Biodiversidade e Funcionamento de Ecossistemas

- Funcionamento x Serviços Ecossistêmicos
- Biodiversidade x Estabilidade
- Biodiversidade x Funcionamento
- Biologia da Conservação

Biodiversidade e Funcionamento de Ecossistemas

- Funcionamento x Serviços Ecossistêmicos: independente do ser humano x interesse humano
- Biodiversidade x Estabilidade
- Biodiversidade x Funcionamento
- Biologia da Conservação

Biodiversidade e Funcionamento de Ecossistemas

- Biogeografia de Ilhas e regulação da diversidade
- Ecologia de Ecossistemas: fluxo de energia e ciclagem de nutrientes
- Biogeografia de Ilhas
- Regulação da diversidade
- Biologia da Conservação

Biodiversidade e Teoria da Biogeografia de Ilhas

• Cap. 10

Cap. 16, 19, 21

Teoria da Biogeografia de Ilhas

Número de espécies na ilha = Imigração - Extinção

Teoria da Biogeografia de Ilhas

 A única fonte de espécies é o continente

 Há uma "chuva de propágulos" (imigrantes) constante do continente sobre a ilha

Imigração

- Distância do continente (fonte dos imigrantes)
- Área da ilha (tamanho do alvo)
- Características biológicas das espécies (número de indivíduos, vagilidade, forma de dispersão): desconsiderado no modelo

Extinção

Probabilidade de Extinção

Tamanho populacional (Ni)

Extinção

- Existem inúmeros fatores que podem levar à extinção de uma população:
- (Sobre-exploração, patógenos, depressão endogâmica, competição, distúrbios, flutações ao acaso, variação ambiental)
- Mas A PROBABILIDADE DE EXTINÇÃO DIMINUI COM O TAMANHO POPULACIONAL

$$\frac{dS}{dt} = Imigração - Extinção$$

(2)
$$\frac{dS}{dt} = Entrada de espécies novas - Desaparecimento de espécies$$

$$\frac{dS}{dt} = \frac{Espécies\ que\ vêm\ da\ fonte\ ou}{paisagem - Extinção\ Local}$$

$$\frac{dS}{dt} = Processos regionais - Processos Locais$$

Imigração = chegada de espécies novas

Extinção = desaparecimento de espécies

Imigração diminui com o preenchimento da ilha com espécies

O número máximo de imigrantes é determinado pela distância e área da ilha

Quando a ilha tem todas as espécies do continente, a imigração (=chegada de espécies novas) é zero

A extinção aumenta com o número de "candidatos" à extinção na ilha

Com zero espécies na ilha, a probabilidade de extinção é **zero**

Gerando um equilíbrio dinâmico:

Número de espécies na ilha

Gerando um equilíbrio dinâmico e estável

Imigração diminui com a distância do continente

Imigração aumenta com a área da ilha

Extinção diminui com a área da ilha

Number of resident species

Efeito resgate

- Imigração pode alterar número de espécies na ilha quando leva a RESGATE de populações extintas
- Assim, ilhas com maior imigração de espécies novas (próximas ou com maior área) também terão MENOR EXTINÇÃO devido ao maior efeito resgate

Efeito resgate

Number of resident species

Aprendizagem ativa

O mapa abaixo representa um sistema de ilhas próximas da costa de um continente. As ilhas A, B e C estão à mesma distância do continente (e também estão à mesma distância da ilha D). Já a ilha D é a mais distante do continente. As ilhas A e D têm a mesma área, e são maiores do que C, que por sua vez é maior do que B.

1.A partir da teoria da biogeografia de ilhas, onde você espera encontrar maior riqueza de espécies? Apresente a sequência esperada de ilhas, indo daquela com maior, àquela com menor riqueza de espécies.

- 1.A partir da teoria da biogeografia de ilhas, onde você espera encontrar maior riqueza de espécies? Apresente a sequência esperada de ilhas, indo daquela com maior, àquela com menor riqueza de espécies.
- 1.A > C > B > D ou A > C > D > B dependendo se extinção em B superar a imigração em D ou vice-versa

Padrões x Processos

- Abordagem observacional: padrões
- Abordagem manipulativa: processos
- Escalas espaciais: local x regional
- Escalas temporais: tempo ecológico x evolutivo
- Tempo ecológico: colonização e extinção local, sucessão ecológica
- Tempo evolutivo: especiação, deriva de continentes, formação de rios, movimentações topográficas

Porque um local tem mais espécies do que outro?

- n= amplitude do nicho
- o = sobreposição de nichos
- R = amplitude de recursos

Porque um local tem mais espécies do que outro?

• (a) Mais recursos

• (b) Nichos mais estreitos

Aprendizagem ativa

Elabore uma hipótese para explicar cada um dos padrões de coexistência acima

Porque um local tem mais espécies do que outro?

 (c) Maior sobreposição de nichos

 (d) Nenhuma das anteriores

Comunidades saturadas

• (a) Mais recursos

(b) Nichos mais estreitos

Comunidades saturadas

 (c) Maior sobreposição de nichos

 (d) Nenhuma das anteriores

Comunidades insaturadas

Evidências: Padrões de riqueza de espécies

Mais recursos: Riqueza aumenta com a produtividade

Relações lineares e não-lineares

Nenhuma

Não-lineares

Corcunda

Assintótica

Formato-U

Padrões diversidade-produtividade

Múltiplos determinantes da riqueza

Maior variedade de recursos

A riqueza aumenta com a heterogeneidade ambiental

Nichos mais estreitos

 Competição interespecífica, similaridade limitante e deslocamento de caracteres

Competição inter-específica e similaridade limitante

Competição inter-específica e similaridade limitante

Deslocamento competitivo ?

Maior sobreposição de nichos

- Predador de topo pode facilitar coexistência por limitar espécies competitivamente mais fortes
- evitando exclusão competitiva das espécies comp0etitivamente inferiores

Maior sobreposição de nichos: predador de topo como espécie-chave

Paine, 1966.)

Chitons 2 spp.

Limpets 2 spp.

Mytilus (bivalve) 1 sp.

Acom barnacies 3 spp.

Mitella (goose barnacie)

Figure 21.3. Paine's rocky shore community. (After

Retirada experimental

Chitons Limp 2 spp. 2 spp

Limpets 2 spp.

Mytilus (bivalve) 1 sp.

Acom barnacies 3 spp.

Mitella (goose barnacie)

Figure 21.3. Paine's rocky shore community. (After Paine, 1966.)

Retirada experimental

Figure 21.3. Paine's rocky shore community. (After Paine, 1966.)

A retirada do predador de topo (estrela do mar) levou ao aumento da população da espécie competitivamente mais forte, e exclusão competitiva de todas as outras espécies

Experimento manipulativo

Padrões de riqueza de espécies

- Padrões: correlações que se repetem na natureza
- Talvez o único padrão universal de riqueza de espécies: relação espécies-área

Padrões de riqueza na natureza

Species-area Relationship on Arithmetic Axes

Riqueza aumenta com a área

A relação é logarítimica

Species-area Relationship on Log-log Axes

Ao plotar em log-log a relação é uma reta

Escalas espaciais de diversidade

- Diversidade regional (y − gama)
- Diversidade local (α alfa)
- Diversidade entre hábitats (β beta)

$$\gamma = \alpha + \beta$$

Aprendizagem ativa

Estime os valores de diversidade alfa, beta e gama na figura a seguir:

$$\beta = \gamma - \alpha$$

Ecologia de Ecossistemas

Ecossistema: Sistemas Bióticos + Abióticos

Processos que ocorrem entre a **Biosfera** e o **meio** abiótico

Processos ecossistêmicos: Fluxo de Energia

Ciclagem de Matéria

Leis da termodinâmica

1^a lei da termodinâmica:

conservação de energia total em sistema fechado

Tudo que entra, sai.

Leis da termodinâmica

2ª lei da termodinâmica: uma passagem só de ida, ou **irreversibilidade**

Leis da termodinâmica

2ª lei da termodinâmica: uma passagem só de ida, ou **irreversibilidade**

A seta do tempo

Os processos expontâneos sempre tendem a aumentar a desorganização

O mito de Sísifo

Sísifo fora condenado por Zeus a empurrar uma enorme pedra até o alto de uma montanha, de onde ela rolaria encosta abaixo para que o absurdo herói mitológico descesse em seguida até o sopé e empurrasse novamente o rochedo até o alto, por toda a eternidade.

Sistemas Abertos

Sistemas dissipativos em não-equilíbrio

Sistemas dissipativos em não-equilíbrio

Não-equilíbrio temporário

A ausência de atrito com o solo em **Júpiter** permite que furacões como "O olho de Júpiter" durem mais que 3 séculos.

O que é vida?

 São sistemas dissipativos mantidos ordenados por consumo de energia

Gás	Vênus	Marte	Terra	Terra*
CO ₂	96,5	95	0,035	98
N ₂	3,5	2,7	79	1,9
O ₂	traços	0,13	21	traços
Argônio	traços	1,6	1,0	0,1
∆fG _m /kJ mol ⁻¹ **	-365	-376	-1,8	-377
SBQ	http://qnint.sbq.org.br			

^{*} atmosfera pré-biótica

A atmosfera terrestre pré-biótica teria sido parecida à de outros planetas do Sistema Solar ...

Gás	Vênus	Marte	Terra	Terra*
CO ₂	96,5	95	0,035	98
N ₂	3.5	2.7	79	1.9
O ₂	traços	0,13	21	traços
Argônio	traços	1,6	1,0	0,1
∆fG _m /kJ mol ⁻¹ **	-365	-376	-1,8	-377
SBQ	http://qnint.sbq.org.br			

^{*} atmosfera pré-biótica

... com predomínio de **gás carbônico** e pouquíssimo **oxigênio**.

Gás	Vênus	Marte	Terra	Terra*
CO ₂	96,5	95	0,035	98
N ₂	3,5	2,7	79	1,9
O_2	traços	0,13	21 🕌	traços
Argônio	traços	1,6	1,0	0,1
$\Delta fG_m/kJ \text{ mol-1 **}$	-365	-376	-1,8	-377
SBQ	http://qnint.sbq.org.br			

atmosfera atual

A ação de organismos **fotossintetizantes** teria transformado a atmosfera terrestre, **fixando carbono** na forma de biomassa e **liberando oxigênio** para a atmosfera.

Aprendizagem ativa

- Explique o que é vida em termos termodinâmicos
- O que distingue a vida de outros sistemas dissipativos?

Biologia da conservação

Visa reverter/evitar o vórtex de extinção

Consequências de redução populacional

- Deriva genética: redução da variabilidade
- Depressão endogâmica
- Isolamento, levando a menor fluxo gênico e menor efeito resgate
- Aumento de flutuações demográficas estocásticas

Quanto menor a população, maior a probabilidade de extinção

População Mínima Viável (PMV)

(b) haja uma densidade mínima viável (População mínima viável), abaixo da qual a população irá à extinção:

Natalidade —————

Dependência de densidade, flutuação populacional e PMV

Dinâmica de metapopulações

Conexão entre populações locais pode permitir efeito resgate

