Solution: Inorganic Compound – Lời Giải: Hợp Chất Vô Cơ

Nguyễn Quản Bá Hồng*

Ngày 8 tháng 5 năm 2023

Tóm tắt nội dung

[en] This text is a collection of problems, from easy to advanced, about *inorganic compound*, which is also a supplementary material for my lecture note on Elementary Chemistry, which is stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 9/lecture¹. The latest version of this text has been stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 9/inorganic compound².

Keyword. Inorganic compound.

[vi] Tài liệu này là 1 bộ sưu tập các bài tập chọn lọc từ cơ bản đến nâng cao về phản ứng hóa học, cũng là phần bài tập bổ sung cho tài liệu chính – bài giảng GitHub/NQBH/hobby/elementary chemistry/grade 9/lecture của tác giả viết cho Hóa Học Sơ Cấp. Phiên bản mới nhất của tài liệu này được lưu trữ & có thể tải xuống ở link sau: GitHub/NQBH/hobby/elementary chemistry/grade 9/inorganic compound.

Từ khóa. Hợp chất vô cơ.

Mục lục

1	Oxide	
	1.1 Qualitative problem – Bài tập định tính	
	1.2 Quantitative problem – Bài tập định lượng	4
2	Acid	6
	2.1 Qualitative problem – Bài tập định tính	6
	2.2 Quantitative problem – Bài tập định lượng	8
3	Base	g
	3.1 Qualitative problem – Bài tập định tính	
	3.2 Quantitative problem – Bài tập định lượng	
4	pH	11
5	2420 1.72001	
	5.1 Qualitative problem – Bài tập định tính	
	5.2 Quantitative problem – Bài tập định lượng	
	$5.2.1$ Tính khối lượng muối & thể tích khí CO_2	13
	5.2.2 Kim loại mạnh đẩy kim loại yếu ra khỏi dung dịch muối	13
	5.2.3 Dạng bài toán chứng minh acid còn dư hay hỗn hợp các chất còn dư	14
6	Phân Bón Hóa Học	1 4
	6.1 Qualitative problem – Bài tập định tính	14
	6.2 Quantitative problem – Bài tập định lượng	14
7	Miscellaneous	14
	7.1 Qualitative problem – Bài tập định tính	14
	7.2 Quantitative problem – Bài tập định lượng	15
Tr:	si liau	16

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

URL: https://github.com/NQBH/hobby/blob/master/elementary_chemistry/grade_9/NQBH_elementary_chemistry_grade_9.pdf.

 $^{^2 \}text{URL: https://github.com/NQBH/hobby/blob/master/elementary_chemistry/inorganic_compound/NQBH_inorganic_compound.pdf.}$

1 Oxide

1.1 Qualitative problem – Bài tập định tính

Bài toán 1 ([Tuấ+23], 1, p. 59). Trong các chất Na₂SO₄, P₂O₅, CaCO₃, SO₂, chất nào là oxide?

Bài toán 2 ([Tuấ+23], 1, p. 59). Viết các PTHH xảy ra giữa oxygen & các đơn chất để tạo ra các oxide sau: SO₂, CuO, CO₂, Na₂O.

Bài toán 3 ([Tuấ+23], 2, p. 60). Các oxide sau đây thuộc các loại oxide nào (oxide base, oxide acid, oxide lưỡng tính, oxide trung tính): Na₂O, Al₂O₃, SO₃, N₂O.

Bài toán 4 ([Tuấ+23], 2, p. 60). Viết PTHH giữa các cặp chất sau: (a) H₂SO₄, MgO. (b) H₂SO₄, CuO. (c) HCl, Fe₂O₃.

Bài toán 5 ([Tuấ+23], 3, p. 61). Viết các PTHH xảy ra khi cho dung dịch KOH phản ứng với các chất sau: SO₂, CO₂, SO₃.

Bài toán 6 ([TTV23], 1., p. 6). Có các oxide: Cao, Fe₂O₃, SO₃. Oxide nào có thể tác dụng được với: (a) nước? (b) hydrochloric acid? (c) sodium hydroxide? Viết các PTHH.

Giải. (a) Các oxide tác dụng với nước: CaO, SO₃. CaO + H₂O \longrightarrow Ca(OH)₂, SO₃ + H₂O \longrightarrow H₂SO₄. (b) Các oxide tác dụng với hydrochloric acid: CaO, Fe₂O₃: CaO + 2HCl \longrightarrow CaCl₂ + H₂O, Fe₂O₃ + 6HCl \longrightarrow 2FeCl₃ + 3H₂O. (c) Các oxide tác dụng với sodium hydroxide: SO₃. SO₃ + NaOH \longrightarrow NaHSO₄, SO₃ + 2NaOH \longrightarrow Na₂SO₄ + H₂O.

Bài toán 7 ([TTV23], 2., p. 6). Có các chất: H₂O, KOH, K₂O, CO₂. Cho biết các cặp chất có thể tác dụng với nhau.

 $Giải. \text{ Các cặp chất có thể tác dụng với nhau: } \text{H}_2\text{O} \& \text{CO}_2, \text{H}_2\text{O} \& \text{K}_2\text{O}, \text{CO}_2 \& \text{K}_2\text{O}, \text{CO}_2 \& \text{KOH. PTHH: } \text{CO}_2 + \text{H}_2\text{O} \longrightarrow \text{H}_2\text{CO}_3, \text{K}_2\text{O} + \text{H}_2\text{O} \longrightarrow 2\text{KOH}, \text{K}_2\text{O} + \text{CO}_2 \longrightarrow \text{K}_2\text{CO}_3, \text{CO}_2 + \text{KOH} \longrightarrow \text{KHCO}_3, \text{CO}_2 + 2\text{KOH} \longrightarrow \text{K}_2\text{CO}_3 + \text{H}_2\text{O}.} \quad \Box$

Bài toán 8 ([TTV23], 3., p. 6). Từ các chất: calcium oxide, lưu huỳnh dioxide, carbon dioxide, lưu huỳnh trioxide, zinc oxide, chọn chất thích hợp điền vào các sơ đồ phản ứng: (a) sulfuric acid $+\ldots \to z$ inc sulfate + nước. (b) sodium hydroxide $+\ldots \to z$ sodium sulfate + nước. (c) nước $+\ldots \to z$ acid sulfurous. (d) nước $+\ldots \to z$ calcium hydroxide. (e) calcium oxide $+\ldots \to z$ calcium carbonate. Dùng các CTHH để viết tất cả các PTHH của các sơ đồ phản ứng trên.

 $Gi\mathring{a}i.$ (a) sulfuric acid + zinc oxide \rightarrow zinc sulfate + nuớc: $H_2SO_4 + ZnO \longrightarrow ZnSO_4 + H_2O.$ (b) sodium hydroxide + lưu huỳnh trioxide \rightarrow sodium sulfate + nước: $2NaOH + SO_3 \longrightarrow Na_2SO_4 + H_2O.$ (c) nước + lưu huỳnh dioxide \rightarrow acid sulfurous: $H_2O + SO_2 \longrightarrow H_2SO_3.$ (d) nước + calcium oxide \rightarrow calcium hydroxide: $H_2O + CaO \longrightarrow Ca(OH)_2.$ (e) calcium oxide + carbon dioxide \rightarrow calcium carbonate: $CaO + CO_2 \longrightarrow CaCO_3 \downarrow$.

Bài toán 9 ([TTV23], 4., p. 6). Cho các oxide: CO₂, SO₂, Na₂O, CaO, CuO. Chọn các chất tác dụng được với: (a) nước, tạo thành dung dịch acid. (b) nước, tạo thành dung dịch base. (c) dung dịch acid, tạo thành muối & nước. (d) dung dịch base, tạo thành muối & nước. Viết các PTHH.

 $\begin{array}{l} \textit{Giải.} \ \, \text{(a)} \ \, \text{CO}_2, \text{SO}_2 \ \text{tác dụng với nước tạo thành dung dịch acid:} \ \, \text{CO}_2 + \text{H}_2\text{O} \longrightarrow \text{H}_2\text{CO}_3, \text{SO}_2 + \text{H}_2\text{O} \longrightarrow \text{H}_2\text{SO}_3.} \ \, \text{(b)} \ \, \text{Na}_2\text{O}, \\ \text{CaO tác dụng với nước tạo thành dung dịch base:} \ \, \text{Na}_2\text{O} + \text{H}_2\text{O} \longrightarrow 2\text{NaOH}, \text{CaO} + \text{H}_2\text{O} \longrightarrow \text{Ca}(\text{OH})_2.} \ \, \text{(c)} \ \, \text{Na}_2\text{O}, \text{CaO}, \text{CuO tác dụng với dung dịch acid tạo thành muối & nước:} \ \, \text{Na}_2\text{O} + 2\text{HCl} \longrightarrow 2\text{HCl} + \text{H}_2\text{O}, \text{CaO} + 2\text{HNO}_3 \longrightarrow \text{Ca}(\text{NO}_3)_2 + \text{H}_2\text{O}, \text{CuO} + \text{H}_2\text{SO}_4 \longrightarrow \text{CuSO}_4 + \text{H}_2\text{O}. \\ \text{(d)} \ \, \text{CO}_2, \text{SO}_2 \ \text{tác dụng với dung dịch base tạo thành muối & nước:} \ \, \text{CO}_2 + \text{Ca}(\text{OH})_2 \longrightarrow \text{CaCO}_3 \downarrow + \text{H}_2\text{O}, \text{SO}_2 + \text{Ca}(\text{OH})_2 \longrightarrow \text{CaSO}_3 \downarrow + \text{H}_2\text{O}. \\ \end{array}$

Bài toán 10 ([TTV23], 5., p. 6). Có hỗn hợp khí CO₂, O₂. Làm thế nào để có thể thu được khí O₂ từ hỗn hợp trên? Trình bày cách làm & viết PTHH.

Giải. Dẫn hỗn hợp khí CO_2 , O_2 đi qua bình đựng dung dịch kiềm (lấy dư), e.g., $Ca(OH)_2$, NaOH, ..., khí CO_2 bị hấp thụ hết do có phản ứng với kiềm: $CO_2 + Ca(OH)_2 \longrightarrow CaCO_2 \downarrow + H_2O$ hoặc $CO_2 + 2NaOH \longrightarrow Na_2CO_3 + H_2O$. Khí thoát ra khỏi bình chỉ có O_2 nên sẽ thu được khí O_2 .

Bài toán 11 ([TTV23], 1., p. 9). Bằng phương pháp hóa học nào có thể nhận biết được từng chất trong mỗi dãy chất sau? (a) 2 chất rắn màu trắng CaO, Na₂O. (b) 2 chất khí không màu CO₂, O₂. Viết các PTHH.

Giải. (a) Lấy mỗi chất cho vào mỗi cốc đựng nước, khuấy cho đến khi chất cho vào không tan nữa. Lọc để thu lấy 2 dung dịch. Dẫn khí CO_2 vào mỗi dung dịch. Dung dịch nào xuất hiện kết tủa thì đó là dung dịch $Ca(OH)_2$, tương ứng với cốc lúc đầu là CaO. Dung dịch nào không thấy kết tủa thì tương ứng với cốc lúc đầu là CaO. PTHH: CaCO + CaCO

Bài toán 12 ([TTV23], 2., p. 9). Nhận biết từng chất trong mỗi nhóm chất sau bằng phương pháp hóa học. (a) CaO, CaCO₃. (b) CaO, MgO. Viết các PTHH.

Giải. (a) Lấy mỗi chất cho vào ống nghiệm hoặc cốc chứa sẵn nước. Ở ống nào thấy chất rắn tan & nóng lên, chất cho vào là CaO. Ở ống nghiệm nào thấy chất rắn không tan & không nóng lên, chất cho vào là CaCO₃. PTHH: CaO + H₂O \longrightarrow Ca(OH)₂. (b) Lấy mỗi chất cho vào ống nghiệm hoặc cốc chứa sẵn nước. Ở ống nào thấy chất rắn tan & nóng lên, chất cho vào là CaO. Ở ống nghiệm nào thấy chất rắn không tan & không nóng lên, chất cho vào là MgO. PTHH: CaO + H₂O \longrightarrow Ca(OH)₂.

Bài toán 13 ([TTV23], 1., p. 11). Viết PTHH cho mỗi chuyển đổi: (a) $S \rightarrow SO_2 \rightarrow CaSO_3$. (b) $SO_2 \rightarrow Na_2SO_3$. (c) $SO_2 \rightarrow H_2SO_3 \rightarrow Na_2SO_3 \rightarrow SO_2$.

 $\begin{array}{c} \textit{Gi\'{a}i.} \ \, \text{(a)} \ \, \text{S} + \text{O}_2 \xrightarrow{t^\circ} \text{SO}_2, \\ \text{SO}_2 + \text{CaO} \longrightarrow \text{CaSO}_3 \ \text{hoặc} \ \, \text{SO}_2 + \text{Ca}(\text{OH})_2 \longrightarrow \text{CaSO}_3 + \text{H}_2\text{O}. \ \text{(b)} \ \, \text{SO}_2 + \text{H}_2\text{O} \longrightarrow \text{H}_2\text{SO}_3, \\ \text{Na}_2\text{SO}_3 \longrightarrow \text{Na}_2\text{SO}_3 + \text{H}_2\text{O}, \\ \text{SO}_2 \longrightarrow \text{Na}_2\text{SO}_3. \end{array}$

Bài toán 14 ([TTV23], 2., p. 11). Nhận biết từng chất trong mỗi nhóm chất sau bằng phương pháp hóa học. (a) 2 chất rắn màu trắng CaO, P₂O₅. (b) 2 chất khí không màu SO₂, O₂. Viết các PTHH.

