Logique

Basé sur le cours de Natacha Portier Notes prises par Hugo Salou

Table des matières

1	Le calcul propositionnel.					
	1.1	Syntaxe	4			
	1.2	Sémantique	6			
2	La I	ogique du premier ordre.	2			
	2.1	Les termes	2			
	2.2	Les formules	5			
	2.3	Les démonstrations en déduction naturelle 1	8			
	2.4	La sémantique	0			
	2.5	Théorème de complétude de Gödel	1			
		2.5.1 Preuve du théorème de correction	3			
		2.5.2 Preuve du théorème de complétude 3	5			
		2.5.3 Compacité	2			

Introduction.

Dans ce cours, on s'intéressera à quatre thèmes :

- ▷ la théorie des modèles (▷ les « vraies » mathématiques);
- ▷ la théorie de la démonstration (▷ les preuves);
- ▷ la théorie des ensembles (▷ les objets);
- ▷ les théorèmes de Gödel (▷ les limites).

On ne s'intéressera pas à la calculabilité, car déjà vu en cours de FDI. Ce cours peut être utile à ceux préparant l'agrégation d'informatique.

1 Le calcul propositionnel.

Le calcul propositionnel, c'est la « grammaire » de la logique. Dans ce chapitre, on s'intéressera à

- 1. la construction des formules (▷ la syntaxe);
- 2. la sémantique et les théorèmes de compacité (▷ la compacité sémantique).

1.1 Syntaxe.

Définition 1.1. Le *langage*, ou *alphabet*, est un ensemble d'éléments fini ou pas. Les éléments sont les *lettres*, et les suites finies sont les *mots*.

Définition 1.2. On choisit l'alphabet :

- $\triangleright \mathcal{P} = \{x_0, x_1, \ldots\}$ des variables propositionnelles;
- \triangleright un ensemble de connecteurs ou symboles logiques, défini par $\{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$, il n'y a pas \exists et \forall pour l'instant.
- ⊳ les parenthèses {(,)}.

Les formules logiques sont des mots. On les fabriques avec des briques de base (les variables) et des opérations de construction : si F_1 et F_2 sont deux formules, alors $\neg F$, $(F_1 \lor F_2)$, $(F_1 \land F_2)$, $(F_1 \to F_2)$ et $(F_1 \leftrightarrow F_2)$ aussi.

Définition 1.3 (« par le haut », « mathématique »). L'ensemble \mathcal{F} des formules du calcul propositionnel construit sur \mathcal{P} est le plus petit ensemble contenant \mathcal{P} et stable par les opérations de construction.

Définition 1.4 (« par le bas », « informatique »). L'ensemble F des formules logique du calcul propositionnel sur \mathcal{P} est défini par

$$\triangleright \, \mathcal{F}_0 = \mathcal{P} \,;$$

$$\Rightarrow \mathscr{F}_0 = \mathscr{F};
\Rightarrow \mathscr{F}_{n+1} = \mathscr{F}_n \cup \left\{ \begin{array}{c} \neg F_1 \\ (F_1 \vee F_2) \\ (F_1 \wedge F_2) \\ (F_1 \to F_2) \\ (F_1 \leftrightarrow F_2) \end{array} \middle| F_1, F_2 \in \mathscr{F} \right\}$$

puis on pose $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$

On peut montrer l'équivalence des deux définitions.

Théorème 1.1 (Lecture unique). Toute formule $G \in \mathcal{F}$ vérifie une et une seule de ces propriétés :

- $\triangleright G \in \mathcal{P}$;
- \triangleright il existe $F \in \mathcal{F}$ telle que $G = \neg F$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \vee F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \land F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \to F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \leftrightarrow F_2)$.

Preuve. En exercice.

Corollaire 1.1. Il y a une bijection entre les formules et les arbres dont

- ▷ les feuilles sont étiquetés par des variables;
- ▶ les nœuds internes sont étiquetés par des connecteurs;
- ▷ ceux étiquetés par ¬ ont un fils, les autres deux.

Exemple 1.1. La formule $((\neg x_0 \lor x_1) \to ((x_0 \land x_2) \leftrightarrow x_3))$ correspond à l'arbre

1.2 Sémantique.

Lemme 1.1. Soit ν une fonction de \mathcal{P} dans $\{0,1\}$ appelé valuation. Alors ν s'étend de manière unique en une fonction $\bar{\nu}$ de \mathcal{F} dans $\{0,1\}$ telle que

$$\triangleright \operatorname{sur} \mathcal{P}, \ \nu = \bar{\nu};$$

 \triangleright si $F, G \in \mathcal{F}$ sont des formules alors

$$- \bar{\nu}(\neg F) = 1 - \bar{\nu}(F);$$

$$-\bar{\nu}(F \vee G) = 1 \text{ ssi } \bar{\nu}(F) = 1 \text{ ou }^1 \bar{\nu}(G) = 1;$$

$$- \bar{\nu}(F \wedge G) = \bar{\nu}(F) \times \bar{\nu}(G);$$

$$-\bar{\nu}(F \to G) = 1 \text{ ssi } \bar{\nu}(G) = 1 \text{ ou } \bar{\nu}(F) = 0;$$

$$-\bar{\nu}(F \leftrightarrow G) = 1 \text{ ssi } \bar{\nu}(F) = \bar{\nu}(G).$$

Par abus de notations, on notera ν pour $\bar{\nu}$ par la suite.

Preuve. Existence. On définit en utilisant le lemme de lecture unique, et par induction sur \mathcal{F} :

- $\triangleright \bar{\nu}$ est définie sur $\mathcal{F}_0 = \mathcal{P}$;
- \triangleright si $\bar{\nu}$ est définie sur \mathcal{F}_n alors pour $F \in \mathcal{F}_{n+1}$, on a la disjonction de cas
 - si $F = \neg G$ avec $G \in \mathcal{F}_n$, et on définit $\bar{\nu}(F) =$

^{1.} C'est un « ou » inclusif : on peut avoir les deux (ce qui est très différent du « ou » exclusif dans la langue française).

$$1 - \bar{\nu}(F_1)$$
;

- etc pour les autres cas.

Unicité. On montre que si $\lambda = \nu$ sur \mathcal{P} alors $\bar{\lambda} = \bar{\nu}$ si $\bar{\lambda}$ et ν vérifient les égalités précédents.

Exemple 1.2 (Table de vérité). Pour la formule

$$F = ((x_1 \to x_2) \to (x_2 \to x_1)),$$

on construit la table

x_1	0	0	1	1
$\overline{x_2}$	0	1	0	1
$x_1 \rightarrow x_2$	1	1	0	1
$x_2 \rightarrow x_1$	1	0	1	1
\overline{F}	1	0	1	1

Définition 1.5. \triangleright Une formule F est dite satisfaite par une valuation ν si $\nu(F) = 1$.

- ▷ Une *tautologie* est une formule satisfaite pour toutes les valuations.
- \triangleright Un ensemble $\mathscr E$ de formules est *satisfiable* s'il existe une valuation qui satisfait toutes les formules de $\mathscr E$.
- ▷ Un ensemble & de formules est *finiment satisfiable* si tout sous-ensemble fini de & est satisfiable.
- \triangleright Une formule Fest conséquences 'emantique d'un ensemble de formules $\mathscr E$ si toute valuation qui satisfait $\mathscr E$ satisfait F.
- $\,\,{}^{\triangleright}\,$ Un ensemble de formules & est contradictoire s'il n'est pas satisfiable.
- ▶ Un ensemble de formules & est finiment contradictoire s'il existe un sous-ensemble fini contradictoire de &.

Théorème 1.2 (compacité du calcul propositionnel). On donne trois énoncés équivalents (équivalence des trois énoncés laissé en exercice) du théorème de compacité du calcul propositionnel.

- **Version 1.** Un ensemble de formules $\mathscr E$ est satisfiable si et seulement s'il est finiment satisfiable.
- **Version 2.** Un ensemble de formules & est contradictoire si et seulement s'il est finiment contradictoire.
- **Version 3.** Pour tout ensemble $\mathscr E$ de formules du calcul propositionnel, et toute formule F, F est conséquence sémantique de $\mathscr E$ si et seulement si F est conséquence sémantique d'un sous-ensemble fini de $\mathscr E$.

Preuve. Dans le cas où $\mathcal{P} = \{x_0, x_1, \ldots\}$ est au plus dénombrable (le cas non dénombrable sera traité après). On démontre le cas « difficile » de la version 1 (*i.e.* finiment satisfiable implique satisfiable). Soit \mathscr{E} un ensemble de formules finiment satisfiable. On construit par récurrence une valuation ν qui satisfasse \mathscr{E} par récurrence : on construit $\varepsilon_0, \ldots, \varepsilon_n, \ldots$ tels que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n, \ldots$

- \triangleright Cas de base. On définit la valeur de ε_n pour $x_0 \in \mathcal{P}$.
 - 1. soit, pour tout sous-ensemble fini B de \mathscr{E} , il existe une valuation λ qui satisfait B avec $\lambda(x_0) = 0$;
 - 2. soit, il existe un sous-ensemble fini B_0 de \mathscr{E} , pour toute valuation λ qui satisfait B_0 , on a $\lambda(x_0) = 1$.

Si on est dans le cas 1, on pose $\varepsilon_0 = 0$, et sinon (cas 2) on pose $\varepsilon_0 = 1$.

 $\,\triangleright\,$ Cas de récurrence. On montre, par récurrence sur n, la propriété suivante :

il existe une suite $\varepsilon_0, \ldots, \varepsilon_n$ (que l'on étend, la suite ne change pas en fonction de n) de booléens telle que, pour tout sous-ensemble fini B de $\mathscr E$, il existe une valuation ν satisfaisant B et telle que $\nu(x_0) = \varepsilon_0, \ldots$, et $\nu(x_n) = \varepsilon_n$.

