Kernelized Correlation Filters Notes

 ${\rm Fanming} L$

2018年11月28日

图 1: 左图为检测到物体的图像,需要寻找到右图中的物体

1 核相关滤波器

1.1 问题提出

若我们有两张图片,在两张图片中均有某物体,在第一张图片中检测到该物体,那么如何在第二张图片中去寻找该物体呢?

一个很直观的思想是:罗列出第一张图所有可能的平移变换,比如,这是一张 75×75 的图片,该图片的左上角在 (0,0) 处,移动图片,使得图片左上角移动至其余的 75×75-1 像素处,超出边界的像素补充至上边界和左边界。这样我们可以得到 75×75 (包括原图) 张图像,将图1中右图与这 75×75 张图像对比,计算图像的相关性,找到最大相关性的图像,该图像对应的平移便是图1左图中物体到图1右图中物体的平移。

这篇文章的思想也大抵如此,但是它用非常精妙的技巧将计算复杂度降低到了 $O(n \log n)$ 。

1.2 问题的数学表示

1.2.1 循环矩阵

如第1.1节所示,我们需要得到所有能够移动得到的图片,那么应该如何表示呢? 只需要将图像(为了方便起见,这里暂时用灰度图像)化为列向量 \mathbf{x} ,然后对 \mathbf{x} 做循环位移再转变回矩阵即可。循环位移即左乘 \mathbf{P} 矩阵。

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$
 (1)

可以看出 $\mathbf{P}\mathbf{x} = [x_n, x_1, x_2, \cdots, x_{n-1}]^T$ 即为 \mathbf{x} 向下移动一次得到的新向量。由此我们可以得到 n 个平移得到的向量。

$$\{\mathbf{P}^{u}\mathbf{x}|u=0,\cdots,n-1\}\tag{2}$$

我们将所有这些向量拼成一个矩阵,即

$$\mathbf{X} = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ x_n & x_1 & x_2 & \cdots & x_{n-1} \\ x_{n-1} & x_n & x_1 & \cdots & x_{n-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ x_2 & x_3 & x_4 & \cdots & x_1 \end{bmatrix}$$
(3)

我们定义操作 $C(\mathbf{x}) === X$,即以 \mathbf{x}^T 为第一行构造循环矩阵。

1.2.2 用岭回归求解问题

我们尝试用岭回归求解第1.1节描述的问题,首先设x为原始的图像, x_i 定义为

$$\mathbf{x}_i = \mathbf{P}^{i-1}\mathbf{x} \quad i = 1, \cdots, n \tag{4}$$

下一步我们需要得到一个线性回归模型

$$f(\mathbf{z}) = \mathbf{z}^T \mathbf{w} \tag{5}$$

我们希望用它来判断 z 与原始图像的相关性大小。

为了构造训练集我们为每一个图像 \mathbf{x}_i 给定一个与原始图像的相关系数,用 y_i 表示。给 y_i 赋值的原则是 \mathbf{x}_i 偏移原始图像越远,相关性越小。 y_i 可以用高斯函数去给定,即 i=0 时 $y_i=1$ 其余 y_i 按照其图像左上角与原始图像左上角的距离按照高斯函数衰减(即偏的越远, y_i 越小,这是很好理解的)。

于是我们有了我们的训练样本 \mathbf{X} 和标签 \mathbf{y} ,接下来我们用岭回归去得到线性模型的系数 \mathbf{w} 。

岭回归的优化目标是最小化经验风险和结构风险之和,即

$$\min \sum_{i}^{n} \left(\left(f(\mathbf{x}_{i}) - y_{i} \right)^{2} + \lambda \|\mathbf{w}\|^{2} \right)$$
 (6)

写成矩阵形式

$$\min J(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$$
(7)

对 $J(\mathbf{w})$ 求偏导,并使偏导为零得到

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$
 (8)

更一般的,对于X为复矩阵的情况

$$\mathbf{w} = (\mathbf{X}^H \mathbf{X} + \lambda I)^{-1} \mathbf{X}^H \mathbf{y} \tag{9}$$

至此我们用循环矩阵构造的训练集得到了我们的回归模型,对图1右图的检测也只需要将该图化为列向量 \mathbf{z} ,然后计算 $\mathbf{f}(\mathbf{z}) = C(\mathbf{z})\mathbf{w}$, $\mathbf{f}(\mathbf{z})$ 最大值对应的平移就是右图中物体相对于左图中物体的估计位置。

但是很显然,这样一种运算代价实在是太高了,所以本文根据循环矩阵的特性,对上述计算大大化简。

1.3 用循环矩阵的特征值分解简化结果

1.3.1 离散傅立叶变换

若有一N 维离散序列 \mathbf{x} 其离散傅立叶变换可以写为

$$\hat{x}_k = \sum_{n=0}^{N} \exp(-j\frac{2\pi}{N}nk)x_n$$
 (10)

其逆变换可写为

$$x_n = \frac{1}{N} \sum_{k=0}^{N} \exp(j\frac{2\pi}{N}nk)x_k \tag{11}$$

根据式10可以将式10写成矩阵形式即

$$\hat{\mathbf{x}} = \mathbf{G}\mathbf{x} \tag{12}$$

其中 $G_{kn} = \exp(-j\frac{2\pi}{N}nk)$ 。可以看出 $G_{kn} = G_{nk} = \exp(-j\frac{2\pi}{N}nk)$,所以

$$\mathbf{G} = \mathbf{G}^T \tag{13}$$

逆变换可以写为

$$\mathbf{x} = \frac{1}{N} \mathbf{G}^* \hat{\mathbf{x}} \tag{14}$$

我们可以来看看 \mathbf{G} 是否是酉矩阵 (即是否满足 $\mathbf{G}^H\mathbf{G} = I$)

$$\mathbf{x} = \frac{1}{N} \mathbf{G}^* \hat{\mathbf{x}}$$

$$\mathbf{x} = \frac{1}{N} \mathbf{G}^* \mathbf{G} \mathbf{x}$$

$$\mathbf{x} = \frac{1}{N} \mathbf{G}^H \mathbf{G} \mathbf{x}$$
(15)

即满足 $\frac{1}{N}\mathbf{G}^{H}\mathbf{G} = I$, 为了之后推导方便, 我们令

$$\mathbf{F} = \frac{1}{\sqrt{N}}\mathbf{G} \tag{16}$$

F 显然满足对称性

$$\mathbf{F}^T = \mathbf{F} \tag{17}$$

且 F 是酉矩阵

$$\mathbf{F}^H \mathbf{F} = \mathbf{F} \mathbf{F}^H = I \tag{18}$$

且基于 F 的离散傅立叶变换可写为

$$\hat{\mathbf{x}} = \mathcal{F}(\mathbf{x}) = \sqrt{N}\mathbf{F}\mathbf{x} \tag{19}$$

逆离散傅立叶变换为

$$\mathbf{x} = \mathcal{F}^{-1}(\hat{\mathbf{x}}) = \frac{1}{\sqrt{N}} \mathbf{F}^H \hat{\mathbf{x}}$$
 (20)

式19、式20、式17、式18在之后的推导中将会多次使用!

1.3.2 循环矩阵的特征值分解

若某一方阵 \mathbf{X} 的元素 X_{ij} 的值只与 (i-j) 的大小有关,那么矩阵 \mathbf{X} 为循环矩阵且,矩阵 \mathbf{X} 可以进行特征值分解

$$\mathbf{X} = \mathbf{F} diag(\hat{\mathbf{x}})\mathbf{F}^H \tag{21}$$

其中 $\hat{\mathbf{x}} = \mathcal{F}(\mathbf{x})$, 即 \mathbf{x} 的离散傅立叶变换, \mathbf{F} 即式16所定义的。

1.3.3 训练过程的简化

我们回到式9,用式21对其进行化简。我们有

$$\mathbf{X}^{H}\mathbf{X} = \mathbf{F}diag(\hat{\mathbf{x}}^{*})\mathbf{F}^{H}\mathbf{F}diag(\hat{\mathbf{x}})\mathbf{F}^{H}$$

$$= \mathbf{F}diag(\hat{\mathbf{x}}^{*})diag(\hat{\mathbf{x}})\mathbf{F}^{H}$$

$$= \mathbf{F}diag(\hat{\mathbf{x}}^{*} \odot \hat{\mathbf{x}})\mathbf{F}^{H}$$
(22)

所以

$$\mathbf{X}^{H}\mathbf{X} + \lambda I = \mathbf{F}diag(\hat{\mathbf{x}}^{*} \odot \hat{\mathbf{x}})\mathbf{F}^{H} + \lambda \mathbf{F}\mathbf{F}^{H}$$

$$= \mathbf{F}diag(\hat{\mathbf{x}}^{*} \odot \hat{\mathbf{x}} + \lambda)\mathbf{F}^{H}$$
(23)

所以

$$(\mathbf{X}^{H}\mathbf{X} + \lambda I)^{-1} = \mathbf{F}diag(\frac{1}{\hat{\mathbf{x}}^{*} \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^{H}$$
(24)

$$(\mathbf{X}^{T}\mathbf{X} + \lambda I)^{-1}\mathbf{X}^{H} = \mathbf{F}diag(\frac{1}{\hat{\mathbf{x}}^{*} \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^{H}\mathbf{F}diag(\hat{\mathbf{x}}^{*})\mathbf{F}^{H}$$

$$= \mathbf{F}diag(\frac{1}{\hat{\mathbf{x}}^{*} \odot \hat{\mathbf{x}} + \lambda})diag(\hat{\mathbf{x}}^{*})\mathbf{F}^{H}$$

$$= \mathbf{F}diag(\frac{\hat{\mathbf{x}}^{*}}{\hat{\mathbf{x}}^{*} \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^{H}$$
(25)

所以

$$\mathbf{w} = \mathbf{F}diag(\frac{\hat{\mathbf{x}}^*}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^H \mathbf{y}$$

$$\mathbf{F}^H \mathbf{w} = diag(\frac{\hat{\mathbf{x}}^*}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^H \mathbf{y}$$

$$\mathbf{F}^T \mathbf{w}^* = diag(\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^T \mathbf{y}^*$$

$$\mathbf{F}^T \mathbf{w} = diag(\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^T \mathbf{y}$$

$$\mathbf{F} \mathbf{w} = diag(\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\mathbf{F}^T \mathbf{y}$$

$$\mathbf{F} \mathbf{w} = diag(\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\mathbf{F} \mathbf{y}$$

$$\mathcal{F}(\mathbf{w}) = diag(\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\mathcal{F}(\mathbf{y})$$

最后得到

$$\hat{\mathbf{w}} = diag(\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda})\hat{\mathbf{y}}$$
 (27)

左乘对角阵是对行加权,即

$$\hat{\mathbf{w}} = \frac{\hat{\mathbf{x}} \odot \hat{\mathbf{y}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda} \tag{28}$$

至此,我们将 w 的表达式化简至此,大部分的运算量都花在离散傅立叶变换上,而得益于快速傅立叶变换,时间复杂度为 $O(n\log n)$ 的算法,这个算法的时间复杂度也变成了 $O(n\log n)$ 。

1.3.4 检测过程的简化

于是训练过程可以用 $O(n \log n)$ 的算法代替,那么检测过程呢?

$$\mathbf{f}(\mathbf{z}) = C(\hat{\mathbf{z}})\mathbf{w}$$

$$= \mathbf{F}diag(\hat{\mathbf{z}})\mathbf{F}^{H}\mathbf{w}$$

$$\mathbf{F}^{H}\mathbf{f}(\mathbf{z}) = diag(\hat{\mathbf{z}})\mathbf{F}^{H}\mathbf{w}$$

$$\mathbf{F}^{T}\mathbf{f}(\mathbf{z}) = diag(\hat{\mathbf{z}}^{*})\mathbf{F}^{T}\mathbf{w}$$

$$\mathbf{F}\mathbf{f}(\mathbf{z}) = diag(\hat{\mathbf{z}}^{*})\mathbf{F}\mathbf{w}$$
(29)

最后得到

$$\hat{\mathbf{f}}(\mathbf{z}) = \hat{\mathbf{z}}^* \odot \hat{\mathbf{w}} \tag{30}$$

实际上,式27与论文中的式子不一样(我觉得论文里写错了),我们对我们的公式可以做个简单的验证,即令 \mathbf{z} 为原图,即 $\mathbf{z}=\mathbf{x}$,我们做个简单的检测

$$\hat{\mathbf{f}}(\mathbf{z}) = \hat{\mathbf{z}}^* \odot \hat{\mathbf{w}}
= \hat{\mathbf{x}}^* \odot \hat{\mathbf{w}}
= \frac{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda} \odot \hat{\mathbf{y}}$$
(31)

$$\hat{\mathbf{f}}(\mathbf{z}) = \hat{\mathbf{y}} \tag{32}$$

即

$$\mathbf{f}(\mathbf{z}) = \mathbf{y} \tag{33}$$

这个结果是合理的。

1.4 核方法

这里我们利用核方法,利用映射 $\phi(\cdot)$ 将 \mathbf{x} 映射到非线性空间中。

1.4.1 岭回归

我们的优化对象仍然为

$$\min \sum_{i=1}^{m} (f(\mathbf{x}_i) - y_i)^2 + \lambda \|\mathbf{w}\|^2$$
(34)

根据表示定理(见西瓜书137页),这个问题的解,总可写为

$$f^*(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i \kappa(\mathbf{x}, \mathbf{x}_i)$$
 (35)

这里的 * 不表示共轭, 表示最优解。所以线性回归方程可写为

$$f(\mathbf{z}) = \mathbf{w}^T \phi(\mathbf{z}) \tag{36}$$

其中 w 可写为

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i) \tag{37}$$

令核矩阵为 **K**, 且 $K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$ 。

1.4.2 矩阵表示

把 w 代入至线性回归方程得到

$$f(\mathbf{z}) = \sum_{i=1}^{m} \alpha_i \kappa(\mathbf{z}, \mathbf{x}_i)$$
(38)

优化对象为

$$\min \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_{j} \kappa(\mathbf{x}_{i}, \mathbf{x}_{j}) - y_{i})^{2} + \lambda \|\mathbf{w}\|^{2}$$

$$\min \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_{j} K_{ij} - y_{i})^{2} + \lambda \|\mathbf{w}\|^{2}$$

$$\min \sum_{i=1}^{m} (\mathbf{K}_{i}^{T} \boldsymbol{\alpha} - y_{i})^{2} + \lambda (\sum_{i=1}^{m} \alpha_{i} \phi(\mathbf{x}_{i}))^{T} (\sum_{i=1}^{m} \alpha_{i} \phi(\mathbf{x}_{i}))$$

$$\min (\mathbf{K} \boldsymbol{\alpha} - \mathbf{y})^{T} (\mathbf{K} \boldsymbol{\alpha} - \mathbf{y}) + \lambda \boldsymbol{\alpha}^{T} \mathbf{K} \boldsymbol{\alpha}$$
(39)

可以看出我们的优化对象从 \mathbf{w} 变成了 $\boldsymbol{\alpha}$, 我们称 $\boldsymbol{\alpha}$ 为对偶空间, 而 \mathbf{w} 称为主空间。

1.4.3 求解

$$\frac{\partial J}{\partial \boldsymbol{\alpha}} = 2\mathbf{K}^T \mathbf{K} \boldsymbol{\alpha} - 2\mathbf{K} \mathbf{y} + 2\lambda \mathbf{K} \boldsymbol{\alpha}$$
$$= 2\mathbf{K} (\mathbf{K} \boldsymbol{\alpha} - \mathbf{y} + \lambda \boldsymbol{\alpha})$$
 (40)

令偏导为零得

$$\alpha = (\mathbf{K} + \lambda I)^{-1} \mathbf{y} \tag{41}$$

1.4.4 训练过程

若 **K** 为循环矩阵,那么,式41也可类似之前一样简化。可以证明,当 $\kappa(\mathbf{x},\mathbf{x}') = \kappa(\mathbf{x},\mathbf{x}')$ 时, **K** 为循环矩阵,即 K_{ij} 的值只与 (i-j) 的值有关。证明如下。以下的 **P** 在式1中定义。

$$K_{ij} = \kappa(\mathbf{P}^{i}\mathbf{x}, \mathbf{P}^{j}\mathbf{x})$$

$$= \kappa(\mathbf{P}^{-i}\mathbf{P}^{i}\mathbf{x}, \mathbf{P}^{-i}\mathbf{P}^{j}\mathbf{x})$$

$$= \kappa(\mathbf{x}, \mathbf{P}^{j-i}\mathbf{x})$$
(42)

所以 K_{ij} 的值只与只与 (i-j) 有关所以 \mathbf{K} 为循环矩阵。实际上线性核、RBF 核等都满足该性质。

所以可以对 **K** 进行特征值分解。 令 $\mathbf{k}^{\mathbf{x}\mathbf{x}}$ 为矩阵 **K** 的第一行的转置,即 $k_i^{\mathbf{x}\mathbf{x}} = \kappa(\mathbf{x}, \mathbf{x}_i)$ 。

$$\alpha = (\mathbf{F}diag(\hat{\mathbf{k}}^{\mathbf{x}\mathbf{x}})\mathbf{F}^{H} + \lambda \mathbf{F}\mathbf{F}^{H})\mathbf{y}$$

$$= \mathbf{F}diag(\frac{1}{\hat{\mathbf{k}}^{\mathbf{x}\mathbf{x}} + \lambda})\mathbf{F}^{H}\mathbf{y}$$

$$\mathbf{F}^{H}\alpha = diag(\frac{1}{\hat{\mathbf{k}}^{\mathbf{x}\mathbf{x}} + \lambda})\mathbf{F}^{H}\mathbf{y}$$

$$\hat{\alpha} = diag(\frac{1}{\hat{\mathbf{k}}^{\mathbf{x}\mathbf{x}} + \lambda})\hat{\mathbf{y}}$$
(43)

所以我们得到。

$$\hat{\alpha} = \frac{\hat{\mathbf{y}}}{\hat{\mathbf{k}}^{\mathbf{x}\mathbf{x}} + \lambda} \tag{44}$$

1.4.5 检测过程

为方便, 首先对 $\mathbf{k}^{\mathbf{x}\mathbf{x}'}$ (即, 核相关向量) 定义

$$k_i^{\mathbf{x}\mathbf{x}'} = \kappa(\mathbf{x}', \mathbf{P}^{i-1}\mathbf{x}) = \kappa(\mathbf{x}', \mathbf{x}_i) \tag{45}$$

观察式45和式38可以将式38如下化简

$$f(\mathbf{z}) = \sum_{i=1}^{m} \alpha_i k_i^{\mathbf{x}\mathbf{z}} = (\mathbf{k}^{\mathbf{x}\mathbf{z}})^T \boldsymbol{\alpha}$$
 (46)

所以

$$\mathbf{f}(\mathbf{z}) = C(\mathbf{k}^{\mathbf{x}\mathbf{z}})\boldsymbol{\alpha}$$

$$= \mathbf{F}diag(\hat{\mathbf{k}}^{\mathbf{x}\mathbf{z}})\mathbf{F}^{H}\boldsymbol{\alpha}$$

$$\mathbf{F}^{H}\mathbf{f} = diag(\hat{\mathbf{k}}^{\mathbf{x}\mathbf{z}})\mathbf{F}^{H}\boldsymbol{\alpha}$$

$$\mathbf{F}\mathbf{f} = diag(\hat{\mathbf{k}}^{\mathbf{x}\mathbf{z}})\mathbf{F}\boldsymbol{\alpha}$$

$$\hat{\mathbf{f}} = diag(\hat{\mathbf{k}}^{\mathbf{x}\mathbf{z}})\hat{\boldsymbol{\alpha}}$$
(47)

最后可得

$$\hat{\mathbf{f}} = \hat{\mathbf{k}}^{*\mathbf{x}\mathbf{z}} \odot \hat{\boldsymbol{\alpha}} \tag{48}$$

1.5 核相关向量的计算

在训练过程,即式44和检测过程,即式48中,往往都是先将原始数据 \mathbf{x} 转化为核相关向量 $\mathbf{k}^{\mathbf{x}\mathbf{x}'}$ 再进行计算,这里给出内积核和径向基函数(RBF)核的简化计算方法。但并不是所有核都能有简化的方法。

1.5.1 内积核

内积核的形式为 $\kappa(\mathbf{x}, \mathbf{x}') = g(\mathbf{x}^T \mathbf{x}')$, 结合式45可得

$$k_i^{\mathbf{x}\mathbf{x}'} = \kappa(\mathbf{x}', \mathbf{P}^{i-1}\mathbf{x}) = g((\mathbf{P}^{i-1}\mathbf{x})^T\mathbf{x}')$$
(49)

所以

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = g(C(\mathbf{x})\mathbf{x}') \tag{50}$$

对 $C(\mathbf{x})$ 施行特征值分解可得,

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = g\left(\mathbf{F}diag(\hat{\mathbf{x}})\mathbf{F}^{H}\mathbf{x}'\right)$$

$$= g\left(\mathbf{F}diag(\hat{\mathbf{x}})(\mathbf{F}^{T}\mathbf{x}')^{*}\right)$$

$$= g\left(\mathbf{F}diag(\hat{\mathbf{x}})(\mathbf{F}\mathbf{x}')^{*}\right)$$

$$= g\left(\frac{1}{\sqrt{N}}\mathbf{F}diag(\hat{\mathbf{x}})\hat{\mathbf{x}'}^{*}\right)$$

$$= g\left(\frac{1}{\sqrt{N}}(\mathbf{F}^{H}diag(\hat{\mathbf{x}}^{*})\hat{\mathbf{x}'})^{*}\right)$$

$$= g\left(\frac{1}{\sqrt{N}}(\mathbf{F}^{H}\hat{\mathbf{x}}^{*}\odot\hat{\mathbf{x}'})^{*}\right)$$

$$= g\left((\mathcal{F}^{-1}(\hat{\mathbf{x}}^{*}\odot\hat{\mathbf{x}'}))^{*}\right)$$

由于 \mathbf{x} 和 \mathbf{x}' 均为实序列,所以 $\hat{\mathbf{x}}$ 和 $\hat{\mathbf{x}}$ 必然都是共轭对称的序列,所以 $\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}}'$ 也是共轭对称的序列,所以 $\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}}'$ 的逆傅立叶变换必然是实序列,即 $(\mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}}'))^* = \mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}}')$,所以得到

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = g\left(\mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}'})\right) \tag{52}$$

实际上,式53也是在推导中常用的。

$$C(\mathbf{x})\mathbf{x}' = \mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}'}) \tag{53}$$

特别的,我们可以写出多项式核 $\kappa(\mathbf{x},\mathbf{x}')=(\mathbf{x}^T\mathbf{x}'+a)^b$ 的核向量为

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = \left(\mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}'}) + a\right)^b \tag{54}$$

线性核 $\kappa(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$ 的核向量为

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = \mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}'}) \tag{55}$$

可以看出,核向量的计算也被简化为 $O(n \log n)$ 的时间复杂度了

1.5.2 径向基函数核

内积核的形式为 $\kappa(\mathbf{x}, \mathbf{x}') = h(||\mathbf{x} - \mathbf{x}'||^2)$,结合式45可得

$$k_i^{\mathbf{x}\mathbf{x}'} = \kappa(\mathbf{x}', \mathbf{P}^{i-1}\mathbf{x}) = h\left(\|\mathbf{x}' - \mathbf{P}^{i-1}\mathbf{x}\|^2\right)$$
(56)

