

Car Sales Forecasting

Leveraging Machine Learning to Optimize Inventory and Maximize Profitability

Date: July 26, 2025

Organization: Data Science Institute - University of Toronto

Presented by: ML Team 3

Business Problem & Objective

The Challenge

A large dealership network struggled with accurately forecasting monthly sales in highly competitive markets.

Our Solution

Our machine learning model predicts the **top 3 best-selling** vehicles each month using historical sales data and car attributes. This solution helps dealers to:

- Stock the right vehicles
- Reduce overstock inventory
- Increase overall profitability

Dataset Overview

Data Source

Car Sales Report dataset from Kaggle + 3 synthetic features

~28,000 records over 24 months (Jan 2022 – Dec 2023)

Key Features

- Car specifications
- Buyer information
- Dealer region
- Family Size (synthetic)
- Gas Mileage (synthetic)
- Crash Test Score (synthetic)

Limitations

- Limited data volume: ~28K
 samples limit deep modeling.
- Severe imbalance: Only 7% labeled "best sellers".
- Compute constraints: Limited to models with reasonable training times.

Modeling Approach

</>

Data Preparation

Separated numeric and categorical features

Addressed class imbalance via weighting

- **Logistic Regression**
- Random Forest
- XGBoost
- LightGBM

Optimization

Grid search with F1-score as optimization metric

Test data = last 3 months to simulate real-world forecasting

Analysis Methods and Tools

Methodology Overview

XTools Used

Pandas

Utilized for powerful data manipulation and analysis, especially with structured data.

NumPy

Leveraged for numerical computing, providing support for arrays and mathematical functions.

Matplotlib & Seaborn

Employed for creating static, interactive, and animated visualizations to explore data patterns.

Scikit-learn

The primary library for implementing various machine learning algorithms and predictive modeling.

Model Evaluation

Performance Metrics

Model: XGBoost (final selected)

• Accuracy: 0.9513

• Precision: 0.5534

Recall: 0.8411

• F1 Score: 0.6676

Final model (XGBoost) selected based on balanced performance across precision and recall. High recall ensures that most best sellers are correctly identified, supporting inventory planning decisions.

Sales Forecast Highlights – Top Models and Inventory Planning

Q4 2024 Forecast

Reveals seasonal trends and the most in-demand models to prepare for year-end sales peaks.

Annual Projections

Identifies the highest-volume vehicles forecasted for 2024, enabling informed stocking decisions.

Monthly Inventory Requirements

Supports monthly order planning by anticipating vehicle demand and minimizing overstock or stockouts.

Business Impact

Improved Inventory

Dealers can now anticipate best sellers monthly, optimizing stock levels.

Reduced Risk

Lower chance of overstock and associated carrying costs.

Higher Sales

Right cars at the right time leads to increased sales volume.

Customer Satisfaction

Improved availability of desired models enhances customer experience.

Next Steps

1 Integration

Integrate the model into dealer dashboards or API endpoints

2 Retraining

Implement periodic retraining with new sales data

3 — Model Enhancement

Expand feature set and explore ensemble techniques to improve prediction accuracy.

Thank You

Questions?

All code and documentation are available in our GitHub repository:

Scan to access the GitHub repo:

View GitHub Repository