- Pour n=0, soit on est dans le cas 1, et on prend $\varepsilon_0=0$ et on a la propriété; soit on est dans le cas 2;, et on prend B un sous-ensemble fini de \mathscr{E} , alors $B \cup B_0$ est un ensemble fini donc satisfiable par une valuation ν . La valuation satisfait B_0 donc $\nu(x_0)=1$ et ν satisfait B. On a donc la propriété au rang 0.
- Hérédité. Par hypothèse de récurrence, on a une suite $\varepsilon_0, \ldots, \varepsilon_n$.
 - 1. Soit, pour tout sous-ensemble fini B de \mathscr{E} , il existe ν qui satisfait B et telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, et $\nu(x_{n+1}) = 0$. On pose $\varepsilon_{n+1} = 0$.
 - 2. Soit il existe B_{n+1} un sous-ensemble fini de $\mathscr E$ tel que, pour toute valuation ν telle que ν satisfait B_{n+1} et $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, on a $\nu(x_{n+1}) = 1$ et on pose $\varepsilon_{n+1} = 1$.

Montrons l'hérédité:

- 1. vrai par définition;
- 2. soit B un sous-ensemble fini de \mathscr{E} . On considère $B \cup B_{n+1}$, soit ν telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$. On a que ν satisfait B_{n+1} donc $\nu(x_{n+1}) = 1 = \varepsilon_{n+1}$ et ν satisfait B.

On a donc la propriété pour tout n.

Finalement, soit δ une valuation telle que, pour tout i, $\delta(x_i) = \varepsilon_i$. Montrons que δ satisfait $\mathscr E$. Soit $F \in \mathscr E$. On sait que F est un mot (fini), donc contient un ensemble fini de variables inclus dans $\{x_0, \ldots, x_n\}$. D'après la propriété par récurrence au rang n, il existe une valuation ν qui satisfait F et telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, et donc ν et δ coïncident sur les variables de F. Donc (lemme simple), elles coïncident sur toutes les formules qui n'utilisent que ces variables. Donc, $\delta(F) = 1$, et on en conclut que δ satisfait $\mathscr E$.

Dans le cas non-dénombrable, on utilise le lemme de Zorn, un équivalent de l'axiome du choix.

Définition 1.6. Un ensemble ordonné (X, \mathcal{R}) est inductif si pour tout sous-ensemble Y de X totalement ordonné par \mathcal{R} (*i.e.* une chaîne) admet un majorant dans X.

Remarque 1.1. On considère ici un majorant et non un plus grand élément (un maximum).

- **Exemple 1.3.** 1. Dans le cas $(\mathcal{P}(X), \subseteq)$, le majorant est l'union des parties de la chaîne, il est donc inductif.
 - 2. Dans le cas (\mathbb{R}, \leq) , il n'est pas inductif car \mathbb{R} n'a pas de majorant dans \mathbb{R} .

Lemme 1.2 (Lemme de Zorn). Si (X, \mathcal{R}) est un ensemble ordonné inductif non-vide, il admet au moins un élément maximal.

Remarque 1.2. Un élément maximal n'est pas nécessairement le plus grand.

Preuve. Soit $\mathscr E$ un ensemble de formules finiment satisfiable, et $\mathscr P$ un ensemble de variables. On note $\mathscr V$ l'ensemble des valuations partielles prolongeables pour toute partie finie $\mathscr E$ de $\mathscr E$ en une valuation satisfaisant $\mathscr E$. C'est-à-dire :

$$\mathcal{V} := \left\{ \left. \varphi \in \bigcup_{X \subseteq \mathcal{P}} \{0,1\}^X \, \right| \, \forall \mathcal{C} \in \wp_{\mathrm{f}}(\mathcal{C}), \exists \delta \in \{0,1\}^{\mathcal{P}}, \ \, \substack{\delta_{|\mathrm{dom}(\varphi)} = \varphi \\ \forall F \in \mathcal{C}, \delta(F) = 1} \, \right\}.$$

L'ensemble $\mathcal V$ est non-vide car contient l'application vide de $\{0,1\}^\emptyset$ car $\mathcal E$ est finiment satisfiable. On défini la relation

d'ordre \leq sur \mathcal{V} par :

$$\varphi \preccurlyeq \psi$$
 ssi ψ prolonge φ .

Montrons que (\mathcal{V}, \preceq) est inductif. Soit \mathscr{C} une chaîne de \mathscr{V} et construisons un majorant de \mathscr{C} . Soit λ la valuation partielle définie sur dom $\lambda = \bigcup_{\varphi \in \mathscr{C}} \operatorname{dom} \varphi$, par : si $x_i \in \operatorname{dom} \lambda$ alors il existe $\varphi \in \mathscr{C}$ tel que $x_i \in \operatorname{dom} \varphi$ et on pose $\lambda(x_i) = \varphi(x_i)$.

La valuation λ est définie de manière unique, *i.e.* ne dépend pas du choix de φ . En effet, si $\varphi \in \mathscr{C}$ et $\psi \in \mathscr{C}$, avec $x_i \in \text{dom } \varphi \cap \text{dom } \psi$, alors on a $\varphi \preccurlyeq \psi$ ou $\psi \preccurlyeq \varphi$, donc $\varphi(x_i) = \psi(x_i)$.

Autrement dit, λ est la limite de \mathscr{C} . Montrons que $\lambda \in \mathscr{V}$. Soit B une partie finie de \mathscr{C} . On cherche μ qui prolonge λ et satisfait B. L'ensemble de formules B est fini, donc utilise un ensemble fini de variables, dont un sous-ensemble fini $\{x_{i_1},\ldots,x_{i_n}\}\subseteq \mathrm{dom}(\lambda)$. Il existe $\varphi_1,\ldots,\varphi_n$ dans \mathscr{C} telle que $x_{i_1}\in \mathrm{dom}\,\varphi_1,\ldots,x_{i_n}\in \mathrm{dom}\,\varphi_n$. Comme \mathscr{C} est une chaîne, donc soit $\varphi_0=\max_{i\in [\![1,n]\!]}\varphi_i$ et on a $\varphi_0\in \mathscr{C}$. On a, de plus, $x_{i_1},\ldots,x_{i_n}\in \mathrm{dom}(\varphi_0)$. Soit $\varphi_0\in \mathscr{V}$ prolongeable en ψ_0 qui satisfait B. On définit :

$$\mu: \mathcal{P} \longrightarrow \{0, 1\}$$

$$x \in \operatorname{dom} \lambda \longmapsto \lambda(x)$$

$$x \in \operatorname{var} B \longmapsto \psi_0(x)$$

$$\operatorname{sinon} \longmapsto 0.$$

On vérifie que la définition est cohérente sur l'intersection car λ et ψ_0 prolongent tous les deux φ_0 et donc $\lambda \in \mathcal{V}$ d'où \mathcal{V} est inductif.

Suite la preuve plus tard.

2 La logique du premier ordre.

2.1 Les termes.

On commence par définir les *termes*, qui correspondent à des objets mathématiques. Tandis que les formules relient des termes et correspondent plus à des énoncés mathématiques.

Définition 2.1. Le langage \mathcal{L} (du premier ordre) est la donnée d'une famille (pas nécessairement finie) de symboles de trois sortes :

- \triangleright les symboles de *constantes*, notées c;
- \triangleright les symboles de fonctions, avec un entier associé, leur arité, notées $f(x_1, \ldots, x_n)$ où n est l'arité;
- \triangleright les symboles de relations, avec leur arité, notées R, appelés prédicats.

Les trois ensembles sont disjoints.

Remarque 2.1.

Les constantes peuvent être vues comme des fonctions d'arité 0.

- \triangleright On aura toujours dans les relations : « = » d'arité 2, et « \bot » d'arité 0.
- \triangleright On a toujours un ensemble de variables \mathcal{V} .

Exemple 2.1. Le langage \mathcal{L}_g de la théorie des groupes est défini par :

 \triangleright une constante : c,

- \triangleright deux fonctions : f_1 d'arité 2 et f_2 d'arité 1;
- \triangleright la relation =.

Ces symboles sont notés usuellement $e, *, \square^{-1}$ ou bien 0, +, -.

Exemple 2.2. Le langage \mathcal{L}_{co} des corps ordonnés est défini par :

- \triangleright deux constantes 0 et 1,
- \triangleright quatre fonctions $+, \times, -$ et \square^{-1} ,
- \triangleright deux relations = et \leq .

Exemple 2.3. Le langage \mathcal{L}_{ens} de la théorie des ensembles est défini par :

- $\begin{tabular}{ll} $ \triangleright$ une constante \emptyset, \\ $ \triangleright$ trois fonctions \cap, \cup et \square^c, \\ \end{tabular}$
- \triangleright trois relations =, \in et \subseteq .

Définition 2.2. Par le haut. L'ensemble $\mathcal T$ des termes sur le langage \mathcal{L} est le plus petit ensemble de mots sur $\mathcal{L} \cup \mathcal{V} \cup$ $\{(,),,\}$ tel

- ▷ qu'il contienne 𝒯 et les constantes;
- dire que pour des termes t_1, \ldots, t_n et un symbole de fonction f d'arité n, alors $f(t_1,\ldots,t_n)$ est un terme. ¹

Par le bas. On pose

$$\mathcal{T}_0 = \mathcal{V} \cup \{c \mid c \text{ est un symbole de constante de } \mathcal{L}\},$$

puis

$$\mathcal{T}_{k+1} = \mathcal{T}_k \cup \left\{ f(t_1, \dots t_n) \middle| \begin{array}{c} f \text{ fonction d'arité } n \\ t_1, \dots, t_n \in \mathcal{T}_k \end{array} \right\},$$

et enfin

$$\mathcal{T} = \bigcup_{n \in \mathbb{N}} \mathcal{T}_n.$$

Remarque 2.2. Dans la définition des termes, un n'utilise les relations.

