EDA Implementation with the help of Automated EDA Tools:-

Submitted By :- Ambarish Singh

Performing EDA with the help of Pandas-Profiling Automated EDA Tools.

Pandas Profiling Tools

--> It is an open-source library written in python and it generated interactive HTML reports and describes various aspects of the dataset. Key functionalities include handling missing values, statistics of dataset like mean, mode, median, skewness, standard deviation etc, charts like histograms and correlations as well.

```
In [3]: ## Performing EDA with the help of Pandas- Profiling Automated EDA Tools.

import pandas as pd
from pandas_profiling import ProfileReport
profile = ProfileReport(df, title="Report")
profile
```

Overview

Dataset statistics			
Number of variables	12		
Number of observations	25480		
Missing cells	0		
Missing cells (%)	0.0%		
Duplicate rows	0		
Duplicate rows (%)	0.0%		
Total size in memory	2.3 MiB		
Average record size in memory	96.0 B		
Variable types			
Variable types Categorical	6		
Variable types			
Variable types Categorical	6		
Variable types Categorical Boolean	6 3		
Variable types Categorical Boolean Numeric	6 3		
Variable types Categorical Boolean Numeric lerts	6 3 3		

Out[3]:

Performing EDA with the help of Sweetviz Automated EDA Tools.

SweetViz Tools

--> It is an open-source python library that used to get visualizations which is useful in exploratory data analysis with just a few lines of codes. The library can be used to visualize the variables and comparing the dataset.

In [34]: ## Performing EDA with the help of Sweet viz Automated EDA Tools.

import sweetviz as sv
analyze_report = sv.analyze(df)
analyze_report.show_notebook()

Performing EDA with the help of Autoviz Automated EDA Tools.

Autoviz Tools

-->It stands for Automatically Visualize. Visualization is possible with any size of the dataset with a few lines of code.

In [35]:

```
## Performing EDA with the help of Autoviz Automated EDA Tools.
from autoviz.AutoViz_Class import AutoViz_Class
AV = AutoViz_Class()
df_av = AV.AutoViz('Visadataset.csv')
```

Shape of your Data Set loaded: (25480, 12) Classifying variables in data set...

	Nuniques	dtype	Nulls	Nullpercent	NuniquePercent	Value counts Min	Data cleaning improvement suggestions
case_id	25480	object	0	0.000000	100.000000	1	combine rare categories, possible ID column: drop
prevailing_wage	25454	float64	0	0.000000	99.897959	0	
no_of_employees	7105	int64	0	0.000000	27.884615	0	
yr_of_estab	199	int64	0	0.000000	0.781005	0	
continent	6	object	0	0.000000	0.023548	192	
region_of_employment	5	object	0	0.000000	0.019623	375	
education_of_employee	4	object	0	0.000000	0.015699	2192	
unit_of_wage	4	object	0	0.000000	0.015699	89	
has_job_experience	2	object	0	0.000000	0.007849	10678	
requires_job_training	2	object	0	0.000000	0.007849	2955	
full_time_position	2	object	0	0.000000	0.007849	2707	
case_status	2	object	0	0.000000	0.007849	8462	

¹² Predictors classified...

All Plots done

Time to run AutoViz = 3 seconds

Data

¹ variables removed since they were ID or low-information variables List of variables removed: ['case id']

Histograms (KDE plots) of all Continuous Variables

Heatmap of all Continuous Variables including target =

Thank You