АЛКЕНЫ И ЦИКЛОАЛКЕНЫ АЛКЕНЫ. СТРОЕНИЕ

ОБЩАЯ ФОРМУЛА - C_nH_{2n}

Гибридизация атомов C: sp² (при двойной связи)

Ключевая связь: двойная (1 сигма + 1 пи)

Форма молекул: плоская

Валентный угол: 120 градусов

Длина связи: 0,134 нм

НОМЕНКЛАТУРА

- H_3 С——CH—— CH_2 — CH_3 **пентен 2**

3,4 - диметилгексен - 3

$$H_2C$$
 C CH_2 CH_3 CH_3

2 - метилбутен - 1

- 1) Выбираем самую длинную цепь (в ней обязательно должна быть двонйая связь!)
- 2) Нумеруем атомы углерода, начиная с того конца, где ближе двойная связь
- 3) Составляем название вещества по схеме: "местоположение заместителя + название заместителя + число атомов углерода в главной цепи + ЕН + местоположение двойной связи (после какого атома С она находится)". Пример:

ГОМОЛОГИЧЕСКИЙ РЯД ЭТИЛЕНА

 H_2C — CH_2 H_2C — CH_3 H_2C — CH_2 — CH_3 H_2C — CH_3 —

этен (этилен) - пропен-1 (пропилен) - бутен-1 (бутилен) -- пентен-1 - ...

ИЗОМЕРИЯ

углеродного скелета	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	бутен-1 ($C_{_2}H_{_8}$) и метилпропен ($C_{_2}H_{_8}$)
положения двойной связи	н ₂ ссн ₂ сн ₃ н ₃ сснсн ₃
	бутен-1 (С _₄ Н ₈) и бутен-2 (С _₄ Н ₈)
межклассовая (с циклоалканами)	H_3 C —— CH_2 H_2 CH_2 CH_2
	пропен (С ₃ Н ₆) и циклопропан (С ₃ Н ₆)
геометрическая (цис-транс)	H ₃ C CH ₃ CH ₃ CH=CH H ₃ C
	цис-бутен-2 (С ₄ Н ₈) и транс-бутен-2 (С ₄ Н ₈)

ФИЗИЧЕСКИЕ СВОЙСТВА

По физическим свойствам алкены - повторюшки алканов. При обычных условиях алкены $\mathbf{C_2}$ - $\mathbf{C_4}$ - газы, $\mathbf{C_5}$ - $\mathbf{H_{15}}$ - жидкости, начиная с $\mathbf{C_{16}}$ - твёрдые вещества. Это нерастворимые в воде вещества, их пары в смеси с воздухом зачастую взрывопасны.

химические свойства

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

-> галогенирование [+ Hal,, катализатора и условий HET]

Если над стрелочкой стоит hv или t, то это значит, что нам намекают на то, что мы должны рвать сильные СИГМА-связи!

$$H_2C$$
 — CH — CH_3 + CI — CI — CH_2C — CH — CH_3 — CH_2C — CH_3 — CH_2C — CH_3 — CH_2C — CH_2 + CI — CH_3 — CI — CH_3 — CI — CH_3 — CI — CH_3 — CH_4 — CI — C

-> гидрирование [+ H₂, условия - Ni/Pt/Pd + t]

-> гидратация [+ H,O, катализатор - H,SO,/H,PO,]

ПРАВИЛО МОРКОВНИКОВА: при присоединении молекул типа H-X к несимметричным алкенам или алкинам водород преимущественно присоединяется к наиболее гидрированному атому углерода (ИСКЛ: вещества с электроноакцепторными заместителями (-COOH, -NO₂, -CF₃).

-> гидрогалогенирование [+ HHal, катализатора и особых условий HET]

РЕАКЦИИ ОТЩЕПЛЕНИЯ (ЭЛИМИНИРОВАНИЯ)

-> дегидрирование [- H,, условия/катализаторы: Ni/Pt/Cr,O, + t]

$$A \xrightarrow{-H_2} A \xrightarrow{-H_2} A \xrightarrow{-H_2} A \xrightarrow{a_{JKNH}} A$$

РЕАКЦИИ ПОЛИМЕРИЗАЦИИ

-> полимеризация [+ n молекул, kat, t, p]

n CH₂=CH₂
$$\xrightarrow{\text{KaT.}}$$
 (-CH₂-CH₂-)_n

n CH₂=CH-CH₃ $\xrightarrow{\text{KaT.}}$ (-CH₂-CH-)_n

|
CH₃

РЕАКЦИИ ОКИСЛЕНИЯ

ОКИСЛЕНИЕ

МЯГКОЕ

в нейтральной среде рвём только пи-связи

<u>ЖЁСТКОЕ</u>

в кислой/щелочной среде рвём вообще всё (и сигма-, и пи-связи)

$$C-OH \longrightarrow C=O \longrightarrow -C \bigcirc O \longrightarrow CO_2$$

$$H_2C$$
 \longrightarrow CH_2 + 20=0 \longrightarrow H_3C \longrightarrow CH

ПОЛУЧЕНИЕ

В подавляющем большинстве случаев алкены получают путём реакций элиминирования (отщепления) (см. схему). В качестве отщепляемого вещества могут выступать: водород, галогены, галогеноводороды, вода.

дегидрирование алканов	H_3C Cr_2O_3, t^0 H_2C CH_2 H H
дегалогенирование ди- галогенпроизводных	H_2C CH_2
дегидратация спиртов	$H_{2}SO_{4}(K), t^{\circ}$ $H_{3}C$ CH_{2} $H_{2}C$ CH_{2} $H_{2}C$ CH_{2} $H_{2}C$
дегидрогалогенирова- ние моногалогенпроиз- водных	H ₂ C
гидрирование алкинов	HC \longrightarrow CH + H—H \longrightarrow H ₂ C \longrightarrow CH ₂

ПРИМЕНЕНИЕ

Получение полимеров, фенола, ацетона, уксусного альдегида, для улучшения качества топлива, этилен - для ускорения созревания плодов.

для заметок

