

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

GABARITO - PROVA I — MATD44 — 17/06/2025

Professor: Raydonal Ospina

Regras: A prova é individual. Leia com atenção as perguntas. A prova deve ser claramente resolvida.

- **I** (Plano amostral geral) Seja $\mathcal{U} = \{1,2,3\}$ uma população finita de tamanho N=3 e $\mathbf{Y} = \{1,2,3\}$ o vetor da característica populacional renda bruta (mensal em salários mínimos) familiar. Suponha que o seguinte plano amostral é implementado $p(s_1) = p(\{1,2\}) = \frac{1}{2}, p(s_2) = p(\{1,3\}) = \frac{1}{4}$ e $p(s_3) = p(\{2,3\}) = \frac{1}{4}$.
 - a) Determine as probabilidades de inclusão de primeira e segunda ordem. Determine se o plano amostral induzido pelo esquema de amostragem proposto é mensurável?

Res: 1a. Primeiro, vamos definir as probabilidades de inclusão de primeira ordem. A probabilidade de inclusão de primeira ordem π_i é a probabilidade de um elemento i ser incluído na amostra.

Para i = 1:

$$\pi_1 = P(\{1,2\}) + P(\{1,3\}) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

Para i=2:

$$\pi_2 = P(\{1,2\}) + P(\{2,3\}) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

Para i = 3:

$$\pi_3 = P(\{1,3\}) + P(\{2,3\}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

A probabilidade de inclusão de segunda ordem π_{ij} é a probabilidade de os elementos i e j serem incluídos simultaneamente na amostra.

Para π_{12} :

$$\pi_{12} = P(\{1, 2\}) = \frac{1}{2}$$

Para π_{13} :

$$\pi_{13} = P(\{1,3\}) = \frac{1}{4}$$

Para π_{23} :

$$\pi_{23} = P(\{2,3\}) = \frac{1}{4}$$

Um plano amostral é mensurável se todas as probabilidades de inclusão de segunda ordem forem maiores que zero e se $\pi_{ij} \leq \min(\pi_i, \pi_j)$. Neste caso, temos:

$$\pi_{12} = \frac{1}{2} \quad e \quad \min(\pi_1, \pi_2) = \frac{3}{4}$$

$$\pi_{13} = \frac{1}{4} \quad e \quad \min(\pi_1, \pi_3) = \frac{1}{2}$$

$$\pi_{23} = \frac{1}{4} \quad e \quad \min(\pi_2, \pi_3) = \frac{1}{2}$$

Como todas as probabilidades de inclusão de segunda ordem são menores ou iguais ao mínimo das probabilidades de inclusão de primeira ordem correspondentes, podemos concluir que o plano amostral é mensurável.

b) Forneça a distribuição de probabilidades do estimador de Horvitz-Thompson \hat{t}_{π} para o total populacional da renda bruta (mensal em salários mínimos) familiar.

Res: 1b O estimador de Horvitz-Thompson para o total populacional da renda bruta (mensal em salários mínimos) familiar é dado por:

$$\hat{t}_{\pi} = \sum_{i \in s} \frac{y_i}{\pi_i}$$

Onde: - y_i é o valor da característica para a unidade i, - π_i é a probabilidade de inclusão da unidade i, - s é a amostra.

Dado o plano amostral e as probabilidades de inclusão calculadas anteriormente, vamos calcular \hat{t}_π para cada amostra possível:

Para a amostra $s_1 = \{1, 2\}$:

$$\hat{t}_{\pi}(s_1) = \frac{y_1}{\pi_1} + \frac{y_2}{\pi_2} = \frac{2}{\frac{3}{2}} + \frac{4}{\frac{3}{2}} = \frac{2 \times 4}{3} + \frac{4 \times 4}{3} = \frac{8}{3} + \frac{16}{3} = 8$$

Para a amostra $s_2 = \{1, 3\}$:

$$\hat{t}_{\pi}(s_2) = \frac{y_1}{\pi_1} + \frac{y_3}{\pi_3} = \frac{2}{\frac{3}{4}} + \frac{6}{\frac{1}{2}} = \frac{8}{3} + 12 = \frac{8}{3} + \frac{36}{3} = \frac{44}{3} \approx 14.67$$

Para a amostra $s_3 = \{2, 3\}$:

$$\hat{t}_{\pi}(s_3) = \frac{y_2}{\pi_2} + \frac{y_3}{\pi_3} = \frac{4}{\frac{3}{4}} + \frac{6}{\frac{1}{2}} = \frac{16}{3} + 12 = \frac{16}{3} + \frac{36}{3} = \frac{52}{3} \approx 17.33$$

