

Lubricant Effectiveness Characterizer

Sponsored by Nye Lubricants Inc.

Presented by:

Peter Lunn

Nathen Arruda

Cameron Whittle

Peter McGrory

Ryan Proulx

Overview

- The Team and Sponsor
- Design Criteria
- Mechanical Engineering Aspect
- Electrical Engineering Aspect
- Fully Operational Machine
- Conclusion
- Q&A

The Team and Sponsor

Team Lubricant

- Mechanical Engineers
 - Peter Lunn (team lead)
 - Nathen Arruda
 - Ryan Proulx
- Electrical/Computer Engineers
 - Cameron Whittle
 - Peter McGrory

Academic Advisors

- Dr. Vijaya Chalivendra
- Dr. Jun Li
- Dr. Hamed Samandari

The Sponsor

- Nye Lubricants Inc.
 - Richard Raithel

Design Criteria and Logistics

Design Criteria

- Obtain torque readings from bearing
- Heat the bearing and lubricant to 200°C
- Cool the bearing and lubricant to 0°C
- Spin the bearing at a maximum of 3500 RPM
- Apply axial load on the bearing up to 100 lbs
- Be safe

Budget

- Tentatively \$30,000 to spend
- Will provide a cost breakdown later

Mechanical Engineering Aspect

Three Primary Design Considerations

Design Considerations (INLINE DESIGN)

POSITIVES

- SMALL FORM FACTOR
- LESS COMLICATED
- EASY CONSTRUCTION

NEGATIVES

- MORE COMPLEX SPECIFICATIONS FOR COMPONENTS
- LOW RIGIDITY
- VERY TALL (TIPPING ISSUE)

Design Considerations (PARALLEL DESIGN)

POSITIVES

- MODULAR
- ADDED RIGIDITY
- WIDER VARIETY OF COMPONENTS AVAILABLE
- SHORTER FORM FACTOR

NEGATIVES

- EXPENSIVE
- COMPLEX ASSEMBLY

Design Considerations (FULLY ENCLOSED INLINE DESIGN)

POSITIVES

- CONTROLLED ENVIRONMENT (ACCURATE DATA)
- RIGID DESIGN
- ESTHETICALLY APPEALING

NEGATIVES

- MORE COMPLEX SPECIFICATIONS FOR COMPONENTS
- EXPENSIVE
- VERY TALL (TIPPING ISSUE)
- UNMODULAR

Previous Designs

Previous Designs Continued

- Initially started with different layouts, Parallel and Inline
- Simplified loading of bearing
- Air bearing for complete accuracy was initially used
- Minimized height to prevent tipping over

Final Design

- 1 Aluminum Structural Plates
- 2 Aluminum Structural Legs
- 3 Torque Transducer (red component) with Housing for measuring torque
- 4 Servo Motor for rotating bearing
- 5 Pneumatic Piston for applying axial load to bearing
- 6 Pulleys for transferring motion from motor to bearing
- 7 Bearing Cup with Controlled Bearing inside
- 8 PEEK Thrust Bearing Shaft for connecting outer race of bearing to transducer
- 9 Thrust Bearing for absorbing axial load
- 10 Nozzle for delivering hot and cold air to the bearing
- 11 Bearing cup for shaft to sit in
- 12 Load cell for ensuring proper loading (thin wire-looking piece)
- 13 (Left) Steel Motor Shaft; (Right) Hardened Stainless Bearing Shaft

Front

Isometric

Isometric (alternate)

Left Side

Mechanical Drawings

List of All 18 Component Drawings:

- 1. Adapter for Piston Cup
- 2. Bearing Cup Disc
- 3. Bearing Cup Drawing (shown to the bottom right)
- 4. Bottom Legs
- 5. Bottom Plate
- 6. Frame Bushing Ring
- 7. Main Plate
- 8. Mid Legs
- 9. Mid Plate

