Eligiendo un modelo de Machine Learning

¿Y ahora qué?

Machine Learning Aplicado

,

Depurando un algoritmo de aprendizaje:

Supongamos que usted ha implementado un programa de regresión lineal regularizada para predecir el precio de las casas.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

Sin embargo, cuando aplica testea su hipótesis a nuevas casas, resulta que encuentra errores demasiado grandes. ¿que debería hacer en tal caso

- Obtener mas ejemplos de entrenamiento
- Usar un set menor de features
- Usar features adicionales
- Adicionar features polinomiales $(x_1^2, x_2^2, x_1x_2, {
 m etc.})$
- Intentar decrementar λ
- Intentar incrementar λ

Machine Learning Aplicado

El chequeo en el aprendizaje de maquina:

Diagnóstico: Una guía para saber si algo esta trabajando (o no) en su algoritmo de aprendizaje es ver su performance.

Un diagnostico puede tomar tiempo para implementar, pero puede ser un buen uso del tiempo.

Machine Learning Aplicado

1

Eligiendo un modelo de aprendizaje de máquina

Evaluando una hipotesis

Machine Learning Aplicado

Evaluando su hipotesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Falla en aplicar hipotesis en nuevos ejemplos

 $x_1 = \text{Tamaño de casa}$

 $x_2 = \text{Nro de dormitorios}$

 $\bar{x_3} = \text{Nro de pisos}$

 $x_4 = \mathsf{Edad} \, \mathsf{de} \, \mathsf{casa}$

 $x_5 =$ Ingreso promedio de vecindad

 $x_6=\,$ Tamaño de cocina

:

 x_{100}

Machine Learning Aplicado

J

Evaluando su hipotesis

Dataset:

Size	Price	
2104	400	$(x^{(1)}, y^{(1)})$
1600	330	$(x^{(2)}, y^{(2)})$
2400	369	──→
1416	232	
3000	540	$(x^{(m)}, y^{(m)})$
1985	300	
1534	315	$(x_{test}^{(1)}, y_{test}^{(1)}) \\ (x_{test}^{(2)}, y_{test}^{(2)}) \\ \vdots$
1427	199	
1380	212	
1494	243	$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Machine Learning Aplicado

Procedimiento de training/testing para regresion lineal

- Aprender parametro θ de data de entrenamiento (minimizar error de entrenamiento $J(\theta)$)
- Computar error de set de test:

$$\boxed{1 + \text{est} (0) = \frac{1}{\sqrt{\frac{1 + \text{est}}{1 + 1}}} \left(\frac{1}{\sqrt{\frac{1 + \text{est}}{1 + 1}}} \left(\frac{1}{\sqrt{\frac{1 + \text{est}}{1 + 1}}} \right) - \frac{1}{\sqrt{\frac{1 + \text{est}}{1 + 1}}} \right)^{2}}$$

Machine Learning Aplicado

_

Procedimiento de training/testing para regresion logistica

- Aprender parametro heta de data de entrenamiento.
- Computar error de set de testeo:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

Machine Learning Aplicado

Seleccion de modelo y sets de training/validation/test

Machine Learning Aplicado

.

Ejemplo de overfitting

Dado que $\theta_0, \theta_1, \dots, \theta_4$ fueron ajustados a un set de datos particular, el error de los parametros medidos en tales datos (training error $J(\theta)$) es probable ser menor que el error real de generalizacion.

Seleccion de modelo

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

$$\vdots$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

Escoger
$$\theta_0 + \dots \theta_5 x^5$$

¿Cuan bien este modelo generaliza? Se debe reportar el error de test $J_{test}(\theta^{(5)})$

Problema: $J_{test}(\theta^{(5)})$ es probablemente una estimación optimista del error. I.e. el parametro extra (d = grado de polinomio) se usa para hacer fit en el test.

Machine Learning Aplicado

11

Evaluando la hipotesis

Dataset:

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

Machine Learning Aplicado

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Validation error:

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Machine Learning Aplicado

13

Seleccion de modelo

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$
$$\vdots$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

Escoger
$$\theta_0+\theta_1x_1+\cdots+\theta_4x^4$$
 Estimar error de generalización para set de test $J_{test}(\theta^{(4)})$

Machine Learning Aplicado

Bias vs. Variance

Machine Learning Aplicado

15

Bias/variance

Bias alto (underfit)

Modelo correcto

Variance alta (overfit)

Machine Learning Aplicado

Bias/variance

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Validation error:

Machine Learning Aplicado

¿Bias o variance?

Suponga que su algoritmo de aprendizaje esta andando mucho menos de lo esperaba ($J_v(\theta)$ o $J_{test}(\theta)$ es alta.) ¿es un problema de bias o variance?

Bias (underfit):

Variance (overfit):

Regularizacion y bias/variance

Machine Learning Aplicado

19

Regresion lineal con regularizacion

Modelo:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

 λ largo Bias alto (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

 $h_{\theta}(x) \approx \theta_0$

 λ intermedio "correcto"

 λ pequeño variance alta (overfit)

Machine Learning Aplicado

Escogiendo el parametro de regularizacion λ

Modelo:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_i^2$$

- 1. Probar $\lambda = 0$
- 2. Probar $\lambda=0.01$
- 3. Probar $\lambda = 0.02$
- 4. Probar $\lambda = 0.04$
- 5. Probar $\lambda = 0.08$

:

12. Probar $\lambda = 10$ Escoger (ejm) $\theta^{(5)}$. Test error:

Machine Learning Aplicado

21

Bias/variance como funcion de parametro de regularizacion λ

Machine Learning Aplicado

Entendiendo curvas

Machine Learning Aplicado

Entendiendo curvas

$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1\\m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$

Machine Learning Aplicado

Alto bias

Si un algoritmo de aprendizaje esta sufriendo de alto bias, mas data de entrenamiento no ayudara mucho.

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

Alta varianza

Si un algoritmo esta sufriendo de alta varianza, obtener mas datos de entrenamiento probablemente ayude.

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{100} x^{100}$$
 (and pequeño χ)

¿Y ahora que? (soluciones)

Machine Learning Aplicado

27

Depurando un algoritmo de aprendizaje:

Supongamos que usted ha implementado un programa de regresion lineal regularizadapara predecir el precio de las casas.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

Sin embargo, cuando aplica testea su hipotesis a nuevas casas, resulta que halla errores demasiado grandes. ¿que deberia hacer en tal caso

- Usar un set menor de features (vs alta varianza)
- Obtener features adicionales (vs alto bias)
- Adicionar features polinomiales $(x_1^2, x_2^2, x_1x_2, {
 m etc.})$ (vs alto bias)
- Tratar decrementando λ (vs alto bias)
- Tratar incrementando λ (vs alta varianza)
- Obtener mas ejemplos de entrenamiento (vs alta varianza)

Machine Learning Aplicado

Redes neuronales y overfitting

Redes neuronales pequeñas (menos parametros, mas tendencia de underfitting)

Computacionalmente baratas

Redes neuronales grandes (mas parametros; mas tendencia de overfitting)

Computacionalmente mas costosa

Usar regularizacion (λ) para enfrentar overfitting.

Machine Learning Aplicado