6 (1a) Find the truth-tables for:

2 (i)
$$(p \rightarrow q) \lor (q \rightarrow p)$$

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \lor (q \rightarrow p)$
0	0	1	1	1		1
0	1	1	0	i	0	
1	0	0	1	0	1	1
1	1	0	0	Ĭ	1	i

4 (ii)
$$\left(p \to q\right) \to \left(q \to r\right)$$

р	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \to (q \to r)$
0	0	0		1	1
0	0	1	1	1	l
.0	1	0	1,	0.	0
0	1	1	1	1	1
1	0	0	0	1	
1	0	1	0	i	
1	1	0	1	0	0
1	1	1	i	ĺ	ı

$$2 \text{ (i)} \quad LS \coloneqq \left(q \to r\right),$$

2 (ii)
$$RS := \left(\left(p \to q \right) \to \left(q \to r \right) \right)$$
, and

2 (iii) decide, if
$$\left(q \to r\right) \Rightarrow \left(\left(p \to q\right) \to \left(q \to r\right)\right)$$

$p \mid q$		r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \to (q \to r)$	$LS \Rightarrow RS$
0	0	0	1	/ 1	/ 1 \	1
0	0	1	1	1		- 1
0	1	0	1	0	0	MI
0	1	1	1	I	1	
1	0	0	0	-		-
1	0	1	0	1	1	1
1	1	0	1	0	0	X
1	1	1	1			1

$$\left(q \to r\right) = LS \Rightarrow RS = \left(\left(p \to q\right) \to \left(q \to r\right)\right)$$
 $Y \quad \boxed{N}$

why? By inspection.

(1c)

_							
	P	r	r	8-r	P - 8	(p+q) + (q-r)	(p-q) - (p-q) - (q-1)
	0	0	0		1		
	0	0	1	1	1		
	0	1	0	0	1	0	
	0	l	1	1	1	1	,
1	1	0	0	1	0	1	
	١	0	(1	0		
	,	,	0	0	,	ß	
	i	i	Ĭ	1	1	l	

$$\text{Tig}\left((q \rightarrow r) \rightarrow ((p \rightarrow q) \rightarrow (q \rightarrow r))\right)$$

$$\bigvee \left| d \left(\frac{q \rightarrow r}{(p \rightarrow q) \rightarrow (q \rightarrow r)} \right) \right|$$

5 (1c) Decide if:

$$Vld\left(\frac{q \rightarrow r}{(p \rightarrow q) \rightarrow (q \rightarrow r)}\right)$$

6 (2a) Find $\varphi(p,q,r)$ in terms of p,q,r, and connectives, if $\varphi(p,q,r)$ is to have the following truth table:

p	q	r	$\varphi(p,q,r)$	φ_1	φ_2	φ_3	φ_4	φ_5	φ_6	φ_7	φ_8
0	0	0	0	0	0	0	0				
0	0	1	1	0	0	0					
0	1	0	1	0	0	1	D				
0	1	1	0	0	0	0	0				
1	0	0	1	0	1	0	0				
1	0	1	1	1	0	0	0				
	1	0	0	0	0	0	0				
	1	1	0	0	0	0	0				

 $\varphi(p,q,r)$

$$= \left(p \wedge (\neg q) \wedge r \right)$$

$$\vee \left(p \wedge (\neg q) \wedge (\neg r) \right)$$

$$\vee \left((\neg p) \wedge q \wedge (\neg r) \right)$$

$$\vee \left((\neg p) \wedge (\neg q) \wedge r \right)$$

(i) LS
$$= (p \rightarrow p) \rightarrow R$$

$$= \neg (p \rightarrow p) \vee R \qquad (x \rightarrow R = (\neg x) \vee R)$$

$$= \neg ((\neg p) \vee p) \vee R \qquad (x \rightarrow R = (\neg x) \vee R)$$

$$= (p \wedge (\neg p)) \vee R \qquad (\neg (x \vee R) = (\neg x) \wedge (\neg R))$$

$$= 1 \vee R \qquad (x \wedge (\neg x) = 1)$$

$$= R \qquad (1 \vee x = x)$$

$$= R \qquad (1 \vee x = x)$$

$$= (p \rightarrow R) \rightarrow P$$

$$= \neg (p \rightarrow R) \rightarrow P \qquad (x \rightarrow R = (\neg x) \vee R)$$

$$= \neg ((\neg p) \vee P) \vee P \qquad (x \rightarrow R = (\neg x) \vee R)$$

$$= \neg ((\neg p) \vee P) \vee P \qquad (x \rightarrow R = (\neg x) \vee R)$$

$$= (p \wedge (\neg R)) \vee P \qquad (x \wedge R) = (\neg x \vee R)$$

$$= (p \wedge P) \wedge (p \wedge (\neg R)) \qquad (x \wedge R) \vee Z = (x \vee Z) \wedge (R \vee Z)$$

$$= P \wedge P \wedge (\neg R) \qquad (x \wedge x = x)$$

$$= P \wedge (\neg R) \qquad (x \wedge x = x)$$

$$= P \wedge (\neg R) \qquad (x \wedge x = x)$$

$$= P \wedge (\neg R) \qquad (x \wedge x = x)$$

$$= P \wedge (\neg R) \qquad (x \wedge x = x)$$

LS ≠ RS

1 (i)
$$\left((p \to p) \to q \right) = \mathsf{T}$$

(Circle the correct choice)

