Part I

LeptoQuark Mediated Neutrino Mass:

$1 \quad 2 \times LQ$

2 options:

- 1. $e_R = +(S) \implies$ tree level
- 2. $e_R = -(S) \implies 1 \text{ loop level}$

$$m_{\nu} \propto x \left(M_d \right) x'$$
 $m_e \propto x \left(M_u \right) x''$ $h \implies e^- e^+ \left(1 + ? \right)$ where $\mathcal{A} \sim m_e$

- \bullet Phenomenology of the LQ $\!\to\!?$ and h $\!\to\!?$ decays?!
- Rare processes!

(b) Diagram contributing to Dirac Charged Lepton (a) Diagram contributing to Dirac Neutrino Mass. Mass.

Figure 1: LeptoQuark mediated 1 loop Lepton Mass Diagrams.

2 Other tries

3 1 loop, 1 LQ, d_R mixing model

Figure 2: Neutrino Mass Diagram through d quark mixing.

Particle	$SU(3)_c$	$SU(2)_L$	$\mathrm{U}(1)_Y$	S	Flavour
Q	3	2	1/6		3
d_R^c	3*	1	+1/3		3
\mathbf{u}_{R}^{c}	3*	1	-2/3		3
L	1	2	-1/2		3
\mathbf{e}_{R}^{c}	1	1	+1		3
$\mathbf{A}_{R,L}$	3	2	-5/6		3
H	1	2	1/2		1
ϕ	3	1	-1/3		1

$$\begin{split} \mathcal{L}_{new,4D}^{Y} \; &\subset \; y_1 \; \overline{Q_L^c} L \, \phi^* + y_2 \, \overline{u_R^c} e_R \phi^* + y_3 \, \overline{A_R} L \phi + y_\epsilon \overline{d_R} A_L H + h.c. \\ & \left(\overline{d_L^c} \nu_L - \overline{u_L^c} e_L \right) \\ \mathcal{L}_{3D} \; &\subset \; \mathcal{M}_A \overline{A} A \end{split}$$

$$V(H,\phi) \; &= \; -m_1^2 \left| H \right|^2 + \frac{\lambda_1}{4} \left| H \right|^4 + m_2^2 \left| \phi \right|^2 + \frac{\lambda_2}{4} \left| \phi \right|^4 + \lambda_3 \left(H^\dagger H \right) \left| \phi \right|^2 \end{split}$$