

Figure 1: \mathbb{C}

1.
$$z_1 = 1 + i\sqrt{3}$$
 and $z_2 = -\sqrt{2} + i\sqrt{2}$

- (a) Plotting z_1 and z_2 into the plane
- (b) $z_1 + z_2 = (1 \sqrt{2}) + i(\sqrt{2} + \sqrt{3})$
- (c) $\bar{z}_2 = -\sqrt{2} i\sqrt{2}$
- (d) $\frac{1}{z_2} = \frac{\bar{z}_2}{|z_2|} = \frac{-\sqrt{2} i\sqrt{2}}{4}$

(e)
$$z_1 = 2 \exp(i(\frac{\pi}{3} + 2n\pi))$$
 and $z_2 = 2 \exp(i(\frac{3\pi}{4} + 2n\pi))$ for $n \in \mathbb{N}$

(f)
$$\frac{z_1}{z_2} = \frac{1+i\sqrt{3}}{-\sqrt{2}+i\sqrt{2}} = \frac{(1+i\sqrt{3})(-\sqrt{2}-i\sqrt{2})}{4} = \frac{(\sqrt{6}-\sqrt{2})-i(\sqrt{2}+\sqrt{6})}{4}$$

- 2. $z = \sqrt{3} i = 2\exp(i(\frac{7\pi}{6} + 2n\pi))$ for $n \in \mathbb{N}$, so the three roots of z are
 - $c_0 = \sqrt[3]{2} \exp(i(\frac{7\pi}{18}))$
 - $c_1 = \sqrt[3]{2} \exp(i(\frac{7\pi}{18} + \frac{2\pi}{3}))$
 - $c_2 = \sqrt[3]{2} \exp(i(\frac{7\pi}{18} + \frac{4\pi}{3}))$
- 3. $|Im(z^2+2\bar{z}+3)| \le |z^2+2\bar{z}+3| \le |z^2|+2|\bar{z}|+3 = |z|^2+2|z|+3 \le 2^2+2\times 2+3 = 11$
- 4. (a) $f(re^{i\theta}) = u(r,\theta) + iv(r,\theta) = r^{-3}\cos(-3\theta) ir^{-3}\sin(3\theta)$ So, $u(r,\theta) = r^{-3}\cos(-3\theta)$, and $v(r,\theta) = r^{-3}\sin(-3\theta)$.

Taking the partial derivatives yields,

$$ru_r = v_\theta = -3r^{-3}\cos(-3\theta)$$

and

$$u_{\theta} = -rv_r = -3r^{-4}\sin(-3\theta)$$

which exists for all $r \neq 0$ and any θ .

So f is differentiable on $\mathbb{C} \setminus \{0\}$ and $f'(r,\theta) = e^{-i\theta}(u_r + iv_r) = -e^{-i\theta}(3r^{-4}\cos(-3\theta) + i3r^{-4}\sin(-3\theta)).$

(b) $f(z) = \sin(\bar{z})$

Consider, for $x \in \mathbb{R}$, $\cosh(x) = \frac{e^x + e^{-x}}{2}$, so $\cosh(x)' = \frac{e^x - e^{-x}}{2} = \sinh(x)$. Also, $\sinh(x) = \frac{e^x - e^{-x}}{2}$, so $\sinh(x)' = \frac{e^x + e^{-x}}{2} = \cosh(x)$.

Also, $\sinh(x) = 0$ when x = 0 and, for all $x \in \mathbb{R}$, $\cosh(x) \neq 0$.

For z = x + iy,

$$f(z) = \sin(\bar{z}) = \sin(x)\cosh(-y) + i\cos(x)\sinh(-y)$$
$$= \sin(x)\cosh(y) - i\cos(x)\sinh(y)$$

The components are $u(x, y) = \sin(x) \cosh(y)$ and $v(x, y) = -\cos(x) \sinh(y)$.

Taking the partial derivatives yields,

$$u_x = -v_y = \cos(x)\cosh(y)$$

and

$$v_x = u_y = \sin(x)\sinh(y)$$

For the Cauchy-Riemann to be satisfied, both equations must equal to 0.

Since $\cosh(y)$ cannot be 0, $\cos(x) = 0$. So $x = \frac{\pi}{2} + n\pi$ for $n \in \mathbb{N}$. When x as above, $\sin(x) = 1$, so $\sinh(y) = 0$, or y = 0.

So f is differentiable in all real numbers $\frac{\pi}{2} + 2n\pi$ for $n \in \mathbb{N}$, and $f'(z) = u_x + iv_x = \cos(x)\cosh(y) + i\sin(x)\sinh(y)$.

- 5. (a) The set $\mathbb{C} \setminus \{0\}$ is open, and f has derivatives everywhere in that set, so f is analytic on $\mathbb{C} \setminus \{0\}$.
 - (b) For any point described above, any neighborhoods around that point will contain some complex numbers, any of which f does not have derivatives at. So f is nowhere analytic in \mathbb{C} .
- 6. The principal value of $(1 + i\sqrt{3})^{4i}$,

$$(1+i\sqrt{3})^{4i} = \exp(4i \operatorname{Log}(1+i\sqrt{3}))$$

$$= \exp\left(4i \left(\ln(2) + i\frac{\pi}{3}\right)\right)$$

$$= \exp\left(-\frac{4\pi}{3} + i\ln(16)\right)$$

$$= \frac{\cos(\ln 16)}{e^{\frac{4\pi}{3}}} + i\frac{\sin(\ln 16)}{e^{\frac{4\pi}{3}}}$$

7. The contour's parameterization: $z(t)=2e^{it}$ for $\frac{\pi}{3}\leq t\leq \frac{3\pi}{4}$ Then

$$\int_{\mathcal{C}} 3z^2 - 2z + 1dz = \int_{\frac{\pi}{3}}^{\frac{3\pi}{4}} f(z(t))z'(t)dt$$

$$= \int_{\frac{\pi}{3}}^{\frac{3\pi}{4}} (12e^{2it} - 4e^{it} + 1)(2ie^{it})dt$$

$$= \int_{\frac{\pi}{3}}^{\frac{3\pi}{4}} 24ie^{3it} - 8ie^{2it} + 2ie^{it}dt$$

$$= 8e^{3it} - 4e^{2it} + 2e^{it} \Big|_{\frac{\pi}{3}}^{\frac{3\pi}{4}}$$

$$= 3\sqrt{2} + 5 + i(5\sqrt{2} + 4 + \sqrt{3})$$

8. (a) $f(z) = \log z$, and the parameterization $z(t) = 2e^{it}$ for $\frac{\pi}{2} < t < \frac{5\pi}{2}$. Consider $f(z(t)) = \log(2e^{it}) = \ln 2 + it$, so

$$f(z(t))z'(t) = (\ln 2 + it)2ie^{it}$$

$$= 2i(\ln 2 + it)(\cos t + i\sin t)$$

$$= (-2t\cos t - \ln 4\sin t) + i(\ln 4\cos t - 2t\sin t)$$

Since $\lim_{t\to\frac{\pi}{2}^+} f(z(t))z'(t)$ exists and equals to $-\ln 4 - i\pi$, it is piecewise continuous on $\left[\frac{\pi}{2}, \frac{5\pi}{2}\right]$ and the integral exists.

Finally,

$$\int_{\mathcal{C}} f(z)dz = \int_{\frac{\pi}{2}}^{\frac{5\pi}{2}} (-2t\cos t - \ln 4\sin t) + i(\ln 4\cos t - 2t\sin t)dt$$

$$= -2t\sin t - 2\cos t + \ln 4\cos t + i(\ln 4\sin t + 2t\cos t - 2\sin t)|_{\frac{\pi}{2}}^{\frac{5\pi}{2}}$$

$$= -4\pi$$

(b) e^z-2z+1 is the sum of three entire functions, so it is entire. So $\int_{\mathcal{C}} f(z)dz=0$ by Cauchy-Goursat Theorem.

(c)

$$\int_{\mathcal{C}} \frac{z+1}{z^2 - 3z} dz = \int_{\mathcal{C}} \frac{1}{z} + \frac{4}{3} \left(\frac{1}{z-3} + \frac{1}{z} \right) dz$$

$$= \int_{\mathcal{C}} \frac{1}{z} dz + \frac{4}{3} \int_{\mathcal{C}} \frac{1}{z-3} dz + \frac{4}{3} \int_{\mathcal{C}} \frac{1}{z} dz$$

$$= 2\pi i + \frac{4}{3} \times 0 + \frac{4}{3} 2\pi i$$

$$= \frac{14}{3} \pi i$$

The first and third integral is due to Cauchy's integral formula, and the second is due to Cauchy-Goursat theorem.

(d) z^3-i is a polynomial, thus is entire. Then, by Cauchy's integral formula,

$$\int_{\mathcal{C}} \frac{z^3 - i}{(z - i)^3} dz = \frac{2\pi i}{2!} \times (z^3 - i)''(i) = -6\pi$$