الإجابة النموذجية لموضوع العلوم الفيزيائية الشعبة علوم تجريبية امتحان البكالوريا التجريبية دورة ماي 2024

العلامة		عناصر الإجابة-الموضوع الأول		
مجموع	مجزأة			
		الجزء الأول: (13 نقطة)		
		06 نقاط)	رين الأول: (التم
			-1	
01	0,25 0,25	$U_C + U_R = 0$ حسب قانون جمع التوترات: $ \begin{cases} U_R = R.i \\ i = C \frac{dU_c}{dt} \end{cases} \rightarrow U_R = R.C \frac{dU_c}{dt} $ $ U_C + RC \frac{dU_c}{dt} = 0 \Rightarrow \frac{dU_c}{dt} + \frac{1}{RC} U_C = 0 $	المعادلة التفاضلية	1
	0,25 0,25	$U_c(t) = Ae^{\alpha.t}$ (1) $\frac{dU_c}{dt} = A. \alpha e^{\alpha.t}$ (2) $A. \alpha e^{\alpha.t} + \frac{1}{Rc} Ae^{\alpha.t} = 0$ نعوض (1) و (2) في المعادلة التفاضلية: $(A. \alpha + \frac{1}{Rc} A) e^{\alpha.t} = 0 \rightarrow (A. \alpha + \frac{1}{Rc} A) = 0$ $A. \alpha = -\frac{1}{Rc} A \rightarrow \alpha = -\frac{1}{Rc} = -\frac{1}{\tau}$ $A = E$ ومنه: $U_c(0) = E$	حلها	
	0,25	$E_c(t) = \frac{1}{2}CU_c^2(t)$	E_c عبارة	
	0,25	$E_c = a.{U_c}^2$: بيان الشكل (02) عبارة عن خط مستقيم معادلته من الشكل		
	0,25	$a = \frac{1}{2}C = \frac{2.5 \times 10^{-3}}{100} \rightarrow C = 5 \times 10^{-5}F$ بالمطابقة، نجد:	السعة C	
	0,25	$E_c(0) = \frac{1}{2}CE^2 = 2.5 \times 10^{-3}j$:(03) من بيان الشكل $E = \sqrt{\frac{2E_c(0)}{C}} \rightarrow E = \sqrt{\frac{2 \times 2.5 \times 10^{-3}}{5 \times 10^{-5}}} \rightarrow E = 10V$	القوة المحركة E	
2,25	0,25	$\frac{\tau}{2} = 2 ms \rightarrow \frac{\tau}{2} = 4 ms$ في $\frac{\tau}{2}$ لذا يكون:	ثابت الزمن T	2
	0,25	$\tau = R.C \rightarrow R = \frac{\tau}{C} \rightarrow R = \frac{4 \times 10^{-3}}{5 \times 10^{-5}} \rightarrow R = 80\Omega$	R المقاومة	
	0,25	$\tau = R. C \to R = \frac{\tau}{C} \to R = \frac{4 \times 10^{-3}}{5 \times 10^{-5}} \to R = 80\Omega$ $I_0 = \frac{E}{R} \to I_0 = \frac{10}{80} \to I_0 = 0.125 A$	شدة التيار I ₀	
	0,25 0,25	من بيان الشكل (03): في اللحظة $t=1.4~ms$ يكون: $E_c(1.4~ms)=1.25\times 10^{-3}j$ بالإسقاط في بيان الشكل (02) نجد: $U_c^{~2}=50 \ \rightarrow U_c=\sqrt{50}=7.07~V$	شدة التيار عند t = 1.4 ms	

		$U_C + U_R = 0 ightarrow U_R = -U_C = -7.07 V$ حسب قانون جمع التوترات		
		$U_R = R.i(t) = -7.07 \rightarrow i(t) = \frac{U_R}{R} = \frac{-7.07}{80} = -0.088A$		
		إشارة (–) جهة تيار التفريغ عكس تيار الشحن		
			-11	l
0,25	0,25	التحريض الذاتي	الظاهرة	1
0,25	0,25	لحماية الدارة الكهربائية من التيار التحريضي.	دور الصمام	2
0,25	0,25	$u_{R1} + u_b = E$ $R_1 i + L \frac{di}{dt} = E \rightarrow \frac{di}{dt} + \frac{R_1}{L} i = \frac{E}{L}$	المعادلة التفاضلية	3
0,25		$i(t) = I_0{'} - I_0{'}e^{-t/\tau_1}$ (1) $\frac{di}{dt} = \frac{1}{\tau_1}I_0{'}e^{-t/\tau_1}$ (2) is equivalent in the distribution of $\frac{1}{\tau_1}I_0{'}e^{-t/\tau_1} + \frac{R_1}{L}I_0{'} - \frac{R_1}{L}I_0{'}e^{-t/\tau_1} = \frac{E}{L}$	اثبات الحل	4
		$\frac{R_1}{L} I_0' = \frac{E}{L} \to \frac{R_1}{L} \cdot \frac{E}{R_1} = \frac{E}{L}$ $i(t) = I_0' - I_0' e^{-t/\tau_1}$		
	0,25 0,25	$I(t) = I_0 - I_0 e^{-t/\tau_1}$ $I_0' - i(t) = I_0' e^{-t/\tau_1}$ $\ln(I_0' - i(t)) = \ln(I_0' e^{-t/\tau_1})$ $\ln(I_0' - i(t)) = -\frac{t}{\tau_1} + \ln I_0'$	العلاقة	
1,75	0,25 0,25	بيان الشكل (05) عبارة عن خط مستقيم معادلته من الشكل: $\ln(I_0'-i(t))=a.t+b$ $\ln(I_0'-i(t))=-\frac{1}{\tau_1}t+\ln I_0'$ $b=\ln I_0'=-5.11 \to I_0'=6\times 10^{-3}A$ بالمطابقة نجد: $b=\ln I_0'=-5.11 \to I_0'=6\times 10^{-3}A$	شدة التيار ${I_0}^\prime$	5
	0,25	$a = -\frac{1}{\tau_1} = \frac{-5.11 + 8}{(0 - 2.9) \times 10^{-4}} = -10^4 \rightarrow \tau_1 = 10^{-4} \text{ s}$	ثابت $ au_1$ الزمن	
	0,25 0,25	$ \tau_1 = \frac{L}{R_1} \to L = \tau_1 \cdot R_1 = \tau_1 \cdot \frac{E}{I_0'} = 10^{-4} \cdot \frac{6}{6 \times 10^{-3}} $ $ L = 0.1 H $	ذاتية الوشيعة L	

		التمرين الثاني: (07 نقاط)							
			-1	ı					
	0,25	*حركة مركز عطالة الجملة هي حركة مستقيمة متسارعة بانتظام، لأن المسار	طبيعة						
	0,25	مستقيم والسرعة متزايدة، التسارع ثابت و $a. v>0$.	الحركة،						
			مع التعليل						
4 0 =	0,25	$L_1 = \frac{15 \times v_B}{2} \to v_B = 7.5 m/s.$	التحقق أن	4					
1,25	0,25	$\begin{cases} 3.75cm \rightarrow 7.5 m/s \\ 1cm \rightarrow v \end{cases} \rightarrow v = 2 m/s.$	$v_B = 7.5 m/s$	1					
	0,23	Tent / V	وسلم رسم						
	0,25	$a = \frac{\Delta v}{\Delta t} \rightarrow a = 0.5 m/s^2$.	استنتاج						
		Δt	التسارع						
	0,25	المرجع العطالي هو كل جسم صلب ساكن أو حركته مستقيمة منتظمة بالنسبة	المرجع						
		لمرجع عطالي أخر، تنسب إليه الحركة.	العطالي						
	0,25	الشرط اللازم تحققه ليصبح المرجع عطاليا هو أن تكون مدة الدراسة صغيرة جدا	الشرط						
		بالنسبة لمدة دوران المرجع حول مرجع عطالي اخر.	اللازم						
		\overrightarrow{f} الجملة المدروسة هي (الزلاجة+القائد).							
	0,75	θ نختار المرجع السطحي الأرضي، والذي نعتبره θ							
2,50		$rac{ extstyle ag{F}}{P}$ $rac{ extstyle ag{F}}{F}$. نالیایا	عبارة	2					
	0,50	*بتطبيق القانون الثاني لنيوتن:	a التسارع	_					
	0,30	$\sum \vec{F}_{ext} = m. \vec{a} \rightarrow \vec{P} + \vec{F} + \vec{f} + \vec{R}_N = m. \vec{a}.$							
		بإسقاط العبارة الشعاعية على المحور (\overrightarrow{AB}) ، نجد:							
	0,25	$-f + F\cos\theta = ma \rightarrow a = \frac{F\cos\theta - f}{m}$.							
	0,25	انطلاقا من العبارة السابقة، نجد:	استنتاج						
		$f = F \cos \theta - ma \rightarrow f = 200 \times \cos(20) - 100 \times 0.5.$	f شدة						
	0,25	$\rightarrow f = 137.9N.$							
	<u> </u>		-1	<u> </u>					
	0,25	R *	تمثيل						
0,50		B	مختلف	1					
,,,,,	0.07		القوى						
	0,25	\vec{P} C	الخارجية						

0,50	0,25	$W(\overrightarrow{P})$ Ec_{B} Ec_{B}	الحصيلة الطاقوية	2
0, 50	0,25	بتطبیق مبدأ انحفاظ الطاقة علی الجملة السابقة، نجد: $E_{C_B} + W(\vec{P}) = E_{C_C} \to \frac{1}{2} M v_B^2 + M. g. h = \frac{1}{2} M v_C^2.$ $\to \frac{1}{2} v_B^2 + g. h = \frac{1}{2} v_C^2.$ $\to v_C = \sqrt{v_B^2 + 2. g. h}.$ $\to v_C = \sqrt{v_B^2 + 2. g. r. (1 - \cos \beta)}.$	سرعة الجملة عند الموضع C	3
	0,25	$v_C = \sqrt{v_B^2 + 2 \cdot g \cdot r \cdot (1 - \cos \beta)} \cdot v_C = \sqrt{(7.5)^2 + 2 \times 9.8 \times 117.5(1 - \cos 15)} \cdot v_C = 11.60 m/s.$	حساب قیمتها	
	0,25	. لا تتغير v_c لا تتغير	تغير قيمة	
0,50	0,25	لأن عبارتها مستقلة عن كتلة الجملة.	مع، مع $ u_{c}$ التعليل	4
0,50	0,25	بالإسقاط، نجد: $R-P_n=M. a \to R-P_n=M\frac{v_C^2}{r}.$ $\to R=M\frac{v_C^2}{r}+P_n.$	استتناج	5
	0,25		قیمة <i>R</i>	
			-111	l
	0,25	بما أن السرعة ثابتة، فإن الحركة مستقيمة منتظمة. وعليه حسب مبدأ العطالة: $\sum \vec{F}_{ext} = \vec{0} \to \vec{P} + \vec{f} + \vec{f}_1 + \vec{R}_N = \vec{0}.$	حساب شدة <i>f</i> 1	
0,50	0,25	باسقاط العبارة الشعاعية على المحور (\overrightarrow{CD}) نجد: $M.g.\sin\beta - f - f_1 = 0 \to f_1 = M.g.\sin\beta - f$. $\to f_1 = 340 \times 9.8 \times \sin 15 - 137.9$. $\to f_1 = 724.5N$.	مبينا القوانين	1

			بما أن الحركة مستقيمة منتظمة، فإن:	استنتاج	
0,25	0.25	$v = \frac{CD}{\Delta t} \rightarrow CD = v.\Delta t.$		قيمة	2
0,23	0,25	$\rightarrow CD = 11.6 \times 11.5.$		المسافة	_
		$\rightarrow CD = 133.4$		CD	

		الجزء الثاني: (07 نقاط)		
		: (07 نقاط)	رين التجريبي	<u>التم</u>
			_	l
0,50	0,25	$HCO_{3(aq)}^{-} + H^{+}_{(aq)} = CO_{2}, H_{2}O_{(aq)}.$	كتابة	
0,00	0,25	$HCO_{3(aq)}^{-} = CO_{3(aq)}^{2-} + H_{(aq)}^{+}.$	المعادلتين	1
			النصفيتين	
	0,25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	تسيد النب	
0,50		$pK_{A1} = 6,4$ $pK_{A2} = 10,3$	تعيين النوع الكيميائي	2
,,,,,		pH = 7,0	الغالب	_
	0,25	* الخيميائي الغالب هو شاردة HCO_3^- .	(تعالب	
	0,25	CO_2 , $H_2O_{(aq)} + H_2O_{(l)} = HCO_3^{(aq)} + H_3O^+_{(aq)}$.		
		$Ka_1 = \frac{\left[HCO_3^{(aq)}\right]_{eq} \cdot \left[H_3O^+_{(aq)}\right]_{eq}}{\left[CO_2, H_2O_{(aq)}\right]_{eq}}.$	كتابة عبارة	
		- Cq	 ثابت	
		$HCO_{3(aq)}^{-} + H_3O_{(aq)}^{+} = CO_{2} H_2O_{(aq)} + H_2O_{(l)}.$ $[CO_{2} H_2O_{(aq)}]_{aq}$	التوازن	
		$K = Q_{r;eq} = \frac{\left[CO_{2}, H_{2}O_{(aq)}\right]_{eq}}{\left[HCO_{3}^{-}_{(aq)}\right]_{eq}\cdot\left[H_{3}O^{+}_{(aq)}\right]_{eq}}.$	لتفاعل	
		$K = \frac{1}{\left[HCO_{3(aq)}^{-}\right]_{eq}} \stackrel{(H_{3}O^{+}(aq))}{= q} \rightarrow K = \frac{1}{Ka_{1}}.$	المعايرة،	
		$\frac{[CO_{2}, H_{2}O_{(aq)}]_{eq}}{[CO_{2}, H_{2}O_{(aq)}]_{eq}}$	حساب	
		$\to K = \frac{1}{10^{-pKa_1}}.$	قیمته، مع	
	0,25	$\rightarrow \frac{10^{pKa_1}}{K = 10^{pKa_1}}.$	الاستنتاج	
	0,25	$K = 10^{pKa_1} \rightarrow K = 10^{6.4}$.		3
2,50		$\rightarrow K = 2.5 \times 10^6.$		
	0,25	* بما أن: $10^{4} > 10$ ، فإن التفاعل تام.		
		*باستعمال طريقة المماسين نجد:	احداثياتي	•
	0,50		نقطة	
		$(V_{aE} = 13ml; pH_E = 4)$	التكافؤ	
			بيانيا	
		$C_a V_{aE} = CV \rightarrow C = \frac{1.0 \times 10^{-2} \times 13}{20}$.	التركيز	
	0,25	$\to C = \frac{C_a V_{aE}}{V}.$	المولي، ثم	
		$\rightarrow C = 6.5 \times 10^{-3} mol/l.$	استنتاج	
			التركيز	

