

ST7576

66 x 102 Dot Matrix LCD Controller/Driver

1. INTRODUCTION

The ST7576 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102 segments and 65 common with 1 ICON driver circuits. This chip is connected directly to a microprocessor, accepts 3-line or 4-line serial peripheral interface (SPI), I²C interface or 8-bit parallel interface, display data can stores in an on-chip display data RAM of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components.

2. FEATURES

Single-chip LCD controller & driver

Driver Output Circuits

102 segment / 65 common+1 ICON common (1/66 duty)102 segment / 16 common+1 ICON common (1/17 duty)(1/17 duty is under partial screen mode)

On-chip Display Data Ram

Capacity: 66X102=6,732 bits

Microprocessor Interface

- 8-bit parallel bi-directional interface with 6800-series or 8080-series
- 4-line SPI (serial peripheral interface) available (only write operation)
- 3-line SPI (serial peripheral interface) available
- I²C (Inter-Integrated Circuit) Interface

On-chip Low Power Analog Circuit

Generation of LCD supply voltage

- Generation of intermediate LCD bias voltages
- Oscillator requires no external components (external clock also possible)
- Voltage converter X4; X5
- Voltage follower
- On-chip electronic contrast control function (255 steps)

External RESB (reset) pin

Logic supply voltage range

V_{DD1} -V_{SS}: 1.8 to 3.3VV_{DD2} -V_{SS}: 2.4 to 3.3V

Display supply voltage range (V0)

- Application Vop range: 4V-9.5V

Programmable Max V0: 10.5V

Temperature range: -30 to +85 degree

ST7576	6800 , 8080 , 4-Line , 3-Line interface (without I ² C interface)	J
ST7576i	I ² C interface	

3. ST7576 Pad Arrangement

Chip Size: 5570 um ×770 um

Bump Height: 15 um Chip Thickness: 480 um Bump Pitch: (minimum)

Unit: um

PAD Number	Pitch	PAD Number	Pitch
1~27, 130~156, 157~163, 243~250:	37.20	212~213	46.65
28~129:	33.00	213~216,218~221	33.30
27~28	62.90	216~217,217~218	38.80
129~130	60.69	221~222	46.30
163~164	329.57	228~229	66.40
164~207, 208~211,222~228,229~235,236~242	59.30	235~236	62.45
207~208	131.83	242~243	79.90
211~212	71.30		

^{*} Refer to "Pad Center Coordinates" section for ITO layout.

Fig 1

Pad Center Coordinates СОМ59 250 249 248 243 COMS2 XV0S 242 27 сомзз 28 SEG0 VGO T8 T1 VRS VSS vss 208 Uss 207 SEG101 COMS1 163 Fig 2

66 Duty (TMY=0)

	(11011-0)		
PAD NO.	PIN Name	X	Y
1	COM[59]	2695.50	293.00
2	COM[58]	2658.30	293.00
3	COM[57]	2621.10	293.00
4	COM[56]	2583.90	293.00
5	COM[55]	2546.70	293.00
6	COM[54]	2509.50	293.00
7	COM[53]	247 2.30	293.00
8	COM[52]	2435.10	293.00
9	COM[51]	2397:90	293:00
10	COM[50]	2 360 .70	293.00
11	COM[49]	2 323.50	293.00
12	COM[48]	2286.30	293.00
13	COM[47]	2249.10	293.00
14	COM[46]	2211.90	293.00
15	COM[45]	2174.70	293.00
16	COM[44]	2137.50	293.00
17	COM[43]	2100.30	293.00
18	COM[42]	2063.10	293.00
19	COM[41]	2025.90	293.00
20	COM[40]	1988.70	293.00
21	COM[39]	1951.50	293.00
22	COM[38]	1914.30	293.00
23	COM[37]	1877.10	293.00
24	COM[36]	1839.90	293.00
25	COM[35]	1802.70	293.00
26	COM[34]	1765.50	293.00
27	COM[33]	1728.30	293.00
28	SEG[0]	1665.39	282.75
29	SEG[1]	1632.39	282.75
30	SEG[2]	1599.39	282.75

