

TEST REPORT

FCC PART 15.247

Report Reference No.:	CTL1909101031-WF
Report Reference No.:	C1L1909101031-W

Compiled by: (position+printed name+signature)

Happy Guo (File administrators)

Tested by:

(position+printed name+signature)

Nice Nong (Test Engineer)

Approved by:

(position+printed name+signature)

Ivan Xie (Manager)

Product Name...... Cylinder Speaker

Model/Type reference HPS-131

List Model(s)...... See next page

Trade Mark N/A

FCC ID 2AM8S-HPS1

Applicant's name SHENZHEN HOTOP ELECTRONIC TECHNOLOGY CO.,LTD.

No.6, Lane 2, ShaTai Road, The Second Industrial Park, Address of applicant

NanShan, HuMen District, Dong Guan, China

Test Firm **Shenzhen CTL Testing Technology Co., Ltd.**

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification.....

Standard...... FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of receipt of test item....... Sept. 16, 2019

Date of sampling Sept. 17, 2019

Date of Test Date Sept. 17, 2019-Oct. 16, 2019

Data of Issue..... Oct. 17, 2019

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

V1.0 Page 2 of 51 Report No.: CTL1909101031-WF

TEST REPORT

Test Report No. :	CTL1909101031-WF	Oct. 17, 2019 Date of issue
		Date of issue

Equipment under Test : Cylinder Speaker

Model /Type : HPS-131

: HPS-132, HPS-133, HPS-134, HPS-135, HPS-136,

HPS-137, HPS-138, HPS-139, HPS-140, HPS-141, HPS-142, HPS-143, HPS-144, HPS-145, HPS-146, HPS-147, HPS-148, HPS-149, HPS-150, HPS-151, HPS-152, HPS-153, HPS-154, HPS-156, HPS

HPS-152, HPS-153, HPS-154, HPS-155, HPS-156, HPS-157, HPS-158, HPS-159, HPS-160, HPS-161,

Listed Models HPS-162, HPS-163, HPS-164, HPS-165, HPS-166,

HPS-167, HPS-168, HPS-169, HPS-170, HPS-171, HPS-172, HPS-173, HPS-174, HPS-175, HPS-176, HPS-177, HPS-178, HPS-179, HPS-180, HPS-181, HPS-182, HPS-183, HPS-184, HPS-185, HPS-186, HPS-187, HPS-188, HPS-189, HPS-190, HPS-191

HPS-187, HPS-188, HPS-189, HPS-190, HPS-191

Applicant : SHENZHEN HOTOP ELECTRONIC TECHNOLOGY

CO.,LTD.

Address : No.6, Lane 2, ShaTai Road, The Second Industrial

Park, NanShan, HuMen District, Dong Guan, China

Manufacturer : SHENZHEN HOTOP ELECTRONIC TECHNOLOGY

CO.,LTD.

Address : No.6, Lane 2, ShaTai Road, The Second Industrial

Park, NanShan, HuMen District, Dong Guan, China

Test result	Pass *
-------------	--------

^{*}In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2019-10-17	CTL1909101031-WF	Tracy Qi
	·	40.		
A P		- 1	AP	
		240		-0
			_	O The
	0 - 11 -		101	
				B V to

Page 4 of 51

	lable of Contents	Page
1. SU	IMMARY	5
1.1.	TEST STANDARDS	5
1.2.	TEST DESCRIPTION	5
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GE	NERAL INFORMATION	8
2.1.	ENVIRONMENTAL CONDITIONS	8
2.2.	GENERAL DESCRIPTION OF EUT	8
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	8
2.4.	EQUIPMENTS USED DURING THE TEST	9
2.5.	Related Submittal(s) / Grant (s)	10
2.6.	MODIFICATIONS	10
3. TE	ST CONDITIONS AND RESULTS	11
3.1.	CONDUCTED EMISSIONS TEST	11
3.2.	RADIATED EMISSIONS AND BAND EDGE	
3.3.	MAXIMUM PEAK OUTPUT POWER	21
3.4.	20dB Bandwidth	25
3.5.	Frequency Separation	29
3.6.	NUMBER OF HOPPING FREQUENCY	31
3.7.	TIME OF OCCUPANCY (DWELL TIME)	33
3.8.	Out-of-band Emissions	
3.9.	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	45
3.10.	Antenna Requirement	46
4. TE	ST SETUP PHOTOS OF THE EUT	47
5. PH	HOTOS OF THE EUT	48

