

Overview

- □ Holland's original GA is now known as the simple genetic algorithm (SGA)
 - □ Authors: J. Holland, K. DeJong, D. Goldberg, 1970's, USA.
 - □ **Problems:** typically applied to discrete optimization
 - Features:
 - Not too fast
 - Good heuristic search algorithm for combinatorial problems
 - Emphasis:
 - Combining information from good parents (crossover)
 - □ Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms (parent, survivor)

SGA technical summary tableau

□ Simple GA Specifications:

Representation	Binary strings	
Recombination	N-point or uniform	
Mutation	Bitwise bit-flipping with fixed probability	
Parent selection	Fitness-Proportionate	
Survivor selection	All children replace parents	
Speciality	Emphasis on crossover	

SGA reproduction cycle

Simple GA Flow:

- 1. Representation: determine the genotype representation
- 2. Create pool: create parents for the mating pool (n = population size)
- 3. Parent selection: start selection of parents using roulette wheel
- **4. Crossover:** for each consecutive pair apply crossover with probability p_c , otherwise copy parents
- 5. Mutation: for each offspring, for each bit, bit-flip with probability p_m independently
- 6. Survivor selection: replace the whole population with the resulting offspring

Representation

- ☐ The first step in using GA is to transfer the problem from phenotype space to genotype space.
- □ It means variables that represent the problem are put together into a chromosome (string) form.

Operators: Parent Selection

- Main idea: better individuals get higher chance
 - Selection chances proportional to fitness
 - □ Implementation: roulette wheel technique
 - Assign to each individual a part of the roulette wheel
 - Spin the wheel n times to select n individuals

Operators: 1-point crossover

- Choose a random point on the two parents
- □ Split parents at this crossover point
- □ Create children by exchanging tails
- \square P_c typically in range (0.6, 0.9)

Operators: mutation

- \square Alter each gene independently with a probability p_m
- \Box p_m is called the mutation rate
 - Typically between 1/pop_size and 1/ chromosome_length

child 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1

□ **Note:** mutation should preferably build a valid output

Simple GA example: Max of X² Goldberg 89 (1)

- □ Simple problem: $\max x^2$ over $\{0,1,...,31\}$
- □ GA approach:
 - Representation: binary code, e.g. $01101 \leftrightarrow 13$
 - Initialization: Random
 - Population size: 4
 - □ Crossover: 1-point
 - Mutation: bitwise
 - □ Parent Selection: Roulette wheel selection
- □ We show one generation cycle done by hand

Simple GA example: parent selection

□ Generation 1:

String	Initial	x Value			Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	01101	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	01000	8	64	0.06	0.22	0
4	10011	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

Simple GA example: crossover

□ Generation 2:

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover	10 marks (100 marks)	$f(x) = x^2$
1	0110 1	4	01100	12	144
2	110000	4	$1\ 1\ 0\ 0\ 1$	25	625
2	11 000	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10 011	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729

Simple GA example: mutation

□ Generation 2 (mutation):

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	01100	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	$1\ 1\ 0\ 1\ 1$	27	729
4	$1\ 0\ 0\ 0\ 0$	$1\ 0\ 1\ 0\ 0$	18	324
Sum				2354
Average				588.5
Max				729

The simple GA

- □ Subject of many (early) studies
- Still used as benchmark for novel GAs
- Shortcomings:
 - Representation: too restrictive
 - □ Mutation & crossover: only applicable for bit-string & integer representations
 - □ Parent selection: sensitive when finesses converge and are too close
 - Survivor selection: a better selection (than replacement) method can improve the cycle

Building Alternative GAs

- Alternative Crossover Operators
- Integer representations
- Real valued problems
- Permutation Representations

Alternative Crossover Operators

- One Point Crossover:
 - **Performance:** depends on the order of variables in the representation
 - Positional Bias:
 - More likely to keep together genes that are near each other
 - Cannot keep genes from opposite ends of a chromosome together
 - Positional bias can be exploited if we know about the structure of our problem, but this is not usually the case

Alternative Crossover Operators: n-point crossover

- □ Choose n random crossover points
- Split along those points
- □ Glue parts, alternating between parents
- ☐ Generalisation of 1 point (still some positional bias)

Alternative Crossover Operators: Uniform crossover

- Assign 'heads' to one parent, 'tails' to the other
- □ Flip a coin for each gene of the first child
- □ Make an inverse copy of the gene for the second child
- □ The chance is now uniform for every gene (Inheritance is independent of position)

Crossover vs. mutation (1)

