עבודה עצמית 2 שדות

 $-\bar{0} = \bar{0} \\ -\bar{1} = \bar{4} \\ -\bar{2} = \bar{3} \\ -\bar{3} = \bar{2} \\ -\bar{4} = \bar{1}$

 $:\!\mathbb{Z}_3$ -לוח הכפל של איברים ב

 \mathbb{Z}_3 -לוח החיבור של איברים ב \mathbb{Z}_3 :

 \mathbb{Z}_5 -ב לוח הכפל של איברים

	0					
		$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{1}^{-1} = \bar{1}$	$\bar{0}$	Ō	Ō	Ō	Ō	$\bar{0}$
$\bar{2}^{-1} = \bar{3}$	Ī	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{3}^{-1} = \bar{2}$	$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{1}$	$\bar{3}$
$\bar{4}^{-1} = \bar{4}$	$\bar{3}$	$\bar{0}$	$\bar{3}$	1	$\bar{4}$	$\bar{2}$
	$\bar{4}$	$\bar{0}$	$\begin{array}{c} \bar{0} \\ \bar{1} \\ \bar{2} \\ \bar{3} \\ \bar{4} \end{array}$	$\bar{3}$	$\bar{2}$	$\bar{1}$

 \mathbb{Z}_5 -לוח החיבור של איברים ב

-0	_	_	1	-			1
	+	$\bar{0}$	1	$\bar{2}$	$ \begin{array}{c} $	$\bar{4}$	
	$ \begin{array}{c} + \\ \hline 0 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \end{array} $	ō	Ī	$\bar{2}$	$\frac{3}{4}$	$\bar{4}$	
	1	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	
	$\bar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{1}$	
	$\bar{3}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	
	$\bar{4}$	$\bar{4}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	

 \mathbb{Z}_7 -ברים ב- לוח הכפל של איברים

		$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	<u></u> 6
$\bar{1}^{-1} = \bar{1}$	Ō	Ō	Ō	Ō	Ō	Ō	Ō	$\bar{0}$
$\bar{2}^{-1} = \bar{4}$	$\bar{1}$	$\begin{bmatrix} \bar{0} \\ \bar{0} \\ \bar{0} \\ \bar{0} \\ \bar{0} \end{bmatrix}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
$\bar{3}^{-1} = \bar{5}$	$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{6}$	$\bar{1}$	$\bar{3}$	$\bar{5}$
$\bar{4}^{-1} = \bar{2}$	$\bar{3}$	$\bar{0}$	$\bar{3}$	$\bar{6}$	$\bar{2}$	$\bar{5}$	$\bar{1}$	$\bar{4}$
$\bar{5}^{-1} = \bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{4}$	1	$\bar{5}$	$\bar{2}$	$\bar{6}$	$\bar{3}$
$\bar{6}^{-1} = \bar{6}$	$\bar{5}$	$ \bar{0} $	$\bar{5}$	$\bar{3}$	$\bar{1}$	$\bar{6}$	$\bar{4}$	$\bar{2}$
	$\bar{6}$	$\bar{0}$	$\bar{6}$	$\bar{5}$	$\bar{4}$	$\bar{3}$	$\bar{6}$	$\bar{1}$

 \mathbb{Z}_3 -ב רשמו את האיברים הבאים רשמו \mathbb{Z}_3

 $\bar{6}$ $\bar{0}$ $\bar{1}$ $\bar{2}$ $\bar{3}$ $\bar{4}$ $\bar{5}$

 $\overline{12}$ (x

 $\overline{23}$ (2

 $\overline{57}$ ()

 $\overline{46}$ (7

<u>19</u> (n

 $\overline{-7}$ (1

 $\bar{2} + \bar{1}$ (*

 $\bar{2}+\bar{2}$ (n

 $ar{1}+ar{1}$ (0

- $\bar{2}\cdot\bar{2}$ ()
- $ar{2}\cdotar{0}$ (אי
- $ar{2}\cdotar{1}$ (2)

 \mathbb{Z}_5 -רשמו את האיברים הבאים רשמו את שאלה 2

- $\overline{11}$ (x
- $\overline{24}$ (2
- $\overline{56}$ ()
- <u>98</u> (7
- $\overline{22}$ (a
- $\overline{-8}$ (1)
- $\bar{2}+\bar{2}$ (1
- $\bar{2} + \bar{3}$ (n
- $\bar{1}+\bar{4}$ (v
- $\bar{2}\cdot\bar{4}$ (*
- $ar{3}\cdotar{2}$ (אי
- $ar{4}\cdotar{3}$ (2)

 \mathbb{Z}_7 -ב הבאים הבאים את רשמו את רשמו את **3**

- $\overline{13}$ (x
- <u>33</u> (2
- $\overline{74}$ ()
- <u>16</u> (7
- $\overline{12}$ (a
- $\overline{-9}$ (1)
- $\bar{2}+\bar{6}$ (7
- $\bar{3} + \bar{5}$ (n

$$\bar{6} + \bar{3}$$
 (v

$$\bar{2}\cdot\bar{6}$$

$$ar{3}\cdotar{5}$$
 (אי

$$ar{4}\cdotar{6}$$
 (ع $^{ar{2}}$

- \mathbb{Z}_7 רשמו את טבלאות הכפל וחיבור של
- \mathbb{Z}_{11} -בי \mathbb{Z}_7 ב- 2,3,4,5,6 ב- וב- בים ההופכיים של

שאלה 5

- -3x = 2 (2) 3x = 2 (1) מצאו הפתרונות של המשוואות
 - \mathbb{Z}_5 בשדה (1
 - \mathbb{Z}_7 בשדה (2
 - \mathbb{Z}_{11} בשדה (3
- ב) ישנו ax=b למשוואה $a\neq 0$ כך ש $a,b\in \mathbb{F}$ ישנו פתרון יחיד.

שאלה 6 יהי \mathbb{F} שדה. הוכיחו את הטענות הבאות:

מתקיים $a_1,\dots,a_k,b\in\mathbb{F}$ מתקיים

$$(a_1 + \ldots + a_k) b = a_1 b + \ldots a_k b \in \mathbb{F} .$$

.k רמז: אינדוקציה על

- ab=1 -פרט ל- $b\in\mathbb{F}$ יחיד כך ש $a\in\mathbb{F}$ לכל
 - .a=0 אז a+a=a אז $.a\in\mathbb{F}$ אז (ג)
 - a=0 או a=0 או a=0 או a=0 או $a,b\in\mathbb{F}$
 - $a,b\in\mathbb{F}$ מתקיים $a,b\in\mathbb{F}$ לכל

שאלה **7** הוכיחו או הפריכו את הטענות הבאות ע"י דוגמה נגדית:

- א) קבוצת המספרים השלמים $\mathbb Z$ עם פעולות החיבור והכפל הרגילות שדה.
- . שדה $a\cdot b=3ab$ -ו $a+b=rac{a-b}{3}$ עם פעולות $\mathbb Q$ עם הרציונליים פרים הרציונליים

, ביחס החיבור והכפל הרגילות, כלומר ביחס ביחס לפעולות ביחס $\left\{a+b\sqrt{2}|a,b\in\mathbb{Z}
ight\}$

$$(a + b\sqrt{2}) \oplus (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2}$$

 $(a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$

שדה.

. הקבוצה הרגילות, ביחס לפעולות ביחס לפעולות, שדה $\left\{a+b\sqrt{2}|a,b\in\mathbb{Q}
ight\}$

שאלה 8

- \mathbb{Z}_7 רשמו את טבלאות הכפל וחיבור של
- \mathbb{Z}_{11} -בי \mathbb{Z}_7 ב- 2,3,4,5,6 ב- וב- בים ההופכיים של
- היהי יהיה (ע"י כתיבת טבלאות הכפל והחיבור) פעולות כפל וחיבור (ע"י כתיבת טבלאות הכפל הקבוצה $\{0,1,a,b\}$ פעולות כפל וחיבור שדה.

.a + 1 = b -שי קבעו הדרכה:

 \mathbb{Z}_3 פתרו את המערכת משוואות הבאה מעל פתרו את פתרו

$$x + \bar{2}y = \bar{2}$$
$$\bar{2}x - y = \bar{1}$$

 \mathbb{Z}_3 פתרו את המערכת משוואות הבאה מעל פתרו

$$\bar{2}x + \bar{2}y = \bar{2}$$
$$x + y = \bar{1}$$

 \mathbb{Z}_5 פתרו את המערכת משוואות הבאה מעל פתרו את פתרו

$$\bar{4}x + \bar{2}y = \bar{3}$$
$$\bar{3}x - y = \bar{2}$$

 \mathbb{Z}_5 פתרו את המערכת משוואות הבאה מעל פתרו שאלה 12

$$\bar{3}x + y = \bar{2}$$
$$\bar{3}x + \bar{4}y = \bar{3}$$

 \mathbb{Z}_5 פתרו את המערכת משוואות הבאה מעל 9 פתרו

$$\bar{2}x + \bar{3}y = \bar{0}$$
$$x - \bar{3}y = \bar{4}$$

 \mathbb{Z}_7 פתרו את המערכת משוואות הבאה מעל פתרו שאלה

$$\bar{5}x + \bar{2}y = \bar{3}$$
$$\bar{4}x - \bar{3}y = \bar{4}$$

שאלה 15 פתרונות שלה מעל במה מערכת המערכת המערכת פתרונות שאלה 15 שאלה פתרונות שלה מערכת מערכת המערכת המערכת המערכת המערכת המערכת המערכת המערכת שאלה מערכת המערכת ה

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{4}z = \overline{2}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

שאלה 16 נתונה המערכת הבאה:

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

פתרו את המערכת הבאה מעל \mathbb{Z}_5 . רשמו את כל הפתרונות בצורה מפורשת. כמה פתרונות יש למערכת?

שאלה 17 פתרונות של למערכת הבאה מעל \mathbb{Z}_7 . כמה פתרונות של למערכת?

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

פתרונות שאלה 18 פתרו את המערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות שאלה פתרונות את המערכת?

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

שאלה 19 פתרו את מערכת המשואות הבאה מעל שדה \mathbb{Z}_5

$$\begin{cases} \bar{3}x + \bar{2}y + z &= \bar{4} \\ \bar{4}x + \bar{2}y + z &= \bar{1} \\ x + y + \bar{3}z &= \bar{1} \end{cases}$$

רשמו את כל הפתרונות שלה.

 \mathbb{Z}_7 שאלה 20 פתרו את המערכת הבאה מעל

$$\begin{aligned} \bar{2}x + \bar{3}y + \bar{3}z &= \bar{5} \\ \bar{3}x + \bar{4}y + z &= \bar{1} \\ x + y + \bar{6}z &= \bar{2} \end{aligned}$$

 \mathbb{Z}_5 פתרו את המערכת הבאה מעל פתרו שאלה 21

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

. מספר אשוני. $p \geq 7$ מספר עם פתרון יחיד עם $p \geq 7$ מספר הוכיחו שאלה שאלה שאלה

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

שאלה 23

 ${\mathbb C}$ פתרו את המערכת משוואות הבאה מעל

$$(1+i)z_1 + (1-i)z_2 = 1+i$$

$$(1-i)z_1 + (1+i)z_2 = 1+3i$$

שאלה 24

 ${\mathbb C}$ פתרו את המערכת משוואות הבאה מעל

$$2z_1 - (2+i)z_2 = -i$$
$$(4-2i)z_1 - 5z_2 = -1 - 2i$$

שאלה 25

 ${\mathbb C}$ פתרו את המערכת משוואות הבאה מעל

$$(1-i)z_1 - 3z_2 = -i$$
$$2z_1 - (3+3i)z_2 = 3-i$$

שאלה 26

 ${\mathbb C}$ פתרו את המערכת הבאה מעל

$$iz_1 + (1-i)z_2 = 2i$$
,
 $(1+2i)z_1 - 2z_2 = 1$.

שאלה 27

 ${\mathbb C}$ פתרו את המערכת הבאה מעל

$$3iz_1 + (6 - 6i)z_2 = 6i,$$

$$(1 + i)z_1 - 2z_2 = 1.$$

שאלה 28

 ${\mathbb C}$ פתרו את המערכת הבאה מעל

$$4z_1 + 4z_2 = 4i ,$$

$$(5+10i)z_1 - 5z_2 = 5 .$$

פתרונות

<u>שאלה 1</u>

(N

$$\overline{12} = \overline{\mathrm{rem}(12,3)} = \bar{0}$$

$$\overline{23}=\overline{\mathrm{rem}(23,3)}=\bar{2}$$

$$\overline{57} = \overline{\mathrm{rem}(57,3)} = \bar{0}$$

$$\overline{46} = \overline{\mathrm{rem}(46,3)} = \bar{1}$$

$$\overline{19} = \overline{\mathrm{rem}(19,3)} = \overline{1}$$

$$\bar{2} + \bar{7} = \bar{9} = \bar{0} \quad \Rightarrow \quad -\bar{7} = \bar{2} \ .$$

$$\bar{2} + \bar{1} = \bar{3} = \bar{0}$$

$$\bar{2} + \bar{2} = \bar{4} = \bar{1}$$

$$\bar{1} + \bar{1} = \bar{2}$$

$$\bar{2}\cdot\bar{2}=\bar{4}=\bar{1}$$

$$\bar{2}\cdot\bar{0}=\bar{0}$$

$$\bar{2}\cdot\bar{1}=\bar{2}$$

$$\overline{11} = \overline{\mathrm{rem}(11,5)} = \overline{1}$$

(N

(2)

$$\overline{24} = \overline{\mathrm{rem}(24,5)} = \bar{4}$$

(2

$$\overline{56} = \overline{\text{rem}(56, 5)} = \overline{1}$$

()

$$\overline{98} = \overline{\text{rem}(98, 5)} = \overline{3}$$

(†

$$\overline{22} = \overline{\mathrm{rem}(22,5)} = \bar{2}$$

(1

$$\bar{8} + \bar{2} = \overline{10} = \bar{0} \quad \Rightarrow \quad -\bar{8} = \bar{2} \ .$$

(1

$$\bar{2} + \bar{2} = \bar{4} .$$

1)

$$\bar{2} + \bar{3} = \bar{5} = \bar{0}$$

(h

$$\bar{1} + \bar{4} = \bar{5} = \bar{0}$$

(0

$$\bar{2} \cdot \bar{4} = \bar{8} = \bar{3}$$

()

$$\bar{3}\cdot\bar{2}=\bar{6}=\bar{1}$$

(と)

$$\bar{4} \cdot \bar{3} = \overline{12} = \bar{2} .$$

$$\overline{13} = \overline{\mathrm{rem}(13,7)} = \bar{6}$$

(N

(2)

$$\overline{33} = \overline{\mathrm{rem}(33,7)} = \bar{5}$$

(2

$$\overline{74} = \overline{\mathrm{rem}(74,7)} = \overline{4}$$

()

$$\overline{16} = \overline{\mathrm{rem}(16,7)} = \bar{2}$$

(†

$$\overline{12} = \overline{\mathrm{rem}(12,7)} = \overline{5}$$

(n

$$\bar{9} + \bar{5} = \overline{14} = \bar{0} \quad \Rightarrow \quad -\bar{9} = \bar{5} \ .$$

(1

$$\bar{2} + \bar{6} = \bar{8} = \bar{1}$$
.

7)

$$\bar{3} + \bar{5} = \bar{8} = \bar{1}$$

(n

$$\bar{6} + \bar{3} = \bar{9} = \bar{2}$$

(0

$$\bar{2} \cdot \bar{6} = \overline{12} = \bar{5}$$

()

$$\bar{3}\cdot\bar{5}=\overline{15}=\bar{1}$$

(と)

$$\bar{4}\cdot\bar{6}=\overline{24}=\bar{3}.$$

(N

(2)

+	$\begin{array}{c c} \bar{0} & \\ \bar{0} & \\ \bar{1} & \\ \bar{2} & \\ \bar{3} & \\ \bar{4} & \\ \bar{5} & \\ \bar{6} & \\ \end{array}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
$\bar{0}$	Ō	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	<u>5</u>	<u></u> 6
Ī	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$
$\bar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$
$\bar{3}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$
$\bar{4}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$
$\bar{5}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{6}$	$\bar{6}$	$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	<u>5</u>

	$ \begin{array}{c c} \bar{0} \\ \end{array} $	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	<u></u> 6
$\bar{0}$	Ō	$\bar{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$
Ī	Ō	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	<u></u> 6
$\bar{2}$	Ō	$\bar{2}$	$\bar{4}$	$\bar{6}$	$\bar{1}$	$\bar{3}$	$\bar{5}$
$\bar{3}$	Ō	$\bar{3}$	$\bar{6}$	$\bar{2}$	$\bar{5}$	$\bar{1}$	$\bar{4}$
$\bar{4}$	ō	$\bar{4}$	$\bar{1}$	$\bar{5}$	$\bar{2}$	$\bar{6}$	$\bar{3}$
$\bar{5}$	Ō	$\bar{5}$	$\bar{3}$	ī	$\bar{6}$	$\bar{4}$	$\bar{2}$
$\bar{6}$	$\bar{0}$	$\bar{6}$	$\bar{5}$	$\bar{4}$	$\bar{3}$	$\bar{2}$	1

 $\underline{\mathbb{Z}_7}$ (2

$$-\bar{1} = \bar{6} \; , \qquad -\bar{2} = \bar{5} \; , \qquad -\bar{3} = \bar{4} \; , \qquad -\bar{4} = \bar{3} \; , \qquad -\bar{5} = \bar{2} \; , \qquad -\bar{6} = \bar{1} \; .$$

 $\underline{\mathbb{Z}_{11}}$

$$-\bar{1} = \overline{10} \; , \quad -\bar{2} = \bar{9} \; , \quad -\bar{3} = \bar{8} \; , \quad -\bar{4} = \bar{7} \; , \quad -\bar{5} = \bar{6} \; , \quad -\bar{6} = \bar{5} \; , \quad -\bar{7} = \bar{4} \; , \quad -\bar{8} = \bar{3} \; , \quad -\bar{9} = \bar{2} \; ,$$

$$-\overline{10} = \overline{1}$$
.

(1 (N

$$-\bar{3}x = \bar{2} \implies \bar{2}x = \bar{2} \implies x = \bar{1}$$
.

(2

$$-\bar{3}x = \bar{2} \quad \Rightarrow \quad \bar{4}x = \bar{2} \quad \Rightarrow \quad \bar{2} \cdot \bar{4}x = \bar{2} \cdot \bar{2} \quad \Rightarrow \quad \bar{8}x = \bar{4} \quad \Rightarrow \quad x = \bar{4}$$

(3

$$-\bar{3}x = \bar{2} \quad \Rightarrow \quad \bar{8}x = \bar{2} \quad \Rightarrow \quad \bar{7} \cdot \bar{8}x = \bar{7} \cdot \bar{2} \quad \Rightarrow \quad \overline{56}x = \overline{14} \quad \Rightarrow \quad x = \bar{4} \ .$$

ב) קיום

שדה לכן קיים $a\cdot a^{-1}=1$ כך ש- $a^{-1}\in\mathbb{F}$ לכן \mathbb{F}

$$a^{-1} \cdot a \cdot x = a^{-1} \cdot b \implies x = a^{-} \cdot b$$
.

 \mathbb{F} לכן פתרון בשדה $a^{-1} \cdot b \in \mathbb{F}$ לכן לכן $a^{-1}, b \in \mathbb{F}$

יחידות

נניח שקיים יותר מפתרון אחד, כלומר קיימים $\mathbb F$. $ax_2=b$ ו- $ax_1=b$ כך ש- $x_1,x_2\in\mathbb F$ כד סלומר קיימים יותר מפתרון אחד, כלומר קיימים - $ax_1=b$ ו- $ax_2=b$ ו- איבר הנגדי - $ax_2=b$

$$ax_1 + (-ax_2) = b + (-b) = 0 \implies ax_1 - ax_2 = 0 \implies a \cdot (x_1 - x_2) = 0$$
.

לכך בסתירה $x_1=x_2$ לכן $x_1-x_2=-x_1$ לכן של האיבר הנגדי של האיבר הנגדי לכן לכן $x_1-x_2=0$ לכן לכן שקיים יותר מפתרון אחד.

שאלה 6

שלב הבסיס:

 $.a_1 \cdot b \in \mathbb{F}$ אז $a_1, b \in \mathbb{F}$ לכן אם \mathbb{F}

שלב האינדוקציה:

הנחת האינדוקציה. נניח כי $a_1,\ldots,a_k,b\in\mathbb{F}$ ומתקיים $a_1,\ldots,a_k,b\in\mathbb{F}$. נכיח (שדה סגורה ביחס לכפל) ו- $a_{k+1}b\in\mathbb{F}$ (שדה סגורה ביחס לכפל) ו- $a_{k+1}b\in\mathbb{F}$ (שדה סגורה ביחס לחיבור). לכך $a_{k+1}b\in\mathbb{F}$

$$c + a_{k+1}b = a_1b + \dots a_kb + a_{k+1}b \in \mathbb{F} .$$

ab=1 -שדה לכן לכל $a\in\mathbb{F}$ קיים איבר ההופכי b כך ש \mathbb{F}

-ט כך $b_1 \neq b_2$, $b_1,b_2 \in \mathbb{F}$ כיים כי קיים מאיבר הופכי אחד לכל $a \in \mathbb{F}$ כלומר נניח כי קיים יותר מאיבר הופכי אחד לכל $ab_2 = -1$ ו- $ab_2 = 1$ ו- $ab_2 = 1$

$$ab_1 + (-ab_2) = 1 + (-1) = 0 \quad \Rightarrow \quad ab_1 + (-ab_2) = 0 \quad \Rightarrow \quad ab_1 + (-ab_2) + ab_2 = 0 + ab_2 \quad \Rightarrow \quad ab_1 = ab_2$$

ונקבל a^{-1} -ב נכפיל ב- a^{-1} כך ש- a^{-1} כך איבר ההופכי $a\in\mathbb{F}$

$$b_1 = b_2$$

 $.b_1 \neq b_2$ -בסתירה לכך

a+(-a)=0 -כך ש- כך ש- מיבר הנגדי $a\in\mathbb{F}$

$$a + a = a \implies a + a + (-a) = a + (-a) \implies a + 0 = 0 \implies a = 0$$
.

לכן $a\cdot a^{-1}=1$ כך ש- $a\cdot a^{-1}=1$ כך ש- $a\cdot a^{-1}=1$ כל מניח ש- $a\cdot a=1$ נניח ש- $a\cdot a=1$ נניח ש- $a\cdot a=1$

$$ab = 0 \implies a^{-1}ab = a^{-1} \cdot 0 \implies 1 \cdot b = 0 \implies b = 0$$
.

נניח ש- $b \cdot b^{-1} = 1$ אז קיים איבר הופכי $b^{-1} \in \mathbb{F}$ כך ש- $b \cdot b^{-1} = 1$. לכן

$$ab = 0$$
 \Rightarrow $b^{-1}ab = a^{-1} \cdot 0$ \Rightarrow $ab^{-1}b = a^{-1} \cdot 0$ \Rightarrow $a \cdot 1 = 0$ \Rightarrow $a = 0$.

נניח ש- $a^{-1}a=1$ כך ש- $b^{-1}\in\mathbb{F}$ כך ש- $a^{-1}a=1$ ואיבר ההופכי $a^{-1}a=1$ כך ש- $a^{-1}a=1$ ו- $a^{-1}a=1$

$$ab = 0 \quad \Rightarrow \quad a^{-1}ab = a^{-1}0 \quad \Rightarrow \quad b = 0$$

 $.b \neq 0$ בסתירה לכך ש-

הפילוג הפילוג .a+(-a)=0 -כך ש- $a\in\mathbb{F}$ לכן קיים . $a,b\in\mathbb{F}$

$$(-a)b + ab = ((-a) + a)b = 0 \cdot b = 0$$

ab האיבר הנגדי של האיבר (-a)b לכן

שאלה 7

א) לא שדה

 $.aa^{-1}=1$ -פך ש- $a^{-1}\in\mathbb{Z}$ כיים אבל א $a=2\in\mathbb{Z}$:דוגמה נגדית:

ב) לא שדה

 $.a\oplus b
eq b\oplus a$ לכן $.b\oplus a=rac{b-a}{3}$, $a\oplus b=rac{a-b}{3}$ מתקיים: $.b\oplus a=rac{b-a}{3}$, משום שכל התוצאות שיתקבלו שייכות למספרים הרציונליים.

לא שדה (ג

-ש כך $a+b\sqrt{2}$ כך שקיים לב שלאיבר $\mathbb F$ - כך אין הופכי הופכי 3, למשל, למשל

$$3\odot(a+b\sqrt{2})=1.$$

 $a\in\mathbb{Z}$ - מכאן בסתירה $a=rac{1}{3},b=0$ מכאן

שדה **(ד**

. נסמן והכפל החיבור ביחס לפעולות ביחס $\mathbb{F}=\{a+b\sqrt{2}|a,b\in\mathbb{Q}\}$

יהיו $x,y,z\in\mathbb{F}$ אכן

$$x = a + b\sqrt{2}$$
, $y = c + d\sqrt{2}$, $z = e + f\sqrt{2}$, $a, b, c, d, e, f \in \mathbb{Q}$.

:סגורה תחת חיבור \mathbb{F} (1

$$x + y = (a + c) + (b + d)\sqrt{2}$$
.

$$.x+y\in\mathbb{F}$$
 לכן $b+d\in\mathbb{Q}$, $a+c\in\mathbb{Q}$

2) סגורה תחת כפל:

$$x \cdot y = (a + b\sqrt{2})(c + d\sqrt{2}) = ac + ad\sqrt{2} + bc\sqrt{2} + 2bd$$
.

$$.x\cdot y\in\mathbb{F}$$
לכן ,ad + $bc\in\mathbb{Q}$,ac + $2bd\in\mathbb{Q}$

I: חוק החילוף (3

$$x + y = y + x$$

II: חוק החילוף (4

$$x \cdot y = y \cdot x$$

I: חוק הקיבוץ (5

$$(x+y) + z = x + (y+z)$$
.

II: חוק הקיבוץ (6

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

7) חוק הפילוג:

$$x \cdot (y+z) = x \cdot y + x \cdot z .$$

8) קיום איבר ניוטרלי:

 $x+ar{0}=x$ -כך ש- $ar{0}\in\mathbb{F}$ קיים איבר

$$\bar{0} = 0 + 0 \cdot \sqrt{2} \ .$$

(9) קיום איבר יחיד (האיבר ניוטרל לגבי כפל):

 $x\cdot ar{1}=x$ -פריים איבר $ar{1}\in\mathbb{F}$ כך ש

$$\bar{1} = 1 + 0 \cdot \sqrt{2} .$$

:קיום איבר נגדי (10

$$x + (-x) = ar{0}$$
 כך ש- $(-x) \in \mathbb{F}$ לכל איבר איבר גגדי $x \in \mathbb{F}$

$$-x = -a - b\sqrt{2} .$$

:סיום איבר הופכי

 $x\cdot x^{-1}=1$ כך ש $x\in \mathbb{F}$ המקיים איבר קיים איבר בד כך ע

$$x^{-1} = \frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2} \ .$$

$$.x^{-1} \in \mathbb{Q} \text{ for } \frac{-b}{a^2-2b^2} \in \mathbb{Q} \text{ for } \frac{a}{a^2-2b^2} \in \mathbb{Q}$$

8 שאלה

(N

+	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
$\bar{0}$	Ō	Ī	$\bar{2}$	3	$\bar{4}$	5	<u></u> 6
Ī	Ī	$\bar{2}$	3	$\bar{4}$	5	<u>-</u> 6	Ō
$\bar{2}$	$\bar{2}$	3	$\bar{4}$	5	<u>6</u>	Ō	Ī
$\bar{3}$	3	$\bar{4}$	$\bar{5}$	<u>-</u> 6	Ō	Ī	$\bar{2}$
$\bar{4}$	$\bar{4}$	5	<u></u> 6	Ō	Ī	$\bar{2}$	3
5	5	<u>-</u> 6	Ō	Ī	$\bar{2}$	3	$\bar{4}$
$\bar{6}$	<u></u>	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	5

	$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
Ō	Ō	Ō	$\bar{0}$	Ō	Ō	Ō	Ō
$\overline{1}$	Ō	Ī	$\bar{2}$	3	$\bar{4}$	5	<u>-</u> 6
$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{6}$	Ī	$\bar{3}$	5
3	Ō	$\bar{3}$	<u>-</u> 6	$\bar{2}$	5	Ī	$\bar{4}$
$\bar{4}$	Ō	$\bar{4}$	Ī	5	$\bar{2}$	<u></u>	3
<u>-</u> 5	Ō	5	3	Ī	<u>-</u> 6	$\bar{4}$	$\bar{2}$
$\bar{6}$	$\bar{0}$	<u>6</u>	$\bar{5}$	$\bar{4}$	3	$\bar{2}$	$\bar{1}$

 $\underline{\mathbb{Z}_7}$ (2

$$-\bar{2} = \bar{5}$$
, $-\bar{3} = \bar{4}$, $-\bar{4} = \bar{3}$, $-\bar{5} = \bar{2}$, $-\bar{6} = \bar{1}$.

 \mathbb{Z}_{11}

$$-\bar{2} = \bar{9}$$
, $-\bar{3} = \bar{8}$, $-\bar{4} = \bar{7}$, $-\bar{5} = \bar{6}$, $-\bar{6} = \bar{5}$.

$$\begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{2} & -\bar{1} & | \bar{1} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{2} & \bar{2} & | \bar{1} \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{3} & \bar{4} & | \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + R_2} \begin{pmatrix} \bar{1} & \bar{3} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{0} \end{pmatrix}$$

$$\stackrel{\text{encry}}{\text{encry}}$$

 $(x,y)=(\bar{2},\bar{0}) .$

שאלה 10

$$\begin{pmatrix} \bar{2} & \bar{2} & | & \bar{2} \\ \bar{1} & \bar{1} & | & \bar{1} \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} \bar{1} & \bar{1} & | & \bar{1} \\ \bar{2} & \bar{2} & | & \bar{2} \end{pmatrix} \xrightarrow{R_2 \to R_2 - \bar{2} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{0} & | & \bar{0} \end{pmatrix}$$

יש משתנה חופשי ואין שורת סתירה לכן יהיו3 פתרונות:

$$x + y = \overline{1} \quad \Rightarrow \quad x = \overline{1} - \overline{1} \cdot y = \overline{1} + \overline{2} \cdot y$$
.

לפיכך הפתרון הכללי הינו

$$(x,y) = (\bar{1} + \bar{2}y, y) .$$

יש 3 פתרונות:

$$.(x,y) = (\bar{1},\bar{0})$$
 $:y = \bar{0}$

$$.(x,y) = (\bar{3},\bar{1}) = (\bar{0},\bar{1})$$
 $:y = \bar{1}$

$$(x,y) = (\bar{5},\bar{2}) = (\bar{2},\bar{2})$$
 $y = \bar{2}$

שאלה 11

$$\begin{pmatrix} \bar{4} & \bar{2} & | \bar{3} \\ \bar{3} & -\bar{1} & | \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{4} & \bar{2} & | \bar{3} \\ \bar{3} & \bar{4} & | \bar{2} \end{pmatrix} \xrightarrow{R_1 \to \bar{4}R_1} \begin{pmatrix} \bar{1}\bar{6} & \bar{8} & | \bar{1}\bar{2} \\ \bar{3} & \bar{4} & | \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & | \bar{2} \\ \bar{3} & \bar{4} & | \bar{2} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{3} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{3} & | \bar{2} \\ \bar{0} & -\bar{5} & | -\bar{4} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & | \bar{2} \\ \bar{0} & \bar{0} & | \bar{1} \end{pmatrix}$$

קיבלנו שרות סתירה לכן למערכת אין פתרון.

$$\begin{pmatrix} \bar{3} & \bar{1} & \bar{2} \\ \bar{3} & \bar{4} & \bar{3} \end{pmatrix} \qquad \xrightarrow{R_1 \to \bar{2} \cdot R_1} \qquad \begin{pmatrix} \bar{6} & \bar{2} & \bar{4} \\ \bar{3} & \bar{4} & \bar{3} \end{pmatrix} \qquad = \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{4} \\ \bar{0} & \bar{4} & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{3} \cdot R_1} \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{4} \\ \bar{0} & -\bar{2} & -\bar{9} \end{pmatrix} \qquad = \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{4} \\ \bar{0} & \bar{3} & \bar{1} \end{pmatrix}$$

$$\xrightarrow{R_2 \to \bar{2}R_2} \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{4} \\ \bar{0} & \bar{6} & \bar{2} \end{pmatrix} \qquad = \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{4} \\ \bar{0} & \bar{1} & \bar{2} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{2} \cdot R_2} \qquad \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} \\ \bar{0} & \bar{1} & \bar{2} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{2} \cdot R_2} \qquad \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} \\ \bar{0} & \bar{1} & \bar{2} \end{pmatrix}$$

$$\text{encry:}$$

 $(x,y) = (\bar{0},\bar{2})$.

שאלה 13

$$\begin{pmatrix} \bar{2} & \bar{3} & | \bar{0} \\ \bar{1} & -\bar{3} & | \bar{4} \end{pmatrix} = \begin{pmatrix} \bar{2} & \bar{3} & | \bar{0} \\ \bar{1} & \bar{2} & | \bar{4} \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{2} & \bar{3} & | \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{2} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & -\bar{1} & | -\bar{8} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & \bar{4} & | \bar{2} \end{pmatrix}$$

$$\xrightarrow{R_2 \to \bar{4} \cdot R_2} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & \bar{1} & | \bar{8} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{2} \cdot R_2} \begin{pmatrix} \bar{1} & \bar{0} & | -\bar{2} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & | \bar{3} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix}$$

$$(x, y) = (\bar{3}, \bar{3}) .$$

$$\begin{pmatrix} \bar{5} & \bar{2} & | \bar{3} \\ \bar{4} & -\bar{3} & | \bar{4} \end{pmatrix} = \begin{pmatrix} \bar{5} & \bar{2} & | \bar{3} \\ \bar{4} & \bar{4} & | \bar{4} \end{pmatrix} \xrightarrow{R_1 \to \bar{3} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{6} & | \bar{9} \\ \bar{4} & \bar{4} & | \bar{4} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{6} & | \bar{2} \\ \bar{4} & \bar{4} & | \bar{4} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{4} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{6} & | \bar{2} \\ \bar{0} & -\bar{20} & | -\bar{4} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{6} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix} \xrightarrow{R_1 \to R_1 - \bar{6} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{0} & | -\bar{14} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & | \bar{0} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix}$$

$$(x, y) = (\bar{0}, \bar{3}) .$$

$$\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{3} & \bar{1} & 4 & | \bar{2} \\
\bar{2} & \bar{4} & 4 & | \bar{3}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 3R_1}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & -\bar{8} & \bar{1} & | -\bar{1} \\
\bar{2} & \bar{4} & 4 & | \bar{3}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{1} & | \bar{4} \\
\bar{0} & -\bar{2} & \bar{2} & | \bar{1}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{1} & | \bar{4} \\
\bar{0} & \bar{3} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$\frac{R_3 \to R_3 - 2R_1}{\hat{0} & -\bar{2} & \bar{2} & | \bar{1}
\end{pmatrix}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{1} & | \bar{4} \\
\bar{0} & -\bar{2} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{3} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{3} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{4} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

תשובה סופית:

$$(x,y,z) = (\bar{0},\bar{2},\bar{0})$$
.

 $x + \overline{3}y + z = \overline{1}$ $\overline{3}x + y + \overline{2}z = \overline{2}$ $\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$

$$\begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{3} & \bar{1} & \bar{2} & | & \bar{2} \\ \bar{2} & \bar{2} & \bar{3} & | & \bar{4} \end{pmatrix} \xrightarrow{R_2 \to R_2 - \bar{3}R_1} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & -\bar{8} & -\bar{1} & | & -\bar{1} \\ \bar{0} & -\bar{4} & \bar{1} & | & \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{2} & \bar{4} & | & \bar{4} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{4} & | & \bar{4} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - \bar{2}R_2} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{3} \cdot R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{6} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{0} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{0} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3} \cdot R_2} \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$(x, y, z) = (\bar{0}, \bar{2}, \bar{0})$$

פתרון יחיד.

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

$$\begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{3} & \bar{1} & \bar{4} & | & \bar{3} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3 \cdot R_1} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & -\bar{5} & \bar{1} & | & -\bar{3} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2 \cdot R_1} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix}$$

$$\xrightarrow{R_2 \to 4R_2} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{8} & \bar{4} & | & \bar{1}\bar{6} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{8} & | & \bar{2}\bar{4} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{4} \cdot R_3} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & \bar{5} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{2} \cdot R_2 - R_3} \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & -\bar{9} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & \bar{5} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$(x, y, z) = (\bar{5}, \bar{4}, \bar{3})$$

פתרון יחיד.

שאלה 18 פתרו את המערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות יש למערכת?

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

$$\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{3} & \bar{1} & \bar{2} & | \bar{2} \\
\bar{2} & \bar{2} & \bar{3} & | \bar{4}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + \bar{2}R_1} \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{7} & \bar{4} & | \bar{4} \\
\bar{0} & \bar{1}\bar{1} & \bar{6} & | \bar{7}
\end{pmatrix} = \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{4} & | \bar{4} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_2 \to \bar{3} \cdot R_2} \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{6} & \bar{1}\bar{2} & | \bar{1}\bar{2} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2}
\end{pmatrix} = \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | \bar{2} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 \to R_2} \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | \bar{2} \\
\bar{0} & \bar{0} & -\bar{1} & | \bar{0}
\end{pmatrix} = \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{4} & | \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3} \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1}\bar{6} & | \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3} \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1}\bar{6} & | \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{2} \cdot R_3} \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3} \begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | -\bar{5} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{0} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

תשובה סופית:

$$(x,y,z) = (\bar{0},\bar{2},\bar{0})$$

פתרון יחיד.

שאלה 19

שיטה 1

$$\begin{pmatrix} \bar{3} & \bar{2} & \bar{1} & \bar{4} \\ \bar{4} & \bar{2} & \bar{1} & \bar{1} \\ \bar{1} & \bar{1} & \bar{3} & \bar{1} \end{pmatrix} \qquad \xrightarrow{R_1 \leftrightarrow R_3} \qquad \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & \bar{1} \\ \bar{4} & \bar{2} & \bar{1} & \bar{1} \\ \bar{3} & \bar{2} & \bar{1} & \bar{4} \end{pmatrix} \qquad \xrightarrow{R_2 \to R_2 - \bar{4} \cdot R_1} \qquad \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & \bar{1} \\ \bar{0} & -\bar{2} & -\bar{11} & -\bar{3} \\ \bar{0} & -\bar{1} & -\bar{8} & \bar{1} \end{pmatrix}$$

$$= \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{3} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{4} & \bar{2} & | & \bar{1} \end{pmatrix} \qquad \xrightarrow{R_2 \to \bar{2} \cdot R_2} \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{6} & \bar{8} & | & \bar{4} \\ \bar{0} & \bar{4} & \bar{2} & | & \bar{1} \end{pmatrix} \qquad = \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{3} & | & \bar{4} \\ \bar{0} & \bar{4} & \bar{2} & | & \bar{1} \end{pmatrix}$$

$$= \left(\begin{array}{cc|c} \bar{1} & \bar{0} & \bar{0} & \bar{2} \\ \bar{0} & \bar{1} & \bar{3} & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & \bar{0} \end{array}\right)$$

פתרון:

יש 5 פתרונות למערכת:

$$\begin{pmatrix} \overline{2} \\ \overline{4} \\ \overline{0} \end{pmatrix} \ , \qquad \begin{pmatrix} \overline{2} \\ \overline{1} \\ \overline{1} \end{pmatrix} \ , \qquad \begin{pmatrix} \overline{2} \\ \overline{3} \\ \overline{2} \end{pmatrix} \ , \qquad \begin{pmatrix} \overline{2} \\ \overline{0} \\ \overline{3} \end{pmatrix} \ , \qquad \begin{pmatrix} \overline{2} \\ \overline{2} \\ \overline{4} \end{pmatrix} \ .$$

שיטה 2

$$\begin{pmatrix}
\bar{3} & \bar{2} & \bar{1} & | & \bar{4} \\
\bar{4} & \bar{2} & \bar{1} & | & \bar{1} \\
\bar{1} & \bar{1} & \bar{3} & | & \bar{1}
\end{pmatrix}
\xrightarrow{R_2 \to \bar{2}R_1 + R_2 \atop R_3 \to R_1 + \bar{2}R_3}
\begin{pmatrix}
\bar{3} & \bar{2} & \bar{1} & | & \bar{4} \\
\bar{0} & \bar{1} & \bar{3} & | & \bar{4} \\
\bar{0} & \bar{4} & \bar{2} & | & \bar{1}
\end{pmatrix}
\xrightarrow{R_3 \to R_2 + R_3}
\begin{pmatrix}
\bar{3} & \bar{2} & \bar{1} & | & \bar{4} \\
\bar{0} & \bar{1} & \bar{3} & | & \bar{4} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}$$

פתרון:

$$\begin{vmatrix}
\bar{3}x & = \bar{1} \\
y + \bar{3}z & = \bar{4}
\end{vmatrix} \Rightarrow \begin{vmatrix}
\bar{2} \cdot \bar{3}x & = \bar{2} \cdot \bar{1} \\
y & = \bar{4} + (-\bar{3})z = \bar{4} + \bar{2}z
\end{vmatrix} \Rightarrow \begin{vmatrix}
x & = \bar{2} \\
y & = \bar{4} + \bar{2}z
\end{vmatrix} z \in \mathbb{Z}_5.$$

יש 5 פתרונות למערכת:

$$\begin{pmatrix} \bar{2} \\ \bar{4} \\ \bar{0} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{1} \\ \bar{1} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{3} \\ \bar{2} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{0} \\ \bar{3} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{2} \\ \bar{4} \end{pmatrix} .$$

שאלה 20

$$\begin{pmatrix}
\bar{2} & \bar{3} & \bar{3} & | & \bar{5} \\
\bar{3} & \bar{4} & \bar{1} & | & \bar{1} \\
\bar{1} & \bar{1} & \bar{6} & | & \bar{2}
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_3}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{3} & \bar{4} & \bar{1} & | & \bar{1} \\
\bar{2} & \bar{3} & \bar{3} & | & \bar{5}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - \bar{3} \cdot R_1}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{6} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{6} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{6} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{6} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{6} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{6} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{6} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{4} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{1} & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{1} & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{1} &$$

פתרון:

$$(x,y,z)=(\bar{2},\bar{6},\bar{6})\ .$$

שאלה 21

שיטה 1

$$\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{3} & \bar{1} & \bar{4} & | & \bar{3} \\
\bar{2} & \bar{4} & \bar{4} & | & \bar{3}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - \bar{3} \cdot R_1 \atop R_3 \to R_3 - \bar{2} \cdot R_1}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & -\bar{5} & \bar{1} & | & -\bar{3} \\
\bar{0} & \bar{0} & \bar{2} & | & -\bar{1}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{2} & | & \bar{4}
\end{pmatrix}$$

$$\frac{R_3 \to R_3 - \bar{2}R_2}{\bar{0} = \bar{0} - \bar{0}}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{0} & | & \bar{0} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}$$

פתרון:

$$(x, y, z) = (-\bar{2}y, y, \bar{2}) = (\bar{3}y, y, \bar{2}) , \qquad y \in \mathbb{Z}_5 .$$

למערכת יש 5 פתרונות:

$$(\bar{0}, \bar{0}, \bar{2})$$
, $(\bar{3}, \bar{1}, \bar{2})$, $(\bar{1}, \bar{2}, \bar{2})$, $(\bar{4}, \bar{3}, \bar{2})$, $(\bar{2}, \bar{4}, \bar{2})$.

שיטה 2

$$\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{3} & \bar{1} & \bar{4} & | & \bar{3}
\end{pmatrix}
\xrightarrow{R_2 \to \bar{2} \cdot R_1 + R_2}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{5} & \bar{5} & \bar{6} & | & \bar{7} \\
\bar{5} & 10 & \bar{7} & | & \bar{9}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{2} & | & \bar{4}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{3} \cdot R_2 + R_3}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{0} & | & \bar{0} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}$$

פתרון:

$$(x, y, z) = (-\overline{2}y, y, \overline{2}) = (\overline{3}y, y, \overline{2}), \quad y \in \mathbb{Z}_5.$$

למערכת יש 5 פתרונות:

$$(\bar{0}, \bar{0}, \bar{2})$$
, $(\bar{3}, \bar{1}, \bar{2})$, $(\bar{1}, \bar{2}, \bar{2})$, $(\bar{4}, \bar{3}, \bar{2})$, $(\bar{2}, \bar{4}, \bar{2})$.

שאלה 23

$$\begin{pmatrix} 1+i & 1-i & 1+i \\ 1-i & 1+i & 1+3i \end{pmatrix} \xrightarrow{R_1 \to (1-i)R_1} \begin{pmatrix} 2 & -2i & 2 \\ 1-i & 1+i & 1+3i \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{pmatrix} 1 & -i & 1 \\ 1-i & 1+i & 1+3i \end{pmatrix} \xrightarrow{R_2 \to R_2 - (1-i)R_2} \begin{pmatrix} 1 & -i & 1 \\ 0 & 2+2i & 4i \end{pmatrix}$$

$$\xrightarrow{R_2 \to (2-2i)R_2} \begin{pmatrix} 1 & -i & 1 \\ 0 & 8 & 8+8i \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{8}R_2} \begin{pmatrix} 1 & -i & 1 \\ 0 & 1 & 1+i \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + iR_2} \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & 1+i \end{pmatrix}$$

 $.(z_1,z_2)=(i,1+i)$:פתרון

$$\begin{pmatrix} 2 & -2-i & | & -i \\ 4-2i & -5 & | & -1-2i \end{pmatrix} \xrightarrow{R_2 \to R_2 - (2-i)R_1} \begin{pmatrix} 2 & -2-i & | & -i \\ 0 & 0 & | & 0 \end{pmatrix}$$
 פתרונו.
$$(z_1, z_2) = \left(-\frac{i}{2} + \left(1 + \frac{i}{2}\right) \cdot z_2, z_2\right), z_2 \in \mathbb{C} :$$
 פתרונות

$$\begin{pmatrix} 1-i & -3 & | & -i \\ 2 & -3-3i & | & 3-i \end{pmatrix} \xrightarrow{R_1 \to (1+i)R_1} \begin{pmatrix} 2 & -3-3i & | & 1-i \\ 2 & -3-3i & | & 3-i \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 2 & -3-3i & | & 1-i \\ 0 & 0 & | & 2 \end{pmatrix}$$

קיבלנו שורת סתירה לכן למערכת אין פתרון.

שאלה 26

$$\begin{pmatrix} i & 1-i & | & 2i \\ 1+2i & -2 & | & 1 \end{pmatrix} \qquad \xrightarrow{R_1 \to (-i)R_1} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 1+2i & -2 & | & 1 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - (1+2i)R_2} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 0 & -3+3i & | & -1-4i \end{pmatrix} \qquad \xrightarrow{R_2 \to (-3-3i) \cdot R_2} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 0 & 18 & | & -9+15i \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{18} \cdot R_2} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 0 & 1 & | & \frac{-1}{2} + \frac{5}{6}i \end{pmatrix} \qquad \xrightarrow{R_1 \to R_1 + (1+i) \cdot R_2} \qquad \begin{pmatrix} 1 & 0 & | & \frac{2}{3} + \frac{i}{3} \\ 0 & 1 & | & \frac{1}{2} - \frac{5}{6}i \end{pmatrix}$$

$$x = \frac{2+i}{3} , \qquad y = \frac{-3+5i}{6}$$

שאלה 27

$$x = \frac{3+i}{5}$$
, $y = \frac{-3+4i}{10}$

$$x = \frac{1}{2}$$
, $y = \frac{-1}{2} + i$