Université Dr Yahia Farès de Médéa

Département de G.E.I.

Matière: MATHS 3 (S3)

Année Univer. 2010/2011

2^{ème} Année ST

Durée: 01h30

Epreuve de Fin de Semestre

Exercice 1. (03 points) Déterminer la nature de la série, et en cas de convergence, calculer sa somme:

$$\sum_{n>0} \frac{3}{(3n+1)(3n+4)}$$

Exercise 2. (7 points) (1.5 + 1.5 + 2 + 2)

1. Etudier la nature des séries numériques suivantes:

a)
$$\sum_{n\geq 0} n^3 \sin(\frac{1}{n^3})$$
 b) $\sum_{n\geq 0} \log\left(\frac{n^2+n+1}{n^2+n-1}\right)$

2. Etudier la convergence et la convergence absolue de:

a)
$$\sum_{n>1} \frac{\sqrt{n}\sin(n)}{n^2}$$

a)
$$\sum_{n>1} \frac{\sqrt{n}\sin(n)}{n^2}$$
 b) $\sum_{n>1} \frac{(-1)^n}{n+\cos n}$

Exercice 3. (07 points) (3+1+1+1+1)

1. Etudier la convergence simple et uniforme de la suite de fonctions (f_n) suivante:

$$f_n(x) = 1 + x + x^2 + ... + x^{n-1} \text{ sur }]-1, 1[, \text{ puis sur } [-a, a] \text{ avec } 0 \le a < 1.$$

- 2. Pour $x \ge 0$, on pose $u_n(x) = \frac{x}{n^2 + x^2}$.
- a) Montrer que la série $\sum_{n\geq 1} u_n(x)$ converge simplement sur \mathbb{R}_+ .
- b) Montrer que $\sum_{n\geq 1} u_n(x)$ converge uniformement sur tout intervalle [0,A], avec A>0.

1

- c) Vérifier que, pour tout $n \in \mathbb{N}$, $\sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2} \ge \frac{1}{5}$.
- d) En déduire que la série $\sum_{n\geq 1} u_n(x)$ ne converge pas uniformement sur \mathbb{R} .

Exercice 4. (03 points)

Université Dr Yahia Farès de Médéa

Département chargé du Socle LMD

Module: MATHS 3 (S3)

Année Univer. 2009/20010

2^{ème} Année ST

Durée: 01h30

Corrigé (E.F.S.1)

Exercice 1:

On décompose la fraction en éléments simples.

$$\frac{3}{(3k+1)(3k+4)} = \frac{1}{3k+1} - \frac{1}{3k+4}$$

Alors

$$S_n = \sum_{k=0}^{n} \frac{3}{(3n+1)(3n+4)} = \sum_{k=0}^{n} \frac{1}{3k+1} - \frac{1}{3k+4}$$

Donc

$$S_n = \sum_{k=0}^{n} \frac{1}{3k+1} - \sum_{k=1}^{n+1} \frac{1}{3k+1}$$

Il reste,

$$S_n = 1 - \frac{1}{3n+4}$$

et donc,

$$S = \lim_{n \to +\infty} S_n = 1.$$

La suite (S_n) étant convegente alors la série numérique converge aussi, de plus, la somme de la série S=1.

Exercice 2:

1) $\lim_{n \to +\infty} n^3 \sin(\frac{1}{n^3}) = \lim_{n \to +\infty} \frac{\sin(\frac{1}{n^3})}{n^3} = \lim_{n \to 0} \frac{\sin x}{x} = 1 \neq 0$, et la série diverge d'apès la condition nécessaire de convergence.

2) $u_n = \log\left(\frac{n^2+n+1}{n^2+n-1}\right) = \log\left(\frac{n^2+n-1+2}{n^2+n-1}\right) = \log\left(1+\frac{2}{n^2+n-1}\right) \leadsto_{n\to+\infty} \frac{2}{n^2}$ qui est bien le terme général d'une série convergente. Par le critère d'équivalence, la série de terme général $\log\left(\frac{n^2+n+1}{n^2+n-1}\right)$ est aussi convergente.

$$\left| \frac{\sqrt{n}\sin(n)}{n} \right| = \left| \frac{\sin(n)}{\sqrt{n}} \right| \ge \frac{\sin^2(n)}{\sqrt{n}}$$
$$\left| \frac{\sin(n)}{\sqrt{n}} \right| \ge \frac{1 - \cos 2n}{2\sqrt{n}} = \frac{1}{2\sqrt{n}} - \frac{\cos 2n}{2\sqrt{n}}$$

 $\sum_{n} \frac{\sin xn}{n^{\alpha}} \int_{n} \frac{(2n \times n)}{n^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1 \right) \int_{n} \frac{\partial n}{\partial x^{\alpha}} \operatorname{orec} \left(\cos \alpha \leq 1$

univdocs.com

univdocs.com
$$\begin{vmatrix} b_1 + b_2 + \cdots & b_n \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_3 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_4 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_4 & c_4 & c_4 \end{vmatrix}$$

. La série $\sum \frac{1}{2\sqrt{n}}$ diverge d'après Riemmann et la série $\sum \frac{\cos 2n}{2\sqrt{n}}$ converge d'après le critère de Dirichlet. En effet, $\sum_{k=1}^{n} \cos 2k \le \frac{1}{|\sin 1|}$ et $\frac{1}{2\sqrt{n}}$ décroit et tend vers 0 quand $n \to 0$ $+\infty$. Donc $\sum_{n\geq 1} \frac{\sin(n)}{\sqrt{n}}$ n'est pas absolument convergente. D'autre part la série $\sum_{n\geq 1} \frac{\sin(n)}{\sqrt{n}}$ converge d'après Dirichlet; donc elle est semi-convergente.

b) $\left| \frac{(-1)^n}{n + \cos n} \right| \sim \frac{1}{n}$. Donc $\sum \frac{(-1)^n}{n + \cos n}$ n'est pas absolument convergente. Mais, elle est convergente car il s'agit d'une série alterné vérifiant les conditions suivantes: la suite $\frac{1}{n+\cos n} > 0$ est décroissante et tend vers 0 quand $n \to +\infty$.

Exercice 3:

1. Si $x \in [-1, 1[$, alors

$$f_n(x) = 1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x}$$

et donc la suite converge simplement vers $f(x) = \frac{1}{1-x}$ sur]-1,1[. Posons $g_n(x) = \frac{1}{1-x}$ $f_n(x) - f(x) = . \text{ On a :}$

$$g_n(x) = \frac{x^x}{1 - x}$$

qui tend vers $+\infty$ si x vers 1. D'où $||f_n(x) - f(x)||_{\infty} = +\infty$ et la convergence n'est pas uniforme sur]-1,1[. Dans le deuxième cas, on vérifie aisément en étudiant $g_n(x)$ que:

$$\sup_{x \in [-a,a]} |g_n(x)| = \frac{a^n}{1-a} \to 0 \text{ quand } n \to +\infty$$

ce qui garantit la convergence uniforme sur [-a, a].

- 2. a) Il est très facile de prouver la convergence simple sur \mathbb{R}_+ . Pour x=0, on a en effet $u_n(0) = 0$, qui est bien le terme général d'une série convergente. Pour x > 0, on a $u_n(x) \leadsto_{n \to +\infty} \frac{x}{n^2}$, qui est aussi le terme général d'une série convergente.
- b) On va prouver la convergence normale. On a en effet, pour tout $x \in [0, A]$,

$$|u_n(x)| \le \frac{A}{n^2}$$

terme général d'une série convergente.

c) Il suffit d'écrire que, pour $n+1 \le k \le 2n$, on a $n^2+k^2 \le 5n$, et donc $\frac{n}{n^2+k^2} \ge \frac{1}{5}$. On

obtient finalement

$$\sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2} \ge \frac{(2n - (n+1) + 1)}{5n} = \frac{1}{5}$$

d) Il est plus difficile de prouver la non-convergence uniforme. On peut procéder de la façon suivante. Supposons que la convergence est uniforme. Alors, pour tout $\varepsilon > 0$, il existe un entier n_0 tel que, pour tout $n \geq n_0$, et tout $x \in \mathbb{R}_+$, on ait

$$\left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \le \varepsilon$$

En particulier, pour $n = n_0$ et $x = n_0$, on doit avoir

$$\sum_{k=n+1}^{2n} u_k(x) \le \varepsilon$$

Mais,

$$\varepsilon \ge \sum_{k=n+1}^{2n} u_k(x) \ge \frac{1}{5}$$

Bien sûr, si $\varepsilon < \frac{1}{5}$, c'est impossible.

Exercice 4:

Université Dr Yahia Farès de Médéa Département de G.E.I

Module: MATHS 3 (S3)

Année univer. 2013/2014 $2^{\hat{e}re}$ Année ST

03/02/2014 Durée: 01h30

Epreuve de fin de Semestre

Exercice 1: (7 points) (3+1,5+2,5)

1- Etudier la nature des séries numériques suivantes:

a)
$$\sum_{n=0}^{n=+\infty} \frac{1}{n^2 + |\cos n|}$$
,

a)
$$\sum_{n=0}^{n=+\infty} \frac{1}{n^2 + |\cos n|}$$
, b) $\sum_{n=0}^{n=+\infty} \log(1 + a^n)$ avec $a \ge 0$.