		$C_m = CM \to C_m = 6.5 \times 10^{-3} \times 61.$	الكتلي				
	0,25	$\rightarrow C_m = 0.3965 g/l.$	والمقارنة				
		$\rightarrow \frac{C_m = 0.40 g/l}{l}.$					
	0.25		*				
	0,25	ما أن: $\frac{403\ mg/l}{2}\cong 0.40\ g/l}{2}$ ، ومنه في حدود أخطاء القياس النتائج					
		قاربة.					
	0,25	كاشف المناسب المستعمل لهذه المعايرة هو اخضر البروموكريزول	الكاشف ال				
		ن pH_E نقطة التكافؤ يقع ضمن مجال تغيره اللوني.	المناسب لأ				
			مع التعليل				
	<u> </u>		ا ا- كتابة	<u> </u>			
	0,25	$O_{1} = C_{1} H_{14}O_{2(l)} + H_{2}O_{(l)} = C_{2} H_{4}O_{2(l)} + C_{5} H_{12}O_{(l)}.$					
	0,25	وع التفاعل هو إماهة الاستر.					
			التفاعل،				
1,25	0,75	الاستر الحمض الكحول	نوعه	1			
	0,73	يثانوات 3-مثيل البوتيل حمض الايثانويك 3-مثيل بوتان-1- ول					
			الأنواع الـــــــــــــــــــــــــــــــــــ				
		m- 65	الكيميائية				
	0,25	L M L 130	حساب				
		$\rightarrow n_E = 0.05 mol.$	كمية المادة				
		$n_{eau} = \frac{m_{eau}}{M} \rightarrow n_{eau} = \frac{\rho \cdot V_{eau}}{M}.$	الابتدائية،				
		$\rightarrow n_{eau} = \frac{1 \times 0.90}{18}.$	مع بیان				
0,75	0,25	$\rightarrow \frac{n_{eau} = 0.05mol}{n_{eau}}.$	إن كان	2			
			المزيج				
	0,25	الابتدائي					
		ما أن $n_E=n_{eau}$ ، فإن المزيج الابتدائي متساوي المولات.	متساوي *ب				
			المولات				
			إنجاز				
		المعادلة $C_7 H_{14} O_{2(l)} + H_2 O_{(l)} = C_2 H_4 O_{2(l)} + C_5 H_{12} O_{(l)}$	مِــــر جدولا لتقدم				
		كميات المادة بالمول التقدم الحالة	بدرد سم التفاعل				
	0,25	$oxed{0.05}$ $n_i = 0.05$		3			
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$					
		$oxed{ \begin{vmatrix} oxed{ \Box_i} & x_f & n_i - x_f & n_i - x_f & x_f & x_f \end{vmatrix} }$					

