Writing a Thesis in LATEX: hints, tips and advice

Nicola Talbot http://theoval.cmp.uea.ac.uk/~nlct/

School of Computing Sciences University of East Anglia

Overview

Introductory Notes

Structuring Your Document

Formatting

Title Pages

Double Spacing

Theorems and Algorithms

Verbatim Text

Symbols

Results Chapter

Tables

Figures

External Datafiles

Creating Glossaries

Introductory Notes

- There is generally more than one way of doing things
- ▶ I will describe the method I know best
- ▶ I will also mention alternatives, but will not describe them
- Look up the documentation on CTAN (http://www.tex.ac.uk/)

Before You Start

- ▶ Decide on an appropriate class file.
 - Ask your supervisor if one is provided
 - ▶ If not, try the report or scrreprt class file
- Structure your document:
 - Front Matter
 - Main Matter
 - Back matter

Use lowercase Roman numeral page numbering \pagenumbering{roman}

- Use lowercase Roman numeral page numbering \pagenumbering{roman}
- ▶ Title page

- Use lowercase Roman numeral page numbering \pagenumbering{roman}
- ▶ Title page
- ► Table of contents, list of figures/tables
 \tableofcontents \listoffigures \listoftables

- Use lowercase Roman numeral page numbering \pagenumbering{roman}
- ▶ Title page
- ► Table of contents, list of figures/tables
 \tableofcontents \listoffigures \listoftables
- Abstract should go in abstract environment
 \begin{abstract} \end{abstract}

- Use lowercase Roman numeral page numbering \pagenumbering{roman}
- ► Title page
- ► Table of contents, list of figures/tables
 \tableofcontents \listoffigures \listoftables
- Abstract should go in abstract environment
 \begin{abstract} \end{abstract}
- Acknowledgements (funding body etc)
 \chapter*{Acknowledgements}
 (You may be told to put acknowledgements in back matter)

Main Matter

▶ Use Arabic numbers

\pagenumbering{arabic}

Main Matter

- Use Arabic numbers \pagenumbering{arabic}
- Chapters, sections etc. (check with your supervisor) \chapter{Introduction} \label{ch:intro}

```
\chapter{Technical Introduction} \label{ch:techintro}
```

```
\chapter{Method} \label{ch:method}
```

\chapter{Results} \label{ch:results}

\chapter{Conclusions} \label{ch:conc}

Back Matter

- Glossary of terms or notation. (You may be told to put this in the front matter)
 - ▶ Important to define symbols (e.g. is x' the derivative of x or a new value of x?)
 - ▶ Include a list of acronyms, especially newly defined acronyms.

Back Matter

- Glossary of terms or notation. (You may be told to put this in the front matter)
 - ▶ Important to define symbols (e.g. is x' the derivative of x or a new value of x?)
 - ▶ Include a list of acronyms, especially newly defined acronyms.
- Bibliography

Back Matter

- Glossary of terms or notation. (You may be told to put this in the front matter)
 - ▶ Important to define symbols (e.g. is x' the derivative of x or a new value of x?)
 - ▶ Include a list of acronyms, especially newly defined acronyms.
- Bibliography
- ▶ If you have written computer code, don't include all the code you've ever written!
 - Examiners will view it as padding
 - Don't annoy your examiners!

Formatting

- ▶ Title Page
- ▶ Double Spacing
- ▶ Theorems and Algorithms
- Verbatim Text
- Symbols

Creating a Title Page

Simplest method is to provide title, author and date information with \maketitle:

```
\title{A Sample Thesis}
\author{My Name}
\date{October 2006}
\maketitle
```

- ▶ Some class files and packages provide additional commands:
 - scrreprt Class File
 - titling Package
- Alternatively use the titlepage environment

The titlepage Environment

Example:

```
\begin{titlepage}
\null\vfill
\begin{center}\Large
A Thesis submitted for the degree of
Doctor of Philosophy\par\vskip1cm
School of Mathematics\par
University of Somewhere\par
\vskip1cm
\large A Sample Thesis \par
\vskip1cm
Me \par
October 2006
\end{center}\vfill
\end{titlepage}
```


Double Spacing

- ► Many universities insist on double spacing to provide examiners room for annotations
- Use setspace package:
 - ► \singlespacing
 - ▶ \onehalfspacing
 - ▶ \doublespacing

Theorems and Algorithms

- ▶ Use \newtheorem
- ▶ To modify the default style:
 - amsthm (amsmath)
 - empheq (Extension to amsmath)
 - ▶ ntheorem
 - nccthm
 - algorithmicx
- If you want theorems/algorithms as a float:
 - ▶ alg
 - ▶ algorithm2e
 - algorithms
 - ▶ float

▶ \newtheorem{<type>}{<title>}[<in-counter>]

- ▶ \newtheorem{<type>}{<title>}[<in-counter>]
- Creates an environment called <type>

- ▶ \newtheorem{<type>}{<title>}[<in-counter>]
- Creates an environment called <type>
- ► The start of the environment will have <*title*> and the associated number in bold.