1st giải. (a) Cho nước vào 2 ống nghiệm có chứa CaO & P_2O_5 . Sau đó cho quỳ tím vào mỗi dung dịch. Dung dịch nào làm đổi màu quỳ tím thành xanh là dung dịch base, tương ứng với chất ban đầu là CaO. Dung dịch nào làm đổi màu quỳ tím thành đỏ là dung dịch acid, chất ban đầu là P_2O_5 . PTHH: CaO + H_2O \longrightarrow Ca(OH)₂, P_2O_5 + 3 H_2O \longrightarrow 2 H_3PO_4 . (b) Lấy mẫu thử từng khí. Lấy quỳ tím ẩm cho vào từng mẫu thử. Mẫu nào làm quỳ tím hóa đỏ là SO_2 , còn lại là O_2 . PTHH: SO_2 + H_2O \longrightarrow H_2SO_3 .

2nd~giải. (a) Cho nước vào 2 ống nghiệm có chứa CaO & P_2O_5 . Sau đó cho phenolphthalein vào mỗi dung dịch. Dung dịch nào hóa hồng là dung dịch base, tương ứng với chất ban đầu là CaO. Dung dịch nào không đổi màu là dung dịch acid, chất ban đầu là P_2O_5 . (b) Dẫn lần lượt từng khí vào dung dịch nước vôi trong, nếu có kết tủa xuất hiện thì khí dẫn vào là SO_2 : $SO_2 + Ca(OH)_2 \longrightarrow CaSO_3 \downarrow + H_2O$. Nếu không có hiện tượng gì thì khí dẫn vào là khí O_2 . Hoặc có thể đưa que đóm con than hồng vào 2 khí, que đóm sẽ bùng cháy trong khí O_2 .

Bài toán 15 ([TTV23], 3., p. 11). Có các khí ẩm (khí có lẫn hơi nước): carbon dioxide, hydrogen, oxygen, lưu huỳnh dioxide. Khí nào có thể được làm khô bằng calcium oxide? Giải thích.

Bài toán 16 ([TTV23], 4., p. 11). Có những chất khí sau: CO₂, H₂, O₂, SO₂, N₂. Cho biết chất nào có tính chất sau: (a) nặng hơn không khí. (b) nhẹ hơn không khí. (c) cháy được trong không khí. (d) tác dụng với nước tạo thành dung dịch acid. (e) làm đục nước vôi trong. (f) đổi màu giấy quỳ tím ẩm thành đỏ.

Bài toán 17 ([TTV23], 5., p. 11). Khí lưu huỳnh dioxide được tạo thành từ cặp chất nào sau đây? (a) K₂SO₃, H₂SO₄. (b) K₂SO₄, HCl. (c) Na₂SO₃, NaOH. (d) Na₂SO₄, CuCl₂. (e) Na₂SO₃, NaCl. Viết PTHH.

Bài toán 18 ([TAV23], 1.1., p. 3). Có các oxide: H₂O, SO₂, CuO, CO₂, CaO, MgO. Cho biết các chất nào có thể điều chế bằng: (a) phản ứng hóa hợp? Viết PTHH. (b) phản ứng phân hủy? Viết PTHH.

Bài toán 19 ([TAV23], 1.2., p. 3). Viết CTHH & tên gọi của: (a) 5 oxide base. (b) 5 oxide acid.

Bài toán 20 ([TAV23], 1.3., p. 3). Khí carbon monooxide CO có lẫn các tạp chất là khí carbon dioxide CO₂ & lưu huỳnh dioxide SO₂. Làm thế nào tách được các tạp chất ra khỏi CO? Viết các PTHH.

Bài toán 21 ([TAV23], 1.4., p. 3). Tìm CTHH của các oxide có thành phần khối lượng: (a) S: 50%. (b) C: 42.8%. (c) Mn: 49.6%. (d) Pb: 86.6%.

Bài toán 22 ([TAV23], 2.1., p. 4). Kim loại M tác dụng với dung dịch HCl sinh ra khí hydrogen. Dẫn khí hydrogen đi qua oxide của kim loại N nung nóng. Oxide này bị khử cho kim loại N. M & N là: A. copper & chì. B. zinc & copper. C. chì & zinc. D. copper & silver.

Bài toán 23 ([TAV23], 2.2., p. 4). Calcium oxide tiếp xúc lâu ngày với không khí sẽ bị giảm chất lượng. Giải thích hiện tượng này & minh họa bằng PTHH.

Bài toán 24 ([TAV23], 2.3., p. 4). Viết các PTHH thực hiện các chuyển đổi hóa học theo sơ đồ: (a) $CaO \rightarrow Ca(OH)_2 \rightarrow CaCO_3 \rightarrow CaO \rightarrow CaCl_2$. (b) $CaO \rightarrow CaCO_3$.

Bài toán 25 ([TAV23], 2.9., p. 5). Diền các chất: CuO, CO, H_2 , SO_3 , P_2O_5 , H_2O thích hợp vào các sơ đồ phản ứng: (a) ... $+ H_2O \longrightarrow H_2SO_4$. (b) $H_2O + ... \longrightarrow H_3PO_4$. (c) ... $+ HCl \longrightarrow CuCl_2 + H_2O$. (d) ... $+ H_2SO_4 \longrightarrow CuSO_4 + ...$. (e) $CuO + ... \xrightarrow{t^{\circ}} Cu + H_2O$.

Bài toán 26 ([TAV23], 2.4., p. 4). CaO là oxide base, P_2O_5 là oxide acid. Chúng đều là các chất rắn, màu trắng. Bằng các phương pháp hóa học nào có thể giúp ta nhận biết được mỗi chất trên?

Bài toán 27 ([An23], 1., p. 5). Nêu các base & acid tương ứng của các oxide: SO₂, SO₃, N₂O₅, CaO, K₂O, CuO, Mn₂O₇.

Bài toán 28 ([An23], 2., p. 5). Trong các oxide: CaO, Al₂O₃, NO, N₂O₅, CO₂, SO₂, MgO, CO, Fe₂O₃, oxide nào là oxide tạo muối.

Bài toán 29 ([An23], 3., p. 5). Cho các oxide: Na₂O, Fe₂O₃, Fe₃O₄, SO₃, CaO. Viết phương trình phản ứng (nếu có) khi cho các oxide này lần lượt tác dụng với nước, dung dịch NaOH, dung dịch HCl.

Bài toán 30 ([An23], 4.a, p. 6). Cho các chất sau: CaCl₂ (khan), P₂O₅, H₂SO₄ (đặc), Ba(OH)₂ (rắn), chất nào được dùng để làm khô khí CO₂? Giải thích bằng PTHH.

Bài toán 31 ([An23], 4.b, p. 6). Có 4 oxide riêng biệt: Na₂O, Al₂O₃, Fe₂O₃, MgO. Làm thế nào để có thể nhận biết được mỗi oxide bằng phương pháp hóa học với điều kiện chỉ được dùng thêm 2 chất?

Bài toán 32 ([An23], 6.b, p. 7). Làm thế nào để nhận ra sự có mặt của mỗi khí trong hỗn hợp gồm CO, CO₂, SO₃ bằng phương pháp hóa học. Viết các PTHH (nếu có).

1.2 Quantitative problem – Bài tập định lượng

Bài toán 33 ([TTV23], 6., p. 6). Cho 1.6 g copper(II) oxide tác dụng với 100 g dụng dịch acid sulfuric có nồng độ 20%. (a) Viết PTHH. (b) Tính nồng độ % của các chất có trong dụng dịch sau khi phản ứng kết thúc.

$$Gi\mathring{a}i. \ m_{\text{H}_2\text{SO}_4} = m_{\text{ddH}_2\text{SO}_4}C\% = 100 \cdot 20\% = 20 \ \text{g.} \ n_{\text{CuO}} = \frac{m_{\text{CuO}}}{M_{\text{CuO}}} = \frac{1.6}{80} = 0.02 \ \text{mol}, \ n_{\text{H}_2\text{SO}_4} = \frac{m_{\text{H}_2\text{SO}_4}}{M_{\text{H}_2\text{SO}_4}} = \frac{20}{98} = \frac{10}{49} \ \text{mol}.$$
 (a) PTHH: CuO + H₂SO₄ \longrightarrow CuSO₄ + H₂O. Vì $\frac{n_{\text{CuO}}}{1} < \frac{n_{\text{H}_2\text{SO}_4}}{1} \ (0.02 < 0.2) \ \text{nên}$ CuO phản ứng hết, H₂SO₄ dư, suy ra khối lượng CuSO₄ tạo thành & H₂SO₄ phản ứng tính theo số mol CuO. (b) Dung dịch sau phản ứng có 2 chất tan: CuSO₄ & H₂SO₄ còn dư. $C\%_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{0.02 \cdot 160}{1.6 + 100} \cdot 100\% = \frac{400}{127}\% \approx 31.49606299\%. \ C\%_{\text{H}_2\text{SO}_4} = \frac{m_{\text{H}_2\text{SO}_4}\text{dư}}{m_{\text{dd}}} \cdot 100\% = \frac{20 - 0.02 \cdot 98}{1.6 + 100} \cdot 100\% = \frac{45100}{2540}\% \approx 17.75590551\%.$ Vậy $C\%_{\text{CuSO}_4} \approx 31.49606299\%, \ C\%_{\text{H}_2\text{SO}_4} \approx 17.75590551\%.$

Bài toán 34 (Mở rộng [TTV23], 6., p. 6). Cho m_1 g copper(II) oxide tác dụng với m_2 g dung dịch acid sulfuric có nồng độ C%. Tính nồng độ % của các chất có trong dung dịch sau khi phản ứng kết thúc theo $m_1, m_2, C\%$ biết sẽ lọc ra CuO khỏi dung dịch nếu CuO dư.

 $Gi \acute{a}i. \ m_{\rm H_2SO_4} = m_{\rm ddH_2SO_4} C\% = m_2 C\% \ {\rm g}, \ n_{\rm CuO} = \frac{m_{\rm CuO}}{M_{\rm CuO}} = \frac{m_1}{80} \ {\rm mol}, \ n_{\rm H_2SO_4} = \frac{m_{\rm H_2SO_4}}{M_{\rm H_2SO_4}} = \frac{m_2 C\%}{98} \ {\rm mol}. \ {\rm PTHH: \ CuO} + {\rm H_2SO_4} \longrightarrow {\rm CuSO_4} + {\rm H_2O}. \ {\rm Theo \ dinh \ luật \ bảo \ toàn \ khối \ lượng}, \ m_{\rm dd} = m_{\rm CuOpt} + m_{\rm ddH_2SO_4} = m_{\rm CuO} + m_{\rm ddH_2SO_4} - m_{\rm CuOdt} = m_1 + m_2 - m_{\rm CuOdt} \ {\rm g}. \ {\rm X\acute{e}t \ 2 \ trường \ hợp:}$

(a) Nếu $n_{\text{CuO}} < n_{\text{H}_2\text{SO}_4}$, i.e., nếu $m_1, m_2, C\%$ thỏa $\frac{m_1}{80} < \frac{m_2 C\%}{98}$ thì CuO phản ứng hết, H_2SO_4 dư, suy ra $n_{\text{CuO}} = n_{\text{H}_2\text{SO}_4\text{ptf}} = n_{\text{CuSO}_4} = \frac{m_1}{80}$ mol, $m_{\text{H}_2\text{SO}_4\text{duf}} = m_{\text{H}_2\text{SO}_4} - m_{\text{H}_2\text{SO}_4\text{ptf}} = m_2 C\% - 98 \frac{m_1}{80}$. Dung dịch sau phản ứng có 2 chất tan: CuSO₄ & H_2SO_4 còn dư.

$$C\%_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{n_{\text{CuSO}_4} M_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{\frac{m_1}{80} \cdot 160}{m_1 + m_2} \cdot 100\% = \frac{200 m_1}{m_1 + m_2}\%,$$

$$C\%_{\text{H}_2\text{SO}_4} = \frac{m_{\text{H}_2\text{SO}_4\text{duf}}}{m_{\text{dd}}} \cdot 100\% = \frac{100 \left(m_2 C\% - \frac{98 m_1}{80}\right)}{m_1 + m_2}\% = \frac{100 m_2 C\% - 122.5 m_1}{m_1 + m_2}\%.$$

(b) Nếu $n_{\text{CuO}} = n_{\text{H}_2\text{SO}_4}$, i.e., nếu $m_1, m_2, C\%$ thỏa $\frac{m_1}{80} = \frac{m_2 C\%}{98}$ thì cả CuO & H₂SO₄ đều phản ứng hết. Dung dịch sau phản ứng có duy nhất 1 chất tan CuSO₄ & $n_{\text{CuSO}_4} = n_{\text{CuO}} = n_{\text{H}_2\text{SO}_4} = \frac{m_1}{80}$:

$$C\%_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{n_{\text{CuSO}_4} M_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{\frac{m_1}{80} \cdot 160}{m_1 + m_2} \cdot 100\% = \frac{200 m_1}{m_1 + m_2}\%.$$

(c) Nếu $n_{\text{CuO}} > n_{\text{H}_2\text{SO}_4}$, i.e., $\frac{m_1}{80} > \frac{m_2 C\%}{98}$ thì H_2SO_4 phản ứng hết, CuO dư, suy ra $n_{\text{CuOpt}} = n_{\text{H}_2\text{SO}_4} = n_{\text{CuSO}_4} = \frac{m_2 C\%}{98}$. Dung dịch sau phản ứng chỉ có duy nhất 1 chất tan CuSO₄ &

$$C\%_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{n_{\text{CuSO}_4} M_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{160 \cdot \frac{m_2 C\%}{98}}{\frac{m_2 C\%}{98} \cdot 80 + m_2} = \frac{80C\%}{40C\% + 49},$$

không phụ thuộc vào m_2 .

