Predictive Analysis – Electrical car

Yousof Rahimian

Master of Data Science

Bellevue University

DSC 630 T302 (Individual Course Project)

Fall,2022

Project Overview

In this project, I am going to build a machine learning model to make this task automated with the best accuracy possible using python. I am planning to build a model that can predict the following questions.

- 1. Which car has the fastest 0-100 acceleration?
- 2. Which has the highest efficiency?
- 3. Does a difference in power train effect the range, top speed, efficiency?
- 4. Which manufacturer has the greatest number of vehicles?
- 5. How does price relate to rapid charging?

What is an Electric Car?

Electric cars have actually been around for longer than gasoline-powered cars. The first electric vehicle was a motorized carriage created by Scottish inventor Robert Anderson in the early 1830s. Unfortunately, the battery couldn't be recharged, so it was a bit of a novelty.

Rechargeable batteries appeared in 1859 and in 1884, a man named Thomas

Parker built a prototype electric vehicle. A few years later in 1887, William

Morrison patented his electric car in Des Moines, Iowa, and the electric race was on.

While many companies tried their hand at putting EVs on the market, Henry Ford won the battle with his cheap-to-produce Model T and the world went gasoline car crazy... until now.

EVs first came into existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. Internal combustion engines were the dominant propulsion method for cars and trucks for about 100 years, but electric power remained commonplace in other vehicle types, such as trains and smaller vehicles of all types.

In the 21st century, EVs have seen a resurgence due to technological developments, and an increased focus on renewable energy and the potential reduction of transportation's impact on climate change and other environmental issues. Project Drawdown describes electric vehicles as one of the 100 best contemporary solutions for addressing climate change.

Data Source

The data has been source from Kaggle and have consist of the following (I just list a few notable columns):

- 1- Brand of the vehicle: This column contains brand of cars and their models.
- 2- Top speed: This column contains top speed of cars
- 3- Range/Km: This column contains range of cars based on kilometer per hours
- 4- Efficiency: This column contains efficiency of cars
- 5- FastCharge_KmH: This column contains fast charge of batterie of cars
- 6- Price: This column contains price Euro of cars

What types of model or models do you plan to use and why?

I believe I can use Linear Regression model to describe the relation between top speed and efficiency which are the two variables related to price. I will use R-square or adjusted R-square metrics to evaluate the model performance during this analysis. Moreover, I will use mean square error or mean absolute error as a metric to evaluate a regression model performance.

How do you plan to evaluate your results?

The models will be analyzed by selecting metrics that take into R-square or adjust R-square metrics. For this project I believe it will be most impactful to divide the data into a training set and a test set. Once I use a training set to create

a model, I will then test the model on the test set of data. I would evaluate the results base on the 5 questions I've mentioned above, which will evaluate all electrical car company based on the available datasets. Mean square error or mean absolute error are two metrics to evaluate a regression model performance during this analyses.

What do you hope to learn

The car industry is undergoing a radical transformation, with most carmakers agreeing the next 10 years will bring more change than the two previous decades. I hope to learn more about the liner regression model during this analysis to realized which variables will have the greatest impact on the price to get the best decision for buying the reliable and convenient EVs care in future. I believe almost all the variables will affect the price, but I will use the model to find out the most importantly effective variables to rich out the best price.

Assess any risk with your proposal

Because the dataset I've chosen for this project is already cleaned, with high quality, and is small, I cannot predict any risk during the analysis. Moreover, the model I've chosen will be correct. However, if for any reason model failed, I will fry another model.

Identify a contingency plan if your original project plan does not work out

As I mentioned in previous question, the dataset I have for this course is clean with high quality, So I believe this dataset will work out. However, if for any reason the data does not work out, I will try to find out the root cause of issue and try another model. Teams is the second plan, which I will post the questions to get helps. Third, I will inform the instructor to assist me during the analysis. I believe peer review will paving the way and preventing the mistakes ahead so, I can ask them to review to help me more to solve the issues. Finally, if no way to solve the issues I have to find another dataset and start from scratch to build the new analysis.

Includes anything else you believe is important

Below is the list of all-important things for me during this journey:

- Communication with classmate to find the peers review for the entire course through Teams.
- o Find the appropriate model evaluation
- Following the recommendations from peer review

Milestone 3:

Answering all the questions I have for this project are related to most of the technical work for the project when done. On this milestone I just explore the data mostly in the visualization section to find out the correlation coefficient to get the better feel of data.

Pairplot, Heatmap, Pie Chart, and Barplot are four data visualization techniques which I've used in this graphical section.

I used Seaborn Pairplot to get the relation between each and every variable present in the data frame. Heatmap technique representing the correlation coefficient in variables and find out the highly coefficient correlated variables to focus on valuable variables. Pichart is dividing the cars and body in the circular statistical graphic to illustrate the variety of available body style in this data set. Barplot techniques show the relationship between a numeric and a categorical variable and compare the fastest versus slowest car speed, efficiency, reliability, and price of vehicles which are the most items I will work on during the analysis. Fortunately, I was able to get the answers for some of the questions I had in the beginning with this data, which I will address some of them in the following:

Display the fastest and slowest vehicle? Porsche, Lucid, and Tesla
 produce the fastest cars and Smart the lowest one.

