Real-time Scheduling

Main Results on Periodic Task Scheduling

Homework

Earliest Deadline First (EDF) Optimality Result

- EDF is the optimal dynamic priority scheduling policy
 - It can meet all deadlines whenever the processor utilization is less than 100%
 - Intuition:
 - You have HW1 due tomorrow and HW2 due the day after, which one do you do first?
 - If you started with HW2 and met both deadlines you could have started with HW1 (in EDF order) and still met both deadlines
 - EDF can meet deadlines whenever anyone else can

Earliest Deadline First (EDF) Optimality Result

- EDF is the optimal dynamic priority scheduling policy
 - It can meet all deadlines whenever the processor utilization is less than 100%
 - Intuition:
 - You have HW1 due tomorrow and HW2 due the day after, which one do you do first?
 - If you started with HW2 and met both deadlines you could have started with HW1 (in EDF order) and still met both deadlines
 - EDF can meet deadlines whenever anyone else can

Non-EDF Ok → EDF OK!		Deadline HW1	Deadline HW2
HW1	HW2		

When can EDF Meet Deadlines?

Consider a task set where:

$$\sum_{i} \frac{C_{i}}{P_{i}} = 1$$

■ Imagine a policy that reserves for each task i a fraction f_i of each clock tick, where $f_i = C_i$ $/P_i$

Utilization Bound of EDF

Imagine a policy that reserves for each task i a fraction f_i of each time unit, where $f_i = C_i/P_i$

- This policy meets all deadlines, because within each period P_i it reserves for task i a total time
 - Time = $f_i P_i = (C_i/P_i) P_i = C_i$ (i.e., enough to finish)

 Pick any two execution chunks that are not in EDF order and swap them

Utilization Bound of EDF

 Pick any two execution chunks that are not in EDF order and swap them

Still meets deadlines!

Utilization Bound of EDF

 Pick any two execution chunks that are not in EDF order and swap them

- Still meets deadlines!
- Repeat swap until all in EDF order
 - → EDF meets deadlines

Rate Monotonic Scheduling

Rate monotonic scheduling is the optimal fixed-priority scheduling policy for periodic tasks (with period = deadline).

The Worst-Case Scenario

 Consider the worst case where all tasks arrive at the same time.

If any fixed priority scheduling policy can meet deadline, rate monotonic can!

Optimality of Rate Monotonic

 If any other policy can meet deadlines so can RM

Policy X meets deadlines?

Optimality of Rate Monotonic

 If any other policy can meet deadlines so can RM

4

Utilization Bounds

- Intuitively:
 - The lower the processor utilization, U, the easier it is to meet deadlines.
 - The higher the processor utilization, U, the more difficult it is to meet deadlines.
- Question: is there a threshold U_{bound} such that
 - When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines are missed

Example (Rate-Monotonic Scheduling)

- When $U > U_{bound}$ deadlines are missed

Example (Rate-Monotonic Scheduling)

- - When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines are missed

Example (Rate-Monotonic Scheduling)

- When $U < U_{bound}$ deadlines are met
- When $U > U_{bound}$ deadlines are missed

Another Example (Rate-Monotonic Scheduling)

When $U > U_{bound}$ deadlines are missed

Another Example (Rate-Monotonic Scheduling)

When $U > U_{bound}$ deadlines are missed

Another Example (Rate-Monotonic Scheduling)

When $U > U_{bound}$ deadlines are missed

Another Example (Rate-Monotonic Scheduling)

- When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines are missed

A Conceptual View of Schedulability

Task Set

- Question: is there a threshold U_{bound} such that
 - When $U < U_{pound}$ deadlines are met
 - When $U > U_{bound}$ deadlines are missed

A Conceptual View of Schedulability

Task Set

- Modified Question: is there a threshold U_{bound} such that
 - When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines may or may not be missed

A Conceptual View of Schedulability

Task Set

- Modified Question: is there a threshold U_{bound} such that
 - When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines may or may not be missed

A Conceptual View of Schedulability

- Modified Question: is there a threshold U_{bound} such that
 - When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines may or may not be missed

A Conceptual View of Schedulability

- Modified Question: is there a threshold U_{bound} such that
 - When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines may or may not be missed

