第 1.2 节 函数的极限 (limits of Functions)

一、内容提要(contents)

极限作为一种在某个变化过程中变量的确定的变化趋势。单侧极限(one-sided limit)。

定理:
$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x) = L$$
, $\lim_{x \to a^{+-}} f(x) = L$ 均成立

水平渐近线(horizontal asymptote): y = L 称为曲线 y = f(x) 的水平渐近线如果下面极限之一成立: $\lim_{x \to +\infty} f(x) = L$, $\lim_{x \to -\infty} f(x) = L$ 或 $\lim_{x \to +\infty} f(x) = L$ 。

铅垂渐近线(Vertical Asymptote): x = a 称为曲线 y = f(x) 的铅垂渐近线 如果下面极限之一成立: $\lim_{x \to a^+} f(x) = +\infty$, $\lim_{x \to a^-} f(x) = +\infty$, $\lim_{x \to a^-} f(x) = -\infty$, $\lim_{x \to a^-} f(x) = -\infty$, $\lim_{x \to a} f(x) = -\infty$, $\lim_{x \to a} f(x) = -\infty$, $\lim_{x \to a} f(x) = \infty$ 。 二、习题解答(answers)

Exercise 1.2

1. Do the following limits exist? Why?

(1)
$$x \to 0, f(x) = \cos \frac{1}{x}$$

Solution: As $x \to 0$, $u = \frac{1}{x} \to \infty$, and $\cos \frac{1}{x} = \cos u$ is a periodic wave without end, so there is no definite tendency, so $\lim_{x \to 0} \cos \frac{1}{x} = \lim_{u \to 0} \cos u$ does not exist.

(2)
$$x \to 0$$
, $f(x) = \frac{1}{1+2^{\frac{1}{x}}}$
Solution: $\lim_{x \to 0^+} 2^{\frac{1}{x}} = \lim_{u \to +\infty} 2^u = +\infty$
So $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{1+2^{\frac{1}{x}}} = \frac{1}{+\infty} = 0$

$$\lim_{x \to 0^{-}} 2^{\frac{1}{x}} = \lim_{u \to -\infty} 2^{u} = 0$$
So
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{1 + 2^{\frac{1}{x}}} = \frac{1}{1 + 0} = 1$$

 $\lim_{x\to\ 0^+} f(x) \neq \lim_{x\to\ 0^-} f(x) \quad , \quad \text{(the right hand limit is not the same as the left hand limit)} \quad , \text{ so } \lim_{x\to\ 0} f(x) \quad \text{does not exist}$

(3)
$$x \to \infty$$
, $f(x) = \arctan x$

Solution:

From the graph of $f(x)=\arctan x$, we have $\lim_{x\to +\infty}f(x)=\frac{\pi}{2}$ and $\lim_{x\to -\infty}f(x)=-\frac{\pi}{2}$.

So $\lim_{x\to\infty}$ arctanx does not exist (because the left hand limit is not equal to the right hand limit)

(4)
$$x \to 0$$
, $f(x) = \begin{cases} x+1 & x < 0 \\ 1 & x = 0 \\ 2 & x > 0 \end{cases}$

Solution:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} f(x+1) = 0 + 1 = 1$$

whereas
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2 = 2$$

So $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$, hence $\lim_{x\to 0} f(x)$ does not exist.

2. Find horizontal and vertical asymptotes for function $f(x) = \frac{x^2 + x - 2}{x^2 - 3x + 2}$ Solution.

As
$$\lim_{x \to \infty} \frac{x^2 + x - 2}{x^2 - 3x + 2} = \lim_{x \to \infty} \frac{1 + \frac{1}{x} - \frac{2}{x^2}}{1 - \frac{3}{x} + \frac{2}{x^2}} = \frac{1 + 0 - 0}{1 - 0 + 0} = 1$$

So, y = 1 is a horizontal asymptote.

$$\lim_{x\to 2} \frac{x^2+x-2}{x^2-3x+2} = \lim_{x\to 2} \frac{(x+2)(x-1)}{(x-2)(x-1)} = \lim_{x\to 2} \frac{(x+2)}{(x-2)} = \infty.$$

So, x = 2 is a vertical asymptote of f(x).

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x + 2)(x - 1)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{(x + 2)}{(x - 2)} = \frac{1 + 2}{1 - 2} = -3$$

So, x = 1 is not a vertical asymptote of f(x), although as $x \to 1$

The denominator, $x^2 - 3x + 2 \rightarrow 0$.