

Plano de Projeto - Módulo 14

1. Informações gerais do projeto

Informação	Detalhe
Nome do Projeto	SIMPATIA - Sistema de Identificação e Monitoramento para Proteção Assegurada dos Trabalhadores com Inteligência Artificial
Organização Parceira/Stakeholder	Atvos/Juliano Moschen
Product Owner	Diego Antonio Freire Dias
Scrum Master	Suelen de Assis Dulfes Alves
Time de Desenvolvimento	Jean Lucas Rothstein Machado
Data de Início	06/01/2025
Data de Término Prevista	21/11/2025

Data de Início: janeiro de 2025.

Data de Término Prevista: novembro de 2025.

2. Seção de acordos entre aluno e parceiro

Como o desenvolvedor do projeto faz parte da empresa parceira, o contato com o parceiro será diário e os encontros ocorrerão tanto presencialmente no escritório da empresa quanto em reuniões online.

Além disso, o desenvolvimento do projeto está vinculado ao **programa de estágio**, garantindo que as atividades estejam alinhadas com os objetivos estratégicos da empresa. A empresa parceira **concorda com o desenvolvimento da solução** e apoia a iniciativa como parte da inovação e melhoria dos processos internos de segurança.

Acordo de Compartilhamento de Dados

Para o treinamento e aprimoramento dos modelos de identificação de EPIs, a empresa parceira concorda em compartilhar os dados necessários, **incluindo uso exclusivo dos dados pessoais dos funcionários**. Isso significa que as imagens capturadas das câmeras de segurança das usinas poderão ser utilizadas para

treinamento e validação dos modelos, mas não poderão ser compartilhadas ou usadas para outros fins que não estejam vinculadas com o uso interno da organização parceira ou para o desenvolvimento do projeto em si.

O uso desses dados seguirá as diretrizes de privacidade e segurança da informação da empresa, garantindo conformidade com normas internas e regulatórias.

3. Objetivos do projeto

Este projeto tem por objetivo a criação de um sistema que automatize a identificação e monitoramento dos trabalhadores que usam os Equipamentos de Proteção Individual (EPIs) nas usinas utilizando visão computacional (modelo de identificação de objetos), e criar uma integração com as câmeras das usinas com processamento das imagens em tempo real notificando ou criando alertas no software das câmeras de segurança, assim como a criação de relatórios com os registros feitos pelo sistema. Como um dos pilares da organização parceira é a segurança dos funcionários, principalmente de quem trabalha nas usinas, o projeto visa assegurar e garantir que os riscos relacionados à possibilidade de acidentes sejam evitados, o que traz um valor estratégico para a empresa, pois melhora a segurança, que é ponto focal atualmente para o desenvolvimento da organização. Além disso, a implementação dessa solução internamente tem custo reduzido se comparado a aquisição de soluções disponíveis comercialmente no mercado.

4. Escopo do projeto - Backlog do produto

Épicos e features

- Epic 1: Documentação e Padronização do Sistema:
 - Feature 1.1: Desenvolvimento de guia de utilização para usuários operacionais (captura de imagens, geração de relatórios);
 - Feature 1.2: Documentação detalhada dos processos de treinamento e retreinamento de modelos;

- Feature 1.3: Estruturação e padronização dos datasets utilizados, com controle de versões e metadados;
- Epic 2: Retreinamento e Evolução dos Modelos de Detecção:
 - Feature 2.1: Coleta de novas imagens de câmeras em operação para atualização do dataset;
 - Feature 2.2: Aplicação de técnicas de data augmentation específicas para o ambiente industrial;
 - Feature 2.3: Retreinamento dos modelos de capacete e treinamento de novos modelos de luvas, coletes e óculos utilizando os novos datasets;
 - Feature 2.4: Comparação entre as métricas de desempenho dos modelos antigos e atualizados;
 - Feature 2.5: Implementação do controle de versionamento de modelos treinados.
- Epic 3: Análise Financeira e Estudos de Viabilidade de Mercado:
 - Feature 3.1: Levantamento dos custos atuais de operação do sistema (infraestrutura de nuvem, APIs, armazenamento);
 - Feature 3.2: Simulação de ROI (Retorno sobre Investimento) e análise de potencial redução de custos com acidentes;
 - Feature 3.3: Análises de fatores externos que podem influenciar na implantação do produto.

5. Roadmap e Cronograma macro do projeto

Duração da Sprint: 2 semanas

Sprint 1 (22/04 - 02/05):

- Definição do escopo detalhado das entregas para as próximas sprints.
- Planejamento de atividades técnicas e de documentação.
- Mapeamento das dependências técnicas e operacionais.

Alinhamento com stakeholders e consolidação de metas do módulo.

Sprint 2(05/05 - 16/05):

- Início da elaboração do guia de utilização para usuários operacionais (captura, notificações, relatórios).
- Início da documentação dos processos de treinamento e retreinamento de modelos
- Início da simulação de ROI (Retorno sobre Investimento) e análise de impacto na redução de acidentes.
- Análise preliminar de fatores externos que influenciam a implantação do produto.

Sprint 3(19/05 - 30/05):

- Coleta de novas imagens a partir das câmeras operacionais.
- Estruturação e padronização dos datasets com controle de versões e metadados.
- Aplicação de técnicas de data augmentation voltadas ao ambiente industrial.

Sprint 4(02/06 - 13/06):

- Retreinamento dos modelos de capacete e treinamento dos modelos de luvas e coletes.
- Comparação entre as métricas dos modelos antigos e atualizados.
- Implementação do versionamento de modelos treinados.

Sprint 5(16/06 - 27/06):

• Finalização do retreinamento do novo modelo de EPIs.

- Conclusão da Documentação técnica dos processos de retreinamento.
- Consolidação das análises financeiras e de viabilidade.
- Preparação da entrega intermediária do módulo com resultados e relatórios.
- Apresentação dos resultados para o stakeholder.

6. Premissas e restrições

6.1. Premissas

- É desejável integrar a identificação das pessoas que não estão usando EPIs corretamente com o nome das pessoas registradas no sistema da empresa.
 No entanto, essa integração não pode ser garantida e dependerá de fatores externos.
- Durante o ano, serão realizadas visitas a algumas usinas para testes e implementação do projeto, garantindo que o sistema seja validado em ambiente real.
- A organização parceira concorda com o desenvolvimento da solução e mantém a anuência para o uso dos dados das câmeras e da VM disponibilizada para os testes e processamento das imagens.

6.2. Restrições

 Não há uma ferramenta específica para a preparação do dataset dos modelos, sendo necessário encontrar uma solução que permita a inserção de label boxings e a divisão do dataset entre treino, teste e validação antes da passagem para a pipeline de treinamento.

 As ferramentas atualmente utilizadas não facilitam esse processo de preparação de dados, exigindo um esforço extra para garantir a correta governança e proteção dos dados durante o tratamento.

7. Time de projeto

Nome	Função	Organização	Responsabilidades
Diego Antonio Freire Dias	PO do Projeto	Externo / Parceira	Acompanha o andamento do desenvolvimento, priorização e garantia de entregas, fornece acessos e meios para implementação.
Juliano Moschen	Stakeholder	Externo / Parceira	Acompanha desenvolvimento e valida o produto final.
Suelen de Assis Dulfes Alves	Scrum Master	Externo / Parceira	Acompanha o desenvolvimento, facilitadora e mediadora de acessos, pessoas e ferramentas.
Jean Lucas Rothstein Machado	Desenvolvedor	INTELI / Parceira	Contribui para o desenvolvimento do produto final.

8. Gestão de mudanças

8.1. Priorização do backlog:

Critérios de Priorização:

1. **Impacto na segurança dos trabalhadores** – Funcionalidades que garantem a identificação correta dos EPIs terão prioridade.

- 2. **Viabilidade técnica** Funcionalidades que dependem de infraestrutura já existente ou exigem menor esforço de implementação serão priorizadas no curto prazo.
- 3. Integração com sistemas externos Itens que envolvem conexão com câmeras e APIs externas (HikVision, GCP) serão priorizados conforme os testes evoluem.
- 4. **Aprimoramento contínuo** Modelos de visão computacional precisarão de ajustes constantes conforme novos dados forem coletados.
- 5. **Requisitos regulatórios e empresariais** Qualquer mudança exigida por normas de segurança ou diretrizes da empresa será rapidamente incorporada.

