Méthode des tableaux : Optimisation pour des formules de la forme alternée

Forme proposition pour accelerer methode tableau memoisation des propositions (SQL, dictionnaire, serialisation?)

Contents

1	Logique Propositionelle	1
	Definition	
1.2	Principe	2
	Optimisation pour les formules de forme alternée	
2	Logique du 1er ordre (FAIT PLUS TARD)	:

1 Logique Propositionelle

1.1 Definition

Definition 1: La logique propositionelle est un type de logique où les formules sont obtenus par des variables propositionelles reliées par des connecteurs.

Definition 2 (Modèle): Un modèle d'une formule ϕ est une valuation qui rend vraie cette formule. On note l'ensemble des modèles de ϕ par:

$$Mod(\phi) := \{ v \in Val | v \vDash \phi \}$$

Val étant l'ensemble des valuations de ϕ et $v \models \phi$ signfiant que la valuation v satisfait ϕ

Definition 3 (Conséquence Logique): Une formule ϕ est conséquence logique d'une formule, notée ψ si $Mod(\psi) \subseteq Mod(\phi)$. On note cela $\psi \models \phi$

On note \mathcal{V} un vocabulaire qu'on définie par $\mathcal{V} := \{p, q, \dots, \neg, \wedge, \vee, \Longrightarrow, \Leftrightarrow, (,)\}$ et \mathcal{V}^* l'ensemble de toutes les expressions que l'on peut former avec le vocabulaire \mathcal{V}

Definition 4 (Système formel): Un système formel est défini par un tuple $(\mathcal{V}, \mathcal{E}, \mathcal{A}, \mathcal{R})$, tel que:

- ullet $\mathcal V$ est un ensemble de symboles
- ullet est un ensemble d'expressions bien formées dans \mathcal{V}^*
- \mathcal{A} est un ensemble d'axiomes $(\mathcal{A} \subset \mathcal{E})$
- \mathcal{R} est un ensemble de règles de déduction de la forme: $r_i:f_1,f_2,\ldots,f_n\vdash g$ avec $f_i,g\in\mathcal{E}$

Definition 5 (Déduction ou preuve): Soit un système SF, une preuve de c_p à partir de h_1, \ldots, h_n dans SF qu'on note $h_1, \ldots, h_n \vdash c_p$ toute suite c_1, \ldots, c_p telle que $\forall i \in \mathcal{N} | 1 \le i \le p$, c_i est un des suivants:

- Un axiome
- Une hypothèse
- Obtenu par application d'une règle r_i telle que $c_{i_1}, \ldots c_{i_k} \vdash c_i$ où $i_1, \ldots, i_k < i$

On note $n \in \mathbb{N}^*$

Definition 6: La méthode des tableaux consistent à prouver une assertion B ayant pour hypothèse (A_n) en montrant que $\{A_1, \ldots, A_n, \neg B\}$ est insatisfaisable (Cela revient à montrer qu'une implication est vraie car sa négation ne peut être vraie) i.e $((A_1, \ldots, A_n) \implies B) \Leftrightarrow Mod(\neg((A_1, \ldots, A_n) \land \neg B)) = \emptyset \Leftrightarrow Mod((A_1, \ldots, A_n) \land \neg B) = \emptyset$.

Le procédé consiste donc à séparer les formules logiques complexes en plus petite formule jusqu'à que des pairs complementaires de litteraux $(a \text{ et } \neg a)$ soit extrait ou qu'on ne peut plus simplifier la formule. Pour cela, on doit définir quelques concepts sur les arbres.

Definition 7 (Arbre de déduction): Arbre dont les sommets sont composés de formule, qui sont soit une hypothèse à la racine de l'arbre, soit une formule obtenue par l'application d'une règle sur une formule présente dans la même branche plus proche de la racine.

Definition 8 (Branche fermée): Une branche est fermée si elle contient ϕ et $\neg \phi$

Definition 9 (Arbre fermé): Un arbre de déduction est fermé si toutes les branches le sont.

