1 Le théorème de Weierstrass

On note $\mathbb{R}[x]$ l'espace vectoriel sur \mathbb{R} des fonctions polynomiales à coefficients réels. Cet espace est muni de la base $(e_k)_{k\in\mathbb{N}}$ définie par :

$$\forall k \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \quad e_k(x) = x^k.$$

Pour tout entier naturel n, on note $\mathbb{R}_n[x]$ le sous-espace vectoriel de $\mathbb{R}[x]$ formé des fonctions polynomiales de degré égal au plus n.

I=[a,b] a priori désigne un intervalle réel fermé borné et l'espaces vectoriels $\mathcal{C}\left(I\right)$ des fonctions continues de I dans \mathbb{R} est muni de la norme de la convergence uniforme notée $\left\|\cdot\right\|_{\infty}$.

Avec les exercices qui suivent, on propose plusieurs démonstrations du théorème de Weierstrass : l'espace $\mathbb{R}[x]$ est dense dans $(\mathcal{C}(I), \|\cdot\|_{\infty})$. C'est-à-dire que toute fonction continue sur I est limite uniforme sur cet intervalle d'une suite de fonctions polynomiales.

On donne aussi quelques applications.

Exercice 1 Une démonstration du théorème de Weierstrass due à Landau.

On définit la suite $(P_n)_{n\geq 1}$ des noyaux de Landau par :

$$\forall n \ge 1, \ P_n(x) = a_n \left(1 - x^2\right)^n,$$

où la suite $(a_n)_{n\geq 1}$ est définie par :

$$\forall n \ge 1, \ \int_{-1}^{1} P_n(x) \, dx = 1.$$

1. Calculer:

$$I_n = \int_{-1}^{1} \left(1 - x^2\right)^n dx$$

pour tout entier naturel n et en déduire a_n .

- 2. Pour tout réel $\alpha \in]0,1[$, on note $K_{\alpha} = [-1,-\alpha] \cup [\alpha,1]$. Montrer que la suite $(P_n)_{n\geq 1}$ converge uniformément vers 0 sur K_{α} .
- 3. Soit f une fonction continue sur l'intervalle [0,1] telle que f(0)=f(1)=0. On prolonge cette fonction en une fonction continue sur [-1,2] en posant f(x)=0 pour tout $x\in [-1,2]\setminus [0,1]$ et on lui associe la suite de fonctions $(Q_n)_{n\geq 1}$ définie sur [0,1] par :

$$Q_{n}\left(x\right) = \int_{-1}^{1} f\left(x+t\right) P_{n}\left(t\right) dt$$

- (a) Montrer que $(Q_n)_{n\geq 1}$ est une suite de fonctions polynomiales.
- (b) Montrer que $(Q_n)_{n\geq 1}$ converge uniformément vers f sur [0,1].
- 4. Montrer le théorème de Weierstrass.
- 5. Montrer que si la fonction f est limite uniforme sur \mathbb{R} d'une suite de polynômes alors f est un polynôme (le théorème de Weierstrass est faux si l'intervalle I n'est pas borné).

Exercice 2 Une démonstration du théorème de Weierstrass due à Lebesgue.

On désigne par $(a_n)_{n\in\mathbb{N}}$ la suite des coefficients qui interviennent dans le développement en série entière de la fonction $x\mapsto \sqrt{1-x}$ sur l'intervalle]-1,1[, soit :

$$\forall x \in]-1,1[, \sqrt{1-x} = \sum_{n=0}^{+\infty} a_n x^n.$$

Pour tout réel $\alpha \in [0,1]$, on désigne par h_{α} la fonction affine par morceaux définie par $x \mapsto h_{\alpha}(x) = \max(0, x - \alpha)$.

- 1. Préciser la valeur des coefficients a_n .
- 2. Montrer que la série $\sum_{n=0}^{+\infty} a_n$ est convergente.
- 3. Montrer que si h est fonction continue et affine par morceaux sur [0,1], il existe alors des réels $x_1 = 0 < x_2 < \cdots < x_p = 1$ et des réels y_0, y_1, \cdots, y_p tels que $h = y_0 + \sum_{k=1}^p y_k h_{x_k}$.

1

- 4. Montrer que toute fonction continue sur [0,1] est limite uniforme sur cet intervalle d'une suite de fonctions continues et affines par morceaux.
- 5. Montrer que :
 - (a) la fonction $x \mapsto \sqrt{1-x}$ est limite uniforme d'une suite de polynômes sur l'intervalle [-1,1];
 - (b) pour tout réel $\alpha \in [0,1]$ les fonctions $x \mapsto |x \alpha|$ et h_{α} sont limites uniformes de suites de polynômes sur l'intervalle [0,1];
 - (c) toute fonction continue et affine par morceaux sur [0,1] est limite uniforme d'une suite de polynômes sur cet intervalle.
- 6. En déduire le théorème de Weierstrass.

Exercice 3 Une démonstration du théorème de Weierstrass due à Bernstein.

I est l'intervalle [0,1].

Pour tout entier n strictement positif, on note φ_n la fonction définie sur \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, \ \varphi_n(x,y) = \left(xe^{\frac{y}{n}} + 1 - x\right)^n.$$

Pour tout entier k compris entre 0 et n, on désigne par $B_{n,k}$ la fonction polynomiale définie par :

$$\forall x \in I, \ B_{n,k}(x) = C_n^k x^k (1-x)^{n-k}$$

et B_n est l'opérateur de Berstein défini par :

$$\forall f \in \mathcal{C}(I), \ B_n(f) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{n,k}.$$

1. Pour tout réel y on désigne par f_y la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ f_y(x) = e^{xy}.$$

(a) Montrer que:

$$\forall x \in I, B_n(f_y)(x) = \varphi_n(x, y).$$

(b) Montrer que pour tout entier naturel j on a :

$$B_n(e_j)(x) = \frac{\partial^j \varphi_n}{\partial y^j}(x,0).$$

- (c) Exprimer $B_n(e_j)$ dans la base $(e_k)_{k\in\mathbb{N}}$ pour j=0,1,2.
- 2. On se donne un entier naturel $n \geq 1$, une fonction $f \in \mathcal{C}(I)$ et un réel $x \in I = [0,1]$.
 - (a) Montrer que :

$$|B_n(f)(x) - f(x)| \le \sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x)$$

(b) Montrer que:

$$\sum_{k=0}^{n} (k - nx)^2 B_{n,k}(x) \le \frac{n}{4}.$$

(c) On se donne un réel $\varepsilon>0$, on lui associe un réel $\eta>0$ tel que :

$$((x,y) \in I^2 \ et \ |x-y| < \eta) \Rightarrow (|f(y) - f(x)| < \varepsilon)$$

et on note
$$E_x = \left\{ k \in \{0, 1, \dots, n\} \mid \left| \frac{k}{n} - x \right| < \eta \right\}, F_x = \{0, 1, \dots, n\} \setminus E_x.$$

- i. Justifier l'existence de η , pour ε donné.
- ii. Montrer que :

$$\sum_{k \in E} \left| f\left(\frac{k}{n}\right) - f\left(x\right) \right| B_{n,k}\left(x\right) \le \varepsilon$$

iii. Montrer que :

$$\sum_{k \in F_x} \left| f\left(\frac{k}{n}\right) - f\left(x\right) \right| B_{n,k}\left(x\right) \le \frac{\|f\|_{\infty}}{2n\eta^2}.$$

3. Déduire de ce qui précède que pour toute fonction $f \in \mathcal{C}(I)$ la suite $(B_n(f))_{n\geq 1}$ converge uniformément vers f sur I.

Exercice 4 Utilisation des opérateurs de Bernstein.

1. Montrer que pour toute fonction $f \in C(I)$, on a :

$$B_{n}(f)' = \begin{cases} f(1) - f(0) & si \ n = 1, \\ n \sum_{k=0}^{n-1} \left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \right) B_{n-1,k} & si \ n > 1. \end{cases}$$

- 2. Montrer que pour toute fonction f de classe C^1 sur [0,1] la suite $(B_n(f)')_{n\geq 1}$ converge uniformément vers f' sur [0,1]. (on peut utilier le théorème des accroissements finis).
- 3. Pour toute fonction f de classe C^p sur [0,1], avec $p \ge 0$, la suite $\left(B_n\left(f\right)^{(p)}\right)_{n\ge 1}$ converge uniformément vers $f^{(p)}$ sur [0,1].
- 4. Montrer que si $f \in \mathcal{C}([0,1])$ est croissante alors pour tout entier naturel non nul n la fonction $B_n(f)$ est croissante (les opérateurs de Bernstein conservent la monotonie).
- 5. Montrer que si $f \in \mathcal{C}([0,1])$ est convexe alors pour tout entier naturel non nul n la fonction $B_n(f)$ est convexe sur [0,1] (les opérateurs de Bernstein conservent la convexité).
- 6. Montrer que toute fonction convexe sur un intervalle fermé borné I est limite uniforme d'une suite de fonctions convexes indéfiniment dérivables sur I.
- 7. En utilisant la suite $(P_n(f))_{n>1}$ par :

$$\forall n \ge 1, \ \forall x \in [0,1], \ P_n(f)(x) = \sum_{k=0}^n \left[f\left(\frac{k}{n}\right) C_n^k \right] x^k (1-x)^{n-k}.$$

montrer que toute fonction f continue sur [0,1] avec f(0) et f(1) entiers relatifs est limite uniforme sur [0,1] d'une suite de polynômes à coefficients entiers relatifs.

8. Montrer que si I = [a,b] est un intervalle réel ne contenant pas d'entiers relatifs, alors l'anneau $\mathbb{Z}[x]$ des fonctions polynomiales à coefficients entiers relatifs est dense dans $(\mathcal{C}(I), \|\cdot\|_{\infty})$.

Exercice 5 Une démonstration probabiliste du théorème de Bernstein.

À tout entier naturel non nul n et tout réel $x \in [0,1]$ on associe la variable aléatoire $X_{n,x}$ qui suit une loi binomiale $\mathcal{B}(n,x)$, c'est-à-dire que $X_{n,x}$ est à valeurs dans $\{0,1,\cdots,n\}$ et sa loi de probabilité est définie par :

$$\forall j \in \{0, 1, \dots, n\}, \ \mathbb{P}(X_{n,x} = j) = C_n^j x^j (1 - x)^{n-j}.$$

À toute fonction f continue sur [0,1] et à valeurs réelles, on associe la variable aléatoire $Y_{n,x} = f\left(\frac{X_{n,x}}{n}\right)$. En notant $\{y_0, \dots, y_p\}$ les valeurs prises par $Y_{n,x}$, on a:

$$\forall k \in \{0, \dots, p\}, \ \mathbb{P}\left(Y_{n,x} = k\right) = \sum_{\substack{0 \le j \le n \\ f\left(\frac{j}{n}\right) = y_k}} \mathbb{P}\left(X_{n,x} = j\right).$$

1. Montrer que l'espérance de $Y_{n,x}$ est donnée par :

$$\mathbb{E}\left(Y_{n,x}\right) = B_n\left(f\right)\left(x\right),\,$$

où B_n est l'opérateur de Bernstein.

2. Pour $\varepsilon > 0$, on désigne par $\eta > 0$ un réel tel que $|f(x) - f(y)| < \varepsilon$ pour x, y dans [0,1] vérifiant $|x - y| < \eta$ (uniforme continuité de f sur [0,1]) et, pour x fixé dans [0,1], on note :

$$\begin{cases} J_{1,x} = \left\{ j \in \{0, 1, \dots, n\} \mid \left| f\left(\frac{j}{n}\right) - f\left(x\right) \right| < \varepsilon \right\} \\ J_{2,x} = \left\{ j \in \{0, 1, \dots, n\} \mid \left| f\left(\frac{j}{n}\right) - f\left(x\right) \right| \ge \varepsilon \right\} \end{cases}$$

(a) Montrer que :

$$|B_n(f)(x) - f(x)| \le \varepsilon + 2 ||f||_{\infty} \sum_{j \in J_{2,x}} \mathbb{P}(X_{n,x} = j).$$

(b) Montrer que:

$$|B_n(f)(x) - f(x)| \le \varepsilon + 2 ||f||_{\infty} \mathbb{P}(|Y_{n,x} - f(x)| \ge \varepsilon).$$

(c) Montrer que :

$$|B_n(f)(x) - f(x)| \le \varepsilon + 2 ||f||_{\infty} \mathbb{P}(|X_{n,x} - nx| \ge n \cdot \eta).$$

(d) En utilisant l'inégalité de Bienaymé-Tchebychev, montrer que :

$$|B_n(f)(x) - f(x)| \le \varepsilon + \frac{\|f\|_{\infty}}{2n \cdot n^2}$$

et conclure.

Exercice 6 Utilisation du théorème de Weierstrass

- 1. Montrer que l'espace $(\mathcal{C}(I), \|\cdot\|_{\infty})$ est séparable (i. e. il existe dans E une partie dense dénombrable).
- 2. Montrer que si f est une fonction continue sur un intervalle réel fermé borné [a,b] à valeurs réelles telle que $\int_a^b f(x) \, x^n dx = 0$ pour tout entier naturel n alors elle est identiquement nulle (théorème des moments de Hausdorff). Pour F de dimension infinie, on a toujours $F \cap F^{\perp} = \{0\}$ mais pas nécessairement $E = F \oplus F^{\perp}$, c'est que nous montre ce résultat.
- 3. On note $\omega = e^{i\frac{\pi}{4}}$ et on désigne par f la fonction définie sur $[0, +\infty[$ par :

$$\forall x \ge 0, \ f(x) = e^{-x^{\frac{1}{4}}} \sin\left(x^{\frac{1}{4}}\right).$$

- (a) Calculer $I_n = \int_0^{+\infty} t^n e^{-\omega t} dt$ pour tout entier naturel n.
- (b) Montrer que $\int_0^{+\infty} x^n f(x) dx = 0$ pour tout entier naturel n (c'est-à-dire que le résultat de la question précédente n'est pas valable sur $[0, +\infty[)$.
- 4. Montrer que si f est une fonction continue sur \mathbb{R}_+^* à valeurs réelles telle que l'intégrale de f sur \mathbb{R}_+^* soit convergente et $\int_0^{+\infty} f(x) e^{-nx} dx = 0$ pour tout entier naturel n alors elle est identiquement nulle.
- 5. Montrer que toute fonction paire, continue et 2π -périodique de $\mathbb R$ dans $\mathbb R$ peut être approchée uniformément sur $\mathbb R$ par une suite de polynômes trigonométriques de la forme :

$$\sum_{k=0}^{n} a_k \cos(kx) \,.$$

Exercice 7 Un théorème de Korovkin déduit de Weierstrass.

On dit qu'un opérateur linéaire sur C(I) est positif (ou monotone) s'il transforme toute fonction positive appartenant à C(I) en une fonction positive.

On dit qu'un opérateur bilinéaire v sur $\mathcal{C}(I) \times \mathcal{C}(I)$ est positif si:

$$\forall f \in \mathcal{C}(I), \ v(f, f) \geq 0.$$

- 1. Montrer qu'un opérateur linéaire u sur $\mathcal{C}(I)$ est positif si, et seulement si, pour toutes fonctions f,g dans $\mathcal{C}(I)$ telles que $f \leq g$ on a $u(f) \leq u(g)$.
- 2. Montrer que si u est un opérateur linéaire positif sur C(I), alors :

$$\forall f \in \mathcal{C}(I), |u(f)| < u(|f|).$$

- 3. Montrer qu'un opérateur u linéaire positif sur $\mathcal{C}(I)$ est l'opérateur nul si, et seulement si, $u(e_0) = 0$.
- 4. Montrer qu'un opérateur linéaire positif u sur $C_b(I)$ est continu et qu'on a:

$$||u|| = ||u(e_0)||_{\infty}$$

5. Soient u un opérateur linéaire positif sur $\mathcal{C}(I)$ tel que $u(e_0) \leq e_0$ et v l'opérateur bilinéaire symétrique défini sur $\mathcal{C}(I) \times \mathcal{C}(I)$ par :

$$v\left(f,g\right)=u\left(fg\right)-u\left(f\right)u\left(g\right).$$

 $(a)\ Montrer\ que\ v\ est\ positif\ et\ qu'on\ a\ l'inégalité\ de\ Cauchy-Schwarz:$

$$v\left(f,g\right) \leq \sqrt{v\left(f,f\right)}\sqrt{v\left(g,g\right)} \leq \sqrt{\left\|v\left(f,f\right)\right\|_{\infty}}\sqrt{\left\|v\left(g,g\right)\right\|_{\infty}}$$

(b) Montrer que pour toutes fonctions f,g dans $\mathcal{C}\left(I\right),$ on a :

$$\|u(fg) - u(f)u(g)\|_{\infty}^{2} \le 2\|f\|_{\infty}^{2} \|u(g^{2}) - (u(g))^{2}\|_{\infty}$$

- 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'opérateurs linéaires positifs sur $\mathcal{C}\left(I\right)$ telle que :
 - pour tout $n \in \mathbb{N}$, on a $u_n(e_0) \leq e_0$;
 - pour k = 0, 1, 2, la suite de fonctions $(u_n(e_k))_{n \in \mathbb{N}}$ converge uniformément vers e_k sur I. Montrer que pour toute fonction polynomiale P, la suite de fonctions $(u_n(P))_{n \in \mathbb{N}}$ converge uniformément vers P sur I.
- 7. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'opérateurs linéaires positifs sur $\mathcal{C}(I)$ telle que pour k=0,1,2, la suite de fonctions $(u_n(e_k))_{n\in\mathbb{N}}$ converge uniformément vers e_k sur I.
 - (a) Montrer que pour toute fonction polynomiale P, la suite de fonctions $(u_n(P))_{n\in\mathbb{N}}$ converge uniformément vers P sur I.
 - (b) Montrer que pour toute fonction f appartenant à C(I) la suite de fonctions $(u_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur I.
- 8. Montrer que l'identité est le seul opérateur linéaire positif sur C(I) [resp. sur \mathcal{F}] tel que $u(e_k) = e_k$ pour k = 0, 1, 2 [resp. $u(c_k) = c_k$ pour k = 0, 1 et $u(s_1) = s_1$].
- 9. Pour tout entier naturel n, on définit l'application u_n sur C([0,1]) par :

$$\forall f \in \mathcal{C}\left(\left[0,1\right]\right), \ \forall x \in \left[0,1\right], \ u_n\left(f\right)\left(x\right) = \int_0^{\frac{\pi}{2}} n \sin^n\left(t\right) \cos\left(t\right) f\left(\frac{2}{\pi}xt\right) dt.$$

Montrer que pour toute fonction $f \in \mathcal{C}([0,1])$ la suite de fonctions $(u_n(f))_{n\geq 0}$ converge uniformément vers f sur [0,1].

- 10. Soit I = [0, b] avec b réel strictement positif.
 - Si f est une fonction continue sur I, on la prolonge en une fonction continue sur \mathbb{R}^+ en posant f(x) = f(b) pour x supérieur ou égal à b.
 - (a) Montrer que pour toute fonction f appartenant à C(I) et pour tout entier naturel n strictement positif on peut définir une fonction $u_n(f)$ appartenant à C(I) en posant :

$$\forall x \in I, \ u_n(f)(x) = e^{-nx} \sum_{k=0}^{+\infty} f\left(\frac{k}{n}\right) \frac{n^k}{k!} x^k.$$

(b) Montrer que pour toute fonction f appartenant à C(I) la suite de fonctions $(u_n(f))_{n\geq 1}$ converge uniformément vers f sur I.

Exercice 8 Un théorème de Korovkin sur C(I)

On note I = [a, b] avec a < b et E = C(I) l'espace des fonctions continues de I dans \mathbb{R} . L'espace E est muni de la norme de la convergence uniforme définie par :

$$\forall f \in E, \ \|f\|_{\infty} = \sup_{x \in I} |f(x)|.$$

On désigne par $\mathcal{L}(E)$ l'espace vectoriel des endomorphismes de E. Un élément de $\mathcal{L}(E)$ est aussi appelé un opérateur linéaire sur E.

On dit qu'un opérateur linéaire u est positif s'il transforme toute fonction positive appartenant à E en une fonction positive.

On note $\mathbb{R}[x]$ l'espace vectoriel sur \mathbb{R} des fonctions polynomiales d'une variable à coefficients réels. Cet espace est muni de la base $\{e_k \mid k \in \mathbb{N}\}$ définie par :

$$\forall k \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ e_k(x) = x^k.$$

1. Soit u un opérateur linéaire positif sur E. Montrer que :

$$\forall f \in E, |u(f)| \leq u(|f|).$$

- 2. Soit u un opérateur linéaire positif sur E. Montrer que u est l'endomorphisme nul si et seulement si $u(e_0) = 0$.
- 3. Montrer que tout opérateur linéaire positif sur E est continu et exprimer $\|u\|_{\infty} = \sup_{f \in \mathcal{H} \setminus \{0\}} \frac{\|u(f)\|_{\infty}}{\|f\|_{\infty}}$ en fonction de u et de e_0 .
- 4. Soit f un élément de E. Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un réel $\eta > 0$ tel que :

$$\forall (t,x) \in I \times I, |f(t) - f(x)| \le \varepsilon + 2 \frac{\|f\|_{\infty}}{\eta^2} (t - x)^2.$$
 (1)

5. Pour toute fonction g appartenant à E, pour tout entier naturel k et pour tout réel x fixé dans I, on désigne par $g-g(x)e_k$ la fonction de I dans $\mathbb R$ définie par :

$$t \mapsto g(t) - g(x) t^k$$
.

