概率论与数理统计练习题(7)

协方差、相关系数、大数定律与中心极限定理

	姓名	学号			
1. 选择题					
(1) 若存在常数 $a,b(a \neq 0)$ 使得 $P\{Y = aX + b\} = 1$,则 ρ_{XY} 为 ().					
(A) 1;	(B) −1;	(C) $\frac{a}{ a }$;	(D) 不确定.		
(2)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面和反面朝上的次数,则 X 与 Y 的相					
关系数为().				
(A) 1;	(B) -1 ;	(C) 0.5;	(D) 0.		
(3) 设 X_1, X_2 ,	\cdots, X_n 独立且与	X 同分布, X 服	从参数为2的指数分	$ \pi$,则当 $n \to \infty$ 时,	
$Y = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \ \text{fx}$	概率收敛于().			
$(A) \frac{1}{2};$	(B) 2;	(C) 4;	(D) 8.		
(4) 设 $\{X_n\}$ 相互独立, $X_n \sim U(-n,n)$ $(n=1,2,\cdots)$,则对 $\{X_n\}$ ().					
(A) 可使用切比雪夫大数定理; (B) 可使用马尔柯夫大数定理;					
(C) 可使用	辛钦大数定理;	(D) 不同	可使用切比雪夫大数定	建理 .	
2. 填空题					
(1) $\&DX = 4$, $DY = 9$, $\rho_{xy} = 0.5$, $\&D(2X - 3Y) =$					
(2) 设 X,Y 的相关系数为 0.5 , $Z = aX + b(a < 0)$,则 Y,Z 的相关系数为					
(3)设 $\{X_k\}$ 相互独立同分布, $E(X_k)=\mu,D(X_k)=\sigma^2$ $(k=1,2,\cdots)$,则根据中心极限定					
理,当 n 充分	大时, $P\left\{\sum_{k=1}^n X\right\}$	$\left\{ < n\mu \right\} \approx \underline{\hspace{1cm}}$	<u>-</u> •		

3. 在一零件商店中,其结帐柜台替各顾客服务的时间(以分计)是相互独立的随机变量, 均值为 1.5, 方差为 1, 求对 100 位顾客的总服务时间不多余 2 小时的概率.

4. 某种难度很大的心脏手术成功率为 0.9,对 100 个病人进行这种手术,以 X 记手术成功的人数,求 $P\{84 \le X \le 95\}$.
5. 为了确定事件 A 发生的概率 $p(0 , 进行 10000 次重复独立试验, 试分别用切比$
雪夫不等式和中心极限定理估计:用事件 A 在 10000 次试验中发生的频率作为概率 p 的近
似值,误差小于 0.01 的概率.
6. 某单位设置一台电话总机,共有 200 个分机,设每个分机有 5%的时间要使用外线通话,
各个分机使用外线与否是相互独立的,该单位需要多少外线才能保证每个分机要用外线时可供使用的概率不小于 0.9?

概率论与数理统计练习题(7)详细解答

1. 选择题

(2) 因为
$$X + Y = n$$
,即 $Y = -X + n$,所以 $\rho_{XY} = \frac{-1}{|-1|} = -1$,故选(B).

(3) 因为 X_1, X_2, \cdots, X_n 独立且与 $X \sim E(2)$ 同分布,故 $X_1^2, X_2^2, \cdots, X_n^2$ 独立且与 X^2 同分

布,且
$$E(X_i^2) = D(X_i) + [E(X_i)]^2 = \frac{1}{2^2} + \frac{1}{2^2} = \frac{1}{2}$$
. 由辛钦大数定律知 $Y = \frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{P} \frac{1}{2^2}$,故选(A).

(4) 因为 $D(X_n) = \frac{[n-(-n)]^2}{12} = \frac{n^2}{3}$,从而方差无公共上界,所以不可使用切比雪夫大数定理,故选(D).

2. 填空题

(1)
$$D(2X-3Y) = 4D(X) + 9D(Y) - 12\rho_{XY}\sqrt{D(X)}\sqrt{D(Y)} = 61$$
.

