Projective sets

Alessandro Andretta

Dipartimento di Matematica Università di Torino

A. Andretta (Torino) Projective sets AA 2024–2025 1/1

Let X be a separable metrizable space. For $n\geq 1$, let $\mathbf{\Sigma}_{n+1}^1(X)$ be the collection of all $A\subseteq X$ for which there is a Polish space Y and a continuous $f\colon Y\to X$ such that A=f[B] for some $B\in\mathbf{\Pi}_n^1(Y)$. Moreover we set

$$\Pi_{n+1}^{1}(X) = \{X \setminus A \mid A \in \Sigma_{n+1}^{1}(X)\} = \check{\Sigma}_{n+1}^{1}(X)
\Delta_{n+1}^{1}(X) = \Sigma_{n+1}^{1}(X) \cap \Pi_{n+1}^{1}(X) = \Delta_{\Sigma_{n+1}^{1}}(X).$$

A set $A\subseteq X$ is called **projective** if it belongs to $\Sigma^1_n(X)$ for some $n\geq 1$; the collection of all projective subsets of X is denoted by $\mathbf{Proj}(X)$.

Proposition 3.3.2

Let X be a Polish space. Then for every $n \ge 1$

$$\Sigma_n^1(X), \Pi_n^1(X) \subseteq \Delta_{n+1}^1(X) \subseteq \Sigma_{n+1}^1(X), \Pi_{n+1}^1(X).$$

In particular, $\mathbf{Bor}(X)$ is contained in all these classes.

Proof.

By induction on $n \geq 1$. The inclusion $\Sigma^1_n(X) \subseteq \Sigma^1_{n+1}(X)$ follows from $\mathbf{Bor}(X) \subseteq \Pi^1_1(X)$ in the case n=1, and by the inductive hypothesis $\Pi^1_{n-1}(X) \subseteq \Pi^1_n(X)$ when n>1. The inclusion $\Pi^1_n(X) \subseteq \Sigma^1_{n+1}(X)$ follows from the fact that every set is the image of itself under the identity function.

A. Andretta (Torino) Projective sets AA 2024–2025 3 / 1:

Proposition 3.3.3

Let X be Polish. The pointclasses $\Sigma^1_n(X)$ and $\Pi^1_n(X)$ are closed under countable unions, countable intersections, and Borel preimages (hence they are boldface pointclasses). Moreover $\Sigma^1_n(X)$ is also closed under Borel images. Therefore, $\Delta^1_n(X)$ is a σ -algebra and Δ^1_n is closed under Borel preimages (hence a boldface pointclass).

It can be shown ([Kec95, Exercise 37.8]) that if X is uncountable, then $\Delta_{n+1}^1(X)$ is not the smallest σ -algebra containing $\Sigma_n^1(X)$.

Proof

By induction on $n \geq 1$. The case n=1 corresponds to analytic, co-analytic, and bi-analytic sets, so we may assume n>1. It is enough to consider the case of $\mathbf{\Sigma}_n^1(X)$. Let $A_k \in \mathbf{\Sigma}_n^1(X)$, let Y_k Polish, $f_k \colon Y_k \to X$ continuous such that $A_k = f[B_k]$ for some $B_k \in \mathbf{\Pi}_{n-1}^1(Y_k)$, towards proving $\bigcup_k A_k, \bigcap_k A_k \in \mathbf{\Sigma}_n^1(X)$. Let $Y = \bigoplus_k Y_k$ and $B = \bigcup_k B_k$. Since $\mathbf{\Pi}_{n-1}^1$ is a boldface pointclass and $\mathbf{\Pi}_{n-1}^1(Y)$ is closed under countable unions, it follows that $B \in \mathbf{\Pi}_{n-1}^1(Y)$. Then $\bigcup_k A_k = f[B] \in \mathbf{\Sigma}_n^1(X)$, where $f = \bigcup_k f_k \colon Y \to X$ continuous.

