Exercie M (la exercie 5-bis de la feville de TD) First X un vecteur abatoire gaussien contre de matrice de covarionce T. On suppose que l'et inversible. Montres que ZX, 1-1x> ~ X Par définiton de la loi du Khi-deux: γ_{1} γ_{1} γ_{1} γ_{2} γ_{3} γ_{4} γ_{5} γ_{5} γ_{6} γ_{6 Montrom que A = < x, P-(x) ~ x2 e-a-d, A = 2M, M > où Mi iid ~N(0,1)A Puisque Met une matrie de covarionce => }. Pet symétrique

. Pet semi-define prositive Q= Q theoreme Spectral) -> FRE Od(R) une matrice orthogonale J D = diag(1, 1, 2d) ∈ Md(R) une matrice to r= QDQt $=|(P^{-1})| = (QDQ^{\dagger})^{-1} = (Q^{\dagger})^{-1}D^{-1}Q^{-1} = Q^{\dagger}D^{-1}Q^{\dagger}$ $=|(Q^{-1})| = (QDQ^{\dagger})^{-1} = (Q^{\dagger})^{-1}D^{-1}Q^{-1} = Q^{\dagger}D^{-1}Q^{\dagger}$ $=|(Q^{\dagger})^{-1}| = (Q^{\dagger})^{-1}D^{-1}Q^{-1} = Q^{\dagger}D^{-1}Q^{\dagger}$ $=|(Q^{\dagger})^{-1}| = (Q^{\dagger})^{-1}D^{-1}Q^{-1} = (Q^{\dagger})^{-1}D^{-1}Q^{-1} = (Q^{\dagger})^{-1}Q^{\dagger}$ $=|(Q^{\dagger})^{-1}| = (Q^{\dagger})^{-1}D^{-1}Q^{-1} = (Q^{\dagger})^{-1}D^{-1}Q^{-1} = (Q^{\dagger})^{-1}Q^{-1}Q^{-1}$ $=|(Q^{\dagger})^{-1}| = (Q^{\dagger})^{-1}Q^{$

On a donc : A = LX, [-1x7 ear a st orthogade = 2 x, (QDQt) x> = Q-1 = Qt AZO $=1 (Q^{t})^{-1}(Q^{t})^{-1}Q$ = < x, (at)-(D)-2-1x> = Lx, Q. D' Qtx7 = 2 ptx, p'atx) = 2 Q X, Jo-1 - Jo-1 Q X> = < (JD-) t. Qt.x, JD-1. Qt.x> - 1000 = L Joi Qtx, Jon. Qtx> = LU, V> U=(0)-Qt.X ~ N(0, I) $A=20,0>=2\times, \Gamma'\times> \sim \chi^2$

done

9:
$$Y \rightarrow N_3(0, \Gamma_4)$$

or Γ_Y st symittique $N_0 = 0$ de pointe $\Gamma_Y = 0$ Det $\Gamma_Y =$

One diag(
$$\lambda_1, ..., \lambda_m$$
) = D

$$= \int_{-1}^{1} = diag(\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m})$$

$$= \int_{-1}^{1} = diag(\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m})$$

$$= (\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m})$$

$$= (\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m})$$

$$= (\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m})$$

$$= \int_{-1}^{1} = diag(\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m})$$

$$= \int_{-1}^{1} = diag(\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m})$$

$$= \int_{-1}^{1} = diag(\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m})$$

$$= \int_{-1}^{1} = diag(\frac{1}{\lambda_1} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m} \cdot ..., \frac{1}{\lambda_m}) \cdot (\frac{1}{\lambda_m} \cdot$$

Anu (VD-17) t = VD-17

ear 557 et une motive déagonde done symétrique

D

$$(\sqrt{D})^{-1} = \left(\operatorname{diag} \left(\sqrt{\lambda_1}, ..., \sqrt{\lambda_m} \right) \right)^{-1}$$

$$= \operatorname{diag} \left(\frac{1}{5n}, ..., \frac{1}{5nn} \right)$$

Et
$$\sqrt{D^{-1}} = \sqrt{\text{diag}} \left(\frac{1}{2} \right) \cdots \left(\frac{1}{2} \right)$$

$$= \text{diag} \left(\frac{1}{2} \right) \cdots \left(\frac{1}{2} \right)$$

$$= \sqrt{\frac{1}{2}} \left(\frac{1}{2} \right) \cdots \left(\frac{1}{2} \right)$$

$$donc \qquad \sqrt{D^{-1}} = \left(\sqrt{D}\right)^{-1}$$

$$(\sqrt{5}, \sqrt{6})^{\dagger} = (\sqrt{5}, \sqrt{5})^{\dagger}$$

$$= \sqrt{5}, \sqrt{5}, \sqrt{5}$$