

Lecture 16: Analog Circuits

VE311 Electronic Circuits

Xuyang Lu 2023 Fall

Recap of Last Lecture

Source Follower

Topic to be covered

- Source Follower
- Emitter Follower
- Common Gate

CS + Source Follower

$$A_v = -gm_1\left(r_{o1} \parallel R_L\right)$$

 \bullet Voltage gain severely reduced when R_L very small

$$A_v = -gm_1r_{o1} \times gm_2 \left(r_{o2} \parallel \frac{1}{gm_2 + g_{mb2}} \parallel r_{o3} \parallel R_L\right)$$
 (1)

 \bullet Voltage gain maintained when R_L very small

$$V_{ig} = V_{DD}$$

$$V_{lig} = V_{lig}$$

$$V_{lig} = V_{lig}$$

$$V_{lig} = V_{out}$$

$$\begin{split} (W/L)_1 &= 20/0.5, I_D = 0.2 \ mA, \ V_{\rm THO} \ = 0.6 \ V, 2\Phi_F = \\ &0.7 \ V, \mu_n C_{ox} = 50 \mu A/V^2, \gamma = 0.4 \ V^{1/2} \ {\rm and} \ \lambda = 0 \end{split}$$

(a) Calculate V_{out} for $V_{in} = 1.2V$.

$$I_D = \frac{1}{2} \mu_n C_{\text{ox}} \frac{W}{L} (V_{\text{in}} - V_{\text{out}} - V_{THO})^2$$
 (2)

$$\rightarrow V_{\text{out}} = 0.153 \ V \tag{3}$$

$$V_{TH1} = V_{THO} + \gamma \left(\sqrt{2\Phi_F + V_{\text{out}}} - \sqrt{2\Phi_F} \right) = 0.635 \ V \quad \text{(4)} \qquad V_{iro} \qquad M_1 \qquad V_{out} \qquad V_{out$$

(b) Minimum $(W/L)_2$ for which M_2 remains saturated.

$$V_{\text{out}} = 0.118 \ V \ge V_{GS2} - V_{TH2}$$
 (6)

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{GS2} - V_{TH2} \right)^2 \to \left(\frac{W}{L} \right)_2 \ge \frac{283}{0.5}$$
 (7)

Calculate the small signal voltage gain of the circuit below.

$$G_m = g_{m1}$$

$$R_{out} = \frac{1}{gm_1 + gmb_1} \parallel r_{o1} \parallel \frac{1}{gm_2 + gmb_2} \parallel r_{o2}$$
 (9)

$$A_v = G_m R_{out} \tag{10}$$

上海交通大學 SHANGHAI JIAO TONG UNIVERSITY

Emitter Follower

Common Collector

Reading: Sedra & Smith, 8th Ed.: 7.3 (BJT CC)

Short-Circuit Current

Gain

Current Amplifier Transconductance Amplifier Transresistance Amplifier

$$\begin{split} A_{ix} & \equiv \frac{i_o}{i_i}|_{v_o=0}(~A/A) \\ \text{Short-Circuit} \\ \text{Transconductance} \\ G_m & \equiv \frac{i_o}{v_i}|_{v_o=0}(~A/V) \end{split}$$

$$R_i = \infty$$

$$R_o = \infty$$

$$R_i = 0$$

 $R_i = 0$

 $R_{\circ} = \infty$

$$\text{Short-Circuit} \xrightarrow{\circ} \xrightarrow{\circ} R_{o} = 0 \text{ and } R_{$$

Emitter Follower

 Transistor is biased to be in the FAR using the same biasing technique for CE amplifier.

Emitter Follower impedance

Textbook Pi-model

Textbook T-model

$$g_m = \frac{\alpha}{r_e} r_\pi = (\beta + 1) r_e$$

Emitter Follower impedance

$$\begin{split} R_{\text{in}} &= r_{\pi} + (\beta + 1)R_{L} & \qquad \text{(11)} \\ R_{\text{out}} &= r_{\pi} \parallel (1/gm) & \qquad \text{(12)} \end{split}$$

$$R_{\text{out}} = r_{\pi} \parallel (1/gm)$$
 (12)

Emitter Follower gain

$$\frac{v_o}{v_i} = \frac{R_L}{\frac{1}{g_m + 1/r_\pi} + R_L} \tag{13}$$

- No collector resistor
- no bypass capacitor
- Biasing scheme remains the same.
- Output taken out at the emitter.

