

# 6. 2WiFi 模块联网

# 一、实验目的

本节课主要学习 WiFi 模块的连接网络的功能。

### 二、实验准备

# 1. 实验元件

WiFi 模块



# 2. 元件特性

K210 开发板自带的 WiFi 模块是 ESP8285 芯片模块, 其实 ESP8285 还有更加 热门的好兄弟 ESP8266, ESP8285 与 ESP8266 共享同一套 SDK, ESP8285 比 ESP8266



多了一片 1MB FLASH 芯片,并且是 DOUT 模式,所以固件编译和下载时需要设置为 DOUT 模式才可以下载;而且还多了两个 IO 口(GPIO9 和 GPIO10)可以供用户使用。除此之外,ESP8285 还有其他特性,如:体积小、远距离传输、低功耗、可外接天线、耐高温、无线透传、串口转 WiFi 等。

#### 3. 硬件连接

K210 开发板出厂默认已经焊接好 WiFi 模块, WiFi 模块与 K210 之间有三个 跳线帽,如果插入跳线帽,则 ESP8285 的 WIFI\_TXD 连接 K210 的 I013, WIFI\_RXD 连接 I014, WIFI EN 连接 I015,拔掉跳线帽则不通。



三、实验原理

WiFi 模块内部集成一个 ESP8285 芯片,可以通过 AT 指令的方式连接搜索到



的 WiFi 信号。通过 K210 的串口传输数据的功能,把串口助手接收到的数据传给 WiFi 模块, WiFi 模块根据 AT 指令的内容,查找附近的 WiFi 信号,匹配密码,这样就可以连接到 WiFi 路由器上。

#### 四、实验过程

1. 首先根据上面的硬件连接引脚图, K210 的硬件引脚和软件功能使用的是FPIOA 映射关系。IO4 和 IO5 是 K210 开发板的 USB 串口引脚, 所以也要初始化。USB 串口使用的是串口 3, 而 WiFi 模块的串口使用的是串口 1。

```
// 硬件IO口,与原理图对应
#define PIN UART USB RX
                     (4)
#define PIN UART USB TX
#define PIN UART WIFI RX
                      (13)
#define PIN UART WIFI TX
                      (14)
// 软件GPIO口,与程序对应
#define UART USB NUM
                       UART_DEVICE_3
#define UART_WIFI_NUM
                       UART_DEVICE_1
// GPIO口的功能,绑定到硬件IO口
                       (FUNC UART1 RX + UART_USB_NUM * 2)
#define FUNC UART USB RX
#define FUNC_UART_USB_TX
                      (FUNC_UART1_TX + UART_USB_NUM * 2)
#define FUNC_UART_WIFI_RX
                       (FUNC_UART1_RX + UART_WIFI_NUM * 2)
#define FUNC UART WIFI TX
                       (FUNC_UART1_TX + UART_WIFI_NUM * 2)
```



```
void hardware_init(void)
{
    /* USB串口 */
    fpioa_set_function(PIN_UART_USB_RX, FUNC_UART_USB_RX);
    fpioa_set_function(PIN_UART_USB_TX, FUNC_UART_USB_TX);

    /* WIFI模块串口 */
    fpioa_set_function(PIN_UART_WIFI_RX, FUNC_UART_WIFI_RX);
    fpioa_set_function(PIN_UART_WIFI_TX, FUNC_UART_WIFI_TX);
}
```

2. 初始化串口的配置,波特率设置为 115200, 串口数据宽度为 8 位,停止位 1 位,不使用奇偶校验。

```
// 初始化USB串口,设置波特率为115200
uart_init(UART_USB_NUM);
uart_configure(UART_USB_NUM, 115200, UART_BITWIDTH_8BIT, UART_STOP_1, UART_PARITY_NONE);

/* 初始化WiFi模块的串口 */
uart_init(UART_WIFI_NUM);
uart_configure(UART_WIFI_NUM, 115200, UART_BITWIDTH_8BIT, UART_STOP_1, UART_PARITY_NONE);
```

3. 开机的时候发送"hello yahboom!", 提示已经开机完成。

```
/* 开机发送hello yahboom! */
char *hello = {"hello yahboom!\n"};
uart_send_data(UART_USB_NUM, hello, strlen(hello));
```

