宇宙におけるrプロセス元素の起源と進化:マルチメッセンジャー天文学と加速器実験をつなぐ

Nobuya Nishimura

CNS (Center for Nuclear Study), U. of Tokyo / ABBL, RIKEN

自己紹介

- ・西村信哉(にしむらのぶや):佐賀県生まれ(九州大学院卒)
- ・現職:東京大学・原子核科学研究センター:特任研究員
- ・専門分野:宇宙核物理、高エネルギー天文学、元素合成、突発天体

興味の中心 我々の宇宙の元素の起源と進化を解明

元素の周期表と宇宙での起源

一家に一枚「宇宙図2018」より抜粋 (https://www.mext.go.jp/stw/series.html)

「世界で一番美しい 元素図鑑」 セオドア・グレイより

rプロセス

sプロセス

鉄より重い元素の起源

- ・鉄より重い元素(核種): 3つのグループ(s, r, p 核)に分類
- ・それぞれに対して別種の元素合成プロセスが提案。

(s/rプロセス、pプロセス(+rp/vpプロセスなど)、サブクラスも存在)

宇宙(銀河)の進化と元素合成(アプロセス)

rプロセス研究の周辺分野への広がり

- ・西村は、(rプロセス)宇宙の元素合成が専門
 - → 下図:「元素合成」を中心とした研究領域の見方
- ・原子核物理の「使う」立場(原子核研究へのフィードバックも)

話の構成

- ・導入:「元素の起源と進化」
- 1. 連星中性子星の合体とアプロセス
 - ・重力波の観測と電磁波対応天体キロノヴァ
 - ・中性子星合体の「光」とrプロセス元素合成
- 2. 宇宙の元素合成から加速器実験へ
 - ・モンテカルロ元素合成による成果と今後

キーワード:多様性(=「複雑化」) → 複雑なものをいかに解くか?取り組むか

お題:宇宙核物理とJAEA(先端研)の研究可能性

宇宙核物理と原子力工学:応用原子核

1. アプロセス元素の起源

中性子捕獲による元素合成プロセス

中性子捕獲が遅い:sプロセス

中性子捕獲が速い:rプロセス

重い元素を作るレシピ:中性子捕獲過程

速い中性子捕獲+ベータ崩壊による元素合成

- ①電荷のない中性子を捕獲
 - →重い原子核を作る

中性子捕獲+β崩壊の連鎖により重い元 素を作る

② 生成された (中性子過剰) 不安定核が β 崩壊する

→原子番号が増える

星のライフサイクル

illustration: wikipedia

Birth

Main Sequence

Old Age

Death

Remnant

rプロセスが起こる天体現象?

重力崩壞型超新星

- ・直接観測なし
- ・理論的に困難
 - ・十分に中性子過剰にならない

連星中性子星合体

重力波と電磁波での「観測」 (GW170817)

rプロセス天体とマルチメッセンジャー観測

rプロセス元素の天体をめぐる研究は、実は、マルチメッセンジャー天文学 (多波長、多粒子観測)と深い関係にある

超新星爆発 → SN1987Aの観測

カミオカンデによる ニュートリノ観測

中性子星合体 → GW170817の観測

LIGO/Virgoによる 重力波観測

rプロセスと元素合成

- Ordinary differential eqs. for the change of $y_i(t)$ (the number fraction i th nucleus)
- The time variation $\dot{y}_i \sim \Delta y/\Delta t$ (finite difference) causes thermonuclear reaction (decay) rates
- ·In the astrophysical environments (fluids), the abundances are also changed by advection. But, the timescale of nuclear reactions can be small. (Lagrangian description is convenient.)

basic equations

thermonuclear reaction rate & astrophysics (temperature and density)

$$\dot{y}_i = \frac{dy_i}{dt} = \sum_j N_{ij} \lambda_j y_j + \sum_{j,k} N_{ijk} \rho N_{Av} \langle j, k \rangle y_j + \sum_{j,k,l} N_{ijkl} \rho^2 N_{Av}^2 \langle j, k, l \rangle y_j + \cdots$$

1 body (decay)

β-decay, e+/e- capture (and fission)

2-body reaction (incl. $2 \rightarrow 2$)

main nuclear reactions n-induced decay

3-body reaction $(3\rightarrow 1, 3\rightarrow 2)$

triple- α , (α , α , n)

rプロセスと元素合成

現実的天体モデルでのアプロセス

NN+(2015, 2017)

天体シミュレーション

爆発モデルのrプロセスへの影響

ジェット爆発に沿った元素合成

rプロセス天体:中性子星合体の「観測」

連星中性子星合体からの重力波 GW170817 (2017年8月17日)と同時観測エネルギー源は? \rightarrow 中性子過剰核の放射性崩壊 (e.g, β , α & 核分裂) (rプロセス中の大量中性子過剰核の崩壊)

credit NAOJ

4. r-process nucleosynthesis

天体シナリオの理解が一気に進む

NGC4993 (39.5Mpc)

「キロノヴァ」の光 最初の発見(8月17日) から徐々に減光(21日)

By Magellan telescope; Drout+2017, Science

最新のシナリオ:ダイナミカル+ポスト・マージャー

dynamical ejecta_{0.014 [ms]} それぞれのrプロセス

キロノヴァ(AT2017gfo) 光度曲線: 青から赤今

連星中性子星合体のシナリオ (合体・放出シミュレーション)

連星中性子星合体の意義:多様化、複雑化

- ・天体モデル(理論)の<u>観測的な検証</u>が可能になった。
 - ・厳しく言えば、rプロセス天体現象の初めての検証
- ・現象の新発見 → 説明すべき事柄の増加(サイエンスとして進歩)
 - ・元素組成→逆に、詳細な元素組成データは得られないが、 (Sr Laの存在)
 - ・光度曲線の時間進化
 - ・どの崩壊が効くか?

rプロセス:多様化する銀河化学進化

中性子星合体だけでrプロセス元素(Euなど)の銀河化学進化を説明できるか?

