

101.	The	projection	of	the	vector	i + j + k	along	the
	vect	or i is						

[Kerala (Engg.) 2002]

- (a) 1
- (b) 0
- (c) 2

- (d) -1
- **102.** If the position vectors of A and B be $6\mathbf{i} + \mathbf{j} 3\mathbf{k}$ and $4\mathbf{i} - 3\mathbf{i} - 2\mathbf{k}$, then the work done by the force $\vec{F} = \mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ in displacing a particle from A to B

[MP PET 1987]

- (a) 15 *unit*
- (b) 17 unit
- (c) 15 *unit*
- (d) None of these
- **103.** If the force $\vec{F} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ moves from $\mathbf{i} + \mathbf{j} \mathbf{k}$ to $2\mathbf{i} - \mathbf{j} + \mathbf{k}$, then work done will be represented by

[BIT Ranchi 1992]

(a) 3

(b) 4

(c) 5

- (d) 6
- **104.** The work done by the force $F = 2\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ in displacing a particle from the point (3, 4, 5) to the
 - (1, 2, 3) is [MP PET 1994; Kurukshetra CEE 2002]
 - (a) 2 *unit*
- (b) 3 *unit*
- (c) 4 *unit*
- (d) 5 unit
- **105.** Force 3i + 2j + 5k and 2i + j 3k are acting on a particle and displace it from the point 2i - j - 3kto the point $4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$, then work done by the force is **IMP PET 19951**
 - (a) 30 *unit*
- (b) 36 *unit*
- (c) 24 unit
- (d) 18 unit
- **106.** A particle acted on by two forces 3i + 2j 3k and 2i + 4j + 2k is displaced from the point i + 2j + k to 5i + 4i + 2k. The total work done by the forces is equal to
 - (a) 63 unit
- (b) 39 unit
- (c) 33 unit
- (d) 31 unit
- **107.** The work done in moving an object along the vector $3\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$, if the applied force is $\vec{F} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$, is

[MP PET 1997, 2001]

(a) 7

- (b) 8
- (c) 9(d) 10
- 108. A force of magnitude 5 units acting along the vector $2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ displaces the point of application from (1,2,3) to (5,3,7), then the work done is
 - (a) 50/7
- (b) 50/3
- (c) 25/3
- (d) 25/4
- **109.** A particle acted on by constant forces 4i + j 3kand 3i + j - k is displaced from the point i + 2j + 3kto the point $5\mathbf{i} + 4\mathbf{j} + \mathbf{k}$. The total work done by the force is

[AIEEE 2003, 04]

- (a) 20 *unit*
- (b) 30 unit
- (c) 40 unit
- (d) 50 unit

110. If the scalar projection of the vectors $x\mathbf{i} - \mathbf{j} + \mathbf{k}$ on the vector $2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$ is $\frac{1}{\sqrt{30}}$ then value of x is

equal to

[J & K 2005]

- (b) 6
- (c) -6
- (d) 3
- **111.** If x + y + z = 0, |x| = |y| = |z| = 2 and θ between **y** and \boldsymbol{z} , then the value of $cose^2\theta + cot^2\theta$ is equal to

[] & K 2005]

- (a) 4/3
- (b) 5/3
- (c) 1/3
- (d) 1
- **112.** The projection of the vector $2\mathbf{i} + \mathbf{j} 3\mathbf{k}$ on the vector $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ is..... [Karnataka CET 2005]
- (c) $-\sqrt{\frac{3}{2}}$
- **113.** If $|\mathbf{a}| = |\mathbf{b}| = 1$ and $|\mathbf{a} + \mathbf{b}| = \sqrt{3}$, then the value of [Kerala (Engg.) 2005] (3a-4b).(2a+5b) is
 - (a) -21
- (b) -21/2
- (c) 21
- (d) 21/2
- (e) 59/2
- **114.** A unit vector in the plane of $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ i + j + 2k are perpendicular to 2i + j + k is
 - (a) $\mathbf{j} \mathbf{k}$
- (c) $\frac{\mathbf{j} + \mathbf{k}}{\sqrt{2}}$
- (e) 5(j k)
- **115.** If \mathbf{a}, \mathbf{b} and \mathbf{c} are perpendicular to $\mathbf{b} + \mathbf{c}, \mathbf{c} + \mathbf{a}$ and $\mathbf{a} + \mathbf{b}$ respectively and if $|\mathbf{a} + \mathbf{b}| = 6$, $|\mathbf{b} + \mathbf{c}| = 8$ and |c + a| = 10 then |a + b + c| =
 - (a) $5\sqrt{2}$
- (b) 50
- (c) $10\sqrt{2}$
- (d) 10
- (e) 20

Vector or Cross product of two vectors and its applications

If a, b, c are any vectors, then the true statement

[RPET 1988]

- (a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ (b) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$
- (c) $\mathbf{a}.(\mathbf{b}\times\mathbf{c}) = \mathbf{a}.\mathbf{b}\times\mathbf{a}.\mathbf{c}$
- (d) a.(b-c) = a.b-a.c
- 2. If \mathbf{a} and \mathbf{b} are unit vectors such that $\mathbf{a} \times \mathbf{b}$ is also a unit vector, then the angle between **a** and **b** is
 - (a) 0

(b) $\frac{\pi}{3}$

(c) $\frac{\pi}{2}$

- (d) π
- 3. The points $A(\mathbf{a}), B(\mathbf{b}), C(\mathbf{c})$ will be collinear if
 - (a) a + b + c = 0
- (b) $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} = \mathbf{0}$
- (c) a.b+b.c+c.a=0
- (d) None of these
- 4. $(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) =$

[MP PET 1987]

- (a) $2(\mathbf{a} \times \mathbf{b})$
- (b) $\mathbf{a} \times \mathbf{b}$
- (c) $a^2 b^2$
- (d) None of these
- 5. If $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, then which relation is correct

[RPET 1985; Roorkee 1981; AIEEE 2002]

- (a) a = b = c = 0
- (b) a.b = b.c = c.a
- (c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$
- (d) None of these
- 6. be the angle between the vectors **a** and **b** Ιf and $|\mathbf{a} \times \mathbf{b}| = \mathbf{a} \cdot \mathbf{b}$, then $\theta =$

[RPET 1990; MP PET 1990; UPSEAT 2003]

(a) π

- (d) 0
- 7. $(2a + 3b) \times (5a + 7b) =$

[MP PET 1988]

- (a) $\mathbf{a} \times \mathbf{b}$
- (b) $\mathbf{b} \times \mathbf{a}$
- (c) $\mathbf{a} + \mathbf{b}$
- (d) 7a + 10b
- 8. If \mathbf{a} and \mathbf{b} are two vectors such that \mathbf{a} . $\mathbf{b} = 0$ and $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, then

[IIT Screening 1989; MNR 1988; UPSEAT 2000, 01]