V1.0 Page 5 of 51 Report No.: CTL1909101031-WF

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 15.247 Meas Guidance v05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(1)(i)	20dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247(b)	Pseudorandom Frequency Hopping Sequence	PASS
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency& Time of Occupancy	PASS
FCC Part 15.247(a)(1)	Frequency Separation	PASS
FCC Part 15.205/15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

V1.0 Page 6 of 51 Report No.: CTL1909101031-WF

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9518B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9518B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Tool	Measurement	Notes
Test	Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)

V1.0 Page 7 of 51 Report No.: CTL1909101031-WF

Conducted Disturbance0.15~30MHz	±3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 8 of 51 Report No.: CTL1909101031-WF

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Cylinder Speaker
Model/Type reference:	HPS-131
Power supply:	DC 3.7V from battery
Bluetooth :	
Supported type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PCB antenna
Antenna gain:	0dBi

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	<u> </u>
38	2440
39	2441
40	2442
	46
77	2479
78	2480

Preliminary tests were performed in each mode and packet length of BT, and found worst case as bellow, finally test were conducted at those mode and recorded in this report.

Test Items	Worst case	
Conducted Emissions	DH5 Middle channel	
Radiated Emissions and Band Edge	DH5	
Maximum Conducted Output Power	DH5/2DH5/3DH5	
20dB Bandwidth	DH5/2DH5/3DH5	
Frequency Separation	DH5/2DH5/3DH5 Middle channel	
Number of hopping frequency	DH5/2DH5/3DH5	
Time of Occupancy (Dwell Time)	DH1/DH3/DH5 Middle channel 2DH1/2DH3/2DH5 Middle channel 3DH1/3DH3/3DH5 Middle channel	
Out-of-band Emissions	DH5/2DH5/3DH5	

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.1 2	2019/05/20	2020/05/19
LISN	R&S	ESH2-Z5	860014/010	2019/05/20	2020/05/19
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2019/05/20	2020/05/19
EMI Test Receiver	R&S	ESCI	1166.5950.03	2019/05/20	2020/05/19
Spectrum Analyzer	Agilent	E4407B	MY41440676	2019/05/20	2020/05/19
Spectrum Analyzer	Agilent	N9020	US46220290	2019/05/20	2020/05/19
Spectrum Analyzer	Keysight	N9020A	MY53420874	2019/05/20	2020/05/19
Controller	EM Electronics	EM 1000	060859	2019/05/20	2020/05/19
Horn Antenna	Sunol Sciences Corp.	DRH-118 A062013		2019/05/20	2020/05/19
Active Loop Antenna	Da Ze	ZN30900A	1	2019/05/20	2020/05/19
Amplifier	Agilent	8449B	8449B 3008A02306		2020/05/19
Amplifier	Agilent	8447D	2944A10176	2019/05/20	2020/05/19
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2019/05/20	2020/05/19
High-Pass Filter	micro-tranics	HPM50108	G174	2019/05/20	2020/05/19
High-Pass Filter	micro-tranics	HPM50111	G142	2019/05/20	2020/05/19
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-10M	10m	2019/05/20	2020/05/19
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	3m	2019/05/20	2020/05/19
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	3m	2019/05/20	2020/05/19
RF Cable	Megalon	RF-A303	N/A	2019/05/20	2020/05/19

V1.0 Page 10 of 51 Report No.: CTL1909101031-WF

Power Sensor	Agilent	U2021XA	MY5365004	2019/05/20	2020/05/19
Power Sensor	Agilent	U2531A	TW53323507	2019/05/20	2020/05/19

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

5 (441)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark: All modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

SCAN TABLE: "Voltage (9K-30M)FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL190917192_fin"

2(019-9-17 04:	48??						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.163500	39.80	11.2	65	25.5	QP	N	GND
	25.521000	40.80	11.6	60	19.2	QP	N	GND
	26.119500	34.10	11.6	60	25.9	QP	N	GND
	26.763000	38.60	11.7	60	21.4	QP	N	GND
	28.554000	38.20	11.7	60	21.8	QP	N	GND
	29.773500	37.70	11.7	60	22.3	OP	N	GND

MEASUREMENT RESULT: "CTL190917192 fin2"

20	019-9-17 04:	48??						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	24.274500	36.70	11.6	50	13.3	AV	N	GND
	25.516500	39.40	11.6	50	10.6	AV	N	GND
	26.128500	37.80	11.6	50	12.2	AV	N	GND
	26.763000	38.40	11.7	50	11.6	AV	N	GND
	27.343500	27.10	11.7	50	22.9	AV	N	GND
	28.558500	11.00	11.7	50	39.0	AV	N	GND

SCAN TABLE: "Voltage (9K-30M)FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL190917193 fin"

\sim	$^{\circ}$	-1	\sim		٠.	-1	_	 		_	\sim	0	
/			ч	-9	4-		- 1	4	•	_	- 4	-	-
_	\sim	_	_		_	_		-		$\overline{}$	$\overline{}$		

_	010 0 17 01.							
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	24.895500	36.70	11.6	60	23.3	QP	L1	GND
	25.512000	39.60	11.6	60	20.4	QP	L1	GND
	27.339000	39.60	11.7	60	20.4	QP	L1	GND
	28.005000	36.60	11.7	60	23.4	QP	L1	GND
	28.554000	37.70	11.7	60	22.3	QP	L1	GND
	29.764500	37.00	11.7	60	23.0	QP	L1	GND

MEASUREMENT RESULT: "CTL190917193_fin2"

2019-9-17	04:53??
Frequen	cy Lev

 ,10 0 1, 01.							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBuV	dB	dBuV	dB			
MHZ	ασμν	αь	ασμν	αв			
4.254000	24.80	11.4	46	21.2	AV	L1	GND
4.357500	23.00	11.4	46	23.0	AV	$_{L1}$	GND
24.909000	30.60	11.6	50	19.4	ΑV	L1	GND
25.516500	30.70	11.6	50	19.3	AV	L1	GND
27.339000	31.10	11.7	50	18.9	ΑV	L1	GND
27.339000	31.10	11.7	50	10.5	AV	шт	GIVD
28.005000	28.70	11.7	50	21.3	ΑV	T.1	GND
20.000000	20.70	,	00	21.0	214		OILL

3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30 3		20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 2. For below 1GHz testing recorded worst at GFSK DH5 low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

V1.0 Page 16 of 51 Report No.: CTL1909101031-WF

For 30MHz-1GHz

Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Stop Start Detector Meas. IF Transducer Frequency Frequency Time Bandw. 300.0 ms 30.0 MHz 1.0 GHz MaxPeak 100 kHz JB1 Level [dBµV/m] 70 50 40 30 20 0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M Frequency [Hz] x x x MES CTL190917503_red MEASUREMENT RESULT: "CTL190917503_red" 2019-9-17 13:50 Frequency Level Transd Limit Margin Det. Height Azimuth Polarization deg MHz $\text{dB}\mu V/m$ dB dBµV/m dΒ 22.2 40.0 0.00 30.000000 26.00 0.0 14.0 HORTZONTAL 9.1 25.8 22.7 ___ 70.740000 14.20 40.0 0.0 0.00 HORIZONTAL 14.5 43.5 ---165.800000 20.80 0.0 0.00 HORIZONTAL 189.080000 24.70 14.6 18.8 0.00 HORIZONTAL 43.5 0.0 549.920000 25.90 21.9 46.0 20.1 0.0 0.00 HORIZONTAL 939.860000 31.30 27.1 46.0 14.7 0.00 HORIZONTAL 0.0

Vertical

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Detector Meas. Start Stop IF Bandw. Frequency Frequency Time

Transducer

30.0 MHz 1.0 GHz MaxPeak 300.0 ms 100 kHz JB1

MEASUREMENT RESULT: "CTL190917504 red"

