

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION FOR LETTERS PATENT

**Methods and Systems for Synchronizing Visualizations
with Audio Streams**

Inventor(s):
Michael Novak
Chris Feller

ATTORNEY'S DOCKET NO. ms1-786us

1 **TECHNICAL FIELD**

2 This invention relates to methods and systems for synchronizing
3 visualizations with audio streams.

4

5 **BACKGROUND**

6 Today, individuals are able to use their computers to download and play
7 various media content. For example, many companies offer so-called media
8 players that reside on a computer and allow a user to download and experience a
9 variety of media content. For example, users can download media files associated
10 with music and listen to the music via their media player. Users can also
11 download video data and animation data and view these using their media players.

12 One problem associated with prior art media players is they all tend to
13 display different types of media in different ways. For example, some media
14 players are configured to provide a “visualization” when they play audio files. A
15 visualization is typically a piece of software that “reacts” to the audio that is being
16 played by providing a generally changing, often artistic visual display for the user
17 to enjoy. Visualizations are often presented, by the prior art media players, in a
18 window that is different from the media player window or on a different portion of
19 the user’s display. This causes the user to shift their focus away from the media
20 player and to the newly displayed window. In a similar manner, video data or
21 video streams are often provided within yet another different window which is
22 either an entirely new display window to which the user is “flipped”, or is a
23 window located on a different portion of the user’s display. Accordingly, these
24 different windows in different portions of the user’s display all combine for a
25

1 fairly disparate and unorganized user experience. It is always desirable to improve
2 the user's experience.

3 In addition, there are problems associated with prior art visualizations. As
4 an example, consider the following. One of the things that makes visualizations
5 enjoyable and interesting for users is the extent to which they "mirror" or follow
6 the audio being played on the media player. Past visualization technology has led
7 to visualizations that do not mirror or follow the audio as closely as one would
8 like. This leads to things such as a lag in what the user sees after they have heard
9 a particular piece of audio. It would be desirable to improve upon this media
10 player feature.

11 Accordingly, this invention arose out of concerns associated with providing
12 improved media players and user experiences regarding the same.

13

14 **SUMMARY**

15 Methods and systems are described that assist media players in rendering
16 different media types. In some embodiments, a unified rendering area is provided
17 and managed such that multiple different media types are rendered by the media
18 player in the same user interface area. This unified rendering area thus permits
19 different media types to be presented to a user in an integrated and organized
20 manner. An underlying object model promotes the unified rendering area by
21 providing a base rendering object that has properties that are shared among the
22 different media types. Object sub-classes are provided and are each associated
23 with a different media type, and have properties that extend the shared properties
24 of the base rendering object.

In addition, an inventive approach to visualizations is presented that provides better synchronization between a visualization and its associated audio stream. In one embodiment, visualizations are synchronized with an audio stream using a technique that builds and maintains various data structures. Each data structure can maintain data that is associated with a particular audio sample. The maintained data can include a timestamp that is associated with a time when the audio sample is to be rendered. The maintained data can also include various characteristic data that is associated with the audio stream. When a particular audio sample is being rendered, its timestamp is used to locate a data structure having characteristic data. The characteristic data is then used in a visualization rendering process to render a visualization.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is block diagram of a system in which various embodiments can be implemented.

Fig. 2 is a block diagram of an exemplary server computer.

Fig. 3 is a block diagram of an exemplary client computer.

Fig. 4 is a diagram of an exemplary media player user interface (UI) that can be provided in accordance with one embodiment. The UI illustrates a unified rendering area in accordance with one embodiment.

Fig. 5 is a flow diagram that describes steps in a method in accordance with one embodiment.

Fig. 6 is a block diagram that helps to illustrate an object model in accordance with one embodiment.

1 Fig. 7 is a flow diagram that describes steps in a method in accordance with
2 one embodiment.

3 Fig. 8 is a block diagram that illustrates an exemplary system for
4 synchronizing a visualization with audio samples in accordance with one
5 embodiment.

6 Fig. 9 is a block diagram that illustrates exemplary components of a sample
7 pre-processor in accordance with one embodiment.

