

UPS2000-(1 kVA-3 kVA)

# **Modbus Protocol Development Guide**

Issue 02

Date 2016-06-20



#### Copyright © Huawei Technologies Co., Ltd. 2016. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

#### **Trademarks and Permissions**



HUAWEI and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

#### **Notice**

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

### Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base

Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://e.huawei.com

# **About This Document**

# **Purpose**

This document describes the Modbus protocol used between the RMS-MODBUS01B card, an optional component of the UPS2000-(1 kVA-3 kVA), or the UPS serial port (USB/RS232), and its host and provides examples of communication establishment processes.

# **Intended Audience**

This document is intended for:

- Technical support engineers
- Maintenance engineers
- Product users

# **Symbol Conventions**

The symbols that may be found in this document are defined as follows.

**Symbol Conventions** 

| Symbol           | Description                                                                                                                                                                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A</b> DANGER  | Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.                                                                                                               |
| <b>MARNING</b>   | Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.                                                                                                              |
| <b>A</b> CAUTION | Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.                                                                                                               |
| <b>⚠</b> NOTICE  | Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance deterioration, or unanticipated results.  NOTICE is used to address practices not related to |
|                  | personal injury.                                                                                                                                                                                                         |
| NOTE             | Calls attention to important information, best practices                                                                                                                                                                 |

| Symbol | Description                                                                                                          |
|--------|----------------------------------------------------------------------------------------------------------------------|
|        | and tips.                                                                                                            |
|        | NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration. |

# **Change History**

Changes between document issues are cumulative. The latest document issue contains all updates made in previous issues.

#### Issue 02 (2016-06-20)

This issue updated the collection and configuration table.

#### Issue 01 (2015-11-19)

This issue is the first official release.

# **Contents**

| About This Document                                               | ii |
|-------------------------------------------------------------------|----|
| 1 Communication Protocol                                          | 1  |
| 1.1 Protocol Description                                          |    |
| 1.2 Terms                                                         | 1  |
| 1.3 Physical Ports                                                | 2  |
| 1.3.1 Serial Communication Electrical Standards                   | 2  |
| 1.3.2 Data Transmission Speed                                     | 2  |
| 1.3.3 Cable Connection                                            | 2  |
| 1.3.3.1 RMS-MODBUS01B Card Communication Mode                     | 2  |
| 1.3.3.2 UPS Serial Port (USB/RS232) Communication Mode            | 9  |
| 1.3.3.3 Installing the Driver Software                            | 10 |
| 1.4 Communication Mode at the Physical Layer                      | 14 |
| 1.5 Command Types and Formats at the Application Layer            | 14 |
| 1.5.1 Function Code List                                          | 14 |
| 1.5.2 CRC Checking Algorithm                                      | 14 |
| 1.5.3 Definition and Format of the Read Device Identifier Command |    |
| 1.5.4 Definition and Format of the Read Command                   | 23 |
| 1.5.5 Definition and Format of the Write Single Register Command  | 24 |
| 2 Signal List                                                     | 26 |
| 2.1 Collection and Configuration                                  | 26 |
| 2.1.1 Signal List Description                                     | 26 |
| 2.1.2 Collection Signal List                                      | 26 |
| 2.1.3 Configuration and Control Signal List                       | 30 |
| 2.2 Alarms                                                        | 32 |
| 2.2.1 Signal List Description                                     | 32 |
| 2.2.2 Alarm Signal List                                           | 32 |
| 3 Examples of the Host Communication Process                      | 35 |
| A Acronyms and Abbreviations                                      | 37 |

# **1** Communication Protocol

# 1.1 Protocol Description

This section describes the Modbus protocol for command control and data exchange between the RMS-MODBUS01B cardor the UPS serial port (USB/RS232) and its host.

The functions stipulated in the protocol include:

- 1. The host obtains the UPS information by sending the read device identifier command.
- 2. The host obtains the specified UPS data by sending a read command.
- The host configures relevant parameters and controls actions by sending a write command.

The host is the master node in the communication process. The information exchange is done by a question-and-answer method. The information and parameters of slave nodes use the target registers as storage addresses. The master node executes the read/write commands by accessing the registers. This protocol supports one master node networked with multiple slave nodes. The slave nodes are distinguished by address.

When the RMS-MODBUS01B card is used for communication, the address range is between 1 and 247. Different slave nodes correspond to different addresses. The slave nodes connecting to the same communication bus must not have the same address.

When the UPS serial port (USB/RS232) is used for communication, the communication protocol supports only one master node networked with one slave node. The slave node address is fixed to 1.

### 1.2 Terms

Master node: runs on the dedicated back-end server and is responsible for communication with slave nodes. It is the host.

Slave node: In this guide, it is the RMS-MODBUS01B card or the UPS serial port (USB/RS232). It collects information from the UPS power modules, and is used for responding to the master node.

RS485: indicates a serial communications standard which supports the half duplex serial short-range communication.

Read device identifier command: The command is sent from the master node to the slave nodes, and the slave nodes return the relevant UPS information.

Read command: The command is sent from the master node to the slave nodes, and the slave nodes return the relevant register content.

Write command: The relevant parameters are packed at the master node and sent to the slave nodes for configuration.

Register address: Every signal or parameter of the slave nodes corresponds to an address. The host obtains the relevant information or configures the relevant parameters. These processes are completed by accessing these register addresses.

Slave node address: This address is the RMS-MODBUS01B card address, set by the dual in-line package (DIP) switch. The range is between 1 and 247. The address of the UPS serial port (USB/RS232) is fixed to 1.

# 1.3 Physical Ports

#### 1.3.1 Serial Communication Electrical Standards

The slave nodes communicate with the master node through the RS485 or RS232 ports.

Information transmission method:

- 1. Use the RTU transmission mode of the Modbus protocol.
- 2. The transmission mode for the character information is asynchronous mode using a frame format of one start bit, eight data bits (information byte), and one stop bit (10 bits in total).

# 1.3.2 Data Transmission Speed

The data transmission baud rate of the RMS-MODBUS01B card is 19200 bit/s by default and can be adjusted based on SW2.

**□** NOTE

When connecting multiple UPSs to the network management system (NMS), use the RS485/232 converter with the isolation function. Do not hot swap the RS485/232 converter.

The data transmission baud rate of the UPS serial port (USB/RS232) is fixed to 9600 bit/s.

#### 1.3.3 Cable Connection

#### 1.3.3.1 RMS-MODBUS01B Card Communication Mode

**Step 1** Set a hardware address for the Modbus card.

The hardware address for each card can be set using the SW1 DIP switch containing eight toggle switches, as shown in Figure 1-1. When you push toggle switch 1 downwards, the digit represents 1. If you push it upwards, the digit represents 0. The setting method is the same for the other seven toggle switches. You can set the DIP switch by using the binary method, as described in Table 1-1.



