

VIRTUAL INTERNSHIP EXPERIENCE (VIX)

by Archie Citra Muhammad

PROBLEM RESEARCH

- Problem: the number of customers defaults reached 50,968 people and the company suffered a loss of \$743,972,450 in 2007 to 2014
- Goal: reduce company losses by up to 30 percent of bad loan
- Objective: Create a ML system to help loan assessments automatically
- Business Metrics: cost

DATASET

Loan_data_2007_2014 have 466285 rows and 74 columns

Float64 : 46

: 6 Int64

Object : 22

Target from loan_status column

Bad loan: 11%

Target Class Balance

https://github.com/archie-cm/Credit Score Home Credit Indonesia

DATA VIZ AND BUSINESS INSIGHT

Total Loss based on Loan Status

loan status	total loss	total applicant	% total loss	avg loss
Charged Off	\$574,356,330.27	43,236	85.29	\$13,284.22
Late	\$87,745,022.55	6,900	13.03	\$12,716.67
Default	\$11,299,446.58	832	1.68	\$13,581.07

A company has lost a total of \$574,356,330 to customers who were charged off, with an average loss of \$13,284.22 per person. Further analysis will be conducted.

DATA VIZ AND BUSINESS INSIGHT

Customers who have been charged off have certain attributes or characteristics.

- Loan with term 36 or short
- Home ownership status rent
- Purpose charged off is debt consolidation
- Employer length > 10 years

Insight

- Making customers have long loan terms
- Targeting customers who have home ownership status own
- Have employer length of more than
 2 years and less than 10 years

Preprocessing & Modelling

Data Cleaning

Check Data Duplicate
Check Missing Data
Check Data Type

Feature Selection

Split Data Train (80:20)

Categorical (Chi Square)

Numerical (ANOVA)

Feature Engineering

WoE Binning
Information Value (IV)

Modelling & Cross Validation

Class_Weight = Balance Woe_transform RepeatedStrafieldKfold

Evaluation

Models	MEAN AUROC	GINI	
Decision Tree	0.71	0.41	
Logistic Regression	0.87	0.73	

`AUROC = 0.866` and `KS = 0.61`. In the world of credit risk modeling, generally AUC above 0.7 and KS above 0.3 is considered good performance

Score

30.0

7.0

16.0

Details

56-61

61-75

<56

Scorecard

General

Scricial										.50	_0.0
DACE/: otoro		Air coo	no - 200 N/a							>75	0.0
BASE(Interd	ept) = 598, N	viin sco	re = 300, ivia	ax score = 850		Feature Name	Details	Score		missing	15.0
		<u>-</u>				inq_last_6mths	0	10.0	out_prncp	1,286-6,432	-27.0
		<u>-</u>	Feature Name	Details	Score		1-2	9.0		10,291-15,437	-7.0
			annual_inc	102,606-120,379	5.0		3-4	6.0		6,432-9,005	-16.0
Feature Name	Details	Score		120,379-150,000	4.0		>4	0.0		9,005-10,291	-10.0
term	36	-2.0		28,555-37,440	11.0		missing	3.0		<1,286	-88.0
	60	0.0		37,440-61,137	10.0	int_rate	10.374-13.676	1.0		>15,437	0.0
total_pymnt	10,000-15,000	-101.0		61,137-81,872	9.0		13.676-15.74	1.0	purpose	credit_card	-6.0
	15,000-20,000	-73.0		81,872-102,606	8.0		15.74-20.281	-0.0		consolidation	-8.0
	20,000-25,000	-47.0		28,555	12.0		7.071-10.374	7.0		educren_ensm_b	m
	<10,000	-155.0		150K	0.0		<7.071	24.0		ov	-12.0
	>25,000	0.0		missing	15.0		>20.281	0.0		major_purchcarhom	ıe
total_rec_int	1,089-2,541	94.0	dti	1.6-5.599	12.0	mths_since_earliest	125-167	-2.0		_impr	0.0
	2,541-4,719	66.0		10.397-15.196	6.0	_cr_line	167-249	-0.0		vacationhousewedd	in
	4,719-7,260	34.0		15.196-19.195	3.0		249-331	-0.0		gmedoth	0.0
	<1,089	109.0		19.195-24.794	1.0		331-434	1.0	revol_util	0.1-0.2	-14.0
	>7,260	0.0		24.794-35.191	1.0		<125	-4.0		0.2-0.3	11.0
total_rev_hi_lim	19,144-25,525	5.0		5.599-10.397	8.0		>434	0.0		0.3-0.4	-3.0
	25,525-35,097	2.0		<=1.6	13.0		missing	3.0		0.4-0.5	8.0
	35,097-54,241	1.0		>35.191	0.0	mths_since_issue_d	100-122	-3.0		0.5-0.6	10.0
	54,241-79,780	-0.0	grade	Α	24.0		79-89	-8.0		0.6-0.7	-6.0
	6,381-19,144	8.0		В	20.0		89-100	-8.0		0.7-0.8	1.0
	<6,381	9.0		С	15.0		<79	-9.0		0.8-0.9	-1.0
	>79,780	0.0		D	12.0		>122	0.0		0.9-1.0	15.0
	missing	5.0		E	8.0	home_ownership	MORTGAGE	0.0		<0.1	-4.0
verification_status	Not Verified	0.0		F	5.0		OTHER_NONE_RENT	-3.0		>1.0	0.0
	Source Verified	-7.0		G	0.0		OWN	-1.0		missing	-2.0
						<u> </u>					

Feature Name

mths_since_last_cr

edit_pull_d

Setting Loan Approval Cut-Offs

General

BASE(intercept) = 569 Min score = 300

Max score = 850

Load_data_2007_2014

466285 applicants

Model

Logistic Regression AUC 0.87 Recall 0.97 KS 0.61

Threshold

0.5

Best Threshold

0.186574

Threshold = 0.5

Accept Score	N Approved	N Rejected	Approval Rate	Rejection Rate
525.0	67559	25698	0.724439	0.275561

Best Threshold

Accept Sc	ore N Appr	oved N Reje	ected Approv	val Rate Reject	tion Rate
48	88.0	6384	6873 (0.92630	0.07370

Threshold 0.5 would result in a very high rejection rate with a corresponding loss of business.

Accordingly, we will stick with our ideal threshold and the corresponding Credit Score of 488

Simulation

Profile of Andi	Score calculation	
Base		598
annual_inc	60,000	9
Dti	10	8
Grade	В	20
home_ownersh	ip Own	-1
inq_last_6mth	s 3	6
int_rate	8	7
earliest_cr_line	e 120	-2
issue_d	70	-8

last_credit_pull_d	70	7
out_prncp	12,000	-7
purpose	education	-12
revol_util	0.4	-3
term	60	0
total_pymnt	20,000	-47
total_rec_int	3,500	66
total_rev_hi_lim	15,000	8
verification_status	verified	-7
Total		642

If [Accept Score > Score] -> Approve & [Accept Score < Score] -> Reject Accept Score is 488 and Andi Score is 642, So Andi Ioan is Approve

Conclusion

With machine learning, Company can reduce loss from bad loan reached 90% and can focus on customer have long loan terms (60), customers who have home ownership status own and Have employer length of more than 2 years and less than 10 years to maximize revenue.

