

3D POINT CLOUDS ON EMBEDDED PLATFORMS

Amur Pal — Sannan Abbasi — Junaid Ali

Supervisors: Dr. Faisal Shafait, Dr. Adnan Ul Hasan

Introduction

Al accelerators via FPGA are fueling deep learning on 3D point clouds, revolutionizing LIDAR-powered autonomous vehicles and emerging AR/VR fields. This project focuses on:

- Building a framework for implementing 3D point cloud DL models on FPGAs
- Building a high-level synthesis library with the supported algorithms
- Demonstrating novel hardware results with SOTA 3D point cloud model PointMLPElite

Methodology

PointMLPElite

PointMLP is the state of the art 3D point cloud deep learning model. Some of its features are:

- Lightweight geometric affine module
- Novel normalization layer with learnable parameters that improve performance drastically
- Simple MLP structure with reconfigurable depth

PointMLP has the following kernel function:

Software Optimization

Next, we compress & optimize the model at software level by:

- Quantizing its weights, biases, activations, & geometric parameters
- Fusing CONV-BN layers, reducing number of input points

Hardware Implementation

We use high-level synthesis to create the RTL for our mod el. For this purpose, the optimized algorithms are written in HLS C++ using Xilinx Vivado HLS 2018.3. This implementation includes:

- Linear Feedback Shift Registers (LFSRs)
- Streaming k-Nearest Neighbors, Normalization

Results & Discussion

Xilinx ZC706 is used to accelerate PointMLPElite on ModelNet40 dataset. Significant performance gain is observed:

- 73x improvement in latency vs. NVIDIA RTX A5000
- 5.61x increase in throughput vs. NVIDIA Tesla V100

Low power consumption of 0.575W

