

Shrinkage regression for multivariate inference with missing data, and an application to portfolio balancing

Robert B. Gramacy

Booth School of Business, The University of Chicago[†] rbgramacy@chicagobooth.edu

Thanks to Joo Hee Lee, Ricardo Silva, and Ester Pantaleo † Most of this work was done at the Statistical Laboratory, University of Cambridge

R in Finance, UIC, April 2011

NYSE & AMEX data from 1968–1997

missingness pattern in financial return data

 $lue{}$ Goal: to estimate MVN parameters $(oldsymbol{\mu}, oldsymbol{\Sigma})$

Missingness pattern is monotone

Y:
$$y_{:,1},\ldots,y_{:,m}$$
 and let $\mathbf{y}_j\equiv y_{1:n_j,j}$

Easy to get MLE under MVN assumption

(Andersen 1957) MLEs of $\theta_j = (\mu_j, \Sigma_{1:j,j})$, j = 2, ..., m may be obtained via OLS regressions

$$\mathbf{y}_j = \mathbf{Y}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j, \qquad \{\boldsymbol{\epsilon}_{i,j}\}_{i=1}^{n_j} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_j^2)$$

with $oldsymbol{\phi}_j = (oldsymbol{eta}_j, \sigma_j^2)$, where $\mathbf{y}_j \equiv y_{1:n_j,j}$ and

$$\mathbf{Y}_{j} \equiv \mathbf{Y}_{0:(j-1)}^{(n_{j})} = \begin{pmatrix} 1 & y_{1,1} & \cdots & y_{1,(j-1)} \\ 1 & y_{2,1} & \cdots & y_{2,(j-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & y_{n_{j},1} & \cdots & y_{n_{j},(j-1)} \end{pmatrix}$$

Repeated OLS regressions

$$\mathbf{y}_j = \mathbf{Y}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j$$

MLE for OLS obtained in the usual way

 $oxedsymbol{\square}$ When $\operatorname{rank}(\mathbf{Y}_j) = j < n_j$, OLS gives the MLE:

$$\hat{\boldsymbol{\beta}}_j = (\mathbf{Y}_j^{\top}\mathbf{Y}_j)^{-1}\mathbf{Y}_j^{\top}\mathbf{y}_j \quad \text{and} \quad \hat{\sigma}_j^2 = \frac{1}{n_j}||\mathbf{y}_j - \mathbf{Y}_j\hat{\boldsymbol{\beta}}_j||^2$$

- $m{\Box} \ \hat{m{ heta}}_1: \hat{\mu}_1 = \sum_{i=1}^{n_1} y_{i,1}/n_1 \ ext{and} \ \hat{\Sigma}_{1,1} = \sum_{i=1}^{n_1} (y_{i,1} \hat{\mu}_1)^2/n_1$
- lacksquare Obtain $\hat{ heta}_j$ from $\hat{ heta}_{1:(j-1)}$ and $\hat{\phi}_j=(\hat{eta}_j,\hat{\sigma}_j^2)$ as

$$\hat{\mu}_{j} = \hat{\beta}_{0,j} + \hat{\beta}_{1:(j-1),j}^{\top} \hat{\mu}_{1:(j-1)}$$

$$\hat{\Sigma}_{1:j,j} = \begin{pmatrix} \hat{\beta}_{1:(j-1),j}^{\top} \hat{\Sigma}_{1:(j-1),1:(j-1)} \\ \hat{\sigma}_{j}^{2} + \hat{\beta}_{1:(j-1),j}^{\top} \hat{\Sigma}_{1:(j-1),1:(j-1)} \hat{\beta}_{1:(j-1),j} \end{pmatrix}$$

thus describing the mapping $oldsymbol{ heta}_j = \Phi^{-1}(oldsymbol{ heta}_{1:(j-1)}, oldsymbol{\phi}_j)$

Example on cement data

Heat (y) evolved in setting of cement, as a function of its chemical composition $(x_{1:4})$ (Little & Rubin, 2002)

	original ordering					_		monotone ordering				
n	x_1	x_2	x_3	x_4	y		n	x_3	y	x_1	x_2	x_4
1	7	26	6	60	78.50		1	6	78.50	7	26	60
2	1	29	15	52	74.30		2	15	74.30	1	29	52
3	11	56	8	20	104.30		3	8	104.30	11	56	20
4	11	31	8	47	87.60		4	8	87.60	11	31	47
5	7	52	6	33	95.90		5	6	95.90	7	52	33
6	11	55	9	22	109.20	\Rightarrow	6	9	109.20	11	55	22
7	3	71	17		102.70		7	17	102.70	3	71	
8	1	31	22		72.50		8	22	72.50	1	31	
9	2	54	18		93.10		9	18	93.10	2	54	
10			4		115.90		10	4	115.90			
11			23		83.80		11	23	83.80			
12			9		113.30		12	9	113.30			
13			8		109.40	-	13	8	109.40			