→ 短い遅延時間(最初のイベントが起こるタイミング) or 他の天体

GW170817後に網羅的な銀河科学進化の研究 (Côté+2018など)

やはり標準的な遅延時間では説明不可? (Côté+2018)

→単一の天体イベントではなく、複数が必要?

rプロセス:複雑化した上での原子核物理

- ・「まだ1例」? → 「また別の観測で常識が変わる?」 より統計が貯まる知見に対して「一般性がより確立」と「多様性」の増加
- ・例:銀河の化学進化
 - ·rプロセス元素は連星中性子星合体が主体
 - → 大筋は良い (一般性) しかし、銀河の初期の存在など 説明できない点も指摘。

rプロセス元素合成と核分裂

核理論のinputを洗練

動力学計算による中性子過剰核の核分裂の予言の試み 2021-2023年、基盤B(代表:西村) with 田中翔也(科研費ポスドク)

Tanaka, NN, Minato 2023, PRC

今年度は、中性子過剰ウランへの計算の拡張と整理(NN+, prep.) (事前計算 by 田中)

2. 宇宙の元素合成から

加速器美懸へ

宇宙の元素合成で重要な反応率

p-process 82 r-process stable meassured FAIR

"sensitivity" study on nucleosynthesis?

我々の方法 反応や崩壊の不定性

モンテカルロ+統計解析

天文学の観測量

 \cdot sプロセス: (2) 弱い s (\rightarrow n_TOF (CERN) experiments), (4) メイン s

·pプロセス:(1)重力崩壊型超新星,(3) la 型超新星

·<u>νpプロセス</u>: (5) 原始中性子星風 → RIBF実験 さらに?

(1) Rauscher, NN+(2016) MNRAS 463; (2) NN+(2017) MNRAS 469; (3) NN+(2018) MNRAS 474;

(4) Cescutti+NN+(2018) 478 MNRAS; (5) NN+(2019) MNRAS 489

Collaborators: G. Cescutti, S. Cristallo, C. Fröhlich, J. den Hartogh,

A. Heger, R. Hirschi, A. Murphy, T. Rauscher, C. Travaglio

モンテカルロ元素合成

- · Monte-Carlo framework
 - ·PizBuin MC-driver (developed by Rauscher, NN)
 - ·parallelized by OpenMP (shared memory)
- · Nuclear Reaction network
 - Network solver:
 - WinNet: the latest Basel network, (Winteler+, 2012)
- Piz Buin (mountain)

- Reaction rates:
 - Reaclib: (Rauscher & Thielemann 2000)
 - T-dependent beta-decay (Takahashi & Yokoi 1987, Goriely 1999)
- T-dependent uncertainty:
 - Provided by Reaclib format, based on Rauscher 2012

<u>大規模モンテカルロシミュレーション</u>

for shared memory systems

- Fortran + OpenMP
- parallelized well
- optimized code/matrix library for large scared memory computers (multi threads)
- · Computer resources

numascale

Shyne cluster @Keele (ERC)

performance tests of matrix solvers on shared memory system

Cosmos2 @Cambridge (UK DiRAC facility, STFC)

超新星でのvpプロセス元素合成

 $\nu_{\rm e} + {\rm n} \rightarrow {\rm p} + {\rm e}^- \& \bar{\nu}_{\rm e} + {\rm p} \rightarrow {\rm n} + {\rm e}^+$

ニュートリノ加熱による爆発 (エントロピー) ν pプロセス (陽子過剰 $Y_e \sim 0.6$ のモデル)

西村+2019

太陽系モリブデン同位体比問題

proton

·Mo:元素の中でp核の比率が最も多い

太陽系組成:同位体比 (Lodders 2003):

92Mo/94Mo = 1.6

- νpプロセス:
 - 質量の不定性では解決不可能 (Xing+2018)
 - 核反応の不定性?: 0.67 < 92Mo/94Mo < 2.79

NN+2019

p核(陽子過剰/中性子欠乏)

N, neutron number

最重要: 92Mo(p,g)93Tc

(次点: ⁹³Tc(p,g)⁹⁴Ru)

まとめ

・宇宙における元素の起源

・宇宙核物理:元素の起源を解明(← 天体と原子核の知識を駆使)

1. アプロセス元素合成と起源天体

- ・爆発天体での元素合成、鉄より重い元素(金、プラチナ、ウラン)を作る
- ・中性子過剰不安定核のβ崩壊、核分裂、中性子捕獲が重要(不定性大)
- ·天文学的には、最近の観測(GW170817)による新しい研究パラダイム
- ・今後も、多様化する課題設定において核物理の役割は重要:核分裂など

2. 宇宙の元素合成から加速器実験へ

- ・宇宙の元素合成の複雑化→「MC元素合成」の開発とスタートダッシュ成功
 - ·s、r、p、νp、rpプロセス → 実験とのコラボレーション
 - ・一つの例:モリブデン問題をvpプロセス解決する実験の提案