

PROGRAMA DE DISCIPLINA ELEMENTOS DE LOGICA CCOMP (02-06058)

Semana 1.	Filosofia, ciência e LÓGICA Temas: Proposições. Lógica de argumentação. Lógica formal e material. Raciocínio. Convenções (filosóficas e científicas). Princípios lógicos (PI, PNC, PETT).
Semana 2.	LOGICA PROPOSICIONAL E ALGORITMOS Temas: Linguagem. Sintaxe: Alfabeto (letras proposicionais e conectivos lógicos) e gramatica (fbf). Semântica: Tabelas de verdade e calculo proposicional (tautologia).
Semana 3.	RACIOCINIOS E PENSAMENTO MATEMÁTICO Temas: Raciocínio e argumentação (premissas e conclusões). Implicações e equivalências lógicas (regras de inferência). Formas normais (FND e FNC).
Semana 4.	METODOS DE DEMONSTRAÇÃO E RACIOCINIOS VÁLIDOS Temas: Métodos matemáticos de demonstração (direta e redução ao absurdo) aplicados à lógica. Método de demonstração condicional na lógica proposicional.
Semana 5.	CONJUNTOS E QUANTIFICADORES Temas: Conjuntos e Quantificadores. Relações binarias (pertinência e continência). Príncipios de extensionalidade (igualdade) e especificação. Diagramas de Venn.
Semana 6.	Exercícios e modelo de prova.
Semana 7.	Primeira Prova P1: 29/04/2019
Semana 8.	LÓGICA DE PRIMEIRA ORDEM Temas: Predicados (propriedades). Interpretação de fórmulas predicativas. Negação de sentenças quantificadas. Demonstração na lógica de predicados.

Semana 9.	TEORIA DOS CONJUNTOS Temas: Relações unárias e binárias (complemento, união, interseção e produto cartesiano). Identidades de conjuntos e métodos para verificar a sua validez.
Semana 10.	ALGEBRAS DE BOOLE E LÓGICA DE COMPUTADORES Temas: Reticulados e definição de álgebra de Boole. Algebrização da lógica e da teoria dos conjuntos. Aplicações: Redes lógicas (portas E e OU), minimização, etc.
Semana 11.	Exercícios e modelo de prova.
Semana 12.	Segunda Prova P2: 24/06/2019
Semana 13.	Prova de Reposição (PR): 01/07/2019 Prova Final (PF): 08/07/2019 Resultados finais e publicação de notas.

<u>Observação</u>: Uma condição necessária, mas não suficiente para que o aluno seja aprovado é ter frequência maior ou igual a 75%.

As provas P1 e P2 tem o mesmo peso. Se a media M destas provas (P1, P2) for maior ou igual 7,0 então o aluno é aprovado com esta média M=(P1+P2)/2. Se a media M for maior ou igual a 4,0 e menor ou igual a 7,0 então o aluno deve fazer a prova final (PF) como condição necessária (mas, não suficiente) para poder ser aprovado. Em tal caso a media MF entre M e PF determina a nota final a ser lançada. Se dita media MF=(M+PF)/2 for maior ou igual a 5,0 então o aluno é aprovado. Casos contrários a todos os anteriores implicarão na reprovação do aluno.

REFERÊNCIAS

[1JG] J. Gersting. Fundamentos de matemática para as ciências da computação,1995.

[2CW] C. Waga. Elementos de Lógica: Notas de Aula (Apostila).

[3EM] E. Mendelson. Introduction to Mathematical Logic, Chapman & Hall, 1997.

Rio de Janeiro, 07 de Março de 2019.