

Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA ELETROTÉCNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA 2017

Duração da prova: 120 minutos

Nome:	
CC/BI/Passaporte N.º	Validade:/

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos com aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das classificações aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Para este efeito, consideram-se apenas os cursos homologados pelo conselho técnico-científico.
- Indique em todas as folhas o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação deverão estar desligados. A utilização destes equipamentos implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- Grupo 2 Um problema de matemática.
- **Grupo 3** Três questões de resposta múltipla de física.
- **Grupo 4** Um problema de física.
- **Grupo 5** Dois problemas enquadrados nos conteúdos do curso.
- **Grupo 6** Questão para desenvolvimento de assunto de cultura científica na área do curso.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

1.	Qual das seguintes equações tem duas soluções em	$\left[-\frac{\pi}{2}\right]$	$\frac{\pi}{2}$?
----	--	-------------------------------	-----------------	---

- \Box (A) $\sin x = 0$
- \Box (B) $\tan x = -1$
- $\Box \quad (C) \sin x = -\frac{\sqrt{3}}{2}$
- $\Box \quad (D) \cos x = \frac{1}{2}$
- \Box (E) $\sin x = 1$

2.	Seja S o conjunt	to de	resultad	os	associado	o a uma	exper	riência	aleatória.	Sejam	A	e B	dois
	acontecimentos,	com	$A \subset S$	e	$B \subset S$.	Sabe-se	que	P[A]	= 0.3, e	P[A∩	B]	= 0	,1 e
	$P[A \cup B] = 0.8.0$	Oual é	o valor	del	$P[\overline{B}]$?								

- \Box (A) 0,1
- \Box (B) 0,2
- \Box (C) 0,3
- \Box (D) 0,6
- \square (E) 0,4

3. Considere a sucessão definida por $\begin{cases} u_1 = 2 \\ u_{n+1} = 2u_n - 3 \end{cases} \text{ se } n \geq 1. \text{ Quanto vale o terceiro termo?}$

- \square (A) 1
- \square (B) 4
- \square (C) -1
- □ (D) 2
- \Box (E) -2

CC / BI / Passaporte N.º

Grupo 2

(Cotação total: 2,0 valores; cotação parcial: 1,0 valor por alínea)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Recorra somente a métodos analíticos e não utilize a calculadora.

Considere a função
$$f$$
 definida por $f(x) = \begin{cases} x + \ln(1+x) & \text{se } x > 0 \\ xe^{1-x} & \text{se } x \le 0 \end{cases}$

- a) Averigue se a função é contínua no ponto x = 0.
- b) Determine a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa x = -1.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Indique <u>a resposta correta</u> do seguinte modo ⊠.

1. Um corpo move-se numa trajetória retilínea durante 2 segundos, sendo a sua velocidade em função do tempo representada no seguinte gráfico.

Considere as seguintes afirmações:

I – Ao fim de 1 segundo o corpo percorreu 10 metros.

II – A velocidade final do corpo é de $30 \text{ m} \cdot \text{s}^{-1}$.

III – A aceleração entre os instantes t = 1s e t = 2s foi de $10 \text{ m} \cdot \text{s}^{-2}$.

Quais as afirmações corretas?

- ☐ (A) apenas I e II
- ☐ (B) apenas I e III
- ☐ (C) apenas II e III
- ☐ (D) nenhuma
- \square (E) todas
- 2. Um corpo encontra-se sob a ação de várias forças, de intensidades $F_1 = 10 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}$, $F_2 = 3 \times 10^5 \text{ g} \cdot \text{cm} \cdot \text{s}^{-2}$ e $F_3 = 5 \text{ N}$. A relação entre as intensidades das forças é:
 - \Box (A) $F_1 < F_2 < F_3$
 - \Box (B) $F_1 < F_3 < F_2$
 - \Box (C) $F_3 < F_1 < F_2$
 - \Box (D) $F_3 < F_2 < F_1$
 - \Box (E) $F_2 < F_3 < F_1$

CC / BI / Passaporte N.º

2	I Image	antíanla	dagamaria	vena a tuai	atámia	2:421124	من من	Da	ama **ala	a dada	00001100	a constanta
э.	Uma p	arucuia	descreve	uma traj	etoria	circular	de raio	K, CC	om vero	cidade	angular (ω constante.

Qual a afirmação correta?

- ☐ (B) A aceleração total da partícula é igual a zero.
- $\hfill \square$ (C) A aceleração total da partícula é igual a $\omega^2.R.$
- $\hfill \Box$ (D) A aceleração centrípeta da partícula é igual a $\omega^2/R.$
- ☐ (E) Nenhuma das anteriores.

(Cotação total: 2,0 valores; cotação parcial: 0,5 valor por alínea)

Considere o circuito elétrico representado na figura e os valores dos parâmetros nele indicados.

- a) Determine a resistência equivalente à associação das resistências R2 e R3.
- b) Sabendo que a resistência interna da fonte é $R_i = 10~\Omega$, determine a resistência equivalente do circuito.
- c) Determine a intensidade da corrente lida no amperímetro 1.
- d) Determine a diferença de potencial lida no voltímetro 1.

(Cotação total: 6,0 valores; cotação parcial: 3,0 valor por problema)

Resolva os problemas propostos na folha de prova e indique claramente a resposta final dos mesmos. Se o espaço se mostrar insuficiente poderá usar o verso da folha para continuar a resposta.

1. Considere o circuito elétrico representado na figura.

- a) Sabendo que:
 - com o interruptor K₁ fechado e o interruptor K₂ aberto, o wattímetro indicou 1200W;
 - com o interruptor K₁ aberto e o interruptor K₂ fechado, o wattímetro indicou 1600W.

Calcule o valor das resistências elétricas assinaladas com R₁ e R₃.

- b) Considere agora que K_1 e K_2 estão fechados. Para efeitos de cálculo utilize os valores das resistências obtidos na alínea a). Calcule:
 - b₁) A resistência elétrica total do circuito.
 - b₂) A intensidade das correntes I₁, I₂ e I₃.
 - b₃) A potência indicada pelo wattímetro.

2. Considere o circuito elétrico representado na figura.

- a) Considere que o interruptor K está aberto. Calcule o valor indicado pelo voltímetro.
- b) Considere agora o interruptor K fechado. Calcule:
 - b₁) A resistência elétrica total do circuito.
 - b₂) O valor indicado pelo voltímetro.
 - b₃) A energia consumida na resistência R_{Carga} durante 1 hora de funcionamento.

CC / BI / Passa	porte N.º	
00 / Di / i assa	POILC 14	

Grupo 6 (Cotação: 4,0 valores)

Se o espaço se mostrar insuficiente poderá usar o verso da folha para continuar a resposta.

Comente justificadamente a afirmação: "A utilização das fontes de energia solar, eólica e nuclear considerando as suas vantagens e desvantagens, é adequada às caraterísticas geográficas e de
clima de Portugal Continental".