Zestaw 1 — Rachunek różniczkowy

1. Oblicz pochodne funkcji danych wzorem:

- a) $f(x) = \sin(\ln x + \sqrt{x}),$
- b) $f(x) = \sqrt[3]{\arctan(x^3)}$,
- c) $f(x) = e^{\cos^2 \frac{1}{x}}$,
- d) $f(x) = \operatorname{tg} \frac{\arccos x}{\ln \frac{x-1}{x+1}}$.
- **2.** Na paraboli $y=x^2$ zaznaczono dwa punkty o odciętych $x_1=1$ i $x_2=3$. Wyznacz równanie stycznej do tej paraboli, która jest równoległa do siecznej przechodzącej przez wybrane punkty.
- 3. Znajdź styczną do krzywej $y=\frac{x+9}{x+5},$ która przechodzi przez początek układu współrzędnych.
- **4.** Znajdź wszystkie styczne do paraboli $y=x^2-4x+1$, przechodzące przez punkty o współrzędnych (0,0) lub (1,1).
- 5. Ze wzoru na pochodną funkcji odwrotnej wyprowadź wzór na pochodną arc tg.
- 6. Wyznacz przedziały monotoniczności funkcji danej wzorem

$$f(x) = \frac{1 - x + x^2}{1 + x + x^2}.$$

7. Wyznacz ekstrema lokalne funkcji danej wzorem

$$f(x) = x^2 e^x.$$

8. Wyznacz najmniejsza i największa wartość funkcji danej wzorem

$$f(x) = \frac{1 - x + x^2}{1 + x - x^2}$$

na przedziale [0,1].

9. Uzasadnij, że

$$\ln x > 2\frac{x-1}{x+1}, \qquad x > 1.$$

- 10. Prostopadłościenne pudełko mające w podstawie kwadrat, ma mieć objętość 2000 cm³. Materiał na dno kosztuje 30 zł za cm², zaś na ściany boczne jest o połowę tańszy. Jakie powinny być wymiary pudełka, aby koszt zużytego materiału był minimalny?
- 11. Bieżnia lekkoatletyczna ma długość 400 metrów i składa się z dwóch równoległych odcinków oraz dwóch półokręgów je łączących (jak na rysunku). Jakie wymiary powinna mieć bieżnia, aby powierzchnia prostokąta wewnątrz toru biegowego była jak największa?
- 12. Firma wydobywająca ropę naftową musi ułożyć rurociąg z punktu A leżącego przy brzegu do platformy wiertniczej znajdującej się na morzu w punkcie B. Koszt ułożenia 1 km rurociągu wzdłuż brzegu wynosi $$500\,000$, natomiast na dnie morza $$1\,000\,000$. Jaki jest najmniejszy możliwy koszt ułożenia takiego rurociągu?
- **13.** Wyznacz:
 - a) e z dokładnością do 10^{-7} ,

- b) $\sqrt{3.96}$ z dokładnością do 10^{-5} .
- 14. Wykorzystując regułę de l'Hospitala, wyznacz granice:

a)
$$\lim_{x\to 0} \frac{\ln\cos x}{x}$$
,

b)
$$\lim_{x \to 0} \frac{x - \arctan \operatorname{tg} x}{x^3},$$

c)
$$\lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{x} \right)$$
,

d)
$$\lim_{x \to +\infty} (\pi - 2 \operatorname{arctg} x) \ln x$$
,

e)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{x}{\ln x} \right)$$
.