Vậy nồng độ % của các chất có trong dung dịch sau khi phản ứng kết thúc:

$$C\%_{\text{CuSO}_4} = \begin{cases} \frac{200m_1}{m_1 + m_2}\%, & \text{n\'eu } \frac{m_1}{80} \le \frac{m_2 C\%}{98}, \\ \frac{80C\%}{40C\% + \frac{49}{4}}, & \text{n\'eu } \frac{m_1}{80} > \frac{m_2 C\%}{98}, \end{cases}$$

$$C\%_{\mathrm{H_2SO_4}} = \begin{cases} \frac{100m_2C\% - 122.5m_1}{m_1 + m_2}\%, & \text{n\'eu} \ \frac{m_1}{80} < \frac{m_2C\%}{98}, \\ 0, & \text{n\'eu} \ \frac{m_1}{80} \geq \frac{m_2C\%}{98}, \end{cases} = \frac{100\max\left\{m_2C\% - \frac{49}{40}m_1, 0\right\}}{m_1 + m_2}\%.$$

Bài toán 35 ([TTV23], 3., p. 9). 200 mL dung dịch HCl có nồng độ 3.5M hòa tan vừa hết 20 g hỗn hợp 2 oxide CuO, Fe₂O₃. (a) Viết các PTHH. (b) Tính khối lượng của mỗi oxide có trong mỗi hỗn hợp ban đầu.

$$\begin{cases} 2x + 6y = 0.7, \\ 80x + 160y = 20, \end{cases} \Leftrightarrow \begin{cases} x = 0.05, \\ y = 0.1. \end{cases}$$

 $n_{\text{CuO}} = 0.05 \text{ mol} \Rightarrow m_{\text{CuO}} = n_{\text{CuO}} M_{\text{CuO}} = 0.05 \cdot 80 = 4 \text{ g}, n_{\text{Fe}_2\text{O}_3} = 0.1 \text{ mol} \Rightarrow m_{\text{Fe}_2\text{O}_3} = n_{\text{Fe}_2\text{O}_3} M_{\text{Fe}_2\text{O}_3} = 0.1 \cdot 160 = 16 \text{ g} \text{ (hoặc } m_{\text{Fe}_2\text{O}_3} = m_{\text{hh}} - m_{\text{CuO}} = 20 - 4 = 16 \text{ g}).$

Bài toán 36 (Mở rộng [TTV23], 3., p. 9). V L dung dịch HCl có nồng độ $C_{\rm M}$ M hòa tan vừa hết m g hỗn hợp 2 oxide CuO, Fe₂O₃. Tính khối lượng của mỗi oxide có trong mỗi hỗn hợp ban đầu.

 $Gi\acute{a}i.$ $n_{\mathrm{HCl}} = C_{\mathrm{M,HCl}}V_{\mathrm{ddHCl}} = C_{\mathrm{M}}V$ mol. Đặt $x = n_{\mathrm{CuO}}, \ y = n_{\mathrm{Fe_2O_3}}.$ PTHH: CuO + 2HCl \longrightarrow CuCl₂ + H₂O, Fe₂O₃ + 6HCl \longrightarrow 2FeCl₃ + 3H₂O. Có $n_{\mathrm{HCl}} = 2x + 6y = C_{\mathrm{M}}V$ mol, $m_{\mathrm{hh}} = 80x + 160y = m$ g, nên ta có hệ phương trình:

$$\begin{cases} 2x + 6y = C_{\mathrm{M}}V, \\ 80x + 160y = m, \end{cases} \Leftrightarrow \begin{cases} x + 3y = \frac{C_{\mathrm{M}}V}{2}, \\ x + 2y = \frac{m}{80}. \end{cases} \Leftrightarrow \begin{cases} x = \frac{3m}{80} - C_{\mathrm{M}}V, \\ y = \frac{C_{\mathrm{M}}V}{2} - \frac{m}{80}. \end{cases}$$

 $n_{\rm CuO} = \frac{3m}{80} - C_{\rm M}V \ {\rm mol} \\ \Rightarrow m_{\rm CuO} = n_{\rm CuO} \\ M_{\rm CuO} = 80 \left(\frac{3m}{80} - C_{\rm M}V\right) \\ = 3m - 80 \\ C_{\rm M}V \ {\rm g}, \ n_{\rm Fe_2O_3} \\ = \frac{C_{\rm M}V}{2} - \frac{m}{80} \ {\rm mol} \\ \Rightarrow m_{\rm Fe_2O_3} \\ = n_{\rm Fe_2O_3} \\ M_{\rm Fe_2O_3} = 160 \left(\frac{C_{\rm M}V}{2} - \frac{m}{80}\right) \\ = 80 \\ C_{\rm M}V - 2m \ {\rm g} \ ({\rm hoặc} \ m_{\rm Fe_2O_3} \\ = m_{\rm hh} - m_{\rm CuO} \\ = m - (3m - 80 \\ C_{\rm M}V) \\ = 80 \\ C_{\rm M}V - 2m \ {\rm g}). \\ \\ \nabla {\rm ay} \ m_{\rm CuO} \\ = 3m - 80 \\ C_{\rm M}V \ {\rm g}, \ m_{\rm Fe_2O_3} \\ = 80 \\ C_{\rm M}V - 2m \ {\rm g}. \\ \\ \Box$

Bài toán 37 ([TTV23], 4., p. 9). Biết 2.24 L khí CO₂ (đktc) tác dụng vừa hết với 200 mL dung dịch Ba(OH)₂, sản phẩm là BaCO₃, H₂O. (a) Viết PTHH. (b) Tính nồng độ moi của dung dịch Ba(OH)₂ đã dùng. (c) Tính khối lượng chất kết tủa thu được.

 $Gi \acute{a}i. \ \ n_{\rm CO_2} = \frac{V_{\rm CO_2}}{22.4} = \frac{2.24}{22.4} = 0.1 \ {\rm mol.} \ (a) \ {\rm CO_2 + Ba(OH)_2} \\ \longrightarrow {\rm BaCO_3} \downarrow + {\rm H_2O.} \ (b) \ {\rm Vi} \ {\rm CO_2} \ {\rm tác} \ {\rm dụng} \ {\rm vừa} \ {\rm hết} \ {\rm nên} \ n_{\rm Ba(OH)_2} = n_{\rm Ba(OH)_2} = 0.1 \ {\rm mol.} \ C_{\rm M,Ba(OH)_2} = \frac{n_{\rm Ba(OH)_2}}{V_{\rm ddBa(OH)_2}} = \frac{0.1}{0.2} = 0.5 \ {\rm M.} \ (c) \ {\rm Chất} \ {\rm kết} \ {\rm tửa} \ {\rm sau} \ {\rm phản} \ {\rm \'mg} \ {\rm là} \ {\rm BaCO_3} \ \& \ n_{\rm BaCO_3} = n_{\rm CO_2} = 0.1 \ {\rm mol} \\ \longrightarrow m_{\rm BaCO_3} = n_{\rm BaCO_3} M_{\rm BaCO_3} = 0.1 \cdot 197 = 19.7 \ {\rm g.} \\ \square$

Bài toán 38 (Mở rộng [TTV23], 4., p. 9). Cho V_1 L khí CO_2 (đktc) tác dụng với V_2 L dung dịch $Ba(OH)_2$ nồng độ C_MM . (a) Viết PTHH. (b) Tính nồng độ moi của dung dịch $Ba(OH)_2$ đã dùng & khối lượng chất kết tủa thu được theo V_1, V_2, C_M .

Bài toán 39 ([TTV23], 6., p. 11). Dẫn 112 mL khí SO₂ (đktc) đi qua 700 mL dung dịch Ca(OH)₂ có nồng độ 0.01M, sản phẩm là muối calcium sulfite. (a) Viết PTHH. (b) Tính khối lượng các chất sau phản ứng.

Bài toán 40 ([TAV23], 1.5., p. 3). Biết 1.12 L khí carbon dioxide (đktc) tác dụng vừa đủ với 100 mL dung dịch NaOH tạo ra muối trung hòa. (a) Viết PTHH. (b) Tính nồng độ mol của dung dịch NaOH đã dùng.

Bài toán 41 ([TAV23], 1.6., p. 3). Cho 15.3 g oxide của kim loại hóa trị 2 vào nước thu được 200 g dung dịch base với nồng độ 8.55%. Xác định công thức của oxide trên.

Bài toán 42 ([TAV23], 1.7., p. 3). Cho 38.4 g 1 oxide acid của phi kim X có hóa trị 4 tác dụng vừa đủ với dung dịch NaOH thu được 400 g dung dịch muối nồng độ 18.9%. Xác định công thức của oxide.

Bài toán 43 ([TAV23], 2.5., p. 4). 1 loại đá vôi chứa 80% CaCO₃. Nung 1 tấn đá vôi loại này có thể thu được bao nhiều kg vôi sống CaO, nếu hiệu suất là 85%?

Bài toán 44 ([TAV23], 2.6., p. 4). Để tôi vôi, người ta đã dùng 1 khối lượng nước bằng 70% khối lượng vôi sống. Cho biết khối lượng nước đã dùng lớn hơn bao nhiều lần so với khối lượng nước tính theo PTHH?

Bài toán 45 ([TAV23], 2.7., p. 4). Cho 8 g lưu huỳnh trioxide SO₃ tác dụng với H₂O, thu được 250 mL dung dịch acid sulfuric H₂SO₄. (a) Viết PTHH. (b) Xác định nồng độ moi của dung dịch acid thu được.

Bài toán 46 ([TAV23], 2.8., p. 4). Dẫn 1.12 L khí lưu huỳnh dioxide (đktc) đi qua 700 mL dung dịch Ca(OH)₂ 0.1M. (a) Viết PTHH. (b) Tính khối lượng các chất sau phản ứng.

Bài toán 47 ([TAV23], 2.10., p. 4). Nung nóng 13.1 g 1 hỗn hợp gồm Mg, Zn, Al trong không khí đến phản ứng hoàn toàn thu được 20.3 g hỗn hợp gồm MgO, ZnO, Al₂O₃. Hòa tan 20.3 g hỗn hợp oxide này cần dùng V L dung dịch HCl 0.4M. (a) Tính V. (b) Tính khối lương muối clorua tao ra.

Bài toán 48 ([An23], 5.a, p. 6). Cho a g Na tác dụng với p g nước thu được dung dịch NaOH nồng độ x%. Cho b g Na₂O tác dụng với p g nước cũng thu được dung dịch NaOH nồng độ x%. Lập biểu thức tính p theo a,b.

Bài toán 49 ([An23], 5.b, p. 6). Khử hoàn toàn 3.2 g hỗn hợp CuO, Fe₂O₃ bằng H₂ tạo ra 0.9 g H₂O. Tính khối lượng hỗn hợp kim loại thu được.

Bài toán 50 ([An23], 6.a, p. 7). Cho 2.24 L CO₂ (đktc) tác dụng hoàn toàn với 25 g dung dịch NaOH 20%. Tính khối lượng muối tao thành.

Bài toán 51 ([An23], 7.a, p. 8). Nung m g hỗn hợp chất rắn A gồm Fe_2O_3 & FeO với lượng thiếu khí FeO thu được hỗn hợp chất rắn FeO0 khối lượng 47.84 g & 5.6 FeO0. Tính FeO1.

Bài toán 52 ([An23], 7.b, p. 9). Cho 11.6 g hỗn hợp Fe₂O₃ & FeO có tỷ lệ số mol là 1 : 1 vào 300 mL dung dịch HCl 2M được dung dịch A. Tính nồng độ mol của các chất trong dung dịch sau phản ứng (thể tích dung dịch thay đổi không đáng kể).

Bài toán 53 ([An23], 8.a, p. 9). Nung nóng kim loại M trong không khí đến khối lượng không đổi thu được chất rắn N. Khối lượng của M bằng $\frac{7}{10}$ khối lượng của N. Tìm CTPT của N.

Bài toán 54 ([An23], 8.b, p. 9). Cho 1 oxide base tác dụng với dung dịch H₂SO₄ 24.5% thu được dung dịch 1 muối có nồng độ 32.2%. Tìm CTPT của oxide base.

Bài toán 55 ([An23], 9.a, p. 11). $D\tilde{a}n\ V$ L khi CO₂ (dktc) qua 250 mL dung dịch Ca(OH)₂ 1M thấy có 12.5 g kết tủa. Tính V.

Bài toán 56 ([An23], 9.b, p. 11). Dùng khí H₂ để khử a g oxide sắt. Sản phẩm hơi tạo ra cho qua 100 g acid H₂SO₄ 98% thì nồng độ acid giảm đi 3.405%. Chất rắn thu được sau phản ứng trên cho tác dụng hết với dung dịch HCl thấy thoát ra 3.36 L H₂ (đktc). Xác định CTPT oxide sắt.

Bài toán 57 ([An23], 10.a, p. 13). Để xác định CTPT oxide sắt người ta làm thí nghiệm như sau: Hòa tan a g oxide sắt thì cần 300 mL dung dịch HCl 3M. Cho toàn bộ a g oxide sắt nung nóng tác dụng với CO dư thu được 16.8 g sắt. Xác định CTPT oxide sắt.