1

The Schedulability Condition

For n independent periodic tasks with periods equal to deadlines, the utilization bound is:

$$U = n\left(2^{\frac{1}{n}} - 1\right)$$

$$n \to \infty$$
 $U \to \ln 2$

Done Today


```
Find some task set parameter x such that Case (a): x < x_o \rightarrow U(x) decreases with x Case (b): x > x_o \rightarrow U(x) increases with x Thus U(x) is minimum when x = x_o Find U(x_o)
```



```
Find some task set parameter x such that Case (a): x < x_o \rightarrow U(x) decreases with x Case (b): x > x_o \rightarrow U(x) increases with x Thus U(x) is minimum when x = x_o Find U(x_o)
```



```
Find some task set parameter x such that Case (a): x < x_o \rightarrow U(x) decreases with x Case (b): x > x_o \rightarrow U(x) increases with x Thus U(x) is minimum when x = x_o Find U(x_o)
```

Consider a simple case: 2 tasks

Find some task set parameter *x* such that

Case (a): $x < x_o \rightarrow U(x)$ decreases with x

Case (b): $x>x_0 \rightarrow U(x)$ increases with x

Thus U(x) is minimum when $x=x_o$ Find $U(x_o)$


```
Find some task set parameter x such that Case (a): x < x_o \rightarrow U(x) decreases with x Case (b): x > x_o \rightarrow U(x) increases with x Thus U(x) is minimum when x = x_o Find U(x_o)
```



```
Find some task set parameter x such that Case (a): x < x_o \rightarrow U(x) decreases with x Case (b): x > x_o \rightarrow U(x) increases with x Thus U(x) is minimum when x = x_o Find U(x_o)
```

Consider these two sub-cases:

Find some task set parameter *x* such that

Case (a): $x < x_o \rightarrow U(x)$ decreases with x Case (b): $x > x_o \rightarrow U(x)$ increases with x

Thus U(x) is minimum when $x=x_o$ Find $U(x_o)$

Consider these two sub-cases:

Consider these two sub-cases:

Consider these two sub-cases:

The minimum utilization case:

$$C_1 = P_2 - \left\lfloor \frac{P_2}{P_1} \right\rfloor P_1$$
 Task 1
$$C_1$$
 Task 2
$$P_2$$

$$U = 1 + \frac{C_1}{P_2} \left[\frac{P_2}{P_1} - \left\lfloor \frac{P_2}{P_1} \right\rfloor - 1 \right]$$

The minimum utilization case:

Generalizing to N Tasks

$$C_{1} = P_{2} - P_{1}$$

$$C_{2} = P_{3} - P_{2}$$

$$C_{3} = P_{4} - P_{3}$$

$$U = \frac{C_{1}}{P_{1}} + \frac{C_{2}}{P_{2}} + \frac{C_{3}}{P_{3}} + \dots$$

$$U = \frac{C_1}{P_1} + \frac{C_2}{P_2} + \frac{C_3}{P_3} + \dots$$

Generalizing to N Tasks

$$C_{1} = P_{2} - P_{1}$$

$$C_{2} = P_{3} - P_{2}$$

$$C_{3} = P_{3} - P_{2}$$

$$U = \frac{C_{1}}{P_{1}} + \frac{C_{2}}{P_{2}} + \frac{C_{3}}{P_{3}} + \dots$$

$$U = \frac{C_1}{P_1} + \frac{C_2}{P_2} + \frac{C_3}{P_3} + \dots$$

$$\frac{dU}{d\left(\frac{P_2}{P_1}\right)} = 0$$

$$\frac{dU}{d\binom{P_3}{P_2}} = 0$$

$$\frac{dU}{d\begin{pmatrix} P_2/P_1 \end{pmatrix}} = 0 \qquad \frac{dU}{d\begin{pmatrix} P_3/P_2 \end{pmatrix}} = 0 \qquad \frac{dU}{d\begin{pmatrix} P_4/P_3 \end{pmatrix}} = 0$$

4

Generalizing to N Tasks

$$C_{1} = P_{2} - P_{1}$$

$$C_{2} = P_{3} - P_{2}$$

$$C_{3} = P_{3} - P_{2}$$

$$\vdots$$

$$\frac{dU}{d(\frac{P_{2}}{P_{1}})} = 0$$

$$\Rightarrow \frac{P_{i+1}}{P_{i}} = 2^{\frac{1}{n}}$$

$$D = \frac{C_{1}}{P_{1}} + \frac{C_{2}}{P_{2}} + \frac{C_{3}}{P_{3}} + \dots$$

$$\frac{dU}{d(\frac{P_{3}}{P_{2}})} = 0$$

$$\frac{dU}{d(\frac{P_{4}}{P_{3}})} = 0$$

$$\Rightarrow U = n(2^{\frac{1}{n}} - 1)$$

$$\vdots$$

Done Today

