作业 #1

1. [1.2(1)] 将下列线性规划问题化成标准形式:

max
$$z = 3x_1 - 4x_2 + 2x_3 - 5x_4$$

s.t.
$$\begin{cases} 4x_1 - x_2 + 2x_3 - x_4 = -2\\ x_1 + x_2 - x_3 + 2x_4 \le 14\\ -2x_1 + 3x_2 + x_3 - x_4 \ge 2\\ x_1, x_2, x_3 \ge 0, x_4$$
无约束

解: 令 $x_4 = x'_4 - x''_4$, 得:

$$\max z = 3x_1 - 4x_2 + 2x_3 - 5x'_4 + 5x''_4$$
s.t.
$$\begin{cases}
-4x_1 + x_2 - 2x_3 + x'_4 - x''_4 = 2 \\
x_1 + x_2 - x_3 + 2x'_4 - 2x''_4 + x_5 = 14 \\
-2x_1 + 3x_2 + x_3 - x'_4 + x''_4 - x_6 = 2 \\
x_1, x_2, x_3, x'_4, x''_4, x_5, x_6 \ge 0
\end{cases}$$

2. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 3x_1 + 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1, x_2 \ge 0 \end{cases}$$

解: (图解法)

如图,可行域是由 ABCO 组成的凸多边形(红色阴影线部分)。蓝色点线为目标 函数等值线,由图可知最优解为 B 点,即 $x^* = \left(\frac{15}{4}, \frac{3}{4}\right)$ 。

(单纯形法)

$$\max z = 2x_1 + x_2 \qquad \max z = 2x_1 + x_2$$

$$\text{s.t.} \begin{cases} 3x_1 + 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1, x_2 \ge 0 \end{cases} \Rightarrow \text{s.t.} \begin{cases} 3x_1 + 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

初始单纯形表 (对应顶点 O)

	c_{j}		2	1	0	0
c_{B}	\mathcal{X}_{B}	b	x_1	X_2	<i>X</i> ₃	X_4
0	<i>x</i> ₃	15	3	5	1	0
0	X_4	24	[6]	2	0	1
	σ_{j}		2	1	0	0

第二张单纯形表 (对应顶点 C)

	c_{j}		2	1	0	0
c_{B}	\mathcal{X}_{B}	b	X_1	X_2	x_3	X_4
0	<i>x</i> ₃	3	0	[4]	1	-1/2
2	x_1	4	1	1/3	0	1/6
	σ_{j}		0	1/3	0	-1/3

最终单纯形表 (对应顶点 B)

	c_{j}		2	1	0	0
c_{B}	\mathcal{X}_{B}	b	x_1	x_2	<i>X</i> ₃	X_4
1	x_2	3/4	0	1	1/4	-1/8
2	x_1	15/4	1	0	-1/12	5/24
	σ_{j}		0	0	-1/12	-7/24

因为 $\sigma_j \leq 0$, $\forall j$,所以得最优解: $x^* = \left(\frac{15}{4}, \frac{3}{4}\right)$

3. [1.3(2)] 用单纯形法求解下列线性规划问题:

min
$$z = 5x_1 - 2x_2 + 3x_3 + 2x_4$$

s.t.
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 \le 7 \\ 2x_1 + 2x_2 + x_3 + 2x_4 \le 3 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

A:
$$x^* = \left(0, \frac{3}{2}, 0, 0, 4, 0\right)^T$$

	c_{j}		-5	2	-3	-2	0	0
C_B	\mathcal{X}_{B}	b	x_1	x_2	X_3	x_4	X_5	x_6
0	<i>x</i> ₅	7	1	2	3	4	1	0
0	<i>x</i> ₆	3	2	2	1	2	0	1
			-5	2	-3	-2	0	0
0	X_5	4	-1	0	2	2	1	-1
2	x_2	3/2	1	1	1/2	1	0	1/2
	A 17 17		-7	0	-4	-4	0	-1

4. [1.4(1)] 分别用大 M 法和两阶段法求解下列线性规划问题:

$$\max z = 2x_1 + 3x_2 - 5x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 = 7 \\ 2x_1 - 5x_2 + x_3 \ge 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解: 【大M法】将线性规划问题转化为:

$$\max z = 2x_1 + 3x_2 - 5x_3 - Mx_5 - Mx_6$$
s. t.
$$\begin{cases} x_1 + x_2 + x_3 + x_5 = 7 \\ 2x_1 - 5x_2 + x_3 - x_4 + x_6 = 10 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

