Geometria 2

Università degli Studi di Trento Corso di Laurea in matematica A.A. 2010/2011 12 settembre 2011

Si svolgano i seguenti esercizi.

Esercizio 1. Sia $\mathbb{P}^3(\mathbb{R})$ il 3-spazio proiettivo reale numerico dotato del riferimento proiettivo standard di coordinate $[x_0, x_1, x_2, x_3]$. Per ogni $k \in \mathbb{R}$, definiamo le rette proiettive r(k) e s(k) di $\mathbb{P}^3(\mathbb{R})$ ponendo

$$r(k): \begin{cases} -x_0 + 2x_1 + x_2 + x_3 = 0 \\ x_0 + kx_1 + kx_2 = 0 \end{cases}$$
 e $s(k): \begin{cases} x_0 = 0 \\ (k+2)x_1 + (k+1)x_2 + 2x_3 = 0. \end{cases}$

Si determinino i valori del parametro $k \in \mathbb{R}$ in modo che:

- (1) le rette r(k) e s(k) siano sghembe;
- (2) la retta r(k) sia contenuta nel piano proiettivo H_0 di $\mathbb{P}^3(\mathbb{R})$ di equazione cartesiana $x_0 = 0$.

Esercizio 2. Sia \mathbb{E}^2 il piano euclideo ordinario dotato del riferimento cartesiano standard di coordinate (x, y) e sia \mathcal{C} la conica di \mathbb{E}^2 definita ponendo

$$C: x^2 + y^2 + 2xy + 2x + 1 = 0.$$

Si risponda ai seguenti quesiti:

- (1) Si dimostri che \mathcal{C} è una parabola.
- (2) Sia \mathcal{D} la forma canonica di \mathcal{C} . Si scriva esplicitamente una isometria diretta $T: \mathbb{E}^2 \to \mathbb{E}^2$ di \mathbb{E}^2 tale che $\mathcal{C} = T^{-1}(\mathcal{D})$. Si calcoli inoltre l'asse di simmetria ed il vertice di \mathcal{C} .

Esercizio 3. Dato $p \in \mathbb{R}$ si consideri l'insieme

$$\tau_p = \{ A \subseteq \mathbb{R} \mid p \in A \} \cup \{\emptyset\}.$$

- (1) Si provi che τ_p è una topologia su \mathbb{R} .
- (2) Si dica se \mathbb{R} con la topologia τ_p è di Hausdorff oppure no.
- (3) Si determino parte interna, chiusura e frontiera dell'insieme $\{p\}$ rispetto alla topologia τ_p .
- (4) Si provi che una funzione non costante $f:(\mathbb{R},\tau_0)\to(\mathbb{R},\tau_1)$ è continua se e solo se f(0)=1.

Esercizio 4. Sull'insieme \mathbb{R} dei numeri reali si considerino le due relazioni d'equivalenza, definite da

$$x \sim y \iff x - y \in \mathbb{Z} \qquad x \approx y \iff x = y \text{ o } x, y \in \mathbb{Z}$$

e siano $X = \mathbb{R}/\sim e Y = \mathbb{R}/\approx$.

Dire, motivando la risposta, quali dei tre spazi topologici $X,\ Y$ e S^1 sono tra loro omeomorfi e quali no.

Soluzioni

Esercizio 1.

1. Per definizione, r(k) ed s(k) sono sghembe se non si intersecano. Ciò equivale a dire che il sistema lineare

$$\begin{cases}
-x_0 + 2x_1 + x_2 + x_3 = 0 \\
x_0 + kx_1 + kx_2 = 0 \\
x_0 = 0 \\
(k+2)x_1 + (k+1)x_2 + 2x_3 = 0
\end{cases}$$

ha solo lo zero come soluzione. Per il teorema di Rouché-Capelli, ciò accade se e soltanto se

$$\det \begin{pmatrix} -1 & 2 & 1 & 1 \\ 1 & k & k & 0 \\ 1 & 0 & 0 & 0 \\ 0 & k+2 & k+1 & 2 \end{pmatrix} \neq 0.$$

Poiché il suddetto determinante risulta essere uguale a k, r(k) ed s(k) sono sghembe se e soltanto se $k \neq 0$.

