A*

- Place n_0 in OPEN. compute $\hat{h}(n_0)$ and set $\hat{g}(n_0)=0$. All other $\hat{g}=\infty$
- if OPEN is empty, stop (failure)
- $oldsymbol{0}$ remove from OPEN the vertex with minimal \hat{f} , call it n and add it to CLOSED
- 4 if *n* is the goal, stop (success): use pointer chain to retrieve the solution path.
- **6** For each successor s_i of n:
 - compute $\hat{g}(n) + c(n, s_i)$
 - 2 if s_i is in OPEN or in CLOSED and $\hat{g}(n) + c(n, s_i) > \hat{g}(s_i)$, skip to next successor
 - 3 remove s; from OPEN and CLOSED if present
 - 1 insert s_i in OPEN and update $g(\hat{s}_i)$ and backpath pointer
- **o** go to 2

