P8106_midterm_project_v1

Congyu Yang, Yujing Fu, Zhengkun Ou

2025-03-27

```
library(pacman)
p_load(tidyverse, caret, tidymodels, corrplot, ggplot2, plotmo, ggrepel, patchwork, earth, pdp, mgcv, k
## package 'cli' successfully unpacked and MD5 sums checked

## package 'purrr' successfully unpacked and MD5 sums checked

## package 'rlang' successfully unpacked and MD5 sums checked

## package 'tidymodels' successfully unpacked and MD5 sums checked

## The downloaded binary packages are in

## C:\Users\Persica\AppData\Local\Temp\RtmpOo34bM\downloaded_packages
```

1. Data Processing

```
load("dat1.RData")
load("dat2.RData")

skimr::skim(dat1)
```

Table 1: Data summary

Name	dat1
Number of rows	5000
Number of columns	14
Column type frequency:	
factor	2
numeric	12
Group variables	None

Variable type: factor

skim_variable	n_missing	$complete_rate$	ordered	n_unique	top_counts
race	0	1	FALSE	4	1: 3221, 3: 1036, 4: 465, 2: 278
$\operatorname{smoking}$	0	1	FALSE	3	0: 3010, 1: 1504, 2: 486

Variable type: numeric

skim_variablen	_missing comple	te_ra	ite mean	sd	p0	p25	p50	p75	p100	hist
id	0	1	2500.50	1443.52	1.00	1250.75	2500.50	3750.25	5000.00	
age	0	1	59.97	4.50	44.00	57.00	60.00	63.00	75.00	
gender	0	1	0.49	0.50	0.00	0.00	0.00	1.00	1.00	
height	0	1	170.13	5.94	150.20	166.10	170.10	174.22	192.90	
weight	0	1	80.11	7.06	56.70	75.40	80.10	84.90	106.00	
bmi	0	1	27.74	2.76	18.20	25.80	27.60	29.50	38.80	
diabetes	0	1	0.15	0.36	0.00	0.00	0.00	0.00	1.00	
hypertension	0	1	0.46	0.50	0.00	0.00	0.00	1.00	1.00	
SBP	0	1	129.90	8.00	101.00	124.00	130.00	135.00	155.00	
LDL	0	1	109.91	20.15	43.00	96.00	110.00	124.00	185.00	
time	0	1	108.86	43.42	30.00	76.00	106.00	138.00	270.00	
\log _antibody	0	1	10.06	0.60	7.77	9.68	10.09	10.48	11.96	

skimr::skim(dat2)

Table 4: Data summary

Name	dat2
Number of rows	1000
Number of columns	14
Column type frequency:	
factor	2
numeric	12
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
race	0	1	FALSE	4	1: 663, 3: 199, 4: 83, 2: 55
$\operatorname{smoking}$	0	1	FALSE	3	0: 601, 1: 296, 2: 103

Variable type: numeric

skim_variablen	_missing complet	e_ra	te mean	sd	p0	p25	p50	p75	p100	hist
id	0	1	5500.50	288.82	5001.00	5250.75	5500.50	5750.25	6000.00	
age	0	1	60.02	4.45	46.00	57.00	60.00	63.00	75.00	
gender	0	1	0.49	0.50	0.00	0.00	0.00	1.00	1.00	
height	0	1	170.22	6.02	149.40	166.10	170.20	174.20	190.60	

skim_variablen_	_missing comp	olete_ra	te mean	sd	p0	p25	p50	p75	p100	hist
weight	0	1	80.13	7.05	58.80	75.30	80.20	84.40	101.60	
bmi	0	1	27.72	2.82	19.80	25.80	27.60	29.60	35.80	
diabetes	0	1	0.16	0.36	0.00	0.00	0.00	0.00	1.00	
hypertension	0	1	0.46	0.50	0.00	0.00	0.00	1.00	1.00	
SBP	0	1	129.61	8.20	106.00	124.00	130.00	135.00	156.00	
LDL	0	1	110.25	20.32	46.00	96.00	112.00	124.00	174.00	
time	0	1	173.77	46.78	61.00	140.00	171.00	205.00	330.00	
\log _antibody	0	1	9.90	0.59	8.05	9.50	9.93	10.31	11.85	