Agora, vamos determinar a distribuição de probabilidades do estimador \hat{t}_{π} :

$$P(\hat{t}_{\pi} = 8) = P(s_1) = \frac{1}{2}$$

$$P(\hat{t}_{\pi} = \frac{44}{3} \approx 14.67) = P(s_2) = \frac{1}{4}$$

$$P(\hat{t}_{\pi} = \frac{52}{3} \approx 17.33) = P(s_3) = \frac{1}{4}$$

A distribuição de probabilidades do estimador \hat{t}_{π} é dada por:

$$\hat{t}_{\pi} = \begin{cases} 8, & \text{com probabilidade } \frac{1}{2}, \\ \frac{44}{3} \approx 14.67, & \text{com probabilidade } \frac{1}{4}, \\ \frac{52}{3} \approx 17.33, & \text{com probabilidade } \frac{1}{4}. \end{cases}$$

c) Determine a variância do estimador de Horvitz-Thompson \hat{t}_{π} para o total populacional da renda bruta (mensal em salários mínimos) familiar sob este plano amostral.

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

GABARITO - PROVA I — MATD44 — 17/06/2025

Res: 1c Podemos dividir o cálculo da variância em partes menores para facilitar. Cálculo da Variância do Estimador de Horvitz-Thompson $\hat{t_\pi}$ A variância do estimador de Horvitz-Thompson é dada por:

$$\operatorname{Var}(\hat{t}_{\pi}) = \sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{U}} \left(\frac{y_i}{\pi_i}\right) \left(\frac{y_j}{\pi_j}\right) (\pi_{ij} - \pi_i \pi_j)$$

Passo 1: Calcular os termos diagonais

Primeiro, calculamos os termos em que i=j, ou seja, onde a soma envolve as mesmas unidades:

$$\operatorname{Var}(\hat{t}_{\pi})_{\text{diagonal}} = \sum_{i \in \mathcal{U}} \left(\frac{y_i}{\pi_i}\right)^2 (1 - \pi_i)$$

Os valores que temos são:
$$-\pi_1 = \frac{3}{4}, \pi_2 = \frac{3}{4}, \pi_3 = \frac{1}{2}$$
 $-y_1 = 2, y_2 = 4, y_3 = 6$

$$-u_1 = \frac{1}{4}, u_2 = \frac{1}{4}, u_3 = 6$$

$$\mathrm{Var}(\hat{t}_\pi)_{\mathrm{diagonal}} = \left(\frac{2}{\frac{3}{4}}\right)^2 \left(\frac{1}{4}\right) + \left(\frac{4}{\frac{3}{4}}\right)^2 \left(\frac{1}{4}\right) + \left(\frac{6}{\frac{1}{2}}\right)^2 \left(\frac{1}{2}\right)$$

Agora, vamos calcular esses três termos separadamente:

$$\left(\frac{2}{\frac{3}{4}}\right)^2 \times \frac{1}{4} = \left(\frac{8}{3}\right)^2 \times \frac{1}{4} = \frac{64}{9} \times \frac{1}{4} = \frac{16}{9} \approx 1.78$$

$$\left(\frac{4}{\frac{3}{4}}\right)^2 \times \frac{1}{4} = \left(\frac{16}{3}\right)^2 \times \frac{1}{4} = \frac{256}{9} \times \frac{1}{4} = \frac{64}{9} \approx 7.11$$

3. Para i = 3:

$$\left(\frac{6}{\frac{1}{2}}\right)^2 \times \frac{1}{2} = 12^2 \times \frac{1}{2} = 144 \times \frac{1}{2} = 72$$

Somando esses termos:

$$Var(\hat{t}_{\pi})_{diagonal} \approx 1.78 + 7.11 + 72 = 80.89$$

Este é o valor parcial para a variância considerando apenas os termos diagonais. Vamos agora calcular os termos cruzados da variância do estimador de Horvitz-Thompson, onde $i \neq j$.

$$\operatorname{Var}(\hat{t}_{\pi})_{\text{cruzados}} = \sum_{i \neq j} \left(\frac{y_i}{\pi_i}\right) \left(\frac{y_j}{\pi_j}\right) (\pi_{ij} - \pi_i \pi_j)$$

