Les suites numériques

I. Généralités sur les suites numériques

Soit $n_0 \in \mathbb{N}$ et *I* une partie de \mathbb{N} tel que $I = \{ n \in \mathbb{N} / n \ge n_0 \}$.

1. <u>Définition d'une suite</u>

On appelle suite numérique toute fonction définie sur I ($I \subset \mathbb{N}$) se note U, V...

2. Vocabulaire

Soit U une suite numérique définie sur I $(I \subset \mathbb{N})$.

- Pour tout $n \in \mathbb{N}$ le nombre U(n) se note U_n .
- La suite U se note $(U_n)_{n \in I}$ ou $(U_n)_{n \ge n_0}$.
- Le nombre U_n s'appelle terme générale de la suite $(U_n)_{n \ge n_0}$.
- Le nombre U_{n_0} s'appelle le premier terme de la suite $(U_n)_{n \ge n_0}$

<u>Exemple</u>

- Le terme général de la suite des nombres pairs est $U_n = 2n$ pour tout $n \in \mathbb{N}$ et son premier terme est $U_0 = 2 \times 0 = 0$
- Le terme général de la suite des nombres impairs est $U_n = 2n+1$ pour tout $n \in \mathbb{N}$ et son premier terme est $U_0 = 2 \times 0 + 1 = 1$

Application O

Soit $(U_n)_{n \in \mathbb{N}^*}$ une suite numérique définie par $U_n = \frac{2+5n}{n}$

- 1) Calculer les trois premiers termes de $(U_n)_{n\in\mathbb{N}^*}$
- 2) Calculer $U_n + 1$, U_{n+1} et U_{2n+1}
- 3) Déterminer la valeur de n (rang) telle que $U_n = \frac{7}{2}$

Remarque

Il existe deux types des suites :

✓ Suite définie explicitement en fonction de rang_n

Ce type permet de déterminer directement les termes de la suite ; en remplaçant n par des valeurs possibles.

Exemple

La $(U_n)_{n\in\mathbb{N}^*}$ définie par $U_n=2n+3$: est une suite définie explicitement Telle que $U_1=2\times 1+3=5$; $U_7=2\times 7+3=17....$

Suite définie par une relation de récurrence

Cette suite peut être définie par son premier terme (ou par ses premiers termes) ; et par une relation de récurrence permettant de calculer chaque terme en fonction des termes précédents.

Exemple

• La suite définie par $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{1}{2}U_n + 3 \end{cases}$; $(\forall n \in \mathbb{N})$ est une suite définie par une relation de

récurrence.

On a
$$U_1 = \frac{1}{2}U_0 + 3 = \frac{1}{2} \times 1 + 3 = \frac{7}{2}$$
 ; $U_2 = \frac{1}{2}U_1 + 3 = \frac{1}{2} \times \frac{7}{2} + 3 = \frac{7}{4} + 3 = \frac{19}{4}$

• La suite définie par $\begin{cases} V_1 = 1 \\ V_{n+2} = \sqrt{2V_{n+1} + 3} \end{cases}$; $(\forall n \in \mathbb{N})$ est une suite définie par une relation de récurrence.

On a
$$V_2 = \sqrt{2V_1 + 3} = \sqrt{2 \times 1 + 3} = \sqrt{5}$$

Application @

Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définie par $\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{U_n}{U_n + 1}; (\forall n \in \mathbb{N}) \end{cases}$

Calculer U_1 , U_2 et U_3

II. Suite majorée – Suite minorée – Suite bornée

<u>Activité</u>

Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définie par $U_n = \frac{2+n}{1+n}$

- 1) Calculer U_1 , U_2 et U_3
- 2) Montrer que $1 \le U_n \le 2$

Définitions

Soit $(U_n)_{n\in I}$ une suite numérique.

