

Dostępna pamięć: 128MB

Zakład

Pewnego dnia Bajtek, popijając soczek pomarańczowy postanowił założyć się z Bitorem, w którym to zakładzie Bitor, ma za zadanie wypić n soczków z kolekcji Bajtka w określonym czasie. Dla uproszczenia soczki będziemy numerować liczbami od 1 do n.

Po wypiciu soczku o numerze i brzuch Bitora wypełnia się o dodatkowe l_i mililitrów. Po wypiciu danego soczku Bitor może wypocząć przez m_i minut, zwiększając pojemność brzucha Bitora o m_i mililitrów(jednocześnie zmniejszając pojemniość o l_i mililitrów).

Bitor z łatwością wypija kolejne soczki, jednak nie może dopuścić, by w dowolnym momencie jego brzuch się przepełnił (pojemność brzucha spadła do zera lub poniżej). Czy Bitor może ustalić taką strategię picia wszystkich soczków, żeby wygrać zakład?

Wejście

Pierwszy wiersz wejścia zawiera dwie liczby całkowite n i p ($1 \le n, z \le 100000$), oznaczające liczbę soczków i początkową pojemność brzucha Bitora. W kolejnych n wierszach znajdują się opisy soczków: i-ty z tych wierszy zawiera dwie liczby całkowite l_i i m_i ($0 \le l_i, m_i \le 100000$), oznaczające wielkość soczku o numerze i w mililitrach oraz ilość minut, które Bitor może wykorzystać na odpoczynek po jego wypiciu.

Wyjście

Pierwszy wiersz wyjścia powinien zawierać jedno słowo TAK lub NIE, w zależności od tego, czy Bitor jest w stanie wypić wszystkie soczki. Jeśli da się wypić wszystkie soczki, należy wypisać także drugi wiersz zawierający ciąg n parami różnych liczb całkowitych z zakresu od 1 do n, pooddzielanych pojedynczymi odstępami. Ciąg ten powinien opisywać przykładową kolejność wypijania soczków, a jego kolejne wyrazy powinny odpowiadać numerom kolejno wypijanych soczków. Jeśli istnieje więcej niż jedna poprawna odpowiedź, Twój program powinien wypisać dowolną z nich.

Przykład

Wejście	Wyjście	
1 1	NIE	
1 1		

Wejście	Wyjście	
3 5	TAK	
3 3	2 3 1	
4 8		
7 3		

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \leqslant 2000$	30
2	brak dodatkowych założeń	70