Teorētiskais pamatojums:

Šķidri, izkausēti metāli to augstās siltumietilpības un vadītspējas dēļ tiek izmantoti kā siltumnesēji dažādās enerģētiskās iekārtās. Noteiktā veidā iedarbojoties uz elektrovadošu šķidrumu ar ārēju magnētisko lauku, iespējams radīt tādus elektromagnētiskos spēkus, kas nodrošina šķidrā metāla sūknēšanu. Šādu iekārtu sauc par EM sūkni (EMS) un tā galvenā priekšrocība pār mehāniskajiem sūkņiem ir bezkontakta sūknēšana, nodrošinot absolūti hermētisku šķidrā metāla cilpas konstrukciju.

Šajā darbā tiek izmantots cilindrveidīgais rotējošo pastāvīgo magnētu EMS (Attēls 1). Tam ir sekojošas sastāvdaļas: 1) magnētiskais rotors — feromagnētisks viengabalains pamata cilindrs, uz kura pamīšus izvietoti pastāvīgie magnēti; 2) apkārt rotoram izvietots sūkņa kanāls ar nemagnētiskām sienām, pa kuru plūst šķidrais metāls; 3) apkārt kanālam var tikt izvietots tam cieši piegulošs laminēts magnētiskais vads, kas pastiprina lauku šķidrajā metālā.

Sūkņa attīstīto spiediena starpību iespējams iegūt, apskatot cilindrveidīgo rotējoši pastāvīgo magnētu EMS, kurā šķidrais metāls ar elektrovadītspēju σ un ātrumu v plūst pa kanālu, kam augstums -b, platums -2a. Uz kanālā esošo šķidrā metāla slānīti iedarbojas pastāvīgo magnētu radīts lauks B, kas rotē ar ātrumu v_B . Iegūst formulu:

$$\Delta P_{EM} = \frac{B_{\rm e,0}^2}{2\mu_0} \alpha L \cdot Rm_s \left[1 - \frac{Tanh(\alpha a)}{\alpha a} \right]$$

Kur $B_{\rm e,0}$ — pieliktā magnētiskā lauka indukcija, $\alpha=\pi/\tau$ — viļņu skaitlis, $\tau=2\pi R/n_m$, R — vidējais kanāla rādiuss, n_m — magnētu skaits un slīdes magnētiskais Reinoldsa skaitlis:

$$Rm_{s} = \frac{\mu_{0}\sigma(v_{B} - v_{z})}{\alpha}$$

raksturo magnētiskā lauka konvekcijas un difūzijas attiecību kustīgajā atskaites sistēmā, v_z – šķidrā metāla plūsmas ātrums. Formula sūkņa attīstītajai spiedienu starpībai lietojama, ja $Rm_s < 1$ un attiecība $a/\tau \gg 1$. Ja pēdējais nosacījums neizpildās, tad jāizmanto:

Līdzīgi kā elektriskajās ķēdēs, kur katram elementam ir elektriskā pretestība, arī hidrauliskajās ķēdēs var runāt gan par katra elementa pretestību, gan kopējo ķēdes pretestību. Turbulentu plūsmu gadījumā ķēdes elementu radīto spiediena kritumu var aprēķināt: $\Delta p_k = \zeta \rho v^2/2$

Kur v – vidējais šķidruma ātrums attiecīgajā elementā. $\zeta = \zeta_B + \zeta_L$ ir pretestības koeficients, kas sastāv no divām daļām – berzes pretestības ζ_B un lokālās pretestības ζ_L . Berzes pretestību attiecīgajā elementā var aprēķināt kā pretestību, kas veidotos taisnā caurulē ar tādu pašu garumu L un hidraulisko diametru $D_h = 4S/P$: $\zeta_B = \lambda_h L/D_h$

Kur λ_h - berzes koeficients , ko aprēķina: $\lambda_h=0.3164\cdot Re^{-0.25}$. Savukārt, lokālā pretestība rodas ģeometrijas izmaiņas dēļ (virziena, šķērsgriezuma maiņa). Koeficientam ζ_L nav vienas unikālas formulas.

Attēls 1. Rotējošo pastāvīgo magnētu EMS, eksperimenta shēma.

Darba uzdevumi:

- 1. Izmērīt rotējošu pastāvīgo magnētu EMS maksimālā spiediena (Q = 0) atkarību no magnētu sistēmas rotācijas ātruma ar piedziņas barošanas frekvencēm 5, 10 ... 50 Hz bez magnetvada.
- Izmērīt rotējošu pastāvīgo magnētu EMS maksimālā spiediena (Q = 0) atkarību no magnētu sistēmas rotācijas ātruma ar piedziņas barošanas frekvencēm 5, 10 ... 50 Hz ar magnetvadu
- 3. Veikt analīzi punktos 1 un 2 iegūtajiem rezultātiem:
 - 3.1. Attēls 2: Eksperimentāli iegūtā maksimāla spiediena [bar] (Q = 0) atkarība no frekvences [Hz] ar un bez magnetvada
 - 3.2. Attēls 3: Eksperimentāli iegūtā maksimālā spiediena (Q = 0) atkarība no Rms ar un bez magnetvada
 - 3.3. Zinot EMS ģeometriskos parametrus un Rms vērtības, noteikt ārējā lauka amplitūdu $B_{e,0}$ gadījumā ar un bez magnetvada. Izskaidrot magnetvada ietekmi.
 - 3.4. Izmantojot attēlus 1 un 2, aprakstīt un izskaidrot iegūtos EMS darbības režīmus, analizējot tos teorētiskā apraksta kontekstā.
- 4. Izmērīt rotējošu pastāvīgo magnētu EMS spiediena un caurteces raksturlīknes bez magnetvada pie frekvencēm 10, 20...50 Hz, mainot vārsta pozīcijas no pilnīgi vaļā līdz ciet (vismaz 7 pozīcijas).
- 5. Veikt analīzi punktos 4 un 5 iegūtajiem rezultātiem:
 - 5.1. Attēls 4: Eksperimentāli iegūtās spiediena [bar] caurteces [cm³/s] raksturlīknes pie dažādām frekvencēm bez magnetvada.
 - 5.2. Attēls 5: Eksperimentāli iegūtās spiediena caurteces raksturlīknes pie dažādām frekvencēm ar magnetvadu
 - 5.3. Pievienot attēliem 3 un 4 teorētiskās raksturlīknes, izmantojot izteiksmi sūkņa attīstītājam EM spiedienam (50). Izskaidrot atšķirības starp eksperimentālajiem un teorētiskajiem rezultātiem.
 - 5.4. Attēls 6: Spiediena kritums [bar] hidrauliskajā cilpā atkarībā no caurteces [cm³/s] (vārsts pilnīgi vaļā)
 - 5.5. Izmantojot pielikums 1 un 2, kā arī teorētiskajā aprakstā dotas izteiksmes un skici attēlā 21, novērtēt EMS kanāla hidraulisko pretestību un izveidot attēlu 7. spiediena zudumi kanālā [bar] atkarība no caurteces [cm³/s]. Novērtēt kanāla hidrauliskās pretestības iespaidu uz EMS attīstīto spiedienu. Pievienot attēliem 3 un 4 raksturlīknes atbilstoši izteiksmei (60).
 - 5.6. Izmantojot attēlus 4 7, aprakstīt un izskaidrot iegūtos EMS un hidrauliskā cilpas darbības režīmus, analizējot tos teorētiskā apraksta kontekstā.
- 6. * papildus uzdevums (atzīmes paaugstināšanai).
 - 6.1. Izrakstīt un iegūt indukcijas vienādojumu magnētiskajam laukam, izmantojot Maksvela vienādojumus un Oma likumu diferenciālā formā.
 - 6.2. Pierādīt, ka kvazistacionārā tuvinājumā izpildās sakarība:

$$f_{EM}=Re[j]\cdot Re[B]=Re\left[\frac{j_0^*B_0}{2}\right]$$
 Kur j,j_0,B,B_0 ir kompleksi skaitļi:
$$j=j_0e^{i\omega t} \ \ \text{un } B=B_0e^{i\omega t}$$

$$j = j_0 e^{i\omega t}$$
 un $B = B_0 e^{i\omega t}$

6.3. Atrisināt indukcijas vienādojumu un atrast
$$B_{i,0}(y)$$
, izmantojot komplekso pierakstu:
$$\frac{\partial^2 B_i}{\partial y^2} + \frac{\partial^2 B_i}{\partial z^2} - \mu_0 \sigma \left[\frac{\partial B_i}{\partial t} + v \frac{\partial B_i}{\partial t} \right] = \mu_0 \sigma \left[\frac{\partial B_e}{\partial t} + v \frac{\partial B_e}{\partial t} \right]$$

Kur:

$$\begin{split} B_e(z,t) &= B_{e,0} \cdot e^{i(\alpha z - \omega t)} \\ B_i(y,z,t) &= B_{i,0}(y) \cdot e^{i(\alpha z - \omega t)} \end{split}$$

Ar robežnosacījumiem:

$$B_{i,0}(y)|_{(y=\pm a)}=0$$

Mērījumu rezultāti un datu apstrāde:

Tabula 1. Darbā izmantoto magnētiskā šķidruma un sūkņa ģeometrisko parametru vērtības [1].

h_{10}	19±0.5	cm
h_{20} (eksperimenta sākumā)	19 <u>±</u> 0.5	cm
h_{20} (pirms raksturlīkņu uzņemšanas)	18.7 <u>±</u> 0.5	cm
h_{max}	69 <u>±</u> 1	cm
P_{atmosf}	101325	Ра
ρ	6400	kg/m³
σ	3.46·10 ⁶	S/m

μ	0.0024	$Pa \cdot s$
μ_o	1.257·10 ⁻⁶	H/m
а	25	mm
b	5	mm
R	42	mm
L	0.187	m
α	71.43	m^{-1}

Tabula 2. EMS maksimālā spiediena atkarība no Rm_{s} , bez magnetvada.

f,Hz	n, apgr./min.	Rm_s	$h_1 \pm 0.1$, cm	h_2 $\pm 0.1, cm$	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar
0	0	0.00	19.5	18.7	0	0	0	0.000
5	300	0.08	19.9	18.6	1077	-63	1139	0.0114
10	600	0.16	20.5	17.5	2717	-753	3470	0.0347
15	900	0.24	23.2	16.4	10509	-1444	11953	0.1195
20	1200	0.32	24.3	15.4	13894	-2072	15966	0.1597
25	1500	0.40	26.4	14.2	20744	-2825	23569	0.2357
30	1800	0.48	27.9	13.2	25983	-3453	29436	0.2944
35	2100	0.56	29.5	12.2	31930	-4081	36011	0.3601
40	2400	0.64	30.8	11.2	37068	-4709	41776	0.4178
45	2700	0.72	32.3	10.2	43376	-5337	48713	0.4871
50	3000	0.80	33.4	9.4	48289	-5839	54128	0.5413

Tabula 3. EMS maksimālā spiediena atkarība no ${\it Rm}_{\it s}$, ar magnetvada.

f,Hz	n, apgr./min.	Rm_s	$\begin{array}{c} h_1 \\ \pm \ 0.1, cm \end{array}$	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar
0	0	0.00	18.5	18.7	0	0	0	0.000
5	300	0.08	20.2	17.9	4597	-502	5099	0.0510
10	600	0.16	23.8	16.1	15209	-1632	16841	0.1684
15	900	0.24	23.2	16.4	13349	-1444	14793	0.1479
20	1200	0.32	28.8	12.7	32428	-3767	36195	0.3620
25	1500	0.40	31.2	11.1	42017	-4772	46788	0.4679
30	1800	0.48	33.8	9.2	53648	-5964	59612	0.5961
35	2100	0.56	36.2	7.5	65791	-7032	72823	0.7282
40	2400	0.64	38.2	6.1	77177	-7911	85088	0.8509
45	2700	0.72	40.3	4.2	90652	-9104	99755	0.9976
50	3000	0.80	42.0	3.0	102945	-9857	112802	1.1280

Tabula 4. Kļūdu aprēķins EMS maksimālā spiediena atkarībai no Rm_s .

	<u> </u>		•	
	Bez	magnetvac	da	
$\Delta \delta p_1$, Pa	$\Delta \delta p_2$, Pa	$\Delta \delta p$, Pa	$\Delta \delta p$, bar	$r_{\delta p}$, %
381		391	0.0039	34.30
384		394	0.0039	11.36
402		411	0.0041	3.44
409		419	0.0042	2.62
425	89	434	0.0043	1.84
437	69	446	0.0045	1.52
452		460	0.0046	1.28
464		472	0.0047	1.13
479		487	0.0049	1.00
491		499	0.0050	0.92

	Ar r	magnetvad	u	
$\Delta \delta p_1$, Pa	$\Delta \delta p_2$, Pa	$\Delta \delta p$, Pa	$\Delta \delta p$, bar	$r_{\delta p}$, $\%$
382		393	0.0039	7.70
406		415	0.0042	2.47
402		411	0.0041	2.78
445		454	0.0045	1.25
468	89	476	0.0048	1.02
496	69	504	0.0050	0.85
526		533	0.0053	0.73
554		561	0.0056	0.66
588		595	0.0059	0.60
620		626	0.0063	0.55

Tabula 5. No EMS maksimālā spiediena atkarības no $Rm_{\scriptscriptstyle S}$ iegūtās pieliktā magnētiskā lauka vērtības.

	Bez magnetvada	Ar magnetvadu
$B_{e,0}$, mT	169.9	238.8
$\Delta B_{e,0}$, mT	7.0	8.5
r,%	4.11	3.57

Attēls 2. EMS attīstītā maksimālā spiediena atkarība no barošanas frekvences.

