Universidad de El Salvador. 27.10.2018 Álgebra II. Examen parcial 1 (repetido)

Problema 1 (2 puntos). Sea $C(\mathbb{R})$ el anillo de las funciones continuas $f: \mathbb{R} \to \mathbb{R}$ con operaciones punto por punto.

- 1) ¿Es un dominio de integridad? Justifique su respuesta. [1 punto]
- 2) Para cualquier $x \in \mathbb{R}$ demuestre que

$$\mathfrak{m}_x := \{ \text{funciones continuas } f \colon \mathbb{R} \to \mathbb{R} \mid f(x) = 0 \}$$

es un ideal maximal en $\mathcal{C}(\mathbb{R})$. [1 punto]

Problema 2 (2 puntos).

- 1) Demuestre que para cualquier cuerpo k el anillo de polinomios k[X] no es local. [1 punto]
- 2) Demuestre que el anillo de series de potencias $\mathbb{Z}[X]$ no es local. [1 punto]

Problema 3 (2 puntos). Determine si el ideal generado por el polinomio $X^2 + 1$ es maximal en el anillo

$$\mathbb{R}[X]$$
, $\mathbb{C}[X]$, $\mathbb{Z}[X]$, $\mathbb{F}_2[X]$.

 $[\frac{1}{2}$ punto por cada respuesta correcta y justificada]

Problema 4 (2 puntos). Sea R un anillo conmutativo. Denotemos por

$$N(R) := \{x \in R \mid x^n = 0 \text{ para algún } n = 1, 2, 3, ... \}$$

el nilradical. Demuestre que para todo subconjunto multiplicativo $U \subseteq R$ se tiene

$$N(R[U^{-1}]) = N(R)R[U^{-1}].$$

[1 punto por cada una de las inclusiones " \subseteq " y " \supseteq "]

Problema 5 (2 puntos). Sean R un anillo conmutativo y $x \in R$ algún elemento no nulo.

- 1) Demuestre que Ann $(x) := \{r \in R \mid rx = 0\}$ es un ideal propio en R. [1 punto]
- 2) Demuestre que existe un ideal maximal $\mathfrak{m} \subset R$ tal que $\frac{x}{1} \neq \frac{0}{1}$ en la localización $R_{\mathfrak{m}}$. [1 *punto*]