SIPMOS® Small-Signal Transistor

- N channel
- Enhancement mode
- Avalanche rated
- V_{GS(th)}= 2.1 ... 4.0 V

Pin 1	Pin 2	Pin 3	Pin 4
G	D	S	D

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Marking
BSP 299	500 V	0.4 A	4 Ω	SOT-223	BSP 299

Туре	Ordering Code	Tape and Reel Information
BSP 299	Q67000-S225	E6327

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		А
<i>T</i> _A = 44 °C		0.4	
DC drain current, pulsed	I _{Dpuls}		
<i>T</i> _A = 25 °C		1.6	
Avalanche energy, single pulse	E _{AS}		mJ
$I_{\rm D} = 1.2 \; {\rm A}, \; V_{\rm DD} = 50 \; {\rm V}, \; R_{\rm GS} = 25 \; {\rm \Omega}$			
$L = 163 \text{ mH}, T_j = 25 \text{ °C}$		130	
Gate source voltage	V_{GS}	± 20	V
Power dissipation	P _{tot}		W
<i>T</i> _A = 25 °C		1.8	

Sep-12-1996 1 Semiconductor Group

Maximum Ratings

Parameter	Symbol	Values	Unit	
Chip or operating temperature	$T_{\rm j}$	-55 + 150	°C	
Storage temperature	T _{stg}	-55 + 150		
Thermal resistance, chip to ambient air	R_{thJA}	≤ 70	K/W	
Therminal resistance, junction-soldering point 1)	R _{thJS}	≤ 10	1	
DIN humidity category, DIN 40 040		E		
IEC climatic category, DIN IEC 68-1		55 / 150 / 56		

¹⁾ Transistor on epoxy pcb 40 mm x 40 mm x 1,5 mm with 6 cm² copper area for drain connection

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.25 \text{ mA}, T_{\rm j} = 0 ^{\circ}\text{C}$		500	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		2.1	3	4	
Zero gate voltage drain current	I _{DSS}				μΑ
$V_{\rm DS} = 500 \; \rm V, \; V_{\rm GS} = 0 \; \rm V, \; T_{\rm j} = 25 \; ^{\circ}\rm C$		-	0.1	1	
$V_{\rm DS} = 500 \; \rm V, \; V_{\rm GS} = 0 \; \rm V, \; T_{\rm j} = 125 \; ^{\circ} \rm C$		-	10	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{GS} = 10 \text{ V}, I_{D} = 0.4 \text{ A}$		-	3.5	4	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fs}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 0.4 \text{ A}$		0.3	1.2	-	
Input capacitance	C _{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	300	400	
Output capacitance	Coss				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	40	60	
Reverse transfer capacitance	C _{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	15	25	
Turn-on delay time	t _{d(on)}				ns
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	8	12	
Rise time	t _r				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	15	22	
Turn-off delay time	t _{d(off)}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	55	70	
Fall time	t _f				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.3 \; {\rm A}$					
$R_{\rm GS} = 50 \ \Omega$		-	30	40	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				Α
<i>T</i> _A = 25 °C		-	-	0.4	
Inverse diode direct current,pulsed	I _{SM}				
<i>T</i> _A = 25 °C		-	-	1.6	
Inverse diode forward voltage	V _{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 0.8 \text{ A}, T_{j} = 25 ^{\circ}\text{C}$		-	0.9	1.2	
Reverse recovery time	t _{rr}				ns
$V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	300	-	
Reverse recovery charge	Q _{rr}				μC
$V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	2.5	-	

Power dissipation

$$P_{\text{tot}} = f(T_{A})$$

Safe operating area $I_D = f(V_{DS})$

parameter : D = 0, $T_C = 25$ °C

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{A}})$

parameter: V_{GS} ≥ 10 V

Transient thermal impedance

$$Z_{\text{th JA}} = f(t_{\text{p}})$$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS})$ parameter: $t_{\rm p} = 80~\mu \rm s$, $T_{\rm i} = 25~{\rm ^{\circ}C}$

Typ. transfer characteristics $I_D = f(V_{GS})$ parameter: $t_p = 80 \mu s$

Typ. drain-source on-resistance

 $R_{\rm DS~(on)} = f(I_{\rm D})$ parameter: $t_{\rm p} = 80~\mu \rm s,~T_{\rm i} = 25~^{\circ} C$

Typ. forward transconductance $g_{fs} = f(I_D)$ parameter: $t_p = 80 \mu s$,

Drain-source on-resistance

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter: $I_{\rm D} = 0.4$ A, $V_{\rm GS} = 10$ V

Gate threshold voltage

 $V_{GS (th)} = f(T_j)$

parameter: $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS}=0V$, f=1 MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_i , $t_p = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$ parameter: $I_D = 1.2 \text{ A}, V_{DD} = 50 \text{ V}$ $R_{GS} = 25 \Omega, L = 163 \text{ mH}$

Drain-source breakdown voltage

$$V_{(BR)DSS} = f(T_j)$$

Safe operating area $I_{\rm D} = f(V_{\rm DS})$

parameter : D = 0.01, $T_C = 25$ °C

