线性代数单元练习四(线性方程组)

一、单项选择题

1. 设 A 与 B 是 n 阶方阵,齐次线性方程组 Ax=0 与 Bx=0 有相同的基础解系 ξ_1,ξ_2,ξ_3 ,则在下列方程组中以 ξ_1,ξ_2,ξ_3 为基础解系的是(

- (A) (A + B)x = 0 (B) ABx = 0
- (C) BAx = 0 (D) $\binom{A}{B}x = 0$

2. 设A为n阶矩阵,则以下命题: 1) Ax=0 只有零解; 2) Ax=b 有唯一解; 3) A 可逆; 4) A 的行向量组线性无关;

- 5) A 无零特征值, 等价的有(
 - (A) 2 个
- (B) 3 个 (C) 4 个
- (D) 5 个

3. 设A 为 $m \times n$ 阶矩阵,且m < n,若A的行向量线性无关,则(

- (A) 方程组 Ax = b 有无穷多组解 (B) 方程组 Ax = b 仅有唯一解
- (C) 方程组 Ax = b 无解
- (D) 方程组 Ax = b 仅有零解

4. 假设 A 为阶实矩阵, A^T 是 A 的转置矩阵,则对于线性方程组(I): Ax = 0,和(II): $A^T Ax = 0$,必有(

- (A) (II)的解是 (I)的解, (I)的解也是 (II)的解
- (B) (II)的解是 (I)的解, 但(I)的解不是 (II)的解
- (C) (I)的解不是 (II)的解, (II)的解也不是 (I)的解
- (D) (I)的解是 (II)的解, 但(II)的解不是 (I)的解

5. 设有三张不同平面的方程 $a_{ii}x + a_{ij}y + a_{ij}z = b_i(i = 1,2,3)$ 它们组成的线性方程组的系数矩阵与增广矩阵的秩都为

2,则这三张平面可能的位置关系为(

6. 已知 $m{eta}_1$, $m{eta}_2$ 是非齐次线性方程 $m{AX}=m{b}$ 的两个不同的解, $m{a}_1$, $m{a}_2$ 是对应的齐次线性方程组 $m{AX}=m{0}$ 的基础解系,

 k_1, k_2 为任意常数,则方程组 AX = b 的通解必是(

(A)
$$k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$

(B)
$$k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$$

(C)
$$k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
 (D) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

(D)
$$k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$$

7. 要使
$$\xi_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
 , $\xi_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ 都是线性方程组 $AX = 0$ 的解,只要系数 A 为()

$$(A) \begin{bmatrix} -2 & 1 & 1 \end{bmatrix} \quad (B) \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \quad (C) \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} \quad (D) \begin{bmatrix} 0 & 1 & -1 \\ 4 & -2 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

- 8. 非齐次线性方程组 AX = b 中未知量个数为n,方程个数为m,系数矩阵 A 的秩为r,则()
- (A) r=m 时,方程组 AX=b 有解 (B) r=n 时,方程组 AX=b 有唯一解
- (C) m = n 时,方程组 AX = b 有唯一解 (D) r < n 时,方程组 AX = b 有无穷多解

二、填空题

1. 已知方程组
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$
 无解,则 $a =$ ______

- 2. 设方程 $\begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ 有无穷多个解,则 a =_______
- 3. 设 $A = (a_{ij})_{n \times n}$ 为三阶矩阵,|A| = 0,元素 a_{23} 的代数余子式 $A_{23} \neq 0$,则______

为齐次线性方程组 AX = 0 的一个基础解系.

- 4. 设 A 为四阶方阵,其列向量为 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$,且 $\alpha_1,\alpha_2,\alpha_3$ 线性无关, $\alpha_4=2\alpha_1+\alpha_2$, $\beta=\alpha_2+\alpha_3+\alpha_4$ 则 $AX=\beta$ 的通解为
- 5. 线性方程组 $x_1 + x_2 + \dots + x_n = 0$ 的基础解系含解向量的个数是______.

6. 设有一个四元非齐次线性方程组
$$Ax = b$$
, $R(A) = 2$, $\eta_{_1}, \eta_{_2}, \eta_{_3}$ 为其解向量 , 且 $\eta_{_1} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \eta_{_2} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \eta_{_3} = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$,此

非齐次线性方程组的通解

7. 设 4 元非齐次线性方程组的系数矩阵的秩为 3,已知 η_1 , η_2 , η_3 是它的三个解向量,且 η_1 = (2,3,4,5), $\eta_2 + \eta_3$ = (1,2,3,4),该方程组的全部解

8. 设 γ_0 是非齐次方程组 AX=b 的一个解向量, $\alpha_1,\alpha_2,\cdots,\alpha_{n-r}$ 是对应的齐次方程组 AX=0 的一个基础解系,则 γ_0 , α_1 , α_2 , \cdots , α_{n-r} 线性______

三、计算题

1. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, 已知 $Ax = \beta$ 的通解为

$$x = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 1 \end{pmatrix} + k_1 \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

其中 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 为四维列向量,令 $\mathbf{B} = (\alpha_1, \alpha_2, \alpha_3)$,试求 $\mathbf{B} \mathbf{y} = \boldsymbol{\beta}$ 的通解.

2. 讨论并求方程组的

$$\begin{cases} ax_1 + x_2 - x_3 = 1 \\ x_1 - x_2 + x_3 = b \\ 2x_1 + 2x_2 + bx_3 = 1 \end{cases}$$

解,其中a,b为常数。

- 3. 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为 四 维 列 向 量 组 , 且 $\alpha_1, \alpha_2, \alpha_3$ 线 性 无 关 , $\alpha_4 = \alpha_1 + \alpha_2 + 2\alpha_3$. 已 知 方 程 组 $(\alpha_1 \alpha_2, \alpha_2 + \alpha_3, -\alpha_1 + a\alpha_2 + \alpha_3)x = \alpha_4$ 有无穷多解,(1) 求 a 的值;(2) 用基础解系表示该方程组的通解.
- 4. 设 n 阶方阵 A 的 n 个列向量为 $\alpha_1,\alpha_2,\cdots,\alpha_n$, n 阶方阵 B 的 n 个列向量为 $\alpha_1+\alpha_2$, $\alpha_2+\alpha_3$, $\cdots,\alpha_n+\alpha_1$ ·试问: 当 r(A)=n 时,线性方程组 Bx=0 是否有非零解,并说明理由.

5. 设方程组(I)
$$\begin{cases} -2x_1 + x_2 + ax_3 - 5x_4 = 1 \\ x_1 + x_2 - x_3 + bx_4 = 4 \end{cases}$$
与(II)
$$\begin{cases} x_1 + x_4 = 1 \\ x_2 - 2x_4 = 2 \text{ 同解,试确定} \ a, b, c \text{ 的值.} \\ x_3 + x_4 = -1 \end{cases}$$

6. 已知三阶矩阵 $B \neq O$,且 B 的每一个列向量都是以下方程组的解,

$$\begin{cases} x_1 - x_3 = 0 \\ 2x_1 + x_2 + \lambda x_3 = 0 \\ 3x_1 - 2x_2 - x_3 = 0 \\ 5x_1 - x_2 + (\lambda - 1)x_3 = 0 \end{cases}$$

(1) 求 λ 的值; (2)证明: |B| = 0.

三、 证明题

- 1. 设 η_1, η_2 是非齐次线性方程组Ax = b的两个不同解,A为 $m \times n$ 阵, ξ 是对应齐次线性方程组Ax = 0的一个非零解,证明: (1)向量组 $\eta_1, \eta_1 \eta_2$ 线性无关; (2)若r(A) = n 1,则 ξ 可由 η_1, η_2 表出.
- 2. 设A是 $m \times n$ 矩阵, B是 $n \times m$ 矩阵, 证明:m > n时, 齐次线性方程组 ABx = 0必有非零解.

3. 方程组(I)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{m1}y_m = b_1 \\ \dots & \text{有解的充要条件是齐次方程组} \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$(II) \begin{cases} a_{11}y_1 + a_{21}y_2 + \dots + a_{m1}y_m = 0 \\ a_{12}y_1 + a_{22}y_2 + \dots + a_{m2}y_m = 0 \\ \dots \\ a_{1n}y_1 + a_{2n}y_2 + \dots + a_{mn}y_m = 0 \end{cases} \text{ in } \text{ for } \text{ for } [c_1, c_2, \dots, c_m]^T, \text{ if } \text{ if } \sum_{i=1}^m c_i b_i = 0.$$

4. 设向量组 α_1 , α_2 ,…, α_t 是齐次线性方程组AX=0的一个基础解系,向量 β 不是方程组AX=0的解,即

Aeta
eq 0. 试证明: 向量组 $eta,eta+lpha_1,eta+lpha_2,\cdots,eta+lpha_t$ 线性无关.

- 5. 设A是n阶方阵,试证 $\mathbf{r}(\mathbf{A}^n) = \mathbf{r}(\mathbf{A}^{n+1})$.
- 6. 已知向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,向量 β 能用 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出,向量 γ 不能用 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出。证

明 s+1 个向量 $\alpha_1, \alpha_2, \dots, \alpha_s, \beta + \gamma$ 必然线性无关.

答案与提示:

- 一、选择题
- 1. D 2. D 3. A 4. A 5. B 6. B 7. A 8. A
- 二、填空题

1. -1 2. -2 3.
$$\begin{pmatrix} A_{21} \\ A_{22} \\ A_{23} \end{pmatrix}$$
 4. $(0,1,1,1)^T + k(2,1,0,-1)^T$, k 为任意常数;

5.
$$n-1$$
 6. $Ax = b$ 的通解为 $x = k \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix} + k \begin{bmatrix} 1 \\ 2 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$, 其中 k_1, k_2 为任意常数

- 7. $\eta = k\eta_0 + \eta_1 = (2-3k, 3-4k, 4-5k, 5-6k)$
- 8. 无关

三、计算题

$$y = \begin{pmatrix} 2 \\ -5 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}_{, \text{其中 k 为任意常数}}$$

- - (1) 当 $a \neq -1$, $b \neq -2$ 时,方程组有唯一解,

$$x_1 = \frac{b+1}{a+1}$$
, $x_2 = -\frac{ab^2 + b - 2a}{(a+1)(b+2)}$, $x_3 = \frac{2(b+1)(a-1)}{(a+1)(b+2)}$

(2) 当 a = -1, $b \neq -1$ 时,方程组无解.

$$x = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + C \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$$

- (3) 当 a = -1, b = -1 时, 方程组有无穷多解:
- (4) 当 a ≠ 1, b = -2 时, 方程组无解.

$$x = \begin{pmatrix} -1/2 \\ 3/2 \\ 0 \end{pmatrix} + C \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

(5) 当 a = 1, b = -2 时,方程组有无穷多解:

$$C\begin{pmatrix} 1\\-1\\1 \end{pmatrix} + \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$

- 4. 当 n 为偶数时, Bx=0 有非零解: $x_1 = -x_2 = \cdots = x_{n-1} = x_n = 1$; 当 n 为奇数时, Bx=0 只有零解.
- 5. a = -1, b = -2, c = 4. 提示:将(II)的通解代入(I).
- (1) $\lambda = -3$; (2) 提示: 反证法.

四、证明题

- 1. 提示: (1) 用定义证明; (2) 由r(A) = n 1,知Ax = 0的解空间维数 $\dim N(A) = 1$,而 ξ 与 $\eta_1 \eta_2$ 为Ax = 0的 解,故 ξ 与 η_1 - η_2 对应成比例
- 2. 略

3. 提示: "必要性". 设 $\boldsymbol{\beta}$ 为(I)的解,即 $\boldsymbol{A}\boldsymbol{\beta} = \boldsymbol{b}$, \boldsymbol{c} 为(II)的解,即 $\boldsymbol{A}^T\boldsymbol{c} = \boldsymbol{0}$,则 $\boldsymbol{c}^T\boldsymbol{b} = \boldsymbol{c}^T(\boldsymbol{A}\boldsymbol{\beta}) = (\boldsymbol{c}^T\boldsymbol{A})\boldsymbol{\beta} = \boldsymbol{0}$ 成立.

"充分性". $A^Tx=0$ 的每组解必满足 $b^Tx=0$,则可证 $\begin{cases} A^Tx=0\\ b^Tx=0 \end{cases}$ 与 $A^Tx=0$ 同解,即 b 可由 A 的列向量线性表出.

4. 略

5. 证:我们通过证明 $A^n x = 0$ 与 $A^{n+1} x = 0$ 是同解方程组来说明问题.显然, $A^n x = 0$ 的解都是 $A^{n+1} x = 0$ 的解,下证 $A^{n+1} x = 0$ 的解x是 $A^n x = 0$ 的解。否则,即若 $A^n x \neq 0$,考虑向量组 $x, Ax, A^2 x, ..., A^{n-1} x, A^n x$,若

$$k_0 x + k_1 A x + k_2 A^2 x + \dots + k_{n-1} A^{n-1} x + k_n A^n x = 0$$
 (*)

在上式两边左乘 A^n , 利用 $A^{n+1}x=A^{n+2}x=\ldots=A^{2n}x=0$,得 $k_0A^nx=0$, 而 $A^nx\neq 0$, 故必有 $k_0=0$,此时,(*)式 变为

$$k_1 A x + k_2 A^2 x + \dots + k_{n-1} A^{n-1} x + k_n A^n x = 0$$
,

再用 $A^{n-1}x$ 左乘上式两端,必得 $k_1=0$,依次类推,最终必有 $k_0=k_1=k_2=\ldots=k_{n-1}=k_n=0$,这说明 n+1 个向量 $x,Ax,A^2x,\ldots,A^{n-1}x,A^nx$ 是线性无关的,而这显然与"n+1 个 n 维向量必线性相关"矛盾,故说明假设错误,即只有 $A^nx=0$.

综合上述,知 $A^n x = 0$ 与 $A^{n+1} x = 0$ 同解,进而有 $r(A^n) = r(A^{n+1})$.

6. 证 设 $k\alpha + k\alpha + k\alpha + k(\beta + \gamma) = 0$,

则 k=0, 否则 γ 能用 $\alpha_1,\alpha_2,...,\alpha_s$, β 线性表出,而向量 β 能用 $\alpha_1,\alpha_2,...,\alpha_s$ 线性表出, $\therefore \gamma$ 能用 $\alpha_1,\alpha_2,...,\alpha_s$ 线性表

出,与题设矛盾. $\therefore k \alpha + k \alpha + \dots + k \alpha = 0$

$$\therefore \alpha_1, \alpha_2, ..., \alpha_s$$
 线性无关, $\therefore k_1 = k_2 = ... = k_s = 0$

 $\therefore \alpha_1, \alpha_2, ..., \alpha_s \beta + \gamma$ 必然线性无关.