Machine Learning Review

講者:Isaac

Outline

- ▶ K-Nearest Neighbor
- Logistic regression
- Naive Bayes
- Support Vector Machine

K-Nearest Neighbor

What's K-Nearest Neighbor

- A non-parametric method used for classification and regression
- Also called kNN
 - "k" mean how many neighbors should be considered to help classification/regression

- k=1:
 - Belongs to square class
- k=3
 - Belongs to triangle class
- k=7
 - Belongs to square class

kNN intuitive concept

K-Nearest Neighbor

2.1

3.1

4. vote from labels

guess it is yellow class

How to Define Distance

- ▶ LI distance (Manhattan distance)
- ▶ L2 distance (Euclidean distance)

Euclidean distance =
$$\sqrt{(5-1)^2+(4-1)^2} = 5$$

Manhattan distance = $|5-1|+|4-1| = 7$

How to choose K?

- ▶ K is small
 - sensitive to noise points
- K is large
 - neighborhood may include points from other classes
 - smoother boundary
 - If too large, machine always predict majority class

http://vision.stanford.edu/teaching/cs23 I n-demos/knn/

- I-NN
 - Voronoi Diagram

Model:
$$h_{\theta} = \frac{1}{1 + e^{-\theta^T X}}$$
 where $\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_n \end{bmatrix}$, $X = \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}$

Learned Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost Function: $C(\theta_0, \theta_1, ..., \theta_n)$

$$= \frac{1}{2m} \sum_{i=1}^{m} y^{(i)} \log(h^{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h^{\theta}(x^{(i)}))$$

- Sigmoid function
 - Output is [0, 1]

$$y = \frac{1}{1 + e^{-x}}$$

Sigmoid function

- Actually, cost function in logistic regression is cross-entropy
 - note that cross-entropy can be used when each of output is probability distribution

- Information
 - ▶ $log\left(\frac{1}{p_i}\right)$ where p_i is probability of an event

Sun rises in the east tomorrow

It will rain tomorrow in Taiwan

Which is more informative?

Entropy V.S. Cross-entropy

- Entropy
 - Expected value(mean) of information contained in each message
- Entropy can be seen as index of uncertainty
 - Bigger mean more chaos
- Cross-entropy
 - Measurement on the difference between two probability distribution
 - Different distribution apply on entropy
 - Cross-entropy is greater than entropy

$$H(y) = \sum_{i} y_i \log\left(\frac{1}{y_i}\right) = -\sum_{i} y_i \log(y_i) \qquad H(y, \hat{y}) = -\sum_{i} y_i \log(\hat{y}_i)$$

Entropy

Cross-entropy

Probability distribution I

Entropy on distribution I = $1/3 * \log(3) + 1/2 * \log(2) + 1/6 * \log(6)$

Probability distribution 2

Entropy on distribution 2 = $1/4 * \log(4) + 1/2 * \log(2) + 1/4 * \log(4)$

Cross-entropy on distribution I over distribution 2 = 1/3 * log(4) + 1/2 * log(2) + 1/6 * log(4)

Cross-entropy on distribution 2 over distribution I = 1/4 * log(3) + 1/2 * log(2) + 1/4 * log(6)

```
Entropy on distribution I Entropy on distribution 2
= 1/3 * \log(3) + 1/2 * \log(2) + 1/6 * \log(6) = 1/4 * \log(4) + 1/2 * \log(2) + 1/4 * \log(4)
= 0.439 = 0.452
Cross-entropy on distribution I over distribution 2
= 1/3 * \log(4) + 1/2 * \log(2) + 1/6 * \log(4) = 0.456
Cross-entropy on distribution 2 over distribution I
= 1/4 * \log(3) + 1/2 * \log(2) + 1/4 * \log(6) = 0.464
```

- Cross-entropy is greater than entropy
 Cross-entropy on distribution I over 2 > Entropy on distribution I
 Cross-entropy on distribution 2 over I > Entropy on distribution 2
- If two distribution become closer
 - Value of cross-entropy is closer to entropy

- Learning in logistic regression
 - Use gradient descent(same as linear regression)

Naive Bayes

What's Naive Bayes

- A family of probabilistic classifiers based on applying Bayes' theorem
- Naive Bayes classifiers are highly scalable
 - require parameters linear in the number of variables features
- Common used in document classification

