Advanced Machine Learning

Lecture 3: Hierarchical Clustering

Nora Ouzir: nora.ouzir@centralesupelec.fr

Lucca Guardiola: lucca.guardiola@centralesupelec.fr

Oct. - Nov. 2020

Content

- 1. Reminders on ML
- 2. Robust regression
- 3. Hierarchical clustering
- 4. Classification and supervised learning
- 5. Nonnegative matrix factorization
- 6. Mixture models fitting
- 7. Model order selection
- 8. Dimension reduction and data visualization

- 1. Introduction
- 2. Reminders on Clustering
 - 1. Types of methods and clusters
 - 2. Distance and Dissimilarity
 - 3. Clustering Quality
- 3. From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

Key references

- Tan, P. N., Steinbach, M., Kumar V., Data mining cluster analysis: basic concepts and algorithms. Introduction to data mining. 2013.
- ▶ Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
- ► Hastie, T., Tibshirani, R. and Friedman, J. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Second edition. Springer, 2009.
- ► James, G., Witten, D., Hastie, T. and Tibshirani, R. An Introduction to Statistical Learning, with Applications in R. Springer, 2013

1. Introduction

- 2. Reminders on Clustering
 - 1. Types of methods and clusters
 - 2. Distance and Dissimilarity
 - Clustering Quality

3. From Partitional to Hierarchical Clustering

- 1. K-means
- 2. Hierarchical Clustering
- 3. DBSCAN
- 4. HDBSCAN

Clustering: An Unsupervised Approach

- Extract homogeneous meaningful or useful categories from the data
- Discover/learn how the data is organized, natural structure
- No ground-truth outputs for training: unsupervised

Objectives

- 1. Understanding: Biology and medicine, finance, text mining, web, ...
- 2. Utility: Use cluster characteristics instead of the original data (dimension reduction, regression of high-dimensional data, ...)

The labels are unknown!

Dimension reduction vs Clustering

Let $\mathbf{X} = (x_1, ..., x_N)$ be a set of N training samples

Dimension reduction

- Project $X \in \mathbb{R}^{N,d}$ onto $Z \in \mathbb{R}^{N,q}$ with q < d
- ➤ Visualize, denoise, reduce computational cost, ...

Clustering

- Groupe similar samples x_i into clusters C_k
- ▶ Based on a dissimilarity metric $\mathcal{D}(C_1, C_2)$

Clustering Applications

Market segmentation

- **x**: purchase history
- $ightharpoonup C_k$: market segments

Medical image segmentation

- **x**: image pixels, voxels
- $ightharpoonup C_k$: blood, muscle, tumor, ...

Text mining

- ▶ x: text, e-mails, ...
- \triangleright C_k : folders, themes, ...

Key Questions on Clustering

- ▶ Types of clustering ?
- ▶ How to characterize a cluster ?
- How to define similarity or dissimilarity between samples?
- ► The real/optimal number of clusters?
- What algorithms can we use and when?
- How to evaluate a clustering result ? (subjectivity)

1. Introduction

- 2. Reminders on Clustering
 - 1. Types of methods and clusters
 - 2. Distance and Dissimilarity
 - 3. Clustering Quality
- From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

- 1. Introduction
- 2. Reminders on Clustering
 - 1. Types of methods and clusters
 - 2. Distance and Dissimilarity
 - Clustering Quality
- From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

Types of clustering: Partitional vs Hierarchical

Partitional

- Division into non-overlapping subsets
- Each data point is in exactly one subset

Hierarchical

- Clusters can have sub-clusters
- Set of nested clusters, organized as a tree

Types of Clusters

- Well-separated: Any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.
- Prototype-Based: an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster → Assumptions about shape
 - Center = centroid (average) or medoid (most representative)
- Density-based: dense region of points, which is separated by low-density regions, from other regions of high density. Used when the clusters are irregular or intertwined, and when noise and outliers are present → Is data driven
- ► Others... graph-based...

