	Name - Ayush Jain SAP JD - 60004 200132		
	Chairman Mathematics - TI		
	Engineering Mathematics-II		
	Term-Test 1 Assignment.		
	Bp = 62 22 11-11 21201213 (8		
ı>	Evaluate Jo V-109x		
Solution	Let $I = \int \frac{dx}{\sqrt{-109x}}$		
	x6 x v , l) = 12 ···		
	Put logx = - t		
	: x = e ^{-t}		
	$dx = -e^{-t} dt$		
	12 50 46		
	when x=0, t=00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	when x=0, E=00		
	x=1		
	° -t		
	$I = \int_{\infty}^{\infty} \frac{-e^{-t}}{\sqrt{t}}$		
	00 00		
	0° -t -1/2 1+		
0	$= \int_{0}^{\infty} e^{-t} + \frac{1}{2} dt$		
	0° -t -1/2+1-1		
	= 0° -t -1/2+1-1 dt		
	0		
	0°C -t 1/2-1		
	$= \int_{0}^{\infty} e^{-t} t^{1/2-1} dt$		
	= [] (Using defination of hamma function)		
	= JTT (Property of Gamma function.)		
	= JTT (Property of Gamma function.) [= JTT		

Page 3	
D	ATE:
$I_{2} = \frac{1}{2} \int_{0}^{1/2} (1-t)^{1/2} dt$ $= \int_{0}^{3/2-1} (1-t)^{3/2-1} dt$	27 (8 2 anitokaš
$I_2 = \frac{1}{2} \beta \left(\frac{3}{2}, \frac{3}{2} \right)$	
$\therefore \ \exists = \exists \iota \cdot \exists z$	
$= \angle \beta \left(\frac{2}{3} \right) \cdot \frac{1}{2} \beta \left(\frac{3}{2} \right) \frac{3}{2}$	
$= \frac{3}{2} \frac{3}{2} \cdot \frac{3}{2} \frac{3}{2}$	
$= 1 \times \boxed{3/2} (\frac{1}{2} \boxed{\frac{1}{2}})^2$ $= \frac{5 \cdot 3}{2} \cdot \boxed{3/2} 2!$ $= (\boxed{\frac{1}{2}})^2$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
: \\ \[\sqrt{1/2} \] : \\ \sqrt{1/2} \] : \\ \[\sqrt{1/2} \] : \	
30	•

	Page 4	E spo
		DATE:
3>	Prove that $B(x,x) = \frac{1}{2^{2x-1}}B(x,1)$	*
Salution	B(x,x) = x x - (i)	
	. By duplication formula of Gamma functions,	
	$\frac{2}{2m-1}$ [m $\frac{1}{m+1/2} = \sqrt{11}$ [2m]	
	$\frac{1}{2m} = \sqrt{\pi}$ $\frac{1}{2m} = \frac{2m-1}{2m+1/2}$	
	$\frac{1}{12\pi} = \sqrt{\pi} \qquad - (\uparrow\uparrow)$	
	12n 2x-1 [2+1/2	
	from (i) and (9i)	
	$\beta(x,x) = \sqrt{\pi}$ $2^{2\chi-1} \sqrt{2\chi+1/2}$	
	$= \frac{1}{2^{2\lambda-1}} \cdot \frac{1}{ \lambda+1/2 } \cdot \cdot$]
	(17 - 77)	
	$= \frac{1}{2^{2\chi-1}} \cdot \beta(\chi, \frac{1}{2}) \cdot (\beta(\chi, \frac{1}{2}) =$	12/1/2
	me of the epis will I was a	
	$\beta(x,x) = \frac{1}{2^{2x-1}}\beta(x,\frac{1}{2})$	
	-Hence Proved.	

	Page 7
	DATE:
5>	Assuming the validity of differentiation under the integral
	sign, prove that
	Jog (a+bsino) coseco do = Tisin' (b), a>b
	П
Solution	Let $J(b) = \int_{0}^{2} \log(\frac{a + b \sin \theta}{a - b \sin \theta}) \csc(\theta d\theta) - (i)$
	T
	=][log[(a+bsino)] - log[a-beino]). do sino
	Sino
	By the rule of differentiation under the integral sign,
	1/2
	$\frac{dI}{db} = \begin{cases} \frac{\sin \alpha}{\cos \alpha} + \sin \alpha & \frac{1}{2} \cdot \frac{d\alpha}{\cos \alpha} \\ \frac{\cos \alpha}{\cos \alpha} + \frac{\sin \alpha}{\cos \alpha} & \frac{1}{2} \cdot \frac{d\alpha}{\cos \alpha} \end{cases}$
	TT.
	= [1 + 1] do [a+bsino a-bsino]
	latbsino a-bsino
	T 2
	$= \int_{a^2 - b^2 \sin^2 \theta} 2a d\theta$
	0
	7
	$= \int_{a^2\cos e^2 o}^{2} do$
	Put cote= t
	:cosec'o do = dt
	and cosec ² 0 = 1+ cot ² 0 = 1+ t ²
	when 8=0, +=00
	0 = TT , t = 0

$$No\omega$$
, $X = y^2$ $dx = 2y = y$ $4a$ dy $4a$ $2a$

Required arc length =
$$OA = \int \sqrt{1 + (\frac{dx}{dy})^2} dy$$

$$\frac{3a}{1 + y^2} = \frac{3a}{1 + 4a^2} = \frac{3a}{2a} = \frac{3a}{1 + 4a^2} = \frac{3a}{4a^2}$$

$$= \frac{1}{2a} \left[\frac{y}{2} \sqrt{y^2 + 4a^2} + \frac{4a^2}{2} \log (y + \sqrt{y^2 + 4a^2}) \right]_0^2$$

$$= \frac{1}{2a} \left[\frac{3a}{4} \sqrt{\frac{25a^2}{4} + \frac{4a^2}{2} \log \left(\frac{3a}{2} + \sqrt{\frac{25a^2}{2}} \right) - \frac{4a^2}{2} \log \left(\frac{2a}{2} \right) \right]$$

$$= \frac{1}{2a} \left[\frac{15a^2 + 2a^2 \log 2}{8} \right] = a \left[\frac{15}{16} + \log 2 \right]$$

-Hence Proved.

