ML FSN Programming

Linear Regression (CO2 Emissions)

```
1 import seaborn as sns
2 import pandas as pd
3 import numpy as np
```

Downloading Data

Reading the data in

```
1 df = pd.read_csv("FuelConsumption.csv")
2
3 # take a look at the dataset
4 df.head()
```

	MO	DELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION	FU
	0	2014	ACURA	ILX	COMPACT	2.0	4	AS5	
1 df	corr()							

	MODELYEAR	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_CI
MODELYEAR	NaN	NaN	NaN	N:
ENGINESIZE	NaN	1.000000	0.934011	0.8322
CYLINDERS	NaN	0.934011	1.000000	0.7964
FUELCONSUMPTION_CITY	NaN	0.832225	0.796473	1.0000
FUELCONSUMPTION_HWY	NaN	0.778746	0.724594	0.9657
FUELCONSUMPTION_COMB	NaN	0.819482	0.776788	0.9955
FUELCONSUMPTION_COMB_MPG	NaN	-0.808554	-0.770430	-0.9356
CO2EMISSIONS	NaN	0.874154	0.849685	0.8980

1 df.corr()['CO2EMISSIONS'].sort_values(ascending=False)

CO2EMISSIONS 1.000000 FUELCONSUMPTION CITY 0.898039 FUELCONSUMPTION_COMB 0.892129 **ENGINESIZE** 0.874154 FUELCONSUMPTION_HWY 0.861748 0.849685 **CYLINDERS** FUELCONSUMPTION_COMB_MPG -0.906394 MODELYEAR NaN Name: CO2EMISSIONS, dtype: float64

Let's select some features that we want to use for regression.

```
1 cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY','FUELCO
2 cdf.head(9)
```

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_CITY	FUELCONSUMPTION_HWY	FUELCONSUMPTION
0	2.0	4	9.9	6.7	
1	2.4	4	11.2	7.7	
2	1.5	4	6.0	5.8	

Let's plot Emission values with respect to Engine size:

101

- 1 import seaborn as sns
- 2 sns.scatterplot(data=cdf,x=cdf.ENGINESIZE,y=cdf.CO2EMISSIONS,hue=cdf.CYLINDERS)

<matplotlib.axes._subplots.AxesSubplot at 0x7ff42d6a6a90>

1 cdf.columns

1 cdf_x=cdf[['ENGINESIZE', 'CYLINDERS', 'FUELCONSUMPTION_COMB']]

1 cdf_y=cdf[['CO2EMISSIONS']]

- 1 from sklearn.model_selection import train_test_split
- 2 X_train, X_test, y_train, y_test=train_test_split(cdf_x, cdf_y, test_size=0.2, random_state=4

1 X_train.head()

ENGINESIZE CYLINDERS FUELCONSUMPTION_COMB

1 y_train.head()

	CO2EMISSIONS
409	196
773	205
146	264
776	246
381	336

```
1 sns.scatterplot(X_train.ENGINESIZE,y_train.CO2EMISSIONS)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7ff42b982d90>

Multiple Regression Model

```
1 from sklearn import linear_model
2 regr = linear_model.LinearRegression()
3 regr
```

LinearRegression()

```
1 regr.fit (X_train, y_train)
```

LinearRegression()

```
1 regr.intercept_
```

```
array([65.2578757])
```

```
1 regr.coef_
    array([[10.24537129, 7.64355532, 9.68132732]])
```

Prediction

```
1 y_hat= regr.predict(X_test)
2 y_hat[0:5]
   array([[259.39421287],
           [216.04051098],
           [255.40887315],
           [261.21766954],
           [294.43880893]])
1 x = X_{test}
2 y = y_test
1 np.mean(y_hat-y)
   CO2EMISSIONS
                   -1.375796
   dtype: float64
1 #Residual sum of squares:
2 np.mean((y_hat - y) ** 2)
   CO2EMISSIONS
                    408.37553
   dtype: float64
1 # Explained variance score: 1 is perfect prediction
2 #print('Variance score: %.2f' %
3 regr.score(x, y)
```

0.890023090970219

KNN (Customer Category)