- □ **Debate:** a decade long debate on which one is better / necessary
- Widely agreed answer:
 - Depends on the problem
 - They have different roles
 - Good to have both
 - Mutation-only-EA is possible
 - Crossover-only-EA does not work

Crossover vs. mutation (2)

- **Exploration and exploitation:** there is co-operation AND competition between these
 - **Exploration:** discovering promising areas in the search space
 - **Exploitation:** optimizing within a promising area
- □ Crossover: explorative, makes a big jump to an area between the two parents
 - Only crossover can combine information from two parents
 - □ Does not change the frequencies of gene values (allele) in the population (Experiment: 50% 0's on first bit in the population, what % after performing n crossovers)
- □ Mutation: exploitative, creates random small diversions, staying near (the area of) the parent
 - Only mutation can introduce new information
 - To hit the optimum you often need a 'lucky' mutation

Other representations: Integer representations

- □ Integer problems: some problems involve integer variables
 - Image processing parameters
 - □ Categorical values {blue, green, yellow, pink}
- □ **Crossover:** both n-point and uniform crossover operators work
- □ Mutation: bit-flipping mutation can be extended
 - Random choice: in categorical variables, we select a random item from the fixed set of choices

Other representations: Real valued problems

- □ Many problems are real valued
 - \square continuous parameter optimizations i.e. $f: \Re^n \rightarrow \Re$
 - **Example:** Ackley's function (often used in EC)

$$f(\overline{x}) = -c_1 \cdot exp\left(-c_2 \cdot \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}\right)$$
$$-exp\left(\frac{1}{n} \cdot \sum_{i=1}^n \cos(c_3 \cdot x_i)\right) + c_1 + 1$$
$$c_1 = 20, c_2 = 0.2, c_3 = 2\pi$$

Mapping real values on binary representation (Method 1)

 \square With real values, one options is to represent real values (in the range of [x,y]) using 0/1 bits and then use binary methods:

$$z \in [x,y] \subseteq \mathfrak{R}$$
 is represented by $\{\alpha_1, \ldots, \alpha_L\} \in \{0,1\}^L$

- \square Mapping $z \to \{0,1\}^L$ must be invertible (i.e. only one phenotype per genotype)
- $\Gamma: \{0,1\}^L \to [x,y]$ defines the representation mapping

$$\Gamma(a_1,...,a_L) = x + \frac{y-x}{2^L - 1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x,y]$$

- \square Only 2^{L} values out of infinite (or range [x,y]) are represented
- □ L determines possible maximum precision of solution
- □ High precision → long chromosomes (slow evolution)

Real valued representation (Method 2)

□ It is possible to have real valued genes

$$\bar{x} = \langle x_1, \dots, x_l \rangle$$
 $x_i \in [LB_i, UB_i]$

- □ However we need to determine a lower and higher band for all or individual genes
- Combination and mutation operators of binary representations can not be applied. New operators should be used...

Real value mutations 1 (Creep)

General scheme of mutation for real valued chromosomes

$$\bar{x} = \langle x_1, \dots, x_l \rangle \rightarrow \bar{x}' = \langle x_1', \dots, x_l' \rangle$$
 $x_i, x_i' \in [LB_i, UB_i]$

- Creep Mutation: for real valued genes, a random gene is selected and a random value is added to it or it is changed to another random value in this range (gene should still be between a lower and an upper bound).
- □ Uniform mutation: a random number of uniform distribution replaces the old gene

 x_i' drawn randomly (uniform) from $[LB_i, UB_i]$

Note: The above two methods are analogous to bit-flipping (in binary representation) and random resetting/choice (in integer representation)

Real value mutations 2 (Non-Uniform)

- Non-uniform mutations: many methods, but most of them are probabilistic and usually make only small change to value (similar to creep)
 - □ Time varying: changes that vary based on the generation number, fitness etc.
 - Gaussian Random Deviation (most common): adds random deviate to each variable separately, taken from $N(0, \sigma)$ Gaussian distribution and then curtail to range
 - Standard deviation of controls amount of change (determined for each variable)
 - = 2/3 of deviations will lie in range (- σ to + σ)

Real value crossover operators: Discrete, Intermediate

Discrete:

- N-point or uniform
- \blacksquare Each allele value in offspring z comes from one of its parents (x,y) with equal probability:

$$z_i = x_i OR y_i$$

Intermediate:

- Exploits idea of creating children "between" parents (hence a.k.a. arithmetic recombination)
- lacktriangle Practically combine two chromosomes with a weight of lpha

$$\mathbf{z}_i = \alpha \mathbf{x}_i + (1 - \alpha) \mathbf{y}_i$$
 where $\alpha : 0 \le \alpha \le 1$.

- \blacksquare The parameter α can be:
 - Constant: uniform arithmetical crossover
 - Variable: for example can depend on the age of the population
 - Random: picked at random every time

Real value crossover operators: single arithmetic

- fine Pick a single gene (k) at random, mix specific gene of two parents using lpha and lpha-1 ratios
- □ Child₁ is:

$$\langle x_1, \ldots, x_k, \alpha \cdot y_k + (1 - \alpha) \cdot x_k, \ldots, x_n \rangle$$

 $\hfill\Box$ Reverse for other child. e.g. with $\alpha=$ 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9

 \longrightarrow

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.5 0.3

Real value crossover operators: Simple arithmetic

- □ Parents: $\langle x_1,...,x_n \rangle$ and $\langle y_1,...,y_n \rangle$
- □ Pick random gene (k) after this point mix values
- □ Child₁ is:

$$\langle x_1, \ldots, x_k, \alpha \cdot y_{k+1} + (1-\alpha) \cdot x_{k+1}, \ldots, \alpha \cdot y_n + (1-\alpha) \cdot x_n \rangle$$

 \square Reverse for other child. e.g. with $\alpha = 0.5$

Real value crossover operators: Whole arithmetic

□ Parents: $\langle x_1,...,x_n \rangle$ and $\langle y_1,...,y_n \rangle$

☐ Child₁ is:

$$a \cdot \bar{x} + (1 - a) \cdot \bar{y}$$

■ Reverse for other child

$$(1-a)\cdot \bar{x} + a\cdot \bar{y}$$

 \square e.g. with α = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6

Other representations: Permutation Representations

- Ordering/sequencing problems: these tasks are solved by arranging some objects in a certain order
 - Sort and ranking problems: order of items so that they are listed by relevance or other property
 - Travelling Salesman Problem (TSP): order and adjacency of elements (elements occurring next to each other) is important
- Permutation problems: above examples are expressed as permutations, some of the permutations are optimum
 - □ There are *n* variables
 - \square The representation is as a list of n integers
 - Each integer occurs exactly once

Permutation representation: TSP example

□ Problem:

- ☐ Given n cities
- □ Find a complete tour with minimal length

Encoding:

- \square Label the cities 1, 2, ..., n
- □ A complete tour is a permutation
 - For n =4 answers could be [1,2,3,4] and [3,4,2,1]

□ Search space is BIG:

 \Box for 30 cities there are 30! $\approx 10^{32}$ possible tours

Permutation representation: Mutation operators

- □ Normal mutation operators lead to inadmissible solutions
 - **Bit-wise mutation:** let gene *i* have value *j*, changing to some other value *k* would mean that *k* occurred twice and *j* no longer occurred
- Solution: we must change at least two values
 - Some operator is applied to the whole string, rather than individually for each position
 - A probability of applying the operator is still used

Permutation representation: Insert Mutation

- □ Pick two genes at random
- □ Move the second to follow the first, shifting the rest along to accommodate
- □ Note that this preserves most of the order and the adjacency information

Permutation representation: Swap mutation

- □ Pick two genes at random and swap their positions
- □ Preserves most of adjacency information (4 links broken), disrupts order more

Permutation representation: Inversion mutation

- □ Pick two genes at random and then invert the substring between them.
- Preserves most adjacency information (only breaks two links) but disruptive of order information

Permutation representation: Scramble mutation

- □ Pick a random subset of genes
- Randomly rearrange the alleles in those positions

(note subset does not have to be contiguous)

123456789

Permutation representation: Crossover operators

□ "Normal" crossover operators will often lead to inadmissible solutions

Many specialised operators have been devised which focus on combining order or adjacency information from the two parents

Permutation representation: "Order1" crossover

- □ Idea is to preserve relative order that elements occur
- Informal procedure:
 - 1. Choose an arbitrary part from the first parent to the first child
 - 2. Copy the numbers that are not in the first part, to the first child:
 - starting right from cut point of the copied part,
 - using the order of the second parent
 - and wrapping around at the end
 - 3. Analogous for the second child, with parent roles reversed

Permutation representation: "Order 1" crossover example

□ Copy randomly selected set from first parent

1 2 3 4 5 6 7 8 9

4 5 6 7

9 3 7 8 2 6 5 1 4

□ Copy rest from second parent in order 1,9,3,8,2

1 2 3 4 5 6 7 8 9

3 8 2 4 5 6 7 1 9

9 3 7 8 2 6 5 1 4

Permutation representation: Partially Mapped Crossover (PMX)

