

WHAT IS CLAIMED IS:

- 1 1. A method of making an integrated circuit in a semiconductor substrate,
2 the method comprising:
 - 3 forming at least two isolation regions in the semiconductor substrate;
 - 4 forming a well between the two isolation regions, the well defining a body
5 region;
 - 6 forming a first oxide layer above a first portion of the body region;
 - 7 forming a first dielectric layer above the first oxide layer;
 - 8 forming a first polysilicon layer above said first dielectric layer, said first
9 polysilicon layer forming a control gate of a non-volatile device;
 - 10 forming a second dielectric layer above the first polysilicon layer;
 - 11 forming a first spacer above the body region and adjacent said first polysilicon
12 layer;
 - 13 forming a second oxide layer above a second portion of the body region not
14 covered by said first spacer;
 - 15 forming a second polysilicon layer over the second oxide layer, the first spacer
16 and a portion of the second dielectric layer; said second polysilicon layer forming a guiding
17 gate of the non-volatile device and a gate of an MOS transistor;
 - 18 delivering first implants to the body region to form lightly doped areas in the
19 body region;
 - 20 delivering second implants to the defined source and drain regions;
 - 21 forming a second spacer above the body region to define regions receiving
22 lightly dopes implants and to define a conducting region of a capacitor of the non-volatile
23 cell.
- 1 2. The method of claim 1 further comprising:
 - 2 forming a salicide layer over the portions of the lightly doped areas in the
3 body region that form polysilicon landing pads.
- 1 3. The method of claim 2 further comprising:
 - 2 forming a metal layer over the salicide layer to form a bitline and a terminal
3 adapted to receive a supply voltage.

1 4. The method of claim 3 wherein a doping concentration of the first
2 implants delivered to one of the source and drain regions of the non-volatile device is greater
3 than a doping concentration of the first implants delivered to the other one of the source and
4 drain regions of the non-volatile device.

1 5. The method of claim 4 wherein said first dielectric layer further
2 includes an oxide layer and a nitride layer.

1 6. The method of claim 5 wherein said second dielectric layer further
2 includes an oxide layer and a nitride layer.

1 7. The method of claim 6 wherein said well is a p-well.

1 8. The method of claim 7 further comprising:
2 forming an n-well below the p-well.

1 9. The method of claim 8 wherein said n-well is formed using at least one
2 implant step.

1 10. The method of claim 9 wherein at least two implant steps are used to
2 form the n-well using a same mask.

1 11. The method of claim 10 wherein said second oxide layer has a
2 thickness greater than the thickness of the first oxide layer.