There is no missing value in this dataset.

```
colnames(dat1)
   [1] "id"
                        "age"
                                        "gender"
                                                        "race"
                                                                        "smoking"
   [6] "height"
                        "weight"
                                        "bmi"
                                                        "diabetes"
                                                                        "hypertension"
## [11] "SBP"
                        "LDL"
                                        "time"
                                                        "log_antibody"
# Clean variable names
dat1 = dat1 |> janitor::clean_names()
dat2 = dat2 |> janitor::clean_names()
```

We can see there is no NA values in the dataset.

```
# Convert variables to factors

dat1$gender <- factor(dat1$gender, levels = c(0, 1), labels = c("Female", "Male"))

dat1$race <- factor(dat1$race, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic"

dat1$smoking <- factor(dat1$smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current"))

dat1$diabetes <- factor(dat1$diabetes, levels = c(0, 1), labels = c("No", "Yes"))

dat2$gender <- factor(dat2$gender, levels = c(0, 1), labels = c("Female", "Male"))

dat2$gender <- factor(dat2$gender, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic"

dat2$smoking <- factor(dat2$smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current"))

dat2$diabetes <- factor(dat2$diabetes, levels = c(0, 1), labels = c("No", "Yes"))

dat2$hypertension <- factor(dat2$hypertension, levels = c(0, 1), labels = c("No", "Yes"))

# Summary statistics

summary_stats <- summary(dat1)

print(summary_stats)
```

```
##
          id
                                                                    smoking
                        age
                                      gender
                                                      race
                                                                 Never :3010
## Min.
         :
              1
                  Min.
                          :44.00
                                  Female:2573
                                                White
                                                         :3221
  1st Qu.:1251
                  1st Qu.:57.00
                                                         : 278
                                                                Former:1504
                                  Male :2427
                                                Asian
## Median :2500
                  Median :60.00
                                                Black
                                                       :1036
                                                                 Current: 486
                          :59.97
                                                Hispanic: 465
## Mean
           :2500
                  Mean
                  3rd Qu.:63.00
##
   3rd Qu.:3750
## Max.
          :5000
                  Max.
                         :75.00
                                                               hypertension
##
       height
                       weight
                                         bmi
                                                     diabetes
                   Min. : 56.70
                                                               No :2702
## Min.
         :150.2
                                    Min.
                                           :18.20
                                                    No :4228
```

```
1st Qu.: 75.40
   1st Qu.:166.1
                                     1st Qu.:25.80
                                                     Yes: 772
                                                                Yes:2298
##
   Median :170.1
                   Median : 80.10
                                     Median :27.60
   Mean
         :170.1
                    Mean : 80.11
                                     Mean
                                           :27.74
   3rd Qu.:174.2
                    3rd Qu.: 84.90
                                     3rd Qu.:29.50
##
##
   Max.
           :192.9
                    Max.
                         :106.00
                                     Max.
                                            :38.80
##
                         ldl
         sbp
                                         time
                                                     log_antibody
                                           : 30.0
          :101.0
                           : 43.0
                                                           : 7.765
   Min.
                    Min.
                                    Min.
                                                    Min.
                                                    1st Qu.: 9.682
   1st Qu.:124.0
                    1st Qu.: 96.0
                                    1st Qu.: 76.0
##
## Median :130.0
                    Median :110.0
                                    Median :106.0
                                                    Median :10.089
## Mean
          :129.9
                    Mean
                         :109.9
                                    Mean
                                          :108.9
                                                    Mean
                                                           :10.064
  3rd Qu.:135.0
                    3rd Qu.:124.0
                                    3rd Qu.:138.0
                                                    3rd Qu.:10.478
          :155.0
## Max.
                    Max.
                           :185.0
                                    Max.
                                          :270.0
                                                           :11.961
                                                    Max.
# Check for missing values
missing_values <- colSums(is.na(dat1))</pre>
print(missing_values)
##
                                                                          height
             id
                         age
                                   gender
                                                  race
                                                            smoking
##
              0
                                                     0
                           0
                                                                  0
                                                                               0
                                                                             ldl
##
         weight
                         bmi
                                 diabetes hypertension
                                                                sbp
##
              0
                           0
                                                                               0
```

There is no missing value in the dataset.

