Math 542 HW1

Hongtao Zhang

1

Theorem 1.1 (First Isomorphism Theorem for Modules) Let M, N be R-modules and let $p: M \to N$ be an R-module homomorphism. Then $\ker(\psi)$ is a submodule of M and $M/\ker \cong \psi(M)$.

Proof As ψ is a R-module homomorphism,

$$\forall m_1, m_2 \in M, r \in R : \psi(rm_1 + m_2) = r\psi(m_1) + \psi(m_2)$$

For $\ker(\psi)$ to become a submodule, we requires $\forall r \in R, x \in \ker(\psi) : rx \in \ker(\psi)$

We have
$$r \cdot 0 = 0$$
, and $\forall x \in \ker(\psi) : \psi(x) = 0$

Then
$$\forall r \in R, x \in \ker(\psi) : \psi(rx) = r\psi(x) = r \cdot 0 = 0$$

Because a module homomorphism must be a group homomorphism. By first isomorphism theorem of group, $M/\ker(\psi)\cong\psi(M)$.

Theorem 1.2 (Second Isomorphism Theorem for Modules) let A and B be submodules of M. Then $\frac{A+B}{B}\cong \frac{A}{A\cap B}$

Proof Construct a map $\psi: A \to \frac{A+B}{B}$ by composing map from $\varphi: A \to A+B$ as a natural map and the canonical projection.

Then we can write $\psi(a)$ as aB, which means its kernel is $A \cap B$.

2

2.1

Proof

We want to show $\forall r \in R, m \in \text{Tor}(M) : rm \in \text{Tor}(M)$

Thus we want to find some r' such that r'rm = 0

We know that $\exists r'': r''m = 0$, then it suffices to find r' such that r'r = r''.

As R is an integral domain, we have $r''r = rr'' \Rightarrow (r''r)m = (rr'')m = 0$, and $rr'' \neq 0$ because $r \neq 0 \land r'' \neq 0$.

2.2

Example 2.2.1

Consider $R = \mathbb{Z}/6\mathbb{Z}$:

$$2 \in \operatorname{Tor}(R)$$
 but $5 \times 2 = 4 \neq \operatorname{Tor}(R)$.

2.3

Proof

Consider the zero divisor $r_1, r_2 \in R$. We have $r_1, r_2 \neq 0 \land r_1 r_2 = 0$. Then consider any non-zero element $m \in M$, $r_2 r_1 m = 0 \Rightarrow r_1 m \in \text{Tor}(M)$. Then it suffices to show that $r_1 m \neq 0$.

However, if $r_1m = 0$, then $m \in \text{Tor}(M)$, which also satisfy the requirement.

3

3.1

Proposition 3.1.1 The only finite-dimensional $\mathbb{C}[x]$ -modules are one-dimensional.

Proof As any $n \times n$ matrix with entries in \mathbb{C} has an eigenvector. We know that the span of eigenvector of x will never escape the span, and thus is a submodule.

As long as the dimension of $\mathbb{C}[x]$ -modules are not 1, we definately can find a span of eigenvector that has dimensions less than the module.

3.2

Proposition 3.2.1 Let $M := \mathbb{C}^2$ be a $\mathbb{C}[x]$ -module where the action of x is given by the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Find all submodules of M.

Proof By (1), we will have the submodules span by the eigenvectors of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

It suffices to show that any other vector span has dimension 2 (0 is trivial).

Consider a module $\binom{x}{y} \notin \operatorname{span}\left(\operatorname{Eigen}\binom{1}{0} \frac{1}{1}\right)$, then $\binom{1}{0} \frac{1}{1}\binom{x}{y} \neq c\binom{x}{y}$, which implies $\binom{1}{0} \frac{1}{1}$ is linearly independent with $\binom{x}{y}$, which means it cannot become a submodule by itself or its linear variant. \square

4

4.1

Proof For f to be a R-module isomorphism, it must be a isomorphism of the underlying set. Consider f is bijective first.

Therefore, $\exists g: f \circ g = g \circ f = 1$. It suffices to prove that g is a R-module homomorphism.

Because f is a R-module homomorphism, $\forall m_1, m_2 \in M, r \in R: f(rm_1+m_2)=rf(m_1)+f(m_2).$ Then we have $g(f(rm_1+m_2))=rm_1+m_2=g(rf(m_1)+f(m_2)).$ Because f is bijective, $f(m_1)$ and $f(m_2)$ points to a unique element in M denoted as m_3 and m_4 , and $\forall m_3, m_4 \in M: \exists m_1, m_2 \in M: f(m_1)=m_3 \land f(m_2)=m_4.$ Therefore, $\forall m_3, m_4 \in M: g(rm_3+m_4)=rg(m_3)+g(m_4)=rm_1+m_2.$

Assume the existence of such g that is a R-module homomorphism and $g \circ f = \mathbb{1} = f \circ g$:

We know that the existence of inverse of the underlying set means that f and g is bijective. Then nothing left to be proved.

4.2

Proof By Theorem 1.1 we have $\ker(f)$ as a submodule of M. However, because M is simple, then $\ker(f)$ is either $\{0\}$ or M.

Then for any non-zero R-module homomorphism $f: M \to M$, we have $\ker(f) = \{0\}$, which means it is injective, and as f maps from M to M, it is subjective, so thus bijective. By (1), we have such g exists.

4.3

Proof

5

5.1

Let A be any \mathbb{Z} -module, let a be any element of A and let n be a positive integer. Prove that the map $\varphi_a:\mathbb{Z}/n\mathbb{Z}\to A$ given by $\varphi\left(\overline{k}\right)=ka$ is a well defined \mathbb{Z} -module homomorphism if and only if na=0. Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},A)\cong A_n$, where $A_n=\{a\in A\mid na=0\}$ (so A_n is the annihilator in A of the ideal (n) of \mathbb{Z} — cf. Exercise 10, Section 1).

Proof if na = 0

$$\varphi(\overline{x} + \overline{y}) = \varphi(x + y \operatorname{mod} n) = (x + y \operatorname{mod} a)a$$
$$\varphi(\overline{x}) + \varphi(\overline{y}) = (x + y)a$$

Because na = 0, $(x + y)a = (x + y \mod n)a$

If φ_a is a valid homomorphism, then

$$\varphi(\overline{x} + \overline{y}) = \varphi(\overline{x}) + \varphi(\overline{y}) \Rightarrow (x + y)a = (x + y \mod n)a \Rightarrow na = 0$$

Proof From Previous statement, we have each $\varphi_a: \mathbb{Z}/n\mathbb{Z} \to A$ corresponded to a set of a such that na=0.

5.2

Exhibit all \mathbb{Z} -module homomorphisms from $\mathbb{Z}/30\mathbb{Z}$ to $\mathbb{Z}/21\mathbb{Z}$.