HPC for Deep Neural Network (DNN)

Vinod Nigade

Software Engineer & Research Enthusiast

25th April, 2018

About Me

Vinod Nigade

Software Engineer

"If you optimize everything, you will always be happy" - Donald Knuth

Interests

System Software, Distributed System, HPC

Achievements

- Cum Laude in PDCS Masters at VU, Amsterdam
- VUFP scholarship for masters degree
- One publication in the Eurosys Conference
- One patent in the distributed replication area

Outline

- Introduction
- DNN Models
- 3 HPC
- 4 Co-design DNN and HPC

Why suddenly DNN?

DNN is getting more and more traction due to,

- Big data availability
- Huge amount of compute capacity
- Algorithmic advancement
- High growth in development resources

What is DNN?

• Brain-inspired computation in machine learning

$$y_j = f(\sum_{i=1}^2 w_{ij} \times x_i + b)$$
 (1)

Applications of DNN

- Image and video classification
- Predictive maintenance
- Speech recognition
- Robotic and self-driving car
- Computer vision
- Health care
- Finance (e.g. prediction stock prices) etc.

Source: http://cs231n.github.io/classification/

Training v/s Inference

Source: https://devblogs.nvidia.com/inference-next-step-gpu-accelerated-deep-learning/

- Correct weights and biases in backward propagation
- Gradient descent optimization is commonly used in backward propagation

DNN Models

Types

Feed forward

- Convolutional neural network
- Applications in classification, identification

Recurrent

- Recurrent neural networks
- Applications in time series, sequence prediction

DNN Models

Popular models

Metrics	AlexNet	ResNet
Top-5 error (%)	16.4	3.5
Layers	8	152
Total Weights	61M	25.5M
Total MACs	724M	3.9G
Total GFLOP	1.4	22.6
DRAM Access	3000M	? ($pprox$ 100MB for weights)

 $\mbox{larger model} \Rightarrow \mbox{large memory access} \Rightarrow \mbox{more energy consumption} \\ \mbox{[Sze et al., 2017]}$

HPC In a nutshell

- High performance computers with huge memory and fast inter-connect
- Performance measured in FLOPS (not in MIPS)
- Cluster of CPU and GPU nodes for massively parallel computation
- Scientific applications
 - Weather forecast
 - Physics modelling and simulation
 - Defence
 - Finance etc.

HPC System

Hardware

- Vector machines, GPUs, application specific accelerators like FPGA
- Infiniband, high speed Ethernet, RDMA

Software

- OpenMPI, OpenMP
- CUDA, OpenCL
- BLAS, LAPACK, Intel MKL

Co-design DNN and HPC Why?

Goal

- Maximize accuracy and throughput
- Minimize energy and cost

How

- Faster multiple and accumulate (MAC) operations
- Reduce MAC operations
- Reduce off-chip memory access
- Parallelism

Co-design DNN and HPC

Existing techniques

Algorithm

- Adopt reduce precision
- Weights sharing
- Network pruning
- Knowledge distillation

Hardware System

- Reduced precision (FP-16 arithmetic)
- Spatialarchitecture for dataflow processing
- Faster memory interconnect (e.g. HBM)

Software System

- Model Parallelism
- Data Parallelism
- RDMA support
- Overlap computation and communication

Research Questions

- How to auto-scale system for different types of DNN models over an heterogeneous system?
- How to design a debugger for large DNN models? Hard to find whether a low accuracy is due to a bug or model design issue?
- How to design a performance profiler for HPC-DNN system?
- On we relax parameter consistency in case of DNN applications?
- There is no randomness in DNN dataflow. How can we exploit this property for data placement and/or pre-fetching?

- Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep networks. In Advances in neural information processing systems, pages
- Jacobs, S. A., Dryden, N., Pearce, R., and Van Essen, B. (2017). Towards scalable parallel training of deep neural networks. In Proceedings of the Machine Learning on HPC Environments. page 5. ACM.
- Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. *Proceedings of the IEEE*, 105(12):2295–2329.

1223-1231.