Ćwiczenie nr. 1

Temat: Dokładność pomiaru długości

#	1. dłu-	2. dłu-	3. dłu-	4. dłu-	5. dłu-	6. dłu-	7. dłu-	8. dłu-	9. dłu-
	gość								
	boku a	boku b	boku c	boku a	boku b	boku c	boku a	boku b	boku c
	kostki								
	mie-								
	rzona								
	linijką	linijką	linijką	suw-	suw-	suw-	mikro-	mikro-	mikro-
	[mm]	[mm]	[mm]	miarką	miarką	miarką	me-	me-	me-
				[mm]	[mm]	[mm]	trem	trem	trem
							[mm]	[mm]	[mm]
1	14	14	14	14.45	14.50	14.45	14.62	14.74	14.75
2	14	14	14	14.50	14.45	14.40	14.64	14.76	14.63
3	14	14	14	14.40	14.40	14.40	14.65	14.76	14.60

Dokładność wartości z pomiaru 1-3

 $\Delta_1 = \pm 1mm$

Dokładność wartości z pomiaru 4-6

 $\Delta_2=\pm 0.05mm$

Dokładność wartości z pomiaru 7-9

 $\Delta_3 = \pm 0.01 mm$

#	1. promień	2. promień	3. promień	4. promień	
	zewnętrzny	wewnętrzny	zewnętrzny	wewnętrzny	
	pierścienia	pierścienia	pierścienia	pierścienia	
	mierzony linijką	mierzony linijką	mierzony	mierzony	
	[mm]	[mm]	suwmiarką [mm]	suwmiarką [mm]	
1	15	9	15.30	9.00	
2	15	9	15.40	8.70	
3	15	9	15.50	9.00	
4	15	9	15.50	8.40	
5 15		9	15.45	9.00	

Dokładność wartości z pomiaru 1-2

 $\Delta_1 = \pm 1mm$

Dokładność wartości z pomiaru 3-4

 $\Delta_2 = \pm 0.05 mm$

#	1. wysokość walca mierzona suwmiarką [mm]	2. średnica walca mierozona mikrometrem [mm]
1	30.70	5.93
2	30.60	5.95
3	30.65	5.93
4	30.65	5.93
5	30.60	5.96

Dokładność wartości z pomiaru $1\,$

 $\Delta_1 = \pm 0.05 mm$

Dokładność wartości z pomiaru $2\,$

 $\Delta_2=\pm 0.01mm$

ZAGADNIENIA TEORETYCZNE

- 1. Wprowadzenie do pomiarów fizycznych:
- Pomiary fizyczne są podstawą eksperymentów naukowych i inżynierskich. Ich celem jest określenie wartości wielkości fizycznych z jak największą dokładnością.
- Rodzaje pomiarów: bezpośrednie (np. pomiar długości linijką) i pośrednie (np. obliczanie objętości na podstawie wymiarów).
- 2. Błędy pomiarowe:
- Błąd systematyczny: Wynika z nieprawidłowego działania przyrządu pomiarowego lub metody pomiarowej. Może być spowodowany np. nieprawidłowa kalibracja narzędzia.
- Błąd przypadkowy: Wynika z niekontrolowanych czynników zewnętrznych, takich jak drgania, zmiany temperatury czy subiektywne odczyty.
- Błąd gruby: Wynika z pomyłki eksperymentatora, np. błędnego odczytu skali.
- 3. Narzędzia pomiarowe:
- Linijka: Proste narzędzie do pomiaru długości z dokładnością do 1 mm. Stosowane do pomiarów o niskiej precyzji.
- Suwmiarka: Narzędzie do pomiaru długości, średnic wewnętrznych i zewnętrznych z dokładnością do 0,05 mm.
- Śruba mikrometryczna: Precyzyjne narzędzie do pomiaru długości z dokładnością do 0,01 mm. Stosowane do pomiarów wymagających wysokiej precyzji.
- 4. Metody analizy danych pomiarowych:
- Średnia arytmetyczna: Uśrednienie wyników pomiarów w celu zmniejszenia wpływu błędów przypadkowych.
- Odchylenie standardowe: Miara rozproszenia wyników pomiarów wokół średniej.
- Niepewność pomiarowa: Określenie zakresu, w którym z określonym prawdopodobieństwem znajduje się prawdziwa wartość mierzonej wielkości.

Bibliografia:

Halliday, D., Resnick, R., & Walker, J. (2014). Fundamentals of Physics. Wiley. Podstawy fizyki, w tym zagadnienia związane z pomiarami i błędami pomiarowymi.

PN-EN ISO 3611:2010. Śruby mikrometryczne – Wymagania i badania. Norma dotycząca wymagań i metod badania śrub mikrometrycznych.

