МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Плазма. Газовый разряд

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследованы характеристики плазмы в тлеющем газовом разряде. Получена вольт - амперная характеристика плазмы. При помощи двойного зонда определены характеристики плазмы: плазменная частота колебаний электронов и дебаевский радиус экранирования. Определено, что плазма в тлеющем газовом разряде хорошо описывается моделью идеальной плазмы.

Введение

Цель работы заключается в исследовании характеристик плазмы телющего газового разряда при помощи двойного зонда.

Методика

Основные характеристики плазмы

Определяющими свойвствами плазмы являются коллективный характер её движения и квазинейтральность (равенство нулю средней плотности заряда). Таким образом можно рассмотреть коллективные колебания плазмы относительно квазинейтрального состояния. Для этого выделим в нейральной плазме некоторый объём в виде параллелепипеда. При перемещении всех электронов на расстояние x относительно ионов на боковых гранях образуются нескомпенсированные поверхностные заряды с плотностью

$$\sigma = \pm n_e e \Delta x.$$

Эти заряды создадут электрическое поле

$$E = 4\pi n_e e \Delta x$$
.

В таком случае можно записать уравнение колебаний

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi n_e e^2}{m} \Delta x.$$

В таком случае плазменная частота гармонических колебаний будет выражаться как

$$w_p = \sqrt{\frac{4\pi n_e e^2}{m_e}}. (1)$$

Также можно ввести характерный размер плазменных явлений как отношение тепловой скорости частиц к плазменной частоте

$$r_D = \sqrt{\frac{k_B T_e}{4\pi n_e e^2}},\tag{2}$$

где величину r_D называют Дебаевским радиусом. Также можно показать, что дебаевский радиус является характерным радиусом экранирования действия заряженной частицы на другие частицы. В таком случае потенциал частицы будет иметь вид

$$\varphi(r) = \frac{q}{r}e^{-\frac{r}{r_D}}.$$

Одиночный зонд

При внесении в плазму уединённого проводника — $30n\partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока I_{en} — электронный ток насыщения, а минимальное I_{in} — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{i\text{H}} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}.$$

Электронный ток насыщения можно определить по тепловому движению:

$$I_{e\text{H}} = \frac{n_e S}{4} \sqrt{\frac{8kT}{\pi m_e}}.$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right).$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right).$$

С учётом последовательного соединение зондов $(I_1 = -I_2 = I)$:

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i_{\rm H}}} \right),$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i_{\rm H}}} \right).$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, \quad I = I_{iH} th \frac{eU}{2kT_e}.$$
 (3)

 $\operatorname{Puc.} 1$: Экпериментальный вид зависимости тока I от напряжения U на двойном зонде

Зависимость выглядит как показано на 1. Из формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{dI}.\tag{4}$$

Описание установки

Рис. 2: Схема установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и zemmephuiu узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (zemmep). Трубка наполнена изотопом неона ${}^22\mathrm{Ne}$ при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

Результаты и их обсуждение

Измерено напряжение зажигания разряда $U=267~\mathrm{B}$. проведено измерение вольт-амперной характеристики, данные представлены в таблице 1.

U, B	260,0	251,0	250,0	237,0	225,0	207,0	180,0	167,0	145,0	120,0	104,0
I, мА	1,63	1,81	2,00	2,22	2,40	2,61	2,81	3,00	3,21	3,40	3,62
U, B	94,5	102,6	117,0	141,0	163,0	178,0	211,0	220,0	228,0	237,0	
I, мА	3,80	3,60	3,40	3,21	3,00	2,80	2,60	2,40	2,20	2,00	

Таблица 1: Данные зависимости тока через газовый разряд I от напряжения между электродами U.

Построен график вольт-амперной характеристики (Рис. 3). С его помощью определено максимальное дифференциальное сопротивление $R_{\rm дифф} \approx 1.0 \cdot 10^5 \; {\rm Om}$.

Рис. 3: График зависимости тока через газовый разряд I в зависимости от напряжения между электродами U. Цифрами обозначены 1 — прямой ход измерений, 2 — обратный ход измерений.

С помощью амперметра A_2 и вольтметра V_2 снята зависимость тока от напряжения на двойном зонде в зависимости от тока в газовом разряде (Таблица 4). После центрирования графиков построены соответсвующие зависимости (Рис. 4).

Рис. 4: Графики зависимости тока через двойной зонд I от напряжение на зонде U. Цифрами обозначены графики соответсвующие токам через газовый разряд 1-4,25 мA, 2-3,01 мA, 3-2,04 мA.

Проводя ассимптоты г графиками при $U\to\infty$, найдены значения токов насыщения. Проводя касательную к графику при U=0 В, найдены температуры электронов. После чего согласно выражениям 1, 2 найдены дебаевский радиус r_D и ленгморовская частота w_p . Рассчитанные значения представлены в таблице 2.

<i>I</i> , мА	I_{iH} , мк A	T_e , K	$n_e, 10^{16} \cdot \text{m}^{-3}$	$w_p, 10^9 \cdot c^{-1}$	$r_e, 10^{-3} \cdot M$	$r_D, 10^{-4} \cdot \text{M}$
$4,25 \pm 0,01$	64.0 ± 2.0	34700 ± 1200	6.1 ± 0.2	$1,4 \pm 0,3$	5.1 ± 0.13	$4,85 \pm 0.09$
$3,01 \pm 0,01$	37.0 ± 1.0	29000 ± 1200	3.8 ± 0.1	$1,1 \pm 0,2$	6.0 ± 0.16	$6,15 \pm 0,10$
$2,04 \pm 0,01$	19.9 ± 0.5	25500 ± 1200	2.2 ± 0.1	0.8 ± 0.1	7.5 ± 0.21	$8,12 \pm 0,14$

Таблица 2: Параметры плазмы, определённые на основе зондовых характеристик. r_D рассчитан в предположении, что $T \approx 300$ K.

На основе полученных параметров рассчитаны степень ионизации плазмы газового разряда и среднее количество частиц в сфере Дебая 3. По полученным значениям можно сделать вывод о том, что плазма в газовом разряде хорошо подчиняется модели идеальной плазмы.

<i>I</i> , мА	$N_D, 10^7$	$\alpha, 10^{-7}$
4.25 ± 0.01	$2,9 \pm 0,2$	$8,6 \pm 0,3$
$3,01 \pm 0,01$	3.7 ± 0.2	$5,3 \pm 0,2$
$2,04 \pm 0,01$	4.9 ± 0.3	3.0 ± 0.1

Таблица 3: Результаты вычислений количества частиц в сфере Дебая N_D и степени ионизации α .

Построены графики зависимости концентрации электронов n_e и их температуры T_e от тока в разряде I(Рис. 5, 6). В обоих случаях зависимость возрастающая, это происходит потому, что при увеличении величины поля увеличивается количество электронов, вовлечённых в движение.

Рис. 5: График температуры электронов T_e от тока в плазме I.

Рис. 6: График концентрации электронов n_e от тока в плазме I.

Выводы

Исследована вольт-амперная характеристика газового разряда. Получены вольт-амперных характеристики двойного зонда, помещённого в газовый разряд при различных токах в разряде. Определены основные харастеристики плазмы. На основе подученных данных сделан вывод о том, что плазму в газовом разряде можно считать идеальной $(N_D \gg 1)$.

Использованная литература

Список литературы

[1] Лабораторный практикум по общей физике, Том 2, под редакцией А. Д. Гладуна

I_1 , мкА	U_1 , B	I_2 , мк A	U_2 , B	I_3 , MKA	U_3 , B
52,4	25,0	41,4	25,0	41,4	25,0
52,7	22,0	41,4	22,0	41,4	22,0
53,2	19,0	41,8	19,0	41,8	19,0
53,5	16,0	42,0	16,0	42,0	16,0
54,1	13,0	42,3	13,0	42,3	13,0
56,0	10,0	43,1	10,0	43,1	10,0
58,9	8,1	44,5	8,0	44,5	8,0
65,7	6,0	47,7	6,1	47,7	6,1
76,4	4,1	54,3	4,0	54,3	4,0
93,7	2,0	64,3	2,0	64,3	2,0
109,3	0,5	74,5	0,5	74,5	0,5
53,4	25,0	42,3	25,0	42,3	25,0
53,8	22,0	42,7	22,0	42,7	22,0
53,7	19,0	42,8	19,0	42,8	19,0
54,1	16,0	43,0	16,0	43,0	16,0
55,0	13,0	43,3	13,1	43,3	13,1
57,1	10,0	44,2	10,0	44,2	10,0
61,0	8,0	46,0	8,1	46,0	8,1
68,3	6,0	49,7	6,0	49,7	6,0
80,2	4,0	56,3	4,1	56,3	4,1
98,0	2,0	66,7	2,0	66,7	2,0
113,4	0,5	76,5	0,5	76,5	0,5

Таблица 4: Вольт-амперные характеристики двойного зонда для различных токах в разряде. U_1, I_1 — для тока I=4,25 мА, U_2, I_2 — для тока I=3,01 мА, U_3, I_3 — для тока I=2,04 мА