*Linear Regression is not svitable For classification

Birary classification is when there are 2 options.

Signoid Function (Logistic Function)

Outputs between 0 and 1 Logistic Regression $3|x| = \frac{1}{1+e^{x}}$ $2=\overline{w}.\overline{x}+b$ $3|x| = \frac{1}{1+e^{x}}$ $2=\overline{w}.\overline{x}+b$ $3|x| = \frac{1}{1+e^{x}}$ $3|x| = \frac{1}{1+e^{x}}$ $3|x| = \frac{1}{1+e^{x}}$ $4|x| = \frac{1}{1+e^{x}}$

* In logistic regression, decision boundary can be made more complex (curved) with using higher rank Polynomials

Cost Function For Logistic Function

Using squared ervor cost function for logistic regression makes cost function non-convex meaning contains too many local minima, so it is not suitable.

Let J to be
$$\frac{1}{m} \sum_{i=1}^{m} L(F_{\vec{x}_i,b}(\vec{x}^{(i)}, y^{(i)}))$$
 and $L(F_{\vec{x}_i,b}(\vec{x}^{(i)}), y^{(i)})$ to be $\int_{-\log 1 - F_{\vec{x}_i,b}(\vec{x}^{(i)})}^{-\log 1 - F_{\vec{x}_i,b}(\vec{x}^{(i)})} y^{(i)} dx$

L can be written in the form: -y(i) | log(fix) (x(i)) - (1-y(i)) log(1-fox (x(i)))

Underfitting: IF model we use doesn't have the capability to fit the data, it called underfitting (High bias)

Overfitting: If model fits much more than needed to training set, and doesn't generallize well, then it is called oxerfitting. (High Variance)

* Regularizertion Keeps ull of the Features, but prevents the Features From having on overly large effect, which is what sometimes can cause overfitting.

Advessing Overfitting

Options:

- 1. Collect more data
- 2. Frature Selection
- 3. Regularization

$$\begin{array}{c} \text{Regularization term} \\ \mathcal{J}(\vec{w},b) : \frac{1}{2m} \sum_{i=1}^{m} \left(f_{\vec{w}_i b}(\vec{x}^{(i)}) - y^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_n^2 + \frac{\lambda}{2m} b^2 \right) \begin{array}{c} \text{can include} \\ \text{or exclude} \end{array}$$

7: Regularization Parameter

of Choose A carefully!