代数 K 理论讨论班笔记

中国科学院大学 数学科学学院 张浩

从左至右依次为 Quillen Milnor Grothendieck

2016年3月11日

目录

1	Notes on NK_0 and NK_1 of the groups C_4 and D_4					
	1.1	Outlin	e	3		
	1.2	Preliminaries				
		1.2.1	Regular rings	3		
		1.2.2	The ring of Witt vectors	4		
		1.2.3	Dennis-Stein symbols	5		
		1.2.4	Relative group and double relative group	7		
	1.3	W(R)-	-module structure	8		
	1.4	NK_i of the group C_2				
1.5 NK_i of the group C_4			of the group C_4	10		
	1.6	NK_i o	of the group D_4	10		
2	Mackey Functors					
	2.1	Introd	uction	11		

Chapter 1

Notes on NK_0 and NK_1 of the groups C_4 and D_4

This note is based on the paper [5].

1.1 Outline

Definition 1.1 (Bass Nil-groups). $NK_n(\mathbb{Z}G) = \ker(K_n(\mathbb{Z}G[x]) \xrightarrow{x \mapsto 0} K_n(\mathbb{Z}G))$

G	$NK_0(\mathbb{Z}G)$	$NK_1(\mathbb{Z}G)$	$NK_2(\mathbb{Z}G)$
C_2	0	0	V
$D_2 = C_2 \times C_2$	V	$\Omega_{\mathbb{F}_2[x]}$	
C_4	V	$\Omega_{\mathbb{F}_2[x]}$	
$D_4 = C_4 \rtimes C_2$			

Note that $D_4 = \langle \sigma, \tau | \sigma^4 = 1, \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$.

 $V=x\mathbb{F}_2[x]=\oplus_{i=1}^\infty\mathbb{F}_2x^i=\oplus_{i=1}^\infty\mathbb{Z}/2x^i$: continuous $W(\mathbb{F}_2)$ -module. As an abelian group, it is countable direct sum of copies of $\mathbb{F}_2=\mathbb{Z}/2$ on generators $x^i,i>0$.

 $\Omega_{\mathbb{F}_2[x]} = \mathbb{F}_2[x] dx = \bigoplus_{i=1}^{\infty} \mathbb{F}_2 e^i$, often write e^i stands for $x^{i-1} dx$. As an abelian group, $\Omega_{\mathbb{F}_2[x]} \cong V$. But it has a different $W(\mathbb{F}_2)$ -module structure.

1.2 Preliminaries

1.2.1 Regular rings

We list some useful notations here:

R: ring with unit (usually commutative in this chapter)

R-mod: the category of R-modules,

 $\mathbf{M}(R)$: the subcategory of finitely generated R-modules,

 $\mathbf{P}(R)$: the subcategory of finitely generated projective R-modules.

Let $\mathbf{H}(R) \subset R$ -mod be the full subcategory contains all M which has finte $\mathbf{P}(R)$ resolutions. R is called regular if $\mathbf{M}(R) = \mathbf{P}(R)$.

Proposition 1.2. Let R be a commutative ring with unit, A an R-algebra and $S \subset R$ a multiplicative set, if A is regular, then $S^{-1}A$ is also regular.

1.2.2 The ring of Witt vectors

As additive group $W(\mathbb{Z}) = (1 + x\mathbb{Z}[[x]])^{\times}$, it is a module over the Cartier algebra consisting of row-and-column finite sums $\sum V_m[a_{mn}]F_n$, where [a] are homothety operators for $a \in \mathbb{Z}$.

additional structure Verschiebung operators V_m , Frobenius operators F_m (ring endomorphism), homothety operators [a].

$$[a]: \alpha(x) \mapsto \alpha(ax)$$

$$V_m: \alpha(x) \mapsto \alpha(x^m)$$

$$F_m: \alpha(x) \mapsto \sum_{\zeta^m=1} \alpha(\zeta x^{\frac{1}{m}})$$

$$F_m: 1 - rx \mapsto 1 - r^m x$$

Remark 1.3. $W(R) \subset Cart(R), \prod_{m=1}^{\infty} (1 - r_m x^m) = \sum_{m=1}^{\infty} V_m[a_m] F_m$. See [1].

Proposition 1.4. $[1] = V_1 = F_1$: multiplicative identity. There are some identities:

$$V_m V_n = V_{mn}$$

$$F_m F_n = F_{mn}$$

$$F_m V_n = m$$

$$[a] V_m = V_m [a^m]$$

$$F_m [a] = [a^m] F_m$$

$$[a] [b] = [ab]$$

$$V_m F_k = F_k V_m, \text{ if } (k, m) = 1$$

We call a W(R)-module M continuous if $\forall v \in M$, $\operatorname{ann}_{W(R)}(v)$ is an open ideal in W(R), that is $\exists k$ s.t. $(1-rx)^m * v = 0$ for all $r \in R$ and $m \geq k$. Note that if A is an R-module, xA[x] is a continuous W(R)-module but that xA[[x]] is not.

1.2.3 Dennis-Stein symbols

Steinberg symbol Let R be a commutative ring, $u, v \in R^*$. First we construct Steinberg symbol $\{u, v\} \in K_2(R)$ as follows:

$$\{u,v\} = h_{12}(uv)h_{12}(u)^{-1}h_12(v)^{-1}$$

where $h_{ij}(u) = w_{ij}(u)w_{ij}(-1)$ and $w_{ij}(u) = x_{ij}(u)x_{ji}(-u^{-1})x_{ij}(u)$.

These symbols satisfy

- (a) $\{u_1u_2, v\} = \{u_1, v\}\{u_2, v\}$ for $u_1, u_2, v \in \mathbb{R}^*$. [Bilinear]
- (b) $\{u, v\}\{v, u\} = 1$ for $u, v \in \mathbb{R}^*$. [Skew-symmetric]
- (c) $\{u, 1-u\} = 1$ for $u, 1-u \in \mathbb{R}^*$.

Theorem 1.5. If R is a field, division ring, local ring or even a commutative semilocal ring, $K_2(R)$ is generated by Steinberg symbols $\{r, s\}$.

Dennis-Stein symbol version 1 If $a, b \in R$ with $1 + ab \in R^*$, Dennis-Stein symbol $\langle a, b \rangle \in K_2(R)$ is defined by

$$\langle a,b\rangle = x_{21}(-\frac{b}{1+ab})x_{12}(a)x_{21}(b)x_{12}(-\frac{a}{1+ab})h_{12}(1+ab)^{-1}.$$

Note that

$$\langle a, b \rangle = \begin{cases} \{-a, 1 + ab\}, & \text{if } a \in R^* \\ \{1 + ab, b\}, & \text{if } b \in R^* \end{cases}$$

and if $u, v \in \mathbb{R}^* - \{1\}$, $\{u, v\} = \langle -u, \frac{1-v}{u} \rangle = \langle \frac{u-1}{v}, v \rangle$, thus Steinberg symbol is also a Dennis-Stein symbol. See Dennis, Stein *The functor K*₂: a survey of computational problem.

Maazen and Stienstra define the group D(R) as follows: take a generator $\langle a, b \rangle$ for each pair $a, b \in R$ with $1 + ab \in R^*$, defining relations:

(D1)
$$\langle a, b \rangle \langle -b, -a \rangle = 1$$
,

(D2)
$$\langle a, b \rangle \langle a, c \rangle = \langle a, b + c + abc \rangle$$
,

(D3)
$$\langle a, bc \rangle = \langle ab, c \rangle \langle ac, b \rangle$$
.

If $I \subset R$ is an ideal, $a \in I$ or $b \in I$, we can consider $\langle a, b \rangle \in K_2(R, I)$ satisfy following relations

(D1)
$$\langle a, b \rangle \langle -b, -a \rangle = 1$$
,

(D2)
$$\langle a, b \rangle \langle a, c \rangle = \langle a, b + c + abc \rangle$$
,

- (D3) $\langle a, bc \rangle = \langle ab, c \rangle \langle ac, b \rangle$ if any of a, b, c are in I.
- **Theorem 1.6.** 1. If R is a commutative local ring, then $D(R) \stackrel{\cong}{\to} K_2(R)$ is isomorphic. (Maazen-Stienstra, Dennis-Stein, van der Kallen)
 - 2. Let R be a commutative ring. If $I \subset \operatorname{Rad}(R)$ (ideal I is contained in the Jacobson radical), $D(R,I) \stackrel{\cong}{\to} K_2(R,I)$.

Dennis-Stein symbol version 2 In 1980s, things have changed. Dennis-Stein symbol is defined as follows

 $r, s \in R$ commute and 1 - rs is a unit, that is rs = sr and $1 - rs \in R^*$,

$$\langle r, s \rangle = x_{ji}(-s(1-rs)^{-1})x_{ij}(-r)x_{ji}(s)x_{ij}((1-rs)^{-1}r)h_{ij}(1-rs)^{-1}.$$

Note that if $r \in R^*$, $\langle r, s \rangle = \{r, 1 - rs\}$. If $I \subset R$ is an ideal, $r \in I$ or $\in I$, we can even consider $\langle r, s \rangle \in K_2(R, I)$

(D1)
$$\langle r, s \rangle \langle s, r \rangle = 1$$
,

(D2)
$$\langle r, s \rangle \langle r, t \rangle = \langle r, s + t - rst \rangle$$
,

- (D3) $\langle r, st \rangle = \langle rs, t \rangle \langle tr, s \rangle$ (this holds in $K_2(R, I)$ if any of r, s, t are in I). Note that $\langle r, 1 \rangle = 0$ for any $r \in R$ and $\langle r, s \rangle_{version2} = \langle -r, s \rangle_{version1}$.
- **Theorem 1.7.** 1. If R is a commutative local ring or a field, then $K_2(R)$ is generated by $\langle r, s \rangle$ satisfying D1, D2, D3.
 - 2. Let R be a commutative ring. If $I \subset \operatorname{Rad}(R)$ (ideal I is contained in the Jacobson radical), $K_2(R, I)$ is generated by $\langle r, s \rangle$ (either $r \in R$ and $s \in I$ or $r \in I$ and $s \in R$) satisfying D1, D2, D3.

1.2.4 Relative group and double relative group

You can skip this subsection for first reading. We will use the results in 1.4.

Relative groups Let R be a ring (not necessarily commutative), $I \subset R$ a two-sided ideal, by definition $K_i(R) = \pi_i(BGL(R)^+)$, $i \geq 1$, there exists a map

$$BGL(R)^+ \longrightarrow BGL(R/I)^+$$

Definition 1.8. K(R,I) is the homotopy fibre of the map $BGL(R)^+ \longrightarrow BGL(R/I)^+$. $K_i(R,I) := \pi_i(K(R,I)), i \ge 1$.

By long exact sequences of homotopy groups of a homotopy fibre, there is an exact sequence

$$\cdots \longrightarrow K_{i+1}(R) \longrightarrow K_{i+1}(R/I) \longrightarrow K_i(R,I) \longrightarrow K_i(R) \longrightarrow K_i(R/I) \longrightarrow \cdots$$

In particular,

$$K_3(R,I) \longrightarrow K_3(R) \longrightarrow K_3(R/I) \longrightarrow K_2(R,I) \longrightarrow K_2(R) \longrightarrow K_2(R/I) \longrightarrow K_1(R,I) \longrightarrow K_1(R) \longrightarrow K_1(R/I)$$