Thomas Bayes

probability basic

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

independent probability

Two event are independent if

$$P(A \cap B) = P(A) * P(B)$$

Example

• Given a dice, if we toss the dice twice, what's probability that the first toss is even number and the second toss is odd number

 $P(first \ toss \ is \ even \ number \cap second \ toss \ is \ odd \ number)$ = $\frac{1}{2} * \frac{1}{2}$

 $= P(first\ toss\ is\ even\ number)*P(second\ toss\ is\ odd\ number)$

tossing the dice each time is independent event

Naive Bayes

Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A) * P(A) + P(B|\bar{A}) * P(\bar{A})}$$

Bayes' Theorem

$$P(A \cap B) = \frac{\Delta}{\Box}$$

$$P(B|A) \cdot P(A) = \frac{\Delta}{\bigcirc} \times \frac{\bigcirc}{\square} = \frac{\Delta}{\square}$$

$$P(A|B) \cdot P(B) = \frac{\Delta}{\Box} \times \frac{\Box}{\Box} = \frac{\Delta}{\Box}$$

$$P(B|A) \cdot P(A) = P(A \cap B)$$

$$\Rightarrow P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$\Rightarrow P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$$

- There are 4000 phones in total.
- ▶ There are 2000 phones in BI box and 10% of them are broken
- ▶ There are 500 phones in B2 box and 20% of them are broken
- ▶ There are 500 phones in B3 box and 30% of them are broken
- ▶ There are 1000 phones in B4 box and 40% of them are broken

If we randomly choose a broken phone, what's the probability that this phone is from box B3?

$$P(B_1) = P(B_2) = P(B_3) = P(B_4) = \frac{1}{4}$$

$$\begin{split} P(B_3|A) &= \frac{P(B_3 \cap A)}{P(A)} \\ &= \frac{P(A|B_3)P(B_3)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3) + P(A|B_4)P(B_4)} \\ &= \frac{30\% \cdot \frac{1}{4}}{10\% \cdot \frac{1}{4} + 20\% \cdot \frac{1}{4} + 30\% \cdot \frac{1}{4} + 40\% \cdot \frac{1}{4}} \\ &= \frac{0.075}{0.025 + 0.05 + 0.075 + 0.1} \\ &= \frac{0.075}{0.25} \\ &= 30\% \end{split}$$

How Naive Bayes Classifier Work

Assume

there are three attributes A1, A2, A3 and two class C0 and C1

$$p(C_0|A_1, A_2, A_3) > p(C_1|A_1, A_2, A_3)$$

Guess it is class 0

$$p(C_0|A_1, A_2, A_3) < p(C_1|A_1, A_2, A_3)$$

Guess it is class I

AI	A2	A 3	Class
I	0	I	I
0	I	I	0
I	I	0	0
I	I	I	0
I	0	0	

How Naive Bayes Classifier Work

$$p(C_0|A_1, A_2, A_3) = \frac{p(A_1, A_2, A_3|C_0) * p(C_0)}{p(A_1, A_2, A_3)}$$

Assume attributes are independent

$$p(C_0|A_1, A_2, A_3) = \frac{p(A_1|C_0) * p(A_2|C_0) * p(A_3|C_0) * p(C_0)}{p(A_1, A_2, A_3)}$$

$$p(C_1|A_1, A_2, A_3) = \frac{p(A_1, A_2, A_3|C_1) * p(C_1)}{p(A_1, A_2, A_3)}$$

Assume attributes are independent

$$p(C_1|A_1, A_2, A_3) = \frac{p(A_1|C_1) * p(A_2|C_1) * p(A_3|C_1) * p(C_1)}{p(A_1, A_2, A_3)}$$

How Naive Bayes Classifier Work

Assume

there are three attributes A1, A2, A3 and two class C0 and C1

$$p(A_1|C_0) * p(A_2|C_0) * p(A_3|C_0) * p(C_0) > p(A_1|C_1) * p(A_2|C_1) * p(A_3|C_1) * p(C_1)$$

Guess it is class 0

$$p(A_1|C_0) * p(A_2|C_0) * p(A_3|C_0) * p(C_0) < p(A_1|C_1) * p(A_2|C_1) * p(A_3|C_1) * p(C_1)$$

Guess it is class I

Goal: predict if the text is about sport

Text	Category
"A great game"	Sports
"The election was over"	Not sports
"Very clean match"	Sports
"A clean but forgettable game"	Sports
"It was a close election"	Not sports

