Trabajo Bioinformática *

Ignacio Amat Hernández

Ángela LLopis Hernández

Estrella Ballester Hoyo

25 de abril de 2020

^{*}Grado en Ingeniería Biomédica, Escuela Técnica Superior de Ingenieros Industriales, Valencia, España.

Hemos implementado las trazas de manera que son perfectamente idénticas en Python y en C.

1		Mutation	i	z k	1
2	Deletion	[1]	1 -	1 (6
3	Insertion	[g]	2 -	1 1	2
4	Substitution	[g] -> [l]	1 -	1 1	2
5	Insertion	[1]	2 -	1 3	3
6	Match	[1]	1	0 3	3
7	Deletion	[o]	0 -	1 3	3
8	Insertion	[o]	1 -	1 5	5 5
9	Match	[o]	0	0 5	5 5
10	Deletion	[g]	-1 -	1 5	5 5
11	Insertion	[g]	0 -	1 1	1
12	Match	[g]	-1	0 1	1
13		— {1,1} —			
14	Insertion	[o]	2 –	1 4	4 6
15	Substitution	[o] -> [1]	1 -	1 4	4 6

Cuadro 1: Traza de INEXRECUR con X = "googol\$", W = "gol", z = 0 en C y Python

```
INEXRECUR
                       by XAVI GABRI AITANA ALFREDO
2
               [ 1 ]
3
               [ g ]
            [ g -> l ]
                           2
               [ 1 ]
6
                           1
                               0
                 [ o ]
            D
8
                   [ o ]
                   [ o ]
9
            {\rm M}
                                    0
10
                \mathbf{D}
                        [ g ]
11
                Ι
                        [ g ]
                                    0
                                        -1
                                              1
                                                  1
                        [ g ]
12
                {\rm M}
                                    -1
                                         0
                                              1
   13
                                                        [c(1, 1)]
                           2
                                         6
               [ o ]
                               -1
                                     4
14
       S
            [ o -> l ]
                        1
                             -1
                                   4
                                       6
15
```

Cuadro 2: Traza de INEXRECUR con X = "googol\$", W = "gol", z = 0 en R

1		Mutation	i z	k	1
2	Deletion	[g]	2 -1	0	6
3	Insertion	[g]	3 -1	1	2
4	Match	[g]	2 0	1	2
5	Deletion	[o]	1 -1	1	2
6	Insertion	[o]	2 -1	4	4
7	Match	[o]	1 0	4	4
8	Deletion	[o]	0 -1	4	4
9	Insertion	[o]	1 -1	6	6
10	Match	[o]	0 0	6	6
11	Insertion	[1]	3 -1	3	3
12	Substitution	[l] -> [g]	2 -1	3	3
13	Insertion	[o]	3 -1	4	6
14	Substitution	[o] -> [g]	2 -1	4	6

Cuadro 3: Traza de INEXRECUR con X = "googol\$", W = "goog", z = 0 en C y Python

1		INE	XRECUR	_	by	XAV	I GABI	RI AIT	ANA A	LFREDO		
2	_	D	[:	g]		2	-1	0	6			
3	_	I	[:	g]		3	-1	1	2			
4	_	M	[:	g]		2	0	1	2			
5	_	_	D	[c]		1	-1	1	2		
6	_	_	I	[c]		2	-1	4	4		
7	_	_	\mathbf{M}	[c]		1	0	4	4		
8	_	_	_])	[o]		0	-1	4	4	
9	_	_	_	I	[o]		1	-1	6	6	
10	_	_	- I	M	[o]		0	0	6	6	
11	_	I	[l]		3	-1	3	3			
12	_	\mathbf{S}	[1 -	> g]	4	2	-1	3	3			
13	_	I	[-	о]		3	-1	4	6			
14	_	S	[o -:	> g]	4	2	-1	4	6			

Cuadro 4: Traza de INEXRECUR con X = "googol\$", W = "goog", z = 0 en R

Γ						
1		Mutation	i	\mathbf{Z}	k	1
2	Deletion	[1]	2	0	1	6
3	Deletion	[o]	1	-1	1	6
4	Insertion	[g]	2	-1	1	2
5	Substitution	[g] -> [o]	1	-1	1	2
6	Insertion	[o]	2	-1	4	6
7	Match	[o]	1	0	4	6
8	Deletion	[o]	0	-1	4	6
9	Insertion	[g]	1	-1	1	2
10	Substitution	[g] -> [o]	0	-1	1	2
11	Insertion	[o]	1	-1	6	6
12	Match	[o]	0	0	6	6
13	Deletion	[g]	-1	-1	6	6
14	Insertion	[g]	0	-1	2	2
15	Match	[g]	-1	0	2	2
16		{2,2}				
17	Insertion	[g]	3	0	1	2
18	Substitution	[g] -> [l]	2	0	1	2
19	Deletion	[o]	1	-1	1	2
20	Insertion	[o]	2	-1	4	4
21	Match	[o]	1	0	4	4
22	Deletion	[o]	0	-1	4	4
23	Insertion	[o]	1	-1	6	6
24	Match	[o]	0	0	6	6
25	Deletion	[g]	-1	-1	6	6
26	Insertion	[g]	0	-1	2	2
27	Match	[g]	-1	0	2	2
28		{2,2}				
29	Insertion	[o]	3	0	4	6
30	Substitution	[o] -> [l]	2	0	4	6
31	Deletion	[o]	1	-1	4	6
32	Insertion	[g]	2	-1	1	2
33	Substitution	[g] -> [o]	1	-1	1	2
34	Insertion	[o]	2	-1	6	6
35	Match	[o]	1	0	6	6
36	Deletion	[o]	0	-1	6	6
37	Insertion	[g]	1	-1	2	2
38	Substitution	[g] -> [o]	0	-1	2	2

