Simplify the function to simplify the circuit; why?

$$F_2 = x'y'z + x'yz + xy'$$

$$= x'z(y'+y) + xy'$$

$$= x'z + xy',$$

which has only 4 literals, where a literal is a single variable (complemented or un-complemented).

Less gates (HW) means:

- · low dost.
- low power consumption.
- · simpler implementation.

Simplifying functions is by:

- algebraic manipulation (this chapter)
- K-map (next chapter)
- computer programs for many-input functions

The Map Method

- K-map (named after Karnaugh) is a visual method, utilizing visual power.
- Difficult for more than 5 variables.
- Produces always SOP or POS expressions.

Standard Forms

<u>Standard Sum-of-Products (SOP) form:</u> equations • are written as an OR of AND terms

<u>Standard Product-of-Sums (POS) form:</u> equations • are written as an AND of OR terms

Examples: •

SOP: •

POS: •

These "mixed" forms are neither SOP nor POS •

Two-Variable Map

$m_0 = m_1$ $m_2 = m_3$

Simplify the following functions both algebraically and with K-Map and observe the visual power:

$$F_1 = m_1 + m_2 + m_3 = x'y + xy' + xy$$

 $F_2 = m_3$

$$= xy.$$

$$F_3 = m_0 + m_3 = x'y' + xy.$$

$$= xy + x'y + xy' + xy = y + x.$$

Only one-bit (variable) change for any two adjacent squares!

Description of Kmaps and Terminology

For example, the minterms for a function having • the inputs x and y are: $\overline{x}\overline{y}, \overline{x}y, x\overline{y}$, and xyConsider the Boolean function, • $\mathbf{F}(x,y) = xy + x\overline{y}$ Its minterms are: •

x	Y
0	0
0	1
1	0
1	1
	0 0 1

Similarly, a function • having three inputs, has the minterms that are shown in this diagram.

Minterm	x	Y	Z
 Z Z Z	0	0	0
$\overline{X}\overline{Y}Z$	0	0	1
$\overline{\mathbf{x}}\mathbf{y}\overline{\mathbf{z}}$	0	1	0
- Xyz	0	1	1
$x\overline{Y}\overline{Z}$	1	0	0
ΧŸΖ	1	0	1
ΧΥZ	1	1	0
XYZ	1	1	1

A Kmap has a cell for each • minterm.

This means that it has a cell for • each line for the truth table of a function.

The truth table for the function • F(x,y) = xy is shown at the right along with its corresponding Kmap.

F(X,Y) = XY				
X	Y	XY		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

X	0	1
0	0	0
1	0	1

$$F(x,y) = x + y = \overline{x}y + x\overline{y} + xy$$

The best way of selecting two groups of 1s • form our simple Kmap is shown below.

We see that both groups are powers of two • and that the groups overlap.

The next slide gives guidance for selecting • Kmap groups.

Three-Variable Map

0	0	0	
0	0	1	-;-
0	1	0	
0 0 1	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

· Only one-bit (variable) change for any two adjacent squares! Therefore, e.g.,

$$F = m_5 + m_7 = xy'z + xyz = xz(y' + y) = xz$$

• Make sure of number of variables (e.g., $m_2 + m_3$ for 2 or 3 variables) and their order

Consider the function: •

Its Kmap is given below. $\mathbf{F}(\mathbf{X}, \mathbf{Y}) = \mathbf{X}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z}$ What is the largest group of 1s that is a power of 2? •

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

Example : Simplify the function $F(x, y, z) = \sum (2, 3, 4, 5)$.

$$F = x'y + xy' = x \oplus y.$$

Example Simplify $F(x, y, z) = \sum (3, 4, 6, 7)$.

Example : Consider the function $F(x, y, z) = \sum (0, 2, 4, 5, 6)$.

- 1. Simplify F_{τ} (Hint: a group should have (2^m) ones and its resulting SOP has (n-m) literals.
- 2. Implement the function using AND, OR, NOT.
- 3. Observe the number of AND and OR gates (ignore inverters for now).

$$m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz'$$
 (z' with the 4 combinations of x, y)
= $(x'y' + x'y + xy' + xy)z'$ ($z' \cdot \sum_{\text{all Minterms of } x, \ y} = z'$)
= $(x'(y' + y) + x(y' + y))z' = (x' + x)z' = z'$.

$$F = xy' + z'.$$

Example Consider the function F = A'C + A'B + AB'C + BC.

- 1. Express the function as a sum of Minterms.
- 2. Find the minimal SOP expression.

Hint: each SOP term missing m literals will be expanded by 2^m Minterms.

$$F(A, B, C) = \sum (1, 2, 3, 5, 7)$$
$$F = C + A'B.$$

Golden Rules to Remember:

- Only one-bit (variable) change for any two adjacent squares!
- The boundaries are adjacent as well.
- A group of ones should be 2^m, where m is the number of removed variables in this group (SOP), and the SOP will have n - m literals.
- Therefore, maximize the number of 1s in each group to minimize the number of literals in the SOP.
- Minimize the number of groups (the SOP terms).
- Therefore, start with the most isolated 1s.
- · Make sure of number of variables and their order
- The number of literals in each group (SOP) is the number of inputs to its AND gate.
- The number of groups is the number of SOP terms is the number of AND gates is the number of inputs to the OR gate.
- All Minterms are covered.

Four-Variable Map

Y WX	Z 00	01	11	10
00	WXYZ	WXYZ	wxyz	WXYZ
01	WXYZ	WXŸZ	WXYZ	WXYZ
11	WXŸZ	WXŸZ	WXYZ	WXYZ
10	WXYZ	WXYZ	WXYZ	WXYZ

\	yz				y
vx	1	00	01	11	10
		m_0	m_1	m_3	m_2
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
		m_4	m_5	m_{γ}	m_6
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
ſ		m_{12}	m_{13}	m_{15}	m ₁₄
	11	wxy'z'	wxy'z	wxyz	wxyz'
1		m_{g}	m_9	m_{11}	m_{10}
	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

- Adjacency from top-bottom, right-left, and corners.
- Corners: w and y took their 4 combinations at x = 0, z = 0:

$$m_0 + m_2 + m_8 + m_{10} = w'x'y'z' + w'x'yz' + wx'y'z' + wx'yz'$$

= $(w'y' + w'y + wy' + wy)x'z'$
= $x'z'$.

Example Simplify the function $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Note: w'y'z' + w'yz' = w'z' xy'z' + xyz' = xz'

Y. WX	Z 00	01	11	10
00	1	1		1
01				1
11				
10	1	1		1

$$F(W,X,Y,Z) = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}\overline{X}\overline{Y}Z + \overline{W}\overline{X}Y\overline{Z} + \overline{W}\overline{X}\overline{X} + \overline{W}\overline{X} + \overline{W}\overline{X}\overline{X} + \overline{W}\overline{X}\overline{X} + \overline{W}\overline{X} + \overline{W}\overline{X$$

$$F(W,X,Y,Z) = \overline{WY} + \overline{XZ} + \overline{WYZ}$$

Y WX	Z 0(01	11	10
00	1		1	
01	1		1	1
11	1			
10	1			

$$F(W,X,Y,Z) = WY + YZ$$

$$F(W,X,Y,Z) = WZ + YZ$$