1 Agents

Rational: Maximally achieving goals (actions that maximize utility function)

Reflex Based: Chooses action based on current percept (no future consideration)

Goal Based: Chooses action based on consequences (model of how the world reacts)

Utility Based: Goal based with trading off of multiple goals and uses probabilities

2 Searching

Complete: Guaranteed to find a solution if one exists

Optimal: Guaranteed to find the least cost path

Properties: n= number of states, b= maximum branching factor, C^* = optimal cost,

d= depth of shallowest solution, m= max depth, ϵ = min cost of all actions

Heuristic h(n): An estimate of how close a state is to a goal

Admissible: Always an underestimate to the true lowest cost

Consistent: Always $h(n) \le h(n') + stepCost(n')$ where n' is a neighbor of n

DFS: Fringe uses a Stack, complete iff finite, not optimal, time: $O(b^m)$, space: O(bm)

BFS: Fringe uses a Queue, complete, optimal (constant), time and space: $O(b^d)$

IDDFS: Fringe uses a Stack, complete, optimal (constant), time: $O(b^d)$, space: O(bm)

Best First: Fringe uses a PriorityQueue with cost fuction for each node

Uniform Cost: Best First with $f(n) = \text{sum of edge costs from start to n (explores$

increasing contours), complete, optimal, time and space: $\mathcal{O}(b^{\frac{C^*}{\epsilon}})$

Greedy: Best First with f(n) = h(n) (suboptimal goal is common)

A*: Best First with f(n) = g(n) + h(n) with g(n) = sum of costs from start to n