- ▶ \newtheorem{<type>}{<title>}[<in-counter>]
- Creates an environment called <type>
- ➤ The start of the environment will have <title> and the associated number in bold.
- ► The counter can be associated with another counter using <in-counter>

- ▶ \newtheorem{<type>}{<title>}[<in-counter>]
- Creates an environment called <type>
- ► The start of the environment will have <title> and the associated number in bold.
- ► The counter can be associated with another counter using <in-counter>
- ▶ The body of the environment will be in italic font

- ▶ \newtheorem{<type>}{<title>}[<in-counter>]
- Creates an environment called <type>
- ► The start of the environment will have <title> and the associated number in bold.
- ► The counter can be associated with another counter using <in-counter>
- ▶ The body of the environment will be in italic font
- ► The new environment <type> has an optional argument to provide a sub-title for the theorem

Examples

\newtheorem{theorem}{Theorem}

Examples

\newtheorem{theorem}{Theorem}

1. \begin{theorem} If a real sequence is bounded and monotone, it converges.\end{theorem}

Theorem 1 If a real sequence is bounded and monotone, it converges.

Examples

\newtheorem{theorem}{Theorem}

1. \begin{theorem} If a real sequence is bounded and monotone, it converges.\end{theorem}

Theorem 1 If a real sequence is bounded and monotone, it converges.

2. \begin{theorem}[Cayley's Theorem] Every group is isomorphic to a group of permutations. \end{theorem}

Theorem 2 (Cayley's Theorem) Every group is isomorphic to a group of permutations.

- \verb<c><text><c> command (in line verbatim)
- ▶ \verb*<c><text><c> command (in line verbatim)

- \verb<c><text><c> command (in line verbatim)
- ▶ \verb*<c><text><c> command (in line verbatim)
- verbatim environment (displayed verbatim)
- verbatim* environment (displayed verbatim)

- \verb<c><text><c> command (in line verbatim)
- ▶ \verb*<c><text><c> command (in line verbatim)
- verbatim environment (displayed verbatim)
- verbatim* environment (displayed verbatim)
- verbatim package:
 - \verbatiminput{<filename>}

- \verb<c><text><c> command (in line verbatim)
- ▶ \verb*<c><text><c> command (in line verbatim)
- verbatim environment (displayed verbatim)
- verbatim* environment (displayed verbatim)
- verbatim package:
 - \verbatiminput{<filename>}
- moreverb package:
 - verbatimtab environment
 - \verbatimtabinput{<filename>}
 - ▶ listing environment
 - ▶ \listinginput{<filename>}
- Verbatim text can not be include in command arguments!

Examples (verbatim environment)

```
\begin{verbatim}
                               Some
                                    %$& \large odd
                               text.
Some %$& \large odd
text.
\end{verbatim}
\begin{verbatim*}
                               Some___%$&_\large_odd
                               text.
Some %$& \large odd
text.
\end{verbatim*}
```

Examples (\verb command)

- 1. \verb"some %\$& text"
- 2. \verb+some %\$& text+
- 3. \verb|some %\$& text|
- 4. \verb*|some %\$& text|

some %\$& text some %\$& text some %\$& text some_\%\$&_text

Symbols

- LATEX provides many common symbols
- Packages:
 - amsfonts/amssymb
 - stmaryrd
 - wasysym
 - mathabx
 - txfonts/pxfonts
 - Many more! See "The Comprehensive Symbol List" available on CTAN.
- Most maths symbols can only be used in a maths environment.

Commonly Used Maths Symbols

```
\le \leq \ge \geq \label{eq:gg} \gg \neq \neq \equiv \equiv \sim \sim \approx \approx \lin \in \notin \notin \ni \ni \empyset \emptyset \forall <math>\forall \ensuremath{\ \ \ \ } \exists \ensuremath{\ \ \ \ } \downarrow \parallel
```

Commonly Used Maths Symbols

```
\le \leq \ge \geq \label{eq:gg} \gg \neq \neq \equiv \equiv \sim \sim \approx \approx \in \in \notin \notin \ni \ni \empyset \emptyset \forall <math>\forall \ensuremath{\ \ \ } \Rightarrow \partial \ensuremath{\ \ \ } \downarrow \parallel
```

► To negate a symbol use \not, e.g.:

Commonly Used Maths Symbols

► To negate a symbol use \not, e.g.:

► For a degree symbol use ^\circ, e.g.:

$$45^\circ$$

Commonly Used Maths Symbols

► To negate a symbol use \not, e.g.:

► For a degree symbol use ^\circ, e.g.:

► For calligraphic fonts use \mathcal{<text>}, e.g.:

► Results chapters often cause problems because of the large number of figures and tables

- ► Results chapters often cause problems because of the large number of figures and tables
- ▶ All figures and tables must have explanatory text

- Results chapters often cause problems because of the large number of figures and tables
- ▶ All figures and tables must have explanatory text
- ► Always give LATEX some choice as to where to position the floats

 - ✓ \begin{figure}[htbp]

- Results chapters often cause problems because of the large number of figures and tables
- ▶ All figures and tables must have explanatory text
- ► Always give LATEX some choice as to where to position the floats
 - \begin{figure}[h]
 - ✓ \begin{figure}[htbp]
- If you absolutely and emphatically want a float to go "right here" it's not a float!

- Results chapters often cause problems because of the large number of figures and tables
- ▶ All figures and tables must have explanatory text
- ► Always give LATEX some choice as to where to position the floats
 - \begin{figure}[h]
 - ✓ \begin{figure}[htbp]
- If you absolutely and emphatically want a float to go "right here" it's not a float!
- ➤ As a last resort use \clearpage if you get the error: Too many unprocessed floats

Captions

- Captions are produced with:
 \caption[<lof caption>] {< caption text>}
- ▶ Labels should go *after* the caption
- Caption styles can be changed using:
 - caption package
 - ccaption package
 - float package
 - KOMA-Script classes
 - memoir class

Tables

- ▶ Less than a page
 - ▶ table environment

Tables

- Less than a page
 - ▶ table environment
- ▶ More than a page
 - longtable environment (longtable package)
 - supertabular environment (supertab package)

Tables

- Less than a page
 - ▶ table environment
- ► More than a page
 - longtable environment (longtable package)
 - supertabular environment (supertab package)
- Captions should go at the top of the table

```
\begin{table}[htbp]
\caption{A Sample Table}\label{tab:sample}
\begin{center}
% table contents
\end{center}
\end{table}
```


Table Contents: The tabular environment

Use tabular environment to arrange material in rows and columns.

```
\begin{tabular}{<format>}
```

- Argument specifies the format of each column:
 - ▶ 1 : left justified
 - c : centred
 - r : right justified
 - ▶ p{<*width*>} : formatted paragraph of given width
- Within tabular environment:
 - Use & to move to next column
 - Use \\ to move to next row

```
\begin{table}[htbp]
\caption{A Sample Table}\label{tab:sample}
\begin{center}
\begin{tabular}{clrlr}
Dataset & MSE1 & Time1 (s) & MSE2 & Time2 (s)\\
Benchmark1 & 0.001 & 5 & 0.02 & 8\\
Benchmark2 & 0.035 & 10 & 0.0005 & 15
\end{tabular}
\end{center}
\end{table}
```

Table 1: A Sample Table

Dataset	MSE1	Time1 (s)	MSE2	Time2 (s)
Benchmark1	0.001	5	0.02	8
Benchmark2	0.035	10	0.0005	15

Tabular Entries

- ► Each entry in a tabular environment is in an implicit group
- Declarations are localised
- Example:

```
\bfseries Dataset & MSE1 & Time1 (s)
```

Only Dataset will be in bold

```
\begin{table}[htbp]
\caption{A Sample Table}\label{tab:sample}
\begin{center}
\begin{tabular}{clrlr}
\bfseries Dataset &
\bfseries MSE1 & \bfseries Time1 (s) &
\bfseries MSE2 & \bfseries Time2 (s)\\
Benchmark1 & 0.001 & 5 & 0.02 & 8\\
Benchmark2 & 0.035 & 10 & 0.0005 & 15
\end{tabular}
\end{center}
\end{table}
```

Table 2: A Sample Table

Dataset	MSE1	Time1 (s)	MSE2	Time2 (s)
Benchmark1	0.001	5	0.02	8
Benchmark2	0.035	10	0.0005	15

Adding Lines

- Vertical lines added using | in placement specifier
 \begin{tabular}{|c|lr|lr|}
- ▶ Horizontal lines added at the start of the row using:
 - ▶ \hline : span all columns
 - ightharpoonup \cline $\{ < n > < m > \}$: span columns < n > to < m >

\hline Benchmark1 & 0.001 & 5 & 0.02 & 8\\

➤ Double lines added using \hline\hline: \hline\hline Benchmark1 & 0.001 & 5 & 0.02 & 8\\

```
\begin{table} [htbp]
\caption{A Sample Table}\label{tab:sample}
\begin{center}
\begin{tabular}{|c|lr|lr|}
\hline \bfseries Dataset &
\bfseries MSE1 & \bfseries Time1 (s) &
\bfseries MSE2 & \bfseries Time2 (s)\\
\hline\hline Benchmark1 & 0.001 & 5 & 0.02 & 8\\
Benchmark2 & 0.035 & 10 & 0.0005 & 15\\
\hline
\end{tabular}
\end{center}
\end{table}
```

Table 3: A Sample Table

Dataset	MSE1	Time1 (s)	MSE2	Time2 (s)
Benchmark1	0.001	5	0.02	8
Benchmark2	0.035	10	0.0005	15

Spanning Multiple Columns/Rows

Spanning Columns:

 $\mbox{\mbox{\mbox{multicolumn}}} {< multicolumn} {< m>} {< align>} {< text>}$

- <n> number of columns to span
- ► <align> alignment
- <text> entry text

Spanning Multiple Columns/Rows

Spanning Columns:

\multicolumn{<n>}{<align>}{<text>}

- ► <*n*> number of columns to span
- <align> alignment
- <text> entry text
- Spanning Rows (multirow package):

\multirow{<*n*>}{<*width*>}{<*text*>}

- <n> number of rows to span
- <width> column width
- <text> entry text

```
\begin{table} [htbp]
\caption{A Sample Table}\label{tab:sample}
\begin{center}
\begin{tabular}{|||||r||||\hline
\multirow{2}{0.8in}{Dataset} &
\multicolumn{2}{c|}{Method 1} &
\multicolumn{2}{c|}{Method 2}\\
& MSE & Time (s) & MSE & Time (s) \\hline\hline
Benchmark1 & 0.001 & 5 & 0.02 & 8\\
Benchmark2 & 0.035 & 10 & 0.0005 & 15\\hline
\end{tabular}
\end{center}
\end{table}
```

Table 4: A Sample Table

Dataset	Method 1		Method 2	
Dataset	MSE	Time (s)	MSE	Time (s)
Benchmark1	0.001	5	0.02	8
Benchmark2	0.035	10	0.0005	15

Fine Tuning

▶ Use \newlength and \settowidth to calculate widest entry:

```
\newlength{\maxwidth}
\settowidth{\maxwidth}{Benchmark2}
\multirow{2}{\maxwidth}{Dataset}
```

Fine Tuning

Use \newlength and \settowidth to calculate widest entry:

```
\newlength{\maxwidth}
\settowidth{\maxwidth}{Benchmark2}
\multirow{2}{\maxwidth}{Dataset}
```

- ▶ Use \hfil or \hfill to shift text over:
 - Centred:

```
\multirow{2}{\maxwidth}{\hfil Dataset}
```

► Right Justified:

```
\multirow{2}{\maxwidth}{\hfill Dataset}
```

```
\newlength{\maxwidth}\settowidth{\maxwidth}{Benchmark2}
\begin{table}[htbp]
\caption{A Sample Table}\label{tab:sample}
\begin{center}
\begin{tabular}{||||r||||\hline
\multirow{2}{\maxwidth}{\hfil Dataset} &
\multicolumn{2}{c|}{Method 1} &
\multicolumn{2}{c|}{Method 2}\\
& MSE & Time (s) & MSE & Time (s) \\hline\hline
Benchmark1 & 0.001 & 5 & 0.02 & 8\\
Benchmark2 & 0.035 & 10 & 0.0005 & 15\\hline
\end{tabular}
\end{center}
\end{table}
```

Table 5: A Sample Table

Dataset	Method 1		Method 2	
	MSE	Time (s)	MSE	Time (s)
Benchmark1	0.001	5	0.02	8
Benchmark2	0.035	10	0.0005	15

Figures

- Use figure environment
- Caption should go at the bottom
- Example:

```
\begin{figure}[htbp]
\begin{center}
% contents of figure go here
\end{center}
\caption{A Sample Figure}
\label{fig:sample}
\end{figure}
```

► Figure contents can either be created internally (in the document) or externally (via another application)

 Construct image in the document using commands and environments

- Construct image in the document using commands and environments
 - picture environment (primitive but portable)

- Construct image in the document using commands and environments
 - picture environment (primitive but portable)
 - pstricks package (very powerful—uses PostScript)

- Construct image in the document using commands and environments
 - picture environment (primitive but portable)
 - pstricks package (very powerful—uses PostScript)
 - pdftricks generates PDF files from pstricks (fiddly)

- Construct image in the document using commands and environments
 - picture environment (primitive but portable)
 - pstricks package (very powerful—uses PostScript)
 - pdftricks generates PDF files from pstricks (fiddly)
 - pgf works with LaTEX+dvips and PDFLATEX. Has user interface tikz to make it easier to use

- Construct image in the document using commands and environments
 - picture environment (primitive but portable)
 - pstricks package (very powerful—uses PostScript)
 - pdftricks generates PDF files from pstricks (fiddly)
 - ▶ pgf works with LaTeX+dvips and PDFLATeX. Has user interface tikz to make it easier to use
 - ► ... (search CTAN!)