Distinctions between sets of clusters

- Exclusive vs non-exclusive (overlapping): separate clusters vs points may belong to more than one cluster
- Fuzzy vs non-fuzzy: each observation \mathbf{x}_i belongs to every cluster \mathcal{C}_k with a given weight $w_k \in [0,1]$ and $\sum_{k=1}^K w_k = 1$ (Similar to probabilistic clustering).
- ▶ Partial vs Complete: all data are clustered vs there may be non-clustered data, e.g., outliers, noise, "uninteresting background"...
- ► Homogeneous vs Heterogeneous: Clusters with ≠ size, shape, density...

- 1. Introduction
- 2. Reminders on Clustering
 - Types of methods and clusters
 - 2. Distance and Dissimilarity
 - Clustering Quality
- From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

Dissimilarity Measures

Dissimilarity is a function of the pair (x,y): $\mathcal{D}: \mathbb{E} \times \mathbb{E} \to \mathbb{R}^+$ s.t

$$\mathcal{D}(x,y) = \mathcal{D}(y,x) \ge 0$$
 and $\mathcal{D}(x,x) = 0 \ \forall x \in \mathbb{E}$

Distance is a dissimilarity measure that satisfies also

- 1. $\mathcal{D}(x,y) = 0 \iff x = y$
- 2. $\mathcal{D}(x,y) \leq \mathcal{D}(x,z) + \mathcal{D}(z,y)$ (metric)

Common distances

- Minkowski: $\mathcal{D}(x,y) = \left(\sum_{j=1}^{d} |x_j y_j|^q\right)^{\frac{1}{q}}$ $(q=2 \rightarrow \text{Euclidian distance}, q=1 \rightarrow \text{Manhattan distance})$
- Mahalanobis: $\mathcal{D}(x,y) = \left[(x-y)^T \Sigma^{-1} (x-y) \right]^{\frac{1}{2}}$
- Hamming: number of indexes where the 2 vectors differ

Dissimilarity Between Clusters (1/2)

Group Average:
$$\mathcal{D}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_j} \mathcal{D}(\mathbf{x}, \mathbf{y})$$

Between Centroids :
$$\mathcal{D}(\mathcal{C}_i, \mathcal{C}_j) = \mathcal{D}(m_i, m_j)$$
,

with
$$m_i = \frac{1}{n_i} \sum_{i=1}^n \mathbf{x}$$

Dissimilarity Between Clusters (2/2)

Objective function distances

- ► Ward distance: $\mathcal{D}(C_i, C_j) = \sqrt{\frac{2 n_i n_j}{n_i + n_j}} \mathcal{D}(m_i, m_j)$
- WPGMA (Weighted Pair Group Method with Arithmetic Mean) recursive distance

$$\mathcal{D}(\mathcal{C}_i, \mathcal{C}_j) == \frac{\mathcal{D}(\mathcal{C}_i^1, \mathcal{C}_j) + \mathcal{D}(\mathcal{C}_i^2, \mathcal{C}_j)}{2}$$

where C_i^1, C_i^2 are the child clusters of C_i

- 1. Introduction
- 2. Reminders on Clustering
 - Types of methods and clusters
 - 2. Distance and Dissimilarity
 - 3. Clustering Quality
- 3. From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

What makes a good clustering?

- ▶ Inertia: $J_i = \sum_{\mathbf{x} \in \mathcal{C}_i} \mathcal{D}^2(\mathbf{x}g, m_i)$ (low J_i corresponds to a smaller dispersion of points around m_i .)
- ▶ Within distance: $J_w = \sum_i \sum_{\mathbf{x} \in C_i} \mathcal{D}^2(\mathbf{x}g, m_i) = \sum_i J_i$
- ▶ Between distance: $J_b = \sum_i n_i \mathcal{D}^2(m_i, m)$ where m is the sample mean $m = \frac{1}{n} \sum \mathbf{x}$

A good clustering...

Minimizes the within distance J_w and maximizes the between distance J_b

Illustrative Example

Objective

Cluster noisy data for a segmentation application in image processing

(a) Tree data

(b) Noisy tree data

Illustrative Example

Objective

Cluster noisy data for a segmentation application in image processing

(c) Tree data

(d) Noisy tree data

Looks easy! But...