```
1 !wget -0 teleCust1000t.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain
--2022-06-20 09:03:33-- https://cf-courses-data.s3.us.cloud-object-storage.appdomair
Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud-object-storage.appdomain.cloud (
```

```
HTTP request sent, awaiting response... 200 OK
```

Length: 36047 (35K) [text/csv]
Saving to: 'teleCust1000t.csv'

teleCust1000t.csv 100%[==========] 35.20K --.-KB/s in 0.02s

2022-06-20 09:03:33 (1.39 MB/s) - 'teleCust1000t.csv' saved [36047/36047]

```
1 df = pd.read_csv('teleCust1000t.csv')
2 df.head()
```

	region	tenure	age	marital	address	income	ed	employ	retire	gender	reside
0	2	13	44	1	9	64.0	4	5	0.0	0	2
1	3	11	33	1	7	136.0	5	5	0.0	0	6
2	3	68	52	1	24	116.0	1	29	0.0	1	2
3	2	33	33	0	12	33.0	2	0	0.0	1	1
4	2	23	30	1	9	30.0	1	2	0.0	0	4
4											>

1 df.custcat.value_counts()

- 3 281
- 1 266
- 4 236
- 2 217

Name: custcat, dtype: int64

1 df.corr()['custcat'].sort_values(ascending=False)

```
custcat 1.000000
          0.193864
ed
        0.166691
0.134525
tenure
income
        0.110011
employ
marital 0.083836
reside 0.082022
address 0.067913
         0.056909
age
retire
         0.008908
gender
        -0.004966
region
         -0.023771
```

Name: custcat, dtype: float64

1 df.columns

Normalize Data Data Standardization gives the data zero mean and unit variance, it is good practice, especially for algorithms such as KNN which is based on the distance of data points:

TO use scikit learn convert pandas df to np array

```
1 X = df[['region', 'tenure', 'age', 'marital', 'address', 'income', 'ed', 'employ', 'reti
2 X[0:5]
```

	region	tenure	age	marital	address	income	ed	employ	retire	gender	reside
0	2	13	44	1	9	64.0	4	5	0.0	0	2
1	3	11	33	1	7	136.0	5	5	0.0	0	6
2	3	68	52	1	24	116.0	1	29	0.0	1	2
3	2	33	33	0	12	33.0	2	0	0.0	1	1
4	2	23	30	1	9	30.0	1	2	0.0	0	4
4											-

its still df, so use .values

[3]])

```
1 X = df[['region', 'tenure', 'age', 'marital', 'address', 'income', 'ed', 'employ', 'reti
2 X[0:5]
                                   9., 64.,
                                                                    2.],
   array([[ 2., 13., 44.,
                             1.,
                                                    5.,
                                                         0.,
                                                               0.,
          [ 3., 11., 33., 1., 7., 136., 5., 5.,
                                                         0.,
                                                                    6.],
           3., 68., 52.,
                                                                    2.],
                            1., 24., 116.,
                                            1., 29.,
                                                         0.,
                                                               1.,
            2., 33., 33.,
                             0., 12., 33., 2., 0.,
                                                         0.,
                                                                    1.],
                                                               1.,
            2., 23., 30.,
                             1.,
                                  9., 30.,
                                                         0.,
                                                               0.,
                                                                    4.]])
1 Y = df[['custcat']].values
2 Y[0:5]
   array([[1],
          [4],
          [3],
          [1],
```

```
1 X.shape
(1000, 11)
```

```
1 Y.shape
(1000, 1)
```

```
1 from sklearn import preprocessing
```

```
1 X = preprocessing.StandardScaler().fit(X).transform(X.astype(float))
2 X[0:5]
   array([[-0.02696767, -1.055125 , 0.18450456, 1.0100505 , -0.25303431,
            -0.12650641, 1.0877526, -0.5941226, -0.22207644, -1.03459817,
            -0.23065004],
           [\ 1.19883553,\ -1.14880563,\ -0.69181243,\ 1.0100505\ ,\ -0.4514148\ ,
            0.54644972, 1.9062271, -0.5941226, -0.22207644, -1.03459817,
             2.55666158],
           [ 1.19883553, 1.52109247, 0.82182601, 1.0100505, 1.23481934,
            0.35951747, -1.36767088, 1.78752803, -0.22207644,
                                                                0.96655883,
            -0.23065004],
           [-0.02696767, -0.11831864, -0.69181243, -0.9900495, 0.04453642,
            -0.41625141, -0.54919639, -1.09029981, -0.22207644, 0.96655883,
            -0.92747794],
           [-0.02696767, -0.58672182, -0.93080797, 1.0100505, -0.25303431,
            -0.44429125, -1.36767088, -0.89182893, -0.22207644, -1.03459817,
             1.16300577]])
1 X.shape, Y.shape
    ((1000, 11), (1000, 1))
1 from sklearn.model_selection import train_test_split
1 X_train, Y_train , X_test , Y_test = train_test_split(X,Y,test_size=0.2,random_state=4)
2 #order is wrong , X train then X_test
1 X_train.shape , Y_train.shape
   ((800, 11), (200, 11))
1 X_train, X_test, Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=4)
1 X_train.shape , Y_train.shape
   ((800, 11), (800, 1))
1 from sklearn.neighbors import KNeighborsClassifier
1 k = 4
2 KNN = KNeighborsClassifier(n_neighbors = k).fit(X_train,Y_train)
3 KNN
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self._fit(X, y)
   KNeighborsClassifier(n neighbors=4)
```

```
1 Y_hat = KNN.predict(X_test)
1 Y_hat[0:5]
array([1, 1, 3, 2, 4])
```

for multilabel classifier, we use jaccard score

```
1 from sklearn import metrics
1 metrics.accuracy_score(Y_test,Y_hat)
   0.32
1 metrics.accuracy_score(Y_hat,Y_test)
   0.32
1 k_max = 11
2 k_score_l=[]
3 for i in range(1,k_max):
     KNN = KNeighborsClassifier(n_neighbors=i).fit(X_train,Y_train)
4
5
     Y_hat = KNN.predict(X_test)
     scr = metrics.accuracy_score(Y_test,Y_hat)
6
     k_score_l.append(scr)
7
8 k_score_1
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self. fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self._fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self. fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self. fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self._fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/ classification.py:198: Data
     return self. fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self._fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self. fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self._fit(X, y)
   /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
     return self._fit(X, y)
    [0.3, 0.29, 0.315, 0.32, 0.315, 0.31, 0.335, 0.325, 0.34, 0.33]
1 sns.lineplot(y=np.array(k_score_l),x=np.arange(1,11))
```


Decision Tree (Drug A B C)

		Age	Sex	ВР	Cholesterol	Na_to_K	Drug
	0	23	F	HIGH	HIGH	25.355	drugY
	1	47	М	LOW	HIGH	13.093	drugC
	2	47	М	LOW	HIGH	10.114	drugC
	3	28	F	NORMAL	HIGH	7.798	drugX
	A	61		1 011/	шоп	10 012	drugV
1 dr	ug.he	ad()					

```
Sex
                  BP
                      Cholesterol Na_to_K
  Age
                                            Drug
                                    25.355 drugY
0
   23
         F
               HIGH
                            HIGH
1
   47
               LOW
                            HIGH
                                   13.093 drugC
         M
2
   47
                LOW
                            HIGH
                                    10.114 drugC
         M
3
   28
           NORMAL
                            HIGH
                                    7.798
                                           drugX
                                    18.043 drugY
   61
         F
                LOW
                            HIGH
```

