Introduction to Deep Learning

Machine Learning Basics

ML vs DL

Machine Learning

Deep Learning

ML vs DL

Artificial Intelligence Machine Learning Deep Learning

- What exactly is deep learning (Dl)?
- Why is DL almost better than other methods in terms of image, videos, test analysis?
 - > DL is a normal neural network BUT with several layers of nodes between input and output
 - > These layers do extracting/ processing the features in a series of stages.

Why deep learning

How do data science techniques scale with amount of data?

Modern Hardware (GPUs)/ Cloud

Data:Social media

How Do Neural Networks Work?

Weight	Height	Class
100	180	Man
70	190	Man
50	160	Woman

$$y = \sum_{i=1}^{n} w_i \cdot x_i + b_i$$

Activation functions

3 neurons (not counting inputs)

$$h_1 = \sigma(W_1 weight + W_2 height + b_1)$$

$$h_2 = \sigma(W_3 weight + W_4 height + b_2)$$

$$O_1 = \sigma(W_5 h_1 + W_6 h_2 + b_3)$$

$$[2 \times 2] + [2 \times 1] = 6$$
weights
 $2 + 1 = 3$ biases
9 learnable **parameters**

How Do Neural Networks Work?

32 learnable parameters

How Do Neural Networks Work?

X	Y
1	2
3	4
5	6
7	8
8	9
	?

$$b = 1$$

$$\hat{y} = x_i * w + b$$

 $\hat{y} = 8 * .5 + 1 = 5$ \otimes
 $\hat{y} = 8 * 0.7 + 1 = 8.2$ \otimes

$$\hat{y} = 8 * 1 + 1 = 9$$

Deep Learning Platforms

Training the neural network

Fields			class	
1.4	2.7	1.9	0	
3.8	3.4	3.2	0	
6.4	2.8	1.7	1	
4.1	0.1	0.2	0	
etc				

Training data

Fie	lds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Compare with target output

Training data

Fields			class	
	1.4	2.7	1.9	0
	3.8	3.4	3.2	0
	6.4	2.8	1.7	1
	4.1	0.1	0.2	0
	etc	• • •		

Compare with target output