Informal procedure for parents P1 and P2:

- Choose random segment and copy it from P1
- 2. Starting from the first crossover point look for elements in that segment of P2 that have not been copied (i=8,i=2)
- 3. For each of these *i* look in the offspring to see what element *j* has been copied in its place from P1 (instead of $i=8 \leftarrow j=4$, instead of $i=2 \leftarrow j=5$)
- 4. Place *i* into the position occupied by *j* in P2, since we know that we will not be putting *j* there (as is already in offspring) (put i=8 in position of j=4, i=2 in position of j=5 taken)
- 5. If the place occupied by i in P2 has already been filled in the offspring by k, put i in the position occupied by k in P2 (Place of i=5 taken by i=7, so put i=2 in position of i=7)
- 6. Having dealt with the elements from the crossover segment, the rest of the offspring can be filled from P2.

Second child is created analogously

Permutation representation: Cycle crossover

Basic idea:

Each allele comes from one parent together with its position.

Procedure:

- 1. Make a cycle of alleles from P1 in the following way.
 - (a) Start with the first allele of P1.
 - (b) Look at the allele at the same position in P2.
 - (c) Go to the position with the same allele in P1.
 - (d) Add this allele to the cycle.
 - (e) Repeat step b through d until you arrive at the first allele of P1.
- 2. Put the alleles of the cycle in the first child on the positions they have in the first parent.
- 3. Take next cycle from second parent

Permutation representation: Cycle crossover example Step 1: identify cycles 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 3 7 4 2 6 5 8 9 9 3 7 8 2 6 5 1 4 9 3 7 8 2 6 5 1 4 Step 2: copy alternate cycles into offspring 1 2 3 4 5 6 7 8 9 1 3 7 4 2 6 5 8 9 9 3 7 8 2 6 5 1 4 9 2 3 8 5 6 7 1 4

Permutation representation: Multi-parent recombination

- Existing operators:
 - Mutation: operates on 1 parent
 - □ Traditional crossover: operates on 2 parents, makes 2 Childs
- \square Multi-parent: the extension to a > 2
 - □ Since unlike nature we are not limited to two parents..
 - Been around since 1960s
 - Still rare
 - Studies indicate it could be useful
- Three main types:
 - □ Uniform crossover: equal probabilities for the selection of each allele
 - Segmentation and recombination of the parents: for example generalising n-point crossover, diagonal crossover
 - Numerical operations on real-valued alleles: generalising arithmetic recombination operators

Alternative Selection Methods

Fitness Based Competition

- □ **Selection:** there are two major kinds of selection
 - Parent selection: selection from current generation to take part in mating
 - **Survivor selection:** selection from parents + offspring to go into next generation
- Operation span: selection operators work on all the individuals
- □ **Differences:** selection operators are different in two aspects
 - □ Probabilities: how selection probabilities are determined
 - □ Algorithms: how probabilities are implemented

Population Models

- Generational models: used by Simple GA
 - Each individual survives for exactly one generation
 - The entire set of parents is replaced by the offspring
- □ Steady-state models: population changes are very small
 - One offspring is generated per generation
 - One member of population replaced
- Generation Gap:
 - A specific proportion of the population replaced
 - Proportion Bands: between "1.0" and "1/pop_size" (i.e. between G-GA and SS-GA)

Parent Selection: SGA's fitness proportionate method

- Probability: expected number of copies of an individual i
 - $\blacksquare E(n_i) = N \cdot f(i)/f_{ava}$ or $E(n_i) = N \cdot f(i)/f_{all}$

 - N = population size
 - f(i) = fitness of individual I
 - F_{ava}= Average fitness in population
- Roulette wheel Algorithm:
 - Given a probability distribution, spin a 1-armed wheel n times to make n selections
 - \square No guarantees on actual value of n_i
- Baker's SUS Algorithm:
 - n evenly spaced arms on wheel and spin once
 - Guarantees that individuals are really selected based on the expectation.
 - □ floor(E(n_i)) ≤ n_i ≤ ceil(E(n_i))

Fitness-Proportionate Selection - Discussion

Problems:

- Premature Convergence: one highly fit member can rapidly take over if rest of population is much less fit
 - Fitnesses: 93, 21,20, 18, 13
- Loss of selection pressure: at end of runs when fitnesses are similar, selection is not that useful (fails in its intended function) e.g.
 - fitnesses: 93, 95, 92, 92, 90
- Highly sensitive to function transposition: if we add a constant to fitness function (i.e. use a bit different fitness function) the behaviour of the method totally changes
- Scaling: can fix the last two problems
 - Windowing: $f'(i) = f(i) f_{worst}$
 - lacktriangle where f_{worst} is the worst fitness in this (or last n) generations
 - Sigma Scaling: $f'(i) = max(f(i) (f_{avg} c \cdot \sigma_f))$, 0.0)
 - where c is a constant, usually 2.0
 - Scales the fittnesses near 0 (some kind of standardization)

Function transposition for FPS

□ if we add a constant to fitness function (i.e. use a bit different fitness function) the behaviour of the method totally changes

Ranking Selection

- Ranking Selection: attempts to solve FPS problem by basing selection probabilities on relative fitness rather than absolute fitness
 - Rank population according to fitness (Best fittest has rank N and worst rank 1)
 - Base selection probabilities on rank
- □ This imposes a sorting overhead on the algorithm, but this is usually negligible compared to the <u>fitness evaluation</u> time

Linear Ranking

- \square Parameterised by factor s: 1.0 < s \leq 2.0
 - measures advantage of best individual
 - □ in GGA this is the number of children allotted to it
- □ Simple 3 member example

$$P_{lin-rank}(i) = \frac{(2-s)}{N} + \frac{2i(s-1)}{N(N-1)}$$

	Fitness	Rank	P_{selFP}	P_{selLR} $(s=2)$	P_{selLR} $(s=1.5)$
A	1	1	0.1	0	0.167
В	5	3	0.5	0.67	0.5
\mathbf{C}	4	2	0.4	0.33	0.33
Sum	10		1.0	1.0	1.0

Exponential Ranking

- □ Linear Ranking is limited to selection pressure
- □ Exponential Ranking can allocate more than 2 copies to fittest individual
- □ Normalise constant factor c according to population size

$$P_{exp-rank}(i) = \frac{1 - e^{-i}}{c}$$

Parent Selection: Tournament Selection

- Most methods rely on global population statistics (e.g. which are the less fit among all population)
 - □ Could be a bottleneck specially on parallel machines
- □ Tournament Selection Procedure:
 - □ Pick k members at random
 - Select the best of above k members
 - Repeat to select more individuals

Parent Selection: Tournament Selection 2

- □ Probability of selecting i depends on:
 - □ Rank of i (among k)
 - □ Size of sample k
 - higher k increases selection pressure
 - □ Whether contestants are picked with replacement
 - Picking without replacement increases selection pressure
 - Whether fittest contestant always wins (deterministic) or this happens with probability p

Survivor Selection

- □ Survivor selection can be divided into two approaches:
 - Age-Based Selection
 - S-GA
 - SS-GA: can be implemented as "delete-random" (not recommended) or as first-in-first-out (i.e. deleteoldest)
 - □ Fitness-Based Selection
 - Using one of the methods above but according to fitness

Survivor Selection: Two Special Cases

Elitism

- □ Widely used in both population models (G-GA, SS-GA)
- Always keep at least one copy of the fittest solution so far

□ GENITOR (delete-worst):

- □ From Whitley's original Steady-State algorithm (he also used linear ranking for parent selection)
- Rapid takeover: use with large populations or "no duplicates" policy

JSSP Example

Example application of order based (permutation) GAs: JSSP

- □ Precedence constrained job shop scheduling problem
 - □ J: is a set of jobs
 - O: is a set of operations
 - M: is a set of machines
 - \square Able \subseteq \square \times M: defines which machines can perform which operations
 - \blacksquare **Pre** \subseteq **O** \times **O**: defines which operation should precede which
 - □ $Dur \subseteq O \times M \rightarrow IR$: defines the duration of $o \in O$ on $m \in M$
- □ The goal is now to find a schedule that is:
 - □ Complete: all jobs are scheduled
 - □ Correct: all conditions defined by Able and Pre are satisfied
 - Optimal: the total duration of the schedule is minimal

Precedence constrained job shop scheduling GA

- □ Representation: individuals are permutations of operations
- □ **Usage:** permutations are decoded for scheduling (by a decoding procedure)
 - l. take the first (next) operation from the individual
 - 2. look up its machine (here we assume there is only one)
 - 3. assign the earliest possible starting time on this machine, subject to
 - machine occupation
 - precedence relations holding for this operation in the schedule created so far
- □ **Fitness of a permutation:** is the duration of the corresponding schedule (to be minimized)
- □ **Operators:** use any suitable mutation and crossover
- Parent selection: use roulette wheel on inverse fitness
- □ Survivor selection: generational GA model for survivor selection
- □ Initialization: use random initialization

