Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

Out[1]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	type	size	budget
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	District	2917	1910635
1	1	Victor Smith	М	12th	Huang High School	94	61	0	District	2917	1910635
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	District	2917	1910635
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	District	2917	1910635
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	District	2917	1910635
39165	39165	Donna Howard	F	12th	Thomas High School	99	90	14	Charter	1635	1043130
39166	39166	Dawn Bell	F	10th	Thomas High School	95	70	14	Charter	1635	1043130
39167	39167	Rebecca Tanner	F	9th	Thomas High School	73	84	14	Charter	1635	1043130
39168	39168	Desiree Kidd	F	10th	Thomas High School	99	90	14	Charter	1635	1043130
39169	39169	Carolyn Jackson	F	11th	Thomas High School	95	75	14	Charter	1635	1043130

District Summary

- Calculate the total number of schools
- Calculate the total number of students
- Calculate the total budget
- Calculate the average math score
- Calculate the average reading score
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Calculate the percentage of students who passed math and reading (% Overall Passing)
- Create a dataframe to hold the above results
- Optional: give the displayed data cleaner formatting

```
In [2]: ▶ # Get unique school names and count of that by using len() function
            total schools = len(school data complete["School ID"].unique())
            # Get total Number of students by applying count() function on student id
            total students = len(school data complete["Student ID"].unique())
            # Total budget : Get the total budget by using sum() function on Budget
            total budget = school data["budget"].sum()
            # Get Avg Scores by using mean function
            avg_math_score = school_data_complete["math_score"].mean()
            avg reading score = school data complete["reading score"].mean()
            # Calculating percentage of students with a passing math score (70 or greater)
            stu math passing count = school data complete.loc[school data complete["math score"]>=70,:]["Student ID"].count()
            stu math pass percent = (stu math passing count / total students) * 100
            # Calculating percentage of students with a passing reading score (70 or greater)
            stu reading passing count = school data complete.loc[school data complete["reading score"]>=70,:]["Student ID"].count()
            stu_reading_pass_percent = (stu_reading_passing_count / total_students) * 100
            # Calculating the percentage of students who passed math and reading (% Overall Passing)
            overall passing count = school data complete.loc[(school data complete["math score"]>=70) & (school data complete["reading scol
            overall passing percent = (overall passing count/total students)*100
            # Create a summary data frame with obtained values
            district_summary_df = pd.DataFrame({"Total Schools" : [total_schools],
                                                "Total Students" : [total_students],
                                                "Total Budget" : [total budget],
                                                "Average Math Score" : [avg math score],
                                                "Average Reading Score" : [avg reading score],
                                                "% Passing Math" : [stu math pass percent],
                                                "% Passing Reading" : [stu reading pass percent],
                                                "% Overall Passing" : [overall passing percent]
                                               })
            # Formating of columns
            district summary df["Total Students"] = district summary df["Total Students"].map("{:,}".format)
            district summary df["Total Budget"] = district summary df["Total Budget"].map("${:,}".format)
            # Display Data Frame
            district_summary_df
```

Out[2]:

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
0	15	39,170	\$24,649,428	78.985371	81.87784	74.980853	85.805463	65.172326

School Summary

- Create an overview table that summarizes key metrics about each school, including:
 - School Name
 - School Type
 - Total Students
 - Total School Budget
 - Per Student Budget
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - % Overall Passing (The percentage of students that passed math **and** reading.)
- Create a dataframe to hold the above results

```
In [3]: ▶ # Groupby Object by School Name
            grouped school = school data complete.groupby("school name")
            # Get the school type by school name from original DF
            school type = school data.set index("school name")["type"]
            # Get the total students on grouped by school
            sch total student = grouped school["Student ID"].count()
            # Get the budget by school name from original DF
            school budget = school data.set index("school name")["budget"]
            # Calculating per student budget
            sch_per_stu_budget = school_budget / sch_total_student
            # Calculating Average math & reading score
            sch_avg_math_score = grouped_school["math_score"].mean()
            sch_avg_read_score = grouped_school["reading_score"].mean()
            # Calculating % passing math by school
            math_pass_sch_count = school_data_complete.loc[school_data_complete["math_score"] >= 70].groupby("school_name")["Student ID"].
            sch_math_pass_percent = math_pass_sch_count / sch_total_student * 100
            # Calculating % passing reading by school
            read_pass_sch_count = school_data_complete.loc[school_data_complete["reading_score"] >= 70].groupby("school_name")["Student ID
            sch read pass percent = read pass sch count / sch total student * 100
            # Calculating overall % passing
            sch overall passing count = school data complete.loc[(school data complete["math score"]>=70) & (school data complete["reading
            sch overall pass percent = sch overall passing count / sch total student * 100
            # Create a data frame with values obtained above
            school summary df = pd.DataFrame({"School Type" : school_type,
                                              "Total Students" : sch_total_student,
                                              "Total School Budget" : school budget,
                                              "Per Student Budget" : sch per stu budget,
                                              "Average Math Score" : sch avg math score,
                                              "Average Reading Score" : sch_avg_read_score,
                                              "% Passing Math" : sch math pass percent,
                                              "% Passing Reading" : sch read pass percent,
                                              "% Overall Passing" : sch overall pass percent
                                             })
            # Formating the columns
            school_summary_df["Total School Budget"] = school_summary_df["Total School Budget"].map("${:,.2f}".format)
```

```
school_summary_df["Per Student Budget"] = school_summary_df["Per Student Budget"].map("${:,.2f}".format)
# Display data frame
school_summary_df
```

Out[3]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.048432	81.033963	66.680064	81.933280	54.642283
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828	91.334769
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234	53.204476
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014	54.289887
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965	90.599455
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999	53.527508
Holden High School	Charter	427	\$248,087.00	\$581.00	83.803279	83.814988	92.505855	96.252927	89.227166
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421	53.513884
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432	53.539172
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946	90.540541
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055	52.988247
Shelton High School	Charter	1761	\$1,056,600.00	\$600.00	83.359455	83.725724	93.867121	95.854628	89.892107
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869	90.948012
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641	90.582567
Wright High School	Charter	1800	\$1,049,400.00	\$583.00	83.682222	83.955000	93.333333	96.611111	90.333333

Top Performing Schools (By % Overall Passing)

• Sort and display the top five performing schools by % overall passing.

```
In [4]:  # Sory the above summary DF by % Overall Passing in descending order
school_summary_df = school_summary_df.sort_values(by = "% Overall Passing" , ascending = False)
# Displaye top 5 records of sorted data frame
school_summary_df.head()
```

Out[4]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828	91.334769
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869	90.948012
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965	90.599455
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641	90.582567
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946	90.540541

Bottom Performing Schools (By % Overall Passing)

• Sort and display the five worst-performing schools by % overall passing.

```
In [5]: # Sory the above summary DF by % Overall Passing in ascending order
school_summary_df = school_summary_df.sort_values(by = "% Overall Passing" , ascending = True)
# Displaye top 5 records of sorted data frame
school_summary_df.head()
```

Out[5]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055	52.988247
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234	53.204476
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421	53.513884
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999	53.527508
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432	53.539172

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

Out[6]:

	9th	10th	11th	12th
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Score by Grade

• Perform the same operations as above for reading scores

12th

11th

Out[7]:

	301	1001	1101	12(11
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

9th

10th

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

```
In [9]: # Convert the values to Int.
#If data type is not changed then will get an error of operation is not supported between instances of 'int' and 'str'
school_summary_df["Per Student Budget"] = school_summary_df["Per Student Budget"].str.replace("$","").astype(float)
school_summary_df["Per Student Budget"] = pd.to_numeric(school_summary_df["Per Student Budget"])
school_summary_df["Average Math Score"] = pd.to_numeric(school_summary_df["Average Math Score"])
school_summary_df["Average Reading Score"] = pd.to_numeric(school_summary_df["Average Reading Score"])

# Create bins and labels
bins = [0, 584, 629, 644, 675]
budget_labels = ["<$585", "$585-629", "$630-644", "$645-675"]

# Categorized schools as per sudent budget bns & add a column as Spending Ranges(Per Student)
school_summary_df["Spending Ranges(Per Student)"] = pd.cut(school_summary_df["Per Student Budget"], bins, labels = budget_labe.
#Display a dataframe
school_summary_df.head()</pre>
```

Out[9]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing	Spending Ranges(Per Student)
Rodriguez High School	District	3999	\$2,547,363.00	637.0	76.842711	80.744686	66.366592	80.220055	52.988247	\$630-644
Figueroa High School	District	2949	\$1,884,411.00	639.0	76.711767	81.158020	65.988471	80.739234	53.204476	\$630-644
Huang High School	District	2917	\$1,910,635.00	655.0	76.629414	81.182722	65.683922	81.316421	53.513884	\$645-675
Hernandez High School	District	4635	\$3,022,020.00	652.0	77.289752	80.934412	66.752967	80.862999	53.527508	\$645-675
Johnson High School	District	4761	\$3,094,650.00	650.0	77.072464	80.966394	66.057551	81.222432	53.539172	\$645-675

```
In [10]: ▶ # Create groupby object based upon spending ranges
             spending range grouped = school summary df.groupby("Spending Ranges(Per Student)")
             # Calculating average of Math, reading score & % math, reading, overall passing
             spending range avg math = spending range grouped["Average Math Score"].mean()
             spending range avg read = spending range grouped["Average Reading Score"].mean()
             spending_math_percent = spending_range_grouped["% Passing Math"].mean()
             spending_read_percent = spending_range_grouped["% Passing Reading"].mean()
             spending overall passing = spending range grouped["% Overall Passing"].mean()
             # Create data frame from values obtained above
             spending summary_df = pd.DataFrame({"Average Math Score" : spending_range_avg_math,
                                                 "Average Reading Score" : spending_range_avg_read,
                                                 "% Passing Math" : spending_math_percent,
                                                 "% Passing Reading" : spending read percent,
                                                 "% Overall Passing" : spending overall passing
                                                })
             # Format Data Frame
             spending_summary_df["Average Math Score"] = spending_summary_df["Average Math Score"].map("{:.2f}".format)
             spending_summary_df["Average Reading Score"] = spending_summary_df["Average Reading Score"].map("{:..2f}".format)
             spending_summary_df["% Passing Math"] = spending_summary_df["% Passing Math"].map("{:.2f}".format)
             spending summary df["% Passing Reading"] = spending summary df["% Passing Reading"].map("{:.2f}".format)
             spending_summary_df["% Overall Passing"] = spending_summary_df["% Overall Passing"].map("{:.2f}".format)
             # Display Data Frame
             spending_summary_df
```

Out[10]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
Spending Ranges(Per Student)					
<\$585	83.46	83.93	93.46	96.61	90.37
\$585-629	81.90	83.16	87.13	92.72	81.42
\$630-644	78.52	81.62	73.48	84.39	62.86
\$645-675	77.00	81.03	66.16	81.13	53.53

Scores by School Size

Perform the same operations as above, based on school size.

```
stu count bins = [0, 999, 1999, 5000]
             stu bin label = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]
             # Categorized schools as per total student count (size) & add a column as School Size
             school summary df["School Size"] = pd.cut(school summary df["Total Students"], stu count bins, labels=stu bin label, include le
             # Create a groupby object on School Size
             school size grouped = school summary df.groupby("School Size")
             # Calculating average of Math, reading score & % math, reading, overall passing
             size_avg_math = school_size_grouped["Average Math Score"].mean()
             size avg read = school size grouped["Average Reading Score"].mean()
             size_math_percent = school_size_grouped["% Passing Math"].mean()
             size_read_percent = school_size_grouped["% Passing Reading"].mean()
             size overall passing = school size grouped["% Overall Passing"].mean()
             # Create data frame with values obtained above
             size score df = pd.DataFrame({"Average Math Score" : size avg math,
                                           "Average Reading Score" : size_avg_read,
                                           "% Passing Math" : size_math_percent,
                                           "% Passing Reading" : size read percent,
                                           "% Overall Passing" : size overall passing})
             size score df
   Out[11]:
                              Average Math Score Average Reading Score % Passing Math % Passing Reading % Overall Passing
                    School Size
                  Small (<1000)
                                      83.821598
                                                         83.929843
                                                                      93.550225
                                                                                      96.099437
                                                                                                      89.883853
```

93.599695

69.963361

96.790680

82.766634

90.621535

58.286003

83.864438

81.344493

Scores by School Type

Medium (1000-2000)

Large (2000-5000)

• Perform the same operations as above, based on school type

83.374684

77.746417

Out[12]:

Average Math Score Average Reading Score % Passing Math % Passing Reading % Overall Passing School Type

Charter	83.473852	83.896421	93.620830	96.586489	90.432244
District	76.956733	80.966636	66.548453	80.799062	53.672208