Double relative groups Let R be any ring (not necessarily commutative), if $I, J \subset R$ are two-sided ideals, there is a map

$$K(R,I) \longrightarrow K(R/J,I+J/J).$$

$$K(R;I,J) \qquad \qquad \downarrow \qquad \qquad \downarrow \\ K(R,I) & \longrightarrow BGL(R)^+ & \longrightarrow BGL(R/I)^+ \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ K(R/J,I+J/J) & \longrightarrow BGL(R/J)^+ & \longrightarrow BGL(R/I+J)^+$$

Definition 1.9. K(R; I, J) is the homotopy fibre of the map $K(R, I) \longrightarrow K(R/J, I + J/J)$. $K_i(R, I, J) := \pi_i(K(R; I, J)), i \ge 1$.

Remark 1.10.
$$K_i(R; I, J) \cong K_i(R; J, I), K_i(R; I, I) = K_i(R, I).$$

Let R be any ring (not necessarily commutative), if $I, J \subset R$ are two-sided ideals such that $I \cap J = 0$, then there is an exact sequence

$$K_3(R,I) \longrightarrow K_3(R/I,I+J/J) \longrightarrow I/I^2 \otimes_{R^e} J/J^2 \xrightarrow{\psi} K_2(R,I) \longrightarrow K_2(R/I,I+J/J) \longrightarrow 0$$

where $R^e = R \otimes_{\mathbb{Z}} R^{op}$, $\psi([a] \otimes [b]) = \langle a, b \rangle$, see [6] 3.5.10 or [2] p. 195. In the case $I \cap J = 0$, $K_2(R; I, J) \cong I/I^2 \otimes_{R^e} J/J^2$. 我的疑问: if R is commutative, whether $K_2(R; I, J) = I \otimes_R J$ or not?

Lemma 1.11. Let (R; I, J) satisfy the following Cartesian square

$$R \longrightarrow R/I$$

$$\downarrow \qquad \qquad \downarrow$$

$$R/J \longrightarrow R/I + J$$

suppose $f:(R,I) \longrightarrow (R/J,I+J/J)$ has a section g, then

$$0 \longrightarrow I/I^2 \otimes_{R^e} J/J^2 \longrightarrow K_2(R,I) \longrightarrow K_2(R/I,I+J/J) \longrightarrow 0$$

is split exact.

1.3 W(R)-module structure

 $W(\mathbb{F}_2)$ -module structure on $V = x\mathbb{F}_2[x]$ See Dayton& Weibel [1] example 2.6, 2.9.

$$V_m(x^n) = x^{mn}$$

$$F_d(x^n) = \begin{cases} dx^{n/d}, & \text{if } d|n\\ 0, & \text{otherwise} \end{cases}$$

$$[a]x^n = a^n x^n$$

 $W(\mathbb{F}_2)$ -module structure on $\Omega_{\mathbb{F}_2[x]} = \mathbb{F}_2[x] dx = \bigoplus_{i=1}^{\infty} \mathbb{F}_2 e^i$ Dayton& Weibel [1] example 2.10

$$V_m(x^{n-1} dx) = mx^{mn-1} dx$$

$$F_d(x^{n-1} dx) = \begin{cases} x^{n/d-1} dx, & \text{if } d | n \\ 0, & \text{otherwise} \end{cases}$$

$$[a]x^{n-1} dx = a^n x^{n-1} dx$$

Remark 1.12. $\Omega_{\mathbb{F}_2[x]}$ is **not** finitely generated as a module over the \mathbb{F}_2 -Cartier algebra or over the subalgebra $W(\mathbb{F}_2)$.

In general, for any map $R \longrightarrow S$ of communicative rings, the S-module $\Omega^1_{S/R}$ (relative Kähler differential module $\Omega_{S/R}$) is defined by

generators: $ds, s \in S$,

relations: d(s+s') = ds + ds', d(ss') = sds' + s'ds, and if $r \in R$, dr = 0.

