

Esquema de calificación

Mayo de 2018

Química

Nivel superior

Prueba 2

Este esquema de calificaciones es propiedad del Bachillerato Internacional y **no** debe ser reproducido ni distribuido a ninguna otra persona sin la autorización del centro global del IB en Cardiff.

P	Pregunta		Respuestas	Notas/comentarios	Total
1.	а		$n(H_2SO_4)$ «= 0,0500 dm ³ × 0,100 mol dm ⁻³ » = 0,00500/5,00 × 10 ⁻³ «mol» \checkmark		1
1.	b		$H_2SO_4(aq) + Mg(OH)_2(s) \rightarrow MgSO_4(aq) + 2H_2O(I)$		1
1.	С		«n(H ₂ SO ₄) = $\frac{1}{2}$ × n(NaOH) = $\frac{1}{2}$ (0,02080 dm ³ × 0,1133 mol dm ⁻³)» 0,001178/1,178 × 10 ⁻³ «mol» ✓		1
1.	d		$n(H_2SO_4)$ reaccionaron «= 0,00500 – 0,001178» = 0,00382/3,82 × 10 ⁻³ «mol» \checkmark		1
1.	е		$n(Mg(OH)_2)$ «= $n(H_2SO_4)$ =» = 0,00382/3,82 × 10 ⁻³ «mol» \checkmark $m(Mg(OH)_2)$ «= 0,003822 mol × 58,3 g mol ⁻¹ » = 0,223 «g» \checkmark	Adjudique [2] por la respuesta final correcta.	2
1.	f		% Mg(OH) ₂ «= $\frac{0.223 \text{ g}}{1.24 \text{ g}}$ × 100» = 18,0 «%» ✓	La respuesta debe mostrar tres cifras significativas.	1
1.	g		para reducir errores aleatorios O para aumentar la precisión ✓	Acepte "para asegurar la fiabilidad".	1

Р	Pregunta		Respuestas	Notas/comentarios	Total
2.	Pregun a	ta	Selcon catalizador)	Notas/comentarios Acepte "velocidad" como rótulo del eje x. Acepte "número de partículas", "densidad de probabilidad" o "probabilidad" como rótulo para el eje y.	Total
			E _{a(sin catalizador)}		3
			Energía		
			ambos ejes correctamente rotulados ✓		
			forma correcta de la curva, comienzo en el origen ✓		
			$E_{a(con\ catalizador)} < E_{a(sin\ catalizador)}$ en la gráfica \checkmark		

Р	Pregunta		Respuestas	Notas/comentarios	Total
2.	b	i	Tiempe gráfica más empinada Y finaliza en el mismo volumen ✓		1
2.	b	ii	la velocidad disminuye O la reacción se ralentiza ✓ «ácido etanoico» parcialmente disociado O menor [H ⁺] ✓	Acepte "ácido débil" o "mayor pH".	2

F	regur	nta	Respuestas	Notas/comentarios	Total
2.	С		«pH» convierte «un amplio rango de» [H⁺] en una escala «logarítmica» simple ✓ O «pH» convierte fracciones/números «muy» pequeños en valores «generalmente» entre 0 y 14 ✓	Acepte "usa valores entre 0 y 14". No acepte "más fácil de usar".	1
2.	d	i	A: CH₃COOH/ácido etanoico/acético Y CH₃COO⁻/etanoato/iones acetato ✓ B: CH₃COO⁻/etanoato/iones acetato ✓		2
2.	d	ii	$K_a = 1.74 \times 10^{-5} = \frac{[H^+]^2}{0.10}$ O $[H^+] = 1.32 \times 10^{-3} \text{ «mol dm}^{-3} \text{»} \checkmark$ $\text{«pH} = \text{»} 2.88 \checkmark$	Acepte [2] por la respuesta final correcta.	2
2.	d	iii	«forma un ácido débil y una base fuerte, por lo tanto es básico» CH₃COO⁻ (aq) + H₂O (I) ⇌ CH₃COOH (aq) + OH⁻ (aq) ✓		1
2.	d	iv	menor que 7 ✓		1
2.	е	i	$2NO_2(g) + H_2O(I) \rightarrow HNO_2(aq) + HNO_3(aq) \checkmark$		1
2.	е	ii	$\begin{split} & 2HNO_2(aq) + CaCO_3(s) \to \; Ca(NO_2)_2(aq) + CO_2(g) + H_2O(I) \\ & \boldsymbol{O} \\ & 2HNO_3(aq) + CaCO_3(s) \to \; Ca(NO_3)_2(aq) + CO_2(g) + H_2O(I) \checkmark \end{split}$	Acepte " H_2CO_3 " o " CO_2 • H_2O " en lugar de " $CO_2(g) + H_2O(I)$ ".	1

