

Wide data

- Wide data $p \gg n$. Many variables, few data points.
 - Genomics
 - Text
- Tall data: $p \ll n$. Few variables, many data points. Most of applications
 - Economics, for ex. Currency exchange rates vs time
 - Industry, Car performance characteristics vs probability of malfunctioning
 - Surveys, customer satisfaction vs survey answers
- Tall and Wide. Supermarket scanners. Many purchases, many products.

Genomics-microarrays

Hastie et al:. DNA microarray data: expression matrix of 6830 genes (rows) and 64 samples (columns), for the human tumor data. Only a random sample of 100 rows are shown. The display is a heat map, ranging from bright green (negative, under expressed) to bright red (positive, over expressed). Missing values are gray. The rows and columns are displayed in a randomly chosen order.

Text – document classification

Document	has('ball')	has('EU')	has('political_arena')	wordlen	Lex. Div.	Topic
Article1	Yes	No	No	4.1	5.4	Sports
Article2	No	No	No	6.5	13.4	Sports
-	:	:		:	:	:
ArticleN	No	No	Yes	7.4	11.1	News

A problem with wide data

- Linear regression $\mu = w^T x, Y \sim N(\mu, \sigma^2)$
- ML solution $\widehat{w} = (X^T X)^{-1} X^T Y$
 - -X is $n \times p$, has rank n
 - $-X^TX$ is $p \times p$, has rank n
 - $\rightarrow X^T X$ is not invertible!
- Solutions:
 - Dimensionality reduction: PCA, PCR
 - Shrinkage: Lasso, Ridge, Elastic network
 - Forward variable selection
- Algorithms need sometimes be modified for wide data.

Effective amount of features for wide data

- Linear response generated with different p, n=100
- Ridge is applied with different λ

Effective Degrees of Freedom

ource: Hastie et al (2009)

Models with smaller effective number of features have better prediction

Classification: LDA

Standard LDA

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

$$\hat{\boldsymbol{\mu}}_c = \frac{1}{N_c} \sum_{i:y_i=c} \mathbf{x}_i, \quad \hat{\boldsymbol{\Sigma}}_c = \frac{1}{N_c} \sum_{i:y_i=c} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c) (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c)^T$$

$$\widehat{\Sigma} = \frac{1}{N} \sum_{c=1}^{k} N_c \, \widehat{\Sigma}_c$$

• $\rightarrow \Sigma^{-1}$ does not exist...

Classification: diagonal-covariance LDA

- Data is not enough to estimate dependences in covariance
- For wide data, we do diagonal-covariance LDA (naive Bayes):

$$\Sigma = diag(\sigma_1^2, \dots \sigma_p^2)$$

Discriminant function

$$\delta(x^{new}) = -\sum_{j=1}^{p} \frac{(x_j^{new} - \bar{x}_{kj})^2}{s_j^2} + 2\log \pi_k$$

- $s_j^2 = \frac{1}{n} \sum_i n_i var(x_j | Y = C_i)$
- $\bar{x}_{kj} = mean(x_j|Y = C_k), \bar{x}_j = mean(x_j)$
- Classify to the highest discriminant function value
- Drawback: all features are in the model

 difficult to use in interpretations.

Classification: NSC

Nearest Shrunken Centroids

Idea: Shrink classwise means towards overall mean

1. Compute
$$d_{kj} = \frac{\bar{x}_{kj} - \bar{x}_j}{m_k(s_j + s_0)}$$

2. Shrink
$$d'_{kj} = sign(d_{kj})(|d_{kj}| - \Delta)_+$$

3. Set
$$x'_{kj} = \bar{x}_j + m_k(s_j + s_0)d'_{kj}$$

Only features with nonzero d'_{kj} contribute to classification! \rightarrow insignificant features are shrunk!

- LSVT Voice Rehabilitation
 Data Set
 - Target: Quality of voice rehabilitation
 - 1=acceptable, 2=not acceptable
 - Features: Properties of the signal (voice)
 - n=126, p=309

- Package pamr
 - pamr.train()
 - pamr.cv

```
data0=read.csv2("voice.csv")
data=data0
data=as.data.frame(scale(data))
data$Quality=as.factor(data0$Quality)
library(pamr)
rownames(data)=1:nrow(data)
x=t(data[,-311])
y=data[[311]]
mydata=list(x=x,y=as.factor(y),geneid=as.character(1:nrow(x)), genenames=rownames(x))
model=pamr.train(mydata,threshold=seq(0,4, 0.1))
pamr.plotcen(model, mydata, threshold=1)
pamr.plotcen(model, mydata, threshold=2.5)
a=pamr.listgenes(model,mydata,threshold=2.5)
cat( paste( colnames(data)[as.numeric(a[,1])], collapse='\n' ) )
cvmodel=pamr.cv(model,mydata)
print(cvmodel)
pamr.plotcv(cvmodel)
```

• Centroid plot, $\Delta = 1$ and $\Delta = 2.5$

> pamr.listgenes(model,mydata,threshold=2.5)

