超大规模集成电路基础 Fundamental of VLSI

第六章 CMOS 组合逻辑 电路设计

- 组合逻辑电路
 - 电路的输出信号是电路的输入信号的逻辑关系表示
- 时序电路
 - 电路的输出信号不仅决定于当前的输入信号,而且还决定于先前的输入信号

逻辑门

- 逻辑门
 - 由器件组合而成,实现一个特定逻辑函数的电路
- 评价逻辑门的设计指标
 - 面积
 - 速度
 - 能量
 - 功率
 - 抗噪声能力

- 静态互补CMOS电路
 - 由静态CMOS反相器扩展而成的电路
- 静态互补CMOS电路特点
 - 每个门的稳态输出总是通过低阻连至V_{DD}和GND
 - 稳态时,门的输出值总是由电路所实现的布尔函数决定
 - 与动态电路相反,动态电路的信号是暂时存储在电路节点电容上的

- 静态互补CMOS门是上拉网络(PUN)和下拉网络(PDN)的组合
 - PUN网络: 当输出意味着逻辑1时,把输出和V_{DD}之间 建立通路
 - PDN网络: 当输出意味着逻辑0时,把输出和GND之间建立通路
 - PUN和PDN网络以互相排斥的方式工作的,即在稳定状态下两个网络只有一个导通 V_{DD}

- 晶体管可以看成由栅信号控制的开关
 - NMOS:
 - 栅控制信号高,开关闭合
 - 栅控制信号低,开关断开
 - PMOS:
 - 栅控制信号高,开关断开
 - 栅控制信号低,开关闭合

- 阈值损失
 - PDN由NMOS构成,NMOS产生强0
 - PUN由PMOS构成,PMOS产生强1

• 静态互补CMOS逻辑功能实现规则

晶体管串联

$$A \bullet B = 1$$
 导通

$$\bar{A} \bullet \bar{B} = 1$$
 导通

晶体管并联

$$A+B=1$$
 导通

$$\bar{A} + \bar{B} = 1$$
 导通

De Morgan定理

$$\overline{A} \bullet \overline{B} = \overline{A + B}$$
 $\overline{A} + \overline{B} = \overline{A \bullet B}$

- 静态互补CMOS电路的对偶关系
 - PUN网络并联的晶体管相应于PDN网络串联的晶体
 - 反之亦然 $\frac{PUN}{\overline{A} \bullet \overline{B}}$ A+B $A \bullet B$
- 互补门的本质是反向的

$$OUT = \overline{D + A(B + C)}$$

(a) PDN

(b)通过识别电路中层次关系的子网络推导出PUN

(c)完整的互补CMOS电路

- 静态特性
 - 集成了静态CMOS反相器的所有优点
 - VTC如输入信号的模式有关

- 动态特性
 - 延时与输入信号的模式有关
 - t_{pLH} $A = 1 \rightarrow 0$ and $B = 1 \rightarrow 0$; $t_{pLH} = 0.69(R_p/2)C_L$ $A = 1 \rightarrow 0$ or $B = 1 \rightarrow 0$; $t_{pLH} = 0.69R_pC_L$
 - t_{pHL} $A = 0 \rightarrow 1 \text{ and } B = 0 \rightarrow 1; t_{pHL} = 0.69(2R_N)C_L$

- 动态特性
 - 考虑内部节点电容的分布式RC模型
 - 四输入NAND门的Elmore传播延时

$$t_{pHL} = 0.69 \left(R_1 C_1 + \left(R_1 + R_2 \right) C_2 + \left(R_1 + R_2 + R_3 \right) C_3 + \left(R_1 + R_2 + R_3 + R_4 \right) C_L \right)$$

