APPLICATIONS DE LA FORMULE D'ITÔ

Dans toute la feuille, on admettre que la formule d'Itô pour $(f(B_t))_{t\geq 0}$ reste valable si f est de classe \mathscr{C}^1 sur \mathbb{R} et de classe \mathscr{C}^2 partout sauf en un nombre fini de points au voisinage desquels f'' est bornée.

Exercice 1 Soit (X_t) un processus d'Itô et soit $\beta_t = e^{\int_0^t r_s ds}$ où r est un processus continu. Calculer la décomposition en semi-martingale de $X_t \beta_t^{-1}$.

Exercice 2 Quelle est la loi du processus $X_t = \int_0^t \mathrm{sgn}(B_s) \mathrm{d}B_s$?

Exercice 3 Montrer que $\int_0^t \mathbf{1}_{B_s=0} \mathrm{d}B_s = 0$ presque sûrement.

Exercice 4 (Récurrence ou transience du mouvement brownien). Soit $z \in \mathbb{R}^2 \setminus 0$, et soit $(B_t)_{t \geq 0}$ un mouvement brownien plan *issu du point z*. Pour tout a > 0, on pose $\tau_a = \inf\{t \geq 0 : |B_t| = a\}$.

- 1. Vérifier que la fonction $u(z) = \log |z|$ est harmonique sur $\mathbb{R}^2 \setminus 0$, c'est-à-dire $\Delta u = 0$.
- 2. On fixe $0 < r < R < \infty$ tel que r < |z| < R et on pose $\tau := \tau_r \wedge \tau_R$. Que dire de $(u(B_{t \wedge \tau}))_{t > 0}$?
- 3. Calculer $\mathbb{P}(\tau_r < \tau_R)$, puis que $\mathbb{P}(\tau_r < \infty) = 1$ et interpréter le résultat.

Exercice 5 On veut généraliser l'exercice précédent en dimension d > 2.

- 1. Vérifier que $u(x) = |x|^{2-d}$ est harmonique.
- 2. Montrer que $\mathbb{P}(\tau_r < \tau_R) = (|z|^{2-d} R^{2-d})/(r^{2-d} R^{2-d})$.
- 3. En déduire que $\mathbb{P}(\tau_r < \infty) = (r/|z|)^{d-2} < 1$.

Exercice 6 Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction holomorphe et $(B_t)_{t \geq 0}$ un mouvement brownien complexe.

- 1. Montrer que $f(B) = (f(B_t))_{t>0}$ est une martingale continue.
- 2. Montrer que

$$\langle \operatorname{Re}(f(B)) \rangle_t = \langle \operatorname{Im}(f(B)) \rangle_t = |f'(B)|^2 dt \qquad \langle \operatorname{Re}(f(B)), \operatorname{Im}(f(B)) \rangle_t = 0.$$

3. Montrer ¹ qu'il existe un mouvement brownien plan \tilde{B} tel que $f(B) = \tilde{B}_{F_t}$ où $F_t = \int_0^t |f'(B_s)|^2 ds$.

Exercice 7 (d'Alembert-Gauss). Soit $p: \mathbb{C} \to \mathbb{C}$ un polynôme complexe non constant. En considérant le processus $(p(B_t))$ où B est un mouvement brownien complexe, montrer que p possède une racine.

Exercice 8 (Examen 2009). Soit $(B_t, \widetilde{B}_t)_{t \geq 0}$ un mouvement brownien plan, et

$$X_t := \int_0^t B_s \, \mathrm{d}\widetilde{B}_s - \int_0^t \widetilde{B}_s \, \mathrm{d}B_s, \qquad (t \ge 0).$$

- 1. Montrer que $(X_t)_{t\geq 0}$ est une martingale de carré intégrable.
- 2. Soit $\lambda > 0$. Justifier que pour tout $t \geq 0$, $\mathbb{E} \left[e^{i \lambda X_t} \right] = \mathbb{E} \left[\cos(\lambda X_t) \right]$

^{1.} On pourra utiliser le théorème de Ray-Knight, qui est la version multi-dimensionnelle du théorème de Dubins-Schwarz.

3. Soit $h \in \mathscr{C}^2(\mathbb{R}_+, \mathbb{R})$. Calculer la différentielle stochastique des processus suivants :

$$Y_t := \cos(\lambda X_t)$$
 et $Z_t := h(t) - \frac{h'(t)}{2} (B_t^2 + \tilde{B}_t^2)$

- 4. Calculer le crochet $\langle Y, Z \rangle$.
- 5. Montrer que $(Y_t e^{Z_t})_{t \ge 0}$ est une martingale locale dès que h vérifie $h'' = (h')^2 \lambda^2$.
- 6. Vérifier que $h(t) = -\ln \cosh (\lambda r \lambda t)$ est solution, pour tout $r \ge 0$.
- 7. En déduire $\mathbb{E}[e^{i\lambda X_t}]$, pour tout $t \geq 0$.

Exercice 9 (Loi de l'arcsinus). Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel. Soit

$$H_t := \int_0^t \mathbf{1}_{(B_s \ge 0)} \, \mathrm{d}s \qquad (t \ge 0).$$

Il s'agit de montrer que la variable aléatoire $\frac{H_t}{t}$ admet pour densité $x \mapsto \frac{1}{\pi \sqrt{x(1-x)}}$ sur (0,1).

1. Étant donnés $\alpha, \beta > 0$, trouver $a, b \in \mathbb{R}$ pour que f satisfasse les conditions ci-dessus, avec

$$f(x) := \begin{cases} a \exp\left(-\sqrt{2(\alpha+\beta)}x\right) + \frac{1}{\alpha+\beta} & \text{si } x \ge 0\\ b \exp\left(\sqrt{2\alpha}x\right) + \frac{1}{\alpha} & \text{si } x < 0. \end{cases}.$$

2. Construire une martingale bornée à partir de $(f(B_t)e^{-(\alpha t + \beta H_t)})_{t>0}$ et en déduire que

$$\int_0^\infty e^{-\alpha t} \mathbb{E}\left[e^{-\beta H_t}\right] dt = \frac{1}{\sqrt{\alpha(\alpha+\beta)}}.$$

3. On admet que $\int_0^\infty \int_0^1 \mathrm{e}^{-\alpha t} \, \frac{\mathrm{e}^{-\beta t x}}{\pi \sqrt{x(x-1)}} \mathrm{d}x \mathrm{d}t = \frac{1}{\sqrt{\alpha(\alpha+\beta)}}$ pour tout α et β , conclure.

Remarque. Pour calculer l'intégrale dans la dernière question, après avoir fait l'intégrale en t, on peut utiliser une intégrale de contour en choisissant de définir sur $\mathbb{C}\setminus(1,1)$ la racine dans l'intégrale. Alternativement on peut symétriser autour de $x=\frac{1}{2}$ ce qui donne une intégrale de la forme $\sqrt{1-y^2}$ puis faire un changement de variable en sinus.

Exercice 10 (Partiel 2015). Soit B un mouvement brownien réel et Φ la fonction de répartition de la loi normale centrée réduite. On considère le processus

$$M_t = \Phi\left(\frac{B_t}{\sqrt{1-t}}\right), \quad t \in [0,1[.$$

- 1. Calculer la décomposition en semi-martingale de M.
- 2. Montrer que $\lim_{t\to 1} M_t$ existe presque sûrement. On note M_1 la limite.
- 3. En déduire que $(M_t)_{t\in[0,1]}$ est une martingale.
- 4. Calculer la probabilité que *B* intersecte la courbe $t \mapsto \sqrt{1-t}, \ t \in [0,1]$.

Exercice 11 (Temps local). Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel.

1. Soit $\varepsilon > 0$. Calculer la différentielle stochastique du processus $(f_{\varepsilon}(B_t))_{t \geq 0}$, où

$$f_{\varepsilon}(x) = \begin{cases} |x| & \text{si } |x| \ge \varepsilon \\ \frac{1}{2} \left(\varepsilon + \frac{x^2}{\varepsilon} \right) & \text{si } |x| < \varepsilon \end{cases}$$

2. On note Λ la mesure de Lebesgue sur \mathbb{R} . En déduire que pour tout $t \geq 0$,

$$\frac{1}{2\varepsilon}\Lambda\left\{s\in[0,t]\colon|B_s|<\varepsilon\right\}\xrightarrow[\varepsilon\to0^+]{L^2}|B_t|-\int_0^t\operatorname{sgn}(B_s)\mathrm{d}B_s.$$