#### **IUT de Bordeaux**

**Département Informatique** 

**M2201 – Graphes et Langages** 

# Éléments de Théorie des Langages

- Déterminisation d'un AF
- Minimisation d'un AFD

# Déterminisation d'un automate fini

## Automates non déterministes (rappel)

Nous avons vu qu'il était parfois plus simple de produire un automate fini **non déterministe** (AF).

Rappelons que pour un tel automate, il est possible d'avoir :

- plusieurs états initiaux,
- plusieurs transitions issus d'un même état et portant la même étiquette,
- des transitions étiquetées par ε (appelées ε-transitions)



# **Équivalence entre AFs et AFDs**

Nous allons démontrer que les AF ne sont pas plus « puissants » que les AFD : les langages reconnus par les AF sont exactement les mêmes que ceux reconnus par les AFD. Comme tout AFD est un AF, il suffit de montrer la proposition suivante :

**Proposition.** Pour tout automate fini M, il existe un automate fini déterministe M' tel que L(M') = L(M).

Pour démontrer ce résultat, nous allons donner un algorithme qui, à partir d'un AF **M**, construit un AFD **M'** équivalent...

#### Déterminisation d'un AF: principe

#### L'idée de base est la suivante :

ightharpoonup On supprime les ε-transitions de **M**, une à une, pour obtenir un AF **M\*** sans ε-transition :

si  $(\mathbf{e}, \boldsymbol{\varepsilon}, \mathbf{f}) \in \delta$  et  $\mathbf{e}$  est un état initial alors  $\mathbf{f}$  devient un état initial ; si  $(\mathbf{e}, \boldsymbol{\varepsilon}, \mathbf{f})$ ,  $(\mathbf{g}, \mathbf{a}, \mathbf{e}) \in \delta$  alors  $(\mathbf{g}, \mathbf{a}, \mathbf{f}) \in \delta^*$ .

- Les états de M' seront des ensembles d'états de M\*.
- L'état initial de M' est l'ensemble des états initiaux de M\*.
- Ensuite, pour chaque lettre  $\mathbf{a} \in \mathbf{A}$  et chaque état  $\mathbf{S}$  de  $\mathbf{M}^*$ , on pose :  $\delta'(\mathbf{S},\mathbf{a}) = \{ \delta^*(\mathbf{e}_i,\mathbf{a}) / \mathbf{e}_i \in \mathbf{S} \}$ .
- Si S contient un état terminal de M\*, alors S est un état terminal de M'.
- Cet algorithme s'arrête car M\* possède un nombre fini d'états : il n'y a donc qu'un nombre fini d'états possibles pour M'...

#### Déterminisation d'un AF : exemple (1)

On notera e<sub>3</sub> l'état-puits de notre AF.



## Déterminisation d'un AF : exemple (2)

La fonction de transition de l'AFD s'obtient ainsi :

|                        | état           | 0                                            | 1              | ∈ <b>T′</b> |
|------------------------|----------------|----------------------------------------------|----------------|-------------|
| S <sub>0</sub> initial | $e_0e_1e_2$    | e <sub>1</sub> e <sub>2</sub> e <sub>3</sub> | $e_0e_1e_2e_3$ | 0           |
| S <sub>1</sub>         | $e_1e_2e_3$    | e <sub>3</sub>                               | $e_0e_1e_2e_3$ | 0           |
| S <sub>2</sub>         | $e_0e_1e_2e_3$ | e <sub>1</sub> e <sub>2</sub> e <sub>3</sub> | $e_0e_1e_2e_3$ |             |
| S <sub>3</sub> puits   | e <sub>3</sub> | e <sub>3</sub>                               | e <sub>3</sub> | О           |

 $\begin{array}{c|c} & e_1 \\ \hline & e_2 \\ \hline & 1 \end{array}$ 

On démarre avec l'état initial  $S_0 = \{e_0, e_1, e_2\}$ . Quand un nouvel état « apparaît », on crée une nouvelle ligne...

## Déterminisation d'un AF : exemple (3)

#### On obtient l'AFD suivant :

|                        | état                                         | 0                                            | 1              | ∈ <b>T′</b> |
|------------------------|----------------------------------------------|----------------------------------------------|----------------|-------------|
| S <sub>0</sub> initial | $e_0e_1e_2$                                  | e <sub>1</sub> e <sub>2</sub> e <sub>3</sub> | $e_0e_1e_2e_3$ | 0           |
| S <sub>1</sub>         | e <sub>1</sub> e <sub>2</sub> e <sub>3</sub> | e <sub>3</sub>                               | $e_0e_1e_2e_3$ | 0           |
| S <sub>2</sub>         | $e_0e_1e_2e_3$                               | e <sub>1</sub> e <sub>2</sub> e <sub>3</sub> | $e_0e_1e_2e_3$ | 0           |
| S <sub>3</sub> puits   | e <sub>3</sub>                               | e <sub>3</sub>                               | e <sub>3</sub> |             |



**Remarque.** L'automate ainsi construit n'est pas nécessairement minimal...

# Minimisation d'un automate fini déterministe

#### **AFD** minimal

Nous avons vu que plusieurs AFD distincts pouvaient reconnaître le même langage. Un tel AFD est dit minimal s'il contient un nombre minimum d'états.



## Minimisation d'un AFD: principe (1)

L'idée de base est la suivante : on va raisonner sur des classes d'équivalence d'états.

Deux états **e** et **f** seront considérés comme **équivalents** si, pour toute lettre  $\mathbf{a} \in \mathbf{A}$ ,  $\delta(\mathbf{e},\mathbf{a})$  et  $\delta(\mathbf{f},\mathbf{a})$  sont deux états équivalents... (Intuition : ils ont « même futur ».)

Pour déterminer ces classes d'équivalence, on va procéder par <u>raffinements successifs</u> en « divisant » les ensembles contenant des états non équivalents...

**Remarque.** Un pré-traitement de l'AFD permet d'éliminer les états non accessibles à partir de l'état initial...

#### Minimisation d'un AFD : principe (2)

Principe de minimisation : Algorithme de Moore.

On suppose que tous les états sont accessibles à partir de l'état initial.

- On démarre avec deux ensembles, T et E \ T.
- Si, dans un ensemble **S**, il existe deux états **e** et **f** et une lettre a tels que  $\delta$ (**e**,**a**) et  $\delta$ (**f**,**a**) n'appartiennent pas au même ensemble, on divise **S** de façon à mettre ensemble tous les états qui ont même « ensemble successeur » par la lettre **a**.
- L'algorithme se termine lorsque plus aucun ensemble ne doit être divisé : chaque ensemble est alors un état de l'automate minimal. Les sous-ensembles de T sont des états terminaux, et l'ensemble contenant l'état initial d'origine est l'état initial.

#### Minimisation d'un AFD: exemple (1)



- $\rightarrow$  étape 1 : { e<sub>0</sub>, e<sub>2</sub> }, { e<sub>1</sub>, e<sub>3</sub> }.
- étape 2 : rien à faire, aucune partie ne satisfait la condition de séparation !
- >  $S_0 \leftarrow \{e_0, e_2\}$ , initial  $S_1 \leftarrow \{e_1, e_3\}$ , terminal.



Trop facile !... ;-)

#### Minimisation d'un AFD : exemple (2)



|  | étape 1 : | { e <sub>0</sub> , e <sub>3</sub> } | , { | { e <sub>1</sub> , e <sub>2</sub> } | <b>}.</b> |
|--|-----------|-------------------------------------|-----|-------------------------------------|-----------|
|--|-----------|-------------------------------------|-----|-------------------------------------|-----------|

- ightharpoonup étape 2 :  $\{e_0, e_3\} \rightarrow séparés par 1$  $\{e_0\}, \{e_3\}, \{e_1, e_2\}$
- ightharpoonup étape 3 :  $\{e_1, e_2\} \rightarrow OK$  $\{e_0\}, \{e_3\}, \{e_1, e_2\}$

|   | e <sub>o</sub> | e <sub>1</sub> | e <sub>2</sub> | e <sub>3</sub> |
|---|----------------|----------------|----------------|----------------|
| 0 | $e_3$          | e <sub>2</sub> | e <sub>2</sub> | $e_3$          |
| 1 | $e_1$          | e <sub>2</sub> | $e_2$          | $e_3$          |

$$\rightarrow$$
 résultat final, 3 états :  $\{e_0\}, \{e_3\}, \{e_1, e_2\}$ 

#### Minimisation d'un AFD : exemple (3)



|   | $e_0$ | $e_1$          | e <sub>2</sub> | e <sub>3</sub> |
|---|-------|----------------|----------------|----------------|
| 0 | $e_3$ | e <sub>2</sub> | e <sub>2</sub> | e <sub>3</sub> |
| 1 | $e_1$ | e <sub>2</sub> | e <sub>2</sub> | e <sub>3</sub> |

 $\rightarrow$  résultat final, 3 états :  $\{e_0\}, \{e_3\}, \{e_1, e_2\}$