- 1. Introduction
- 2. Reminders on Clustering
 - 1. Types of methods and clusters
 - 2. Distance and Dissimilarity
 - Clustering Quality
- 3. From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

- 1. Introduction
- 2. Reminders on Clustering
 - 1. Types of methods and clusters
 - 2. Distance and Dissimilarity
 - Clustering Quality
- 3. From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

K-means

- ► Partition the data into K clusters
- Find K clusters and their center μ_k that minimize the cluster within distance J_w
- \triangleright J_w can be defined as

$$J_{w} = \sum_{k=1}^{K} \sum_{x^{i} \in C_{k}}^{K} \| \boldsymbol{x}^{i} - \mu_{k} \|^{2}$$

How can we solve this problem?

▶ NP-hard problem: number of partitions of **x** into **K** subsets

$$P(n,K) = \frac{1}{K!} \sum_{k=0}^{K} k^n (-1)^{K-k} \frac{K!}{k! (K-k)!}$$
for $K < n$

Example: $P(100, 5) \approx 10^{68}$!!!!

► Local solution is obtained with k-means (O(tKN))

K-means algorithm

Iterative minimization

- 1. Initialize **K** cluster centers $\mu_{\mathbf{k}}$
- 2. Assign each \mathbf{x}^i to the nearest cluster (nearest center) e.g., $\mathbf{s}_i \leftarrow \arg\min_{\mathbf{z}} \|\mathbf{x}^i \mu_{\mathbf{k}}\|^2$
- 3. Re-estimate *K* cluster centers

e.g.,
$$\mu_{\pmb{k}} = \frac{1}{K} \sum_{\pmb{x}^i \in \pmb{C}_{\pmb{k}}} \pmb{x}^i$$

4. Repeat until stopping criterion is reached

K-means Drawbacks and Alternatives

K-means is simple but ...

- Solution depends on initialization
- Need to know K in advance
- Can't handle noise or outliers : non-robust
- ► Fails with clusters of non-convex shapes

Several alternatives

- ► K-means++: seeding algorithm → initialize clusters with centroids "spread-out" throughout the data
- ► K-medoids → address the robustness aspects
- ► Kernel K-means → overcoming the convex shape limitation
- Many others ...

Results on the tree example

Figure: Clustering obtained with two different initializations

- 1. Introduction
- 2. Reminders on Clustering
 - 1. Types of methods and clusters
 - Distance and Dissimilarity
 - Clustering Quality
- 3. From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

Hierarchical clustering Principles

- Produces a set of nested clusters organized as a hierarchical tree → bypass choice of K
- Can be visualized as a dendrogram: a tree like diagram that records the sequences of merges or splits with branch length corresponding to cluster distance

Two approaches

- 1. Agglomerative: Bottom-up Start with as much clusters as observations and iteratively aggregate observations using a given distance
- 2. Divise: Top-down Start with one cluster containing all observations and iteratively *split* into smaller clusters

Hierarchical Clustering: The tree

We can see that ...

- ► Each node (cluster) in the tree (except the leaf nodes) is the union of its children (subclusters)
- ► The root of the tree is the cluster containing all objects.

Hierarchical Clustering: Example

Figure: General principles

Agglomerative Hierarchical Clustering

Algorithm 1: Agglomerative Hierarchical Clustering

- ► Input: x observation vectors and "cutting" threshold λ
- Output: all merged clusters set (at each iteration) and "inter-cluster" distances (between clusters)
- ▶ **Initialization**: *n* = sample size = number of clusters.

