Question 1:

• Astronomical unit (AU) - average distance between earth and the Sun.

$$1AU = 1.496 \times 10^8$$

(to 4 s.f)

• Solar radius (R_{\odot})

$$1R_{\odot} = 6.955 \times 10^5 \, \mathrm{km}$$

(to 4 s.f) \odot is used to notate quantities related to the Sun.

• Light-year (ly), distance light travels in a year through empty space.

$$1ly = 9.461 \times 10^{12} \,\mathrm{km}$$

(to 4s.f)

• Parsec (pc)

$$1pc = 3.086 \times 10^{13} \,\mathrm{km}$$

(to 4s.f)

- $kilo = 10^3$
- $mega = 10^6$
- $giga = 10^9$

About 5 mins to read and make notes.

Question 2:

$$\theta^2 = (\Delta \alpha)^2 (\cos \delta)^2 + (\Delta \delta)^2$$

Question 3:

Part (a):

Part (b):

Part (c):

Investigating the properties of stars on the main sequence, Copyright © 2023, The Open University, Available at: https://learn2.open.ac.uk/mod/oucontent/view.php?id=2288312§ion=2.2.1 (13/10/24)

Question 4:

Star	Apparent magnitude (m)	Distance (d/pc)
Alpha Cygni	1.25	800
Beta Cygni	2.93	130
Gamma Cygni	2.23	560
Delta Cygni	2.87	51
Epsilon Cygni	2.48	22

Question 5:

Figure 1: Plot of inverse wavelength versus frequency with a best fit line

paulallen @Pauls-AirTMA00

 $python 3 line_o f_b est_f it. py \\ Slope: 0.3325256100466257$

Intercept: 0.004284972035984325

$$c = \lambda f$$

$$f = \frac{c}{\lambda}$$

$$\frac{1}{\lambda} = \frac{f}{c}$$
(1)

Using;

$$c \approx \frac{1}{gradient} \approx 3.01 \times 10^8 \, \mathrm{m \, s^{-1}}$$