Iterative epsilon greedy policy improvement

Is epsilon greedy a better policy?

Is epsilon greedy a better policy?

Theorem

For any MDP, $\epsilon - greedy(\pi) \geq \pi$

Is epsilon greedy a better policy?

Theorem

For any MDP, $\epsilon - greedy(\pi) \ge \pi$, if π is $\epsilon - soft$.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

- ▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.
- ▶ For any $\epsilon > 0$, the probability of taking random actions is **not** $\geq \epsilon$. Therefore, it is **not** $\epsilon \operatorname{soft}$.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

- ▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.
- ▶ For any $\epsilon > 0$, the probability of taking random actions is **not** $\geq \epsilon$. Therefore, it is **not** $\epsilon \operatorname{soft}$.
- $\epsilon \text{greedy}(\pi_{\text{pole direction policy}})$ is not guaranteed to give a policy improvement.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

- ▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.
- ▶ For any $\epsilon > 0$, the probability of taking random actions is **not** $\geq \epsilon$. Therefore, it is **not** $\epsilon \operatorname{soft}$.
- $\epsilon \text{greedy}(\pi_{\text{pole direction policy}})$ is not guaranteed to give a policy improvement.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

- ▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.
- ▶ For any $\epsilon > 0$, the probability of taking random actions is **not** $\geq \epsilon$. Therefore, it is **not** $\epsilon \operatorname{soft}$.
- $\epsilon \text{greedy}(\pi_{\text{pole direction policy}})$ is not guaranteed to give a policy improvement.

Example (Random policy in CartPole-v0)

• π_{random} takes random actions with probability 1.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

- ▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.
- ▶ For any $\epsilon > 0$, the probability of taking random actions is **not** $\geq \epsilon$. Therefore, it is **not** $\epsilon \operatorname{soft}$.
- $\epsilon \operatorname{greedy}(\pi_{\operatorname{pole direction policy}})$ is not guaranteed to give a policy improvement.

- $\pi_{
 m random}$ takes random actions with probability 1.
- ▶ For any $\epsilon \leq 1$, for example $\epsilon = 0.9$, the probability of taking random actions is greater than or equal to ϵ in this policy.

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

- ▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.
- ▶ For any $\epsilon > 0$, the probability of taking random actions is **not** $\geq \epsilon$. Therefore, it is **not** $\epsilon \operatorname{soft}$.
- $\epsilon \operatorname{greedy}(\pi_{\operatorname{pole direction policy}})$ is not guaranteed to give a policy improvement.

- $\pi_{
 m random}$ takes random actions with probability 1.
- ▶ For any $\epsilon \leq 1$, for example $\epsilon = 0.9$, the probability of taking random actions is greater than or equal to ϵ in this policy.
- π_{random} is $\epsilon \mathrm{soft}$ for any $\epsilon \leq 1$

A policy π is $\epsilon-\mathrm{soft}$ if it takes random actions with a probability greater than or equal to ϵ for all states in the MDP.

Example (Pole direction policy in CartPole-v0)

- ▶ In $\pi_{\text{pole direction policy}}$, probability of taking random action is 0.
- ▶ For any $\epsilon > 0$, the probability of taking random actions is **not** $\geq \epsilon$. Therefore, it is **not** $\epsilon \operatorname{soft}$.
- $\epsilon \operatorname{greedy}(\pi_{\operatorname{pole direction policy}})$ is not guaranteed to give a policy improvement.

- $\pi_{
 m random}$ takes random actions with probability 1.
- ▶ For any $\epsilon \leq 1$, for example $\epsilon = 0.9$, the probability of taking random actions is greater than or equal to ϵ in this policy.
- π_{random} is $\epsilon \mathrm{soft}$ for any $\epsilon \leq 1$
- ▶ In particular, $\pi_{\rm random}$ is $0.9 {\rm soft}$

 $\pi_{\text{random}} \le \epsilon - \text{greedy}(\pi_{\text{random}})|_{\epsilon=0.9}$

 $\pi_{\mathrm{random}} \le \epsilon - \mathrm{greedy}(\pi_{\mathrm{random}})|_{\epsilon=0.9} \coloneqq \pi_1$

$$\pi_{\mathrm{random}} \le \epsilon - \mathrm{greedy}(\pi_{\mathrm{random}})|_{\epsilon=0.9} \coloneqq \pi_1$$

$$\pi_{\mathrm{random}} \le \epsilon - \operatorname{greedy}(\pi_{\mathrm{random}})|_{\epsilon=0.9} \coloneqq \pi_1$$

• π_1 takes random actions with probability 0.9.

$$\pi_{\text{random}} \le \epsilon - \text{greedy}(\pi_{\text{random}})|_{\epsilon=0.9} \coloneqq \pi_1$$

- π_1 takes random actions with probability 0.9.
- ▶ For any $\epsilon \leq 0.9$, for example $\epsilon = 0.8$, the probability of taking random actions is greater than or equal to ϵ in this policy.

$$\pi_{\text{random}} \le \epsilon - \text{greedy}(\pi_{\text{random}})|_{\epsilon=0.9} \coloneqq \pi_1$$