- (a) **a** is parallel to **b**
- (b) **a** is perpendicular to **b**
- (c) Either a or b is a null vector
- (d) None of these
- 9. The components of a vector **a** along and perpendicular to the non-zero vector **b** are respectively [IIT 1988]
 - $a.b \mid a \times b \mid$ ____,___
- $a.b \mid a \times b \mid$ $\frac{\mathbf{b}}{|\mathbf{b}|}, \frac{\mathbf{b}}{|\mathbf{b}|}$
- a.b a.b $\overline{|\mathbf{a}|}'\overline{|\mathbf{a}|}$
- (d) $\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}$, $\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}$
- **10.** $|(a \times b).c| = |a| |b| |c|$, if

[MP PET 1994; BIT Ranchi 1990; IIT 1982; AMU 2002]

- (a) a.b = b.c = 0
- (b) b.c = c.a = 0
- (c) c.a = a.b = 0
- (d) a.b = b.c = c.a = 0
- **11.** Which of the following is not a property of vectors [MP PET 1987]
 - (a) $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$
 - (b) $\mathbf{u}.\mathbf{v} = \mathbf{v}.\mathbf{u}$
 - (c) $(\mathbf{u} \times \mathbf{v})^2 = \mathbf{u}^2 \cdot \mathbf{v}^2 (\mathbf{u} \cdot \mathbf{v})^2$
 - (d) $\mathbf{u}^2 = |\mathbf{u}|^2$
- **12.** The number length of vectors of unit perpendicular vectors $\mathbf{a} = (1, 1, 0)$ and to $\mathbf{b} = (0, 1, 1)$ is

[BIT Ranchi 1991; IIT 1987; Kurukshetra CEE 1998;

DCE 2000; MP PET 20021

- (a) Three
- (b) One
- (c) Two
- (d) Infinite

- **13.** If $\mathbf{a} = (1, -1, 1)$ and $\mathbf{c} = (-1, -1, 0)$, then the vector \mathbf{b} satisfying $\mathbf{a} \times \mathbf{b} = \mathbf{c}$ and $\mathbf{a} \cdot \mathbf{b} = 1$ is [MP PET 1989]
 - (a) (1, 0, 0)
- (b) (0, 0, 1)
- (c) (0, -1, 0)
- (d) None of these
- **14.** If $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \neq 0$, where \mathbf{a} , \mathbf{b} and \mathbf{c} are coplanar vectors, then for some scalar k [Roorkee 1985; RPET 199
 - (a) a + c = kb
- (b) a + b = kc
- (c) b + c = ka
- (d) None of these
- **15.** If $\mathbf{a} \neq \mathbf{0}$, $\mathbf{b} \neq \mathbf{0}$, $\mathbf{c} \neq \mathbf{0}$, then true statement is [MP PET 1991]

 - (a) $a \times (b + c) = (c + b) \times a$ (b) $a \cdot (b + c) = -(b + c) \cdot a$
 - (c) $a \times (b c) = (c b) \times a$ (d) $a \cdot (b c) = (c b) \cdot a$
- 16. Let a and b be two non-collinear unit vectors. If $\mathbf{u} = \mathbf{a} - (\mathbf{a} \cdot \mathbf{b})\mathbf{b}$ and $\mathbf{v} = \mathbf{a} \times \mathbf{b}$, then $|\mathbf{v}|$ is [IIT 1999]
 - (a) | **u** |
- (b) $| \mathbf{u} | + | \mathbf{u} \cdot \mathbf{a} |$
- (c) $| \mathbf{u} | + | \mathbf{u} \cdot \mathbf{b} |$
- (d) $| \mathbf{u} | + \mathbf{u} \cdot (\mathbf{a} + \mathbf{b})$
- 17. If $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \neq 0$ and $\mathbf{a} + \mathbf{c} \neq 0$, then [RPET 1999]
 - (a) $(a + c) \perp b$
- (b) (a+c)|| b
- (c) a + c = b
- (d) None of these
- A unit vector perpendicular to the plane determined by the points (1, -1, 2), (2, 0, -1) and (0, 2, 1) is

[IIT 1983; MNR 1984]

- (a) $\pm \frac{1}{\sqrt{6}} (2\mathbf{i} + \mathbf{j} + \mathbf{k})$ (b) $\frac{1}{\sqrt{6}} (\mathbf{i} + 2\mathbf{j} + \mathbf{k})$
- (c) $\frac{1}{\sqrt{6}}(\mathbf{i} + \mathbf{j} + \mathbf{k})$ (d) $\frac{1}{\sqrt{6}}(2\mathbf{i} \mathbf{j} \mathbf{k})$
- **19.** If $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} 5\mathbf{k}$, $\mathbf{b} = m\mathbf{i} + n\mathbf{j} + 12\mathbf{k}$ and $\mathbf{a} \times \mathbf{b} = 0$, then
 - (a) $\left(-\frac{24}{5}, \frac{36}{5}\right)$
- (b) $\left(\frac{24}{5}, -\frac{36}{5}\right)$
- (c) $\left(-\frac{24}{5}, -\frac{36}{5}\right)$
- **20.** A unit vector which is perpendicular to $\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$ [MP PET 1992] and $-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ is
 - (a) $\frac{1}{\sqrt{5}}(2\mathbf{i} \mathbf{k})$
- (b) $\frac{1}{\sqrt{5}}(-2\mathbf{i} + \mathbf{k})$
- (c) $\frac{1}{\sqrt{5}}(2\mathbf{i} + \mathbf{j} + \mathbf{k})$ (d) $\frac{1}{\sqrt{5}}(2\mathbf{i} + \mathbf{k})$
- **21.** If A(-1, 2, 3), B(1, 1, 1) and C(2, -1, 3) are points on a plane. A unit normal vector to the plane ABC is

[BIT Ranchi 1988]

- (a) $\pm \left(\frac{2\mathbf{i}+2\mathbf{j}+\mathbf{k}}{3}\right)$
- (c) $\pm \left(\frac{2\mathbf{i}-2\mathbf{j}-\mathbf{k}}{3}\right)$
- (d) $-\left(\frac{2\mathbf{i}+2\mathbf{j}+\mathbf{k}}{3}\right)$
- 22. The unit vector perpendicular to the vectors 6i + 2j + 3k and 3i - 6j - 2k, is
 - (a) $\frac{2i 3j + 6k}{7}$ (b) $\frac{2i 3j 6k}{7}$