If we want to predict if sentence "a very close game" is sports or not sports, we need to compare the following two term

p(*sports*|*a very close game*)

p(Not sports|a very close game)

 $p(a \ very \ close \ game \ | sports) * p(sports)p(a \ very \ close \ game \ | Not \ sports) \ p(Not \ sports)$

p(*sports*|*a very close game*)

p(Not sports | a very close game)

use previous concept, we can compare the following term instead of origin one

p(a | sports) * p(very | sports) * p(close | sports) * p(game | sports) * p(sports)

p(a | Not sports) * p(very | Not sports) * p(close | Not sports) * p(game | Not sports) * p(Not sports)

```
p(a |sports) * p(very |sports) * p(close |sports) * p(game|sports) * p(sports)
p(a |Not sports) * p(very |Not sports) * p(close |Not sports)
     * p(game|Not sports) * p(Not sports)
```

How to calculate each term?

Text	Category
"A great game"	Sports
"The election was over"	Not sports
"Very clean match"	Sports
"A clean but forgettable game"	Sports
"It was a close election"	Not sports

$$p(sports) = \frac{3}{5}$$

$$p(Not sports) = \frac{2}{5}$$

How to calculate p(word|Sports)? The most intuitive way is like the following

$$p(game|Sports) = \frac{2}{11}$$

We don't want this!!!

$$p(close | Sports) = 0$$

Text	Category
"A great game"	Sports
"The election was over"	Not sports
"Very clean match"	Sports
"A clean but forgettable game"	Sports
"It was a close election"	Not sports

$$p(sports) = \frac{3}{5}$$

$$p(Not sports) = \frac{2}{5}$$

In order to deal with zero count problem, we use Laplace smoothing method to calculate p(word|Sports)

Text	Category
"A great game"	Sports
"The election was over"	Not sports
"Very clean match"	Sports
"A clean but forgettable game"	Sports
"It was a close election"	Not sports

$$p(sports) = \frac{3}{5}$$

$$p(Not sports) = \frac{2}{5}$$

$$p(game|Sports) = \frac{2+1}{11+14}$$

add one to every count

add # of different words

Multinomial Naive Bayes

Text	Category
"A great game"	Sports
"The election was over"	Not sports
"Very clean match"	Sports
"A clean but forgettable game"	Sports
"It was a close election"	Not sports

$$p(sports) = \frac{3}{5}$$

$$p(Not sports) = \frac{2}{5}$$

Word	P(word sports)	P(word not sports)
a	$\frac{2+1}{11+14}$	$\frac{1+1}{9+14}$
very	$\frac{1+1}{11+14}$	$\frac{0+1}{9+14}$
close	$\frac{0+1}{11+14}$	$\frac{1+1}{9+14}$
game	$\frac{2+1}{11+14}$	$\frac{0+1}{9+14}$

```
p(a | sports) * p(very | sports) * p(close | sports) * p(game | sports) * p(sports)
= 0.0000276
p(a | Not sports) * p(very | Not sports) * p(close | Not sports) * p(game | Not sports)
* p(Not sports)
= 0.00000572
```

So, our classifier guess "a very nice game" is sports category

Different probability assumption

Text	Category		
"A great game"	Sports		
"The election was over"	ction was over" Not sports		
"Very clean match"	match" Sports		
"A clean but forgettable game"	Sports		
"It was a close election"	Not sports		

$$p(game|Sports) = \frac{2+1}{11+14}$$

Why we calculate condition probability like this?

Different probability assumption

Actually, we can assume conditional probability as different probability distribution

 $p(attribute 1|class 1) = N(attribute 1|\mu,\sigma)$ where N is gaussian distribution

Assume conditional probability as gaussian distribution

Height	Weight	Shoe size	Gender
6.00	180	12	Male
5.92	190	11	Male
5.58	170	12	Male
5.92	165	10	Male
5.00	100	6	Female
5.50	150	8	Female
5.42	130	7	Female
5.75	150	9	Female

