Lecture 3: Stationarity in Time Series

• Definition and Examples:

- Time series data differs from other statistical data due to its temporal component.
- Examples include fields like finance, ecology, and climatology.

Notation:

- Time series is denoted as \$(Y_t)\$, where \$(t)\$ represents the time point.
- Importance of choosing the correct time scale (daily, weekly, monthly, etc.) based on the experiment's goal.

Key Functions in Time Series Analysis

1. Mean Function \$(\mu_t)\$:

- Represents the expected value at a specific time point.
- \$\mu_t = \mathbb{E}[Y_{t}]\$, where \$Y_t\$ is the time series.

2. Variance Function \$(\sigma_t^2)\$ or \$(\gamma_0)\$:

- Variance of the time series process at time \$(t)\$.
- \circ \$(\gamma_0 = \mathbb{E}[(Y_t \mu_t)^2])\$.
- Assumes variance is finite and non-negative.

3. Autocovariance Function \$(\gamma_{t,s})\$:

- Measures dependency between \$(Y_t)\$ and \$(Y_s)\$ at different time points.
- Formula: $\{(\gamma_t \mu_t)(Y_s \mu_s)\}$)
- Simplified as \$(\mathbb{E}[Y_t Y_s] \mu_t \mu_s)\$.

4. Autocorrelation Function \$(\rho_{t,s})\$:

- Correlation between \$(Y_t)\$ and \$(Y_s)\$.

Terminology:

- "Auto" refers to the same series at different time points.
- Unlike classical statistics, where random variables \$(X)\$ and \$(Y)\$ are independent, time series variables \$(Y_t)\$ and \$(Y_s)\$ are dependent.

Stationarity in Time Series

1. Importance of Stationarity:

- Stationarity simplifies handling joint distributions and moments.
- Non-stationary data makes inference complex due to changing distributions/moments over time.

2. Probability Distributions:

• Marginal Distribution:

- Marginal PDF: \$(f(Y_t))\$ or \$(f(Y_s))\$.
- Marginal CDF: \$(F(Y_t))\$ or \$(F(Y_s))\$.

Joint Distribution:

- Joint PDF: \$(f(Y_t, Y_s))\$.
- For independent variables: \$(f(Y_t, Y_s) = f(Y_t) \cdot f(Y_s))\$.
- Time series variables are dependent; hence, this equality does not hold.

3. Example of Dependency:

• Stock prices: Today's price influences tomorrow's price due to trends or patterns.

4. Challenges with Joint PDFs:

- Time series data typically has one observation per time point.
- o If distributions or moments vary over time, identifying a joint distribution becomes difficult.

Understanding the Behavior of Time Series

• Example:

- A hypothetical time series \$(Y_t)\$ exhibits behavior such as rising, falling, stabilizing, and fluctuating.
- The x-axis represents the time frame, and the y-axis represents the observed values \$(Y_t)\$.
- At each time point \$(t)\$, there is only one observation of \$(Y_t)\$ (e.g., \$(Y_1, Y_2, Y_3, \dots)\$).

Challenge:

- The time series process may change rapidly over time, making it difficult to fit a single probability distribution across all time points.
- Joint distribution analysis becomes complex due to the process's variability.

Solution:

• Simplification is required for effective analysis, leading to the concept of **stationarity**.

Stationarity in Time Series

• Definition:

- Stationarity assumes that the probability laws governing the time series do not change over time.
- A stationary process is in statistical equilibrium, characterized by smooth behavior without rapid fluctuations.

• Key Characteristics:

- If the process changes rapidly, it is **non-stationary**.
- A stationary process maintains consistent statistical properties (e.g., mean, variance) over time.

• Types of Stationary Processes:

1. Strong (or Strict) Stationarity:

- Considers the joint distribution of random variables.
- A process is strong stationary if the joint cumulative distribution function (CDF) does not change when time points are shifted by a constant \$(k)\$.

Strong Stationarity

Key Concepts:

1. First-Order Stationarity:

- A process is **first-order stationary** if its **one-dimensional CDF** is time-invariant.
- Mathematically: $F(Y_{t_1}) = F(Y_{t_1} + k)$
 - \$(F)\$: CDF of the time series.
 - \$(t_1)\$: Initial time point.
 - \$(k)\$: Time shift constant.
- Holds true for any \$(t_1)\$ and \$(k)\$.

2. Second-Order Stationarity:

- Extends first-order stationarity to the joint CDF of two random variables.
- Mathematically: $F(Y_{t_1}, Y_{t_2}) = F(Y_{t_1} + k), Y_{t_2} + k)$
 - \$(t_1, t_2)\$: Two time points.
 - \$(k)\$: Time shift constant.
- Applies to all combinations of \$(t_1)\$, \$(t_2)\$, and \$(k)\$.

3. Nth-Order Stationarity:

- Generalizes to \$(n)\$-random variables: \$\$F(Y_{t_1}, Y_{t_2}, \dots, Y_{t_n}) = F(Y_{t_1} + k), Y_{t_2} + k), \dots, Y_{t_n} + k))\$\$
 - \$(t_1, t_2, \dots, t_n)\$: Time points.
 - \$(k)\$: Time shift constant.
- Applies to any \$(n)\$-dimensional joint distribution.

Summary of Strong Stationarity:

- A strong stationary process ensures that shifting time points by a constant \$(k)\$ does not alter the joint distribution.
- More restrictive than other forms of stationarity, as it considers the entire joint distribution.

Weak Stationarity (Overview)

- Definition:
 - Less restrictive than strong stationarity.
 - Does not require assumptions about the joint distribution or CDF.
- Details:
 - To be covered in the next lecture.
- Comparison:

• Strong stationarity focuses on joint distributions, while weak stationarity imposes fewer constraints.

Conclusion

- Strong stationarity is a fundamental concept in time series analysis, emphasizing time invariance in joint distributions.
- Weak stationarity, which involves fewer restrictions, will be discussed further in the next lecture.