PAD NO.	PIN Name	Х	Υ
31	SEG[3]	1566.39	282.75
32	SEG[4]	1533.39	282.75
33	SEG[5]	1500.39	282.75
34	SEG[6]	1467.39	282.75
35	SEG[7]	1434.39	282.75
36	SEG[8]	1401.39	282.75
37	SEG[9]	1368.39	282.75
38	SEG[10]	1335.39	282.75
39	SEG[11]	1302.39	282.75
40	SEG[12]	1269.39	282.75
41	SEG[13]	1236.39	282.75
42	SEG[14]	1203.39	282.75
43	SEG[15]	1170.39	282.75
44	SEG[16]	1137.39	282.75
45	SEG[17]	1104.39	282.75
46	SEG[18]	1071.39	282.75
47	SEG[19]	1038.39	282.75
48	SEG[20]	1005.39	28 2.75
49	SEG[21]	972.39	282.75
50	SEG[22]	939 39	2 82.75
51	SEG[23]	906.39	282.75
62	SEG[24]	87 3.39	282.75
53	S EG[25]	840.39	282.75
54	SE G[26]	807.39	282.75
55	SEG[27]	774.39	282.75
56	SEG[28]	741.39	282.75
57	SEG[29]	708.39	282.75
58	SEG[30]	675.39	282.75
59	SEG[31]	642.39	282.75
60	SEG[32]	609.39	282.75

PAD NO.	PIN Name	х	Y
61	SEG[33]	576.39	282.75
62	SEG[34]	543.39	282.75
63	SEG[35]	510.39	282.75
64	SEG[36]	477.39	282.75
65	SEG[37]	444.39	282.75
66	SEG[38]	411,39	282.75
67	SEG[39]	37 8.39	282.75
68	SEG[40]	345.39	282. 75
69	SE G[41]	312. 39	282: 75
70	SEG[42]	279 ,39	282.75
71	SEG[43]	2 46.39	282.75
72	SEG[44]	213.39	282.75
73	SEG[45]	180.39	282.75
74	SEG[46]	147.39	282.75
75	SEG[47]	114.39	282.75
76	SEG[48]	81.39	282.75
77	SEG[49]	48.39	282.75
78	SEG[50]	15.39	282.75
79	SEG[51]	-17.60	282.75
80	SEG[52]	-50.60	282.75
81	SEG[53]	-83.60	282.75
82	SEG[54]	-116.60	282.75
83	SEG[55]	-149.60	282.75
84	SEG[56]	-182.60	282.75
85	SEG[57]	-215.60	282.75
86	SEG[58]	-248.60	282.75
87	SEG[59]	-281.60	282.75
88	SEG[60]	-314.60	282.75
89	SEG[61]	-347.60	282.75
90	SEG[62]	-380.60	282.75

PAD NO.	PIN Name	X	Υ
91	SEG[63]	-413.60	282.75
92	SEG[64]	-446.60	282.75
93	SEG[65]	-479.60	282.75
94	SEG[66]	-512.60	282.75
95	SEG[67]	-545.60	282.75
96	SEG[68]	-578.60	282.75
97	SEG[69]	-611.60	282.75
98	SEG[70]	-644.60	282.75
99	SEG[71]	-677.60	282.75
100	SEG[72]	-710.60	282.75
101	SEG[73]	-743.60	282.75
102	SEG[74]	-776.60	282.75
103	SEG[75]	-809.60	282.75
104	SEG[76]	-842.60	282.75
105	SEG[77]	-875.60	282.75
106	SEG[78]	-908.60	282.75
107	SEG[79]	-941.60	282.75
108	SEG[80]	-974.60	282.75
109	SEG[81]	-1007.60	282.75
110	SEG[82]	-1040.60	282.75
111	SEG[83]	-1073.60	282.75
112	SEG[84]	-1106.60	282.75
113	SEG[85]	-1139.60	282.75
114	SEG[86]	-1172.60	282.75
115	SEG[87]	-1205.60	282.75
116	SEG[88]	-1238.60	282.75
117	SEG[89]	-1271.60	282.75
118	SEG[90]	-1304.60	282.75
119	SEG[91]	-1337.60	282.75
120	SEG[92]	-1370.60	282.75

