Linz 6th, Chapter 4 Properties of Regular Languages

- 1. Additional Closure Properties
 - A. Complement
 - B. Intersection
- 2. Elementary Questions about Regular Lang
 - 1. Membership, empty, finite, equality
- 3. Pumping Lemma
 - A. Proof
 - B. Applications. Just one, the famous one: a^nb^n

We have proven

Regular languages are closed under:

Union

Concatenation

Star operation

Reverse

Namely, for regular languages $\,L_{\!1}\,$ and $\,L_{\!2}\,$:

Union

$$L_1 \cup L_2$$

Concatenation

$$L_1L_2$$

Star operation

$${L_1}^*$$

Reverse

$$L_1^R$$

Regular Languages

We will prove

Regular languages are closed under:

Complement

Intersection

Namely, for regular languages $\,L_{\!1}\,$ and $\,L_{\!2}\,$:

Complement $\overline{L_1}$ Regular Languages Intersection $L_1 \cap L_2$

Complement

Theorem: For regular language L the complement \overline{L} is regular

Proof: Take DFA that accepts L and make

- nonfinal states final
- \cdot final states nonfinal Resulting DFA accepts \overline{L}

Example:

$$L = L(a*b)$$

$$\overline{L} = L(a * + a * b(a + b)(a + b)*)$$

$$\downarrow a$$

$$\downarrow q_0$$

$$\downarrow b$$

$$\downarrow q_1$$

$$\downarrow a,b$$

$$\downarrow q_2$$

Intersection

Theorem: For regular languages L_1 and L_2 the intersection $L_1 \cap L_2$ is regular

Proof: Apply DeMorgan's Law:

$$L_1 \cap L_2 = \overline{L_1 \cup L_2}$$

$$L_1$$
, L_2 regular

$$\overline{L_1}$$
 , $\overline{L_2}$ regular

$$L_1 \cup L_2$$
 regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$L_1 \cap L_2$$
 regular

Linz 6th, Chapter 4 Properties of Regular Languages

- 1. Additional Closure Properties
 - A. Complement
 - B. Intersection
- 2. Elementary Questions about Regular Lang
 - 1. Membership, empty, finite, equality
- 3. Pumping Lemma
 - A. Proof
 - B. Applications. Just one, the famous one: a^nb^n

Standard Representations of Regular Languages

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

Elementary Questions

about

Regular Languages

Membership Question

Question:

Given regular language L and string w how can we check if $w \in L$?

Answer:

Take the DFA that accepts L and check if w is accepted

$$w \in L$$

 $w \notin L$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is a path from the initial state to a final state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$L_1 \subseteq L_2$$

$$\downarrow$$

$$L_1 = L_2$$

Linz 6th, Chapter 4 Properties of Regular Languages

- 1. Additional Closure Properties
 - A. Complement
 - B. Intersection
- 2. Elementary Questions about Regular Lang
 - 1. Membership, empty, finite, equality
- 3. Pumping Lemma
 - A. Proof
 - B. Applications. Just one, the famous one: a^nb^n

Non-regular languages

Non-regular languages

$$\{a^nb^n: n\geq 0\}$$

$$\{ww^{R}: w \in \{a,b\}^{*}\}$$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

m pigeonholes

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: a no state aa is repeated aab

In walks of strings: aabb a state
bbaa is repeated
abbabb
abbabbabb...

In walks of strings: aabb a state
bbaa is repeated
abbabb
abbabbabb...

If string w has length $|w| \ge 4$:

Then the transitions of string W are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of W

In other words for a string W:

 \xrightarrow{a} transitions are pigeons

(q) states are pigeonholes

Repeated state

The Pumping Lemma

Take an infinite regular language L

DFA that accepts L

Take string w with $w \in L$

There is a walk with label W:

$$\longrightarrow$$
 walk W

If string w has length $|w| \ge m$ number of states of DFA

then, from the pigeonhole principle:

a state q is repeated in the walk w

Let q be the first state repeated

Write w = x y z

Observations:

length $|xy| \leq m$ number of states of DFA length $|y| \ge 1$

Observation: The string XZ is accepted

Observation: The string x y y z is accepted

Observation: The string x y y y z is accepted

In General:

The string $X y^l Z$ is accepted i = 0, 1, 2, ...

In General:
$$x y^i z \in L$$

 $i = 0, 1, 2, \dots$

The original language

In other words, we described:

The Pumping Lemma!!!

The Pumping Lemma:

- \cdot Given a infinite regular language L
- \cdot there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

Applications

of

the Pumping Lemma

Theorem: The language
$$L = \{a^nb^n : n \ge 0\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^m b^m$$

Write:
$$a^m b^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m$$

$$y=a^k$$
, $k \ge 1$

From the Pumping Lemma:
$$x y^i z \in L$$

$$x y^i z \in L$$

$$i = 0, 1, 2, ...$$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular language $\{a^nb^n: n \ge 0\}$

$$\{a^nb^n: n\geq 0\}$$

