MATH3204 MIDSEM PROOFS & QUESTIONS

- 1. Prove an intersection of subspaces is always a subspace.
- Let S_1 and S_2 be subspaces of a vector space $\mathcal V$ over a field $\mathbb F$. Prove the sum of
- S_1 and S_2 is the smallest subspace containing S_1 and S_2 . 3. Prove any $\mathbf{w} \in S_1 \oplus S_2$ can be uniquely represented as $\mathbf{w} = \mathbf{u} + \mathbf{v}$, $\mathbf{u} \in S_1$, $\mathbf{v} \in S_2$
- Prove an invertible map has a unique inverse.
- (ex.) Show that a Hermitian matrix has real main diagonal entries.
 (ex.) Show that a skew-Hermitian matrix has pure imaginary main diagonal entries
- (ex.) What are the main diagonal entries of a real skew-symmetric matrix?
- For any unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$, show that $|\det(\mathbf{U})| = 1$.
- (n.p.) Let $\mathbf{f}: \mathbb{F}^n \to \mathbb{F}^m$ be a linear map. Then \exists a unique matrix $\mathbf{A} \in \mathbb{F}^{m \times n}$ such that $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$, $\forall \mathbf{x} \in \mathbb{F}^n$. Conversely, if $\mathbf{A} \in \mathbb{F}^{m \times n}$ then the function defined above is a linear map from \mathbb{F}^n to \mathbb{F}^m .

 10. For any $\mathbf{A} \in \mathbb{F}^{m \times n}$, we have $\dim(\operatorname{Range}(\mathbf{A})) + \dim(\operatorname{Null}(\mathbf{A})) = n$.
- 11. If $\mathbf{A} \in \mathbb{C}^{m \times n}$, then $\text{Null}(\mathbf{A}) = \text{Range}(\mathbf{A}^*)^{\perp}$ and $\text{Null}(\mathbf{A}^*) = \text{Range}(\mathbf{A})^{\perp}$.
- Any norm satisfies $|\|\mathbf{x}\| \|\mathbf{y}\|| \le \|\mathbf{x} \mathbf{y}\|$.
- (exmp) Let **W** be a diagonal matrix with positive diagonal elements. Show that $\|\mathbf{x}\|_{\mathbf{W}}\triangleq\sqrt{\langle\mathbf{x},\mathbf{W}\mathbf{x}\rangle} \text{ defines a norm, known as the weighted Euclidean norm.}$
- Given any matrix $\mathbf{U} \in \mathbb{C}^{m \times d}$ with m > d and orthonormal columns, $\|\mathbf{U}\mathbf{x}\|_2 =$ $\|\mathbf{x}\|_2$.
- Given any matrix $\mathbf{U} \in \mathbb{C}^{p \times m}$ with $p \geq m$ and orthonormal columns, we have 15. $\|\mathbf{UA}\|_{\mathbf{F}} = \|\mathbf{A}\|_{\mathbf{F}}$ (ex.) Prove the Frobenius and entry-wise ℓ_1 norm are sub-multiplicative, but
- 16. the entry-wise max-norm is not sub-multiplicative. Given any matrix $\mathbf{U} \in \mathbb{F}^{p \times m}$ orthonormal columns, we have $\|\mathbf{U}\mathbf{A}\|_2 = \|\mathbf{A}\|_2$
- where the norm is the induced 2-norm. Let $\|\cdot\|_p$, $\|\cdot\|_q$, $\|\cdot\|_r$ be vector norms on, respectively, domain of **B**, range of **B** and range of **A**. We have $\|\mathbf{AB}\|_{p,r} \leq \|\mathbf{A}\|_{q,r} \|\mathbf{B}\|_{p,q}$
- 19
- $\kappa(\mathbf{A}) \geq 1$. What is the condition number of a unitary matrix? 20.
- 21. (fact) Prove that $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$. 22. (fact) Prove that $\operatorname{Trace}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$. 23. (fact) Prove that $\rho(\mathbf{A}) = \rho(\mathbf{A}^*)$.

