1.	[6] Compute $(2+0+2+4)(2!+0!+2!-4^2)(2^2-0!+2^2+4^2).$	
	Team Name:	Answer:
2.	[6] The answer to this problem can be expressed as $\frac{a}{b}$, where a and b are a Compute $2\sqrt{ab}$.	
	Team Name:	Answer:
3.	[7] Find the positive integer $n < 100$ for which the ratio of n to the sum of	
	Team Name:	Answer:
4.	[7] Compute $\log_{32} 81 \cdot \log_6 7 \cdot \log_3 36 \cdot \log_{343} 2$.	
	Team Name:	Answer:
5.	[8] Let $\triangle ABC$ have area 256. The midpoints of \overline{AB} and \overline{AC} are D and E , respectively. Points F and G are on segments \overline{AB} and \overline{AC} respectively such that \overline{FG} is parallel to \overline{BC} and the lengths of \overline{DE} , \overline{FG} , and \overline{BC} form a geometric sequence in some order. What is the sum of the possible areas of $\triangle AFG$?	
	Team Name:	Answer:

6. [8] Which positive integer is four times a prime number and one less than a perfect cube?

Team Name: ______ Answer: ______

.....

Team Name:	Answer:
[9] Compute the number of posi exactly one odd digit and one ex	tive integers n such that the decimal representations of n and $2n$ each haven digit.
Team Name:	Answer:
[10] Four distinct congruent seg	ments are drawn through the center of a square \mathcal{S} such that the endpoin neter of the square. If the segments partition \mathcal{S} into eight pieces of area 1 se segments?
Team Name:	Answer:
[Up to 10] Welcome to Proof some famous open problems! Instructions: The following six s Submit a string of 6 letters in u	by Democracy , the minigame where you (pl.) get to decide the truth k statements are currently open: nobody knows whether they are true or fals which the k th letter is Y if you think statement k is true and N if you think statement k is x_k , then you we
[Up to 10] Welcome to Proof some famous open problems! Instructions: The following six s Submit a string of 6 letters in u it is false. If the proportion of the receive 10 √√x₁x₂x₃x₄x₅x₆ points (a) (Fortune's conjecture) Denominating positive integer n, let m be to some some some some some some some som	by Democracy, the minigame where you (pl.) get to decide the truth k statements are currently open: nobody knows whether they are true or fals which the k th letter is Y if you think statement k is true and N if you think statement k is x_k , then you we ten the sequence of primes in increasing order by p_1, p_2, p_3, \ldots For a give
 [Up to 10] Welcome to Proof some famous open problems! Instructions: The following six s Submit a string of 6 letters in wit is false. If the proportion of the receive 10 √√x₁x₂x₃x₄x₅x₆ points (a) (Fortune's conjecture) Denominating positive integer n, let m be to m must also be prime. 	by Democracy , the minigame where you (pl.) get to decide the truth of statements are currently open: nobody knows whether they are true or fals which the kth letter is Y if you think statement k is true and N if you think statement k is x_k , then you we state the sequence of primes in increasing order by p_1, p_2, p_3, \ldots For a given the smallest integer greater than 1 such that $p_1p_2\cdots p_n+m$ is prime. Then
 [Up to 10] Welcome to Proof some famous open problems! Instructions: The following six s Submit a string of 6 letters in wit is false. If the proportion of the receive 10 √√x₁x₂x₃x₄x₅x₆ points (a) (Fortune's conjecture) Denote positive integer n, let m be to m must also be prime. (b) (Euler brick) There exists an is an integer. 	by Democracy, the minigame where you (pl.) get to decide the truth of statements are currently open: nobody knows whether they are true or fals which the kth letter is Y if you think statement k is true and N if you think statement k is x_k , then you we state the sequence of primes in increasing order by p_1, p_2, p_3, \ldots For a given the smallest integer greater than 1 such that $p_1p_2\cdots p_n+m$ is prime. Then $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in
 [Up to 10] Welcome to Proof some famous open problems! Instructions: The following six s Submit a string of 6 letters in wit is false. If the proportion of to receive 10 √√x1x2x3x4x5x6 points (a) (Fortune's conjecture) Denote positive integer n, let m be to m must also be prime. (b) (Euler brick) There exists an is an integer. (c) (No-three-in-line problem) I on an n × n chessboard such 	by Democracy, the minigame where you (pl.) get to decide the truth of statements are currently open: nobody knows whether they are true or fals which the kth letter is Y if you think statement k is true and N if you think statement k is x_k , then you we state the sequence of primes in increasing order by p_1, p_2, p_3, \ldots For a given the smallest integer greater than 1 such that $p_1p_2\cdots p_n+m$ is prime. Then $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in
 [Up to 10] Welcome to Proof some famous open problems! Instructions: The following six some famous of 6 letters in which it is false. If the proportion of the receive 10 √√x1x2x3x4x5x6 points (a) (Fortune's conjecture) Denote positive integer n, let m be the m must also be prime. (b) (Euler brick) There exists an is an integer. (c) (No-three-in-line problem) It on an n × n chessboard such definition. (d) (Brocard's problem) There exists are some famous problem) There exists are some famous problem. 	by Democracy, the minigame where you (pl.) get to decide the truth a statements are currently open: nobody knows whether they are true or fals which the kth letter is Y if you think statement k is true and N if you think statement k is x_k , then you we state the sequence of primes in increasing order by p_1, p_2, p_3, \ldots For a given the smallest integer greater than 1 such that $p_1p_2\cdots p_n + m$ is prime. Then $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in which the distance between any two vertical at $a \times b \times c$ rectangular prism in the $a \times b \times c$ rectangular prism in the $a \times b \times c$ rectangular prism in the $a \times b \times c$ rectangular prism in the $a \times b \times c$ rectangular prism in
 [Up to 10] Welcome to Proof some famous open problems! Instructions: The following six some famous of 6 letters in which it is false. If the proportion of the receive 10 √√x1x2x3x4x5x6 points (a) (Fortune's conjecture) Denote positive integer n, let m be the m must also be prime. (b) (Euler brick) There exists an is an integer. (c) (No-three-in-line problem) It on an n × n chessboard such definition. (d) (Brocard's problem) There exists are some famous problem) There exists are some famous problem. 	by Democracy, the minigame where you (pl.) get to decide the truth of statements are currently open: nobody knows whether they are true or false which the kth letter is Y if you think statement k is true and N if you think statement k is a sum that have the same answer as you for statement k is x_k , then you we have the sequence of primes in increasing order by p_1, p_2, p_3, \ldots For a given the smallest integer greater than 1 such that $p_1p_2\cdots p_n+m$ is prime. Then $a \times b \times c$ rectangular prism in which the distance between any two vertical and $a \times b \times c$ rectangular prism in which the distance between any two vertical and the property of the place $a \times b \times c$ rectangular prism in which the distance between any two vertical places are collinear.
 [Up to 10] Welcome to Proof some famous open problems! Instructions: The following six s Submit a string of 6 letters in wit is false. If the proportion of the receive 10 √√x1x2x3x4x5x6 points (a) (Fortune's conjecture) Denote positive integer n, let m be to m must also be prime. (b) (Euler brick) There exists an is an integer. (c) (No-three-in-line problem) I on an n × n chessboard such d) (Brocard's problem) There et al. (e) (Erdős-Straus conjecture) Formula (e) 	the the sequence of primes in increasing order by p_1, p_2, p_3, \ldots . For a given the smallest integer greater than 1 such that $p_1p_2\cdots p_n+m$ is prime. Then $a\times b\times c$ rectangular prism in which the distance between any two vertices at $a\times b\times c$ rectangular prism in which the distance between any two vertices at $a\times b\times c$ rectangular prism in which the distance between any two vertices at $a\times b\times c$ rectangular prism in which the distance between any two vertices at $a\times b\times c$ rectangular prism in which the distance between any two vertices at $a\times b\times c$ rectangular prism in which $a\times b\times c$ rectangular prism in $a\times b\times c$