			2	3	-5	0	-M	-M
c _B	X _B	b	x_1	x_2	x_3	X_4	X_5	X_6
-M	<i>X</i> ₅	7	1	1	1	0	1	0
-M	<i>x</i> ₆	10	[2]	-5	1	-1	0	1
			2+3M	3-4M	-5+2M	-M	0	0

-M	X_5	2	0	[7/2]	1/2	1/2	1	-1/2
2	x_1	5	1	-5/2	1/2	-1/2	0	1/2
			0	$8 + \frac{7}{2}M$	$-6 + \frac{1}{2}M$	$1 + \frac{1}{2}M$	0	$-1\frac{3}{2}M$
3	x_2	4/7	0	1	1/7	1/7	2/7	-1/7
2	x_1	45/7	1	0	6/7	-1/7	5/7	1/7
			0	0	$-\frac{50}{7}$	$-\frac{1}{7}$	$-\frac{16}{7}$ - M	$\frac{1}{7}$ – M

由上表得,最优解为 $x^* = \left(\frac{45}{7}, \frac{4}{7}, 0\right)^T$,最优目标函数值为 $\frac{102}{7}$

【两阶段法】添加人工变量构造辅助问题:

$$\min f = x_4 + x_6$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 7\\ 2x_1 - 5x_2 + x_3 & -x_5 + x_6 = 10\\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

			0	0	0	1	0	1
$c_{_{\rm B}}$	X _B	b	x_1	x_2	x_3	X_4	X_5	x_6
1	x_4	7	1	1	1	1	0	0
1	x_6	10	[2]	-5	1	0	-1	1
			-3	4	-2	0	1	0
1	x_4	2	0	[7/2]	1/2	1	1/2	-1/2
0	x_1	5	1	-5/2	1/2	0	-1/2	1/2
			0	-7/2	-1/2	0	-1/2	3/2
0	x_2	4/7	0	1	1/7	2/7	1/7	-1/7
0	x_1	45/7	1	0	6/7	5/7	-1/7	01/7
			0	0	0	1	0	1

第一阶段求得原线性规划问题的基本可行解为 $\left(\frac{45}{7},\frac{4}{7},0,0,0,0\right)^T$,接下来进行第二阶段运算,将第一阶段终表中的人工变量取消,并填入原问题的目标函数的系数。

			2	3	-5	0
$c_{\rm B}$	X _B	b	x_1	x_2	x_3	X_5

3	x_2	4/7	0	1	1/7	1/7
2	x_1	45/7	1	0	6/7	-1/7
			0	0	-50/7	-1/7

由上表得,最优解为 $x^* = \left(\frac{45}{7}, \frac{4}{7}, 0\right)^T$,最优目标函数值为 $\frac{102}{7}$ 。

5. [1.5] 已知线性规划问题:

min
$$z = 2x_1 - x_2 + x_3 + x_5$$

s.t.
$$\begin{cases} x_1 + 2x_3 + x_5 = 4 \\ 2x_1 - 3x_2 + x_4 = 6 \\ x_1 - x_2 + 2x_3 + x_4 = 8 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

现得到其某个基本可行解的单纯形表,如下表所示。

$\mathbf{X}_{\mathbf{B}}$	b	x_1	x_2	x_3	\mathcal{X}_4	X_5
		2	-2	0	0	1
		2	-3	0	с	0
		-0.5	1	1	0	d
O	σ_j	-0.5	а	b	0	0

根据单纯形表的特征, 试求:

- (1) 未知数 a, b, c, d 的值;
- (2) 该基本可行解及其目标函数值;
- (3) 该基本可行解是否为最优解?

解: (1) 据表, 此时基变量为 x_s, x_s, x_s , 易知: b=0, c=1, d=0。

$$a = 1 - (-1) \times (-2) - (-1) \times 1 = 0$$

- (2) 非基变量 $x_1 = x_2 = 0$, 由此求得: $x_3 = 1$, $x_4 = 6$, $x_5 = 2$, 其目标函数值为 3
- (3) 根据检验数可知,该基本可行解是最优解。
- 6. [1.8] 某饲料厂用玉米胚芽粕、大豆饼和酒槽等 3 种原料生产 3 种不同规格的饲料,由于 3 种原料的营养成分不同,因而不同规格的饲料对 3 种原料的比例有特殊的要求,具体要求及产品价格、原料价格、原料的数量见表 1.38,试问该饲料厂应制定怎样的生产计划使得总利润最大?建立线性规划模型并尝试用软件求解。

表 饲料厂生产数据

规格要求	产品 Q ₁	产品 Q 2	产品 Q 3	原料单价 (元/kg)	原料可用 量 (kg)
原料 P ₁	≥ 15%	≥20%	25%	1.7	1500
原料 P2	≥25%	≥ 10%		1.5	1000
原料 P3			≤40%	1.2	2000
产品价格 (元/kg)	2	3	2.3		

解:设 x_{ii} 为产品 Q_i 中原料 P_j 的含量,建立线性规划模型如下:

$$\max \ z = 2\left(x_{11} + x_{12} + x_{13}\right) + 3\left(x_{21} + x_{22} + x_{23}\right) + 2.3\left(x_{31} + x_{32} + x_{33}\right) - 1.7\left(x_{11} + x_{21} + x_{31}\right) \\ -1.5\left(x_{12} + x_{22} + x_{32}\right) - 1.2\left(x_{13} + x_{23} + x_{33}\right) \\ \begin{cases} x_{11} + x_{21} + x_{31} \le 1500 \\ x_{12} + x_{22} + x_{32} \le 1000 \\ x_{13} + x_{23} + x_{33} \le 2000 \\ x_{11} \ge 0.15\left(x_{11} + x_{12} + x_{13}\right) \\ x_{12} \ge 0.25\left(x_{11} + x_{12} + x_{13}\right) \\ x_{21} \ge 0.20\left(x_{21} + x_{22} + x_{23}\right) \\ x_{22} \ge 0.10\left(x_{21} + x_{22} + x_{23}\right) \\ x_{31} = 0.25\left(x_{31} + x_{32} + x_{33}\right) \\ x_{33} \le 0.40\left(x_{31} + x_{32} + x_{33}\right) \\ x_{ij} \ge 0, i = 1, 2, 3; j = 1, 2, 3$$

解得:

$$x_{21}=1500$$
, $x_{22}=1000$, $x_{23}=2000$, $z=7050$

7. **[1.9]** 由于 24 小时内通过某高速公路收费站的车辆数不均匀,因此在收费站工作的人员安排也相应得按时段不同而有所差异。假设根据历史资料统计,在各时段至少所需的职工人数如下表。

表 各时段所需职工人数

时间段	所需职工人数
00:00 ~ 06:00	2
06:00 ~ 10:00	8
10:00 ~ 12:00	4
12:00 ~ 16:00	3

16:00 ~ 18:00	6
18:00 ~ 22:00	5
22:00 ~ 24:00	3

每个职工上班后先工作 4 小时,然后离开 1 小时(休息、就餐等),再工作 4 小时。职工可以在任何正点时间开始上班,试问如何排班能使雇佣的职工 数最少?建立线性规划模型并尝试用软件求解。

解: 设 x_i 为从正点i开始上班的人数(i=0,1,2,L 22,23),目标函数是 24 小时上班总人数最少,即 $\min z = \sum_{i=0}^{23} x_i$ 。约束条件是各时段内每小时在岗职工人数满足最低要求,由此建立线性规划模型如下:

$$\min \ z = \sum_{i=0}^{23} x_i$$

$$\int x_0 + x_{23} + x_{22} + x_{21} + x_{19} + x_{18} + x_{17} + x_{16} \ge 2$$

 $x_1 + x_0 + x_{23} + x_{22} + x_{20} + x_{19} + x_{18} + x_{17} \ge 2$ $x_2 + x_1 + x_0 + x_{23} + x_{21} + x_{20} + x_{19} + x_{18} \ge 2$ $x_3 + x_2 + x_1 + x_0 + x_{22} + x_{21} + x_{20} + x_{19} \ge 2$ $x_4 + x_3 + x_2 + x_1 + x_{23} + x_{22} + x_{21} + x_{20} \ge 2$ $x_5 + x_4 + x_3 + x_2 + x_0 + x_{23} + x_{22} + x_{21} \ge 2$ $x_6 + x_5 + x_4 + x_3 + x_1 + x_0 + x_{23} + x_{22} \ge 8$ $x_7 + x_6 + x_5 + x_4 + x_2 + x_1 + x_0 + x_{23} \ge 8$ $x_8 + x_7 + x_6 + x_5 + x_3 + x_2 + x_1 + x_0 \ge 8$ $x_9 + x_8 + x_7 + x_6 + x_4 + x_3 + x_2 + x_1 \ge 8$ $x_{10} + x_9 + x_8 + x_7 + x_5 + x_4 + x_3 + x_2 \ge 4$ $x_{11} + x_{10} + x_9 + x_8 + x_6 + x_5 + x_4 + x_3 \ge 4$ $x_{12} + x_{11} + x_{10} + x_9 + x_7 + x_6 + x_5 + x_4 \ge 3$ $x_{13} + x_{12} + x_{11} + x_{10} + x_{8} + x_{7} + x_{6} + x_{5} \ge 3$ $x_{14} + x_{13} + x_{12} + x_{11} + x_{9} + x_{8} + x_{7} + x_{6} \ge 3$ $x_{15} + x_{14} + x_{13} + x_{12} + x_{10} + x_{9} + x_{8} + x_{7} \ge 3$ $x_{16} + x_{15} + x_{14} + x_{13} + x_{11} + x_{10} + x_{9} + x_{8} \ge 6$ $x_{17} + x_{16} + x_{15} + x_{14} + x_{12} + x_{11} + x_{10} + x_{9} \ge 6$ $x_{18} + x_{17} + x_{16} + x_{15} + x_{13} + x_{12} + x_{11} + x_{10} \ge 5$ $x_{19} + x_{18} + x_{17} + x_{16} + x_{14} + x_{13} + x_{12} + x_{11} \ge 5$ $x_{20} + x_{19} + x_{18} + x_{17} + x_{15} + x_{14} + x_{13} + x_{12} \ge 5$ $x_{21} + x_{20} + x_{19} + x_{18} + x_{16} + x_{15} + x_{14} + x_{13} \ge 5$ $x_{22} + x_{21} + x_{20} + x_{19} + x_{17} + x_{16} + x_{15} + x_{14} \ge 3$ $x_{23} + x_{22} + x_{21} + x_{20} + x_{18} + x_{17} + x_{16} + x_{15} \ge 3$ $|x_i| \ge 0$ 且为整数, i = 0,1,2,L, 23

$$z=16, \ x_0=0, \ x_1=5, \ x_2=1, \ x_3=0, \ x_4=1, \ x_5=1, \ x_6=1,$$
 软件求得:
$$x_7=0, \ x_8=0, \ x_9=0, \ x_{10}=1, \ x_{11}=0, \ x_{12}=0, \ x_{13}=1, \\ x_{14}=2, \ x_{15}=1, \ x_{16}=1, \ x_{17}=1, \ x_{18}=0, \ x_{19}=0, \ x_{20}=0, \\ x_{21}=0, \ x_{22}=0, \ x_{23}=0.$$
 (解有多个)

8. 假设某种小型设备的生产工厂签订了未来n个月的交货合同,其中第i个月的合同交货量为 d_i 台,i=1,...,n。该工厂每个月在正常生产时间内可生产r台设备,每台生产成本为b元。如果加班生产,由于要支付加班费,每台生产成本为c元(c>b)。生产的设备如果不交货,则每台每月的存储成本为s元。请建立线性规划模型帮助工厂制定合理的生产计划,使得在完成交货合同的前提下最小化总成本。

解一: 设第i个月的正常生产量为 x_i ,第i个月的加班生产量为 x_i' ,则建立的数学模型如下:

$$\min \sum_{i=1}^{n} \left\{ bx_{i} + cx'_{i} + s \sum_{k=1}^{i} (x_{k} + x'_{k} - d_{k}) \right\}$$

$$s.t. \left\{ \sum_{k=1}^{i} (x_{k} + x'_{k} - d_{k}) \ge 0 \right.$$

$$\left\{ x_{i} \le r, \right.$$

$$\left\{ x_{i}, x'_{i} \ge 0, \ i = 1, L, n \right.$$

解二: 设第i个月生产量为 x_i ,第i个月到第i+1个月的库存量是 y_i 。令 $z_i = \max\{(x_i - r), 0\}$,则建立的数学模型如下:

$$\min \sum_{i=1}^{n} \left\{ sy_{i} + bx_{i} + (c - b)z_{i} \right\}$$

$$s.t.\begin{cases} x_{i} + y_{i-1} - d_{i} = y_{i}, \\ y_{0} = y_{n} = 0, \\ z_{i} \ge x_{i} - r, \\ x_{i}, y_{i}, z_{i} \ge 0, i = 1,L, n \end{cases}$$

