## Elettronica 20 gennaio 2021

Del circuito seguente calcolare il guadagno di tensione per piccolo segnali  $A_v = v_{out}/v_{in}$ .



OA ideale con 
$$L^{+} = -L^{-} = 12$$
V  $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 2 \text{ V}; \lambda = 0)$   $V_{DD} = 10$ V  $R_{G} = 5 \text{ k}\Omega$   $R_{D} = 5 \text{ k}\Omega$   $R_{SI} = 1 \text{ k}\Omega$   $R_{S2} = 2 \text{ k}\Omega$   $R_{I} = 1 \text{ k}\Omega$   $R_{2} = 2 \text{ k}\Omega$ ;  $C = \infty$ 

$$\begin{cases} V_{GS} = -3I_D + 10 & V_{GS} = -3I_D + 10 & x = -\frac{3}{2}(x^2 - 4x + 4) + 10 \\ 3x^2 - 12x + 12 - 20 + 2x & x = \frac{10 \pm \sqrt{100 + 96}}{6} = \frac{10 \pm 14}{6} \end{cases}$$

$$\begin{cases} I_D = k(V_{GS} - V_{TH})^2 & I_D = \frac{1}{2}(V_{GS} - 2)^2 & 3x^2 - 10x - 8 \end{cases}$$

## VERIFICO IPOTESI

## ANALISI PICCOLI SEGNALI -> GEN GST NULLI (VDD, - VDD, C IN CC.)

RS2 HA MASSA SUI LATI, DIVENTA INUTILE

$$A_{\tau} = \frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{g_{\text{m}} R_{\text{D}}}{1 + g_{\text{m}} R_{\text{S}}} = -\frac{10}{3} \rightarrow A_{\text{op}} = 1 + \frac{R_{\text{2}}}{R_{\text{i}}} = 3 \rightarrow A_{\text{Tot}} = A_{\text{T}} \cdot A_{\text{op}} = -10$$

## Elettronica 11 febbraio 2021

Del circuito seguente calcolare il guadagno di tensione per piccoli segnali  $A_v = v_{out}/v_{in}$ .



OA ideale con 
$$L^{+} = -L^{-} = 12$$
V  $M_{I} = (K = 0.33 \text{ mA/V}^{2}; V_{T} = 2 \text{ V}; \lambda = 0)$   $V_{DD} = 15$ V  $R_{A} = 6 \text{ k}\Omega$   $R_{B} = 3 \text{ k}\Omega$   $R_{D} = 3 \text{ k}\Omega$   $R_{I} = 6 \text{ k}\Omega$   $R_{2} = 12 \text{ k}\Omega$ ;  $C = \infty$ 

POLARIZENANO IL T 
$$\rightarrow$$
 ANALISI IN CONTINUA PER TRUSIONI COST  
 $GEN$  VARIABILI NULLI  $\rightarrow$   $V_{tw}$   $\subset$   $Z$ .  $E$   $\subseteq$  IN  $\subseteq$   $A$ .

 $V_{U}^{-1}$   $V_{DD}$   $\frac{R_{0}}{R_{0}}$  = IS  $\frac{3}{9}$  = 5  $V$  =  $V_{US}$   $V_{S}$  = 0

 $I_{D}^{-1}$   $K$  ( $V_{US}^{-1}$   $V_{TH}$ )  $^{-2}$  = 0.33 · 9 = 3 m  $A$ 
 $V_{DS}^{-1}$   $V_{D}^{-1}$   $V_{DD}^{-1}$  IS - 9 = 6  $V$  >  $V_{US}^{-1}$   $V_{TH}^{-1}$  3  $V_{US}^{-1}$  >  $V_{TH}$  SATURABIONE

ANALISI PICCOLI SEGMALI  $\rightarrow$   $GEN$  COST NULLI ( $V_{DD}^{-1}$   $Z$  IN  $Z_{C}^{-1}$  )

 $Q_{TM}^{-1}$  = 2  $K$  ( $V_{US}^{-1}$   $V_{TH}^{-1}$ ): 2  $M_{US}^{-1}$   $M_{US}^{-1}$ 

## Elettronica 14 aprile 2021

Del circuito seguente, con  $V_1$  un generatore di tensione costante e  $i_{in}$  un generatore di corrente di piccolo segnale,

- 1) Calcolare il punto di lavoro in continua del transistor  $M_1$ ;
- 2) Calcolare il guadagno di transimpedenza  $R_m = v_{out}/i_{in}$ .



OA ideale con 
$$L^{+} = -L^{-} = 12V$$
  $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$   
 $V_{1} = 3V$   $V_{DD} = 12V$   
 $R_{I} = 2 \text{ k}\Omega$   $R_{D} = 4 \text{ k}\Omega$   $C = \infty$ 



Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare l'andamento nel tempo della tensione di uscita  $V_{\rm O}$ .

OA ideale con  $L^{+} = -L^{-} = 12V$ 

$$R_1 = 3 \text{ k}\Omega$$
;  $R_2 = 6 \text{ k}\Omega$ ;  $C = 50 \text{ nF}$ ;



Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, calcolare e graficare l'andamento nel tempo della tensione di uscita  $V_{AB} = V_A - V_B$ .

$$M_I = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$$
  
 $R_D = 2 \text{ k}\Omega; R_S = 1 \text{ k}\Omega; C = 50 \text{ nF}$   
 $V_{DD} = 12 \text{ V}$ 





TRANSISTOR

PER 
$$\mathcal{L}(o)$$
  $V_{uv}$  = 0

 $V_{v}$ : 0  $V_{v}$ :  $V_{v}$ :  $V_{v}$ :  $V_{v}$  now pub essere meating period perché la dimarica va da  $V_{v}$  a 0  $\rightarrow$  interdetto  $I_{v}$ : 0

 $V_{v}$ :  $V$ 



## Elettronica - 2 luglio 2021 TURNO 1

Del circuito seguente, con  $V_1$  un generatore di tensione costante e  $v_{in}$  un generatore di tensione di piccolo segnale,

- 1) Calcolare il valore della tensione di uscita in continua  $V_{out}$ ;
- 2) Calcolare il guadagno di tensione per piccoli segnali  $A_v = v_{out}/v_{in}$ .



OA ideale con 
$$L^+ = -L^- = 12$$
V 
$$M_I = (K = 1 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$$
$$V_1 = 2$$
V 
$$V_{DD} = 10$$
V 
$$C = \infty$$
$$R_I = R_2 = R_D = R_S = R_L = 2 \text{ k}\Omega$$

TENSIONE CONTINUA (VIN E C IN C.A.) OP VOUT = V, (1+ R2 )= 2(1+1)=4V VG = VOUT = 4 V VGS = VG - VS = VG - IORS ID = K(VGS - VTH)2  $\begin{cases} V_{GS} = 4 - 2I_{B} & x = 4 - 2(x^{2} - 2x + 1) \\ 4 - 2x^{2} + 4x - 2 - x \\ 2x^{2} - 3x - 2 \end{cases}$ IRD = ID + IRL + VOD - VD = ID + VD - VD = 4V - VDS = VD - VS = 4 - 2 = 2V > VGS - VTH = IV SATURAZIONE Vour = V2 = 4V PICCOLI SEGNALI (V, E VDD A MASSA) gm = 2K(V65-Vry)= 2 mA Apr Vout = R2 = -1 × AT = -9m RDIL = -2 - ATOT = AOP · AT = 2

#### Elettronica - 2 luglio 2021

#### **TURNO 2**

Del circuito seguente, con  $I_1$  un generatore di corrente costante e  $v_{in}$  un generatore di tensione di piccolo segnale,

- 1) Calcolare il valore della tensione di uscita in continua  $V_{OUT}$ ;
- Calcolare il guadagno di tensione per piccoli segnali  $A_v = v_{out}/v_{in}$ .



