Math, Problem Set #5, Convex Analysis

Elysa Strunin July 21, 2017

7.1

Prove: If S is a nonempty subset of V, then $\operatorname{conv}(S)$ is convex . S is a nonempty subset of V $\operatorname{conv}(S)$ is the set of all finite sums of the form $\lambda_1\mathbf{x_1}+\ldots+\lambda_k\mathbf{x_k},\mathbf{x_i}\in S, k\in N$ where $\lambda_i\geq 0$ and $\lambda_1+\ldots+\lambda_k=1$ Consider the subset of all sums of 2-element combinations: i.e., $\lambda_1\mathbf{x_1}+\ldots+\lambda_k\mathbf{x_k}$ where $\lambda_n=0$ for all but 2 of the elements, " x_i " and " x_j " \Rightarrow Given λ_i , then $\lambda_j=1-\lambda_i\Rightarrow\operatorname{conv}(S)$ is convex

7.2

i

```
Take hyperplane P in V, where P = \{\mathbf{x} \in V | \langle \mathbf{a}, \mathbf{x} \rangle = b\}

\forall \mathbf{x}, \mathbf{y} \in V, \langle \mathbf{a}, \mathbf{x} \rangle = b and \langle \mathbf{a}, \mathbf{y} \rangle = b

Show: \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in V \ \forall \ 0 \le \lambda \le 1

\langle \mathbf{a}, \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \rangle

= \langle \mathbf{a}, \lambda \mathbf{x} \rangle + \langle \mathbf{a}, \mathbf{y} \rangle + \langle \mathbf{a}, -\lambda \mathbf{y} \rangle

= \lambda \langle \mathbf{a}, \mathbf{x} \rangle + b - \lambda \langle \mathbf{a}, \mathbf{x} \rangle

= \lambda b + b - \lambda b = b
```

ii

The proof of convexity for a half space is analogous; just replace "=" with "\le "

7.4

For nonempty, convex, closed C: $\mathbf{p} \in C$ is $proj_C \mathbf{x}$, if $||\mathbf{x} - \mathbf{p}|| \le ||\mathbf{x} - \mathbf{y}|| \ \forall \mathbf{y} \in C$

i

Rewritten as all inner products:

Show:
$$\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} \rangle + \langle \mathbf{p} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

RHS = $\langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{p} \rangle + 2\langle \mathbf{p}, \mathbf{p} \rangle - 2\langle \mathbf{p}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + 2\langle \mathbf{x}, \mathbf{p} \rangle - 2\langle \mathbf{x}, \mathbf{y} \rangle - 2\langle \mathbf{p}, \mathbf{p} \rangle + 2\langle \mathbf{p}, \mathbf{y} \rangle$
= $\langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$

If (7.14) holds, then all RHS terms of the below equation are ≥ 0 . (All squared norms are ≥ 0). $||\mathbf{x} - \mathbf{y}||^2 = ||\mathbf{x} - \mathbf{p}||^2 + ||\mathbf{p} - \mathbf{y}||^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$ $\Rightarrow ||\mathbf{x} - \mathbf{y}||^2 > ||\mathbf{x} - \mathbf{p}||^2 \ \forall \mathbf{y} \neq \mathbf{p}$ Take square root: $||\mathbf{x} - \mathbf{y}|| > ||\mathbf{x} - \mathbf{p}||$

iii

Use (i) to write
$$||\mathbf{x} - \mathbf{z}||^2 = ||\mathbf{x} - \mathbf{p}||^2 + ||\mathbf{p} - \lambda \mathbf{y} - \mathbf{p} + \lambda \mathbf{p}||^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \lambda \mathbf{y} - \mathbf{p} + \lambda \mathbf{p}\rangle$$

 $= ||\mathbf{x} - \mathbf{p}||^2 + ||\lambda(\mathbf{p} - \mathbf{y})||^2 + 2\langle \mathbf{x} - \mathbf{p}, \lambda(\mathbf{p} - \mathbf{y})\rangle$
 $= ||\mathbf{x} - \mathbf{p}||^2 + \lambda^2||\mathbf{p} - \mathbf{y}||^2 + 2\lambda\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y}\rangle$

iv

Have $||\mathbf{x} - \mathbf{z}|| \ge ||\mathbf{x} - \mathbf{p}||$ from definition of projection Rewrite (7.15): $||\mathbf{x} - \mathbf{z}||^2 - ||\mathbf{x} - \mathbf{p}||^2 = 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 ||\mathbf{y} - \mathbf{p}||^2$ $||\mathbf{x} - \mathbf{z}||^2 - ||\mathbf{x} - \mathbf{p}||^2 \ge 0$ because definition of projection $\Rightarrow 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 ||\mathbf{y} - \mathbf{p}||^2 \ge 0$ Divide by λ : $2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda ||\mathbf{y} - \mathbf{p}||^2 \ge 0$

