• Grupo formado por la Vía Láctea y unas 30 galaxias

b Grupo formado por la Vía Láctea y otras 14 gala-

C Grupo de galaxias cuyos tamaños típicos son de 2

d Grupo formado por cúmulos de galaxias.

xias gigantes que integra una estructura en forma

más.

de anillo.

a 3 Mpc.

Soluciones propuestas

2° de Secundaria Unidad 3

Preparación para el Examen de la Unidad 3

Nombre del alumno:			Fec	ha:				
Aprendizajes:	Puntuación:							
Describe la generación, diversidad y comportamiento de la		Pregunta	1	2	3	4	5	6
tromagnéticas como resultado de la interacción entre magnetismo.	electricidad y	Puntos	10	10	10	10	10	10
Describe cómo se lleva a cabo la exploración de los cu	Obtenidos							
por medio de la detección de las ondas electromagnética	-	Pregunta	7	8	9	10		Total
Describe algunos avances en las características y compos	sición del Uni-	Puntos	10	10	10	10		100
verso (estrellas, galaxias y otros sistemas).		Obtenidos						
Describe las características y dinámica del Sistema Solar.								
☑ Identifica algunos aspectos sobre la evolución del Universo.								
Frecuencia y longitud de onda		Energía	de	un fo	otón			
La frecuencia f de una onda electromagnética es:	La energía	E asociada a	a dicl	ha or	ıda e	s:		
$f = \frac{\nu}{\lambda}$ y $\lambda = \frac{\nu}{f}$ (1)		E	= h	$\times f$				(2)
donde ν es la velocidad de propagación de la onda ($\nu=3\times10^8~{\rm m/s})$ y λ la longitud de onda.	donde h se conoce como constante de Planck ($h = 6.626 \times 10^{-34}$ Js).		(h =					
Ejercicio 1				_	(de 10) pur	ntos
Relaciona cada grupo de galaxias con su descripción.								

☐ Supercúmulo

☐ Grupo local

☐ Concilio de Gigantes

☐ Cúmulos de galaxias

Ejercicio 2 de 10 puntos

Elige la respuesta correcta.

• La relación de proporcionalidad entre la velocidad con la que se alejan las galaxias y la distancia a la que se encuentran.

- (A) Ley de Hook
- (B) Ley de Faraday
- (C) Ley de Hubble
- D Ley de Moore

- b Indica que el Universo se expande.
 - (A) El corrimiento al azul de la luz que emiten las galaxias.
 - (B) El corrimiento al rojo de la luz que emiten las galaxias.
 - O Todas las galaxias se alejan de la Vía Láctea
 - (D) La Teoría de la Relatividad General

Ejemplo 1

Completa el Cuadro 1 escribiendo los datos que faltan en notación científica.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Microondas	2×10^{-2}	1.5×10^{10}	9.939×10^{-24}
Rayos X	3×10^{-10}	1×10^{18}	6.626×10^{-16}
Radiación infraroja	6×10^{-6}	13.3 $\times 10^{13}$	8.83 $\times 10^{-20}$

Tabla 1: Comparación entre algunos tipos de ondas electromagnéticas.

Solución:

Microondas:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{2 \times 10^{-2}} = 1.5 \times 10^{10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1.5 \times 10^{10} = 9.939 \times 10^{-24}$$

Rayos X:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{18}} = 3 \times 10^{-10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{18} = 6.626 \times 10^{-16}$$

Radiación infrarroja:

$$f = \frac{\nu}{\lambda} = \frac{3\times10^8}{6\times10^{-6}} = 13.3\times10^{13} \qquad E = h\times f = 6.626\times10^{-34}\times13.3\times10^{13} = 8.83\times10^{-20}$$

Ejercicio 3 de 10 puntos

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	a Longitud de onda (m) Frecuencia (1		Energía (J)		
Rayos gamma	1.2×10^{-11}	2.5×10^{19}	1.6565×10^{-14}		
Luz visible	3×10^{-7}	1×10^{15}	6.262×10^{-19}		
Ondas de radio	1.5×10^5	2×10^3	1.3252×10^{-31}		

