CORRIGÉ DM N°11 : CAPES 2010

Partie I: Première approche de la constante d'Euler

1. La fonction $t\mapsto \frac{1}{t}$ est décroissante sur [p,p+1] donc $\forall t\in [p,p+1]$, $\frac{1}{p+1}\leqslant \frac{1}{t}\leqslant \frac{1}{p}$. En intégrant cette inégalité entre p et p+1, on obtient : $\frac{1}{p+1}\leqslant \int_{-p}^{p+1}\frac{\mathrm{d}t}{t}\leqslant \frac{1}{p}$ soit $-\frac{1}{p}\leqslant -\int_{-p}^{p+1}\frac{\mathrm{d}t}{t}\leqslant -\frac{1}{p+1}$

et finalement

$$0 \leqslant a_p = \frac{1}{p} - \int_p^{p+1} \frac{\mathrm{d}t}{t} \leqslant \frac{1}{p} - \frac{1}{p+1}$$

2. • En additionnant les inégalités précédents pour p variant de 1 à n, on obtient

$$0 \le \sum_{p=1}^{n} a_p \le \sum_{p=1}^{n} \left(\frac{1}{p} - \frac{1}{p+1} \right) = 1 - \frac{1}{n+1} \le 1$$

Donc la suite (S_n) est majorée.

- $S_{n+1} S_n = a_{n+1} \ge 0$ donc la suite (S_n) est croissante; étant majorée, elle converge, vers une limite notée γ .
- De l'encadrement $0 \le S_n \le 1$ trouvé ci-dessus, on déduit immédiatement $0 \le \gamma \le 1$.
- 3. $a_p = \frac{1}{p} \int_{p}^{p+1} \frac{dt}{t} = \frac{1}{p} \int_{0}^{1} \frac{du}{u+p}$ en faisant le changement de variable t = u+p.

D'où
$$a_p = \frac{1}{p} \int_0^1 \left(1 - \frac{p}{u+p} \right) du = \frac{1}{p} \int_0^1 \frac{u}{u+p} du.$$

Pour $u \in [0,1]$, $\frac{1}{p+1} \le \frac{1}{u+p} \le \frac{1}{p}$ donc, d'après le calcul ci-dessus :

$$\frac{1}{p} \cdot \frac{1}{p+1} \cdot \int_{0}^{1} u \, \mathrm{d}u \leqslant a_{p} \leqslant \frac{1}{p} \cdot \frac{1}{p} \cdot \int_{0}^{1} u \, \mathrm{d}u$$

d'où, pour $p \ge 2$:

$$\frac{1}{2} \left(\frac{1}{p} - \frac{1}{p+1} \right) \leqslant a_p \leqslant \frac{1}{2} \frac{1}{p^2} \leqslant \frac{1}{2} \frac{1}{p(p-1)} = \frac{1}{2} \left(\frac{1}{p-1} - \frac{1}{p} \right)$$

4. Soient m et n des entiers tels que $m > n \ge 1$. Alors $S_m - S_n = \sum_{p=1}^m a_p - \sum_{p=1}^n a_p = \sum_{p=n+1}^m a_p$ donc d'après l'encadrement précédent :

$$\frac{1}{2} \sum_{p=n+1}^{m} \left(\frac{1}{p} - \frac{1}{p+1} \right) \leq S_m - S_n \leq \frac{1}{2} \sum_{p=n+1}^{m} \left(\frac{1}{p-1} - \frac{1}{p} \right)$$

d'où après télescopage:

$$\frac{1}{2}\left(\frac{1}{n+1} - \frac{1}{m+1}\right) \leqslant S_m - S_n \leqslant \frac{1}{2}\left(\frac{1}{n} - \frac{1}{m}\right)$$

et, en faisant tendre m vers $+\infty$:

$$\frac{1}{2(n+1)} \leqslant \gamma - S_n \leqslant \frac{1}{2n}$$

5. Pour tout entier $n \ge 1$, $H_n = S_n + \ln(n+1)$ donc

$$H_n - \ln n - \gamma - \frac{1}{2n} = S_n - \gamma - \frac{1}{2n} + \ln \left(1 + \frac{1}{n} \right) \underset{n \to \infty}{=} S_n - \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2} \right)$$

en utilisant le développement limité $\ln(1+x) = x + O(x^2)$.

Or, d'après l'inégalité précédente :

$$0 \le S_n - \gamma + \frac{1}{2n} \le \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{2n(n+1)}$$

ce qui montre que $S_n - \gamma + \frac{1}{2n} \underset{n \to \infty}{=} O\left(\frac{1}{n^2}\right)$, d'où finalement :

$$H_n \underset{n \to \infty}{=} \ln n + \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right).$$

- 6. Il suffit de reprendre l'inégalité trouvée à la question 4!
- 7. Pour n = 7, l'inégalité précédente donne $0 \le \gamma T_n \le \frac{1}{112} < 10^{-2}$, donc T_7 convient.

On trouve $T_7 = \frac{1487}{560} - 3*\ln(2) \approx 0.575915601$ alors que $\gamma \approx 0.57721566490153286061$.

Partie II: Deux représentations intégrales de la constante d'Euler

- 1. a) Soit $f: t \mapsto \frac{\mathrm{e}^{-t}}{1 e^{-t}}$. f est continue et à valeurs positives sur $[1, +\infty[$; quand $t \to +\infty$, on a $\lim_{t \to +\infty} \mathrm{e}^{-t} = 0$ donc $f(t) \underset{t \to +\infty}{\sim} \mathrm{e}^{-t}$; puisque $t \mapsto \mathrm{e}^{-t}$ est intégrable sur $[1, +\infty[$ (fonction de référence), il en est de même de f.
 - Soit $g: t \mapsto \frac{\mathrm{e}^{-t}}{t}$. g est continue et à valeurs positives sur $[1,+\infty[$; puisque $t \ge 1$, on a $g(t) \le \mathrm{e}^{-t}$, et, puisque $t \mapsto \mathrm{e}^{-t}$ est intégrable sur $[1,+\infty[$, il en est de même de g.
 - **b**) $\frac{1}{1-e^{-t}} \frac{1}{t} = \frac{e^{-t}-1+t}{t(1-e^{-t})}$. Or, en utilisant le développement limité $e^x = 1+x+\frac{x^2}{2}+o(x^2)$, on a

$$e^{-t} - 1 + t \sim \frac{t^2}{t \to 0}$$
 et $t(1 - e^{-t}) \sim t^2$

donc

$$\lim_{t \to 0} \frac{1}{1 - e^{-t}} - \frac{1}{t} = \frac{1}{2} .$$

c) La fonction $\varphi: t \mapsto e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right)$ est continue sur $]0, +\infty[$ et, d'après la question précédente,

elle se prolonge en une fonction continue sur $[0,+\infty[$. Donc l'intégrale $\int_0^1 \varphi$ existe.

D'après la question a), ϕ est somme de deux fonctions intégrables sur $[1,+\infty[$; elle est donc également intégrable sur $[1,+\infty[$.

En conclusion, l'intégrale
$$\int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt$$
 existe.

2. a) Soient x, y deux réels strictement positifs.

En effectuant le changement de variable u = at, on a $\int_{r}^{y} \frac{e^{-at}}{t} dt = \int_{ar}^{ay} \frac{e^{-u}}{u} du$ et, de même,

$$\int_{x}^{y} \frac{e^{-bt}}{t} dt = \int_{bx}^{by} \frac{e^{-u}}{u} du .$$

Donc

$$\int_{x}^{y} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{ax}^{ay} \frac{e^{-u}}{u} du - \int_{bx}^{by} \frac{e^{-u}}{u} du$$

$$= \int_{ax}^{bx} \frac{e^{-u}}{u} du + \int_{bx}^{ay} \frac{e^{-u}}{u} du - \int_{bx}^{ay} \frac{e^{-u}}{u} du - \int_{ay}^{by} \frac{e^{-u}}{u} du$$
 (relation de Chasles)
$$= \int_{ax}^{bx} \frac{e^{-u}}{u} du - \int_{ay}^{by} \frac{e^{-u}}{u} du$$

b) On suppose ici $a \le b$ et z > 0.

On a donc: $\forall t \in [az, bz]$, $e^{-bz} \le e^{-t} \le e^{-az}$, d'où en intégrant (les bornes sont dans le bons sens!),

$$e^{-bz} \int_{az}^{bz} \frac{dt}{t} \leqslant \int_{az}^{bz} \frac{e^{-t}}{t} \leqslant e^{-az} \int_{az}^{bz} \frac{dt}{t}$$

ce qui donne, compte tenu de $\int_{az}^{bz} \frac{dt}{t} = \ln bz - \ln az = \ln \frac{b}{a}$:

$$e^{-bz} \ln \frac{b}{a} \le \int_{az}^{bz} \frac{e^{-t}}{t} \le e^{-az} \ln \frac{b}{a}$$

- c) Il résulte de l'encadrement trouvé ci-dessus, et du théorème d'encadrement des limites, que $\lim_{z\to 0^+}\int_{az}^{bz}\frac{\mathrm{e}^{-t}}{t}=\ln\frac{b}{a}\;.$
 - La fonction $t \mapsto \frac{e^{-t}}{t}$ étant intégrable sur $[1, +\infty[$, on peut écrire

$$\lim_{y \to +\infty} \int_{ay}^{by} \frac{e^{-u}}{u} du = \lim_{y \to +\infty} \left(\int_{1}^{by} \frac{e^{-u}}{u} du - \int_{1}^{ay} \frac{e^{-u}}{u} du \right) = \int_{1}^{+\infty} \frac{e^{-u}}{u} du - \int_{1}^{+\infty} \frac{e^{-u}}{u} du = 0$$

• Donc:

$$\int_{0}^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \lim_{\substack{x \to 0^{+} \\ y \to +\infty}} \int_{x}^{y} \frac{e^{-at} - e^{-bt}}{t} dt = \lim_{\substack{x \to 0^{+} \\ y \to +\infty}} \int_{ax}^{bx} \frac{e^{-u}}{u} du - \lim_{\substack{y \to +\infty}} \int_{ay}^{by} \frac{e^{-u}}{u} du = \ln \frac{b}{a}$$

3. Une première représentation intégrale de la constante d'Euler

a) • On sait d'après le cours que, si |q| < 1, la série $\sum q^n$ converge et que $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

Puisque
$$t > 0$$
, $0 < e^{-t} < 1$ donc $\frac{1}{1 - e^{-t}} = \sum_{n=0}^{+\infty} (e^{-t})^n = \sum_{n=0}^{+\infty} e^{-nt}$.

• Par télescopage :

$$\sum_{n=0}^{+\infty} \left(\frac{e^{-nt} - e^{-(n+1)t}}{t} \right) = \frac{1}{t} \left(\sum_{n=0}^{+\infty} e^{-nt} - \sum_{n=0}^{+\infty} e^{-(n+1)t} \right) = \frac{1}{t}$$

b) On en déduit :

$$e^{-t}\left(\frac{1}{1-e^{-t}} - \frac{1}{t}\right) = e^{-t} \sum_{n=0}^{+\infty} e^{-nt} - e^{-t} \sum_{n=0}^{+\infty} \left(\frac{e^{-nt} - e^{-(n+1)t}}{t}\right) = \sum_{n=0}^{+\infty} \left(e^{-(n+1)t} - \frac{e^{-(n+1)t} - e^{-(n+2)t}}{t}\right)$$

c) La fonction $t \mapsto e^{-t}$ étant convexe, sa courbe représentative est située au-dessus de ses tangentes, en particulier au-dessus de sa tangente au point d'abscisse t = 0, qui a pour équation $t \mapsto 1 - t$.

Ainsi, pour tout
$$t$$
 réel, $e^{-t} \ge 1 - t$ soit $1 - e^{-t} \le t$, et, pour $t > 0$, on en déduit $\frac{1 - e^{-t}}{t} \le 1$ ou encore $1 - \frac{1 - e^{-t}}{t} \ge 0$.

- **d**) Pour t>0, posons $f(t)=\mathrm{e}^{-t}\left(\frac{1}{1-\mathrm{e}^{-t}}-\frac{1}{t}\right)$, et, pour tout $n\in\mathbb{N}$, $u_n(t)=\mathrm{e}^{-(n+1)t}-\frac{\mathrm{e}^{-(n+1)t}-\mathrm{e}^{-(n+2)t}}{t}$. Vérifions alors les hypothèses du théorème d'intégration terme à terme obligeamment rappelé par l'énoncé :
 - Les fonctions u_n sont évidemment continues sur \mathbb{R}_+^* .

• D'après les résultats de la question II.2, avec a = n+1 et b = n+2, la fonction $t \mapsto \frac{e^{-(n+1)t} - e^{-(n+2)t}}{t}$ est intégrable sur \mathbb{R}_+^* et $\int_0^{+\infty} \frac{e^{-(n+1)t} - e^{-(n+2)t}}{t} dt = \ln \frac{n+2}{n+1}$.

La fonction $t \mapsto e^{-(n+1)t}$ est elle aussi intégrable sur \mathbb{R}_+ et $\int_0^{+\infty} e^{-(n+1)t} dt = \frac{1}{n+1}$.

Donc, pour tout $n \in \mathbb{N}$, u_n est intégrable sur \mathbb{R}_+^* et $\int_0^{+\infty} u_n = \frac{1}{n+1} - \ln \frac{n+2}{n+1}$.

- La série $\sum_{n \ge 0} \left(\frac{1}{n+1} \ln \frac{n+2}{n+1} \right)$ a même nature, et même somme, que la série $\sum_{n \ge 1} \left(\frac{1}{n} \ln \frac{n+1}{n} \right) = \sum_{n \ge 1} a_n$, donc converge et a pour somme γ .
- Enfin, la question II.3.b assure la convergence simple sur \mathbb{R}_+^* de la série de fonctions $\sum u_n$ vers f, qui est bien continue sur \mathbb{R}_+^* . Le théorème d'intégration terme à terme assure alors que f est

intégrable sur
$$\mathbb{R}_+^*$$
 et que $\int_0^{+\infty} f = \sum_{n=0}^{+\infty} \int_0^{+\infty} u_n = \sum_{n=1}^{+\infty} a_n = \gamma$ soit :

$$\gamma = \int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt .$$

- 4. Une deuxième représentation intégrale de la constante d'Euler
 - a) y est un réel strictement positif. Ce qui a été fait à la question II.1 assure l'existence de l'intégrale $\int_y^{+\infty} \frac{\mathrm{e}^{-t}}{1-\mathrm{e}^{-t}} \, \mathrm{d}t$.Le changement de variable $u = \mathrm{e}^{-t}$, qui est un \mathscr{C}^1 -difféomorphisme de $[y, +\infty[$ sur $]0, \mathrm{e}^{-y}]$ donne alors :

$$\int_{y}^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt = -\int_{e^{-y}}^{0} \frac{u}{1 - u} \frac{1}{u} du = \int_{0}^{e^{-y}} \frac{du}{1 - u} = -\ln(1 - e^{-y})$$

donc $\ln y + \int_{y}^{+\infty} \frac{\mathrm{e}^{-t}}{1 - \mathrm{e}^{-t}} \, \mathrm{d}t = -\ln \left(\frac{1 - \mathrm{e}^{-y}}{y} \right)$ qui tend vers 0 quand y tend vers 0^+ , puisque $1 - \mathrm{e}^{-y} \sum_{y \to 0} y$.

b) Le résultat de II.3.d donne

$$\gamma = \int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt
= \int_0^y e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt + \int_y^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt
= \int_0^y e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt + \int_y^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt - \int_y^{+\infty} \frac{e^{-t}}{t} dt$$

(on a le droit de séparer ces trois intégrales, puisqu'elles convergent, en vertu de II.1!). On en déduit :

$$\gamma + \int_{y}^{+\infty} \frac{e^{-t}}{t} dt = \int_{0}^{y} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt + \int_{y}^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt$$

c) Donc
$$\gamma + \ln y + \int_{y}^{+\infty} \frac{e^{-t}}{t} dt = \int_{0}^{y} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt + \underbrace{\ln y + \int_{y}^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt}_{\text{tend vers o quand } y \to 0 \text{ car c'est l'intégrale d'une fonction prolongeable par continuité en o} \underbrace{\ln y + \int_{y}^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt}_{\text{d'anrès II 4 a}}$$

tend vers 0 quand $y \rightarrow 0^+$.

d) • La fonction $f: t \mapsto e^{-t} \ln t$ est continue sur $]0, +\infty[$.

- f est de signe constant sur]0,1], et $f(t) \sim \ln t$; puisque $\int_0^1 \ln t \, dt$ existe (intégrale de référence), il en résulte que $\int_0^1 |f|$ existe.
- $\lim_{t \to +\infty} t^2 f(t) = 0$ (croissances comparées) donc f(t) = 0 (croissances comparées) donc f(t) = 0 (croissances comparées) donc f(t) = 0 (puisque $\int_{1}^{+\infty} \frac{dt}{t^2}$ existe, il en est de même de $\int_{1}^{+\infty} f(t) = \int_{1}^{+\infty} |f| dt$

En conclusion, f est intégrable sur]0,1] et sur $[1,+\infty[$, donc sur \mathbb{R}_+^* .

Soient alors x, y deux réels strictement positifs tels que y < x. On a, en intégrant par parties :

$$\int_{y}^{x} e^{-t} \ln t \, dt = \left[-e^{-t} \ln t \right]_{y}^{x} + \int_{y}^{x} \frac{e^{-t}}{t} \, dt = e^{-y} \ln y - e^{-x} \ln x + \int_{y}^{x} \frac{e^{-t}}{t} \, dt$$

et, puisque $t \mapsto \frac{e^{-t}}{t}$ est intégrable sur $[y, +\infty[$, on en tire, en faisant tendre x vers $+\infty$:

$$\int_{y}^{+\infty} e^{-t} \ln t \, dt = e^{-y} \ln y + \int_{y}^{+\infty} \frac{e^{-t}}{t} \, dt$$

et enfin, puisque $t \mapsto e^{-t} \ln t$ est intégrable sur $]0, +\infty[$

$$\int_0^{+\infty} e^{-t} \ln t \, dt = \lim_{y \to 0^+} \left(e^{-y} \ln y + \int_y^{+\infty} \frac{e^{-t}}{t} \, dt \right) .$$

e) D'après les résultats des questions c) et d) :

$$\int_{0}^{+\infty} e^{-t} \ln t \, dt = \lim_{y \to 0^{+}} \left((e^{-y} - 1) \ln y + \ln y + \int_{y}^{+\infty} \frac{e^{-t}}{t} \, dt \right) = \lim_{y \to 0^{+}} (e^{-y} - 1) \ln y - \gamma = -\gamma$$

puisque $(e^{-y} - 1) \ln y \sim_{y \to 0^+} y \ln y$. Ainsi :

$$\gamma = -\int_0^{+\infty} e^{-t} \ln t \, dt .$$

Partie III: Pour une valeur approchée de la constante d'Euler

- 1. **a**) On avait trouvé, en II.A.a, pour tout réel y > 0, $\int_{y}^{+\infty} \frac{e^{-t}}{1 e^{-t}} dt = -\ln(1 e^{-y})$, donc $\int_{1}^{+\infty} \frac{e^{-t}}{1 e^{-t}} dt = -\ln(1 e^{-1})$.
 - Soit $x \in]0,1]$. Le changement de variable $u = e^{-t}$ donne

$$\int_{x}^{1} \left(\frac{1}{t} - \frac{e^{-t}}{1 - e^{-t}} \right) dt = -\int_{e^{-x}}^{e^{-1}} \left(\frac{-1}{\ln u} - \frac{u}{1 - u} \right) \frac{du}{u} = \int_{e^{-x}}^{e^{-1}} \left(\frac{1}{u \ln u} + \frac{1}{1 - u} \right) du$$
$$= \left[\ln |\ln u| - \ln(1 - u) \right]_{e^{-x}}^{e^{-1}}$$
$$= -\ln \left(\frac{x}{1 - e^{-x}} \right) - \ln(1 - e^{-1})$$

