

Linear and Discrete Optimization

How efficient is the simplex method?

▶ One iteration of the simplex algorithm

One iteration of the simplex method

CT = >T. AB , AT = CT. AB while B is not optimal Let $i \in B$ be index with $n_i < 0$ The negative of a column of AB Compute $d \in \mathbb{R}^n$ with $a_i^T d = 0$, $j \in B \setminus \{i\}$ and $a_i^T d = -1$ Determine $K = \{k : 1 \le k \le m, a_k^T d > 0\}$ $A \cdot d$ if $K = \emptyset$ assert LP unbounded else Let $k \in K$ index where $\min_{k \in K} (b_k - a_k^T x^*) / a_k^T d$ is attained update $B := B \setminus \{i\} \cup \{k\}$

One iteration of the simplex method (cont.)

- ▶ Suppose $A \in \mathbb{Q}^{m \times n}$, $c \in \mathbb{Q}^n$, $b \in \mathbb{Q}^m$ (rational data)
- Compute $\hat{J}_{R}^{T} = C^{T} A^{T_{0}}$ $O(n^{2})$
- Compute d (the negative of a column of A_R^{-1})
- ► Compute K (by computing $A \cdot d$) \bigcirc (m· \wedge)

A = m / d

► If A_B^{-1} is known, this amounts to a total of: \bigcirc (w.v.)

Questions:

- ▶ Is the size of A_B^{-1} polynomial in the size of the input (A, b, c)?
- ▶ How expensive is it to compute A_p^{-1} ?

Matrix inversion

Quiz:

$$A = \begin{pmatrix} p_{11}/q_{11} & \cdots & p_{1n}/q_{1n} \\ & \cdots & \\ p_{n1}/q_{n1} & \cdots & p_{nn}/q_{nn} \end{pmatrix} \in \mathbb{Q}^{n \times n}.$$

The *size* of the product of denominators $\prod_{i=1,j=1}^{n} q_{ij}$ is

- linear in the size of the input
- not polynomial in the size of the input

Side
$$(\pi q_{ij}) = \Theta (\sum_{ij} Size (q_{ij}))$$

Matrix inversion

Quiz:

$$A = \begin{pmatrix} p_{11}/q_{11} & \cdots & p_{1n}/q_{1n} \\ & \cdots & \\ p_{n1}/q_{n1} & \cdots & p_{nn}/q_{nn} \end{pmatrix} \in \mathbb{Q}^{n \times n}.$$

The *size* of the product of denominators $\prod_{i=1,j=1}^{n} q_{ij}$ is

Write
$$A = 1/Q \cdot A'$$
 where Q is product of denominators and $A' \in \mathbb{Z}^{n \times n}$

Since
$$A^{-1} = Q \cdot (A')^{-1}$$
 invert A' instead of A .

W.l.o.g. assume that A is integral.

Size $(R'^{-1}) = \frac{2}{\cdot}$

Matrix inversion formula

A-1 for A = 76 NXM

Cramer's Rule

For $A \in \mathbb{R}^{m \times n}$ and $1 \le i \le m$ and $1 \le j \le n$, A_{ij} denotes the matrix obtained from A by deleting the i-th row and j-th column.

$$A = \begin{pmatrix} 3 & 7 \\ 9 & 4 & 3 \end{pmatrix}$$
 $A_{12} = \begin{pmatrix} 9 & 3 \end{pmatrix}$

Matrix inversion formula:

Hadamard bound

Theorem (Hadamard bound)

$$|\det(A)| \leqslant \prod_{i=1}^n ||a_i||_2 \leqslant n^{n/2} \cdot B^n,$$

$$\|a_i\|_{L} \leq \|\begin{pmatrix} \beta_i \\ \beta_j \end{pmatrix}\|_{L^2}$$

where B is upper bound on absolute values of entries of A.

$$|Vol = | du+(R) |$$

$$|Vol$$

If $A \in \mathbb{Z}^{n \times n}$ is integral then $\operatorname{size}(\det(A)) = O(n \log n + n \cdot \operatorname{size}(B))$. Polynomial in $\operatorname{size}(A)$.

The size of the inverse

Corollary

Let $A \in \mathbb{Q}^{n \times n}$ be an invertible matrix. The size of A^{-1} is polynomial in the size of A.

Questions:

- ▶ Is the size of A_B^{-1} polynomial in the size of the input (A, b, c)? ✓
- ► How expensive is it to compute A_B^{-1} ?

Updating A_R^{-1}

Suppose basis B is preceded by B' with

$$B' = \{b_1, \ldots, b_{k-1}, b'_k, b_{k+1}, \ldots, b_n\}$$

 $B = \{b_1, \ldots, b_{k-1}, b_k, b_{k+1}, \ldots, b_n\}$

UT= ax An

Quiz: $A_B \cdot A_{B'}^{-1}$ is of the form

Updating A_B^{-1} (cont.)

$$B' = \{b_1, \ldots, b_{k-1}, b'_k, b_{k+1}, \ldots, b_n\}$$

 $B = \{b_1, \ldots, b_{k-1}, b_k, b_{k+1}, \ldots, b_n\}$

- ► Compute $a_{b_k}^T \cdot A_{B'}^{-1} = (v_1, \dots, v_k, \dots, v_n)$
- ► A_B^{-1} stems from $A_{B'}^{-1}$ by performing the following operations on $A_{B'}^{-1}$:
 - For each column $i \neq k$: Subtract v_i/v_k times column k from column i
 - ▶ Divide column k by v_k \circlearrowleft \circlearrowright \circlearrowright
 - (n)

arithmetic operations

Amounts to a total number of:

Complexity of one iteration

Theorem

One iteration of the simplex algorithm requires a total number of $O(m \cdot n)$ operations on rational numbers whose size is polynomial in the input size.