(continues)

A. Andretta (Torino) Projective sets AA 2024–2025 4/1

Proof (continued)

Consider the closed subspace $F \subseteq \prod_{k \in \omega} Y_k$ defined by

$$(y_k)_k \in F \Leftrightarrow \forall k, k' (f_k(y_k) = f_{k'}(y_{k'})).$$

Let $B=F\cap\prod_k B_k=\bigcap_k \pi_k^{-1}[B_k]$, where $\pi_k\colon F\to Y_k$ is the restriction to F of the projection. By the closure properties of Π^1_{n-1} , we have $B\in\Pi^1_{n-1}(F)$. Finally, the map $f=f_0\circ\pi_0$ is continuous and such that $\bigcap_k A_k=f[B]\in\mathbf{\Sigma}^1_n(X)$.

Suppose $f\colon X\to Y$ is Borel, X and Y Polish, and $A\in \Sigma^1_n(X)$ and $B\in \Sigma^1_n(Y)$, towards proving $f^{-1}[B]\in \Sigma^1_n(X)$ and $f[A]\in \Sigma^1_n(Y)$. Let us prove the former. The set

$$f^{-1}[B] = \{ x \in X \mid \exists y \in Y ((x, y) \in \operatorname{graph}(f) \cap X \times B) \}$$

is in $\Sigma^1_n(X)$, since $\operatorname{graph}(f)$ is $\Delta^1_1(X\times Y)\subseteq \Sigma^1_n(X\times Y)$, Σ^1_n is closed under projections and intersections, and $X\times B\in \Sigma^1_n(X\times Y)$.

(continues)

A. Andretta (Torino) Projective sets AA 2024–2025 5 / 12

Proof (continued).

We must prove that $X\times B\in \mathbf{\Sigma}^1_n(X\times Y)$, where $B\in \mathbf{\Sigma}^1_n(Y)$. Let $C\in \mathbf{\Pi}^1_{n-1}(Z)$ with Z Polish and $f\colon Z\to Y$ is continuous and f[C]=B. Then $\mathrm{id}_X\times f\colon X\times Z\to X\times Y$ maps $X\times C$ onto $X\times B$. But $X\times C=\pi_Z^{-1}[C]$ is in $\mathbf{\Pi}^0_{n-1}$ because by inductive hypothesis $\mathbf{\Pi}^0_{n-1}$ is closed under continuous preimages, hence we are done.

The proof that if $A \in \Sigma^1_n(X)$ then $f[A] \in \Sigma^1_n(Y)$ is similar.

Remark 3.3.4

As for analytic sets, if $Y \subseteq X$ are Polish, then $\Sigma_n^1(Y) = \Sigma_n^1(X) \upharpoonright Y$ (for any $n \ge 1$), and similarly for Π_n^1 and Δ_n^1 . Indeed, the same if true when $Y \in \Sigma_n^1(X)$ with X Polish. It follows that if Y is a Polish subspace (or even just a projective subset) of the Polish space X, then $\operatorname{\mathbf{Proj}}(Y) = \operatorname{\mathbf{Proj}}(X) \upharpoonright Y$.

A. Andretta (Torino) Projective sets AA 2024–2025 6 / 17

Proposition 3.3.5

Let X be a Polish space. For every nonzero $n \in \omega$ and $A \subseteq X$ the following are equivalent:

- $\bullet \ A \in \mathbf{\Sigma}^1_{n+1}(X);$
- ② A=f[B], where $f\colon Y\to X$ is a Borel function with Y Polish and $B\in \mathbf{\Pi}^1_n(Y)$;
- **3** A = f[B], where $f \colon \mathbb{N}^{\mathbb{N}} \to X$ is a Borel function and $B \in \mathbf{\Pi}_n^1(\mathbb{N}^{\mathbb{N}})$;
- **3** $A = \pi_X[C]$ for some Polish space Y and $C \in \mathbf{\Pi}_n^1(X \times Y)$.

Moreover, in parts 3–4 we can replace $\mathbb{N}^{\mathbb{N}}$ by any uncountable Polish space Z.