PAD NO.	PIN Name	х	Y
121	SEG[93]	-1403.60	282.75
122	SEG[94]	-1436.60	282.75
123	SEG[95]	-1469.60	282.75
124	SEG[96]	-1502.60	282.75
125	SEG[97]	-1535.60	282.75
126	SEG[98]	-1568.60	282.75
127	SEG[99]	-1601.60	282.75
128	SEG[100]	-1634.60	282.75
129	SEG[101]	-1667.60	282.75
130	COMS1	-1728.30	293.00
131	COM[0]	-1765.50	293.00
132	COM[1]	-1802.70	293.00
133	COM[2]	-1839.90	293.00
134	COM[3]	-1877.10	293.00
135	COM[4]	-1914.30	293.00
136	COM[5]	-1951.50	293.00
137	COM[6]	-1988.70	293.00
138	COM[7]	-2025.90	293.00
139	COM[8]	-2063.10	293.00
140	COM[9]	-2100.30	293.00
141	COM[10]	-2137.50	293.00
142	COM[11]	-2174.70	293.00
143	COM[12]	-2211.90	293.00
144	COM[13]	-2249.10	293.00
145	COM[14]	-2286.30	293.00
146	COM[15]	-2323.50	293.00
147	COM[16]	-2360.70	293.00
148	COM[17]	-2397.90	293.00
149	COM[18]	-2435.10	293.00
150	COM[19]	-2472.30	293.00

PAD NO.	PIN Name	X	Y
151	COM[20]	-2509.50	293.00
152	COM[21]	-2546.70	293.00
153	COM[22]	-2583.90	293.00
154	COM[23]	-2621.10	293.00
155	COM[24]	-2658.30	293.00
156	COM[25]	-2695.50	293.00
157	COM[32]	-2695.50	-293.00
158	COM[31]	-2658.30	-293.00
159	COM[30]	-2621.10	-293.00
160	COM[29]	-2583.90	-293.00
161	COM[28]	-2546.70	-293.00
162	COM[27]	-2509.50	-293.00
163	COM[26]	-2472.30	-293.00
164	VDX2O	-2142.72	-311.50
165	VDX2O	-2083.42	-311.50
166	VDX2O	-2024.11	-311.50
167	VSS2	-1964.81	-311.50
168	T11	-1905.50	-311.50
169	T12	-1846.19	-311.50
170	BR	-1786.89	-311.50
171	СР	-1727.58	-311.50
172	TMX	-1668.28	-311.50
173	TMY	-1608.97	-311.50
174	PS2	-1549.67	-311.50
175	PS1	-1490.36	-311.50
176	PS0	-1431.06	-311.50
177	VMO	-1371.75	-311.50
178	VMO	-1312.45	-311.50
179	VMO	-1253.14	-311.50
180	VSS2	-1193.84	-311.50

PAD NO.	PIN Name	X	Y
181	VDD1	-1134.54	-311.50
182	VDD1	-1075.23	-311.50
183	VDD1	-1015.92	-311.50
184	VDD1	-956.62	-311.50
185	VDD2	-897.32	-311.50
186	VDD2	-838.01	-311.50
187	VDD2	-778.70	-311.50
188	VDD2	-719.40	-311.50
189	RESB	-660.09	-311.50
190	CSB	-600.79	-311.50
191	RWR	-541.48	-311.50
192	ERD	-482.18	-311.50
193	A0	-422.88	-311.50
194	VDD1	-363.57	-311.50
195	D7	-304.27	-311.50
196	D6	-244.96	-311.50
197	D5	-185.66	-311.50
198	D4	-126.35	-311.50
199	D3	-67.05	-311.50
200	D2	-7.74	-311.50
201	D1	51.56	-311.50
202	D0	110.87	-311.50
203	osc	170.17	-311.50
204	VSS2	229.47	-311.50
205	VSS2	288.78	-311.50
206	VSS2	348.09	-311.50
207	VSS2	407.39	-311.50
208	VSS1	539.23	-311.50
209	VSS1	598.53	-311.50
210	VSS1	657.84	-311.50

PAD NO.	PIN Name	X	Υ
211	VSS1	717.15	-311.50
212	VRS	788.45	-311.50
213	T1	835.10	-307.75
214	T2	868.40	-307.75
215	Т3	901.70	-307.75
216	T4	935.00	-307.75
217	ТО	973.80	-307.75
218	T5	1012.60	-307.75
219	Т6	1045.90	-307.75
220	T7	1079.20	-307.75
221	Т8	1112.50	-307.75
222	VGO	1158.81	-311.50
223	VGO	1218.11	-311.50
224	VGI	1277.42	-311.50
225	VGI	1336.72	-311.50
226	VGI	1396.03	-311.50
227	VGI	1455.33	-311.50
228	VGS	1514.64	-311.50
229	V0O	1581.08	-309.75
230	V0O	1640.38	-309.75
231	VOI	1699.69	-309.75
232	VOI	1759.00	-309.75
233	VOI	1818.30	-309.75
234	VOI	1877.60	-311.50
235	V0S	1936.91	-311.50
236	XV0O	1999.36	-311.50
237	XV0O	2058.67	-311.50
238	XV0I	2117.98	-311.50
239	XV0I	2177.28	-311.50
240	XV0I	2236.58	-311.50

PAD NO.	PIN Name	X	Y
241	XV0I	2295.89	-311.50
242	XV0S	2355.20	-311.50
243	COMS2	2435.10	-293.00
244	COM[60]	2472.30	-293.00
245	COM[61]	2509.50	-293.00
246	COM[62]	2546.70	-293.00
247	COM[63]	2583.90	-293.00
248	COM[64]	2621.10	-293.00
249	Reserved	2658.30	-293.00
250	Reserved	2695.50	-293.00

66 Duty (TMY=1)

PAD NO.	PIN Name	х	Y	
1	COM[5]	2695.50	293.00	
2	COM[6]	2658.30	293.00	
3	COM[7]	2621.10	293.00	
4	COM[8]	2583.90	293.00	
5	COM[9]	2546.70	293.00	
6	COM[10]	2509.50	293.00	
7	COM[11]	2472.30	293.00	
8	COM[12]	2435.10	293.00	
9	COM[13]	2397.90	293.00	
10	COM[14]	2360.70	293.00	
11	COM[15]	2323.50	293.00	
12	COM[16]	2286.30	293.00	
13	COM[17]	2249.10	293.00	
14	COM[18]	2211.90	293.00	
15	COM[19]	2174.70	293.00	
16	COM[20]	2137.50	293.00	
17	COM[21]	2100.30	293.00	
18	COM[22]	2063.10	293.00	
19	COM[23]	2025.90	293.00	
20	COM[24]	1988.70	293.00	
21	COM[25]	1951.50	293.00	
22	COM[26]	1914.30	293.00	
23	COM[27]	1877.10	293.00	
24	COM[28]	1839.90	293.00	
25	COM[29]	1802.70	293.00	
26	COM[30]	1765.50	293.00	
27	COM[31]	1728.30	293.00	
28	SEG[0]	1665.39	282.75	
	SEG[1]	1632.39	282.75	
29	SEG[I]	1002.00	202.70	

PAD NO.	PIN Name	Х	Y
31	SEG[3]	1566.39	282.75
32	SEG[4]	1533.39	282.75
33	SEG[5]	1500.39	282.75
34	SEG[6]	1467.39	282.75
35	SEG[7]	1434.39	282.75
36	SEG[8]	1401.39	282.75
37	SEG[9]	1368.39	282.75
38	SEG[10]	1335.39	282.75
39	SEG[11]	1302.39	282.75
40	SEG[12]	1269.39	282.75
41	SEG[13]	1236.39	282.75
42	SEG[14]	1203.39	282.75
43	SEG[15]	1170.39	282.75
44	SEG[16]	1137.39	282.75
45	SEG[17]	1104.39	282.75
46	SEG[18]	1071.39	282.75
47	SEG[19]	1038.39	282.75
48	SEG[20]	1005.39	282.75
49	SEG[21]	972.39	282.75
50	SEG[22]	939.39	282.75
51	SEG[23]	906.39	282.75
52	SEG[24]	873.39	282.75
53	SEG[25]	840.39	282.75
54	SEG[26]	807.39	282.75
55	SEG[27]	774.39	282.75
56	SEG[28]	741.39	282.75
57	SEG[29]	708.39	282.75
58	SEG[30]	675.39	282.75
59	SEG[31]	642.39	282.75
60	SEG[32]	609.39	282.75

