빅데이터 특강

신지은 (서울시립대학교 통계학과)

목차

- #01 데이터의 이해
- #02 정형 데이터를 위한 분석 방법 및 실습
- #03 비정형 데이터를 위한 분석방법 및 실습

- ➤ 실습자료 다운로드: <u>https://github.com/jiieunshin/high-univ</u>
- ➤ 문의메일: jieunstat@gmail.com

데이터의 분류

데이터

정형 데이터

id	이름	나이	성별
01	Kim	32	M
02	Lee	26	F
03	Park	72	F
04	Choi	15	М

비정형 데이터

정형 데이터의 분류

남자/성별 공고/나쁨 범주형 자료 (질적자료) Categorical data

순서형 자료 ordinal data

명목형 자료 nominal data

순서가 있는 범주형 자료 ex. 만족도/지지도 범주에 아무런 순서가 없는 자료 ex. 성별/종교 수치형 자료 (양적 자료) numerical data

개체의 특성을 수치로 나타내는 자료

이산형 자료 discrete data

정수형 자료 ex. 각 가정의 어린이 수, 교통사고 발생 건수 연속형 자료 continuous data

실수형 자료 ex. 체중/기온

_____ 파이썬데이터프레임

DataFrame

------ 화재발생데이터.csv

	화재발생연도	시군구	사망자수	부상자수	재산피해금액	출동횟수	출동횟수_겨울	출동횟수_여름
0	2017	은평구	0.0	3	218200	159	51	32
1	2017	종로구	1.0	3	1077665	234	55	69
2	2017	중구	5.0	14	485392	198	48	47
3	2017	중랑구	2.0	5	332366	196	53	38
4	2018	은평구	5.0	10	419503	214	58	47
5	2018	종로구	14.0	22	574300	254	71	70
6	2018	중구	0.0	23	1257005	275	76	74
7	2018	중랑구	2.0	8	201421	254	72	55
8	2019	은평구	3.0	20	2412769	196	62	34
9	2019	종로구	4.0	16	801094	232	60	63
10	2019	중구	3.0	17	74077097	213	51	39
11	2019	중랑구	1.0	9	322650	210	54	49
12	2020	은평구	2.0	6	504788	192	48	46
13	2020	종로구	2.0	5	639751	217	50	49
14	2020	중구	0.0	10	1284422	185	41	54
15	2020	중랑구	2.0	12	229566	225	54	57
16	2021	은평구	3.0	8	875722	160	57	42
17	2021	종로구	0.0	12	465499	192	48	54

-	정형 데(이터의집	계 방법:	기초통계	링

								•				
화지	대발생연도	시군구	사망자수	부상자수	재산피해금액	출동횟수	출동횟수_겨울	출동횟수_여름				
0	2017	은평구	0.0	3	218200	159	51	32	셈 척도	갯수 (count)	, 합산 (sum)
1	2017	종로구	1.0	3	1077665	234	55	69				
2	2017	중구	5.0	14	485392	198	48	47	중심척도	평균 (mean)	, 중위수	≥ (median)
3	2017	중랑구	2.0	5	332366	196	53	38				
4	2018	은평구	5.0	10	419503	214	58	47	산포척도	•	-	값 (min), 분산 (variand
5	2018	종로구	14.0	22	574300	254	71	70		표순면자 (st	andard	deviation), 백분위 (qu
6	2018	중구	0.0	23	1257005	275	76	74				
7	2018	중랑구	2.0	8	201421	254	72	55				
8	2019	은평구	3.0	20	2412769	196	62	34	● 번3	 주형 자료		수치형 자료
9	2019	종로구	4.0	16	801094	232	60	63	•	1 8 1 1 1		IMOME
10	2019	중구	3.0	17	74077097	213	51	39	(셈 척도)	count, percent		(셈 척도) sum
11	2019	중랑구	1.0	9	322650	210	54	49		-		중심척도 모두
12	2020	은평구	2.0	6	504788	192	48	46				산포척도 모두
13	2020	종로구	2.0	5	639751	217	50	49				
14	2020	중구	0.0	10	1284422	185	41	54				
15	2020	중랑구	2.0	12	229566	225	54	57	● 화재발생	_ ,		사망자수, 부상자수,
16	2021	은평구	3.0	8	875722	160	57	42				재산피해금액, 출동
17	2021	종로구	0.0	12	465499	192	48	54				

→ 집계를위한문제와설계

	화재발생연도	시군구	사망자수	부상자수	재산피해금액	출동횟수	출동횟수_겨울	출동횟수_여름
0	2017	은평구	0.0	3	218200	159	51	32
1	2017	종로구	1.0	3	1077665	234	55	69
2	2017	중구	5.0	14	485392	198	48	47
3	2017	중랑구	2.0	5	332366	196	53	38
4	2018	은평구	5.0	10	419503	214	58	47
5	2018	종로구	14.0	22	574300	254	71	70
6	2018	중구	0.0	23	1257005	275	76	74
7	2018	중랑구	2.0	8	201421	254	72	55
8	2019	은평구	3.0	20	2412769	196	62	34
9	2019	종로구	4.0	16	801094	232	60	63
10	2019	중구	3.0	17	74077097	213	51	39
11	2019	중랑구	1.0	9	322650	210	54	49
12	2020	은평구	2.0	6	504788	192	48	46
13	2020	종로구	2.0	5	639751	217	50	49
14	2020	중구	0.0	10	1284422	185	41	54
15	2020	중랑구	2.0	12	229566	225	54	57
16	2021	은평구	3.0	8	875722	160	57	42
17	2021	종로구	0.0	12	465499	192	48	54

문제

시군구별평균재산피해금액과총출동횟수

설계

- ▶ 그룹화:시군구
- ▶계산하고싶은열:재산피해금액,출동횟수
- ➢ 집계함수:sum,mean

---● 파이썬 구현 예시

df5.groupby(['시군구']).agg({"재산피해금액" : "mean", "출동횟수" : "sum"})

시군구	새산끠해금액	술농욋수
은평구	886196.4	921
종로구	711661.8	1129
중구	15976858.0	1042
중랑구	286252.0	1098

┌----- 정형데이터의시각화

범주형 자료

원 그래프

분할표

	결혼생활				
교육수준	빈약	원만	대단히 양호		
대학	72	112	245		
고등학교	65	90	120		
중학교	95	103	98		

[표] 교육수준과 결혼생활

┌----- 정형데이터의시각화

범주형 자료

┌------ 정형데이터의시각화

수치형 자료

▶ 도수분포표와 히스토그램

아래의 수학 점수를 도수분포표로 나타내보자

Female	Male				
7, 59, 78, 79, 60, 65, 68, 71, 75, 48, 51, 55, 56, 41, 43, 44, 75, 78, 80, 81, 83, 83, 85	48, 49, 49, 30, 30, 31, 32, 35, 37, 41, 86, 42, 51, 53, 56, 42, 44, 50, 51, 65, 67, 51, 56, 58, 64, 64, 75				

2. <u>구간</u>을 몇 개로 나눌 것인가? ⇒ 10개

>>>

- 3. <u>구간 폭</u>을 정하자 ⇒ 구간 폭 = (최댓값 - 최솟값) / 구간수 = 78 / 10 = 7.8
- 4. <u>도수</u>와 상대도수, 누적도수, 누적상대도수 등을 산출한다.

┌------ 정형데이터의시각화

수치형 자료

▶ 도수분포표와 히스토그램

점수	학생 수 (명)
(0, 10]	1
(10, 20]	0
(20, 30]	2
(30, 40]	4
(40, 50]	12
(50, 60]	12
(60, 70]	7
(70, 80]	9
(80, 90]	5
(90, 100]	0
계	50

Histogram of marks 9 ∞ **>>>>** ဖ 4 $^{\circ}$ 0 20 40 0

60

히스토그램

80

도수분포표

┌------ 정형데이터의시각화

수치형 자료

▶ 평균과 중위수

두 가지 자료 (0, 1, 2, 2, 2, 3, 4)와 (70, 1, 2, 2, 2, 3, 4)의 평균, 중앙값을 비교해보자

▶ 백분위수와 상자그림

_----- 정형데이터의시각화

수치형 자료

우리나라 18대 국회의원 선거구의 선거인수 분포

┌------ 정형데이터의시각화

수치형 자료

- ▶ 분산과 표준편차
 - 분산 (variance)
 - : 각 자료값들과 평균과의 차이 $x_i \bar{x}$ 로 산포를 나타낸다. 즉, 평균으로부터 멀리 떨어져 있을수록 $x_i \bar{x}$ 의 절댓값이 커짐. 표본분산 s^2 은 다음과 같은 식으로 구한다.

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- 표준편차 (s.d., standard deviation)
 - : 분산의 제곱근. 분산을 구할 때 제곱을 취함으로써 원래 자료값의 단위가 달라진 것을 복구한 것이다. 표본표준편차 s은 다음과 같은 식으로 구한다.

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

┌----- 정형데이터의시각화

수치형 자료

비정형 데이터의 분류

이미지 데이터

CIFAR-10

- 32x32픽셀의 60,000개의 컬러 이미지 각10개의 클래스

비행기

자동차

새

고양이

사슴

개

개구리

말

배

트럭

MNIST

- 28x28픽셀의 60,000개의 손글씨 데이터 각10개의 클래스

이미지 데이터

텍스트 데이터

IMDB 리뷰 데이터

- 감성분류를위한영화사이트IMDB의 50,000개의 리뷰데이터 해당리뷰가긍정인경우1(50%),부정인경우0(50%)으로라벨링

<sos> this film was just brilliant casting location scenery story d irection everyone's really suited the part they played and you coul d just imagine being there robert <unk> is an amazing actor and now the same being director <unk> father came from the same scottish is land as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was j ust brilliant so much that i bought the film as soon as it was rele ased for <unk> and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and y ou know what they say if you cry at a film it must have been good a nd this definitely was also <unk> to the two little boy's that play ed the <unk> of norman and paul they were just brilliant children a re often left out of the <unk> list i think because the stars that play them all grown up are such a big profile for the whole film bu t these children are amazing and should be praised for what they ha ve done don't you think the whole story was so lovely because it wa s true and was someone's life after all that was shared with us all

이변량 데이터

-→ Female과Male을 동시에 분석할 수는 없을까?

Female	Male				
7, 59, 78, 79, 60, 65, 68, 71, 75, 48, 51, 55, 56, 41, 43, 44, 75, 78, 80, 81, 83, 83, 85	48, 49, 49, 30, 30, 31, 32, 35, 37, 41, 86, 42, 51, 53, 56, 42, 44, 50, 51, 65, 67, 51, 56, 58, 64, 64, 75				

테이블을재구성하자

obs	Female	Male
1	7	48
2	59	49
3	78	49
4	79	30
5	60	30
6	65	31
	•••	

!----- (Male, Female)쌍을지어서 plotting:산점도

ı----- 두 변수간관련성이 있는가?

Correlation

정형 데이터 분석방법

회귀

선형회귀모형

-데이터를가장잘설명하는선을찾는방법

분류

KNN

-내이웃의정보를사용하여데이터를나누는방법

분류

KNN

-내이웃의정보를사용하여데이터를나누는방법

분류

KNN

-내이웃의정보를사용하여데이터를나누는방법

분류

의사결정나무

-데이터의 조합에 대한의사결정 규칙에 따라 데이터를 분류하는 방법

분류

의사결정나무 -데이터의조합에대한의사결정규칙에따라데이터를 분류하는 방법

- 데이터 과학에서 Iris DataSet
 - 아이리스 품종 중 Setosa, Versicolor, Virginica 분류에 대한 로널드 피션의 1936년 논문에서 사용된 데이터 셋.