Solución:

Rayos gamma:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{1.2 \times 10^{-11}} = 2.5 \times 10^{19} \text{ 1/s} \qquad E = h \times f = 6.626 \times 10^{-34} \times 2.5 \times 10^{19} = 1.6565 \times 10^{-14} \text{ J}$$

Luz visible:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{15}} = 3 \times 10^{-7} \text{ m} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{15} = 6.262 \times 10^{-19} \text{ J}$$

Ondas de radio:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{2 \times 10^3} = 1.5 \times 10^5 \text{ m} \qquad E = h \times f = 6.626 \times 10^{-34} \times 2 \times 10^3 = 1.3252 \times 10^{-31} \text{ J}$$

Ejercicio 4 de 10 puntos

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Microondas	1×10^{-2}	3×10^{10}	1.98×10^{-23}
Rayos X	2×10^{-10}	1.5×10^{18}	9.939×10^{-16}
Radiación infraroja	8.33×10^{-6}	3.6 $\times 10^{13}$	2.3×10^{-20}

Tabla 2: Comparación entre algunos tipos de ondas electromagnéticas.

Solución:

Microondas:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{1 \times 10^{-2}} = 3 \times 10^{10}$$
 $E = h \times f = 6.626 \times 10^{-34} \times 3 \times 10^{10} = 1.98 \times 10^{-23}$

Rayos X:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1.5 \times 10^{18}} = 2 \times 10^{-10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1.5 \times 10^{18} = 9.939 \times 10^{-16}$$

Radiación infrarroja:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{8.33 \times 10^{-6}} = 3.6 \times 10^{13} \qquad E = h \times f = 6.626 \times 10^{-34} \times 3.6 \times 10^{13} = 2.3 \times 10^{-20}$$

Ejercicio 5	de 10 puntos					
Elige la respuesta correcta. Células receptoras de luz capaces de percibir colores, pero para que funcionen es necesario que haya suficiente luz.						
A Bastones						
B Esferas						
© Conos						
D Rizos						
b Perturbación eléctrica que se genera cuando una neurona recibe un estímulo.						
A Impulso eléctrico						
B Impulso nervioso						
© Impulso magnético						
① Impulso atómico						
C Pulso eléctrico que se propaga a través de la neurona.						
A Potencial de acción						
B Potencial eléctrico						
© Potencial magnético						
D Energía potencial						
Ejercicio 6	de 10 puntos					
Relaciona cada enunciado con su respuesta.						
□ Es un indicador de su distancia si se conoce cuán luminosa es una estrella.	Radiotelescopios					
$f b$ Nos indica la temperatura de una estrella. \qed	El brillo					
c Telescopios que permiten observar las ondas de radio emitidas por algunos cuerpos celestes. □	Electromagnética					
d Radiación que emiten algunos cuerpos celestes que nos permite obtener nueva afirmación acerca de ellos. □	El color					

Ejercicio 7

de 10 puntos

El parsec (pc) puede definirse a partir del año luz como: 1 pc = 3.26 años luz. Si la distancia d que recorre la luz es igual a la velocidad v de la luz por el tiempo t que tarda en recorrerla, entonces:

$$d = vt$$

Q ¿A cuántos metros equivale un parsec?

Considera que un año tiene 365 días y que la velocidad de la luz es 3×10^8 m/s.

Solución:

Usando la fórmula d=vt, donde d es la distancia, v es la velocidad y t es el tiempo, la distancia d que hay en un año luz es:

$$\begin{split} d &= vt \\ &= \left(3 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}\right) \left(1 \text{ año}\right) \\ &= \left(3 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}\right) \left(1 \text{ año}\right) \cdot \left(\frac{365 \text{ drá}}{1 \text{ año}}\right) \cdot \left(\frac{24 \text{ hora}}{1 \text{ drá}}\right) \cdot \left(\frac{60 \text{ parin}}{1 \text{ hora}}\right) \cdot \left(\frac{60 \text{ s}}{1 \text{ parin}}\right) \\ &= 9.46 \times 10^{15} \text{ m} \end{split}$$

Si 1 año luz equivale a 9.46×10^{15} m, entonces 1pc=3.26 años luz $\cdot9.46\times10^{15}$ m = 3.08×10^{16} m

b La galaxia M31 está a 650 kpc de la Vía Láctea y se acerca a ella a una velocidad de unos 350 km/s. Si la fórmula de cinemática para el tiempo es:

$$t = \frac{d}{v}$$

¿En cuánto tiempo "chocará" con ella?

