Nazwisko:				
Imię:			Podpis:	
Numer albumu:				

Prace bez podanego numeru albumu lub bez podpisu nie będą oceniane. Odpowiedzi na poszczególne pytania należy koniecznie wpisać (jako cyfry) do poniższej tabeli. Zakreślanie odpowiedzi w tekstach pytań nie będzie uwzględniane. Punktacja podana jest na lewym marginesie. Podczas testu nie wolno korzystać z żadnych pomocy oprócz prostych kalkulatorów naukowych. Każde pytanie ma dokładnie jedną prawidłową odpowiedź. Czas trwania testu: 35 minut.

UWAGA! W niniejszym kluczu każde pytanie może mieć więcej niż jedną odpowiedź prawidłową i więcej niż trzy nieprawidłowe. Do docelowego testu wybierana jest spośród nich dokładnie jedna odpowiedź prawidłowa i dokładnie trzy nieprawidłowe. Odpowiedzi prawidłowe są w tekście klucza wyróżnione pogrubieniem.

Pyt.	A	В	С	D	Е	F	G	Σ
Pkt.	1	1	1	1	2	1	2	9
Odp.								

Jeżeli w obwodzie przedstawionym na rysunku opór $2~\Omega$ zastąpimy zwarciem, to jak zmieni się wartość bezwzględna napięcia na oporze $10~\Omega$?

1. nie zmieni się 2. spadnie do zera 3. zmniejszy się 5 razy 4. zmniejszy się 1,2 raza 5. wzrośnie 5 razy 6. wzrośnie 1,2 raza

Jaki jest wkład do natężenia prądu I pochodzący od źródła napięciowego E w metodzie superpozycji?

1. E/R 2. 0 3. -E/R 4. ER 5. -ER 6. E-JR 7. E+JR 8. w tym obwodzie nie wolno stosować zasady superpozycji

Jaka jest wartość bezwzględna siły elektromotorycznej źródła zastępczego Thévenina równoważnego dwójnikowi przedstawionemu na rysunku?

1. 6 V 2. 3 V 3. 4 V 4. 5 V 5. 8 V 6. 10 V 7. 12 V

1p.

Które równanie opisuje lewe oczko?

1. $5 \text{ V} + 7 \Omega \cdot I_2 - 3 \Omega \cdot I_1 = 0$ **2.** $3 \Omega \cdot I_1 - 5 \text{ V} = 7 \Omega \cdot I_2$ **3.** $3 \Omega \cdot I_1 = 5 \text{ V} + 7 \Omega \cdot I_2$ **4.** $5 \text{ V} - 7 \Omega \cdot I_2 - 3 \Omega \cdot I_1 = 0$ **5.** $5 \text{ V} + 7 \Omega \cdot I_2 + 3 \Omega \cdot I_1 = 0$ **6.** $-5 \text{ V} + 7 \Omega \cdot I_2 - 3 \Omega \cdot I_1 = 0$ **7.** $5 \text{ V} - 3 \Omega \cdot I_1 = 7 \Omega \cdot I_2$ **8.** $5 \text{ V} - 10 \Omega \cdot I_3 + 10 \text{ V} - 3 \Omega \cdot I_1 = 0$

Ile wynosi moc oddawana przez źródło napięciowe w obwodzie pokazanym na rysunku?

- **1.** 20 mW 2. 0 mW 3. 9 mW 4. 40 mW 5. 50 mW 6. 100 mW
- 1p. F. Które z poniższych stwierdzeń jest zawsze prawdziwe dla różnych co do wartości oporów połączonych równolegle w obwodzie prądu stałego?
 - W małym oporze wydziela się większa moc niż w dużym.
 Na wszystkich oporach występuje takie samo napięcie, niezależnie od wartości oporu.
 W dużym oporze wydziela się większa moc niż w małym.
 Przez wszystkie opory płynie prąd o takim samym natężeniu, niezależnie od wartości oporu.
 Na najmniejszym oporze odkłada się największe napięcie.
 W każdym oporze wydziela się taka sama moc, niezależnie od wartości oporu.

2p.

Jakie jest natężenie prądu płynącego przez opór $3~\Omega$?

1. $\frac{4}{3}$ A 2. $\frac{1}{3}$ A 3. $\frac{1}{2}$ A 4. $\frac{2}{3}$ A 5. 1 A 6. 2 A