

The International Committee on Taxonomy of Viruses Taxonomy Proposal Form, 2024

Part 1a: Details of taxonomy proposals

Title:	Create a new family, <i>Andersonviridae</i> for the FelixO1-like phages (Class: Caudoviricetes)	
Code assigned:	2024.002B	

Author(s), affiliation and email address(es):				
Name	Affiliation	Email address	Corresponding author(s) X	
Moraru C	Carl von Ossietzky Universität Oldenburg, Germany	liliana.cristina.moraru@uol.de		
Tolstoy I	National Center for Biotechnology Information, MD, USA	tolstoy@ncbi.nlm.nih.gov		
Kropinski AM	University of Guelph, Ontario, Canada [AMK]	Phage.Canada@gmail.com	х	

Part 1b: Taxonomy Proposal Submission

ICTV Subcommittee:			
Animal DNA Viruses and Retroviruses		Bacterial viruses	X
Animal minus-strand and dsRNA viruses		Fungal and protist viruses	
Animal positive-strand RNA viruses		Plant viruses	
Archaeal viruses		General -	

Optional – complete only if formally voted on by an ICTV Study Group:				
Study Group	Number of members			
	Votes in support	Votes against	No vote	

Submission date:	01/06/2024
------------------	------------

Part 1c: Feedback from ICTV Executive Committee (EC) meeting

Executive Committee Meeting Decision code:	
A – Accept	
Ac – Accept subject to revision by relevant subcommittee chair. No further vote required	X
U – Accept without revision but with re-evaluation and email vote by the EC	
Uc – Accept subject to revision and re-evaluation and email vote by the EC	
Ud – Deferred to the next EC meeting, with an invitation to revise based on EC comments	
J - Reject	
W - Withdrawn	

Comments from the Executive Committee:

Corrections required to wording (figure labels) within the taxonomy proposal.

Part 1d: Revised Taxonomy Proposal Submission

Res	sponse of proposer:
The	e text has been corrected.

Revision date:	30/09/2024
----------------	------------

Part 3: TAXONOMIC PROPOSAL

Name of accompanying Excel module:	
2024.002B.A.v1.Andersonviridae_nf.xlsx	

Taxonomic changes proposed:			
Establish new taxon	х	Split taxon	
Abolish taxon		Merge taxon	
Move taxon		Promote taxon	
Rename taxon		Demote taxon	
Move and rename			

Is any taxon name used here derived from that of a living person:		
Taxon name Person from whom the name is derived		

Abstract of Taxonomy Proposal:

Taxonomic rank(s) affected:

Realm Duplodnaviria, kingdom Heunggongvirae, phylum Uroviricota, class Caudoviricetes

Description of current taxonomy:

At present the following taxa exist as floating genera in the order *Caudoviricetes*: *Felixounavirus*, *Kolesnikvirus*, *Suspvirus*, and *Mooglevirus*.

Proposed taxonomic change(s):

We propose the creation of one new family, Andersonviridae.

To update the genus Felixounavirus with 80 new species

To update the genus *Mooglevirus* with 11 new species

To add one new species to the genus Kolesnikvirus

To create a new genus Daniellevirus with two species

To create a new genus *Arnovirus* with three species

Justification:

We investigated the evolutionary relationships of 123 bacteriophages. Analysis of conserved genes revealed that these phages form a deeply branching monophyletic clade with a distance commensurate with the creation of a new family.

Text of Taxonomy proposal:

Taxonomic rank(s) affected: Species, genus and family.

Description of current taxonomy:

At present the following taxa exist: The subfamily *Ounavirinae* and genera *Felixounavirus*, *Kolesnikvirus*, *Suspvirus*, and *Mooglevirus*.

