Finding the Eigenvectors and Eigenvalues

Why find Eigenvectors?

Z₁ and Z₂ are eigenvectors

Z_1	λ_1
Z_2	λ_2
Z_n	λ_{n}

$$\lambda_1 = 4.82,$$

$$\lambda_2 = -0.13$$
,

$$\lambda_{3} = 9.31$$

Step 1: Arrange the magnitudes of eigenvalues in decreasing

$$\begin{array}{ll} \text{orde} \lambda_1 = 4.82, & \lambda_2 = -0.13, & \lambda_3 = 9.31 \\ |\lambda_1| = 4.82, & |\lambda_2| = 0.13, & |\lambda_3| = 9.31 \\ |\lambda_3| > |\lambda_1| > |\lambda_2| & \end{array}$$

Step 2: Calculate the percentage of variance explained by each

eigenvector

$$|\lambda_3| = 9.31$$
, $|\lambda_1| = 4.82$, $|\lambda_2| = 0.13$
 $|\lambda_1| + |\lambda_2| + |\lambda_3| = 14.26 = \text{sum}$
 $|\lambda_3|/\text{sum} = 0.65$,
 $|\lambda_1|/\text{sum} = 0.34$,
 $|\lambda_2|/\text{sum} = 0.01$

Step 3: Choose the top k eigenvectors as the Principal

Components/sum =
$$0.65_{99\%}$$

 $|\lambda_1|/\text{sum} = 0.34$,
 $|\lambda_2|/\text{sum} = 0.01$

Choose V₃ and V₁ as the Principal Components

Thank You!