2- Déterminer la nature de la série, et en cas de convergence, calculer sa somme.

$$\sum_{n=0}^{n=+\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}\right).$$

3- Etudier la convergence et la convergence absolue de:

a)
$$\sum_{n=0}^{n=+\infty} (-1)^n \frac{\cos n}{1 + n\sqrt{n}}$$
.

b)
$$\sum_{n=1}^{n=+\infty} \frac{(-1)^n}{\sqrt{n^2+n}}$$

Exercice 2: (5 points) (1+1,5+1,5+1)

Soit $f_n(x) = e^{-nx} \sin(nx)$ une suite de fonctions définie sur $[0, +\infty[$.

- 1) Etudier la convergence simple de la suite de fonctions $(f_n)_{n>0}$.
- 2) Etudier la convergence uniforme de la suite de fonctions $(f_n)_{n\geq 0}$ sur $[0, +\infty[$.
- 3) Etudier la convergence uniforme de la suite de fonctions $(f_n)_{n>0}$ sur $[a, +\infty[$, avec a>0.
- 4) Calculer $\lim_{n \to +\infty} \int e^{-nx} \sin(nx) dx$.

Exercice 3: (5 points) (1, 5 + 2 + 1, 5)

Soit
$$f_n(x) = \frac{x^n \sin(nx)}{n}$$
, avec $x \in]-1, 1[$.

- 1) Etudier la convergence simple de la série de fonctions $\sum_{n=1}^{n=+\infty} f_n$ sur]-1, 1[.
- 2) Montrer que la série de fonctions $\sum_{n=-\infty}^{n=-\infty} f'_n$ est uniformément convergente sur $[-\alpha, \alpha]$
- 3) Posons $f(x) = \sum_{n=1}^{\infty} f_n(x)$. Montrer que f est dérivable sur $[-\alpha, \alpha]$ et donner f'(x).

Exercice 4 : (3 points)

Déterminer l'intervalle de convergence des séries entières suivantes.

$$1) \sum_{n=1}^{n=+\infty} \frac{2^n}{n} x^n$$

$$2) \sum_{n=1}^{n=+\infty} \frac{x^n}{n!}$$

1)
$$\sum_{n=1}^{n=+\infty} \frac{2^n}{n} x^n$$
 2) $\sum_{n=1}^{n=+\infty} \frac{x^n}{n!}$ 3) $\sum_{n=1}^{n=+\infty} \frac{n!}{n^n} x^n$

1

Université Dr Yahia Farès de Médéa Département de G.E.I

Module: MATHS 3 (S3) 03/02/2014

Année univer. 2013/2014 $2^{\grave{e}re}$ Année ST Durée: 01h30

Corrigé de L'EFS 1-MATHS 3

Exercice 1

1-a)
$$\sum_{n=0}^{n=+\infty} \frac{1}{n^2 + |\cos n|}$$
 série à termes positifs. $0 \le |\cos n| \Rightarrow n^2 \le |\cos n| + n^2$. Ceci implique

que
$$\frac{1}{n^2 + |\cos n|} \le \frac{1}{n^2}$$
. La série $\sum_{n=1}^{n=+\infty} \frac{1}{n^2}$ est de Riemann convergente et d'après le critère de $\sum_{n=+\infty}^{n=+\infty} \frac{1}{n^2}$

comparaison la série $\sum_{n=0}^{n=+\infty} \frac{1}{n^2 + |\cos n|}$ est convergente.

b)
$$\sum_{n=0}^{n=+\infty} \log(1+a^n)$$
 avec $a \ge 0$. Si $a > 1$, $\lim_{n \to +\infty} \log(1+a^n) = +\infty \ne 0 \Longrightarrow$ la série diverge. Si

$$a=1$$
 on a $\log(1+a^n)=\log 2$ et la série $\sum_{n=0}^{n=+\infty}\log 2$ diverge. Si $0\leq a<1$, alors $\log(1+a^n)\sim$

$$a^n$$
. La série $\sum_{n=1}^{n=+\infty} a^n$ est géométrique convergente, d'après le critère d'équivalence, la série

$$\sum_{n=1}^{n=+\infty} \log (1+a^n) \text{ est convergente.}$$

2)
$$\sum_{n=0}^{n=+\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} \right) \cdot S_n = \sum_{k=0}^{k=n} u_k = \sum_{k=0}^{k=n} \left(\sqrt{k+2} - 2\sqrt{k+1} + \sqrt{k} \right) = \sum_{k=0}^{k=n} \sqrt{k+2} - 2\sqrt{k+1} + \sqrt{k} = \sum_{k=0}^{k=n} \sqrt{k+2} - 2\sqrt{k+2} + 2\sqrt{k+2} = \sum_{k=0}^{k=n} \sqrt{k+2} = \sum_{k=0}^{k=n} \sqrt{k$$

$$2\sum_{k=0}^{k=n} \sqrt{k+1} + \sum_{k=0}^{k=n} \sqrt{k}$$

$$S_n = \left(\sqrt{2} + \sqrt{3} + \dots + \sqrt{n} + \sqrt{n+1} + \sqrt{n+2}\right) - 2\left(1 + \sqrt{2} + \dots + \sqrt{n} + \sqrt{n+1}\right) + \left(1 + \sqrt{2} + \dots + \sqrt{n}\right)$$
Par simplification, on trouve $S_n = -1 + \sqrt{n+2} - \sqrt{n+1}$.

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \left[-1 + (\sqrt{n+2} - \sqrt{n+1}) \cdot \left(\sqrt{n+2} + \sqrt{n+1} \right) \cdot \frac{1}{\sqrt{n+2} + \sqrt{n+1}} \right] = 0$$

$$\lim_{\substack{n \to +\infty \\ n=+\infty}} \left(-1 + \frac{1}{\sqrt{n+2} + \sqrt{n+1}}\right) = -1. \text{ La suite } (S_n) \text{ converge, par conséquent la série}$$

$$\sum_{n=+\infty}^{n=+\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}\right) \text{ converge et la somme égale à } -1.$$

3) a)
$$\sum_{n=0}^{n=+\infty} (-1)^n \frac{\cos n}{1+n\sqrt{n}}$$
 cette série n'est pas alternée car le cosinus change de signe. On a

$$\left| (-1)^n \frac{\cos n}{1 + n\sqrt{n}} \right| \le \frac{1}{n\sqrt{n}} = \frac{1}{n^{\frac{3}{2}}}$$
. La série $\sum_{n=1}^{n=+\infty} \frac{1}{n^{\frac{3}{2}}}$ est de Riemann convergente et d'après le

critère de comparaison la série $\sum_{n=0}^{n=+\infty} \left| (-1)^n \frac{\cos n}{1+n\sqrt{n}} \right|$ est convergente. On conclut que la série

$$\sum_{n=0}^{n=+\infty} (-1)^n \frac{\cos n}{1+n\sqrt{n}}$$
 est absolument convergente donc elle est convergente

b)
$$\sum_{n=1}^{n=+\infty} \frac{(-1)^n}{\sqrt{n^2+n}}$$
 est une série alternée. La suite $\left(\frac{1}{\sqrt{n^2+n}}\right)_{n\geq 1}$ est décroissante vers 0, donc

d'aprèe le théorème de Leibniz la série
$$\sum_{n=1}^{n=+\infty} \frac{(-1)^n}{\sqrt{n^2+n}}$$
 converge. $\left|\frac{(-1)^n}{\sqrt{n^2+n}}\right| = \frac{1}{\sqrt{n^2+n}} = \frac{1}{\sqrt{n^2+n}}$

$$\frac{1}{n\sqrt{1+\frac{1}{n}}} \sim \frac{1}{n}$$
. La série $\sum_{n=1}^{n=+\infty} \frac{1}{n}$ est divergente, d'après le critère d'équivalence, la série

$$\sum_{n=1}^{n=+\infty} \left| \frac{(-1)^n}{\sqrt{n^2 + n}} \right| \text{ est divergente. Donc la série } \sum_{n=1}^{n=+\infty} \frac{(-1)^n}{\sqrt{n^2 + n}} \text{ n'est pas absolument convergente.}$$

Exercice 2:

Soit $f_n(x) = e^{-nx} \sin(nx)$ une suite de fonctions définie sur $[0, +\infty]$.

1) $f_n(0) = 0$, et si x > 0 $\lim_{n \to +\infty} f_n(x) = 0$. Donc la suite de fonctions $(f_n)_{n \ge 1}$ converge simplement sur $[0, +\infty[$ vers la fonction f(x) = 0.

2)
$$\sup_{x \in [0, +\infty[]} |f_n(x) - f(x)| = \sup_{x \in [0, +\infty[]} |f_n(x)| \ge \left| f_n\left(\frac{\pi}{2n}\right) \right| = e^{-\frac{\pi}{2}}. \text{ Ceci implique que}$$

2) $\sup_{x \in [0, +\infty[} |f_n(x) - f(x)| = \sup_{x \in [0, +\infty[} |f_n(x)| \ge \left| f_n\left(\frac{\pi}{2n}\right) \right| = e^{-\frac{n}{2}}. \text{ Ceci implique que }$ $\lim_{\substack{n \to +\infty \\ x \in [0, +\infty[}} \sup_{x \in [0, +\infty[} |f_n(x) - f(x)| \ne 0 \text{ et donc la suite de fonctions } (f_n)_{n \ge 1} \text{ ne converge pas uni-}$ formément sur $[0, +\infty[$.

