直角三角形 ABC (ただし $\angle C$ が直角) に対し、 $\tan A = 3$ であるとする。この とき, $\sin A$, $\cos A$ の値を求めなさい.

(解) 仮定と正接の性質より、
$$3 = \tan A = \frac{\sin A}{\cos A}$$
 であるから、 $\angle A$ の正弦と余弦は
$$\sin A = 3\cos A \tag{0.1}$$

を満たす. $\sin^2 A + \cos^2 A = 1$ より,

$$1 = (3\cos A)^{2} + \cos^{2} A$$
$$= 9\cos^{2} A + \cos^{2} A$$
$$= 10\cos^{2} A$$

となる. したがって, $\cos^2 A = \frac{1}{10}$ である. $\cos A > 0$ なので, $\cos A = \frac{1}{\sqrt{10}}$ を得る. この結果と (0.1) 式より, $\sin A = \frac{3}{\sqrt{10}}$ を得る.

コメント

- 公式 $\tan^2 A + 1 = \frac{1}{\cos^2 A}$ を用いて、直接 $\cos A$ を求めても良い。 $\tan^2 A + 1 = \frac{1}{\cos^2 A}$ を $\cos^2 A = \frac{1}{\tan^2 A} + 1$ と式変形している者が数名いたが、 これは間違いである. 正しくは $\cos^2 A = \frac{1}{\tan^2 A + 1}$.