Proposed taxonomic change(s):

- A. To update the genus *Felixounavirus* with 80 new species
- B. To update the genus Mooglevirus with 11 new species
- C. To add one new species to the genus Kolesnikvirus
- D. To create a new genus Daniellevirus with two species
- E. To create a new genus Arnovirus with three species
- F. To create a new family Andersonviridae

All our analyses reveal that the Felix-O1-like phages are part of a family which we have named *Andersonviridae* in honour of American biophysical chemist and geneticist Thomas Foxen Anderson. Unlike almost every TaxoProp submitted since the development of VIRIDIC there is not a clear distinction based upon overall DNA sequence similarity of members of the *Felixounavirus* and the *Mooglevirus*.

Demarcation criteria:

Species demarcation criteria: Two phages are assigned to the same species if their genomes are more than 95% identical over their genome length for isolates.

These values can be calculated by a number of tools, such as BLASTn [1,2] – usually calculated using intergenomic distance calculator VIRIDIC [3].

Genus demarcation criteria: In search for criteria that create cohesive and distinct genera that are reproducible and monophyletic, the Bacterial Viruses Subcommittee has established 70% nucleotide identity of the genome length as the cut-off for genera. Genus-level groupings should always be monophyletic in the signature genes, as tested with a phylogenetic tree. [10]

Subfamily demarcation criteria: Subfamilies are to be created when two or more genera are related below the family level. In practical terms, this usually means that they share a low degree of sequence similarity (usually about 40-50%) and that the genera form a clade in a marker tree phylogeny. [10]

Family demarcation criteria: The family is represented by a cohesive and monophyletic group in the main predicted proteome-based clustering tools (VirClust, ViPTree, GRAViTy dendrogram, vConTACT2 network). Members of the family share a significant number of orthologous genes (the number will depend on the genome sizes and number of coding sequences of members of the family). [10]

Justification:

This assignment is in keeping with the criteria laid out in [10]

References:

- 1. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, Marchler-Bauer A, Landrum M, Lathrop S, Lu Z, Madden TL, O'Leary N, Phan L, Rangwala SH, Schneider VA, Skripchenko Y, Wang J, Ye J, Trawick BW, Pruitt KD, Sherry ST. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021 Jan 8;49(D1):D10-D17. doi: 10.1093/nar/gkaa892. PMID: 33095870
- 2. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733-45. doi: 10.1093/nar/gkv1189. PMID: 26553804.
- 3. Moraru C, Varsani A, Kropinski AM. VIRIDIC-A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses. 2020 Nov 6;12(11):1268. doi: 10.3390/v12111268. PMID: 33172115; PMCID: PMC7694805. http://kronos.icbm.uni-oldenburg.de/viridic/
- 4. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the viral proteomic tree server. Bioinformatics. 2017; 33(15):2379-2380. doi:10.1093/bioinformatics/btx157. PubMed PMID: 28379287. https://www.genome.jp/viptree/
- 5. Rohwer F, Edwards R. The Phage Proteomic Tree: a genome-based taxonomy for phage. J Bacteriol. 2002 Aug;184(16):4529-35. PubMed PMID: 12142423
- 6. Turner D, Reynolds D, Seto D, Mahadevan P. CoreGenes3.5: a webserver for the determination of core genes from sets of viral and small bacterial genomes. BMC Res Notes. 2013;6:140. doi: 10.1186/1756-0500-6-140. PMID: 23566564.
- 7. Davis P, Seto D, Mahadevan P. CoreGenes5.0: An Updated User-Friendly Webserver for the Determination of Core Genes from Sets of Viral and Bacterial Genomes. Viruses. 2022 Nov 16;14(11):2534. doi: 10.3390/v14112534. PMID: 36423143; PMCID: PMC9693508.
- 8. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-

specialist. Nucleic Acids Res. 2008;36(Web Server issue):W465-9. doi: 10.1093/nar/gkn180. Epub 2008 Apr 19. PMID: 18424797.

- 9. Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006;55(4):539-52. PMID: 16785212. DOI: 10.1080/10635150600755453.
- 10. Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses. 2021 Mar 18;13(3):506. doi: 10.3390/v13030506. PMID: 33803862; PMCID: PMC8003253.
- 11. Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, Brister JR, Kropinski AM, Krupovic M, Lavigne R, Turner D, Sullivan MB. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019 Jun;37(6):632-639. doi: 10.1038/s41587-019-0100-8. Epub 2019 May 6. PMID: 31061483.
- 12. Bolduc B, Jang HB, Doulcier G, You ZQ, Roux S, Sullivan MB. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ. 2017 May 3;5:e3243. doi: 10.7717/peerj.3243. PMID: 28480138; PMCID: PMC5419219.
- 13. Moraru C. VirClust-A Tool for Hierarchical Clustering, Core Protein Detection and Annotation of (Prokaryotic) Viruses. Viruses. 2023 Apr 19;15(4):1007. doi: 10.3390/v15041007. PMID: 37112988; PMCID: PMC10143988.
- 14. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007 Jan 1;23(1):127-8. doi: 10.1093/bioinformatics/btl529. Epub 2006 Oct 18. PMID: 17050570.
- 15. Zhou T, Xu K, Zhao F, Liu W, Li L, Hua Z, Zhou X. itol.toolkit accelerates working with iTOL (Interactive Tree of Life) by an automated generation of annotation files. Bioinformatics. 2023 Jun 1;39(6):btad339. doi: 10.1093/bioinformatics/btad339. PMID: 37225402; PMCID: PMC10243930.
- 16. Nguyen LT, Schmidt HA, von Haeseler A, and Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32:268-274. https://doi.org/10.1093/molbev/msu300
- 17. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35:518–522. https://doi.org/10.1093/molbev/msx281
- 18. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, and Jermiin JS (2017) ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates, Nature Methods, 14:587–589. https://doi.org/10.1038/nmeth.4285

Tables, Figures:

Accession or RefSeq No/Phage name	Genus	MN270891.1_Pect_phg_Wc4	MN270892.1_Pect_phg_Wc4-1	MK290737.1_Pect_phg_Arno162	MK290738.1_Pect_phg_Arno18	OR125561.1_Erwi_phg_vB_EamM-BoyaciRG1	OR284297.1_Erwi_phg_Flfi106	OQ818707.1_Erwi_phg_Rouille	OM522317.2_Erwi_phg_Hena2	NC_041978.1_Erwi_phg_vB_EamM-M7	PP079182.1_Erwi_phg_vEam_PM_6	PP079183.1_Erwi_phg_vEam_W_25	PP079184.1_Erwi_phg_vEam_PM_27	PP079186.1_Erwi_phg_vEam_W_28	PP079185.1_Erwi_phg_vEam_PM_21	PP079187.1_Erwi_phg_vEam_S_24	MK770412.1_Salm_phg_SE5	PP278848.1_Erwi_phg_Omen	OR863359.1_Salm_phg_SeKF_13
MN270891.1_Pect_phg_Wc4		100.0	100.0	90.9	88.8	10.8	10.7	10.7	10.8	10.9	10.8	10.8	10.8	10.8	10.8	10.8	11.1	11.3	10.8
MN270892.1_Pect_phg_Wc4-1			100.0	90.9	88.8	10.8	10.7	10.7	10.8	10.9	10.8	10.8	10.8	10.8	10.8	10.8	11.1	11.3	10.8
MK290737.1_Pect_phg_Arno162		90.9	90.9	100.0		10.8	10.6	10.9	10.8	10.9	10.9	10.8	10.9	10.9	10.9	10.9	11.1	11.3	10.7
MK290738.1_Pect_phg_Arno18		88.8	88.8	93.2	100.0	10.6	10.7	10.6	10.7	10.7	10.8	10.8	10.8	10.8	10.8	10.8	11.0	10.6	10.3
OR125561.1_Erwi_phg_vB_EamM-BoyaciRG1	Kolesnikvirus	10.8	10.8	10.8	10.6	100.0	96.9	97.6	97.7	97.7	97.7	97.7	97.7	97.7	97.7	97.7	91.5	87.1	87.7
OR284297.1_Erwi_phg_Flfi106	Kolesnikvirus	10.7	10.7	10.6	10.7	96.9	100.0	98.2	98.2	98.2	98.2	98.2	98.2	98.2	98.2	98.2	90.4	87.5	86.3
OQ818707.1_Erwi_phg_Rouille	Kolesnikvirus	10.7	10.7	10.9	10.6	97.6	98.2	100.0	98.5	98.4	98.4	98.4	98.4	98.4	98.4	98.4	90.8	88.0	86.4
OM522317.2_Erwi_phg_Hena2	Kolesnikvirus	10.8	10.8	10.8	10.7	97.7	98.2	98.5	100.0	99.4	99.5	99.5	99.5	99.5	99.5	99.5	90.6	87.9	86.4
NC_041978.1_Erwi_phg_vB_EamM-M7	Kolesnikvirus	10.9	10.9	10.9	10.7	97.7	98.2	98.4	99.4	100.0	99.5	99.5	99.5	99.5	99.5	99.5	90.6	87.8	86.5
PP079182.1_Erwi_phg_vEam_PM_6	Kolesnikvirus	10.8	10.8	10.9	10.8	97.7	98.2	98.4	99.5	99.5	100.0	100.0	100.0	100.0		100.0	90.6	87.8	86.5
PP079183.1_Erwi_phg_vEam_W_25	Kolesnikvirus Kolesnikvirus	10.8	10.8 10.8	10.8 10.9	10.8 10.8	97.7 97.7	98.2 98.2	98.4 98.4	99.5 99.5	99.5 99.5	100.0	100.0	100.0	100.0	100.0	100.0	90.6 90.6	87.8 87.8	86.5 86.5
PP079184.1_Erwi_phg_vEam_PM_27	Kolesnikvirus	10.8	10.8	10.9	10.8	97.7	98.2	98.4 98.4	99.5	99.5	100.0	100.0	100.0	100.0		100.0	90.6	87.8	86.5
PP079186.1_Erwi_phg_vEam_W_28 PP079185.1_Erwi_phg_vEam_PM_21	Kolesnikvirus	10.8	10.8	10.9	10.8	97.7	98.2	98.4	99.5	99.5	100.0	100.0	100.0	100.0		100.0	90.6	87.8	86.5
PP079187.1_Erwi_phg_vEam_S_24	Kolesnikvirus	10.8	10.8	10.9	10.8	97.7	98.2	98.4	99.5	99.5	100.0	100.0	100.0	100.0		100.0	90.6	87.8	86.5
MK770412.1 Salm_phg_SE5	Kolesnikvirus	11.1	11.1	11.1	11.0	91.5	90.4	90.8	90.6	90.6	90.6	90.6	90.6	90.6	90.6	90.6	100.0		92.6
PP278848.1_Erwi_phg_Omen	Kolesnikvirus	11.3	11.3	11.3	10.6	87.1	87.5	88.0	87.9	87.8	87.8	87.8	87.8	87.8	87.8	87.8		100.0	
pg_omen	noiconnivirus	11.0	12.0	11.0	10.0	0,,1	07.0	00.0	05	00	0,.0	0,.0	07.0	07.0	0,.0	07.0	32.0	100.0	30

Figure 1. VIRIDIC heat map of a small portion of the members of this family: VIRIDIC (Virus Intergenomic Distance Calculator; VIRIDIC (Virus Intergenomic Distance Calculator; [3]; http://rhea.icbm.uni-oldenburg.de/VIRIDIC/) computes pairwise intergenomic distances/similarities amongst phage genomes. Data values which are bordered in black correspond to strains. Abbreviations: phg = phage; vir = virus; Esch = Escherichia; Shig = Shigella; Salm = Salmonella, Pect = Pectobacterium; Hafn = Hafnia; Erwi = Erwinia; Ente = Enterobacteria. The full VIRIDIC comparison is provided as supplementary material.