(c)
$$\frac{2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}}{7}$$

(d)
$$\frac{2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}}{7}$$

- **23.** For any two vectors **a** and **b**, $(\mathbf{a} \times \mathbf{b})^2$ is equal to [Roorkee 1975, 79, 81, 85]
 - (a) $a^2 b^2$
- (b) $a^2 + b^2$
- (c) $a^2b^2 (\mathbf{a}.\mathbf{b})^2$
- (d) None of these
- **24.** The unit vector perpendicular to 3i + 2j k and 12i + 5j - 5k, is [Roorkee 1979; RPET 1989, 91]
- (b) $\frac{5\mathbf{i} + 3\mathbf{j} 9\mathbf{k}}{\sqrt{115}}$
- $(d) \quad \frac{5\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}}{\sqrt{115}}$
- The sine of the angle between the two vectors 3i + 2j - k and 12i + 5j - 5k will be
- (b) $\frac{51}{\sqrt{14}\sqrt{144}}$
- (d) None of these
- **26.** For any two vectors **a** and **b**, if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, then

[Roorkee 1984]

- (a) $\mathbf{a} = \mathbf{0}$
- (b) $\mathbf{b} = \mathbf{0}$
- (c) Not parallel
- (d) None of these
- **27.** If **a** and **b** are two vectors, then $(\mathbf{a} \times \mathbf{b})^2$ equals

[Roorkee 1975, 79, 81, 85]

- (c) |a.b| b.a
- (d) None of these
- 28. For any vectors a, b, c $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) + \mathbf{b} \times (\mathbf{c} + \mathbf{a}) + \mathbf{c} \times (\mathbf{a} + \mathbf{b}) =$

[Roorkee 1981; Kerala (Engg.) 2002]

(a) **0**

- (b) a + b + c
- (c) [abc]
- (d) $\mathbf{a} \times \mathbf{b} \times \mathbf{c}$
- **29.** If a.b = a.c, $a \times b = a \times c$ and $a \ne 0$, then [RPET 1990]
 - (a) $\mathbf{b} = \mathbf{0}$
- (b) $\mathbf{b} \neq \mathbf{c}$
- (c) $\mathbf{b} = \mathbf{c}$
- (d) None of these
- **30.** If $|\mathbf{a}| = 2$, $|\mathbf{b}| = 5$ and $|\mathbf{a} \times \mathbf{b}| = 8$, then $\mathbf{a} \cdot \mathbf{b}$ is equal

[AI CBSE 1984; RPET 1991]

(a) 0

(b) 2

(c) 4

- (d) 6
- **31.** If $|\mathbf{a}.\mathbf{b}| = 3$ and $|\mathbf{a} \times \mathbf{b}| = 4$, then the angle between a and b is
 - (a) $\cos^{-1} \frac{3}{4}$

- **32.** If $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $\mathbf{b} = 6\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$, then the value of $\mathbf{a} \times \mathbf{b}$ is **IMNR 1978: RPET** 2001]
 - (a) 2i + 2j k
- (b) 6i 3j + 2k

- (c) i 10i 18k
- (d) $\mathbf{i} + \mathbf{j} + \mathbf{k}$
- The scalars l and m such that ha + mb = c, where a, **b** and **c** are given vectors, are equal to
 - (a) $l = \frac{(\mathbf{c} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^2}$, $m = \frac{(\mathbf{c} \times \mathbf{a}) \cdot (\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})^2}$
 - (b) $l = \frac{(\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})}$, $m = \frac{(\mathbf{c} \times \mathbf{a}).(\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})}$
 - (c) $l = \frac{(\mathbf{c} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^2}$, $m = \frac{(\mathbf{c} \times \mathbf{a}) \times (\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})}$
 - (d) None of these
- **34.** $|\mathbf{a} \times \mathbf{i}|^2 + |\mathbf{a} \times \mathbf{j}|^2 + |\mathbf{a} \times \mathbf{k}|^2 =$

[EAMCET 1988; MP PET 1994, 2004; RPET

Pb. CET 2001; Orissa JEE 2003; AIEEE 2005]

- (a) $|{\bf a}|^2$
- (b) $2|\mathbf{a}|^2$
- (c) $3|\mathbf{a}|^2$
- (d) $4|\mathbf{a}|^2$
- 35. A unit vector perpendicular to the plane determined by the points P(1, -1, 2), Q(2, 0, -1)and R(0, 2, 1) is **[IIT 1994]**
- (c) $\frac{-2\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{6}}$
- 36. A unit vector perpendicular to the vector $4\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $-2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ is

 - (a) $\frac{1}{3}(\mathbf{i} 2\mathbf{j} + 2\mathbf{k})$ (b) $\frac{1}{3}(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$

 - (c) $\frac{1}{3}(2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ (d) $\frac{1}{3}(2\mathbf{i} 2\mathbf{j} + 2\mathbf{k})$
- **37.** Given $\mathbf{a} = \mathbf{i} + \mathbf{j} \mathbf{k}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + 2\mathbf{j} \mathbf{k}$. A unit vector perpendicular to both $\mathbf{a} + \mathbf{b}$ and b+c is

[Karnataka CET 1993]

- (a) i
- (c) **k**

- (d) $\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{}}$
- The vectors **c**, $\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $\mathbf{b} = \mathbf{j}$ are such a, c, b form a right handed system, then c is [DCE 1999]
 - (a) $\mathbf{a}\mathbf{i} \mathbf{x}\mathbf{k}$
- (b) 0
- (c) и
- (d) $-\mathbf{z}\mathbf{i} + \mathbf{x}\mathbf{k}$
- **39.** If A, B, C, D are any four points in space, then $|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}|$ is equal to
 - (a) 2∆
- (b) 4Δ
- (c) 3∆
- (d) 5∆
- (where denotes the area of $\triangle ABC$)
- **40.** If $(\mathbf{a} \times \mathbf{b})^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 144$ and $|\mathbf{a}| = 4$, then $|\mathbf{b}| = 144$ [EAMCET 1994]
 - (a) 16
- (b) 8
- (c) 3
- (d) 12
- **41.** $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$; $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$; $\mathbf{a} \neq 0$; $\mathbf{b} \neq 0$; $\mathbf{a} \neq \lambda \mathbf{b}$, \mathbf{a} is not perpendicular to \mathbf{b} , then $\mathbf{r} =$
 - (a) $\mathbf{a} \mathbf{b}$
- (b) $\mathbf{a} + \mathbf{b}$

- (c) $\mathbf{a} \times \mathbf{b} + \mathbf{a}$
- (d) $\mathbf{a} \times \mathbf{b} + \mathbf{b}$
- **42.** If **i**, **j**, **k** are unit orthonormal vectors and **a** is a vector, if $\mathbf{a} \times \mathbf{r} = \mathbf{j}$, then $\mathbf{a} \cdot \mathbf{r}$ is
 - (a) 0

- (c) 1
- (d) Arbitrary scalar
- **43.** A unit vector perpendicular to each of the vector $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ is equal to
 - (a) $\frac{(-3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k})}{(-3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k})}$
- (b) $\frac{(3\mathbf{i} 5\mathbf{j} + 11\mathbf{k})}{\sqrt{155}}$
- (c) $\frac{(6\mathbf{i} 4\mathbf{j} \mathbf{k})}{\sqrt{53}}$ (d) $\frac{(5\mathbf{i} + 3\mathbf{j})}{\sqrt{34}}$
- **44.** If $\vec{A} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\vec{B} = 2\mathbf{i} 2\mathbf{j} + 4\mathbf{k}$ and angle between \vec{A} and \vec{B} , then the value of $\sin\theta$ is

