Electromagnetic Theory: Special Presentation

Jordan Hanson

December 4, 2020

Whittier College Department of Physics and Astronomy

Outline

Outline

- 1. The continuous limit
 - How accurate is the idea that $\Delta x \sum_i q_i \to \int dq$?
 - The spatial Fourier transform
- 2. The line of charges
 - Discrete, continuous
 - Far-field approximation to third order in $(1/r)^n$
 - Spatial Fourier transforms

The Continuous Limit

The Continuous Limit

The continuous limit: Why do we speak of macroscopic fields from fluid charge distributions? We know that charge is *discrete*.

The continuous limit: Why do we speak of macroscopic fluids from fluid mass distributions? We know that mass is *discrete*.

- 1. Consider a row of 2N+1 point charges q along the x-axis, separated by Δx . Why 2N+1? Place N on either side of the origin, and one at the origin. Let P be a distance z above the origin along the z-axis.
- 2. Consider concentric rings of point charges q along the ϕ -axis in cylindrical coordinates. Each ring is at some radius s from the origin. The separations are therefore $\Delta \phi$ and Δs , and there is one charge at the origin.

The Continuous Limit

Project goals:

- 1. Obtain discrete and continuous results to $\mathcal{O}(1/r)^3$
- 2. Calculate spatial Fourier transform of each result

The spatial Fourier transform relates position x with wavenumber $k=2\pi/\lambda$ (inverse length units). The spatial Fourier transform of a function f(z) is defined:

$$\widetilde{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ikz}dz$$
 (1)

$$f(x) = \int_{-\infty}^{\infty} \widetilde{f}(k)e^{2\pi ikz}dk$$
 (2)

Figure 1: A row of charges extends down the x-axis and the observer position is along the z-axis.

The voltage may be treated as sum of 2N+1 Coulomb potentials, with the origin treated separately. Let

$$V_0 = \frac{1}{4\pi\epsilon_0} \frac{q}{z} \tag{3}$$

$$V_n = \frac{1}{4\pi\epsilon_0} \frac{q}{\sqrt{z^2 + (n\Delta x)^2}} \tag{4}$$

$$V(z) = V_0 + 2\sum_{n=1}^{N} V_n$$
 (5)

Let's examine the limit that $\alpha < 1$, where $\alpha = \Delta x/z$.

The potential at z is

$$V(z) = \frac{1}{4\pi\epsilon_0} \frac{q}{z} \left(1 + 2 \sum_{n=1}^{N} (1 + \alpha^2 n^2)^{-1/2} \right)$$
 (6)

$$V(z) \approx \frac{1}{4\pi\epsilon_0} \frac{q}{z} \left(1 + 2 \sum_{n=1}^{N} \left(1 - \frac{1}{2} \alpha^2 n^2 \right) \right)$$
 (7)

$$V(z) \approx \frac{1}{4\pi\epsilon_0} \frac{q}{z} \left(1 + 2N - \frac{2}{2} \alpha^2 \sum_{n=1}^{N} n^2 \right)$$
 (8)

$$V(z) \approx \frac{q(2N+1)}{4\pi\epsilon_0 z} \left(1 - \frac{\alpha^2}{(2N+1)} \sum_{n=1}^{N} n^2 \right)$$
 (9)

The sum of the first N squared integers is

$$\sum_{n=1}^{N} n^2 = \frac{N(N+1)(2N+1)}{6} \tag{10}$$

The total charge Q is Q = q(2N + 1). Thus, V(z) becomes

$$V(z) \approx \frac{Q}{4\pi\epsilon_0 z} \left(1 - \frac{\alpha^2}{(2N+1)} \frac{N(N+1)(2N+1)}{6} \right)$$
 (11)

$$V(z) \approx \frac{Q}{4\pi\epsilon_0 z} \left(1 - \frac{\alpha^2 N(N+1)}{6} \right)$$
 (12)

Suppose that $N \gg 1$, but such that $L = N\Delta x$ is constant. In that case, $N(N+1) \approx N^2$.