While Number of clusters > 1

- 1. Compute distances between clusters
- 2. Merged the two nearest clusters

Recall: Inter-Cluster distances

- ► MIN \rightarrow Single Linkage: $d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} d(\mathbf{x}, \mathbf{y})$
- $\blacktriangleright \ \mathsf{MAX} \to \mathsf{Complete\ Linkage} \colon d(\mathcal{C}_i, \mathcal{C}_j) = \max_{\mathbf{x} \in \mathcal{C}_i, \mathbf{y} \in \mathcal{C}_j} d(\mathbf{x}, \mathbf{y})$
- ► Group Average → Average Linkage: $d(C_i, C_j) = \frac{1}{n_i n_j} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_i} d(\mathbf{x}, \mathbf{y})$
- ▶ Between centroids \rightarrow Centroid Linkage: $d(C_i, C_j) = d(m_i, m_j)$
- Descrive function → Objective Linkage:
 - ► Ward distance $d(C_i, C_j) = \sqrt{\frac{2 n_i n_j}{n_i + n_j}} d(m_i, m_j)$
 - ▶ WPGMA recursive distance $d(C_i, C_j) == \frac{d(C_i^1, C_j) + d(C_i^2, C_j)}{2}$ where C_i^1, C_i^2 are the child clusters of C_i

Different distances ⇒ Different results

Different distances ⇒ Different results

Pros and cons of different distances

- MIN: can handle non-elliptical shape BUT sensitive to outliers, noise...
- MAX: less sensitive to outliers BUT can break large clusters and biased towards globular clusters
- Average: don't break large clusters BUT biased towards globular clusters
- ► Ward: Hierarchical analogue of K-means

The Tree Example: Single Linkage

The Tree Example: Complete Linkage

The Tree Example: Average Linkage

The Tree Example: Ward Linkage

The Tree Example: WPGMA Linkage

Hierarchical clustering: Pros and cons

Pros

- Simple and intuitive
- Unsupervised: no a priori assumptions
- Interpretable: number of clusters, used distance...

Cons

- ► Computational cost: single linkage $(O(n^3),O(n^2))$ or O(n), complete linkage $(O(n^3))$ or $O(n^2)$, average $(O(n^3))$, Ward's method $(O(n^3))$, ...
- Cutting threshold: challenging choice!
- Lack of robustness: sensitivity to outliers and noise
- No global objective function to optimize
- ► Handle heterogeneous data (clusters of ≠ size, non-globular shapes...)

Today's Lecture

- 1. Introduction
- 2. Reminders on Clustering
 - Types of methods and clusters
 - 2. Distance and Dissimilarity
 - 3. Clustering Quality
- 3. From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

DBSCAN: A Density-based Algorithm

For an observation \mathbf{x}_i , find a sufficiently (MinPts) large neighborhood (ε), then

- ▶ aggregate the new observations (neighbors) to the cluster C_k of \mathbf{x}_i ,
- \triangleright else \mathbf{x}_i is an isolated observation (outlier).

This results in three types of points called core, border, or noise points.

Key parameters

- ▶ ε and ε -neighborhood: $\mathcal{N}_{\varepsilon}(\mathbf{x}_i) = \{\mathbf{z} | d(\mathbf{x}_i, \mathbf{z}) < \varepsilon\}$
- MinPts: n_{min} for defining core points \mathbf{x}_i s.t. $\operatorname{card}(\mathcal{N}_{\varepsilon}(\mathbf{x}_i)) \geq n_{min}$

DBSCAN: Three Types of Points

- 1. Core point: is near the center of a cluster/has MinPts neighbors
- 2. Border point: is not a core point, but is in the neighborhood of a core point
- 3. Noise point: is any point that is neither a core nor a border point

DBSCAN: Influence of ϵ

The parameter ϵ represents the minimum distance between two non-neighboring points:

- ightarrow A very large ϵ causes all possible clusters to merge into one cluster
- ightarrow A very small ϵ leads to a lot of noise, points are not assigned to clusters

DBSCAN: So how do we choose ϵ ?

- Depends on the distance between the data points
- ► The Elbow trick on the k-NN plot is commonly used in practice (*k* is MinPts!):
 - \rightarrow x-axis all the points
 - → y-axis the average distance of each point to their its k-NN
- Remains a difficult choice!

