Contrôle continu 3 - Mathématiques

Groupe MP1

Le barème est donné à titre indicatif.

Exercice 1 [4 pts]

- 1. Donner le développement limité à l'ordre 4 en 0 de la fonction $x \mapsto \sin(x)$.
- 2. Soit E un espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E. Donner la formule de Grassmann pour F et G.
- 3. Soit E et F deux espaces vectoriels et $f: E \to F$ une application linéaire. Montrer que $\ker(f)$ est un sous-espace vectoriel de E.

Exercice 2 [5 pts]

Soit f la fonction définie par $f(x) = \exp(-x)\ln(1+x)$ pour x > -1.

1. Montrer que le développement limité à l'ordre 3 en 0 de f est donné par

$$f(x) = x - \frac{3x^2}{2} + \frac{4x^3}{3} + o(x^3)$$
 en 0.

- 2. (a) Déterminer une équation de la tangente à la courbe représentative de f au point d'abscisse 0.
 - (b) Donner la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse 0.
- 3. Déterminer, en citant un résultat précis du cours, les valeurs de f(0), f'(0), f''(0) et f'''(0) (sans calculer les dérivées successives de f).

Exercice 3 [6 pts]

1. Les ensembles suivants sont-ils des espaces vectoriels? Justifier la réponse.

(a)
$$E_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \mid a+d=1 \right\},$$

(b)
$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y = 0 \text{ et } y = z\},\$$

(c)
$$E_3 = \{ P \in \mathbb{R}[X] \mid P(0) \times P'(0) = 0 \}.$$

2. Les applications suivantes sont-elles linéaires? Justifier la réponse.

(a)
$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

(b)
$$f_2: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$

$$(x,y,z) \mapsto (x,y,z,1)$$

(a)
$$f_1$$
. \mathbb{R} \longrightarrow \mathbb{R} (x,y) \mapsto $x+y$
(b) f_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}^4 (x,y,z) \mapsto ($x,y,z,1$)
(c) f_3 : $\mathbb{R}[X]$ \longrightarrow $\mathbb{R}[X]$ P \mapsto $P(0) + P'(0)X$

Exercice 4 [7 pts]

On considère F et G les sous espaces vectoriels de \mathbb{R}^3 définis par

$$F = \{(2a+b, a+b+c, a-c) | \ a, \ b, \ c \in \mathbb{R} \} \ \text{ et } G = \{(x,y,z) \in \mathbb{R}^3 \ | \ 2x+y=0 \ \text{et } x=z \}.$$

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par f(x, y, z) = (2x + y, x + y + z, x - z) pour $(x, y, z) \in \mathbb{R}^3$.

- 1. Montrer que f est une application linéaire.
- 2. Vérifier que Im(f) = F et que ker(f) = G.
- 3. Déterminer une base et la dimension de F.
- 4. En déduire la dimension de G en utilisant un résultat du cours.
- 5. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .

Correction

Proposée par J. Le Clainche

Correction exercice 1

- 1. Au voisinage de 0, on a $\sin(x) = x \frac{x^3}{6} + o(x^4)$.
- 2. D'après la formule de Grassmann, on a $\dim(F+G) = \dim(F) + \dim(G) \dim(F\cap G)$.
- 3. On a $f(0_E) = 0_F$ par linéarité de f donc $0_E \in \ker(f)$ et $\ker(f)$ est non vide.
 - Soient $u, v \in \ker(f)$ et $\lambda \in \mathbb{R}$, on a

$$f(\lambda u + v) = \lambda f(u) + f(v) = \lambda \times 0 + 0 = 0$$

donc $\lambda u + v \in \ker(f)$ et donc $\ker(f)$ est stable par combinaisons linéaires.

Finalement, on a montré que $\ker(f)$ est non vide et stable par combinaisons linéaires donc $\ker(f)$ est un sous-espace vectoriel de E.

Correction exercice 2

1. Au voisinage de 0, on a $e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3)$ et $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$ donc par produit des développements limités on a

$$f(x) = x - \frac{3x^2}{2} + \frac{4x^3}{3} + o(x^3) \text{ en } 0.$$

- 2. (a) Au voisinage de 0, on a f(x) = x + o(x) donc la tangente en 0 à la courbe représentative de f a pour équation y = x.
 - (b) Au voisinage de 0, on a $f(x) = x \frac{3}{2}x^2 + o(x^2)$, le premier terme non nul suivant l'ordre 1 est d'ordre 2 (donc d'ordre pair) et de coefficient strictement négatif. Ainsi, la tangente à la courbe représentative de f en 0 est au dessus de la courbe au voisinage de 0.
- 3. La fonction f est 3 fois dérivable au voisinage de 0 donc d'après la formule de Taylor Young à l'ordre 3 en 0, on a

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 + o(x^3).$$

Finalement, par unicité du développement limité de f à l'ordre 3 en 0 et en identifiant les coefficients, on trouve

$$f(0) = 0$$
, $f'(0) = 1$, $f''(0) = -3$, $f'''(0) = 8$.

