to gl_V$ is its representation, and $\lambda \in \mathfrak{h}^*$, then the subspace $V_{\lambda}^{\mathfrak{h}} = \{v \in V | \pi(a)v = \lambda(a)v \text{ for all } a \in \mathfrak{h}\}$ is called a weight space of \mathfrak{h} attached to λ .

Lemma 2 (Lie's lemma). Let \mathbb{F} be a field of characteristic 0; let π be a representation of \mathfrak{g} in a finite-dimensional vector space V, and let \mathfrak{h} be an ideal of \mathfrak{g} . Then for any $\lambda \in \mathfrak{h}^*$, $\pi(\mathfrak{g})V_{\lambda}^{\mathfrak{h}} \subset V_{\lambda}^{\mathfrak{h}}$. (i.e weight spaces of \mathfrak{h} are \mathfrak{g} -invariant.)

Proof. We may assume $V_{\lambda}^{\mathfrak{h}} \neq 0$. We want to prove that if $\pi(g)v \in V_{\lambda}^{\mathfrak{h}}$, then $\pi(g)v \in V_{\lambda}^{\mathfrak{h}}$, namely:

$$\pi(h)(\pi(g)v) = \lambda(h)\pi(g)v, \ \forall h \in \mathfrak{h}, g \in \mathfrak{g}, v \in V_{\lambda}^{\mathfrak{h}}$$

Using AB = BA + [A, B], we can rewrite the equation as:

$$\pi(q)\pi(h)v + \pi([h,q])v = \lambda(h)\pi(q)v.$$

Since \mathfrak{h} is an ideal, $[h,g] \in \mathfrak{h}$. So we can use the definition of $V_{\lambda}^{\mathfrak{h}}$ to further simplify the equation to:

$$\lambda(h)\pi(g)v + \lambda([h,g])(v) = \lambda(h)\pi(g)v$$

or equivalently $\lambda([h,g])(v)=0$. So we need to show that if $V_{\lambda}^{\mathfrak{h}}\neq 0$, then $\lambda([h,g])=0$ for all $h\in\mathfrak{h},g\in\mathfrak{g}$.

Pick a non-zero vector $v \in V_{\lambda}^{\mathfrak{h}}$ and take any $g \in \mathfrak{g}$. Denote by W_m the span of vectors $v, \pi(g)v, \ldots, \pi(g)^m v$. We have an increasing sequence of subspaces $W_0 = \mathbb{F}v \subset W_1 = \mathbb{F}v + \mathbb{F}\pi(g)v \subset \cdots$ in V. Take the smallest N, such that the vectors $v, \pi(g)v, \ldots, \pi(g)^{N-1}v$ are linearly independent, but $v, \ldots, \pi(g)^N v$ are linearly dependent, i.e, $\pi(g)^N v = \text{linear}$ combination of $v, \ldots, \pi(g)^{N-1}v$; and the same holds for $\pi(g)^{N+1}v, \ldots$ Hence,

$$\pi(g)W_{N-1} \subset W_{N-1} = W_N = W_{N+1} = \cdots$$

We shall prove that for any $h \in \mathfrak{h}$, $\pi(h)W_m \subset W_m$ for all m less than N, and moreover, that in the basis $v, \pi(g)v, \ldots, \pi(g)^m v$, the operator $\pi(h)$ has the

matrix form
$$\begin{pmatrix} \lambda(h) & * & \\ & \ddots & \\ 0 & & \lambda(h) \end{pmatrix}$$

We do it by induction on n: For n = 0, we have matrix $(\lambda(h))$. Suppose this is true for < n, then:

$$\pi(h)\pi(g)^n v = \pi(h)\pi(g)\pi(g)^{n-1}v = \pi([h,g])\pi(g)^{n-1}v + \pi(g)\pi(h)\pi(g)^{n-1}v.$$

Since $[h,g] \in \mathfrak{h}$, the first term $\pi([h,g])\pi(g)^{n-1} \in W_{n-1}$. For our second term, we use the induction hypothesis on $\pi(h)\pi(g)^{n-1}v$ to get:

$$\pi(g)\pi(h)\pi(g)^{n-1}v = \pi(g)(\lambda(h)\pi(g)^{n-1}v + c_{n-2}\pi(g)^{n-2}v + \dots + c_0v)$$
$$= \lambda(h)\pi(g)^nv + c_{n-2}\pi(g)^{n-2}v + \dots + c_0\pi(g)v$$

So we proved the inductive step. In particular, both $\pi(h)$ and $\pi(g)$ are operators on W_{N-1} and $\pi(h)$ is upper triangular on W_{N-1} with $\lambda(h)$ on the diagonal. But $\pi([h,g]) = [\pi(h),\pi(g)]$ on W_{n-1} ; if we take $\operatorname{tr}_{W_{N-1}}$ of both sides, we get $N\lambda([h,g]) = 0$. So $\lambda([h,g]) = 0$ since $\operatorname{char} \mathbb{F} = 0$.

