

Robotics Teaching Kit with 'Jet' for Educators

Joe Bungo (NVIDIA) and John Seng (CalPoly)

AGENDA

Introduction to NVIDIA's GPU Educators Program and GPU Teaching Kits

Robotics Teaching Kit with 'Jet' Syllabus Overview

Introduction to 'Jet'

'Jet' Teaching Kit Contents

Cal Poly Activities, Q&A

GPU EDUCATORS PROGRAM

Advancing STEM Education with Accelerated Computing

"What an amazing resource for educators in GPU computing! The GPU Teaching Kit has a wealth of resources that allow both experienced and new teachers in parallel computing easily incorporate GPUs into their current course or design an entirely new course."

Prof. John Owens, UC-Davis

"The GPU teaching kit covers all aspects of GPU based programming.. the epitome for educators who want to float a course on heterogeneous computing using graphics processors as accelerators."

Dr. Tajendra Singh, UCLA

"Teaching resources such as these will be invaluable in helping the next generation of scientists and engineers know how to fully harness the capability of this exciting technology."

Dr. Alan Gray, University of Edinburgh

"The Teaching Kit covers all the needed content of a GPU/computing course.. The projects and quiz designs are handy, saving a lot of time and effort. Moreover, the whole structure is well organized to lead students step by step in CUDA programming. I highly recommend integrating it into a related syllabus."

Dr. Bin Zhou, University of Science and Technology of China

FLAGSHIP OFFERING: GPU TEACHING KITS

Breaking the Barriers to GPU Education in Academia

Co-develop with academic partners

Comprehensive teaching materials

Lecture slides and notes
Lecture videos
Hands-on labs/solutions
Larger coding projects/solutions
Quiz/exam questions/solution

Possible GPU resource

Software tools

Textbooks and/or e-books

FLAGSHIP OFFERING: GPU TEACHING KITS

Breaking the Barriers to GPU Education in Academia

Different kits for different courses

Accelerated/parallel computing Robotics

Machine/Deep learning Computer graphics Computer architecture Computational domain sciences Etc.

Localization plans in progress

OTHER PROGRAM OFFERINGS

Collaborative Opportunities and Supporting Expertise

Instructor workshops, conferences, sponsorships and exhibits

Enablement web pages

Getting started guides/videos

Email updates

Feedback and enhancement requests

Robotics Teaching Kit with 'Jet'

Available to Instructors Now! developer.nvidia.com/educators

ROBOTICS TEACHING KIT

Module Goals

Learn interdisciplinary, GPU-accelerated, autonomous Robotics

Technical subjects

Sensors
Computer Vision
Machine Learning
Dead Reckoning
Path Planning
Localization
Control
Obstacle Avoidance

TEACHING KIT MODULES

Robotics with 'Jet'

Module 1 Course Introduction	 Course Introduction and Overview Introduction to Robotics Jetson TK1/TX1 and Toolkit Basics Introduction to 'Jet' ROS 	Current Release
Module 2 Sensors and Actuators	SonarCameraAccelerometerGyroscope	Current Release
Module 3 Computer Vision	 Introduction to Computer Vision Image Representation Edge Detectors Hough Transform Image Filtering and Moments 	Current Release
Module 4 Machine Learning	 Machine Learning with Neural Networks Neural Networks Models cuDNN Training and Usage 	Future Release

TEACHING KIT MODULES

Robotics with 'Jet'

Module 5 Dead Reckoning	Dead Reckoning Odometry Model for Differential Drive	Future Release
Module 6 Path Planning	Path PlanningWavefront Path Planning	Future Release
Module 7 Robot Localization	Robot LocalizationMonte Carlo LocalizationParticle Filters	Future Release
Module 8 Control	Control PID Control	Future Release
Module 9 Obstacle Avoidance	Smooth Obstacle AvoidanceObstacle Avoidance and Navigation	Future Release
Module 10 Final Project	MotivationRobot Capture the Flag Game	Current Release

