P510/2 PHYSICS Paper 2 Nov. / Dec. 2015 2½ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

PHYSICS

Paper 2

2 hours 30 hours

INSTRUCTIONS TO CANDIDATES:

Answer five questions, taking at least one from each of the sections, A, B, C and D, but not more than one question should be chosen from either A or B.

Any additional question(s) answered will not be marked.

Mathematical tables and squared paper are provided.

Non-programmable scientific calculators may be used.

Assume where necessary:

Acceleration due to gravity, g 9.81 ms^{-2} $3.0 \times 10^8 \text{ ms}^{-1}$ Speed of light in a vacuum, c $1.6 \times 10^{-19} \,\mathrm{C}$ Electron charge, e $9.11 \times 10^{-31} \text{ kg}$ Electron mass $6.6 \times 10^{-34} \text{ Js}$ Planck's constant, h Permeability of free space, μ_0 $4.0\,\pi\times10^{-7}\,\mathrm{Hm^{-1}}$ Permittivity of free space, ε_0 $8.85 \times 10^{-12} \,\mathrm{Fm}^{-1}$ The constant $\frac{1}{4\pi\epsilon_0}$ $9.0 \times 10^9 \, \text{F}^{-1} \text{m}$ $= 1.6 \times 10^{-19} \,\mathrm{J}$ One electron volt (eV) $6.02 \times 10^{23} \text{ mol}^{-1}$ Avogadro's number NA $= 1.2 \times 10^{-6} \,\Omega \text{m}$ Resistivity of Nichrome wire at 25 °C Specific heat capacity of water $4.2 \times 10^3 \,\mathrm{Jkg^{-1}K^{-1}}$

SECTION A

Explain what is meant by conjugate points. A converging lens forms an image of height h_1 on a screen, of an object O of height h. When the lens is displaced towards the screen, an image of height h_2 is formed on the screen. Sketch a ray diagram to show the formation of the images on (04 marks) Show that $h = \sqrt{h_1 h_2}$ Describe an experiment to determine the focal length of a diverging (e) lens using a concave mirror of known focal length. The objective of an astronomical telescope in normal adjustment has a diameter of 150 mm and focal length of 3.0 m. The eye-piece has a focal length of 25.0 mm. Calculate the (03 marks) position of the eye-ring. (03 marks) diameter of the eye-ring. (ii) Give one advantage of placing the eye at the eye ring. (01 mark) (e) Show that for a ray of light passing through layers of transparent 2. (a) media separated by parallel boundaries, $n \sin i = a$ where a is a constant and n is the refractive index of the medium (04 marks) containing angle i. What is meant by critical angle? (01 mark) (i)

water - air boundary.

Describe an experiment to determine the critical angle for a

(c) Figure 1 shows an isosceles prism ABC of refractive index 1.51, dipped in a liquid with its refracting edge downwards. A ray of light incident on the prism at angle $i = 34.6^{\circ}$ emerges perpendicularly through the base.

Calculate the refractive index of the liquid.

(04 marks)

Explain how an optical cable transmits light. (d)

An optical pin held above a concave mirror containing water of (e) refractive index 1.33, coincides with its image at a distance of 12 cm above the mirror. When the water is replaced by a little quantity of a certain liquid, the point of coincidence of the object and the image becomes 13.3 cm. Calculate the refractive index of the liquid.

(03 marks)

SECTION B

- (a) Distinguish between progressive and stationary waves. (03 marks) 3.
 - (i) What are overtones?

(01 mark)

Explain why a musical note played on one instrument sounds different from the same note played on another instrument.

