Format I		0	opcode 6 bits		r2 5 bits	
Instruction		Opcode		6 bits 5 bits 5 bits Operation		
mov	r1,r2	000000	R_{r1}	$\leftarrow (R_{r2})$);	
add	r1,r2	000001	R_{r1}	$\leftarrow (R_{r1})$	$+(R_{r2});$	
sub	r1,r2	000010	R_{r1}	$\leftarrow (R_{r1})$	$-(R_{r2});$	
and	r1,r2	000011	R_{r1}	$\leftarrow (R_{r1})$	$\wedge (R_{r2});$	
or	r1,r2	000100	R_{r1}	$\leftarrow (R_{r1})$	$\vee (R_{r2});$	
mov	r1,(r2)	000101	R_{r1}	$\leftarrow (M_{\odot})$	$(R_{r_2});$	
mov	(r1),r2	000110	$M_{(F)}$	R_{r1}) \leftarrow (R_{r2});	
call	r1,r2	000111	R_{r1}	(PC);	$PC \leftarrow (R_{r2});$	

در یک ماشین دو آدرسه حجم حافظه ۲۱۴ کلمه (هر کلمه چهار واحدآدرس پذیر ۸ بیتی) است. ماشین دارای ۳۲ ثبات همه منظوره R0 تا R31 است و از شیوههای نشانیدهی ثباتي، غير مستقيم ثباتي، مستقيم، و بالفاصله استفاده ميكند. دستورات ماشين در دو قالب زیر کد میشوند. فرض کنید آدرس برگشت به سیستم عامل در ثبات R_{31} ذخیره میشود.

۱- برنامه ای به زبان اسمبلی بنویسید که مجموع عناصر آرایه array را محاسبه و در کلمه sum ذخیره کند. (۲ نمره)

ORG 0

۲- برنامه زير چه ميکند؟ (۲ نمره)

	mov	R1,array
	dw	220001E2h
four:	dw	4
loop:	mov	R3,(R2)
	add	R1,R3
	mov	R4,array-6
	sub	R4,R2
	jnz	R4,loop-5
	mov	sum,R1
max:	dw	1C1F0000h
array:	dw	100 dup(?)
sum:	dw	0
END		

		, ,
	dw	220001E2h
four:	dw	4
loop:	mov	R3,(R2)
_	add	R1,R3
	mov	R4,array-6
	sub	R4,R2
	jnz	R4,loop-5
	mov	sum,R1
max:	dw	1C1F0000h
array:	dw	100 dup(?)
sum:	dw	0
END		

- ٣- حافظه اصلى كامييوتر بالا را با تراشههاى حافظه 16Kx2bits RAM طوری طرح کنید که تا حد امکان تحمل پذیر خرابی تراشه ها باشد. (۲ نمره)
- ۴- با فرض داشتن حافظه نهان با نگاشت مستقیم به حجم ۱۶ کلمه (بلوکهای ۳۲ بیتی)، او لا نقشه بلوکی حافظه نهان و چگونگی تقسیم فیلدهای آدرس را نشان دهید. ثانیا نرخ نقصان حافظه نهان را برای اجرای برنامه سوال ۲ بدست آورید. (۲ نمره)

Form	nat II						
				opcode	r	address]
				3 bits	5 bits	16 bits	
Instruction	on	OpCode	Operation	on			
mov	r, address	001	$R_r \leftarrow$	$(M_{address});$			
mov	address, r	010	$M_{address} \leftarrow (R_r);$				
jnz	r, address	011	if $(R_r) \neq 0$ then $PC \leftarrow address$;				
jz	r, address	100	if $(R_r) = 0$ then $PC \leftarrow address$;				
jneg	r, address	101	if (R_r)	< 0 then λ	$PC \leftarrow a$	ddress;	

Format III				
		opcode	r	data
		3 bits	5 bits	32 bits
Instruction	OpCode	Operation		
mov r, #data add r, #data	110 111	$R_r \leftarrow data$ $R_r \leftarrow (R_r)$		

موفق باشید - سربازی آزاد