Stochastic Differential Equations, Spring 2021

Homework 2

Due Apr 1, 2021

Name		

- 1. Let X be an integrable random variable on (Ω, \mathcal{F}, P) and \mathcal{F}_t be a filtration. Prove that $X_t = E[X|\mathcal{F}_t]$ is a martingale. Verify the definition of a martingale for the proof, here and in the following problems.
- 2. Let X_n , $n \ge 0$ be a sequence of integrable independent random variables and \mathcal{F}_n be a filtration. Let $S_n = \sum_{k=0}^n X_k$, $n = 0, 1, 2, \dots$ Prove that
 - (a) $S_n E[S_n]$ is an \mathcal{F}_n -martingale;
 - (b) if $E[X_n] = 0$ and X_n is square integrable for each n = 0, 1, ..., then $S_n^2 \text{Var}[S_n]$ is an \mathcal{F}_n -martingale.
- 3. Let X_n , $n \ge 0$ be a sequence of integrable independent random variables.
 - (a) Suppose that their product $P_n = \prod_{k=0}^n X_k = X_0 \cdot X_1 \cdot X_2, \dots \cdot X_n$ is an \mathcal{F}_n -martingale, what condition(s) on X_n do you need?
 - (b) Suppose that for each $n \geq 0$ X_n is normally distributed $N(\mu, \sigma^2)$ with $\mu \neq 0$. Prove that there exists a unique nonzero θ such that $E[e^{\theta X_n}] = 1$.
 - (c) Suppose that $X_n \sim N(\mu, \sigma^2)$ with $\mu \neq 0$ and let $S_n = \sum_{k=0}^n X_k$, $n = 0, 1, 2, \dots$ Prove that $Z_n = e^{\theta S_n}$ is a martingale, where θ is given in part (b).
- 4. Let W_t be a Wiener process. Show that for any s, t > 0 their covariance is

$$Cov(W_s, W_t) = min\{s, t\}$$

and their correlation is

$$Cov(W_s, W_t) = \frac{\min\{s, t\}}{\max\{s, t\}}.$$

- 5. Here and in the sequel and always denote W_t as a Brownian motion (as we mentioned in class that a Brownian Motion and a Wiener process can be applied interchangeably). For any s, t > 0, find their covariance $Cov(W_s, W_t)$ and correlation $Corr(W_s, W_t)$.
- 6. The process $X_t = |B_t|$ is called Brownian motion reflected at the origin. Find $E(X_t)$ and $Var(X_t)$.
- 7. (1) Find $E((W_t^2 t)(W_s^2 s));$
 - (2) Find $E(W_t^2W_s^2)$;
 - (3) Find $Cov(W_t^2, W_s^2)$.
- 8. Let $X_t = e^{W_t}$. Find $Cov(X_s, X_t)$ by direction calculation.
- 9. Prove that B_t and $B_t^2 t$ are martingales by definition. Now use Martingale's properties to find the followings for any $s, t \ge 0$
 - (i) Find $E((B_t^2 t)(B_s^2 s))$;
 - (ii) Find $E(B_t^2B_s^2)$;
 - (iii) Find $Cov(B_t^2, B_s^2)$.

- 10. Consider $X_t = e^{W_t}$. This is called the Geometric Brownian Motion or GBM for short. Show that X_t is not a martingale, however $e^{-\frac{t}{2}}X_t$ is a martingale. For the latter case, you can actually show in general that $Y_t = e^{aW_t \frac{a^2t}{2}}$ is a martingale for any constant $a \in \mathbb{R}$. Now use the martingale property to find $\operatorname{Cov}(X_s, X_t)$. Remark: I want to emphasize that in almost all textbooks or lecture notes, you may find a statement like a geometric Brownian motion is a martingale with respect to... blabla...However there is no contradiction to the fact that X_t is not a martingale because it is $X_t = \exp\left\{\left(\mu \frac{\sigma^2}{2}\right)t + \sigma W_t\right\}$ how they define a GBM. And then they state that a GBM is a martingale when the drift parameter is 0, which is exactly our general case above with $a = \sigma$.
- 11. Let $X_t = e^{W_t}$. Find $Cov(X_s, X_t)$ by direction calculation and verify it with your answer to the problem above.