Cuadro 5: Traza de INEXRECUR con X = "googol\$", W = "gool", z = 1 en C y Python

```
INEXRECUR – by XAVI GABRI AITANA ALFREDO
1
        \begin{bmatrix} 1 \end{bmatrix}
2
     D
                     0
           [ o ]
3
                     1
                         -1
        Ι
4
             [ g ]
                         -1
           [ g -> o ] 1
                        -1
           [ o ]
6
        Ι
                      2
                         -1
           [ o ] 1
7
        Μ
                         0
           D [ o ]
8
                         0
                            -1
           I
              [ g ]
9
                         1
                            -1
10
           \mathbf{S}
              [ g -> o ]
                       0
                           -1
                               1
11
           Ι
                [ o ]
                            -1
                         1
               [ o ]
12
           Μ
                        0
                             0
                                6
               D [ g ]
13
                            -1
                                -1
                   [ g ]
                             0
                                -1
                                    2
14
               Ι
                 [ g ]
                            -1
                                    2
              Μ
                                0
15
  16
          [ g ] 3 0 1
                             2
17
        [g -> 1] 2 0
     S
                        1
18
           [ o ]
19
                     1
                         -1
20
             [ o ]
                     2
                         -1
        Ι
21
        Μ
           [ o ]
                     1
                         0
                             4
             [ o ]
22
           D
                         0
                            -1
23
           Ι
                [ o ]
                         1
                            -1
                                6
                                    6
                [ o ]
                         0
                             0
                                6
24
           Μ
                                -1
25
               D [ g ]
                            -1
                   [ g ]
                             0
                                    2
26
               Ι
                                -1
27
              Μ
                  [ g ]
                            -1
                                0
  28
          [ o ] 3 0 4
29
        [ o -> 1 ] 2 0 4 6
30
31
        D [ o ]
                     1
                         -1
32
        Ι
             [ g ]
                         -1
        \mathbf{S}
           [ g -> o ] 1
                        -1
33
        Ι
           [ o ]
34
                      2
                         -1
             [ o ] 1
35
        Μ
                         0
                             6
           D [ o ]
36
                        0
                            -1
                        1
           I
               [ g ]
37
                            -1
           S [g \rightarrow o] 0 -1
38
```

Cuadro 6: Traza de INEXRECUR con X = "googol\$", W = "gool", z = 1 en R

```
1
    inexrecur_time.c
2
    12.34~\mu s from 10000 iterations.
3
4
    inexrecur_time.py
5
    real
               sys
                        user
6
    268.89 \mu s 0.37 \mu s 268.16 \mu s
7
8
    inexrecur_time.R
9
    user
               system
                          elapsed
10
   5422 \mu s
               18\mu s
                          5443 \mu s
```

Cuadro 7: Tiempos de "CPU".

Ejecutando desde la línea de comandos como scripts usando #!/bin/env Rscript y #!/bin/env Python.

```
bench ./inexrecur_clean ./inexrecur_clean.py ./inexrecur_clean.R
 1
    benchmarking bench/./inexrecur_clean
 2
 3
    time
                                 4.524 \text{ ms}
                                                 (4.496 \text{ ms} \dots 4.551 \text{ ms})
 4
                                 0.999 R^2
                                                 (0.999 \text{ R}^2 \dots 1.000 \text{ R}^2)
    mean
                                 4.522 \text{ ms}
                                                 (4.499 \text{ ms} \dots 4.559 \text{ ms})
    std dev
                                 89.83 \ \mu s
                                                 (58.07 \ \mu s \ \dots \ 133.1 \ \mu s)
 8
    benchmarking bench/./inexrecur_clean.py
                                 39.26 \, \mathrm{ms}
                                                (39.12 ms .. 39.40 ms)
 9
    _{\mathrm{time}}
                                 1.000 R^2
                                                (1.000 R^2 \dots 1.000 R^2)
10
                                                (39.18 ms .. 39.45 ms)
11
    mean
                                 39.30 \text{ ms}
12
    std dev
                                 266.5 \ \mu s
                                                (177.4 \ \mu s \ \dots \ 388.7 \ \mu s)
13
14
    benchmarking bench/./inexrecur_clean.R
                                                (273.6 ms .. 285.0 ms)
    time
                                 278.5 \text{ ms}
15
                                 1.000 R^2
                                                (1.000 R^2 \dots 1.000 R^2)
16
                                 280.6 \text{ ms}
                                                (279.1 ms .. 281.9 ms)
17
    mean
                                                (1.027 \text{ ms} \dots 2.517 \text{ ms})
18
    std dev
                                 1.714 \text{ ms}
    variance introduced by outliers: 16% (moderately inflated)
19
```

Cuadro 8: Tiempo de "pared" según la utilidad bench.