	0,25	$K = \frac{[C_2 H_4 O_2]_{eq} \cdot [C_5 H_{12} O]_{eq}}{[C_7 H_{14} O_2]_{eq} \cdot [H_2 O]_{eq}} \to K = \frac{\frac{x_f}{V} \cdot \frac{x_f}{V}}{\frac{n_i - x_f}{V} \cdot \frac{n_i - x_f}{V}}.$ $\to K = \frac{x_f^2}{(n_i - x_f)^2}$	عبارة ثابت التوازن <i>K</i>
	0,25	$K = \frac{x_f^2}{(n_i - x_f)^2} \to x_f = \frac{n_i \sqrt{K}}{(1 + \sqrt{K})}.$ $\to x_f = \frac{0.05\sqrt{0.25}}{(1 + \sqrt{0.25})}.$	x_f بدلالة x_f ثم استنتاج x_f قيمة
1,50	0,25	$\rightarrow \frac{x_f = 1.66 \times 10^{-2} mol}{1.000}$.	
	0,25	$r = \frac{x_f}{x_{max}} \times 100 \to r = \frac{1.66 \times 10^{-2}}{0.05} \times 100.$ $\to r = 33\%.$	حساب مردود
	0,25	*بما أن مردود الإماهة هو %33، فإن مردود الأسترة هو %67. *ومنه نستتج أن الكحول أولي.	التفاعل، مع الاستنتاج

العلامة مجزأة مجموع		عناصر الإجابة-الموضوع الثاني				
	J.	الجزء الأول: (13 نقطة)				
		06 نقاط)	رين الأول: (التم		
			-			
0.75	0,25 0,25	*هذا التفاعل يسمى تفاعل إنشطار. *وهو تفاعل نووي مفتعل.	إسم التفاعل	1		
0.73	0,25	*النيترونات الناتجة يمكن أن تسبب إنشطارات أخرى لذا يقال عن هذا التفاعل أنه متسلسل.	التفاعل متسلسل			
	0,25	حسب قانون إنحفاظ العدد الكتاي: $k = 236 - (134 + 99) \rightarrow k = 3$.	تحديد الأعداد Z			
0,50	0,25	حسب قانون إنحفاظ العدد الشحني: $Z=92-52 ightarrow Z=40.$	و k مبينا القوانين المستعملة	2		
	0,25	$E_{libir\acute{e}e} = \Delta E = \Delta m . C^{2}.$ $E_{libir\acute{e}e} = (m_{U} + m_{n} - (m_{Te} + m_{Zr} + 3m_{n})). C^{2}.$ $E_{libir\acute{e}e} = (234.9935 - (133.8830 + 98.8946 + 2 \times 10^{-2}).$	حساب الطاقة			
01	0,25	$1.0087) \times 931.5.$ $E_{libirée} = 184.90 Mev.$	المحررة	3		
	0,50	$E_T = N_A \times E_{libir\acute{e}e} \rightarrow E_T = 6.023 \times 10^{23} \times 184.9.$ $\rightarrow E_T = 1.11 \times 10^{26} Mev.$	استنتاج الطاقة المحررة عن تحول عن تحول			
	T		-1	<u> </u>		
0,75	0,25 0,25	$^{134}Te o ^{A}_{Z}Y + ^{0}_{-1}e$. $.A = 134$: ينافون إنحفاظ العدد الكتلي: $.Z = 53$. $.Z = 53$	كتابة معادلة التفكك مبينا النواة البنت الناتجة	1		

	1		ı	
0,50	0,50	الإشعاع β^- المنبعث خلال هذا التحول هو نتيجة لتحول نيترون إلى بروتون، حسب المعادلة التالية: $ \frac{1}{0}n \to \frac{1}{1}P + \frac{0}{-1}e . $	شرح كيف ينتج الجسيم eta^-	2
0,25	0,25	النواة البنت الناتجة عن هذا التفكك تكون مثارة وعندما تعود إلى حالتها الأساسية ينبعث منها إشعاع 7.	شرح كيف ينتج الإشعاع γ	3
	0,25	طاقة الربط لنواة هي أصغر طاقة يجب منحها لنواة حرة وفي حالة سكون من أجل تفكيكها إلى نويات منفصلة وفي سكون، وعبارتها: $E_l = \Delta m $.	تعريف طاقة الربط	
	0,50	$E_l = \Delta m. C^2 \rightarrow E_l = \left((Zm_P + (A - Z)m_n) - m_{AX} \right). C^2.$ $E_l = \left((52 \times 1.0073 + (134 - 52) \times 1.0087) - 133.8830 \right) \times 931.5.$ $E_l = 1127.1 Mev.$	حساب طاقة الربط للنواة 134Te	
1,25	0,25	*يمكن الإعتماد في هذه الحالة الخاصة على طاقة الربط للمقارنة بين إستقرارية النواة الأم والنواة البنت لأن لهما نفس العدد الكتلي A.	المقارنة بين إستقرارية النواة الأم والنواة	4
	0,25	*النواة البنت دوما أكثر إستقرارا من النواة الأم.	المقارنة بين إستقرارية هاتين النواتين	
01	0,25	*نشاط مصدر مشع هو متوسط عدد التفككات في الثانية، ووحدته البيكرال (Bq).	تعریف نشاط مصدر مشع مبینا وحدته	
	0,25	$A = A_0 e^{-\lambda t}.$	قانون A(t) بدلالة الزمن t	5
	0,50	$A = A_0 e^{-\lambda t} \to A = \lambda N_0 e^{-\lambda t}.$ $\to A = \frac{\ln 2}{t_{1/2}} \frac{m_0}{m\binom{134}{52}Te} e^{-\frac{\ln 2}{t_{1/2}}t}.$	حساب نشاط عينة التيلور	