- If (λ, \mathbf{v}) is an eigenpair of $\mathbf{A} \in \mathbb{C}^{n \times n}$, then $(p(\lambda), \mathbf{v})$ is an eigenpair of $p(\mathbf{A})$. Conversely, if $k \ge 1$ and μ is an eigenvalue of $p(\mathbf{A})$, then there is some eigenvalue λ of \mathbf{A} such that $\mu = p(\lambda)$.
 - (exmp) Suppose that $\mathbf{A} \in \mathbb{C}^{n \times n}$. If $\operatorname{spec}(\mathbf{A}) = \{-1, 1\}$, what is $\operatorname{spec}(\mathbf{A}^2)$? \mathbf{A} is singular if and only if $0 \in \operatorname{spec}(\mathbf{A})$.
- 26.
- Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\lambda, \mu \in \mathbb{C}$. Then $\lambda \in \operatorname{spec}(\mathbf{A}) \iff \lambda + \mu \in \operatorname{spec}(\mathbf{A} + \mu \mathbf{I})$.
- If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then all its eigenvalues are real.
- 29 (ex.) Show that skew-Hermitian matrices have pure imaginary eigenvalues.
- (ex.) Show that skew-Hermitian matrices have pure imaginary eigenvalues. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian, then eigenvectors corresponding to distinct eigenvalues are mutually orthogonal. 30
- 31. (exmp) Compute the eigenpair of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 0 -1Ó 0 2
- 32. Let $m(\lambda)$ be the algebraic multiplicity of λ . Then $1 \leq \dim(\mathcal{E}_{\lambda}(\mathbf{A})) \leq m(\lambda)$.
- 34.
- Let $m(\lambda)$ be the algebraic multiplicity of λ . Then $1 \le \dim(\mathcal{E}_{\lambda}(\mathbf{A})) \le m(\lambda)$. If \mathbf{A} and \mathbf{B} are similar, then they have the same characteristic polynomial. (λ, \mathbf{v}) is an eigenpair of \mathbf{A} if and only if $(\lambda, \mathbf{S}^{-1}\mathbf{v})$ is an eigenpair for $\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$. (n.p.) The matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is diagonalisable if and only if it has n linearly independent eigenvectors. In other words, \mathbf{A} is diagonalisable if and only if it is not defective
- 36. Find all possible Jordan canonical forms for a 3×3 matrix whose eigenvalues are -2, 3, 3.
- Prove a matrix is unitarily diagonalisable if and only if it is normal.
- (fact) Prove a normal matrix is Hermitian if and only if all its eigenvalues are 38. 39.
- (fact) The singular values of A are uniquely determined by the eigenvalues of A^*A or equivalently by the eigenvalues of AA^*
- 40. For any $\mathbf{A} \in \mathbb{C}^{m \times n}$, we have $\sigma_i = \sqrt{\lambda_i(\mathbf{A}^*\mathbf{A})} = \sqrt{\lambda_i(\mathbf{A}\mathbf{A}^*)}$, $i = \sqrt{\lambda_i(\mathbf{A}\mathbf{A}^*)}$ $1, \ldots, \operatorname{Rank}(\mathbf{A}).$
- Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a normal matrix whose (not necessarily distinct eigenvalues)
- are $\lambda_1, \lambda_2, \ldots, \lambda_n$. Show that the singular values of **A** are $|\lambda_1|, \ldots, |\lambda_n|$. 42. Prove (in the context of singular value decomposition) that $\mathcal{E} = \mathbf{U}\mathcal{E}_0$ where $\mathcal{E}_0 = \left\{ \mathbf{y} \in \mathbb{R}^n \mid \sum_{i=1}^n \frac{y_i^2}{\sigma_i^2} = 1 \right\}$
- 43. Prove that if **P** is a projection, then $\mathbf{P}\mathbf{v} = \mathbf{v} \iff \mathbf{v} \in \text{Range}(\mathbf{P})$

48.

