TD 1: OLS Regressions ECO 567A

Geoffrey Barrows¹

¹CREST, CNRS, Ecole polytechnique

Jan 10, 2025

Outline

- 1. What is the OLS estimator? What does it let you say? When is it valid?
- 2. Derive OLS estimator
- 3. Compute the variance of OLS estimator
- 4. Construct confidence intervals
- 5. Read regression tables

Dell Jones Olken (2012)

- 1. What is the relationship between temperature and GDP growth?
- 2. In particular, is the relationship stronger for poor countries?

Example of a Regression Table

$$g_{it} = \theta_i + \theta_t + \beta_T * T_{it} + \gamma_T * T_{it} * 1(poor) + \beta_P * P_{it} + \gamma_p * P_{it} * 1(poor) + \epsilon_{it}$$

Dependent variable is the					
annual growth rate	(1)	(2)	(3)	(4)	(5)
Temperature	-0.325 (0.285)	0.261 (0.312)	0.262 (0.311)	0.172 (0.294)	0.561* (0.319)
Temperature interacted with					
Poor country dummy		-1.655*** (0.485)	-1.610*** (0.485)	-1.645*** (0.483)	-1.806*** (0.456)
Hot country dummy				0.237 (0.568)	
Agricultural country dummy					-0.371 (0.409)
Precipitation			-0.083* (0.050)	-0.228*** (0.074)	-0.105** (0.053)
Precipitation interacted with					
Poor country dummy			0.153* (0.078)	0.160** (0.075)	0.145* (0.087)
Hot country dummy				0.185** (0.078)	
Agricultural country dummy					0.010 (0.085)
Observations	4,924	4,924	4,924	4,924	4,577
Within R ²	0.00	0.00	0.00	0.01	0.01
R^2	0.22	0.22	0.22	0.22	0.24
Temperature effect in poor countries		-1.394*** (0.408)	-1.347*** (0.408)	-1.473*** (0.440)	-1.245*** (0.463)
Precipitation effect in poor countries			0.069 (0.058)	-0.0677 (0.073)	0.0401 (0.089)

Dell Jones Olken (2012)

- 1. 1 degree Celsius increase lowers GDP growth in poor countries by 1.394 percentage points
- 2. This estimate is statistically significant at the 1% level.

Raw Data

Posit a Model

$$y_i = \alpha + \beta * x_i + \epsilon_i \tag{1}$$

$$y = X\theta + \epsilon \tag{2}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

Need to fit a line

How to choose the line?

Estimation Criteria

$$\underset{\theta}{\operatorname{argmin}} \quad (y - X\theta)'(y - X\theta)$$

Review of Linear Algebra

A, B are matrices, a, b are vectors

$$a'b = b'a$$

$$(AB)' = B'A'$$

$$(A + B)' = A' + B'$$

$$\frac{\partial b'a}{\partial b} = a$$

$$\frac{\partial b'Ab}{\partial b} = 2Ab$$

$$(3)$$

$$(5)$$

$$(6)$$

Solving for OLS Estimator

$$\underset{\theta}{\operatorname{argmin}} \quad (y - X\theta)'(y - X\theta)$$

$$\underset{\theta}{\operatorname{argmin}} \quad [y' - (X\theta)'](y - X\theta)$$

$$\underset{\theta}{\operatorname{argmin}} \quad y'y - y'X\theta - \theta'X'y + \theta'X'X\theta$$

Solving for OLS Estimator

The reason to use OLS: Gauss-Markov Theorem

- ▶ OLS is the "Best" Linear Unbiased Estimator
 - ► "Best" means minimum variance

OLS is Unbiased

Re-writing $\hat{\theta}$

$$\hat{\theta} = (X'X)^{-1}X'y
= (X'X)^{-1}X'(X\theta + \epsilon)
= \theta + (X'X)^{-1}X'\epsilon$$