Internally Created Images

- Construct image in the document using commands and environments
 - picture environment (primitive but portable)
 - pstricks package (very powerful—uses PostScript)
 - pdftricks generates PDF files from pstricks (fiddly)
 - ▶ pgf works with LaTeX+dvips and PDFLATeX. Has user interface tikz to make it easier to use
 - ... (search CTAN!)
- Example (using tikz package):

```
\tikz \shade[ball color=red] (0,0) circle (5mm);
```


Externally Created Images

Use external application to create image. Examples:

Application	Platform	Output Format
$Matlab^1$	various	various inc. EPS and PDF
Gnuplot	various	various inc. LATEX, EPS, PDF
Xfig ²	Unix	various inc. LATEX, EPS, PDF
TeXCAD ³	PC	LATEX code
$JpgfDraw^4$	JVM ⁵	LATEX code

Many more that create EPS, PDF, PNG etc—search the web!

- Include Image in Document:
 - \input (LATEX code)
 - \includegraphics (Image format)

¹Commercial Software

²There is a Java based clone of xfig called jfig

³There is also a Unix port called xtexcad

⁴Beta version

⁵ Java Virtual Machine

Externally Created Images: LATEX code v Image Formats

- ▶ If you use an application that creates LATEX code:
 - ▶ Text in images will use same font as document.
 - Images can include well formatted equations.
 - ► The LATEX code can be edited to fine-tune image.
 - LATEX code can only produce vector graphics.
 - ▶ You may need a particular driver to understand the code

Externally Created Images: LATEX code v Image Formats

- ▶ If you use an application that creates LATEX code:
 - ▶ Text in images will use same font as document.
 - Images can include well formatted equations.
 - ► The LATEX code can be edited to fine-tune image.
 - LATEX code can only produce vector graphics.
 - You may need a particular driver to understand the code
- ▶ If you use an application that creates an image file:
 - Text in images may not match document font.
 - Image files can either be vector or raster graphics:
 - If possible save as vector graphics (e.g. EPS, PDF).
 - Raster images don't scale well.
 - Driver needs to understand image format, e.g.:
 - ▶ EPS : latex + dvips
 - PDF : pdflatex

▶ Use \input{<*filename*>}.

- ▶ Use \input{<filename>}.
- Examples (image in file mypicture.tex):
 - Include image "as is":
 \input{mypicture}

- ▶ Use \input{<filename>}.
- Examples (image in file mypicture.tex):
 - Include image "as is":
 \input{mypicture}
 - Magnify image by factor of 2: \scalebox{2}{\input{mypicture}}

- ▶ Use \input{<filename>}.
- Examples (image in file mypicture.tex):
 - Include image "as is":
 \input{mypicture}
 - Magnify image by factor of 2: \scalebox{2}{\input{mypicture}}
 - Scale image so that its width is 3 inches:
 \resizebox{3in}{!}{\input{mypicture}}

- ▶ Use \input{<filename>}.
- Examples (image in file mypicture.tex):
 - Include image "as is":
 \input{mypicture}
 - Magnify image by factor of 2: \scalebox{2}{\input{mypicture}}
 - Scale image so that its width is 3 inches:
 \resizebox{3in}{!}{\input{mypicture}}
 - ► Rotate image by 45°: \rotatebox{45}{\input{mypicture}}

- ► Use \input{<filename>}.
- Examples (image in file mypicture.tex):
 - Include image "as is":
 \input{mypicture}
 - Magnify image by factor of 2: \scalebox{2}{\input{mypicture}}
 - Scale image so that its width is 3 inches:
 \resizebox{3in}{!}{\input{mypicture}}
 - Rotate image by 45°:
 \rotatebox{45}{\input{mypicture}}
 - Combination (scale then rotate):
 \rotatebox{45}{\resizebox{3in}{!}{\input{mypicture}}}

- ► Use \input{<filename>}.
- Examples (image in file mypicture.tex):
 - Include image "as is":
 \input{mypicture}
 - Magnify image by factor of 2: \scalebox{2}{\input{mypicture}}
 - Scale image so that its width is 3 inches:
 \resizebox{3in}{!}{\input{mypicture}}
 - Rotate image by 45°:
 \rotatebox{45}{\input{mypicture}}
 - Combination (scale then rotate):
 \rotatebox{45}{\resizebox{3in}{!}{\input{mypicture}}}
- Need graphicx package to transform image.

