

International Institute of Information Technology Bangalore

AI 829 NATURAL LANGUAGE PROCESSING

Mandate 4

Hate and Offensive Speech Detection in Hindi and Marathi Social Media Texts

MT2023158 - Manasi Purkar MT2023051 - Sanket Patil

Table of Contents

- 1. Problem Statement:
- 2. Flow Diagram:
- 3. Previous mandate submissions overview
- 4. Mandate 4 Goal:
- 5. Cross lingual transfer learning:
- 6. A. Applying the XLM-RoBERTa and mBERT models to Hindi and Marathi languages, which they have not encountered during fine-tuning.
 - a. XLM-RoBERTa
 - b. mBERT
- 7. B. Providing a few Hindi and Marathi text examples alongside the English dataset during fine tuning to guide the model's predictions.
 - a. XLM-RoBERTa
 - b. mBERT:
- 8. C. Using Pretrained Indic-BERT
- 9. MuRIL
 - a. Finetuning on Marathi Text
 - b. MuRIL Hindi finetuned
- 10. <u>Instruction Fine Tuning</u>
- 11. Results
- 12. Challenges Faced:
- 13. Notebooks
- 14. Datasets -
- 15. References:

Problem Statement:

As the use of social media platforms continues to grow, so does the incidence of harmful content, including hate speech, posted online.

This project aims to tackle the issue of hate speech in the Hindi and Marathi languages, two prominent languages spoken in India. There is a lack of attention for low-resource languages like Hindi and Marathi in the domain of hate speech detection. The project leverages deep learning approaches, to classify text as hate or non-hate. The datasets used are sourced from the HASOC and MOLD, focusing on Twitter posts in Hindi and Marathi. The dataset consists of binary labels.

We have Implemented **cross lingual transfer learning** approach to evaluate and tried to improve performance of target languages(Marathi, Hindi) with limited training data. The ultimate objective is to provide effective tools for automatically identifying and mitigating hate speech in online content written in Hindi and Marathi.

Flow Diagram:

Previous mandate submissions overview:

Mandate 2:

- In mandate 2, we focused on lexical processing of English, Hindi and Marathi text data. We utilized the HASOC 2021, 2020, 2019 dataset for english, HASOC 2021 dataset for Hindi and a combination of HASOC and MOLD datasets for Marathi.
- Our processing steps included removing punctuation marks and special characters, hashtags and URLs, which often clutter text data.
- We also tackled the challenge of handling emojis, a common element in online communication.
- Along with it we implemented removing stop words (common words with little value for analysis), converting all text to lowercase to maintain consistency, tokenization(breaking text into individual words or tokens), lemmatization and sentence embedding. This thorough lexical processing aims to clean and prepare the data for further analysis effectively.
- **Libraries used** Pandas, re, NumPy, stopwordsiso, emoji, scikit-learn, WordNetLemmatizer, BertTokenizer, fasttext, NLTK.

Mandate 3:

- In mandate 3, we conducted **syntactic processing** of the data. Which involves breaking down sentences into their grammatical components, such as nouns, verbs, adjectives, and their relationships. Aim was to understand the roles played by each of the words in the sentence, and the relationship among words and to parse the grammatical structure of sentences to understand the proper meaning of the sentence.
- Furthermore, we conducted model selection and fine-tuning of BERT Based models on English text for a Hate speech detection task. We compared various models' performances to determine the most effective approach. We also analysed results of fine tuning multilingual bert based models on limited target language data.
- Models used -
 - BERT(bert-base-uncased)
 - mBERT(bert-multilingual-base-uncased)
 - o XLM-RoBERTa

Results of Mandate 3 -

Hate speech detection evaluation using **F1-score**(average=macro):

Model	Marathi	Hindi	English
XLM-R	0.88	0.80	0.84
mBERT	0.78	0.73	0.82
Bert base	-	-	0.838

XMLR model is giving favorable results across all datasets. For Hindi and Marathi, we initially analyzed the results by directly fine-tuning models on the available data. However, the number of samples for Marathi and Hindi is limited. Subsequently, we applied cross-lingual transfer techniques to the Hindi and Marathi texts.

Mandate 4 Goal:

- Along with models evaluated in previous mandate, in this mandate we evaluated the Hindi and Marathi datasets using the IndicBERT and Finetuned MURIL model.
- We applied cross-lingual transfer learning on the finetuned models on english text to get results of Marathi and Hindi texts. In this we tried two methods without giving any example of target language and by providing some samples of target language in training.
- Further, we evaluated the results obtained from the FLANT5 model, which is opensource Instruction Finetuned LLM. Without fine-tuning and using prompts, we examined the model's performance.

Cross lingual transfer learning:

Cross-lingual transfer learning involves transferring knowledge from one language to another, typically to improve the performance of natural language processing tasks in a target language for which there is a limited data or resources

One common approach is to train multilingual language models like mBERT (Multilingual BERT), XLM-R (Cross-lingual Language Model) to understand and generate text in multiple languages. These models are pre-trained on large, diverse corpora containing text from many languages.

The cross-lingual transfer enables tasks like zero-shot learning (applying the model to a language it has not seen during fine-tuning) or few-shot learning (adapting the model to a new language with minimal labelled examples).

In all results mentioned below 0 label represents Hate and 1 label represents Non Hate

A. Applying the XLM-RoBERTa and mBERT models to Hindi and Marathi languages, which they **have not encountered during fine-tuning**.

1. XLM-RoBERTa:

Evaluating on **Marathi** text:

```
import torch
from transformers import XLMRobertaModel
from torch import nn
from transformers import AutoTokenizer

class CustomXLMRobertaForClassification(nn.Module):
    def __init__(self, num_labels):
        super(CustomXLMRobertaForClassification, self).__init__()
        self.num_labels = num_labels
```

```
self.roberta =
XLMRobertaModel.from pretrained("xlm-roberta-base")
        self.classifier =
CustomRobertaClassificationHead(input size=self.roberta.config.hidden s
ize, hidden size=768, num labels=num labels)
    def forward(self, input ids, attention mask, labels=None):
        outputs = self.roberta(input ids=input ids,
attention mask=attention mask)
        pooled output = outputs.pooler output
        logits = self.classifier(pooled output)
        if labels is not None:
            loss fct = nn.CrossEntropyLoss()
            loss = loss fct(logits.view(-1, self.num labels),
labels.view(-1))
            return loss, logits
            return logits
tokenizer = AutoTokenizer.from pretrained('xlm-roberta-base')
num labels=2
model = CustomXLMRobertaForClassification(num labels)
model.load state dict(torch.load('/kaggle/input/xmlr-custom-model/custo
m model.pth',map location=torch.device('cpu')))
```

```
from sklearn.metrics import classification_report
# Testing
model.eval()
test_preds = []
test_labels_all = []
with torch.no_grad():
    for mb_x, mb_m, mb_y in test_dataloader:
        mb_x = mb_x.to(device)
        mb_m = mb_m.to(device)
        mb_y = mb_y.to(device)
        outputs = model(mb_x, attention_mask=mb_m, labels=mb_y)
        test_preds += torch.argmax(outputs[1], dim=1).cpu().tolist()
        test_labels_all += mb_y.cpu().tolist()
# Compute and print classification report for testing
test_report = classification_report(test_labels_all, test_preds,
target_names=['hate', 'non-hate']) #0 for hate
print(f'Testing report:\n{test_report}')
```

Tried different hyperparameter tunings(few results added here)

Learning rate=2e-5
Training Batch size=16
Testing Batch size(Marathi)=16
No. of epochs=5
Training max Token length=116
Testing max Token length=80

esting repor	t:			
	precision	recall	f1-score	support
hate	0.68	0.20	0.31	1031
non-hate	0.71	0.95	0.82	2137
accuracy			0.71	3168
macro avg	0.69	0.58	0.56	3168
eighted avg	0.70	0.71	0.65	3168

Learning rate=1e-5
Training Batch size=32
Testing Batch size(Marathi)=16
No. of epochs=5
Training max Token length=116
Testing max Token length=100

Making hate and non hate samples equal in training phase by downsampling

sting repor	t:			
	precision	recall	f1-score	support
hate	0.67	0.36	0.47	1031
non-hate	0.75	0.91	0.82	2137
accuracy			0.73	3168
macro avg	0.71	0.64	0.65	3168
ighted avg	0.72	0.73	0.71	3168

