Высшая школа экономики. Факультет математики. Итоговая государственная аттестация.

20 февраля 2020 г.

0.1 Числовые последовательности, пределы, предельные точки, критерий Коши сходимости последовательности.

Определение. Функция $f: \mathbb{N} \to X$, областью определения которой является все множество натуральных чисел называется *последовательностью* элементов множества X. Значение f(n) будем обозначать как a_n , а саму последовательность как $\{a_n\}, a_n \in X$.

Определение. Число A называется *пределом* последовательности $\{a_n\}, a_n \in \mathbb{R}$, если для любого $\varepsilon > 0$ найдется такой номер N, что для любого k > N выполнено :

$$|a_k - A| < \varepsilon$$
.

Обозначение : $a_n \to A$ или $\lim_{n \to \infty} a_n = A$.

Определение. Число A называется npedenom последовательности $\{a_n\}, a_n \in \mathbb{R}$, если для любого $\varepsilon > 0$ найдется такой номер N, что для любого k > N выполнено :

$$|a_k - A| < \varepsilon$$
.

Предложение 1 (Свойства пределов последовательностей). Пусть $\{a_n\}$ и $\{b_n\}$ — две числовые последовательности. Тогда:

- Предел последовательости единственнен, если он существует; Если кроме того, если $a_n \to a$ и $b_n \to b$ то:
- Для любого чила с выполнено $\lim_{n\to\infty}(a_n+)=a+u\lim_{n\to\infty}(a_n)=a;$
- $\lim_{n \to \infty} (a_n + b_n) = a + b;$
- $\lim_{n\to\infty} (a_n b_n) = ab;$
- Если $a \neq 0$ и $a_n \neq 0$ для всех n, то $\frac{1}{a_n} \rightarrow \frac{1}{a}$.

Теорема 1 (Больцано Вейерштрасс). Любая ограниченная последовательность имеет по крайней мере одну предельную точку.

Определение. Последовательность $\{a_n\}$ называется $\phi y n \partial a m e n m a n b n o <math>u$ (последовательностью Коши), если для любого $\varepsilon > 0$ существует такой номер N, что для любых номеров n, m > N выполнено: $|a_n - a_m| < \varepsilon$.

Теорема 2 (критерий Коши). Последовательность действительных чисел $\{x_n\}$ имеет предел тогда и только тогда, когда она является фундаментальной.

Доказательство. Если $a_n \to a$, то для $\varepsilon > 0$ выберем такой номер N, что для всех номеров m > N выполнено $|a_m - a| < \frac{\varepsilon}{2}$. Тогда для любых номеров k, l > N верно:

$$|a_k - a_l| \leqslant |a_k - a| + |a - a_l| < \varepsilon,$$

то есть последовательность $\{a_n\}$ — фундаментальна.

Пусть наоборот $\{a_n\}$ — фундаментальная последовательность. Для фикированного ε найдем такой номер N, что для каждого k>N верно $|a_N-a_k|<\varepsilon$. Тогда для каждого n и k>N верно

$$a_N - \varepsilon < a_k < a_N + \varepsilon$$
.

Поэтому последовательность $\{a_n\}$ ограничена, так как ограничен ее бесконечный "хвост".

Теперь можно воспользоваться Теоремой Больцано-Вейерштрасса, найти предельную точку у $\{a_n\}$ и доказать, что найденная предельная точка и является пределом последовательности. Но мы сделаем иначе: воспользуемя принципом вложенных отрезков.

Обозначим $l_n = \inf_{k \geqslant n} a_k$ и $u_n = \inf_{k \geqslant n} a_k$. Ясно, что для любого n верно $l_n \leqslant l_{n+1} \leqslant \leqslant u_{n+1} \leqslant u_n$. Таким образом, $\{[l_n, u_n]\}$ — система вложенных отрезков, а значит имеет по крайней мере одну общую точку. Кроме того, для любого ε и подходящего номера N верно:

$$a_N - \varepsilon \leqslant l_N \leqslant u_N \leqslant a_N + \varepsilon$$
.

А значит $\lim_{n\to\infty}u_n-l_n=0$, по лемме о двух сжимающих последовательностях. Тем самым у системы $\{[l_n,u_n]\}$ есть ровно одна общая точка. Докажем, что она и является пределом последовательности. Пусть $A=\bigcap_{n=1}^{\infty}[l_n,u_n]$. Тогда для любого $\varepsilon>0$ существует такое N, что $u_N-l_N<\varepsilon$. Тогда для любого k>N верно $|A-a_k|\leqslant u_N-l_N<\varepsilon$, так как $A,a_k\in[l_N,u_N]$. То есть $a_n\to A$ при $n\to\infty$.

- 0.2 Предел функции, непрерывность, теорема о промежуточном значении непрерывной функции, равномерная непрерывность непрерывной функуии на отрезке.
- 0.3 Сходимость числовых рядов. Свойства абсолютно сходящихся рядов (сходимость абсолютно сходящегося ряда, престановка членов). Признаки сходимости Д' Аламбера и Коши. Условно сходящиеся ряды.
- 0.4 Числовые последовательности, пределы, предельные точки, критерий Коши сходимости последовательности.
- 0.5 парам-пам-пам