Welcome to CS523!

- In this course we will:
 - Have fun!
 - Learn about deep learning concepts, techniques, and algorithms.
 - How engineering features shifted to engineering architectures.
 - Real world applications and state-of-the-art.

Course Staff

Sarah Adel Bargal Instructor Tianrui Chen Teaching Fellow

sbargal@bu.edu

trchen@bu.edu

In addition to Course Graders

Please let us know ASAP if:

- You are not added to the Piazza course by the end of today.
 - Please use Piazza for all course related communication
 - Please remember that: with great power comes great responsibility

There is a lecture you cannot attend -> for MT scheduling.

Course Grading

```
    5% Piazza Participation
    15% Pre-lecture Material
    30% Problem Sets
    25% Midterm (in-class, TBA)
    25% Project
```

- Late problem sets will be levied a late penalty of 0.5% per hour (up to 48 hours). After 48 hours, no credit will be given.
- All course participants must adhere to the BU Academic Conduct Code:

http://www.bu.edu/academics/resources/academic-conduct-code/

All instances of academic misconduct must be reported to the College Academic Conduct Committee.

Course Pre-requisites

- Machine Learning
 - Recursive pre-reqs:
 - Linear algebra (CAS CS 232 or MA 242 or equivalent)
 - Multivariate Calculus (e.g. CAS MA 225)
 - Probability (CAS CS 237 or MA 381 or 581or equivalent)

Python Programming

Textbook

Topics

- Machine Learning Review I & II
- Intro to Neural Networks
- Learning in Neural Networks
- Deep Learning Strategies I & II
- Intro to using SCC cluster
- Convolutional Neural Networks
- Recurrent Neural Networks
- Autoencoders
- Attention
- Explainability and Domain Adaptation
- Applications I: Computer Vision
- Applications II: Language and Vision
- Applications III: NLP, Speech and Audio
- Unsupervised Learning
- Fairness and Ethics
- Project Presentations

Today: Outline

- Intro to Deep Learning
- Machine Learning Review 1

• Reminders: ...

Neural Networks II

What is Deep Learning?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472 174435

Types of learning

Supervised

Unsupervised
 Reinforcement

Saenko 11

Machine Learning from Big Data

Saenko 12

Why Deep Learning?

Historically, features were hand-engineered.

Example: Viola and Jones

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Mid Level Features

Lines & Edges Eyes & Nose & Ears

High Level Features

Facial Structure

Why Now?

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Network architectures

Feed-forward

Fully connected

Layer 1 Layer 2 Layer 3 Layer 4

Convolutional

Recurrent

Applications

Camera Mouse

 A program that enables a person with severe disabilities to control the mouse pointer on the computer screen just by moving the head.

http://www.cameramouse.org/about.html

Eye Swipe

Bias Detection

Captioner: A [woman] is mowing lawn.

Captioner's evidence for [woman]:

Fraud Detection

- Fraud detection refers to detection of criminal activities occurring in commercial organizations
 - Malicious users might be the actual customers of the organization or might be posing as a customer (also known as identity theft).
- Types of fraud
 - Credit card fraud
 - Insurance claim fraud
 - Mobile / cell phone fraud
 - Insider trading
- Challenges
 - Fast and accurate real-time detection
 - Misclassification cost is very high

Healthcare Informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key Challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatiotemporal

<u>outbreaks from 2006 to today</u> preventable by vaccinations

Industrial Damage Detection

• Industrial damage detection refers to detection of different faults and failures in complex industrial systems, structural damages, intrusions in electronic security systems, suspicious events in video surveillance, abnormal energy consumption, etc.

- Example: Aircraft Safety
 - Anomalies in engine combustion data

- Key Challenges
 - Data is extremely huge, noisy and unlabelled
 - Most of applications exhibit temporal behavior
 - Detecting anomalous events typically require immediate intervention

Action Prediction for Agents in Environments

- Current game board layout
- Picture of table with blocks
- Quadruped position and orientation

FLAME 3D Morphable Model

Music Generation

What if machines understood video content 'like' we do?

AUTONOMOUS VEHICLES

[TechRepublic]

RETRIEVAL / RECOMMENDATION

[Trans4Mind]

SURVEILLANCE

[NBCNews]

HUMAN-COMPUTER INTERFACES

[ACM SmartHCI]

EMOTIONAL INTELLIGENCE

Conventional Deep Classification

Naïve Approach

- Treat video frames as still images
- Compute a representation for each frame
- Pool the representations

"A small part of the story"

Modelling History

Video Classification

Self-Driving Cars

• SA: steering angle

Application 2: Self-Driving Cars

DeepTesla

Real-time Applications

