

Improving Multimodal Fusion Via Mutual Dependency Maximisation

Oral Presentation at EMNLP 2021

Pierre Colombo Emile Chapuis Matthieu Labeau Chloé Clavel

Verbal

« What you say?»

- Lexicon:
 - Words
- Syntax:
 - POS
- Pragmatics:
 - DA
 - Emotion

Verbal

« What you say?»

- Lexicon:
 - Words
- Syntax:
 - POS
- Pragmatics:
 - DA
 - Emotion

« How you say it ? »

Verbal

« How you say it ? »

« What you say?»

- Lexicon:
 - Words
- Syntax:
 - POS
- Pragmatics:
 - DA
 - Emotion

Vocal

- Prosody
 - Intonation
 - Voice quality
- Vocal expressions:
 - Laughter
 - Moans

Verbal

« How you say it ? »

« What you say?»

- Lexicon:
 - Words
- Syntax:
 - POS
- Pragmatics:
 - DA
 - Emotion

Vocal

- Prosody
 - Intonation
 - Voice quality
- Vocal expressions:
 - Laughter
 - Moans

Visual

- Gestures:
 - Head & Eye &Arm
- Body language
 - Body posture
 - Proxemics
- Eye contact
 - Head & Eye gaze
- Facial expressions
 - FACS action units
 - Smile & Frowning

5 challenges of multimodal learning

5 challenges of multimodal learning

Representation

Represent
multimodal
data (leverage
complementarity,
redundancy)

5 challenges of multimodal learning

Representation Alignement

Represent
multimodal
data (leverage
complementarity,
redundancy)

Identify relations between elements of different modalities

5 challenges of multimodal learning

Representation Alignement

Represent
multimodal
data (leverage
complementarity,
redundancy)

Identify
relations
between
elements of
different
modalities

Join information from modalities

5 challenges of multimodal learning

Representation Alignement Fusion Translation

Represent multimodal data (leverage complementarity, redundancy) Identify
relations
between
elements of
different
modalities

Join information from modalities

Translate one modality to another

5 challenges of multimodal learning

Representation

ntation Alignement

Fusion

Translation

Co-learning

Represent
multimodal
data (leverage
complementarity,
redundancy)

Identify relations between elements of different modalities

Join information from modalities

Translate one modality to another

Transfer knowledge between modalities

5 challenges of multimodal learning

Representation

Represent
multimodal
data (leverage
complementarity,
redundancy)

Identify relations between elements of different modalities

Alignement

Fusion

Join information from modalities

Translation

Translate one modality to another

Co-learning

Transfer knowledge between modalities

Previous Work on multimodal sentiment analysis

Model		Fusion Mechanism	
TFN	Zadeh et al. 2017	Tensor fusion	
MARN	Zadeh et al. 2018	Multi attention block	
LFN	Liu et al. 2018	Low rank tensor fusion	
MFN	Zadeh et al 2018	Delta Memory attention network	
MISA	Hazarika et al. 2020	Transformer - Multihead	
MAGBERT/MAGXLNET	Rahman et al. 2020	Multimodal Adaptation Gate	

Previous Work on multimodal sentiment analysis

Model		Fusion Mechanism	
TFN	Zadeh et al. 2017	Tensor fusion	
MARN	Zadeh et al. 2018	Multi attention block	
LFN	Liu et al. 2018	Low rank tensor fusion	
MFN	Zadeh et al 2018	Delta Memory attention network	
MISA	Hazarika et al. 2020	Transformer - Multihead	
MAGBERT/MAGXLNET	Rahman et al. 2020	Multimodal Adaptation Gate	

Fusion in previous work is mainly neural Few previous works on loss function!

Previous Work on multimodal sentiment analysis

Model		Fusion Mechanism	
TFN	Zadeh et al. 2017	Tensor fusion	
MARN	Zadeh et al. 2018	Multi attention block	
LFN	Liu et al. 2018	Low rank tensor fusion	
MFN	Zadeh et al 2018	Delta Memory attention network	
MISA	Hazarika et al. 2020	Transformer - Multihead	
MAGBERT/MAGXLNET	Rahman et al. 2020	Multimodal Adaptation Gate	

Fusion in previous work is mainly neural Few previous works on loss function!

Contribution: A new class of loss functions $\mathcal{L}_{MDM} \triangleq MDM \left(p_{X_a X_v X_l}(x_a, x_v, x_l), \prod_{j \in \{a, v, l\}} p_{X_j}(x_j) \right)$

$$\triangleq MDM \quad p_{X_a X_v X_l}(x_a, x_v, x_l), \quad \prod_{j \in \{a, v, l\}} p_{X_j}(x_j)$$

Late Fusion

Classifier block

Fusion Mechanism $\mathcal{M}_f: \mathcal{X}_a \times \mathcal{X}_v \times \mathcal{X}_l \to \mathcal{R}^d$

Fusion Mechanism
$$\mathcal{M}_f: \mathcal{X}_a \times \mathcal{X}_v \times \mathcal{X}_l \to \mathcal{R}^d$$

What we want for \mathcal{M}_f :

- Retain modality-specific interaction
- Retain cross-view interaction
- Retain task specific information

$$\mathscr{L}_{MDM}$$

Fusion Mechanism
$$\mathcal{M}_f: \mathcal{X}_a \times \mathcal{X}_v \times \mathcal{X}_l \to \mathcal{R}^d$$

What we want for \mathcal{M}_f :

- Retain modality-specific interaction
- Retain cross-view interaction
- Retain task specific information

$$\mathcal{L}_{MDM}$$

$$\mathcal{L}_{down}$$

Total
$$\mathscr{L}_{down.}$$
 – $\lambda \cdot \mathscr{L}_{MDM}$ main task mutual dependency term

$$\mathcal{L}_{MDM} \triangleq MDM \left(p_{X_a X_v X_l}(x_a, x_v, x_l), \prod_{j \in \{a, v, l\}} p_{X_j}(x_j) \right)$$

Fusion Mechanism
$$\mathcal{M}_f: \mathcal{X}_a \times \mathcal{X}_v \times \mathcal{X}_l \to \mathcal{R}^d$$

What we want for \mathcal{M}_f :

- Retain modality-specific interaction
- Retain cross-view interaction
- Retain task specific information

$$\mathscr{L}_{MDM}$$

$$\mathcal{L}_{down.}$$

Total

$$\mathcal{L}_{down.}$$
 – $\lambda \cdot \mathcal{L}_{MDM}$ main task mutual dependency term

$$\mathcal{L}_{MDM} \triangleq MDM \left(p_{X_a X_v X_l}(x_a, x_v, x_l), \prod_{j \in \{a, v, l\}} p_{X_j}(x_j) \right)$$

Different choice for MDM

- Wasserstein
- Kullback Leibler (KL)
- F-divergence

Toy example on correlated Gaussian

$$\mathcal{L} \triangleq \underbrace{\mathcal{L}_{down.}} - \underbrace{\lambda \cdot \mathcal{L}_{MDM}}$$
 main task mutual dependency term

Training Loss

$$\mathcal{L} \triangleq \mathcal{L}_{down.}$$
 –

$$\lambda \cdot \mathcal{L}_{MDM}$$

main task mutual dependency term

Notation

$$X_a \sim p_{X_a}, X_v \sim p_{X_v}, X_l \sim p_{X_l}$$
 $X_a, X_v, X_l \sim p_{X_a, X_v, X_l}$

$$T(\theta): \mathcal{X}_{\alpha} \times \mathcal{X}_{\nu} \times \mathcal{X}_{1} \to \mathbb{R}$$

family of functions

$$\mathcal{L} \triangleq \mathcal{L}_{down.}$$
 –

$$\lambda \cdot \mathcal{L}_{MDM}$$

main task mutual dependency term

$$X_a \sim p_{X_a}, X_v \sim p_{X_v}, X_l \sim p_{X_l}$$
 $X_a, X_v, X_l \sim p_{X_a, X_v, X_l}$

$$X_a, X_v, X_l \sim p_{X_a, X_v, X}$$

$$T(\theta): \mathcal{X}_a \times \mathcal{X}_v \times \mathcal{X}_l \to \mathbb{R}$$

family of functions

For MDM we extend Belghazi et al 2018 (MINE)

Training Loss
$$\mathcal{L} \triangleq \mathcal{L}_{down.} - \lambda \cdot \mathcal{L}_{MDM}$$
 main task mutual dependency term
$$X_a \sim p_{X_a}, X_v \sim p_{X_v}, X_l \sim p_{X_l} \quad X_a, X_v, X_l \sim p_{X_a, X_v, X_l}$$
 Motation
$$T(\theta): \mathcal{X}_a \times \mathcal{X}_v \times \mathcal{X}_l \to \mathbb{R}$$
 family of functions

For MDM we extend Belghazi et al 2018 (MINE)

	Formula
Wasserstein (W)	$\mathbf{I}_{\mathcal{W}} \triangleq \sup_{\theta:T_{\theta} \in \mathbb{L}} \mathbb{E}_{p_{X_{a}X_{v}X_{l}}}[T_{\theta}] - \log \left[\mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_{j}}}[T_{\theta}] \right].$
f-divergence (f)	$\mathbf{I}_f \triangleq \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}}[T_{\theta}] - \mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}}[e^{T_{\theta}-1}].$
Kullback-Leibler (KL)	$\mathbf{I}_{kl} \triangleq \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}}[T_{\theta}] - \log \left[\mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}}[e^{T_{\theta}}]\right].$

Training Loss
$$\mathcal{L} \triangleq \mathcal{L}_{down.} - \lambda \cdot \mathcal{L}_{MDM}$$
 main task mutual dependency term
$$X_a \sim p_{X_a}, X_v \sim p_{X_v}, X_l \sim p_{X_l} \quad X_a, X_v, X_l \sim p_{X_a, X_v, X_l}$$
 Notation
$$T(\theta): \mathcal{X}_a \times \mathcal{X}_v \times \mathcal{X}_l \rightarrow \mathbb{R}$$
 family of functions

For MDM we extend Belghazi et al 2018 (MINE)

	Formula	Alternative Work
Wasserstein (W)	$\mathbf{I}_{\mathcal{W}} \triangleq \sup_{\theta:T_{\theta} \in \mathbb{L}} \mathbb{E}_{p_{X_{a}X_{v}X_{l}}}[T_{\theta}] - \log \left[\mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_{j}}}[T_{\theta}] \right].$	Ozair et al 2019.
f-divergence (f)	$\mathbf{I}_f \triangleq \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}}[T_{\theta}] - \mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}}[e^{T_{\theta}-1}].$	KNIFE. Anonymous et al. 2022
Kullback-Leibler (KL)	$\mathbf{I}_{kl} \stackrel{\triangle}{=} \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}} [T_{\theta}] - \log \left[\mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}} [e^{T_{\theta}}] \right].$	Oord et al 2018

Practical Implementation

Practical Implementation

Our method requiers to compute

$$MDM \triangleq \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}} [T_{\theta}] - g \left[\mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}} [\cdot] \right].$$

Practical Implementation

Our method requiers to compute

$$MDM \triangleq \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}} [T_{\theta}] - g \mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}} [\cdot]$$
.

Two Stage Procedure

Algorithm 1 Two-stage procedure to minimise multivariate dependency measures.

INPUT: $\mathcal{D}_n = \{(x_a^j, x_v^j, x_l^j), \forall j \in [1, n]\}$ multimodal training dataset, m batch size, $\sigma_a, \sigma_v, \sigma_l$: $[1, m] \rightarrow [1, m]$ three permutations, θ_c weights of the deep classifier, θ weights of the statistical network T_{θ} .

Initialization: parameters θ and θ_c Build Negative Dataset:

$$\bar{\mathcal{D}}_n = \{(x_a^{\sigma_a(j)}, x_v^{\sigma_v(j)}, x_l^{\sigma_l(j)}), \forall j \in [1, n]\}$$

Optimization:

while (θ, θ_c) not converged do

for $i \in [1, Unroll]$ do

Sample from \mathcal{D}_n , $\mathcal{B} \sim p_{X_a X_v X_l}$ Sample from $\bar{\mathcal{D}}_n$, $\bar{\mathcal{B}} \sim \prod_{j \in \{a,v,l\}} p_{X_j}$ Update θ based on the empirical version of Eq. 6 or Eq. 7 or Eq. 8.

end for

Sample a batch \mathcal{B} from \mathcal{D} Update θ_c with \mathcal{B} using Eq. 5.

end while

OUTPUT: Classifiers weights θ_c

Practical Implementation

Our method requiers to compute

$$MDM \triangleq \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}} [T_{\theta}] - g \mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}} [\cdot]$$
.

Two Stage Procedure

1. Update θ to find the supremum

Algorithm 1 Two-stage procedure to minimise multivariate dependency measures.