(03 marks)

- A stretched string of length, L, is fixed at both ends and then set to vibrate in its allowed modes. Derive an expression for frequency of the second overtone in terms of the fundamental frequency. (04 marks)
- A wire of length 0.60 m and mass 9×10^{-4} kg is under tension of (d) 135 N. The wire is plucked such that it vibrates in its third harmonic. Calculate the frequency of the third harmonic.
- Describe the variation of pressure with displacement of air in a closed pipe vibrating with fundamental frequency. (04 marks)

- 4. (a) What is meant by the following as applied to waves?
 - (i) Phase difference. (01 mark)
 (ii) Optical path difference. (01 mark)
 - (b) (i) Explain how interference fringes are formed in an air wedge.
 - (ii) Two glass slides are separated by a thin wire to form an air wedge. When the wedge is illuminated normally by light of wavelength 5.6 × 10⁻⁷ m, a total of 20 fringes occupying a distance of 15 mm are obtained. Calculate the angle of the wedge.
 - (c) In a Young's double slit experiment, 21 bright fringes occupying a distance of 3.6 mm were visible on the screen. The distance of the screen from the double slit was 29 cm and the wavelength of the light used was 5.5×10^{-7} m. Calculate the separation of the slits. (03 marks)
 - (d) (i) Describe how plane polarised light can be produced by double refraction. (02 marks)
 - (ii) Describe one practical use of polarised light. (05 marks)

SECTION C

- 5. (a) What is meant by the following as applied to the earth's magnetic field?
 - (i) Magnetic meridian. (01 mark)
 - (ii) Angle of dip. (01 mark)
 - (b) (i) Define the ampere. (01 mark)
 - (ii) Three conductors P, Q and R carrying currents 3 A, 6 A and 8 A respectively are arranged as shown in figure 2.

Fig. 2

Calculate the force experienced by conductor P.

(06 marks)

(ii) A charge particle of mass 1.4×10^{-27} kg and charge 1.6×10^{-19} C, enters a region of uniform magnetic field of flux density 0.2 T at a point P and emerges at a point Q as shown in figure 3.

Fig. 3

If the speed of the particle is 10^7 ms^{-1} , calculate the distance PQ. (04 marks)

- (d) Describe an experiment to measure the magnetic flux density between the pole pieces of a strong magnet. (05 marks)
- 6. (a) (i) State the laws of electromagnetic induction. (02 marks)
 - (ii) Describe with the aid of labelled diagram, an experiment to verify Faraday's law of electromagnetic induction. (05 marks)
 - (b) Explain
 - (i) why when a plate of copper is pushed into a strong magnetic field between the poles of a powerful electromagnet, considerable resistance to the motion is felt, but no such effect is felt with a sheet of glass.

 (04 marks)
 - (ii) how damping is achieved in a moving coil galvanometer.

 (03 marks)
 - (c) An aeroplane of wing—span 30 m flies horizontally at a speed of 1000 kmh⁻¹.

 What is the p.d across the tips of its wings, if the horizontal component of the earth's field is 1.46 × 10⁻⁴ T?

 (Angle of dip at the place is 70⁰) (03 marks)
 - (d) A coil of 500 turns and area 80 cm² is rotated at 1200 revolutions per minute about an axis perpendicular to its plane and magnetic field of flux density 0.25 T.

 Calculate the maximum e.m.f induced in the coil. (03 marks)

- 7. (a) (i) Define root mean square (rms) current of an a.c. (01 mark)
 - (ii) Derive an expression for capacitive reactance. (04 marks)
 - (iii) Sketch on the same axes, the graphs showing variation of applied p.d and current when an inductor is connected to an a.e supply.
 - (b) (i) A capacitor of capacitance, C, and an ammeter are connected in series across an alternating voltage, V, of frequency f. Explain why current apparently flows through the capacitor. (03 marks)
 - (ii) A sinusoidal p.d of rms value of 20 V and frequency 50 Hz is applied across a 100 μF capacitor. Calculate the capacitive reactance of the circuit. (02 marks)
 - (c) Describe the mode of operation of a transformer. (04 marks)
 - (d) A transformer connected to a.c. supply of peak voltage 240 V is to supply a peak voltage of 9.0 V to a mini lighting system of resistance 5 Ω . Calculate the
 - (i) rms current supplied to the lighting system. (02 marks)
 - (ii) average power delivered to the lighting system. (02 marks)

SECTION D

- 8. (a) (i) Define temperature coefficient of resistance. (01 mark)
 - (ii) Explain the origin of the heating effect of electric current in a metal conductor. (03 marks)
 - (iii) Describe with the aid of an I–V sketch the variation of current with p.d across a semiconductor diode. (02 marks)
 - (b) A cell, a bulb, a switch and a thermistor with negative temperature coefficient of resistance are connected as shown in figure 4(i).

- (i) Explain what would happen when in figure 4(i) switch K is closed. (04 marks
- (ii) If the bulb in figure 4(i) is removed and circuit connected as shown in figure 4(ii), explain what would happen when switch K is closed.

- (e) State the law of conservation of current at a junction. (01 mark)
- (d) Two cells A, of e.m.f 6 V and internal resistance 2 Ω and B of e.m.f 3 V and internal resistance 1 Ω respectively are connected across a uniform resistance wire CD of resistance 8 Ω as shown in figure 5.

If X is exactly in the middle of the wire CD, calculate the;

- (i) power dissipated in CX. (04 marks)
- (ii) p.d across the terminals of cell A. (02 marks)
- 9. (a) (i) Define capacitance of a capacitor. (01 mark)
 - (ii) Describe briefly an experiment to show the effect of placing a sheet of glass or mica between the plates of a capacitor on capacitance. (05 marks)
 - (b) Describe how the unknown capacitance of a capacitor can be determined using a ballistic galvanometer. (04 marks)
 - (c) Explain briefly how a charged capacitor can be fully discharged.

 (02 marks)
 - (d) A 3 μF capacitor is connected in series with a 6 μF capacitor. The combination is then connected in parallel with a 1 μF capacitor to 12 V battery as shown in figure 6.

Calculate the

- (i) charge stored by each capacitor. (05 marks)
- (ii) energy stored in the 6 μF capacitor when fully charged.

strouside (

10. (a) (i) Define electric potential.

(01 mark)

- (ii) Derive an expression for the electric potential at a point of a distance r, from a fixed charge. (04 marks)
- (b) With reference to a charged pear-shaped conductor,
 - (i) describe an experiment to show the distribution of charge on it. (03 marks)
 - (ii) show that the surface of the conductor is an equipotential surface. (03 marks
- (c) Explain how a lightning conductor protects a house from lightning.

 (04 marks)
- (d) Three charges Q_1 , Q_2 and Q_3 of magnitude 2 μ C, -3μ C and 5 μ C respectively are situated at corners of an equilateral triangle of sides 15 cm as shown in figure 7.

Calculate the net force on Q_3 .

(05 marks)

	PHYSICS PSIO 2 MARKING GUIDE 2015	
	MATIONAL EXAMINATIONS BOARD	M
Do not	NOVEMBER - DECEMBER, 20 Page 3 Candidate's Name	3
write in this margin	Signature Random No.	(No med
	Subject	-
(a)		
		Accept
	placed at one of the points, its image is formed at	Lens-
	O POINT.	convergin
(b)	A A	

	I Le Ver	
OR	A B h2 -De	ny lmk
m ₁ =	AIL	iys are
200	my my	ssing.
m2 =	0B h t h (2)	
bu	OB=AI and OA=BI	
$-m_{l}m$	2 hi h2 but mim2 1 h2 = 1 = hih2 : h = thih2	
oi)	O and I are conjugate points with respect to	
	the lens. OR - ATIVAL OA - RTIVE III	
	is in position A, by linear magnification	
	MA = AIV = hor - (i)	
	In position B, MB = BIV half CO	C =
	OB TA	(4)
	But $AI = OB \Rightarrow h = h_2$ $h_1 = h_2$ h_2 $h_3 = h_4$	-
	Thus h2 = h, h2 - h = Vh, h2	
	1712	
(1)	As illuminated object 0 is placed infrom	+
- 67	An illuminated object o is placed infrom of a diverging lens Lawranged coaxially	
	with a concave mirror IVI of known total	
	length, f, as shown below.	

