Model_Transfer Learning 01 - With data augmentation - Feature extraction

Name: Alberto Pingo

Email: 2202145 @my.ipleiria.pt

Validation dataset: train5

Directories

This section sets up the directory paths used for training, validation, and test datasets based on the repository structure.

```
/home/pws/code/IA-image-classification/notebooks/models-T
/home/pws/code/IA-image-classification/data
/home/pws/code/IA-image-classification/data/test
/home/pws/code/IA-image-classification/data/train
/home/pws/code/IA-image-classification/data/train/train5
```

Preprocessing

Load the datasets and perform initial preprocessing. Images are resized to 32x32 pixels and batched.

```
In [ ]: from keras.utils import image_dataset_from_directory
import tensorflow as tf

# Load training datasets from train1 to train4
train_datasets = []
```

```
IMG SIZE = 150
 BATCH SIZE = 32
 train_dataset = image_dataset_from_directory(train_dirs[0], image_size=(I
 # for i in range(1, 5):
       dataset = image dataset from directory(train dirs[i-1], image size=
       train datasets.append(dataset)
# train dataset = train datasets[0]
 # for dataset in train datasets[1:]:
       train dataset = train dataset.concatenate(dataset)
 # Load validation dataset
 validation dataset = image dataset from directory(validation dir, image s
 # Load test dataset
 test dataset = image dataset from directory(test dir, image size=(IMG SIZ
 class names = validation dataset.class names
 class names = [class name.split(' ')[-1] for class name in class names]
 print(class names)
Found 10000 files belonging to 10 classes.
```

```
Found 10000 files belonging to 10 classes.
Found 10000 files belonging to 10 classes.
Found 10000 files belonging to 10 classes.
['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
```

Configure the dataset for performance

Data Augmentation

Rendom change of flipping the image horizontally.

Random chance of moving the image horizontally and vertically [-10%, 10%].

Tried with a more complex approach to data augmentation, but the results were worse because of the small size of the images.

```
#Plot some Augmented images
for images, labels in train_dataset.take(1):
    plt.figure(figsize=(10, 10))
    first_image = images[0]
    for i in range(4):
        ax = plt.subplot(2, 2, i + 1)
        augmented_image = data_augmentation(tf.expand_dims(first_image, 0
        plt.imshow(augmented_image[0] / 255)
        plt.axis('off')
```



```
In []: import matplotlib.pyplot as plt

for data, _ in train_dataset.take(1):
    for i in range(9):
        plt.imshow(data[i].numpy().astype('uint8'))
        plt.show()
    break
```


MODEL ARCHITECTURE

Build a Convolutional Neural Network (CNN) model.

Transfer Learning Model

Use the VGG16 model as a base model.

Freeze the convolutional base and train the densely connected classifier.

Data augmentation before processing the images to the model.

Use two dense layers with 256 neurons and a in-between dropout layer with a rate of 0.5.

```
In []: from tensorflow import keras
    from keras.applications.vgg16 import VGG16
    from keras import layers

    base_model = VGG16(include_top=False, weights='imagenet')
    base_model.trainable = False # Freeze the base model

inputs = keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3))
    x = data_augmentation(inputs)
    x = keras.applications.vgg16.preprocess_input(x)
    x = base_model(x)
```

```
x = layers.Flatten()(x)
x = layers.Dense(256, activation="relu")(x)
x = layers.Dropout(0.5)(x)
x = layers.Dense(256, activation="relu")(x)
x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10, activation="softmax")(x) # Softmax for multi-
model = keras.Model(inputs=inputs, outputs=outputs)
model.summary()
```

Model: "model_1"

Layer (type) ====================================	Output Shape	Param #
========================= input_5 (InputLayer)		
sequential_1 (Sequential)	(None, 150, 150, 3)	0
tfoperatorsgetitem_1 (SlicingOpLambda)	(None, 150, 150, 3)	0
tf.nn.bias_add_1 (TFOpLamb da)	(None, 150, 150, 3)	0
vgg16 (Functional)	(None, None, None, 512)	14714688
flatten_1 (Flatten)	(None, 8192)	0
dense_3 (Dense)	(None, 256)	2097408
dropout_2 (Dropout)	(None, 256)	0
dense_4 (Dense)	(None, 256)	65792
dropout_3 (Dropout)	(None, 256)	0
dense_5 (Dense)	(None, 10)	2570
Layer (type)	Output Shape	Param #
input_5 (InputLayer)		
sequential_1 (Sequential)	(None, 150, 150, 3)	0
tfoperatorsgetitem_1 (SlicingOpLambda)	(None, 150, 150, 3)	Θ
tf.nn.bias_add_1 (TF0pLamb da)	(None, 150, 150, 3)	Θ
vgg16 (Functional)	(None, None, None, 512)	14714688
flatten_1 (Flatten)	(None, 8192)	0
dense_3 (Dense)	(None, 256)	2097408
dropout_2 (Dropout)	(None, 256)	0
dense_4 (Dense)	(None, 256)	65792
dropout_3 (Dropout)	(None, 256)	0

Non-trainable params: 14714688 (56.13 MB)

Compile Model

Loss function:

We use the *Categorical Crossentropy* loss function because it is a multi-class classification problem.

Optimizer: Adam

We use the Adam optimizer because it is one of the best and most popular optimizers.

Train Model

Train the model with Early stopping, Model checkpoint, and Learning rate reduction callbacks.

```
In [ ]: from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPla
        learning_rate_reduction = ReduceLROnPlateau(
            monitor='val acc',
            patience=3,
            verbose=1,
            factor=0.4,
            min lr=1e-6)
        early stop = EarlyStopping(monitor='val acc',
                                    patience=8,
                                    restore best weights=True)
        model checkpoint = ModelCheckpoint('models/T01/checkpoints/T01-DA-cp.h5',
        history = model.fit(
            train dataset,
            epochs=50,
            validation data=validation dataset,
            callbacks=[early stop, model checkpoint, learning rate reduction])
```

