Universidade Federal de Ouro Preto

Mateus Oliveira dos Santos - 11.2.8093

Exercício Extra

Trabalho Extra apresentado a disciplina de Avaliação e Desempenho de Sistemas Computacionais do curso de Engenharia de Computação do Instituto de Ciências Exatas e Aplicadas da Universidade Federal de Ouro Preto.

Professor Alexandre Magno de Sousa.

João Monlevade - MG Fevereiro 2016

1 Enunciado

- 1. Um servidor de banco de dados possui uma CPU e dois discos, o monitor de desempenho do SGBD, que realiza medições em nível de transações, gerou um log de atividades dos recursos do sistema para cada transação que ocorreram em um intervalo de 2 minutos e meio. Ao todo 200 transações foram registradas nesse período de tempo conforme os dados da planilha anexa "DBMS-Performance-Monitor-Log.xls" (tempo de CPU e número de I/Os para cada disco, além do ID para cada transação). Para realizar a caracterização do workload do servidor, faça o que se pede:
- (a) apresente uma tabela com informações com estatísticas básicas para cada feature registrada, tais como: média, variância, desvio padrão, coeficiente de variação, valor total (soma), valores mínimo e máximo, range (faixa de valores abrangido, e.g. máximo mínimo), 10 quartil, 20 quartil e 30 quartil.
- (b) apresente gráficos para cada feature tais como: histograma de único parâmetro, Cumulative Distribution Function (CDF) e Box Plot.
- (c) realize a Análise do Componente Principal (PCA) seguindo todos os passos apresentados em sala de aula, não se esqueça de construir os gráficos.
- (d) construa uma tabela de correlação conforme a Tabela 1, em que $R_{(i,j)}$ representa a correlação da feature i com o principal fator j calculado pelo PCA de acordo com a equação

$$R_{(i,j)} = \frac{\frac{1}{n-1} \sum_{k=1}^{n} (i_k - \hat{i})(j_k - \hat{j})}{S_i S_j}$$
(1.1)

onde n representa o número total de componentes registrados, \hat{i} e \hat{j} são médias, S_i e S_j são o desvio padrão, e i_k e j_k representam os dados de cada componente da feature i e do principal fator j.

A partir dessa tabela, elabore um gráfico do tipo plano cartesiano onde cada feature (Tempo de CPU, # de I/Os do disco 1 e 2) sejam representados como pontos (x,y) onde x é o valor de correlação com o Principal Fator 1 e y é o valor de correlação com o Principal Fator 2. Esse gráfico mostrará a relação dos dados medidos com os principais fatores, geralmente é mais utilizado para dados com alta dimensionalidade, n > 3, isto é, quanto maior os valores de correlação com os principais fatores y_1 e y_2 , maior é a influência desses fatores na componente de dados.

(e) mostre os resultados, faça observações e apresente conclusões

Tabela 1 – Tabela de análise PCA

Programa	Principal Fator 1 (y_1)	Principal Fator 2 (y_2)
Tempo de CPU # I/Os Disco 1 # I/Os Disco 2	$R_{(cpu,y1)} \ R_{(I/OsDisco1,y_1)} \ R_{(I/OsDisco2,y_1)}$	$R_{(cpu,y_2)} \ R_{(I/OsDisco1,y_2)} \ R_{(I/OsDisco2,y_2)}$

Observação: para criação dos gráficos CDF e Box Plot, que não foram apresentados na disciplina, realize uma pesquisa em estatística para ter conhecimento de como se constrói esse tipo de gráfico.

2 Introdução

O trabalho apresenta a resolução do problema proposto na seção de enunciado 1. A seção 3 apresenta as observações e conclusões obtidas a partir da análise dos dados resultantes das seções de 4 a 7. As seções seguem a ordem da resolução do problema proposto, exceto pela questão e que será a primeira a ser apresentada.

3 Análise dos resultados - Questão E

Apresentaremos as conclusões e observações de acordo com a sequencia de resolução das questões.

3.1 Questão A

As tabelas 3 e 2 apresentam os dados estatísticos do problema e os dados reais parciais, para acesso aos dados completos acesse o repositório do git citado em 4.1. Como esperado os dados normalizados possuem média zero e desvio padrão um. Além dos somatórios igual a zero das componentes normalizadas e dos fatores do PCA. As observações dos gráficos explicaram melhor o que cada resultado significa na seção 3.2.

3.2 Questão B

Analisando os histogramas na seção 5.1 podemos observar que as concentrações de cargas que tomam maior de tempo de cpu se encontram entre 75 ms e 172ms, e uma segunda carga aparentemente média entre 412 ms e 508ms. Para o disco 1 a maioria das transações, cerca de 50, executam aproximadamente 16 IOs enquanto que para o disco 2 são 30 IOs por transação, com uma frequência igual ao disco 1. No disco um as demais transações estão mais distribuídas, enquanto que no disco 2 as transações com maior quantidade de IOs estão entre 64 e 80 IOs por transação.

Ao se observar os gráficos das CDFs 5.2 podemos fornecer um dado mais preciso, onde cerca de 60% das operações na CPU gastam aproximadamente 400ms de tempo de CPU. No disco 1 apenas 30% das transações fazem até 30 IOs , já no disco 2 aproximadamente 26% das transações fazem até 40 IOs.

Com o box plot conseguimos entender melhor as curvas das CDFs dos disco, como podemos ver no gráfico da figura 8 enquanto do disco 1 apresenta maior variabilidade entre o primeiro quartil e a mediana, o disco 2 é o oposto. Apesar dos máximos e mínimos estarem próximos os tipo de carga que cada disco recebe varia claramente em número de IOs, ou seja, o disco dois recebem operações que fazem mais IOs que o disco 1.

O box plot do CPU 7 mostra que a maior parte das operações tem variabilidade em tempo de CPU entre a mediana e o terceiro quartil.

3.3 Questão C

Realizando o PCA encontramos que o principal fator 1 é o disco 1, com cercar de 58% de representação dos dados e o principal fator 2 é a CPU, com cercar de 35% de representação dos dados. Logo, o disco 2 com aproximadamente 7%.

Observando o gráfico 9 podemos observar que, apesar de uma dispersão próximo ao valor dois do principal fator 2 (CPU), a maior parte dos dados se concentram ao longo do eixo do principal

fator 1 (Disco 1). De certa forma, era de se esperar que o principal fator 1 tinha grande chances de ser um dos disco por se tratar de um sistema de banco de dados.

3.4 Questão D

Por fim, observando o gráfico 10 onde o eixo x é o principal fator 1 e o eixo y é o principal fator 2, podemos observar que o disco 1 realmente se aproxima do eixo do principal fator 1 e a CPU idem ao eixo y. O disco 2, como analisado no PCA representa pouco os dados, e o gráfico 10 evidencia esse fato, o ponto disco 2 está disperso do eixo x e do eixo y, confirmando os resultados obtido pelo PCA.

4 Dados -Questão A

4.1 Software Utilizados

Para o desenvolvimento do trabalho utilizamos o software editor de planilhas OpenOffice Calc e o Calcular autovalores e autovetores de uma matriz do Wolfram Alpha [2]. Todos os dados estão disponíveis no repositório https://github.com/mateusstp/avaliacaodesempenhosistemas.

4.2 Dados do problema e dados estatísticos

Tabela 2 – Dados do problema e dados estatísticos

		Coleta Real			N	ormalizac	lo		Saídas	
Número	CPU	Disk 1	Disk 2	TR ID	CPU	Disk 1	Disk 2	y1	y2	у3
1	116,824	9,000	9,000	18	-0,732	-1,570	-1,357	0,544	1,942	-0,879
2	64,383	7,000	9,000	37	-1,048	-1,644	-1,357	0,696	2,162	-0,695
3	35,403	7,000	9,000	58	-1,223	-1,644	-1,357	0,801	2,248	-0,585
4	104,409	8,000	12,000	77	-0,807	-1,607	-1,243	0,498	1,990	-0,755
5	119,793	9,000	8,000	19	-0,714	-1,570	-1,395	0,557	1,940	-0,919
198	139,368	60,000	40,000	57	-0,596	0,320	-0,183	0,628	0,057	0,306
199	136,998	68,000	37,000	201	-0,610	0,616	-0,297	0,852	-0,167	0,292
200	149,211	69,000	38,000	17	-0,537	0,653	-0,259	0,802	-0,242	0,282
$\sum x$	47640,823	10275,000	8969,000	-	0,000	0,000	0,000	0,000	0,000	0,000
$\sum x^2$	16822813,796	672893,000	541135,000	-	199,000	199,000	199,000	207,390	348,108	41,503
Média	238,204	51,375	44,845	-	0,000	0,000	0,000	0,000	0,000	0,000
Variância	27510,420	728,718	698,091	-	1,000	1,000	1,000	1,042	1,749	0,209
Desvio Padrão	165,863	26,995	26,421	-	1,000	1,000	1,000	1,021	1,323	0,457

Tabela 3 – Dados estatísticos

	CPU	Disk 1	Disk 2
Coeficiente de Variação	0,696	0,525	0,589
Valor Máximo	507,450	85,000	92,000
Valor Mínimo	23,597	5,000	7,000
Range	483,853	80,000	85,000
1° Quartil	104,439	33,000	26,250
2° Quartil	151,625	63,000	39,000
3° Quartil	418,052	72,000	68,000
Mediana	151,625	63,000	39,000

5 Gráficos - Questão B

5.1 Histogramas

40 40 30 20 10 0 16 24 32 40 48 56 64 72 80 88

Histograma Disco 1

Parâmetro Único

50 -

Figura 1 – Histograma CPU com 10 Classes

Figura 2 – Histograma Disco 1 com 10 Classes

Figura 3 – Histograma Disco 2 com 10 Classes

5.2 **CDF**

Figura 4 – CDF CPU

Figura 5 – CDF Disco 1

Figura 6 – CDF Disco $2\,$

5.3 Box Plot

Figura 7 – Box plot CPU

Figura 8 – Box plot Disco 1 e 2

6 Análise do Componente Principal - Questão C

Tabela 4 – Autovetores

v1	v2	v3
-0,596	0,485	-0,640
-0,496	-0,849	-0,181
-0,631	0,209	0,747

Tabela 5 – Matriz de Correlação

1,00	0,465	0,916
0,465	1,00	0,626
0,916	0,626	1,00

Tabela 6 – Correlação entre variáveis

Correlação	(CPU, Disco1)	(CPU, Disco2)	(Disco1, Disco2)
$R_{(i,j)}$	0,465	0,916	0,626

Tabela 7 – Porcentegem PCA

	CPU	Disk 1	Disk 2
Porcentagem de cada fator	34,74%	58,31%	6,95%

Análise de Componente Principal

Figura 9 - PCA

-3,000 Fator principal 1 - Disco 1

7 Correlação PCAs e Componentes - Questão D

Tabela 8 – Correlação PCA e Componentes

	y 1	y 2
$R_{(pcu,yi)}$	-0,799	-0,938
$R_{(d1,yi)}$	-0,902	-0,189
$R_{(d2,yi)}$	-0,882	-0,865

Gráfico de Relação

PCA x Componentes

Figura 10 – Correlação PCA e Componentes

Referências

- [1] **JAIN**, Raj. The Art of Computer System Performance Analysis. *EUA: John Wiley & Sons*, 1991.
- [2] **Equipe IGM**. Cálculo de autovalores e autovetores. disponível em $http://www.igm.mat.br/aplicativos/index.php?option=com_content&view=article&id=754:autovalores-vetores&catid=101:edo-segunda-ordem.$