3.	а	i	n = 4 n = 3 n = 2 n = 1	1
			4 niveles que convergen a mayor energía ✓	
3.	a	ii	n = 4 n = 3 n = 2 n = 1 flechas dirigidas hacia abajo (señalando hacia abajo) desde n = 3 hacia n = 2 Y n = 4 hacia n = 2 ✓	1

(Pregunta 3a, continuación)

Р	Pregunta		Respuestas	Notas/comentarios	Total
3.	а	iii	IE «= $\Delta E = h v = 6.63 \times 10^{-34} \text{ J s} \times 3.28 \times 10^{15} \text{ s}^{-1} \text{»} = 2.17 \times 10^{-18} \text{ «J» } \checkmark$		1
3.	а	iv	$\alpha \lambda = \frac{c}{v} = \frac{3,00 \times 10^8 \text{ ms}^{-1}}{3,28 \times 10^{15} \text{ s}^{-1}} = 9,15 \times 10^{-8} \text{ mm} \checkmark$		1
3.	b	i	el mismo nivel energético «exterior» Y aumenta la carga nuclear/número de protones «causando mayor repulsión sobre los electrones exteriores» ✓		1
3.	b	ii	 K⁺ 19 protones Y Cl⁻ 17 protones O K⁺ tiene «dos» protones más ✓ el mismo número de electrones/isoelectrónicos «por lo tanto están más juntos entre sí» ✓ 		2
3.	С	i	1 1111111	Acepte flechas enteras	1
3.	С	ii	Ánodo (electrodo positivo): Cu(s) → Cu ²⁺ (aq) + 2e ⁻ \checkmark Cátodo (electrodo negativo): Cu ²⁺ (aq) + 2e ⁻ → Cu (s) \checkmark	Acepte Cu(s) – 2e ⁻ → Cu ²⁺ (aq). Adjudique [1 máximo] si las ecuaciones están en los electrodos incorrectos.	2

(continúa...)

(Pregunta 3c, continuación)

Р	Pregunta		Respuestas	Notas/comentarios	Total
3.	С	iii	circuito externo/alambre Y desde el electrodo positivo/ánodo hacia el electrodo negativo/cátodo ✓		1
3.	С	iv	no hay variación «de color» ✓	No acepte "la solución alrededor del cátodo se tornará más pálida y la solución alrededor del ánodo se tornará más oscura".	1
3.	С	v	oxígeno/O₂ ✓	Acepte dióxido de carbono /CO ₂ .	1
3.	d		 Metales de transición: «contienen» orbitales d y s «de energía cercana» O las «sucesivas» energías de ionización aumentan gradualmente ✓ Metales alcalinos: el segundo electrón se extrae de un nivel energético «mucho» menor O la extracción del segundo electrón requiere gran cantidad de aumento de energía de ionización ✓ 	Acepte "los metales alcalinos «solo» tienen un electrón en su capa de valencia/ externa" o "los metales alcalinos no tienen orbitales d parcialmente ocupados/subcapas".	2

