



#### STATISTICS

**Statistics** is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.



#### **STATISTICS**

**Statistics** is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.

The collective information about a system's past state is called data.



#### **STATISTICS**

**Statistics** is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.

The collective information about a system's past state is called **data**. It assigns **probabilities** to each possible future state of system based on data.



#### **STATISTICS**

**Statistics** is a mathematical discipline concerned with predicting future state of a system based *solely* on its past behaviour.

The collective information about a system's past state is called **data**. It assigns **probabilities** to each possible future state of system based on data. It also assigns probabilities to the **possibility of wrong prediction**.



We throw a coin 10 times with the following outcome:

$$\{H,H,H,T,H,T,H,H,H,T\},$$

*H* for 'heads', *T* for 'tails'.



We throw a coin 10 times with the following outcome:

$$\{H, H, H, T, H, T, H, H, H, T\},\$$

*H* for 'heads', *T* for 'tails'. We can ask two questions:



We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

*H* for 'heads', *T* for 'tails'. We can ask two questions:

• What is the probability that the **next toss** will come out 'heads'/'tails'?



We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

*H* for 'heads', *T* for 'tails'. We can ask two questions:

What is the probability that the next toss will come out 'heads'/'tails'?

• Is this coin is **biased towards** 'heads'/'tails' with *allowed probability of error*  $\alpha$ ?



We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

*H* for 'heads', *T* for 'tails'. We can ask two questions:

- What is the probability that the next toss will come out 'heads'/'tails'?
  - We got 7 heads out of 10 tosses, so the probability for the next toss being heads is 7/10.
- Is this coin is **biased towards** 'heads'/'tails' with *allowed probability of error*  $\alpha$ ?



We throw a coin 10 times with the following outcome:

$${H, H, H, T, H, T, H, H, H, T},$$

*H* for 'heads', *T* for 'tails'. We can ask two questions:

- What is the probability that the next toss will come out 'heads'/'tails'?
  - We got 7 heads out of 10 tosses, so the probability for the next toss being heads is 7/10.
- Is this coin is **biased towards** 'heads'/'tails' with *allowed probability of error*  $\alpha$ ?
  - No, for  $\alpha = 0.05$ .
  - Yes, for  $\alpha = 0.2$ .

# **CONTENTS**





# DATA

## WHAT DO WE MEAN BY DATA?



#### DATA

Two sets (called *inputs* and *outputs*) describing the studied system.