MÁQUINAS DE TURING Y LENGUAJES ESTRUCTURADOS POR FRASES

MÁQUINAS DE TURING

- Son máquinas teóricas capaces de aceptar lenguajes generados por gramáticas estructuradas por frases.
- Una máquina de Turing tiene una cabeza de lectura/escritura que avanza bidireccionalmente por una cinta infinita por la derecha.
 - Entrada: contenido inicial de la cinta.
 - Salida: contenido final de la cinta.
- Símbolos de cinta:
 - Símbolos de entrada: Σ
 Símbolos de cinta: Γ ⊇ Σ
- Transiciones: $\delta(p,x) = (q,y)$ donde:
 - p,q: estados
 - $x \in \Sigma$: símbolo de entrada
 - $y \in \Gamma \cup \{L,R\}$: símbolo de cinta o desplazamiento
- En una transición, la máquina de Turing lee un símbolo de la cinta, cambia de estado y escribe un símbolo o efectúa un desplazamiento a izquierda o derecha.
- Ejemplo de diagrama de transiciones

- Proceso de reconocimiento de una cadena:
 - Se parte del estado inicial, y la cinta contiene símbolos de entrada.
 - Se efectúan las transiciones pertinentes según la función de transición.
 - Si la cabeza lectora rebasa el extremo izquierdo de la cinta, la cadena es rechazada y el proceso termina (terminación anormal).
 - Si la máquina alcanza el estado de parada, la cadena es aceptada.

- MT: M(S, Σ , Γ , δ ,i,h)
 - S: conjunto finito de estados.
 - Σ: alfabeto de entrada.
 - Γ: alfabeto de símbolos de cinta.
 - δ : función de transición (determinista): $S \times \Gamma \to S \times (\Gamma \cup \{L,R\})$.
 - *i*: estado inicial.
 - h: estado de aceptación o de parada.
- En general, las máquinas de Turing son deterministas.

TESIS DE TURING

El poder computacional de una máquina de Turing es tan grande como el de cualquier sistema computacional posible.

COMBINACIÓN DE MÁQUINAS DE TURING

- Pasos:
- 1. Eliminar la característica de inicio de los estados iniciales de todas las máquinas, excepto de la primera.
- 2. Eliminar la característica de parada de todas las máquinas, e incluir un nuevo estado de parada.
- 3. Para cada estado de parada p y para cada $x \in \Gamma$:
 - a) Si la nueva máquina se debe detener al llegar a p con x, añadir un arco x/x de p al nuevo estado de parada.
 - b) Si al llegar al estado p con el símbolo actual x la máquina compuesta debe transferir el control a la máquina $M(S,\Sigma,\Gamma,\delta,i,h)$, dibujar un arco con etiqueta x/z de p al estado q de M tal que $\delta(i,x) = (q,z)$.

CONSTRUCCIÓN MODULAR DE MÁQUINAS DE TURING

- Construcción de máquinas de Turing complejas a partir de bloques elementales.
- Transferencia de control entre máquinas: \rightarrow M1 \xrightarrow{X} M2
- Transferencia de control con varios símbolos:

Bloques de construcción básicos

$$x \longrightarrow \bigcup_{\Delta/x}^{x/x} \bigcup_{X/x}^{x/x} \bigcup_{X/x}^{x$$

- Bloques más complejos

$$\longrightarrow R_{a}R\Delta L_{a}L_{a} \longrightarrow R \xrightarrow{X, Y} \longrightarrow \Delta R_{a}R_{a}\omega R\Delta L_{a}L_{a}\omega$$

EVALUACIÓN DE CADENAS

- Aceptación de una cadena
 - Situación inicial:
 - * Cabeza en el extremo izquierdo de la cinta.
 - * La cadena de entrada empieza en la segunda posición de la cinta.
 - Situación final:
 - * Máquina de Turing en estado de parada.
- Lenguaje aceptado por una máquina de Turing: conjunto de cadenas que acepta.
- Una máquina de Turing puede escribir un mensaje de aceptación si acepta una cadena.
 - Mensaje de aceptación: $\Delta Y \Delta \Delta \Delta$
- Símbolos especiales
 - #: extremo izquierdo de la cinta
 - *: extremo derecho de la porción alterada de la cinta
- Si la máquina es M, la máquina final es:

$$\rightarrow R_{\triangle}S_{R}R*L_{\triangle}L\#R \rightarrow M_{0} \rightarrow R_{*} \rightarrow \stackrel{}{\triangle}L \xrightarrow{\neg \#} \downarrow \# \\ \triangle RYL$$

- M₀ es igual que M, salvo que:
 - * Si M₀ alcanza #, se desplazará una casilla a la izquierda (terminación anormal)
 - * Si M_0 alcanza *, debe desplazarlo un lugar a la derecha ejecutando $\to R * L\Delta$

Máquinas de Turing de varias cintas

- Cada cinta tiene su propia cabeza de lectura/escritura.
- Una transición:
 - Depende de los símbolos acutales de todas las cintas.
 - Sólo afecta a una cinta (escribir o desplazar).
- Estado inicial:
 - Contenido de la primera cinta: ΔwΔΔΔ...
 - Las restantes cintas están en blanco, con la cabeza en su extremo izquierdo.

