FMA-PG Notes

Shivam and Sharan September 2021

1 Softmax PPO with Tabular Parameterization

2 1.1 Closed Form Update with Direct Representation

- We will consider direct functional representation with tabular parameterization, i.e. $\pi \equiv p^{\pi}$ is
- essentially an $S \times A$ table satisfying the constraints

$$\sum_a p^\pi(a|s)=1, \quad \forall s\in\mathcal{S}$$

$$p^\pi(a|s)\geq 0, \quad \forall s\in\mathcal{S}, \ \forall a\in\mathcal{A}.$$

- Our goal is to find the closed form solution to the following optimization problem (from Eq. 6,
- 8 Sharan et al., 2021):

$$\pi_{t+1} = \arg \max_{\pi \in \Pi} \left[\sum_{s} d^{\pi_t}(s) \sum_{a} p^{\pi_t}(a|s) \left(A^{\pi_t}(s,a) + \frac{1}{\eta} \right) \log \frac{p^{\pi}(s,a)}{p^{\pi_t}(s,a)} \right], \tag{1}$$

subject to the constraints on p^{π} given above.

We begin by formulating this problem using Lagrange multipliers λ_s , $\lambda_{s,a}$ for all states s and actions a:

13
$$\mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = \sum_{s} d^{\pi_{t}}(s) \sum_{a} p^{\pi_{t}}(a|s) \left(A^{\pi_{t}}(s, a) + \frac{1}{\eta} \right) \log \frac{p^{\pi}(a|s)}{p^{\pi_{t}}(a|s)} - \sum_{s,a} \lambda_{s,a} p^{\pi}(a|s) - \sum_{s} \lambda_{s} \left(\sum_{a} p^{\pi}(a|s) - 1 \right),$$
 (2)

where we abused the notation by using λ_s to represent the set $\{\lambda_s\}_{s\in\mathcal{S}}$ and $\lambda_{s,a}$ to represent the set $\{\lambda_{s,a}\}_{s,a\in\mathcal{S}\times\mathcal{A}}$. The KKT conditions (Theorem 12.1, Nocedal and Wright, 2006) for this constrained optimization problem can be written as:

$$\nabla_{p^{\pi}(x,b)} \mathcal{L}(p^{\pi}, \lambda_s, \lambda_{s,a}) = 0, \quad \forall x \in \mathcal{S}, \ \forall b \in \mathcal{A}$$
 (C1)

$$\sum_{a} p^{\pi}(a|s) = 1, \quad \forall s \in \mathcal{S}$$
 (C2)

$$p^{\pi}(a|s) \ge 0, \quad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}$$
 (C3)

$$\lambda_s \ge 0, \quad \forall s \in \mathcal{S}$$
 (C4)

$$\lambda_s \left(\sum_{a} p^{\pi}(a|s) - 1 \right) = 0, \quad \forall s \in \mathcal{S}$$
 (C5)

$$\lambda_{s,a}p^{\pi}(a|s) = 0, \quad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}.$$
 (C6)

Let us now try to solve this system. Solving the first equation for an arbitrary state-action pair (x, b), gives us:

$$\nabla_{p^{\pi}(b|x)} \mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) \left(A^{\pi_{t}}(x, b) + \frac{1}{\eta} \right) \frac{1}{p^{\pi}(b|x)} - \lambda_{x,b} - \lambda_{x} = 0$$

$$\Rightarrow \qquad p^{\pi}(b|x) = \frac{d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) (1 + \eta A^{\pi_{t}}(x, b))}{\eta(\lambda_{x} + \lambda_{x,b})}.$$
(3)

28 Let us set

40

$$\lambda_{s,a} = 0, \quad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}. \tag{4}$$

30 Combining Eq. 3 with the second KKT condition gives us

$$\lambda_s = \frac{1}{\eta} \sum_a d^{\pi_t}(s) p^{\pi_t}(a|s) (1 + \eta A^{\pi_t}(s, a)). \tag{5}$$

Therefore, with the additional assumption $d^{\pi_t}(s) > 0$, $p^{\pi}(a|s)$ becomes

$$p^{\pi}(a|s) = \frac{p^{\pi_t}(a|s)(1 + \eta A^{\pi_t}(s, a))}{\sum_b p^{\pi_t}(b|s)(1 + \eta A^{\pi_t}(s, b))}.$$
 (6)