- On dit que la suite $(U_n)_{n\in I}$ est **majorée** par un nombre réel M si et seulement si $(\forall n \in I); U_n \leq M$
- On dit que la suite $(U_n)_{n\in I}$ est **minorée** par un nombre réel m si et seulement si $(\forall n\in I); U_n\geq m$
- On dit que la suite $(U_n)_{n\in I}$ est **bornée** s'elle est majorée et minorée.

Application 3

Soit $(U_n)_n$ une suite numérique définie par : $\begin{cases} U_0 = \frac{2}{3} \\ U_{n+1} = \frac{3U_n + 2}{2U_n + 3}; (\forall n \in \mathbb{N}) \end{cases}$

- 1) Calculer U_1 , U_2 et U_3
- 2) En utilisant le raisonnement par récurrence montrer que (U_n) est majorée par 1 et minorée par 0

<u>Propriété</u>

Soit $(U_n)_{n\in I}$ une suite numérique.

 $(U_n)_{n \in I}$ est bornée $\iff \exists k \in \mathbb{R}_+^* / |U_n| \le k$

Exemple

 $U_n = 2\cos(n) + \sin(n) \ (\forall n \in \mathbb{N})$

On a $(\forall n \in \mathbb{N})$; $|U_n| \le 3$ donc (U_n) est bornée.

III. Monotonie d'une suite numérique

Définition

Soit $(U_n)_{n\in I}$ une suite numérique.

- * On dit $(U_n)_{n\in I}$ est une suite *croissante* si et seulement si $n \prec m \Rightarrow U_n \leq U_m \ (\forall m \in I) \ (\forall m \in I)$.
- * On dit $(U_n)_{n\in I}$ est une suite *décroissante* si et seulement si $n \prec m \Rightarrow U_n \geq U_m \ (\forall m \in I) \ (\forall m \in I)$.
- * On dit $(U_n)_{n\in I}$ est une suite *constante* si et seulement si $n \prec m \Rightarrow U_n = U_m (\forall m \in I)(\forall n \in I)$

<u>Propriété</u>

Soit $(U_n)_{n\in I}$ une suite numérique.

- * On dit $(U_n)_{n\in I}$ est une suite *croissante* si et seulement si $(\forall n \in I)$; $U_n \leq U_{n+1}$.
- * On dit $(U_n)_{n\in I}$ est une suite *décroissante* si et seulement si $(\forall n \in I)$; $U_n \ge U_{n+1}$.
- * On dit $(U_n)_{n\in I}$ est une suite *constante* si et seulement si $(\forall n \in I)$; $U_n = U_{n+1}$.

<u>Remarque</u>

Soit $(U_n)_{n\in I}$ une suite numérique telle que $(\forall n\in I); U_n\succ 0$

- $(U_n)_{n \in I}$ est strictement croissante $\Leftrightarrow \frac{U_{n+1}}{U_n} > 1$.
- $(U_n)_{n \in I}$ est strictement décroissante $\Leftrightarrow \frac{U_{n+1}}{U_n} < 1$.
- $(U_n)_{n\in I}$ est croissante s'elle est minorée par U_{n_0} ; et décroissante s'elle est majorée par U_{n_0} pour tout $n \ge n_0$.

Application @

Etudier la monotonie de la suite (U_n) dans les cas suivants

$$U_n = \frac{2n-1}{n+4}$$
 ; $U_n = 4\left(\frac{1}{3}\right)^n$; $U_n = \frac{n+1}{2^n}$

$$\begin{cases} U_0 = 1 \\ U_{n+1} = U_n + 2 \end{cases}; \qquad \begin{cases} U_0 = 2 \\ U_{n+1} = U_n - 3n \end{cases}$$

IV. Suite arithmétique

1. Définition d'une suite arithmétique

<u>Activité</u>

Soit (U_n) une suite numérique définie par $U_n = 2n + 3$

- 1) Calculer les quatre premiers termes de (U_n) . Que remarquez-vous ?
- 2) Calculer $U_{n+1} U_n$ pour tout $n \in \mathbb{N}$.

