STA 9705: HW6

Tanay Mukherjee

12.6

The variance of y_1 , y_2 , x_1 , x_2 , and x_3 on diag(**S**)'= (0.016, 70.559, 1106.414, 2381.883, 2136.396).

		Co	ovariance Matri	x	
	Y1	Y2	X1	X2	Х3
Y1	0.016182	0.216029	0.787169	-0.213845	2.189072
Y2	0.216029	70.558937	26.228986	-23.956039	-20.841546
X1	0.787169	26.228986	1106.413527	396.732367	108.383575
X2	-0.213845	-23.956039	396.732367	2381.882609	1142.637681
Х3	2.189072	-20.841546	108.383575	1142.637681	2136.396135

Eigen Values of S

	Eigenv	alues of the C	ovariance Ma	trix	
	Eigenvalue	Difference	Cumulative		
1	3466.18182	2201.71128	0.6086	0.6086	
2	1264.47054	369.20218	0.2220	0.8306	
3	895.26836	825.93313	0.1572	0.9878	
4	69.33524	69.32382	0.0122	1.0000	
5	0.01142		0.0000	1.0000	

Eigen Values of R

	Eigenv	alues of the C	orrelation Ma	trix
_	Eigenvalue	Difference	Proportion	Cumulative
1	1.71724028	0.48339142	0.3434	0.3434
2	1.23384887	0.27364618	0.2468	0.5902
3	0.96020268	0.17357027	0.1920	0.7823
4	0.78663241	0.48455665	0.1573	0.9396
5	0.30207576		0.0604	1.0000

From the table above we can look at the proportion column and see for S, 2 principal components account for \sim 83% of the variances whereas for R, 3 principal components account for \sim 78% of the variances. The variances for S are significantly distanced as compared to R.

We look at the average eigen values of S and R and also the scree plot. Based on that we can say that based on the λ_{avg} for S and R is 1139.05 and 1 respectively. That makes λ_1 and λ_2 for S relevant and λ_1 , λ_2 and λ_3 for R relevant. The values of which are highlighted above. Also, from the scree plot we look for the elbow point and that also gives us the same result, that is, 2 principal components for S and 3 for R.

The first principal component is largely a weighted average of the last two variables, x2 and x3, which have the largest variances. The second and third components represent contrasts in the last three variables and could be described as "shape" components. The fourth and fifth components are associated uniquely with y2 and y1, respectively. These components are "variable specific". As expected, the principal components of R show an entirely different pattern. All five variables contribute to the first three components of R, whereas in S, y1 and y2 have small variances and contribute almost nothing to the first three components.

Therefore, we conclude that we will go with R over S.

Eigen vectors for S and the respective scree plot is below:

Eigen vectors for R and the respective scree plot is below:

12.9

The variance of y_1 , y_2 , y_3 , y_4 , y_5 , y_6 on diag(\mathbf{S})'= (0.691, 5.401, 2006682.353, 90.290, 56.374,18.078).

		C	ovariance Ma	ıtrix		
	Y1	Y2	Y3	Y4	Y5	Y6
Y1	5.040	895.000	5.567	1.682	0.270	0.254
Y2	895.000	1930000.000	12679.167	3765.833	-656.667	-71.000
Y3	5.567	12679.167	130.750	-17.100	0.075	1.555
Y4	1.682	3765.833	-17.100	47.823	-5.430	-2.035
Y5	0.270	-656.667	0.075	-5.430	11.927	-0.000
Y6	0.254	-71.000	1.555	-2.035	-0.000	0.655

Eigen Values of S

	Eigenv	alues of the C	ovariance Ma	trix		
	Eigenvalue	Difference	Proportion	Cumulative		
1	1930091.29	1930004.76	0.9999	0.9999		
2	86.53	75.25	0.0000	1.0000		
3	11.27	6.65	0.0000	1.0000		
4	4.62	2.67	0.0000	1.0000		
5	1.95	1.42	0.0000	1.0000		
6	0.53		0.0000	1.0000		

Eigen Values of R

	Eigenv	alues of the C	orrelation Ma	trix
	Eigenvalue	Difference	Proportion	Cumulative
1	1.98091253	0.42126338	0.3302	0.3302
2	1.55964915	0.57499466	0.2599	0.5901
3	0.98465449	0.06242083	0.1641	0.7542
4	0.92223366	0.38232146	0.1537	0.9079
5	0.53991219	0.52727422	0.0900	0.9979
6	0.01263798		0.0021	1.0000

From the table above we can look at the proportion column and see for S, 1 principal components account for \sim 99.99% of the variances whereas for R, 3 principal components account for \sim 85% of the variances. We should definitely go for R in this case.

