Lecture 24: Revision Notes

Sofia Olhede

December 14, 2020

- Probability and Modelling
- Random Variables and Vectors
- Exponential family and Sampling Theory
- 4 Estimation
- 6 Hypothesis Testing
- Bayesian Statistics
- GLM

Worked examples tomorrow

- I have been asked to cover:
- For instance over testing hypothesis on the last exercise sheet;
- Non-parametric regression again;
- more concrete examples on GLMs;
- how to handle the separable data case again, along with jitter residuals;
- Non parametric regression;
- Estimate the unknown function h(x) with the modulators and the wavelets.

Modelling

- This is an abbreviation; the full course is in the regular lecture notes.
- Started by making the distinction between the <u>explanatory</u> and predictive framework.
- Discussion about why data is stochastic.
- Start by specifying a distribution $F(y_1, ..., y_n; \theta)$; where $y \in \mathcal{Y}^n$ and $\theta \in \Theta$.
- Assume we observe $Y_1, \ldots, Y_n \in \mathcal{Y}^n$.
- When $F(y_1, ..., y_n; \theta)$ is known the problem is parametric; if not then it is non–parametric.
- ullet Example: coin flipping with an unknown success probability heta.
- How do we handle the modelling? We need to understand probability.

Probability

- \bullet We model $\underline{\text{outcomes}}$ of experiments. A possible outcome ω is an elementary event.
- The set of total outcomes is written as Ω .
- We always assume $\Omega \neq \emptyset$. Note that \emptyset is a set.
- An event is a subset of Ω .
- The union of two events F_1 and F_2 is $F_1 \cup F_2$ occurs if and only if either of F_1 or F_2 occurs.
- The intersection of two events F_1 and F_2 written as $F_1 \cap F_2$ occurs if and only if both of F_1 or F_2 occurs.
- We can define unions of unions and intersections iteratively.

Probability

- The complement of an event F written as F^c contains all the elements in Ω that are not in F.
- Two events F₁ and F₂ are disjoint if they have no elements in common.
- A partition $\{F_n\}$ is a collection of events such that $F_i \cap F_j = \emptyset$ and $\bigcup_n F_n = \Omega$.
- We can combine these binary operations using De Morgan's laws.
- We go from sets to probability measure. To define this we define the three axioms of probability:
- (i) $Pr{F} \ge 0$ for all $F \subset \Omega$.
- (ii) $Pr{\Omega} = 1$.
- (iii) If an event G is a countable union $G = \bigcup_n F_n$ for disjoint events F_n then

$$\Pr\{G\} = \sum_{n} \Pr\{F_n\}.$$

Random Variables

- Conditional probability is the next set of results.
- For any pair of events F_1 and F_2 such that $Pr\{F_2\} > 0$ then we define the conditional probability of F_1 given F_2 :

$$\Pr\{F_1 \mid F_2\} = \frac{\Pr\{F_1 \cap F_2\}}{\Pr\{F_2\}}.$$

- A random variable (RV) X is a real function $X : \Omega \mapsto \mathbb{R}$.
- We for $A \subset \mathbb{R}$ write $\{X \in A\}$ for the event

$$\{\omega \in \Omega : X(\omega) \in A\}.$$

• The distribution function (or cumulative distribution function) $F_X(x)$ is defined as

$$F_X(x) = \Pr\{X \le x\}.$$

• A continuous random variable X has probability density function $f_X(x)$ for $x \in \mathcal{X}$ such that

$$F_X(b) - F_X(a) = \int_a^b f_X(u) du.$$

- $f_x(x)$ on its own is not a probability and so not bounded above.
- For a discrete random variable X we may define its probability mass function (PMF) to be

$$f_X(x) = \Pr\{X = x\}, \quad x \in \mathcal{X}.$$

- Once we understand how to model X we have a model of Y = g(X).
- In real life we never just look at single RVs: we need random vectors.

- Random vectors: A random vector X for a fixed positive integer d is $X = \begin{pmatrix} X_1 & \dots & X_d \end{pmatrix}^T$ is a finite collection of random variables.
- ullet The joint distribution of the random vector $X=egin{pmatrix} X_1 & \dots & X_d \end{pmatrix}^T$ is

$$F_X(x_1, x_2, \dots, x_d) = \Pr\{X_1 \le x_1, X_2 \le x_2, \dots, X_d \le x_d\}.$$

- One can marginalize distributions by integrating out or summing out variables.
- Everything continuous is multivariate calculus, see e.g. Schaum's Outline of Advanced Calculus, Third Edition.

