UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO - UFERSA

Disciplina: Eletricidade e Magnetismo 2023.2

Prof. Lino Martins de Holanda Júnior

Carga, Força e Campo Elétrico 05/12/2023

Nomes:			

- 1) Ao pentear o cabelo em um dia seco, uma pessoa atrita o pente de tal forma a arrancar elétrons do pente, deixando-o eletrizado. Esse pente pode atrair pequenos pedaços de papel devido às forças eletrostáticas entre as cargas geradas no pente e as cargas existentes no papel. Se a carga total gerada no pente foi de 7,2 pC, quantos elétrons foram arrancados do pente?
 - a) 4.5×10^5 elétrons
 - b) 2.2×10^7 elétrons
 - c) 4.5×10^7 elétrons
 - d) 7.2×10^{12} elétrons

Esses elétrons foram pra onde?

- 2) Uma partícula de carga q está fixa na origem de um sistema de coordenadas e outra partícula de carga -8q também está fixa na posição x = 4m. Onde devemos colocar uma terceira partícula de carga 2q de forma que a força resultante sobre a partícula da origem seja nula?
 - a) x = -2m
 - b) x = +2m
 - c) x = +6m
 - d) x = -4m
- 3) Duas cargas são colocadas em dois vértices de um triângulo equilátero, como mostrado na figura ao lado.
- i. Qual é o vetor campo elétrico nos pontos A e B, respectivamente?

a)
$$\vec{E}_A = \frac{\sqrt{3}kQ}{d^2}\hat{j}$$
 e $\vec{E}_B = 0$

b)
$$\vec{E}_A = 0$$
 e $\vec{E}_B = \frac{kQ}{d^2}\hat{i}$

c)
$$\vec{E}_A = \frac{2kQ}{d^2}\hat{j}$$
 e $\vec{E}_B = 0$

d)
$$\vec{E}_A = -\frac{\sqrt{3}kQ}{d^2}\hat{j}$$
 e $\vec{E}_B = \frac{\sqrt{3}kQ}{d^2}\hat{i}$

ii. Se um elétron for solto no ponto A, qual a força exercida sobre ele?

a)
$$\vec{F} = -\frac{kQe}{d^2}\hat{\imath}$$

b)
$$\vec{F} = \frac{\sqrt{3}kQe}{d^2}\hat{j}$$

c)
$$\vec{F} = \frac{kQe}{2d^2}\hat{\imath}$$

d)
$$\vec{F} = -\frac{\sqrt{3}kQe}{d^2}\hat{j}$$

