ID:4716311

Question 1

a.

$$\begin{split} E[\mathfrak{l}(f(x),y)] &= \int \int (f(x)-y)^2 p(x,y) dx dy \\ &= \int \int \{(f(x)-E[y|x])^2 + (y-E[y|x])^2 + 2(f(x)-E[y|x])(y-E[y|x])\} p(x,y) dx dy \end{split}$$

note that E[y|x] is a function of x, thus

$$\int \int 2(f(x) - E[y|x])(y - E[y|x])p(x,y)dxdy = \int 2(f(x) - E[y|x])(E[y|x] - E[y|x])p(x)dx = 0$$

so we have

$$E[\mathfrak{l}(f(x),y)] = \int \int \{(f(x) - E[y|x])^2 + (y - E[y|x])^2\} p(x,y) dx dy \ge \int \int (y - E[y|x])^2 p(x,y) dx dy$$
 to minimize it, simply let $f(x) = E[y|x]$

b. our goal is to minimize

$$E[\mathfrak{l}(f(x),y)] = \int \int |f(x) - y| p(x,y) dx dy$$
$$= \int (\int |f(x) - y| p(y|x) dy) p(x) dx$$

as for every x, the value of f(x) could be independently chosen, thus we just need to minimize

$$\int |f(x) - y| p(y|x) dy$$

now calculate the derivative of above expression with respect to f(x), and set it to zero, we have

$$0 = \int sign(f(x) - y)p(y|x)dy = \int_{f(x)}^{+\infty} p(y|x)dy - \int_{-\infty}^{f(x)} p(y|x)dy$$

which implies

$$\int_{f(x)}^{+\infty} p(y|x)dy = \int_{-\infty}^{f(x)} p(y|x)dy$$

which is the condition f(x) must satisfy to minimize $E[\mathfrak{l}(f(x),y)]$

Question 2

let's try to minimize

$$L(f) = P(f(x) \neq y) = \int \int \mathbf{1}(f(x) \neq y)p(x,y)dxdy$$
$$= \int \left(\int \mathbf{1}(f(x) \neq y)p(y|x)dy\right)p(x)dx$$

as f(x) could independently chosen for every x, thus we just need to minimize

$$\int \mathbf{1}(f(x) \neq y)p(y|x)dy = \mathbf{1}(f(x) \neq 1)P(1|x) + \mathbf{1}(f(x) \neq 0)P(0|x) = (1)$$

let's discuss how to set f(x) to minimize (1)

- case 1: P(1|x) > 1/2, P(0|x) = 1 P(1|x) < 1/2, should choose $\mathbf{1}(f(x) \neq 1) = 1$ and $\mathbf{1}(f(x) \neq 0) = 0$ to minimize (1)
- case 2: P(1|x) < 1/2, P(0|x) = 1 P(1|x) > 1/2, should choose $\mathbf{1}(f(x) \neq 1) = 0$ and $\mathbf{1}(f(x) \neq 0) = 1$ to minimize (1)
- case 3: P(1|x) = P(0|x) = 1/2, any assignment for $\mathbf{1}(f(x) \neq 1)$ and $\mathbf{1}(f(x) \neq 0)$ is OK

we note that $f^*(x)$ satisfies above discussion thus is an optimal solution for

so we have proved $L(f) \ge L(f^*)$

Question 3

Fisher's Linear Discriminant.

Idea. The main idea of **Fisher's Linear Discriminant** is to project the features from a high-dimention space to a low-dimention space when maximize the distinctions between different classes. And Fisher set the criterion as

$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

the value of J(w) indicates the distance between different classes. To get the optimal w, we just need to select the D' largest eigenvalues of $S_W^{-1}S_B$ where D' is the dimention of the projected feature space. In the code **diagFisher**, we simply set $S_w = I$.

Experiment results. In our implementatin, the dimention of projected feature space D' was set as 3 for data "Iris.csv" and 9 for "Wine.csv", and in the projected space, **Gaussian Generative Model** will be used to do classification

\$ python diagFisher.py 'Iris.csv' 10

Data: Iris.csv

\$ python Fisher.py 'Iris.csv' 10

Data: Iris.csv

Error rate for cross_validation: 0.02

\$ python diagFisher.py 'Wine.csv' 10

Data: Wine.csv

Error rate for cross_validation: 0.0588235294118

\$ python Fisher.py 'Wine.csv' 10

Data: Wine.csv

Error rate for cross_validation: 0.0470588235294

we can see that both models are quite accurate, and the performence of Fisher.py is slightly better.

Least squares linear discriminant.

Idea. This model is quite simple and we just need to minimize the following criterion

$$E(W) = \frac{1}{2} Tr \big\{ (Y - XW)^T (Y - XW) \big\}$$

The optimal solution would be

$$W = (X^T X)^{-1} X^T Y$$

where X is the matrix of features and Y is the vector of labels.

Experiment results. let's see our result

\$ python SqClass.py 'Iris.csv' 10

Data: Iris.csv

Error rate for cross_validation: 0.2

\$ python SqClass.py 'Wine.csv' 10

Data: Wine.csv

Error rate for cross_validation: 0.0235294117647

much worse than **Fisher's** method for data 'Iris.csv', but better for 'Wine.csv'