Random Vectors

• The random variables X_1, \ldots, X_d are called independent if and only if for all x_1, \ldots, x_d

$$F_{X_1,\ldots,X_d}(x_1,\ldots,x_d)=F_{X_1}(x_1)F_{X_2}(x_2)\ldots F_{X_d}(x_d).$$

• Equivalently the random variables X_1, \ldots, X_d are independent if and only if for all x_1, \ldots, x_d

$$f_{X_1,...,X_d}(x_1,...,x_d) = f_{X_1}(x_1)f_{X_2}(x_2)...f_{X_d}(x_d).$$

- For two random variables, X and Y, we denote their independence as $X \perp \!\!\! \perp Y$.
- The random vector X in \mathbb{R}^d is called conditionally independent of the random vector Y given the random vector Z written as

$$X \perp \!\!\! \perp_Z Y$$
 or $X \perp \!\!\! \perp Y | Z$,

if and only if, for all $x_1, \ldots, x_d \in \mathbb{R}$

$$F_{X_1,...,X_d|Z,Y}(x_1,...,x_d) = F_{X_1,...,X_d|Z}(x_1,...,x_d).$$
 (1)

Random Vectors

• (Sums of random variables). Let X and Y be independent continuous random variables with densities $f_X(x)$ and $f_Y(y)$ respectively. The density of X + Y is the convolution of $f_X(x)$ with $f_Y(y)$. Thus

$$f_{X+Y}(u) = \int_{-\infty}^{\infty} f_X(u-v)f_Y(v) dv.$$

- Define $g: \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \stackrel{g}{\mapsto} (x+y,y)$ with inverse transformation $(u,v) \stackrel{g^{-1}}{\mapsto} (u-v,v)$. The Jacobian of the inverse is $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, with determinant 1.
- It follows that

$$f_{X+Y,Y}(u,v) = f_{X,Y}(u-v,v) = f_X(u-v)f_Y(v).$$

Marginalize and you are done.

Expectation

• For a continuous random variable this is defined as

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

ullet For any $g:\mathbb{R}^d o \mathbb{R}$ we define

$$\mathbb{E}\{g(X_1,\ldots,X_d)\}=\int_{-\infty}^{\infty}g(x_1,\ldots,x_d)f_X(x)dx_1,\ldots dx_d.$$

ullet The mean vector of random vector $oldsymbol{X} = ig(X_1 \ \ldots \ X_dig)^T$ is defined as

$$\mathbb{E}(\mathbb{X}) = \begin{pmatrix} \mathbb{E}(X_1) & \dots & \mathbb{E}(X_d) \end{pmatrix}^T$$
.

 The variance of a random variable X expresses how disperse the realisations of X are around its expectation

$$\mathbb{V}\operatorname{ar}(X) = \mathbb{E}\{(X - \mathbb{E}(X))^2\},\$$

if $\mathbb{E}(X^2)$ is finite.

• Furthermore the covariance of a random variable X_1 with another random variable X_2 expresses the linear dependence between the two:

$$\mathbb{C}\mathsf{ov}(X_1,X_2) = \mathbb{E}\{(X_1 - \mathbb{E}(X_1))(X_2 - \mathbb{E}(X_2))\}.$$

• The correlation between X_1 and X_2 is defined as

$$\operatorname{corr}(X_1, X_2) = \frac{\operatorname{\mathbb{C}ov}(X_1, X_2)}{\sqrt{\operatorname{\mathbb{V}ar}(X_1)\operatorname{\mathbb{V}ar}(X_2)}}.$$

The correlation conveys equivalent dependence information to the covariance. Advantages: (1) invariant to scale changes, (2) can be understood in absolute terms(ranges in [-1,1]). This is a consequence of the correlation inequality, follows from Cauchy-Schwarz inequality.