11.	[11] Let $a, b,$ and c be real numbers such that	
	$\frac{2a+b+c}{a} = 3$, $\frac{a+2b+c}{b} = 4$, $\frac{a+b+2c}{c}$	=N.
	Compute N .	
	Team Name:	Answer:
12.	[11] Aditya and Noam start flipping coins at the same time. Aditya flip Noam is eating a banana, so he only flips his coin every 30 seconds. What is heads before (not at the same time as) Aditya?	
	Team Name:	Answer:
12		one ones and twee such that any
13.	[12] Mr. Kats writes a 2024-digit sequence on the board consisting of zeroes, ones, and twos such that any four consecutive digits sum to a multiple of 3. How many sequences could he have written down?	
	Team Name:	Answer:
14.	[12] In the interior of a cube of side length 6, eight spheres are drawn, each the cube's sides. Then, a ninth sphere is drawn tangent to the first eight congruent, what is their common radius?	
	Team Name:	Answer:
15.	[13] Compute the last 3 digits in the decimal representation of $2024^{2025^{2026}}$	
	Team Name:	Answer:
16	[13] In parallelogram $ABCD$, the reflection of diagonal \overline{AC} over the bisect	
10.	If $CD = 9$ and $DP = 4$, compute the length of \overline{AD} .	of of ZDAD intersects OD at F
	Team Name:	Answer:

17.	[14]	Compute

$$\sum_{m=2}^{\infty} \sum_{n=3}^{\infty} \left(\frac{2}{n}\right)^m.$$

	Team Name:	Answer:
18.	-	e plane, we say that θ_{ℓ} is the smaller of the two angles formed by the ured in radians). Compute the sum of θ_{ℓ} over all segments ℓ whose ween 0 and 4, inclusive.
	Team Name:	Answer:
19.	[15] For how many positive integers n l	less than 200 do n and $\binom{n}{3}$ have the same last two digits?
	Team Name:	Answer:
20		
20.	is true, N if you think it is false, and X	rs corresponding to each statement: put Y if you think the statement if you do not wish to answer. You will receive $\frac{(n+1)(n+2)}{2}$ points for ero points if any of the questions you choose to answer are incorrect XXXXX" you will get one point.
	(a) If the sum of the divisors of a posit	ive integer n is prime, then n has a prime number of divisors.
	(b) In Graphtopia, all flights between p flights to exactly three other airpor	pairs of airports go in both directions. From each airport, there are rts, and one can travel between any two airports via a sequence of s destroyed by a hurricane, it is guaranteed that one can still travel
	(c) There exists an injective function f	: $\mathbb{R} \to \mathbb{R}$ such that $f(x^2 - 2023x) - f(2x - 2024)^2 \ge \frac{1}{4}$ for all real x
	(d) If a triangle has integer side lengths	s and integer area, then its area is even.
	(e) Given triangle $\triangle ABC$, there is a un	nique parabola tangent to \overline{AB} at B and \overline{AC} at C .
	(f) Let a_1, a_2, a_3, \dots be a sequence of p that, as n varies, the expression	positive real numbers for which $a_1 + a_2 + a_3 + \cdots$ converges. Suppose
	$\overline{a_{n+}}$	$\frac{a_n}{\sum_{k=n+1}^{\infty} a_{k+1}} = \frac{a_n}{\sum_{k=n+1}^{\infty} a_k}$
	is constant. Then, a_1, a_2, a_3, \ldots is	a geometric sequence.
	Toom Name:	A nowow
	Team Name:	Answer:

21.	[16] Given a prime p , we say that positive integer n is pseudo-cyclic with signature p if n , along with all the numbers formed by cyclically permuting the digits of n (preserving leading zeroes), are multiples of p . For example, 1034 is pseudo-cyclic with signature 11 because 1034, 0341, 3410, and 4103 are all multiples of 11	
	If n is a six-digit pseudo-cyclic number	er, compute the sum of all possible values of its signature.
	Team Name:	Answer:
22.	[16] If x, y, z are positive real number $(x+y)(y+z)$.	ers such that $xyz(x+y+z)=2024$, find the smallest possible value of
	Team Name:	Answer:
23.		e coordinate plane with nonnegative integer coordinates summing to at a the number of ways to choose n points in S_n such that no two share $a_2 + \cdots + a_{10}$?
	Team Name:	Answer:
24.	the measure of $\angle ABC$ is 60°. Let T	the lengths of sides \overline{AB} , \overline{BC} , and \overline{CD} are 4, 6, and 2 respectively, and be the point such that $BT=4$ and $CT=2$. When the circumradius ole choices of D , what is the area of $ABCD$?
	Team Name:	Answer:
25.	[18] Let N be the number of ways to	tile a 4×2024 board using only T-tetrominoes (pictured below). Find act) primes in the prime factorization of N . For example, if $N=12$,
	Team Name:	Answer:

26.	the product of the numbers on the three faces con	ative integer. Then, each vertex of the cube is assigned taining that vertex. In how many possible ways can we table is 81, where rotations and reflections of labelings
	Team Name:	Answer:
27.	[19] A regular 2024-gon $A_1A_2\cdots A_{2024}$ is inscribed	in the unit circle in the complex plane. Given that A_1 , the difference between the largest and smallest possible expressed as $\tan \theta$, with $0 < \theta < \frac{\pi}{2}$. Compute θ .
	Team Name:	Answer:
28.	[19] In acute triangle $\triangle ABC$, altitudes \overline{AD} , \overline{BE} , a	and \overline{CF} are drawn. Point X is on \overline{BC} such that the line that the distance from B to \overline{DF} is 20, the distance from pute $CX-BX$.
00		
<i>2</i> 9.	Team Name:	are there such that $n \ge k, n+k < 64, \text{and} {n \choose k}$ is odd? Answer:
30.	[20] Compute the number of pairs of natural number $\frac{a}{b+1} <$	pers (a,b) such that $a,b<1000$ and $\sqrt{3}<\frac{a+1}{b}.$
	Note that $\sqrt{3} \approx 1.732$.	
	Team Name:	Answer: