Funktionelle Genomanalysen 2023

Übung 1: Grundlagen der genetischen Statistik

Dr. Janne Pott

09.-11. Juni 2023

Vorstellung

- Name
- Fachrichtung
- Standort
- Erwartung an Übung

Vorstellung

- Name: Janne Pott
- Fachrichtung
 - Genetische Statistik im Allgemeinen
 - Entwicklung neuer kausalen Methoden unter Verwendung von Genetikdaten im Speziellen (Stichwort Mendelische Randomisierung)
- Standort: MRC BSU, University of Cambridge, UK
- Erwartung an Übung
 - Veranschaulichung einiger Konzepte
 - Hinweise auf praktische Anwendung
 - Kontakt zu Medizinern

Hinweise zu Moodle

- Alle relevanten Unterlagen stehen auf Moodle zur Verfügung
 - Übungsaufgaben
 - Folien
 - Video (vermutlich)
- Asynchrones Lernen: Multiple Choice Aufgaben zu
 - SNP-Clusterplots
 - GWAS-Plots
 - **>**
- Forum: bitte Nutzen, andere haben evtl. die gleiche Frage!

Hinweise zur Übung

- Die Aufgaben werden in der Übung gemeinsam erarbeitet, daher bitte Kamera an.
- Zur Lösung von manchen Aufgaben wird ein Taschenrechner o.ä. benötigt.
- Am Ende des Moduls wird eine Musterlösung bereitgestellt.

Präsenzaufgabe 1

Definieren Sie folgende Begriffe

- SNP
- nicht-synonyme Mutation
- Frameshift-Mutation

Präsenzaufgabe 1 - Lösung

- SNP: single nucleotid polymorphism = Einzelnukleotid Polymorphismus = Punktmutation
 - Variation eines Basenpaares an einer Stelle im Genom
 - Bsp.: SNP in mcm6 führt zu Laktoseintoleranz
- nicht-synonyme Mutation: SNP im codierenden Bereich eines Gens, der dazu führt, dass eine andere Aminosäure eingebaut wird.
 - betrifft nur eine Aminosäure
- Frameshift-Mutation: SNP im codierenden Bereich eines Gens, der dazu führt, dass das Leseraster der RNA-Polymerase sich ändert.
 - betrifft alle folgenden Aminosäure bzw Länge des Proteins

Aufgabe 1: Crossing-over & LD (1)

- Oefinieren Sie anhand der Abbildung 1 den Begriff Crossing-over.
- Erläutern Sie den Zusammenhang zwischen der Crossing-over und LD-Struktur des Genoms.
- **3** Betrachten Sie Tabelle 1. Bestimmen Sie die **Randverteilungen** und berechnen Sie das **LD-Maß** r^2 ! Formel:

$$r^2 = \frac{(p_{00}p_{11} - p_{01}p_{10})^2}{p_{0.}p_{.0}p_{1.}p_{.1}}$$

- Interpretieren Sie das Ergebnis! Was sind die häufigen Haplotypen? Was bedeutet dies für ein doppelt heterozygotes Individuum?
- **1** Würden Sie zwischen SNP 1 und SNP 3 ein höheres oder niedrigeres r^2 erwarten? Begründen Sie Ihre Entscheidung!

Aufgabe 1: Crossing-over & LD (1)

Abbildung: Crossing-over eines Chromosoms. Modifiziert aus Alberts et al., Molecular Biology of the Cell, 2008

Aufgabe 1: Lösung (1)

Crossing-over: Austausch von Teilen homologer Chromosomen während der Meiose → Rekombination, Mischung der Erb-Informationen der Eltern

- Step 1: DNA Replikation der väterlichen und mütterlichen DNA
- Step 2: Alignierung der duplizierten homologen Chromosomen
- z.T. Interaktion zwischen komplementären DNA-Sequenzen

Aufgabe 1: Lösung (2)

Haploblöcke wechseln sich mit **Rekombinations-Hotspots** ab. Dort finden die Crossing-overs mit erhöhter Wahrscheinlichkeit statt.

- SNPs im gleichen Haploblock haben tendenziell hohes paarweises LD (werden häufiger gemeinsam vererbt, statistisch abhängig voneinander)
- SNPs in unterschiedlichen Haploblöcken haben tendenziell niedriges LD (werden seltener gemeinsam vererbt, statistisch unabhängig voneinander)

Aufgabe 1: Lösung (3)

Abbildung: LD-Struktur des Genoms.

Aufgabe 1: Crossing-over & LD (3)

Tabelle: 4-Felder-Tafel der beiden biallelischen SNPs: SNP 1 (Allele A1/B1) und SNP 2 (Allele A2/B2) aus Daten von 500 gemessenen diploiden Individuen

	SNP 1 - Allel A1	SNP 1 - Allel B1
SNP 2 - Allel A2	570	15
SNP 2 - Allel B2	25	390

$$r^2 = \frac{(p_{00}p_{11} - p_{01}p_{10})^2}{p_{0.}p_{0.}p_{1.}p_{.1}}$$

Aufgabe 1: Lösung (4)

Tabelle: 4-Felder-Tafel der beiden biallelischen SNPs: SNP 1 (Allele A1/B1) und SNP 2 (Allele A2/B2) aus Daten von 500 gemessenen diploiden Individuen

	Allel A1	Allel B1	Randverteilung
Allel A2	$p_{00} = 570$	$p_{01} = 15$	$p_{0.} = 585$
Allel B2	$p_{10} = 25$	$p_{11} = 390$	$p_{1.}$ =415
Randverteilung	$p_{.0} = 595$	$p_{.1}$ =405	1000

$$r^{2} = \frac{(p_{00}p_{11} - p_{01}p_{10})^{2}}{p_{0.}p_{0.}p_{1.}p_{.1}}$$
$$= \frac{570 \cdot 390 - 25 \cdot 15)^{2}}{585 \cdot 595 \cdot 415 \cdot 405}$$
$$= 0.842$$

Aufgabe 1: Lösung (5)

- Hohes LD zwischen SNP1 und SNP2, nicht statistisch unabhängig!
- Häufige Haplotypen: A1A2 und B1B2
- Selten Haplotypen: A1B2 und B1A2
- Erwartung: niedrigeres LD zwischen SNP 1 und 3

Zusatz zu LD (1)

Was ist LD und warum ist es wichtig in der Funktionelle Genomanalysen?

Zusatz zu LD (2)

- Allele sind in LD wenn sie häufiger gemeinsam vorkommen als zufällig erwartet (Korrelation)
- r² ist ein häufig genutztes Maß für LD
- r^2 ist zwischen 0 (kein LD) and 1 (perfekte Korrelation).
- LD kann von verschiedenen Faktoren beeinflusst werden:
 - Mutationsrate
 - Genetischer Drift
 - Nicht-zufällige Paarung (Zucht)
 - Populationsstruktur
 - Selektion
 - Genkopplung
 - ► Rekombinationsrate

Zusatz zu LD (3)

Abbildung: Recombination between unlinked loci (= not in LD).

Zusatz zu LD (4)

Abbildung: Recombination between linked loci (= in LD).

Aufgabe 2: HWE (1)

Für den biallelischen SNP 1 mit Allelen A/B wird folgende Genotypverteilung beobachtet:

Genotyp	AA	AB	BB	Missing
Häufigkeit	824	1326	463	87

- Welche Modellannahmen werden Hardy-Weinberg-Gleichgewicht (HWE) getroffen (Stichwort ideale Population)?
- Bestimmen Sie auf drei Nachkommastellen genau die
 - Callrate des SNPs,
 - Allelfrequenzen für A und B, und
 - o erwartete Genotypverteilung im HWE!

Aufgabe 2: Lösung (1)

Ideale Population:

- Diploide Organismen
- Nur geschlechtliche Vermehrung
- Keine Überlappung der Generationen
- Zufällige Paarungen
- Unendliche Populationsgröße
- Allelfrequenzen sind in beiden Geschlechtern gleich
- Keine Migration, Gendrift, Mutation oder Selektion

Aufgabe 2: Lösung (2)

Callrate:

$$CR = \frac{N_1}{N_0} = \frac{824 + 1326 + 463}{824 + 1326 + 463 + 87} = \frac{2613}{2700} = 0.968$$

Allelfrequenzen:

$$p = AF_A = \frac{2 \cdot AA + AB}{2 \cdot N_1} = \frac{2 \cdot 824 + 1326}{2 \cdot 2613} = 0.569$$

$$q = AF_B = \frac{2 \cdot BB + AB}{2 \cdot N_1} = \frac{2 \cdot 463 + 1326}{2 \cdot 2613} = 0.431$$

Aufgabe 2: Lösung (3)

Erwartete Genotypverteilung: Im HWE gilt:

$$1 = p + q = (p + q)^2 = p^2 + 2pq + q^2$$

Genotyp	AA	AB	BB	Missing
Häufigkeit	824	1326	463	87
p _{obs}	0.315	0.507	0.177	
p_{exp}	$p^2 = 0.324$	2pq = 0.490	$q^2 = 0.186$	

Aufgabe 2: HWE (2)

Zusatz: Testen Sie auf HWE mit 5% Irrtumswahrscheinlichkeit. Stellen Sie dazu die **Nullhypothese** auf. Berechnen Sie die **Teststatistik** für diese und interpretieren Sie das Ergebnis.

Formel:

$$\sum_{i} \frac{(O_i - E_i)^2}{E_i}, i \in AA, AB, BB$$

Aufgabe 2: Lösung (4)

Nullhypothese: Die beobachteten Häufigkeiten der Genotypen befinden sich im Hardy-Weinberg-Gleichgewicht.

Um die Hypothese zu testen, muss das χ^2 bestimmt werden:

$$\chi^2 = N_1 \sum \frac{(p_{obs} - p_{exp})^2}{p_{exp}} = 3.1416$$

Da m = 2 Allele betrachten werden, haben wir einen Freiheitsgrad:

$$df = \frac{m(m-1)}{2} = \frac{2 \cdot 1}{2} = 1 \rightarrow \chi_1^2 = 3.841$$

Das berechnete χ^2 ist kleiner als die Schranke χ^2_1 , daher kann die Nullhypothese nicht verworfen werden.

Zusatz zu HWE (1)

Warum ist HWE wichtig in der Funktionelle Genomanalysen?

Zusatz zu HWE (2)

Abbildung: Punnett square and De Finetti diagram.

Aufgabe 3: Stammbäume (1)

- Oefinieren Sie die Begriffe dominant, rezessiv und Penetranz.
- Betrachten Sie die drei Stammbäume und geben Sie folgendes an:
 - eine Legende,
 - die Träger/in,
 - das wahrscheinlichstes Segregationsmuster mit Begründung

Aufgabe 3: Lösung (1)

- dominant: eine Kopie des Risiko-Allels reicht aus, um den Phänotyp zu erzeugen
- rezessiv: nur wenn das Risiko-Allel homozygot vorliegt, kommt es zum Phänotypen
- Penetranz: WSK, mit der ein bestimmter Genotyp zur Ausbildung des zugehörigen Phänotyps führt
- Legende:
 - ► Form = Geschlecht (Kreis: Frau; Quadrat: Mann)
 - ► Füllung = Phänotyp/Krankheit (Keine Füllung: gesund; rote Füllung: erkrankt; ein Punkt im Kreis oder Quadrat: Träger/in)

Aufgabe 3: Plot A

Bestimmen Sie den Erbgang des vorliegenden Stammbaums und den Genotyp aller Mitglieder!

Abbildung: Stammbaum A.

Aufgabe 3: Plot A - Lösung

Lösung: autosomal-rezessiv, weil

- Beide Geschlechter betroffen
- Generationen können übersprungen werden

Abbildung: Stammbaum A - Lösung.

Aufgabe 3: Plot B

Bestimmen Sie den Erbgang des vorliegenden Stammbaums und den Genotyp aller Mitglieder!

Abbildung: Stammbaum B.

Aufgabe 3: Plot B - Lösung

Lösung: autosomal-dominant, weil

- Beide Geschlechter betroffen
- jede Generation betroffen

Abbildung: Stammbaum B - Lösung.

Aufgabe 3: Plot C

Kinderwunsch in Generation III. Bestimmen Sie den Erbgang und den Genotypen der Mutter. Mit welcher Wahrscheinlichkeit werden die Kinder dieses Paares erkranken?

Abbildung: Stammbaum C.

Aufgabe 3: Plot C - Lösung

Lösung: X-chromosomal rezessiv, weil

- Deutlich mehr Männer betroffen
- Generationen können übersprungen werden

Mutter hat 50% Chance Trägerin zu sein

- Töchter werden alle gesund sein (können Trägerinnen sein)
- Söhne werden zu 25% erkranken (WSK(Mutter Trägerin) * WSK(rezessives Allel wird weitergegeben) = 0.5 * 0.5 = 0.25)

Abbildung: Stammbaum C - Lösung.

Zusammenfassung

- Warum ist LD wichtig in der Funktionelle Genomanalysen?
 - ▶ (Un-)Abhängigkeit von genetischen Markern in statistischen Analysen!
- Warum ist HWE wichtig in der Funktionelle Genomanalysen?
 - ► Annahme einer best. Verteilung in stat. Analysen
 - Kenntnis von best. Eigenschaften (z.B. Varianz)
- Warum sind Segregationsmuster wichtig in der Funktionelle Genomanalysen?
 - ▶ Relevant in Festlegung des Regressionsmodelles