We can also calculate the conditional expectation of random variable
 X given that of another random variable Y which took the value y as

$$\mathbb{E}(X|Y=y) = \begin{cases} \sum_{x \in \mathcal{X}} x \Pr\{X=x|Y=y\} & \text{if} \quad X \text{ and } Y \text{ discrete} \\ \int_{\mathcal{X}} x f_{X|Y=y}(x|y) \, dx & \text{if} \quad X \text{ and } Y \text{ continuous} \end{cases}$$

The conditional variance of X given Y is defined as

$$\operatorname{Var}\{X|Y\} = \operatorname{\mathbb{E}}_{Y}\left\{\left(X - \operatorname{\mathbb{E}}_{X|Y}(X|Y)\right)^{2}|Y\right\} = \operatorname{\mathbb{E}}(X^{2}|Y) - \operatorname{\mathbb{E}}^{2}(X|Y).$$

The law of total variance states that

$$\mathbb{V}ar(X) = \mathbb{E}_{Y}(\mathbb{V}ar(X|Y)) + \mathbb{V}ar_{Y}(\mathbb{E}(X|Y)).$$

Moment Generating Functions

• Let X be a random variable taking values in \mathbb{R} . The moment generating function (MGF) of X is defined as

$$M_X(t): \mathbb{R} \to \mathbb{R} \cup \{\infty\},$$

and

$$M_X(t) = \mathbb{E}(e^{tX}).$$

• $M_{X+Y}(t) = M_X(t)M_Y(t)$ when X and Y are independent.

Moment Generating Functions XIII

- Lemma: Let $X \sim N(\mu, \sigma^2)$ and assume $a \neq 0$. Then $aX + b \sim N(a\mu + b, a^2\sigma^2)$.
- Corollary: let $X_1, ... X_n$ be independent random variables and let $X_i \sim N(\mu_i, \sigma_i^2)$. Take S_n as the sum of the X_i . Then

$$S_n \sim N(\sum_i \mu_i, \sum_i \sigma_i^2).$$

- The entropy is used to measure the disorder of a random variable.
- The entropy of a random variable X is defined as

$$H(X) = -\mathbb{E}\{\log f_X(X)\}\$$

$$= \begin{cases} -\sum_{x \in \mathcal{X}} f_X(x) \log\{f_X(x)\} & \text{if} \quad X \text{ discrete} \\ -\int_{x \in \mathcal{X}} f_X(x) \log\{f_X(x)\} dx & \text{if} \quad X \text{ continuous} \end{cases}$$

• Let p(x) and q(x) be two probability density (probability mass) functions on \mathbb{R} . We define the Kullback-Leibler divergence or relative entropy of q with respect to p as

$$\mathrm{KL}(q||p) \equiv \int_{\mathbb{R}} p(x) \log \left(\frac{p(x)}{q(x)} \right) dx.$$
 (2)

Exponential Family

 A probability distribution is said to be a member of a k-parameter exponential family, if its density (or frequency), admits the representation

$$f(y) = \exp\left\{\sum_{i=1}^{k} \phi_i T_i(y) - \gamma(\phi_1, \dots, \phi_k) + S(y)\right\}$$
(3)

where

- (a) $\phi = (\phi_1, \dots, \phi_k)$ is a k-dimensional parameter in $\Phi \subseteq \mathbb{R}^k$;
- (b) $T_i: \mathcal{Y} \to \mathbb{R}$ and $\gamma: \mathbb{R}^k \to \mathbb{R}$ are real-valued;
- (c) The support \mathcal{Y} of f does not depend on ϕ .

Statistics

- We use sampling theory to understand how functions $T = T(Y_1, ..., Y_n)$ carry information about the parameter θ .
- We determine the probability distribution of T and determine how that relates to the distribution of the sample.
- Definition (Statistic). A statistic is any function T of the data whose domain is the sample space \mathcal{Y}^n but which does not depend on any unknown parameters.
- Intuitively any function that can be evaluated from the sample is a statistic.
- Any statistic is a random variable with its own distribution.

