Autenticazione e Firma Elettronica

Prof. Francesco Bergadano

Dipartimento di Informatica Università di Torino

Contesto per autenticazione e firma

Autenticazione simmetrica vs firma elettronica

- L'autenticazione simmetrica si basa su cifrari simmetrici, utilizzando la chiave condivisa
- La firma elettronica si basa su cifrari asimmetrici, utilizzando in fase di firma la chiave privata di chi firma

Autenticazione simmetrica

Firma Elettronica

Autenticazione vs Encryption

- Un messaggio cifrato non è necessariamente autentico
- Un messaggio autenticato può essere leggibile e spesso non viene cifrato

Perché un messaggio cifrato non è necessariamente autentico?

Questo è vero per certi cifrari e per certi messaggi, non in generale

Sembrerebbe che, se solo A e B conoscono K, il messaggio C possa essere prodotto solo da A (e quindi il messaggio decifrato M dovrebbe essere autentico)

Perché un messaggio cifrato non è necessariamente autentico?

C' risulta cifrato, ma M' non autentico. (Però M' molto probabilmente incomprensibile, non così pero' se M ed M' sono numeri o codici)

Perché un messaggio cifrato non è necessariamente autentico? Esempio

cifrato con la chiave precedentemente inviatale. Qualora non dovesse funzionare, la preghiamo di telefonare allo 800666.

Autenticazione simmetrica

- MAC con DES-CBC
- MAC con funzione di hash

MAC con DES-CBC

- Si cifra il messaggio con DES-CBC
- Si usa l'ultimo blocco cifrato o parte di esso come MAC

MAC_K(M) con DES-CBC Padding a lunghezza multipla di 64 bit

$MAC_K(M)$ con DES-CBC

Sicurezza MAC con DES-CBC

- Il codice serve per autenticare, poiché se il messaggio venisse modificato, il ricevente otterrebbe un MAC diverso da quello ricevuto insieme al messaggio
- Non è possibile generare messaggi falsi, in quanto senza conoscere la chiave K non è praticamente possibile generare un MAC valido

Sicurezza MAC con DES-CBC

L'attacco del compleanno non funziona: anche se la probabilità di trovare una collisione in due insiemi $\{M_1,...,M_n\}$ e $\{M'_1,...,M'_n\}$ è elevata,

l'avversario non riesce a trovare la collisione, perché non sa calcolare $MAC_CBC_k(M_i)$, non conoscendo k.

MAC con funzione di hash (keyed hash function)

Data una funzione di hash H resistente alle collisioni, si genera il MAC applicando H ad una combinazione del messaggio e di una chiave segreta

Esempio: HMAC

Esempio: HMAC

K' = chiave segreta K del MAC, oppure H(K) se K è più lunga di j bit

Esempio: HMAC (RFC 2104)

Esempio: HMAC

$$M' = \begin{bmatrix} M1 & M2 & \dots & Mn' \\ j & bit & j & bit \end{bmatrix}$$
 $j & bit & j & b$

$$HMAC_{K}(M) = H((K" \oplus opad)||H((K" \oplus ipad)||M'))$$

$$K1 K2$$

Per opportune scelte di H, HMAC è ritenuto sicuro contro attacchi con scelta dei messaggi autenticati 'chosen message attacks':

anche se l'avversario può scegliere molti messaggi e vederne il corrispondente valore di HMAC, non riesce a fornire un nuovo messaggio autenticato.

Si ritiene che con HMAC questo non sia possibile

- Per una funzione di hash H, per trovare collisioni possiamo generare due insiemi S' e S'' di messaggi e verificare se esistono x in S' e y in S'' tali che H(x)=H(y)
- Per HMAC, questo non è possibile perché non sappiamo calcolare $HMAC_K(z)$ per un messaggio arbitrario z, in quanto non conosciamo K

Efficienza di HMAC

- Efficiente quanto la funzione di Hash H utilizzata (H viene chiamata due volte, ma la seconda volta con un argomento lungo solo j+N, dove N è la lunghezza del digest di H)
- Molto più efficiente di MAC-CBC

Firma Elettronica

- RSA con MD5/SHA-1
- DSA (con SHA-1)

RSA con SHA-1

Firma Elettronica con RSA/SHA-1 lato mittente (A)

Firma Elettronica con RSA/SHA-1 lato ricevente (B)

Firma Elettronica

Per verificare la firma, B deve conoscere la chiave pubblica di A in modo certo, altrimenti è possibile fare accettare firme false

Comunicazioni Sicure (sintesi e distribuzione delle chiavi)

- Il messaggio viene modificato in modo da rendere impossibile l'intercettazione del contenuto originario (cifratura)
- Al messaggio vengono aggiunti codici in modo da rilevare la presenza di modifiche al momento della ricezione (autenticazione)

Comunicazione sicura

Modello a chiavi simmetriche o condivise

Distribuzione di chiavi simmetriche (diretta)

Distribuzione di chiavi simmetriche (con terza parte)

Modello a chiavi asimmetriche (cifratura)

Modello a chiavi asimmetriche (autenticazione/firma)

In questo caso si parla di firma perché abbiamo non-disconoscibilità:

solo A conosce K(A)quindi
solo A può autenticare

Problema della distribuzione di chiavi pubbliche

Cifratura asimmetrica

Il ricevente dovrà, in qualche modo, rendere nota la propria chiave pubblica, associando ad essa la propria identità

Cifratura asimmetrica

Principale problema (per cifratura)

Problema utilizzo chiavi pubbliche

Autenticazione asimmetrica (firma)

Il mittente dovrà, in qualche modo, rendere nota la propria chiave pubblica, associando ad essa la propria identità

Autenticazione asimmetrica

Principale problema (per firma)

Problema utilizzo chiavi pubbliche

Quindi ...

... occorre una distribuzione sicura (autenticata) degli abbinamenti

<utente,chiave pubblica>

Distribuzione di chiavi pubbliche (diretta)

Distribuzione di chiavi pubbliche (con terza parte) - I

Distribuzione di chiavi pubbliche (con terza parte) - II

Distribuzione di chiavi pubbliche (con certificati) - I

Distribuzione di chiavi pubbliche (con certificati) - II

pubbliche (con certificati) - III

Firma Elettronica con certificato

Validazione temporale

Firma Elettronica con certificato e timestamp

