K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC Biasing Circuits

1. Analyse the circuit shown in Figure 1 using a voltage divider bias and determine the change in the Q-point with variations in β when the circuit contains an emitter resistor. For the circuit given in Figure 1, R1 = 56k Ω , R2 = 12.2k Ω , R_C = 2k Ω , R_E = 0.4k Ω , C_C = 1 μ F, V_{CC} = 10V, $V_{BE_{(ON)}}$ = 0.7V and β = 100

Figure 1: Circuit Diagram

Solution: Figure 1 is a voltage divider bias circuit. To find Q-point, all the capacitors are open circuited. Using Thevenins's equivalent circuit (refer Figure 2), we have:

Figure 2: Thevenin's Equivalent circuit

$$R_{TH}=R_1 \parallel R_2=56 \mathrm{k}\Omega \parallel 12.2 \mathrm{k}\Omega=10 \mathrm{k}\Omega$$

$$V_{TH} = \left(\frac{R_2}{R_1 + R_2}\right) V_{CC} = \left(\frac{12.2k\Omega}{56k\Omega + 12.2k\Omega}\right) (10) = 1.79V$$

Applying KVL to B-E loop, we obtain:

$$I_{BQ} = \frac{V_{TH} - V_{BE_{(ON)}}}{R_{TH} + (1+\beta)R_E} = \frac{1.79 - 0.7}{10k\Omega + (101)(0.4k\Omega)} = 21.6\mu\text{A}$$

The collector current is: $I_{CQ} = \beta I_{BQ} = (100)(21.6)\mu A$

$$I_{CQ} = 2.16 \text{mA}$$

Apply KVL to C-E loop,

$$V_{CEQ} = V_{CC} - I_{CQ}R_C$$
 - $I_{EQ}R_E = 10$ - (2.16mA)(2kΩ) - (2.18mA)(0.4kΩ)

$$V_{CEQ} = 4.81 \text{V}$$

Above results show that, the transistor is biased in the active region.

Since,
$$V_{CE} > V_{BE_{(ON)}}$$

Similarly, if we increase the β value of the transistor to 150 or decrease β to 50, by repeating above steps we get the following results:

β	50	100	150
	$I_{BQ} = 35.9 \mu A$	$I_{BQ} = 21.6\mu\text{A}$	$I_{BQ} = 15.5 \mu A$
	$I_{CQ} = 1.80 \text{mA}$	$I_{CQ} = 2.16 \text{mA}$	$I_{CQ} = 2.32 \text{mA}$
	$V_{CEQ} = 5.67 \mathrm{V}$	$V_{CEQ} = 4.81 \text{V}$	$V_{CEQ} = 4.40 \mathrm{V}$

Table 1: Variance of β

Above circuit was simulated in LTspice and results obtained are: Case 1: $\beta=50$

.op .MODEL NPN1 NPN(IS=1E-15 BF=50 VAF=100 CJC=20pf CJE=20pf)

Figure 3: Circuit Schematic: Results for $\beta = 50$

Parameter	Theoretical	Simulated
I_{CQ}	1.800mA	1.772mA
I_{BQ}	$35.90 \mu A$	$33.758\mu\mathrm{A}$
V_{CEQ}	5.682V	5.733V

Table 2: Question 1

Case 2: $\beta = 100$:

.op .MODEL NPN1 NPN(IS=1E-15 BF=100 VAF=100 CJC=20pf CJE=20pf)

Figure 4: Circuit Schematic: Results for $\beta = 100$

Parameter	Theoretical	Simulated
I_{CQ}	2.16mA	2.112mA
I_{BQ}	$21.6\mu\mathrm{A}$	$20.27 \mu \mathrm{A}$
V_{CEQ}	4.81V	4.923V

Table 3: Question 1

Case 3: $\beta = 150$

.op .MODEL NPN1 NPN(IS=1E-15 BF=150 VAF=100 CJC=20pf CJE=20pf)

Figure 5: Circuit Schematic: Results for $\beta = 150$

Parameter	Theoretical	Simulated
I_{CQ}	$2.325 \mathrm{mA}$	$2.258 \mathrm{mA}$
I_{BQ}	$15.50\mu\mathrm{A}$	$14.495 \mu A$
V_{CEQ}	4.414V	4.576V

Table 4: Question 1

2. Find the Q-point and V_{DS} for circuit shown in figure 6: $(I_{DSS}=10 {\rm mA},\,V_P=-4 {\rm V})$

Figure 6: Circuit Diagram

Solution: $V_{GS} = V_G - V_S$

From figure 6, $V_S = 0$

Also,
$$V_G = I_G R_G$$
 ... $(I_G = 0 \text{ for MOSFET})$

$$\therefore V_G = 0 \implies V_{GSQ} = 0$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = I_{DSS} (1 - 0)^2 = I_{DSS}$$

i.e.
$$I_{DQ} = I_{DSS} = 10 \text{mA}$$

Q-point
$$\equiv (V_{GSQ}, I_{DQ}) \equiv (\mathbf{0}, \mathbf{10mA})$$

$$V_{DS} = V_{DD} - I_D R_D = 20 - 10 \text{mA} \times 1.5 \text{k}\Omega = 5 \text{V}$$

3. For the FET amplifier circuit shown in figure 7, find the drain current and gate to source voltage. Given: R1 = 2.1M Ω , R2 = 270k Ω , R_D = 2.4k Ω , R_{S1} = 300 Ω , R_{S2} = 1.2k Ω , V_{DD} = 16V, I_{DSS} = 8mA, $|V_P|$ = 4V

Figure 7: FET Amplifier

Solution: Figure 7 is a voltage divider bias circuit employing n-channel JFET. For DC abalysis, all the capacitors are short circuited as shown in figure 8:

Figure 8: DC analysis

Using voltage divider concept,

$$V_G = \frac{R_2}{R_1 + R_2} \times V_{DD} = \left[\frac{270k\Omega}{2.1M\Omega + 270k\Omega} \times 16 \right] = 1.822V$$

Applying KVL to the G-S loop:

$$V_{GS} = V_G - I_D R_S = 1.822 - 1500 I_D \implies I_D = \frac{1.822 - V_{GS}}{1500}$$
 ...(1)

In saturation region,

$$I_D = I_{DSS} \left[1 - \frac{V_{GS}}{V_P} \right]^2$$
 ...(2)

Substituting Equation (1) in equation (2), we get:

$$\frac{1.822 - V_{GS}}{1500} = I_{DSS} \left[1 - \frac{V_{GS}}{V_P} \right]^2$$

$$\frac{1.822 - V_{GS}}{1500} = 8 \times 10^{-3} \left[1 - \frac{V_{GS}}{4} \right]^2$$

$$\frac{1.822 - V_{GS}}{1500} = 8 \times 10^{-3} \left[1 + \frac{V_{GS}^2}{16} + \frac{V_{GS}}{2} \right]$$

$$1.822 - V_{GS} = 12 \left[1 - \frac{V_{GS}^2}{16} + \frac{V_{GS}}{2} \right]$$

$$1.822 - V_{GS} = 12 - \frac{3V_{GS}^2}{4} + 6V_{GS}$$

$$0.75V_{GS}^2 + 7V_{GS} + 10.178 = 0$$
 $\therefore V_{GS} = -1.8V, -7.53V$

Q-point should lie inside the transfer characteristics, i.e. $(V_{GS} > V_P)$

$$\therefore V_{GS} = -1.8V$$

$$I_D = \frac{1.822 + 1.8}{1500} = 2.415 \text{mA}$$
 ...using (1)

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 9: Circuit schematic: Results

Parameter	Theoretical value	Simulated Value
V_G	1.822V	1.8228V
I_D	$2.415 \mathrm{mA}$	2.4163mA
V_{GS}	-1.8V	-1.80V

Table 5: Question3

4. For the E-MOSFET circuit shown in figure 3 , calculate V_G,I_D,V_{GS} and V_{DS} [10] R1 = 22M Ω , R2 = 18M Ω , R_D = 3k Ω , R_S = 0.82k Ω , V_{DD} = 40V, $V_{GS_{(TH)}}$ = 5V $V_{GS_{(ON)}}$ = 10V, $I_{D_{(ON)}}$ = 3mA