/home/pws/miniconda3/envs/tensorflow/lib/python3.11/site-packages/keras/sr c/engine/training.py:3103: UserWarning: You are saving your model as an HD F5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.ke ras')`.

```
saving_api.save_model(
```

```
acc: 0.4071 - val loss: 1.0745 - val acc: 0.6791 - lr: 0.0010
Epoch 2/50
Epoch 2/50
acc: 0.5776 - val_loss: 0.8892 - val acc: 0.7617 - lr: 0.0010
Epoch 3/50
acc: 0.6067 - val loss: 0.8123 - val acc: 0.7691 - lr: 0.0010
Epoch 4/50
acc: 0.6428 - val loss: 0.7669 - val acc: 0.7866 - lr: 0.0010
acc: 0.6721 - val loss: 0.7313 - val_acc: 0.7917 - lr: 0.0010
Epoch 6/50
acc: 0.6853 - val loss: 0.6603 - val acc: 0.8050 - lr: 0.0010
Epoch 7/50
acc: 0.7094 - val loss: 0.6268 - val acc: 0.8115 - lr: 0.0010
acc: 0.7272 - val loss: 0.6241 - val acc: 0.8113 - lr: 0.0010
Epoch 9/50
acc: 0.7493 - val loss: 0.5691 - val acc: 0.8303 - lr: 0.0010
Epoch 10/50
acc: 0.7570 - val loss: 0.5724 - val acc: 0.8255 - lr: 0.0010
Epoch 11/50
acc: 0.7566 - val loss: 0.5308 - val acc: 0.8362 - lr: 0.0010
Epoch 12/50
acc: 0.7757 - val loss: 0.5357 - val acc: 0.8373 - lr: 0.0010
Epoch 13/50
acc: 0.7723 - val loss: 0.5222 - val acc: 0.8393 - lr: 0.0010
Epoch 14/50
acc: 0.7885 - val loss: 0.5169 - val acc: 0.8463 - lr: 0.0010
Epoch 15/50
acc: 0.7906 - val loss: 0.5759 - val acc: 0.8322 - lr: 0.0010
Epoch 16/50
acc: 0.7965 - val loss: 0.5346 - val acc: 0.8425 - lr: 0.0010
Epoch 17/50
0.8011
Epoch 17: ReduceLROnPlateau reducing learning rate to 0.000400000018998980
acc: 0.8011 - val loss: 0.5280 - val acc: 0.8399 - lr: 0.0010
Epoch 18/50
acc: 0.8172 - val loss: 0.4923 - val acc: 0.8531 - lr: 4.0000e-04
Epoch 19/50
```

```
acc: 0.8283 - val loss: 0.4893 - val acc: 0.8537 - lr: 4.0000e-04
Epoch 20/50
acc: 0.8275 - val loss: 0.4746 - val acc: 0.8543 - lr: 4.0000e-04
Epoch 21/50
acc: 0.8377 - val loss: 0.4802 - val acc: 0.8526 - lr: 4.0000e-04
acc: 0.8363 - val loss: 0.4868 - val acc: 0.8523 - lr: 4.0000e-04
Epoch 23/50
acc: 0.8432 - val loss: 0.4841 - val acc: 0.8545 - lr: 4.0000e-04
Epoch 24/50
acc: 0.8497 - val loss: 0.4708 - val acc: 0.8567 - lr: 4.0000e-04
Epoch 25/50
acc: 0.8498 - val loss: 0.4629 - val acc: 0.8602 - lr: 4.0000e-04
Epoch 26/50
acc: 0.8522 - val loss: 0.4729 - val acc: 0.8572 - lr: 4.0000e-04
Epoch 27/50
acc: 0.8495 - val loss: 0.4731 - val acc: 0.8534 - lr: 4.0000e-04
Epoch 28/50
0.8557
Epoch 28: ReduceLROnPlateau reducing learning rate to 0.000160000007599592
acc: 0.8557 - val loss: 0.4616 - val acc: 0.8587 - lr: 4.0000e-04
Epoch 29/50
acc: 0.8566 - val loss: 0.4572 - val acc: 0.8590 - lr: 1.6000e-04
Epoch 30/50
acc: 0.8613 - val loss: 0.4562 - val acc: 0.8589 - lr: 1.6000e-04
Epoch 31/50
0.8664
Epoch 31: ReduceLROnPlateau reducing learning rate to 6.40000042039901e-0
acc: 0.8664 - val loss: 0.4561 - val acc: 0.8579 - lr: 1.6000e-04
Epoch 32/50
acc: 0.8725 - val loss: 0.4518 - val acc: 0.8593 - lr: 6.4000e-05
Epoch 33/50
acc: 0.8714 - val loss: 0.4520 - val acc: 0.8609 - lr: 6.4000e-05
acc: 0.8736 - val loss: 0.4516 - val acc: 0.8598 - lr: 6.4000e-05
Epoch 35/50
acc: 0.8736 - val loss: 0.4491 - val acc: 0.8603 - lr: 6.4000e-05
Epoch 36/50
acc: 0.8753 - val loss: 0.4477 - val acc: 0.8612 - lr: 6.4000e-05
```

```
Epoch 37/50
acc: 0.8784 - val loss: 0.4501 - val acc: 0.8598 - lr: 6.4000e-05
Epoch 38/50
acc: 0.8762 - val loss: 0.4480 - val acc: 0.8603 - lr: 6.4000e-05
Epoch 39/50
0.8803
Epoch 39: ReduceLROnPlateau reducing learning rate to 2.560000284574926e-0
acc: 0.8803 - val loss: 0.4473 - val acc: 0.8602 - lr: 6.4000e-05
Epoch 40/50
acc: 0.8765 - val loss: 0.4459 - val acc: 0.8617 - lr: 2.5600e-05
Epoch 41/50
acc: 0.8768 - val loss: 0.4460 - val acc: 0.8606 - lr: 2.5600e-05
Epoch 42/50
acc: 0.8814 - val loss: 0.4457 - val acc: 0.8610 - lr: 2.5600e-05
Epoch 43/50
0.8825
Epoch 43: ReduceLROnPlateau reducing learning rate to 1.0240000847261399
e-05.
acc: 0.8825 - val loss: 0.4442 - val acc: 0.8614 - lr: 2.5600e-05
Epoch 44/50
acc: 0.8827 - val loss: 0.4437 - val acc: 0.8618 - lr: 1.0240e-05
Epoch 45/50
acc: 0.8756 - val loss: 0.4441 - val acc: 0.8617 - lr: 1.0240e-05
Epoch 46/50
acc: 0.8847 - val loss: 0.4446 - val acc: 0.8615 - lr: 1.0240e-05
Epoch 47/50
0.8796
Epoch 47: ReduceLROnPlateau reducing learning rate to 4.09600033890456e-0
acc: 0.8796 - val loss: 0.4451 - val acc: 0.8607 - lr: 1.0240e-05
Epoch 48/50
acc: 0.8854 - val loss: 0.4449 - val acc: 0.8605 - lr: 4.0960e-06
Epoch 49/50
acc: 0.8823 - val loss: 0.4451 - val acc: 0.8604 - lr: 4.0960e-06
Epoch 50/50
Epoch 50: ReduceLROnPlateau reducing learning rate to 1.6384001355618238
e-06.
acc: 0.8784 - val loss: 0.4452 - val acc: 0.8609 - lr: 4.0960e-06
```

