2019 ~2020 学年第一学期

《微积分(一)》(上)期中考试试卷(B卷)(闭卷, 启明学院用)

院(系) <u>启明学院</u>专业班级______ 学号_____ 姓名___

考试日期: 2019-11-15

考试时间: PM

题号	_	 三	四	五.	总分
得分					

得 分	
评卷人	

一. 填空题(每小题4分,共20分)

1. 已知 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = a$ 且 $a_n > 0$ $(n=1,2,\cdots)$,那么(更正) $\lim_{n\to\infty} \sqrt[n]{a_n} = \underline{\qquad}$.

「任何非负实数以及+∞都有可能,a=1如果不修改试题,则 $\lim_{n\to\infty}a_n=\left\{\begin{array}{c} 0,\ a<1\\ +\infty,\ a>1\end{array}\right.$

- 2. $\inf\{r \in Q : r^2 > 2 \perp r > 0\} = \sqrt{2}$.
- 3. $\lim_{n\to\infty} \left(\frac{n}{n-1}\right)^{2-n} = \underline{\frac{1}{2}}$
- 4. 设 $y = \sin(e^{u(x)} + v^2(x))$, u(x), v(x) 可微,则 $dy = \underline{\cos(e^u + v^2) \cdot (e^u u' + 2vv') dx}$.
- 5. 设函数 $f(x) = (x-1)(x-2)^2$,则函数在 $\left[0, \frac{5}{2}\right]$ 的最大值是 $\frac{3}{8}$.

得 分 评卷人

二. 选择题(每小题 4 分, 共 12 分)

1. 当n → ∞,如下发散的是(B).

A.
$$\frac{n!}{n^n}$$

$$B. \frac{\sqrt{n-1}}{\ln \frac{1}{n}}$$

$$C. \frac{3\sqrt{n^2+3}}{4\sqrt{n}+n^2}$$

A.
$$\frac{n!}{n^n}$$
 B. $\frac{\sqrt{n-1}}{\ln \frac{1}{n}}$ C. $\frac{3\sqrt{n^2+3}}{4\sqrt{n}+n^2}$ D. $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$

- 2. 下列叙述错误的是(B).
 - A. Dirichlet 函数不是连续函数
 - B. 一个函数的导函数可以不连续,并且有第一类和第二类间断点
 - C. $O(x^2) = o(x)(x \to 0)$
 - D. 已知 f 在 [a,b]上可导,且 $\forall x$ 有 $f'(x) \neq 0$,则 f 有严格单调可导的反函数

3. 函数 f 在区间 [a,b] 上可导, f' 严格递增且 f(a) = f(b) = 0 ,则下列叙述正确的是(D) 更正:依教材定义,默认必须有邻域处在定义域内,极值只能是内点,故 C 也对

A. $\exists \xi \in (a,b)$, 使得 $f(\xi)$ 为函数的最大值

B. $\exists \xi \in (a,b)$, 使得 $f(\xi) \ge 0$

C. f 在[a,b]上可能没有极大值

D. f(x) < 0在(a,b)上恒成立

得 分 评卷人

三. 计算题 (每小题 6 分, 共 30 分)

1.
$$\lim_{n\to\infty} \frac{3}{2} \frac{5}{4} \frac{17}{16} \cdots \frac{2^{2^n}+1}{2^{2^n}}$$

$$= \lim_{n \to \infty} \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2^2} \right) \cdots \left(1 + \frac{1}{2^{2^n}} \right) = \lim_{n \to \infty} \frac{1 - \left(\frac{1}{2^{2^n}} \right)^2}{1 - \frac{1}{2}} = 2.$$

2.
$$\lim_{x\to 0} \frac{x(1-\cos x)}{(1-e^x)\sin x^2}$$

$$= \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{-x \cdot x^2} = -\frac{1}{2}.$$

3.
$$\lim_{n\to\infty} \left(\frac{2}{2^2-1}\right)^{\frac{1}{2^{n-1}}} \left(\frac{2^2}{2^3-1}\right)^{\frac{1}{2^{n-2}}} \cdots \left(\frac{2^{n-1}}{2^n-1}\right)^{\frac{1}{2}}$$

