Основные нормы взаимозаменяемости

РЕЗЬБА ТРУБНАЯ КОНИЧЕСКАЯ

ГОСТ 6211—81

Basic norms of interchangeability.
Pipe taper thread

Дата введения 01.01.83

Настоящий стандарт распространяется на трубную коническую резьбу с конусностью 1:16, применяемую в конических резьбовых соединениях, а также в соединениях наружной конической резьбы с внутренней цилиндрической резьбой с профилем по ГОСТ 6357, и устанавливает профиль, основные размеры и допуски конической резьбы, а также допуски внутренней трубной цилиндрической резьбы, соединяемой с наружной конической.

1. ПРОФИЛЬ

1.1. Номинальный профиль трубной конической резьбы (наружной и внутренней) и размеры его элементов должны соответствовать указанным на черт. 1 и в табл. 1.

Конусность $2 \log \frac{\phi}{2} = 1:16; \ \phi = 3°34'48"; \ \frac{\phi}{2} = 1°47'24"; \ d$ — наружный диаметр наружной конической резьбы; d_1 — внутренний диаметр наружной конической резьбы; d_2 — средний диаметр наружной конической резьбы; D — наружный диаметр внутренней конической резьбы; D_1 — внутренний диаметр внутренней конической резьбы; D_2 — средний диаметр внутренней конической резьбы; ϕ — угол конуса; $\phi/2$ — угол уклона; $\phi/2$ — угол уклона; $\phi/2$ — угол уклона; $\phi/2$ — радочая высота профиля; $\phi/2$ — радиус закругления вершины и впадины резьбы; $\phi/2$ — срез вершин и впадин резьбы

Черт. 1

Таблица 1 Размеры в миллиметрах

Шаг Р	Число шагов <i>z</i> на длине 25,4 мм	H = 0.960237P	$H_1 = 0,640327P$	C = 0,159955P	R = 0.137278 P
0,907	28	0,870935	0,580777	0,145079	0,124511
1,337	19	1,283837	0,856117	0,213860	0,183541
1,814	14	1,741870	1,161553	0,290158	0,249022
2,309	11	2,217187	1,478515	0,369336	0,316975

 Π р и м е ч а н и е. Числовые значения шагов определены из соотношения P = 25,4/z с округлением до третьего знака после запятой и приняты в качестве исходных при расчете основных элементов профиля.

1.2. Размеры элементов профиля внутренней цилиндрической резьбы — по ГОСТ 6357.

2. ОСНОВНЫЕ РАЗМЕРЫ

2.1. Обозначение размера резьбы, шаги и номинальные значения основных размеров конической (наружной и внутренней) резьбы должны соответствовать указанным на черт. 2 и в табл. 2. Допускается применять более короткие длины резьб.

С. 3 ГОСТ 6211-81

 $l_{_{1}}$ — рабочая длина резьбы; $l_{_{2}}$ — длина наружной резьбы от торца до основной плоскости

Черт. 2

Таблица2 Размеры в миллиметрах

					газмеры	в миллиметрах
Обозначение	Шаг Р	Диаметр ре	езьбы в основной	Длина резьбы		
размера резьбы	mai 1	d = D	$d_2 = D_2$	$d_1 = D_1$	l_1	l_2
1/16	0,907	7,723	7,142	6,561	6,5	4,0
1/8	0,907	9,728	9,147	8,566	0,3	
1/4	1,337	13,157	12,301	11,445	9,7	6,0
3/8	1,337	16,662	15,806	14,950	10,1	6,4
1/2	1,814	20,955	19,793	18,631	13,2	8,2
3/4	1,014	26,441	25,279	24,117	14,5	9,5
1		33,249	31,770	30,291	16,8	10,4
$1^{1}/_{4}$		41,910	40,431	38,952	19,1	12,7
11/2		47,803	46,324	44,845	19,1	
2		59,614	58,135	56,656	23,4	15,9
21/2	2,309	75,184	73,705	72,226	26,7	17,5
3		87,884	86,405	84,926	29,8	20,6
31/2		100,330	98,851	97,372	31,4	22,2
4		113,030	111,551	110,072	35,8	25,4
5		138,430	136,951	135,472	40,1	28,6
6		163,830	162,351	160,872	40,1	20,0

2.2. Числовые значения диаметров d_2 и d_1 вычисляют по следующим формулам:

$$d_2 = D_2 = d - 0,640327 P; (1)$$

$$d_1 = D_1 = d - 1,280654 P. (2)$$

Числовые значения диаметра d установлены эмпирически.

