Fórmula de Euler

O número de faces de um grafo também está relacionado com o número de arestas e vértices do grafo através do teorema abaixo.

Teorema

Se G é um grafo conexo planar com m arestas e n vértices, então qualquer representação planar de G possui f = m - n + 2 faces.

Demonstração.

A prova será feita por indução no número de faces f.

Se f=1, então G não possui ciclos, ou seja, G é uma árvore. Temos que m-n+2=(n-1)-n+2=1=f. Logo, o resultado vale para f=1.

Suponha que o resultado vale para grafos com menos que f faces. Seja G um grafo conexo planar com f>1 faces.

Demonstração cont.

Escolha uma aresta e de G que não seja uma ponte (se tal aresta não existe, G seria uma árvore; vimos que o resultado vale para árvores). Considere o grafo H = G - e.

Como e não é uma ponte, a sua remoção mantém o grafo conexo. Assim, e necessariamente pertence a um ciclo. Logo, a remoção de e une duas regiões, de modo que o número de faces é reduzido em uma unidade.

Como H possui menos que f faces, segue da hipótese de indução que n-(m-1)+(f-1)=2, de onde segue o resultado. \square

Observação

O número f de faces de um grafo planar é sempre o mesmo e independe da representação planar obtida.

Fórmula de Euler

Questão

Quantas faces existem em grafo planar com 10 vértices, cada um dos vértices com grau 3?

Inicialmente precisamos definir quantas arestas o grafo possui:

$$\sum_{i=1}^{10} d(v_i) = 2m \Rightarrow m = \frac{10 * 3}{2} = 15.$$

Aplicando a fórmula de Euler, f = m - n + 2 = 15 - 10 + 2 = 7, sabemos que o grafo terá 7 faces.

Fórmula de Euler

Corolário

Seja G um grafo simples, conexo e planar com m arestas e $n \ge 3$ vértices. Então, m $\le 3n-6$.

Demonstração.

Como G é simples, conexo e planar com $n \ge 3$, o grau de cada face é no mínimo 3. Assim,

$$2m = \sum_{i=1}^{f} d(f_i) \ge \sum_{i=1}^{f} 3 = 3f.$$

Logo, $m - n + 2 = f \le 2m/3$, de modo que, $m \le 3n - 6$.

Exercício

Seja G um grafo simples, conexo e planar com m arestas e n \geq 3 vértices. Então, G possui ao menos um vértice v tal que $d(v) \leq 5$.

Observação

Observe que o grafo K_5 não satisfaz o corolário anterior e portanto não é planar.

O grafo $K_{3,3}$ satisfaz o corolário, porém não é planar.

Assim temos uma condição necessária mas não suficiente.

Questão

Como fazer então para determinar se um dado grafo é planar?

Fórmula de Euler

Corolário

Seja G um grafo simples, conexo e planar com m arestas, n vértices e nenhum circuito de tamanho 3. Então, $m \le 2n - 4$.

Demonstração.

Como G é simples, conexo, planar e não possui triângulos, o grau de cada face é no mínimo 4. Assim,

$$2m = \sum_{i=1}^{f} d(f_i) \ge \sum_{i=1}^{f} 4 = 4f.$$

Logo, $m - n + 2 = f \le m/2$, de modo que, $m \le 2n - 4$.

Observação

O grafo $K_{3,3}$ não satisfaz o corolário e portanto não é planar.

Aqui temos uma outra condição necessária. É suficiente?

Questão

Como fazer então para determinar se um dado grafo é planar?

O algoritmo de redução (Procedimento 1, a seguir) pode auxiliar nesta tarefa.

Mas antes precisamos definir "arestas em série" e relembrar o conceito de fusão de arestas.

Definição

Duas arestas estão em **série** se elas possuem exatamente um vértice em comum e este vértice tem grau dois.

Definição

A **fusão** de duas arestas incidentes em um vértice v_j , (v_i, v_j) e (v_j, v_k) , é feita eliminando-se as duas arestas e criando a aresta (v_i, v_k) .

Procedimento 1 – Procedimento de redução

- Passo 1: Determine as componentes do grafo. $G = G_1, G_2, ..., G_k$. Teste cada componente G_i do grafo.
- Passo 2: Remova todos os loops.
- Passo 3: Elimine as arestas paralelas, deixando no máximo uma aresta entre cada par de vértices.
- Passo 4: Elimine os vértices de grau dois através da fusão de duas arestas.