- **45.** A unit vector perpendicular to vector c and coplanar with vectors a and b is
 - $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ $\overline{|\mathbf{a}\times(\mathbf{b}\times\mathbf{c})|}$
- (p) $\frac{|\mathbf{p} \times (\mathbf{c} \times \mathbf{a})|}{\mathbf{p} \times (\mathbf{c} \times \mathbf{a})}$ $\mathbf{b} \times (\mathbf{c} \times \mathbf{a})$
- (c) $\frac{\mathbf{c} \times (\mathbf{a} \times \mathbf{b})}{|\mathbf{c} \times (\mathbf{a} \times \mathbf{b})|}$
- (d) None of these
- **46.** $|\mathbf{a} \times \mathbf{b}|^2 + (\mathbf{a} \cdot \mathbf{b})^2 =$ [MP PET 1989, 97, 20041
 - (a) $(\mathbf{a} \times \mathbf{a}).(\mathbf{b} \times \mathbf{b})$
- (b) (a.a)(b.b)
- (c) $|(\mathbf{a} \times \mathbf{b})|$ (a.b)
- (d) 2(a.b)(a.b)
- **47.** If the position vectors of three points A, B and Care respectively $\mathbf{i} + \mathbf{j} + \mathbf{k}$, $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and $7\mathbf{i} + 4\mathbf{j}$ + 9k, then the unit vector to the plane containing the triangle *ABC* is

- (a) 31**i** 18**j** 9**k**
- (b) $\frac{31\mathbf{i} 38\mathbf{j} 9\mathbf{k}}{\sqrt{2486}}$
- (c) $\frac{31\mathbf{i} + 18\mathbf{j} + 9\mathbf{k}}{\sqrt{2486}}$
- (d) None of these
- **48.** If **a**, **b**, **c** are position vector of vertices of a triangle ABC, then unit vector perpendicular to its plane is [RPET 1999]
 - (a) $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$
- $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$ $a \times b + b \times c + c \times a$
- (c) $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$
- (d) None of these
- If θ is the angle between the vectors **a** and **b**, then $\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a} \times \mathbf{b}|}$ equal to [Karnataka CET 1999]
 - (a) $tan\theta$
- (b) $-\tan\theta$
- (c) $\cot\theta$
- (d) $-\cot\theta$

If the vectors **a**.**b** and **c** are represented by the 50. sides BC, CA and AB respectively of the $\triangle ABC$, then

[IIT Screening 2000]

- (a) a.b+b.c+c.a=0
- (b) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$
- (c) $\mathbf{a.b} = \mathbf{b.c} = \mathbf{c.a}$
- (d) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} = 0$
- **51.** A vector perpendicular to both of the vectors i+j+k and i+j is [RPET 2000]
 - (a) i + i
- (b) $\mathbf{i} \mathbf{i}$
- (c) $d(\mathbf{i} \mathbf{j})$, c is a scalar (d) None of these
- **52.** A unit vector perpendicular to the plane of a = 2i - 6j - 3k, b = 4i + 3j - k is
 - (a) $\frac{4\mathbf{i} + 3\mathbf{j} \mathbf{k}}{\sqrt{26}}$ (b) $\frac{2\mathbf{i} 6\mathbf{j} 3\mathbf{k}}{7}$ (c) $\frac{3\mathbf{i} 2\mathbf{j} + 6\mathbf{k}}{7}$ (d) $\frac{2\mathbf{i} 3\mathbf{j} 6\mathbf{k}}{7}$
- (d) $\frac{2i 3j 6k}{7}$
- 53. The unit vector perpendicular to both the vectors i -2j + 3k and i + 2j - k is
 - (a) $\frac{1}{\sqrt{3}}(-\mathbf{i} + \mathbf{j} + \mathbf{k})$ (b) $(-\mathbf{i} + \mathbf{j} + \mathbf{k})$
 - (c) $\frac{(\mathbf{i}+\mathbf{j}-\mathbf{k})}{\sqrt{3}}$
- (d) None of these
- The unit vector perpendicular to the vectors i-j+k and 2i+3j-k is [Karnataka CET 2001]
- (b) $\frac{-2i + 5j + 6k}{\sqrt{38}}$
- (a) $\frac{-2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}}{\sqrt{30}}$ (b) $\frac{-2\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}}{\sqrt{38}}$ (c) $\frac{-2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}}{\sqrt{38}}$ (d) $\frac{-2\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}}{\sqrt{38}}$
- **55.** If a = 2i 3j k and b = i + 4j 2k, then $a \times b$ is

[MP PET 2001]

- (a) 10i + 2j + 11k
- (b) 10i + 3i + 11k
- (c) 10i 3j + 11k
- (d) 10i 3j 10k
- **56.** If $|\mathbf{a}| = 4$, $|\mathbf{b}| = 2$ and the angle between \mathbf{a} and \mathbf{b} is $\frac{\pi}{6}$, then $(\mathbf{a} \times \mathbf{b})^2$ is equal to
 - (a) 48
- (c) 8
- (d) None of these
- **57.** If $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} 5\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, then $|\mathbf{a} \times \mathbf{b}|$ is [UPSEAT 2002]
 - (a) $11\sqrt{5}$
- (b) $11\sqrt{3}$
- (c) $1\sqrt{7}$
- (d) $11\sqrt{2}$
- **58.** The unit vector perpendicular to both $\mathbf{i}+\mathbf{j}$ and j+k is

[Kerala (Engg.) 2002]

- (a) $\mathbf{i} \mathbf{j} + \mathbf{k}$
- (b) i + j + k
- (d) $\frac{\mathbf{i} \mathbf{j} + \mathbf{k}}{\sqrt{3}}$
- **59.** A unit vector in the plane of the vectors $2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and orthogonal to $5\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$ is

[IIT Screening 2004]

- 6i 5k $\sqrt{61}$
- (b) $3\mathbf{j} \mathbf{k}$ $\sqrt{10}$
- 2i 5j
- **60.** Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be three vectors such that $\mathbf{a} \neq \mathbf{0}$, and $a \times b = 2a \times c$, |a| = |c| = 1, |b| = 4 and $|b \times c| = 15$. If $\mathbf{b} - 2\mathbf{c} = \lambda \mathbf{a}$, then equals to
 - (a) 1

(b) ± 4

(c) 3

- (d) 2
- **61.** The area of a triangle whose vertices are A(1,-1,2), B(2,1,-1) and C(3,-1,2) is
 - (a) 13
- (b) $\sqrt{13}$

