Deep Compression and EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han*, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark Horowitz, Bill Dally

Stanford University

Our Prior Work: Deep Compression

- Memory reference is expensive.
- Small DNN models are critical.

[2]. Han et al. ICLR 2016, best paper award

2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00
1.87	0	1.53	1.49		3	1	2	2	0:	-1.00

weight sharing

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
AlexNet	240MB —	→ 6.9MB	35x	80.27% —	→ 80.30%
VGGNet	550MB <u></u>	→ 11.3MB	49x	88.68% —	→ 89.09%
GoogleNet	28MB _	→ 2.8MB	10x	88.90% —	→ 88.92%
SqueezeNet	4.8MB —	→ 0.47MB	10x	80.32% —	→ 80.35%

EIE: First Accelerator for Sparse DNN

- Deep Compression solves the model size problem.
- But it creates another problem: irregular computation pattern.
- CPU/GPU are only good at dense linear algebra.
- So we create EIE that supports: static-sparse M, dynamic-sparse V, indirect indexing, weight sharing.

Sparse Matrix

90% static sparsityin the weights,10x less computation,5x less memory footprint

Sparse Vector

70% *dynamic* sparsity in the activation **3x less** computation

Weight Sharing

4bits weights
8x less memory
footprint

Fully fits in SRAM

120x less energy than DRAM

Savings are multiplicative: 5x3x8x120=14,400 theoretical energy improvement.

Dally. NIPS tutorial 2015; Han et al. ISCA 2016

EIE: First Accelerator for Sparse DNN

Technology	45 nm		
# PEs	64		
on-chip SRAM	8 MB		
Max Model Size	84 Million		
Static Sparsity	10x		
Dynamic Sparsity	3x		
Quantization	4-bit		
ALU Width	16-bit		
Area	40.8 mm^2		
MxV Throughput	81,967 layers/s		
Power	586 mW		

- 1. Post layout result
- 2. Throughput measured on AlexNet FC-7

Dally. NIPS tutorial 2015; Han et al. ISCA 2016

FC Layers: Speedup / Energy Efficiency

Compared to CPU and GPU:

189x and 13x faster

24,000x and 3,400x more energy efficient

Beyond EIE: a Multi-Dimension Sparse Recipe for Deep Learning

Faster Speed: EIE accelerator

Higher Accuracy: DSD regularization

- [1]. Han et al. "Learning both Weights and Connections for Efficient Neural Networks", NIPS 2015
- [2]. **Han** et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", Deep Learning Symposium 2015, ICLR 2016 (best paper award)
- [3]. Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016
- [4]. Han et al. "DSD: Regularizing Deep Neural Networks with Dense-Sparse-Dense Training Flow", arXiv 2016
- [5]. landola, Han, et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", arXiv 16
- [6]. Yao, Han, et.al, "Hardware-friendly convolutional neural network with even-number filter size", ICLR workshop 2016