Data Management

Supervised Machine Learning: Regressions

Malka Guillot

HEC Liège | ECON2306

Table of contents

- 1. Introduction
- 2. Overview of ML process
- 3. Sample splitting to measure model fit
- 4. Pre-processing
- 5. Regression algorithms

References

- **E** Békés & Kézdi (2022) 7.1->7.8 & 10.1->10.4
- 📃 introduction to Statistical Learning chap 1. & 2 & 5.1
- Kleinberg, Ludwig, Mullainathan, and Obermeyer (2015), "Prediction Policy Problems." American Economic Review, 105 (5), pp. 491-95.
- Mullainathan and Spiess (2017), "Machine Learning: An Applied Econometric Approach", Journal of Economic Perspectives, 31 (2), pp. 87-106,

Introduction

[Motivation] Setting

- Output variable (or dependent variable) y
 - Dependent variable, target variable, outcomes, labels
- Set of input variables $X = (x_1, x_2, \dots, x_n)$
 - Explanatory variables, independent variables, predictors
- Data generating process

$$f: \mathcal{X} \to \mathcal{Y}$$

$$\mathcal{X} \in \mathbb{R}^{n \times p}, \mathcal{Y} \in \mathbb{R}^p$$

Statistical model to approach the DGP

Concretely, finding f(.) s.t.

$$Y = f(X) + \epsilon$$

- f(X) is an unknown function of a matrix of predictors $X=(x_1,\cdots,x_p)$,
- y: a scalar outcome variable
- an error term ϵ with mean zero.
- While X and y are known, $f(\cdot)$ is unknown.

Goal of statistical learning: to utilize a set of approaches to estimate the "best" $f(\cdot)$ for the problem at hand.

Example: income as a function of education

[Motivation] Goals of data analysis

- Description: Document observed relationships between X and y
- Causation: Learn about causal relationships: If we change X, how will y change?
- Prediction: Be able to guess the value of y from the X variables.
- ⇒ Uncovering the data generating process

[Description] Unsupervised learning

Estimating functions without the aid of outcome variable y.

- We only observe X and want to learn something about its structure
- Clustering: Partition data into homogeneous groups based on X
- Dimensionality reduction (e.g. PCA)

[Description] Modelling the mean-dependence

- Going further than the correlation analysis
 - Cf. example on management quality and firm size
- Regression analysis uncovers mean-dependence between two variables, controlling for other varialbes:
 - comparing average values of a dependent variable (y)
 - for observations that are different in the set of **explanatory** variables (X).
 - lacktriangle Doing so uncovers the pattern of association between y and X.
- ⇒ Econometrics

[Prediction] Guess the values of y from the X variables

- Estimating functions with known observations and outcome data.
 - We observe data on y and X
 - \circ y = labels
 - $\circ X = predictors$
 - We want to learn the mapping $\hat{y} = \hat{f}(X)$
- We predict y by $\hat{y} = \hat{f}(X)$
 - Useful for observations for which y is unknown and X is known
- ⇒ Supervised machine learning

Supervised Machine learning and/or Econometrics

- Common objective: to build a predictive model, for a variable of interest, using explanatory variables (or features)
- Different cultures:
 - *E*: probabilistic models designed to describe economic phenomena
 - ML: algorithms search through a set of possible prediction models that capture the best relationship

E Charpentier A., Flachaire, E. & Ly, A. (2018). Econometrics and Machine Learning. *Economics and Statistics*, 505-506, 147–169.

Prediction setup

- y continuous/quantitative (eg. price)
 - Regression problem
- y discrete/binary (eg. default loan, banckrupcy)
 - Probability prediction
 - Classification problem
- Time series prediction

Key idea: systematically combine estimation and model selection

Panorama of the models

Source: scikit-learn

Panorama of the model eco-system

- Econometrics: statsmodels
- Machine Learning: scikit-learn
- Deep Learning: keras, pytorch, TensorFlow...

Overview of ML process

How does ML work?

- Econometrics:
 - estimation procedure gives a single set of estimated coefficients
- Machine learning is different
 - Search through a set of possible prediction models
 - Which one does capture best the relationship?
- Estimation of the model on a training set
- Test for the goodness of fit on the test set (and avoid overfitting)

Typical supervised ML procedure

ML procedure

Data pre-processing

How to choose between models?

Data modelling

Reducible and irreducible error

$$\hat{f}(X) = \hat{y}$$
 estimated function $f(X) + \epsilon = \hat{y}$ true function

- Reducible error: \hat{f} is used to estimate f, but not perfect
 - Accuracy can be improved by adding more features
- Irreducible error: ϵ = all other features that can be used to predict f
 - Unobserved → irreducible

Reducible and irreducible error

$$E(y - \hat{y})^{2} = E[f(X) + \epsilon - \hat{f}(X)]^{2}$$

$$= \underbrace{[f(X) - \hat{f}(X)]^{2}}_{Reducible} + \underbrace{Var(\epsilon)}_{Reducible}$$

 \Rightarrow **Objective**: estimating f with the aim of minimizing the reducible error

The Prediction error

- Predicted value \hat{y}_j for target observation j
- Actual value y_i for target observation j
- Prediction error

$$e_j = \hat{y}_j - y_j$$

• Error = predicted alue - actual value

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- Regression setting: the mean squared error is a metric of how well a model fits the data.
- In sample: computed on the training set
- **⇒** Training MSE

Sample splitting approach to measuring model fit

Sample splitting

Resampling methods

Estimate the test error rate by

holding out a subset of the training observations from the fitting process,

+ then **applying** the statistical learning method to those held out observations

Validation set approach

 Labeled data randomly into two parts: training and test (validation) sets.

Two concerns

- Arbitrariness of split
- Only use parts of the data for estimation
 - \rightarrow we tend to overestimate test MSE because our estimate of f(x) is less precise

Leave-One-Out Cross-Validation (LOOC)

- Fit on n-1 training observations, and a prediction the Last
- Iterate *n* times
- Assess the average model fit across each test set.

Estimate for the test MSE:

$$CV_n = \sum_{i=1}^n MSE_i$$

Leave-One-Out Cross-Validation (LOOC)

- less bias than the validation set approach
- always yield the same results
- potentially too expensive to implement

k-fold Cross-validation

- Leave-One-Out Cross-Validation with k=1
- Randomly dividing the data into the set of observations into k groups
- 1st fold is treated as a validation set, and the method is fit on the remaining k-1 folds
- Iterate *k* times

Estimate for the test MSE:

$$CV_k = \sum_{i=1}^k MSE_i$$

k-fold Cross-validation

⇒ Arguably the contribution to econom(etr)ics: Cross-validation (to estimate test MSE)!

Measuring the fit

To estimate model fit we need to partition the data:

- 1. Training set: data used to fit the model
 - Training MSE: how well our model fits the training data.
- 1. Test set: data used to test the fit
 - Test MSE: how well our model fits new data

We are most concerned in minimizing test MSE

Training MSE, test MSE and model flexibility

Red (grey) curve is test (train) MSE

Increasing model flexibility tends to decrease training MSE but will eventually increase test MSE

Overfitting

- As model flexibility increases, training MSE will decrease, but the test MSE may not.
- When a given method yields a small training MSE but a large test
 MSE, we are said to be overfitting the data.
- (We almost always expect the training MSE to be smaller than the test MSE)
- Estimating test MSE is important, but requires training data...

Conclusiong on model selection

- = finding the best fit while avoiding overfitting and aiming for high external validity
- 1. Train the model on the training set
- 2. Evaluate predictive performances on using th test (validation) set
 - Evaluation criterion (loss function) = RMSE (root mean squared error)

Supervised ML: Regressions

What are the main categories of models?

Model building

- Deciding about the predictors to include in the model and their functional form.
- We have strong computers, cloud, etc why could not we try out all possible models and pick the best one?
 - Too many models possible!
- 2 methods to build models:
 - 1. By hand -- mix domain knowledge and statistics
 - 2. By Smart algorithms = machine learning

1. Linear Regression as a predictive model

Linear Regression (Theory)

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

= one of the simplest algorithms for doing supervised learning

A good starting point before studying more complex learning methods

Notes:

Interpretation of β_j = the average effect on Y of a unit increase in X_j holding all other predictors fixed

Linear estimate

Implementation in python

Using statsmodel:

```
import statsmodels.formula.api as smf
reg1 = smf.ols(formula="lnw~female", data=df).fit(cov_type="HC1")
reg1.summary()
```


Extensions of the Linear Model

Going further model's assumptions:

- the **additive**: the effect of changes in a predictor x_j on the response Y is independent of the values of the other predictors
- linearity: the change in the response y due to a one-unit change in x_j is constant

Interactions

- Adding interacted variable can help
- Should respect the hierarchy principle:
 - if an interaction is included, the model should always include the main effects as well

Non Linearity

- Include transformed versions of the predictors in the model
- \Rightarrow Including polynomials in X may provide a better fit

Linear Models: pros and cons

• Pros:

- Interpretability
- Good predictive performance
- Accuracy measures for
 - coefficient estimates (standard errors and confidence intervals)
 - o the model

• Cons:

- When p > n
- Tend to over-fit training data.
- Cannot handle multicollinearity.

Generalization of the Linear Models

- Regularized fitting: ridge regression and lasso
- Non-linearity: nearest neighbor methods
- Interactions: Tree-based methods, random forests and boosting

2. Regularized linear regressions

Feature selection with regularization

Why Regularization?

- Key question: which features to enter into model, how to select?
 - There is room for an automatic selection process.
- Solution against overfitting
- Allow High-Dimensional Predictors
 - \blacksquare p >> n: OLS no longer has a unique solution
 - \blacksquare x_i "high-dimensional" i.e. very many regressors
 - o pixels on a picture

LASSO

Least Absolute Shrinkage and Selection Operator

LASSO proposes a method to build a model which just includes the most important predictors.

Modifies the way regression coefficients are estimated by adding a penalty term for too many coefficients

Lasso

$$\hat{\beta} = argmin_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - (\beta_0 + \sum_{j=1}^{k} \beta_j x_{ij}) \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j|$$

- $R(\beta) \sum_{j=1}^{k} |\beta_j|$ = regularization function with a L1 norm penalty function
- λ is a **hyperparameter** (or tunning) where higher values increase regularization

Lasso Coefficients

Working on the features: pre-processing

Pre-processing

Feature engineering: what x variables to have and in what functional form

Feature engineering typically includes

- deciding on what predictor variables to include
- exploring and addressing potential missing values and extreme values
- deciding about function forms of the predictor variables
- designing possible interactions of the predictor variables

What to do with different type of variables

- If binary (e.g, yes/no; male/female; 1/2)
 - create a 0/1 binary variable
- If string / factor
 - check values, and create a set of binaries.
- Continuous
 - Make sure it is stored as number
 - standardization/ normalization
- Text Natural Language Processing.
 - Mining the text to get useful info.
 - May simply go and find some words, and create binaries

What's next?

- Classification
 - Logistic regression
 - Different measure of the performance
- Unsupervised learning
 - Dimensionality reduction
 - Clustering methods

