El **problema de la dieta**, conocido por este nombre, fue uno de los primeros problemas sobre optimización, motivado por el deseo del ejercito americano de asegurar unos requerimientos nutricionales al menor coste. El problema fue analizado y resuelto por George Stigler usando la programación lineal en 1947.

Vamos a ver un ejemplo muy sencillo de este tipo de problema.

Un medico receta a una de sus pacientes una dieta especial de basada en tres productos (arroz, pescado y verduras frescas) que han de combinarse de manera que cumplan una serie de requisitos mínimos en cuanto a proteínas y calorías. Estos mínimos se sitúan en 3 unidades de proteínas y en 4.000 calorías.

Los productos que componen la dieta tienen las siguientes unidades por kilogramo: el arroz contiene 1 unidad de proteína y 2.000 calorías, el pescado tiene 3 unidades de proteínas y 3.000 calorías y, por ultimo, las verduras frescas poseen 2 unidades de proteínas y 1.000 calorías.

- a) Si los precios de los tres productos básicos son respectivamente de 55, 125 y 55 pesetas el kilogramo, ¿ Cuál debe ser la combinación de productos que cubriendo las necesidades mínimas suponga un menor coste?.
- b) Si aumenta el precio del pescado, y este pasa a ser de 140 pesetas. ¿La solución seguirá siendo optima?. Si la respuesta es negativa, cual será la nueva solución?
- c) Si disminuye el precio del pescado, y este pasa a ser de 105 pesetas. ¿La solución seguirá siendo optima?. Si la respuesta es negativa, cual será la nueva solución?
- d) Si el medico recomienda aumentar el numero de calorias por dia, pasando a 4500 calorias diarias. ¿La solución seguirá siendo optima?. Si la respuesta es negativa, cual será la nueva solución?

El fichero GMS, incluyendo la opción de análisis de sensibilidad es:

```
OPTIONS DECIMALS = 8;

VARIABLES

ARROZ, PESCADO, VERDURA, GASTO;

POSITIVE VARIABLES ARROZ, PESCADO, VERDURA;

EQUATIONS

OBJ FUNCION DE GASTO

CALORIAS, PROTEINAS;

OBJ.. GASTO =E = 55*ARROZ + 125*PESCADO + 55*VERDURA;

CALORIAS.. 2000*ARROZ + 3000*PESCADO + 1000*VERDURA =G = 4000;

PROTEINAS.. ARROZ + 3*PESCADO + 2*VERDURA =G = 3;

MODEL DIETA1 /ALL/;

OPTION LP = CPLEX;

DIETA1.DICTFILE = 4;

DIETA1.OPTFILE = 1;

SOLVE DIETA1 USING LP MINIMIZING GASTO;
```

El fichero solución es:

User supplied option	ns:					
objrng all						
rhsrng all						
Optimal solution for	ınd.					
Objective :	128.333333					
EQUATION NAME			LOWE	R CURREI	NT	UPPER
OBJ			-INF		0	+INF
CALORIAS			150	0 400	0.0	6000
PROTEINAS			:	2	3	8
VARIABLE NAME			LOWE	R CURREI	NT	UPPER
ARROZ			-27.5		0	15
PESCADO			-1!	5	0	+INF
VERDURA			-27.	5	0	15
GASTO			(0	1	+INF
	LOWER	LEVEL	UPPER	MARGINAL		
EQU OBJ		•	•	1.000		
EQU CALORIAS	4000.000	4000.000	+INF	0.018		
EQU PROTEINAS	3.000	3.000	+INF	18.333		
	LOWER	LEVEL				
VAR ARROZ	•		+INF			
VAR PESCADO	•			15.000		
VAR VERDURA		0.667		•		
VAR GASTO	-INF	128.333	+1NF	•		
**** DEDODE CIMMADA		NONODE				
**** REPORT SUMMARY						
	0	INFEASIBLE				
	0	UNBOUNDED				

