Q1. You are given a function $f(x) = X^2$. You are also given **K** lists. The i^{th} list consists of N_i elements.

You have to pick one element (<u>NOT NECESSARY THE LARGEST ELEMENT</u>) from each list so that the value from the equation below is maximized:

$$S = (f(X_1) + f(X_2) + f(X_3) + \dots + f(X_k))\%$$

 X_i denotes the element picked from the i^{th} list. Find the maximized value S_{max} obtained. % denotes the modulo operator.

Note that you need to take exactly one element from each list, <u>NOT NECESSARILY THE</u> <u>LARGEST ELEMENT</u>. You add the squares of the chosen elements and perform the modulo operation. The maximum value that you can obtain, will be the answer to the problem.

Input Format

The first line contains 2 space separated integers K and M.

The next K lines each contains an integer N_i , denoting the number of elements in the i^{th} list, followed by N_i space separated integers denoting the elements in the list.

Output Format

Output a single integer denoting the value S_{max} .

Sample Input

```
3 1000 // 3 is value of K(number of lists) and 1000 is value for M
2 5 4 // 2 is number of elenents in the list and 5 4 are the Eliments of first list
3 7 8 9 // 3 is number of elenents in the list and 7 8 9 are the Eliments of second list
5 5 7 8 9 10 // 5 is number of elenents in the list and 5 7 8 9 10 are the Eliments of third list
```

Sample Output

206

Explanation

Picking 5 from the 1st list, 9 from the 2nd list and 10 from the 3rd list gives the maximum S value equal to $(5^2+9^2+10^2)\% 1000 = 206$.