Puisque $\lim_{x\to 0^+} \ln\left(\frac{x}{1-\mathrm{e}^{-x}}\right) = 0$, on en déduit $\int_0^1 \left(\frac{1}{t} - \frac{\mathrm{e}^{-t}}{1-\mathrm{e}^{-t}}\right) \mathrm{d}t = -\ln(1-\mathrm{e}^{-1})$ et, finalement :

$$\int_0^1 \left(\frac{1}{t} - \frac{e^{-t}}{1 - e^{-t}} \right) dt = \int_1^{+\infty} \frac{e^{-t}}{1 - e^{-t}} dt = -\ln(1 - e^{-1}).$$

b) D'après II.3.d:

$$\gamma = \int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt = \int_0^1 e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt + \int_1^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt$$

Donc, en utilisant la question précédente (toutes les intégrales écrites sont bien convergentes!):

$$\begin{split} \gamma &= \int_0^1 \mathrm{e}^{-t} \left(\frac{1}{1 - \mathrm{e}^{-t}} - \frac{1}{t} \right) \mathrm{d}t + \int_1^{+\infty} \frac{\mathrm{e}^{-t}}{1 - \mathrm{e}^{-t}} \mathrm{d}t - \int_1^{+\infty} \frac{\mathrm{e}^{-t}}{t} \mathrm{d}t \\ &= \int_0^1 \mathrm{e}^{-t} \left(\frac{1}{1 - \mathrm{e}^{-t}} - \frac{1}{t} \right) \mathrm{d}t + \int_0^1 \left(\frac{1}{t} - \frac{\mathrm{e}^{-t}}{1 - \mathrm{e}^{-t}} \right) \mathrm{d}t - \int_1^{+\infty} \frac{\mathrm{e}^{-t}}{t} \mathrm{d}t \\ &= \int_0^1 \frac{1 - \mathrm{e}^{-t}}{t} \mathrm{d}t - \int_1^{+\infty} \frac{\mathrm{e}^{-t}}{t} \mathrm{d}t \end{split}$$

ce qui est le résultat demandé.

2. a) $\sum_{k=0}^{+\infty} \frac{H_k}{k!} x^k$ est une série entière. Pour déterminer son rayon de convergence, on peut utiliser la règle de d'Alembert pour les séries numériques. Si $x \neq 0$,

$$\frac{\left|\frac{H_{k+1}}{(k+1)!}x^{k+1}\right|}{\left|\frac{H_k}{k!}x^k\right|} = \frac{H_{k+1}}{H_k}\frac{|x|}{k+1} \xrightarrow[k \to +\infty]{} 0 \quad \text{puisque } H_k \underset{k \to \infty}{\sim} \ln k$$

ce qui prouve que le rayon de convergence de cette série entière est $+\infty$. D'après les théorèmes du cours, on peut conclure :

$$F(x) = \sum_{k=0}^{+\infty} \frac{H_k}{k!} x^k \text{ est de classe } \mathscr{C}^{\infty} \text{ sur } \mathbb{R} .$$

b) Les théorèmes du cours sur les séries entières permettent de dériver cette série terme à terme donc

$$F'(x) - F(x) = \sum_{k=1}^{+\infty} \frac{H_k}{(k-1)!} x^{k-1} - \sum_{k=0}^{+\infty} \frac{H_k}{k!} x^k$$

$$= \sum_{k=1}^{+\infty} \frac{H_k}{(k-1)!} x^{k-1} - \sum_{k=1}^{+\infty} \frac{H_{k-1}}{(k-1)!} x^{k-1}$$

$$= \sum_{k=1}^{+\infty} \frac{H_k - H_{k-1}}{(k-1)!} x^{k-1} = \sum_{k=1}^{+\infty} \frac{x^{k-1}}{k!}$$

puisque $H_k - H_{k-1} = \frac{1}{k}$ pour tout $k \ge 1$. En comparant avec le développement en série entière de $\exp: e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$, on a bien, pour $x \ne 0: F'(x) - F(x) = \frac{1}{x}(e^x - 1)$.

c) On résout alors l'équation différentielle ci-dessus par la méthode de variations de la constante. En posant $F(x) = e^x \varphi(x)$ pour tout x > 0, on obtient $\varphi'(x) = \frac{1}{x} (e^x - 1)$, d'où $\varphi(x) = \int_0^x \frac{1 - e^{-t}}{t} dt + cste$. Puisque $\varphi(0) = F(0) =$, la constante est nulle et l'on obtient bien :

$$\forall x > 0 , F(x) = e^x \int_0^x \frac{1 - e^{-t}}{t} dt .$$

3. Pour tout x > 0:

$$\gamma + \ln x + \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = \gamma + \int_{1}^{x} \frac{dt}{t} + \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$$

$$= \int_{0}^{1} \frac{1 - e^{-t}}{t} dt - \int_{1}^{+\infty} \frac{e^{-t}}{t} dt + \int_{1}^{x} \frac{dt}{t} + \int_{x}^{+\infty} \frac{e^{-t}}{t} dt \quad (d'après III.1.b)$$

$$= \int_{0}^{1} \frac{1 - e^{-t}}{t} dt - \int_{1}^{+\infty} \frac{e^{-t}}{t} dt + \int_{1}^{x} \frac{1 - e^{-t}}{t} dt + \int_{1}^{x} \frac{e^{-t}}{t} dt + \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$$

$$= \int_{0}^{x} \frac{1 - e^{-t}}{t} dt$$

ce qui donne bien, compte tenu de la question précédente :

$$\gamma + \ln x = e^{-x} F(x) - \int_{x}^{+\infty} \frac{e^{-t}}{t} dt.$$

4. Puisque, pour $k \ge 1$, $H_k = \sum_{p=1}^k \frac{1}{p}$, on a $H_k \le k$ donc

$$\sum_{k=an+1}^{+\infty} \frac{H_k}{k!} n^k \leq \sum_{k=an+1}^{+\infty} \frac{n^k}{(k-1)!} = \sum_{k=0}^{+\infty} \frac{n^{an+1+k}}{(an+k)!} = n^{an+1} \sum_{k=0}^{+\infty} \frac{n^k}{(an+k)!} = n^{an+1} \sum_{k=0}^{+\infty} \frac{(an)^k}{(an+k)!} \left(\frac{1}{a}\right)^k$$

et, puisque, pour tout entier $k \ge 0$, $\frac{(an)^k}{(an+k)!} \le \frac{1}{(an)!}$ et que la série géométrique $\sum \frac{1}{a^k}$ converge (car $a \ge 2$), on obtient la première inégalité demandée :

$$\sum_{k=an+1}^{+\infty} \frac{\mathbf{H}_k}{k!} n^k \leq \frac{n^{an+1}}{(an)!} \sum_{k=0}^{+\infty} \left(\frac{1}{a}\right)^k$$

En utilisant l'indication de l'énoncé, on a $(an)! \geqslant \sqrt{2\pi an} \left(\frac{an}{e}\right)^{an}$; on a aussi $\sum_{k=0}^{+\infty} \left(\frac{1}{a}\right)^k = \frac{1}{1-\frac{1}{a}} = \frac{a}{a-1}$, et, en remplaçant dans l'inégalité précédente, on trouve :

$$\sum_{k=an+1}^{+\infty} \frac{H_k}{k!} n^k \leqslant \frac{a}{a-1} \frac{n^{an+1}}{\sqrt{2\pi an}} \left(\frac{e}{an}\right)^{an} = \frac{a}{a-1} \frac{\sqrt{n}}{\sqrt{2\pi a}} \left(\frac{e}{a}\right)^{an}$$

5. D'après III.3, pour tout $n \in \mathbb{N}^*$,

$$\gamma + \ln n = e^{-n} F(n) - \int_{n}^{+\infty} \frac{e^{-t}}{t} dt = e^{-n} \sum_{k=0}^{+\infty} \frac{H_{k}}{k!} n^{k} - \int_{n}^{+\infty} \frac{e^{-t}}{t} dt$$

donc

$$\gamma + \ln n - e^{-n} \sum_{k=0}^{an} \frac{H_k}{k!} n^k = e^{-n} \sum_{k=an+1}^{+\infty} \frac{H_k}{k!} n^k - \int_n^{+\infty} \frac{e^{-t}}{t} dt$$

ďoù

$$\left| \gamma + \ln n - e^{-n} \sum_{k=0}^{an} \frac{H_k}{k!} n^k \right| \leq e^{-n} \sum_{k=an+1}^{+\infty} \frac{H_k}{k!} n^k + \int_n^{+\infty} \frac{e^{-t}}{t} dt \leq \frac{a}{a-1} \frac{e^{-n} \sqrt{n}}{\sqrt{2\pi a}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac{e}{a} \right)^{an} + \frac{1}{n} \underbrace{\int_n^{+\infty} e^{-t} dt}_{=e^{-n}} \frac{e^{-n} \sqrt{n}}{\sqrt{n}} \left(\frac$$

ce qui est le résultat demandé.

6. Pour $a \ge 3$, $\frac{e}{a} < 1$, et le terme $e^{-n} \sqrt{n} \left(\frac{e}{a}\right)^{an}$ est vite négligeable devant $\frac{e^{-n}}{n}$!

On peut donc considérer que l'erreur commise en approchant γ par l'expression $e^{-n}\sum_{k=0}^{an}\frac{H_k}{k!}n^k - \ln n$ est à peu près égale à $\frac{e^{-n}}{n}$. Pour avoir une erreur inférieure à 10^{-10} , il faut donc choisir n=21 ($\frac{e^{-21}}{21}\approx 3,6\ 10^{-11}$).

Dans ce cas, pour minimiser le nombre de termes à calculer, autant prendre a=3; d'ailleurs, pour a=3 et n=21, le terme $\frac{a}{a-1}\frac{\mathrm{e}^{-n}\sqrt{n}}{\sqrt{2\pi a}}\left(\frac{\mathrm{e}}{a}\right)^{an}$ est approximativement égal à 2,4 10^{-12} , ce qui confirme que la valeur de a n'a finalement pas d'importance pour le calcul d'erreur!

Une valeur approchée de γ sera donc $e^{-21}\sum_{k=0}^{63}\frac{H_k}{k!}21^k-\ln 21$. Bien sûr, pour le cacul de cette somme, on

ne calculera pas séparément n^k et k!, mais on utilisera la relation de récurrence $\frac{n^{k+1}}{(k+1)!} = \frac{n^k}{k!} \cdot \frac{n}{k+1}$.

Bien que non demandé, voici le programme Maple© correspondant :

Partie IV: La constante d'Euler somme de la série de Vacca

1. a) Pour tout entier $p \ge 1$:

$$\begin{split} \frac{v_p}{p} &= \sum_{k=2^p}^{p+1-1} \frac{(-1)^k}{k} = \sum_{\substack{k=2^p \\ k \text{ pair}}}^{2^{p+1}-1} \frac{1}{k} - \sum_{\substack{k=2^p \\ k \text{ impair}}}^{2^{p+1}-1} \frac{1}{k} \\ &= \sum_{\substack{k=2^p \\ k \text{ pair}}}^{2^{p+1}-1} \frac{1}{k} - \left(\sum_{\substack{k=2^p \\ k \text{ pair}}}^{2^{p+1}-1} \frac{1}{k} - \sum_{\substack{k=2^p \\ k \text{ pair}}}^{2^{p+1}-1} \frac{1}{k} \right) \\ &= 2 \sum_{\substack{k=2^p \\ k \text{ pair}}}^{2^{p+1}-2} \frac{1}{k} - \sum_{\substack{k=2^p \\ k \text{ pair}}}^{2^{p+1}-1} \frac{1}{k} \\ &= 2 \sum_{\substack{k=2^p - 1 \\ k=2^p - 1}}^{2^{p-1}-1} \frac{1}{2k} - \sum_{\substack{k=2^p \\ k=2^p }}^{2^{p+1}-1} \frac{1}{k} = \sigma_{p-1} - \sigma_p \end{split}$$

b) Donc

$$\sum_{p=1}^{n} v_p = \sum_{p=1}^{n} p \sigma_{p-1} - \sum_{p=1}^{n} p \sigma_p = \sum_{p=0}^{n-1} (p+1) \sigma_p - \sum_{p=1}^{n} p \sigma_p = \sum_{p=0}^{n-1} [(p+1) - p] \sigma_p - n \sigma_n = \sum_{p=0}^{n-1} \sigma_p - n \sigma_n$$

c) Pour $n \ge 1$:

$$\sum_{p=0}^{n-1} \sigma_p = \sum_{p=0}^{n-1} \sum_{h=2^p}^{2^{p+1}-1} \frac{1}{h} = \sum_{h=0}^{2^n-1} \frac{1}{h} = \mathrm{H}_{2^n} - \frac{1}{2^n}$$

d) On a donc

$$\sigma_n = \sum_{p=0}^n \sigma_p - \sum_{p=0}^{n-1} \sigma_p = H_{2^{n+1}} - \frac{1}{2^{n+1}} - H_{2^n} + \frac{1}{2^n} = H_{2^{n+1}} - H_{2^n} + \frac{1}{2^{n+1}}$$

