Choose the good metric

TASK: Classification of skin cancer tumors (based on images)

 Decide between two models A and B to predict y ∈ {malignant, benign}

	Precision	Recall
Model A	93%	85%
Model B	86%	95%

- **Precision:** Of examples classified as malignant, what % are actually malignant?
- Recall: What % of malignant examples are actually classified as malignant?
- F1-score: **Avarage** of P and R : $\frac{2}{1/P+1/R}$

What a good evaluation metrics is depends on your problem

Changing evaluation metrics

- Metric: Classification error = 1- classification accuracy
 - Model A: 5%
 - Model B: 8%
- Model A A seems to do better but you prefer model B since it is doing better on malignant melanoma tumors which you are especially interested in.
- What to do?
 - · Change the metrics

$$\frac{1}{\sum_{i=1}^{m} \mathbf{w}_{i}} \sum_{i=1}^{m} \mathbf{w}_{i} \mathbf{1}_{\{\widehat{y}_{i} \neq y_{i}\}}, \quad \mathbf{w}_{i} = \begin{cases} 10 & \text{if malignant melanoma} \\ 1 & \text{otherwise} \end{cases}$$

• and/or your validation/test dataset distribution (by including more malignant melanoma examples).

Changing evaluation metrics

- How do we make sure that we train our model towards this metric?
- If we have reweighed the metric, we can do the same for our training objective.

Metric :=
$$\frac{1}{\sum_{i=1}^{m} \mathbf{w}_{i}} \sum_{i=1}^{m} \mathbf{w}_{i} \mathbf{1}_{\{\widehat{y}_{i} \neq y_{i}\}}, \text{ Loss Function} := \frac{1}{\sum_{i=1}^{m} \mathbf{w}_{i}} \sum_{i=1}^{m} \mathbf{w}_{i} L(\widehat{y}_{i} \neq y_{i})$$

Key point:

- -1 Define your problem by choosing metric and validation/test dataset.
- -2 Adapt your learning algorithm to do well on your metric

Imbalanced Dataset

Class imbalance problem in multiple areas: telecommunication managements, bioinformatics, fraud detection, medical diagnosis, ...

Accuracy is not the good metric to look at: why?

• A survey on Resampling approach

Drawback

leave out important instances that provide important differences between the two classes.

Drawback

lead to model overfitting by introducing duplicate instances, drawing from a pool of instances that is already small.

Hybrid approach

• Combining Oversampling and Undersampling

SMOTE (Synthetic Minority Oversampling Technique)

 Creates new instances of the minority class by creating convex combinations of neighboring instances.

Edited Nearest Neighbor (ENN)

Edited Nearest Neighbor undersampling of the majority class is done by removing points whose class label differs from a majority of its k nearest neighbor.

Combine SMOTE and ENN: SMOTE-ENN

