Interpolation and Data Fitting

Prof. Dr. Renato Pajarola
Visualization and MultiMedia Lab
Department of Informatics
University of Zürich

Copyrights

- Most figures of these slides are copyright protected and come from the book Mathematical Principles for Scientific Computing and Visualization or from other indicated sources
- You understand that the slides contain copyright protected material and therefore the following conditions of use apply:
 - ▶ The slides may be used for personal teaching purposes only
 - Publishing the slides to any public web site is not allowed
 - Sharing the slides with other persons or institutions is prohibited

Overview

- 1. Piecewise constant and linear interpolation
- 2. Interpolation in 2D
- 3. Smooth polynomial interpolation
- 4. Polynomial least squares interpolation

Piecewise Constant and Linear Interpolation

Interpolation

- Interpolation is a method to estimate, construct new data points from a given set of discrete known data points
 - Over a bounded range of the independent variable attribute(s) of the input data points
 - extrapolation used to estimate data points outside the range of the known data points
 - An interpolation function exactly passes through all known data points
 - Different from an approximation which only approximates them, thus passes nearby instead
- Transformation of data from a given (source) distribution to another (target) resolution is a frequent task of data preprocessing
 - Filling-in of continuous data values in between scattered sample data points
 - e.g. temporal domain, filling in intermediate values of temperature between observed values
 - e.g. spatial domain, image resizing or resampling (up-/down-)

Piecewise Constant Interpolation

- Available data points often represent a discrete sampling of a continuous phenomenon
 - Observed output values y_i are given for a few known input data points $x_i \in X$
- Given a distance metric $|x_b x_a|$ between any two data points a and b in the input domain allows a generic *nearest neighbor interpolation* for any **new** data point c with input parameters x_c as:

$$y_c = y_i$$
 where $\forall x_{k \neq i} \in X$: $|x_c - x_i| < |x_c - x_k|$

- New unknown value is inherited from nearest available data point in any dimensions (e.g. $x_i \in \mathbb{R}^d$)
- Continuous interpolation requires (piecewise) linear or higher-order interpolation functions
 - Linear interpolations exhibit only C₀ continuity

Piecewise Linear Interpolation

- Prediction of unknown values from nearby sample locations by interpolation
 - Linear interpolation of new data value y_c at a position x_c from given data values y_b and y_b on a straight line between two known sample input data points x_a and x_b
 - x_a , x_b and x_c are all on a line $\in \mathbb{R}^D$

$$y_{c} = y_{a} + (y_{b} - y_{a}) \cdot \frac{|x_{c} - x_{a}|}{|x_{b} - x_{a}|}$$

- Linear interpolations exhibit only C₀ continuity
 - Discontinuity in the slope, first and higher derivatives

Interpolation in 2D

What Does "2D" Mean?

We always refer to the input's dimensionality

- 1D: one input $x \rightarrow$ one output y
- 2D: two inputs x, $y \rightarrow$ one output z
- N-dimensions: N inputs → still one output

For visualization, we can map the z as e.g. color

Piecewise Constant Interpolation in 2D

- Simple piecewise constant nearest neighbor interpolation clearly exhibits sparse sample distribution
 - ▶ Patches of constant values in contrast to smooth distribution of values

Bilinear Interpolation in 2D

- A grid of data values can easily be interpolated using bilinear interpolation
- Only C₀ continuous
 - Discontinuous change in slopes

Bilinear Interpolation in 2D

- Bilinear because of the linear interpolations along each dimension separately
 - Two linear interpolations are performed along two opposite boundaries of a grid cell in one dimension, e.g. horizontally
 - One final interpolation is performed across the grid cell in the other dimension, e.g. vertically
- Non-smooth interpolation, only C_0 but not C_1 continuity

Bilinear Interpolation in 2D

- Interpolation between four grid corners $(u_1, v_1), (u_2, v_1), (u_1, v_2)$ and (u_2, v_2)
 - Input data points x_{ij} are parametrized in two dimensions, hence $x_{ij} \rightarrow (u_i, v_j)$
 - ightharpoonup Corresponding output values given by y_{ij}
- New data point at parameters (u_r, v_s) with output value y_{rs} given by two successive linear interpolations

$$\mathbf{y}_{r1} = \mathbf{y}_{11} + (\mathbf{y}_{21} - \mathbf{y}_{11}) \cdot \frac{u_r - u_1}{u_2 - u_1}$$

$$y_{rs} = y_{r1} + (y_{r2} - y_{r1}) \cdot \frac{v_s - v_1}{v_2 - v_1}$$

Piecewise Linear Interpolation of Irregular Sample Points in 2D

• Barycentric coordinates λ proportional to the signed triangle areas formed by P and corners A, B, C

$$-x_P = \lambda_1 x_A + \lambda_2 x_B + \lambda_3 x_C$$

$$- \text{with } \lambda_1 + \lambda_2 + \lambda_3 = 1.0$$

$$\overrightarrow{\lambda} = f(x_A, x_B, x_C)$$

• Linear interpolation of any corner attribute *d* within a triangle defined by barycentric interpolation

- Scattered 2D points can be triangulated and linearly interpolated
 - e.g. using Delaunay triangulation
 - extension to higher dimensions as well

Regular and Irregular 1D and 2D Cases

Smooth Interpolation

Smooth Interpolation

- Continuity may not only be important for the interpolated function value but also with respect to the function's slopes
- Higher order polynomial interpolation or approximation methods support (any) desired continuity levels
 - Interpolated data distribution can be derived analytically
 - for analyzing slope, curvature, edges etc.

