

목표

- 논리 회로 기본 구성 요소의 기능을 이해하고 활용함.
- 특정 기능 수행을 위한 논리 회로를 설계함.

디지털 컴퓨터

디지털 컴퓨터

- 소프트웨어
 - 응용 소프트웨어
 - 시스템 소프트웨어
- 하드웨어
 - 전자적 구성 요소 및 그 연결

디지털

- 제한 수의 불연속적인 값으로 표현
 - 명령어
 - 데이터
- 이진수, binary number
 - 0, 1의 불연속적인 값 이용
 - Bit, binary digit

디지털 데이터 예

디지털 컴퓨터 구성도

논리 게이트

게이트, gate

- 이진 정보 처리
 - 전압 신호 이용
 - 예:
 - 3v : 논리 1
 - 0v : 논리 0
- 입력 신호에 따라 출력 신호 결정
- 진리(치)표, truth table

디지털 논리 게이트

명칭 그래픽기호 함수식 진리치표 명칭 그래픽기호 함수식 진리치표 AND
$$A = AB$$
 $AB \times AB$ $AB \times$

부울 대수

부울대수

- 이진 변수 및 논리적인 연산 표현
- 이진 변수
 - 논리-0 또는 논리-1 값을 갖는 변수
 - 예 : A, B, x, y 등
- 논리적인 연산
 - AND, OR, NOT, XOR, XNOR

부울식 = 진리표 = 논리도

- F = x + y'z
- 진리표 및 논리도

부울대수

<표 1-1> 부울 대수의 기본적 관계 (1) x + 0 = x(2) $x \cdot 0 = 0$ (3) x + 1 = 1(4) $\times \cdot 1 = 1$ $(5) \quad x + x = x$ (6) $x \cdot x = x$ (7) x + x' = 1(8) $x \cdot x' = 0$ (9) x+y = y+x(10) xy = yx(11) x+(y+z) = (x+y)+z(12) x(yz) = (xy)z(13) x(y+z) = xy+xz(14) x+yz = (x+y)(x+z)(15) (x+y)' = x'y'(16) (xy)' = x' + y'(17) (x')' = x

같은 기능 다른 부울식/블록도

맵의 간소화, SIMPLIFICATION

같은 기능

- 동일 입력 조합 -> 동일 출력값
- 진리표가 동일

간략화, Simplify

- 간소화
- 동일 기능의 더 간단한 부울식/블록도
- 방법
 - 부울 대수의 기본 관계 이용
 - 맵 이용

부울 대수의 기본 관계 이용 간략화

$$F = ABC + ABC' + A'C$$

$$= AB(C + C') + A'C$$

$$= AB(C + \overline{C}) + \overline{AC}$$

$$= AB + A'C$$

$$= AB + \overline{AC}$$

민텀항

- 진리표 상의 각 입력 조합
- N개의 이진 변수 : **2**ⁿ개의 민텀항

ж	У	z	$f \longrightarrow x'y'z'$
0	0	0	x'y'z
0	0	1	x y z
0	1	0	
0	1	1	
1	0	0	$\rightarrow v_{1} \sigma$
1	0	1	$\longrightarrow xy'z$
1	1	0	
1	1	1	Xyz
015070	10986	30530	1555

민텀항에 대한 맵

	CD	,		C	7	
AB		00	01	11	10	
	00	0	1	3,	2	
	01	4	5	7	6	B
	11	12	13	15	14	
$A \neq$	10	8	9	11	10	
				Ď	,	-

(c) Four-variable map

맵 이용 간략화

- Karnaugh 맵 이용
- 진리표 <u>민텀(minterm)</u>항에 대응하는 맵을 작성
- 출력이 1이 되는 민텀 표시

x	У	z	f			ВС			
0	0	0	0		Α	00	01	11	10
0	0	1	1		<i>,</i> ,				10
0	1	0	0		0		1		
0	1	1	0	\longrightarrow					
1	0	0	1		1	1	1	1	1
1	0	1	1						
1	1	0	1	f(x)		/ _ Z	7 (1 4	56	7)
1	1	1	1	$\int (X$, y, x	$)=\sum$	_ (1,4	,5,0,	<i>')</i>
ing rus	1008	1102	21503			=x'	v'z-	+xy'z	z'+xv

맵이용 간략화

- 값이 1인 인접한 민텀 그룹화
 - 가능한 한 크게 2, 4, 8, … 개씩
 - 중복 가능
- 각 민텀 그룹의 부울식 표시
- 부울식을 논리합(OR)로 묶음.