				-
	id	1-score	2-score	
[1,]	86	0.0897	-0.0449	MFCC_2nd.coef
[2,]	80	0.0702	-0.0351	IMFNSR_SEO
[3,]	85	0.0652	-0.0326	MFCC_1st.coef
[4,]	82	0.0517	-0.0259	<pre>IMFNSR_entropy</pre>
[5,]	153	-0.0507	0.0253	entropy_log_4_coef
[6,]	84	-0.05	0.025	MFCC_0th.coef
[7.]	60	0.0359	-0.0179	DFA
[8,]	151	-0.0316	0.0158	entropy_log_2_coef
		-0.0299		entropy_log_5_coef
		-0.0193		entropy_log_6_coef
		-0.018		entropy_log_3_coef
•				mara e i

Number of genes

• Confusion matrix optimal Δ

	Pred 1	Pred 2
True 1	33	9
True 2	5	79

RDA

Regularized discriminant analysis

- Another way of solving singularity of Σ
 - $-\gamma$ is some constant

$$\widehat{\Sigma}(\gamma) = \gamma \widehat{\Sigma} + (1 - \gamma) diag(\widehat{\Sigma})$$

- $\gamma = 0 \rightarrow \text{diagonal-covariance LDA}$
- γ is chosen by CV
- R: rda() in klaR

Regularized logistic regression

Usual logistic regression

$$p(Y = C_i|x) = \frac{e^{w_{i0} + w_i^T x}}{\sum_{j=1}^K e^{w_{j0} + w_j^T x}} = softmax(w_{i0} + w_i^T x)$$

Lp -Regularization:

$$\max_{w} \sum_{i=1}^{n} \log p(Y_i|x_i) - \frac{\lambda}{2} \sum_{k=1}^{K} ||w_i||^p$$

- Parameter redunancy is solved
- L1 regularization: some w are shrunk to 0
- Numerical optimization is used to solve
- R: LiblineaR() in package LiblineaR

L1 logistic regression

Voice rehabilitation

```
W=model2$W
plot(t(W), type="h", ylab="Coefficients")
```


	Pred 1	Pred 2
True 1	41	1
True 2	0	84

Overfitted?

SVM

- Support Vector Machine do not suffer from $p\gg n$ problem
 - Largest margin can be found even if the data is perfectly separable

Computational shortcuts p>>n

- SVD decomposition $X = UDV^T = RV^T$
- If model is linear in parameters and has quadratic penalties:
 - Transform data observations from X into R
 - Minimize loss (minus log likelihood) with R instead of X and get $oldsymbol{ heta}$
 - Original parameters $\boldsymbol{w} = V\boldsymbol{\theta}$
- Can be applied to many methods

Example: ridge regression

Elastic net

L1 regularization

$$\min_{w} -\log p(D|\mathbf{w}) + \lambda ||\mathbf{w}||_{1}$$
$$||\mathbf{w}||_{1} = \sum_{i} |w_{i}|$$

- For p>n, LASSO can extract at most n nonzero components
 - Severe regularization if $p \gg n$
- L1 regularization

 selects some feature among the correlated ones
- L2 regularization

 w's of the correlated variables are shrunk towards each other are nonzero

Elastic net

Combine L1 and L2 to diminish effect of L1 regularization.

Elastic net regularization:

$$\min_{w} -\log p(D|\mathbf{w}) + \lambda(\alpha ||\mathbf{w}||_{1} + (1-\alpha) ||\mathbf{w}||_{2})$$

- α is set ad hoc or chosen by CV
- Elastic net may select more than n features
- R: glmnet() in **glmnet** package
 - Specify "family" for classification or regression

Elastic net

Voice rehabilitation

Comparative analysis

Gene expression data

Methods	CV errors (SE) Out of 144	Test errors Out of 54	Number of Genes Used
1. Nearest shrunken centroids	35 (5.0)	17	$6,\!520$
2. L_2 -penalized discriminant	25(4.1)	12	16,063
analysis			
3. Support vector classifier	26(4.2)	14	16,063
4. Lasso regression (one vs all)	30.7(1.8)	12.5	1,429
5. k -nearest neighbors	41 (4.6)	26	16,063
6. L_2 -penalized multinomial	26(4.2)	15	16,063
7. L_1 -penalized multinomial	17(2.8)	13	269
8. Elastic-net penalized	22(3.7)	11.8	384
multinomial			

When features are not available

- Sometimes it is difficult to define or use the feature set
 - Molecule
 - Text document
 - possible, but can be very high dimensional
- ..but a proximity measure K(x, x') is easier to define
 - Ex: How much one document is different from another one

Source:http://images.wisegeek.com/illustration-of-a-molecule.jpg

When features are not available

- Many methods can use K instead of X
 - Note: p is not involved in calculations!!
- SVM: kernel trick $\rightarrow K$ can be used directly
- K-Nearest neighbors
 - Transform similarity into distance $d_{ij}^2 = K(x_i, x_i) + K(x_i, x_j) 2K(x_i, x_j)$
 - Use distances to find neighbors
- Can also be done for
 - Logistic and multinomial regression with L2 penalty
 - LDA
 - PCA: kernel PCA