Creative Commons Attribution-Share Alike 4.0 International license

Discontinuity is bad: e.g. infinitely high frequencies appear (remember lecture on sampling & quantization)

Review: Piecewise Constant or Linear 1D Interpolation

- Piecewise constant interpolation sets f(x) to the value y_i of nearest element i, with smallest distance $|x x_i|$
- In 1D, linear interpolation computes f(x) from nearby values y_i and y_{i+1} for $x_i \le x \le x_{i+1}$ as

Smooth Polynomial Interpolation in 1D

• Find polynomial p(x) such that:

$$p(\mathbf{x}_0) = \mathbf{y}_0$$
$$p(\mathbf{x}_1) = \mathbf{y}_1$$
$$p(\mathbf{x}_2) = \mathbf{y}_2$$
$$p(\mathbf{x}_3) = \mathbf{y}_3$$

- E.g. cubic polynomial $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$
 - Several equations of the form $y_i = a_0 + a_1 x_i + a_2 x_i^2 + a_3 x_i^3$
 - Solve system of four equations with four unknowns a_i and four given pairs (x_i, y_i)

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Vandermonde matrix

$$y = \mathbf{X} \cdot \mathbf{a}$$

Wikimedia Commons public domain

$$\Rightarrow a = \mathbf{X}^{-1} \cdot \mathbf{y}$$

Overfitting

- Given any number of n data points (x_i, y_i) a degree n-1 polynomial can be fitted to exactly interpolate them
- Forcing strict interpolation can be dangerous
 - Overfitting can lead to unwanted and fatal oscillations
- Hence careful controlled approximation may be more useful than strict interpolation

Fitting degree-4 polynomial to \sqrt{x}

Polynomial Least-Squares Approximation

- In contrast to interpolation, polynomial approximation is more reliable and typically leads to robust data fitting results
- Task: Given n data points (x_i, y_i) , find a fixed degree kpolynomial p(x) that for each $p(x_i)$ as close as possible to y_i
- Leads to overdetermined system of equations $X \cdot a = y$
 - ▶ Tall matrix *X* and value vector *y*
- Normal equations $X^TX \cdot a = X^Ty$ can be solved efficiently
 - Using Gaussian elimination or SVD
- Resulting polynomial is the best least squares approximation $\varepsilon = \sum_{i=0}^{n-1} (y_i - p(x_i))^2$

$$\begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ \vdots & \vdots & \vdots \\ 1 & x_{n-2} & x_{n-2}^2 & x_{n-2}^3 \\ 1 & x_{n-1} & x_{n-1}^2 & x_{n-1}^3 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-2} \\ y_{n-1} \end{bmatrix}$$

Approximation Problems

- Approximation of $\sqrt{x} + 0.1 \sin(x)$
 - For degree n=3, n=6, n=10 and n=11
 - Instabilities may occur
 - due to high condition number of X^TX

Outliers and Weighted Interpolation

- An outlier is a measurement that is less reliable or accurate
- We may know beforehand what samples are outliers
 - If we do not know, there are techniques to estimate if a sample is an inlier or outlier
- Outliers may severely affect data fitting
 - Weighted least-squares tries to follow the inliers more

Important

Use the right tool for the right problem!

- One has to know what interpolation fits what type of data
- Piecewise-constant interpolation: simple; no overfitting; good if enough samples available
- Low-degree polynomials: smoother; faster; less variance; less overfitting; less fitting
- High-degree polynomials: bumpier; slower; more variance; more overfitting; more fitting
- Make sure you understand each technique's advantages, disadvantages and risks

Examples

Piecewise would work

Low-degree exact

Low-degree least-squares

Recap

- Sparse data: set of discrete, scattered sample points (x, y)
- Piecewise interpolation: interpolation depends only on neighboring samples
- Smooth interpolation: function's derivative (optionally high-order derivatives too) are continuous
- Exact interpolation: #points = #unknowns → interpolator passes through the given points
- Least-squares interpolation: #points > #unknowns → interpolator passes *near* the given points
- Overfitting: when a too complex model fits too poorly the true model and too well the samples
- Outlier: isolated noisy/unreliable measurement
- Required textbook Chapter(s): 8.1 8.5