ЗАДАНИЕ 13. Метод Диксона:

Вход: Составное число n,

Выход: p— простой делитель числа n.

Алгоритм

- 1. Составить базу разложения $B = \{p_1, p_2, ..., p_h\}$, состоящую из всех простых чисел $p \le \sqrt{e^{\sqrt{\ln n \cdot \ln(\ln n)}}}$.
- 2. Выбрать случайное целое $b, \sqrt{n} \le b \le n$.
- 3. Вычислить $a = b^2 \mod n$.
- 4. Проверить число a на B-гладкость пробными делениями. Если a является B-гладким, то есть $a=p_1^{\alpha_1(b)}p_2^{\alpha_2(b)}\cdots p_h^{\alpha_h(b)}$, то запомнить векторы: $\overline{\alpha}(b)=(\alpha_1(b),\alpha_2(b),...,\alpha_h(b))$ и $\overline{e}(b)=(\alpha_1(b)\,\mathrm{mod}\,2,\alpha_2(b)\,\mathrm{mod}\,2,...,\alpha_h(b)\,\mathrm{mod}\,2)\,.$
- 5. Повторять процедуру генерации чисел b до тех пор, пока не будет найдено h+1 B-гладких чисел $b_1, b_2, ..., b_{h+1}$.
- 6. Методом Гаусса найти линейную зависимость среди векторов $\overline{e}(b_1)$, $\overline{e}(b_2)$, ..., $\overline{e}(b_{h+1})$, т.е. $\overline{e}(b_{i_1}) \oplus \overline{e}(b_{i_2}) \oplus \cdots \oplus \overline{e}(b_{i_t}) = \overline{0}$, $1 \le t \le h+1$, и положить: $x = b_{i_1} \cdot b_{i_2} \cdot \cdots \cdot b_{i_t} \mod n$; $y = p_1^{\frac{1}{2}(\alpha_1(b_{i_1}) + \alpha_1(b_{i_2}) + \ldots + \alpha_1(b_{i_t})) \mod n} \cdot p_2^{\frac{1}{2}(\alpha_2(b_{i_1}) + \alpha_2(b_{i_2}) + \ldots + \alpha_2(b_{i_t})) \mod n} \cdot \cdots$ $\cdot p_h^{\frac{1}{2}(\alpha_h(b_{i_1}) + \alpha_h(b_{i_2}) + \ldots + \alpha_h(b_{i_t})) \mod n} = \prod_{i=1}^h p_j^{\frac{1}{2}(\alpha_j(b_{i_1}) + \alpha_j(b_{i_2}) + \ldots + \alpha_j(b_{i_t})) \mod n}$.
- 7. Проверить $x \equiv \pm y \mod n$. Если так, то повторить процедуру генерации новых чисел b. Если нет, то n = pq, где p = (x + y, n), q = (x y, n).

ЗАМЕЧАНИЕ. Вариант этого алгоритма, когда в качестве $p_1 = -1$, и на шаге 3 в качестве $a = b^2 \mod n$ берут вычет наименьший по абсолютной величине и проверяют его на B-гладкость. Например, по модулю 7 вычетами являются 0, 1, 2, 3, 4, 5, 6, а наименьшие по абсолютной величине будут: -3, -2, -1, 0, 1, 2, 3.

Метод непрерывных дробей в алгоритме Диксона:

Строить базу разложения из малых простых чисел p_i , по которым n является квадратичным вычетом, т.е. $\left(\frac{n}{p_i}\right) = 1$. В качестве чисел b берём числители P_i подходящих дробей к числу \sqrt{n} , для которых значения $P_i^2 \pmod{n}$ являются B-гладкими.

ЗАДАНИЕ 14. Разложение на множители по известным показателям RSA и значению функции Эйлера:

1. Вычисление параметров системы RSA.

Вход: длина простых чисел p и q.

- 1) Генерация двух простых чисел p и q (сохранить в одном файле).
- 2) Вычисление n = pq, $\varphi(n) = (p-1)(q-1)$.
- 3) Генерация случайного e с условием $HOД(e, \varphi(n)) = 1$.
- 4) Вычисление d с условием $ed \equiv 1 \pmod{\varphi(n)}$.

Выход: файл чисел p и q,

файл открытого ключа (n, e), файл закрытого ключа d.

2. Разложение на множители по известному значению функции Эйлера.

Вход: числа n и $\varphi(n)$.

Выход: числа p и q, делители n.

Задача: Решаем квадратное уравнение $x^2 - (n - \varphi(n) + 1)x + n = 0$, его корни и есть числа p и q.

3. Разложение на множители по известным показателям RSA.

Вход: файл открытого ключа (n, e),

файл закрытого ключа d.

- 1. Представить число ed 1 в виде $ed 1 = 2^f s$, где s нечётное число.
- 2. Выбрать случайное число a, $2 \le a \le n-2$, и вычислить $u \leftarrow a^s \pmod n$, $v \leftarrow u^2 \pmod n$.
- 3. Пока $v \neq 1$, полагаем $u \leftarrow v$, $v \leftarrow u^2 \pmod{n}$.
- 4. При u = -1 вернуться на шаг 2. В противном случае вычислить $p \leftarrow \text{HOД}(u-1,n), q \leftarrow \text{HOД}(u+1,n).$
- 5. Результат: *p*, *q*.

Выход: файл чисел p и q.

https://drive.google.com/open?id=0B2AKc7ibPQ_WNXNNdGdaQXdYd1E