

改通用示波器为简易逻辑分析仪

计算机专业实践中心

§1 电子系统设计基础知识

- 电子系统的组成
- 电子系统设计步骤
- 设计的基本方法
- 实验文件的标准格式

§ 1.1 电子系统的组成

输入电路接收被测或被控对象的有关信息,经变换放大、运算,把结果送给输出电路,输出电路把送来的结果经输出电路处理后去驱动执行机构。电源是供给各部分必需的电压和电流。

- 一、方案设计
- 二、方案试验
- 三、工艺设计
- 四、样机制作和调试
- 五、总结鉴定

- 一、方案设计
- 二、方案试验
- 三、工艺设计
- 四、样机制作和调试
- 五、总结鉴定

根据设计任务书给定的技术指标和条件,

- 1. 画出主要单元电路、数据通路、输入、输出及重要控制信号的概貌框图。
- 2. 画出构成电路的详细电路图。
- 3. 简要说明系统的工作原理。

- 一、方案设计
- 二、方案试验
- 三、工艺设计
- 四、样机制作和调试
- 五、总结鉴定

对设计方案进行装调实验。

一个仅从理论上设计出来的电路往往是不成熟的,可能存在许多问题,必须通过装调试验。发现实验现象与设计要求不相符的地方,通过分析、试验,找出解决的方法,来不断改善原设计方案,甚至修改原方案。

- 一、方案设计
- 二、方案试验
- 三、工艺设计-
- 四、样机制作和调试
- 五、总结鉴定

完成制作实验样机所必需的文件资料,包括整机结构设计和印刷电路板设计。

- 一、方案设计
- 二、方案试验
- 三、工艺设计
- 四、样机制作和调试
- 五、总结鉴定

在修改和完善方案设计、工艺设计的基础上,完成样机外壳和构架的加工、元器件的焊接和组装、整机调试和指标测试等工作。最终制作出符合指标要求的性能样机。

- 一、方案设计
- 二、方案试验
- 三、工艺设计
- 四、样机制作和调试
- 五、总结鉴定

考核样机是否全面达到给定技术 指标要求,能否长期可靠地工作。同 时写出设计总结报告、只有通过鉴定 后方可投入试生产。

- 一、方案设计
- 二、方案试验
- 三、工艺设计
- 四、样机制作和调试
- 五、总结鉴定

电子系统的设计最终是要制作出生产样机或定型产品。

- ◆ 方案设计
- ◆ 方案试验
- ◆ 写总结报告

电子系统设计基础知识

§ 1.3 设计的基本方法

- (1)任务分解:根据技术指标和系统功能要求,把复杂的电路系统分解成若干个独立的功能单元。每个单元可由若干个集成电路或分立元件来完成。分解的单元不宜太多,以免造成单元间连接错误。但也不能太少,造成一个单元太复杂,一旦出故障难以查找。
- (2) 各模块细化:根据所划分单元的功能,选择合适的电路和器件来完成所需的功能,因此,要求设计者不仅应具备电路方面的知识,还要熟悉各类器件的性能和特点。
- (3) 总体连接: 完成各单元电路间的相互连接。对逻辑电路,在时序上应协调一致。对模拟电路,相位关系应相符。相邻单元间,在电气性能上应匹配,以保证各部分均能正常工作。

§ 1.4 实验报告要求

- 一、任务要求
- 二、方案论证
- 三、理论分析与计算
- 四、详细电路设计
- 五、调试步骤和测试结果
- 六、总结
- 七、附录

§ 1.4 实验报告要求

一. 任务要求。

1

- 二. 方案论证。
 - ◆ 系统总体方案(框图组成及其工作原理)。
 - ◆ 单元电路的选择,器件的选择。
- 三. 理论分析与计算。
- 四. 详细电路设计。
- 五. 调试步骤和测试结果。
 - ◆ 测试仪器、测试方案、测试条件。
 - ◆ 测试结果(各点的数据、波形和指标测量值)。
 - ◆ 测试结果分析。
- 六. 总结: 心得体会和改进意见等。
- 七. 附录: 所用仪器及设备; 元器件清单。

电子系统设计基础知识

总体框图及电路图设计要点:

- 1. 比较简单的框图,一般由几个方框组成。复杂些的电路,一般由十几个方框组成。通常所有的框图画在一张纸上。始当庞大的电路,可附加各单元电路的方框图。所画的框图不必太详细,但也不能过于含糊. 关键是要反映出电路系统的主要单元电路、数据通路,输入和输出,以及控制点的设想。
- 2. 框图要清晰地表示出信息的流向。
- 3. 每个方框不必指出功能决中所包含的器件。
- 4. 所有连线必须清晰、整齐。
- 5. 所有器件符号均采用国际(或国家)标准符号。

§ 2 设计课题

题目: 改通用示波器为简易逻辑分析仪

设计目标

改通用示波器为简易逻辑分析仪

一、示波器工作原理

1. 组成

通用示波器通常由显示器件(阴极射线管)、垂直放大器、触发器或同步电路、时基、水平放大器、门控放大器、电源等组成,其框图如下所示。

改通用示波器为简易逻辑分析仪

2. 工作原理

被测信号经垂直放大器后加到示波器的垂直(Y轴)的 偏转系统,使电子射线的垂直偏转距离正比于输入信号的 瞬时值。在示波管的水平(X轴)偏转系统上加以随时间 线性变化的信号; 使电子射线在水平偏转正比于时间, 那 么再示波管的屏幕上就得到输入信号的时间波形。由于水 平偏转系统所加线性变化的信号不可能无限增长, 荧光屏 的尺寸也有限,故实际线性变化的信号(扫描信号)是一 锯齿波,这样就能使输入信号的时间波形在荧光屏上反复 出现。当锯齿波的重复周期等于输入信号周期(或输入信 号周期的整数倍)时,每次重复出现的波形正好完全重合 (同步)就可看到稳定的波形。

3. 双踪示波器:

对于双踪示波器,则是由一个电子开关来控制 Y轴偏移电压,使其在第一个扫描周用内接通第一 路信号,在第二个扫描周期接通第二路信号(在 两个扫描周期可以加入不同的偏移电压),交替 进行。这样在屏幕上就可同时看到两个波形。如 图所示。实际上示波器是分时工作。

根据上述原理,若要示波器能够同时观察多个 波形。只需在每个波形加入Y轴放大器(垂直放大器) 的同时加一偏移电压,然后调节扫描周期便能得到 稳定的多个波形。

4. 示波器功能扩展

对逻辑电路只有"0"、"1"两个状态。在示波器上要显示出"0"、"1"逻辑字符,可根据显示李沙育图形的原理,将两个频率相同,并有一定相位差(60°~90°)的正弦波,分别加到Y轴和X轴输入端,示波器就可显示字符"0";若只有Y轴加信号,X轴不加信号,就可显示字符"1"。若在Y轴和X轴加(或不加)信号的同时加上一定的偏移电压,就可把"0"、"1"字符显示在荧光屏的不同位置上。

School of Computer Science and Technology

电子技术基础课程设计

李萨育图,垂直偏转信号的频率为水平偏转信号频率的整倍数

李萨育图。 相同频率的两个信号加到垂直和水平偏转系统的情况。

示波器显示逻辑字符功能扩展框图

示波器显示逻辑字符功能扩展框图

示波器显示逻辑字符功能扩展框图

根据上述原理就可将通用示波器改为简易数字逻辑分析仪。

二、技术指标(简易数字逻辑分析仪)

- 1. 输入、输出信号与TTL集成电路电平相容。
- 2. 输入信号:最高频率≤100KHZ,可同时输入四路被测信号。
- 3. 输出信号:
 - ◆ 送至示波器Y轴输入端信号。
 - ◆ 送至示波器X轴输入端信号。
- 4. 简易数字逻辑分析仪与示波器配合使用: 可显示16组由"0"、"1"字符组成的被测信号逻辑值。
- 5. 电源电压: ±5V。

正负电源的接法

三、具体设计内容

- 1、根据技术指标要求,设计计算
 - A、正弦波振荡器。
 - B、时钟脉冲振荡器;
- 2、设计整机电路,画出框图和总电路图
- 3、在实验板上接插电路,并进行单元电路和整机调试。