0

##

##

2. Exploratory Data Analysis (EDA)

time log_antibody

2.1 Distribution of log antibody

Distribution of Log-Transformed Antibody Levels

2.2 Boxplot of log antibody

```
# Boxplot of log_antibody by gender
p2 <- ggplot(dat1, aes(x = gender, y = log_antibody, fill = gender)) +
  geom_boxplot() +
  labs(title = "Antibody Levels by Gender",
       x = "Gender",
       y = "Log Antibody Level") +
  theme_minimal()
# Boxplot of log_antibody by race
p3 <- ggplot(dat1, aes(x = race, y = log_antibody, fill = race)) +
  geom_boxplot() +
  labs(title = "Antibody Levels by Race/Ethnicity",
       x = "Race/Ethnicity",
       y = "Log Antibody Level") +
  theme_minimal()
# Boxplot of log_antibody by smoking status
p4 <- ggplot(dat1, aes(x = smoking, y = log_antibody, fill = smoking)) +
  geom_boxplot() +
  labs(title = "Antibody Levels by Smoking Status",
       x = "Smoking Status",
       y = "Log Antibody Level") +
```

```
p2+p3+p4+p5
```


2.3 Correlation Plot

2.4 Scatterplots

```
# Create scatterplots for continuous variables vs response
p6 <- ggplot(dat1, aes(x = age, y = log_antibody)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "loess", color = "red") +
  labs(title = "Age vs Log Antibody Level",
       x = "Age (years)", y = "Log Antibody Level") +
  theme_minimal()
p7 <- ggplot(dat1, aes(x = bmi, y = log_antibody)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "loess", color = "red") +
  labs(title = "BMI vs Log Antibody Level",
       x = "BMI", y = "Log Antibody Level") +
  theme_minimal()
p8 <- ggplot(dat1, aes(x = time, y = log_antibody)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "loess", color = "red") +
  labs(title = "Time Since Vaccination vs Log Antibody Level",
       x = "Time (days)", y = "Log Antibody Level") +
  theme_minimal()
```


There are some potential nonlinear trend between log_antibody and bmi, and between log_antibody and time.

3. Model Training with Cross-validation

3.1 Linear models

```
model_formula <- log_antibody ~ . - id

# Set up cross-validation control
ctrl <- trainControl(method = "cv", number = 10)

# 3.1 Linear Regression
set.seed(123)
lm.fit <- train(
    model_formula,
    data = dat1,
    method = "lm",
    trControl = ctrl
)
summary(lm.fit$finalModel)</pre>
```

3.1.1 Linear regression

```
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
## Residuals:
##
      Min
              1Q
                  Median
                             3Q
## -2.14396 -0.35840 0.02944 0.37802 1.65090
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
               26.6751961 2.3149812 11.523 < 2e-16 ***
## (Intercept)
## age
               ## genderMale
              -0.2974929 0.0155977 -19.073 < 2e-16 ***
## raceAsian
              -0.0060422 0.0344613 -0.175
                                          0.8608
## raceBlack
              -0.0075295 0.0196815 -0.383
                                         0.7021
## raceHispanic -0.0417571 0.0273309 -1.528
                                         0.1266
## smokingFormer
               0.0219907 0.0173992
                                  1.264
                                          0.2063
## smokingCurrent -0.1934834 0.0269576 -7.177 8.15e-13 ***
## height
               ## weight
## bmi
               ## diabetesYes
               0.0112795 0.0215643 0.523
                                          0.6010
## hypertensionYes -0.0179106 0.0260931 -0.686
                                          0.4925
## sbp
               0.0015181 0.0017049 0.890
                                         0.3733
## ldl
               -0.0001645 0.0004028 -0.409
                                          0.6829
## time
               -0.0003011 0.0001795 -1.677 0.0936 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5503 on 4984 degrees of freedom
## Multiple R-squared: 0.1513, Adjusted R-squared: 0.1488
## F-statistic: 59.25 on 15 and 4984 DF, p-value: < 2.2e-16
```

