ECE 2, Univ. LA ROCHELLE

1 Problématique de l'estimation paramétrique

On dispose d'une famille de lois de variables aléatoires, à un ou deux **paramètres** continus. On pourra notamment penser aux lois :

1. uniforme $\mathcal{U}[a,b]$

Lois discrètes à valeurs entières							
	Loi de probabilités		Paramètre	Argu	uments		
	uniforme discrète	$\mathcal{U}\left\{ m:n\right\}$	"uin"	Low	(=m)	High	(=n)
	binomiale	$\mathcal{B}(n,p)$	"bin"	n	(=n)	p	(=p)
	de Poisson	$\mathcal{P}(\lambda)$	"poi"	mu	$(=\lambda)$		
	géométrique (de Pascal)	$\mathcal{G}(p)$	"geom"	р	(=p)		
Lois continues à densité							
	Loi de probabilités		Paramètre	Arguments			
	uniforme continue	$\mathcal{U}[a;b]$	"unf"	Low	(=a)	High	(=b)
	normale (de Gauss-Laplace)	$\mathcal{N}(\mu,\sigma^2)$	"nor"	Av	$(=\mu)$	Sd	$\left(=\sqrt{\sigma^2}\right)$
	exponentielle	$\mathcal{E}(\lambda)$	"exp"	Av	$(=\lambda)$		

Figure 1 – Les lois probabilistes usuelles pour la commande grand en Scilab