(c) 6

- (d) $\sqrt{6}$
- **62.** If vertices of a triangle are A(1,-1,2), B(2,0,-1) and C(0, 2, 1), then the area of a triangle is **[RPET 2000]**
 - (a) $\sqrt{6}$
- (b) $2\sqrt{6}$
- (c) $3\sqrt{6}$
- (d) $4\sqrt{6}$
- **63.** The area of triangle whose vertices (1, 2, 3), (2, 5, -1) and (-1, 1, 2) is
 - (a) 150 *sa. unit*
- (b) 145 sq. unit
- (c) $\frac{\sqrt{155}}{2}$ sq. unit (d) $\frac{155}{2}$ sq. unit
- The area of a parallelogram whose two adjacent sides are represented by the vector $3\mathbf{i} - \mathbf{k}$ and i + 2j is [MNR 1981]
 - (a) $\frac{1}{2}\sqrt{17}$
- (b) $\frac{1}{2}\sqrt{14}$
- (c) $\sqrt{41}$
- (d) $\frac{1}{2}\sqrt{7}$
- The area of the parallelogram whose diagonals are $\mathbf{a} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ is

[MP PET 1988, 93; MNR 1985]

- (a) $10\sqrt{3}$
- (b) $5\sqrt{3}$

(c) 8

- (d) 4
- The position vectors of the points A, B and C are i+j, j+k and k+i respectively. The vector area of the $\triangle ABC = \pm \frac{1}{2}\vec{\alpha}$ where $\vec{\alpha} =$
 - (a) $-\mathbf{i} + \mathbf{j} + \mathbf{k}$
- (b) $\mathbf{i} \mathbf{j} + \mathbf{k}$
- (c) i+j-k
- (d) $\mathbf{i} + \mathbf{j} + \mathbf{k}$
- **67.** If $\overrightarrow{OA} = 3\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $\overrightarrow{OB} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$, then the area of the triangle OAB is
 - (a) $\sqrt{15}$
- (b) $3\sqrt{5}$
- (c) $\frac{3}{2}\sqrt{10}$
- Let **a**, **b**, **c** be the position vectors of the vertices of a triangle ABC. The vector area of triangle ABC is

[MP PET 1990; EAMCET 2003]

- (a) $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$ (b) $\frac{1}{4} (\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})$
- (c) $\frac{1}{2}$ (a×b+b×c+c×a) (d) b×a+c×b+a×c
- **69.** If $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$ and **a**, **b** are mutually perpendicular, then the area of the triangle whose vertices are 0, a + b, a - b is
 - (a) 5

(h) 1

(c) 6

- (d) 8
- **70.** If i + 2j + 3kand $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ represents the adjacent sides of a parallelogram, then the area of this parallelogram is

[Roorkee 1978, 79; MP PET 1990; RPET 1988, 89, 91]

- (a) $4\sqrt{3}$
- (b) $6\sqrt{3}$
- (c) $8\sqrt{3}$
- (d) $16\sqrt{3}$
- **71.** If 3i + 4j and -5i + 7j are the vector sides of any triangle, then its area is given by
 - (a) 41

- (b) 47
- 41 (c)
- (d) $\frac{47}{2}$
- If the vectors $\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$, $-\mathbf{i} + 2\mathbf{j}$ represents the 72. diagonals of a parallelogram, then its area will be [Roork
 - (a) $\sqrt{21}$
- (b) $\frac{\sqrt{21}}{2}$
- (c) $2\sqrt{21}$
- The area of the parallelogram whose diagonals are the vectors $2\mathbf{a} - \mathbf{b}$ and $4\mathbf{a} - 5\mathbf{b}$, where \mathbf{a} and \mathbf{b} are the unit vectors forming an angle of 45° , is
 - (a) $3\sqrt{2}$
- (c) $\sqrt{2}$
- (d) None of these
- 74. The area of a parallelogram whose adjacent sides are $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $2\mathbf{i} + \mathbf{j} - 4\mathbf{k}$, is
 - (a) $5\sqrt{3}$
- (b) $10\sqrt{3}$
- (c) $5\sqrt{6}$
- (d) $10\sqrt{6}$
- **75.** If the diagonals of a parallelogram represented by the vectors 3i + j - 2kand i+3j-4k, then its area in *square unit* is
 - (a) $5\sqrt{3}$
- (b) $6\sqrt{3}$
- (c) $\sqrt{26}$
- (d) $\sqrt{42}$
- The area of a parallelogram whose adjacent sides are given by the vectors $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $-3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ (in square unit) is

[Karnataka CET 2001; Pb. CET 2004]

- (a) $\sqrt{180}$
- (b) $\sqrt{140}$
- (c) $\sqrt{80}$
- (d) $\sqrt{40}$
- If a = i + j + k, b = i + 3j + 5k and c = 7i + 9j + 11k, then the area of the parallelogram having diagonals a

+ **b** and $\mathbf{b} + \mathbf{c}$ is [Kurukshetra CEE 20021

- (a) $4\sqrt{6}$
- (b) $\frac{1}{2}\sqrt{21}$
- (c) $\frac{\sqrt{6}}{2}$
- 78. The area of the parallelogram whose diagonals are $\frac{3}{2}i + \frac{1}{2}j - k$ and 2i - 6j + 8k is
 - (a) $5\sqrt{3}$
- (b) $5\sqrt{2}$
- (c) $25\sqrt{3}$
- (d) $25\sqrt{2}$
- The area of the triangle having vertices as i-2j+3k, -2i+3j+k, 4i-7j+7k is
 - (a) 26

- (b) 11
- (c) 36
- (d) 0
- **80.** The area of the parallelogram whose adjacent sides are $\mathbf{i} - \mathbf{k}$ and $2\mathbf{i} + 3\mathbf{k}$ is
 - (a) 2

- (c) $\sqrt{17}$
- (d) $2\sqrt{13}$
- **81.** The moment of the force \vec{F} acting at a point P_{r} about the point C is [MP PET 1987]
 - (a) $\vec{F} \times \overrightarrow{CP}$
 - (b) $\overrightarrow{CP} \cdot \overrightarrow{F}$
 - (c) A vector having the same direction as \vec{F}
 - (d) $\overrightarrow{CP} \times \overrightarrow{F}$
- **82.** Three forces i+2j-3k, 2i+3j+4k and i-j+kare acting on a particle at the point (0, 1, 2). The magnitude of the moment of the forces about the point (1, -2, 0) is

IMNR 19831

- (a) $2\sqrt{35}$
- (b) $6\sqrt{10}$
- (c) $4\sqrt{17}$
- (d) None of these
- **83.** Let the points A, B and P be (-2, 2, 4), (2, 6, 3)and (1,2,1) respectively. The magnitude of the moment of the force represented by \overrightarrow{AB} and acting at A about P is

[MP PET 1987]