PN-EN ISO 13385-1:2019. Suwmiarki – Część 1: Wymagania i badania. Norma dotycząca wymagań i metod badania suwmiarek.

OPIS DOŚWIADCZENIA

Celem eksperymentu było porównanie dokładności i precyzji trzech narzędzi pomiarowych (linijka, suwmiarka, śruba mikrometryczna) poprzez wielokrotny pomiar długości trzech przedmiotów (walec, kostka, pierścień). Każdy przedmiot został zmierzony kilka razy za pomocą każdego narzędzia, a wyniki zapisano do dalszej analizy. Po przeprowadzeniu pomiarów obliczono średnie wartości, odchylenia standardowe oraz niepewności pomiarowe, aby ocenić dokładność i precyzję poszczególnych narzędzi, oraz potwierdzić hipotezę tego, że tym większą dokładność ma narzędzie, tym mniejsze będą błędy pomiarowe.

OPRACOWANIE WYNIKÓW POMIARÓW

W eksperymencie zmierzono długość boków kostki, średnicy zewnętrznej i wewnętrznej pierścienia oraz średnicę i długość walca za pomocą linijki, suwmiarki i śruby mikrometrycznej (mikrometra), a następnie policzono pola/objętości tych przedmiotów. Pomiary zebrano celem porównania dokładności i precyzji narzędzi. Wyniki pomiarów zostały zamieszczone w trzech tabelach jako wstęp do sprawozdania.

W przypadku kostki, zmierzone zostały jej boki za pomocą wszystkich trzech narzędzi. W przypadku pierścienia - średnica zewnętrzna i wewnętrzna za pomocą linijki i suwmiarki. Walec zaś był mierzony suwmiarką (długość) oraz mikrometrem (średnica).

Podczas pomiarów zauważalnym wnioskiem był fakt tego, że tym niższy błąd pomiarowy narzędzia, tym bardziej dokładne były pomiary. W przypadku kostki obliczone zostały błędy dla pomiaru pośredniego - objętości obiektu. W przypadku linijki z dokładnością wynoszącą $\pm 1mm$, odchylenie objętości wynosiło $\pm 0.63cm^3$, czyli aż 22.9% od średniej objętości. Suwmiarka i śruba mikrometryczna te błędy miały już dużo mniejsze. Odpowiednio dla suwmiarki (dokładność $\pm 0.05mm$) - $\pm 0.03cm^3$, czyli 0.99%, oraz dla śruby mikrometrycznej (dokładność $\pm 0.01mm$) - $\pm 0.02cm^3$, czyli 0.63%.

Odchylenie liczone ze wzoru $\Delta V = \max(|V - V_{min}|, |V - V_{max}|)$, a procentowe odchylenie - $\frac{\Delta V}{V} * 100\%$. W przypadku walca liczone było odchylenie standardowe wzorem $u(h) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (h_i - h_r)^2}$ oraz

$$u(d) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (d_i - d_r)^2}$$
. Odchylenie standardowe objętości walca zostało wyliczone z $u(V) = \sqrt{(\frac{\delta V}{\delta d})^2 * u^2(d) + (\frac{\delta V}{\delta h})^2 * u^2(h)}$. Wartości te wynosiły odpowiednio: $u(d) = 0.0018cm; \ u(h) = 0.0006cm; \ u(V) = 0.0013cm^3$.

W przypadku pierścienia podobnie jak w przypadku kostki, policzone zostały pola pierścienia, ich odchylenia, oraz odchylenia procentowe. Pierścień był mierzony linijką oraz suwmiarką. Pole średnie dla linijki wynosi: $S=1.13cm^2$, odchylenie: $\Delta S=0.1cm^2$, a odchylenie procentowe: $\delta S=8.84\%$. Dla suwmiarki zaś, wartości te wynoszą odpowiednio: $S=1.26cm^2$; $\Delta S=0.02cm^2$; $\delta S=1.58\%$

WNIOSKI

Na podstawie wykonanych pomiarów oraz obliczeń, możemy dojść do wniosku, że tym dokładniejsze narzędzie, tym mniejsze odchylenie oraz błąd pomiarowy. Dla narzędzia z największym błędem (linijka), odchylenia procentowe potrafiły dochodzić nawet do 22.9%, zaś w przypadku mikrometra i suwmiarki wartości te były dużo mniejsze. Odpowiednio 0.63% i 0.99% w przypadku pomiarów kostki. Na podstawie powyższej analizy można stwierdzić, że większa dokładność narzędzia przekłada się na mniejsze błędy pomiarowe, co potwierdza naszą hipotezę.