Fabry-Perot wavelength calibration

Benoît Epinat

2015-23-04

1 Wavelength calibration from 2D interferograms

1.1 Models to fit 2D interferograms

1.1.1 Model to fit a single interferogram with a single line

One can use the Airy function in order to adjust the interferograms, in that case the spectrum only contains one line at λ_c observed at order p_c :

$$I = C + I_0 \frac{1}{1 + \frac{4F^2}{\pi^2} \sin^2(\phi/2)} \tag{1}$$

where $\phi = 2\pi \frac{2ne\cos\theta}{\lambda_c}$.

In such a case, the parameters than have to be adjusted are

- F the finesse, that might be known (user defined) and constrained within a range of $\sim 10\%$ (user defined);
- I_0 the intensity of the line that can be estimated at first order using the maximum v_{max} and the minimum v_{min} of the interferogram (in practice it might be more robust to use e.g. the 99th percentile and the 1st percentile to avoid artefacts in the data) and the finesse F:

$$I_0 = (v_{max} - v_{min}) \frac{1 + \frac{4F^2}{\pi^2}}{\frac{4F^2}{\pi^2}}$$
 (2)

- C the continuum, i.e. the background (either instrumental or due to the lamp spectrum), that can be estimated at first guess as the 99th percentile of the interferogram minus I_0 ($C = v_{max} I_0$) and constrained at $\sim \pm 3\sigma$ where σ is the standard deviation of the interferogram (user defined);
- θ , which depends on:
 - the centre of the rings, which can be constrained within a circle of radius ~ 50 pixels (user defined).
 - $-b = \frac{s_{pix}}{f_c}$ ($\theta = \arctan{(br)}$ where r is the radius in pixel) which can be constrained within less than $\sim 10\%$ (user defined). Indeed:
 - * s_{pix} is the pixel size and might be known.
 - * f_c is the camera focal length and might be known as well.

If λ_c is observed in two orders $(p_c \text{ and } p_c - 1)$, b can be determined from the radius in pixels of the two rings $(r_{p_c} \text{ and } r_{p_c-1})$:

$$b^{2} = \frac{p_{c}^{2} - (p_{c} - 1)^{2}}{r_{p_{c}-1}^{2}(p_{c} - 1)^{2} - r_{p_{c}}^{2}p_{c}^{2}} = \frac{2p_{c} - 1}{p_{c}^{2}(r_{p_{c}-1}^{2} - r_{p_{c}}^{2}) - 2p_{c}r_{p_{c}-1}^{2} + r_{p_{c}-1}^{2}}$$
(3)

• the product $n \times e$, that can be estimated at first guess as

$$ne = \frac{\lambda_c p_c \sqrt{1 + b^2 r_{p_c}^2}}{2} \tag{4}$$

and that can be constrained within a range $\pm \frac{\lambda_c}{4}$.

The wavelength λ_c is the only parameter that does not need to be fitted (it depends on the calibration lamp).

In principle, using only the geometry of the rings (centre and radius), one might be able to derive both θ and ne which is sufficient to derive the phase map. The model fitting might just improve the accuracy on these parameters.

1.1.2 Model to fit several interferograms with a single line

In that case, let's consider that we have l interferograms corresponding to some known channels i not necessarily consecutive. The same model has to be used than in the case with only one interferogram and one line (cf. equation 1), however, for each interferogram the spacing changes. Therefore the parameters that need to be fitted remain the same than in the case with only one line (cf. section 1.1.1) but there are several spacings to adjust ne_i (for each channel). In fact one may fit ne (e being the spacing for a reference channel) and δe :

$$ne_i = n(e + i\delta e)$$

Such a configuration enables to determine the parameter δe from which will be deduced $\delta \lambda_s$.

Model to fit a single interferogram with several lines

In that case, let's consider we observe m lines with known wavelengths λ_{cj} , the model might be:

$$I = C + \sum_{j=1}^{m} I_j \frac{1}{1 + \frac{4F^2}{\pi^2} \sin^2(\phi_j/2)}$$
 (5)

where $\phi_j = 2\pi \frac{2ne\cos\theta}{\lambda_{cj}}$. The parameters that need to be fitted remain the same than in the case with only one line but there are several intensities to adjust I_i .

Such a configuration may help in determining the parameter b in the case only one order for each line is observed.

Model to fit several interferograms with several lines: general case 1.1.4

This case is the general case. We have l interferograms corresponding to some known channels inot necessarily consecutive with m lines with known wavelengths λ_{cj} . It is a combination of the previous cases (cf. sections 1.1.2 and 1.1.3). The same model has to be used than in the case with only one interferogram and several line (cf. equation 5), however, for each interferogram the spacing changes. Therefore the parameters that need to be fitted remain the same than in the case with only one line (cf. section 1.1.1) but there are several intensities (I_i) and several spacings to adjust ne_i . In fact one may fit ne and δe :

$$ne_i = n(e + i\delta e)$$

1.2 Wavelength map

Once the Airy function parameters are determined, the wavelength can be determined anywhere in the field for any order p and in particular for the scanning order p_s :

$$\lambda = \frac{2ne}{p_s} \cos \theta \tag{6}$$

Therefore the scanning order p_s has first to be estimated:

$$p_s = \text{round}\left(\frac{\lambda_c p_c}{\lambda_s}\right) \tag{7}$$

where λ_s is the scanning wavelength.

1.3 Phase map

To compute the phase map from the previously determined wavelength map (i.e. $\lambda = f(r)$), the wavelength variation $\delta \lambda_s$ in the centre between two consecutive channels has to be known at order p_s . The phase map is therefore:

$$\frac{\lambda - \lambda_s}{\delta \lambda_s} \tag{8}$$

If one wants to have λ_s in a given channel after calibration, an offset has to be applied. It depends on the interferogram used as calibration. If no offset is applied, λ_s will be the wavelength of the channel corresponding to the calibration inteferogram after calibration.

In practice $\delta \lambda_s$ can be determined from the physical spacing difference δe between two consecutive channels.

1.4 Determination of the wavelength variation between consecutive channels

In practice, δe is either known (from a instrument control point of view) or determined using several (at least two) calibration interferograms (cf. sections 1.1.2 and 1.1.4).

There are two cases:

• The spacing for any channel i is the same for the calibration and the observation. In that case, the spacing variation between consecutive channels for the observations δe_s is the same as the one for the calibration δe_c :

$$\delta e_s = \delta e_c = \delta e \tag{9}$$

• The spacing for the observation is adjusted with respect to the spacing for the calibration to ensure the scan of the full spectral range both for observation and calibration. In that case, the spacing variation between consecutive channels for the observations δe_s is different from the one for the calibration δe_c :

$$\delta e_s = \frac{\lambda_s \delta e_c}{\lambda_c} = \frac{\lambda_s \delta e}{\lambda_c} \tag{10}$$

The wavelength variation is then deduced following:

$$\delta\lambda_s = \frac{2n\delta e_s}{p_s} \tag{11}$$