

	Tamanho (pés²)	# Quartos	# pisos	Tempo (anos)	Preço (x \$1000)
x ⁽¹⁾	2104	5	1	45	460
x ⁽²⁾	1416	3	2	40	232
X ⁽³⁾	1534	3	2	30	315
X ⁽⁴⁾	852	2	1	36	178
X ⁽ⁿ⁾		•••	•••	•••	•••
	x ₁	$\mathbf{x_2}$	x ₃	X ₄	у

$$h_{\Theta}(\mathbf{x}) = \Theta_0 + \Theta_1 * \mathbf{x}$$

Regressão linear univariada

$$h_{\Theta}(\mathbf{x}) = \Theta_0 * X_0 + \Theta_1 * X_1 + \Theta_2 * X_2 + ... + \Theta_n * X_n$$

Regressão linear multivariada

Hipótese para uma única instância!

$$h_{\Theta}(\mathbf{x}) = \Theta_0 + \Theta_1 * \mathbf{x}$$

Regressão linear univariada

$$h_{\Theta}(\mathbf{x}) = \Theta_0 * X_0 + \Theta_1 * X_1 + \Theta_2 * X_2 + ... + \Theta_n * X_n$$

Regressão linear multivariada

Hipótese para uma única instância!

De onde saiu esse x_0 ?

$$h_{\Theta}(\mathbf{x}) = \Theta_0 + \Theta_1 * \mathbf{x}$$

Regressão linear univariada

$$h_{\Theta}(\mathbf{x}) = \Theta_0 * X_0 + \Theta_1 * X_1 + \Theta_2 * X_2 + ... + \Theta_n * X_n$$

Regressão linear multivariada

Hipótese para uma única instância!

De onde saiu esse x₀?

x₀ é o bias, inserido com o valor 1 para possibilitar a multiplicação de matrizes:

$$h_{\Theta}(\mathbf{x}) = \mathbf{\Theta}^{T} * \mathbf{x}$$

Dados os pesos a seguir, realize uma predição:

Instância:

Tamanho (pés²)	# Quartos	# pisos	Tempo (anos)	Preço (x \$1000)
2104	5	1	45	460

Pesos: $\Theta_0 = 1$, $\Theta_1 = 0.2$, $\Theta_2 = 0.5$, $\Theta_3 = 0.3$, $\Theta_4 = 0.7$

Resposta: 456.1

Atualização dos pesos em um problema multivariado:

$$\theta_j := \theta_j - \alpha \frac{1}{N} \sum_{i=j}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

Não se esqueça de armazenar os novos valores em variáveis temporárias!

x₀ é o bias e será **sempre** 1

Quando há poucos atributos ou quando os dados não são linearmente definidos, pode-se utilizar equações mais complexas com polinômios para a hipótese $h_{\Omega}(x)$

- Exercício: Regressão Linear polinomial
- Execute o notebook e faça as tarefas listadas

★ Exercício: Como Outliers Afetam a Regressão Linear?

Objetivo: Você recebeu um dataset real com informações sobre preços de imóveis, mas algo estranho está acontecendo... O modelo de regressão linear parece estar fazendo previsões ruins! Será que há **outliers** afetando os resultados?

Passo 1: Criando o Dataset

***** Tarefa:

- Gere um dataset com área do imóvel (m²) como variável preditora e preço do imóvel (R\$) como variável alvo.
- Inclua um **outlier** (500m², R\$10.000) e observe como isso afeta o modelo.

- Exercício: Regressão para um Problema do Mundo Real
- Cada grupo deve coletar um pequeno conjunto de dados reais e aplicar regressão linear. Sugestões:
- Preço de celulares vs. Ano de lançamento.
- Salário médio vs. Anos de experiência em uma profissão.
- Número de seguidores em redes sociais vs. Engajamento médio (curtidas, comentários).

- Exercício: Regressão para um Problema do Mundo Real
- Cada grupo deve coletar um pequeno conjunto de dados reais e aplicar regressão linear.
- ► 1 Colete ao menos 5 a 10 pontos de dados reais (use sites, Google, etc.).
- ▶ 2 Faça um gráfico de **dispersão** dos dados.
- ▶ 3 Use regressão linear para encontrar a equação do modelo.
- ▶ 4 Teste uma previsão: funciona bem para novos dados?
- Escreva uma breve análise sobre o que a regressão linear pode ou não prever nesse caso.

- Modifique o algoritmo da aula passada (para regressão linear univariada) para aceitar múltiplos atributos preditivos
- Execute o algoritmo para o dataset "Casas/house data (multidimensional).csv"
- Como o seu algoritmo se compara com a <u>regressão linear</u> do scikit-learn?
 - ▶Não se esqueça de usar os mesmos parâmetros! (taxa de aprendizado, normalização, etc)

Conclusão

Leitura recomendada:

Apêndice D de Introduction to Data Mining

