Advanced microeconomics problem set 6

Hugo, Luis, Marek*

October 5, 2023

1 Exercise 5.10

1.1 Original question

In a two-person, two-good exchange economy with strictly increasing utility functions, it is easy to see that an allocation $\bar{x} \in F(e)$ is Pareto efficient if and only if \bar{x}^i solves the problem

$$\max_{x^i} u^i(x^i) \text{ s.t. } u^j(x^j) \ge u^j(\bar{x}^j),$$

$$x_1^1 + x_1^2 = e_1^1 + e_1^2,$$

$$x_2^1 + x_2^2 = e_2^1 + e_2^2$$
 for $i = 1, 2$ and $i \ne j$.

- (a) Prove the claim.
- (b) Generalise this equivalent definition of a Pareto-efficient allocation to the case of n goods and I consumers. Then prove the general claim.

1.2 Solution

(a) Suppose each consumer's preferences can be represented by the a utility function u^i . It follows that, for a given i, an allocation x satisfies the problems first constraint if and only if it lies in the the upper contour sets of u belonging to the other agent. This means that agent j will not accept a bundle that gives him a lower utility than the one he got from \bar{x}^j . The second constraint says simply that a solution needs to be feasible. For the sake of contradiction, suppose that \bar{x} solves the problem but is not Pareto efficient. Then there has to be a bundle $y \in F(e)$ that still fulfills $u^j(y^j) \geq u^j(\bar{x}^j)$.

 $^{^*42597 @} student.hhs.se, \, 42635 @ student.hhs.se, \, 42624 @ student.hhs.se$

But, because the utility functions are strictly increasing, y gives consumer i a higher utility $(u^i(y^i) > u^i(\bar{x}^i))$. Consequently, \bar{x} was no solution in the first place.

Now suppose \bar{x} does not solve the problem, but is Pareto-efficient. If \bar{x} does not solve the problem, there has to be a bundle that achieves a higher value than $u^i(\bar{x}^i)$ but still fulfills the first constraint. Name this bundle y. Then $u^i(y^i) > u^i(\bar{x}^i)$ and $u^j(y^j) \geq u^j(\bar{x}^j)$. Consequently, \bar{x} is not Pareto-efficient.

(b) The constrained optimization problem for the n consumer with I goods is given by

$$\max_{x^{i}} u^{i}(x^{i})$$
s.t. $u^{j}(x^{j}) \ge u^{j}(\bar{x}^{j}) \forall j \in \mathcal{I} \setminus \{i\},$

$$\sum_{i \in \mathcal{I}} \mathbf{x}^{i} = \sum_{i \in \mathcal{I}} \mathbf{e}^{i}$$
for all $i \in \mathcal{I}$.

An allocation is feasible if $F(e) = \{\mathbf{x} : \sum_{i \in \mathcal{I}} \mathbf{x}^i = \sum_{i \in \mathcal{I}} \mathbf{e}^i\}$ A feasible allocation, is Pareto efficient if there is no other feasible allocation, $y \in F(e)$, such that $y^i \succsim^i x^i$ for all consumers, i, with at least one preference strict. Define as $C_i(x)$ the upper contour set of agent i. $C_i(x) = \{\mathbf{y} \in X : u^i(\mathbf{y}^i) \ge u^i(\mathbf{x}^i)\}$ $C_i(x)$ is always non-empty, since $x \in C_i(x)$. For a given i, an allocation x satisfies the first constraint of the problem if and only if $\mathbf{x} \in \cap_{j \ne i} C_j(\bar{x})$. An allocation \bar{x} solves the constrained optimization problem subject to lying in the intersection of the set of feasible allocations and the intersection of upper contours sets for all other agents.

