ACTIVIDAD SESIÓN DEEP LEARNING

Imagina que eres parte de un equipo de desarrollo de un sistema de **reconocimiento de imágenes** para una aplicación móvil. La aplicación debe identificar y clasificar imágenes de distintos tipos de frutas. Tu equipo ha decidido utilizar **Deep Learning** para resolver este problema, y ahora tienes que tomar decisiones importantes sobre la arquitectura de la red neuronal y los frameworks a utilizar.

INSTRUCCIONES

Lee el siguiente caso y responde las preguntas de manera clara y con tus propias palabras. Utiliza los conocimientos que has adquirido sobre Deep Learning, redes neuronales, y los frameworks más comunes para justificar tus respuestas.

1. Arquitectura de Red Neuronal (2.5 puntos)

El equipo está considerando usar una red neuronal convolucional (CNN) para la tarea de clasificación de imágenes. Responde las siguientes preguntas:

- ¿Qué es una red neuronal convolucional (CNN) y por qué es adecuada para tareas de visión por computadora, como la clasificación de imágenes?
- ¿Cuáles son las principales capas que forman una CNN y qué función cumple cada una de ellas?

2. Frameworks para Deep Learning (2.5 puntos)

El equipo tiene que decidir entre usar **TensorFlow**, **Keras** o **PyTorch** para implementar la red neuronal. Responde las siguientes preguntas:

- ¿Cuáles son las principales diferencias entre TensorFlow, Keras y PyTorch? ¿Qué ventajas tiene cada uno para un proyecto de clasificación de imágenes?
- Si fueras tú quien tiene que tomar la decisión, ¿qué framework elegirías para este proyecto y por qué?

3. Proceso de Entrenamiento (2.5 puntos)

El equipo ha recolectado un conjunto de datos de imágenes de frutas para entrenar la red neuronal. Responde las siguientes preguntas:

- ¿Cómo organizarías el conjunto de datos para entrenar un modelo de clasificación de imágenes?
- ¿Qué pasos seguirías para entrenar y evaluar el modelo? Menciona al menos tres métricas que utilizarías para evaluar el rendimiento de la red neuronal.

4. Casos de Uso de Deep Learning (2.5 puntos)

Además de la clasificación de imágenes, se considera utilizar Deep Learning en otros contextos, como la traducción automática y el análisis de sentimientos. Responde las siguientes preguntas:

- ¿Qué otros casos de uso crees que se beneficiarían de utilizar redes neuronales profundas (Deep Learning)? Justifica tu respuesta.
- ¿En qué casos sería más adecuado usar Machine Learning tradicional en lugar de Deep Learning?

INSTRUCCIONES ADICIONALES:

- Puntos totales = 10 puntos.
- Comprimir el archivo en formato .zip o .rar.
- Subir el archivo a la plataforma.