OA ideale con 
$$L^{+} = -L^{-} = 12V$$

$$M_1 = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$$

$$R_G = 1 \text{ k}\Omega$$

$$V_{DD} = 3$$

$$C = \infty$$

$$g = 1 \text{ k}\Omega$$

$$I_1 = 2\text{mA}$$
  $V_{DD} = 5\text{V}$   $C = \infty$   $R_D = 1 \text{ k}\Omega$   $R_1 = 2 \text{ k}\Omega$   $R_2 = 4 \text{ k}\Omega$ 

$$R_2 = 4 \text{ k}\Omega$$

$$V_{G} = 0 \quad V_{GS} = -V_{S} \qquad T_{D} = I_{1} = 2 \, \text{mA}$$

$$T_{D} = K \left(-V_{S} - V_{TH}\right)^{2} = \frac{1}{2} \left(V_{S}^{2} + 2V_{S} + 1\right) \Rightarrow V_{S}^{2} + 2V_{S} - 3 \qquad \times = -\frac{2!}{2} \sqrt{\frac{1}{2} + 12} = -\frac{2!}{2} \sqrt{\frac{1}{2}} \qquad V_{S} = -3 \qquad V_{GS} = 3$$

$$I_{RD} = I_D + I_{R_1} \rightarrow \frac{V_{DD} \cdot V_D}{R_D} = I_D + \frac{V_D}{R_1} \rightarrow V_D = 2V$$

# PICCOLI SEGNALI (VOD A MASSA, CIN C.C.)

$$A_{r} = -g_{m}R_{D} = -2 \times A_{oP} = -\frac{R_{2}}{R_{i}} = -2 \rightarrow A_{ror} = A_{r} \cdot A_{oP} = 4$$

# Elettronica 9 settembre 2021

Del circuito seguente, con  $i_{in}$  un generatore di corrente di piccolo segnale,

- 1) Calcolare il punto di lavoro in continua del transistor  $M_1$ ;
- 2) Calcolare il guadagno di corrente  $A_i = i_{out}/i_{in}$ .



OA ideale con 
$$L^+ = -L^- = 5$$
V  $M_1 = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$   
 $R_1 = 20 \text{ k}\Omega; \quad R_2 = 10 \text{ k}\Omega; \quad R_S = 1 \text{ k}\Omega; \quad R_D = 2 \text{ k}\Omega; \quad R_L = 3 \text{ k}\Omega$   
 $V_{DD} = 5$ V  $C = \infty$ 

TENSIONE CONTINUA (i. N E ( IN C.A)

$$V_{OUT} = V_G = O$$
  $V_S - (-V_{DD}) = I_D R_S \rightarrow V_S = I_D R_S - V_{DD}$ 

$$\begin{cases} V_{GS} = S \cdot I_{D} & x = S \cdot \left(\frac{x^{2} \cdot 2x + 1}{2}\right) \\ -x^{2} + 2x \cdot 1 + 10 \cdot 2x & V_{GS} = 3V & V_{S} = \cdot 3V & I_{D} = 2 mA \end{cases}$$

SATURAZIONE

PICCOLI SEGNALI (VDD A MASSA, CIN C.L.)

## Elettronica - 22 ottobre 2021

Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita  $V_{out}$ .



$$M_{I} = (K = 1 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$$
  
 $V_{DD} = 6 \text{V}$   $C_{L} = 1 \text{ }\mu\text{F}$   
 $R_{I} = 3 \text{ }k\Omega$   $R_{2} = R_{G} = 6 \text{ }k\Omega$   $R_{S} = R_{D} = 1 \text{ }k\Omega$ 

$$V_{U} = V_{DD} \frac{R_{EMG}}{R_{EMG} + R_{i}} : 3V \quad V_{GS} = V_{G} \cdot V_{S} = V_{G} \cdot I_{D} R_{S} \quad I_{D} = K (V_{KS} - V_{RH})^{2}$$

$$\begin{cases} V_{0S} = 2 \cdot I_{D} & \times 3 \cdot (N^{3} \cdot 2 \times 1) \\ I_{D} = (V_{GS} - 1)^{2} & \times 3 \cdot (N^{3} \cdot 2 \times 1) \\ X_{0} = (V_{GS} - 1)^{2} & \times 3 \cdot (N^{3} \cdot 2 \times 1) \end{cases} \times = \underbrace{1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 + 1 + 1}_{2} + \underbrace{1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 + 1}_{2} + \underbrace{1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 + 1}_{2} + \underbrace{1 + 1 + 1}_{2} + \underbrace{1 \pm \sqrt{118}_{2} \pm \frac{1}{2}}_{2} V_{GS} = \underbrace{1 + 1 + 1}_{2} + \underbrace{1 + 1 + 1}_{2} +$$