

DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Mestrado em Engenharia Eletrotécnica e de Computadores

Laboratório 1

Co-design e Sistemas Reconfiguráveis

Alunos:
João Pedro Antunes - **70380**Júlio Lopes- **70512**Marco Romao - **71348**

Docentes:
Aniko Costa
Filipe Moutinho

CONTEÚDO

Conteúdo

1	Introdução 1				
	1.1	Contextualização	1		
	1.2	Objetivos	1		
	1.3	Metodologia utilizada	1		
2	Aná		2		
	2.1	Redes de Petri	2		
	2.2	Execução síncrona vs. GALS	2		
	2.3	Implementação em FPGA e Arduino	2		
3	Redes de Petri				
	3.1		3		
		3.1.1 Redes de Petri A	3		
			3		
		3.1.3 Redes de Petri C	3		
		3.1.4 Redes de Petri D	3		
	3.2	Simulação e Análise	3		
		3.2.1 Simulação com token-player	3		
		3.2.2 Simulação temporal	3		
		3.2.3 Geração e análise do espaço de estados	3		
4	Imp	3	4		
	4.1	Geração do código VHDL	4		
	4.2	Deployment na FPGA	4		
	4.3	Configuração de entradas/saídas	4		
	4.4	Testes experimentais	4		
	4.5	Comparação com resultados de simulação	4		
5	Imp	olementação em Arduino	5		
	5.1	Geração do código C	5		
	5.2	Deployment no Arduino	5		
	5.3	Configuração do ambiente	5		
	5.4	Testes	5		
	5.5	Comparação com simulação e implementação FPGA	5		
6	Con	ntrolador Distribuído em regime Síncrono	6		
	6.1	Identificação do conjunto de corte (cutting set)	6		
	6.2	Decomposição usando SPLIT	6		
	6.3		6		
	6.4		6		
	6.5		6		
	6.6		6		
			6		
			6		

i de 13

	6.7	6.6.3 Geração e análise do espaço de estados	6		
7	Implementação em FPGA - Distribuição Síncrona				
	7.1	Geração do código VHDL	7		
	7.2	Interconexão dos componentes	7		
		7.2.1 Implementação do módulo de atraso pseudo-aleatório	7		
		7.2.2 LFSR - conceito e implementação	7		
		7.2.3 Integração dos atrasos nas comunicações	7		
	7.3	Deployment na FPGA	7		
	7.4	Testes e análise de resultados	7		
8	Buffers de Capacidade Finita				
	8.1	Modificação do modelo para múltiplas peças (máximo 3)	8		
	8.2	Interconexão dos componentes	8		
	8.3	Módulo de visualização do número de objetos	8		
	8.4	Simulação e validação	8		
	8.5	Implementação centralizada em FPGA	8		
	8.6	Análise de resultados	8		
9	Distribuído com Buffers (Síncrono)				
	9.1	Aplicação dos procedimentos do capítulo 06 ao modelo do capítulo 08	9		
	9.2	Decomposição e implementação distribuída	9		
	9.3	Execução síncrona global	9		
	9.4	Testes e análise	9		
10	Dist	ribuído com Buffers (Assíncrono)	10		
	10.1	Aplicação dos procedimentos do capítulo 07 ao modelo do capítulo 08	10		
	10.2	Comunicações não-instantâneas com buffers	10		
	10.3	Deployment e testes	10		
	10.4	Análise comparativa	10		
11	Con	aparação de abordagens	11		
	11.1	Centralizado vs Distribuído	11		
	11.2	Síncrono vs Assíncrono	11		
	11.3	Impacto dos atrasos de comunicação	11		
	11.4	Vantagens e desvantagens de cada abordagem	11		
	11.5	Análise de escalabilidade	11		
12	Con	clusões	12		
	12.1	Resultados alcançados	12		
	12.2	Dificuldades encontradas e soluções adotadas	12		
		Trabalho futuro	12		

- 1 Introdução
- 1.1 Contextualização
- 1.2 Objetivos
- 1.3 Metodologia utilizada

- 2 Análise Teórica
- 2.1 Redes de Petri
- 2.2 Execução síncrona vs. GALS
- 2.3 Implementação em FPGA e Arduino

3

3 Redes de Petri

3.1 IOPT-Tools

- 3.1.1 Redes de Petri A
- 3.1.2 Redes de Petri B
- 3.1.3 Redes de Petri C
- 3.1.4 Redes de Petri D

3.2 Simulação e Análise

- 3.2.1 Simulação com token-player
- 3.2.2 Simulação temporal
- 3.2.3 Geração e análise do espaço de estados

4 Implementação em FPGA

- 4.1 Geração do código VHDL
- 4.2 Deployment na FPGA
- 4.3 Configuração de entradas/saídas
- 4.4 Testes experimentais
- 4.5 Comparação com resultados de simulação

5 Implementação em Arduino

- 5.1 Geração do código C
- 5.2 Deployment no Arduino
- 5.3 Configuração do ambiente
- 5.4 Testes
- 5.5 Comparação com simulação e implementação FPGA

6 Controlador Distribuído em regime Síncrono

- 6.1 Identificação do conjunto de corte (cutting set)
- 6.2 Decomposição usando SPLIT
- 6.3 Modelo com canais síncronos
- 6.4 Simulação e validação
- 6.5 Modelo com canais assíncronos
- 6.6 Simulação e Análise
- 6.6.1 Simulação com token-player
- 6.6.2 Simulação temporal
- 6.6.3 Geração e análise do espaço de estados
- 6.7 Decomposição GALS três controladores separados

7 Implementação em FPGA - Distribuição Síncrona

- 7.1 Geração do código VHDL
- 7.2 Interconexão dos componentes
- 7.2.1 Implementação do módulo de atraso pseudo-aleatório
- 7.2.2 LFSR conceito e implementação
- 7.2.3 Integração dos atrasos nas comunicações
- 7.3 Deployment na FPGA
- 7.4 Testes e análise de resultados

- 8 Buffers de Capacidade Finita
- 8.1 Modificação do modelo para múltiplas peças (máximo 3)
- 8.2 Interconexão dos componentes
- 8.3 Módulo de visualização do número de objetos
- 8.4 Simulação e validação
- 8.5 Implementação centralizada em FPGA
- 8.6 Análise de resultados

- 9 Distribuído com Buffers (Síncrono)
- 9.1 Aplicação dos procedimentos do capítulo 06 ao modelo do capítulo 08
- 9.2 Decomposição e implementação distribuída
- 9.3 Execução síncrona global
- 9.4 Testes e análise

- 10 Distribuído com Buffers (Assíncrono)
- 10.1 Aplicação dos procedimentos do capítulo 07 ao modelo do capítulo 08
- 10.2 Comunicações não-instantâneas com buffers
- 10.3 Deployment e testes
- 10.4 Análise comparativa

- 11 Comparação de abordagens
- 11.1 Centralizado vs Distribuído
- 11.2 Síncrono vs Assíncrono
- 11.3 Impacto dos atrasos de comunicação
- 11.4 Vantagens e desvantagens de cada abordagem
- 11.5 Análise de escalabilidade

12 CONCLUSÕES 12

- 12 Conclusões
- 12.1 Resultados alcançados
- 12.2 Dificuldades encontradas e soluções adotadas
- 12.3 Trabalho futuro

REFERÊNCIAS 13

Referências

[1] Lao Tzu. Tao Te Ching. Penguin Classics. Penguin Books, London, reprint edition edition, 1986. ISBN 9780140441314. D. C. Lau Translation.

- [2] Behzad Razavi. *RF Microelectronics*. Communications Engineering and Emerging Technologies Series. Prentice Hall, 2nd edition, 2012. ISBN 9780137134733.
- [3] Manuel Medeiros da Silva. *Introdução aos Circuitos Eléctricos e Electrónicos*. Fundação Calouste Gulbenkian, December 2001. ISBN 9789723106961.
- [4] Manuel de Medeiros Silva. Circuitos com Transistores Bipolares e MOS. Fundação Calouste Gulbenkian, December 2003. ISBN 9789723108408.