Aqui, precisamos calcular cada combinação de i e j onde $i\neq j$. Lembrando que as probabilidades de segunda ordem π_{ij} foram calculadas anteriormente: $\pi_{12}=\frac{1}{2}, \pi_{13}=\frac{1}{4}$ e $\pi_{23}=\frac{1}{4}$. O Termo para i=1 e

$$\left(\frac{y_1}{\pi_1}\right) \left(\frac{y_2}{\pi_2}\right) (\pi_{12} - \pi_1 \pi_2) = \left(\frac{2}{\frac{3}{4}}\right) \left(\frac{4}{\frac{3}{4}}\right) \left(\frac{1}{2} - \frac{3}{4} \times \frac{3}{4}\right)$$

$$= \frac{8}{3} \times \frac{16}{3} \times \left(\frac{1}{2} - \frac{9}{16}\right) = \frac{128}{9} \times \left(\frac{8}{16}\right) = \frac{128}{9} \times \frac{1}{2} = \frac{64}{9} \approx 7.11$$

O termo para $i = 1$ e $j = 3$:

$$\left(\frac{y_1}{\pi_1}\right) \left(\frac{y_3}{\pi_3}\right) (\pi_{13} - \pi_1 \pi_3) = \left(\frac{2}{\frac{3}{4}}\right) \left(\frac{6}{\frac{1}{2}}\right) \left(\frac{1}{4} - \frac{3}{4} \times \frac{1}{2}\right)$$

$$= \frac{8}{3} \times 12 \times \left(\frac{1}{4} - \frac{3}{8}\right) = \frac{96}{1} \times \left(\frac{2}{8} - \frac{3}{8}\right) = \frac{96}{1} \times \left(-\frac{1}{8}\right) = -12$$
 O termo para $i = 2$ e $j = 3$:

$$\left(\frac{y_2}{\pi_2}\right) \left(\frac{y_3}{\pi_3}\right) (\pi_{23} - \pi_2 \pi_3) = \left(\frac{4}{\frac{3}{4}}\right) \left(\frac{6}{\frac{1}{2}}\right) \left(\frac{1}{4} - \frac{3}{4} \times \frac{1}{2}\right)$$

$$=\frac{16}{3}\times 12\times \left(\frac{1}{4}-\frac{3}{8}\right)=\frac{192}{1}\times \left(\frac{2}{8}-\frac{3}{8}\right)=\frac{192}{1}\times \left(-\frac{1}{8}\right)=-24$$

$$Var(\hat{t}_{\pi})_{cruzados} = 7.11 - 12 - 24 = -28.89$$

Finalmente, somamos os termos diagonais e cruzados para obter a variância total do estimador de Horvitz-Thompson:

$$Var(\hat{t}_{\pi}) \approx 80.89 - 28.89 = 52$$

Este é o valor da variância do estimador de Horvitz-Thompson \hat{t}_{π} para o total populacional da renda bruta sob o plano amostral fornecido.

- ▶ (Plano amostral AASs) Uma amostra aleatória simples e sem substituição de 5 pessoas foi selecionada de uma população de 100 trabalhadores da empresa LInCaTech. Foram coletadas a informações sobre a Renda mensal em miles de reais (Renda) e o sexo do trabalhador. Com as informações da tabela 1 estime:
 - a) A renda média dos trabalhadores. Estabeleça um intervalo de 95% para a renda média.
 - b) A renda total dos trabalhadores. Estabeleça um intervalo de 95% para a renda total.

ID	Sexo	Renda	
I	Fem	I	
2	Mas	2	
3	Fem	3	
4	Fem	4	
5	Mas	5	

Tabela 1: Tabela de Informações dos empregados na amostra

Os dados iniciais são o tamanho da população, N = 100, o tamanho da amostra, n=5, e os valores de renda (em milhares de rehaamo da amostra, $y_s=\{1,2,3,4,5\}$. Calculamos as estatísticas amostrais. A média amostral da renda é: $\bar{y}=\frac{1}{n}\sum_{i\in s}y_i=\frac{1+2+3+4+5}{5}=\frac{15}{5}=3$ A variância amostral, que mede a dispersão dos dados na amostra, é calculada como: $s^2=\frac{1}{n-1}\sum_{i\in s}(y_i-\bar{y})^2=\frac{1}{n-1}\sum_{i\in s}(y_i-\bar{y})^2=$

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

GABARITO - PROVA I — MATD44 — 17/06/2025

 $\frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{2.5} = \frac{4+1+0+1+4}{4} = \frac{10}{4} = \frac{10}{4}$

Res: 2a Renda Média dos Trabalhadores

A estimativa pontual para a renda média populacional, μ , usando o estimador de Horvitz-Thompson sob um plano AASs, é simplesmente a média amostral. Portanto, a renda média estimada é de R\$ 3.000,00.

Para construir o intervalo de confiança de 95%, precisamos da variância estimada do estimador da média, $\hat{V}(\hat{\mu})$. Esta incorpora o fator de correção para populações finitas, dado que a amostragem é sem reposição: $\hat{V}(\hat{\mu}) = (1 - \frac{n}{100}) \frac{s^2}{s^2} = (1 - \frac{5}{1000}) \frac{2.5}{s^2} = (0.95)(0.5) = 0.475$

 $\begin{array}{l} \left(1-\frac{n}{N}\right)\frac{s^2}{n}=\left(1-\frac{5}{100}\right)\frac{2.5}{5}=(0.95)(0.5)=0.475\\ \text{O erro padrão (EP) \'e a raiz quadrada desta variância: }EP(\hat{\mu})=\sqrt{0.475}\approx0.6892.$ Com um nível de confiança de 95%, o valor crítico da distribuição normal padrão é $z\approx1.96.$ O intervalo de confiança é, então: $IC(\mu)=\hat{\mu}\pm z\cdot EP(\hat{\mu})=3\pm1.96\cdot0.6892\approx3\pm1.3508$ Isso nos leva ao intervalo [1.6492, 4.3508].

Res: 2b Renda Total dos Trabalhadores

De forma análoga, a estimativa pontual para a renda total na população, au, é obtida expandindo a média amostral para o tamanho da população: $\hat{\tau}=N\cdot \bar{y}=100\cdot 3=300$ A estimativa da renda total é de R\$ 300.000,00.

A variância estimada do estimador do total, $\hat{V}(\hat{\tau})$, está diretamente relacionada à variância do estimador da média: $\hat{V}(\hat{\tau})=N^2\cdot\hat{V}(\hat{\mu})=100^2\cdot 0.475=10000\cdot 0.475=4750$

O erro padrão correspondente é $EP(\hat{\tau})=\sqrt{4750}\approx 68.92$. O intervalo de 95% de confiança para o total é: $IC(\tau)=\hat{\tau}\pm z\cdot EP(\hat{\tau})=300\pm 1.96\cdot 68.92\approx 300\pm 135.083$ O intervalo resultante é [164.917, 435.083].

• (Amostragem Bernoulli) Seja s uma amostra obtida de um plano amostral de tipo Bernoulli com probabilidades de inclusão $\pi_k = \pi$ para todo $k \in U$ (população). Seja n_s o tamanho de amostra da amostra s. Mostre que a probabilidade condicional de se obter s dado n_s é a mesma que a probabilidade obtida por uma amostragem aleatória simples sem substituição de tamanho fixado n_s de N (Tamanho da população).

Res: 3 Considere um plano amostral Bernoulli com probabilidades de inclusão $\pi_k=\pi$ para todo $k\in U$. Se s é uma amostra de tamanho n_s , a probabilidade de observar essa amostra específica s é dada por:

$$P(s \mid n_s) = \pi^{n_s} (1 - \pi)^{N - n_s}.$$

Onde π^{n_s} é a probabilidade de incluir exatamente essas n_s unidades na amostra, e $(1-\pi)^{N-n_s}$ é a probabilidade de não incluir as restantes $N-n_s$ unidades.

Por outro lado, na amostragem aleatória simples sem substituição (AASs), a probabilidade de obter uma amostra específica s de tamanho n_s é dada por:

$$P(s) = \frac{1}{\binom{N}{n_s}},$$

onde $\binom{N}{n_s}$ é o número total de combinações possíveis de tamanho n_s a partir da população de tamanho N. Para amostras de tamanho fixo n_s , a probabilidade de se obter uma amostra s é a mesma tanto para um plano amostral Bernoulli quanto para a amostragem aleatória simples sem substituição:

$$P(s \mid n_s) = \frac{1}{\binom{N}{s}} = P(s).$$

Isso ocorre porque, para amostras de tamanho fixo n_s , todas as amostras possíveis têm a mesma probabilidade de serem selecionadas, seja em um plano

amostral Bernoulli ou em uma amostragem aleatória simples sem substituição.

