东南大学

Feudal Multi-Agent Deep Reinforcement Learning for Traffic Signal Control

AAMAS-2020

汇报人/朱晓璇

时间/2021.04.22

目录/CONTENT

Part. 1

研究背景

- 背景介绍
- 研究瓶颈
- 本文工作

背景介绍

Introduction

背景介绍

Introduction

相位顺序怎么安排?

每个相位持续多久?

研究瓶颈

challenge

Centralized RL

多个agent观测本地状态,形成全局状态对信号灯进行调控;

- 较高的延迟。收集网络中的 所有环境检测值形成一个全 局状态在实践中会导致延迟
- 可扩展问题。信号灯交叉口数量的增加,agent之间的联合行动空间维度出现指数级增长,导致训练不收敛,无法扩展

Decentralized MARL

每个交叉口由单个agent控制, 具有局部观测值,学习自己的策略,多个agent进行协作;

- 独立学习:难以达到全局最 优
- 集中优化:可扩展问题,需要在巨大的联合行动空间上实现最大化

MA2C

每个agent只独立学习自己的策略,但是引入:

- a)状态中包含相邻agent的 observation和fingerprint
- b)引入空间折扣因子,缩小了相邻agent的观察和奖励信号,使每个agent更专注于改善附近的交通

不足: 缺乏全局协调,容易陷入 局部最优

本文工作 Contribution of This Paper

- 1. 与其他manager协作
- 2. 为自己的worker制定目标

- 1. 满足manager的目标
- 2. 同时满足自己的局部目标

Part. 2

模型设计

- 分层结构的交通网络
- 部分可见马尔可夫决策
- 策略学习

分层结构的交通网络

Traffic Network with Hierarchical Structure

• 交通路网 $G = \langle \mathcal{V}, \mathcal{E} \rangle$

 $v_i \in \mathcal{V}$: 交叉口

 $e = (v_i, v_i) \in \mathcal{E}$: 连接两个交叉口的道路

 \mathcal{N}_i : agent i 的邻居集合

 $U_i = \mathcal{N}_i \cup \{i\}$: agent i 与其邻居的集合

d(i,j): 两个agent之间的距离

• Disjoint sub-networks

$$\mathcal{G} = \{\mathcal{V}_1 \dots \mathcal{V}_m\}, \ \forall \ \mathcal{V}_i, \mathcal{V}_j \ , \ \mathcal{V}_i \cap \mathcal{V}_j = \emptyset, \ \cup_{k=1}^m \mathcal{V}_k = \mathcal{G}$$

 $\forall i,j \in \mathcal{V}_k$ 存在一条连接 i 和 j 的路径

Region: $V_k \subseteq \mathcal{G}$

 \mathcal{N}_k : manager k 的邻居

 $U_k = \mathcal{N}_k \cup \{k\}$: manager k与其邻居的集合 manager k work 2 work 3 work 1 work 3 Work 4 work 2 manager j manager i

部分可见马尔可夫决策

Partial Observable Markov Game

部分可见马尔可夫决策

Partial Observable Markov Game

• 马尔可夫决策过程

$$\langle S, A, P, R \rangle$$

Manager

$$\mathcal{M}^{M} = \langle S^{M}(\{O_{k}^{M}\}, \{A_{k}^{M}\}, P^{M}, R^{M} \rangle)$$

Worker

$$\mathcal{M}^W = \langle S^W, \{O_i^W\}, \{A_i^W\}, P^W, R^W \rangle$$

$$\hat{r}_{t,i}^W = r_{t,i}^W + \sigma(o_{t,i}^W, a_{t,k}^M)$$

部分可见马尔可夫决策

Partial Observable Markov Game

怎样增加全局协作信息?

- manager、worker加入其neighbor的observation 来扩大自己的observation,获取更多信息;
- manager、worker加入其neighbor上一轮的策略来更新自身策略;
- worker加入manager分发的goal (action) 进行 策略更新:
- manager所得即时奖励引入其neighbor的奖励;
- worker所得即时奖励引入其neighbor及 manager的奖励;
- 全局状态由自身状态与邻居状态生成;

$$\begin{split} \pi^{M}_{t,k} &= \pi_{\theta_{k}^{-}} \left(\cdot \middle| o^{M}_{t,\mathcal{U}_{k}}, \pi^{M}_{t-1,\mathcal{N}_{k}} \right) \\ \pi^{W}_{t,k} &= \pi_{\theta_{i}^{-}} \left(\cdot \middle| o^{W}_{t,\mathcal{U}_{i}^{-}}, \pi^{W}_{t-1,\mathcal{N}_{i}^{-}} \right) \\ \mu^{W}_{t,i} &= \mu_{\theta_{i}^{-}} \left(\cdot \middle| o^{W}_{t,\mathcal{U}_{i}^{-}}, \mu^{W}_{t-1,\mathcal{N}_{i}^{-}}, a^{M}_{t,\mathcal{U}_{k}} \right) \\ \tilde{r}^{M}_{t,i} &= r^{M}_{t,k} + \sum_{j \in \mathcal{N}_{k}} \alpha \cdot r^{M}_{t,j} \\ \tilde{r}^{W}_{t,i} &= \sum_{d=0}^{D_{i}} \left(\sum_{j \in \mathcal{V}_{k} \mid d(i,j) = d} \alpha^{d} \cdot \hat{r}^{W}_{t,j} \right) + \tilde{r}^{M}_{t,k} \\ \tilde{s}^{M}_{t,\mathcal{U}_{k}} &= \left[o^{M}_{t,k} \right] \cup \alpha \left[o^{M}_{t,j} \right]_{j \in \mathcal{N}_{k}} \\ \tilde{s}^{W}_{t,\mathcal{U}_{i}} &= \left[o^{W}_{t,i} \right] \cup \alpha \left[o^{W}_{t,j} \right]_{j \in \mathcal{N}_{i}^{-}} \end{split}$$

