비타민 5주차 복습세션

11주차 복습세션 1부

목차

01

트리모델과 하이퍼 파라미터 튜닝

• 베이지안 최적화

- 02
- 앙상블 기법
 - Bagging
 - Boosting
 - Ada boost
 - gradient boost

결정트리

◆ 분류기준: 불순도

(t1를 정하는 기준)

1) 지니 불순도

1-(음성클래스 비율^2+양성클래스 비율^2)

Ex) 와인분류

노드 데이터 중 레드 20% 화이트 80%

: 지니불순도 = 1-(0.04+0.64) = 0.32

Ex) 다중분류도 똑같은 원리

노드 데이터 중 레드 10% 화이트 80% 로제 10%

:지니불순도=1-(0.01+0.01+0.64)=0.34

2) 엔트로피: 제곱대신 log 사용

1-(log2(음성클래스 비율)x음성클래스 비율

+log2(양성클래스 비율)x양성클래스 비율)

불순도

◆ 지니불순도

◆ 엔트로피 불순도

◆ 엔트로피 vs 지니 ¹.º

엔트로피는 시간이 오래 걸리는 대신 성능이 좋다 하지만 결과의 차이는 크지 않음

결정트리의 분기 기준

◆ T1를 정하는 기준

트리모델은 부모 노드 - > 자식 노드로 갈수록 불순도를 줄여감 T1은 <u>부모-자식의 불순도 차이</u>가 가장 큰 방향으로 결절됨 = 정보이득:

부모노드 불순도 - 도 자녀노드 데이터 수 x 자녀노드 불순도 부모노드 데이터 수 다 기중평균

◆!트리 무제한 분기시, 과적합 문제 발생

결정트리의 규제(가지치기)

◆ 사전규제 (트리 생성 과정에서 제한)

Max_depth : 트리의 최대 깊이 제한

Min_sample_leaf : 리프노드가 되기 위한 최소 data 개수 (leaf 노드 개수 제한)

Max_leaf_nodes : 리프노드 자체의 최대 개수

결정트리의 규제(가지치기)

◆ 사전규제 (트리 생성 과정에서 제한)

Min_sample_split : 분기하기 위한 최소 샘플 개수

Max_features : 고려할 최대 feature 개수

-> 모델 설정 시 입력해야하는 설정값, hyper parameter

결정트리의 규제(가지치기)

◆ 사후규제 (트리 생성 후 노드 삭제, 병합)

기준: ccp (cos complexity planing)

t: 트리 사이즈 (=트리 길이)

Cost complexity : cc(t)= 회귀 : SSE(t) + alpha x L(t) 분류: ERR(t) 가중치 Leaf 노드 개수 오분류율

Ex) T=3

트리모델의 예측 & 하이퍼 파라미터 튜닝

◆ 분류모델의 경우 예측

노드 내에 더 많은 class 값이 fitted y가 됨 (다수결) ex) 노드 내 레드 20% 화이트 80% 일 경우 fitted y=화이트

◆ 회귀모델의 경우 예측

노드 훈련 data들의 y값의 평균

◆ 하이퍼 파라미터 튜닝

목표: 최선의 hyper parameter(alpha, tree size 등) 조합 찾기

! Test data로 하이퍼 파라미터 튜닝 시, 이번에는 test data에 과적합되는 문제가 발생

교차검증법

◆ 하이퍼 파라미터 튜닝 시 과적합을 피하기 위한 기법

! 문제점: 훈련 데이터가 적어짐 -> 데이터의 차이에 따라 결과가 들쭉 날쭉해져 비교가 쉽지 않음

2) k-fold 교차검증법

All Data

Test data는 유지

Train data를 k개 그룹으로 나누어 각각의 그룹을 한번씩 validation data로 테스트하는 방법

단, 소요시간이 늘어나고 k가 커질 수록 데이터가 일반화되지 못한다 는 단점이 있음

Final evaluation

Test data

교차검증법

◆ 하이퍼 파라미터 튜닝 시 과적합을 피하기 위한 기법

3) stratified k-fold 교차검증법

! 각 fold마다 class의 비율이 크게 차이남

Fold내에 클래스별 비율을 일정하게 맞춰주는 방법

하이퍼 파라미터 튜닝

P₁₁ ° P₂₁ P₁₂ P₁₃ ° P₂₂

서치된 하이퍼 파라미터 p1, p2에 대해 모든 조합(p1, p2)를 테스트해 최적의 조합을 찾음 -> 하이퍼 파라미터의 서치 방법:

◆ 그리드 서치(일정간격을 두고 찾기)

정한 범위 내에서 일정한 간격으로 매개변수 탐색 ! 단 매개변수의 범위를 미리 정하는게 어려울 수 있고 시간이 오래 걸림

그리드 서치

랜덤서치

◆ 랜덤서치(랜덤으로 찾기)

매개변수가 따르는 확률분포를 지정, 해당 분포에서 매개변수를 랜덤으로 추출 -> 시간에 비해 더 나은 조합을 발견할 수도 있음

하이퍼 파라미터 튜닝

- 서치 방법의 비교:

일반적으로 최적 파라미터를 더 빨리 찾을 수 있는 방법

매뉴얼 서치 찾은 파라미터가 최선의 결과가 아닐 확률이 큼

그리드 서치 지정한 그리드 상에서의 최선의 결과 획득

랜덤 서치

그리드 서치에 비해 불필요한 반복 횟수를 줄이면서 정해진 그리드 사이에 위치한 파라미터에 대해서도 확률적으로 탐색이 가능

베이지안 최적화 기법

그리드 서치와 랜덤 서치 모두 매뉴얼 서치보다는 나아졌지만 여전히 이전 시도에서 얻은 사전지식(하이퍼 파라 미터의 성능 결과)가 다음 시도에 반영되지 않기 때문에 불필요한 탐색을 반복할 가능성이 있음

▶ 이를 보완한 방법: 베이지안 최적화 기법

어느 입력값 x; hyper parameter 에 대한 미지의 목적함수 f(x); 모델 점수 (ex.정확도) 를 상정

목표: <u>f(x)를 최대</u>로 만드는 최적해 x를 찾기

◆ Surrogate model

현재까지 조사된 (xi, f(xi))을 바탕으로 f(x)를 확률적으로 추정한 모델, Gaussian process를 주로 사용

Gaussian process(GP) : 특정 변수가 아닌 모종의 함수들에 대한 확률분 포를 나타내는 확률 모델로 구성요소들 간의 결합분포(joint distribution) 이 가우시안 분포를 따름

 $f(x) \sim \mathcal{GP}(\mu(x), k(x, x'))$ 표현수식, k는 공분산 함수

베이지안 최적화 기법

◆ Surrogate model이 f(x)를 추정하는 원리

베이지안 최적화 기법

◆ Acquisition Function

Surrogate model이 현재까지 목적함수에 대해 추정한 결과를 바탕으로 다음번에 조사하기에 가장 유용할 만할 파라미터 후보를 추천해주는 함수

주로 쓰이는 함수:

x(파라미터값)

◆ Expected Improvement(EI)

Trade-off 관계의 두 전략을 모두 일정 수준 포함하도록 설계된 함수

Trade-off 관계에 있는 두 전략

- 1. 함수값이 더 큰 점 근방에서 최적 입력값 x를 찾을 확률이 높을 것이다.
 - -> Exploitation(착취, 수탈)전략
- 2. 불확실한 영역(표준편차가 큰 영역)에 최적 입력값이 존재할 가능성이 있으므로 이 부분을 추가로 탐색해야 할 것이다

-> Exploration(탐색)전략

앙상블 기법의 배경

◆ 결정트리 모델의 장단점

장점: 수치형/범주형 변수 모두 다룰 수 있다

모델 설명이 쉽다

속도가 빠르다

◆ 앙상블 학습 기법 Bagging / boosting

가장 중요한 점을 만족 x

단점: 예측 성능이 떨어진다

데이터의 미세한 노이즈나 변동에 크게 반응한다

Bagging

◆ 이상적 샘플링

처음부터 모집단에서 여러 개의 sample data를 추출

◆ Bootstrap sample

모집단에서 뽑힌 하나의 train data에서 데이터 크기(n)만큼 복원추출을 반복해 sample data 생성

이상적 방법과 크게 차이 x 데이터셋 크기를 늘리고 분포를 고르게 만듬

랜덤 포레스트 모델

Bagging

Aggregating

2) 분류: voting

- Soft voting(predict_prova)

: class 별 확률의 평균을 계산해 크기 비교

- Weighted voting (옵션)

