

Applications of Electronic Structure Methods

Local Structure Optimization

Geometry update – (Quasi-)Newton Methods

Approximate PES by quadratic function

$$E(\Delta R) \approx E(R_{Min}) + \underbrace{\frac{\delta E}{\delta R}}_{\text{T}} \Delta R + \frac{1}{2} \underbrace{\frac{\delta^2 E}{\delta R^2}}_{\text{T}} \Delta R^2$$

$$F(R) \qquad H$$
 Forces Hessian

Find minimum using

$$\Delta R = -H^{-1}F$$

Two variants:

- Newton methods: calculate exact H
- Quasi-newton:
 - approximate H
 - update as search progresses [1]

$$\tilde{H} \leftarrow \tilde{H} - \frac{\tilde{H}\Delta R (\tilde{H}\Delta R)^T}{\Delta R^T \tilde{H}\Delta R} - \frac{\Delta F \Delta F^T}{\Delta F^T \Delta R}$$

[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006)

(Quasi-)Newton Methods

De-facto standard method

$$\tilde{H} \leftarrow \tilde{H} - \frac{\tilde{H}\Delta R (\tilde{H}\Delta R)^T}{\Delta R^T \tilde{H}\Delta R} - \frac{\Delta F \Delta F^T}{\Delta F^T \Delta R}$$

Iterative, depends on:

- Guess Hessian
- Step control
- Optimization History
- Starting point

Note: Quasi-Newton methods converge to the closest stationary point → This can be a saddle point!

Guess Hessian: Scaled unit matrix

$$\tilde{H} = \beta \bar{\mathbf{1}}$$

Assumption: Each DoF has same force constant

- Typically good for bulk systems (esp. metals, vdW)
- Terrible for complex molecules

Guess Hessian: Chemically motivated

Properties:

- k's parameterized [1]
- Different parameters exist
 - (e.g.: Lindh, Fischer)
- But not for everything
- Construction not unique

$$\begin{split} \tilde{E} &= E + F \Delta R \\ &+ \sum_{ij} k_{ij} \ d_{ij}^2 \quad \text{streching} \\ &+ \sum_{ijl} k_{ijl} \ a_{ijl}^2 \ \text{bending} \\ &+ \sum_{ijlm} k_{ijlm} \ \tau_{ijlm}^2 \quad \text{torsion} \end{split}$$

Effect of Guess Hessian

Speedup of calculation

Guess Hessian – Example 1

Diagonal Hessian [higher in energy]

Model Hessian (Fischer) [lower in energy]

Diagonal Hessian struggles with complex DoFs

(e.g., bending of a planar molecule)

Courtesy of Elisabeth Wruss

Diagonal Hessian struggles with complex DoFs

(e.g., falling over of a molecule)

==> Atoms which experience least forces have to move most!

Published in: Elisabeth Verwüster; Oliver T. Hofmann; David A. Egger; Egbert Zojer; *J. Phys. Chem. C* **2015**, 119, 7817-7825. DOI: 10.1021/acs.jpcc.5b00992 Copyright © 2015 American Chemical Society

Challenges of Quasi-Newton Methods

Soft degrees of freedom can cause large ΔR

$$\Delta R = \alpha \ H^{-1} F$$

Step control needed:

- Line search method:
 - If new point is worse than old, interpolate
- Trust radius method
 - Enforce upper limit for ΔR
 - Evaluate quality q of quadratic model
 - Adjust ΔR_{max} based on q

Step size can become very small

- Far away from the minimum
- When Hessian is bad
- When convergence is bad

Search History

- Points far away from minimum give "wrong" Forces/Hessian
- Errors accumulate, deteriorate Harmonic Expectation Value
- Only finite number of steps can/should be stored:
 - Linear Dependency (#steps < DOFs)
 - Memory (H is 3N x 3N large)

Choice of the coordinate system

Coordinate system cannot affect physics, but numerics

$$E(x) = (1-y)^2 \stackrel{y=e^{-x}}{\longleftarrow}$$

$$E(x) = (1 - y)^{2} \stackrel{y = e^{-x}}{\longleftarrow} E(x) = (1 - e^{-x})^{2} \stackrel{y = e^{x}}{\longrightarrow} E(x) = \left(1 - \frac{1}{z}\right)^{2}$$

$$E(x) = \left(1 - \frac{1}{z}\right)^2$$

Table 12.2 Convergence for different choices of variables

Iteration	$x_{\text{start}} = 0.30$			$x_{\text{start}} = 1.00$		
	х	y	z	х	у	z
0	0.3000	0.7408	1.3499	1.0000	0.3679	2.7183
1	-0.2381	1.0000	-0.2229	3.3922	1.0000	4.6352
2	-0.0633		-0.3020	4.4283		7.3225
3	-0.0055		-0.4110	5.4405		11.2981
4	0.0000		-0.5628	6.4449		17.2354

Example taken from Jensen, Introduction to Computational Chemistry