1 (ii)
$$\left((p \to q) \to p \right) = \mathsf{T}$$

(Circle the correct choice)

1 (iii)
$$\left((q \to p) \to p \right) = \mathsf{T}$$

(N) (Circle the correct choice)

1 (iv)
$$\left(p \to (p \to q)\right) = \mathsf{T}$$

(Circle the correct choice)

1 (v)
$$\left(p \to (q \to p)\right) = \mathsf{T}$$

(Circle the correct choice)

$$1 \text{ (vi) } \left(q \to (p \to p) \right) = \mathsf{T}$$

(Circle the correct choice)

$$= (q \rightarrow p) \rightarrow P$$

$$= \neg (q \rightarrow p) \vee p \quad (\alpha \rightarrow \beta = (\neg \alpha) \vee \beta)$$

$$= \neg (((q) \vee p) \vee p \quad (\alpha \rightarrow \beta = (\neg \alpha) \vee \beta)$$

$$= ((((q) \vee p)) \vee p \quad (\neg (\alpha \vee \beta) = (\neg \alpha) \wedge (\neg \beta))$$

$$= (((p \wedge q)) \wedge (p \vee (\neg p)) \quad (((\alpha \wedge \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= ((p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta))$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta = (\alpha \vee \beta) \wedge (\beta \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q) \wedge \neg ((\alpha \vee \beta) \vee \beta)$$

$$= (p \wedge q)$$

(iv) LS
=
$$p \rightarrow (p \rightarrow q)$$

= $(\neg p)v (p \rightarrow q) (\chi \rightarrow g = (\neg \chi)v g)$
= $(\neg p)v ((\neg p)v g) (\chi \rightarrow g = (\neg \chi v g))$
= $(\neg p)v g (\chi v (\chi v g) = \chi v g)$
LS = $(\neg p)v g \neq T = RS$

LS & RS

$$| S | = P \rightarrow (Q \rightarrow P)$$

$$= (P) \vee (Q \rightarrow P) \qquad (\chi \rightarrow Q = (P) \vee Q)$$

$$= (P) \vee (PQ) \vee P \qquad (\chi \rightarrow Q = (PQ) \vee Q)$$

$$= (PP) \vee (PQ) \vee (PP) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (\chi \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z))$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (Q \vee (Q \vee Z) = (Q \vee Q) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (Q \vee Z)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ)$$

$$= (PP) \vee (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad (PQ) \vee (PQ) \qquad$$

(vi) LS
=
$$Q \rightarrow (p \rightarrow p)$$

= $(\neg Q) \lor (p \rightarrow p) \quad (\chi \rightarrow Q = (\neg \chi) \lor Q)$
= $(\neg Q) \lor ((\neg p) \lor p) \quad (\chi \rightarrow Q = (\neg \chi) \lor Q)$
= $(\neg Q) \lor T \quad (\chi \lor (\neg \chi) = T)$
= $T \quad (\chi \lor T = T)$
 $LS = T = T = RS$
 $LS = RS$

$$VId \left(\frac{P - 1}{P - R}, \frac{1 - R}{R} \right) = \left(\left((P - 1) \wedge (1 - R) \right) \rightarrow (P - R) = T \right)$$

$$D LS$$

$$= \left((P - 1) \wedge (1 - R) \right) \rightarrow (P - R)$$

$$= \neg \left((P - 1) \wedge (1 - R) \right) \vee (P - R) \quad (\alpha \rightarrow \beta = (\neg \alpha) \vee \beta)$$

$$= \neg \left((\neg P) \wedge ((\neg 1) \vee R) \right) \vee ((\neg P) \vee R) \quad (\alpha \rightarrow \beta = (\neg \alpha) \vee \beta)$$

$$= \neg \left((\neg P) \wedge ((\neg 1) \vee R) \right) \vee ((\neg P) \vee R) \quad (\alpha \rightarrow \beta = (\neg \alpha) \vee \beta)$$

$$= \neg \left((\neg P) \wedge ((\neg 1) \vee R) \right) \vee ((\neg P) \vee R) \quad (\alpha \rightarrow \beta = (\neg \alpha) \vee \beta)$$

$$= \neg \left((\neg P) \wedge ((\neg P) \vee R) \right) \vee ((\neg P) \vee R) \quad (\alpha \rightarrow \beta = (\neg \alpha) \vee \beta)$$

