第5章 化学平衡

概念题:

- 1. 若下列反应中的气体是理想气体,则 $K_p = K_x = K_c = K^{\circ}$ 的反应是 ______。
 - (1) $CaCO_3 = CaO(s) + CO_2(g)$
 - (2) $N_2O_4(g) = 2NO_2(g)$
 - (3) $2ZnS(s)+3O_2(g) = 2ZnO(s)+2SO_2(g)$
 - (4) $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$
- 2. 相同温度下,同一气相反应在高压下的 K_f 和它在低压下的 K_p 之间的关系是 K_f ____ K_p (>、=、<)。
- 3. 举例说明,同一反应中各反应物的转化率 $\alpha_{\rm R}$ 在何种情况下才相同?
- 4. 在合成氨生产中采用高压并且定期放空氩气,这是因为。
- 5. 试写出下列反应的 K_n 的表示式:
 - (1) $2NaHCO_3(s) = Na_2CO_3(s) + H_2O(g) + CO_2(g)$;
 - (2) $2HgO(s) = 2Hg(l) + O_2(g)$;
 - (3) $3Fe_2O_3(s) + H_2(g) = 2Fe_3O_4(s) + H_2O(g)$;
 - (4) $2Ag(s) + \frac{1}{2}O_2(g) = Ag_2O(s)$;
- 6. 已知 $Ag_2O(s)$ 的标准摩尔生成吉氏函数 $\Delta_f G_m^e(298.15 \,\mathrm{K}) = -11.20 \,\mathrm{kJ \cdot mol^{-1}}$,则 $Ag_2O(s)$ 在 298.15 K 下的分解压力为 ______。
- 7. 在 1073 K,反应 $CO_2(g)+C(s)=2CO(g)$ 的 $K^e=5.33$ 。若气体为理想气体,当反应系统中 $CO_2(g)$ 和 CO(g) 的分压均为 50 kPa 时,反应向什么方向进行? _______。
- 8. 在一定温度下,反应 $CO_2(g)+C(s)=2CO(g)$ 的标准平衡常数为 $K^e(1)$,标准摩尔反应吉氏函数为 $\Delta_r G_m^e(1)$;反应 $C(s)+O_2(g)=CO_2(g)$ 的标准平衡常数为 $K^e(2)$,标准摩尔反应吉氏函数为 $\Delta_r G_m^e(2)$,则反应 $2CO(g)+O_2(g)=2CO_2(g)$ 的 $K^e(3)=$ _______, $\Delta_r G_m^e(3)=$ ______。
- 9. 公式 $\ln \frac{K^{\,\mathrm{e}}(T_2)}{K^{\,\mathrm{e}}(T_1)} = -\left(\Delta_{\mathrm{r}} H_{\,\mathrm{m}}^{\,\mathrm{e}}/R\right) \left(\frac{1}{T_2} \frac{1}{T_1}\right)$ 的适用条件是 _______。
- 10. 试写出适用于化学反应的平衡判据 ______

计算题

1、已知一氧化碳燃烧反应 $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ 在 2800K 时的标准平衡常数为 6.401。现若在该温度及 101325 Pa 压力下,让 1 mol 一氧化碳气体在氧超过理论量一倍的空气(物质的量之比 N_2 : O_2 =79:21)中燃烧,试求一氧化碳转化率。若 1 mol 一氧化碳在氧超过理论量一倍的纯氧气中燃烧,其转化率又为多少?两者相比,说明了什么?设气体都可看作理想气体,反应压力均为 101325 Pa。

2、使体积百分数为 CH_4 10%、 H_2 80%、 N_2 10%的混合气体,在 1000K、101325 Pa 下与碳接触,在此条件下能否发生如下反应: $C(s) + 2H_2(g) \rightarrow CH_4(g)$ 。若要在 1000K 生成 $CH_4(g)$,该混合气体的压力至少为多少?设气体为理想气体,有关热力学数据如下:

物 质	$\Delta_{\rm f} H_{\rm m}^{\theta}$ (298.15K)/ kJ·mol ⁻¹	$S_{\mathrm{m}}^{\mathrm{\theta}}(298.15\mathrm{K})/\mathrm{J}\cdot\mathrm{K}^{\mathrm{-1}}\cdot\mathrm{mol}^{\mathrm{-1}}$	$\overline{C}_{p,\mathrm{m}} / \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$
C(s)	0	5.740	19.87
$H_2(g)$	0	130.684	29.41
CH ₄ (g)	-74.81	186.264	53.97

3、已知 25℃时 H_2O (l)的标准摩尔熵为 69.91 $J \cdot K^{-1} \cdot mol^{-1}$,标准生成焓为 $-285.830 \text{ kJ} \cdot mol^{-1}$,饱和蒸气压为 3.167 kPa, H_2O (g)的标准生成焓为 $-241.818 \text{ kJ} \cdot mol^{-1}$,试求 25℃时 H_2O (g)的标准摩尔熵,设水蒸气可看作理想气体。

4、反应 2NaHCO₃ (s) = Na₂CO₃ (s) + H₂O(g) + CO₂ (g)的标准摩尔反应焓与温度有如下关系: $\Delta_r H_m^\theta / \text{J} \cdot \text{mol}^{-1} = 122675 + 38.28 (T/K) - 53.35 \times 10^{-3} (T/K)^2$ 。 已 知 该 反 应 $\Delta_r G_m^\theta (298.15 \text{ K}) = 29623 \text{J} \cdot \text{mol}^{-1}$ 。 试证明该反应的标准平衡常数与温度服从如下公式: $\text{lg } K^\theta = -6407 / (T/K) + 4.604 \text{ lg} (T/K) - 2.786 \times 10^{-3} (T/K) + 5.737$ 。写出 NaHCO₃ (s)的分解压力与温度的关系式,并计算 343K 时 NaHCO₃ (s)的分解压力为多少?(当多相反应的气体产物不止一种时,则产物的平衡总压力称为分解压力。)

5、实验测得反应 $CO_2(g) + C(s)$ \longrightarrow 2CO(g) 的平衡数据如下:

<i>T /</i> K	总压力 / kPa	在平衡混合物中 CO ₂ 的摩尔分数
1073	260.41	0.2645
1173	233.05	0.0692

已知反应 $2\text{CO}_2(g)$ \longrightarrow $2\text{CO}(g) + \text{O}_2(g)$ 在 1173K 时 K^e 为 1.27×10^{-16} ,该温度下 C (s)的标准摩尔燃烧焓为 $393.5 \text{ kJ·mol}^{-1}$ 。试计算反应在 1173K 时的 $\Delta_r H_m$ 和 $\Delta_r S_m$ 。假设气体看作理想气体, $\Delta_r H_m^e$ 不随温度变化。