The Intermediate Value Theorem (IVT)	Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in the open interval (a, b) such that $f(c) = N$.
Formula $Trig \ Identity \ Between \ \cos^2(\theta) \ and \ \sin^2(\theta)$	$\sin^2(\theta) + \cos^2(\theta) = 1$
Formula $ \textit{Trig Identity Between } \tan^2(\theta) \textit{ and } \sec^2(\theta) $	$1 + \tan^2(\theta) = \sec^2(\theta)$
Formula $Double\ Angle\ Formula\ for\ \sin(x)$	$\sin(2x) = 2\sin(x)\cos(x)$

Definition Hyperbolic Sine	$\sinh(x) = \frac{e^x - e^{-x}}{2}$
Definition Hyperbolic Cosine	$\cosh(x) = \frac{e^x + e^{-x}}{2}$
Formula $Identity \ Between \ \cosh^2(x) \ and \ \sinh^2(x)$	$\cosh^2(x) - \sinh^2(x) = 1$
Formula Derivative of Inverse Function	$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$

Formula	
$Newton's\ Method\ Formula$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
Definition	
Derivative as a Limit	or $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ or $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$
Question	
What is x_{n+1} in Newton's Method?	x_{n+1} in the equation $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$ is the x-intercept of the tangent line drawn to the function f at the point $(x_n,f(x_n))$.
Rule	
Constant Multiple Rule	If c is a constant, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$

Rule Power Rule	$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$
Rule and Difference Rule	$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$ $\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$
Rule Product Rule	$\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\cdot \frac{d}{dx}[g(x)] + g(x)\cdot \frac{d}{dx}[f(x)]$
Rule $Quotient\ Rule$	$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{d}{dx} [f(x)] - f(x) \cdot \frac{d}{dx} [g(x)]}{[g(x)]^2}$

Rule Chain Rule	$[f(g(x))]' = f'(g(x)) \cdot g'(x)$
Algorithm Implicit Differentiation	Step 1: Take the derivative of both sides of the equation Step 2: Solve for the derivative
Algorithm Logarithmic Differentiation	Step 1: Apply $\ln(x)$ to both sides of the equation Step 2: Take the derivative of both sides of the equation Step 3: Solve for the derivative Note: $\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$
Algorithm How to find the equation of a tangent line?	To find the equation of the tangent line to the function $f(x)$ at the point (x_0, y_0) Step 1: Calculate $f'(x_0)$ Step 2: Use the formula $y = f'(x_0) \cdot (x - x_0) + y_0$ Note: This is a rewritten version of the equation $y - y_0 = m(x - x_0)$

ı