THE UNIVERSITY OF SYDNEY

MATH1901 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 **Tutorial Week 5** 2012

1. (This question is a preparatory question and should be attempted before the tutorial. Answers are provided at the end of the sheet - please check your work.)

Sketch the graph of the function:

$$f(x) = \begin{cases} 0 & x < 0, \\ 1 & x = 0, \\ x + 2 & x > 0. \end{cases}$$

Find $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$ (no need for formal proofs). Does $\lim_{x\to 0} f(x)$ exist?

Questions for the tutorial

2. Sketch the function with formula

$$f(x) = \begin{cases} 1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 2x + 1 & \text{if } x > 0. \end{cases}$$

Find suitable values of δ such that whenever $0 < |x| < \delta$, we have

(a)
$$|f(x) - 1| < 0.01$$
, (b) $|f(x) - 1| < 0.001$, (c) $|f(x) - 1| < \epsilon$, where $\epsilon > 0$.

3. Find the following limits using one or more of the limit laws.

(a)
$$\lim_{x \to 3} \frac{x^2 + 3x + 2}{4x^2 - x + 1}$$

(b)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

(a)
$$\lim_{x \to 3} \frac{x^2 + 3x + 2}{4x^2 - x + 1}$$
 (b) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$ (c) $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^3 - 1}$

(d)
$$\lim_{x\to 0} x^2 \cos \frac{2}{x}$$

(d)
$$\lim_{x \to 0} x^2 \cos \frac{2}{x}$$
 (e) $\lim_{x \to 0} \frac{\sqrt{3 + 2x} - \sqrt{3}}{x}$ (f) $\lim_{x \to \infty} \frac{x + \sin^3 x}{2x - 1}$ (g) $\lim_{x \to \infty} \sqrt{\frac{3 - x}{4 - x}}$ (h) $\lim_{x \to \infty} \sqrt{\frac{3 - x}{4 - x^2}}$ (i) $\lim_{x \to \infty} (\sqrt{x} - \sqrt{x + 1})$

(f)
$$\lim_{x \to \infty} \frac{x + \sin^3 x}{2x - 1}$$

(g)
$$\lim_{x \to \infty} \sqrt{\frac{3-x}{4-x}}$$

(h)
$$\lim_{x \to \infty} \sqrt{\frac{3-x}{4-x^2}}$$

(i)
$$\lim_{x \to \infty} (\sqrt{x} - \sqrt{x+1})$$

4. Prove the following results using the ϵ, δ definition:

(a)
$$\lim_{x \to a} c = c$$

(b)
$$\lim_{x \to 4} f(x) = -3$$
, where $f(x) = \begin{cases} 5 - 2x & \text{if } x \neq 4, \\ 100 & \text{if } x = 4. \end{cases}$

(c)
$$\lim_{x\to 0} g(x) = 0$$
, where $g(x) = \begin{cases} 3x & \text{if } x \text{ is rational,} \\ 7x & \text{if } x \text{ is irrational.} \end{cases}$

5. The function f is defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Using the Squeeze Law, prove that $\lim_{x\to 0} f(x) = 0$.

- **6.** (a) Give an example of a function f for which $\lim_{x\to 0} f(x)^2$ exists but $\lim_{x\to 0} f(x)$ does not.
 - (b) Give an example of a function f for which $\lim_{x\to 0} f(x^2)$ exists but $\lim_{x\to 0} f(x)$ does not.
- 7. Suppose f has domain \mathbb{R} . To say that $\lim_{n\to\infty} f(n) = \ell$ (where n takes only integer values) means that for any $\epsilon > 0$, there exists M such that whenever n is an integer and n > M, then $|f(n) \ell| < \epsilon$. Give an example of a function f with domain \mathbb{R} such that $\lim_{n\to\infty} f(n)$ exists in this sense, but $\lim_{x\to\infty} f(x)$ (where x takes real values) does not exist.
- 8. Using the ϵ , δ definition of limit, prove that if the limit of a function exists as $x \to a$, then the limit is unique. To be precise, prove that if $\lim_{x\to a} f(x) = \ell$ and $\lim_{x\to a} f(x) = m$, then $\ell = m$. (*Hint*: Assume that $\ell \neq m$ and obtain a contradiction by setting $\epsilon = \frac{|\ell m|}{2}$.)

Extra Questions

- 9. Students often have difficulty remembering the ϵ , δ definition of the statement $\lim_{x\to a} f(x) = \ell$. For each of the following misremembered versions, work out what it means and why it is not the right definition.
 - (a) For each $\epsilon>0$, there exists $\delta>0$ such that whenever $0<|x-a|<\delta,$ we have $0<|f(x)-\ell|<\epsilon.$
 - (b) For each $\epsilon > 0$, there exists $\delta > 0$ such that whenever $|x-a| < \delta$, we have $|f(x)-\ell| < \epsilon$.
 - (c) For each ϵ , there exists $\delta > 0$ such that whenever $0 < |x-a| < \delta$, we have $|f(x)-\ell| < \epsilon$.
 - (d) For each $\epsilon > 0$, there exists δ such that whenever $0 < |x a| < \delta$, we have $|f(x) \ell| < \epsilon$.
 - (e) For each $\epsilon > 0$, there exists $\delta > 0$ such that whenever $0 < |x a| < \delta$, we have $|f(x) \ell| > \epsilon$.
 - (f) For each $\epsilon > 0$, there exists $\delta > 0$ such that whenever $0 < |x a| < \epsilon$, we have $|f(x) \ell| < \delta$.
 - (g) For each $\delta > 0$, there exists $\epsilon > 0$ such that whenever $0 < |x a| < \delta$, we have $|f(x) \ell| < \epsilon$.
 - (h) For each $\delta > 0$, there exists $\epsilon > 0$ such that whenever $0 < |x a| < \epsilon$, we have $|f(x) \ell| < \delta$.
- **10.** Prove that $\lim_{x\to 0} f(x)$ does not exist, where $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational,} \\ 1 & \text{if } x \text{ is irrational.} \end{cases}$

Solution to Question 1

We have $\lim_{x\to 0^{-}} f(x) = 0$ and $\lim_{x\to 0^{+}} f(x) = 2$.

Since the limits from the left and the right are not equal, $\lim_{x\to 0} f(x)$ does not exist.