Scilab Textbook Companion for Electrical And Electronics Engineering Materials by J. B. Gupta¹

Created by
Lalit kumar saini
B.Tech
Electronics Engineering
Uttarakhand Tech. university
College Teacher
Arshad Khan
Cross-Checked by
Lavitha Pereira

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical And Electronics Engineering Materials

Author: J. B. Gupta

Publisher: S.k. Katariya & Sons, New Delhi

Edition: 3

Year: 2010

ISBN: 81-89757-13-x

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Crystal Stucture Of Materials	5
2	Conductivity of metals	9
3	Semiconductor	35
4	Bipolar Junction And Field Effect Transistors	54
5	Magnetic Properties Of Materials	61
6	Dielectric Properties Of Materials	65

List of Scilab Codes

Exa 1.3	Density Of Copper Crystal
Exa 1.4	Interplanar Distance in a crystal
Exa 1.5	Wavelength of X rays
Exa 1.6	Wavelength of X rays
Exa 1.7	Angle of incidence
Exa 2.1	Drift Velocity of Electrons
Exa 2.2	Magnitude of current
Exa 2.3	Relaxation time and resistivity
Exa 2.4	Valance electron and mobility of electron
Exa 2.5	Mobility and relaxation time
Exa 2.6	Relaxation time
Exa 2.7	Relaxation time of conducting electrons
Exa 2.8	Charge density current density and drift velocity 13
Exa 2.9	Drift velocity
Exa 2.10	Resistivity of silicon
Exa 2.11	Carrier density
Exa 2.13	Temperature of coil
Exa 2.15	Resistance of the coil
Exa 2.16	Temperature coefficient of resistance
Exa 2.17	Temperature coefficient of resistance
Exa 2.18	Resistance and temperature coefficient
Exa 2.19	Mean temperature rise
Exa 2.20	Specific resistance and resistance temperature coefficient 20
Exa 2.21	Resistivity of the wire material
Exa 2.22	Resistance of the wire
Exa 2.23	Current flowing
Exa 2.24	Resistance and temperature coefficient of combination 22
Exa 2.25	Impurity percent

Exa 2.26	Electronic contribution of thermal conductivity of alu-
	minium
Exa 2.27	EMP developed per degree centigrade
Exa 2.28	EMF developed in couple
Exa 2.29	Thermo electric emf generated
Exa 2.30	Thermo emf neutral temperature temperature of inver-
	sion and max possible thermo electric emf
Exa 2.31	Potential difference
Exa 2.32	EMF for a copper iron thermo couple
Exa 2.34	Critical magnetic field
Exa 2.35	Critical current
Exa 2.36	Critical current density
Exa 2.37	Diameter of copper wire
Exa 2.38	Resistance of liquid resistor
Exa 2.39	Resistivity of dielectric in a cable
Exa 2.40	Insulation resistance
Exa 2.41	Insulation resistance and resistance of copper conductor
Exa 3.1	Velocity of electron
Exa 3.2	Relaxation time resistivity of conductor and velocity of
	electron
Exa 3.3	Electron and hole density
Exa 3.4	Donar atom concentration mobile electron concentra-
	tion hole concentration and conductivity of doped sili-
	con sample
Exa 3.5	Concentration of hole in si
Exa 3.6	Conductivity and resitivity of an intrinsic semiconductor
Exa 3.7	Density of electron and drift velocity of holes and elec-
	trons
Exa 3.8	Conductivity of Si
Exa 3.9	Find conductivity of intrinsic Ge
Exa 3.10	Electron and hole drift velocity conductivity of intrinsic
	Ge and total current
Exa 3.11	Diffusion coefficient of electron and hole
Exa 3.12	Hall effect in semiconductor
Exa 3.13	Current density
Exa 3.14	Value of hall coefficient
Exa 3.15	Magnitude of Hall voltage
Exa 3 16	Mobility of holes

Exa 3.17	Hall voltage	46
Exa 3.18	Hall voltage	47
Exa 3.19	Density and mobility of carrier	47
Exa 3.20	Hll angle	48
Exa 3.21	New position of fermi level	48
Exa 3.22	Potential barrier	49
Exa 3.23	Resistance level	49
Exa 3.24	Fraction of the total number of electron	50
Exa 3.25	Current flowing	50
Exa 3.26	Forward voltage	51
Exa 3.27	Reverse saturation current density	52
Exa 3.28	Junction width	52
Exa 4.1	Resistance between gate and source	54
Exa 4.2	AC drain resistance of the JFET	54
Exa 4.3	Transconductance	55
Exa 4.4	AC drain resistance transconductance and amplification	
	factor	55
Exa 4.5	Transconductance	56
Exa 4.6	Calculate VGS	57
Exa 4.7	Minimum value of VDS	57
Exa 4.8	ID gmo and gm	58
Exa 4.9	Id and gm	58
Exa 4.10	gm at IDS	59
Exa 4.11	Drain current	60
Exa 5.1	Hysteresis loss	61
Exa 5.2	Hysteresis loss	62
Exa 5.3	Loss of energy	62
Exa 5.4	Loss per kg in a specimen	63
Exa 5.5	Eddy current loss	64
Exa 6.1	Element of parallel RC circuit	65
Exa 6.2	Charge sensitivity	66
Exa 6.3	Force required to develop a voltage	66
Exa 6.4	Charge and its capacitance	67

Chapter 1

Crystal Stucture Of Materials

Scilab code Exa 1.3 Density Of Copper Crystal

```
1 //Exa3
2 clc;
3 clear;
4 close;
5 //given data
6 //atomic radius
7 r=1.278; //in Angstrum
8 //atomic weight
9 \text{ aw} = 63.5;
10 //Avogadro's number
11 an=6.023*10^23;
12 //copper has FCC structure for which
13 a=(4*r)/sqrt(2);//in Angstrum
14 a=a*10^-10; //in m
15 //Mass of one atom
16 m=aw/an;//in gm
17 m=m*10^-3; //in kg
18 //volume of one unit cell of copper crystal,
19 V=a^3; //in meter cube
20 //Number of atoms present in one unit cell of Cu(FCC
       Structure),
```

Scilab code Exa 1.4 Interplanar Distance in a crystal

```
1 // Exa4
2 clc;
3 clear;
4 close;
5 //given data :
6 //wavelength
7 lamda=1.539; //in Angstrum
8 //angle
9 theta=22.5; // in degree
10 n=1; //(first order)
11
12 // Formula n*lamda=2*d*sin(theta), so
13 // interplaner distance,
14 d=lamda/(2*sin(theta*%pi/180));
15 disp("Interplaner distance is : "+string(d)+"
     Angstrum")
```

Scilab code Exa 1.5 Wavelength of X rays

```
1 //Exa5
2 clc;
3 clear;
4 close;
5 //given data:
6 n=2;
```

Scilab code Exa 1.6 Wavelength of X rays

```
1 //Exa6
2 clc;
3 clear;
4 close;
5 //given data :
6 \text{ a=3.15}; //\text{in Angstrum}
7 a=a*10^-10; //in meter
8 //angle
9 theta=20.2;//in degree
10 n=1; //(first order)
11 //for BCC crystal
12 d110=a/sqrt(2);//in meter
13 //Formula n*lamda=2*d*sin(theta)
14 lamda=(2*d110*sin(theta*%pi/180))/n;//in meter
15 disp("Wavelength is: "+string(lamda*10^10)+"
      Angstrum")
```

Scilab code Exa 1.7 Angle of incidence

```
1 //Exa7
2 clc;
3 clear;
```

```
d close;
// given data :
lambda=0.842; //in Angstrum
lambda=lambda*10^-10; // in meter
// theta=8degree 35 minutes
theta=8+35/60; //in degree
ln=1; // (first order)
// Formula n*lamda=2*d*sin(theta)
d=n*lambda/(2*sind(theta))
// For third Order reflection :
// Formula n*lamda=2*d*sin(theta)
ln=3; // order
theta=asind(n*lambda/(2*d));
disp(round(theta), "Angle of incidence for third order reflection in degree : ");
```

Chapter 2

Conductivity of metals

Scilab code Exa 2.1 Drift Velocity of Electrons

```
1 //Exa2.1
2 clc;
3 clear;
4 close;
5 //given data :
6 J=2.4; //in A/mm^2;
7 J=2.4*10^6; //in A/m^2;
8 n=5*10^28; //unitless
9 e=1.6*10^-19; // in coulomb
10 //Formula : J=e*n*v
11 v=J/(e*n); //in m/s
12 disp("Drift velocity is : "+string(v)+" m/s or "+string(v*10^3)+" mm/s")
```