INPUT: $\mathcal{D}_n = \{(x_a^j, x_v^j, x_l^j), \forall j \in [1, n]\}$ multimodal training dataset, m batch size, $\sigma_a, \sigma_v, \sigma_l$: $[1, m] \rightarrow [1, m]$ three permutations, θ_c weights of the deep classifier, θ weights of the statistical network T_{θ} .

Initialization: parameters θ and θ_c Build Negative Dataset:

$$\bar{\mathcal{D}}_n = \{(x_a^{\sigma_a(j)}, x_v^{\sigma_v(j)}, x_l^{\sigma_l(j)}), \forall j \in [1, n]\}$$

Optimization:

while (θ, θ_c) not converged **do**for $i \in [1, Unroll]$ **do**Sample from \mathcal{D}_n , $\mathcal{B} \sim p_{X_a X_v X_l}$ Sample from $\bar{\mathcal{D}}_n$, $\bar{\mathcal{B}} \sim \prod_{j \in \{a,v,l\}} p_{X_j}$ Update θ based on the empirical version of Eq. 6 or Eq. 7 or Eq. 8.

end for

Sample a batch \mathcal{B} from \mathcal{D} Update θ_c with \mathcal{B} using Eq. 5.

end while

OUTPUT: Classifiers weights θ_c

Practical Implementation

Our method requiers to compute

$$MDM \triangleq \sup_{\theta} \mathbb{E}_{p_{X_a X_v X_l}} [T_{\theta}] - g \mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}} [\cdot]$$
.

Two Stage Procedure

- 1. Update θ to find the supremum
- 2. Update neural network using the total loss

Algorithm 1 Two-stage procedure to minimise multivariate dependency measures.

INPUT: $\mathcal{D}_n = \{(x_a^j, x_v^j, x_l^j), \forall j \in [1, n]\}$ multimodal training dataset, m batch size, $\sigma_a, \sigma_v, \sigma_l$: $[1, m] \rightarrow [1, m]$ three permutations, θ_c weights of the deep classifier, θ weights of the statistical network T_{θ} .

Initialization: parameters θ and θ_c Build Negative Dataset:

$$\bar{\mathcal{D}}_n = \{(x_a^{\sigma_a(j)}, x_v^{\sigma_v(j)}, x_l^{\sigma_l(j)}), \forall j \in [1, n]\}$$

Optimization:

while (θ, θ_c) not converged do

for $i \in [1, Unroll]$ do

Sample from \mathcal{D}_n , $\mathcal{B} \sim p_{X_a X_v X_l}$ Sample from $\bar{\mathcal{D}}_n$, $\bar{\mathcal{B}} \sim \prod_{j \in \{a,v,l\}} p_{X_j}$ Update θ based on the empirical version of Eq. 6 or Eq. 7 or Eq. 8.

end for

Sample a batch \mathcal{B} from \mathcal{D} Update θ_c with \mathcal{B} using Eq. 5.

end while

OUTPUT: Classifiers weights θ_c

Practical Implementation

Our method requiers to compute

$$MDM \triangleq \sup_{\theta} \left[\mathbb{E}_{p_{X_a X_v X_l}} [T_{\theta}] - g \left[\mathbb{E}_{\prod_{j \in \{a,v,l\}} p_{X_j}} [\cdot] \right] \right].$$

Two Stage Procedure

- 1. Update θ to find the supremum
- 2. Update neural network using the total loss

Algorithm 1 Two-stage procedure to minimise multivariate dependency measures.

INPUT: $\mathcal{D}_n = \{(x_a^j, x_v^j, x_l^j), \forall j \in [1, n]\}$ multimodal training dataset, m batch size, $\sigma_a, \sigma_v, \sigma_l$: $[1, m] \rightarrow [1, m]$ three permutations, θ_c weights of the deep classifier, θ weights of the statistical network T_{θ} .

Initialization: parameters θ and θ_c Build Negative Dataset:

$$\bar{\mathcal{D}}_n = \{(x_a^{\sigma_a(j)}, x_v^{\sigma_v(j)}, x_l^{\sigma_l(j)}), \forall j \in [1, n]\}$$

Optimization:

while (θ, θ_c) not converged do

for $i \in [1, Unroll]$ do

Sample from \mathcal{D}_n , $\mathcal{B} \sim p_{X_a X_v X_l}$ Sample from $\bar{\mathcal{D}}_n$, $\bar{\mathcal{B}} \sim \prod_{j \in \{a,v,l\}} p_{X_j}$ Update θ based on the empirical version of Eq. 6 or Eq. 7 or Eq. 8.

