Lab Talk #3

February 27, 2023

Ozgur Taylan Turan

Cooperative Data Driven Modeling¹

¹A. Dekhovich, O. T. Turan, J. Yi, and M. A. Bessa (Nov. 2022). Cooperative Data-Driven Modeling. arXiv: 2211.12971 [cond-mat]

Introduction

Introduction Continual Learning Application Conclusion

Computational Mechanics (CM)

- Experimental Tests
- Finding a fitting mode
- Publish your model without data or the model

 Introduction
 Continual Learning
 Application
 Conclusion

Computational Mechanics (CM)

- Experimental Tests
- Finding a fitting model
- Publish your model without data or the model

Introduction

Computational Mechanics (CM)

- Experimental Tests
 Finding a fitting model
 Publish your model without data or the graph model

Machine Learning (ML)

- Do the same thing!
- (Mostly) publish data and your model

Machine Learning (ML)

- Do the same thing!
- (Mostly) publish data and your model!

Intersection of CM & ML

- Open Science
- Sharing Data and Models

Intersection of CM & ML

- Open Science
- Sharing Data and Models

Why is this so beneficial?

- Similar tasks
- Similar setups
- Similar behaviours

Introduction Continual Learning Application Conclusion

Continual Learning

- Originates back in 90s
- Try to solve stream of tasks
- Exploits similarities between tasks
- Overcome data-scarcity problem

Introduction Continual Learning Application Conclusion

Continual Learning

- Conventional Learning $f: \mathcal{X} \to \mathcal{Y}$ with H
- Continual Learning

$$\mathcal{F} := \{f_i : \mathcal{X} \to \mathcal{Y}\}_{i=1}^M \ \mathcal{H} := \{H_i\}_i^M$$

AIM

AIM

AIM

Currently: Everyone (deep learning enthusiasts) obtain huge amount of data (takes ages to collect), then train their models!

Our Aim: Improve continuous stream of tasks with previous tasks, and show how collaboration might decrease data and parametrization need!

Continual Learning

Introduction

Introduction Continual Learning Application Conclusion

NNRelief Pruning¹

(a) LeNet-300-100 pretrained on MNIST

(b) LeNet-300-100 pruned on MNIST

Figure 2: LeNet-300-100 architecture on MNIST before and after pruning, where connections are coloured with respect to importance score: blue (least important) \rightarrow red (most important)

- Train your NN for a task of $f: \mathcal{X} \to \mathcal{Y}$
- Compute the importance scores of the activations
- Prune them with a pre-defined tolerance

¹A. Dekhovich, D. M. J. Tax, M. H. F. Sluiter, and M. A. Bessa (June 2022b). Neural Network Relief: A Pruning Algorithm Based on Neural Activity. arXiv: 2109.10795 [cs]

Introduction Continual Learning Application Conclusion

Continual Prune & Select¹

- Given a task $f_i: |\mathcal{X} \to \mathcal{Y}$ find sub-network \mathcal{N}_i inside a given NN $\bigcup_{i=1}^M \mathcal{N}_i$
- Prune with NNRelief
- Fix the sub-network parameters and repeat the same procedure for f_{i+1}
- In the end you end up with task specific networks

¹A. Dekhovich, D. M. J. Tax, M. H. F. Sluiter, and M. A. Bessa (Aug. 2022a). *Continual Prune-and-Select: Class-incremental Learning with Specialized Subnetworks*. arXiv: 2208.04952 [cs]

Application

Plasticity

Plastic Constitutive Law:

- Path dependent problem
- $\sigma = C(\epsilon, t, \theta)$
- $\sigma \in \mathbb{R}^3$ and $\epsilon \in \mathbb{R}^3$

Plasticity

As a continual learning problem:

- θ Determines the different tasks
- ullet Try to learn ${\cal C}$
- Given $\{\sigma_{t=1:T}^{\theta_i}, \epsilon_{t=1:T}^{\theta_i}\}_i = 1, M$

Introduction Continual Learning Application Conclusion

Problem

- 4 Tasks with 800 available train paths and 200 test paths (sampled from Gaussian Process)
- Assume the task-ID is known

Difference of Tasks

- Same strain paths for each task
- Different strain localization

Some Hyper-parameters

- Not the best...
- 2 cells GRU with 128 hidden size

epochs	lr	wd	pruning iter	pruning param α	retrain epochs
1000	0.01	10^{-6}	1	0.95	200

Example

• With 800 training paths for all tasks

Compare with Standard Learning

Same holds for other orderings as well!

Parameters

Parameters

Conclusions & Future Work

Conclusion

- Less number of parameters compared to standard learning.
- Ordering does not matter.
- Mostly better than standard learning especially in scarce data regime!

However

- Deep stuff is not for me!
- What happens for a much wider task variance?
- This strategy is limited by number of parameters.

Conclusion

Thanks!