

Sub C²

21. A semiconductor device comprising:
2 an exterior surface having a top level of metallurgy,
3 wherein an exposed portion of said top level of metallurgy comprises a bonding pad, and
4 wherein an upper 10% to 20% of said bonding pad comprises a silicided surface.

Sub C¹

22. The semiconductor device in claim 21, wherein a bottom 80% to 90% of said bonding pad is free of silicide.

Sub C¹ B¹ Cont

23. The semiconductor device in claim 22, wherein said silicided surface is free of oxides and silicide islands.

1 24. The semiconductor device in claim 23, wherein, prior to formation of said silicided
2 surface, said bonding pad is cleaned by applying one of an ammonia plasma and a hydrogen
3 plasma to make said bonding pad free of said oxides and silicide islands.

1 25. The semiconductor device in claim 21, further comprising a terminal connected to said
2 bonding pad, wherein a thickness of said silicided surface increases adhesion between said
3 terminal and said bonding pad.

1 26. The semiconductor device in claim 25, wherein said terminal comprises one of a lead and
2 tin solder.

1 27. The semiconductor device in claim 21, further comprising at least one internal level of
2 metallurgy within an interior of said semiconductor device, wherein said top level of metallurgy
3 is thicker than said internal level of metallurgy.

1 28. The semiconductor device in claim 21, wherein said top level of metallurgy comprises
2 copper.

Subt C³

1 29. A semiconductor chip comprising:
2 an exterior surface having a top level of metallurgy; and
3 an interior having at least one internal level of metallurgy,
4 wherein said top level of metallurgy is thicker than said internal level of metallurgy,
5 wherein an exposed portion of said top level of metallurgy comprises a bonding pad, and
6 wherein an upper 10% to 20% of said bonding pad comprises a silicided surface.

Subt C³
1 30. The semiconductor device in claim 29, wherein a bottom 80% to 90% of said bonding
2 pad is free of silicide.

1 31. The semiconductor device in claim 30, wherein said bonding pad is free of oxides and
2 silicide islands.

1 32. The semiconductor device in claim 31, wherein, prior to formation of said silicided
2 surface, said bonding pad is cleaned by applying one of an ammonia plasma and a hydrogen
3 plasma to make said bonding pad free of said oxides and silicide islands.

1 33. The semiconductor device in claim 29, further comprising a terminal connected to said
2 bonding pad, wherein a thickness of said silicided surface increases adhesion between said
3 terminal and said bonding pad.

1 34. The semiconductor device in claim 33, wherein said terminal comprises one of a lead and
2 tin solder.