Střední průmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 Střední průmyslová škola elektrotechnická

Ročníková práce

(školní rok 2002/2003)

Mikroprocesorový systém

Jméno a příjmení: PAVEL LANG

Třída: 4. B

Obsah

Obsah	2
Zadání	
Úvod	4
Blokové schéma	5
Mikroprocesor a okolí	6
Inteligentní display s řadičem HD44780U	6
Klávesnice PC-AT	7
Přenos kódu klávesy	
Softwarové řešení	8
Organizace paměti EEPROM	8
Elektrické schéma mikroprocesorového systému	10
Výkres plošného spoje	11
Osazovací výkres	12
Elektrická rozpiska	13
Hexadecimální výpis programu – formát Intel HEX	14
Závěr	17
Seznam použité literatury a elektronických manuálů	18

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	2

Zadání

Navrhněte a sestrojte mikropočítačový systém ve kterém se bude moci nastavovat budík, hodiny a kalendář, včetně poznámkového editoru s možností připojení tiskárny.

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	3

Úvod

Mikroprocesorová technika zaznamenává v posledních letech úspěšný vzestup. Na principu digitálního zpracování informace pracují dnes i systémy, které byly až do nedávné doby čistě analogovou záležitostí, jako například osciloskopy, spektrální analyzátory, automatizační nástroje a jiné.

Cílem mé práce bylo hlavně motivovat sám sebe a vyzkoušet vědomosti nabyté ve škole i samostudiem. Věřím, že tímto výrobkem nepomůžu jen sobě, ale i jiným. Můj mikroprocesorový systém se dá snadno rozšířit o další periferie, jako jsou výkonové spínací součástky, měřící čidla teploty, vlhkosti vzduchu, tlaku i různá chemická či technologická čidla. Systém byl navržen s požadavkem na co nejnižší pořizovací náklady, což neznamená znehodnocení jeho výkonu a uplatnění.

Systém je vybaven obvodem hodin reálného času (RTC) DS1302 firmy Dallas, proto může být vybaven budíkem nebo přesným časovým spínačem; sériovou pamětí FLASH 24LC64 firmy ATMEL s kapacitou 8 kB; konektorem paralelního rozhraní pro připojení tiskárny; konektorem DIN5 pro připojení standardní PC-AT klávesnice.

Jádrem celého systému je mikrokontrolér AT89C55WD-33PC firmy ATMEL schopný pracovat až na 33 MHz. Jeho architektura je odvozena z procesoru 8052, to znamená, že je vybaven vnitřní pamětí dat RWM o velikosti 256 B. Programová paměť je typu FLASH a byla rozšířena na 20 KB. Tento obvod stojí cca 300 Kč a je k dostání například v síti prodejen GM Electronic. Pro méně náročné úlohy ale úplně postačí levnější procesor z řady 8052, například AT89C52.

Při vývoji systému jsem se musel potýkat z řadou problémů, jako je programování přenosových protokolů pro periferní okolí procesoru, nebo návrh souborového systému použitelného i na tak malou kapacitu paměti, jakou je 8 kB.

Pro návrh souborového systému jsem vycházel z nejjednoduššího a nejméně kvalitního souborového systému FAT (tj. File Allocation Table). Tento systém je nejméně náročný na prostředky. Popis souborového systému je v **tabulce 1** – kapitola <u>Softwarové řešení</u>.

Pro realizaci tisku jsem zpočátku zvolil standardní konvence escape kódů pro tiskárny HP®. Budoucí verze softwaru bude rozšířena o možnost výběru řídících sekvencí pro tiskárny Epson® a ASCII bez řídících kódů.

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	4

Blokové schéma

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	5

Mikroprocesor a okolí

Jádro tvoří monolitický mikrokontrolér AT89C55WD, který je časován připojeným externím krystalem. Resetovací obvod je založen na principu přechodového děje v RC obvodu.

Vstup RST (pin 9) s aktivní úrovní log. 1 musí být při připojení napájecího napětí aktivní po dobu 2 strojových cyklů, tj. při frekvenci oscilátoru 24 MHz 1 μ s. To i při méně strmém růstu napájecího napětí Ucc zajistí kapacita 10 μ F a odpor 1 k Ω .

Vstup EA aktivní v log. 0 je trvale připojen na potenciál země – to znamená, že se nebude využívat externí paměť programu ani dat.

Brána P0 slouží jako systémová sběrnice pro port PC, inteligentní řadič a je napojena i na konektor pro přídavná zařízení. Kvůli vnitřní architektuře brány open drain je třeba posílit logickou úroveň 1 pomocnou rezistorovou sítí RN1 (1,2 kΩ).

Brána P1 slouží pro komunikaci s obvodem hodin reálného času DS1302 (bity 1,2,3) a pro přenos řídících signálů tiskárny.

Brána P2 slouží ke strobování platných dat pro inteligentní zobrazovač (bit 1), pro výběr cílového registru zobrazovače (bit 0), zbytek je připojen na konektor pro přídavná zařízení. Bit 7 navíc je napojen i na port tiskárny – signál PAPEREND

Brána P3 je napojena na konektor klávesnice PC-AT (bity 1,2), na tranzistorový stupeň pro akustický výstup (bit 0), na port tiskárny (bity 3,4,5) a na sériovou EEPROM – FLASH paměť AT24LC64.

Výpis paměti programu je přiložen na konci kapitoly <u>Softwarové řešení</u> v IntelHEX formátu.

Inteligentní display s řadičem HD44780U

Display je řízen standardním řadičem HD44780U nebo kompatibilním, je dostupný téměř ve všech prodejnách elektroniky, například v síti GME. Byl zvolen 20 znaků **x** 4 řádky, ale může být jakýkoliv jiný – po úpravě programu.

Přenos dat probíhá paralelně. Datové slovo je přivedeno na piny DB0 – DB7. Řídící signály určující stav sběrnice jsou:

- RS Register Select určuje, zda jde o data, nebo o příkaz.
- R/-W Read/-Write je trvale připojen na zemní potenciál (na modul displeje se bude pouze zapisovat).
- E Enable určuje platnost dat vzestupnou hranou.

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	6

Klávesnice PC-AT

Klávesnice je připojena na přerušovací systém mikroprocesoru, takže informace je přijata okamžitě, jak je vyslána. Přenos informace probíhá sériově a je řízen klávesnicí – hodinovými pulzy na pinu CLK. Přenosový protokol je definován

jedním start bitem (log. 0), 8 datovými bity, jedním paritním bitem (lichá parita) a jedním stop bitem (log. 1). Hodinové pulzy od klávesnice mají frekvenci cca 1 kHz.

Na obrázku 1 je uvedeno zapojení vývodů na konektoru DIN5. Na obrázku 2 je časový diagram přenosového protokolu. Z něj je patrné, že data jsou platná při sestupné hraně.

Přenos kódu klávesy

Obr. 1 – Klávesnice PC-AT zapojení vývodů konektoru

Obr. 2 – Časovací diagram sériového protokolu klávesnice: bit 0 – start bit (log. 0) bit 1 – 0. bit datového slova (LSB) bit 8 – 7. bit datového slova (MSB) bit 9 – paritní bit (lichá parita) bit 10 – stop bit (log. 1)

Z hlediska přenosu kódu u základní skupiny kláves jednotlivé byty mají význam scan kódu klávesy, který se opakuje v konstantních intervalech, je-li klávesa stisknuta. Při uvolnění klávesy je vyslán datový byte 0xF0 a následně scan kód uvolněné klávesy, jak je vidět z obrázku 3.

Rozšířené klávesy před vlastním scan kódem vysílají datový byte 0xE0, který informuje uživatelské zařízení, že se jedná o nestandardní klávesu (viz. obrázek 4).

Obr. 4 – Sekvence rozšířené skupiny znaků vysílaná klávesnicí

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	7

Softwarové řešení

V této kapitole naleznete popis datových struktur využívaných µprocesorovým systémem.

Organizace paměti EEPROM

Paměť je rozdělena do 128 bloků, z nichž první 4 jsou systémové (viz. <u>Struktura po blocích</u>). Systém souborů byl navržen na bázi souborového systému FAT vzhledem k jeho jednoduchosti a vhodnosti pro malokapacitní média. Rozvržení struktur používaných v paměti je uvedeno níže. Všechny údaje se vztahují jen k parametrům rozložení paměti uvedených v tabulce níže.

Základní rozložení paměti – vzorový příklad pro 8 kB paměť

velikost paměti: 64 kb = 8 kB = 8192 B počet bloků: 8192 B / 64B = 128

velikost jednoho bloku: 64B = 0x40 velikost FAT: 128B -> 2 bloky

Struktura po blocích

Název	číslo	offset - absolutní adresa
SYS	0	(vždy velikost 128 B)
FAT	1	(128 = 0x080)
FAT	2	(256 = 0x100)
ROOT	3	(384 = 0x180)
DATA/DIR		
DATA/DIR		
 DATA/DIR	 127	(16256=0x3F80)

Poznámky:

- První 4 bloky jsou vytvářeny při formátování paměti.
- Blok SYS je plně rezervovaný pro vnitřní účely mikroprocesorového systému mimo některé údaje z jeho počátku viz. níže
- Bloky FAT jsou vždy jen dva, jejich velikost se mění v závislosti na položce VELIKOST_BLOKU v tabulce bloku SYS

Blok SYS

offset – bloky 0,1	jméno MAGIC_WORD	popis 0x55 0xAA
2,3	VELIKOST BLOKU	0x00 0x40
4,5	POCET_BLOKU	0x00 0x80
6,7	VERZE_FORMATU	0x01 0x00 (= v1.0 - BCD)
8127	SWAP_SPACE	rezervováno – pro swapování paměti

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	8

BLOK **FAT**

Blok FAT (File Allocation Table) určuje, jak jednotlivé bloky spolu souvisí a definuje kontinuitu dat. První 4 byte ve FAT jsou rezervovány a přednastaveny na hodnotu 0x01 – tj. konec souboru. Významy ostatních hodnot jsou uvedeny v tabulce níže.

Hodnota	význam
0x00	volné místo

0x01 konec souboru (nebo také tabulka FAT nebo systémová oblast)

jiná hodnota index následujícího bloku souboru

BLOK ROOT/DIR – položka adresáře

Offset	velikost	jméno popis
0x00 0x01	1	ATTRIB SUBDIR; READ; WRITE; EXEC
		LOCKED; HIDDEN; PASSWORD; VALID
0x01 0x09	8	FILE_NAME jméno souboru
0x0A 0x0B	1	FAT_ENTRY vstupní blok – index v tabulce FAT
		(U DIR index struktury)
0x0B 0x0F	6	MODIFIED_DATE_TIME YY.MM.DD HH:MM.SS
0x10 0x1F	15	FILE_NAME,ATTRIB,MDT
0x20 0x2F	15	FILE_NAME,ATTRIB,MDT
0x30 0x3F	15	FILE_NAME,ATTRIB,MDT

Poznámky:

Výčet položek je omezen na velikost jednoho bloku – zde 64 bytů

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	9

Elektrické schéma mikroprocesorového systému

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	10

Výkres plošného spoje Výkres je vyobrazen ze strany součástek

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	11

Osazovací výkres

Výkres je vyobrazen ze strany součástek

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	12

Elektrická rozpiska

Pol.	ks.	Název	Тур	Hodnota	Poznámka
MODUI	Υ				
LCD	1	LCD inteligentní modul	MC2004B-TGR	20x4, TN	řadič HD44780
INTEG	ROVA	NÉ OBVODY			
IC1	1	monolitický mikropočítač	AT89C55WD		8052
IC2	1	integrovaný stabilizátor	7805	5 V, 1 A	
IC3	1	hodiny reálného času s RWM	DS1302		
IC4	1	sériová EEPROM 8 kb x 8	AT24LC64		nebo větší
KRYST	ALOV	É VÝBRUSY			
Q1	1	krystalový výbrus	Q 24MHZ FUND	typ.24 MHz	12 MHz-33 MHz
Q2	1	krystalový výbrus	Q 32.768KHZ	32,768KHz	
POLOV	ODIČ/	OVÉ SOUČÁSTKY			
T1	1	tranzistor NPN	BC547		
D1-D4	4	dioda usměrňovací	1N4007	1 A 1000 V	
REZIS1	ORY			•	
RN1	1	rezistor. síť 8+1 spol. vývod	RR 8x1K2 5%	8 x 1,2 kΩ	
R1	1	rezistor	RR 10K	10 kΩ	
R2	1	trimr stojatý	PT 10HK025	25 kΩ	
R3	1	rezistor	RR 1K	1 kΩ	
R4	1	rezistor	RR 3K3	3,3 kΩ	
R5	1	rezistor	RR 33K	33 kΩ	
KONDE	NZÁI	TORY			
C1,C2	2	kondenzátor keramický	CK 33P	33 pF	
	2	kondenzátor keramický	CK 100N	100 nF	
C7,C8	2	kondenzátor keramický	CK 15P	15 pF	
C5	1	kondenzátor elektrolytický	E3M3/50V	3,3 µF,50 V	
C6	1	kondenzátor elektrolytický	E1000M/25V	1000 μF,25V	
KONE	(TOR)	Y, VODIČE			
CON1	1	konektor CANNON 25 zásuvka	CAN 25 Z 90	do DPS	paralel. port
KEY	1	kolíková lámací lišta	S1G20		ulomit 5 kolíků
JP1	0	kolíková lámací lišta	S1G20		ulomit 2 kolíky
JP3	0	kolíková lámací lišta	S1G20		ulomit 2 kolíky
JP4	0	kolíková lámací lišta	S1G20		ulomit 2 kolíky
NAP	1	svorkovnice do DPS	ARK210/2	5 mm	5mm rozteč
	1	konektor napájecí pro mn	HEBG25	2,5 mm	
	2	dutinková lišta krimpovací		16 zdířek	100 mils
-	3	dutinková lišta krimpovací		2 zdířky	100 mils
	-	plochý vodič – 20 žil		0,25 m	

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	13

Hexadecimální výpis programu – formát Intel HEX

:060000000211E20207E913 :03000B0002008070 :0300130002008167 :03001B000200825E :100030004D696B726F70726F6365736F722E737937 :100040007374656D5665727A6520736F6674776137 :1000500072753A20312E303020207E7E7E2020E0C6 :10006000207665727A65207F7F7F202028432920B3 :1000700020506176656C204C616E672032303033E1 :10008000323232484C41564E49204E414249444B4F :10009000410000A200920000023A00834255444908 :1000A0004B0000B40092011400000083534F5542EE :1000B0004F52590000C800A200E4000000834E41E6 :1000C00053544156454E490000C800B40198000001 :1000D00000834C41444943492050524F53545245A8 :1000E000444B590000FB00E4000011CD00BE4E411E :1000F000535441564954204341530000FB00E4004F :100100000011CD00BE4E4153544156495420444144 :1001100054554D00012C011400000DF900AC565946 :1001200050495320534F55424F5259000144011436 :1001300000000E9000AC45444954554A20534F5599 :10014000424F5200015E012C000011CD00AC565907 :100150005449534B4E4920534F55424F5200017D55 :100160000144000002E400AC565954564F52495421 :10017000204E4F565920534F55424F5200017D019A :100180005E0000032C00AC4F44535452414E49547E :1001900020534F55424F520001B7019800000D1AED :1001A0000D25A4F4252415A49542050414D455471 :1001B0002056204845580001D601980000026600EC :1001C000D2534D415A41542056534543484E412045 :1001D00044415441210001F201B70000029300D2D2 :1001E0005A4F4252415A4954205A41534F424E4964 :1001F0004B00020C01D6000010BF00D256595449E2 :10020000534B4E4F5554205445535400020C01F2A9 :100210000000112800D256595449534B4E4F5554A3 :1002200020464C415348005A4144454A54452043D6 :1002300041533A2048482E4D4D00785890022712DD :10024000085E1204F5786C120883786C1208EDC011 :10025000E0900100120AC5D0F0120E91081208EDCC :10026000F5F0120E9122120278020BA35052414374 :10027000554A49202E2E2E00C001C083C082791419 :10028000786CE490026C12085E1204F5D082D08380 :10029000D00122C007C00179807830750728E709AE :1002A00012080FD507F81204F53000FDC200120441 :1002B0008079287830750708E70912080FD507F804 :1002C00075445375455075463A7847E58112080FD5 :1002D0001204F53000FDC200D001D007224A4D457E :1002E0004E4F3A007858E49002DD12085E1204F591 :1002F000120883E6B4200302031A740375F0FF1298 :100300000CE94016224E45573A204E45504C415478 :100310004E45204A4D454E4F2100786CE490030530 :1003200012085E1204E53000FDC200227858E490E5 :1003300002DD12085E1204F5120883B420030203E2 :1003400061740375F0FF120E6250162244454C3A58 :10035000204E45504C41544E45204A4D454E4F216C :1003600000786CE490034C12085E1204F53000FD36 :10037000C20022120472740A784412085EC083C05C :1003800082740893F8740993F58288837400783036 :1003900012085E1204F5D082D083120406500D7448 :1003A0000293F8740393F582888380C7120419506E :1003B0000D740093F8740193F582888380B512045C :1003C0002C503D740493F8740593F97003E86010A1 :1003D000C083C082898288837173D082D0838093E6 :1003E000740693F8740793C083C082F5828883747F :1003F000FAC0E07403C0E0740073D082D0836173EC :1004000012043A50952230000E30040BE50AB46B0A :1004100006C200C204D322C32230000E30040BE512 :100420000AB47406C200C204D322C322300009E514

:1004300009B40D04C200D322C322300009E509B477 :100440001B04C200D322C322D2A1C0000000C2A15B :10045000750032D500FDD2A1D00022C000C00175C8 :100460000128750032D500FDD501F7D2A1D001D009 :100470000022750B007830762008B880FA78302298 :10048000750B0091721204F522C2A075800291488A :10049000915B22C2A05407D2E2F580914822C2A00B :1004A000A20692E0A20592E1540FD2E3F5809148B2 :1004B00022C2A0541FD2E4F580914822C2A0543F2A :1004C0004430F580914822C2A04480F580914822B2 :1004D000C2A0C2E74440F580914822D2A0F58091A5 :1004E00048229180740891BC7404C205C206919E92 :1004F0007402919322C000C001C002C0E075800C5C :100500009148740091C7783079007A00C50B243087 :10051000C50BE691DBE8B50B038501020809B84479 :10052000F1C82414C8E691DBE8B50B038501020885 :1005300009B86CF17440794091C77844E691DBE8E2 :10054000B50B038501020809B858F1C82414C8E6A0 :1005500091DBE8B50B038501020809B880F1C50BF2 :1005600024D0C50BEA91C77404919ED0E0D002D08C :1005700001D0002200F900F5F3F1F2FC00FAF8F6E0 :10058000F4096000000000000716C0000007A7344 :10059000617732000063786465343300002076664A :1005A00074723500006E62686779360000006D6A0B :1005B00075373800002C6B696F303900002E2F6CB6 :1005C0003B702D00002C00005B3D00000000D5D25 :1005D000005C0000000000000007F00000000040 :1005E0000000000007F0000001B1B00FB2B002D03 :1005F0002A00000000000F700000000000000DA :100670000000000000F900F5F3F1F2FC00FAF8F6D2 :10068000F4097E0000000000051210000005A53D0 :10069000415740000043584445242300002056465B :1006A00054522500004E424847595E0000004D4A12 :1006B00055262A00003C4B494F292800003E3F4C5C :1006C0003A505F00002200007B2B00000000D7DEF :1006D00007C0000000000000007F0000310034BA :1006E00037000000302E323536381B00002B332DFA :1006F0000039000000000F7000000000000000CA :100770000000000D2B2D288C200C204C202D2A8D5 :1007800022200448E508B4F003D20322B4E003D2E7 :100790000422B41208A203B39202C20322B459087D :1007A000A203B39202C20322300303C20322C08316 :1007B000C0822002069005740207BE900674936002 :1007C00004F509D200C203D082D08322E508B4F038 :1007D00005D203C20422750900F50AD20022A2B292 :1007E00040FCA2B250FCA2B122C0D0C0E0E4F1E2D1 :1007F000C000750008F1DE13D500FAD000F508122C :1008000007DE1207DE120781C289D0E0D0D032C0E5 :10081000E0C4540F2430B43A0040022407F6D0E07C :1008200008C0E0540F2430B43A0040022407F6D048 :10083000E00822C0E0C001790833C0E0E492E0247F :1008400030F608D0E0D9F2D001D0E022F608D9FC89 :1008500022C0E093F6D0E0040819B900F422C0E009 :10086000936007F6D0E0040880F4D0E022C000C016

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	14

:10087000E0C4540F75F00AA4F500D0E0540F250031 :10088000D00022C0E0850001E50024D0F50B300047 :10089000FDC200300404C20480F4E509B40D06D0A2 :1008A000E019880B22B47F10E8B5010280E01977C7 :1008B00020150B1204F580D6F709050B1204F580FC :1008C000CDC0F0C000C001C007F507E6F5F0E7B500 :1008D000F0090809D507F4D30208DCC3D007D0011A :1008E000D00D0F022E6F70809D502F9221208FB61 :1008F000C4C0E01208FBD0F025F022E60824D0B4F2 :100900000A00500122C324EF22504F555453544340 :10091000545041534F4E45504F4E44454C49555409 :100920004552592020535452454441204354565275 :1009300054454B504154454B2020534F424F544156 :10094000204E4544454C45204C4544454E202020F2 :10095000554E4F52202020204252455A454E2020CD :10096000445542454E2020204B564554454E2020AC :1009700043455256454E202043455256454E454329 :10098000535250454E2020205A41524920202020C9 :1009900052494A454E2020204C4953544F5041441F :1009A000504F53494E454320C2900000C000780884 :1009B000A2E09291D29003C290D8F5D00022D291B9 :1009C000000C0007808A29192E0D29003C290D8B3 :1009D000F5D00022D29223448131A831BEC29222A6 :1009E000D292234480C2E031A8E831A8C292227496 :1009F0000531D41475F007A4900917790711512215 :100A00007407780031E07408780031E074007800F1 :100A100031E07401785931E07402782331E07403D5 :100A2000782331E07404780331E07405780731E00D :100A30007406780331E02200000000000000000226C :100A4000D2B7D2B65137C2B75137C2B6513722C228 :100A5000B700D2B65137D2B75137C2B6513722514B :100A600037D2B65137C2B6513722C0007808339218 :100A7000B7515FD8F933D000D2B700D2B65137A200 :100A8000B7C2B622C2B6C000D2B77808D2B65137C4 :100A9000A2B7335137C2B65137D8F1A20792B75136 :100AA0005FD00022C0E0120B2E514074A0516A406A :100AB000F3E583516AE582516AD0E0C0E0516A51A2 :100AC0004FA3D0E022120B2E514074A0516A40F582 :100AD000E583516AE582516A514F22120B2E514033 :100AE00074A1516A40F5D2075184514F22C0E012DF :100AF0000B2E514074A0516AE583516AE582516A18 :100B0000E608516AA3D9F9514F120B2ED0E022C04A :100B1000E0120B2E514074A1516AC207195184F69C :100B200008D9FAD2075184F608514FD0E02251403B :100B300074A0516A40F8514F22C0E0712E514074A8 :100B4000A0516AE583516AE582516AC083C082E49C :100B50008A83888293A3AA83A882D082D083516A91 :100B6000D9E9514FD0E02255AA0040008001000190 :100B9000445245534152204A45205052415A444EF6 :100BA00059210090000078677A0B79087139C007E5 :100BB000750701E507120BCB0507BF80F6D007903C :100BC0000040786F7A0B7910713922C0E0C000C004 :100BD00001C002C007120C51750704787F7A0B79A7 :100BE000107139C5822410C582C5833400C583D5F0 :100BF00007E9D007D002D001D000D0E02290000059 :100C000051C551DBB4550751DBB4AA02D322C3222C :100C1000C083C0829000402582F582E5833400F5D0 :100C20008351C551DBD082D083229110B40102D30D :100C300022C322C083C082C0E09000402582F5829A :100C4000E5833400F583E5F051A4D0E0D082D08371 :100C500022C0E0C0F075F040A485F083F582D0F0AA :100C6000D0E022C007C006F507750604915151C5B2 :100C700051DB30E025C5822410C582C5833400C510 :100C800083D506EAE507912A500CE507120CA4F576 :100C9000079151020C9AF50780CFE50751C5C3D0E3 :100CA00006D00722C0E0120CBE4012F5F0D0E0C022 :100CB000F09133D0E075F001913371CBC322C007BE :100CC000C082C08390004051C575070051DB600FA2 :100CD0000507BF80F7D374FFD083D082D00722C32B :100CE000E507D083D082D00722C0E0120D5FD0E0AC :100CF0004027C007C0F085F0079163D0F0C0F0E551 :100D0000F051A4C001790851ED91BE51A475F001D4

:100D10009133D001D0F0D007C322C007C006C00570 :100D200090000051C5750500C20078307506047545 :100D30000708E583110FE582110F51DBA3110FD5D1 :100D400007F8D506EA1204F53000FDC200E509B443 :100D50001B03020D58D505D2D005D006D00722C0FE :100D600001C002C0038801F5037410120E9A8802B4 :100D7000E503915105810581E503A80215811581DF :100D8000C083C082120DC3F50350257408A8020861 :100D900011C150E4E82408F8E6F503D082D083744A :100DA00010120EBBE503A801D003D002D001D3225C :100DB000158115817410120EBBA801D003D002D08A :100DC00001C322C0E051C5C001C000750110710F00 :100DD000D00D0017410120E78E582543F700CD010 :100DE000E0912AC0E0400C915151C5E6A2E0D0E06C :100DF00050D122E6A2E0D0E0227403C001C002C0BC :100E000003C004C007850001F5048803E50491517F :100E10001204727410120E9A7507087930E504B145 :100E2000C3F50450237502080811E5C5012402C565 :100E300001A803D507E71204F53000FDC200120433 :100E400072750708793080D51204F53000FDC200B4 :100E50007410120EBBE504D007D004D003D002D02A :100E60000122B15F5011C083C08275F0009133D070 :100E700082D083E451A4D3222582F582E43583F520 :100E80008322C3C5829582C582C5839400C583220F :100E900022C0E0E5F051A4D0E022D00CD00DA88112 :100EA0000825814007F581C00DC00C2275A800758A :100EB0008800758900758107020000D00CD00DC52F :100EC00081C39581C581C00DC00C221B2873315090 :100ED0001B28733134560D0A1B266433442A202AFA :100EE000202A204D696B726F70726F6365736F7229 :100EF0006F76792073797374656D202D206D617420 :100F0000757269746E69207072616365202D20327C :100F1000303033202A202A202A0D0A0D0A1B28737C :100F200031305641647265736120736B6F6C793A2E :100F30000D0A1B2664402053747265646E6920702C :100F400072756D79736C6F766120736B6F6C612055 :100F5000656C656B74726F746563686E69636B61F1 :100F60002061205679737369206F64626F726E61BD :100F700020736B6F6C610D0A205061726475626939 :100F800063652C204B61726C612049562E203133F1 :100F90000D0A0D0A1B266433444175746F723A0DB5 :100FA0000A1B26644020506176656C204C616E6798 :100FB0000D0A204D69726F766120313433360D0A87 :100FC0002035313620303120527963686E6F7620BB :100FD0006E6164204B6E657A6E6F750D0A20437AE0 :100FE0006563682052657075626C69630D0A0D0A4D :100FF00020656D61696C3A206C616E677061407349 :10100000657A6E616D2E637A0D0A2074656C2E3AD6 :10101000202034393420353333203839300D0A0D4F :101020000A536F6674776172652069206861726423 :1010300077617265206D757A6520627974207369B5 :1010400072656E20762072616D6369206C696365DC :101050006E63652047504C0D0A54656E746F2070A6 :10106000726F64756B74206B2056616D20707269AD :101070006368617A692062657A206A616B656B6F6B :101080006C69207A6172756B79202121210D0A50DB :1010900072656A692056616D207072696A656D6E4D :1010A0006F7520707261636920210D0A1B266C30F8 :1010B00048001B2A6F2D314D001B26733043001250 :1010C000110A900ECBC007750750E493B40D037559 :1010D0000751B40A020507600C1210F3A3D507EA02 :1010E0001210E880E2D00722740D1210F3740A1275 :1010F00010F3221210FCF58012110322D2B4A2B414 :1011000040FA22C2960000D29622C293C294C0072F :10111000750700D507FDD007D294C083C082901018 :10112000B911C5D082D08322C007C006C005310ADC :101130009010B211C5900000120AC5750600E58333 :101140001211BBE5821211BB743A11F3740911F349 :10115000750510750700120ADB1211BB742011F31C :101160000507E507B40407742011F3750700D505DA :10117000E5742011F3747C11F3741B11F3742611C0 :10118000F3747011F3743111F3743611F374581150 :10119000F3120AC5750510120ADBA311F3D505F782 :1011A000747C11F3740D11F3740A11F3D5068F904A

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	15

:1011B00010AC11C5D005D006D00722C000780112AE :1011C000080FE50111F3E50211F3D00022C000C0C1 :1011D0000178647932D9FEB2B0D8F8C2B0D001D06B :1011E000002275817FD2AFC2B631CD1204E2740401 :1011F00012049E7830900030E479501208511204A5 :10120000F51207743000FDC200120480D205740488 :1012100012049E9000921203731204807830003002 :101220000FC200444C200E50931CDB47F03021262 :101230004FB41B0280DDF608050BB88105783075C8 :101240000B001204F5B880D67830750B0080CF18EB :10125000150BB82F057830750B0076201204F5B801 :1012600080BC7830750B0080B53000FDC200C20430 :10127000E50AB47517C50B24ECC50BC824ECC8B837 :1012800030005030750B0078300212B4B47217C5BC :101290000B2414C50BC82414C8B880004016750B65 :1012A0000078300212B4B46B10150B18B82F057506 :1012B0000B0078301204F5411EB4740D050B08B80C :0B12C00080F2750B00783080EB80E9B5 :000000001FF

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	16

Závěr

Hardware mikroprocesorového systému byl navržen na první pokus zcela funkčně, bez nutnosti dalších úprav. Po vyleptání plošného spoje proběhlo osazení zcela bez problémů. Plošný spoj byl navržen jednostranně s několika drátovými propojkami, proto nebylo nutné sesazovat předlohy a při výrobě DPS nenastaly komplikace. Desku plošného spoje je možné připravit i v amatérských podmínkách.

Při návrhu softwaru došlo vzhledem k jeho složitosti k několika chybám, které se téměř všechny podařilo odstranit. Program byl vyvíjen v poměrně krátkém časovém období, proto je nutné vzít na vědomý možný výskyt chyb v programu a nejprve pro danou aplikaci pečlivě prověřit jeho funkčnost.

Funkčnost zařízení byla testována je se třemi kusy klávesnic, proto nemůže být zaručena funkčnost i s jinými typy klávesnic.

Souborový systém je založen na nejjednodušší variantě FAT a prozatím pouze pro paměti 24C64 (8 kB). Velikost základního alokačního bloku byla zvolena na velikost 64 B, což odpovídá 128 alokačním blokům z kterých jsou minimálně 4 rezervovány (SYSTEM, FAT, FAT, ROOT). Z toho vyplívá maximální počet souborů. Adresářová položka má velikost 16 B – tj. 4 na jeden blok. Souborový systém je navržen s názvy max. délky 8 znaků bez přípony. Návrh počítá i s adresářovou strukturou, která zatím není podporována.

Výstup na tiskárnu byl testován pouze na tiskárnách firmy HP®, proto není zaručena korektnost tisku na tiskárnách jiných výrobců. V další verzi software je plánována podpora i pro tiskárny EPSON® a pro prostý ASCII výstup.

Časovací obvod DALLAS DS1302 pracuje korektně. Nastavení budíku je uloženo v RWM paměti obvodu DS1302 a kontrola shody nastavení budíku s aktuálním časem pobíhá maximálně 1x za 30s, typicky i několikrát za sekundu.

Vestavěný piezoelektrický měnič pracuje korektně a s dostatečnou hlasitostí.

Při návrhu programu jsem narazil hned na několik problémů, které často souvisely s nepřehledným přepracováváním algoritmu do assembleru. Celý program byl vyvíjen od verze V0-01 až po návrhovou verzi V0-14. V současné době je program ve verzi V1-00a, která je již 15. přepracováním kódu. Program byl v prvních verzích psán pro procesor AT89C51. Datové struktury a řetězce s pevnou velikostí byly přepracovány na struktury s variabilní velikostí poté, co paměť 4 kB programu přestala být dostačující, začínaly se též objevovat problémy s nedostačující pamětí dat. Od verze V0-10 je program větší, než 4 kB a využívá 256 B paměti, proto je určen již jen pro procesory 89C52 nebo kompatibilní. Pro současný systém je procesor 89C52 plně dostačující a není proto nutné pořizovat nákladnější procesor AT89C55.

Věřím, že moje práce podnítí zájemce o mikroprocesorovou techniku a dá jim spoustu nápadů a odpovědí na řešení některých problémů v této oblasti.

Seznam použité literatury a elektronických manuálů

GM Electronic spol. s.r.o. Součástky pro elektroniku 2002

Přehled obvodů řady CMOS 4000, I. díl 4000-4099, Petr Jedlička, BEN

Mikroprocesory řady 8051, Petr Skalický, BEN

DALLAS SEMICONDUCTOR – DS1302 Trickle Charge Timekeeping Chip http://www.dalsemi.com/

ATMEL – AT24C32/64 datasheet

http://www.atmel.com/

Interfacing the IBM PC Parallel Printer Port

FAQ written by Zhahai Stewart (zstewart@hisys.com)

http://nyx10.cs.du.edu:8001/~zstewart/parport.html

HW CD x51 - vydal: HW server http://www.hw.cz/

Popis komunikace mezi PC klávesnicí typu AT a PC

Daniel Prokopec

HW server http://www.hw.cz/

Jméno:	Pavel Lang		
Třída:	4.B	počet listů:	18
Výrobek:	Mikroprocesorový systém	strana:	18