

02611 Optimization for Data Science (F25)

Introduction and basic concepts

Martin S. Andersen

Technical University of Denmark

Practical information

Format

- 5 ECTS (1 ECTS \sim 28 hours on average)
- Lectures and exercises, one assignment (20%)
- Final exam (80%) written exam

Instructor

• Martin S. Andersen (mskan), DTU Compute

Teaching assistants

- Martin Sæbye Carøe (msaca), DTU Compute
- Philip Kishimoto Hohwy (s204790)

Post your questions on the DTU Learn discussion board; use email for personal matters only.

Textbook

Optimization for Learning and Control by Anders Hansson & Martin Andersen

Wiley, 2023

ISBN: 978-1-119-80918-0

E-book available through DTU Library
Print copies available through Polyteknisk Boghandel
Errata available here

Learning objectives

A student who has met the objectives of the course will be able to:

- explain fundamental concepts in convex analysis, including convex sets and functions, conjugate functions, and subdifferentiability
- characterize optimization problems based on their mathematical properties (e.g., smooth/nonsmooth, convex/nonconvex, continuous/discrete, unconstrained/constrained) and recognize the implications of these properties on problem-solving approaches
- formulate optimization problems and derive optimality conditions and Lagrange dual problems
- explain how changes in constraints impact the optimal solution
- apply surrogation and convex relaxation techniques

Learning objectives (cont.)

- explain explicit and implicit regularization techniques
- analyze and apply stochastic optimization methods
- implement scalable algorithms for solving optimization problems within data science
- apply hyperparameter tuning strategies
- compare various optimization algorithms and evaluate trade-offs in terms of convergence speed, robustness, and scalability

Tentative schedule

- 1. Introduction to optimization basic concepts (4.1)
- 2. Convex sets and functions (4.2-4.3)
- 3. Subdifferentiability and convex optimization problems (4.4-4.5)
- 4. Duality and optimality conditions (4.6-4.7)
- 5. Optimization problems (5)
- 6. Optimization methods I (6.1-6.3)
- 7. Optimization methods II (6.4-6.6)
- 8. Optimization methods III (6.7-6.11)
- 9. Applications of optimization in data science I (9.1, 9.3, 9.8-9.11, 9.14)
- 10. Project work
- 11. Applications of optimization in data science II (10.1-10.8)
- 12. Bayesian optimization (lecture notes)
- 13. Review

Notation

- natural numbers: $\mathbb{N} = \{1, 2, \ldots\}$
- natural numbers up to n: $\mathbb{N}_n = \{1, \dots, n\}$
- integers: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- ullet real numbers: ${\mathbb R}$
- real *n*-dimensional vectors: \mathbb{R}^n
- real $m \times n$ matrices: $\mathbb{R}^{m \times n}$
- subset of (entrywise) nonnegative elements: \mathbb{Z}_+ , \mathbb{R}_+^n , \mathbb{R}_+^n , $\mathbb{R}_+^{m \times n}$
- subset of (entrywise) positive elements: \mathbb{R}_{++} , \mathbb{R}_{++}^n , $\mathbb{R}_{++}^{m \times n}$

(vectors are interpreted as column vectors, unless otherwise stated)

Notation (cont.)

• diagonal matrix with diagonal entries $x = (x_1, \dots, x_n)$

$$\mathsf{diag}(x) = \begin{bmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{bmatrix}$$

- $\mathbb{1} = (1, \dots, 1)$ denotes the vector of all ones (size inferred from context)
- I = diag(1) denotes the identity matrix (size inferred from context)
- $Q \in \mathbb{R}^{n \times n}$ is orthogonal iff $Q^T Q = I$
- the range and nullspace of $A \in \mathbb{R}^{m \times n}$ are $\mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively
- (standard) inner product on \mathbb{R}^n : $\langle a, b \rangle = a^T b = \sum_{i=1}^n a_i b_i$
- Frobenius inner product on $\mathbb{R}^{m \times n}$: $\langle A, B \rangle = \operatorname{tr}(A^T B) = \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}$

