Sprinkler System Components and Standpipes

- Explain the role of sprinkler system components other than the riser
- Distinguish between different types of valves and how they operate
- Describe the different types of standpipes and their role in buildings

System Components

- An automatic sprinkler systems typically has:
 - Sprinklers
 - Water supply and riser
 - Pipes and hangers
 - Cross mains
 - Branch lines
 - Valves
 - Standpipes
 - Fire department connection (FDC)

Pipe materials

- Pipes come in several types and sizes
- They can be divided into three main categories:
 - Metallic pipes
 - Steel pipes, galvanized iron pipes and cast iron pipes
 - Cement pipes
 - Concrete cement pipes and asbestos cement
 - Plastic pipes
 - Plasticized polyvinyl chloride (PVC) pipes

Pipe Information

Pipe Wall Thickness

Pipe Schedule

Thickness of the wall of a pipe

Pipe Schedule

					Г	the 2	cneau	He						
Pipe		-35	Schedule 10 **			Schedule 40 **			Schedule 80 **			Schedule 160		
Size	Nom. OD		ID	Wall Thick		ID	Wall Thick		ID	Wall Thick.		ID	Wall Thick.	
(in)	(in)		(in)	(in)		(in)	(in)	5	(in)	(in)		(in)	(in)	
1/8	0.405		0.31	0.049		0.27	0.068		0.22	0.095				
1/4	0.54		0.41	0.065		0.36	0.088	š.	0.3	0.119				
3/8	0.675		0.55	0.083		0.49	0.091	8	0.42	0.126			§	
1/2	0.84		0.67	0.083		0.62	0.109		0.55	0.147		0.47	0.187	
3/4	1.05		0.88	0.109		0.82	0.113		0.74	0.154		0.61	0.218	
1	1.315		1.1	0.109		1.05	0.133	×	0.96	0.179		0.82	0.25	
1 1/4	1.66		1.44	0.109		1.38	0.14	8	1.28	0.191		1.16	0.25	
1 1/2	1.9		1.68	0.109		1.61	0.145	5	1.5	0.2		1.34	0.281	
2	2.375		2.16	0.109		2.07	0.154		1.94	0.218		1.69	0.343	
2 1/2	2.875		2.64	0.12		2.47	0.203	S.	2.32	0.276		2.13	0.375	
3	3.5		3.26	0.12	1 8	3.07	0.216	8	2.9	0.3		2.63	0.437	1
4	4.5		4.26	0.12		4.03	0.237	5	3.83	0.337		3.44	0.531	3
5	5.563		5.3	0.134		5.05	0.258	î	4.81	0.375		4.31	0.625	
6	6.625		6.36	0.134		6.07	0.28	×	5.76	0.432		5.19	0.718	
8	8.625	- 18	8.33	0.148	2	7.98	0.322		7.63	0.5		6.81	0.906	

Schedule Differences

- Higher schedule = higher cost
- Higher schedule = higher pressure rating
- Higher schedule = higher weight per foot
 - Schedule 10 0.1863 lbs/foot
 - Schedule 80 0.3145 lbs/foot
 - 1.68 time heavier

Valves

- All valves are either indicating or non-indicating
- Typical types
 - Check valve
 - PIV valve
 - OS&Y valve
 - Butterfly valve
 - Globe valve
 - Ball valve

Indicating or Non-indicating?

Indicating or Non-indicating?

•What type of valve is it?

- Indicating or nonindicating?
- Open or closed?
- What type of valve?

OS&Y

https://www.youtube.com/watch?v=D8KKW1fR7u4

•General style is known as a gate valve

Ball Valve

Check Valve

•A valve that normally allows fluid to flow through it in only one direction

Double Check Valve

Normal Flow

Reverse Flow

Valves

https://www.youtube.com/watch?v=X14nww4wuAk

Classes of Standpipe Systems

- Class I: 2.5" valves and hose connections
 - Full scale fire fighting
- Class II: 1.5" valves and hose lines
 - First-aid fire fighting
 - Concerns
 - Expecting occupants to use it
 - Prone to poor maintenance
 - Firefighters will not use a Class II system
 - Class III: combination of both I and II
 - 'Combined' systems (with sprinklers)

Classes of Standpipe Systems

Types of Standpipe Systems

- Automatic-wet
 - Always contains water
- Automatic-dry
 - Contains pressurized air
 - Works in conjunction with a dry pipe valve
- Semiautomatic-dry
 - Requires activation of a remote manual device
 - Works in conjunction with a deluge valve
- Manual-dry
 - Pipes empty at atmospheric pressure. Only water source is fire apparatus attached to the FDC
- Manual-wet
 - Contains water but pressure must be boosted by fire apparatulated to the FDC

Hose Connection Locations

- "Actual Length" method
 - Within 130 feet of a connection everywhere
 - 100' of hose
 - 30' of spray
 - Used only for Class II and III systems

Hose Connection Locations

- "Exit Locations" method
 - Standpipes are located by exits because of their spacing requirements dictated by code
 - Used only for Class I and III
 - P.16-193

Fire Department Connections

- Purpose of FDC?
 - Allow fire department a place to connect to the sprinkler loop and/or standpipe system
 - Located within 100 feet of a fire hydrant
 - Must be visible and accessible

Fire Department Connections

- Required for Class I and III standpipes
 - At least 1 FDC
 - FDC is the only water supply for a manual standpipe system
 - FDC is an auxiliary water supply for a automatic and semi-automatic standpipe systems

