4. If λ be an eigen value of an $n \times n$ matrix A, prove that

- (i) λ is also an eigen value of the matrix A^t ; (ii) $k\lambda$ is an eigen value of the matrix $k\Lambda$, k being a scalar;

 - (iii) λ^2 is an eigen value of the matrix A^2 .

5. $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigen values of a non-singular matrix A of order n. Find the eigen values of the matrix (i) A^{-1} ,

6. If λ be an eigen value of an $n \times n$ idempotent matrix A, prove that λ is either 1 or 0.

[Hint. $A^2 = A$. Let $AX = \lambda X$ for some $X \neq 0$. Then $\lambda X = AX = A^2X = \lambda^2X$.]

7. Find the eigen values and the corresponding eigen vectors of the following real matrices.

(i)
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}$, (iii) $\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$.

8. Find the eigen values and the corresponding eigen vectors of the following complex matrices.

(i)
$$\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, (iii) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

9. Find the algebraic and the geometric multiplicities of each eigen value of 9. Find the day $\begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{pmatrix}$.

10.
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ are eigen vectors of the matrix $\begin{pmatrix} 2&2&1\\a&3&1\\1&b&c \end{pmatrix}$. Find a,b,c .

11. If λ be an eigen value of an $n \times n$ matrix A, prove that λ^m is an eigen value of the matrix A^m , where m is a positive integer.

[Hint.
$$AX = \lambda X$$
 implies $A^2X = \lambda(AX) = \lambda^2 X$ etc.]

- 12. If λ be an eigen value of an $n \times n$ non-singular matrix A, prove that λ^{-m} is an eigen value of the matrix A^{-m} , where m is a positive integer.
- 13. If A and B are square matrices of the same order and one of them is non-singular, prove that the matrices AB and BA have the same eigen values.
- 14. A and B are symmetric non-singular matrices such that AB + BA = 0. Prove that each of the matrices A, B and AB have eigen values symmetric about the origin.
- 15. λ is an eigen value of a real skew symmetric matrix. Prove that $\left|\frac{1-\lambda}{1+\lambda}\right|=1$.

- 110ES

 $\int_{1}^{1} \frac{g}{A}$ be a real non-singular symmetric matrix, prove that the matrices A17. A have the same set of eigen vectors.

A be an eigen vector of an $n \times n$ matrix A associated with an eigen λ . Prove that $P^{-1}X$ is an eigen vector of the matrix A associated with an eigen Let X be an eigen X be an eigen vector of the matrix A associated with an eigen A. Prove that $P^{-1}X$ is an eigen vector of the matrix $P^{-1}AP$ associated with an eigen A. with λ .

19. Show that the characteristic equation of an orthogonal matrix is a reciprocal equation.

Hint. Let A be orthogonal and $\psi(x) = \det (A - xI_n)$. Then $\psi(x) = \pm x^n \psi(\frac{1}{x})$.

P is a real orthogonal matrix with det P = -1. Prove that -1 is an eigen value of P.

Hint. $det(P+I) = det(P+PP^t) = detP det(I+P^t) = -det(P+I)$.

21. If S be a real skew symmetric matrix of order n, prove that

(i) the matrix $S - I_n$ is non-singular,

(ii) the matrix $(S - I_n)^{-1}(S + I_n)$ is orthogonal,

(iii) if X be an eigen vector of S with eigen value λ , then X is also an eigen vector of the matrix $(S - I_n)^{-1}(S + I_n)$ with eigen value $\frac{\lambda+1}{\lambda-1}$,

(iv) if $\bar{S} = (S - I_n)^{-1}(S + I_n)$, then $\bar{S} - I_n$ is also non-singular and $\bar{\bar{S}} = S$.

22. A is an $n \times n$ real symmetric matrix and $A^2 = I_n$ but $A \neq \pm I_n$. Prove that 1 and -1 are the only distinct eigen values of A.

23. A is a 3×3 real matrix having the eigen values 1, 2, 0.

 $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ are the eigen vectors of A corresponding to the

eigen values 1, 2, 0 respectively. Find the matrix A.

24. A is a 3×3 real matrix having the eigen values 5, 2, 2. The eigen vectors of A corresponding to the eigen values 5 and 2 are

$$c\begin{pmatrix} 1\\1\\1 \end{pmatrix}, c \neq 0 \text{ and } c\begin{pmatrix} 1\\0\\-1 \end{pmatrix} + d\begin{pmatrix} 0\\1\\-1 \end{pmatrix}, (c,d) \neq (0,0) \text{ respectively.}$$

Find the matrix A.

25. If every non-zero vector in \mathbb{R}^n be an eigen vector of a real $n \times n$ matrix A corresponding to a real eigen value λ , prove that A is the scalar matrix λI_n .

[Hint. The solution space of the homogeneous system $(A - \lambda I_n)X = O$ is \mathbb{R}^n of dimension n. Therefore the rank of $A - \lambda I_n$ is 0.]