Дискретная оптимизация весна 2013

Александр Дайняк

http://www.dainiak.com

Задача дискретного максимина

Есть ограниченное количество ресурса N.

Ресурс можно задействовать в m разных областях.

При задействовании x единиц ресурса в i-й области результат равен $f_i(x)$.

Функции f_i возрастающие, величины x_i целые неотрицательные.

<u>Цель:</u> подобрать x_1, \dots, x_m , такие, что $\sum_{i=1}^m x_i = N$ и максимизировать при этом величину $\min_{1 \leq i \leq m} f_i(x_i)$

Задача дискретного максимина

Ищем
$$x_1,\ldots,x_m$$
, т.ч. $\sum_{i=1}^m x_i = N$ и $\min_{1 \leq i \leq m} f_i(x_i) \to \max$. Положим $I(x_1,\ldots,x_m) \coloneqq \left| \underset{1 \leq i \leq m}{\operatorname{Argmin}} f_i(x_i) \right|$.

Теорема.

• Пусть x_1^*, \dots, x_m^* — оптимальное распределение ресурса, при котором $I(x_1^*, \dots, x_m^*)$ минимально среди всех оптимальных распределений. Тогда

$$\forall j \quad \left(x_j^* > 0 \quad \Rightarrow \quad f_j\left(x_j^* - 1\right) \le \min_{1 \le i \le m} f_i(x_i^*)\right)$$

• Наоборот, если выполнено условие выше, то набор x_1^*, \dots, x_m^* является оптимальным.

Доказательство необходимости

Пусть набор x_1, \dots, x_m таков, что для некоторого j выполнено $x_i > 0$, но при этом $f_j(x_j-1) > \min_{1 \le i \le m} f_i(x_i)$.

Возьмём произвольное k, такое, что $f_k(x_k) = \min_{1 \le i \le m} f_i(x_i)$, и рассмотрим набор $x'_1, ..., x'_m$, в котором

$$x_i' \coloneqq egin{cases} x_i, & ext{если } i
otin \{j, k\} \ x_j - 1, & ext{если } i = j \ x_k + 1, & ext{если } i = k \end{cases}$$

Если $\min_{1\leq i\leq m}f_i(x_i)$ достигался только на $f_k(x_k)$, то $\min_{1\leq i\leq m}f_i(x_i')>\min_{1\leq i\leq m}f_i(x_i)$.

Если же $\min_{1 \leq i \leq m} f_i(x_i)$ достигался не только на $f_k(x_k)$, то $\min_{1 \leq i \leq m} f_i(x_i') = \min_{1 \leq i \leq m} f_i(x_i)$, зато $I(x_1', \dots, x_m') < I(x_1, \dots, x_m)$.

то
$$\min_{1 \le i \le m} f_i(x_i') = \min_{1 \le i \le m} f_i(x_i)$$
, зато $I(x_1', \dots, x_m') < I(x_1, \dots, x_m)$

Доказательство достаточности

Пусть набор $x_1^*, ..., x_m^*$ таков, что

$$\forall j \quad \left(x_j^* > 0 \quad \Rightarrow \quad f_j(x_j^* - 1) \le \min_{1 \le i \le m} f_i(x_i^*)\right)$$

Рассмотрим произвольный другой набор x_1, \dots, x_m .

Найдётся такой индекс k, что $x_k < x_k^*$.

Имеем

$$\min_{1 \le i \le m} f_i(x_i^*) \ge f_k(x_k^* - 1) \ge f_k(x_k) \ge \min_{1 \le i \le m} f_i(x_i)$$

Алгоритм поиска оптимального набора

Начинаем с произвольного набора $x_1, ..., x_m$.

while
$$\exists j \ \left(x_j > 0 \ \land \ f_j(x_j - 1) > \min_{1 \le i \le m} f_i(x_i)\right)$$
 do $k \coloneqq \operatorname*{argmin} f_i(x_i)$ $x_j \coloneqq x_j - 1$ $x_k \coloneqq x_k + 1$

На каждой итерации цикла либо улучшаем значение минимума, либо уменьшаем величину $I(\dots)$, пока не придём к оптимальному набору.

Заметим, что если на какой-то итерации цикла мы увеличили x_k на единицу, то на всех последующих итерациях x_k не будет уменьшаться. Значит, общее число итераций не больше N.

Алгоритм поиска оптимального набора

while
$$\exists j \ \left(x_j > 0 \ \land \ f_j(x_j - 1) > \min_{1 \le i \le m} f_i(x_i)\right)$$
 do $k \coloneqq \operatorname*{argmin} f_i(x_i)$ $x_j \coloneqq x_j - 1$ $x_k \coloneqq x_k + 1$

По ходу алгоритма можно хранить значения $f_i(x_i)$ и $f_i(x_i-1)$ в кучах (с операциями getMin и getMax соответственно).

Если вычисление каждой функции f_i выполнимо за время T, то сложность алгоритма не превосходит $O(N \cdot (T + \log m))$.

Получаем квазиполиномиальный алгоритм.

Максимизация сумм функций

Есть ограниченное количество ресурса N.

Ресурс можно задействовать в m разных областях.

При задействовании x единиц ресурса в i-й области результат равен $f_i(x)$.

Функции f_i возрастающие, величины x_i целые неотрицательные.

<u>Цель:</u> подобрать x_1, \dots, x_m , такие, что $\sum_{i=1}^m x_i = N$ и максимизировать при этом величину

$$\sum_{i=1}^{m} f_i(x_i)$$

Ищем x_1, \dots, x_m , т.ч. $\sum_{i=1}^m x_i = N$ и $\sum_{i=1}^m f_i(x_i) \to \max$. Пусть все f_i вогнутые, т.е. $f_i(x) - f_i(x-1) \ge f_i(x+1) - f_i(x)$ при x > 0. Тогда справедлива следующая теорема.

Теорема.

Распределение ресурса x_1^*, \dots, x_m^* оптимально т. и т.т., когда $\forall j \ \left(x_j^* > 0 \ \Rightarrow \ f_j(x_j^*) - f_j(x_j^* - 1) \geq \max_{1 < i < m} \left(f_i(x_i^* + 1) - f_i(x_i^*) \right) \right)$

Доказываем, что если распределение ресурса $x_1^*, ..., x_m^*$ оптимально, то $\forall j \ \left(x_j^* > 0 \ \Rightarrow \ f_j(x_j^*) - f_j(x_j^* - 1) \geq \max_{1 \leq i \leq m} \left(f_i(x_i^* + 1) - f_i(x_i^*) \right) \right)$

Допустим, условия нарушены для набора x_1, \dots, x_m . То есть $\exists j, k$ такие, что $x_j > 0$ и $f_j(x_j) - f_j(x_j - 1) < f_k(x_k + 1) - f_k(x_k)$.

Рассмотрим набор x_1', \dots, x_m' , в котором

$$x_i' \coloneqq egin{cases} x_i, & ext{если } i
otin \{j,k\} \ x_j - 1, & ext{если } i = j \ x_k + 1, & ext{если } i = k \end{cases}$$

 $\sum_{i=1}^{m} f_i(x_i') = \sum_{i=1}^{m} f_i(x_i) - f_k(x_k) - f_j(x_j) + f_k(x_k + 1) + f_j(x_j - 1) > \sum_{i=1}^{m} f_i(x_i)$

Доказываем, для оптимальности x_1^*, \dots, x_m^* достаточно, чтобы

$$\forall j \ \left(x_j^* > 0 \ \Rightarrow \ f_j(x_j^*) - f_j(x_j^* - 1) \ge \max_{1 \le i \le m} \left(f_i(x_i^* + 1) - f_i(x_i^*) \right) \right)$$

Пусть $x_1, ..., x_m$ — любое другое распределение ресурса.

Обозначим
$$\lambda \coloneqq \max_{1 \le i \le m} (f_i(x_i^* + 1) - f_i(x_i^*)).$$

Для каждого i докажем, что $f_i(x_i^*) - f_i(x_i) \ge \lambda(x_i^* - x_i)$.

Пусть $x_i^* > x_i$. Тогда, по условию, $f_i(x_i^*) - f_i(x_i^* - 1) \ge \lambda$.

Из вогнутости функции f_i следует

$$f_i(x_i^*-1)-f_i(x_i^*-2) \ge f_i(x_i^*)-f_i(x_i^*-1) \ge \lambda$$

Аналогично,
$$f_i(x_i^*-2)-f_i(x_i^*-3) \ge \lambda$$
, ..., $f_i(x_i+1)-f_i(x_i) \ge \lambda$.

www.dainiak.con

$$\lambda \coloneqq \max_{1 \le i \le m} \left(f_i(x_i^* + 1) - f_i(x_i^*) \right)$$

Пусть $x_i^* > x_i$. Тогда

$$f_{i}(x_{i}^{*}) - f_{i}(x_{i}^{*} - 1) \ge \lambda$$

$$f_{i}(x_{i}^{*} - 1) - f_{i}(x_{i}^{*} - 2) \ge \lambda$$

$$f_{i}(x_{i}^{*} - 2) - f_{i}(x_{i}^{*} - 3) \ge \lambda$$

$$\vdots$$

$$f_{i}(x_{i} + 1) - f_{i}(x_{i}) \ge \lambda$$

Сложивэти неравенства и телескопировав, получим

$$f_i(x_i^*) - f_i(x_i) \ge \lambda(x_i^* - x_i)$$

Аналогично (упражнение) разбирается случай $x_i^* < x_i$.

$$\lambda \coloneqq \max_{1 \le i \le m} \left(f_i(x_i^* + 1) - f_i(x_i^*) \right)$$

Мы доказали, что для каждого i выполнено неравенство

$$f_i(x_i^*) - f_i(x_i) \ge \lambda(x_i^* - x_i)$$

Сложив эти неравенства при
$$i=1...m$$
, получим
$$\sum_{i=1}^m f_i(x_i^*) - \sum_{i=1}^m f_i(x_i) \geq \lambda \left(\sum_{i=1}^m x_i^* - \sum_{i=1}^m x_i\right) = \lambda (N-N) = 0$$

Теорема доказана.

Алгоритм на основе теоремы получается, как и в предыдущей задачи.

Детали алгоритма и оценка сложности — упражнение.

Оптимизация произведений

Теорема.

Пусть x_1, \dots, x_m — положительные числа, такие, что $\sum_{i=1}^m x_i = N$ и пусть $x_1 \leq x_2 \leq \dots \leq x_m$.

Пусть m можно варьировать.

Тогда максимум произведения $\prod_{i=1}^m x_i$ достигается на наборах:

- Если N=3n, то $x_1=x_2=\cdots=x_m=3$.
- Если N=3n+2, то $x_1=2$ и $x_2=\cdots=x_m=3$.
- Если N=3n+1, то $x_1=x_2=2$ и $x_3=\cdots=x_m=3$ или $x_1=x_2=\cdots x_{m-1}=3$ и $x_m=4$.

Оптимизация произведений

Доказательство:

Пусть x_1, \dots, x_m — произвольный набор, на котором достигается максимум произведения. Очевидно, среди x_1, \dots, x_m нет единиц.

- Все x_i не превосходят 4, иначе можно заменить такое x_i на пару сомножителей $2(x_i-2)$, увеличив значение $\prod_{i=1}^m x_i$.
- Среди x_1, \dots, x_m не больше одной четвёрки, иначе можно заменить $4 \cdot 4$ на $2 \cdot 3 \cdot 3$, увеличив значение $\prod_{i=1}^m x_i$.
- Среди x_1, \dots, x_m не больше двух двоек, иначе можно заменить $2 \cdot 2 \cdot 2$ на $3 \cdot 3$, увеличив значение $\prod_{i=1}^m x_i$.
- Среди x_1, \dots, x_m нет одновременно двойки и четвёрки, иначе можно $2 \cdot 4$ заменить на $3 \cdot 3_{\text{Move dainiak com}}$

Оптимизация произведений

Теорема-упражнение.

Пусть x_1, \dots, x_m — положительные числа, такие, что $\sum_{i=1}^m x_i = N$ и пусть $x_1 \leq x_2 \leq \dots \leq x_m$.

Пусть m можно варьировать.

Тогда максимум произведения $\prod_{i=1}^m x_i^i$ достигается только на наборах из единиц, двоек и троек.

Линейное программирование

Общая форма задачи ЛП:

- $c_1x_1 + \cdots + c_nx_n \rightarrow \min$ или $\rightarrow \max$
- $a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$, ..., $a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$
- $a'_{1,1}x_1 + \dots + a'_{1,n}x_n \ge b'_1$, ..., $a'_{m',1}x_1 + \dots + a'_{m',n}x_n \ge b'_{m'}$
- $a_{1,1}^{\prime\prime}x_1 + \dots + a_{1,n}^{\prime\prime}x_n \le b_1^{\prime\prime}$, ..., $a_{m^{\prime\prime},1}^{\prime\prime}x_1 + \dots + a_{m^{\prime\prime},n}^{\prime\prime}x_n \le b_{m^{\prime\prime}}^{\prime\prime}$

Стандартная форма задачи ЛП:

- $c_1x_1 + \cdots + c_nx_n \rightarrow \min$ или $\rightarrow \max$
- $a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$, ..., $a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$
- $x_1 \ge 0, ..., x_n \ge 0$

Векторная форма записи задач ЛП

- $cx \rightarrow max$
- Ax = b или $Ax \ge b$ и т.д.
- $x \ge 0$

Переход от общей формы к стандартной

• От неравенств переходим к равенствам, вводя новые переменные: неравенство вида $a_1x_1+\dots+a_nx_n\geq b$ заменяется парой неравенств $\begin{cases} a_1x_1+\dots+a_nx_n-y=b\\ y\geq 0 \end{cases}$

• Чтобы все переменные сделать неотрицательными, переменную вида x заменяем везде на (y-z), где $y \ge 0$ и $z \ge 0$.

Формы задач ЛП

Общая форма задачи ЛП:

- Оптимизируется линейная форма
- Любые линейные ограничения на x_i

Стандартная форма задачи ЛП:

- Ограничения типа равенства
- Неотрицательность значений переменных

Каноническая форма задачи ЛП:

- Ограничения типа неравенства
- Неотрицательность значений переменных

Что ещё можно задать линейными ограничениями

- Ограничения вида $\max\{x_1,\dots,x_k\} \leq x_l$ можно задать системой $\begin{cases} x_l-x_1 \geq 0 \\ \vdots \\ x_l-x_k \geq 0 \end{cases}$
- Ограничения вида $x_l \geq |x_k|$ можно задать системой $\begin{cases} x_l \geq x_k \\ x_l \geq -x_k \end{cases}$
- От равенство $a_1x_1+\cdots+a_nx_n=b$ можно задать системой $\begin{cases} a_1x_1+\cdots+a_nx_n\geq b\\ a_1x_1+\cdots+a_nx_n\leq b \end{cases}$

Свойства решений задач ЛП

- Линейные ограничения на $x_1, ..., x_n$ задают в пространстве \mathbf{R}^n либо пустое множество (если им нельзя удовлетворить), либо многогранник (возможно, неограниченный).
- Если оптимум в задаче ЛП существует, то он достигается на одной из вершин многогранника.
- Вершины многогранника определяются подмножествами из n линейно независимых ограничений.

Резюме

- Основная идея в оптимизации максимина и суммы вогнутых функций уравнивание.
- Некоторые задачи многокритериальной оптимизации решаются довольно просто, квазиполиномиальными алгоритмами.
- Есть много эквивалентных форм задач ЛП, можно рассматривать любую.
- Задачи ЛП имеют естественную геометрическую интерпретацию.