ЗАДАНИ 7. Метод Симпсона для шифра Виженера (вычисление ключа при известной его длине):

Вход: 1) файл криптограммы $Y = y_1 y_2 ... y_N$ (шифра Виженера) над алфавитом открытых сообщений длины m.

- 2) Значение периода d (дина ключа).
- 3) Файл частот букв открытых сообщений.

Выход: список наиболее вероятных ключей или единственный ключ $k \in K$. ЗАДАЧА:

Допустим длина ключа в шифре Виженера уже вычислена и равна d, т.е. ключ имеет вид $k = (k_1, k_2, ..., k_d)$. Символы алфавита отождествим с остатками по модулю m, и операции над символами будем осуществлять по модулю m. Обозначим:

$$Y(1) = y_1, y_{1+d}, ...$$

 $Y(2) = y_2, y_{2+d}, ...$
...
 $Y(d) = y_d, y_{2d}, ...$

Последовательность Y(2) зашифрована символом $k_2 = k_1 + \Delta_2$.

Для каждого $\Delta_2 \in \{0, 1, ..., m-1\}$ строим $Y(2-\Delta_2) = y_2 - \Delta_2, y_{2+d} - \Delta_2, ...$, и вычисляем $I_{\rm cp}(Y(1), Y(2-\Delta_2))$.

Из всех Δ_2 выбираем те, для который $I_{\rm cp}(Y(1), Y(2-\Delta_2))$ имеет наибольшее значение. Их может оказаться несколько, обозначим их Δ_2 .

Последовательность Y(3) зашифрована символом $k_3 = k_1 + \Delta_3$.

Для каждого $\Delta_3 \in \{0, 1, ..., m-1\}$ строим $Y(3-\Delta_3) = y_3 - \Delta_3, y_{3+d} - \Delta_3, ...,$ и вычисляем $I_{\rm cp}(Y(1), Y(3-\Delta_3)).$

Из всех Δ_3 выбираем те, для который $I_{\rm cp}(Y(1),\,Y(3-\Delta_3))$ имеет наибольшее значение. Их может оказаться несколько, обозначим их Δ_3 .

Повторяем вычисления для Y(j): j = 4, 5, ..., d.

Последовательность

$$Y(1) = y_1 y_{1+d},...$$

зашифрована символом k_1 . Подвергаем её обычному частотному анализу как в случае простого сдвига, и выделяем наиболее вероятные символы k_1 (возможно один).

Тогда $k = (k_1, k_1 + \Delta_2, ..., k_1 + \Delta_d)$ множество наиболее вероятных ключей (возможно будет состоять из одного ключа). Перебираем его и выделяем из него искомый ключ k.

ЗАДАНИЕ 8. Метод Томаса Якобсена (1995г.) (вычисление ключа при известной его длине):

1. Вычисление эталонной матрицы частот биграмм языка открытых сообщений.

Вход: файл большого текста на языке открытых сообщений.

Выход: файл матрицы $E = (E_{ij})$ частот биграмм, где E_{ij} частота биграммы ij во входном файле, $I = \{0, ..., m-1\}$ — алфавит, т.е. m — длина алфавита.

2. Вычисление ключа.

Вход: 1) файл криптограммы $Y = y_1 y_2 ... y_N$ (шифра Виженера) над алфавитом открытых сообщений.

- 2) Значение периода d (дина ключа).
- 3) Файл эталонной матрицы $E = (E_{ij})$.

ЗАДАЧА:

- 1. Обозначим: $k^0 = k_1 k_2 \dots k_d$, экспериментальный ключ, полученный случайным выбором.
- 2. Полагаем $k = k^0$, вычисляем $k(Y) = z_1 z_2 ... z_N$ текст, полученный из Y при расшифровании ключом k.
- 3. Вычисляем $D^k = (D_{ii}^k)$ матрицу частот биграмм в тексте k(Y).
- 4. Вычисляем значение целевой функции $W(k) = \sum_{ij} |D_{ij}^k E_{ij}|$.
- 5. Для $k_1^* = \{0, ..., m-1\}$ вычисляем наименьшее $W(k^*)$, где $k^* = k_1^* k_2 ... k_d$, для которого $W(k^*) \leq W(k)$. Пусть это значение соответствует k^* . Полагаем $k = k^*$. Для $k_2^* = \{0, ..., m-1\}$ вычисляем наименьшее $W(k^*)$, где $k^* = k_1 k_2^* ... k_d$, для которого $W(k^*) \leq W(k)$. Пусть это значение соответствует k^* . Полагаем $k = k^*$. И т.д. до k_d^* . Получаем некоторый ключ k.
- 6. Если $k = k^0$, то стоп. Если $k \neq k^0$, то присваиваем $k^0 = k$, и повторяем пункт 5.

Выход: k^0 .

https://drive.google.com/open?id=0B2AKc7ibPQ_WUDBtcHhMc0lGYlU