3) $|f_n(x) - f(x)| = |e^{-nx} \sin(nx)| \le e^{-nx} |\sin(nx)| \le e^{-nx} \le e^{-na}$ pour tout $x \in [a, +\infty[$ avec a > 0. Comme $\lim_{n \to +\infty} e^{-na} = 0$ alors la suite de fonctions $(f_n)_{n \ge 1}$ converge uniformément $\operatorname{sur}\left[a, +\infty\right] \operatorname{vers} f\left(x\right) = 0.$

4) Comme la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur $[a, +\infty[$ vers f(x)=0,

alors
$$\lim_{n \to +\infty} \int_{a}^{1} e^{-nx} \sin(nx) \ dx = \int_{a}^{1} \lim_{n \to +\infty} e^{-nx} \sin(nx) \ dx = \int_{a}^{1} 0 \ dx = 0$$

Soit
$$f_n(x) = \frac{x^n \sin(nx)}{n}$$
 avec $x \in]-1, 1[$

1) La convergence simple de la série de fonctions $\sum_{i=1}^{n=+\infty} f_n$. Soit $x \in]-1, 1[. \forall n \geq 1, |f_n(x)| =$

$$\left|\frac{x^n\sin\left(nx\right)}{n}\right| \le |x|^{n-1}$$
. Or la série $\sum_{n=1}^{n=+\infty} |x|^{n-1}$ est géométrique convergente. Donc la série

$$\sum_{n=1}^{n=+\infty} f_n(x) \text{ est absolument convergente, d'où } \forall x \in]-1, 1[\text{ la série } \sum_{n=1}^{n=+\infty} f_n(x) \text{ est convergente.}$$

Ceci implique que la série de fonctions $\sum_{n=+\infty}^{n=+\infty} f_n$ est simplement convergente sur]-1, 1[

2)
$$f'_n(x) = x^{n-1}\sin(nx) + x^n\cos(nx)$$
. Pour $x \in [-\alpha, \alpha]$ avec $0 < \alpha < 1$ on a $|f'_n(x)| = |x^{n-1}\sin(nx) + x^n\cos(nx)| \le \alpha^{n-1} + \alpha^n \le 2\alpha^{n-1}$. Puisque la série numérique $\sum_{n=1}^{n=+\infty} 2\alpha^{n-1}$

converge, la série de fonctions $\sum_{i=1}^{n=+\infty} f'_n$ est normalement convergente et donc uniformément

convergente sur $[-\alpha, \alpha]$.

3) Soit
$$f(x) = \sum_{n=1}^{n=+\infty} f_n(x)$$
. Comme $\sum_{n=1}^{n=+\infty} f'_n$ est une série de fonctions continues et dérivable sur $[-\alpha, \alpha]$ et de plus la série de fonctions $\sum_{n=1}^{n=+\infty} f'_n$ est uniformément convergente sur $[-\alpha, \alpha]$, alors f est dérivable sur $[-\alpha, \alpha]$ et pour tout $x \in [-\alpha, \alpha]$ on a $f'(x) = \sum_{n=0}^{n=+\infty} f'_n(x) = \sum_{n=0}^{n=+\infty} \left[x^{n-1}\sin(nx) + x^n\cos(nx)\right]$.

Exercice 4

1)
$$\sum_{n=1}^{n=+\infty} \frac{2^n}{n} x^n \cdot \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{2^{n+1}}{n+1} \cdot \frac{n}{2^n} = \lim_{n \to +\infty} 2 \frac{n}{n+1} = 2. \text{ Donc le rayon de convergence } R = \frac{1}{2}. \text{ Pour } x = \frac{1}{2}, \text{ on trouve la série } \sum_{n=1}^{n=+\infty} \frac{1}{n} \text{ qui est divergente. Pour } x = -\frac{1}{2}, \text{ on trouve la série } \sum_{n=1}^{n=+\infty} \frac{(-1)^n}{n} \text{ qui converge d'après le théorème de Leibniz. D'où } D_{cv} = \left[-\frac{1}{2}, \frac{1}{2} \right[.$$
2)
$$\sum_{n=1}^{n=+\infty} \frac{x^n}{n} \cdot \lim_{n \to \infty} \left| \frac{a_{n+1}}{n} \right| = \lim_{n \to \infty} \frac{n!}{n!} = \lim_{n \to \infty} \frac{1}{n!} = 0. \text{ Donc } R = +\infty, \text{ et } D_{cv} = 1$$

2)
$$\sum_{n=1}^{n=+\infty} \frac{x^n}{n!}$$
. $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to+\infty} \frac{n!}{(n+1)!} = \lim_{n\to+\infty} \frac{1}{n+1} = 0$. Donc $R = +\infty$, et $D_{cv} =]-\infty, +\infty[$.

3)
$$\sum_{n=1}^{n=+\infty} \frac{n!}{n^n} x^n \cdot \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{(n+1)!}{n^{n+1}} \cdot \frac{n^n}{n!} = \lim_{n \to +\infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} \cdot \text{Donc } R = e \cdot \text{Pour } x = e \text{ on trouve la série } \sum_{n=1}^{n=+\infty} \frac{n!}{n^n} e^n \cdot \text{On utilise la formule de Stirling , on trouve } \frac{n!}{n^n} e^n \sim \sqrt{2\pi n}.$$
 La série
$$\sum_{n=1}^{n=+\infty} \sqrt{2\pi n} \text{ diverge, d'après le critère d'équivalence la série } \sum_{n=1}^{n=+\infty} \frac{n!}{n^n} e^n \text{ diverge. Pour } \frac{n!}{n^n} e^n \cdot \frac{n!}{n^n} e^n$$

Pour x = -e on trouve la série $\sum_{n=1}^{n=+\infty} \frac{(-1)^n n!}{n^n} e^n$. Puisque $\frac{n!}{n^n} e^n \sim \sqrt{2\pi n}$, alors $\lim_{n \to +\infty} \frac{n!}{n^n} e^n = \frac{(-1)^n n!}{n^n} e^n$

 $+\infty$, ceci implique que $\lim_{n\to+\infty} \frac{(-1)^n n!}{n^n} e^n$ n'existe pas, d'où la série $\sum_{n=1}^{n=+\infty} \frac{(-1)^n n!}{n^n} e^n$ diverge. Dans ce cas $D_{cv} =]-e, e[$.

Année universitaire 2015-2016 Matière : Maths 3 17/01/2016

Epreuve de Fin de Semestre 1

Exercice 1: (5 points 2,5+2,5)

Calculer les intégrales doubles suivantes :

1.
$$\iint_{D} \frac{1}{(1+x+y)^2} dx dy \text{ où } D = \{(x,y) \in \mathbb{R}^2 \text{ avec } x \ge 0, \ y \ge 0, \ x+y \le 1\}.$$

2.
$$\iint\limits_{D} \sqrt{1+x^2+y^2} dx dy$$
 où $D = \{(x,y) \in \mathbb{R}^2 \text{ avec } x \ge 0, -x \le y \le x, \ 1 \le x^2+y^2 \le 4\}$.

Exercice 2: (5 points 2+2+1)

Soit f la fonction définie sur $[2, +\infty[$ par $f(x) = \frac{1}{x(\ln x)^2}$.

- 1. En utilisant le définition, montrer que l'intégrale $\int\limits_{2}^{+\infty}f\left(x\right) dx$ est convergente.
- 2. Donner le tableau de variations de f.
- 3. En déduire la nature de la série $\sum_{n\geq 2} \frac{1}{n \ln^2 n}$.

Exercice 3: (5 points 3+2)

- 1. Etudier la nature de l'intégrale impropre $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} \sin(\frac{1}{x}) dx$, $\alpha \in \mathbb{R}$.
- 2. Résoudre l'équation différentielle : $(x^2 + 1)y' = y + 1$.

Exercice 4: (5 points 2,5+2,5)

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie par $f_n(x) = \frac{x}{x+n}$.

- 1. a) Montrer que $(f_n)_{n\geq 1}$ converge simplement sur $[0,\ 1]$.
 - b) Montrer que $(f_n)_{n\geq 1}$ converge uniformément sur [0, 1].
- 2. Etudier la convergence simple et uniforme de $(f_n)_{n\geq 1}$ sur $[1, +\infty[$.

