04计算机-肖锋

- 动态规划是解决多阶段决策问题的一种思想方法
 - 阶段性:原问题的解决过程可以划分成一系列子问题,通过逐个解决子问题来得到原问题的解
 - 最优子结构: 原问题是最优当且仅当子问题最优
 - 无后效性:原问题的解只与子问题的解有关,而与得到子问题的过程无关

- 阶段性
 - 原问题的解决过程可以划分成一系列子问题,通过 逐个解决子问题来得到原问题的解

1_	2	5	2	2
5	1	3	5	4
3	2	2	5	2
2	5		1	2
2	6	3	4	3

• 阶段性

1_	2	5	2	2
5	1	3	5	4
3	2_	2	5	2
2	5		1	2
2	6	3	4	3

	1	2	3	4	5
1	1	3	8		
2	6	4			
3	9				
4					
5					?

- 最优子结构
 - 原问题是最优当且仅当子问题最优

路径长度模4最小?

- 无后效性
 - 原问题的解只与子问题的解有关,而与得到子问题的过程无关。

	1	2	3	4	5	6
0	0	inf	inf	inf	inf	Inf
1	inf	1	inf	3	inf	Inf
2						
3						
4						

- 状态表示和状态转移
 - 状态表示方案要满足最优子结构和无后效性
- 递推与记忆化搜索
 - 递推: 可通过滚动数组等手段优化
 - 搜索: 简单、自顶向下剪枝、避免无用状态

- 基于状态压缩的动态规划
- 引例:哈密顿回路问题

• 搜索+剪枝

- 当前状态:起点、终点、经过的点的集合
 - 用位压缩的办法表示经过的点的集合,则每种状态都可以用三个整数表示,不妨记为<a, b, st>, 其中st表示经过的点的集合

 $f(\langle a,b,st \rangle) = \min\{ f(\langle a,k,st-2^b \rangle) + w(k,b) \}, k \in \text{\mathbb{R} as } t$

- 状态DP
 - 最优子结构
 - 无后效性
- 复杂度
 - 状态数O(n^2*2^n), 状态转移O(n)
 - 时间复杂度O(n^3*2^n),空间复杂度 O(n^2*2^n)

- 基于状态压缩的动态规划
 - 位压缩的状态表示方法
 - 状态数目是指数级别的,但相对于搜索而言仍不失 为一种高效算法
 - 状态转移过程需要仔细考虑

例题

- POJ1691 Painting A Board
- POJ2836 Rectangular Covering
- POJ2285 The Floor Bricks

POJ1691 Painting A Board

- 状态表示
 - 已经刷好的矩形和当前刷子的颜色
- 状态转移
 - 刷一面颜色和刷子颜色一样的矩形
 - 换刷子

POJ2836 Rectangular Covering

一个大矩形划分为更小的矩形的例子:

划分后得到的小矩形的面积 和必小于等于原始大矩形的面积,并且小矩形覆盖的点都在小矩形的顶点上。

POJ2836 Rectangular Covering

POJ2285 The Floor Bricks

• 总结

- 基于位压缩的动态规划
- 解决的问题规模小
- 容易设计出状态表示方案,状态转移的过程需要仔细考虑
- 编写代码的"复杂度"较高,需要大量练习