```
1 X = drug[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']].values
2 X[0:5]
    array([[23, 'F', 'HIGH', 'HIGH', 25.355],
             [47, 'M', 'LOW', 'HIGH', 13.093],
[47, 'M', 'LOW', 'HIGH', 10.114],
[28, 'F', 'NORMAL', 'HIGH', 7.798],
             [61, 'F', 'LOW', 'HIGH', 18.043]], dtype=object)
1 Y = drug[['Drug']].values
2 Y[0:5]
    array([['drugY'],
             ['drugC'],
             ['drugC'],
             ['drugX'],
             ['drugY']], dtype=object)
1 drug.columns
```

```
Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
```

```
1 from sklearn import preprocessing
2
3
4 LE_Sex = preprocessing.LabelEncoder()
5 LE_Sex.fit(['M','F'])
6 X[:,1]= LE_Sex.transform(X[:,1])
7 X[:5]
```

```
array([[23, 0, 'HIGH', 'HIGH', 25.355],
           [47, 1, 'LOW', 'HIGH', 13.093],
           [47, 1, 'LOW', 'HIGH', 10.114],
           [28, 0, 'NORMAL', 'HIGH', 7.798],
           [61, 0, 'LOW', 'HIGH', 18.043]], dtype=object)
1 drug.BP.unique()
    array(['HIGH', 'LOW', 'NORMAL'], dtype=object)
1 LE_BP = preprocessing.LabelEncoder()
2 LE BP.fit(['HIGH', 'LOW', 'NORMAL'])
3 X[:,2]=LE_BP.transform(X[:,2])
4 X[:5]
   array([[23, 0, 0, 'HIGH', 25.355],
           [47, 1, 1, 'HIGH', 13.093],
           [47, 1, 1, 'HIGH', 10.114],
           [28, 0, 2, 'HIGH', 7.798],
           [61, 0, 1, 'HIGH', 18.043]], dtype=object)
1 drug.Cholesterol.unique()
    array(['HIGH', 'NORMAL'], dtype=object)
1 LE_Chol = preprocessing.LabelEncoder()
2 LE_Chol.fit([ 'NORMAL', 'HIGH'])
3 X[:,3] = LE_Chol.transform(X[:,3])
1 X
    array([[23, 0, 0, 0, 25.355],
           [47, 1, 1, 0, 13.093],
           [47, 1, 1, 0, 10.114],
           [28, 0, 2, 0, 7.798],
           [61, 0, 1, 0, 18.043],
           [22, 0, 2, 0, 8.607],
           [49, 0, 2, 0, 16.275],
           [41, 1, 1, 0, 11.037],
           [60, 1, 2, 0, 15.171],
           [43, 1, 1, 1, 19.368],
           [47, 0, 1, 0, 11.767],
           [34, 0, 0, 1, 19.199],
           [43, 1, 1, 0, 15.376],
           [74, 0, 1, 0, 20.942],
           [50, 0, 2, 0, 12.703],
           [16, 0, 0, 1, 15.516],
           [69, 1, 1, 1, 11.455],
           [43, 1, 0, 0, 13.972],
           [23, 1, 1, 0, 7.298],
           [32, 0, 0, 1, 25.974],
           [57, 1, 1, 1, 19.128],
           [63, 1, 2, 0, 25.917],
           [47, 1, 1, 1, 30.568],
```

[48, 0, 1, 0, 15.036], [33, 0, 1, 0, 33.486], [28, 0, 0, 1, 18.809], [31, 1, 0, 0, 30.366], [49, 0, 2, 1, 9.381], [39, 0, 1, 1, 22.697], [45, 1, 1, 0, 17.951],

