1.

(o) First A field of characteristic 0 is perfect. Then let F be a field of characteristic $p \neq 0$. Suppose that a and b are elements of F. Then $(a+b)^p=a^p+b^p$. In particular, the function $\Phi_F:F \to F$ defined by $\Phi_F(x)=x^p$ is a homomorphism.

Proof. Expand $(a+b)^p$ using the binomial theorem. All of the binomial coefficients are divisible by p, except for the first and last ones.

 (\leftarrow) First, let F be field and let $f(x) \in F[x]$ be an irreducible polynomial. If f(x) is not separable then f'(x) = 0.

Proof. Suppose that f(x) is not separable and that $f'(x) \neq 0$. Since f(x) is irreducible, and f'(x) has lower degree than f(x), the greatest common divisor of f and f' is 1 . Let a(x) and b(x) be polynomials in F[x] such that a(x)f(x)+b(x)f'(x)=1.

Since f is not separable, there is an extension K of F such that f has a repeated root $\alpha \in K$. Thus in K[x] we have $f(x)=(x-\alpha)^2h(x)$. By the product rule, $f'(x)=2(x-\alpha)h(x)+(x-\alpha)^2h'(x)$. Thus $f(\alpha)=f'(\alpha)=0$ Since the equation a(x)f(x)+b(x)f'(x)=1 holds in F[x], it also holds in K[x] when we regard a,b,f and f' as polynomials in K[x]. But this is absurd since $a(\alpha)f(\alpha)+b(\alpha)f'(\alpha)=0$ in K[x]. This contradiction shows that f'(x)=0.

Then let F be field and let $f(x) \in F[x]$ be a polynomial of positive degree. If f'(x) = 0 then Char F = p for some prime p and $f(x) = g(x^{np})$ for some n > 0 and some polynomial g(x) with $g'(x) \neq 0$. In particular, if f is monic and irreducible, but not separable, then $f(x) = g(x^{np})$ where n > 0 and g is monic, irreducible and separable.

Proof. Suppose that f'(x)=0. Write $f(x)=a_0+a_1x+\cdots+a_nx^n$. Consider a monomial a_kx^k where $a_k\neq 0$. Since f'(x)=0 we have $ka_kx^k=0$, so F must have non-zero characteristic p and k must be divisible by p. Thus the non-zero monomials in f all have degree divisible by p. Let np be the greatest common divisor of the degrees of the non-zero monomials that occur in f. We have $f(x)=g\left(x^{np}\right)$, where the coefficients of g are the same as those of f, but of different degree. There is at least one non-zero monomial in g with degree not divisible by g. Thus $g'(x)\neq 0$. Any factorization of g yields a factorization of f by substituting x^{np} for x. Thus g is irreducible whenever f is irreducible.

Finally, if F is a field of characteristic $p \neq 0$ and if the Frobenius endomorphism $\Phi_F: F \to F$ is surjective, then F is perfect.

Proof. Let F be a perfect field and consider a monic irreducible polynomial $f(x) \in F[x]$ of degree m. Suppose that f(x) is not separable. Then, according to first 2 part we must have Char $F=p \neq 0$ and we can write $f(x)=g\left(x^{np}\right)$ for some separable polynomial g. A polynomial in x^{np} can also be regarded as a polynomial in x^p , so it implies that $f(x)=h(x)^p$ for some polynomial $h(x) \in F[x]$. This contradicts the irreducibility of f.

2.

Assume that all fields are of characteristic p. Suppose that F/E_1 is separable, and E_1/E is separable. Let S be the set of all elements of F that are separable over E. Then $E_1\subseteq S$, since E_1/E is separable.

Note that S is a subfield of F: indeed, if $u,v\in S$ and $v\neq 0$, then E(u,v) is separable over E because it is generated by separable elements, so u+v,u-v,uv, and u/v are all separable over E. So S is a field.

I claim that F is purely inseparable over S. Indeed, if $u \in F$, then there exists $n \geq 0$ such that u^{p^n} is separable over E, hence there exists $n \geq 0$ such that $u^{p^n} \in S$. Therefore, the minimal polynomial of u over S is a divisor of $x^{p^n} - u^{p^n} = (x-u)^{p^n}$, so F is purely inseparable over S. But since $E_1 \subseteq S \subseteq F$, and F is separable over E_1 , then it is separable over E. So E is both purely inseparable and separable over E. This can only occur if E0 is separable over E1.

b.

Given the equivalent of above. If the implication holds for all finite dimensional extensions, then we would have that E_1 (u_1,\ldots,u_n) is a Galois extension of E_1 , and therefore there exist $\tau\in \operatorname{Aut}_{E_1}(E_1\ (u_1,\ldots,u_n))$ such that $\tau(u)\neq u$. Since E_2 is a splitting field over E_1 , it is also a splitting field over $E_1\ (u_1,\ldots,u_n)$, and therefore τ extends to an automorphism of E_2 . Thus, there exists $\tau\in\operatorname{Aut}_{E_1}(E_2)$ such that $\tau(u)\neq u$. This would prove that the fixed field of $\operatorname{Aut}_{E_1}(E_2)$ is E_1 , so the extension is Galois. Thus, we are reduced to proving the implication when $[E_2:E_1]$ is finite. When $[E_2:E_1]$ is finite, there is a finite subset of T that will suffice to generate E_2 . Moreover, $\operatorname{Aut}_{E_1}(E_2)$ is finite. If E is the fixed field of $\operatorname{Aut}_{E_1}(E_2)$, then by Artin's Theorem E_2 is Galois over E and $\operatorname{Gal}(E_2/E) = \operatorname{Aut}_{E_1}(E_2)$. Hence, $[E_2:E] = |\operatorname{Aut}_{E_1}(E_2)|$ Thus, it suffices to show that when E_2 is a finite extension of E_1 and is a splitting field of a finite set of separable polynomials $g_1,\ldots,g_m\in E_1[x]$, then $[E_2:E_1] = |\operatorname{Aut}_{E_1}(E_2)|$. Replacing the set with the set of all irreducible factors of the g_i , we may assume that all g_i are irreducible.

