Summary and Mathematical Tables: Statistics 2

1 Poisson Distribution

Poisson distribution is a suitable model for events which

- occur randomly in space or time,
- occur singly, that is events cannot occur simultaneously,
- occur independently, and
- occur at a constant rate, that is the mean number of events in a given time interval is proportional to the size of the interval.

If $X \sim \text{Po}(\lambda)$ follows Poisson distribution with mean λ then

- probability mass function : $\mathbb{P}(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$ for x = 0, 1, 2, ...
- expectation : $\mathbb{E}(X) = \mu = \lambda$
- variance : $Var(X) = \sigma^2 = \lambda$

If $\lambda > 15$ then $X \sim \text{Po}(\lambda)$ may reasonably be approximated by the normal distribution $Y \sim \text{N}(\lambda, \lambda)$. A continuity correction of $\pm \frac{1}{2}$ must be applied.

2 Linear Combinations of Random Variables

For any random variables X and Y and any real numbers a, b and c, the following holds

- $\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c$
- if X and Y are independent, then $Var(aX + bY + c) = a^2Var(X) + b^2Var(Y)$

If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ are independent, then for any real numbers a, b, and c

$$aX + bY + c \sim N(a\mu_X + b\mu_Y + c, a^2\sigma_X^2 + b^2\sigma_Y^2)$$

If $X \sim \text{Po}(\lambda_X)$ and $Y \sim \text{Po}(\lambda_Y)$ are independent, then $X + Y \sim \text{Po}(\lambda_X + \lambda_Y)$.

3 Continuous Random Variables

The probability density function (PDF) f(x), of a continuous random variable X satisfies

- $f(x) \ge 0$ for all real number x
- $\bullet \int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1$
- $\mathbb{P}(a \le X \le b) = \int_a^b f(x) dx$

The cumulative distribution function (CDF) F(x), of a continuous random variable X satisfies

•
$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(u) du$$

•
$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x} F(x)$$

•
$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to +\infty} F(x) = 1$

• F(x) is increasing everywhere.

The median of X is the value of M for which $\mathbb{P}(X \leq M) = \int_{-\infty}^M f(x) \mathrm{d}x = \frac{1}{2}$

Expectation :
$$\mathbb{E}(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$$

Variance :
$$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2$$

4 Sampling

A random sample of size n is a sample chosen in such a way that each possible group of size n which could be taken from the population has the same chance of being picked.

If a random sample consists of n observations X_1, X_2, \ldots, X_n of a random variable X with $\mathbb{E}(X) = \mu$ and $\operatorname{Var}(X) = \sigma^2$ and $\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$, then

- $\bullet \ X_1, X_2, \dots, X_n$ are independent and identically distributed (i.i.d.)
- $\mathbb{E}(\bar{X}) = \mu$
- $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$

The Central Limit Theorem (CLT). For any sequence of independent identically distributed random variables X_1, X_2, \ldots, X_n with finite mean μ and non-zero variance σ^2 , then, provided n is sufficiently large, \bar{X} is distributed approximately as $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, where $\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$.

- A rule of thumb is to apply the theorem when n is greater than about 30.
- If X is a discrete random variable, then a continuity correction of $\pm \frac{1}{2n}$ must be applied when computing the distribution of \bar{X} .

5 Estimation

If a random sample consists of n random observations x_1, x_2, \ldots, x_n , of X, then

sample mean :
$$\bar{x} = \frac{1}{n} \sum x$$
 sample variance : $s^2 = \frac{1}{n-1} \sum (x - \bar{x})^2 = \frac{1}{n-1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)$

An estimate \hat{x} , of a value x is a good estimator if

• the estimate is unbiased, that is $\mathbb{E}(\hat{x}) = x$

• the variance $Var(\hat{x})$ is minimised.

If x_1, x_2, \ldots, x_n are random samples of a random variable X with $\mathbb{E}(X) = \mu$ and $\text{Var}(X) = \sigma^2$, then

- unbiased estimate for μ : $\hat{\mu} = \bar{x}$
- unbiased estimate for σ^2 : $\hat{\sigma}^2 = s^2$

where \bar{x} is the sample mean and s^2 is the sample variance.

