

Estatística Descritiva

Estatística Inferencial

Estatística Descritiva

- Univariada
- Bivariada
- Multivariada

Estatística Inferencial

Medidas de Tendência Central

Melhor valor para reprensentar seus dados.

Média, Mediana, Moda

Média Harmônica, média geométrica

								$=\frac{10+3}{}$	31 + 17 + 21 + 25 + 17 + 12
10	31	17	21	25	17	12			7
									$= \frac{10 + 31 + 17 + 21 + 25 + 17 + 12 + 1000}{120}$
10	31	17	21	25	17	12	1000		8
									= 141,625
10	12	17	17	21	25	31		= 17	
									17 + 21

Média

$$\bar{x} = \sum \frac{x_i}{n}$$

Mediana

Elemento que está no centro dos dados, ou seja, o elemento que o divide ao meio.

Moda

Valor que detém o maior número de observações, ou seja, o valor ou valores mais frequentes.

Medidas de Dispersão

Parâmetros usados para determinar o grau de variabilidade dos dados

Amplitude, variância, desvio padrão e amplitude interquatil

Range = Xmax - Xmin

$$x_{i} - \bar{x}$$
 $x_{i} - \bar{x}$
 $x_{i} - \bar{x}$

Variância =
$$\sum \frac{(x_i - \bar{x})^2}{n - 1}$$

Distribuição Gaussiana

Distribuição é a fórmula que diz quão provável um determinado valor pode ocorrer nos dados.

Valores próximos da média são mais prováveis

https://galtonboard.com/probabilityexamplesinlife

 $N(\mu,\sigma)$

Ν(μ,σ)

 σ