- 2.3. Разность действительных размеров $l_1 l_2$ должна быть не менее разности номинальных размеров l_1 и l_2 , указанных в табл. 2.
- 2.4. Длина внутренней конической резьбы должна быть не менее 0,8 ($l_1 \Delta_1 l_2$, где $\Delta_1 l_2$ в соответствии с табл. 3).

Таблица3 Размеры в миллиметрах

Обозначение размера резьбы		основной и резьбы $\pm \Delta_2 l_2$	Пред. откл. диаметра D_2 внутренней цилиндрической резьбы	Обозначение размера резьбы	'	е основной ги резьбы $\pm \Delta_2 l_2$	Пред. откл. диаметра D_2 внутренней цилиндрической резьбы	
¹ / ₁₆ ; ¹ / ₈	0,9	1,1	±0,071	1; 11/4; 11/2;	2,3	2,9	±0,180	
1/4; 3/8	1,3	1,7	±0,104	21/. 2. 21/.	2.5	2.5	±0.217	
1/2; 3/4	1,8	2,3	±0,142	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,5	3,5	±0,217	

 Π р и м е ч а н и е. Предельные отклонения $\Delta_1 l_2$ и $\Delta_2 l_2$ не распространяют на резьбы с длинами, меньшими указанных в табл. 2.

2.5. Обозначение размеров резьбы, шаги и номинальные значения наружного, среднего и внутреннего диаметров внутренней цилиндрической резьбы должны соответствовать указанным на черт. 3 и в табл. 2.

2.6. Конструкция деталей с внутренней резьбой (конической и цилиндрической) должна обеспечивать ввинчивание наружной конической резьбы на глубину не менее $l_1 + \Delta_1 l_2$.

3. ДОПУСКИ

3.1. Осевое смещение основной плоскости $\Delta_1 l_2$ наружной и $\Delta_2 l_2$ внутренней резьб (черт. 4) относительно номинального расположения не должно превышать значений, указанных в табл. 3.

Смещение основной плоскости является суммарным, включающим отклонения среднего диаметра, шага, угла наклона боковой стороны профиля и угла конуса.

3.2. Предельные отклонения среднего диаметра внутренней цилиндрической резьбы должны соответствовать указанным в табл. 3.

С. 5 ГОСТ 6211-81

Черт. 4

П р и м е ч а н и е. В основной плоскости средний диаметр имеет номинальное значение.

- 3.3. Допускается соединение наружной конической резьбы с внутренней цилиндрической резьбой класса точности А по ГОСТ 6357.
- 3.4. Рекомендуемые предельные отклонения отдельных параметров резьбы приведены в приложении.

4. ОБОЗНАЧЕНИЯ

4.1. В условное обозначение резьбы должны входить: буквы (R — для конической наружной резьбы, $R_{\rm c}$ — для конической внутренней резьбы, $R_{\rm n}$ — для цилиндрической внутренней резьбы) и обозначение размера резьбы.

Условное обозначение для левой резьбы дополняют буквами LH.

Примеры условных обозначений резьбы:

- наружная трубная коническая резьба $1^{1}/_{2}$:

$$\tilde{R} 1^{1}/_{2}$$

- внутренняя трубная коническая резьба $1^1/_2$: $R_{\rm c} \, I^1/_2$

$$R_{\rm c}^{\prime 2l}/2$$

- внутренняя трубная цилиндрическая резьба $1^{1}/_{2}$:

$$R_{\rm p} \ 1^1/_2$$

- левая резьба:

$$R 1^{1}/_{2}LH$$

$$R_{\rm c} 1^{1}/_{2}LH$$

$$R_{\rm p} 1^1/_2 LH$$

4.2. Резьбовое соединение обозначают дробью, например $\frac{R_{\rm c}}{R}$ или $R_{\rm c}/R$, в числителе которой указывают буквенное обозначение внутренней резьбы, а в знаменателе - наружной резьбы, и размером резьбы.