Exemple 2.4. \triangleright Dans \mathcal{L}_g , $*(*(x, \square^{-1}(y)), e)$ est un terme, qu'on écrira plus simplement en $(x * y^{-1}) * e$.

- \triangleright Dans \mathcal{L}_{co} , $(x+x)+(-0)^{-1}$ est un terme.
- \triangleright Dans \mathscr{L}_{ens} , $(\emptyset^{\mathsf{c}} \cup \emptyset) \cap (x \cup y)^{\mathsf{c}}$ est un terme.

Définition 2.3. Si t et u sont des termes et x est une variable, alors t[x:u] est le mot dans lequel les lettres de x ont été remplacées par le mot u. Le mot t[x:u] est un terme (preuve en exercice).

Exemple 2.5. Avec $t = (x * y^{-1}) * e$ et u = x * e, alors on a

$$t[x:u] = ((x*e)*y^{-1})*e.$$

- **Définition 2.4.** \triangleright Un terme *clos* est un terme sans variable (par exemple $(0+0)^{-1}$).
 - \triangleright La hauteur d'un terme est le plis petit k tel que $t \in \mathcal{T}_k$.
- Exercice 2.1.

 Enoncer et prouver le lemme de lecture unique pour les termes.

^{1.} Attention : le « ... » n'est pas un terme mais juste une manière d'écrire qu'on place les termes à côté des autres.

2.2 Les formules.

Définition 2.5. \triangleright Les formules sont des mots sur l'alphabet

$$\mathcal{L} \cup \mathcal{V} \cup \{(,),,\exists,\forall,\wedge,\vee,\neg,\rightarrow\}.$$

- Une formule atomique est une formule de la forme $R(t_1, \ldots, t_n)$ où R est un symbole de relation d'arité n et t_1, \ldots, t_n des termes.
- \triangleright L'ensemble des formules ${\mathcal F}$ du langage ${\mathcal L}$ est défini par
 - on pose \mathcal{F}_0 l'ensemble des formules atomiques;

- on pose
$$\mathcal{F}_{k+1} = \mathcal{F}_k \cup \left\{ \begin{array}{c} (\neg F) \\ (F \to G) \\ (F \lor G) \\ (F \land G) \\ \exists x \ F \\ \exists x \ G \end{array} \right| \left. \begin{array}{c} F, G \in \mathcal{F}_k \\ x \in \mathcal{V} \end{array} \right\};$$

– et on pose enfin $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$.

Exercice 2.2. La définition ci-dessus est « par le bas ». Donner une définition par le haut de l'ensemble \mathcal{F} .

Exemple 2.6. \triangleright Dans \mathcal{L}_g , un des axiomes de la théorie des groupes s'écrit

$$\forall x \,\exists x \,(x * y = e \wedge y * x = e).$$

 \triangleright Dans \mathcal{Z}_{co} , l'énoncé « le corps est de caractéristique 3 » s'écrit

$$\forall x (x + (x + x) = 0).$$

ightharpoonup Dans $\mathcal{L}_{\mathrm{ens}}$, la loi de De Morgan s'écrit

$$\forall x \,\forall y \,(x^{\mathsf{c}} \cup y^{\mathsf{c}} = (x \cap y)^{\mathsf{c}}).$$

Exercice 2.3. Donner et montrer le lemme de lecture unique.

▶ Énoncer et donner un lemme d'écriture en arbre.

Remarque 2.3 (Conventions d'écriture.). On note :

- $\triangleright x \leq y$ au lieu de $\leq (x, y)$;
- $\Rightarrow \exists x \geq 0 \ (F) \text{ au lieu de } \exists x \ (x \geq 0 \land F);$
- $\forall x \geq 0 \ (F)$ au lieu de $\forall x \ (x \geq 0 \rightarrow F)$;
- $\triangleright A \leftrightarrow B$ au lieu de $(A \to B) \land (B \to A)$;
- $\triangleright t \neq u$ au lieu de $\neg (t = u)$.

On enlèves les parenthèses avec les conventions de priorité

- 0. les symboles de relations (le plus prioritaire);
- 1. les symboles \neg , \exists , \forall ;
- 2. les symboles \land et \lor ;
- 3. le symbole \rightarrow (le moins prioritaire).

Exemple 2.7. Ainsi, $\forall x \ A \land B \rightarrow \neg C \lor D$ s'écrit

$$(((\forall x \ A) \land B) \to ((\neg C) \lor D)).$$

Remarque 2.4. Le calcul propositionnel est un cas particulier de la logique du premier ordre où l'on ne manipule que des relations d'arité 0 (pas besoin des fonctions et des variables) : les « variables » du calcul propositionnel sont des formules atomiques ; et on n'a pas de relation « = ».

Remarque 2.5. On ne peut pas exprimer *a priori*:

- $\triangleright \, \, \langle \, \exists n \, \exists x_1 \dots \exists x_n \, \rangle \,$ une formule qui dépend d'un paramètre ;
- ▷ le principe de récurrence : si on a $\mathcal{P}(0)$ pour une propriété \mathcal{P} et que si $\mathcal{P}(n) \to \mathcal{P}(n+1)$ alors on a $\mathcal{P}(n)$ pour tout n.

Quelques définitions techniques qui permettent de manipuler les formules.

Définition 2.6. L'ensemble des sous-formules de F, noté $\mathrm{S}(F)$ est défini par induction :

- \triangleright si F est atomique, alors on définit $S(F) = \{F\}$;
- \triangleright si $F = F_1 \oplus F_2$ (avec \oplus qui est \lor , \rightarrow ou \land) alors on définit $S(F) = S(F_1) \cup S(F_2) \cup \{F\}$;
- \triangleright si $F = \neg F_1$, ou $F = \mathbf{Q}x F_1$ avec $\mathbf{Q} \in \{\forall, \exists\}$, alors on définit $S(F) = S(F_1) \cup \{F\}$.

C'est l'ensemble des formules que l'on voit comme des sous-arbres de l'arbre équivalent à la formule F.

Définition 2.7. \triangleright La *taille* d'une formule, est le nombre de connecteurs $(\neg, \lor, \land, \rightarrow)$, et de quantificateurs (\forall, \exists) .

- ▷ La racine de l'arbre est
 - rien su la formule est atomique;
 - \oplus si $F = F_1 \oplus F_2$ avec \oplus un connecteur (binaire ou unaire);
 - $\ll Q \gg \text{si } F = Qx F_1 \text{ avec } Q \text{ un quantificateur.}$

Définition 2.8. \triangleright Une occurrence d'une variable est un endroit où la variable apparait dans la formule (*i.e.* une feuille étiquetée par cette variable).

- \triangleright Une occurrence d'une variable est *liée* si elle se trouve dans une sous-formule dont l'opérateur principal est un quantificateur appelé à cette variable (*i.e.* un $\forall x \ F'$ ou un $\exists x \ F'$).
- ightharpoonup Une occurrence d'une variable est libre quand elle n'est pas liée.
- ▶ Une variable est libre si elle a au moins une occurrence libre, sinon elle est liée.

^{2.} En dehors de \mathcal{L}_{ens} , en tout cas.

Remarque 2.6. On note $F(x_1, \ldots, x_n)$ pour dire que les variables libres sont F sont parmi $\{x_1, \ldots, x_n\}$.

Définition 2.9. Une formule est *close* si elle n'a pas de variables libres.

Définition 2.10 (Substitution). On note F[x := t] la formule obtenue en remplaçant toutes les occurrences libres de x par t, après renommage éventuel des occurrences des variables liées de F qui apparaissent dans t.

Définition 2.11 (Renommage). On donne une définition informelle et incomplète ici. On dit que les formules F et G sont α -équivalentes si elle sont syntaxiquement identiques à un renommage près des occurrences liées des variables.

Exemple 2.8. On pose

$$F(x,z) := \forall y (x * y = y * z) \land \forall x (x * x = 1),$$

et alors

- $\begin{array}{l} \rhd \ F(z,z) = F[x:=z] = \forall y \ (z*y=y*z) \land \forall x \ (x*x=1) \ ; \\ \rhd \ F(y^{-1},x) = F[x:=y^{-1}] = \forall {\color{blue} u}(y^{-1}*{\color{blue} u} = {\color{blue} u}*z) \land \forall x (x*x=1). \end{array}$

On a procédé à un renommage de y à $\frac{\mathbf{u}}{\mathbf{v}}$.

2.3 Les démonstrations en déduction naturelle.

Définition 2.12. Un séquent est un coupe noté $\Gamma \vdash F$ (où \vdash se lit « montre » ou « thèse ») tel que Γ est un ensemble fini de formules appelé contexte (i.e. l'ensemble des hypothèses), la formule F est la conséquence du séquent.

Remarque 2.7. Les formules ne sont pas nécessairement closes. Et on note souvent Γ comme une liste.

Définition 2.13. On dit que $\Gamma \vdash F$ est *prouvable*, *démontrable* ou *dérivable*, s'il peut être obtenu par une suite finie de règles (*c.f.* ci-après). On dit qu'une formule F est *prouvable* si $\emptyset \vdash F$ l'est.

Définition 2.14 (Règles de la démonstration). Une règle s'écrit

 $\frac{pr\acute{e}misses : des s\'{e}quents}{conclusion : un s\'{e}quent}$ nom de la règle

Axiome.

$$\overline{\Gamma, A \vdash A}$$
 ax

Affaiblissement.

$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ aff }$$

Implication.

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_{\mathsf{i}} \qquad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \to_{\mathsf{e}} {}^{3}$$

Conjonction.

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ \land_{\mathsf{i}} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ \lor^{\mathsf{g}}_{\mathsf{e}} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ \lor^{\mathsf{d}}_{\mathsf{e}}$$

Disjonction.