Bài toán 58 ([An23], 10.b, p. 13). 1 loại đá vôi chứa 80% CaCO₃ & 20% tạp chất không bị phân hủy bởi nhiệt. Khi nung a g đá vôi trên thu được chất rắn có khối lượng bằng 75% khối lượng đá trước khi nung. (a) Tính hiệu suất phản ứng phân hủy CaCO₃. (b) Tính thành phần % khối lượng CaO trong chất rắn sau khi nung.

Bài toán 59 ([An23], 11.a, p. 14). Khử hoàn toàn 5.8 g 1 oxide sắt bằng CO ở nhiệt độ cao. Sản phẩm sau phản ứng cho qua dung dịch nước vôi trong dư tạo 10 g kết tủa. Xác định CTPT oxide sắt.

Bài toán 60 ([An23], 11.b, p. 14). Nung 1.5 tấn đá vôi chứa 85% CaCO₃ thì có thể thu được bao nhiều kg vôi sống? Biết hiệu suất phản ứng là 90%.

Bài toán 61 ([An23], 12.a, p. 15). Cho 7.84 g CaO tan hoàn toàn vào nước được dung dịch A. Dẫn 2.24 L khí CO₂ (đktc) vào dung dịch A. Tính khối lượng các chất sau phản ứng.

Bài toán 62 ([An23], 12.b, p. 15). Nung 1 tấn đá vôi thì thu được 428.4 kg vôi sống CaO. Hiệu suất quá trình nung vôi là 85%, tính tỷ lệ % khối lượng tạp chất có trong đá vôi.

2 Acid

2.1 Qualitative problem – Bài tập định tính

Bài toán 63 ([Tuấ+23], 1, p. 47). Nêu đặc điểm chung về thành phần phân tử của các acid.

Bài toán 64 ([Tuấ+23], 1, p. 47). Viết sơ đồ tạo thành ion H⁺ từ nitric acid HNO₃.

Bài toán 65 ([Tuấ+23], 2, p. 48). Khi thảo luận về tác dụng của dung dịch acid với quỳ tím có 2 ý kiến sau: (a) Nước làm quỳ tím đổi màu. (b) Dung dịch acid làm quỳ tím đổi màu. Đề xuất 1 thí nghiệm để xác định ý kiến đúng trong 2 ý kiến trên.

Bài toán 66 ([Tuấ+23], 3, p. 48). Lần lượt nhỏ lên 3 mẩu giấy quỳ tím mỗi dung dịch sau: (a) Nước đường. (b) Nước chanh. (c) Nước muối (dung dịch NaCl). Trường hợp nào quỳ tím sẽ chuyển sang màu đỏ?

Bài toán 67 ([Tuấ+23], 1, p. 49). Người ta thường tránh muối dưa, cà trong các dụng cụ làm bằng nhôm. Cho biết lý do của việc làm trên.

- Bài toán 68 ([Tuấ+23], 4, p. 49). Viết PTHH xảy ra trong các trường hợp sau: (a) Dung dịch H₂SO₄ loãng tác dụng với Zn. (b) Dung dịch HCl loãng tác dụng với Mg.
- Bài toán 69 ([Tuấ+23], 2, p. 50). Nêu tên 1 số món ăn có sử dụng giấm ăn trong quá trình chế biến.
- Bài toán 70 ([TTV23], 1., p. 14). Từ Mg, MgO, Mg(OH)₂ & dung dịch acid sulfuric loãng, viết các PTHH của phản ứng điều chế magnesium sulfate.
- Bài toán 71 ([TTV23], 2., p. 14). Có các chất sau: CuO, Mg, Al₂O₃, Fe(OH)₃, Fe₂O₃. Chọn 1 trong các chất đã cho tác dụng với dung dịch HCl sinh ra: (a) khí nhẹ hơn không khí & cháy được trong không khí. (b) dung dịch có màu xanh lam. (c) dung dịch có màu vàng nâu. (d) dung dịch không có màu. Viết các PTHH.
- Bài toán 72 ([TTV23], 3., p. 14). Viết các PTHH: (a) magnesium oxide & acid nitric. (b) copper(II) oxide & hydrochloric acid. (c) aluminium oxide & sulfuric acid. (d) iron & hydrochloric acid. (e) zinc & sulfuric acid loãng.
- Bài toán 73 ([TTV23], 1., p. 19). Có các chất: CuO, BaCl₂, Zn, ZnO. Chất nào tác dụng với dung dịch HCl, dung dịch H₂SO₄ loãng sinh ra: (a) chất khí cháy được trong không khí? (b) dung dịch có màu xanh lam? (c) chất kết tủa màu trắng không tan trong nước & acid? (d) dung dịch không màu & nước? Viết tất cả các PTHH.
- Bài toán 74 ([TTV23], 2., p. 19). Sản xuất acid sulfuric trong công nghiệp cần phải có các nguyên liệu chủ yếu nào? Cho biết mục đích của mỗi công đoạn sản xuất acid sulfuric & dẫn ra các phản ứng hóa học.
- Bài toán 75 ([TTV23], 3., p. 19). Bằng cách nào có thể nhận biết được từng chất trong mỗi cặp chất sau theo phương pháp hóa học? (a) Dung dịch HCl & dung dịch H2SO4. (b) Dung dịch NaCl & dung dịch Na₂SO₄. (c) Dung dịch Na₂SO₄ & dung dịch H₂SO₄. Viết các PTHH.
- Bài toán 76 ([TTV23], 5., p. 19). Sử dụng các chất có sẵn: Cu, Fe, CuO, KOH, C₆H₁₂O₆ (glucose), dung dịch H₂SO₄ loãng, H₂SO₄ đặc & các dụng cụ thí nghiệm cần thiết để làm các thí nghiệm chứng minh: (a) Dung dịch H₂SO₄ loãng có các tính chất hóa học của acid. (b) H₂SO₄ đặc có các tính chất hóa học riêng. Viết PTHH cho mỗi thí nghiệm.
- Bài toán 77 ([TTV23], 1., p. 21). Có các oxide: SO₂, CuO, Na₂O, CO₂. Cho biết các oxide nào tác dụng được với: (a) nước. (b) hydrochloric acid. (c) sodium hydroxide. Viết các PTHH.
- Bài toán 78 ([TTV23], 2., p. 21). Các oxide nào sau: H₂O, CuO, Na₂O, CO₂, P₂O₅ có thể điều chế bằng: (a) phản ứng hóa hợp? Viết PTHH. (b) phản ứng hóa hợp & phản ứng phân hủy? Viết PTHH.
- Bài toán 79 ([TTV23], 3., p. 21). Khí CO được dùng làm chất đốt trong công nghiệp, có lẫn tạp chất là các khí CO₂, SO₂. Làm thế nào có thể loại bỏ được các tạp chất ra khỏi CO bằng hóa chất rẻ tiền nhất? Viết các PTHH.
- Bài toán 80 ([TTV23], 4., p. 21). Cần phải điều chế 1 lượng muối copper(II) sulfate. Phương pháp nào sau đây tiết kiệm được acid sulfuric? (a) Acid sulfuric tác dụng với copper(II) oxide. (b) Acid sulfuric đặc tác dụng với kim loại đồng. Vì sao?
- Bài toán 81 ([TTV23], 5., p. 21). Thực hiện các chuyển đổi hóa học sau bằng cách viết các PTHH (ghi điều kiện của phản ứng, nếu có): (a) $S \to SO_2 \to SO_3 \to H_2SO_4$. (b) $SO_2 \to Na_2SO_3$. (c) $H_2SO_4 \to SO_2 \to H_2SO_3 \to Na_2SO_3 \to SO_2$. (d) $H_2SO_4 \to Na_2SO_4 \to BaSO_4$.
- Bài toán 82 ([TAV23], 3.1., p. 5). Dung dịch HCl đều tác dụng với các chất trong dãy nào sau đây? A. Mg, Fe₂O₃, Cu(OH)₂, Ag. B. Fe, MgO, Zn(OH)₂, Na₂SO₄. C. CuO, Al, Fe(OH)₃, CaCO₃. D. Zn, BaO, Mg(OH)₂, SO₂.
- Bài toán 83 ([TAV23], 3.2., p. 5). Có các dung dịch KOH, HCl, H₂SO₄ (loãng), các chất rắn Fe(OH)₃, Cu & các chất khí CO₂, NO. Các chất nào có thể tác dụng với nhau từng đôi một? Viết các PTHH. (Biết H₂SO₄ loãng không tác dụng với Cu.)
- Bài toán 84 ([TAV23], 3.3., p. 6). Có các oxide: Fe₂O₃, SO₂, CuO, MgO, CO₂. (a) Các oxide nào tác dụng được với dung dịch H₂SO₄? (b) Các oxide nào tác dụng được với dung dịch NaOH? (c) Các oxide nào tác dụng được với H₂O? Viết các PTHH.
- Bài toán 85 ([TAV23], 3.4., p. 6). Có hỗn hợp gồm bột kim loại đồng & sắt. Chọn phương pháp hóa học để tách riêng bột đồng ra khỏi hỗn hợp. Viết các PTHH.
- Bài toán 86 ([TAV23], 4.1., p. 6). Dung dịch H₂SO₄ tác dụng được với các chất trong dãy: A. CuO, BaCl₂, NaCl, FeCO₃. B. Cu, Cu(OH)₂, Na₂CO₃, KCl. C. Fe, ZnO, MgCl₂, NaOH. D. Mg, BaCl₂, K₂CO₃, Al₂O₃.
- Bài toán 87 ([TAV23], 4.2., pp. 6–7). Cần phải điều chế 1 lượng muối đồng sulfate. Phương pháp nào sau đây tiết kiệm được acid sulfuric? (a) Acid sulfuric tác dụng với copper(II) oxide. (b) Acid sulfuric đặc tác dụng với copper kim loại. Viết các PTHH & giải thích.
- Bài toán 88 ([TAV23], 4.3., p. 7). Cho các chất sau: đồng, các hợp chất của đồng & acid sulfuric. Viết các PTHH điều chế đồng(II) sulfate từ các chất đã cho, cần ghi rõ các điều kiện của phản ứng.
- Bài toán 89 ([TAV23], 4.4., p. 7). Có 3 lọ không nhãn, mỗi lọ đựng 1 trong các chất rắn: CuO, BaCl₂, Na₂CO₃. Chọn 1 thuốc thử để có thể nhân biết được cả 3 chất trên. Giải thích & viết PTHH.
- Bài toán 90 ([TAV23], 4.5., p. 7). Có 4 lọ không nhãn, mỗi lọ đưng 1 dung dịch không màu: HCl, NaCl, H₂SO₄, Na₂SO₄. Nhận biết dung dịch đựng trong mỗi lọ bằng phương pháp hóa học. Viết các PTHH.

Bài toán 91 ([TAV23], 5.1., p. 7). Có các chất sau: Cu, Zn, MgO, NaOH, Na₂CO₃. Dẫn ra các phản ứng hóa học của dung dịch HCl & dung dịch H₂SO₄ loãng với các chất đã cho để chứng minh 2 acid này có tính chất hóa học giống nhau.

Bài toán 92 ([TAV23], 5.2., p. 8). Để phân biệt được 2 dung dịch Na₂SO₄, Na₂CO₃, người ta dùng: A. BaCl₂. B. HCl. C. Pb(NO₃)₂. D. NaOH.

Bài toán 93 ([TAV23], 5.3., p. 8). $Di\tilde{e}n$ các chất: CuO, MgO, H₂O, SO₂, CO₂ thích hợp vào các PTHH & cân bằng chúng: (a) $HCl + \ldots \longrightarrow CuCl_2 + \ldots$ (b) $H_2SO_4 + Na_2SO_3 \longrightarrow Na_2SO_4 + \ldots + \ldots$ (c) $HCl + CaCO_3 \longrightarrow CaCl_2 + \ldots + \ldots$ (d) $H_2SO_4 + \ldots \longrightarrow MgSO_4 + \ldots$ (e) $\ldots + \ldots \Longrightarrow H_2SO_3$.

Bài toán 94 ([TAV23], 5.4., p. 8). Cho các chất: Cu, Na₂SO₃, H₂SO₄. (a) Viết các PTHH của phản ứng điều chế SO₂ từ các chất này. (b) Cần điều chế n mol SO₂, chọn chất nào để tiết kiệm được H₂SO₄. Giải thích cho sự lựa chọn.

Bài toán 95 ([An23], 24.a, p. 24). Bằng phương pháp hóa học, phân biệt 3 dung dịch: HCl, NaOH, Ba(OH)₂.

2.2 Quantitative problem – Bài tập định lượng

Bài toán 96 ([TTV23], 4., p. 14). Có 10 g hỗn hợp bột 2 kim loại đồng & sắt. Giới thiệu phương pháp xác định thành phần % (theo khối lượng) của mỗi kim loại trong hỗn hợp theo: (a) Phương pháp hóa học. Viết PTHH. (b) Phương pháp vật lý. (Biết copper không tác dụng với acid HCl & acid H₂SO₄ loãng).

Bài toán 97 ([TTV23], 4., p. 19). Bảng sau cho biết kết quả của 6 thí nghiệm xảy ra giữa Fe & dung dịch H_2SO_4 loãng. Trong mỗi thí nghiệm người ta dùng 0.2 g Fe tác dụng với thể tích bằng nhau của acid, nhưng có nồng độ khác nhau.

Thí nghiệm	Nồng độ acid	Nhiệt độ (°C)	Sắt ở dạng	Thời gian phản ứng xong (s)
1	1M	25	Lá	190
2	2M	25	Bột	85
3	2M	35	Lá	62
4	2M	50	Bột	15
5	2M	35	Bột	45
6	3M	50	Bột	11

Các thí nghiệm nào chứng tỏ: (a) Phản ứng xảy ra nhanh hơn khi tăng nhiệt độ? (b) Phản ứng xảy ra nhanh hơn khi tăng diện tích tiếp xúc? (c) Phản ứng xảy ra nhanh hơn khi tăng nồng độ acid?