8 Fig. 10 is a flow diagram that describes steps in a method in accordance
9 with one embodiment.

10 Fig. 11 is a flow diagram that describes steps in a method in accordance
11 with one embodiment.

12 Fig. 12 is a flow diagram that describes steps in a method in accordance
13 with one embodiment.

14 Fig. 13 is a timeline that is useful in understanding aspects of one
15 embodiment.

16 Fig. 14 is a timeline that is useful in understanding aspects of one
17 embodiment.

18 Fig. 15 is a timeline that is useful in understanding aspects of one
19 embodiment.

20

21 **DETAILED DESCRIPTION**

22

Overview

23 Methods and systems are described that assist media players in rendering
24 different media types. In some embodiments, a unified rendering area is provided
25 and managed such that multiple different media types are rendered by the media

1 player in the same user interface area. This unified rendering area thus permits
2 different media types to be presented to a user in an integrated and organized
3 manner. An underlying object model promotes the unified rendering area by
4 providing a base rendering object that has properties that are shared among the
5 different media types. Object sub-classes are provided and are each associated
6 with a different media type, and have properties that extend the shared properties
7 of the base rendering object. In addition, an inventive approach to visualizations
8 is presented that provides better synchronization between a visualization and its
9 associated audio stream.

10

11 Exemplary System

12 Fig. 1 shows exemplary systems and a network, generally at 100, in which
13 the described embodiments can be implemented. The systems can be
14 implemented in connection with any suitable network. In the embodiment shown,
15 the system can be implemented over the public Internet, using the World Wide
16 Web (WWW or Web), and its hyperlinking capabilities. The description herein
17 assumes a general knowledge of technologies relating to the Internet, and
18 specifically of topics relating to file specification, file retrieval, streaming
19 multimedia content, and hyperlinking technology.

20 System 100 includes one or more clients 102 and one or more network
21 servers 104, all of which are connected for data communications over the Internet
22 106. Each client and server can be implemented as a personal computer or a
23 similar computer of the type that is typically referred to as "IBM-compatible."

24 An example of a server computer 104 is illustrated in block form in Fig. 2
25 and includes conventional components such as a data processor 200; volatile and

1 non-volatile primary electronic memory 202; secondary memory 204 such as hard
2 disks and floppy disks or other removable media; network interface components
3 206; display devices interfaces and drivers 208; and other components that are
4 well known. The computer runs an operating system 210 such as the Windows
5 NT operating system. The server can also be configured with a digital rights
6 management module 212 that is programmed to provide and enforce digital rights
7 with respect to multimedia and other content that it sends to clients 102. Such
8 digital rights can include, without limitation, functionalities including encryption,
9 key exchange, license delivery and the like.

10 Network servers 104 and their operating systems can be configured in
11 accordance with known technology, so that they are capable of streaming data
12 connections with clients. The servers include storage components (such as
13 secondary memory 204), on which various data files are stored and formatted
14 appropriately for efficient transmission using known protocols. Compression
15 techniques can be desirably used to make the most efficient use of limited Internet
16 bandwidth.

17 Fig. 3 shows an example of a client computer 102. Various types of clients
18 can be utilized, such as personal computers, palmtop computers, notebook
19 computers, personal organizers, etc. Client computer 104 includes conventional
20 components similar to those of network server 104, including a data processor
21 300; volatile and non-volatile primary electronic memory 301; secondary memory
22 302 such as hard disks and floppy disks or other removable media; network
23 interface components 303; display devices interfaces and drivers 304; audio
24 recording and rendering components 305; and other components as are common in
25 personal computers.

In the case of both network server 104 and client computer 102, the data processors are programmed by means of instructions stored at different times in the various computer-readable storage media of the computers. Programs are typically distributed, for example, on floppy disks or CD-ROMs. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The embodiments described herein can include these various types of computer-readable storage media when such media contain instructions or programs for implementing the described steps in conjunction with a microprocessor or other data processor. The embodiments can also include the computer itself when programmed according to the methods and techniques described below.

For purposes of illustration, programs and program components are shown in Figs. 2 and 3 as discrete blocks within a computer, although it is recognized that such programs and components reside at various times in different storage components of the computer.

Client 102 is desirably configured with a consumer-oriented operating system 306, such as one of Microsoft Corporation's Windows operating systems. In addition, client 102 can run an Internet browser 307, such as Microsoft's Internet Explorer.

Client 102 can also include a multimedia data player or rendering component 308. An exemplary multimedia player is Microsoft's Media Player 7. This software component can be capable of establishing data connections with Internet servers or other servers, and of rendering the multimedia data as audio, video, visualizations, text, HTML and the like.