Figure 2. ViPTree [4] analysis Proteomic tree of 4,408 bacterial viruses with proposed viral families labeled by the coloured ring. The *Andersonviridae* are marked with a star symbol. The hierarchical tree was created using ViPTreeGen (version 1.1.2) [4] and annotated using iToL [15-16]. The tree is based on a dissimilarity matrix generated by pairwise tBLASTx scores between each of the genomes.

Figure 3. ViPTree [4] hierarchical tree pruned to show the proposed *Andersonviridae* alongside neighbouring clades. The proposed family is shown in grey with branches collapsed.

Figure 4. Core genome phylogeny of the proposed *Andersonviridae* family of bacterial viruses. A partitioned protein ML phylogeny was created from 5 genes present in all species of the proposed family. Alignments were performed using MAFFT in e-insi mode and trimmed using trimAl with a gap threshold of 0.5. The tree was calculated using IQ-Tree2 with 1000 ultrafast (UF) bootstrap replicates and SH-Alrt tests with -m TEST to optimise models for each alignment. The tree is rooted at the midpoint and UF bootstrap support ≥ 95% are shown. The coloured strips indicate proposed genera and subfamilies.

Figure 5. VirClust protein heatmap of a portion of species. At the first level, proteins are grouped based on their reciprocal BLASTP similarities into protein clusters, or PCs. At the second level, PCs are grouped based on their Hidden Markov Model (HMM) similarities into protein superclusters, or PSCs. AT the third, still experimental level, PSCs are grouped based on their HMM similarities into protein super-superclusters, or PSSCs [13].

Table 1. Signature genes in the proposed *Andersonviridae* family of bacterial viruses. Genes were identified by clustering with MMSeqs2, with thresholds of 35% sequence similarity and 50% coverage.

protein	No. of genomes (123	Percentage of genomes present in	Predicted gene
cluster	total)	protein cluster	function
1	123	100%	rIIB
2	123	100%	virion structural protein
3	123	100%	lysozyme
4	123	100%	thymidylate synthase
5	123	100%	major capsid protein
6	122	99.19%	hypothetical protein
7	122	99.19%	hypothetical protein
8	122	99.19%	hypothetical protein
9	122	99.19%	hypothetical protein
10	122	99.19%	baseplate assembly protein
11	122	99.19%	baseplate wedge subunit
12	122	99.19%	terminase, large subunit
13	122	99.19%	baseplate assembly protein
14	122	99.19%	hypothetical protein
15	122	99.19%	portal protein
16	122	99.19%	hypothetical protein
17	122	99.19%	baseplate protein
18	122	99.19%	hypothetical protein

Proposals Data:

A. To update the genus *Felixounavirus* with 80 new species

- B. To update the genus *Mooglevirus with* 11 new species
- C. To add one new species to the genus Kolesnikvirus
- D. To create a new genus *Daniellevirus* with two species
- E. To create a new genus Arnovirus with three species
- F. To create a new family Andersonviridae

Taxonomic Proposals:

A. To update the genus Felixounavirus with 80 new species

Origin of the name of this taxon: N/A

Historical aspects: This taxon was created through Taxonomy Proposal 2009.006a-gB.A.v2.FelixO1likevirus.

Genomic characterization:

Accession No.	Exemplar	% DNA Sequence similarity (*)	Species
NC_005282.1	Enterobacteria phage Felix01	100	
ON239128.1	Salmonella phage OPT-SAL01	88.4	Felixounavirus OPTSAL01
MT409176.1	Salmonella phage SapYZU01	87.6	Felixounavirus CapYZU01
MW423797. 1	Salmonella phage vB Seyj1-1	87	Felixounavirus fv1
ON868915.1	Salmonella phage vB_SalM_SPJ41	86.3	Felixounavirus SPJ41
OQ594353.1	Salmonella phage SWJM-02	85.8	Felixounavirus SWJM02
MH586731.1	Salmonella phage Meda	88	Felixounavirus meda
OK539833.1	Salmonella phage vB_SenM-pSJ21	86.8	Felixounavirus pSJ21
OQ871555.1	Salmonella phage SUT_S720	87.8	Felixounavirus SUTS720
ON855038.1	Salmonella phage GSP193	87.8	Felixounavirus GSP193
OL474141.1	Salmonella phage ph2-2	87.2	Felixounavirus ph22
OP515798.1	Salmonella phage MBP4696116	88.3	Felixounavirus MBP496116
OQ845959.1	Salmonella phage NJ12	87.1	Felixounavirus NJ12
MN227145.1	Salmonella phage BPSELC-1	87.6	Felixounavirus BPSELC1
MN481367.1	Salmonella phage D1-2	87.9	Felixounavirus D12
OL825705.1	Escherichia phage vB_EcoM_DE7	86.8	Felixounavirus DE7
MN655999.1	<i>Shigella</i> phage Z31	85.3	Felixounavirus Z31
OQ708377.1	Escherichia phage vB_EcoM_CRP22	87.6	Felixounavirus CRP22
MN882542.1	Escherichia phage JN01	87.4	Felixounavirus JN01
MW296865. 1	Salmonella phage SP3_SHan-2021	86.1	Felixounavirus Sp3Shan2021
OQ743992.1	Escherichia phage vB_EfeM_pEP20	86.7	Felixounavirus pEP20
MT833282.1	Escherichia phage vB_EcoM_Shy	86.9	Felixounavirus shy

OR498728.1	Escherichia phage ZX4221	86.9	Felixounavirus ZX4221
MK524176.1	Escherichia phage PHB11	86.6	Felixounavirus PHB11
MT887289.1	Escherichia phage SME50	87.6	Felixounavirus SME50
MN994498.1	Phage NBEco004	86.9	Felixounavirus NBEco004
MZ150758.1	Salmonella phage S19cd	86.2	Felixounavirus S19cd
OK040806.1	Escherichia phage CL1	86.9	Felixounavirus CL1
MN994499.1	Phage NBEco005	88.4	Felixounavirus NBEco005
OP172796.1	Escherichia phage EF202P1	87.4	Felixounavirus EF202P1
MW481326.	Escherichia phage vB_EcoM- Pr103Blw	87	Felixounavirus Pr103Blw
MH571750.1	Escherichia phage vB_EcoM- Ro111lw	88.3	Felixounavirus Ro111lw
OP595146.1	Escherichia phage vB_EcoM_DE17	86.5	Felixounavirus DE17
LR597663.1	Escherichia phage VpaE1_ev78	89.4	Felixounavirus ev78
KT184313.1	Enterobacteria phage KhF1	88.3	Felixounavirus KhF1
MK482688.1	Escherichia phage vB_EcoM_LMP25	87.9	Felixounavirus LMP25
LR699048.1	Escherichia phage VpaE1_ev035	87.3	Felixounavirus ev035
LR597658.1	Escherichia phage VpaE1_ev108	88.2	Felixounavirus ev108
MZ726791.1	Escherichia phage vB_EcoM_ASO1A	89.5	Felixounavirus ASO1A
MZ501086.1	<i>Escherichia</i> phage JohannRWettstein	88.4	Felixounavirus johannrwettstein
MZ956763.1	Escherichia phage RP3	87.1	Felixounavirus RP3
MN850585.1	Escherichia phage skuden	90.2	Felixounavirus skuden
MN850619.1	Escherichia phage finno	89.6	Felixounavirus finno
MN850631.1	Escherichia phage mio	89	Felixounavirus mio
MN850637.1	Escherichia phage warpig	89.6	Felixounavirus warpig
LR880803.1	Escherichia phage Barry	87.5	Felixounavirus barry
MN850577.1	Escherichia phage heid	87.9	Felixounavirus heid
OK272490.1	Escherichia phage JLBYU32	88.5	Felixounavirus JLBYU32
MN850605.1	Escherichia phage fjerdesal	88.3	Felixounavirus fjerdesal
MN850636.1	Escherichia phage dune	89.5	Felixounavirus dune
MN850603.1	Escherichia phage pinkbiff	89.7	Felixounavirus pinkbiff
OX016465.1	Escherichia phage vB_Eco_Tribble	87	Felixounavirus tribble
MN850611.1	Escherichia phage nataliec	89.1	Felixounavirus nataliec
MN850633.1	Escherichia phage allfine	87.3	Felixounavirus allfine
MN850566.1	Escherichia phage garuso	88.4	Felixounavirus garuso
MN850580.1	Escherichia phage momo	88.9	Felixounavirus momo
MN850635.1	Escherichia phage bumzen	88.2	Felixounavirus bumzen
MN850647.1	Escherichia phage tootiki	89	Felixounavirus tootiki
MN850614.1	Escherichia phage adrianh	89.1	Felixounavirus adrianh
MK962758.1	, -	88.9	Felixounavirus JK55
1411(302730.1	<i>Shigella</i> phage JK55	00.5	i cincultavii us sitss
MN850644.1	Escherichia phage ekra	88.6	Felixounavirus ekra

