SURFACTANTES

Prof. Harley P. Martins Filho

• Surfactantes

Sabões, detergentes, álcoois de cadeia longa e outras moléculas relacionadas são **anfifílicas**.

Aumento da área de superfície de uma solução de surfactante:

- Parte das moléculas que irá para a superfície é surfactante, que tem energia equivalente no interior ou na superfície da solução
- As próprias moléculas de solvente têm energia mais elevada no interior da solução do que no solvente puro, devido ao contato com as cadeias carbônicas apolares
- \rightarrow menor W para aumento de área de superfície do que no solvente puro. $\gamma = W/A \rightarrow$ menor γ que o do solvente puro.

Cobertura da superfície por surfactante → diminuição da evaporação.

Estrutura da película de uma bolha de sabão:

→ A bolha perdura por causa da evaporação diminuída da água

• Tipos de surfactantes:

➤ Aniônicos:

Dodecil sulfato de sódio: (detergente)

Estearato de sódio:

(sabão) $CH_3(CH_2)_i CH(CH_2)_k CH_3$

Alquil benzeno sulfonatos: (detergentes biodegradáveis)

SO₃ Na+

➤ Catiônicos:

Brometo de cetiltrimetilamônio: (agente antisséptico, também

(agente antisséptico, também usado em condicionadores capilares)

Zwitteriônicos (anfotéricos):

Cocamidopropila betaína:

(surfactante excepcionalmente suave à pele)

➤ Não-iônicos:

Álcool oleico:

• Relação termodinâmica entre γ e concentração

Concentração do soluto no interior da solução ("bulk"): C (mol L-1)

Concentração superficial de excesso (Γ_s): número de mols de soluto **em excesso** na superfície por área da superfície (mol m⁻²)

ightarrow valor de $\Gamma_{\rm s}$ varia com C em soluções de concentração baixa mas logo atinge um valor máximo limite para uma concentração C característica de cada surfactante. Nesta situação, as moléculas em excesso fecham a superfície com uma monocamada.

Base da obtenção de uma relação entre C, Γ_s e γ : alterações da energia livre da superfície pela presença do soluto na superfície.

Isoterma de adsorção de Gibbs: $\left(\frac{\partial \gamma}{\partial C}\right)_T = -\frac{RT\Gamma_s}{C}$ ou $\Gamma_s = -\frac{C}{RT}\left(\frac{\partial \gamma}{\partial C}\right)_T$ (I)

Variação de γ com C para vários tipos de surfactantes em água:

Tipo I: Sais inorgânicos e sacarose. Relação $\gamma \times C$ é linear $\rightarrow (\partial \gamma/\partial C)_{\rm T}$ é constante e positiva $\rightarrow \Gamma_{\rm s}$ é negativa (soluto evita a superfície)

Tipo II: Maioria dos compostos orgânicos parcialmente solúveis em água (álcoois, ácidos carboxílicos etc). $(\partial \gamma/\partial C)_T$ é negativa e varia com $C \to \Gamma_s$ é positiva.

Tipo III: Sabões de cadeia média, detergentes (sais de alquilsulfatos: $R\text{-}OSO_2O\text{-}Na^+$), sais de aminas quaternárias $((CH_3)_3RN^+Cl^-)$ e compostos de polioxietileno $(R(OCH_2CH_2)_nOH$, onde n varia de 5 a 15). $(\partial \gamma/\partial C)_T$ é negativa e varia com C até a **concentração micelar crítica** $\rightarrow \Gamma_s$ é positiva.

A partir da **concentração micelar crítica**, torna-se favorável energeticamente o agrupamento das moléculas do surfactante em **micelas**.

Interior das micelas é hidrófobo \rightarrow partículas de gordura podem ser "solubilizadas" neste interior, permanecendo estáveis em solução \rightarrow ação detergente

Ação germicida dos surfactantes:

Muitos vírus (incluindo o coronavirus) e bactérias tem uma membrana lipídica formada de fosfolipídios como parede celular com estrutura de camada dupla de proteínas. A cadeia apolar dos surfactantes penetra esta membrana, rasgando-a.

Bicamada lipídica

virus rompido por surfactante

➤ Obtenção da concentração superficial de excesso

Tipo I: Forma (I) da isoterma é conveniente, já que $(\partial \gamma/\partial C)_T$ neste caso é o coeficiente angular de uma reta.