2. Which has the highest efficiency? Byton, Jaguar, and Audi are the most efficient and Lightyear the least.

I've chosen the Linear Regression model to describe the relation between top speed and efficiency which are the two main variables related to price in this analysis. Although I haven't done the model/evaluation in the Milestone3 and I'm on the preliminary analysis, however I believe the Linear Regression model is the

appropriate model for this analysis and I have no plan to adjust the model/evaluation and data for this course project. My original expectation is still reasonable, and I hope to pull the best result from this dataset.

Milestone 4:

Finalize the result

In this milestone I've tried to complete the technical work. I've explored and cleaned the data, finding out the number of null values, visualize the data, trained, and find out the accuracy of model. Below is the list of things that have been

- 1. Import and clean the data
- 2. Pairplot of all the columns based on Brand presence
- 3. Heatmap to show the correlation of the data
- 4. Build and evaluate the models
- 5. Use Linear regression Model
- 6. Regression Coefficients
- 7. Logistic Regression
- 8. Confusion Matrix of the regression
- 9. Finding out the accuracy score

I will illustrate the process of the work in the following with screenshot of each section.

Data

•	Brand	Model	AccelSec	TopSpeed_KmH	Range_Km	Efficiency_WhKm	FastCharge_KmH	RapidCharge	PowerTrain	PlugType	BodyStyle	Segment
0	Tesla	Model 3 Long Range Dual Motor	4.6	233	450	161	940	Yes	AWD	Type 2 CCS	Sedan	D
1	Volkswagen	ID.3 Pure	10.0	160	270	167	250	Yes	RWD	Type 2 CCS	Hatchback	С
2	Polestar	2	4.7	210	400	181	620	Yes	AWD	Type 2 CCS	Liftback	D
3	BMW	iX3	6.8	180	360	206	560	Yes	RWD	Type 2 CCS	SUV	D
4	Honda	е	9.5	145	170	168	190	Yes	RWD	Type 2 CCS	Hatchback	В
4												+

Descriptive Statistics of the dataset

		AccelSec	TopSpeed_KmH	Range_Km	Efficiency_WhKm	Seats	PriceEuro
C	ount	103.000000	103.000000	103.000000	103.000000	103.000000	103.000000
n	nean	7.396117	179.194175	338.786408	189.165049	4.883495	55811.563107
	std	3.017430	43.573030	126.014444	29.566839	0.795834	34134.665280
	min	2.100000	123.000000	95.000000	104.000000	2.000000	20129.000000
	25%	5.100000	150.000000	250.000000	168.000000	5.000000	34429.500000
	50%	7.300000	160.000000	340.000000	180.000000	5.000000	45000.000000
	75%	9.000000	200.000000	400.000000	203.000000	5.000000	65000.000000
r	max	22.400000	410.000000	970.000000	273.000000	7.000000	215000.000000

Heatmap to show the correlation of the data

Build and evaluate the models

• linear Regression using OLS method

Dep. Variable	:	Price	Euro		R-squ	ıared:	0.711	
Model	:	(OLS	Adj	R-squ	ıared:	0.699	
Method	: Lea	Least Squares		F-statistic: Prob (F-statistic):		60.28		
Date	Date: Sun, 30 Oct 2022		2022 I			1.37e-25		
Time	:	09:3	6:56	Log	-Likeli	hood:	-1156.8	
No. Observations	:		103			AIC:	2324.	
Df Residuals	:		98			BIC:	2337.	
Df Model	:		4					
Covariance Type	:	nonro	bust					
		-	-4-1			D> 141	FO 005	0.0751
		coef	std 6	err	t	P> t	[0.025	0.975]
const	-1.051	e+05	2.3e+	04 -	4.578	0.000	-1.51e+05	-5.96e+04
AccelSed	1482.	2127	1033.2	19	1.435	0.155	-568.178	3532.603
Range_Km	37.	7714	22.6	80	1.665	0.099	-7.236	82.779
TopSpeed_KmH	613.9	9243	78.2	24	7.848	0.000	458.691	769.157
Efficiency_WhKm	143.	7166	68.2	28	2.106	0.038	8.320	279.113
Ommibuo	04.050	Dur	him Ma	40.00		2.071		
Omnibus:	94.859	Duri	bin-Wa	tson.		2.071		
Prob(Omnibus):	0.000	Jarqu	e-Bera	(JB):	104	9.593		
Skew:	2.978		Prob	(JB):	1.21	e-228		
Kurtosis:	17.460		Cond	l. No.	5.53	3e+03		

Linear regression model:

- In the above plot, I determine the accuracy score using Explained Variance Score.
- Variance score is around .5
- The best possible score is 1.0, lower values are worse

Summery:

- Porsche, Lucid and Tesla produce the fastest cars and smart the lowest
- Lightyear, Porsche and Lucid are the most expensive and SEAT and Smart the least
- Byton, Jaguar and Audi are the most efficient and Lightyear the least
- Around 78% of the dependent variable has been explained by the independent variables

•	Variance score is around .5, which the best possible score is 1.0, lower
	values are worse
•	Data is accurate up to 95%

References:

EVs - One Electric Vehicle Dataset - Smaller | Kaggle

EVs - One Electric Vehicle Dataset - Smaller | Kaggle

Electronics | Free Full-Text | Electric Vehicles: A Data Science Perspective Review | HTML (mdpi.com)

<u>Data Analysis of Electric Vehicles: For Convenient and Smart Life – Hyundai Motor Group TECH</u>

Using Data Science to Predict the Energy Consumption of Electric Vehicles | by Martin Smuts | Medium