Année universitaire 2015-20016 Matière : Maths 3 17/01/2016

Corrigé de l'Epreuve de Fin de Semestre 1

Exercice 1: (5 points 2,5+2,5)

1.
$$\iint_{D} \frac{1}{(1+x+y)^{2}} dx dy \text{ où } D = \left\{ (x,y) \in \mathbb{R}^{2} \text{ avec } x \geq 0, \ y \geq 0, \ x+y \leq 1 \right\}$$

$$\iint_{D} \frac{1}{(1+x+y)^{2}} dx dy = \int_{0}^{1} \left(\int_{0}^{1-x} \frac{dy}{(1+x+y)^{2}} \right) dx \text{ (0,5 point). On a } \int_{0}^{1-x} \frac{dy}{(1+x+y)^{2}} = \left[\frac{-1}{1+x+y} \right]_{y=0}^{y=1-x}$$

$$= \frac{-1}{1+x+1-x} + \frac{1}{1+x} \text{ (1 point). Par suite, } \iint_{D} \frac{1}{(1+x+y)^{2}} dx dy = \int_{0}^{1} \left(\frac{-1}{1+x+1-x} + \frac{1}{1+x} \right) dx = \left[\frac{-1}{2} x + \ln|1+x| \right]_{0}^{1} = -\frac{1}{2} + \ln 2 \text{ (1 point).}$$

2.
$$\iint_{D} \sqrt{1 + x^2 + y^2} dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2 \text{ avec } x \ge 0, -x \le y \le x, \ 1 \le x^2 + y^2 \le 4\}.$$
 On passe aux coordonnées polaires. On pose $x = r \cos \theta, \ y = r \sin \theta \Rightarrow r = \sqrt{x^2 + y^2}$ (0,5 point).

$$\iint_{D} \sqrt{1+x^{2}+y^{2}} dx dy = \iint_{D'} \sqrt{1+r^{2}} r dr d\theta = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\int_{1}^{2} \sqrt{1+r^{2}} r dr\right) d\theta \quad (\mathbf{0,5 \ point}). \text{ On a } \int_{1}^{2} \sqrt{1+r^{2}} r dr = \left[\frac{1}{3} \left(1+r^{2}\right)^{\frac{3}{2}}\right]_{r=1}^{r=2} = \frac{5\sqrt{5}-2\sqrt{2}}{3} \quad (\mathbf{1 \ point}). \text{ Par suite, } \iint_{D'} \sqrt{1+r^{2}} r dr d\theta = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{5\sqrt{5}-2\sqrt{2}}{3} d\theta = \frac{\pi}{6} \left(5\sqrt{5}-2\sqrt{2}\right)$$

$$(\mathbf{0,5 \ point}).$$

Exercice 2: (5 points 2+2+1)

Soit f la fonction définie sur $[2, +\infty[$ par $f(x) = \frac{1}{x(\ln x)^2}$

1.
$$\int_{2}^{+\infty} f(x) dx = \int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx. \text{ Soit } t > 2. \int_{2}^{t} \frac{1}{x(\ln x)^{2}} dx = \left[\frac{-1}{\ln x}\right]_{2}^{t} = \frac{-1}{\ln t} + \frac{1}{\ln 2} \text{ (1 point)}.$$
On a donc $\lim_{t \to +\infty} \int_{2}^{t} \frac{1}{x(\ln x)^{2}} dx = \lim_{t \to +\infty} \left(\frac{-1}{\ln t} + \frac{1}{\ln 2}\right) = \frac{1}{\ln 2} \text{ (0,5 point)}$ et donc l'intégrale
$$\int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx \text{ est convergente (0,5 point)}.$$

- 2. f est dérivable sur $[2, +\infty[$ et $f'(x) = \frac{-(\ln x)^2 2\ln x}{x^2(\ln x)^4} = \frac{-(\ln x + 2)}{x^2(\ln x)^3}$ (1 point). On voit donc que f est décroissante sur $[2, +\infty[$ et on a $\lim_{t\to +\infty} f(x) = 0$ (1 point).
- 3. On a donc grâce aux questions précédentes que f est une fonction continue, décroissante et positive

sur $[2, +\infty[$. Ainsi d'après le théorème de comparaison séries-intégrales, la série $\sum_{n\geq 2} \frac{1}{n \ln^2 n}$ est de même nature que l'intégrale $\int_2^{+\infty} \frac{1}{x(\ln x)^2} dx$ (0,5 point). Par conséquent, la série $\sum_{n\geq 2} \frac{1}{n \ln^2 n}$ est convergente (0,5 point).

Exercice 3:(5 points 3+2)

1. Soit l'intégrale impropre $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} \sin(\frac{1}{x}) dx$, $\alpha \in \mathbb{R}$. On a $\sin(\frac{1}{x}) \sim_{+\infty} \frac{1}{x}$. Ceci implique que

 $\frac{1}{x^{\alpha}}\sin(\frac{1}{x})\sim_{+\infty}\frac{1}{x^{\alpha+1}}$ (1 point). On distingue deux cas :

Cas 1: $\alpha + 1 > 1$. Ceci implique que $\alpha > 0$. Dans ce cas, l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ est convergente.

D'après la critère d'équivalence, l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} \sin(\frac{1}{x}) dx$ est convergente (1 point).

Cas 2 : $\alpha + 1 < 1$. Ceci implique que $\alpha < 0$. Dans ce cas, l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ est divergente.

D'après la critère d'équivalence, l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} \sin(\frac{1}{x}) dx$ est divergente (1 point).

2. Soit l'équation différentielle : $(x^2 + 1)y' = y + 1$. C'est une équation différentielle du premier ordre à variables séparables. On peut mêttre l'équation proposée sous la forme $\frac{y'(x)}{y(x) + 1} = \frac{1}{x^2 + 1}$ (0,5 point), En primitivant les deux membres, on obtient $\ln |y(x) + 1| = \arctan x + c_1$ (1 point). Ceci implique que $y(x) = \pm e^{\arctan x + c_1} - 1 = \pm e^{c_1} \cdot e^{\arctan x} - 1$. On pose $\pm e^{c_1} = c$, on obtient $y(x) = ce^{\arctan x} - 1$ (0,5 point).

Exercice 4: (5 points 2,5+2,5)

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie par $f_n(x) = \frac{x}{x+n}$.

- 1. a) La convergence simple sur [0, 1]: Pour $x \in [0, 1]$ fixé, on a $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{x}{x+n} = 0$ (0,5 point). D'où, la suite de fonctions $(f_n)_{n\geq 1}$ converge simplement sur [0, 1] vers la fonction nulle (0,5 point).
 - b) La convergence uniforme sur [0, 1]: Pour tout $x \in [0, 1]$, on a $|f_n(x) 0| = \left|\frac{x}{x+n} 0\right| \le \frac{1}{x+n} \le \frac{1}{n}$. On déduit que $0 \le \lim_{n \to +\infty} \sup_{x \in [0, 1]} \left|\frac{x}{x+n} 0\right| \le \lim_{n \to +\infty} \frac{1}{n} = 0$ (0,5 point). Par conséquent $\lim_{n \to +\infty} \sup_{x \in [0, 1]} |f_n(x) 0| = \lim_{n \to +\infty} \sup_{x \in [0, 1]} \left|\frac{x}{x+n} 0\right| = 0$ (0,5 point). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge uniformément sur [0, 1] (0,5 point).
- 2. La convergence simple sur $[1, +\infty[$: Pour tout $x \in [1, +\infty[$, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{x}{x+n} = 0$ (0,5 point). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge simplement sur $[1, +\infty[$ vers la fonction nulle (0,5 point).

La convergence uniforme sur $[1, +\infty[$: Soit $n_0 \in \mathbb{N}^*$. $n_0 \ge 1$ donc $\sup_{x \in [1, +\infty[} |f_n(x) - 0| \ge 1]$

 $\sup_{x\in[1,+\infty[}|f_{n_0}\left(x\right)-0|\geq|f_{n_0}\left(n_0\right)-0|=\frac{1}{2}\left(\mathbf{0,5\;point}\right).\text{ On a donc }\lim_{n\to+\infty}\sup_{x\in[1,+\infty[}|f_n\left(x\right)-0|\neq0\right)$ 0 (0,5 point). Par conséquent, la convergence n'est pas uniforme sur $[1,+\infty[$ (0,5 point).

Année universitaire 2016-2017 Matière : Maths 3 08/01/2017

Epreuve de Fin de Semestre

Exercice 1:(4 points 2+2)

Calculer les intégrales doubles suivantes :

1.
$$\iint_{D} \frac{1}{(1+x^2)(1+y^2)} dx dy \text{ où } D = \{(x,y) \in \mathbb{R}^2 \text{ avec } 0 \le x \le 1, \ y \ge 0, \ 0 \le y \le x\}.$$

2.
$$\iint_D \frac{y^3}{x^2 + y^2} dx dy$$
 où $D = \{(x, y) \in \mathbb{R}^2 \text{ avec } x \ge 0, y \le x, 1 \le x^2 + y^2 \le 4\}$.

Exercice 2: (5 points 3+2)

1. Etudier la convergence des intégrales impropres suivantes :

a)
$$\int_{0}^{+\infty} \frac{dx}{x^2 + 3}$$

b)
$$\int_{2}^{+\infty} \frac{x}{x^3 + \sqrt{x} - 1} dx.$$

2. Etudier la convergence et la convergence absolue de l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx$, $\alpha \in \mathbb{R}^{+}$.

Exercice 3: (5 points 2.5+2.5)

- 1. Résoudre l'équation différentielle : $y' \frac{y}{x} = x \ln(x+1)$
- 2. Résoudre l'équation différentielle : $y'' 3y' + 2y = 2x^2 5x + 3$.

Exercice 4: (6 points 2,5+2,5+1)

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie par $f_n(x) = 1 - \frac{1}{nx^2 + 1}$, sur $[0, +\infty[$.