맵이용 간략화 예

$$F(A, B, C) = \sum (0,2,4,5,6)$$

$$BC$$

$$= AB'(C'+AB'C)$$

$$= AB'(1)$$

$$= AB'$$

$$A'B'C'+AB'C'+A'BC'+A'BC'+A'BC'$$

$$= (A'+A)B'C'+(A'+A)BC'$$

$$= B'C'+BC'$$

$$= (B'+B)C'$$

$$= C'$$

논리곱의 논리합

• Sum of Product

- Sum 항: OR 항

- Product 항: AND 항

• NAND 게이트 이용 구현이 용이

논리합의 논리곱

- Product of Sum
- NOR 게이트 이용한 구현이 용이
- 맵에서 민텀의 값이 0이 되는 부분이용 간략화 : F'구함
- 위의 간략화된 결과를 이용 F를 구함

논리합의 논리곱

Don't Care

- 민텀의 값이 결과에 영향을 주지 않음
- X로 표시
- 간략화 예 :

$$F(A, B, C) = \sum (0,2,6)$$

$$d(A, B, C) = \sum (1,3,5)$$

BC

조합논리회로

논리회로

- 부울 대수를 물리적 장치로 구현
 - 입력에 대해 논리 연산 수행
- 종류
 - 조합논리회로, Combination Logic Circuit
 - 순차(서)논리회로, Sequential Logic Circuit

조합논리회로

- 출력은 입력 조합의 의해 결정
- 시간, 상태 개념 없음
- n개의 입력/ *m*개의 출력
 - *m*개의 부울 함수
 - 각 출력은 상호 독립적
 - 각 출력은 각각 간략화

조합논리회로 설계

- 기능 정의/제시
- 입력/출력의 수 및 문자 기호 결정
- 진리표 작성
- 간략화 과정 수행
- 블록도 작성

조합논리회로설계 - 반가산기

- Half Adder, HA
- 두 비트 입력을 덧셈하여 두 비트(캐리, 합) 출력
- 입력 수 및 문자기호 결정
 - 세 비트 입력 : x, y
 - 두 비트 출력 : C, S

조합논리회로설계 - 반가산기

(a) <Truth table> (b) Block Diagram 논리함수식

х	У	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

조합논리회로설계 - 전가산기

- Full Adder, FA
- 세 비트 입력을 덧셈하여 두 비트(캐리, 합) 출력
- 입력 수 및 문자기호 결정
 - 세 비트 입력 : x, y, z
 - 두 비트 출력 : S, C
- 진리표 작성

입력	출	력	
у	z	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	1
	y 0 0 1 1 0 0	y z 0 0 0 1 1 0 1 1 0 0 0 1 1 0	y z C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1

조합논리회로설계 - 전가산기

• 간략화를 위한 맵 작성

$$S = x' y' z + x' yz' + xy' z' + xyz$$
$$= x \oplus y \oplus z$$

$$C = xy + xz + yz$$
$$= xy + (x'y + xy')z$$

• 논리회로 작성

플립플롭

순차논리회로

- 시간/상태 개념 포함
- 출력과 상태 정보
- 입력 조합 + 현재 상태 →출력
- 입력조합 + 현재 상태 →다음 상태

상태, state

- 논리-0, 논리-1 상태
- 다음 상태 ← 현재상태, 외부입력
- 상태 저장 플립플롭

플립플롭

- 순차 논리 회로의 저장 요소
- 논리-0/논리-1 상태 저장
- 입력 1 또는 2 비트
- 출력 정상 출력/보수화된 출력
- 종류
 - SR 플립플롭
 - D 플립플로
 - T 플립플롭
 - JK 플립플롭

SR 플립플<mark>롭</mark>

- Set/Reset 플립플롭
- 특성표

S	R	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Clear to 0
1	0	1	Set to 1
1	1	?	-

D 플립플<mark>롭</mark>

- Data 플립플롭
- 특성표

D	Q(t+1)	
0	0	Clear to 0
1	1	Set to 1

JK 플립플<mark>롭</mark>

- Set(J)/Reset(K) 플립플롭
- 특성표

J	K	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Clear to 0
1	0	1	Set to 1
1	1	Q'(t)	Complement

T 플립플<mark>롭</mark>

- Toggle 플립플롭
- 특성표

Т	Q(t+1)	
0	Q(t)	No change
1	Q'(t)	Complement

모서리-변이형 플립플롭

- Edge-triggered Flip-Flop
- 플립플롭 상태 변이 시점/동기화 시점
- Positive/Negative edge-triggered Flip-Flop