Assume that \bar{x} solves the problem. For the sake of contradiction, suppose that it is not Pareto efficient. Then there must exist an $y \in F(e)$ such that and (at least) one index $m \in I$ such that

$$u^{i}(y^{i}) \ge u^{i}(\bar{x}^{i}), \forall i \in \mathcal{I}$$

 $u^{m}(y^{m}) > u^{m}(\bar{x}^{m})$

The first statement of these two implies that y is in the intersection of the set of feasible allocations and the intersection of upper contours sets for all other agents. But then there exists some y that also lies in this set such that \bar{x} is not a maximum on the set, a contradiction. Now suppose that \bar{x} is Pareto efficient, but does not solve the problem. Then there must exist some $m \in \mathcal{I}$ such that there exists some y in the intersection of the set of feasible allocations and the intersection of upper contours sets for all other agents such that $u^m(y^m) > u^m(\bar{x}^m)$. The fact that y lies in the above mentioned set implies that y is feasible, and weakly preferred to all to \bar{x} by all consumers $i \neq m$. This contradicts that \bar{x} is Pareto-efficient.

Exercise 5.11

Consider a two-consumer, two-good exchange economy. Utility functions and endowments are

$$u^{1}(x_{1}, x_{2}) = (x_{1}x_{2})^{2}$$
 and $e^{1} = (18, 4),$
 $u^{2}(x_{1}, x_{2}) = ln(x_{1}) + 2ln(x_{2})$ and $e^{2} = (3, 6).$

- (a) Characterise the set of Pareto-efficient allocations as completely as possible.
- (b) Characterise the core of this economy.
- (c) Find a Walrasian equilibrium and compute the WEA.
- (d) Verify that the WEA you found in part (c) is in the core.

Solution

(a) In a two-person setting, the set of Pareto optimal allocations are all $x^1 \in \mathbb{R}^2$ such that

$$\max_{x \in \mathbb{R}^{n}_{+}} u^{1}(x^{1})$$
s.t $u^{2}(x^{2}) \geq v$, (M)
$$x^{1} + x^{2} = e^{1} + e^{2}.$$

The Lagrangian for the maximization problem is

$$\mathcal{L}(x^1, x^2) = u^1(x^1) + \lambda_1(e_1^1 + e_1^2 - x_1^1 - x_1^2) + \lambda_2(e_2^2 + e_2^2 - x_2^1 - x_2^2) + \mu(u^2(x^2) - v).$$

All restrictions bind due to u^1 and u^2 being increasing functions, hence $\lambda_1, \lambda_2, \mu > 0$. The necessary first order conditions for an optimal point are

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x_1^1} &= \frac{1}{2x_1^1} - \lambda_1 = 0, \\ \frac{\partial \mathcal{L}}{\partial x_2^1} &= \frac{1}{2x_2^1} - \lambda_2 = 0, \\ \frac{\partial \mathcal{L}}{\partial x_1^2} &= \frac{\mu}{x_1^2} - \lambda_1 = 0, \\ \frac{\partial \mathcal{L}}{\partial x_2^2} &= \frac{\mu}{2x_2^2} - \lambda_2 = 0. \end{split}$$

Solving each for λ_i , dividing (1) with (2) and (3) with (4), then setting them equal gives us the expression

$$\frac{x_2^1}{x_1^1} = \frac{x_2^2}{2x_1^2}.$$

Substitute the resource equations for x_1^1 and x_2^1 , this yields

$$\frac{(e_2 - x_2^2)2x_2^2}{e_1 - x_1^2} = \frac{x_2^2}{2x_1^2},$$

$$x_2^2 = 2e_2 \left(\frac{x_1^2}{e_1 + x_1^2} \right).$$

We conclude that all points (x_1^2, x_2^2) such that $x_2^2 = 2e_2x_1^2/(e_1 + x_1^2)$ constitute the set of pareto optimal allocations.