Attēls 3. EMS attīstītā maksimālā spiediena atkarība no Rm_s .

Tabula 6. EMS raksturlīkņu uzņemšana, bez magnetvada. Stāvoklis 1 atbilst pilnīgi atvērtam vārstam, stāvoklis 9 – vārstam ciet.

	10 Hz											
Vārsta stāvoklis	$H_1 \pm 0.1, cm$	H_2 ± 0.1 , cm	Q , cm³ /s	h_1 ± 0.1 , cm	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar		
1	19.5	19	21.9	19.8	18.7	3493	0	3493	0.0349	0.0491		
2	19.5	19	21.9	19.8	18.8	3493	63	3431	0.0343	0.0491		
3	19.4	18.8	24.0	19.7	18.7	3220	0	3220	0.0322	0.0487		
4	19.3	18.8	21.9	20	18.8	4044	63	3981	0.0398	0.0491		
5	19	18.8	13.8	20.5	18.8	5434	63	5371	0.0537	0.0505		
6	18.8	18.8	0.0	21	18.6	6847	-63	6910	0.0691	0.0529		
7	18.6	18.6	0.0	21.2	18.4	7419	-188	7607	0.0761	0.0529		
8	18.6	18.6	0.0	21.5	18.3	8283	-251	8534	0.0853	0.0529		
9	18.6	18.6	0.0	21.5	18.3	8283	-251	8534	0.0853	0.0529		

	20 Hz											
Vārsta stāvoklis	H_1 ± 0.1 , cm	H_2 ± 0.1 , cm	Q , cm³ /s	h_1 ± 0.1 , cm	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar		
1	20	18.3	40.4	21.3	17.2	7706	-942	8648	0.0865	0.0988		
2	20	18.3	40.4	21.4	17.2	7994	-942	8936	0.0894	0.0988		
3	19.8	18.3	37.9	21.6	17.2	8573	-942	9515	0.0951	0.0992		
4	19.3	18.3	31.0	22	17.2	9743	-942	10685	0.1068	0.1004		
5	18.8	18.3	21.9	23.2	16.6	13349	-1318	14667	0.1467	0.1020		
6	18.5	18.3	13.8	23.7	16.8	14896	-1193	16089	0.1609	0.1034		
7	18.3	18.3	0.0	24.1	16.5	16153	-1381	17535	0.1753	0.1059		
8	18.2	18.2	0.0	24.4	26.5	17108	4897	12211	0.1221	0.1059		
9	18.2	18.2	0.0	24.4	26.5	17108	4897	12211	0.1221	0.1059		

					30 Hz					
Vārsta stāvoklis	H_1 $\pm 0.1, cm$	<i>H</i> ₂ ± 0.1, <i>cm</i>	Q , cm³ /s	h_1 $\pm 0.1, cm$	h_2 $\pm 0.1, cm$	δp_1 , Pa	δp_2 , Pa	бр, Ра	δp, bar	δp_{teor} , bar
1	20.6	18.1	48.9	23	15.2	12738	-2197	14935	0.1493	0.1502
2	20.5	18	48.9	23.3	15.2	13656	-2197	15854	0.1585	0.1502
3	20.4	18	47.9	23.5	15.2	14274	-2197	16471	0.1647	0.1504
4	19.7	18	40.4	23.8	15.5	15209	-2009	17218	0.1722	0.1517
5	18.5	17.8	25.9	26	14.6	22382	-2574	24956	0.2496	0.1542
6	18	17.7	17.0	26.5	14.7	24096	-2511	26607	0.2661	0.1558
7	17.7	17.7	0.0	27.2	14.5	26551	-2637	29188	0.2919	0.1588
8	17.5	17.5	0.0	27.5	14.8	27625	-2449	30073	0.3007	0.1588
9	17.5	17.5	0.0	27.5	14.8	27625	-2449	30073	0.3007	0.1588
					40 Hz					
Vārsta stāvoklis	$H_1 \pm 0.1, cm$	$\begin{array}{l} H_2 \\ \pm \ 0.1, cm \end{array}$	Q , cm³ /s	h_1 ± 0.1 , cm	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
1	21.4	17.3	62.7	25.2	13.6	19706	-3202	22908	0.2291	0.2007
2	21.3	17.3	61.9	25.2	13.6	19706	-3202	22908	0.2291	0.2008
3	21	17.3	59.5	25.5	13.7	20700	-3139	23839	0.2384	0.2012
4	19.9	17.4	48.9	26	14.1	22382	-2888	25270	0.2527	0.2031
5	18.9	17.2	40.4	28	13.5	29442	-3265	32707	0.3271	0.2046
6	18.2	17.2	31.0	29	13.5	33190	-3265	36455	0.3645	0.2063
7	17.4	17.1	17.0	30	13.1	37098	-3516	40614	0.4061	0.2087
8	17.2	17.1	9.8	30.4	13	38709	-3579	42287	0.4229	0.2100
9	17	17	0.0	30.4	13	38709	-3579	42287	0.4229	0.2117

