Class: MATH 2410

Mathematical Statement

Statement is any declarative sentence which is either true Atomic if it cannot be divided into smaller statements. Molecularif it can be divided into smaller statements. conjunction $p \wedge q$ equivalent to "p and q". $p \vee q$ equivalent to "p or q". disjunction where p is the hypothesis and q the conclusion. $p \to q$ equivalent to "if p then q". Implication $p \leftrightarrow q$ equivalent to "if and only if p then q". Biconditional Negation $\neg p$ equivalent to "not p". ${\bf Converse}$ Contrapositive There is a x $\exists x$ For all x $\forall x$

Naive Set Theory

Set Notation

 $\mathbb{I}J$ Universal set $\emptyset = \{\}, \text{ Remember: } \forall A (\emptyset \subset A)$ Empty set Power set $\mathcal{P}(A)$ is the set of all the subsets of A. Partition of AA collection of nonempty, pairwise-disjoint n-bit string subsets whose union is A. Element of \in . Example: $2 \in \{1, 2, 3\}$ Subset of \subseteq . Example: $\{A, B, C\} \subseteq \{B, C, D\}$ $A \subseteq B \Leftrightarrow \forall x$ Proper subset of \subset . Example: $\{A, B, C\} \subset \{A, B, C, D\}$ Intersection $\bigcap_{i \in I} A_i = \{ x \in \mathbb{U} | \forall i \in I, x \in A_i \}$ $A \cap B = \{x \in \mathbb{U} | x \in A \land x \in B\}$ $\bigcup_{i \in I} A_i = \{ x \in \mathbb{U} | \exists i \in I, x \in A_i \}$ Union $A \cup B = \{x \in \mathbb{U} | x \in A \lor x \in B\}$ Difference $A \backslash B = \{ x \in A | x \notin B \}$ Symmetric difference $A\Delta B = (A\backslash B) \cup (B\backslash A)$ Cartesian Product $A \times B = \{(x, y) | x \in A \land y \in B\}$ Complement of $\bar{A} = \{x \in \mathbb{U} | x \notin A\}$ Cardinality |A|

Cardinality

Let X be a finite set then $|X| \in \mathbb{N}$ finite set countable set A set S is countable if and only if that is finit or $|S| = |\mathbb{N}|$. aleph null. $\aleph_0 = |\mathbb{N}|$

Theorem 1 Let A and B be sets, then |A| = |B| if and only if there is a one-to-one correspondence from A to B.

Theorem 2 If A and B are countable, then $A \cup B$ is countable.

Theorem 3 (Cantor's Theorem) For every set A, |A| < $|\mathcal{P}(A)|$.

Theorem 4 (Schröder-Bernstein) If there are injective function(one-to-one) functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a one-to-one correspondence between A and B. In other words If A and B are set with $|A| \neq |B|$ and $|B| \neq |A|$, then |A| = |B|.

Functions

Functions A rule that assigns each input exactly one Domain The set of all input of a function. $(X \text{ in } f: X \to Y)$ Codomain The set of all output a function $(Y \text{ in } f: X \to Y)$ Range Is the subset of Y of elements that have an antecedent in X by f a function f with a domain x and a codomain y. $f: x \to y$ Recursive f. Injective every element of the codomain is the image of $f(a) = f(b) \Rightarrow a = b$ at most one element from the domain. every element of the codomain is the image of Surjective at least one element from the domain. Bijection A function that is **Injective** and **Surjective**. $f(A) = \{f(a) \in Y : a \in A\}, \text{ where } A \subset \text{domain.}$ Image Inverse Image $f^{-1}(B) = \{f(b) \in X : b \in B\}, \text{ where }$ $B \subset \text{codomain}$.

Counting

 $|\mathcal{P}(A)| = 2^{|A|}$ power set cardinality bit string weight the number of **1** in a bit string. B_k^n the set of all **n-bit strings** of weight k.

Additive Principle

General Definition: if event A can occur in m ways, and even B can occur in n disjoint (A and B can't apen at the same time.) ways, then A and B can occur in m+n ways.

Set Definition: Given 2 sets A and B, if $A \cap B = \emptyset$, then $|A \cap B| = |A| + |B|.$

Multiplicative Principle

General Definition: if event A can occur m ways, and each possibility for A allows for exactly n ways for event B, then the event "A and B" can occur $m \cdot n$ ways.

Set Definition: Given 2 sets A and B, we have $|A \times B| = |A| \cdot |B|$.

Binomial coefficient

Sequences

Symbolic Logic

deMorganLaws

- $\neg \forall x P(x)$ = $\exists x p(x) \bullet$ $\neg \exists x P(x)$ $\forall x p(x)$ $\neg(a_1 \land a_2 \land \cdots \land a_n) \equiv \neg a_1 \lor \neg a_2 \lor \cdots \lor \neg a_n$
- $\bullet \neg (a_1 \lor a_2 \lor \cdots \lor a_n) \equiv \neg a_1 \land \neg a_2 \land \cdots \land \neg a_n$

Proofs

Graph Theory