Scilab code Exa 2.2 Magnitude of current

```
1 //Exa2
2 clc;
```

```
clear;
close;
//given data :
//Electron density
n=1*10^24; // unit less
//Electron charge
e=1.6*10^-19; // in coulomb
//Drift velocity
v=1.5*10^-2; // in meter per second
//cross-sectional area
A=1; // in centimeter square
A=1*10^-4; // in meter square
I=e*n*v*A; // in ampere
disp("Magnitude of current is :"+string(I)+" A")
```

Scilab code Exa 2.3 Relaxation time and resistivity

```
1 / Exa2.3
2 clc;
3 clear;
4 close;
5 //given data :
6 miu_e=7.04*10^-3; //in m^2/V-s
7 \text{ n=5.8*10^28}; // in /m<sup>3</sup>
8 e=1.6*10^-19; // in coulomb
9 m=9.1*10^-31; //in kg
10 //(i) Relaxation time,
11 tau=miu_e/e*m;
12 disp("Relaxation time is: "+string(tau)+" second");
13 sigma=(n*e*miu_e);
14 //(ii) Resistivity of conductor,
15 rho=1/sigma;
16 disp("Resistivity of conductor is: "+string(rho)+"
     ohm-meter");
```

Scilab code Exa 2.4 Valance electron and mobility of electron

```
1 // Exa4
2 clc;
3 clear;
4 close;
5 //given data :
6 rho=1.73*10^-8;//in ohm-meter
7 toh=2.42*10^--14; //in second
8 e=1.6*10^-19; //in C
9 m=9.1*10^-31; //in kg
10 sigma=1/rho;
11 //(i) Number of free electrons per m<sup>3</sup>
12 n=(m*sigma)/(e^2*toh);
13 disp("Number of free electrons per cube meter is: "
      +string(n));
14 //(ii) Mobility of electrons,
15 miu_e=(e*toh)/m;
16 disp("Mobility of electrons is: "+string(miu_e)+" m
      ^2/V-s");
17 // Note: Answer in the book is wrong
```

Scilab code Exa 2.5 Mobility and relaxation time

```
1 //Exa5
2 clc;
3 clear;
4 close;
5 //given data :
6 rho=1.54*10^-8; //in ohm-meter
7 //since sigma=1/roh
8 sigma=1/rho;
```

```
9 n=5.8*10^28 ; //unit less
10 e=1.6*10^-19; //in C (electron charge)
11 m=9.1*10^-31; //in kg (mass of electron)
12 //(i) Relaxation time
13 toh=(sigma*m)/(n*e^2);
14 disp("(i) Relaxation time of electrons is : "+string (toh)+" seconds");
15 //(ii) Mobility of electrons,
16 miu_e=(e*toh)/m;
17 disp("(ii) Mobility of electrons is : "+string(miu_e)+" m^2/V-s");
```

Scilab code Exa 2.6 Relaxation time

```
1 //Exa2.6
2 clc;
3 clear;
4 close;
5 //given data :
6 rho=1.7*10^-8; //in ohm-meter
7 //since sigma=1/roh
8 sigma=1/rho;
9 n=8.5*10^28 ; //unit less
10 e=1.6*10^-19; //in C (electron charge)
11 m=9.1*10^-31; //in kg
12 // Relaxation time
13 toh=(sigma*m)/(n*e^2);
14 disp(" Relaxation time of electrons is : "+string(toh)+" seconds");
```

Scilab code Exa 2.7 Relaxation time of conducting electrons

```
1 / Exa2.7
```

```
2 clc;
3 clear;
4 close;
5 format('v',11);
6 //given data :
7 E=100; // \text{in V/m}
8 rho=1.5*10^-8; //in ohm-meter
9 // since sigma = 1/roh
10 sigma=1/rho;
11 n=6*10^28; //unit less
12 e=1.601*10^-19; //in C
13 m=9.107*10^{-31}; //in kg
14 // Relaxation time
15 toh=(sigma*m)/(n*e^2);
16 disp("(i) Relaxation time of electrons is: "+string
      (toh)+" seconds");
17 // Drift velocity
18 v=(e*E*toh)/m;
19 disp("(ii) Drift velocity is: "+string(v)+" m/s");
```

Scilab code Exa 2.8 Charge density current density and drift velocity

```
1 //Exa2.8
2 clc;
3 clear;
4 close;
5 //given data :
6 //Diameter of copper wire
7 d=2;//in milimeter
8 d=.002;//in meter
9 //conductivity of copper
10 nita=5.8*10^7;//in second per meter
11 //Electron mobility
12 miu_e=.0032;//in meter square per volt-second
13 //Applied electric field
```

```
14 E=20; // \text{in mV/m}
15 E=.02; //in V/m
16 \text{ e=1.6*10}^-19;
17 //(i) From eq. (2.13)
18 //charge density
19 n=nita/(e*miu_e);//in per meter cube
20 disp("(i) Charge density is: "+string(n)+" /meter
      cube");
21 //(ii) from eq. (2.9)
22 //current density
23 J=nita*E;// in A/m^2
24 disp("(ii) Current density is: "+string(J)+" A/m^2"
      );
25 //(iii) Current flowing in the wire I=J* Area of x-
      section of wire
26 // Area of x-section of wire= (\%pi*d^2)/4
27 I = (J*\%pi*d^2)/4;
28 disp("(iii) Current flowing in the wire is: "+
      string(I)+" A");
\frac{29}{(iv)} = \frac{14}{2.14}
30 // Electron drift velocity
31 \text{ v=miu_e*E};
32 disp("(iv) Electron drift velocity is :"+string(v)+"
      m/s");
```

Scilab code Exa 2.9 Drift velocity

```
1 //Exa2.9
2 clc;
3 clear;
4 close;
5 //given data
6 rho=0.5; // in ohm-meter
7 J=100; //in A/m^2
8 miu_e=0.4; //in m^2/V-s
```

```
9 E=J*rho; // since E=J/sigma
10 // Formula v=miu_e*E
11 v=miu_e*E;
12 disp(" Electron drift velocity is : "+string(v)+" m/s");
13 disp("Time taken by the electron to travel 10*10^-6 m in crystal")
14 // let Time taken by the electron to travel 10*10^-6 m in crystal = t
15 t=(10*10^-6)/v;
16 disp(string(t)+" second");
```

Scilab code Exa 2.10 Resistivity of silicon

Scilab code Exa 2.11 Carrier density

```
1 //Exa11
2 clc;
```

```
3 clear;
4 close;
5 //given data
6 rho_i=2*10^-3; //in ohm-m (there is miss printed in this line in the book)
7 sigma_i=1/rho_i;
8 miu_e=0.3; // in m^2/V-s
9 miu_h=0.1; // in m^2/V-s
10 e=1.6*10^-19; // in C
11 // Formula sigma_i=nita_i*e*(miu_e+miu_h)
12 nita_i=sigma_i/(e*(miu_e+miu_h));
13 disp("Carrier density is: "+string(nita_i)+" /m^3");
```

Scilab code Exa 2.13 Temperature of coil

Scilab code Exa 2.15 Resistance of the coil

```
1 / Exa2.15
```

```
2 clc;
3 clear;
4 close;
5 //given data
6 alpha0=0.0038; // in ohm/ohm/degree C
7 t1=20; //in degree C
8 alpha20=1/(1/alpha0+t1);
9 R1=400; //in ohm
10 //Formula R2=R1*[1+alpha20*(t2-t1)]
11 R2=R1*[1+alpha20*(80-20)];
12 disp("Resistance of wire at 80 degree C si : "+ string(R2)+" ohm")
```

Scilab code Exa 2.16 Temperature coefficient of resistance

```
1 / Exa2.16
2 clc;
3 clear;
4 close;
5 disp ("Let the temperature coefficient of resistance
     of material at 0 degree C be alpha0");
6 disp ("Resistance at 25 degree C, R1 = R0 * (1+25*)
                              (i)");
     alpha0)
7 disp("Resistance at 70 degree C, R2 = R0 * (1+70*)
                             ( i i ) ");
     alpha0)
8 disp("Dividing Eq.(ii) by Eq.(i), we get");
9 disp("R2/R1= (1+70*alpha0)/(1+25*alpha0)");
10 disp("or 57.2/50 = (1+70*alpha0)/(1+25*alpha0)");
11 disp("or alpha0 = 0.00348 ohm/ohm/degree C");
```