MN850564.1	Escherichia phage humlepung	90.2	Felixounavirus humlepung
MN850639.1	Escherichia phage radambza	89.9	Felixounavirus radambza
OQ174507.1	Escherichia phage REP8	86.5	Felixounavirus REP8
OQ174504.1	Escherichia phage REP5	86.6	Felixounavirus REP5
OK272472.1	Escherichia phage JLBYU28	87.2	Felixounavirus JLBYU28
MZ327261.1	Salmonella phage vB_Si_35FD	87.9	Felixounavirus fv35FD
LC473039.1	Escherichia phage L27	88.2	Felixounavirus L27
MN994503.1	Phage NBSal004	89	Felixounavirus NBSal004
ON540300.1	Escherichia phage ECOH1	85.1	Felixounavirus ECOH1
MN850610.1	Escherichia phage Andreotti	87.9	Felixounavirus andreotti
MF370225.1	Salmonella phage ST11	95	Felixounavirus ST11
MG251391.1	Salmonella virus VSe11	90.9	Felixounavirus VSe11
OM386661.1	Escherichia phage vB_EcoM_ESCO45	85.7	Felixounavirus ESCO45
OM386663.1	Escherichia phage vB_EcoM_ESCO49	88.2	Felixounavirus ESCO49
OM386664.1	Escherichia phage vB_EcoM_ESCO50	87.5	Felixounavirus ESCO50
ON210138.1	Escherichia phage EC106	84	Felixounavirus EC106
LC739530.1	Escherichia phage phiWec172	86.7	Felixounavirus Wec171
MH051914.1	Enterobacteria phage vB_EcoM_IME338	83.1	Felixounavirus IME338
MW311372. 1	Salmonella phage SEP1	84.4	Felixounavirus SEP1

(*) determined using VIRIDIC [3]

B. To update the genus *Mooglevirus* with 11 new species

Origin of the name of this taxon: N/A

Historical aspects: This taxon was created through Taxonomy Proposal 2016.031a-rB.A.v2.Ounavirinae

Genomic characterization:

Accession or RefSeq No.	Exemplar	% DNA Sequence similarity (*)	Species
NC_027293.1	Citrobacter phage Moogle	100	
MK562505.1	Shigella phage Silverhawkium	79.8	Mooglevirus Silverhawkium
OP902293.1	Citrobacter phage BSwM KMM4	84.5	Mooglevirus KMM4
OQ031072.1	Shigella phage SFPB	83.4	Mooglevirus SFPB
OM953433.1	Shigella phage Henu11	83.6	Mooglevirus Henu11
OP902295.1	Citrobacter phage BSwM KMM2	84.5	Mooglevirus KMM2

