Distributed Simulations

Tyler F. Cloutier

Goal

- Focus on optimizing distributed calculations
- Create an easily generalizable system that can be applied to many different models
- Learn how to optimize on an real system

Importance - Medicine

- Complex nature of biological macromolecules
- Difficult to study small and complex biological systems in lab
- Provide a new way to study enzyme activity
- If accurate can provide much more detailed information

Importance - Material

- Predict new material structures and properties
- Quickly assess a range of materials for a particular job (Ex. Batteries)
- Better understand the mechanics of phase transitions

Simulation Model

$$E_{ab} = \sum_{i}^{\text{on } a} \sum_{j}^{\text{on } b} \frac{k_C q_i q_j}{r_{ij}} + \frac{A}{r_{\text{OO}}^{12}} - \frac{B}{r_{\text{OO}}^6}$$

- Simple Point Charge Model
- Coulomb Potential
- Lennard-Jones Potential
- Other simulation models
 - More complex point charge
 - Monte Carlo and quantum mechanical

Simulation Model

- Periodic Boundary Conditions
- Initial Molecule Placement
 - Face-Centered Cubic Close Packing of Spheres
 - Size of molecules are adjusted to fit desired reduced density

Face Centered Cubic

http://education.mrsec.wisc.edu/Edetc/SlideShow/images/unit_cells/face_centered_cubic.jpg

FCC Lattice, Reduced Density - 0.2

FCC Lattice, Reduced Density - 0.05

Tools

- Spread 4.2
- Visual Molecular Dynamics
- C programming language
- Everything else from scratch

Design

- How do we pass messages?
- What data do we send?
- Why did we choose this?
- What is the computation payload?
- What is the scale of computation vs messaging?

Program Structure

- 2 Parts
 - Computation Handler
 - Communication Handler

Results – Let's we how we did!

2048 water molecules

1 process: 1218.3 seconds

4 processes: 306.40 seconds - 3.98 x faster

8 processes: 154.46 seconds – 7.89 x faster

16 processes: 153.92 seconds - 8.04 x faster

32 processes: 134.31 seconds - 9.07 x faster

Speed Up

Efficiency (Percent Difference from Linear Speed Up)

What went wrong?

- 2 or more processes on the same machine
 - Processes Per Machine = PPM
- Problem persisted on 2 architectures
 - Clouds and Rains
- 2 serial programs run as expected

Testing

- CPU usage for 1 PPM is near 100%
- CPU usage for 2 PPM fluctuates 50% 100%
 - Processes on the same machine in tandem
- No more Mr. Nice Guy! (sudo nice --20)
- Need to time each phase of the simulation

Testing

- Most time-steps take almost 2x on 2 PPM
- Increase the ratio of calculation to messaging
- 10X Computation -> A very interesting pattern!

Solution

TURN OFF HYPER-THREADING

Better Results!

2048 water molecules

1 process: 1218.3 seconds

4 processes: 306.40 seconds - 3.98 x faster

8 processes: 154.40 seconds - 7.89 x faster

16 processes: 78.67 seconds - 15.49 x faster

32 processes: 41.66 seconds -29.24 x faster

Speed Up

Efficiency (Percent Difference from Linear Speed Up)

Total Timestep Duration by Phase for 256 Molecules

Total Timestep Duration by Phase for 864 Molecules

Total Timestep Duration by Phase for 2048 Molecules

Total Timestep Duration by Phase for 4000 Molecules

Percent of Timestep Duration by Phase on 32 Processes

Average Messaging Phase Duration

Future - Improvements

- Rotations
- Ewald summations reciprocal space
- Electrostatic shielding and cut off distances
- Extend model to include many different atoms and molecules

Future - Performance Improvements

- Barnes-Hut Algorithm (Octree)
 - Approximations of point charges for groups
- Interleaving messaging and computation
- Graphics Processing Units

Questions?

THANKYOU!