Bài toán 98 ([TTV23], 6., p. 19). Cho 1 lượng mạt sắt dư vào 50 mL dung dịch HCl. Phản ứng xong, thu được 3.36 L khí (đktc). (a) Viết PTHH. (b) Tính khối lượng mạt sắt đã tham gia phản ứng. (c) Tìm nồng độ mol của dung dịch HCl đã dùng.

Bài toán 99 ([TTV23], 7., p. 19). Hòa tan hoàn toàn 12.1 g hỗn hợp bột CuO, ZnO cần 100 mL dung dịch HCl 3M. (a) Viết các PTHH. (b) Tính % theo khối lượng của mỗi oxide trong hỗn hợp ban đầu. (c) Tính khối lượng dung dịch H₂SO₄ nồng độ 20% để hòa tan hoàn toàn hỗn hợp các oxide trên.

Bài toán 100 ([TAV23], 3.5., p. 6). Tìm CTHH của các acid có thành phần khối lượng sau: (a) H: 2.1%, N: 29.8%, O: 68.1%. (b) H: 2.4%, S: 39.1%, O: 58.5%. (c) H: 3.7%, P: 37.8%, O: 58.5%.

Bài toán 101 ([TAV23], 3.6., p. 6). (a) Trên 2 đĩa cân ở vị trí thăng bằng có 2 cốc, mỗi cốc đựng 1 dung dịch có hòa tan 0.2 mol HNO₃. Thêm vào cốc thứ nhất 20 g CaCO₃, thêm vào cốc thứ 2 20 g MgCO₃. Sau khi phản ứng kết thúc, 2 đĩa cân còn giữ vị trí thăng bằng không? Giải thích. (b) Nếu dung dịch trong mỗi cốc có hòa tan 0.5 mol HNO₃ & cũng làm thí nghiệm như trên. Phản ứng kết thúc, 2 đĩa cân còn giữ vị trí thăng bằng không? Giải thích.

Bài toán 102 ([TAV23], 4.6., p. 7). Cho 1 lượng bột sắt dư vào 50 mL dung dịch acid sulfuric. Phản ứng xong, thu được 3.36 L khí hydrogen (đktc). (a) Viết PTHH. (b) Tính khối lượng sắt đã tham gia phản ứng. (c) Tính nồng độ mol của dung dịch acid sulfuric đã dùng.

Bài toán 103 ([TAV23], 4.7., p. 7). Trung hòa 20 mL dung dịch H₂SO₄ 1 M bằng dung dịch NaOH 20%. (a) Viết PTHH. (b) Tính khối lượng dung dịch NaOH cần dùng. (c) Nếu trung hòa dung dịch acid sulfuric trên bằng dung dịch KOH 5.6%, có khối lượng riêng là 1.045 g/mL, thì cần bao nhiều mL dung dịch KOH?

Bài toán 104 ([TAV23], 4.8., p. 7). Cho dung dịch HCl 0.5M tác dụng vừa đủ với 21.6 g hỗn hợp A gồm Fe, FeO, FeCO₃. Thấy thoát ra 1 hỗn hợp khí có tỷ khối đối với H_2 là 15 $\mathcal E$ tạo ra 31.75 g muối clorua. (a) Tính thể tích dung dịch HCl đã dùng. (b) Tính $\mathcal E$ khối lượng của mỗi chất trong hỗn hợp A.

Bài toán 105 ([TAV23], 5.5., p. 8). (a) Viết các PTHH của phản ứng điều chế khí hydrogen từ các chất: Zn, dung dịch HCl, dung dịch H₂SO₄. (b) So sánh thể tích khí hydrogen (cùng điều kiện t° & p) thu được của từng cặp phản ứng trong các thí nghiệm: Thí nghiệm 1: 0.1 mol Zn tác dụng với dung dịch HCl dư; 0.1 mol Zn tác dụng với dung dịch H₂SO₄ dư. Thí nghiệm 2: 0.1 mol H₂SO₄ tác dụng với Zn dư; 0.1 mol HCl tác dụng với Zn dư.

Bài toán 106 ([TAV23], 5.6., p. 8). Để tác dụng vừa đủ với 44.8 g hỗn hợp gồm FeO, Fe₂O₃, Fe₃O₄ cần phải dùng 400 mL dung dịch H₂SO₄ 2M. Sau phản ứng thấy tạo ra a g hỗn hợp muối sulfate. Tính a.

Bài toán 107 ([TAV23], 5.7., p. 8). Từ 80 tấn quặng pirit chứa 40% lưu huỳnh, người ta sản xuất được 73.5 tấn acid sulfuric.
(a) Tính hiệu suất của quá trình sản xuất acid sulfuric. (b) Tính khối lượng dung dịch H₂SO₄ 50% thu được từ 73.5 tấn H₂SO₄ đã được sản xuất ở trên.

Bài toán 108 ([An23], 13.a, p. 16). Lấy 4.2 g bột sắt cho tác dụng với 50 mL dung dịch H₂SO₄ 1M đến khi kết thúc phản ứng thu được V L khí H₂ bay ra ở đktc: (a) Cho biết chất nào còn dư sau phản ứng? (b) Tính V.

Bài toán 109 ([An23], 13.b, p. 16). Cho 29.4 g dung dịch H₂SO₄ 20% vào 100 g dung dịch BaCl₂ 5.2%. (a) Viết PTHH xảy ra & tính khối lượng kết tủa tạo thành. (b) Tính nồng độ % của những chất có trong dung dịch.

Bài toán 110 ([An23], 14.a, p. 17). Hòa tan 1 lượng CuO cần 100 mL dung dịch HCl 1M. (a) Tính khối lượng CuO đã tham gia phản ứng. (b) Tính nồng độ mol của dung dịch sau phản ứng. Biết thể tích dung dịch thay đổi không đáng kể.

Bài toán 111 ([An23], 14.b, p. 17). Trộn c g bột Fe & b g bột S rồi nung nóng ở nhiệt độ cao (không có không khí). Hòa tan hỗn hợp sau phản ứng bằng dung dịch HCl dư thu được chất rắn X nặng 0.4 g & khí Y có tỷ khối so với H₂ bằng 9. Khí Y sực từ từ qua dung dịch Pb(NO₃)₂ thấy tạo thành 11.95 g kết tủa. (a) Tính b,c. (b) Tính hiệu suất phản ứng nung nóng bột Fe & bột S.

Bài toán 112 ([An23], 15., p. 18). Hỗn hợp X gồm 2 kim loại Mg, Fe. Dung dịch Y là dung dịch HCl a M. Thí nghiệm 1: Cho 10.8 g hỗn hợp X vào 2 L dung dịch Y có 4.48 L H₂ (đktc) bay ra. Thí nghiệm 2: Cho 10.8 g hỗn hợp X vào 3 L dung dịch Y có 5.6 L H₂ (đktc) bay ra. Tính a & tính khối lượng mỗi kim loại trong hỗn hợp X.

Bài toán 113 ([An23], 16., p. 19). Hòa tan hoàn toàn 4 g hỗn hợp gồm Fe & 1 kim loại hóa trị II vào dung dịch HCl thì thu được 2.24 L H₂ (đktc). Nếu chỉ dùng 2.4 g kim loại hóa trị II cho vào dung dịch HCl thì dùng không hết 500 mL dung dịch HCl 1M. Tìm tên kim loại hóa trị II.

Bài toán 114 ([An23], 17., p. 17). Trộn CuO với 1 oxide kim loại hóa trị II không đổi theo tỷ lệ số mol 1 : 2 được hỗn hợp A, cho luồng khí H_2 dư qua 2.4 g hỗn hợp A nung nóng đến phản ứng hoàn toàn được chất rắn B. Dể hòa tan hết B cần 100 mL dung dịch HNO₃ 1M chỉ thoát ra khí NO duy nhất. Phản ứng xảy ra theo phương trình: $3\text{Cu} + 8\text{HNO}_3 \longrightarrow 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO} + 4H_2\text{O}$, $3\text{M} + 8\text{HNO}_3 \longrightarrow 3\text{M}(\text{NO}_3)_2 + 2\text{NO} + 4H_2\text{O}$. Xác định tên kim loại hóa trị II.

Bài toán 115 ([An23], 18., p. 21). 1 hỗn hợp X gồm Al, Mg, Cu có khối lượng là 5 g khi hòa tan trong dung dịch HCl dư thấy thoát ra 4.48 dm³ khí (đktc) & thu được dung dịch Y cùng chất rắn Z. Lọc & nung chất rắn Z trong không khí đến khối lượng không đổi cân nặng 1.375 g. Tính khối lượng mỗi kim loại.

3 Base

3.1 Qualitative problem – Bài tập định tính

Bài toán 116 ([Tuấ+23], p. 51). Để tránh nguyên liệu bị nát vụn khi chế biến, trong quá trình làm mứt người ta thường ngâm nguyên liệu vào nước vôi trong. Trong quá trình đó, độ chua của 1 số loại quả sẽ giảm đi. Vì sao?

Bài toán 117 ([Tuấ+23], p. 51). Trong các chất Cu(OH)₂, MgSO₄, NaCl, Ba(OH)₂, các chất nào là base?

Bài toán 118 ([Tuấ+23], 1, p. 52). Dựa vào bảng tính tan, cho biết các base nào sau đây là kiềm: KOH, Fe(OH)₂, Ba(OH)₂, Cu(OH)₂.

Bài toán 119 ([Tuấ+23], 2, p. 52). Có 2 dung dịch giấm ăn & nước vôi trong. Nêu cách phân biệt 2 dung dịch trên bằng: (a) Quỳ tím. (b) Phenolphthalein.

Bài toán 120 ([Tuấ+23], 3, p. 54). Viết PTHH xảy ra khi cho các base: KOH, Cu(OH)₂, Mg(OH)₂ lần lượt tác dụng với: (a) Dung dịch acid HCl. (b) Dung dịch acid H₂SO₄.

Bài toán 121 ([Tuấ+23], 4, p. 54). Hoàn thành PTHH: (a) KOH \rightarrow K₂SO₄. (b) Mg(OH)₂ \rightarrow MgSO₄. (c) Al(OH)₃ + H₂SO₄.

Bài toán 122 ([Tuấ+23], p. 54). 1 loại thuốc dành cho bệnh nhân đau dạ dày có chứa Al(OH)₃, Mg(OH)₂. Viết PTHH xảy ra giữa acid HCl có trong dạ dày với các chất trên.

Bài toán 123 ([TTV23], 1., p. 25). Có phải tất cả các chất kiềm đều là base không? Dẫn ra CTHH của 3 chất kiềm để minh họa. Có phải tất cả các base đều là chất kiềm không? Dẫn ra CTHH của các base để minh họa.

Bài toán 124 ([TTV23], 2., p. 25). Có các base sau: Cu(OH)₂, NaOH, Ba(OH)₂. Cho biết những base nào: (a) tác dụng được với dung dịch HCl. (b) bị nhiệt phân hủy. (c) tác dụng được với CO₂. (d) đổi màu quỳ tím thành xanh. Viết các PTHH.

Bài toán 125 ([TTV23], 3., p. 25). Từ các chất có sẵn: Na₂O, CaO, H₂O. Viết các PTHH điều chế các dung dịch base.

Bài toán 126 ([TTV23], 4., p. 25). Có ¼ lọ không nhãn, mỗi lọ đựng 1 dung dịch không màu sau: NaCl, Ba(OH)₂, NaOH, Na₂SO₄. Chỉ được dùng quỳ tím, làm thế nào nhận biết dung dịch đựng trong mỗi lọ bằng phương pháp hóa học? Viết các PTHH.

Bài toán 127 ([TTV23], 1., p. 27). Có 3 lọ không nhãn, mỗi lọ đựng 1 chất rắn sau: NaOH, NaCl, Ba(OH)₂. Trình bày cách nhận biết chất đựng trong mỗi lọ bằng phương pháp hóa học. Viết các PTHH (nếu có).

Bài toán 128 ([TTV23], 2., p. 27). Có các chất: Zn, Zn(OH)₂, NaOH, Fe(OH)₃, CuSO₄, NaCl, HCl. Chọn chất thích hợp điền vào mỗi sơ đồ phản ứng sau & lập PTHH: (a) ... $\xrightarrow{t^{\circ}}$ Fe₂O₃ + H₂O. (b) H₂SO₄ + ... \longrightarrow Na₂SO₄ + H₂O. (c) H₂SO₄ + ... \longrightarrow ZnSO₄ + H₂O. (d) NaOH + ... \longrightarrow NaCl + H₂O. (e) ... + CO₂ \longrightarrow Na₂CO₃ + H₂O.

Bài toán 129 ([TTV23], 1., p. 30). Viết các PTHH thực hiện các chuyển đổi hóa học: (a) $CaCO_3 \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow CaCO_3$. (b) $CaO \rightarrow CaCl_2$. (c) $Ca(OH)_2 \rightarrow Ca(NO_3)_2$.

Bài toán 130 ([TTV23], 2., p. 30). Có 3 lọ không nhãn, mỗi lọ đựng 1 trong 3 chất rắn màu trắng: CaCO₃, Ca(OH)₂, CaO. Nhận biết chất đựng trong mỗi lọ bằng phương pháp hóa học. Viết các PTHH.

Bài toán 131 ([TTV23], 3., p. 30). Viết các PTHH của phản ứng khi dung dịch NaOH tác dụng với dung dịch H₂SO₄ tạo ra: (a) muối sodium hydrosunfate. (b) muối sodium sulfate.

Bài toán 132 ([TTV23], 4., p. 30). 1 dung dịch bão hòa khí CO_2 trong nước có pH = 4. Giải thích \mathcal{E} viết PTHH của CO_2 với nước.

Bài toán 133 ([TTV23], 7.1., p. 9). Nêu các tính chất hóa học giống & khác nhau của base tan (kiềm) & base không tan. Dẫn ra ví dụ, viết PTHH.

Bài toán 134 ([TTV23], 7.2., p. 9). Các base khi bị nung nóng tạo ra oxide là: A. Mg(OH)₂, Cu(OH₂), Zn(OH)₂, Fe(OH)₃. B. Ca(OH)₂, Al(OH)₃, KOH, NaOH. C. Zn(OH)₂, Mg(OH)₂, Fe(OH)₃, KOH. D. Fe(OH)₃, Al(OH)₃, Zn(OH)₂, NaOH.

Bài toán 135 ([TTV23], 7.3., p. 9). Dung dịch HCl, khí CO₂ đều tác dụng với: A. Ca(OH)₂, Ba(OH)₂, NaOH, KOH. B. Ca(OH)₂, Al(OH)₃, KOH, NaOH. C. NaOH, KOH, Fe(OH)₃, Ba(OH)₃. D. Ca(OH)₂, Cr(OH)₃, KOH.

Bài toán 136 ([TTV23], 7.4., p. 9). Viết CTHH của các: (a) base ứng với các oxide: Na₂O, Al₂O₃, Fe₂O₃, BaO. (b) oxide ứng với các base: KOH, Ca(OH)₂, Zn(OH)₂, Cu(OH)₂.

Bài toán 137 ([TTV23], 7.5., p. 9). Có 3 lọ không nhãn, mỗi lọ đựng 1 trong các chất rắn: Cu(OH)₂, Ba(OH)₂, Na₂CO₃. Chọn 1 thuốc thử để có thể nhận biết được cả 3 chất này. Viết các PTHH.

Bài toán 138 ([TTV23], 8.1., p. 9). Bằng phương pháp hóa học nào có thể phân biệt được 2 dung dịch base: NaOH, Ca(OH)₂? Viết PTHH.

Bài toán 139 ([TTV23], 8.2., p. 9). Có 4 lọ không nhãn, mỗi lọ đựng 1 trong các dung dịch sau: NaOH, Na₂SO₄, H₂SO₄, HCl. Nhận biết dung dịch trong mỗi lọ bằng phương pháp hóa học. Viết các PTHH.

Bài toán 140 ([TTV23], 8.3., p. 10). Cho các chất: Na₂CO₃, Ca(OH)₂, NaCl. (a) Từ các chất đã cho, viết các PTHH điều chế NaOH. (b) Nếu các chất đã cho có khối lượng bằng nhau, ta dùng phản ứng nào để có thể điều chế được khối lượng NaOH nhiều hơn?

Bài toán 141 ([TTV23], 8.4., p. 10). Bảng sau cho biết giá trị pH của dung dịch 1 số chất:

Dung dịch	A	В	С	D	Е
рН	13	3	1	7	8

(a) Dự đoán trong các dung dịch trên: (1) Dung dịch nào có thể là acid, e.g., HCl, H₂SO₄? (2) Dung dịch nào có thể là base, e.g., NaOH, Ca(OH)₂? (3) Dung dịch nào có thể là đường, muối NaCl, nước cất? (4) Dung dịch nào có thể là acid acetic (có trong giấm ăn)? (5) Dung dịch nào có tính base yếu, e.g., NaHCO₃? (b) Cho biết: (1) Dung dịch nào có phản ứng với Mg, với NaOH? (2) Dung dịch nào có phản ứng với dung dịch HCl? (3) Các dung dịch nào trộn với nhau từng đôi một sẽ xảy ra phản ứng hóa học?

3.2 Quantitative problem – Bài tập định lượng

Bài toán 142 ([TTV23], 4., p. 25). Cho 15.5 g sodium oxide Na₂O tác dụng với nước, thu được 0.5 L dung dịch base. (a) Viết PTHH & tính nồng độ mol của dung dịch base thu được. (b) Tính thể tích dung dịch H₂SO₄ 20%, có khối lượng riêng 1.14 g/mL cần dùng để trung hòa dung dịch base nói trên.

Bài toán 143 ([TTV23], 3., p. 27). Dẫn từ từ 1.568 L khí CO₂ (đktc) vào 1 dung dịch có hòa tan 6.4 g NaOH, sản phẩm là muối Na₂CO₃. (a) Chất nào đã lấy dư & dư là bao nhiêu (L hoặc g)? (b) Tính khối lượng muối thu được sau phản ứng.

Bài toán 144 ([TTV23], 8.5., p. 10). 3.04 g hỗn hợp NaOH, KOH tác dụng vừa đủ với dung dịch HCl, thu được 4.15 g các muối clorua. (a) Viết các PTHH. (b) Tính khối lượng của mỗi hydroxide trong hỗn hợp ban đầu.

Bài toán 145 ([TTV23], 8.6., p. 10). Cho 10 g CaCO₃ tác dụng với dung dịch HCl dư. (a) Tính thể tích khí CO₂ thu được ở đktc. (b) Dẫn khí CO₂ thu được ở trên vào lọ đựng 50 g dung dịch NaOH 40%. Tính khối lượng muối carbonate thu được.

Bài toán 146 ([TTV23], 8.7., p. 10). Cho m g hỗn hợp gồm Mg(OH)₂, Cu(OH)₂, NaOH tác dụng vừa đủ với 400 mL dung dịch HCl 1M & tạo thành 24.1 g muối clorua. Tính m.

Bài toán 147 ([An23], 19., p. 21). Cho 150 mL dung dịch NaOH 0.5M vào 150 mL dung dịch HCl 1M. (a) Viết PTHH. (b) Nếu cho giấy quỳ tím vào dung dịch sau phản ứng, thì màu của giấy quỳ thay đổi như thế nào? Vì sao? (c) Tính khối lượng muối tạo thành sau phản ứng.

Bài toán 148 ([An23], 20., p. 22). Cho m g NaOH nguyên chất tác dụng với dung dịch Cu(NO₃)₂ có dư, thu được 29.4 g kết tủa Cu(OH)₂. (a) Viết PTHH. (b) Tính m.

Bài toán 149 ([An23], 21.a, p. 22). Nếu có 20 g dung dịch sodium hydroxide 20% phải dùng hết bao nhiêu g dung dịch hydrochloric acid 25% để trung hòa.

Bài toán 150 ([An23], 21.b, p. 22). Hòa tan 12.4 g Na₂O vào 1 L nước ta được dung dịch X. Lấy 0.5 L dung dịch X cho tác dụng với V mL dung dịch Fe₂(SO₄)₃ 0.5M (vừa đủ) tạo thành 1 kết tủa & dung dịch Y. Tính V.

Bài toán 151 ([An23], 22., p. 23). Dung dịch X chứa 2.7 g CuCl₂ cho tác dụng với dung dịch Y chứa NaOH (lấy dư). Sau khi phản ứng kết thúc thu được kết tủa Z lọc lấy kết tủa Z đem nung đến khối lượng không đổi, thu được chất rắn T. (a) Viết PTHH. (b) Tính khối lượng kết tủa Z & chất rắn T.

Bài toán 152 ([An23], 23., p. 23). Cho 200 mL dung dịch HCl 0.2M. (a) Tính thể tích dung dịch NaOH 0.2M cần để trung hòa dung dịch acid trên. Tính nồng độ moi của dung dịch muối tạo thành. (b) Nếu cho dung dịch acid trên tác dụng với CaCO₃. Tính khối lượng CaCO₃ để phản ứng xảy ra vừa đủ & thể tích khí bay lên.

Bài toán 153 ([An23], 24.b, p. 24). Để trung hòa 25 mL dung dịch X cần dùng 30 mL dung dịch HCl 1M. Khi cho 25 mL dung dịch X tác dụng với 1 lượng dư Na₂CO₃ thấy tạo thành 1.97 g kết tủa. Tính nồng độ mol của NaOH, Ba(OH)₂ trong dung dịch X.

Bài toán 154 ([An23], 25., p. 25). Cho 0.594 g hỗn hợp Na, Ba hòa tan hoàn toàn vào nước thu được dung dịch A & khí B. Trung hòa dung dịch A cần 100 mL HCl. Cô cạn dung dịch sau phản ứng thu được 0.949 g muối. (a) Tính thể tích khí B (đktc), nồng độ mol của dung dịch HCl. (b) Tính khối lượng mỗi kim loại.

4 pH

Bài toán 155 ([Tuấ+23], p. 55). Dung dịch X làm quỳ tím chuyển sang màu đỏ. Kết luận nào sau đây là đúng? Giải thích. (a) Dung dịch X có pH < 7. (b) Dung dịch X có pH > 7.

Bài toán 156 ([Tuấ+23], 1, p. 57). Trong sản xuất nông nghiệp, người ta thường bón vôi cho các ruộng bị chua. Sau khi bón vôi vào ruộng, pH của môi trường sẽ tăng lên hay giảm đi? Giải thích.

Bài toán 157 ([Tuấ+23], 2, p. 58). Xác đinh pH của 1 số loại nước ép trái cây: chanh, cam, táo, dưa hấu.

Bài toán 158 ([Tuấ+23], 3, p. 58). Xác định pH của 1 số đồ uống: bia, nước uống có gas, sữa tươi.

Bài toán 159 ([Tuấ+23], 3, p. 58, Tìm hiểu sự đổi màu của nước bắp cải tím khi tác dụng với các dung dịch acid & base.). Xay bắp cải tím với nước, lọc bã qua rây để giữ lại nước lọc. Cho nước lọc thu được vào 4 cốc thủy tinh không màu có đánh số từ 1–4, sau đó thêm vào các cốc: Cốc 1: nước vắt từ quả chanh. Cốc 2: dung dịch nước rửa chén. Cốc 3: nước xà phòng. Cốc 4: giấm ăn. Quan sát hiện tượng xảy ra & nhận xét.

5 Salt – Muối

5.1 Qualitative problem – Bài tập định tính

Bài toán 160 ([Tuấ+23], 3, p. 63). Cho biết các muối: Na₃PO₄, MgCl₂, CaCO₃, CuSO₄, KNO₃ tương ứng với acid nào trong số các acid sau: HCl, H₂SO₄, H₃PO₄, HNO₃, H₂CO₃.

Bài toán 161 ([Tuấ+23], 1, p. 63). Gọi tên các muối: KCl, ZnSO₄, MgCO₃, Ca₃(PO₄)₂, Cu(NO₃)₂, Al₂(SO₄)₃.

Bài toán 162 ([Tuấ+23], 2, p. 63). Sử dụng bảng tính tan, cho biết muối nào sau đây tan được trong nước: K₂SO₄, Na₂CO₃, AgNO₃, KCl, CaCl₂, BaCO₃, MgSO₄.

Bài toán 163 ([Tuấ+23], 3, p. 64). Dung dịch CuSO₄ có màu xanh lam, dung dịch ZnSO₄ không màu. Viết PTHH xảy ra khi ngâm Zn trong dung dịch CuSO₄, dự đoán sự thay đổi về màu của dung dịch trong quá trình trên.

Bài toán 164 ([Tuấ+23], 4, p. 64). Viết PTHH của phản ứng xảy ra trong các trường hợp sau: (a) Cho Fe vào dung dịch CuSO₄. (b) Cho Zn vào dung dịch AgNO₃.

Giải. Kết quả thí nghiệm trên cho thấy có phản ứng hóa học giữa dung dịch AgNO₃ & Cu. PTHH: $2 \text{ AgNO}_3 + \text{Cu} \longrightarrow \text{Cu(NO}_3)_2 + 2 \text{ Ag} \downarrow$ (silver nitrate → copper(II) nitrate).

Bài toán 165 ([Tuấ+23], 5, p. 65). Dự đoán các hiện tượng xảy ra trong các thí nghiệm sau: (a) Nhỏ dung dịch H₂SO₄ loãng vào dung dịch Na₂CO₃. (b) Nhỏ dung dịch HCl loãng vào dung dịch AgNO₃. Giải thích & viết PTHH xảy ra (nếu có).

Bài toán 166 ([Tuấ+23], 6, p. 65). Viết PTHH xảy ra trong các trường hợp sau: (a) Dung dịch FeCl₃ tác dụng với dung dịch NaOH. (b) Dung dịch CuCl₂ tác dụng với dung dịch KOH.

Bài toán 167 ([Tuấ+23], 6, p. 65). Hoàn thành các PTHH theo các sơ đồ: (a) MgO \rightarrow MgSO₄. (b) KOH \rightarrow Cu(OH)₂ \downarrow .

Bài toán 168 ([Tuấ+23], 8, p. 66). Viết PTHH xảy ra giữa các dung dịch sau: (a) Dung dịch NaCl với dung dịch AgNO₃. (b) Dung dịch Na₂SO₄ với dung dịch BaCl₂. (c) Dung dịch K₂CO₃ với dung dịch Ca(NO₃)₂.

Bài toán 169 ([Tuấ+23], 9, p. 66). Viết các PTHH theo sơ đồ chuyển hóa sau: $CuO \rightarrow CuSO_4 \rightarrow CuCl_2 \rightarrow Cu(OH)_2$.

