Corporate credit risk classification

JAN ABDULLAH

Overview

- This project takes a supervised machine learning approach to predicting the credit risk of corporate bonds, using credit ratings as labels.
- ▶ The model has 3 target risk classes: low, medium, and high
- Why is credit risk important?
 - Cost of capital for corporations
 - ► Rate of return for investors

Obtaining Data

We use a corporate credit ratings dataset found on Kaggle, and enrich the dataset by appending reference features from other sources as well.

Scrubbing Data

- We clean the data on a risk class basis, by splitting the dataset by each class first and then recombining after cleaning. This should promote clearer distinction between classes.
- We also remove all data points dated before 2010.
 - ► Mhàs
 - Questionable ratings agencies practices leading up to 2008 recession.

Explore Data

- We perform some data integrity checks by looking at patterns in some of the features and validating it with some common knowledge on credit risk determination.
- Note that although we only performed EDA on a few features at a time, a lot of other factors are always involved in credit risk determination.

Explore Data (Cont.)

Question 1: What is the relationship between net profit percentage and credit risk?

Explore Data (Cont.)

Question 2: What are the relationships of key debt ratios to credit risk levels in our dataset?

Explore Data (Cont.)

Question 3: What are the relationships between key liquidity ratios and credit risk levels in our dataset?

Modeling

- ▶ We stack a few different parameter-tuned models to generate our final model. The sklearn classifiers in the stack are:
 - 1. Bagging
 - 2. Random Forest
 - 3. Gradient Boosting
 - 4. XGBoost

The stacked model score is 77.25%.

Modeling (Cont.)

Key:

- 1 high risk
- 2 medium risk
- 3 low risk

Interpretability

- Model does fairly well in making class predictions.
- The error of predicting a "low" risk class when the actual is "high", or vice versa, is 2.37%, which is quite good.
- The rest of the errors are understandable. In cases where risk levels are on the borders between classes, the model can predict these incorrectly.

Future Work

- ▶ Invest more time and resources into:
 - Better hyper-parameter tuning
 - Better cleaning configurations
 - Better preprocessing configurations

Thank you!