Statistics

• Definition (Sampling Distribution) Let $(Y_1 ..., Y_n)^T \sim F(y_1, ..., y_n; \theta)$ and let T be a q-dimensional statistic

$$T(Y_1,\ldots,Y_n)=(T_1(Y_1\ldots,Y_n) \ldots T_q(Y_1\ldots,Y_n)).$$

The sampling distribution of T under $F(y_1, \ldots, Y_n; \theta)$ is the distribution:

$$F_{\mathcal{T}}(t_1,\ldots t_q)=\operatorname{Pr}(T_1(Y_1\ldots,Y_n)\leq t_1,\ldots,T_q(Y_1\ldots,Y_n)\leq t_q).$$

- Definition. Ancillary statistics. A statistic T is ancillary fo θ if its distribution does not functionally depend on θ .
- Sufficient Statistic: A Statistic T = T(Y) is said to be sufficient for the parameter θ if the conditional probability distribution of the sample given the statistic

$$F_{Y|T=y}(y_1,\ldots,y_n) = \Pr\{Y_1 \leq y_1,\ldots,Y_n \leq y_n \mid T=t\},\$$

does not depend on θ .

Exponential Family XIII

- Thus T is sufficient for θ .
- In general the definition of sufficiency is hard to verify.
- Theorem (Fisher–Neyman factorization theorem): suppose that Y has a joint density or frequency function $f(y; \theta)$, where $\theta \in \Theta$. A Statistic T = T(Y) is sufficient for θ if and only if

$$f(y; \theta) = g(T(y), \theta)h(y).$$

- Lemma: If T and S are minimally sufficient statistics for a parameter θ , then there exists injective functions g and h such that S = g(T) and T = h(S).
- Theorem: Let $Y=(Y_1,\ldots,Y_n)$ have joint density or frequency function $f(y;\theta)$ and let T=T(Y) be a statistic. Suppose that $f(y;\theta)/f(z;\theta)$ is independent of θ if and only if T(y)=T(z). Then T is minimally sufficient for θ .

Sampling Distributions

- By studying sampling distributions we aim to determine what different information do different forms of T carry about θ .
- Theorem: (Sampling Distributions of Gaussian Sufficient Statistics). Let $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ and define

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$.

- ullet The pair $(ar{Y},S^2)$ are minimally sufficient for (μ,σ^2) and
 - (a) The sample mean has distribution $\bar{Y} \sim N(\mu, \sigma^2/n)$,
 - (b) The random variables \bar{Y} and S^2 are independent,
 - (c) The random variable S^2 satisfies $\frac{n-1}{\sigma^2}S^2 \sim \chi^2_{n-1}$.
- Corollary: (Moments of Sufficient Statistics). If $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ then

$$\mathbb{E}(\bar{Y}) = \mu, \quad \mathbb{V}\mathsf{ar}\{\bar{Y}\} = \frac{\sigma^2}{n}, \quad \mathbb{E}(S^2) = \sigma^2, \quad \mathbb{V}\mathsf{ar}\{S^2\} = \frac{2\sigma^4}{n-1}.$$

Sampling Distributions

• Theorem (Sum of Gaussian Squares) Let $(Z_1, ..., Z_k)$ be iid N(0, 1) random variables. Then

$$Z_1^2+\cdots+Z_k^2\sim\chi_k^2.$$

• Theorem: let $Y_1 \sim \chi^2_{d_1}$ and let $Y_2 \sim \chi^2_{d_2}$ be independent. Then

$$rac{Y_1/d_1}{Y_2/d_2} \sim F_{d_1,d_2}.$$

• Definition: Convergence in Distribution (Weak Convergence). Let $\{F_n\}_{n\geq 1}$ be a sequence of distribution functions and let G be a distribution function on \mathbb{R} . We say that F_n converges weakly or in distribution to G and write $F_n \xrightarrow{\mathcal{L}} G$ whenever

$$F_n(y) \stackrel{n \to \infty}{\to} G(y),$$

for all y constituting continuity points of G.

- Definition (convergence in probability): When a sequence of random variables satisfies $\Pr\{\|Y_n-Y\|>\epsilon\}\to 0$ for all $\epsilon>0$ and a given (random variable) Y, then we say that Y_n converges in probability to Y, and write $Y_n\stackrel{P}{\to} Y$.
- $\bullet \xrightarrow{\mathcal{L}}$ relates distribution functions. It says that the probabilistic behaviour of a sequence Y_n becomes more and more alike that of the limit Y.

Modes of Convergence

• Theorem (The Continuous Mapping Theorem) Let $g: \mathbb{R} \to \mathbb{R}$ be continuous on the range of Y. Then

(a)
$$Y_n \stackrel{p}{\to} Y \Rightarrow g(Y_n) \stackrel{p}{\to} g(Y)$$
,

$$(b)Y_n \stackrel{\mathcal{L}}{\to} Y \Rightarrow g(Y_n) \stackrel{\mathcal{L}}{\to} g(Y).$$

• Theorem (Slutsky's theorem): Let $X_n \stackrel{\mathcal{L}}{\to} X$ and let $Y_n \stackrel{\mathcal{L}}{\to} c$ where $c \in \mathbb{R}$. Then

(a)
$$X_n + Y_n \stackrel{\mathcal{L}}{\rightarrow} X + c$$
.

(b)
$$X_n Y_n \stackrel{\mathcal{L}}{\to} X_c$$
.

• Theorem (Law of Large Numbers): let Y_n be independent random variables with $\mathbb{E} Y_k = \mu$ and $\mathbb{E} |Y_k| < \infty$ for all k. Then $n^{-1}(Y_1 + \cdots + Y_n) \stackrel{p}{\rightarrow} \mu$.

Modes of Convergence

• Theorem (Central Limit Theorem). Let $\{Y_n\}$ be a sequence of iid random variables with mean μ and variance σ^2 which is assumed finite. Then

$$\sqrt{n}(\frac{1}{n}\sum_{i=1}^{n}(Y_i-\mu))\stackrel{\mathcal{L}}{\to} N(0,\sigma^2).$$

• Theorem (Delta method): Let $Z_n = a_n(X_n - \theta) \xrightarrow{\mathcal{L}} Z$ where $a_n \in \mathbb{R}^+$ and $\theta \in \mathbb{R}$ for all n and assume $a_n \to \infty$. Let g() be continuously differentiable at θ . Then

$$a_n\{g(X_n)-g(\theta)\}\stackrel{\mathcal{L}}{\to} g'(\theta)Z.$$

• Vector versions are also provided.

- What is estimation (\equiv "learning" in machine learning)?
- Imagine you assume Y is distributed according to $F(y_1, \ldots, y_n; \theta)$ where $y \in \mathcal{Y}^n$.
- Assume you know the form of $F(y_1, \ldots, y_n; \theta)$ but not the value of θ .
- Guessing θ on having observed y_1, \ldots, y_n is estimation.
- Not that whenever we realise a different set of Y_1, \ldots, Y_n then we realise a different $\widehat{\theta}(Y_1, \ldots, Y_n)$.
- How do we design an estimator $\widehat{\theta}(Y_1, \dots, Y_n)$?
- A good estimator would produce a value of $\widehat{\theta}(Y_1, \dots, Y_n)$ near θ .
- We usually address this in terms of the mean and variance of $\widehat{\theta}(Y_1, \dots, Y_n)$.
- Definition (mean square error): assume that $\widehat{\theta}$ is an estimator of the parameter θ corresponding to the model $F(y;\theta)$, where $\theta \in \Theta \subset \mathbb{R}^d$. The mean square error of $\widehat{\theta}$ is then defined as

$$MSE\{\widehat{\theta}, \theta\} = \mathbb{E}\Big[\|\widehat{\theta} - \theta\|^2\Big]. \tag{4}$$

- The mean square error of an estimator, is the bias square plus its variance.
- If the model is not identifiable then you can get the same model with different values of the parameters.
- The Cramér–Rao lower bound provides a bound on the variance of an unbiased estimator.
- Theorem (Rao-Blackwell Theorem): Let $\widehat{\theta}$ be an unbiased estimator of θ that has finite variance. Assume T is sufficient for θ . In this case $\widehat{\theta}^* = \mathbb{E}\{\widehat{\theta}|T\}$ is an unbiased estimator and

$$\mathbb{V}ar\{\widehat{\theta}^*\} \leq \mathbb{V}ar\{\widehat{\theta}\}.$$

• Equality is attained if and only if $\Pr{\{\widehat{\theta}^* = \widehat{\theta}\}} = 1$.