We look at the average eigen values of S and R and also the scree plot. Based on that we can say that based on the λ_{avg} for S and R is 321699.37 and 1 respectively. That makes λ_1 only for S relevant and λ_1 , λ_2 and λ_3 for R relevant. The values of which are highlighted above. Also, from the scree plot we look for the elbow point and that also gives us the same result, that is, 2 principal components for S and 3 for R.

The first principal component is largely a weighted average of the y3. The second principal component contrasts with y4 and y5 and third component represent contrasts for y6. Thus, S accounts for most of the variance and y3 would essentially constitute that single principal component. As expected, the principal components of R show an entirely different pattern. The principal components from R, on the other hand, are not dominated by y3.

Therefore, we conclude that we will go with R over S.

Eigen vectors for S and the respective scree plot is below:

Eigen vectors for R and the respective scree plot is below:

13.8 (a)

The output for each rotation is given below as obtained from SAS:

Principal Component Loadings

Factor Pattern											
		Fact	tor1	Factor2							
Y1	8 yr	0.94	0.94913		528						
Y2 8 1/2 yr		0.97	386	-0.192	285						
Y3 9 yr	9 yr	0.97822 0.94292		0.17114 0.31886							
Y4	9 1/2 yr										
Variance Explained by Each Factor											
• • • • • • • • • • • • • • • • • • • •											
•	Facto	r1		Fact	or2						

Varimax Rotated Laodings

Rotated Factor Pattern										
		Factor'	Factor2							
Y1	8 yr	0.88388	0.45475							
Y2	8 1/2 yr	0.8297 ⁻	0.54514							
Y3	9 yr	0.57766	0.80778							
Y4	9 1/2 yr	0.44893	0.88838							
Varia	ınce Expla	ined by	Each Factor							
Factor1 Factor2										
2.0048990 1.9456939										

The Harris–Kaiser orthoblique rotation produced loadings for which the variables have a complexity of 1. These oblique loadings provide a much cleaner simple structure than that given by the varimax loadings. For interpretation, we see that one factor represents variables 1 and 2, and the other factor represents variables 3 and 4. This same clustering of variables can be deduced from the varimax loadings if we simply use the larger of the two loadings for each variable.

Orthoblique Pattern Loadings

(a)

Three of the eigen values are greater than one but it takes 4 eigen values to constitute more than 80% in proportion. Also, from the scree plot we can see the elbow point says the value of 'm' should be 4.

(b) The value of loadings is below:

1. Principal Component Loadings

			F	actor	Patteri	1			
			Facto	r1	Factor2	? Fac	tor3		
		X1 0.536		12	0.46140	0.47	7826		
		X2	-0.129	45	0.86962	-0.18	3155		
		Х3	0.513	50 -	0.25389	-0.44	1841		
		X4	0.723	91 -	0.36597	-0.1	1031		
		X 5	-0.415	54 -	0.41424	0.64	1920		
		X 6	0.714	52	0.12367	0.4	1982		
		Var	iance Ex	kplain	ed by E	ach Fa	ctor		
		F	actor1	Fa	actor2	Fac	tor3		
		1.77	751277	1.35	44159	1.0726	3505		
	Fina	I Con	nmunali	ty Est	imates	Total =	4.202	2194	
X1		X2		Х3		X4		X 5)
0.72905685	0.80595	5890	0.5292	1335	0.670	14233	0.76	573408	0.7020885

2. Varimax Rotated Loadings

		Ort	hogona	l Trar	sforma	tion N	Matrix		
				1	2		3		
		1	0.7270)7 ().68234	0.0	7603		
		2	-0.4171	10 0	0.35103	0.8	33833		
		3	-0.5453	34 ().64124	-0.5	53983		
			Rotat	ted Fa	actor Pa	ttern			
		Factor1 Factor2 Fac				actor3			
				47	0.83447	0.	16939		
		X2	-0.3578	83	0.10052	2 0.	.81720		
		Х3	0.723	0.72378 -0.0		0.	.06826		
		X 4	0.739 ⁻	13	0.29475		19222		
		X 5	-0.4833	38 -	-0.01266	-0.	72932	J	
		X 6	0.2389	98	0.80017	-0.	.06863		
		Var	iance Ex	cplair	ed by E	ach F	actor		
		F	actor1	F	actor2	F	actor3		
		1.49	30209	1.43	44375	1.27	47357		
	Fina	I Con	nmunali	ty Es	timates:	Tota	I = 4.20	2194	
X1		X2		Х3		X	4	X5	X6
0.72905685	0.80595	5890	0.5292	1335	0.670	14233	3 0.7	6573408	0.70208857

