관리번호	2019(추가)-SW·AI-4	(병렬형/통합형/총괄)
총괄과제명	조립 설명서를 보고 스스	로 물품을 조립하는 로봇을 위한 AI 기술 개발
세부과제명	(세부1) 조립 설명서를 ! 기술 개발	보고 스스로 물품을 조립하는 로봇을 위한 AI
1. 개념		

- o 사람이 직접 가르쳐 주지 않은 물품 조립 작업에 대해, 로봇이 사람을 위한 조립 설명서^{*}를 보고 스스로 작업 과정 및 내용을 이해하여 조립 작업을 수행하는 로봇을 위한 AI 기술 개발
 - * 조립식 가구 등을 위해 2D 드로잉(isometric view 또는 원근투영)과 간단한 텍스트로 표현된 조립 방법 설명서
- o 위 작업을 얼마나 신속하고 정확하게 해결하는지 경연하는 챌린지형 R&D 수행

2. 연구목표

- o 최종목표 : 조립 설명서를 보고 스스로 물품을 조립하는 로봇을 위한 AI 기술 개발
 - 물품 조립 AI 로봇 챌린지 세부계획 수립 및 총괄 운영
 - 물품 조립 AI 로봇 기술개발 우수성 검증방법 및 검증미션 수립

3. 연구내용

- ㅇ 기술개발 우수성 검증 방법 및 검증 미션 수립
 - 기술 우수성 검증 방법을 포함하는 예비타당성 검증 경합과제 수립
 - * 달성 가능성을 고려한 도전적 제한 조건 및 경합 미션 수립
 - * 조립 작업 설명서를 이해하고 작업계획을 생성하는 로봇 AI 기술 우수성 검증 방법 및 미션 수립
 - 챌린지 난이도 보정 및 최종 기술경연 경합과제 수립
 - * 예비타당성 검증 결과에 따른 문제 난이도 조정
 - * 경합 미션 달성 난이도 수준 및 해결 소요시간에 따른 기술개발 우수성 검증
- o 물품 조립 AI 로봇 챌린지 세부계획 수립 및 총괄 운영
 - 세부 제한조건 수립
 - * 작업수행 로봇 규격, 조립 설명서 규격, 조립부품 규격, 도구 사용 조건
 - * 경연장 규격 및 미션 설정, 경연 규정 수립
 - 챌린지 환경 구축
 - * 경합용 조립품의 부품 세트 및 3D 모델, 조립 설명서 준비
 - * 원활한 경합 진행을 위해 조명, 작업 선반 등의 환경 구축
- ㅇ 룰 미팅 운영
 - 챌린지 과제 참가팀들과 협의하여 상세 룰 마련 및 조율

4. 지원기간/예산/추진체계

o 기간 : 2년 이내 o 정부출연금 : '19년 1억원 이내(총 정부출연금 3억원 이내)

o 주관기관 : 제한없음

• 특이사항 : 동 과제는 공개SW 과제로서 개발된 SW코드의 공개 외에도 개발 과정에서 생성된 연구용 데이터는 공개하여 타 연구기관·기업의 연구에 활용 지원토록 권고

※ '18년 11월 26일 인터넷 공시될 로봇산업핵심기술개발(산업부) '조립 설명서를 보고 스스로 물품을 조립하는 지능 로봇 기술 개발'과제의 총괄과제와 연계되는 과제로서, 해당 과제와 통합하여 주관 기관과 참여기관을 구성하여 사업계획서를 제출해야함.

연구유형	기초연구 (), 응용연구 (O), 개발연구 () TRL (4) ~ (6)		
과제특징	정책지정(), 혁신도약형(), 경쟁형(), 표준화연계() SW자산뱅크등록(), 공개SW(O), 기술료비징수(O), 일자리 연계()		

관리번호	2019(추가)-SW·AI-5	(병렬형/통합형/세부)
총괄과제명	조립 설명서를 보고 스스	스로 물품을 조립하는 로봇을 위한 AI 기술 개발
세부과제명	(세부2) 사람을 위한 조	립 설명서를 이해하고 조립 작업 계획을 생성
	하는 AI 기술 개발	
1. 개념		

- 사람을 위한 조립 설명서^{*}를 시각적으로 이해하고 조립 작업 계획을 생성하여 로봇의 작업을 가이드 할 수 있는 AI 기술 개발
 - * 조립식 가구 등을 위해 2D 드로잉(isometric view 또는 원근투영)과 간단한 텍스트로 표현된 조립방법 설명서
- 조립 설명서를 이미지 형태로 입력받아 조립에 필요한 부품, 부품들 사이의 공간적 연결 관계, 조립 과정 및 내용을 이해
- 추론된 작업내용을 바탕으로 부품들 사이의 조립 상관관계 등을 고려하여 로봇이 수행 가능한 작업 가이드(조립 순서, 조립 위치 및 방법) 생성
- o 기술 경연 AI 로봇 챌린지 참여를 통한 개발 기술의 검증
- 산업부 로봇 과제('조립 설명서를 보고 스스로 물품을 조립하는 지능 로봇 기술 개발'의 병렬형 1세부과제)와 팀을 이루어 챌린지 공동미션 수행

