Multilevel models

Mark Andrews

November 14, 2018

```
library(lme4)
library(lmerTest)
library(ggplot2)
library(readr)
library(dplyr)
library(tidyr)
```

Let's consider the following data:

If we label our the reaction time, subject, and day on observation i by y_i , $s_i \in \{1, 2 \dots J\}$, and x_i , respectively, a random intercepts model of this data would be

$$y_i \sim N(a_{s_i} + bx_i, \sigma^2), \quad \text{for all } i \in 1, 2 \dots n$$

 $a_j \sim N(\alpha, \tau^2), \quad \text{for all } j \in 1, 2 \dots J$

A random slopes model of this data would be

$$y_i \sim N(a + b_{s_i} x_i, \sigma^2), \text{ for all } i \in 1, 2 \dots n$$

 $b_j \sim N(\beta, \tau_\beta^2), \text{ for all } j \in 1, 2 \dots J$

A random slopes and random intercepts model would be

$$y_i \sim N(a_{s_i} + b_{s_i} x_i, \sigma^2), \quad \text{for all } i \in 1, 2 \dots n$$

 $a_j \sim N(\alpha, \tau_{\alpha}^2), \quad \text{for all } j \in 1, 2 \dots J$
 $b_j \sim N(\beta, \tau_{\beta}^2), \quad \text{for all } j \in 1, 2 \dots J$

These models can be re-written using different, but equivalent, notation. For example, the random slopes, random intercepts models is equivalent to the following:

$$\begin{aligned} y_i &= \alpha + \beta x_i + \nu_{s_i} + \psi_{s_i} x_i + \epsilon_i, & \text{for all } i \in 1, 2 \dots n \\ \nu_j &\sim N(0, \tau_\alpha^2), & \text{for all } j \in 1, 2 \dots J \\ \psi_j &\sim N(0, \tau_\beta^2), & \text{for all } j \in 1, 2 \dots J. \end{aligned}$$

In this, $\nu_j = a_j - \alpha$ and $\psi_j = b_j - \beta$.

Nested models

Sometimes we have groups nested in other groups

```
Df <- read_csv('../data/science.csv')</pre>
```

```
In Df, we have class, with values {1,2,3,4}, nested in school, with values {1,2...41}. For example,
group_by(Df, school, class) %>%
summarise(n = n()) %>%
spread(class,n, fill=0)
```

```
## # A tibble: 41 x 5
## # Groups:
              school [41]
##
              `1`
                    `2`
                          `3`
                                `4`
     school
##
       <int> <dbl> <dbl> <dbl> <dbl>
##
          1
   1
               14
                     13
                           14
##
   2
          2
               26
  3
          3
               27
                     22
##
##
  4
              27
          5
              13
  5
                     0
##
##
   6
          6
               23
                     20
                            0
         7
               17
                    0
                            0
  7
                                  0
##
##
```

```
## 9 9 25 0 0 0
## 10 10 14 0 0 0
## # ... with 31 more rows
```

To model this nesting, we'd do the following:

which is identical to

However, if we use unique identifiers for class, i.e. Class, which takes values 1.1, 1.2, etc., then we can simply do

Crossed structures

When grouping variables are not nested, they are *crossed*. For example, in a biochemistry experiment, we could have six different samples of penicillian and 24 different plates. If each sample occurs in each plate, then we have a *fully crossed* structure. But fully crossed structures are not necessary.

Model comparison

We proceed just like in the case of generalized linear models.

```
M_null <- lmer(diameter ~ 1 + (1|sample),</pre>
               data=Penicillin)
anova(M_null, M)
## refitting model(s) with ML (instead of REML)
## Data: Penicillin
## Models:
## M_null: diameter ~ 1 + (1 | sample)
## M: diameter ~ 1 + (1 | plate) + (1 | sample)
                      BIC logLik deviance Chisq Chi Df Pr(>Chisq)
##
          Df
                AIC
## M null 3 443.19 452.10 -218.59
                                     437.19
           4 340.19 352.07 -166.09
## M
                                     332.19
                                                       1 < 2.2e-16 ***
                                              105
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```