Real-Time Retinal Vessel Segmentation on High-Resolution Fundus Images Using Laplacian Pyramids

Robert Dachsel, Annika Jöster and Michael Breuß Applied Mathematics Group, Brandenburg Technical University

Blood Vessel Segmentation

Input:

- High resolution RGB fundus image I
- ullet Large image pixel domain Ω

Further challenges:

- · Important structures have low contrast
- Various background structures B

Goal: Extract blood vessels using binary mask

$$S(i,j) = \begin{cases} 1, & \text{if } (i,j) \in \Omega \cap B \\ 0, & \text{if } (i,j) \in B \end{cases}$$

Our contribution:

- · Robust, simple and fast approach
- · State of the art results
- No parameter adjustment

Our Multi-Scale Approach

Background

Reduction and Expansion of Images: Gaussian Pyramid

- From K_k to K_{k+1} use downsampling and smoothing $\hat{\mathcal{R}}(K_k)(i,j) = \sum_{u,v=-2}^2 h_\alpha(u+3,v+3) \, K_k(2i+u,2j+v)$
- From K_{k+1} to K_k use upsampling with interpolation $\hat{\mathcal{E}}(K_{k+1})(i,j) = 4 \sum_{u,v=-2}^{2} h_{\alpha}(u+3,v+3) K_{k+1}\left(\frac{i+u}{2},\frac{j+v}{2}\right)$
- · Output is multi-scale Gaussian pyramid

Construction of Laplacian Pyramid

Output highlights blood vessels in coarse to fine order

Intensity Thresholding and Connected Components

- Carefully chosen global intensity threshold
- Label connected structures using nearest neighborhood
- Keeping large connected structures (vessels) and remove small connected structures (noise)

Rescaling and Fusion of Segmented Pyramid Layers

ullet Expand all layers to original resolution using upsampling operator $\hat{\mathcal{E}}$

Dataset

DRIVE Dataset

• Standard benchmark test

High Resolution Dataset

- 3 categories with 15 images each
- Introduces additional challenges

Results

Performance: Our method is competetive in quality but much faster

T . D	est Datasets DRIVE (565 × 584)					11: 1 D 1 .: (0504 0005)				
Test Datasets	DRIV	E (565)	× 584)	High Resolution (3504 \times 2336)						
Method	Se	Sp	Acc	Se	Sp	Acc	Runtime			
Our Approach	0.6534	0.9860	0.9572	0.694	0.981	0.955	1.81s			
Budai et al.	0.644	0.987	0.9572	0.669	0.985	0.961	26.69s			
Fan et al.	0.736	0.981	0.960	-	-	-	-			
Frangi et al.	0.660	0.985	0.9570	0.622	0.982	0.954	39.29s			
Krause et al.	-	-	0.9468	-	-	-	-			
Mendonça et al.	-	-	0.9452	-	-	-	-			
Odstrcilik et al.	0.7060	0.9693	0.9340	0.774	0.966	0.949	18min			

Robustness: Our method handles additional background structures

Category	Healthy			Glaucomatous			Diabetic		
Method	Se	Sp	Acc	Se	Sp	Acc	Se	Sp	Acc
Our Approach	0.700	0.988	0.956	0.710	0.979	0.956	0.674	0.978	0.952
Budai et al.	0.662	0.992	0.961	0.687	0.986	0.965	0.658	0.977	0.955
Frangi et al.	0.621	0.989	0.955	0.654	0.984	0.961	0.590	0.972	0.946
Odstrcilik et al.	0.786	0.975	0.953	0.791	0.964	0.949	0.746	0.961	0.944

Summary

- In practice parameter-free method
- Competitive to state-of-the-art methods but much faster
- Method scales well for even higher resolution