2. 1° modo:

Per ogni $k \in \mathbb{R}$, s(k) è contenuta in $H_0 := \{x_0 = 0\}$. Se $k \neq 0$, abbiamo appena provato che r(k) ed s(k) sono sghembe. Segue che, se $k \neq 0$, $r(k) \not\subset H_0$. Altrimenti la formula di Grassmann proiettiva implicherebbe che $r(k) \cap s(k) \neq \emptyset$.

Controlliamo il caso k = 0. Sotto questa ipotesi, la seconda equazione che definisce r(k) è proprio $x_0 = 0$.

In conclusione, $r(k) \subset H_0$ se e soltanto se k = 0.

$2^{\circ} \ modo$:

Sia $k \in \mathbb{R}$. Definiamo la matrice $A(k) \in \mathcal{M}(3 \times 4; \mathbb{R})$ ponendo

$$A(k) := \left(\begin{array}{cccc} -1 & 2 & 1 & 1 \\ 1 & k & k & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

Allora $r(k) \subset H_0 := \{x_0 = 0\}$ se e soltanto se $\operatorname{rk}(A(k)) = 2$. Osserviamo che la sottomatrice A(k)(1,2|1,4) di A(k) è uguale a

$$\begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

ed il suo determinante è uguale a $-1 \neq 0$. Portiamo "in testa" tale sottomatrice di A(k) scambiando tra di loro la seconda e la quarta colonna di A(k) stessa. Otteniamo la sequente matrice

$$A'(k) := \left(\begin{array}{cccc} -1 & 1 & 2 & 1 \\ 1 & 0 & k & k \\ 1 & 0 & 0 & 0 \end{array}\right)$$

Dal principio dei minori orlati segue che

$$\operatorname{rk}(A(k)) = \operatorname{rk}(A'(k)) = 2 \quad \Leftrightarrow \quad \begin{cases} \det\begin{pmatrix} -1 & 1 & 2 \\ 1 & 0 & k \\ 1 & 0 & 0 \end{pmatrix} = 0 \\ \det\begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & k \\ 1 & 0 & 0 \end{pmatrix} = 0 \\ \Leftrightarrow \quad \begin{cases} k = 0 \\ k = 0 \end{cases}$$

Dunque $r(k) \subset H_0$ se e soltanto se k = 0.

Esercizio 2.

1. La matrice associata a $\mathcal C$ è data da

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right).$$

Denotiamo con A_0 la sottomatrice A(2,3|2,3) di A, cioè

$$A_0 = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right).$$

Poiché det $A_0 = 0$, \mathcal{C} è una parabola.

2. Calcoliamo l'isometria diretta $T: \mathbb{E}^2 \to \mathbb{E}^2$ in modo che $\mathcal{C} = T^{-1}(\mathcal{D})$.

1° passo: eliminazione del termine 2xy

Calcoliamo una base ortonormale di \mathbb{R}^2 diagonalizzante per A_0 e concordemente orientata con quella canonica di \mathbb{R}^2 . Il polinomio caratteristico $p(\lambda)$ di A_0 è dato da:

$$p(\lambda) := \det \begin{pmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{pmatrix} = \lambda(\lambda - 2).$$

Dunque gli autovalori di A_0 sono $\lambda_1 = 0$ e $\lambda_2 = 2$.

Calcoliamo l'autospazio V_1 di A_0 relativo a λ_1 (cioè il nucleo di A_0):

$$\begin{pmatrix} 1-0 & 1 \\ 1 & 1-0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \qquad \Leftrightarrow \qquad x+y=0 \qquad \Leftrightarrow \qquad x=-y,$$

$$V_1 = \{(-y, y)^t \in \mathbb{R}^2 : y \in \mathbb{R}\} = \langle (-1, 1)^t \rangle.$$

Poniamo

$$v_1 := \frac{(-1,1)^t}{||(-1,1)||} = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)^t.$$

Calcoliamo l'autospazio V_2 di A_0 relativo a λ_2 :

$$\left(\begin{array}{cc} 1-2 & 1 \\ 1 & 1-2 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = 0 \qquad \Leftrightarrow \qquad -x+y=0 \qquad \Leftrightarrow \qquad x=y,$$

$$V_2 = \{(y, y)^t \in \mathbb{R}^2 : y \in \mathbb{R}\} = \langle (1, 1)^t \rangle.$$

Poniamo

$$v_2 := \frac{(1,1)^t}{||(1,1)||} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)^t.$$

Poiché

$$\det \begin{pmatrix} v_2 & v_1 \end{pmatrix} = \det \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} = 1 > 0,$$

 $\mathfrak{B} := (v_2, v_1)$ è la base di \mathbb{R}^2 cercata.

Definiamo la matrice $M \in SO(2)$ ponendo:

$$M := (v_2 \ v_1) = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

Ricordiamo che, se \mathfrak{C} è la base canonica di \mathbb{R}^2 e $F_0: \mathbb{R}^2 \to \mathbb{R}^2$ è l'applicazione lineare indotta da A_0 (cioè $F_0((x,y)^t) = A_0(x,y)^t$), allora si ha

$$\mathcal{M}_{\mathfrak{B}}^{\mathfrak{B}}(F_0) = M^{-1} \cdot \mathcal{M}_{\mathfrak{C}}^{\mathfrak{C}}(F_0) \cdot M$$

ovvero

$$\left(\begin{array}{cc} 2 & 0\\ 0 & 0 \end{array}\right) = M^{-1} \cdot A_0 \cdot M.$$

Definiamo la rotazione $T_1: \mathbb{E}^2 \to \mathbb{E}^2$ ponendo

$$T_1((x_1, y_1)^t) = M(x_1, y_1)^t = \left(\frac{\sqrt{2}}{2}x_1 - \frac{\sqrt{2}}{2}y_1, \frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}y_1\right)^t.$$

Grazie al fatto che

$$\left(\begin{array}{cc} 2 & 0\\ 0 & 0 \end{array}\right) = M^{-1} \cdot A_0 \cdot M,$$

l'equazione di $(T_1)^{-1}(\mathcal{C})$ non contiene più termini di tipo ax_1y_1 , infatti vale:

$$(T_1)^{-1}(\mathcal{C}): 0 = \left(\frac{\sqrt{2}}{2}x_1 - \frac{\sqrt{2}}{2}y_1\right)^2 + \left(\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}y_1\right)^2 + 2\left(\frac{\sqrt{2}}{2}x_1 - \frac{\sqrt{2}}{2}y_1\right)\left(\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}y_1\right) + 2\left(\frac{\sqrt{2}}{2}x_1 - \frac{\sqrt{2}}{2}y_1\right) + 1 = 2x_1^2 + \sqrt{2}x_1 - \sqrt{2}y_1 + 1.$$

2º passo: eliminazione dei termini di primo grado

Completiamo il quadrato relativo a x_1 nell'equazione di $(T_1)^{-1}(\mathcal{C})$:

$$2x_1^2 + \sqrt{2}x_1 - \sqrt{2}y_1 + 1 = 2\left(x_1 + \frac{\sqrt{2}}{4}\right)^2 - \frac{1}{4} - \sqrt{2}y_1 + 1 =$$
$$= 2\left(x_1 + \frac{\sqrt{2}}{4}\right)^2 - \sqrt{2}\left(y_1 - \frac{3\sqrt{2}}{8}\right)$$

Dunque, si ha:

$$(T_1)^{-1}(\mathcal{C}): 2\left(x_1 + \frac{\sqrt{2}}{4}\right)^2 - \sqrt{2}\left(y_1 - \frac{3\sqrt{2}}{8}\right) = 0.$$

Ponendo

$$x_2 = y_1 - \frac{3\sqrt{2}}{8}$$
 e $y_2 = -\left(x_1 + \frac{\sqrt{2}}{4}\right)$,

definiamo l'isometria diretta $T_2: \mathbb{E}^2 \to \mathbb{E}^2$ come $T_2((x_1,y_1)^t) = ((x_2,y_2)^t)$, ovvero

$$T_2((x_1, y_1)^t) = \left(y_1 - \frac{3\sqrt{2}}{8}, -x_1 - \frac{\sqrt{2}}{4}\right)^t.$$

Otteniamo quindi la forma canonica \mathcal{D} :

$$\mathcal{D} := T_2((T_1)^{-1}(\mathcal{C})): \quad 0 = (-y_2)^2 - \frac{\sqrt{2}}{2}x_2 = y_2^2 - \frac{\sqrt{2}}{2}x_2.$$

 \mathcal{F} passo: calcolo di T

Poiché $C = (T_2 \circ (T_1)^{-1})^{-1}(\mathcal{D})$, si ha $T = T_2 \circ (T_1)^{-1}$.

