# 1º Trabalho Prático INF01059 Sistemas Embarcados (2020/1)

Grupo 6

Francisco P. Knebel, Gabriel A. Zillmer Pedro H. Augustin, Rodrigo D. Madruga





#### Sumário

Motivação

Dispositivos

- ARM-A15
- ADSP-BF522
- Silicon Labs C8051F120
- Análise

#### Algoritmos

- Ordenação: Quadsort
- Vetor: Algoritmo de média, desvio e minmax
- Sinais: Algoritmo de Goertzel

ARM-A15 no GEM5

ADSP-BF522 no VisualDSP++

C8051F120 (8051) no RKit

#### Análise dos Resultados

- melhor relação entre custo (\$) e desempenho (s)
- paridade de frequência de operação
- minimização do consumo de energia

#### Conclusão

# Motivação

Explorar as relações de **custo-benefício** nas diferentes arquiteturas e organizações disponíveis para **processadores embarcados**.

Neste trabalho, consideraremos:

- a arquitetura de propósito geral ARM;
- os processadores DSP da família Blackfin;
- e os microcontroladores 8051.

# Dispositivos - ARM A15

CPU Clock: 1.0 GHz a 2.5GHz;

Cache: L1 64KB (32KB I-Cache + 32KB D-Cache)

L2 até 4MB

Extensão DSP e SIMD



# Dispositivos - ADSP-BF522

CPU Clock 400MHz;

132KB on-chip memory;

2x 16-bit MACs;

2x 40-bit ALU;

4x 8-bit video ALU;

1x 40-bit barrel shifter.



# Dispositivos - Silicon Labs C8051F120

CPU Clock 12 à 33MHz;

8448 bytes internal data RAM (8k + 256);

5x general-purpose 16-bit timers;

2x 12-bit programmable update scheduling DACs;

SPI, SMBus/I2C, and (2) UART interfaces



# Dispositivos - Análise

| Dispositivo                                | Custo (USD)              | Frequência (MHz) | Potência Média<br>Dissipada (W) |
|--------------------------------------------|--------------------------|------------------|---------------------------------|
| ARM A15                                    | Med: 45.00<br>Min: 25.00 | 2000             | 4.0                             |
| ADSP-BF522<br>(Analog Devices, Inc.)       | Med: 8.60                | 400              | 0.2                             |
| Microcontrolador<br>Silicon Labs C8051F120 | Med: 20.00<br>Min: 19.00 | 12               | 4.0                             |

# Algoritmos - Ordenação: Quadsort

https://github.com/scandum/quadsort

Variação de merge sort, estável, não-recursivo, mais rápido que o quicksort.

Baseado na ideia de "quad swap". Algoritmos tradicionais usam uma troca binária (verificação se duas variáveis estão ordenadas por meio de uma terceira variável). Quadsort elimina uma comparação para sequências em ordem e adiciona uma se sequência puramente aleatória.

| Best | Average | Worst   | Stable | Memory |
|------|---------|---------|--------|--------|
| n    | n log n | n log n | Sim    | n      |

## Algoritmos - Vetor: Algoritmo de média, desvio e minmax

Implementação própria (<a href="https://github.com/FranciscoKnebel/embarcados-t1">https://github.com/FranciscoKnebel/embarcados-t1</a>)

São calculados a média, valor máximo, valor mínimo, desvio e desvio absoluto médio de um vetor com 65530 valores de 16 bits sem sinal.

# Algoritmos - Sinais: Algoritmo de Goertzel

Fonte: <a href="https://stackoverflow.com/questions/8835806/c-c-goertzel-algorithm-with-complex-output-or-magnitudephase">https://stackoverflow.com/questions/8835806/c-c-goertzel-algorithm-with-complex-output-or-magnitudephase</a>

Técnica aplicada para Transformadas de Fourier em DSPs.

Para um número reduzido de frequências, o Algoritmo de Goertzel é numericamente mais eficiente que o FFT.

## ARM-A15 no GEM5

| Frequência | Quadsort | Vetor    | Goertzel |
|------------|----------|----------|----------|
| 2000 MHz   | 22.48 ms | 6.42 ms  | 4.47 ms  |
| 1000 MHz   | 44.96 ms | 12.61 ms | 8.89 ms  |

#### ADSP-BF522 no VisualDSP++

| Frequência | Quadsort | Vetor (*/**) | Goertzel* |
|------------|----------|--------------|-----------|
| 400 MHz    | 30,54 ms | 20,68 ms     | 26,13 ms  |
| 1000 MHz   | 12,21 ms | 8,25 ms      | 10,45 ms  |

<sup>\*</sup> problemas relacionados a bibliotecas sem suporte na plataforma (complex, sys/time, etc.)

<sup>\*\*</sup> simulado no VisualDSP++ com um vetor de 7700 elementos. Tempo normalizado para uma simulação com 65530 elementos.

# C8051F120 (8051) no RKit

| Frequência | Quadsort | Vetor   | Goertzel |
|------------|----------|---------|----------|
| 12 MHz     | 5590 ms  | 1512 ms | 7413 ms  |
| 1000 MHz   | 67 ms    | 18 ms   | 89 ms    |

#### Benchmark (a 1GHz)



## Análise dos Resultados

melhor relação entre custo (\$) e desempenho (s)

Cenário ideal: A15

#### Cenário real:

- A15 precisa de motherboard, se torna caro e de difícil implementação;
- DSP é o de menor custo;
- 8051 tem maior suporte e histórico.

## Análise dos Resultados

paridade de frequência de operação dos dispositivos

Cenário ideal: DSP se destaca pelos resultados.

Cenário real: DSP realmente se destaca mesmo com frequência nativa.

## Análise dos Resultados

minimização do consumo de energia

Cenário ideal: DSP se destaca pelo baixo consumo.

Cenário real:

- DSP realmente se destaca pois:
  - o 8051 selecionado não é destinado para baixo consumo;
  - o naturalmente o A15 terá o consumo maior, por ser de propósito geral.

#### Conclusão

Conforme esperado, o DSP se destacou pelo baixo consumo e baixo preço, justamente por ser um dispositivo de uso específico, em contraste com o A15 e o 8051 que são de uso genérico.

Para cada necessidade, uma ferramenta. O 8051 tem como apelo o suporte de longa data e simplicidade arquitetural e o A15 um alto throughput com suporte a OS de uso geral.

Implementação dos algoritmos disponível em <a href="https://github.com/FranciscoKnebel/embarcados-t1">https://github.com/FranciscoKnebel/embarcados-t1</a>

## Referências

- <a href="https://www.analog.com/media/en/technical-documentation/data-sheets/A">https://www.analog.com/media/en/technical-documentation/data-sheets/A</a>
  <a href="DSP-BF522\_BF523\_BF524\_BF525\_BF526\_BF527.pdf">DSP-BF522\_BF523\_BF524\_BF525\_BF526\_BF527.pdf</a>
- <a href="https://www.silabs.com/documents/public/data-sheets/C8051F12x-13x.pdf">https://www.silabs.com/documents/public/data-sheets/C8051F12x-13x.pdf</a>
- <a href="https://developer.arm.com/ip-products/processors/cortex-a/cortex-a15">https://developer.arm.com/ip-products/processors/cortex-a/cortex-a15</a>

# 1º Trabalho Prático INF01059 Sistemas Embarcados (2020/1)

Grupo 6

Francisco P. Knebel, Gabriel A. Zillmer Pedro H. Augustin, Rodrigo D. Madruga



