Část A (max. zisk 20 bodů) Odpovězte jen tabulkou s číslem otázky a písmenem označujícím Vaši odpověď. Každá otázka má pouze jednu správnou odpověď. Za správnou odpověď je +5 bodů, za nevyplněnou odpověď 0 bodů a za nesprávně vyplněnou odpověď -2 body. Pokud je celkový součet bodů v části A záporný, je tento součet přehodnocen na 0 bodů.

- 1. Řešením soustavy lineárních rovnic $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ jsou například vektory $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Pak je řešením i následující vektor:
 - (a) $\mathbf{u} + \alpha \cdot \mathbf{v}$ pro libovolný skalár α ,
 - (b) $\alpha \cdot (\mathbf{w} \mathbf{b})$ pro libovolný skalár α ,
 - (c) $(\mathbf{A} \cdot \mathbf{u}) \mathbf{b}$,
 - (d) $\mathbf{w} \mathbf{u} + \mathbf{v}$.
- 2. Ať $\mathbf{f}:V\to W$ je epimorfismus a ať má lineární zobrazení \mathbf{f} vzhledem k nějakým bázím prostorů V a W matici zobrazení \mathbf{F} . Potom platí:
 - (a) nutně $def(\mathbf{f}) > 0$,
 - (b) pro každý vektor $\mathbf{w} \in W$ existují alespoň dva různé vektory $\mathbf{v}_1, \mathbf{v}_2 \in V$ takové, že $\mathbf{f}(\mathbf{v}_1) = \mathbf{f}(\mathbf{v}_2) = \mathbf{w}$,
 - (c) $\dim V > \dim W$,
 - (d) soustava $\mathbf{F} \cdot \mathbf{x} = \mathbf{b}$ má řešení pro libovolný vektor \mathbf{b} .
- 3. Čtvercová reálná matice \mathbf{A} typu 2×2 má determinant $\det(\mathbf{A}) = -1$. Potom platí:
 - (a) A je matice rotace,
 - (b) \mathbf{A} může měnit normu vektorů v \mathbb{R}^2 (normu odvozenou ze standardního skalárního součinu),
 - (c) soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ má vždy triviální řešení,
 - (d) $\det(\mathbf{A}^{-1}) = 1$.
- 4. Máme dáno lineární zobrazení $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$. Víme, že pro libovolný vektor $\mathbf{x} \in \mathbb{R}^3$ platí, že $\mathbf{f}(\mathbf{x}) = 3 \cdot \mathbf{x}$. Potom také platí:
 - (a) vlastní vektory zobrazení \mathbf{f} příslušné číslu 3 spolu s nulovým vektorem tvoří invariantní prostor, kterým je celé \mathbb{R}^3 ,
 - (b) existuje nestandardní báze prostoru \mathbb{R}^3 , vzhledem ke které má zobrazení \mathbf{f} vlastní číslo 9,
 - (c) matice zobrazení \mathbf{f} vzhledem ke standardním bázím má determinant 3,
 - (d) $\operatorname{def}(\mathbf{f}) = 3$.

Část B (max. zisk 20 bodů) V odpovědi je třeba uvést definice uvedených pojmů a dále podrobnou a smysluplnou argumentaci, která objasňuje pravdivost uvedeného tvrzení. Za správně formulované definice je 10 bodů, za správně vedený důkaz je dalších 10 bodů.

Zformulujte a dokažte Cramerovu větu. (Pojem determinantu nemusíte definovat.)

Část C (max. zisk 20 bodů) Kromě zřetelně označeného výsledku (tj., odpovědi celou větou) je nutné odevzdat všechny mezivýpočty a stručné zdůvodnění postupu. Postup musí být zapsán přehledně a srozumitelně. Za chybný postup není možné dostat body, ačkoli nějaké výpočty jsou odevzdány. Za numerickou chybu, ale jinak správný postup, se strhává 1 nebo 2 body. Za část výpočtu je udělen odpovídající poměrný počet bodů z dvaceti.

Máme zadán vektor

$$\mathbf{u} = \left(\begin{array}{c} 2\\1\\3 \end{array}\right)$$

v lineárním prostoru \mathbb{R}^3 se standardním skalárním součinem. Nalezněte libovolnou dvojici vektorů $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ tak, aby seznam $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ tvořil ortogonální bázi prostoru \mathbb{R}^3 . Jaké souřadnice má vůči této bázi vektor

$$\mathbf{p} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}?$$

Závěrečnou odpověď zapište celou větou.