					50 Hz					
Vārsta stāvoklis	$H_1 \pm 0.1$, cm	H_2 ± 0.1 , cm	Q , cm³ /s	$h_1 \pm 0.1$, cm	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
1	22.1	16.8	71.3	26.6	11.2	24442	-4709	29151	0.2915	0.2521
2	22	16.9	69.9	26.7	11.2	24790	-4709	29499	0.2950	0.2524
3	21.3	16.9	64.9	27.5	11.3	27625	-4646	32271	0.3227	0.2532
4	19.9	17.1	51.8	28.2	12	30180	-4207	34386	0.3439	0.2555
5	18.1	16.9	33.9	30.8	10.9	40348	-4897	45245	0.4525	0.2587
6	17.5	16.9	24.0	31.6	11.4	43716	-4583	48299	0.4830	0.2604
7	16.9	16.8	9.8	32.5	11	47654	-4834	52489	0.5249	0.2629
8	16.8	16.8	0.0	32.8	11	49004	-4834	53839	0.5384	0.2646
9	16.6	16.6	0.0	32.8	11	49004	-4834	53839	0.5384	0.2646

Tabula 7. EMS raksturlīkņu uzņemšana, ar magnetvadu. Stāvoklis 1 atbilst pilnīgi atvērtam vārstam, stāvoklis 9 – vārstam ciet.

					10 Hz					
Vārsta stāvoklis	H_1 $\pm 0.1, cm$	H_2 ± 0.1 , cm	Q , cm³ /s	h_1 ± 0.1 , cm	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δp,Pa	δp, bar	δp_{teor} , bar
1	19.5	18.5	31.0	20.2	18.3	4597	-251	4848	0.0485	0.0939
2	19.7	18.3	36.6	20.4	18.3	5154	-251	5405	0.0541	0.0919
3	19.7	18.3	36.6	20.4	18.3	5154	-251	5405	0.0541	0.0919
4	19.4	18.2	33.9	21	18.2	6847	-314	7161	0.0716	0.0928
5	18.9	18.2	25.9	21.8	17.9	9156	-502	9658	0.0966	0.0956
6	18.7	18.1	24.0	22.5	17.6	11227	-691	11918	0.1192	0.0963
7	18.5	18	21.9	23	17.3	12738	-879	13616	0.1362	0.0970
8	18.3	17.9	19.6	23.6	16.9	14584	-1130	15714	0.1571	0.0978
9	18.3	17.7	24.0	24	16.7	15837	-1256	17093	0.1709	0.0963
					20 Hz					
Vārsta stāvoklis	$H_1 \pm 0.1$, cm	$H_2\\ \pm~0.1, cm$	Q , cm³ /s	h_1 ± 0.1 , cm	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	δp,Pa	δp, bar	δp_{teor} , bar
1	20.4	17.6	51.8	22.8	15.7	12130	-1884	14014	0.1401	0.1912
2	20.4	17.6	51.8	22.9	15.8	12433	-1821	14254	0.1425	0.1912
3	20.2	17.5	50.9	23.2	15.8	13349	-1821	15170	0.1517	0.1916
4	19.5	17.4	44.9	24.2	15.5	16470	-2009	18480	0.1848	0.1936
5	18.2	17.3	29.4	25.6	15	21034	-2323	23357	0.2336	0.1990
6	17.9	17.3	24.0	27.2	14.4	26551	-2700	29251	0.2925	0.2009
7	17.6	17.1	21.9	27.8	14.1	28711	-2888	31599	0.3160	0.2016
8	17.5	17	21.9	28.3	13.8	30550	-3076	33627	0.3363	0.2016
9	17.4	16.9	21.9	28.9	13.4	32808	-3328	36136	0.3614	0.2016

	30 Hz												
Vārsta stāvoklis	H_1 ± 0.1 , cm	H_2 ± 0.1 , cm	Q , cm³ /s	h_1 ± 0.1 , cm	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar			
1	21.4	16.9	65.7	25.9	12	22043	-4207	26249	0.2625	0.2910			
2	21.4	16.9	65.7	26	12	22382	-4207	26588	0.2659	0.2910			
3	21	16.8	63.4	26.4	12.1	23750	-4144	27894	0.2789	0.2918			
4	20	16.8	55.4	27.4	12.2	27265	-4081	31346	0.3135	0.2946			
5	18.5	16.5	43.8	29.9	11.5	36700	-4520	41220	0.4122	0.2986			
6	17.4	16.4	31.0	31.5	11.3	43288	-4646	47934	0.4793	0.3031			
7	16.8	16.3	21.9	32.4	10.9	47208	-4897	52105	0.5211	0.3062			
8	16.5	16.4	9.8	33	10.5	49915	-5148	55063	0.5506	0.3104			
9	16.4	16.4	0.0	33.8	10	53648	-5462	59110	0.5911	0.3138			

	40 Hz												
Vārsta stāvoklis	H_1 ± 0.1 , cm	H_2 ± 0.1 , cm	Q , cm³ /s	h_1 ± 0.1 , cm	h_2 \pm 0.1, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar			
1	22.8	16	80.7	28.8	9	32428	-6090	38518	0.3852	0.3904			
2	22.6	16	79.5	29.2	9	33959	-6090	40049	0.4005	0.3908			
3	21.7	16	73.9	30	9.2	37098	-5964	43063	0.4306	0.3928			
4	20.1	16.2	61.1	31.4	9.3	42862	-5902	48764	0.4876	0.3972			
5	18.3	15.8	48.9	34.3	8.3	56056	-6530	62586	0.6259	0.4014			
6	16.8	15.9	29.4	35.8	8.3	63661	-6530	70190	0.7019	0.4082			
7	16.1	15.9	13.8	37	8	70194	-6718	76911	0.7691	0.4136			
8	15.8	15.8	0.0	37.6	7.7	73626	-6906	80532	0.8053	0.4184			
9	15.6	15.6	0.0	38.4	7.3	78388	-7157	85546	0.8555	0.4184			
					50 Hz								
Vārsta stāvoklis	$H_1 \pm 0.1$, cm	H_2 ± 0.1 , cm	Q , cm³ /s	$h_1 \pm 0.1$, cm	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar			
1	24.5	15	95.4	31.8	5.8	44577	-8099	52676	0.5268	0.4899			
2	24.3	15.1	93.9	32.2	5.5	46323	-8287	54610	0.5461	0.4904			
3	23.3	15.2	88.1	32.8	5.5	49004	-8287	57292	0.5729	0.4924			
4	20.8	15.6	70.6	34.4	6.5	56545	-7660	64205	0.6420	0.4985			
5	18.2	15.3	52.7	38.3	5.7	77781	-8162	85943	0.8594	0.5047			
6	16.4	15.4	31.0	39.5	6	85314	-7974	93288	0.9329	0.5123			
7	15.6	15.3	17.0	40.5	5.8	92028	-8099	100127	1.0013	0.5171			
8	15.2	15.2	0.0	41.4	5.9	98448	-8036	106484	1.0648	0.5230			

Tabula 8. Kļūdu aprēķins EMS raksturlīknēm.

		· · · · ·	ez magnetva			Ar magnetvadu						
10 Hz												
Vārsta stāvoklis	ΔQ , cm ³ /s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm ³ /s	$\Delta\delta p_1$, Pa	$\Delta \delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p, bar$		
1	3.1	380	89	390	0.0039	2.2	382	89	393	0.0039		
2	3.1	380	89	390	0.0039	1.8	384	89	394	0.0039		
3	2.8	379	89	390	0.0039	1.8	384	89	394	0.0039		
4	3.1	381	89	391	0.0039	2.0	387	89	397	0.0040		
5	4.9	384	89	394	0.0039	2.6	392	89	402	0.0040		
6						2.8	397	89	407	0.0041		
7						3.1	400	89	410	0.0041		
8						3.5	404	89	414	0.0041		
9						2.8	407	89	417	0.0042		

					20 Hz					
Vārsta stāvoklis	ΔQ , cm ³ /s	$\Delta\delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p, bar$	ΔQ , cm ³ /s	$\Delta\delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p, bar$
1	1.7	389	89	399	0.0040	1.3	399	89	409	0.0041
2	1.7	390	89	400	0.0040	1.3	400	89	409	0.0041
3	1.8	391	89	401	0.0040	1.3	402	89	411	0.0041
4	2.2	394	89	404	0.0040	1.5	409	89	418	0.0042
5	3.1	402	89	411	0.0041	2.3	419	89	428	0.0043
6	4.9	405	89	415	0.0041	2.8	432	89	441	0.0044
7						3.1	437	89	446	0.0045
8						3.1	441	89	450	0.0045
9						3.1	446	89	455	0.0045
					30 Hz					
Vārsta stāvoklis	ΔQ , cm³ /s	$\Delta\delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm ³ /s	$\Delta\delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar
1	1.4	400	89	410	0.0041	1.0	421	89	431	0.0043
2	1.4	402	89	412	0.0041	1.0	422	89	431	0.0043
3	1.4	404	89	413	0.0041	1.1	425	89	434	0.0043
4	1.7	406	89	415	0.0042	1.2	433	89	442	0.0044
5	2.6	422	89	431	0.0043	1.5	455	89	464	0.0046
6	4.0	426	89	435	0.0044	2.2	471	89	479	0.0048
7						3.1	480	89	488	0.0049
8						17.0	487	89	495	0.0049
9						13.8	496	89	504	0.0050

	40 Hz													
Vārsta stāvoklis	ΔQ , cm ³ /s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm ³ /s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar				
1.1	416	89	425	0.0043	1.1	0.8	445	89	454	0.0045				
1.1	416	89	425	0.0043	1.1	0.9	449	89	458	0.0046				
1.1	418	89	428	0.0043	1.1	0.9	456	89	465	0.0046				
1.4	422	89	431	0.0043	1.4	1.1	470	89	478	0.0048				
1.7	438	89	447	0.0045	1.7	1.4	502	89	510	0.0051				
2.2	447	89	456	0.0046	2.2	2.3	520	89	528	0.0053				
4.0	456	89	465	0.0046	4.0	4.9	537	89	544	0.0054				
6.9	460	89	469	0.0047	6.9									

	50 Hz													
Vārsta stāvoklis	ΔQ , cm³ /s	$\Delta\delta p_1$, Pa	$\Delta \delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm³ /s	$\Delta\delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar				
1	1.0	427	89	436	0.0044	0.7	474	89	482	0.0048				
2	1.0	428	89	437	0.0044	0.7	478	89	486	0.0049				
3	1.0	434	89	443	0.0044	0.8	485	89	493	0.0049				
4	1.3	440	89	449	0.0045	1.0	503	89	511	0.0051				
5	2.0	464	89	472	0.0047	1.3	556	89	563	0.0056				
6	2.8	472	89	480	0.0048	2.2	575	89	581	0.0058				
7	6.9	481	89	489	0.0049	4.0	592	89	598	0.0060				
8														

Attēls 4. EMS spiediena – caurteces raksturlīknes bez magnetvada.

Attēls 5. EMS spiediena – caurteces raksturlīknes ar magnetvadu.

Attēls 6. Spiediena kritums EMS hidrauliskajā cilpā atkarībā no caurteces (vārsts pilnībā atvērts).

Tabula 9. Aprēķins spiediena zudumi kanālā atkarībā no caurteces.

Q , cm^3/s	Re	$\zeta_{in/out}$	$v_{in/out}$, m/s	ζ_{dif}	ζ_{konf}	$v_{dif/konf}$, m/s	ζ_{30}	ζ_{42}	v _{30/42} , m/s	δp ,Pa	δp , bar
10	889	0.058	0.014	3.853	1.991	0.020	0.219	0.269	0.040	10	0.00010
20	1778	0.049	0.028	3.566	1.720	0.040	0.196	0.235	0.080	36	0.00036
30	2667	0.044	0.042	3.405	1.573	0.060	0.183	0.218	0.120	76	0.00076
40	3556	0.041	0.057	3.290	1.471	0.080	0.175	0.207	0.160	130	0.00130
50	4444	0.039	0.071	3.200	1.393	0.100	0.170	0.199	0.200	195	0.00195
60	5333	0.037	0.085	3.127	1.331	0.120	0.165	0.193	0.240	273	0.00273
70	6222	0.036	0.099	3.064	1.278	0.140	0.162	0.188	0.280	362	0.00362
80	7111	0.034	0.113	3.010	1.233	0.160	0.159	0.184	0.320	463	0.00463
90	8000	0.033	0.127	2.962	1.194	0.180	0.156	0.180	0.360	574	0.00574
100	8889	0.033	0.141	2.920	1.159	0.200	0.154	0.177	0.400	695	0.00695

Attēls 7. Spiediena zudumi EMS kanālā atkarībā no caurteces.

Aprēķinu piemēri:

Ideālas gāzes manometra spiediens (5 Hz mērījumam bez magnetvada):
$$\delta p_1 = \left(\frac{p_A}{h_{max} - h_1} + \rho g\right) (h_1 - h_0) = \left(\frac{101325 \cdot 100}{69 - 20.2} + 6400 \cdot 9.81\right) (21.2 - 19.5)$$
$$= 4597 \ Pa$$

Atmosfēriskā manometra spiediens (5 Hz mērījumam bez magnetvada): 2)

$$\delta p_2 = \rho g(h_2 - h_{20}) = 6400 \cdot 9.81(18.3 - 18.7) = -251 \, Pa$$

EMS attīstītais spiediens (5 Hz mērījumam bez magnetvada): 3)

$$\delta p = \delta p_1 - \delta p_2 = 4671 + 377 = 5405 Pa$$

4)

Magnētiskais Reinoldsa skaitlis (5 Hz mērījumam):
$$Rm_s = \frac{\mu_0\sigma v_B}{\alpha} = \frac{\mu_0\sigma}{\alpha}\frac{\pi R}{30}\frac{300}{50}f = \frac{\mu_0\sigma}{\alpha}\frac{\pi R}{30}\frac{300}{50}5 = 0.08$$
 Pieliktā magnētiskā lauka vērtība bez magnetvada:

5)

$$B_{e,0} = \sqrt{\frac{2\mu_0}{\alpha L(1 - Tanh(\alpha a)/(\alpha a))} \frac{d\delta p}{dRm_s}} = \sqrt{\frac{2\mu_0}{\alpha L(1 - Tanh(\alpha a)/(\alpha a))}} 160955$$

$$= 169.9 \, mT$$

Caurtece 10 Hz mērījumam bez magnetvada vārsta stāvoklī "1":

$$Q = K(H_1 - H_2) = 0.00031(19.5 - 19)/100 = 21.9 \text{ cm}^3/\text{s}$$

Teorētiskais sūkņa attīstītais spiediens 10 Hz mērījumam bez magnetvada vārsta stāvoklī 7) "1":

$$\begin{split} \delta p_{teor} &= \frac{B_{e,0}^2}{2\mu_0} \alpha L \left(1 - \frac{Tanh(\alpha a)}{\alpha a} \right) Rm_s = \frac{B_{e,0}^2}{2\mu_0} \alpha L \left(1 - \frac{Tanh(\alpha a)}{\alpha a} \right) \frac{\mu_0 \sigma}{\alpha} \left(v_B - \frac{Q}{2ab} \right) \\ &= 0.0491 \ bar \end{split}$$

Secinājumi:

Laboratorijas darbā tika izmērīta rotējošu patstāvīgo magnētu EMS maksimālā spiediena atkarība no magnētu sistēmas rotācijas ātruma un uzņemtas spiediena — caurteces raksturlīknes. Mērījumi tika atkārtoti divreiz: ar un bez magnētiskā vada, kurš tika pievienots sūkņa kanālam.

Attēlā 2 redzama maksimālā spiediena atkarība no magnētu sistēmas rotācijas ātruma, kas ir kvalitatīvi identiska maksimālā spiediena atkarībai no magnētiskā Reinoldsa skaitļa (Attēls 3), jo barošanas frekvence un Rm_s ir proporcionāli lielumi, gadījumā, ja sūkņa kanālā nav caurteces. Mērījumos ar magnētvadu EMS attīsta lielāku spiedienu. Tas tādēļ, ka feromagnētiskais vads pastiprina uz sūkņa rotora esošo pastāvīgo magnētu lauku.

Attēli 4 un 5 attēlo EMS spiediena – caurteces raksturlīknes, kas uzņemtas pie dažādām barošanas frekvencēm. No tām var secināt, ka pieliekot magnetvadu un palielinot sūkņa rotācijas ātrumu augs arī EMS attīstītais spiediens pie noteiktas caurteces vērtības, kas noved pie lielākām caurteces vērtībām.

6. un 7. tabulā redzams salīdzinājums starp teorētiski aprēķinātajām un eksperimentāli noteiktajām raksturlīknēm, kuras aptuveni sakrīt minimālas caurteces (aizvērta vārsta) gadījumā. Pieaugot caurteces vērtībai eksperimentālais spiediena kritums ir straujāks nekā teorētiskais aprēķins paredz. Daļēji šo nesakritību var izskaidrot ar hidraulisko pretestību, kuras aprēķinu sūkņa kanālā var aplūkot 9 tabulā.

Salīdzinot attēlus 6 un 7 manāms, ka spiediena zudumi EMS kanālā caurteces vērtībām ir vairāk kā par kārtu mazāki, nekā sūkņa attīstītais spiediens, kaut gan tas līdz galam neizskaidro teorētisko un eksperimentālo spiediena- caurteces līkņu nesakritību. Iespējams, ka raksturlīkņu nesakritības cēloņi varētu tikt izskaidroti ja tiktu aprēķināti spiediena zudumi hidrauliskās pretestības dēļ visā šķidrā metāla cilpā.

Izmantotā literatūra:

1. https://en.wikipedia.org/wiki/Galinstan