Save Model

```
In [ ]: keras.models.save_model(model, 'models/T01/T01-DA-model.h5')

/tmp/ipykernel_8035/1849881407.py:1: UserWarning: You are saving your mode
    l as an HDF5 file via `model.save()`. This file format is considered legac
    y. We recommend using instead the native Keras format, e.g. `model.save('m
    y_model.keras')`.
        keras.models.save_model(model, 'models/T01/T01-DA-model.h5')

In [ ]: keras.models.load_model('models/T01/T01-DA-model.h5')
Out[ ]: <keras.src.engine.functional.Functional at 0x72a4b2d92ad0>
```

EVALUATION

Evaluate the model on the validation dataset.

Training and Validation Curves

Plot the training and validation accuracy and loss curves.

```
In [ ]: import matplotlib.pyplot as plt
        # Extract the history from the training process
        acc = history.history['acc']
        val acc = history.history['val acc']
        loss = history.history['loss']
        val_loss = history.history['val_loss']
        epochs = range(1, len(acc) + 1)
        # Plot the training and validation accuracy
        plt.plot(epochs, acc, 'bo', label='Training acc')
        plt.plot(epochs, val acc, 'b', label='Validation acc')
        plt.title('Training and validation accuracy')
        plt.legend()
        # Plot the training and validation loss
        plt.figure()
        plt.plot(epochs, loss, 'bo', label='Training loss')
        plt.plot(epochs, val_loss, 'b', label='Validation loss')
        plt.title('Training and validation loss')
        plt.legend()
        plt.show()
```


Confusion Matrix

In []: from sklearn.metrics import confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

```
y_true = []
y_pred = []

for images, labels in validation_dataset:
    y_true.extend(np.argmax(labels, axis=1))
    y_pred.extend(np.argmax(model.predict(images), axis=1))

y_true = np.array(y_true)
y_pred = np.array(y_pred)

cm = confusion_matrix(y_true, y_pred)

plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()
```