b) Si aumenta el precio del pescado, y este pasa a ser de 140 pesetas. ¿La solución seguirá siendo optima?. Si la respuesta es negativa, cual será la nueva solución?

```
OPTIONS DECIMALS = 8;
VARIABLES
ARROZ, PESCADO, VERDURA, GASTO;
POSITIVE VARIABLES ARROZ, PESCADO, VERDURA;
EQUATIONS
        FUNCION DE GASTO
OBJ
CALORIAS, PROTEINAS;
OBJ..
                 GASTO =E= 55*ARROZ + 140*PESCADO + 55*VERDURA;
CALORIAS.. 2000*ARROZ + 3000*PESCADO + 1000*VERDURA =G= 4000;
PROTEINAS.. ARROZ + 3*PESCADO + 2*VERDURA =G= 3;
MODEL DIETA1 /ALL/;
OPTION LP = CPLEX;
DIETA1.DICTFILE = 4;
DIETA1.OPTFILE = 1;
SOLVE DIETA1 USING LP MINIMIZING GASTO;
```

	LOWER	LEVEL	UPPER	MARGINAL
EQU OBJ		•	•	1.000
EQU CALORIAS	4000.000	4000.000	+INF	0.018
EQU PROTEINAS	3.000	3.000	+INF	18.333
	LOWER	LEVEL	UPPER	MARGINAL
VAR ARROZ		1.667	+INF	
VAR PESCADO			+INF	30.000
VAR VERDURA		0.667	+INF	
VAR GASTO	-INF	128.333	+INF	

c) Si disminuye el precio del pescado, y este pasa a ser de 105 pesetas. ¿La solución seguirá siendo optima?. Si la respuesta es negativa, cual será la nueva solución?

```
OPTIONS DECIMALS = 8;
VARIABLES
ARROZ, PESCADO, VERDURA, GASTO;
POSITIVE VARIABLES ARROZ, PESCADO, VERDURA;
EQUATIONS
OBJ
        FUNCION DE GASTO
CALORIAS, PROTEINAS;
                 GASTO =E= 55*ARROZ + 105*PESCADO + 55*VERDURA;
OBJ..
              2000*ARROZ + 3000*PESCADO + 1000*VERDURA =G= 4000;
ARROZ + 3*PESCADO + 2*VERDURA =G= 3;
CALORIAS..
PROTEINAS..
MODEL DIETA1 /ALL/;
OPTION LP = CPLEX;
DIETA1.DICTFILE = 4;
DIETA1.OPTFILE = 1;
SOLVE DIETA1 USING LP MINIMIZING GASTO;
```

	LOWER	LEVEL	UPPER	MARGINAL
EQU OBJ		•		1.000
EQU CALORIAS	4000.000	4000.000	+INF	0.020
EQU PROTEINAS	3.000	3.000	+INF	15.000
LOWER LEVEL	UPPER M	ARGINAL		
VAR ARROZ		1.000	+INF	
VAR PESCADO		0.667	+INF	
VAR VERDURA			+INF	5.000
VAR GASTO	-INF	125.000	+INF	

d) Si el medico recomienda aumentar el numero de calorias por dia, pasando a 4500 calorias diarias. ¿La solución seguirá siendo optima?. Si la respuesta es negativa, cual será la nueva solución?

```
OPTIONS DECIMALS = 8;
VARIABLES
ARROZ, PESCADO, VERDURA, GASTO;
POSITIVE VARIABLES ARROZ, PESCADO, VERDURA;
EQUATIONS
       FUNCION DE GASTO
OBJ
CALORIAS, PROTEINAS;
OBJ..
              GASTO =E= 55*ARROZ + 125*PESCADO + 55*VERDURA;
CALORIAS.. 2000*ARROZ + 3000*PESCADO + 1000*VERDURA =G= 4500;
PROTEINAS..
              ARROZ + 3*PESCADO + 2*VERDURA =G= 3;
MODEL DIETA1 /ALL/;
OPTION LP = CPLEX;
DIETA1.DICTFILE = 4;
DIETA1.OPTFILE = 1;
SOLVE DIETA1 USING LP MINIMIZING GASTO;
```

	LOWER	LEVEL	UPPER	MARGINAL	
EQU OBJ		•		1.000	
EQU CALORIAS	4500.000	4500.000	+INF	0.018	
EQU PROTEINAS	3.000	3.000	+INF	18.333	
	LOWER	LEVEL	UPPER	MARGINAL	
VAR ARROZ		2.000	+INF	•	
VAR PESCADO			+INF	15.000	
VAR VERDURA		0.500	+INF		
VAR GASTO	-INF	137.500	+INF	•	