INDIAN INSTITUTE OF TECHNOLOGY DELHI

MAL 111: Introduction to Analysis and Differential Equations

Minor I 2007-08 (I Semester)

Maximum Marks: 25

Time: 1 Hour

Give complete statements of the results used.

1. Consider the following two metrics on \mathbb{R}^2 , where for $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2, d_1 \text{ and } d_2$ are defined by

$$d_1((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - y_1|, |x_2 - y_2|\},$$

$$d_2((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|.$$

Show that every open sphere of the metric space (\mathbb{R}^2, d_1) contains an open sphere of (\mathbb{R}^2, d_2) and, conversely, every open sphere of the metric space (\mathbb{R}^2, d_2) contains an open sphere of (\mathbb{R}^2, d_1) .

[5]

- 2. (c) Let $\{x_n\}$ and $\{y_n\}$ be sequences in the metric space (X,d) such that $x_n \to x$ and $y_n \to y$ in X and let a be a real number. If $d(x_n, y_n) < a$ for each $n = 1, 2, 3, \ldots$, show that $d(x, y) \le a$.
 - (b) Let (X,d) be a complete metric space and Y be a closed subspace of X. Show that Y is complete.

3+3

- 3. (a) Let X and Y be metric spaces and A a non-empty subset of X. Let $f: X \to Y$ and $g: X \to Y$ be continuous mappings such that f(x) = g(x) for every $x \in A$. Show that f(x) = g(x) for every $x \in A$.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function which satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Prove that there exists a real number α such that $f(x) = \alpha x$ for every $x \in \mathbb{R}$.

Recall that a subset A of a metric space X is said to be dense in X if $\overline{A} = X$. You can use the fact that the set of rational numbers is dense in R.

344

- 4. (a) Show that every sequentially compact metric space is compact.
 - (b) Let A be a bounded subset of R". Show that \overline{A} is compact.

4+3