# Лабораторная работа 31.1



# Определение удельного заряда электрона

Методическое руководство

## Определение удельного заряда электрона

#### 1. Цель лабораторной работы

Целью лабораторной работы является изучение движения заряженных частиц в электрическом и магнитном полях.

## 2. Задачи лабораторной работы

Задача состоит в экспериментальном определении удельного заряда электрона и расчете траектории движения

# 3. Экспериментальное оборудование, приборы и принадлежности



Рис.1

Лабораторный стенд (рис.1) представляет собой заключенные в непрозрачный кожух 1 систему катушек Гельмгольца 2, внутри установлена которой электронная лампа В электронной пушкой. установку входят блок питания электронной пушки и катушек Гельмгольца 4.

К приборам И принадлежностям относятся компьютер, необходимое обеспечение, программное датчик магнитного поля (датчик Холла) 5, веб-камера 6, измерительные кабели и концентратор (HUB USB) для подключения датчиков веб-камеры к компьютеру.

#### 4. Теоретическая часть

Катод 1 электронной пушки (рис.2 а, в), подключенный к источнику питания, при пропускании по нему электрического тока, накаливается и, в результате термоэлектронной эмиссии, испускает электроны со средней кинетической энергией

$$\boxed{\frac{m\ \upsilon^{2}}{2}} \approx \frac{3}{2}kT$$

Между катодом и анодом приложена разность потенциалов U, ускоряющая электроны. По закону сохранения энергии скорость  $\upsilon$  электронов, достигающих анода, определяется формулой

$$\frac{m\upsilon^2}{2} - \frac{m\upsilon_0^2}{2} = eU \tag{1}$$

При  $U \sim 10^2 - 10^4$  В  $\frac{m_o^2}{2} \langle e U$  и с достаточной степенью точности можно полагать, что

$$\frac{m^2}{2} = e L \tag{2}$$

Отсюда скорость вылета электронов из электронной пушки равна:

$$v = \sqrt{\frac{2eU}{m}}$$
 (3)



Анод 2 электронной пушки (рис.2) – металлический конус с узким отверстием. Это отверстия выделяет тонкий пучок «монохроматических»,

т.е. обладающих практически одинаковыми по величине и направлению скоростями, электронов. Так устроена электронная пушка или электронный прожектор в лабораторной установке.

Газ низкого давления, находящейся в стеклянной колбе лампы (рис.3), в которой располагается электронная пушка, под действием пучка электронов ионизируется и испускает заметное зеленоватое свечение в месте локализации пучка электронов.



Помещенная в центр системы катушек Гельмгольца лампа с электронной пушкой находится в области с однородным магнитным полем. Магнитная индукция, ориентированная вдоль оси катушек, направлена перпендикулярно электронному пучку, генерируемому пушкой.

На заряд е, движущийся со скоростью v в однородном магнитном поле с индукцией B, магнитное поле действует с силой

$$\vec{F} = \vec{Q} \cdot \vec{B}$$
 (4)

Эта сила называется силой Лоренца. В соответствии с формулой (4) сила Лоренца перпендикулярна плоскости, в которой расположены векторы  $\vec{\mathbf{U}}$  и  $\vec{\mathbf{B}}$ , модуль силы Лоренца равен

Рис.3

$$F_{\pi} = evBsin\varphi, \tag{5}$$

где  $\phi$  — угол между векторами v и B. Следовательно, заряженная частица, двигающаяся вдоль силовой линии магнитного поля, не испытывает действия силы.

Направление действия силы Лоренца перпендикулярно плоскости, в которой лежат векторы  $\vec{\mathbf{U}}$  и  $\vec{B}$ . Если заряд e положителен, направление вектора силы  $\vec{F}_{\scriptscriptstyle R}$  совпадает с направлением вектора  $\left[\vec{\mathbf{U}},\vec{B}\right]$ . В случае отрицательного e направление векторов  $\vec{F}_{\scriptscriptstyle R}$  и  $\left[\vec{\mathbf{U}},\vec{B}\right]$  противоположны. Для определения направления силы Лоренца, действующей на положительный заряд, можно пользоваться правилом буравчика либо правилом левой руки.

