Stimulation with TGF-β1 and BMP-12 Growth Factors induces tendon-specific markers in Adipose-Derived Stem cells (ADSCs) in serum-free culture conditions

Noelia Pilar D Falcon¹, Graham Riley² and Aram Saeed¹

¹School of Pharmacy – University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom, ²School of Biological Sciences - University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom

Background

- ✓ Differentiation of stem cells as a cell-based therapy is becoming increasingly attractive within the field of musculoskeletal tissue engineering.
- Recent studies focused on the induction of tendon-specific markers in cultured stem cells using different Growth Factors including Bone Morphogenetic Proteins and Transforming Growth

Relevance of serum-free media in tenogenic differentiation protocols

- ✓ The inclusion of serum in relatively high concentration is less favourable, since the components within serum may interfere with the induction of the markers
 - ✓ Moreover, the use of serum represents a limitation for the clinical applicability of the cell-based therapies to human
 - ✓ Therefore, in vitro studies with low concentration or absence of serum would be ideal

Viability of ADSCs Figure 1. Image of ADSCs taken (A) 24 hours after culture in 10% FBS or (B) 24 hours after serum starvation. Scale bar is 100 μM Figure 2. Metabolic activity of cultured ADSCs was analysed by MTS assay for over one, five, seven and fourteen days after stimulation with BMP-12 or TGF-B1. **BMP-12** TGF-B1 Figure 3. Live and dead assay in serum-free cultured ADSCs seven days after

stimulation with BMP-12 or TGF-β1. Scale bar is 50 μM

Tenogenic and other tissue phenotypes gene expression Days after stimulation Figure 4. Characterisation of tenogenic induction in ADSCs stimulated with BMP-12 (top row) or TGF-β1 (bottom row). White (control), grey (10 ng/ml), black (50 ng/ml) Osteogenic marker BGLAP

Davs after stimulation

Figure 5. Cartilaginous and osteogenic induction in ADSCs stimulated with BMP-12 (top row

or TGF-β1 (bottom row). White (control), grey (10 ng/ml), black (50 ng/ml)

Collagen type I and Scleraxis protein expression +AA -AA Control Control **BMP-12** Control -ΔΔ +AA Control TGF-β1 22 kDa GAPDH Figure 6. Immunocytochemical and western blot analysis of Collagen I and Scleraxis expression. (A) Collagen I with or without Ascorbic Acid (AA) or (B) Scleraxis Immunolocalisation in

permeabilised ADSCs in serum-free media seven days after stimulation with BMP-12 or TGF-β1. Scale bar is 50 μΜ. In (C) Western blotting analysis of Collagen I or Scleraxis in ADSCs in serum-free media one and seven days after stimulation with BMP-12 or TGF-β1

Conclusions

- BMP-12 induces a generally late expression of the selected tendon markers whereas TGF-B1 induced their earlier expression.
- Scleraxis protein expression displays notable differences between BMP-12 and TGF-β1. The addition of Ascorbic Acid (AA) resulted in increased deposition of Collagen I.
- Our results enhance the existing protocols for the differentiation of ADSCs towards the tenogenic lineage in serum-free conditions and contribute to the understanding and the development of tenogenic induction protocols.

References

Noelia D. Falcon, Graham P. Riley, and Aram Saeed. Tissue Engineering Part C: Methods.Jul 2019.389

Rosetrees Trust

Supporting the best in medical research

Noted to 7-Block, ordinal Prince, and with success issue Engineering for the meta-action of the Model And Model (Model) and the Mode

