面数的唯质

Properties of Functions

刘铎 liuduo@bjtu.edu.cn

- **设函数 $f: A \rightarrow B$,
 - -若 Ran(f) = B, 则称 f 是满射 (surjection) 或映上的(onto);
 - 若任意 $y \in \mathbf{Ran}(f)$ 都存在唯一的 $x \in A$ 使得 f(x) = y,则称 $f: A \rightarrow B$ 是单射 (injection)或——的 (one-to-one);
 - 若 f 既是满射又是单射,则称 f 是**双射** (bijection)或一一对应(one-to-one correspondence)。

函数的性质

- ★f 是满射意味着:对于任意 $y \in B$,都存在 $x \in A$ 使得 f(x) = y
- **★**f 是单射另有如下两个等价定义:
 - -对于任意 $a, b \in A$ 满足 $a \neq b$,均有 $f(a) \neq f(b)$
 - -如果 $a,b\in A$ 满足 f(a)=f(b),则 a=b

₩例

- -设A是非空集合,A上的恒等函数 1_A 既是单射又是满射,从而是双射
- 函数 g: ℝ→ℝ,定义为 $g(x)=x^2-2x+1$
 - g 不是单射—— g(0)=g(2)=1
 - g 也不是满射——g 在 x=1 取得最小值 0
 - 从而g不是双射。

函数的性质

業练习

$$-f\colon \mathbb{Z}^+ \to \mathbb{Z}^+$$
,
$$-f(1) = 1, \ f(n) = n-1 \ (n>1)$$

- 单射?
- 满射?
- 双射?

★对于有限集合上的函数,有如下主要结果:

₩定理

假设A和B是两个有限集合且满足 |A| = |B|,则函数 $f: A \rightarrow B$ 是单射当且仅当f是满射。

業定理

假设A和B都是有限集合,则:

- (a) 若 |A| < |B|, 则必然存在从 A 到 B 的单射函数、必然不存在从 A 到 B 的满射函数;
- (b) 若 |A| > |B|, 则必然存在从 A 到 B 的满射函数、必然不存在从 A 到 B 的单射函数;
- (c) 若 |A|=|B|, 则必然存在从 A 到 B 的双射函数。

函数的性质

☀推论

假设 A 是有限集合,B 是无限集合,则:

- -(a) 必然不存在从A 到B 的满射函数
- -(b) 必然不存在从 B 到 A 的单射函数

#