DBSCAN Algorithm

Algorithm 2-a: DBSCAN

▶ **Input**: **x** observations, ε , MinPts

▶ Output: Z, labels of x

For all x_i

- 1. Verify that **x**_i has not been visited by the algo, else **x**_i is marked "as visited"
- 2. Identify the ε -neighborhood of \mathbf{x}_i , $\mathcal{N}_{\varepsilon}(\mathbf{x}_i)$.
- 3. **If** $\operatorname{card}(\mathcal{N}_{\varepsilon}(\mathbf{x}_{i})) \leq n_{min}$, then mark P as an isolated point. **Else** Create a cluster C_{k} containing \mathbf{x}_{i} and run class_extension(C_{k} , \mathbf{x}_{i} , ε , n_{min})

DBSCAN Algorithm: Cluster Extension

Algorithm 2-b: DBSCAN Class extension

- ▶ **Input**: Cluster C_k to increase, observation \mathbf{x}_i of C_k , n_{min} , ε .
- ▶ **Output** : \mathcal{Z} labels of observations in $\mathcal{N}_{\varepsilon}(\mathbf{x}_i)$

For all $\mathbf{x}_j, i \neq j$ of $\mathcal{N}_{\varepsilon}(\mathbf{x}_i)$

- 1. Verify that \mathbf{x}_j has not been visited by the algo, else \mathbf{x}_i is marked "as visited"
- 2. Identify the ε -neighborhood of \mathbf{x}_j , $\mathcal{N}_{\varepsilon}(\mathbf{x}_j)$.
- 3. If $\operatorname{card}(\mathcal{N}_{\varepsilon}(\mathbf{x}_{j})) \geq n_{\min}$ $\mathcal{N}_{\varepsilon}(\mathbf{x}_{i}) = \mathcal{N}_{\varepsilon}(\mathbf{x}_{i}) + \mathcal{N}_{\varepsilon}(\mathbf{x}_{j})$
- 4. If \mathbf{x}_i is not clustered, add to \mathcal{C}_k .

Illustration of DBSCAN Principles

Figure: Clustering results obtained with DBSCAN algorithm.

Algorithms comparison

Figure: From Scikits learn: https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/modules/clustering.html

The Tree Data - DBSCAN

- Pros: Resistant to Noise, can handle clusters of different shapes and sizes
- Cons: Lack of interpretable parameters (estimation), Varying densities, High-dimensional data

Today's Lecture

- 1. Introduction
- 2. Reminders on Clustering
 - Types of methods and clusters
 - Distance and Dissimilarity
 - Clustering Quality
- 3. From Partitional to Hierarchical Clustering
 - 1. K-means
 - 2. Hierarchical Clustering
 - 3. DBSCAN
 - 4. HDBSCAN

HDBSCAN

Key Idea: Convert DBSCAN into a hierarchical clustering algorithm and

- \rightarrow bypass the choice of the ϵ -parameter!
- \rightarrow scan all possible solutions with all values of ϵ

Five main steps

- 1. Transform the space according to the density/sparsity
- 2. Build the minimum spanning tree of the distance weighted graph
- 3. Construct a cluster hierarchy of connected components
- 4. Condense the cluster hierarchy based on minimum cluster size
- 5. Extract the stable clusters from the condensed tree

HDBSCAN

Key Idea: Convert DBSCAN into a hierarchical clustering algorithm and

- \rightarrow bypass the choice of the ϵ -parameter!
- \rightarrow scan all possible solutions with all values of ϵ

Five main steps

- 1. Transform the space according to the density/sparsity
- 2. Build the minimum spanning tree of the distance weighted graph
- 3. Construct a cluster hierarchy of connected components
- 4. Condense the cluster hierarchy based on minimum cluster size
- 5. Extract the stable clusters from the condensed tree

HDBSCAN: Illustrative Example

Step 1: Transform The Space

- Goal: Prepare the data for a single linkage clustering (real data is noisy and single linkage is not robust!)
- Key idea: Push sparse points away from the rest of the data before clustering
- The islands/sea analogy → Make sea points more distant from each other and from the land

How do we evaluate density?

- ▶ Need an inexpensive density estimate \Rightarrow k-NN is the simplest
- \triangleright Call it the core distance for parameters k and point \mathbf{x}_i , $\operatorname{core}_k(\mathbf{x}_i)$

Step 1: Transform The Space

- Goal: Prepare the data for a single linkage clustering (real data is noisy and single linkage is not robust!)
- Key idea: Push sparse points away from the rest of the data before clustering
- The islands/sea analogy → Make sea points more distant from each other and from the land

How do we evaluate density?

- ▶ Need an inexpensive density estimate \Rightarrow k-NN is the simplest
- ightharpoonup Call it the core distance for parameters k and point \mathbf{x}_i , $\operatorname{core}_k(\mathbf{x}_i)$

And how do we connect points now?

Step 1: Mutual Reachability Distance

A new distance metric is defined as

$$d_{mreach-k}(\mathbf{x}_i, \mathbf{x}_j) = \max(\operatorname{core}_k(\mathbf{x}_i), \operatorname{core}_k(\mathbf{x}_j), d(\mathbf{x}_i, \mathbf{x}_j)),$$

Meaning that we want to connect points that are

- 1. Close enough to each other : $d(\mathbf{x}_i, \mathbf{x}_i)$
- 2. In a dense enough region : $core_k(\mathbf{x}_i)$

Step 2: The Minimum Spanning Tree

- ightharpoonup Goal: Prepare the data for clustering using d_{mreach}
- Key ideas:
 - Construct a graph that connects all points
 - Start disconnecting them by lowering a threshold (sea level drops)
 - Points are the vertices and the edges are weighted by d_{mreach}
 - ▶ n^2 possible edges → the minimum spanning tree

Algorithms from graph theory

- ▶ Prim's algorithm
- Dual Tree Boruvka

Step 3: Build the cluster hierarchy

Clusters emerge progressively as we lower the d_{mreach} threshold (\rightarrow sort the edges and start single linkage)

Step 4: Condense the cluster tree

Get rid of levels that resulted in noise : nbr of points $\leq C_{min}$ (clusters are shrinking \neq splitting)

Extract the clusters

Key idea: Choose clusters that persist (live for a long time) and that are large \rightarrow maximize a stability criterion (flat clustering: can't select descendance of a selected cluster!)

Results

Implementation: The 5 main steps

- 1. Compute $\operatorname{core}_k(\mathbf{x}_i)$ using $\mathit{MinPts} \to \operatorname{Measure}$ density
- 2. Transform the space: use new metric d_{mreach}
- 3. Construct a minimum spanning tree
- 4. Simplify/condense the tree using C_{\min}
- 5. Extract final clustering results

Implementation: The 5 main steps

- 1. Compute $\operatorname{core}_k(\mathbf{x}_i)$ using $\mathit{MinPts} \to \operatorname{Measure}$ density
- 2. Transform the space: use new metric d_{mreach}
 - → Robustness to noise!
- 3. Construct a minimum spanning tree
- 4. Simplify/condense the tree using C_{\min}
- 5. Extract final clustering results

Implementation: The 5 main steps

- 1. Compute $\operatorname{core}_k(\mathbf{x}_i)$ using *MinPts* \to Measure density
- 2. Transform the space: use new metric d_{mreach}
 - → Robustness to noise!
- 3. Construct a minimum spanning tree
 - → Lower computational cost
- 4. Simplify/condense the tree using C_{\min}
- 5. Extract final clustering results

Implementation: The 5 main steps

- 1. Compute $\operatorname{core}_k(\mathbf{x}_i)$ using *MinPts* \to Measure density
- 2. Transform the space: use new metric d_{mreach}
 - → Robustness to noise!
- 3. Construct a minimum spanning tree
 - → Lower computational cost
- 4. Simplify/condense the tree using C_{\min}
 - → Preprocessing for the next step
- 5. Extract final clustering results

Implementation: The 5 main steps

- 1. Compute $\operatorname{core}_k(\mathbf{x}_i)$ using *MinPts* \to Measure density
- 2. Transform the space: use new metric d_{mreach}
 - → Robustness to noise!
- 3. Construct a minimum spanning tree
 - → Lower computational cost
- 4. Simplify/condense the tree using C_{\min}
 - → Preprocessing for the next step
- 5. Extract final clustering results
 - → Maximize cluster stability