Algebraic Geometry

Vanya Cheltsov

17th January 2019

Lecture 2: projective curves and projective transformations

Complex projective plane

 $\mathbb{P}^2_{\mathbb{C}}$ consists of 3-tuples [x:y:z] with $(x,y,z) \neq (0,0,0)$ such that

$$\star$$
 $[x:y:z] = [\lambda x:\lambda y:\lambda z]$ for every non-zero $\lambda \in \mathbb{C}$.

Let U_x be the complement in $\mathbb{P}^2_{\mathbb{C}}$ to the line x = 0.

▶ Then
$$U_x = \mathbb{C}^2$$
 with coordinates $\widetilde{y} = \frac{y}{x}$ and $\widetilde{z} = \frac{z}{x}$.

Let U_y be the complement in $\mathbb{P}^2_{\mathbb{C}}$ to the line y=0.

► Then
$$U_y = \mathbb{C}^2$$
 with coordinates $\widehat{x} = \frac{x}{y}$ and $\widehat{z} = \frac{z}{y}$.

Let U_z be the complement in $\mathbb{P}^2_{\mathbb{C}}$ to the line z=0.

▶ Then
$$U_z = \mathbb{C}^2$$
 with coordinates $\overline{x} = \frac{x}{7}$ and $\overline{y} = \frac{y}{7}$.

Then $\mathbb{P}^2_{\mathbb{C}}$ is $U_x = \mathbb{C}^2$, $U_y = \mathbb{C}^2$, $U_z = \mathbb{C}^2$ patched together by

$$\widetilde{y} = rac{1}{\widehat{x}} = rac{\overline{y}}{\overline{x}}, \widetilde{z} = rac{\widehat{z}}{\widehat{x}} = rac{1}{\overline{x}}$$

$$\widehat{x} = \frac{\overline{x}}{\overline{y}} = \frac{1}{\widetilde{y}}, \widehat{z} = \frac{1}{\overline{y}} = \frac{\widetilde{z}}{\widetilde{y}}$$

$$\overline{x} = \frac{1}{\widetilde{z}} = \frac{\widehat{z}}{\widehat{x}}, \overline{y} = \frac{\widetilde{y}}{\widetilde{z}} = \frac{1}{\widehat{z}}$$

Lines and conics

Definition

A line in $\mathbb{P}^2_{\mathbb{C}}$ is the subset given by

$$\mathbf{a}x + \mathbf{b}y + \mathbf{c}z = 0$$

for complex numbers **a**, **b** and **c** such that $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \neq (0, 0, 0)$.

Definition

A conic in $\mathbb{P}^2_{\mathbb{C}}$ is a subset that is given by

$$\mathbf{a}x^2 + \mathbf{b}xy + \mathbf{c}y^2 + \mathbf{d}xz + \mathbf{e}yz + \mathbf{f}z^2 = 0$$

for a, b, c, d, e, f in \mathbb{C} such that $(a, b, c, d, e, f) \neq (0, 0, 0, 0, 0, 0)$.

► The conic is said to be irreducible if the polynomial

$$\mathbf{a}x^2 + \mathbf{b}xy + \mathbf{c}y^2 + \mathbf{d}xz + \mathbf{e}yz + \mathbf{f}z^2$$

- is irreducible.
- Otherwise the conic is said to be reducible.

Complex irreducible plane curves

Definition

An irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree $d\geqslant 1$ is a subset given by

$$f(x,y,z)=0$$

for an irreducible homogeneous polynomial f(x, y, z) of degree d.

Let us give few examples. The equation

$$2x^2 - y^2 + 2z^2 = 0$$

defines an irreducible conic in $\mathbb{P}^2_{\mathbb{C}}$. The equation

$$zy^2 - x(x-z)(x+z) = 0$$

defines an irreducible cubic curve in $\mathbb{P}^2_{\mathbb{C}}$. The equation

$$(2x^2 - y^2 + 2z^2)(zy^2 - x(x - z)(x + z)) = 0$$

defines the union of the two curves above.

