MEAM 520 Lecture 2: Background and Definitions

Cynthia Sung, Ph.D.

Mechanical Engineering & Applied Mechanics
University of Pennsylvania

Last Time

Class logistics

- Assignments and lecture slides on Canvas
- Announcements and questions on Piazza
- Office hours on Google Calendar fill out the poll!
- Labs + Final Project

Reading

Chapter 1: Introduction

Lab 0

Posted yesterday Due on Wed 9/9

Thank you to all of you have started on this and posted issues on Piazza.

There are a lot of different situations (operating systems, MATLAB/python configurations, etc) – thank you for your patience.

Robot Manipulators

Are composed of

- Rigid **links**
- Connected by joints
- To form a kinematic chain.

There are two types of basic **joints**:

- Revolute (rotary), like a hinge, allows relative rotation between two links
- Prismatic (linear), like a slider, allows a relative linear motion (translation) between two links

How to draw **R** and **P** joints

	Revolute	Prismatic	Examples
2D			
3D			

Parts of a manipulator

Symbolic representation

Types of Manipulators

SERIAL

PARALLEL

Let's describe this lamp like a robot.

What kind of joints does a human arm have?

Configuration Space (C-Space)

Configuration: complete specification of the location of every point on the manipulator **Configuration space**: set of all configurations

How many possible configurations does this lamp have?

Joint variables

Joint variables to denote each joint's position.

Joint displacements are defined relative to the zero configuration.

Use θ_i for revolute joints

Use d_i for prismatic joints

Axis orientation defines the positive direction (use the RHR for revolute joints)

For rigid manipulators, knowing all joint variable values defines the configuration

Degrees of Freedom

Degrees of Freedom (DOF): The minimum number of parameters needed to specify the configuration

How many DOF does a rigid body in 3D space have?

Robots need at least ____ joints (____ DOF) for the end-effector to reach every point in the workspace with arbitrary orientation

Workspace

Workspace: volume swept out by the endeffector as the robot does all possible motions

- Depends on robot geometry
- Depends on joint limits
- Depends on the point on the end-effector

dexterous workspace reachable workspace

Workspace

NOTE: Workspace and configuration space have different dimensionality!

Configuration space: #{DOF} dimensions

Workspace: 3D or 2D depending on task

Task space: the parameter space for the task.

Often this is the 6D space of position/orientation

Workspace

What is the reachable workspace of the lamp?

What is the dexterous workspace of the lamp?

Configuration Space

What is the configuration space of the lamp?

Spatial mechanisms

If we let the **base move and rotate** on the table, what type of robot is the lamp?

What is the new **reachable workspace** of the lamp?

We can apply the same terminology to mobile robots.

BUT it is non-holonomic.

Does the configuration of a manipulator fully define how it will move in the future?

The configuration gives you an **instantaneous description** of the geometry

State: set of variables sufficient to tell you the future time response when combined with dynamics and future inputs

A robot's dynamics equations determine accelerations (${m F}=m{m a}$) State requires joint variables q and derivatives $\dot q$

Practice: Unimate's 1960 manipulator arm

- 1. Describe this manipulator in Rs and Ps.
- 2. How many degrees of freedom does it have?
- 3. Draw the symbolic representation.
- 4. Sketch the robot's reachable workspace.

https://youtu.be/nOV5tEy8Oq8

Cartesian (PPP)
Useful for: gantries

https://youtu.be/97KX-j8Onu0

Cylindrical (RPP)

Useful for: material transfer

How do we describe these robots? Kinematics!

Kinematics is the study of motion without

references to the causes of that motion.

Kinematics

Kinematics

Kinematics

Next time: Rotation Matrices in 2D and 3D

Chapter 2: Rigid Motions

- Read Sec. 2.intro-2.5
- Brush up on B.1-B.4 if necessary
 - Key concepts: vector, matrix, transpose, dot product, norm, matrix multiplication