- Prove that if **P** is a projection, then $\mathbf{F}\mathbf{v} = \mathbf{v} \iff \mathbf{v} \in \mathrm{Range}(\mathbf{F})$ Prove that if **P** is a projection, then so is $\mathbf{I} \mathbf{P}$. Prove that if **P** is a projection, then $\mathrm{Range}(\mathbf{I} \mathbf{P}) = \mathrm{Null}(\mathbf{P})$. Prove that if **P** is a projection, then $\mathrm{Range}(\mathbf{P}) \cap \mathrm{Range}(\mathbf{I} \mathbf{P}) = \{\mathbf{0}\}$. (ex) Prove that for orthogonal projections, we have the Pythagorean theorem 47. $\|\mathbf{v}\|^2 = \|\mathbf{P}\mathbf{v}\|^2 + \|(\mathbf{I} - \mathbf{P})\mathbf{v}\|^2$
- (ex) Given any matrix $\mathbf{Q} \in \mathbb{C}^{m \times n}$ with orthonormal columns, prove that $\mathbf{P} = \mathbf{Q}\mathbf{Q}^*$ is an orthogonal projection onto Range(\mathbf{Q}). 49
- $Range(\mathbf{A}).$
- 50.
- 52.
- 53.
- Hange(A).

 (ex) Prove $\mathbf{A} \succ \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle > 0, \quad \forall \mathbf{x} \neq \mathbf{0} \in \mathbb{R}^n.$ (ex) Prove $\mathbf{A} \succeq \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \geq 0, \quad \forall \mathbf{x} \in \mathbb{R}^n.$ (ex) Prove $\mathbf{A} \succ \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle > 0, \quad \forall \mathbf{x} \neq \mathbf{0} \in \mathbb{C}^n.$ (ex) Prove $\mathbf{A} \succeq \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle > 0, \quad \forall \mathbf{x} \in \mathbb{C}^n.$ (ex) Prove that $\mathbf{A} \in \mathbb{C}^{n \times n}$ being either PD or PSD implies Hermitian.
- (ex) Prove that for any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$, we have $\mathbf{A}^* \mathbf{A} \succeq \mathbf{0}$ and $\mathbf{A} \mathbf{A}^* \succeq \mathbf{0}$.
- 56.
- (ex) Prove that for any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$, we have $\mathbf{A}^* \mathbf{A} \succeq \mathbf{0}$ and \mathbf{A} (ex) Prove that $\operatorname{Rank}(\mathbf{A}) = m \Longrightarrow \mathbf{A} \mathbf{A}^* \succ \mathbf{0}$. (ex) Prove that $\operatorname{Rank}(\mathbf{A}) = n \Longrightarrow \mathbf{A}^* \mathbf{A} \succ \mathbf{0}$. (ex) Prove for Hermitian \mathbf{A} that $\mathbf{A} \succ \mathbf{0} \Longleftrightarrow \lambda_i(\mathbf{A}) > 0, i = 1, \dots n$. (ex) Prove for Hermitian \mathbf{A} that $\mathbf{A} \succeq \mathbf{0} \Longleftrightarrow \lambda_i(\mathbf{A}) \geq 0, i = 1, \dots n$. (ex) Prove for Hermitian \mathbf{A} that $\mathbf{A} \preceq \mathbf{0} \Longleftrightarrow \lambda_i(\mathbf{A}) \leq 0, i = 1, \dots n$. (ex) Prove for Hermitian \mathbf{A} that $\mathbf{A} \preceq \mathbf{0} \Longleftrightarrow \lambda_i(\mathbf{A}) \leq 0, i = 1, \dots n$. (ex) Prove for Hermitian \mathbf{A} that $\mathbf{A} \preceq \mathbf{0} \Longleftrightarrow \lambda_i(\mathbf{A}) \leq 0, i = 1, \dots n$. 58.
- 60.
- (ex) Prove for Hermitian A that every PD matrix is invertible and its inverse is 62. also PD.
- 63. (ex) Prove for Hermitian A that A, B \succ 0 and $\alpha > 0$ implies $\alpha A \succ 0$ and $+\mathbf{B}\succ\mathbf{0}$ (ex) Prove for Hermitian A that $A \succ 0 \iff \exists ! B \succ 0 \text{ s.t. } B^2 = A$ (square root, 64
- 65. (ex) Prove for Hermitian A that if $A \succ 0$, the Schur, spectral and SV decompo-

- (ex) Prove for Hermitian A that if $A\succeq 0$, then $B^*AB\succeq 0$, $\forall B\in\mathbb{C}^{n\times n}$. (ex) Prove for Hermitian A that if $A\succ 0$ and B has full column rank, then $B^*AB\succ 0$.
