

Jia-Wei Liao

jw@cmlab.csie.ntu.edu.tw

Department of Computer Science and Information Engineering National Taiwan University, Taiwan

Al-Generated Content (AIGC)

NLP CV

ChatGPT Stable Diffusion

Bing Chat Midjourney

Bard DALL-E

LLaMA Imagen

Al Painter

SopenAl DALL-E 2

Al Photographer

Midjourney

《Futurisma: The Art of Al Generated Fashion》

Al Photographer

Google Imagen

A strawberry mug filled with white sesame seeds. The mug is floating in a dark chocolate sea.

A photo of a Corgi dog riding a bike in Times Square. It is wearing sunglasses and a beach hat.

An extremely angry bird.

The Toronto skyline with Google brain logo written in fireworks.

Generative Model

Data Manifold Assumption in Data Science

Data Manifold

Natural high-dimensional data concentrate close to a non-linear low-dimensional manifold.

Generative Model

- The goal of the generative model is to learn the data manifold.
- Generative models create the data from noise.

Topic

- Oenoising Diffusion Probabilistic Models (DDPM)
- 2 Latent Diffusion Model (LDM)
- 3 Diffusion Model related to Stochastic Differential Equations (SDE)
- 4 Applications

Topic

- Oenoising Diffusion Probabilistic Models (DDPM)
- 2 Latent Diffusion Model (LDM)
- 3 Diffusion Model related to Stochastic Differential Equations (SDE)
- 4 Applications

What is Diffusion Model?

Autoregression Noise Predictor

time representation

Denoising Diffusion Probabilistic Model (DDPM)

Forward Process (Diffusion)

Denoising Diffusion Probabilistic Model (DDPM)

Given
$$1 > \beta_1 > \beta_2 > ... > \beta_t > 0$$
,

Forward Process (Diffusion)

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Reverse Process (Denoising)

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

Denoising Diffusion Probabilistic Model (DDPM)

Given $1 > \beta_1 > \beta_2 > ... > \beta_t > 0$,

Forward Process (Diffusion)

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

$$\mathcal{D}(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{t}(\mathbf{x}_t, \mathbf{x}_0), \boldsymbol{\Sigma}_{t}(\mathbf{x}_t, \mathbf{x}_0))$$

$$\mathcal{D}(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{t}(\mathbf{x}_t, \mathbf{x}_0), \boldsymbol{\Sigma}_{t}(\mathbf{x}_t, \mathbf{x}_0))$$

Markov Chain Property

Markov Chain

Let $x_0, x_1, ..., x_T$ be the sequence of random variables. Then

$$q(\mathbf{x}_t|\mathbf{x}_{t-1},...,\mathbf{x}_1,\mathbf{x}_0) = q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Mathematics Modeling

Forward Process

$$\mathbf{x}_{1:t} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_t)$$

$$q(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_T|\mathbf{x}_0) = q(\mathbf{x}_1|\mathbf{x}_0)q(\mathbf{x}_2|\mathbf{x}_1)\cdots q(\mathbf{x}_T|\mathbf{x}_{T-1})$$

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Reverse Process

$$p_{\theta}(\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_T) = p(\mathbf{x}_T) p_{\theta}(\mathbf{x}_{T-1} | \mathbf{x}_T) p_{\theta}(\mathbf{x}_{T-2} | \mathbf{x}_{T-1}) \cdots p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)$$

$$p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$$

Goals

In the following, we will

- 1 Derive the $p(\mathbf{x}_t)$ and $q(\mathbf{x}_t|\mathbf{x}_0)$
- Oerive the $p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ to model the $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$
- 3 Derive the objective loss to update the parameters
- Construct the sampling process

Forward Distribution

 $q(\mathbf{x}_t|\mathbf{x}_0)$

join distribution
$$p(\mathbf{x}_0) = q(\mathbf{x}_1|\mathbf{x}_0) = q(\mathbf{x}_2|\mathbf{x}_1) = q(\mathbf{x}_t|\mathbf{x}_{t-1}) = q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

 $p(\mathbf{x}_t) = \int q(\mathbf{x}_0, \mathbf{x}_t) d\mathbf{x}_0 = \int p(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) d\mathbf{x}_0$

Forward Reparameterization Trick

Reparameterization

Let $x \sim \mathcal{N}(\mu, \sigma^2)$. Then it can represent as $x = \mu + \sigma \cdot \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, 1)$

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \boldsymbol{\beta_t}\mathbf{I}) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t}\mathbf{x}_{t-1}, (1-\alpha_t)\mathbf{I})$$

 \mathbf{x}_t

 \mathbf{x}_{t-1}

 $\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Forward Reparameterization Trick

To derive $q(\mathbf{x}_t|\mathbf{x}_0)$, first we notice that

$$\mathbf{x}_{2} = \sqrt{\alpha_{2}}\mathbf{x}_{1} + \sqrt{1 - \alpha_{2}}\mathbf{z}_{2}$$

$$= \sqrt{\alpha_{2}}\left(\sqrt{\alpha_{1}}\mathbf{x}_{0} + \sqrt{1 - \alpha_{1}}\mathbf{z}_{1}\right) + \sqrt{1 - \alpha_{2}}\mathbf{z}_{2}$$

$$= \sqrt{\alpha_{2}\alpha_{1}}\mathbf{x}_{0} + \sqrt{\alpha_{2}(1 - \alpha_{1})}\mathbf{z}_{1} + \sqrt{1 - \alpha_{2}}\mathbf{z}_{2}$$

$$= \sqrt{\alpha_{2}\alpha_{1}}\mathbf{x}_{1} + \sqrt{1 - \alpha_{2}\alpha_{1}}\varepsilon_{2}$$

$$\mathbf{x}_{3} = \sqrt{\alpha_{3}}\mathbf{x}_{2} + \sqrt{1 - \alpha_{3}}\mathbf{z}_{3}$$

$$= \sqrt{\alpha_{3}}\left(\sqrt{\alpha_{2}\alpha_{1}}\mathbf{x}_{1} + \sqrt{1 - \alpha_{2}\alpha_{1}}\varepsilon_{2}\right) + \sqrt{1 - \alpha_{3}}\mathbf{z}_{3}$$

$$= \sqrt{\alpha_{3}\alpha_{2}\alpha_{1}}\mathbf{x}_{1} + \sqrt{\alpha_{3}(1 - \alpha_{2}\alpha_{1})}\varepsilon_{2} + \sqrt{1 - \alpha_{3}}\mathbf{z}_{3}$$

$$= \sqrt{\alpha_{3}\alpha_{2}\alpha_{1}}\mathbf{x}_{1} + \sqrt{1 - \alpha_{3}\alpha_{2}\alpha_{1}}\varepsilon_{3}$$

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2), Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

$$\Longrightarrow X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Forward Reparameterization Trick

By induction, we have

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon_t$$

where $\bar{\alpha}_t = \alpha_t \alpha_{t-1} \cdots \alpha_1$

Therefore,

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

Diffusion Kernel Is Gaussian Convolution

$$p(\mathbf{x}_t) = \int p(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) d\mathbf{x}_0$$
diffusion kernel

Diffusion Kernel Is Gaussian Convolution

$$p(\mathbf{x}_t) = \int p(\mathbf{x}_0) \frac{q(\mathbf{x}_t | \mathbf{x}_0)}{\mathbf{d}\mathbf{x}_0} \frac{\mathcal{D}}{\rightarrow} \mathcal{N}(\mathbf{x}_t; \mathbf{0}, \mathbf{I})$$

Hence $p(\mathbf{x}_t)$ approximately become $\mathcal{N}(\mathbf{0}, \mathbf{I})$ as $T \to \infty$

Reverse Process Distribution

We use Bayes' theorem to derive the reverse process distribution.

$$\mathcal{N}(\mathbf{x}_{t-1}; \sqrt{1-\beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}) = \frac{\mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0, (1-\bar{\alpha}_{t-1}) \mathbf{I})}{q(\mathbf{x}_t | \mathbf{x}_0)}$$

$$\mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0, (1-\bar{\alpha}_{t-1}) \mathbf{I})$$

$$\mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0, (1-\bar{\alpha}_{t-1}) \mathbf{I})$$

$$\mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0, (1-\bar{\alpha}_{t-1}) \mathbf{I})$$

Thus, the reverse process is $p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\boldsymbol{\mu}_t(\mathbf{x}_t,\mathbf{x}_0),\boldsymbol{\sigma}_t^2\mathbf{I})$ where

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\mathbf{x}_0 \quad \text{and} \quad \sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t$$

Reverse Process Distribution

The reverse process is $p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\mu_t(\mathbf{x}_t,\mathbf{x}_0),\sigma_t^2\mathbf{I})$

where

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\mathbf{x}_0 \quad \text{and} \quad \sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t$$

- 1 Replace \mathbf{x}_0 with $\mathbf{x}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t \sqrt{1 \bar{\alpha}_t} \varepsilon_t)$
- 2 Approximate $\sigma_t^2 = \frac{1 \bar{\alpha}_{t-1}}{1 \bar{\alpha}_t} \beta_t$ by $\sigma_t^2 = \beta_t$

Reverse Process Distribution

The reverse process is $p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\mu_t(\mathbf{x}_t,\mathbf{x}_0),\sigma_t^2\mathbf{I})$

where

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t \right) \quad \text{and} \quad \sigma_t^2 = \beta_t$$

Hence we can assume the $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$ with

$$\mu_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{\theta}(\mathbf{x}_{t}, t) \right)$$

Neural Network

Probabilistic Generative Model

The nature distribution can be represented as

$$p(\mathbf{x}_0) = \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$

where \mathbf{x}_0 is the observed variable and $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T$ are latent variables.

Probabilistic Generative Model

The nature distribution can be represented as

$$p(\mathbf{x}_0) = \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$

where \mathbf{x}_0 is the observed variable and $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T$ are latent variables.

However, the integral of $p(\mathbf{x}_0)$ is intractable. We attempt to derive the maximum Log Likelihood to obtain $p(\mathbf{x}_0)$.

What is Likelihood?

Given the data $x_1, x_2, ..., x_n$

The likelihood function is

$$p_{\theta}(x_1, x_2, ..., x_n) = p_{\theta}(x_1) p_{\theta}(x_2) \cdots p_{\theta}(x_n)$$

The log-likelihood function is

$$\log p_{\theta}(x_1, x_2, ..., x_n) = \log p_{\theta}(x_1) + \dots + \log p_{\theta}(x_n)$$
$$= \sum \log p_{\theta}(x_i)$$

The general form for the log-likelihood is

$$\mathbb{E}[\log p_{\theta}(\mathbf{x})] = \int q(\mathbf{x}) \log p_{\theta}(\mathbf{x}) d\mathbf{x}$$

Log Likelihood

Notice that

$$\log p_{\theta}(\mathbf{x}_0) = \log \int \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} d\mathbf{x}_{1:T} = \log \left(\mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \right)$$

Hence we have

$$\mathbb{E}_{q(\mathbf{x}_{0})}\left[\log p_{\theta}(\mathbf{x}_{0})\right] = \mathbb{E}_{q(\mathbf{x}_{0})}\left[\log \left(\mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\left[\frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right]\right)\right]$$

$$\geq \mathbb{E}_{q(\mathbf{x}_{0})}\mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\left[\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right] \quad \text{(by Jensen's inequality)}$$

forward distribution

$$= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \right]$$

reverse distribution

Log Likelihood

$$p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$

Expand the forward and reverse distribution:

$$\begin{split} \mathbb{E}_{q(\mathbf{x}_{0})}\left[\log p_{\theta}(\mathbf{x}_{0})\right] &\geq \mathbb{E}_{q(\mathbf{x}_{0:T})}\left[\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right] = \mathbb{E}_{q(\mathbf{x}_{0:T})}\left[\log \frac{p(\mathbf{x}_{T})\prod_{t=1}^{T}p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{\prod_{t=1}^{T}q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}\right] \\ &= \mathbb{E}_{q(\mathbf{x}_{0:T})}\left[\log p(\mathbf{x}_{T}) + \sum_{t=2}^{T}\log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} + \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q(\mathbf{x}_{1}|\mathbf{x}_{0})}\right] \\ &= \mathbb{E}_{q(\mathbf{x}_{0:T})}\left[\log p(\mathbf{x}_{T}) + \sum_{t=2}^{T}\log \left(\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{p(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} \cdot \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})}\right) + \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q(\mathbf{x}_{1}|\mathbf{x}_{0})}\right] \\ &= \mathbb{E}_{q(\mathbf{x}_{0:T})}\left[\log p(\mathbf{x}_{T}) + \sum_{t=2}^{T}\log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{p(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} + \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{q(\mathbf{x}_{1}|\mathbf{x}_{0})} + \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q(\mathbf{x}_{1}|\mathbf{x}_{0})}\right] \\ &= \mathbb{E}_{q(\mathbf{x}_{0:T})}\left[\log \frac{p(\mathbf{x}_{T})}{q(\mathbf{x}_{T}|\mathbf{x}_{0})} + \sum_{t=2}^{T}\log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{p(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} + \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})\right] \end{split}$$

Variational Lower Bound

Therefore, we have the variational lower bound:

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[\log p_{\theta}(\mathbf{x}_0)\right] \ge \mathbb{E}_{q(\mathbf{x}_{0:T})}\left[\log \frac{p(\mathbf{x}_T)}{q(\mathbf{x}_T|\mathbf{x}_0)} + \sum_{t=2}^{T}\log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)} + \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)\right]$$

$$= \mathbb{E}_{q}\left[\log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)\right] - \sum_{t=2}^{T} \mathbb{E}_{q}\left[D_{\mathrm{KL}}(p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))\right] - D_{\mathrm{KL}}(q(\mathbf{x}_T|\mathbf{x}_0)||p_{\theta}(\mathbf{x}_T))$$

To optimize the surrogate function by using Gradient Decent Algorithm, we consider the negative log-likelihood:

$$-\mathbb{E}_{q}[\log p_{\theta}(\mathbf{x}_{0})] \leq -\mathbb{E}_{q}[\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})] + \sum_{t=2}^{T} \mathbb{E}_{q}[D_{\mathrm{KL}}(p(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))] + D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{T}))$$

$$L_{t}$$

$$L_{t}$$

Loss Derivation

KL Divergence between two Gaussian distribution

$$D_{\mathrm{KL}}(\mathcal{N}(\mu_{1}, \Sigma_{1})||\mathcal{N}(\mu_{2}, \Sigma_{2})) = \frac{1}{2} \left[(\mu_{2} - \mu_{1})^{\top} \Sigma_{2}^{-1} (\mu_{2} - \mu_{1}) + \operatorname{tr}(\Sigma_{2}^{-1} \Sigma_{1}) + \log \frac{|\Sigma_{2}|}{|\Sigma_{1}|} - n \right]$$

$$L_t = D_{\mathrm{KL}}(p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)) = \frac{1}{2\sigma_t^2} \left\| \boldsymbol{\mu}_t(\mathbf{x}_t,\mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t) \right\|_2^2$$

Loss Derivation

$$L_t = \frac{1}{2\sigma_t^2} \left\| \boldsymbol{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_\theta(\mathbf{x}_t, t) \right\|_2^2 = \frac{(1 - \alpha_t)^2}{2\alpha_t (1 - \bar{\alpha}_{t-1})} \left\| \boldsymbol{\varepsilon}_t - \boldsymbol{\varepsilon}_\theta(\mathbf{x}_t, t) \right\|_2^2$$

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t \right)$$

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t \right) \qquad \mu_\theta(\mathbf{x}_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_\theta(\mathbf{x}_t, t) \right)$$

It is beneficial to sample high-quality data for training purposes when utilizing the following variant of the variational bound:

$$L(\theta) = \mathbb{E}_{t \sim U(1,T)} \mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0)} \mathbb{E}_{\varepsilon \sim \mathcal{N}(0,I)} \left[\|\varepsilon - \varepsilon_{\theta}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon_t, t) \|_2^2 \right]$$

How to Train the Diffusion Model?

Repeat until converged

How to Sampling?

 \mathbf{x}_T

 $\varepsilon_{ heta}$ \mathbf{x}_t

Noise Predictor

$$\mathbf{x}_{t-1}$$

$$-\frac{1}{\sqrt{\alpha_t}} \qquad -\frac{1-\alpha_t}{\sqrt{\alpha_t(1-\bar{\alpha}_t)}}$$

$$\mathbf{x}_t$$

$$-\frac{1-\alpha_t}{\sqrt{\alpha_t(1-\bar{\alpha}_t)}}$$

 μ_{θ}

For $t = T, \dots, 1$

$$\mathcal{E}_{\theta}$$

$$\varepsilon_{ heta}$$

$$\sigma_t$$

Return

 \mathbf{X}_0

Topic

- 1 Denoising Diffusion Probabilistic Models (DDPM)
- 2 Latent Diffusion Model (LDM)
- 3 Diffusion Model related to Stochastic Differential Equations (SDE)
- 4 Applications

Latent Diffusion Model (LDM)

Use the pretraining encoder model to compress the image to latent vector.

Topic

- 1 Denoising Diffusion Probabilistic Models (DDPM)
- 2 Latent Diffusion Model (LDM)
- 3 Diffusion Model related to Stochastic Differential Equations (SDE)
- 4 Applications

Introduction to Differential Equations

Standard Wiener Process

- $\mathbf{w}_0 = 0$
- $\mathbf{2} \ \mathbf{w}_t$ is continuous on \mathbb{R}
- 3 $\mathbf{w}_t \mathbf{w}_s \sim \mathcal{N}(\mathbf{0}, t s), t > s$

Ordinary Differential Equation (ODE)

Stochastic Differential Equation (SDE)

Introduction to Standard SDE

Forward SDE

$$d\mathbf{x} = f(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
drift diffusion

Reverse SDE (Anderson, 1982)

$$d\mathbf{x} = (f(\mathbf{x}, t) - g^2(t) \nabla_{\mathbf{x}} \log p(\mathbf{x})) dt + g(t) d\bar{\mathbf{w}}$$
score function

DDPM related to SDE

Recall that
$$q(\mathbf{x}_{t}|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{1-\beta_{t}}\mathbf{x}_{t-1}, \beta_{t}\mathbf{I})$$

$$\mathbf{x}_{t+1} = \sqrt{1-\beta_{t+1}}\mathbf{x}_{t} + \sqrt{\beta_{t+1}}\widetilde{\varepsilon}_{t+1}$$

$$\mathbf{x}(t+\Delta t) = \sqrt{1-\beta(t+\Delta t)\Delta t}\mathbf{x}(t) + \sqrt{\beta(t+\Delta t)\Delta t}\widetilde{\varepsilon}_{t} \qquad \beta_{t} := \beta(t)\Delta t$$

$$\approx \left(1-\frac{1}{2}\beta(t+\Delta t)\Delta t\right)\mathbf{x}(t) + \sqrt{\beta(t+\Delta t)\Delta t}\widetilde{\varepsilon}_{t} \qquad \sqrt{1-x} = 1-\frac{1}{2}x + o(x^{2})$$

$$\approx \left(1-\frac{1}{2}\beta(t)\Delta t\right)\mathbf{x}(t) + \sqrt{\beta(t)\Delta t}\widetilde{\varepsilon}_{t} \qquad \beta(t+\Delta t)\approx \beta(t)$$

Hence
$$\mathbf{x}(t + \Delta t) - \mathbf{x}(t) \approx -\frac{1}{2}\beta(t)\mathbf{x}(t)\Delta t + \sqrt{\beta(t)\Delta t}\widetilde{\varepsilon}_t$$

Take the limit by letting $\Delta t \rightarrow 0$, Then we have

$$d\mathbf{x}(t) = -\frac{1}{2}\beta(t)\mathbf{x}(t)dt + \sqrt{\beta(t)}d\mathbf{w}$$

where \mathbf{w}_t is a standard Wiener process

DDPM related to SDE

Forward SDE

$$d\mathbf{x} = f(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

$$d\mathbf{x}(t) = -\frac{1}{2}\beta(t)\mathbf{x}(t)dt + \sqrt{\beta(t)}d\mathbf{w}$$