```
[18, 0, 2, 1, 8.75],
           [74, 1, 0, 0, 9.567],
           [49, 1, 1, 1, 11.014],
           [65, 0, 0, 1, 31.876],
           [53, 1, 2, 0, 14.133],
           [46, 1, 2, 1, 7.285],
           [32, 1, 0, 1, 9.445],
           [39, 1, 1, 1, 13.938],
           [39, 0, 2, 1, 9.709],
           [15, 1, 2, 0, 9.084],
           [73, 0, 2, 0, 19.221],
           [58, 0, 0, 1, 14.239],
           [50, 1, 2, 1, 15.79],
           [23, 1, 2, 0, 12.26],
           [50, 0, 2, 1, 12.295],
           [66, 0, 2, 1, 8.107],
           [37, 0, 0, 0, 13.091],
           [68, 1, 1, 0, 10.291],
           [23, 1, 2, 0, 31.686],
           [28, 0, 1, 0, 19.796],
           [58, 0, 0, 0, 19.416],
           [67, 1, 2, 1, 10.898],
           [62, 1, 1, 1, 27.183],
           [24, 0, 0, 1, 18.457],
           [68, 0, 0, 1, 10.189],
           [26, 0, 1, 0, 14.16],
           [65, 1, 0, 1, 11.34],
1 from sklearn import preprocessing
2 from sklearn.model_selection import train_test_split
1 X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=4)
1 X train.shape
    (160, 5)
1 X_test.shape
    (40, 5)
1 DecTree = DecisionTreeClassifier(criterion='entropy',max_depth=4)
2 DecTree
   DecisionTreeClassifier(criterion='entropy', max depth=4)
```

1 DecTree.fit(X_train,Y_train)

DecisionTreeClassifier(criterion='entropy', max_depth=4)

SVM (Cancer Data Set)

2 df.head()

	ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	Nc
0	1000025	5	1	1	1	2	1	3	
1	1002945	5	4	4	5	7	10	3	
2	1015425	3	1	1	1	2	2	3	
3	1016277	6	8	8	1	3	4	3	
4	1017023	4	1	1	3	2	1	3	
4									•

```
1 df.columns
```

1 df=df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiSize', 'BareNuc', 'BlandChr

1 df

	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNuc1
0	5	1	1	1	2	1	3	1
1	5	4	4	5	7	10	3	2
2	3	1	1	1	2	2	3	1
3	6	8	8	1	3	4	3	7
4	4	1	1	3	2	1	3	1
694	3	1	1	1	3	2	1	1
695	2	1	1	1	2	1	1	1
696	5	10	10	3	7	3	8	10
697	4	8	6	4	3	4	10	6
698	4	8	8	5	4	5	10	4

699 rows × 10 columns

1 df.columns

- 1 import seaborn as sns
- 2 sns.scatterplot(df.Clump,df.UnifSize,hue=df.Class)

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass
  FutureWarning
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f34823a3790>

```
Class
          2
8
```

1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 699 entries, 0 to 698
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype
0	Clump	699 non-null	int64
1	UnifSize	699 non-null	int64
2	UnifShape	699 non-null	int64
3	MargAdh	699 non-null	int64
4	SingEpiSize	699 non-null	int64
5	BareNuc	699 non-null	object
6	BlandChrom	699 non-null	int64
7	NormNucl	699 non-null	int64
8	Mit	699 non-null	int64
9	Class	699 non-null	int64
dtyp	es: int64(9),	object(1)	

```
memory usage: 54.7+ KB
```

```
1 df['BareNuc'] = df['BareNuc'].astype('int')
```

```
Traceback (most recent call last)
```

🗘 7 frames -

```
<ipython-input-16-f54d3735dc60> in <module>()
----> 1 df['BareNuc'] = df['BareNuc'].astype('int')
```

/usr/local/lib/python3.7/dist-packages/pandas/_libs/lib.pyx in pandas._libs.lib.astype_intsafe()

ValueError: invalid literal for int() with base 10: '?'

SEARCH STACK OVERFLOW

```
1 df = df[pd.to numeric(df['BareNuc'], errors='coerce').notnull()]
2 df['BareNuc'] = df['BareNuc'].astype('int')
3 df.dtypes
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us

