Birational maps of surfaces

Blow-ups

Set-up: S nonsingular projective surface /C $P \in S$

Then \exists a smooth surface \hat{S} & a morph. $\varepsilon: \hat{S} \to \varepsilon$ Such that D $\varepsilon|_{\varepsilon^{-1}(S-\{p\})}: \varepsilon^{+1}(S-\{p\}) \xrightarrow{\cong} \varepsilon$ $varphing \varepsilon$ $varphing \varepsilon: \hat{S} \to \varepsilon$ varph

E is unique up to isom.

Call & is the blow-up of Sat p E: exceptional curve of the blow-up.

Construction of blow-ups

Take a heighborhood $U \ni p$ with local Coordinates x, y at p (i.e. the curves x=0, y=0 intersect transversely at p=(0,0)) Can shrink U if necessary we may assume p is the only paint of U in the intersection $(x=0) \cap (y=0)$

define the subvariety (x,y;u:v) $U \times IP_{[u:v]}$ by the equation xv-yu=0Observe that $P \in U \subset A^{2}$ (x,y)

• $\mathcal{E}: \mathcal{U} \to \mathcal{U}$ isom. Over points of \mathcal{U} where at most one of $(x,y;[y:x]) \leftarrow (x,y)$ the coordinates x,y vanishes.

$$S = (S - \{p\}) \cup U \quad (S - \{p\}) \cap U = U - \{p\}$$

We get \hat{S} by gluing \hat{U} and (S-fp) along U-fp

C: irreducible curve on S through P with multiplicity multp(C)=m

 $\underline{|emma} \quad \xi^*C = \hat{C} + m E$

If clearly E*C = C+ kE for some k \ Z_{>0}

Chaose local coordinates x, y in a neighborhood U of p

Such that the curve (y=0) is not tangent to any

branch of (at p

(y=0) Then in $G_{S,p}$, the equation of Can be writton as a formal power series

 $f = f_m(x,y) + f_{m+1}(x,y) + ...$

Where fi: forms in x, y of degree i

 $m = mult_p(C)$. $f_m(x,y) \neq 0$

 $\widehat{U} \longrightarrow U \times \mathbb{P}^{1} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}_{[u;v]}$ (xv-yu=0) in a heighborhood of the point $(P, \infty) \in \hat{U} \subset \hat{S}$ Can take the functions x and $t = \frac{v}{u}$ as local coordinates. $xv = yu \Leftrightarrow x\frac{v}{u} = y \Leftrightarrow xt = y$ $\mathcal{E}^* f(x,y) = f(x,tx) \qquad f = f_m + f_{m+1} + \dots$ $= \chi^{m} \left[\frac{\int_{m} (1,t) + \chi \int_{m+1} (1,t) + \cdots}{\int_{m+1}^{\infty} (1,t) + \cdots} \right]$ defining \hat{C} x√=yu $(P, \infty) \in \hat{U} \quad (x \dot{v} - y \dot{u})$ exceptional curve $E = \varepsilon'(p) \subset \mathring{U}$ $(y=0) \Rightarrow t_{\chi=0}$ \Rightarrow $5.^{\times}$ C = 0.00 + mE

Prop.
$$S$$
 surface
 $E: \hat{S} \longrightarrow S$ the blow-up of a point $P \in S$
 $E \subset \hat{S}$ exceptional curve. Then

- (1) ∃ an isomorphism PicS ⊕ Z → PicS $(D, n) \longmapsto \epsilon^*D + nE$
- (2) D. D' divisors on S, then $\xi^*D. \ \xi^*D' = D.D'$ $E. \xi^*D = 0$ $E^2 = -1$
 - (3) $NS(\hat{S}) \cong NS(S) \oplus \mathbb{Z} \cdot [E]$
 - $(4) \quad k_{\hat{S}} = \varepsilon^* k_S + E$

of (2) Recall that the intersection pairing is defined on Picard group, Can replace D and D' by linearly equivalent divisors.

So We may assume that p doesn't lie on components of D & D' Hence \(\xi^*D \cdot \xi' \xi' = D \cdot D' \to \xi isom outside P \\
\text{E . } \xi^*D = 0 \to D not passes through P Choose a Curve C passing through P with multiplicity 1.

the strict vransporm =

Corresponding to the tangent direction of Cat p. => the strict transform & meets E transversely at one point.

