QUESTION 1: Algorithms and flowcharts

a.

- 1. In the rightmost column, Move up 3 bottom deck beads towards the center.
- 2. Move to the column to the left.
- 3. Move down the single top deck bead and move up 3 bottom deck beads towards the center.
- **4.** Move two columns to the left.
- **5.** Move down the single top deck bead towards the center.

b.

- 1. Let **x** be the integer we want to encode
- 2. Make sure all the bottom beads of the abacus are aligned to the bottom and all the top beads aligned to the top of the abacus.
- 3. If **x** is less than 5, go to step 6.
- 4. In the rightmost column, move the top bead of the abacus in the current column towards the center
- 5. Set the new value of **x** to be **x-5**.
- 6. In the rightmost column, move **x** number of bottom beads towards the center.

C.

d.

Let the number of length **m** to be converted be a_m , a_{m-1} , ..., a_0 , where m>=1

- 1. Make sure all the bottom beads of the abacus are aligned to the bottom and all the top beads aligned to the top of the abacus.
- 2. Set the value of i to be zero.
- 3. Repeat Steps a-h while the value of i is less than or equal to m-1. Start with the rightmost column in the abacus.
 - a. Let $x=a_i$
 - b. Let x be the integer we want to encode
 - c. If **x** is less than 5, go to step 5.
 - d. In the rightmost column, move the top bead of the abacus in the current column towards the center
 - e. Set the new value of x to be x-5.
 - f. Move x number of bottom beads towards the center.
 - g. Add 1 to i.
 - h. Move one column to the left on the soroban abacus.

QUESTION 2: Number Systems

Decimal	Binary	Hexadecimal
29	00011101	1D
70	01000110	46
-13	11110011	F3
-81	10101111	AF
-29	11100011	E3
-37	11011011	DB
16	00010000	10

QUESTION 3: Binary Representation

- **a.** As the total number of combinations with 10 prisoners is 2^{10} =1024. He could have tested 24 more bottles without adding one more prisoner.
- **b.** If the question is either YES/NO, there are only options, thus the total number of distinct words would be 2ⁿ where n is the number of questions. If we change it to YES/NO/Maybe, there 3 options, thus the base would change to 3. In order to get at least 1000 different combination to represent each word, we need at least 7 questions as 3⁷=2187. 3⁶ is only 729, thus 6 questions would not be sufficient enough.