# A Decomposition Strategy for a Class of Nonconvex Two-Stage Stochastic Programs

Rohit Kannan and Paul I. Barton

Process Systems Engineering Laboratory Department of Chemical Engineering Massachusetts Institute of Technology

**November 18, 2014** 









#### **Motivation**

 Uncertainty in problem data is a common feature of many real-life problems



#### Sarawak Gas Production System

 Annual revenue of US \$5 billion (4% of Malaysia's GDP)





### **Motivation More Chemical Engineering Applications**



Pharmaceutical capacity planning



Integrated Water Networks





## **Motivation**Importance of Addressing Uncertainties

Stochastic pooling problem

Superstructure







## Motivation Importance of Addressing Uncertainties



Deterministic solution

Stochastic solution



### Illi Two-Stage Stochastic **Programming Framework**





#### **Stage 1 decisions**

- made before the realization of the uncertainty
- e.g., design decisions

#### Realization of the uncertainty

e.g., source qualities

#### **Stage 2 decisions**

- made after the realization of the uncertainty
- e.g., operational decisions



### Illii Nonconvex Two-Stage Stochastic Programs



$$\min_{x_1, \dots, x_s, y, z} \sum_{h=1}^{s} p_h f_h(x_h, y, z) 
\text{s.t.} \quad g_h(x_h, y, z) \leq 0, \ \forall h \in \{1, \dots, s\}, 
x_h \in X_h \subset \{0, 1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}, \ \forall h \in \{1, \dots, s\}, 
y \in Y \subset \{0, 1\}^{n_y}, \ z \in Z \subset \mathbb{R}^{n_z}.$$
(P)

Assumptions:  $f_h$ ,  $g_h$ ,  $\forall h \in \{1, \dots, s\}$ , continuous;  $X_h$ ,  $\forall h \in \{1, \dots, s\}$ , Y, and Z nonempty; and  $X_h$ ,  $\forall h \in \{1, \dots, s\}$ , and Z compact.



### **Illir** Existing Decomposition **Approaches**



$$\min_{x_1, \dots, x_s, y} \sum_{h=1}^{s} p_h f_h(x_h, y)$$
s.t.  $g_h(x_h, y) \leq 0, \forall h \in \{1, \dots, s\},$ 

$$x_h \in X_h \subset \{0, 1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}, \forall h \in \{1, \dots, s\},$$
 $y \in Y \subset \{0, 1\}^{n_y}.$ 

Nonconvex Generalized Benders Decomposition

$$\min_{\substack{x_1, \dots, x_s, \\ y_1, \dots, y_s,}} \sum_{h=1}^{s} p_h f_h(x_h, y_h, z_h)$$

s.t. 
$$g_h(x_h, y_h, z_h) \leq 0$$
,  $\forall h \in \{1, \dots, s\}$ ,  
 $y_h - y_{h+1} = 0$ ,  $\forall h \in \{1, \dots, s-1\}$ ,  
 $z_h - z_{h+1} = 0$ ,  $\forall h \in \{1, \dots, s-1\}$ ,  
 $x_h \in X_h \subset \{0,1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}$ ,  $\forall h \in \{1, \dots, s\}$ ,  
 $y_h \in Y \subset \{0,1\}^{n_y}$ ,  $z_h \in Z \subset \mathbb{R}^{n_z}$ ,  $\forall h \in \{1, \dots, s\}$ .



Lagrangian Relaxation



### **Illii Nonconvex Generalized Benders Decomposition**







### **Illir Nonconvex Generalized Benders Decomposition**







### Nonconvex Generalized Benders Decomposition



Convergence

- At present, the NGBD algorithm only converges if the first-stage (complicating) decisions are integers
  - In this case, finite convergence to a solution within a given tolerance of a global minimum is guaranteed



### Nonconvex Generalized Benders Decomposition



Convergence

- At present, the NGBD algorithm only converges if the first-stage (complicating) decisions are integers
  - In this case, finite convergence to a solution within a given tolerance of a global minimum is guaranteed
- In practice, only a small fraction of the integer realizations in the set Y are visited by the primal problem
  - Strength of relaxations of the nonconvex functions is important





### Lagrangian Relaxation

$$\min_{\substack{x_1, \dots, x_s, \\ y_1, \dots, y_s, \\ z_1, \dots, z_s}} \sum_{h=1}^s p_h f_h(x_h, y_h, z_h)$$
s.t.  $g_h(x_h, y_h, z_h) \leq 0$ ,  $\forall h \in \{1, \dots, s\}$ ,
$$y_h - y_{h+1} = 0$$
,  $\forall h \in \{1, \dots, s-1\}$ ,
$$z_h - z_{h+1} = 0$$
,  $\forall h \in \{1, \dots, s-1\}$ ,
$$x_h \in X_h \subset \{0,1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}$$
,  $\forall h \in \{1, \dots, s\}$ ,
$$y_h \in Y \subset \{0,1\}^{n_y}$$
,  $z_h \in Z \subset \mathbb{R}^{n_z}$ ,  $\forall h \in \{1, \dots, s\}$ .

 The non-anticipativity constraints are hard constraints which link the different scenario problems





### Lagrangian Relaxation Lower Bounding Problem

$$\max_{\substack{\alpha_{1}, \cdots, \alpha_{s-1}, \\ \beta_{1}, \cdots, \beta_{s-1}}} \min_{\substack{x_{1}, \cdots, x_{s}, \\ y_{1}, \cdots, y_{s}, \\ z_{1}, \cdots, z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h}, y_{h}, z_{h}) + \sum_{h=1}^{s-1} \alpha_{h}^{T}(y_{h} - y_{h+1}) + \sum_{h=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$
 (LRP) 
$$\sum_{h=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$
 (LRP) 
$$\sum_{j=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$
 (LRP) 
$$\sum_{j=1}^{s$$

 Dualizing the non-anticipativity constraints provides a valid lower bounding problem ...





#### Lagrangian Relaxation Lower Bounding Problem

$$\max_{\substack{\alpha_{1}, \cdots, \alpha_{s-1}, \\ \beta_{1}, \cdots, \beta_{s-1} \\ z_{1}, \cdots, z_{s}}} \min_{\substack{x_{1}, \cdots, x_{s}, \\ y_{1}, \cdots, y_{s}, \\ z_{1}, \cdots, z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h}, y_{h}, z_{h}) + \sum_{h=1}^{s-1} \alpha_{h}^{T}(y_{h} - y_{h+1}) + \sum_{h=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$
 (LRP) 
$$\text{s.t. } g_{h}(x_{h}, y_{h}, z_{h}) \leq 0, \ \forall h \in \{1, \cdots, s\},$$
 
$$x_{h} \in X_{h}, \ y_{h} \in Y, \ z_{h} \in Z, \ \forall h \in \{1, \cdots, s\}.$$

- Dualizing the non-anticipativity constraints provides a valid lower bounding problem ...
  - ... the inner minimization of which is decomposable





### Lagrangian Relaxation Convergence

- A branch and bound algorithm is employed to guarantee convergence
  - $\triangleright$  Sufficient to branch on the complicating variables (y, z) to converge





### Lagrangian Relaxation Convergence

- A branch and bound algorithm is employed to guarantee convergence
  - Sufficient to branch on the complicating variables (y, z) to converge
- Branching rule
  - Branch on the complicating variable with the maximum dispersion
  - An occasional bisection is performed to guarantee convergence





### Lagrangian Relaxation Convergence

- A branch and bound algorithm is employed to guarantee convergence
  - $\triangleright$  Sufficient to branch on the complicating variables (y,z) to converge
- Branching rule
  - Branch on the complicating variable with the maximum dispersion
  - An occasional bisection is performed to guarantee convergence
- The conventional Lagrangian relaxation algorithm may take a long time to converge
  - Requires the solution of several nonconvex MINLPs to obtain lower bounds
  - Multiple iterations of an algorithm applied to the dual may be required to generate tight lower bounds





