Київський Національний Університет імені Т. Шевченка Факультет комп'ютерних наук та кібернетики

Структурна теорія цифрових автоматів

Проектування комбінаційних схем на мікросхемах різного ступеню інтеграції

Варіант 2

Виконала

Студентка групи ІПС-31

Величко Т.С.

1 Представлення булевої функції.

$$a_1=0$$
, $a_2=1$, $a_3=0$, $a_4=0$, $a_5=0$, $a_6=0$, $a_7=0$

x_4	x_3	x_2	x_1	у	\bar{y}
0	0	0	0	0	1
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	0	1
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	0	1

2 Побудова МДНФ для y та \overline{y} . Представити функцію у всіх восьми нормальних формах.

ДДНФ y: $f(x_4, x_3, x_2, x_1) = x_1 x_2 \overline{x_3} \overline{x_4} \lor x_1 \overline{x_2} x_3 \overline{x_4} \lor \overline{x_1} x_2 \overline{x_3} x_4 \lor x_1 \overline{x_2} x_3 x_4 \lor \overline{x_1} x_2 x_3 x_4$ \lor

ДДНФ \overline{y} : $\overline{f}(x_4, x_3, x_2, x_1) = \overline{x_1 x_2 x_3 x_4} \lor x_1 \overline{x_2 x_3 x_4} \lor \overline{x_1} x_2 \overline{x_3} \overline{x_4} \lor \overline{x_1} \overline{x_2} x_3 \overline{x_4} \lor \overline{x_1} \overline{x_2} x_3 \overline{x_4} \lor \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \lor \overline{x_1} \overline{x_2} \overline{x_3}$

Діаграма Вейча для $f(x_4, x_3, x_2, x_1)$:

3 Діаграми 1.1 $x_1 \overline{x_2} x_3$.

3 Діаграми 1.2 $x_1x_2\overline{x_3x_4}$.

3 Діграми 1.3 $\bar{x_1}x_2x_4$.

Diagram 1

Diagram 1.2

Diagram 1.3

Отже МДНФ для $f(x_4,x_3,x_2,x_1) = x_1x_2\overline{x_3x_4} \ \lor \ x_1\overline{x_2}x_3 \ \lor \ \overline{x_1}x_2x_4.$

Діаграма Вейча для $ar{f}(x_4, x_3, x_2, x_1)$:

- 3 Діаграми 2.1 $x_1 \overline{x_3} x_4$.
- 3 Діаграми 2.2 $\overline{x_1x_2}$.

Diagram 1.1

- 3 Діаграми 2.3 $\overline{x_2x_3}$.
- 3 Діаграми 2.4 $\overline{x_1x_4}$
- 3 Діаграми 2.5 $x_1x_2x_3$.

	X	3			
X4	1		1	1	
74		1	1		Va
	1	1		1	X2
	1		1	1	•
		X	<u> </u>		ı

Diagram	2.1
---------	-----

Diagram 2.2

Diagram 2.3

Diagram 2.4

Diagram 2.5

Отже МДНФ для $\bar{f}(x_4,x_3,x_2,x_1) = x_1x_2x_3 \ \lor \ x_1\overline{x_3}x_4 \ \lor \ \overline{x_1x_2} \ \lor \ \overline{x_2x_3} \ \lor \ \overline{x_1x_4}.$

$$x_1x_2\overline{x_3x_4} \vee x_1\overline{x_2}x_3 \vee \overline{x_1}x_2x_4 (AND/OR)$$
 (1)

$$\overline{\overline{x_1}x_2\overline{x_3}\overline{x_4}} \vee \overline{x_1}\overline{x_2}\overline{x_3} \vee \overline{\overline{x_1}}\overline{x_2}\overline{x_4} \quad (AND - NOT/AND - NOT) \quad (2)$$

$$\overline{(\overline{x_1} \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_4})} \ (OR/AND - NOT) \ (3)$$

$$\overline{(\overline{x_1} \vee \overline{x_2} \vee x_3 \vee x_4)} \vee \overline{(\overline{x_1} \vee x_2 \vee \overline{x_3})} \vee \overline{(x_1 \vee \overline{x_2} \vee \overline{x_4})} (OR - NOT/OR)$$
 (4)

$$x_{1}x_{2}x_{3} \vee x_{1}\overline{x_{3}}x_{4} \vee \overline{x_{1}x_{2}} \vee \overline{x_{2}x_{3}} \vee \overline{x_{1}x_{4}} (AND/OR - NOT)$$
 (5)
$$\overline{x_{1}x_{2}x_{3}} \wedge \overline{x_{1}}\overline{x_{3}}x_{4} \wedge \overline{x_{1}x_{2}} \wedge \overline{x_{2}}\overline{x_{3}} \wedge \overline{x_{1}}\overline{x_{4}} (AND - NOT/AND)$$
 (6)
$$\overline{(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}) \wedge (\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}) \wedge (x_{1} \vee x_{2}) \wedge (x_{2} \vee x_{3}) \wedge (x_{1} \vee x_{4})} (OR/AND)$$
 (7)
$$\overline{(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}) \vee (\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}) \vee (\overline{x_{1}} \vee x_{2}) \vee (\overline{x_{2}} \vee x_{3}) \vee (\overline{x_{1}} \vee x_{4})} (OR - NOT/OR - NOT)$$
 (8)