(b) The core is the points that are Pareto optimal and unblocked. Consumer 1 will block any allocation x such that $u^1(x^1) < u^1(e^1)$ and consumer 2 will block any allocation $u^2(x^2) < u^2(e^2)$. This implies that the core is equal

$$C(e) = \{x : x_2^2 = 2e_2\left(\frac{x_1^2}{e_1 + x_1^2}\right) \text{ and } u^1(x^1) \ge u(e^1) \text{ and } u^2(x^2) \ge u(e^2)\}$$

(c) Each individual i maximizes u^i subject to the value of its endowment y^i . Transformation $f(x) = x^{1/4}$ on u^1 and $g(x) = e^{x/3}$ on u^2 , reveals both consumers have Cobb-Douglas utility and therefore demand $x^i(y^i, p)$ equal to

$$x_1^1 = \frac{y^1}{2p_1}$$
, $x_2^1 = \frac{y^1}{2p_2}$, $x_1^2 = \frac{y^2}{3p_1}$, $x_2^2 = \frac{y^22}{3p_2}$.

Normalize the price vector $p = (1, p_2)$. The vector must clear markets, hence

$$x_1^1 + x_1^2 = e_1^2 + e_1^2,$$

$$\frac{18 + 4p_2}{2} + \frac{3 + 6p_2}{3} = 18 + 3,$$

$$54 + 12p_2 + 6 + 12p_2 = 126,$$

$$p_2 = \frac{66}{24} = \frac{11}{4}.$$

Any αp with $\alpha > 0$ will generate the same equilibrium. Let the new price vector be p = (4, 11), the value of each endowments are $y^1 = 4 \cdot 18 + 11 \cdot 4 = 116$, $y^2 = 4 \cdot 3 + 11 \cdot 6 = 78$. The demand and walrasian equilibrium allocation is

$$x_1^1 = \frac{116}{2 \cdot 4} = 14.5, \quad x_2^1 = \frac{116}{2 \cdot 11} = 5.27, \quad x_1^2 = \frac{78}{3 \cdot 4} = 6.5, \quad x_2^2 = \frac{78 \cdot 2}{3 \cdot 11} = 4.727.$$

(d) The utility at the endowment bundles are

$$u^1(e^1) = (18 \cdot 4)^2 = 5184,$$

$$u^2(e^2) = \ln 3 + 2 \ln 6 = 4.6.$$

The utility at the new bundles are

$$u^{1}(x) = (14.5 \cdot 5.27)^{2} = 5839,$$

$$u^2(x) = \ln 6.5 + 2 \ln 4.72 = 4.97.$$

The new allocation is therefore unblocked. Its feasible since

$$x^1 + x^2 = (21, 10)$$
 and $e^1 + e^2 = (21, 10)$.

The point $x^2 = (6.5, 4.7267)$ is on the contract curve, shown by

$$x_2^2 = 2e_2\left(\frac{x_1^2}{e_1 + x_1^2}\right) = 2 \cdot 10\left(\frac{6.5}{21 + 6.5}\right) = 4.727,$$

and is therefore pareto optimal. We conclude that the walrasian equilibrium allocation point is in the core set.

2 Exercise 5.17

5.17 Consider an exchange economy with two identical consumers. Their common utility function is $u^i(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$ for $0 < \alpha < 1$. Society has 10 units of x_1 and 10 units of x_2 in all. Find endowments \mathbf{e}^1 and \mathbf{e}^2 , where $\mathbf{e}^1 \neq \mathbf{e}^2$, and Walrasian equilibrium prices that will 'support' as a WEA the equal-division allocation giving both consumers the bundle (5, 5).

$$u^{1}(x_{1}y) = x^{n} \cdot y^{1}$$

$$u^{1}(x_{1}y) = x^{n} \cdot y^{1$$

$$MRS^{1} = \frac{\rho_{x}}{\rho_{y}} = MRS^{2} \qquad =) \qquad x^{2} = \frac{\alpha}{1-\alpha} \cdot \frac{\rho_{y}}{\rho_{x}} \cdot y^{2}$$

$$\Rightarrow x^{2} = \frac{\alpha}{1-\alpha} \cdot \frac{\rho_{y}}{\rho_{x}} \cdot y^{2}$$

analog.
$$\chi^2 = \chi \left(\varrho_{\chi}^2 + \frac{\rho_{\gamma}}{\rho_{\kappa}} \cdot \varrho_{\gamma}^2 \right)$$

