2. Data essentials

Transfer exploration seminar: Statistics and Data Science

Dr. Uma Ravat PSTAT 194TR

R essentials: summary

- Console and Environment Panes, Command Prompt
- Objects, Assignment Operator : <-
 - Variables: nouns
 - Functions: verbs
 - Naming conventions
- Packages: ready made functions and datasets from others
 - Install once
 - Load every time you need it
- Help: ?
- Comments: #
 - use them! for yourself, the grader
- Coding style : have one and be consistent
 - See chapters 1-3 of the tidyverse style guide
- Environment

Next we will see...

Types of Statistical Data

- Numerical
- Categorical

EDA - Simple Techniques

- Data wrangling
- Quantative data summary
- Visual data summary

Disclaimer: Lot's of new terminology. Focus on how R handles things

Review after lecture

Maintain a glossary of functions used.

What is data?

What is data?

Data can be any unprocessed fact, value, text, sound file, image, video . . .

Examples

- your homework files
- photos
- each click on a website
- each transation at your bank, credit card, grocery store

Types of statistical data and formats

Types of Statistical Data

Type of data determines the analysis or models you can use

Quantitative or numeric: Numeric information

- Example: height, weight, age, GPA
- can use math functions eg. average, max, min, sum
- not everything represented by a number is a quantitative/numeric variable
 - Zipcode, StudentID

Qualitative or categorical: descriptions (usually words)

- Example: Eye color, state of residence,
- can't use math functionscategorical variables have levels

levels(penguins\$species)

```
[1] "Adelie"
                "Chinstrap" "Gentoo"
```

Types of Numerical data

- Discrete: data that can be counted and therefore can take on only certain values
 - eg. shoe size, number of questions answered correctly

- Continuous : data that is measured on an infinite scale
 - eg. Height, weight, temperature

Types of Categorical data

- Ordinal : data that can be ordered or data on a scale
 - eg. income (low, medium, high)

- Nominal : data with no apparent order to it
 - eg. gender

Let's Practice!: Identify the type of data

• Age: 12, 13, 17 years old

• Spice level: mild, medium, hot

■ Temperature: 77.5 , 80.2, 73

Eye color: green, blue, brown, black

Structure or format of data

What is a dataset?

A dataset is any collection of data

Typically, a dataset contains data in tabular form:

- Variables across the columns
- Observations or data points down the rows

What does data *look like*? Where is the dataset?

generally a .csv file

```
species,island,bill_length_mm,bill_depth_mm,flipper_length_mm,body_mass_g,sex
Adelie,Torgersen,39.1,18.7,181,3750,MALE
Adelie,Torgersen,40.3,18,195,3250,FEMALE
Adelie,Torgersen,40.3,18,195,3250,FEMALE
Adelie,Torgersen,36.7,19.3,193,3450,FEMALE
Adelie,Torgersen,36.7,19.3,193,3450,FEMALE
Adelie,Torgersen,38.3,20.6,190,3650,MALE
Adelie,Torgersen,38.9,17.8,181,3625,FEMALE
Adelie,Torgersen,38.9,17.8,181,3625,FEMALE
Adelie,Torgersen,34.1,18.1,1193,3475,
Adelie,Torgersen,42,20.2,190,4250,
Adelie,Torgersen,43,8,17.1,186,3300,
```

• A .csv file can be loaded into an R as a data frame.

.csv file as a data frame in R

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA)

Goals:

- Understand data type, shape & structure
- Investigate important variables and groups
- Identify potential outliers
- Explore patterns in data

Simple EDA Techniques

Simple EDA Techniques

 Data wrangling: Inspect the data and data types, handle missing data.

 Quantitative data summary: Calculate descriptive statistics of each column such as mean, standard deviation to know the center and spread for each variable(column)

 Visual data summary: Create simple visualizations of the data such as histograms, box plots, bar plots, scatter plots to see distribution of data.

Exploring penguins dataset in R

The penguins dataset is stored in a data frame with

- 344 observations/samples/cases/subjects (rows)
 - each case represents a penguin
- 8 variables (columns)
 - species, island, bill_length_mm, bill_depth_mm etc
 - each corresponds to some measurement of the penguin

Work Along

Explore the penguins dataset using R functions

Quantitative Data Summary

Quantitative Data Summary

 $Describing/Summarizing\ data\ with\ numbers$

Summarizing Categorical Data with

numbers

Summarizing categorical data: table

Categorical data are summarized with counts or proportions.

```
table(penguins$species)
##
##
      Adelie Chinstrap
                          Gentoo
##
         152
                    68
                             124
prop.table(table(penguins$species))
##
##
      Adelie Chinstrap Gentoo
## 0.4418605 0.1976744 0.3604651
```

There are 152 or 44.19% penguins of Adelie species etc

Summarizing Numerical Data with

numbers

Summarizing Numerical Data: Descriptive Statistics

- Measures of center
 - mean, median, mode

- Measures of spread
 - range, variance, standard deviation

Measures of center

• Mean : Average value of the data

• Median: Middle value of the data

Mode : Most frequently occurring value

Measures of center: Mean

Mean of a list of numbers $= \bar{x} = \frac{\text{sum of numbers}}{\text{how many numbers in the list}}$

$$x \leftarrow c(1, 5, 1, 2, 5, 4, 6)$$

mean(x)

[1] 3.428571

sum(x)/length(x)

[1] 3.428571

If you change the numbers in the list then the mean(average) changes

Measures of center: Median

[1] 4

```
x \leftarrow c(1, 5, 3, 2, 5, 4, 6)
x \leftarrow sort(x)
X
## [1] 1 2 3 4 5 5 6
median(x)
## [1] 4
Median is not sensitive to changes in extreme values
x \leftarrow c(1, 5, 3, 2, 5, 4, 600)
median(x)
```

Measures of center: Mode

1 2 3 4 6 5 ## 1 1 1 1 1 2

```
x <- c(1, 5, 3, 2, 5, 4, 6)
sort(table(x))
## x</pre>
```

23

Descriptive Summary: Quartiles: Q1, Q3, and Interquartile Range

Interquartile Range (IQR) = Q3 - Q1 which represents the middle 50% of the data.