With same hyperparameters but keeping complete data (not making equal size of hate and non hate) in training

Testing repor	t:			
	precision	recall	f1-score	support
hate	0.69	0.45	0.54	1031
non-hate	0.77	0.90	0.83	2137
accuracy			0.76	3168
macro avg	0.73	0.68	0.69	3168
veighted avg	0.75	0.76	0.74	3168

Evaluating XLM-RoBERTa model on **Hindi** text:

Testing report:

0 1	precision	recall	f1-score	support
hate non-hate	0.63 0.76	0.41 0.89	0.49 0.82	1306 2829
accuracy macro avg weighted avg	0.70 0.72	0.65 0.74	0.74 0.66 0.72	4135 4135 4135

2. mBERT:

Evaluating on **Hindi** text:

```
print('Predicting labels for {:,} test
sentences...'.format(len(input ids)))
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions , true labels = [], []
count =0
for batch in prediction dataloader:
   batch = tuple(t.to(device) for t in batch)
   b_input_ids, b_input_mask, b_labels = batch
memory and
   with torch.no grad():
        count+=len(b input ids)
        result = model(b input ids,
                         token type ids=None,
                         attention mask=b input mask,
        logits = result.logits
        logits = logits.detach().cpu().numpy()
        label_ids = b_labels.to('cpu').numpy()
```

F1 Score: 0.51

```
from sklearn.metrics import f1_score

# Combine the predictions from all batches
all_predictions = np.concatenate(predictions, axis=0)
all_true_labels = np.concatenate(true_labels, axis=0)

# Convert logits to predicted labels
predicted_labels = np.argmax(all_predictions, axis=1)

# Compute F1 score
f1 = f1_score(all_true_labels, predicted_labels, average='macro'
print("F1 Score:", f1)
```


F1 Score: 0.5121261409304068

```
from sklearn.metrics import classification_report

target_names = ['class 0', 'class 1']
print(classification_report(all_true_labels, predicted_labels, target_names=target_names))
```

support	f1-score	recall	precision	
1433	0.22	0.14	0.49	class 0
3161	0.80	0.93	0.71	class 1
4594	0.69			accuracy
4594	0.51	0.54	0.60	macro avg
4594	0.62	0.69	0.64	weighted avg

Evaluating mBERT model on Marathi text:

```
print('Predicting labels for {:,} test
sentences...'.format(len(input ids)))
model.eval()
predictions , true_labels = [], []
# Predict
count =0
for batch in prediction_dataloader:
   # Add batch to GPU
   batch = tuple(t.to(device) for t in batch)
   b input ids, b input mask, b labels = batch
   with torch.no grad():
        count+=len(b input ids)
        result = model(b input ids,
                         token type ids=None,
                         attention mask=b input mask,
                         return dict=True)
        logits = result.logits
        logits = logits.detach().cpu().numpy()
        label_ids = b_labels.to('cpu').numpy()
        predictions.append(logits)
        true_labels.append(label_ids)
print(f"count = {count}")
print(' DONE.')
```

F1 Score: 0.42

```
from sklearn.metrics import f1_score

# Combine the predictions from all batches
all_predictions = np.concatenate(predictions, axis=0)
all_true_labels = np.concatenate(true_labels, axis=0)

# Convert logits to predicted labels
predicted_labels = np.argmax(all_predictions, axis=1)

# Compute F1 score
f1 = f1_score(all_true_labels, predicted_labels, average='macro')
print("F1 Score:", f1)
```

F1 Score: 0.4245038614587205

B. Providing a **few Hindi and Marathi text examples** alongside the English dataset during fine tuning to guide the model's predictions.

XLM-RoBERTa:

1. Evaluating on Marathi text:

Marathi samples added = 351 (10% of data)

Training repor	t after ite	eration 1:			Training report	after ite	eration 3:		
	precision	recall	f1-score	support	P	recision	recall	f1-score	support
NOT	0.86	0.83	0.85	3804	NOT	0.90	0.91	0.91	3804
HOF	0.82	0.85	0.84	3425	HOF	0.90	0.89	0.89	3425
accuracy			9.84	7229	accuracy			0.90	7229
	0.84	0.84	0.84	7229	macro avg	0.90	0.90	0.90	7229
macro avg					weighted avg	0.90	0.90	0.90	7229
weighted avg	0.84	0.84	0.84	7229					
Validation rep	ort after i	iteration	1:		Validation repo				
	precision	recall	f1-score	support	P	recision	recall	f1-score	support
NOT	0.75	0.93	0.83	475	NOT	0.84	0.87	0.85	475
	0.75				HOF	0.85	0.81	0.83	429
HOF	0.89	0.66	0.76	429					
accuracy			0.80	904	accuracy			0.84	904
	0.82	0.79	0.79	904	macro avg	0.84	0.84	0.84	904
macro avg					weighted avg	0.84	0.84	0.84	904
weighted avg	0.82	0.80	0.80	904					
Time: 1.0m 24.	35107070237	77320			Time: 1.0m 23.7				
					Training report				
Training repor	t arter ite precision		f1-score	support	P	recision	recall	f1-score	support
	precision	recall	ri-score	suppor t					
HOT	0.07	0.00		0004	NOT	0.92	0.93	0.92	3804
NOT	0.87	0.89	0.88	3804	HOF	0.92	0.91	0.91	3425
HOF	0.87	0.86	0.87	3425					
					accuracy			0.92	7229
accuracy			0.87	7229	macro avg	0.92	0.92	0.92	7229
macro avg	0.87	0.87	0.87	7229	weighted avg	0.92	0.92	0.92	7229
weighted avg	0.87	0.87	0.87	7229					
					Validation repo				
Validation rep	ort after i	iteration	2:		P	recision	recall	f1-score	support
	precision	recall	f1-score	support					
					NOT	0.83	0.88	0.85	475
NOT	0.80	0.89	0.84	475	HOF	0.86	0.79	0.82	429
HOF	0.86	0.75	0.80	429					
					accuracy			0.84	904
accuracy			0.83	904	macro avg	0.84	0.84	0.84	904
macro avg	0.83	0.82	0.82	984	weighted avg	0.84	0.84	0.84	904
weighted avg	0.83	0.83	0.82	904					
agiicea arg	0.00	0.00	0.02	204	Time: 1.0m 23.6	2995576858	35205s		

Testing report:

	precision	recall	f1-score	support
NOT	0.66	0.78	0.72	1031
HOF	0.88	0.81	0.84	2137
accuracy			0.80	3168
macro avg	0.77	0.79	0.78	3168
weighted avg	0.81	0.80	0.80	3168

2. Evaluating on Hindi Text:

Hindi samples added= 459 (10% of data)

Testing	renort.
Leacting	report.

roscang rope	precision	recall	f1-score	support
NOT	0.72	0.54	0.62	1306
HOF	0.81	0.90	0.85	2829
accuracy			0.79	4135
macro avg	0.76	0.72	0.73	4135
weighted avg	0.78	0.79	0.78	4135

mBERT:

1. Evaluating on Marathi text:

```
from sklearn.metrics import f1_score

# Combine the predictions from all batches
all_predictions = np.concatenate(predictions, axis=0)
all_true_labels = np.concatenate(true_labels, axis=0)

# Convert logits to predicted labels
predicted_labels = np.argmax(all_predictions, axis=1)

# Compute F1 score
f1 = f1_score(all_true_labels, predicted_labels, average='macro')
print("F1 Score:", f1)
```


F1 Score: 0.6300843046732	293
---------------------------	-----

	precision	recall	f1-score	support
21222 0	0.65	0.22	0.42	1400
class 0	0.65	0.33	0.43	1433
class 1	0.75	0.92	0.83	3161
accuracy			0.73	4594
macro avg	0.70	0.62	0.63	4594
weighted avg	0.72	0.73	0.70	4594

2. Evaluating on Hindi Text:

F1 Score: 0.636

```
from sklearn.metrics import f1_score

# Combine the predictions from all batches
all_predictions = np.concatenate(predictions, axis=0)
all_true_labels = np.concatenate(true_labels, axis=0)

# Convert logits to predicted labels
predicted_labels = np.argmax(all_predictions, axis=1)

# Compute F1 score
f1 = f1_score(all_true_labels, predicted_labels, average='macro')
print("F1 Score:", f1)
```


F1 Score: 0.6361500557738726

	precision	recall	f1-score	support
class 0	0.58	0.38	0.46	1433
class 1	0.76	0.87	0.81	3161
accuracy			0.72	4594
macro avg	0.67	0.63	0.64	4594
weighted avg	0.70	0.72	0.70	4594

C. Using Pretrained Indic-BERT:

Evaluating on hindi text:

```
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('ai4bharat/indic-bert')

model = AutoModel.from_pretrained('ai4bharat/indic-bert')
```

```
class IndicBertClassfier(torch.nn.Module):
    def __init__(self,bert_model,bert_config,num_class):
        super(IndicBertClassfier,self).__init__()

        self.bert_model=bert_model
        self.dropout=torch.nn.Dropout(0.1)

self.fcl=torch.nn.Linear(bert_config["hidden_size"],bert_config["hidden_size"])

        self.fc2=torch.nn.Linear(bert_config["hidden_size"],num_class)

def forward(self, token_ids, attention_mask=None):
        bert_out = self.bert_model(input_ids=token_ids,
attention_mask=attention_mask)[1]  # Sentence vector

        bert_out=self.dropout(bert_out)
        bert_out=self.fc1(bert_out)

        bert_out=self.dropout(bert_out)

        bert_out=self.fc2(bert_out)  #[batch_size,num_class]
        return bert_out
```

```
config = {
  "model_type": "albert",
  "attention_probs_dropout_prob": 0,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0,
  "embedding_size": 128,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "max_position_embeddings": 512,
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "num_hidden_groups": 1,
  "net_structure_type": 0,
```

```
"gap_size": 0,
"num_memory_blocks": 0,
"inner_group_num": 1,
"down_scale_factor": 1,
"type_vocab_size": 2,
"vocab_size": 200000
}
```

```
IndicBertClassfier = IndicBertClassfier(model,config,2)
preds = []
for steps,(token_ids,label) in tqdm(enumerate(test_dataload)):
    #print(steps)
    with torch.no_grad():
        token_ids = token_ids.to(device)
        attention_mask = (token_ids != 0).float()
        out = IndicBertClassfier(token_ids,
attention_mask=attention_mask)
    res = list(out.argmax(1))
    for r in res:
        preds.append(r.tolist())
```

F1 Score: 0.49

		precision	recall	f1-score	support
from sklearn.metrics import f1_score		production	, , ,		одррот с
	0	0.31	0.27	0.29	1433
# Compute F1 score	1	0.69	0.72	0.70	3161
<pre>f1 = f1_score(test_labels, preds, average='macro')</pre>					
	accuracy			0.58	4594
<pre>print("F1 Score:", f1)</pre>	macro avg	0.50	0.50	0.49	4594
	weighted avg	0.57	0.58	0.57	4594

F1 Score: 0.4947286959534621

Evaluating Indic-BERT on marathi text:

F1 Score: 0.44

```
from sklearn.metrics import f1_score

# Compute F1 score
f1 = f1_score(test_labels, preds, average='macro')
print("F1 Score:", f1)
```

F1 Score: 0.4404540074670497

from sklearn.metrics import classification_report
print(classification_report(test_labels, preds))

	precision	recall	f1-score	support
0	0.34	0.73	0.46	1178
1	0.69	0.30	0.42	2407
accuracy			0.44	3585
macro avg	0.52	0.52	0.44	3585
weighted avg	0.58	0.44	0.43	3585

D. Evaluating on finetuned MuRIL

Finetuning on Marathi Text-

Classification Report:						
	precision	recall	f1-score	support		
0	0.77	0.82	0.79	103		
1	0.92	0.90	0.91	249		
accuracy			0.88	352		
macro avg	0.85	0.86	0.85	352		
weighted avg	0.88	0.88	0.88	352		

F1 Score- 0.91

Finetuning on Hindi text-

Classification Report:						
	precision	recall	f1-score	support		
0	0.80	0.51	0.62	154		
1	0.79	0.94	0.86	306		
accuracy			0.79	460		
macro avg	0.80	0.72	0.74	460		
weighted avg	0.80	0.79	0.78	460		

F1 Score- 0.85

Instruction Fine Tuning-

Instruction fine-tuning trains the model using examples that demonstrate how it should respond to a specific instruction.

The LLM Eval module allows you to evaluate your fine-tuned model using prompt templates. It acts as a structured query or input that guides the model in generating the desired response.

FLAN T5-

FLAN-T5 is an open-source, sequence-to-sequence, large language model that can be also used commercially. The model was published by Google researchers in late 2022, and has been fine-tuned on multiple tasks. FLAN-T5 was released in the paper Scaling Instruction-Finetuned Language Models - it is an enhanced version of T5 that has been finetuned in a mixture of tasks. One can directly use FLAN-T5 weights without finetuning the model.

reference-https://www.datacamp.com/tutorial/flan-t5-tutorial

```
# Step 1: Initialize the prompting class instance
prompter2 = prompting(model="flant5")

# Step 2: Prepare your DataFrame with text and labels
data = df[['text', 'label']]

#Step 3: Initialize prompt template
prompt_template = """Classify this text as hate or non-hate.
The definition of hate speech is 'Hate speech' is
speech that attacks a person or group on the basis
of attributes such as race, religion, ethnic origin,
national origin, sex, disability, sexual orientation,
or gender identity.Examples:
1. Text: "bitch what"
    Answer: Hate
2. Text: "technically that is still turning back the clock dick head"
    Answer: Hate
3. Text: "fuck off this is you"
    Answer: Hate
    Text:""
output_indicator = "Answer:"

# Step 3: Call the predict method of the prompting class
predictions2 = prompter2.predict(prompt_template=prompt_template, output_indicator=output_indicator=## Now predictions contains the generated predictions based on the input data
```

								- 3500
Classification	Report:				0 -	3678	957	- 3000
	recision	recall	f1-score	support				
9	0.80	0.79	0.80	4635	True Label			- 2500
1	0.77	0.77	0.77	4058	Tree			2000
accuracy			0.78	8693				- 2000
macro avg	0.78	0.78	0.78	8693		924	3134	- 1500
weighted avg	0.78	0.78	0.78	8693				1500
								- 1000
						0 Predic	ited Label	
						Fiedit	ced Editer	

Confusion Matrix

```
prompt_template = """Classify this text as hate or non-hate.
The definition of hate speech is 'Hate speech' is
speech that attacks a person or group on the basis
of attributes such as race, religion, ethnic origin,
national origin, sex, disability, sexual orientation,
or gender identity.Examples:
1. Text: "काही लोकांना सांगून उपयोग नाही त्यांच्या गुडघ्यात मेंदू आहे"
Answer: hate
2. Text: "भिकारचोट पत्रकार दलाल साले"
Answer: hate
3. Text: "बावळट लोकं सत्ताधारी पक्षात अपेक्षा करणार"
    Answer: hate
4. Text:"लवड्या अगोदरच रडायला लागलास तू"
   Answer:hate
Text:"
output_indicator = "Answer:"
# Step 3: Call the predict method of the prompting class
predictions = prompter.predict(prompt_template=prompt_template, output_indicator=output_indicator, data=data)
prompt_template = """हा मजकूर द्वेष किंवा द्वेष नसलेला म्हणून वर्गीकृत करा.
prompt_temptate = हा मजकूर ६व ाकवा ६व नसलल
द्वेषयुक्त भाषणाची व्याख्या 'हेट स्पीच' अशी आहे
एखाद्या व्यक्तीवर किंवा गटाच्या आधारावर हल्ला करणारे भाषण
वंश, धर्म, वांशिक मूळ,
राष्ट्रीय मूळ, लिंग, अपंगत्व, लैंगिक प्रवृत्ती,
किंवा लिंग ओळख. उदाहरणे:
1. मजकूर: "काही लोकांना सांगून उपयोग नाही त्यांच्या गुडघ्यात मेंदू आहे"
उत्तर: द्वेष
2. मजकूर: "भिकारचोट पत्रकार दलाल साले"
उत्तर: द्वेष

 मजकूर: "बावळट लोकं सत्ताधारी पक्षाची अपेक्षा करणार"

    उत्तर: द्वेष
4. मजकूर: "लवड्या अगोदरच रडायला लागलास तू"
उत्तर: द्वेष
मजकूर:"""
output_indicator = " उत्तर:"
# Step 3: Call the predict method of the prompting class
predictions = prompter.predict(prompt_template=prompt_template, output_indicator=output_indicator, data=data)
```

```
from sklearn.metrics import f1_score
# Calculate the F1 score
f1 = f1_score(true_labels, predicted_labels, average='macro')
print("F1 Score:", f1)
```