: 지정한 특정 array 값들로 가중평균을 취해줌

:hard/soft votin에 옵션으로 더해질 수 있음

Sklearn.ensemble.VotingClassifier 기준

Ex. Traing accuracy

Bagging

◆ Random Subspace

랜덤포레스트 모델의 성능이 좋으려면 개별 base 모델이 독립

적이어야함, 이를 가능케 하는 것이 random subspace 방식

Tree 모델이 분기할떄 원래 변수보다 더 적은 수의 변수를 임의로 선택해 고려함

◆ 랜덤포레스트의 하이퍼 파라미터들

- (1) n_estimators 사용할 tree 수
- (2) max_features

노드 분할 시 무작위로 선택되는 변수의 수

◆ 랜덤포레스트의 장단점

1) 장점

분류 및 회귀 문제에 모두 사용 가능

대용량 데이터 처리에 효과적

과대적합 문제를 해결할 수 있음

2) 단점

시간이 오래 걸림

모든 트리 모델을 다 확인하기 힘들어 모델 설명이 어려움

엑스트라 트리

◆ 특성

랜덤 포레스트와 비슷하지만 부트스트랩 샘플을 사용하지 않고 전체 훈련 세트를 사용한다는 점에서 차이가 있음

노드를 무작위하게 분할하여 편향성을 증가시키고 분산을 감소 시킴

◆ 장점

과대 적합을 막고 test 점수를 높일 수 있음 랜덤하게 노드를 분할해 속도가 빠름

◆ 단점

랜덤 포레스트 모델보다 성능이 낮음 일반화 성능을 높이기 위해서 많은 트리를 만들어야 함

◆ 랜덤 포레스트 vs 엑스트라 트리

랜덤 포레스트는 주어진 모든 변수에 대한 정보이득을 게산하고 이 중 가장 최선의 featur을 선택

엑스트라 트리는 무작위로 feature을 선택하고 선택된 feature 중에서 최적의 분기를 고름

랜덤 포레스트 보다 성능은 낮아지지만 생각보다 준 수한 성능을 보임

Boosting

◆ Ada boost Stump: weak learner 단 하나의 질문으로 데이터를 분류 Xn Forest of stumps

각각의 트리가 동일한 가중치를 가짐 (민주주의 voting)

Ada boost 모델

각각의 트리가 상이한 가중치를 가짐 이전 stump에서 발생한 에러를 다음 학습에 반영

Ada boost

지니계수가 가장 작은 weight stump를 첫 stump로 지정

-> 오분류율이 1개(sample weight 1/8)

amount of say

Total error= 1/8

이를 대입해 amount of say 계산

Amount of Say =
$$\frac{1}{2} \log(\frac{1 - \text{Total Error}}{\text{Total Error}})$$

Amount of Say =
$$\frac{1}{2} \log(\frac{1 - 1/8}{1/8}) = 0.99$$

Ada boost

◆ 오뷴류된 데이터

New Sample = sample weight
$$\times e^{\text{amount of say}}$$

Weight = $(1/8) \times e^{0.99}$

◆ 정뷴류된 데이터

New Sample = sample weight
$$\times e^{-\text{amount of say}}$$

Weight = $(| / ?) \times e^{-0.97}$

위에서 계산된 Amount of say를 사용해 sample weight 조정

Sum

합을 1로 맞춰주기 위해 정규화 과정을 거침

Ada boost

◆ Train data 리샘플링

0에서 1까지 범위 중 랜덤넘버 x를 데이터 수만큼 추출

 $(x1, x2, \dots, x8)$

누적 weight 를 계산해 xi가 속하는 범위의 data를 가져옴 (중복허용)

Ex. Xi=0.1 이면 2번 데이터 추출

◆ 리샘플링된 train data

: 1st stump에서 오분류된 데이터가 4번이나 뽑힘

norm.weight가 가중치로 작용

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
No	Yes	156	No	1/8
Yes	Yes	167	Yes	1/8
No	Yes	125	No	1/8
Yes	Yes	167	Yes	1/8
Yes	Yes	167	Yes	1/8
Yes	Yes	172	No	1/8
Yes	Yes	205	Yes	1/8
Yes	Yes	167	Yes	1/8

반복

Ada boost

양성/ 음성으로 분류한 stump의 amount of say를 각각 합쳐준다

◆ Ada boost VS Gradient boost

Stump에서 시작

단일 leaf 노드로 시작

타겟값의 초기추정값으로

주로 평균을 이용

Gradient boost

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

◆ 1st 예측

Gradient boost

◆ Gradient node의 residual 예측 tree

타겟에 대한 예측이 아닌 residual 예측 tree를 만들어준다

Residual 값이 두개 이상인 leaf노드의 경우 평균을 사용

-> 과적합 문제 발생

단일 leaf 노드와 residual tree를 이용해 몸무게를 예측한다

과적합을 피하기 위해 learning rate을 설정해줌

Gradient boost

New residual

2nd예측값으로 residual 다시 계산

88-72.9=15.1 kg

◆ 3rd 예측 수행

Gradient boost

◆ 3rd residual 계산

Residual이 점차 감소함:

실제 값과 점점 동일해짐, 모델이 발전함을 의미

◆ 반복

언제까지?

Hyper parameter 인 iteration(반복수)에 도달할때까지

Or residual이 더 이상 줄어들지 않을 때까지

감사합니다