Osserviamo che

$$(T_1)^{-1}((x,y)^t) = M^{-1}(x,y)^t = M^t(x,y)^t =$$

$$= \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

$$= \begin{pmatrix} \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y, & -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \end{pmatrix}^t.$$

Quindi vale:

$$T((x,y)^{t}) = T_{2}\left(\left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y, -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^{t}\right) =$$

$$= \left(-\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y - \frac{3\sqrt{2}}{8}, -\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{4}\right)^{t}$$

Calcoliamo ora asse di simmetria e vertice di \mathcal{C} .

Poiché l'asse di simmetria s di \mathcal{D} è dato da $y_2=0$, l'asse di simmetria di \mathcal{C} è uguale a $T^{-1}(s)$.

Poiché $y_2 = -\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{4}$ nel cambiamento di variabili $(x_2, y_2)^t = T((x, y)^t)$, vale:

$$T^{-1}(s): \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{4} = 0,$$

ovvero l'asse di simmetria di \mathcal{C} è dato da

$$T^{-1}(s): 2x + 2y + 1 = 0.$$

Intersechiamo $|T^{-1}(s)|$ con $|\mathcal{C}|$:

$$\begin{cases} x^2 + y^2 + 2xy + 2x + 1 = 0 \\ 2x + 2y + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} (x+y)^2 + 2x + 1 = 0 \\ x + y = -\frac{1}{2} \end{cases}$$
$$\Leftrightarrow \begin{cases} \left(\frac{5}{4} + 2x = 0 \\ x + y = -\frac{1}{2} \right) \end{cases} \Leftrightarrow \begin{cases} x = -\frac{5}{8} \\ y = \frac{1}{8} \end{cases}$$

Dunque il vertice di C è dato da $\left(-\frac{5}{8}, \frac{1}{8}\right)$.

Esercizio 3.

1. Evidentemente \emptyset , $\mathbb{R} \in \tau_p$.

Proviamo che τ_p è chiusa per unione. Siano $\{A_i\}_{i\in I}$ un insieme di aperti. Si hanno due casi: o $A_i = \emptyset$ per ogni $i \in I$, oppure esiste $j \in I$ tale che $A_j \neq \emptyset$. Nel primo caso $\bigcup_{i\in I} A_i = \emptyset \in \tau_p$, nel secondo caso $p \in A_j \subseteq \bigcup_{i\in I} A_i$ e quindi $\bigcup_{i\in I} A_i \in \tau_p$.

Proviamo che è chiusa per intersezione finita. Siano $A, B \in \tau_p$. Abbiamo due casi: o uno dei due è vuoto oppure sono entrambi non vuoti. Nel primo caso $A \cap B = \emptyset \in \tau_p$ e nel secondo caso $p \in A \cap B$ e quindi $A \cap B \in \tau_p$.

- 2. \mathbb{R} con la topologia τ_p non è di Hausdorff. Infatti in tale topologia due aperti non vuoti hanno almeno il punto p in comune e quindi non possono esistere intorni disgiunti.
- 3. Osserviamo che $\{p\} \in \tau_p$ e quindi coincide con la sua parte interna. Proviamo che la sua chiusura $\overline{\{p\}} = \mathbb{R}$. Sia $x \in \mathbb{R}$ e sia U un intorno aperto di x, allora $x \in U \neq \emptyset$ e quindi $p \in U$, pertanto $U \cap \{p\} \neq \emptyset$. Per l'arbitrarietà di $x \in \mathbb{R}$ e dell'intorno U di x si deduce che ogni punto di \mathbb{R} è aderente a $\{p\}$. La frontiera, essendo data da chiusura meno parte interna è data da $\partial \{p\} = \mathbb{R} \setminus \{p\}$.
- 4. Supponiamo che f sia continua. Al punto (3) abbiamo visto che $\{1\} \in \tau_1$, quindi $f^{-1}(1) \in \tau_0$ ossia $0 \in f^{-1}(1)$ ovvero f(0) = 1.

