Задача с решением по численным методам Тема: численное решение задачи Коши методом Рунге-Кутта 4-го порядка

Задание.

Численно решить задачу Коши для ОДУ 2-ого порядка методом Рунге-Кутта 4-го порядка.

$$u'' + e^{x}u' - (10 + \sin x)u + f = 0, \quad 0 < x \le 1$$

$$u(0) = u_0 = 0; \quad u'(0) = \tilde{u}_0 = 50$$

$$f = 50((11 + \sin x)\sin x - e^{x}\cos x)$$

Точное решение: $u = 50 \sin x$, h = 0.05, n = 20

Решение.

Постановка задачи.

Требуется найти решение уравнения второго порядка, разрешенного относительно старшей производной:

$$u'' = \varphi(x,u,u')$$
 где $\varphi(x,u,u') = -e^x u' + (10+\sin x)u - f; \quad f = 50 \big((11+\sin x)\sin x - e^x\cos x\big),$ при начальных условиях

$$\begin{cases} u(0) = u_0 = 0 \\ u'(0) = \tilde{u}_0 = 50 \end{cases}$$

Краткая теория метода решения задачи.

Введением замены z = u' уравнение второго порядка сводится к системе:

$$\begin{cases} u' = z \\ z' = \varphi(x, u, z) \end{cases}$$

при начальных условиях

$$\begin{cases} u(0) = u_0 \\ z(0) = \tilde{u}_0 \end{cases}$$

Полученную систему можно решить методом Рунге-Кутта.

Опишем метод Рунге-Кутта 4-го порядка для системы ОДУ:

$$\begin{cases} u' = f(x, u, z) \\ z' = g(x, u, z) \end{cases}$$

(i + 1)-е приближение к решению вычисляется по реккурентным формулам

$$\begin{cases} u_{i+1} = u_i + \Delta u_i \\ z_{i+1} = z_i + \Delta z_i \end{cases}$$
$$\Delta y_i = \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4); \ \Delta z_i = \frac{1}{6} (l_1 + 2l_2 + 2l_3 + l_4)$$

 $k_1, k_2, k_3, k_4, l_1, l_2, l_3, l_4$ вычисляются на каждом шаге по формулам

$$k_{1} = h \cdot f(x_{i}, u_{i}, z_{i}); \quad l_{1} = h \cdot g(x_{i}, u_{i}, z_{i})$$

$$k_{2} = h \cdot f\left(x_{i} + \frac{h}{2}, u_{i} + \frac{k_{1}}{2}, z_{i} + \frac{l_{1}}{2}\right); \quad l_{2} = h \cdot g\left(x_{i} + \frac{h}{2}, u_{i} + \frac{k_{1}}{2}, z_{i} + \frac{l_{1}}{2}\right)$$

$$k_{3} = h \cdot f\left(x_{i} + \frac{h}{2}, u_{i} + \frac{k_{2}}{2}, z_{i} + \frac{l_{2}}{2}\right); \quad l_{3} = h \cdot g\left(x_{i} + \frac{h}{2}, u_{i} + \frac{k_{2}}{2}, z_{i} + \frac{l_{2}}{2}\right)$$

$$k_{4} = h \cdot f(x_{i} + h, u_{i} + k_{3}, z_{i} + l_{3}); \quad l_{4} = h \cdot g(x_{i} + h, u_{i} + k_{3}, z_{i} + l_{3})$$

Алгоритм решения задачи.

$$\begin{cases} u' = z & u(0) = 0 \\ z' = \varphi(x, u, z); & z(0) = 50 \end{cases}$$

где
$$\varphi(x, u, z) = -e^x z + (10 + \sin x)u - 50((11 + \sin x)\sin x - e^x\cos x)$$

 $h = 0.05$

IIIar 1. i = 0; $x_0 = 0$; $u_0 = 0$; $z_0 = 50$

Последовательно вычислим

$$\begin{aligned} k_1 &= h \cdot z_0; \ l_1 &= h \cdot \varphi(x_0, u_0, z_0) \\ k_2 &= h \cdot \left(z_0 + \frac{l_1}{2}\right); \ l_2 &= h \cdot \varphi\left(x_0 + \frac{h}{2}, u_0 + \frac{k_1}{2}, z_0 + \frac{l_1}{2}\right) \\ k_3 &= h \cdot \left(z_0 + \frac{l_2}{2}\right); \ l_3 &= h \cdot \varphi\left(x_0 + \frac{h}{2}, u_0 + \frac{k_2}{2}, z_0 + \frac{l_2}{2}\right) \\ k_4 &= h \cdot (z_0 + l_3); \ l_4 &= h \cdot \varphi(x_0 + h, u_0 + k_3, z_0 + l_3) \end{aligned}$$

Найдем

$$\Delta u_0 = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4); \ \Delta z_0 = \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4)$$
$$u_1 = u_0 + \Delta u_0; \ z_1 = z_0 + \Delta z_0$$

 $u_1=u_0+\Delta u_0;\ z_1=z_0+\Delta z_0$ Шаг 2. $i=1;\ x_1=x_0+h=0.05;\ u_1$ и z_1 вычислены в предыдущем шаге. Последовательно вычислим

$$\begin{split} k_1 &= h \cdot z_1; \ l_1 = h \cdot \varphi(x_1, u_1, z_1) \\ k_2 &= h \cdot \left(z_1 + \frac{l_1}{2}\right); \ l_2 = h \cdot \varphi\left(x_1 + \frac{h}{2}, u_1 + \frac{k_1}{2}, z_1 + \frac{l_1}{2}\right) \\ k_3 &= h \cdot \left(z_1 + \frac{l_2}{2}\right); \ l_3 = h \cdot \varphi\left(x_1 + \frac{h}{2}, u_1 + \frac{k_2}{2}, z_1 + \frac{l_2}{2}\right) \\ k_4 &= h \cdot (z_1 + l_3); \ l_4 = h \cdot \varphi(x_1 + h, u_1 + k_3, z_1 + l_3) \end{split}$$

Найдем Δu_1 ; Δz_1 ; $u_2 = u_1 + \Delta u_1$; $z_2 = z_1 + \Delta z_1$

Аналогичным образом проводим вычисления для i = 3, 4, ..., 19.

i	x_i	u_i	z_i	k_1	l_1	$x + \frac{h}{2}$	$u + \frac{k_1}{2}$	$z + \frac{l_1}{2}$	k_2	l_2	$u + \frac{k_2}{2}$	$z + \frac{l_2}{2}$	k_3	l_3	$u + k_3$	$z + l_3$	k_4	l_4	Δu_i	Δz_i
0	0	0	50	2,5	0	0,025	1,25	50	2,5	-0,0632	1,25	49,9684	2,4984	-0,0616	2,4984	49,9384	2,4969	-0,1253	2,4990	-0,0625
1	0,05	2,4990	49,9375	2,4969	-0,1249	0,0750	3,7474	49,8750	2,4938	-0,1877	3,7458	49,8437	2,4922	-0,1868	4,9911	49,7507	2,4875	-0,2499	2,4927	-0,1873
2	0,1	4,9917	49,7502	2,4875	-0,2496	0,1250	6,2354	49,6254	2,4813	-0,3117	6,2323	49,5943	2,4797	-0,3115	7,4714	49,4387	2,4719	-0,3739	2,4802	-0,3117
3	0,15	7,4719	49,4385	2,4719	-0,3736	0,1750	8,7079	49,2518	2,4626	-0,4349	8,7032	49,2211	2,4611	-0,4355	9,9330	49,0031	2,4502	-0,4969	2,4616	-0,4352
4	0,2	9,9335	49,0033	2,4502	-0,4967	0,2250	11,1586	48,7550	2,4377	-0,5571	11,1523	48,7248	2,4362	-0,5584	12,3697	48,4450	2,4222	-0,6187	2,4367	-0,5577
5	0,25	12,3702	48,4456	2,4223	-0,6185	0,2750	13,5813	48,1364	2,4068	-0,6778	13,5736	48,1067	2,4053	-0,6798	14,7755	47,7658	2,3883	-0,7390	2,4058	-0,6788
6	0,3	14,7760	47,7668	2,3883	-0,7388	0,3250	15,9702	47,3974	2,3699	-0,7969	15,9610	47,3684	2,3684	-0,7996	17,1444	46,9672	2,3484	-0,8574	2,3689	-0,7982
7	0,35	17,1449	46,9686	2,3484	-0,8572	0,3750	18,3191	46,5400	2,3270	-0,9139	18,3084	46,5117	2,3256	-0,9174	19,4705	46,0512	2,3026	-0,9736	2,3260	-0,9156
8	0,4	19,4709	46,0531	2,3027	-0,9735	0,4250	20,6223	45,5663	2,2783	-1,0287	20,6101	45,5387	2,2769	-1,0329	21,7479	45,0202	2,2510	-1,0875	2,2774	-1,0307
9	0,45	21,7483	45,0224	2,2511	-1,0874	0,4750	22,8738	44,4787	2,2239	-1,1409	22,8603	44,4519	2,2226	-1,1458	23,9709	43,8766	2,1938	-1,1986	2,2230	-1,1432
10	0,5	23,9713	43,8792	2,1940	-1,1986	0,5250	25,0683	43,2799	2,1640	-1,2502	25,0533	43,2541	2,1627	-1,2559	26,1340	42,6233	2,1312	-1,3067	2,1631	-1,2529
11	0,55	26,1344	42,6263	2,1313	-1,3067	0,5750	27,2000	41,9729	2,0986	-1,3564	27,1837	41,9481	2,0974	-1,3628	28,2318	41,2635	2,0632	-1,4115	2,0978	-1,3594
12	0,6	28,2321	41,2668	2,0633	-1,4116	0,6250	29,2638	40,5610	2,0281	-1,4592	29,2462	40,5372	2,0269	-1,4663	30,2590	39,8005	1,9900	-1,5128	2,0272	-1,4626
13	0,65	30,2593	39,8043	1,9902	-1,5130	0,6750	31,2544	39,0478	1,9524	-1,5584	31,2355	39,0251	1,9513	-1,5662	32,2106	38,2381	1,9119	-1,6103	1,9516	-1,5621
14	0,7	32,2109	38,2422	1,9121	-1,6105	0,7250	33,1670	37,4369	1,8718	-1,6536	33,1468	37,4154	1,8708	-1,6622	34,0817	36,5800	1,8290	-1,7038	1,8711	-1,6577
15	0,75	34,0820	36,5845	1,8292	-1,7041	0,7750	34,9966	35,7325	1,7866	-1,7448	34,9753	35,7122	1,7856	-1,7540	35,8676	34,8306	1,7415	-1,7930	1,7859	-1,7491
16	0,8	35,8678	34,8354	1,7418	-1,7934	0,8250	36,7387	33,9388	1,6969	-1,8315	36,7163	33,9197	1,6960	-1,8414	37,5638	32,9941	1,6497	-1,8777	1,6962	-1,8362
17	0,85	37,5640	32,9993	1,6500	-1,8782	0,8750	38,3890	32,0602	1,6030	-1,9137	38,3656	32,0424	1,6021	-1,9242	39,1662	31,0751	1,5538	-1,9577	1,6023	-1,9186
18	0,9	39,1664	31,0807	1,5540	-1,9583	0,9250	39,9434	30,1015	1,5051	-1,9911	39,9189	30,0851	1,5043	-2,0023	40,6706	29,0784	1,4539	-2,0329	1,5044	-1,9963
19	0,95	40,6708	29,0843	1,4542	-2,0335	0,9750	41,3979	28,0676	1,4034	-2,0635	41,3725	28,0526	1,4026	-2,0753	42,0734	27,0090	1,3505	-2,1029	1,4028	-2,0690
20	1	42,0736	27,0153	1,3508	-2,1037	1,0250	42,7490	25,9635	1,2982	-2,1308	42,7227	25,9499	1,2975	-2,1432	43,3711	24,8722	1,2436	-2,1677	1,2976	-2,1365

