

10.01.2016

-/7		St	a)	Ai.		CL	es.	,	_	re	20	a	0																		
200		1		2>		12	\		H	RI	/A =	(-	0	0		24 2	4		0) p	-0	()									
2-	Phi	1	h	1	113	OV	10	n	ш			4	p -	7	C	= (0														
	tha tha	*		0			4	V	12			7 2			2	7]				-	. ,	-			4		1	ħ√a	Sp.	+12,	2 4.
u	na la	1	1		20.		91	1/		-		,	Ð		22			ħ	AP 2	1				lao	>						
	1a	+ /	=		C11			in			1,		+ .,			Q		2)			20.				74	0 1	13	>			
	ta	m	6		211			Co	,	Pa	11.		0 =	(ir	, mine	P 1	THE PERSON NAMED IN	_	+	CO	2	9	CO	2	P	15	/				
A	7	191	ca	1	E	17					0		50	1)						-			1 4	1	>	15	11	$\langle \rangle$			
Opt	1.							. 6		T.			5						9	7											
			d	9	= 2	Lir	nol	bl	na	1	SL	ip	250	spi	eri	et	01							as	na	1	dej	oh	W.	lin	g
	2.	P	eri	tu	No	al	ve		re	9	m	11		50	P	2	na	U	=)	5	11	2	9	a	nd	1	911	2	1		

10.03.2016

3/9

10.03.2016 3. Shape of Im & a) Rc K X : Broad Lorentzian - Narrow Lorentzian => EIT band on intertaince b) ac > x: Sum of the Corentrians with width ~ ? => EIT based on AC-Stade effect (Mully-Taines) 4. General can for S = S = 0. $I_{m} \times (0) = \frac{N_{os} |\mu_{0}|^{2}}{\sqrt{\epsilon_{o} \hbar}} \times \frac{2 \times 3}{||\mu_{0}||^{2} + 82 \times 3} \times \frac{1}{||\mu_{0}||^{2}} \times \frac$ => Meatigibh absurption only for 1-act >> X2 X2.

Ground-state decomenna x3 destroys dark state > Also less regractive-index variation! Pulse propagation It coupling held constant while probe pulse proposales through medium: Frequency domain E(Q, Z) = e E(Q, Q) gives attenuation delay distortion ... In particular: $I_{aut}(\omega) \sim |E(\omega, L)|^2 = I_{in}(\omega) \epsilon$ > Optical depth d = KL Im x(w)

Q02

P		4	1		0. 4	ı.	0.1	9		7	1/		/				_	.											
Res	on I		77	10		nc =	W.	at	1	Un Est	12)	28	28	2	6	*O Not		Mar.	2	> ,	d	И	Not		lu Esk	,/*	kL	-
Ref	rac	,	11	10	in	oto	X	_	tos		to		8	= 2	1.	A	0	26	,n Xg	2		0				6011		X	2
	Re	2	7	2	0	6	\$2 cL	→	(42	12	aci	1 .	- X	12		=	20 KL	6		P 2	1	83	2	-,	1	2		
	(12	2n	ity	, (zh	ea	e:	2	lop	e	br	1	R	12	=0	or	10	Vac	1		11		-	820	12			
8	n·	=V	1	ł	le	X	7	15	1	1	12	Re	2	E															
	V	r		r	C			1	790	(w) =	r	16	J)	+	W	d	n(1	()		-	2cl		1					
												= 1	/+	(ck		k L	0	82		1	12	10	1 1 82	12				
Gr	ou	p	0	lu	la	1:					-	n		1	\				1	1.	12 _C	2	,	1					_
	T	1	= 4	41	Vg	-	2)	=	L	(C	,) =				X2	1			283						,
	-	P	eci	al	9	ca	se		d	1	0	1	>7	Ed	=	d	eli	A2 Ac	2	- (-	-	-	12	-)(x	3)
																						hin	te	82	1	edi	ue	5 7	
Fro	4	-	71			100	1																						
						P						1								3.		_	_						
	-	P	uls	t	S	100	ell	1	1	bit		W.	110	le	7	tru	en	9	Q1	Q)	nc	y	L	in	to	1			

10.03.2016 Estimation of width of transparency window: Transmission T(Sp) = 4 2 X2 Im x(Sp) Exp 2 82 110c 2 + (82+215p)(82+214p) 2 a) constant factor b) not releveent for High estimation ~ Exp[202] where Td ~ Td 5 ~ Vdo (-x2 - x2 / x2) Remarks: Achievable gractional dulay determined by do Ground star decoherence reduces fractional delay. static case for 12 constant in time Solution: Control actt dynamically Dark-stak palantons

		10.02.2016
Park-State Po	Paritons	
Consider now	a greantum held for the	ppbe 166,0)
grant a.	10 1	16.1>
		10,10
+ / / /	Dexc. 1 let.	2 exc. 600
N	$\hat{a} \sigma_{ba}^{i} - h\Omega(t) e^{-i\omega t} \sum_{i=1}^{N} i + i $	H.C. O: = lixil
Stat space:	4, Q2 QN	
16> = W 2		V-17 2 1 a, b; b; a,
	: 10,1> = cos 8 la,1> - sin 8 l	$c, 0 > \tan \theta = \frac{a \overline{w}}{200}$
⇒ Adiabakic 1	-otation θ -0 $\Rightarrow \frac{\pi}{2}$ (1211) $\Rightarrow g \sqrt{u}$	$\rightarrow \Omega(t)=0$
gives per	tect conversion from photons to	collective excitation.
- Works for - Question:	is the energy stored ?	