Quartiles in R

```
x \leftarrow c(1, 5, 3, 2, 5, 4, 6)
quantile(x, .25) # quantile function not quartile!
## 25%
## 2.5
quantile(x, .75)
## 75%
## 5
```

Measures of spread

Below are midterm results from three classes.

Class 1: 80 80 80 80 80

Class 2: 76 78 80 82 84

Class 3: 60 70 80 90 100

What do you notice about midterm results?

Measures of spread

- Range
- Variance
- Standard Deviation

Give insight into how "spread out" the data is from the mean or average

- small spread: the data is packed near the center
- large spread, the data is spread spread out or not concentrated near the center.

Measures of spread: Range

difference between the lowest and highest values.

```
x <- c(1, 5, 3, 2, 5, 4, 6)
sort(x)

## [1] 1 2 3 4 5 5 6

max(x) - min(x)

## [1] 5</pre>
```

Measures of spread: Variance and standard deviation

sample variance = (average) of squared distance from the mean

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Where s^2 is the sample variance, x_i is a sample observation value, \bar{x} is the sample mean, and n is the number of observations.

var(x)

[1] 3.238095

Measures of spread: standard deviation

sample standard deviation = square root of variance

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

sqrt(var(x))

[1] 1.799471

sd(x)

[1] 1.799471

Summarizing numeric data: 5 number summary

```
summary(penguins$bill_length_mm)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 32.10 39.23 44.45 43.92 48.50 59.60 2
```

Includes measures of

- center mean, median
- spread range, quartiles,

Wrapping up summary statistics:

Beware summary statistics alone... meet the DINO DOZEN

Simple EDA Techniques

 Data wrangling: Inspect the data and data types, handle missing data.

 Quantitative data summary: Calculate descriptive statistics of each column such as mean, standard deviation to know the center and spread for each variable(column)

 Visual data summary: Create simple visualizations of the data such as histograms, box plots, bar plots, scatter plots to see distribution of data.

Visual data summary

Visual data summary

Describing/Summarizing data graphically by creating simple visualizations

Visualizing numeric data

Visualizing numerical data: Histograms

Count/Frequency histogram

```
hist(penguins$bill_length_mm,
    main = "Histogram of Bill Length of Penguins",
    xlab = "Bill Length")
```

Histogram of Bill Length of Penguins

Probability/Density Histogram

```
hist(penguins$bill_length_mm, probability = TRUE,
    main = "Histogram of Bill Length of Penguins",
    xlab = "Bill Length")
```

Histogram of Bill Length of Penguins

Skewed data

When data display a skewed distribution we rely on median rather than the mean to understand the center of the distribution.

Explore this cool site: Exploring Histograms Visually

Image: Sirkin, R. M. (2006). Measuring central tendency. In Statistics for the social sciences (pp. 83-126). SAGE Publications, Inc., https://www.doi.org/10.4135/9781412985987

Visualizing 5-number summary: box plot

Whiskers can go as high as Q3 + 1.5 IQR and as low as Q1 - 1.5 IQR

Anything beyond whiskers indicated with a dot at the observation value are potential outliers

Boxplot of Bill Length of Penguins

Bill Length

Visualising categorical data

Visualising categorical data: Bar plots

Frequency/Count Bar Plots

```
barplot(table(penguins$species ),
    main = "Barplot of counts of Species of Penguins",
    xlab = "Species", ylab = "Count")
```

Barplot of counts of Species of Penguins


```
barplot(prop.table(table(penguins$species) ),
    main = "Barplot of proportions of Species of Penguins",
    xlab = "Species", ylab = "Proportion")
```

Barplot of proportions of Species of Penguins

Palmer Penguins¹

¹Penguin artworks by @allison_horst.

Comparing more than one variable

Side-by-side Boxplots: Visualizing numerical \sim categorical variable together

What can you conclude from this plot?

Side-by-side boxplots use the y \sim x notation. In R, this construct is called a formula

Scatterplot: Visualizing two numerical variables

```
plot(penguins$bill_length_mm,
    penguins$flipper_length_mm,
    xlab ="Bill Length (mm)", ylab ="Flipper Length (mm)",
    main = "relationship between Bill length and Flipper length")
```

relationship between Bill length and Flipper length

What can you conclude from this plot?

Data Essentials Summary

Types of Statistical Data

- Numerical discrete or continous
- Categorical ordinal or nominal

EDA - Simple Techniques

- Data wrangling variables, observations, data types
- Quantative data summary center, spread, 5 number summary
- Visual data summary bar plots, histogram, box plots

Disclaimer: Lot's of new terminology. Focus on how R handles things

Review after lecture

Maintain a glossary of functions used.

Next we will see...

- Conditionals
- Functions