The Tree Width of Auxiliary Storage

Gennaro Parlato (LIAFA, CNRS, Paris, France)

joint work with

P. Madhusudan (Univ of Illinois at Urbana-Champaign, USA)

Automata with aux storage

- Turing machines = finite automata + 1 infinite tape undecidable emptiness
- CFLs = finite automata + 1 stack Decidable emptiness
- Finite automata + 2 stacks; Finite automata + 1 queue
 → undecidable emptiness

Studies into finding the "boundary" of decidability

Verification: renewed interest in automata+aux storage

- Static analysis and dataflow analysis of control flow
 - Context-sensitive static data-flow analysis of programs with recursion is essentially PDA emptiness
 - ◆ Reps-Horowitz-Sagiv; Sharir-Pnueli
- SLAM project from Microsoft Research
 - Predicate abstraction of software that abstracts data to Boolean domains [Ball-Rajamani-'90]
 - Constructs a PDA model and checks emptiness/reachability.
 - BEBOP: PDA emptiness using "summaries"
 - **MOPED:** PDA emptiness using regularity of reachable configs
 - **GETAFIX:** PDA emptiness using fixed-points
- Concurrent program verification using abstraction
 - Emptiness of multi-stack automata
 - Emptiness of distributed automata with FIFO queues

Decidable emptiness

Multistack pushdown automata with

- k-context-switches (Qadeer, Rehof- TACAS'05)
- ♦ k-phases (La Torre, Madhusudan, Parlato LICS'07)
- ordered (Breveglieri, Cherubini, Citrini, Crespi-Reghizzi JFOCS'95)
- Parameterized pushdown automata with k contexts

(La Torre, Madhusudan, Parlato - CAV'10)

Distributed automata with FIFO queues

- finite state processes with polyforest architecture
- pushdown processes with forest architecture + well queuing

(La Torre, Madhusudan, Parlato - TACAS'08)

Non-confluent architectures + size 1 queues

(Heußner, Leroux, Muscholl, Sutre - FOSSACS'10)

Decidable emptiness

The question is ...

So many decidable subclasses; so much awkwardness

Is there a robust common principle that explains their decidability?

Answer:

We present a general criterion that uniformly explains many of such results:

Decidable ← Simulate by graph automata working on graphs of bounded tree width

Graph automata

- Fix a class C of Σ-labeled graphs
- A graph automaton over C is a triple GA = (Q, tiles)
 - Q is a finite set of states
 - tiles $\subseteq Q \times \Sigma \times Q$

- A graph G is accepted by GA if we can decorate each node with a state such that
 - Each edge can be tiled

Tree-width of graphs G=(V,E)

A tree decomposition of G is a pair $(T, \{bag_z\}_{z \text{ is a node of } T})$, where T is a tree and bag_z is a subset of G nodes, such that

- every edge of G has both endpoints in some bag
- for every node of G the set of bags that contain it form a subtree of T

The **width** of the tree decomposition is the maximum of $|bag_z|$ -1 over all T nodes

The **treewidth** of a graph *G*, is the minimum such width over all tree decompositions of *G*

Tree width of a tree is 1 ☺
Tree width of a k-clique is k-1.

Monadic second-order logic on graphs

MSO is given by the following syntax

```
\varphi ::= x=y \mid E_a(x,y) \mid x \in Z \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi(x) \mid \exists Z. \varphi(Z)
```

where

- ⋆ x, y are first-order variables,
 Z is a second-order variable
- \bullet E_a(x,y) is a binary edge relation

A class of Σ -labeled graphs C is MSO-definable if there is a φ such that

```
C = \{ G \mid G \text{ satisfies } \varphi \}
```

MSO on graphs + GA emptiness

- Over the class of all graphs, MSO satisfiability is undecidable (even FO is undecidable)
- The satisfiability problem for MSO on the class of all graphs of tree width k, for any k, is decidable.
- If C is any class of graphs of
 - bounded tree-width &
 - ◆ MSO definable,
 then satisfiability of MSO on C is decidable.
- Graph automata emptiness on C → MSO satisfiability on C
- Hence graph automata emptiness on any class C of MSO definable graphs of bounded tree-width bdd tw is decidable.

Main schema for decidability

Emptiness

Automaton with auxiliary storage

Reduction

Emptiness

Graph Automaton over a class C
- MSO definable
-Bounded treewidth

Compile down the auxiliary storage in the graph

Simple graph (no auxiliary storage)

Simulation for pushdown automata

PDA ←→ Nested words

RUN

PDA ←→ Nested words

RUN

PDA ←→ Nested words

- A NW graph captures the behavior of a run
 - The stack is compiled down into the nested word (nesting edges)
- The class of NWs is MSO definable
 - linear order + nesting edges; nesting edges should not cross
- Graph automata working over this graph can simulate a PDA

Nested words have tree-width 2

Hence the emptiness problem is decidable

Simulation for Multistack Pushdown Automata

Multiply Nested Words (MNW)

- A MNW graph captures the behavior of a run
 - Stacks are compiled down into the graph (nesting edges)
- The class MNWs is MSO definable
- Unbounded tree-width
 - (undecidable emptiness problem)

Bounded-context MPAs

k context-switches MPA

(Qadeer, Rehof: TACAS'05)

In a context only one stack can be used

The class of MNWs with k contexts is

- MSO definable
- ◆ tree-width: k + 1

Hence emptiness problem is decidable.