$$p(male) = p(female) = \frac{1}{2}$$

$$p(height|male) = N(height|\mu_{hm}, \sigma_{hm})$$

$$p(weight|male) = N(weight|\mu_{wm}, \sigma_{wm})$$

$$p(shoe|male) = N(shoe|\mu_{sm}, \sigma_{sm})$$

$$p(height|female) = N(height|\mu_{hf}, \sigma_{hf})$$

$$p(weight|female) = N(weight|\mu_{wf}, \sigma_{wf})$$

$$p(shoe|female) = N(shoe|\mu_{sf}, \sigma_{sf})$$

```
p(height|male) = N(height|\mu_{hm}, \sigma_{hm})
p(weight|male) = N(weight|\mu_{wm}, \sigma_{wm})
p(shoe|male) = N(shoe|\mu_{sm}, \sigma_{sm})
p(height|female) = N(height|\mu_{hf}, \sigma_{hf})
p(weight|female) = N(weight|\mu_{wf}, \sigma_{wf})
p(shoe|female) = N(shoe|\mu_{sf}, \sigma_{sf})
```

	height mean	height variance	weight mean	weight variance	shoe size mean	shoe size variance
male	$\mu_{hm}=5.855$	$\sigma_{hm}^2=.0350$	$\mu_{wm}=176.25$	$\sigma_{wm}^2=122.9$	$\mu_{sm}=11.25$	$\sigma_{sm}^2=.9167$
female	$\mu_{hf}=5.418$	$\sigma_{hf}^2=.0972$	$\mu_{wf}=132.5$	$\sigma_{wf}^2=558.3$	$\mu_{sf}=7.5$	$\sigma_{sf}^2=1.667$

If a sample with height = 6, weight=130, and shoe=8, predict if it is male or female?

```
p(male \mid height, weight, shoe) \propto p(male) \ p(height \mid male) \ p(weight \mid male) \ p(shoe \mid male) \\ \propto p(male) \ \mathcal{N}(height \mid \mu_{hm}, \sigma_{hm}) \ \mathcal{N}(weight \mid \mu_{wm}, \sigma_{wm}) \ \mathcal{N}(shoe \mid \mu_{sm}, \sigma_{sm}) \\ \propto \frac{1}{2} \ \mathcal{N}(6 \mid 5.855, \sqrt{.0350}) \ \mathcal{N}(130 \mid 176.25, \sqrt{122.9}) \ \mathcal{N}(8 \mid 11.25, \sqrt{.9167}) \\ = .5 \times 1.579 \times 5.988 \cdot 10^{-6} \times 1.311 \cdot 10^{-3} \\ = 6.120 \cdot 10^{-9} \\ p(female \mid height, weight, shoe) \propto p(female) \ p(height \mid female) \ p(weight \mid female) \ p(shoe \mid female) \\ \propto p(female) \ \mathcal{N}(height \mid \mu_{hf}, \sigma_{hf}) \ \mathcal{N}(weight \mid \mu_{wf}, \sigma_{wf}) \ \mathcal{N}(shoe \mid \mu_{sf}, \sigma_{sf}) \\ \propto \frac{1}{2} \ \mathcal{N}(6 \mid 5.418, \sqrt{.0972}) \ \mathcal{N}(130 \mid 132.5, \sqrt{558.3}) \ \mathcal{N}(8 \mid 7.5, \sqrt{1.667}) \\ = .5 \times 2.235 \cdot 10^{-1} \times 1.679 \cdot 10^{-2} \times 2.867 \cdot 10^{-1} \\ = 5.378 \cdot 10^{-4} \\ \end{cases}
```

Support Vector Machine

What's Support Vector Machine

- support vector machines (SVM) are supervised learning models
- Linear SVM find a hyperplane that separate data with maximum margin

- H₁ does not separate the classes
- H₂ does, but only with a small margin
- H₃ separates them with the maximum margin

What's Support Vector

support vectors are points that affect hyperplane with maximum margin

What SVM do Choose the one with large margin

How to calculate margin/distance?

What's margin/distance between hyperplane 2x - y + 2z = -5 and point (2, 0, 0)

change all stuffs on one side

$$2x - y + 2z + 5 = 0$$

calculate distance

$$\frac{|2*2 - 0 - 2*0 + 5|}{\sqrt{2^2 + (-1)^2 + 2^2}} = 3$$

How to calculate margin/distance?

