6-1 Notes

Graphing Systems of Equations

Possible Number of Solutions Two or more linear equations involving the same variables form a system of equations. A solution of the system of equations is an ordered pair of numbers that satisfies both equations. The table below summarizes information about systems of linear equations.

Graph of a System	intersecting lines	same line	parallel lines
Number of Solutions			
Terminology			

Example: Use the graph at the right to determine whether each system is consistent or inconsistent and if it is independent or dependent.

$$a. y = -x + 2$$
$$y = x + 1$$

b.
$$y = -x + 2$$

 $3x + 3y = -3$

c.
$$3x + 3y = -3$$

 $y = -x - 1$

Exercises

Determine whether each system is consistent or inconsistent and if it is independent or dependent.

1.
$$y = -x - 3$$

 $y = x - 1$

2.
$$2x + 2y = -6$$
 $y = -x - 3$

$$3. y = -x - 3$$
$$2x + 2y = 4$$

Graphing Systems of Equations, cont. 6-1

Solve by Graphing One method of solving a system of equations is to graph the equations on the same coordinate plane.

Example: Graph each system and determine the number of solutions that it has. If it has one solution, name it.

a.
$$x + y = 2$$

$$x - y = 4$$

b.
$$y = 2x + 1$$

$$2y = 4x + 2$$

Exercises

Graph each system and determine the number of solutions it has. If it has one solution, name it.

1.
$$y = -2$$

3 $x - y = -1$

2.
$$x = 2$$
 $2x + y = 1$

$$3. y = \frac{1}{2}x$$
$$x + y = 3$$

4.
$$2y = -4x + 4$$

 $y = -2x + 2$