- (a) 15
- (b) $3\sqrt{41}$
- (c) $3\sqrt{57}$
- (d) None of these
- **84.** The moment of a force represented by $\vec{F} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ about the point $2\mathbf{i} - \mathbf{j} + \mathbf{k} =$
 - (a) 5i 5j + 5k
- (b) 5i + 5j 5k
- (c) -5i + 5i + 5k
- (d) -5i 5i + 5k
- **85.** A force of magnitude 6 acts along the vector (9,6,-2) and passes through a point A(4,-1,-7). The moment of the force about the point O(1, -3)2) is

- (a) $\frac{150}{11}(2\mathbf{i} 3\mathbf{j})$
- (b) $\frac{6}{11}(50\mathbf{i} 75\mathbf{j} + 36\mathbf{k})$
- (c) $150(2\mathbf{i} 3\mathbf{j})$
- (d) $6(50\mathbf{i} 75\mathbf{j} + 36\mathbf{k})$
- A force $\mathbf{F} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$ acts at a point A, whose position vector is $2\mathbf{i} - \mathbf{j}$. The moment of \mathbf{F} about the origin is

[Karnataka CET 2000]

- (a) i + 2i 4k
- (b) i 2i 4k
- (c) i + 2j + 4k
- (d) i 2j + 4k
- **87.** If a = i j, b = i + j, c = i + 3j + 5k and **n** is a unit vector such that $\mathbf{b}.\mathbf{n} = 0$, $\mathbf{a}.\mathbf{n} = 0$ then the value of | c. n| is equal to

[DCE 2005]

(a) 1

(b) 3

(c) 5

- (d) 2
- 88. A unit vector perpendicular to the plane containing the vectors $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $-\mathbf{i} + \mathbf{j} + \mathbf{k}$ is [Karnataka CET 2005]

Scalar triple product and their applications

If **a**, **b**, **c** are three non-coplanar vector, then

$$\frac{\mathbf{a}.\mathbf{b}\times\mathbf{c}}{\mathbf{c}\times\mathbf{a}.\mathbf{b}} + \frac{\mathbf{b}.\mathbf{a}\times\mathbf{c}}{\mathbf{c}.\mathbf{a}\times\mathbf{b}} =$$

[IIT 1985, 86; UPSEAT

20031

- (a) 0
- (b) 2
- (c) 2
- (d) None of these
- 2. If **a**, **b**, **c** be any three non-coplanar vectors, then [a+b b+c c+a]=[RPET 1988; MP PET 1990, 02;

Kerala (Engg.) 2002]

- (a) | abc|
- (b) 2[abc]
- (c) $[abc]^2$
- (d) $2[abc]^2$
- If the vectors 2i 3j, i + j k and 3i k form three 3. concurrent edges of a parallelopiped, then the volume of the parallelopiped is [IIT 1983; RPET 1995; DCI

Kurukshetra CEE 1998; MP PET 2001]

(a) 8

(b) 10

- (c) 4
- (d) 14
- If a, b, c are any three coplanar unit vectors, then
 - (a) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 1$
- (b) **a**.(**b**×**c**) = 3
- (c) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$
- (d) $(c \times a) \cdot b = 1$
- 5. If \mathbf{a} and \mathbf{b} be parallel vectors, then $[\mathbf{a} \ \mathbf{c} \ \mathbf{b}] =$ (a) 0
- (b) 1
- (c) 2
- (d) None of these
- If the vectors $2\mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ and $3\mathbf{i} + \lambda \mathbf{j} + 5\mathbf{k}$ 6. be coplanar, then $\lambda =$

[Roorkee 1986; RPET 1999, 02; Kurukshetra CEE 2002]

- (a) -1
- (b) 2
- (c) 3
- (d) 4
- If **a**, **b**, **c** are the three non-coplanar vectors and **p**, defined by relations are the

$$\mathbf{p} = \frac{\mathbf{b} \times \mathbf{c}}{[\mathbf{a} \mathbf{b} \mathbf{c}]}, \ \mathbf{q} = \frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a} \mathbf{b} \mathbf{c}]}, \ \mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \mathbf{b} \mathbf{c}]}$$
 then $(\mathbf{a} + \mathbf{b})$. \mathbf{p}

 $+(\mathbf{b}+\mathbf{c}) \cdot \mathbf{q} + (\mathbf{c}+\mathbf{a}) \cdot \mathbf{r} =$

[IIT 1988; BIT Mesra 1996; AMU 2002]

(a) 0

(b) 1

(c) 2

- (d) 3
- **8.** If the points whose position, vectors are $3\mathbf{i} 2\mathbf{j} \mathbf{k}$, $2\mathbf{i} + 3\mathbf{j} 4\mathbf{k}$, $-\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $4\mathbf{i} + 5\mathbf{j} + \lambda\mathbf{k}$ lie on a plane, then $\lambda =$ [IIT 1986; Pb. CET 2003]
 - (a) $-\frac{146}{17}$
- (b) $\frac{146}{17}$
- (c) $-\frac{17}{146}$
- (d) $\frac{17}{146}$
- 9. If $p = \frac{b \times c}{[abc]}$, $q = \frac{c \times a}{[abc]}$, $r = \frac{a \times b}{[abc]}$, where **a**, **b**, **c**

are three non-coplanar vectors, then the value of $(\mathbf{a} + \mathbf{b} + \mathbf{c}).(\mathbf{p} + \mathbf{q} + \mathbf{r})$ is given by

[MNR 1992; UPSEAT 2000]

(a) 3

(b) 2

(c) 1

- (d) 0
- **10.** The volume of the parallelopiped whose edges are represented by $-12\mathbf{i} + \alpha\mathbf{k}$, $3\mathbf{j} \mathbf{k}$ and $2\mathbf{i} + \mathbf{j} 15\mathbf{k}$ is 546. Then $\alpha =$ [IIT Screening 1989; MNR 1987]
 - (a) 3

- (b) 2
- (c) 3
- (d) 2
- **11.** Let a, b, c be distinct non-negative numbers. If the vectors $\mathbf{a}\mathbf{i} + \mathbf{a}\mathbf{j} + d\mathbf{k}$, $\mathbf{i} + \mathbf{k}$ and $d + d\mathbf{j} + d\mathbf{k}$ lie in a plane, then c is

[IIT 1993; AIEEE 2005]

- (a) The arithmetic mean of a and b
- (b) The geometric mean of a and b
- (c) The harmonic mean of a and b
- (d) Equal to zero
- **12.** If **a, b, c** are any three vectors and their inverse are $\mathbf{a}^{-1}, \mathbf{b}^{-1}, \mathbf{c}^{-1}$ and $[\mathbf{a} \mathbf{b} \mathbf{c}] \neq 0$, then $[\mathbf{a}^{-1} \mathbf{b}^{-1} \mathbf{c}^{-1}]$ will be

[Roorkee 1989]