The $(1 - \alpha)$ symmetric confidence interval for the population mean μ , for a sample of size n taken from a normal population with known variance σ^2 is given by

$$\left[\bar{x} - z_{1-\frac{1}{2}\alpha} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{1}{2}\alpha} \frac{\sigma}{\sqrt{n}}\right]$$

where \bar{x} is the sample mean and $z_{1-\frac{1}{2}\alpha}$ is the value such that $\Phi\left(z_{1-\frac{1}{2}\alpha}\right)=1-\frac{1}{2}\alpha$.

If the sample size is large $(n \ge 30)$, then σ^2 the may reasonably be approximated by the sample variance s^2 . The confidence interval is given by

$$\left[\bar{x}-z_{1-\frac{1}{2}\alpha}\frac{s}{\sqrt{n}}, \bar{x}+z_{1-\frac{1}{2}\alpha}\frac{s}{\sqrt{n}}\right]$$

If $X \sim \mathrm{B}(n,p)$ is a sample of size n from a population in which a proportion of members, p, has a particular attribute, then the sample proportion $p_s = \frac{X}{n}$, is distributed approximately as $p_s \sim \mathrm{N}\left(p, \frac{pq}{n}\right)$, provided n is large enough such that np > 5 and n(1-p) > 5.

The $(1 - \alpha)$ confidence interval for p is given by

$$p_s - z_{1 - \frac{1}{2}\alpha} \sqrt{\frac{p_s(1 - p_s)}{n}}, p_s + z_{1 - \frac{1}{2}\alpha} \sqrt{\frac{p_s(1 - p_s)}{n}}$$

where $z_{1-\frac{1}{2}\alpha}$ is the value such that $\Phi\left(z_{1-\frac{1}{2}\alpha}\right)=1-\frac{1}{2}\alpha$.

6 Hypothesis Testing for Continuous Random Variables

Testing a population mean for a Normal distribution. Test if the mean μ of a normal random variable X with known variance σ^2 is equal to μ_0 at α significance level.

Null hypothesis : $H_0: \mu = \mu_0$

Alternative hypothesis:

- $H_1: \mu \neq \mu_0$, for two-tail test
- $H_1: \mu > \mu_0$, for one-tail increase test
- $H_1: \mu < \mu_0$, for one-tail decrease test

Test statistics : $\hat{z} = \frac{\hat{\mu} - \mu_0}{\sigma/\sqrt{n}} = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$, where n is the number of observations and \bar{x} is the sample mean.

 H_0 is accepted if

- $\hat{z} \leq z_{1-\frac{1}{2}\alpha}$, for two-tail test,
- $\hat{z} \leq z_{1-\alpha}$, for one-tail increase test, or

• $|\hat{z}| \leq |z_{\alpha}|$, for one-tail decrease test

otherwise H_0 is rejected and H_1 is accepted.

If the sample size is large $(n \ge 30)$, then σ^2 the may reasonably be approximated by the sample variance s^2 .

The p-value is the probability that the mean of the population would be more extreme (greater for one-tail increase case, lower for one-tail decrease case) than or equal to the actual observed results, on the condition that H_0 is true. This is the probability that the test statistic deviates from the population mean by the observed amount in either direction.

If X_1, X_2, \dots, X_n are random observations of the distribution $X \sim N(\mu, \sigma^2)$ then

• p-value =
$$\mathbb{P}(|X - \mu| \ge |\bar{X} - \mu||\mu = \mu_0) = 2\Phi\left(-\frac{|\bar{X} - \mu_0|}{\sigma/\sqrt{n}}\right) = 2\left(1 - \Phi\left(\frac{|\bar{X} - \mu_0|}{\sigma/\sqrt{n}}\right)\right)$$
, for two-tail test,

• p-value =
$$\mathbb{P}(X \ge \bar{X} | \mu = \mu_0) = \Phi\left(-\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}\right) = 1 - \Phi\left(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}\right)$$
, for one-tail increase test, or

• p-value =
$$\mathbb{P}(X \leq \bar{X}|\mu = \mu_0) = \Phi\left(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}\right)$$
, for one-tail decrease test

 H_0 is accepted if p-value $\geq \alpha$. Otherwise H_0 is rejected and H_1 is accepted.