

El producto tensorial de conjuntos dendroidales

Roger Brascó Garcés

9 de Febrero de 2022

Departamento de Matemáticas e Informática Universidad de Barcelona

Introducción

- 1. Nociones previas
- 2. Árboles como opéradas
- 3. Conjuntos dendroidales
- 4. Producto tensorial
- 5. Conjunto de shuffles

Nociones previas

- Categorías
- Funtores
- Opéradas coloreadas

Opéradas

Definición

Una opérada P consiste en una sucesión de conjuntos $\{P(n)\}_{n\geq 0}$ junto con la siguiente estructura:

- Un elemento unidad $1 \in P(1)$.
- Un producto composición

$$P(n) \times P(k_1) \times \cdots \times P(k_n) \longrightarrow P(k)$$

para cada n y k_1, \ldots, k_n tal que $k = \sum_{i=1}^n k_i$.

• Para cada $\sigma \in \Sigma_n$ una acción por la derecha $\sigma^* : P(n) \to P(n)$.

Además el producto composición es asociativo, equivariante y compatible con la unidad.

Opéradas coloreadas

Definición

Sea P una opérada C-coloreada y Q una opérada D-coloreada. Un morfismo de opéradas $f: P \to Q$ consiste en una aplicaciones entre los conjuntos de colores $f: C \to D$ y aplicaciones

$$f_{c_1,\ldots,c_n;c}: P(c_1,\ldots,c_n;c) \longrightarrow Q(f(c_1),\ldots,f(c_n);c)$$

compatibles con el producto composición, las unidades y la acción del grupo simétrico.

Formalismo de árboles

Sea *T* el siguiente árbol:

Árboles como opéradas coloreadas

Definición

Sea T un árbol planar con raíz. Denotaremos la opérada coloreada no-simétrica generada por T como $\Omega_p(T)$.

Definición

Sea T un árbol con raíz. Denotaremos la opérada coloreada simétrica generada por T como $\Omega(T)$.

Ejemplo

Sea T un árbol binario de un solo vértice v, entonces $v \in \Omega(T)(b, c; a)$.

Categorías Ω_p y Ω

Definición

La categoría de árboles planares con raíz Ω_p es la subcategoría plena de la categoría de opéradas coloreadas no-simétricas cuyos objetos son $\Omega_p(T)$ para cada árbol T.

Definición

La categoría de árboles con raíz Ω es la subcategoría plena de la categoría de opéradas coloreadas cuyos objetos son $\Omega(T)$ para todo árbol T.

Morfismos en Ω_p y Ω

Conjuntos dendroidales

Definición

La categoría dSets de conjuntos dendroidales es la categoría de prehaces en Ω . Los objetos son funtores $\Omega^{\mathrm{op}} \to \mathrm{Set}$ y los morfismos vienen dados por las transformaciones naturales.

El conjunto X_T lo llamaremos conjunto de *déndrices con forma T*.

Nervio dendroidal

El funtor $\Omega \to Oper$ que envía un árbol T a la opérada coloreada $\Omega(T)$ induce, por extensión de Kan, la siguiente adjunción

$$\tau_d$$
: $dSets \Longrightarrow Oper$: N_d

El funtor N_d se llama *nervio dendroidal*. Para toda opérada P, su nervio dendroidal es el conjunto dendroidal

$$N_d(P)_T = Oper(\Omega(T), P)$$

Este funtor es plenamente fiel y $N_d(\Omega(T)) = \Omega[T]$ para cada árbol T en Ω .

Producto tensorial de Boardman-Vogt

Definición

Sea P una opérada simétrica C-coloreada, y sea Q una opérada simétrica D-coloreada. El producto tensorial de Boardman-Vogt $P\otimes_{BV}Q$ es una opérada $(C\times D)$ -coloreada definida en terminos de generadores y relaciones de la siguiente manera. Para cada color $d\in D$ y cada operación $p\in P(c_1,\ldots,c_n;c)$ existe un generador

$$p \otimes d \in P \otimes_{BV} Q((c_1, d), \ldots, (c_n, d); (c, d))$$

De manera análoga, para cada color $c \in C$ y cada operación $q \in Q(d_1, \ldots, d_m; d)$.

Producto tensorial de Boardman-Vogt

Estos generadores están sujetos a cinco relaciones:

(i)
$$(p \otimes d) \circ ((p_1 \otimes d), \ldots, (p_n \otimes d)) = (p \circ (p_1, \ldots, p_n)) \otimes d$$
.

(ii)
$$\sigma^*(p \otimes d) = (\sigma^*p) \otimes d$$
, para cada $\sigma \in \Sigma_n$.

$$\text{(iii)} \ \ (c\otimes q)\circ ((c\otimes q_1),\ldots,(c\otimes q_m))=c\otimes (q\circ (q_1,\ldots,q_m)).$$

(iv)
$$\sigma^*(c \otimes q) = c \otimes (\sigma^*q)$$
, para cada $\sigma \in \Sigma_m$.

(v)
$$\sigma_{n,m}^*((p \otimes d) \circ ((c_1 \otimes q), \dots, (c_n \otimes q))) = (c \otimes q) \circ ((p \otimes d_1), \dots, (p \otimes d_m)),$$
 donde $\sigma_{n,m} \in \Sigma_{nm}$ es una permutación.

Relación de intercambio

Producto tensorial de conjuntos dendroidales

Definición

Para todo par de árboles T y S en Ω , el *producto tensorial* de los representables $\Omega[T]$ y $\Omega[S]$ se define como

$$\Omega[T] \otimes \Omega[S] = N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

Producto tensorial de conjuntos dendroidales

Definición

Sean X e Y dos conjuntos dendroidales y sea $X = \lim_{\to} \Omega[T]$ y $Y = \lim_{\to} \Omega[S]$ sus expresiones canónicas como colímites de representables. Entonces, definimos el *producto tensorial* $X \otimes Y$ como

$$X \otimes Y = \lim_{\stackrel{}{ o}} \Omega[T] \otimes \lim_{\stackrel{}{ o}} \Omega[S] = \lim_{\stackrel{}{ o}} N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

Producto tensorial de conjuntos dendroidales

Teorema

La categoría de conjuntos dendroidales admite una estructura monoidal, simétrica y cerrada. Esta estructura monoidal está únicamente determinada (salvo isomorfismo) por la propiedad de que existe un isomorfismo natural

$$\Omega[T] \otimes \Omega[S] \cong N_d(\Omega(T) \otimes_{BV} \Omega(S))$$

para cada par T y S de objetos de Ω . La unidad del producto tensorial es el conjunto dendroidal representable $\Omega[\eta]$, donde η es el árbol unitario.

Shuffles

Definición

Sea S y T dos objetos de Ω . Un *shuffle* de S y T es un árbol R cuyo conjunto de aristas es un subconjunto de $E(S) \times E(T)$. La raíz de R es (a, x), donde a es la raíz de S y x es la raíz de T, y sus hojas son todos los pares (I_S, I_T) , donde I_S es una hoja de S y I_T es una hoja de T. Los vértices son de la forma

Conjunto de shuffles

Proposición

El número de shuffles sh(S, T) de dos árboles S y T satisface tres propiedades:

- (i) Simétrico: sh(S, T) = sh(T, S)
- (ii) Unitario: Si T es un árbol unitario η , entonces $sh(S, \eta) = 1$
- (iii) Inducción: Si $S = C_n[S_1, \ldots, S_n]$ y $T = C_m[T_1, \ldots, T_m]$, entonces

$$sh(S, T) = \prod_{i=1}^{n} sh(S_i, T) + \prod_{j=1}^{m} sh(S, T_j)$$

Estructura de orden parcial

Existen los shuffles intermediarios R_k (1 < k < N) entre R_1 y R_N .

Si un shuffle R_k se obtiene the otro shuffle R_l mediante la norma de arriba, entonces $R_l \leq R_k$.

Producto tensorial de árboles

Lema

Para todo shuffle R_i de S y T tenemos un monomorfismo

$$m: \Omega[R_i] \rightarrowtail \Omega[S] \otimes \Omega[T]$$

Corolario

Para todo objeto T y S en Ω , tenemos que

$$\Omega[S] \otimes \Omega[T] = \bigcup_{i=1}^{N} m(R_i)$$

Generar shuffles en Python

Ejemplo

Para acabar esta sección, pondremos un ejemplo para enseñar la utilidad del paquete. Sean S y $\mathcal T$ los árboles

Generar shuffles en Python

El conjunto de shuffles resultante sería

Gracias por vuestra atención