Special coheirs and model-theoretic trees

James E. Hanson

University of Maryland

April 20, 2024 5:00 PM CDT AMS Special Session on Model Theory II

Examples:

Examples:

Simple: Generic graph

Examples:

Simple: Generic graph

Dragons

NSOP₁: Generic binary

function

NSOP

Examples:

Simple: Generic graph

NSOP₁: Generic binary function

NTP₂: Generic linearly ordered graph

ordered gra

Examples:

Simple: Generic graph

NSOP₁: Generic binary function

NTP₂: Generic linearly ordered graph

N?TP: Generic linear order + binary function

James E. Hanson (UMD)

James E. Hanson (UMD)

James E. Hanson (UMD)

Antichain tree property (Ahn, Kim)

Bizarre tree property (Ramsey, Kruckman)

Comb tree property (Mutchnik)

Given a structure M we can use an ultrafilter $\mathcal U$ on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q}, <)$ with ultrafilter concentrating at $+\infty$:

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q}, <)$ with ultrafilter concentrating at $+\infty$:

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q}, <)$ with ultrafilter concentrating at $+\infty$:

Given a structure M we can use an ultrafilter \mathcal{U} on M (an M-coheir) to 'generate' a sequence of new elements (in the monster model).

Example $(\mathbb{Q}, <)$ with ultrafilter concentrating at $+\infty$:

 a_0, a_1, \ldots is the Morley sequence generated by \mathcal{U} .

Theorem (Kaplan, Ramsey)

T has SOP₁ iff there are two coheirs $\mathcal U$ and $\mathcal V$ extending the same type and a formula $\varphi(x,y)$ that divides along $\mathcal U$ but not along $\mathcal V$.

Theorem (Kaplan, Ramsey)

T has SOP₁ iff there are two coheirs \mathcal{U} and \mathcal{V} extending the same type and a formula $\varphi(x,y)$ that divides along \mathcal{U} but not along \mathcal{V} .

DLO example: Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} .

Theorem (Kaplan, Ramsey)

T has SOP₁ iff there are two coheirs \mathcal{U} and \mathcal{V} extending the same type and a formula $\varphi(x,y)$ that divides along \mathcal{U} but not along \mathcal{V} .

DLO example: Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} .

Theorem (Kaplan, Ramsey)

T has SOP₁ iff there are two coheirs \mathcal{U} and \mathcal{V} extending the same type and a formula $\varphi(x,y)$ that divides along \mathcal{U} but not along \mathcal{V} .

DLO example: Two non-trivial coheirs of the 2-type living in the cut at π over \mathbb{Q} .

Heir-coheirs

 $\mathcal{U}_{\text{below}}$ has a special property. The Morley sequence it generates

Heir-coheirs

 $\mathcal{U}_{\text{below}}$ has a special property. The Morley sequence it generates

is 'the same' as the Morley sequence generated by a different coheir backwards:

Heir-coheirs

 $\mathcal{U}_{\mathsf{below}}$ has a special property. The Morley sequence it generates

is 'the same' as the Morley sequence generated by a different coheir backwards:

This is non-trivial. \mathcal{U}_{pinch} does not have this property.

TP₂ in terms of heir-coheirs

Definition

 $\mathcal U$ is an M-heir-coheir if whenever b realizes $\mathcal U$ over $M \cup A$, there is an M-coheir $\mathcal V$ such that A realizes $\mathcal V$ over $M \cup b$.

TP2 in terms of heir-coheirs

Definition

 $\mathcal U$ is an M-heir-coheir if whenever b realizes $\mathcal U$ over $M \cup A$, there is an M-coheir $\mathcal V$ such that A realizes $\mathcal V$ over $M \cup b$.

Theorem (Chernikov, Kaplan)

T has TP_2 iff there is a formula $\varphi(x,b)$, and an heir-coheir $\mathcal U$ extending the type of b such that $\varphi(x,b)$ divides but does not divide along $\mathcal U$.

A path to N?TP?

Kruckman and Ramsey's approach:

Theorem (Kaplan, Ramsey)

T has SOP_1 iff there are two coheirs $\mathcal U$ and $\mathcal V$ extending the same type and a formula $\varphi(x,y)$ that divides along $\mathcal U$ but not along $\mathcal V$.

