MyDas

Stock prioritisation

Alex Tidd & Laurence Kell 15/03/18

Choice of stocks and justification

- The wiki has a summary stocks from the original call, however, the actual stocks still have to be chosen. This could be done based on a variety of justifications, e.g. commercial value of the stocks, ecological importance, or based on catch compostion of fleets. Stocks could also be selected based on productivity, i.e. stocks that are low in productivity relative to target species are more likely to be below B_{MSY} . Alternatively stocks could be selected based on susceptibility, i.e. are there found in the same area as the fishing metiers/fleets/gears.
- Preparation of data:

```
library(DBI)
library(RPostgreSQL)
library(dplyr)
library(plyr)
library(reshape)
library(ggplot2)
library(RColorBrewer)
options(scipen = 999)
drv = dbDriver("PostgreSQL")
con = dbConnect(drv, host = "postgresql-seascope.csffkpr9jjjn.eu-west-2.rds.amazonaws.com",
   dbname = "mydasDev", port = 5432, user = "MydasApplication",
    password = "gmit2017!")
stecf = dbGetQuery(con, "SELECT * FROM data_stecflandings")
land2016 = subset(stecf, year %in% c(2008:2016))
# remove area 4bc etc
land2016$flag = ifelse(land2016$species %in% "LIN" & land2016$latitude <
    57.5 & land2016$area %in% "4", 1, 0)
land2016 = subset(land2016, flag == 0)
land2016 = subset(land2016, !(area %in% "6B RFMO"))
area = dbGetQuery(con, "SELECT * FROM div_area")
# ices division isnt broken down by division in North sea
land2016$division = ifelse(land2016$area %in% "4", "4A", land2016$division)
# convert in order to join and sum with landings
area$division = ifelse(area$division %in% c("12A", "12B", "12C"),
    "12", ifelse(area$division %in% c("14A", "14B"), "14", area$division))
# areas not in euro zone so remove
area = subset(area, !(area_27 %in% c("8.d.1", "7.k.1", "7.c.1",
    "6.b.1", "7.j.1")))
```

```
totarea = ddply(area, .(division), summarise, totareakm = sum(area_km2))
allareas = inner_join(land2016, totarea)
allland = ddply(allareas, .(year, country, gear, stock, speciesgp),
    summarise, totland = sum(landings))
allland = subset(allland, totland > 0)
alllandarea = ddply(allareas, .(year, country, gear, stock, speciesgp,
    ices_rectangle), summarise, uniarea = unique(area_km2))
allareatot = ddply(alllandarea, .(year, country, gear, stock,
    speciesgp), summarise, totfleetarea = sum(uniarea))
combi = inner_join(allland, allareatot)
divarea = ddply(allareas, .(stock, division), summarise, area = unique(totareakm))
allstockarea = ddply(divarea, .(stock), summarise, stockarea = sum(area))
overlap = inner_join(combi, allstockarea)
overlap$olap_percent = (overlap$totfleetarea/overlap$stockarea) *
    100
catch = dbGetQuery(con, "SELECT * FROM data_stecf_aer_cpuedays")
catch$price = catch$totval/catch$totctch
price sum = ddply(catch, .(year, speciesgp), summarise, price = mean(price))
overlap = inner_join(price_sum, overlap)

    Susceptibility

# horizontal overlap categories 3 highest 1 lowest
overlap$score_olap = ifelse(overlap$olap_percent > 30, 3, ifelse(overlap$olap_percent >
    10 & overlap$olap_percent < 30, 2, ifelse(overlap$olap_percent <
    10, 1, 0)))
# price scoring ategories 3 highest 1 lowest
overlap$score_price = ifelse(overlap$price > 1.25, 3, ifelse(overlap$price >
    0.8 & overlap$price < 1.25, 2, ifelse(overlap$price < 0.8,
    1, 0)))
# catchability groupings 3 high, 2 medium 1 low
overlap$score catch = ifelse(overlap$gear %in% c("BEAM") & overlap$speciesgp %in%
    c("BLL", "TUR", "GUG", "SKA"), 3, ifelse(overlap$gear %in%
    c("OTTER") & overlap$speciesgp %in% c("BLL", "TUR", "SKA",
    "JOD", "LIN", "POK", "POL"), 3, ifelse(overlap$gear %in%
    c("OTTER") & overlap$speciesgp %in% c("GUG"), 2, ifelse(overlap$gear %in%
    c("GILL") & overlap$speciesgp %in% c("POK", "POL"), 3, ifelse(overlap$gear %in%
    c("GILL") & overlap$speciesgp %in% c("LIN", "TUR"), 2, ifelse(overlap$gear %in%
    c("LONGLINE") & overlap$speciesgp %in% c("LIN"), 3, ifelse(overlap$gear %in%
    c("LONGLINE") & overlap$speciesgp %in% c("POL"), 2, ifelse(overlap$gear %in%
    c("PEL_TRAWL") & overlap$speciesgp %in% c("SPR"), 3, ifelse(overlap$gear %in%
    c("GILL") & overlap$speciesgp %in% c("POK", "POL"), 3, 1))))))))
# Determination of susceptibility scores, adopted from Hobday
```

• Productivity

```
# 3 low productivity 1 high productivity < 5 years 5-15 years
# > 15 years
overlap$tm_score = ifelse(overlap$speciesgp %in% c("GUG", "POL",
    "POK", "TUR", "BLL", "SPR", "JOD"), 1, ifelse(overlap$speciesgp %in%
    c("SKA", "LIN"), 2, 3))
# > 20,000 eggs per year 100 - 20,000 eggs per year < 100
# eggs per year
overlap$fec_score = ifelse(overlap$speciesgp %in% c("SKA"), 3,
    ifelse(overlap$speciesgp %in% c("SPR"), 2, 1))
# Broadcast spawner Demersal egg layer Live bearer
overlap$repro_score = ifelse(overlap$speciesgp %in% c("SKA"),
    2, 1)
# < 2.75 2.75 - 3.25 > 3.25
overlap$troph_score = ifelse(overlap$speciesgp %in% c("SPR"),
    2, 3)
# < 40 cm 40-200 cm > 200 cm
overlap$lmat_score = ifelse(overlap$speciesgp %in% c("SPR", "BLL",
    "JOD", "GUG"), 1, 2)
# < 100 cm 100-300 cm > 300 cm
overlap$linf_score = ifelse(overlap$speciesgp %in% c("SPR", "BLL",
    "JOD", "GUG", "TUR", "POL"), 1, 2)
# calculate productivity
overlap$P = ((overlap$tm_score + overlap$fec_score + overlap$repro_score +
    overlap$troph_score + overlap$lmat_score + overlap$linf_score)/6)
```

[link] http://www.montereybayaquarium.org/-/m/C3EE8C68DA2A47B18A64BE6DBA72F76F.pdf

• Vulnerability

```
overlap$v = sqrt(overlap$P^2 + overlap$S^2)
```

• Ranking index giving equal Weight to the mean Value of landings and vulnerability

```
overlap$speciesgp = tolower(overlap$speciesgp)
overlap$value = overlap$price * overlap$totland * 1000
```

• Additive combination (ranking variable = scaled landings Value + scaled vulnerability) results in linear equal ranking lines over Value and vulnerability.

• Plot of ranking of variables by country, stock and gear

```
ggplot(subset(rnkspc, !(gear %in% "NONE")), aes(year, rank, group = gear,
    colour = gear)) + geom_line(size = 1) + facet_grid(speciesgp ~
    country, scales = "free") + theme_bw() + theme(text = element_text(size = 8),
    strip.text.x = element_text(size = 8), strip.text.y = element_text(size = 8),
    panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
    axis.text.x = element_text(angle = 45, hjust = 1)) + scale_color_manual(values = c("#000000",
    "slateblue3", "#E69F00", "#56B4E9", "#009E73", "#F0E442",
    "#0072B2", "#D55E00", "#CC79A7", "cadetblue3"))
```


• Plot of value (\in) of variables by country, stock and gear

```
ggplot(subset(rnkspc, !(gear %in% "NONE")), aes(year, value,
    group = gear, colour = gear)) + geom_line(size = 1) + facet_grid(speciesgp ~
    country, scales = "free") + theme_bw() + theme(text = element_text(size = 8),
    strip.text.x = element_text(size = 8), strip.text.y = element_text(size = 8),
    panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
    axis.text.x = element_text(angle = 45, hjust = 1)) + scale_color_manual(values = c("#000000",
```

```
"slateblue3", "#E69F00", "#56B4E9", "#009E73", "#F0E442",
"#0072B2", "#D55E00", "#CC79A7", "cadetblue3"))
```


