Конспект лекций по математическому анализу

Шишминцев Дмитрий Владимирович

13 января 2023 г.

СОДЕРЖАНИЕ

			Стр.
1	Основы	анализа	2
	1.1	Множества	2
	1.2	Отображения (функция)	2
	1.3	Характеристики множеств	
	1.4	Множества чисел	3
	1.5	Метод математической индукции	4
	1.6	Бином Ньютона	5
	1.7	Неравенство Бернулли	5
2	Пределы		6
	2.1	Предел числовой последовательности	6

1 Основы анализа

1.1 Множества

Определение 1. Множество - совокупность элементов одной природы и некоторым общим свойством позволяющим объеденить их в одно целое.

Обозначения:

- A, B, C множества, a, b, c элементы множества
- ∀ квантор общности (для каждого)
- 3 найдется
- $\mathbb{X}/\mathbb{E}/\mathbb{U}$ универсальные множества
- \emptyset пустое множество
- ! единственность
- \rightarrow следовательно

Операции над множествами:

- $A \cap B$ объединение множеств (коммутативно и ассоциативно)
- $A \cup B$ пересечение множеств (коммутативно и ассоциативно)
- $A \backslash B$ разность множеств
- \bar{A} отрицание
- $A\Delta B$ симметрическая разность $(A\cup B)\backslash (A\cap B)$
- $A \times B = \{(x,y) | x \in A, y \in B\}$ декартово произведение

1.2 Отображения (функция)

Определение 2. правило по которому $\forall x \in D \exists ! y \in V$

F:D (область определения) \to (правило перевода) V (область значений) ВАРИАТИВНОСТИ ФУНКЦИОНАЛЬНЫХ ОТОБРАЖЕНИЙ:

- Сюръекция ($\forall y \in V : \exists x \in D$) каждый элемент в области значений функции имеет прообраз в области определения
- Инъекция ($\forall y \in V : \exists ! x \in D$) каждый элемент в области определения функции имеет образ в области значений. Не каждый образ имеет прообраз.

- Биекция ($\forall F:A\to B\exists !F^{-1}:B\to A$) - функция яаляется и сюръекцией и биекцией.

1.3 Характеристики множеств

Определение 3. Мощность (кардинальное число) - количество различных элементов множества.

Определение 4. Эквивалентность множеств: множества эквивалентны $(A \sim B)$ если они равномощны. $\forall x \in X \exists ! y \in Y \text{ и } \forall y \in Y \exists ! x \in X$

Определение 5. Счетность множеств: множество счетно (исчислимо), если $A \sim \mathbb{N}$

Определение 6. Мощность континуума: множество эквивалентное множеству точек отрезка [0,1] имеет мощность континуума.

Теорема 1. Множество всех точек отрезка [0; 1] - несчетно

Теорема 2 (Кантора-Бернштейна). Если $A \sim B'(B' \subset B)$ и $B \sim A'(A' \subset A) \Rightarrow A \sim B$

Если $A \subset B \subset C$, причем $A \sim C \Rightarrow A \sim B$

Определение 7 (Сравнение мощностей множеств). $\exists B' \in B: B' \sim A$ и $\nexists A' \in A: A' \sim B \Rightarrow |A| < |B|$

1.4 Множества чисел

- \mathbb{N} натуральные числа $\{1, 2, 3...\}$
- \mathbb{Z} целые числа $\{-1,0,1,2..\}$
- \mathbb{Q} рациональные числа $\{\frac{2}{3}, 0.(3)\}$
- \mathbb{R} вещественные (действительные числа) $\{\sqrt{2},\pi,e\}$
- \mathbb{C} комплексные

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Основные свойства вещественных чисел:

- Транзитивность $(a > b, b > c \rightarrow a > c)$
- Ассоциативность (a + (b + c) = (a + b) + c)
- Коммутативность a + b = b + a
- Дистрибутивность $(a+b) \cdot c = a \cdot c + b \cdot c$
- $\forall a, b \in \mathbb{R} \exists ! c \in \mathbb{R} : a + b = c$
- $\forall a \neq 0 \exists ! a^{-1} : a \cdot a^{-1} = 1$

ГРАНИ МНОЖЕСТВ:

- $\forall b \in \mathbb{R} : \forall a \in A \to a \leq b$ верхняя грань
- $\forall d \in \mathbb{R} : \forall a \in A \rightarrow d \leq a$ нижняя грань

Грани не единственны

Определение 8. Точная верхняя/нижняя грань - минимальный/максимальный элемент множества верхних/нижних граней множеств.

Свойство точной верхней грани:

Если $b = \sup A$, то $\forall \epsilon > 0 \exists a \in A : a > b - \epsilon$

 \blacktriangleright Допустим обратное. Тогда $a \leq b - \epsilon$ А это невозможно т.к b является наименьшей верхней гранью. \blacktriangleleft

Свойство нижней верхней грани:

Если $d = \inf A$, то $\forall \epsilon > 0 \exists a \in A : a < d + \epsilon$

▶ Док-во аналогично свойству точной верхней грани. ◀

Теорема 3 (Принцип вложенных отрезков). Пусть $\{[a_n,b_n]\}_{n=1}^{\inf}: \forall n \in \mathbb{N} \to [a_{n+1},b_{n+1}\subset [a_n,b_n]]$ тогда $\exists!c\in\mathbb{R}: \forall n\in\mathbb{N}\to c\in [a_n,b_n]$

▶ Пусть длина отрезка - $d(n) = b_n - a_n$. $\forall k \in \mathbb{N} \to d(1) > d(k)$. Пусть $c := \sup a_n \Rightarrow \forall n \to a_n \le c \le b_n$. $\forall n \to c \le b_n \Rightarrow c \in [a_n, b_n]$. Единственность точки следует из стремления длин отрезков к нулю. \blacktriangleleft

1.5 Метод математической индукции

Для обоснования ММИ используем свойство натуральных чисел: $\forall A \subset \mathbb{N}: A \neq \emptyset \exists a' \in A: \forall a \in A \to a' \leq a.$ Метод математической индукции для док-ва утверждения на множестве A состоит из шагов:

- База индукции - проверяем справедливость на a^\prime

- Индукционное предположение проверяем для произвольного элемента $a_k \in A$
- Индукционный шаг доказываем справедливость для $a_{k+1} \in A$

1.6 Бином Ньютона

$$(1+x)^n = \sum_{k=0}^n C_n^k x^k \tag{1.1}$$

 $C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$ - биноминальный коэффициент $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

 \blacktriangleright По методу математической индукции. При $n=1.1+x=C_1^0+C_1^1x=1+x$ При n=t формула так же верна.

При n = t + 1

$$\begin{array}{lll} (1+x)^{t+1} &=& (1+x)^t (1+x) &=& \binom{t}{0} x^0 + \ldots + \binom{t}{t} x^t + \binom{t}{0} x + \ldots + \binom{t}{t} x^{t+1} &=& \binom{t+1}{0} + \binom{t+1}{1} x + \ldots + \binom{t+1}{t+1} x^{t+1} \end{array} \blacktriangleleft$$

1.7 Неравенство Бернулли

$$(1+x)^n > 1 + xn (1.2)$$

При $x>-1, x\neq 0, n\geq 2$ Док-во по ММИ.

2 Пределы

2.1 Предел числовой последовательности

Определение 9 (Числовая последовательность).

$$\beth x_n = f(n), f: \mathbb{N} \to \mathbb{R}$$

Операции с числовыми последовательностями выполняются почленно.

Определение 10 (Ограниченность последовательности).

$$\exists A \in \mathbb{R} : \forall n \in \mathbb{N} \to |x_n| \le A$$

Определение 11 (Бесконечно большая последовательность). Последовательность называется бесконечно большой, если множество членов удовлетворяющих условию $|x_n| \leq c$ конечно.

$$\forall c > 0 \exists n(c) \in \mathbb{N} : \forall n > n(c) \to |x_n| > c$$

Определение 12 (Бесконечно малая последовательность). Последовательность называется бесконечно малой, если множество членов удовлетворяющих условию $|x_n| \ge c$ конечно.

$$\forall c > 0 \exists n(c) \in \mathbb{N} : \forall n > n(c) \to |x_n| < c$$

Теорема 4 (Ограниченность бесконечно малой последовательности). Если x_n - б.м.п $\Rightarrow \forall n \in \mathbb{N} \to |x_n| < C, C \in \mathbb{R}_+$

▶ По определению бесконечно малой последовательности, кол-во элементов $|x_n| \geq C$ конечно. Возьмем $C = max(|x_1|, |x_2|, ..., |x_n|)$. Получим $\forall n \in \mathbb{N} \to |x_n| < C$ ◀