# Workshop - Text Mining with Python

Kanda Tiwatthanont @ TNI

Wed 17 and Mon 22 May 2017

#### Agenda - Day 1

- Part 1: Introduction (10.00 11.00)
  - What is Data Mining?
  - Text Mining -- Social Mind Extraction
- Part 2: Python (11.00 12.00 / 13.00 14.00)
  - Python Introduction
  - Anaconda Installation (Data Science Distribution of Python)
  - Jupyter Introduction (Next Generation Engineering Notebook)
    - "Hello World!" in Jupyter, and so on.
- Part3 : Pandas / Seaborn (14.00 15.00)
  - Pandas (Structured Data Analysis Tool)
  - Seaborn (Statistical Data Visualization)

#### Agenda - Day 2

- Part 4 : Data Mining Framework (10.00 12.00)
  - Framework Overview
  - Scikit-learn -- Machine Learning Tool for Data Scientist
  - Data Prediction Hands-on
- Part 5 : Sentiment Analysis (13.00 15.00)
  - Introduction Text Mining
  - Unstructured to Structured Data
  - Text Classification

# Workshop Part 1 - Introduction

Data Mining & Text Mining

Mining patterns from data



Market Basket Analysis



Fraud Detection

- Mining patterns from data
- Is it database?
- Is it statistics?
- Is it machine learning?

- Mining patterns from data
- Is it database?



Ref: http://www.dbjournal.ro/archive/14/14\_3.pdf

- Mining patterns from data
- Is it statistics?
  - Non Functional form
  - Speed are important
  - Data size

- Mining patterns from data
- Is it machine learning?
  - ML concerns speed and spaces (Algorithms)
  - Data Mining concerns data (Business side)



## Data mining applications for business

#### Retail



- Customer shopping behaviour
- Customer segmentation
- Customer retention

#### Banking



- Credit score
- Customer segmentation

#### Insurance



- Risk factor identification
- Fraud detection

#### Social



- Keyword Suggestions
- Face recognition
- Recommendation

## Data Mining Tasks







#### **Predictive**

Making predictions using data.
There is an outcome we are trying to predict.

**Example:** Spam mail filtering

#### **Descriptive**

Extracting structure from data. There is no right answer.

**Example:** Customer behaviors segmentation

Kanda Tiwatthanont @ TNI







# Part 1 Introduction Text Mining

## Text mining

Mining patterns from unstructured data

#### Structured vs. Unstructured data



#### Structured data

| Passengerld | Survived | Pclass | Sex    | Age | SibSp | Parch | Fare    |
|-------------|----------|--------|--------|-----|-------|-------|---------|
| 1           | 0        | 3      | male   | 22  | 1     | 0     | 7.25    |
| 2           | 1        | 1      | female | 38  | 1     | 0     | 71.2833 |
| 4           | 1        | 1      | female | 35  | 1     | 0     | 53.1    |
| 5           | 0        | 3      | male   | 35  | 0     | 0     | 8.05    |
| 7           | 0        | 1      | male   | 54  | 0     | 0     | 51.8625 |
| 8           | 0        | 3      | male   | 2   | 3     | 1     | 21.075  |
| 10          | 1        | 2      | female | 14  | 1     | 0     | 30.0708 |
| 11          | 1        | 3      | female | 4   | 1     | 1     | 16.7    |
| 13          | 0        | 3      | male   | 20  | 0     | 0     | 8.05    |
| 15          | 0        | 3      | female | 14  | 0     | 0     | 7.8542  |
| 16          | 1        | 2      | female | 55  | 0     | 0     | 16      |
| 17          | 0        | 3      | male   | 2   | 4     | 1     | 29.125  |
| 18          | 1        | 2      | male   | NA  | 0     | 0     | 13      |
| 19          | 0        | 3      | female | 31  | 1     | 0     | 18      |
| 20          | 1        | 3      | female | NA  | 0     | 0     | 7.225   |
| 21          | 0        | 2      | male   | 35  | 0     | 0     | 26      |
| 22          | 1        | 2      | male   | 34  | 0     | 0     | 13      |

#### Unstructured data















## Data Mining vs. Text Mining



- Text summarization (การสรุปใจความสำคัญ)
- Machine translation (MT) (การแปลภาษา)
- Question answering (QA) (การถามตอบ)
- Opinion mining (การวิเคราะห์ความคิดเห็น)
- Robotic IVR



http://textcompactor.com/







#### **Text mining**

Keyword "TNI"



#### **Text summarization**

http://textcompactor.com/



- Brand Monitoring
- **★** Feedback
- ★ Competitors Comparing



## Data Analytics Specialization Which tool to Choose?















## Mining Tools

#### **Business**



written in java, drag and drop, model form Weka, R. Free 10K records



written in Python, drag and drop, simple and easy to learn

#### **Academic**



Very sophisticated Free, but hard to use



Statistical and math computing



Written in Python,
Make the learning curve easier
Fast and reliable library

Kanda Tiwatthanont @ TNI

#### Basic



- **MySQL** Easy to use operators
  - Very popular among data scientist



- Interactively with functions, graphs, and limited statistics.
- apply in a company, presenting data

#### Advance



- Easy to learn
- Enterprises using SAS



- A huge number of statistical, graphical, and analytical packages
- R is not enough, many BigData use Python



- Many key advantages over R (production environments, parallel processing)
- Lacks many statistical packages (but provide pandas package)

## Software you used for Data Science

What software you used for Analytics, Data Mining, Data Science, Machine Learning projects in the past 12 months?

#### Data Science Platforms/Suites

- RapidMiner (554) 8%
- Excel (345) 5%
- Anaconda (258) 4%
- scikit-learn (219) 3%
- Orange (53) 1%

#### Deep Learning

- TensorFlow (242) 3%
- Theano (64) 1%

#### Languages

- R language (603) 9%
- Python (577) 8%
- SQL language (413) 6%

Ref: Vote by people who are attended rapidminer class with organized by RapidMiner (10 may 2017)

## Programming Languages (Data Analytics)

#### Analysis / Data mining:

- R Language
- Python
- SQL

#### **Big Data (Hadoop)**

- Java
- Python

#### **Visualization**

JavaScript



## Next Part 2 - Python

Kanda Tiwatthanont @ TNI