Примеры условных обозначений резьбовых соединений:

- трубная коническая резьба (внутренняя и наружная):

$$\frac{R_{\rm c}}{R} 1 \frac{1}{2}$$

$$\frac{R_{\rm c}}{R} 1 \frac{1}{2} LH$$

- внутренняя трубная цилиндрическая резьба (с допусками по настоящему стандарту) и наружная трубная коническая резьба:

$$\frac{R_{\rm p}}{R} 1 \frac{1}{2}$$

$$\frac{R_{\rm p}}{R} 1 \frac{1}{2} LH$$

- внутренняя трубная цилиндрическая резьба класса точности A по ГОСТ 6357 и наружная трубная коническая резьба:

$$\frac{G}{R} 1 \frac{1}{2} - A$$

$$\frac{G}{R} \frac{1}{2}LH - A$$

ПРИЛОЖЕНИЕ Справочное

ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ ОТДЕЛЬНЫХ ПАРАМЕТРОВ РЕЗЬБЫ

- 1. Настоящее приложение содержит информацию о предельных отклонениях отдельных параметров резьбы, которые являются исходными при проектировании резьбообразующего инструмента и расчете резьбовых калибров и не подлежат обязательному контролю, если это не установлено особо.
 - 2. Предельные отклонения среза вершин и впадин (размера С), угла наклона боковой стороны профиля

 $\frac{\alpha}{2} = 27^{\circ}30'$, шага P и угла конуса ϕ (разность средних диаметров на длине l_2) конической резьбы приведены на черт. 1 и в таблице.

еs — верхнее отклонение среза вершины и впадины наружной резьбы; ES — верхнее отклонение среза вершины и впадины внутренней резьбы; еі — нижнее отклонение среза вершины и впадины наружной резьбы; EI — нижнее отклонение среза вершины и впадины внутренней резьбы; $T\alpha$ — допуск угла наклона боковой стороны профиля резьбы

Черт. 1

С. 7 ГОСТ 6211-81

Размеры в миллиметрах

	Пред. откл.								Разность средних диаметров		
Обозначение		сре	за <i>С</i>		угла α/2	шага Р н	на длине	резьбы на длине l_2			
размера резьбы	верш	ины	впад	цины	l_2 l_1			Пред. откл. Номин.		ц. откл.	
	es = ES	ei = EI	es = ES	ei = EI	$\pm \frac{T\alpha}{2}$	Т	P	ПОМИП.	наружной резьбы	внутренней резьбы	
1/ ₁₆ ; 1/ ₈				-0,025	40'	0,04 0,		0,250	+0,028 -0,014	$^{+0,014}_{-0,028}$	
1/4					35'		0,07	0,375	+0,041 -0,021	+0,021 -0,042	
³ / ₈								0,400	+0,044 -0,022	$^{+0,022}_{-0,044}$	
1/2								0,512	+0,058 -0,028	+0,028 -0,058	
3/4								0,594	+0,066 -0,034	+0,034 -0,066	
1			0 +0,025					0,650	+0,073 -0,036	$^{+0,036}_{-0,073}$	
1 ¹ / ₄ ; 1 ¹ / ₂	+0,05	0						0,794	+0,089 -0,045	+0,045 -0,090	
2								0,994	+0,111 0,056	+0,056 -0,111	
$2^{1}/_{2}$								1,094	+0,122 -0,062	$^{+0,062}_{-0,122}$	
3				25'			1,288	+0,144 -0,073	+0,073 -0,144		
31/2								1,388	+0,155 -0,078	+0,078 -0,155	
4								1,588	+0,177 -0,089	+0,089 -0,177	
5; 6								1,788	+0,200 -0,101	+0,101 -0,200	

 Π р и м е ч а н и е. Значение T_p относится к расстояниям между витками резьбы. Действительное отклонение может быть со знаком минус или плюс.

^{3.} Предельные отклонения среза вершин и впадин (размера $\frac{H}{6}$) внутренней цилиндрической резьбы (черт. 2) не должны превышать:

⁻ среза вершин ± 0.05 мм (ES = ± 0.05 мм, EI = 0); - среза впадин ± 0.025 мм (ES = ± 0.025 мм, EI = ± 0.025 мм).

Черт. 2

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством станкостроительной и инструментальной промышленности
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.12.81 № 5789
- 3. B3AMEH FOCT 6211-69
- 4. Стандарт полностью соответствует СТ СЭВ 1159-78
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта				
ГОСТ 6357—81	Вводная часть, 1.2, 3.3, 4.2				

6. ПЕРЕИЗДАНИЕ

4-2-2762 53