From the above lemma, we can easily prove the following main theorem in this section.

Theorem 3 (Lie's theorem). Let \mathbb{F} be an algebraically closed field of characteristic 0. Let \mathfrak{g} be a solvable Lie algebra and let $\pi: \mathfrak{g} \to gl_V$ be a representation of \mathfrak{g} in a finite dimensional vector space V over \mathbb{F} . Then there exists a common eigenvector $v \in V$ for all operators $\pi(a)$, $a \in \mathfrak{g}$. i.e, $\pi(a)v = \lambda(a)v$, where $\lambda(a) \in \mathbb{F}$, $v \neq 0$.

Proof. Note that $\pi(g) \subset gl_V$ is a finite dimensional subalgebra since dim $gl_V = (\dim V)^2$, so we may assume that dim $\mathfrak{g} < \infty$ and prove Lie's theorem by induction on $n = \dim \mathfrak{g}$.

If n = 1, i.e, $\mathfrak{g} = \mathbb{F}a$, then we take for v any eigenvector of $\pi(a)$. (We use here that \mathbb{F} is algebraically closed.)

For any n>1, since $\mathfrak g$ is solvable, $[\mathfrak g,\mathfrak g]\subseteq \mathfrak g$; so we can take a subspace $\mathfrak h$ of $\mathfrak g$ of codimension 1 containing $[\mathfrak g,\mathfrak g]$. Then $\mathfrak h$ is an ideal of $\mathfrak g$ since $[\mathfrak h,\mathfrak g]\subset [\mathfrak g,\mathfrak g]\subset \mathfrak h$. dim $\mathfrak h=n-1$, so we can apply the inductive assumption and find $v\in V$ such that $\pi(h)v=\lambda(h)v$ for all $h\in \mathfrak h$. Obviously $\lambda\in \mathfrak h^*$, so $V_\lambda^{\mathfrak h}\neq 0$. Apply Lie's lemma, we get $\pi(a)V_\lambda^{\mathfrak h}\subset V_\lambda^{\mathfrak h}$ for all $a\in \mathfrak g$. Write $\mathfrak g=\mathfrak h+\mathbb F a$, we have $\pi(a)V_\lambda^{\mathfrak h}\subset V_\lambda^{\mathfrak h}$. But $V_\lambda^{\mathfrak h}$ is a finite dimensional vector space over an algebraically closed field, hence the operator $\pi(a)$ has an eigenvector $v\in V_\lambda^{\mathfrak h}$. This is the desired v.

Exercise 5.1: Lie's lemma and hence Lie's theorem hold over an algebraically closed field of char $\mathbb{F} = p > \dim V$.

Proof. The only place we used char $\mathbb{F} = 0$ in our proof of Lie's lemma is concluding $\lambda([\mathfrak{h},\mathfrak{g}]) = 0$ from the identity $N\lambda([\mathfrak{h},\mathfrak{g}]) = 0$, where N is the dimension of the subspace W_{N-1} . But if char $\mathbb{F} = p > \dim V > \dim W_{N-1} = N$, such an argument is still valid. \square

Exercise 5.2: Take $\mathfrak{g} = \mathfrak{H}_1$ acting on $\mathbb{F}[x]$ by $P = \frac{d}{dx}$, Q = x, c = 1. Suppose char $\mathbb{F} = p > 0$, then $U = \bigoplus_{j \geq p} \mathbb{F}x^j$ is a subrepresentation. Hence $V = \mathbb{F}[x]/U$ is a p-dimensional representation of \mathfrak{H}_1 . It can be shown that there is no common eigenvector for P and Q, so Lie's theorem fails.

Proof. Suppose $f \in U$, then $Q(f) \in U$. If $\deg f > p$, then $\deg P(f) \ge p$ and hence $P(f) \in U$. Otherwise, $\deg f = p$, i.e, $f = cx^p$ for some constant c. Then $P(f) = cpx^{p-1} = 0$ since $\operatorname{char} \mathbb{F} = p$. Hence, U is a subrepresentation, and the quotient $V = \mathbb{F}[x]/U$ is a p-dimensional representation of \mathfrak{g} .

Next, notice that the only nonzero eigenvector for Q is a scalar of x^{p-1} . But x^{p-1} is not an eigenvector for P, since $P(x^{p-1}) = (p-1)x^{p-2}$. So Lie's theorem fails.

Exercise 5.3: If \mathfrak{g} is abelian, then $\lambda([h,g])=0$ for all $\lambda\in\mathfrak{h}^*,\,g,h\in\mathfrak{g}$. So Lie's lemma and hence Lie's theorem hold over any algebraically closed field, even if $\mathrm{char}\,\mathbb{F}\neq 0$.