Tipos II e III: É mais conveniente rearranjar isoterma de Gibbs aproveitando a relação entre infinitesimais

$$d \ln C = \frac{dC}{C}$$

$$\rightarrow \qquad \Gamma_s = -\frac{1}{RT} \left(\frac{\partial \gamma}{\partial \ln C} \right) \tag{II}$$

ightarrow Em um gráfico $\gamma \times \ln C$, a inclinação $(\partial \gamma/\partial \ln C)_{\rm T}$ inicialmente varia porque $\Gamma_{\rm s}$ está aumentando com C. Quando $\Gamma_{\rm s}$ atinge o valor máximo limite, a isoterma prevê que a derivada $(\partial \gamma/\partial \ln C)_{\rm T}$ torne-se constante ightarrow a partir de uma dada concentração C, relação $\gamma \times \ln C$ fica linear.

Exemplo: Atkins, 5ª edição, Problema Numérico 28.3. As concentrações e correspondentes tensões superficiais de algumas soluções aquosas de butanol foram medidas a 20°C, com os seguintes resultados:

C (mol L-1)	0,0264	0,0536	0,1050	0,2110	0,4330
$\gamma (mN m^{-1})$	68,00	63,14	56,31	48,08	38,87
ln(C/ mol L-1)	-3,63	-2,93	-2.25	-1.56	-0.84

Regressão com os três últimos pontos (γ em N m⁻¹):

$$\gamma = -12,37 \times 10^{-3} \text{ lnC} + 28,58 \times 10^{-3}$$

$$\rightarrow \frac{\partial \gamma}{\partial \ln C} = -12,37 \times 10^{-3} \text{ Nm}^{-1}$$

$$\rightarrow \Gamma_s = -\frac{1}{8,314 \cdot 293} (-12,37 \times 10^{-3})$$

$$= 5,075 \times 10^{-6} \text{ mol m}^{-2}$$

Cálculo da área ocupada pela molécula na superfície

Número de moléculas que ocupam 1 m² de superfície: $N_A\Gamma_s$

Área ocupada por uma molécula:

 $N_A \Gamma_{\rm s}$ moléculas $\rightarrow 1~{\rm m}^2$ Uma molécula $\rightarrow A$

$$A = \frac{1}{\Gamma_s N_A}$$

Exemplo do butanol:

$$A = 1/(5,075 \times 10^{-6} \cdot 6,022 \times 10^{23}) = 3,27 \times 10^{-19} \text{ m}^2 (0,327 \text{ nm}^2 \text{ ou} 32,7 \text{ Å}^2)$$

Adamson , problema 17.4: A tensão superficial de misturas de água-etanol a 25° C obedece à equação $\gamma=72-0,5C+0,2C^2$, onde C é a concentração de etanol em mol L^{-1} . Calcule a concentração superficial de excesso de etanol em mol cm $^{-2}$ para uma solução 0,5 mol L^{-1} . Resposta: $6,05\times10^{-12}$ mol cm $^{-2}$.

Atkins 5ª edição, problema numérico 28.2: As tensões superficiais de soluções de sais em água em concentração molar c podem ser expressas na forma $\gamma = \gamma^* + (c/\text{mol L}^{-1})\Delta\gamma$. Os valores de $\Delta\gamma$ a 20°C e próximo a c=1 mol L⁻¹ são como segue: $\Delta\gamma/(\text{mN m}^{-1})=1,4$ (KCl), 1,64 (NaCl) e 2,7 (Na₂CO₃). Calcule as concentrações superficiais de excesso para uma concentração de 1,0 mol L⁻¹ das soluções.

Surfactantes pulmonares:

A superfície interna dos alvéolos ($r \sim 0.2$ mm) é coberta com uma lâmina de água com surfactantes que diminuem a tensão superficial, facilitando a expansão durante a inspiração.

Surfactante: fosfolipídio dipalmitoilafosfatidilacolina

Inspiração: concentração dos surfactantes diminui $\to \gamma$ aumenta (± 30 mN m-1) \to alvéolo fica mais rígido

Expiração: concentração dos surfactantes aumenta $\to \gamma$ diminui (<1 mN m-1) \to alvéolo fica menos rígido

EFEITO MARANGONI

Vídeos no Youtube:

➤ Why does wine cry? An example of the Marangoni Effect (canal Fluid Dynamics)

➤ These liquids look alive! (canal Veritasium)