 Observation: The inner minimization of the dual problem can be solved using NGBD if the nonanticipativity constraints of only the continuous complicating variables are relaxed

$$\max_{\substack{\alpha_{1}, \dots, \alpha_{s-1}, \\ \beta_{1}, \dots, \beta_{s-1}}} \min_{\substack{x_{1}, \dots, x_{s}, \\ y_{1}, \dots, y_{s}, \\ z_{1}, \dots, z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h}, y_{h}, z_{h}) + \sum_{h=1}^{s-1} \alpha_{h}^{T}(y_{h} - y_{h+1}) + \sum_{h=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$

$$\text{s.t. } g_{h}(x_{h}, y_{h}, z_{h}) \leq 0, \ \forall h \in \{1, \dots, s\},$$

$$x_{h} \in X_{h}, \ y_{h} \in Y, \ z_{h} \in Z, \ \forall h \in \{1, \dots, s\}.$$





$$\max_{\beta_{1}, \dots, \beta_{s-1}} \min_{\substack{x_{1}, \dots, x_{s}, \\ y, z_{1}, \dots, z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h}, y, z_{h}) + \sum_{h=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$

$$\text{s.t. } g_{h}(x_{h}, y, z_{h}) \leq 0, \ \forall h \in \{1, \dots, s\},$$

$$x_{h} \in X_{h}, \ z_{h} \in Z, \ \forall h \in \{1, \dots, s\},$$

$$y \in Y.$$
(LRP-NGBD)





$$\max_{\beta_{1}, \dots, \beta_{s-1}} \min_{\substack{x_{1}, \dots, x_{s}, \\ y, z_{1}, \dots, z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h}, y, z_{h}) + \sum_{h=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$

$$\text{s.t. } g_{h}(x_{h}, y, z_{h}) \leq 0, \ \forall h \in \{1, \dots, s\},$$

$$x_{h} \in X_{h}, \ z_{h} \in Z, \ \forall h \in \{1, \dots, s\},$$

$$y \in Y.$$
(LRP-NGBD)

 The inner minimization of Problem (LRP-NGBD) is not decomposable, but can be solved in a decomposable manner using NGBD





$$\max_{\beta_{1}, \dots, \beta_{s-1}} \min_{\substack{x_{1}, \dots, x_{s}, \\ y, z_{1}, \dots, z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h}, y, z_{h}) + \sum_{h=1}^{s-1} \beta_{h}^{T}(z_{h} - z_{h+1})$$

$$\text{s.t. } g_{h}(x_{h}, y, z_{h}) \leq 0, \ \forall h \in \{1, \dots, s\},$$

$$x_{h} \in X_{h}, \ z_{h} \in Z, \ \forall h \in \{1, \dots, s\},$$

$$y \in Y.$$
(LRP-NGBD)

- The inner minimization of Problem (LRP-NGBD) is not decomposable, but can be solved in a decomposable manner using NGBD
- The above lower bounding problem provides tighter lower bounds than Problem (LRP)
- Sufficient to branch on the continuous complicating variables to converge



## Improved Lagrangian Relaxation Aggressive Bounds Tightening

 Tight bounds on the continuous complicating variables z may be required for good empirical convergence





## Improved Lagrangian Relaxation Aggressive Bounds Tightening

- Tight bounds on the continuous complicating variables z may be required for good empirical convergence
- ◆ Suppose UBD is the current best upper bound for Problem (P), and  $z^i \in [z^{i,lo}, z^{i,up}]$ . If, for some  $(\bar{z}^i, \bar{\beta})$ , the optimal solution of the following lower bounding problem lies above UBD, then  $z^i \in [\bar{z}^i, z^{i,up}]$  is a valid tightening

$$\min_{\substack{x_1, \dots, x_s, \\ y, z_1, \dots, z_s}} \sum_{h=1}^{s} p_h f_h(x_h, y, z_h) + \sum_{h=1}^{s-1} \overline{\beta}_h^T(z_h - z_{h+1}) \qquad \text{Nonconvex MINLP}$$

$$\text{s.t. } g_h(x_h, y, z_h) \leq 0, \ \forall h \in \{1, \dots, s\},$$

$$x_h \in X_h, \ z_h \in Z \cap \{z : z^i \leq \overline{z}^i\}, \ \forall h \in \{1, \dots, s\},$$