Note that $d^{\pi_t}(s)$, $p^{\pi_t}(a|s) \ge 0$ for any state-action pair, since they are proper measures. All that remains is to ensure that

$$1 + \eta A^{\pi_t}(s, a) \ge 0$$

to satisfy the third and fourth KKT conditions. But how to do that? One straightforward way is to define $p^{\pi}(a|s) = 0$ whenever $1 + \eta A^{\pi_t}(s, a) < 0$, and accordingly re-define λ_s . This gives us the final solution to our original optimization problem (Eq. 1):

$$\pi_{t+1} = p^{\pi}(s, a) = \frac{p^{\pi_t}(a|s) \max(1 + \eta A^{\pi_t}(s, a), 0)}{\sum_b p^{\pi_t}(b|s) \max(1 + \eta A^{\pi_t}(s, b), 0)}.$$
 (7)

However, it leaves us one last problem to deal with: Is it always true that given any state s, there always exists at least one action a, such that $1 + \eta A^{\pi_t}(s, a) \ge 0$? Because otherwise, we would fail to satisfy the second KKT condition. Maybe, we can put a condition on η in order to fulfill this constraint.

45 1.2 Gradient of the Loss Function with Softmax Policy Representation

46 Consider the softmax policy representation

$$p^{\pi}(b|x) = \frac{\exp(\theta(x,b))}{\sum_{c} \exp(\theta(x,c)},\tag{8}$$

where $\theta(x, b)$ s for all state-action pairs (x, b) are action preferences maintained in a table (tabular parameterization). We will use gradient ascent to approximately solve Eq. 1; to do that, the

50 quantity of interest is

$$\nabla_{\theta(s,a)}\ell^{\pi_{t}} = \sum_{x,b} \left[\nabla_{\theta(s,a)} p^{\pi}(b|x) \right] \left[\nabla_{p^{\pi}(b|x)} \ell^{\pi_{t}} \right] \qquad \text{(using total derivative)}$$

$$= \sum_{x,b} \left[\mathbb{I}(x=s) \left(\mathbb{I}(b=a) - p^{\pi}(a|x) \right) p^{\pi}(b|x) \right] \left[d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) \left(A^{\pi_{t}}(x,b) + \frac{1}{\eta} \right) \frac{1}{p^{\pi}(b|x)} \right]$$

$$= \mathbb{E}_{X \sim d^{\pi_{t}}, B \sim p^{\pi_{t}}(\cdot|X)} \left[\mathbb{I}(X=s) \left(\mathbb{I}(B=a) - p^{\pi}(a|x) \right) \left(A^{\pi_{t}}(X,B) + \frac{1}{\eta} \right) \right]$$

$$= d^{\pi_{t}}(s) \sum_{b} \left(\mathbb{I}(b=a) - p^{\pi}(a|s) \right) p^{\pi_{t}}(b|s) \left(A^{\pi_{t}}(s,b) + \frac{1}{\eta} \right)$$

$$= d^{\pi_{t}}(s) \left[p^{\pi_{t}}(a|s) \left(A^{\pi_{t}}(s,a) + \frac{1}{\eta} \right) - p^{\pi}(a|s) \sum_{b} p^{\pi_{t}}(b|s) \left(A^{\pi_{t}}(s,b) + \frac{1}{\eta} \right) \right]$$

$$= d^{\pi_{t}}(s) \left[p^{\pi_{t}}(a|s) \left(A^{\pi_{t}}(s,a) + \frac{1}{\eta} \right) - \frac{p^{\pi}(a|s)}{\eta} \right].$$

Then, we can simply update the inner loop of FMA-PG (Algorithm 1, Sharan et al., 2021) via gradient ascent:

$$\theta_{s,a} = \theta_{s,a} + \alpha d^{\pi_t}(s) \left[p^{\pi_t}(a|s) \left(A^{\pi_t}(s,a) + \frac{1}{\eta} \right) - \frac{p^{\pi}(a|s)}{\eta} \right]. \tag{10}$$