Scilab code Exa 2.17 Temperature coefficient of resistance

```
1 / Exa2.17
```

Scilab code Exa 2.18 Resistance and temperature coefficient

```
1 / Exa2.18
2 clc;
3 clear;
4 close:
5 disp ("Let the temperature coefficient of resistance
      of platinum at 0 degree C be alpha0 and
      resistance of platinum coil at 0 degree C be R0,
      then");
6 disp("Resistance at 40 degree C, R1 = R0 * (1+40*)
      alpha0)
                               (i)");
7 disp("Resistance at 100 degree C, R2 = R0 * (1+100*)
      alpha0)
                               ( i i )");
8 disp("Dividing Eq.(ii) by Eq.(i), we have");
9 disp("R2/R1= (1+100*alpha0)/(1+40*alpha0)");
             3.767/3.146 = (1+100*alpha0)/(1+40*alpha0)
10 disp("or
      ");
11 \operatorname{disp}(" \text{ or alpha0} = 0.00379 \text{ ohm/ohm/degree C"});
12 alpha0=0.00379; // in ohm/ohm/degree C
13 disp ("Temperature coefficient of resistance at 40
```

Scilab code Exa 2.19 Mean temperature rise

```
1 / Exa2.19
2 clc;
3 clear;
4 close;
5 disp("Let R0 be the resistance of the coil at 0
      degree C and alpha0 be its temperature
      coefficient of resistance at 0 degree C");
6 disp("Resistance at 20 degree C, 18 = R0 * (1+20*)
      alpha0)
                              (i)");
7 disp("Resistance at 50 degree C, 20 = R0 * (1+50*)
      alpha0)
                              ( i i )");
8 disp("Dividing Eq.(ii) by Eq.(i), we have");
9 disp("20/18 = (1+50*alpha0)/(1+20*alpha0)");
10 disp("or alpha0 = 1/250=0.004 ohm/ohm/degree C");
11 disp ("If t degree C is the temperature of coil when
      its resistance is 21 ohm, then");
12 disp("21=R0*(1+0.004*t)");
13 disp("Dividing Eq.(iii) by Eq.(ii), we have");
14 \operatorname{disp}("21/20=(1+0.004*t)/(1+50*0.004)");
15 disp("or t=65 degree C");
16 disp ("Temperature rise = t-surrounding temperature =
       65 - 15 = 50 degree C");
```

Scilab code Exa 2.20 Specific resistance and resistance temperature coefficient

```
1 / Exa2.20
2 clc;
3 clear;
4 close;
5 //given data
6 alpha20=1/254.5; // in ohm/ohm/degree C
7 t2=60; //degree C
8 t1=20; //degree C
9 rho0=1.6*10^-6;
10 alpha60=1/(1/alpha20+(t2-t1));
11 disp ("Temperature coefficient of resistance at 60
      degree C is : "+string(alpha60)+" ohm/ohm/degree
     C");
12 / \text{from alpha} 20 = 1/(1/\text{alpha} 0 + 20)
13 alpha0=1/(1/alpha20-20);
14 //Formula rho60=rho0*(1+alpha0*t)
15 rho60=rho0*(1+alpha0*t2);
16 disp("Specific resistance at 60 degree C is: "+
      string(rho60)+" ohm-cm")
```

Scilab code Exa 2.21 Resistivity of the wire material

```
1 //Exa2.21
2 clc;
3 clear;
4 close;
5 //given data
6 R=95.5;//in ohm
```

```
7 l=1;//in meter
8 d=0.08;//in mm
9 d=d*10^-3;//in meter
10 a=(%pi*d^2)/4;
11 //Formula R=rho*l/a
12 rho=R*a/1;
13 disp("Resistance of the wire material is : "+string(rho)+" ohm-meter")
```

Scilab code Exa 2.22 Resistance of the wire

```
1 //Exa2.22
2 clc;
3 clear;
4 close;
5 //given data
6 R=4;//in ohm
7 d=0.0274;//in cm
8 d=0.000274;//in meter
9 rho=10.3;//in miu ohm—cm
10 rho=10.3*10^-8;//in ohm—m
11 a=(%pi*d^2)/4;
12
13 //Formula R=rho*l/a
14 l=R*a/rho;
15 disp("Lenght of wire is: "+string(1)+" meters")
```

Scilab code Exa 2.23 Current flowing

```
1 //Exa2.23
2 clc;
3 clear;
4 close;
```

```
5 //given data
6 V=220; // in V
7 W=100; //in watt
8 R100=V^2/W; //in ohm
9 alpha20=0.005;
10 t1=20;
11 t2=2000;
12 // since R100=R20*[1+alpha20*(t2-t1)]
13 R20=R100/(1+alpha20 * (t2-t1));
14 I20=V/R20;
15 disp("Current flowing at the instant of switching on a 100 W metal filament lamp is: "+string(I20)+" A")
```

Scilab code Exa 2.24 Resistance and temperature coefficient of combination

```
1 / Exa2.24
2 clc;
3 clear;
4 close;
5 //given data
6 t2=50;// in degree C
7 t1=20; // in degree C
8 R1 = 600; // in ohm
9 R2=300; // in ohm
10
11 // Let resistance of 600 ohm resistance at 50 degree
      C = R_600
12 R_{600}=R1*(1+(t2-t1)*.001); // in ohm
13 // Let resistance of 300 ohm resistance at 50 degree
      C = R_300
14 R_300=R2*(1+(t2-t1)*.004); // in ohm
15 R_50=R_600+R_300; // in ohm
16 disp ("Resistance of combination at 50 degree C is:"
```

```
+string(R_50)+ "ohm")
17 R_20=R1+R2; // in ohm
18 alpha_20=(R_50/R_20-1)/(t2-t1);
19 alpha_50=1/(1/(alpha_20)+(t2-t1));
20 disp("Effective temperature coefficient of combination at 50 degree C is: "+string(alpha_50)+" or 1/530 per degree C")
```

Scilab code Exa 2.25 Impurity percent

```
1 //Exa2.25
2 clc;
3 clear;
4 close;
5 //given data
6 toh=1.73//in micro-ohm-cm
7 tohDesh=1.74; //in micro-ohm-cm
8 sigma=1/toh; // conductivities of pure metal
9 sigmaDesh=1/tohDesh; // conductivities metal with impurity
10 PercentImpurity=((sigma-sigmaDesh)/sigma)*100;
11 disp(" Percent impurity in the rod is : "+string( PercentImpurity)+" %")
```

Scilab code Exa 2.26 Electronic contribution of thermal conductivity of aluminium

```
1 //Exa2.26
2 clc;
3 clear;
4 close;
5 //given data
6 ElectricalResistivity=2.86*10^-6; //in ohm-cm
```

```
7 sigma=1/ElectricalResistivity;
8 T=273+20; // in Kelvin (Temperature)
9 //Formula K/(sigma*T)=2.44*10^-8
10 disp("Thermal conductivity of Al ")
11 K=(2.44*10^-8*T*sigma);
12 disp(K);
```

Scilab code Exa 2.27 EMP developed per degree centigrade

Scilab code Exa 2.28 EMF developed in couple

```
1  //Exa2.28
2  clc;
3  clear;
4  close;
5  //given data
6  E_AC=7.4; //in miu V per degree C
7  E_BC=-34.4; //in miu V per degree C
```

```
8 //By law of successive contact (or intermediate
    metals)
9 E_AB=E_AC-E_BC; //in miu V/degree C
10 E_AB=E_AB*10^-6; // in V/degree C
11 // Let Thermo-emf for a temperature difference of
    250 degree C = EMF_250
12 EMF_250=E_AB*250; // in V
13 EMF_250=EMF_250*10^3; //in mV
14 disp("Termo-emf for a temperature difference of 250
    degree C is "+string(EMF_250)+" mV");
```

Scilab code Exa 2.29 Thermo electric emf generated

```
1 / Exa2.29
2 clc;
3 clear;
4 close;
5 //given data
6 //Take iron as metal A and copper as metal B with
      respect to lead
7 //For metal A:
8 p_A = 16.2;
9 q_A = -0.02;
10 // For metal B:
11 p_B=2.78;
12 q_B = +0.009;
13 p_AB=p_A-p_B;
14 q_AB=q_A-q_B;
15 T2=210; //in degree C
16 T1=10; // in degree C
17 E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);
18 disp("Thermo-electric emf is: "+string(E)+" micro V
     ");
19 Tn = -p_AB/q_AB;
20 disp("Neutral temperature is : "+string(Tn)+" degree
```

Scilab code Exa 2.30 Thermo emf neutral temperature temperature of inversion and max possible thermo electric emf

```
1 / Exa2.30
2 clc;
3 clear;
4 close;
5 //given data
6 p_A = 17.34;
7 q_A = -0.0487;
8 p_B=1.36;
9 q_B = +0.0095;
10 p_AB=p_A-p_B;
11 q_AB=q_A-q_B;
12 T2=210; //in degree C
13 T1=10; // in degree C
14 E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2); // in miu V
15 E=E*10^-3; //in m V
16 disp("Thermo-electric emf is: "+string(ceil(E))+" m
      V");
17 Tn=-p_AB/q_AB;
18 disp("Neutral temperature is : "+string(ceil(Tn))+"
      degree C");
19 Tc=10; // in degree C
20 Ti = Tn + (Tn - Tc);
21 disp("Temperature of inversion is: "+string(ceil(Ti
      ))+" degree C");
22 \quad \text{E_max} = 15.98*(275-10) - 1/2*0.0582*[275^2-10^2]; //in
      miu V
23 E_max=E_max*10^-3; // in mV
24 disp("Maximum possible thermo-electric emf at
      neutral temperature that is at 275 degree C is:
      "+string(E_max)+" mV");
```

Scilab code Exa 2.31 Potential difference

```
1 //Exa2.31
2 clc;
3 clear;
4 close;
5 //given data
6 rho=146*10^-6// in ohm-cm
7 a=1;//in cm^2
8 l=1;//in cm
9 // let current = i
10 i=0.06;//in amp
11 R=rho*1/a;//in ohm
12 // Let potential difference per degree centigrade = P
13 P=i*R;// By Ohm's law
14 disp("Potential difference per degree centigrade is : "+string(P)+" volt");
```

Scilab code Exa 2.32 EMF for a copper iron thermo couple

```
T) *10^{-6} and that for copper by (1.36 - .0095) T)
      *10^{-6}
10
11 // Thermo-electric power, P=dE/dT
12 // \text{ or dE=P*dT}
13 // Thermo-emf for copper between temperature 10
      degree C and 150 degree C,
14 E_c= integrate('(1.36-0.0095*T)*10^-6', 'T', T_lower,
      T_upper);
15
16 // Thermo-emf for iron between temperature 10 degree
      C and 150 degree C,
17 E_i = integrate ('(17.34-0.0487*T)*10^{-6}', 'T', T_lower,
      T_upper);
18
19 // Thermo-emp for copper-iron thermo-couple
20 \quad E=E_i-E_c;
21
22 disp("Thermo-emf for iron between temperature 10
      degree C and 150 degree C is : "+string(E*10^6)+"
       micro V");
```

Scilab code Exa 2.34 Critical magnetic field

```
1 //Exa2.34
2 clc;
3 clear;
4 close;
5 //given data
6 Hc_0=8*10^5; //in A/m
7 Tc=7.26; //in K
8 T=4; //in K
9 Hc_T=Hc_0*[1-(T/Tc)^2]';
10 disp("The critical value of magnetic field at T=4 K is: "+string(Hc_T)+" A/m");
```

Scilab code Exa 2.35 Critical current

```
1 //Exa2.35
2 clc;
3 clear;
4 close;
5 //given data
6 Hc=7900; //in A/m
7 d=1; //in mm
8 r=d/2; //in mm
9 r=r*10^-3; //in m
10 Ic=2*%pi*r*Hc;
11 disp("Critical current is: "+string(Ic)+" A");
```

Scilab code Exa 2.36 Critical current density

```
1 / Exa2.36
2 clc;
3 clear;
4 close;
5 // given data
6 Hc_0=8*10^4; //in A/m
7 Tc=7.2; //in K
8 T=4.5; //in K
9 d=1; //in mm
10 \text{ r=d/2;}//\text{in mm}
11 r=r*10^-3; // in m
12 Hc=Hc_0*[1-(T/Tc)^2];
13 disp("The critical field at T=4.5~\mathrm{K} is : "+string(Hc
      ) +" A/m");
14 Ic=2*%pi*r*Hc;
15 disp("Critical current is : "+string(Ic)+" A");
```

Scilab code Exa 2.37 Diameter of copper wire

```
1 / Exa2.37
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Formula R=rho*l/a
7 //putting value for copper wire
8 R=2; // in ohm
9 1=100; //in meter
10 rho=1.7*10^-8; // (for copper)
11 a=rho*1/R; //in meter
12 a=a*10^6; // in mm
13 // Formula a=\%pi/4*d^2
14 d_copper=sqrt(a*4/%pi); // (d_copper is diameter
     for copper)
15
16 // Formula R=rho*l/a
17 //putting value for Aluminium wire
18 R=2; // in ohm
19 l=100; //in meter
20 rho=2.8*10^-8; // (for aluminium)
21 a=rho*1/R; //in meter
22 a=a*10^6; // in mm
23 // Formula a=\%pi/4*d^2
24 d_aluminium=sqrt(a*4/%pi); //
                                   (d_aluminium is
     diameter for aluminium)
25 DiaRatio=d_aluminium/d_copper; // (DiaRatio is
      ratio of diameter of aluminium and copper)
26 disp("The diameter of the aluminium wire is "+string
      (DiaRatio)+" times that of copper wire");
```

Scilab code Exa 2.38 Resistance of liquid resistor

```
1 / Exa2.38
2 clc;
3 clear;
4 close;
5 format('v',7)
6 //given data
7 1=60; // in cm
8 l=1*10^-2; //in meter
9 d=20; // in cm
10 d=d*10^-2; //in meter
11 D=35; // in cm;
12 D=D*10^-2; //in meter
13 \text{ r1=d/2};
14 \text{ r}2=D/2;
15 rho=8000;// in ohm-cm
16 rho=80; // in ohm-m
17 // Let Insulation resistance of the liquid resistor
18 Ir=[rho/(2*\%pi*1)]*log(r2/r1);
19 disp(" Insulation resistance of the liquid resistor
      is : "+string(Ir)+" ohm")
```

Scilab code Exa 2.39 Resistivity of dielectric in a cable

```
1 //Exa2.39
2 clc;
3 clear;
4 close;
5 format('v',11)
6 //given data
```

```
7 R_desh=1820; // in M ohm
8 R_desh=R_desh*10^6; // in ohm
9 d1=1.5; // in cm
10 d1=d1*10^-2; // in meter
11 d2=5; // in cm
12 d2=d2*10^-2; // in meter
13 l=3000; // in meter
14 r1=d1/2;
15 r2=d2/2;
16
17 rho= (2*%pi*l*R_desh)/log(r2/r1);
18 disp("Resistivity of dielectric is: "+string(rho)+" ohm meter")
```

Scilab code Exa 2.40 Insulation resistance

```
1 / Exa2.40
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // given data
7 // First Case:
8 \text{ r1=1.5/2;} // \text{ in cm}
9 // let radius thickness of insulation = r1_t
10 r1_t=1.5; // in cm
11 r2=r1+r1_t;
12 R_desh=500; // in M ohm
13 R_desh=R_desh*10^6; // in ohm
14 // Second case:
15 r1_desh=r1;// in cm (as before)
16 // let radius thickness of insulation = r2_t
17 r2_t=2.5; // in cm
18 r2_desh=r1+r2_t;
19 // since Insulation resistance, R_desh = sigma/(2*
```

Scilab code Exa 2.41 Insulation resistance and resistance of copper conductor

```
1 / Exa2.41
2 clc;
3 clear;
4 close;
5 // given data
6 t1=20;// in degree C
7 t2=36; // in degree C
8 alpha_20=0.0043; // in per degree C (Temperature
      Coefficient)
9 InsulationResistance=480*10^6; // in ohm
10 copper_cond_res=0.7; // in ohm (copper conductor
      resistance)
11 l=500*10^-3; // in kilo meter (length)
12 R1_desh=InsulationResistance * 1;// in ohm
13
14 // From Formula \log (R2_{desh}) = \log (R1_{desh} - K*(t2-t1))
15 // K = 1/(t2-t1) * \log (R1_{desh}/R2_{desh})
16 // since when t2-t1=10 degree C and R1_{desh}/R2_{desh}=
       2
17
18 K=1/10*log(2);
```

```
19
20 // (i) Insulation resistance at any temperature t2,
     R2_desh is given by
     logR2_desh = log(R1_desh) - (t2-t1)/10* log(2);
21
     R2_desh = %e^logR2_desh
22
23
24
     disp("(i) Insulation resistance at any temperature
         : "+string(R2_desh*10^-6)+" Mega ohm");
25
26 // (ii)
       R_20= copper_cond_res/1; // in ohm
27
       R_36=R_20*[1+alpha_20*(t2-t1)];
28
29
       disp("Resistance at 36 degree C is : "+string(
30
          R_36) + "ohm")
```

Chapter 3

Semiconductor

Scilab code Exa 3.1 Velocity of electron

Scilab code Exa 3.2 Relaxation time resistivity of conductor and velocity of electron

```
1 //Exa3.2
2 clc;
```

```
3 clear;
4 close;
5 // given data
6 E=5.5; // in eV; (Fermi energy)
7 E=E*1.6*10^-19; // in J
8 miu_e=7.04*10^-3; //in m^2/V-s (Mobility of
      electrons)
9 n=5.8*10^28; // in /m<sup>3</sup> (Number of conduction
      electrons/m<sup>3</sup>)
10 e=1.6*10^-19; // in coulomb
11 m=9.1*10^-31; //in kg
12 //(i) Relaxation time,
13 tau=miu_e/e*m;
14 disp("(i) Relaxation time is: "+string(tau)+"
     second");
15 sigma=(n*e*miu_e);
16 //(ii) Resistivity of conductor,
17 rho=1/sigma;
18 disp("(ii) Resistivity of conductor is: "+string(
     rho)+" ohm-meter");
19 // (iii) Let Velocity of electrons with fermi energy
      = v
20 \ v = sqrt(2*E/m);
21 disp("(iii) Velocity of electron with Fermi-level is
       : "+string(v)+" m/s");
```

Scilab code Exa 3.3 Electron and hole density

```
1 //Exa3.3
2 clc;
3 clear;
4 close;
5 // given data
6 n_i=2.5*10^13; // in /cm^3
7 rho=0.039; // in ohm—cm
```

```
8 sigma_n=1/rho;
9 e=1.602*10^-19;// in C
10 miu_e=3600;// in cm^2/V-s
11 //since sigma_n = n*e*miu_e = N_D*e*miu_e
12 N_D=sigma_n/(e*miu_e);
13 n=N_D;// (approx)
14 disp("Concentration of electrons is : "+string(n)+" /cm^3");
15 p=n_i^2/n;
16 disp("Concentration of holes is : "+string(p)+" /cm^3");
```

Scilab code Exa 3.4 Donar atom concentration mobile electron concentration hole concentration and conductivity of doped silicon sample

```
1 / \text{Exa} 3.4
2 clc;
3 clear;
4 close;
5 // given data
6 SiliconAtom=5*10^22; // unit less (Number of silicon
      atom)
7 DonorImpurity=1/10<sup>6</sup>;
8 n_i=1.45*10^10; // in cm^-3
9 e=1.602*10^-19; // in C
10 miu_e=1300; // taking miu_e for Si as 1300 \text{ cm}^2/V-s
11 // (i) Donor atom concentraion
12 // Formula N_D= Number of silicon atoms/cm<sup>3</sup> * donor
       impurity
13 N_D=SiliconAtom*DonorImpurity;
14 disp("(i) Donor atom concentration is: "+string(N_D
      )+" per cm^3");
15
16 // (ii) Mobile electron concentration
17 n=N_D; // (approx.)
```

```
18 disp("(ii) Mobile electron concentration is: "+
     string(n)+" per cm^3");
19
20 // (iii) Hole concentration
21 p=n_i^2/N_D;
22 disp("(iii) Hole concentration is: "+string(p)+" /
     cm^3");
23
24 //(iv) conductivity of doped silicon sample
25 sigma=n*e*miu_e;
26 disp("(iv) conductivity of doped silicon sample is:
      "+string(sigma)+" S/cm");
27
28 rho=1/sigma;
29 //(v) resistance of given semiconductor
30 1=0.5; // in cm
31 a = (50*10^-4)^2
32 R=rho*1/a;
33 disp("Resistance of give semiconductor is: "+string
     (R) + " ohm");
```

Scilab code Exa 3.5 Concentration of hole in si

```
1 //Exa3.5
2 clc;
3 clear;
4 close;
5 // given data
6 n_i=1.4*10^18; // in m^3
7 N_D=1.4*10^24; // in m^3
8 n=N_D; // (approx)
9 p=n_i^2/n;
10 // let Ratio of electron to hole concentration = r
11 r=n/p;
12 disp("Ratio of electron to hole concentration is : "
```

```
+string(r));
```

Scilab code Exa 3.6 Conductivity and resitivity of an intrinsic semiconductor

Scilab code Exa 3.7 Density of electron and drift velocity of holes and electrons

```
1 //Exa3.7
2 clc;
3 clear;
4 close;
5 // given data
6 rho_i=0.47;// in ohm-meter
7 sigma_i=1/rho_i;
8 miu_e=0.39;// in m^2/V-s
9 miu_h=0.19;// in m^2/V-s
```

Scilab code Exa 3.8 Conductivity of Si

```
1 / Exa3.8
2 clc;
3 clear;
4 close;
5 // given data
6 n_i=1.5*10^10; // in /cm^3
7 miu_e=1300; // in cm<sup>2</sup>/V-s
8 miu_h=450; // \text{ in cm}^2/V-s
9 e=1.6*10^-19; // in C (charge of electrons)
10 sigma_i=n_i*e*(miu_e+miu_h);
11 disp("Conductivity of silicon (intrinsic) is: "+
      string(sigma_i)+" /ohm-cm");
12 N_A = 10^18; // in /cm<sup>3</sup>
13 disp("conductivity of the resulting P-type silicon
      semiconductor")
14 sigma_p=e*N_A*miu_h;
15 disp(string(sigma_p)+" /ohm-cm");
```

Scilab code Exa 3.9 Find conductivity of intrinsic Ge

```
1 / Exa3.9
2 clc;
3 clear;
4 close;
5 // given data
6 n_i=2.5*10^13; // in /m^3
7 miu_e=3800;// in \mathrm{cm}^2/\mathrm{V}\!\!-\!\mathrm{s}
8 miu_h=1800; // in cm<sup>2</sup>/V-s
9 e=1.6*10^-19; // in C (charge of electrons)
10 sigma_i=n_i*e*(miu_e+miu_h);
11 disp("Intrinsic conductivity is: "+string(sigma_i)+
        /ohm-cm");
12 // Let Number of germanium atoms/cm<sup>3</sup> = no<sub>-</sub>g
13 no_g=4.41*10^22;
14 // since Donor impurity = 1 donor atom / 10^7
      germanium atoms, so
15 DonorImpurity=10^-7;
16  N_D=no_g*DonorImpurity;
17 n=N_D; // (approx)
18 p=n_i^2/N_D;
19 // so
20 sigma_n=e*N_D*miu_e;
21 disp("conductivity in N-type germanium semiconductor
       is : "+string(sigma_n)+" /ohm-cm");
```

Scilab code Exa 3.10 Electron and hole drift velocity conductivity of intrinsic Ge and total current

```
1 / Exa3.10
```

```
2 clc;
3 clear;
4 close;
5 // given data
6 e=1.6*10^-19; //in C
7 miu_e=.38;// in m^2/V-s
8 miu_h=.18; // in m<sup>2</sup>/V-s
9 1=25; // in mm (length)
10 l=1*10^-3; // in m
11 w=4; // in mm (width)
12 w=w*10^-3; // in m
13 t=1.5; // in mm (thickness)
14 t=t*10^-3; // in m
15 V=10;// in V
16 1=25; // in mm
17 l=1*10^-3; //in m
18 E=V/1;
19 //(i)
20 \text{ v_e=miu_e*E};
21 v_h=miu_h*E;
22 disp("Electron drift velocity is: "+string(v_e)+" m
23 disp("Hole drift velocity is: "+string(v_h)+" m/s")
24 n_i = 2.5*10^19; //in /m^3
25 //(ii)
26 sigma_i=n_i*e*(miu_e+miu_h);
27 disp("Intrinsic conductivity of Ge is: "+string(
      sigma_i)+" /ohm-cm");
28 //(iii)
29 \ a=w*t;
30 I=sigma_i*E*a;// in amp
31 I=I*10^3; // in m A
32 disp("Total current is: "+string(I)+" mA");
```

Scilab code Exa 3.11 Diffusion coefficient of electron and hole

```
1 / Exa3.11
2 clc;
3 clear;
4 close;
5 // given data
6 k_desh=1.38*10^-23; // in J degree^-1
7 e=1.602*10^-19; // in C
8 miu_e=3600; // in cm^2/V-s
9 miu_h=1700; // in cm<sup>2</sup>/V-s
10 T = 300; // in K
11 D_e=miu_e*k_desh*T/e;
12 disp("Diffusion constant of electrons is: "+string(
     D_e) + cm^2/s;
13 D_h=miu_h*k_desh*T/e;
14 disp("Diffusion constant of holes is: "+string(D_h)
     +" cm^2/s");
```

Scilab code Exa 3.12 Hall effect in semiconductor

```
1  //Exa3.12
2  clc;
3  clear;
4  close;
5  // given data
6  e=1.6*10^-19; // in coulomb
7  Resistivity=9*10^-3; // in ohm-m
8  R_H=3.6*10^-4; // in m^3 coulomb^-1 (Hall Coefficient)
9  sigma=1/Resistivity;
10  rho=1/R_H;
11  n=rho/e;
12  disp("Density of charge carriers is: "+string(n)+" /m^3");
```

```
13 miu=sigma*R_H;
14 disp("Mobility is : "+string(miu)+" m^2/V-s");
```

Scilab code Exa 3.13 Current density

```
1  //Exa3.13
2  clc;
3  clear;
4  close;
5  // given data
6  E_x=100; // in V/m
7  e=1.6*10^-19; // in C
8  R_H=0.0145; // in m^3/coulomb
9  miu_n=0.36; // in m^2/volt-second
10  // Formula R_H=1/(n*e)
11  n=1/(R_H*e);
12  sigma=n*e*miu_n;
13  J=sigma*E_x;
14  disp("Current density is : "+string(J)+" A per m^2")
    ;
```

Scilab code Exa 3.14 Value of hall coefficient

```
1 //Exa3.14
2 clc;
3 clear;
4 close;
5 // given data
6 Resistivity=9; // in milli-ohm-m
7 Resistivity=9*10^-3; // in ohm-m
8 miu=0.03; // in m^2/V-s
9 sigma=1/Resistivity;
10 R_H=miu/sigma;
```

```
11 disp("Half coefficient is: "+string(R_H)+" m^3/C");
```

Scilab code Exa 3.15 Magnitude of Hall voltage

```
1 //Exa3.15
2 clc;
3 clear;
4 close;
5 // given data
6 E_x=5; // in V/cm
7 miu_e=3800; // in cm^2/V-s
8 B_z=0.1; // in Wb/m^2
9 d=4; // in mm
10 d=d*10^-3; // in m
11 v=miu_e*E_x; // in cm/second
12 v=v*10^-2; // in m/second
13 V_H=B_z*v*d; // in V
14 V_H=V_H*10^3; // in m V
15 disp("Hall voltage is: "+string(V_H)+" mV");
```

Scilab code Exa 3.16 Mobility of holes

```
1 //Exa3.16
2 clc;
3 clear;
4 close;
5 // given data
6 rho=200; // in Kilo ohm-cm
7 rho=rho*10^-2; // in kilo ohm m
8 rho=rho*10^3; // in ohm meter
9 sigma=1/rho;
10 V_H=50; // in mV
11 V_H=V_H*10^-3; // in V
```

Scilab code Exa 3.17 Hall voltage

```
1 / Exa3.17
2 clc;
3 clear;
4 close;
5 // given data
6 N_D=1*10^21; // in /m^3
7 B_Z = 0.2; // in T
8 J=600; // in A/m<sup>2</sup>
9 n = N_D;
10 d=4; //in mm
11 d=d*10^-3; // in meterr
12 e=1.6*10^-19; // in C (electron charge)
13 // Formula V_H*w/(B_Z*I) = 1/(n*e), hence V_H=B_Z*
      I/(n*e*w)
14 // \text{ where } I=J*w*d
15 // putting I=J*w*d in V_H=B_Z*I/(n*e*w), we get
16 V_H=B_Z*J*d/(n*e); // in V
17 V_H = V_H * 10^3; // in mV
18 disp("Hall Voltage is : "+string(V_H)+" mV");
```

Scilab code Exa 3.18 Hall voltage

```
1 //Exa3.18
2 clc;
3 clear;
4 close;
5 // given data
6 w=0.1; // in mm
7 B_Z=0.6; // in T
8 R_H=3.8*10^-4; // in m^3/C
9 I=10; // in mA
10 I=I*10^-3; // in A
11 V_H=R_H*B_Z*I/w; // in V
12 V_H=V_H*10^6; // in V
13 disp("Hall voltage is: "+string(V_H)+" micro volt")
;
```

Scilab code Exa 3.19 Density and mobility of carrier

```
1 //Exa3.19
2 clc;
3 clear;
4 close;
5 // given data
6 Resistivity=9.23*10^-3; // in ohm-m
7 R_H=3.84*10^-4; // in m^3/C (Hall Coefficient)
8 sigma=1/Resistivity;
9 rho=1/R_H;
10 e=1.6*10^-19; // in C (electron charge)
11 n=rho/e;
12 disp("Density of charge carriers is : "+string(n)+" /m^2");
13 miu=sigma*R_H;
14 disp("Mobility is : "+string(miu)+" m^2/V-s")
```

Scilab code Exa 3.20 Hll angle

```
1 //Exa3.20
2 clc;
3 clear;
4 close;
5 // given data
6 B=0.48; // in Wb/m^2
7 R_H=3.55*10^-4; // in m^3/C
8 Resistivity=.00912; // in ohm
9 sigma=1/Resistivity;
10 theta_H=atand(sigma*B*R_H);
11 disp("Hall angle is: "+string(theta_H)+" degree")
```

Scilab code Exa 3.21 New position of fermi level

```
1 / Exa3.21
2 clc;
3 clear;
4 close;
5 // given data
6 \text{ T=27;} // \text{ in degree C}
7 T=T+273; // in K
8 // Let E_C - E_F = E_CF
9 E_CF = 0.3; // in eV
10 // Formula E_C - E_F = k*T*log(n_C/N_D)
11 // Let \log (n_C/N_D) = L, so
12 L=E_CF/T;
13 T_desh=55;// in degree C
14 \text{ T_desh=T_desh+273; // in } K
15 //At temperature T_desh
16 new_fermi_level= T_desh*L; // where L=log(n_C/N_D)
```

```
17 disp("The new position of Fermi Level is: "+string(new_fermi_level)+" V");
```

Scilab code Exa 3.22 Potential barrier

```
1 //Exa3.22
2 clc;
3 clear;
4 close;
5 // given data
6 N_A=8*10^14; // in /cm^3
7 N_D=N_A;
8 n_i=2*10^13; // in /cm^3
9 k=8.61*10^-5; // in eV/K
10 T=300; // in K
11 V_0=k*T*log(N_D*N_A/n_i^2);
12 disp("Potential barrier is: "+string(V_0)+" V");
```

Scilab code Exa 3.23 Resistance level

```
1 //Exa3.23
2 clc;
3 clear;
4 close;
5 // given data
6 // (i) when
7 I_D=2; // in mA
8 I_D=I_D*10^-3; // in A
9 V_D=0.5; // in V
10 R1=V_D/I_D;
11 disp("Resistace is: "+string(R1)+" ohm");
12 // (ii) when
13 I_D=20; // in mA
```

```
14  I_D=I_D*10^-3; // in  A
15  V_D=0.8; // in  V
16  R2=V_D/I_D;
17  disp("Resistace is : "+string(R2)+" ohm");
18  // (ii) when
19  I_D=-1; // in miu  A
20  I_D=I_D*10^-6; // in  A
21  V_D=-10; // in  V
22  R3=V_D/I_D; // in ohm
23  R3=R3*10^-6; // in  M ohm
24  disp("Resistace is : "+string(R3)+" M ohm");
```

Scilab code Exa 3.24 Fraction of the total number of electron

```
1 / Exa3.24
2 clc;
3 clear;
4 close;
5 format('v',12)
6 // given data
7 E_G = 0.72; // in eV
8 E_F = E_G/2; // in eV
9 k=8.61*10^-5; // in eV/K
10 T = 300; // in K
11 // Formula n_C/n = 1/1 + \%e^{(E_G-E_F)/k*T}
12 // Let n_C/n = N
13 N=1/(1+\%e^{((E_G-E_F)/(k*T))};
14
15 disp("Fraction of the total number of electrons (
      conduction band as well as valence band): "+
      string(N));
```

Scilab code Exa 3.25 Current flowing

```
1 //Exa3.25
2 clc;
3 clear;
4 close;
5 format('v',3)
6 // given data
7 I_0=.15; // in micro amp
8 I_0=I_0*10^-6; // in A
9 V=0.12; // in V
10 V_T=26; // in mV
11 V_T=V_T*10^-3; // in V
12 I=I_0*(%e^(V/V_T)-1); // in amp
13 I=I*10^6; // in micro amp
14 disp("Large reverse bias current is: "+string(I)+" micro amp");
```

Scilab code Exa 3.26 Forward voltage

```
1 //Exa3.26
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // given data
7 I=.01; // in A
8 I_0=2.5*10^-6; // in amp
9 nita=2; // for silicon
10 V_T=26; // in mV
11 V_T=V_T*10^-3; // in V
12 // Formula I=I_0*(%e^(V/(nita*V_T))-1);
13 V=nita*V_T*log(I/I_0+1);
14 disp("Forward voltage is: "+string(V)+" V");
```

Scilab code Exa 3.27 Reverse saturation current density

```
1 //Exa3.27
2 clc;
3 clear;
4 close;
5 // given data
6 N_D=10^21; // in m^-3
7 N_A = 10^22; // in m^3 - 3
8 D_e=3.4*10^-3; // in m^2/s
9 D_h=1.2*10^-3;// in m^2/s
10 L_e=7.1*10^-4; // in m
11 L_h=3.5*10^-4; // in m
12 n_i=1.602*10^16; // in /m^3
13 e=1.6*10^-19; // in C (electron charge)
14 // Formula I_0=a*e*[D_h/(L_h*N_D) + D_e/(L_e*N_A)]*
      n_i^2
15 //and
16 // Reverse saturation current density = I_0/a = D_h
     /(L_h*N_D) + D_e/(L_e*N_A) ]*e*n_i^2, So
17 CurrentDensity= [D_h/(L_h*N_D) + D_e/(L_e*N_A)]*e*
     n_i^2; // in A
18 CurrentDensity=CurrentDensity*10^6; // in micro A
19 disp ("Reverse saturation current density is: "+
      string(CurrentDensity)+" micro amp");
```

Scilab code Exa 3.28 Junction width

```
1 //Exa3.28
2 clc;
3 clear;
4 close;
5 // given data'
6 format('v',13)
7 N_D=10^17*10^6; // in m^-3
```

```
8 N_A = 0.5*10^16*10^6; // in atoms/m<sup>3</sup>
9 epsilon_r=10; // in F/m
10 epsilon_o=8.85*10^-12; // in F/m
11 epsilon=epsilon_r*epsilon_o;
12 e=1.602*10^-19; // in C (electron charge)
13 // (i) when no external voltage is applied i.e.
14 V = 0;
15 V_B = 0.7; // in V
16 W=sqrt (2*epsilon*V_B/e*(1/N_A+1/N_D));
17 disp("Junction width is : "+string(W)+" m");
18 // (ii) when external voltage of -10 V is applied i.
     е.
19 V = -10; // in V
20 V_0 = 0.7; // in V
V_B = V_o - V;
22 W=sqrt(2*epsilon*V_B/e*(1/N_A+1/N_D));
23 disp("Junction width is: "+string(W)+" m");
24
25 // Note: Answer in the book is wrong
```

Chapter 4

Bipolar Junction And Field Effect Transistors

Scilab code Exa 4.1 Resistance between gate and source

```
1 //Exa 4.1
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',11)
7 VGS=10; //in Volt
8 IG=0.001; //in uAmpere
9 IG=IG*10^-6; //in Ampere
10 RGS=VGS/IG; //in Ohm
11 disp(RGS*10^-6, "Resistance between gate and source in Mohm : ");
```

Scilab code Exa 4.2 AC drain resistance of the JFET

```
1 // Exa 4.2
```

Scilab code Exa 4.3 Transconductance

```
1 //Exa 4.3
2 clc;
3 clear;
4 close;
5 //given data :
6 ID2=1.5; //in mAmpere
7 ID1=1.2; //in mAmpere
8 delID=ID2-ID1; //in Ampere
9 VGS1=-4.25; //in Volt
10 VGS2=-4.10; //in Volt
11 delVGS=VGS2-VGS1; //in Volt
12 gm=delID/delVGS; //in Ohm
13 disp(gm, Transconductance in mA/V: ");
14 disp(gm*10^3, Transconductance in uS: ");
```

Scilab code Exa 4.4 AC drain resistance transconductance and amplification factor

```
1 //Exa 4.4
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 VDS1=5; //in Volt
7 VDS2=12; //in Volt
8 \text{ VDS3=12; //in Volt}
9 VGS1=0; //in Volt
10 VGS2=0; //in Volt
11 VGS3 = -0.25; //in Volt
12 ID1=8; //in mAmpere
13 ID2=8.2; //in mAmpere
14 ID3=7.5; //in mAmpere
15 //AC drain resistance
16 delVDS=VDS2-VDS1; // in Volt
17 delID=ID2-ID1; //in mAmpere
18 rd=delVDS/delID;//in Kohm
19 disp(rd, "AC Drain resistance in Kohm: ");
20 //Transconductance
21 delID=ID3-ID2; //in mAmpere
22 delVGS=VGS3-VGS2; //in Volt
23 gm=delID/delVGS; // in mA/V or mS
24 disp(gm, "Transconductance in mA/V: ");
25 // Amplification Factor
26 meu=rd*1000*gm*10^-3; // unitless
27 disp(meu, "Amplification Factor: ");
```

Scilab code Exa 4.5 Transconductance

```
1  //Exa 4.5
2  clc;
3  clear;
4  close;
5  //given data :
6  VP=-4.5;//in Volt
7  IDSS=10;//in mAmpere
```

```
8 IDS=2.5; //in mAmpere
9 //Formula : IDS=IDSS*[1-VGS/VP]^2
10 VGS=VP*(1-sqrt(IDS/IDSS)); //in Volt
11 gm=(-2*IDSS*10^-3)*(1-VGS/VP)/VP; //in mA/V or mS
12 disp(gm*1000, "Transconductance in mA/V : ");
```

Scilab code Exa 4.6 Calculate VGS

```
1 //Exa 4.6
2 clc;
3 clear;
4 close;
5 //given data :
6 gm=10; //in mS
7 gm=gm*10^-3; //in S
8 IDSS=10; //in uAmpere
9 IDSS=IDSS*10^-6; //in Ampere
10 //VGS(OFF): VGS=VP
11 //Formula : gm=gmo=-2*IDSS/VP=-2*IDSS/VG(Off)
12 VGS_OFF=-2*IDSS/gm; //in Volt
13 disp(VGS_OFF*1000, "VGS(OFF) in mV : ");
```

Scilab code Exa 4.7 Minimum value of VDS

```
1  //Exa 4.7
2  clc;
3  clear;
4  close;
5  //given data :
6  VP=-4; //in Volt
7  VGS=-2; //in Volt
8  IDSS=10; //in mAmpere
9  IDSS=IDSS*10^-3; //in Ampere
```

```
10 //Formula : ID=IDSS*[1-VGS/VP]^2
11 ID=IDSS*[1-VGS/VP]^2; //in Ampere
12 disp(ID*1000, "Drain Current in mA : ");
13 disp("The minimum value of VDS for pinch-off region
        is equal to VP. Thus the minimum value of VDS :
        VDS(min) = "+string(VP)+" Volt");
```

Scilab code Exa 4.8 ID gmo and gm

```
1 // Exa 4.8
2 clc;
3 clear;
4 close;
5 //given data:
6 IDSS=8.7; //in mAmpere
7 IDSS=IDSS*10^-3; //in Ampere
8 VP = -3; //in Volt
9 VGS=-1; //in Volt
10 //ID
11 ID=IDSS*[1-VGS/VP]^2
12 disp(ID*1000, "Drain current ID in mA: ");
13 / \text{gmo}
14 gmo=-2*IDSS/VP; //in S
15 disp(gmo*1000, "Transconductance for VGS=0V in mA/V
      or mS : ");
16 / \text{gm}
17 gm=gmo*(1-VGS/VP); //in S
18 disp(gm*1000, "Transconductance in mA/V or mS: ");
```

Scilab code Exa 4.9 Id and gm

```
1 //Exa 4.9
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 IDSS=8.4; //in mAmpere
7 IDSS=IDSS*10^-3; //in Ampere
8 \text{ VP}=-3;//\text{in Volt}
9 VGS = -1.5; //in Volt
10 //ID
11 ID = IDSS * [1 - VGS / VP]^2
12 disp(ID*1000, "Drain current ID in mA: ");
13 / \text{gmo}
14 gmo=-2*IDSS/VP; //in S
15 disp(gmo*1000, "Transconductance for VGS=0V in mA/V
      or mS : ");
16 gm=gmo*(1-VGS/VP); //in S
17 disp(gm*1000, "Transconductance in mA/V or mS: ");
```

Scilab code Exa 4.10 gm at IDS

```
1 //Exa 4.10
2 clc;
3 clear;
4 close;
5 //given data :
6 VP=-4.5; //in Volt
7 IDSS=9; //in mAmpere
8 IDSS=IDSS*10^-3; //in Ampere
9 IDS=3; //in mAmpere
10 IDS=IDS*10^-3; //in Ampere
11 //Formula : IDS=IDSS*[1-VGS/VP]^2
12 VGS=VP*(1-sqrt(IDS/IDSS)); //in Volt
13 disp(VGS,"ID=3mA at VGS in Volt :");
14 gm=(-2*IDSS)*(1-VGS/VP)/VP; //in mA/V or mS
15 disp(gm*1000,"Transconductance in mA/V or mS: ");
```

Scilab code Exa 4.11 Drain current

```
1 //Exa 4.11
2 clc;
3 clear;
4 close;
5 //given data :
6 ID_on=5; //in mAmpere
7 VGS_on=8; //in Volt
8 VGS=6; //in Volt
9 VGST=4; //in Volt
10 k=ID_on/(VGS_on-VGST)^2; //in mA/V^2
11 ID=k*(VGS-VGST)^2; //in mA
12 disp(ID, "Drain current in mA : ");
```

Chapter 5

Magnetic Properties Of Materials

Scilab code Exa 5.1 Hysteresis loss

```
1 / Exa 5.1
2 clc;
3 clear;
4 close;
5 // given data
6 Area_hysteresis_curve=9.3; //in cm^2
7 Cordinate1_1cm=1000; //in AT/m
8 Cordinate2_1cm=0.2; //in T
9 // Part (i)
10 hysteresis_loss=Area_hysteresis_curve*Cordinate1_1cm
      *Cordinate2_1cm; //in J/m^3/cycle
11 disp(hysteresis_loss," Hysteresis loss/m^3/cycle in J
     /\text{m}^3/\text{cycle}: ");
12 // Part (ii)
13 f = 50; //in Hz
14 H_LossPerCubicMeter=hysteresis_loss*f;//in Watts
15 disp(H_LossPerCubicMeter*10^-3,"Hysteresis loss Per
      Cubic Meter in KWatts :");
```

Scilab code Exa 5.2 Hysteresis loss

```
1 / Exa 5.2
2 clc;
3 clear;
4 close;
5 format('v',11)
6 // given data
7 Area_hysteresis_loop=93; //in cm^2
8 scale1_1cm = 0.1; // \text{in Wb/m}^2
9 scale2_1cm=50; //in AT/m
10
11 hysteresis_loss=Area_hysteresis_loop*scale1_1cm*
      scale2\_1cm; //in J/m^3/cycle
12 disp(hysteresis_loss," Hysteresis_loss/m^3/cycle_loss
      /\text{m}^3/\text{cycle}: ");
13
14 f=65; // unit less
15 V=1500*10^-6; // in m^3
16 P_h=hysteresis_loss*f*V;
17 disp("Hysteresis loss is: "+string(P_h)+" W");
```

Scilab code Exa 5.3 Loss of energy

```
1 //Exa 5.3
2 clc;
3 clear;
4 close;
5 format('v', 11)
6 // given data
7 nita=628;// in J/m^3
8 B_max=1.3;// in Wb/m^2
```

```
9 f = 25; // in Hz
10 ironMass=50; // in kg
11 densityOfIron=7.8*10^3; // in kg/m^3
12 V=ironMass/densityOfIron;
13 x=12.5; // in AT/m
14 y=0.1; // in T
15 // formula Hysteresis loss/second = nita*B_max^1.6*f
     *V
16 H_Loss_per_second = nita*B_max^1.6*f*V; // in J/s
17 H_Loss_per_second=floor(H_Loss_per_second);
18 H_Loss_per_hour= H_Loss_per_second*60*60; // in J
19 disp("Hysteresis Loss per hour is: "+string(
     H_Loss_per_hour)+" J");
20 // Let Hysteresis Loss per m^3 per cycle = H1
21 H1=nita*B_max^1.6;
               hysteresis loss/m^3/cycle = x*y*area of
22 // formula
     B-H loop
23 Area_of_B_H_loop=H1/(x*y);
24 Area_of_B_H_loop=floor(Area_of_B_H_loop);
25 disp("Area of B-H loop is : "+string(
     Area_of_B_H_loop)+" cm^2");
```

Scilab code Exa 5.4 Loss per kg in a specimen

```
1 //Exa 5.4
2 clc;
3 clear;
4 close;
5 // given data
6 H_L_per_M_Cube_per_C=380; // in W-S
7 f=50; // unit less
8 density=7800; // in kg/m^3
9 V=1/density; // in m^3
10 // formula Hysteresis loss = Hysteresis loss/m^3/cycle * f * V
```

```
11 P_h=H_L_per_M_Cube_per_C * f * V;
12 disp("Hysteresis loss is : "+string(P_h)+" W");
```

Scilab code Exa 5.5 Eddy current loss

```
1 //Exa 5.5
2 clc;
3 clear;
4 close;
5 // given data
6 P_e1=1600; // in watts
7 B_max1=1.2; // in T
8 f1=50; // in Hz
9 B_max2=1.5; // in T
10 f2=60; // in Hz
11 // P_e propotional to B_max^2*f^2, so
12 P_e2=P_e1*(B_max2/B_max1)^2*(f2/f1)^2
13 disp("Eddy current loss is: "+string(P_e2)+" watts");
```

Chapter 6

Dielectric Properties Of Materials

Scilab code Exa 6.1 Element of parallel RC circuit

```
1 // Exa 6.1
2 clc;
3 clear;
4 close;
5 // given data
6 \text{ epsilon}_r = 2.5;
7 epsilon_o=8.854*10^-12;
8 d=.2*10^-3; // in m
9 A=20*10^-4; // in m^2
10 omega=2*\%pi*10^6; // in radians/s
11 f=10<sup>6</sup>;
12 tan_delta=4*10^-4;
13 C=epsilon_o*epsilon_r*A/d;// in F
14 disp("Capicitance is : "+string(C*10^12)+" miu miu F
      ");
15 // Formula P=V^2/R, so
16 // R=V^2/P and P=V^2*2*\%pi* f * C * tan delta,
      putting the value of P, we get
17 R=1/(2*%pi*f*C*tan_delta);// in ohm
```

```
18 disp("The element of parallel R—C circuit is: "+ string(R*10^-6)+" M ohm");
```

Scilab code Exa 6.2 Charge sensitivity

```
1 / Exa 6.2
2 clc;
3 clear;
4 close;
5 // given data
6 g=0.055; // in V-m/N
7 t=2*10^-3; // in m
8 P=1.25*10^6; // in N/m^2
9 epsilon=40.6*10^--12; // in F/m
10 V_{out}=g*t*P;
11 disp("Output voltage is: "+string(V_out)+" V");
12 // Formula Charge Sensivity=epsilon_o*epsilon_r*g=
      epsilon*g
13 ChargeSensivity=epsilon*g;
14 disp("Charge Sensivity is: "+string(ChargeSensivity
     ) +" C/N");
```

Scilab code Exa 6.3 Force required to develop a voltage

```
1 //Exa 6.3
2 clc;
3 clear;
4 close;
5 // given data
6 V_out=150; // in V
7 t=2*10^-3; // in m
8 g=0.05; // in V-m/N
9 A=5*5*10^-6; // in m^2
```

```
10 F=V_out*A/(g*t); // in N
11 disp("Force applied is : "+string(F)+" N")
```

Scilab code Exa 6.4 Charge and its capacitance

```
1 / Exa 6.4
2 clc;
3 clear;
4 close;
5 // given data
6 g=12*10^-3; // in V-m/N
7 t=1.25*10^{-3}; // in m
8 A=5*5*10^-6; // in m^2
9 F=3; // in N
10 ChargeSensitivity=150*10^-12; // in C/N
11 P=F/A;
12 V_{out=g*t*P}; // in V
13 Q=ChargeSensitivity*F;
14 disp("Total charge developed is: "+string(Q)+" C");
15 // Formula C=Q/V;
16 C=Q/V_{out};
17 disp("Capacitance is : "+string(C*10^12)+" miu miu F
     ");
18
19 // Note: Answer in the Book is wrong
```