ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 5.1.2 Исследование эффекта Комптона

> Серебренников Даниил Группа Б02-826м

Цель работы: с помощью сцинтиляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Опреляется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

1 Теоретическая часть

Эффект Комптона – увеличение длины волны рассеянного излучения по сравнению с падающим – интерпретируется как результат упругого содуранеия двух частиц: γ -кванта и свободного электрона.

Из закона сохранения 4-имульса для системы «фотон + электрон» следует формула для изменения длины волны рассеянного излучения:

$$\Delta \lambda = \Lambda_K (1 - \cos \theta), \tag{*}$$

где величина $\Lambda_K = h/(mc) = 2,42\cdot 10^{-10}$ см называется комптоновской длиной волны электрона.

Из формулы (\star) следует, что комптоновское смещение не зависит ни от длины волны первичного излучения, ни от рода вещества, в котором наблюдается рассеяние. В общем случае комптоновоское рассеяние происходит на свободных электронах в атоме. Для γ -квантов с энергией в несколько десятков, а тем более сотен килоэлектронвольт, связь электронов в атоме мало существенна, так как энергрия их связи в легких атомах не превосходит нескольких килоэлектрон-вольт, а для большинства электронов еще меньше.

При рассеянии на связанных электронах изменение импульса кванта воспринимается атомом в целом. Посколько масса атома очень велика, переда ча импульса не спровождается сколь-нибудь заметной передачей энергии, и наблюдается несмещенная (по энергии) компонента в спектре рассеянного излучения. Таким образом, рассеяние γ -квантов на связанных электронах можно рассматривать как упругое столкновение квантов с атомами.

Основной целью данной работы является проверка соотношения (\star). Применительно к условиям нашего опыта формулу (\star) следует преобразовать от длин волн к энергиям γ -квантов. Как нетрудно показать, соответсвующиее выражение имеет вид:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta. \tag{**}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ – выраженная в единицах (mc^2) энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ – выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m – масса электрона.

Заменим в формуле (**) энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ :

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta), \qquad (\star \star \star)$$

где A – неизвестный коэффциицент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$.

2 Экспериментальная установка

Блок-схема установки изображена на рис. 1а. Источником излучения 1 служит $^{137}\mathrm{Cs}$, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстенный свинцовый контейнер с коллиматором. Сформмированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диамтером 40 мм и высотой 100 мм.)

Рис. 1: Экспериментальная установка.

Кванты, испытавшие комптоновское рассеяние в мишени, региструруются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отсчитывается по лимбу 6.

На рис. 1b представлена функциональная блок-схема измерительного комплекса, который состоит из ФЭУ, питаемого от высоковольтного выпрямителя ВСВ, обеспечивающего работу ФЭУ в спектрометрическом режиме, усилителя-анализатора УА, являющегося входным интерфейсом ЭВМ, управляемой с клавиатуры КЛ. В ходе проведения эксперимента информация отражается на экране дисплея Д, окончательные результаты в виде таблиц и графиков могут быть выведены на принтер ПР.

3 Экспериментальные данные

Таблица 1: Измеряемые величины и их погрешность.

θ , °	σ_{θ} , °	N	σ_N
0,0		790	20
10,0	0,5	770	10
20,0		680	30
30,0		630	20
40,0		590	40
50,0		530	40
60,0		440	50
70,0		400	50
80,0		350	40
90,0		320	50
100,0		300	50

Таблица 2: Счетная характеристика ФЭУ № 4012.

t, c	U, к B	σ_U , кВ	Счет	$\sigma_{ m C_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$
	1,2		16000	
	1,3		51000	
	1,4		63000	
60	1,5	0,5	63000	2000
	1,6		71000	
	1,7		69000	
	1,8		71000	

Обработка результатов 4

Оценим погрешности величин $1-\cos\theta$ и 1/N по следующим формулам:

$$\sigma_{1-\cos\theta} = \sin\theta \cdot \sigma_{\theta}, \ \sigma_{1/N} = 1/N^2 \cdot \sigma_{N}.$$

Результаты вычислений представлены в следующей таблице:

 $1-\cos\theta$ $1/N \cdot 10^{3}$ $\sigma_{1/N}$ $\sigma_{1-\cos\theta}$ 0,000 0 1,27 0,02 0,015 0,002 1,30 0,02 0,060 0,003 1,48 0,05 0,1340,0041,58 0,04 0,2340,006 1,70,10,357 0,007 1,9 0,12,3 0,5000,008 0,20,658 0,008 2,5 0.32,9 0,826 0,3 0.009 1,000 0,0093,1 0,41,174 0,009 3,4 0,6

Таблица 3: Обработанные данные.

Изобразим экспериментальные результаты (табл. 3) в виде графика (рис. 2). Согласно формуле $(\star \star \star)$ экспериментальные точки должны лежать на одной прямой, что, как видно, выполняется. Пересечение этой прямой с осью ординат определяет наилучшее значение $N_{\text{наил}}(0)$, а пересечение линии $1-\cos\theta=1$ позволяет найти наилучшее значение $N_{\text{наил}}(90)$.

Рис. 2: Зависимость $1/N = f(1 - \cos \theta)$.

Таблица 4: f(x) = Ax + B. Таблица 5: Наил. N

N(90)

$A \cdot 10^3$	$B \cdot 10^3$	R^2
$2,0 \pm 0,1$	$1,27 \pm 0,01$	0,97

т наил (О)	т наил (50)
769 ± 6	303 ± 9

Определим счетную характеристику y(U) ФЭУ №4012 на основе результатов измерений, представленных в таблице 2. Это позволит нам учесть случайные ошибки, обсуловленные скачками напряжений, сильно влияющими на коэффциицент усиления ФЭУ.

Рис. 3: Счетная характеристика ФЭУ № 4012.

Вид зависимости найдем в следующем виде:

$$y(U) = A_1 e^{-U/t_1} + y_0.$$

Таблица 6: Параметры аппроксимации y(U).

y_0 , счет/с	$A_1, { m cчет/c\cdot}10^8$	t_1 , кВ	R^2
1160 ± 20	-1 ± 2	$0,10 \pm 0,01$	0,98

5 Обсуждение результатов и выводы

Итак, в настоящей лабораторной работе нами была проведена проверка соотношения (\star). Экспериментально установлено, что γ -кванты действительно испытывают упругое рассеяние на свободных частицах.

Обратим наше внимание на то, что с увеличением угла θ погрешность измерения номера канала σ_N увеличивается, что связано со смещением фотопика в сторону сплошного распределения, обязанного комптоновскому рассеянию. При $\theta=110^\circ$ уже было невозможно увидеть пик полного поглощения.

На основании таблицы 5 можно определить энергию покоя частиц, на которых происходит комптоновское рассеивание. Путем несложных преобразований формула (**) принимает вид:

$$mc^2 = E(0) \frac{N_{\text{наил}}(90)}{N_{\text{наил}}(0) - N_{\text{наил}}(90)},$$

где E(0) – энергия γ -лучей, испускаемых источником (в нашем случае $^{137}\mathrm{Cs}$), то есть $662~\mathrm{k}$ эВ. Имеем:

 $mc^2 = 430 \pm 20$ кэВ.

Видно, что результат на 16% меньше 511 кэВ – энергии покоя электрона. Почему? Погрешность должна быть больше...

Отметим, что колебания напряжения на ФЭУ № 4012 практически не вносят погрешности в измерения, ведь в работе было использовано напряжение U=1,6 кэВ, при котором счетная характеристика выходит на константу, как видно из рисунка 3.