

Advance Business Analytics Seminar - WiSe 2023/24

Evaluating Patient Trust and Acceptance of 'Furhat' in Emergency Room Settings – a lab experiment with a social robot

Presented by

Harini Sankaran

Malavika Radhakrishnan

Nilay Khare

Sherin Kuttimakkal Shamsudheen

Yadhukrishna Punnakkal

Agenda

01 Introduction07 Areas For Further Improvement

02 Literature Review 08 References

03 Factors Affecting Trust In Our Use case

04 Experiment

05 Results

06 Conclusion

Introduction

Need for social robots

- Potential solution to increasing labour shortage
- Our use case: Social robots in an emergency room

Objectives

- Identify the factors that contribute to patients either accepting or resisting the 'Furhat'
- Quantify the level of trust and acceptance

Description of process

• Literature review, Design of conversation, Questionnaire, Methodology of analysis, Results

Process

<u>Pie chart representing papers reviewed</u> by year of publication

2003-2007 2008-2012

2013-2017 2018-2023

Bar chart representing papers reviewed by source

<u>Treemap representing percent of papers</u> <u>reviewed according to type of paper</u>

- Most of the papers reviewed were recently published
- A large collection of papers reviewed where from IEEE or ScienceDirect
- Almost 75% of the paper covered were experiment based

Theory model

Based on the literature review results, the below models would be relevant for our experiment

UTAUT

- ANX
- ATT
- FC
- SI

TAM

- PEOU
- PU
- PENJ

Other

- Trust
- ITU
- SP
- PS
- PAD

Models used - Code explanation

The below corresponding codes have been taken into consideration for our experiment.

Code	Construct	Definition
ANX	Anxiety	Evoking anxious or emotional reactions when using the system.
ATT	Attitude	Positive or negative feelings about the appliance of the technology.
FC	Facilitating conditions	Objective are factors in the environment that facilitate using the system.
ITU	Intention to use	The outspoken intention to use the system over a longer period in time.
PAD	Perceived adaptability	The perceived ability of the system to be adaptive to the changing needs of the user.
PEOU	Perceived ease of use	The degree to which the user believes that using the system would be free of effort
PS	Perceived sociability	The perceived ability of the system to perform sociable behavior.
PU	Perceived usefulness	The degree to which a person believes that using the system would enhance his or her daily activities
Trust	Trust	The belief that the system performs with personal integrity and reliability.

Factors Affecting Trust In Our Use case

An overview of factors in relation to their effect on trust

Construct	Factors	Relation to trust
PU	Errors in the context	Increase in error decreases trust
ATT	Cognitive/affective attitudes	Emotional appeal on affective attitudes, increases trust. Emotional appeal on cognitive attitudes, decreases trust.
Trust	Privacy disclosure	Increases in privacy disclosure increases trust
PS	Social skills, Anthropomorphic features, Human Likeliness, Stating Apology	Increase in social skills increases trust
ITU	Interest in using Social Robot	Increase in interest leads to increase in trust
PAD	Degree of decision-making power, Sense of control, Autonomy and Cooperativeness	Higher autonomy results in higher trust
PEOU	Comfort, familiarity with different technologies	Increase in comfort, familiarity with different technologies increases trust
ANX	Psychophysical reaction	Decrease in psychophysical reaction increases trust
FC	Social Navigation	Increase in social Navigation increases trust

Scenario considered

The patient fell down the stairs and their hand is in pain. Furhat will be there to support them and take down their basic information.

Designing Conversation

Two versions of scripts have been designed for the same scenario and have been fed to both Furhats via the SDK

Conducting experiments

Each person will talk to both robots with the given script

Filling Questionnaire

After conversing with the robots, the questionnaire is filled for both versions of conversation

Functions of the robot:

- 1. Cannot give information about health status
- 2. Cannot assist physically
- 3. Cannot prescribe medications
- 4. Can have a social presence friendly, supportive
- 5. Can inform the doctors, attendants
- 6. Can collect patient information with disclosure

Comparison

	Humanoid	Robotic
Gestures	"smile", "sad", "nod", "oh"	No gestures
Voice	Joanna	Matthew
Total length of conversation	257 words	108 words