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \,\,\vee_{\mathsf{i}}^{\mathsf{g}} \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \,\,\vee_{\mathsf{i}}^{\mathsf{d}}$$

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} \ \lor_{\mathbf{e}}^{4}.$$

Négation.

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \neg_{\mathsf{i}} \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \neg_{\mathsf{e}}$$

Absurdité classique.

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \perp_{\mathsf{e}}$$

(En logique intuitionniste, on retire l'hypothèse $\neg A$ dans la prémisse.)

Quantificateur universel.

$$\begin{array}{ccc}
& \text{si } x \text{ n'est pas libre} \\
& \text{dans les formules de } \Gamma & \hline{\Gamma \vdash A} & \forall_{\mathbf{i}}
\end{array}$$

quitte à renommer les variables liées de
$$A$$
 qui apparaissent dans t
$$\frac{\Gamma \vdash \forall x \ A}{\Gamma \vdash A[x:=t]} \ \forall_{\mathbf{e}}$$

Quantificateur existentiel.

$$\frac{\Gamma \vdash A[x := t]}{\Gamma \vdash \exists x \ A} \ \exists_{\mathsf{i}}$$

avec
$$x$$
 ni libre dans C ou dans les formules de Γ

$$\frac{\Gamma \vdash \exists x \ A \qquad \Gamma, A \vdash C}{\Gamma \vdash C} \ \exists_{\mathsf{e}}$$

2.4 La sémantique.

Définition 2.15. Soit $\mathcal L$ un langage de la sémantique du premier ordre. On appelle interprétation (ou modèle, ou structure) du langage $\mathcal L$ l'ensemble $\mathcal M$ des données suivantes :

 \triangleright un ensemble non vide, noté $|\mathcal{M}|$, appelé domaine ou ensemble de base de \mathcal{M} ;

^{3.} Aussi appelée modus ponens

^{4.} C'est un raisonnement par cas

- \triangleright pour chaque symbole c de constante, un élément $c_{\mathcal{M}}$ de $|\mathcal{M}|$;
- ho pour chaque symbole f de fonction n-aire, une fonction $f_{\mathcal{M}}: |\mathcal{M}|^n \to |\mathcal{M}|$;
- \triangleright pour chaque symbole R de relation n-aire (sauf pour l'égalité « = »), un sous-ensemble $R_{\mathcal{M}}$ de $|\mathcal{M}|^n$.

Remarque 2.8. \triangleright La relation « = » est toujours interprétée par la vraie égalité :

$$\{(a,a) \mid a \in |\mathcal{M}|\}.$$

- \triangleright On note, par abus de notation, \mathcal{M} pour $|\mathcal{M}|$.
- $\triangleright \text{ Par convention, } |\mathcal{M}|^0 = \{\emptyset\}.$

Exemple 2.9. Avec $\mathcal{L}_{corps} = \{0, 1, +, \times, -, \square^{-1}\}$, on peut choisir

- $\triangleright |\mathcal{M}| = \mathbb{R} \text{ avec } 0_{\mathbb{R}}, 1_{\mathbb{R}}, +_{\mathbb{R}}, \times_{\mathbb{R}}, -_{\mathbb{R}} \text{ et } \square_{\mathbb{R}}^{-1};$
- \triangleright ou $|\mathcal{M}| = \mathbb{R}$ avec $2_{\mathbb{R}}, 2_{\mathbb{R}}, -_{\mathbb{R}}, +_{\mathbb{R}}, etc.$

Définissions la vérité.

Définition 2.16. Soit \mathcal{M} une interprétation de \mathcal{L} .

- \triangleright Un environnement est une fonction de l'ensemble des variables dans $|\mathcal{M}|$.
- \triangleright Si e est un environnement et $a \in |\mathcal{M}|$, on note e[x := a] l'environnement e' tel que e'(x) = a et pour $y \neq x$, e(y) = e'(y).
- \triangleright La valeur d'un terme t dans l'environnement e, noté $\operatorname{Val}_{\mathcal{M}}(t,e)$, est définie par induction sur l'ensemble des termes de la façon suivante :
 - $Va\ell_{\mathcal{M}}(c,e) = c_{\mathcal{M}}$ si c est une constante;
 - $Val_{\mathcal{M}}(c, e) = e(x)$ si x est une variable;
 - $\operatorname{Val}_{\operatorname{M}}(f(t_1,\ldots,t_n),e) = f_{\operatorname{M}}(\operatorname{Val}_{\operatorname{M}}(t_1,e),\ldots,\operatorname{Val}_{\operatorname{M}}(t_n,e)).$

Remarque 2.9. La valeur est $\operatorname{Val}_{\mathcal{M}}(t,e)$ est un élément de $|\mathcal{M}|$.

Exemple 2.10. Dans $\mathcal{L}_{arith} = \{0, 1, +, \times\}$, avec le modèle

$$\mathcal{M}: \mathbb{N}, 0_{\mathbb{N}}, 1_{\mathbb{N}}, +_{\mathbb{N}}, \times_{\mathbb{N}},$$

et l'environnement

$$e: x_1 \mapsto 2_{\mathbb{N}} \quad x_2 \mapsto 0_{\mathbb{N}} \quad x_3 \mapsto 3_{\mathbb{N}},$$

alors la valeur du terme $t := (1 \times x_1) + (x_2 \times x_3) + x_2$ est $2_{\mathbb{N}} = (1 \times 2) + (0 \times 3) + 0$.

Lemme 2.1. La valeur $\operatorname{Val}_{\mathcal{M}}(t,e)$ ne dépend que de la valeur de e sur les variables de t.

- **Notation.** \triangleright Lorsque cela est possible, on oublie \mathcal{M} et e dans la notation, et on note $\mathcal{V}a\ell(t)$.
 - \triangleright À la place de $\operatorname{Val}_{\mathcal{M}}(t,e)$ quand x_1,\ldots,x_n sont les variables de t et $e(x_1)=a_1,\ldots,e(x_n)=a_n$, on note $t[a_1,\ldots,a_n]$ ou aussi $t[x_1:=a_1,\ldots,x_n:=a_n]$. C'est un terme à paramètre, mais attention ce n'est **ni un terme**, **ni une substitution**.

Définition 2.17. Soit \mathcal{M} une interprétation d'un langage \mathcal{L} . La valeur d'une formule F de \mathcal{L} dans l'environnement e est un élément de $\{0,1\}$ noté $\operatorname{Val}_{\mathcal{M}}(F,e)$ et définie par induction sur l'ensemble des formules par

$$\triangleright \operatorname{Val}_{\mathcal{M}}(\neg F, e) = 1 - \operatorname{Val}_{\mathcal{M}}(F, e);$$

$$\quad \qquad \forall \text{$d\ell_{\mathcal{M}}(F \wedge G, e) = 1$ ssi $Va\ell_{\mathcal{M}}(F, e) = 1$ et $Va\ell_{\mathcal{M}}(G, e) = 1$};$$

$$ho$$
 Va $\ell_{\mathcal{M}}(F \vee G, e) = 1$ ssi Va $\ell_{\mathcal{M}}(F, e) = 1$ ou Va $\ell_{\mathcal{M}}(G, e) = 1$;

$$\quad \ \, \forall \! a\ell_{\mathcal{M}}(F \to G,e) = 1 \text{ ssi } \forall \! a\ell_{\mathcal{M}}(F,e) = 0 \text{ ou } \forall \! a\ell_{\mathcal{M}}(G,e) = 1 \, ;$$

$$\qquad \qquad \forall a \ell_{\mathcal{M}}(\forall x \ F, e) = 1 \ \text{ssi pour tout} \ a \in |\mathcal{M}|, \ \forall a \ell_{\mathcal{M}}(F, e[x := a]) = 1 \ ;$$

 $[\]triangleright \operatorname{Val}_{\mathcal{M}}(\bot, e) = 0;$

 $\triangleright \text{ Val}_{\mathcal{M}}(\exists x \, F, e) = 1 \text{ ssi il existe } a \in |\mathcal{M}|, \text{ Val}_{\mathcal{M}}(F, e[x := a]) = 1.$

Remarque 2.10. Donse débrouille pour que les connecteurs aient leur sens courant, les « mathématiques naïves ».

- $\,\triangleright\,$ Dans le cas du calcul propositionnel, si R est d'arité 0, i.e.une variable propositionnelle, comme $|\mathcal{M}|^0 = \{\emptyset\}$ alors on a deux possibilité:
 - ou bien $R = \emptyset$, et alors on convient que $\operatorname{Val}_{\mathcal{M}}(R, e) =$
 - ou bien $R = \{\emptyset\}$, et alors on convient que $\operatorname{Va\ell}_{\operatorname{M}}(R, e) =$

Remarque 2.11. On verra plus tard qu'on peut construire les entiers avec

- $\triangleright 0:\emptyset,$
- $\triangleright 1 : \{\emptyset\},$
- $\triangleright \ 2: \{\emptyset, \{\emptyset\}\},\$
- $\begin{tabular}{ll} \rhd & \vdots & \vdots \\ \rhd & n+1: n \cup \{n\}, \end{tabular}$

Notation. À la place de $Val_{\mathcal{M}}(F,e) = 1$, on notera $\mathcal{M}, e \models F$ ou bien $\mathcal{M} \models F$. On dit que \mathcal{M} satisfait F, que \mathcal{M} est un modèle de F(dans l'environnement e), que F est est vraie dans \mathcal{M} .

Lemme 2.2. La valeur $Val_{\mathcal{M}}(F,e)$ ne dépend que de la valeur de e sur les variables libres de F.

Preuve. En exercice.

Corollaire 2.1. Si F est close, alors $Val_{\mathcal{M}}(F,e)$ ne dépend pas de e et on note $\mathcal{M} \models F$ ou $\mathcal{M} \not\models F$.

Remarque 2.12. Dans le cas des formules closes, on doit passer un environnement à cause de \forall et \exists .