(1). Y irreducible curve on S (other than E) is the Strict transform of its image in S

 \Rightarrow the map $PicS \oplus Z \longrightarrow Pic\hat{S}$ $(D, n) \longmapsto \xi^*D + nE$ is Surjective.

· Suppose that 3 divisor DCS such that E*D+nE=c $\Rightarrow (\xi^*D+nE)E=0 \Rightarrow n=0$

(3) Note that
$$E_*$$
 & E^* are defined on the Néron-Severi groups

& PicS × PicS \longrightarrow Z
 $C_1 \times c_1$
 $C_2 \times c_3$
 $C_3 \times NS(S) \times NS(S) \xrightarrow{Cup-product} H^4(S,Z)$

(4) Choose a meromorphic 2-form
$$\omega$$
 on S such that ω is holomorphic in a neighborhood of P & $\omega(p) \neq 0$.

It's clear that away from E the zeros and poles of E*w are those of w (via E*).

$$\Rightarrow \operatorname{div}(\xi^*\omega) = \xi^*\operatorname{div}(\omega) + kE \text{ for some } k \in \mathbb{Z}.$$
i.e. $\xi^*k + L = 1$

i.e.
$$E^*k_S + kE = k_S$$
 By genus formula
$$g(E) = 1 + \frac{1}{2}(E^2 + k_S - E)$$

$$g(E) = 1 + \frac{1}{2} \left(\frac{E^2 + k_s E}{\parallel} \right) \Rightarrow k = 1$$

Alternatively, if w=dxAdy where x,y local coordinates at pES then $e^*\omega = dx \wedge d(tx) = x dx \wedge dt$ in local coordinates

$$\Rightarrow \xi^* k_s + E = k_s$$

Rational maps Tinear systems

Tat'l maps

Set-up X, Y Varieties with X irreducible

a rational map $\phi: X \longrightarrow y$ is a morphism $U \longrightarrow y$ which cannot be extended to any larger open subset.

We say that ϕ is defined at x if $x \in U$.

Suppose that S is a smooth surface & $\varphi:S \dashrightarrow \gamma$ rat'l map then the undefined set of φ , $\Sigma := S - U$, is a finite set. (Called indeterminancy locus of φ)

Prop X normal Variety, Y projective variety $\varphi: X \longrightarrow Y$ a Vational map then the indeterminacy locus of 9 has Codim > 2.

 $\underline{\mathbb{P}} \qquad \times \cdots \to \mathbb{P}^n$

We can reduce to the case $y=p^n$ Now consider rational map $\varphi: X \longrightarrow \mathbb{P}^n$ The question is local.

for V point x in the indeterminacy locus of Q.

X normal > Gx, X integrally closed domain

For any codim 1 component Z of indeterminacy locus of 6 passing through x, then $G_{X,Z}$ is a DVR, say Z is defined by a single equation $g \in G_{X,X}$.

 $\varphi: X \longrightarrow \mathbb{P}^n$ given by $(\varphi_0, \varphi_1, \dots, \varphi_n)$ with $\varphi_i \in k(x)$

Can multiply by a common factor (in k(x)) such that these φ_i ho common factor & & & & & & & & X.x

=> the indeterminacy locus of & in a heighborhood of x is the Common Zero Icus

$$\bigcap_{i=0}^{n} (\varphi_{i} = 0)$$

⇒ g is a common factor of those Pi, contradicting to the chack of the Pi.

In Particular,

φ: C --- , p" rational map. C smooth curve => φ is a morphism q: S --> ph rational map. S smooth surface ⇒ indeterminacy locus
of q is a finite
set of points of S

Now let $\varphi: S ..., Y$ be a rational map. where S a smooth surface & \times projective variety. & \times the indeterminacy lows of φ If $C \subset S$ an irreducible curve, then φ defined on $C - \Sigma$

In this case, the image of Cunder & defined to be $\varphi(c) := \overline{\varphi(c-\Sigma)} c \cdot \gamma$ taking closure

Similarly, $\varphi(S) := \overline{\varphi(S-\Sigma)} \subset Y$

Note that & Codin 2 Subset does not affect the Picard groups that is, $pic S \xrightarrow{\text{testr.}} pic(S-\Sigma)$ $\varphi: S-\Sigma \longrightarrow V \longrightarrow pic Y \xrightarrow{\phi} pic(S-\Sigma)$

 $Pic Y \longrightarrow Pic (S-\Sigma) \xrightarrow{\cong} PicS$ Still dente

Up S: Surface D: divisor on S, say $D = \sum n_i C_i$

let $|D| := \{ D' \ge 0 \mid D' \text{ effective divisor on } S \}$ with $D \approx D'$

Called the linear system associated to D. By definition,

for $\forall D' \in |D|$, $\exists a rational function <math>\neq f \in K(S)$ s.t. D' = D + div(f)

Such a section $f \in K(s)$ determined uniquely up to a scalar

⇒if We Onsider

 $L(D) := \{ f \in k(s)^* \mid div(f) + D > 0 \} \cup \{ o \}$

then Can identify

|D| = P(L(D))

Rmk L(D) is a vector space which is the set of all rational Sections/functions of S having order >-ni along Ci

For \$\overline{\pi}{a}\$ for \overline{\pi}{a}\$ for \overline{\pi}{a for $\forall f \in H^{\circ}(S, O_{S}(D))$, the quotient $\sharp = f f_{\circ} \in K(S)$ with $\operatorname{div}(t_i) = \operatorname{div}(f) - \operatorname{div}(f_0) > -D$, i.e. $t_i \in L(D)$ & $div(f) = D + div(t_f) > 0$

Conversely, for $\forall t \in L(D)$

 $s := t_f \cdot f_s \in H^{\circ}(S, G_{S(D)})$

we have an identification

L(D) * H°(S, G, (D))

Summary

a linear subspace PCIDI Called a linear (Sub-) system

a Subvector space $V_P \subset H^o(G_s(D))$

We say the linear system P is complete if P= 1D1

dim | Pl := dim P (Vp)

linear systems of dim 1, 2, or 3 Called pencils, nets or webs, respectively.

let P be a linear system on S, a curre C is called a fixed component of P if for \forall divisor $D \in P$, $C \subseteq D$.

The fixed part of P is the biggest divisor Z with $Z \subseteq D$ for $\forall D \in \partial P$

A point $x \in S$ called a base point of P if for $\forall D \in P$ Collecting all base points of P, define the base locus of P as

Bs $(P) := \{x \in S \mid x \in Supp D, \text{ for } \forall D \in P\}$

For Surface 5 and linear system P on S, let Z be the fixed part of P (if any), then P-Z is a linear system M

having no fixed part & only a finite number of base points. i.e. P = M + Z moving /mobile part of P

Clearly, in this case no fixed part. # { base points of M} $\leq D^2$ for $D \in M$

Bertini's Theorem

Let P be a linear system on a smooth variety X & $D \in P$ a general member,

then D is smooth outside Bs (P)

Pf If the generic element of P is singular away from Bs(P) then the generic element of a generic Pencil = P will be Singular away from Bs (P)

=> suffices to prove Bertini for a pencil [D]

The question is local. We may assume locally general member $D:=D_{\lambda}=\left\{f(x_{1},x_{2},...,x_{n})+\lambda g(x_{1},x_{2},...,x_{n})=0\right\}$

O ∈ Supp D is a singular point & O ∉ Bs ID

then $f(0) \neq 0$ (if f(0)=0, $0 \in D \Rightarrow g(0)=0 \Rightarrow 0 \in Bs(D_a)$)

 $\Rightarrow g(\circ) \neq 0 \Rightarrow \lambda = -\frac{f(\circ)}{g(\circ)}$

D singular at $0 \Leftrightarrow \left(\frac{\partial f}{\partial x_i} - \lambda \frac{\partial g}{\partial x_i}\right) = 0$ for $\forall i \Rightarrow \frac{\partial}{\partial x_i} \left(\frac{f}{g}\right)\Big|_{x=0} = 0 \quad \forall i$ $\Rightarrow \frac{f}{g} \quad \text{Constant on } \forall \quad \text{Connected Companent of singular locus}, \quad \text{autside Bs} |D| \Rightarrow \exists \text{finitely many meeting } \Omega$