- (a) Zero
- (b) One
- (c) Non-zero
- (d) [**a b c**]
- **13.** If a = i j + k, b = i + 2j k and c = 3i + pj + 5k are coplanar then the value of p will be [RPET 1985, 86, 8
 - (a) 6
- (b) -2

(c) 2

- (d) 6
- **14.** If i,j,k are the unit vectors and mutually perpendicular, then $[i\,k\,j]$ is equal to
 - (a) 0

(b) -1

(c) 1

- (d) None of these
- **15.** If three vectors $\mathbf{a} = 12\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 8\mathbf{i} 12\mathbf{j} 9\mathbf{k}$ and $\mathbf{c} = 33\mathbf{i} 4\mathbf{j} 24\mathbf{k}$ represents a cube, then its volume will be
 - (a) 616
- (b) 308
- (c) 154
- (d) None of these
- **16.** If $\mathbf{a} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} \mathbf{j} + 2\mathbf{k}$, then $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = [\mathbf{RPET 1989, 2001}]$
 - (a) 6

(b) 10

(c) 12 (d) 24

- **17.** Three concurrent edges OA, OB, OC of a parallelopiped are represented by three vectors $2\mathbf{i} + \mathbf{j} \mathbf{k}$, $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $-3\mathbf{i} \mathbf{j} + \mathbf{k}$, the volume of the solid so formed in cubic unit is
 - (a) 5

(b) 6

- (c) 7
- (d) 8
- **18.** If $\mathbf{x}.\mathbf{a} = 0$, $\mathbf{x}.\mathbf{b} = 0$ and $\mathbf{x}.\mathbf{c} = 0$ for some non-zero vector \mathbf{x} , then the ture statement is **[IIT 1983;** Karnataka CET 2002]
 - (a) [a b c] = 0
- (b) $[a b c] \neq 0$
- (c) [a b c] = 1
- (d) None of these
- **19.** If the given vectors $(-bc b^2 + bc c^2 + bd)$, $(a^2 + ac ac c^2 + ad)$ and $(a^2 + ad b^2 + ad ad)$ are coplanar, where none of a, b and c is zero, then
 - (a) $a^2 + b^2 + c^2 = 1$
 - (b) bc + ca + ab = 0
 - (c) a+b+c=0
 - (d) $a^2 + b^2 + c^2 = bc + ca + ab$
- **20.** If a,b,c are three coplanar vectors, then $[a+bb+cc+a] = [MP \ PET \ 1995]$
 - (a) [**a b c**]
- (b) 2 [**a b c**]
- (c) 3 [**a b c**]
- (d) 0
- **21.** [**a b** $\mathbf{a} \times \mathbf{b}$] is equal to
 - (a) | **a**×**b**|
- (b) $|\mathbf{a} \times \mathbf{b}|^2$
- (c) **0**

- (d) None of these
- **22.** If $\mathbf{a} \cdot \mathbf{i} = 4$, then $(\mathbf{a} \times \mathbf{j}) \cdot (2\mathbf{j} 3\mathbf{k}) =$
 - (a) 12
- (b) 2

(c) 0

- (d) 12
- 23. If the vectors $2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$, $\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $x\mathbf{i} \mathbf{j} + 2\mathbf{k}$ are coplanar, then x = [EAMCET 1994]
 - (a) $\frac{6}{5}$

(b) $\frac{5}{8}$

(c) 0

- (d) 1
- **24.** Volume of the parallelopiped whose coterminous edges are $2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$, $\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$, $3\mathbf{i} \mathbf{j} + \mathbf{k}$, is **[EAMCET 1993**]
 - (a) 5 cubic unit
- (b) 6 cubic unit
- (c) 7 cubic unit
- (d) 8 cubic unit
- **25.** If $\mathbf{a} = 3\mathbf{i} \mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$, then $\mathbf{a} \times (\mathbf{a} \cdot \mathbf{b}) =$

[Karnataka CET 1994]

[Karnataka CET 1994]

- (a) 3**a**
- (b) $3\sqrt{14}$

(c) 0

- (d) None of these
- **26.** $i \cdot (j \times k) + j \cdot (k \times i) + k \cdot (i \times j) =$ (a) 1
 - (b) 3
 - (c) -3
- (d) 0
- 27. If $\mathbf{a} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, then the unit vector perpendicular to \mathbf{a} and \mathbf{b} is

(a)
$$\frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{2}}$$

(b)
$$\frac{\mathbf{i} - \mathbf{j} + \mathbf{k}}{\sqrt{3}}$$

(c)	-i + j + k
	$\sqrt{3}$

(d)
$$\frac{\mathbf{i} - \mathbf{j} - \mathbf{k}}{\sqrt{3}}$$

- **28.** If $\mathbf{a} = -3\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}$, $\mathbf{b} = -3\mathbf{i} + 7\mathbf{j} 3\mathbf{k}$, $\mathbf{c} = 7\mathbf{i} 5\mathbf{j} 3\mathbf{k}$ the three coterminous edges parallelopiped, then its volume is
 - (a) 108
- (b) 210
- (c) 272
- (d) 308
- **29.** $a.(a \times b) =$

[MP PET 1996]

- (a) **b** . **b**
- (b) $a^2 b$

(c) 0

- (d) $a^2 + ab$
- **30.** If three conterminous edges of a parallelopiped are represented by $\mathbf{a} - \mathbf{b}$, $\mathbf{b} - \mathbf{c}$ and $\mathbf{c} - \mathbf{a}$, then its volume is

[MP PET 1999: Pb. CET 2003]

- (a) [a b c]
- (b) 2 [**a b c**]
- (c) $[a b c]^2$
- (d) 0
- **31.** For three vectors **u**, **v**, **w** which of the following expressions is not equal to any of the remaining three [IIT 1998]
 - (a) $\mathbf{u}.(\mathbf{v}\times\mathbf{w})$
- (b) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}$
- (c) $\mathbf{v}.(\mathbf{u}\times\mathbf{w})$
- (d) $(\mathbf{u} \times \mathbf{v}).\mathbf{w}$
- **32.** Which of the following expressions are meaningful

[IIT 1998; RPET 2001]

- (a) $\mathbf{u}.(\mathbf{v}\times\mathbf{w})$
- (b) (u.v).w
- (c) (u.v)w
- (d) $\mathbf{u} \times (\mathbf{v} \cdot \mathbf{w})$
- **33.** If a,b,c are non-coplanar vectors and $\mathbf{d} = \lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c}$, then λ is equal to
 - [dbc] (a) [bac]
- [bca]
- [bdc] [abc]
- [abc]
- **34.** If vectors $\vec{A} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $\vec{B} = \mathbf{i} + \mathbf{j} + 5\mathbf{k}$, and \vec{C} form a left handed system, then \vec{C} is
 - (a) 11i 6j k
- (b) -11i + 6j + k
- (c) 11i 6j + k
- (d) -11i + 6j k
- What will be the volume of that parallelopiped whose sides are $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ and \mathbf{c} $= 2\mathbf{i} - 5\mathbf{j} + 3\mathbf{k}$