Plug y', y2 into budget constraint

$$= 2 \frac{1}{\sqrt{1 + \ell_{y}^{2}}} = (1 - 2) \left(\frac{\ell_{y}}{\ell_{y}} \cdot (\ell_{x}^{1} + \ell_{x}^{1}) + \ell_{y}^{2} + \ell_{y}^{2} \right)$$

$$= \frac{1}{\sqrt{1 + \ell_{y}^{2}}} = (1 - 2) \left(\ell_{y}^{1} + \ell_{y}^{2} - (\ell_{y}^{1} + \ell_{y}^{2}) + \ell_{y}^{2} \right)$$

$$= \frac{\ell_{y}}{\ell_{y}^{2}} \cdot (\ell_{y}^{1} + \ell_{y}^{2})$$

$$= \frac{\ell_{y}^{2}}{\ell_{y}^{2}} \cdot (\ell_{y}^{2} + \ell_{y}^{2})$$

=> analog
$$e_x^{n} + e_x^{2} = \alpha \cdot \left(e_x^{n} + e_x^{2} + e_y^{2}\right)$$

=> $\frac{\rho_y}{\rho_x} = \frac{1-\alpha}{\alpha} \cdot \frac{e_x^{n} + e_x^{2}}{e_y^{n} + e_y^{2}} = \frac{\rho_y}{\rho_x} = \frac{1-\alpha}{\alpha}$

$$x' = \frac{\alpha}{1-\alpha} \cdot \frac{\rho_{y}}{\rho_{x}} \cdot y'' = \frac{\alpha}{1-\alpha} \cdot \frac{1-\alpha}{\alpha} \cdot y' = y'$$

$$x^{2} = \frac{x}{\sqrt{2}} \cdot \frac{\rho_{y}}{\rho_{y}} \cdot y^{2} = \frac{x}{\sqrt{2}} \cdot \frac{1-4}{\sqrt{2}} \cdot y^{2} = y^{2}$$

Given by the exercise: $x^2 = y^2 = x^2 = y^2 = 5$

$$x^{1} = y^{1} = x^{2} = y^{2} = 5$$

Accordingly, the right side of the two equations above are equal

Set p = (py) = (py) because only relative prices matter

Plug in p and set the left sides equal.

$$e_x^{1} + \rho_y \cdot e_y^{1} = e_x^{2} + \rho_y \cdot e_y^{2}$$
 we $\rho_y = \sqrt{2}$

$$= 2 \qquad e_{x}^{1} - e_{x}^{2} = \left(\frac{x-\alpha}{\alpha}\right) \cdot \left(e_{y}^{2} - e_{y}^{3}\right)$$

Additionally we leaves

=> $e_x^1 - e_x^2 = (\frac{1-\alpha}{\alpha}) \cdot (e_y^2 - e_y^2)$ Note that both consumes have to receive a bundle that is equally valuable given the

$$e_{x}^{1} + e_{x}^{2} = 10$$
 $e_{x}^{2} = 10 - e_{x}^{2}$
 $e_{y}^{1} + e_{y}^{2} = 10$ $e_{x}^{2} = 10 - e_{y}^{2}$

So, for the given problem, the endowments have to lie on the budget line dependent on x (slope $-\frac{x}{x+1}$) going through (515).

