Step 1: Import Libraries & Load Dataset

```
import pandas as pd

train_df = pd.read_csv(r"C:\Users\Asus\Desktop\Elevate_Labs_day5_11-
08-2025_\Datasets\train.csv")
test_df = pd.read_csv(r"C:\Users\Asus\Desktop\Elevate_Labs_day5_11-08-
2025_\Datasets\test.csv")
gender_df = pd.read_csv(r"C:\Users\Asus\Desktop\Elevate_Labs_day5_11-
08-2025_\Datasets\gender_submission.csv")
```

Head of train DataFrame

```
train df.head()
   PassengerId Survived
                           Pclass \
             2
1
                        1
                                1
2
             3
                        1
                                3
3
             4
                        1
                                1
             5
                        0
                                3
                                                  Name
                                                           Sex
                                                                 Age
SibSp \
                              Braund, Mr. Owen Harris
                                                          male 22.0
1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
2
                               Heikkinen, Miss. Laina female 26.0
0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
1
4
                             Allen, Mr. William Henry
                                                          male 35.0
0
   Parch
                    Ticket
                                Fare Cabin Embarked
0
                 A/5 21171
       0
                              7.2500
                                       NaN
                                                   S
                                                   C
1
                  PC 17599
                             71.2833
       0
                                       C85
2
       0
                                                   S
         STON/02. 3101282
                              7.9250
                                       NaN
3
                                                   S
       0
                    113803
                             53.1000
                                      C123
4
                                                   S
       0
                    373450
                              8.0500
                                       NaN
```

Step 2: Initial Data Inspection

train_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                 Non-Null Count
    Column
                                 Dtype
 0
    PassengerId 891 non-null
                                 int64
                                 int64
    Survived
                 891 non-null
1
    Pclass
 2
                 891 non-null
                                 int64
 3
    Name
                 891 non-null
                                 object
 4
    Sex
                891 non-null
                                 object
 5
                 714 non-null
                                 float64
    Age
 6
    SibSp
                 891 non-null
                                 int64
 7
    Parch
                 891 non-null
                                 int64
 8
                 891 non-null
                                 object
    Ticket
 9
    Fare
                 891 non-null
                                 float64
10
                                 object
    Cabin
                 204 non-null
 11 Embarked
                 889 non-null
                                 object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

Step 3: Data Cleaning

Filling missing 'Embarked' with mode

```
train_df['Embarked'] =
train_df['Embarked'].fillna(train_df['Embarked'].mode()[0])
```

Fill missing 'Age' with median

```
train_df['Age'] = train_df['Age'].fillna(train_df['Age'].median())
```

Creating a feature for Cabin availability

```
train_df['Has_Cabin'] = train_df['Cabin'].notnull().astype(int)
```

Droping 'Cabin' column (too many missing values)

```
train_df = train_df.drop('Cabin', axis=1)
```

Drop irrelevant columns for EDA

```
train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1)
```

Verify changes

```
train_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 9 columns):
                Non-Null Count Dtype
     Column
0
     Survived
                891 non-null
                                 int64
     Pclass
1
                891 non-null
                                 int64
    Sex
Age
 2
             891 non-null
891 non-null
891 non-null
                891 non-null
                                 object
 3
                                 float64
    SibSp
Parch
4
                                 int64
5
                                 int64
    Fare
                                 float64
                891 non-null
     Embarked 891 non-null
7
                                 object
     Has Cabin 891 non-null
                                 int64
dtypes: float64(2), int64(5), object(2)
memory usage: 62.8+ KB
```

Step 4: Summary Statistics

Numeric summary

train_	df.describe()			
		Pclass	Age	SibSp	Parch
Fare count 891.00	891.000000	891.000000	891.000000	891.000000	891.000000
	0.383838	2.308642	29.361582	0.523008	0.381594
std 49.693	0.486592 429	0.836071	13.019697	1.102743	0.806057
	0.000000	1.000000	0.420000	0.000000	0.000000
	0.000000	2.000000	22.000000	0.000000	0.000000
	0.000000	3.000000	28.000000	0.000000	0.000000
	1.000000	3.000000	35.000000	1.000000	0.000000
	1.000000	3.000000	80.000000	8.000000	6.000000
	Has Cabin				
std min	_				

```
50% 0.000000
75% 0.000000
max 1.000000
```

Summary Statistics – Observations

- Survival Rate: Mean of Survived = 0.38 → About 38% of passengers survived.
- Passenger Class: Mean Pclass = 2.31 → Most passengers were in 2nd or 3rd class.
- Age: Median age = 28, youngest = 0.42 years (infant), oldest = 80 years.
- SibSp: Median = 0 → Most passengers traveled without siblings/spouses.
- Parch: Median = 0 → Most passengers traveled without parents/children.
- Fare: Highly skewed, median = 14.45 but max = 512.33 → Indicates a few very expensive tickets.
- **Has_Cabin**: Mean = 0.23 → Only about 23% had cabin information (likely higher-class passengers).