1 Player 308 can be implemented in any suitable hardware, software,
2 firmware, or combination thereof. In the illustrated and described embodiment, it
3 can be implemented as a standalone software component, as an ActiveX control
4 (ActiveX controls are standard features of programs designed for Windows
5 operating systems), or any other suitable software component.

6 In the illustrated and described embodiment, media player 308 is registered
7 with the operating system so that it is invoked to open certain types of files in
8 response to user requests. In the Windows operating system, such a user request
9 can be made by clicking on an icon or a link that is associated with the file types.
10 For example, when browsing to a Web site that contains links to certain music for
11 purchasing, a user can simply click on a link. When this happens, the media
12 player can be loaded and executed, and the file types can be provided to the media
13 player for processing that is described below in more detail.

14

15 **Exemplary Media Player UI**

16 Fig. 4 shows one exemplary media player user interface (UI) 400 that
17 comprises part of a media player. The media player UI includes a menu 402 that
18 can be used to manage the media player and various media content that can be
19 played on and by the media player. Drop down menus are provided for file
20 management, view management, play management, tools management and help
21 management. In addition, a set of controls 404 are provided that enable a user to
22 pause, stop, rewind, fast forward and adjust the volume of media that is currently
23 playing on the media player.

24 A rendering area or pane 406 is provided in the UI and serves to enable
25 multiple different types of media to be consumed and displayed for the user. The

1 rendering area is highlighted with dashed lines. In the illustrated example, the U2
2 song “Beautiful Day” is playing and is accompanied by some visually pleasing art
3 as well as information concerning the track. In one embodiment, all media types
4 that are capable of being consumed by the media player are rendered in the same
5 rendering area. These media types include, without limitation, audio, video, skins,
6 borders, text, HTML and the like. Skins are discussed in more detail in U.S.
7 Patent Applications Serial Nos. 09/773,446 and 09/773,457, the disclosures of
8 which are incorporated by reference.

9 Having a unified rendering area provides an organized and integrated user
10 experience and overcomes problems associated with prior art media players
11 discussed in the “Background” section above.

12 Fig. 5 is a flow diagram that describes steps in a method of providing a user
13 interface in accordance with one embodiment. The method can be implemented in
14 any suitable hardware, software, firmware or combination thereof. In the
15 described embodiment, the method is implemented in software.

16 Step 500 provides a media player user interface. This step is implemented
17 in software code that presents a user interface to the user when a media player
18 application is loaded and executed. Step 502 provides a unified rendering area in
19 the media player user interface. This unified rendering area is provided for
20 rendering different media types for the user. It provides one common area in
21 which the different media types can be rendered. In one embodiment, all visual
22 media types that are capable of being rendered by the media player are rendered in
23 this area. Step 504 then renders one or more different media types in the unified
24 rendering area.

25

1 Although the method of Fig. 5 can be implemented in any suitable software
2 using any suitable software programming techniques, the illustrated and described
3 method is implemented using a common runtime model that unifies multiple (or
4 all) media type rendering under one common rendering paradigm. In this model,
5 there are different components that render the media associated with the different
6 media types. The media player application, however, hosts all of the different
7 components in the same area. From a user's perspective, then, all of the different
8 types of media are rendered in the same area.

9

10 **Exemplary Object Model**

11 Fig. 6 shows components of an exemplary object model in accordance with
12 one embodiment generally at 600. Object model 600 enables different media
13 types to be rendered in the same rendering area on a media player UI. The object
14 model has shared attributes that all objects support. Individual media type objects
15 have their own special attributes that they support. Examples of these attributes
16 are given below.

17 The object model includes a base object called a "rendering object" 602.
18 Rendering object 602 manages and defines the unified rendering area 406 (Fig. 4)
19 where all of the different media types are rendered. In addition to rendering object
20 602, there are multiple different media type rendering objects that are associated
21 with the different media types that can get rendered the unified rendering area. In
22 the illustrated and described embodiment, these other rendering objects include,
23 without limitation, a skin rendering object 604, a video rendering object 606, an
24 audio rendering object 608, an animation rendering object 610, and an HTML
25 rendering object 612. It should be noted that some media type rendering objects

1 can themselves host a rendering object. For example, skin rendering object 604
2 can host a rendering object within it such that other media types can be rendered
3 within the skin. For example, a skin can host a video rendering object so that
4 video can be rendered within a skin. It is to be appreciated and understood that
5 other rendering objects associated with other media types can be provided.

