MATH 484 Project

We are trying to predict the future times and results of sprints and field events at the Olympics.

```
In [1]: import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats
import numpy as np
import statsmodels.api as sm
import statsmodels.nonparametric as snp
import statsmodels.stats as sms
import scipy.linalg as lg
import plotly

track_results = pd.read_csv('results.csv')
In [2]: # Creating separate dictionaries for each event.
tf_results = dict(tuple(track_results.groupby("Event")))
```

I am going to create dataframes and plots of the sprint events from the Summer Olympics that we have results from.

```
In [3]: print(track_results.Event.unique())

['10000M Men' '100M Men' '110M Hurdles Men' '1500M Men' '200M Men'
    '20Km Race Walk Men' '3000M Steeplechase Men' '400M Hurdles Men'
    '400M Men' '4X100M Relay Men' '4X400M Relay Men' '5000M Men'
    '50Km Race Walk Men' '800M Men' 'Decathlon Men' 'Discus Throw Men'
    'Hammer Throw Men' 'High Jump Men' 'Javelin Throw Men' 'Long Jump Men'
    'Marathon Men' 'Pole Vault Men' 'Shot Put Men' 'Triple Jump Men'
    '10000M Women' '100M Hurdles Women' '100M Women' '1500M Women'
    '200M Women' '20Km Race Walk Women' '3000M Steeplechase Women'
    '400M Hurdles Women' '400M Women' '4X100M Relay Women'
    '4X400M Relay Women' '5000M Women' '800M Women' 'Discus Throw Women'
    'Hammer Throw Women' 'Heptathlon Women' 'High Jump Women'
    'Javelin Throw Women' 'Long Jump Women' 'Marathon Women'
    'Pole Vault Women' 'Shot Put Women' 'Triple Jump Women']
```

We will create results scatter plots for field events as well overtime at the Olympics.

Simple Linear Regression Models for 100 Meter, 200 Meter, Long Jump, Shot Put, 1500 M Run

We start by running a simple linear regression for the 100 M Men and Women's Events.

Out[4]:

	Gender	Event	Location	Year	Medal	Name	Nationality	Result
69	М	100M Men	Rio	2016	G	Usain BOLT	JAM	9.81
70	М	100M Men	Rio	2016	S	Justin GATLIN	USA	9.89
71	М	100M Men	Rio	2016	В	Andre DE GRASSE	CAN	9.91
72	М	100M Men	Beijing	2008	G	Usain BOLT	JAM	9.69
73	М	100M Men	Beijing	2008	S	Richard THOMPSON	TTO	9.89

```
In [5]: X = tf_results['100M Men'].Year.astype(float)
    y = tf_results['100M Men'].Result.astype(float)
    X = sm.add_constant(X)
    model_100M_Men = sm.OLS(y, X).fit()
    print(model_100M_Men.params)
    model_100M_Men.summary()

const    37.670494
    Year    -0.013918
    dtype: float64
```

Out[5]:

OLS Regression Results

Dep. Variable:	Result	R-squared:	0.736
Model:	OLS	Adj. R-squared:	0.732
Method:	Least Squares	F-statistic:	217.1
Date:	Wed, 28 Nov 2018	Prob (F-statistic):	3.03e-24
Time:	19:48:50	Log-Likelihood:	-19.177
No. Observations:	80	AIC:	42.35
Df Residuals:	78	BIC:	47.12
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	37.6705	1.850	20.366	0.000	33.988	41.353
Year	-0.0139	0.001	-14.735	0.000	-0.016	-0.012

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 239.787

 Skew:
 2.221
 Prob(JB):
 8.53e-53

Omnibus: 56.123

Kurtosis: 10.226 **Cond. No.** 1.04e+05

Durbin-Watson:

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.350

[2] The condition number is large, 1.04e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Dep. Variable:ResultR-squared:0.763Model:OLSAdj. R-squared:0.758

Method: Least Squares **F-statistic:** 179.9

Date: Wed, 28 Nov 2018 **Prob (F-statistic):** 3.93e-19

Time: 19:48:51 **Log-Likelihood:** 10.628

No. Observations: 58 AIC: -17.26

Df Residuals: 56 **BIC:** -13.14

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 39.2592
 2.087
 18.811
 0.000
 35.078
 43.440

 Year
 -0.0142
 0.001
 -13.413
 0.000
 -0.016
 -0.012

Omnibus: 1.636 Durbin-Watson: 0.818

Prob(Omnibus): 0.441 Jarque-Bera (JB): 0.926

Skew: 0.254 **Prob(JB):** 0.629

Kurtosis: 3.353 **Cond. No.** 1.53e+05

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.53e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [7]:
        pd.to numeric(tf results['100M Men'].Result)
        pd.to numeric(tf_results['100M Women'].Result)
        time m = np.linspace(1894, 2018, num = 2000)
        time w = np.linspace(1928, 2018, num = 2000)
        Men pred = 37.670494 - 0.013918 * time m
        Women_pred = 39.259190 - 0.014167 * time_w
        plt.figure(figsize=(12, 4))
        plt.scatter(tf results['100M Men'].Year, tf results['100M Men'].Result, color
        = 'k')
        plt.plot(time_m, Men_pred)
        plt.scatter(tf results['100M Women'].Year, tf results['100M Women'].Result, co
        lor = 'm')
        plt.plot(time_w, Women_pred)
        plt.xlabel('Year')
        plt.ylabel('Result in Seconds')
        plt.title('Podium Finishes at the Olympics-100 M')
        plt.legend(['100M Men Prediction', '100M Women Prediction', '100M Men Results'
        , '100M Women Results'])
        plt.show()
```


200 M Men's and Women's Events now:

```
In [8]: X = tf_results['200M Men'].Year.astype(float)
y = tf_results['200M Men'].Result.astype(float)
X = sm.add_constant(X)
model_200M_Men = sm.OLS(y, X).fit()
print(model_200M_Men.params)
model_200M_Men.summary()

const 67.599404
Year -0.023895
dtype: float64
```

Out[8]:

OLS Regression Results

Dep. Variable:			Re	sult	R-sq	0.866	
Model:			C	DLS	Adj. R-sq	0.864	
Method:			east Squa	ires	F-st	471.6	
	Date	e: Wed,	28 Nov 20	018 P	rob (F-sta	1.40e-33	
	Time	e:	19:48	3:51	Log-Likel	-21.997	
No. Ob	servation	s:		75		47.99	
Df	Residual	s:		73		52.63	
	Df Mode	el:		1			
Covar	iance Typ	e:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]	
const	67.5994	2.159	31.310	0.000	•	71.902	
~					0.000		

 Year
 -0.0239
 0.001
 -21.716
 0.000
 -0.026
 -0.022

 Omnibus:
 0.287
 Durbin-Watson:
 1.042

 Prob(Omnibus):
 0.866
 Jarque-Bera (JB):
 0.470

 Skew:
 0.059
 Prob(JB):
 0.791

Kurtosis: 2.631 **Cond. No.** 1.12e+05

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.12e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [9]: | X = tf_results['200M Women'].Year.astype(float)
        y = tf_results['200M Women'].Result.astype(float)
        X = sm.add\_constant(X)
        model 200M Women = sm.OLS(y, X).fit()
        print(model_200M_Women.params)
        model_200M_Women.summary()
        const
                 94.100684
        Year
                 -0.036020
        dtype: float64
```

Out[9]:

OLS Regression Results

De	Dep. Variable:			sult	R-sq	juared:	0.684	
	Model: OLS			DLS	Adj. R-squared: 0.678			
	Method: Least Square			ires	F-st	106.2		
	Date: Wed, 28			018 P	rob (F-sta	itistic):	7.39e-14	
	Time	e:	19:48	3:51	Log-Like	-39.140		
No. Ob	servations	s:		51		82.28		
Df	Residual	s:	49 BIC :			BIC:	86.14	
	Df Mode	el:		1				
Covariance Type:		e:	nonrob	oust				
	coef	std err	t	P> t	[0.025	0.975	I	
const	94.1007	6.928	13.583	0.000	80.178	108.023	}	
Year	-0.0360	0.003	-10.303	0.000	-0.043	-0.029)	
(Omnibus:	2.396	Durbin	-Watso	n: 0.	.507		

Prob(Omnibus): 0.302 Jarque-Bera (JB): 2.287 Prob(JB): **Skew:** 0.489 0.319 Kurtosis: 2.651 Cond. No. 1.84e+05

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.84e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [10]:
         time m = np.linspace(1898, 2018, num = 2000)
         time w = np.linspace(1946, 2018, num = 2000)
         Men pred = 67.599404 - 0.023895 * time m
         Women pred = 94.100684 -0.036020 * time w
         plt.figure(figsize=(12, 4))
         plt.scatter(tf_results['200M Men'].Year, tf_results['200M Men'].Result, color
         plt.plot(time m, Men pred)
         plt.scatter(tf_results['200M Women'].Year, tf_results['200M Women'].Result, co
         lor = 'm')
         plt.plot(time w, Women pred)
         plt.xlabel('Year')
         plt.ylabel('Result in Seconds')
         plt.title('Podium Finishes at the Olympics-200 M')
         plt.legend(['200M Men Prediction', '200M Women Prediction', '200M Men Results'
         , '200M Women Results'])
         plt.show()
```



```
X = tf results['Long Jump Men'].Year.astype(float)
In [11]:
          y = tf results['Long Jump Men'].Result.astype(float)
          X = sm.add constant(X)
          LJ Men = sm.OLS(y, X).fit()
          print(LJ Men.params)
          LJ_Men.summary()
         const
                  -18.587442
         Year
                    0.013485
         dtype: float64
Out[11]:
         OLS Regression Results
```

Dep. Variable: Result R-squared: 0.792 Model: OLS Adj. R-squared: 0.788 Method: Least Squares F-statistic: 231.9 **Date:** Wed, 28 Nov 2018 Prob (F-statistic): 1.87e-22 Time: 19:48:52 Log-Likelihood: -8.8863 No. Observations: 63 AIC: 21.77

Df Residuals: BIC: 61 26.06

> Df Model: 1

Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975] const -18.5874 1.733 -10.723 0.000 -22.054 -15.121 0.001 15.229 0.000 0.012 Year 0.0135 0.015

Omnibus: 10.035 **Durbin-Watson:** 0.888 Prob(Omnibus): 0.007 Jarque-Bera (JB): 9.869

> Skew: -0.823 Prob(JB): 0.00719

Kurtosis: 4.024 Cond. No. 9.51e+04

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
X = tf results['Long Jump Women'].Year.astype(float)
In [12]:
           y = tf results['Long Jump Women'].Result.astype(float)
           X = sm.add constant(X)
           LJ Women = sm.OLS(y, X).fit()
           print(LJ Women.params)
           LJ_Women.summary()
          const
                    -21.278026
          Year
                      0.014137
          dtype: float64
Out[12]:
          OLS Regression Results
               Dep. Variable:
                                       Result
                                                   R-squared:
                                                                 0.734
                     Model:
                                        OLS
                                               Adj. R-squared:
                                                                 0.726
                    Method:
                                Least Squares
                                                    F-statistic:
                                                                 90.97
                       Date: Wed, 28 Nov 2018
                                              Prob (F-statistic): 5.22e-11
                      Time:
                                     19:48:52
                                               Log-Likelihood:
                                                                11.192
           No. Observations:
                                          35
                                                         AIC:
                                                                -18.38
```

33

Df Model: 1

Covariance Type: nonrobust

Df Residuals:

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 -21.2780
 2.947
 -7.221
 0.000
 -27.273
 -15.283

 Year
 0.0141
 0.001
 9.538
 0.000
 0.011
 0.017

Omnibus: 0.431 Durbin-Watson: 0.745

Prob(Omnibus): 0.806 Jarque-Bera (JB): 0.537

 Skew:
 0.228
 Prob(JB):
 0.765

 Kurtosis:
 2.601
 Cond. No.
 1.91e+05

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

BIC:

-15.27

[2] The condition number is large, 1.91e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [13]:
         time m = np.linspace(1894, 2018, num = 2000)
         time w = np.linspace(1950, 2018, num = 2000)
         Men pred = -18.587442 + 0.013485 * time m
         Women pred = -21.278026 + 0.014137 * time w
         plt.figure(figsize=(12, 4))
         plt.scatter(tf_results['Long Jump Men'].Year, tf_results['Long Jump Men'].Resu
         lt, color = 'b')
         plt.plot(time m, Men pred)
         plt.scatter(tf results['Long Jump Women'].Year, tf results['Long Jump Women'].
         Result, color = 'g')
         plt.plot(time w, Women pred)
         plt.xlabel('Year')
         plt.ylabel('Result in Meters')
         plt.title('Podium Finishes at the Olympics-Long Jump')
         plt.legend(['Long Jump Men Prediction', 'Long Jump Women Prediction', 'Long Ju
         mp Men Results', 'Long Jump Women Results'])
         plt.show()
```


Dep. Variable: Result R-squared: 0.930 Model: OLS Adj. R-squared: 0.929 Method: Least Squares F-statistic: 774.3 **Date:** Wed, 28 Nov 2018 Prob (F-statistic): 3.06e-35 Time: 19:48:52 Log-Likelihood: -80.094 No. Observations: 60 AIC: 164.2 **Df Residuals:** BIC: 58 168.4

Df Model: 1

Covariance Type: nonrobust

 const
 -142.6452
 5.777
 -24.692
 0.000
 -154.209
 -131.081

 Year
 0.0820
 0.003
 27.826
 0.000
 0.076
 0.088

 Omnibus:
 0.027
 Durbin-Watson:
 0.658

 Prob(Omnibus):
 0.986
 Jarque-Bera (JB):
 0.152

 Skew:
 -0.045
 Prob(JB):
 0.927

 Kurtosis:
 2.770
 Cond. No.
 9.38e+04

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.38e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [15]: X = tf results['Shot Put Women'].Year.astype(float)
          y = tf_results['Shot Put Women'].Result.astype(float)
          X = sm.add\_constant(X)
          SP Women = sm.OLS(y, X).fit()
          print(SP_Women.params)
          SP_Women.summary()
          const
                  -103.642325
         Year
                     0.062040
         dtype: float64
Out[15]:
         OLS Regression Results
```

Dep. Variable:			Res	ult	R-squared:		0.411
Model:		OLS			Adj. R-squared:		0.396
Method:		Least Squares			F-statistic:		27.24
Date:		Wed, 28	8 Nov 20	18 Pr	Prob (F-statistic):		6.25e-06
Time:			19:48:	52 L	Log-Likelihood:		-72.319
No. Observations:				41		AIC:	148.6
Df Residuals:				39	1	BIC:	152.1
Df Model:				1			
Covariance Type:			nonrobu	ust			
coef		std err	t	P> t	[0.025	0.9	75]
const	-103.6423	23.576	-4.396	0.000	-151.329	-55.9	955
Year	0.0620	0.012	5.220	0.000	0.038	0.0)86

Omnibus: 0.304 **Durbin-Watson:** 0.593 Prob(Omnibus): 0.859 Jarque-Bera (JB): 0.445 **Skew:** 0.173 Prob(JB): 0.800 Cond. No. 2.07e+05 Kurtosis: 2.625

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.07e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [16]:
         time m = np.linspace(1894, 2018, num = 2000)
         time w = np.linspace(1950, 2018, num = 2000)
         Men pred = -142.645216 + 0.082039 * time m
         Women pred = -103.642325 + 0.062040 * time w
         plt.figure(figsize=(12, 4))
         plt.scatter(tf_results['Shot Put Men'].Year, tf_results['Shot Put Men'].Result
         , color = 'b')
         plt.plot(time m, Men pred)
         plt.scatter(tf results['Shot Put Women'].Year, tf results['Shot Put Women'].Re
         sult, color = 'g')
         plt.plot(time w, Women pred)
         plt.xlabel('Year')
         plt.ylabel('Result in Meters')
         plt.title('Podium Finishes at the Olympics-Shot Put')
         plt.legend(['Shot Put Men Prediction', 'Shot Put Women Prediction', 'Shot Put
          Men Results', 'Shot Put Women Results'])
         plt.show()
```



```
In [17]:
         #Men's 1500M
         men 1500m = pd.read csv('Men 1500M.csv')
         X = men 1500m['Year'].astype(float)
         y = men 1500m['seconds'].astype(float)
         X = sm.add constant(X)
         Men_1500M = sm.OLS(y, X).fit()
         print(Men 1500M.params)
         Men 1500M.summary()
                   846.904980
         const
```

Year -0.316465 dtype: float64

Out[17]:

OLS Regression Results

Dep. Variable: R-squared: 0.682 seconds Model: OLS Adj. R-squared: 0.677 Method: Least Squares F-statistic: 164.8 **Date:** Wed, 28 Nov 2018 Prob (F-statistic): 8.04e-21 Time: 19:48:53 Log-Likelihood: -275.71 No. Observations: 79 AIC: 555.4 **Df Residuals:** 77 BIC: 560.2

> Df Model: 1

Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975] const 846.9050 48.285 17.540 0.000 750.756 943.053 Year -0.3165 0.025 -12.837 0.000 -0.366 -0.267

Omnibus: 48.286 **Durbin-Watson:** 0.292 Prob(Omnibus): 0.000 Jarque-Bera (JB):

Skew: 2.138 Prob(JB): 2.09e-29

Cond. No. 1.05e+05 **Kurtosis:** 7.673

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

132.075

[2] The condition number is large, 1.05e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [18]:
           #Women's 1500M
           women 1500m = pd.read csv('Women 1500M.csv')
           women 1500m.head(3)
           X = women 1500m['Year'].astype(float)
           y = women_1500m['seconds'].astype(float)
           X = sm.add constant(X)
           Women 1500M = sm.OLS(y, X).fit()
           print(Women_1500M.params)
           Women 1500M.summary()
           const
                     40.274876
                      0.101555
           Year
           dtype: float64
Out[18]:
          OLS Regression Results
               Dep. Variable:
                                     seconds
                                                   R-squared:
                                                                0.110
                                        OLS
                                               Adj. R-squared:
                                                                0.081
                     Model:
                    Method:
                                Least Squares
                                                    F-statistic:
                                                                3.722
                       Date: Wed, 28 Nov 2018
                                              Prob (F-statistic):
                                                               0.0632
                      Time:
                                     19:48:53
                                               Log-Likelihood:
                                                              -90.462
           No. Observations:
                                          32
                                                         AIC:
                                                                184.9
               Df Residuals:
                                          30
                                                         BIC:
                                                                187.9
                   Df Model:
                                           1
```

nonrobust

P>|t|

[0.025

0.975]

const 40.2749 104.971 0.384 0.704 -174.104 254.653

Year 0.1016 0.053 1.929 0.063 -0.006 0.209

Omnibus: 8.608 Durbin-Watson: 0.832

Prob(Omnibus): 0.014 Jarque-Bera (JB): 2.354

Skew: -0.147 **Prob(JB):** 0.308

Kurtosis: 1.704 **Cond. No.** 2.80e+05

Warnings:

Covariance Type:

coef

std err

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.8e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [19]: time_m = np.linspace(1898, 2018, num = 2000)
    time_w = np.linspace(1970, 2018, num = 2000)
    Men_pred = 846.904980 -0.316465 * time_m
    Women_pred = 40.274876 +0.101555 * time_w
    plt.figure(figsize=(12, 4))
    plt.scatter(men_1500m['Year'], men_1500m['seconds'], color = 'c')
    plt.plot(time_m, Men_pred)
    plt.scatter(women_1500m['Year'], women_1500m['seconds'], color = 'y')
    plt.plot(time_w, Women_pred)
    plt.xlabel('Year')
    plt.ylabel('Result in Seconds')
    plt.title('Podium Finishes at the Olympics-1500M')
    plt.legend(['1500M Men Prediction', '1500M Women Prediction', '1500M Men Results', '1500M Women Results'])
    plt.show()
```


Diagonostics of the Simple Linear Models

We now will look at the residuals to try to determine if we can make the assumption that the error is normally distributed with mean 0 and variance σ^2 , and run some diagnostic tests to determine whether the error is constant.

```
In [20]:
         #Residuals for 100M
         res_100_m = tf_results['100M Men'].Result.astype(float) - \
         (37.670494 - 0.013918 * tf results['100M Men'].Year.astype(float))
         res 100 w = tf results['100M Women'].Result.astype(float) - \
         (39.259190 - 0.014167 * tf results['100M Women'].Year.astype(float))
         #Residuals for 200M
         res 200 m = tf results['200M Men'].Result.astype(float) - \
         (67.599404 -0.023895 * tf_results['200M Men'].Year.astype(float))
         res_200_w = tf_results['200M Women'].Result.astype(float) - \
         (94.100684 -0.036020 * tf results['200M Women'].Year.astype(float))
         #Residuals for Long Jump
         res lj m = tf results['Long Jump Men'].Result.astype(float) - \
         (-18.587442 +0.013485 * tf results['Long Jump Men'].Year.astype(float))
         res lj w = tf results['Long Jump Women'].Result.astype(float) - \
         (-21.278026 +0.014137 * tf results['Long Jump Women'].Year.astype(float))
         #Residuals for Shot Put
         res sp m = tf results['Shot Put Men'].Result.astype(float) - \
         (-142.645216 +0.082039 * tf results['Shot Put Men'].Year.astype(float))
         res_sp_w = tf_results['Shot Put Women'].Result.astype(float) - \
         (-103.642325 +0.062040 * tf results['Shot Put Women'].Year.astype(float))
         #Residuals for 1500M
         res 1500 m = men 1500m['seconds'] - (846.904980 -0.316465 * men 1500m['Year'])
         res 1500 w = women 1500m['seconds'] - (846.904980 - 0.316465 * women 1500m['Yea
         r'])
```



