

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT

Customer: Dexalot

Date: November 15th, 2021

This document may contain confidential information about IT systems and the intellectual property of the Customer as well as information about potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the Customer, or it can be disclosed publicly after all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name	Smart Contract Code Review and Security Analysis Report for Dexalot.		
Approved by	Andrew Matiukhin CTO Hacken OU		
Туре	Exchange; Portfolio; Fee; OrderBooks; TradePairs		
Platform	Ethereum / Solidity		
Methods	Architecture Review, Functional Testing, Computer-Aided Verification, Manual Review		
Git repository	https://github.com/Dexalot/contracts		
Commit	f4cebd236f46af17d768f0d77aae5e0facc94bbb		
Technical	YES		
Documentation			
JS tests	YES		
Timeline	26 AUGUST 2021 - 15 November 2021		
Changelog	03 SEPTEMBER 2021 - INITIAL AUDIT		
	15 SEPTEMBER 2021 - SECOND REVIEW		
	15 NOVEMBER 2021 - THIRD REVIEW		

Table of contents

Introduction	4
Scope	4
Executive Summary	6
Severity Definitions	7
Audit overview	8
Conclusion	9
Disclaimers	11

Introduction

Hacken OÜ (Consultant) was contracted by Dexalot (Customer) to conduct a Smart Contract Code Review and Security Analysis. This report presents the findings of the security assessment of the Customer's smart contract and its code review conducted between August 25^{th} , 2021 - September 3^{rd} , 2021.

Second code review conducted on September 15th, 2021.

Third code review conducted on November 15th, 2021.

Scope

```
The scope of the project is smart contracts in the repository:
Git repository:
      https://github.com/Dexalot/contracts
md5 hash:
      f4cebd236f46af17d768f0d77aae5e0facc94bbb
Technical Documentation: Yes
JS tests: Yes
Contracts:
      interfaces\IPortfolio.sol
      interfaces\ITradePairs.sol
      library\Bytes32Library.sol
      library\Bytes32LinkedListLibrary.sol
      library\RBTLibrary.sol
      library\StringLibrary.sol
      mock\MockToken.sol
      Exchange.sol
      OrderBooks.sol
      Portfolio.sol
      TradePairs.sol
```


We have scanned this smart contract for commonly known and more specific vulnerabilities. Here are some of the commonly known vulnerabilities that are considered:

Category	Check Item
Code review	Reentrancy
	• Ownership Takeover
	Timestamp Dependence
	Gas Limit and Loops
	DoS with (Unexpected) Throw
	DoS with Block Gas Limit
	 Transaction-Ordering Dependence
	Style guide violation
	Costly Loop
	ERC20 API violation
	Unchecked external call
	Unchecked math
	Unsafe type inference
	 Implicit visibility level
	Deployment Consistency
	Repository Consistency
	■ Data Consistency
Functional review	
r directonal review	 Business Logics Review
	• Functionality Checks
	 Access Control & Authorization
	 Escrow manipulation
	■ Token Supply manipulation
	 Assets integrity
	 User Balances manipulation
	 Data Consistency manipulation
	Kill-Switch Mechanism
	Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured.

Insecure	Poor secured	Secured	Well-secured
		You are here	· 1

Our team performed an analysis of code functionality, manual audit, and automated checks with Mythril and Slither. All issues found during automated analysis were manually reviewed, and important vulnerabilities are presented in the Audit overview section. All found issues can be found in the Audit overview section.

As a result of the audit, security engineers found 5 low severity issues.

After the second review security engineers found all issues were resolved.

After the third review security engineers found that SafeERC20 and IERC20Metadata imports were replaced by their upgradeable versions and Fee contract was removed. No new issues were found.

Severity Definitions

Risk Level	Description	
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to assets loss or data manipulations.	
High	High-level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g., public access to crucial functions	
Medium	Medium-level vulnerabilities are important to fix; however, they can't lead to assets loss or data manipulations.	
Low	Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that can't have a significant impact on execution	

Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

■ Medium

No medium severity issues were found.

Low

1. No events on setPortfolio function

The function <u>setPortfolio</u> updates a critical contract value therefore should emit an event for better tracking off-chain.

Recommendation: Please emit an event when changing the portfolio value.

Fixed before the second review

2. No events on setTradePairs function

The function <u>setTradePairs</u> updates a critical contract value therefore should emit an event for better tracking off-chain.

Recommendation: Please emit an event when changing the tradePairs value.

Fixed before the second review

3. Implicit state variable visibility

When visibility is not explicitly declared it is assumed to be internal. But it could be unclear to reviewers.

Recommendation: Please add an explicit visibility declaration.

Fixed before the second review

4. Reading state variable in the loop

Calling length() method of the EnumerableSetUpgradeable for the state variable is burning gas.

Recommendation: Please store result of the length() call to the local variable and use it in the loop.

Fixed before the second review

5. Multiple access for the state variable

Accessing the state variable in the function multiple times just burns the gas.

Recommendation: Please store the value of the state variable in the local variable.

Fixed before the second review

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with static analysis tools.

The audit report contains all found security vulnerabilities and other issues in the reviewed code.

As a result of the audit, security engineers found 5 low severity issues.

After the second review security engineers found all issues were resolved.

After the third review security engineers found that SafeERC20 and IERC20Metadata imports were replaced by their upgradeable versions and Fee contract was removed. No new issues were found.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the best industry practices at the date of this report, in relation to cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It also cannot be considered as a sufficient assessment regarding the utility and safety of the code, bug-free status, or any other statements of the contract. While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the audit can't guarantee the explicit security of the audited smart contracts.