Use subscripts d and a to denote dielectric and air regions respectively. $\nabla^2 V = 0$ in both regions. $V_d = c_i y + c_2$, $\bar{E}_d = -\bar{a}_y c_i$, $\bar{D}_d = -\bar{a}_y \epsilon_0 \epsilon_p c_i$.

$$V_a = c_3 y + c_4, \quad \overline{E}_a = -\overline{a}_y c_3, \quad \overline{D}_a = -\overline{a}_y \epsilon_0 c_3.$$

B.C: At y=0, $V_d=0$; at y=d, $V_a=V_o$; at y=0.8d: $V_d=V_a$, $\overline{D}_d=\overline{D}_a$.

Solving: $c_1 = \frac{V_0}{(0.8 + 0.2 \epsilon_1)d}$, $c_2 = 0$, $c_3 = \frac{\epsilon_1 V_0}{(0.8 + 0.2 \epsilon_1)d}$, $c_4 = \frac{(1 - \epsilon_2) V_0}{1 + 0.2 \epsilon_2}$

a)
$$V_d = \frac{5 \text{ yV}_0}{(4+\epsilon_p)d}$$
, $\overline{E}_d = -\overline{a}_y \frac{5 \text{ V}_0}{(4+\epsilon_p)d}$

a)
$$V_d = \frac{5 \sqrt{V_0}}{(4+\epsilon_p)d}$$
, $\overline{E}_d = -\overline{a}_y \frac{5 V_0}{(4+\epsilon_p)d}$.
b) $V_a = \frac{5\epsilon_0 y - d(\epsilon_0 - 1)d}{(4+\epsilon_p)d} V_0$, $\overline{E}_a = -\overline{a}_y \frac{5\epsilon_0 V_0}{(4+\epsilon_p)d}$.
c) $(\beta_s)_{y=d} = -(D_a)_{y=d} = \frac{5\epsilon_0 \epsilon_0 V_0}{(4+\epsilon_p)d}$.

(
$$p_s$$
) _{$y=d$} = -(D_a) _{$y=d$} = $\frac{5\epsilon_0\epsilon_rV_0}{(4+\epsilon_r)d}$.
(p_s) _{$y=0$} = (D_d) _{$y=0$} = - $\frac{5\epsilon_0\epsilon_rV_0}{(4+\epsilon_r)d}$.

HW4-4

 $E_{q}.(4-61): c_{1}=\frac{1}{2D}(a_{2}^{1}-a_{1}^{1}-D^{2}); E_{q}.(4-62): c_{2}=\frac{1}{2D}(a_{1}^{1}-a_{1}^{1}+D^{2}).$

Eq. (4-55): b2= c,2-a1;

Eq. (4-56): 62 = 62 - a2.

x a) V = Pr ln ran Distance to - Pr.

At P: $r_2 = b + (c_1 - a_1), r_1 = b - (c_1 - a_1).$

. At P1: 12 = b+ (c1-a1), 1=b-(c1-a).

$$V_{i} - V_{i} = \frac{P_{i}}{2\pi\epsilon_{0}} \ln \left[\frac{b + (c_{i} - a_{i})}{b - (c_{i} - a_{i})} \frac{b - (c_{i} - a_{i})}{b + (c_{i} - a_{i})} \right].$$

Expressing b, c, & c, interms of D, a, &a,

and simplifying: $V_1 - V_2 = \frac{P_2}{2\pi\epsilon_0} \ln \left\{ \left(\frac{a_1^2 + a_1^2 - b^2}{2a_1 a_2} \right) + \left[\left(\frac{a_1^2 + a_1^2 - b^2}{2a_1 a_2} \right)^2 - 1 \right]^{1/2} \right\}$

$$C' = \frac{\rho_{\ell}}{V_{i} - V_{2}} = \frac{2 \pi \epsilon_{0}}{L_{n} \left\{ \left(\frac{a_{i}^{1} + a_{k}^{1} - b^{2}}{2 a_{i} a_{k}} \right) + \left[\left(\frac{a_{i}^{1} + a_{k}^{1} - b^{2}}{2 a_{i} a_{k}} \right)^{2} - 1 \right]^{V_{2}}} = \frac{2 \pi \epsilon_{0}}{Cosh^{-1} \left(\frac{a_{i}^{1} + a_{k}^{1} - b^{2}}{2 a_{i} a_{k}} \right)} (F/m).$$

b) Force per unit length $F' = \frac{P_b}{2\pi \epsilon_b (4b^2)} = \frac{D^2 P_b}{2\pi \epsilon_b [(a_a^2 + a_b^2 - D^2)^2 - 4a_b^2]} (N/m)$

1-17 Required boundary conditions at x=0: V, = V2, and \ \frac{2V_1}{2x} = \frac{2V_1}{2x}.

From Fig. 4-23 and the hypotheses in parts a) and b:
$$V_1 = \frac{Q}{4\pi\epsilon_1/(x-d)^2+y^2+z^2} - \frac{Q_1}{4\pi\epsilon_1\sqrt{(x+d)^2+y^2+z^2}}$$

$$V_2 = \frac{Q+Q_2}{4\pi\epsilon_1\sqrt{(d-x)^2+y^2+z^2}}$$

In order to satisfy the b.c.'s at x=0, we require $\frac{Q-Q_1}{E_1} = \frac{Q+Q_2}{E_2}$ and $Q+Q_1 = Q+Q_2 \longrightarrow Q_1 = Q_2 = \frac{E_1-E_1}{E_2+E_1}Q$.

HW4-6

Solution: V(+) = A++ Bo.

a) B.C.
$$\bigcirc$$
: $V(0) = 0 \longrightarrow B_0 = 0$.
8.C. \bigcirc : $V(\alpha) = V_0 = A_0 \alpha \longrightarrow A_0 = \frac{V_0}{\alpha}$.
 $V(\phi) = \frac{V_0}{\alpha} \phi$,

b) B.C. ①:
$$V(\alpha) = V_0 = A_1 \alpha + B_1$$

B.C. ②: $V(2\pi) = 0 = 2\pi A_1 + B_1$
 $V(2\pi) = 0 = 2\pi A_1 + B_2$
 $V(\phi) = \frac{V_0}{2\pi - \alpha} (2\pi - \phi), \quad \alpha \le \phi \le 2\pi$