Figure 10: Circuit Diagram

Solution: Figure 10 is a voltage divider bias circuit employing enhancement mode n-channel MOSFET.

$$\therefore V_G = \frac{R_2}{R_1 + R_2} \times 100 = \frac{18M\Omega}{22M\Omega + 18M\Omega} \times 40 = 18V$$

Applying KVL to G-S loop,

$$V_G - V_{GS} - I_D R_S = 0$$

$$V_{GS} = 18 - 820(I_D)$$
 $\therefore I_D = \frac{18 - V_{GS}}{820}$...(1)

For E-MOSFET, we know:

$$k_n = \frac{I_{D(ON}}{[V_{GS(ON)} - V_{GS(TH)}]^2} = \frac{3 \times 10^{-3}}{(10 - 5)^2} \ 0.13 \text{mA}/V^2$$

In saturation region,

Substituting equation (1) in equation (2), we get:

$$\frac{18 - V_{GS}}{820} = 0.12 \times 10^{-3} [V_{GS} - 5]^2$$

$$\frac{18 - V_{GS}}{820} = 0.12 \times 10^{-3} [V_{GS}^2 - 10V_{GS} + 25]$$

$$18 - V_{GS} = 0.0984[V_{GS}^2 - 10V_{GS} + 25]$$

$$18 - V_{GS} = 0.0984V_{GS}^2 - 0.984V_{GS} + 2.46$$

$$0.0984V_{GS}^2 + 0.016V_{GS} - 15.54 = 0$$

$$V_{GS} = 12.5V, -12.65V$$

For
$$V_{GS} = 12.5 \text{V}$$
,

Applying KVL to D-S loop,

$$V_{DS} = V_{DD} - I_D(R_D + R_S) = 40 - \frac{18 - V_{GS}}{820}(3 + 0.82) \times 10^3$$

Putting $V_{GS} = 12.5$ V, we get:

$$V_{DS} = 14.38 \mathrm{V}$$

For
$$V_{GS} = -12.65 \text{V}$$
,

Applying KVL to D-S loop,

$$V_{DS} = V_{DD} - I_D(R_D + R_S) = 40 - \left(\frac{18 + 12.65}{820}\right) 3.82 \times 10^3$$

$$V_{DS} = -102.78 \text{V}$$

Practically, V_{DS} is positive. Hence, $V_{DS} = 14.38$ V

$$\therefore V_{GS} = 12.5 \text{V}$$

$$\therefore I_D = \frac{18 - V_{GS}}{820} = \frac{18 - 12.5}{820} = 6.725 \text{mA} \qquad \dots \text{from (1)}$$

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 11: Circuit Schematic: Results

Parameter	Theoretical value	Simulated value
V_G	18V	18V
V_{GS}	12.5V	12.5V
V_{DS}	14.38V	14.3V
I_D	6.725mA	6.7246 mA

Table 6: Question 4

5. For the network shown in figure 12, determine $I_{DQ},\,V_{GSQ},\,V_{DS}$ and V_D Given: $I_{DSS}=8\mathrm{mA},\,V_P=4\mathrm{V},\,R_D=2.2\mathrm{k}\Omega,\,R_S=0.51\mathrm{k}\Omega,\,R_G=1\mathrm{M}\Omega$

Figure 12: Circuit Diagram

Solution: Figure 12 is a self-bias configuration employing p-channel JFET.

For JFET, $I_G = 0$ A

Applying KVL to G-S loop:

$$-V_{GS} + 0.51I_{SQ} = 0$$

$$-V_{GS} + 0.51I_{DQ} = 0 \quad \because I_{DQ} = I_{SQ}$$

$$\therefore I_{DQ} = \frac{V_{GS}}{0.51} \qquad ...(1)$$

In saturation region,

$$I_{DQ} = I_{DSS} \left[1 - \frac{V_{GS}}{V_P} \right]^2$$

$$\frac{V_{GS}}{0.51} = 8 \left[1 - \frac{V_{GS}}{4} \right]^2 \qquad \text{...using (1)}$$