$$= \neg \left((\neg P) \wedge ((\neg P) \vee R) \right) \vee ((\neg P) \vee R) \quad (\alpha \wedge \gamma) = (-\alpha) \vee \beta$$

$$= P \vee \left((\neg P) \vee R \right) \quad (\alpha \vee 1 = \alpha)$$

$$= P \vee \left((\neg P) \vee R \right) \quad (\alpha \vee 1 = \alpha)$$

$$= P \vee \left((\neg P) \vee R \right) \quad (\alpha \vee 1 = \alpha)$$

$$= T \vee \left(P \vee R \right) \quad (\alpha \vee (\beta \vee 2) = (\alpha \vee \beta) \vee (\alpha \vee 2)$$

$$= T \vee \left(P \vee R \right) \quad (\alpha \vee (\neg \alpha) = T)$$

$$= T \quad (T \vee \alpha = T)$$

5 (2c) Show work on the facing side to decide, using the algebra of propositions, if the following arguments are valid and circle the appropriate choice:

$$Vld \left(\frac{p \to \bot \quad \bot \to q}{p \to q} \right) \qquad \qquad (Y) \quad N$$

$$\frac{(2c)(2)}{\left((p-1)\wedge(1-q)\right)\rightarrow(p-q)}=T$$

$$\frac{\sqrt{d}\left(\frac{p-1}{p-q}\right)}{\sqrt{p-q}}$$

(1)

Þ	9	P-P	(p→p) → %
0	0		0
0	1	. 1	
	0		0

 $\binom{n}{n}$

P	q	p -> %	$(p \rightarrow q) \rightarrow p$
0	0		0
	1		
1	0	0	

6 (3a) Show work on the facing side to decide if the following proposition is a tautology, contradiction, or contingency, and circle an appropriate answer.

1 (i)
$$\left((p \to p) \to q \right)$$

$$Tlg(\psi)$$

$$Cdn(\psi)$$

$$Cng(\psi)$$

1 (ii)
$$\left((p \to q) \to p \right)$$

$$Tlg(\psi)$$

$$Cdn(\psi)$$

$$Cng(\psi)$$

$$1 \text{ (iii)} \left((q \to p) \to p \right)$$

$$Tlg(\psi)$$

$$Cdn(\psi)$$

$$Cng(\psi)$$

1 (iv)
$$\left(p \to (p \to q)\right)$$

$$Tlg(\psi)$$

$$Cdn(\psi)$$

$$Cng(\psi)$$

1 (v)
$$\left(p \to (q \to p)\right)$$

$$Tlg(\psi)$$

 $Cdn(\psi)$

 $Cdn(\psi)$

 $Cng(\psi)$

(16)

P	8	Q → P	(2→p) → P
0	0		0
0	١	0	
1	0		

Cup
$$((q \rightarrow p) \rightarrow p)$$

 (νi)

P	9	P -> %	p→ (p→ q)
0	0		
0			
	0	0	0

P	9	9 → P	P → (8 → P)
0	0		
0	1	0	
	0	1	
1			

$$Tlg(p\rightarrow(q\rightarrow p))$$

(vi)

	P	9	(p → p)	$q \rightarrow (p \rightarrow p)$
	0	0		
	0			
	1	0	1	
		1	1	
1				

(3b) ①
$$Vld\left(\frac{P + 1}{P + Q}, \frac{1 + Q}{P + Q}\right) = Vld\left((P + 1) \wedge (1 + Q)\right) + (P + Q)$$

$$(3b) ①$$

$$((P + 1) \wedge (1 + Q))$$

$$\Rightarrow (((rvp) + (rv1)) \wedge (1 + Q)) ((P + Q) + (rvp) + (rvq))$$

$$\Rightarrow (((rvp) + (rv1)) \wedge ((rv1) + (rvq))) ((P + Q) + (rvp) + (rvq))$$

$$\Rightarrow ((rvp) + (rvq)) (((P + Q) \wedge (Q + r)) + (P + Q))$$

$$\Rightarrow ((P + Q) + (rvq)) ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + ((P + Q) + (Q + Q))$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q) + (Q + Q)$$

$$\Rightarrow ((P + Q) + (Q + Q)$$

6 (3b) Show work on the facing side to decide, using axioms and rules of inference, if the following arguments are valid and circle the appropriate choice:

(3c)

P	8	r	P -> g	g-r	(P-g)~(g+r)	((p-9) 1 (q-1)) - (p-9)
0	0	0	1			.
0		0	1	0	0	
1	0	0	0	1	0	1
		0	1	0	0	

$$\frac{T|g\left(\left((p\rightarrow q)\wedge(q\rightarrow r)\right)\rightarrow(p\rightarrow q)\right)}{V|d\left(\frac{p\rightarrow q}{p\rightarrow q}\right)}$$

)

5 (3c) Decide if:

$$Vld\left(\frac{p \to q \qquad q \to r}{p \to q}\right)$$

Lave me had whend

