Test 4 Level 4, January 12, 2022

Problem 4.1. Let ABC be an acute-angled triangle. Point P is such that AP = AB and $PB \parallel AC$. Point Q is such that AQ = AC and $CQ \parallel AB$. Segments CP and BQ meet at point X. Prove that the circumcenter of triangle ABC lies on the circumcircle of triangle PXQ.

Problem 4.2. Find all positive integers n that have precisely $\sqrt{n+1}$ natural divisors.

Problem 4.3. Let n be an *even* positive integer. On a board n real numbers are written. In a single move we can erase any two numbers from the board and replace *each of them* with their product. Prove that for every n initial numbers one can in finite number of moves obtain n equal numbers on the board.

Problem 4.4. Let \mathbb{R}^+ be the set of all positive real numbers. Find all the functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $x, y \in \mathbb{R}^+$,

$$f(x)f(y) = f(y)f(xf(y)) + \frac{1}{xy}.$$

السؤال الأول

ليكن ABC مثلث حاد الزوايا. تحقق النقطة P أن AP = AB و $PB \parallel AC$. تحقق النقطة P ان ABC في نقطة P أثبت أن المركز المحيط للمثلث P يقع على الدائرة المحيطة بالمثلث P P .

السؤال الثاني

أوجد كل الأعداد الصحيحة الموجبة n التي لها بالضبط $\sqrt{n+1}$ قاسم طبيعي.

السؤال الثالث

ليكن n عدد صحيح زوجي موجب. تم كتابة n عدد حقيقي على السبورة. في الحركة الواحدة بمكننا إزالة أي عددين من السبورة واستبدالهما بحاصل ضربهما. أثبت أن لكل n من الأعداد الأصلية، يمكننا بعدد محدود من الحركات الحصول على n من الأعداد المتساوية على السبورة.

السؤال الرابع

 $x,y\in\mathbb{R}^+$ لتكن $f:\mathbb{R}^+ o\mathbb{R}^+$ هي مجموعة كل الأعداد الحقيقية الموجبة. أوجد كل الدوال $f:\mathbb{R}^+ o\mathbb{R}^+$ بحيث $f(x)f(y)=f(y)f(xf(y))+rac{1}{xy}$

الزمن 4 ساعات ونصف كل سؤال 7 نقاط مع أطيب التمنيات بالتوفيق