$$\frac{V_{GS}}{0.51} = 8 + \frac{V_{GS}^2}{2} - 4V_{GS}$$

$$0.5V_{GS}^2 - 4V_{GS} - 1.961V_{GS} + 8 = 0$$

$$0.5V_{GS}^2 - 5.961V_{GS} + 8 = 0$$

$$\therefore V_{GS} = 10.38 \text{V}, 1.541 \text{V}$$

For
$$V_{GS} = 10.38$$
V, $I_{DQ} = \frac{10.38}{0.51} = 20.353$ mA

For
$$V_{GS} = 1.541$$
, $I_{DQ} = \frac{1.541}{0.51} = 3.022 \text{mA}$

Since, $I_{DQ} \leq I_{DSS}$

$$\therefore I_{DQ} = \mathbf{3.022mA}$$
 and $V_{GSQ} = \mathbf{1.541V}$

Applying KVL to D-S loop:

$$-18 - V_{DS} + I_{DQ}(R_D + R_S) = 0$$

$$V_{DS} = -18 + I_{DQ}(R_D + R_S)$$

$$V_{DS} = -18 + 3.022 \times 10^{-3} (2.71 \times 10^{3}) = -9.8104 V$$

$$V_{GS} = V_G - V_S$$
 : $V_S = -1.54122$ (: $V_G = 0$)

Also,
$$V_{DS} = V_D - V_S$$

$$\therefore V_D = V_{DS} + V_S = -9.8104 - 1.54122$$

$$: V_D = -11.3516 \text{ V}$$

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 13: Circuit Schematic: Results

Parameter	Theoretical value	Simulated value
V_{GSQ}	1.541V	1.54141V
I_{DQ}	$3.022 \mathrm{mA}$	$3.02237 \mathrm{mA}$
V_{DSQ}	-9.8103V	-9.8104V
V_D	-11.3516V	-11.3508V

Table 7: Question 5

6. For the network shown in figure 14, determine I_{DQ} , V_{GSQ} , V_{DS} and V_{D} Given: $R_D=2k\Omega$, $R_G=1M\Omega$, $V_{GS(TH)}=-3\mathrm{V}$, $V_{GS(ON)}=-7\mathrm{V}$, $I_{D(ON)}=4\mathrm{mA}$

Figure 14: Circuit Diagram

Solution: Figure 14 is a drain-gate feedback configuration employing p-channel MOS-FET.

Applying KVL to D-S loop,

$$-16 + 2I_{DQ} - V_{DS} = 0$$

$$V_{DS} = -16 + 2I_{DQ}$$

For drain-gate feedback configuration, $V_{DS} = V_{GS}$

$$\therefore V_{GS} = -16 + 2I_{DQ}$$

$$\therefore I_{DQ} = \frac{V_{GS} + 16}{2} \qquad \dots (1)$$

We know,
$$k_P = \frac{I_{D(ON)}}{\left[V_{GS(ON)} - V_{GS(TH)}\right]^2}$$

 $k_P = \frac{4 \times 10^{-3}}{\left[-7 + 3\right]^2} = 0.25 \text{mA}/V^2$

For saturation region,

$$I_D = k_P (V_{GS} + V_{GS(TH)})^2$$

$$\frac{V_{GS} + 16}{2} = 0.25[V_{GS} + 3]^2 \qquad \dots \text{using (1)}$$

$$V_{GS} + 16 = 0.5[V_{GS} + 3]^2$$

$$V_{GS} + 16 = 0.5[V_{GS}^2 + 9 + 6V_{GS}]$$

$$V_{GS} + 16 = 0.5V_{GS}^2 + 4.5 + 3V_{GS}$$

$$0.5V_{GS}^2 + 2V_{GS} - 11.5 = 0$$

$$V_{GS} = 3.196 \text{V}, -7.196 \text{V}$$

Since,
$$V_{GS} < V_P$$

$$\therefore V_{GS} = -7.196 \mathrm{V}$$

$$\therefore I_{DQ} = \frac{V_{GS} + 16}{2} \qquad \dots \text{using}(1)$$

$$I_{DQ} = \frac{-7.196 + 16}{2} = 4.402$$
mA

$$V_{DS} = V_{GS} = -7.196 \mathbf{V}$$

$$V_{DS} = V_D - V_S \implies V_D = -7.196 \mathbf{V}$$
 $(\because V_S = 0V)$

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 15: Circuit Schematic: Results