Considea como el kiloparsec, 1 kpc = 10^3 pc, y el megaparsec, 1 Mpc = 10^6 pc.

Solución:

Sabemos que 1 pc = 3.08×10^{13} km, entonces

650 kpc =
$$650 \times 10^3$$
 pc
= $650 \times 10^3 \times 3.08 \times 10^{13}$ km
= 2.002×10^{19} km

Usando la fórmula $t = \frac{d}{v}$, el tiempo t en segundos es:

$$t = \frac{2.002 \times 10^{19} \text{ km}}{350 \text{ km/s}}$$

= $5.72 \times 10^{16} \text{ s}$
= $1,812.5 \text{ millones de años}$

Ejercicio 8 de 10 puntos

Señala si son verdaderas o falsas las siguientes afirmaciones.

- Cuando se viaja de norte a sur, o viceversa, la altura aparente de las estrellas cambia.
 - (A) Verdadero
 - (B) Falso
- **b** La sombra que la Tierra proyecta sobre la Luna en los eclipses lunares es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
 - (B) Falso
- c La Tierra no rota sobre su propio eje porque nosotros no percibimos que nos estamos moviendo.
 - (A) Verdadero
 - (B) Falso
- d En un eclipse solar se observa que la Luna pasa delante del Sol y que ambos tienen un tamaño en apariencia iguales. De ello se concluye que el Sol está a la misma distancia que la Luna.
 - (A) Verdadero
 - (B) Falso
- e El hecho de que en el mar primero desaparece el casco y luego la vela de un navío es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
 - (B) Falso

Ejercicio 9 de 10 puntos

Elige la respuesta correcta a cada inciso.

- a Longitud del diámetro del Universo.
 - A Un millón de años luz.
 - (B) Cien mil millones de años luz.
 - C Un billón de años luz.
 - D Mil millones de años luz.
- b Porcentaje de energía oscura que hay en el Universo.
 - (A) 4.9 %
 - (B) 26.8 %
 - © 33.3 %
 - \bigcirc 68.3 %
- c Porcentaje de materia oscura que hay en el Universo.
 - (A) 4.9 %
 - \bigcirc 26.8 %
 - (C) 33.3 %
 - (D) 68.3 %
- d Porcentaje de materia ordinaria que hay en el Universo.
 - (A) 4.9 %
 - (B) 26.8 %
 - (C) 33.3 %
 - (D) 68.3 %
- e Antigüedad estimada del Universo.
 - (A) 14,800 millones de años
 - (B) 10,800 millones de años
 - © 15,800 millones de años
 - (D) 13,800 millones de años

Ejercicio 10 de 10 puntos

Elige la respuesta correcta.

- Instrumento gracias al cual es posible observar cuerpos celestes muy lejanos.
 - (A) Microscopio
 - (B) Estetoscopio
 - Telescopio
 - (D) Electroscopio
- b Variación aparente de la posición de un objeto al cambiar la posición del observador.
 - (A) Eclipse
 - (B) Declinación
 - C Transformación
 - (D) Paralaje
- C Aparato que sirve para medir ángulos muy pequeños que ayudó a medir la distancia a la cual se encuentran algunos objetos celestes.
 - (A) Vernier
 - (B) Micrómetro
 - Astrolabio
 - (D) Transportador
- Técnica gracias a la cual se puede comparar el cambio en la posición de una estrella al transcurrir cierto período de tiempo.
 - (A) Radiografía
 - (B) Radiometría
 - (C) Fotografía
 - (D) Espectroscopía