PAD NO.	PIN Name	X	Υ
61	SEG[33]	576.39	282.75
62	SEG[34]	543.39	282.75
63	SEG[35]	510.39	282.75
64	SEG[36]	477.39	282.75
65	SEG[37]	444.39	282.75
66	SEG[38]	411.39	282.75
67	SEG[39]	378.39	282.75
68	SEG[40]	345.39	282.75
69	SEG[41]	312.39	282.75
70	SEG[42]	279.39	282.75
71	SEG[43]	246.39	282.75
72	SEG[44]	213.39	282.75
73	SEG[45]	180.39	282.75
74	SEG[46]	147.39	282.75
75	SEG[47]	114.39	282.75
76	SEG[48]	81.39	282.75
77	SEG[49]	48.39	282.75
78	SEG[50]	15.39	282.75
79	SEG[51]	-17.60	282.75
80	SEG[52]	-50.60	282.75
81	SEG[53]	-83.60	282.75
82	SEG[54]	-116.60	282.75
83	SEG[55]	-149.60	282.75
84	SEG[56]	-182.60	282.75
85	SEG[57]	-215.60	282.75
86	SEG[58]	-248.60	282.75
87	SEG[59]	-281.60	282.75
88	SEG[60]	-314.60	282.75
89	SEG[61]	-347.60	282.75
90	SEG[62]	-380.60	282.75

PAD NO.	PIN Name	х	Y
91	SEG[63]	-413.60	282.75
92	SEG[64]	-446.60	282.75
93	SEG[65]	-479.60	282.75
94	SEG[66]	-512.60	282.75
95	SEG[67]	-545.60	282.75
96	SEG[68]	-578.60	282.75
97	SEG[69]	-611.60	282.75
98	SEG[70]	-644.60	282.75
99	SEG[71]	-677.60	282.75
100	SEG[72]	-710.60	282.75
101	SEG[73]	-743.60	282.75
102	SEG[74]	-776.60	282.75
103	SEG[75]	-809.60	282.75
104	SEG[76]	-842.60	282.75
105	SEG[77]	-875.60	282.75
106	SEG[78]	-908.60	282.75
107	SEG[79]	-941.60	282.75
108	SEG[80]	-974.60	282.75
109	SEG[81]	-1007.60	282.75
110	SEG[82]	-1040.60	282.75
111	SEG[83]	-1073.60	282.75
112	SEG[84]	-1106.60	282.75
113	SEG[85]	-1139.60	282.75
114	SEG[86]	-1172.60	282.75
115	SEG[87]	-1205.60	282.75
116	SEG[88]	-1238.60	282.75
117	SEG[89]	-1271.60	282.75
118	SEG[90]	-1304.60	282.75
119	SEG[91]	-1337.60	282.75
120	SEG[92]	-1370.60	282.75

PAD NO.	PIN Name	X	Υ
121	SEG[93]	-1403.60	282.75
122	SEG[94]	-1436.60	282.75
123	SEG[95]	-1469.60	282.75
124	SEG[96]	-1502.60	282.75
125	SEG[97]	-1535.60	282.75
126	SEG[98]	-1568.60	282.75
127	SEG[99]	-1601.60	282.75
128	SEG[100]	-1634.60	282.75
129	SEG[101]	-1667.60	282.75
130	COMS1	-1728.30	293.00
131	COM[64]	-1765.50	293.00
132	COM[63]	-1802.70	293.00
133	COM[62]	-1839.90	293.00
134	COM[61]	-1877.10	293.00
135	COM[60]	-1914.30	293.00
136	COM[59]	-1951.50	293.00
137	COM[58]	-1988.70	293.00
138	COM[57]	-2025.90	293.00
139	COM[56]	-2063.10	293.00
140	COM[55]	-2100.30	293.00
141	COM[54]	-2137.50	293.00
142	COM[53]	-2174.70	293.00
143	COM[52]	-2211.90	293.00
144	COM[51]	-2249.10	293.00
145	COM[50]	-2286.30	293.00
146	COM[49]	-2323.50	293.00
147	COM[48]	-2360.70	293.00
148	COM[47]	-2397.90	293.00
149	COM[46]	-2435.10	293.00
150	COM[45]	-2472.30	293.00

PAD NO.	PIN Name	х	Y
151	COM[44]	-2509.50	293.00
152	COM[43]	-2546.70	293.00
153	COM[42]	-2583.90	293.00
154	COM[41]	-2621.10	293.00
155	COM[40]	-2658.30	293.00
156	COM[39]	-2695.50	293.00
157	COM[32]	-2695.50	-293.00
158	COM[33]	-2658.30	-293.00
159	COM[34]	-2621.10	-293.00
160	COM[35]	-2583.90	-293.00
161	COM[36]	-2546.70	-293.00
162	COM[37]	-2509.50	-293.00
163	COM[38]	-2472.30	-293.00
164	VDX2O	-2142.72	-311.50
165	VDX2O	-2083.42	-311.50
166	VDX2O	-2024.11	-311.50
167	VSS2	-1964.81	-311.50
168	T11	-1905.50	-311.50
169	T12	-1846.19	-311.50
170	BR	-1786.89	-311.50
171	СР	-1727.58	-311.50
172	TMX	-1668.28	-311.50
173	TMY	-1608.97	-311.50
174	PS2	-1549.67	-311.50
175	PS1	-1490.36	-311.50
176	PS0	-1431.06	-311.50
177	VMO	-1371.75	-311.50
178	VMO	-1312.45	-311.50
179	VMO	-1253.14	-311.50
180	VSS2	-1193.84	-311.50

PAD NO.	PIN Name	X	Υ
181	VDD1	-1134.54	-311.50
182	VDD1	-1075.23	-311.50
183	VDD1	-1015.92	-311.50
184	VDD1	-956.62	-311.50
185	VDD2	-897.32	-311.50
186	VDD2	-838.01	-311.50
187	VDD2	-778.70	-311.50
188	VDD2	-719.40	-311.50
189	RESB	-660.09	-311.50
190	CSB	-600.79	-311.50
191	RWR	-541.48	-311.50
192	ERD	-482.18	-311.50
193	A0	-422.88	-311.50
194	VDD1	-363.57	-311.50
195	D7	-304.27	-311.50
196	D6	-244.96	-311.50
197	D5	-185.66	-311.50
198	D4	-126.35	-311.50
199	D3	-67.05	-311.50
200	D2	-7.74	-311.50
201	D1	51.56	-311.50
202	D0	110.87	-311.50
203	osc	170.17	-311.50
204	VSS2	229.47	-311.50
205	VSS2	288.78	-311.50
206	VSS2	348.09	-311.50
207	VSS2	407.39	-311.50
208	VSS1	539.23	-311.50
209	VSS1	598.53	-311.50
210	VSS1	657.84	-311.50

PAD NO.	PIN Name	X	Y
211	VSS1	717.15	-311.50
212	VRS	788.45	-311.50
213	T1	835.10	-307.75
214	T2	868.40	-307.75
215	Т3	901.70	-307.75
216	T4	935.00	-307.75
217	ТО	973.80	-307.75
218	T5	1012.60	-307.75
219	Т6	1045.90	-307.75
220	T7	1079.20	-307.75
221	Т8	1112.50	-307.75
222	VGO	1158.81	-311.50
223	VGO	1218.11	-311.50
224	VGI	1277.42	-311.50
225	VGI	1336.72	-311.50
226	VGI	1396.03	-311.50
227	VGI	1455.33	-311.50
228	VGS	1514.64	-311.50
229	V0O	1581.08	-309.75
230	V0O	1640.38	-309.75
231	V0I	1699.69	-309.75
232	VOI	1759.00	-309.75
233	VOI	1818.30	-309.75
234	VOI	1877.60	-311.50
235	V0S	1936.91	-311.50
236	XV0O	1999.36	-311.50
237	XV0O	2058.67	-311.50
238	XV0I	2117.98	-311.50
239	XV0I	2177.28	-311.50
240	XV0I	2236.58	-311.50

ST7576

PAD NO.	NO. PIN Name X		Υ
241	XV0I	2295.89	-311.50
242	XV0S	2355.20	-311.50
243	COMS2	2435.10	-293.00
244	COM[4]	2472.30	-293.00
245	COM[3]	2509.50	-293.00
246	COM[2]	2546.70	-293.00
247	COM[1]	2583.90	-293.00
248	COM[0]	2621.10	-293.00
249	Reserved	2658.30	-293.00
250	Reserved	2695.50	-293.00