Pinout Diagrams Courtesy of Corneliusz Jarzebski

Jetson TX1

	JETSON TX1			
GPU	1 TFLOP/s 256-core Maxwell			
CPU	4x 64-bit ARM A57 CPUs 1.6 GHz			
Memory	4 GB LPDDR4 25.6 GB/s			
Video decode	4K 60Hz H.264			
Video encode	4K 30Hz H.264			
CSI	Up to 6 cameras 1400 Mpix/s			
Display	2x DSI, 1x eDP 1.4, 1x DP 1.2/HDMI			
Wi-Fi	802.11 2x2 ac			
Networking	1 Gigabit Ethernet			
PCI-E	Gen 2 1x1 + 1x4			
Storage	16 GB eMMC, SDIO, SATA			
Other	3x UART, 3x SPI, 4x I2C, 4x I2S, GPIOs			
Power	10-15W, 6.6V-19.5VDC			
Size	50mm x 87mm			

Chassis

Jet chassis is constructed using Actobotics parts

These are machined metal parts with various aluminum channel, hubs, wheels, and brackets.

Chassis

Electronics

Jet electronics consists of:

NVIDIA Jetson TK1/TX1

Arduino Mega

H-bridge and motors

3 sonar sensors

GY-521 accelerometer/gyroscope

Single Webcam

3S (11.1V) 5000mAh LiPo battery

Software

Jet runs ROS

Lecture material includes ROS introduction

Lab assignments provide starter code

Architecture Design

CURRENT JET BOM

Retail prices shown

Amazon lists:

http://amzn.com/sl/16YHGMBK62X6G (TK1)

http://amzn.com/sl/2QNJMQAAMVYRN (TX1)

Single-source, discounted bundle coming soon!

Bill of Materials	Category	Source	Cost	Quantity	Subtotal
Battery	electronics	Amazon	\$35.76	1	\$35.76
Battery charger	electronics	Amazon	\$25.60	1	\$25.60
Jetson TK1	electronics	Amazon	\$192.00	1	\$192.00
Arduino Mega	electronics	Amazon	\$17.99	1	\$17.99
Pololu motor	electronics	Pololu	\$39.99	2	\$79.98
Pololu H-bridge	electronics	Amazon	\$49.95	1	\$49.95
Camera (placeholder)	electronics	Amazon	\$4.99	1	\$4.99
Camera mount	electronics	Amazon	\$4.49	1	\$4.49
Mini-PCIe wireless	electronics	Amazon	\$28.00	1	\$28.00
USB hub	electronics	Amazon	\$6.99	1	\$6.99
Power cable	electronics	Pololu	\$1.95	1	\$1.95
Sonar sensors (3pcs)	sensors	Amazon	\$8.50	1	\$8.50
Gyro (GY-521)	sensors	Amazon	\$3.35	1	\$3.35
Sensor shield	electronics	Amazon	\$14.50	1	\$14.50
Jumper wire	electronics	Amazon	\$9.99	1	\$9.99
Wireless antenna	electronics	Amazon	\$8.50	1	\$8.50
16AWG wire		Amazon	\$6.70	1	\$6.70
HXT connector	electronics	Amazon	\$5.99	1	\$5.99
1" standoffs		Servocity	\$0.79	4	\$3.16
1/2" standoffs		Servocity	\$0.59	4	\$2.36
12" channel	chassis	Amazon	\$9.99	4	\$39.96
clamping motor mount	chassis	Servocity	\$6.99	2	\$13.98
6" wheels	chassis	Amazon	\$9.99	2	\$19.98
1/4" screws	chassis	Amazon	\$1.69	3	\$5.07
6-32 nuts	chassis	Servocity	\$0.05	24	\$1.20
90 dual mount bracket	chassis	Servocity	\$5.99	2	\$11.98
6mm wheel hubs	chassis	Amazon	\$7.99	2	\$15.98
hub adaptor	chassis	Amazon	\$4.99	2	\$9.98
1/4" shaft clamping collar	caster	Servocity	\$4.99	1	\$4.99
1.5" channel	caster	Amazon	\$2.99	1	\$2.99
caster wheel	caster	Amazon	\$2.59	2	\$5.18
flanged standoff A (pair)	caster	Amazon	\$2.99	1	\$2.99
non-flanged bearing	caster	Amazon	\$1.99	2	\$3.98
parallel tube clamp	caster	Amazon	\$5.99	2	\$11.98
1/4" bearing pillow block	caster	Amazon	\$6.49	1	\$6.49
1/4" flanged ball bearings	caster	Servocity	\$2.39	1	\$2.39
5" x 1/4" D shaft	caster	Amazon	\$2.49	1	\$2.49
Fuse	electronics	Servocity	\$3.99	1	\$3.99
power switch	electronics	Amazon	\$1.99	1	\$1.99
power jack	electronics	Servocity	\$3.99	1	\$3.99
r Juon					