- 10. Motor Shaft
- 11. Piston Cup Bottom
- 12. Piston Cup Top
- 13. Simplified Cylinder Nozzle
- 14. Test Bearing Shaft
- 15. Thrust Bearing Shaft (shown to the top right)
 - Top Bracket
- 17. Top Legs
- 18. Torque Sensor Housing

Theoretical Calculations

- 2 ALUMINUM PLATES
 - BENDING
 - MAX DEFLECTION
- PEEK THRUST BEARING SHAFT
 - YEILDING
 - BUCKLING

Theoretical Calculations

DESIGN JUSTIFICATION FOR STAINLESS STEEL SHAFT VS PEEK SHAFT

Simulations

Stress Simulation Parameters:

Material: 6061-T6 Aluminum

Young's Modulus: 68.9 GPa

Poisson's Ratio: 0.33

Density: 2700 kg/m³

Yield Stress: 40000 psi

Mesh: Normal

Force: 100lbf

Maximum First Principal Stress: 2293.2 PSI

• Calculated deflection: 0.003 in

• Simulated Deflection: 0.00138 in

Heat Transfer Simulation Parameters:

Component:	Thrust Bearing Shaft	
Material:	Polyether Ether Ketone	
Specific Heat:	$_{1850}\ ^{J}/_{kg\ *\ K}$	
Thermal Conductivity:	$0.24 \frac{W}{m * k}$	
Density:	$1310^{-kg}/_{m^3}$	
Component:	Bearing Cup	
Material:	6061-T6 Aluminum	
Specific Heat:	896 ^J / _{kg * K}	
Thermal Conductivity:	$166.9 \ ^{W}/_{m * k}$	
Density:	$2700^{kg}/_{m^3}$	
Component:	Bearing	
Material:	Alloy Steel	
Specific Heat:	460 $^{J}/_{kg*K}$	
Thermal Conductivity:	50 W/ _{m*k}	
Density:	7700 $^{kg}/_{m^3}$	
Mesh Quality:	High	
Convection Coefficient:	$4.2 {}^{W}/_{m^2 * K}$	
Ambient Temperature:	298.15 K	

Simulations (cont.) – Top Plate Stress

Plans to Assemble

20

Electrical Engineering Aspect

Software Design

- All user controls are available in the UI
- Three Phases:
 - 1. Grease Work in Period
 - 2. Temperature Regulation
 - 3. Lubricant Test
- System ends on one of three criteria:
 - 1. Timer run completion
 - 2. Electrical UI emergency brake
 - 3. Physical motor power brake
- Full reset on completion
- Program was written using the C# object-oriented software language

Graphical User Interface

- Adjustable user parameters
 - RPM
 - Temperature
 - Runtime
- Separate stages with buttons
- Current Torque values
- Emergency STOP
- Different viewing tabs

Communications Framework

- The UI in Visual Studio is the central hub:
 - All data is processed here
 - All commands come from here
 - All user inputs are here
- USB interfacing sensors/actuators:
 - Motor Communicates through ModBus RS-232
 - Transducer prints its readings into a .txt to be read by visual studio every instruction cycle
- Arduino UNOs and the IDE:
 - Sub-components are connected through I/O
 - Data is stored in temporary IDE variables in real time
 - Sensors/actuators receive instruction through serial port from VS to the IDE
 - Per cycle, the data is sent from the IDE to VS on command

