

planetmath.org

Math for the people, by the people.

closed monoidal category

Canonical name ClosedMonoidalCategory

Date of creation 2013-03-22 18:30:25 Last modified on 2013-03-22 18:30:25

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 81-00
Classification msc 18-00
Classification msc 18D10

Related topic IndexOfCategories

Defines left closed
Defines right closed
Defines biclosed

Defines symmetric monoidal closed

Let \mathcal{C} be a monoidal category, with tensor product \otimes . Then we say that

- \mathcal{C} is closed, or left closed, if the functor $A \otimes -$ on \mathcal{C} has a right adjoint $[A, -]_l$
- \mathcal{C} is right closed if the functor $-\otimes B$ on \mathcal{C} has a right adjoint $[B,-]_r$
- C is biclosed if it is both left closed and right closed.

A biclosed symmetric monoidal category is also known as a *symmetric monoidal closed category*. In a symmetric monoidal closed category, $A \otimes B \cong B \otimes A$, so $[A, B]_l \cong [A, B]_r$. In this case, we denote the right adjoint by [A, B].

Some examples:

- Any cartesian closed category is symmetric monoidal closed.
- In particular, as a category with finite products is symmetric monoidal, it is biclosed iff it is cartesian closed.
- An example of a biclosed monoidal category that is not symmetric monoidal is the category of bimodules over a non-commutative ring. The right adjoint of $A \times -$ is $[A, -]_l$, where $[A, B]_l$ is the collection of all left R-linear bimodule homomorphisms from A to B, while the right adjoint of $\times A$ is $[A, -]_r$, where $[A, B]_r$ is the collection of all right R-linear bimodule homomorphisms from A to B. Unless R is commutative, $[A, B]_l \neq [A, B]_r$ in general.

more to come...