Any Hyperplane in N-dimension can model

$$w^T x - b = 0$$

$$w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

 What's distance between the following 5-D hyperplane and point (2, 3, 4, I, I)

$$H: w^{T}x - b = 0 \text{ where } w = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 3 \\ 1 \end{bmatrix} \text{ and } b = -5$$

change all stuffs on one side

$$w^T x - b = 0$$

$$w = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 3 \\ 1 \end{bmatrix} and b = -5$$

calculate distance

$$\frac{|1*2+(-1)*3+2*4+3*1+1*1+5|}{\sqrt{1^2+(-1)^2+2^2+3^2+1^2}}=4$$

$$\{x_i, y_i\}, i = 1, \dots, n$$

$$x_i \in R^d, y^i \in \{+1, -1\}$$

$$\uparrow$$

$$label$$

Assume

support hyperplane(black) is $f(x_{black}) = w^T x_{black} - b = 1$

support hyperplane(white) is $f(x_{white}) = w^T x_{white} - b = -1$

$$f(x) = w^{T}x - b = 0$$

$$if f(x_{i}) = w^{T}x_{i} - b < 0$$

$$f(x) = w^{T}x - b > 0$$

$$f(x) = w^{T}x - b < 0$$

$$f(x) = w^{T}x - b < 0$$

Goal(what we want):

$$margin = \frac{|w^T x_{black} - b|}{||w||} + \frac{|w^T x_{white} - b|}{||w||} = \frac{2}{||w||}$$

Note:

$$f(x_{black}) = w^{T}x_{black} - b = 1$$

$$f(x_{white}) = w^{T}x_{white} - b = -1$$

Constrain:

$$w^T x_i - b \le -1 \quad \forall y_i = -1$$

$$w^T x_i - b \ge -1 \quad \forall y_i = +1$$

combine

$$y_i(w^T x_i - b) - 1 \ge 0$$

$$\max \frac{2}{\|w\|}$$
 subject to $y_i(w^Tx_i - b) - 1 \ge 0 \ \forall i$

 $\min \frac{1}{2} ||w||^2$ subject to $y_i(w^T x_i - b) \ge 1 \ \forall i$

What SVM solve in math

$$\min \frac{1}{2} ||w||^2$$

$$subject \ to \ y_i(w^T x_i - b) \ge 1 \ \forall i$$

How to solve actually?

Please reference:

http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM2.pdf

Hard Cost V.S. Soft Cost

Hard Cost

$$\min \frac{1}{2} ||w||^2$$
subject to $y_i(w^T x_i - b) \ge 1 \ \forall i$

Soft Cost

$$\begin{aligned} \min \frac{1}{2} \|w\|^2 + C \sum_{i} \varepsilon_i \\ subject \ to \ y_i(w^T x_i - b) &\geq 1 - \varepsilon_i \\ \varepsilon_i &\geq 0 \ \forall i \end{aligned}$$

Linear VS nonlinear problems

- Usually, data can't be linear separable
 - map data to higher dimension
 - https://www.youtube.com/watch?v=3liCbRZPrZA

$$\Phi : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad \mathbb{R}^2 \to \mathbb{R}^3$$

$$\Phi(\mathbf{x})^\top \Phi(\mathbf{z}) = \begin{pmatrix} x_1^2, x_2^2, \sqrt{2}x_1x_2 \end{pmatrix} \begin{pmatrix} z_1^2 \\ z_2^2 \\ \sqrt{2}z_1z_2 \end{pmatrix}$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1x_2 z_1z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (\mathbf{x}^\top \mathbf{z})^2$$
kernel

 $\min \frac{1}{2} ||w||^2$ subject to $y_i(w^T x_i - b) \ge 1 \ \forall i$

primal problem

$$\max \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i})^{T} x_{j}$$

$$\text{subject to } \alpha_{i} \geq 0 \ \forall i$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0$$

dual problem

$$max \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i})^{T} x_{j}$$

$$subject \ to \ \alpha_{i} \geq 0 \ \forall i$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0$$

$$dual \ problem$$

Common Kernel in SVM

Kernel name

Kernel function

Linear kernel	$K(x,y) = x \times y$
Polynomial kernel	$K(x,y) = (x \times y + 1)^d$
RBF kernel	$K(x,y) = e^{-\gamma \ x-y\ ^2}$

Multi-class in SVM

- If there are k class
 - Method I: one-against-rest(One-vs-All)
 - Make k SVM binary classifier and use m-th of binary SVM predict if the data belong to m-th class
 - Method 2: one-against-one(OvO)
 - Make $\frac{n(n-1)}{2}$ binary classifier (n is # of class) and each of binary SVM predict if the data belong to one of any two class

Multi-class in SVM

(a) 1-vs-1

(b) 1-vs-All