2D Human Pose Estimation: New Benchmark and State of the Art Analysis: Supplementary Material

Mykhaylo Andriluka^{1,3}, Leonid Pishchulin¹, Peter Gehler², and Bernt Schiele¹

¹Max Planck Institute for Informatics, Germany ²Max Planck Institute for Intelligent Systems, Germany ³Stanford University, USA

Setting	Torso	Upper leg	Lower leg	Upper arm	Fore- arm	Head	Upper body	Full body
Gkioxari et al. [1] Sapp&Taskar [3] Yang&Ramanan [4] Pishchulin et al. [2]	50.3 50.3 59.2 61.8	36.5 40.7	36.4 37.8	28.2 27.3 34.4 38.2	12.2 16.4 16.4 26.7	70.1 70.7	26.2 27.5 32.1 38.3	37.8 42.2
Gkioxari et al. [1] + loc Sapp&Taskar [3] + loc Yang&Ramanan [4] + loc Pishchulin et al. [2] + loc	63.3 63.3 65.1 64.5	39.5 41.6	39.4 38.6	33.8 32.4 36.9 39.6	14.9 19.3 17.5 27.6	75.5 74.4	32.1 33.4 34.8 39.8	40.8 43.7

Table 1. Pose estimation results (PCP) on the proposed dataset without and with using rough body location ("+ loc" in the table).

Setting	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Upper body	
Gkioxari et al. [1]	-	36.3	26.1	15.3	-	-	-	25.9	-
Sapp&Taskar [3]	-	38.0	26.3	19.3	-	-	-	27.9	-
Yang&Ramanan [4]	67.5	50.0	32.6	22.2	29.6	29.0	29.5	34.9	37.7
Pishchulin et al. [2]	68.2	45.7	39.2	30.9	34.9	33.1	32.1	38.6	41.2

Table 2. Pose estimation results (PCKh) on the proposed dataset.

Setting	PC	P	PCI	Pm	PCKh		
			Upper body				
Gkioxari et al. [1]	26.2	-	26.4	-	25.9		
Sapp&Taskar [3]	27.5	-	27.8	-	27.9	-	
Yang&Ramanan [4]	32.1	37.8	33.1	38.3	34.9	37.7	
Pishchulin et al. [2]	38.3	42.2	39.1	42.3	38.6	41.2	

Table 3. Summary of pose estimation results using various metrics.

Setting	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Upper body	
Yang&Ramanan [4]	67.5	50.0	32.6	22.2	29.6	29.0	29.5	34.9	37.7
Yang&Ramanan [4] retrained	73.2	56.2	41.3	32.1	36.2	33.2	34.5	43.2	44.5
Pishchulin et al. [2]	68.2	45.7	39.2	30.9	34.9	33.1	32.1	38.6	41.2
Pishchulin et al. [2] retrained	74.2	49.0	40.8	34.1	36.5	34.4	35.1	41.3	44.0

Table 4. Pose estimation results (PCKh) on the proposed dataset after retraining.

References

[1] G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik. Articulated pose estimation using discriminative armlet classifiers. In *CVPR'13*.

- [2] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Strong appearance and expressive spatial models for human pose estimation. In *ICCV'13*.
- [3] B. Sapp and B. Taskar. Multimodal decomposable models for human pose estimation. In CVPR'13.
- [4] Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. PAMI'13, 35, 2013.

Figure 1. Pose estimation results when varying threshold in (a) PCP, (b) PCPm and (c) PCKh metrics.

Figure 2. Performance (PCKh) as a function of the five complexity measures.

Figure 3. Performance (PCPm) on images clustered by full body pose. Cluster representatives are shown beneath. Pose clusters are ordered by increasing mean pose complexity.

Figure 4. Performance (PCPm) on images clustered by upper body pose. Cluster representatives are shown beneath. Pose clusters are ordered by increasing mean pose complexity.

Figure 5. Performance (PCPm) on images clustered using leg cofigurations. Cluster representatives are shown beneath. Pose clusters are ordered by increasing mean pose complexity.