• Definition: Let (Y_1, \ldots, Y_n) be a sample of random variables with joint density/frequency $f(y_1, \ldots, y_n; \theta)$ where $\theta \in \mathbb{R}^p$. The <u>likelihood</u> of θ is defined as

$$L(\theta) = f(Y_1, \ldots, Y_n; \theta).$$

• Definition: (Maximum Likelihood Estimation). In the same context, a maximum likelihood estimator (MLE) of $\widehat{\theta}$; is an estimator such that

$$L(\theta) \leq L(\widehat{\theta}), \quad \forall \theta \in \Theta.$$

- Be careful, calculus is not always the answer.
- If the likelihood is twice differentiable in θ , we can verify this by checking

$$-\nabla_{\theta}^2 L(\theta)|_{\theta=\widehat{\theta}} \succ 0.$$

- The negative of the Hessian is positive definite.
- When there exists a unique maximum, we speak of the MLE $\widehat{\theta} = \arg_{\theta \in \Theta} \max L(\theta)$.

• The next property we shall cover is the equi-variance or invariance of MLEs. If $g(\theta)$ is a bijection, recall that if we are attempting to estimate $\tau = g(\theta)$ then if we form the likelihood

$$L(\theta) = \prod_{j=1}^{n} f(Y_j; \theta),$$

- Provided it exists, the MLE of the natural parameter in a k-parameter natural exponential family with open parameter space Φ is consistent.
- Assuming we can get consistency, we can focus on understanding the sampling distribution of the MLE.

• Theorem: Let X_1, \ldots, X_n be IID random variables with the same density $f(x; \theta)$. Assume that A1–A6 are satisfied. If the MLE $\widehat{\theta}_n$ exists and is unique, and we have consistency then

$$\sqrt{n}\Big\{\widehat{\theta}_n-\theta\Big\}\stackrel{\mathcal{L}}{\to} N\big(0,\mathcal{I}_1(\theta)/\mathscr{I}_1^2(\theta)\big).$$

Furthermore, when we can say that $\mathcal{I}(\theta) = \mathscr{I}(\theta)$ then

$$\sqrt{n}\Big\{\widehat{\theta}_n-\theta\Big\}\stackrel{\mathcal{L}}{\to} N(0,1/\mathcal{I}_1(\theta)).$$

For finite samples we often say

$$\widehat{\theta}_n \stackrel{d}{\approx} N(\theta, 1/\mathcal{I}_n(\theta)).$$

- Despite this, once we allow for bias the MLE is not always the best estimator.
- Need to use decision theory to figure out what to do.

Hypothesis Testing

- Often in science two concurrent theories need to be confronted with the empirical evidence.
- The null hypothesis H_0 which states that $\theta \in \Theta_0$

$$H_0: \theta \in \Theta_0.$$

ullet The alternative hypothesis that postulates $heta \in \Theta_1$

$$H_1: \theta \in \Theta_1.$$

- T is a statistic called a <u>test statistic</u> and;
- C is a subset of the range of T and is called the critical region.
- We can write

$$\delta(Y) = I(T(Y_1 \ldots Y_n) \in C).$$

• Take action 0 when H_1 is true—this is a type II error. Take action 1 when H_0 is true—this is a type I error.

Hypothesis Testing

- The Neyman-Pearson Framework
- ullet We declare that we only consider test functions $\delta: \mathcal{X} \mapsto \{0,1\}$ such that

$$\delta \in \mathcal{D} \big(\Theta_0, \alpha \big) = \{ \delta : \sup_{\theta \in \Theta_0} \Pr_{\theta} \{ \delta = 1 \{ \leq \alpha \}.$$

- ullet i.e. rules for which prob of type I error is bounded above by lpha.
- Jargon: we fix a significance level for our test.
- Within this restricted class of rules, choose δ to minimize prob of type II error:

$$\Pr\{\delta(\mathbf{X}) = 0\} = 1 - \Pr\{\delta(\mathbf{X}) = 1\}.$$

Equivalently, maximize the power

$$eta(heta,\delta) = \mathsf{Pr}\{\delta(oldsymbol{\mathcal{X}}) = 1\} = \mathbb{E}\operatorname{I}\{\delta(oldsymbol{\mathcal{X}}) = 1\} = \mathbb{E}\{\delta(oldsymbol{\mathcal{X}}))\}, \quad heta \in \Theta_1.$$

Hypothesis Testing

- Neyman-Pearson lemma.
- Likelihood ratio test statistic.
- Score test, Wald test.
- p-values. The p-value is the observed significance level.
- Interval estimation; confidence intervals.
- Multiple testing, Bonferroni, FDR etc.
- Nonparametrics. Kernel Density Estimation.

