机器学习 课程笔记

酥雨

zusuyu@stu.pku.edu.cn

April 26, 2022

目录

1	Inec	qualitie	es es	2
2	VC	Theor	\mathbf{y}	5
3	Lagrange Duality Game Theory			7
4				8
5	Boo	sting		5 7 8 9 VM
6	PAC-Bayesian Theory			10
	6.1	PAC-E	Bayesian Bound for SVM	11
7	Alg	orithm	ic Stability	12
8	Unsupervised Learning			14
	8.1	Cluste	ring	14
		8.1.1	K-means	14
		8.1.2	K-means++	14
	8.2	Dimen	sionality Reduction	14
9	Online Learning			15
	9.1	Online	Learning with Expert Advice	15
		9.1.1	Weighted Majority Vote	15
		9.1.2	Randomized Weighted Updating	16
		9.1.3	Hedge Algorithm	16
	9.2	Proof	of Minimax Theorem via Online Learning	17
		9.2.1	The \geqslant Direction	17
		9.2.2	The \leq Direction	17

1 Inequalities

定理 1.1 (Markov Inequality). 如果非负随机变量 X 期望存在,则对于任意 k > 0,

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \frac{\mathbb{E}\left[X\right]}{k}$$

进一步地, 如果 r 阶矩 $\mathbb{E}[X^r]$ 存在, 则对于任意 k > 0,

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \min_{j \leqslant r} \frac{\mathbb{E}\left[X^{j}\right]}{k^{j}}$$

定理 1.2 (Chebyshev Inequality). 如果随机变量 X 方差存在,则对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| \geqslant \varepsilon\right] \leqslant \frac{\operatorname{Var}\left[X\right]}{\varepsilon^{2}}$$

定义 1.1 (矩生成函数, Moment Generating Function, MGF). 如果随机变量 X 的任意 $n \in \mathbb{N}$ 阶矩存在,则定义其矩生成函数为

$$M_X(t) = \mathbb{E}\left[e^{tX}\right] = \sum_{i>0} t^i \frac{\mathbb{E}\left[X^i\right]}{i!}$$

定理 1.3 (Chernoff Inequality).

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \inf_{t>0} e^{-tk} M_X(t)$$

定理 1.4. $X_1, X_2, \dots, X_n \sim \text{ i.i.d. } \mathcal{B}(1,p),$ 对于任意 $\varepsilon > 0$

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

其中 $D_B(p||q)$ 是两个 Bernoulli distribution P = (p, 1-p), Q = (q, 1-q) 之间的相对熵. 证明.

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right] = \mathbb{P}\left[\sum_{i=1}^{n}X_{i}\geqslant n(p+\varepsilon)\right]$$

$$\leqslant \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}\mathbb{E}\left[\mathrm{e}^{t\sum_{i=1}^{n}X_{i}}\right]$$

$$= \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}\prod_{i=1}^{n}\mathbb{E}\left[\mathrm{e}^{tX_{i}}\right]$$

$$= \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}(p\mathrm{e}^{t}+1-p)^{n}$$

$$= \inf_{t>0}\left(\frac{p\mathrm{e}^{t}+1-p}{\mathrm{e}^{t(p+\varepsilon)}}\right)^{n}$$

通过"简单"求导,取 $t=\ln\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}$ 时上式右边取最小值,从而有

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\left(\frac{\frac{(1-p)(p+\varepsilon)}{1-p-\varepsilon}+1-p}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n}=\left(\frac{\frac{1-p}{1-p-\varepsilon}}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n}$$

$$=\left(\left(\frac{p}{p+\varepsilon}\right)^{p+\varepsilon}\left(\frac{1-p}{1-p-\varepsilon}\right)^{1-p-\varepsilon}\right)^{n}=e^{-nD_{B}(p+\varepsilon\|p)}$$

定理 1.5. $X_1, X_2, \dots, X_n \in [0, 1]$ 是 n 个期望相同的独立随机变量, $\mathbb{E}[X_i] = p$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

证明. 注意到指数函数是下凸的, 根据 Jensen Inequality, 有

$$\mathbb{E}\left[\mathbf{e}^{tX}\right] \leqslant \mathbb{E}\left[X\mathbf{e}^{t} + (1 - X)\mathbf{e}^{0}\right] = p\mathbf{e}^{t} + 1 - p$$

从而

$$\mathbb{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right] \leqslant (pe^{t} + 1 - p)$$

沿用定理 1.4 的证明即可.

定理 1.6 (Chernoff Bound). $X_1, X_2, \dots, X_n \in [0,1]$ 是 n 个独立随机变量, $\mathbb{E}[X_i] = p_i$, 记 $p = \frac{1}{n} \sum_{i=1}^n p_i$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

证明. 注意到对数函数是上凸的, 从而函数 $f(x) = \ln(xe^t + 1 - x)$ 也是上凸的, 同样根据 Jensen Inequality, 有

$$\frac{1}{n} \sum_{i=1}^{n} \ln(p_i e^t + 1 - p_i) \leqslant \ln(p e^t + 1 - p)$$

从而

$$\mathbb{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right] \leqslant \prod_{i=1}^{n}(p_{i}e^{t}+1-p_{i}) \leqslant (pe^{t}+1-p)^{n}$$

定理 1.7 (Additive Chernoff Bound). $X_1, X_2, \dots, X_n \in [0,1]$ 是 n 个独立随机变量, $\mathbb{E}[X_i] = p_i$, 记 $p = \frac{1}{n} \sum_{i=1}^{n} p_i$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-2n\varepsilon^{2}}$$

证明. 只需要证明 $D_B(p+\varepsilon||p) \ge 2\varepsilon^2$ 即可. 听说可以暴力求导.

定理 1.8 (Hoeffding Bound). X_1, X_2, \dots, X_n 是 n 个独立随机变量, $X_i \in [a_i, b_i]$, 记 $p = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n} \sum_{i=1}^n \frac{a_i + b_i}{2}$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-\frac{2n\varepsilon^{2}}{\left(\frac{1}{n}\sum_{i=1}^{n}b_{i}-a_{i}\right)^{2}}}\leqslant\mathrm{e}^{-\frac{2n^{2}\varepsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}}$$

定理 1.9 (McDiarmid Inequality). $X_1, X_2, \dots, X_n \in \mathcal{X}$ 是 n 个独立随机变量, 如果对于 $f: \mathcal{X}^n \to \mathbb{R}$ 存在 常数 c_1, c_2, \dots, c_n 使得

$$|f(x_1,\cdots,x_i,\cdots,x_n)-f(x_1,\cdots,x_i',\cdots,x_n)| \leq c_i$$

对于任意 $i \in [n], x_1, \dots, x_n, x_i'$ 成立, 则对于任意 $\varepsilon > 0$, 有

$$\mathbb{P}\left[f(x_1,\dots,x_n) - \mathbb{E}\left[f(x_1,\dots,x_n)\right] \geqslant \varepsilon\right] \leqslant \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

定理 1.10 (Draw with/without Replacement). 有 m 个数 $a_1, \dots, a_m \in \{0, 1\}$, 记 $p = \frac{1}{m} \sum_{i=1}^m a_i$. X_1, \dots, X_n 为从 $\{a_1, \dots, a_m\}$ 中的随机放回抽样, Y_1, \dots, Y_n 为从 $\{a_1, \dots, a_m\}$ 中的随机不放回抽样, 则对于任意 $\varepsilon > 0$ 有

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-2n\varepsilon^{2}},\qquad\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}Y_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-2n\varepsilon^{2}}$$

证明. 对于随机放回抽样,显然每次抽样是独立的,从而结论是 Chernoff Bound 的平凡推论.

对于随机不放回抽样, 注意到 $\mathbb{E}\left[\prod_{i\in I}Y_i\right]\leqslant\mathbb{E}\left[\prod_{i\in I}X_i\right]$ 对任意指标集 $I\subseteq\{1,\cdots,n\}$ 成立, 从而可以证明 $\mathbb{E}\left[\mathrm{e}^{t\sum_{i=1}^nY_i}\right]\leqslant\mathbb{E}\left[\mathrm{e}^{t\sum_{i=1}^nX_i}\right].$

2 VC Theory

对一个分类器 f, 通常有两种评价指标: training error $err_S(f) = \mathbb{P}_{(x,y)\in S}[y \neq f(x)]$ 与 generalization error $err_D(f) = \mathbb{P}_{(x,y)\sim D}[y \neq f(x)]$. 接下来可能会不加声明地用 S 表示从数据集 D 中 sample 出来的训练集.

称 $err_D(f) - err_S(f)$ 为分类器 f 的 generalization gap. 我们提出一致收敛 (uniformly converge) 的概念, 它表示随着训练集 S 的增大, hypothesis space F 中的所有分类器 f 的 generalization gap 都会"一致"地被 bound 住.

定理 2.1 (Uniform Convergence when $|\mathcal{F}| < \infty$). S 是从数据集 D 中随机采样的训练集, |S| = n, 有

$$\mathbb{P}\left[\forall f \in \mathcal{F}, err_D(f) - err_S(f) \geqslant \varepsilon\right] \leqslant |\mathcal{F}| e^{-2n\varepsilon^2}$$

证明. 对于某个确定的 $f \in \mathcal{F}$, 注意到 $err_S(f) = \frac{1}{n} \sum_{i=1}^n [y_i \neq f(x_i)]$, $\mathbb{E}[y_i \neq f(x_i)] = err_D(f)$, 故根据 Chernoff Bound 有 $\mathbb{P}[err_D(f) - err_S(f) \geq \varepsilon] \leq e^{-2n\varepsilon^2}$. 再结合 Union Bound 即得结论.

定理 2.2 (VC Theorem). 对于 VC-dimension (会在接下来定义) 为 d 的 hypothesis space \mathcal{F} , 从数据集 D 中随机采样大小为 n 的训练集 S, 则

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}|err_D(f) - err_S(f)| \geqslant \varepsilon\right] \leqslant 2\left(\frac{2en}{d}\right)^d e^{-cn\varepsilon^2}$$

其中 c 是常数. 或者等价地, 有至少 $1-\delta$ 的概率, 对所有 $f \in \mathcal{F}$ 有

$$err_D(f) \leqslant err_S(f) + O\left(\sqrt{\frac{d \ln n - \ln \delta}{n}}\right)$$

为了接下来的叙述方便, 我们引入一些记号:

- 对于分类器 $f \in \mathcal{F}$ 以及数据点 $z = (x, y) \sim D$, 定义 $\phi_f(z) = \mathbb{1}[y \neq f(x)]$, 即每个 ϕ_f 是一个 "长度为 |D|" 的 01 串, 1 表示 f 会在这一位对应的数据点上出错.
- 定义 $\Phi_{\mathcal{F}} = \{\phi_f | f \in \mathcal{F}\}$. 由于以下不会超过一个 hypothesis space, 故省略角标简记为 Φ .

如此一来,对于 $S=\{z_1=(x_1,y_1),\cdots,z_n=(x_n,y_n)\}$,两种错误率 $err_S(f)$ 和 $err_D(f)$ 就分别等价于 $\frac{1}{n}\sum_{i=1}^n\phi_f(z_i)$ 和 $\mathbb{E}_{z\sim D}\phi_f(z)$,而我们需要限制的概率也变成了

$$\mathbb{P}_{S \sim D^n} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^n \phi(z_i) - \mathbb{E}_{z \sim D}[\phi(z)] \right| \geqslant \varepsilon \right]$$

引理 2.1 (Double Sampling). 取 $n \geqslant \frac{\ln 2}{\varepsilon^2}$, 有

$$\mathbb{P}_{S \sim D^n} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^n \phi(z_i) - \mathbb{E}_{z \sim D}[\phi(z)] \right| \geqslant \varepsilon \right] \leqslant 2 \mathbb{P}_{S \sim D^{2n}} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^n \phi(z_i) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_i) \right| \geqslant \frac{\varepsilon}{2} \right]$$

通过 Double Sampling, 我们只需要限制 $\frac{1}{n}\sum_{i=1}^{n}\phi(z_i)$ 与 $\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_i)$ 的差. 考虑一种新的抽样方式, 先随机抽取 $\{z_1,\cdots,z_{2n}\}$, 再对其随机排列, 这样显然是与原先等价的, 即

$$\mathbb{P}_{S \sim D^{2n}} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_i) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_i) \right| \geqslant \varepsilon \right] = \mathbb{E}_{S \sim D^n} \left[\mathbb{P}_{\sigma} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_{\sigma(i)}) \right| \geqslant \varepsilon \right] \right]$$

这么做的意义是什么?意义是可以先只考虑内层的 \mathbb{P}_{σ} 而不管 $S \sim D^n$ 的选取. 看似强行取的随机排列 σ 是为了内层可以被 bound, 不然 $\mathbb{1}\left[\left|\frac{1}{n}\sum_{i=1}^n\phi(z_i)-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_i)\right|\geqslant\varepsilon\right]$ 还不太方便处理.

记 $N^{\Phi}(z_1,\cdots,z_n)$ 表示 # $\{(\phi(z_1),\cdots,\phi(z_n))|\phi\in\Phi\}$, 即 Φ 中的所有 01 串在数据点 z_1,\cdots,z_n 上有多少种不同的. 从这个角度想, 其实 $\sup_{\phi\in\Phi}$ 只是在对有限项求 max, 故根据 Union Bound 可以得到

$$\mathbb{P}_{\sigma}\left[\sup_{\phi\in\Phi}\left|\frac{1}{n}\sum_{i=1}^{n}\phi(z_{\sigma(i)})-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_{\sigma(i)})\right|\geqslant\varepsilon\right]\leqslant N^{\Phi}(z_{1},\cdots,z_{2n})\mathbb{P}_{\sigma}\left[\left|\frac{1}{n}\sum_{i=1}^{n}\phi(z_{\sigma(i)})-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_{\sigma(i)})\right|\geqslant\varepsilon\right]$$

其实这里写得不太严谨, 右边应该是对 $N^{\Phi}(z_1,\cdots,z_{2n})$ 个不同的 ϕ 分别求概率再相加, 但我们接下来会对任意 ϕ 限制 $\mathbb{P}_{\sigma}\left[\left|\frac{1}{n}\sum_{i=1}^{n}\phi(z_{\sigma(i)})-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_{\sigma(i)})\right|\geqslant\varepsilon\right]$, 所以应该也无伤大雅.

对于一个特定的 $\phi \in \Phi$, 考虑 $\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)})$ 其实就是在 $\{\phi(z_1), \cdots, \phi(z_{2n})\}$ 这 2n 个数中做不放回抽样, 故根据定理 1.10, 有

$$\mathbb{P}_{\sigma} \left[\left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_{\sigma(i)}) \right| \geqslant \varepsilon \right] = 2\mathbb{P}_{\sigma} \left[\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_{\sigma(i)}) \geqslant \varepsilon \right] \\
= 2\mathbb{P}_{\sigma} \left[\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{2n} \sum_{i=1}^{2n} \phi(z_{\sigma(i)}) \geqslant \frac{\varepsilon}{2} \right] \\
= 2\mathbb{P}_{\sigma} \left[\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - p \geqslant \frac{\varepsilon}{2} \right] \\
\leqslant 2e^{-\frac{n\varepsilon^{2}}{2}}$$

从而我们得到了

$$\mathbb{P}_{S \sim D^{2n}} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_i) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_i) \right| \geqslant \varepsilon \right] \leqslant 2e^{-\frac{n\varepsilon^2}{2}} \mathbb{E}_{S \sim D^{2n}} \left[N^{\Phi}(z_1, \dots, z_{2n}) \right]$$

3 Lagrange Duality

4 Game Theory

Game theory is the study of mathematical models of strategic interactions among rational agents, cited from Wikipedia.

我们引入"双人矩阵博弈"作为对博弈论最基础的介绍. 注意, 接下来我们考虑的所有问题都是零和的.

定义 4.1 (Two-player Matrix Game). 有一个 $M \in \mathbb{R}^{m \times n}$ 的矩阵. 两名玩家 Alice 和 Bob 参加了这场博弈. Alice, <u>the row player</u> 选择一行 $i \in [m]$, 相应的, Bob, <u>the column player</u> 选择一列 $j \in [n]$, 此时 Alice 获得收益 $-M_{ij}$, Bob 获得收益 M_{ij} .

我们首先探讨**纯策略 (pure strategy)** 的情景, 指的是 Alice 和 Bob 必须分别选择某个确定的行或列.

当 Alice 先做出选择时, 当她选出第 i 行后, 她会认为 Bob 会选择第 $j_i = \arg\max_j M_{ij}$ 列, 因此她会选择第 $\arg\min_i \max_j M_{ij}$ 行, 导致最终的博弈结果为 $\min_i \max_j M_{ij}$.

同理, 当 Bob 先做选择时, 他会选择第 $\arg\max_j \min_i M_{ij}$ 列, 导致最终的博弈结果为 $\max_j \min_i M_{ij}$ 我们指出在纯策略的情境下, 后手是有优势的, 即

定理 4.1. $\min_i \max_j M_{ij} \geqslant \max_j \min_i M_{ij}$ 对于任意 $M \in \mathbb{R}^{m \times n}$ 都成立,同时存在 M',使 $\min_i \max_j {M'}_{ij} > \max_j \min_i {M'}_{ij}$.

证明. 记 $i_0 = \arg\min_i \max_j M_{ij}, j_0 = \arg\max_j \min_i M_{ij}$, 有

$$\min_i \max_j M_{ij} = \max_j M_{i_0j} \geqslant M_{i_0j_0} \geqslant \min_i M_{ij_0} = \max_j \min_i M_{ij}$$

考虑
$$M' = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$
,有 $\min_i \max_j M'_{ij} = -1$, $\max_j \min_i M'_{ij} = 1$.

接着我们研究**混合策略 (mixed strategy)**, 其意味着玩家做出的决策可以不是确定的行列选择, 而是一个概率分布. 相应地, 得到的收益也就变成了期望收益.

形式化地, Alice 选择给出概率分布 $p = (p_1, \dots, p_m) \in [0, 1]^m$, Bob 给出概率分布 $q = (q_1, \dots, q_n) \in [0, 1]^n$. 合法的概率分布需要满足 $||p||_1 = ||q|| = 1$, 而此时两人的收益也分别是 $-p^T M q$ 与 $p^T M q$.

与纯策略的情境同理, 当 Alice 先手时, 博弈结果为 $\min_{p \in [0,1]^m, \|p\|_1 = 1} \max_{q \in [0,1]^n, \|q\|_1 = 1} p^{\mathrm{T}} M q$, 当 Bob 先手时, 博弈结果为 $\max_{q \in [0,1]^n, \|q\|_1 = 1} \min_{p \in [0,1]^m, \|p\|_1 = 1} p^{\mathrm{T}} M q$. 在接下来的叙述中, 我们默认 p,q 应取合法的概率分布, 而忽略在 \min , max 记号下的明确限制.

我们想要知道混合策略下后手还有没有优势. John von Neuman 告诉我们,没有.

定理 4.2 (von Neuman Minimax Theorem).

$$\min_{p} \max_{q} p^{\mathrm{T}} M q = \max_{q} \min_{p} p^{\mathrm{T}} M q$$

5 Boosting

Algorithm 1 AdaBoost

Require: training set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$, weak learning algorithm \mathcal{A}

- 1: $D_1(i) \leftarrow \frac{1}{n}, \forall i \in [n].$
- 2: for $t = 1 \rightarrow T$ do
- Use \mathcal{A} to learn a classifier h_t based on D_t . $\varepsilon_t \leftarrow \sum_{i=1}^n D_t(i) \mathbb{1}[y_i \neq h_t(x_i)]$ $\gamma_t \leftarrow 1 2\varepsilon_t$

- $\alpha_t \leftarrow \frac{1}{2} \ln \frac{1+\gamma_t}{1-\gamma_t}$ $Z_t \leftarrow 2(\varepsilon_t (1-\varepsilon_t))^2$
- $D_{t+1}(i) \leftarrow \frac{1}{Z_t} D_t(i) \exp(-y_i \alpha_t h_t(x_i))$
- 10: **return** a classifier F, $F(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

6 PAC-Bayesian Theory

定理 6.1 (PAC-Bayesian Theorem). 对于给定的 prior distribution of classifiers \mathcal{P} , 从数据集 D 中随机抽取 大小为 n 的训练集 S, 有至少 $1-\delta$ 的概率, 对于任意 distribution of classifiers \mathcal{Q} 有如下不等式成立

$$\mathbb{E}_{h \sim \mathcal{Q}}[err_D(h)] \leqslant \mathbb{E}_{h \sim \mathcal{Q}}[err_S(h)] + \sqrt{\frac{D_{KL}(\mathcal{Q}||\mathcal{P}) + \log(3/\delta)}{n}}$$

其中 $err_X(f)$ 表示 classifier f 在数据集 X 上的错误率,即 $\mathbb{P}_{(x,y)\in X}[y\neq f(x)], D_{KL}(\mathcal{Q}||\mathcal{P}) = \mathbb{E}_{h\sim\mathcal{Q}}\left[\ln\frac{\mathcal{Q}_h}{\mathcal{P}_h}\right]$ 为概率分布 \mathcal{Q} 与 \mathcal{P} 的 KL 散度.

引理 6.1. 对于任意在 hypothesis space \mathcal{F} 上的概率分布 \mathcal{P}, \mathcal{Q} , 以及任意函数 $f: \mathcal{F} \to \mathbb{R}$, 都有

$$\mathbb{E}_{h \sim Q}[f(h)] \leqslant \ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + D_{KL}(\mathcal{Q}||\mathcal{P})$$

证明.

RHS – LHS =
$$\ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + D_{KL}(\mathcal{Q}||\mathcal{P}) - \mathbb{E}_{h \sim Q}[f(h)]$$

= $\ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + \mathbb{E}_{h \sim \mathcal{Q}}\left[\ln \frac{\mathcal{Q}_h}{\mathcal{P}_h}\right] - \mathbb{E}_{h \sim Q}[f(h)]$
= $\mathbb{E}_{h \sim Q}\left[\ln \frac{\mathcal{Q}_h}{\mathbb{E}_{h' \sim \mathcal{P}}[\exp(f(h'))]}\right]$
= $\mathbb{E}_{h \sim Q}\left[\ln \frac{\mathcal{Q}_h}{\mathcal{R}_h}\right]$
= $D_{KL}(\mathcal{Q}||\mathcal{R})$
 $\geqslant 0$

其中 \mathcal{R} 也是一个 \mathcal{F} 上的概率分布, $\mathcal{R}_h = \frac{\mathcal{P}_h \exp(f(h))}{\mathbb{E}_{h' \sim \mathcal{P}}[\exp(f(h'))]}$.

引理 6.2. 对于任意 $\delta > 0$, 有

$$\mathbb{P}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} \left[e^{n(err_D(h) - err_S(h))^2} \right] \geqslant 3/\delta \right) \leqslant \delta$$

证明. 先证明对于某个固定的 $h \sim \mathcal{P}$, 有

$$\mathbb{E}_{S \sim D^n} \left[e^{n(err_D(h) - err_S(h))^2} \right] \leqslant 3$$

记 $\Delta = |err_D(h) - err_S(h)|$, 根据 Chernoff bound, 有

$$\mathbb{P}_{S \sim D^n}(\Delta \geqslant \varepsilon) \leqslant 2 \exp(-2n\varepsilon^2)$$

于是

$$\mathbb{E}_{S \sim D^n} \left[e^{n\Delta^2} \right] = \int_0^{+\infty} \mathbb{P}_{S \sim D^n} \left(e^{n\Delta^2} \geqslant t \right) dt$$
$$= \int_1^{+\infty} \mathbb{P}_{S \sim D^n} \left(\Delta \geqslant \sqrt{\frac{\ln t}{n}} \right) dt + 1$$
$$\leqslant \int_1^{+\infty} 2e^{-2\ln t} dt + 1$$
$$= 3$$

随后, 使用 Markov Inequality 得到

$$\mathbb{P}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} [e^{n\Delta^2}] \geqslant 3/\delta \right) \leqslant \frac{\mathbb{E}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} [e^{n\Delta^2}] \right)}{3/\delta} = \frac{\mathbb{E}_{h \sim \mathcal{P}} \left(\mathbb{E}_{S \sim D^n} [e^{n\Delta^2}] \right)}{3/\delta} \leqslant \frac{\mathbb{E}_{h \sim \mathcal{P}} \left(3 \right)}{3/\delta} = \delta$$

我们利用上述两个引理证明定理 6.1. 有至少 $1-\delta$ 的概率,

$$(\mathbb{E}_{h \sim \mathcal{Q}}[err_D(h) - err_S(h)])^2 \leqslant \mathbb{E}_{h \sim \mathcal{Q}}[\Delta^2]$$

$$= \frac{1}{n} \mathbb{E}_{h \sim \mathcal{Q}}[n\Delta^2]$$

$$\leqslant \frac{1}{n} \left(\ln \mathbb{E}_{h \sim P} \left[e^{n\Delta^2} \right] + D_{KL}(\mathcal{Q} \| \mathcal{P}) \right)$$

$$\leqslant \frac{1}{n} \left(\ln(3/\delta) + D_{KL}(\mathcal{Q} \| \mathcal{P}) \right)$$

其中第一行等号使用了 Cauchy Inequality, 第三行使用了引理 6.1 代入 $f(h) = n\Delta^2$, 第四行使用了引理 6.2, with probability at least $1 - \delta$.

6.1 PAC-Bayesian Bound for SVM

命题 6.1. 对于任意的 distribution of classifiers Q, 令 g_Q 为一个确定性二分类器, $g_Q(x) = \operatorname{sgn}(\mathbb{E}_{h\sim Q}h(x))$, 则

$$err_D(g_Q) \leqslant 2\mathbb{E}_{h \sim Q}[err_D(h)]$$

证明. 如果 g_Q 在一个数据点 x 上出错, 则说明 Q 中至少一半的 classifier 都在 x 上出错.

考虑两个 distribution of classifiers $\mathcal{P} = \mathcal{N}(\mathbf{0}, I_d), \mathcal{Q} = \mathcal{N}(\mu \mathbf{w}, I_d)$, 其中 $\|\mathbf{w}\|_2 = 1$, μ 是缩放系数. 此时 $g_{\mathcal{Q}}$ 就是传统理解下的 linear classifier \mathbf{w} (这里不考虑常数 b).

根据定理 6.1 的结论, 我们有

$$err_D(g_Q) \leqslant 2 \left[\mathbb{E}_{h \sim Q} err_S(h) + \sqrt{\frac{D_{KL}(Q \| \mathcal{P}) + \log(3/\delta)}{n}} \right]$$

$$D_{KL}(\mathcal{Q}||\mathcal{P}) = \int_{\mathbb{R}^d} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} \|\mathbf{x} - \mu\mathbf{w}\|^2\right] \frac{1}{2} \left(\|\mathbf{x}\|^2 - \|\mathbf{x} - \mu\mathbf{w}\|^2\right) d\mathbf{x}$$

$$= \int_{\lambda} \int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} \|\lambda\mathbf{w} + \mathbf{y} - \mu\mathbf{w}\|^2\right] \frac{1}{2} \left(\|\lambda\mathbf{w} + \mathbf{y}\|^2 - \|\lambda\mathbf{w} + \mathbf{y} - \mu\mathbf{w}\|^2\right) d\lambda d\mathbf{y}$$

$$= \int_{\lambda} \int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2 - \frac{1}{2} \|\mathbf{y}\|^2\right] \frac{1}{2} \left(\lambda^2 + \|\mathbf{y}\|^2 - (\lambda - \mu)^2 - \|\mathbf{y}\|^2\right) d\lambda d\mathbf{y}$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] \frac{1}{2} (2\lambda\mu - \mu^2) d\lambda \left[\int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{(d-1)/2}} \exp\left(-\frac{1}{2} \|\mathbf{y}\|^2\right) d\mathbf{y}\right]$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] (\lambda\mu - \mu^2) d\lambda + \frac{\mu^2}{2}$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] \mu d\frac{(\lambda - \mu)^2}{2} + \frac{\mu^2}{2}$$

$$= \frac{\mu^2}{2}$$

7 Algorithmic Stability

定义 7.1 (一致稳定, Uniform Stability). \mathcal{A} 是输入训练集 $S = (z_1, \dots, z_n)$, 输出一个分类器 $\mathcal{A}(S)$ 的学习 算法. 记 $S^i = (z_1, \dots, z_{i-1}, z_i', z_{i+1}, \dots, z_n)$ 是与 S 只相差第 i 个数据点的相邻训练集, $\ell(\cdot, \cdot)$ 是损失函数, 即 $\ell(f, z)$ 是在分类器 f 下, 数据点 z 产生的损失.

称学习算法 A 关于 $\ell(\cdot,\cdot)$ 满足 $\beta(n)$ -一致稳定性, 如果对于任意大小为 n 的训练集 S 及其相邻训练集 S^i , 以及任意数据点 z, 都有

$$|\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S^i), z)| \le \beta(n)$$

定义 7.2 (Risk & Empirical Risk). 分别类似于 test error 与 training error, 定义 risk 与 empirical risk 为

$$R(\mathcal{A}(S)) = \mathbb{E}_{z \sim D}[\ell(\mathcal{A}(S), z)]$$

$$R_{emp}(\mathcal{A}(S)) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}(S), z_i)$$

以下讨论中不会出现超过一个学习算法, 故简记 $\Phi(S) = R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S))$.

定理 7.1 (一致稳定能说明泛化). 对于一个关于 $\ell(\cdot,\cdot)$ 满足 $\beta(n)$ -一致稳定性的学习算法 \mathcal{A} , 其中 $|\ell(\cdot,\cdot)| \leq M$ 有上界, 有

$$\mathbb{P}\left[\Phi(S) \leqslant \varepsilon + \beta(n)\right] \leqslant \exp\left(-\frac{n\varepsilon^2}{2(n\beta(n) + M)^2}\right)$$

或者等价的,有至少 $1-\delta$ 的概率下式成立

$$R(\mathcal{A}(s)) \leq R_{emp}(\mathcal{A}(s)) + \beta(n) + (n\beta(n) + M)\sqrt{\frac{2\ln(1/\delta)}{n}}$$

证明. 先证明两个引理.

引理 7.1. 假设 A 是对称的, 即对于任意 n 元置换 σ , 有 $A(\{z_1,\cdots,z_n\})=A(\{z_{\sigma_1},\cdots,z_{\sigma_n}\})$, 则

$$\mathbb{E}_S[\Phi(S)] \leqslant \beta(n)$$

证明.

$$\mathbb{E}_S[\Phi(S)] = \mathbb{E}_{S,z}[\ell(\mathcal{A}(S),z)] - \mathbb{E}_S[\ell(\mathcal{A}(S),z_1)] = \mathbb{E}_{S,S^1}[\ell(\mathcal{A}(S^1),z_1) - \ell(\mathcal{A}(S),z_1)] \leqslant \beta(n)$$

引理 7.2. 如果 $|\ell(\cdot,\cdot)| \leq M$ 有上界, 则对于任意 S,S^i , 有

$$|\Phi(S) - \Phi(S^i)| \leqslant 2\left(\beta(n) + \frac{M}{n}\right)$$

证明. 除了 $\ell(A(S), z_i) - \ell(A(S^i), z_i')$ 一项外, 其余所有项都可以被 $\beta(n)$ -稳定性限制住.

$$\begin{split} |\Phi(S) - \Phi(S^i)| &= |R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S)) - R(\mathcal{A}(S^i)) + R_{emp}(\mathcal{A}(S^i))| \\ &\leqslant |R_{emp}(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S^i))| + |R(\mathcal{A}(S)) - R(\mathcal{A}(S^i))| \\ &= \frac{1}{n} |\ell(\mathcal{A}(S), z_i) - \ell(\mathcal{A}(S^i), z_i')| + \frac{1}{n} \sum_{j \neq i} |\ell(\mathcal{A}(S), z_j) - \ell(\mathcal{A}(S^i), z_j)| + \left| \mathbb{E}_{z \sim D}[\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S^i), z)] \right| \\ &\leqslant \frac{2M}{n} + \frac{n-1}{n} \beta(n) + \beta(n) \\ &\leqslant 2\left(\beta(n) + \frac{M}{n}\right) \end{split}$$

考虑 McDiarmid Inequality (定理 1.9), 把 Φ 视作一个关于 z_1,\cdots,z_n 的多元函数, 则引理 7.1 与引理 7.2 分别给出了 Φ 的期望以及在相邻输入上的差的上界. 于是

$$\mathbb{P}\left[\Phi(S) \geqslant \beta(n) + \varepsilon\right] \leqslant \mathbb{P}\left[\Phi(S) - \mathbb{E}\left[\Phi(S)\right] \geqslant \varepsilon\right] \leqslant \exp\left(-\frac{2n\varepsilon^2}{\sum_{i=1}^n c_i^2}\right) = \exp\left(-\frac{n\varepsilon^2}{2(n\beta(n) + M)^2}\right)$$

8 Unsupervised Learning

前面讨论的都是监督学习. 现在我们讨论一下无监督学习. 无监督学习其实主要在做两件事情: Clustering, 以及 Dimensionality Reduction.

8.1 Clustering

对于一组 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$,需要把这些数据点划分成 k 个 cluster S_1, \dots, S_k . 可以如下定义一种划分的损失函数: 记 $\mu_i = \frac{1}{|S_i|} \sum_{j \in S_i} \mathbf{x}_j$ 为第 i 个 cluster 的中心,损失函数为

$$L(\{S_1, \dots, S_k\}) = \sum_{i=1}^k \sum_{j \in S_i} \|\mathbf{x}_j - \mu_i\|^2$$

8.1.1 K-means

Algorithm 2 K-means

- 1: Choose k points as cluster centers μ_1, \dots, μ_k uniformly at random.
- 2: repeat
- 3: $S_i \leftarrow \{j : \|\mathbf{x}_j \mu_i\|^2 \leqslant \|\mathbf{x}_j \mu_k\|^2, \forall k \in [m]\}$
- 4: $\mu_i \leftarrow \frac{1}{|S_i|} \sum_{j \in S_i} \mathbf{x}_j$
- 5: **until** k cluster centers do not change
- 6: **return** $\{\mu_1, \cdots, \mu_k\}$

8.1.2 K-means++

Algorithm 3 K-means++

- 1: Choose a point as the cluster center μ_1 uniformly at random.
- 2: for $i:2 \rightarrow n$ do
- 3: Choose a point as the cluster center μ_i , with probability proportional to $\min_{1 \leq k < i} \|\mathbf{x}_j \mu_k\|^2$.
- 4: end for
- 5: **return** $\{\mu_1, \cdots, \mu_k\}$

定理 8.1. K-means++ 算法给出的损失 L 与最优解 L_{opt} 满足

$$\mathbb{E}[L] \leqslant 8(\ln k + 2)L_{opt}$$

8.2 Dimensionality Reduction

wlw 不讲了.

9 Online Learning

在在线学习的设定下,数据是以流的形式给出的,在每次得到一个数据点之后,都需要以恰当的方式更新预测器,以优化将来的预测.

相比监督学习, 在线学习主要区别在于: (1) 不再区分 training 与 test, (2) 没有对数据的分布假设, 因而不存在 generalization 的概念. 相应的, mistake model 以及 regret 的概念会被用于衡量在线学习算法的表现效果.

9.1 Online Learning with Expert Advice

有 n 位专家. 预测会持续 T 轮, 每轮中每位专家都会给出各自的预测 $y_{t,i} \in \{0,1\}$, 学习者需要根据此前得到的所有信息给出预测 $\tilde{y}_t \in \{0,1\}$, 同时也会获得正确结果 $y_t \in \{0,1\}$. 学习者的目标是让自己的预测结果与最好的专家尽量接近, 即最小化 $\sum\limits_{t=1}^{T}\mathbbm{1}[\tilde{y}_t \neq y_t]$ 与 $\min\limits_{i \in [n]} \sum\limits_{t=1}^{T}\mathbbm{1}[y_{t,i} \neq y_t]$ 的差 (这就是 regret).

9.1.1 Weighted Majority Vote

Algorithm 4 Weighted Majority Vote

- 1: Initialize $w_{1,i} \leftarrow 1, \forall i \in [n]$
- 2: Choose parameter $\beta \in (0,1)$
- 3: for $t = 1 \rightarrow T$ do
- 4: Make the Weighted Majority Vote $\tilde{y_t} = \begin{cases} 0, & \sum \\ y_{\tilde{t},i}=0 \end{cases} > \sum \\ 1, & \text{otherwise} \end{cases}$
- 5: if $\tilde{y_t} = y_t$ then
- 6: $w_{t+1,i} \leftarrow w_{t,i}, \forall i \in [n]$
- 7: else

8:
$$w_{t+1,i} \leftarrow \begin{cases} \beta \cdot w_{t,i}, & \tilde{y_{t,i}} \neq y_t \\ w_{t,i}, & \tilde{y_{t,i}} = y_t \end{cases}, \forall i \in [n]$$

- 9: end if
- 10: end for

即每轮选择 \tilde{y}_t 为 n 位专家预测的加权 marjority, 如果出错了, 就把所有导致自己出错的专家的权值乘上 β 作为惩罚.

定理 9.1. 记 $L_T = \sum_{t=1}^T \mathbb{1}[\tilde{y_t} \neq y_t]$ 为学习者的 loss, $m_T^* = \min_{i \in [n]} \sum_{t=1}^T \mathbb{1}[\tilde{y_{t,i}} \neq y_t]$ 为最好的专家的 loss, 则在 Weighted Majority Vote 算法下, 有

$$L_T \leqslant \frac{m_T^* \log(1/\beta) + \log n}{\log(2/(1+\beta))}$$

证明. 注意到 (1) T 轮结束后, 所有专家剩余的总权值至少还有 $\beta^{m_T^*}$, (2) 每次学习者出错都会导致总权值乘上不大于 $\frac{1+\beta}{2}$ 的系数, 故

$$\beta^{m_T^*} \leqslant n \left(\frac{1+\beta}{2}\right)^{L_T} \Rightarrow L_T \leqslant \frac{m_T^* \log(1/\beta) + \log n}{\log(2/(1+\beta))}$$

注 9.1. 考虑 $\beta \to 1$, 由 L'Hospital Rule 可知 $\frac{\log(1/\beta)}{\log(2/(1+\beta))} \to 2$, 即 Weighted Majority Vote 算法给出的最好的界中, m_T^* 前的系数至少是 2. 接下来的 Randomized Weighted Updating 算法会给出更好的界.

Algorithm 5 Randomized Weighted Updating

1: Initialize $w_{1,i} \leftarrow 1, \forall i \in [n]$

2: Choose parameter $\beta \in [\frac{1}{2}, 1)$

3: for $t = 1 \rightarrow T$ do

4: Chooes $\tilde{y}_t = \tilde{y}_{t,i}$ with probability proportional to $w_{t,i}$

5:
$$w_{t+1,i} \leftarrow \begin{cases} \beta \cdot w_{t,i}, & \tilde{y_{t,i}} \neq y_t \\ w_{t,i}, & \tilde{y_{t,i}} = y_t \end{cases}, \forall i \in [n]$$

6: end for

9.1.2 Randomized Weighted Updating

定理 9.2. 在 Randomized Weighted Updating 算法下,有

$$\mathbb{E}\left[L_T\right] \leqslant (2 - \beta)m_T^* + \frac{\ln n}{1 - \beta}$$

证明. 注意到权值的更新无关于每轮有没有答错, 因此 $\mathbb{1}[\tilde{y}_t \neq y_t]$ 是独立随机变量.

第 i 轮结束后, 总权值的变化一定是 $W \to W(1-(1-\beta)\mathbb{P}[\tilde{y}_t \neq y_t])$, 由于 $\mathbb{E}[L_T] = \sum_{t=1}^T \mathbb{P}[\tilde{y}_t \neq y_t]$, 因此

$$\beta^{m_T^*} \leqslant n \prod_{t=1}^T (1 - (1 - \beta) \mathbb{P} [\tilde{y_t} \neq y_t]) \leqslant n \prod_{t=1}^T e^{-(1 - \beta) \mathbb{P} [\tilde{y_t} \neq y_t]} = n e^{-(1 - \beta) \mathbb{E} [L_T]}$$

从而得到了

$$\mathbb{E}\left[L_T\right] \leqslant \frac{\ln(1/\beta)m_T^* + \ln n}{1 - \beta}$$

只需要进一步证明 $\frac{\ln(1/\beta)}{1-\beta} \leqslant 2-\beta$. 考虑函数 $f(\beta) = \ln \beta + (1-\beta)(2-\beta), f'(\beta) = \frac{(1-\beta)(1-2\beta)}{\beta},$ 当 $\beta \in [\frac{1}{2},1)$ 时恒有 $f'(\beta) \leqslant 0$, 从而 $f(\beta) \geqslant f(1) = 0$, 说明了 $\ln(1/\beta) \leqslant (1-\beta)(2-\beta), \frac{\ln(1/\beta)}{1-\beta} \leqslant 2-\beta$.

9.1.3 Hedge Algorithm

我们再提出一种叫做 Hedge Algorithm 的算法,它其实只是 Randomized Weighted Updating 的推广,但这个结果可以为后续证明定理 4.2 的工作做准备.

在 Hedge Algorithm 的设定下, loss 不再是"答错了几次", 而是每一轮每一位专家的回答都有一个 loss $g_t(i) \in [0,1]$, 记学习者在第 t 轮的 loss 为 l_t , 则 l_t 的期望就是 n 位专家的加权平均:

$$\mathbb{E}\left[l_{t}\right] = \left(\sum_{i=1}^{n} w_{t,i} g_{t}(i)\right) / \left(\sum_{i=1}^{n} w_{t,i}\right)$$

Algorithm 6 Hedge Algorithm

1: Initialize $w_{1,i} \leftarrow 1, \forall i \in [n]$

2: Choose parameter $\beta \in (0,1)$

3: for $t = 1 \rightarrow T$ do

4: Chooes $i_t \in [n]$ with probability proportional to $w_{t,i}$, and obtain the loss $l_t = g_t(i_t)$

5: $w_{t+1,i} \leftarrow w_{t,i} \cdot \beta^{g_t(i)}, \forall i \in [n]$

6: end for

定理 9.3. 重新定义 $L_T = \sum_{t=1}^T l_t$, 在 Hedge Algorithm 下, 有

$$\mathbb{E}\left[L_T\right] - \min_{i \in [n]} \sum_{t=1}^{T} g_t(i) = O(\sqrt{T \log n})$$

证明. 仍然注意到 l_t 是独立随机变量.

第 i 轮结束后, 总权值的变化是 $W \to W \cdot \mathbb{E}[\beta^{l_t}]$, 从而有

$$e^{-\ln(1/\beta)m_T^*} = \beta^{m_T^*} \leqslant n \prod_{t=1}^T \mathbb{E}\left[\beta^{l_t}\right] = n \prod_{t=1}^T \mathbb{E}\left[e^{-\ln(1/\beta)l_t}\right]$$

$$\leqslant n \prod_{t=1}^T \mathbb{E}\left[1 - \ln(1/\beta)l_t + \ln^2(1/\beta)l_t^2\right]$$

$$\leqslant n \prod_{t=1}^T \left(1 - \ln(1/\beta)\mathbb{E}\left[l_t\right] + \ln^2(1/\beta)\right)$$

$$\leqslant n \prod_{t=1}^T e^{-\ln(1/\beta)\mathbb{E}\left[l_t\right] + \ln^2(1/\beta)}$$

$$= ne^{-\ln(1/\beta)\mathbb{E}\left[L_T\right] + T\ln^2(1/\beta)}$$

其中 $m_T^* = \min_{i \in [n]} \sum_{t=1}^T g_t(i)$. 两边取对数得到

$$\mathbb{E}\left[L_T\right] - \min_{i \in [n]} \sum_{t=1}^T g_t(i) \leqslant \frac{\ln n}{\ln(1/\beta)} + T\ln(1/\beta) \leqslant 2\sqrt{T\ln n} = O(\sqrt{T\log n})$$

9.2 Proof of Minimax Theorem via Online Learning

在 Game Theory 一章中, 我们陈述了 Minimax Theorem (定理 4.2), 其表明在混合策略的双人零和博弈下, 先后手并不会影响博弈的最终结果. 接下来我们利用在线学习的技术来证明这个结论.

$$\min_{p} \max_{q} p^{\mathrm{T}} M q = \max_{q} \min_{p} p^{\mathrm{T}} M q$$

9.2.1 The \geqslant Direction

这个方向的结论应该是平凡的, 直观上来说就是"后手总不劣于先手".

形式化地, 记 $p^* = \arg\min_p \max_q p^{\mathrm{T}} M q$ 为 row player 后手时选择的最优的 $p, q^* = \arg\max_q \min_p p^{\mathrm{T}} M q$ 为 column player 后手时选择的最优的 q, p

$$\min_{p} \max_{q} p^{\mathrm{T}} M q = \max_{q} {p^*}^{\mathrm{T}} M q \geqslant {p^*}^{\mathrm{T}} M q^* \geqslant \min_{p} p^{\mathrm{T}} M q^* = \max_{q} \min_{p} p^{\mathrm{T}} M q$$

9.2.2 The \leq Direction

把 row player 当作在线学习中的学习者, column player 则对应 adversary, 收益矩阵 M 的 m 行分别是一位专家.

在第 t 轮中,学习者选择列向量 p_t 满足 $(p_t)_i = \frac{w_{t,i}}{\sum_{i=1}^m w_{t,i}}$,其中 $w_{t,i}$ 表示第 t 轮时第 i 位专家的权值. 给出了 p_t 后,adversary 可以很容易地给出 $q_t = \max_q p_t^T M q$. 第 i 位专家建议选第 i 行,他这样的方案对应的 loss

是 $g_t(i) = (Mq_t)_i$. 显然学习者此时的 loss 的期望恰好等于 m 为专家各自损失的加权平均, 即

$$\mathbb{E}\left[l_{t}\right] = \left(\sum_{i=1}^{n} w_{t,i} g_{t}(i)\right) / \left(\sum_{i=1}^{n} w_{t,i}\right) = p_{t}^{\mathrm{T}} M q_{t}$$

由 Hedge Algorithm 以及定理 9.3, 我们知道了

$$\mathbb{E}[L_T] - \min_{i \in [n]} \sum_{t=1}^{T} g_t(i) = \sum_{t=1}^{T} p_t^{\mathrm{T}} M q_t - \min_{i \in [n]} \left(M \sum_{t=1}^{T} q_t \right)_i \leqslant O(\sqrt{T \log m})$$

由此得到

$$\frac{1}{T} \sum_{t=1}^{T} p_t^{\mathrm{T}} M q_t \leqslant \min_{i \in [n]} \left(M \sum_{t=1}^{T} q_t \right)_i + O\left(\sqrt{\frac{\log m}{T}}\right)$$

$$= \min_{p} \left(p^{\mathrm{T}} M \left(\frac{1}{T} \sum_{t=1}^{T} q_t \right) \right) + o(1)$$

$$\leqslant \max_{q} \min_{p} p^{\mathrm{T}} M q + o(1)$$

(其中 $O\left(\sqrt{\frac{\log m}{T}}\right) = o(1)$ 因为我们视 m 为常数) 而又注意到

$$\min_{p} \max_{q} p^{\mathrm{T}} M q \leqslant \max_{q} \left(\frac{1}{T} \sum_{t=1}^{T} p_{t}^{\mathrm{T}} \right) M q \leqslant \frac{1}{T} \sum_{t=1}^{T} \max_{q} p_{t}^{\mathrm{T}} M q = \frac{1}{T} \sum_{t=1}^{T} p_{t}^{\mathrm{T}} M q_{t}$$

因此 $\min_p \max_q p^{\mathrm{T}} M q \leqslant \max_q \min_p p^{\mathrm{T}} M q + o(1)$, 即 $\min_p \max_q p^{\mathrm{T}} M q \leqslant \max_q \min_p p^{\mathrm{T}} M q$.