Supponiamo f(0) = 1 e sia $A \in \tau_1$. Se $A = \emptyset$, allora $f^{-1}(A) = \emptyset \in \tau_0$. Se invece $A \neq \emptyset$, allora $1 \in A$ e pertanto $0 \in f^{-1}(A)$ che quindi è in τ_0 e quindi f è continua.

Viceversa, visto che f non è costante, esistono x,y tali che $f(x) \neq f(y)$. Detti $A = \{1, f(x)\}$ e $B = \{1, f(y)\}$, si ha che $A, B \in \tau_1$, e dato che f è continua, $f^{-1}(A), f^{-1}(B) \in \tau_0$. Inoltre $x \in f^{-1}(A)$ e $y \in f^{-1}(A)$ e quindi non sono vuoti, pertanto $0 \in f^{-1}(A)$ e $0 \in f^{-1}(B)$. Ma allora $f(0) \in A \cap B = \{1\}$ ovvero f(0) = 1.

Esercizio 4.

Proveremo che $X \cong S^1$ e $Y \not\cong S^1$.

• Consideriamo l'applicazione $f: \mathbb{R} \to S^1$ definita da

$$f(x) = (\cos(2\pi x), \sin(2\pi x))$$

Chiaramente f è continua e in più

$$f(x) = f(y) \iff \cos(2\pi x) = \cos(2\pi y)$$
 e $\sin(2\pi x) = \sin(2\pi y)$
 $\iff \exists k \in \mathbb{Z} : 2\pi y = 2\pi x + 2k\pi$
 $\iff y - x \in \mathbb{Z} \iff x \sim y.$

Quindi f passa a quoziente, definendo una funzione continua e bigettiva

$$\widetilde{f}: \mathbb{R}/\sim \to S^1.$$

 S^1 è di Hausdorff, quindi per provare che \widetilde{f} è un omeomorfismo, basta provare che $X:=\mathbb{R}/\sim$ è compatto.

Indichiamo con $p: \mathbb{R} \to X$ la proiezione a quoziente e mostriamo che X = p([0,1]). Sia $x \in \mathbb{R}$, indichiamo con [x] la parte intera di x (ossia $[x] = \max\{n \in \mathbb{Z} \mid n \leq x\}$). Chiaramente $x - [x] \in [0,1]$ e inoltre $x \sim x - [x]$ e quindi p(x) = p(x - [x]).

• Per provare che $Y \ncong S^1$, proveremo che esiste un punto $P \in Y$ tale che $Y \setminus \{P\}$ è sconnesso. Ricordiamo invece che S^1 meno un punto è connesso (è omeomorfo a \mathbb{R}).

Indichiamo con $\pi: \mathbb{R} \to Y$ la proiezione a quoziente; i punti di \mathbb{Z} sono tutti equivalenti tra loro, consideriamo $P = [\mathbb{Z}]$ ossia P è l'unico punto che costituisce $\pi(\mathbb{Z})$. La restrizione $\pi|_{\mathbb{R}\setminus\mathbb{Z}}: \mathbb{R}\setminus\mathbb{Z} \to Y\setminus\{P\}$ è continua e bigettiva (dato che i punti di $\mathbb{R}\setminus\mathbb{Z}$ sono equivalenti solo a se stessi). Proviamo che è anche aperta. Sia $A\subseteq\mathbb{R}\setminus\mathbb{Z}$ un aperto. Dato che gli elementi A sono equivalenti solo a se stessi,

$$\pi^{-1}(\pi(A)) = \{x \in \mathbb{R} \mid \exists y \in A : x \approx y\} = A.$$

Poiché $\mathbb{R} \setminus \mathbb{Z}$ è aperto in \mathbb{R} , anche A è aperto in \mathbb{R} e quindi $\pi(A)$ è aperto in Y. Di conseguenza $\pi|_{\mathbb{R} \setminus \mathbb{Z}}$ è un omeomorfismo di $\mathbb{R} \setminus \mathbb{Z}$ con $Y \setminus \{P\}$. D'altra parte

$$\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n \in \mathbb{Z}} (n, n+1)$$

è unione di aperti disgiunti non vuoti e quindi è sconnesso e tale è anche $Y \setminus \{P\}$.