Taking expectation

$$E[\hat{\theta}] = E[\theta + (X'X)^{-1}X'\epsilon] = \theta$$

Key Assumption

$$E[X'\epsilon] = 0$$
 equivalently $E[\epsilon|X] = 0$

Example

model

$$y_i = 10 * x_i + \underbrace{a_i + \epsilon_i}_{u_i}$$

id	X	а	ϵ	и	У
1	1	-1	-1	-2	8
2	1	-3	1	-2	8
3	2	1	-1	0	20
4	2	3	1	4	24

Notice

$$E[X'u] = (-2-2+0+8)/4 = 1$$

 $E[X'\epsilon] = (-1+1-2+2)/4 = 0$

Example

model

$$y_i = 10 * x_i + \underbrace{a_i + \epsilon_i}_{u_i}$$

id	X	а	ϵ	и	y
1	1	-1	-1	-2	8
2	1	-3	1	-2	8
3	2	1	-1	0	20
4	2	3	1	4	24

► In Matrix Form

$$\begin{bmatrix} 8 \\ 8 \\ 20 \\ 24 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & -3 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

Run OLS with "a"

► Take X as

$$\begin{bmatrix} 1 & -1 \\ 1 & -3 \\ 2 & 1 \\ 2 & 3 \end{bmatrix}$$

Applying OLS

$$\begin{bmatrix} \widehat{\theta_1} \\ \widehat{\theta_2} \end{bmatrix} = \left(\begin{bmatrix} 1 & 1 & 2 & 2 \\ -1 & -3 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -3 \\ 2 & 1 \\ 2 & 3 \end{bmatrix} \right)^{-1} * \left(\begin{bmatrix} 1 & 1 & 2 & 2 \\ -1 & -3 & 1 & 3 \end{bmatrix} \begin{bmatrix} 8 \\ 8 \\ 20 \\ 24 \end{bmatrix} \right)$$

$$\begin{bmatrix} \widehat{\theta_1} \\ \widehat{\theta_2} \end{bmatrix} = \frac{1}{184} \begin{bmatrix} 20 & -4 \\ -4 & 10 \end{bmatrix} * \begin{bmatrix} 104 \\ 60 \end{bmatrix} = \begin{bmatrix} 10 \\ 1 \end{bmatrix}$$

Run OLS without "a"

► Take X as

$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

Applying OLS

$$\begin{bmatrix} \widehat{\theta}_1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} \end{pmatrix}^{-1} * \begin{pmatrix} \begin{bmatrix} 1 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 8 \\ 8 \\ 20 \\ 24 \end{bmatrix} \end{pmatrix}$$

$$\left[\widehat{\theta_1}\right] = \frac{1}{10} * 104 = 10.4$$

Monte Carlo Experiment

- Let true model be $y_i = 10 + 2x_i + \epsilon_i$
- Draw 100 observations

$$x_i \sim U(0, 10)$$
 $\epsilon_i \sim N(0, 25)$
 $y_i = 10 + 2x_i + \epsilon_i$

Table: Summary statistics 1

Variable	Mean	Std. Dev.	Min.	Max.	N
у	20.606	7.899	-2.35	39.463	100
X	5.386	2.705	0.074	9.999	100
eps	-0.166	4.671	-14.08	9.693	100

Table: Summary statistics 2

Variable	Mean	Std. Dev.	Min.	Max.	N
	18.812	7.704	-0.79	41.682	100
×	4.609	2.92	0.008	9.974	100
eps	-0.406	4.851	-14.069	12.292	100

OLS in 2 different realizations of data

Let true model be $y_i = 10 + 2x_i + \epsilon_i$

1000 replications

Hypothesis Testing and Confidence Intervals

- ► How good is our estimate $\hat{\theta}$? Given sampling error, it's never exactly equal to θ
- ▶ Given a hypothesis of θ , can we reject that a sample would yield $\hat{\theta}$ with some probability?

Hypothesis Testing and Confidence Intervals

Let $\hat{\mu}$ be a statistical estimate of μ with $\hat{\mu} \sim N[\mu, \frac{\sigma^2}{n}]$. Then the z-statistic for a population of size n is

$$z = rac{\hat{\mu} - \mu}{\sqrt{VAR(\hat{\mu})}} = rac{\hat{\mu} - \mu}{\sigma/\sqrt{n}} \sim N[0, 1]$$

And the t-statistic

$$t = \frac{\hat{\mu} - \mu}{\sqrt{\widehat{VAR}(\hat{\mu})}} = \frac{\hat{\mu} - \mu}{s/\sqrt{n}} \equiv \frac{\hat{\mu} - \mu}{se(\hat{\mu})} \sim \mathsf{Student} \; \mathsf{t}$$

Null Hypothesis

$$H_0$$
 : $\mu = \mu_0$ \Longrightarrow reject if $|t| > |t_{critical}|$

95% Confidence Interval

$$\mu_0 \in (\hat{\mu} \pm t_{.025} * se(\hat{\mu}))$$

Interpretation of 95% Confidence Intervals

$$\mu \in (\hat{\mu} \pm t_{.025} * se(\hat{\mu}))$$

- ➤ This is the range of values that we would fail to reject the null hypothesis
- ► The true value might lie outside the range. Can't know for sure.
- ▶ 95% of the time, the CI you build should cover the true value
- ▶ Implication \longrightarrow 5% of the time, you will mistakenly reject the true value

Variance of OLS Estimator

Taking expectation

$$E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'] = E[((X'X)^{-1}X'\epsilon)((X'X)^{-1}X'\epsilon)']$$

$$= E[(X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1}]$$

$$= E[(X'X)^{-1}X'\sigma^{2}IX(X'X)^{-1}]$$

$$= \sigma^{2}(X'X)^{-1}$$

Key Assumption

$$E[\epsilon \epsilon'] = \sigma^2 I$$

Estimating the Variance of OLS Estimator

In theory

$$E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'] = \sigma^2(X'X)^{-1}$$

Estimate

$$\hat{\sigma}^2 = \frac{e'e}{n-k}$$

Then

$$E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'] = \frac{e'e}{n - k}(X'X)^{-1}$$

Hypothesis Testing with OLS Estimator

Assume

$$\epsilon | X \sim N[0, \sigma^2]$$

Then

$$\hat{\theta} \sim N[\theta, \sigma^2(X'X)^{-1}]$$

Standard Error

$$se(\hat{\theta}) = \sqrt{\frac{e'e}{n-k}(X'X)^{-1}}$$

t-statistic

$$\frac{\hat{\theta} - \theta}{se(\hat{\theta})} \sim \mathsf{Student} \; \mathsf{t}$$

95% Confidence Interval

$$\theta \in (\hat{\theta} \pm t_{.025} * se(\hat{\theta}))$$

95% CI for Beta Hat

Example of a Regression Table

$$g_{it} = \theta_i + \theta_t + \beta_T * T_{it} + \gamma_T * T_{it} * 1(poor) + \beta_P * P_{it} + \gamma_p * P_{it} * 1(poor) + \epsilon_{it}$$

|--|

Dependent variable is the					
annual growth rate	(1)	(2)	(3)	(4)	(5)
Temperature	-0.325 (0.285)	0.261 (0.312)	0.262 (0.311)	0.172 (0.294)	0.561* (0.319)
Temperature interacted with					
Poor country dummy		-1.655*** (0.485)	-1.610*** (0.485)	-1.645*** (0.483)	-1.806*** (0.456)
Hot country dummy				0.237 (0.568)	
Agricultural country dummy					-0.371 (0.409)
Precipitation			-0.083* (0.050)	-0.228*** (0.074)	-0.105** (0.053)
Precipitation interacted with					
Poor country dummy			0.153* (0.078)	0.160** (0.075)	0.145* (0.087)
Hot country dummy				0.185** (0.078)	
Agricultural country dummy					0.010 (0.085)
Observations	4,924	4,924	4,924	4,924	4,577
Within R ² R ²	0.00 0.22	0.00 0.22	0.00 0.22	0.01 0.22	0.01 0.24
Temperature effect in poor countries		-1.394*** (0.408)	-1.347*** (0.408)	-1.473*** (0.440)	-1.245*** (0.463)
Precipitation effect in poor countries			0.069 (0.058)	-0.0677 (0.073)	0.0401 (0.089)

References

- ▶ Greene, William H. Econometric analysis. Pearson Education India, 2003
- Angrist, Joshua D., and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist's companion. Princeton university press, 2008
- ▶ Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. "Temperature shocks and economic growth: Evidence from the last half century." American Economic Journal: Macroeconomics 4.3 (2012): 66-95.