• (Amostragem Sistemática) Suponha uma população de 7 elementos cujos valores para a característica de interesse sejam dados por $\mathbf{Y} = \{1, 3, 5, 7, 6, 4, 2\}$. Calcular a variância do estimador de Horvitz-Thompson para o total populacional em um plano amostral sistemático com a=2 grupos. Para esse caso específico, o plano amostral sistemático é mais eficiente do que o plano amostral aleatório simples sem reposição? Explique.

Res: 4

Para a população finita de N=7 num plano amostral sistemático com um intervalo de amostragem k=2. Este procedimento gera k=2 amostras potenciais. A primeira, partindo do elemento de índice $1, \in S_1=\{y_1,y_3,y_5,y_7\}=\{1,5,6,2\}$. A segunda, partindo do elemento de índice $2, \in S_2=\{y_2,y_4,y_6\}=\{3,7,4\}$. A probabilidade de seleção de qualquer uma dessas amostras é $P(S_j)=1/k=1/2$. Como cada elemento da população pertence a exatamente uma dessas amostras, a probabilidade de inclusão de primeira ordem para qualquer elemento i é constante e igual a $\pi_i=1/2$.

O estimador de Horvitz-Thompson para o total populacional, au, é dado por $\hat{ au}_{HT} = \sum_{i \in s} y_i/\pi_i$. O verdadeiro total populacional é au = 1+3+5+7+6+4+2=28. Calculando o valor do estimador para cada amostra possível, obtemos $\hat{ au}_1 = (1+5+6+2)/(1/2) = 14 \cdot 2 = 28$ e $\hat{ au}_2 = (3+7+4)/(1/2) = 14 \cdot 2 = 28$.

A variância do estimador é calculada como a variabilidade das estimativas em torno do verdadeiro parâmetro, ponderada pela probabilidade de cada amostra: $V(\hat{\tau}_{SYS}) = \sum_{j=1}^k P(S_j)(\hat{\tau}_j - \tau)^2 = \frac{1}{2}(28-28)^2 + \frac{1}{2}(28-28)^2 = 0$ A variância do estimador para este plano amostral é zero, indicando que, independentemente da amostra selecionada, a estimativa será perfeitamente acurada.

Para avaliar se este plano é mais eficiente que um plano amostral aleatório simples sem reposição (AASs), comparamos sua variância com a de um estimador AAS (sem reposição) para um tamanho de amostra equivalente. O tamanho esperado da amostra sistemática é $E[n]=(4\cdot 1/2)+(3\cdot 1/2)=3.5$. A variância do estimador do total sob AASs é $V(\hat{\tau}_{AAS})=N^2(1-n/N)S^2/n$. A variância populacional é $S^2=\frac{1}{N-1}\sum (y_i-\mu)^2=\frac{28}{6}=14/3$. Assim, $V(\hat{\tau}_{AAS})=7^2\left(1-\frac{3.5}{7}\right)\frac{14/3}{3.5}=49\cdot(0.5)\cdot\frac{14}{10.5}\approx32.67$ Como $V(\hat{\tau}_{SYS})=0< V(\hat{\tau}_{AAS})\approx32.67$, concluímos que o plano sistemático é mais eficiente.

A análise de variância (ANOVA) nos permite decompor a variabilidade total da população em duas componentes: a variância entre as amostras sistemáticas e a variância dentro delas. Neste caso, como as estimativas de total para cada amostra foram idênticas ($\hat{\tau}_1=\hat{\tau}_2$), a variância entre as amostras é nula, resultando em $V(\hat{\tau}_{SYS})=0$. Toda a variabilidade da população está, na verdade, contida dentro de cada amostra.

Assim, o grau de homogeneidade das amostras dada pela ordenação da população ($\{1,3,5,7,6,4,2\}$) exibe uma tendência periódica que o intervalo de amostragem k=2 captura perfeitamente. Isso resulta em amostras que são internamente muito heterogêneas, pois cada uma contém valores de toda a faixa da população. Consequentemente, as amostras são extremamente homogêneas entre si. Isto indicaque o coeficiente de correlação intraclasse, ρ , seria fortemente negativo, indicando que elementos dentro da mesma amostra são mais diferentes entre si do que o esperado ao acaso, o que é o cenário ideal para a eficiência deste tipo de amostragem.

O efeito de desenho (deff), definido como a razão entre a variância do plano atual e a de um plano AASs de mesmo tamanho: deff $= \frac{V(\hat{\tau}_{SYS})}{V(\hat{\tau}_{AAS})} =$

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

GABARITO - PROVA I — MATD44 — 17/06/2025

 $\frac{0}{32.67}=0$ Um deff < 1 indica maior eficiência que a AASs. Um deff de zero representa a máxima eficiência teórica, significando que o desenho amostral eliminou completamente o erro de amostragem ao se alinhar perfeitamente com a estrutura latente na população.