		عند $^{134}_{52}Te$ عند اللحظة $t = 14ans$
--	--	--

		التمرين الثاني: (07 نقاط)								
	T								-	
		ادلة	المع	CaCO _{3(s)} +	$2H_3O^+_{(aq)} = Ca^2_{(aq)}$	$\frac{+}{iq)} + C$	$O_{2(g)} + 3$	$H_2O_{(l)}$	جدول	
0.50	0.50	الحالة	التقدم		ت المادة بالمول	كميان			التقدم	1
0 , 5 0	0,50	إبتدا	0	n_0	C_aV_0	0	0		للتفاعل	'
		إنتقا	х		C_aV_0-2x		х	بوفرة	الحادث	
		نها	x_f	$n_0 - x_f$	$C_aV_0-2x_f$	x_f	x_f			
0,25	0,25	$x = n_0$	$CO_2 \rightarrow CO_2 \rightarrow CO_2$	$x = \frac{P.V}{R.T}.$ $x = \frac{P_{CO_2}.V}{R.(\theta + 273)}.$: (م التفاعل	جدول تقد	*لدينا من	العلاقة بين التقدم x و θ , R , V , P_0	2
			(CO_2)	$= 2 \times 6.2 \times 1$	$0^3 Pa \rightarrow$				lava (
0,50	0,50		P	.(CO ₂) V	$x = \frac{P_{max}(C)}{\frac{12.4 \times 10^3 \times 1}{8.31 \times (20 + 2)}}$	$(O_2) = (10^{-3})$	12.4 ×	$10^3 Pa$	استتتاج قیمه	3
		x_{max}	$=\frac{r_{max}}{R.(\theta)}$	$\frac{\chi(662)^{1/4}}{9+273)} \rightarrow \chi_{ma}$	$x = \frac{12.1 \times 10^{-3.15}}{8.31 \times (20 + 2.10)}$	273)			x_{max}	
		(()	$\rightarrow x_{max} = 5 \times 10^{-3} mol.$							
0,50	0,50	$\begin{cases} x(t) \\ x_{max} \end{cases}$	$= \frac{1}{R.0}$ $= \frac{P_{mo}}{R.0}$	$\frac{\frac{C_{CO_2} \cdot V}{(\theta + 273)}}{\frac{a_X(CO_2) \cdot V}{(\theta + 273)}} \to \frac{\frac{x(\theta + 273)}{x_m}}{\frac{x_m}{(\theta + 273)}}$					$x(t)$ بيان عبارة $x(t)$ $=$ $\frac{x_{max}}{t}$	4
		$\rightarrow x(t) = \frac{x_{max}}{P_{max}} \cdot P_{CO_2}.$							P_{max} P_{CO_2}	
0,75	0,50	$x(t_{1/2})$	$x(t_{1/2}) = \frac{x_{max}}{P_{max}} \cdot P_{CO_2}(t_{1/2}) \to P_{CO_2}(t_{1/2}) = x(t_{1/2}) \cdot \frac{P_{max}}{x_{max}}.$ $\to P_{CO_2}(t_{1/2}) = \frac{x_{max}}{2} \times \frac{P_{max}}{x_{max}}.$ $\to P_{CO_2}(t_{1/2}) = \frac{P_{max}}{2}.$ $\to P_{CO_2}(t_{1/2}) = \frac{12.4 \times 10^3}{2}.$							
					$ ightarrow P_{CO_2}(t_{1/2})$ $t_{1/2} =$				$t_{rac{1}{2}}$	
	0,25									
	0,50	الدینا من جدول تقدم التفاعل: $n_f = n_0 - x_{max} o x_{max} = n_0 - n_f.$ $ o x_{max} = \frac{m_0 - m_f}{M}.$ $ o x_{max} = \frac{1.5 - 1}{100}.$ $ o x_{max} = 5 \times 10^{-3} mol.$							التحقق من قيمة x_{max} واستنتاج C_a	6

1,50	0,25	$C_{a}V_{0} - 2x_{max} = 0 \rightarrow C_{a} = \frac{2x_{max}}{V_{0}}.$ $\rightarrow C_{a} = \frac{2 \times 5 \times 10^{-3}}{0.1}.$ $\rightarrow C_{a} = 0.1 mol/l.$ $v_{CaCO_{3}} = -\frac{1}{V_{0}} \cdot \frac{dn}{dt} \rightarrow v_{CaCO_{3}} = -\frac{1}{V_{0}} \cdot \frac{d(\frac{m_{CaCO_{3}}}{M})}{dt}.$ $\rightarrow v_{CaCO_{3}} = -\frac{1}{V_{0} \cdot M_{CaCO_{3}}} \cdot \frac{dm_{CaCO_{3}}}{dt}.$ $v_{CaCO_{3}}(0) = -\frac{1}{0.1 \times 100} \cdot \frac{(0-1.5)}{(120-0)}.$ $v_{CaCO_{3}}(0) = 1.25 \times 10^{-3} mol/l. s.$	بيان عبارة السرعة الحجمية حساب	
	0,25	$v_{CaCO_3}(0) = 1.25 \times 10^{-3} mol/l.s.$	قیمتها عند $t=0s$	
			- l	
		*لدينا:	•	
0,25	0,25	$C_0. V_0 = C_B. V \rightarrow C_0 = \frac{C_B.V}{V_0}.$ $\rightarrow C_0 = \frac{0.06 \times 455}{5}.$	تحدید قیمة C_0	1
	0.25	$\rightarrow C_0 = 5.46 mol/l.$		
	0,25	$B_{(aq)} + H_2 O_{(l)} \to BH^+_{(aq)} + OH^{(aq)}.$	معادلة	
	0,25 0,25	*لبیان أنه أساس ضعیف، نقارن بین ترکیزه و $[OH^-]$.	التفكك في الماء، ثم	
		$[OH^-] = \frac{10^{-14}}{10^{-11.8}} \Rightarrow [OH^-] = 6.30 \times 10^{-3} mol/l.$ بما أن $(OH^-) < C_B$ ، فإن هذا الأساس هو أساس ضعيف.	الماء، تم بیان أنه	
		به $C_B = [CII]$ ورا هدا الاساس هو اساس صعیف.	بی ں ہے ضعیف	
			معادلة	
	0,25	$B_{(aq)} + H_3 O^+_{(aq)} \to BH^+_{(aq)} + H_2 O_{(l)}.$	تفاعل	
			المعايرة	
2,75		$n_a=n_B$:عند التكافؤ، يكون المزيج ستوكيومتريا، أي $n_a=n_B$	قيمة تركيز	2
		$C_a.V_{eq} = C_B.V_B \rightarrow C_a = \frac{C_B.V_B}{V_{eq}}.$	الحمض	
	0,25	$\rightarrow C_a = \frac{0.06 \times 30}{18}.$	C_a ومقارنتها	
		$\rightarrow C_a = 0.1 mol/l.$	رساريـــــــــــــــــــــــــــــــــــ	
		*نلاحظ أن قيمة التركيز تتوافق مع القيمة المحسوبة في التجربة الأولى.	المحسوبة	
	0,25		في التجربة	
			" الأولى	

0,25 0,25	$: pKa = pH\left(rac{V_{aE}}{2} ight): ئولم ئان: pKa = pH\left(rac{N_{aE}}{2} ight) ightarrow pKa = pH(9ml). pKa(BH^+/B) = 10.8 ومنه: C_2H_5NH_2 ئور ئان الأساس المستعمل هو ايثيل أمين C_2H_5NH_2 ئور ئان الأساس المستعمل هو ايثيل أمين C_2H_5NH_2$	قيمة pKa الثنائية BH+/B واستنتاج صيغة الأساس
0,50	$pH = pKa + log\left(\frac{[B]}{[BH^{+}]}\right) \to log\left(\frac{[B]}{[BH^{+}]}\right) = pH - pKa.$ $\to \frac{[B]}{[BH^{+}]} = 10^{pH - pKa}.$ $\to \frac{[B]}{[BH^{+}]} = 10^{2.4 - 10.8}.$ $\to \frac{[B]}{[BH^{+}]} = 10^{-8.4}.$	حساب النسبة [<u>B]</u> ، ثم استنتاج الصفة
0,25	$ ho rac{[B]}{[BH^+]} = 3.98 imes 10^{-9}.$ بما أن 1 $ ho > rac{[B]}{[BH^+]}$ ، فإن الصفة الحمضية هي الغالبة.	الغالبة