end for

Sample a batch \mathcal{B} from \mathcal{D} Update θ_c with \mathcal{B} using Eq. 5.

end while

OUTPUT: Classifiers weights θ_c

Summary

$$\mathcal{L}_{MDM} \triangleq MDM \left(p_{X_a X_v X_l}(x_a, x_v, x_l), \prod_{j \in \{a, v, l\}} p_{X_j}(x_j) \right)$$

Summary

$$\mathcal{L}_{MDM} \triangleq MDM \left(p_{X_a X_v X_l}(x_a, x_v, x_l), \prod_{j \in \{a, v, l\}} p_{X_j}(x_j) \right)$$

Require little intervention

can work on any models

Summary

Total

$$\mathscr{L}_{down.}$$
 – $\lambda \cdot \mathscr{L}_{MDM}$

main task mutual dependency term

$$\mathscr{L}_{MDM} \triangleq MDM \left(p_{X_a X_v X_l}(x_a, x_v, x_l), \prod_{j \in \{a, v, l\}} p_{X_j}(x_j) \right)$$
 Robustness Analysis

Require little intervention

can work on any models

Experimental Setting

- Sentiment Analysis
- Explainability using T_{θ}

Summary

Total

$$\mathscr{L}_{down.}$$
 – $\lambda \cdot \mathscr{L}_{MDM}$

main task mutual dependency term

$$\mathscr{L}_{MDM} \triangleq MDM \left(p_{X_a X_v X_l}(x_a, x_v, x_l), \prod_{j \in \{a, v, l\}} p_{X_j}(x_j) \right)$$
 Robustness Analysis

Require little intervention

can work on any models

Experimental Setting

- Sentiment Analysis
- Explainability using T_{θ}

Other results available in the paper

CMU-MOSEI CMU-MOSI

2,199/23,454 movie review videos

Sentiment Score in [-3,3]

CMU-MOSEI

CMU-MOSI

2,199/23,454 movie review videos

Sentiment Score in [-3,3]

	Acc_7^h	Acc_2^h	MAE^{l}	$Corr^h$		
CMU-MOSI						
$oxed{\mathcal{L}_\emptyset}$	31.1	76.1	1.00	0.65		
$\mid \mathcal{L}_{kl} \mid$	31.7	76.4	1.00	<u>0.66</u>		
$\mid \mathcal{L}_f \mid$	<u>33.7</u>	76.2	1.02	<u>0.66</u>		
$\mid \mathcal{L}_{\mathcal{W}} \mid$	33.5	76.4	<u>0.98</u>	<u>0.66</u>		
		CMU-MC	SEI			
$oxed{\mathcal{L}_\emptyset}$	44.2	75.0	0.72	0.52		
$\mid \mathcal{L}_{kl} \mid$	44.5	<u>75.6</u>	<u>0.70</u>	<u>0.53</u>		
$\mid \mathcal{L}_f \mid$	4 <u>5.5</u>	75.2	<u>0.70</u>	0.52		
$\mid \mathcal{L}_{\mathcal{W}} \mid$	45.3	75.9	0.68	0.54		