Р	Pregunta		Respuestas	Notas/comentarios	Total
4.	а		$BrO_3^-(aq) + 6H^+(aq) + 6I^-(aq) \rightleftharpoons Br^-(aq) + 3I_2(s) + 3H_2O(l)$	Acepte → en lugar de \rightleftharpoons .	1
4.	b		n = 6 ✓		
					2
4.	С		« $E^{\ominus} = E^{\ominus}$ (BrO ₃ ⁻ /Br ⁻) − E^{\ominus} (I ₂ /I ⁻)» « E^{\ominus} (BrO ₃ ⁻ /Br ⁻) = E^{\ominus} + E^{\ominus} (I ₂ /I ⁻) = 0,887 + 0,54 =» «+» 1,43 «V» ✓		1

P	regur	nta	Respuestas	Notas/comentarios	Total
5.	а		enlaces rotos: 4(C–H) + 2(H–O) / 4(414) + 2(463) / 2582 «kJ» ✓ enlaces formados: 3(H–H) + C≡O / 3(436) + 1077 / 2385 «kJ» ✓	Adjudique [3] por la respuesta final correcta.	3
			$\Delta H \ll \sum ER_{\text{(enlaces rotos)}} - \sum EF_{\text{(enlaces formados)}} = 2582 - 2385 $ = «+» 197 «kJ» \checkmark		
5.	b	i	$\Delta H_{\rm f}^\Theta$ para cualquier elemento = 0 «por definición» O no se requiere energía para formar un elemento «en su forma estable» a partir de sí mismo \checkmark		1
5.	b	ii	$\Delta H^{\ominus} = \sum \Delta H^{\ominus}_{f \text{ (productos)}} - \Delta H^{\ominus}_{f} \sum_{\text{reactivos)}} = -111 + 0 - (-74,0) + (-242) $ $= \text{(+*)} 205 \text{ (kJ)} \checkmark$		1
5.	b	iii	«las entalpías de enlace» son valores medios calculados entre «un amplio rango de » compuestos similares ✓		1
5.	С		$ ^{\bullet}\Delta S^{\ominus} = \sum S^{\ominus}_{\text{productos}} - \sum S^{\ominus}_{\text{reactivos}} = 198 + 3 \times 131 - (186 + 189) = \text{*} \text{*} \text{*} + \text{*} \text{*} 216 \text{ *} \text{*} \text{J} \text{K}^{-1} \text{*} \text{*} \text{\checkmark} $		1
5.	d		$\mbox{$^{\circ}$} = \Delta H^{\ominus} - T\Delta S^{\ominus} = 205 \text{ kJ} - 298 \text{ K} \times \frac{216}{1000} \text{ kJ K}^{-1} = \text{$^{\circ}$} \text{$^{\circ}$} \times \text{$^{\circ}$} $		1
5.	е				1

Р	regun	ıta	Respuestas	Notas/comentarios	Total
6.	а		Q: las concentraciones no son las del equilibrio $\mathbf{Y} \mathbf{K}_c$: con las concentraciones de equilibrio		
			0		1
			Q: las concentraciones en un determinado tiempo Y K₂: concentraciones en el equilibrio ✓		
6.	b		$Q = \frac{[SO_3]^2}{[SO_2]^2[O_2]} = \frac{1,00^2}{1,00^2 \times 2,00} \Rightarrow = 0,500 \checkmark$ Ia reacción inversa está favorecida porque $Q > K_c \checkmark$	No adjudique [2] sin la explicación.	2
6.	С	i	[N₂O₂] disminuye Y es exotérmica «por eso la reacción inversa está favorecida» ✓		1

(continúa...)

