Author index of Volume 120

Akay, H.U., see Chien, Y.P.	119-130
Argyris, J., L. Tenek and F. Öberg, A multilayer composite triangular element for steady-state conduction/convection/radiation heat transfer in complex shells	271-301
Bednarczyk, H., see Sansour, C.	1- 32
Carpenter, F., see Chien, Y.P.	119-130
Chien, Y.P., F. Carpenter, A. Ecer and H.U. Akay, Load-balancing for parallel computation of fluid dynamics problems	119-130
Deb, A., see Loret, B.	315-338
Destuynder, P. and M. Salaun, A mixed finite element for shell model with free edge boundary conditions. Part 1. The mixed variational formulation Destuynder, P. and M. Salaun, A mixed finite element for shell model with free	195–217
edge boundary conditions. Part 2. The numerical scheme	219-242
Ecer, A., see Chien, Y.P.	119-130
Greenstadt, J., The removal of overshoot in P.D.E. solutions by the use of special basis functions	45- 64
Jelenić, G. and M. Saje, A kinematically exact space finite strain beam model – finite element formulation by generalized virtual work principle	131–161
Kam, T.Y. and F.M. Lai, Design of laminated composite plates for optimal dynamic	200 402
characteristics using a constrained global optimization technique	389-402
Kitipornchai, S., see Liew, K.W.	339-353
Kuria, I.M. and P.E. Raad, An implicit multidomain spectral collocation method for stiff highly non-linear fluid dynamics problems	163-182
Lai, F.M., see Kam, T.Y.	389-402
Li, S., see Vu-Quoc, L.	65-118
Li, Z. and M. Reed, A finite element method to model progressive fracturing	303-313
Liew, K.W., Y. Xiang, S. Kitipornchai and J.L. Meek, Formulation of Mindlin-	
Engesser model for stiffened plate vibration	339-353
Loret, B., J.H. Prevost and A. Deb, Finite element simulation of dynamic strain-	
localization: A multi-scale problem	315-338

Meek, J.L., see Liew, K.W. Miehe, C., Entropic thermoelasticity at finite strains. Aspects of the formulation and	339-353
numerical implementation	243-269
Öberg, F., see Argyris, J.	271-301
Prevost, J.H., see Loret, B.	315-338
Raad, P.E., see Kuria, I.M.	163-182
Reed, M., see Li, Z.	303-313
Saje, M., see Jelenić, G.	131-161
Salaun, M., see Destuynder, P.	195-217
Salaun, M., see Destuynder, P.	219-242
Sandberg, G., A new finite element formulation of shock-induced hull cavitation	33- 44
Sansour, C. and H. Bednarczyk, The Cosserat surface as a shell model, theory and	1 22
finite-element formulation	1- 32
Tenek, L., see Argyris, J.	271-301
Vu-Quoc, L. and S. Li, Dynamics of sliding geometrically-exact beams: large angle	
maneuver and parametric resonance	65-118
Wu, B., Numerical non-linear analysis of secondary buckling in stability problems	183-193
Xiang, Y., see Liew, K.W.	339-353
Zhu, J., Application of natural approach to non-linear analysis of sandwich and	
composite plates and shells	355-388

243-269

Subject index of Volume 120

Boundary layers A mixed finite element for shell model with free edge boundary conditions. Part 1. The mixed variational formulation, P. Destuynder and M. Salaun 195-217 A mixed finite element for shell model with free edge boundary conditions. Part 2. The numerical scheme, P. Destuvnder and M. Salaun 219-242 Calculus of variations A finite element method to model progressive fracturing, Z. Li and M. Reed 303-313 Cavitation flows A new finite element formulation of shock-induced hull cavitation, G. Sandberg 33- 44 Collocation method An implicit multidomain spectral collocation method for stiff highly non-linear fluid dynamics problems, I.M. Kuria and P.E. Raad 163-182 Coupled problems Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, C. Miehe 243-269 **Dynamics** Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance, L. Vu-Quoc and S. Li 65-118 Elasticity Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, C. Miehe 243-269 303-313 A finite element method to model progressive fracturing, Z. Li and M. Reed Formulation of Mindlin-Engesser model for stiffened plate vibration, K.W. Liew, 339-353 Y. Xiang, S. Kitipornchai and J.L. Meek Finite element and matrix methods The Cosserat surface as a shell model, theory and finite-element formulation, C. Sansour and H. Bednarczyk 1 - 32A new finite element formulation of shock-induced hull cavitation, G. Sandberg 33- 44 Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance, L. Vu-Quoc and S. Li 65 - 118Load-balancing for parallel computation of fluid dynamics problems, Y.P. Chien, F. Carpenter, A. Ecer and H.U. Akay 119 - 130A kinematically exact space finite strain beam model - finite element formulation by generalized virtual work principle, G. Jelenić and M. Saje 131-161

Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical

implementation, C. Miehe

A finite element method to model progressive fracturing, Z. Li and M. Reed Application of natural approach to non-linear analysis of sandwich and composite plates and shells, J. Zhu	303-313
	355-388
Fluid mechanics	
A new finite element formulation of shock-induced hull cavitation,	
G. Sandberg	33- 44
Load-balancing for parallel computation of fluid dynamics problems, Y.P. Chien,	110 120
F. Carpenter, A. Ecer and H.U. Akay An implicit multidomain spectral collocation method for stiff highly non-linear fluid	119–130
dynamics problems, I.M. Kuria and P.E. Raad	163-182
Fracture mechanics	
A finite element method to model progressive fracturing, Z. Li and M. Reed	303-313
Finite element simulation of dynamic strain-localization: A multi-scale problem,	
B. Loret, J.H. Prevost and A. Deb	315–338
General Rayleigh-Ritz and Galerkin techniques	
A kinematically exact space finite strain beam model - finite element formulation by	
generalized virtual work principle, G. Jelenić and M. Saje	131-161
Formulation of Mindlin-Engesser model for stiffened plate vibration, K.W. Liew,	220 252
Y. Xiang, S. Kitipornchai and J.L. Meek	339–353
Heat and diffusion	
Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical	
implementation, C. Miehe	243-269
A multilayer composite triangular element for steady-state conduction/convection/	271-301
radiation heat transfer in complex shells, J. Argyris, L. Tenek and F. Öberg	2/1-301
Incompressible and near incompressible media	
Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical	
implementation, C. Miehe	243-269
Kinematics	
A mixed finite element for shell model with free edge boundary conditions. Part 1.	
The mixed variational formulation, P. Destuynder and M. Salaun	195-217
A mixed finite element for shell model with free edge boundary conditions. Part 2.	
The numerical scheme, P. Destuynder and M. Salaun	219-242
Modern computer architecture	
Load-balancing for parallel computation of fluid dynamics problems, Y.P. Chien,	
F. Carpenter, A. Ecer and H.U. Akay	119-130
Nonlinear mechanics	
The Cosserat surface as a shell model, theory and finite-element formulation,	
C. Sansour and H. Bednarczyk	1- 32
Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical	242 260

A multilayer composite triangular element for steady-state conduction/convection/	
radiation heat transfer in complex shells, J. Argyris, L. Tenek and F. Öberg Finite element simulation of dynamic strain-localization: A multi-scale problem,	271–301
B. Loret, J.H. Prevost and A. Deb	315-338
Application of natural approach to non-linear analysis of sandwich and composite plates and shells, J. Zhu	355-388
Numerical solution procedures	
The removal of overshoot in P.D.E. solutions by the use of special basis functions, J. Greenstadt	45- 64
Load-balancing for parallel computation of fluid dynamics problems, Y.P. Chien, F. Carpenter, A. Ecer and H.U. Akay	119-130
Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, C. Miehe	243-269
Formulation of Mindlin-Engesser model for stiffened plate vibration, K.W. Liew, Y. Xiang, S. Kitipornchai and J.L. Meek	339-353
Optimization	
Design of laminated composite plates for optimal dynamic characteristics using a constrained global optimization technique, T.Y. Kam and F.M. Lai	389-402
Optimization and design of structures	
Design of laminated composite plates for optimal dynamic characteristics using a constrained global optimization technique, TY. Kam and F.M. Lai	389-402
Plasticity	
A finite element method to model progressive fracturing,	
Z. Li and M. Reed	303-313
Shells and plates	
The Cosserat surface as a shell model, theory and finite-element formulation,	
C. Sansour and H. Bednarczyk	1- 32
A mixed finite element for shell model with free edge boundary conditions. Part 1. The mixed variational formulation, P. Destuynder and M. Salaun	195-217
A mixed finite element for shell model with free edge boundary conditions. Part 2.	193-217
The numerical scheme, P. Destuynder and M. Salaun	219-242
A multilayer composite triangular element for steady-state conduction/convection/	
radiation heat transfer in complex shells, J. Argyris, L. Tenek and F. Öberg	271-301
Formulation of Mindlin'Engesser model for stiffened plate vibration, K.W. Liew,	339-353
Y. Xiang, S. Kitipornchai and J.L. Meek Application of natural approach to non-linear analysis of sandwich and composite	339-333
plates and shells, J. Zhu	355-388
Solutions of ordinary and partial differential equations	
The removal of overshoot in P.D.E. solutions by the use of special basis functions,	
J. Greenstadt	45- 64

Stability in structural mechanics

- Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance, L. Vu-Quoc and S. Li

 Numerical non-linear analysis of secondary buckling in stability problems, B. Wu

 Application of natural approach to non-linear analysis of sandwich and composite
- Application of natural approach to non-linear analysis of sandwich and composite plates and shells, J. Zhu

 355-388

Structural mechanics

- A new finite element formulation of shock-induced hull cavitation, G. Sandberg

 33- 44

 Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric
- resonance, L. Vu-Quoc and S. Li

 A kinematically exact space finite strain beam model finite element formulation by

 generalized virtual work principle. G. Islanić and M. Saige.

 131, 161
- generalized virtual work principle, G. Jelenić and M. Saje

 A finite element method to model progressive fracturing, Z. Li and M. Reed.

 303–313
- A finite element method to model progressive fracturing, Z. Li and M. Reed

 Formulation of Mindlin'Engesser model for stiffened plate vibration, K.W. Liew,
 Y. Xiang, S. Kitipornchai and J.L. Meek

 303–313
- Design of laminated composite plates for optimal dynamic characteristics using a constrained global optimization technique, T.Y. Kam and F.M. Lai 389–402

Systems of linear and nonlinear simultaneous equations

Numerical non-linear analysis of secondary buckling in stability problems, B. Wu
183–193

Thermal effects and thermodynamics

Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, C. Miehe 243-269

