Обучение представлениям коллекций данных

Parviz Karimov

Moscow Institute of Physics and Technology

Course: My first scientific paper (Strijov's practice)/Group M05-304a Expert: R. V. Isachenko

2024

Цель исследования

Мотивация

Современные подходы обучения представлениям используют представления коллекций на промежуточных этапах решения задачи. При этом, сами представления коллекций, их вариации и теоретические свойства рассматриваются крайне редко.

Цель работы

Рассмотрение подходов для составления векторных представлений коллекций и исследование их теоретических свойств.

Литература

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning through probabilistic program induction.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and new perspectives.

Yonghyun Kim, Wonpyo Park, Myung-Cheol Roh, and Jongju Shin. Groupface: Learning latent groups and constructing group-based representations for face recognition.

Bo Pang, Yifan Zhang, Yaoyi Li, Jia Cai, and Cewu Lu. Unsupervised visual representation learning by synchronous momentum grouping.

Формальная постановка задачи

Пусть дан датасет $\mathfrak{G} = \{(x_i, y_i)\}_{i=1}^n$, $x_i \in X$, $y_i \in \{1, ..., K\}$. Составим из этих точек данных множества:

$$G_{j,k} = \{x_i | (x_i, y_i) \in \mathfrak{G} \land y_i = k \forall i\} : \forall j_1, j_2 G_{j_1,k} \cap G_{j_2,k} = \emptyset$$

Задача состоит в том, чтобы сопоставить каждой коллекции $G_{j,k}$ представление $f_{\theta}(G_{j,k})$, представляющий собой информативное векторное представление $G_{j,k}$ (Representation Learning: A Review and New Perspectives).

Предложенный метод

Задача решается посредством минимизации некоторой контрастивной функции потерь L - т.н. триплетной функции потерь

$$\min_{\theta} L = \min_{\theta} \sum_{(x_a, x_p, x_n)} (||f_{\theta}(x_a) - f_{\theta}(x_p)|| - ||f_{\theta}(x_a) - f_{\theta}(x_n)|| + m)_+,$$

где
$$x_a, x_p \in \mathit{G}_{j,k}, x_n \in \mathit{G}_{t,n}.$$

После минимизации на объектном уровне представление коллекции $G_{j,k}$ проводится аггрегация значений на уровне группы, в работе

$$f_{\theta}(G_{j,k}) = \frac{1}{|G_{j,k}|} \sum_{x \in G_{j,k}} f_{\theta}(x).$$

Результаты

Теорема

Пусть мы имеем оптимально обученную функцию представления объектов $f_{\theta}(x)$ с точки зрения Triplet loss-a, то есть для любого айтема x_a , его позитива x_p и негатива x_n верно, что

$$\exists m: ||f_{\theta}(x_{\mathsf{a}}) - f_{\theta}(x_{\mathsf{p}})|| - ||f_{\theta}(x_{\mathsf{a}}) - f_{\theta}(x_{\mathsf{n}})|| \leq m \quad \forall (\mathsf{a}, \mathsf{p}, \mathsf{n})$$

Рассмотрим группы $G_{j_1,k_1},\,G_{j_2,k_1},\,G_{p_1,k_2}$, в качестве эмбеддинга группы возьмём $f_{ heta}(G_{j,k})=rac{1}{|G_{j,k}|}\sum_{x\in G_{j,k}}f_{ heta}(x)$. Тогда

$$||f_{\theta}(G_{j_1,k_1}) - f_{\theta}(G_{j_2,k_1})|| \leq 2 \max\{m, \max_{s_1 \in G_{j_1,k_1}, s_2 \in G_{p_1,k_2}} ||f_{\theta}(s_1) - f_{\theta}(s_2)||\}$$

Результаты

Эксперимент

В качестве функции представления объекта обучается EfficientNet_b2. В процессе подбора триплетов используется hard-negative mining. В качестве датасета выбран Omniglot, группы $G_{j,k}$ - семплы буквы определённого алфавита, k - индекс алфавита.

$ f_{\theta}(G_{j_1,k_1})-f_{\theta}(G_{j_2,k_1}) $	$\max f_{ heta}(s_1) - f_{ heta}(s_2) $
734.82	1750.37
280.37	1907.42
254.03	3338.06

Дальнешие планы

- Более точная верхняя граница для разницы между представлениями коллекций
- Нижняя границы между представлениями коллекций
- Результаты с выбором других функций представления коллекций (например, медоид) и связанные с ними теоретические результаты.