Robust inference by resampling score statistics, with application to single-cell CRISPR screens

Timothy Barry, Kaishu Mason, Kathryn Roeder, and Eugene Katsevich

Software

Single cell CRISPR screens

Single-cell CRISPR screens are an important genomics technology that could give rise to new therapeutics for human diseases.

Statistical statement of the problem: We observe data $(X_1,Y_1,Z_1),\ldots,(X_n,Y_n,Z_n)$, where $X_i\in\{0,1\}$ is a binary treatment (i.e., the presence or absence of the CRISPR perturbation), $Y_i\in\{0,1,2,\ldots\}$ is the response (i.e., the expression of the gene), and $Z_i\in\mathbb{R}^p$ is a low-dimensional vector of "technical factors" that may or may not exert a confounding effect on X_i and Y_i . Our goal is to produce a well-calibrated and powerful test of association between X_i and Y_i .

We aim to apply this test of association to a large number (e.g., 100,000) of CRISPR perturbation-gene pairs, producing a discovery set that controls the false discovery rate.

Contribution 1: Large-scale benchmarking study of existing methods

We apply six leading methods to analyze negative control CRISPR perturbation-gene pairs from seven datasets.

Existing methods demonstrate **miscalibration** across all datasets, suggesting that the results produced by these methods may contain **excess false positives**.

Contribution 2: Identification of core analysis challenges

We conduct an extensive empirical investigation of the data, uncovering three core analysis challenges: **sparsity**, **confounding**, and **model misspecification**. No existing method addresses all three of these challenges.

Contribution 3: A method that resolves the analysis challenges in theory and practice

SCEPTRE is a permutation test that uses a test statistic with appealing **computational** and **statistical** properties.

SCEPTRE is nearly as fast as fitting a GLM due to several accelerations, including:

- . Use of a **score** test (rather than a **Wald** or **likelihood** ratio test) to compute the test statistics.
- 2. A new **algorithm** for computing **GLM** score tests (100x faster than classical algorithm for binary treatments).

Theoretically, SCEPTRE is **robust** to the calibration threats of **sparsity**, **confounding**, and **model misspecification**.

Application of SCEPTRE to real control data

SCEPTRE exhibits **better calibration** (on negative control data) and **power** (on positive control data) than competing methods.

3	Number of true positives								
	Dataset	SCEPTRE	Seurat- Wilcox	Seurat- NB	t-test	MAST	KS test	MIMOSCA	PC pairs
	Frangieh (Co Culture)	103	98	94	-	-	90	5	181
	Frangieh (Control)	77	74	72	-	-	70	4	170
	Frangieh (IFN-γ)	94	89	81	-	-	81	8	181
	Papalexi (Gene)	13	12	13	11	11	-	0	25
	Papalexi (Protein)	2	2	2	2	2	2	2	2
	Schraivogel	22	22	21	23	22	19	0	25