

Introduction

We looked to determine:

- 1. Test how sunlight and weather affect battery performance
- 2. Measure how temperature impacts charging efficiency
- 3. Find out how quickly batteries drain with different devices
- 4. Create guidelines for optimal system use based on test results

Deciding our Experiments

- Experiment #1: Charging the battery
 - Series or parallel configuration?
 - Where and when?
 - What do we collect?
 - How long?
- Experiment #2: Draining the battery
 - Lamp or another appliance?
 - What do we collect?
 - How long?

Setting up the Experiments

- Experiment #1: Charging the battery
 - Decided on a series configuration
 - More efficient in low light
 - Higher voltage output (LithiumHub, n.d.)
 - Location: the plaza at 1:00 pm on Thurs and 2:00 pm on Fri
 - Collected: voltage, wattage, current and temperature
 - Duration: 1-2 hours

Setting up the Experiments

Experiment #2: Draining the battery

Portable heater

Wanted to try something else

Collected: voltage and wattage

Duration: 1 hour

Rated wattage: 1200 W

Charging Experiment Days

- Session #1:
 - October 24th
 - Ambient temperature: 61
- Session #2:
 - November 1st
 - Ambient temperature: 58
- Session #3:
 - November 8th
 - Ambient temperature: 54

Solar Panel Wattage and Battery Voltage

Why wattage and battery voltage matter?

- Predict energy yield over time
- System optimization

Energy Calculations:

$$E = \int_{t_1}^{t_2} P(t) dt$$

$$E = \int_{t_1}^{t_2} (m \cdot b + t) dt$$

$$E = \frac{m}{2} (t_2^2 - t_1^2) + b(t_2 - t_1)$$

$$t_1 = 0 \ t_2 = 150$$

Energy Yield Estimation for each session

$$P_1(t) = -0.44t + 152.68$$

 $P_2(t) = -0.29t + 50.33$
 $P_3(t) = -0.25t + 57.27$
 $E_1 = 299.2Wh$
 $E_2 = 71.45Wh$
 $E_3 = 96.3Wh$

120

Significance

Session 1:

 R^2 = 0.9801

p-value = 1.234e-06

Session 2:

 $R^2 = 0.8832$

p-value = 0.0000234

Session 3:

 $R^2 = 0.9020$

p-value = 2.345e-05

Battery Discharge Data

LiFePO₄ Discharge Curve Model Parameters:

Nominal Voltage (V_nominal): 12.1581 V Initial Voltage Drop Coefficient (k): -0.0578 Linear Decay Coefficient (c): 0.0320

Linear Regression Equation:

 $\ln v(t) = \ln(v_0) - \lambda t$

Where,

v(t): is the battery voltage at time t

 v_0 : the initial battery voltage (at t=0)

 λ : is the decay constant (rate of discharge)

t: time

Time to reach 2.5V: 793.06 hours when supplying to a small load like a lamp.

2.5 V is the manufacturer recommended cutoff voltage.

Summary Statistics:

• Slope (k): 0.0020

Intercept: 2.5009

• R²: 0.9757

P-value: 0.0016

Standard Error: 0.0002

System Efficiency

Why is Efficiency Important?

Efficiency determines how much usable power a solar panel can provide from the available sunlight. A higher efficiency means more energy is produced from the same amount of sunlight, which is essential for meeting the energy needs of a load.

General Efficiency Equation

$$\eta = \frac{P}{A \cdot G_T}$$

Efficiency Equation Adjusted for Temperature

$$\eta_a = \eta \big(1 - \gamma \cdot (T - 25) \big)$$

Where,

 η : Ideal efficiency

 η_a : Adjusted efficiency

P: Power output (in watts)

A: Area of the solar panel (in square meters)

 G_T : Solar irradiance (in watts per square meter, W/m²)

 γ : Temperature coefficient (°C⁻¹)

T: Panel temperature (°C)

Standard Test Condition (STC) Assumptions:

- No conversion losses
- ideal efficiency of the panel was assumed to be around 15%
- incoming solar irradiance of 1000 W/m²

System Performance with Different Loads

Using data from the Energy Projections calculated using the Wattage and Battery Voltage Projection Models:

Total Daily Energy = 369.16×2.58= 1,179Wh

Available Energy = $1,179 \times (1-0.15) = 1,002.15$ Wh

Assuming an ideal efficiency of 15%

Appliance	Power Consumption (W)	Runtime (Hours)	Energy Consumption (Wh)
LED Bulb	10W	6 hours	60 Wh
Phone Charger (2 devices)	10W	4 hours	40 Wh
Refrigerator (Efficient)	150W	8 hours (cyclical)	600 Wh
Laptop	50W	5 hours	250 Wh
Ceiling Fan	50W	4 hours	200 Wh

Optimal System Implementation

Issue: 2 panel system demonstrates issues with energy efficiency and output.

Solution: Large-Scale Solar Array

- Efficiency increases with large-scale systems due to reduced per-panel shading, more uniform panel temperatures and better system integration.
- Farms achieve cost parity with fossil fuels when scaled to 1 MW or more, with costs dropping below \$0.05/kWh.
- Large-scale arrays can be better integrated with existing grid infrastructure, which allows for advanced grid management techniques, like load balancing and centralized storage integration.
- Subsidies from the state/federal government along with loose zoning policy would further lower cost of installation and make large-scale solar projects more appealing.

Conclusion

- Small-scale solar arrays suffer low energy efficiency and are hit harder by environmental losses like temperature.
- Large-scale solar arrays can dilute low single panel efficiencies and environmental losses through scale.
- Solar can be best integrated into a grid as a supplement during the day to decrease the use of fossil fuel plants, or the excess solar power can be sold during times of peak load.