3 Отримати операторні представлення функції, що можуть бути реалізовані на елементах 4AND/2OR, 2OR-NOT

3 1-ої форми, операторне представлення для 4AND/2OR:

$$x_1x_2\overline{x_3x_4} \vee x_1\overline{x_2}x_3 \vee \overline{x_1}x_2x_4$$

3 8-ої форми, операторне представлення для 2OR-NOT:

$$\overline{\left(\overline{\overline{x_1} \vee \overline{x_2}} \vee \overline{x_3}\right) \vee \left(\overline{\overline{x_1} \vee \overline{x_4}} \vee \overline{\overline{x_3}}\right)} \vee \overline{\left(\overline{\overline{x_1}} \vee \overline{\overline{x_2}}\right) \vee \left(\overline{\overline{x_2}} \vee \overline{\overline{x_3}}\right)} \vee (\overline{\overline{x_1}} \vee \overline{\overline{x_4}})$$

4 Визначити операторну форму, що забезпечує отримання комбінаційної схеми з максимальною швидкодією і мінімальними затратами обладнання

Складність по Квайну визначається як сума входів усіх логічних елементів.

$$N = \sum_{i=1}^{r} \frac{m_i n_i}{14},$$

де r — число типів мікросхем, m_i — кількість мікросхем i-того типу, n_i — сумарне число виходів і входів.

Для першої схеми отримуємо $N=\frac{3*5}{14}+\frac{2*3}{14}=\frac{21}{14}=\frac{3}{2}$

Для другої схеми отримуємо
$$N=\frac{21*3}{14}=\frac{63}{14}=\frac{9}{2}$$

Час затримки сигналу визначається як шлях, що вимагає в схемі максимального часу для поширення сигналу.

$$T = Lt$$

де L – рівень схеми.

Для першої схеми отримуємо $T = 1 * 24 + 2 * 22 = 68 \ ms$

Для другої схеми отримуємо $T = 7 * 22 = 154 \, ms$

Отже перша схема оптимальна по обом параметрам.

5 На елементах ЗAND-NOT побудувати перетворювач кодів. У процесі проектування використовувати методи сумісної мінімізації системи булевих функцій. Для отриманої схеми визначити L, T та N

	Інформація												
	На в	ході		На виході									
0	0	0	0	0	0	1	0						
0	0	0	1	0	1	0	1						
0	0	1	0	0	1	0	1						
0	0	1	1	0	1	1	0						
0	1	0	0	0	1	1	1						
0	1	0	1	1	0	0	0						
0	1	1	0	1	0	0	1						
0	1	1	1	1	0	1	0						
1	0	0	0	1	0	1	1						
1	0	0	1	1	1	0	0						
1	0	1	0	1	1	0	1						
1	0	1	1	1	1	1	0						
1	1	0	0	1	1	1	1						
1	1	0	1	0	0	0	0						
1	1	1	0	0	0	0	1						
1	1	1	1	0	0	1	0						

ДДНФ $f_4(x_4, x_3, x_2, x_1) = \overline{x_4} x_3 \overline{x_2} x_1 \vee \overline{x_4} x_3 x_2 \overline{x_1} \vee \overline{x_4} x_3 x_2 x_1 \vee x_4 \overline{x_3} x_2 \overline{x_1} \vee x_4 \overline{x_3} \overline{x_2} x_1 \vee x_4 \overline{x_3} x_2 x_1 \vee x_4 \overline{x_3} x_2 x_1 \vee x_4 \overline{x_3} x_2 x_1 \vee x_4 \overline{x_$

ДДНФ $f_3(x_4,x_3,x_2,x_1) = \overline{x_4x_3x_2}x_1 \vee \overline{x_4x_3}x_2\overline{x_1} \vee \overline{x_4x_3}x_2x_1 \vee \overline{x_4}x_3\overline{x_2}x_1 \vee x_4\overline{x_3}x_2\overline{x_1} \vee x_4\overline{$

ДДНФ $f_2(x_4, x_3, x_2, x_1) = \overline{x_4 x_3 x_2 x_1} \lor \overline{x_4 x_3} x_2 x_1 \lor \overline{x_4} x_3 \overline{x_2 x_1} \lor \overline{x_4} x_3 x_2 x_1 \lor x_4 \overline{x_3} x_2$

ДДНФ $f_1(x_4,x_3,x_2,x_1) = \overline{x_4x_3x_2}x_1 \lor \overline{x_4x_3}x_2\overline{x_1} \lor \overline{x_4}x_3\overline{x_2x_1} \lor \overline{x_4}x_3\overline{x_2x_1} \lor x_4\overline{x_3}x_2\overline{x_1} \lor x_$

	0	1	L	2	2	3	3		4		5	e	5	7	7		8		ç	9		10			11			1	2		13	14
	2	3	1	3	1	3	2	3	2	1	4	4	1	4	2	4	2	1	4	3	4	3	1	4	3	2	4	3	2	1	1	2
$\overline{x_4 x_3 x_2} x_1(3,1)$		*	*																													
$\overline{x_4}x_2\overline{x_1}$ (1)					*								*																			
$x_3\overline{x_2x_1}(3,2,1)$								*	*	*																		*	*	*		
$\overline{x_4}x_3x_1(4)$											*			*																		
$\overline{x_4 x_3} x_1(3) \left x_4 \overline{x_3} \overline{x_1}(4,1) \right $																*		*			*		*									
		*				*																										
$x_4\overline{x_3}x_2(4,3)$ $x_4\overline{x_2}x_1(4,2,1)$																											*		*	*		
$x_4\overline{x_3}x_2(4,3)$																					*	*		*	*							
$\overline{x_2}\overline{x_1}(2)$	*								*								*												*			

$\overline{x_3}x_1(3)$	*			*											*					*					
$\overline{x_3}x_2(3)$		*															*			*					
$x_2\overline{x_1}(1)$			*						*		*							*						*	
$x_2x_1(2)$					*																*				*
$x_3\overline{x_1}(1)$							*																*	*	
$\overline{x_4}x_3x_2(4)$								*		*															
$x_4\overline{x_3}(4)$																									
$x_4\overline{x_3}(4)$												*		*		*			*						
$x_4\overline{x_1}(1)$													*					*					*	*	

МДНФ $f(x_4,x_3,x_2,x_1)=\overline{x_4x_3x_2}x_1(3,1) \vee x_3\overline{x_2x_1}(3,2,1) \vee \overline{x_4}x_3x_1(4) \vee x_4\overline{x_2x_1}(4,2,1) \vee \overline{x_2x_1}(2) \vee \overline{x_3}x_1(3) \vee \overline{x_3}x_2(3) \vee x_2\overline{x_1}(1) \vee x_2x_1(2) \vee \overline{x_4}x_3x_2(4) \vee x_4\overline{x_3}(4) \vee x_4\overline{x_1}(1)$

МДНФ $f_4(x_4,x_3,x_2,x_1)=\overline{x_4}x_3x_1$ V $x_4\overline{x_2x_1}$ V $\overline{x_4}x_3x_2$

МДНФ $f_3(x_4,x_3,x_2,x_1)=\overline{x_4x_3x_2}x_1 \vee x_3\overline{x_2x_1} \vee \overline{x_3}x_1 \vee \overline{x_3}x_2$

МДНФ $f_2(x_4, x_3, x_2, x_1) = x_3\overline{x_2x_1} \wedge x_4\overline{x_2x_1} \wedge \overline{x_2x_1} \wedge x_2x_1$

МДНФ
$$f_1(x_4,x_3,x_2,x_1)=\overline{x_4x_3x_2}x_1\wedge x_3\overline{x_2x_1}\wedge x_4\overline{x_2x_1}\wedge x_2\overline{x_1}\wedge x_4\overline{x_1}$$

Перетворимо МДНФ функцій в форму AND-NOT/AND-NOT

$$f_4(x_4, x_3, x_2, x_1) = \overline{\overline{x_4} x_3 x_1} \wedge \overline{x_4 \overline{x_2} \overline{x_1}} \wedge \overline{\overline{x_4} x_3 x_2} \wedge \overline{x_4 \overline{x_3}}$$

$$f_3(x_4, x_3, x_2, x_1) = \overline{\overline{x_4 x_3 x_2} x_1} \wedge \overline{x_3 \overline{x_2 x_1}} \wedge \overline{\overline{x_3} x_1} \wedge \overline{\overline{x_3} x_2}$$

$$f_2(x_4, x_3, x_2, x_1) = \overline{\overline{x_3}\overline{x_2}\overline{x_1}} \wedge \overline{x_4}\overline{x_2}\overline{x_1} \wedge \overline{\overline{x_2}\overline{x_1}} \wedge \overline{x_2}\overline{x_1}$$

$$f_1(x_4, x_3, x_2, x_1) = \overline{x_4 x_3 x_2} x_1 \wedge x_3 \overline{x_2 x_1} \wedge x_4 \overline{x_2 x_1} \wedge x_2 \overline{x_1} \wedge x_4 \overline{x_1}$$

2. *f*₃

4. f_1

$$N = \frac{30*4}{14} = 8.5714$$

$$T = 7 * 22 = 154ms$$

6 Побудувати схему для реалізації функції, якщо можна використовувати мультиплексори з двома керуючими входами

x_4	<i>x</i> ₃	x_2	x_1	y	\bar{y}
0	0	0	0	0	1
0	0	0	1	0	1
0	0	1	0	0	1

0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	0	1
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	0	1

Побудуємо шість діаграм Вейча для визначення залишкових функцій:

Для x_4x_3 :

$$y_0 = x_2 x_1$$

$$y_1 = \overline{x_2}x_1$$

$$y_2 = x_2 \overline{x_1}$$

$$y_3 = \overline{x_2} x_1 \vee x_2 \overline{x_1}$$

Для x_4x_2 :

$$y_0 = x_3 x_1$$

$$y_1 = \overline{x_3}x_1$$

$$y_2 = \overline{x_1}$$

$$y_3 = x_3 x_1$$

Для x_4x_1 :

$$y_0 = 0$$

$$y_1 = x_3 \overline{x_2} \vee \overline{x_3} x_2$$

$$y_2 = x_2$$

$$y_3 = x_3 \overline{x_2}$$

Для x_2x_1 :

$$y_0 = 0$$

$$y_1 = x_3$$

$$y_2 = x_4$$

$$y_3 = \overline{x_4 x_3}$$

Для x_3x_2 :

$$y_0 = 0$$

$$y_1 = \overline{x_4} x_1 \vee x_4 \overline{x_1}$$

$$y_2 = x_1$$

$$y_3 = x_4 \overline{x_1}$$

Для x_3x_1 :

$$y_0 = x_4 x_2$$

$$y_1 = \overline{x_4}x_2$$

$$y_2 = \overline{x_2}$$

$$y_3 = x_4 x_2$$

Отже розклад по x_2x_1 мінімальний.

7 Побудувати перетворювач кодів з використанням елементів ЗAND-NOT і дешифратора на чотири входи

	Інформація													
	На в	ході		На виході										
0	0	0	0	0	0	1	0							
0	0	0	1	0	1	0	1							
0	0	1	0	0	1	0	1							
0	0	1	1	0	1	1	0							
0	1	0	0	0	1	1	1							
0	1	0	1	1	0	0	0							
0	1	1	0	1	0	0	1							
0	1	1	1	1	0	1	0							
1	0	0	0	1	0	1	1							
1	0	0	1	1	1	0	0							
1	0	1	0	1	1	0	1							
1	0	1	1	1	1	1	0							
1	1	0	0	1	1	1	1							
1	1	0	1	0	0	0	0							
1	1	1	0	0	0	0	1							
1	1	1	1	0	0	1	0							

Представлення булевих функцій:

 $f_4(x_4, x_3, x_2, x_1) : 5, 6, 7, 8, 9, 10, 11, 12$

 $f_3(x_4, x_3, x_2, x_1) : 1, 2, 3, 4, 9, 10, 11, 12$

 $f_2(x_4, x_3, x_2, x_1) : 0, 3, 4, 7, 8, 11, 12, 15$

 $f_1(x_4, x_3, x_2, x_1) : 1, 2, 4, 6, 8, 10, 12, 14$

Представимо в термах оператора 3AND - NOT:

 $f_4(x_4,x_3,x_2,x_1): \overline{\overline{5}\wedge\overline{6}\wedge\overline{7}\wedge\overline{8}\wedge\overline{9}\wedge\overline{10}\wedge\overline{11}\wedge\overline{12}}$

 $f_3(x_4,x_3,x_2,x_1): \overline{\overline{1}\wedge\overline{2}\wedge\overline{3}\wedge\overline{4}\wedge\overline{9}\wedge\overline{10}\wedge\overline{11}\wedge\overline{12}}$

 $f_2(x_4, x_3, x_2, x_1) : \overline{\overline{0} \wedge \overline{3} \wedge \overline{4} \wedge \overline{7} \wedge \overline{8} \wedge \overline{11} \wedge \overline{12} \wedge \overline{15}$

 $f_1(x_4, x_3, x_2, x_1) : \overline{1 \wedge \overline{2} \wedge \overline{4} \wedge \overline{6} \wedge \overline{8} \wedge \overline{10} \wedge \overline{12} \wedge \overline{14}$

2. f_3

4. f_1

$$N = \frac{28*4}{14} = 8$$

$$T = 3 * 22 = 66ms$$