Sprawozdanie z ćwiczenia 4 Aproksymacja

Konrad Pekala

1. Wstęp

W tym ćwiczeniu miałem za zadanie zaimplementować algorytm aproksymacji średniokwadratowej funkcji f wielomianami algebraicznymi

$$f(x) = e^{-3\sin(2x)} + 3\cos(2x)$$
, $gdzie - \pi \le x \le 2\pi$

Rysunek 1. Wykres funkcji f

Do obliczeń korzystałem z języka Python 3 oraz projektu Jupyter Notebook

Korzystałem ze standardowej precyzji typu float oferowanej przez język Python(odpowiednik typu double w języku C).

Oznaczenia używane w sprawozdaniu

N – Liczba węzłów aproksymacji

L – Liczba funkcji bazowych

Pomiar błędów obliczeniowych

- 1. średni_błąd = $\left(\frac{1}{100}\right) \sum_{i=1}^{100} abs(f(x_i) f_a(x_i))$
- 2. maksymalny_błąd = $\max (abs(f(x_i) f_a(x_i)))$

gdzie $f_a(x_i)$ - wartość funkcji aproksymującej w punkcie x_i

 $f(x_i)$ - wartość funkcji f w punkcie x_i

 x_i – i-ty punkt ze zbioru 100 punktów równomiernie rozłożonych na dziedzinie funkcji f

1.1 Metoda obliczeń

1.1.1 Aproksymacja wielomianowa

Aby znaleźć współczynniki funkcji aproksymującej, rozwiązałem układ normalny, który w postaci macierzowej można opisać wzorem $D^TDA = D^Tf$, gdzie D – macierz funkcji bazowych, A – macierz współczynników, f – wektor wartości funkcji f. Aby rozwiązać ten układ użyłem funkcji inv, transpoze z modułu np.linalg

1.1.2 Aproksymacja trygonometryczna

Szukamy wielomianu w postaci:

$$F(x) = \frac{1}{2}a_0 + \sum_{j=1}^{n} (a_j \cos(jx) + b_j \sin(jx))$$

Ze współczynnikami:

$$a_j = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_i) cos(jx_i)$$
 $b_j = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_i) sin(jx_i)$

1.2 Wykonanie ćwiczenia

Po zaimplementowaniu dwóch metod aproksymacji przeszedłem do testowania dokładności przybliżenia funkcji f. Testowałem zależność błędu od L dla stałej liczby N oraz na odwrót: zależność błędu on N dla stałej liczby L.

2. Wizualizacja ciekawszych przypadków

Wizualizowana funkcja przybliżająca zawiera N = 20, dlatego zdecydowałem nie pokazywać węzłów aproksymacji.

3. Porównanie wyników aproksymacji wielomianowej

3.1 Maksymalny błąd

Maksymalny stopień	N = 10	N = 15	N = 20	N = 30
3	15.349	15.6144	15.6833	15.82788
4	15.5335	15.6050	15.4156	15.52757
5	16.8599	16.4439	16.39615	16.3464
7	15.302	12.3689	11.9505	11.99586
10	Х	12.426	8.324173	8.360513
15	Х	Х	61.418926	12.01940

3.2 Średni błąd

Maksymalny stopień	N = 10	N = 15	N = 20	N = 30
3	5.4455	5.3712	5.3856	5.38769555
4	5.4798	5.3267	5.3490	5.344455
5	5.28071	5.2068	5.23599	5.245863
7	4.7295	4.2418	4.12896	4.06769
10	Х	3.402169	2.77014	2.71187
15	Х	Х	4.80013	2.48739

3.3 Wnioski

- 1. Dla stałej liczby węzłów im większa liczba funkcji bazowych tym przybliżenie jest dokładniejsze.
- 2. Dla takiej samej bazy funkcji liczba węzłów nie ma dużego znaczenia dla dokładności przybliżenia
- 3. Gdy liczba węzłów aproksymacji jest mniejsza od stopnia aproksymacji to funkcja aproksymująca nie spełnia swojej roli, błędy są znacznie za duże.

4. Porównanie wyników aproksymacji trygonometrycznej

4.1 Maksymalny błąd

Maksymalny	N = 10	N = 15	N = 20	N = 30
stopień				
3	19.7489	17.6253	19.6323	18.9116
4	19.4634	9.2509	10.9519	10.2858
5	19.3679	10.6257	13.7163	11.8784
7	21.0917	10.7370	10.2047	8.3157
10	Х	17.6565	12.3787	8.0043
15	Х	Х	23.9620	11.1544

4.2 Średni błąd

Maksymalny stopień	N = 10	N = 15	N = 20	N = 30
3	5.5659	6.233	6.0688	5.9922
4	5.5976	3.9792	3.4729	3.3651
5	5.5785	4.0954	3.6102	3.4075
7	5.8854	4.2031	2.8904	2.2543
10	Х	4.9100	3.2712	1.9332
15	Х	Х	5.141	2.4284

5. Porównanie obu metod aproksymacji

Czas porównać obie metody. Do testów wybieram zawsze liczby węzłów większe od liczby funkcji bazowych. Np. dla liczby funkcji bazowej = 5 dobieram liczby węzłów w zakresie od 5 do 25.

5.1 Wnioski

- 1. Błąd aproksymacji trygonometrycznej wacha się raz jest lepiej a raz gorzej ale ze zwiększająca się liczbą węzłów maleje. Błąd średni zmierza do zakresu (1,3). Błąd aproksymacji wielomianowej szybciej się stabilizuje, np. dla liczby funkcji bazowych = 10 stabilizacja błędu zachodzi dla N = 15.
- 2. Na wykresach dokładnie widać, że za mała liczba węzłów może powodować "katastrofę" obliczeniową.
- 3. Wyniki wyraźnie pokazały, że aby przybliżenie było dokładne to musi być spełniona zasada N >> L. Gdy ta zasada jest spełniona to widzimy że dla stałej liczby N błąd maleje wraz ze wzrostem liczby L