Video of Humanoid Furhat talking

Video of Robotic Furhat talking

Questionnaire

I think the robot will only do what I need				
I think the robot can be adaptive to what I need at that particular moment				
I think the robot can help me with many things				
I think the robot completed the task successfully				
I feel the robot is friendly				
I feel the robot understands me				
I find the robot easy to use				
I think I can use the robot when I have a good manual				
I did not have any external challenges in using the robot				
I know enough of the robot to make good use of it				
I am comfortable giving my personal details to the robot				
I would trust the robot if it gave me advice				
I think I'll use the robot again, if I get a chance				
I am not afraid to use the robot				
I feel the robot would make my life more interesting				

Hypotheses

- H1: Intention to Use is influenced by Perceived Usefulness, Perceived Ease of Use, Attitude, Trust and Facilitating Conditions
- H2: Perceived Usefulness is influenced by Perceived Ease of Use, Perceived Adaptability and Anxiety
- H3: Perceived Ease of Use is influenced by Anxiety and Perceived Usefulness
- H4: Perceived Sociability is influenced by Trust

Descriptive Statistics: Measures of central tendency, Max, Min

Likert scale answers were considered as **interval type data**. Subsequently, measures of central tendency and other descriptive statistics were calculated (1 - Strongly Disagree, 2 – Disagree, 3 – Neutral, 4 – Agree, 5 – Strongly Agree)

<u>Table showing calculated values of minimum, maximum, mean and</u> standard deviation from results of Humanoid Furhat experiment

Humanoid Furhat					
Construct	Min	Max	Mean	Std Dev	
ANX	2	5	4.067	0.69	
ATT	2	5	3.67	0.88	
FC	2.5	5	3.8	0.7	
ITU	2	5	4	0.95	
PAD	2	5	3.43	0.73	
PEOU	2.5	5	4.02	0.88	
PS	1,5	5	4.07	0.81	
PU	2	5	3.87	0.73	
Trust	1	5	3.3	0.92	

<u>Table showing calculated values of minimum, maximum, mean and</u> standard deviation from results of Robotic Furhat experiment

Robotic Furhat					
Construct	Min	Max	Mean	Std dev	
ANX	2	5	4.43	0.82	
ATT	1	5	3.27	1.17	
FC	2	5	3.75	0.80	
ITU	2	5	3.80	1.03	
PAD	2	5	3.32	0.83	
PEOU	2.5	5	3.92	0.66	
PS	1.5	5	3.38	1.03	
PU	2	5	3.68	0.83	
Trust	1	5	3.13	0.98	

Correlation Analysis

Testing hypotheses with correlation quantifies the degree and strength of the constructs within each hypothesis. Here, we use Pearson's Correlation coefficient and the two tailed t-test to reject or accept our hypotheses.

	Humanoid Furhat				
Hypothesis	Independent Variable	Dependent variable	Pearson	Sig(2 tailed)	
	PU		0.55	0.001	
	PEOU		0.40	0.024	
H1	ATT	ITU	0.78	0.0000003	
	Trust		0.53	0.004	
	FC		0.49	0.005	
	PEOU		0.48	0.007	
H2	PAD	PU	0.69	0.00005	
	ANX		0.22	0.23	
Н3	ANX	PEOU	0.10	0.59	
.10	PU	. 200	0.48	0.006	
H4	Trust	PS	0.30	0.11	

- In Humanoid Furhat, all relationships between constructs within Hypothesis 1 and most relationships within Hypothesis 2 can be confirmed with correlation scores
- In Hypothesis 2, Anxiety determining Perceived Usefulness is not significant.