Soit f appartenant à E. Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un réel $\eta > 0$ tel que :

$$\forall x \in I, |f - f(x)e_0| \le \varepsilon e_0 + 2 \frac{\|f\|_{\infty}}{\eta^2} \left(e_2 - 2xe_1 + x^2 e_0 \right). \tag{2}$$

6. Soient u un opérateur linéaire positif sur E et f une fonction appartenant à E. Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un réel $\eta > 0$ tel que :

$$\forall x \in I, \ |u(f - f(x)e_0)| \le \varepsilon u(e_0) + 2\frac{\|f\|_{\infty}}{\eta^2} \left(u(e_2) - 2xu(e_1) + x^2 u(e_0) \right). \tag{3}$$

- 7. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'endomorphismes positifs de E telle que pour toute fonction f appartenant à $\{e_0,e_1,e_2\}$ la suite $(u_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur I.
 - (a) Montrer que la suite de fonctions $(g_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ g_n = u_n(e_2) - 2e_1u_n(e_1) + e_2u_n(e_0)$$

converge uniformément vers la fonction nulle sur I.

(b) Montrer que pour toute fonction f appartenant à E, la suite de fonctions $(h_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ h_n(x) = (u_n(f - f(x)e_0))(x)$$

converge uniformément vers la fonction nulle sur I (on peut utiliser l'inégalité (3)).

- (c) Montrer que, pour toute fonction f appartenant à E, la suite $(u_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur I (théorème de Korovkin).
- 8. Pour cette question on prend I = [0,1] et on considère la suite des opérateurs de Bernstein $(B_n)_{n\geq 1}$.

 Montrer que pour toute fonction f appartenant à E, la suite $(B_n(f))_{n\geq 1}$ converge uniformément vers f sur [0,1].
- 9. Pour cette question on prend I = [0,b] avec b réel strictement positif. Si f est une fonction continue sur I, on la prolonge en une fonction continue sur \mathbb{R}^+ en posant f(x) = f(b) pour x supérieur ou égal à b.
 - (a) Montrer que pour toute fonction f appartenant à E et pour tout entier naturel n > 0, on peut définir une fonction $u_n(f)$ appartenant à E en posant :

$$\forall x \in I, \ u_n(f)(x) = e^{-nx} \sum_{k=0}^{+\infty} f\left(\frac{k}{n}\right) \frac{n^k}{k!} x^k.$$

(b) Montrer que pour toute fonction f appartenant à E la suite de fonctions $(u_n(f))_{n\geq 1}$ converge uniformément vers f sur I.

Exercice 9 Un théorème de Korovkin sur \mathcal{F}

On note $\mathcal F$ l'espace vectoriel réel des fonctions définies sur $\mathbb R$ à valeurs réelles périodiques de période 2π et continues. On munit $\mathcal F$ de la norme de la convergence uniforme définie par :

$$\forall f \in \mathcal{H}, \ \|f\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|.$$

On désigne par $\mathcal{L}(\mathcal{F})$ l'espace vectoriel des endomorphismes de \mathcal{F} . Un élément de $\mathcal{L}(\mathcal{F})$ est aussi appelé un opérateur linéaire sur \mathcal{F} .

On dit qu'un opérateur linéaire u est positif s'il transforme toute fonction positive appartenant à \mathcal{F} en une fonction positive.

On note $\mathcal P$ le sous-espace vectoriel de $\mathcal F$ formé des polynômes trigonométriques à coefficients réels, c'est-à-dire des fonctions de $\mathbb R$ dans $\mathbb R$ de la forme :

$$x \mapsto a_0 + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right),$$

où n est un entier naturel, le coefficient a_0 et les coefficients a_k, b_k pour tout entier k compris entre 1 et n sont réels. Cet espace est muni de la base $\{c_k \mid k \in \mathbb{N}\} \cup \{s_k \mid k \in \mathbb{N} \setminus \{0\}\}$ définie par :

$$\forall x \in \mathbb{R}, \begin{cases} \forall k \in \mathbb{N}, & c_k(x) = \cos(kx), \\ \forall k \in \mathbb{N} \setminus \{0\}, & s_k(x) = \sin(kx). \end{cases}$$

Pour toute fonction f appartenant à \mathcal{F} , on désigne par $(a_k(f))_{k\geq 0}$ et $(b_k(f))_{k\geq 1}$ les coefficients de Fourier de f définis par :

$$\forall k \in \mathbb{N}, \ a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt,$$

$$\forall k \in \mathbb{N} \setminus \{0\}, \ b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt.$$

On note:

$$S_0(f) = \frac{a_0(f)}{2}c_0 \tag{4}$$

et pour tout entier n strictement positif, on désigne par $S_n(f)$ le polynôme trigonométrique défini par :

$$S_n(f) = \frac{a_0(f)}{2}c_0 + \sum_{k=1}^n (a_k(f)c_k + b_k(f)s_k).$$
 (5)

1. Montrer que toute fonction f appartenant à \mathcal{F} est uniformément continue sur \mathbb{R} Pour tout x fixé dans \mathbb{R} , on désigne par ψ_x la fonction définie par :

$$\forall t \in \mathbb{R}, \ \psi_x(t) = \sin^2\left(\frac{t-x}{2}\right).$$

2. Soient f appartenant à \mathcal{F} . Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un réel η dans l'intervalle $]0, \pi[$ tel que l'on ait :

$$\forall (t, x) \in \mathbb{R}^2, |f(t) - f(x)| \le \varepsilon + 2 \frac{\|f\|_{\infty}}{\psi_0(\eta)} \psi_x(t).$$
 (6)

Pour f appartenant à \mathcal{F} et x fixé dans \mathbb{R} , $f - f(x) c_0$ désigne la fonction définie sur \mathbb{R} par :

$$t \mapsto f(t) - f(x)$$
.

3. Soit f une fonction appartenant à \mathcal{F} . Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un réel η dans l'intervalle $[0, \pi[$ tel que l'on ait :

$$\forall x \in \mathbb{R}, |f - f(x) c_0| \le \varepsilon c_0 + \frac{\|f\|_{\infty}}{\psi_0(\eta)} \left(c_0 - \cos(x) c_1 - \sin(x) s_1 \right). \tag{7}$$

4. Soient u un opérateur linéaire positif sur \mathcal{F} et f une fonction appartenant à \mathcal{F} . Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un réel η dans l'intervalle $]0,\pi[$ tel que l'on ait :

$$\forall x \in \mathbb{R}, \ |u\left(f - f\left(x\right)c_0\right)| \le \varepsilon u\left(c_0\right) + \frac{\|f\|_{\infty}}{\psi_0\left(\eta\right)} \left(u\left(c_0\right) - \cos\left(x\right)u\left(c_1\right) - \sin\left(x\right)u\left(s_1\right)\right). \tag{8}$$

- 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'endomorphismes positifs de \mathcal{F} telle que pour toute fonction f appartenant à $\{c_0, c_1, s_1\}$, la suite $(u_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur \mathbb{R} .
 - (a) Montrer que la suite de fonctions $(g_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ g_n = u_n(c_0) - c_1 u_n(c_1) - s_1 u_n(s_1)$$

converge uniformément vers la fonction nulle sur \mathbb{R} .

(b) Montrer que, pour toute fonction f appartenant à \mathcal{F} , la suite de fonctions $(h_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ h_n(x) = (u_n(f - f(x)c_0))(x),$$

converge uniformément vers la fonction nulle sur \mathbb{R} (on peut utiliser (8)).

- (c) Montrer que, pour toute fonction f appartenant à \mathcal{F} , la suite $(u_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur \mathbb{R} (théorème de Korovkin sur \mathcal{F}).
- 6. Montrer que, pour toute fonction f appartenant à \mathcal{F} , la suite $(T_n\left(f\right))_{n\geq 1}$ définie par par :

$$T_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(f),$$
 (9)

converge uniformément vers f sur \mathbb{R} .