

OXIDATION OF TUNGSTEN AND MOLYBDENUM: THE EFFECTS OF BOUNDARY LAYER TRANSPORT

S. Sharafat and N. M. Ghoniem

The University of California at Los Angeles (UCLA) Los Angeles, CA. 90095-1597, USA

APEX STUDY GROUP MEETING

UCLA

February 16-19, 1999

1

PRESENTATION OUTLINE

- (1) QUASI-EQUILIBRIUM OXIDATION OF W AND Mo.
- (2) BOUNDARY LAYER TRANSPORT MODEL.
- (3) TEMPERATURE LIMITS FOR W.
- (4) TEMPERATURE LIMITS FOR Mo.

QUASI-EQUILIBRIUM TREATMENT OF HETEROGENEOUS REACTIONS

@ SURFACE IMPINGEMENT RATE OF OXYGEN:

$$Z_{O_2} = P_{O_2} \sqrt{2 \boldsymbol{p} \, M_{O_2} RT}$$

@ FOR OXYGEN MOLECULES AT A TEMPERATURE T*, THE EQUILIBRATED OXYGEN FLUX IS:

$$\Gamma_{O_2'} = \mathbf{z}_{O_2'} Z_{O_2'}$$

@ W AND Mo ARE DESCRIBED BY:

$$x W(s) + \frac{1}{2} y O_2(g) \Leftrightarrow W_x O_y(g)$$

W AND Mo OXIDES

Tungsten		Molybdenum		
Species	D Hf _{298.15} (kcal/g.mole)	Species	D Hf _{298.15} (kcal/g.mole)	D Sf _{298.15} (cal/g.mole.K)
O(g)	59.559	O(g)	61.3	16
$\mathbf{W} \mathbf{O}(\mathbf{g})$	101.6	Mo O(g)	95	25.5
$WO_2(g)$	18.3	$MoO_{2}\left(g\right)$	11.0	9.0
$W O_3(g)$	-70.0	Mo O ₃ (g)	-80	-15.5
$W_2 O_6 (g)$	-278.2	$Mo_2 O_6 (g)$	-270	-72
$W_3O_8(g)$	-408.7	$Mo_3O_8(g)$	-400	-118
$W_3O_9(g)$	-483.6	$Mo_3O_9(g)$	-463	-132
$W_4O_{12}(g)$	-670.2	$Mo_4O_{12}(g)$	-640	-190

QUASI-EQUILIBRIUM - KINETIC LIMITATION

@ SOLVE FOR:

$$K_{i} = \frac{P_{i}}{(P_{O_{2}})^{y/2}} = \exp(-\Delta G_{i}(T) / RT) \qquad i = 1, 2, ..., N$$

$$P_{O} = \sqrt{P_{O_{2}}} \exp(-\Delta G_{O} / RT)$$

$$P_{O_{2}'} = P_{O_{2}} + P_{O} + \sum_{1}^{N} P_{i}$$

$$P_{O_{2}'} = \mathbf{z}_{O_{2}} Z_{O_{2}} / \sqrt{2\mathbf{p} M_{O_{2}} RT}$$

$$Z_{M_{x}O_{y}} = P_{i} \sqrt{2\mathbf{p} M_{M_{x}O_{y}} RT}$$

$$\mathbf{z}_{O_{2}} = \exp[10.3498 - \frac{2.7607 \times 10^{4}}{T}] \quad , \mathbf{T} (^{0}\mathbf{K})$$

For W

For Mo $z_{o_1} = 3.2 \times 10^4 \times 10^{-1.186 \times 10^4 / T}, T(^{\circ}K)$

EXPERIMENTAL DATA FOR W and Mo AT FIXED Z

@ TOTAL EVAPORATION RATE = $\sum_{i=1}^{n} x.Z_{M_xO_y}$

Experimental Data of W and Mo Oxidation $Z_{02}' = 1.2x10^{17} cm^{-2} s^{-1}$

TOTAL EVAPORATION RATES OF W and Mo AT 1ppm O2

@ TOTAL EVAPORATION RATE = $\sum_{i=1}^{n} x.Z_{M_xO_y}$

Total Evaporation Rate of Tungsten
Based on APEX O₂ Impingment Rates (1 ppm)