Proof.

① \Rightarrow ②, ② \Rightarrow ⑤, and ⑥ \Rightarrow ① are obvious. Moreover, ② \Rightarrow ③ because every nonempty Polish Y is a continuous image of $\mathbb{N}^{\mathbb{N}}$ and $\mathbf{\Pi}_n^1$ is a boldface pointclass. ③ \Rightarrow ③: If A, fB are as in ③, let $C = \{(x,y) \in X \times \mathbb{N}^{\mathbb{N}} \mid (y,x) \in \operatorname{graph}(f) \land y \in B\}$.

The additional part follows from the fact that Z and $\mathbb{N}^\mathbb{N}$ are Borel isomorphic by and that Π^1_n

A. Andretta (Torino) Projective sets AA 2024–2025 7/13

If Γ is a boldface pointclass, then $\operatorname{proj}(\Gamma)(X) = \{\pi_X[C] \mid C \in \Gamma(X \times \mathbb{N}^{\mathbb{N}})\}.$

Since every Polish space is a continuous image of $\mathbb{N}^{\mathbb{N}}$, then $A \in \operatorname{proj}(\Gamma)(X)$ iff there is some Polish space Z and some $C \in \Gamma(X \times Z)$ such that $A = \pi_X[C]$.

 $\operatorname{proj}(\mathbf{\Gamma})$ is a boldface pointclass

Proof.

If $A = \pi_Y[C]$ for some $C \in \Gamma(Y \times \mathbb{N}^{\mathbb{N}})$ and $f : X \to Y$ is continuous, then $f^{-1}[A] = \pi_X[C']$ where $C' = (f \times \mathrm{id}_{\mathbb{N}^{\mathbb{N}}})^{-1}[C] \in \Gamma(X \times \mathbb{N}^{\mathbb{N}})$.

Lemma 3.3.7

Let $\Gamma \supseteq \Pi^0_1$ be a boldface pointclass closed under intersections. Let X be a Polish space, and assume that there is a Y-universal set $\mathcal V$ for $\Gamma(X \times \mathbb N^\mathbb N)$ (where Y is any Polish space). Then there is a Y-universal set $\mathcal U$ for $\operatorname{proj}(\Gamma)$.

Proof.

Let $\mathcal{U}=\pi_{Y\times X}(\mathcal{V})$. Then $\mathcal{U}\in\operatorname{proj}(\Gamma)(Y\times X)$, and $\mathcal{U}_{(y)}\in\operatorname{proj}(\Gamma)(X)$ for all $y\in Y$, since $\operatorname{proj}(X)$ is a boldface pointclass and $\mathcal{U}_{(y)}$ is the preimage of \mathcal{U} under the continuous function $x\mapsto (y,x)$. Conversely, given $A\in\operatorname{proj}(\Gamma)(X)$ let $C\in\Gamma(X\times\mathbb{N}^\mathbb{N})$ be such that $A=\pi_X[C]$, and let $y\in Y$ be such that $C=\mathcal{V}_{(y)}$. Then $A=\mathcal{U}_{(y)}$, since for every $x\in X$

$$x \in A \Leftrightarrow \exists z ((x, z) \in C) \Leftrightarrow \exists z ((y, x, z) \in \mathcal{V}) \Leftrightarrow (y, x) \in \mathcal{U} \Leftrightarrow x \in \mathcal{U}_{(y)}.$$

A. Andretta (Torino) Projective sets AA 2024–2025 9 / 12

Theorem

Let X be a Polish space. Then for every $n \ge 1$ and every uncountable Polish space Y there is a Y-universal set for $\Sigma_n^1(X)$ (and hence also for $\Pi_n^1(X)$). Theorefore, if X is infinite then

$$|\mathbf{\Sigma}_n^1(X)| = |\mathbf{\Pi}_n^1(X)| = |\mathbf{\Delta}_n^1(X)| = |\mathbf{Proj}(X)| = 2^{\aleph_0}.$$

Moreover, if X is uncountable then $\Sigma^1_n(X) \neq \Pi^1_n(X)$, neither $\Sigma^1_n(X)$ nor $\Pi^1_n(X)$ are closed under complements, $\Pi^1_n(X)$ is not closed under projections (equivalently, under continuous or Borel images),

$$\Sigma_n^1(X) \subset \Delta_{n+1}^1(X) \subset \Sigma_{n+1}^1(X),$$

and the same for $\Pi^1_{n(+1)}(X)$ in place of $\Sigma^1_{n(+1)}(X)$.

