Problems on statistics and data analysis (MVComp2)

lecturer: Björn Malte Schäfer head tutor: Alessio Spurio Mancini summer term 2016

Problem sheet 7

To be handed in during the exercise group on 20.June.2016

1. combining measurements (10 points)

If you combine independent measurements by multiplying their likelihoods, $\mathcal{L} = \mathcal{L}_1 \mathcal{L}_2$, why would that imply that the Fisher-matrices add, $F_{\mu\nu} = F_{\mu\nu}^{(1)} + F_{\mu\nu}^{(2)}$? Why do the errors decrease if one has more data?

2. invariance of statistical errors (10 points)

Why is the magnitude of statistical errors of model parameters independent if you fit to a linear combination of data points instead to the data points directly? Would the errors be identical if you choose a different system of units?

3. generalised fit of a polynomial (10 points)

Imagine that you've got n data points y_i at positions x_i , each with a Gaussian error σ_i . The data points originate from a polynomial model of the form $y(x) = \sum_{\alpha=0}^{m} a_{\alpha} x^{\alpha}$, where obviously $n \gg m$. Please

- (a) formulate a χ^2 -functional for the fitting problem,
- (b) derive a linear system of equations by using the minimum conditions $\partial_{\alpha}\chi^2 = 0$,
- (c) write this system in a matrix-vector-notation,
- (d) formulate the coefficients as moments including a weighting with the errors σ_i ,
- (e) invert the linear system for getting the model parameters a_{α} ,
- (f) solve the special case m = 0: What's the solution for a_0 ?
- (g) What happens if n = m?

4. posterior distribution (10 points)

An experiment for measuring two parameters is characterised by a 2×2 Fisher-matrix $F_{\mu\nu}$.

- (a) Please formulate the Gaussian posterior distribution $p(x_{\mu}, x_{\nu}) dx_{\mu} dx_{\nu}$ in terms of the Fishermatrix, if no prior is assumed.
- (b) Determine the correlation coefficient $r_{\mu\nu}$ for the posterior Gaussian distribution.
- (c) Carry out a marginalisation of $p(x_{\mu}, x_{\nu}) dx_{\mu} dx_{\nu}$ over x_{ν} deriving the variance σ_m^2 , and

- (d) a conditionalisation with the condition $x_v \equiv 0$ determining σ_c^2 , and give expressions for σ_m^2 and σ_c^2 in terms of the Fisher-matrix entries.
- (e) In what way would you interpret the eigenvalues of the Fisher-matrix?

5. estimating (10 points)

In physics one often encounters order of magnitude-estimates involving a product of many numbers, for instance in the *Drake equation* describing the number of alien civilisations in the Milky Way. Why do estimates have smaller relative statistical errors if there are more factors in the relation (each with a similar uncertainty)?

6. python exercise (10 points)

Write a python script which generates artifical data following the model y(x) = ax + b including Gaussian noise with variance σ^2 .

- (a) Fit the model to the artifical data a large number of times and derive the distributions p(a)da and p(b)db of the model parameters,
- (b) as well as their correlection coefficient r_{ab} . Plot as well the cloud of points (a, b) and see if its orientation corresponds with the correlation coefficient.
- (c) What happens to the distributions p(a)da and p(b)db if you decrease the noise σ^2 ?
- (d) Illustrate that the width of the distributions for *a* and *b* changes if you change the *x*-range: Why is that the case?