F1 Score: 0.40214067278287463

Results:

Cross-lingual hate speech detection evaluation using **F1-score(average=macro)**:

		Marathi	Hindi		
Model	On unseen language	With few samples alongside english data during finetuning	On unseen language	With few samples alongside english data during finetuning	
XLM-R	0.69	0.79	0.70	0.72	
mBERT	0.42	0.63	0.51	0.636	

From different models and techniques used we observed that **XLM-R** Model gives the best performance on cross lingual transfer approach

Fine Tuning with only marathi, hindi text data evaluation using **F1-score(average=macro)**:

Model	Marathi	Hindi	English
XLM-R	0.88	0.80	0.84
mBERT	0.78	0.73	0.82
muRIL	0.85	0.79	-
Indicbert(Pretrained)	0.44	0.49	-
Bert base	-	-	0.838

Challenges Faced:

- 1. Finetuning Various Models
- 2. Finding open source LLM which gives results by giving prompts
- 3. Adding custom classification layer in XMLR model for english dataset
- 4. Less validation and test data for Indian Languages.
- 5. Identifying Suitable Stopwords Libraries for Hindi and Marathi.
- 6. Cleaning scrapped tweets in Hindi and Marathi involved addressing unwanted patterns and noise inherent in social media language.

Future Work:

- 1. Cross Lingual accuracy is still less we can try to improve it further using some FSL algorithms.
- 2. More LLMs can be tried like GPT3 and can try to increase accuracy by designing prompts efficiently.
- 3. More dataset can give better results.

- A. CrossLingual without providing any samples of target language
 - 1. XLM-R:

a. Marathi: xlm-r-crosslingual-marathi

b. Hindi: hindi-cross-lingual-xmlr

2. mBERT:

a. Marathi: cross-lingual-marathi

b. Hindi: <u>cross-lingual-hindi</u>

- B. After providing a few Hindi and Marathi text examples alongside the English dataset during fine tuning to guide the model's predictions:
 - 1. XLM-R:
 - a. Marathi:

<u>Marathi-CrossLingual-XML-with 2 methods</u> <u>Marathi-CrossLingual-XML-CombinedData Method</u>

b. Hindi:

Hindi-CrossLingual-XMLR-with 2 methods

- 2. mBERT:
 - a. Marathi- mbert-finetuned-eng-marathi
 - b. Hindi- mbert-finetuned-eng-hindi
- C. IndicBERT(Evaluation on the pretrained model):

a. Hindi: indicbert-hindi

b. Marathi: indicbert-marathi

- D. Finetuning MuRIL
 - a. Marathi-MuRIL-Marathi
 - b. Hindi- MuRIL-Hindi
- E. Using Instruction finetuned LLM FlanT5 Using FLANT5 LLM

Datasets -

https://drive.google.com/drive/u/2/folders/1lfrRliTDk6NrsDe9mSJar3poT-MKzj4Y

References:

- 1. https://arxiv.org/abs/2401.03346
- 2. https://www.graphcore.ai/posts/flan-t5-sweet-results-with-the-smaller-more-efficient-llm
- 3. https://medium.com/dailymotion/how-we-used-cross-lingual-transfer-learning-t-o-categorize-our-content-c8e0f9c1c6c3
- 4. <a href="https://medium.com/neuralspace/indic-transformers-an-analysis-of-transformers-analysis-of-transformers-analysis-o
- 5. https://indicnlp.ai4bharat.org/pages/indic-bert/
- 6. https://spotintelligence.com/2023/09/22/cross-lingual-transfer-learning/#:~:text = Cross%2Dlingual%20transfer%20learning%20is,be%20limited%20data%20 or%20resources.
- 7. https://huggingface.co/google/muril-large-cased