7/9

10.02 2016 (non-stationary hild) Pulsi popagation 2(2, 1) (gisting no dehinings) $\hat{E}(z,t)$ Mab = (0 = E (+) (z,t) + H.C. to E (Tic D (2; t) e ik 2; - wet) + H.C.) Slouly varying variables $\hat{\mathcal{E}}^{(p)}(z,t) = \sqrt{z_{s}} \hat{\mathcal{E}}(z,t) \hat{\mathcal{E}}(z,t) \hat{\mathcal{E}}(z-ct)$ $\frac{1}{\sigma_{\mu\nu}}(t) = \frac{1}{\sigma_{\mu\nu}}(t) e^{-\frac{\omega_{\mu\nu}}{c}(z-ct)}$ Male slices such that stary about per slice and change => (z,t) = 1, z = in (t) and exchange sum with integral $\Rightarrow \mathcal{H} = - \left(\frac{d^2}{dt} \frac{1}{h_0} \mathcal{N} \mathcal{F}_{ba}(z,t) \hat{\mathcal{E}}(z,t) + h_1 \mathcal{L}(z,t) \mathcal{N} \mathcal{F}_{c}(z,t) + \mathcal{H}.c. \right)$ Time evolution of quantum sidd: (Heisenburg egs. of $\left(\frac{\partial}{\partial t} + C\frac{\partial}{\partial t}\right) \hat{\mathcal{E}}(z,t) = ig N \tilde{\sigma}_{ab}(z,t)$ (slawly varying ampl.) Atomic operators similar to Master-equation approach to dinie & (a)

1003.2016 Low intensity approximation: - Rabi trequency of quantum field < 12 - Photon density & atom density => of = 2 of oac . ~ collective oround-stak The = -9 a + terms containing de Adiabatic limit: neglect time-derivative $\Rightarrow (\frac{\partial}{\partial t} + c\frac{\partial}{\partial t}) \hat{\mathcal{E}}(z,t) = -\frac{q}{n'(z,t)} \frac{\partial}{\partial t} \frac{\hat{\mathcal{E}}(z,t)}{\alpha(z,t)}$ Tricky to solve in general, but easy for 12(+,+) - a(+) -> spanally varying group velocity - solet) = a(t) - temporally Temporal control of group velocity: Introduce quentum fields - dark # (2,t) = cos O(t) E(2,t) - sin O(t) W Eac (2,t) $\frac{2}{2}(z,t) = \sin \theta(t) \hat{\varepsilon}(z,t) + \cos \theta(t) \sqrt{N} \hat{\sigma}_{n}(z,t)$ bright with tan 8(+) = 12(1) = ngr (+) - quasiparticles with field and ahmic spin contributions - "polaritons" are posonic in lax-cecitation limit admixtun contalled through E(t)

002

9/9

		2																										01.	I
1/1	/	11		-							•											ē ,	5. 1		-	-		:	+
Wit	n	40	11																		_			1			1	+	+
	12					2.0	-	2)	n			*	1		Si		7		1		0	1					1		I
	(ot	7	4	. 0	20	0	0	7	4	_		U	4	_	211	nı	76	05	O	C	17	¥	3	-		-	+	+	+
					, .			P		2	1		1																+
Ada	ab	M	C	1	m	11	-	a	ga	th	1		T	= (0				1							4			I
		+	1	n			+			H		4												+					+
	3	> (3	(2	t) =	= (205	6	(+)	1	1	7,	()					11					2 1	,				İ
		1							1					2,1				Va	(+)) =	C	9	20	0	(+)	1	+	+
		V	N	0	ac	. 1		-	(IV)	10	17	-	41	2,1	1											1		+	t
		JI)	,		,			2 4	/			1	-,					,	,				. ,					1	I
17 10	1. 6		1-	26)/	.7	0	2 N			Pl	Mil	n h	M.	a	a	P	40	Nyin	/C	4	en	of	U	1	C	-		+
			10	2/4	V	1	e 1	21	1		P	ala	nt	ins	1	21		ch	mi	C		un	d	V	6	-0			
, ,										100	-														4				
Show	0 10	16	9.6	1	7.1	9		-	1															+				+	+
31000	a	u	1	200		9																							
		-/		0 1	. 0			2	1		1			PR	1	-	-		02	2	14	,	1	20	197)		-	+
	1	10	130	n	u	als		4	1	W	ui	1		IL	14	0	5	1	00	-	1-1		-	20		1		+	t
		1,				A		1	/ /			111	10	,,	A	1	2	20	1										I
		10	(ex		al.	1	1	an	W		40	19	4	90	(20	201	1					-			-		+
			r1.								7 .		0		1-	120			10		.)								
		Ph	1//	IP.	1	U		al.	1	-	R	4	86	,	7	87		-	1	00	1)								
		-	-						-					-	-	-		. 0				,					+	+	+
		PA	11	lip	1	e	t	al		1	R	A	7	8	0	23	80	1	1	20	08)							Ī
				Ĺ							-	-		Ľ				100				-					4	+	-
	Sen	a	ne	n		U		1		11	81	1	40		08	361	01		12	61	()								+
		,							1				Ĺ	1		31					1								1
										В								2					-		,				
																				-									1
															_														
																												-	+
			0				V.	-											-										
													4			12		1											