여기표, excitation table

- 플립플롭 상태 변이를 유도하기 위한 입력 값
- JK-플립플롭 예 :
 - 특성표와 여기표

J	K	Q(t+1)			
0	0	Q(t)			
0	1	0			
1	0	1			
1	1	Q'(t)			
 특성표					

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

여기표

여기표, excitation table

Q(t)	Q(t+1)	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Χ	0

SR 플립플롭 여기표

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

JK 플립플롭 여기표

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

D 플립플롭 여기표

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

T 플립플롭 여기표

순차 회로

순차논리회로

- 시간/상태 개념 포함
- 출력과 상태 정보
- 입력 조합 + 현재 상태 →출력
- 입력조합 + 현재 상태 →다음 상태
- n개의 입력/k개의 상태/m개의 출력

순차 논리 회로 설계

- 기능 정의/제시
- 입력/상태/출력의 수 및 문자 기호 결정
- 상태도 작성
- 상태표 작성
- 여기표 작성
- 플립플롭 입력 식/출력 결정
- 논리회로 작성

상태도

• 입력에 대한 상태의 변이 및 출력 표현

• 구성요소

- 원 : 상태

- 화살표 : 상태 전이

- 화살표 표시 : 입력/출력

상태표

- 상태도를 표현한 표
- 현재 상태, 입력 조합과 다음 상태, 출력을 나타낸 표

Present	t State	Input	Next	<u>State</u>	<u>Output</u>
A	В	X	A	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

플립플롭 입력식

- 상태표를 확장한 여기표 이용
- 입력 조합 및 현재 상태 조합에 대한 플립플롭 각 입력값을 위한 부 울 식
 - 입력 및 현재 상태를 이용, 다음 상태 전이를 위한 입력값 결정

Present	Next		
state Inp	<u>ut</u> stat	e <u>Flip-F</u>	lop In
A B X	A F	3 Ja Ka	J _B K _B
00 0	0.0) O X	0 X
0 0 1	0 1	ОХ	1 X
0 1 0	0 1	0 X	ΧO
0 1 1	1 0	1 X	X 1
10 0	1 0) X O	0 X
1 0 1	1 1	X O	1 X
1 1 0	1 1	X O	ΧO
1 1 1	0.0) X 1	X 1

순차 논리회로 설계 예 - 2비트 이진 카운터

- 기능 정의
 - 00→01→10→11→00→01→···
- 외부입력
 - 1 : 카운터
 - 0 : 카운터 중지
- 문자 기호 결정
 - 외부 입력 : x
 - 상태 : A, B
 - 외부 출력 : 없음.

순차 논리회로 설계 예 - 2비트 이진 카운터

- 상태도 및 상태표 작성

순차 논리회로 설계 예 - 2비트 이진 카운터

- 플립플롭 결정 및 여기표 작성
 - JK-플립플롭 2개 사용
 - 각각 A, B로 표시

Present		Next		
state	Input	<u>state</u>	Flip-F	lop Input
A B	X	AΒ	Ja Ka	J_{B} K_{B}
0 0	0	0 0	0 X	0 X
0 0	1	0 1	0 X	1 X
0 1	0	0 1	O X	X O
0 1	1	1 0	1 X	X 1
1 0	0	1 0	X O	0 X
1 0	1	1 1	X O	1 X
1 1	0	1 1	X O	X O
1 1	1	0.0	X 1	X 1

순차 논리회로 설계 예 - 2비트 이진 카운터

- 플립플롭 입력식 결정

Present		Next	
state	Input	<u>state</u>	Flip-Flop Input
АВ	X	A B	Ja Ka JB KB
0 0	0	0 0	0 X 0 X
0 0	1	0 1	0 X 1 X
0 1	0	0 1	O X X O
0 1	1	1 0	1 X X 1
1 0	0	1 0	X O O X
1 0	1	1 1	X O 1 X
1 1	0	1 1	X O X O
1 1	1	0.0	X 1 X 1

		1		$J_A = Bx$
Х	Χ	X	Х	$J_A = Bx$

Х	Χ	X	Χ	$K_A = Bx$
		1		$K_A - D\lambda$

	1	X	Х	I - v
	1	Х	Х	$J_B = X$

순차 논리회로 설계 예 - 2비트 이진 카운터

- 블록 다이어그램 작성

Q&A