(Pregunta 6c, continuación)

Р	Pregunta		Respuestas	Notas/comentarios	Total
6.	c	ii	**ALTERNATIVA 1: "a partir del equilibrio, etapa 1" $K_c = \frac{[N_2O_2]}{[NO]^2}$ O $[N_2O_2] = K_c[NO]^2 \checkmark$ "a partir de la etapa 2, velocidad "= $k_1[N_2O_2][O_2] = k_2K[NO]^2[O_2]$ " velocidad = $k[NO]^2[O_2] \checkmark$ **ALTERNATIVA 2: "a partir de la etapa 2" velocidad = $k_2[N_2O_2][O_2] \checkmark$ "a partir de la etapa 1, velocidad(1) = $k_1[NO]^2 = k_{-1}[N_2O_2], [N_2O_2] = \frac{k_1}{k_{-1}}[NO]^2$ " "velocidad = $\frac{k_1}{k_{-1}}k_2[NO]^2[O_2]$ " velocidad = $k[NO]^2[O_2] \checkmark$	Adjudique [2] por la expresión de velocidad correcta.	2
6.	d		$ \text{«In} \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \text{»} $ $ T_2 = \text{«273} + 35 = \text{» 308 K } \textbf{Y} T_1 = \text{«273} + 25 = \text{» 298 K } \checkmark $ $ E_a = 52,9 \text{ «kJ mol}^{-1} \text{»} \checkmark $	Acepte respuestas entre 52,8 y 53,0 kJ mol ⁻¹ . Adjudique [2] por la respuesta final correcta.	2

Р	Pregunta		Respuestas	Notas/comentarios	Total
7.	а	i	enlaces polares «entre H y elemento del grupo 16» ✓ distribución asimétrica de la nube electrónica		
			O forma asimétrica O		2
_		 	enlaces polares/los dipolos no se cancelan ✓		
7.	а	ii	el número de electrones aumenta ✓	Acepte "la M _r aumenta" o "las moléculas aumentan su tamaño".	_
			aumentan las fuerzas de London/dispersión/dipolo instantáneo-dipolo inducido ✓	Acepte "las fuerzas de van der Waals aumentan".	2
7.	b		Geometría de dominio electrónico: tetraédrica ✓ Geometría molecular: curvada/en forma de V ✓		2
7.	С	i	Structure: I Átomo de O rotulado (1) 0 +1 Átomo de O rotulado (2) 0 −1	Adjudique [1] por dos celdas correctas cualesquiera.	2
7.	С	ii	estructura I Y cargas no formales O estructura I Y no hay transferencia de carga «entre átomos » ✓		1

Р	regunt	a Respuestas	Notas/comentarios	Total
7.	d	El enlace del O_3 es entre simple y doble $\mathbf Y$ el enlace del O_2 es doble $\mathbf O$ El orden de enlace del O_3 es de 1,5 $\mathbf Y$ el orden de enlace del O_2 es de 2 $\mathbf O$	No acepte "el ozono tiene un enlace simple y uno doble".	2
		el enlace del O₃ es más débil /más corto que el del O₂ ✓ O₃ requiere mayor longitud de onda ✓	Acepte los argumentos opuestos.	
7.	е	CO₂ «no polar» «débil» las fuerzas entre las moléculas son fuerzas de London/dispersión / dipolo instantáneo-dipolo inducido ✓	El concepto de "entre" es fundamental. Acepte "fuerzas de van der Waals".	2
		SiO₂ estructura de red/reticular/3D/gigante «covalente» ✓		

P	Pregunta		Respuestas	Notas/comentarios	Total
8.	a		Evidencia física: igual longitudes de enlace carbono–carbono/C–C O hexágono regular O una señal en su espectro de RMN «de ¹H» ✓ Evidencia química: sufre reacción de sustitución «no de adición» O no decolora al agua de bromo O forma solo un isómero 1,2-disustituído «la presencia de enlaces dobles alternados originaría dos isómeros» O es más estable de lo que se espera «en comparación con la molécula hipotética 1,3,5-ciclohexatrieno» ✓		2
8.	b	i	$3CH_3CH_2CH_2OH(I) + Cr_2O_7^{2-}(aq) + 8H^+(aq) \rightarrow 3CH_3CH_2CHO(aq) + 2Cr^{3+}(aq) + 7H_2O(I)$ reactivos y productos correctos ✓ ecuación ajustada ✓	Acepte $C_2H_5CH_2OH$, C_3H_7OH o C_3H_8O para el alcohol. Acepte C_2H_5CHO o C_3H_6O para el aldehído.	2