[UPSEAT 1999]

- (a) 5 *unit*
- (b) 6 *unit*
- (c) 7 *unit*
- (d) 8 unit
- **36.** Given vectors **a**, **b**, **c** such that $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \lambda \neq 0$, the value of $(\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c}) / \lambda$ is
 - (a) 3

- (b) 1
- (c) -3λ
- (d) $3/\lambda$
- **37.** If a,b and c are unit coplanar vectors then the scalar triple product $[2\mathbf{a} - \mathbf{b} \ 2\mathbf{b} - \mathbf{c} \ 2\mathbf{c} - \mathbf{a}]$ is equal to

[IIT Screening 2000; Kerala (Engg.) 2005]

(a) 0

- (b) 1
- (c) $-\sqrt{3}$
- (d) $\sqrt{3}$
- **38.** If the vectors $\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$, $2\mathbf{i} \mathbf{j} + 4\mathbf{k}$ and $3\mathbf{i} + 2\mathbf{j} + \lambda\mathbf{k}$ are coplanar, then the value of x is
 - (a) -2

(c) 1

- (d) 3
- **39.** The value of $[\mathbf{a} \mathbf{b} \ \mathbf{b} \mathbf{c} \ \mathbf{c} \mathbf{a}]$, where $|\mathbf{a}| = 1$, $| \mathbf{b} | = 5 \text{ and } | \mathbf{c} | = 3 \text{ is}$ [RPET 2000]
 - (a) 0

(b) 1

(c) 2

- (d) 4
- 40. $a = i + j + k, b = 2i - 4k, c = i + \lambda j + 3k$ are coplanar, [MP PET 2000] then the value of λ is
 - (a) 5/2
- (b) 3/5
- (c) 7/3
- (d) None of these
- $\vec{A} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\vec{B} = \mathbf{i}$, $\vec{C} = C_1 \mathbf{i} + C_2 \mathbf{j} + C_3 \mathbf{k}$. If **41.** Let $C_2 = -1$, and $C_3 = 1$, then to make three vectors coplanar [AMU 2000]
 - (a) $C_1 = 0$
 - (b) $C_1 = 1$
 - (c) $C_1 = 2$
 - (d) No value of C_1 can be found
- **42.** Let $\mathbf{a} = \mathbf{i} \mathbf{k}$, $\mathbf{b} = x\mathbf{i} + \mathbf{j} + (1 x)\mathbf{k}$, $\mathbf{c} = y\mathbf{i} + x\mathbf{j} + (1 + x y)\mathbf{k}$. Then [a b c] depends on

[IIT Screening 2001; AIEEE 2005]

- (a) Only x
- (b) Only v
- (c) Neither *x* nor *y*
- (d) Both x and y
- **43.** If a = 3i 2j + 2k, b = 6i + 4j 2k and c = 3i 2j 4k, then **a**. $(\mathbf{b} \times \mathbf{c})$ is [Karnataka CET 2001]
 - (a) 122
- (b) -144
- (c) 120
- (d) 120
- 44. $(a + b).(b + c) \times (a + b + c) =$
- [EAMCET 2002]
- (a) [a b c]
- (b) [a b c]

(c) 0

- (d) 2[a b c]
- $\mathbf{a.(b} \times \mathbf{c})$ is equal to
- [RPET 2001]
- (a) $\mathbf{b}.(\mathbf{a} \times \mathbf{c})$
- (b) $\mathbf{c.}(\mathbf{b} \times \mathbf{a})$
- (c) $\mathbf{b}.(\mathbf{c} \times \mathbf{a})$ **46.** If **a,b,c** are vectors such that [**abc**]=4, then
- (d) None of these
- $[a \times b b \times c c \times a] =$ [AIEEE 2002] (b) 64
 - (a) 16
- (c) 4

- (d) 8
- parallelopiped whose 47. The volume of the conterminous edges are i-j+k, 2i-4j+5k and 3i - 5j + 2k is

[Kerala (Engg.) 2002]

- (a) 4 (c) 2
- (b) 3 (d) 8
- 48. [i k j]+[k j i]+[j k i]
- [UPSEAT 2002]

(a) 1

- (b) 3
- (c) 3
- (d) 1

SHIPSCORER 810 Vector Algebra						
49.	If \mathbf{u} , \mathbf{v} and \mathbf{w} are three $(\mathbf{u} + \mathbf{v} - \mathbf{w}) \cdot [(\mathbf{u} - \mathbf{v}) \times (\mathbf{v} - \mathbf{w})]$	non-coplanar vectors, then equals				
		[AIEEE 2003; DCE 2005]				
	(a) 0	(b) u.(v×w)				
	(c) u.(w × v)	(d) 3 u.(v × w)				
50.	$\mathbf{a}.[(\mathbf{b}+\mathbf{c})\times(\mathbf{a}+\mathbf{b}+\mathbf{c})]$ is eq	ual to				
	[IIT 1981; UPSEAT 2003; RPET 1988, 2002; MP PET					
		2004]				
	(a) [a b c]	(b) 2[a b c]				
51	(c) 3[a b c] If the vectors 4 i +1	(d) 0 11 j + <i>m</i> k ,7 i + 2 j + 6 k and				
J 1.	$\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$ are coplanar,	-				
	(a) 38	(b) 0				
	(c) 10	(d) - 10				
52.		ectors $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$ and				
	parallel to the vector $2\mathbf{i}$	-				
	(a) i - k	(b) $\mathbf{i} - \mathbf{j} - 2\mathbf{k}$				
53.	(c) $\mathbf{i} + \mathbf{j} - \mathbf{k}$	(d) $3\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$ which the four points				
55.	2i + 3j - k, $i + 2j + 3k$,					
	coplanar	51 1, 21, 1 3g t on are				
	oopianar	[MP PET 2004]				
	(a) 8	(b) 0				
	(c) - 2	(d) 6				
54.		nar vectors and is a real				
	number, then the vectors $\mathbf{a} + 2\mathbf{b} + 3\mathbf{c}$, $\lambda \mathbf{b} + 4\mathbf{c}$ and					
	$(2\lambda - 1)\mathbf{c}$ are non-coplana					
	(a) No value of of	(b) All except one value				
	(c) All except two values	s of (d)				
55.	Let a , b and c be three					
	triple product [abc] is equal to					
	(a) [b a c]	(b) [a c b]				
	(c) [c b a]	(d) [b c a]				
E6						
56.	_	en the value of $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$ is				
	equal to (a) 1	(b) - 1				
	(c) a b c	(d) 0				
57.	If $\mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$					
	coplanar vectors, the va					
		2				
	(a) $-\frac{4}{3}$	(b) $\frac{3}{4}$				
	4					
	(c) $\frac{4}{3}$	(d) 2				
	-					