9. 请给出下列问题等价的线性规划模型:

min
$$2x_1 + 3|x_2 - 10|$$

s.t. $|x_1 + 2| + |x_2| \le 5$

解: 【方法1】

设 $z_1 = |x_2 - 10|$, $z_2 = |x_2 + 2|$, $z_3 = |x_2|$, 那么可等价改写为:

min
$$2x_1 + 3z_1$$

$$s.t. \begin{cases} z_1 \ge x_2 - 10 \\ z_1 \ge -x_2 + 10 \\ z_2 + z_3 \le 5 \\ z_2 \ge x_2 + 2 \\ z_2 \ge -x_2 - 2 \\ z_3 \ge x_2 \\ z_3 \ge -x_2 \end{cases}$$

定义变量 z_1 和 z_2 :

$$z_1 = x_2 - 10$$
, $z_2 = x_1 + 2$

线性规划问题变为:

min
$$2x_1 + 3|z_1|$$

s.t. $|z_2| + |x_2| \le 5$
 $z_1 = x_2 - 10$
 $z_2 = x_1 + 2$

为清除绝对值的影响,引入 $z_1^+, z_1^-, z_2^+, z_2^-, x_2^+, x_2^-$ 使得:

$$|z_1| = z_1^+ + z_1^-, z_1 = z_1^+ - z_1^-$$

 $|z_2| = z_2^+ + z_2^-, z_2 = z_2^+ - z_2^-$
 $|x_2| = x_2^+ + x_2^-, x_2 = x_2^+ - x_2^-$

此时线性规划变为:

min
$$2x_1 + 3(z_1^+ + z_1^-)$$

s.t. $z_2^+ + z_2^- + x_2^+ + x_2^- \le 5$
 $z_1^+ - z_1^- = x_2^+ - x_2^- - 10$
 $z_2^+ - z_2^- = x_1 + 2$
 $z_1^+, z_1^-, z_2^+, z_2^-, x_2^+, x_2^- \ge 0$

- 10. 如果集合 S_1 和 S_2 均为凸集,那么 βS_1 , $S_1 + S_2$, $S_1 \cap S_2$, $S_1 \cup S_2$ 是否为凸集?请证明或给出反例。
- **解:** (1) 设 x_1 , x_2 分别为集合 S_1 中的两点,则 βx_1 , $\beta x_2 \in \beta S_1$ 由 S_1 为凸集可知: $\alpha x_1 + (1 \alpha)x_2 \in S_1$, $\alpha \in [0,1]$, 因此 $\alpha \beta x_1 + (1 \alpha)\beta x_2 = \beta(\alpha x_1 + (1 \alpha)x_2) \in \beta S_1$ 。由定义, βS_1 为凸集。
- (2) 设 x_1, x_1' 为集合 S_1 中的两点, x_2, x_2' 为集合 S_2 中的两点,那么有 $\alpha x_1 + (1 \alpha)x_1' \in S_1$, $\alpha x_2 + (1 \alpha)x_2' \in S_2$, $\alpha \in [0,1]$ 由 $x_1 + x_2 \in S_1 + S_2$, $x_1' + x_2' \in S_1 + S_2$,则 $\alpha(x_1 + x_2) + (1 \alpha)(x_1' + x_2') = \alpha x_1 + (1 \alpha)x_1' + \alpha x_2 + (1 \alpha)x_2' \in S_1 + S_2$ 由定义, $S_1 + S_2$ 为凸集。
 - (3) 设 x_1, x_2 为集合 $S_1 \cap S_2$ 中的两点,则 $x_1, x_2 \in S_1$ 且 $x_1, x_2 \in S_2$

那么有 $\alpha x_1 + (1-\alpha)x_2 \in S_1$, $\alpha x_1 + (1-\alpha)x_2 \in S_2$ 因此, $\alpha x_1 + (1-\alpha)x_2 \in S_1 \cap S_2$ 由定义,集合 $S_1 \cap S_2$ 为凸集

(4) 反例

显然,任取 $S_1 \cup S_2$ 中两点之间的连线不完全包含在 $S_1 \cup S_2$ 之内。