Computergrafik

Universität Osnabrück, Henning Wenke, 2012-05-29

Noch Kapitel VII:

Projection Transformation

Parallele Abbildung auf Bildebene

Perspektivische Abbildung auf Bildebene

Einschränkungen I

 Punkte eines Sichtstrahls w. a. identischen Punkt d. Bildebene abgebildet

2. Ausgabemedien haben endliche Ausdehnung

Einschränkungen II

> 3. Bei perspektivischer Projektion: Hinter dem Betrachter sollte nichts sichtbar sein

Anforderungen an Projektion

- Berücksichtige jeweilige Charakteristika in x und y
 - Parallelprojektion:

$$x' = x$$

$$x' = x$$
 und $y' = y$

• Perspektivische Projektion: $x' = d \cdot \frac{x}{a}$ und $y' = d \cdot \frac{y}{a}$

$$x' = d \cdot \frac{x}{z}$$

und
$$y' = d \cdot \frac{y}{z}$$

- Definition eines sichtbaren Intervalls in x und y
- Erhalten der Tiefeninformation
- Definition des sichtbaren Intervalls in z
 - Nicht immer zwingend
 - Wir grenzen aber immer ein

Zusätzliche Literatur

Canonical View Volume

- Canonical View Volume in OpenGL Würfel mit Kantenlänge 2 um Ursprung
 - $x \in [-1, 1]$
 - $y \in [-1, 1]$
 - $z \in [-1, 1]$
- Nur Objekte innerhalb dieses Volumens sichtbar
- Definiert durch feste Teile der Pipeline
- "Normalized Device Coordinates"
- Linkshändiges KS
- Unsere Aufgabe: Transformation des sichtbaren Teils der Szene in das CVV
- Abbildung auf xy-Ebene: Später

VII.3

Parallel bzw. Orthographic Projection

Projection Normalization

Definiere sichtbaren Bereich

- $left \le x \le right$
- $bottom \le y \le top$
- $-far \le z \le -near$
- Kurz: l, r, b, t, n, f
- Überführe in Canonical View Volume
 - Verschiebe in Ursprung $T(-\frac{r+l}{2}, -\frac{t+b}{2}, \frac{n+f}{2})$
 - Normalisiere Volumen $S(\frac{2}{r-l}, \frac{2}{t-h}, -\frac{2}{t-n})$

- Was bei Wahl r, l, t, b zu beachten?
 - (r-l)/(t-b) sollte Seitenverhältnis des Ausgabegeräts entsprechen

Auswirkungen

$$M_{ortho}(r, l, b, t, n, f) := S\left(\frac{2}{r-l}, \frac{2}{t-b}, -\frac{2}{f-n}\right) \cdot T\left(-\frac{r+l}{2}, -\frac{t+b}{2}, \frac{n+f}{2}\right)$$

- ightharpoonup Da n < f wird bei Skalierung die z-Achse invertiert
- Aus rechtshändigem wird linkshändiges KS

Matrix

$$M_{ortho}(r, l, b, t, n, f) := S\left(\frac{2}{r-l}, \frac{2}{t-b}, -\frac{2}{f-n}\right) \cdot T\left(-\frac{r+l}{2}, -\frac{t+b}{2}, \frac{n+f}{2}\right)$$

$$\mathbf{M_{ortho}}(\mathbf{r}, \mathbf{l}, \mathbf{b}, \mathbf{t}, \mathbf{n}, \mathbf{f}) \coloneqq \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & -\frac{2}{f-n} & -\frac{n+f}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Beispiel & Ausblick

- Gegeben:
 - Right, left, top, botton, near, far
 - Vertex mit Koordinate p_{CC} in Camera Coordinates
- Aufgaben
 - 1. Transformiere in Normalized Device Coordinates
 - 2. Stelle dann Sichtbarkeit fest
 - 3. Transformiere in xy-Ebene
- Lösung
 - 1. Berechne $p_{ndc} = M_{ortho}(r, l, b, t, n, f) \cdot p_{cc}$
 - 2. Falls $x, y, z \in [-1, 1]$ ist der Vertex potentiell sichtbar
 - 3. Berechne: $P_o \cdot p_{ndc}$
- Sichtbarkeit vor Transformation?
 - Falls $x \in [l, r]$, $y \in [b, t]$ und $z \in [-n, -f]$ gilt

