

Relatório Trabalho Prático 2 da UC Processamento de Imagem e Biometria

Grupo 14:

Miguel Lopes №40624

Miguel Pereira №40625

Docente: Artur Ferreira

Exercício 1.

Alínea b)

Resultados obtidos para a imagem 'CT1.jpg' original e transformada pela função medical_image_enhancement.m:

Original Monochromatic

Fake Colour Original

Fake Colour Transform

Pixel info: (X, Y) Pixel Value

Resultados obtidos para a imagem 'MR1.jpg' original e transformada pela função medical_image_enhancement.m:

Original Monochromatic

Transform Monochromatic

Fake Colour Original

Fake Colour Transform

Pixel info: (X, Y) Pixel Value

Resultados obtidos para a imagem 'PET1.tif' original e transformada pela função medical_image_enhancement.m:

Original Monochromatic

Transform Monochromatic

Fake Colour Original

Fake Colour Transform

Pixel info: (481, 63) [15 0 150]

Resultados obtidos para a imagem 'US1.tif' original e transformada pela função *medical_image_enhancement.m*:

Original Monochromatic

Transform Monochromatic

Fake Colour Original

Fake Colour Transform

Pixel info: (X, Y) Pixel Value

Resultados obtidos para a imagem 'XRay1.tif' original e transformada pela função *medical_image_enhancement.m*:

Original Monochromatic

Transform Monochromatic

Fake Colour Original

Fake Colour Transform

Pixel info: (68, 137) [15 0 150]

Resultados obtidos para a imagem 'XRay2.tif' original e transformada pela função medical_image_enhancement.m:

Original Monochromatic

Transform Monochromatic

Fake Colour Original

Fake Colour Transform

Pixel info: (X, Y) Pixel Value

Alínea c)

A melhoria referente à coloração das imagens antes de depois da transformação pela função de *medical_image_enhancement.m*, deve-se à correção do histograma de intensidades. Isto é, devido às imagens médicas serem (geralmente) muito escuras ou muito claras, acontece que as intensidades estão pouco dispersas (pouca variação), o que resulta numa coloração má pois os valores de intensidade não diferem muito, ficando a imagem com muitas zonas com a mesma cor.

Depois da melhoria (ajuste de contraste), como passa a existir maior variação de intensidades, já é possível definir bem as cores para cada nível diferente de intensidade. Usámos a técnica de *Intensity Slicing* para a coloração.

Exercício 2.

Alínea a)

Safe – Substituir todos os valores dos pixéis da imagem pelo valor da safe color mais próxima. (diferença entre o valor de cada componente RGB de cada pixel, por cada valor do *array* de safe colors e escolher o valor de diferença mínimo.)

Safest – Distância absoluta entre o valor do pixel e cada cor do espaço de cores safest color. É escolhida a cor com o valor de diferença mínimo.

Alínea b)

Resultados:

cardCode1 - Versão safe

A	<u>1</u> 3	985	400	477	89	#32		
В	798	497	386	956	449	345		
C	005	246	391	773	32	902		
D	911	171	588	954	231	910		

RGB Image

cardCode1 - Versão safest

A	673	-2 -85	400	477	895	432
В	798	497	386	956	449	345
C	005	246	391	773	32	902
þ	9/1	171	588	954	231	910

RGB Image

Α	1 3	2 85	400	4 ⁴ 77	89	32
В	-8	97	386	956	449	345
С	05	24:	391	773	32	900
	9 1	17	588	954	231	91

Safest Color Image

cardCode2 - Versão safe

A	261	249	0 ³ / ₇ 4	9 5 0	81 <mark>6</mark>	94		
В	654	233	252	869	3 71	855		
С	842	211	888	202	353	649		
D	216	381	499	0.9	429	204		

RGB Image

)	3	Δ	5	
in	- 4	OEA	01	-

A	2	247	14	900	010	74
В	654	233	252	869	371	855
C	842	21	888	202	353	649
n	216	381	400	0 0	420	204

Safe Color Image

cardCode2 - Versão safest

A	261	249	0 7 4	9 5 0	81 <mark>6</mark>	94 94
В	654	233	252	869	3 71	855
C	842	211	888	202	353	649
ח	216	381	499	0.9	429	204

RGB Image

Α	251	249	0 7 4	9 5 0	81 ₆	94 94
В	654	233	252	869	371	855
C	842	211	888	202	353	649

D 216 381 499 0 9 429 204

Safest Color Image

<u>Conclusão</u>: A partir dos resultados destas duas imagens, consegue-se concluir que para a versão *safe*, a imagem fica muito semelhante à original. Apresenta todas as cores muito idênticas, notando-se apenas diferença na intensidade. A imagem correspondente à versão *safe* fica mais baça, enquanto que a imagem original tem as cores mais vivas (com mais brilho).

Para a versão *safest*, as diferenças já são mais visíveis. Com estas imagens do exemplo verifica-se que alguns caracteres da imagem correspondente à versão *safest* apresentam uma cor diferente em relação à imagem original. Como a conversão é realizada pixel a pixel e devido à reduzida gama de cores, existem mesmo alguns caracteres que "perdem" parte da sua cor.

Como era expectável, devido ao menor número de cores nas versões *safe* e *safest color*, a qualidade das imagens convertidas é inferior à qualidade das imagens originais, sendo mais acentuada na versão *safest* (por vezes inelegível) que na versão *safe* (na maioria dos casos, legível).

Exercício 3.

Alínea b)

Resultados:

finger1.tif

finger2.tif

finger3.tif

finger4.tif

finger5.bmp

<u>Conclusão</u>: Uma vez que os resultados obtidos pela função *fingerprint_enhancement* já foram bastante satisfatórios, apenas foi necessário, na função *fingerprint_enhancement_morph*, reduzir a espessura da linhas da impressão digital para apenas um pixel, de forma a que facilite o trabalho da deteção de minúcias e os resultados apresentados foram os pretendidos, com exceção dos contornos de fora da impressão digital, que não seria suposto existirem, uma vez que originam a que sejam detetadas minúcias inexistentes na imagem original.

Alínea c)

Referência para realização da função:

 $\frac{http://www.mathworks.com/matlabcentral/fileexchange/31926-fingerprint-minutiae-extraction? focused = 5190983\&tab = function$

Resultados:

finger1.tif

finger2.tif

finger3.tif

finger4.tif

finger5.bmp

<u>Conclusão</u>: A função *minutiae_detection* deteta e apresenta na imagem binária de entrada, as minúcias da impressão digital. As minúcias detetadas podem ser bifurcações – marcadas a vermelho – ou cristas (fim de linha) – marcadas a preto.

O resultado não foi exatamente o pretendido devido ao facto da imagem produzida pela função *fingerprint_enhancement_morph* apresentar linhas que limitam a impressão digital, originando minúcias indesejáveis. Para além deste caso, verifica-se que existem assinaladas falsas minúcias, pois a imagem da impressão digital contém algumas falhas nas linhas ou junções de linhas distintas que induzem o algoritmo em erro. Para tentar atenuar este problema, decidimos apagar uma das minúcias quando existem 2 minúcias praticamente sobrepostas ou apagar todas as minúcias que se encontravam a menos de 6 pixéis de distância, o que pode levar a que, excecionalmente, minúcias verdadeiras também sejam apagadas. No entanto e como se pode observar nos exemplos *finger2.tif* e *finger5.bmp*, ainda são assinaladas uma quantia significativa de falsas minúcias, mas no geral, praticamente todas as minúcias existentes nas imagens de impressões digitais usadas foram detetas e assinaladas.

Exercício 4.

Alínea a)

Alínea b)