- π_1 takes random actions with probability 0.9.
- ▶ For any $\epsilon \leq 0.9$, for example $\epsilon = 0.8$, the probability of taking random actions is greater than or equal to ϵ in this policy.
- π_1 is ϵsoft for any $\epsilon \leq 0.9$.

$$\pi_{\text{random}} \le \epsilon - \text{greedy}(\pi_{\text{random}})|_{\epsilon=0.9} \coloneqq \pi_1$$

- π_1 takes random actions with probability 0.9.
- ▶ For any $\epsilon \leq 0.9$, for example $\epsilon = 0.8$, the probability of taking random actions is greater than or equal to ϵ in this policy.
- π_1 is ϵsoft for any $\epsilon \leq 0.9$.
- ▶ In particular, π_1 is 0.8 soft

$$\begin{split} \pi_{\mathrm{random}} & \leq \epsilon - \mathrm{greedy}(\pi_{\mathrm{random}})|_{\epsilon = 0.9} \coloneqq \pi_1 \\ & \leq \epsilon - \mathrm{greedy}(\pi_1)|_{\epsilon = 0.8} \coloneqq \pi_2 \end{split}$$

$$\pi_{\mathrm{random}} \leq \epsilon - \operatorname{greedy}(\pi_{\mathrm{random}})|_{\epsilon=0.9} := \pi_1$$

$$\leq \epsilon - \operatorname{greedy}(\pi_1)|_{\epsilon=0.8} := \pi_2$$

$$\leq \epsilon - \operatorname{greedy}(\pi_2)|_{\epsilon=0.7} := \pi_3$$
...

```
\pi_{\text{random}} \leq \epsilon - \operatorname{greedy}(\pi_{\text{random}})|_{\epsilon=0.9} := \pi_1
\leq \epsilon - \operatorname{greedy}(\pi_1)|_{\epsilon=0.8} := \pi_2
\leq \epsilon - \operatorname{greedy}(\pi_2)|_{\epsilon=0.7} := \pi_3
\cdots
= \pi_*
```

$$\pi_{\text{random}} \leq \epsilon - \operatorname{greedy}(\pi_{\text{random}})|_{\epsilon=0.9} \coloneqq \pi_{1}$$

$$\leq \epsilon - \operatorname{greedy}(\pi_{1})|_{\epsilon=0.8} \coloneqq \pi_{2}$$

$$\leq \epsilon - \operatorname{greedy}(\pi_{2})|_{\epsilon=0.7} \coloneqq \pi_{3}$$

$$\cdots$$

$$= \pi_{*}$$

Theorem (Greedy in the Limit of Infinite Exploration (GLIE) guarantees convergence)

$$\pi_{\text{random}} \leq \epsilon - \operatorname{greedy}(\pi_{\text{random}})|_{\epsilon=0.9} := \pi_1$$

$$\leq \epsilon - \operatorname{greedy}(\pi_1)|_{\epsilon=0.8} := \pi_2$$

$$\leq \epsilon - \operatorname{greedy}(\pi_2)|_{\epsilon=0.7} := \pi_3$$

$$\dots$$

$$= \pi_*$$

Theorem (Greedy in the Limit of Infinite Exploration (GLIE) guarantees convergence)

$$\lim_{t \to \infty} \mathtt{visit_number}[(s,a)] o \infty$$

$$\pi_{\text{random}} \leq \epsilon - \operatorname{greedy}(\pi_{\text{random}})|_{\epsilon=0.9} := \pi_1$$

$$\leq \epsilon - \operatorname{greedy}(\pi_1)|_{\epsilon=0.8} := \pi_2$$

$$\leq \epsilon - \operatorname{greedy}(\pi_2)|_{\epsilon=0.7} := \pi_3$$

$$\dots$$

$$= \pi_*$$

Theorem (Greedy in the Limit of Infinite Exploration (GLIE) guarantees convergence)

$$\lim_{t\to\infty} {\tt visit_number}[(s,a)]\to\infty$$

$$\lim_{t\to\infty} \epsilon\to 0$$

► Computer programs cannot run for infinite time.

- ► Computer programs cannot run for infinite time.
- Even human life is limited!

- ► Computer programs cannot run for infinite time.
- Even human life is limited!

In practice, we do the following

- Computer programs cannot run for infinite time.
- Even human life is limited!

In practice, we do the following

Choose a finite number of policy improvement steps e.g. 10000 policy improvement steps.

- Computer programs cannot run for infinite time.
- Even human life is limited!

In practice, we do the following

- Choose a finite number of policy improvement steps e.g. 10000 policy improvement steps.
- ▶ At each policy improvement step, slightly reduce ϵ until it is nearly 0 at the $10000^{\rm th}$ step.

- Computer programs cannot run for infinite time.
- Even human life is limited!

In practice, we do the following

- Choose a finite number of policy improvement steps e.g. 10000 policy improvement steps.
- At each policy improvement step, slightly reduce ϵ until it is nearly 0 at the $10000^{\rm th}$ step.
- ► Stop at the 10000th policy improvement step and hope that we have converged to the optimal policy.

Epsilon schedule

Figure: Linear ϵ schedule

Epsilon schedule

Figure: Linear ϵ schedule

Figure: Exponential ϵ schedule