▶ Use \includegraphics{<filename>} (graphicx).

- ▶ Use \includegraphics{<filename>} (graphicx).
- Examples (image in file mypicture.eps):
 - Include image "as is":
 \includegraphics{mypicture.eps}

- ▶ Use \includegraphics{<filename>} (graphicx).
- Examples (image in file mypicture.eps):
 - Include image "as is":
 \includegraphics{mypicture.eps}
 - Magnify image by factor of 2: \includegraphics[scale=2]{mypicture.pes}

- ▶ Use \includegraphics{<filename>} (graphicx).
- Examples (image in file mypicture.eps):
 - Include image "as is":
 \includegraphics{mypicture.eps}
 - Magnify image by factor of 2: \includegraphics[scale=2]{mypicture.pes}
 - Scale image so that its width is 3 inches:
 \includegraphics[width=3in]{mypicture.eps}

- ▶ Use \includegraphics{<filename>} (graphicx).
- Examples (image in file mypicture.eps):
 - Include image "as is":
 \includegraphics{mypicture.eps}
 - Magnify image by factor of 2: \includegraphics[scale=2]{mypicture.pes}
 - Scale image so that its width is 3 inches: \includegraphics[width=3in]{mypicture.eps}
 - ► Rotate image by 45°: \includegraphics[angle=45]{mypicture.eps}

- ► Use \includegraphics{<filename>} (graphicx).
- Examples (image in file mypicture.eps):
 - Include image "as is":
 \includegraphics{mypicture.eps}
 - Magnify image by factor of 2: \includegraphics[scale=2]{mypicture.pes}
 - Scale image so that its width is 3 inches: \includegraphics[width=3in]{mypicture.eps}
 - Rotate image by 45°:
 \includegraphics[angle=45]{mypicture.eps}
 - ► Combination (scale then rotate): \includegraphics[width=3in,angle=45]{mypicture.eps}

Portable Graphics

People often require both a PS and PDF version of the same document.

Portable Graphics

People often require both a PS and PDF version of the same document.

- Have both EPS and PDF versions of same image (e.g. mypicture.eps and mypicture.pdf)
- ▶ Don't include extension in \includegraphics
- ► LATEX will include EPS file
- ► PDFLATEX will include PDF file
- Examples:
 - \includegraphics{mypicture}
 - ▶ \includegraphics[width=3in] {mypicture}
 - \includegraphics[width=3in,angle=45]{mypicture}

External Datafiles

- You may have data stored in external files (e.g. results from experiments)
- Data can be included in your thesis:
 - Directly using, e.g., csvtools package (ASCII)
 - Using an external application:
 - exceltex : package combined with Perl script
 - Excel-to-LaTeX : converts Excel to LATEX tables
 - xl2latex : converts Excel to LATEX tabulars.
 - ► Calc2LaTeX : converts OpenOffice to LaTeX tables.
 - PstChart : generates various charts (pstricks code)
- Common ASCII formats:
 - Tab separated (.txt)
 - Comma separated (.csv)

Example Data

► Comma Separated Variable (sample.csv):

```
Name,Quantity
"Apples",20
"Pears",15
"lemons,limes",30
"Peaches",25
"Cherries",10
```

Tab Separated Variable (sample.txt):

```
Name Quantity
"Apples" 20
"Pears" 15
"lemons,limes" 30
"Peaches" 25
"Cherries" 10
```

Using the csvtools Package (v1.2)

- csvtools assumes a comma separated variable file
- If you are using tab separated files, use \setcsvseparator{^^I}
- ▶ Header row must be on line 1
- ▶ To access entry in given column of current row use:
 - ▶ \field{<*n*>}
 - ▶ \insertbyname{<header>}
 - ▶ \insert<header>

Where

- ightharpoonup < n > is the column number
- <header> is the header text for that column

Using the csvtools Package

Example file has header row:

Name, Quantity

- ▶ To access elements in 1st column:
 - ▶ \field{1}
 - ▶ \insertName
 - ▶ \insertbyname{Name}
- ▶ To access elements in 2nd column:
 - ▶ \field{2}
 - \insertQuantity
 - \insertbyname{Quantity}

csvtools: Creating Tables from Data Files

- ➤ To convert data to tabular environment: \CSVtotabular{<file>}{<align>}{<header>}{<all but last>}{<last>}
- ➤ To convert data to longtable environment: \CSVtolongtable{<file>}{<align>}{<header>}{<all but last>}{<last>}
- Where:

```
<file> : name of data file (e.g. sample.csv)
<align> : column specifiers (e.g. |l|r|)
<header> : code for header row (data not accessed)
```