		CMU	J-MOSI			CMU-	-MOSEI	
	Acc_7^h	Acc_2^h	MAE^{l}	$Corr^h$	Acc_7^h	Acc_2^h	MAE^{l}	$Corr^h$
				MF	Ŋ			
$oxed{\mathcal{L}_\emptyset}$	31.3	76.6	1.01	0.62	44.4	74.7	0.72	0.53
$\mid \mathcal{L}_{kl} \mid$	32.5	76.7	<u>0.96</u>	0.65	44.2	74.7	0.72	<u>0.57</u>
$\mid \mathcal{L}_f \mid$	35.7	<u>77.4</u>	<u>0.96</u>	0.65	46.1	75.4	<u>0.69</u>	0.56
$\mid \mathcal{L}_{\mathcal{W}} \mid$	<u>35.9</u>	77.6	<u>0.96</u>	0.65	<u>46.2</u>	75.1	<u>0.69</u>	0.56
				LF	Ŋ			
\mathcal{L}_\emptyset	31.9	76.9	1.00	0.63	45.2	74.2	0.70	0.54
$\mid \mathcal{L}_{kl} \mid$	32.6	<u>77.7</u>	0.97	0.63	46.1	75.3	0.68	<u>0.57</u>
$\mid \mathcal{L}_f \mid$	<u>35.6</u>	77.1	0.97	0.63	45.8	75.4	0.69	<u>0.57</u>
$\mid \mathcal{L}_{\mathcal{W}} \mid$	<u>35.6</u>	<u>77.7</u>	<u>0.96</u>	<u>0.67</u>	<u>46.2</u>	<u>75.4</u>	<u>0.67</u>	<u>0.57</u>
				MAGB	ERT			
$oxed{\mathcal{L}_\emptyset}$	40.2	84.7	0.79	0.80	46.8	84.9	0.59	0.77
$\mid \mathcal{L}_{kl} \mid$	42.0	85.6	<u>0.76</u>	0.82	47.1	85.4	0.59	<u>0.79</u>
$\mid \mathcal{L}_f \mid$	41.7	85.6	0.78	0.82	46.9	85.6	0.59	<u>0.79</u>
$\mid \mathcal{L}_{\mathcal{W}} \mid$	41.8	85.3	<u>0.76</u>	0.82	<u>47.8</u>	85.5	0.59	<u>0.79</u>
				MAGXI	NET			
\mathcal{L}_{\emptyset}	43.0	86.2	0.76	0.82	46.7	84.4	0.59	0.79
$\mid \mathcal{L}_{kl} \mid$	44.5	86.1	<u>0.74</u>	0.82	47.5	<u>85.4</u>	0.59	0.81
$\mid \mathcal{L}_f \mid$	43.9	86.6	$\underline{0.74}$	0.82	47.4	85.0	0.59	0.81
$\mathcal{L}_{\mathcal{W}}$	44.4	<u>86.9</u>	<u>0.74</u>	0.82	<u>47.9</u>	<u>85.8</u>	0.59	<u>0.82</u>

CMU-MOSEI

CMU-MOSI

2,199/23,454 movie review videos

Sentiment Score in [-3,3]

Simple fusion mechanism

Acc_7^h	Acc_2^h	MAE^{l}	$Corr^h$
	CMU-Mo	OSI	

\mathcal{L}_{\emptyset}	31.1	76.1	1.00	0.65
$oldsymbol{\mathcal{L}_{kl}}$	31.7	76.4	1.00	<u>0.66</u>
\mathcal{L}_f	33.7	76.2	1.02	0.66
$\mathcal{L}_{\mathcal{W}}$	33.5	76.4	0.98	0.66

CMU-MOSEI

\mathcal{L}_\emptyset	44.2	75.0	0.72	0.52
$\mid \mathcal{L}_{kl} \mid$	44.5	<u>75.6</u>	0.70	0.53
\mathcal{L}_f	4 <u>5.5</u>	75.2	0.70	0.52
$\mathcal{L}_{\mathcal{W}}$	45.3	<u>75.9</u>	<u>0.68</u>	<u>0.54</u>

Complex fusion mechanism

		CMU	J-MOSI			CMU-	-MOSEI	
	Acc_7^h	Acc_2^h	MAE^{l}	$Corr^h$	Acc_7^h	Acc_2^h	MAE^{l}	$Corr^h$
				MF]	Ŋ			
\mathcal{L}_{\emptyset}	31.3	76.6	1.01	0.62	44.4	74.7	0.72	0.53
$\mid \mathcal{L}_{kl} \mid$	32.5	76.7	<u>0.96</u>	0.65	44.2	74.7	0.72	<u>0.57</u>
\mathcal{L}_f	35.7	77.4	0.96	0.65	46.1	75.4	0.69	0.56
$\mathcal{L}_{\mathcal{W}}$	35.9	<u>77.6</u>	0.96	0.65	46.2	75.1	0.69	0.56
				LF	N			
\mathcal{L}_{\emptyset}	31.9	76.9	1.00	0.63	45.2	74.2	0.70	0.54
$\mid \mathcal{L}_{kl} \mid$	32.6	<u>77.7</u>	0.97	0.63	<u>46.1</u>	75.3	0.68	<u>0.57</u>
$oxedsymbol{\mathcal{L}}_f$	35.6	77.1	0.97	0.63	45.8	75.4	0.69	0.57
$\mathcal{L}_{\mathcal{W}}$	<u>35.6</u>	<u>77.7</u>	<u>0.96</u>	<u>0.67</u>	<u>46.2</u>	<u>75.4</u>	<u>0.67</u>	<u>0.57</u>
				MAGB1	ERT			_
\mathcal{L}_{\emptyset}	40.2	84.7	0.79	0.80	46.8	84.9	0.59	0.77
$\mid \mathcal{L}_{kl} \mid$	42.0	85.6	<u>0.76</u>	0.82	47.1	85.4	0.59	<u>0.79</u>
$oxedsymbol{\mathcal{L}_f}$	41.7	<u>85.6</u>	0.78	0.82	46.9	85.6	0.59	<u>0.79</u>
$\mathcal{L}_{\mathcal{W}}$	41.8	85.3	<u>0.76</u>	0.82	<u>47.8</u>	85.5	0.59	<u>0.79</u>
				MAGXI	NET			
\mathcal{L}_{\emptyset}	43.0	86.2	0.76	0.82	46.7	84.4	0.59	0.79
$\mid \mathcal{L}_{kl} \mid$	<u>44.5</u>	86.1	<u>0.74</u>	0.82	<u>47.5</u>	<u>85.4</u>	0.59	0.81
$oxedsymbol{\mathcal{L}_f}$	43.9	86.6	<u>0.74</u>	0.82	47.4	85.0	0.59	0.81
$\mid \mathcal{L}_{\mathcal{W}} \mid$	44.4	<u>86.9</u>	<u>0.74</u>	0.82	<u>47.9</u>	<u>85.8</u>	0.59	0.82

