Escolha de classificadores para métodos de Ensemble em classificação de áudios

Isabelle Rodrigues Vaz de Melo Programa de engenharia elétrica, Universidade Federal do Rio de Janeiro, Brasil

isabelle.melo@coppe.ufrj.br

Sumário

- 1- Introdução ao problema estudado
 - 2 Métodos de Ensemble
 - 3 Classificação de áudios
- 4 Métodos de escolha de classificadores
 - 5 Resultados encontrados
 - 6 Referências

Introdução ao problema estudado

Motivação:

Em problemas de classificação, podem ser utilizados <u>diversos classificadores</u> e comparar seus desempenhos para escolher um modelo final . Uma das estratégias para obter bons desempenhos é utilizar <u>métodos de</u>

<u>Ensemble</u> que <u>fusionam os preditores</u>

Objetivos:

- . Estudar possíveis métodos de escolha de classificadores para fazer parte do Ensemble
- . Aplicação das metodologias a 2 trabalhos prévios de <u>classificação de áudio</u>

<u>Introdução</u>

.Técnicas que combinam diversos classificadores/modelos a fim de produzir um <u>classificador final</u>

. Fusão de classificadores/modelos

. 3 tipos principais: <u>Bagging, Boosting e Stacking</u>

. Custosos computacionalmente!

Bagging

.Bagging = Bootrstrap aggregation

. Normalmente envolve um <u>único algoritmo</u> de Aprendizado de Máquina

. Escolha aleatória de amostras por <u>Boostrap</u>

. Resultado final por votação

.Boa estratégia para evitar overfitting

Boosting

- . Boosting: Semelhante ao Bagging
- . <u>Treino sequencial</u> de "weak-learners"
- . XGboost, GradientBoost, AdaBoost, etc

. No treino em sequência, identifica os pontos classificados errados e atribuí um peso de votação maior às amostras classificadas corretamente

Stacking

. Stacking : combinação de <u>diferentes classificadores</u>

. Modelo utilizado no projeto

. Utilização de modelos de base e um modelo mais robusto utilizado no final, chamado de <u>meta-learner</u>

. Metamodelo é treinado nas saídas do modelo inicial

Stacking

- . Consiste em tomar a amostra inteira, tomar rótulos via modelos de Machine Learning, <u>sem combinação</u>
- . Posteriormente, utilizando esses rótulos como entradas de um "novo conjunto de dados", prever a variável resposta dos dados originais

<u>Introdução</u>

. Base de dados <u>GTZAN</u> :

. Áudios coletados entre 2000 e 2001 a partir de rádio, CDs e gravações

. Possui 1000 registros (30s/áudio)

. 10 gêneros musicais (Blues, Clássica, Country, Disco, Hip-hop, Jazz, Metal, Pop, Reggae, Rock)

<u>Introdução</u>

. Processamento de sinal de áudios

. O sinal de áudio bruto é processado para obter um conjunto de features que resume <u>informações temporais</u>

<u>Introdução</u>

. SOMP faz uma combinação linear da saída do conjunto de dados para predizer a saída . Apenas inclui as features que combinadas melhor definem a saída

- . Redução de features escolhida no problema: <u>Structured Orthogonal Matching</u> Pursuit (SOMP)
- . SOMP: método de regressão linear esparsa modificada (combina saídas de modelos)
- . Validação cruzada: <u>Nested 10-fold</u> (100 amostras de conjuntos de treinamento, validação e teste)
- . <u>10 modelos testados</u>: Gaussian Naive Bayes, Multiple Logistic regression, Multiple Layer Perceptron, KNN, SVM-radial, SVM-linear, QDA, LDA, LGBoost, Random Forests

Treino e teste de classificadores

. Melhores hiperparâmetros encontrados:

GNB	LDA	QDA	GB	SVM-I	SVM-r	RF	MLP	KNN	MLR
var_smoot ing: 0.0000000 01	solver: 'Isqr' shringake: 0.1	reg_param : 0.1	n_estimat ors: 200 learning_r ate: 0.1	max_iter: 1000 C: 0.01	C: 1 kernel: 'rbf' gamma: 'auto'	n_estimat ors: 50	max_iter: 1000 hidden_lay er_sizes: [25] activation: 'tanh'	n_neighbo rs: 5	max_ter: 10000 C: 0.01

. Mediana de acurácias encontradas nas classificações:

GNB	LDA	QDA	GB	SVM-I	SVM-r	RF	MLP	KNN	MLR
64.0%	80.0%	80.0%	83.0%	81.0%	86.0%	77.0%	82.5%	79.0%	81.0%

<u>Introdução</u>

- . <u>Qual o melhor método para selecionar N classificadores dentre os 10 (</u>N<10) para um Ensemble de stacking?
 - . Usar todos os classificadores pode ser muito <u>custoso computacionalmente!</u>

- . 3 novos métodos investigados: Fk-score, F(1-k)-score e SOMP
 - . Stackings com 3,5 e 8 classificadores (de 10 totais)
- . 48 stackings avaliados por <u>mediana de acurácia(meta-learners)</u>

Método Fk-score

. Método Fk-score: <u>média harmônica</u> acurácia e kappa

$$F_{\kappa} = \frac{2 a \kappa}{(a+\kappa)}$$

$$k = \frac{p_o - p_e}{1 - p_e}$$

.P0 = concordância empírica .Pe= concordância aleatória . kappa avalia concordância entre avaliadores e elimina o efeito de coincidência por sorte em classificação

. Os classificadores que obtiverem os <u>maiores Fk</u>são selecionados como candidatos ao Ensemble

Método F(1-k)-score

. Método F(1-k)-score: <u>média harmônica</u> acurácia e 1-kappa

$$F_{1-\kappa} = \frac{2 \alpha (1-\kappa)}{(\alpha+(1-\kappa))}$$

$$k = \frac{p_o - p_e}{1 - p_e}$$

. Os classificadores que obtiverem os <u>maiores F(1-k)</u> são selecionados como candidatos ao Ensemble

Metodologia para Fk e F(1-k)-score

Método SOMP

. Método SOMP: codificação Label-Enconder (classe 1 =0, classe 1=2, etc...)

. <u>o SOMP trata os classificadores como features</u>, e retorna as features mais relevantes do problema

	GNB	LDA	QDA	KNN	MLR	SVM-LINEAR	SVM	RF	LGBOOST	MLP
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0

Método Fk-score

. Fk-score:

Média 3 clf	Média 5 clf	Média 8 clf	Média global
81.8%	83.4%	82.8%	82.7%

Método F(1-k)-score

. F(1-k)-score:

Média 3 clf	Média 5 clf	Média 8 clf	Média global
77.2%	81.5%	81.8%	80.1%

Método SOMP

. SOMP:

. Foram variados 4 pesos n: {0.01, 0.1, 1, 10}

Melhor parâmetro encontrado n=10 Classificadores vencedores (do melhor para o pior): {Random Forests, LGBoost, SVM, KNN, QDA, MLP, MLR, SVM-linear}

Método SOMP

. SOMP:

Média 3 clf	Média 5 clf	Média 8 clf	Média global
82.2%	81.9%	82.6%	82.2%

<u>Métodos vencedores e comparação com classificadores isolados</u>

Médias vencedores

Fk	F(1-k)	SOMP
83.4%	81.8%	82.6%

<u>Métodos vencedores e comparação com classifcadores isolados</u>

Conclusões do trabalho

- . Os métodos vencedores para a escolha de classificadores foram o <u>Fk-score</u> e o <u>SOMP</u>
 - . O F(1-k)-score obteve resultados <u>ligeiramente piores</u> que Fk e SOMP, entretanto os resultados não são ruins comparados aos classificadores isolados
- . Nem sempre o método de Stacking performa melhor que um único classificador isolado
 - . <u>A codificação do SOMP ainda deve ser modificada</u>
 - . É possível se obter <u>resultados interessantes</u> e <u>menos computacionalmente custosos</u> escolhendo determinados classificadores ao Stacking

Referências

- [1] V. H. Da Silva Muniz, J. B. de Oliveira and S. Filho, "Robust Handcrafted Features for Music Genre Classification"
- [2]V. H. Da Silva Muniz, J. B. de Oliveira and S. Filho, "Feature Vector Design for Music Genre Classification," 2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 2021, pp. 1-6, doi: 10.1109/LA-CCI48322.2021.9769848.
 - [3] Xiaoshuang Shi a, Fuyong Xing b, Zhenhua Guo d, Hai Sua, Fujun Liuc, Lin Yanga,c,*, "Structured orthogonal matching pursuit for feature selection", 2019, ISSN 0925-2312