<all but last> : code for all but last row of data

< last> : code for last row of data

Using earlier sample.csv data:

```
\begin{table} [htbp]
\caption{My Results}\label{tab:results}
\begin{center}
\CSVtotabular{sample.csv}{|l|r|}
{\hline\bfseries Name & \bfseries Quantity\\\hline\hline}
{\insertName & \insertQuantity\\}
{\insertName & \insertQuantity\\\hline}
\end{center}
\end{table}
```

Table 6: My Results

Name	Quantity
Apples	20
Pears	15
lemons,limes	30
Peaches	25
Cherries	10

```
\newcounter{total}
\begin{table}[htbp]
\caption{My Results}\label{tab:results}
\begin{center}
\CSVtotabular{sample.csv}{|1|r|}
{\hline\bfseries Name & \bfseries Quantity\\\hline\hline}
{\insertName & \insertQuantity
\addtocounter{total}{\insertQuantity}\\}
{\insertName & \insertQuantity
\addtocounter{total}{\insertQuantity}\\hline\hline
\bfseries Total & \thetotal\\\hline}
\end{center}
\end{table}
```

Table 7: My Results

Name	Quantity
Apples	20
Pears	15
lemons,limes	30
Peaches	25
Cherries	10
Total	100

Applying Same Code for Each Data Row

Example:

- ► You have a CSV file containing the name of an image file displaying the result of a given experiment.
- You want to include each image file in a separate figure
- CSV file looks like:

```
Experiment,File
abc,abcResults.eps
xyz,xyzResults.eps
(Imagine there are a lot more lines!)
```

▶ Use \applyCSVfile{<data file>}{<code>}

\applyCSVfile Example

```
\applyCSVfile{results.csv}{%
\begin{figure}[htbp]
\begin{center}
\includegraphics{\insertFile}
\end{center}
\caption{Results from Experiment \insertExperiment}
\label{fig:exp\insertExperiment}
\end{figure}}
```

► Each of the figures has a label constructed from the experiment name: fig:exp<name>

- ► Each of the figures has a label constructed from the experiment name: fig:exp<name>
- ► How can you determine the first and last labels so that you can do, e.g.: the results are shown in figures 4.2–4.22?

- ► Each of the figures has a label constructed from the experiment name: fig:exp<name>
- ► How can you determine the first and last labels so that you can do, e.g.: the results are shown in figures 4.2–4.22?
 - 1. Look in the CSV file and determine the names of the first and last experiment, and work out the corresponding labels.
 - What happens if you add in a new experiment?
 - What happens if you redo the experiments in a different order?

- ► Each of the figures has a label constructed from the experiment name: fig:exp<name>
- ► How can you determine the first and last labels so that you can do, e.g.: the results are shown in figures 4.2–4.22?
 - 1. Look in the CSV file and determine the names of the first and last experiment, and work out the corresponding labels.
 - What happens if you add in a new experiment?
 - What happens if you redo the experiments in a different order?
 - 2. Get LATEX to work out the first and last references

\applyCSVfile Example

```
\newcommand{\firstref}{??}
\newcommand{\lastref}{??}
\applyCSVfile{results.csv}{%
\begin{figure}[htbp]
\begin{center}
\includegraphics{\insertFile}
\end{center}
\caption{Results from Experiment \insertExperiment}
\label{fig:exp\insertExperiment}
\end{figure}
\ifthenelse{\value{csvrownumber}=1}
{\xdef\firstref{\ref{fig:exp\insertExperiment}}}{}
\xdef\lastref{\ref{fig:exp\insertExperiment}}}
Results are shown in figures \firstref--\lastref.
```

Creating Pie Charts with csvpie

- \csvpiechart[<options>]{<variable>}{<filename>}
- Creates a simple circular pie chart
- ► Segments can be separated from the chart
- "Inner" and "Outer" labelling
- Labelling format can be customised
- Segment colours can be customised
- Can read in decimal numbers from CSV file, but rounding will occur (TEX only performs integer arithmetic.)
- Uses tikz package

\csvpiechart Options

Optional argument is a comma-separated list of <key>=<value> pairs

Key	Value	Default	Description
total	<number></number>	100	The sum of all the segment values
radius	<length></length>	2cm	The radius of the pie chart
cutaway	t>		List or range of segments to separate from the pie chart

For other options see documentation.