Правило левой руки гласит: если расположить левую руку так, чтобы вектор  $\vec{B}$  входил в ладонь, а четыре сложенных пальца были направлены вдоль вектора  $\vec{V}$ , то отставленный большой палец укажет направление силы, действующей на положительный заряд. В случае, когда заряд

отрицателен, найденное таким способом направление силы  $F_n$  надо поменять на обратное.

Сила Лоренца всегда направлена перпендикулярно к скорости движения частицы. Поэтому она работы над частицей не совершает. Следовательно, действуя на заряженную частицу постоянным магнитным полем, изменить ее энергию нельзя.

Пусть заряд е влетает в однородное магнитное поле со скоростью v, перпендикулярной вектору  $\boldsymbol{B}$ . Под действием силы Лоренца

$$F_{\pi} = e \mathcal{E}$$

заряд приобретает постоянное по величине нормальное ускорение

$$q = 0$$

$$mm$$
(6)

Если скорость изменяется только по направлению, движение с постоянным по величине нормальным ускорением представляет собой равномерное движение по окружности, радиус которой определяется условием  $a_n = V^2/R$ . Подставляя это выражение в (3) получим уравнение движения, которое по второму закону Ньютона определяется уравнением

$$aB = m\frac{\sqrt{3}}{R}, \tag{7}$$

решая получившееся уравнение относительно R, получим

$$R = \frac{m\upsilon}{eB} \tag{8}$$

Таким образом, в однородном поперечном магнитном поле заряженная частица движется по окружности.

Подставляя скорость частицы (формула 3) в (8), получим выражение для удельного заряда - отношения заряда частицы к ее массе – e/m:



Рис.4

$$\frac{e}{m} = \frac{2U}{RB},$$
(9)

откуда

$$\frac{1}{R^2} = \frac{e}{m} \cdot \frac{B^2}{2U} \tag{10}$$

Как следует из формулы (10) радиус окружности R, по которой изгибается электронный пучок в магнитном поле (рис.4), зависит от ускоряющего

напряжения U, магнитной индукции  $\boldsymbol{B}$  поля и удельного заряда частицы (отношения заряда частицы к ее массе – e/m).

Идея эксперимента сводится к построению ряда экспериментальных точек зависимости величины  $\frac{1}{R^2}$  (радиус траектории электронов

измеряется с помощью веб- камеры) от величины  $\frac{B^2}{2U}$ , определяемой ускоряющим напряжением U в электронной пушке, и величиной магнитной индукции B во внутренней области катушек  $\Gamma$ ельмгольца.

Согласно (10) эта зависимость должна быть линейна. Если провести линейную аппроксимацию  $\frac{1}{R^2} = k \cdot \frac{B^2}{2U}$  полученных экспериментальных значений зависимости, то коэффициент пропорциональности k оптимальной прямой равен удельному заряду электрона:

$$\frac{e}{m} = k. \tag{11}$$

## 5. Описание лабораторной установки

Кроме перечисленных в разделе 3 компонентов, в состав лабораторной установки входит линейка с миллиметровой шкалой 7 (рис. 1). Она предназначенная для установки масштаба изображения окружности, образованной светящимся газом на пути электронного пучка. Установка имеет откидывающийся светозащитный экран, позволяющий улучшить условия фотосъемки траектории электронного пучка.

# 6. Порядок проведения лабораторной работы

- 1. Соберите лабораторную установку, подключив датчики и веб-камеру к USB входам компьютера.
- 2. Включите прибор (переключатель «Сеть») и дайте ему прогреться в течение 5 минут. Убедитесь, что переключатель направления тока в катушках установлен в нейтральное положение.
- 3. Включите компьютер и запустите программу «Практикум по общей физике». На панели устройств выберете «Атомная физика» и соответствующий сценарий проведения эксперимента (Alt+C).
- 4. В окне «Устройство видеозахвата» выберете «USB Camera».
- 5. На передней панели корпуса установки поставьте нулевое значение тока в катушках Гельмгольца вращением соответствующей рукоятки против