Définition

Soit $(U_n)_{n\in I}$ une suite numérique.

On dit que $(U_n)_{n\in I}$ est une suite arithmétique si et seulement si $\exists r \in \mathbb{R} / U_{n+1} = U_n + r$ donc.

Le nombre réel r s'appelle la raison de la suite $(U_n)_{n=1}$.

<u>Remarque</u>

Pour montrer qu'une suite numérique $\left(U_n\right)_{n\in I}$ est arithmétique il suffit de montrer que $(\forall n\in I); U_{n+1}-U_n=r$, de telle sorte que r ne dépend pas de n.

<u>Exemple</u>

Soient (U_n) et (V_n) deux suites numériques telles que $U_n = -4n+1$ et $V_n = n^2+2$

$$\Rightarrow$$
 On a $(\forall n \in \mathbb{N}); U_{n+1} - U_n = -4(n+1) + 1 - (-4n+1) = -4n - 4 + 1 + 4n - 1 = -4$

Donc (U_n) est une suite arithmétique de raison r = -4

$$\Rightarrow$$
 Et On a $(\forall n \in \mathbb{N}); V_{n+1} - V_n = (n+1)^2 + 2 - (n^2 + 2) = n^2 + 2n + 1 + 2 - n^2 - 2 = 2n + 1$

Donc la suite (V_n) n'est pas une suite arithmétique car la différence $V_{n+1}-V_n$ dépend de n.

2. <u>Terme générale d'une suite arithmétique en fonction de n</u>

<u>Propriété</u>

Si $(U_n)_{n\in I}$ est une suite arithmétique de raison r alors $\forall (n, p) \in I^2$ on a $U_n = U_p + (n-p)r$

Exemple

Soit (U_n) une suite arithmétique de raison r=2 et son premier terme est $U_0=-3$

On a $U_n = U_p + (n-p)r$ donc $U_n = U_0 + (n-0) \times r = -3 + 2n$

Application **©**

- 1) Soit (U_n) une suite arithmétique telle que : $U_0 = 5$ et $U_{25} = 15$
- a) Déterminer r la raison de la suite (U_n) .
- b) Exprimer U_n en fonction de n.
- c) Le nombre 203 est-il un terme de la suite (U_n) ? justifier
- ⇒ Propriété caractéristique d'une suite arithmétique

Si x, y et z (dans cet ordre) trois termes consécutifs d'une suite arithmétique alors on a x + z = 2y

Application 6

Soit $(U_n)_n$ une suite arithmétique telle que $U_1 + U_2 + U_3 = 15$.

Calculer U_2 .

3. Somme de termes consécutifs d'une suite arithmétique

<u>Propriété</u>

Si $(U_n)_{n\in I}$ est une suite arithmétique de raison r alors $\forall (n,p) \in I^2$ on a

$$U_p + U_{p+1} + U_{p+2} + \dots + U_n = \frac{(n-p+1)}{2} (U_p + U_n).$$

 U_p le premier terme de la somme, U_n le dernier terme de la somme et (n-p+1) le nombre termes.

Exemple

Soit (V_n) une suite arithmétique telle que $V_n = 2n + 3$. Calculer $S = \sum_{k=0}^{9} V_k$

On a
$$S = \sum_{k=0}^{9} V_k = \frac{(9-0+1)}{2} (V_0 + V_9)$$

Et on a $V_0 = 2 \times 0 + 3 = 3$ et $V_9 = 2 \times 9 + 3 = 21$ Donc S = 5(3 + 21) = 120

Application **②**

Soit (U_n) une suite arithmétique telle que : $U_3 = 5$ et $U_{12} = 20$

- 1) Déterminer r la raison de la suite (U_n) . Puis déduire U_n en fonction de n.
- 2) Calculer $S = U_3 + U_4 + \dots + U_{15}$

V. Suite géométrique

1. <u>Définition d'une suite géométrique</u>

<u>Activité</u>

Soit (U_n) une suite numérique définie par $(\forall n \in \mathbb{N}); U_n = 4 \times 3^n$.

- 1) Calculer $\frac{U_1}{U_0}, \frac{U_2}{U_1}$ et $\frac{U_3}{U_2}$. Que remarquez-vous ?
- 2) Déduire U_{n+1} en fonction de U_n pour tout $n \in \mathbb{N}$.

Définition

Soit $(U_n)_{n\in I}$ une suite numérique.

On dit que $(U_n)_{n\in I}$ est une suite arithmétique si et seulement si $\exists q\in \mathbb{R} / U_{n+1} = qU_n$.

Le nombre réel q s'appelle raison de la suite $(U_n)_{n\in I}$

<u>Exemple</u>

Soit (U_n) une suite numérique telle que $(\forall n \in \mathbb{N})$; $U_n = -7 \times 5^n$

On a $U_{n+1} = -7 \times 5^{n+1} = -7 \times 5^n \times 5 = 5U_n$.

Donc (U_n) est une suite géométrique de raison 5.

<u>Remarque</u>

Pour montrer qu'une suite numérique $(U_n)_{n\in I}$ est géométrique il suffit de montrer que

 $(\forall n \in I); \frac{U_{n+1}}{U_n} = q(U_n \neq 0)$, de telle sorte que q ne dépend pas de n.

2. <u>Terme générale d'une suite arithmétique en fonction de n</u>

<u>Propriété</u>

Si $(U_n)_{n\in I}$ est une suite géométrique de raison q alors $\forall (n,p) \in I^2$ on a $U_n = U_p \times q^{n-p}$.

Remarque

Soit $(U_n)_{n\in I}$ est une suite géométrique de raison q.

- Si p = 0 alors $U_n = U_0 \times q^n$.
- Si p=1 alors $U_n = U_1 \times q^{n-1}$.
- Si q = 1 alors la suite $(U_n)_{n \in I}$ est une suite constante.

Application 8

Soit (U_n) est une suite géométrique de raison q telle que $U_1 = -2$ et $U_4 = 5$.

Déterminer la raison de la suite (U_n) puis déduire le terme général en fonction de n.

⇒ Propriété caractéristique d'une suite géométrique

Si x, y et z (dans cet ordre) trois termes consécutifs d'une suite géométrique alors on a $x \times z = y^2$

Application @

Soit (U_n) une suite géométrique telle que $U_1 \times U_2 \times U_3 = 27$. Calculer U_2

3. Somme de termes d'une suite géométrique

Propriété :

 $\operatorname{Si}(U_n)_{n\in I}$ est une suite géométrique de raison $q\ (q \neq 1)$, alors

La somme des termes consécutifs $S = U_p + U_{p+1} + U_{p+2} + \dots + U_n$ est : $S = U_p \times \left(\frac{1 - q^{n-p+1}}{1 - q}\right)$.

Application @

Soit (U_n) une suite géométrique telle que $U_0 = 2$ et q = -3.

- 1) Exprimer U_n en fonction de n.
- 2) Calculer U_1, U_2, U_3 et U_9
- 3) Calculer $S = \sum_{k=1}^{9} U_k$

Exercice

Soit $(U_n)_n$ une suite numérique définie par $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{1}{5}U_n + 2 \end{cases}; (\forall n \in \mathbb{N})$

- 1) Calculer U_1, U_2 et U_3
- 2) Soit (V_n) une suite numérique définie par $V_n = \frac{5}{2} U_n$
- a) Montrer que (V_n) est une suite géométrique, en déterminant sa raison et son premier terme.
- b) Exprimer V_n en fonction de n.
- c) Déduire U_n en fonction de n.
- d) Calculer $S = \sum_{k=0}^{9} V_k$.