4. 最后循环接收串口的数据,如果 WiFi 模块有数据传到 K210 芯片,K210 会把数据通过串口传输到电脑上显示;如果电脑上的串口助手发送数据到 K210 芯片,K210 也会把数据经过 WiFi 模块的串口发送给 WiFi 模块。



```
char recv = 0, send = 0;
while (1)
{
    /* 接收WIFI模块的信息 */
    if(uart_receive_data(UART_WIFI_NUM, &recv, 1))
    {
        /* 发送WiFi的数据到USB串口显示 */
        uart_send_data(UART_USB_NUM, &recv, 1);
    }

    /* 接收串口的信息,并发送给WiFi模块 */
    if(uart_receive_data(UART_USB_NUM, &send, 1))
    {
        uart_send_data(UART_WIFI_NUM, &send, 1);
    }
}
return 0;
```

5. 编译调试, 烧录运行

把本课程资料中的 wifi\_AT 复制到 SDK 中的 src 目录下, 然后进入 build 目录, 运行以下命令编译。

```
cmake .. -DPROJ=wifi_AT -G "MinGW Makefiles"
make
```

```
Scanning dependencies of target wifi_AT

[ 97%] Building C object CMakeFiles/wifi_AT.dir/src/wifi_AT/main.c.obj

[100%] Linking C executable wifi_AT

Generating .bin file ...

[100%] Built target wifi_AT

PS C:\K210\SDK\kendryte-standalone-sdk-develop\build>
```

编译完成后,在 build 文件夹下会生成 wifi\_AT. bin 文件。

使用 type-C 数据线连接电脑与 K210 开发板,打开 kflash,选择对应的设备,再将程序固件烧录到 K210 开发板上。

## 五、实验现象



1. 烧录完成固件后,系统会弹出一个终端界面,如果没有弹出终端界面的可以打开串口助手显示调试内容。



2. 打开电脑的串口助手,选择对应的 K210 开发板对应的串口号,波特率设置为 115200,然后点击打开串口助手。注意还需要设置一下串口助手的 DTR 和 RTS。在串口助手底部此时的 4. DTR 和 7. RTS 默认是红色的,点击 4. DTR 和 7. RTS,都设置为绿色,然后按一下 K210 开发板的复位键。



3. 从串口助手,可以接收到 hello yahboom!的欢迎语。然后按一下 WiFi 模块的复位键,可以看到一大串乱码,这个不用管,只要看到 ready 字符则表示 WiFi 模块正常。然后在底部输入 AT 字符, 然后点击发送, 串口助手会显示 OK。如果没有接收到 OK, 请确认发送设置中的参数为 ASCII, 自动解析转义符, AT 指令自动回车。







4. 发送 AT 指令设置 WiFi 模块的模式为工作站。

#### AT+CWMODE DEF=1

```
[2020-07-14 19:53:13.348]# SEND ASCII>
AT+CWMODE_DEF=1

[2020-07-14 19:53:13.399]# RECV ASCII>
AT+CWMODE_DEF=1

[2020-07-14 19:53:13.584]# RECV ASCII>
OK

数据发送 1.DCD ◆ 2.RXD ◆ 3.TXD ◆ 4.DTR
AT+CWMODE_DEF=1
```



5. 发送 AT 指令设置连接的 WiFi 信号。

AT+CWJAP\_DEF="WiFi 名称","密码"。

这里以 WiFi 名称为 Raspblock, 密码为 12345678 为例。WiFi 信号不可以有中文。接收到 WiFi CONNECTED 和 WiFi GOT IP 则表示连接成功。

AT+CWJAP DEF="Raspblock", "12345678"



6. 获取当前的 WiFi 模块 IP 地址

AT+CIFSR





7. ping 一下网络试试通不通,有数值则表示网络正常。



# 六、实验总结

- 1. WiFi 模块与 K210 通过串口连接的方式通讯。
- 2. K210 在此过程只起到中间搬运数据的功能,不会处理数据。
- 3. 其实 WiFi 模块如果连接其他串口芯片,也是可以通过 AT 指令操作的。
- 4. 以下连接的 WiFi 信号,下次 WiFi 模块重启后,开机会自动连接这个 WiFi 信号。