Exercice 01:

Situations	Réflexes
Combien d'éléments chimiques stables a-t-on identifié sur Terre ?	Environ 118 éléments.
Quels sont les deux principaux éléments chimiques dans l'univers?	L'hydrogène et l'helium
Quels sont les principaux éléments chimiques sur Terre?	L'oxygène, l'hydrogène, le fer, le silicium et le magnésium
Quels sont les principaux éléments chimiques qui forment les êtres vivants?	Le carbone, l'hydrogène, l'oxygène et l'azote.
Que se passe-t-il au cours d'une fusion nucléaire?	Deux éléments légers réagissent pour en former un seul plus lourd.
Que se passe-t-il au cours d'une fission nucléaire?	Un élément chimique se désintègre pour former plusieurs éléments chimiques plus légers.
Qu'est-ce que la radioactivité?	C'est le phénomène à l'origine de la transformation spon- tanée de noyaux atomiques instables en d'autres noyaux en émettant des particules et de l'énergie.
Qu'est-ce que la demi-vie d'un noyau radioactif?	C'est la durée nécessaire à la désintégration de la moitié des noyaux radioactifs d'un échantillon.

Questions à choix multiples

A-1; B-3; C-1-2-3; D-2; E-3; F-1.

Un isotope de l'iode pour étudier la thyroïde

1. La demi-vie $t_{1/2}$ est la durée nécessaire pour que la moitié des noyaux initialement présents se soient désintégrés. À $t_{1/2}$, on a $N(t_{1/2}) = \frac{N_0}{2}$.

Utilisation d'un isotope du thorium

- 2. 57 jours correspondent à $3t_{1/2}$. Il reste : $\frac{N_0}{2^3} = \frac{N_0}{8}$ donc la masse restante est : $\frac{m}{8} = \frac{1,0}{8}$ soit 0,125 µg.
- 3. Il restera 6,25 % soit 0,0625 soit $\frac{1}{16}$ des noyaux initiaux à $t = 4t_{1/2}$ soit une durée $t = 4 \times 19$; t = 76 jours.

10 Scintigraphie osseuse

1. Tracé de l'évolution du nombre de noyaux en fonction du temps :

Le nombre de noyaux radioactifs diminue au cours du temps.

2. Quand $N = \frac{N_0}{2} = 277.5 \times 10^6$, alors $t = t_{1/2} \approx 6 \text{ h}$; c'est la demi-vie.

3. Ce traceur est adapté car il est rapidement éliminé. En effet au bout d'un jour et demi, il ne reste pratiquement plus de noyaux radioactifs chez le patient.

111 Âge d'une momie

- **1.** En lisant sur la courbe : pour 60 % d'atomes de carbone restants, on a $t = 4\,500$ ans. C'est l'âge de la momie
- **2.** À partir du décès, il n'y a plus d'ingestion de matière carbonée.
- **3.** Non, puisqu'au bout de tant d'années, il n'y a plus de carbone 14 dans les échantillons. En effet, on voit sur la courbe que la proportion est quasi nulle après 30 000 ans.

12 Prépa BAC

Réactions de fusion dans les étoiles

1. La réaction de fusion **a** consomme 4 noyaux d'hydrogène et libère une énergie $E = 4 \times 10^{-12}$ J.

La masse du Soleil disponible pour les réactions de fusion, notée $m_{\rm d}$, représente 10 % de sa masse totale :

$$m_{\rm d} = 0.10 \, M_{\rm S}$$

La réaction aura lieu N fois :

$$N = \frac{m_{\rm d}}{4m_{\rm p}} = \frac{0.10 \, M_{\rm S}}{4m_{\rm p}}.$$

Elle libérera une énergie totale $E_T = N \cdot E$.

$$E_{\rm T} = 0.10 \, \frac{M_{\rm s} \cdot E}{4 \, m_{\rm p}}$$

$$E_{\rm T} = \frac{0.10 \times 2 \times 10^{30}}{4 \times 1.67 \times 10^{-27}} \times 4 \times 10^{-12}$$

Soit
$$E_{\rm T} = 1 \times 10^{44} \, \text{J}.$$

- **2.** Si, en une année, le Soleil consomme $E_S = 10^{34}$ J, alors en Δt années le Soleil aura consommé $E_T = 1 \times 10^{44}$ J.
- **2.** Si, en une année, le Soleil consomme $E_S = 10^{34}$ J, alors en Δt années le Soleil aura consommé $E_T = 1 \times 10^{44}$ J.

$$\Delta t = \frac{E_{\rm T}}{E_{\rm S}} = \frac{10^{44}}{10^{34}}$$

Soit $\Delta t = 10^{10}$ années.

Il faut donc une durée Δt de 10^{10} années pour que le Soleil consomme toutes ses réserves.

3. On remarque que $t_1 = 2 t_{1/2}$.

Au bout d'une durée égale à deux demi-vies, il reste un quart des noyaux initialement présents, soit :

$$N(t_1) = \frac{N_0}{4}$$
 donc $\frac{N(t_1)}{N_0} = \frac{1}{4}$.