Parameter	Theoretical value	Simulated value
V_{GSQ}	-7.196V	-7.19615V
I_{DQ}	$4.402 \mathrm{mA}$	4.40193 mA
V_{DS}	-7.196V	-7.19615V
V_D	-7.196V	-7.19615V

Table 8: Question 6

7. The current gain of the transistor shown in circuit of figure 16 is $\beta=100$ Determine V_B and I_{EQ}

Given: $R_1 = 20k\Omega$, $R_2 = 15k\Omega$, $R_E = 1k\Omega$

Figure 16: Circuit Diagram

Solution: The circuit shown in figure 16 is a voltage divider configuration employing PNP BJT.

$$\therefore V_B = \frac{R_2}{R_1 + R_2} \times V_{EE} = \left[\frac{15}{15 + 20}\right] \times 10 = 4.286 V$$

Applying KVL to E-B loop:

$$V_B + V_{BE} + I_E R_E - 10 = 0$$

$$\therefore I_E = \frac{10 - V_B - V_{BE}}{R_E} = \frac{10 - 4.286 - 0.7}{1k\Omega} =$$
5.014mA

Above circuit was simulated in LTspice and results obtained are as follows:

.op .MODEL PNP pnp(IS=1E-15 BF=100 VAF=100 CJC=20pf CJE=20pf)

Figure 17: Circuit Schematic: Results

Parameter	Theoretical value	Simulated value
V_B	4.286V	4.6580V
I_{EQ}	$5.014 \mathrm{mA}$	4.58932 mA

Table 9: Question 7

8. For circuit shown in figure 18, let $\beta=125$. Find I_{CQ} and V_{CEQ} Given: $R_1=58k\Omega,~R_2=42k\Omega,~R_E=10\mathrm{k}\Omega$

Figure 18: Circuit Diagram

Solution: Figure 18 is a voltage divider configuration employing npn BJT. The DC equivalent circuit is given as:

Figure 19: DC equivalent circuit

$$\therefore V_B = \left[\frac{R_2}{R_1 + R_2}\right] \times V_{CC} = \left[\frac{42k\Omega}{42k\Omega + 58k\Omega}\right] \times 24 = 10.08V$$

Applying KVL to the B-E loop:

$$\begin{split} V_B - V_{BE} - I_E R_E &= 0 \\ \therefore I_E = \frac{V_B - V_{BE}}{R_E} = \frac{10.08 - 0.7}{10k\Omega} = 0.938 \text{mA} \end{split}$$
 We know, $I_{CQ} = \left(\frac{\beta}{\beta + 1}\right) I_E = \frac{125}{126} \times 0.938 \times 10^{-3} = \textbf{0.9306mA} \end{split}$

Applying KVL to the C-E loop:

$$24 - V_{CEQ} - I_E R_E = 0$$

$$V_{CEQ} = 24 - (0.938mA)(10k\Omega) = \mathbf{14.62V}$$

SIMULATED RESULTS:

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 20: Circuit Schematic: Results

Parameter	Theoretical value	Simulated value
V_B	10.08V	9.86078V
V_{CEQ}	14.62V	14.91073V
I_{EQ}	$0.938 \mathrm{mA}$	0.908939 mA
I_{CQ}	0.9306 mA	0.89994 mA

Table 10: Question 8

- 9. The parameters of the transistor shown in Figure 21 are $\beta=150,\ V_{BE}=0.7\mathrm{V}$ Given: $V_{CC}=15\mathrm{V},\ V_{B}=5\mathrm{V},\ R_{B}=200\mathrm{k}\Omega,\ R_{E}=1.5\mathrm{k}\Omega$ and $R_{E}=500\Omega$ Determine:
 - a. Base current I_B
 - b. Collector current I_C
 - c. Collector to Emitter voltage V_{CE}

Figure 21: Circuit Diagram

Solution: Circuit shown in figure 21 is a fixed bias configuration employing PNP BJT.