- 1. Etudier la convergence uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ sur $[0, +\infty[$.
- 2. Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur $[a, +\infty[, a>0]$.
- 3. Calcular $\lim_{n\to+\infty} \int_{3}^{5} \left(1-\frac{1}{nx^2+1}\right) dx$.

Bon Courage

Année universitaire 2016-20017 Matière : Maths 3 08/01/2017

Corrigé de l' Epreuve de Fin de Semestre

Exercice 1:(4 points 2+2)

1.
$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy \text{ où } D = \left\{ (x,y) \in \mathbb{R}^{2} \text{ avec } 0 \leq x \leq 1, \ y \geq 0, \ 0 \leq y \leq x \right\}$$

$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{1} \left(\int_{0}^{x} \frac{1}{(1+x^{2})(1+y^{2})} dy \right) dx.$$
On a
$$\int_{0}^{x} \frac{1}{(1+x^{2})(1+y^{2})} dy = \frac{1}{1+x^{2}} \int_{0}^{x} \frac{1}{(1+y^{2})} dy = \frac{1}{1+x^{2}} \left[\arctan y \right]_{y=0}^{y=x} = \frac{1}{1+x^{2}} \arctan x$$
. Par suite,
$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{1} \frac{1}{1+x^{2}} \arctan x dx. \text{ On pose } u = \arctan x \ du = \frac{1}{1+x^{2}} dx. \text{ Ceci implique que } \iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{\frac{\pi}{4}} u du = \left[\frac{u^{2}}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{\pi^{2}}{3^{2}} \text{ (2 point)}.$$
2.
$$\iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy \text{ où } D = \left\{ (x,y) \in \mathbb{R}^{2} \text{ avec } x \geq 0, \ y \leq x, \ 1 \leq x^{2} + y^{2} \leq 4 \right\}.$$
On passe aux coordonnées polaires. On pose $x = r \cos \theta, y = r \sin \theta \Rightarrow r = \sqrt{x^{2}+y^{2}}.$

$$D = \left\{ (r,\theta) \in \mathbb{R}^{2} \text{ avec } \cos \theta \geq 0, \ \sin \theta \leq \cos \theta, \ 1 \leq r^{2} \leq 4 \right\} = \left\{ (r,\theta) \in \mathbb{R}^{2} \text{ avec } \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{4}, \ 1 \leq r \leq 2 \right\}$$

$$\iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy = \iint_{D'} \frac{r^{3} \sin^{3} \theta}{r^{2}} r dr d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} (\int_{1}^{2} r^{2} \sin^{3} \theta dr) d\theta. \text{ On a } \int_{1}^{2} r^{2} \sin^{3} \theta dr = \sin^{3} \theta \int_{1}^{2} r^{2} dr = \sin^{3} \theta \left[\frac{r^{3}}{3} \right]_{r=1}^{r=2} = \frac{7}{3} \sin^{3} \theta \text{ (1 point)}. \text{ Par suite, } \iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta \left(1 - \cos^{2} \theta \right) d\theta = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin^{2} \theta d\theta - \frac{$$

Exercice 2: (5 points 2+2+1)

1. a)
$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 3} = \int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx. \text{ Soit } t > 0. \int_{0}^{t} \frac{dx}{x^{2} + 3} dx = \frac{1}{\sqrt{3}} \int_{0}^{t} \frac{\frac{1}{\sqrt{3}} dx}{1 + \left(\frac{x}{\sqrt{3}}\right)^{2}} = \frac{1}{\sqrt{3}} \left[\arctan\left(\frac{x}{\sqrt{3}}\right)\right]_{0}^{t} = \frac{1}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right). \text{ On a donc } \lim_{t \to +\infty} \int_{0}^{t} \frac{dx}{x^{2} + 3} dx = \lim_{t \to +\infty} \frac{1}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right) = \frac{\pi}{2\sqrt{3}} \text{ et donc l'intégrale } \int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx \text{ est convergente } (\mathbf{1,5 \ points}).$$
b)
$$\int_{2}^{+\infty} \frac{xdx}{x^{3} + \sqrt{x} - 1}. \text{ On } \forall x \geq 2, \text{ la fonction } \frac{x}{x^{3} + \sqrt{x} - 1} \geq 0 \text{ et } \frac{x}{x^{3} + \sqrt{x} - 1} = \frac{1}{x^{2} + \frac{\sqrt{x}}{x} - \frac{1}{x}} \sim_{+\infty} \frac{1}{x^{2}}. \text{ Comme l'intégrale } \int_{2}^{+\infty} \frac{1}{x^{2}} dx \text{ converge, l'intégrale } \int_{2}^{+\infty} \frac{xdx}{x^{3} + \sqrt{x} - 1} \text{ converge } (\mathbf{1,5 \ points})$$

 $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx, \ \alpha \in \mathbb{R}^{+} \ . \ \text{On pour tout} \ x \geq 1, \ \left| \frac{\sin 5x}{x^{\alpha}} \right| = \frac{|\sin 5x|}{x^{\alpha}} \leq \frac{|\sin 5x|}{x^{\alpha}} \leq \frac{1}{x^{\alpha}}. \ \text{Si} \ \alpha > 1,$ alors comme l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \ \text{converge}, \ \text{l'intégrale} \int_{1}^{+\infty} \left| \frac{\sin 5x}{x^{\alpha}} \right| dx \ \text{converge}. \ \text{Ceci implique que}$ l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est absolument convergente et donc convergente} \ \left(1 \ \text{point} \right). \ \text{Si} \ \alpha \leq 1, \ \text{alors}$ $\left| \frac{\sin 5x}{x^{\alpha}} \right| = \frac{|\sin 5x|}{x^{\alpha}} \geq \frac{\sin^2 5x}{x^{\alpha}} = \frac{1 - \cos 10x}{2x^{\alpha}} = \frac{1}{2x^{\alpha}} - \frac{\cos 10x}{2x^{\alpha}}. \ \text{L'intégrale} \int_{1}^{+\infty} \frac{1}{2x^{\alpha}} dx \ \text{est divergente}. \ \text{L'intégrale} \right|_{1}^{+\infty} \frac{\cos 10x}{2x^{\alpha}} dx \ \text{converge}. \ \text{Ceci implique que l'intégrale} \int_{1}^{+\infty} \frac{\sin^2 5x}{x^{\alpha}} dx \ \text{est divergente}. \ \text{D'après le critère de comparaison, l'intégrale} \right|_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est divergente}. \ \text{Pour tout convergente}. \ \text{Pour la convergence on utilise le Théorème d'Abel Diriclet. On a } \left(\frac{1}{x^{\alpha}} \right)' = \frac{-\alpha}{x^{\alpha+1}} \ \text{et donc la fonction } x \mapsto \left| \frac{1}{x^{\alpha}} \right| \sin 5x dx = \left| \left[-\frac{1}{5} \cos 5x \right]_{c}^{d} \right| = \frac{1}{5} |\cos 5c - \cos 5d| \leq \frac{1}{5} \left(|\cos 5c| + |\cos 5d| \right) \leq \frac{2}{5}. \ \text{D'après le Théorème}$ d'Abel Diriclet, l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est convergente}. \ \left(1 \ \text{points} \right).$

Exercice 3:(5 points 2,5+2,5)

- 1. $y'' 3y' + 2y = 2x^2 5x + 3$. La solution $y(x) = y_h(x) + y_p(x)$. Soit y'' 3y' + 2y = 0 l'équation homogène. L'equation caractéristique $k^2 3k + 2 = 0$ admet deux solutions réelles $k_1 = 1$, $k_2 = 2$ donc $y_h(x) = c_1 e^x + c_2 e^{2x}$. Comme le second membre est un polynôme de dégrés 2, $y_p(x) = ax^2 + bx + c$. $y_p'(x) = 2ax + b$ et $y_p'(x) = 2a$. On remplace dans l'équation différentielle donnée, on trouve $2ax^2 + (-6a + 2b)x + 2a 3b + 2c = 2x^2 5x + 3$. Par identification, on $\begin{cases} 2a = 2 \\ -6a + 2b = -5 \end{cases}$. D'où, a = 1, $b = \frac{1}{2}$, $c = \frac{5}{4}$ et $y_p(x) = x^2 + \frac{x}{2} + \frac{5}{4}$. La solution $y(x) = y_h(x) + y_p(x) = c_1 e^x + c_2 e^{2x} + x^2 + \frac{x}{2} + \frac{5}{4}$. (2,5 points)
- 2. Soit l'équation différentielle : $y' \frac{y}{x} = x \ln(x+1)$. C'est une équation différentielle linéaire du premier ordre avec $p(x) = -\frac{1}{x}$ et $Q(x) = x \ln(x+1)$. La solution y(x) = u(x)v(x). $v(x) = e^{-\int p(x)dx} = e^{\int \frac{1}{x}dx} = x$. $u(x) = \int \frac{Q(x)}{v(x)}dx + c = \int \frac{x \ln(x+1)}{x} + c = \int \ln(x+1)dx + c$. On effectue une intégration par partie. On pose $f(x) = \ln(x+1)$ et g'(x) = 1. Ceci implique que $f'(x) = \frac{1}{1+x}$ et g(x) = x. Donc $\int \ln(x+1)dx = x \ln(x+1) \int \frac{x}{x+1}dx$. Comme $\frac{x}{x+1} = 1 \frac{1}{1+x}$, alors $\int \ln(x+1)dx = x \ln(x+1) \int dx + \int \frac{1}{1+x}dx = (x+1)\ln(x+1) x$. Donc $u(x) = (x+1)\ln(x+1) x + c$. D'où $u(x) = u(x)v(x) = x(x+1)\ln(x+1) x^2 + cx$. (2,5)

points)

Exercice 4: (6 points 2,5+2,5+1)

$$f_n(x) = 1 - \frac{1}{nx^2 + 1}$$
, sur $[0, +\infty[$

1. a) La convergence simple sur $[0, +\infty[$: Pour $x \in [0, 1]$ fixé, on a $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \left(1 - \frac{1}{nx^2 + 1}\right) = \begin{cases} 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases}$ 0 (1 point). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge

simplement sur $[0, +\infty[$ vers la fonction $f(x) = \begin{cases} 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases}$ (0,5 point).