(2)
$$\rho_{YZ} = \frac{\text{cov}(Y, Z)}{\sqrt{D(Y)}\sqrt{D(Z)}} = \frac{\text{cov}(Y, aX + b)}{\sqrt{D(Y)}\sqrt{D(aX + b)}} = \frac{a \text{cov}(Y, X)}{-a\sqrt{D(Y)}\sqrt{D(X)}} = -\rho_{XY} = -0.5$$

(3) 根据独立同分布的中心极限定理,
$$\sum_{k=1}^{n} X_{k} \stackrel{\bullet}{\sim} N(n\mu, n\sigma^{2})$$
, 故 $P\left\{\sum_{k=1}^{n} X_{k} < n\mu\right\} \approx$

$$\Phi\left(\frac{n\mu - n\mu}{\sqrt{n}\sigma}\right) = \Phi(0) = 0.5.$$

3. **解**:设 X_i 为第i位顾客的服务时间,根据独立同分布的中心极限定理, $\sum_{i=1}^{100} X_i$ ~

 $N(150,10^2)$,所以

$$P\left\{\sum_{i=1}^{100} X_i \le 120\right\} \approx \Phi\left(\frac{120 - 150}{10}\right) = \Phi(-3) = 1 - \Phi(3) = 1 - 0.9987 = 0.0013.$$

4. 解:显然 $X \sim B(100, 0.9)$,由棣莫弗—拉普拉斯中心极限定理知 $X \sim N(90, 3^2)$,故

$$P\{84 \le X \le 95\} \approx \Phi\left(\frac{95 - 90}{3}\right) - \Phi\left(\frac{84 - 90}{3}\right) = \Phi\left(\frac{5}{3}\right) - \Phi(-2)$$
$$= \Phi(1.67) + \Phi(2) - 1 = 0.9297.$$

5. 解:用切比雪夫不等式估计:

设 $n_{\scriptscriptstyle A}$ 为 10000 次独立重复的试验中事件 A 发生的次数,则 $n_{\scriptscriptstyle A} \sim B(10000\,,p)$. 频率

为
$$\frac{n_A}{10000}$$
,且 $E\left(\frac{n_A}{10000}\right) = \frac{1}{10000}E(n_A) = \frac{1}{10000} \times 10000p = p$, $D\left(\frac{n_A}{10000}\right) = \frac{1}{10000^2}D(n_A) = \frac{1}{10000^2} \times 10000p(1-p) = \frac{1}{10000}\left[-\left(p-\frac{1}{2}\right)^2 + \frac{1}{4}\right] \leq \frac{1}{40000}$. 由切比 雪夫不等式,得

$$P\left\{ \left| \frac{n_A}{10000} - p \right| < 0.01 \right\} \ge 1 - \frac{D\left(\frac{n_A}{10000}\right)}{0.01^2} \ge 1 - \frac{\frac{1}{40000}}{0.01^2} = \frac{3}{4}.$$

用中心极限定理估计:

设 n_A 为 10000 次独立重复的试验中事件A发生的次数,定义

$$X_i = \begin{cases} 1, & \text{若第}i$$
次试验中事件 A 发生; $(i = 1, 2, \dots, 10000)$

则
$$n_{\scriptscriptstyle A} = \sum_{i=1}^{10000} X_i$$
 , 且 X_1 , X_2 , X_{10000} 独立同分布(0 — 1 分布), $E(X_i) = p$,

 $D(X_i) = p(1-p)$. 由独立同分布中心极限定理知

$$\frac{n_A}{10000} = \frac{1}{10000} \sum_{i=1}^{10000} X_i \stackrel{\bullet}{\sim} N \left(p, \frac{p(1-p)}{10000} \right),$$

所以

$$P\left\{ \left| \frac{n_A}{10000} - p \right| < 0.01 \right\} = P\left\{ p - 0.01 < \frac{n_A}{10000} < p + 0.01 \right\}$$

$$\approx \Phi\left(\frac{p + 0.01 - p}{\sqrt{\frac{p(1-p)}{10000}}} \right) - \Phi\left(\frac{p - 0.01 - p}{\sqrt{\frac{p(1-p)}{10000}}} \right)$$

$$= \Phi\left(\frac{1}{\sqrt{p(1-p)}}\right) - \Phi\left(-\frac{1}{\sqrt{p(1-p)}}\right)$$
$$= 2\Phi\left(\frac{1}{\sqrt{p(1-p)}}\right) - 1 \ge 2\Phi\left(\frac{1}{\sqrt{\frac{1}{4}}}\right) - 1$$
$$= 2\Phi(2) - 1 = 2 \times 0.9772 - 1 = 0.9544.$$

$$P\{X \le n\} \approx \Phi\left(\frac{n-10}{\sqrt{9.5}}\right).$$

查表得 Φ(1.28) ≈ 0.9, 故要使 $P\{X \le n\} \ge 0.9$, 只需 $\frac{n-10}{\sqrt{9.5}} \ge 1.28$, 即 $n \ge 13.95$, 取 n = 14, 即至少需要 14 条外线才能保证每个分机要用外线时可供使用的概率不小于 0.9.