Clump int64 UnifSize int64 UnifShape int64 MargAdh int64

```
SingEpiSize int64
BareNuc int64
BlandChrom int64
NormNucl int64
Mit int64
Class int64
```

dtype: object

1 df.head()

```
UnifSize UnifShape MargAdh SingEpiSize BareNuc BlandChrom NormNucl
0
       5
                  1
                              1
                                        1
                                                      2
                                                                1
                                                                              3
                                                                                         1
1
       5
                  4
                              4
                                        5
                                                      7
                                                               10
                                                                              3
                                                                                         2
2
       3
                  1
                              1
                                        1
                                                      2
                                                                2
                                                                              3
                                                                                         1
3
       6
                  8
                              8
                                                       3
                                                                              3
                                                                                        7
                                        1
                                                                4
                                                      2
                                                                              3
                                                                                         1
4
       4
                  1
                              1
                                        3
                                                                1
```

```
1 X=df.values[:,:-1]
2 X
```

```
1,
array([[ 5,
            1,
                 1, ...,
                          3,
                                  1],
       [ 5,
            4,
                 4, ...,
                          3,
                              2,
                                  1],
       [ 3,
                 1, ...,
                          3,
                              1,
                                  1],
             1,
       [ 5, 10, 10, ..., 8, 10,
       [ 4, 8, 6, ..., 10, 6,
                                  1],
               8, ..., 10, 4,
       [ 4,
            8,
                                 1]])
```

```
1 Y=df.values[:,-1]
```

2 Y

```
array([2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4,
      2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 4, 4, 4, 4, 4, 2,
      4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 4,
      4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2,
      2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4,
      4, 4, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2,
      2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 2,
      4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 2, 4, 2, 4, 2, 2,
      2, 4, 4, 2, 4, 4, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2,
      2, 4, 4, 2, 2, 2, 4, 4, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 4, 4,
      4, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2,
      2, 4, 2, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4,
      4, 4, 2, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 2, 4, 4,
      2, 4, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4,
      2, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2,
      4, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2,
      2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2,
      2, 4, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2,
      2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2,
```

SVM algorithm offers a choice of kernel functions for performing its processing.

mapping data into a higher dimensional space is called kernelling.

The mathematical function used for the transformation is known as the kernel function, and can be of different types, such as:

1.Linear 2.Polynomial 3.Radial basis function (RBF) 4.Sigmoid

```
1 from sklearn import svm
1 SVM = svm.SVC(kernel='rbf')
2 SVM.fit(X_train,Y_train)
   SVC()
1 Y hat=SVM.predict(X test)
2 Y_hat
    array([2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 2,
           4, 4, 4, 4, 2, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4,
           4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 2, 4, 4,
           4, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 4,
           2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 2, 4,
           2, 2, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 2, 4, 2,
           2, 2, 2, 2, 4])
1
   from sklearn import metrics
2
   metrics.accuracy_score(Y_test,Y_hat)
```

0.9635036496350365

→ K MEANS clustering (Customer Segmentation)

```
!wget -0 Cust_Segmentation.csv https://cf-courses-data.s3.us.cloud-object-storage.app

--2022-06-20 10:42:27-- https://cf-courses-data.s3.us.cloud-object-storage.appdomain
Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-HTTP request sent, awaiting response... 200 OK
Length: 33426 (33K) [text/csv]
Saving to: 'Cust_Segmentation.csv'

Cust_Segmentation.c 100%[=============]] 32.64K --.-KB/s in 0.02s
2022-06-20 10:42:27 (1.30 MB/s) - 'Cust_Segmentation.csv' saved [33426/33426]

df = pd.read_csv("Cust_Segmentation.csv")
df.head()
```

	Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	Address	DebtIncome
0	1	41	2	6	19	0.124	1.073	0.0	NBA001	
1	2	47	1	26	100	4.582	8.218	0.0	NBA021	
2	3	33	2	10	57	6.111	5.802	1.0	NBA013	
3	4	29	2	4	19	0.681	0.516	0.0	NBA009	
4)