Fragen: Kamera & Parallelprojektion

- Gibt es eine Kameraposition?
 - Ja, Ursprung in Camera Coordinates vor der Projektion
 - Danach bedeutungslos
- Auswirkung des Kameraabstands zur Szene?
 - Legt über near und far sichtbaren Teil fest
- Wie Szene verkleinern?
 - right-left bzw. top-bottom größer wählen
- Auswirkungen der Achsen?
 - Betrachtungsrichtung
- Kann etwas hinter der Kamera sichtbar sein?
 - Ja, wenn near < 0 gewählt wird

VII.4

Perspective Projection

Frustum I

Beispiel: F(ield) O(f) V(iew)

- Gegeben: Monitor (24 Zoll, 16:10, Breite 51,8 cm), Betrachterabstand: 55 cm
- Aufgabe: Stelle FOV für möglichst realistische Perspektive ein
- > Breite-Distanz Verhältnis in Realität und Szene muss gleich sein
 - (right left)/near = 51,8/55
 - Setze: near = 0.01 und left = -right
 - $200 \ right = 0.94 \Rightarrow right = -left \approx 0.005$
- FOV: $\tan\left(\frac{\alpha}{2}\right) = \frac{right}{near} \Longrightarrow \alpha \approx 0.927 \approx 53^{\circ}$
- Berechne Höhe über Seitenverhältnis:
 - (right left)/(top bottom) = 16/10
 - Mit $bottom = -top \text{ folgt: } \frac{0,005}{top} = \frac{16}{10} \Longrightarrow top = -bottom = \frac{0,05}{16} = 0,003125$

Frustum II

- Definiert sichtbaren Bereich der Szene bei perspektivischer Projektion
- > Abgeschnittene Pyramide mit rechteckiger Grundfläche
- \triangleright Definiert xy-Bildausschnitt auf der Near Plane (z = -near)
 - $l \le x \le r$ und $b \le y \le t$
 - Hinweis: für $(z \neq -near)$ sind x, y-Intervalle anders
- Legt auch in z-Richtung Sichtbarkeit fest
 - $-f \le z \le -n < 0$

> Kann eindeutige Bildebene eingezeichnet werden?

Nein. Ganzes Volumen wird zum Bild

Vorgehen

- Transformiere Frustum in CVV
 - Anschaulich: Dabei wird der Raum hinten gestaucht. Dadurch werden entferntere Objekte kleiner
 - z-Achse wird invertiert und aus dem rechtshändigen wird ein linkshändiges KS
- Später: Projiziere mit Parallelprojektion auf Ebene

Perspective Projection I

- > Frustum definiert sichtbaren Bereich, mit:
 - $l \le x \le r$ und $b \le y \le t$ auf Near Plane
 - $-f \le z \le -n < 0$
- Ziel: Projiziere in CVV
- \triangleright Bilde x und y der NP auf [-1,1] linear ab:

•
$$x'' = (x' - \frac{l+r}{2}) \cdot \frac{2}{r-l} = 2(\frac{x'-l}{r-l}) - 1$$

•
$$y'' = (y' - \frac{t+b}{2}) \cdot \frac{2}{t-b} = 2(\frac{y'-b}{t-b}) - 1$$

- $x' = -\frac{nx}{z}$
- $y' = -\frac{ny}{3}$
- Einsetzen ergibt:

•
$$x'' = \frac{2n}{r-l} \left(-\frac{x}{z}\right) - \frac{r+l}{r-l}$$

•
$$y'' = \frac{2n}{t-h} \left(-\frac{y}{z}\right) - \frac{t+b}{t-h}$$

Perspective Projection II

- ightharpoonup Bilde $z \in [-n, -f]$ auf [-1,1] ab
 - Verwende: $z' = \frac{a}{z} + b$ (1)
 - Erhält eindeutige Ordnung, aber Richtung umgekehrt
 - Für perspektivische Interpolation nötig
- Transformiere Intervallgrenzen

•
$$z=-n \rightarrow z'=-1$$

•
$$z = -f \rightarrow z' = 1$$

 \triangleright Einsetzen in (I)

•
$$-1 = \frac{a}{-n} + b \wedge 1 = \frac{a}{-f} + b$$

Lösen des LGS

•
$$a = \frac{2nf}{f-n} \wedge b = \frac{f+n}{f-n}$$

 \triangleright Einsetzen in (I):

•
$$z' = -\frac{2nf}{f-n}\left(-\frac{1}{z}\right) + \frac{f+n}{f-n}$$

Matrix

Ergebnis d. Transformationen (nach Perspective Division):

•
$$x' = \frac{2n}{r-l} \left(-\frac{x}{z} \right) - \frac{r+l}{r-l}$$

•
$$y' = \frac{2n}{t-b} \left(-\frac{y}{z}\right) - \frac{t+b}{t-b}$$

•
$$z' = -\frac{2nf}{f-n}\left(-\frac{1}{z}\right) + \frac{f+n}{f-n}$$

- w' = 1
- ightharpoonup Multiplikation mit (-z):

$$-z \cdot x' = \frac{2n}{r-l}x + \frac{r+l}{r-l}z$$

•
$$-z \cdot y' = \frac{2n}{t-b}y + \frac{t+b}{t-b}z$$

•
$$-z \cdot z' = -\frac{2nf}{f-n} - \frac{f+n}{f-n}z$$

•
$$-z \cdot w' = -z$$

$$\mathbf{M}_{frustum} \coloneqq \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2nf}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

 $ightharpoonup M_{frustum}$ überführt Camera Coordinates in Clipping Coordinates

Ergebnis vor Perspective Division

$$x' = \frac{2n}{r-l}x + \frac{r+l}{r-l}z, \quad y' = \frac{2n}{t-b}y + \frac{t+b}{t-b}z$$

- Nach Multiplikation mit $M_{frustum}$: $z' = -\frac{2nf}{f-n} \frac{f+n}{f-n}z$ $-f \to f$ $-n \to -n$ w' = -z
- \triangleright Führt $M_{frustum}$ perspektivische Projektion auf x, y, z Teil aus?
 - Nein. *x* und *y* noch nicht mit 1/*z* multipliziert.
- Was passiert:
 - Definiert sichtbaren Bereich
 - Enthält Info für perspektivische Projektion in w-Komponente

Beispiel & Ausblick

Gegeben:

- Right, left, top, botton, near, far
- Vertex mit Koordinate p_{cc} in Camera Coordinates
- Aufgaben
 - Transformiere in Clipping Coordinates
 - 2. Stelle dann Sichtbarkeit fest
 - 3. Führe Perspective Projection aus
 - 4. Transformiere in xy-Ebene
- Lösung
 - 1. Berechne $p_{clip} = M_{frustum}(r, l, b, t, n, f) \cdot p_{cc}$
 - 2. Falls $x, y, z \in [-w_p, w_p]$ ist der Vertex potentiell sichtbar
 - 3. Berechne $p_{ndc} = p_{clip}/w_p$ (Perspective Division, dann im CVV, später)
 - 4. Berechne: $P_o \cdot p_{ndc}$ (später)
- Sichtbarkeit nach Perspective Division?
 - Falls $x, y, z \in [-1, 1]$ ist der Vertex potentiell sichtbar

Fragen: z-Begrenzung

- I. Warum soll nicht z > 0 sichtbar sein?
 - Wir wollen nichts hinter uns sehen
- II. Warum nicht z = 0?
 - Ausdehnung in xy-Ebene dann verschwunden
 - Division durch 0
- III. Warum Begrenzung (z = -far) nach "hinten"
 - Ohne endliche Intervallgrenzen ev. Probleme mit Rechengenauigkeit
 - Wird so gewählt, dass es nicht "stört"
 - Gibt auch "nach hinten offene" Varianten
- IV. Was ist bei Wahl von z = -near zu beachten?
 - Verhältnis zu (right left) muss gewünschtem FOV entsprechen
 - Möglichst nah, damit nichts abgeschnitten wird

Fragen: Implementation

- Viewing Transformation nötig?
 - Nein
 - Camera Coordinates dann identisch mit World Coordinates
- "klassische" parallele Projektion nötig?
 - Ja, bereits implizit enthalten
 - CVV wird auf Bildebene abgebildet
- Perspective Projection nötig?
 - Nein
- Implementation Viewing / Projection
 - Applikation
 - Vertex Shader
 - Anderer geometrieverarbeitender Shader
 - Typisch: Implementation im letzten geometrieverarbeitenden Schritt: Bei uns Vertex Shader

Viewing & Projection im VS

```
#version 330 core
in vec3 normalMC;
in vec4 posMC;
uniform mat4 mc2wc Pos, view;
uniform mat3 mc2wc Normal;
uniform vec3 inverseLightDir;
// Projection Transformation: Camera Coords -> NDC (OP) oder CC (PP)
uniform mat4 projection; // Perspektive oder Parallel Projection
out float brightness;
void main(){
  // 1) Objekte anordnen 2) Szenenbetrachtung 3) projizieren
  gl Position = projection * view * mc2wc Pos * posMC;
  vec3 normalWC = mc2wc Normal * normalMC;
  brightness = max(dot(normalWC, inverseLightDir), 0.0);
```

Auswirkungen der Projektionsmatrizen