```
In [22]: plt.figure(figsize=(12, 4))
    plt.scatter(tf_results['100M Men'].Year, res_100_m, color = 'k')
    plt.scatter(tf_results['100M Women'].Year, res_100_w, color = 'm')
    plt.xlabel('Year')
    plt.ylabel('Residual')
    plt.title('Residuals for 100M')
    plt.legend(['100M Men Residuals', '100M Women Residuals'])
    plt.show()
```



```
In [23]: plt.figure(figsize=(12, 4))
    plt.scatter(tf_results['200M Men'].Year, res_200_m, color = 'k')
    plt.scatter(tf_results['200M Women'].Year, res_200_w, color = 'm')
    plt.xlabel('Year')
    plt.ylabel('Residual')
    plt.title('Residuals for 200M')
    plt.legend(['200M Men Residuals', '200M Women Residuals'])
    plt.show()
```



```
In [24]: plt.figure(figsize=(12, 4))
    plt.scatter(tf_results['Shot Put Men'].Year, res_sp_m, color = 'b')
    plt.scatter(tf_results['Shot Put Women'].Year, res_sp_w, color = 'g')
    plt.xlabel('Year')
    plt.ylabel('Residual')
    plt.title('Residuals for Shot Put')
    plt.legend(['Shot Put Men Residuals', 'Shot Put Women Residuals'])
    plt.show()
```



```
In [25]: plt.figure(figsize=(12, 4))
    plt.scatter(tf_results['Long Jump Men'].Year, res_lj_m, color = 'b')
    plt.scatter(tf_results['Long Jump Women'].Year, res_lj_w, color = 'g')
    plt.xlabel('Year')
    plt.ylabel('Residual')
    plt.title('Residuals for Long Jump')
    plt.legend(['Long Jump Men Residuals', 'Long Jump Women Residuals'])
    plt.show()
```


We are somewhat suspicious of whether or not the error variance is constant or normally distributed. We also believe that we may need higher order terms or a Box-Cox transformation to fit our regression model better than it currently fits the data.

Normal Probability Plots

```
In [26]: #100M Men
    res_prob_100m_m = stats.probplot(res_100_m, plot= plt)
    plt.show()
```



```
In [27]: #100M Women
    res_prob_100m_w = stats.probplot(res_100_w, plot= plt)
    plt.show()
```



```
In [28]: #200M Men
    res_prob_200m_m = stats.probplot(res_200_m, plot= plt)
    plt.show()
```


In [29]: #200M Women
 res_prob_200m_w = stats.probplot(res_200_w, plot= plt)
 plt.show()


```
In [30]: #1500M Men
    res_prob_1500m_m = stats.probplot(res_1500_m, plot= plt)
    plt.show()
```


In [31]: #1500M Women
 res_prob_1500m_w = stats.probplot(res_1500_w, plot= plt)
 plt.show()


```
In [32]: #Men's Shot Put
    res_prob_sp_m = stats.probplot(res_sp_m, plot= plt)
    plt.show()
```



```
In [34]: #Men's Long Jump
    res_prob_lj_m = stats.probplot(res_lj_m, plot= plt)
    plt.show()
```


In [35]: #Women's Long Jump
 res_prob_lj_w = stats.probplot(res_lj_w, plot= plt)
 plt.show()

It appears that there are some departures in normality in every single normal probability plot in varying degrees of seriousness except for Shot Put, Women's Long Jump, and Men's 200M dash. This again strongly implies that the error variance is not constant for this model and that we may need to utilize some higher order terms to better fit the data.

Bruesch-Pagan Tests for Constant Error Variance

We will also run a Bruesh-Pagan test to test form departures in constancy of the error terms. Remember, this test is carried out as follows:

```
We regress the function: log(\sigma_i^2)=\gamma_0+\gamma_1x_{i1} H_0:\gamma_1=0 H_1:\gamma_1
eq 0 Test statistic: rac{SSR^*/2}{(SSE/n)^2}
```

Where SSR^* is the regression sum of squares for the log regression of the residuals.

Critical value for the rejection region would be $\chi^2_{\alpha/2:1}$, and we will test at an α = 0.05 level.