Teorema 3.1

Para cada máquina de Turing M de k cintas, existe una máquina de Turing M' con una cinta tal que L(M)=L(M').

DEMOSTRACIÓN: Construcción de M'

- Previo:
- Cada casilla en el conjunto de las *k* cintas se representa como una 2*k*-tupla:
 - * En la posición 2n-1 de la tupla se tiene el símbolo de la cinta n.
 - * En la posición 2n de la tupla hay 1 si la cabeza está en la casilla, Δ si no.
- Es posible asignar un símbolo de cinta nuevo a cada posible 2k-tupla.
 - * Así se puede almacenar en una sola cinta toda la información del conjunto completo de cintas.
- Cada estado de M' se representa como un *estado compuesto* formado por una *k*+1-tupla cuyo primer elemento es el estado de la cinta, siendo los demás elementos los símbolos actuales de todas las cintas.
- Primer paso: traducir el contenido de la cinta de M' a un formato que represente todas las cintas de M.
- Desplazar el contenido de la cinta a la derecha un lugar: $\rightarrow R_{\Delta}S_{R}L_{\Delta}$ (la cabeza queda en la segunda posición de la cinta).
- Mover la cabeza un lugar a la izauierda, escribir # y mover un lugar a la derecha.
- Repetir los dos pasos siguientes hasta que el símbolo sustituido en b) sea un blanco:
 - a) Mover la cabeza un lugar a la derecha.
 - b) Sustituir el símbolo actual x por la tupla $(x, \Delta, \Delta, ..., \Delta)$.
- Ejecutar L_{Δ} , lo que pondría la cabeza en la segunda casilla de la cinta, y escribir en ella la tupla $(\Delta, 1, \Delta, 1, ..., \Delta, 1)$.
- Simulación de M:
- Cada transición de M supone una secuencia de pasos en M'.
- Estado inicial: $(i,\Delta,\Delta,...,\Delta)$.
- Una transición (τ) sólo afecta a una cinta (j_{τ}).
- Secuencia corresponciente a la transición τ:
 - * Mover la cabeza a la derecha hasta que el componente 2*j* de la 2*k*-tupla sea 1.
 - * Si la transición es uan esceitura, modificar el componente $2j_{\tau}$ -1 de la tupla.

- * Si la transición produce un movimiento a la derecha:
 - \Box Reemplazar el componente 2 j_{τ} -1 por un Δ.
 - □ Mover la cabeza a la derecha.
 - \Box Si encuentra un Δ, sustituirlo por la 2k-tupla (Δ,Δ,...,Δ).
 - □ Reemplazar el componente $2j_{\tau}$ -1 por un 1.
- * Si la transición produce un movimiento a la izquierda:
 - \Box Reemplazar el componente 2 j_{τ} -1 por un Δ.
 - □ Mover la cabeza a la izquierda.
 - □ Si encuentra un #, mover a la izquierda (terminación anormal).
 - □ Reemplazar el componente $2j_{\tau}$ -1 por un 1.
- * Colocar la cabeza en la segunda posición de la cinta (después de buscar a la izquierda el símbolo #), y pasar al nuevo estado compuesto de M'.
- La máquina M' así construida simula M, y acepta el mismo lenguaje que ella.

Máquinas de Turing no deterministas

- El no determinismo puede consistir en que:
 - La máquina no se encuentre totalmente definida.
 - Se ofrezcan alternativas en algunos pares estado-símbolo.
- M(S, Σ , Γ , π ,i,h) donde π es un subconjunto de ((S-{h})x Γ)x(Sx(Γ \cup {L,R})).
- Una máquina de Turing no determinista acepta una cadena w cuando es posible que llegue al estado de parada después de iniciar sus cálculos con la entrada w.

Teorema 3.2

Para toda máquina de Turing M no determinista existe una máquina determinista D que acepta el mismo lenguaje que M.

DEMOSTRACIÓN

- Para toda máquina de Turing M no determinista existe una máquina determinista M' con tres cintas que acepta el mismo lenguaje.
 - 1^a cinta: contiene la cadena de entrada.
 - 2ª cinta: cinta de trabajo. En ella se copia la cinta 1 (desplazada un lugar a la derecha), marcando el principio de la cinta con # y marcando el final de la entrada con *. En este cinta se simulan secuencias de transiciones.
 - 3^a cinta: control de las transiciones efectuadas.
- Simulación de M:
 - 1. Copiar la cadena de entrada de 1 a 2 (con los marcadores de inicio y fin).
 - 2. Generar la siguiente secuencia de transiciones en la cinta 3.
 - 3. Simular la secuencia con la cinta 2.
 - 4. Si se llega al estado de parada de M, detenerse. Si no, borrar la cinta 2 y volver al paso 1.