6 Rendering objects 604-612 are subclasses of the base object 602.
7 Essentially then, in this model, rendering object 602 defines the unified rendering
8 area and each of the individual rendering objects 604-612 define what actually
9 gets rendered in this area. For example, below each of objects 606, 608, and 610
10 is a media player skin 614 having a unified rendering area 406. As can be seen,
11 video rendering object 606 causes video data to be rendered in this area; audio
12 rendering object 608 causes a visualization to be rendered in this area; and
13 animation rendering object 610 causes text to be rendered in this area. All of these
14 different types of media are rendered in the same location.

15 In this model, the media player application can be unaware of the specific
16 media type rendering objects (i.e. objects 604-612) and can know only about the
17 base object 602. When the media player application receives a media type for
18 rendering, it calls the rendering object 602 with the particular type of media. The
19 rendering object ascertains the particular type of media and then calls the
20 appropriate media type rendering object and instructs the object to render the
21 media in the unified rendering area managed by rendering object 602. As an
22 example, consider the following. The media player application receives video
23 data that is to be rendered by the media player application. The application calls
24 the rendering object 602 and informs it that it has received video data. Assume
25 also that the rendering object 602 controls a rectangle that defines the unified

1 rendering area of the UI. The rendering object ascertains the correct media type
2 rendering object to call (here, video rendering object 606), call the object 606, and
3 instructs object 606 to render the media in the rectangle (i.e. the unified rendering
4 area) controlled by the rendering object 602. The video rendering object then
5 renders the video data in the unified rendering area thus providing a UI experience
6 that looks like the one shown by skin 614 directly under video rendering object
7 606.

8

9 Common Runtime Properties

10 In the above object model, multiple media types share common runtime
11 properties. In the described embodiment, all media types share these properties:

13 Attribute	14 Description
clippingColor	Specifies or retrieves the color to clip out from the clippingImage bitmap.
clippingImage	Specifies or retrieves the region to clip the control to.
elementType	Retrieves the type of the element (for instance, BUTTON).
enabled	Specifies or retrieves a value indicating whether the control is enabled or disabled.
height	Specifies or retrieves the height of the control.
horizontalAlignment	Specifies or retrieves the horizontal alignment of the control when the VIEW or parent SUBVIEW is resized.
id	Specifies or retrieves the identifier of a control. Can only be set at design time.
left	Specifies or retrieves the left coordinate of the control.
passThrough	Specifies or retrieves a value indicating whether the control will pass all mouse events through to the control under it.
tabStop	Specifies or retrieves a value indicating whether the control will be in the tabbing order.
top	Specifies or retrieves the top coordinate of the control.
verticalAlignment	Specifies or retrieves the vertical alignment of the control when the VIEW or parent SUBVIEW is resized.
visible	Specifies or retrieves the visibility of the control.
width	Specifies or retrieves the width of the control.
zIndex	Specifies or retrieves the order in which the control is rendered.

1 Examples of video-specific settings that extend these properties for video
2 media types include:

4 Attribute	5 Description
backgroundColor	Specifies or retrieves the background color of the Video control.
cursor	Specifies or retrieves the cursor value that is used when the mouse is over a clickable area of the video.
fullScreen	Specifies or retrieves a value indicating whether the video is displayed in full-screen mode. Can only be set at run time.
maintainAspectRatio	Specifies or retrieves a value indicating whether the video will maintain the aspect ratio when trying to fit within the width and height defined for the control.
shrinkToFit	Specifies or retrieves a value indicating whether the video will shrink to the width and height defined for the Video control.
stretchToFit	Specifies or retrieves a value indicating whether the video will stretch itself to the width and height defined for the Video control.
toolTip	Specifies or retrieves the ToolTip text for the video window.
windowless	Specifies or retrieves a value indicating whether the Video control will be windowed or windowless; that is, whether the entire rectangle of the control will be visible at all times or can be clipped. Can only be set at design time.
zoom	Specifies the percentage by which to scale the video.

13 Examples of audio-specific settings that extend these properties for audio
14 media types include:

17 Attribute	18 Description
allowAll	Specifies or retrieves a value indicating whether to include all the visualizations in the registry.
currentEffect	Specifies or retrieves the current visualization.
currentEffectPresetCount	Retrieves number of available presets for the current visualization.
currentEffectTitle	Retrieves the display title of the current visualization.
currentEffectType	Retrieves the registry name of the current visualization.
currentPreset	Specifies or retrieves the current preset of the current visualization.
currentPresetTitle	Retrieves the title of the current preset of the current visualization.
effectCanGoFullScreen	Retrieves a value indicating whether the current visualization can be displayed full-screen.

1 **Exemplary Method**

2 Fig. 7 is a flow diagram that describes steps in a media rendering method in
3 accordance with one embodiment. The method can be implemented in any
4 suitable hardware, software, firmware, or combination thereof. In the illustrated
5 and described embodiment, the method is implemented in software. This software
6 can comprise part of a media player application program executing on a client
7 computer.

8 Step 700 provides a base rendering object that defines a unified rendering
9 area. The unified rendering area desirably provides an area within which different
10 media types can be rendered. These different media types can comprise any media
11 types that are typically rendered or renderable by a media player. Specific non-
12 limiting examples are given above. Step 702 provides multiple media-type
13 rendering objects that are subclasses of the base rendering objects. These media-
14 type rendering objects share common properties among them, and have their own
15 properties that extend these common properties. In the illustrated example, each
16 media type rendering object is associated with a different type of media. For
17 example, there are media-type rendering objects associated with skins, video,
18 audio (i.e. visualizations), animations, and HTML to name just a few. Each
19 media-type rendering object is programmed to render its associated media type.
20 Some media type rendering objects can also host other rendering objects so that
21 the media associated with the hosted rendering object can be rendered inside a UI
22 provided by the host.

23 Step 704 receives a media type for rendering. This step can be performed
24 by a media player application. The media type can be received from a streaming
25 source such as over a network, or can comprise a media file that is retrieved, for

example, off of the client hard drive. Once the media type is received, step 706 ascertains an associated media type rendering object. In the illustrated example, this step can be implemented by having the media player application call the base rendering object with the media type, whereupon the base rendering object can ascertain the associated media type rendering object. Step 708 then calls the associated media-type rendering object and step 710 instructs the media-type rendering object to render media in the unified rendering area. In the illustrated and described embodiment, these steps are implemented by the base rendering object. Step 712 then renders the media type in the unified rendering area using the media type rendering object.

The above-described object model and method permit multiple different media types to be associated with a common rendering area inside of which all associated media can be rendered. The user interface that is provided by the object model can overcome problems associated with prior art user interfaces by presenting a unified, organized and highly integrated user experience regardless of the type of media that is being rendered.

Visualizations

As noted above, particularly with respect to Fig. 6 and the associated description, one aspect of the media player provides so-called “visualizations.” In the Fig. 6 example, visualizations are provided, at least in part, by the audio rendering object 608, also referred to herein as the “VisHost.” The embodiments described below accurately synchronize a visual representation (i.e. visualization) with an audio waveform that is currently playing on a client computer’s speaker.

Fig. 8 shows one embodiment of a system configured to accurately synchronize a visual representation with an audio waveform generally at 800. System 800 comprises one or more audio sources 802 that provide the audio waveform. The audio sources provide the audio waveform in the form of samples. Any suitable audio source can be employed such as a streaming source or an audio file. In addition, different types of audio samples can be provided from relatively simple 8-bit samples, to somewhat more complex 16-bit samples and the like.

An audio sample preprocessor 804 is provided and performs some different functions. An exemplary audio sample preprocessor is shown in more detail in Fig. 9.

Referring both to Figs. 8 and 9, as the audio samples stream into the preprocessor 804, it builds and maintains a collection of data structures indicated generally at 806. Each audio sample that is to be played by the media player has an associated data structure that contains data that characterizes the audio sample. These data structures are indicated at 806a, 806b, and 806c. The characterizing data is later used to render a visualization that is synchronized with the audio sample when the audio sample is rendered. The preprocessor comprises a timestamp module 900 (Fig. 9) that provides a timestamp for each audio sample. The timestamps for each audio sample are maintained in a sample's data structure (Fig. 9). The timestamp is assigned by the timestamp module to the audio sample based on when the audio sample is calculated to be rendered by the media player. As an aside, timestamps are assigned based on the current rendering time and a consideration of how many additional samples are in the pipeline scheduled for playing. Based on these parameters, a timestamp can be assigned by the timestamp module.

1 Preprocessor 804 also preprocesses each audio sample to provide
2 characterizing data that is to be subsequently used to create a visualization that is
3 associated with each audio sample. In one embodiment, the preprocessor 804
4 comprises a spectrum analyzer module 902 (Fig. 9) that uses a Fast Fourier
5 Transform (FFT) to convert the audio samples from the time domain to the
6 frequency domain. The FFT breaks the audio samples down into a set of 1024
7 frequency values or, as termed in this document, “frequency data.” The frequency
8 data for each audio sample is then maintained in the audio sample’s data structure.
9 In addition to maintaining the frequency data, the preprocessor 804 can include a
10 waveform analysis module 904 that analyzes the audio sample to provide
11 waveform data. The preprocessor 804 can also include a stream state module 906
12 that provides data associated with the state of the audio stream (i.e. paused,
13 stopped, playing, and the like).

14 Referring specifically to Fig. 8, a buffer 808 can be provided to buffer the
15 audio samples in a manner that will be known and appreciated by those of skill in
16 the art. A renderer 810 is provided and represents the component or components
17 that are responsible for actually rendering the audio samples. The renderer can
18 include software as well as hardware, i.e. an audio card.

19 Fig. 8 also shows audio rendering object or VisHost 608. Associated with
20 the audio rendering object are various so-called effects. In the illustrated example,
21 the effects include a dot plane effect, a bar effect, and a ambience effect. The
22 effects are essentially software code that plugs into the audio rendering object 608.
23 Typically, such effects can be provided by third parties that can program various
24 creative visualizations. The effects are responsible for creating a visualization in
25 the unified rendering area 406.

In the illustrated and described embodiment, the audio rendering object operates in the following way to ensure that any visualizations that are rendered in unified rendering area 406 are synchronized to the audio sample that is currently being rendered by renderer 810. The audio rendering object has an associated target frame rate that essentially defines how frequently the unified rendering area is drawn, redrawn or painted. As an example, a target frame rate might be 30 frames per second. Accordingly, 30 times per second, the audio rendering object issues what is known as an invalidation call to whatever object is hosting it. The invalidation call essentially notifies the host that it is to call the audio rendering object with a Draw or Paint command instructing the rendering object 608 to render whatever visualization is to be rendered in the unified rendering area 406. When the audio rendering object 608 receives the Draw or Paint command, it then takes steps to ascertain the preprocessed data that is associated with the currently playing audio sample. Once the audio rendering object has ascertained this preprocessed data, it can issue a call to the appropriate effect, say for example, the dot plane effect, and provide this preprocessed data to the dot plane effect in the form of a parameter that can then be used to render the visualization.

As a specific example of how this can take place, consider the following. When the audio rendering object receives its Draw or Paint call, it calls the audio sample processor 804 to query the processor for data, i.e. frequency data or waveform data associated with the currently playing audio sample. To ascertain what data it should send the audio rendering object 608, the audio sample processor performs a couple of steps. First, it queries the renderer 810 to ascertain the time that is associated with the audio sample that is currently playing. Once the audio sample processor ascertains this time, it searches through the

1 various data structures associated with each of the audio samples to find the data
2 structure with the timestamp nearest the time associated with the currently-playing
3 audio sample. Having located the appropriate data structure, the audio sample
4 preprocessor 804 provides the frequency data and any other data that might be
5 needed to render a visualization to the audio rendering object 608. The audio
6 rendering object then calls the appropriate effect with the frequency data and an
7 area to which it should render (i.e. the unified rendering area 406) and instructs the
8 effect to render in this area. The effect then takes the data that it is provided,
9 incorporates the data into the effect that it is going to render, and renders the
10 appropriate visualization in the given rendering area.

11

12 **Exemplary Visualization Methods**

13 Fig. 10 is a flow diagram that describes steps in a method in accordance
14 with one embodiment. The method can be implemented in any suitable hardware,
15 software, firmware or combination thereof. In the illustrated and described
16 embodiment, the method is implemented in software. One exemplary software
17 system that is capable of implementing the method about to be described is shown
18 and described with respect to Fig. 8. It is to be appreciated and understood that
19 Fig. 8 constitutes but one exemplary software system that can be utilized to
20 implement the method about to be described.

21 Step 1000 receives multiple audio samples. These samples are typically
22 received into an audio sample pipeline that is configured to provide the samples to
23 a renderer that renders the audio samples so a user can listen to them. Step 1002
24 preprocesses the audio samples to provide characterizing data for each sample.
25 Any suitable characterizing data can be provided. One desirable feature of the

characterizing data is that it provides some measure from which a visualization can be rendered. In the above example, this measure was provided in the form of frequency data or wave data. The frequency data was specifically derived using a Fast Fourier Transform. It should be appreciated and understood that characterizing data other than that which is considered “frequency data”, or that which is specifically derived using a Fast Fourier Transform, can be utilized. Step 1004 determines when an audio sample is being rendered. This step can be implemented in any suitable way. In the above example, the audio renderer is called to ascertain the time associated with the currently-playing sample. This step can be implemented in other ways as well. For example, the audio renderer can periodically or continuously make appropriate calls to notify interested objects of the time associated with the currently-playing sample. Step 1006 then uses the rendered audio sample’s characterizing data to provide a visualization. This step is executed in a manner such that it is perceived by the user as occurring simultaneously with the audio rendering that is taking place. This step can be implemented in any suitable way. In the above example, each audio sample’s timestamp is used as an index of sorts. The characterizing data for each audio sample is accessed by ascertaining a time associated with the currently-playing audio sample, and then using the current time as an index into a collection of data structures. Each data structure contains characterizing data for a particular audio sample. Upon finding a data structure with a matching (or comparatively close) timestamp, the characterizing data for the associated data structure can then be used provide a rendered visualization.

1 It is to be appreciated that other indexing schemes can be utilized to ensure
2 that the appropriate characterizing data is used to render a visualization when its
3 associated audio sample is being rendered.

4 Fig. 11 is a flow diagram that describes steps in a method in accordance
5 with one embodiment. The method can be implemented in any suitable hardware,
6 software, firmware or combination thereof. In the illustrated and described
7 embodiment, the method is implemented in software. In particular, the method
8 about to be described is implemented by the system of Fig. 8. To assist the reader,
9 the method has been broken into two portions to include steps that are
10 implemented by audio rendering object 608 and steps that are implemented by
11 audio sample preprocessor 804.

12 Step 1100 issues an invalidation call as described above. Responsive to
13 issuing the invalidation call, step 1102 receives a Paint or Draw call from what
14 ever object is hosting the audio rendering object. Step 1104 then calls, responsive
15 to receiving the Paint or Draw call, the audio sample preprocessor and queries the
16 preprocessor for data characterizing the audio sample that is currently being
17 played. Step 1106 receives the call from the audio rendering object and responsive
18 thereto, queries the audio renders for a time associated with the currently playing
19 audio sample. The audio sample preprocessor then receives the current time and
20 step 1108 searches various data structures associated with the audio samples to
21 find a data structure with an associated timestamp. In the illustrated and described
22 embodiment, this step looks for a data structure having timestamp nearest the time
23 associated with the currently-playing audio sample. Once a data structure is
24 found, step 1110 calls the audio rendering object with characterizing data
25 associated with the corresponding audio sample's data structure. Recall that the

1 data structure can also maintain this characterizing data. Step 1112 receives the
2 call from the audio sample preprocessor. This call includes, as parameters, the
3 characterizing data for the associated audio sample. Step 1114 then calls an
4 associated effect and provides the characterizing data to the effect for rendering.
5 Once the effect has the associated characterizing data, it can render the associated
6 visualization.

7 This process is repeated multiple times per second at an associated frame
8 rate. The result is that a visualization is rendered and synchronized with the audio
9 samples that are currently being played.

10

11 **Throttling**

12 There are instances when visualizations can become computationally
13 expensive to render. Specifically, generating individual frames of some
14 visualizations at a defined frame rate can take more processor cycles than is
15 desirable. This can have adverse effects on the media player application that is
16 executing (as well as other applications) because less processor cycles are left over
17 for it (them) to accomplish other tasks. Accordingly, in one embodiment, the
18 media player application is configured to monitor the visualization process and
19 adjust the rendering process if it appears that the rendering process is taking too
20 much time.

21 Fig. 12 is a flow diagram that describes a visualization monitoring process
22 in accordance with one embodiment. The method can be implemented in any
23 suitable hardware, software, firmware or combination thereof. In the illustrated
24 example, the method is implemented in software. One embodiment of such
25 software can be a media player application that is executing on a client computer.