(Pregunta 8b, continuación)

Р	Pregunta		Respuestas	Notas/comentarios	Total
8	b	ii	Aldehído: por destilación «eliminado de la mezcla de reacción tan pronto como se forma» ✓ Ácido carboxílico: «calentar la mezcla a» reflujo «para alcanzar la oxidación completa a –COOH» ✓		2
8.	С	i	$ \frac{136}{48+4+16} = 2 $ $ C_8H_8O_2 \checkmark $		1
8.	С	ii	A: C–H «en los alcanos, alquenos arenos» Y B: C=O «en los aldehídos, cetonas ácidos carboxílicos y ésteres» ✓		1

(continúa...)

(Pregunta 8c, continua)

Р	Pregunta		Respuestas	Notas/comentarios	Total
8.	С	iii	Dos cualesquiera de:	Acepte las siguientes estructuras:	
			O C ₆ H ₅ COOCH ₃ ✓	H_3C	
			O CH₃COOC ₆ H ₅ ✓	H ₃ C O H	2
			H O HCOOCH ₂ C ₆ H ₅ ✓	CH ₃	
8.	С	iv	C ₆ H ₅ COOCH ₃ «señal a 4 ppm (rango 3,7–4,8 en la tabla de datos) debido al grupo alquilo sobre el éster» ✓		1

P	regur	nta	Respuestas	Notas/comentarios	Total
9.	a	i	H H C H C H C H C H C H C C H C C C C C	Acepte fórmulas condensadas.	2
9.	а	ii	A: CH ₃ CH ₂ COCH ₂ CH ₃ Y «pico a» 29 debido a (CH ₃ CH ₂) ⁺ /(C ₂ H ₅) ⁺ /(M − CH ₃ CH ₂ CO) ⁺ O CH ₃ CH ₂ COCH ₂ CH ₃ Y «pico a» 57 debido a (CH ₃ CH ₂ CO) ⁺ /(M − CH ₃ CH ₂) ⁺ /(M − C ₂ H ₅) ⁺ ✓ B: CH ₃ COCH ₂ CH ₂ CH ₃ Y «pico a» 43 debido a (CH ₃ CH ₂ CH ₂) ⁺ /(CH ₃ CO) ⁺ /(C ₂ H ₃ O) ⁺ / (M − CH ₃ CO) ⁺ ✓	Penalice solo una vez la falta de signo +. Acepte "CH ₃ COCH ₂ CH ₂ CH ₃ por eliminación ya que el fragmento CH ₃ CO no está en la lista".	2

Р	regur	nta	Respuestas	Notas/comentarios	Total
9.	b	i	heterolítico/heterolisis ✓		1
9.	b	ii	polar prótico ✓		1
9.	b	iii	R_1 R_2 R_3 R_4 R_2 R_3 R_4 R_5 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_8		2
9.	b	iv	 «alrededor de» 50 % «cada uno» O similares/porcentajes iguales ✓ el nucleófilo puede atacar de cualquier lado «del carbocatión plano » ✓ 	Acepte "mezcla racémica/racemato".	2
9.	С		Etapa uno: $ C_6H_5NO_2(I) + 3Sn(s) + 7H^+(aq) \rightarrow C_6H_5NH_3^+(aq) + 3Sn^{2+}(aq) + 2H_2O(I) \checkmark $ Etapa dos: $ C_6H_5NH_3^+(aq) + OH^-(aq) \rightarrow C_6H_5NH_2(I) + H_2O(I) \checkmark $		2