Notation. On note $F[a_1, \ldots, a_n]$ pour $Val_{\mathcal{M}}(F, e)$ avec $e(x_1) = a_1, \ldots, e(x_n) = a_n$. C'est une formule à paramètres, mais ce n'est **pas** une formule.

Exemple 2.11. Dans $\mathcal{L} = \{S\}$ où S est une relation binaire, on considère deux modèles :

$$\triangleright \mathcal{N} : |\mathcal{N}| = \mathbb{N} \text{ avec } S_{\mathcal{N}} = \{(x, y) \mid x < y\},\$$

$$\triangleright \Re : |\Re| = \mathbb{R} \text{ avec } S_{\Re} = \{(x, y) \mid x < y\};$$

et deux formules

$$\triangleright F = \forall x \, \forall y \, (S \, x \, y \to \exists z \, (S \, x \, z \land S \, z \, y)),$$

alors on a

$$\mathcal{N} \not\models F$$
 $\Re \models F$ $\mathcal{N} \models G$ $\Re \not\models G$.

En effet, la formule F représente le fait d'être un ordre dense, et G d'avoir un plus petit élément.

Définition 2.18. Dans un langage \mathcal{L} , une formule F est un théorème (logique) si pour toute structure \mathcal{M} et tout environnement e, on a $\mathcal{M}, e \models F$.

Exemple 2.12. Quelques théorèmes simples : $\forall x \neg \bot$, et $\forall x \, x = x$ et même x = x car on ne demande pas que la formule soit clause.

Dans $\mathcal{L}_{\mathbf{g}} = \{e, *, \square^{-1}\}$, on considère deux formules

$$F = \forall x \, \forall y \, \forall z \, ((x * (y * z) = (x * y) * z) \land x * e = e * x = x \land \exists t \, (x * t = e \land t * x = e));$$

$$\triangleright$$
 et $G = \forall e' = \forall e' \ (\forall x \ (x * e' = e' * x = x) \rightarrow e = e').$

Aucun des deux n'est un théorème (il n'est vrai que dans les groupes pour F (c'est même la définition de groupe) et dans les monoïdes pour G (unicité du neutre)), mais $F \to G$ est un théorème logique.

Définition 2.19. Soient \mathcal{L} et \mathcal{L}' deux langages. On dit que \mathcal{L}' enrichit \mathcal{L} ou que \mathcal{L} est une restriction de \mathcal{L}' si $\mathcal{L} \subseteq \mathcal{L}'$.

Dans ce cas, si \mathcal{M} est une interprétation de \mathcal{L} , et si \mathcal{M}' est une interprétation de \mathcal{L}' alors on dit que \mathcal{M}' est un enrichissement de \mathcal{M} ou que \mathcal{M} est une restriction de \mathcal{M}' ssi $|\mathcal{M}| = |\mathcal{M}'|$ et chaque symbole de \mathcal{L} a la même interprétation dans \mathcal{M} et \mathcal{M}' , i.e. du point de vue de \mathcal{L} , \mathcal{M} et \mathcal{M}' sont les mêmes.

Exemple 2.13. Avec $\mathcal{L} = \{e, *\}$ et $\mathcal{L}' = \{e, *, \square^{-1}\}$ alors \mathcal{L}' est une extension de \mathcal{L} . On considère

$$\triangleright \mathcal{M}: \quad |\mathcal{M}| = \mathbb{Z} \quad e_{\mathcal{M}} = 0_{\mathbb{Z}} \quad *_{\mathcal{M}} = +_{\mathbb{Z}};$$

$$\begin{array}{lll} \triangleright \ \mathcal{M}: & |\mathcal{M}| = \mathbb{Z} & e_{\mathcal{M}} = 0_{\mathbb{Z}} & *_{\mathcal{M}} = +_{\mathbb{Z}}; \\ \triangleright \ \mathcal{M}': & |\mathcal{M}'| = \mathbb{Z} & e_{\mathcal{M}'} = 0_{\mathbb{Z}} & *_{\mathcal{M}'} = +_{\mathbb{Z}} & \square_{\mathcal{M}'}^{-1} = \mathrm{id}_{\mathbb{Z}}, \end{array}$$

et alors \mathcal{M}' est une extension de \mathcal{M} .

Proposition 2.1. Si \mathcal{M} une interprétation de \mathcal{L} est un enrichissement de \mathcal{M}' , une interprétation de \mathcal{L}' , alors pour tout environnement e,

- 1. si t est un terme de \mathcal{L} , alors $\operatorname{Val}_{\mathcal{M}}(t,e) = \operatorname{Val}_{\mathcal{M}'}(t,e)$;
- 2. si F est une formule de \mathcal{L} alors $Val_{\mathcal{M}}(F,e) = Val_{\mathcal{M}'}(F,e)$.

Preuve. En exercice.

Corollaire 2.2. La vérité d'une formule dans une interprétation ne dépend que de la restriction de cette interprétation au langage de la formule.

Définition 2.20. Deux formules F et G sont équivalentes si $F \leftrightarrow G$ est un théorème logique.

Proposition 2.2. Toute formule est équivalente à une formule n'utilisant que les connecteurs logiques \neg , \lor et \exists .

Définition 2.21. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} .

- 1. Un \mathcal{L} -morphisme de \mathcal{M} est une fonction $\varphi: |\mathcal{M}| \to |\mathcal{N}|$ telle que
 - \triangleright pour chaque symbole de constante c, on a $\varphi(c_{\mathcal{M}}) = c_{\mathcal{N}}$;
 - \triangleright pour chaque symbole f de fonction n-aire, on a

$$\varphi(f_{\mathcal{M}}(a_1,\ldots,a_n))=f_{\mathcal{N}}(\varphi(a_1),\ldots,\varphi(a_n));$$

 \triangleright pour chaque symbole R de relation n-aire (autre que $\ll = \gg$), on a

$$(a_1, \ldots, a_n) \in R_{\mathcal{M}} \text{ ssi } (\varphi(a_1), \ldots, \varphi(a_n)) \in R_{\mathcal{N}}.$$

- \triangleright Un \mathscr{L} -isomorphisme est un \mathscr{L} -morphisme bijectif.
- ightharpoonup Si $\mathcal M$ et $\mathcal N$ sont isomorphes s'il existe un $\mathcal L$ -isomorphisme de $\mathcal M$ à $\mathcal N$.
- Remarque 2.13. 1. On ne dit rien sur « = » car si on impose la même condition que pour les autres relations alors nécessairement φ est injectif.
 - 2. La notion dépend du langage \mathcal{L} .
 - 3. Lorsqu'on a deux structures isomorphes, on les confonds, ce sont les mêmes, c'est un renommage.

Exemple 2.14. Avec $\mathcal{L}_{ann} = \{0, +, \times, -\}$ et $\mathcal{L}' = \mathcal{L}_{ann} \cup \{1\}$, et les deux modèles $\mathcal{M} : \mathbb{Z}/3\mathbb{Z}$ et $\mathcal{N} = \mathbb{Z}/12\mathbb{Z}$, on considère la

fonction définie (on néglige les cas inintéressants) par $\varphi(\bar{n}) = \overline{4n}$.

Est-ce que φ est un morphisme de \mathcal{M} dans \mathcal{N} ? Oui... et non... Dans \mathcal{L} c'est le cas, mais pas dans \mathcal{L}' car $\varphi(1) = 4$.

Exemple 2.15. Dans $\mathcal{L} = \{c, f, R\}$ avec f une fonction binaire, et R une relation binaire, on considère

$$\triangleright \mathcal{M}: \mathbb{R}, 0, +, \leq;$$

$$\triangleright \mathcal{N}:]0, +\infty[, 1, \times, \leq.$$

Existe-t-il un morphisme de \mathcal{M} dans \mathcal{N} ? Oui, il suffit de poser le morphisme $\varphi: x \mapsto e^x$.

Proposition 2.3. La composée de deux morphismes (resp. isomorphisme) est un morphisme (resp. un isomorphisme).

Notation. Si φ est un morphisme de \mathcal{M} dans \mathcal{N} et e un environnement de \mathcal{M} , alors on note $\varphi(e)$ pour $\varphi \circ e$. C'est un environnement de \mathcal{N} .

Lemme 2.3. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} , et φ un morphisme de \mathcal{M} dans \mathcal{N} . Alors pour tout terme t et environnement e, on a

$$\varphi(\operatorname{Val}_{\operatorname{M}}(t,e))=\operatorname{Val}_{\operatorname{N}}(t,\varphi(e)).$$

Lemme 2.4. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} , et φ un morphisme *injectif* de \mathcal{M} dans \mathcal{N} . Alors pour toute formule atomique F et environnement e, on a

$$\mathcal{M}, e \models F \text{ ssi } \mathcal{N}, \varphi(e) \models F$$

Lemme 2.5. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} , et φ un $isomorphisme^5$ de \mathcal{M} dans \mathcal{N} . Alors pour toute formule F et

environnement e, on a

$$\mathcal{M}, e \models F \text{ ssi } \mathcal{N}, \varphi(e) \models F$$

Corollaire 2.3. Deux interprétations isomorphismes satisfont les mêmes formules closes.

Exercice 2.4. Les groupes $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ sont-ils isomorphes? Non. En effet, les deux formules

- $\exists x (x \neq e \land x * x \neq e \land x * (x * x) \neq e \land x * (x * (x * x)) = e),$
- $\triangleright \ \forall x (x * x) = e$

ne sont pas vraies dans les deux (pour la première, elle est vraie dans $\mathbb{Z}/4\mathbb{Z}$ mais pas dans $(\mathbb{Z}/2\mathbb{Z})^2$ et pour la seconde, c'est l'inverse).

Remarque 2.14. La réciproque du corollaire est *fausse* : deux interprétations qui satisfont les mêmes formules closes ne sont pas nécessairement isomorphes. Par exemple, avec $\mathcal{L} = \{\leq\}$, les interprétations \mathbb{R} et \mathbb{Q} satisfont les mêmes formules closes, mais ne sont pas isomorphes.

Définition 2.22. Soit \mathcal{L} un langage, \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} . On dit que \mathcal{N} est une *extension* de \mathcal{M} (ou \mathcal{M} est une *sous-interprétation* de \mathcal{N}) si les conditions suivants sont satisfaites :

- $\triangleright |\mathcal{M}| \subseteq |\mathcal{N}|;$
- \triangleright pour tout symbole de constante c, on a $c_{\mathcal{M}} = c_{\mathcal{N}}$;
- ▷ pour tout symbole de fonction n-aire f, on a $f_{\mathcal{M}} = f_{\mathcal{N}} \Big|_{|\mathcal{M}|^n}$ (donc en particulier $f_{\mathcal{N}}(|\mathcal{M}|^n) \subseteq |\mathcal{M}|$);
- \triangleright pour tout symbole de relation *n*-aire R, on a $R_{\mathcal{M}} = R_{\mathcal{N}} \cap |\mathcal{M}|^n$.

^{5.} On utilise ici la surjectivité pour le « \exists ».

Proposition 2.4. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} . Alors \mathcal{M} est isomorphe à une sous-interprétation \mathcal{M}' de \mathcal{N} si et seulement si, il existe un morphisme injectif de \mathcal{M} dans \mathcal{N} .

Exemple 2.16 (Construction de \mathbb{Z} à partir de \mathbb{N}). On pose la relation $(p,q) \sim (p',q')$ si p+q'=p'+q. C'est une relation d'équivalence sur \mathbb{N}^2 . On pose $\mathbb{Z}:=\mathbb{N}^2/\sim$ (il y a un isomorphisme $\mathbb{N}^2/\sim\to\mathbb{Z}$ par $(p,q)\mapsto p-q$). Est-ce qu'on a $\mathbb{N}\subseteq\mathbb{N}^2/\sim$? D'un point de vue ensembliste, non. Mais, généralement, l'inclusion signifie avoir un morphisme injectif de \mathbb{N} dans \mathbb{N}^2/\sim .

Définition 2.23. Une *théorie* est un ensemble (fini ou pas) de formules closes. Les éléments de la théorie sont appelés *axiomes*.

Exemple 2.17. La théorie des groupes est

$$\begin{split} T_{\text{groupe}} &:= \left\{ \forall x \: (x*e=e*x=x), \right. \\ & \forall x \: (x*x^{-1}=e \land x^{-1}*x=e), \\ & \forall x \: \forall y \: \forall z \: (x*(y*z)=(x*y)*z) \right\} \end{split}$$

dans le langage \mathcal{L}_{g} .

Exemple 2.18. La théorie des ensembles infinis est

$$T_{\text{ens infinis}} := \left\{ \exists x \ (x = x), \\ \exists x \ \exists y \ (x \neq y), \\ \exists x \ \exists y \ \exists z \ (x \neq y \land y \neq z \land z \neq x) \\ \dots \right\}$$

dans le langage \mathcal{L}_{ens} .

Définition 2.24 (Sémantique). \triangleright Une interprétation \mathcal{M} satisfait T (ou \mathcal{M} est un modèle de T), noté $\mathcal{M} \models T$, si \mathcal{M} satisfait toutes les formules de T.

 \triangleright Une théorie T est contradictoire s'il n'existe pas de modèle de T. Sinon, on dit qu'elle est non-contradictoire, ou satisfiable, ou satisfiable.

Exemple 2.19. Les deux théories précédentes, T_{groupes} et $T_{\text{ens infinis}}$, sont non-contradictoires.

Définition 2.25 (Syntaxique). Soit T une théorie.

- \triangleright Soit A une formule. On note $T \vdash A$ s'il existe un sousensemble fini T' tel que $T' \subseteq T$ et $T' \vdash A$.
- \triangleright On dit que T est consistante si $T \nvdash \bot$, sinon T est inconsistante.
- ightharpoonup On dit que T est complète (« axiome-complète ») si T est consistante et, pour toute formule $F \in \mathcal{F}$, on a $T \vdash F$ ou on a $T \vdash \neg F$.

Exemple 2.20. La théorie des groupes n'est pas complète : par exemple,

$$F := \forall x \, \forall y \, (x * y = y * x)$$

est parfois vraie, parfois fausse, cela dépend du groupe considéré.

Exemple 2.21. La théorie

$$T = \mathbf{Th}(\mathbb{N}) := \{ \text{les formules } F \text{ vraies dans } \mathbb{N} \}$$

est complète mais pas pratique.

De par le théorème d' $incomplétude\ de\ G\"{o}del$ (c'est un sens différent du « complet » défini avant), on montre qu'on ne peut pas avoir de joli ensemble d'axiomes pour \mathbb{N} .

Proposition 2.5. Soit T une théorie complète.

- 1. Soit A une formule close. On a $T \vdash \neg A$ ssi $T \nvdash A$.
- 2. Soient A et B des formules closes. On a $T \vdash A \lor B$ ssi $T \vdash A$ ou $T \vdash B$.

Preuve. ightharpoonup Si $T \vdash \neg A$ et $T \vdash A$, alors il existe $T', T'' \subseteq_{\text{fini}} T$ tels que $T' \vdash \neg A$ et $T'' \vdash A$. On a donc $T' \cup T'' \vdash \bot$ par :

$$\frac{T' \vdash \neg A}{T' \cup T'' \vdash \neg A} \text{ aff } \frac{T'' \vdash A}{T' \cup T'' \vdash A} \text{ aff } \\ T' \cup T'' \vdash \bot$$

On en conclut que $T \vdash \bot$, absurde car T supposée complète donc consistante. On a donc $T \vdash \neg A$ implique $T \nvdash A$.

Réciproquement, si $T \nvdash A$ et $T \nvdash \neg A$, alors c'est impossible car T est complète. On a donc $T \nvdash A$ implique $T \vdash \neg A$.

 \triangleright Si $T \vdash A$ ou $T \vdash B$, alors par la règle \vee_i^{g} ou \vee_i^{d} , on montre que $T \vdash A \vee B$.

2.5 Théorème de complétude de Gödel.

Théorème 2.1 (Complétude de Gödel (à double sens)).

Version 1. Soit T une théorie et F une formule close. On a $T \vdash F$ ssi $T \models F$.

Version 2. Une théorie T est consistante (syntaxe) ssi elle est non-contradictoire (sémantique).

Remarque 2.15. La version 1 se décompose en deux théorèmes :

⊳ le théorème de correction (ce que l'on prouve est vrai)

$$T \vdash F \implies T \models F$$
;

▶ le théorème de complétude (ce qui est vrai est prouvable)

$$T \models F \implies T \vdash F$$
.

Pour la version 2, on peut aussi la décomposer en deux théorèmes 6 :

- \triangleright la correction, T non-contradictoire implique T consistante;
- ightharpoonup la complétude, T consistante implique T non-contradictoire.

Par contraposée, on a aussi qu'une théorie contradictoire est inconsistante.

Proposition 2.6. Les deux versions du théorème de correction sont équivalentes.

- **Preuve.** ightharpoonup D'une part, on montre (par contraposée) « non V2 implique non V1 ». Soit T non-contradictoire et inconsistante. Il existe un modèle \mathcal{M} tel que $\mathcal{M} \models T$ et $T \vdash \bot$. Or, par définition, $\mathcal{M} \not\models \bot$ donc $T \not\models \bot$.
 - D'autre part, on montre « V2 implique V1 ». Soit T et F tels que $T \vdash F$. Ainsi, $T \cup \neg F \vdash \bot$, d'où $T \cup \{\neg F\}$ est inconsistante, et d'où, par la version 2 de la correction, on a que $T \cup \{\neg F\}$ contradictoire, donc on n'a pas de modèle. On a alors que, touts les modèles de T sont des modèles de F, autrement dit $T \models F$.

^{6.} On a une négation dans ce théorème, donc ce n'est pas syntaxe implique sémantique pour la correction, mais non sémantique implique non syntaxe.

Proposition 2.7. Les deux versions du théorème de complétude (sens unique) sont équivalentes.

- **Preuve.** \triangleright Soit T contradictoire. Elle n'a pas de modèle. Ainsi, on a $T \models \bot$ d'où $T \vdash \bot$ par la version 1, elle est donc inconsistante.
 - ightharpoonup Soit $T \models F$. Considérons $T \cup \{\neg F\}$: cette théorie n'a pas de modèle, donc est contradictoire, donc est inconsistante, et on a donc que $T \cup \{\neg F\} \vdash \bot$ d'où $T \vdash F$ par \bot_{e} .

Remarque 2.16 (Attention!). On utilise $\langle | = \rangle$ dans deux sens.

- ightharpoonup Dans le sens $mod\`{e}le \models formule$, on dit qu'une formule est vraie dans un mod\`{e}le, c'est le sens des mathématiques classiques.
- Dans le sens théorie ⊨ formule, on dit qu'une formule est vraie dans tous les modèles de la théorie, c'est un sens des mathématiques plus inhabituel.

2.5.1 Preuve du théorème de correction.

Exercice 2.5. Montrer que le lemme ci-dessous implique la version 1 de la correction.

Lemme 2.6. Soient T une théorie, \mathcal{M} un modèle et F une formule close. Si $\mathcal{M} \models T$ et $T \vdash F$ alors $\mathcal{M} \models F$.

Preuve. Comme d'habitude, pour montrer quelque chose sur les formules closes, on commence par les formules et même les termes. On commence par montrer que la substitution dans les termes a un sens sémantique.

Lemme 2.7. Soient t et u des termes et e un environnement. Soient v:=t[x:=u] et $e':=e[x:=\mathcal{V}\!a\ell(u,e)]$. Alors, $\mathcal{V}\!a\ell(v,e)=\mathcal{V}\!a\ell(t,e')$.