The Bayesian approach

☐ E.g., the popular non–informative prior

$$p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \propto |\Sigma|^{-\left(\frac{m+1}{2}\right)} \quad \Rightarrow \quad p(\boldsymbol{\beta}_j, \sigma_j^2) \propto (\sigma_j^2)^{-\left(\frac{m+1}{2} - m + j\right)}$$

for j = 1, ..., m, leads to the convenient posterior:

$$\boldsymbol{\beta}_{j} | \sigma_{j}^{2}, \boldsymbol{y}_{j}, \boldsymbol{Y}_{j} \sim \mathcal{N}_{j+1}(\hat{\boldsymbol{\beta}}_{j}, \sigma_{j}^{2}(\boldsymbol{Y}_{j}^{\top}\boldsymbol{Y}_{j})^{-1})$$

$$\sigma_{j}^{2} | \mathbf{y}_{j}, \mathbf{Y}_{j} \sim \operatorname{IG}\left(\frac{n_{j} - m + j - 1}{2}, \frac{||\mathbf{y}_{j} - \mathbf{Y}_{j}\hat{\boldsymbol{\beta}}_{j}||^{2}}{2}\right)$$

□ Samples from m pairs of full conditionals converted to samples of (μ, Σ) via Φ^{-1} (Polson & Tew, 2000)

Estimation Risk/Parameter uncertainty

(Zellner & Chetty, 1965; Klein & Bawa, 1976)

The posterior predictive distribution:

$$p(\mathbf{y}^{(t+1)}|\mathbf{Y}^{(t)}) = \int p(\mathbf{y}^{(t+1)}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma}|\mathbf{Y}^{(t)}) d\boldsymbol{\mu} d\boldsymbol{\Sigma}$$

moments $(\boldsymbol{\mu}^{(t+1)} = \hat{\boldsymbol{\mu}}, \boldsymbol{\Sigma}^{(t+1)})$ available w/o sampling

- lacksquare no missing data: $\Sigma^{(t+1)} = c\hat{\Sigma}$ (Polson & Tew, 2000)
- $\square \Sigma^{(t+1)}$ via $\hat{\Sigma}$ and $\{n_j j\}_{j=1}^m$ (Stambaugh, 1997)

Or, via samples from the posterior: (Polson & Tew, 2000)

$$\mathbf{\Sigma}^{(t+1)} = \mathbb{E}\{\mathbf{\Sigma}|\mathbf{Y}^{(t)}\} + \text{Var}\{\boldsymbol{\mu}|\mathbf{Y}^{(t)}\}$$

The methods fail when

 $\operatorname{rank}(\mathbf{Y}_j) = j \geq n_j$, precluding $(\mathbf{Y}_j^{\top}\mathbf{Y}_j)^{-1}$ called a "big p small n" problem

- lacksquare more parameters/predictors (p): $ncol(\mathbf{Y}_j) = j$
- lacksquare than observations (n): $ncol(\mathbf{Y}_j) = n_j$

Therefore for MLE/posterior, we cannot have:

- \square an asset with fewer returns (n_j) than the number of assets with more returns (j-1)
- more assets than returns

One solution: shrinkage regression

Instead of OLS we can obtain $\hat{\beta}$ and $\hat{\sigma}^2$ w/o $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ via

$$\hat{\boldsymbol{\beta}}^{(q)} = \operatorname*{argmin}_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

where
$$\mathbf{y} \equiv \mathbf{y}_j$$
, $\mathbf{X} \equiv \mathbf{Y}_j$, and $\sigma^2 \equiv \sigma_j^2$.

 \square q=2 (ridge); q=1 (lasso)

The shrinkage parameter, λ , may be chosen by CV

- but we can can't account for estimation risk analytically (Stambaugh, 1997) via $\hat{\theta} = (\hat{\mu}, \hat{\Sigma}) = \Phi^{-1}(\hat{\phi})$
- □ but with a fully Bayesian model we can sample!

Monte Carlo investment exercise

Results of classical—Bayesian comparison

Estimation Risk Matters

Failing to incorporate parameter uncertainty into the decision leads to lower quality investments

	Sharpe ratio				
Bayesian method	$\mathbb{E}\{\mathbf{\Sigma} \mathbf{Y}\}$	$\mathbf{\Sigma}^{(t+1)}$			
Ridge	0.549	0.554			
Ridge + Factor	0.562	0.571			
Lasso	0.554	0.561			
Lasso + Factor	0.562	0.573			
NG	0.553	0.560			
NG + Factor	0.563	0.574			

Discussion and Implementation

- extended (Stambaugh, 1996) to many assets
- even when OLS suffices, shrinkage has merits
- easy to relax MVN assumption via scale—mixtures
- easy to extend to the horseshoe
- even better for mean—variance portfolios

monomyn is made available as an R package Within R do:

```
R> install.packages(c("monomvn","lars","pls")) #(once)
R> library(monomvn)
```

