1、一个文件系统的盘块大小为 1KB,每块地址用 4B 表示,当分别采用连 续、链接、二级索引和 UNIX S V 分配方案时, 试确定各方案能管理的最大文件, 管理一个 10MB 的大文件和一个 10KB 的小文件时所需的管理专用块数,以及要 访问大文件的第 9M+3.5KB 单元时需要的磁盘 I/O 操作次数。

		连续分配	链接分配	二级索引	UNIX
管理的最大文件		<u>A (1)</u>	<u>B (1)</u>	<u>C (4)</u>	<u>D (7)</u>
管理用的	10KB 文件	0	0	2(1+1)	0
专用块数	10MB 文件	0	0	41(1+40)	41(1+1+39)
大文件的	015 0 5VD		0010.1	2.1	
某处信息	9M+3.5KB	1	9219+1	2+1	2+1

A~D: (1) 不受限制 (2) 1KB (3) 256KB (4) 64MB

(5)16GB (6)1KB+256KB+64MB+16GB (7)10KB+256KB+64MB+16GB

- 2、在 Unix 文件系统中,文件的物理组织为 Unix 直接间接混合寻址方式, 假设一个进程要在 4200、210000 和 800000 三个偏移处读文件,请问分别要访问 多少次磁盘?并以必要的图示说明访问之过程。假设该文件的 FCB (即文件说 明或文件控制块)已读入内存,每个磁盘块大小为1KB,块号用32位的指针表 示。
- (1) B1= 4200/1024= 4, B1 < 10, 直接寻址(图示略) 访问次数: 1次
- (2) B2=210000/1024=205, 10≦B2 < 10+256, 间接寻址(一级索引) index1=205-10=195(图示略)

访问次数: 1+1=2 次

- (3) B3=800000/1024=781, 10+256≦B3 < 10+256+256*256, 间接寻址(二级索引) index1=(781-266) / 256=2,index2=(781-266) mod 256=3(图示略) 访问次数: 2+1=3
- 3、假设文件系统的盘块大小为 4KB, 某文件的物理结构采用连续文件方式, 假设该文件的首个盘块的盘块号为85,那么该文件的第8292字节单元第几个盘 块上? 其盘块号为多少? 该字节单元是盘块内的第几字节?
 - (1) 逻辑块号: 8291/4096=2, 块内位移: 8291 mod 4096=99

所以该字节单元是文件第3个盘块中的第100个字节单元。

(2) 对应的物理盘块号: 85+2=87