Analise de sobrevivência

Tempo até a ocorrência da tuberculose

Eliana, Luanna, Barbara, Maria Cecília, Sofia, Victor03/02/2025

Índice

L	Introdução	3
2	Metodologia	4
3	Resultados	5
	3.1 Analise Descritiva e Exploratória	5
	3.2 Modelo de Cox	11
	3.3 Modelo Paramétrico	12
1	Conclusão	15

1 Introdução

Os dados utilizados neste projeto referem-se a um estudo sobre o tempo até a ocorrência de doenças oportunistas em uma coorte de pacientes HIV positivos atendidos em um Hospital Universitário. As variáveis foram obtidas a partir de prontuários clínicos. Para cada paciente, registrou-se o tempo até a ocorrência de algumas doenças ou sintomatologias caracteristicamente relacionadas à imunodepressão, como candidíase, tuberculose, sinais hematológicos, herpes zoster, pneumonia por Pneumocistis.

O banco de dados é composto por 11 variáveis: nove covariáveis (oito categóricas e uma numérica), o tempo de acompanhamento e uma variável indicadora de ocorrência de tuberculose. No estudo, o tempo até a ocorrência da tuberculose foi registrado como variável resposta, com censura em casos onde as pacientes não foram acompanhadas até o surgimento da doença (Ver Tabela 1.1).

Tabela 1.1: Descrição das variáveis utilizadas no estudo sobre tuberculose

Variável	Descrição
Sexo	1 - Masculino, 2 - Feminino.
Escolaridade	0 - Sem escolaridade, 1 - Até quatro anos de estudo, 2 - Ensino fundamental, 3 - Ensino médio, 4 - Ensino superior.
Idade	Idade em anos na entrada do estudo.
Uso de drogas injetáveis	0 - Não, 1 - Sim.
Status da doença	0 - Censura, 1 - Ocorrência da doença.
Tempo até a ocorrência	Tempo até a ocorrência da doença Tuberculose.
Candidíase	0 - Não, 1 - Sim.
Sinais	0 - Não, 1 - Sim.
hematológicos	
Herpes zoster	0 - Não, 1 - Sim.
Pneumonia	0 - Não, 1 - Sim.
Tuberculose	0 - Não, 1 - Sim.

2 Metodologia

Primeiramente, foi realizada uma análise descritiva das variáveis em estudo. Na análise de sobrevivência, essa etapa consiste em utilizar métodos não-paramétricos. Quase todas as covariáveis são dicotômicas, e, portanto, foi possível construir as estimativas de Kaplan-Meier para comparar as duas categorias. Isso foi feito para as 8 covariáveis categóricas, e também foi testada a hipótese de igualdade das duas curvas utilizando os testes de Wilcoxon e log-rank. Além disso, foi analisado se essas covariáveis atendem à suposição de riscos proporcionais.

A variável "idade" foi analisada utilizando o modelo de Cox para verificar a presença de risco proporcional. Ela também foi estratificada para análise de diferentes faixas etárias.

A próxima etapa da análise consistiu em modelar separadamente cada uma das covariáveis com a variável resposta. O objetivo dessa etapa foi selecionar as variáveis explicativas (covariáveis) que devem prosseguir para a modelagem. O critério utilizado neste trabalho foi manter as variáveis que apresentaram valores de p inferiores a 0,25 em pelo menos um dos testes de Wilcoxon e log-rank na comparação das curvas de sobrevivência.

No modelo de Cox, as variáveis incluídas no modelo inicial foram aquelas que apresentaram significância estatística no teste de Wilcoxon ou log-rank, além de atenderem ao pressuposto de riscos proporcionais. Após essa seleção inicial, foi realizado um ajuste passo a passo, no qual a variável com o maior p-valor foi removida iterativamente, até que o modelo final contivesse apenas variáveis estatisticamente significativas. Esse processo garantiu um modelo mais parcimonioso e robusto, mantendo apenas os preditores mais relevantes para a análise da sobrevivência.

No modelo paramétrico, foi realizado um teste de comparação entre os modelos de gama generalizada, lognormal, Weibull e exponencial para escolher o melhor modelo que se ajustasse aos dados. Após essa análise, foi utilizado o método de backward selection para escolher o modelo final com as variáveis que mais explicam o tempo até a ocorrência da tuberculose.

Antes de proceder à interpretação das estimativas dos parâmetros do modelo ajustado, foram analisados os resíduos para confirmar a adequação do modelo final escolhido, tanto para o modelo paramétrico quanto para o semi-paramétrico.

3 Resultados

3.1 Analise Descritiva e Exploratória

Figura 3.1: Curva de Kaplan-Meier para tuberculose

O gráfico mostra a evolução da probabilidade de não desenvolver tuberculose ao longo do tempo (Ver Figura 3.1). Com o tempo, a probabilidade de "sobreviver" (ou seja, de não desenvolver tuberculose) diminui à medida que mais indivíduos são diagnosticados com a doença. Esse gráfico ajuda a identificar em que momento os casos de tuberculose se acumulam mais rapidamente ou se há períodos de maior risco.

A curva de Kaplan-Meier para o sexo mostra a probabilidade de não desenvolver tuberculose ao longo do tempo, separada entre homens e mulheres (Ver Figura 3.2). No gráfico, a curva das mulheres (vermelha) está acima da curva dos homens (azul), indicando que as mulheres têm uma maior probabilidade de não desenvolver a doença ao longo do tempo, ou seja, elas permanecem "saudáveis" por mais tempo. Em contraste, os homens têm um risco maior, com a curva masculina caindo mais rapidamente, sugerindo que a probabilidade de desenvolver tuberculose é maior entre eles. Esse padrão pode indicar que o sexo masculino está associado a um risco elevado de tuberculose, enquanto o sexo feminino seria um fator de proteção. Para a variável sex0, o p-valor = 0.86, indicando que não há evidência de violação da suposição de proporcionalidade dos riscos.

O gráfico de Kaplan-Meier mostra as curvas de sobrevivência estratificadas por níveis de escolaridade (Ver Figura 3.3), indicando que grupos com maior escolaridade (principalmente o ensino superior) tendem a ter maior sobrevida, enquanto o grupo sem escolaridade apresenta uma curva mais baixa, embora com poucas observações (7), o que pode limitar a confiabilidade dessa estimativa. As curvas não violam o pressuposto de riscos proporcionais, permitindo o uso adequado do modelo de Cox

Figura 3.2: Curvas de Kaplan-Meier para sexo

Curvas de Kaplan-Meier para sexo

Figura 3.3: Curvas de Kaplan-Meier para escolariedade

para análise mais detalhada. Para a variável escolaridade, o p-valor = 0.31, indicando que não há evidência de violação da suposição de proporcionalidade dos riscos.

Figura 3.4: Curvas de Kaplan-Meier para Uso de drogas injetáveis

O gráfico de Kaplan-Meier apresenta as curvas de sobrevivência para indivíduos que usam ou não drogas injetáveis (Ver Figura 3.4). Observa-se que o grupo que não usa drogas injetáveis (linha azul) possui uma probabilidade de sobrevivência maior ao longo do tempo em comparação ao grupo que usa (linha verde), até o dia 1100, aproximadamente. Depois disso, as curvas são invertidas. A curva daqueles que usam drogas injetáveis se estabiliza perto do dia 200, uma vez que, entre aqueles que são usuários, o último que teve ocorrência da doença foi no dia 206. Apesar disso, as curvas não violam o pressuposto de riscos proporcionais, permitindo o uso do modelo de Cox para análise adicional. Para a variável escolaridade, o p-valor = 0.092, indicando que não há evidência de violação da suposição de proporcionalidade dos riscos.

Figura 3.5: Curvas de Kaplan-Meier para sexualidade

O gráfico de Kaplan-Meier apresenta as curvas de sobrevivência para indivíduos de acordo com a orientação sexual (Ver Figura 3.5).. Observa-se que o grupo de heterossexuais (linha azul)

possui uma probabilidade de sobrevivência parecida ao longo do tempo em comparação aos não heterossexuais (linha verde), até o dia 600, aproximadamente. Depois disso, as curvas são invertidas. Para a variável sexualidade, o p-valor = 0.16, indicando que não há evidência de violação da suposição de proporcionalidade dos riscos.

Figura 3.6: Curvas de Kaplan-Meier para Candidíase

A curva daqueles com candidíase (verde) está acima daqueles sem (azul), indicando que pessoas com candidíase têm uma maior probabilidade de não desenvolver a doença ao longo do tempo, ou seja, elas permanecem "saudáveis" por mais tempo (Ver Figura 3.6). Aqueles sem candidíase têm um risco maior, com a curva caindo mais rapidamente, sugerindo que a probabilidade de desenvolver tuberculose é maior entre eles. O pressuposto de risco proporcional é atendido. Para a variável Candidíase o p-valor = 0.25, indicando que não há evidência de violação da suposição de proporcionalidade dos riscos.

Figura 3.7: Curvas de Kaplan-Meier para Sinais hematológicos

A curva daqueles com sinais hematológicos (verde) está acima daqueles sem (azul), indicando que pessoas com sinais hematológicos têm uma maior probabilidade de não desenvolver a doença ao

longo do tempo, ou seja, elas permanecem "saudáveis" por mais tempo (Ver Figura 3.7). Aqueles sem sinais hematológicos têm um risco maior, com a curva caindo mais rapidamente, sugerindo que a probabilidade de desenvolver tuberculose é maior entre eles. Para a variável Sinais hematológicos, o p-valor = 0.045, indicando que há evidência de violação da suposição de proporcionalidade dos riscos.

Figura 3.8: Curvas de Kaplan-Meier para herpes

A curva daqueles com herpes (verde) está acima daqueles sem (azul), indicando que pessoas com herpes têm uma maior probabilidade de não desenvolver a doença ao longo do tempo, ou seja, elas permanecem "saudáveis" por mais tempo (Ver Figura 3.8). Aqueles sem herpes têm um risco maior, com a curva caindo mais rapidamente, sugerindo que a probabilidade de desenvolver tuberculose é maior entre eles. Para a variável herpes, o p-valor = 0.72, indicando que não há evidência de violação da suposição de proporcionalidade dos riscos.

Figura 3.9: Curvas de Kaplan-Meier para Pneumonia

A curva daqueles com pneumonia (verde) está acima daqueles sem (azul), indicando que pessoas com pneumonia têm uma maior probabilidade de não desenvolver a doença ao longo do tempo, ou

seja, elas permanecem "saudáveis" por mais tempo (Ver Figura 3.9). Aqueles sem pneumonia têm um risco maior, com a curva caindo mais rapidamente, sugerindo que a probabilidade de desenvolver tuberculose é maior entre eles. Para a variável pneumonia, o p-valor = 0.66, indicando que não há evidência de violação da suposição de proporcionalidade dos riscos.

O teste cox.zph foi aplicado para verificar se o pressuposto de riscos proporcionais é atendido no modelo de Cox para a variável idade. A violação desse pressuposto indica que o efeito da idade sobre o risco de desenvolver tuberculose não é constante ao longo do tempo. Ou seja, a relação entre a idade e o risco de tuberculose varia durante o período de acompanhamento, o que invalida o modelo de Cox simples. Isso sugere que, para modelar adequadamente os dados, pode ser necessário ajustar o modelo por meio de estratificação.

Figura 3.10: Curvas de Kaplan-Meier para idade estratificada

O gráfico de Kaplan-Meier ilustra as curvas de sobrevivência para diferentes faixas etárias (30, 31–40, 41–50, 51–60, >60 anos) ao longo do tempo de acompanhamento (Ver Figura 3.10). Observa-se que o grupo mais jovem (30 anos, linha vermelha) apresenta a maior redução na probabilidade de sobrevivência nos primeiros 1.000 dias, indicando um risco mais elevado de desfecho adverso nesse período. Por outro lado, os grupos mais velhos (>60 anos, linha roxa, e 51–60 anos, linha verde) apresentam melhores probabilidades de sobrevivência, com declínios mais graduais ao longo do tempo. Essa tendência sugere que a idade está associada ao risco de desfecho, com indivíduos mais jovens apresentando maior vulnerabilidade inicial. Apesar disso, as curvas não violam o pressuposto de riscos proporcionais,p= 0.55, permitindo o uso do modelo de Cox para análise adicional.

Tabela 3.1: Testes logrank e de Wilcoxon para igualdade das curvas de sobrevivência.

Covariável	Logrank (valor p)	Wilcoxon (valor p)
Sexo	3 (0.083)	2.92 (0.088)
EscolarIdade	0.99(0.911)	$1.04 \ (0.904)$
Uso de Drogas Injetáveis	$0.01 \ (0.936)$	$0.07 \ (0.795)$
Sexoual	$0.38 \; (0.537)$	$0.23 \ (0.63)$
Candidíase	16.84(0)	17.28(0)
Herpes Zoster	5.28 (0.022)	5.3 (0.021)

Pneumonia Pneumocystis	2.43 (0.119)	2.5 (0.114)
Sinais Hematológicos	22.83(0)	23.87(0)
Faixa Etária	$6.61 \ (0.158)$	6.37 (0.173)
Idade	$45.5 \ (0.691)$	44.12(0.741)

Antes do ajuste desses modelos, será discutido um passo essencial na análise estatística: a seleção de variáveis para entrar no modelo inicial. O teste de Logrank é mais sensível às diferenças nas taxas de risco constantes ao longo do tempo, enquanto o Wilcoxon dá mais peso às diferenças iniciais. A consistência entre os dois testes reforça os resultados significativos encontrados.

Com base nos resultados apresentados na Tabela 3.1, verifica-se que as covariáveis: sexo, Candidíase, Herpes Zoster, Pneumonia, Sinais Hematológicos, Faixa Etária atenderam ao critério estabelecido e, portanto, serão incluídas na etapa de modelagem estatística. No entanto, a covariável Sinais Hematológicos não vai entrar no modelo inicial de cox pois o pressuposto de risco proporcional não foi atendido.

3.2 Modelo de Cox

Tabela 3.2: Resultados do Modelo de Cox

Variável	Coeficiente	$\exp(\operatorname{Coef})$	Erro Padrão	Z	P-valor
factor(sex)M	0.4718	1.6029	0.2414	1.954	0.0507
Faixa_idade 31-40	-0.4431	0.6420	0.2512	-1.764	0.0777
Faixa_idade 41-50	0.0310	1.0315	0.2965	0.105	0.9167
Faixa_idade 51-60	-1.0720	0.3423	0.7279	-1.473	0.1408
Faixa_idade >60	-0.6090	0.5439	1.0149	-0.600	0.5485
Candidíase	-1.4697	0.2300	0.3157	-4.656	0.0000
Herpes	-2.4475	0.0865	1.0082	-2.427	0.0152
Pneumonia	-1.2607	0.2835	0.4659	-2.706	0.0068

O primeiro modelo de regressão de Cox indicou que a idade não teve impacto significativo no risco, enquanto as comorbidades apresentaram forte associação com uma redução do risco. Com isso, ajustamos um novo modelo sem essa variável.

Tabela 3.3: Resultados do Modelo de Cox

Variável	Coeficiente	$\exp(\mathrm{Coef})$	Erro Padrão	Z. valor	P-valor
Sexo(Masculino)	0.46925	1.59879	0.23919	1.962	0.04979
Candidíase	-1.49596	0.22403	0.31489	-4.751	0.00000
Herpes	-2.42199	0.08874	1.00775	-2.403	0.01625
Pneumonia	-1.25609	0.28477	0.46506	-2.701	0.00692

Os resultados do modelo de Cox indicam que o sexo masculino está associado a um risco significativamente maior de desenvolver tuberculose, com uma razão de risco (HR) de 1,60 , ou

seja, homens têm aproximadamente 59.9% mais chance de desenvolver tuberculose em comparação com mulheres (p = 0.04979).

Por outro lado, a presença de algumas comorbidades parece estar associada a um menor risco de tuberculose. Indivíduos com candidíase apresentam uma redução de 77,6% no risco da doença (HR = 0,22, p < 0.0001), enquanto aqueles com herpes têm uma redução de 91,1% no risco (HR = 0,089, p = 0.01625). Da mesma forma, a pneumonia foi associada a uma redução de 71,5% no risco de tuberculose (HR = 0,285, p = 0.00692).

Tabela 3.4: Análise de resíduos de Schoenfeld

	chisq	df	p
factor(sex)	0.0727196	1	0.7874175
factor(candida)	0.8215195	1	0.3647363
factor(herpes)	0.0053108	1	0.9419056
factor(pneumo)	0.1062111	1	0.7444996
GLOBAL	1.1041761	4	0.8936091

Figura 3.11

Foi feita a análise de resíduos de Schoenfeld, para avaliar a suposição de riscos proporcionais. Ao nível de significância de 5%, nenhuma variável apresenta violação do pressuposto. Também foi feito um gráfico utilizando os resíduos de Cox-Snell, que avalia a qualidade global do modelo. Notase que os resíduos seguem uma distribuição exponencial, então pode-se dizer que o modelo está bemajustado.

3.3 Modelo Paramétrico

Usando um modelo paramétrico, estamos modelando o tempo de falha para uma distribuição específica. O primeiro passo é entender qual distribuição melhor descreve esse tempo, para assim

se ter o modelo mais adequado de interpretação. Estará sendo avaliado os modelos Exponencial, Weibull e o Log-normal.

Analisando a tabela, vemos os resultados dos testes da razão de verossimilhança para as hipóteses de que: i) o modelo de Weibull é adequado, ii) o modelo lognormal é adequado e iii) o modelo exponencial é adequado, sendo realizados utilizando-se o modelo gama generalizado. Pelos valores, vemos que o modelo Log-normal é o mais adequado.

Comparação	TRV	GL	Valor-p
Weibull	6.397541	2	0.0408124
Lognormal	2.737214	2	0.2544612
Exponencial	7.417784	2	0.0245047

Variável	Estimativa	Erro.Padrão	z.valor	p.valor	
Intercepto	5.076	0.317	16.03	8.32e-58	
Sexo (Masculino)	-0.611	0.278	-2.19	2.83e-02	
Idade 31-40	0.685	0.286	2.39	1.67e-02	
Idade 41-50	0.522	0.361	1.44	1.49e-01	
Idade 51-60	0.628	0.686	0.92	3.60e-01	
Idade > 60	1.413	1.298	1.09	2.76e-01	
Candidíase	3.769	0.365	10.33	5.35e-25	
Herpes	4.557	0.750	6.08	1.23e-09	
Pneumocistose	3.569	0.471	7.58	3.36e-14	
Doença Hematológica	4.026	0.381	10.56	4.40e-26	
Log(Scale)	0.441	0.078	5.65	1.57e-08	

Já sabendo que o tempo de falha melhor segue uma distribuição lognormal,
precisa se saber qual o melhor modelo a se construir com essa distribuição. Para isso, segue-se com o método de backward selection. O modelo final ficaram as variáveis sexo, Candidíase, Herpes, Pneumocistos e Doença Hematológica

Variável	Estimativa	OR	Erro.Padrão	z.valor	p.valor
Intercepto	5.491	242.500	0.274	20.04	< 2e-16
Sexo (Masculino)	-0.600	0.549	0.273	-2.20	0.028
Candidíase	3.816	45.422	0.369	10.34	< 2e-16
Herpes	4.555	95.107	0.767	5.94	2.9e-09
Pneumocistose	3.555	34.988	0.469	7.58	3.3e-14
Doença Hematológica	3.943	51.573	0.370	10.65	< 2e-16
Log(Scale)	0.453	1.573	0.078	5.80	6.6e-09

O modelo de sobrevivência Lognormal indicam que diversas condições clínicas estão fortemente associadas ao risco de desenvolver tuberculose. As variáveis candidíase, herpes, pneumocistose e doença hematológica apresentaram razões de chance elevadas, sugerindo que indivíduos com essas condições possuem um risco significativamente maior de desenvolver a doença. Dentre elas, a

presença de herpes se destacou com a maior razão de chance (OR = 95.107), evidenciando um impacto expressivo na progressão para tuberculose.

Além disso, o sexo masculino apresentou um efeito protetor moderado, com uma razão de chance inferior a 1 (OR = 0.549), indicando que homens possuem um risco ligeiramente menor em comparação com as mulheres. Essa diferença pode estar relacionada a fatores biológicos ou comportamentais que influenciam a suscetibilidade à tuberculose.

Figura 3.12: Adequação do modelo paramétrico

Contudo, analisando o Figura 3.12 , que mostra as curvas de sobrevivência estimadas por Kaplan-Meier e pelo modelo log-normal, nota-se que o modelo não é adequado para a análise desses dados.

4 Conclusão

Embora o modelo Lognormal tenha se mostrado o mais adequado entre as distribuições testadas (Weibull, Lognormal e Exponencial), a comparação com as curvas de Kaplan-Meier revelou que o ajuste do modelo não foi ideal, o que sugere que, apesar de suas forças, ele não é totalmente adequado para este conjunto de dados.

Ao comparar o desempenho dos modelos, o Modelo de Cox se destacou por sua robustez e bom ajuste aos dados. Ele forneceu resultados significativos. O Modelo de Cox é particularmente vantajoso em estudos de sobrevivência, pois não exige suposições rígidas sobre a distribuição dos dados e é capaz de lidar com as variáveis explicativas de forma eficiente, mostrando a relação entre as covariáveis e o tempo de sobrevivência.

Por outro lado, o Modelo Paramétrico Lognormal, embora útil para detalhar o tempo de falha e modelar distribuições específicas de risco, não apresentou o mesmo nível de adequação quando comparado ao Modelo de Cox. A comparação com as curvas de Kaplan-Meier indicou que o modelo Lognormal não conseguiu capturar adequadamente os padrões de sobrevivência observados nos dados. Isso sugere que, apesar de ser uma ferramenta importante, o modelo paramétrico Lognormal não deve ser priorizado neste contexto, uma vez que não representa de forma ideal a dinâmica de sobrevivência dos dados.

Em conclusão, o Modelo de Cox revelou-se mais adequado para este estudo, com uma interpretação mais clara e resultados mais confiáveis. O Modelo Lognormal, por sua vez, pode ser descartado como a melhor opção, dado o seu desempenho inferior em relação às curvas de Kaplan-Meier. Portanto, recomenda-se o uso do Modelo de Cox para uma análise mais precisa e robusta do tempo de sobrevivência e dos fatores associados.