M5MS10 Machine Learning Computer Lab 2

Dr Ben Calderhead

1 Laboratory Exercise

In this computer lab you will use R to perform supervised learning with a discriminative classification approach that uses a linear model for the discriminant function, as we saw in lecture 3. We note that when we use a 1st order polynomial to model the discriminant function, the resulting approach is known as *logistic regression*. You will investigate the effect that increasing model complexity has on the classification rate (defined as the percentage of correct predictions the algorithm makes using the testing data).

1.1 Classification Errors

You can download the code and dataset for this laboratory from the Imperial Blackboard. The dataset consists of a 2 dimensional feature vector and a 1 dimensional class label vector.

- Compute the classification rate on the test set and associated test set predictive likelihood for a range of polynomial orders from 1 to 20. What happens to the log-likelihood of the training set and of the testing set? Which is a better measurement of performance: log-likelihood or classification rate? What are the differences, does one give us any different information from the other?
- Implement a leave-one-out cross validation approach using the average log-likelihood for determining the appropriate order of polynomial to use for making predictions.