Ordem de Priorização (Backlog Inicial):

- 1. Início da elaboração do guia de utilização para usuários operacionais (Sprint 2)
- 2. Início da documentação dos processos de treinamento e retreinamento de modelos (Sprint 2)
- 3. Simulação de ROI e análise de impacto na redução de acidentes (Sprint 2)
- 4. Análise preliminar de fatores externos que influenciam a implantação do produto (Sprint 2)
- Definição do escopo detalhado das entregas para as próximas sprints (Sprint
 1)
- 6. Planejamento de atividades técnicas e de documentação (Sprint 1)
- 7. Mapeamento das dependências técnicas e operacionais (Sprint 1)
- 8. Coleta de novas imagens a partir das câmeras operacionais (Sprint 3)
- 9. Estruturação e padronização dos datasets com controle de versões e metadados (Sprint 3)
- 10. Aplicação de técnicas de data augmentation voltadas ao ambiente industrial (Sprint 3)
- 11. Retreinamento dos modelos de capacete e treinamento dos modelos de luvas e coletes (Sprint 4)
- 12. Implementação do versionamento de modelos treinados (Sprint 4)
- 13. Comparação entre as métricas dos modelos antigos e atualizados (Sprint 4)
- 14. Finalização do retreinamento do novo modelo de EPIs (Sprint 5)

- 15. Conclusão da documentação técnica dos processos de retreinamento (Sprint 5)
- 16. Consolidação das análises financeiras e de viabilidade (Sprint 5)
- 17. Preparação da entrega intermediária do módulo com resultados e relatórios (Sprint 5)
- 18. Apresentação dos resultados para o stakeholder (Sprint 5)
- 19. Alinhamento com stakeholders e consolidação de metas do módulo (Sprint 1 com entrega somente validada a partir da Sprint 3)

9. Gestão de riscos

Risco/Desafio	Impacto	Plano de Mitigação
Dificuldade de acesso aos dados	Médio	Análise de fontes secundárias e utilização de datasets existentes para treinamento do modelo.
Atraso na coleta de dados	Médio	Ajuste no cronograma, priorização de testes em ambientes controlados antes da coleta em campo.
Problemas na integração com as câmeras de segurança	Alto	Realizar testes prévios com diferentes modelos de câmera e garantir acesso com área operacional das usinas.
Qualidade dos modelos de identificação dos EPIs abaixo do esperado	Alto	Refinamento contínuo com novos dados coletados nas usinas, ajustes nos hiperparâmetros e testes iterativos.
Resistência dos funcionários ao uso do sistema	Médio	Realizar treinamentos e workshops sobre a importância da ferramenta para a segurança.

Possíveis falhas na detecção de EPIs devido a variações nas condições ambientais (iluminação, poeira, ângulo da câmera)	Alto	Melhorar dataset com imagens de diferentes condições e aplicar técnicas de data augmentation para robustez do modelo.
Dependência de terceiros (fornecedores de software, suporte técnico)	Médio	Criar alternativas viáveis com soluções que envolvam baixo custo e estabelecer contatos diretos com fornecedores para suporte rápido.
Restrições de orçamento	Alto	Monitoramento contínuo dos custos e priorização de atividades críticas dentro do orçamento disponível.
Impossibilidade de testar o sistema nas usinas por restrições operacionais ou falta de autorização	Alto	Criar um ambiente de testes simulado com imagens coletadas previamente, parcerias para acesso remoto em máquinas virtuais a câmeras.
Atraso ou impossibilidade de deslocamento até as usinas para testes em campo	Médio	Planejar visitas com antecedência, buscar autorização formal antecipada e, caso necessário, utilizar equipes locais para execução dos testes com suporte remoto.

Riscos Éticos e de Sustentabilidade

Risco/Desafio	Impacto	Plano de Mitigação
Uso de imagens de funcionários sem consentimento.	Alto	Garantir anonimização dos dados, evitar armazenamento prolongado das imagens e seguir normas internas de privacidade e compliance da empresa.
Preocupações com vigilância excessiva e impacto psicológico nos colaboradores.	Médio	Transparência na comunicação sobre os objetivos do projeto, realização de treinamentos e garantia de que o sistema visa segurança e não controle excessivo.
Impacto ambiental do alto consumo de energia para processamento de dados.	Médio	Implementação de práticas de computação sustentável, como otimização do uso de recursos na nuvem e desligamento de máquinas quando não estiverem em uso.
Dependência de tecnologias externas e riscos de obsolescência.	Médio	Manter documentação do projeto aberta a adaptações futuras e buscar soluções escaláveis que possam ser integradas a novas tecnologias.

10. Gestão da comunicação

Canais de Comunicação

- **Teams:** Principal canal para comunicação com a equipe do projeto, reuniões de alinhamento, compartilhamento de documentos e discussões técnicas.
- **Presencialmente no escritório**: Interação direta para resolução rápida de dúvidas, alinhamento estratégico e tomada de decisões.
- Slack (Faculdade): Canal utilizado para troca de informações acadêmicas, discussões técnicas e suporte em questões relacionadas à faculdade.

Frequência e Formato das Comunicações

- Daily Meeting reunião diária via Teams para alinhamento das entregas parciais diárias e possíveis impedimentos;
- Sprint Planning reunião quinzenal via Teams para definição das tarefas da próxima sprint;
- Sprint Review apresentação quinzenal via Teams do que foi desenvolvido na sprint e coleta de feedback;

11. Melhoria Contínua

A melhoria contínua do projeto será baseada em ciclos iterativos de feedback e aprimoramento, garantindo que o sistema evolua de forma eficiente e atenda às necessidades da empresa. Isso será feito por meio de revisões regulares, retreinamento constante dos modelos de visão computacional e adaptação de estratégias conforme novas demandas forem surgindo.

1. Reuniões de Feedback com o PO, Stakeholders e Supervisão Acadêmica

- **Sprint Review:** Ao final de cada sprint, avanços do projeto serão apresentados para o PO e outros stakeholders, colhendo feedbacks sobre o que foi desenvolvido.
- Reuniões quinzenais com o PO: Encontros para discutir o progresso do projeto, validar mudanças de escopo e priorizar novas funcionalidades no backlog.
- Feedback dos Usuários Finais: Durante os testes nas usinas, coletar sugestões e identificar possíveis dificuldades no uso do sistema.
- Reuniões de Supervisão com Professora do Inteli: Encontros periódicos para apresentar os avanços do projeto, alinhar expectativas acadêmicas e validar abordagens técnicas, garantindo a integração entre teoria e prática.

2. Retreinamento Contínuo dos Modelos de Identificação de EPIs

- Coleta Contínua de Novas Imagens: Melhorar a precisão dos modelos ao incorporar novos dados dos ambientes reais das usinas.
- **Data Augmentation**: Criar variações dos dados existentes para tornar os modelos mais robustos a diferentes condições ambientais (iluminação, ângulos, poeira).

3. Registro e Aplicação de Lições Aprendidas

• Retrospectivas a Cada Sprint: Avaliar o que funcionou bem e o que precisa ser melhorado, documentando aprendizados e aplicando mudanças nas próximas sprints.

12. Métricas de sucesso

Para avaliar a efetividade do projeto, serão utilizadas métricas quantitativas e qualitativas que garantam que os objetivos foram atingidos com sucesso. Essas métricas incluem tanto requisitos não funcionais do modelo de visão computacional quanto indicadores gerais de sucesso do sistema.

1. Métricas de Avaliação do Modelo de Visão Computacional

Como o modelo de visão computacional tem impacto direto na identificação de EPIs, métricas específicas serão utilizadas para medir sua performance em ambiente real:

- Taxa de Detecção Correta (Precision Precisão por Classe de EPI): O modelo deve identificar corretamente pelo menos 90% dos casos de trabalhadores sem os EPIs obrigatórios.
- Taxa de Falsos Positivos: O número de falsos positivos (quando o modelo indica erroneamente que alguém está sem EPI) deve ser menor que 5% para evitar alarmes desnecessários.
- Taxa de Falsos Negativos: O número de falsos negativos (quando o modelo não identifica corretamente uma pessoa sem EPI) deve ser menor que 10%, garantindo que a segurança dos trabalhadores não seja comprometida.
- Robustez em Condições Reais: O modelo deve manter uma taxa de detecção estável em diferentes condições ambientais (iluminação variável, presença de poeira, ângulos de câmera distintos), sem queda superior a 10% em relação ao ambiente controlado.

2. Métricas de Sucesso do Sistema

Além das métricas do modelo, o sucesso do projeto será avaliado com base nos seguintes fatores:

- Integração com as Câmeras de Segurança: O sistema deve processar imagens em tempo real com um tempo de resposta máximo de 1 segundo para cada frame analisado.
- Geração de Relatórios: O dashboard de análise de uso incorreto de EPIs deve ser atualizado automaticamente, garantindo que 100% dos alertas gerados sejam registrados corretamente.
- Taxa de Adoção nas Usinas: Após a implementação do sistema, pelo menos 80% dos gestores e supervisores de segurança devem utilizá-lo ativamente para monitoramento e geração de relatórios.

- Impacto na Segurança: O número de incidentes relacionados ao uso inadequado de EPIs deve apresentar uma redução de pelo menos 30% após seis meses de implementação do sistema.
- Otimização de custos: A solução deve apresentar um custo de manutenção pelo menos 20% inferior às soluções comerciais disponíveis no mercado, garantindo viabilidade financeira para a empresa.