Proof. If \mathfrak{g} is abelian, then the commutator $[\pi(g), \pi(h)]$ is identically 0. So we have

$$\pi(h)(\pi(g)v) = \pi(g)\pi(h)v = \lambda(h)(\pi(g)v), \ \forall h \in \mathfrak{h}, g \in \mathfrak{g}.$$

This means that $\pi(g)V_{\lambda}^{\mathfrak{h}}\subset V_{\lambda}^{\mathfrak{h}}$, hence Lie's lemma holds.

Lie's theorem implies the following corollary:

Corollary 4. (a) For any representation π of a solvable Lie algebra \mathfrak{g} in a finite dimensional vector space V, there exists a basis of V for which the matrices of all operators $\pi(q)$, $q \in \mathfrak{g}$ are upper triangular.

- (b) A subalgebra $\mathfrak{g} \subset gl_V$, dim $V < \infty$, is solvable if and only if in some basis the matrices of all operators from \mathfrak{g} are upper triangular.
- (c) If \mathfrak{g} is a finite dimensional solvable Lie algebra, then $[\mathfrak{g},\mathfrak{g}]$ is a nilpotent Lie algebra.

Proof. (a) By Lie's theorem, there exists a common eigenvector v for $\pi(\mathfrak{g})$. Let $v_1 = v$. The subspace $\mathbb{F}v_1$ is $\pi(\mathfrak{g})$ invariant, hence we may consider the representation $\pi_{V/\mathbb{F}v_1}$ of \mathfrak{g} in $V/\mathbb{F}v_1$. Apply Lie's theorem, we can find a common eigenvector $v_2' \in V/\mathbb{F}v_1$ for $\pi_{V/\mathbb{F}v_1}(\mathfrak{g})$. This means that if $v_2 \in V$ is a preimage of v_2' , then $\pi(\mathfrak{g})v_2 \in \mathbb{F}v_1 + \mathbb{F}v_2$. Next, consider $V/(\mathbb{F}v_1 + \mathbb{F}v_2)$ and construct $v_3 \in V$ such that $\pi(\mathfrak{g})v_3 \in \mathbb{F}v_1 + \mathbb{F}v_2 + \mathbb{F}v_3$, etc.

So for any $a \in \mathfrak{g}$,

$$\pi(a)v_1 \in \mathbb{F}v_1$$

$$\pi(a)v_2 \in \mathbb{F}v_1 + \mathbb{F}v_2$$

$$\pi(a)v_3 \in \mathbb{F}v_1 + \mathbb{F}v_2 + \mathbb{F}v_3$$

But this exactly means that $\pi(a)$ is upper triangular in the basis v_1, \ldots, v_n .

(b) If the matrices of all operators from \mathfrak{g} are upper triangular in some basis, then it is a subalgebra of the solvable Lie algebra $b_k(\mathbb{F})$, which consists of all upper triangular matrices. Hence, \mathfrak{g} is also solvable.

Conversely, if $\mathfrak{g} \subset gl_V$ is solvable, then we can apply part (a) to find a basis in which all matrices are upper triangular.

(c) Consider ad: $\mathfrak{g} \to gl_{\mathfrak{g}}$, the adjoint representation of \mathfrak{g} . Ker ad = center(\mathfrak{g}) is abelian, hence is a solvable ideal. Also, $\mathrm{ad}(\mathfrak{g}) = \mathfrak{g}/\mathrm{center}(\mathfrak{g}) \subset gl_{\mathfrak{g}}$ and $\mathrm{ad}([\mathfrak{g},\mathfrak{g}]) = [\mathfrak{g},\mathfrak{g}]/[\mathfrak{g},\mathfrak{g}] \cap \mathrm{center}(\mathfrak{g}) \subset gl_{\mathfrak{g}}$. In order to prove $[\mathfrak{g},\mathfrak{g}]$ is a nilpotent Lie algebra, it suffices to prove $\mathrm{ad}[\mathfrak{g},\mathfrak{g}]$ is nilpotent. But $\mathrm{ad}\,\mathfrak{g} \subset gl_{\mathfrak{g}}$ is a solvable subalgebra, hence is an upper triangular subalgebra of $gl_{\mathfrak{g}}$ in some basis of \mathfrak{g} by part (b). But the commutator of two upper triangular matrices is strictly upper triangular, hence $\mathrm{ad}[\mathfrak{g},\mathfrak{g}] \subset \mathrm{strictly}$ upper triangular. So $\mathrm{ad}[\mathfrak{g},\mathfrak{g}]$ is a nilpotent Lie algebra; hence $[\mathfrak{g},\mathfrak{g}]$ is a nilpotent Lie algebra.