Preuve. En exercice.

Lemme 2.8. Soit A une formule, t un terme, et e un environnement. Si $e' := e[x := \mathcal{V}a\ell(t, e)]$ alors $\mathcal{M}, e \models A[x := t]$ ssi $\mathcal{M}, e' \models A$.

Preuve. En exercice.

On termine la preuve en montrant la proposition ci-dessous. \qed

Montrons cette proposition plus forte que le lemme.

Proposition 2.8. Soient Γ un ensemble de formules et A une formule. Soit \mathcal{M} une interprétation et soit e un environnement. Si $\mathcal{M}, e \models \Gamma$, et $\Gamma \models A$ alors $\mathcal{M}, e \models A$.

Preuve. Par induction sur la preuve de $\Gamma \vdash A$, on montre la proposition précédente.

- ▷ Cas inductif \rightarrow_i . On sait que A est de la forme $B \rightarrow C$, et on montre que de $\Gamma, B \vdash C$ on montre $\Gamma \vdash B \rightarrow C$. Soient \mathcal{M} et e tels que $\mathcal{M}, e \models \Gamma$. Montrons que $\mathcal{M}, e \models B \rightarrow C$. Il faut donc montrer que si $\mathcal{M}, e \models B$ alors $\mathcal{M}, e \models C$. Si $\mathcal{M}, e \models B$ alors $\mathcal{M}, e \models \Gamma \cup \{B\}$. Or, comme $\Gamma, B \vdash C$ alors par hypothèse d'induction, on a que $\mathcal{M}, e \models C$.
- ▷ Cas inductif \forall_e . Si A est de la forme B[x := t], alors de $\Gamma \vdash \forall x B$, on en déduit que $\Gamma \vdash B[x := t]$. Soit $\mathcal{M}, e \models \Gamma$ et $a := \mathcal{V}a\ell(t, e)$. Par hypothèse de récurrence, on a que $\mathcal{M}, e \models \forall x B$ donc $\mathcal{M}, e[x := a] \models B$ et d'après le lemme précédent, on a que $\mathcal{M}, e \models B[x := t]$.
- ▶ Les autre cas inductifs sont laissé en exercices.

- \triangleright Cas de base ax. Si $A \in \Gamma$ et $\mathcal{M}, e \models \Gamma$ alors $\mathcal{M}, e \models A$.
- $\,\,\vartriangleright\,\,$ Cas de base =;. On a, pour tout \mathcal{M}, e que $\mathcal{M}, e \models t = t.$

Cette proposition permet de conclure la preuve du lemme précédent.

2.5.2 Preuve du théorème de complétude.

On va montrer la version 2, en **trois étapes**. Soit T une théorie consistante sur le langage \mathcal{L} .

- 1. On enrichit le langage \mathcal{L} en \mathcal{L}' avec des constantes, appelées $t\'{e}moins$ de Henkin, et qui nous donnerons les éléments de notre ensemble de base : les termes.
- 2. Pour définir complètement le modèle, on complète la théorie T en une théorie Th sur \mathcal{Z}' .
- 3. On quotiente pour avoir la vraie égalité dans le modèle.

Cette construction est assez similaire à la définition de \mathbb{C} comme le quotient $\mathbb{R}[X]/(X^2+1)$.

Proposition 2.9. On peut étendre \mathcal{L} en \mathcal{L}' et T en T' consistante telle que, pour toute formule F(x) de \mathcal{L}' , ayant pour seule variable libre x, il existe un symbole de constante c_F de \mathcal{L}' telle que l'on ait $T' \vdash \exists x \ F(x) \to F(c_F)$, d'où le nom de témoin.

Preuve. On fait la construction « par le bas » :

- $\triangleright \mathcal{L}_0 = \mathcal{L}$;
- $ightharpoonup T_0 = T$;
- $\triangleright \mathcal{L}_{n+1} = \mathcal{L}_n \cup \{c_F \mid F \text{ formule à une variable libre de } \mathcal{L}_n\};$
- $ightharpoonup T_{n+1} = T_n \cup \{\exists x \ F \to F(c_F) \mid F \text{ formule de } \mathcal{Z}_n\};$
- \triangleright et enfin $\mathcal{L}' = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n$ et $T' = \bigcup_{n \in \mathbb{N}} T_n$.

On commence par montrer quelques lemmes.

Lemme 2.9. Soient Γ un ensemble de formules et A une formule. Soit c un symbole de constante qui n'apparait ni dans Γ ni dans A. Si $\Gamma \vdash A[x := c]$ alors $\Gamma \vdash \forall x A$.

Preuve. Idée de la preuve. On peut supposer que x n'apparait pas dans Γ , ni dans la preuve de $\Gamma \vdash A[x := c]$, sinon on renomme x en y dans l'énoncé du lemme. Alors, de la preuve de $\Gamma \vdash A[x := c]$, on peut déduire une preuve de $\Gamma \vdash A(x)$ en replaçant c par x. Avec la règle \forall_i , on en conclut que $\Gamma \vdash \forall x A$.

Lemme 2.10. Pour toute formule F à une variable libre x sur le langage \mathcal{L}' ,

$$T' \vdash \exists x \ F(x) \rightarrow F(c_F).$$

Preuve. La formule F a un nombre fini de constantes (car c'est un mot fini), donc F est une formule sur \mathcal{L}_n pour un certain $n \in \mathbb{N}$, donc $(\exists x F(x) \to F(c_F)) \in T_{n+1} \subseteq T'$.

Il nous reste à montrer que la théorie T' est consistante.

Il suffit de montrer que tous les T_n sont consistantes. En effet, si T' est non-consistante, il existe un ensemble fini $T'' \subseteq T'$ et $T'' \vdash \bot$. Comme T'' fini, il existe un certain $n \in \mathbb{N}$ tel que $T'' \subseteq T_n$ et donc $T_n \vdash \bot$.

On montre par récurrence sur n que T_n est consistante.

- \triangleright On a $T_0 = T$ qui est consistante par hypothèse.
- \triangleright Supposons T_n consistante et que $T_{n+1} \vdash \bot$. Alors, il existe des formules à une variable libre F_1, \ldots, F_k écrites sur \mathscr{L}_n et

$$T_n \cup \{ \exists x \ F_i \to F_i(c_{F_i}) \mid 1 \le i \le k \} \vdash \bot.$$

Ainsi (exercice)

$$T_n \vdash \left(\bigwedge_{1 \leq i \leq k} \left(\exists x \ F_i \to F_i(c_{F_i})\right)\right) \to \bot.$$

Les c_{F_i} ne sont pas dans T_n d'où, d'après le lemme 2.9, que

$$T_n \vdash \forall y_1 \, \forall y_2 \, \dots \, \forall y_n \left(\bigwedge_{1 \leq i \leq k} \left(\exists x \, F_i \to F_i(y_i) \right) \right) \to \bot.$$

On peut montrer que (théorème logique)

$$(\star)$$
 $\vdash \forall y (A(y) \to \bot) \leftrightarrow (\exists y A(y) \to \bot),$

d'où

$$T_n \vdash \left(\exists y_1 \exists y_2 \dots \exists y_n \bigwedge_{1 \le i \le k} \left(\exists x \ F_i \to F_i(y_i)\right)\right) \to \bot.$$

On a aussi

$$(\star\star) \qquad \vdash \exists y_1 \exists y_2 \Big(A(y_1) \land A(y_2) \Big) \leftrightarrow \Big(\exists y_1 A(y_1) \Big) \land \Big(\exists y_2 A(y_2) \Big),$$

et pour y non libre dans A, on a

$$\vdash \exists y (A \to B) \leftrightarrow (A \to \exists y B).$$

On a donc

$$T_n \vdash \left(\bigwedge_{1 \le i \le k} (\exists x \ F_i(x) \to \exists y_i \ F_i(y_i)) \right) \to \bot.$$

Or,

$$(\star\star\star) \qquad \vdash \bigwedge_{1 \le i \le k} (\exists x \ F_i(x) \to \exists y_i \ F_i(y_i)).$$

On a donc $T_n \vdash \bot$, ce qui contredit l'hypothèse, d'où T_{n+1} consistante.

En exercice, on pourra montrer les théorèmes logiques (\star) , $(\star\star)$, et $(\star\star\star)$.

Ensuite, on veut compléter T' en préservant le résultat de la proposition précédente. On cherche Th (axiome-)complète telle que $T' \subseteq Th$ et pour toute formule à une variable libre F de \mathcal{L}' , on a

Th
$$\vdash \exists x \ F \rightarrow F(c_F)$$
.

Faisons le cas dénombrable (sinon, lemme de Zorn) : supposons \mathcal{Z}' au plus dénombrable. Soit $(F_n)_{n\in\mathbb{N}}$ une énumération des formules closes de \mathcal{Z}' . On définit par récurrence

- $\triangleright K_0 := T'$;
- \triangleright si K_n est complète, alors $K_{n+1} := K_n$;
- \triangleright si K_n n'est pas complet, alors soit le plus petit $p \in \mathbb{N}$ tel que l'on ait $K_n \nvdash F_p$ et $K_n \nvdash \neg F_p$, et on pose $K_{n+1} := K_n \cup \{F_p\}$.

Lemme 2.11. On pose Th := $\bigcup_{n\in\mathbb{N}} T_n$. La théorie Th a les propriétés voulues.

Preuve. 1. On a $T' \subseteq Th$.