Projective transformations

Let M be a complex 3×3 matrix

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Let $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ be the map given by

$$[x:y:z] \mapsto [a_{11}x+a_{12}y+a_{13}z:a_{21}x+a_{22}y+a_{23}z:a_{31}x+a_{32}y+a_{33}z].$$

Recall that there is no such point in $\mathbb{P}^2_{\mathbb{C}}$ as [0:0:0].

Question

When ϕ is well-defined?

The map ϕ is well-defined \iff $det(\mathbf{M}) \neq 0$.

Definition

If $det(\mathbf{M}) \neq 0$, we say that ϕ a projective transformation.

Projective linear group

Projective transformations of $\mathbb{P}^2_{\mathbb{C}}$ form a group.

- ▶ Let **M** be a matrix in $GL_3(\mathbb{C})$.
- \blacktriangleright Denote by $\phi_{\mathbf{M}}$ the corresponding projective transformation.

Question

When $\phi_{\mathbf{M}}$ is an identity map?

The map $\phi_{\mathbf{M}}$ is an identity map \iff \mathbf{M} is scalar.

Recall that M is said to be scalar if

$$M = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

for some complex number λ .

Corollary

Let **G** be a subgroup in $\mathrm{GL}_3(\mathbb{C})$ consisting of scalar matrices. The group of projective transformations of $\mathbb{P}^2_{\mathbb{C}}$ is isomorphic to

$$\operatorname{PGL}_3(\mathbb{C}) = \operatorname{GL}_3(\mathbb{C})/\mathbf{G}$$
.

Rational maps

Let **M** be a complex matrix with non-zero determinant

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Let ϕ be the projective transformation:

$$[x:y:z] \mapsto [a_{11}x+a_{12}y+a_{13}z:a_{21}x+a_{22}y+a_{23}z:a_{31}x+a_{32}y+a_{33}z].$$

Then ϕ maps the line $a_{31}x + a_{32}y + a_{33}z = 0$ to the line z = 0.

- ▶ Let U_z be the subset in $\mathbb{P}^2_{\mathbb{C}}$ given by $z \neq 0$.
- ▶ Identify $U_z = \mathbb{C}^2$ with coordinates $\overline{x} = \frac{x}{7}$ and $\overline{y} = \frac{y}{7}$.

Then ϕ induces the rational map $U_z \longrightarrow U_z$ given by

$$(\overline{x}, \overline{y}) \mapsto \left(\frac{a_{11}\overline{x} + a_{12}\overline{y} + a_{13}}{a_{31}\overline{x} + a_{32}\overline{y} + a_{33}}, \frac{a_{21}\overline{x} + a_{22}\overline{y} + a_{23}}{a_{31}\overline{x} + a_{32}\overline{y} + a_{33}}\right).$$

When is this rational map $U_z \longrightarrow U_z$ well-defined?

Four points in the plane

Let P_1 , P_2 , P_3 , P_4 be four points in $\mathbb{P}^2_{\mathbb{C}}$ such that

▶ no three points among them are collinear.

Then there is a projective transformation $\mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ such that

$$P_1 \mapsto [1:0:0], P_2 \mapsto [0:1:0], P_3 \mapsto [0:0:1], P_4 \mapsto [1:1:1].$$

Let $P_1 = [a_{11} : a_{12} : a_{13}]$, $P_2 = [a_{21} : a_{22} : a_{23}]$, $P_3 = [a_{31} : a_{32} : a_{33}]$. Let ϕ be the projective transformation

$$[x:y:z] \mapsto [a_{11}x + a_{21}y + a_{31}z:a_{12}x + a_{22}y + a_{32}z:a_{13}x + a_{23}y + a_{33}x].$$

Then $\phi([1:0:0]) = P_1$, $\phi([0:1:0]) = P_2$, $\phi([0:0:1]) = P_3$. Let ψ be the inverse of the map ϕ . Write $\psi(P_4) = [\alpha:\beta:\gamma]$. Let τ be the projective transformation

$$[x:y:z] \mapsto \left[\frac{x}{\alpha}:\frac{y}{\beta}:\frac{z}{\gamma}\right] = \left[\beta\gamma x:\alpha\gamma y:\alpha\beta z\right].$$

Then $\tau \circ \psi$ is the required projective transformation.

