

ISTA 421/521 Introduction to Machine Learning

Lecture 14: **Marginal Likelihood Model Selection**

Clay Morrison

clayton@sista.arizona.edu Gould-Simpson 819 Phone 621-6609

9 October 2014

Back to Model Selection

- Recall in Chapter 1 we used Cross-Validation to estimate the generalization error of different orders of polynomial model, and selected the model order with the lowest loss.
- We found in Chapter 2 that Maximum Likelihood prefers complex models.
- In Chapter 3, we've used Marginal Likelihood to choose among different prior densities.
- We can also use Marginal Likelihood to choose models.

Marginal Likelihood for Model Selection

Marginal Likelihood for our Gaussian Model

$$p(\mathbf{t}|\mathbf{X}, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) = \int p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2) p(\mathbf{w}|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) \ d\mathbf{w}$$
$$= \mathcal{N}(\mathbf{X}\boldsymbol{\mu}_0, \sigma^2 \mathbf{I}_N + \mathbf{X}\boldsymbol{\Sigma}_0 \mathbf{X}^{\mathsf{T}})$$

Just as in the simulated experiment in Ch 1, generate data from a 3rd-order polynomial

Then compute the marginal likelihood for models from 1st to 7th order

For each model, use Gaussian prior on w with zero mean and an identity covariance matrix

For example:

$$\boldsymbol{\mu}_0 = \begin{bmatrix} 0,0 \end{bmatrix}^\mathsf{T}, \ \boldsymbol{\Sigma}_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \quad \boldsymbol{\mu}_0 = \begin{bmatrix} 0,0,0,0,0 \end{bmatrix}^\mathsf{T}, \ \boldsymbol{\Sigma}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

First-order model

4th-order model

Results of Simulation

1.2 x 10⁻⁹⁴

1.2 x

Marginal likelihood for models 1st through 7th order Plug in relevant prior and evaluate the density at **t**

Advantages:

Very clear peak

Don't have to compute CV over multiple datasets

Get to use *all* of the data

Disadvantage:

Calculating marginal likelihood is generally very hard

Results Depend on Priors

define $\Sigma_0 = \sigma_0^2 \mathbf{I}$ and vary σ_0^2 $\begin{bmatrix} \sigma_0^{x_10^{37}} & \sigma_0^{x_10^{-103}} & \sigma$

By decreasing, we're saying parameters have to take smaller and smaller values To fit our model well, one of the parameters needs to be 5: $t=5x^3-x^2+x$

By decreasing σ_0^2 , 5 becomes less likely and higher order models with lower parameter values become more likely.

When we talk about a **model**, we mean the order of polynomial **AND** the prior specification

Quick note about (the variants of) "Empirical Bayes"

$$p(y_N | \alpha, \beta) = \int_{r=0}^{r=1} p(y_N | r) p(r | \alpha, \beta) dr$$
$$p(\mathbf{t} | \mathbf{X}, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) = \int p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \sigma^2) p(\mathbf{w} | \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) d\mathbf{w}$$

If you do estimate your priors based on data, you should then use your model to model *new* data, otherwise you are overfitting.

Also, to be "truly" Bayesian about model selection, put a prior over possible models (e.g., for polynomial order, use a prior over the non-negative integers) and then integrate over your uncertainty in the order!

Sick of Linear Regression?

7