(c) The value of loadings is below:

1. Principal Component Loadings

			I	Facto	r Pattern				
			Facto	or1	Factor2	actor2 Fac			
		X1	0.402	92	0.31201	0.22	2658		
		X2	-0.106	324	0.56866	-0.10	0018		
		Х3	0.342	267	-0.13858	-0.19	9721		
		X4	0.558	861	-0.24673	-0.08	3970		
		X5	-0.286	641	-0.24640	0.32	2767		
		X6	0.555	571	0.08897	0.19	9721		
		Var	iance E	xplai	ned by Ea	ch Fa	ctor		
		Fa	ctor1	ı	Factor2	Fa	ctor3		
		0.993	95196	0.56	942354	0.254	56943		
	Fir	nal Con	nmunal	ity Es	timates:	Total =	1.8179	945	
X1		X2		X 3	3	X4		X 5	X6
0.31103433	0.344	69386	0.175	51746	0.3809	6675	0.250	10590	0.35562663

2. Varimax Rotated Loadings

		Ort	thogona	ıl Tra	nsformat	ion Ma	trix		
				1	2		3		
		1	0.7218	84	0.68616	0.09	013		
		2	-0.46399		0.38321	0.79	867		
		3	-0.5134	48	0.61833	-0.59	199		
			Rota	ted F	actor Pat	tern			
			Factor1 Factor2 Factor3						
		X1	0.029	73	0.53614	0.15	069		
		X2	2 -0.2891		0.08307	0.50)419		
		Х3	0.41291		0.06009	0.03	3754		
		X4	0.56377		0.23329	-0.09333			
		X 5	-0.260	67	-0.08834	-0.41756			
		X6	0.258	59	0.53735	0.00381			
		Var	iance E	xplai	ned by E	ach Fa	ctor		
		Fa	actor1		Factor2	Fa	ctor3		
		0.707	61307	0.64	1892094	0.461	41092		
	Fir	nal Con	nmunali	ity Es	stimates:	Total =	1.8179	45	
X1		X2		X 3	3	X4		X 5	
).31103433	0.344	69386	0.1755	51746	0.3809	96675	0.250	10590	0.355626

(d) The pattern of loadings is similar in parts (b) and (c), and the interpretation of the three factors would be the same. This means, the interpretation of the three factors in terms of variables are like:

factor 1 represents x3 and x4,

factor 2 represents x1 and x6, and

factor 3 represents x2 and x5.

Path Diagram

APPENDIX:

PROC PRINCOMP;

RUN;

VAR Y1 Y2 X1 X2 X3;

This section will have the entire SAS code.

```
# 12.6

DATA work.DIABETES;

INFILE "/folders/myfolders/data/T3_4_DIABETES.dat";
INPUT OBS Y1 Y2 X1 X2 X3;

TITLE "HW6 Q-12.6";

PROC PRINCOMP COV;

VAR Y1 Y2 X1 X2 X3;

RUN;
```

```
DATA work.HEMATOL;

INFILE "/folders/myfolders/data/T4_3_HEMATOL.dat";
INPUT OBS Y1 Y2 Y3 Y4 Y5 Y6;

TITLE "HW6 Q-12.9";

PROC PRINCOMP COV;

VAR Y1 Y2 Y3 Y4 Y5 Y6;

RUN;

PROC PRINCOMP;

VAR Y1 Y2 Y3 Y4 Y5 Y6;

RUN;
```

13.8 (a)

```
DATA work.BONE;

INFILE "/folders/myfolders/data/T3_6_BONE.dat";
INPUT OBS Y1 Y2 Y3 Y4;

TITLE "HW6 Q-13.8 (a)";

LABEL Y1='8 yr' Y2='8 1/2 yr' Y3='9 yr' Y4='9 1/2 yr';

PROC FACTOR METHOD=PRIN NFACT=2 ROTATE=VARIMAX PLOT = ALL;
VAR Y1-Y4;
RUN;

PROC FACTOR METHOD=PRIN NFACT=2 ROTATE=HK PLOT = ALL;
VAR Y1-Y4;
RUN;
```

13.12

```
DATA work.PILOT;

INFILE "/folders/myfolders/data/T5_6_PILOT.dat";
INPUT OBS X1 X2 X3 X4 X5 X6;

TITLE "HW6 Q-13.12";

PROC FACTOR METHOD=PRIN NFACT=3 ROTATE=VARIMAX PLOT = ALL;
VAR X1-X6;

RUN;

PROC FACTOR METHOD=PRIN PRIORS=SMC NFACT=3 ROTATE=VARIMAX PLOT = ALL;
VAR X1-X6;
RUN;
RUN;
```