DQBarge: Improving data-quality tradeoffs in large-scale Internet services

Michael Chow

Kaushik Veeraraghavan, Jason Flinn, Michael Cafarella

Complex Internet services

Composed of hundreds of software components

Requests have response time goals

Balancing response time goals

- Components have response time goals
 - Lower-level components unaware of response goals
 - Lower-level components may fail

Data-quality tradeoff

Explicit decision to return lower fidelity data

- Improve response time
- Minimize resource usage

Outline

- Motivation
- Study of data-quality tradeoffs at Facebook
- DQBarge
- Evaluation of DQBarge

Study of tradeoffs at Facebook

- Systematic study of a Facebook service
 - Laser, key-value store at Facebook [2015]
- Categorized tradeoffs made by all 463 clients

>90% of clients perform tradeoffs

Data-quality tradeoffs are the norm, not the exception

Most tradeoffs are reactive

- Reactive → occurs on timeout/failure
- Proactive → only request what can be done

Most tradeoffs are reactive

Reactive tradeoffs waste resources

Takeaways

- Data-quality tradeoffs are common
- Most are reactive, instead of proactive
- Tradeoffs only consider local information

Need global information to enable proactive, better tradeoffs

Outline

- Motivation
- Study of data-quality tradeoffs at Facebook
- DQBarge
- Evaluation of DQBarge

Library for developers to help make tradeoffs

Propagates additional data along causal path

Phases of operation

• Offline phase: build models

Online phase: use models

Performance model

Full Quality

Work/Life

- 1) Facebook
- 2) Google
- 3) Microsoft
- 4) Amazon
- 5) Academia

Full Quality

- 1) Facebook
- 2) Google
- 3) Microsoft
 - 4) Amazon
 - 5) Academia

Full Quality

- 1) Facebook
- 2) Google
- 3) Microsoft
- 4) Amazon
- 5) Academia

- 1) Facebook
- 2) Google
- 3) Microsoft
- 4) Amazon
- 5) Academia

Full Quality

- 1) Facebook
- 2) Google
- 3) Microsoft
- 4) Amazon
- 5) Academia

- 1) Facebook
- 2) Google
- 3) Microsoft
- 4) Amazon
- 5) Academia

- 1) Facebook
- 2) Google
- 3) Microsoft
- 4) Amazon
- 5) Academia

- 1) Academia
- 2) Facebook
- 3) Google
- 4) Microsoft
- 5) Amazon

Phases of operation

Offline phase: build models

• Online phase: use models

Outline

- Motivation
- Study of data-quality tradeoffs at Facebook
- DQBarge
- Evaluation of DQBarge

Evaluation

- Do data-quality tradeoffs improve performance?
- How much does provenance improve tradeoffs?
- How much does proactivity improve tradeoffs?
- How does DQBarge help in end-to-end scenarios?
 - Load spike
 - Utilizing spare resources
 - Dynamic capacity planning

Do proactive tradeoffs help?

Load spike scenario

Utilizing spare resources

Conclusion

Data-quality tradeoffs are very common

Suboptimal due to reactivity & lack of information

DQBarge improves tradeoffs

Questions?