2 필요성

- (정부 지원 필요성) 인공지능을 이용하여 로봇의 작업 능력을 획기적으로 개선할 수 있는 로봇 AI 기술로서 파급효과가 크나 고위험·도전형 연구로서 민간이 수행하기 에는 실패 위험 부담이 높으므로 정부 차원의 지원을 통해 관련 기술 저변 확대 필요
- (기술성) 사람이 이해 가능한 수준의 그림과 텍스트로 구성된 작업 설명서를 스스로 이해하여 작업 계획을 생성하는 AI 지능은 비정형 멀티(시각, 언어) 모달 정보를 함께 이해하는 난이도가 매우 높은 차세대 원천기술임
- (경제성) 비정형 멀티 모달 이해 지능은 아직까지 자동화가 미진한 영역의 로봇에 적용되어 다양한 공정 및 서비스의 자동화를 가능케 하는 원천기술 확보로써 로봇 적용 확대를 통한 국내 산업 경쟁력의 획기적 향상이 가능

3. 연구목표

- o 최종목표 : 사람을 위한 조립 설명서를 시각적으로 이해하고 로봇이 이행 가능한 조립 작업 계획을 생성하는 AI 기술 개발
 - 조립 작업 구성요소 인식 및 조립 상관관계 추론하는 지능 개발
 - 로봇의 이행을 가이드 할 수 있는 작업 계획 생성

ㅇ 개발목표

- 시나리오 기반 시연을 통해 개발 결과물의 우수성을 검증 하며, 시연의 상세 내용은 연구 수행 과정에서 수립 함
 - ※ 선정평가를 통해 선발된 각 컨소시엄은 협의(룰(rule) 미팅 등)를 통해 2차년도 시나리오 기반 시연의 상세내용을 수립 (1차년도 이내)

- 로봇 플랫폼은 본 과제와 연계되어 있는 산업부 과제의 결과물을 활용 함

구분	연도별 대상 시나리오		
2020년	물품 조립 계획 생성	- 조립용 가구의 부품과 조립 설명서를 이해하여 로봇 이 물품을 조립할 수 있는 조립 계획 생성	
(2차년도)	생성된 조립 계획 시각화	- 생성된 조립계획의 유효성 확인을 위하여 단계별로 시각화	

4. 연구내용

ㅇ 개발 기술 내용

- ① 사람을 위한 조립 설명서를 시각적으로 이해하여 로봇이 조립할 수 있도록 가이드 할 수 있는 작업계획 생성
- 조립 설명서 구성요소 인식 및 객체모델의 공간적 상호 연결관계 추론
- 조립 상관관계 추론 및 작업계획(조립 순서, 조립 위치 및 방법) 생성
- 생성된 작업계획의 3D 시뮬레이션 검증(로봇 자유도 및 물성은 고려하지 않은 비제약 공간이동/체결 시뮬레이션)
- ② 챌린지 참가를 위한 협업 연계 기술 개발
- 객체모델 표현 정의¹⁾ (CAD 데이터 등 3D 형상정보는 기 구축 정보 활용 가능)
- 작업계획의 표현 모델 정의²⁾
- 생성된 작업계획의 단계별 그래픽 시각화 (작업계획의 유효성 확인 및 검증)
- 1), 2) 산업부 로봇 과제와 연계 또는 공동개발

o 기존 (보유)기술

- 이미지 및 동영상에서 객체 및 문자 인식 기술
- 이미지 및 동영상에서 내용 및 관계 이해 기술
- 3D 모델의 2D 이미지 매칭 및 3D 자세 추정 기술

5. 지원기간/예산/추진체계

- o 기간 : 2년 이내 o 정부출연금 : '19년 14억원³⁾ 이내(총 정부출연금 32억원 이내) 3) 과제당 3.5억원 이내 총 4개 과제 지원
- o 주관기관 : 제한없음
- 특이사항 : 동 과제는 공개SW 과제로서 개발된 SW코드의 공개 외에도 개발 과정에서 생성된 연구용 데이터는 공개하여 타 연구기관·기업의 연구에 활용 지원토록 권고
- ※ '18년 11월 26일 인터넷 공시될 로봇산업핵심기술개발(산업부) '조립 설명서를 보고 스스로 물품을 조립하는 지능 로봇 기술 개발'과제의 병렬형 1세부과제와 연계되는 과제로서, 해당 과제와 통합하여 주관기관과 참여기관을 구성하여 사업계획서를 제출해야함.

연구유형	기초연구 (), 응용연구 (O), 개발연구 () TRL (4) ~ (6)	
과제특징	정책지정(), 혁신도약형(), 경쟁형(), 표준화연계() SW자산뱅크등록(), 공개SW(O), 기술료비징수(O), 일자리 연계(