Figure 1-1 Address DIP switch

Table 1-1 Mapping between DIP switch settings and addresses (SW1)

| ID | Bit 1     | Bit 2     | Bit 3     | Bit 4     | Bit 5 | Bit 6 | Bit 7 | Bit 8 |
|----|-----------|-----------|-----------|-----------|-------|-------|-------|-------|
| 1  | √         | X         | X         | X         | X     | X     | х     | X     |
| 2  | X         | <b>√</b>  | X         | X         | X     | X     | X     | X     |
| 3  | $\sqrt{}$ | <b>√</b>  | X         | X         | X     | X     | X     | X     |
| 4  | X         | X         | <b>V</b>  | X         | X     | X     | X     | X     |
| 5  | $\sqrt{}$ | X         | $\sqrt{}$ | X         | X     | X     | X     | X     |
| 6  | X         | <b>√</b>  | <b>V</b>  | X         | X     | X     | X     | X     |
| 7  | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | X         | X     | X     | X     | X     |
| 8  | X         | X         | X         | $\sqrt{}$ | X     | X     | X     | X     |
| 9  | √         | X         | X         | V         | X     | x     | X     | X     |
| 10 | X         | <b>√</b>  | X         | <b>V</b>  | X     | X     | X     | X     |
| 11 | √         | <b>√</b>  | X         | <b>V</b>  | X     | X     | X     | X     |
| 12 | X         | X         | <b>V</b>  | $\sqrt{}$ | X     | X     | X     | X     |
| 13 | √         | X         | √         | <b>√</b>  | X     | X     | X     | X     |
| 14 | X         | <b>√</b>  | $\sqrt{}$ | $\sqrt{}$ | X     | X     | X     | X     |
| 15 | √         | <b>V</b>  | <b>√</b>  | V         | X     | X     | X     | X     |

| ID | Bit 1     | Bit 2     | Bit 3     | Bit 4     | Bit 5     | Bit 6     | Bit 7 | Bit 8 |
|----|-----------|-----------|-----------|-----------|-----------|-----------|-------|-------|
| 16 | Х         | X         | X         | х         | √         | X         | Х     | X     |
| 17 | V         | X         | X         | X         | √         | X         | X     | X     |
| 18 | X         | $\sqrt{}$ | X         | X         | $\sqrt{}$ | X         | X     | X     |
| 19 | V         | <b>√</b>  | X         | X         | √         | X         | X     | X     |
| 20 | X         | X         | $\sqrt{}$ | X         | $\sqrt{}$ | X         | X     | X     |
| 21 | $\sqrt{}$ | X         | $\sqrt{}$ | X         | $\sqrt{}$ | X         | X     | X     |
| 22 | X         | $\sqrt{}$ | $\sqrt{}$ | X         |           | X         | X     | X     |
| 23 | V         | <b>√</b>  | V         | X         | √         | X         | X     | X     |
| 24 | X         | X         | X         | $\sqrt{}$ |           | X         | X     | X     |
| 25 | V         | X         | X         | V         | √         | X         | X     | X     |
| 26 | X         | $\sqrt{}$ | X         | $\sqrt{}$ |           | X         | X     | X     |
| 27 | V         | <b>√</b>  | X         | <b>√</b>  | √         | X         | X     | X     |
| 28 | X         | X         | V         | V         | √         | X         | X     | X     |
| 29 | $\sqrt{}$ | X         |           | $\sqrt{}$ |           | X         | X     | X     |
| 30 | X         | <b>√</b>  | √         | <b>√</b>  | √         | X         | X     | X     |
| 31 | V         | √         | $\sqrt{}$ | <b>√</b>  | √         | X         | X     | X     |
| 32 | X         | X         | X         | X         | X         | $\sqrt{}$ | X     | X     |

#### **□** NOTE

- $\sqrt{\text{means ON}}$ , x means OFF.
- Table 1-1 provides the methods for setting addresses from 1 to 32. For details about how to set addresses from 33 to 247, see the binary DIP switch setting rules.

**Step 2** Set a communications mode for the Modbus card over the SW2 DIP switch. The first four toggle switches from top to bottom are used to set the communications mode. Figure 1-2 shows the mapping between the toggle switches and the communications mode.



Figure 1-2 Communications DIP switch

Table 1-2 Mapping between DIP switch settings and the communications mode

| Function     | Setting | Setting |                          |
|--------------|---------|---------|--------------------------|
| Baud rate    | # 2     | # 1     | N/A                      |
|              | OFF     | OFF     | 2400 bit/s               |
|              | OFF     | ON      | 4800 bit/s               |
|              | ON      | OFF     | 9600 bit/s               |
|              | ON      | ON      | 19200 bit/s (by default) |
| Parity check | # 4     | # 3     | N/A                      |
|              | OFF     | OFF     | Even number parity       |
|              | ON      | OFF     | Odd number parity        |

| Function | Setting |    | Meaning                                                  |
|----------|---------|----|----------------------------------------------------------|
|          | OFF     | ON | No odd or even<br>parity bit, stop bit 1<br>(by default) |
|          | ON      | ON | No odd or even parity bit, stop bit 2                    |

#### **Step 3** Set the RS-485 resistor type.

The RS-485 resistor type for the Modbus card is set by using the SW2 DIP switch. The sixth and seventh toggle switches from top to bottom are used to set the resistor type. Figure 1-3 lists the mapping between DIP switch settings and the resistor type.

Figure 1-3 Resistance DIP switch



Table 1-3 RS-485 resistor

| Function         | Character # | Set to | Meaning              |
|------------------|-------------|--------|----------------------|
| Pull-up resistor | # 6         | ON     | Enabled (by default) |

| Function           | Character # | Set to | Meaning              |
|--------------------|-------------|--------|----------------------|
|                    |             | OFF    | Disabled             |
| Pull-down resistor | #7          | ON     | Enabled (by default) |
|                    |             | OFF    | Disabled             |
| Terminal resistor  | # 8         | ON     | Enabled (by default) |
|                    |             | OFF    | Disabled             |

- **Step 4** Insert the Modbus card into the UPS smart slot and secure the screws.
- **Step 5** Connect the Modbus card to a computer using an RJ45 cable. You do not need to shut down the UPS.

Figure 1-4 RS-485 port pins



Table 1-4 RS-485 pin description

| Pin | Function                           |
|-----|------------------------------------|
| 4   | RS-485 - B                         |
| 5   | RS-485 - A                         |
| 8   | Connects to the ground cable (GND) |

Use an RS-485 to RS-232 converter or RS-485 to Modbus/TCP converter as a conversion media between the computer and Modbus card, and connect the conversion media to the RJ45 port based on the following wiring diagram.