Remark 1.13. If $R = \mathbb{Z}$, we often omit it. In the previous section, $\Omega_{\mathbb{F}_2[x]} = \Omega^1_{\mathbb{F}_2[x]/\mathbb{Z}}$.

As abelian groups, $x\mathbb{F}_2[x] \xrightarrow{\sim} \Omega_{\mathbb{F}_2[x]}, x^i \mapsto x^{i-1}dx$. However, as $W(\mathbb{F}_2)$ -modules,

$$V_m(x^i) = x^{im},$$

$$V_m(x^{i-1}dx) = mx^{im-1}dx$$

 x^{im} is corresponding to $x^{im-1}dx$ but not to $mx^{im-1}dx$. So they have different $W(\mathbb{F}_2)$ -module structure.

Remark 1.14. 一个不知道有没有用的结论, see [5]

There is a $W(\mathbb{F}_2)$ -module homomorphism called de Rham differential

$$D \colon x\mathbb{F}_2[x] \longrightarrow \Omega_{\mathbb{F}_2[x]}$$
$$x^i \mapsto ix^{i-1}dx$$

Then $\ker D = H_{dR}^0(\mathbb{F}_2[x]/\mathbb{F}_2)$ is the de Rham cohomology group and $\operatorname{coker} D = HC_1^{\mathbb{F}_2}(\mathbb{F}_2[x])$ is the cyclic homology group. Note that $HC_1(\mathbb{F}_2[x]) = \sum_{l=1}^{\infty} \mathbb{F}_2 e_{2l}$ where $e_{2l} = x^{2l-1} dx$, and $H_{dR}^0(\mathbb{F}_2[x]) = x^2 \mathbb{F}_2[x^2]$.

1.4 NK_i of the group C_2

First, consider the simplest example $G = C_2 = \langle \sigma \rangle = \{1, \sigma\}$. There is a Rim square

$$\mathbb{Z}[C_2] \xrightarrow{\sigma \mapsto 1} \mathbb{Z}$$

$$\sigma \mapsto -1 \downarrow \qquad \qquad \downarrow q$$

$$\mathbb{Z} \xrightarrow{q} \mathbb{F}_2$$

Since \mathbb{F}_2 (field) and \mathbb{Z} (PID) are regular rings, $NK_i(\mathbb{F}_2) = 0 = NK_i(\mathbb{Z})$ for all i.

By Mayer-Vietoris sequence, one can get $NK_1(\mathbb{Z}[C_2]) = 0$, $NK_0(\mathbb{Z}[C_2]) = 0$. Note that the similar results are true for any cyclic group of prime order.

$$\ker(\mathbb{Z}[C_2] \stackrel{\sigma \mapsto -1}{\longrightarrow} \mathbb{Z}) = (\sigma + 1)$$

By relative exact sequence,

$$0 = NK_3(\mathbb{Z}) \longrightarrow NK_2(\mathbb{Z}[C_2], (\sigma + 1)) \stackrel{\cong}{\longrightarrow} NK_2(\mathbb{Z}[C_2]) \longrightarrow NK_2(\mathbb{Z}) = 0.$$

And from $(\mathbb{Z}[C_2], (\sigma+1)) \longrightarrow (\mathbb{Z}[C_2]/(\sigma-1), (\sigma+1)+(\sigma-1)/(\sigma-1)) = (\mathbb{Z}, (2))$ one has double relative exact sequence

$$0 = NK_3(\mathbb{Z},(2)) \longrightarrow NK_2(\mathbb{Z}[C_2]; (\sigma+1), (\sigma-1)) \stackrel{\cong}{\longrightarrow} NK_2(\mathbb{Z}[C_2], (\sigma+1)) \longrightarrow NK_2(\mathbb{Z},(2)) = 0.$$

Note that $0 = NK_{i+1}(\mathbb{Z}/2) \longrightarrow NK_i(\mathbb{Z}, (2)) \longrightarrow NK_i(\mathbb{Z}) = 0$.

$$NK_{3}(\mathbb{Z},(2)) = 0$$

$$\downarrow \qquad \qquad NK_{2}(\mathbb{Z}[C_{2}];(\sigma+1),(\sigma-1))$$

$$\downarrow \cong \qquad \qquad NK_{2}(\mathbb{Z}[C_{2}],(\sigma+1)) \xrightarrow{\cong} NK_{2}(\mathbb{Z}[C_{2}]) \longrightarrow NK_{2}(\mathbb{Z}) = 0$$

$$\downarrow \qquad \qquad NK_{2}(\mathbb{Z},(2)) = 0$$

We obtain $NK_2(\mathbb{Z}[C_2]) \cong NK_2(\mathbb{Z}[C_2], (\sigma+1), (\sigma-1))$, from Guin-Loday-Keune [3], $NK_2(\mathbb{Z}[C_2]; (\sigma+1), (\sigma-1))$ is isomorphic to $V = x\mathbb{F}_2[x]$, with the Dennis-Stein symbol $\langle x^n(\sigma-1), \sigma+1 \rangle$ corresponding to $x^n \in V$. Note that $1 - x^n(\sigma-1)(\sigma+1) = 1$ is invertible in $\mathbb{Z}[C_2][x]$ and $\sigma+1 \in (\sigma+1), x^n(\sigma-1) \in (\sigma-1)$.

Theorem 1.15.
$$NK_2(\mathbb{Z}[C_2]) \cong V$$
, $NK_1(\mathbb{Z}[C_2]) = 0$, $NK_0(\mathbb{Z}[C_2]) = 0$.

In fact, we have $NK_2(\mathbb{Z}[C_p]) \cong x\mathbb{F}_p[x], NK_1(\mathbb{Z}[C_p]) = 0, NK_0(\mathbb{Z}[C_p]) = 0.$

1.5 NK_i of the group C_4

1.6 NK_i of the group D_4

Chapter 2

Mackey Functors

参考文献有: [4]

2.1 Introduction

图 2.1: George Mackey

George W. Mackey (1916-2006) was an American mathematician. For more interesting story about him, see https://en.wikipedia.org/wiki/George_Mackey, http://www.ams.org/notices/200707/tx070700824p.pdf or http://www-history.mcs.st-andrews.ac.uk/Biographies/Mackey.html. And I found an interesting fact that Leslie Lamport's

advisor Richard Palais was a PhD student of him. 1 And Lamport is best known for the system \LaTeX

Mackey functor is an algebraic structure, related to many constructions from finite groups, such as group cohomology and the algebraic K-theory of group rings.

History: began in 1980s

People: Dress and Green first gave the axiomatic formulation of Mackey functors.

¹http://www.genealogy.ams.org/id.php?id=35871

 $^{^2 {\}tt https://en.wikipedia.org/wiki/Leslie_Lamport}$

References

- [1] B. H. Dayton and C. A. Weibel. Module structures on the Hochschild and cyclic homology of graded rings. In Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), pages 63–90. Kluwer Acad. Publ., Dordrecht, 1993.
- [2] Eric Friedlander and MR Stein. Algebraic K-theory. Proc. conf. Evanston, 1980. Springer, 1981.
- [3] Dominique Guin-Waléry and Jean-Louis Loday. Algebraic K-Theory Evanston 1980: Proceedings of the Conference Held at Northwestern University Evanston, March 24–27, 1980, chapter Obstruction a l'Excision En K-Theorie Algebrique, pages 179–216. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981.
- [4] Zhulin Li. Box product of mackey functors in terms of modules. 2015.
- [5] Charles Weibel. NK_0 and NK_1 of the groups C_4 and D_4 . Comment. Math. Helv, 84:339–349, 2009.
- [6] Charles A Weibel. The K-book: An introduction to algebraic K-theory. American Mathematical Society Providence (RI), 2013.

索引

regular ring, 4