## Lecture 12: Variable Importance in Tree Models

Instructor: Prof. Shuai Huang

Industrial and Systems Engineering

**University of Washington** 

## Importance score in RF

| ID | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | Class |
|----|-----------------------|-----------------------|-----------------------|-------|
| 1  | 1                     | 1                     | 0                     | C0    |
| 2  | 0                     | 0                     | 0                     | C1    |
| 3  | 1                     | 1                     | 1                     | C1    |
| 4  | 0                     | 0                     | 1                     | C1    |



## Importance score in RRF

| ID | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | Class |
|----|-----------------------|-----------------------|-----------------------|-------|
| 1  | 1                     | 1                     | 0                     | C0    |
| 2  | 0                     | 0                     | 0                     | C1    |
| 3  | 1                     | 1                     | 1                     | C1    |
| 4  | 0                     | 0                     | 1                     | C1    |

The regularized impurity gain of variable  $X_i$  at a node is calculated as

$$Gain'(X_i) = \begin{cases} \lambda \cdot Gain(X_i) & X_i \notin F \\ Gain(X_i) & X_i \in F \end{cases}$$



## Importance score in GRRF

In GRRF, instead having one  $\lambda$  for all variables, each variable  $X_i$  can have its own  $\lambda_i$ :

| ID | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | Class |
|----|-----------------------|-----------------------|-----------------------|-------|
| 1  | 1                     | 1                     | 0                     | C0    |
| 2  | 0                     | 0                     | 0                     | C1    |
| 3  | 1                     | 1                     | 1                     | C1    |
| 4  | 0                     | 0                     | 1                     | C1    |

$$Gain'(X_i) = \begin{cases} \lambda_i \cdot Gain(X_i) & X_i \notin F \\ Gain(X_i) & X_i \in F \end{cases},$$

where  $\lambda_i$  is

$$\lambda_i = (1 - \gamma)\lambda_0 + \gamma * w_i,$$

where  $\lambda_0$  controls the base regularization,  $w_i \in [0,1]$  is a prior of importance of each variable  $v_i$ , and  $\gamma \in [0,1]$  controls the weight from the prior.

