Observed Response Patterns in Latent Class Analysis A Course in ${\tt MplusAutomation}$

$Adam\ Garber$

Preparation	
Data source: Longitudinal St	udy of American Youth, Science Attitude
See documentation about the LSAY her	re.
Load packages	
library(tidyverse) library(glue) library(MplusAutomation) library(here) library(janitor) library(DT) library(gt) library(plotly) library(gg3D) library(gganimate) library(viridis)	
Exploring observed response	patterns

Use {DT::datatable()} to take a look at the data

Show 5	entries			Search:			
	Enjoy 🌲	Useful 🍦	Logical 🝦	Job 🧅	Adult 🏺		
All	All	All	All	All			
	1	1	1	1	1		
	0	0	1	0	0		
	1	1	0	0	0		
	0	0	0	1	1		
	0	1	1	0	0		
Showing 1	to 5 of 3,061 entries		Previous 1 2	3 4 5	613 Next		

Figure. Path diagram of science attitude indicators.

Save response frequencies for the 4 class model with response is ____.dat.

```
patterns <- mplusObject(

TITLE = "C4 LCA - Save response patterns",

VARIABLE =
   "categorical = Enjoy-Adult;
   usevar = Enjoy-Adult;

classes = c(4);",

ANALYSIS =
   "estimator = mlr;
   type = mixture;
   starts = 500 100;",

SAVEDATA =
   "File=3step_savedata.dat;
   Save=cprob;
   Missflag= 999;

!!!!!!!! Code to save response frequency data !!!!!!!</pre>
```

Read in observed respnse pattern data

Order responses by highest frequency

```
order_highest <- patterns %>%
arrange(desc(Frequency))
```

```
loop_cond <- lapply(1:4, function(k) {
  order_cond <- patterns %>%
    filter(C_MODAL == k) %>%
    arrange(desc(Frequency)) %>%
    head(5)
  })

table_data1 <- bind_rows(loop_cond) %>%
    as.data.frame()

table_data2 <- rbind(order_highest[1:5,], table_data1)</pre>
```

```
table data2 %>%
 gt() %>%
   tab header(
   title = md("**Observed Response Patterns**"),
   subtitle = md(" ")) %>%
   tab_source_note(
   source_note = md("Data Source: **Longitudinal Study of American Youth.**")) %>%
   cols_label(
   ENJOY = "Enjoy",
   USEFUL = "Useful";
   LOGICAL = "Logical",
   JOB = "Job",
   ADULT = "Adult",
   CPROB1 = html("Pk=1"),
   CPROB2 = html("Pk=2"),
   CPROB3 = html("Pk=3"),
   CPROB4 = html("Pk=4"),
   C_MODAL = md("*k*")) %>%
  tab_row_group(
   group = "Unconditional response patterns",
   rows = 1:5) %>%
  tab_row_group(
    group = "k=1 conditional response patterns",
   rows = 6:10) \%
  tab_row_group(
   group = "k=2 conditional response patterns",
   rows = 11:15) %>%
  tab_row_group(
   group = "k=3 conditional response patterns",
   rows = 16:20) %>%
  tab_row_group(
   group = "k=4 conditional response patterns",
   rows = 21:25) %>%
   row_group_order(
     groups = c("Unconditional response patterns",
                 "k=1 conditional response patterns",
                 "k=2 conditional response patterns",
                 "k=3 conditional response patterns",
                 "k=4 conditional response patterns")) %>%
  tab_options(column_labels.font.weight = "bold")
```

Observed Response Patterns

Fre	quency	Enjoy	Useful	Logical	Job	Adult	Pk=1	Pk=2	Pk=3	Pk=4	k
Unconditional response patterns											
	558	0	0	0	0	0	0.000	0.117	0.000	0.883	4
	529	1	1	1	1	1	0.957	0.000	0.043	0.000	1
	313	1	0	0	0	0	0.000	0.307	0.000	0.693	4
	135	1	0	1	0	0	0.002	0.977	0.000	0.021	2
	94	1	1	1	0	1	0.687	0.000	0.313	0.000	1