	UGANDA NATIONAL EXAMINATIONAL	ONS BOARD		
Do not	Candidate's Name	m dem No		
in this margin	Signature	Random No.		
	Subject Paper code/	Personal Number		
	Islam the hun waves meet	darkness is		
	of and I am the south of	IT evenle		
	observed where the path difference is 2t = m 7, m = 0,1, 2 and t is the air gap (5)			
	dua La collabas pha	nives - I		
	observed where the path di 2t = (m+t) 7, 1m = 0,1,2	Herence's		
43	2t = (m+ +) 7 /m = '0, 1, 2	due to reinforce ment.		
		2		
(ii)	tand= 2 / 4- 15 x10-3=	0-75×10-3		
	$tan \phi = \frac{\lambda}{2y}, y = \frac{15}{20} \times 10^{-3} = \frac{15}{20}$			
	d = +007 (5:6x107)			
-	9 - 1 av. 3 AV	(3)		
	$\phi = \tan^{-1} (5.6 \times 10^{-7}) $ $= 3.7333 \times 10^{-4} $ = 3.7333 × 10 4 rad	~ 0:0210.		
<u> </u>	= 3. 1335 XIV TOU	. 81 0 021		
	2::/	6 -3 V		
<u></u>	a = 20 where $x = 3$	(0.6810		
	X X			
	a = 5.5x10 7 x0.29 x2 =	9.304x10m		
4	3.6 XIV-3			
(al)	0 -	A narrow beam of		
Cis		monochromatic light is		
-		made incident on		
mono	chromatic Polariod	and viewed from		
ligh	The National Property of the National Property	the opposte side		
	as shown above			
	1			
	The anale of incidence is avadually incomes			
	and at each angle the potaniod is notated it			
The last	and at each angle the polariod is rotated it about an axis through its plane. At one point			
	the light gets cut off from the observer. At this point the emergent light is planest polarised.			
THE RES				
		(2)		

UGANDA NATIONAL EXAMINATIONS BOARD NOVEMBER - DECEMBER, Page 11 Candidate's Name Do no write in this margin Random No. ii) Polarised light is used in measuremen of concentration of sugar in a solution. Apparatus is arranged as shown above. the solution, prism A (analyser) is rotated until emergent light from A completely extinguished. The orientation is is then filled with sugar solution. On looking through A light can now be seen is then rotated again until light is extinguished. Note this point. Measure between the two positions! notation o depends on the concentration, so the concentration can be calculated.

500) Magnetic meridian is the vertical plane through the magnetic north and south poles of the

earth's magnet. L (ii) Angle of dip is the angle between the axis of a freely suspended bar magaret and the honzontal.

Angle of dip is the angle between the resultant of earth's magnetic field and The horizontal.

bis The ampere is a steady current which when flowing in two parallel infinitely long conductors of negligible cross-sectional area placed in apart in a vacuum produces aforce of 2x107 Nm between them.

F= Molila (11)

3A 8 = 2.4 × 10⁵N

20cm X FPQ = 411X107x6x3 = 1.8X105N

 $F_{pq} = \frac{1}{20cm} \cdot \frac{1}{8A}$ $F_{pq} = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \cdot \frac$

F = 2.16 X10-5 Nm-1 L

 $\frac{2.16 \times 10}{5.16 \times 10^{-6}} \Rightarrow x = 46.2^{\circ} \cdot (6)$ $\frac{5.16 \times 10^{-6}}{1.8 \times 10^{-6}} = \frac{2.16 \times 10^{-5}}{(9.18 \times 10^{-6})} = \frac{46.2^{\circ} \cdot (6)}{(9.18 \times 10^{-6})}$ Fand FPR.

UGANDA NATIONAL EXAMINATIONS BOARD NOVEMBER - DECEMBER, Candidate's Name Page 15 Random No. Personal Number Question 6. Eggi- Induced emf acts in such a direction as to oppose the change causing it v The magnitude of indited emf in a conductor is directly proportional to the rate of change of magnetic flux linking which can be rotated round The North 100le of a perm an ent magnet is connected as Shown above wheel - The wheel is turned steadily until the deflection of the galvanomete is constant v The time t for N revolutions is measured and the number of revolutions per second is determined from n = N Note the deflection of the galvanometer Repeat the experiment for different speeds the wheel and the corresponding and n are recorded A graph of & against n is plotted Mastraight line is obtained implying oxy since of a Emf inducedn & speed of rotation of the rolled Then Ent indued & rate of change of magnetic flux linkage. "

	UGANDA NATIONAL EXAMINATIONS BOARD NOVEMBER - DECEMBER, Page 16			
Do not	Candidate's Name			
write in this margin	Signature Random No.			
	Subject			
bai	lather the plate moves it cuts the magnetic			
	held and eddicurents are manced			
	The magnetic field due to the currents miles			
	with the applied field opposing the motion			
	glass is an insulator and no current			
	induced in it hence no resistance to its			
	motion.			
(ii)	The coil is wound on a conducting former.			
	When the coil (together with the former) rotate			
	in the magnetic field Heddy currents are			
	induced in the former. It Magnetic field (3)			
	due to eddy currents interacts with the			
	applied field causing retardation.			
	(or opposing the rotation)			
(2)	E = ByLV But By = By tanto.			
	E = By tan 70. LV = 1.46x154tan 70 x 30x1000 x1000 (3)			
	3600			
	= 3.34V,			
d)	E.m.f = BANW V			
	= BANZITF, X			
	$= 0.2 \times 80 \times 10^{-4} \times 500 \times 211 \times 1200$			
	60. B)			
	= 126 V.V			
	Accept E = BANIN			
	= 0.			

	UGANDA NATIONAL EVANILLA	
	NOVEMBER - DECEMBER,	-
, not	Candidate's Name	9
pulsa.	Signature	3
pln		torthe in this
	Subject	margia -
-	wieshon 7	
Jaco	RM. S current is the steady corrent which	
	The Court of the town of the t	
	a given resistor at the	
	rate as the alternating current.	(1)
(ii)	Annial valture 11 - Marin + 1	
Con	Applied voltage V = Vosinwt V	
	Q = cv = cVosinut	
	I = dQV d (cVosinut) = cVowcosut	CIT
	09. 09.	(7)
	> Io = CVOWITSO, Xc = Vo = 1 or IV	
	Io CW 2TIFC	
Civi	JAVIV TO THE TOTAL	
	X X X X X X X X X X X X X X X X X X X	
	o wt, ort	
	X	
	V - any correct graph	
	X - correct phase relation	
	for se coul graph.	
1	I III I closed the capacitor	
pC	is When the circuit is closed, the capacitor	
	JI TO A POW (MAINTAIN COURT OF	(2)
	con howard the capacities ag	
	to conduct correct.	
	The latest property of	

UGANDA NATIONAL EXAMINATIONS BOARD NOVEMBER - DECEMBER, 1917 Candidate's Name Subject Paper code Personal Number or When the circuit is completed, the ammeter de fleets indicating the current flowing in the circuit. In the first quarter, capacito charges to maximum . In the second gran it discharges. In the third quarter charges again with charge on the plat interchanged and in the fourth quarter discharges. This is repeated at the (3) frequency of the q.C. The charging ar discharging current flows throughout the circuit though no charge passes across (ii) Xc = 11 - 31.852 (2) - lon comy - When a changing alternating magnet flux in the prin This changing flux links the coil through the soft iron core Changing magnetic flox in the secondary lemf in the coul through The magnitude of induced emf depends on the number of turns in the