先取对数求极限:

$$\lim_{n\to\infty} \ln\left[\left(\frac{2}{2^2-1}\right)^{\frac{1}{2^{n-1}}} \left(\frac{2^2}{2^3-1}\right)^{\frac{1}{2^{n-2}}} \cdots \left(\frac{2^{n-1}}{2^n-1}\right)^{\frac{1}{2}}\right] = \lim_{n\to\infty} \left[\frac{1}{2^{n-1}} \ln\left(\frac{2}{2^2-1}\right) + \frac{1}{2^{n-2}} \ln\left(\frac{2^2}{2^3-1}\right) + \cdots + \frac{1}{2} \ln\left(\frac{2^{n-1}}{2^n-1}\right)\right]$$

$$= \lim_{n \to \infty} \frac{1}{2^{n-1}} \left\lceil ln \left(\frac{2}{2^2 - 1} \right) + 2 ln \left(\frac{2^2}{2^3 - 1} \right) + \dots + 2^{n-2} ln \left(\frac{2^{n-1}}{2^n - 1} \right) \right\rceil \ \, \text{Stolz} \, \, \\ \not \equiv \\ \not \equiv \\ \begin{matrix} 1 \\ 2^n - 1 \end{matrix} \right) + \dots + 2^{n-2} ln \left(\frac{2^{n-1}}{2^n - 1} \right) + \dots + 2^{n-2} ln \left(\frac{2^{n-1}}{2^n - 1} \right) \\ \begin{matrix} 1 \\ 2^n - 1 \end{matrix} \right) = \frac{1}{n-2} \left(\frac{2^{n-1}}{2^n - 1} \right) + \dots + 2^{n-2} ln \left(\frac{2^{n-1}}{2^n - 1} \right) \\ \begin{matrix} 1 \\ 2^n - 1 \end{matrix} \right) = \frac{1}{n-2} \left(\frac{2^{n-1}}{2^n - 1} \right) + \dots + 2^{n-2} ln \left(\frac{2^{n-1}}{2^n - 1} \right) \\ \begin{matrix} 1 \\ 2^n - 1 \end{matrix} \right) = \frac{1}{n-2} \left(\frac{2^{n-1}}{2^n - 1} \right) + \dots + 2^{n-2} ln \left(\frac{2^{n-1}}{2^n - 1} \right) = \frac{1}{n-2} \left(\frac{2^{n-1}}{2^n - 1} \right) + \dots + 2^{n-2} ln \left(\frac{2^{n-1}}{2^n - 1} \right) = \frac{1}{n-2} \left(\frac{2^{n-1}}$$

$$= \lim_{n \to \infty} \frac{2^{n-2} \ln \left(\frac{2^{n-1}}{2^n - 1}\right)}{2^{n-1} - 2^{n-2}} = \lim_{n \to \infty} \ln \frac{1}{2 - \frac{1}{2^{n-1}}} = \ln \frac{1}{2}$$

从而原式=
$$\frac{1}{2}$$
.

解:
$$y = \left(\frac{1-\cos 2x}{2}\right)^3 + \left(\frac{1+\cos 2x}{2}\right)^3 = \frac{5}{8} + \frac{3}{8}\cos 4x$$
,

$$y^{(n)} = 4^n \frac{3}{8} \cos(4x + \frac{n\pi}{2})$$
, 所以 $y^{(n)}(0) = 3 \cdot 2^{2n-3} \cos \frac{n\pi}{2}$.

5. 己知
$$x = a(t-\sin t)$$
, $y = a(1-\cos t)$, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

解:
$$\frac{dy}{dx} = \frac{a \sin t}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}$$
,

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{\cos t(1-\cos t) - (\sin t)^{2}}{(1-\cos t)^{2}}}{a(1-\cos t)} = -\frac{1}{a(1-\cos t)^{2}}.$$

得 分 评卷人

四. 解答题(每小题7分,共14分)

1. 请给出一函数,在 $(-\infty,+\infty)$ 上二阶可导,且其二阶导函数在点x=0处不连续,

其余处处连续,并给出论证过程。

解:答案不唯一,仅供参考。

$$\diamondsuit f(x) = \begin{cases} x^4 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
 经计算可得 $f'(x) = \begin{cases} 4x^3 \sin \frac{1}{x} - x^2 \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

同样再次计算得,
$$f''(x) = \begin{cases} 12x^2 \sin \frac{1}{x} + 2x \cos \frac{1}{x} - \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

因为 $\lim_{x\to 0} f''(x)$ 不存在,二阶导函数在点x=0处不连续,而在非零点连续.