- 2. La théorie Th est consistante. En effet, il suffit de montrer que tous les K_n le sont (par les mêmes argument que la preuve précédente). Montrons le par récurrence.
 - \triangleright La théorie $K_0 = T'$ est consistante par hypothèse.
 - \triangleright Si $K_{n+1} = K_n$ alors K_{n+1} est consistante par hypothèse de récurrence.
 - ightharpoonup Si $K_{n+1} = K_n \cup \{F_p\}$, et si $K_n, F_p \vdash \bot$, alors par la règle \neg_i , on a $K_n \vdash \neg F_p$, ce qui est faux. Ainsi K_{n+1} est consistante.

On en conclut que Th est consistante.

3. La théorie Th est complète. Sinon, à chaque étape K_{n+1}

 $K_n \cup \{F_{q_n}\}$ et il existe F_p telle que Th $\nvdash F_p$ et Th $\nvdash \neg F_p$. Ainsi, pour tout $n \in \mathbb{N}$, $K_n \nvdash F_p$ et $K_n \nvdash \neg F_p$, d'où pour tout $n \in \mathbb{N}$, $p_n \leq p$ avec des p_n distincts. C'est absurde, il n'y a qu'un nombre fini d'entiers inférieurs à un entier donné.

On construit un quotient avec « = » comme relation d'équivalence, puis on vérifie que les fonctions et relations sont bien définies (ne dépendent pas du représentant choisit, comme pour les groupes quotients).

Soit $\mathscr E$ l'ensemble des termes clos de $\mathscr L'$, qui n'est pas vide car il contient les termes $c_{x=x}$ (avec la définition de c_F ci-avant). On définit sur $\mathscr E$ une relation \sim , où $t \sim t'$ ssi Th $\vdash t = t'$.

Exercice 2.6. Montrer que \sim est une relation d'équivalence.

On pose enfin $|\mathcal{M}| := \mathcal{E}/\sim$. On notera \bar{t} la casse de t. On définit l'interprétation des symboles de \mathcal{L}' :

- \triangleright si c est une constante, alors $c_{\mathcal{M}} := \bar{c}$;
- \triangleright si f est un symbole de fonctions d'arité n,

$$f_{\mathcal{M}}(\bar{t}_1,\ldots,\bar{t}_n) := \overline{f(t_1,\ldots,t_n)}.$$

Lemme 2.12. La définition de dépend pas des représentants choisis, c'est-à-dire si $\bar{u}_1 = \bar{t}_1, \dots, \bar{u}_n = \bar{t}_n$ alors

$$\overline{f(t_1,\ldots,t_n)}=\overline{f(u_1,\ldots,u_n)}.$$

Preuve. \triangleright On a Th $\vdash t_i = u_i$ pour tout i par hypothèse

- \triangleright donc avec $=_i$, on a Th $\vdash f(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$
- \triangleright donc avec $=_{\mathbf{e}}$, on a Th $\vdash f(u_1, \ldots, t_n) = f(t_1, \ldots, t_n)$
- ▷ ...etc...
- \triangleright donc avec $=_{\mathsf{e}}$, on a Th $\vdash f(u_1,\ldots,u_n)=f(t_1,\ldots,t_n)$

[suite de la définition de l'interprétation]

 \triangleright si R est un symbole de relation d'arité n, on définit

$$(\bar{t}_1,\ldots,\bar{t}_n) \in R_{\mathcal{M}} \text{ ssi Th} \vdash R(t_1,\ldots,t_n).$$

Exercice 2.7. Montrer que cette définition de dépend pas des représentants choisis.

Lemme 2.13. Soit F une formule à n variables libres et t_1, \ldots, t_n des termes clos. Alors, $\mathcal{M} \models F[\bar{t}_1, \ldots, \bar{t}_n]$ ssi Th $\vdash F[t_1, \ldots, t_n]$, où l'on interprète la formule à paramètre dans l'environnement e avec $e(y_i) = \bar{t}_i$ alors $\mathcal{M}, e \models F(y_1, \ldots, y_n)$.

Preuve. Par induction sur F en supposant que F n'utilise que \neg , \vee , \exists comme connecteurs. En effet, on a pour toute formule G, il existe F qui n'utilise que \neg , \vee , \exists et $\vdash F \leftrightarrow G$, ce qui permet de conclure directement pour G si le résultat est vrai sur F.

- ▷ Pour $F = \bot$, alors on a Th $\nvdash \bot$ car Th consistante et $\mathcal{M} \models \bot$ par définition.
- ightharpoonup Pour $F=R(u_1,\ldots,u_m)$, où les u_i sont des termes non nécessairement clos et où u_1,\ldots,u_m sont des termes à n variables x_1,\ldots,x_n . On pose

$$F[t_1,\ldots,t_n]:=R(\underbrace{u_1(t_1,\ldots,t_n)}_{v_1},\ldots,\underbrace{u_m(t_1,\ldots,t_n)}_{v_m})$$

où l'on définit $v_i := u_i(t_1, \dots, t_n)$ qui est clos car les t_i sont clos. On veut montrer que

$$\mathcal{M} \models \underbrace{F[\bar{t}_1, \dots, \bar{t}_n]}_{R(\bar{v}_1, \dots, \bar{v}_m)} \text{ ssi Th} \vdash \underbrace{F[t_1, \dots, t_n]}_{R(v_1, \dots, v_m)}.$$

Or, on a l'équivalence $\mathcal{M} \models R(\bar{v}_1, \dots, \bar{v}_m)$ ssi $(\bar{v}_1, \dots, \bar{v}_m) \in R_{\mathcal{M}}$ ssi Th $\vdash R(v_1, \dots, v_m)$.

 \triangleright Pour $F = F_1 \lor F_2$, et t_1, \ldots, t_n sont des termes clos, on veut montrer que

$$\mathcal{M} \models F_1[\bar{t}_1, \dots, \bar{t}_n] \vee F_2[\bar{t}_1, \dots, \bar{t}_n]$$

ssi Th $\vdash F_1[t_1, \dots, t_n] \vee F_2[t_1, \dots, t_n].$

Or,

$$\mathcal{M} \models F_1[\bar{t}_1, \dots, \bar{t}_n] \lor F_2[\bar{t}_1, \dots, \bar{t}_n]$$

ssi $\mathcal{M} \models F_1[\bar{t}_1, \dots, \bar{t}_n]$ ou $\mathcal{M} \models F_2[\bar{t}_1, \dots, \bar{t}_n]$
ssi Th $\vdash F_1[t_1, \dots, t_n]$ ou Th $\vdash F_2[t_1, \dots, t_n]$

par hypothèse. Ainsi,

- avec \vee_{i}^{g} et \vee_{i}^{d} , on a que Th $\vdash F_{1}[t_{1}, \ldots, t_{n}] \vee F_{2}[t_{1}, \ldots, t_{n}]$;
- réciproquement, on utilise le lemme 2.5 car Th est complète.
- \triangleright Pour $F = \neg G$, en exercice.
- \triangleright Si $F = \exists x G \text{ et } t_1, \ldots, t_n \text{ des termes clos, on a}$
 - on a $\mathcal{M} \models \exists x G[\bar{t}_1, \dots, \bar{t}_n, x]$
 - ssi il existe $t \in \mathscr{C}$ tel que $\mathscr{M} \models G[\bar{t}_1, \dots, \bar{t}_n, \bar{t}]$
 - ssi il existe $t \in \mathcal{E}$ tel que Th $\vdash G(t_1, \ldots, t_n, t)$

et donc Th $\vdash \exists x G(t_1, \ldots, t_n, x)$ avec \exists_i . Réciproquement, si Th $\vdash \exists x G(t_1, \ldots, t_n, x)$ alors Th $\vdash G(t_1, \ldots, t_n, c_{G(t_1, \ldots, t_n, x)})$, donc il existe un terme t et Th $\vdash G(t_1, \ldots, t_n, t)$.

Lemme 2.14. On a $\mathcal{M} \models \text{Th (et donc } \mathcal{M} \models T)$.

Preuve. On montre que, pour toute formule F de Th, on a que $\mathcal{M} \models F$. Pour cela, on utilise le lemme précédent : si F est close,

alors

$$\mathcal{M} \models F \text{ ssi Th} \vdash F.$$

2.5.3 Compacité.

Théorème 2.2 (Compacité (sémantique)). Une théorie T et contradictoire ssi elle est finiment contradictoire, *i.e.* il existe $T' \subseteq_{\text{fini}} T$ telle que T' est contradictoire.

Preuve. Soit T contradictoire. On utilise le théorème de complétude. Ainsi T est inconsistante. Il existe donc $T' \subseteq_{\text{fini}} T$ avec T' inconsistante par le théorème de compacité syntaxique ci-dessous (qui est trivialement vrai). On applique de nouveau le théorème de complétude pour en déduire que T' est contradictoire.

Théorème 2.3 (Compacité (syntaxique)). Une théorie T est inconsistante ssi elle est finiment inconsistante.

Preuve. Ceci est évident car une preuve est nécessairement finie.

Dans la suite de cette sous-section, on étudie des applications du théorème de compacité.

Théorème 2.4. Si une théorie T a des modèles finis arbitrairement grands, alors elle a un modèle infini.

Corollaire 2.4. Il n'y a pas de théorie des groupes finis i.e. un ensemble d'axiomes dont les modèles sont exactement les groupes finis.

Théorème 2.5 (Löwenheim-Skolem). Soit T une théorie dans un langage \mathcal{L} et κ un cardinal et $\kappa \geq \operatorname{card} \mathcal{L}$ et $\kappa \geq \aleph_0$. Si T a un modèle infini, alors T a un modèle de cardinal κ .

Exemple 2.22. \triangleright Avec $T = \mathbf{Th}(\mathbb{N})$, on a $\kappa = \operatorname{card} \mathbb{R}$.

 $\quad \quad \triangleright \ \, \text{Avec} \,\, T = \mathbf{ZFC}, \, \text{on a} \,\, \kappa = \aleph_0 = \text{card} \,\, \mathbb{N}.$

^{7.} Ici, \aleph_0 est le cardinal de \mathbb{N} , on dit donc que κ est infini.