Solve for e2:

$$e_x^2 = \frac{1}{2} \cdot \left(10 - \left(\frac{1-4}{4} \right) \cdot \left(2 \cdot e_y^2 - 10 \right) = 5 - \left(\frac{1-4}{4} \right) \cdot \left(e_y^2 - 5 \right)$$

$$e_x^1 = 10 - e_x^2 = 5 + (\frac{1-2}{2}) \cdot (e_y^2 - 5)$$

$$e_{x}^{2} = 5 - (\frac{1-\alpha}{\alpha})(e_{y}^{2} - 5) \stackrel{?}{\geq} 0$$

$$\sigma_{\chi_{J}}^{\lambda_{J}} = 2 + \left(\frac{\gamma}{2}\right) \left(\delta_{J}^{\lambda_{J}} - 2\right) \stackrel{\Sigma}{\sim} 0$$

under the following condition:

then ex, ex, ey are defined as:

$$Q_{x}^{1} = 5 + (\frac{1-2}{4}) \cdot (e_{y}^{2} - 5)$$

$$e_{x}^{2} = 5 - \left(\frac{3-4}{4}\right) \cdot \left(e_{y}^{2} - 5\right)$$

3 Exercise 5.19

An exchange economy has three consumers and three goods. Consumers' utility functions and initial endowments are as follows: $u^1 = \min(x_1, x_2)$, $e^1 = (1, 0, 0)$, $u^2 = \min(x_2, x_3)$, $e^2 = (0, 1, 0)$, $u^3 = \min(x_1, x_3)$, $e^3 = (0, 0, 1)$. Find a Walrasian eq. and the associated WEA.

For poson 1, in the optimum
$$x_1' = x_2'$$
, $x_3' = 0$
Budget; $\rho_1 \cdot \rho_1' \stackrel{?}{=} \rho_1 \cdot x_1' + \rho_1 \cdot x_2' = (\rho_1 + \rho_1) \cdot x_1' = (\rho_2 + \rho_1) \cdot x_2'$

$$C = \sum_{n} x_n^{n} = x_n^{n} = \frac{\rho_n \cdot \ell_n^{n}}{\rho_n + \rho_n} := \frac{\rho_n}{\rho_n + \rho_n}$$

Analogically:
$$x_{1}^{2} = x_{5}^{2}$$
, $x_{1}^{2} = 0$, $x_{3}^{3} = x_{3}^{3}$, $x_{2}^{3} = 0$
Budget $x_{2}^{2} = x_{3}^{2} = \frac{\rho_{2}}{\rho_{2} + \rho_{3}}$

$$\text{Budget}_{3}: \quad \times_{3}^{3} = \times_{3}^{3} = \frac{\rho_{3}}{\rho_{a}+\rho_{3}}$$

$$x_n' + x_n'' = \Lambda$$
 $c \Rightarrow \frac{\rho_n}{\rho_n + \rho_n} + \frac{\rho_3}{\rho_n + \rho_3} = \Lambda$

$$Z_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_{\Lambda} + \rho_{\Sigma}} + \frac{\rho_{\Sigma}}{\rho_{\Lambda} + \rho_{\Sigma}} - \Lambda$$

$$2_1 = \frac{\rho_1}{\rho_2 + \rho_3} + \frac{\rho_1}{\rho_2 + \rho_2} - \Lambda$$

Walras' Law:

(i)
$$\rho_{n} \cdot \epsilon_{n} = \rho_{n} \cdot \left(\frac{\rho_{n}}{\rho_{n} + \rho_{n}} + \frac{\rho_{3}}{\rho_{n} + \rho_{3}} - 1\right) \stackrel{!}{=} 0 \quad c = 0 \quad \frac{\rho_{n}}{\rho_{n} + \rho_{n}} + \frac{\rho_{3}}{\rho_{n} + \rho_{3}} = 1$$

(ii)
$$\rho_2 \cdot \ell_L = 0$$
 $L = 0$ $\rho_1 \cdot \ell_3 + \frac{\rho_1}{\rho_1 + \rho_3} = 1$

(iii)
$$\beta^3 \cdot \xi^3 = 0$$
 $c = 3$ $\frac{\beta^5 + \beta^3}{\beta^5} + \frac{\beta^3}{\beta^3} = \sqrt{2}$

