Unit 2.1 & 2.2 — Position, Displacement, Speed, and Velocity (Guided Notes)

l. Position & Reference Frames (2.1)	
 Position is an object's location relative to a chosen (origin). A reference frame is the coordinate system and you pick to measure motion. [Image] number_line.png In 1D motion, use a number line: positions can be positive (+x) or negative (-x). Choosing the origin at the point is common, but any fixed point works. Always state the frame to avoid ambiguity (e.g., "relative to the"). [Image reference_frame.png 	;]
II. Distance vs. Displacement (2.1)	
 Distance = total path length traveled (scalar; no direction). Displacement = change in position = x_final - x_initial (vector; has). Distance ≥ displacement ; equality only for straight-line motion without; displacement can be positive, zero, or negative. Example: Walk 3 m east, then 3 m west → distance = 6 m; displacement = m. 	·
III. Stockcar Race Example (2.1)	
[Image] stockcar_race.png	
 Cars may travel ~500 miles around a loop; start and finish are at the same place. Distance is large, but displacement is near (net change in position ≈ 0). This highlights why distance and displacement are not the same. 	
V. Interpreting Direction (2.1)	
 Use sign conventions: +x (east/right), -x (west/left), etc. Displacement sign indicates relative to the chosen + axis. Reporting a displacement should include both magnitude and (or sign). 	
V. Scalars vs. Vectors (Bridge to 2.2)	
Scalars: magnitude only (distance, speed, time, mass, temperature).	

• Vectors: magnitude + direction (displacement, velocity, acceleration, force).

Vector quantities require a or a sign in 1D.
VI. Speed vs. Velocity (2.2)
[Image] x15_aircraft.png
 Speed = distance ÷ time (scalar). Velocity = displacement ÷ time (vector). Same trip can have the same average speed but different average if direction changes. If displacement over an interval is zero, average velocity over that interval is
VII. Average Speed (2.2)
 Average speed = total distance / total time. It summarizes overall rate, regardless of changes. Example: A 700 m path covered in 20 s → average speed = m/s. Average speed does not imply the object ever moved at that exact value.
VIII. Average Velocity (2.2)
 Average velocity = total displacement / total time. Requires direction (sign). A zero displacement gives zero average velocity. Example: Out-and-back motion can have large distance but average velocity.
IX. Constant vs. Average Velocity (2.2)
 Constant velocity: speed and direction remain unchanged at every instant. Average velocity: net change over an interval; speeds may vary within the interval. Two trips can share the same average speed but not the same if directions differ.
X. Worked 1D Example (2.2)
 Suppose x changes from +12 m to -6 m in 3.0 s. Displacement = (-6) - (+12) = m. Average velocity = (-18 m) / (3.0 s) = m/s (toward negative x). Sign indicates relative to the chosen axis.
XI. Reference Frame Dependence (2.2)
 Measured velocities depend on the observer's frame (ground vs. moving).

 In astronomy, Earth's velocity may be stated relative to the Sun or to the Always state or infer the frame when comparing or combining velocities.
XII. Unit Check & Reporting (2.1/2.2)
 Use SI units unless specified: distance/displacement in meters, time in seconds, speed/velocity in For everyday contexts, km/h or mph may be used; convert carefully. Include direction (sign or words like east/west) for displacement and velocity.
XIII. Quick Concept Checks (2.1)
 Can distance ever be less than displacement ? Can displacement be zero while distance is nonzero? (closed path). Does displacement require a reference frame? (to define positive/negative).
XIV. Quick Concept Checks (2.2)
 Can average speed be zero while moving?; moving implies distance > 0. Can average velocity be zero while moving?; if displacement = 0. Does constant speed guarantee constant velocity? Only if is constant too.
XV. Summary (2.1 + 2.2)
 Position is measured relative to a chosen origin in a reference frame. Distance is path length (scalar); displacement is net change in position (vector). Speed uses distance; velocity uses displacement. Average speed ≠ average velocity in general. Constant velocity requires steady speed and unchanging direction. Frame of reference matters for interpreting and comparing motion.
Guided Examples (Unit 2.1 & 2.2)
Ex 1 (2.1 Review) — Distance vs. Displacement Prompt: Explain the difference between distance and displacement in your own words.
 Distance is (scalar); displacement is (vector). Conclusion: Distance counts every step along the path; displacement only cares about (with direction).

Ex 2 (2.1 Review) — John's Evening Walk Prompt: John lives on a square block, 180 yd per side, and walks once around the block.
 Distance: Perimeter = 4 × 180 = yd. Displacement: Starts and ends at the same spot → Conclusion: Distance = 720 yd; Displacement =
Ex 3 (2.1 Review) — Joanna's Position Prompt: House at 0 ft, school at +8000 ft. Joanna walks 100 ft west of her house.
 East is +, West is - → position =ft. Conclusion: Joanna's position isft relative to the origin.
Ex 4 (2.2 Review) — Average Speed on a Trip Prompt: Jane traveled 340 miles in 8.0 h.
 Average speed = distance / time = 340 / 8.0 = mph. Conclusion: mph.
Ex 5 (2.2 Review) — Average Velocity on a Number Line Prompt: x goes 12 \rightarrow 124 \rightarrow 98 m in 10 s.
 Displacement = 98 - 12 = m. Average velocity = Δx / Δt = / 10 = m/s (toward +x).