► (Amostragem estratificada) A Tabela 2 contem as informações do gasto mensal em serviços públicos de uma amostra aleatória estratificada de 120 famílias na cidade de Salvador a qual foi geograficamente dividida em três estratos: Norte, Centro e Sul.

	Estratos		
Estatísticas	Norte (1)	Centro (2)	Sul (3)
N_h	4000	6000	10000
W_h	0,3	0,2	0,5
n_h	40	36	44
\bar{y}_h	1,2	2,4	0,6
$ar{Y}_h$	9600	7200	6000
s_h^2	0,36	1,21	0,04
$\operatorname{Var}(ar{y}_h)$	0,000993	0,004404	0,000226

Tabela 2: Informações do gasto familiar mensal em serviços públicos (em salários mínimos) a partir de uma amostra aleatória simples estratificada na cidade de Salvador.

Estime o gasto total de toda a população e estabeleça um intervalo de confiança de 95% para o total populacional.

O gasto médio da população (em salários mínimos), \bar{y} , é dado por:

$$\bar{y} = \sum_{h=1}^{H} W_h \bar{y}_h = 0, 3 \times 1, 2 + 0, 2 \times 2, 4 + 0, 5 \times 0, 6 = 1, 14$$

O gasto total estimado da população (em salários mínimos), \hat{Y} , é:

$$\hat{Y} = N\bar{y} = (4000 + 6000 + 10000) \times 1, 14 = 20.000 \times 1, 14 = 22.800$$

O erro padrão da média é dado pela fórmula ajustada, incluindo o fator de correção finita:

$$\operatorname{Var}(\bar{y}) = \sum_{h=1}^{H} W_h^2 \frac{s_h^2}{n_h} \left(\frac{N_h - n_h}{N_h} \right).$$

Substituindo os valores dos estratos:

$$\begin{split} \mathrm{Var}(\bar{y}) &= (0,3)^2 \times \frac{0,36}{40} \times \frac{4000-40}{4000} + (0,2)^2 \times \frac{1,21}{36} \times \frac{6000-36}{6000} \\ &+ (0,5)^2 \times \frac{0,04}{44} \times \frac{10000-44}{10000}. \\ &\qquad \qquad \mathrm{Var}(\bar{y}) \approx 0,002944. \end{split}$$

Logo,

$$EP(\bar{y}) = \sqrt{0,002944} = 0,0543.$$

Para construir o intervalo de confiança usando a distribuição t-Student, devemos calcular os graus de liberdade aproximados. Como o plano é estratificado, podemos usar a fórmula aproximada para graus de liberdade em amostragem estratificada:

$$d\!f \approx \frac{\left(\sum_{h=1}^{H} W_h^2 \frac{s_h^2}{n_h}\right)^2}{\sum_{h=1}^{H} \left(\frac{W_h^4 s_h^4}{n_h^2 (n_h - 1)}\right)}.$$

Calculando este valor para os dados fornecidos, obtemos:

$$df \approx 78$$
.

O valor crítico da distribuição t para df=78 e um nível de confiança de 95% é aproximadamente $t_{0,025}\approx 1,99$. O intervalo de confiança de 95% para o gasto médio da população é dado por:

$$\bar{y} \pm t_{0,025} \times \text{EP}(\bar{y}) = 1,14 \pm 1,99 \times 0,0543 = [1,032,1,248]$$
 salários mínimos.

Para o gasto total da população, o intervalo de confiança de 95% é:

$$\hat{Y} \pm t_{0,025} \times \text{EP}(\hat{Y}) = 22.800 \pm 1,99 \times (20.000 \times 0,0543) = [21.724,23.876]$$

Se usamos uma aproximação apenas normal, supondo que o n é suficientemente grande, temos que o intervalo de confiança de 95% para o gasto médio é:

$$\bar{y} \pm z_{0,025} \times \text{EP}(\bar{y}) = 1,14 \pm 1,96 \times 0,0543 = [1,033,1,264]$$

Para o gasto total da população, o intervalo de confiança de 95% é:

$$\hat{Y} \pm z_{0,025} \times \text{EP}(\hat{Y}) = 22.800 \pm 1, 96 \times (20.000 \times 0, 0543) = [20.671, 24.928]$$

BOA PROVA