Анализ производительности Trino

с различными алгоритмами сжатия

Сравнительный анализ эффективности алгоритмов сжатия

📚 Операции загрузки данных и выполнения запросов

■ Scale Factor: 1 (SF1)

Методология исследования

Д Подход к тестированию

- Данные: Набор данных ТРС-Н с масштабным коэффициентом 1 (SF1)
- Тестовые прогоны: Три последовательных бенчмарка для каждого алгоритма
- Операции: Загрузка данных (сору) и выполнение аналитических запросов (query)
- Метрики: Время выполнения (duration_ms) и размер файлов (total_files_size)
- Анализ: Усреднение результатов по трем тестовым прогонам

Обзор производительности алгоритмов сжатия

::: Сводные показатели алгоритмов сжатия

Алгоритм	Размер данных (МБ)	Степень сжатия	Время загрузки (сек)	Время запросов (сек)	Общее время (сек)
ZSTD	255.9	1.52x	231.5	116.4	347.9
LZ4	285.3	1.36x	234.3	115.5	349.8
GZIP	260.7	1.49x	239.9	128.0	367.9
Snappy	338.4	1.15x	241.2	117.1	358.3
None	388.3	1.00x	249.8	121.7	371.5

Ф Сравнительные характеристики

Наилучшая степень сжатия:

ZSTD (1.52x) — экономия 132.4 МБ (34.1%)

Наибыстрейшая загрузка данных:

OBJUST STREET (231.5 сек) — быстрее на 18.3 сек (7.3%)

Наибыстрейшее выполнение запросов:

● **LZ4 (115.5 сек)** — быстрее на 6.2 сек (5.1%)

Наилучшее общее время:

ZSTD (347.9 сек) — быстрее на 23.6 сек (6.4%)

Производительность загрузки данных (операции СОРҮ)

🕓 Время загрузки данных

🗚 Эффективность сжатия и размер данных

🥊 Ключевые выводы

Лидер по скорости загрузки

ZSTD показал наилучшее время загрузки **231.5** секунд, что на **7.3%** быстрее несжатых данных.

Лучшая степень сжатия

ZSTD также обеспечил наилучшую компрессию (**1.52x**), уменьшив размер данных до **255.9 МБ**.

Почему сжатие ускоряет загрузку?

Узким местом в тестовой конфигурации является пропускная способность сети. Уменьшение объема передаваемых данных дает больший выигрыш, чем затраты процессорного времени на компрессию.

Анализ производительности запросов

Q Время выполнения запросов

🐧 Среднее время на запрос

 5.25 с
 5.29 с
 5.32 с
 5.53 с
 5.82 с

 LZ4
 ZSTD
 Snappy
 None
 GZIP

 (самый быстрый)
 (самый медленный)

🥊 Ключевые выводы

◀ LZ4 — лидер по скорости чтения

LZ4 выполнил все 22 запроса за 115.5 секунд, что делает его самым быстрым алгоритмом для аналитических операций. Этот алгоритм оптимизирован для максимальной скорости распаковки.

4 Эффективный баланс ZSTD

ZSTD отстает от LZ4 всего на 0.9 секунды (116.4 с), но при этом обеспечивает гораздо лучшую степень сжатия. Это делает его привлекательным для смешанных нагрузок.

▲ Недостатки GZIP

GZIP показал самое медленное время выполнения запросов (128.0 с) несмотря на хорошую степень сжатия. Это связано с высокими требованиями к CPU для декомпрессии данных.

Особенности без сжатия

Вариант без сжатия (None) показал среднюю производительность (121.7 c), уступая быстрым алгоритмам, так как ему приходится читать с диска больший объем данных.

Сравнение эффективности сжатия

 \star Степень сжатия показывает, насколько эффективно алгоритм уменьшает размер данных относительно несжатого формата (None = 1.00x).

% Степень сжатия (выше = лучше)

= Фактический размер данных (МБ)

- ZSTD обеспечивает наилучшую степень сжатия (1.52x), позволяя хранить на 52% больше данных в том же объеме.
- GZIP немного уступает ZSTD с показателем 1.49х.
- Snappy показывает наименьшую эффективность сжатия (1.15х) среди тестируемых алгоритмов.

Компромиссы производительности

Баланс производительности

Положение алгоритма на диаграмме отражает его относительную эффективность по трем ключевым параметрам.

Чем ближе к вершине треугольника, тем лучше алгоритм по соответствующему параметру.

Оптимальные сценарии использования

Ключевые выводы и рекомендации

Сравнительный анализ алгоритмов

ZSTD

Лучший универсальный

выбор

LZ4 *****

Лидер по скорости чтения

GZIP

Для архивации данных

Snappy

- Olo

Компромиссный вариант

None

Без сжатия

🛊 ZSTD — Лучший выбор

- 💉 Наилучшая степень сжатия: **1.52x**
- 🔓 Самая высокая скорость загрузки: 231.5 с
- Q Высокая скорость запросов: **116.4 с**
- Рекомендуется для смешанных нагрузок (запись и чтение)

★ LZ4 — Для быстрого чтения

- Самая высокая скорость запросов: 115.5 с
- Хорошая скорость загрузки: 234.3 с

🧧 GZIР — Для архивации

- _ Хорошая степень сжатия: 1.49x
- Низкая скорость запросов: 128.0 с
- Подходит для редко используемых данных и холодного хранения

Марру — Компромиссный вариант

Не показал выдающихся результатов ни в одной из метрик. Степень сжатия **1.15х**, время запросов **117.1 с**, время загрузки **241.2 с**.

№ None — Без сжатия

Оправдан только в системах с крайне ограниченным CPU. Время запросов **121.7 с**, время загрузки **249.8 с**, объем данных **388.3 МБ**.

🂡 Итоговая рекомендация

Для большинства сценариев использования Trino **рекомендуется ZSTD** как алгоритм, предлагающий наилучший баланс между степенью сжатия, скоростью записи и скоростью чтения.

Описание тестовой среды

П Аппаратное обеспечение

🏚 Процессор: MacBook Pro, 6 ядер

Ш Оперативная память: 32 ГБ

😭 Среда виртуализации

**** Контейнеризация:** Podman

Ш Выделенная память: 24 ГБ

В Конфигурация Trino

= Координатор: 1 узел

🗫 Рабочий узел: 1 узел

= Хранилище данных

Тип хранилища: Объектное хранилище S3

ф Провайдер: storj.io

🚏 Архитектура тестовой среды

Дополнительная информация

Все тесты проводились в контролируемой среде с использованием данных ТРС-Н масштабного фактора 1 (SF1). Результаты представляют средние значения по трем последовательным тестовым прогонам.