- b) La convergence uniforme sur $[0, +\infty[$: On ici une suite de fonctions continues sur $[0, +\infty[$ convergente simplement sur $[0, +\infty[$ vers une fonction discontinue en 0. On a donc pas de convergence uniforme sur $[0, +\infty[$ (1 point)
- 2. a) La convergence simple sur $[a, +\infty[$: Pour tout $x \in [a, +\infty[$, $\lim_{n \to +\infty} f_n(x) = 1$ (0,5 point). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge simplement sur $[a, +\infty[$ vers la fonction f(x) = 1 (0,5 point).
 - b) La convergence uniforme sur $[a, +\infty[:|f_n(x)-f(x)|] = \left|\frac{-1}{nx^2+1}\right| = \frac{1}{nx^2+1} = g_n(x)$. On a $g'_n(x) = \frac{-2nx}{(nx^2+1)^2} < 0$.

La fonction $g_n(x)$ est décroissante et donc $\sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \sup_{x \in [a, +\infty[} g_n(x) = g_n(a) = g_n(a)$

 $\frac{1}{na^2+1} \cdot \lim_{n \to +\infty} \sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \lim_{n \to +\infty} \frac{1}{na^2+1} = 0. \text{ D'où, la suite de fonctions}(f_n)_{n \ge 1}$ converge uniformément sur $[a, +\infty[$.**(1,5 point)**.

3. Comme on la convergence uniforme sur $[a, +\infty[$, a > 0. On prend a = 1 et on a donc $[3,5] \subset [1, +\infty[$. Ceci implique que $\lim_{n \to +\infty} \int_3^5 \left(1 - \frac{1}{nx^2 + 1}\right) dx = \int_3^5 \lim_{n \to +\infty} \left(1 - \frac{1}{nx^2 + 1}\right) dx = \int_3^5 dx = [x]_3^5 = 5 - 3 = 2$. (1 point).

Université Dr. Yahia Farès de Médéa Faculté de la Technologie Département de TCT Année universitaire 2017-2018 Matière : Maths 3 10/01/2018

Epreuve de Fin de Semestre

Exercice 1: (4 points 2+2)

Calculer les intégrales doubles suivantes :

- 1. $\iint\limits_{D}\cos\left(x+y\right)dxdy\text{ où }D\text{ est le triangle de sommets }A\left(0,0\right),\,B\left(\pi,0\right),\,C\left(\pi,\pi\right).$
- 2. $\iint_D \frac{dxdy}{\sqrt{x^2 + y^2}}$ où $D = \{(x, y) \in \mathbb{R}^2 \text{ avec } x^2 + y^2 \le 3\sqrt{x^2 + y^2} 3x, \ x + y \ge 0 \}$.

Exercice 2: (6 points 1+1+2+2)

- 1. Ennoncer le critère de comparaison d'une série numérique avec une intégrale impropre.
- 2. Etudier la nature de la série numérique $\sum_{n\geq 2} \frac{1}{n\ln^{\beta} n}, \, \beta \in \mathbb{R}.$
- 3. Ennoncer le critère d'équivalence pour les intégrales impropres.
- 4. Etudier la convergence de l'intégrale $\int_{0}^{+\infty} \frac{\sin 5x \sin 3x}{x^{\frac{5}{3}}} dx.$

Exercice 3: (4 points 2+2)

- 1. Résoudre l'équation différentielle : $(x^2 + 1)y' + 2xy = 3x^2 + 1$
- 2. Résoudre l'équation différentielle : $y'' + y = 2(1 + \cos 2x)$.

Exercice 4: (6 points 1+1+1+1,5+1,5)

On considère la série de fonctions $\sum_{n\geq 1} ne^{-nx}$, $x\geq 0$.

- 1. Etudier la convergence simple sur :
 - 1) $[0, +\infty[.2)]0, +\infty[$
- 2. Donner la définition de la convergence normale d'une série de fonctions.
- 3. Etudier la convergence uniforme sur $[a, +\infty[, a > 0.$
- 4. Calcular $\sum_{n=1}^{n=+\infty} ne^{-nx}$.

Bon Courage

Année universitaire 2016-20017 Matière : Maths 3 08/01/2017

Corrigé de l'Epreuve de Fin de Semestre

Exercice 1: (4 points 2+2)

1.
$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy \text{ où } D = \left\{ (x,y) \in \mathbb{R}^{2} \text{ avec } 0 \leq x \leq 1, \ y \geq 0, \ 0 \leq y \leq x \right\}$$

$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{1} \left(\int_{0}^{x} \frac{1}{(1+x^{2})(1+y^{2})} dy \right) dx.$$
On a
$$\int_{0}^{x} \frac{1}{(1+x^{2})(1+y^{2})} dy = \frac{1}{1+x^{2}} \int_{0}^{x} \frac{1}{(1+y^{2})} dy = \frac{1}{1+x^{2}} \left[\arctan y \right]_{y=0}^{y=x} = \frac{1}{1+x^{2}} \arctan x$$
. Par suite,
$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{1} \frac{1}{1+x^{2}} \arctan x dx. \text{ On pose } u = \arctan x \ du = \frac{1}{1+x^{2}} dx. \text{ Ceci implique que } \iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{\frac{\pi}{4}} u du = \left[\frac{u^{2}}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{\pi^{2}}{3^{2}} \text{ (2 point)}.$$
2.
$$\iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy \text{ où } D = \left\{ (x,y) \in \mathbb{R}^{2} \text{ avec } x \geq 0, \ y \leq x, \ 1 \leq x^{2} + y^{2} \leq 4 \right\}.$$
On passe aux coordonnées polaires. On pose $x = r \cos \theta, y = r \sin \theta \Rightarrow r = \sqrt{x^{2} + y^{2}}.$

$$D = \left\{ (r,\theta) \in \mathbb{R}^{2} \text{ avec } \cos \theta \geq 0, \ \sin \theta \leq \cos \theta, \ 1 \leq r^{2} \leq 4 \right\} = \left\{ (r,\theta) \in \mathbb{R}^{2} \text{ avec } \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{4}, \ 1 \leq r \leq 2 \right\}$$

$$\iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy = \iint_{D'} \frac{r^{3} \sin^{3} \theta}{r^{2}} r dr d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} (\int_{1}^{2} r^{2} \sin^{3} \theta dr) d\theta. \text{ On a } \int_{1}^{2} r^{2} \sin^{3} \theta dr = \sin^{3} \theta \int_{1}^{2} r^{2} dr = \sin^{3} \theta \left[\frac{r^{3}}{3} \right]_{r=1}^{r=2} = \frac{7}{3} \sin^{3} \theta \text{ (1 point)}. \text{ Par suite, } \iint_{D} \frac{y^{2}}{x^{2}+y^{2}} dx dy = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta d\theta = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}$$

Exercice 2: (5 points 2+2+1)

1. a)
$$\int_{0}^{+\infty} \frac{dx}{x^{2}+3} = \int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx. \text{ Soit } t > 0. \int_{0}^{t} \frac{dx}{x^{2}+3} dx = \frac{1}{\sqrt{3}} \int_{0}^{t} \frac{\frac{1}{\sqrt{3}} dx}{1+\left(\frac{x}{\sqrt{3}}\right)^{2}} = \frac{1}{\sqrt{3}} \left[\arctan\left(\frac{x}{\sqrt{3}}\right)\right]_{0}^{t} = \frac{1}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right). \text{ On a donc } \lim_{t \to +\infty} \int_{0}^{t} \frac{dx}{x^{2}+3} dx = \lim_{t \to +\infty} \frac{1}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right) = \frac{\pi}{2\sqrt{3}} \text{ et donc l'intégrale}$$

$$\operatorname{grale} \int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx \text{ est convergente } (\mathbf{1,5 \ points}).$$
b)
$$\int_{2}^{+\infty} \frac{xdx}{x^{3}+\sqrt{x}-1}. \text{ On } \forall x \geq 2, \text{ la fonction } \frac{x}{x^{3}+\sqrt{x}-1} \geq 0 \text{ et } \frac{x}{x^{3}+\sqrt{x}-1} = \frac{1}{x^{2}+\frac{\sqrt{x}}{x}-\frac{1}{x}} \sim_{+\infty}$$

$$\frac{1}{x^{2}}. \text{ Comme l'intégrale } \int_{2}^{+\infty} \frac{1}{x^{2}} dx \text{ converge, l'intégrale } \int_{2}^{+\infty} \frac{xdx}{x^{3}+\sqrt{x}-1} \text{ converge } (\mathbf{1,5 \ points})$$