1.2 Principe

Pour ainsi en déduire si une formule ϕ est vrai ou non, on adopte des règles qu'on applique sur un arbre de déduction.

- On place $\neg \phi$ dans la racine de l'arbre.
- \bullet On applique les règles (R_x) suivantes à chaque branche non fermé de l'arbre
- $\bullet\,$ Si l'arbre est in fine fermé, alors ϕ est vrai

Les règles (R_x) dites Smullyan-style sont:

Dans les cas où on trouve dans une même branche a et $\neg a$, on ferme la branche, si l'arbre devient fermé, alors $\neg \phi$ est forcement faux, donc ϕ est vrai. a1 et (a2 ou a3)

Proposition 1: Soit Ψ un ensemble d'hypothèse et ϕ une formule, on note $\Psi \vdash \phi$ l'existence d'un arbre fermé pour $\Psi \cup \{\neg \phi\}$.

$$\Psi \vdash \phi \Leftrightarrow \Psi \vDash \phi$$

Autrement dit, appliqué la méthode des tableaux est équivalent à prouver cette formule

La preuve de cette proposition permet de prouver la correction de l'implémentation de base.

1.3 Optimisation pour les formules de forme alternée

Definition 10: Soit $n \in \mathbb{N}^*$ $(\alpha_k)_{k \in [[1,n]]}$, une formule ϕ est de forme alternée ssi

$$\phi := \alpha_1 \wedge (\alpha_2 \vee (\alpha_3 \wedge (\dots (\alpha_n))))$$

On gardera les parenthèses dans la suite pour garder le coté intuitiff de cet ecriture On remarque une CNS pour que ce genre de formule soit vrai:

Proposition 2: ϕ de forme alternée est vrai ssi:

$$(\exists k \in \mathbb{N}^*, \alpha_{2k-2} \text{ OU n impair} \implies \alpha_n \text{ avec } k = \frac{n-1}{2}) \text{ ET } \forall i \in [|1, k|], \alpha_{2i-1}$$

Preuve 1: (←) Immédiat

 (\Longrightarrow) Supposons ϕ de forme alternée vrai: α_1 est forcement vrai, deux possibilités : soit α_2 est vrai, soit $\alpha_3 \wedge (\dots)$ est vrai. Dans le deuxième cas, on repète le raisonnement sur $\alpha_3 \wedge (\dots)$ qui est bien de forme alternée.

Deux cas de figure:

- On arrête donc le processus dès que un litteral indéxée par un nombre pair est vrai. Dans ce cas là, tout les indéxées impair précedents sont aussi vrai.
- Si aucun litteral pair est vrai, alors n est impair sans quoi ϕ n'est pas vrai car α_n doit être vrai. On en déduit que tout les litteraux impairs sont vraies, donc la formule est vrai.

Mais on cherche une CNS de satisfaisabilité.

2 Logique du 1er ordre (FAIT PLUS TARD)

La logique propositionelle étant mathématiquement limité, on se propose l'utilisation de la logique du 1er ordre. Cela nous permettra ainsi d'étudier Zenon, un prouveur d'automatique de theorème.

Definition 11: La logique du 1er ordre est un type de logique qui en plus des élements de la logique propositionelle permet l'utilisation de quantificateurs et de termes.

Definition 12: Soit un ensemble infini de variables $X = \{x, y, x_1, x_2, \dots\}$ et un ensemble $\mathcal{F} = \{c, f, g, \dots\}$ de symboles de fonction (autrement appelé signature). On rappelle que l'arité d'un symbole est son nombre d'argument. Les termes sont définis par induction:

- $\forall x \in X, x \text{ est un terme}$
- Tout symbole d'arité 0 (les constantes) est un terme
- $f(t_1,\ldots,t_n)$ est un terme ssi f est un symbole d'arité n et t_1,\ldots,t_n sont des termes

On note $\mathcal{T}(\mathcal{F}, X)$ l'ensemble des termes sur \mathcal{F} et X.