3.1.2 Ridge Regression

```
## 16 x 1 sparse Matrix of class "dgCMatrix"
##
```

```
## (Intercept)
                   12.7384560516
                   -0.0197679168
## age
## genderMale
                   -0.2880871615
## raceAsian
                   -0.0038318346
## raceBlack
                   -0.0066654722
## raceHispanic
                   -0.0417690245
## smokingFormer
                    0.0242172365
## smokingCurrent -0.1847225211
                   -0.0001949552
## height
## weight
                   -0.0009185524
## bmi
                   -0.0473178893
## diabetesYes
                    0.0113069924
## hypertensionYes -0.0166641972
## sbp
                    0.0010847735
                   -0.0001614795
## ldl
## time
                   -0.0002807285
```

print(ridge.fit\$bestTune)

```
## alpha lambda
## 15 0 0.0135275
```

plot(ridge.fit, xTrans = log)


```
set.seed(123)
lasso.fit <- train(</pre>
 model_formula,
 data = dat1,
 method = "glmnet",
 tuneGrid = expand.grid(alpha = 1,
                        lambda = exp(seq(6, -6, length = 100))),
 trControl = ctrl
coef(lasso.fit$finalModel, lasso.fit$bestTune$lambda)
3.1.3 Lasso Regression
## 16 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                 1.272648e+01
## age
                  -1.915006e-02
                 -2.859715e-01
## genderMale
## raceAsian
## raceBlack
## raceHispanic -2.472809e-02
## smokingFormer 1.593301e-02
## smokingCurrent -1.770968e-01
## height
                 -1.029699e-04
## weight
                 -4.801089e-02
## bmi
## diabetesYes
                  4.273525e-05
## hypertensionYes .
## sbp
## ldl
## time
                  -1.848766e-04
```

```
print(lasso.fit$bestTune)
```

```
## alpha
             lambda
## 6 1 0.004544037
```

```
plot(lasso.fit, xTrans = log)
```


3.1.4 Elastic Net Regression

```
##
                Length Class
                                   Mode
## a0
                 100
                        -none-
                                   numeric
                       {\tt dgCMatrix}
## beta
                1500
## df
                 100
                                   numeric
                       -none-
## dim
                   2
                       -none-
                                   numeric
## lambda
                 100
                       -none-
                                   numeric
## dev.ratio
                 100
                       -none-
                                   numeric
## nulldev
                   1
                       -none-
                                   numeric
## npasses
                   1
                       -none-
                                   numeric
## jerr
                        -none-
                                   numeric
```

```
## offset
                      -none-
                                  logical
                  1
## call
                                  call
                  5
                      -none-
## nobs
                      -none-
                                  numeric
## lambdaOpt
                      -none-
                                  numeric
                  1
## xNames
                 15
                      -none-
                                  character
## problemType
                  1
                      -none-
                                  character
## tuneValue
                  2
                      data.frame list
## obsLevels
                      -none-
                  1
                                  logical
## param
                      -none-
                                  list
```

print(enet.fit\$bestTune)

```
## alpha lambda
## 101 0.05 0.002478752
```



```
# Show coefficients of the final Elastic Net model
coef_enet <- coef(enet.fit$finalModel, enet.fit$bestTune$lambda)
print(coef_enet)</pre>
```

```
## 16 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 16.0225822334
                   -0.0202906145
## age
## genderMale -0.2942760076
## raceAsian -0.0036856007
## raceBlack -0.0066593257
## raceHispanic -0.0417893824
## smokingFormer 0.0235504017
## smokingCurrent -0.1891969582
             -0.0193618230
## height
                   0.0193847860
## weight
## bmi
                   -0.1063133265
## diabetesYes 0.0111516911
## hypertensionYes -0.0167677112
## sbp
                    0.0012484795
## ldl
                    -0.0001495619
## time
                   -0.0002879691
coef_enet <- coef(enet.fit$finalModel, enet.fit$bestTune$lambda)</pre>
print(coef_enet)
## 16 x 1 sparse Matrix of class "dgCMatrix"
##
                                s1
## (Intercept) 16.0225822334
## age
                  -0.0202906145
## genderMale -0.2942760076
## raceAsian -0.0036856007
## raceBlack -0.0066593257
## raceHispanic -0.0417893824
## smokingFormer 0.0235504017
## smokingCurrent -0.1891969582
## height -0.0193618230
                   0.0193847860
## weight
## bmi
                  -0.1063133265
## diabetesYes 0.0111516911
## hypertensionYes -0.0167677112
## sbp
                   0.0012484795
## ldl
                   -0.0001495619
## time
                  -0.0002879691
resamp <- resamples(list(</pre>
  Linear_Regression = lm.fit,
  Ridge = ridge.fit,
  Lasso = lasso.fit,
  Elastic_Net = enet.fit
))
summary(resamp)
```

