Manyam Avinash

187233

Lab-7

Assignment-6

Q1 Investigate the use of Logistic Regression on a subset of the Kaggle Credit Card Fraud Data set (www.kaggle.com/dalpozz/creditcardfraud). Note that in this data set, the number of fraud data are much smaller than the normal data.

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report, roc_curve, roc_auc_s
core
import itertools
```

In [2]:

```
data=pd.read_csv('creditcard.csv')
data.head()
```

Out[2]:

	Time	V 1	V2	V 3	V4	V 5	V 6	V 7	V 8	V 9	 V21	V22	
0	0.0	- 1.359807	- 0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	 0.018307	0.277838	0.
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	0.082361	0.078803	0.085102	- 0.255425	 0.225775	0.638672	0.
2	1.0	1.358354	1.340163	1.773209	0.379780	0.503198	1.800499	0.791461	0.247676	- 1.514654	 0.247998	0.771679	0.9
3	1.0	0.966272	- 0.185226	1.792993	0.863291	0.010309	1.247203	0.237609	0.377436	- 1.387024	 0.108300	0.005274	0.
4	2.0	1.158233	0.877737	1.548718	0.403034	0.407193	0.095921	0.592941	0.270533	0.817739	 0.009431	0.798278	0.

5 rows × 31 columns

1

In [3]:

```
res=data['Class'].value_counts()
print('Class 0 : ',res[0])
print('Class 1 : ',res[1])
res.plot(kind='bar',title='count')
```

```
Class 0 : 284315
Class 1 : 492
```

Out[3]:

<matplotlib.axes. subplots.AxesSubplot at 0x208d568a5b0>

In [4]:

```
#we can observe that count of class 1 is less so we store it here
cnt=res[1]
data_0=data[data['Class']==0]
print("dimentions of data with class 0 : ",data_0.shape)
data_0.head()
```

dimentions of data with class 0: (284315, 31)

Out[4]:

	Time	V1	V2	V 3	V 4	V 5	V 6	V 7	V 8	V 9	 V21	V22	
0	0.0	- 1.359807	- 0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	 0.018307	0.277838	0.
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	- 0.082361	0.078803	0.085102	- 0.255425	 - 0.225775	0.638672	0.
2	1.0	- 1.358354	- 1.340163	1.773209	0.379780	0.503198	1.800499	0.791461	0.247676	- 1.514654	 0.247998	0.771679	0.9
3	1.0	- 0.966272	- 0.185226	1.792993	- 0.863291	0.010309	1.247203	0.237609	0.377436	- 1.387024	 - 0.108300	0.005274	0.
4	2.0	- 1.158233	0.877737	1.548718	0.403034	- 0.407193	0.095921	0.592941	0.270533	0.817739	 0.009431	0.798278	0.

5 rows × 31 columns

1

In [5]:

```
data_1=data[data['Class']==1]
print("dimentions of data with class 0 : ",data_1.shape)
data_1.head()
```

dimentions of data with class 0:(492, 31)

Out[5]:

	Time	V 1	V2	V 3	V4	V 5	V 6	V 7	V8	V 9	 V21	V2 :
541	406.0	- 2.312227	1.951992	- 1.609851	3.997906	- 0.522188	- 1.426545	- 2.537387	1.391657	2.770089	 0.517232	0.03504
623	472.0	- 3.043541	3.157307	1.088463	2.288644	1.359805	1.064823	0.325574	0.067794	0.270953	 0.661696	0.43547
4920	4462.0	2.303350	1.759247	- 0.359745	2.330243	- 0.821628	- 0.075788	0.562320	- 0.399147	0.238253	 - 0.294166	0.93239
6108	6986.0	4.397974	1.358367	- 2.592844	2.679787	- 1.128131	1.706536	- 3.496197	0.248778	0.247768	 0.573574	0.17696
6329	7519.0	1.234235	3.019740	- 4.304597	4.732795	3.624201	- 1.357746	1.713445	0.496358	- 1.282858	 0.379068	0.70418

.

Logistic regression function

#print(prediction)

#print("accuracy =",accuracy*100)

print("Accuracy is " ,score)
plt.figure(figsize=(9,9))

matrix=confusion_matrix(Y_test, prediction)
print(f'************************)

plt.title(all sample title, size = 15);

```
In [6]:

def estimate(X,Y,st):
    clf=LogisticRegression()
    X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2)
    clf.fit(X_train,Y_train)
    prediction = clf.predict(X_test)
    score = clf.score(X_test, Y_test)
    #accuracy = accuracy score(Y test,prediction)
```

```
es_r');
  plt.ylabel('Actual label');
  plt.xlabel('Predicted label');
  all sample title = 'Accuracy Score: {0}'.format(score)
```

sns.heatmap(matrix, annot=True, fmt=".3f", linewidths=.5, square = True, cmap = 'Blu

For 100k subset

```
In [7]:
```

```
# as given in the question
# we need to consider fraud data as much as possible we consider it fully
# so we found the count of class 1 data
X1_1=data_1.iloc[:,:-1].values
X1_0=data_0.iloc[:100000-cnt,:-1].values
X1=np.concatenate((X1_1,X1_0),axis=0)
Y1_1=data_1.iloc[:,-1].values
Y1_0=data_0.iloc[:100000-cnt,-1].values
Y1=np.concatenate((Y1_1,Y1_0), axis =0)
print('size of x1 : ',X1.shape)
print('size of y1 :',Y1.shape)

size of x1 : (100000, 30)
size of y1 : (100000,)
In [8]:
estimate(X1,Y1,'100k subset')
```

```
***************************
Accuracy is 0.9975

C:\Users\avina\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:762: Converg
enceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
```


20k subset

```
In [9]:
```

```
# as given in the question
# we need to consider fraud data as much as possible we consider it fully
# so we found the count of class 1 data
X2_1=data_1.iloc[:,:-1].values
X2 0=data 0.iloc[:20000-cnt,:-1].values
X2=np.concatenate((X2 1, X2 0), axis=0)
Y2 1=data 1.iloc[:,-1].values
Y2 0=data 0.iloc[:20000- cnt,-1].values
Y2=np.concatenate((Y2 1, Y2 0), axis = 0)
print('size of x2 : ', X2.shape)
print('size of y2 :', Y2.shape)
size of x2: (20000, 30)
size of y2 : (20000,)
In [10]:
estimate(X2,Y2,'20k subset')
Accuracy is 0.98825
C:\Users\avina\anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:762: Converg
enceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```


n_iter_i = _check_optimize_result(

Increase the number of iterations (max iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/linear model.html#logistic-regression

https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:

for 10k subset

```
In [11]:
```

```
# as given in the question
# we need to consider fraud data as much as possible we consider it fully
# so we found the count of class 1 data
X3 1=data 1.iloc[:,:-1].values
X3 0=data 0.iloc[:20000-cnt,:-1].values
X3=np.concatenate((X3 1,X3 0),axis=0)
Y3 1=data 1.iloc[:,-1].values
Y3 0=data 0.iloc[:20000- cnt,-1].values
Y3=np.concatenate((Y3 1,Y3 0), axis = 0)
print('size of x3 : ',X3.shape)
print('size of y3 :', Y3.shape)
size of x3: (20000, 30)
size of y3 : (20000,)
In [12]:
estimate(X2,Y2,'10k subset')
************10k subset******
Accuracy is 0.9905
C:\Users\avina\anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:762: Converg
enceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
 n iter i = check optimize result(
```


Q2 . Implement the logistic regression model on the Smarket.csv dataset. Use all the attribute as variables. And as output I need all the learned coefficients, and the scatter plot, and the classification graph generated by the logistic regression.

```
In [13]:
```

```
mdata = pd.read_csv('Smarket.csv')
mdata.head()
```

Out[13]:

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction
0	2001	0.381	-0.192	-2.624	-1.055	5.010	1.1913	0.959	Up
1	2001	0.959	0.381	-0.192	-2.624	-1.055	1.2965	1.032	Up
2	2001	1.032	0.959	0.381	-0.192	-2.624	1.4112	-0.623	Down
3	2001	-0.623	1.032	0.959	0.381	-0.192	1.2760	0.614	Up
4	2001	0.614	-0.623	1.032	0.959	0.381	1.2057	0.213	Up

In [14]:

```
target_count = mdata['Direction'].value_counts()
print('Class 0:', target_count[0])
print('Class 1:', target_count[1])
print('Proportion:', round(target_count[0] / target_count[1], 2), ': 1')
cnt= target_count[1]
target_count.plot(kind='bar', title='Count (target)');
```

Class 0: 648 Class 1: 602 Proportion: 1.08 : 1

In [15]:

```
label_mapping ={'Up':1, 'Down':0}
```

```
mdata['Direction'] = mdata['Direction'].map(label_mapping)
mdata.head()
```

Out[15]:

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction
0	2001	0.381	-0.192	-2.624	-1.055	5.010	1.1913	0.959	1
1	2001	0.959	0.381	-0.192	-2.624	-1.055	1.2965	1.032	1
2	2001	1.032	0.959	0.381	-0.192	-2.624	1.4112	-0.623	0
3	2001	-0.623	1.032	0.959	0.381	-0.192	1.2760	0.614	1
4	2001	0.614	-0.623	1.032	0.959	0.381	1.2057	0.213	1

In [16]:

```
X= mdata.iloc[:,1:-1].values
y = mdata.iloc[:,-1].values
print(X.shape)
print(y.shape)
```

(1250, 7) (1250,)

In [17]:

```
clf = LogisticRegression()
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
clf.fit(X_train,y_train)
print("The Parameters are as follows -")
print(clf.coef_)
```

The Parameters are as follows - [[1.03606858e-04 6.84371973e-02 7.24481271e-02 2.13508540e-02 8.12102722e-02 2.85676557e-01 8.93472435e+00]]

In []: