dátum:	a mérést végezte:						
Logikai kapuk – Kombinációs log. hálózatok – mérési jegyzőkönyv –							
1.) Vegye fel gyakorlatilag egy-e	gy kétbemenetű NAND ill.	NOR kapu igaz	zságtábláza	tát!			
z összerakott áramkör: 2.) Tervezzen NAND kapukból í függvényeket valósítják meg. A helyességét.			gyakorlati a VAGY é				
ÉS függvény NAND-ekből:	VAGY függvény NAND-	-ekből:	NEGÁCIÓ Ì	NAND-ekből:			
			gyakorlat	i mérés igazolása:			

1/5

3.) Tervezzen az alábbi igazságtáblázat szerint működő bináris-tetrális (bináris – négyből egy) átalakítót!

A	В	X_0	X_1	X_2	X_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Tervezés és kapcsolási rajz:	

Ellenőrizze gyakorlatilag a tervezés helyességét!

gyakorlati mérés igazolása:

4.) Tetrális-bináris átalakító vizsgálata: a 3.) pontban leírtakat végezze el ebben az esetben is!

$\mathbf{A_0}$	$\mathbf{A_1}$	A ₂	A ₃	X	Y
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Tervezés és kapcsolási rajz:	
Tervezes es rapesolasi rajz.	

Ellenőrizze gyakorlatilag a tervezés helyességét!

gyakorlati mérés igazolása:

5.) Tervezzen 4 adatvezetékkel (2 címvezetékkel) rendelkező multiplexert! Az alábbi egyszerűsített igazságtáblázat írja le a multiplexer működését. Az A_0 , A_1 címvezetékek határozzák meg, hogy melyik (D_0,D_1,D_2,D_3) adatvezeték tartalma kerüljön az egy szem kimenetre (M).

$\mathbf{A_0}$	A ₁	$\mathbf{D_0}$	D ₁	D ₂	D_3	M
0	0	d	X	X	X	d
0	1	X	d	X	X	d
1	0	X	X	d	X	d
1	1	X	X	X	d	d

(A táblázatban szereplő d az illető adatvezeték logikai szintjét 0 vagy 1 jelenti, x pedig ún. "don't care = érdektelen" állapot, 0 ill. 1 értéke nem befolyásolja az **M** kimenetet.)

kinyomtatva: 01-03-02-n 3/5

A tervezés menete, valamint a	multiplexer l	kapcsolási rajza	a kerüljön be a	a jegyzőkönyvbe!
-------------------------------	---------------	------------------	-----------------	------------------

Tervezés és kapcsolási rajz:		
A tervezés helyességét gyakorlatilag is ellenőrizni kell.	gyakorlati me	érés igazolása:
Hány sorból állna a fenti igazságtáblázat, ha az egyszerűsített forma h	pelvett a teliest	
használnánk?	iciyett a teijest	sorból
Az így elkészült multiplexer segítségével valósítson meg egy - a gya	ıkorlatvezető álta	l megadott -
háromváltozós logikai függvényt!		S
3 változós logikai fgv. kapcsolási rajz		
5 variozos toginarigy. Kapesotasi rajz		
	gyakorlati m	érés igazolása:
		-

4/5

kinyomtatva: 01-03-02-n

6.) Az alábbi ábra két darab egy bites teljes összeadót mutat. A szaggatott vonalon belüli részek alkalmasak két egy bites (áthozatallal is rendelkező) bináris szám összeadására (eredményként átvitel is keletkezhet). A szaggatott blokkok számának növelésével és megfelelő huzalozással tetszőleges bithosszúságú összeadó készíthető.

Valósítsa meg gyakorlatilag az alábbi ábra szerinti összeadót! A bemeneteket A1-A0 ill. B1-B0 sorrendben

gyakorlati mérés igazolása:

csoportosítsa a kapcsolósoron, hogy világosabban kitünjön az összeadandó két kétbites szám. A kimeneteket is hasonlóan logikus sorrendben vezesse az "output" blokkra!

Ha mindezzel végzett és kellően érti a teljes összeadó működését, próbálja ki az egy "Leybold kockába" sűritett "4-bit addert"-t. Két ilyen blokk felhasználásával építsen két nyolcbites szám összeadására alkalmas összeadót!

gyakorlati mérés igazolása:

kinyomtatva: 01-03-02-n 5/5