Statistical analysis in R

MiCM Fall Workshop Series (2022) Alex Diaz-Papkovich

Prerequisites

- Have R and RStudio (or equivalent) installed
- Understand basics of R and RStudio
 - Terminal, console, script editor, environment windows
- Please feel free to ask questions
 - Even if it is "what does this word mean?"

Libraries

- install.packages("medicaldata")
- install.packages("scatterplot3d")
- install.packages("ggplot2")
- install.packages("tidyverse")

Online content

- shorturl.at/gkprL
- https://github.com/diazale/intro_to_r_stats

Core concepts

- R objects and variable types
- Hypothesis testing and analysis of variance (ANOVA)
- Linear regression
- Learn how and why to use statistical methods

Goals

- Learn core concepts in R and statistical analyses
- "Bread and butter" tools
 - The most commonly used methods
- Basics of quality and interpretable analysis
- Build up to univariate multiple linear regression

Generate + understand this

```
Call:
lm(formula = number12m ~ baseline + treatment + age + sex, data = medicaldata::polyps)
Residuals:
            10 Median
                           30
                                  Max
   Min
-20.202 -10.251 -3.595 7.657 23.272
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                 51.83751 13.06029 3.969 0.00123 **
(Intercept)
baseline
                 0.05931 0.05441 1.090 0.29289
treatmentsulindac -26.53350 7.10892 -3.732 0.00200 **
                 -0.70497 0.47822 -1.474 0.16112
age
sexmale
                           8.19318 -0.168 0.86865
                 -1.37836
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.23 on 15 degrees of freedom
 (2 observations deleted due to missingness)
Multiple R-squared: 0.579, Adjusted R-squared: 0.4667
F-statistic: 5.157 on 4 and 15 DF, p-value: 0.008127
```

Breakdown

- R concepts (30 minutes + 15 minutes exercise)
- II. Hypothesis tests (45 minutes + 15 minutes exercise)
- III. Break (20 minutes)
- IV. ANOVA + Regression (Remaining time)
 - -Overview with slides, in-depth with R Markdown

Structure

- Slides provide overview of concepts
- Some theory to explain math and statistics
 - Try to follow along, but this isn't a math-stats course
- Most work will be in R Markdown files
- Will give you example code to follow along
- Exercises with empty code cells provided

Data types and structures

"Computers are like Old Testament gods; lots of rules and no mercy."

-Joseph Campbell

R concepts

- R will do whatever you tell it to do
- You must understand what you are telling it to do
- Do not fish for numbers!
- Learn what you're using and how to get what you need
- Use the ? command
 - e.g. ?lm gives the documentation for lm
 - ?? will search R documentation instead

R variable types

- Variable types
 - Important ones: Boolean, Numeric, Character, Factor
- Boolean (Logical): {TRUE/FALSE}, {T/F}, {1/0}
- Numeric: Integers, real numbers ("double")
- Character: Strings of text
- Factor: Categorical, Indicator, Boolean

Pitfalls to avoid

- Some characters have special meanings. DO NOT USE THEM.
 - c, g, t, C, D, F, I, T
- R often imports data as factors check to make sure!
 - Object structure: str() command
 - Variable type: typeof() command
 - Class type: class() command
- Be careful coding categories as numbers
 - Make sure they are factors and not numeric

R objects

- Vectors: c()
 - Only one variable type (e.g. all numeric)
- Lists: list()
 - Can have multiple variable types
- Matrices
 - Multi-dimensional array of one variable type
- Data frames
 - Subtly different from tibbles

R objects

Convert between types with as. [type]

```
x <- c(1,0,1)

typeof(x)

x <- as.logical(x)

typeof(x)</pre>
```

Data frames

- Data is usually stored in a data frame
- Observations are rows, variables are columns
- Created with as.data.frame()
 - Many functions import external data as data frames
 - Useful functions:

```
names(), colnames(), rownames(), subset()
```

Conversion functions still apply

Data frames

- Examine with str()
- Subset with [,] or subset()
- Lots of ways to manipulate them, you can get clever
- Beyond the scope of this workshop
- For now, our data is already in good shape

\$ and Summary()

- Use summary() to retrieve summaries of results
 - e.g. ANOVA, regression
- Use \$ to retrieve parts of R objects
 - e.g. t-test, data frame columns

Hypothesis testing

Overview

- You want to compare data
- Are sets of data different?
 - How "different" are they? "Kinda" different? "Very" different?
 - Test statistics are a formal way of asking this
- We consider two types of tests:
 - t-test
 - ANalysis Of VAriance (ANOVA)

Statistical significance

- "This measurement is unlikely to have happened by chance"
- Does <u>not</u> mean any of the following:
 - Logically sound
 - Scientifically meaningful
 - Causally linked
- All statistical tests and methods are just fancy calculations
- You, the scientist, make the decisions and interpretations
- Never choose a test based on whether it gives a smaller p-value

Quick math-stats review

- Random variables are defined by their distributions
- Distributions defined by PDFs (probability density functions)*
- We look at:
 - Normal
 - t-distribution
 - Chi-squared (sort of, as an intermediate)
 - F-distribution

^{*}actually defined by many things, including PDFs, beyond scope of today

Normal distribution

Credit: Wikipedia

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(\mu - x)^2}{2\sigma^2}}$$

Normal distribution

- Extremely common, also called the Gaussian distribution
- Known for its bell curve
- Lots of nice properties
- Central Limit Theorem
 - For many distributions, their normalized sum is Normal
- Can be standardized to a N(0,1)

Properties of the Normal

- Still Normal when
 - Subtracting a constant, dividing by a non-zero constant
- Standardization:
 - Subtract the mean, divide by standard deviation
 - If $X \sim N(\mu, \sigma^2)$ then $\frac{X \mu}{\sigma} \sim N(0, 1)$
- If $X \sim N(0,1)$ then $X^2 \sim \chi_1^2$ (Chi-squared with 1 d.f.)
- If $X_i \overset{\text{i.i.d.}}{\sim} N(0,1)$ then $\sum_{i=1}^n (X_i)^2 \sim \chi_n^2$

t-distribution

 Defined by degrees of freedom

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-(
u+1)/2}$$

Credit: Wikipedia

Deriving the t-test

- Details are mathematically dense, this is a very brief summary
- Sample of n identically independently distributed (i.i.d.) values $X_i \sim N(\mu, \sigma^2)$

CORE ASSUMPTION

- We don't know the $\underline{\textit{true values}}$ of μ or σ
- ullet Test hypothesis about μ using the sample mean $ar{X}$
- Estimate σ as $\hat{\sigma}$
- Our test statistic is $t = \frac{Z}{S} = \frac{\bar{X} \mu}{\hat{\sigma}/\sqrt{n}}$, which follows a **t-distribution**
- t-distribution is defined by **degrees of freedom**. We have n 1 (or ν 1)

Deriving the t-test

- We want to test whether $\mu=\mu_0$ for some value μ_0 (Null hypothesis)
- Often assume $\mu_0 = 0$ and test this assumption
 - This comes up in regression!

This test statistic is
$$t=\frac{Z}{s}=\frac{\bar{X}-0}{\hat{\sigma}/\sqrt{n}}=\frac{\bar{X}}{\hat{\sigma}/\sqrt{n}}$$

- What is the probability that we get this statistic?
- This is the *p-value*

Assumptions of t-test

- Observations are <u>independent</u>
 - Don't use the same observation in two groups
- No massive outliers
 - Look at your data!
- Data are approximately normal
- Groups should have approximately equal variances
 - Welch's t-test is used if this assumption is violated

Two-sample t-test

- Test whether two population means are the same
 - Instead of testing whether one mean is a specific value
 - e.g. do two populations have the same mean height?
 - Similar derivation

•
$$t = \frac{\bar{X_1} - \bar{X_2}}{s}$$
, where s is a very long formula for s.e.

Using the t-test

- Software does most of the work for us, thank god
- We calculate *t* (our **t-statistic** or **test statistic**)
- What is the probability that we get this number?
- We find the area under the curve of the distribution
- The probability we get is the p-value
- If p < threshold, we say it is "significant"
- A common threshold is 0.05

Interpreting the t-test

- Remember your hypothesis!
- Usually one of two:
 - The mean is equal to [some value]
 - The means of two populations are the same
- Can test if mean is bigger/smaller than [some value]
 - This is the one-tailed test
- A low p-value means the hypothesis is unlikely
- We reject the null hypothesis

Statistical significance

Big t-statistic will give small p-value

• Recall:
$$t = \frac{Z}{s} = \frac{\bar{X} - \mu_0}{\hat{\sigma}/\sqrt{n}}$$

- What makes t big?
 - Big numerator ($\bar{X} \mu_0$); and/or Small denominator (big n)
- Huge sample sizes (big n) will give small p-values
- May be more interested in <u>effect size</u> (numerator)

ANOVA

F-distribution

Defined by two degrees of freedom

$$f(x;d_1,d_2) = rac{\sqrt{rac{(d_1x)^{d_1}\ d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{x\,\mathrm{B}\!\left(rac{d_1}{2},rac{d_2}{2}
ight)}$$

Credit: Wikipedia

F-statistic

- Similar to t-statistic
- Follows Snedecor's F-distribution

• If
$$S_1 \sim \chi_a^2$$
, $S_2 \sim \chi_b^2$ then $\frac{S_1/a}{S_2/b} \sim F_{a,b}$

- The ratio of two Chi-squareds follows the F-distribution
- Null hypothesis: multiple means are <u>all</u> equal
- Rejection means: At least one group is different

F-statistic interpretation

- Null hypothesis: All groups are equal
- Logical opposite of this is:
 - Not all groups are equal
 - At least one group is not equal
 - Could have one group different
 - Could have all groups different
 - Could have anything in between

What do we check?

- Look at your data
- Look at your data
 - It's the quickest and easiest way
- Pairwise comparisons with correction factor
 - Tukey's HSD (TukeyHSD() in R)
 - Pairwise t-tests with Bonferroni correction

Motivation

- ANOVA generalizes the t-test by partitioning the variance
- We want to test the means of 3+ groups

Figure 1: ANOVA: Fair fit

Credit: Wikipedia article for ANOVA

Motivation

- Interested in the relationship between variables
- Categories and continuous (factors and numerics)
- Examples:
 - Differences between population centres
 - Differences between treatment types
 - Differences between diets

- $y_{ij} = \mu + \tau_j + \epsilon_{ij}$, $\epsilon_{ij} \sim N(0, \sigma^2)$
- Observations i=1...I, treatments (groups) j=1,...,J
 - Total mean μ
- How much does a measurement vary by group?
 - What is the effect of τ_j ?
- H_0 : $\tau_1 = \ldots = \tau_J = 0$ vs. H_A : $\tau_i \neq \tau_j$ for some $(i,j), i \neq j$
 - All treatments are equal vs at least one treatment is not

Equivalent formulation:

$$y_{ij} = \mu_j + \epsilon_{ij}, \, \epsilon_{ij} \sim N(0, \sigma^2)$$

How much variation is in our data?

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

(sum of squares, total)

$$= SS(Model) + SS(Residuals)$$

= $SS(Treatments) + SS(Errors)$

How much variation explained by our treatments/model?

ANOVA table for fixed model, single factor, fully randomized experiment

Source of variation	Sums of squares	Sums of squares	Degrees of freedom	Mean square	F
	Explanatory SS	Computational SS	DF	MS	
Treatments	$\sum_{Treatments} I_j (m_j - m)^2$	$\sum_j rac{(\sum_i y_{ij})^2}{I_j} - rac{(\sum_j \sum_i y_{ij})^2}{I}$	J-1	$\frac{SS_{Treatment}}{DF_{Treatment}}$	$rac{MS_{Treatment}}{MS_{Error}}$
Error	$\sum_{Treatments} (I_j - 1) s_j^2$	$\sum_j \sum_i y_{ij}^2 - \sum_j rac{(\sum_i y_{ij})^2}{I_j}$	I-J	$rac{SS_{Error}}{DF_{Error}}$	
Total	$\sum_{Observations} (y_{ij}-m)^2$	$\sum_j \sum_i y_{ij}^2 - \frac{(\sum_j \sum_i y_{ij})^2}{I}$	I-1		

 MS_{Error} is the estimate of variance corresponding to σ^2 of the model.

Credit: Wikipedia article for one-way ANOVA

- Degrees of freedom are (J-1), (N-J)
- Ratio of (variance between groups) to (variance within groups)
- If there is high variance between groups, we get a low p-value
- R does all the calculations via aov ()

Extensions

- Two-way ANOVA (interactions)
- Three-way ANOVA
- Blocking (grouping, confounding, etc)
- Experimental design in general

Linear regression

- We have two continuous variables
- Want to measure their relationship, assume it's linear
- Draw a line of best fit between them

Remember from high school: y = mx + b

What if we had y and x and needed to estimate m,b?

We would also need to account for error in estimates

Motivation

- Simple but powerful concept: line of best fit
- Measure relationship between variables
- Simplest form: correlation between continuous variables
 - Simple single linear regression
- Very powerful, robust, flexible tool
- Can predict (extrapolate) and infer (interpolate)

Assumptions

- Outcome is continuous and a linear combination of predictors
 - Predictors must not be perfectly correlated
- Errors are $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0,\sigma^2)$. For every observation *i* the error is:
 - Normally distributed
 - Mean zero
 - Homoskedastic (same variance as other observations)
 - Independent (not correlated)
- Patterns in your errors are very bad and should be examined!!!!!

Mathematical form

(linear model)

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon, \epsilon \sim N(0, \sigma^2)$$

- Outcome (y) is a linear combination of measurements (x)
 - Values of y and x are known
- Related to each other by intercept (β_0) and slopes (β_j)
 - Not known, so we estimate them
- Errors are <u>random</u>, on average <u>zero</u>, with <u>same variance</u>
 - On average, model won't over/underestimate (mean zero, unbiased)
 - Errors do not grow/shrink with data (constant variance)

Connecting concepts

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon, \epsilon \sim N(0, \sigma^2)$$

- ANOVA is a special case of linear regression
 - Categorical variables rather than continuous
- t-tests are used to test individual slopes in regression

$$H_0: \beta_j = 0 \text{ vs } H_A: \beta_j \neq 0$$

F-tests are used to test all slopes in regression

$$H_0: \beta_1 = \dots = \beta_p = 0 \text{ vs } H_A: \beta_j \neq 0 \text{ for some } j$$

Confidence intervals are built around normal variables

Connecting concepts

```
regression equation
Call:
lm(formula = number12m ~ baseline + treatment + age + sex data = medicaldata::polyps)
Residuals:
   Min
           10 Median
                                 Max
                          30
                                                     categorical data
-20.202 -10.251 -3.595 7.657 23.272
```

```
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                           13.06029 3.969 0.00123 **
(Intercept)
                 51.83751
                                                       t-statistics
                 0.05931 0.05441 1.090 0.29289
baseline
treatmentsulindac -26.53350 7.10892 -3.732 0.00200 **
                 -0.70497 0.47822 -1.474 0.16112
age
sexmale
                 -1.37836 8.19318 -0.168 0.86865
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 15.23 on 15 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.579, Adjusted R-squared: 0.4667

variance explained + F-statistic: 5.157 on 4 and 15 DF, p-value: 0.008127 **F-statistics**

Extensions

- Interaction effects
 - Outcomes depend on interactions of (e.g.) age*sex
- What if we have other types of data?
 - Multivariate regression (multiple, correlated outcomes)
 - Logistic regression (Binary outcomes like lived/died)
 - Multinomial regression (Count data)
 - ARIMA (Time series—data correlated over time)

Importance

- Regression is a bedrock of modern science
- Understand that software is a calculator
- You are ultimately responsible for interpretation
 - Statistics will guide your decision-making

Resources

- Introduction to regression modeling (Bovas Abraham and Johannes Ledolter, 2006)
 - More mathematical but fairly concise
- Wikipedia pretty reliable for equations, summaries
- University lecture notes and course topics:
 - Regression
 - Experimental design