• 꽃받침(Sepal)과 꽃잎(Petal)의 길이 너비로 세개 품종을 분류

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	4.9	3.0	1.4	0.2	setosa
1	4.7	3.2	1.3	0.2	setosa
2	4.6	3.1	1.5	0.2	setosa
3	6.4	3.2	4.5	1.5	versicolor
4	6.9	3.1	4.9	1.5	versicolor
5	5.5	2.3	4.0	1.3	versicolor
6	7.1	3.0	5.9	2.1	virginica
7	6.3	2.9	5.6	1.8	virginica
8	7.6	3.0	6.6	2.1	virginica

비정형 데이터 분석방법

ı-----● 데이터를 분할시켜 학습하는 것이 기본! !

i-----● 데이터를왜 분할해야될까?

	화재발생연도	시군구	사망자수	부상자수	재산피해금액	출동횟수	출동횟수_겨울	출동횟수_여름
0	2017	은평구	0.0	3	218200	159	51	32
1	2017	종로구	1.0	3	1077665	234	55	69
2	2017	중구	5.0	14	485392	198	48	47
3	2017	중랑구	2.0	5	332366	196	53	38
4	2018	은평구	5.0	10	419503	214	58	47
5	2018	종로구	14.0	22	574300	254	71	70
6	2018	중구	0.0	23	1257005	275	76	74
7	2018	중랑구	2.0	8	201421	254	72	55
8	2019	은평구	3.0	20	2412769	196	62	34
9	2019	종로구	4.0	16	801094	232	60	63
10	2019	중구	3.0	17	74077097	213	51	39
11	2019	중랑구	1.0	9	322650	210	54	49
12	2020	은평구	2.0	6	504788	192	48	46
13	2020	종로구	2.0	5	639751	217	50	49
14	2020	중구	0.0	10	1284422	185	41	54
15	2020	중랑구	2.0	12	229566	225	54	57
16	2021	은평구	3.0	8	875722	160	57	42
17	2021	종로구	0.0	12	465499	192	48	54

모델링의 목적

새로운 데이터가 들어왔을 때 이 데이터의 값/라벨을 예측하는 것!

---● 2017~2021년도의 화재발생 데이터로 모델링

→ '2022년도의 화재발생 사망자수' 예측할 수 있지 않을까??

훈련데이터

독립변수(X_train): 2017~2021년도의 시군구/출동건수/부상자수/... 종속변수(y_train): 2017~2021년도의 사망자수

시험데이터

독립변수(X_test):2022년도의 시군구/출동건수/부상자수/... 종속변수(y_test)=?

I----- 훈련데이터로모델을 학습시키자

Batch Size = 100 Batch Size = 500 Batch Size = 1000

Iterations per Epoch = 1 Iterations per Epoch = 2 Iterations per Epoch = 10

이미지 분류

CNN (Convolution Neural Network)

이미지 분류

CNN (Convolution Neural Network)

3. 비정형 데이터를 위한 분석 방법 및 실습 이미지 분류 **CNN (Convolution Neural Network)** --♦ 2. max pooling과정 downsampling Convolution Max Pooling * -8 Kernel -1 Output Output **Image** Feature Map

이미지 분류

CNN (Convolution Neural Network)

_____ 3. fully connected과정

텍스트 분류

RNN (Recursive Neural Network)

noun: 0.1 pronoun: 0.8

noun: 0.2

noun: 0.2 pronoun: 0.1

noun: 0.8 pronoun: 0.0

verb: 0.0

verb: 0.7

verb: 0.1

verb: 0.2

preposition: 0.1

preposition: 0.0

pronoun: 0.1

preposition: 0.6

preposition: 0.0