LENGUAJES ACEPTADOS POR MÁQUINAS DE TURING

- Gramáticas estructuradas por frases:
 - Parte izquierda de las reglas: combinación de símbolos terminales y no terminales, con al menos un no terminal.
 - Parte derecha de las reglas: combinación de símbolos terminales y no terminales de cualquier longitud (incluso 0).
- Las máquinas de Turing aceptan lenguajes estructurados por frases.
- Configuración de una máquina de Turing:
 - Contenido de la cinta: entre corchetes.
 - A la izquierda del símbolo actual se incluye el estado.
- Aceptación: secuencia de configuraciones de la máquina que empieza con $[i\Delta w\Delta]$ y termina con $[h\Delta Y\Delta]$.

Teorema 3.3

Todo lenguaje aceptado por una máquina de Turing es un lenguaje estructurado por frases.

DEMOSTRACIÓN

La gramática será (V,Σ,S,R) donde

- $V = \{S,[,],\Delta,Y\} \cup \Gamma$
- Σ = alfabeto de M.
- S: axioma.
- R:

$$\begin{split} S &\to [h\Delta Y\Delta] \\ \Delta] &\to \Delta\Delta] \\ \delta(p.x) &= (q,y) \text{ produce la regla } qy \to px \\ \delta(p,x) &= (q,R) \text{ produce la regla } xq \to px \\ \delta(p,x) &= (q,L) \text{ produce las reglas } qyx \to ypx \ \forall y \in \Gamma \\ [i\Delta \to \lambda \\ \Delta\Delta] &\to \Delta] \\ \Delta] &\to \lambda \end{split}$$

Teorema 3.4

Todo lenguaje estructurado por frases es aceptado por una máquina de Turing.

DEMOSTRACIÓN

Para cada gramática G existe una máquina de Turing no determinista M de 2 cintas que aceptas el lenguaje generado por G.

Construcción de la máquina:

- 1. Se copia la cadena de entrada en la primera cinta.
- 2. Se escribe S (símbolo inicial) en la cinta 2.
- 3. Se aplican las reglas de reescritura de forma no determinista a la cadena de la cinta 2.
- 4. Si la cinta 2 contiene sólo símbolos terminales, se compara con la cadena de la cinta 1. Si son iguales, el proceso ha terminado. Si no, provocar una terminación anormal.

Teorema 3.5

Dado un alfabeto Σ existe al menos un lenguaje L definido sobre Σ que no es un lenguaje estructurado por frases.

Sistemas de codificación de máquinas de Turing

- Cada estado se representa como una cadena de ceros.
 - i = 0
 - h = 00
 - Los demás: a partir de 000 en adelante.
- Cada símbolo de Σ , así como L y R, se representan como cadenas de ceros.
 - $\bullet \quad \Gamma = 0$
 - R = 00
 - Símbolos de Σ : a partir de 000 en adelante.
 - Espacio en blanco: cadena vacía.
- Cada transición se puede representar como un conjunto de cadenas de ceros separadas cada una por un único 1.
- El conjunto de transiciones de la máquina se representa como la secuencia de cadenas de ceros y unos de todas sus transiciones, poniendo un 1 al principio del todo y un 1 al final, y un solo 1 para separar dos transiciones consecutivas.

Máquinas de Turing universales

- Son máquinas de Turing programables que pueden simular a cualquier otra máquina de Turing.
 - Programa: máquina de Turing simulada codificada + cinta de entrada (con un 1 al principio y un 1 al final).
- Constan de 3 cintas:
 - 1^a cinta: programa + cadena de entrada.
 - * Contendrá la salida de la máquina.
 - 2ª cinta: área de trabajo (manipulación de datos).
 - 3ª cinta: estado actual de la máquina simulada.
- La máquina universal:
 - Copia la cadena de entrada de la cinta 1 a la cinta 2.
 - Graba el código del estado inicial en la cinta 3.
 - Busca una transición aplicable en la máquina codificada de la cinta 1. Cuando la encuentra:
 - * Realiza la transición en la cinta 2.
 - * Escribe el nuevo estado en la cinta 3.
 - La máquina universal continúa con este proceso hasta que llega al estado de parada de la máquina simulada. Entonces copia la cinta 2 en la cinta 1, coloca la cabeza de la cinta 1 donde se encontraba la de la cinta 2 y se detiene.

Lenguajes aceptables y decidibles

- Lenguaje decidible: es aquel lenguaje L para el cual existe una máquina de Turing que puede aceptar cualquier cadena $w \in L$ y rechazar cualquier cadena $w \notin L$.
- Lenguaje aceptable: es aquel lenguaje L para el cual no existe ninguna máquina de Turing que puede aceptar cualquier cadena $w \in L$ y rechazar cualquier cadena $w \notin L$.
- Lenguajes recursivamente enumerables: lenguajes estructurados por frases.
- Lenguajes recursivos: lenguajes decidibles por una máquina de Turing.

El problema de la parada

- Máquina autoterminante: máquina con un alfabeto $\{0,1,\Delta\}$ que se detiene cuando se le mete como entrada una cadena que es ella misma codificada.
- Existen máquinas de Turing para las que no es posible decidir si son autoterminantes o no: es decir, no puede saberse con certeza si se detienen ⇒ no puede saberse con certeza si una máquina de Turing se va a detener ante una cadena de entrada ⇒ EL PROBLEMA DE PARADA NO ES DECIDIBLE.