Algorytmy Rozpoznawania Obrazów (projekt)

Rozpoznawanie obrazów z uczeniem

Zaprojektować i przeprowadzić badanie jakości heurystycznych algorytmów rozpoznawania obrazów z uczeniem typu NM (najbliższa średnia) oraz α -NN (α -najbliższych sąsiadów; α = 1,3,5) na przykładzie zadania rozpoznawania obrazów jednowymiarowych (d=1) pochodzących z M = 2 klas (dychotomia), które występują z prawdopodobieństwami p_1 oraz p_2 (p_1 , p_2 > 0, p_1 + p_2 = 1) a rozkład cechy x w klasach jest odpowiednio:

- **1.** równomierny: $f_1(x) = U(a_1, b_1), f_2(x) = U(a_2, b_2),$
- **2.** normalny: $f_1(x) = N(m_1, \sigma_1), f_2(x) = N(m_2, \sigma_2)$.

W tym celu:

a) przeprowadzić generację ciągów uczących

$$S_N = \{(x_1, j_1), (x_2, j_2), ..., (x_k, j_k), ..., (x_N, j_N)\}$$

odpowiadających sytuacjom z punktów 1 oraz 2, gdzie x_k – wygenerowany obraz uczący, j_k – znana klasyfikacja obrazu x_k (Uwaga: do generacji obrazów zastosować generatory liczb pseudolosowych dostępne w środowiskach programistycznych);

- b) za pomocą algorytmów NM oraz α -NN dokonać klasyfikacji ciągu n obrazów $\{x^1, x^2, ..., x^n\}$ (generowanych jak ciąg uczący S_N , ale różnych od elementów tego ciągu), o rzeczywistym przyporządkowaniu do klas $\{j^1, j^2, ..., j^n\}$ i wyznaczyć empiryczną częstość błędnej klasyfikacji dla różnych (rosnących) długości N ciągu uczącego;
- c) dla sytuacji jak w punktach 1 i 2 wyznaczyć optymalną (bayesowską) regułę rozpoznawania zakładając dostępność pełnej informacji probabilistycznej oraz obliczyć ryzyko Bayesa dla 0-1 funkcji strat; przeprowadzić eksperymentalne badanie tej reguły dokonując klasyfikacji ciągu obrazów z punktu b) i wyznaczając empiryczną częstość błędnej klasyfikacji; porównać empiryczną częstość błędnej klasyfikacji oraz algorytmów *NM* i α-*NN* z obliczoną wartością ryzyka Bayesa dla rosnących długości *N* ciągu uczącego;

d) badania z punktów a)-c) wykonać dla różnych wartości parametrów p_1 , p_2 oraz odpowiednio (a_1,b_1) , (a_2,b_2) – dla punktu 1, (m_1,σ_1) , (m_2,σ_2) – dla punktu 2; określić wpływ tych parametrów oraz parametru α na jakość klasyfikacji według algorytmów NM i α -NN.

Uwaga: Zadanie projektowe można zrealizować w dowolnym środowisku programistycznym.

Literatura

- [1] M. Krzyśko, Analiza dyskryminacyjna, WNT, Warszawa 1990.
- [2] R. Tadeusiewicz, M. Flasiński, Rozpoznawanie obrazów, PWN, Warszawa 1991.
- [3] M. Kurzyński, Rozpoznawanie obiektów. Metody statystyczne, Oficyna Wydawnicza PWr, Wrocław 1997.
- [4] R. Wieczorkowski, R. Zieliński, Komputerowe generatory liczb losowych, WNT, Warszawa 1997.