• ranking of the stocks by country and gear for last 3 years

```
######### ranking
prioryr = subset(rnkspc, year %in% c(2014:2016))
prioryr$combo = paste(prioryr$country, prioryr$gear, prioryr$speciesgp,
    sep = "_")
tblrnk10 = prioryr %>% group_by(year) %>% arrange(desc(year),
    desc(rank), desc(value)) %>% top_n(10, rank)
tblrnk10 = tblrnk10 %>% group_by(year) %>% mutate(combo = factor(combo,
    levels = unique(combo)))
tblrnk10 = transform(tblrnk10, fill = cut(value, c(1000000, 2000000),
    3000000, 4000000, 5000000, 10000000, 20000000)))
mycolours = brewer.pal(6, "Set3")
names(mycolours) = levels(tblrnk10$fill)
# top 10 sorted on rank (combo of economics and
# vulnerability) and actual value
a = ggplot(subset(tblrnk10, year == 2014), aes(x = reorder(tolower(combo),
   rank), y = rank, fill = fill)) + geom_bar(stat = "identity") +
    coord_flip() + facet_wrap(~year, scale = "free_y") + guides(fill = guide_legend(title = "Value (€)"
    scale_fill_manual(name = "fill", values = mycolours) + theme_bw() +
   ylab("Rank") + xlab(" ")
b = ggplot(subset(tblrnk10, year == 2015), aes(x = reorder(tolower(combo),
   rank), y = rank, fill = fill)) + geom_bar(stat = "identity") +
    coord_flip() + facet_wrap(~year, scale = "free_y") + guides(fill = guide_legend(title = "Value (€)"
```

```
scale_fill_manual(name = "fill", values = mycolours) + theme_bw() +
    ylab("Rank") + xlab(" ")
c = ggplot(subset(tblrnk10, year == 2016), aes(x = reorder(tolower(combo),
    rank), y = rank, fill = fill)) + geom_bar(stat = "identity") +
     coord_flip() + facet_wrap(~year, scale = "free_y") + guides(fill = guide_legend(title = "Value (€)"
     scale_fill_manual(name = "fill", values = mycolours) + theme_bw() +
    ylab("Rank") + xlab(" ")
gridExtra::grid.arrange(a, b, c, nrow = 3)
                                                    2014
  fra_otter_jod
   eng_gill_pol
                                                                                                   Value (...)
   fra otter lin
                                                                                                   (1e+06,2e+06]
  fra_otter_pol
                                                                                                     (3e+06,4e+06]
  sco otter lin
                                                                                                     (4e+06.5e+06)
  fra otter ska
   fra otter tur
                                                                                                   (5e+06.1e+071
  fra otter quq
                                                                                                     (1e+07,2e+07)
  eng_otter_jod
  bel_beam_bll
                                                    Rank
                                                    2015
  fra_otter_jod
                                                                                                   Value (...)
  sco_otter_lin
                                                                                                   (1e+06,2e+06]
   fra_otter_lin
   eng_gill_pol
                                                                                                     (2e+06.3e+06)
  fra_otter_gug -
                                                                                                   (3e+06.4e+06)
  fra_otter_pol
                                                                                                     (4e+06.5e+06)
   fra_otter_tur
                                                                                                     (5e+06.1e+07)
  fra_otter_ska
  eng otter jod
                                                                                                     (1e+07,2e+07]
  esp_otter_jod
                                                                               20
                                                    Rank
                                                    2016
   fra otter jod
                                                                                                   Value (...)
    eng_gill_pol
                                                                                                   (1e+06,2e+06]
    sco_otter_lin
    fra_otter_lin
                                                                                                     (2e+06,3e+06]
   fra_otter_pol
                                                                                                   (3e+06.4e+06)
    fra otter tur
   fra otter ska
                                                                                                     (5e+06.1e+07)
    irl_otter_jod
  fra_trammel_tur
                                                                                                     (1e+07.2e+07)
   eng_otter_jod
                                                    Rank
tblval10 = prioryr %>% group_by(year) %>% arrange(desc(year),
    desc(value), desc(rank)) %>% top_n(10, value)
tblval10 = transform(tblval10, fill = cut(rank, c(8, 12, 14,
     18, 20, 22, 24)))
tblval10 = tblval10 %>% group_by(year) %>% mutate(combo = factor(combo,
    levels = unique(combo)))
mycolours2 = brewer.pal(6, "Set1")
names(mycolours2) = levels(tblval10$fill)
# top 10 based purely on price and rank
d = ggplot(subset(tblval10, year == 2014), aes(x = reorder(tolower(combo),
    value), y = value, fill = fill)) + geom_bar(stat = "identity") +
     coord_flip() + facet_wrap(~year) + guides(fill = guide_legend(title = "Rank")) +
     scale_fill_manual(name = "fill", values = mycolours2) + theme_bw() +
    ylab("€") + xlab("")
e = ggplot(subset(tblval10, year == 2015), aes(x = reorder(tolower(combo),
    value), y = value, fill = fill)) + geom_bar(stat = "identity") +
     coord_flip() + facet_wrap(~year) + guides(fill = guide_legend(title = "Rank")) +
```

```
scale_fill_manual(name = "fill", values = mycolours2) + theme_bw() +
   ylab("\epsilon") + xlab("")

f = ggplot(subset(tblval10, year == 2016), aes(x = reorder(tolower(combo),
   value), y = value, fill = fill)) + geom_bar(stat = "identity") +
   coord_flip() + facet_wrap(~year) + guides(fill = guide_legend(title = "Rank")) +
   scale_fill_manual(name = "fill", values = mycolours2) + theme_bw() +
   ylab("\epsilon") + xlab("")

gridExtra::grid.arrange(d, e, f, nrow = 3)
```