Notice that

$$N^2 \alpha^2 = N^2 \left(\frac{\Delta x}{z}\right)^2 \tag{13}$$

$$N^2 \alpha^2 = \left(\frac{N\Delta x}{z}\right)^2 \tag{14}$$

$$N^2\alpha^2 = \left(\frac{L}{2z}\right)^2 = \frac{L^2}{4z^2} \tag{15}$$

Inserting Eq. 15 into Eq. 12:

$$V(z) \approx \frac{Q}{4\pi\epsilon_0 z} \left(1 - \frac{L^2}{24z^2} \right) \tag{16}$$

Let $\beta_1 = L^2/24$. The final result is

$$V(z) \approx \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{z} - \frac{\beta_1}{z^3} \right) \tag{17}$$

Now to compare to the continuous case. Let $dq=\lambda dx$, $\vec{r}=z\hat{z}$, and $z=\sqrt{z^2+x^2}$. Let the line of charge run from -L/2 to L/2. Let θ_1 be the angle between vertical and z when x=-L/2, and θ_2 for x=L/2. By the usual methods:

$$V(z) = \frac{\lambda}{4\pi\epsilon_0} \int_{\theta_1}^{\theta_2} \sec\theta \, d\theta \tag{18}$$

Symmetry allows:

$$V(z) = \frac{2\lambda}{4\pi\epsilon_0} \int_0^{\theta_2} \sec\theta \, d\theta \tag{19}$$

Recall that $\sec\theta_2=z$ /z and $\tan\theta_2=L/2z$. The result of integration is

$$V(z) = \frac{2\lambda}{4\pi\epsilon_0} \ln\left(\frac{z}{z} + \frac{L}{2z}\right) \tag{20}$$

Using the definition $\nu = \sqrt{z^2 + x^2}$, the logarithm can be expanded in a series:

$$V(z) \approx \frac{2\lambda}{4\pi\epsilon_0} \left(\frac{L}{2z} - \frac{\epsilon L^3}{z^3} \right) \tag{21}$$

The constant ϵ is $\epsilon=0.0208...$ Letting $\beta_2=2\epsilon L^2$, and recognizing that $Q=\lambda L$, the final result is

$$V(z) \approx \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{z} - \frac{\beta_2}{z^3} \right)$$
 (22)

Figure 2: The potential versus z (in units of $Q/4\pi\epsilon_0$) for the discrete case (black circles), continuous linear density (black line), and a single point charge (red line).

Spatial Fourier transform

Spatial Fourier transform

What is the Fourier transform of f(z)?

$$f(z) = \frac{1}{z} - \frac{\beta}{z^3} \tag{23}$$

Let the Fourier transform in question be $\mathcal{F}(f(z))_k$. Relying on the linear property of Fourier transforms (indeed, all integrals), and consulting integral tables leads to the following:

$$\mathcal{F}(f(z)) = \mathcal{F}\left(\frac{1}{z}\right) - \beta \mathcal{F}\left(\frac{1}{z^3}\right) \tag{24}$$

$$\mathcal{F}\left(\frac{1}{z}\right) = -i\pi\operatorname{sign}(k) \tag{25}$$

$$\mathcal{F}\left(\frac{1}{z^3}\right) = -i\pi \frac{(-2i\pi k)^2}{2}\operatorname{sign}(k) \tag{26}$$

Spatial Fourier transform

Putting the pieces together, the magnitude of the spatial Fourier transform of V(z) is

$$|\widetilde{V}(k)| = \frac{Q}{4\pi\epsilon_0} \pi \left(1 + 2\beta_{1,2} \pi^2 k^2 \right)$$
 (27)

Figure 3: The spatial Fourier transform of the potential versus k (in units of $Q/4\pi\epsilon_0$) for the discrete case (black circles), continuous linear density (black line), and a single point charge (red line).

Summary

Outline

- 1. The continuous limit
 - How accurate is the idea that $\Delta x \sum_i q_i \rightarrow \int dq$?
 - The spatial Fourier transform
- 2. The line of charges
 - Discrete, continuous
 - Far-field approximation to third order in $(1/r)^n$
 - Spatial Fourier transforms