$$t_{pHL} = 0.69 R_N \left(C_1 + 2C_2 + 3C_3 + 4C_L \right)$$

- 动态特性
 - 考虑内部节点电容的分布式RC模型
 - 扇入影响
 - N个输入需要2N个晶体管
 - 由高至低本征延时最坏情况是扇入数的二次函数

$$t_{pHL} = 0.69R_N (C_N + 2C_N + \dots + NC_N) = 0.69R_N C_N \frac{N(N+1)}{2}$$

- 动态特性
 - 大扇入时的设计技术
 - 调整晶体管尺寸
 - 逐级加大晶体管尺寸

$$t_{pHL} = 0.69 \left(R_1 C_1 + \left(R_1 + R_2 \right) C_2 + \left(R_1 + R_2 + R_3 \right) C_3 + \left(R_1 + R_2 + R_3 + R_4 \right) C_L \right)$$

$$R_1 < R_2 < R_3 < R_4$$

- 重新安排晶体管次序
 - 使关键路径上的延迟最低
 - In1为关键信号
 - In2=1, In3=1, In1: 0->1

- 动态特性
 - 大扇入时的设计技术
 - 重组逻辑结构

• 组合逻辑电路中的性能优化

$$t_{p} = t_{p0} \left(1 + \frac{C_{ext}}{\gamma C_{g}} \right) = t_{p0} \left(1 + \frac{f}{\gamma} \right)$$

考虑复合门情况修改为

$$t_p = t_{p0} \left(p + gf / \gamma \right)$$

p代表该复合门和简单反相器的本征延时比g称为逻辑努力,只与电路的拓扑结构有关h=gf称为门努力

• 组合逻辑电路中的性能优化

$$t_{p} = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{j=1}^{N} \left(p_{j} + \frac{f_{j}g_{j}}{\gamma} \right)$$
求 t_{p} 关于 $C_{g,j}$ 的导数可得最小延时的约束条件
$$C_{g,j+1}/C_{g,j} = C_{g,j}/C_{g,j-1}$$

$$f_{1}g_{1} = f_{2}g_{2} = \dots = f_{N}g_{N}$$

路径逻辑努力:沿电路中一条路径的总逻辑努力可以通过把这条路 径上所有门的逻辑努力相乘求得

$$G = \prod_{1}^{N} g_{i}$$

逻辑门的分支努力

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

$$B = \prod_{i=1}^{N} b_i$$

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

• 组合逻辑电路中的性能优化 路径逻辑努力与各级电器努力和分支努力间的关系

$$F = \prod_{i=1}^{N} \frac{f_i}{b_i} = \frac{\prod f_i}{B} \qquad b = \frac{C_{on-path} + C_{off-path}}{C_{gin}}$$

总路径努力

$$H = \prod_{i=1}^{N} h_i = \prod_{i=1}^{N} g_i f_i = GFB$$

使路径延时最小的门努力为:

$$h = \sqrt[N]{H}$$

通过该路径的最小延时为:

$$D = t_{p0} \left(\sum_{j=1}^{N} \left(p_{j} + \frac{N\sqrt[N]{H}}{\gamma} \right) \right)$$

逻辑链中各门的尺寸确定

$$g_2 s_2 C_{ref} = \left(\frac{f_1}{b_1}\right) g_1 s_1 C_{ref}$$

的尺寸确定
$$g_2 s_2 C_{ref} = \left(\frac{f_1}{b_1}\right) g_1 s_1 C_{ref} \qquad s_i = \frac{g_1 s_1}{g_i} \prod_{j=1}^{i-1} \left(\frac{f_j}{b_j}\right)$$

• 复合门的逻辑努力

	Number of Inputs			
Gate Type	1	2	3	n
Inverter	1			
NAND		4/3	5/3	(n+2)/3
NOR		5/3	7/3	(2n+1)/3
Multiplexer		2	2	2
XOR		4	12	