Bounded-phase MPAs

k-phase MPA (La Torre, Madhusudan, Parlato - LICS'07)

In a phase only one stack can be popped (all the stacks can be pushed)

MNWs with k phases are

- MSO definable
- tree-width: $2^k + 2^{k-1} + 1$

Hence emptiness problem is decidable.

Ordered MPAs

Ordered MPAs

(Breveglieri et al, J. Found. Comput. Sci.'95)

Only the first non empty stack can be popped All stacks can be pushed

Ordered MNWs are

- MSO definable
- ◆ tree-width: (n+1) 2ⁿ⁻¹+1, where n is the number of stacks

Therefore emptiness problem is decidable.

Simulation for distributed automata with queues

Distributed automata with queues

- Distributed automata with queues with
 - finite state processes
 - pushdown processes

Network of processes

Queue graphs (finite processes)

- A queue graph captures the behavior of a run
 - queues are compiled down into the graph (yellow edges)
- The class of queue graphs is MSO definable (linear orders for each process, FIFO edges)
- Unbounded tree-width

Decidable class (La Torre, Madhusudan, Parlato, TACAS'08)

Finite processes - polyforest architectures

A directed graph is a polyforest if the underlying undirected graph is a forest

TREE-WIDTH: 3n-1

Hence emptiness problem is decidable.

Stack-queue graphs (PD processes)

- A stack-queue graph captures the behavior of a run
 - Stacks and queues are compiled down into the graph
- The class stack-queue graphs is MSO definable
- Unbounded tree-width

Decidable class (La Torre, Madhusudan, Parlato, TACAS'08)

Pushdown processes - directed forests + well-queuing

Well-queuing condition:

each process can receive a message only when its stack is empty

TREE-WIDTH: 3n-1

Hence emptiness problem is decidable.

Conclusions

We give simulations for ...

- Pushdown automata
 - Behavior graphs: nested words
 - ◆ Tree-width:
- n-stack pushdown automata
 - ◆ Behavior graphs: n-nested words (unbounded tree-width)
 - Restrictions
 - k-contexts tree-width: O(k)
 k-phases tree-width: O(2k)
 ordered tree-width: O(n 2n)
- Distributed automata with n-processes & FIFO queues
 - Behavior graphs: stack-queue graphs (unbounded tree-width)
 - Restrictions:
 - ★ finite state processes with polyforest architecture tree-width: O(n)
 - ★ pushdown processes with forest architecture + well queuing tree-width: O(n)

Decidable emptiness problem

Multistack pushdown automata with

```
♦ k-contexts (Rehof, Qadeer - TACAS'05)
```

- ◆ k-phases (La Torre, Madhusudan, P. LICS'07)
- ordered (Breveglieri, Cherubini, Citrini, Crespi-Reghizzi

- Int. J. Found. Comput. Sci.'95)

Parameterized pushdown automata with k-rounds

(La Torre, Madhusudan, P. - CAV'10)

Distributed automata with FIFO queues

- finite state processes with polyforest architecture
- pushdown processes with forest architecture + well queuing

(La Torre, Madhusudan, P. - TACAS'08)

Non-confluent architectures + eager runs

(Heußner, Leroux, Muscholl, Sutre - FOSSACS'10)

Decidable emptiness problem

Multistack pushdown automata with

A general criterion that uniformly explains many decidability results for automata 95) with auxiliary storage Complexity: matches best known time complexity

(La Torre, Madhusudan, P. - TACAS'08)

S'05)

3'07)

eager runs

(Heußner, Leroux, Muscholl, Sutre - FOSSACS'10)

New results can be easily derived

- For multistack pushdown automata considering phases where in each phase only one stack can be pushed but all the stacks can be popped can be shown decidable
 - ★ Flipping the direction of edges you get bounded-phase MNWs
- General result can be extended to graphs of bdd clique width
- Extends to infinite words
 - Eg. Buchi/parity ordered multi-stack automata is decidable
- ◆ A general Parikh theorem

Take-home message

New view of automata with storage

- Don't be "mesmerized" by the storage capabilities and restrictions
- Look instead at the underlying graph that captures the storage

(graph automaton working on these graphs must be able to simulate the automaton with aux storage)

Look at the tree-width of this graph

Thank you

Future work

 Graph automata working over bounded tree-width graphs are a powerful class that can explain many emptiness results

But what about complementation?

Is there a "graph-theoretic" property that captures when automata can be complemented?

(Bounded phase visibly pushdown languages are complementable!)

- We cannot handle counters effectively
 - Decision procedures for counters are very different (Petri-net coverability/ WQO)

Can we incorporate this decision procedure also into a general theory?