$$y \in Y.$$





## Improved Lagrangian Relaxation Aggressive Bounds Tightening

- Tight bounds on the continuous complicating variables z may be required for good empirical convergence
- ◆ Suppose UBD is the current best upper bound for Problem (P), and  $z^i \in [z^{i,lo}, z^{i,up}]$ . If, for some  $(\bar{z}^i, \bar{\beta})$ , the optimal solution of the following lower bounding problem lies above UBD, then  $z^i \in [\bar{z}^i, z^{i,up}]$  is a valid tightening

$$\min_{\substack{x_1,\cdots,x_s,\\y,z_1,\cdots,z_s}} \sum_{h=1}^s p_h f_h(x_h,y,z_h) + \sum_{h=1}^{s-1} \overline{\beta}_h^T(z_h - z_{h+1}) \qquad \text{Nonconvex MINLP}$$
 s.t.  $g_h(x_h,y,z_h) \leq 0, \ \forall h \in \{1,\cdots,s\},$  Can be solved using NGBD! 
$$x_h \in X_h, \ z_h \in Z \cap \{z: z^i \leq \overline{z}^i\}, \ \forall h \in \{1,\cdots,s\},$$
  $y \in Y.$ 



### Improved Lagrangian Relaxation Aggressive Bounds Tightening

- Multiple ABT iterations are carried out on a per-variable basis
- Solution of the lower bounding problem for ABT can be terminated if
  - the lower bound for the lower bounding problem, obtained during the NGBD algorithm, is larger than the current upper bound (fewer primal problems solved)
  - a feasible solution for the lower bounding problem which is smaller than the current upper bound is found



## Improved Lagrangian Relaxation Upper Bounds

 ABT requires a good upper bound to be able to effectively tighten the bounds of the continuous complicating variables



## Improved Lagrangian Relaxation Upper Bounds

- ABT requires a good upper bound to be able to effectively tighten the bounds of the continuous complicating variables
- Good upper bounds can be generated by solving Problem (P) using DICOPT, or by restricting the binary variables and solving the resulting problem using local solvers such as CONOPT
  - Local solvers which utilize the near-decomposable structure of Problem (P), through techniques such as Schur complements, can be employed



## Improved Lagrangian Relaxation Upper Bounds

- ABT requires a good upper bound to be able to effectively tighten the bounds of the continuous complicating variables
- Good upper bounds can be generated by solving Problem (P) using DICOPT, or by restricting the binary variables and solving the resulting problem using local solvers such as CONOPT
  - Local solvers which utilize the near-decomposable structure of Problem (P), through techniques such as Schur complements, can be employed
- Upper bounds can also be generated by attempting to solve Problem (P) using NGBD, or by restricting the continuous complicating variables and solving the resulting problem using NGBD



### Improved Lagrangian Relaxation Flowchart







### Computational Studies Implementation Details

#### Platform

CPU 3.07 GHz, Memory 12.0 GB, VMWare Linux Workstation on Windows 7 Desktop, GAMS 24.2, GCC 4.8.1, GFortran 4.8.1

#### Solvers

- LP and MILP solver: CPLEX
- Global NLP solver: ANTIGONE
- Local NLP solver: CONOPT
- Upper bound solver: DICOPT
- Bundle solver: MPBNGC 2.0

#### Methods for comparison

- ANTIGONE, BARON State-of-the-art global optimization solvers
- Conventional Lagrangian relaxation algorithm
- Improved Lagrangian relaxation algorithm
- ◆ Relative and absolute tolerance: 10<sup>-3</sup>





## Computational Study Case Study 1: Stochastic Pooling Problem



16 binary complicating variables,

4 continuous complicating variables,

13s continuous recourse variables

16s bilinear terms

(s represents the number of scenarios).









## Computational Study Case Study 2: Integrated Water Network



- 15 binary complicating variables,
- 20 continuous complicating variables,
- 94s continuous recourse variables
- 242s bilinear terms

(s represents the number of scenarios).









#### Conclusions and future work

- Nonconvex generalized Benders decomposition can be used in conjunction with bounds tightening techniques to improve the performance of the Lagrangian relaxation algorithm for general nonconvex two-stage stochastic programs
- Develop decomposition techniques to obtain good upper bounds
- Look at efficient ways to solve the dual problem
- Extend the algorithm to multi-stage problems





### Acknowledgements

◆ The Barton group