Bài toán 170 ([Tuấ+23], p. 67). Muối $Al_2(SO_4)_3$ được dùng trong công nghiệp để nhuộm vải, thuộc da, làm trong nước, ... Tính khối lượng $Al_2(SO_4)_3$ tạo thành khi cho 51 kg Al_2O_3 tác dụng hết với dung dịch H_2SO_4 .

Bài toán 171 ([Tuấ+23], 10, p. 67). Viết 3 PTHH khác nhau để tạo ra Na₂SO₄ từ NaOH.

Bài toán 172 ([Tuấ+23], 11, p. 67). Viết 3 PTHH khác nhau để điều chế CuCl₂.

Bài toán 173 ([TTV23], 1., p. 33). Dẫn ra 1 dung dịch muối khi tác dụng với 1 dung dịch chất khác thì tạo ra: (a) chất khí. (b) chất kết tủa. Viết các PTHH.

Bài toán 174 ([TTV23], 2., p. 33). Có 3 lọ không nhãn, mỗi lọ đựng 1 dung dịch muối sau: CuSO₄, AgNO₃, NaCl. Dùng những dung dịch có sẵn trong phòng thí nghiệm để nhận biết chất đựng trong mỗi lọ. Viết các PTHH.

Bài toán 175 ([TTV23], 3., p. 33). Có các dung dịch muối: Mg(NO₃)₂, CuCl₂. Cho biết muối nào có thể tác dụng với: (a) Dung dịch NaOH. (b) Dung dịch HCl. (c) Dung dịch AgNO₃. Nếu có phản ứng, viết các PTHH.

Bài toán 176 ([TTV23], 4., p. 33). Cho các dung dịch muối sau phản ứng với nhau từng đôi một, viết dấu · nếu có phản ứng \mathcal{E} viết PTHH, dấu \circ nếu không.

Bài toán 177 ([TTV23], 5., p. 33). Ngâm 1 đinh sắt sạch trong dung dịch copper(II) sulfate. Câu trả lời nào sau đây là đúng nhất cho hiện tượng quan sát được? A. không có hiện tượng nào xảy ra. B. Kim loại đồng màu đỏ bám ngoài đinh sắt, đinh sắt không có sự thay đổi. C. 1 phần đinh sắt bị hòa tan, kim loại đồng bám ngoài đinh sắt & màu xanh lam của dung dịch ban đầu nhạt dần. D. Không có chất mới nào được sinh ra, chỉ có 1 phần đinh sắt bị hòa tan. Giải thích cho sự lựa chọn & viết PTHH, nếu có.

Bài toán 178 ([TTV23], 1., p. 36). Cho các muối: CaCO₃, CaSO₄, Pb(NO₃)₂, NaCl. Muối nào nói trên: (a) không được phép có trong nước ăn vì tính độc hại của nó? (b) không độc nhưng cũng không nên có trong nước ăn vì vị mặn của nó? (c) không tan trong nước, nhưng bị phân hủy ở nhiệt độ cao? (d) rất ít tan trong nước & khó bị phân hủy ở nhiệt độ cao?

Bài toán 179 ([TTV23], 2., p. 36). 2 dung dịch tác dụng với nhau, sản phẩm thu được có NaCl. Cho biết 2 dung dịch chất ban đầu có thể là các chất nào. Minh họa bằng các PTHH.

Bài toán 180 ([TTV23], 3., p. 36). (a) Viết phương trình điện phân dung dịch muối ăn (có màng ngăn). (b) Các sản phẩm của sự điện phân dung dịch NaCl có nhiều ứng dụng quan trọng: Khí clo dùng để: ... Khí hydrogen dùng để: ... Sodium hydroxide dùng để: ... Diền các ứng dựng sau vào các chỗ trống cho phù hợp: tẩy trắng vải, giấy; nấu xà phòng; sản xuất hydrochloric acid; chế tạo hóa chất trừ sâu, diệt cỏ dại; hàn cắt kim loại; sát trùng, diệt khuẩn nước ăn; nhiên liệu cho động cơ tên lửa; bơm khí cầu, bóng thám không; sản xuất nhôm, sản xuất chất đẻo PVC; chế biến dầu mỏ.

Bài toán 181 ([TTV23], 4., p. 36). Dung dịch NaOH có thể dùng để phân biệt 2 muối có trong mỗi cặp chất sau được không? (a) Dung dịch K₂SO₄ & dung dịch Fe₂(SO₄)₃. (b) Dung dịch Na₂SO₄ & dung dịch CuSO₄. (c) Dung dịch NaCl & dung dịch BaCl₂. Viết các PTHH, nếu có.

Bài toán 182 ([TAV23], 9.1., p. 11). Thuốc thử dùng để phân biệt 2 dung dịch sodium sulfate & sodium sunfite là: A. dung dịch barium chloride. B. dung dịch hydrochloric acid. C. dung dịch chì nitrate. D. dung dịch sodium hydroxide.

```
Bài toán 183 ([TAV23], 9.2., p. 11).
```

Bài toán 184 ([TAV23], 9.3., p. 11).

Bài toán 185 ([TAV23], 9.4., p. 11).

Bài toán 186 ([TAV23], 9.5., p. 11).

Bài toán 187 ([TAV23], 9.6., p. 11).

Bài toán 188 ([An23], 44., p. 37). Viết PTHH để thực hiện chuỗi chuyển hóa sau: (a) $FeS_2 \rightarrow SO_2 \rightarrow SO_3 \rightarrow H_2SO_4 \rightarrow CuSO_4$. (b) $AlCl_3 \rightarrow Al(OH)_3 \rightarrow Al_2O_3 \rightarrow Al_2(SO_4)_3 \rightarrow AlCl_3$. (c) $Na \rightarrow Na_2O \rightarrow NaOH \rightarrow Na_2CO_3 \rightarrow NaHCO_3$. (d) Cho các chất: SO_2 , Fe_2O_3 , $Ba(OH)_2$, HCl, $KHCO_3$. Chất nào tác dụng được với dung dịch H_2SO_4 ? Chất nào tác dụng được với dung dịch KOH? Viết PTHH.

5.2 Quantitative problem – Bài tập định lượng

Bài toán 189 ([TTV23], 6., p. 33). Trộn 30 mL dung dịch có chứa 2.22 g CaCl₂ với 70 mL dung dịch có chứa 1.7 g AgNO₃. (a) Cho biết hiện tượng quan sát được & viết PTHH. (b) Tính khối lượng chất rắn sinh ra. (c) Tính nồng độ mol của chất còn lại trong dung dịch sau phản ứng. Cho thể tích của dung dịch thay đổi không đáng kể.

Bài toán 190 ([TTV23], 5., p. 36). Trong phòng thí nghiệm có thể dùng các muối KClO₃ hoặc KNO₃ để điều chế khí oxygen bằng phản ứng phân hủy. (a) Viết các PTHH. (b) Nếu dùng 0.1 mol mỗi chất thì thể tích khí oxygen thu được có khác nhau không? Tính thể tích khí oxygen thu được. (c) Cần điều chế 1.12 L khí oxygen, tính khối lượng mỗi chất cần dùng. Các thể tích khí được đo ở đktc.

Bài toán 191 ([TAV23], 9.7., p. 11).

Bài toán 192 ([TAV23], 9.8., p. 11).

5.2.1 Tính khối lượng muối & thể tích khí CO₂

Bài toán 193 ([An23], 26., p. 27). Cho 8.25 g hỗn hợp bột kim loại Mg, Fe tác dụng hết với dung dịch HCl thấy thoát ra 5.6 L H₂ (đktc). Tính khối lượng muối tạo thành.

Bài toán 194 ([An23], 27., p. 27). Cho 1.84 g carbonate của 2 kim loại hóa trị II, tác dụng hết với dung dịch HCl thu được 0.672 L CO₂ & dung dịch X. Tính khối lượng muối trong dung dịch X.

Bài toán 195 ([An23], 28., p. 28). Cho 19.7 g muối carbonate của kim loại hóa trị II bằng dung dịch H₂SO₄ loãng dư thu được 23.3 g muối sulfate. Tính thể tích CO₂ & xác đinh CTPT của muối.

Bài toán 196 ([An23], 29., p. 28). Hòa tan 21.5 g hỗn hợp BaCl₂, CaCl₂ vào 250 mL H₂O để được dung dịch X. Thêm vào dung dịch X 200 mL dung dịch Na₂CO₃ 1M thấy tách ra 19.85 g kết tủa & còn nhận được 400 mL dung dịch Y. Tính nồng độ moi các chất trong dung dịch Y.

Bài toán 197 ([An23], 30., p. 29). Trong 1 L dung dịch hỗn hợp X gồm 0.2 mol Na₂CO₃ & 0.5 mol (NH₄)₂CO₃. Cho 86 g hỗn hợp BaCl₂, CaCl₂ vào dung dịch X. Sau khi phản ứng kết thúc, ta thu được 79.4 g kết tủa Y. Tính khối lượng các chất trong kết tủa Y.

Bài toán 198 ([An23], 31., p. 30). Cho 5.8 g muối carbonate MCO₃ của kim loại M tan hoàn toàn trong dung dịch H₂SO₄ loãng vừa đủ, thu được 1 chất khí & dung dịch X. Cô cạn dung dịch X thu được 7.6 g muối sulfate trung hòa, khan. Xác định CTHH của muối carbonate.

Bài toán 199 ([An23], 32., p. 30). Hòa tan hoàn toàn 14.2 g hỗn hợp A gồm MgCO₃ & muối carbonate của kim loại R vào acid HCl 7.3% vừa đủ, thu được dung dịch B & 3.36 L khí CO₂ (đktc). Nồng độ MgCl₂ trong dung dịch B bằng 6.028%. Xác đinh kim loại R.

Bài toán 200 ([An23], 33.a, p. 31). Có hỗn hợp gồm 2 muối NaCl, NaBr. Khi cho dung dịch AgNO₃ vừa đủ vào hỗn hợp trên người ta thu được lượng kết tủa bằng khối lượng AgNO₃ tham gia phản ứng. Tính % khối lượng mỗi chất trong hỗn hợp.

Bài toán 201 ([An23], 33.b, p. 31). Cho 2 cốc đựng dung dịch HCl đặt trên 2 đĩa cân A & B: cân ở trạng thái thăng bằng. Cho a g CaCO₃ vào cốc A & b g M₂CO₃ (M: kim loại kiềm) vào cốc B. Sau khi 2 muối đã tan hoàn toàn, cân trở lại vị trí thăng bằng. Thiết lập biểu thức tính nguyên tử khối của M theo a,b. Áp dụng cho a = 5 g, b = 4.8 g. Xác định kim loại M.

Bài toán 202 ([An23], 34., p. 32). Cho từ từ dung dịch chứa a mol HCl vào dung dịch chứa b mol Na₂CO₃ đồng thời khuấy đều, thu được V L khí (ở đktc) & dung dịch X. Khi co dư nước vôi trong vào dung dịch X thấy có xuất hiện kết tủa. Tính biểu thức liên hệ giữa V với a, b.

Bài toán 203 ([An23], 35., p. 32). Cho 1.9 g hỗn hợp muối carbonate & hydrocarbonate (i.e., bicarbonate) của kim loại kiềm M tác dụng hết với dung dịch HCl (dư), sinh ra 0.448 L khí (đktc). Xác định kim loại M.

Bài toán 204 ([An23], 36., p. 33). Khi hòa tan hydroxide kim loại M(OH)₂ bằng 1 lượng vừa đủ dung dịch H₂SO₄ 20% thu được dung dịch muối trung hòa có nồng độ 27.21%. Xác định kim loại M.

5.2.2 Kim loại mạnh đẩy kim loại yếu ra khỏi dung dịch muối

Bài toán 205 ([An23], 37., p. 33). Nhúng 1 lá nhôm vào dung dịch CuSO₄. Sau phản ứng lấy lá nhôm ra thì thấy khối lượng dung dịch nhẹ đi 1.38 g. Tính khối lượng Al đã phản ứng.

Bài toán 206 ([An23], 38., p. 34). Nhúng 1 thanh graphite phủ kim loại A hóa trị II vào dung dịch CuSO₄ dư. Sau phản ứng thanh graphite giảm 0.04 g. Tiếp tục nhúng thanh graphite này vào dung dịch AgNO₃ dư, khi phản ứng kết thúc khối lượng thanh graphite tăng 6.08 g (so với khối lượng thanh graphite sau khi nhúng vào CuSO₄). Tìm tên kim loại A & khối lượng kim loại A đã phủ lên thanh graphite lúc đầu. Coi như toàn bộ kim loại tạo thành đều bám vào thanh graphite.

Bài toán 207 ([An23], 39., p. 35). Nhúng thanh kim loại Zn vào 1 dung dịch chứa hỗn hợp 3.2 g CuSO₄ & 6.24 g CdSO₄. Hỏi sau khi Cu, Cd bị đẩy hoàn toàn khỏi dung dịch thì khối lượng thanh Zn tăng hay giảm bao nhiêu?

Bài toán 208 ([An23], 40., p. 35). Cho 1 lá đồng có khối lượng 5 g vào 125 g dung dịch AgNO₃ 4%. Sau 1 thời gian, khi lấy lá đồng ra thì khối lượng AgNO₃ trong dung dịch giảm 17%. Xác định khối lượng kim loại Cu sau phản ứng.

Bài toán 209 ([An23], 41., p. 36). Cho m g hỗn hợp Zn, Fe vào lượng dư dung dịch CuSO₄. Sau khi kết thúc các phản ứng, lọc bỏ phần dung dịch thu được m g chất rắn. Tính thành phần % theo khối lượng của Zn trong hỗn hợp ban đầu.

Bài toán 210 ([An23], 42., p. 36). Cho 1 lượng bột Zn vào dung dịch X gồm FeCl₂, CuCl₂. Khối lượng chất rắn sau khi các phản ứng xảy ra hoàn toàn nhỏ hơn khối lượng bột Zn ban đầu là 0.5 g. Cô cạn phần dung dịch sau phản ứng thu được 13.6 g muối khan. Tính tổng khối lượng các muối trong X.

Bài toán 211 ([An23], 43., p. 36). Hòa tan hoàn toàn 13.8 g muối carbonate 1 kim loại kiềm R₂CO₃ trong 110 mL dung dịch HCl 2M. Sau khi phản ứng xảy ra hoàn toàn, ta thấy còn dư acid trong dung dịch thu được & thể tích khí thoát ra V₁ vượt quá 2016 mL (đktc). Xác định CTHH muối carbonate.

5.2.3 Dạng bài toán chứng minh acid còn dư hay hỗn hợp các chất còn dư

Bài toán 212 ([An23], 37., p. 33).

Bài toán 213 ([An23], 37., p. 33).

Bài toán 214 ([An23], 37., p. 33).

6 Phân Bón Hóa Học

6.1 Qualitative problem – Bài tập định tính

Bài toán 215 ([Tuấ+23], 1, p. 68). Phân bón hóa học là gì? Theo nhu cầu của cây trồng, phân bón được chia thành các loại nào?

Bài toán 216 ([Tuấ+23], 2, p. 69). Các loại phân đạm đều chứa nguyên tố hóa học nào? Nêu tác dụng chính của phân đạm đối với cây trồng.

Bài toán 217 ([Tuấ+23], 3, p. 69). Phân lân cung cấp nguyên tố dinh dưỡng nào cho cây trồng? Nêu tác dụng chính của phân lân đối với cây trồng.

Bài toán 218 ([Tuấ+23], 4, p. 70). Phân lân hóa học có ảnh hưởng thế nào đến môi trường?

Bài toán 219 ([Tuấ+23], 5, p. 71). Khi sử dụng phân bón hóa học cần tuân thủ những nguyên tắc nào?

Bài toán 220 ([Tuấ+23], p. 71). Lúa là cây lương thực chủ yếu ở nước ta, tìm hiểu & cho biết: Quá trình sinh trưởng của cây lúa được chia thành mấy giai đoạn, với mỗi giai đoạn đó cần bón cho lúa loại phân nào.

Bài toán 221 ([TTV23], 1., p. 39). Có các loại phân bón hóa học: KCl, NH₄NO₃, NH₄Cl, (NH₄)₂SO₄, Ca₃(PO₄)₂, Ca(H₂PO₄)₂, (NH₄)₂HPO₄, KNO₃. (a) Cho biết tên hóa học của các phân bón này. (b) Sắp xếp các phân bón này thành 2 nhóm phân bón đơn \mathcal{E} phân bón kép. (c) Trộn các phân bón nào với nhau ta được phân bón kép NPK?

Bài toán 222 ([TTV23], 2., p. 39). Có 3 mẫu phân bón hóa học không ghi nhãn: phân kali KCl, phân đạm NH₄NO₃ & phân supephotphat (phân lân) Ca(H₂PO₄)₂. Nhận biết mỗi mẫu phân bón trên băng phương pháp hóa học.

6.2 Quantitative problem – Bài tập định lượng

Bài toán 223 ([TTV23], 3., p. 39). 1 người làm vườn đã dùng 500 g (NH₄)₂SO₄ để bón rau. (a) Nguyên tố dinh dưỡng nào có trong loại phân bón này? (b) Tính thành phần % của nguyên tố dinh dưỡng trong phân bón. (c) Tính khối lượng của nguyên tố dinh dưỡng bón cho ruộng rau.

7 Miscellaneous

7.1 Qualitative problem – Bài tập định tính

Bài toán 224 ([Tuấ+23], 1., p. 72). Trong các chất: HCl, CuO, KOH, CaCO₃, H₂SO₄, Fe(OH)₂, chất nào là acid, base, kiềm?

Bài toán 225 ([Tuấ+23], 2., p. 72). Trong các chất: CuSO₄, SO₂, MgCl₂, CaO, Na₂CO₃, chất nào là muối, oxide base, oxide acid. Viết tên gọi các muối.

Bài toán 226 ([Tuấ+23], 3., p. 72). Chất nào trong dãy chất sau: CuO, Mg(OH)₂, Fe, SO₂, HCl, CuSO₄ tác dụng được với: (a) dung dịch NaOH. (b) dung dịch H₂SO₄ loãng. Viết các PTHH của các phản ứng (nếu có).

Bài toán 227 ([Tuấ+23], 4., p. 72). Viết các PTHH theo các sơ đồ: (a) $HCl + ? \longrightarrow NaCl + H_2O$. (b) $NaOH + ? \longrightarrow Cu(OH)_2 \downarrow + ?$. (c) $KOH + ? \longrightarrow K_2SO_4 + ?$. (d) $Ba(NO_3)_2 + ? \longrightarrow BaSO_4 \downarrow + ?$.

Bài toán 228 ([Tuấ+23], 5., p. 72). Viết các PTHH theo các sơ đồ chuyển hóa sau: (a) $CuO \rightarrow CuSO_4 \rightarrow Cu(OH)_2$. (b) $Mg \rightarrow MgCl_2 \rightarrow Mg(OH)_2$. (c) $NaOH \rightarrow Na_2SO_4 \rightarrow NaCl$. (d) $K_2CO_3 \rightarrow CaCO_3 \rightarrow CaCl_2$.

Bài toán 229 ([TTV23], 1., p. 41). Chất nào trong các thuốc thử sau có thể dùng để phân biệt dung dịch sodium sulfate & dung dịch sodium carbonate? (a) Dung dịch barium chloride. (b) Dung dịch hydrochloric acid. (c) Dung dịch chì nitrate. (d) Dung dịch bạc nitrate. (e) Dung dịch sodium hydroxide. Giải thích & viết các PTHH.

Bài toán 230 ([TTV23], 2., p. 41). Cho các dung dịch sau lần lượt phản ứng với nhau từng đôi một, ghi 1 nếu có phản ứng, 0 nếu không có phản ứng. Viết các PTHH nếu có.

	NaOH	HCl	H_2SO_4
$CuSO_4$			
HCl			
$Ba(OH)_2$			

Bài toán 231 ([TTV23], 4., p. 41). Có các chất: Na₂O, Na, NaOH, Na₂SO₄, Na₂CO₃, NaCl. (a) Dựa vào mối quan hệ giữa các chất, sắp xếp các chất trên thành 1 dãy chuyển đổi hóa học. (b) Viết các PTHH cho dãy chuyển đổi hóa học ở (a).

Bài toán 232 ([TTV23], 2., p. 43). Để 1 mẩu sodium hydroxide trên tấm kính trong không khí, sau vài ngày thấy có chất rắn màu trắng phủ ngoài. Nếu nhỏ vài giọt dung dịch HCl vào chất rắn trắng thấy có khí thoát ra, khí này làm đục nước vôi trong. Chất rắn màu trắng là sản phẩm phản ứng của sodium hydroxide với chất nào sau đây? Giải thích & viết PTHH minh họa. (a) Oxygen trong không khí. (b) Hơi nước trong không khí. (c) Carbon dioxide & oxygen trong không khí. (d) Carbon dioxide & hơi nước trong không khí. (e) Carbon dioxide trong không khí.

7.2 Quantitative problem – Bài tập định lượng

Bài toán 233 ([Tuấ+23], 6., p. 72). Cho 100 mL dung dịch Na₂SO₄ 0.5 M tác dụng vừa đủ với dung dịch BaCl₂ thì thu được m g kết tủa. (a) Viết PTHH của phản ứng xảy ra. (b) Tính m. (c) Tính nồng độ moi của dung dịch BaCl₂, biết thể tích dung dịch BaCl₂ đã dùng là 50 mL.

Bài toán 234 ([Tuấ+23], 7., p. 72). Viết các PTHH điều chế MgCl₂ trực tiếp từ MgO, Mg(OH)₂, MgSO₄.

Bài toán 235 ([Tuấ+23], 8., p. 72). Biết dung dịch NaCl có pH = 7. Chỉ dùng quỳ tím, nêu cách nhận biết các dung dịch không màu, dựng trong 3 ống nghiệm riêng rẽ: NaOH, HCl, NaCl.

Bài toán 236 ([Tuấ+23], 9., p. 72). Việc bón phân NPK cho cây cà phê sau khi trồng 4 năm được chia thành 4 thời kỳ như sau:

Thời kỳ	Lượng phân bón
Bón thúc ra hoa	0.5 kg phân NPK 10-12-5/cây
Bón đậu quả, ra quả	0.7 kg phân NPK 12-8-2/cây
Bón quả lớn, hạn chế rụng quả	0.7 kg phân NPK 12-8-12/cây
Bón thúc quả lớn, tăng dưỡng chất cho quả	0.6 kg phân NPK 16-16-16/cây

(a) Tính lượng N đã cung cấp cho cây trong cả 4 thời kỳ. (b) Nguyên tố dinh dưỡng potassium được bổ sung cho cây nhiều nhất ở thời kỳ nào?

S

Bài toán 237 ([TTV23], 3., p. 43). Trộn 1 dung dịch có hòa tan 0.2 mol CuCl₂ với 1 dung dịch có hòa tan 20 g NaOH. Lọc hỗn hợp các chất sau phản ứng, được kết tủa & nước lọc. Nung kết tủa đến khi khối lượng không đổi. (a) Viết các PTHH. (b) Tính khối lượng chất rắn thu được sau khi nung. (c) Tính khối lượng các chất tan có trong nước lọc.

Bài toán 238 ([An20], 38., p. 78). Khi cho a g dung dịch H_2SO_4 nồng độ A% tác dụng với 1 lượng hỗn hợp 2 kim loại Na,Zn (dùng dư) thì khối lượng H_2 tạo thành là 0.05a g. Xác định nồng độ A%.

Bài toán 239 ([An20], 39., p. 78). Trộn lẫn 100 mL dung dịch NaHSO₄ 1M với 100 mL dung dịch NaOH 2M được dung dịch A. Cô can dung dịch A thì thu được hỗn hợp các chất nào?

Bài toán 240 ([An20], 40., p. 78). Cho 15.9 g hỗn hợp 2 muối MgCO₃, CaCO₃ vào 0.4 L dung dịch HCl 1M thu được dung dịch X. Hỏi dung dịch X có dư acid không>

Bài toán 241 ([An20], 41., p. 78). Cho 6.2 g Na₂O vào nước. Tính thể tích khí SO₂ (đktc) cần thiết với dung dịch trên để tạo 2 muối.

Bài toán 242 ([An20], 45., p. 78). Hòa tan hoàn toàn a g R₂O₃ cần b g dung dịch H₂SO₄ 12.25% thì vừa đủ. Sau phản ứng thu được dung dịch muối có nồng đô 15.36%. Xác đinh kim loại R.

Bài toán 243 ([An20], 46., p. 79). Hòa tan 13.2 g hỗn hợp X gồm 2 kim loại có cùng hóa trị vào 400 mL dung dịch HCl 1.5M. Cô cạn dung dịch sau phản ứng thu được 32.7 g hỗn hợp muối khan. Hỗn hợp X có tan hết trong dung dịch HCl không?

Bài toán 244 ([An20], 47., p. 79). Trộn V_1 L dung dịch HCl 0.6M với V_2 L dung dịch NaOH 0.4M thu được 0.6 L dung dịch A. Tính V_1 , V_2 biết 0.6 L dung dịch A có thể hòa tan hết 1.02 g Al₂O₃. Biết sự pha trộn không làm thay đổi thể tích 1 cách đáng $k\mathring{e}^{.3}$

Bài toán 245 ([An20], 48., p. 79). Cho 39.6 g hỗn hợp gồm KHSO₃, K₂CO₃ vào 400 g dung dịch HCl 7.3%. Sau phản ứng thu được hỗn hợp khí X có tỷ khối hơi so với H₂ bằng 25.33 & 1 dung dịch Y. (a) Chứng minh acid còn dư. (b) Tính C% các chất trong dung dịch Y.

Tài liệu

- [An20] Ngô Ngọc An. Hóa Học Nâng Cao Bồi Dưỡng Học Sinh Giỏi Các Lớp 8, 9. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2020, p. 149.
- [An23] Ngô Ngọc An. 350 Bài Tập Hóa Học Chọn Lọc & Nâng Cao Lớp 9. Tái bản lần thứ 13. Nhà Xuất Bản Giáo Dục, 2023, p. 183.
- [TAV23] Lê Xuân Trọng, Ngô Ngọc An, and Ngô Văn Vụ. *Bài Tập Hóa Học 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 164.
- [TTV23] Lê Xuân Trọng, Cao Thị Thặng, and Ngô Văn Vụ. *Hóa Học 9*. Tái bản lần thứ 22. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 174.
- [Tuấ+23] Mai Sỹ Tuấn, Đinh Quang Báo, Nguyễn Văn Khánh, Đặng Thị Oanh, Nguyễn Thị Hồng Hạnh, Đỗ Thị Quỳnh Mai, Lê Thị Phượng, Phạm Xuân Quế, Dương Xuân Quý, Đào Văn Toàn, Trương Anh Tuấn, Lê Thị Tuyết, and Ngô Văn Vụ. *Khoa Học Tự Nhiên 8*. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2023, p. 207.

 $^{^3}$ Đã học ở Vật lý 8 về sự đan xen của các nguyên tử, phân tử của 2 hay nhiều dung dịch khi trộn vào nhau.