We do induction on $[E_2:E_1]=n$. If n=1, then the equality is immediate. If n>1, then some g_i , say g_1 , has degree greater than 1; let $u\in E_2$ be a root of g_1 . Then $[E_1(u):E_1]=\deg(g_1)$, and the number of distinct roots of g_1 in E_2 is $\deg(g_1)$, since g_1 is separable. Let $H=\operatorname{Aut}_{E_1(u)}(E_2)$. Define a map from the set of left cosets of H in $\operatorname{Aut}_{E_1}(E_2)$ to the set of distinct roots of g_1 in E_2 by mapping σH to $\sigma(u)$. This is one-to-one, since $\sigma(u)=\rho(u)\Longrightarrow\sigma^{-1}\rho\in H\Longrightarrow\sigma H=\rho H$. Therefore, $[\operatorname{Aut}_{E_1}(E_2):H]\leq \deg(g_1)$. If $v\in E_2$ is any other root of g_1 , then there is an isomorphism $\tau:E_1(u)\to E_1(v)$ that fixes E_1 and maps u to v, and since E_2 is a splitting field, τ extends to an automorphism of E_2 over E_1 . Therefore, the map from cosets of H to roots of g_1 is onto, so $[\operatorname{Aut}_{E_1}(E_2):H]=\deg(g_1)$ We now apply induction: E_2 is the splitting field over $E_1(u)$ of a set of separable polynomials (same one as we started with), and $[E_2:E_1(u)]=[E_2:E_1]/\deg(g_1)<[E_2:E_1]$. Therefore, $[E_2:E_1(u)]=|\operatorname{Aut}_{E_1(u)}(E_2)|=|H|$

Hence

 $|\operatorname{Aut}_{E_1}(E_2)|=[\operatorname{Aut}_{E_1}(E_2):H]\,|H|=\deg(g_1)[E_2:E_1(u)]=[E_1(u):E_1][E_2:E_1(u)]=[E_2:E_1]$, and we are done.

3.

Proof. Choose a basis S for E_1 over E, and consider the subset E of F consisting of linear combinations of the elements of S with coefficients in E_2 :

$$E = \left\{ \sum_{s \in S} \lambda_s s \mid \lambda_s \in E_2
ight\}$$

Since 1 is in $ar{E}_1$ and S spans $ar{E}_1$ over E, there are elements ϵ_s of E such that

$$1 = \sum_{s \in S} \epsilon_s s$$

Hence for any x in E_2 ,

$$x = \sum_{s \in S} \left(x \epsilon_s
ight) s$$

is an element of E. Since E_1 is closed under multiplication, for every t and u in S there are elements $\mu_s^{t,u}$ of E such that

$$tu = \sum_{s \in S} \mu_s^{t,u} s$$

Hence for elements $x = \sum_{s \in S} \lambda_s s$ and $y = \sum_{s \in S} \nu_s s$ of E,

$$x+y=\sum_{s\in S}\left(\lambda_s+
u_s
ight)s$$

is in ${\cal E}$ and

$$egin{aligned} xy &= \sum_{t \in S, u \in S} \lambda_t
u_u tu = \sum_{t \in S, u \in S} \lambda_t
u_u \left(\sum_{s \in S} \mu_s^{t,u} s
ight) \ &= \sum_{s \in S} \left(\sum_{t \in S, u \in S} \lambda_t
u_u \mu_s^{t,u}
ight) s \end{aligned}$$

is an element of E. So E contains E_2 and is closed under addition and multiplication. Eurthermore, S spans E as a vector space over E_2 , so E is finitedimensional over E_2 , of dimension at most $|S|=[E_1:E]$. Hence by Lemma 2.4, E is a subfield of F. Since E contains both E_1 and E_2 , and is generated by elements of E_1E_2 , $E=E_1E_2$. By the Tower Law, E_1E_2/E is finite, and $[E_1E_2:E]=[E_1E_2:E]$ $[E_2:E]$ $[E_2:E]$ as required

4.

The largest Field is $\mathrm{F}\left(X^{rac{1}{2p}}
ight)$.

Proof. Let ζ be the primitive n -th root in F. We have $(-\zeta)^{2n}=1$. Note that $\zeta\neq -\zeta$ because $\mathrm{char}(F)\neq 2$. Let us denote $-\zeta$ by ω and we claim that ω is the required primitive 2n -th root of unity. If not, let ω be a primitive d -th root of unity for d<2n. Hence

$$\omega^d = 1 \Rightarrow \zeta^d = (-1)^d$$
.

Now there are two possibilities. If d is odd, then

$$\zeta^d = -1 \Rightarrow \zeta^{2d} = 1 \Rightarrow n \mid 2d$$

(by definition of ζ). As n is odd, we must have $n\mid d$. Hence the only possibility is d=n, but clearly $\omega^n\neq 1$. So we arrive at a contradiction. If d is even, then

$$\zeta^d = 1 \Rightarrow n \mid d$$

Following the same argument as before we again arrive at a contradiction. Hence ω is the required $2n$ -th root of unity contained in F .