60 **2** MDPO

73

61 2.1 Closed Form Update with Direct Parameterization

The paper (Sharan et al., 2021) considers the direct representation along with tabular parameterization of the policy, albeit with a small change in notation as compared to the previous section: $\pi(a|s) \equiv p^{\pi}(a|s,\theta)$. However, since this notation is more cumbersome, we will stick with our old notation: $\pi(a|s) \equiv p^{\pi}(a|s)$. The constraints on the parameters $p^{\pi}(s,a)$ are the same as before: $\sum_{a} p^{\pi}(a|s) = 1$, $\forall s \in \mathcal{S}$; and $p^{\pi}(a|s) \geq 0$, $\forall s \in \mathcal{S}$, $\forall a \in \mathcal{A}$. Our goal, this time, is to solve the following optimization problem (from Eq. 9, Sharan et al., 2021)

$$\pi_{t+1} = \arg\max_{\pi \in \Pi} \left[\sum_{s} d^{\pi_t}(s) \sum_{a} p^{\pi_t}(a|s) \left(Q^{\pi_t}(s, a) \frac{p^{\pi}(a|s)}{p^{\pi_t}(a|s)} - \frac{1}{\eta} D_{\phi}(p^{\pi}(\cdot|s), p^{\pi_t}(\cdot|s)) \right) \right], \quad (11)$$

with the mirror map as the negative entropy (Eq. 5.27, Beck and Teboulle, 2002). This particular choice of the mirror map simplifies the Bregman divergence as follows

$$D_{\phi}(p^{\pi}(\cdot|s), p^{\pi_{t}}(\cdot|s)) = \text{KL}(p^{\pi}(\cdot|s)||p^{\pi_{t}}(\cdot|s)) := \sum_{a} p^{\pi}(a|s) \log \frac{p^{\pi}(a|s)}{p^{\pi_{t}}(a|s)}.$$
(12)

The optimization problem (Eq. 11) then simplifies to

$$\pi_{t+1} = \arg\max_{\pi \in \Pi} \left[\sum_{s} d^{\pi_t}(s) \sum_{a} p^{\pi_t}(a|s) \left(Q^{\pi_t}(s, a) \frac{p^{\pi}(a|s)}{p^{\pi_t}(a|s)} - \frac{1}{\eta} \sum_{a'} p^{\pi}(a'|s) \log \frac{p^{\pi}(a'|s)}{p^{\pi_t}(a'|s)} \right) \right]. \tag{13}$$

Proceeding analogously to the previous section, we use Lagrange multipliers λ_s , $\lambda_{s,a}$ for all states s and actions a to obtain the function

$$\mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = \sum_{s} d^{\pi_{t}}(s) \sum_{a} p^{\pi_{t}}(a|s) Q^{\pi_{t}}(s, a) \frac{p^{\pi}(a|s)}{p^{\pi_{t}}(a|s)} - \frac{1}{\eta} \sum_{s} d^{\pi_{t}}(s) \sum_{a'} p^{\pi}(a'|s) \log \frac{p^{\pi}(a'|s)}{p^{\pi_{t}}(a'|s)} - \sum_{s} \lambda_{s,a} p^{\pi}(a|s) - \sum_{s} \lambda_{s} \left(\sum_{a} p^{\pi}(a|s) - 1 \right).$$

$$(14)$$

The KKT conditions are exactly the same as before (Eq. C1 to Eq. C6).

Again, we begin by solving the first KKT condition:

$$\nabla_{p^{\pi}(b|x)} \mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) \frac{Q^{\pi_{t}}(x, b)}{p^{\pi_{t}}(b|x)} - \frac{d^{\pi_{t}}(x)}{\eta} \left[\log \frac{p^{\pi}(b|x)}{p^{\pi_{t}}(b|x)} + 1 \right] - \lambda_{x,b} - \lambda_{x}$$

$$= \frac{d^{\pi_{t}}(x)}{\eta} \left[\eta Q^{\pi_{t}}(x, b) - \log \frac{p^{\pi}(b|x)}{p^{\pi_{t}}(b|x)} - 1 - \frac{\eta(\lambda_{x,b} + \lambda_{x})}{d^{\pi_{t}}(x)} \right]$$

$$= 0$$

$$\Rightarrow \qquad \log \frac{p^{\pi}(b|x)}{p^{\pi_{t}}(b|x)} = \eta Q^{\pi_{t}}(x, b) - \frac{\eta(\lambda_{x,b} + \lambda_{x})}{d^{\pi_{t}}(x)} - 1$$

$$\Rightarrow \qquad p^{\pi}(b|x) = p^{\pi_{t}}(b|x) \cdot \exp(\eta Q^{\pi_{t}}(x, b)) \cdot \exp\left(-\frac{\eta(\lambda_{x,b} + \lambda_{x})}{d^{\pi_{t}}(x)} - 1\right), \tag{15}$$

where in the fourth line, we made the assumption that $d^{\pi_t}(x) > 0$ for all states x. We again set

$$\lambda_{s,a} = 0, \quad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}.$$
 (16)