Reverse SDE

$$d\mathbf{x} = (f(\mathbf{x}, t) - g^2(t)\nabla_{\mathbf{x}}\log p(\mathbf{x}))dt + g(t)d\bar{\mathbf{w}}$$

$$d\mathbf{x}(t) = \left[-\frac{1}{2}\beta(t)\mathbf{x}(t) - \beta(t)\nabla_{\mathbf{x}(t)}\log p(\mathbf{x}(t)) \right] dt + \sqrt{\beta(t)}d\bar{\mathbf{w}}$$

Score Function

score of diffused data

$$d\mathbf{x}(t) = \left[-\frac{1}{2}\beta(t)\mathbf{x}(t) - \beta(t)\nabla_{\mathbf{x}(t)}\log p(\mathbf{x}(t)) \right] dt + \sqrt{\beta(t)}d\bar{\mathbf{w}}$$

$$L(\theta) = \mathbb{E}_{t \sim U(1,T)} \mathbb{E}_{\mathbf{x}(t) \sim p(\mathbf{x}(t))} \left[\| \mathbf{s}_{\theta}(\mathbf{x}(t), t) - \nabla_{\mathbf{x}(t)} \log p(\mathbf{x}(t)) \|_{2}^{2} \right]$$

$$d\mathbf{x}(t) = \left[-\frac{1}{2}\beta(t)\mathbf{x}(t) - \beta(t)\mathbf{s}_{\theta}(\mathbf{x}(t), t) \right] dt + \sqrt{\beta(t)}d\mathbf{\bar{w}}$$

neural network

Score Matching

$$L(\theta) = \mathbb{E}_{t \sim U(1,T)} \mathbb{E}_{\mathbf{x}(t) \sim p(\mathbf{x}(t))} \left[\|\mathbf{s}_{\theta}(\mathbf{x}(t), t) - \nabla_{\mathbf{x}(t)} \log p(\mathbf{x}(t))\|_{2}^{2} \right]$$

Denoising Score Matching (Pascal Vincent, 2010)

$$\sim \mathbb{E}_{t \sim U(1,T)} \mathbb{E}_{\mathbf{x}(0) \sim p(\mathbf{x}(0))} \mathbb{E}_{\mathbf{x}(t) \sim p(\mathbf{x}(t)|\mathbf{x}(0))} \left[\|\mathbf{s}_{\theta}(\mathbf{x}(t),t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}(t)|\mathbf{x}(0)) \|_2^2 \right]$$

Sliced Score Matching (Yang Song et al., 2019)

$$\sim \mathbb{E}_{t \sim U(1,T)} \mathbb{E}_{\mathbf{x}(0) \sim p(\mathbf{x}(0))} \mathbb{E}_{\mathbf{v} \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \left[\frac{1}{2} \| \mathbf{s}_{\theta}(\mathbf{x}(t),t) \|^2 + \mathbf{v}^{\top} \mathbf{s}_{\theta}(\mathbf{x}(t),t) \mathbf{v} \right]$$

How to solve the SDE?

Use the numerical method to solve the following SDE

$$d\mathbf{x}(t) = \left[-\frac{1}{2}\beta(t)\mathbf{x}(t) - \beta(t)\mathbf{s}_{\theta}(\mathbf{x}(t), t) \right] dt + \sqrt{\beta(t)}d\mathbf{\bar{w}}$$

- Euler Maruyama
- Stochastic Runge-Kutta
- Milstein

Topic

- 1 Denoising Diffusion Probabilistic Models (DDPM)
- 2 Latent Diffusion Model (LDM)
- 3 Diffusion Model related to Stochastic Differential Equations (SDE)
- 4 Applications

Diffusion Models Beat GANs on Image Synthesis

Diffusion model achieve the state-of-the-art performance on image synthesis.

FID	sFID	Prec	Rec	,	Model	FID	sFID	Prec	Rec
LSUN Bedrooms 256×256					ImageNet 128×128				
6.40	6.66	0.44	0.56		BigGAN-deep [5]	6.02	7.18	0.86	0.35
4.89	9.07	0.60	0.45		LOGAN [†] [68]	3.36			
4.24	8.21	0.62	0.46		ADM	5.91	5.09	0.70	0.65
2.35	6.62	0.59	0.48		ADM-G (25 steps)	5.98	7.04	0.78	0.51
1.90	5.59	0.66	0.51		ADM-G	2.97	5.09	0.78	0.59
LSUN Horses 256×256					ImageNet 256×256				
3.84	6.46	0.63	0.48		DCTransformer [†] [42]	36.51	8.24	0.36	0.67
2.95	5.94	0.69	0.55		VQ-VAE-2 ^{†‡} [51]	31.11	17.38	0.36	0.57
2.57	6.81	0.71	0.55		IDDPM [‡] [43]	12.26	5.42	0.70	0.62
						11.30			
							7.36	0.87	0.28
17.1	12.4	0.53	0.48		ADM	10.94	6.02	0.69	0.63
7.25	6.33	0.58	0.43		ADM-G (25 steps)	5.44	5.32	0.81	0.49
5.57	6.69	0.63	0.52		ADM-G	4.59	5.25	0.82	0.52
					ImageNet 512×512				
4.06	3.96	0.79	0.48		BigGAN-deep [5]	8.43	8.13	0.88	0.29
2.92	3.79	0.74	0.62		ADM	23.24	10.19	0.73	0.60
2.61	3.77	0.73	0.63		ADM-G (25 steps)	8.41	9.67	0.83	0.47
2.07	4.29	0.74	0.63		ADM-G	7.72	6.57	0.87	0.42
	×256 6.40 4.89 4.24 2.35 1.90 56 3.84 2.95 2.57 17.1 7.25 5.57	*256 6.40 6.66 4.89 9.07 4.24 8.21 2.35 6.62 1.90 5.59 56 3.84 6.46 2.95 5.94 2.57 6.81 17.1 12.4 7.25 6.33 5.57 6.69 4.06 3.96 2.92 3.79 2.61 3.77	×256 6.40 6.66 0.44 4.89 9.07 0.60 4.24 8.21 0.62 2.35 6.62 0.59 1.90 5.59 0.66 3.84 6.46 0.63 2.95 5.94 0.69 2.57 6.81 0.71 17.1 12.4 0.53 7.25 6.33 0.58 5.57 6.69 0.63 4.06 3.96 0.79 2.92 3.79 0.74 2.61 3.77 0.73	×256 6.40 6.66 0.44 0.56 4.89 9.07 0.60 0.45 4.24 8.21 0.62 0.46 2.35 6.62 0.59 0.48 1.90 5.59 0.66 0.51 56 3.84 6.46 0.63 0.48 2.95 5.94 0.69 0.55 2.57 6.81 0.71 0.55 17.1 12.4 0.53 0.48 7.25 6.33 0.58 0.43 5.57 6.69 0.63 0.52 4.06 3.96 0.79 0.48 2.92 3.79 0.74 0.62 2.61 3.77 0.73 0.63	×256 6.40 6.66 0.44 0.56 4.89 9.07 0.60 0.45 4.24 8.21 0.62 0.46 2.35 6.62 0.59 0.48 1.90 5.59 0.66 0.51 56 3.84 6.46 0.63 0.48 2.95 5.94 0.69 0.55 2.57 6.81 0.71 0.55 17.1 12.4 0.53 0.48 7.25 6.33 0.58 0.43 5.57 6.69 0.63 0.52 4.06 3.96 0.79 0.48 2.92 3.79 0.74 0.62 2.61 3.77 0.73 0.63	ImageNet 128×128	MageNet 128×128	ImageNet 128×128 BigGAN-deep [5] 6.02 7.18	MageNet 128×128

Interpolation on Image Manifold

Interpolations of CelebA-HQ 256x256 images with 500 timesteps of diffusion.

Reflection

Summary

- Oiffusion model has strong mathematical theoretical support including Markov process, variational inference, SDE, score matching, etc.
- DDPM can generate high quality and diverse image samples but the sampling time is lengthy.
- 3 LDM use the pretrained encoder to reduce the computational complexity.
- ODPM can extend to continuous SDE process which can be solved quickly by stochastic numerical methods.

Reference

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS 2020.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022.
- Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar,
 Stefano Ermon, and Ben Poole. Score-Based Generative Modeling through
 Stochastic Differential Equations. ICLR 2021.

Thanks for listening!