Set
$$\rho_n = \Lambda$$

Use (i),(ii):
$$\frac{\rho_1}{\rho_1+\rho_2} + \frac{\rho_3}{\rho_4+\rho_3} = \frac{\rho_2}{\rho_2+\rho_3} + \frac{\rho_1}{\rho_4+\rho_2}$$

$$C = \sum_{n \neq 1} \frac{1}{n + p_2} + \frac{p_5}{n + p_5} = \frac{p_2}{p_1 + p_5} + \frac{1}{n + p_2}$$

$$\langle - \rangle$$
 $(\rho_1 + \rho_3) \cdot \rho_3 = \rho_1 \cdot (\Lambda + \rho_3)$

$$\angle = 3 \quad \rho_{\mathcal{L}} \left(-\rho_{\mathcal{S}} \right) = -p_{\mathcal{S}}^{2}$$

$$\angle = 3 \quad \rho_{\mathcal{L}} = \rho_{\mathcal{S}}$$

Plug in (iii):
$$\frac{\rho_3}{\rho_3 + \rho_3} + \frac{\rho_3}{1 + \rho_3} = 1$$

$$C = 7 \frac{1}{2} + \frac{\rho_3}{1+\rho_3} = 1$$

$$c = > p_3 = \frac{2}{2} + \frac{1}{2} p_3$$
 $c = > p_3 = A$

$$= \times \times^{1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$\times^{2} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\times^{3} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

$$\times^{3} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

$$\times^{3} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

$$\times^{3} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

4 Execise 5.21

4.1 Original question

Consider an exchange economy with the two consumers. Consumer 1 has utility function $u^1(x_1, x_2) = x_2$ and endowment $e^1 = (1, 1)$ and consumer 2 has utility function $u^2(x_1, x_2) = x_1 + x_2$ and endowment $e^2 = (1, 0)$.

- (a) Which of the hypotheses of Theorem 5.4 fail in this example?
- (b) Show that there does not exist a Walrasian equilibrium in this exchange economy.

4.2 Solution

- (a) Utility u^1 is not strongly increasing since $u^1(x_0) = u^1(x_1)$ if $x_0 = (1, 1)$ and $x_1 = (0, 1)$. Further, neither utility is strictly quasiconcave as their functional form is linear.
- (b) Consider the excess demand for good two $z_2 = \sum x_2^i(p, p \cdot e) \sum e_2^i$. The functional forms of the utility functions imply that consumer one demands $x_2^1 = \frac{y^1}{p_2}$ of good one and consumer two demands $x_2^1 = \frac{y^2}{p_1 + p_2}$ of good two. Thus

$$\begin{aligned} z_2 &= \sum_{} x_2^i(p,p \cdot e) - \sum_{} e_2^i \\ &= \frac{p_2}{p_2} + \frac{p_2}{p_1 + p_2} - 1 - 0 \\ &= \frac{p_2}{p_1 + p_2}, \end{aligned}$$

and consider the excess demand for good one $z_1 = \sum x_1^i(p, p \cdot e) - \sum e_1^i$. The functional forms of the utility functions imply that consumer one demands $x_1^1 = 0$ of good one and consumer two demands $x_2^1 = \frac{y^2}{p_1 + p_2}$ of good one. Thus

$$z_1 = \sum x_1^i(p, p \cdot e) - \sum e_1^i$$

$$= 0 + \frac{p_1}{p_1 + p_2} - 1 - 1$$

$$= \frac{p_1}{p_1 + p_2} - 2,$$

when the price of good one is positive:

$$\mathbf{z} = z_1 + z_2 = \frac{p_1 + p_2}{p_1 + p_2} - 2 = -1 \neq 0,$$

and when the price of good one is zero:

$$\mathbf{z} = z_1 + z_2 = \frac{p_2}{p_2} - 2 = -1 \neq 0.$$

Conclude: there does not exist a Walrasian equilibrium in this exchange economy.