Categorical summary

```
categorical cols = ['Sex', 'Embarked', 'Pclass']
for col in categorical cols:
    print(f"\nValue counts for {col}:")
    print(train df[col].value counts())
Value counts for Sex:
Sex
male
          577
female
          314
Name: count, dtype: int64
Value counts for Embarked:
Embarked
S
     646
C
     168
      77
Name: count, dtype: int64
Value counts for Pclass:
Pclass
     491
3
1
     216
     184
Name: count, dtype: int64
```

Categorical Summary – Observations

- **Sex**: Majority were male (577), fewer females (314).
- Embarked:
 - Most passengers boarded from Southampton (S) 646

- Followed by Cherbourg (C) 168
- Least from Queenstown (Q) 77
- Pclass:
 - Most passengers traveled in 3rd class 491
 - 1st class 216
 - 2nd class 184

Step 5: Univariate Visualizations

5.1 Numeric Columns – Histograms

```
import matplotlib.pyplot as plt
import seaborn as sns

numeric_cols = ['Age', 'Fare', 'SibSp', 'Parch']

for col in numeric_cols:
    plt.figure(figsize=(6,4))
    sns.histplot(train_df[col], kde=True, bins=30)
    plt.title(f'Distribution of {col}')
    plt.show()
```


- **Age**: Most passengers are between 20–40 years old. A smaller peak is seen for children under 10.
- Fare: Highly skewed towards lower fares, with a few extreme high values.
- SibSp: Majority have 0 siblings/spouse aboard, small peaks at 1 and 2.
- Parch: Most passengers have 0 parents/children aboard, small peaks at 1–3.

5.2 Numeric Columns – Boxplots (for Outliers)

```
for col in numeric_cols:
   plt.figure(figsize=(6,4))
   sns.boxplot(x=train_df[col])
   plt.title(f'Boxplot of {col}')
   plt.show()
```

Boxplot of Age

Boxplot of Fare

Boxplot of SibSp

Boxplot of Parch

- **Age**: Outliers present, especially older passengers above 60.
- Fare: Strong right skew, with several high-fare outliers above 200.

- **SibSp**: Outliers exist for very large sibling/spouse counts.
- Parch: A few outliers with large family sizes.

5.3 Categorical Columns – Count Plots

```
categorical_cols = ['Sex', 'Embarked', 'Pclass', 'Has_Cabin']
for col in categorical_cols:
   plt.figure(figsize=(6,4))
   sns.countplot(data=train_df, x=col)
   plt.title(f'Count of {col}')
   plt.show()
```


- Sex: More male passengers than female.
- **Embarked**: Southampton is the most common embarkation point, followed by Cherbourg and Queenstown.
- Pclass: Most passengers traveled in 3rd class, then 1st, then 2nd.
- **Has_Cabin**: Majority do not have cabin information.

Step 6: Bivariate Analysis

6.1 Survived vs Categorical Variables (Count Plots)

```
categorical_cols = ['Sex', 'Pclass', 'Embarked', 'Has_Cabin']

for col in categorical_cols:
    plt.figure(figsize=(6,4))
    sns.countplot(data=train_df, x=col, hue='Survived')
    plt.title(f'Survival Count by {col}')
    plt.show()
```


- **Sex**: Females have a higher survival rate than males.
- Pclass: 1st class passengers had the highest survival rate, 3rd class the lowest.

- Embarked: Passengers from Cherbourg show higher survival rates.
- Has_Cabin: Those with cabins had higher survival chances.

6.2 Survived vs Numerical Variables (Boxplots)

```
numeric_cols = ['Age', 'Fare']

for col in numeric_cols:
    plt.figure(figsize=(6,4))
    sns.boxplot(data=train_df, x='Survived', y=col)
    plt.title(f'{col} by Survival Status')
    plt.show()
```


- Age: Younger survivors are slightly more common, but survival occurs across all ages.
- Fare: Higher fares generally link to higher survival rates.

6.3 Correlation Heatmap (Numerical Features)

```
num_cols = train_df.select_dtypes(include=['int64', 'float64'])
print(num_cols.columns)
plt.figure(figsize=(8,6))
sns.heatmap(num_cols.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation between numeric features")
plt.show()

Index(['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Has_Cabin'], dtype='object')
```


- Strong negative correlation between Pclass and Fare (higher class → higher fare).
- Has Cabin is positively correlated with survival.

```
df encoded = train df.copy()
df encoded['Sex'] = df encoded['Sex'].map({'male': 0, 'female': 1})
df encoded['Embarked'] = df encoded['Embarked'].map({'S': 0, 'C': 1,
'0': 2})
print(df encoded.head())
   Survived
             Pclass Sex Age
                                SibSp Parch
                                                   Fare
                                                         Embarked
Has Cabin
                  3
0
                           22.0
                                     1
                                            0
                                                 7.2500
                                                                0
0
1
          1
                   1
                                     1
                                                71.2833
                                                                1
                        1
                           38.0
                                             0
1
2
          1
                  3
                                     0
                                                                0
                        1
                           26.0
                                             0
                                                 7.9250
0
3
          1
                   1
                           35.0
                                     1
                                            0
                                               53.1000
                                                                0
                        1
1
```

```
4 0 3 0 35.0 0 0 8.0500 0

# correlation heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(df_encoded.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```


Step 7: Encoding Categorical Variables

```
plt.figure(figsize=(6,4))
sns.countplot(data=df_encoded, x='Survived')
plt.title("Survival Counts")
plt.xlabel("Survived (0 = No, 1 = Yes)")
```

```
plt.ylabel("Count")
plt.show()
```


Step 8: Correlation Heatmap (after encoding)

```
numeric_df = train_df.select_dtypes(include=['number'])
plt.figure(figsize=(8,6))
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```


- Sex (encoded) shows negative correlation with survival (0 = male, 1 = female → females survive more).
- Embarked shows weak correlation with survival.
- Fare shows positive correlation with survival.

Step 9: Univariate Visualizations

```
# Numerical features
num_cols = ['Age', 'Fare']
for col in num_cols:
    plt.figure(figsize=(6,4))
    sns.histplot(train_df[col], kde=True, bins=30)
    plt.title(f"Distribution of {col}")
    plt.show()
```



```
# Categorical features
cat_cols = ['Sex', 'Embarked', 'Pclass']
for col in cat_cols:
```

```
plt.figure(figsize=(6,4))
sns.countplot(x=col, data=train_df)
plt.title(f"Count of {col}")
plt.show()
```



```
# Boxplots for Numeric Columns
numeric_cols = ['Age', 'Fare', 'SibSp', 'Parch']
for col in numeric_cols:
```

```
plt.figure(figsize=(6,4))
sns.boxplot(x=train_df[col])
plt.title(f'Boxplot of {col}')
plt.show()
```

Boxplot of Age

Boxplot of Fare

Boxplot of SibSp

Boxplot of Parch

- Matches earlier Step 5 trends:
 - Age distribution still peaks in 20–40 range.
 - Fare distribution remains skewed.
 - Class imbalance in categorical features is visible.

Step 10: Pairplot for Relationships and Trends

```
numeric_cols = ['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare',
    'Has_Cabin']
sns.pairplot(train_df[numeric_cols], hue='Survived', diag_kind='kde',
    corner=True)
plt.suptitle('Pairplot of Numeric Features (colored by Survived)',
    y=1.02)
plt.show()
```


- Survivors are more frequent in higher-fare, lower-class (Pclass=1) areas.
- Clusters visible where Fare is high and Pclass is 1.
- Has_Cabin and Pclass separate survivors and non-survivors slightly.

Step 12: Summary of Findings

- **Survival Rate**: Around 38% of passengers survived. Females, 1st class passengers, and those with cabins had noticeably higher survival rates.
- Passenger Class & Fare: Higher fares are strongly linked to higher survival, and 1st class passengers paid significantly more on average.

- **Age Distribution**: Most passengers were between 20–40 years old. Children had slightly better survival chances in certain classes.
- **Family Size**: Majority of passengers traveled alone. Those with small families had better chances of survival compared to those traveling alone or with large families.
- **Embarkation Point**: Most passengers boarded at Southampton, but those from Cherbourg had the highest survival rates.
- **Cabin Information**: Presence of cabin data (Has_Cabin) is strongly associated with higher survival, indicating a link with passenger class and ticket price.