LES FONCTIONS PART1

I Les généralités

I.1 Définir une fonction

Définition n°1. Domaine de définition, image, antécédent

On considère D_f un intervalle ou une réunion d'intervalles de \mathbb{R} .

- On définit une fonction sur D_f en associant à chaque nombre réel x de D_f un unique réel appelé image de x par f qui est noté f(x).
- On dit que D_f est le domaine de définition de f : Si $x \notin D_f$ alors f(x) n'existe pas.
- Si, pour un nombre réel b, il existe $a \in D_f$ tel que f(a) = b alors on dit que a est un antécédent de b par f.

Exemple n°1.

Soit f la fonction définie sur \mathbb{R} , qui a tout x réel associe le nombre 2x-5. On écrit symboliquement en mathématiques $f: x \mapsto 2x-5$

I.2 La représentation graphique

Définition n°2. Courbe représentative

Soit f une fonction définie sur un ensemble D_f . On appelle courbe représentative de la fonction f (notée C_f) dans un repère du plan, l'ensemble des points de coordonnées (x;y) où $x \in D$ et y = f(x).

II Fonctions polynômes de degré 2

II.1 Définition

Définition n°3.

On appelle fonction polynôme du second degré toute fonction f définie pour tout $x \in \mathbb{R}$ par : $f(x) = ax^2 + bx + c$ où a, b et c sont des nombres réels, avec $a \neq 0$.

L'expression algébrique ax^2+bx+c est appelée trinôme du second degré.

Exemple $n^{\circ}2$.

 $f: x \mapsto x^2 - 2x - 3$ est une fonction polynôme du second degré et son expression est $f(x) = x^2 - 2x - 3$ avec a = 1, b = -2 et c = -3.

II.2 Courbe représentative

On considère une fonction polynôme du second degré écrite sous sa forme développée : $f(x)=ax^2+bx+c$ avec $a\neq 0$.

Définition n°4.

Dans un repère du plan, la courbe représentative d'une fonction f du second degré s'appelle une parabole.

- Lorsque a > 0, on dit que la parabole est tournée vers le haut.
- Lorsque a < 0, on dit que la parabole est tournée vers le bas.

Propriété n°1.

(admise)

• Le sommet de la parabole est le point $S(\alpha; \beta)$

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = f(\alpha)$

• La parabole admet un axe de symétrie d'équation $x = \frac{-b}{2a}$.

Géogébra

II.3 Quelques cas particuliers

Pour les fonctions du type $x \mapsto ax^2$: Influence de a

geogebra

II.4 Les racines quand elles existent

Propriété n°2.

(admise)

Soit f la fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ (appelée forme développée)

- Si f admet deux racines x_1 et x_2 (distinctes ou confondues) alors f(x) peut s'écrire sous la forme $f(x)=a(x-x_1)(x-x_2)$ que l'on appelle forme factorisée de f.
- Inversement, si f s'écrit sous la forme $f(x)=a(x-x_1)(x-x_2)$, alors x_1 et x_2 sont les racines de f.
- L'axe de symétrie de la courbe représentative de la fonction f a alors pour équation $x=\alpha=\frac{x_1+x_2}{2}$
- L'abscisse du sommet de la parabole est alors $\frac{x_1 + x_2}{2}$

Exemple n°3.

Soit f la fonction définie sur \mathbb{R} par $f(x)=3x^2-9x-30$.

On peut montrer que f(-2)=f(5)=0 . -2 et 5 sont les racines de f On peut lire sur la forme développée que a=3 .

La forme factorisée est donc f(x)=3(x-(-2))(x-5), soit f(x)=3(x+2)(x-5).

II.5 Courbe représentative quand les racines sont distinctes

On se donne une fonction f définie sur \mathbb{R} par $f(x)=a(x-x_1)(x-x_2)$ et on la représente dans un repère du plan :

$oxed{x}$	$-\infty$	x_1	x_2	$+\infty$
f(x)	_	•	+ •	_

Les racines x_1 et x_2 sont les abscisses des points d'intersection de la parabole avec l'axe des abscisses.

Si les racines sont distinctes, alors f(x) est toujours du signe de a sauf entre les racines.