Kernel PCA

- Usual PCA
 - Center X

- Find
$$Su_i = \lambda_i u_i$$
, $S = \frac{1}{n} X^T X$, $S = [p \times p]$

- u_i has dimension p
- Project data on PCs: Z = X U
- Problems: X is unknown, and it can be p can be very large

Kernel PCA

- Kernel PCA: Equivalent formulation
- 1. Solve $K'a_i = \lambda_i'a_i$, i = 1, ...M
 - $K = ||K(\mathbf{x}_i, \mathbf{x}_j), i, j = 1, \dots n||$
 - Centering $K' = K \mathbf{1}_n K K \mathbf{1}_n + \mathbf{1}_n K \mathbf{1}_n$
 - $-\lambda_i = \lambda_i'/n$
- 2. Scores for PC_i : $z_i(\mathbf{x}) = \sum_{i=1}^n a_{in}K(\mathbf{x}, \mathbf{x}_n)$
- There are at most n eigenvectors even if p>>n

Kernel PCA in R

Use kpca() in kernlab

```
library(kernlab)
K <- as.kernelMatrix(crossprod(t(x)))
res=kpca(K)
barplot(res@eig)
plot(res@rotated[,1], res@rotated[,2], xlab="PC1",
ylab="PC2")</pre>
```


- Which features are important?
 - Ex: Which protein values differ between normal and cancer samples
- P-values in our predictive models can not be computed (too few observations)

Traditional hypothesis testing is used

Individual gene: t-test

 H_{0j} : treatment has no effect on gene j H_{1i} : treatment has an effect on gene j

$$t = \frac{\bar{x}_{2j} - \bar{x}_{1j}}{se_j}$$

- Alternatively, nonparametric tests (permutation tests) can be used to compare two populations
- Testing hypothesis for all genes? → multiple hypothesis testing
- Control family-wise error rate
 - Bonferroni correction: $\alpha' = \alpha/M$
 - − Ex: α =0.05, M=12000 $\rightarrow \alpha' \approx 10^{-6}$

In practice, no genes with such small p-values

- Hypothesis testing Voice Rehabilitation
 - Feature "MFCC_2nd.coef"

```
res=t.test(MFCC_2nd.coef~Quality,data=data, alternative="two.sided") res$p.value
```

```
res=oneway_test(MFCC_2nd.coef~as.factor(Qu ality), data=data,paired=FALSE) pvalue(res)
```

```
> res$p.value
[1] 1.21246e-11
```

```
> pvalue(res)
[1] 3.166942e-09
```

- Alternative: false discovery rate (FDR)
 - Can not be exactly computed in practice

	Called nonsignif	Called signif	Total
H0 true	U	V	M0
H0 false	Т	S	M1
Total	M-R	R	M

$$FDR = E\left(\frac{V}{R}\right)$$

- Benjamini-Hochberg method (BH method)
 - Shown that $FDR(BH) < \alpha$ for independent hypotheses
 - $-\rightarrow$ we can control FDR!

Algorithm 18.2 Benjamini-Hochberg (BH) Method.

- 1. Fix the false discovery rate α and let $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(M)}$ denote the ordered p-values
- 2. Define

$$L = \max \left\{ j : p_{(j)} < \alpha \cdot \frac{j}{M} \right\}.$$

3. Reject all hypotheses H_{0j} for which $p_j \leq p_{(L)}$, the BH rejection threshold.

Voice rehabilitation


```
> cat( paste( Feats, collapse='\n' ) )
MFCC_2nd.coef
IMF..NSR_SEO
MFCC_1st.coef
IMF..NSR_entropy
MFCC Oth.coef
Log. energy
HNR..HNR_dB_Praat_std
MFCC_3rd.coef
VFER..SNR_SEO
IMF..SNR_TKEO
IMF..SNR_entropy
Jitter..pitch_PQ5_classical_Schoentgen
Jitter..pitch_percent
Jitter..FO_abs_dif
Jitter..FO_PQ5_classical_Schoentgen
Jitter..FO_dif_percent
VFER..SNR_TKE01
Shimmer..Ampl_TKEO_prc25
Shimmer..Ampl_AM
VFER..NSR_TKE01
Shimmer...Ampl_absOth_perturb
VFER..SNR_TKEO
NHR..NHR_Praat_std
oq..std_cycle_closed
VFER..NSR_SEO
Jitter..FO_FM
Jitter..pitch_FM
Shimmer...Ampl_TKEO_prc75
Jitter..pitch_abs
oq..std_cycle_open
Jitter..FO_TKEO_prc5
Jitter..pitch_PQ5_generalised_Schoentgen
Jitter..FO_TKEO_mean
Shimmer...Ampl_TKEO_prc95
X1st.delta
Jitter..FO_PQ5_generalised_Schoentgen
Shimmer..Ampl_PQ3_generalised_Schoentgen
Shimmer..Ampl_PQ5_generalised_Schoentgen
Shimmer..Ampl_PQ11_generalised_Schoentgen
Jitter..pitch_TKEO_prc25
```