- 组合逻辑电路中的性能优化
 - CMOS逻辑门中的功耗
 - 动态功耗

$$\alpha_{0\rightarrow 1}C_LV_{DD}^2f$$

• 开关活动性 $\alpha_{0\rightarrow 1}$ 与逻辑电路拓扑结构的静态部分和电路时序特性的动态部分有关

$$\alpha_{0\to 1} = p_0 p_1 = p_0 (1 - p_0)$$

假设输入是独立并且均匀分布的

$$\alpha_{0\to 1} = \frac{N_0}{2^N} \frac{N_1}{2^N} = \frac{N_0 (2^N - N_0)}{2^{2N}}$$

两输入NOR门真值表

α -	$N_0 N_1$	$=\frac{N_{0}\left(2^{N}-N_{0}\right)}{2^{2N}}=$	$-\frac{3(2^2-3)}{}$	_ 3
$\alpha_{0\rightarrow 1}$	$2^{N} 2^{N}$	2^{2N}	$= - 2^4$	16

A	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

- 组合逻辑电路中的性能优化
 - CMOS逻辑门中的功耗

如果输入服从某种统计特性

两输NOR入门,令p_a和p_b为输入A和B分别等于1的概率,并且输入A和B不相关,则输出节点为1的概率为

$$p_1 = (1 - p_a)(1 - p_b)$$

因此,由0至1的翻转的概率为:

$$\alpha_{0\to 1} = p_0 p_1 = (1 - (1 - p_a)(1 - p_b))(1 - p_a)(1 - p_b)$$

	$\alpha_{0\rightarrow 1}$		
AND	$(1 - p_A p_B) p_A p_B$		
OR	$(1-p_A)(1-p_B)[1-(1-p_A)(1-p_B)]$		
XOR	$[1 - (p_A + p_B - 2p_A p_B)](p_A + p_B - 2p_A p_B)$		

- 组合逻辑电路中的性能优化
 - CMOS逻辑门中的功耗
 - 考虑信号间的相关性

AND门的输出翻转概率,假设输入信号是独立的 $\alpha_{0\to 1} = (1-p_a p_b) p_a p_b = (1-1/2 \cdot 1/2) 1/2 \cdot 1/2 = 3/16$

如果输入信号是相关的,则需使用条件概率计算

$$p_Z = p(Z=1) = p(B=1, C=1)$$

 $p_Z = p(C=1 | B=1) p(B=1)$

- 动态或虚假翻转

- 组合逻辑电路中的性能优化
 - 降低开关活动性的设计技术
 - 逻辑重组

$$F = ABCD$$

$$\begin{array}{c|c}
A & O_1 \\
\hline
C & D_2 \\
\hline
D & F
\end{array}$$

$$p_{\scriptscriptstyle 1}(a,b,c,d) = \frac{1}{2}$$

	O_1	<i>O</i> ₂	F
p ₁ (chain)	1/4	1/8	1/16
$p_0 = 1 - p_1 \text{ (chain)}$	3/4	7/8	15/16
p _{0⇒1} (chain)	3/16	7/64	15/256
p ₁ (tree)	1/4	1/4	1/16
$p_0 = 1 - p_1 \text{ (tree)}$	3/4	3/4	15/16
$p_{0 \Rightarrow 1}$ (tree)	3/16	3/16	15/256

- 组合逻辑电路中的性能优化
 - 降低开关活动性的设计技术
 - 输入排序

$$(1-0.5\times0.2)(0.5\times0.2)$$
 $(1-0.2\times0.1)(0.2\times0.1)$
= 0.09 = 0.0196

$$(1-0.2\times0.1)(0.2\times0.1)$$

= 0.0196

- 组合逻辑电路中的性能优化
 - 降低开关活动性的设计技术
 - 分时复用资源
 - 减少面积
 - 增加功耗

- 组合逻辑电路中的性能优化
 - 降低开关活动性的设计技术
 - 通过均衡信号路径来减少毛刺

- 有比逻辑由一个有源下拉(上拉)网络连到一个负载器件上构成
 - N个晶体管+负载
 - \bullet $V_{OH} = V_{DD}$
 - $V_{OL} = (V_{DD}R_{PDN}) / (R_{PDN} + R_L)$
 - $t_{pHL} \neq t_{pLH}$, $t_{pLH} = 0.69R_LC_L$
 - 有静态功耗