- 1. Most of information carried by Text
 - Drop Text

- 1. Most of information carried by Text
 - Drop Text

How maximising the MDM affect robustness?

- 1. Most of information carried by Text
 - Drop Text

How maximising the MDM affect robustness?

Experiment

- 1. Train using 3 modalities
- 2. At inference we use only A, V or A+V

- 1. Most of information carried by Text
 - Drop Text

How maximising the MDM affect robustness?

Experiment

- 1. Train using 3 modalities
- 2. At inference we use only A, V or A+V

1. Most of information carried by Text

Drop Text

How maximising the MDM affect robustness?

Experiment

- 1. Train using 3 modalities
- 2. At inference we use only A, V or A+V

Our MDM loss improve robustness

MDM

Goal: Use low/high values or MDM to explain representations

MDM

Spoken Transcripts	Acoustic and visual behaviour	·	MDM
um the story was all right	low energy monotonous voice + h	neadshake	L

Spoken Transcripts	Acoustic and visual behaviour	MDM
um the story was all right	low energy monotonous voice + headshake	L

Spoken Transcripts	Acoustic and visual behaviour	MDM
um the story was all right	low energy monotonous voice + headshake	L
i mean its a Nicholas Sparks book it must be good	disappointed tone + neutral facial expression	L

Spoken Transcripts	Acoustic and visual behaviour	MDM
um the story was all right	low energy monotonous voice + headshake	L
i mean its a Nicholas Sparks book it must be good	disappointed tone + neutral facial expression	L

Spoken Transcripts	Acoustic and visual behaviour	MDM
um the story was all right	low energy monotonous voice + headshake	L
i mean its a Nicholas Sparks book it must be good	disappointed tone + neutral facial expression	L
the action is fucking awesome	head nod + excited voice	Н

Spoken Transcripts	Acoustic and visual behaviour	MDM
um the story was all right	low energy monotonous voice + headshake	L
i mean its a Nicholas Sparks book it must be good	disappointed tone + neutral facial expression	L
the action is fucking awesome	head nod + excited voice	Н

Spoken Transcripts	Acoustic and visual behaviour	MDM
um the story was all right	low energy monotonous voice + headshake	L
i mean its a Nicholas Sparks book it must be good	disappointed tone + neutral facial expression	L
the action is fucking awesome	head nod + excited voice	Н
[1] it was cute you know the actors did a great job bringing the smurfs to		'
life such as joe george lopez neil patrick harris katy perry and a fourth	multiple smiles	Н

Spoken Transcripts	Acoustic and visual behaviour	MDM
um the story was all right	low energy monotonous voice + headshake	L
i mean its a Nicholas Sparks book it must be good	disappointed tone + neutral facial expression	L
the action is fucking awesome	head nod + excited voice	Н
[1] it was cute you know the actors did a great job bringing the smurfs to		
life such as joe george lopez neil patrick harris katy perry and a fourth	multiple smiles	Н

Thanks for listening

Title: Improving Multimodal Fusion Via Mutual Dependency Maximisation

Corresponding Authors:

Pierre Colombo

Link to Paper