		TOTAL STANMATIONS BOARD	
		HOVEMBER - DECEMBER,	
	Brand	Candidate's Name	
-	in this	Signature Random No.	100
in ma		Subject Paper code/ Personal Number	
		Rueshien 8	
	8 a cis	Temperature coefficient of resistance is the	
		fractional change in resistance at 0°C for	
		every degree celsius rise in temperature 1	
	(i)	-During electric current flow, electrons that move	
		through the metal conductor collide with positive	
		ions of the lattice	
		On collicion, the K.E which an electron gained	
		as a result of being accelerated by the held	
		is transferred to the ions (atoms) with which	
		it has collided.	-
-		This increases the vibrational energy of the	
		lattice ions and so increases the temperature	
=7	0((*)	of the metal.	
	Ciii		_
		the current in creases rapidly of	
-		as the p.d is increased. When (2)	_
		reverse biased, little or no current	
		flows.	
	1.	V	
-	ba	At room temperature the resistance of the	
-		thermistor is high current flowing thus is	
-7-		small and the bulb lights dimly! As correct	
		flows, the thermistor hearts up for temperature	
		increases), the resistance de crease and leading (4)	
		to an increase in current and thence	
		increase in brightness of the bulb.	
H	er	A TM WILL BOOK OF HOUSE	
-	and	to I flows temp increases, the resistance reduces (4) more corrent flows. So the brightness increases (4)	
	urtu	11.000011011110000100	

	UGANDA NATIONAL EXAMINATIONS BOARD Page 10 NOVEMBER - DECEMBER, 123	215 can
Do not write	Candidate's Name	1
in this margin	. The charge stored in	
	Q2 = 0x10-6x12.	
	= 2.4×10°SCV = 2.4×10°SCV = 2.4×10°SCV	
	The charge on each of the 6 pt and 3 pt capacitor is 2.4 x10-5 Ch	
GD	$E = Q^2$	
	$=(24\times10^{-6})$ (3)	
	2 X6 X 10 4 · 8 X 10 5 J	
		(3)

	NOVEMBER - DECEMBER
	NOVEMBER - DECEMBER, 2017 Candidate's Name
o not write	Candidate's Name
argin	Do not
	Personal Number
10 9	Question 10.
Naw	Electric potential is the work done in
-	charge from in finite to
	points against an dechic fierd. (1)
-	$AX \rightarrow AX \rightarrow$
(11)	← F P P
	K X>
	Form eman's and but the the
	Force experienced by the +1c at R F = k Q XI
	$\frac{1}{x^2}$
_	Work done to move the charge of the a
	distance Dx towards the fixed change +Q.
	DIM = FX-DX = - KODXII
	X
	Total work done to bring the charge to (+
	a point a distance + from the fixed change to
W.	LI CLO da - KOF+7F - KO
	$ X = \frac{1}{x^2} + \frac{1}{x^2} = \frac{1}{x^2}$
	20
6	-metal com
	- Neutral GLE

UGANDA NATIONAL EXAMINATIONS

(1)

The proof plane is placed on the body at A and transferred into a can without touching it. The divergence of the leaf touching it. The procedure is repeated by placing the proof plane at points B, C, B) and B on the body. It is found that B) the divergence is greatest when there is at C, the sharp point. If since B x Q there is high concentration of charge at the sharp point.

- conducting une - Neutral GLE

A conducting wire is connected to a point A (3) on a changed pear shaped conductor and the brass cap of a neutral gold leaf electroscope. The deflection of is noted in End A is moved over the surface of the conductor while noting the deflection of the teaf. It is observed that there is no change in deflection. So the potential is constant implying that the surface is an equipotential.

	UGANDA NATIONAL EXAMINATI NOVEMBER - DECEMBER	ONS BOARD	Page 14
not rite this rgin	Candidate's Name Signature Subject Paper code Fx = f , $cos 60^{\circ} + F_2 cos 60^{\circ}$ = $(4+6) cos 60^{\circ}$ = $5N$	Random No. Personal Number	
	$F = \sqrt{F_0^2 + F_y^2}$		
	$= \sqrt{5^2 + (-1.732)^2}$ $= 5.29 \text{ N.} \text{ V}$		(5)
	$\alpha = \tan^{-1}(1-732)$ $= 1901^{\circ}$		
	-tnb-		