

MEDICIÓN E INSTRUMENTACIÓN

FILTROS

Roberto Giovanni Ramírez-Chavarría

RRamirezC@iingen.unam.mx

Facultad de Ingeniería, UNAM

Semestre 2020-2

Filtrar: Atenuar la amplitud de una señal

Reducir el ancho de banda al estrictamente necesario

"Eliminar" señales no deseadas

 v_i : Señal de entrada

 v_o : Señal filtrada

F: Filtro -> Dispositivo electrónico que discrimina las señales que bloquea o deja pasar en función de la frecuencia.

 El estudio de los filtros se hace en el dominio de la frecuencia con diagramas de bode.

TIPOS DE FILTROS

De acuerdo con la banda de frecuencias que un filtro deja pasar, hay 4 tipos

1. Filtro Pasa Bajas (Low-pass filter)

Pone un límite superior (frecuencia de corte) a la máxima frecuencia que deja pasar

TIPOS DE FILTROS

De acuerdo con la banda de frecuencias que un filtro deja pasar, hay 4 tipos

2. Filtro Pasa Altas (High-pass filter)

Limita la mínima frecuencia (frecuencia de corte) que deja pasar

TIPOS DE FILTROS

De acuerdo con la banda de frecuencias que un filtro deja pasar, hay 4 tipos

3. Filtro Pasa Banda (Band-pass filter)

Pone una cota tanto por arriba como por debajo de las frecuencias que deja pasar.

^{*} Hay 2 frecuencias de corte, mínima y máxima

TIPOS DE FILTROS

De acuerdo con la banda de frecuencias que un filtro deja pasar, hay 4 tipos

4. Rechaza Banda (Band-stop filter)

Las señales en esta banda (entre las frecuencias de corte) "se rechazan".

Evita el paso de señales entre dos determinadas frecuencias.

* Hay 2 frecuencias de corte, mínima y máxima

Funciones de filtrado

En la práctica, un **no es ideal** y se expresa matemáticamente mediante una función de transferencia.

Clasificación de los filtros

Para diseñar y construir tenemos la siguiente clasificación

Clasificación de los filtros

Para diseñar y construir tenemos la siguiente clasificación

FILTROS ANALÓGICOS

Se construyen con circuitos y dispositivos eléctricos y electrónicos

- a) Pasivos: Emplean únicamente componentes pasivos -resistores, capacitores y/o inductores.-
- b) Activos: Emplean componentes pasivos y circuitos amplificadores.

Clasificación de los filtros

Para diseñar y construir tenemos la siguiente clasificación

FILTROS DIGITALES

Se implementan mediante algoritmos computacionales

- a) FIR: Tienen estructura no recursiva, la salida depende únicamente de la entrada presente.
- b) Activos: Tienen estructura recursiva, la salida depende de la entrada presente y de las anteriores (TIEMPO REAL).

Clasificación de los filtros

NOS ENFOCAREMOS EN FILTROS ANALÓGICOS-PASIVOS

Filtros analógicos pasivos

Función de transferencia

$$G(s) = \frac{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0}{a_m s^m + a_{m-1} s^{m-1} + \dots + a_0} = \frac{\text{Polinomio B de grado } n}{\text{Polinomio A de grado } m}$$

Un filtro es entonces:

- Un sistema continuo
- Lineal e invariente en el tiempo (LTI)
- Estable si en la FT m > n

ORDEN DE UN FILTRO:

Grado (m) del polinomio del d denominador de la FT.

Mayor orden, mejor desempeño!

Filtros analógicos pasivos

Función de transferencia

$$G(s) = \frac{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0}{a_m s^m + a_{m-1} s^{m-1} + \dots + a_0} = \frac{\text{Polinomio B de grado } n}{\text{Polinomio A de grado } m} \qquad ; \quad s = j\omega$$

ORDEN DE UN FILTRO:

Ejemplo:

1)
$$G(s) = \frac{1}{1+0.1s}$$
 FILTRO DE PRIMER ORDEN

2)
$$G(s) = \frac{s+0.7}{s^2+7s+3}$$
 FILTRO DE SEGUNDO ORDEN

3)
$$G(s) = \frac{10}{s^3 + 0.14s^2 + 3s}$$
 FILTRO DE TERCER ORDEN

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

Directamente podemos obtener la función de transferencia del circuito sabiendo que:

- ✓ El voltaje de salida es el voltaje del capacitor
- \checkmark Y el voltaje de entrada es v_i
- ✓ La impedancia de un resistor es $Z_R = R$ y de un capacitor es $Z_C = 1/j\omega C$
- ✓ La corriente I en el circuito es la misma en R y C

$$G(s) = \frac{v_o}{v_i} = \frac{I \cdot Z_C}{I \cdot Z_R + I \cdot Z_C}$$

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

Directamente podemos obtener la función de transferencia del circuito sabiendo que:

- Factorizando y simplificando a I

$$G(s) = \frac{v_o}{v_i} = \frac{Z_C}{Z_R + Z_C}$$

Sustituyendo las impedancias y simplificando

$$G(s) = \frac{v_o}{v_i} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{\frac{1}{sC}}{\frac{sRC + 1}{sC}} = \frac{1}{1 + sRC}$$

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

Además, sabemos que $s = j\omega$. Donde ω es la frecuencia en rad/s

$$G(j\omega) = \frac{1}{1 + j\omega RC}$$

Analicemos esta última expresión en dos casos:

1. Sí
$$\omega \to 0$$
, es decir **Bajas Frecuencias** $G(\omega \to 0) = \frac{1}{1+0} = 1$ La función de transferencia es igual a 1

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

Además, sabemos que $s = j\omega$. Donde ω es la frecuencia en rad/s

$$G(j\omega) = \frac{1}{1 + j\omega RC}$$

Analicemos esta última expresión en dos casos:

2. Sí
$$\omega \to \infty$$
, es decir Altas Frecuencias $G(\omega \to \infty) = \frac{1}{1+\infty} = 0$ La función de transferencia es igual a cero

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

Además, sabemos que $s = j\omega$. Donde ω es la frecuencia en rad/s

$$G(j\omega) = \frac{1}{1 + j\omega RC}$$

Si graficamos los dos casos anteriores

El circuito solo deja pasar bajas frecuencias

$$G(\omega \to 0) = 1$$

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

v_o Filtro pasa bajas

Otra forma de analizar para saber que tenemos un filtro pasa bajas

El voltaje de salida v_o se mide en el capacitor cuya reactancia (impedancia) es

$$X_C = \frac{1}{j\omega C}$$

1. En bajas frecuencias $\omega \to 0$

$$X_C = \frac{1}{0} = \infty$$

La impedancia es "infinita", no circula corriente y $v_0 = v_i$

El capacitor es un circuito abierto

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

v_o Filtro pasa bajas

Otra forma de analizar para saber que tenemos un filtro pasa bajas

El voltaje de salida v_o se mide en el capacitor cuya reactancia (impedancia) es

$$X_C = \frac{1}{j\omega C}$$

2. En altas frecuencias $\omega \to \infty$

$$X_C = \frac{1}{\infty} = 0$$

La impedancia es "nula", sí circula corriente y : $v_o = IX_C = 0$

El capacitor es un corto circuito

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

v_o Filtro pasa bajas

CARACTERÍSTICAS:

Potencia de salida

$$P = 20 \log \left(\frac{v_o}{v_i}\right) \quad \text{con} \quad \frac{v_o}{v_i} = 1/\sqrt{2}$$

$$P = 20 \log \left(\frac{1}{\sqrt{2}}\right) = -3 dB$$

La potencia de la señal a la salida decae 3 decibeles

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

v_o Filtro pasa bajas

CARACTERÍSTICAS:

Frecuencia de corte
De la expresión anterior y de la magnitud de la función de transferencia tenemos que

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{(\omega RC)^2 + 1}}$$

Igualando:

$$(\omega RC)^2 = 1$$

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

v_o Filtro pasa bajas

CARACTERÍSTICAS:

Frecuencia de corte
De la expresión anterior y de la magnitud de la función de transferencia tenemos que

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{(\omega RC)^2 + 1}}$$

Despejando ω :

$$\omega = \frac{1}{RC} \left[\frac{\text{rad}}{\text{s}} \right] \rightarrow f = \frac{1}{2\pi RC} \text{ [Hz]}$$

Diseño y análisis de filtros analógicos pasivos

Consideremos el siguiente circuito

v_o Filtro pasa bajas

CARACTERÍSTICAS:

Frecuencia de corte

$$\omega = \frac{1}{RC} \left[\frac{\text{rad}}{\text{s}} \right] \rightarrow f = \frac{1}{2\pi RC} [\text{Hz}]$$

La frecuencia de corte está dada por el capacitor y la resistencia

Ej. La frecuencia de corte sí $R=1~k\Omega$ y $C=1\mu F$ es $\omega=1000~[\mathrm{rad/s}]$ ó $f=159.15~[\mathrm{Hz}]$

Diseño y análisis de filtros analógicos pasivos

Veamos otro circuito (la posición de R y C ahora cambiaron)

Directamente podemos obtener la función de transferencia del circuito sabiendo que:

- ✓ El voltaje de salida es el voltaje del capacitor
- \checkmark Y el voltaje de entrada es v_i
- ✓ La impedancia de un resistor es $Z_R = R$ y de un capacitor es $Z_C = 1/j\omega C$
- ✓ La corriente I en el circuito es la misma en R y C

$$G(s) = \frac{v_o}{v_i} = \frac{I \cdot Z_R}{I \cdot Z_R + I \cdot Z_C}$$

Diseño y análisis de filtros analógicos pasivos

Veamos otro circuito (la posición de R y C ahora cambiaron)

Directamente podemos obtener la función de transferencia del circuito sabiendo que:

- Factorizando y simplificando a I

$$G(s) = \frac{v_o}{v_i} = \frac{Z_C}{Z_R + Z_C}$$

Sustituyendo las impedancias y simplificando

$$G(s) = \frac{v_o}{v_i} = \frac{R}{R + \frac{1}{sC}} = \frac{sRC}{1 + sRC}$$

Diseño y análisis de filtros analógicos pasivos

Veamos otro circuito (la posición de R y C ahora cambiaron)

Además, sabemos que $s = j\omega$. Donde ω es la frecuencia en rad/s

$$G(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

Analicemos esta última expresión en dos casos:

1. Sí
$$\omega \to 0$$
, es decir **Bajas Frecuencias** $G(\omega \to 0) = \frac{0}{1+0} = 0$ La función de transferencia es igual a 0

Diseño y análisis de filtros analógicos pasivos

Veamos otro circuito (la posición de R y C ahora cambiaron)

Además, sabemos que $s = j\omega$. Donde ω es la frecuencia en rad/s

$$G(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

Analicemos esta última expresión en dos casos:

2. Sí
$$\omega \to \infty$$
, es decir **Altas Frecuencias** $G(\omega \to \infty) = \frac{\infty}{\infty} = 1$ La función de transferencia es igual a uno

Diseño y análisis de filtros analógicos pasivos

Veamos otro circuito (la posición de R y C ahora cambiaron)

Además, sabemos que $s = j\omega$. Donde ω es la frecuencia en rad/s

$$G(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

Si graficamos los dos casos anteriores

El circuito solo deja pasar altas frecuencias

$$G(\omega \to \infty) = 1$$

Diseño y análisis de filtros analógicos pasivos

Veamos otro circuito (la posición de R y C ahora cambiaron)

 $I \rightleftharpoons_R v_o$ Filtro pasa altas

Otra forma de analizar para saber que tenemos un filtro pasa altas

El voltaje de salida v_o está determinado por el capacitor cuya reactancia (impedancia) es

$$X_C = \frac{1}{j\omega C}$$

1. En bajas frecuencias $\omega \rightarrow 0$

$$X_C = \frac{1}{0} = \infty$$

La impedancia es "infinita", no circula corriente y :: $v_o = 0$

El capacitor es un circuito abierto

Diseño y análisis de filtros analógicos pasivos

Veamos otro circuito (la posición de R y C ahora cambiaron)

 $\downarrow_{R} v_{o}$ Filtro pasa altas

Otra forma de analizar para saber que tenemos un filtro pasa altas

El voltaje de salida v_o está determinado por el capacitor cuya reactancia (impedancia) es

$$X_C = \frac{1}{j\omega C}$$

2. En altas frecuencias $\omega \rightarrow \infty$

$$X_C = \frac{1}{\infty} = 0$$

La impedancia es "nula", y : $v_o = v_i$

El capacitor es un corto circuito

Filtros de orden > 1

Los filtros anteriores fueron pasivos de primer orden (polinomio del denominador)

✓ El orden del filtro está dado por tantos pares RC hay en el circuito llamadas etapas

Por ej. Este es un filtro de pasa altas de **segundo** orden!

Filtros de orden > 1

Los filtros anteriores fueron pasivos de primer orden (polinomio del denominador)

- ✓ Teóricamente podemos diseñar filtros de orden n. Sin embargo, su complejidad de análisis aumenta.
- ✓ Para diseñar filtros de orden superior podemos recurrir a "plantillas" ya establecidas.
- ✓ Las plantillas son polinomios que aproximan correctamente el orden del filtro.
- ✓ Los coeficientes del polinomio ya están calculados y existen varias aproximaciones

Butterworth, Chebyshev, Elíptica, Bessel, etc

Filtros pasa banda y rechaza banda

Se construyen combinando filtros pasa bajas y pasa altas

Filtro pasa banda

 Se calculan dos frecuencias de corte, una por cada etapa, igual a como lo hicimos anteriormente

Filtros pasa banda y rechaza banda

Se construyen combinando filtros pasa bajas y pasa altas

Filtro rechaza banda

Se calculan dos frecuencias de corte, una por cada etapa, igual a como lo hicimos anteriormente