Correlation Analysis

	Robotic Furhat				
Hypothesis	Independent Variable	Dependent variable	Pearson	Sig(2 tailed)	
	PU		0.75	0.33	
	PEOU		0.59	0.45	
H1	ATT	ITU	0.62	0.05	
	Trust		0.55	0.0006	
	FC		0.71	0.71	
	PEOU		0.56	80.0	
H2	PAD	PU	0.68	0.009	
	ANX		0.06	0.0001	
	ANX		0.23	0.004	
Н3	PU	PEOU	0.56	0.07	
H4	Trust	PS	0.57	0.15	

- In Robotic Furhat, most relationships between constructs within Hypothesis 2 and Hypothesis 3 can be confirmed with correlation scores.
- In Hypothesis 2, PEOU determining PU is not significant and in Hypothesis 3, PU determining PEOU is not significant.

Regression Analysis

The following tables show the regression coefficients associated with the dependent and independent variables as part of the hypotheses. A higher R squared value explains how well the model fits the data, combined with values suggesting significance of these coefficients (two tailed t-test).

	Humanoid Furhat				
Hypothesis	Independent Variable	Dependent Variable	Coefficients	sig(2 tailed)	R squared error
	PU		0.09	0.60	
	PEOU		0.08	0.86	
H1	ATT	ITU	0.62	0.0001	0.98
	Trust		0.24	0.06	
	FC		0.17	0.34	
	PEOU		0.31	0.01	
H2	PAD	PU	0.57	0.00005	0.99
	ANX		0.16	0.141	
	ANX	55011	0.29	2.008	
H3	PEOU PEOU	PEOU	0.72	4.71	0.97
H4	Trust	PS	1.16	8.8587E- 18	0.92

- In Humanoid Furhat, regression results confirm only part of the hypothesis H2 and completely for H4.
- ATT determining ITU has the highest coefficient (0.62), and we could attribute this to the humanoid robot having more anthropomorphic features, gestures and longer statements.
- Under the second hypothesis, PAD determining PU also carries a high coefficient, implying that the adaptability of the robot has a strong influence on its usefulness.

Regression Analysis

		Robotic Furh	at		
Hypothesis	Independent Variable	Dependent Variable	Coefficients	sig(2 tailed)	R squared error
	PU		0.38	0.041	
	PEOU		0.17	0.40	
H1	ATT	ITU	0.22	0.05	0.77
	Trust		0.28	0.02	
	FC		0.3	0.11	
	PEOU		0.45	0.02	
H2	PAD	PU	0.38	0.001	0.53
	ANX		0.034	0.81	
Н3	ANX	PEOU	0.15	0.21	0.35
	PU		0.43	0.0001	
H4	Trust	PS	0.59	0.001	0.33

- In Robotic Furhat, regression results confirm only part of the hypothesis H2 and completely for H4.
- PEOU determining PU has the highest coefficient under Hypothesis 2. This means that ease of use is an important factor to consider in usefulness.

Bar chart representing decision of using Furhat in the emergency room for different age groups (humanoid)

#No = 6, #Yes = 24

Bar chart representing decision of using Furhat in the emergency room for different age groups (robotic)

Conclusions

- 1. 70% of respondents showed interest in using Robotic Furhat in the emergency room as compared to 80% for the Humanoid Furhat. This indicates higher "acceptance" of Humanoid Furhat.
- 2. Perceived Sociability has the highest difference in mean values of Robotic Furhat and Humanoid Furhat.
- 3. R squared values under Regression analysis are higher for the Humanoid Furhat as compared to the Robotic Furhat.
- 4. PU is one of the least influencing factors on ITU for the Humanoid Furhat, while it is the highest influencing factor on ITU for the Robotic Furhat.

Areas For Further Improvement

Scripted conversations for a specific use case in the ER	Ability to adapt according to users needs Longitudinal Studies Additional use cases
Small sample size and fixed user group	Diversity in participant demographics - age, gender, cultural background, and technological familiarity to enhance generalization
Trained only in English	Train in other languages to explore potential cultural or linguistic differences in human-robot interactions
Virtual robot, lack of physical presence	Employ the physical version to amplify social presence, anthropomorphic features and usability in the real world scenario

References

- 1. https://ieeexplore.ieee.org/document/5326320
- 2. <u>Literature Review</u>
- 3. https://docs.furhat.io/
- 4. GitHub Repository Robotic Experiment, Humanoid Experiment
- 5. Tools- connected Paper, Research Rabit, Open Al