Conics and their tangent lines

Let L be a line in $\mathbb{P}^2_{\mathbb{C}}$, and let \mathcal{C} be an irreducible conic in $\mathbb{P}^2_{\mathbb{C}}$.

Question

When $|L \cap \mathcal{C}| = 1$?

We may assume that $[0:0:1]\in \mathcal{L}\cap\mathcal{C}.$ Then \mathcal{C} is given by

$$\mathbf{a}x^2 + \mathbf{b}xy + \mathbf{c}y^2 + \mathbf{d}xz + \mathbf{e}yz = 0$$

for some $[a:b:c:d:e]\in\mathbb{P}^4_\mathbb{C}.$

We may assume that L is given by x = 0. Then

$$L \cap C = [0:0:1] \cup [0:\mathbf{e}:-\mathbf{c}].$$

Thus, we have $|L \cap \mathcal{C}| = 1 \iff e = 0$.

- ▶ Let U_z be the complement in $\mathbb{P}^2_{\mathbb{C}}$ to the line z = 0.
- ldentify U_z and \mathbb{C}^2 with coordinates $\overline{x} = \frac{x}{z}$ and $\overline{y} = \frac{y}{z}$.

Then $U_z \cap \mathcal{C}$ is given by $\mathbf{a}\overline{x}^2 + \mathbf{b}\overline{x}\overline{y} + \mathbf{c}\overline{y}^2 + \mathbf{d}\overline{x} + \mathbf{e}\overline{y} = 0$.

- ▶ $\mathbf{d}\overline{x} + \mathbf{e}\overline{y} = 0$ is the tangent line to $U_z \cap \mathcal{C}$ at (0,0).
- $\mathbf{d}x + \mathbf{e}y = 0$ is the tangent line to \mathcal{C} at [0:0:1].

Then $|L \cap C| = 1 \iff L$ is tangent to C at the point $L \cap C$.

Smooth complex plane curves

Let C be an irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree d given by

$$f(x,y,z)=0,$$

where f(x, y, z) is a homogeneous polynomial of degree d.

Definition

A point $[a:b:c] \in \mathbb{P}^2_{\mathbb{C}}$ is a singular point of the curve C if

$$\frac{\partial f(a,b,c)}{\partial x} = \frac{\partial f(a,b,c)}{\partial y} = \frac{\partial f(a,b,c)}{\partial z} = 0.$$

- ▶ Denote by Sing(C) the set of singular points of the curve C.
- ▶ Non-singular points of the curve *C* are called smooth.
- ▶ The curve C is said to be smooth if $Sing(C) = \emptyset$

Example

- 1. If $f = zx^{d-1} y^d$ and $d \ge 3$, then Sing(C) = [0:0:1].
- 2. If $f = x^d + y^d + z^d$, then Sing(C) = \emptyset .

Tangent lines

lackbox Let C be an irreducible curve in $\mathbb{P}^2_{\mathbb{C}}$ of degree d given by

$$f(x,y,z)=0,$$

where f(x, y, z) is a homogeneous polynomial of degree d. • Let $P = [\alpha : \beta : \gamma]$ be a smooth point in C. Then the line

$$\frac{\partial f(\alpha, \beta, \gamma)}{\partial x} x + \frac{\partial f(\alpha, \beta, \gamma)}{\partial y} y + \frac{\partial f(\alpha, \beta, \gamma)}{\partial z} z = 0$$

is the tangent line to the curve C at the point P.

Remark

We may assume that P = [0:0:1]. Then

$$f(x,y,z) = z^{d-1}h_1(x,y) + z^{d-2}h_2(x,y) + \cdots + zh_{d-1}(x,y) + h_d(x,y) = 0,$$

where $h_i(x, y)$ is a homogenous polynomial of degree i.

Then $h_1(x,y) = 0$ is the tangent line to C at the point P.

Conics and projective transformation

Let \mathcal{C} be a conic in $\mathbb{P}^2_{\mathbb{C}}$. Then \mathcal{C} is given by

$$\mathbf{a}x^2 + \mathbf{b}xy + \mathbf{c}y^2 + \mathbf{d}xz + \mathbf{e}yz + \mathbf{f}z^2 = 0$$

for a, b, c, d, e, f in $\mathbb C$ such that $(a,b,c,d,e,f) \neq (0,0,0,0,0,0)$.

Theorem

There is a projective transformations ϕ such that $\phi(\mathcal{C})$ is given by

- 1. either $xy = z^2$ (an irreducible smooth conic),
- 2. or xy = 0 (a union of two lines in $\mathbb{P}^2_{\mathbb{C}}$),
- 3. or $x^2 = 0$ (a line in $\mathbb{P}^2_{\mathbb{C}}$ taken with multiplicity 2).

Example

Let \mathcal{C} be a conic in $\mathbb{P}^2_{\mathbb{C}}$ given by (x-3y+z)(x+7y-5z)=0. Let $\phi\colon\mathbb{P}^2_{\mathbb{C}}\to\mathbb{P}^2_{\mathbb{C}}$ be a projective transformations given by

$$[x:y:z] \mapsto [x-3y+z:x+7y-5z:z].$$

Then $\phi(\mathcal{C})$ is a conic in $\mathbb{P}^2_{\mathbb{C}}$ that is given by xy=0.

Irreducible conics

Let \mathcal{C} be a conic in $\mathbb{P}^2_{\mathbb{C}}$. Then \mathcal{C} that is given by

$$\left(\begin{array}{ccc} x & y & z\end{array}\right)\left(\begin{array}{ccc} \mathbf{a} & \frac{\mathbf{b}}{2} & \frac{\mathbf{d}}{2} \\ \frac{\mathbf{b}}{2} & \mathbf{c} & \frac{\mathbf{e}}{2} \\ \frac{\mathbf{d}}{2} & \frac{\mathbf{e}}{2} & \mathbf{f} \end{array}\right)\left(\begin{array}{c} x \\ y \\ z \end{array}\right) = 0.$$

for a, b, c, d, e, f in $\mathbb C$ such that $(a,b,c,d,e,f) \neq (0,0,0,0,0,0)$.

▶ Denote this 3×3 matrix by \mathcal{M} .

Lemma

The conic C is irreducible if and only if $\det(\mathcal{M}) \neq 0$.

Proof.

Let $\phi \colon \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ be a projective transformation given by matrix \mathbf{M} . Let $\mathbf{N} = \mathbf{M}^{-1}$. Then the conic $\phi(\mathcal{C})$ is given by

Classification of irreducible conics

Let $\mathcal C$ be an irreducible conic in $\mathbb P^2_{\mathbb C}$ given by

$$ax^2 + bxy + cy^2 + dxz + eyz + fz^2 = 0$$

for a, b, c, d, e, f in $\mathbb C$ such that $(a,b,c,d,e,f) \neq (0,0,0,0,0,0)$.

- 1. Pick a point in C and map it to [0:0:1]. This kills \mathbf{f} .
- 2. Map the tangent line $\mathbf{d}x + \mathbf{e}y = 0$ to x = 0. This kills \mathbf{e} .
- 3. Map the line z = 0 to the line

$$z + \alpha y + \beta z$$

for appropriate α and β to kill **a** and **b**.

4. Scale x, y, and z appropriately to get $\mathbf{b} = 1$ and $\mathbf{c} = -1$.

This gives a projective transformation $\phi\colon \mathbb{P}^2_\mathbb{C} \to \mathbb{P}^2_\mathbb{C}$ such that

$$xz = y^2$$

defines the curve $\phi(\mathcal{C})$.