有比逻辑门

有比逻辑

- 伪NMOS门
 - 晶体管数目N+1
 - 额定输出高电压V_{DD}
 - 额定输出低电压不是0

$$k_{n} \left(\left(V_{DD} - V_{Tn} \right) V_{OL} - \frac{V_{OL}^{2}}{2} \right) + k_{p} \left(\left(-V_{DD} - V_{Tp} \right) V_{DSATp} - \frac{V_{DSATp}^{2}}{2} \right) = 0$$

$$V_{OL}$$
可近似为
$$V_{OL} \approx \frac{k_{p} (V_{DD} + V_{Tp}) V_{DSATp}}{k_{n} (V_{DD} - V_{Tn})} \approx \frac{\mu_{p} W_{p}}{\mu_{n} W_{n}} V_{DSATp}$$

静态功耗

$$P_{low} = V_{DD}I_{low} \approx V_{DD} \left| k_p \left(\left(-V_{DD} - V_{Tp} \right) V_{DSATp} - \frac{V_{DSATp}^2}{2} \right) \right|$$

有比逻辑

- 伪NMOS门
 - 静态功耗较大
 - 适于大扇入电路

Size	V _{OL}	Static Power Dissipation	t _{plh}
4	0.693V	564µW	14ps
2	0.273V	298μW	56ps
1	.133V	160µW	123ps
0.5	0.064V	80μW	268ps
0.25	0.031V	41 μW	569ps

- 差分串联电压开关逻辑(DCVSL)
 - 可以完全消除静态电流和提供电源轨线至电压摆幅的有比逻辑
 - 差分逻辑: 每个输入都具有互补形式
 - 正反馈: 通过正反馈将不需要的负载器件关断

- 差分串联电压开关逻辑(DCVSL)
 - 信号延迟

- 差分串联电压开关逻辑(DCVSL)
 - 设计考虑
 - 同时产生互补信号
 - 导线数量加倍, 使设计电路十分复杂

- 传输管逻辑允许原始输入驱动栅端和源-漏端来减少实现逻辑所需要的晶体管数目
- 前面介绍的逻辑门只允许驱动晶体管的栅端

传输管逻辑

• 传输管的电压摆幅

$$V_{DD} = V_{DD} - V_{tn}$$

$$\nabla V_{s} = |V_{tp}|$$

$$V_{DD} = V_{DD} - V_{In} = V_{DD} - V_{In} = V_{DD} - 2V_{In}$$

- 传输管逻辑
- 差分传输管逻辑
 - 互补传输管逻辑 (CPL)
 - 电路简单, 功耗低
 - 输出节点总是连至V_{DD}或GND
 - 设计具有模块化特点

- 稳定有效的传输管设计
 - 电平恢复
 - 无静态功耗
 - 有比电路

传输管逻辑

- 稳定有效的传输管设计
 - 电平恢复
 - 影响器件切换速度

- 稳定有效的传输管设计
 - 多种阈值晶体管
 - 传输管NMOS采用零阈值器件实现
 - 非传输管的器件都用标准的高阈值器件实现
 - 器件的体效应仍然会阻止全摆幅达到V_{DD}
 - 采用零阈值器件会增加功耗

