CS915/435 Advanced Computer Security - Elementary Cryptography

Hash

Roadmap

- Symmetric cryptography
 - Classical cryptographic
 - Stream cipher
 - Block cipher I, II
 - Hash
 - MAC
- Asymmetric cryptography
 - Key agreement
 - Public key encryption
 - Digital signature

Hash function

- Compress an arbitrary message into an output of fixed length (checksum)
 - Being used since 1950s
 - To facilitate detecting errors or data comparison
- Checksum is primarily used for error detection
- Hash functions (e.g., SHA256) is more complex
- Designed for broader applications
 - Data integrity, digital signatures

Cryptographic hash function

- Invented for digital signature
 - Provide assurance of data integrity
 - Avalanche effect

Abstraction: random oracle model

Query

Response

If the query is **new**

She (i.e., oracle) gives you a fixed-length random string and marks a record on her book

Else

She looks up the book and gives you the same previous answer.

But ideal random oracle is impossible

- How to ensure that each output represents only one input message?
- That's theoretically impossible
 - The message space size is much larger than the size of the output space
- Practical solution
 - Ensure that it is computationally infeasible to find two messages with the same output

Security requirements of hash

1. Pre-image resistance

- Given H(m), can't find m
- 2. Second pre-image resistance
 - Given m_1 , can't find a different message m_2 such that $H(m_1) = H(m_2)$

3. Collision resistance

- Can't find two different messages m_1 and m_2 such that $H(m_1) = H(m_2)$

Background: birthday paradox

- To guarantee we find two people with the same birthday, we will need 366 people.
- But in practice:
 - It's almost guaranteed that there are at least two students with the same birthday in this classroom.

Calculating the probability

- Let P(n) be the probability of finding two same birthdays given n students in the class.
- To compute P(n), it is easier to reason with P'(n), the probability that n students are not born the same day
 - Obviously, P(n) = 1 P'(n)

•
$$P(1) = 0$$

•
$$P(2) = 1 - 364/365$$

•
$$P(3) = 1 - (364/365) \times (363/365)$$

The probability of finding the same birthday

Birthday attack on collision resistance

- Assume a hash function with n bits output
- Birthday attack algorithm
 - 1. Select $2^{n/2}$ random input messages
 - 2. Compute the hash of each input message
 - 3. Look for a collision among the output. (If not found, go back to step 1)
- Implication from the attack
 - For n-bit security, the output of hash must be at least 2n bits long.

Hash family

- MD5 (1991)
 - 128-bit message digest
 - Broken by Wang Xiaoyun et al in 2005
- NIST standard: Secure Hash Algorithm
- SHA-1 (1995)
 - 160-bit message digest
 - Insecure (2⁶⁹, Wang Xiaoyun et al 2005)
- SHA-2 (2001)
 - SHA-256
 - SHA-512
 - SHA-3 (2015)

Collision in hash is dangerous

Genuine program

Malware

Real-world example: Flame malware

- Detected by CERT in May 2012
- Advanced espionage malware
- It exploits MD5 collision
 - Microsoft Terminal Server Licensing Service certificate still uses MD5
 - Produced a counterfeit digital signature that appears to have originated from Microsoft

Hash function design basics

- A typical hash function involves three components in the design
 - Operation mode
 - Compression function structure
 - Confusion-diffusion operations

Merkle-Damgard construction

PB: padding block

 Theorem: If the compression is collision-resistant, then the hash function is collision resistant Assume $m \neq m'$ and H(m) = H(m')

Proof of Merkle-Damgard theorem

Proof (sketch) Case 1: m[3] \neq m'[3] Then h(a2,m[3]) \neq h(b2,m'[3])

Assume m \neq m' and a3 = b3

Proof of Merkle-Damgard theorem

Proof (sketch) Case 2: m[3] = m'[3] Then a2 = b2

Compression functions

Davies-Meyer (used in MD5, SHA-1, SHA-2)

- E is a block cipher
- Use message as key
- h(H,m)=E(m,H) ⊕H
- Compression
 - Input size: key size +block size
 - Output size: block size

An example: SHA-256

- Merkle-Damgard function
- Davies-Meyer compression function
- Block cipher: SHACAL-2

Applications of Hash

- Digital signature
- Data integrity (collision or pre-image resistance)
 - Example: Checksum for downloading software
- Random number generator
- Data privacy
 - Protect plain password
- Commitment scheme
- Mining cryptocurrency!

Password authentication

Bob

Login: bob/1234

Login success

Compare password against Database

Username: password

Alice: 19890102

Bob: 1234

Charlie: cryfield204

Bob

Login: bob/1234

Login success

Compute hash of the password and compare it against Database

Username: H(pw, salt)	Salt
Alice: 8ced834745	8FA
Bob: ff4ed0bd13d2	E9A
Charlie: 32cbba4a1	48C

Sadly, real-world security

- 2012-09-25: IEEE suffered a data breach
 - 100,000 Plaintext passwords were leaked.
- 2012-07-12: Yahoo Voices database breached
 - Half a million plaintext passwords leaked
- 2012-06-07: LinkedIn user database breached.
 - 6.5 million Unsalted hashes dumped online.
- 2010-12-22: Gawker Media accounts hacked
 - 1.3 million plaintext passwords were leaked

Caveat

- Hashing plaintext password with salt is only a best practice
 - It makes it difficult for the attacker to recover the password, but not impossible
- Dictionary attack
 - Given H(pw, salt) and salt
 - An attacker can exhaustively try out all passwords
 - The attack is feasible because passwords have low entropy