

PolarP™ Power MOSFETs

IXTT90P10P

 $V_{DSS} = -100V$ $I_{D25} = -90A$ $R_{DS(on)} \le 25m\Omega$

P-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	-100	V	
V _{DGR}	$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$	-100	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	- 90	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	- 225	Α	
I _A	T _C = 25°C	- 90	A	
E _{AS}	T _C = 25°C	2.5	J	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	10	V/ns	
P _D	T _c = 25°C	462	W	
T _J		- 55 +150	°C	
T _{JM}		150	°C	
T _{stg}		- 55 +150	°C	
T,	1.6mm (0.062 in.) from Case for 10s	300	°C	
T _{SOLD}	Plastic Body for 10s	260	°C	
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in.	
Weight	TO-268 TO-247	6 4	g g	
			9	

G = Gate D = DrainS = Source Tab = Drain

Features:

- International Standard Packages
- Avalanche Rated
- Fast Intrinsic Diode
- Rugged PolarP™ Process
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High-Side Switches
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators

		cteristic \ Typ.	/alues Max.		
g _{fs}		$V_{DS} = -10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$	22	37	S
C _{iss})			5800	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		1990	pF
\mathbf{C}_{rss}	J			510	pF
t _{d(on)})	Resistive Switching Times		25	ns
t,		G		77	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		54	ns
t _f	J	$R_{_{G}} = 3\Omega \text{ (External)}$		32	ns
$\mathbf{Q}_{g(on)}$)			120	nC
\mathbf{Q}_{gs}	}	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		23	nC
\mathbf{Q}_{gd}	J			60	nC
R _{thJC}					0.27 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		TO-247		0.21	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$			c Values Max.		
I _s	$V_{GS} = 0V$			- 90	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{\scriptscriptstyleJM}			- 360	Α
V _{SD}	$I_F = -45A, V_{GS} = 0V, \text{ Note 1}$			- 3.3	V
$\left. egin{array}{l} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_{_{\rm F}} =$ - 45A, -di/dt = -100A/ μ s $V_{_{\rm R}} =$ - 50V, $V_{_{\rm GS}} =$ 0V		144 0.92 -12.8		ns µC A

Note 1: Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Terminals: 1 - Gate 2,4 - Drain 3 - Source

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.193	.201	4.90	5.10	
A1	.106	.114	2.70	2.90	
A2	.001	.010	0.02	0.25	
Ь	.045	.057	1.15	1.45	
b2	.075	.083	1.90	2.10	
С	.016	.026	0.40	0.65	
C2	.057	.063	1.45	1.60	
D	.543	.551	13.80	14.00	
D1	.488	.500	12.40	12.70	
E	.624	.632	15.85	16.05	
E1	.524	.535	13.30	13.60	
е	.215 BSC		5.45 BSC		
Н	.736	.752	18.70	19.10	
L	.094	.106	2.40	2.70	
L1	.047	.055	1.20	1.40	
L2	.039	.045	1.00	1.15	
L3	.010 BSC		0.25 BSC		
L4	.150	.161	3.80	4.10	

Terminals: 1 - Gate 2 - Drain 3 - Source

Dim.	Millimeter		Inches	
	Min.	Max.	Min. Max	
Α	4.7	5.3	.185	.209
A ₁	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b ₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = - 45A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = -45A$ value vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