Correction exercice 3

- 1. (a) On a $0+0=0\neq 1$ donc $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \notin E_1$ et donc E_1 n'est pas un sous-espace vectoriel.
 - (b) On a $2 \times 0 0 = 0$ et 0 = 0 donc $(0, 0, 0) \in E_2 \neq \emptyset$
 - Soient $u_1 = (x_1, y_1, z_1)$ et $u_2 = (x_2, y_2, z_2)$ deux éléments de E_2 et $\lambda \in \mathbb{R}$, on pose $v = \lambda u_1 + u_2 = (x, y, z)$.

D'une part, $2x - y = 2(\lambda x_1 + x_2) - (\lambda y_1 + y_2) = 2\lambda x_1 - \lambda y_1 + 2x_2 - y_2 = 0$ car $u_1, u_2 \in E_2$

D'autre part, $y = \lambda y_1 + y_2 = \lambda z_1 + z_2 = z \text{ car } u_1, u_2 \in E_2$

Donc $v \in E_2$ et E_2 est stable par combinaisons linéaires.

 E_2 est donc non vide et stable par combinaisons linéaires donc E_2 est un sous-espaces vectoriel de \mathbb{R}^3 donc un espace vectoriel.

(c) Soit P=1 et Q=X, on a $P\in E_3$ et $Q\in E_3$ mais P+Q=1+X et donc $(P+Q)'(0)\times (P+Q)(0)=1\times 1=1\neq 0$ donc $P+Q\notin E_3$ et E_3 n'est pas stable pour l'addition donc pas un espace vectoriel.

2

2. (a) Soient $(x, y), (x', y') \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$.

$$f_1((x,y) + \lambda(x',y')) = f_1(x + \lambda x', y + \lambda y')$$

= $x + y + \lambda(x' + y')$
= $x + y + \lambda(x' + y')$
= $f_1(x,y) + \lambda f_1(x',y')$

L'application f_1 est donc linéaire.

- (b) On a $f_2(0,0,0) = (0,0,0,1) \neq (0,0,0,0)$ donc f_2 n'est pas linéaire.
- (c) Soient $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$.

$$f_3(P + \lambda Q) = (P + \lambda Q)(0) + (P + \lambda Q)'(0)X$$

= $P(0) + \lambda Q(0) + P'(0)X + \lambda Q'(0)X$
= $P(0) + P'(0)X + \lambda (Q(0) + Q'(0)X)$
= $f_3(P) + \lambda f_3(Q)$

L'application f_3 est donc linéaire.

Correction exercice 4

1. Soient $u = (x, y, z) \in \mathbb{R}^3$, $v = (a, b, c) \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$. $f(u + \lambda v) = f((x + \lambda a, y + \lambda b, z + \lambda c))$ $= (2(x + \lambda a) + (y + \lambda b), (x + \lambda a) + (y + \lambda b) + (z + \lambda c), (x + \lambda a) - (z + \lambda c))$ $= (2x + y, x + y + z, x - z) + \lambda(2a + b, a + b + c, a - c)$ $= f(u) + \lambda f(v)$.

L'application f est donc linéaire.

- 2. On a $F = \{(2a+b, a+b+c, a-c) | a, b, c \in \mathbb{R}\} = \{f(a,b,c) | (a,b,c) \in \mathbb{R}^3\} = \text{Im}(f)$.
 - Soit $(x, y, z) \in \mathbb{R}^3$, on a

$$(x, y, z) \in \ker(f) \iff \begin{cases} 2x + y = 0 \\ x + y + z = 0 \\ x - z = 0 \end{cases}$$

$$\iff \begin{cases} 2x + y = 0 \\ 2x + y = 0 \\ 2x + y = 0 \\ x = z \end{cases}$$

$$\iff (x, y, z) \in G$$

On a donc ker(f) = G.

3. On a F = Im(f) donc F est engendré par l'image d'une base de \mathbb{R}^3 . On a donc

$$F = \text{Vect}(f(e_1), f(e_2, f(e_3))) = \text{Vect}((2, 1, 1), (1, 1, 0), (0, 1, -1)) = \text{Vect}((1, 1, 0), (0, 1, -1))$$

car (2,1,1) = 2(1,1,0) - (0,1,-1). On pose $u_2 = (1,1,0)$ et $u_3 = (0,1,-1)$. On a montré que F est engendré par $\{u_2,u_3\}$, de plus ces deux vecteurs sont non colinéaires donc la famille $\{u_2,u_3\}$ est libre et finalement (u_2,u_3) est une base de F et donc $\dim(F) = 2$.

- 4. D'après le théorème du rang, on a $\dim(\mathbb{R}^3) = \dim(\ker(f)) + \dim(\operatorname{Im}(f)) = \dim(F) + \dim(G)$. Ainsi $\dim(G) = 3 2 = 1$.
- 5. On remarque que $v = (1, -2, 1) \in G$ donc G = Vect(v). La famille $\{u_2, u_3, v\}$ est libre, c'est donc une base de \mathbb{R}^3 obtenue en concaténant une base de F et une base de G donc F et G sont supplémentaires dans \mathbb{R}^3 .