策略学习

Learning Policies For Managers and Workers

• 累积奖励

$$\tilde{R}_{t,k}^{M} = \hat{R}_{t,k}^{M} + \gamma^{T-t} V_{\omega_{k}}^{M} \left(\tilde{s}_{T,\mathcal{U}_{k}}^{M}, \pi_{T-1,\mathcal{N}_{k}}^{M} \middle| \pi_{\theta_{-k}}^{M} \right)$$

$$\tilde{R}_{t,i}^{W} = \hat{R}_{t,i}^{W} + \gamma^{T-t} V_{\omega_i}^{W} \left(\tilde{s}_{T,\mathcal{U}_i}^{W}, \pi_{T-1,\mathcal{N}_i}^{W} \middle| \pi_{\theta_{-i}}^{W} \right)$$

• Critic loss function

$$\mathcal{L}(\omega_k^M) = \frac{1}{2|B|} \sum_{t \in B^M} \left(\tilde{R}_{t,k}^M - V_{\omega_k}^M (\tilde{s}_{t,\mathcal{U}_k}^M, \pi_{t-1,\mathcal{N}_k}^M) \right)^2$$

$$\mathcal{L}(\omega_i^W) = \frac{1}{2|B|} \sum_{t \in B^W} \left(\tilde{R}_{t,i}^W - V_{\omega_i}^W (\tilde{s}_{t,\mathcal{U}_i}^W, \pi_{t-1,\mathcal{N}_i}^W) \right)^2$$

Actor loss function

$$\mathcal{L}(\theta_k^M) = -\frac{1}{|B|} \sum_{t \in B^M} \left(\log \pi_{\theta_k}^M \left(a_{t,k}^M \left| \tilde{s}_{t,\mathcal{U}_k}^M , \pi_{t-1,\mathcal{N}_k}^M \right| \tilde{A}_{t,k}^M \right) - \mathcal{B} \sum_{a_k \in A_k^M} \pi_{\theta_k}^M \log \pi_{\theta_k}^M \left(a_k \left| \tilde{s}_{t,\mathcal{U}_k}^M , \pi_{t-1,\mathcal{N}_k}^M \right| \right) \right) - \mathcal{B} \sum_{a_k \in A_k^M} \pi_{\theta_k}^M \log \pi_{\theta_k}^M \left(a_k \left| \tilde{s}_{t,\mathcal{U}_k}^M , \pi_{t-1,\mathcal{N}_k}^M \right| \right) \right)$$

$$\mathcal{L}(\theta_i^W) = -\frac{1}{|B|} \sum_{t \in B^W} \left(\log \pi_{\theta_i}^W \left(a_{t,i}^W \left| \tilde{s}_{t,\mathcal{U}_i}^W, \pi_{t-1,\mathcal{N}_i}^W \right) \tilde{A}_{t,i}^W - \beta \sum_{a_i \in A_i^W} \pi_{\theta_i}^W \log \pi_{\theta_i}^W \left(a_i \left| \tilde{s}_{t,\mathcal{U}_i}^W, \pi_{t-1,\mathcal{N}_i}^W \right) \right) \right) \right)$$

NN的输出

Advantage function

$$\tilde{A}_{t,k}^{M} = \tilde{R}_{t,k}^{M} - V_{\omega_{k}}^{M} (\tilde{s}_{t,\mathcal{U}_{k}}^{M}, \pi_{t-1,\mathcal{N}_{k}}^{M})$$

$$\tilde{A}^W_{t,i} = \tilde{R}^W_{t,i} - V^W_{\omega_i^-} \big(\tilde{s}^W_{t,\mathcal{U}_i}, \pi^W_{t-1,\mathcal{N}_i} \big)$$

Regularization term

实验设计

Part. 3

- 模型定义
- 合成网络下实验
- 真实网络下实验

模型定义

Model Setting

Observation

Manager: $o_{t,k}^M =$

 $\{Nwave_t[l], Ewave_t[l], Swave_t[l], Wwave_t[l]\}_{l \in L_k}$

Worker: $o_{t,i}^W = \{wave_t[l], wait_t[l]\}_{l \in L_i}$

Action

Manager: possible traffic flow, four combinations of north-south and east-west traffic flows.

