Chapter 3

Quantum Base Size of GL(2, q)

Character Theory of GL(2,q)

We will take the following things for granted:

- For every $q = p^n$ there exists exactly one field up to isomorphism. We will call that field \mathbb{F}_q
- For every $s \in \mathbb{F}_q$, the sum of s with itself p times is 0. i.e. ps = 0. This is usually stated as \mathbb{F}_q has characteristic p.
- The group (\mathbb{F}_q^*, x) is cyclic.

A Useful Proposition

Let
$$F = \mathbb{F}_{q^2}$$
 and $S = \{s \in F | s^q = s\}$
Then

- 1. S is a subfield of F of order q (hence $\mathbb{F}_q \cong S$)
- 2. If $r \in F$ then $r + r^q, r^{1+q} \in S$

We will use this from here on out to identify the subfield, S, as \mathbb{F}_q .

Proof of our useful propsition

1. Suppose that $s, t \in S$. Then $(s+t)^q = s^q + t^q = s + t$ by (Frobonius Homomorphism / Freshman's Dream.)

Thus $s + t \in S$.

- This gives us that (S, +) is an abelian group (since $1 \in S$) and since $(st)^q = s^q t^q = st$ we get (S^*, x) is also an abelian group.
- 2. Since $(\mathbb{F}_{q^a}^*)$ is a group of order q^2-1 , it must that $r^{q^2}=r$ for all $r\in\mathbb{F}_{q^2}$ by Larange (?)

This implies that $(r+r^q)^q = r^q + r^{q^2} = r + r^q$ so $r+r^q$ and $r^{1+q} \in S$.

Some Notation

We introduce some useful notation:

Let ϵ be a generator of the cyclic group $\mathbb{F}_{q^2}^*$ and let $\omega = e^{\frac{2\pi i}{q^2-1}}$.

Furthermore, suppose $r \in \mathbb{F}_{q^2}$.

We may write $r = \epsilon^m$ for some m and let $\bar{r} = \omega^m$.

Then the map $r \mapsto \bar{r}$ is an irreducible character of $\mathbb{F}_{q^2}^*$. Moreover, every irreducible character has the form $r \mapsto \bar{r}^j$ for some integer j.

Breaking this down further, let x_j be defined by $x(r) = \bar{r}^j$.

Then of course this is a character since it is a homomorphism from an abeliean group into \mathbb{C}^* .

The Size of GL(2,q)

Remark that we can trivially represent GL(2,q) as the set of matrices of the form

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

with determinate $\neq 0$.

Thus a matrix

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

belongs to GL(2,q) if and only if its rows are linearly independent. Therefore (a,b) can be anything as long as they are not both zero $(q^2-1$ choices) and then (c,d) can be anything that is not a scaler multiple of (a,b) giving us q^2-q) choices. Therefore GL(2,q) has $(q^2-q)(q^2-q)$ elements.

This argument nice generalizes to GL(n,q).

Conjugacy Classes of GL(2,q)

There are 4 families of conjugacy classes of G. 3 of these are easy, one is hard.

- 1. $\begin{vmatrix} a & b \\ 0 & d \end{vmatrix}$ is conjugate to $\begin{vmatrix} a' & b' \\ 0 & d' \end{vmatrix}$ only if $\{a, c\} = \{a', c'\}$ since conjugate matrices have the same eigenvalues.
- 2. The matrices

$$sI = \begin{vmatrix} a & b \\ 0 & d \end{vmatrix}$$

belongs to the center of G. They give us q-1 (the number of choices for s) conjugacy classes of size one.

3. Let

$$g = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \in G \text{ and } u_s = \begin{vmatrix} s & 1 \\ 0 & s \end{vmatrix}$$

Then

$$gu_s = \begin{vmatrix} as & a+bs \\ cs & c+ds \end{vmatrix}$$

and

$$u_s g = \begin{vmatrix} as & d + bs \\ cs & ds \end{vmatrix}$$

so g belongs to the centralizer of u_s if and only if c = 0 and a = d.

Thus the matrices u_s ($s \in \mathbb{F}_2$) give us q-1 conjugacy classes. The order of the centralizer is (q-1)q, so by the Orbit-Stabilizer Theorem, each conjugacy class contains q^2-1 elements.

4. Now let $d_{s,t} = \begin{vmatrix} s & 0 \\ 0 & t \end{vmatrix}$

Note that

$$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}^{-1} \begin{vmatrix} s & 0 \\ 0 & t \end{vmatrix} \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = \begin{vmatrix} t & 0 \\ 0 & s \end{vmatrix}$$

On the other hand, if $\neq t$, then we have $gd_{s,t} = d_{s,t}g$ if and only if b = c = 0. Thus, the matrices $d_{s,t}$ $(s,t,\in \mathbb{F}_q^*,s\neq t)$ give us /frac(q-1)(q-2)2 conjuagacy classes. The centralizer order is $(q-1)^2$, so again by the orbit-stabilizer theorem each conjugacy class contains q(q+1) elements.

5. Finally, consider

$$v_r = \begin{bmatrix} 0 & 1 \\ -r^{1+q} & r+r^2 \end{bmatrix} (r \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q)$$

By our initial proposition $v_r \in G$

The characteristic polynomial of v_r is

$$det(xI - v_r) = x(x - (r + r^2)) + r^{1+q} = (x - r)(x - r^2)$$

so v_r has eigenvalues of r and r^2 .

Since $r \notin \mathbb{F}_2$ we see that v_r lies in none of the conjegacy classes we have constructed so far. Now

$$gv_r = \begin{bmatrix} -br^{1+q} & a+b(r+r^2) \\ -dr^{1+q} & c+d(r+r^q) \end{bmatrix}$$

and

$$v_r g = \begin{bmatrix} c & d \\ -ar^{1+q} + c(r+r^q) & -br^{1+q} + d(r+r^q) \end{bmatrix}$$

Hence $gv_r = v_r g$ only if $c = -br^{1+q}$ and $d = a + b(r + r^2)$ If these conditions hold, then $ad - bc = a^2 + ab(r + r^2) + b^2r^{1+q} = (a + br)(a + br^2)$

Since $(a,b) \neq (0,0)$ and $r,r^q \notin \mathbb{F}_q$ we see that a+br and $a+br^q$ are non zero.

Therefore
$$g \in C_G(v_r) \iff g = \begin{bmatrix} a & b \\ -br^{1+q} & a+b(r+r^2) \end{bmatrix}$$

Thus $|C_G(v_r)| = q^2 - 1$ and the conjegacy class containing v_r has size $q^2 - 1$.

The matrix v_t has eigenvalues t and t^q so it is not conjugate to v_r unless t = r or $t = r^q$. Therefore we can partitian $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$ into subsets of $\{r, r^q\}$. Each subset gives us a conjugacy class representative v_r and different subsets give us representatives of different conjugacy classes of G, in fact all of the classes of G.

Conjugacy Classes

Propostion: There are q^2-1 conjugacy classes of $\mathrm{GL}(2,\mathbf{q})$ and they are described as follows:

class rep
$$sI$$
 u_s $d_{s,t}$ v_r $|C_G(g)|$ $(q^2-1)(q^2-q)$ $(q-1)q$ $(q-1)^2$ q^2-1 number of classes $q-1$ $q-1$ $\frac{(q-1)(q-2)}{2}$ $\frac{q^2-q}{2}$

This can be verified by adding to see they sum to the order of the group.