+

Theorem (Chernikov, Kaplan)

T has TP₂ iff there is a formula $\varphi(x,b)$, and an heir-coheir \mathcal{U} extending the type of b such that $\varphi(x,b)$ divides but does not divide along \mathcal{U} .

A path to N?TP?

Kruckman and Ramsey's approach:

Theorem (Kaplan, Ramsey)

T has SOP₁ iff there are two coheirs $\mathcal U$ and $\mathcal V$ extending the same type and a formula $\varphi(x,y)$ that divides along $\mathcal U$ but not along $\mathcal V$.

+

Theorem (Chernikov, Kaplan)

T has TP₂ iff there is a formula $\varphi(x,b)$, and an heir-coheir $\mathcal U$ extending the type of b such that $\varphi(x,b)$ divides but does not divide along $\mathcal U$.

Lead them to the *bizarre tree property* or *BTP* (uses a weakening of heir-coheirdom).

A formula $\varphi(x,c)$ has the *k-comb tree property* or *k-CTP* if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

A formula $\varphi(x,c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

■ paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,

A formula $\varphi(x,c)$ has the k-comb tree property or k-CTP if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

A formula $\varphi(x,c)$ has the *k-comb tree property* or *k-CTP* if there is a tree $(c_{\sigma})_{\sigma \in \omega^{<\omega}}$ of parameters such that

- paths are *k*-inconsistent: $\{\varphi(x, c_{\alpha \upharpoonright n}) : n < \omega\}$ for $\alpha \in \omega^{\omega}$,
- for any right-comb $X \subset \omega^{<\omega}$, $\{\varphi(x, c_{\sigma}) : \sigma \in X\}$ is **consistent**.

(Note the switcheroo.)

Mutchnik established the following in his proof that $NSOP_1 = NSOP_2$.

Theorem (Mutchnik)

The above condition without the switcheroo is equivalent to SOP_1 .

A right-comb in $\omega^{<\omega}$

Characterization of CTP

Theorem (H.)

A theory has k-CTP if and only if there is a formula $\varphi(x,b)$ and an heir-coheir \mathcal{U} and a coheir \mathcal{V} extending the type of b such that $\varphi(x,b)$ k-divides along \mathcal{V} but does not divide along \mathcal{U} .

What's special about heir-coheirs?

If $\mathcal U$ is an M-heir-coheir and B is some configuration of realizations of $\mathcal U$ over M, then we can find a clone B' of B with the property that every element of B' realizes $\mathcal U$ over $M \cup B$.

What's special about heir-coheirs?

If $\mathcal U$ is an M-heir-coheir and B is some configuration of realizations of $\mathcal U$ over M, then we can find a clone B' of B with the property that every element of B' realizes $\mathcal U$ over $M \cup B$.

What's special about heir-coheirs?

If $\mathcal U$ is an M-heir-coheir and B is some configuration of realizations of $\mathcal U$ over M, then we can find a clone B' of B with the property that every element of B' realizes $\mathcal U$ over $M \cup B$.

Finding coheirs over models is trivial, but finding heir-coheirs can be hard.

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP_2 but is seemingly incompatible with the way coheirs are used in $NSOP_1$ (delicately building two coheirs extending the same type).

Finding coheirs over models is trivial, but finding heir-coheirs can be hard. There are no heir-coheirs over $(\mathbb{R}, <)$ for instance.

The standard approach is this:

Fact

If \mathcal{U} is a coheir over M and $N \succ M$ is a sufficiently saturated elementary extension, then \mathcal{U} is an heir-coheir over N.

This is important for the development of NTP_2 but is seemingly incompatible with the way coheirs are used in $NSOP_1$ (delicately building two coheirs extending the same type).

There are many heir-coheirs over $(\mathbb{Q},<)$ (any non-realized cut). Is this generalizable?

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x,b)$ has infinitely many realizations in M.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x,b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x,c)$ has infinitely many realizations in M. Commit to this as an approximation of our type.

Let M be a countable model of a countable theory that is a little bit saturated (computable saturation is more than enough).

Proposition (H.)

There is a comeager set X of non-realized types over M such that any coheir extending a type in X is an heir-coheir.

Proof sketch.