Pie Chart Example

Use earlier CSV data (sample.csv):

```
Name,Quantity
"Apples",20
"Pears",15
"lemons,limes",30
"Peaches",25
"Cherries",10
```

- ▶ Using data in second column so < variable > is \field{2} or \insertQuantity
- Second column sums to 100, so don't need total option.

\csvpiechart{\field{2}}{sample.csv}

Pie Chart Example

Pie Chart Example

\renewcommand{\csvpieouterlabel}{}% remove outer labels


```
\csvpiechart[cutaway={1-2}]
{\field{2}}{sample.csv}
```

\csvpiechart[cutaway={1,2}]
{\field{2}}{sample.csv}

Creating Glossaries

- ▶ gloss (Glossaries uses BibTeX)
- Packages that use Makeindex:
 - glossary (Glossaries, Acronyms)
 - glosstex (Glossaries, Acronyms, General sorted lists)
 - nomencl (List of symbols)

- ▶ In preamble:
 - ▶ \makeglossary

- ► In preamble:
 - ► \makeglossary
 - \storeglosentry{<label>}{<entry>}
 <entry> is a <key>=<value> list

Key	Value
name	the entry name/term/symbol
description	a description of the entry
sort	how to sort the entry
format	how to format the entry page number

- ► In preamble:
 - ▶ \makeglossary
 - \storeglosentry{<|abel>}{<entry>}
 <entry> is a <key>=<value> list

Key	Value
name	the entry name/term/symbol
description	a description of the entry
sort	how to sort the entry
format	how to format the entry page number

- ▶ In document:
 - ▶ \gls{<\label>}
 - \useGlosentry{</abel>}{<text>}

- In preamble:
 - ▶ \makeglossary
 - \storeglosentry{<|abel>}{<entry>}
 <entry> is a <key>=<value> list

Key	Value
name	the entry name/term/symbol
description	a description of the entry
sort	how to sort the entry
format	how to format the entry page number

- ▶ In document:
 - ▶ \gls{<\label>}
 - \useGlosentry{<label>}{<text>}
- ► Where you want the glossary to appear: \printglossary

Creating a Glossary

- Save your document (say, myDoc.tex)
- ► Either

```
latex myDoc
makeindex -s myDoc.ist -o myDoc.gls myDoc.glo
latex myDoc
```

Or:

latex myDoc makeglos myDoc latex myDoc

Caveat: the characters |"!@ are makeindex special characters.

Examples

- 1. Use the sort key if name contains special characters
 - Defining the entry:

```
\storeglosentry{deriv}{name={$f'(x)$},
description={The derivative of $f$},
sort={f'}}
```

Using the entry:
 An entry about \gls{deriv}.

Examples

- 1. Use the sort key if name contains special characters
 - Defining the entry:

```
\storeglosentry{deriv}{name={$f'(x)$},
description={The derivative of $f$},
sort={f'}}
```

- Using the entry:
 An entry about \gls{deriv}.
- 2. Dealing with a makeindex special character:
 - Defining the entry:
 \storeglosentry{mod}{name={\$"|x"|\$},
 description={modulus of \$x\$},sort={modulus}}
 - Using the entry:
 An entry about \useGlosentry{mod}{\$|x|\$}.

Acronyms

- \usepackage[acronym]{glossary}
- ► Preamble: \makeacronym
- Define acronym:
 \newacronym{<acronym>}{<long>}{<glos-entry>}
- ▶ Where you want the list of acronyms: \printacronym
- ► Either: makeindex -s myDoc.ist -o myDoc.acn myDoc.acr
- Or: makeglos myDoc

Example

▶ Defining an acronym:

\newacronym{svm}{support vector machine}{%
description={Statistical pattern recognition
technique}}

Using the acronym:

This method uses a \svm.

alternatively:

This method uses a \useacronym{svm}.

Make first letter uppercase:

\svm* research.

- First use: Support vector machine (svm) research.
- subsequently: Svm research.

Example

Acronyms with non-alphabetical characters:

▶ Defining the acronym:

\newacronym[ksvm]{k-svm}{kernel support vector
machine}{description={Statistical pattern
recognition technique}}

- Using the acronym:
 This method uses a \ksvm.
- ▶ alternatively: This method uses a \useacronym{ksvm}.

Recommended Reading

- ▶ "A Guide to LATEX." Helmut Kopka and Patrick W. Daly.
- "The LATEX Companion" Michel Goossens, Frank Mittelbach and Alexander Samarin
- ► CTAN's FAQ includes a list of tutorials: http://www.tex. ac.uk/cgi-bin/texfaq2html?label=tutorials*