Step 1200 defines a frame rate at which a visualization is to be rendered. This step can be accomplished as an inherent feature of the media player application. Alternately, the frame rate can be set in some other way. For example, a software designer who designs an effect for rendering a visualization can define the frame rate at which the visualization is to be rendered. Step 1202 sets a threshold associated with the amount of time that is to be spent rendering a visualization frame. This threshold can be set by the software. As an example, consider the following. Assume that step 1200 defines a target frame rate of 30 frames per second. Assume also that step 1202 sets a threshold such that for each visualization frame, only 60% of the time can be spent in the rendering process. For purposes of this discussion and in view of the Fig. 8 example, the rendering process can be considered as starting when, for example, an effect receives a call from the audio rendering object 608 to render its visualization, and ending when the effect returns to the audio rendering object that it has completed its task. Thus, for each second that a frame can be rendered, only 600 ms can actually be spent in the rendering process.

Fig. 13 diagrammatically represents a timeline in one-second increments. For each second, a corresponding threshold has been set and is indicated by the cross-hatching. Thus, for each second, only 60% of the second can be spent in the visualization rendering process. In this example, the threshold corresponds to 600 ms of time.

Referring now to both Figs. 12 and 13, step 1204 monitors the time associated with rendering individual visualization frames. This is diagrammatically represented by the “frame rendering times” that appear above the cross-hatched thresholds in Fig. 13. Notice that for the first frame, a little

more than half of the allotted time has been used in the rendering process. For the second frame, a little less than half of the time has been used in the rendering process. For all of the illustrated frames, the rendering process has occurred within the defined threshold. The monitored rendering times can be maintained in an array for further analysis.

Step 1206 determines whether any of the visualization rendering times exceed the threshold that has been set. If none of the rendering times has exceeded the defined threshold, then step 1208 continues rendering the visualization frames at the defined frame rate. In the Fig. 13 example, since all of the frame rendering times do not exceed the defined threshold, step 1208 would continue to render the visualization at the defined rate.

Consider now Fig. 14. There, the rendering time associated with the first frame has run over the threshold but is still within the one-second time frame. The rendering time for the second frame, however, has taken not only the threshold time and the remainder of the one-second interval, but has extended into the one-second interval allotted for the next frame. Thus, when the effect receives a call to render the third frame of the visualization, it will still be in the process of rendering the second frame so that it is quite likely that the third frame of the visualization will not render properly. Notice also that had the effect been properly called to render the third frame (i.e. had there been no overlap with the second frame), its rendering time would have extended into the time allotted for the next-in-line frame to render. This situation can be problematic to say the least.

Referring again to Fig. 12, if step 1206 determines that the threshold has been exceeded, then step 1210 modifies the frame rate to provide an effective frame rate for rendering the visualization. In the illustrated and described

1 embodiment, this step is accomplished by adjusting the interval at which the effect
2 is called to render the visualization.

3 Consider, for example, Fig. 15. There, an initial call interval is represented
4 below the illustrated time line. When the second frame is rendered, the rendering
5 process takes too long. Thus, as noted above, step 1210 modifies the frame rate by
6 adjusting the time (i.e. lengthening the time) between calls to the effect.
7 Accordingly, an “adjusted call interval” is indicated directly beneath the initial call
8 interval. Notice that the adjusted call interval is longer than the initial call
9 interval. This helps to ensure that the effects get called when they are ready to
10 render a visualization and not when they are in the middle of rendering a
11 visualization frame.

12 Notice also that step 1210 *can* branch back to step 1204 and continue
13 monitoring the rendering times associated with the individual visualization frames.
14 If the rendering times associated with the individual frames begin to fall back
15 within the set threshold, then the method can readjust the call interval to the
16 originally defined call interval.

17

18 Conclusion

19 The above-described methods and systems overcome problems associated
20 with past media players in a couple of different ways. First, the user experience is
21 enhanced through the use of a unified rendering area in which multiple different
22 media types can be rendered. Desirably all media types that are capable of being
23 rendered by a media player can be rendered in this rendering area. This presents
24 the various media in a unified, integrated and organized way. Second,
25 visualizations can be provided that more closely follow the audio content with

1 which they should be desirably synchronized. This not only enhances the user
2 experience, but adds value for third party visualization developers who can now
3 develop more accurate visualizations.

4 Although the invention has been described in language specific to structural
5 features and/or methodological steps, it is to be understood that the invention
6 defined in the appended claims is not necessarily limited to the specific features or
7 steps described. Rather, the specific features and steps are disclosed as preferred
8 forms of implementing the claimed invention.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25