Extended reals

Extension of the real numbers with two elements

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

- same total order as on $\mathbb R$ but includes $-\infty < x < +\infty$ for all $x \in \mathbb R$
- ullet arithmetic operations can (partially) be extended to $\overline{\mathbb{R}}$, e.g.,

$$x + \infty = +\infty, \ x \in \mathbb{R} \cup \{+\infty\}, \qquad x - \infty = -\infty, \ x \in \mathbb{R} \cup \{-\infty\}$$

- indeterminate forms are left undefined (e.g., $0 \cdot \pm \infty$, $\infty \infty$)
- ullet unbounded sequences have limits in $\overline{\mathbb{R}}$, e.g., we may write

$$\lim_{n\to\infty} x_n = +\infty, \qquad \lim_{n\to\infty} x_n = -\infty$$

Functions

A function f from a set $\mathcal X$ to a set $\mathcal Y$ is denoted as

$$f: \mathcal{X} \to \mathcal{Y}$$

- \mathcal{X} is the domain of f
- \mathcal{Y} is the codomain of f
- when $\mathcal{Y} = \overline{\mathbb{R}}$, the effective domain of f is defined as

$$dom f = \{x \in \mathcal{X} \mid f(x) < \infty\}$$

- f is proper if dom $f \neq \emptyset$ and $f(x) > -\infty$ for all $x \in \text{dom } f$ (otherwise, f is improper)
- we will sometimes use the notation $f \in \mathcal{Y}^{\mathcal{X}}$

Sublevel sets and epigraph

α -sublevel set of f

$$S_{\alpha}(f) = \{x \in \mathcal{X} \mid f(x) \leq \alpha\}$$

Epigraph of f

$$\operatorname{\mathsf{epi}} f = \{(x,t) \in \mathcal{X} \times \mathbb{R} \,|\, f(x) \leq t\}$$

f is closed if epi f is closed

$$S_{\alpha}(f) = [x_1, x_2] \cup [x_3, x_4]$$

Differentiability

Gradient of continuously differentiable $f: \mathbb{R}^n \to \mathbb{R}$

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Directional derivative of f at x in the direction d

$$\frac{d}{dt}f(x+td)\big|_{t=0} = \nabla f(x)^T d$$

Extrema

 $x \in \mathbb{R}^n$ is a stationary point of a continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ iff

$$\nabla f(x) = 0$$

Infimum and supremum

Given $A \subseteq \overline{\mathbb{R}}$, we define

- the infimum of A, inf A, as the largest a such that $a \le x$ for all $x \in A$
- the supremum of A, sup A, as the smallest a such that $x \leq a$ for all $x \in A$

Given
$$f : \mathcal{X} \to \overline{\mathbb{R}}$$
 and $C \subseteq \mathcal{X}$, we define

$$\inf_{x \in C} f(x) = \inf\{f(x) \, | \, x \in C\}, \qquad \sup_{x \in C} f(x) = \sup\{f(x) \, | \, x \in C\}$$

Minimum and maximum

Given $A \subseteq \overline{\mathbb{R}}$, we define

- the minimum element of A, min $A = \inf A$, if $\inf A \in A$ (undefined otherwise)
- the maximum element of A, max $A = \sup A$, if $\sup A \in A$ (undefined otherwise)

Given $f: \mathcal{X} \to \overline{\mathbb{R}}$ and $C \subseteq \mathcal{X}$, we define

$$\underset{x \in C}{\operatorname{argmin}} f(x) = \{ x \in C \mid f(x) = \inf_{y \in C} f(y) \}$$
$$\underset{x \in C}{\operatorname{argmax}} f(x) = \{ x \in C \mid f(x) = \sup_{y \in C} f(y) \}$$

and, if infimum/supremum is attained, the minimum/maximum value

$$\min_{x \in C} f(x) = \min \{ f(x) \, | \, x \in C \}, \qquad \max_{x \in C} f(x) = \max \{ f(x) \, | \, x \in C \}.$$

Examples

Let $f(x): \mathbb{R}_{++} \to \overline{\mathbb{R}}$ be defined as $f(x) = \ln(x)$.

• If $C = \mathbb{R}_{++}$, then $f(C) = \mathbb{R}$ and

$$\inf_{x\in\mathcal{C}}f(x)=-\infty,\qquad \sup_{x\in\mathcal{C}}f(x)=+\infty,$$

minimum and maximum do not exists.

