Real Analysis

Christopher K. Walsh

July 6, 2024

Contents

P	refac	re	3
1	Rat	tional and Real Numbers	4
		Set Theory Foundation	
	1.2	Functions and Relations	5
	1.3	The Rational Numbers	5
		1.3.1 Arithmetic (of Rationals)	6
		1.3.2 Order	8
		1.3.3 Fields	g

Preface

I was originally going to spending the summer of 2024 typing up my old math notes. Then I realized that I was going to need Real Analysis for Complex Analysis. Makes sense based on the name. I just assumed that I would be fine since Real Analysis wasn't a prerequisite for the course I was taking. Whoops.

- Christopher

"God made the integers; all else is the work of man." - Leopold Kronecker

Chapter 1

Rational and Real Numbers

1.1 Set Theory Foundation

This is a review of some introductory proof concepts that are important for laying the foundations of both rational numbers and real analysis.

Definition:

A set is a collection of objects called elements of the set.

Example:

- 1. $S = \{1, 2, 3\} \ (= \{1, 2, 3, 3\})$
- 2. $E = \{\text{Even integers }\}$
- 3. {College students}

Notation:

- $x \in S$ means x is in S.
- $x \notin S$ means x is not in S.
- The empty set \emptyset is the set with no elements.
- $A \subseteq B$ means A is a subset of B (i.e. if $x \in A$, then $x \in B$).
- If $A \subseteq B$ but $B \subsetneq A$ A is a proper subset.

If $A \subseteq B$ and $B \subseteq A$ then A = B. Otherwise $A \neq B$.

We can define more sets in terms of other sets. Set Operations: Let A and B be sets.

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Compliment: $B A = \{x \mid x \in B \text{ and } x \notin A\}$

• Product: $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

If U is a universal set (set of everything in context), we write $\bar{A} = U - A = \{x \mid x \in U \text{ and } x \notin A\}.$

1.2 Functions and Relations

It is also important to define some types of relations and functions.

Definition (Relation):

A (binary) **relation** R on a set S is a subset of $S \times S$. If $(a, b) \in R$, we write aRb.

Example (of relations): 1. L "loves" is a relation on $P \times P$ (where P is a set of all people).

2. The set $R = \{(0,0), (0,1), (2,2), (7,18)\}$ is a relation on \mathbb{Z}^+ . We would write 0R0, 0R1, 2R2, and 7R18.

Definition (Equivalence Relation):

An equivalence relation on a set S is a relation s.t.:

- 1. Reflexive: For each $a \in S$, $a \sim a$.
- 2. Symmetric: For $a, b \in S$, if $a \sim b$, then $b \sim a$.
- 3. Transitive: For $a, b, c \in S$, if $a \sim b$ and $b \sim a$

Functions in the general sense are also a type of relation.

Definition (Function):

A **function**, F from a set A to a set B is a relation s.t.: if aFb and aFb' then b = b'. This is a rule that assigns a unique $a \in A$ to a unique $b \in B$. Write F(a) = b.

1.3 The Rational Numbers

Assume Z, the integers, have arithmetic order. What is \mathbb{Q} ? Perhaps it's the set: $\left\{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\right\}$.

However, what does that fraction notation actually mean? When we first begin teaching fractions to children we talk about splitting things like cake into smaller pieces. If we have a whole cake made of 3 slices, we can give one person a slice so they have $\frac{1}{3}$ of the cake. If we have a cake of 6 slices, we could give them 2 slices instead. They would have $\frac{2}{6}$. These two fractions are equivalent though! We need more rigor (this is mathmematics of course).

We say that the fractions as equivalent ordered pairs $(1,3) \sim (2,6)$. These belong to the same equivalence class, $\left[\frac{1}{3}\right]$.

Definition (Rational Numbers):

The **rational numbers**, \mathbb{Q} , is the set $\left\{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\right\}$ where $\frac{m}{n}$ is an equivalence class of (m, n) with the relation $(m, n) \sim (p, q)$ if mq = np and $q, n \neq 0$

Proof. Is \sim an equivalence relation? Need to show \sim reflextive, symmetric, and transitive.

Step 1 Reflective: Let
$$(p,q) \in \mathbb{Q}$$
. Show $(p,q) \sim (p,q)$ Since $ab = ba$, $(p,q) \sim (p,q)$

Step 2 Symmetry: Let
$$(p,q), (m,n) \in \mathbb{Q}$$
. Assume $(p,q) \sim (m,n)$. Show $(m,n) \sim (p,q)$. $(p,q) \sim (m,n) \implies pn = qm$ $\implies qm = pn$ $\implies mq = np$ $\implies (m,n) \sim (p,q) \checkmark$

Step 3 Transitive: Let $(p,q), (m,n), (a,b) \in \mathbb{Q}$. Assume $(p,q) \sim (m,n)$ and $(m,n) \sim (a,b)$. Show $(p,q) \sim (a,b)$.

Need cancellation law on \mathbb{Z} : if ab = ac and $a \neq 0$ then b = c.

$$(p,q) \sim (m,n) \implies pn = qm \text{ and } (m,n) \sim (a,b) \implies mb = na$$

Case 1:
$$p = 0$$

 $p = 0 \implies pn = qm = 0$
 $\implies m = 0 \text{ since } q \neq 0$
 $\implies mb = na = 0$
 $\implies a = 0 \text{ since } n \neq 0$
 $\implies pb = qa = 0$
 $\implies (p,q) \sim (a,b) \checkmark$

Case 2: m = 0Similar to Case 1. \checkmark

Case 3: $p, m \neq 0$

Multiplying pn = qm by ab: ab(pn) = ab(qm).

$$\implies na(pb) = mb(qa)$$

$$\implies pb = qa$$
 by cancellation law $(m \neq 0 \text{ and } mb = na) \implies (p,q) \sim (a,b) \checkmark$

1.3.1 Arithmetic (of Rationals)

Our definitions of arithmetic on $\mathbb Q$ be well-defined. For example, we could define addition as follows:

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$$

However,

$$\frac{1}{2} + \frac{1}{3} = \frac{2}{5}$$
$$\frac{2}{4} + \frac{3}{7} = \frac{3}{7}$$

 $\frac{1}{2}$ and $\frac{2}{4}$ are in the same equivalent class, but $\frac{2}{5}$ and $\frac{3}{7}$ are not. This is not well-defined. We want a definition of addition not dependent on our representatives chosen.

Now, $\frac{a}{b} + \frac{c}{d} = \frac{0}{1}$. This is well-defined but not helpful.

Definition (Addition in \mathbb{Q}):

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

If this well-defined?

Proof. Assume
$$(a,b) \sim (a',b')$$
 and $(c,d) \sim (c',d')$. Show $(ad+bc,bd) \sim (a'd'+b'c',b'd')$. $(a,b) \sim (a',b') \implies ab' = ba'$ $(c,d) \sim (c',d') \implies cd' = dc'$ $b'd'(ad+bc) = b'd'ad+b'd'bc$ $= (d'd)(ab') + (b'b)(cd')$ $= (d'd)(ba') + (b'b)(dc')$ $= (bd)(a'd') + (bd)(c'b')$ $= bd(a'd'+c'b')$

$$\implies (ad + bc, bd) \sim (a'd' + b'c', b'd') \checkmark$$

Definition (Multiplication in \mathbb{Q}):

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

If this well-defined?

Proof. Assume $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Show $(ac,bd) \sim (a'c',b'd')$. $(a,b) \sim (a',b') \implies ab' = ba'$ $(c,d) \sim (c',d') \implies cd' = dc'$

$$acb'd' = (ab')(cd')$$
$$= (ba')(dc')$$
$$= (a'c')(bd)$$

$$\implies (ac, bd) \sim (a'c', b'd') \checkmark$$

In what way does \mathbb{Q} extend \mathbb{Z} ?

The correspondence is $\frac{n}{1} \longleftrightarrow n$. Addition and multiplication is the same in \mathbb{Q} as in \mathbb{Z} .

Note. We can define subtraction by adding the negative of a number (multiply by -1).

1.3.2 Order

Definition (Order):

An **order** on a set S is a relation < satisfying:

- 1. (Trichotomy) If $x, y \in S$, exactly one is true: x < y, x = y, y < x.
- 2. (Transitivity) If $x, y, z \in S$, x < y, and y < z, x < z.

Example:

In \mathbb{Z} , say m < n if n - m is positive, i.e. in \mathbb{N} .

Example:

In $\mathbb{Z} \times \mathbb{Z}$, say (a, b) < (c, d) if a < c or (a = c or b < d). This is called the dictionary order.

Example:

In \mathbb{Q} , say $\frac{m}{n}$ is positive if mn > 0. This is well-defined.

Proof. Assume $(m, n) \sim (p, q)$ and mn > 0. Show pq > 0.

Suppose, to the contrary, pq < 0.

$$(m,n) \sim (p,q) \implies mq = np$$

 $\implies (mq)^2 = mqnp$

By assumption, mnpq < 0, a contradiction since mn > 0. Thus, pq > 0.

So
$$\frac{a}{b} < \frac{c}{d}$$
 if $\frac{c}{d} + \frac{-a}{b}$ is positive.

Write y > x for x < y and x <= y for x < y or x = y.

Theorem 1. $x^2 = 2$ has no solution in \mathbb{Q} .

Proof (by contradiction). Assume x^2 has a solution in \mathbb{Q} , i.e. $x = \frac{p}{q}$ where $p, q \in \mathbb{Z}$.

Also assume p, q are in "lowest terms," i.e. they have no common factors. (We can do this using elements in the equivalence classes of \mathbb{Q} .)

So
$$\left(\frac{p}{q}\right)^2 = 2$$
, hence $p^2 = 2q^2$.

Then p^2 is even (divisible by 2).

Then p is even. (If p was odd, p^2 would be odd.)

So p = 2m for some $m \in \mathbb{Z}$, hence $p^2 = 4m^2 = 2q^2$.

Then $2m^2 = q^2$.

Then q^2 is even, hence q is even.

9

This contradicts the fact that p,q are in "lowest terms." So, $x^2=2$ must have no solution

1.3.3 **Fields**

Definition (Field):

A field is a set F with two operations $+, \times$ satisfying axioms:

A1. F is closed under +. (Adding two things in the set gives you something in the set.)

A2. + is commutative.

A3. + is associative.

A4. F has an additive identity, call it 0.

A5. Every element has an additive inverse.

M1. F is closed under \times .

 $M2. \times is commutative.$

 $M3. \times is associative.$

M4. F has an additive identity, call it 1.

M5. Every element except 0 has an additive inverse.

D1. \times distributes over +.

Example:

In \mathbb{Q} , the 0 element is $\begin{bmatrix} 0\\1 \end{bmatrix}$ and the 1 element is $\begin{bmatrix} 1\\1 \end{bmatrix}$.

Definition (Ordered Field):

An **ordered field** is a field with an order s.t. order is preserved by field operations.

- 1. If y < z, then x + y < x + z.
- 2. If y < z and x > 0, then xy < xz.

Note. \mathbb{Z} is a ring not a field. There are no multiplicative inverses.

 \mathbb{Q} is an ordered field!