Rockchip Developer Guide Linux SARADC

文件标识: RK-KF-YF-079

发布版本: V1.0.0

日期: 2019-12-23

文件密级: 公开资料

免责声明

本文档按"现状"提供,福州瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和 内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。 本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有© 2019福州瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

福州瑞芯微电子股份有限公司

Fuzhou Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: [fae@rock-chips.com]

前言

SARADC是一个6通道10bit有效位的数模转化器,当输入频率为13MHz,转换速度为1MSPS。

产品版本

芯片名称	内核版本
ROCKCHIP 芯片	4.4/4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

日期	版本	作者	修改说明
2019.12.23	V1.0	薛小明	初始发布

Rockchip Developer Guide Linux SARADC

- 1. SARADC 驱动
 - 1.1 驱动文件
 - 1.2 DTS 节点配置
- 2. SARADC 使用
- 3. 内核配置
- 4. SARADC常用接口

1. SARADC 驱动

1.1 驱动文件

驱动文件所在位置:

drivers/iio/adc/rockchip_saradc.c

1.2 DTS 节点配置

DTS 配置参考文档为 | Documentation/devicetree/bindings/iio/adc/rockchip-saradc.txt ,本文主要说明如下参数:

- interrupts = <GIC_SPI 62 IRQ_TYPE_LEVEL_HIGH 0>;转换完成,产生中断信号。
- io-channel-cells = <1>;必须为1,详见iio-bindings.txt。
- vref-supply = <&vccadc_ref>;
 saradc值对应的参考电压,需要根据具体的硬件环境设置,最大为1.8V,对应的saradc值为1024,电压和adc值成线性关系。

2. SARADC 使用

- 1. 依赖"iio"框架,需要初始化 struct iio_dev 结构体,具体请看 rockchip_saradc_probe 函数当中的
 - indio_dev ,最后调用 iio_device_register(indio_dev) 注册 indio_dev , 等待"input"框架使用。
- 2. 以"adc-key"为例,需要初始化 struct input_polled_dev ,具体请看 drivers/input/keyboard/adc-keys.c 当中的 adc_keys_probe 函数,调用 input_register_polled_device(poll_dev); 将 poll_dev 注册进"input"框架。
- 3. 当使用 getevent 测试时候,假设 adc-key 为event0,则 getevent -s /dev/input/event0, 会有如下调用关系:

```
adc_keys_poll -> iio_read_channel_processed -> iio_channel_read -> chan-
>indio_dev
->info->read_raw(rockchip_saradc_read_raw) ->
iio_convert_raw_to_processed_unlocked
```

rockchip_saradc_read_raw 是重要函数,逐条分析:

1. writel_relaxed(8, info->regs + SARADC_DLY_PU_SOC); 设置power up到开始采样的间隔为8个sclk周期。

- 2. writel(SARADC_CTRL_POWER_CTRL | (chan->channel & SARADC_CTRL_CHN_MASK) | SARADC_CTRL_IRQ_ENABLE,info->regs + SARADC_CTRL); a) "power up saradc" b) 设置采样通道 c) 使能中断,开始采样
- 3. wait_for_completion_timeout(&info->completion, SARADC_TIMEOUT) 等待saradc完成采样,并产生中断。
- 4. *val = info->last_val; 将采样数据存放在val中。
- 5. 最后调用 iio_convert_raw_to_processed_unlocked 将采样数据转换成对应的电压值。

中断处理过程: rockchip_saradc_isr 函数:

- info->last_val = readl_relaxed(info->regs + SARADC_DATA);
 保存数据,提供给上面的第4步使用。
- 2. writel_relaxed(0, info->regs + SARADC_CTRL); 清中断,并且"power down saradc",关闭saradc。

一个完整的采样过程是 rockchip_saradc_read_raw 配置saradc,打开saradc,开始采样,等待中断,中断函数中清除中断,关闭saradc。

3. 内核配置

4. SARADC常用接口

1.可以通过用户态接口获取adc值,其中*表示adc第多少通道:

```
cat /sys/bus/iio/devices/iio\:device0/in_voltage*_raw
例如 channle0:
cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw
```

2.内核常用接口:

获取adc值: iio_read_channel_raw()

获取电压: iio_read_channel_processed()