Solución Práctica 2 — Ejercicio 8

Juan Manuel Rabasedas

Enunciado

En B, al agregar la regla

$$\frac{t_2 \rightarrow t_2'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rightarrow \text{if } t_1 \text{ then } t_2' \text{ else } t_3} \quad \text{(E-Funny2)}$$

se pierde la propiedad que si $t \to t'$ y $t \to t''$ entonces t' = t''. Sin embargo, se puede probar que si tenemos $r \to s$ y $r \to t$ con $s \not\equiv t$, entonces hay un termino u tal que $s \to^* u$ y $t \to^* u$.

Este lema se conoce como propiedad diamante

.

Demostración Lema

Primero vamos a probar que si tenemos $r \to s$ y $r \to t$ con $s \not\equiv t$, entonces hay un termino u tal que $s \to u$ y $t \to u$ Demostramos por inducción sobre la derivación $r \to s$

• Si la última regla aplicada para $r \to s$ fue E-IFTRUE entonces $r = \mathbf{if} \ t_1 \ \mathbf{then} \ t_2 \ \mathbf{else} \ t_3 \ \mathsf{con} \ s = t_2 \ \mathsf{y} \ t_1 = \mathsf{True}$

Luego la última regla de la derivación $r \to t$ no puede ser ni E-IFFALSE, ni E-IF ya que $t_1 =$ True es un valor.

La única regla posible es $E ext{-}Funny2$

Luego t= if t_1 then t_2' else t_3 con $t_2 \rightarrow t_2'$ entonces $s \rightarrow t_2'$ y $t \rightarrow t_2'$ por E-IFTRUE podemos elegir $u=t_2'$

Demostración Lema

ullet Si la última regla aplicada para r o s fue $\operatorname{E-IF}$ entonces

$$r=$$
 if t_1 then t_2 else t_3 , $s=$ if t_1' then t_2 else t_3 y $t_1
ightarrow t_1'$

Luego la última regla de $r \to t$ no puede ser ni E-IFTRUE, ni E-IFFALSE ya que t_1 no es un valor.

Las únicas reglas de $r \rightarrow t$ pueden ser E-IF o E-Funny2.

Primero supongamos que la última regla aplicada en ambas derivaciones sea E-IF entonces:

$$t=$$
 if t_1'' then t_2 else t_3 y $t_1 o t_1''$

Pero luego por **HI** existe un t_1''' tal que $t_1' \to t_1'''$ y $t_1'' \to t_1'''$ podemos ver que $s \to \mathbf{if}\ t_1'''$ then t_2 else t_3 y $t \to \mathbf{if}\ t_1'''$ then t_2 else t_3 por E-IF.

Luego podemos tomar $u = \mathbf{if} \ t_1'''$ then t_2 else t_3

Los demás casos son similares.

Unicidad

La prueba de la unicidad de los resultados se obtiene siguiendo caminos en un diagrama con forma de diamante. Supongamos que $r \to^* s$ y $r \to^* t$

Podemos usar el lema anterior para juntar s_1 y t_1

Unicidad

Luego lo podemos usarlo para juntar s_2 con u_2 y por otro lado u_2 con t_2

y podemos continuar así hasta junta s y t, construyendo un diamante completo formado por muchos diamantes individuales de un solo paso. De esta manera queda demostrado.