- 稳定有效的传输管设计
 - 传输门逻辑
 - 由一个NMOS器件与一个PMOS器件并联构成
 - NMOS器件用于下拉,PMOS器件用于上拉

传输管逻辑

- 稳定有效的传输管设计
 - 传输门逻辑

$$F = \overline{A}B + A\overline{B}$$

XOR传输门

• 传输管和传输门逻辑的性能

• 传输门链的延时

(a) 传输门链

(b) 等效的RC网络

$$t_p(V_n) = 0.69 \sum_{k=0}^{n} C R_{eq} k = 0.69 C R_{eq} k \frac{n(n+1)}{2}$$

- 动态逻辑: 基本原理
 - 两个工作阶段,由时钟信号决定
 - 预充电
 - 求值

$$Out = \overline{CLK} + \overline{(A \cdot B + C)} \cdot CLK$$

- 动态逻辑门对输入和输出的要求
 - 一旦动态门的输出被放电,它直到下一个充电阶段之前不可能再次被充电
 - 动态门的输入在求值期间最多只能有一次过渡
 - 求值期间或求值之后输出可以处于高阻态,求值之后的状态存放在**C**₁上

- 动态逻辑门的重要特性
 - 逻辑功能由NMOS下拉网络实现
 - 晶体管数目(对于复杂门)明显少于静态情况:为 N+2
 - 是无比的逻辑门
 - 动态逻辑门只有动态功耗
 - 动态逻辑门具有较快的开关速度
 - 减少了每个门的晶体管数目
 - 下拉器件只对负载电容放电

• 动态逻辑的速度和功耗

- 动态逻辑的速度和功耗
 - 实际电容较少
 - 动态门每个时钟周期只有一次翻转
 - 动态门不存在短路功耗
 - 动态逻辑时钟功耗可以很大
 - 动态门使用晶体管数目并不是最少的
 - 当增加抗漏电器件时可能会有短路功耗存在
 - 由于周期性的预充电和放电操作,动态逻辑通常表现出较高的开关活动性 $a_{0\rightarrow 1}=p_0$

对于均匀分布输入的N个输入门的翻转概率为: $a_{0\rightarrow 1} = \frac{N_0}{2^N}$

- 动态设计中的信号完整性问题
 - 电荷泄露

- 动态设计中的信号完整性问题
 - 电荷泄露
 - 增加泄露晶体管

 $\Delta V_{out} < V_{Tn}$

- 动态设计中的信号完整性问题
 - 电荷分享

电荷分享
$$C_{L}V_{DD} = C_{L}V_{out} + C_{a}\left[V_{DD} - V_{Tn}\left(V_{X}\right)\right]$$

$$\Delta V_{out} = V_{out} + \left(-V_{DD}\right) = -\frac{C_{a}}{C_{L}}\left[V_{DD} - V_{Tn}\left(V_{X}\right)\right]$$

$$V_{DD}C_{L} = V_{out}C_{L} + V_{X}C_{a}$$

$$\Delta V_{out} = -V_{DD}\left(\frac{C_{a}}{C_{a} + C_{L}}\right)$$

$$\Delta V_{out} = -V_{DD}\left(\frac{C_{a}}{C_{a} + C_{L}}\right)$$

$$\Delta V_{out} = -V_{DD}\left(\frac{C_{a}}{C_{a} + C_{L}}\right)$$

$$\Delta V_{DD}C_{L} = V_{DD}C_{L} + V_{DD}C_{L}$$

$$\Delta V_{OUT} = -V_{DD}C_{L} + V_{DD}C_{L}$$

$$\Delta V_{DD}C_{L} = V_{DD}C_{L}$$

- 动态设计中的信号完整性问题
 - 电容耦合
 - 时钟馈通

- 串联动态门
 - 上一级的信号延迟导致下一级的电荷流失

- 多米诺逻辑
 - 动态逻辑+反相器

- 多米诺CMOS特点
 - 只能实现非反向逻辑
 - 有非常高的速度,只有上升延时,而下降延时为零
- 无求值管多米诺
 - 信号传播延迟,预充电产生竞争,导致静态功耗

- 多米诺逻辑非反向问题
 - 采用简单的布尔变换_{多米诺AND}

- 采用差分逻辑
 - 双轨多米诺

- 多米诺逻辑门的优化
 - 多输出多米诺
 - 求值晶体管数目减少

- 多米诺逻辑门的优化
 - 组合多米诺

• np-CMOS

