

Gerarchie di memoria

Un dato richiesto dalla CPU può essere presente in cache (hit) oppure mancante (miss)

- □ Un hit, successo, deve essere molto probabile (>90%) se si vuole guadagnare efficienza prestazionale
- ☐ Un miss, fallimento, richiede l'avvio di una procedura di scambio dati (swap) con il livello inferiore

Gerarchie di memoria Tempo medio di accesso

T_a: Tempo medio di accesso ad un dato in memoria

$$T_a = T_h \times P_h + T_m \times (1 - P_h)$$

- T_h = tempo di accesso ad un dato **presente** in cache
- T_m = tempo medio di accesso ad un dato **non** in cache (funzione della dimensione del blocco)
- P_h = probabilità di **hit**

(funzione della dimensione del blocco e della politica di gestione)

Gerarchie di memoria Tecnica generale

- Suddivisione della memoria centrale in blocchi logici
- Dimensionamento della cache in multiplo di blocchi
- Per ogni indirizzo emesso dalla CPU
 - □ Hit ⇒ Il dato richiesto viene fornito immediatamente alla CPU
 - Miss ⇒ La cache richiede il dato al livello inferiore
 Il blocco contenente il dato viene posto in cache
 Il dato richiesto viene fornito alla CPU

Gerarchie di memoria *Problematiche*

- Organizzazione della cache e tecniche di allocazione
- Individuazione di hit o miss
- Politica di rimpiazzo dei blocchi
- Congruenza dei blocchi

Gerarchie di memoria Associazione diretta Tecnica nota come direct mapping Ogni blocco del livello inferiore può essere allocato solo in una specifica posizione (detta linea o slot) del livello superiore Insieme 0 Insieme 1 Insieme 2 Insieme 3 Insieme M-1 M insiemi Livello inferiore N blocchi Livello ILS = Indirizzo Livello Superiore superiore ILI = Indirizzo Livello Inferiore di blocco

Vantaggi

- Semplicità di traduzione da indirizzo
 ILI (memoria) ad indirizzo ILS (cache)
- Determinazione veloce di hit o miss

Svantaggi

- Necessità di contraddistinguere il blocco presente in ILS (introduzione di un'etichetta, 'tag')
- Swap frequenti per accesso a dati di blocchi adiacenti

Gerarchie di memoria Associazione completa Tecnica nota come fully associative Ogni blocco del livello inferiore può essere posto in qualunque posizione del livello superiore livello inferiore Livello superiore N posizioni di blocco M blocchi

Gerarchie di memoria Associazione completa

Alla cache capace di N blocchi viene associata una tabella di N posizioni, contenenti il numero di blocco effettivo (tag) in essa contenuto.

Vantaggi

Massima efficienza di allocazione.

Svantaggi

■ Determinazione onerosa della corrispondenza ILS-ILI e della verifica di hit/miss 🗞