As you can see, Address in this dataset is a categorical variable. The k-means algorithm isn't directly applicable to categorical variables because the Euclidean distance function isn't really meaningful for discrete variables. So, let's drop this feature and run clustering

```
1 df=df.drop('Address',axis=1)
2 df.head()
```

	Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	DebtIncomeRatio
0	1	41	2	6	19	0.124	1.073	0.0	6.3
1	2	47	1	26	100	4.582	8.218	0.0	12.8
2	3	33	2	10	57	6.111	5.802	1.0	20.9

1 from sklearn import preprocessing

1 from sklearn.preprocessing import StandardScaler

```
1 X = df.values[:,1:] #removing id column
2 X = np.nan_to_num(X)
3 Clus_dataSet = StandardScaler().fit_transform(X)
4 Clus_dataSet
```

1 from sklearn.cluster import KMeans

```
1 k = 3
2 k_means = KMeans(init = "k-means++", n_clusters = k, n_init = 12)
3 k_means.fit(X)
```

KMeans(n clusters=3, n init=12)

```
1 labels = k_means.labels_
```

1 labels

```
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1,
2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1,
2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2,
1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1,
1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0,
1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1,
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1,
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1,
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2,
1, 2, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1,
1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2,
1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2,
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2], dtype=int32)
```

1 df.head()

	Customer Id	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	DebtIncomeRatio
0	1	41	2	6	19	0.124	1.073	0.0	6.3
1	2	47	1	26	100	4.582	8.218	0.0	12.8
2	3	33	2	10	57	6.111	5.802	1.0	20.9
3	4	29	2	4	19	0.681	0.516	0.0	6.3
4	5	47	1	31	253	9.308	8.908	0.0	7.2

¹ df['Clus km']=labels

² df.head()

1 df.groupby('Clus_km').mean()

Customer Id Clus_km		Age	Edu	Years Employed	Income	Card Debt	Other Debt	D
0	410.166667	45.388889	2.666667	19.55556	227.166667	5.678444	10.907167	
1	432.468413	32.964561	1.614792	6.374422	31.164869	1.032541	2.104133	
4								•

1 df.groupby('Clus_km').mean().corr()

	Customer Id	Age	Edu	Years Employed	Income	Card Debt	Otl De
Customer Id	1.000000	-0.836471	-0.559038	-0.836649	-0.507732	-0.667231	-0.6412
Age	-0.836471	1.000000	0.921998	1.000000	0.896823	0.966306	0.9569
Edu	-0.559038	0.921998	1.000000	0.921872	0.998160	0.990595	0.9947
Years Employed	-0.836649	1.000000	0.921872	1.000000	0.896679	0.966222	0.9568
Income	-0.507732	0.896823	0.998160	0.896679	1.000000	0.980475	0.9866
Card Debt	-0.667231	0.966306	0.990595	0.966222	0.980475	1.000000	0.9994
Other Debt	-0.641298	0.956912	0.994704	0.956817	0.986641	0.999412	1.0000
Defaulted	0.698847	-0.192589	0.202379	-0.192908	0.261389	0.066477	0.1006
4							

1 sns.swarmplot(x=df.Age,y=df.Income,hue=df.Clus_km)

```
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 50.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 66.7
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 78.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 81.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 86.7
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 80.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 81.8
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 86.
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 82.4
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 88.1
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 70.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 83.9
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 81.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 82.5
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 72.7
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 71.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 75.6
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 59.4
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 61.1
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 45.5
  warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 33.3
  warnings.warn(msg, UserWarning)
```

1 sns.swarmplot(x=df.Edu,y=df.Income,hue=df.Clus_km)

```
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 77.6
   warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 59.1
   warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 17.8
   warnings.warn(msg, UserWarning)
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 26.5
   warnings.warn(msg, UserWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7ff420a2c9d0>
```