3.1.5 Model Comparison (resampling)

```
##
## Call:
## summary.resamples(object = resamp)
##
## Models: Linear_Regression, Ridge, Lasso, Elastic_Net
## Number of resamples: 10
## MAE
##
                          Min.
                                  1st Qu.
                                             Median
                                                         Mean
                                                                 3rd Qu.
## Linear_Regression 0.4261808 0.4320149 0.4340128 0.4390390 0.4425761 0.4726409
## Ridge
                     0.4281731 0.4334230 0.4362590 0.4405051 0.4454071 0.4720434
                     0.4276920 0.4330647 0.4364914 0.4403860 0.4449243 0.4721327
## Lasso
                     0.4274328 0.4330542 0.4354391 0.4399269 0.4448176 0.4720702
## Elastic_Net
                     NA's
##
                        0
## Linear_Regression
## Ridge
                        0
## Lasso
                        0
## Elastic_Net
                        0
##
## RMSE
##
                          Min.
                                  1st Qu.
                                             Median
                                                         Mean
                                                                 3rd Qu.
## Linear_Regression 0.5325907 0.5394231 0.5513718 0.5507854 0.5564032 0.5835238
                     0.5363406 0.5426274 0.5535668 0.5527796 0.5570390 0.5837848
## Ridge
## Lasso
                     0.5362188 0.5422580 0.5529754 0.5525153 0.5572793 0.5834368
                     0.5354741 0.5414764 0.5531955 0.5519547 0.5560081 0.5834749
## Elastic Net
                     NA's
## Linear_Regression
                        0
                        0
## Ridge
## Lasso
                        0
## Elastic_Net
                        0
##
## Rsquared
##
                           Min.
                                   1st Qu.
                                              Median
                                                          Mean
                                                                  3rd Qu.
## Linear_Regression 0.10033968 0.1319832 0.1534930 0.1479018 0.1622355 0.1906302
## Ridge
                     0.09354935 0.1329969 0.1421825 0.1418538 0.1502030 0.1878098
## Lasso
                     0.09475560 0.1342489 0.1433703 0.1428172 0.1503016 0.1912475
## Elastic Net
                     0.09585259 0.1339416 0.1458955 0.1443698 0.1542137 0.1902642
##
                     NA's
## Linear_Regression
                        0
## Ridge
## Lasso
                        0
## Elastic_Net
                        0
parallelplot(resamp, metric = "RMSE")
```


bwplot(resamp, metric = "RMSE")

The RMSE from resampling looks similar to each other.

```
# Function to calculate RMSE
rmse <- function(actual, predicted) {
    sqrt(mean((actual - predicted)^2))
}

# Make predictions using each model
lm.pred <- predict(lm.fit, newdata = dat2)
ridge.pred <- predict(ridge.fit, newdata = dat2)
lasso.pred <- predict(lasso.fit, newdata = dat2)
enet.pred <- predict(enet.fit, newdata = dat2)

# Calculate test MSE for each model
lm.test.error <- mean((lm.pred - dat2[,"log_antibody"])^2)
ridge.test.error <- mean((ridge.pred - dat2[,"log_antibody"])^2)
lasso.test.error <- mean((lasso.pred - dat2[,"log_antibody"])^2)
enet.test.error <- mean((enet.pred - dat2[,"log_antibody"])^2)</pre>
```

3.1.6 Test Set Performance

```
## Model Test_ERROR
## 1 Linear Regression 0.3229854
## 2 Ridge Regression 0.3258077
## 3 Lasso Regression 0.3288173
## 4 Elastic Net Regression 0.3247256
```

pred.ss = predict(fit.ss, x = bmi.grid)

They are very similar to each other. We probably want to choose the Lasso model as it is the simplest model among those four models.

3.2 Non-linear Models

3.2.1 Smoothing Spline We use scatterplot to explore the relationship between the log antibody level and other variables. Time and bmi tend shows potentially nonlinear trend.

```
x = model.matrix(log_antibody ~ . - id, data = dat1)[, -1]
y = dat1[,"log_antibody"]
x_test = model.matrix(log_antibody ~ . - id, data = dat2)[, -1]
y_test = dat2[,"log_antibody"]
# choose the best df
fit.ss = smooth.spline(dat1$bmi, dat1$log_antibody)
fit.ss$df
## [1] 5.769535
print(fit.ss)
## Call:
## smooth.spline(x = dat1$bmi, y = dat1$log_antibody)
## Smoothing Parameter spar= 0.8460071 lambda= 0.05288648 (13 iterations)
## Equivalent Degrees of Freedom (Df): 5.769535
## Penalized Criterion (RSS): 61.11728
## GCV: 0.3330358
# plot optimal fit
bmi.grid = seq(from = 17.5, to = 40, by = 1)
```

```
pred.ss.df = data.frame(pred = pred.ss$y, bmi = bmi.grid)

p = ggplot(dat1, aes(x = bmi, y = log_antibody)) +
    geom_point(color = rgb(.2, .4, .2, .5), size = 1) + theme_bw()

p +
geom_line(aes(x = bmi, y = pred), data = pred.ss.df,
color = rgb(.8, .1, .1, 1)) + theme_bw()
```



```
set.seed(2)
ctrl1 = trainControl(method = "cv", number = 10)
mars_grid = expand.grid(degree = 1:3, nprune = 2:20)
mars.fit = train(x, y, method = "earth", tuneGrid = mars_grid,
trControl = ctrl1)
ggplot(mars.fit)
```

p8106_midterm_project_files/figure-latex/unname

3.2.2 Multivariate Adaptive Regression Splines (MARS)

```
mars.fit$bestTune
##
    nprune degree
## 8
         9
coef(mars.fit$finalModel)
##
      (Intercept)
                    h(27.8-bmi)
                                     h(time-57)
                                                    h(57-time)
                                                                   genderMale
                                                                 -0.296290451
##
     10.847446930
                    -0.061997354
                                   -0.002254182
                                                  -0.033529326
##
       h(age-59)
                       h(59-age) smokingCurrent
                                                   h(bmi-23.7)
     -0.022957648
                                   -0.205126851
##
                     0.016138468
                                                  -0.084380175
summary(mars.fit$finalModel)
## Call: earth(x=matrix[5000,15], y=c(10.65,9.889,1...), keepxy=TRUE, degree=1,
               nprune=9)
##
##
##
                 coefficients
## (Intercept)
                   10.8474469
## genderMale
                    -0.2962905
## smokingCurrent -0.2051269
## h(59-age)
                    0.0161385
## h(age-59)
                    -0.0229576
## h(bmi-23.7)
                   -0.0843802
## h(27.8-bmi)
                   -0.0619974
## h(57-time)
                    -0.0335293
## h(time-57)
                    -0.0022542
##
## Selected 9 of 10 terms, and 5 of 15 predictors (nprune=9)
## Termination condition: RSq changed by less than 0.001 at 10 terms
## Importance: bmi, genderMale, time, age, smokingCurrent, raceAsian-unused, ...
## Number of terms at each degree of interaction: 1 8 (additive model)
## GCV 0.2787787
                   RSS 1384.431
                                    GRSq 0.2166152
                                                      RSq 0.2216218
# we choose the relatively important variables to draw partial dependence plot
pdp1 = pdp::partial(mars.fit, pred.var = c("bmi"), grid.resolution = 10) |> autoplot()
pdp2 <- pdp::partial(mars.fit, pred.var = c("bmi", "time"), grid.resolution = 10) |>
pdp::plotPartial(levelplot = FALSE, zlab = "log antibody", drape = TRUE,
screen = list(z = 20, x = -60))
gridExtra::grid.arrange(pdp1, pdp2, ncol = 2)
p8106_midterm_project_files/figure-latex/unnamed-chunk-34-1.pdf
```

```
set.seed(2)
gam.fit = train(x, y, method = "gam", trControl = ctrl1)
summary(gam.fit)
```