2019-9-17 13 Frequency MHz	:52 Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
31.940000	27.00	20.9	40.0	13.0		0.0	0.00	VERTICAL
165.800000	24.90	14.5	43.5	18.6		0.0	0.00	VERTICAL
189.080000	28.30	14.6	43.5	15.2		0.0	0.00	VERTICAL
262.800000	27.10	14.9	46.0	18.9		0.0	0.00	VERTICAL
383.080000	33.70	17.9	46.0	12.3		0.0	0.00	VERTICAL
947.620000	31.90	27.3	46.0	14.1		0.0	0.00	VERTICAL

For 1GHz to 25GHz

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. **GFSK** (above 1GHz)

				Gr Gr (above 16112)								
Fred	quency(MF	łz):	24	02		Polarity:	HORIZONTAL					
Frequency			Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction			
(MHz)			(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor			
					(dBuV)	(dB/m)	(dB)		(dB/m)			
4804.00	56.68	PK	74.00	17.32	52.17	33.49	6.91	35.89	4.51			
4804.00	51.31	AV	54.00	2.69	46.80	33.49	6.91	35.89	4.51			
5040.75	43.78	PK	74.00	30.22	36.92	34.06	7.04	34.24	6.86			
5040.75		AV	54.00									
7206.00	46.26	PK	74.00	27.74	35.16	36.95	9.18	35.03	11.10			
7206.00		AV	54.00									

Frequency(MHz):			24	02		Polarity:		VER	VERTICAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction	
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor	
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4804.00	56.23	PK	74.00	17.77	51.72	33.49	6.91	35.89	4.51	
4804.00	50.75	AV	54.00	3.25	46.24	33.49	6.91	35.89	4.51	
5040.75	42.31	PK	74.00	31.69	35.45	34.06	7.04	34.24	6.86	
5040.75		AV	54.00			/	- Apr			
7206.00	46.97	PK	74.00	27.03	35.87	36.95	9.18	35.03	11.10	
7206.00	100	AV	54.00			A 40	-			

Fred	Frequency(MHz):			41	Polarity:			HORIZONTAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4882.00	56.65	PK	74.00	17.35	50.29	33.60	6.95	34.19	6.36
4882.00	51.14	AV	54.00	2.86	44.78	33.60	6.95	34.19	6.36
5127.05	43.96	PK	74.00	30.04	36.36	34.56	7.15	34.11	7.60
5127.05		AV	54.00	-A					
7323.00	47.32	PK	74.00	26.68	35.62	37.46	9.23	35.00	11.70
7323.00		AV	54.00					- 15	

Fred	Frequency(MHz):			2441		Polarity:		VERTICAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4882.00	56.85	PK	74.00	17.15	50.49	33.60	6.95	34.19	6.36
4882.00	50.73	AV	54.00	3.27	44.37	33.60	6.95	34.19	6.36
5133.05	43.11	PK	74.00	30.89	35.51	34.56	7.15	34.11	7.60
5133.05		AV	54.00			A 76.	- 1		
7323.00	46.65	PK	74.00	27.35	34.95	37.46	9.23	35.00	11.70
7323.00		AV	54.00			N AL Y	-		

Free	Frequency(MHz):			2480		Polarity:			HORIZONTAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction	
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor	
4	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4960.00	56.73	PK	74.00	17.27	51.81	33.84	7.00	35.92	4.92	
4960.00	51.65	AV	54.00	2.35	46.73	33.84	7.00	35.92	4.92	
5275.65	43.79	PK	74.00	30.21	36.51	34.45	7.12	34.29	7.28	
5275.65		AV	54.00	-						
7440.00	47.11	PK	74.00	26.89	35.16	37.64	9.28	34.97	11.95	
7440.00		AV	54.00							

Fred	Frequency(MHz):		24	80		Polarity:		VERTICAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4960.00	57.05	PK	74.00	16.95	52.13	33.84	7.00	35.92	4.92
4960.00	50.98	AV	54.00	3.02	46.06	33.84	7.00	35.92	4.92
5275.75	43.53	PK	74.00	30.47	36.25	34.45	7.12	34.29	7.28
5275.75		AV	54.00	-					
7440.00	46.74	PK	74.00	27.26	34.79	37.64	9.28	34.97	11.95
7440.00		AV	54.00						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Free	quency(MH	lz):	24	02	Polarity:		HORIZ	ONTAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2402.00	98.62	PK			65.23	28.78	4.61	0.00	33.39
2402.00	93.17	AV			59.78	28.78	4.61	0.00	33.39
2345.00	43.88	PK	74.00	30.12	10.80	28.52	4.56	0.00	33.08
2345.00		AV	54.00						
2390.00	49.05	PK	74.00	24.95	15.73	28.72	4.60	0.00	33.32
2390.00		AV	54.00						
2400.00	49.51	PK	74.00	24.49	16.12	28.78	4.61	0.00	33.39
2400.00		AV	54.00	(I) -(I)					60

Free	quency(MF	lz):	24	02		Polarity:		VER'	TICAL
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2402.00	97.95	PK			64.56	28.78	4.61	0.00	33.39
2402.00	91.01	AV			57.62	28.78	4.61	0.00	33.39
2348.00	43.68	PK	74.00	30.32	10.60	28.52	4.56	0.00	33.08
2348.00		AV	54.00						
2390.00	48.35	PK	74.00	25.65	15.03	28.72	4.60	0.00	33.32
2390.00		AV	54.00				30.0	-	
2400.00	49.78	PK	74.00	24.22	16.39	28.78	4.61	0.00	33.39
2400.00		AV	54.00		01		L L		

Free	quency(MH	lz):	24	80	Polarity:		HORIZ	ONTAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2480.00	96.18	PK	- 1		62.56	28.92	4.70	0.00	33.62
2480.00	90.35	AV		-	56.73	28.92	4.70	0.00	33.62
2483.50	43.46	PK	74.00	30.54	9.83	28.93	4.70	0.00	33.63
2483.50		AV	54.00						_ G- VI
2490.75	43.05	PK	74.00	30.95	9.39	28.95	4.71	0.00	33.66
2490.75		AV	54.00						70-0
2500.00	43.48	PK	74.00	30.52	9.80	28.96	4.72	0.00	33.68
2500.00		AV	54.00						

Free	quency(MF	łz):	24	80		Polarity:		VERTICAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2480.00	97.01	PK			63.39	28.92	4.70	0.00	33.62
2480.00	91.58	AV			57.96	28.92	4.70	0.00	33.62
2483.50	43.46	PK	74.00	30.54	9.83	28.93	4.70	0.00	33.63
2483.50		AV	54.00						
2490.75	42.84	PK	74.00	31.16	9.18	28.95	4.71	0.00	33.66
2490.75		AV	54.00						
2500.00	43.61	PK	74.00	30.39	9.93	28.96	4.72	0.00	33.68
2500.00		AV	54.00						

V1.0 Page 20 of 51 Report No.: CTL1909101031-WF

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

3.3. Maximum Peak Output Power

Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt.

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
4	00	1.849	- A	
GFSK	39	1.432	30	Pass
O II III	78	0.800	I Francisco	
1 1 10	00	2.492	TII.	
π/4DQPSK	39	2.072	20.97	Pass
	78	1.444		
	00	2.465		
8DPSK	39	2.099	20.97	Pass
	78	1.445		92.4

Note: 1.The test results including the cable lose.

Test plot as follows:

Scale Type

Span 5.000 MHz Sweep 1.067 ms (8001 pts)

#VBW 3.0 MHz

CH78

V1.0 Page 25 of 51 Report No.: CTL1909101031-WF

3.4. 20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Modulation	Channel	20dB bandwidth (MHz)	99% OBW (MHz)	Result
0	CH00	0.9510	0.84255	
GFSK	CH39	0.9494	0.83823	
	CH78	0.9503	0.84115	
	CH00	1.311	1.1791	
π/4DQPSK	CH39	1.313	1.1813	Pass
	CH78	1.310	1.1804	
	CH00	1.311	1.1801	- T
8DPSK	CH39	1.310	1.1819	40 /
	CH78	1.313	1.1818	May 11

Test plot as follows:

