

Análise das classes de Máquinas de Turing Paralelas

VII SUCU

Guilherme M. Utiama Peter L. Brendel Professora Karina G. Roggia 25/06/2019

Sumário

- Introdução
- Contexto Histórico
- Proposta de MTP (Máquina de Turing Paralela)
- Complexidades
- Classificação das MTPs
- P=NP?
- Conclusões

Introdução

- Alan Turing: Icônico pela Máquina de Turing.
- Computação Imperativa: Modelo clássico.
- Computação Paralela: Concorrente do clássico.

Modelo de von Neumann

- Matemático;
- Propôs modelo arquitetônico para computadores com base na teoria das MTs (1946);
- Logo estava no mercado

Contexto Histórico

Figura 1: História da computação paralela

Qu et al. [1, página 2]

Proposta de CP e MTP

- Academia atual: Pouco esforço de pesquisa.
- Valiant: Modelo BSP (Bulk synchronous parallel)
- Ruim? Threads. Adaptação do modelo sequencial.
- Lee [2]: Propriedades importantes são perdidas, como por exemplo: entendimento, previsão e determinismo.

Proposta de CP e MTP

Proposta de Wiedermann [3]:

```
Definição. Uma Máquina de Turing Paralela 1-dimensão 1-fita ou: (1,1)-MTP é uma 6-upla M=(Q,T,\delta,q_0,q_f) onde:
```

Q é um conjunto finito de estados;

Té um conjunto finito de símbolos da fita;

I é um conjunto finito de símbolos de entrada, $I \nsubseteq T$;

 δ é função programa: $\forall Q_X(T-e)$, é relacionado um subconjunto $Q_X(T_X\{L, R, S\})$;

 $q_0 \acute{e}$ o estado inicial;

 $q_f \acute{e}$ o estado final.

Proposta de CP e MTP

- Processadores: Toda MTP começa com um processador e seu respectivo cabeçote de escrita
- |δ(c)| > 1: Um novo processador é lançado para cada imagem de δ(c)
- Escrever na mesma posição? Apenas se for o mesmo símbolo
- Aceita quando todos param: Um processador que alcança o estado final entra em modo passivo

Complexidade em MTP

- Wiedermann [3] define algumas classes:
 - Complexidade de Tempo: max(steps(processadores))
 - Complexidade de Espaço: max(distance(processadores,ini))
 - Complexidade de Hardware: max(active(processadores))

MTP Multidimensional

- Fita tradicional: substituída
- Fita k-dimensional: infinita para 2k direções
- Classificação de Flynn [4] para Máquinas Paralelas (não são MTPs):
 - Single Instruction / Single Data stream
 - Single Instruction / Multiple Data stream
 - Multiple Instruction / Single Data
 - Multiple Instruction stream over a Multiple Data Stream

Classes de MTP

• A seguinte classificação é sugerida por Flynn [4]:

Fita	UC	Cabeçote	Descrição
S	S	S	Máquina de Turing tradicional
S	S	М	MT de vários cabeçotes
S	M	S	MTP Memória Compartilhada
S	M	М	Igual SMS com várias cabeças
М	S	S	Várias Fitas
М	S	М	Paralelismo de Dados
М	М	S	Processadores independentes (cluster)
M	М	М	Máquina de Worch (1997)

P = NP?

Nada podemos afirmar

A classe de problemas resolvidos por uma MTP cai em uma nova classe: NC (Nick's Class)

NC: Problemas decidíveis em tempo polilogarítmo e quantidade polinomial de processadores.

Acredita-se que NC ≠ P

Conclusões

- Nada podemos afirmar sobre P=NP
 Um dos grandes problemas da computação teórica não pode ser solucionado pelas MTPs
- Ainda assim vale a pena
 Não existe definição universal para MTPs
- Paralelismo como futuro
 Resolução de novos problemas como apresentado por Py
 [5]

Obrigado

UDESC – Universidade do Estado de Santa Catarina

VII SUCU

peter.brendel@edu.udesc.br utiama.guilherme@gmail.com

Referências

- [1] P. Qu, J. Yan, Y. Zhang, and G. R. Gao. Parallel turing machine, a proposal. Journal of Computer Science and Technology, 32:269–285, 03 2017. doi: 10.1007/s11390-017-1721-3.
- [2] E. A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006. ISSN 0018-9162. doi: 10.1109/MC.2006.180. URL https://doi.org/10.1109/MC.2006.180.
- [3] J. Wiedermann. Parallel turing machines, 1984.
- [4] M. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54:1901 – 1909, 01 1967. doi: 10.1109/PROC.1966.5273.
- [5] M. X. Py. Análise da máquina de turing persistente com múltiplas fitas de trabalho, 2003.

