CS 5/7330

Transactions: Serializability

Table of contents

- Concurrency control
- Serializability
 - Motivating examples
 - Conflict serializability
 - Test of serializability
- Recoverability

Concurrency control

- Why concurrency?
 - increased processor and disk utilization, leading to better transaction throughput: one transaction can be using the CPU while another is reading from or writing to the disk
 - reduced average response time for transactions: short transactions need not wait behind long ones.

Concurrency control

- Why concurrency control?
 - **Shared resources.** Many transaction may want to access the same object/tuple.
 - Isolation. One of the key requirement of transactions

Concurrency control -- schedule

- Schedules sequences that indicate the chronological order in which instructions of concurrent transactions are executed
 - a schedule for a set of transactions must consist of all instructions of those transactions
 - must preserve the order in which the instructions appear in each individual transaction.
- Assumption: at any time, only one operation from one transaction can be executed
- However, DBMS may interleave operations from multiple transactions

Concurrency control -- schedule

- Serial schedule: schedules that does not allow interleaving between transactions (i.e. one transaction finishes before the other begin)
- Equivalent schedules: two schedules are equivalent if they "produce the same results"
 - Still need to define what it means by "produce the same results"

Concurrency control – schedule (example)

• Let *T*1 transfer \$50 from *A* to *B*, and *T*2 transfer 10% of the balance from *A* to *B*. The following is a serial schedule in which *T*1 is followed by *T*2.

<i>T</i> ₁	T2
read(A)	
A := A - 50	
write (A)	
read(B)	
B := B + 50	
write(B)	
	read(A)
	temp := A * 0.1
	A := A - temp
	write(A)
	read(B)
	B := B + temp
	write(B)

Schedule 1

Concurrency control – schedule (example)

Let T₁ and T₂ be the transactions defined previously. The following schedule is not a serial schedule, but it is *equivalent* to Schedule 1.

T_1	T_2
read(A)	
A := A - 50	
write(A)	
	read(A)
	temp := A * 0.1
	A := A - temp
	write(A)
read(B)	
B := B + 50	
write(B)	
	read(B)
	B := B + temp
	write(B)

Schedule 3

Concurrency control – schedule (example)

 The following concurrent schedule does not preserve the value of the sum A + B.

T_1	T_2
read(A)	
A := A - 50	
	read(A)
	temp := A * 0.1
	A := A - temp
	write(A)
	read(B)
write(A)	
read(B)	
B := B + 50	
write(B)	
	B := B + temp
	write(B)

Schedule 4

Concurrency control – big question

- Why is schedule 3 equivalent to schedule 1, but schedule 4 is not?
 - Conflicts?
 - Order of conflicts?
 - Any general rules we can apply?

- Consider the fund transfer operation (last lecture)
- 1. Find tuple for x's account (database query)
- 2. Read x's account info into main memory
- 3. Check if x have at least \$k
- 4. Subtract \$k from x's account
- 5. Write x's new balance back to the database (database update)
- 6. Find tuple for y's account (database query)
- 7. Read y's account info into main memory
- 8. Add \$k to y's account
- 9. Write y's new balance to the database (database update)

Rewrite Using class notation 1.A1 < - Read(X)

2.A1 < -A1 - k

3. Write(X, A1)

4.A2 < - Read(Y)

5.A2 < -A2 + k

6. Write(Y, A2)

- Consider the dividend operation (last lecture)
- 1. Find tuple for x's account (database query)
- 2. Read x's account info into main memory
- 3. Add 1% to x's account
- 4. Write x's new balance back to the database (database update)
- 5. Find tuple for y's account (database query)
- 6. Read y's account info into main memory
- 7. Add 1% to y's account
- 8. Write y's new balance back to the database (database update)

Rewrite Using class notation 1.A1 < - Read(X)

2.A1 < -A1*

1.01

3. Write(X, A1)

4.A2 < - Read(Y)

5.A2 <- A2 *

1.01

6. Write(Y, A2)

- Suppose x has \$100, y has \$200
- Consider two operations
 - x transfer \$50 to y
 - Dividend
- For serial schedules
 - If transfer comes before dividend
 - X: 100 -> 50 -> 50.5
 - Y: 200 -> 250 -> 252.5
 - If dividend comes before transfer
 - X: 100 -> 101 -> 51
 - Y: 200 -> 202 -> 252
 - In both case, X + Y = 303

- But with the following schedule
 - 1. A1 \leftarrow Read(X)
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- 1. A1 \leftarrow Read(X)
- 2. A1 <- A1* 1.01
- 3. Write(X, A1)
- 4. A2 < Read(Y)
- 5. A2 <- A2 * 1.01
- 6. Write(Y, A2)

- 4. A2 <- Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

X: 100 -> 50 -> 50.5; Y: 200 -> 202 -> 252; X+Y = 302.5

- What cause the problem?
 - Contention of resources?
 - Interleaving?
- Is interleaving always bad?

- But with the following schedule
 - 1. A1 \leftarrow Read(X)
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- 1. A1 \leftarrow Read(X)
- 2. A1 <- A1* 1.01
- 3. Write(X, A1)

- 4. A2 < Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- 4. A2 <- Read(Y)
- 5. A2 <- A2 * 1.01
- 6. Write(Y, A2)

In this case, interleaving is ok!

Let's change slightly:

- 1. A1 \leftarrow Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)

- 1. $A1 \leftarrow Read(X)$
- 2. A1 <- A1* 1.01
- 3. Write(X, A1)
- 4. A2 < Read(Y)

- 4. $A2 \leftarrow Read(Y)$
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- 5. A2 <- A2 * 1.01
- 6. Write(Y, A2)

In this case, interleaving is very bad!

- Let's change slightly (again):
 - 1. A1 \leftarrow Read(X)
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- 1. A1 \leftarrow Read(X)
- 2. A1 <- A1* 1.01

- 4. A2 < Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- 3. Write(X, A1)
- 4. A2 <- Read(Y)
- 5. A2 <- A2 * 1.01
- 6. Write(Y, A2)

In this case, interleaving is good again!

- What's going on here?
 - Interleaving can be very bad.
 - However, some interleaving does not cause problems.
 - How can we determine what kind of interleaving is "nice"?

- Notice in example
 - The value of X (and Y) is changed twice
 - Let's call the values
 - Old value (before any change)
 - Intermediate value (after one change)
 - Final value (after all changes)

- But with the following schedule
 - 1. $A1 \leftarrow Read(X)$
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- 1. A1 < Read(X)
- 2. A1 <- A1* 1.01
- 3. Write(X, A1)
- 4. A2 < Read(Y)
- 5. A2 <- A2 * 1.01
- 6. Write(Y, A2)

- 4. A2 <- Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

X: 100 -> 50 -> 50.5; Y: 200 -> 202 -> 252; X+Y = 302.5

```
    A1 <- Read(X)</li>
    A1 <- A1 - k</li>
    Write(X, A1)
```

4. A2 <- Read(Y)
 5. A2 <- A2 + k
 6. Write(Y, A2)

1. A1 <- Read(X)
2. A1 <- A1* 1.01
3. Write(X, A1)
4. A2 <- Read(Y)
5. A2 <- A2 * 1.01

6. Write(Y, A2)

Notice that the two transaction use inconsistent values as input.

But: how to formalize this notion?

Serializability

- How to formalize the notion?
 - One can look at final results
 - If the schedule produce the same result as a serial schedule, then it's fine.
 - However, this may be due to luck and/or "commutative" operators
 - 1. A1 \leftarrow Read(X)
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- 1. A1 < Read(X)
- 2. A1 < -A1 + m
- 3. Write(X, A1)
- 4. $A2 \leftarrow Read(Y)$
- 5. A2 < -A2 m
- 6. Write(Y, A2)

- 4. A2 <- Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

A better notion is needed

Conflict serializability

- Suppose two transactions (T_1, T_2) want to operate on the same data object (X)
- Four possible scenarios
 - T₁ Read(X), T₂ Read(X)
 - T₁ Read(X), T₂ Write(X)
 - T₁ Write(X), T₂ Read(X)
 - T₁ Write(X), T₂ Write(X)
- How does the order of these operations affect the results of the transactions?

Conflict serializability

- T₁ Read(X), T₂ Read(X)
 - No effect.
- T₁ Read(X), T₂ Write(X)
 - Order will determine what value of X T₁ reads
 - Affect the results of T₁
- T₁ Write(X), T₂ Read(X)
 - Order will determine what value of X T₂ reads
 - Affect the results of T₂
- T₁ Write(X), T₂ Write(X)
 - No effect on T₁ and T₂
 - But affect on the next transaction that read X
- Thus, in 2nd to 4th case order matters
- We denote that the pair(s) of operations are in conflict

Conflict serializability

- What's conflict have to do with it?
- Consider a schedule of two transactions (T₁, T₂)
 - Suppose T₁ execute operation I₁, and than T₂ execute operation I₂
 - If I₁ and I₂ has conflict
 - Then swapping them implies potential problem
 - Else, (we claim) the results are not affected

Remember this schedule?

- 1. $A1 \leftarrow Read(X)$
- 2. A1 < -A1 k
- 3. Write(X, A1)

- i. A1 < Read(X)
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)

- 4. A2 < Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- iv. A2 < -Read(Y)
- v. A2 < -A2 * 1.01
- vi. Write(Y, A2)

In this case, interleaving is ok!

Remember this schedule?

- 1. A1 \leftarrow Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)
- 4. $A2 \leftarrow Read(Y)$
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- i. $A1 \leftarrow Read(X)$
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)
- iv. A2 < Read(Y)
- v. A2 < -A2 * 1.01
- vi. Write(Y, A2)

(4) And (iii) are not in conflict, so can swap

Remember this schedule?

- 1. A1 \leftarrow Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)
- 4. $A2 \leftarrow Read(Y)$
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

i.
$$A1 \leftarrow Read(X)$$

iv.
$$A2 < - Read(Y)$$

vi. Write(Y, A2)

(4) And (ii) are not in conflict, so can swap

Remember this schedule?

- 1. A1 \leftarrow Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)
- 4. A2 <- Read(Y)

- i. A1 < Read(X)
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)

- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- iv. A2 < Read(Y)
- v. A2 < -A2 * 1.01
- vi. Write(Y, A2)

(4) And (i) are not in conflict, so can swap

Remember this schedule?

- 1. A1 < Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)
- 4. A2 <- Read(Y)
- 5. A2 < -A2 + k

i.
$$A1 < - Read(X)$$

iii. Write(X, A1)

iv.
$$A2 < -Read(Y)$$

v.
$$A2 < -A2 * 1.01$$

vi. Write(Y, A2)

Similarly (5) And (i) – (iii) are not in conflict, so can swap

Remember this schedule?

- 1. A1 \leftarrow Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)
- 4. A2 <- Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- i. A1 < Read(X)
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)
- iv. A2 < Read(Y)
- v. A2 <- A2 * 1.01
- vi. Write(Y, A2)

Similarily (6) And (i) – (iii) are not in conflict, so can swap
We obtain a serial schedule by this transformation (swapping process)

- Now, remember this schedule?
 - 1. A1 < Read(X)
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- i. A1 < -Read(X)
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)
- iv. A2 < Read(Y)
- v. A2 <- A2 * 1.01
- vi. Write(Y, A2)

- 4. $A2 \leftarrow Read(Y)$
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

X: 100 -> 50 -> 50.5; Y: 200 -> 202 -> 252; X+Y = 302.5

- Now, remember this schedule?
 - 1. A1 < Read(X)
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- i. A1 < Read(X)
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)
- iv. A2 < Read(Y)
- v. A2 <- A2 * 1.01
- vi. Write(Y, A2)

- 4. $A2 \leftarrow Read(Y)$
- 5. A2 < -A2 + k
- 6. Write(Y, A2)
 - (3) And (i) has conflict, so can't swap
 - (4) And (vi) has conflict, so can't swap

- Can you work through this case?
 - 1. A1 \leftarrow Read(X)
 - 2. A1 < -A1 k
 - 3. Write(X, A1)

- 1. A1 \leftarrow Read(X)
- 2. A1 <- A1* 1.01
- 3. Write(X, A1)
- 4. A2 < Read(Y)

- 4. $A2 \leftarrow Read(Y)$
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- 5. A2 <- A2 * 1.01
- 6. Write(Y, A2)

X: 100 -> 50 -> 50.5; Y: 200 -> 250 -> 202; X+Y = 250.5

In this case, interleaving is very bad!

- From previous slides, it seems
 - A schedule can be transformed to a serial schedule ⇒ good! (achieve isolation)
 - A schedule cannot be transformed to a serial schedule
 ⇒ bad! (do not achieve isolation)
- Can we generalize?
 - Yes.

- Schedule: sequences that indicate the chronological order in which instructions of concurrent transactions are executed
- Complete schedule: Schedule that contain commit/abort decision for each transaction in the schedule
- Serial schedule: A schedule where there is no interleaving of operations by multiple transactions.
 - Denoted by < T1, T2, ..., Tn>

- Given a schedule S, let p and q be two operations in S, we write $p <_S q$ if p occurs before q in S.
 - We write < instead of <_S if the schedule is understood from context.
- We use a subscript to indicate the transaction that issues an operation, e.g., p_i is an operation issued by transaction T_i .

- Conflict equivalent transformation: swapping adjacent operation on a schedule which does not conflict
- Conflict equivalent: Two schedules S and S' are conflict equivalent if S can be transformed to S' by successive conflict equivalent transformations

 Given a schedule S, the committed projection of S, denoted by C(S), is the schedule obtained from S by deleting all operations that do not belong to transactions committed in S.

- Conflict serializability: a schedule *S* is **conflict serializable** if it is conflict equivalent to a serial schedule
- Example of a schedule that is not conflict serializable:

```
T_3 T_4 read(Q) write(Q)
```

We are unable to swap instructions in the above schedule to obtain either the serial schedule $< T_3, T_4 >$, or the serial schedule $< T_4, T_3 >$.

Test for serializability

Consider the following schedules:

- 1. A1 \leftarrow Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)
- i. A1 <- Read(X)
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)
- iv. A2 < -Read(Y)
- v. A2 <- A2 * 1.01
- vi. Write(Y, A2)
- 4. A2 <- Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)

- 1. A1 <- Read(X)
- 2. A1 < -A1 k
- 3. Write(X, A1)
- i. A1 < Read(X)
- ii. A1 <- A1* 1.01
- iii. Write(X, A1)
- 4. A2 <- Read(Y)
- 5. A2 < -A2 + k
- 6. Write(Y, A2)
- iv. $A2 \leftarrow Read(Y)$
- v. A2 <- A2 * 1.01
- vi. Write(Y, A2)

Not serializable

Serializable

Test for serializability

Label all the conflicting operations

```
1. A1 <- Read(X)
                                                1. A1 < Read(X)
   A1 < -A1 - k
                                                2. A1 < -A1 - k
   Write(X, A1)
                                                   Write(X, A1)
                         A1 < - Read(X)
                                                                            A1 < - Read(X)
                         A1 <- A1* 1.01
                                                                            A1 <- A1* 1.01
                         Write(X, A1)
                                                                            Write(X, A1)
                        A2 \leftarrow Read(Y)
                                                4. A2 < - Read(Y)
                         A2 <- A2 * 1.01
                                                   A2 < -A2 + k
                         Write(Y, A2)
                                                   Write(Y, A2)
A2 <- Read(Y</li>
                                                                            A2 < - Read(Y)
   A2 < - A2 + k
                                                                            A2 <- A2 * 1.01
   Write(Y, A2)
                                                                            Write(Y, A2)
```

Not serializable Serializable

What is the difference?

Test for serializability

- The *serialization graph* (*SG*) (or the precedence graph used in the textbook) for a schedule *S*, denoted *SG*(*S*), is a directed graph (*V*, *E*) such that:
 - V (nodes) = the set of transactions that are committed in S.
 - E (edges) = $T_i \rightarrow T_j$ ($i \neq j$) if one of T_i 's operation precedes and conflicts with one of T_j 's operations in S.
- Theorem: A schedule is conflict serializable iff its serialization graph is acyclic

Test of serializability -- example

Test of serializability

- Proof: (if)
 - SG(S) is acyclic \Rightarrow there exists a topological order of the committed transactions in S.
 - W.l.o.g., let $S' = T_1, T_2, ..., T_m$ be such an order. We can show that $C(S) \equiv S'$.
 - Let p_i and q_j ($i \neq j$) be two conflicting operations in S such that T_i and T_i are committed in S.
 - Clearly, $p_i \& q_i \in C(S)$.
 - If $p_i <_S q_j$, we have an edge $T_i \to T_j$ in SG(S).
 - Therefore, T_i must precede T_j in S'. That is, all operations of T_i appear before all operations of T_i in S'.
 - Hence, $p_i <_{S'} q_j$.

