

k-Nearest Neighbours

Leandro L. Minku

 $y \in \{\text{blue, orange}\}\$

Usually, for classification problems: predict the majority among the values of the dependent variable of the k nearest neighbours (majority vote).

Usually, for classification problems: predict the majority among the values of the dependent variable of the k nearest neighbours (majority vote).

Usually, for regression problems: predict the average among the values of the dependent variable of the k nearest neighbours.

Given an instance to be predicted, we need to find its k nearest neighbours, based on some distance metric **on the input space**.

Distance Metric

- Usually, this is the Euclidean Distance.
- For d dimensions in the input space:

distance(
$$\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$$
) = $\sqrt{(x_1^{(i)} - x_1^{(j)})^2 + (x_2^{(i)} - x_2^{(j)})^2 + \dots + (x_d^{(i)} - x_d^{(j)})^2}$

$$\operatorname{distance}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sqrt{\sum_{p=1}^{d} (x_p^{(i)} - x_p^{(j)})^2} = \sqrt{(\mathbf{x}^{(i)} - \mathbf{x}^{(j)})^T (\mathbf{x}^{(i)} - \mathbf{x}^{(j)})}$$

Normalisation of Numeric Independent Variable

- Problem: different numeric independent variable may have different scales.
 - Scale of numeric independent variable will influence the Euclidean Distance.
 - If x_1 is in [0,10] and x_2 is in [100,10000], x_2 will influence the distance more.

Popular solution:

 Normalise numeric independent variables of all data so that they will be between 0 and 1. E.g.: normalising independent variable p of example i:

normalise(
$$x_p^{(i)}$$
) =
$$\frac{x_p^{(i)} - \min_p}{\max_p - \min_p}$$

- How to know the minimum and maximum values?
 - If the real minimum and maximum are unknown, for each input attribute, use the minimum and maximum values present in the training set.

Ordinal or Categorical Independent variable

- Independent variable can be numerical, ordinal or categorical.
 - Numeric: e.g., age, salary.
 - Ordinal: e.g., expertise in {low, medium, high}.
 - Categorical: e.g., car in {fiat, volkswagen, toyota}.
- Euclidean distance is defined for numerical data!

distance(
$$\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$$
) = $\sqrt{\sum_{p=1}^{d} (x_p^{(i)} - x_p^{(j)})^2}$

- For ordinal independent variable, we can convert them to numeric.
 - E.g.: low = 0, medium = 0.5, high = 1.
- For categorical independent variable, we could use the following idea:

if
$$(x_p^{(i)} = x_p^{(j)})$$
, $(x^{(i)} - x^{(j)}) = 0$
if $(x_p^{(i)} \neq x_p^{(j)})$, $(x_p^{(i)} - x_p^{(j)}) = 1$

Procedure for Predicting a New (Test) Example

- Given the independent variables of a new example (x⁽ⁱ⁾,?), the number of neighbours k, and **min** and **max** observed so far.
- Update min and max based on x⁽ⁱ⁾
- For each training example (x^(j),y^(j))
 - dist =
 distance(normaliseEachVar(x⁽ⁱ⁾,min,max),normaliseEachVar(x^(j),min,max))
 - Add (dist, y^(j)) to a data structure T sorted based on ascending order of distance.
- Return the majority vote (or average) of y^(j) for the first k entries of T.

k-NN Approach

k-NN Learning Algorithm:

 No real training; simply store all training data received so far, together with the maximum and minimum values of the numerical independent variables.

k-NN "Model":

- All training data received so far, together with the maximum and minimum values of the numerical independent variables.
- k-NN prediction for an instance (x⁽ⁱ⁾,?):
 - Find the K nearest neighbours, i.e., the K training examples that are the closest to x⁽ⁱ⁾.
 - For classification problems: majority vote.
 - For regression problems: average.

Advantages and Disadvantages

Advantages:

Training is simple and quick: store the training data.

Disadvantage:

- Memory requirements are high: stores all data, which can be troublesome when training set is very large.
- Making predictions is slow: we have to search for the nearest neighbours among all the training data, which can be troublesome when training set is very large.

[Original] k-NN is not adequate when we have very large training sets.

Advantages and Disadvantages

Advantages:

Training is simple and quick: store the training data.

Disadvantage:

- Memory requirements are high: stores all data, which can be troublesome when training set is very large.
- Making predictions is slow: we have to search for the nearest neighbours among all the training data, which can be troublesome when training set is very large.

k-NN can be good for applications where there is little data.

Advantages and Disadvantages

Advantages:

Training is simple and quick: store the training data.

Disadvantage:

- Memory requirements are high: stores all data, which can be troublesome when training set is very large.
- Making predictions is slow: we have to search for the nearest neighbours among all the training data, which can be troublesome when training set is very large.

Intuitive: k-NN helps people to find the examples that are most similar to the new example.

Quiz

- Consider that you have an example with $\mathbf{x}^{(1)} = (5,10)^T$. Consider also that min₁ = 0, max₁ = 10, min₂ = 0, max₂ = 20. What is the normalised value of $\mathbf{x}^{(1)}$?
- Consider a given training set containing the following normalised examples:
 - $\mathbf{x}^{(1)} = (0.1, 0.1)^T$, $y^{(1)} = \text{red}$
 - $\mathbf{x}^{(2)} = (0.1, 0.2)^T$, $\mathbf{y}^{(2)} = \text{blue}$
 - $\mathbf{x}^{(3)} = (0.2, 0.2)^T$, $y^{(3)} = green$

What class would be predicted for a normalised test example $\mathbf{x}^{(4)} = (0.3, 0.3)^T$ when k=1?

Further Reading

Essential:

Iain Style's notes on "Classification and k-Nearest Neighbours".

Recommended:

- Section 2.5.2 of Bishop, Pattern Recognition and Machine Learning, contains a brief treatment of nearest-neighbour methods.
- A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm by Saravanan Thirumuruganathan. Access at: https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm

• Suggested:

- Russell and Norvig's "Artificial Intelligence: A Modern Approach"
 - Section 18 (Learning from Examples) up to the end of section 18.2 (Supervised Learning).
 - Section 18.8 (Non-Parametric Models) up to the end of section 18.8.1 (Nearest Neighbour Models).