调试完成后,要写出详细实验报告。

四、器材和元件

建议选用如下中、小规模集成电路和分立元件来完成方案设计。

1、六反相器 74LS04

2、2-8进制计数器 74LS93

3、双4选1数据选择器 74LS153

4、晶体三极管 3DG6、3DK2、9014

5、电阻器、电容器、电位器

五、仪器和设备

- 双踪示波器。
- 三用表。
- 直流稳压电源。
- 接插板。

六、参考文献

I、模拟电子技术基础

2、数字电子技术基础

七、简易数字逻辑分析仪参考电路

改通用示波器为简易逻辑分析仪

十六阶梯电阻网络分压值计算

00.00.00.04	上拉电阻	丁 トン トト 7 0	分压 计算					
QD,QC,QB,QA		下拉电阻	上拉电阻	下拉电阻	上拉+下拉	输出电压	$V_{OH} = 3.6V$	
0000	2k // 4k // 8k // 16k	2k	1.066667	2	3.066667	0.652 V _{OH}	2.347 V	
0001	2k // 4k // 8k	16k // 2k	1.142857	1.777778	2.920635	0.609 V _{OH}	2.192 V	
0010	2k // 4k // 16k	8k // 2k	1.230769	1.6	2.830769	0.565 V _{OH}	2.034 V	
0011	2k // 4k	8k // 16k // 2k	1.333333	1.454545	2.787878	0.522 V _{OH}	1.879 V	
0100	2k // 8k // 16k	4k // 2k	1.454545	1.333333	2.787878	0.478 V _{OH}	1.721 V	
0101	2k // 8k	4k // 16k // 2k	1.6	1.230769	2.830769	0.435 V _{OH}	1.566 V	
0110	2k // 16k	4k // 8k // 2k	1.777778	1.142857	2.920635	0.391 V _{OH}	1.408 V	
0111	2k	4k // 8k // 16k // 2k	2	1.066667	3.066667	0.348 V _{OH}	1.253 V	
1000	4k // 8k // 16k	2k // 2k	2.285714	1	3.285714	0.304 V _{OH}	1.094 V	
1001	4k // 8k	2k // 16k // 2k	2.666667	0.9411765	3.6078435	0.261 V _{OH}	0.940 V	
1010	4k // 16k	2k // 8k // 2k	3.2	0.8888889	4.0888889	0.217 V _{OH}	0.781 V	
1011	4k	2k // 8k // 16k // 2k	4	0.8421053	4.8421053	0.174 V _{OH}	0.626 V	
1100	8k // 16k	2k // 4k // 2k	5.333333	0.8	6.133333	0.130 V _{OH}	0.468 V	
1101	8k	2k // 4k // 16k // 2k	8	0.7619048	8.7619048	0.087 V _{OH}	0.313 V	
1110	16k	2k // 4k // 8k // 2k	16	0.7272727	16.7272727	0.043 V _{OH}	0.155 V	
1111	无穷大	2k // 4k // 8k // 16k //2k	无穷大	0.6956522	无穷大	0.000 V _{OH}	0.000 V	

八、集成电路引脚,逻辑图及功能

74LS04

74LS86 (异或门)

74LS93 (2-8进制计数器)

注: NC为空腿。

Connection Diagram

Order Number MM54HC161/162/163 or MM74HC160/161/162/163

Truth Tables

'HC160/HC161

CLK	CLR	ENP	ENT	Load	Function
X	L	X	X	X	Clear
X	Н	Н	L	Н	Count & RC disabled
X	Н	L	Н	Н	Count disabled
X	Н	L	L	Н	Count & RC disabled
1 ↑	Н	X	X	L	Load
1	Н	Н	Н	Н	Increment Counter

H = high level, L = low level

X = don't care, $\uparrow = low to high transition$

'HC162/HC163

CLK	CLR	ENP	ENT	Load	Function
1	L	X	X	Х	Clear
X	Н	Н	L	Н	Count & RC disabled
X	Н	L	Н	Н	Count disabled
X	Н	L	L	Н	Count & RC disabled
1	Н	X	X	L	Load
1	Н	Н	Н	Н	Increment Counter

74LS160 BCD 计数器 74LS161

二进制(4bit)计数器

Load	Enable G	Down/ Up	Clock	Function
Н	L	L	1	Count Up
Н	L	Н	1	Count Down
L	X	X	X	Load
Н	Н	X	X	No Change

Asynchronous inputs Low input to load sets $Q_A = A$, $Q_B = B, Q_C = C, \text{ and } Q_D = D$

74LS190 模式可控的 BCD计数器 74LS191 模式可控的 二进制(4bit)计数器

Function Table

Select Inputs			Data	nputs	Strobe	Output	
В	Α	C0	C1	C2	C 3	G	Υ
X	X	X	X	X	Х	Н	L
L	L	L	X	X	X	L	L
L	L	Н	Χ	Х	Χ	L	Н
L	Н	X	L	X	X	L	L
L	Н	X	Н	X	X	L	Н
Н	L	X	X	L	X	L	L
Н	L	X	X	Н	X	L	Н
Н	Н	X	X	X	L	L	L
Н	Н	X	Х	Х	Н	L	Н

Select inputs A and B are common to both sections.

H = High Level, L = Low Level, X = Don't Care

74LS153 (双4选1数据选择器)

LM124, LM224A . . . J OR W PACKAGE ALL OTHERS . . . D, DB, J, N OR PW PACKAGE (TOP VIEW)

uA741 单运放

LM324 四运放

555 定时器

三极管管脚排列顺序 (3DG6、3DK2)

三极管管脚排列顺序 (9014)

面包板的结构

面包板的结构

- ① 数字电源、数字地;模拟电源、模拟地
- ② 电源滤波电容。

