

Segundo examen opcional

Fundamentos de análisis y diseño de algoritmos Carlos Andres Delgado S, Ing *

14 de Junio 2018

Importante: Para el caso de especificación complejidades utilice la notación O(f(n)), con el f(n) más ajustado posible.

1. Ordenamiento [15 puntos]

- 1. (5 puntos) ¿Un arreglo ordenado descendentemente es un montículo?. Sustente su respuesta.
- 2. (5 puntos) ¿Cuantas comparaciones realiza como máximo un algoritmo de ordenamiento para ordenar un arreglo de tamaño n?. Sustente su afirmación con un ejemplo.
- 3. (5 puntos) ¿Porque es posible ordenar en tiempo lineal? ¿Cual es la estrategia que se utiliza?. Puede basarse en alguno de los algoritmos de ordenamiento vistos en clase para sustentar su afirmación.

2. Programación dinámica y voraz [85 puntos]

El juego de dardos consiste en lanzar un número determinado de veces a una diana, la cual tiene pintados unos círculos con un valor determinado hasta completar una puntuación determinada K. En la siguiente figura usted puede observar una diana con 5 círculos.

Figura 1: Ejemplo de juego de dardos

La idea es determinar el mínimo número de puntuaciones que requiere para alcanzar un valor determinado K. Por ejemplo, para la figura anterior para K=35 el mínimo

número de puntuaciones son 2 que es el conjunto $\{10, 25\}$ y para K=50, es 1 que corresponde a $\{50\}$.

Formalmente, se tiene un conjunto de círculos con puntuaciones enteras positivas mayores o iguales a 1 $P = \{p_1, p_2, ...p_n\}$, donde $\forall p_i \in P \land \forall p_j \in P, i \neq j, P_i \neq P_j$. También se cumple que $\exists S \subseteq P, \sum_{p_i \in S} p_i = K$

2.1. Solución ingenua [10 puntos]

Indique cómo seria la solución ingenua de este problema. Explique si es posible dar una complejidad de la misma, de ser así indíquela.

2.2. Solución dinámica [50 puntos]

- 1. [15 puntos] Explique con un dibujo cómo se soluciona la instancia de la figura 1 con K=45 bajo la estrategia de divide y vencerás. Explique porque se puede solucionar este problema con programación dinámica.
- 2. [20 puntos] Indique la subestructura óptima. Indique con una función por trozos cómo se mapean los subproblemas en ella. Recuerde que se deben mapear las soluciones triviales y las no factibles (para estas últimas, utilice alguna penalización).
- 3. [10 puntos] ¿Como se llena esta estructura? Explique con un dibujo. ¿En que parte están mapeado el problema general y las soluciones triviales?
- 4. [5 puntos] ¿Cual es la complejidad de su solución dinámica?. Argumente.

2.3. Solución voraz [25 puntos]

- 1. [15 puntos] ¿Cual es la estrategia voraz de este problema?. Explique las razones de elegir esta estrategia con respecto a la búsqueda de la solución óptima. ¿Cual es la complejidad de esta solución y porque?
- 2. [10 puntos] De acuerdo a la estrategia voraz sustente si su solución voraz da la solución óptima. Puede utilizar un contrajemplo.

 $^{{\}rm *carlos. and res. delgado@correounival le. edu. co}$