The conic $x^2 + y^2 - 2xy + xz - 3yz + 2z^2 = 0$ Let \mathcal{C} be the conic in $\mathbb{P}^2_{\mathbb{C}}$ that is given by

$$x^2 + y^2 - 2xy + xz - 3yz + 2z^2 = 0.$$

1. Note that $[0:1:1] \in \mathcal{C}$. Let $\mathbf{y} = y - z$. Then \mathcal{C} is given by $x^2 + \mathbf{v}^2 - \mathbf{v}z - 2x\mathbf{v} - xz = 0.$

2. To map the tangent line
$$x + y = 0$$
 to the line $x = 0$, let

 $\mathbf{x} = x + \mathbf{v}$.

Then C is given by $\mathbf{x}^2 + 4\mathbf{y}^2 - 4\mathbf{x}\mathbf{y} - \mathbf{x}z = 0$.

3. Let
$$\mathbf{z} = z + \mathbf{x} - 4\mathbf{y}$$
. Then \mathcal{C} is given by $4\mathbf{y}^2 - \mathbf{x}\mathbf{z} = 0$.

Since $\mathbf{x} = x + y - z$, $\mathbf{y} = y - z$, and $\mathbf{z} = x - 3y + 4z$, the matrix

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & -3 & 4 \end{pmatrix}$$

gives a projective transformation that maps C to $xz = 4y^2$.

Intersecting two conics

Let $\mathcal C$ and $\mathcal C'$ be two irreducible conics in $\mathbb P^2_{\mathbb C}$ such that $\mathcal C \neq \mathcal C'$.

Theorem

One has $1 \leqslant |\mathcal{C} \cap \mathcal{C}'| \leqslant 4$.

Proof.

We may assume that C is given by $xy = z^2$. Then C' is given by

$$\mathbf{a}x^2 + \mathbf{b}xy + \mathbf{c}y^2 + \mathbf{d}xz + \mathbf{e}yz + \mathbf{f}z^2 = 0$$

for a, b, c, d, e, f in $\mathbb C$ such that $(a,b,c,d,e,f) \neq (0,0,0,0,0,0)$.

- ▶ Let *L* be the line y = 0. Then $L \cap C \cap C' \subset [1:0:0]$.
- ▶ One has $L \cap C \cap C' = [1:0:0] \iff \mathbf{a} = 0$.
- ▶ Let $U_v = \mathbb{P}^2_{\mathbb{C}} \setminus L$. Then $U_v \cap \mathcal{C} \cap \mathcal{C}'$ is given by

$$y - 1 = x - z^2 = az^4 + dz^3 + (b + f)z^2 + ez + c = 0.$$

If $\mathbf{a} = 0$, then $L \cap \mathcal{C} \cap \mathcal{C}' = [1:0:0]$ and $0 \le |U_y \cap \mathcal{C} \cap \mathcal{C}'| \le 3$. If $\mathbf{a} \ne 0$, then $L \cap \mathcal{C} \cap \mathcal{C}' = \emptyset$ and $1 \le |U_y \cap \mathcal{C} \cap \mathcal{C}'| \le 4$.

Transversal intersection of two conics

Let $\mathcal C$ and $\mathcal C'$ be two irreducible conics in $\mathbb P^2_{\mathbb C}.$

Question

When the intersection $\mathcal{C} \cap \mathcal{C}'$ consists of 4 points?

Let P be a point in $\mathcal{C} \cap \mathcal{C}'$.

- ▶ \exists unique line $L \subset \mathbb{P}^2_{\mathbb{C}}$ such that $P \in L$ and $|L \cap C| = 1$.
- ▶ \exists unique line $L' \subset \mathbb{P}^2_{\mathbb{C}}$ such that $P \in L'$ and $|L' \cap \mathcal{C}| = 1$.

The lines L and L' are tangent lines to C and C' at P, respectively.

Definition

We say that C intersects C' transversally at P if $L \neq L'$.

▶ The answer to the question above is given by

Theorem

The following two conditions are equivalent:

- 1. the intersection $\mathcal{C} \cap \mathcal{C}'$ consists of 4 points,
- 2. C intersects C' transversally at every point of $C \cap C'$.