将上式展开得到

$$k_i^{\mathbf{x}\mathbf{x}'} = h\left(\|\mathbf{x}'\|^2 + \|\mathbf{x}\|^2 - 2(\mathbf{P}^{i-1}\mathbf{x})^T\mathbf{x}'\right)$$
(57)

写成向量形式

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = h\left(\|\mathbf{x}'\|^2 + \|\mathbf{x}\|^2 - 2C(\mathbf{x})\mathbf{x}'\right) \tag{58}$$

将式53代入上式得到

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = h\left(\|\mathbf{x}'\|^2 + \|\mathbf{x}\|^2 - 2\mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}'})\right)$$
(59)

特殊的,考虑高斯核 $\kappa(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{\sigma^2} ||\mathbf{x} - \mathbf{x}'||^2$

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = \exp\left(-\frac{1}{\sigma^2} \left(\|\mathbf{x}'\|^2 + \|\mathbf{x}\|^2 - 2\mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}'}) \right) \right)$$
(60)

该式同样是一个 $O(n \log n)$ 时间复杂度的式子。

1.6 拓展至多通道问题

若原始图像是彩色图像,或者我们不用原始图像去做特征而是用提取的特征(如 HOG 特征),这样我们就会面临多通道问题,之前的所有推导都是建立在多通道问题上的,这样我们就需要对我们的结果进行修改使其能够适应多通道问题。

假设特征有 C 个通道, $\mathbf{x}_1, \dots, \mathbf{x}_C$,为了能够将其能够适用式44和式48,需用核函数将其转为式45的核相关向量形式,在第1.5部分我们对内积核和 RBF 核做了讨论,其中只牵扯到对原始向量的求范数和内积的操作,这两种操作可以很容易拓展至多通道。

$$\|\mathbf{x}\|^2 = \sum_{i=1}^C \|\mathbf{x}_i\|^2 \tag{61}$$

$$\mathbf{x}^T \mathbf{x}' = \sum_{i=1}^C \mathbf{x}_i^T \mathbf{x}' \tag{62}$$

所以式55可写为

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = \mathcal{F}^{-1}(\sum_{c=1}^{C} \hat{\mathbf{x}}_{c}^{*} \odot \hat{\mathbf{x}'}_{c})$$
(63)

式60可写为

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = \exp\left(-\frac{1}{\sigma^2} \left(\|\mathbf{x}'\|^2 + \|\mathbf{x}\|^2 - 2\mathcal{F}^{-1} \left(\sum_{c=1}^C \hat{\mathbf{x}}_c^* \odot \hat{\mathbf{x}'}_c\right) \right) \right)$$
(64)

1.7 对偶相关滤波器

我们使用线性核 $\kappa(\mathbf{x},\mathbf{x}') = \mathbf{x}^T\mathbf{x}'$ 时,核相关向量的表示为式63,训练过程为式44,检测过程为式48,我们称这套 tracking 方法为对偶相关滤波器,因为它是线性的,并且是在对偶空间 α 训练的。

1.8 总结

核相关滤波器 (KCF) 和对偶相关滤波器 (DCF) 与其他滤波器相比,最大的特点是速度快,同时也保证了准确性,从图2可以看出。

总之这篇论文行文非常顺畅,数学推导非常优美(但是有些地方似乎推导的不对?可能是我错了?),效果也非常好,可以说是 tracking 类论文的经典了!

	Algorithm	Feature	Mean precision (20 px)	Mean FPS
Proposed	KCF	HOG	73.2%	172
	DCF		72.8%	292
	KCF	Raw	56.0%	154
	DCF	pixels	45.1%	278
Other algorithms	Struck [7]		65.6%	20
	TLD [4]		60.8%	28
	MOSSE [9]		43.1%	615
	MIL <u>[5]</u>		47.5%	38
	ORIA [14]		45.7%	9
	CT [<u>3</u>]		40.6%	64

Table 1: Summary of experimental results on the 50 videos dataset. The reported quantities are averaged over all videos. Reported speeds include feature computation (e.g. HOG).

图 2: 算法对比