2. 已知函数 f(x) 在 $[0,+\infty)$ 上可导,且 f(0)=0 , f'(x) 在 $[0,+\infty)$ 上单调递减,请讨论 $\frac{f(x)}{x}$ 在 $(0,+\infty)$ 上的单调性.

解:
$$\frac{f(x)}{x}$$
 在 $(0,+\infty)$ 上的单调递减. 证明: $\left(\frac{f(x)}{x}\right)' = \frac{xf'(x)-f(x)}{x^2}$, $\forall x \in (0,+\infty)$.

$$f(x)-f(0)=f'(\xi)(x-0)$$
 , 其 中 $0<\xi< x$. 于 是 $f(x)\geq f'(x)\cdot x$, 从 而 $\left(\frac{f(x)}{x}\right)'\leq 0$, $\forall x\in (0,+\infty)$, 所以 $\frac{f(x)}{x}$ 单调递减.

得 分 评卷人

五.证明题(每小题8分,共24分)

1. 证明 $\lim_{n \to \infty} \sin n$ 不存在.

(此题可以有多种证法,可依据极限定义,可以用 Cauchy 收敛准则,也可以假设有极限推出矛盾,请改卷老师灵活处理。)

证明:据 Cauchy 准则,即要证明, $\exists \varepsilon_0 > 0, \forall N > 0, \exists n, m > N,$ 使得 $|\sin n - \sin m| \ge \varepsilon_0$.

$$\mathbb{R} \, \varepsilon_0 = \frac{\sqrt{2}}{2}, \quad \forall N > 0 \, , \quad \diamondsuit \, n = \left\lceil 2N\pi + \frac{3}{4}\pi \right\rceil, \quad m = \left\lceil 2N\pi + 2\pi \right\rceil, \quad \mathbb{M} \, m > n > N,$$

从而
$$\left|\sin n - \sin m\right| \ge \varepsilon_0 = \frac{\sqrt{2}}{2}$$
.

2. 已知函数 f(x) 在 $[1,+\infty)$ 上可导,且 $\lim_{x\to +\infty} f'(x) = +\infty$,证明: f(x) 在 $[1,+\infty)$ 上不一致连续.

证明: 由 $\lim_{x\to +\infty} f'(x) = +\infty$ 知, $\forall \delta > 0$, 取 $M = \frac{2}{\delta}$, 则存在 N > 0, 当 x > N 时, 有 f'(x) > M.

再取 $x_1, x_2 > N$,且 $x_1 < x_2$ 和 $\left| x_1 - x_2 \right| = \frac{\delta}{2} < \delta$ 时, $\left| f(x_2) - f(x_1) \right| = f'(\xi)(x_2 - x_1) \ge M \cdot \frac{\delta}{2} = 1$. 这就否定了一直连续的定义.

3. 设函数 f(x) 在 $[1,+\infty)$ 上连续,且 x>1 时有 f'(x)>c>0,又 f(1)<0. 证明: 方程 f(x)=0 在区间 $(1,1-\frac{f(1)}{c})$ 内有且只有一个根.

证明: 由 f(1) < 0,知 $1 - \frac{f(1)}{c} > 1$. 在区间 $(1,1 - \frac{f(1)}{c})$ 上应用 Lagrange 中值定理

$$f(1-\frac{f(1)}{c})-f(1)=f'(\xi)[(1-\frac{f(1)}{c})-1]=f'(\xi)[-\frac{f(1)}{c}]\;,\;\; \sharp \, \oplus \, \xi \in (1,1-\frac{f(1)}{c})\;.$$

又因为 $f'(\xi) > c$,所以 $f(1 - \frac{f(1)}{c}) - f(1) > -f(1)$, $f(1 - \frac{f(1)}{c}) > 0$. 但f(1) < 0,由连续函数介值性,

知 $\exists x_0 \in (1,1-\frac{f(1)}{c})$,使得 $f(x_0)=0$.又 x>1 时有 f'(x)>0,从而 f(x) 严格递增,所以 f(x)=0 在区间 $(1,1-\frac{f(1)}{c})$ 内只有一个根.