• If C = [1, e), then f(C) = [0, 1) and

$$\inf_{x\in C}f(x)=0,\qquad \sup_{x\in C}f(x)=1,$$

minimum $\min_{x \in C} f(x) = 0$ is attained at x = 1, maximum does not exist.

Extreme value theorem

Extreme value theorem (Weierstrass)

Let $f: \mathcal{X} \to \mathbb{R}$ be continuous on a compact set $\mathcal{X} \subset \mathbb{R}^n$. Then f attains its minimum and maximum on \mathcal{X} .

Implies that f attains its minimum if the following conditions are met:

- $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper and closed (epi f is closed)
- ullet there exists $lpha\in\mathbb{R}$ such that lpha-sublevel set $S_lpha(f)$ is nonempty and bounded

Example

Symmetric matrices

Symmetric matrices of order n

$$\mathbb{S}^n = \{ A \in \mathbb{R}^{n \times n} \, | \, A = A^T \}$$

• symmetric positive semidefinite matrices of order n

$$\mathbb{S}_{+}^{n} = \{ A \in \mathbb{S}^{n} \, | \, x^{T} A x \ge 0 \, \forall x \}$$

• symmetric positive definite matrices of order *n*

$$\mathbb{S}_{++}^n = \{ A \in \mathbb{S}^n \,|\, x^T A x > 0 \,\,\forall x \neq 0 \}$$

Symmetric matrices (cont.)

A symmetric matrix $A \in \mathbb{S}^n$ has a the spectral decomposition

$$A = Q \Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$$

where $Q^TQ = I$ and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_1 \geq \dots \geq \lambda_n$.

• $A \in \mathbb{S}^n_+$ iff $\lambda_i(A) \geq 0$ for $i \in \mathbb{N}_n$

$$x^T A x = \sum_{i=1}^n \lambda_i (q_i^T x)^2$$

• $A \in \mathbb{S}^n_{++}$ defines weighted inner product $\langle x, y \rangle_A = x^T A y$ and quadratic norm on \mathbb{R}^n

$$||x||_A = \sqrt{\langle x, x \rangle_A} = \sqrt{x^T A x}$$

Quadratic forms

Let $f: \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$ be defined as

$$f(u,v) = \begin{bmatrix} u \\ v \end{bmatrix}^T \underbrace{\begin{bmatrix} A & B \\ B^T & C \end{bmatrix}}_{X} \begin{bmatrix} u \\ v \end{bmatrix} = u^T A u + v^T C v + 2 u^T B v$$

where $A \in \mathbb{S}^{n_1}$, $C \in \mathbb{S}^{n_2}$, and $B \in \mathbb{R}^{n_1 \times n_2}$.

 $X \in \mathbb{S}^{n_1+n_2}_+$ iff $f(u,v) \geq 0$ for all (u,v), which implies the following:

- $A \in \mathbb{S}^{n_1}_+$ and $C \in \mathbb{S}^{n_2}_+$ since $f(u,0) \geq 0 \ \forall u$ and $f(0,v) \geq 0 \ \forall v$
- $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ and $\mathcal{R}(B^T) \subseteq \mathcal{R}(C)$ since

$$\mathcal{R}(B) \not\subseteq \mathcal{R}(A) \implies \exists v \colon Bv \neq 0 \land Bv \notin \mathcal{R}(A) \implies f(-tBv, v) = v^T Cv - 2t \|Bv\|_2^2$$

Optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i \in \mathbb{N}_m$
 $h_i(x) = 0, \quad i \in \mathbb{N}_p$

- $f_0: \mathbb{R}^n \to \overline{\mathbb{R}}$ is the objective function and $x \in \mathbb{R}^n$ is the optimization variable
- $f_i \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ is the *i*th inequality constraint function
- $h_i \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ is the *i*th equality constraint function
- the problem is unconstrained if m = p = 0 and constrained otherwise
- the domain of the optimization problem is $\mathcal{D}=(\cap_{i=0}^m \operatorname{dom} f_i)\cap (\cap_{i=1}^p \operatorname{dom} h_i)$
- the feasible set is $\mathcal{F} = \{x \in \mathcal{D} \mid f_i(x) \leq 0, i \in \mathbb{N}_m, h_i(x) = 0, i \in \mathbb{N}_p\}$
- the optimal value is $p^* = \inf \{ f_0(x) | x \in \mathcal{F} \}$
- the optimal value is attained if $\exists x^* \in \mathcal{F}$ such that $f_0(x^*) = p^*$
- the problem is unbounded if $p^* = -\infty$ and infeasible if $\mathcal{F} = \emptyset$ (we let $p^* = +\infty$)

Local optimum

A point $x \in \mathbb{R}^n$ is said to be locally optimal if there exists r > 0 such that

$$f_0(x) = \inf_{z} \{ f_0(z) \, | \, x \in \mathcal{F} \cap B_2(x, r) \}$$

where $B_2(c,r)$ is the Euclidean ball centered at $c \in \mathbb{R}^n$ with radius r, i.e.,

$$B_2(c,r) = \{z \in \mathbb{R}^n \mid ||z - c||_2 \le r\}.$$

A globally optimal point x^* is also locally optimal but the converse is not necessarily true.

Equivalent problems

Two optimization problems are said to be equivalent if the solution to one can readily be translated into a solution to the other and vice versa.

Example

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i \in \mathbb{N}_m \\ & h_i(x) = 0, \quad i \in \mathbb{N}_p \end{array}$$

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & f_0(x) - t \leq 0 \\ & f_i(x) \leq 0, \quad i \in \mathbb{N}_m \\ & h_i(x) = 0, \quad i \in \mathbb{N}_p \end{array}$$

What makes an optimization problem difficult?

"most optimization problems are unsolvable" — Yu. Nesterov (2004)

Example¹

minimize
$$(x_1^{x_4} + x_2^{x_4} - x_3^{x_4})^2 + \sum_{i=1}^4 (\sin \pi x_i)^2$$
 subject to $x_1, x_2, x_3 \ge 1, x_4 \ge 3$

Fermat's last theorem:

$$\nexists a, b, c, n \in \mathbb{N} : a^n + b^n = c^n, n \ge 3$$

¹Guenin, Könemann, and Tunçel, *A gentle introduction to optimization*, 2014.

Taxonomy

- continuous vs. discrete variables
- deterministic vs. stochastic
- smooth vs. nonsmooth functions
- global vs. local optimization
- black/gray/white box model

Jacobian matrix

The Jacobian of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ is the matrix of partial derivatives

$$\frac{\partial f(x)}{\partial x^T} = \frac{\partial f}{\partial x^T} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

We will sometimes use the notation

$$\frac{\partial f(x)^T}{\partial x} = \left(\frac{\partial f(x)}{\partial x^T}\right)^T$$

Gradient and Hessian

The gradient of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ at x is

$$\frac{\partial f}{\partial x} = \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

The Hessian of a twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ at x is

$$\nabla^2 f(x) = \frac{\partial^2 f}{\partial x \partial x^T} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

 $\nabla^2 f(x) \in \mathbb{S}^n$ if f is twice continuously differentiable at x (Clairaut/Schwarz/Young's theorem)

Stationary points of twice continuously differentiable functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable and x a stationary point (i.e., $\nabla f(x) = 0$).

From Taylor's theorem, we have

$$f(x+p) = f(x) + \underbrace{\nabla f(x)^{T} p}_{0} + \frac{1}{2} p^{T} \nabla^{2} f(x) p + \epsilon(p) ||p||_{2}^{2}$$

where $\epsilon(p) \to 0$ as $||p||_2 \to 0$.

