FIN 580 Homework 3 - Tejas Dhomne | UIN - 661586178

1. Import pandas_datareader as pdr

```
In [1]:
         import pandas as pd
         import numpy as np
         import pandas datareader as pdr
In [2]: x=['GOOGL','^GSPC']
In [3]: df1 = pdr.get_data_yahoo(x, start='2018-01-01',end='2020-12-31')["Adj Close"]
Out[3]:
                      GOOGL
            Symbols
                                   ^GSPC
               Date
          2018-01-02 53.660500 2695.810059
          2018-01-03 54.576000 2713.060059
          2018-01-04 54.787998 2723.989990
          2018-01-05 55.514500 2743.149902
          2018-01-08 55.710499 2747.709961
          2020-12-24 86.708000 3703.060059
          2020-12-28 88.697998 3735.360107
          2020-12-29 87.888000 3727.040039
          2020-12-30 86.812500 3732.040039
          2020-12-31 87.632004 3756.070068
```

1.1 Create two columns in df1 named year and quarter that extract year and quarter information from the Date index column.

756 rows × 2 columns

Out[4]:

Symbols	GOOGL	^GSPC	year	quarter	return	return_GOOGL
Date						
2018-01-03	54.576000	2713.060059	2018	1	0.006399	0.017061
2018-01-04	54.787998	2723.989990	2018	1	0.004029	0.003884
2018-01-05	55.514500	2743.149902	2018	1	0.007034	0.013260
2018-01-08	55.710499	2747.709961	2018	1	0.001662	0.003531
2018-01-09	55.639500	2751.290039	2018	1	0.001303	-0.001274
2020-12-24	86.708000	3703.060059	2020	4	0.003537	0.003431
2020-12-28	88.697998	3735.360107	2020	4	0.008723	0.022951
2020-12-29	87.888000	3727.040039	2020	4	-0.002227	-0.009132
2020-12-30	86.812500	3732.040039	2020	4	0.001342	-0.012237
2020-12-31	87.632004	3756.070068	2020	4	0.006439	0.009440

755 rows × 6 columns

1.2 Create two columns in df1 named year and quarter that extract year and quarter information from the Date index column.

In [8]: df1['nprice_market']=idx_market_price/idx_market_price[0]*100
df1['nprice_GOOGL']=idx_google_price/idx_google_price[0]*100
df1

Out[8]:

Symbols	GOOGL	^GSPC	year	quarter	return	return_GOOGL	nprice_market	nprice_
Date								
2018-01- 03	54.576000	2713.060059	2018	1	0.006399	0.017061	100.000000	100
2018-01- 04	54.787998	2723.989990	2018	1	0.004029	0.003884	100.402864	100
2018-01- 05	55.514500	2743.149902	2018	1	0.007034	0.013260	101.109074	101
2018-01- 08	55.710499	2747.709961	2018	1	0.001662	0.003531	101.277152	102
2018-01- 09	55.639500	2751.290039	2018	1	0.001303	-0.001274	101.409109	101
2020-12- 24	86.708000	3703.060059	2020	4	0.003537	0.003431	136.490162	158
2020-12- 28	88.697998	3735.360107	2020	4	0.008723	0.022951	137.680701	162
2020-12- 29	87.888000	3727.040039	2020	4	-0.002227	-0.009132	137.374034	161
2020-12- 30	86.812500	3732.040039	2020	4	0.001342	-0.012237	137.558327	159
2020-12- 31	87.632004	3756.070068	2020	4	0.006439	0.009440	138.444044	160
755 rows × 8 columns						>		

1.3 Import matplotlib.pyplot as plt. Use pandas visualization to create the following line plot of the normalized prices.

In [9]: import matplotlib.pyplot as plt

```
In [10]: df1[['nprice_market','nprice_GOOGL']].plot(figsize = (10,5))
    plt.xlabel("Date")
    plt.ylabel("Close")
    plt.title("Normalized prices overtime")
    plt.legend(["Market price","GOOGL price"]);
```


1.4 Import matplotlib.pyplot as plt. Use pandas visualization to create the following line plot of the normalized prices.

```
In [11]: df1.loc[df1["year"]==2020,"G00GL"].max()
Out[11]: 91.24849700927734
In [12]: df1.loc[df1["year"]==2020,"G00GL"].idxmax()
Out[12]: Timestamp('2020-12-02 00:00:00')
```

```
In [13]: plt.figure(figsize = (10, 5))
    plt.plot(df1['GOOGL'])
    plt.xlabel("Date")
    plt.ylabel("Close")
    plt.title("GOOGL price in 2020")
    plt.xlim(pd.to_datetime("2020-01-01"),pd.to_datetime("2020-12-31"))
    plt.ylim(50,150)
    plt.xticks([pd.to_datetime("2020-01-01"),pd.to_datetime("2020-04-01"),pd.to_datetime("2020-04-01"),pd.to_datetime("2020-12-02"), color='yellow')
    plt.axvline(pd.to_datetime("2020-12-02"), color='yellow')
    plt.text(pd.to_datetime("2020-12-02"),100," highest price $91.25");
```


1.5 Use the matplotlib object-oriented interface to create the following line plot of the market price and the price of GOOGL with difference yaxis scales.

```
In [14]: fig, ax1 = plt.subplots(figsize=(10,5))
    ax1.plot(df1["^GSPC"],color="red",linestyle="-",label="Market")
    ax1.set_ylabel("Market price")
    ax1.set_xlabel("Date")

ax2 = ax1.twinx()
    ax2.plot(df1["GOOGL"],color="blue", linestyle="--",label="GOOGL")
    ax2.set_ylabel("GOOGL price")
    ax2.set_title('Close prices over the years')
    fig.legend(["Market", "GOOGL"]);
```


1.6 Use groupby(), mean(), unstack(), and mul() to group df1 by the quarter and year columns, calculate the average value of GOOGL's return in the return_GOOGL column for each group, unstack the second index level, and multiply the numbers by 100. Save the result in a DataFrame named df2.

```
In [15]: df2=df1.groupby(["quarter","year"]).mean()['return_GOOGL'].unstack(1).mul(100)
df2
```

Out[15]:

year	2018	2019	2020	
quarter				
1	-0.037352	0.205808	-0.169978	
2	0.143397	-0.117663	0.344716	
3	0.113487	0.202507	0.066761	
4	-0.203295	0.148799	0.295098	

1.7 Use pandas visualization to create the following bar plot of quarterly returns of GOOGL.

```
In [16]: df2.plot(kind="bar",figsize = (10,5), edgecolor='black')
    plt.xlabel('qaurter')
    plt.ylabel('average return')
    plt.title('quarterly returns of GOOGL');
```


1.8 Use the matplotlib function-oriented interface to create the following scatter plot of GOOGL's returns and market returns.

```
In [17]: plt.figure(figsize = (10, 5))
    plt.scatter(x=df1["return"],y=df1["return_GOOGL"])
    plt.xlabel('market return')
    plt.ylabel('GOOGL return')
    plt.title('GOOGL return and market return');
```