Bayesian Statistics

- Does not treat the parameter as fixed but unknown, rather models it as random directly.
- Bayes theorem allows us to convert a likelihood to a posterior distribution.
- Minimize the expected posterior loss to arrive at a point estimator.
- Credible intervals permit us to arrive at an interval estimator.

- Trying to determine the relationship between predictor variables and the response variable.
- Use the linear model to connect the two

$$\mathbb{E} Y = X\beta.$$

where $Y = (Y_1 \dots Y_n)^T$, is the <u>vector of observations</u>, X is the known $n \times p$ design matrix and $\beta = (\beta_1 \dots \beta_p)^T$ is the $p \times 1$ parameter vector.

- We are trying to quantify the systemic variation in Y due to $X\beta$.
- We can also add further assumptions

Second-order assumptions (SOA) $var(Y) = \sigma^2 I_n$ where σ^2 is unknown. Thus $var(Y_i) = \sigma^2$ for all i and the Y_i s are uncorrelated.

Normal theory assumptions (NTA) The Y_i s are independently and normally distributed with common unknown variance σ^2 so $Y \sim N(X\beta, \sigma^2 I_n)$.

• The linear model can be rewritten as

$$Y = X\beta + \epsilon$$
.

ullet Find \widehat{eta} that minimise the residual sum of squares (RSS), i.e. find

$$\widehat{\beta} = \arg\min_{\beta} (\epsilon^T \epsilon = \sum_{i=1}^n \epsilon_i^2).$$

Or

$$\widehat{\beta} = (X^T X)^{-1} X^T Y.$$

Why can't we do X^{-1} ?

- $\widehat{\beta}$ is linear in Y, and $\widehat{\beta}$ is unbiased for β .
- Also $var(\widehat{\beta}) = \sigma^2(X^TX)^{-1}$.
- (Gauss-Markov Theorem) Among all unbiased linear estimates of β for a full rank linear model satisfying SOA, any linear combination of the least squares estimator $\widehat{\beta}$ has the smaller or equal variance to that of any other.
- The hat matrix $P = X(X^TX)^{-1}X^T$ is key to understanding the linear model; it is idempotent and its trace is p.

- You need to understand/be able to reproduce simple linear regression.
- The residual sum of squares (RSS) is defined to be

$$RSS = Y^T Y - (PY)^T (PY).$$

- With NTA we can make interval estimates, and do testing.
- We can estimate $\hat{\sigma}^2 = \text{RSS}/(n-p)$.
- Leverage: the *i*th leverage is p_{ii} . We take notice when $p_{ii} > 2p/n$.
- Weighted least squares.
- Testing for nested models. Likelihood ratio test (see earlier, and tomorrow).
- Outliers and diagnostics.
- Linear algebra. If you need more, look at Schaum's Outline of Linear Algebra, 5th Edition: 568 Solved Problems.

Generalized Linear Regression

- Model selection: forward selection, backwards elimination, cross validation.
- Model selection criteria: AIC, BIC etc.
- Penalization, ridge regression, lasso, shrinkage.
- GLMs. What do we do when the data is not Gaussian?
- Use a link function to connect $\mathbb{E} Y_i$ with $x_i^T \beta$.
- Asymptotic normality.
- Deviance.
- Jittered residuals, separation.
- Non-parametric regression for Gaussian data (make link to KDE before). Balancing variance vs bias, and orthogonal function expansion.

Generalized Linear Regression

• GLM setting for non-parametric functions:

$$Y_i = g(x_i) + \epsilon_i \mapsto Y_i \mid x_i \stackrel{ind}{\sim} \exp\{g(x_i)y_i - \gamma\{g(x_i)\} + S(y_i)\}.$$

- We recognise the latter as a GLM with mean $g(x_i)$.
- Parameterize g(x) using splines, and do penalized max likelihood.
- GLM examples discussed.
- Causal inference and conditional independence representations not examinable.

Worked examples tomorrow

- I have been asked to cover:
- For instance over testing hypothesis on the last exercise sheet;
- Non-parametric regression again;
- more concrete examples on GLMs;
- how to handle the separable data case again, along with jitter residuals;
- Non parametric regression;
- Estimate the unknown function h(x) with the modulators and the wavelets.