Figure 1-5 Wiring diagram for connecting the Modbus card to the converter

Connect the Modbus card to the computer based on the following wiring diagrams.

**Figure 1-6** Wiring diagram for connecting the Modbus card to the computer (Using an RS-485 to RS-232 converter)



**Figure 1-7** Wiring diagram for connecting the Modbus card to the computer (Using an RS-485 to Modbus/TCP converter)



----End

#### 1.3.3.2 UPS Serial Port (USB/RS232) Communication Mode

A PC and a UPS can communicate through the serial port (USB or RS232). The UPS address is fixed to 1. You can use only either USB or RS232. If you use the USB connection mode, install the device driver software on the PC by referring to 1.3.3.3 Installing the Driver Software.

Figure 1-8 shows how to connect the USB port to a PC.

Figure 1-8 USB connection mode



Figure 1-9 shows how to connect the RS232 port to a PC.

UPS2000

RS232

USB

DB9 Cable

Figure 1-9 RS232 connection mode

### 1.3.3.3 Installing the Driver Software

If the serial port is used for the upgrade, no driver needs to be installed. In this case, skip this section. If the USB port is used for the upgrade, install the USB driver by performing the following steps.

After powering on the UPS, connect the UPS and a PC using a USB cable (see section "1.3.3.2 UPS Serial Port (USB/RS232) Communication Mode" for details). If the PC connects to the UPS for the first time, the PC identifies new hardware and automatically searches the device driver. After the search, the message "Device driver software was not successfully installed" is displayed. Click Close. Then, install the driver software in the device manager through the control panel.

Install the driver software in the same manner as that for common hardware. The following uses Windows 7 as an example to show how to install the driver software. Install the driver software in Windows XP in the same manner as that for Windows 7. The following shows the detailed procedure:

Step 1 Click Close in the Driver Software Installation dialog box. In the Device Manager pane, right-click Unknown device, and choose Upgrade Driver Software.



Figure 1-10 Message indicating driver software installation failure

Figure 1-11 Installing the driver software



Step 2 In the displayed dialog box, select Browse for driver software on your computer, and click Browse. In the displayed dialog box, expand XR21x141x-XP2KVista7-DriversOnly-Vers1.7.0.0 (decompress the file in the folder), select x86 (for a 32-bit system) or x64 (for a 64-bit system) based on PC configurations, and then

click OK.



Figure 1-12 Selecting driver software

Step 3 Click Next to install the driver software.





Step 4 After the software is installed, a dialog box is displayed, as shown in the following figure.



Figure 1-14 Driver software installation completed

**Step 5** Click **Close**. **XR21V140 USB UART** is displayed under **Ports** (**COM & LPT**) of the device manager.

Figure 1-15 Driver software installation succeeded



----End

# 1.4 Communication Mode at the Physical Layer

After the slave nodes are powered on or reset and run steadily, the slave nodes respond to the read or write commands. Upon receiving a command, the slave nodes return the requested information to the master node under normal conditions. The slave nodes return the specific error codes corresponding to the error types under abnormal conditions.

The error code definitions are listed in Table 1-5.

Table 1-5 Error code list

| Code | Name                        | Description                                                   |
|------|-----------------------------|---------------------------------------------------------------|
| 0x01 | Illegal function code       | Slave nodes received unsupported or incorrect function codes. |
| 0x02 | Illegal parameter           | Slave nodes received invalid function code parameters.        |
| 0x03 | Illegal data                | Slave nodes received invalid data such as CRC checking error. |
| 0x04 | Slave node execution failed | Slave nodes failed to respond to a command.                   |
| 0x05 | Reload the start command    | Slave nodes are busy.                                         |

# 1.5 Command Types and Formats at the Application Layer

#### 1.5.1 Function Code List

Table 1-6 Function code list

| Function Code | Meaning                        | Remarks                                                    |
|---------------|--------------------------------|------------------------------------------------------------|
| 0x03          | Read register command          | Continuously read a single register or multiple registers. |
| 0x06          | Write single register command  | Supports writing into a single register.                   |
| 0x2B          | Read device identifier command | N/A                                                        |

# 1.5.2 CRC Checking Algorithm

unsigned short count CRC(unsigned char \*addr, int num)

```
unsigned short CRC = 0xFFFF;
int i;
while (num--)
{
    CRC ^= *addr++;
    for (i = 0; i < 8; i++)
    {
        if (CRC & 1)
        {
            CRC >>= 1;
            CRC ^= 0xA001;
        }
        else
        {
            CRC >>= 1;
        }
    }
} return CRC;
}
```

# 1.5.3 Definition and Format of the Read Device Identifier Command

#### Frame Format

Command frames:

**Table 1-7** Frame format of the read device identifier command

| Byte                | 0                         | 1             | 2           | 3                    | 4            | 5        | 6    |
|---------------------|---------------------------|---------------|-------------|----------------------|--------------|----------|------|
| Field               | ADDR                      | CMD           | MEI         | ReadDe<br>vID        | Target<br>ID | LSB      | MSB  |
| <b>Descrip</b> tion | Controll<br>er<br>address | Function code | MEI<br>type | Read<br>device<br>ID | Object<br>ID | CRC chec | king |

#### Response frames:

The response frames are not fixed and depend on the object ID.

#### **Command Definition**

This command code allows reading identifiers and added packets that are relevant to the physical and functional description of the remote devices.

Simulate the port of the read device identifier as an address space. This address space consists of a set of addressable data elements. The data elements are objects to be read, and the object IDs determine these data elements.

A data element consists of three objects:

- Basic device identifier: All objects of this type are mandatory, such as the manufacturer name, product code, and revision version.
- Normal device identifier: Except the basic data objects, the device provides additional
  and optional identifiers and data object description. Normal device identifiers define all
  types of objects based on standard definitions, but the execution of this type of objects is
  optional.
- Extended device identifier: Except the normal data objects, the device provides
  additional and optional identifiers and special data object description. All these data
  objects are related to the device.