		الجزء الثاني: (07 نقاط)		
		التمرين التجريبي: (07 نقاط)		
			_	
1.75	0,25	*الجملة المدروسة هي المتزلج.		
	0,75	*نختار المرجع السطحي الأرضي، والذي العتبره غاليليا. \bar{j} j	بيان عبارة	1
	0,25	$\sum \vec{F}_{ext} = m. \vec{a} \to \vec{T} + \vec{P} + \vec{f} + \vec{R}_N = m. \vec{a}.$ بإسقاط العبارة الشعاعية في المعلم $(0; \vec{i})$ ، نجد:	التسارع	'
	0,50	$T.\cos(\beta - \alpha) + m.g.\sin(\alpha) - f = ma.$ $a = \frac{T}{m} \cdot \cos(\beta - \alpha) - \frac{f}{m} - g \cdot \sin(\alpha).$		
		m m		
01	0,50	البيان عبارة عن خط مستقيم معادلته $v=a.t$ حيث a يمثل ميل المستقيم وقيمته تمثل قيمة التسارع. $*$ ومنه:		
	0,30	$a = \frac{\Delta v}{\Delta t} \rightarrow a = \frac{0.5 - 0}{01 -}.$ $\rightarrow a = 0.5 m/s^2.$	بیانیا	2
	0,50	$a = \frac{T}{m} \cdot cos(\beta - \alpha) - \frac{f}{m} - g \cdot sin(\alpha).$ $T = \frac{ma + f + mg \cdot sin(\alpha)}{cos(\beta - \alpha)}.$ $T = \frac{70 \times 0.5 + 80 + 70 \times 9.8 \times sin21}{cos(60 - 21)}.$ $T = 464.31N.$	شدة قوة $\overset{ ightarrow}{T}$ الجر	

			-1	I
0,50	0,50	نعتبر حركة جسم سقوطا حرا إذا كان خاضعا فقط لقوة ثقله $ec{P}$.	تعرًيف السقوط الحر	1
2,50	0,25	*الجملة: المتزلج. *المرجع أرضي نعتبره غاليلي. *القوى المؤثرة على الجملة هي قوة الثقل فقط. *بتطبيق القانون الثاني لنيوتن، يكون:		
	0,25	$\sum \vec{F}_{ext} = m. \vec{a} \rightarrow \vec{P} = m. \vec{a}.$ $\rightarrow m. \vec{g} = m. \vec{a}.$ $\rightarrow \vec{g} = \vec{a}.$		
	0,50	$\vec{a}ig _{a_{\mathcal{Y}}=-g}^{a_{\mathcal{X}}=0}$:نجد: $(S;\ ec{\iota};ec{\jmath})$ ، نجد:		
	0,50	$ec{v}_0 ig _{v_{0y} = v_0. sin lpha}^{v_{0x} = v_0. sin lpha} : (t_= 0)$ الشروط الابتدائية، لما		
	0,50	l y S	(AC +)	2
	0,50	الدينا: $v_x = \frac{dx}{dt} = v_0 . \cos \alpha$ $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$: $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$ $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$ $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$ $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$ $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$ $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$ $v_y = \frac{dy}{dt} = -gt + v_0 . \sin \alpha$ $v_y = \frac{dy}{dt} = v_0 . \cos \alpha$ $v_y = \frac{dy}{dt} = v_0 . \cos \alpha$		
0,50	0,50	: نجد أن: $x = \frac{x}{v_0 \cdot \cos \alpha}$ وبالتعويض في $x = \frac{x}{v_0 \cdot \cos \alpha}$ نجد أن: $y = -\frac{1}{2}g\left(\frac{x}{v_0 \cdot \cos \alpha}\right)^2 + \frac{(v_0 \cdot \sin \alpha)}{v_0 \cdot \cos \alpha}x$. $y = -\frac{g}{2v_0^2 \cdot \cos^2 \alpha}x^2 + x \tan \alpha$. $y = -\frac{g}{2(10)^2 \cdot \cos^2(21)}x^2 + x \tan(21)$. $y = -5.6 \times 10^{-2}x^2 + 0.38x$.	استنتاج معادلة المسار	3

