Math Basics for DS

Lecture 6

Today

- Univariate functions
- Derivatives

Functions

What is a Function

• Function describes the relationship between x and y.

What is a Function

• Function describes the relationship between x and y.

• Domain: the set of numbers for which a function is defined.

What is a Function

- Function describes the relationship between *x* and *y*.
- Domain: the set of numbers for which a function is defined.
- Range: the set of all possible numbers f(x) as x runs over its domain.

A linear function:

$$f(x) = 2x + 1, \qquad f: \mathbb{R} \to \mathbb{R}$$

A linear function:

intercept

$$f(x) = 2x + 1 \qquad f: \mathbb{R} \to \mathbb{R}$$
slope

• A linear function:

$$f(x) = 2x + 1, \qquad f: \mathbb{R} \to \mathbb{R}$$

A polynomial function:

$$f(x) = x^2 - 2x + 1, \qquad f: \mathbb{R} \to \mathbb{R}^+$$

A linear function:

$$f(x) = 2x + 1, \qquad f: \mathbb{R} \to \mathbb{R}$$

• A polynomial function:

$$f(x) = x^2 - 2x + 1, \qquad f: \mathbb{R} \to \mathbb{R}^+$$

• An exponential function:

$$f(x) = 10^x, \qquad f: \mathbb{R} \to \mathbb{R}^+$$

A linear function:

$$f(x) = 2x + 1, \qquad f: \mathbb{R} \to \mathbb{R}$$

• A polynomial function:

$$f(x) = x^2 - 2x + 1, \qquad f: \mathbb{R} \to \mathbb{R}^+$$

An exponential function:

$$f(x) = 10^x$$
, $f: \mathbb{R} \to \mathbb{R}^+$

• A trigonometric function:

$$f(x) = \sin x$$
, $f: \mathbb{R} \to [0,1]$

Limit of a Function

Limit

$$\lim_{x \to a} f(x) = L$$

- "The limit of f(x) as x approaches a is L".
- Informally: for x close to a, f(x) is close to L. The closer x gets to a, the closer f(x) gets to L.

Limit

$$\lim_{x \to a} f(x) = L$$

- "The limit of f(x) as x approaches a is L".
- Informally: for x close to a, f(x) is close to L. The closer x gets to a, the closer f(x) gets to L.
- Formally:

$$\forall \varepsilon > 0 \exists \delta > 0$$
 such that $|x - a| < \delta \rightarrow |f(x) - L| < \varepsilon$.

Limit

Limit - Examples

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

Limit - Examples

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to 0} \frac{1}{x} = +\infty$$

Limit - Examples

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x\to 0}\frac{1}{x} = +\infty$$

$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4} = \lim_{x \to 2} \frac{x(x - 2)}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{x}{x + 2} = 0.5$$

Properties of Functions

Continuity Informally

• Very basic definition: a **continuous function** is one that can be drawn in one continuous stroke.

Continuity Informally

• Very basic definition: a **continuous function** is one that can be drawn in one continuous stroke.

• Intermediate value property: if a continuous function takes on two values, it must also take on all values in between.

Continuity Formally

• A function f(x) is continuous if for every x_0 in its domain

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Continuity Formally

• A function f(x) is continuous if for every x_0 in its domain

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Example:

$$f(x) = \frac{\sin x}{x}$$

Not defined at $x_0 = 0$, but $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Continuity Formally

• A function f(x) is continuous if for every x_0 in its domain

$$\lim_{x \to x_0} f(x) = f(x_0)$$

• Example:

$$f(x) = \frac{\sin x}{x}$$

Not defined at $x_0 = 0$, but $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 is a continuous function!

Increasing / Decreasing

Source: https://math24.net/increasing-decreasing-functions.html

Monotonicity

• A monotonic function = a (non-) increasing / decreasing function over the whole domain.

A monotonically non-decreasing function.

A monotonically non-increasing function.

A non-monotonic function.

Source: https://en.wikipedia.org/wiki/Monotonic_function

Convexity

Source: https://www.researchgate.net/figure/Judgment-of-concavity-and-convexity-a-Convex-curve-b-Concave-curve_fig3_339939083

Convexity

A non-convex curve

Derivatives

Derivative

• A way to measure change:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Derivative

A way to measure change:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

• Derivative of the function f at the point x tells us how much the function f changes as the input x changes by a small amount Δx :

$$f(x + \Delta x) \approx f(x) + \Delta x \cdot f'(x)$$

Derivatives - Example

$$\left(\frac{1}{x}\right)' = \lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{-\Delta x}{\Delta x \cdot x(x + \Delta x)} = \lim_{\Delta x \to 0} \frac{-1}{x^2 + x\Delta x} = -\frac{1}{x^2}.$$

Derivatives - Other Notation

$$f'(x) = f'_x(x) = \frac{d}{dx}f(x) = \frac{\partial}{\partial x}f(x)$$

Derivatives

$$(c)' = 0 \quad (c = \text{const}), \qquad (x^{\alpha})' = \alpha x^{\alpha - 1},
(e^{x})' = e^{x}, \qquad (a^{x})' = a^{x} \ln a,
(\ln x)' = \frac{1}{x}, \qquad (\log_{a} x)' = \frac{1}{x \ln a},
(\sin x)' = \cos x, \qquad (\cos x)' = -\sin x,
(tg x)' = \frac{1}{\cos^{2} x}, \qquad (ctg x)' = -\frac{1}{\sin^{2} x},
(arcsin x)' = \frac{1}{\sqrt{1 - x^{2}}}, \qquad (arccs x)' = -\frac{1}{\sqrt{1 - x^{2}}},
(arctg x)' = \frac{1}{1 + x^{2}}, \qquad (arcctg x)' = -\frac{1}{1 + x^{2}}.$$

Sum Rule

$$[u(x) + v(x)]' = u'(x) + v'(x)$$

• Example:

$$(x^2 + x^3)' = 2x + 3x^2$$

Product Rule

$$[u(x) \cdot v(x)]' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

• Example:

$$(xe^x)' = 1 \cdot e^x + x \cdot e^x$$

$$\left(\frac{1-x}{x}\right)' = (1-x) \cdot \frac{1}{x} = -\frac{1}{x} - \frac{1-x}{x^2}$$

Chain Rule

• Tells us how to compute the derivative of the composition of functions:

$$f(g(x))' = f'(g(x)) \cdot g'(x)$$

Other notation:

$$\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$$

Chain Rule - Example

$$\left(\frac{1}{1-x}\right)' = -\frac{1}{(1-x)^2} \cdot (1-x)' = \frac{1}{(1-x)^2}$$

$$(e^{x^2})' = e^{x^2} \cdot (x^2)' = e^{x^2} \cdot 2x$$

Quotient Rule

$$\frac{u(x)}{v(x)} = \left[u(x) \cdot \frac{1}{v(x)} = u'(x) \cdot \frac{1}{v(x)} - u(x) \cdot \frac{1}{(v(x))^2} \cdot v'(x) \right] =$$

$$= \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$

Geometric Meaning of a Derivative

• Find a tangent line to $y = e^x$ at $x_0 = 0$.

- Find a tangent line to $y = e^x$ at $x_0 = 0$.
- Solution:

Tangent line: y = kx + b

- Find a tangent line to $y = e^x$ at $x_0 = 0$.
- Solution:

Tangent line: y = kx + b

$$f'(x) = e^x$$
, $k = f'(x_0) = f'(0) = 1$

- Find a tangent line to $y = e^x$ at $x_0 = 0$.
- Solution:

Tangent line: y = kx + b

$$f'(x) = e^x$$
, $k = f'(x_0) = f'(0) = 1$

Tangent line touches the graph at $x_0 = 0$:

- Find a tangent line to $y = e^x$ at $x_0 = 0$.
- Solution:

Tangent line: y = kx + b

$$f'(x) = e^x$$
, $k = f'(x_0) = f'(0) = 1$

Tangent line touches the graph at $x_0 = 0$:

$$1 \cdot 0 + b = e^0 = 1, \qquad b = 1$$

Tangent line: y = x + 1

Increasing / Decreasing

Source: https://math24.net/increasing-decreasing-functions.html

Increasing / Decreasing

Source: https://math24.net/increasing-decreasing-functions.html

Derivative:
$$f'(x) = 3x^2 - 12 = 0$$

Derivative:
$$f'(x) = 3x^2 - 12 = 0$$

 $f'(x) \Leftrightarrow x = \pm 2$

Derivative:
$$f'(x) = 3x^2 - 12 = 0$$

 $f'(x) \Leftrightarrow x = \pm 2$

Derivative:
$$f'(x) = 3x^2 - 12 = 0$$

 $f'(x) \Leftrightarrow x = \pm 2$

Derivative:
$$f'(x) = 3x^2 - 12 = 0$$

 $f'(x) \Leftrightarrow x = \pm 2$

Extrema

Extrema of a Function

• f(x) reaches its local minima (maxima) at x_0 if $f(x_0)$ is the smallest (highest) value of f(x) around x_0 .

• f(x) reaches its global minima (maxima) at x_0 if $f(x_0)$ is the smallest (highest) value of f(x) on the interval of interest.

Critical Point

• A stationary point of f(x) is a point x_0 such that $f'(x_0) = 0$

Critical Point

- A stationary point of f(x) is a point x_0 such that $f'(x_0) = 0$
- A critical point of f(x) is a point x_0 such that
 - $f(x_0) = 0$ (x_0 is a stationary point) or
 - $f'(x_0)$ doesn't exit.

Critical Point

- A stationary point of f(x) is a point x_0 such that $f'(x_0) = 0$
- A critical point of f(x) is a point x_0 such that
 - $f(x_0) = 0$ (x_0 is a stationary point) or
 - $f'(x_0)$ doesn't exit.
- Critical points: those points on a graph at which a line drawn tangent to the curve is horizontal or vertical.

First Derivative Test

- Let x_0 be a critical point of f(x).
- If f'(x) < 0 for $x < x_0$ and f'(x) > 0 for $x > x_0$ then x_0 is a point of a local minimum.

• If f'(x) > 0 for $x < x_0$ and f'(x) < 0 for $x > x_0$ then x_0 is a point of a local maximum.

Don't Forget the Endpoints!

Algorithm for Finding Global Extrema

- Suppose you need to find global maxima (minima) of f(x) on [a;b].
- Here is s recipe:
 - Find all critical points of f(x) on [a; b];
 - 2. Determine which of them are the local maxima (minima);
 - 3. Compute f(x) at the endpoints: f(a) and f(b).
 - Pick the point from (2) (3) corresponding to the largest (smallest) function value.

Derivative:
$$f'(x) = 2xe^{x} + x^{2}e^{x} = xe^{x}(x + 2)$$

Derivative:
$$f'(x) = 2xe^{x} + x^{2}e^{x} = xe^{x}(x + 2)$$

Stationary points:
$$f'(x) = 0 \Leftrightarrow x = 0, x = -2$$

Derivative:
$$f'(x) = 2xe^{x} + x^{2}e^{x} = xe^{x}(x + 2)$$

Stationary points:
$$f'(x) = 0 \Leftrightarrow x = 0, x = -2$$

• Find the global minimum of $f(x) = x^2 e^x$ on [-4, 1].

Derivative:
$$f'(x) = 2xe^{x} + x^{2}e^{x} = xe^{x}(x + 2)$$

Stationary points: $f'(x) = 0 \Leftrightarrow x = 0, x = -2$

$$f(-2) = 4e^{-2} \approx 0.54, \qquad f(0) = 0$$

• Find the global minimum of $f(x) = x^2 e^x$ on [-4, 1].

Derivative:
$$f'(x) = 2xe^{x} + x^{2}e^{x} = xe^{x}(x+2)$$

Stationary points: $f'(x) = 0 \Leftrightarrow x = 0, x = -2$

$$f(-2) = 4e^{-2} \approx 0.54, \qquad f(0) = 0$$

Endpoints: $f(-4) = 16e^{-4} \approx 0.29$, $f(1) = e \approx 2.7$

• Find the global minimum of $f(x) = x^2 e^x$ on [-4, 1].

