Pizzaseminar zur Kategorientheorie

5. Übungsblatt

Aufgabe 1. Spitze schon im Diagramm

Sei $F: \mathcal{D} \to \mathcal{C}$ ein Diagramm in einer Kategorie \mathcal{C} . Besitze \mathcal{D} ein terminales Objekt T. Zeige per Hand oder mit dem Kriterium aus Aufgabe 4, dass dann schon F(T) selbst zu einem Kolimes von F wird.

Aufgabe 2. Polynome und Potenzreihen

Sei K ein Körper und sei $K[X]_n$ der Vektorraum der Polynome vom Grad $\leq n$ mit Koeffizienten in R. Bearbeite eine der folgenden Teilaufgaben:

a) Zeige, dass der Vektorraum K[X] zu einem Kolimes des Diagramms

$$K[X]_0 \hookrightarrow K[X]_1 \hookrightarrow K[X]_2 \hookrightarrow \cdots$$

wird. Die Morphismen sind jeweils die Inklusionsabbildungen.

b) Zeige, dass der Vektorraum $K[\![X]\!] := \{\sum_{i=0}^{\infty} a_i X^i \mid a_0, a_1, \ldots \in K\}$ der formalen Potenzreihen in K zu einem Limes des Diagramms

$$\cdots \longrightarrow K[X]_2 \longrightarrow K[X]_1 \longrightarrow K[X]_0$$

wird. Die Morphismen schneiden jeweils den höchsten Koeffizienten ab.

Aufgabe 3. Monomorphe natürliche Transformationen

a) Sei $f: X \to Y$ ein Morphismus einer Kategorie. Zeige, dass f genau dann ein Monomorphismus ist, wenn das Diagramm

$$X \xrightarrow{\mathrm{id}} X$$

$$\downarrow f$$

$$X \xrightarrow{f} Y$$

ein Faserproduktdiagramm ist (Definition im Skript).

b) Sei $\eta: F \Rightarrow G$ eine natürliche Transformation zwischen Funktoren $F, G: \mathcal{C} \to \mathcal{D}$. Besitze \mathcal{D} alle Faserprodukte. Zeige: η ist genau dann ein Monomorphismus in Funct $(\mathcal{C}, \mathcal{D})$, wenn alle Komponenten η_X Monomorphismen in \mathcal{D} sind.

Tipp: Limiten in Funktorkategorien berechnet man objektweise, siehe Skript.

Aufgabe 4*. Kofinale Unterdiagramme

In der Analysis gibt es folgende Mottos: Das Weglassen endlich vieler Folgeglieder ändert nicht das Konvergenzverhalten. Teilfolgen konvergenter Folgen konvergieren ebenfalls, und zwar gegen denselben Grenzwert. Diese Mottos wollen wir auf (Ko-)Limiten in der Kategorientheorie übertragen.

Sei dazu $H: \mathcal{D}_0 \to \mathcal{D}$ ein kofinaler Funktor (Definition im Skript) und $F: \mathcal{D} \to \mathcal{C}$ ein \mathcal{D} -förmiges Diagramm in einer Kategorie \mathcal{C} .

- a) Zeige: Die Kategorie der Kokegel von F ist äquivalent zur Kategorie der Kokegel von $F \circ H$.
- b) Was folgt daher über das Verhältnis der Kolimiten von F und $F \circ H$?