ÁLGEBRA LINEAL Y ESTRUCTURAS MATEMÁTICAS

22 de Enero de 2019

Alumno:	D.N.I.:	Grupo:

Ejercicio 1. Calcula todas las soluciones del siguiente sistema de congruencias

 $comprendidas\ entre\ -30000\ y\ 30000$

Ejercicio 2.

Sea x un número de dos cifras. Si le restamos 6 y el resultado lo expresamos en hexadecimal, obtenemos las mismas cifras que x pero en orden inverso. ¿Cuál es el número x?

Ejercicio 3. Sean $m(x) = x^5 + x^4 + x^3 + x^2 + x + 2$ y $q(x) = x^5 + 2x^3 + 2$ dos polinomios con coeficientes en \mathbb{Z}_3 , y sea $A = \mathbb{Z}_3[x]_{m(x)}$.

- 1. Calcula mcd(m(x), q(x)).
- 2. Factoriza m(x) como producto de irreducibles.
- 3. Encuentra, si es posible, un elemento $\alpha \in A$ tal que $\alpha \cdot (2x^2 + 2x + 2) + x^3 + x + 1 = x^4 + 2$.

Ejercicio 4. Tenemos un grupo formado 15 personas, 8 de ellas mujeres y el resto hombres.

- ¿De cuántas formas podemos elegir 8 personas de estas 15?
- ¿De cuántas formas podemos elegir 8 personas, de forma que haya más mujeres que hombres?
- Necesitamos elegir 4 parejas. ¿De cuántas formas podemos hacerlo? (una pareja está formada por dos personas, sin mirar si son hombres o mujeres).
- Necesitamos elegir 4 parejas, cada pareja formada por un hombre y una mujer. ¿De cuántas formas podemos hacerlo?

Ejercicio 5. Dado el sistema de ecuaciones con coeficientes en \mathbb{Z}_5

$$\begin{array}{rclrcrcr}
2x & + & ay & + & z & = & -1 \\
-2x & + & ay & + & z & = & 0 \\
& & ay & + & (a+2)z & = & a+2
\end{array}$$

 $Determina,\ en\ funci\'on\ del\ par\'ametro\ a,\ cu\'ando\ es\ compatible\ determinado,\ compatible\ indeterminado\ o\ incompatible.$

Ejercicio 6. Sea
$$B_1 = \{(1, -1, 0), (0, -1, 1), (1, 1, -1)\}, y sea $P = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & -1 \\ 1 & 1 & 2 \end{pmatrix}.$$$

■ Comprueba que B_1 es una base de \mathbb{R}^3

Sea B_2 una base de \mathbb{R}^3 tal que la matriz del cambio de base de B_2 a B_1 es la matriz P.

- \blacksquare Calcula la base B_2 .
- Si u el vector cuyas coordenadas en B_1 son (1,1,1). Calcula el vector u y sus coordenadas en B_2 .

Ejercicio 7. Sea U el subespacio de $(\mathbb{Z}_2)^4$ generado por los vectores (1,1,1,0), (0,1,1,1), (1,0,0,1) y W el subespacio de $(\mathbb{Z}_2)^4$ de ecuaciones:

$$\begin{cases}
 x + y + z & = 0 \\
 z + t & = 0
\end{cases}$$

Calcula las ecuaciones cartesianas y una base de U+W.

22 de Enero de 2019 (1)

Ejercicio 8. De una aplicación lineal $f: (\mathbb{Z}_5)^3 \to (\mathbb{Z}_5)^3$ sabemos que (2,3,1) pertenece al núcleo (kernel) de f, (1,2,4) es un vector propio de valor propio 2 y f(1,1,1) = (4,0,3).

- lacksquare Calcula la matriz de f en la base canónica.
- lacktriangledown Calcula las ecuaciones cartesianas del subespacio Im(f).

Ejercicio 9. Sea
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -2 & -1 & -2 \end{pmatrix} \in M_3(\mathbb{R}).$$

Estudia si A es diagonalizable. En caso afirmativo, calcula una matriz regular P tal que $P^{-1} \cdot A \cdot P$ sea una matriz diagonal.

 $Calcula\ A^{20}.$

(2) 22 de Enero de 2019