- (fact) Prove that a strictly diagonally dominant matrix is non-singular (Levy-Desplanques theorem).
- 69. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be full column rank. Prove $\kappa(\mathbf{A}^{\top}\mathbf{A}) = \kappa^2(\mathbf{A})$.

- Prove that $\|\mathbf{T}\| < 1 \implies \lim_{k \to \infty} \mathbf{e}_k = 0$, where $\mathbf{T} \triangleq \mathbf{I} \mathbf{M}^{-1} \mathbf{A}$ is the iteration matrix and $\mathbf{e}_k = \mathbf{x}_k \mathbf{x}^\star$ is the error vector. Prove that $\rho(\mathbf{T}) < 1 \iff \lim_{k \to \infty} \mathbf{e}_k = 0$.
- (long, for understanding) There is a positive integer $t \triangleq t(\mathbf{v}, \mathbf{A})$ called the grade of **v** with respect to **A** such that $\dim(\mathcal{K}_k(\mathbf{A}, \mathbf{v})) = \begin{cases} k & k \leq t \\ t & k > t \end{cases}$
- Prove $t = \min\{k \mid \mathbf{A}^{-1}\mathbf{v} \in \mathcal{K}_k(\mathbf{A}, \mathbf{v})\}.$
- Assume Arnoldi process does not terminate before k steps. Then the vectors $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k\}$ form an orthonormal basis for $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$. Arnoldi process breaks down at step j $(h_{j+1,j} = 0)$ if and only if the grade of \mathbf{r}_0 with respect to \mathbf{A} is j, i.e. $t(\mathbf{r}_0, \mathbf{A}) = j$.
- The matrix $\mathbf{L}^{\top} \mathbf{A} \mathbf{K}$ is non-singular if either $\mathbf{A} \succ \mathbf{0}$ and $\mathcal{L} = \mathcal{K}$ or $\det(\mathbf{A}) \neq 0$ and $\mathcal{L} = A\mathcal{K}$.
- The case where $\mathbf{A} \succ \mathbf{0}$ and $\mathcal{L}_k = \mathcal{K}_k$ is equivalent to $\mathbf{x}_k = \operatorname{argmin}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \|\mathbf{x} \mathbf{x}_k\|_{\mathbf{x}_0}$ $\mathbf{x}^{\star} \|_{\mathbf{A}} = \operatorname{argmin}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle.$
- (sort-of ass) Prove $\operatorname{argmin}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \|\mathbf{x} \mathbf{x}^{\star}\|_{\mathbf{A}} = \operatorname{argmin}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle$ –
- (slightly long) The case where $\det(\mathbf{A}) \neq 0$ and $\mathcal{L}_k = \mathbf{A}\mathcal{K}_k$ is equivalent to $\mathbf{x}_k = \operatorname{argmin}_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$. (long) If Arnoldi (or Lanczos) process breaks down at step $t = t(\mathbf{A}, \mathbf{r}_0)$, then \mathbf{x}_t
- (long) If Arnold (or Lanczos) process breaks down at step $\mathbf{r} = \iota(\mathbf{A}, \mathbf{r}_0)$, then \mathbf{x}_t from any projection method onto $\mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$ or $\mathbf{A} \cdot \mathcal{K}_t(\mathbf{A}, \mathbf{r}_0)$ would be exact. (Assignment questions from now onwards) Suppose $\mathcal{U}_1, \mathcal{U}_2$ and \mathcal{W} are all subspaces of \mathcal{V} such that $\mathcal{U}_1 + \mathcal{W} = \mathcal{U}_2 + \mathcal{W}$. Can we conclude that $\mathcal{U}_1 = \mathcal{U}_2$? Suppose $\mathcal{U}_1, \mathcal{U}_2$ and \mathcal{W} are all subspaces of \mathcal{V} such that $\mathcal{U}_1 \oplus \mathcal{W} = \mathcal{U}_2 \oplus \mathcal{W}$. Can
- we conclude that $\mathcal{U}_1 = \mathcal{U}_2$? Let $\mathbf{f}: \mathcal{V} \to \mathcal{W}$ be a linear map. Prove that $\mathbf{f}(\mathbf{0}) = \mathbf{0}$.
- $\left(\mathbf{A} + \mathbf{B}\mathbf{C}^{\top}\right)^{-1} = \mathbf{A}^{-1} \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{I} + \mathbf{C}^{\top}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{C}^{\top}\mathbf{A}^{-1}.$
- (long) Prove the equivalence of norms in \mathbb{C}^d : $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \sqrt{d} \|\mathbf{x}\|_{2} \leq d \|\mathbf{x}\|_{\infty}$ Let $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n, \mathbf{u} \neq \mathbf{0}, \mathbf{v} \neq \mathbf{0}, \mathbf{A} = \mathbf{u}\mathbf{v}^*$. Show that $\|\mathbf{A}\|_{2} = \|\mathbf{u}\|_{2} \|\mathbf{v}\|_{2}$; Show that $\|\mathbf{A}\|_{\mathbf{F}} = \|\mathbf{u}\|_{2} \|\mathbf{v}\|_{2}$; ...

- Let $\lambda \in \operatorname{spec}(\mathbf{A})$ where $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{A}^k = \mathbf{0}$ for some positive integer k. Show that $\lambda = 0$.
- Encomplete that $\lambda=0$. Let $\lambda\in\operatorname{spec}(\mathbf{A})$ where $\mathbf{A}\in\mathbb{C}^{n\times n}$ and \mathbf{A} is unitary. Show that $|\lambda|=1$. Find the eigenvalues of $\mathbf{A}=\mathbf{uv}^*,\mathbf{u},\mathbf{v}\in\mathbb{C}^n,n\geq 2,\mathbf{u}\neq 0,\mathbf{v}\neq 0$. Find conditions on \mathbf{u},\mathbf{v} such that \mathbf{A} is not defective.

- Find conditions on u, v such that A is normal. Find the singular values of A. What is Rank(A)?
- 94.
- Find the left and right singular vectors corresponding to the largest singular value of A.
- Is a skew Hermitian matrix normal?
- Is a skew Hermitian matrix diagonalisable?
- Prove that the eigenvalues of a skew-Hermitian matrix are all pure imaginary.
- 99 Show that I - A is nonsingular.
- Use SVD to prove that $Rank(\mathbf{A}) = Rank(\mathbf{A}^*)$
- 101. Use SVD to prove that $Rank(\mathbf{A}) + dim(Null(\mathbf{A})) = n$
- Use SVD to prove that $Rank(\mathbf{A}) + dim(Null(\mathbf{A}^*)) = m$
- 103. Use SVD to prove that $Rank(\mathbf{A}) = Rank(\mathbf{A}^*\mathbf{A}) = Rank(\mathbf{A}\mathbf{A}^*)$
- 104. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be skew-symmetric, and denote its singular values by $\sigma_1 \geq \sigma_2 \geq \sigma_1$ $1 \le n \le n$ So show that if n is even, then $\sigma_{2k} = \sigma_{2k-1}$, $k = 1, 2, \dots, n/2$. If n is odd, then the same holds up to k = (n-1)/2 and also $\sigma_n = 0$.
- Show that eigenvalues of **A** can be written as $\lambda_j = (-1)^j i \sigma_j, j = 1, \dots, n$ where i is the imaginary unit. Show that if $A \in \mathbb{C}^{n \times n}$ and λ is an eigenvalue of A, then $\overline{\lambda}$ is an eigenvalue of
- Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. For an arbitrary matrix induced norm show that $\rho(\mathbf{A}) \leq$ $\left\|\mathbf{A}^k\right\|^{1/k}$, $k=1,2,\ldots$ where $ho(\mathbf{A})$ is the spectral radius of \mathbf{A} .
- Consider $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$. Prove that if one of \mathbf{A} or \mathbf{B} is non-singular, then $\mathbf{A}\mathbf{B}$
- and ${\bf BA}$ are similar. Let ${\bf A}\in\mathbb{C}^{m\times n}, {\rm Rank}({\bf A})=r$ and the non-zero singular values of ${\bf A}$ be $\mathbf{0}_{m}$ Α $\{\sigma_1,\sigma_2,\ldots,\sigma_r\}$ Show that the Hermitian matrix ${f B}=$ $\mathbf{0}_{n \times n}$
- $\mathbb{C}^{(m+n)\times(m+n)}$ has non-zero eigenvalues $\{\pm\sigma_1,\pm\sigma_2,\ldots,\pm\sigma_r\}$. Show that the Laplacian matrix $\mathbf{L}=\mathbf{D}-\mathbf{A}$ is positive semi-definite. 110.
- Find an eigenvector corresponding to the smallest eigenvalue of L. Show that if $\lambda_{min} < 0 < \lambda_{max}$ then Richardson iteration will always be divergent for some initial iterate. (First compute the iteration matrix) Compute the spectral radius of the iteration matrix in terms of $\alpha, \lambda_{min}, \lambda_{max}$.
- Find $\alpha_{min} < \alpha_{max}$ such that the method converges for any $\alpha_{min} < \alpha < \alpha_{max}$.
- Compute α_{opt} 116. Obtain the optimal convergence rate if $A \succ 0$ in terms of the matrix condition
- Consider the least squares problem $\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is rank deficient. Show that among all possible solutions to this problem, $\mathbf{A}^\dagger \mathbf{b}$ has the smallest Euclidean norm.
- We know **AB** and **BA** are not in general similar. Suppose $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{B} \in$ $\mathbb{C}^{n \times m}, m \leq n$ Show the n eigenvalues of \mathbf{BA} are the m eigenvalues of \mathbf{AB} together with n-m zeros.
- 119. Using question 118, if $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$, show that $\det \left(\mathbf{A} + \mathbf{x} \mathbf{y}^{\top} \right) =$ $\det(\mathbf{A}) \left(1 + \mathbf{y}^{\top} \mathbf{A}^{-1} \mathbf{x} \right).$
- 120. Prove the six properties of the Krylov subspace
- Frove the six properties of the Krylov subspace. Consider the generalized minimum residual (GMRES) method. Let $\mathbf{H}_{k+1,k} = \mathbf{U}_{k+1,k} \mathbf{R}_k$ be the reduced QR factorization of $\mathbf{H}_{k+1,k}$. Show that the leastsquares sub-problems of GMRES $\min_{\mathbf{y}} \left\| \mathbf{H}_{k+1,k} \mathbf{y} - \right\| \mathbf{r}_0 \| \mathbf{e}_1 \|$ is solved using $\mathbf{y} =$ $\mathbf{R}_k^{-1}\mathbf{U}_{k+1,k}^{\top} \|\mathbf{r}_0\| \, \mathbf{e}_1$ where \mathbf{r}_0 is the initial residual $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ and $\mathbf{e}_1 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ $[1, 0, 0, \dots, 0]^{\top}$.
- Show that the residual at the k^{th} iteration can be computed as $\|\mathbf{b} \mathbf{A}\mathbf{x}_k\| = 1$ $\|\mathbf{r}_0\| \sqrt{1 - \left\|\mathbf{U}_{k+1,k}^{\top} \mathbf{e}_1\right\|^2}$
- 123. Consider the $\operatorname{subproblems}$ of conjugate gradient where $\|\mathbf{v}\|_{\mathbf{A}} \triangleq \sqrt{\langle \mathbf{v}, \mathbf{A}\mathbf{v} \rangle}$ and \mathbf{A} is PD. Show that the solution to this sub problem is the minimizer of $\min_{\mathbf{x} \in \mathcal{X}_0 + \mathcal{K}_k} (\mathbf{A}, \mathbf{r}_0) \stackrel{1}{\underline{>}} (\mathbf{x}, \mathbf{A}\mathbf{x}) - \langle \mathbf{b}, \mathbf{x} \rangle$. Consider the derivation of CG motivated by the Cholesky factorization of the
- tridiagonal matrix $\mathbf{T}_k = \mathbf{L}_k \mathbf{D}_k \mathbf{L}_k^{\top}$ Recall that we defined $\tilde{\mathbf{P}}_k \triangleq \mathbf{Q}_k \mathbf{L}_k^{\top}$ \mathbf{Q}_k is obtained as part of the Lancsoz process such that $\mathbf{Q}_k^{\top} \mathbf{A} \mathbf{Q}_k = \mathbf{T}_k$. Show that $\tilde{\mathbf{P}}_k^{\top} \mathbf{A} \tilde{\mathbf{P}}_k = \mathbf{D}_k$