Table 1-8 Command definition

| Object ID | Object Name<br>or<br>Description | Туре                   | Mandatory or<br>Optional<br>(M/O) | Category |
|-----------|----------------------------------|------------------------|-----------------------------------|----------|
| 0x00      | Manufacturer name                | ASCII character string | M                                 | Basic    |
| 0x01      | Product code                     | ASCII character string | M                                 |          |
| 0x02      | Main revision                    | ASCII character string | M                                 |          |
| 0x03-0x7F | N/A                              | N/A                    | N/A                               | Normal   |
| 0x80-0xFF | N/A                              | N/A                    | N/A                               | Extended |

Table 1-9 Request PDU

| Function Code  | 1 byte | 0x2B                |
|----------------|--------|---------------------|
| MEI Type       | 1 byte | 0x0E                |
| ReadDevID Code | 1 byte | 0x01/0x02/0x03/0x04 |
| Object ID      | 1 byte | 0x00 to 0xFF        |

#### Request parameter description:

- Function code: 43 (decimal), 0x2B (hexadecimal)
- MEI type: the MEI type of 14 (0x0E) assigned to the device identifier port
- The ReadDevID has four access types:
  - 0x01: request to obtain the basic device identifier (stream access)
  - 0x02: request to obtain the normal device identifier (stream access)
  - 0x03: request to obtain the extended device identifier (stream access)
  - 0x04: request to obtain the special device identifier (special access)

If the identifier data is not suitable for individual responses, you can require several request and response transactions. The object ID byte provides the first identifier code obtained. For the first transaction, the client must set the object ID to 0 in order to obtain the start bit of the device identifier data. For the subsequent transactions, the client server must set the object ID to the value returned by the previous responded server.

If the object ID does not match any known object, the server points to the object numbered 0 (from the start).

For single access, the ReadDevID code is 04. The object ID in the requesting process provides the obtained object identifier code.

If the object ID does not match any known object, the server returns an abnormal code numbered 02 (illegal data address).

Table 1-10 Response PDU

| Function Code     | 1 byte | 0x2B                |
|-------------------|--------|---------------------|
| MEI Type          | 1 byte | 0x0E                |
| ReadDevID Code    | 1 byte | 0x01/0x02/0x03/0x04 |
| Consistency Level | 1 byte | N/A                 |
| More              | 1 byte | 0x00/0xFF           |
| Next Object ID    | 1 byte | Object ID           |
| Object Number     | 1 byte | N/A                 |
| Object ID List    | 1 byte | N/A                 |
| Object Length     | 1 byte | N/A                 |
| Object Value      | 1 byte | N/A                 |

#### Response parameter description:

- Function code: 43 (decimal), 0x2B (hexadecimal)
- MEI type: the MEI type of 14 (0x0E) assigned to the device identifier port
- ReadDevID code: same as the request ReadDevID code, that is 01, 02, 03, or 04
- Consistency level: the consistency level for the device identifiers and types of supported accesses
  - 01: basic identifier code (stream access only)
  - 02: normal identifier code (stream access only)
  - 03: extended identifier code (stream access only)
  - 81: basic identifier code (stream access and single access)
  - 82: normal identifier code (stream access and single access)
  - 83: extended identifier code (stream access and single access)
- More: If the ReadDevID code is 01, 02, or 03 (stream access) and the identifier data does not match the single response, you can require several request and response transactions.
  - 00: The object is no longer usable
  - FF: Other identifier objects are usable, and more Modbus transactions are required

If the ReadDevID code is 04 (single access), this field must be set to 00.

- Next object ID: If more is FF, require the next object identifier code. If more is 00, set to 00 (unused).
- Object number: returned object identifier number in the response process. For single access, the object number = 1.
- Object 0.ID: the first object identifier code (stream access) or requested object identifier code (single access) returned by the PDU.
- Object 0.length: the byte length of the first object.
- Object 0.value: the value of the first object (the byte of the object 0.length).

. .

- Object N.ID: the identifier code of the last object in the response process.
- Object N.length: the byte length of the last object.
- Object N.value: the value of the last object (the byte of the object N.length).

Table 1-11 Abnormal response PDU

| <b>Function Code</b>  | 1 byte  | 0xAB |
|-----------------------|---------|------|
| <b>Exception Code</b> | 2 bytes | N/A  |

#### **Frame Format Examples**

The following are some request examples of the read device identifiers of the basic device identifiers:

#### M NOTE

In this example, all objects are returned to one response PDU.

 Table 1-12 Example read device identifier requests

| Request        |                     | Response          |          |  |
|----------------|---------------------|-------------------|----------|--|
| Domain Name    | Value               | Domain Name       | Value    |  |
| Function       | 0x2B                | Function          | 0x2B     |  |
| MEI Type       | 0x0E                | MEI Type          | 0x0E     |  |
| ReadDevID Code | 0x01                | ReadDevID Code    | 0x01     |  |
| Object ID      | 0x00                | Consistency Level | 0x01     |  |
|                | More Next Object ID |                   | 0x00     |  |
|                |                     |                   | 0x00     |  |
|                | Object Number       |                   | 0x03     |  |
|                |                     | Object ID         | 0x00     |  |
|                |                     | Object Length     | 0x16     |  |
|                | Object Val          |                   | "Company |  |

| Request |           | Response      |                |  |
|---------|-----------|---------------|----------------|--|
|         |           |               | identifier"    |  |
|         | •         | Object ID     | 0x01           |  |
|         |           | Object Length | 0x0A           |  |
|         |           | Object Value  | "Product code" |  |
|         |           | Object ID     | 0x02           |  |
|         | Object Le | Object Length | 0x05           |  |
|         |           | Object Value  | "V2.11"        |  |

If one device needs several transactions to process responses, execute the following transactions.

**Table 1-13** First transaction

| Request        | Request |                   | Response             |  |  |
|----------------|---------|-------------------|----------------------|--|--|
| Domain Name    | Value   | Domain Name       | Value                |  |  |
| Function       | 0x2B    | Function          | 0x2B                 |  |  |
| MEI Type       | 0x0E    | MEI Type          | 0x0E                 |  |  |
| ReadDevID Code | 0x01    | ReadDevID Code    | 0x01                 |  |  |
| Object ID      | 0x00    | Consistency Level | 0x01                 |  |  |
|                |         | More              | 0xFF                 |  |  |
|                |         | Next Object ID    | 0x02                 |  |  |
|                |         | Object Number     | 0x03                 |  |  |
|                |         | Object ID         | 0x00                 |  |  |
|                |         | Object Length     | 0x16                 |  |  |
|                |         | Object Value      | "Company identifier" |  |  |
|                |         | Object ID         | 0x01                 |  |  |
|                |         | Object Length     | 0x1A                 |  |  |
|                |         | Object Value      | "Product code"       |  |  |