Derivative:
$$f'(x) = 2xe^{x} + x^{2}e^{x} = xe^{x}(x + 2)$$

Stationary points: $f'(x) = 0 \Leftrightarrow x = 0, x = -2$

$$f(-2) = 4e^{-2} \approx 0.54, \qquad f(0) = 0$$

Endpoints:
$$f(-4) = 16e^{-4} \approx 0.29$$
, $f(1) = e \approx 2.7$

Higher Derivatives

Higher Derivatives

Derivatives of the derivatives:

$$f''(x) = (f'(x))', \qquad f'''(x) = (f''(x))', \qquad \dots$$

- Pretty straightforward!
- Example:

$$(3x^3 + 2x^2 + x)'' = (9x^2 + 4x + 1)' = 18x + 4$$

Second Derivative and Convexity

• A function is convex on some interval [a; b] if and only if f''(x) > 0 for all $x \in [a; b]$.

Second Derivative Test

- Consider a differentiable function f(x).
- Let x_0 be its stationary point: $f'(x_0) = 0$.
- If $f''(x_0) < 0$ then f(x) has a local maximum at x_0 , and if $f''(x_0) > 0$ then f(x) has a local minimum at x_0 .

Second Derivative Test

- Consider a differentiable function f(x).
- Let x_0 be its stationary point: $f'(x_0) = 0$.
- If $f''(x_0) < 0$ then f(x) has a local maximum at x_0 , and if $f''(x_0) > 0$ then f(x) has a local minimum at x_0 .
- We don't know what happens when $f''(x_0) = 0$: need to check manually.

Second Derivative Test

• We don't know what happens when $f''(x_0) = 0$: need to check manually.

Taylor Series

Taylor Series

- Key idea: take a non-polynomial function and approximate it with a polynomial near some input.
- What for? Polynomial functions are easier!

Taylor Series

- Consider a smooth function $f \in C^{\infty}$, $f: \mathbb{R} \to \mathbb{R}$.
- Taylor series of f at x_0 is defined as

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Taylor Series

- Consider a smooth function $f \in C^{\infty}$, $f: \mathbb{R} \to \mathbb{R}$.
- Taylor series of f at x_0 is defined as

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

• Taylor polynomial of degree n:

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
, $f(x) \approx T_n(x)$ around x_0 .

•
$$f(x) = \sin x + \cos x$$
, $x_0 = 0$, $T_{\infty}(x) = \cdots$?

•
$$f(x) = \sin x + \cos x$$
, $x_0 = 0$, $T_{\infty}(x) = \cdots$?

•
$$f(0) = \sin 0 + \cos 0 = 1$$
,
 $f''(0) = -\sin 0 - \cos 0 = -1$,
 $f''''(0) = \sin 0 + \cos 0 = f(0) = 1$

$$f'(0) = \cos 0 - \sin 0 = 1$$
$$f'''(0) = -\cos 0 + \sin 0 = -1$$

•
$$f(x) = \sin x + \cos x$$
, $x_0 = 0$, $T_{\infty}(x) = \cdots$?

•
$$f(0) = \sin 0 + \cos 0 = 1$$
, $f'(0) = \cos 0 - \sin 0 = 1$
 $f''(0) = -\sin 0 - \cos 0 = -1$, $f'''(0) = -\cos 0 + \sin 0 = -1$
 $f''''(0) = \sin 0 + \cos 0 = f(0) = 1$...

$$T_{\infty}(x) = \frac{1}{0!} + \frac{1}{1!} \cdot x - \frac{1}{2!} x^2 - \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \frac{1}{5!} x^5 - \dots$$

•
$$f(x) = \sin x + \cos x$$
, $x_0 = 0$, $T_{\infty}(x) = \cdots$?

•
$$f(0) = \sin 0 + \cos 0 = 1$$
, $f'(0) = \cos 0 - \sin 0 = 1$
 $f''(0) = -\sin 0 - \cos 0 = -1$, $f'''(0) = -\cos 0 + \sin 0 = -1$
 $f''''(0) = \sin 0 + \cos 0 = f(0) = 1$...

$$T_{\infty}(x) = \frac{1}{0!} + \frac{1}{1!} \cdot x - \frac{1}{2!} x^2 - \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \frac{1}{5!} x^5 - \dots$$
$$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{(2k+1)!} = \sin x + \cos x.$$

To sum up

- Univariate functions
- Basic properties
 - Continuity
 - Monotonicity
 - Convexity
- Limits
- Derivatives
- Extrema