			_	100 / 1
1/1	[========]	-	0s	162ms/step
1/1	[=======]	-	0s	18ms/step
1/1	[=======]	-	0s	18ms/step
1/1	[=======]	-	0s	18ms/step
1/1	[======]	-	0s	16ms/step
1/1	[=======]	-	0s	18ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]	_	0s	17ms/step
1/1	[=======]	_	0s	19ms/step
1/1	[=========]	_	0s	18ms/step
1/1	[=======]	_	_	17ms/step
1/1	[=======]	_	0s	18ms/step
•	[=======]			•
1/1	-		0s	16ms/step
1/1	[=======]	-	0s	15ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[======]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[======]	-	0s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[======]	-	0s	17ms/step
1/1	[======]	-	0s	17ms/step
1/1	[======]	-	0s	20ms/step
1/1	[======================================	-	0s	16ms/step
1/1	[======================================	-	0s	16ms/step
1/1	[=======]	_	0s	20ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[========]	_	0s	17ms/step
1/1	[========]	_	0s	16ms/step
1/1	[=======]	_	0s	20ms/step
1/1	[=======]	_	0s	
1/1	[========]	_		· ·
	[=======]			•
	[=======]			17ms/step
1/1	-			17ms/step
1/1	[=======]			17ms/step
1/1	[=======]		0s	
1/1	[=======]		_	
1/1	[=======]		_	
1/1	[=======]	_	_	17ms/step
1/1	[=======]	_	_	17ms/step
1/1	[=======]			17ms/step
	[======]			
1/1	-			17ms/step
1/1	[=======]			
1/1	[=======]			
1/1	[========]			
1/1	-			20ms/step
1/1	[=======]			17ms/step
1/1	-			17ms/step
1/1	-			16ms/step
1/1	[========]			17ms/step
1/1	[=======]		0s	
1/1	[=======]		0s	
1/1	[======]			
1/1	[=======]			
1/1	[=======]			17ms/step
1/1	[======]	-	٥s	19ms/step

1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	20ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	38ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]	_	0s	18ms/step
1/1	[======]	_	0s	16ms/step
1/1	[=======]		0s	
•		-		16ms/step
1/1	[========]	-	0s	19ms/step
1/1	[========]	-	0s	18ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[========]	-	0 s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[========]	-	0s	21ms/step
1/1	[========]	-	0s	19ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[=======]	_	0s	17ms/step
1/1	[=======]	_	0s	18ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[======]	_	0s	22ms/step
1/1	[=======]	-	0s	
•		-		17ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=========]	-	0s	16ms/step
1/1	[======================================	-	0s	16ms/step
1/1	[=======]	-	0s	24ms/step
1/1	[========]	-	0 s	18ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0s	
1/1	[=======]	_	0s	18ms/step
1/1	-		_	
,	[========]		_	17ms/step
	[========]		0s	17ms/step
1/1			0s	17ms/step
1/1	[========]		0s	16ms/step
	[========]	-		
1/1	-	-	0s	16ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[======]	-	0s	17ms/step
1/1	[======]	-	0s	18ms/step
1/1	[=======]	-	0 s	17ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	18ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	18ms/step
1/1	[========]	_	0s	16ms/step
1/1	[========]	_	0s	19ms/step
1/1	[=======]		0s	17ms/step
1/1	[=======]		_	•
-/ -			55	_,5, 5 ccp

1/1	[========]	-	0s	18ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	_	0s	18ms/step
1/1	[=======]	_	0s	18ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[======]	_	0s	16ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[======]	_	0s	15ms/step
1/1	[=======]	_	0s	18ms/step
1/1	[=======]		0s	•
•	-	-		18ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	19ms/step
1/1	[========]	-	0s	17ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[======]	-	0s	17ms/step
1/1	[=======]	-	0s	19ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	17ms/step
1/1	[=========]	-	0s	17ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]	_	0 s	17ms/step
1/1	[=======]	_	0s	19ms/step
1/1	[=======]	_	0s	17ms/step
1/1	[=======]	_	0s	17ms/step
1/1	[======]	_	0s	16ms/step
1/1	[=======]	_	0s	18ms/step
1/1	[=======]	_	0s	18ms/step
-, -	[========]		0s	
1/1	[======]	_	0s	17ms/step
1/1	-		_	17ms/step
-, -	[=========]		_	17ms/step
	[========]			•
	-		0s	17ms/step
1/1	-		0s	17ms/step
1/1		-	0s	16ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	19ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[======]	-	0s	16ms/step
1/1	[======================================	-	0s	43ms/step
1/1	[======]	-	0 s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[======]	-	0s	17ms/step
1/1	[=======]	-	0s	18ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[======]	-	0s	16ms/step
1/1	[======]	-	0s	16ms/step
1/1	[======]	-	0s	16ms/step
1/1	[======]	-	0s	17ms/step
1/1	[======]	-	0s	17ms/step
1/1	[=======]	-	0s	18ms/step

