

DATASHEET

Серия MDV

MDV30, MDV40, MDV50

Универсальные компактные DC/DC преобразователи

Описание

Сверхминиатюрные изолированные DC/DC модули электропитания

MDV для промышленной аппаратуры. При небольших габаритах (57,5×40,2×10,15 мм) максимальная выходная мощность модулей достигает 50 Вт. При этом модули способны работать в широком диапазоне температур корпуса (до -60...+125°C).

В зависимости от исполнения они имеют один или два гальванически развязанных выходных канала, могут включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току, короткого замыкания, перегрева, могут включаться последовательно по выходам. Отсутствие в схеме преобразователя оптронов позволяет модулю надежно функционировать в условиях воздействия ионизирующих излучений и высокой температуры в течение всего срока эксплуатации изделий.

Полимерная герметизирующая заливка обеспечивает надежную защиту от внешних воздействующих факторов и исключает повреждения преобразователя, вызванные вибрацией или попаданием грязи, влаги или соляного тумана.

Модули проходят специальные виды температурных и предельных испытаний, в том числе электротермотренировку с экстремальными режимами включения и выключения.

Особенности

- Гарантия 5 лет
- Выходной ток до 10 А
- Низкопрофильная 10,15 мм конструкция с цилиндрическими выводами
- Рабочая температура корпуса –60...+125°C
- Магнитная обратная связь без оптронов
- Модели с одним и двумя выходами
- Защита от КЗ и перенапряжения, тепловая защита
- Дистанционное вкл/выкл
- Подстройка выходного напряжения
- Типовой КПД 85% при Ивых.=24 В
- Полимерная герметизирующая заливка

Соответствие стандартам

• Климатическое исполнение «В» по ГОСТ 15150

• Стойкость к ВВФ ЗУ по ГОСТ 15150

Прочность изоляции ГОСТ 12997Сопротивление изоляции ГОСТ 12997

Контроль стойкости к ВВФ
 ГОСТ 20.57.406, ГОСТ 20.57.416

• Надежность ГОСТ 25359

Описание серии MDV на сайте производителя: www.aedon.ru/catalog/dcdc/series/22

Отдел продаж 8 800 333 81 43

Техническая поддержка techsup@aedon.ru

3D модели

www.aedon.ru/content/catalog/docs/201/MDM40V.zip

Информация для заказа

Для получения дополнительной информации обратитесь в отдел продаж

8 800 333 81 43 mail@aedon.ru

Выходная мощность и ток

Мощность, Вт	30			40				50										
Выходное напряжение, В	5	9	12	15	24	28	5	9	12	15	24	28	5	9	12	15	24	28
Макс. выходной ток, А	6	3,33	2,5	2	1,25	1,07	8	4,44	3,33	2,67	1,67	1,42	10	5,55	4,16	3,3	2,1	1,8

По заказу могут поставляться модули с нестандартными выходными напряжениями от 3 до 70 В.

Индекс номинального входного напряжения*

Параметр		Индекс "В"	Индекс "W"	Индекс "Е"
Номинальное входное напряжение, В	12	24	28	
Диапазон входного напряжения, В	936	1875	936	
Переходное напряжение, В	1 c 10 c	940	1784 _	- 880
Типовой КПД для Ивых.=24 В	85%	85%	85%	

^{*} Пульсации входного тока (10-10000 Гц) -8% Uвх. ном.

Основные характеристики

Все характеристики приведены для НКУ, Uвх.ном., Івых.ном., если не указано иначе. Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т. п.) приведена в технических условиях, а также в руководящих технических материалах на сайте www.aedon.ru в разделе «Документация».

Выходные характеристики

Параметр	Значение			
Подстройка выходного напряжения в одноканал	ьных модулях	5% Ивых. ном.		
Нестабильность выходного напряжения	При изменении входного напряжения (Uвх.минUвх.макс.)	2% Ивых. ном. (для 1-го канала) 7% Ивых. ном. (для 2-го канала)		
	При изменении тока нагрузки (0,11номІном.)	12% Uвых. ном. (для 2-го канала) для двухканального исполнения с отличием напряжения каналов ≥20%		
	Суммарная нестабильность	6% Uвых. ном. (для 1-го канала) 10% Uвых. ном. (для 2-го канала) 14% Uвых. ном. (для 2-го канала) для двухканального исполнения с отличием напряжения каналов ≥20%		
Размах пульсаций (пик-пик)		<2% Uвых. ном.		
Максимальная ёмкость нагрузки	5 B 12 B 24 B	2700 мкФ 250 мкФ 55 мкФ		
Время включения (по команде)		<0,1 c		
Уровень срабатывания защиты от перегрузки*	30 Вт 40 Вт 50 Вт	<3 Рмакс. <2,2 Рмакс. <1,8 Рмакс.		
Защита от короткого замыкания*	автоматическое восстановление			
Защита от перенапряжения на выходе		1,5 Uном. для всех MDV		

^{*} Параметры являются справочными и не могут быть использованы при долговременной работе, превышении максимального выходного тока, при работе вне диапазона рабочих температур, при работе модуля с выходными напряжениями сверх диапазона регулировки.

Основные характеристики (продолжение)

Общие характеристики

Параметр		Значение		
Температура корпуса	Рабочая (естественная конвекция) — снижение мощности (естественная конвекция) — без снижения мощности с радиатором	-60+125 °C смотри график снижения мощности (пунктирная, штрихпунктирная кривая) смотри график снижения мощности (сплошная кривая)		
	Хранения	−60+125 °C		
Частота преобразования		290–310 κΓц		
Ёмкость изоляции (10 кГц)	вход/выход	1500 пФ		
Прочность изоляции (60 с)	вход/выход, вход/корпус, выход/корпус	~500 B		
Сопротивление изоляции @ =500 B	вход/выход, вход/корпус, выход/корпус	20 Мом		
Тепловое сопротивление корпуса		8,7 °C/BT		
Температура срабатывания тепловой защиты	118125 °C, защелкивание с автовосстановлением			
Дистанционное вкл/выкл	Выкл.: соединение выводов ВКЛ и −ВХ, I<5 мА			
Устойчивость к вибрации, пыли и соляному туману	,	+		
Устойчивость к влаге (Токр.=25°C)		98%		
Типовой MTBF	2 000 000 ч			
Норма отказов	<0,05%			
Срок гарантии		5 лет		

Конструктивные параметры

Параметр	Значение
Материал корпуса	алюминий
Материал компаунда	эпоксидный
Материал выводов	оловянная бронза
Macca	не более 65 г
Температура пайки	260 °C @ 5 c

Топология

Рис. 1. Топология MDV50.

Сервисные функции

Схемы подключения

Рис. 2 (а). Типовая схема подключения для одноканального модуля.

Рис. 2 (6). Схема включения одноканального модуля с модулем фильтра.

ГОСТ 30429-96 кривая «3»	6 L1 синфазный дроссель				1 мГн	
	C3	керамический конденсатор	атор Входное = напряжение =		100330 мкФ 33100 мкФ	
ГОСТ 30429-96 кривая «2»	Модуль фильтра	модуль фильтрации серии М	Максимальный ток до 20 А, защита от перенапряжения и выбросов, вносимое затухание до 60 дБ.			
C1, C2, C6, C7		керамический конденсатор			1004700 пФ =500 В мин.	
C4		танталовый конденсатор		=12 B =24 (28) B	100330 мкФ 50 В 33100 мкФ 100 В	
C5		танталовый конденсатор	Выходное напряжение	=5 B =12 B =24 B	900 мкФ 85 мкФ 20 мкФ	

Сервисные функции (продолжение)

Дистанционное управление

Функция дистанционного ВКЛ/ВЫКЛ по команде позволяет управлять работой модуля с использованием механического реле (а), транзистора типа «разомкнутый коллектор» (б) или оптрона (в).

Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «–ВХ». При этом через ключ может протекать ток до 5 мА, а максимальное падение напряжения на ключе должно быть не более 1,1 В.

Включение модуля электропитания осуществляется размыканием ключа за время не более 5 мкс. В разомкнутом состоянии к ключу приложено напряжение около 5 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации дистанционного включения-выключения одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «-ВХ» и коммутирующий ключ.

Если функция дистанционного ВКЛ/ВЫКЛ не используется, вывод «ВКЛ» допускается оставить неподключенным или выкусить.

Рис. 3 (а). ВКЛ/ВЫКЛ с помощью реле.

Рис. 3 (б). ВКЛ/ВЫКЛ с помощью биполярного транзистора.

Рис. 3 (в). ВКЛ/ВЫКЛ с помощью оптрона.

Регулировка

Регулировка выходного напряжения модулей электропитания в диапазоне не менее ±5%, имеющим вывод «РЕГ», может осуществляться, например, путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения (а) или к выводу «+ВЫХ» для уменьшения выходного напряжения (б).

При использовании потенциометра R2 и внешних ограничивающих резисторов (R1, R3) возможно реализовать регулировку как в сторону увеличения, так и в сторону уменьшения (в).

В случае необходимости управления выходным напряжением модуля электропитания сигналом внешнего источника тока или напряжения, например, в микроконтроллерных автоматизированных системах управления с помощью сигнала ЦАП, внешний сигнал тока или напряжения необходимо подавать на вывод регулировки относительно вывод «-ВЫХ», в соответствии с рисунками (г) и (д).

Номинал элементов цепи (а, б, в), величины тока (г) и напряжения (д) определяются эмпирически или расчетным способом, указанным в руководящих технических материалах на сайте www.aedon.ru.

Преобразователь

Рис 4 (а). Регулировка увеличением Ивых.

Преобразователь

Рис 4 (б). Регулировка снижением Ивых.

Преобразователь

Рис 4 (в). Регулировка потенциометром.

Преобразователь

Рис 4 (г). Регулировка источником тока.

Преобразователь

Рис 4 (д). Регулировка источником напряжения.

Сервисные функции (продолжение)

Графики зависимости выходного напряжения от номинала регулировочного резистора

Повыш. — Rnoниж. — мин. — мин

Рис. 5 (а). График зависимости для Uвых.=5 В.

Рис. 5 (6). График зависимости для Ивых.=12 В.

Рис. 5 (в). График зависимости для Uвых.=15 В.

Рис. 5 (г). График зависимости для Uвых.=24 В.

Рис. 5 (д). График зависимости для Uвых.=28 В.

КПД

Зависимость КПД от нагрузки

Рис. 6 (а). КПД MDV50-1B05.

Рис. 6 (6). КПД MDV50-1W05.

Рис. 6 (в). КПД MDV50-1B27.

Рис. 6 (г). КПД MDV50-1W27.

Снижение мощности в зависимости от температуры окружающей среды

Спадающие участки пунктирной и штрихпунктирной кривых соответствуют максимальной температуре корпуса. Выходная мощность модуля не должна превышать значений, ограниченных соответствующей кривой при заданной температуре окружающей среды.

Рис. 7. Тепловая кривая MDV50.

Осциллограммы

Режимы и условия испытаний: Uвх.=12 B; Iвых.=4,16 A; Uвых.=12 B; Свых.=100 мкФ; Токр.=25°C

Рис. 8 (а). Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (красный)— выходное напряжение. Масштаб 5 В/дел. Луч 2 (синий)— напряжение на выводе «ВКЛ». Масштаб 10 В/дел. Развертка t=2 мс/дел.

Рис. 8 (б). Осциллограмма пульсаций выходного напряжения.

Масштаб 20 мВ/дел.

Развертка 5 мкс/дел.

Метод измерения: см. БКЯЮ.436630.002 ЭВ ТУ.

Рис. 8 (в). Осцилограмма переходного отклонения выходного напряжения при изменении выходного тока.

Масштаб 2 В/дел.

Развертка t=20 мс/дел.

Диапазон изменения тока (10...100%) Іном.

Длительность фронта 500 мкс.

Спектрограмма радиопомех

Методика измерения в соответствии с EN55022 / ГОСТ 55022-2012 / CISPR 22-2012.

Токр. = 25 °C Uвх. = 24 В Івых. = 3,3 А (Імакс.)

Рис. 8. Спектрограмма радиопомех MDV40-1W12 с типовой схемой подключения.

Габаритные схемы

Исполнение в усиленном корпусе с фланцами

Рис. 9 (а). Модель с одним выходом.

Рис. 9 (б). Модель с двумя выходами.

Назначение выводов

Вывод #	1	2	3	4	5	6	7	8
Одноканальный	КОРП	+BX	-BX	ВКЛ	+ВЫХ	-ВЫХ	УПР	_
Двухканальный	КОРП	+BX	-BX	вкл	+ВЫХ1	+ВЫХ2	-ВЫХ2	-ВЫХ1

Аксессуары

Радиатор охлаждения

Рис. 10 (а). Радиатор охлаждения с поперечными ребрами (A×B×H×D, мм): — для индекса «i» — $67.5 \times 40 \times 14 \times 4$ мм;

- для индекса «m» 67,5×40×24×4 мм.

Рис. 10 (б). Радиатор охлаждения с продольными ребрами (A×B×H×D, мм): — для индекса «i» — $67.5 \times 40 \times 14 \times 4$ мм; — для индекса «m» — $67.5 \times 40 \times 24 \times 4$ мм.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 8 800 333 81 43 Россия, 129626, Москва, пр-т Мира, 104 +7 499 450 29 05

Даташит распространяется на следующие модели: MDV30-1805; MDV30-1809; MDV30-1812; MDV30-1815; MDV30-1815; MDV30-1815; MDV30-1815; MDV30-1815; MDV30-1815; MDV30-1815; MDV30-1815; MDV30-1815; MDV30-1816; MDV30-1816; MDV30-1816; MDV30-1816; MDV30-1816; MDV30-1816; MDV40-1816; MDV40-1816; MDV40-1818; MDV40-1818; MDV40-1818; MDV40-1818; MDV40-1818; MDV40-1818; MDV40-1818; MDV40-1818; MDV40-1818; MDV50-1818; MDV50-1