- часовой стрелки до упора. В программе в верхней части окна регистрации индукции магнитного поля «0:К302» нажмите кнопку <u>части окна установки нуля в калибровке датчика.</u>
- 6. Направьте ток в катушках по часовой стрелке (переключатель направления тока вверх) и установите максимальный ток в катушках, повернув регулятор тока на передней панели корпуса установки до упора вправо.
- 7. Приложите максимальное ускоряющее напряжение на электронную пушку, повернув соответствующий регулятор на передней панели корпуса установки.
- 8. Поворачивая электронную лампу вокруг вертикальной оси, получите траекторию электронов в виде спирали, направленной в вашу сторону и от вас. Для проведения измерений установите лампу таким образом, чтобы вектор скорости электронов был направлен перпендикулярно направлению магнитного поля, что приведет к траектории электронов в виде окружности.
- 9. На передней панели кожуха установки установите нулевое значение ускоряющего напряжения и нулевое поле, повернув соответствующие регуляторы в крайнее левое положение (против часовой стрелки.
- 10.Запустите измерения, выбрав на панели инструментов кнопку «Запустить измерения» (Ctrl+S) **②**. На экране появится окно «Обработка».
- 11.Сделайте первую фотографию с открытым защитным кожухом установки, так чтобы линейка была хорошо освещена внешним светом, нажав на кнопку с символом «дискета» (при этом все данные и фото запишутся в таблицу).
- 12. Закройте защитный кожух установки.
- 13. Проведите измерения радиуса траектории при различных значениях ускоряющего напряжения и магнитного поля. Для этого изменяя ускоряющее напряжение (от максимального до примерно 100 В, при электронная пушка прекращает работать) котором индукцию поля, сохраняйте фотографии магнитного траектории движения электронов, значение ускоряющего напряжения и индукции магнитного поля, нажимая на кнопку с символом «дискета» 📃 (окно обработки данных) после каждого изменения ускоряющего напряжения или индукции. Все данные будут записываться в таблицу, вид которой представлен в таблице 1. Измерения проведите при трех значениях ускоряющего напряжения, для каждого из которых регистрируйте радиус траектории движения электронов при 3 – 4 различных значениях магнитной индукции (тока в катушках).
- 14.По окончании эксперимента остановите измерения, нажав на кнопку «стоп» (Ctrl+T) **②**.

| <b>№</b><br>измерения | Ускоряющее напряжение U, B | Магнитная<br>индукция В,<br>мТл. | Радиус<br>окружности R,<br>см | фото |
|-----------------------|----------------------------|----------------------------------|-------------------------------|------|
| 1                     |                            |                                  |                               |      |

# 7. Обработка результатов измерений

Обработать фотографии, получив значения радиуса траектории движения электронов при различных значениях ускоряющего напряжения и магнитного поля.

- 1. Для определения масштаба регистрации траектории электронов войти в режим работы с фотографией, кликнув три раза по необходимому ярлыку в столбце «фото» таблицы результатов (первая строка таблицы).
- 2. Задать величину масштабного отрезка (отрезок зеленого цвета), совместив его концы с делениями шкалы на изображении так, чтобы он совпадал с наибольшим расстоянием, которое можно выбрать на линейке (80мм).
- 3. Выбрать на панели инструментов окна регистрации данных «Установку длины масштабного отрезка» и ввести длину масштабного отрезка в сантиметрах (8,0).
- 4. Перейти к обработке следующей фотографии и, вызвав ее на экран, аппроксимировать траекторию движения электронов окружностью. Для этого выбрать на панели инструментов соответствующую кнопку, нарисовать окружность и подбирая ее радиус и положение центра, совместить окружность с траекторией электронов. Изменение параметров окружности производить, удерживая курсор на окружности, в ее центре или на конце обозначенного радиуса.
- 5. Подобрав наиболее подходящую окружность, перейти в таблицу результатов. Нажать ОК в верхнем правом углу окна «Камера».
- 6. Повторить пп. 5 6 для всех файлов в столбце «фото» таблицы результатов.
- 7. Перейти на вкладку «график» и построить зависимость

$$\frac{1}{R^2} = F\left(\frac{B^2}{2U}\right).$$

- 8. Выполнить аппроксимацию прямой пропорциональной зависимостью, нажав соответствующую кнопку на панели инструментов в окне «Обработка».
- 9. На основе полученного углового коэффициента прямой получить значение удельного заряда электрона.

# 8. Контрольные вопросы

- 1. Как определить величину и направление силы Лоренца?
- 2. Как определить радиус движения электрона в однородном магнитном поле?
- 3. Как определить величину и направление силы, действующей на частицу, движущуюся в электрическом и магнитном полях?
- 4. Как определить траекторию движения частицы в электрическом и магнитном полях?