Table 1-14 Second transaction

| Request     |       | Response    |       |  |
|-------------|-------|-------------|-------|--|
| Domain Name | Value | Domain Name | Value |  |

| Request        |      | Response          |         |  |
|----------------|------|-------------------|---------|--|
| Function       | 0x2B | Function          | 0x2B    |  |
| MEI Type       | 0x0E | MEI Type          | 0x0E    |  |
| ReadDevID Code | 0x01 | ReadDevID Code    | 0x01    |  |
| Object ID 0x02 |      | Consistency Level | 0x01    |  |
|                |      | More              | 0x00    |  |
|                |      | Next Object ID    | 0x00    |  |
|                |      | Object Number     | 0x03    |  |
|                |      | Object ID         | 0x02    |  |
|                |      | Object Length     | 0x05    |  |
|                |      | Object Value      | "V2.11" |  |

# **Command for Querying Device Identifiers**

• Request Frame Format

Table 1-15 Frame format of the query device identifier request

| Function Code  | 1 byte | 0x2B |
|----------------|--------|------|
| MEI Type       | 1 byte | 0x0E |
| ReadDevID Code | 1 byte | 0x01 |
| Object ID      | 1 byte | 0x00 |

#### • Response Frame Format

Table 1-16 Frame format of the response to the query device identifier request

| Function Code    |              | 1 byte | 0x2B |
|------------------|--------------|--------|------|
| MEI Type         |              | 1 byte | 0x0E |
| ReadDevID Code   | e            | 1 byte | 0x01 |
| Consistency Leve | el           | 1 byte | 0x01 |
| More             |              | 1 byte | N/A  |
| Next Object ID   |              | 1 byte | N/A  |
| Number of Object | ets          | 1 byte | N/A  |
| Object List      | First Object | 1 byte | 0x00 |

|     | Object Length | 1 byte  | N   |
|-----|---------------|---------|-----|
|     | Object Value  | N bytes | N/A |
| ••• | •••           |         |     |

Table 1-17 Object IDs mapping to the query device identifier command

| Object ID | Object Name or<br>Description | Description                                    | Category |
|-----------|-------------------------------|------------------------------------------------|----------|
| 0x00      | Manufacturer name             | "HUAWEI"                                       | Basic    |
| 0x01      | Product code                  | "UPS5000" "UPS2000" "UPS2000A" "SUN2000"       |          |
| 0x02      | Main version                  | ASCII character<br>string, software<br>version |          |

# Command for Querying a Device List

• Request Frame Format

Table 1-18 Frame format of the query device list request

| <b>Function Code</b> | 1 byte | 0x2B |
|----------------------|--------|------|
| MEI Type             | 1 byte | 0x0E |
| ReadDevID Code       | 1 byte | 0x03 |
| Object ID            | 1 byte | 0x87 |

#### • Response Frame Format

Table 1-19 Frame format of the response to the query device list request

| Function Code     | 1 byte | 0x2B |
|-------------------|--------|------|
| MEI Type          | 1 byte | 0x0E |
| ReadDevID Code    | 1 byte | 0x03 |
| Consistency Level | 1 byte | 0x03 |
| More              | 1 byte | N/A  |
| Next Object ID    | 1 byte | N/A  |

| Number of Objects |                               |              | 1 byte | N/A  |
|-------------------|-------------------------------|--------------|--------|------|
| Object List       | First Object ID Object Length |              | 1 byte | 0x87 |
|                   |                               |              | 1 byte | N    |
|                   |                               | Object Value | N byte | N/A  |
|                   |                               |              |        |      |

This command corresponds to the object IDs in the following table.

Table 1-20 Object IDs mapping to the query device list command

| Object ID | Object Name               | Туре                   | Description                                                                                                                     |
|-----------|---------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 0x80-0x86 | Reserved                  | N/A                    | Null object with a returned object length 0.                                                                                    |
| 0x87      | Number of devices         | int                    | Number of devices connected to this RS485 address.                                                                              |
| 0x88      | First device information  | ASCII character string | For the network element type that supports only one device at one RS485 address, only the first device description is returned. |
| 0x89      | Second device information | N/A                    | N/A                                                                                                                             |
|           |                           |                        |                                                                                                                                 |
| 0xFF      | 120th device information  | N/A                    | N/A                                                                                                                             |

The definitions of the device description are:

Each device description consists of all "attribute = value" strings.

Attribute label = %s; attribute label = %s; ...; attribute label = %s

For example: 1 = UPS5000, 2 = V100R001C01SPC120, 3 = P1.02-D1.0, 4 = 123232323, 5 = 2, 6 = 1.

Table 1-21 Attribute definitions

| Attribute Label | Attribute Name | Type            | Description |  |
|-----------------|----------------|-----------------|-------------|--|
| 1               | Device model   | ASCII character | UPS5000     |  |

| Attribute Label | Attribute Name                    | Type                   | Description                                                                       |
|-----------------|-----------------------------------|------------------------|-----------------------------------------------------------------------------------|
|                 |                                   | string                 | UPS2000<br>UPS2000A<br>SUN2000                                                    |
| 2               | Software version                  | ASCII character string | N/A                                                                               |
| 3               | Version of the interface protocol | ASCII character string | N/A                                                                               |
| 4               | ESN                               | ASCII character string | N/A                                                                               |
| 5               | Device number                     | int                    | 0, 1, 2, 3, (assigned by network element)                                         |
| 6               | Parallel networking number        | int                    | 0, 1, 2, 3, (assigned by network element)                                         |
|                 |                                   |                        | -1: invalid value, indicates that a device does not belong to any parallel system |
|                 |                                   |                        | If not applicable, this attribute is not returned.                                |

### 1.5.4 Definition and Format of the Read Command

#### **Read Command Definition**

This command can be used to continuously read a single register or multiple registers.

#### **Read Command Format**

• Request Frame Format

Table 1-22 Frame format of the read request

| Byte            | 0                         | 1                | 2                   | 3        | 4                   | 5   | 6       | 7     |
|-----------------|---------------------------|------------------|---------------------|----------|---------------------|-----|---------|-------|
| Field           | ADDR                      | CMD              | MSB                 | LSB      | MSB                 | LSB | LSB     | MSB   |
| Descri<br>ption | Control<br>ler<br>address | Comma<br>nd type | Register<br>address | starting | Number of registers |     | CRC che | cking |

#### MOTE

For example, the request frame is 01 03 2A F8 00 01 0D E3.

01 is the slave node address. 03 is the read command. 2AF8 is the register address. 0001 indicates the number of registers to be read is 1. 0DE3 is the CRC checking value.

• Response Frame Format

Table 1-23 Frame format of the response to the read request

| Byt<br>e            | 0                                 | 1                       | 2                       | 3                         | 4   | 5                         | 6   | <br>L+1                      | L+2 | L+3          | L+4     |
|---------------------|-----------------------------------|-------------------------|-------------------------|---------------------------|-----|---------------------------|-----|------------------------------|-----|--------------|---------|
| Fiel<br>d           | AD<br>DR                          | CM<br>D                 | Len<br>gth              | MS<br>B                   | LSB | MS<br>B                   | LSB | <br>MS<br>B                  | LSB | LSB          | MS<br>B |
| Des<br>crip<br>tion | Con<br>troll<br>er<br>addr<br>ess | Co<br>mm<br>and<br>type | Dat a leng th L = n x 2 | First<br>registe<br>value | er  | Secon<br>registe<br>value |     | <br>Last<br>registe<br>value | er  | CRC<br>check | ing     |

#### M NOTE

For example, the response frame is 01 03 02 00 01 79 84.

01 is the slave node address. 03 is the read command. 02 is the length of data to be read. 0001 indicates the first register value to be read. 7984 is the CRC checking value.

# 1.5.5 Definition and Format of the Write Single Register Command

#### **Definition of the Write Single Register Command**

This command supports writing into a single register.

#### Format of the Write Single Register Command

Request Frame Format

Table 1-24 Frame format of the write single register request

| Byte            | 0                         | 1                | 2        | 3       | 4    | 5   | 6       | 7     |
|-----------------|---------------------------|------------------|----------|---------|------|-----|---------|-------|
| Field           | ADDR                      | CMD              | MSB      | LSB     | MSB  | LSB | LSB     | MSB   |
| Descri<br>ption | Control<br>ler<br>address | Comma<br>nd type | Register | address | Data |     | CRC che | cking |

**□** NOTE

For example, the request frame is 01 06 2B 15 00 01 50 2A.

01 is the slave node address. 06 is the write single register command. 2B15 is the register address. 0001 is the setting value. 502A is the CRC checking value.

#### • Response Frame Format

Table 1-25 Frame format of the response to the write single register request

| Byte            | 0                         | 1                | 2        | 3       | 4    | 5   | 6       | 7     |
|-----------------|---------------------------|------------------|----------|---------|------|-----|---------|-------|
| Field           | ADDR                      | CMD              | MSB      | LSB     | MSB  | LSB | LSB     | MSB   |
| Descri<br>ption | Control<br>ler<br>address | Comma<br>nd type | Register | address | Data |     | CRC che | cking |

# ■ NOTE

The formats of the request and response frames are the same for the write single register command. For example, the response frame is  $01\ 06\ 2B\ 15\ 00\ 01\ 50\ 2A$ .

01 is the slave node address. 06 is the write single register command. 2B15 is the register address. 0001 is the setting value. 502A is the CRC checking value.

# 2 Signal List

# 2.1 Collection and Configuration

# 2.1.1 Signal List Description

The signal names are the meanings of the signals.

The parameter types are the internal storage states of the signals in the RMS-MODBUS01B card.

The gains are used to ensure that all data is transmitted in the format of unsigned short integers during Modbus communication, thereby avoiding transmission of complex data in Modbus frames.

For the R/W attributes, R is read only, W is write only, and RW is read and write.

For the register addresses, N is the UPS number fixed at 1.

MOTE

For example, the register address of the UPS input voltage is 11000, which is 0x2AF8 in hexadecimal format.

# 2.1.2 Collection Signal List

Table 2-1 Collection signal list

| Name              | Paramete<br>r Type | Gain | Unit or Range | Registe<br>r<br>Addres<br>s | Register<br>Address<br>Length<br>(Numbe<br>r of<br>Bits) | R/W<br>Attribut<br>e |
|-------------------|--------------------|------|---------------|-----------------------------|----------------------------------------------------------|----------------------|
| Input<br>voltage  | Floating point     | 10   | V             | N1000                       | 1                                                        | R                    |
| Input frequency   | Floating point     | 10   | Hz            | N1003                       | 1                                                        | R                    |
| Bypass<br>voltage | Floating point     | 10   | V             | N1004                       | 1                                                        | R                    |

| Name                              | Paramete<br>r Type                        | Gain | Unit or Range                                                                        | Registe<br>r<br>Addres<br>s | Register<br>Address<br>Length<br>(Numbe<br>r of<br>Bits) | R/W<br>Attribut<br>e |
|-----------------------------------|-------------------------------------------|------|--------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|----------------------|
| Bypass<br>frequency               | Floating point                            | 10   | Hz                                                                                   | N1007                       | 1                                                        | R                    |
| Output<br>voltage                 | Floating point                            | 10   | V                                                                                    | N1008                       | 1                                                        | R                    |
| Output<br>current                 | Floating point                            | 10   | A                                                                                    | N1011                       | 1                                                        | R                    |
| Output frequency                  | Floating point                            | 10   | Hz                                                                                   | N1014                       | 1                                                        | R                    |
| Output<br>active<br>power         | Floating point                            | 10   | kW                                                                                   | N1015                       | 1                                                        | R                    |
| Output<br>apparent<br>power       | Floating point                            | 10   | kVA                                                                                  | N1018                       | 1                                                        | R                    |
| Load ratio                        | Floating point                            | 10   | %                                                                                    | N1021                       | 1                                                        | R                    |
| Power supply mode                 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 0: no power supplied 1: bypass mode 2: mains mode 3: battery mode 5: mains ECO       | N1024                       | 1                                                        | R                    |
| Input<br>system                   | Unsigned<br>short<br>integer (16<br>bits) | 1    | 0: single-phase                                                                      | N1025                       | 1                                                        | R                    |
| Output<br>system                  | Unsigned<br>short<br>integer (16<br>bits) | 1    | 0: single-phase                                                                      | N1026                       | 1                                                        | R                    |
| Temperatu<br>re inside<br>the UPS | Floating point                            | 10   | С                                                                                    | N1027                       | 1                                                        | R                    |
| UPS status                        | Unsigned<br>short<br>integer              | 1    | Bit definition Other bits: reserved (filled with 0) 7: mains abnormal (0: normal, 1: | N1043                       | 1                                                        | R                    |

| Name                              | Paramete<br>r Type                        | Gain | Unit or Range                                                                                                                                                                                                                                   | Registe<br>r<br>Addres<br>s | Register<br>Address<br>Length<br>(Numbe<br>r of<br>Bits) | R/W<br>Attribut<br>e |
|-----------------------------------|-------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|----------------------|
|                                   |                                           |      | abnormal) 6: low battery voltage (0: normal, 1: low voltage) 5: reserved 4: UPS faulty (0: normal, 1: faulty) 3: UPS type (0: offline, 1: online) 2: battery self-check status (0: not in self-check, 1: self-checking) 1: reserved 0: reserved |                             |                                                          |                      |
| Battery voltage                   | Floating point                            | 10   | V                                                                                                                                                                                                                                               | N2000                       | 1                                                        | R                    |
| Battery<br>status                 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 2: hibernating 3: float charging 4: equalized charging 5: discharging                                                                                                                                                                           | N2002                       | 1                                                        | R                    |
| Remainin<br>g battery<br>capacity | Unsigned<br>short<br>integer (16<br>bits) | 1    | %                                                                                                                                                                                                                                               | N2003                       | 1                                                        | R                    |
| Battery<br>backup<br>time         | Unsigned integer (32 bits)                | 1    | S                                                                                                                                                                                                                                               | N2004                       | 2                                                        | R                    |
| Number of batteries               | Unsigned<br>short<br>integer (16<br>bits) | 1    | [1, 20]                                                                                                                                                                                                                                         | N2007                       | 1                                                        | R                    |
| Battery capacity                  | Unsigned<br>short<br>integer (16<br>bits) | 1    | АН                                                                                                                                                                                                                                              | N2033                       | 1                                                        | R                    |
| Energy<br>flow<br>diagram         | Unsigned<br>short<br>integer (16          | 1    | 00: hollow<br>01: solid                                                                                                                                                                                                                         | N9006 (bit 1,               | 1                                                        | R                    |

| Name                                   | Paramete<br>r Type                        | Gain | Unit or Range                                            | Registe<br>r<br>Addres<br>s | Register<br>Address<br>Length<br>(Numbe<br>r of<br>Bits) | R/W<br>Attribut<br>e |
|----------------------------------------|-------------------------------------------|------|----------------------------------------------------------|-----------------------------|----------------------------------------------------------|----------------------|
| segment 1                              | bits)                                     |      | 10: flow to the right                                    | 0)                          |                                                          |                      |
| Energy<br>flow<br>diagram<br>segment 2 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 00: hollow 01: solid 10: flow to the right               | N9006<br>(bit 3,<br>2)      | 1                                                        | R                    |
| Energy<br>flow<br>diagram<br>segment 3 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 00: hollow 01: solid 10: flow to the right               | N9006<br>(bit 5,<br>4)      | 1                                                        | R                    |
| Energy<br>flow<br>diagram<br>segment 4 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 00: hollow 01: solid 10: flow downwards 11: flow upwards | N9006<br>(bit 7,<br>6)      | 1                                                        | R                    |
| Energy<br>flow<br>diagram<br>segment 5 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 00: hollow 01: solid 10: flow to the right               | N9006<br>(bit 9,<br>8)      | 1                                                        | R                    |
| Energy<br>flow<br>diagram<br>segment 6 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 00: hollow 01: solid 10: flow to the right               | N9006<br>(bit 11,<br>10)    | 1                                                        | R                    |
| Energy<br>flow<br>diagram<br>segment 7 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 00: hollow 01: solid 10: flow to the right               | N9006<br>(bit 13,<br>12)    | 1                                                        | R                    |
| Energy<br>flow<br>diagram<br>segment 8 | Unsigned<br>short<br>integer (16<br>bits) | 1    | 00: hollow 01: solid 10: flow to the right               | N9006<br>(bit 15,<br>14)    | 1                                                        | R                    |
| UPS<br>model                           | Float                                     | 10   | KVA                                                      | N9009                       | 1                                                        | R                    |

#### ■ NOTE

The relationship between the serial numbers of state registers and the energy flow diagram is shown in the following figure.

Figure 2-1 Energy flow diagram



# M NOTE

- The user can use 0 as the UPS number. That is, the user can directly use the basic register address to query the corresponding value.
- Some registers may return the following invalid values:

0x7FFF: invalid value of the floating point type returned by one register

0xFFFF: invalid value of a type other than the floating point type returned by one register

0xFFFFFFF: invalid value returned by two registers

# 2.1.3 Configuration and Control Signal List

Table 2-2 Configuration and control signal list

| Signal<br>Name | Paramete<br>r Type                        | Gai<br>n | Range                                                                                                     | Register<br>Address | Register<br>Address<br>Length<br>(Numbe<br>r of<br>Bits) | R/W<br>Attribu<br>te |
|----------------|-------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------|----------------------|
| Startup state  | Unsigned<br>short<br>integer (16<br>bits) | 1        | 00: shutdown (you can start) 10: startup failed (you can start) 11: startup completed (you can shut down) | N1028               | 1                                                        | R                    |
| Startup        | Unsigned<br>short<br>integer (16<br>bits) | 1        | The register value is fixed at 1.                                                                         | N1029               | 1                                                        | W                    |

| Signal<br>Name                                                           | Paramete<br>r Type                        | Gai<br>n | Range                             | Register<br>Address | Register<br>Address<br>Length<br>(Numbe<br>r of<br>Bits) | R/W<br>Attribu<br>te |
|--------------------------------------------------------------------------|-------------------------------------------|----------|-----------------------------------|---------------------|----------------------------------------------------------|----------------------|
| Shutdown                                                                 | Unsigned<br>short<br>integer (16<br>bits) | 1        | The register value is fixed at 1. | N1030               | 1                                                        | W                    |
| Single<br>UPS ECO                                                        | Unsigned<br>short<br>integer (16<br>bits) | 1        | 0: disabled (default) 1: enabled  | N1031               | 1                                                        | R                    |
| Auto start                                                               | Unsigned<br>short<br>integer (16<br>bits) | 1        | 0: disabled (default) 1: enabled  | N1044               | 1                                                        | W/R                  |
| Bypass output                                                            | Unsigned<br>short<br>integer (16<br>bits) | 1        | 0: disabled (default) 1: enabled  | N1045               | 1                                                        | W/R                  |
| Buzzer off                                                               | Unsigned<br>short<br>integer (16<br>bits) | 1        | 0: disabled (default) 1: enabled  | N1046               | 1                                                        | W/R                  |
| Delay<br>shutdown<br>and restart                                         | Floating point                            | 10       | 0.1–99.0 min<br>Step: 0.1 min     | N1047               | 1                                                        | W/R                  |
| and restart                                                              | Unsigned<br>short<br>integer (16<br>bits) | 1        | 1–9999 min<br>Step: 1 min         | N1048               | 1                                                        | W/R                  |
| Delay<br>shutdown                                                        | Floating point                            | 10       | 0.1–99.0 min<br>Step: 0.1 min     | N1049               | 1                                                        | W/R                  |
| Cancel<br>delayed<br>shutdown                                            | Unsigned<br>short<br>integer (16<br>bits) | 1        | The register value is fixed at 1. | N1050               | 1                                                        | W                    |
| Low<br>battery<br>voltage<br>detected<br>during<br>battery<br>self-check | Unsigned<br>short<br>integer (16<br>bits) | 1        | The register value is fixed at 1. | N2021               | 1                                                        | W                    |

| Signal<br>Name                      | Paramete<br>r Type                        | Gai<br>n | Range                             | Register<br>Address | Register<br>Address<br>Length<br>(Numbe<br>r of<br>Bits) | R/W<br>Attribu<br>te |
|-------------------------------------|-------------------------------------------|----------|-----------------------------------|---------------------|----------------------------------------------------------|----------------------|
| Stop<br>battery<br>self-check       | Unsigned<br>short<br>integer (16<br>bits) | 1        | The register value is fixed at 1. | N2023               | 1                                                        | W                    |
| Battery<br>short-time<br>self-check | Unsigned<br>short<br>integer (16<br>bits) | 1        | The register value is fixed at 1. | N2028               | 1                                                        | W                    |

### 2.2 Alarms

# 2.2.1 Signal List Description

The definitions of the UPS alarm register addresses comply with the following rules:

Register address: basic register address + UPS number x 1024

The UPS number is fixed at 1.

#### M NOTE

- For example, the register address of the battery overvoltage alarm is 40163 + 1024 = 41187 = 0xA0E3 (hexadecimal).
- The user can use 0 as the UPS number. That is, the user can directly use the basic register address to query the corresponding value.

If the query is across registers, and a register is not defined in this table, the returned register value is 0.

# 2.2.2 Alarm Signal List

Table 2-3 Alarm signal list

| Alarm ID | Alarm Cause<br>ID | Alarm                         | Basic Register<br>Address | Bit Value |
|----------|-------------------|-------------------------------|---------------------------|-----------|
| 0030     | 1                 | UPS internal overtemperatur e | 40156                     | 3         |
| 0010     | 1                 | Abnormal bypass voltage       | 40161                     | 1         |
| 0010     | 2                 | Abnormal bypass voltage       | 40161                     | 2         |

| Alarm ID | Alarm Cause<br>ID | Alarm                                  | Basic Register<br>Address | Bit Value |
|----------|-------------------|----------------------------------------|---------------------------|-----------|
| 0025     | 1                 | Battery<br>overvoltage                 | 40163                     | 3         |
| 0029     | 1                 | Battery<br>maintenance<br>notification | 40164                     | 1         |
| 0026     | 1                 | Battery<br>undervoltage                | 40164                     | 3         |
| 0022     | 1                 | Battery disconnected                   | 40170                     | 4         |
| 0066     | 1                 | Output overload                        | 40173                     | 5         |
| 0014     | 1                 | Startup timeout                        | 40174                     | 0         |
| 0066     | 2                 | Output overload                        | 40174                     | 3         |
| 0042     | 15                | Rectifier<br>fault/internal<br>fault   | 40179                     | 14        |
| 0042     | 17                | Rectifier<br>fault/internal<br>fault   | 40179                     | 15        |
| 0042     | 18                | Rectifier<br>fault/internal<br>fault   | 40180                     | 1         |
| 0042     | 24                | Inverter<br>fault/internal<br>fault    | 40180                     | 5         |
| 0042     | 27                | Inverter<br>fault/internal<br>fault    | 40180                     | 6         |
| 0042     | 28                | Inverter<br>fault/internal<br>fault    | 40180                     | 7         |
| 0042     | 31                | Inverter<br>fault/internal<br>fault    | 40180                     | 10        |
| 0042     | 32                | Inverter<br>fault/internal<br>fault    | 40180                     | 11        |
| 0042     | 36                | Charger<br>alarm/internal<br>fault     | 40180                     | 13        |
| 0042     | 42                | Charger                                | 40182                     | 4         |

| Alarm ID | Alarm Cause<br>ID | Alarm                   | Basic Register<br>Address | Bit Value |
|----------|-------------------|-------------------------|---------------------------|-----------|
|          |                   | alarm/internal<br>fault |                           |           |
| 0066     | 3                 | Output overload         | 40182                     | 13        |
| 0066     | 4                 | Output overload         | 40182                     | 14        |

# 3

# **Examples of the Host Communication Process**

Based on the command types of the communication protocols, you can identify the register addresses of every UPS semaphore, and the UPS serial number offset is needed. The serial number of the southbound UPS connected to the RMS-MODBUS01B card is fixed at 1.

The following diagram shows a communication process for reference.

Figure 3-1 Communication process of the host computer and the Modbus card



A. Send a query device list command:

Query frame: 01 2B 0E 03 87 31 75

Response frame (for the convenience of viewing, the response frame is shown in segments)

01 2B 0E 03 03 00 00 02

87 04 00 00 00 01

88 44 31 3D 55 50 53 32 30 30 41 3B 32 3D 56 31 30 30 42 31 31 32 44 30 30 3B 33 3D 50 31 2E 30 2D 44 31 2E 30 3B 34 3D 32 31 30 32 32 39 30 37 31 30 48 47 46 39 30 30 30 30 31 33 3B 35 3D 31 3B 36 3D 2D 31

D2 28

According to section 1.5.3 Definition and Format of the Read Device Identifier Command, analyze this response frame.

The analysis results show that one UPS whose number is 1 is connected to the Modbus card.

Table 3-1 Analyzing the response frame

| UPS Number | ESN Number           | Parallel Networking<br>Number |
|------------|----------------------|-------------------------------|
| 1          | 2102290710HGF9000013 | 1                             |

Next, based on the UPS number, you can query and set the corresponding semaphores.

B. Query the input voltage of UPS 1, for example:

Query frame: 01 03 2A F8 00 01 0D E3 Response frame: 01 03 02 08 9D 7E 2D

According to section 2.1.2 Collection Signal List, the register address of the UPS 1 input voltage is 11000, which is 0x2AF8 in hexadecimal format. The response data is 0x089D, which is 2205 in decimal format. Divided by the gain 10, the value is 220.5, which indicates the input voltage of UPS 1 is 220.5 V.

C. Control UPS 1 to start.

Set frame: 01 06 2B 15 00 01 50 2A

Response frame: 01 06 2B 15 00 01 50 2A

D. Query UPS 1 battery undervoltage alarm state:

Query frame: 01 03 A0 E3 00 01 E6 CD

Response frame: 01 03 02 00 08 B9 82

The basic register address of the battery undervoltage alarm is 40163. Then, add the UPS 1 offset address:

 $40163 + 1 \times 1024 = 41187 = 0 \times A0E3$ 

The response data is 0x0008, and the bit 3 value is 1, indicating the battery undervoltage alarm exists.

# A

# **Acronyms and Abbreviations**

 $\mathbf{C}$ 

**CRC** Cyclic Redundancy Check

 $\mathbf{E}$ 

**ECO** Economic Control Operation

U

**UPS** Uninterruptible Power System