3.2.3 Generalized Additive Model (GAM)

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## .outcome ~ genderMale + raceAsian + raceBlack + raceHispanic +
      smokingFormer + smokingCurrent + diabetesYes + hypertensionYes +
##
      s(age) + s(sbp) + s(ldl) + s(bmi) + s(time) + s(height) +
##
      s(weight)
##
## Parametric coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               ## genderMale
               ## raceAsian
               -0.003296 0.033009 -0.100
                                              0.920
               -0.010509 0.018837 -0.558
## raceBlack
                                              0.577
## raceHispanic -0.037424 0.026176 -1.430
                                              0.153
## smokingFormer
                 0.022219 0.016660 1.334
                                              0.182
## smokingCurrent -0.193175
                            0.025834 -7.478 8.9e-14 ***
## diabetesYes
                  0.014230
                            0.020640
                                     0.689
                                              0.491
## hypertensionYes -0.007678
                            0.015995 -0.480
                                              0.631
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Approximate significance of smooth terms:
                 edf Ref.df
                               F p-value
                         9 13.733 <2e-16 ***
## s(age)
           9.908e-01
## s(sbp)
           6.175e-07
                         9 0.000
                                   0.765
## s(ldl)
                        9 0.000
                                  0.639
           6.648e-07
## s(bmi)
           4.179e+00
                       9 41.897 <2e-16 ***
                        9 44.960 <2e-16 ***
## s(time)
           7.892e+00
## s(height) 1.234e+00
                         9 0.278
                                   0.121
## s(weight) 2.262e-06
                         9 0.000
                                   0.666
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## R-sq.(adj) =
                0.22
                      Deviance explained = 22.4%
## GCV = 0.27867 Scale est. = 0.27738
```

gam.fit\$bestTune

```
## select method
## 2 TRUE GCV.Cp
```

```
gam.fit$finalModel
```

```
##
## Family: gaussian
## Link function: identity
## Formula:
  .outcome ~ genderMale + raceAsian + raceBlack + raceHispanic +
##
       smokingFormer + smokingCurrent + diabetesYes + hypertensionYes +
       s(age) + s(sbp) + s(ldl) + s(bmi) + s(time) + s(height) +
##
       s(weight)
##
## Estimated degrees of freedom:
## 0.991 0.000 0.000 4.179 7.892 1.234 0.000
## total = 23.3
## GCV score: 0.2786734
comparison = resamples(list(MARS = mars.fit, GAM = gam.fit))
summary(comparison)
```

3.2.4 Model Comparison (resampling)

```
##
## Call:
## summary.resamples(object = comparison)
## Models: MARS, GAM
## Number of resamples: 10
##
## MAE
##
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                  3rd Qu.
## MARS 0.4120189 0.4180233 0.4203065 0.4224208 0.4285348 0.4360995
## GAM 0.4127242 0.4190075 0.4202804 0.4224455 0.4273258 0.4352565
## RMSE
                               Median
             Min.
                    1st Qu.
                                           Mean
                                                  3rd Qu.
## MARS 0.5066327 0.5230870 0.5316602 0.5282995 0.5354905 0.5457286
## GAM 0.5091877 0.5223782 0.5306669 0.5279212 0.5336806 0.5451253
##
## Rsquared
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                  3rd Qu.
## MARS 0.1766328 0.1941155 0.2028183 0.2159220 0.2369173 0.2730827
                                                                        0
## GAM 0.1795042 0.1955023 0.2071224 0.2170567 0.2376473 0.2735385
```

```
# Make predictions using each mode
pred_ss = predict(fit.ss, x = dat2$bmi)
```

```
pred_mars = predict(mars.fit, newdata = x_test)
pred_gam = predict(gam.fit, newdata = x_test)

mse_ss = mean((dat2$log_antibody - pred_ss$y)^2)
mse_mars = mean((y_test - pred_mars)^2)
mse_gam = mean((y_test - pred_gam)^2)

test_performance_non_linear <- data.frame(
    Model = c("Smoothing Spline", "MARS", "GAM"),
    Test_ERROR = c(mse_ss, mse_mars, mse_gam)
)
print(test_performance_non_linear)</pre>
```

3.1.6 Test Set Performance

```
## Model Test_ERROR
## 1 Smoothing Spline 0.3584620
## 2 MARS 0.2838458
## 3 GAM 0.3249953
```

4. Model Comparison between Linear and non-linear Models

Model	MSE
MARS	0.2838458
Linear Regression	0.3229854
Smoothing Spline	0.3247256
GAM	0.3249953
Ridge Regression	0.3258077
Lasso Regression	0.3288173
Elastic Net Regression	0.3584620

The best model is the MARS model with the smallest test error.