1/1	[========]	-	0s	20ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	18ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[======]	_	0s	16ms/step
1/1	[=======]		0s	
•		-		16ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	18ms/step
1/1	[======================================	-	0s	17ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	16ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]	_	0 s	16ms/step
1/1	[======]	_	0s	17ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[======]		0s	17ms/step
1/1	[=======]	-	0s	•
•		-		18ms/step
1/1	[========]	-	0s	17ms/step
1/1	[=========]	-	0s	17ms/step
1/1	[========]	-	0s	18ms/step
1/1	[=========]	-	0s	16ms/step
1/1	[=======]	-	0 s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0 s	16ms/step
1/1	[========]	-	0s	16ms/step
1/1	[=========]	-	0s	16ms/step
1/1	[========]	-	0s	21ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[========]	_	0s	17ms/step
1/1	[========]		_	18ms/step
	[=======]	_	0s	16ms/step
1/1	1		0s	16ms/step
1/1	-	_	0s	18ms/step
1/1	[=========]	_	0s	16ms/step
	[========]			•
1/1	-	-	0s	16ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	-	0s	24ms/step
1/1	[======]	-	0s	20ms/step
1/1	[======]	-	0s	16ms/step
1/1	[=======]	-	0 s	16ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[=======]	-	0s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[======]	-	0s	16ms/step
1/1	[=======]	-	0s	20ms/step
1/1	[=======]	-	0s	15ms/step
1/1	[========]	-	0s	16ms/step
1/1	[========]	_	0s	18ms/step
1/1	[========]		0s	17ms/step
1/1	[========]		_	•
-/ -			55	_,5, 5 ccp

1/1	[=======]	-	0s	16ms/step
1/1	[========]	-	0s	17ms/step
1/1	[==========]	-	0s	16ms/step
1/1	[======================================	-	0s	16ms/step
1/1	[======================================	-	0s	16ms/step
1/1	[========]	_	0s	17ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]		0s	16ms/step
1/1	[=======]		0s	16ms/step
1/1	[========]		0s	•
•				20ms/step
1/1	[========]		0s	30ms/step
1/1	[======================================		0s	16ms/step
1/1	[======================================		0s	17ms/step
1/1	[=======]			19ms/step
1/1	[=========]	-	0s	16ms/step
1/1	[=========]	-	0 s	17ms/step
1/1	[========]	-	0s	16ms/step
1/1	[======================================	-	0s	16ms/step
1/1	[======================================	-	0s	16ms/step
1/1	[========]	_	0s	17ms/step
1/1	[=======]	_	0 s	16ms/step
1/1	[=======]	_	0s	16ms/step
1/1	[=======]		0s	16ms/step
1/1	[========]		0s	18ms/step
•	[========]			•
1/1			0s	18ms/step
1/1	[======================================		0s	16ms/step
1/1	[======================================		0s	17ms/step
1/1	[======================================		0s	16ms/step
1/1	[======================================		0s	18ms/step
1/1	[========]		0 s	16ms/step
1/1	[=========]	-	0 s	17ms/step
1/1	[=========]	-	0 s	16ms/step
1/1	[========]	-	0s	16ms/step
1/1	[======================================	-	0s	17ms/step
1/1	[==========]	-	0s	17ms/step
1/1	[======================================	-	0s	18ms/step
1/1	[===========]	_	0s	16ms/step
	[==========]			17ms/step
	[==========]			16ms/step
	[=========]		_	16ms/step
1/1	[=========]		_	16ms/step
1/1	[======================================		0s	19ms/step
1/1	[========]		0s	16ms/step
	[======================================			•
1/1			0s	16ms/step
1/1	[========]		0s	15ms/step
1/1	[========]		0s	18ms/step
1/1	[======================================			17ms/step
1/1	[=========]			16ms/step
1/1	[=========]			17ms/step
1/1	[=======]		0 s	17ms/step
1/1	[=======]		0s	16ms/step
	[=======]		0s	17ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=======]	-	0s	16ms/step
1/1	[=========]	-	0s	16ms/step
1/1	[========]		0s	16ms/step
1/1	[==========]		_	17ms/step
1/1	[==========]		0s	17ms/step
1/1	[=========]			
_, _				, сор

- 800 - 600 - 400 - 200 - 0 Predicted

```
In [ ]: print("Confusion Matrix:")
print(cm)
```

```
Confusion Matrix:
                            2
                                     9
                                             20]
[[876
       11
            17
                 10
                      18
                                4
                                         47
    0 929
              2
                  2
                       3
                            0
                                0
                                     2
                                          9
                                             67]
 [
 [ 24
         0 771
                 35
                      75
                           12
                               23
                                     8
                                              2]
 [
    5
         4
            28 767
                      42
                           96
                               41
                                    20
                                          9
                                              4]
 [
   18
         0
            30
                 19 846
                          14
                               30
                                    35
                                          3
                                              2]
 [
    2
         1
            13 138
                      48 773
                               13
                                    35
                                          0
                                              2]
 [
    3
         0
            25
                 26
                      22
                           7 891
                                     1
                                          3
                                              2]
    2
                      75
                          24
                                          2
                                              5]
 [
         1
             8
                 31
                                3 826
   15
         8
             5
                  3
                       2
                                     2 953
                                             12]
 [
                            0
                                3
                  4
                       2
 [ 10
        15
             0
                            0
                                1
                                        13 977]]
                                     0
```

```
In [ ]: from sklearn.metrics import classification_report
    report = classification_report(y_true, y_pred, target_names=class_names)
    print(report)
```

	precision	recall	f1-score	support
airplane	0.92	0.86	0.89	1014
automobile	0.96	0.92	0.94	1014
bird	0.86	0.81	0.83	952
cat	0.74	0.75	0.75	1016
deer	0.75	0.85	0.79	997
dog	0.83	0.75	0.79	1025
frog	0.88	0.91	0.90	980
horse	0.88	0.85	0.86	977
ship	0.92	0.95	0.93	1003
truck	0.89	0.96	0.92	1022
accuracy			0.86	10000
macro avg	0.86	0.86	0.86	10000
weighted avg	0.86	0.86	0.86	10000
weighted avg	0.00	0.00	0.00	10000

Predictions

Predict and visualize the results for a sample image.

```
In [ ]: import tensorflow as tf
        import matplotlib.pyplot as plt
        from keras.preprocessing import image
        # Load an image
        img_path = train_dirs[0] + '/006_frog/alytes_obstetricans_s_000179.png'
        # img_path2 = train_dirs[0] + '/000_airplane/airbus_s_000012.png'
        img = tf.keras.preprocessing.image.load img(img path, target size=(150, 1
        # Preprocess the image
        img array = image.img to array(img)
        img_array = tf.expand_dims(img_array, 0)
        plt.imshow(img)
        plt.show()
        print(img array.shape)
        result = model.predict(img_array)
        print("Result: ", result.round())
        print("Predicted class: ", class_names[np.argmax(result)])
        print("True class: ", img_path.split('/')[-2].split(' ')[-1])
```


1/1 [======] - 0s 29ms/step Result: [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

Predicted class: frog

True class: frog