

Segmentação de imagens

Segmentação de imagens

 Segmentar uma imagem é criar uma partição finita do domínio da imagem

Segmentação de imagens

• Partição: $\Omega = \{E_1, E_2, E_3, E_4, E_5, E_6, E_7\}$

Segmentação de imagens

• Partição: $\bigcup E_i = E$

Segmentação de imagens

• Partição: $E_i \cap E_j = \emptyset$ $i \neq j$

Segmentação de imagens

• Condição: $\forall i, E_i$ é conexo

Como criar as partições?

- Usando interfaces com canetas digitalizadoras ou mouse para demarcar as partições
- Usando operadores de imagens adequados
- Usando programas de segmentação assistida/auxiliada de imagens que mesclam as interfaces de demarcação com operadores de imagens

Segmentação manual - mouse

Segmentação manual - mouse

Segmentação manual

- Vantagens
 - Qualquer pessoa com conhecimento do que precisa ser segmentado por fazer
 - Muito IHC, pouco PDI
- Desvantagens
 - Trabalhoso e cansativo
 - Sujeito a erros
 - Pouco replicável

Segmentação por PDI

- Normalmente categorizada em:
 - Segmentação por descontinuidades
 - Detecção de bordas
 - Detecção de atributos locais
 - ...
 - Segmentação por similaridades
 - Crescimento de regiões
 - Divisão e fusão
 - ...

Segmentação por descontinuidades

- Operadores que usam máscaras para realçar algum atributo local
 - Detecção de bordas
 - Detecção de pontos isolados
 - Detecção de linhas

-...

Segmentação por similaridades

- Threshold
- · Crescimento de regiões
- · Divisão e fusão
- •

Region Growing

Crescimento de regiões

- Método de segmentação baseado em medidas de similaridade entre pixels prédefinidas
- As regiões vão surgir a partir da aglomeração de pixels que tenham características semelhantes
- Os centros de aglomeração são chamados "sementes"
- Respeita-se a conectividade dos objetos

Algoritmo: crescimento de regiões

- Atribui um rótulo para cada segmento da imagem
- Input: Imagem f, conjunto de sementes, K (conectividade), função de similaridade
- · Output: Imagem g

Crescimento de regiões

- Inicia-se o procedimento com um conjunto de componentes conexas ("sementes")
- Escolhe-se uma semente do conjunto e agrupa-se, por busca em largura, pixels que tenham propriedades semelhantes aos pixels da semente
- Quando n\u00e3o houver mais pontos a serem agrupados, escolhe-se uma nova semente do conjunto inicial.

Crescimento de regiões

Crescimento de regiões

- · Critérios possíveis de similaridade:
 - intensidade dos pixels
 - cor
 - textura
 - suavidade
- Podem ser expressos através de critérios lógicos, analíticos e estatísticos

Brice e Fenema - Algoritmo

- Pontos vizinhos são conectados agrupados se eles têm o mesmo valor
- Heurística da fagocitose: regiões maiores absorvem as menores se um certo critério C₂ que envolve o comprimento de fronteiras é satisfeito
- Regiões adjacentes são agrupadas se um outro critério C₃ é satisfeito

Brice e Fenema - Algoritmo

· Heurística da fagocitose:

$$\frac{|W|}{\min\{|P_1|,|P_2|\}} > \varepsilon_p \qquad \varepsilon_p = \frac{1}{2}$$

- | W | é o comprimento das bordas fracas entre as duas regiões examinadas
- | P₁ | , | P₂ | é o comprimento das bordas das regiões R₁ e R₂

Brice e Fenema - Algoritmo

 Regiões adjacentes cuja fronteira é fraca são ligadas segundo:

$$\frac{|W|}{|I|} > \varepsilon_w$$

$$\varepsilon_w = \frac{3}{4}$$

- | W | é o comprimento das bordas fracas entre as duas regiões examinadas
- | / | é o comprimento da bordas entre as regiões R₁ e R₂

Crescimento de regiões

- Há inumeros problemas com essa técnica:
- Técnicas de aglomeração tendem a depender fortemente do conjunto inicial de sementes
- Isso acontece, principalmente, pois as regiões que são processadas primeiro tendem a ganhar em situações de conflito

Crescimento de regiões

- O critério de crescimento, normalmente não depende da história anterior do crescimento
- Problemas sérios podem acontecer caso a semente seja escolhida próximo, ou na borda de uma região

Crescimento de regiões

Crescimento de regiões

Split and Merge

Divisão e fusão

- Método heterárquico para segmentar imagens
- Aplica-se um processo top-down de divisão da imagem seguindo um critério pré-determinado
- Depois aplica-se a fusão bottom-up para agrupar os pixels segundo um outro critério

Divisão

Divisão

Divisão (quadtree)

Fusão

Fusão

Segmentação por similaridades

- Cada parte da partição deve satisfazer a um critério que vale para todos os pontos daquela parte
- Esse critério é normalmente chamado de "predicado de uniformidade"
- O predicado de uniformidade é uma frase lógica que é válida se todos os pontos daquela parte são "parecidos"

Segmentação de imagens

 Exemplo: O predicado de uniformidade deve ser válido se todos os pontos de uma parte satisfazem:

$$p \in E_i \subset E$$
 $t \in K$

Threshold

Threshold: 82

Threshold (bordas)

Segmentação por similaridades

· Operador threshold com limiar 82

Segmentação de regiões

 Exemplo: O predicado de uniformidade deve ser válido se todos os pontos de uma parte satisfazem:

$$|f(p)-f(q)| < t \quad t \in K$$

$$p, q \in N_G(p), p, q \in E_i \subset E$$

Segmentação de regiões

• Condição: $P(E_i \cup E_j) = F$ para partes adjacentes

Segmentação de imagens

- Da Lógica Matemática, o predicado de uniformidade é um predicado de segunda ordem
- Eles são chamados assim pois são predicados sobre conjuntos e têm um predicado de primeira ordem (sentença lógica sobre um elemento de um conjunto) como argumento

Segmentação via DPI

- Vantagens
 - É reprodutível
 - É feito exclusivamente pela máquina (não está sujeito a problemas de cansaço)
 - É rápido e, normalmente, preciso
- Desvantagens
 - Não é fácil chegar a uma solução, em geral, requer um profissional experiente

Classificação de regiões

- No contexto da teoria de Aprendizado Estatístico e Computacional, dois tipos de técnicas são conhecidas:
 - Aprendizado supervisionado: quando sabe-se de antemão a classificação de um certo objeto
 - Aprendizado não-supervisionado: quando a classificação é desconhecida

Segmentação assistida

Escolhem-se pontos ao longo do objeto

Segmentação assistida

Por meio de um algoritmo de seguir um caminho de custo mínimo, a borda vai sendo calculada de um ponto ao outro do caminho

Segmentação assistida

Escolhem-se pontos ao longo do objeto e, por meio de um algoritmo de seguir um caminho de custo mínimo

Segmentação assistida

Por meio de um algoritmo de seguir um caminho de custo mínimo, a borda vai sendo calculada de um ponto ao outro do caminho

Segmentação assistida

Por meio de um algoritmo de seguir um caminho de custo mínimo, a borda vai sendo calculada de um ponto ao outro do caminho

Segmentação assistida

Morfologia Matemática

Zona de Influência Geodésica

 Dada uma família de componentes Y_i em X, a Zona de influência geodésica de uma componente Y_i em X é o conjunto:

 $skiz(Y_i/X) = \{x \in X, \forall j, j \neq i, d_X(x, Y_i) \leq d(x, Y_j)\}$

Zona de Influência Geodésica

· Diagrama de Voronoi generalizado

Zona de Influência Geodésica

· Diagrama de Voronoi generalizado

Watershed

 R_h ⊂ E é um mínimo regional de altura h se R_h é conexo e:

$$f(p) = h, \forall p \in R_h, f \in K^E$$

- RM_h(f) é conjunto dos mínimos regionais de f de altura h.
- Seção inferior de / no nível h

$$f^h = \{x \in E : f(x) \le h\}$$

Watershed

• Conjunto $X_{h_{max}}$ dado pela recorrência:

$$X_{h_{min}} = f^{h_{min}}(f)$$

$$X_{h+1} = RM_{h+1}(f) \cup skiz(X_h/f^{h+1})$$

é o conjunto das bacias de captação de f

· O conjunto complementar é o watershed

Watershed

 Calcula as linhas de partição de águas de uma imagem vista como um gráfico de uma função

Watershed

 Calcula as linhas de partição de águas de uma imagem vista como um gráfico de uma função

Watershed

 Calcula as linhas de partição de águas de uma imagem vista como um gráfico de uma função

Watershed com marcadores

 Calcula as linhas de partição de águas a partir de marcadores

Watershed com marcadores

 Calcula as linhas de partição de águas a partir de marcadores

Watershed

- · Algoritmo do Vincent
- · Demo do SegmentIt

Qualidade de uma segmentação

- Regiões uniformes e homogêneas com respeito ao critério de segmentação
- Interior da região deve ser simples (côncavo) e não deve ter buracos pequenos
- Regiões adjacentes devem ser significativamente diferentes
- Fronteiras devem ser finas, fechadas e precisas