```
In [36]: from statsmodels.stats import diagnostic as dn
         bp_100_m = dn.het_breuschpagan(model_100M_Men.resid, model_100M_Men.model.exog
         print("The Breusch-Pagan test yields a p-value of: ", bp 100 m[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.00066013566230912351, '.')
In [37]: bp_100_w = dn.het_breuschpagan(model_100M_Women.resid, model_100M_Women.model.
         print("The Breusch-Pagan test yields a p-value of: ", bp 100 w[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.021171634781806045, '.')
         bp_200_m = dn.het_breuschpagan(model_200M_Men.resid, model_200M_Men.model.exog
In [38]:
         print("The Breusch-Pagan test yields a p-value of: ", bp 200 m[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.82010810471300388, '.')
         bp_200_w = dn.het_breuschpagan(model_200M_Women.resid, model_200M_Women.model.
In [39]:
         print("The Breusch-Pagan test yields a p-value of: ", bp 200 w[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.0047673629262334448, '.')
         bp 1500 m = dn.het breuschpagan(Men 1500M.resid, Men 1500M.model.exog)
In [40]:
         print("The Breusch-Pagan test yields a p-value of: ", bp_1500_m[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.25447848550659419, '.')
```

```
bp 1500 w = dn.het breuschpagan(Women 1500M.resid, Women 1500M.model.exog)
         print("The Breusch-Pagan test yields a p-value of: ", bp_1500_w[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.10160731583559358, '.')
         bp lj m = dn.het breuschpagan(LJ Men.resid, LJ Men.model.exog)
In [42]:
         print("The Breusch-Pagan test yields a p-value of: ", bp lj m[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.04485189184383321, '.')
In [43]:
         bp lj w = dn.het breuschpagan(LJ Women.resid, LJ Women.model.exog)
         print("The Breusch-Pagan test yields a p-value of: ", bp_lj_w[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.073930238062038287, '.')
In [44]: | bp_sp_m = dn.het_breuschpagan(SP_Men.resid, SP_Men.model.exog)
         print("The Breusch-Pagan test yields a p-value of: ", bp_sp_m[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.25290089457670523, '.')
In [45]:
         bp sp w = dn.het breuschpagan(SP Women.resid, SP Women.model.exog)
         print("The Breusch-Pagan test yields a p-value of: ", bp sp w[3],".")
         ('The Breusch-Pagan test yields a p-value of: ', 0.0072550835390873597, '.')
```

Based on the Bruesch-Pagan tests we have run, it appears that the only track results that we have regressed that do not have constant error variance are the 100M Results, the Women's 200M, the Men's Long Jump, and the Women's Shot Put at an significance level of $\alpha=0.05$.

Goodness of Fit Tests on First Order Model:

Since we have repeat observations at each independent predictor variable, we should be able to run an F test for lack of fit. Remember, the F-test for lack of fit is carried out as follows:

$$H_0: E(Y) = \beta_0 + \beta_1 X$$

$$H_1: E(Y)
eq eta_0 + eta_1 X$$

The test statistic here would be $F^*=rac{SSLF}{c-2}/rac{SSPE}{n-c}=rac{MSLF}{MSPE}$, where c is the number of years with replicates and $n=\sum j=1^c n_j$ and n is the number of observations.

Our decision rule is:

 $F^* \leq F(1-\alpha;c-2,n-c)$ then we conclude that our simple linear model is appropriate.

 $F^*>F(1-lpha;c-2,n-c)$ then we conclude that our simple linear model is not appropriate for our data.

We will control the error at α = 0.05.

ALL THE CODE WILL BE IN R FOR THESE TESTS.

All of the results are on Github. In all cases we conclude that the simple linear models are not appropriate. Clearly, we should use some Box-Cox transformations on our results in order to better predict the results.