And, we put Eq. 15 in the second KKT condition to get

$$\exp\left(-\frac{\eta \lambda_x}{d^{\pi_t}(x)} - 1\right) = \left(\sum_b p^{\pi_t}(b|x) \cdot \exp(\eta Q^{\pi_t}(x,b))\right)^{-1}.$$
 (17)

89 Therefore, we obtain

88

$$p^{\pi}(a|s) = \frac{p^{\pi_t}(a|s) \cdot \exp(\eta Q^{\pi_t}(s,a))}{\sum_b p^{\pi_t}(b|s) \cdot \exp(\eta Q^{\pi_t}(s,b))}.$$
 (18)

This leaves one last problem: Can we ensure that $\lambda_s \geq 0$ for all states s? If not, then the fourth KKT condition cannot be satisfied. Maybe, we can set the stepsize η in such a way, such that this constraint is always fulfilled.

94 2.2 Gradient of the Loss Function with Softmax Policy Representation

We again take the softmax policy representation given by Eq. 8, and compute $\nabla_{\theta(s,a)}\ell^{\pi_t}$ for the MDPO loss (we substitute Q^{π_t} with A^{π_t} in this calculation):

97
$$\nabla_{\theta(s,a)}\ell^{\pi_t} = \sum_{x,b} \left[\nabla_{\theta(s,a)} p^{\pi}(b|x) \right] \left[\nabla_{p^{\pi}(b|x)}\ell^{\pi_t} \right]$$
 (using total derivative)

98 $= \sum_{x,b} \left[\mathbb{I}(x=s) \left(\mathbb{I}(b=a) - p^{\pi}(a|x) \right) p^{\pi}(b|x) \right] \left[\frac{d^{\pi_t}(x)}{\eta} \left(\eta A^{\pi_t}(x,b) - \log \frac{p^{\pi}(b|x)}{p^{\pi_t}(b|x)} - 1 \right) \right]$

99 $= \frac{d^{\pi_t}(s)}{\eta} \sum_{b} \left(\mathbb{I}(b=a) - p^{\pi}(a|s) \right) p^{\pi}(b|s) \left[\eta A^{\pi_t}(s,b) - \log \frac{p^{\pi}(b|s)}{p^{\pi_t}(b|s)} - 1 \right]$

100 $= \frac{d^{\pi_t}(s)}{\eta} p^{\pi}(a|s) \left[\eta A^{\pi_t}(s,a) - \eta \sum_{b} p^{\pi}(b|s) A^{\pi_t}(s,b) - \log \frac{p^{\pi}(a|s)}{p^{\pi_t}(a|s)} + \text{KL}(p^{\pi}(\cdot|s) || p^{\pi_t}(\cdot|s)) \right],$

where in the last line, we used the fact that

$$\sum_{b} p^{\pi}(b|s) \left[\eta A^{\pi_{t}}(s,b) - \log \frac{p^{\pi}(b|s)}{p^{\pi_{t}}(b|s)} - 1 \right] = \eta \sum_{b} p^{\pi}(b|s) A^{\pi_{t}}(s,b) - \text{KL}(p^{\pi}(\cdot|s) || p^{\pi_{t}}(\cdot|s)) - 1.$$

03 References

- Beck, A., Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. *Operations Research Letters*, 31(3), 167-175.
- 106 Nocedal, J., Wright, S. (2006). Numerical optimization. Springer Science & Business Media.
- Vaswani, S., Bachem, O., Totaro, S., Mueller, R., Geist, M., Machado, M. C., Castro P. S., Roux, N.
 L. (2021). A functional mirror ascent view of policy gradient methods with function approximation.
 arXiv preprint arXiv:2108.05828.