CryptoCards

Pietro, Han, Lilly

The problem

Strangers don't trust each other or the server

 How can players ensure each others' cards are legitimate?

Suppose two player game...

Alice Bob

Whole Encrypted_B Individually encrypted_A deck

Alice Bob

Individually encrypted $_{\!A,B}$ deck

Alice Bob

Suppose three players...

Repeat for x number of players

Problems with the solution

- Each additional player increases wait time linearly (+10 seconds per player, every round)
- Textbook RSA is commutative, but padding is not
 - Choosing smaller primes make encryption less secure, but decryption faster
 - Can decryption be done in the length of a blackjack game?
- Timeout feature is 1 day on the game instance

How quickly can a 1024-bit RSA be cracked?

- 2007: 700-bit RSA broken in 11 months
- 2010: 1024-bit RSA broken in 104 hours (81 Pentium 4 chips)
- 2015: 512-bit RSA broken in 4 hours (\$75 dollar Amazon EC2 cloud instance)
- 2015: 1024-bit DH broken in 2 months (3000 CPUs by NSA)
- 2019: ???

Works Cited

https://ieeexplore.ieee.org/document/6043261 (GPU performance on 1024-RSA is superior, but not by the watt ratio)

https://www.ru.nl/publish/pages/769526/z_thesis_erikboss_final.pdf (112-bit ECDLP in 18.5 years, 1x GTX780/Radeon HD7850)

https://en.wikipedia.org/wiki/Key_size

https://www.theregister.co.uk/2015/10/19/nsa_crypto_breaking_theory/ (NSA breaks 1024-bit in 2 months using 3000 CPUs)

Code!