ďoù

$$\sum_{p=1}^{n} v_p = \sum_{p=0}^{n-1} \sigma_p - n\sigma_n = H_{2^n} - \frac{1}{2^n} - n\sigma_n = H_{2^n} - \frac{1}{2^n} - n\left(H_{2^{n+1}} - H_{2^n} + \frac{1}{2^{n+1}}\right)$$

En utilisant le développement asymptotique de H_{2^n} obtenu en I.5, on en déduit :

$$\begin{split} \sum_{p=1}^{n} \nu_p &= \ln(2^n) + \gamma + \frac{1}{2^{n+1}} + o\left(\frac{1}{2^n}\right) - \frac{1}{2^n} - n\left(\ln(2^{n+1}) + \gamma + \frac{1}{2^{n+2}} - \left(\ln(2^n) + \gamma + \frac{1}{2^{n+1}}\right) + o\left(\frac{1}{2^n}\right) + \frac{1}{2^{n+1}}\right) \\ &= \gamma + \frac{n}{2^{n+2}} + o\left(\frac{n}{2^n}\right) \end{split}$$

donc $\lim_{n \to +\infty} \sum_{p=1}^{n} v_p = \gamma$. Ainsi:

La série de terme général
$$v_p$$
 converge et $\sum_{p=1}^{+\infty} v_p = \gamma$.

2. a) On ne peut pas appliquer ici le critère spécial sur les séries alternées car la suite $n \mapsto \frac{\lfloor \log_2 n \rfloor}{n}$ n'est pas décroissante. Voici d'ailleurs le graphe de la fonction $x \mapsto \frac{\lfloor \log_2 x \rfloor}{x}$:

b) • Soit $n \in \mathbb{N}$ et $m \in \mathbb{N}$ tel que $2^{n+1} \le m < 2^{n+2}$.

La série de terme général $\frac{(-1)^k}{k}$ vérifie le critère spécial des séries alternées. En particulier, elle est convergente, et si on pose $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$, on sait que $\left| R_n \right| \leq \frac{1}{n+1}$.

Or on a
$$\sum_{k=2^{n+1}}^{m} \frac{(-1)^k}{k} = R_{2^{n+1}-1} - R_m \text{ donc } \left| \sum_{k=2^{n+1}}^{m} \frac{(-1)^k}{k} \right| \le \left| R_{2^{n+1}-1} \right| + \left| R_m \right| \text{ ce qui donne}$$
$$\left| \sum_{k=2^{n+1}}^{m} \frac{(-1)^k}{k} \right| \le \frac{1}{2^{n+1}} + \frac{1}{m+1} \le \frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} = \frac{1}{2^n}$$

• Pour k entier tel que $2^{n+1} \le k < 2^{n+2}$, on a $n+1 \le \log_2 k < n+2$ donc $\lfloor \log_2 k \rfloor = n+1$.

Par suite $\sum_{k=2^{n+1}}^m u_k = \sum_{k=2^{n+1}}^m \frac{(-1)^k}{k} \lfloor \log_2 k \rfloor = (n+1) \sum_{k=2^{n+1}}^m \frac{(-1)^k}{k}$ et l'inégalité précédente donne immédiatement :

$$\left| \sum_{k=2^{n+1}}^m u_k \right| \leqslant \frac{n+1}{2^n} \ .$$

c) • Soit $n \in \mathbb{N}$ et $m \in \mathbb{N}$ tel que $2^{n+1} \le m < 2^{n+2}$. Alors

$$\sum_{k=1}^{m} u_k = \sum_{k=1}^{2^{n+1}-1} u_k + \sum_{k=2^{n+1}}^{m} u_k$$
$$= \sum_{p=0}^{n} v_p + \sum_{k=2^{n+1}}^{m} u_k$$

et, puisque
$$\left|\sum_{k=2^{n+1}}^m u_k\right| \leq \frac{n+1}{2^n}$$
, on a bien $\sum_{k=2^{n+1}}^m u_k = O\left(\frac{n}{2^n}\right)$ i.e $\left|\sum_{k=1}^m u_k = \sum_{p=0}^n v_p + O\left(\frac{n}{2^n}\right)\right|$.

• Pour tout entier $\geqslant 1$, il existe un et une seul entier n tel que $2^{n+1} \leqslant m < 2^{n+2}$: c'est $n = \lfloor \log_2 m \rfloor - 1$. Donc, quand m tend vers $+\infty$, il en est de même de n; puisque $\lim_{n \to +\infty} \sum_{p=0}^{n} v_p = \gamma$,

il résulte immédiatement de la relation précédente que $\lim_{m\to\infty}\sum_{k=1}^m u_k$ existe et vaut γ , c'est-à-dire :

La série de terme général
$$u_n$$
 converge et $\sum_{n=1}^{+\infty} u_n = \gamma$.

3. a) D'après le critère spécial sur les séries alternées (majoration du reste), on sait que $\left|r_n\right| \leqslant \frac{1}{2^n}$. La série de terme général $\frac{1}{2^n}$ est une série géométrique de raison $\frac{1}{2}$, donc converge. Par comparaison de série à termes positifs, on en déduit :

La série de terme général $|r_n|$ converge, i.e la série de terme général r_n est absolument convergente.

- **b**) La relation $v_k = k(r_k r_{k+1})$ est immédiate.
 - On additionne ensuite ces relations pour k variant de 1 à n, et, exactement comme dans IV.1.b, on trouve facilement : $\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} r_k nr_{n+1}.$
 - De l'inégalité $\left|r_{n+1}\right| \leqslant \frac{1}{2^{n+1}}$, on déduit $\lim_{n \to \infty} n r_{n+1} = 0$.

La relation précédente prouve donc, en faisant tendre n vers $+\infty$, que $\sum_{n=1}^{+\infty} r_n = \sum_{k=1}^{+\infty} v_k = \gamma$, ce qui peut aussi s'écrire :

$$\gamma = \sum_{n=1}^{+\infty} \left(\sum_{k=2^n}^{+\infty} \frac{(-1)^k}{k} \right) .$$

Partie V: La formule de Gosper

1. On reprend les notations et l'indication de l'énoncé. Dans l'anneau $\mathscr{L}(\mathscr{F})$, puisque $\mathrm{Id}_{\mathscr{F}}$ et T commutent, on peut utiliser la formule du binôme. On a donc

$$\Delta^{n} = (\mathrm{Id}_{\mathscr{F}} - \mathrm{T})^{n} = \sum_{p=0}^{n} (-1)^{p} \binom{n}{p} \mathrm{T}^{p}$$

Or, par récurrence immédiate sur p, il est facile de vérifier que, pour tout $p \in \mathbb{N}$, pour tout $x \in \mathcal{F}$ et tout $k \in \mathbb{N}$, on a $T^p(x)[k] = x[k+p]$. On aura donc bien, pour tout $x \in \mathcal{F}$ et tout $k \in \mathbb{N}$:

$$\Delta^{n}(x)[k] = \sum_{p=0}^{n} (-1)^{p} {n \choose p} x[k+p] .$$

- 2. Rem : il s'agit dans cette question de démontrer le théorème de Césaro dans un cas particulier...
 - a) Pour $n \ge p$, $\binom{n}{p} = \frac{n(n-1)\cdots(n-p+1)}{p!} \underset{n\to+\infty}{\sim} \frac{n^p}{p!}$ donc $\frac{\binom{n}{p}}{2^n} \underset{n\to+\infty}{\sim} \frac{1}{p!} \frac{n^p}{2^n}$, qui tend vers 0 quand n tend vers $+\infty$ (croissances comparées).
 - **b)** Soit $\varepsilon > 0$. Puisque la suite (u_n) tend vers 0, par définition de la limite, il existe un entier k tel que, pour tout $p \ge k+1$, on ait $|u_p| < \frac{\varepsilon}{2}$.

On aura alors, pour $n \ge k + 1$:

$$\left| \frac{1}{2^n} \sum_{p=k+1}^n \binom{n}{p} u_p \right| \leq \frac{1}{2^n} \sum_{p=k+1}^n \binom{n}{p} \left| u_p \right| < \frac{\varepsilon}{2} \cdot \frac{1}{2^n} \sum_{p=k+1}^n \binom{n}{p} \leq \frac{\varepsilon}{2} \cdot \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} = \frac{\varepsilon}{2}$$

(puisque
$$\sum_{p=0}^{n} {n \choose p} = (1+1)^n = 2^n$$
).

D'autre part, d'après la question précédente, l'entier k étant fixé comme ci-dessus, on a $\lim_{n\to+\infty}\frac{1}{2^n}\sum_{p=0}^k\binom{n}{p}u_p=0$ (somme finie de termes qui tendent vers 0) donc il existe un entier n_0 , que l'on peut supposer $\geqslant k+1$, tel que, pour tout entier $n\geqslant n_0$ on ait $\left|\frac{1}{2^n}\sum_{p=0}^k\binom{n}{p}u_p\right|<\frac{\varepsilon}{2}$.

Finalement, en utilisant l'égalité gentiment fournie par l'énoncé, on obtient, pour $n \ge n_0$:

$$\left| \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} u_p \right| \le \left| \frac{1}{2^n} \sum_{p=0}^k \binom{n}{p} u_p \right| + \left| \frac{1}{2^n} \sum_{p=k+1}^n \binom{n}{p} u_p \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

ce qui montre, par définition de la limite, que

$$\lim_{n \to +\infty} \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} u_p = 0.$$

c) Dans le cas où la suite (u_n) tend vers ℓ , posons $v_n = u_n - \ell$. D'après le résultat précédent, $\lim_{n \to +\infty} \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} v_p = 0.$

$$\frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} v_p = \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} (u_p - \ell) = \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} u_p - \left(\frac{1}{2^n} \sum_{p=0}^n \binom{n}{p}\right) \ell = \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} u_p - \ell$$

$$\operatorname{donc} \lim_{n \to +\infty} \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} v_p = 0 \text{ implique} : \overline{\lim_{n \to +\infty} \frac{1}{2^n} \sum_{p=0}^n \binom{n}{p} u_p} = \ell \ .$$

3. a) En utilisant le résultat de la question V.1 et l'indication de l'énoncé, on a

$$\begin{split} \mathbf{V_{N}} &= \sum_{n=0}^{N} \frac{\Delta^{n}(x)[0]}{2^{n}+1} = \sum_{n=0}^{N} \frac{1}{2^{n+1}} \sum_{p=0}^{n} \binom{n}{p} (-1)^{p} x_{p} \\ &= \sum_{n=0}^{N} \frac{1}{2^{n+1}} \sum_{p=0}^{n} \binom{n}{p} (\mathbf{U}_{p} - \mathbf{U}_{p-1}) \\ &= \sum_{n=0}^{N} \frac{1}{2^{n+1}} \left(\sum_{p=0}^{n} \binom{n}{p} \mathbf{U}_{p} - \sum_{p=0}^{n} \binom{n}{p} \mathbf{U}_{p-1} \right) \quad (\text{car } \mathbf{U}_{-1} = 0) \\ &= \sum_{n=0}^{N} \frac{1}{2^{n+1}} \left(\sum_{p=0}^{n} \binom{n}{p} \mathbf{U}_{p} - \sum_{p=0}^{n-1} \binom{n}{p+1} \mathbf{U}_{p} \right) \quad (\text{en posant } \binom{n}{n+1} = 0) \\ &= \sum_{n=0}^{N} \frac{1}{2^{n+1}} \sum_{p=0}^{n} \left(\binom{n}{p} - \binom{n}{p+1} \right) \mathbf{U}_{p} \\ &= \sum_{p=0}^{N} \left[\sum_{n=p}^{N} \frac{1}{2^{n+1}} \left(\binom{n}{p} - \binom{n}{p+1} \right) \right] \mathbf{U}_{p} \quad \text{car } \left\{ \begin{array}{c} 0 \leqslant n \leqslant N \\ 0 \leqslant p \leqslant n \end{array} \right. \iff \left\{ \begin{array}{c} 0 \leqslant p \leqslant N \\ p \leqslant n \leqslant N \end{array} \right. \end{split}$$

donc pour prouver la formule de l'énoncé, il suffit de prouver que

$$\forall p \in \mathbb{N} , \forall N \geqslant p , \sum_{n=p}^{N} \frac{1}{2^{n+1}} \left(\binom{n}{p} - \binom{n}{p+1} \right) = \frac{1}{2^{N+1}} \binom{N+1}{p+1}$$

ce qui se fait facilement par récurrence sur N :

- L'égalité est vérifiée pour N=p, car elle s'écrit alors $\frac{1}{2^{p+1}}\binom{p}{p}=\frac{1}{2^{p+1}}\binom{p+1}{p+1}$.
- Supposons l'égalité réalisée au rang N. Alors,

$$\begin{split} \sum_{n=p}^{N+1} \frac{1}{2^{n+1}} \left(\binom{n}{p} - \binom{n}{p+1} \right) &= \sum_{n=p}^{N} \frac{1}{2^{n+1}} \left(\binom{n}{p} - \binom{n}{p+1} \right) + \frac{1}{2^{N+2}} \left(\binom{N+1}{p} - \binom{N+1}{p+1} \right) \\ &= \frac{1}{2^{N+1}} \binom{N+1}{p+1} + \frac{1}{2^{N+2}} \binom{N+1}{p} - \frac{1}{2^{N+2}} \binom{N+1}{p+1} \quad \text{(avec l'hyp. de réc.)} \\ &= \frac{1}{2^{N+2}} \binom{N+1}{p+1} + \frac{1}{2^{N+2}} \binom{N+1}{p} \\ &= \frac{1}{2^{N+2}} \binom{N+2}{p+1} \quad \text{(d'après la formule du triangle de Pascal)} \end{split}$$

ce qui est bien le résultat voulu à l'ordre N+1, et achève la démonstration.

b) On a supposé que la série de terme général $(-1)^k x_k$ converge. Notons $S = \sum_{k=0}^{+\infty} (-1)^k x_k$. On a donc $\lim_{N \to +\infty} U_N = S$.

On a alors, d'après la relation précédente, et en utilisant le résultat de V.2.c, $\lim_{N\to+\infty} V_N = S$. Cela revient à dire que la série de terme général $\frac{\Delta^n(x)[0]}{2^n+1}$ converge et a pour somme S, soit :

$$\sum_{n=0}^{+\infty} \frac{\Delta^n(x)[0]}{2^n + 1} = \sum_{k=0}^{+\infty} (-1)^k x_k.$$

Rem : la série $\sum \frac{\Delta^n(x)[0]}{2^n+1}$ s'appelle la transformée d'Euler de la série $\sum (-1)^k x_k$. Ces deux séries ont même somme, mais la série tranformée converge en général beaucoup plus vite que la série initiale!

4. a) • Rem : le résultat admis se démontre facilement par récurrence : Notons $I_n, m = \int_0^1 x^n (1-x)^m dx$, pour $n, m \in \mathbb{N}$.

Une intégration par parties donne :

$$I_{n+1,m} = \int_0^1 x^{n+1} (1-x)^m dx = \left[-x^{n+1} \frac{(1-x)^{m+1}}{m+1} \right]_0^1 + \frac{n+1}{m+1} \int_0^1 x^n (1-x)^{m+1} dx = \frac{n+1}{m+1} I_{n,m+1}$$

d'où l'on tire par une récurrence facile :

$$I_{n,m} = \frac{n!}{(m+1)\cdots(m+n)}I_{0,m+n} = \frac{n!}{(m+1)\cdots(m+n)(m+n+1)} = \frac{m!n!}{(m+n+1)!}$$

• En utilisant le résultat de la question V.1, on a $\Delta^m(x)[0] = \sum_{p=0}^m (-1)^p \binom{m}{p} \frac{1}{2^n + p}$.

En écrivant que $\frac{1}{2^n + p} = \int_0^1 x^{2^n + p - 1} dx$, et par linéarité de l'intégrale on obtient :

$$\Delta^{m}(x)[0] = \int_{0}^{1} \left(\sum_{p=0}^{m} (-1)^{p} {m \choose p} x^{2^{n}+p-1} \right) dx = \int_{0}^{1} x^{2^{n}-1} \left(\sum_{p=0}^{m} (-1)^{p} {m \choose p} x^{p} \right) dx$$

soit

$$\Delta^{m}(x)[0] = \int_{0}^{1} x^{2^{n}-1} (1-x)^{m} dx = I_{2^{n}-1,m} = \frac{(2^{n}-1)!m!}{(2^{n}+m)!} = \frac{1}{2^{n}} \frac{1}{\binom{2^{n}+m}{m}}$$

b) On reprend le résultat de IV.3.b, qui peut s'écrire : $\gamma = \sum_{n=1}^{+\infty} \left(\sum_{j=0}^{+\infty} (-1)^j x_j \right)$, donc, d'après V.3.b, $\gamma = \sum_{n=1}^{+\infty} \left(\sum_{j=0}^{+\infty} \frac{\Delta^m(x)[0]}{2^m + 1} \right)$, et enfin, en remplaçant à l'aide du calcul précédent :

$$\gamma = \sum_{n=1}^{+\infty} \left(\sum_{m=0}^{+\infty} \frac{1}{2^{n+m+1}} \frac{1}{\binom{2^n+m}{m}} \right) .$$

c) Pour m = 0, on a $\frac{1}{2^{n+m+1}} \frac{1}{\binom{2^n+m}{m}} = \frac{1}{2^{n+1}}$ et $\sum_{n=1}^{+\infty} \frac{1}{2^{n+1}} = \frac{1}{2}$ donc $\gamma = \frac{1}{2} + \sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} \frac{1}{2^{n+m+1}} \frac{1}{\binom{2^n+m}{m}}\right)$ ce qui peut s'écrire

$$\gamma = \frac{1}{2} + \sum_{p=2}^{+\infty} \sum_{\substack{n+m=p\\ n>1}} \frac{1}{2^{n+m+1}} \frac{1}{\binom{2^n+m}{m}} = \frac{1}{2} + \sum_{p=2}^{+\infty} \frac{1}{2^{p+1}} \sum_{\substack{n+m=p\\ n>1}} \frac{1}{\binom{2^n+m}{m}} = \frac{1}{2} + \sum_{p=2}^{+\infty} \frac{1}{2^{p+1}} \sum_{m=1}^{p-1} \frac{1}{\binom{2^{p-m}+m}{m}}$$

Rem : Cette série converge très rapidement. Par exemple, en calculant pour p variant de 2 à 100, on trouve une précision de l'ordre de 10^{-30} .