OK539913.1 <i>Citrobacter</i> phage vB_CbrM_HP1		90.2	Mooglevirus HP1
Escherichia phage pEC-M719-			
OQ845957.1	6WT.1	76.9	Mooglevirus M7196WT1
MK562504.1	Enterobacteria phage CHB7	75.2	Mooglevirus CHB7
OR892555.1	Escherichia phage EP1	75.6	Mooglevirus EP1
MN850587.1	Escherichia phage mistaenkt	76.0	Mooglevirus mistaenkt
OR687644.2	Salmonella phage PC79-13	74.2	Mooglevirus PC7913

(*) determined using VIRIDIC [3]

C. To add one new species to the genus Kolesnikvirus

Origin of the name of this taxon: N/A

Historical aspects: This taxon was created through Taxonomy Proposal 2016.031a-rB.A.v2.Ounavirinae

Genomic characterization:

Phage name	INSDC	Size (kb)	Protein	Overall % DNA sequence identity (*)	Overall % homologous proteins (**)
Erwinia phage phiEa21-4	EU710883.1	84.6	118	100	100
Salmonella phage SE5	MK770412.1	84.6	115	94.2	94.9

^(*) determined using VIRIDIC [3]

D. To create a new genus Daniellevirus with two species

Origin of the name of this taxon: The name of this taxon derived directly from the name of its first isolate *Hafnia* phage vB_HpaM_SarahDanielle

Historical aspects: This lytic myovirus was isolated against Hafnia paralvei

Genomic characterization:

Phage name	INSDC	Size (kb)	Protein	Overall % DNA sequence identity (*)	Overall % homologous proteins (**)
Hafnia phage vB_HpaM_SarahDanielle	MW749010.1	86.2	119	100	100
Hafnia phage vB_HpaM_Zyzzx	MW749004.1	85.9	117	84.1	94.1

^(*) determined using VIRIDIC [3]

(**) determined using CoreGenes 3.5 [6]

^(**) determined using CoreGenes 3.5 [6]

E. To create a new genus *Arnovirus* with three species

Origin of the name of this taxon: The name of this taxon derives from the name of one of the first isolates *Pectobacterium* phage Arno18

Historical aspects: This phage was isolated from the Arno river in Italy using *Pectobacterium carotovorum* subsp. *carotovorum* F18 as the host bacterium

Genomic characterization:

Phage name	INSDC	Size (kb)	Protein	Overall % DNA sequence identity (*)	Overall % homologous proteins (**)
Pectobacterium phage Arno18	MK290738.	91.7	147	100	100
Pectobacterium phage Wc4	MN270891.	92.0	145	88.8	89.1
Pectobacterium phage Arno162	MK290737.	91.7	146	93.2	93.5

^(*) determined using VIRIDIC [3]

F. To create a new family *Andersonviridae* for these taxa.

Origin of the name of this taxon: This taxon was named in honour of American biophysical chemist and geneticist Thomas Foxen Anderson (b. 1911 Manitowoc, WI, USA; d. 1991, Philadelphia, PA). "Anderson enrolled the California Institute of Technology from which he received his bachelor's degree and doctorate in 1932 and 1936, respectively. "He joined the faculty of the University of Pennsylvania in 1942, where he was named a professor of biology in 1958. He left the university in 1977 when he became director of the Fox Chase Cancer Center's postdoctoral training program for basic research. He retired in 1983. He pioneered use of the electron microscope to study viruses. His research produced insights of how viruses infect cells, methods of their reproduction and how they alter the cells they infect." https://en.wikipedia.org/wiki/Thomas F. Anderson

^(**) determined using CoreGenes 3.5 [6]

hotograph by

(Photo copied from: https://nap.nationalacademies.org/read/11522/chapter/4)

Rationale: While they infect different host the members of these genera all exhibit similarities at the DNA, proteome and phylogenetic levels. The members of the *Felixounavirus* predominantly infect *Escherichia* and *Salmonella* species; Moogleviruses are specific for *Shigella* and *Citrobacter* species while *Kolesnikvirus* infect *Erwinia* strains.