CC Amplifier with Biasing Circuit

CC Amplifier with Biasing Circuit

Use the current relationship of i_b and i_c

CC Amplifier with Biasing Circuit

$$G_v \equiv \frac{v_o}{v_{\text{sig}}} = \frac{v_i}{v_{\text{sig}}} \times A_v \tag{15}$$

$$G_v = \frac{(\beta+1)R_L}{(\beta+1)R_L + (\beta+1)r_e + R_{sig}}$$
 (16)

CC Amplifier Swing

 \bullet Assume output is a sinusoid with peak voltage of ${\cal V}_{P}$

CC Amplifier Swing

ullet Emitter voltage can get to within V_{CESAT} of the supply voltage before transistor enters saturation, therefore the maximum output voltage is $V_{CC} - V_{CESAT} - V_{EO}$.

CC Amplifier Swing

Total emitter current is given by:

$$\begin{split} i_E &= \frac{V_{EQ}}{R_E} + \frac{v_p}{R_E} + \frac{v_p}{R_L} \\ i_E &= \frac{V_{EQ}}{R_E} - \frac{V_P}{R_E} - \frac{V_P}{R_L} = 0 \\ \frac{V_{EQ}}{R_E} - \frac{V_P \left(R_L + R_E \right)}{R_L R_E} = 0 \\ V_P &= \frac{V_{EQ} \left(R_L \right)}{R_L + R_E} \\ &= V_{EQ} / \left(1 + \frac{R_E}{R_L} \right) \end{split}$$

$$V_{E \, \mathrm{min}} = V_{EQ} - V_P = \frac{V_{EQ} \left(R_E \right)}{R_L + R_E} = V_{EQ} / \left(1 + \frac{R_L}{R_E} \right)$$

Ideal Amplifier

Voltage Amp.

Transimpedance Amp.

Transconductance Amp.

Current Amp.

 For converting and amplifying small-signal current to voltages, common-gate provides low input impedance and moderate gain, but relatively large output impedance.

Common-Gate ($\lambda = 0, \gamma \neq 0$)

- $V_h V_{TH} > V_{\rm in} > V_{\rm in, 1} \to M_1$ in Saturation

$$V_{\text{out}} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{w}{L} (V_b - V_{\text{in}} - V_{TH})^2$$
 (17)

(18)

Common-Gate

At the boundary of triode/saturation:

 $V_{\text{out}} = V_b - V_{TH}$

$$= V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_b - V_{in1} - V_{TH} \right)^2$$
 (19)

$$V_{\rm in} < V_{\rm in \ 1} \to M_1 \ {\rm in \ Triode}$$
 (20)

Triode region equation as follows:

$$V_{\text{out}} = V_{DD} - R_D \mu_n C_{ox} \frac{W}{L} \left[(V_b - V_{in} - V_{TH}) (V_{\text{out}} - V_{in}) - \frac{1}{2} (V_{\text{out}} - V_{in})^2 \right]$$
(21)

Common-Gate ($\lambda = 0, \gamma \neq 0$)

$$V_b - V_{TH} > V_{in} > V_{in1} \rightarrow M_1$$
 in Saturation (22)

$$V_{\text{out}} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_b - V_{\text{in}} - V_{TH} \right)^2$$
 (23)

$$\frac{\partial V_{\rm out}}{\partial V_{\rm in}} = -R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} 2 \left(V_b - V_{in} - V_{TH} \right) \left(-1 - \frac{\partial V_{TH}}{\partial V_{in}} \right) \tag{24}$$

$$= R_D \mu_n C_{ox} \frac{W}{L} \left(V_b - V_{in} - V_{TH} \right) \left(1 + \frac{\partial V_{TH}}{\partial V_{in}} \right) \tag{25}$$

$$A_v = \frac{\partial V_{\text{out}}}{\partial V_{\text{in}}} = R_D g \ m(1+\eta) \tag{26}$$

- g_m is a function of I_D and η is a function of V_{SB} .
- A_n is not quite linear.

Common-Gate ($\lambda = 0, \gamma \neq 0$ Small-signal)

Common-Gate ($\lambda=0, \gamma\neq 0$ Small-signal)

Common-Gate SS gain

Transconductance gain: use Norton equivalent

Common-Gate SS gain

Output Impedance: SS model