k=1 conditional response patterns										
529	1	1	1	1	1	0.957	0.000	0.043	0.000	1
94	1	1	1	0	1	0.687	0.000	0.313	0.000	1
78	0	1	1	1	1	0.859	0.000	0.141	0.000	1
62	1	1	0	1	1	0.580	0.000	0.420	0.000	1
55	1	1	1	1	0	0.650	0.350	0.000	0.000	1
k=2 conditional response patterns										
135	1	0	1	0	0	0.002	0.977	0.000	0.021	2
88	0	0	1	0	0	0.000	0.934	0.000	0.066	2
74	1	1	1	0	0	0.063	0.937	0.000	0.000	2
47	1	1	0	0	0	0.006	0.994	0.000	0.000	2
44	1	0	0	1	0	0.004	0.643	0.000	0.353	2
k=3 conditional response patterns										
91	1	0	0	0	1	0.003	0.000	0.937	0.060	3
88	1	0	1	1	1	0.337	0.000	0.663	0.000	3
76	1	0	1	0	1	0.048	0.000	0.951	0.001	3
70	1	0	0	1	1	0.031	0.000	0.964	0.006	3
53	0	0	0	0	1	0.001	0.000	0.763	0.236	3
k=4 conditional response patterns										
558	0	0	0	0	0	0.000	0.117	0.000	0.883	4
313	1	0	0	0	0	0.000	0.307	0.000	0.693	4
53	0	0	0	1	0	0.000	0.353	0.000	0.647	4
11	0	0	NA	0	0	0.000	0.231	0.000	0.769	4
9	0	NA	0	0	0	0.000	0.170	0.000	0.829	4

Data Source: Longitudinal Study of American Youth.

Visualizing observed response patterns

Order response patterns (rows) by modal assignment (K)

```
order_modal <- patterns %>%
  arrange(desc(C_MODAL)) %>%
  rownames_to_column() %>%
  rename('pat_num' = "rowname") %>%
  drop_na(ENJOY:ADULT)
```

Prepare plot data

```
values_to = "value") %>%
  mutate(obs = rep(1:32, each=5)) \%>\%
  mutate(Class = factor(C_MODAL)) %>%
  mutate(var = ordered(var,
                       levels = c("ENJOY", "USEFUL", "LOGICAL", "JOB", "ADULT"))) %>%
  select(-pat_num, -C_MODAL)
out c4 <- readModels(here("13-response-patterns", "mplus files"),
                     filefilter = "patterns", quiet = TRUE)
# extract posterior probabilities
probs_c4 <- as.data.frame(</pre>
  out_c4[["gh5"]][["means_and_variances_data"]]
  [["estimated_probs"]][["values"]]
  [seq(2, 10, 2),])
rownames(probs_c4) <- c("ENJOY", "USEFUL", "LOGICAL", "JOB", "ADULT")</pre>
long_c4 <- probs_c4 %>% rownames_to_column() %>%
  rename('var' = "rowname") %>%
  pivot_longer(`V1`:`V4`, # The columns I'm gathering together
               names_to = "c", # new column name for existing names
               values_to = "value") %>% # new column name to store values
  mutate(Class = rep(1:4,5)) \%>\%
  arrange(Class) %>%
  mutate(obs = rep(33:36, each=5)) \%>\%
  mutate(Frequency = rep(c(829,782,619,833),each=5)) %>%
  mutate(var = ordered(var,
                      levels = c("ENJOY", "USEFUL", "LOGICAL", "JOB", "ADULT"))) %>%
  select(6,1,3,5,4)
p2_long <- rbind(p1_long, long_c4) %>%
 mutate(Class = as.numeric(Class))
Visualize observed response patterns with {plotly}
gg <- ggplot(p2_long, aes(x=var, y=value, color = Class, size=Frequency)) +
  geom_line(aes(as.numeric(var), frame = obs)) +
```

Make a 3D plot with packages {ggplot2}, {gg3D}, and {gganimate}.

```
axes_3D(theta=theta, phi=phi) +
  stat_3D(theta=theta, phi=phi, geom="path",
          aes(colour = Class, size = Frequency), alpha = .8) +
  scale_color_manual(values=c("#FDE725FF", "#DE7065FF", "#238A8DFF", "#482677FF")) +
  theme_void() +
  annotate("text", x = -.3, y = 0.05, label = "Indicators") +
  annotate("text", x = .35, y = -.4, label = "Probability") +
  annotate("text", x = .25, y = .42, label = "Pattern") +
  annotate("text", x = .2, y = 0, label = "0.0") +
  annotate("text", x = .34, y = -.33, label = "1.0") +
  annotate("text", x = -.05, y = 0, angle = 6,
           label = "Enjoy - Useful - Logical - Job - Adult") +
  transition states(obs, transition length=1, state length=5) +
  shadow_mark(alpha = .1,) +
  labs(title = "Observed response pattern = {closest_state}")
animate(resp3d, fps = 2)
```

References

Drew A. Linzer, Jeffrey B. Lewis (2011). poLCA: An R Package for Polytomous Variable Latent Class Analysis. Journal of Statistical Software, 42(10), 1-29. URL http://www.jstatsoft.org/v42/i10/.

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Miller, J. D., Hoffer, T., Suchner, R., Brown, K., & Nelson, C. (1992). LSAY codebook. Northern Illinois University.

Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2017). Regression and mediation analysis using Mplus. Los Angeles, CA: Muthén & Muthén.

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

https://garberadamc.github.io/project-site/ https://www.adam-garber.com/

Further resources & examples here: