Imbalanced Classification. Multiclass Classification. Nonparametric Estimation

Evgeny Burnaev

Skoltech, Moscow, Russia

Outline

- Imbalanced Classification
- 2 Multi-Class Classification
- Nonparametric Estimation

Imbalanced Classification

Multi-Class Classification

3 Nonparametric Estimation

Introduction

- Between-class imbalance (relative imbalance)
- Relative imbalance vs. imbalance due to rare instances or "absolute rarity"
- Data complexity vs. imbalanced data vs. small sample size

• Binary classification: often dataset has "natural" imbalance

- Minor class (of prime interest) vs. major class: e.g. classification of "cancerous" vs. "healthy" mammography image
- Standard classifiers (SVM, kNN, log. reg., etc.): classes are equally important ⇒ results are biased towards the major class
- Poor prediction of minor class while the average quality can be good:
 - target events occurs in 1% of all cases
 - classifier always gives a 'no-event' answer
 - it is wrong just 1% of all cases

- Binary classification: often dataset has "natural" imbalance
- Minor class (of prime interest) vs. major class: e.g. classification of "cancerous" vs. "healthy" mammography image
- Standard classifiers (SVM, kNN, log. reg., etc.): classes are equally important ⇒ results are biased towards the major class
- Poor prediction of minor class while the average quality can be good:
 - target events occurs in 1% of all cases
 - classifier always gives a 'no-event' answer
 - it is wrong just 1% of all cases

- Binary classification: often dataset has "natural" imbalance
- Minor class (of prime interest) vs. major class: e.g. classification of "cancerous" vs. "healthy" mammography image
- Standard classifiers (SVM, kNN, log. reg., etc.): classes are equally important ⇒ results are biased towards the major class
- Poor prediction of minor class while the average quality can be good:
 - target events occurs in 1% of all cases
 - classifier always gives a 'no-event' answer
 - it is wrong just 1% of all cases

- Binary classification: often dataset has "natural" imbalance
- Minor class (of prime interest) vs. major class: e.g. classification of "cancerous" vs. "healthy" mammography image
- Standard classifiers (SVM, kNN, log. reg., etc.): classes are equally important ⇒ results are biased towards the major class
- Poor prediction of minor class while the average quality can be good:
 - target events occurs in 1% of all cases
 - classifier always gives a 'no-event' answer
 - it is wrong just 1% of all cases

- Approaches to increase importance of the minor class:
 - Adapt a probability threshold for classifiers,
 - Modify a loss function, e.g., by assigning more weight to the minor class error,
 - Resample a dataset in order to soften or remove class imbalance
- We focus on resampling: convenient, allows to use standard classifiers
- The main aim:
 - review and compare main resampling methods,
 - compare strategies of resampling amount (i.e., how many observations to add or drop) selection,
 - explore their influence on quality of classification

- Approaches to increase importance of the minor class:
 - Adapt a probability threshold for classifiers,
 - Modify a loss function, e.g., by assigning more weight to the minor class error,
 - Resample a dataset in order to soften or remove class imbalance
- We focus on resampling: convenient, allows to use standard classifiers
- The main aim:
 - review and compare main resampling methods,
 - compare strategies of resampling amount (i.e., how many observations to add or drop) selection,
 - explore their influence on quality of classification

- Approaches to increase importance of the minor class:
 - Adapt a probability threshold for classifiers,
 - Modify a loss function, e.g., by assigning more weight to the minor class error,
 - Resample a dataset in order to soften or remove class imbalance
- We focus on resampling: convenient, allows to use standard classifiers
- The main aim:
 - review and compare main resampling methods,
 - compare strategies of resampling amount (i.e., how many observations to add or drop) selection,
 - explore their influence on quality of classification

- Dataset $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$
- $C_{+1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = +1\}$ is a major class,
- $C_{-1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = -1\}$ is a minor class, i.e. $|C_{+1}(S_m)| > |C_{-1}(S_m)|$
- Imbalance ratio $IR(S_m) = rac{|C_{-1}(S_m)|}{|C_{+1}(S_m)|}$, $IR(S_m) \leq 1$

- Dataset $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$
- $C_{+1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = +1\}$ is a major class,
- $C_{-1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = -1\}$ is a minor class, i.e. $|C_{+1}(S_m)| > |C_{-1}(S_m)|$
- Imbalance ratio $IR(S_m) = \frac{|C_{-1}(S_m)|}{|C_{+1}(S_m)|}$, $IR(S_m) \leq 1$

- Dataset $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$
- $C_{+1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = +1\}$ is a major class,
- $C_{-1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = -1\}$ is a minor class, i.e. $|C_{+1}(S_m)| > |C_{-1}(S_m)|$
- Imbalance ratio $IR(S_m) = \frac{|C_{-1}(S_m)|}{|C_{+1}(S_m)|}$, $IR(S_m) \leq 1$

- Dataset $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$
- $C_{+1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = +1\}$ is a major class,
- $C_{-1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = -1\}$ is a minor class, i.e. $|C_{+1}(S_m)| > |C_{-1}(S_m)|$
- Imbalance ratio $IR(S_m) = \frac{|C_{-1}(S_m)|}{|C_{+1}(S_m)|}$, $IR(S_m) \leq 1$

- ullet Learn a classifier using imbalanced training sample S_m
- The dataset S_m is resampled using a method r:
 - some observations in S_m are dropped, or
 - some new synthetic observations are added to S_m
- The result of resampling is a dataset $r(S_m)$ with $IR(r(S_m)) > IR(S_m)$
- Standard classification model f is learned on $r(S_m)$ to construct a classifier $f_{r(S_m)}: \mathbb{R}^d \to \{-1, +1\}$

