Binary Multiplication

Common – last updated 11/7/18

Multiplication

- Elementary school concepts
 - Multiply digits, shift, repeat ... add

Multiplication

Sizing

- In elementary school we usually don't worry about how many digits the result requires
 - If we think about it the maximum number of digits is the sum of the number of digits of the multiplicand and the multiplier

1x1 → 2	3x1 → 4	3x5 → 8
9	999	999
<u>x 9</u>	<u>x 9</u>	x 99999
81	8991	99899001

Binary Multiplication

Sizing

- In binary addition we are generally representing something that ultimately is to be executed in hardware
 - Our hardware cannot change the number of bits (wires) it can hold
 - We must establish a maximum number size
 - For multiplication the size of the result must be the sum of the sizes of the multiplier and multiplicand

Unsigned

3 bit multiplication	111	7
X	111	<u>x 7</u>
	111	49
	111	
WILL SELECT	111	
1	10001	

- Unsigned multiplication
 - No additional concerns

Unsigned

- Signed multiplication
 - Requires special consideration for negative (2's complement) numbers

		2's co	ompl <mark>e</mark> ment	
	3 bits	4 bits	8 bits	16 buts
-5	not possi <mark>ble</mark>	1011	1111 1011	1111 1111 1111 1011

- The additional values out to the MSB position is called sign extension
 - This is true for both positive and negative numbers
 - We just don't usually write out the 0's

2's complement							
	3 bits	4 bits	8 bits	16 buts			
5	not possible	0101	0000 0101	0000 0000 0000 0101			
-5	not possible	1011	1111 1011	1111 1111 1111 1011			

Common 6 ©

- Signed multiplication
 - Requires special consideration for negative (2's complement) numbers

signed

- Signed Multiplication
 - In 2's complement you must sign extend to the product bit width

© ti

Signed Multiplication

 In 2's complement you must sign extend to the product bit width 4b x 4b

```
Must carry out
all the bits
                    0 0 1 0 1 0 1 0
                                               42
```

Stop after 8 bits

1 0

Stop after 8 bits

1 1

- Signed Multiplication
 - In 2's complement you must sign extend to the product bit width
 - When doing it by hand where possible multiply by the positive value

-42

© ti

10