 $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx, \ \alpha \in \mathbb{R}^{+} \ . \ \text{On pour tout} \ x \geq 1, \ \left| \frac{\sin 5x}{x^{\alpha}} \right| = \frac{|\sin 5x|}{x^{\alpha}} \leq \frac{|\sin 5x|}{x^{\alpha}} \leq \frac{1}{x^{\alpha}}. \ \text{Si} \ \alpha > 1,$ alors comme l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \ \text{converge}, \ \text{l'intégrale} \int_{1}^{+\infty} \left| \frac{\sin 5x}{x^{\alpha}} \right| dx \ \text{converge}. \ \text{Ceci implique que}$ l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est absolument convergente et donc convergente} \ \left(1 \ \text{point} \right). \ \text{Si} \ \alpha \leq 1, \ \text{alors}$ $\left| \frac{\sin 5x}{x^{\alpha}} \right| = \frac{|\sin 5x|}{x^{\alpha}} \geq \frac{\sin^2 5x}{x^{\alpha}} = \frac{1 - \cos 10x}{2x^{\alpha}} = \frac{1}{2x^{\alpha}} - \frac{\cos 10x}{2x^{\alpha}}. \ \text{L'intégrale} \int_{1}^{+\infty} \frac{1}{2x^{\alpha}} dx \ \text{est divergente}. \ \text{L'intégrale} \right|_{1}^{+\infty} \frac{\cos 10x}{2x^{\alpha}} dx \ \text{converge}. \ \text{Ceci implique que l'intégrale} \int_{1}^{+\infty} \frac{\sin^2 5x}{x^{\alpha}} dx \ \text{est divergente}. \ \text{D'après le critère de comparaison, l'intégrale} \right|_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est divergente}. \ \text{Pour tout convergente}. \ \text{Pour la convergence on utilise le Théorème d'Abel Diriclet. On a } \left(\frac{1}{x^{\alpha}} \right)' = \frac{-\alpha}{x^{\alpha+1}} \ \text{et donc la fonction } x \mapsto \left| \frac{1}{x^{\alpha}} \right| \sin 5x dx = \left| \left[-\frac{1}{5} \cos 5x \right]_{c}^{d} \right| = \frac{1}{5} |\cos 5c - \cos 5d| \leq \frac{1}{5} \left(|\cos 5c| + |\cos 5d| \right) \leq \frac{2}{5}. \ \text{D'après le Théorème}$ d'Abel Diriclet, l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est convergente}. \ \left(1 \ \text{points} \right).$

Exercice 3: (5 points 2,5+2,5)

- 1. $y'' 3y' + 2y = 2x^2 5x + 3$. La solution $y(x) = y_h(x) + y_p(x)$. Soit y'' 3y' + 2y = 0 l'équation homogène. L'equation caractéristique $k^2 3k + 2 = 0$ admet deux solutions réelles $k_1 = 1$, $k_2 = 2$ donc $y_h(x) = c_1 e^x + c_2 e^{2x}$. Comme le second membre est un polynôme de dégrés 2, $y_p(x) = ax^2 + bx + c$. $y_p'(x) = 2ax + b$ et $y_p'(x) = 2a$. On remplace dans l'équation différentielle donnée, on trouve $2ax^2 + (-6a + 2b)x + 2a 3b + 2c = 2x^2 5x + 3$. Par identification, on $\begin{cases} 2a = 2 \\ -6a + 2b = -5 \end{cases}$. D'où, a = 1, $b = \frac{1}{2}$, $c = \frac{5}{4}$ et $y_p(x) = x^2 + \frac{x}{2} + \frac{5}{4}$. La solution 2a 3b + 2c = 3 $y(x) = y_h(x) + y_p(x) = c_1 e^x + c_2 e^{2x} + x^2 + \frac{x}{2} + \frac{5}{4}$. (2,5 points)
- 2. Soit l'équation différentielle : $y' \frac{y}{x} = x \ln(x+1)$. C'est une équation différentielle linéaire du premier ordre avec $p(x) = -\frac{1}{x}$ et $Q(x) = x \ln(x+1)$. La solution y(x) = u(x)v(x). $v(x) = e^{-\int p(x)dx} = e^{\int \frac{1}{x}dx} = x$. $u(x) = \int \frac{Q(x)}{v(x)}dx + c = \int \frac{x \ln(x+1)}{x} + c = \int \ln(x+1)dx + c$. On effectue une intégration par partie. On pose $f(x) = \ln(x+1)$ et g'(x) = 1. Ceci implique que $f'(x) = \frac{1}{1+x}$ et g(x) = x. Donc $\int \ln(x+1)dx = x \ln(x+1) \int \frac{x}{x+1}dx$. Comme $\frac{x}{x+1} = 1 \frac{1}{1+x}$, alors $\int \ln(x+1)dx = x \ln(x+1) \int dx + \int \frac{1}{1+x}dx = (x+1)\ln(x+1) x$. Donc $u(x) = (x+1)\ln(x+1) x + c$. D'où $u(x) = u(x)v(x) = x(x+1)\ln(x+1) x^2 + cx$. (2,5)

points)

Exercice 4: (6 points 2,5+2,5+1)

$$f_n(x) = 1 - \frac{1}{nx^2 + 1}$$
, sur $[0, +\infty[$

1. a) La convergence simple sur $[0, +\infty[$: Pour $x \in [0, 1]$ fixé, on a $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \left(1 - \frac{1}{nx^2 + 1}\right) = \begin{cases} 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases}$ 0 (1 point). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge

simplement sur $[0, +\infty[$ vers la fonction $f(x) = \begin{cases} 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases}$ (0,5 point).

- b) La convergence uniforme sur $[0, +\infty[$: On a ici une suite de fonctions continues sur $[0, +\infty[$ convergente simplement sur $[0, +\infty[$ vers une fonction discontinue en 0. On a donc pas de convergence uniforme sur $[0, +\infty[$. (1 point)
- 2. a) La convergence simple sur $[a, +\infty[$: Pour tout $x \in [a, +\infty[$, $\lim_{n \to +\infty} f_n(x) = 1$ (0,5 **point**). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge simplement sur $[a, +\infty[$ vers la fonction f(x) = 1 (0,5 **point**).
 - b) La convergence uniforme sur $[a, +\infty[:|f_n(x)-f(x)|] = \left|\frac{-1}{nx^2+1}\right| = \frac{1}{nx^2+1} = g_n(x)$. On a $g'_n(x) = \frac{-2nx}{(nx^2+1)^2} < 0$.

La fonction $g_n(x)$ est décroissante et donc $\sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \sup_{x \in [a, +\infty[} g_n(x) = g_n(a) = g_n(a)$

 $\frac{1}{na^2+1} \cdot \lim_{n \to +\infty} \sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \lim_{n \to +\infty} \frac{1}{na^2+1} = 0. \text{ D'où, la suite de fonctions}(f_n)_{n \ge 1}$ converge uniformément sur $[a, +\infty[$.(1,5 point).

3. Comme on la convergence uniforme sur $[a, +\infty[$, a>0. On prend a=1 et on a donc $[3,5]\subset [1, +\infty[$. Ceci implique que $\lim_{n\to +\infty}\int\limits_3^5\left(1-\frac{1}{nx^2+1}\right)dx=\int\limits_3^5\lim_{n\to +\infty}\left(1-\frac{1}{nx^2+1}\right)dx=\int\limits_3^5dx=[x]_3^5=5-3=2$. (1 point).

Université de Dr Yahia Farès de Médéa.

Département de

T.C.T.

Module: Maths03 -2^{ème}Année ST.

Durée: 1h.

Rattrapage.N°1: Maths 03

Exercice 1. (4 points):. Pour les deux cas suivants, tracer D, puis calculer l'intégrale I:

1.
$$I = \iint_D 2x^2y dx dy$$
 où $D = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, \text{ et } y + x \le 1 \}$..

Exercice 2. (7 points)

1. Donner l'énoncé du théorème de comparaison, puis étudier la convergence de intégrale suivant

$$(a) \int_{1}^{+\infty} \frac{\sin x}{x^2} dx.$$

- 2. Donner l'énoncé de la condition néccéssaire et non suffisante de la convergence d'une série numérique.
- 3. Etudier la convergence des séries numériques suivantes

(a)
$$\sum_{n\geq 0} \frac{n^3}{n^2+1}$$
 (b) $\sum_{n\geq 1} \frac{2}{\sqrt{n}}$

Exercice 3. (4 points).

- 1. Montrer que la solution de l'équation différentielle homogène $y'+y\tan x=0$ est donnée par $y=\lambda\cos x,\,\lambda\in R$
- 2. Endéduire la solution générale de l'équation différentielle $y' + y \tan(x) = \cos(x) \sin(x)$

Exercice 4. (5 points): Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie par $f_n(x) = \frac{1}{(1+x^2)^n}$.