 (Arestas em série não afetam a planaridade).
- Passo 5: Repita os passos 3 e 4 enquanto for possível.

Exemplo

Vamos aplicar o procedimento de redução ao seguinte grafo:

Passo 1: $G_1 = G$.

Passo 2: G₁ não possui loops.

Passo 3: G_1 não possui arestas paralelas.

Passo 4: Vamos fazer a fusão das arestas 1 e 2 e das arestas 5 e 6:

Repetindo: Passo 3: Vamos remover as arestas 1,2 e 5,6.

Passo 4: Temos

Repetindo: Passo 3: Temos o seguinte grafo reduzido:

De uma maneira geral, após aplicar o Procedimento 1 a cada uma das componentes G_i , qual será o grafo reduzido, H_i ?

Teorema (N. Deo, Graph Theory)

O grafo reduzido H; é:

- a) uma aresta; ou
- b) um grafo completo com 4 vértices; ou
- c) um grafo simples com $n \ge 5$ e $m \ge 7$.

Demonstração.

Exercício.

(O teorema pode ser provado considerando todos os grafos conexos simples com seis arestas ou menos.)

Se todos os grafos reduzidos H_i satisfizerem os itens a) ou b), o grafo G é planar.

Caso contrário é necessário verificar se $m \le 3n - 6$ ou $m \le 2n - 4$.

Se o grafo reduzido não satisfaz uma (ou ambas) destas inequações então o grafo G é não planar.

Se as inequações forem satisfeitas, é necessário fazer testes adicionais.

Observação

Usando o Procedimento 1 e o teorema anterior podemos identificar claramente a planaridade de um grafo para casos onde o grafo tem menos que 5 vértices e menos que 7 arestas.

Para grafos com $n \ge 5$ e $m \ge 7$ e que satisfaçam a condição dos corolários precisamos de outros resultados.

Definição

A subdivisão da aresta (v, w) de um grafo G é uma operação que transforma a aresta (v, w) em um caminho através da adição de vértices de grau 2.

Exemplo: Subdivisão de uma aresta:

Subdivisão de um grafo

Definição

Um grafo G_2 é uma **subdivisão** de um grafo G_1 quando G_2 puder ser obtido de G_1 através de uma sequência de divisões das arestas de G_1 .

Dizemos que G₂ é uma configuração de G₁.

Exemplos: Subdivisão de um grafo

Teorema de Kuratowski

O Teorema a seguir foi demonstrado pela primeira vez pelo matemático polonês Kuratowski em 1930.

Teorema

Um grafo G é planar se, e somente se, não contém um subgrafo que é uma configuração do grafo K_5 ou do grafo $K_{3,3}$.

Demonstração.

Ver, por exemplo, C. Berge, The Theory of Graphs and its Applications.

Exemplo

Vamos verificar se o grafo abaixo é planar.

Podemos aplicar o procedimento de redução pois o grafo contém vértices de grau 2. Vamos então eliminar o vértice h através da fusão das arestas (a, h) e (h, g).

O grafo resultante após a aplicação do procedimento de redução é:

Vamos verificar o primeiro corolário:

$$m = 13 \le 15 = 3 * 7 - 6 = 3n - 6.$$

Como o grafo satisfaz o corolário não podemos afirmar nada. O segundo corolário não pode ser aplicado, pois o grafo possui triângulos.

Vamos então aplicar o procedimento de construção de circuitos e tentar obter um representação planar para este grafo.

Vamos determinar o circuito mais longo neste grafo. Considere o circuito $\{a, b, c, d, e, f, g, a\}$.

Vamos iniciar o procedimento inserindo, por exemplo, a aresta (a, d):

Para inserir a aresta (b, e) temos apenas uma opção, inserir fora do circuito:

Observe agora que a aresta (c,g) não pode ser desenhada fora, ou dentro do circuito:

Assim podemos dizer que o grafo dado não é planar.

Vamos agora encontrar uma configuração do $K_{3,3}$ ou do K_5 no grafo G. De acordo com o Teorema de Kuratowski, se o grafo é não-planar devemos encontrar uma. Como fazer?

Para identificar a configuração do $K_{3,3}$ vamos eliminar do subgrafo G' os vértices de grau 2, através da fusão das arestas (g, f) e (f, e):

O grafo reduzido G'' é o $K_{3,3}$.

Basta tomar $V_1 = \{a, c, e\}$ e $V_2 = \{b, d, g\}$.

O subgrafo de G que é uma configuração do $K_{3,3}$ é então:

