

Common Lines Implied Clustering

Donovan Webb

eBIC/University of Bath

March 23rd, 2020

- - 1 Single Lines
 - 2 Finding Common Lines
 - 3 Clustering
 - 4 Reconstruction
 - 5 Full Pipeline

Single Lines

Single Lines

•0000

Single Lines

Single Lines

Single Lines

Single Lines

Common Lines

Single Lines

00000

Two projections of the same 3D volume share at least one common line in the Radon transform

Single Lines

00000

What about two different 3D volumes?

Finding the common line between two sinograms

Finding the common line between two sinograms

But what about N sinograms?

Sinogram Cross Correlation

Finding the common line between two sinograms

But what about N sinograms? What about N sinograms from a heterogenous dataset?

Slow.

Slow. Exhaustive.

CLIC Pipeline

Slow. Exhaustive. Doesn't handle noise well.

Find features - Reduce noise Linear (PCA)

a) Non-Linear b)

a: LLE, b: ISOMAP, c: TSNE, d: UMAP

Dimensional Reduction - ground truths

a: LLE, b: ISOMAP, c: TSNE, d: UMAP

But how do we assign clusters?

Clustering

Ground truth: Good seperatation between two classes - but discontinuous

Just a model left!

Reconstruction

Single Lines

Common line gives axis of rotation. Three common lines gives 2 unique solutions for 3D orientation (One mirror of other)

Angular Reconstitution: A Posteriori Assignment of Projection Directions for 3d Reconstruction. Van Heel 1987

Donovan Webb eBIC/University of Bath

Common line gives axis of rotation. Three common lines gives 2 unique solutions for 3D orientation (One mirror of other)

Angular Reconstitution: A Posteriori Assignment of Projection Directions for 3d Reconstruction. Van Heel 1987

Common line gives axis of rotation. Three common lines gives 2 unique solutions for 3D orientation (One mirror of other)

Angular Reconstitution: A Posteriori Assignment of Projection Directions for 3d Reconstruction. Van Heel 1987

Eigenvector Relaxation

Aim: Given all common lines c for projection matrices R for each P to give greatest conse

Single Lines

Radon Space

$$\max \sum_{i \neq j} R_i c_{ij} \cdot \overset{cij}{R_j} = \overset{(cos(\theta_{ij}), sin(\theta_{ij}), 0), cji}{(2)} = \overset{(cos(\theta_{ji}), sin(\theta_{ji}), 0)}{(2)}$$
(1)

Maths*! Make large $(2N \times 2N)$ symmetric matrix S. Can recover R for each P from top 3 eigenvectors of S that maximise (2)!

Full Pipeline

A full pipeline of the procedure. 2d projs ¿ 2d sins ¿ 1d lines ¿ TSNE ¿ agglo ¿ clusters ¿ split into sep datasets ¿ find common lines ¿ eigenvector relaxation ¿ Models

Single Lines