В таблице приведены результаты всех расчетов. Выделенные столбцы - полученное численное решение.

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

Результаты решения и контроль точности.

Сравним полученное численное решение с точным:

	itosij iemi	Численное	решение с точн			
		решение	Точное	Абсолютная		
i	x_i	u_i	решение $u_{\text{точн}}$	погрешность		
0	0	0,0000	0,0000	0		
1	0,05	2,4990	2,4990	0,000001		
2	0,1	4,9917	4,9917	0,000002		
3	0,15	7,4719	7,4719	0,000003		
4	0,2	9,9335	9,9335	0,000004		
5	0,25	12,3702	12,3702	0,000005		
6	0,3	14,7760	14,7760	0,000005		
7	0,35	17,1449	17,1449	0,000006		
8	0,4	19,4709	19,4709	0,000007		
9	0,45	21,7483	21,7483	0,000008		
10	0,5	23,9713	23,9713	0,000010		
11	0,55	26,1344	26,1344	0,000011		
12	0,6	28,2321	28,2321	0,000013		
13	0,65	30,2593	30,2593	0,000015		
14	0,7	32,2109	32,2109	0,000018		
15	0,75	34,0820	34,0819	0,000021		
16	0,8	35,8678	35,8678	0,000024		
17	0,85	37,5640	37,5640	0,000029		
18	0,9	39,1664	39,1663	0,000033		
19	0,95	40,6708	40,6708	0,000039		
20	1	42,0736	42,0735	0,000045		

Видно, что метод Рунге-Кутта 4 порядка точности дает существенно более точное решение, чем метод Эйлера или модифицированный метод Эйлера (лабораторная работа 1). Погрешность составляет не более 10^{-4} .

Построим на одном графике полученное численное решение и точное решение:

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