- ullet Learn a classifier using imbalanced training sample S_m
- The dataset S_m is <u>resampled</u> using a method r:
 - some observations in S_m are dropped, or
 - some new synthetic observations are added to S_m
- The result of resampling is a dataset $r(S_m)$ with $IR(r(S_m)) > IR(S_m)$
- Standard classification model f is learned on $r(S_m)$ to construct a classifier $f_{r(S_m)}: \mathbb{R}^d \to \{-1, +1\}$

- ullet Learn a classifier using imbalanced training sample S_m
- The dataset S_m is resampled using a method r:
 - some observations in S_m are dropped, or
 - some new synthetic observations are added to S_m
- The result of resampling is a dataset $r(S_m)$ with $IR(r(S_m)) > IR(S_m)$
- Standard classification model f is learned on $r(S_m)$ to construct a classifier $f_{r(S_m)}: \mathbb{R}^d \to \{-1, +1\}$

- ullet Learn a classifier using imbalanced training sample S_m
- The dataset S_m is resampled using a method r:
 - some observations in S_m are dropped, or
 - some new synthetic observations are added to S_m
- The result of resampling is a dataset $r(S_m)$ with $IR(r(S_m)) > IR(S_m)$
- Standard classification model f is learned on $r(S_m)$ to construct a classifier $f_{r(S_m)}:\mathbb{R}^d\to \{-1,+1\}$

- Performance is determined by a predefined classifier quality metrics $Q(f_{S_{train}}, S_{test})$ (e.g. AUC under Precision-Recall curve):
 - input classifier $f_{S_{train}}$,
 - testing dataset S_{test} ,
 - the higher value is the better
- ullet M-fold cross-validation is used to estimate Q^{CV} on S_m

- Performance is determined by a predefined classifier quality metrics $Q(f_{S_{train}}, S_{test})$ (e.g. AUC under Precision-Recall curve):
 - input classifier $f_{S_{train}}$,
 - testing dataset S_{test} ,
 - the higher value is the better
- ullet M-fold cross-validation is used to estimate Q^{CV} on S_m

Resampling method r:

- Takes input:
 - dataset S_m ;
 - resampling multiplier m > 1 for resulting imbalance ratio $\overline{IR}(r(S_m)) = m \cdot \overline{IR}(S_m);$
 - additional parameters, specific for the method
- Add synthesized objects to the minor class (oversampling), or drop objects from the major class (undersampling), or both
- Outputs resampled dataset $r(S_m)$ with imbalance ratio $IR(r(S_m)) = m \cdot IR(S_m)$

Resampling method r:

- Takes input:
 - dataset S_m ;
 - resampling multiplier m > 1 for resulting imbalance ratio $\overline{IR}(r(S_m)) = m \cdot \overline{IR}(S_m);$
 - additional parameters, specific for the method
- Add synthesized objects to the minor class (<u>oversampling</u>), or drop objects from the major class (<u>undersampling</u>), or both
- Outputs resampled dataset $r(S_m)$ with imbalance ratio $IR(r(S_m)) = m \cdot IR(S_m)$

Resampling method r:

- Takes input:
 - dataset S_m ;
 - resampling multiplier m > 1 for resulting imbalance ratio $\overline{IR}(r(S_m)) = m \cdot \overline{IR}(S_m);$
 - · additional parameters, specific for the method
- Add synthesized objects to the minor class (oversampling), or drop objects from the major class (undersampling), or both
- Outputs resampled dataset $r(S_m)$ with imbalance ratio $IR(r(S_m)) = m \cdot IR(S_m)$

Random Oversampling (ROS)

- ROS, also known as bootstrap oversampling
- No additional input parameters
- It adds to the minor class new $(m-1)|C_{-1}(S_m)|$ objects
- ullet Each of objects is drawn from uniform distribution on $C_{-1}(S_m)$

Random Undersampling (RUS)

- No additional input parameters
- It chooses random subset of $C_{+1}(S_m)$ with $|C_{+1}(S_m)|^{\frac{m-1}{m}}$ elements and drops it from the dataset
- ullet All subsets of $C_{+1}(S_m)$ have equal probabilities to be chosen

Synthetic Minority Oversampling Technique (SMOTE)

Synthetic Minority Oversampling Technique (SMOTE)

- Input parameter: k (number of neighbors)
- Oversampling, it adds to the minor class new synthesized objects
- Initialize: $S_{new} := \emptyset$. Repeat $(m-1)|C_{-1}(S_m)|$ times:
 - $\bullet \ \mathsf{Select} \ \mathsf{randomly} \ \mathbf{x}_i \in C_{-1}(S_m)$
 - ② Find k minor class NN of \mathbf{x}_i , randomly select \mathbf{x}_i' from them
 - **3** Select randomly \mathbf{x}_{new} on the segment connecting \mathbf{x}_i and \mathbf{x}_i'
- \bullet Add objects to the dataset: $r(S_m) = S_m \cup S_{new}$

Artificial Data

- \bullet Artificial pool of data with ~ 1000 datasets
- Artificial datasets were drawn from a Gaussian mixture distribution
- Each of two classes is represented as a Gaussian mixture with not more than 3 components
- Number of features varies from 6 to 40, size of dataset from 200 to 1000, IR from 0.05 to 0.35

Real Data

- \bullet Real pool of data with ~ 100 datasets
- Different areas: biology, medicine, engineering, sociology
- \bullet All features are numeric or binary, their number varies from 3 to 1000
- \bullet Size of dataset varies from 200 to 1000, IR from 0.02 to 0.75

Setup of Experiments

- For each dataset we varied classifier model, resampling method and resampling multiplier
- ullet We used Bootstrap, RUS and SMOTE with k=5
- ullet We varied resampling multiplier m from 1.25 to 10.0
- We used Decision Trees, k-Nearest Neighbors, and Logistic Regression with ℓ_1 regularization
- Optimal parameters of a classifier were selected by cross-validation

Setup of Experiments

- ullet Accuracy measure = Area under precision-recall curve Q_{PRC}
- \bullet We performed 10-fold cross-validation and calculated Q_{PRC}^{CV} average of Q_{PRC}

Resampling Multiplier Selection

- Two strategies of resampling multiplier selection:
 - equalizing strategy, $\underline{\mathsf{EqS}}$: select multiplier providing balanced classes ($\mathit{IR}=1$) in resulting dataset
 - CV-search, <u>CVS</u>: select optimal multiplier (i.e., providing maximum of $\overline{Q^{CV}}$) by cross-validation
- The equalizing strategy seems to be reasonable as it removes class imbalance which we initially tried to tackle. It is quick and widely used
- CV-search may provide better quality but it is more time-consuming

- $\{r_1, \ldots, r_n\}$ the set of considered methods (e.g. resampling methods)
- $\{S_1, \dots S_T\}$ the set of tasks (datasets),
- ullet q_{ti} the quality of the method i on the dataset t,
- $p_i(\beta)$ is a fraction of tasks, on which the method i is worse than the best one not more than β times:

$$p_i(\beta) = \frac{1}{T} \left| \left\{ t : q_{ti} \ge \frac{1}{\beta} \max_i q_{ti} \right\} \right|, \ \beta \ge 1$$

Dolan-More Curves

- \bullet $p_i(1)$ is a fraction of datasets where the method i is the best
- \bullet A graph of $p_i(\beta)$ on β is called Dolan-More curve for the method i
- The higher the curve, the better the method!

Figure – Dolan-More curves for metric Q_{PRC}^{CV}

Figure – Dolan-More curves for metric Q_{PRC}^{CV}

Figure – Dolan-More curves for metric Q_{PRC}^{CV}

Figure – Value of Q_{PRC}^{CV} vs. resulting value of $I\!R$ for dataset "Delft pump 1x3"

- Resampling with CV-search of multiplier provides better results, especially for Decision trees and Logistic regression
- The equalizing strategy (EqS) shows much lower quality, especially in case of k-Nearest neighbors and Logistic regression
- There is no method that would always outperform the others
- Classification without resampling is the best choice in some cases. E.g., for Logistic regression it is about 15% of real datasets and 5% of artificial
- Resampling improves classification of imbalanced datasets in most cases if a method and a multiplier are selected properly

Imbalanced Classification

Multi-Class Classification

3 Nonparametric Estimation

Multi-Class Classification Problem

ullet Training sample: i.i.d. generated by D

$$S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m \in X^m \times Y^m, \ y = f(\mathbf{x})$$

- mono-label case: Card(Y) = K
- multi-label case: $Y = \{-1, +1\}^K$
- **Problem**: find classifier $h: X \to Y$ swith small generalization error
 - mono-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[\mathbb{1}_{h(\mathbf{x}) \neq f(\mathbf{x})} \right]$
 - multi-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[\frac{1}{K} \sum_{j=1}^K 1_{[h(\mathbf{x})]_j \neq [f(\mathbf{x})]_j} \right]$
 - Remark: Precision/Recall with Micro/Macro averaging

ullet Training sample: i.i.d. generated by D

$$S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m \in X^m \times Y^m, \ y = f(\mathbf{x})$$

- mono-label case: Card(Y) = K
- multi-label case: $Y = \{-1, +1\}^K$
- **Problem**: find classifier $h: X \to Y$ swith small generalization error
 - mono-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[1_{h(\mathbf{x}) \neq f(\mathbf{x})} \right]$
 - multi-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[\frac{1}{K} \sum_{j=1}^K 1_{[h(\mathbf{x})]_j \neq [f(\mathbf{x})]_j} \right]$
 - Remark: Precision/Recall with Micro/Macro averaging!

ullet Training sample: i.i.d. generated by D

$$S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m \in X^m \times Y^m, \ y = f(\mathbf{x})$$

- mono-label case: Card(Y) = K
- multi-label case: $Y = \{-1, +1\}^K$
- **Problem**: find classifier $h: X \to Y$ swith small generalization error
 - mono-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[\mathbb{1}_{h(\mathbf{x}) \neq f(\mathbf{x})} \right]$
 - multi-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[\frac{1}{K} \sum_{j=1}^K 1_{[h(\mathbf{x})]_j \neq [f(\mathbf{x})]_j} \right]$
 - Remark: Precision/Recall with Micro/Macro averaging!

- Usually $K \leq 100$
- ullet If $K\gg 1$ then some other methods are used, e.g. ranking
- ullet Big values of K increases computational burden
- In general, classes are not balanced

Technique

— for each class $k \in Y$ learn a binary classifier

$$h_k(\mathbf{x}) = \operatorname{sign}(f_k(\mathbf{x}))$$

combine binary classifiers via voting, e.g. majority voting

$$h: \mathbf{x} \to \arg\max_{k \in Y} f_k(\mathbf{x})$$

- calibration: classifiers scores are not comparable
- simple and frequently used in practice, computational advantages in some cases

Technique

— for each class $k \in Y$ learn a binary classifier

$$h_k(\mathbf{x}) = \operatorname{sign}(f_k(\mathbf{x}))$$

- combine binary classifiers via voting, e.g. majority voting

$$h: \mathbf{x} \to \arg\max_{k \in Y} f_k(\mathbf{x})$$

- calibration: classifiers scores are not comparable
- simple and frequently used in practice, computational advantages in some cases

Consider the use of K-1 classifiers each of which solves a two-class problem of separating points in a particular class from points not in that class. This approach leads to regions of input space that are ambiguously classified

Technique

- for each pair $(k,k') \in Y$, $k \neq k'$ learn a binary classifier $h_{k,k'} \colon X \to \{0,1\}$
- combine binary classifiers via majority vote

$$h(\mathbf{x}) = \arg \max_{k' \in Y} |\{k : h_{k,k'}(\mathbf{x}) = 1\}|$$

- computational complexity: train K(K-1)/2 binary classifiers
- overfitting: size of a training sample can be small for a given pair of classifiers

Technique

- for each pair $(k,k') \in Y$, $k \neq k'$ learn a binary classifier $h_{k,k'}: X \to \{0,1\}$
- combine binary classifiers via majority vote

$$h(\mathbf{x}) = \arg \max_{k' \in Y} |\{k : h_{k,k'}(\mathbf{x}) = 1\}|$$

- computational complexity: train K(K-1)/2 binary classifiers
- overfitting: size of a training sample can be small for a given pair of classifiers

 $\bullet\ 8$ classes, codes of length 6

codes

		_	2	3	4	5	6
Classes		0	0	0	ı	0	0
	2		0	0	0	0	0
	3	0	_	_	0	_	0
	4		-	0	0	0	0
	5	-	ı	0	0	Ι	0
	6	0	0	ı	ı	0	I
	7	0	0	ı	0	0	0
	8	0	ı	0	ı	0	0

$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$
0	- [1	0	_	

new example x

 Assign L-long binary code word to each class, i.e. represent each class as

$$\mathbb{C} = [\mathbb{C}_{k,j}] \in \{0,1\}^{[1,K] \times [1,L]}$$

- Learn a binary classifier $f_j: X \to \{0,1\}$ for each column. Example $\mathbf x$ in class k is labeled with $\mathbb C_{k,j}$
- Classifier output:

$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_L(\mathbf{x})),$$

Final classifier

$$h: \mathbf{x} \to \arg\min_{k \in Y} d_{\text{Hamming}} \left(\mathbb{C}_{k,\cdot}, \mathbf{f}(\mathbf{x}) \right)$$

- One-vs-all approach is the most widely used
- No clear empirical evidence of the superiority of other approaches
- Large structured multi-class problems are often treated as ranking problems
- Above we considered how to reduce multi-class classification to the binary case.
- Also we can incorporate a multi-class structure explicitly into a classification algorithm, see e.g. multi-class logistic regression or multi-class SVM (below)

Multi-class Logistic Regression

- ullet Linear Classifier in a multi-class case, i.e. |Y|>1
- ullet Probability of an object to belong to some class y is equal to

$$p(y|\mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}_y^{\top} \mathbf{x})}{\sum_{z \in Y} \exp(\mathbf{w}_z^{\top} \mathbf{x})} = \text{SoftMax}_{y \in Y}(\mathbf{w}_y^{\top} \mathbf{x})$$

Regularized logistic regression

$$\overline{L}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \log p(y_i | \mathbf{x}_i, \mathbf{w}) - \frac{\lambda}{2} \sum_{y \in Y} ||\mathbf{w}_y||^2 \to \max_{\mathbf{w}}$$

Multi-class Logistic Regression

- ullet Linear Classifier in a multi-class case, i.e. |Y|>1
- ullet Probability of an object to belong to some class y is equal to

$$p(y|\mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}_y^{\top} \mathbf{x})}{\sum_{z \in Y} \exp(\mathbf{w}_z^{\top} \mathbf{x})} = \text{SoftMax}_{y \in Y}(\mathbf{w}_y^{\top} \mathbf{x})$$

Regularized logistic regression

$$\overline{L}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \log p(y_i | \mathbf{x}_i, \mathbf{w}) - \frac{\lambda}{2} \sum_{y \in Y} ||\mathbf{w}_y||^2 \to \max_{\mathbf{w}}$$

Optimization problem

$$\min_{\mathbf{w}, \xi} \frac{1}{2} \sum_{k=1}^{K} \|\mathbf{w}_k\|^2 + C \sum_{i=1}^{m} \xi_i$$

$$s.t. \ \mathbf{w}_{y_i} \mathbf{x}_i^{\top} - \mathbf{w}_k \mathbf{x}_i^{\top} + \delta_{y_i, k} \ge 1 - \xi_i, \ \xi_i \ge 0$$

$$(i, k) \in [1, m] \times Y$$

• Decision function:

$$h: \mathbf{x} \to \arg\max_{k \in Y} (\mathbf{w}_k \cdot \mathbf{x}^\top) = \arg\max_{k \in Y} \left(\sum_{i=1}^m \alpha_{i,k} (\mathbf{x}_i \cdot \mathbf{x}^\top) \right),$$

where $\{\alpha_{i,k}\}_{i=1}^m$, $k \in Y$ are dual variables

ullet Complex constraints, $m \cdot K$ size

Bayesian approach

- Naive Bayes (NB) is a conditional probability model
- Given an object to be classified, represented by features $\mathbf{x} = (x_1, \dots, x_d)$, Bayes classifier assigns probabilities

$$p(y|x_1,\ldots,x_d)$$

for each of K possible classes $y \in Y = \{1, \dots, K\}$

The conditional probability can be decomposed as

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})} \sim p(y)p(\mathbf{x}|y), \ y \in Y$$

The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg \max_{y \in \{1,...,K\}} p(y) p(\mathbf{x}|y)$$

$$p(\mathbf{x}|y) = \prod_{j=1}^{d} p(x_j|y)$$

Bayesian approach

- Naive Bayes (NB) is a conditional probability model
- Given an object to be classified, represented by features $\mathbf{x} = (x_1, \dots, x_d)$, Bayes classifier assigns probabilities

$$p(y|x_1,\ldots,x_d)$$

for each of K possible classes $y \in Y = \{1, \dots, K\}$

The conditional probability can be decomposed a

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})} \sim p(y)p(\mathbf{x}|y), \ y \in Y$$

The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg\max_{y \in \{1, \dots, K\}} p(y) p(\mathbf{x}|y)$$

$$p(\mathbf{x}|y) = \prod_{j=1}^{d} p(x_j|y)$$

- Naive Bayes (NB) is a conditional probability model
- Given an object to be classified, represented by features $\mathbf{x} = (x_1, \dots, x_d)$, Bayes classifier assigns probabilities

$$p(y|x_1,\ldots,x_d)$$

for each of K possible classes $y \in Y = \{1, \dots, K\}$

The conditional probability can be decomposed as

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})} \sim p(y)p(\mathbf{x}|y), y \in Y$$

The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg \max_{y \in \{1, \dots, K\}} p(y) p(\mathbf{x}|y)$$

$$p(\mathbf{x}|y) = \prod_{j=1}^{d} p(x_j|y)$$

- Naive Bayes (NB) is a conditional probability model
- Given an object to be classified, represented by features $\mathbf{x} = (x_1, \dots, x_d)$, Bayes classifier assigns probabilities

$$p(y|x_1,\ldots,x_d)$$

for each of K possible classes $y \in Y = \{1, \dots, K\}$

The conditional probability can be decomposed as

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})} \sim p(y)p(\mathbf{x}|y), \ y \in Y$$

The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg\max_{y \in \{1, \dots, K\}} p(y) p(\mathbf{x}|y)$$

$$p(\mathbf{x}|y) = \prod_{j=1}^{d} p(x_j|y)$$

Bayesian approach

- Naive Bayes (NB) is a conditional probability model
- Given an object to be classified, represented by features $\mathbf{x} = (x_1, \dots, x_d)$, Bayes classifier assigns probabilities

$$p(y|x_1,\ldots,x_d)$$

for each of K possible classes $y \in Y = \{1, \dots, K\}$

The conditional probability can be decomposed as

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})} \sim p(y)p(\mathbf{x}|y), y \in Y$$

The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg \max_{y \in \{1,...,K\}} p(y)p(\mathbf{x}|y)$$

$$p(\mathbf{x}|y) = \prod_{j=1}^{d} p(x_j|y)$$

Independence Assumption and Naive Classifier

The joint model

$$p(y|\mathbf{x}) \sim p(y) \prod_{j=1}^{d} p(x_j|y), y \in Y$$

The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg \max_{y \in \{1,...,K\}} p(y) \prod_{j=1}^{d} p(x_j|y)$$

• Nonparametric estimation for $p(x_j|y)$, $y \in Y!$

Independence Assumption and Naive Classifier

The joint model

$$p(y|\mathbf{x}) \sim p(y) \prod_{j=1}^{d} p(x_j|y), y \in Y$$

• The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg \max_{y \in \{1, \dots, K\}} p(y) \prod_{j=1}^{d} p(x_j | y)$$

• Nonparametric estimation for $p(x_j|y)$, $y \in Y$

Independence Assumption and Naive Classifier

The joint model

$$p(y|\mathbf{x}) \sim p(y) \prod_{j=1}^{d} p(x_j|y), y \in Y$$

The maximum a posteriori (MAP) decision rule

$$\widehat{y} = \arg \max_{y \in \{1, \dots, K\}} p(y) \prod_{j=1}^{d} p(x_j | y)$$

• Nonparametric estimation for $p(x_j|y)$, $y \in Y!$

Imbalanced Classification

Multi-Class Classification

Nonparametric Estimation

Problem Statement

- ullet $S_m = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \sim F$ is a given sample, $\mathbf{x} \in \mathbb{R}^1$
- ullet $F(\mathbf{x})$ is an absolutely continuous CDF with an unknown density $p(\mathbf{x})$
- We estimate $p(\mathbf{x})$ in the point \mathbf{x} , i.e. construct $\widehat{p}_m(\mathbf{x}) = \widehat{p}_m(\mathbf{x}|S_m)$
- Typical parametric assumption

$$p \in \{p(\mathbf{x}; \boldsymbol{\theta}), \boldsymbol{\theta} \in \Theta\}, \Theta \subset \mathbb{R}^p$$

Now we do not use such assumption \Rightarrow Nonparametric Estimation

Problem Statement

- ullet $S_m = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \sim F$ is a given sample, $\mathbf{x} \in \mathbb{R}^1$
- ullet $F(\mathbf{x})$ is an absolutely continuous CDF with an unknown density $p(\mathbf{x})$
- We estimate $p(\mathbf{x})$ in the point \mathbf{x} , i.e. construct $\widehat{p}_m(\mathbf{x}) = \widehat{p}_m(\mathbf{x}|S_m)$
- Typical parametric assumption

$$p \in \{p(\mathbf{x}; \boldsymbol{\theta}), \boldsymbol{\theta} \in \Theta\}, \Theta \subset \mathbb{R}^p$$

ullet Now we do not use such assumption \Rightarrow Nonparametric Estimation

Problem Statement

- ullet $S_m = \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \sim F$ is a given sample, $\mathbf{x} \in \mathbb{R}^1$
- ullet $F(\mathbf{x})$ is an absolutely continuous CDF with an unknown density $p(\mathbf{x})$
- We estimate $p(\mathbf{x})$ in the point \mathbf{x} , i.e. construct $\widehat{p}_m(\mathbf{x}) = \widehat{p}_m(\mathbf{x}|S_m)$
- Typical parametric assumption

$$p \in \{p(\mathbf{x}; \boldsymbol{\theta}), \boldsymbol{\theta} \in \Theta\}, \Theta \subset \mathbb{R}^p$$

 $\bullet \ \, \text{Now we do not use such assumption} \Rightarrow \text{Nonparametric Estimation} \\$

ullet We estimate $\widehat{p}_m(\mathbf{x}) \, \forall \mathbf{x} \in \mathbb{R}^1$

Definition

Mean Integrated Squared Error:

$$MISE(\widehat{p}_m, p) = \mathbb{E}_p \left[\int_{\mathbb{R}} (\widehat{p}_m(\mathbf{x}) - p(\mathbf{x}))^2 d\mathbf{x} \right]$$

• We consider interval $\{\mathbf{x}_1, \dots \mathbf{x}_m\} \in [a, b)$ and divide it into N equal bins Δ_i of size $h = \frac{b-a}{N}$:

$$\Delta_i = [a+ih, a+(i+1)h), i = 0, 1, \dots, N-1$$

• Let ν_i be a number of data points, belonging to Δ_i

Definition

$$\widehat{p}_m(\mathbf{x}) = \begin{cases} \frac{\nu_0}{mh}, & \mathbf{x} \in \Delta_0, \\ \dots & \\ \frac{\nu_{N-1}}{mh}, & \mathbf{x} \in \Delta_{N-1}; \end{cases} = \frac{1}{mh} \sum_{i=0}^{N-1} \nu_i 1\{\mathbf{x} \in \Delta_i\}$$

• For $\mathbf{x} \in \Delta_j$ and small h

$$\mathbb{E}_{p}\widehat{p}_{m}(\mathbf{x}) = \frac{\mathbb{E}_{p}\nu_{j}}{mh} = \frac{\int_{\Delta_{j}} p(\mathbf{z})d\mathbf{z}}{h} \approx \frac{p(\mathbf{x})h}{h} = p(\mathbf{x})$$

At the same time

$$\operatorname{Var}(\widehat{p}_{m}(\mathbf{x})) = \frac{\int_{\Delta_{j}} p(\mathbf{z}) d\mathbf{z} \left(1 - \int_{\Delta_{j}} p(\mathbf{z}) d\mathbf{z}\right)}{mh^{2}}$$

• We consider interval $\{\mathbf{x}_1, \dots \mathbf{x}_m\} \in [a, b)$ and divide it into N equal bins Δ_i of size $h = \frac{b-a}{N}$:

$$\Delta_i = [a+ih, a+(i+1)h), i = 0, 1, \dots, N-1$$

ullet Let u_i be a number of data points, belonging to Δ_i

Definition

$$\widehat{p}_m(\mathbf{x}) = \begin{cases} \frac{\nu_0}{mh}, & \mathbf{x} \in \Delta_0, \\ \dots & \\ \frac{\nu_{N-1}}{mh}, & \mathbf{x} \in \Delta_{N-1}; \end{cases} = \frac{1}{mh} \sum_{i=0}^{N-1} \nu_i 1\{\mathbf{x} \in \Delta_i\}$$

ullet For $\mathbf{x} \in \Delta_j$ and small h

$$\mathbb{E}_{p}\widehat{p}_{m}(\mathbf{x}) = \frac{\mathbb{E}_{p}\nu_{j}}{mh} = \frac{\int_{\Delta_{j}} p(\mathbf{z})d\mathbf{z}}{h} \approx \frac{p(\mathbf{x})h}{h} = p(\mathbf{x})$$

At the same time

$$\operatorname{Var}(\widehat{p}_{m}(\mathbf{x})) = \frac{\int_{\Delta_{j}} p(\mathbf{z}) d\mathbf{z} \left(1 - \int_{\Delta_{j}} p(\mathbf{z}) d\mathbf{z}\right)}{mh^{2}}$$

• We consider interval $\{\mathbf{x}_1, \dots \mathbf{x}_m\} \in [a, b)$ and divide it into N equal bins Δ_i of size $h = \frac{b-a}{N}$:

$$\Delta_i = [a+ih, a+(i+1)h), i = 0, 1, \dots, N-1$$

ullet Let u_i be a number of data points, belonging to Δ_i

Definition

$$\widehat{p}_m(\mathbf{x}) = \begin{cases} \frac{\nu_0}{mh}, & \mathbf{x} \in \Delta_0, \\ \dots & \\ \frac{\nu_{N-1}}{mh}, & \mathbf{x} \in \Delta_{N-1}; \end{cases} = \frac{1}{mh} \sum_{i=0}^{N-1} \nu_i 1\{\mathbf{x} \in \Delta_i\}$$

• For $\mathbf{x} \in \Delta_i$ and small h:

$$\mathbb{E}_{p}\widehat{p}_{m}(\mathbf{x}) = \frac{\mathbb{E}_{p}\nu_{j}}{mh} = \frac{\int_{\Delta_{j}} p(\mathbf{z})d\mathbf{z}}{h} \approx \frac{p(\mathbf{x})h}{h} = p(\mathbf{x})$$

At the same time

$$\operatorname{Var}\left(\widehat{p}_{m}(\mathbf{x})\right) = \frac{\int_{\Delta_{j}} p(\mathbf{z}) d\mathbf{z} \left(1 - \int_{\Delta_{j}} p(\mathbf{z}) d\mathbf{z}\right)}{mh^{2}}$$

Smoothing Selection: MISE

We can prove that mean integrated squared error

$$MISE(\widehat{p}_m, p) \approx \left(\int_{\mathbb{R}} [p'(\mathbf{x})]^2 d\mathbf{x} \right) \frac{h^2}{12} + \frac{1}{mh}$$

- The bigger h we use the bigger bias and smaller variance we get, and vice versa: Bias-Variance Tradeoff
- ullet Too big h= oversmoothing, too small h= undersmoothing
- \bullet Thus for a histogram with optimal h, we get that

$$MISE = O(m^{-\frac{2}{3}})$$

Smoothing Selection: MISE

We can prove that mean integrated squared error

$$MISE(\widehat{p}_m, p) \approx \left(\int_{\mathbb{R}} [p'(\mathbf{x})]^2 d\mathbf{x} \right) \frac{h^2}{12} + \frac{1}{mh}$$

- ullet The bigger h we use the bigger bias and smaller variance we get, and vice versa: Bias-Variance Tradeoff
- ullet Too big h= oversmoothing, too small h= undersmoothing
- ullet Thus for a histogram with optimal h, we get that

$$MISE = O(m^{-\frac{2}{3}})$$

Smoothing Selection: MISE

We can prove that mean integrated squared error

$$MISE(\widehat{p}_m, p) \approx \left(\int_{\mathbb{R}} [p'(\mathbf{x})]^2 d\mathbf{x} \right) \frac{h^2}{12} + \frac{1}{mh}$$

- ullet The bigger h we use the bigger bias and smaller variance we get, and vice versa: Bias-Variance Tradeoff
- Too big h = oversmoothing, too small h = undersmoothing
- ullet Thus for a histogram with optimal h, we get that

$$MISE = O(m^{-\frac{2}{3}})$$

Smoothing Selection: Example

KDE allows to get smoother estimate (compared to histogram based ones) with faster convergence rates

Definition

Kernel is a function K, such that

$$K(\mathbf{x}) \ge 0, \int_{\mathbb{R}} K(\mathbf{x}) d\mathbf{x} = 1, \int_{\mathbb{R}} \mathbf{x} K(\mathbf{x}) d\mathbf{x} = 0, \sigma_K^2 \equiv \int_{\mathbb{R}} \mathbf{x}^2 K(\mathbf{x}) d\mathbf{x} < \infty$$

Examples

- **◄** $K(x) = \frac{1}{2}\mathbb{I}\{|x| < 1\}$ rectangular kernel
- $\blacktriangleleft \ K(x) = (1-|x|)\mathbb{I}\{|x|<1\} \ \ \mathrm{triangle} \ \mathrm{kernel}$
- $\blacktriangleleft K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ Gaussian kernel
- $\blacktriangleleft K(x) = \frac{3}{4}(1-x^2)\mathbb{I}\{|x|<1\}$ Epanechnikov kernel

Kernel Density Estimation: Definition

Definition

KDE has the form

$$\widehat{p}_m(\mathbf{x}) = \frac{1}{mh} \sum_{i=1}^m K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right),$$

h is a kernel width

Kernel width selection: Example

Multidimensional KDE

- Multidimensional case, i.e. $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$ is a point in \mathbb{R}^d .
- Thus i—th observation is an d-dimensional vector:

$$\mathbf{x}_i = (x_{i1}, \dots x_{id})$$

- Let $h = (h_1, \dots, h_d)$ be a vector of kernel widths
- Then

$$\widehat{p}_m(\mathbf{x}) = \frac{1}{mh_1 \cdot \ldots \cdot h_d} \sum_{i=1}^m \left[\prod_{j=1}^d K\left(\frac{x_j - x_{ij}}{h_j}\right) \right]$$

Curse of Dimensionality

- Optimal rate of convergence is $O(m^{-\frac{4}{4+d}})$: if d increases convergence rate decreases
- Let us consider a table with values of m necessary to get the mean squared estimation error in $\mathbf{x}_0 = 0$ less than 0.1 depending on d for a multidimensional normal density and optimal kernel width:

	1	2	3	4	5	6	7		9
	4	19	67	223	768	2790	10700	43700	187000

ullet Here d is a dimension, m is a sample size

Curse of Dimensionality

- Optimal rate of convergence is $O(m^{-\frac{4}{4+d}})$: if d increases convergence rate decreases
- Let us consider a table with values of m necessary to get the mean squared estimation error in $\mathbf{x}_0=0$ less than 0.1 depending on d for a multidimensional normal density and optimal kernel width:

d	1	2	3	4	5	6	7	8	9
m	4	19	67	223	768	2790	10700	43700	187000

ullet Here d is a dimension, m is a sample size

- Let us consider m observations: $S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$, generated from a joint density $p(\mathbf{x}, y)$
- These observations are generated by the model

$$y_i = f(\mathbf{x}_i) + \varepsilon_i,$$

where ε_i is an i.i.d white noise, $\mathbb{E}\varepsilon_i = 0$, $\mathbb{V}(\varepsilon_i) = \sigma^2$

We should estimate a regression function

$$f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = \int_{\mathbb{R}} yp(y|\mathbf{x})dy = \frac{\int_{\mathbb{R}} yp(\mathbf{x}, y)dy}{\int_{\mathbb{R}} p(\mathbf{x}, y)dy} = \frac{\int_{\mathbb{R}} yp(\mathbf{x}, y)dy}{p(\mathbf{x})}$$

- Let us consider m observations: $S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$, generated from a joint density $p(\mathbf{x}, y)$
- These observations are generated by the model

$$y_i = f(\mathbf{x}_i) + \varepsilon_i,$$

where ε_i is an i.i.d white noise, $\mathbb{E}\varepsilon_i = 0$, $\mathbb{V}(\varepsilon_i) = \sigma^2$

We should estimate a regression function

$$f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = \int_{\mathbb{R}} yp(y|\mathbf{x})dy = \frac{\int_{\mathbb{R}} yp(\mathbf{x}, y)dy}{\int_{\mathbb{R}} p(\mathbf{x}, y)dy} = \frac{\int_{\mathbb{R}} yp(\mathbf{x}, y)dy}{p(\mathbf{x})}$$

- Let us consider m observations: $S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$, generated from a joint density $p(\mathbf{x}, y)$
- These observations are generated by the model

$$y_i = f(\mathbf{x}_i) + \varepsilon_i,$$

where ε_i is an i.i.d white noise, $\mathbb{E}\varepsilon_i=0,\,\mathbb{V}(\varepsilon_i)=\sigma^2$

We should estimate a regression function

$$f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = \int_{\mathbb{R}} y p(y|\mathbf{x}) dy = \frac{\int_{\mathbb{R}} y p(\mathbf{x}, y) dy}{\int_{\mathbb{R}} p(\mathbf{x}, y) dy} = \frac{\int_{\mathbb{R}} y p(\mathbf{x}, y) dy}{p(\mathbf{x})}$$

Definition

Let K denote a kernel, and

- $oldsymbol{\widehat{p}}_m(\mathbf{x})$ be a kernel density estimate, obtained using $\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$,
- $\widehat{p}_m(\mathbf{x}, y)$ be a kernel density estimate, obtained using $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}.$

If $\widehat{p}_m(\mathbf{x}) \neq 0$, then

$$\widehat{f}_m^{NW}(\mathbf{x}) = \frac{\int_{\mathbb{R}} y \widehat{p}_m(\mathbf{x}, y) dy}{\widehat{p}_m(\mathbf{x})}$$

We can notice that Nadaraya-Watson estimate can be used also in case when $\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ are some fixed and deterministic values, e.g. $\mathbf{x}_i=\frac{i}{m}$

We use Nadaraya-Watson estimate for $f(\mathbf{x})$:

Definition

Nadaraya-Watson estimate has the form

$$\widehat{f}_m^{NW}(\mathbf{x}) = \sum_{i=1}^m w_i(\mathbf{x}) y_i,$$

where

$$w_i = \frac{K(\frac{\mathbf{x} - \mathbf{x}_i}{h})}{\sum_{j=1}^m K(\frac{\mathbf{x} - \mathbf{x}_j}{h})},$$

and K is a some kernel function

Thus, the estimate is a weighted sum of y_i , where any point, close to x, has a big weight

Nonparametric regression: Example

Bias-variance decomposition

Definition

Bias: bias(\mathbf{x}_0) = $\mathbb{E}_p \widehat{p}_m(\mathbf{x}_0) - p(\mathbf{x}_0)$

We get the following decomposition

Lemma

$$MSE(\widehat{p}_m, p, \mathbf{x}_0) = bias^2(\mathbf{x}_0) + \mathbb{V}_p(\widehat{p}_m(\mathbf{x}_0)) =$$

$$= [\mathbb{E}_p \widehat{p}_m(\mathbf{x}_0) - p(\mathbf{x}_0)]^2 + \mathbb{E}_p [\widehat{p}_m(\mathbf{x}_0) - \mathbb{E}_p \widehat{p}_m(\mathbf{x}_0)]^2$$

Lemma

$$MISE(\widehat{p}_m, p) = \int_{\mathbb{R}} bias^2(\mathbf{x}) d\mathbf{x} + \int_{\mathbb{R}} \mathbb{V}_p(\widehat{p}_m(\mathbf{x})) dx$$

We will use these statements when constructing optimal density estimates

A shape of K influence quality of estimate not so significant compared to a value of h

Theorem

$$MISE(\widehat{p}_m, p) \approx \frac{1}{4} \sigma_K^4 h^4 \int_{\mathbb{R}} (p''(\mathbf{x}))^2 d\mathbf{x} + \frac{1}{mh} \int_{\mathbb{R}} (K(\mathbf{x}))^2 d\mathbf{x}$$

For an optimal kernel width we get that $MISE(\widehat{p}_m,p)=O\left(m^{-\frac{4}{5}}\right)$

- Again we can not calculate h^* in practice, since it depends on unknown values of $r(\mathbf{x}), p(\mathbf{x})$
- ullet Then we should minimize the risk estimate w.r.t. h

$$\widehat{\mathcal{J}}(h) = \sum_{i=1}^{m} (y_i - \widehat{r}_{(-i)}^{NW}(\mathbf{x}_i))^2,$$

where $\hat{r}_{(-i)}^{NW}$ is a Nadaraya-Watson estimate, constructed using the sample, from which the observation (\mathbf{x}_i,y_i) is excluded

Theorem

$$\widehat{\mathcal{J}}(h) = \sum_{i=1}^{m} \left(y_i - \widehat{r}^{NW}(\mathbf{x}_i) \right)^2 \frac{1}{\left(1 - \frac{K(0)}{\sum_{j=1}^{m} K\left(\frac{\mathbf{x}_i - \mathbf{x}_j}{h} \right)} \right)^2}$$