Total Evaporation Rate of Molybdenum Based on APEX O₂ Impingment Rates (1ppm)

TOTAL EVAPORATION RATES OF W and Mo AT 1ppb O2

@ TOTAL EVAPORATION RATE =
$$\sum_{i=1}^{n} x.Z_{M_xO_y}$$

Total Evaporation Rate of Tungsten Based on APEX O₂ Impingment Rates (1 ppb)

Total Evaporation Rate of Molybdenum Based on APEX O₂ Impingment Rates (1ppb)

BOUNDARY LAYER TRANSPORT MODEL

@@ SURFACE KINETIC RATE

$$\frac{dX_K}{dt} = A_1 k_K | Y_S - Y_B \emptyset = \frac{1}{R_K} | Y_S - Y_B \emptyset$$

@@ BOUNDARY DIFFUSION RATE

$$\frac{dX_D}{dt} = A_2 k_m \sqrt{\frac{Y_B - Y_{\infty}}{P_t}} = \frac{1}{R_B} |Y_B - Y_{\infty}|$$

@@ SOLVE FOR
$$\frac{dX_D}{dt} = \frac{dX_K}{dt}$$
 TO OBTAIN Y_B.

@@ FINAL EVAPORATION RATE: $\frac{dX}{dt} = \frac{Y_S - Y_{\infty}}{R_K + R_B} = f \times \frac{dX_K^*}{dt}$

@@ WHERE (f) IS A BOUNDARY LAYER FACTOR, AND $\frac{dX_K^*}{dt}$ IS THE KINETIC RATE WITHOUT THE BOUNDARY LAYER.

@@ THE BOUNDARY LAYER "RESISTANCE" IS GIVEN BY:

$$R_B \cong \frac{P_t}{r_g V S t_m f_b}$$
, where the Stanton #

 $St_m = 0.0296 \text{ Re}^{-0.2} Sc_i^{-0.4}$, and the Schmidt #

 $Sc_i = 0.145 M_i^{0.556}$ and $f_b \approx 1$ is a "blowing" factor

@@ AND THE KINETIC "RESISTANCE" IS GIVEN BY:

$$R_{Ki} = \sqrt{\frac{2pRT_S}{M_i}}$$

11

EFFECT OF BOUNDARY LAYER RESISTANCES ON EVAPORATION RATES (1ppm O₂)

Total Evaporation Rate of Tungsten Based on APEX O₂ Impingment Rates (1 ppm)

Total Evaporation Rate of Moly Based on APEX O₂ Impingment Rates (1 ppm)

EVAPORATION RATES OF W and Mo INCLUDING BOUNDARY LAYER RESISTANCES (1ppm & 1ppb O₂)

Total Evaporation Rate of Tungsten Including the Effects of Layer Resistances at 1 ppm and 1 ppb O₂

Total Evaporation Rate of Moly Including the Effects of Layer Resistances at 1 ppm and 1 ppb O₂

CONCLUSIONS

- (1) BASED ON EXPERIMENTAL DATA, THE IMPINGMENT RATE OF O₂ WAS ESTIMATED TO ESTIMATE STATIC EVAPORATION RATES.
- (2) THE BOUNDARY LAYER RESISTANCE TO OXIDE PRODUCT TRANSPORT IS SIGNIFICANT AT THE HIGH HELIUM PRESSURES OF THE APEX STUDY
- (3) BASED ON THE BL-EFFECT THE EVAPORATION RATE IS ~0.1 mm/yr FOR Mo and ~0.01 mm/yr FOR W at 1 ppm O₂ AT 1500°C.
- (4) AT 2000°C THE EVAPORATION RATE IS $\sim 10^{-3}$ mm/yr FOR BOTH Mo and W at 1 ppb O_2 .
- (5) FOR AN OXIDATION RATE LIMIT OF 0.1 mm/yr THE OPERATING TEMPERATURE FOR Mo IS 1500°C AND FOR W IT IS 1600°C.

14