Lectur 20 MATH 341/641 Non Poli Xu. Xn ich Poisson (a) := 8xe 1 x e No, Q & (0,0)

pron 8 posum commy $f(\theta|\overrightarrow{x}) = \frac{p(\overrightarrow{x}(\theta)f(\theta))}{p(\overrightarrow{x})} \propto p(\overrightarrow{x}(\theta)f(\theta)) = \left(\frac{1}{|x|} \frac{g^{x_i}e^{-\theta}}{x_i!}\right)f(\theta)$ = Ozxie-ho \(\rightarrow \frac{\partial \text{vie}^{-40} k(\text{\text{0}})}{\text{ who does the Conjugate kerne look like?}
 \) $\propto \left(\partial^{2xi} e^{-uQ} \right) \left(\partial^{x-1} e^{-\beta Q} \right) = \int dQ = Gamm(\alpha, \beta), s. \epsilon. \alpha, \beta > 0$ = 0 X+Exi-1 e B+1) Q x Gamma (x+Exi, B+n) Pseudodom insequences? Look at Guis!! Laplace Prior? X = # premorricones B=ho= # pseukoruls No way so have a the poor on Q & (0,0). Trick: les SOXI, If so. 1(017) < 0 Exc e-40 (1) < Gamma (1+2xi, n) => A0) = Gamm (1,0) indrater Holdone Prior ? Took ignorme # prentosuenes =0 $\Rightarrow \alpha = 0$ $\Rightarrow \beta = 0$

Teffeige Pin miden 1, Q In Also Tepper So & JIO) = Jo & 0-2 = 02 & bom (2,0) Poirs Espires? 3 minse = X+ Exi g mmore = ggamma (0.5, x+ Exi, pm) War qualle in closel form X r 6 gmm (x,B) = 181 xxx1 e-6x Mode (x) =? symme (fxx) = eymne { x x-1e-bx} =) (xx-1)-be-fx) + (x-1) xx-2)e-bx = 0 $(\alpha-1) = \beta \times \times = \frac{\alpha-1}{\beta}$ only a more if $\alpha > 1$, otherwood, O

 $= \hat{\partial}^{mn\theta} = \frac{\cancel{X} + \cancel{\Sigma} \cancel{X}_{i} - 1}{\cancel{b} + \cancel{y}} \quad \text{for } \cancel{X} + \cancel{\Sigma} \cancel{X}_{i} - 1 > 1, \text{ Otherwise, O}$ $\hat{\partial}^{mn\theta} = \hat{\partial}^{mn\theta} = \frac{\cancel{\Sigma} \cancel{X}_{i}}{\cancel{h}} = \cancel{X} \quad \text{if } \cancel{\Sigma} \cancel{X}_{i} > 0, \text{ otherwise, O}$

Credible Regions CRO, 1-00 = [299mm (= , x+Ext, p+4), ggmm (1-4, x+Ex, pon)] Hyporhesis Terrs 92 level do Ha: 8>00 => Ho: 0 = 00 And = Prama (Do, x+Exi, B+4) Metin if fore 200 Hg: 0<00 => Ho: 0 = 80 ful = 1- fggmm (Do, x+Ex; B+n) form if ful Zxo Hg: 0 \$ 00 => Ho: 0=0. Viry myn of egentere S > Ha: 0 € (00±5) >> Ho: D ∈ (00±5) Pul = fgamme (Bot S, x + Exi, for) - Pgamm (Bo-S, x + Exi, for)

Pul = pgrimm ($O_0 + J$, $\Delta + Z v_i$, $\beta + \alpha$) - β gamm ($O_0 - J$, α)

Usty CR restor Resmy pre

Resm to if $O_0 \in CR_{0,1-\alpha_0}$

Posserier Predatu Distribusion

Observe $X_1, ..., X_n$. When is distribused X_M , the fasture observe X_M .

Note: we only do the Case of $h_M = 1$ otherwise Very completed.

Posseries when $h_M = 1$ otherwise Very completed.

Posseries $h_M = 1$ otherwise Very completed.

Posseries $h_M = 1$ otherwise Very completed.

Posseries $h_M = 1$ otherwise Very completed.

P($X_M | X_M = 1$) $h_M = 1$ otherwise Very completed.

P($X_M | X_M = 1$) $h_M = 1$ otherwise Very completed.

P($X_M | X_M = 1$) $h_M = 1$ otherwise Very completed.

P($X_M | X_M = 1$) $h_M = 1$ otherwise Very completed.

P($X_M | X_M = 1$) $h_M = 1$ otherwise Very completed.

P($X_M | X_M = 1$) $h_M = 1$ otherwise Very completed.

Shristinge ..

$$\frac{\partial}{\partial mne} = \frac{x \times 2x_{i}}{p+q} = \frac{x}{p+q} \cdot \frac{b}{b} + \frac{2x_{i}}{p+q} \cdot \frac{b}{h}$$

$$= \frac{b}{p+q} \times \frac{x}{p} + \frac{b}{p+q} \times \frac{x}{h}$$

Done!

likelihand and pros pred. distor com. New Model! f(0/x,00) = f(x/0,00) f(0/00) ~ falo,00) f(0100) X TT 1 2-202 (E-8)2 46/02) = e - 101 Exi2 Exi2 - 101 82 k(2/02) $\propto e^{\frac{hX}{67}Q - \frac{h}{16}Q^2} k(0.00)$ e (90 + 4x) 0 - (b0 + 202) 02 $\left(\frac{1_0 + \frac{5}{6^2}}{2b_0 + \frac{5}{6^2}}, \frac{1}{2b_0 + \frac{5}{6^2}}\right)$ $f(0|01) = N(\frac{90}{260}, \frac{1}{260}) = N(n_0, \tau^2)$ N (Me + Mx) 1 + 1 A

let bo= 200, no=ho

$$\hat{Q}^{\text{MMSE}} = \hat{g}^{\text{MMSE}} = \hat{g}$$

Credible Regions

Apportesio Tens