CS2040S Data Structures and Algorithms

(e-learning edition)

Graphs! (Part 2)

Where do we find graphs?

Where do we find graphs?

Social network:

- Nodes are people
- Edge = friendship

facebook

Where do we find graphs?

Social network:

- Nodes are people
- Edge = friendship

Questions:

- Connected?
- Diameter?
- Degree?

Transportation Network

Internet / Computer Networks

Communication Network

Optimization

4	5	7
3	1	6
8	2	

4	5	
3	1	7
8	2	6

Sliding Puzzle is a Graph

Nodes:

- State of the puzzle
- Permutation of nine tiles

Edges:

 Two states are edges if they differ by only one move.

What is the maximum degree of the Sliding Puzzle graph?

- 1. 1
- 2. 2
- 3. 3
- **✓**4. 4
 - 5. n/2
 - 6. n
 - 7. n!

Nodes:

- State of the puzzle
- Permutation of nine tiles

Edges:

 Two states are edges if they differ by only one move.

Nodes = 9! = 362,880

Edges < 4*9! < 1,451,520

Number of moves to solve the puzzle?

Initial, scrambled state:

Final, unscrambled state:

Number of moves <= Diameter

Initial, scrambled state:

Final, unscrambled state:

Click me.

Record solve time: 0.69 seconds

Configuration Graph

- Vertex for each possible state
- Edge for each basic move
 - 90 degree turn
 - 180 degree turn

Puzzle: given initial state, find a path to the solved state.

How many vertices?

$$8! \cdot 3^8 = 264,539,520$$
cubelets

Each cubelet is in one of 8 positions.

Each of the 8 cubelets can be in one of three orientations

How many vertices?

$$7! \cdot 3^7 = 11,022,480$$

Symmetry:

Fix one cubelet.

Each of the 8 cubelets can be in one of three orientations

Geography of Rubik's configurations:

reachable in two moves, but not one

Reachable configurations

Distance	90 deg. turns	90/180 deg. turns
0	1	1
1	6	9
2	27	54
3	120	321
4	534	1,847
5	2,256	9,992
6	8,969	50,136
7	33,058	227,536
8	114,149	870,072
9	360,508	1,887,748
0	930,588	623,800
11	1,350,852	2,644
12	782,536	
13	90,280	
14	276	

diameter

Reachable configurations

Distance	90 deg. turns	90/120 deg. turns
0	1	1
1	6	9
2	27	54

Challenge: How do you generate this table?

9	360,508	1,887,748
0	930,588	623,800
11	1,350,852	2,644
12	782,536	
13	90,280	
14	276	

diameter

3 x 3 x 3 Rubik's Cube

Configuration Graph

- 43 quintillion vertices (approximately)
- Diameter: 20
 - 1995: require at least 20 moves.
 - 2008: 20 moves is enough from every position.
 - Using Google server farm.
 - 35 CPU-years of computation.
 - 20 seconds / set of 19.5 billion positions.
 - Lots of mathematical and programming tricks.

3 x 3 x 3 Rubik's Cube

What is the diameter of an (n x n x n) cube?

 $\theta(n^2 / \log n)$

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)