

P6: Classer automatiquement des biens de consommation

13/07/2022 DUBART Maxime

Etude de faisabilité sur la classification automatique d'articles

Fondée sur les descriptions / images des articles (non-supervisé)

Données pour 1050 articles

Colonnes d'intérêt :

- Nom de produit
- Description
- Catégories (I et II)
- Lien vers images associées

Données pour 1050 articles

Colonnes d'intérêt :

- Nom de produit
- Description
- Catégories (I et II)
- Lien vers images associées

Conversion de l'arbre en deux nouvelles colonnes

- Catégorie principale (I)
- Catégorie secondaire (II)

Données pour 1050 articles

Colonnes d'intérêt :

- Nom de produit
- Description
- Catégories (I et II)
- Lien vers images associées

Prétraitement pour NLP

Conversion de l'arbre en deux nouvelles colonnes

- Catégorie principale (I)
- Catégorie secondaire (II)

Classification des descriptions

Classification des descriptions

#1: bag of words (tf, tf-idf)

Fondé sur les fréquences uniquement (contexte non considéré), out of vocab. words (oov), large sparse matrix representation, polysemy

#2: words embedding (w2v, fasttext, glove)

Fondé en partie sur le contexte, gestion des oov (fasttext), dense matrix representation, polysemy, texte représentation : moyenne des mots

#3: word/sentence embedding (BERT, USE) – transformers based

Fondé sur le contexte (attention), gestion des oov (n-gram based), dense matrix representation, polysemy, texte représentation : moyenne, [CLS], USE vector

Classification des descriptions

#1: bag of words (tf, tf-idf)

Fondé sur les fréquences uniquement (contexte non considéré) (oov), large sparse matrix representation, polysemy

#2: words embedding (w2v, fasttext, glove)

Fondé en partie sur le contexte, gestion des oov (fasttext), dense matrix representation, polysemy, texte représentation : moyenne des mots

#3: word/sentence embedding (BERT, USE)

Fondé sur le contexte (attention), gestion des oov (n-gram based representation, polysemy, texte représentation : moye

out of vocab. words

Préprocessing #1

Préprocessing #2

Préprocessing #1

Step #1: passage en minuscules

Step #2: tokenization

Step #3: suppression des stops words / ponctuation

Step #4: Lemmatization (passage à forme canonique)

Préprocessing #2

Step #1: passage en minuscules

Step #2: tokenization

Step #3: suppression des stops words / ponctuation

Step #4: Lemmatization (passage à forme canonique)

Préprocessing #2

Step #1: passage en minuscules

Step #2: tokenization

Step #3: suppression des stops words / ponctuation

Step #4: Lemmatization (passage à forme canonique)

Méthodes d'embedding: conversion en vecteurs d'entiers de taille fixe (padding)

#1 bag of words (tf, tf-idf)

	Word #1	Word #j	 Word #W
Doc. #1	tf_{ij}		
Doc. #D			

Fréquence du mot j dans le document i

#1 bag of words (tf, tf-idf)

Tf - BoW

	Word #1	Word #j	 Word #W
Doc. #1	tf_{ij}		
Doc. #D			

Fréquence du mot j dans le document i

Tf-idf - BoW

	Word #1	Word #j	 Word #\M
Doc. #1	$tf - idf_{ij}$		
•••			
Doc. #D			

Fréquence du mot j dans le document i pondéré par l'inverse de la fréquence du mot dans les documents

Tf-idf =
$$tf \cdot \left[\log \left(\frac{D+1}{df+1} \right) + 1 \right]$$

$$df_j = \sum_{i=1}^D tf_{ij} > 0$$

#2 words embedding (w2v, fasttext, glove)

Prédire un mot à partir du contexte (cbow) ou l'inverse (skip-gram)

e.g. Skip-gram model, source : McCormickml tutorial

#2 words embedding (w2v, fasttext, glove)

Prédire un mot à partir du contexte (cbow) ou l'inverse (skip-gram)

Weights matrix (10k x 300) = words embeddings

Représentation du document : moyenne des vecteurs (représentant mots composant ce document)

e.g. Skip-gram model, source : McCormickml tutorial

#3: word/sentence embedding (BERT, USE)

Représenter mots / phrases dans leur contexte (bidirectionnel)

e.g. BERT encoder, source: https://ledatascientist.com/a-la-decouverte-de-bert/

#3: word/sentence embedding (BERT, USE)

Représenter mots / phrases dans leur contexte (bidirectionnel)

e.g. BERT encoder, source: https://ledatascientist.com/a-la-decouverte-de-bert/

#3: word/sentence embedding (BERT, USE)

Représenter mots / phrases dans leur contexte (bidirectionnel)

Pré-entrainement :

- (i) Masked Language Modeling prédire un mot masqué
- (ii) Next Sentence Prediction prédire si une phrase est suivie par une autre

e.g. BERT encoder, source: https://ledatascientist.com/a-la-decouverte-de-bert/

#3: word/sentence embedding (BERT, USE)

Représenter mots / phrases dans leur contexte (bidirectionnel)

e.g. Universal Sentence Encoder, modifié depuis https://ledatascientist.com/a-la-decouverte-de-bert/

Embedding model	ARI
Tf	0.40
Tf-Idf	0.52
Word2Vec	0.35
Word2Vec (pretrained)	0.33
BERT	0.29
USE	0.44

Meilleure classification obtenue avec :

Tf-Idf

Suivi par

Universal Sentence Encoder

Classification des images

Classification des images

#1:SIFT (Scale Invariant Feature Transform)

Images en niveaux de gris, utilisation du gradient d'intensité pour détecter points d'intérêt, définir leur orientation, et décrire le point d'intérêt via les orientations/intensités des groupes de pixels environnants (128 bin values) – invariant par changement d'échelle, d'orientation, de contraste et d'intensité.

#2 : CNN (pré-entrainé VGG16)

Images en couleurs, plusieurs couches (5) de convolution + maxpooling, couches denses (3) pour classification.

Classification des images

#1:SIFT (Scale Invariant Feature Transform)

Pré-processing: transformation en niveau de gris, égalisation (correction contraste)

#2 : CNN features-extraction (pré-entrainé VGG16)

Pré-processing : redimensionnement (224x224), puis identique à celui sur les images d'entrainement (i.e. ImageNet dataset), conversion en BGR et chaque canal est centré.

SIFT procédure

ARI = 0.08

Features

Features

Model	ARI	
SIFT	0.08	
VGG16 (#1)	0.27	
VGG16 (#2)	0.54	

Meilleure classification obtenue avec :

VGG16 (#2)

Classification non supervisée

Relativement bon résultats (ca. 50%) sur les descriptions

Utilisation de tf-idf ou Universal Sentence Encoder

Note : résultats pourraient être améliorés via une approche supervisée (e.g. avec BERT)

Relativement bon résultats (ca. 50%) sur les images

Utilisation de VGG16 (sans la couche de classification)

Note : résultats améliorables via approche supervisée (ajout couche de classif + training)