Applying KVL to the B-E loop:

$$15 - 500I_E - V_{BE} - 200I_B - 5 = 0$$
$$15 - 500(\beta + 1)I_B - 0.7 - 200I_B - 5 = 0$$

$$15 - 500(\beta + 1)I_B - 0.7 - 200I_B - 5 = 0 \qquad \dots (: I_E = (\beta + 1)I_B)$$

$$\therefore I_B = \frac{15 - 0.7 - 5}{[500(151) + 200]} = \mathbf{0.12285} \mu A$$

$$I_C = \beta I_B = 150 \times 1.2285 \times 10^{-7} = 1.823 \times 10^{-5} A = 0.01823 \text{mA}$$

$$I_E = (1+\beta)I_B = 151 \times 1.2285 \times 10^{-7}$$

$$I_E = 1.855 \times 10^{-5} \text{A} = 0.01855 \text{mA}$$

Applying KVL to the C-E loop:

$$15 - 500I_E - V_{EC} - 1.5I_C = 0$$

$$V_{EC} = 15 - (500 \times 10^3 \times 1.855 \times 10^{-5}) - (1.5 \times 10^3 \times 1.823 \times 10^{-5})$$

$$V_{EC} = 5.6977 V$$

$$V_{CE} = -5.6977V$$

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 22: Circuit Schematic: Results

Parameter	Simulated value	Theoretical value
I_C	0.01849 mA	0.01823 mA
I_B	$0.1232 \mu A$	$0.12285 \mu A$
I_E	$0.01861 \mathrm{mA}$	0.01855mA
V_{CE}	-5.6977V	-5.6977V

Table 11: Question 9

10. The parameters of the PNP BJT circuit shown in figure 23 are as follows: $R_C = 10 \mathrm{k}\Omega, \, R_E = 1 \mathrm{k}\Omega, \, V_{CC} = 15 \mathrm{V}, \, V_{EE} = 5 \mathrm{V}, \, V_{EB} = 0.6 \mathrm{V}$ and $\alpha = 0.992$. Calculate $I_B, \, I_C, \, I_E$ and V_{CB} at Q-point. Consider $V_{CE(sat)} = 0.025 \mathrm{V}$ if needed.

Figure 23: Circuit Diagram

Solution: Circuit shown in figure 23 is a common base BJT amplifier.

Assuming the transistor in the active region, applying KVL to the B-E loop:

$$V_{EE} - I_E R_E - V_{EB(ON)} = 0$$

$$\therefore I_E = \frac{V_{EE} - V_{EB(ON)}}{R_E} = \frac{5 - 0.6}{1k\Omega} = 4.4\text{mA}$$

$$I_C = \alpha I_E = 0.992 \times 4.4 \times 10^{-3} = 4.365 \text{mA}$$

Applying KVL to the C-E loop:

$$5 - I_E R_E - V_{EC} - R_C I_C + 15 = 0$$

$$V_{EC} = 5 - 4.4 - 43.65 + 15 = -28.05V$$

 V_{EC} cannot be negative, which means that the transistor is in saturation region.

Applying KVL to the C-E loop:

$$5 - I_E R_E - V_{CE(sat)} - R_C I_C + 15 = 0$$

$$\therefore I_C = \frac{20 - 4.4 - 0.025}{10} =$$
1.558mA

We know, $I_E = I_B + I_C$

$$I_B = I_E - I_C = 4.4 \text{mA} - 1.558 \text{mA} = 2.842 \text{mA}$$

Applying KVL to the B-C loop:

$$-15 + I_C R_C + V_{BC} = 0$$

$$V_{BC} = 15 - I_C R_C = 15 - (1.558 \times 10^{-3} \times 10 \times 10^3) = -0.58V$$

$$\therefore V_{CB} = \mathbf{0.58V}$$

SIMULATED RESULTS:

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 24: Circuit Schematic: Results

Parameter	Theoretical value	Simulated value
I_E	4.4mA	$4.23567 \mathrm{mA}$
I_C	$1.558 \mathrm{mA}$	1.57934 mA
I_B	2.842mA	2.66173 mA
V_{CB}	0.58V	0.7394V

Table 12: Question 10