

Convergence Tests and Applications of SIDM Simulations

Charlie Mace
The Ohio State University
6/7/23
AAS 242

The Problem

D. Gilman et al. 2021

Dark matter self interactions significantly alter lensing predictions

We cannot constrain SIDM without reliable simulations

SIDM scattering introduces significant and unexplained energy non-conservation

Our Solution

We perform convergence tests within a grid of numerical and physical parameters – total of 144 simulations!

Physical parameters:

- 1. Halo concentration
- 2. SIDM cross-section

Numerical parameters:

- 1. Mass resolution
- 2. Softening length
- 3. Timestep size

Results

Decreasing the timestep size decreases the energy error, and the central density evolution converges

More analysis this

Summer on:

- Softening
- Energy errors
- Resolution
- Halo concentration

Our goal: Detailed prescription for numerical parameters based on halo and SIDM cross-section

Questions? mace.103@osu.edu

Extra Slides

C10T9

Log(M200) = 10.5

Conc = 10

 $Sigma/m = 1892 cm^2/g$

Collapse time = 9 Gyr

Status: Complete

C50T9

Log(M200) = 10.5

Conc = 50

 $Sigma/m = 5.688 cm^2/g$

Collapse time = 9 Gyr

Status: Complete

C10T225

Log(M200) = 10.5

Conc = 10

 $Sigma/m = 17.65 cm^2/g$

Collapse time = 225 Gyr

Status: Incomplete

C50T225

Log(M200) = 10.5

Conc = 50

Sigma/m = $0.1764 \text{ cm}^2/\text{g}$

Collapse time = 225 Gyr

Status: Mostly Complete

Over-Softening

Over-Softening

Over-softening is the worst for C10T9 and C50T225, not as bad for C50T9

Currently running C10T9 longer to see actual collapse time, may run C50T225 longer as well

Accelerated Collapse

Standard Softening

2.5x Softening

Accelerated Collapse

Collapse acceleration is only significant in long simulations

Accelerated Collapse

Accelerated cases would be here!

Energy error on accelerated collapsed cases is much larger than it is for all other simulations

Still a lot to investigate here:

- Are the small energy errors significant?
- Is this a good way to quantify the energy error?
- Does the sign of the error correlate with anything?

Under-Softening

Delayed collapse at low softening + large η in new simulations

- Resolution dependence?
- Weird energy error plots?
- What if we decrease softening more, or lower η?

Summary

Low resolution

- Delays/prevents core collapse
- 100,000 particles seems sufficient for most cases
 - Are cosmological simulations underpredicting core collapse?

Over-softening

- Delays core collapse
- Worst for large softening and low resolutions
- Some halo parameter dependence to untangle

Accelerated Collapse

- System energy loss (or gain)
- Accelerates core collapse
- Worst for large η and low resolutions

Under-softening

- New and exciting error only appears in C50T225
- Worst for small softening and large η

Tentative general result: N > 1e5, η < 0.005, and standard softening is sufficient to resolve isolated collapsing halos

Outside these bounds you may run into numerical issues, dependent on the specific halo and cross-section