• Étudier la convergence simple et la convergence uniforme sur $I = [0, +\infty[$. Étudier la convergence simple et la convergence uniforme sur I = [a; +1]: a>0

SOLUTION DÉTAILÉE DE RATTRAPAGE F.S. N 1: MATHS 03

Exercice 1. (4 points: 2+2) :pour les deux cas suivants, tracer D, puis calculer $\iint_D f(x,y) dxdy$:

1.
$$\iint_{D} 2x^{2}y dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^{2} : x \geq 0, y \geq 0, \text{ et } y + x \leq 1 \}....(02 \text{ pts})$$

Solution.

1. Fixons x entre 0 et 1. Le nombre y varie de 0 à 1-x. Donc

$$\iint_{D_1} 2x^2 y dx dy = \int_{x=0}^{x=1} \left[\int_{0}^{1-x} 2x^2 y dy \right] dx = \int_{x=0}^{x=1} x^2 \left[\int_{0}^{1-x} 2y dy \right] dx = \int_{x=0}^{x=1} x^2 (1-x)^2 dx = \int_{x=0}^{x=1} x^2 (1-x)^2 dx$$
$$= \int_{x=0}^{x=1} \left(x^4 - 2x^3 + x^2 \right) dx = \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3} \right]_{0}^{1} = \frac{1}{30}.$$

Exercice 2. (6 points:2+2+2).

1. Donner l'énoncé du théorème de comparaison, puis étudier la convergence de l'intégrale $\int \frac{\sin x}{x^2} dx. \dots (02 \text{ pts})$

(a)
$$\sum_{n\geq 0} \frac{n^3}{n^2+1}$$
 (b) $\sum_{n\geq 1} \frac{2}{\sqrt{n}}$ (c) $\sum_{n\geq 1} \ln\left(1+\frac{1}{n^2}\right)$

Solution.

1. **Théorème de comparaison.** Soient f et g deux fonctions positives et continues sur $[a, +\infty[$. Supposons que f soit majorée par g au voisinage de $+\infty$: $i.e. \exists A \geq a$ tq $\forall x \geq A$: $f(x) \leq g(x)$

si
$$\int_{a}^{+\infty} g(x) dx$$
 converge alors $\int_{a}^{+\infty} f(x) dx$. Et si $\int_{a}^{+\infty} f(x) dx$ diverge alors $\int_{a}^{+\infty} g(x) dx$ diverge.

• On a pour tout $x \in [1, +\infty[: \left| \frac{\sin x}{x^2} \right| \le \frac{1}{x^2}]$. Or l'intégrale de Riemann $\int_{1}^{\infty} \frac{1}{x^2} dx$ est convergente alors d'après le théorème de comparaison l'intégrale $\int_{1}^{+\infty} \left| \frac{\sin x}{x^2} \right| dx$ est convergente \Longrightarrow

$$\int_{1}^{+\infty} \frac{\sin x}{x^2} dx \text{ est absolument convergente} \Longrightarrow \int_{1}^{+\infty} \frac{\sin x}{x^2} dx \text{ est convergente.}$$

- 2. **Théorème d'Abel.** Soit f une fonction dérivable sur $[a, +\infty[$, positive, décroissante, $\lim_{x\to +\infty} f(x) = 0$. Soit g une fonction continue sur $[a, +\infty[$, telle que $\left|\int\limits_a^b g(x)\,dx\right| \leq M$. Alors l'intégrale $\int\limits_a^{+\infty} f(x)\,g(x)\,dx$ converge.
- Avec $f(x) = \frac{1}{x}$ et $g(x) = \sin x$. On a sur $[1, +\infty[$ f est positive, dérivable et décroissante car $f'(x) = \frac{-1}{x^2} < 0$ et de plus $\lim_{x \to +\infty} f(x) = 0$. Ainsi pour tout $[a, b] \subset [1, +\infty[$,

$$\left| \int_{a}^{b} g(x) dx \right| = \left| \int_{a}^{b} \sin x dx \right| = \left| \left[-\cos x \right]_{a}^{b} \right| = \left| \cos b \right| + \left| \cos a \right| \le 2 = M.$$

3

D'après le théorème d'Abel, l'intégrale $\int_{1}^{+\infty} \frac{\sin x}{x} dx$ est convergente.

- 3. (a) On a $\lim_{n\to+\infty} \arctan n = \frac{\pi}{2} \neq 0$, la condition nécéssaire de convergence n'est pas vérifiée et donc la série $\sum_{n\geq 0} \arctan n$ est divergente.
- (b) On utilise la règle d'Alembert $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to+\infty} \frac{(n+1)^{n+1}}{(n+1)!} \frac{(n)!}{(n)^n} = \lim_{n\to+\infty} \left(\frac{n+1}{n}\right)^n = \lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e > 1$, et donc la série $\sum_{n\geq0} \arctan n$ est divergente.

Exercice 3. (5 points:2+3). Résoudre les équations différentielles suivantes :

- 1. Montrer que La solution de l'équation homogène $y'+y\tan x=0$ est donnée par $y_h=\lambda\cos x,\,\lambda\in R$
- Endéduire la solution générale de

1.
$$y'' - 4y' + 3y = (2x + 1) e^x$$
....(03 pts)

Solution.

1. La solution homogène de l'équation homogène $y' + y \tan x = 0$ est donnée par $y_h = \lambda \cos x$, $\lambda \in R$. On cherche une solution particulière par la méthode de variation de la constante et posant $y_p = \lambda(x) \cos x$. Introduisant cette fonction dans l'équation, on trouve

$$\lambda(x)'\cos x = \sin x \cos x \Longrightarrow \lambda(x)' = \sin x \Longrightarrow \lambda(x) = \int \sin x dx = -\cos x + c$$

Une solution particulière de l'équation différentielle est donc donnée par la fonction $y_p = -2\cos^2 x$. La solution générale est

$$y_g = y_h + y_p = \lambda \cos x + -2\cos^2 x$$

2. On commence par résoudre l'équation homogène y'' + 3y' - 4y = 0. Son équation caractéristique est $r^2 + 3r - 4 = 0$, dont les racines sont 1 et -4. Les solutions de l'équation homogène sont donc les fonctions

$$y_h = \lambda e^x + \mu e^{-4x}.$$

Pour la solution particulière de l'équation $y'' + 3y' - 4y = (x+2)e^x$, on remarque cette fois que 1 est racine simple de l'équation caractéristique $r^2 + 3r - 4 = 0$. On cherche donc une solution particulière sous la forme

$$y_p = (ax + b)xe^x.$$

On dérive pour trouver

$$y' = (ax^2 + (2a + b)x + b)e^x$$
 et $y'' = (ax^2 + (4a + b)x + (2a + 2b)e^x$.

Par identification, a et b sont solutions du système : $\begin{cases} -4a = 1 \\ 2a - 2b = 2 \end{cases} \implies \begin{cases} a = -\frac{1}{4} \\ b = -\frac{5}{4} \end{cases}$ La solution particulière est donnée par

$$y_p = (-\frac{1}{4}x^2 - \frac{5}{4}x)e^x.$$

Finalement, la solution générale est

$$y_g = y_h + y_p = \lambda e^x + \mu e^{-4x} + (-\frac{1}{4}x^2 - \frac{5}{4}x)e^x; \blacksquare, \mu \in \mathbb{R}.$$

Exercice 4. (5 points:2+3). Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie par $f_n(x)=\frac{1}{(1+x^2)^n}$.

• Étudier la convergence simple et la convergence uniforme sur $I = \mathbb{R}^+$ puis sur $I = [a, +\infty[$, avec a > 0.

Solution.

Étudions la convergence simple et la convergence uniforme sur I = [0;+1]:

• Convergence simple. Fixons $x \in \mathbb{R}$. On a $f(x) = \lim_{n \to +\infty} f_n(x) = \begin{cases} 0 & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$(01 pts)

La suite de fonctions (f_n) converge donc simplement vers la fonction f(x).

• Convergence uniforme. Puisque chaque fonction f_n est continue sur \mathbb{R} et la fonction f ne l'est pas en 0. La convergence ne peut pas être uniforme sur \mathbb{R}^+(01 pts)

$$2. I = [a, +\infty[\text{avec } a > 0]]$$

- Convergence simple. Fixons $x \in [a, +\infty[$. On a $f(x) = \lim_{n \to +\infty} f_n(x) = 0$(01 pts)
- Convergence uniforme. Sur les intervalles du type $[a, +\infty[$ avec a > 0, puisque pour tout $x \ge a$, on a

$$||f_n - f|| = \sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \sup_{x \in [a, +\infty[} |g(x)|.$$

Avec

$$g(x) = |f_n(x) - f(x)| = |f_n(x)| = \frac{1}{(1+x^2)^n}.$$

Fixons $n \in \mathbb{N}$. On a pour tout $x \in [a, +\infty[: g'(x) = \frac{-2nx}{(1+x^2)^{2n+1}} < 0$. Et la fonction g est strictement décroissante sur $[a, +\infty[$, et elle atteinte son sup en x = a. Donc $\lim_{n \to +\infty} ||f_n - f|| =$

$$\lim_{n \to +\infty} \left(\sup_{x \in [a, +\infty[} |g(x)| \right) = \lim_{n \to +\infty} \frac{1}{(1+a^2)^n} = 0.$$

On en déduit que la suite (f_n) converge uniformément vers la fonction nulle sur $[a, +\infty[$ avec a > 0.....(02 pts)