Overall proof

If $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \geq 0$, then $\mathbf{p} \in C$ is $proj_C \mathbf{x}$: (7.14) and (i) \Rightarrow (ii) (definition of projection) If $\mathbf{p} \in C$ is $proj_C \mathbf{x}$, then $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \geq 0$: (7.15) \Rightarrow (iv) Consider $\lambda = 0$; Clear that $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \geq 0$ to maintain the inequality in (iv)

7.6

 $f: R^n \longrightarrow R$ is a convex function $\Rightarrow \forall \mathbf{x_1}, \mathbf{x_2} \in R^n$: $f(\lambda \mathbf{x_1} + (1 - \lambda) \mathbf{x_2}) \leq \lambda f(\mathbf{x_1}) + (1 - \lambda) f(\mathbf{x_2})$ Consider set $J = \{\mathbf{x} \in R^n | f(\mathbf{x}) \leq c\} \subset R^n$ Have $f(\mathbf{x_1}) \leq c, f(\mathbf{x_2}) \leq c \ \forall \mathbf{x_1}, \mathbf{x_2} \in J$ Substitute these bounds into the convex function inequality: $f(\lambda \mathbf{x_1} + (1 - \lambda) \mathbf{x_2}) \leq \lambda c + (1 - \lambda) c = c$ $\Rightarrow \forall \mathbf{x_1}, \mathbf{x_2} \in J, \ \lambda \mathbf{x_1} + (1 - \lambda) \mathbf{x_2} \in J$ $\Rightarrow J$ is a convex set

7.7

 $f(\mathbf{x}) = \sum_{i=1}^{k} \lambda_i f_i(\mathbf{x}) \text{ is convex under the stated conditions:}$ Because each f_i is convex, $\forall \mathbf{x_1}, \mathbf{x_2} \in C$ and for $0 \le \lambda \le 1$: $f(\lambda \mathbf{x_1} + (1 - \lambda) \mathbf{x_2}) = \sum_{i=1}^{k} \lambda_i f_i(\lambda \mathbf{x_1} + (1 - \lambda) \mathbf{x_2})$ $\leq \sum_{i=1}^{k} \lambda_i [\lambda f_i(\mathbf{x_1}) + (1 - \lambda) f_i(\mathbf{x_2})] = \lambda [\sum_{i=1}^{k} \lambda_i f_i(\mathbf{x_1})] + (1 - \lambda) [\sum_{i=1}^{k} \lambda_i f_i(\mathbf{x_2})]$ $\Rightarrow f \text{ is convex}$

7.13

```
If f: R^n \longrightarrow R is convex and bounded above, f is constant: Suppose that f is not constant i.e., \exists \mathbf{x}, \mathbf{y} s.t. f(\mathbf{x}) < f(\mathbf{y})
Function g(t) = f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) is convex, with f(\mathbf{x}) = g(0) < f(\mathbf{y}) = g(1)
Jensen's Inequality: g(1) \leq \frac{t-1}{t}g(0) + \frac{1}{t}g(t) \ \forall t > 1
\Rightarrow g(t) \geq tg(1) - (t-1)g(0) = g(0) + t(g(1) - g(0))
\Rightarrow g increases unbounded as t \longrightarrow \infty, which contradicts boundedness of f
\Rightarrow f is constant
```

7.20

```
Convex \Rightarrow \forall \mathbf{x_1}, \mathbf{x_2} \in R^n \text{ and } 0 \leq \lambda \leq 1,

Have f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) \leq \lambda f(\mathbf{x_1}) + (1 - \lambda)f(\mathbf{x_2})

and -f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) \leq -\lambda f(\mathbf{x_1}) + (\lambda - 1)f(\mathbf{x_2})

\Rightarrow f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) \geq \lambda f(\mathbf{x_1}) + (1 - \lambda)f(\mathbf{x_2})

\Rightarrow f(\lambda \mathbf{x_1} + (1 - \lambda)\mathbf{x_2}) = \lambda f(\mathbf{x_1}) + (1 - \lambda)f(\mathbf{x_2})

\Rightarrow f \text{ is affine}
```

7.21

```
If \mathbf{x}* is a minimizer of f\Rightarrow\mathbf{x}* is a minimizer of \phi\circ f(\mathbf{x}*): \mathbf{x}* is a minimizer of f\Rightarrow Df(\mathbf{x}*)(\mathbf{y}-\mathbf{x}*)\geq 0, \ \forall \mathbf{y}\in\Omega \phi is strictly increasing \Rightarrow D\phi(f(\mathbf{x}*))>0 So D\phi(f(\mathbf{x}*))Df(\mathbf{x}*)(\mathbf{y}-\mathbf{x}*)\geq 0, \ \forall \mathbf{y}\in\Omega \Rightarrow \mathbf{x}* is a minimizer of \phi\circ f(\mathbf{x}*) If \mathbf{x}* is a minimizer of \phi\circ f(\mathbf{x}*)\Rightarrow \mathbf{x}* is a minimizer of f:\mathbf{x}* is a minimizer of f:\mathbf{x}*
```