```
/*cache: data memory, single port, 1024 blocks*/
module dm_cache_data(input bit clk,
    input cache_req_type data_req,//data request/command, e.g. RW, valid
    input cache_data_type data_write, //write port (128-bit line)
    output cache_data_type data_read); //read port
  timeunit 1ns; timeprecision 1ps;
  cache_data_typedata_mem[0:1023];
  initial begin
    for (int i=0: i<1024: i++)
         data_mem[i] = '0:
  end
  assign data_read = data_mem[data_req.index];
  always_ff @(posedge(clk)) begin
    if (data_req.we)
      data_mem[data_req.index] <= data_write;</pre>
  end
endmodule
/*cache: tag memory, single port, 1024 blocks*/
module dm_cache_tag(input bit clk. //write clock
    input cache_req_type tag_req, //tag request/command, e.g. RW, valid
    input cache_tag_type tag_write,//write port
    output cache_tag_type tag_read);//read port
  timeunit 1ns; timeprecision 1ps;
  cache_tag_typetag_mem[0:1023];
  initial begin
     for (int i=0; i<1024; i++)
     tag_mem[i] = '0:
  end
  assign tag_read = tag_mem[tag_req.index];
  always_ff @(posedge(clk)) begin
    if (tag_req.we)
      tag_mem[tag_req.index] <= tag_write;</pre>
  end
endmodule
```

FIGURE e5.12.4 Cache data and tag modules in SystemVerilog. These are nearly identical except that the data is 32 bits wide between the CPU and cache and is 128 bits wide between the cache and memory. Both only write on positive clock edges if the write enable is set.