Proof.

By induction on $n \ge 1$, using Theorem 3.1.15, Lemma 3.3.7, and the fact that $\Sigma^1_{n+1} = \operatorname{proj}(\Pi^1_n)$ by Proposition 3.3.5.

A. Andretta (Torino) Projective sets AA 2024–2025 10 / 17

Using the fact that existential quantifications correspond to projections we can extend the Tarski-Kuratowski algorithm by adding the following "rules":

- if $\psi(x,y)$ defines a Borel subset of $X \times Y$, then $\exists y \, \psi(x,y)$ and $\forall y \, \psi(x,y)$ define, respectively, a Σ_1^1 and a Π_1^1 subset of X;
- if $\psi(x,y)$ defines a Σ^1_n subset of $X\times Y$ for some $n\geq 1$, then $\exists y\,\psi(x,y)$ and $\forall y\,\psi(x,y)$ define, respectively, a Σ^1_n and a Π^1_{n+1} subset of X;
- if $\psi(x,y)$ defines a Π^1_n subset of $X\times Y$ for some $n\geq 1$, then $\exists y\,\psi(x,y)$ and $\forall y\,\psi(x,y)$ define, respectively, a Σ^1_{n+1} and a Π^1_n subset of X;
- if $\psi(x,y)$ defines a Δ^1_n subset of $X\times Y$ for some $n\geq 1$, then $\exists y\,\psi(x,y)$ and $\forall y\,\psi(x,y)$ define, respectively, a Σ^1_{n+1} and a Π^1_{n+1} subset of X.

A subset A of a Polish space is projective if and only if it can be defined by a formula ϕ whose bounded variables range over Polish (or standard Borel) spaces and whose atomic formulas define Borel (or even just) projective sets. In fact, the Tarski-Kuratowski algorithm shows that there is a level-by-level correspondence between the topological complexity of A and the complexity of the formula ϕ which defines it.

A. Andretta (Torino) Projective sets AA 2024–2025 11 / 1:

Example (Woodin)

 $\mathrm{MV} = \{f \in C([0;1]) \mid f \text{ satisfies the Mean Value Theorem}\}$, where f satisfies the Mean Value Theorem if for all a < b in [0;1] there is c with a < c < b such that f'(c) exists and $f'(c) = \frac{f(b) - f(a)}{b - a}$. Then MV is a $\mathbf{\Pi}_2^1$ subset of C([0;1]) (EXERCISE!), and it can be shown that indeed it is $\mathbf{\Pi}_2^1$ -complete (hence it is not a $\mathbf{\Sigma}_2^1$ set).

Example (Becker)

Let $\mathcal{U} \subseteq C([0;1])^{\mathbb{N}} \times C([0;1])$ be given by: $((f_n)_n, f) \in \mathcal{U}$ iff there is a subsequence $(f_{n_i})_i$ converging pointwise to f.

Then \mathcal{U} is $C([0;1])^{\mathbb{N}}$ -universal for $\Sigma^1_2(C([0;1]))$, and therefore it is a Σ^1_2 -complete set.

Example

Say that $(f_n)_n \in C([0;1])^{\mathbb{N}}$ is **quasidense** in C([0;1]) if every $h \in C([0;1])$ is the pointwise limit of a subsequence of $(f_n)_n$. Then the set of quasidense $(f_n)_n \in C([0;1])^{\mathbb{N}}$ is Π_3^1 -complete.

A. Andretta (Torino) Projective sets AA 2024–2025 12 / 1