Communications Parameters				
Parameter	Description	Range	Default	
P3-00	Communication Address	01 to 254	01	
P3-01	Transmission Speed	00: 4800 baud 01: 9600 baud 02: 19200 baud 03: 38400 baud 04: 57600 baud 05: 115200 baud	02	
P3-02	Communication Protocol	00: Modbus ASCII mode 7 data bits, no parity, 2 stop bits 01: Modbus ASCII mode 7 data bits, even parity, 1 stop bit 02: Modbus ASCII mode 7 data bits, odd parity, 1 stop bit 03: Modbus ASCII mode 8 data bits, no parity, 2 stop bits 04: Modbus ASCII mode 8 data bits, even parity, 1 stop bit 05: Modbus ASCII mode 8 data bits, even parity, 1 stop bit 06: Modbus RTU mode 8 data bits, no parity, 2 stop bits 07: Modbus RTU mode 8 data bits, even parity, 1 stop bit 08: Modbus RTU mode 8 data bits, even parity, 1 stop bit 08: Modbus RTU mode 8 data bits, even parity, 1 stop bit	08	
P3-03	Transmission Fault Action	00: Display fault and continue operating 01: Display fault and RAMP to stop	00	
P3-04	Communication Watchdog Time Out	0 to 20.0 seconds	00	
P3-05	Communication Selection	00: RS-232 01: RS-422 02: RS-485	00	
P3-06	Reserved	-	-	
P3-07	Communication Response Delay Time	00 to 255ms (increments of 0.5 ms)	00	

Functional Prototypes

• IR Sensor/Laser Diode

ModBus SureServo

Final Systems Integration

• IR Sensor/Laser Diode

• ModBus SureServo

Fully Operational Machine

Physical Work Completed Until Shutdown

Mechanical Work

- Product Design Specifications table developed
- Mechanical design fully developed in SolidWorks
 - Went through numerous redesigns
- Stress and Heat Transfer calculations performed for design justification
- FEA Stress simulations performed
- Manufacturing quote received from shop
- SolidWorks animations of rig

Electrical/Computer Work

- GUI fully prototyped
- Visual Studio to Arduino IDE framework implemented
- IR Sensor Arduino Prototype
- Realtime temperature graph implemented
- IR sensor final system integration
- SureServo motor and drive prototype
- ModBus Visual Studio prototype
- Servo final system integration
- Runtime timers implemented
- Electrical E-brake implemented
- Physical E-brake Implemented
- Major/minor bug fixes on UI

Mechanical Simulation

GUI and Temperature Prototype

Servo Motor and Drive Prototype

Conclusion

Challenges Faced

- COVID-19 Pandemic
 - Nye and UMassD facilities closed down
- Budgetary Concerns and Restrictions
 - Triggered several time-costly redesigns
 - Air Bearing to Thrust Bearing
 - Heat Torch not Purchased
- Complex Design
 - Required several moving components
- High Temperature Materials
 - Forced the team to get extremely creative
- Servo Motor Selection
 - Software restrictions

Final Spending

- Largest Purchases
 - Servo Motor \$483
 - Torque Transducer, Interface, and Calibration \$2,450
 - Vortex Tube \$197
 - Piston \$326
 - Air Regulator \$287
 - Manufacturing Cost \$4700 (Not Done Due to Pandemic)
- Team was awarded \$30,000
 - Multiple redesigns were performed to save substantial money
 - Spent \$10,655 (including manufacturing)
 - Saved Nye \$19,345

Purpose of Project

- Analyze Effectiveness of a Nye-Produced Lubricant
- Analyzed via Torque Values Between Inner and Outer Race of Bearing
 - Higher torque values = less/more effective based on grease purpose
- Provides Customer with Peace of Mind
 - Grease will function as expected even under harsh conditions
- Provides Nye with a Selling Point over Competitors
- Further Solidifies Nye as a World Leader in Lubrication

The Future of the Project

Future plans

- Machining of the Tester
- Program Heating/Cooling Mechanisms
- Program Piston
- Program Torque Transducer
- Assemble Tester
- Fully Integrate Electronics and GUI into Tester

Acknowledgements

- Nye Lubricants Inc.
 - Jason Galary (Director of R&D)
 - Gus Flaherty (R&D Lab Manager)
 - Richard Raithel (Project Overseer)
 - Mason Wood (Machining Advise)
- University of Massachusetts Dartmouth
 - Hamed Samandari (Senior Design Professor)
 - Vijaya Chalivendra (Project Advisor)
 - Jun Li (Project Advisor)
 - Raymond Laoulache (Associate Dean of Engineering)
- Team Lubricant

Thank You Questions?

