

1. Exercice 3-5 : Gain en puissance.

Solution:

1. Le schéma du montage est comme ci-dessous :

Figure 1. Montage de circuit de gain en puissance.

$$\underline{H} = \frac{\underline{u_s}}{\underline{u_e}} = \frac{\underline{e_s}}{\underline{u_e}} \frac{R_c}{R_c + R_s} = A_v \frac{R_c}{R_c + R_s}$$

AN.
$$\underline{H} = 1200 \frac{0.5}{0.5+1} = 400$$

$$\left| \underline{H_g} \right| = \left| \frac{\underline{u_s}}{\underline{e_g}} \right| = \left| \frac{\underline{e_s}}{\underline{e_g}} \frac{R_c}{R_c + R_s} \right| = \frac{A_v u_e}{\underline{e_g}} \frac{R_c}{R_c + R_s} = A_v \frac{R_e}{R_e + R_g} \frac{R_c}{R_c + R_s}$$

AN.
$$\left| \underline{H_g} \right| = 1200 \frac{2}{2+1} \frac{0.5}{0.5+1} = 267$$

Les valeurs efficaces de $u_e(t)$ est $u_{e,\mathrm{eff}} = E_g \frac{R_e}{R_e + R_g}$

AN.
$$u_{e,eff} = 3\frac{2}{2+1} = 2 \text{ mV}$$

Les valeurs efficaces de $u_s(t)$ est $u_{s,\mathrm{eff}} = u_{e,\mathrm{eff}} |\underline{H}|$

AN.
$$u_{s,eff} = 2 \times 10^{-3} \times 400 = 0.8 \text{ V}$$

2.
$$A_i = \frac{\underline{i_s}}{\underline{i_e}} = \frac{\underline{e_s}}{R_c + R_s} \frac{R_e}{u_e} = \frac{A_v R_e}{R_c + R_s}$$

La valeur efficace de $i_s(t)$ est $i_{s,eff} = A_i \frac{E_g}{R_g + R_e}$

AN.
$$i_{s,eff} = 1200 \frac{2 \times 10^3}{(0.5+1) \times 10^3} \frac{3 \times 10^{-3}}{(1+2) \times 10^3} = 1.6 \text{ mA}$$

3. La puissance consommée à l'entrée : $P_e = \frac{u_{e,\text{eff}}^2}{R_c}$

AN.
$$P_e = \frac{(2 \times 10^{-3})^2}{2 \times 10^3} = 2 \times 10^{-9} \,\mathrm{W}$$

La puissance fournie en sortie : $P_s = \frac{u_{s, \rm eff}^2}{R_c} = 1.28$ mW. AN. $P_s = \frac{(0.8)^2}{0.5 \times 10^3} = 1.28 \times 10^{-3}$ W.

Commentaire : $\frac{P_s}{P_e}$ = 640000, ce montage peut augmenter la puissance 640000 fois ! D'où vient le nom 'gain en puissance'. L'énergie provient de la source électrique de l'amplificateur linéaire.

2. Décomposition en série de Fourier d'une rampe périodique

Décomposer en série de Fourier la rampe périodique de fréquence T et d'amplitude A.

s(t) étant impaire, on ne cherche que les coefficients des sinus.

$$B_{n} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} s(t) \sin(n\omega t) dt = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{2At}{T} \sin\left(n\frac{2\pi}{T}t\right) dt = \frac{4A}{T^{2}} \int_{-\frac{T}{2}}^{\frac{T}{2}} t \sin\left(n\frac{2\pi}{T}t\right) dt$$

Ce qui s'intègre par parties.

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} t \sin\left(n\frac{2\pi t}{T}t\right) dt = \frac{-T}{2\pi n} \left[\frac{T}{2}\cos\left(n\frac{2\pi T}{T}\right) + \frac{T}{2}\cos\left(n\frac{2\pi T}{T}\right)\right] + \frac{T}{2\pi n} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos\left(n\frac{2\pi}{T}t\right) dt$$

$$B_n = -\frac{4A}{T^2} \frac{T^2}{2\pi n} \cos(n\pi) = (-1)^{n+1} \frac{2A}{\pi n}$$

D'où le développement :

$$s(t) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2A}{\pi n} \sin\left(n \frac{2\pi}{T} t\right)$$

3. Passe-tout déphaseur du premier ordre

On considère le quadripôle en sortie ouverte ci-contre. Il comprend deux résistances identiques R, et deux condensateurs identiques C. Données : $C = 10\mu F$, $R = 100\Omega$.

- 1 Sans calculer, déterminer les comportements asymptotiques du quadripôle en basse fréquence et haute fréquence. Est-ce que les amplitudes de u_s et u_e sont égales pour ces deux cas ?
- 2 Soit x la pulsation réduite définie par la relation $RC\omega = x$. Exprimer la fonction de transfert $\underline{H}(j\omega)$.
- 3 Tracer le diagramme de Bode de déphasage en fonction de log(x).
- 4 Calculer le gain du quadripôle et tracer le diagramme de Bode de gain. Justifier le nom du circuit 'passe-tout déphaseur du premier ordre.

Solution:

1. En basse fréquence et haute fréquence, les condensateurs fonctionnent comme un interrupteur ouvert et un fil conducteur respectivement. On trouvera que $u_s = u_e$ et $u_s = -u_e$ pour ces deux cas respectivement. Les amplitudes de u_s et u_e sont égales pour ces deux cas, et **le filtre n'est ni passe-haut, ni passe-bas.**

2. Dans chacune des branches, le condensateur et la résistance sont en série. Chacun des circuits RC réalise un diviseur de tension, ce qui permet d'écrire :

$$\frac{\underline{u_R}}{\underline{u_e}} = \frac{R}{R + \frac{1}{iC\omega}} = \frac{jx}{1 + jx}$$

Appliquons la loi des mailles, on obtiendra :

$$\underline{u_e} = \underline{u_s} + 2\underline{u_R}$$
, donc $\underline{H}(jx) = \frac{\underline{u_s}}{\underline{u_e}} = \frac{\underline{u_e} - 2\underline{u_R}}{\underline{u_e}} = \frac{1 - jx}{1 + jx}$

Cette fonction de transfert est en accord avec l'étude rapide de la question précédente. Le quadripôle est du premier ordre.

3. On calcule le déphasage prédit par $\underline{H}(jx)$

$$\operatorname{Arg}\left(\underline{H}(jx)\right) = \operatorname{Arg}\left(\frac{1-jx}{1+jx}\right) = -2\tan^{-1}x$$

On trouvera les deux asymptotes :

$$\varphi(x \ll 1) \approx -2 \tan^{-1} 0 = 0$$

$$\varphi(x \gg 1) \approx -2 \tan^{-1} \infty = -\pi$$

On ajoute un point dans la courbe de déphasage :

$$\varphi(x=1) = -\frac{\pi}{2}$$

Donc on pourra tracer la courbe de phase :

Figure 2. Le diagramme de Bode de déphasage φ en fonction de log(x).

4. On calcule le module de $\underline{H}(jx)$, le gain du circuit.

$$\left| \underline{H}(jx) \right| = \sqrt{\frac{1 - x^2}{1 + x^2}} = 1$$

$$G_{\mathrm{dB}} = 20 \log |\underline{H}(jx)| = 0 \mathrm{dB}$$

Le quadripôle n'est pas un filtre, car il a un gain uniforme 1.

Figure 3. Le diagramme de Bode de gain G_{dB} en fonction de $\log(x)$.

On dit que c'est un passe-tout déphaseur du premier ordre, car l'amplitude n'est pas modifiée, et la phase est retardée variable de 0 à π .