Worker: possible phrase, east-west straight and right-turn phase, east-west left-turn and right-turn phase, and three straight, right-turn and left-turn phases for east, west, and north-south

Reward

Manager: $r_{t,k}^{M} = \sum_{l \in L_k} (arrival_{t+\Delta t}[l] + \sum_{i \in \mathcal{V}_k} liquid_{t+\Delta t}[l])$

Worker: $r_{t,i}^W = -\sum_{l \in L_i} (wave_{t+\Delta t}[l] + a \cdot wait_{t+\Delta t}[l])$

• NN structure

对比算法

• FMA2C: 层次结构的多智能体强化学习

• MA2C: 目前在多智能体研究中领先的RL方法, 缺乏全局协作

• IQL-DNN: 带有DNN的独立Q学习

• IQL-LR: 带线性回归的独立Q学习

• Greedy: 代理选择贪婪行为

Synthetic Traffic Grid

(d) Training curves $(4 \times 4 \text{ traffic grid})$

Table 1: Time-variant traffic flows within the 4×4 traffic grid.

	0	300	600	900	1200	1500	1800	2100	2400	2700	3000	3300	3600	(sec)
f1	264.0	462.0	594.0	660.0	495.0	330.0	165.0	0	0	0	0	0	0	(veh/h)
F1	440.0	770.0	990.0	1100.0	825.0	550.0	275.0	0	0	0	0	0	0	(veh/h)
f2	0	0	0	166.5	444.0	499.5	555.0	444.0	333.0	111.0	0	0	0	(veh/h)
F2	0	0	0	277.5	740.0	832.5	925.0	740.0	555.0	185.0	0	0	0	(veh/h)

(g) Queue length (changing flow direction)

(h) Delay (changing flow direction)

Metrics	(a) 4 × 4 traffic grid (increasing flow value)					(b) 4×4 traffic grid (changing flow directions)				
Wietrics	FMA2C	MA2C	IQL-DNN	IQL-LR	Greedy	FMA2C	MA2C	IQL-DNN	IQL-LR	Greedy
reward	-310.22	-467.65	-850.88	-1647.20	-1940.51	-302.78	-406.71	-2007.25	-2420.88	-1867.01
avg. queue length [veh]	1.72	2.35	3.31	5.02	5.09	1.69	2.23	5.51	6.87	4.78
avg. intersection delay [s/veh]	14.46	26.18	87.42	168.10	152.15	15.62	25.04	247.32	218.15	154.94
avg. vehicle speed [m/s]	3.80	3.27	2.77	2.56	2.80	3.63	3.09	1.49	1.18	3.43
trip completion flow [veh/s]	0.81	0.79	0.42	0.43	0.50	0.81	0.76	0.16	0.16	0.56
trip delay [s]	328	398	359	273	296	323	374	450	751	241

Metrics	(c) 4 × 4 traffic grid (irregular grid shape)							
Wietries	FMA2C	MA2C	IQL-DNN	IQL-LR	Greedy			
reward	-105.58	-138.43	-1527.29	-465.61	-277.27			
avg. queue length [veh]	0.83	1.21	4.25	2.61	1.08			
avg. intersection delay [s/veh]	3.86	4.45	179.90	47.31	19.86			
avg. vehicle speed [m/s]	4.76	4.13	2.15	3.79	4.73			
trip completion flow [veh/s]	0.69	0.67	0.24	0.57	0.66			
trip delay [s]	216	296	268	371	225			

真实网络下的实验

(i)	Monaco	traffic	network

Metrics	(d) Monaco traffic network							
Wetries	FMA2C	MA2C	IQL-DNN	IQL-LR	Greedy			
reward	-22.77	-63.21	-100.29	-53.80	-100.29			
avg. queue length [veh]	0.20	0.60	1.04	0.54	0.41			
avg. intersection delay [s/veh]	4.58	38.07	116.61	97.09	29.90			
avg. vehicle speed [m/s]	7.53	4.88	2.38	4.34	7.38			
trip completion flow [veh/s]	0.68	0.64	0.54	0.46	0.63			
trip delay [s]	89	201	267	153	95			

(i) Training curves (Monaco network)

(k) Oueue length (Monaco network)

(l) Delay (Monaco network)

Part. 4

总结思考

- 总结
- 思考

MA2C 缺乏全局协调 Feudal RL

MA2C

- 1. 进行等级的划分,分 manager和worker;
- 2. 利用Manager进行全局的协调;
- 3. Worker负责本地信号灯的策略学习;

- 多智能体的考虑主要是为了可扩展性的问题,单一智能体无法扩展到大规模的交通路网,多智能体可以对此问题给出解决方案;
- 多智能体存在通信以及无法掌握全局信息的问题,因此建模时要从如何增加全局的协调信息进行考虑;
- 这篇文章划分区域的方法比较简单,还可以更多的从场景上对区域进行划分,譬如商业区、住宅区、学区等等。

东南大学

谢谢大家

汇报人/朱晓璇

时间/2021.04.22