Lecture Slides

Current Release: 14 total slide decks from 4 modules

Later Release: ~30 total slide decks from 10 modules + Embedded audio narrations

.pptx format

Hands-on labs/solutions

1-2 week assignments

Includes description, objectives, prerequisites and open-ended questions

Includes Pseudo-code and solution code templates

Latest source code and instructions always on BitBucket

Current Release: 5 total labs from 4 modules

Later Release: ~12 total labs from 10 modules

.docx and .pdf formats

Quiz questions/answers

Multiple choice, including rationale for answers

Students should be able to answer from lecture content

Current Release: 3 total quiz questions/answers from 4 modules

Later Release: 9 total quiz questions/answers from 10 modules

.docx and .pdf formats

Module 3: Answers 1. Apply the horizontal Sobel edge detector to the following image patch. Use border values to extend the 30 I 40 Answer -80 | -80 2. Apply the averaging blur filter to the following image patch. Use border values to extend the image 30 1 40 Module 1: Answers Answer 1. What types of computing cores are available on the Jetson TK1? There are 4 ARM A15 cores, 1 low power ARM core, and 192 CUDA 3. Name the advantages and disadvantages of processing images at a higher resolution 2. How can you remotely connect to the Jetson TK1? Advantages: more information, higher quality picture · Command line: using ssh · Graphical: using a vnc client Disadvantages: slower, more processing 4. Threshold the following gravscale image using 127 as the threshold 3. Describe the reasons for having the Arduino Mega run alongside the TK1 50 I 100 The Arduino Mega handles low-level embedded functionality such controlling the motors. 4. What components are directly connected to the battery? Answer The Jetson TK1 and the H-bridge shield. 0 1 0 5. Describe the capabilities of ROS nodes ROS nodes are processes that perform some computation. They can 5. Apply the Gaussian blur filter to the following image patch. Use border values to extend the image publishing the sensor value. They can also be used to send con where necessary. Round output values to the nearest integer. 6. What does it mean for ROS Topics to be 'strongly typed. Topics can only send messages that are only of the correct type for th 7. What command is used to clean out any recently compiled ROS nodes? catkin make clean 8. Describe the relationship between the Ubuntu Linux OS and ROS Linux is the actual running OS kernel. ROS is a framework that ru 6. All the lines running through a single point in Cartesian become what in the Hough space provides messaging between ROS processes. 9. How are ROS nodes started? 7. In Hough space, how are likely lines selected? The can be started using the roslaunch command. 10. How can you know what topics are available on a ROS system

⊕⊕SThis work is licensed by Cal Poly San Luis Obispo and NVIDIA (2016) under a Creative Common

Larger coding projects/solutions

3-4 week, open-ended, multidisciplinary, final semester projects

Not tied to specific modules

Current Release: 1 total project/solution/report

Later Release: ~3 total projects/solutions/reports

.docx and .pdf formats

Solutions in source code

OTHER RESOURCES

qwikLABs

Live, hands-on, self-paced learning environment to reinforce the concepts contained in the Teaching Kit

Labs includes interactive instructions, coding and Q/A

Hosted in the cloud

Students only needs a web-browser and internet access

Labs are timed

Free tokens with Teaching Kit

Lecture Videos

Useful for "flipped" course and selfpaced learning

Stream individually or download as .mp4 from

Coming in a future release!

RELATED CAL POLY ACTIVITIES

Robotics at Cal Poly is a multidisciplinary area

Encourage students to learn by actively engaging in projects

Students learn best by applying theory to real robot designs

Q&A

Available to Instructors Now! developer.nvidia.com/educators