Test of serializability

- Proof: (only if)
 - S is serializable \Rightarrow $C(S) \equiv$ to some serial schedule S'.
 - If an edge $T_i \rightarrow T_j$ exists in SG(S), then, T_i must appear before T_j in S'.
 - Now, if SG(S) has a cycle, w.l.o.g., let it be $T_1 \rightarrow T_2 \rightarrow ... \rightarrow T_k \rightarrow T_1$.
 - We have T_1 's operations must appear before T_2 's operations, which must appear before T_3 's operations, ..., T_k 's operations must appear before T_1 's operations.
 - A contradiction.

Test of serializability

- Cycle-detection algorithms exist which take order n^2 time, where n is the number of vertices in the graph.
 - (Better algorithms take order *n* + *e* where *e* is the number of edges.)
- If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of the graph. This is a linear order consistent with the partial order of the graph.

Example of topological sort

- Abort transactions caused another problem:
- Suppose T₉ commits.
- What happen when T₈ has to abort after read(B)?
- T₉ will in fact be reading an inconsistant value
- Can be problematic (e.g. if T₉ print the value of A)

T_8	T_9
read(A)	
write(A)	
	read(A)
read(B)	

- We say that T_i reads x from T_i in a schedule S if
 - $W_j[x] <_S R_i[x]$, (Ti read an x value written by Tj)
 - A_i not $<_S R_i[x]$, (Tj has not aborted when Ti read x)
 - If \exists $W_k[x]$ s.t. $W_j[x] <_S W_k[x] <_S R_i[x]$, then $A_k <_S R_i[x]$. (Any transaction that update x between Tj write x and Ti read x is aborted before the read that means the value of x read by Ti is actually written by Tj)
- We say that T_i reads from T_j in S if T_i reads some data item from T_j in S.

- A schedule *S* is called *recoverable* if, whenever T_i reads from T_j ($i \neq j$) in *S* and $C_i \in S$ then $C_j < C_i$
 - I.e., each transaction commits after the commitment of all transactions (other than itself) from which it read from
- This implies all aborted transaction will not make values that are read by committed transaction obsolete/inconsistent.

- Even for recoverable schedule, trouble may still bestows.
- Suppose none of the transactions committed yet.
- Suppose T10 aborts after read(A)
- T11 needs to be aborted (as it read values from T10)
- T12 needs to be aborted too
- Cascade aborts

T_{10}	T_{11}	T_{12}
read(A)		
read(B)		
write(A)		
	read(A)	
	write(A)	
		read(A)

- We say that a schedule *S* avoids cascading abort if, when T_i reads x from T_i ($i \neq j$), $C_i < R_i[x]$.
 - I.e., a transaction may read only those values that are written by committed transaction or by itself.
- A schedule S is strict if whenever W_j[x] < O_i[x] (i ≠ j), either A_j < O_i[x] or C_j < O_i[x] where O_i[x] is R_i[x] or W_i[x].
 - I.e., no data item may be read or written until the transaction that previously wrote into it terminates, either by aborting or by committing.

Serializability – In practice

- Scheduling is usually not up to the DBMS
 - Operating systems do it, so why spend time reinventing the wheel?
- Detection of serializability is limited in usage
 - Cycle detection (while not NP complete) is not very cheap
 - Testing for serializability after execution is not really helpful
- Goal to develop concurrency control protocols that will assure serializability.
 - not examine the precedence graph as it is being created;
 - instead a protocol will impose a discipline that avoids nonseralizable schedules.
 - However, test for serializability will help one to understand and proof the correctness of such protocals

Serializability – In practice

- Data manipulation language must include a construct for specifying the set of actions that comprise a transaction.
- In SQL, a transaction begins implicitly.
- A transaction in SQL ends by:
 - Commit work commits current transaction and begins a new one.
 - Rollback work causes current transaction to abort.
- Levels of consistency specified by SQL-92:
 - **Serializable** default
 - Repeatable read
 - Read committed
 - Read uncommitted

Serializability – In practice

- **Serializable** default
- Repeatable read only committed records to be read, repeated reads of same record must return same value. However, a transaction may not be serializable — it may find some records inserted by a transaction but not find others.
- Read committed only committed records can be read, but successive reads of record may return different (but committed) values.
- Read uncommitted even uncommitted records may be read.

(We will revisit these terms later)