With a finite approximation $\psi(x)$ of the type we are building generically, look to see if there is a b in the monster such that $\psi(x) \wedge \varphi(x,b)$ has infinitely many realizations in M. Our little bit of saturation says that there's a $c \in M$ such that $\psi(x) \wedge \varphi(x,c)$ has infinitely many realizations in M. Commit to this as an approximation of our type.

Argue that if \mathcal{U} extends the type we built and a realizes \mathcal{U} over Mb, then every formula in the type of b over Ma is already realized in M by construction.

The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.

The miniaturized argument as a blueprint for CTP

That proof is a forcing argument: We have a set of conditions that we need to satisfy and we are free to satisfy them generically.

The comb tree property (even on $2^{<\omega}$ rather than $\omega^{<\omega}$) gives you precisely what you need to generically build an heir-coheir $\mathcal U$ that is 'shadowed' by a coheir $\mathcal V$ such that the given formula divides along $\mathcal V$ but not along $\mathcal U$.

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ .

Definition

A set $X\subseteq 2^{<\omega}$ is dense above σ if for every τ extending σ , there is a $\mu\in X$ extending τ . X is somewhere dense if it is dense above some σ .

Fact

If $X \cup Y$ is dense above σ , then either X is dense above σ or there is a τ extending σ such that Y is dense above τ .

Proof.

Assume X is not dense above σ , then there is a τ extending σ such that X contains no elements extending τ . But then since $X \cup Y$ is dense above σ , it is also dense above τ , whereby Y is dense above τ .

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M.

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

Suppose we have a CTP tree $(b_{\sigma})_{\sigma\in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

■ For each i, σ_{i+1} extends $\sigma_i \frown 1$.

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

- For each i, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an i such that $\{b_{\tau} \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .

Suppose we have a CTP tree $(b_{\sigma})_{\sigma \in 2^{<\omega}}$ (for the formula $\varphi(x,y)$) in a mildly saturated countable model M. We can generically build a path $(\sigma_i)_{i<\omega}$ of elements of $2^{<\omega}$ and a filter $\mathcal F$ on the tree $b_{\in 2^{<\omega}}$ such that following hold:

- For each i, σ_{i+1} extends $\sigma_i \frown 1$.
- For each $X \in \mathcal{F}$, there is an i such that $\{b_{\tau} \in X : \tau \succeq \sigma_i\}$ is dense above σ_i and is in \mathcal{F} .
- If $\psi(x,c)$ is an M-formula (with c in the monster) such that $\{b_{\sigma}: \psi(b_{\sigma},c)\}$ has somewhere dense intersection with every element of \mathcal{F} , then there is a $d \in M$ such that $\{b_{\sigma}: \psi(b_{\sigma},d)\} \in \mathcal{F}$.

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (\mathsf{cone\ above}\ \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter,

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (\mathsf{cone\ above}\ \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (\mathsf{cone\ above}\ \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter \mathcal{U} whose elements are all somewhere dense.

The third bullet point ensures that $\mathcal U$ is in fact an heir-coheir

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ igcup_{i < \omega} (\mathsf{cone\ above}\ \sigma_i \frown 0)
ight\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown 0) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

Finally, let V be any non-principal ultrafilter on $\{b_{\sigma_i} : i < \omega\}$.

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown 0) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

Finally, let \mathcal{V} be any non-principal ultrafilter on $\{b_{\sigma_i}: i < \omega\}$. By construction, $\varphi(x,y)$ will divide along \mathcal{V} .

The second bullet point now ensures that

$$\mathcal{F} \cup \left\{ \bigcup_{i < \omega} (\mathsf{cone above} \ \sigma_i \frown 0) \right\}$$

generates a non-trivial filter, which can be extended to an ultrafilter $\mathcal U$ whose elements are all somewhere dense.

The third bullet point ensures that \mathcal{U} is in fact an heir-coheir and the extra set added to \mathcal{F} ensures that $\varphi(x,y)$ does not divide along \mathcal{U} .

Finally, let $\mathcal V$ be any non-principal ultrafilter on $\{b_{\sigma_i}:i<\omega\}$. By construction, $\varphi(x,y)$ will divide along $\mathcal V$. Furthermore, the third bullet point will ensure that $\mathcal U$ and $\mathcal V$ extend the same type over M, so we have the required failure of Kim's lemma for coheirs and heir-coheirs.

Thank you

