Tests for the mean of a normal distribution.

Let $X_1, X_2, ..., X_n$ be a random sample from the normal distribution with mean μ and known variance σ^2 .

Consider testing the simple versus simple hypotheses

$$H_0: \mu = \mu_0$$
 $H_1: \mu = \mu_1$

where μ_0 and μ_1 are fixed and known.

$$H_0: \mu = \mu_0$$

Step One:
$$H_1: \mu = \mu_1$$

Choose an estimator for μ .

Step Two:

Give the "form" of the test.

Suppose that $\mu_0 < \mu_1$.

Reject H_0 , in favor of H_1 if X > c, where c is to be determined.

$H_0: \mu = \mu_0$ $H_1: \mu = \mu_1$ $\mu_0 < \mu_1$

Step Three:

Find C.

$$\alpha = P(Type I Error)$$

$$= P(Reject H_0 when true)$$

$$= P(\overline{X} > c \text{ when } \mu = \mu_0)$$

$$= P\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{c - \mu_0}{\sigma/\sqrt{n}} \text{ when } \mu = \mu_0\right)$$

Find c.

Developing a Test
$$H_0: \mu = \mu_0$$
 $H_1: \mu = \mu_1$ Step Three: $\mu_0 < \mu_1$

$$\alpha = P\left(Z > \frac{c - \mu_0}{\sigma/\sqrt{n}}\right)$$
 where $Z \sim N(0, 1)$

Step Three:

$$H_0: \mu = \mu_0$$
 $H_1: \mu = \mu_1$
 $\mu_0 < \mu_1$

$$\Rightarrow \frac{c - \mu_0}{-\sqrt{n}} = z_{\alpha}$$

$$\Rightarrow c = \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

$$H_0: \mu = \mu_0$$
 $H_1: \mu = \mu_1$
 $\mu_0 < \mu_1$

Step Four:

Give a conclusion!

Reject H₀, in favor of H₁ if

$$\overline{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

Step Four:

$$H_0: \mu = \mu_0$$
 $H_1: \mu = \mu_1$
 $\mu_0 < \mu_1$
 $\mu_0 > \mu_1$

Give a conclusion!

Reject H₀, in favor of H₁ if

$$\overline{X} < \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$$

What ever happened to the Type II error? What is going to change if we look at composite hypotheses? What if we don't know sigmasquared?

And what the heck is a P-value?

We'll answer all these questions and more in the next module!