- x is local minimum/maximum if $\nabla^2 f(x)$ is positive/negative semidefinite
- x is a strict local minimum/maximum if $\nabla^2 f(x)$ is positive/negative definite
- x is saddle point if $\nabla^2 f(x)$ is indefinite

Matrix-valued functions and functions of matrices

Differentiable matrix-valued function $F: \mathbb{R} \to \mathbb{R}^{m \times n}$

$$\frac{dF}{dx} = \begin{bmatrix} \frac{dF_{11}}{dx} & \cdots & \frac{dF_{1n}}{dx} \\ \vdots & \ddots & \vdots \\ \frac{dF_{m1}}{dx} & \cdots & \frac{dF_{mn}}{dx} \end{bmatrix}$$

Differentiable function of a matrix $f: \mathbb{R}^{m \times n} \to \mathbb{R}$

$$\frac{\partial f}{\partial X} = \begin{bmatrix} \frac{\partial f}{\partial X_{11}} & \cdots & \frac{\partial f}{\partial X_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{m1}} & \cdots & \frac{\partial f}{\partial X_{mn}} \end{bmatrix}$$

Composite functions and products

Chain rule

Suppose $f = g \circ h$ with $g: \mathbb{R}^p \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^p$ differentiable

$$\frac{\partial f(x)}{\partial x^T} = \frac{\partial g(h(x))}{\partial x^T} = \frac{\partial g(y)}{\partial y^T} \bigg|_{y=h(x)} \frac{\partial h(x)}{\partial x^T}$$

Product rule

Suppose $f = g \cdot h$ with $g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}$ differentiable

$$\frac{\partial f(x)}{\partial x^T} = \frac{\partial g(x)}{\partial x^T} h(x) + g(x) \frac{\partial h(x)}{\partial x^T}$$

Affine transformation

Suppose $f = g \circ h$ with $g: \mathbb{R}^p \to \mathbb{R}^m$ differentiable and $h: \mathbb{R}^n \to \mathbb{R}^p$ given by h(x) = Ax + b.

$$\frac{\partial f}{\partial x^T} = \frac{\partial g(y)}{\partial y^T} \bigg|_{y=Ax+b} A$$

Chain rule for gradients (m = 1)

$$\nabla f(x) = A^T \nabla g(Ax + b)$$

Chain rule for Hessians (m = 1, g twice differentiable)

$$\nabla^2 f(x) = A^T \nabla^2 g(Ax + b) A$$

Example: log-sum-exp function

Consider the function $f: \mathbb{R}^n \to \mathbb{R}$ defined as

$$f(x) = \ln\left(\sum_{i=1}^n e^{x_i}\right)$$

Express f as composition $f = g \circ h$ where $g(y) = \ln(\mathbb{1}^T y)$ and $h(x) = (e^{x_1}, \dots, e^{x_n})$

$$\frac{\partial g}{\partial y^T} = \frac{1}{\mathbb{1}^T y} \mathbb{1}^T, \qquad \frac{\partial h}{\partial x^T} = \text{diag}(h(x))$$

Chain rule yields

$$\frac{\partial f}{\partial x^T} = \frac{1}{\mathbb{1}^T h(x)} \mathbb{1}^T \operatorname{diag}(h(x)) = \frac{1}{\mathbb{1}^T h(x)} h(x)^T$$

Cauchy and the gradient method

Unconstrained optimization problem with continuously differentiable $f:\mathbb{R}^n o\mathbb{R}$

minimize
$$f(x)$$

Cauchy's method (1847) with initial guess $x_0 \in \mathbb{R}^n$:

for
$$k = 0, 1, 2, ...$$

• compute steepest descent direction at x_k

$$p_k = \operatorname*{argmin}_{v \in \mathbb{R}^n} \left\{ \nabla f(x_k)^T v \mid ||v||_2 \le 1 \right\}$$

• move in the direction of p_k

$$x_{k+1} = x_k + t_k p_k$$

Applications of optimization in data science

- unsupervised learning (e.g., estimation, clustering, dimensionality reduction)
- supervised learning (e.g., regression, classification)
- signal and image processing (e.g., denoising, deconvolution, image registration)
- control (e.g., system identification, reinforcement learning)
- model selection and hyperparameter tuning
- adversarial learning

Typical challenges

- large data sets
- large number of variables (parameters)
- continuous and discrete variables
- expensive/noisy function evaluations
- hyperparameter selection
- regularization

Algorithms

- gradient-based methods
- stochastic optimization
- proximal methods
- coordinate descent
- quasi-Newton methods
- trust region methods
- augmented Lagrangian methods
- interior point methods
- Bayesian optimization