

HCF4060B

14-STAGE RIPPLE CARRY BINARY COUNTER/DIVIDER AND OSCILLATOR

- MEDIUM-SPEED OPERATION
- COMMON RESET
- FULLY STATIC OPERATION
- BUFFERED INPUTS AND OUTPUTS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4060BEY	
SOP	HCF4060BM1	HCF4060M013TR

DESCRIPTION

The HCF4060B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4060B consists of an oscillator section and 14 ripple carry binary counter stages.

The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which reset the counter to the all 0's

state and disable oscillator. A high level on the RESET line accomplishes the reset function. All counter stages are master slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of ϕ_1 (and ϕ_0). All inputs and outputs are fully buffered. Schmitt trigger action on the clock pin permits unlimited clock rise and fall time.

PIN CONNECTION

August 2003 1/10

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION		
1, 2, 3, 4, 5, 6, 7, 13, 14, 15	Q ₁₂ , Q ₁₃ , Q ₁₄ , Q ₆ , Q ₅ , Q ₇ , Q ₄ , Q ₉ , Q ₈ , Q ₁₀	Outputs		
9, 10, 11	$\Phi_0, \overline{\Phi}_0, \Phi_1$	Oscillator Input		
12	RESET	Reset		
8	V _{SS}	Negative Supply Voltage		
16	V _{DD}	Positive Supply Voltage		

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	-0.5 to +22	V
VI	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
l _l	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	٧
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

		Test Condition			Value								
Symbol	Parameter	Vı	v _o	IIol V _D	V_{DD}	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit	
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		5		150	
		0/10			10		0.04	10		10		300	μΑ
		0/15			15		0.04	20		20		600	
		0/20			20		0.08	100		100		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		V
	Voltage		1/9	<1	10	7			7		7		
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.15		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mΑ
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		IIIA
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
l _{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
lı	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.3		±0.3		±1	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

DYNAMIC ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C, C_L = 50pF, R_L = 200K Ω , t_r = t_f = 20 ns)

Cumbal	D		Value (*)			Unit	
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{TLH} t _{THL}	Output Transition Time	5			100	200	
		10	1		50	100	ns
		15]		40	80	
t _{PLH} t _{PHL}	Propagation Delay Time (\$	5			370	740	
	to Q ₄ out)	10			150	300	ns
		15			100	200	
t _{PLH} t _{PHL}	Propagation Delay Time	5			100	200	
	$(Q_n \text{ to } Q_{n+1})$	10			50	100	ns
		15			40	80	
t_W	Input Pulse Width	5			50	100	
		10	f = 100 KHz		20	40	ns
		15			15	30	
$t_r t_f$	Input Pulse Rise and Fall	5					
	Time	10		ι	Jnlimite	d	μs
		15					
f_{max}	Maximum Clock Input	5		3.5	7		
	Frequency	10		8	16		MHz
		15		12	24		
RESET O	PERATION				-	-	_
t_PHL	Propagation Delay Time	5			180	360	
		10			80	160	ns
		15			50	100	
t_W	Input Pulse Width	5			60	120	
		10			30	60	ns
		15			20	40	
RC OPER	ATION						
	Variation of Frequency	5		18	21.5	25	
	(Unit-to-Unit)	10	C_X = 200pF, R_S = 560K Ω , R_X = 50K Ω	20	23	26	KHz
		15		21.1	24	27	
	Variation of Frequency	5 to 10	C_X = 200pF, R_S = 560KΩ, R_X = 50KΩ			2	
	With Voltage Change (Same Unit)	10 to 15				1	KHz
R_X		5	C _X = 10μF		20		
		10	C _X = 50μF			20	МΩ
		15	C _X = 10μF			10	
C _X		5	R _X = 500KΩ			1000	
		10	R _X = 300KΩ			50	μF
		15	R _X = 300KΩ			50	
	Maximum Oscillator	10		530	650	810	17
	Frequency (**)	15	$R_X = 5K\Omega, C_X = 15pF$	690	800	940	KHz

^(*) Typical temperature coefficient for all V_{DD} values is 0.3%/°C, all input rise and fall times= 20 ns. (**) RC Oscillator applications are not recommended at supply voltages below 7V for $R_X < 50 \mathrm{K}\Omega$

DETAIL OF TYPICAL FLIP-FLOP STAGE

TYPICAL RC OSCILLATOR CIRCUIT

TYPICAL CRYSTAL OSCILLATOR CIRCUIT

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
Е		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

SO-16 MECHANICAL DATA

DIM.		mm.		inch			
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.2	0.004		0.008	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S	8		° (r	nax.)	.	1	

Tape & Reel SO-16 MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.45		6.65	0.254		0.262
Во	10.3		10.5	0.406		0.414
Ko	2.1		2.3	0.082		0.090
Ро	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com