	109	9	c	b	a
. hr (٨	0	o	o	٥
m 1	×	١	O	G	0
m L	1	0	١	c	0
m 3	1	7	1	0	٥
m 4	X	0	0	١	٥
m S	4 .	1	၁	١	S
m b	1	0	١	١	0
		7	ì	· i	0
		0	0	0	. 1
		,	0	O	1
m 10	1	0	1	0	Y
m11	1	1	1	O	v
		0	0	1	١
m 13	X	١	ن	1	
m 14	1	O	i	ì	1
1 1		1	1	ì	1

[1001(01)	000-
(mo)(my)	0-00
(m1) m3	00-1
(m 1) m 5	0-01
me m3	001-
mz mb	0-10
m3 m1)	- 011
(m4) m5	010-
(m4) m6	01-0
m5 (m13)	-101 *
m6 m14	-110
m10 m 11	101-
m10 m14	1-10

(m0)(m1) m2 m3	00	ā
[mollm1) (m4) m5	0-0-	ā
[mo)(m4) m2 m6	00	āā
m 2 m3 m10 m11	-01-	<u>_</u>
m L m 6 m 10 m 14	10	cd
m 5 (m/3)	-101	bē.
Π		

	2	4	· Han	4.	10	11	1/4		
äŠ	V	1							
مَرَ مَا			V						
āō	٧			1					
<u>ه</u> ک	1	1			V	1		7	
cā	V			1	1		/		
pig			1						

Essential pine

- · (our that marryes #ltray beted + ac
- · (ou that minings # variable: be+ed+bed
- $\begin{cases} x = ad + bc + be + ab + ae \\ y = ad + cd + ce + ef + h \end{cases}$
 - · K(x) = { (bd+bg+e), (adtcte+ag), (b+a), (abd+bc+be+abg+ae)}
 - · (ok(x)= { a, b, e, 1}
 - · K(y) = { (d+e), (ae+c), (ad+c+f), (ale +cd+ce+of+h)}
 - · (okly) = { c, d, e, 1 }

Best multicule dinier = {ad+c+e+as} 1 {ad+c+} = {ad+c} = w

Now mode: w = adtc

 $\begin{cases} x = \omega b + be + abs + ae \\ y = \omega(e+d) + (e+e) + be \end{cases}$

· f = a, b, + a, b, + a, b, + a, b,

Area = 7 NAND-2 + 2 ±NV = 14 + 2 = 16 unts Delay = 14 unit of time

. We can optimize in terms of delay with a new distribution

Area = 16 uml, Delay = 13 unit 4) . Best variable order to minimize BDD myo?

and characteristics contracted and characteristics.

- the size is O(2n) where n

1, the dwary size of a 15.

Best variable order to maximize BDD size?

a & b o & a 1 & b 1 & ... < a ... & b ...

- the size is 2(u-1)+2u=O(4u-2)where u is the lineary representation of a, b

- to the wheel path: ho cosposed.
- · I min gla returning ?

- the wheal path gla returning is $c \rightarrow d \rightarrow b$ with a period of 3.

- = 1s the mun. hundre of regritor R min activable often returning?

 Each feedback loop has to be broken by at least one regular
 and there are 2 loops in the continuational circuit.

 the R min = 2 and it is acknown with the previous retained requested circuit.
- . He previous retimed crusit actueres both Pmin and Rmin.