Medical Image Processing for Diagnostic Applications

Defect Pixel Interpolation – Utilizing Symmetry

Online Course – Unit 17 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Defect Pixel Interpolation using Symmetry Properties

Notation

For simplicity and without loss of generality we limit the following discussion to 1-D signals of length N, and use the following notation:

- discrete ideal signal: f(n),
- binary mask image: w(n),

$$g(u) = f(u) \cdot w(u)$$

observed signal: g(n).

The respective Fourier transforms are denoted $F(\xi)$, $W(\xi)$, $G(\xi)$.

Observations:

- We consider real valued signals f(n), g(n), w(n). real value -> symmetry holds
- They satisfy the following relationship:

$$g(n) = f(n) \cdot w(n) \Leftrightarrow G(\xi) = F(\xi) * W(\xi).$$

 For the ideal, the mask, and the defect image, the Fourier transform satisfies the symmetry property:

$$F(\xi) = \overline{F}(N - \xi),$$

$$G(\xi) = \overline{G}(N - \xi),$$

$$W(\xi) = \overline{W}(N - \xi),$$

where the bar symbol in \overline{z} denotes the complex conjugate of z

Now we make explicit use of the symmetry property of the Fourier transform to derive an interpolation algorithm:

- Select a pair G(s) and G(N-s) of the Fourier transform of the corrupted image showing pixels defects.
- Select a pair F(s) and F(N-s) of the Fourier transform of the ideal image.

- Let us assume that the Fourier transform of the ideal image $F(\xi)$ consists only of two lines at s and N-s, where $s \neq 0$.
- We can then rewrite the Fourier transform of f(n) using Dirac's δ -function: this is a dirac pulse is 1 if ξ = s or if ξ -N = s -> basicly if, else statement

$$F(\xi) = \widehat{F}(s)\delta(\xi - s) + \widehat{F}(N - s)\delta(\xi - N + s),$$
what we want sifnal only consists of F(s) and F(N-s) > rest is zero

where \hat{F} denotes an estimate of F, and the δ -function is defined by

$$\delta(k) = \begin{cases} 1, & \text{if } n = 0, \\ 0, & \text{otherwise.} \end{cases}$$

The convolution of F and the Fourier transform W of the given mask image leads to the Fourier transform of the observed corrupted image:

$$G(s) = \frac{1}{N} \left(\widehat{F}(s) W(0) + \overline{\widehat{F}}(s) W(2s) \right).$$

This can be shown as follows:

$$G(s) = F(s) * W(s) = rac{1}{N} \sum_{k=0}^{N-1} F(k) * W(s-k).$$

Due to our assumption, we know that $F \neq 0$ only at k = s or k = N - s, hence:

$$G(s) = rac{1}{N} \left(\widehat{F}(s) W(0) + \widehat{F}(N-s) W(s-N+s) \right)$$

= $rac{1}{N} \left(\widehat{F}(s) W(0) + \overline{\widehat{F}}(s) W(2s) \right).$

 For the conjugate complex Fourier transform of the observed image we get:

$$\overline{G}(s) = \frac{1}{N} \left(\overline{\widehat{F}}(s) \overline{W}(0) + \widehat{F}(s) \overline{W}(2s) \right).$$

- Since W is known, we get two equations linear in $\widehat{F}(s)$ and $\widehat{F}(s)$.
- Hence, the final estimator for the Fourier transform of the ideal image is:

$$\widehat{F}(s) = N \frac{G(s)\overline{W}(0) - \overline{G}(s)W(2s)}{|W(0)|^2 - |W(2s)|^2},$$
 (FT-EST)

where |.| denotes the absolute value of the complex number.

Error Spectrum

 An objective function to measure the quality of the interpolated image results from the least square error: in spacial domain

$$\Delta_{\varepsilon} = \frac{1}{N} \sum_{n=0}^{N-1} \left(g(n) - w(n) \widehat{f}(n) \right)^{2}.$$

The spectrum of the error in the *i*-th iteration step is given by:

$$G^{(i)}(\xi) = G^{(i-1)}(\xi) - \frac{1}{N} \left(\widehat{F}^{(i)}(s) \delta(\xi - s) + \overline{\widehat{F}}^{(i)}(s) \delta(\xi - N + s) \right) * W(\xi).$$

Topics

Interpolation Algorithm

Interpolation Algorithm

Figure 1: Interpolation algorithm according to Aach and Metzler

Topics

Summary Take Home Messages **Further Readings**

Take Home Messages

- Assuming the spectrum of a signal/function consists of two non-zero lines, then we find an estimate for the Fourier transform.
- The symmetry property of the Fourier transform w. r. t. real valued functions can be used to build a defect interpolation algorithm.

Further Readings

 The method presented for defect pixel interpolation in the frequency domain was published by Til Aach and Volker Metzler in 2001:

> Til Aach and Volker Metzler. "Defect Interpolation in Digital Radiography: How Object-Oriented Transform Coding Helps". In: Proc. SPIE 4322. Medical Imaging 2001: Image Processing. Vol. 4322. San Diego, CA: SPIE, Feb. 2001, pp. 824-835. DOI: 10.1117/12.431161

 A recent article about defect pixel interpolation with respect to image quality issues can be found here:

Jan Kuttig et al. "Effects of Defect Pixel Correction Algorithms for X-ray Detectors on Image Quality in Planar Projection and Volumetric CT Data Sets". In: Measurement Science and Technology 26.9 (Aug. 2015). 095406 (14pp). DOI: 10.1088/0957-0233/26/9/095406