4. BLOCK DIAGRAM

5. PINNING DESCRIPTIONS

Pin Name	I/O			Description		No. of Pins
Lcd driver outputs		•				
·		LCD segment d This display dat driver.	•		output voltage of segme	nt
		Display data	Frame	Segment drover Normal display	output voltage Reverse display	
SEG0 to SEG101	0	Н	Н	VG	VSS	102
		Н	L	VSS	VG	
		L	Н	VSS	VG	
		L	L	VG	VSS	
		Power say	ve mode	VSS	VSS	
COM0 to COM64	0	This internal sca common driver. Display data H H L L Power sav	Frame H L H	Common drove Normal display	routput voltage Reverse display (V0 V0 VM VM VSS	65
COMS	0	Common output The output sign be left open.			n not used, this pin shou	ld 2
MICROPROCESSOF	RINTERFAC	E				
PS[2:0]	I	Microprocessor	PS0		ace MPU interface	3
CSB	ı	is non-active, D	I/O is enable B0 to DB7 is	ed only when CSE high impedance. hterface, so this pi	is "L". When chip selec	1 1
RESB	I	Reset input pin When RESB is				1
A0	ı	It determines when A0="H": Indicate A0="L": Indicate	hether the da es that D0 to es that D0 to	ita bits are data or D7 are display da D7 are control da	ta.	1

		Read/W	rite execution o	ontrol pin (PS[0:1]=[L:H])	
		PS2	MPU type	/WR(R/W		
RWR	ı	Н	6800-series	R/W	Read/Write control input pin R/W="H": read R/W="L": write	1
	, I	L	8080-series	/WR	Write enable clock input pin The data on D0 to D7 are latched at the rising edge of the /WR signal	1
		When in	the serial inter	face must f	ix to "H"	
		Read/W	rite execution o	ontrol pin (PS[0:1]=[L:H])	
		PS2	MPU Type	/RD (E)	Description	
ERD	I	Н	6800-series	E	Read/Write control input pin R/W="H": When E is "H", D0 to D7 are in an output status. R/W="L": The data on D0 to D7 are latched at the falling edge of the E signal.	1
		L	8080-series	/RD	Read enable clock input pin When /RD is "L", D0 to D7 are in an output status.	
	When in	the serial inter	face must f	ix to " H"		
D7(SCLK) D6(SDA) D5(A0) D4(CSB) D3 to D0		8-bit bi-c micropro When ch When u D7: seria D5: com D3,D2.D	directional data ocessor data bunip select is not sing serial interal input clock (S	bus that is active, D0 erface: 4-L GCLK); D6: ection (A0) to "H"	serial input data (SDA); D4: chip select pin(CSB)	
D7 to D6 (SA)	I/O	D7: serial D6: serial D3, D2: connecting I2C interfrom the applicating SDA_OI divider is resistant will not be input from that ignoral acknowless and a valid to the possible D6, D3, D1: D0, D1:	ing SDA_OUT to face compatible a serial data line a serial data line a serial data line at the serial	CLK) DA_IN) rial data act o SDA_IN e. Having the is advantate oplication we yestem SDA the bus pure the during e a valid lo it output the ledge bit. I equired, it is a_OUT pace	eknowledge for the I ² C interface. By externally, the SDA line becomes fully ne acknowledge output separated ageous in chip on glass (COG) where the track resistance from the line can be significant, a potential all-up resistor and the ITO track of the acknowledge cycle the ST7576 agic 0 level. By splitting the SDA_IN the device could be used in a mode in COG applications where the is necessary to minimize the track of to the system SDA line to guarantee the speether (SDA). 1), must fix to "H" or "L" seed must fix to "H" or "L"	8

ST7576

CD DRIVER SUP	PLY		
osc	I	When the on-chip oscillator is used, this input must be connected to VDD1. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock.	1
ower Supply Pin	s		
VSS1	Power	Digital ground: must be connected with VSS2	4
VSS2	Power	Analog ground: must be connected with VSS1	6
VDX2	Power	Testing mode power. Must be floating.	3
VDD1	Power	Digital Supply voltage:1.8V~3.3V The 2 supply rails V _{DD1} and V _{DD2} could be connected together. Digital Option pin must connect to VDD1 to pull high	5
VDD2	Power	Analog Supply voltage: $1.8V\sim3.3V$ The 2 supply rails V_{DD1} and V_{DD2} could be connected together.	4
XV0	Power	Negative LCD driver supply voltage XV00, XV0I & XV0S should be separated in ITO layout. XV00, XV0I & XV0S should be connected together in FPC layout.	7
V0	Power	Positive LCD driver supply voltage V0 ≥ VG ≥ VM ≥ VSS ≥ XV0 V0O, V0I & V0S should be separated in ITO layout. V0O, V0I & V0S should be connected together in FPC layout.	7
VG	Power	LCD driving voltage for segments VGO, VGI & VGS should be separated in ITO layout. VGO, VGI & VGS should be connected together in FPC layout.	7
VMO	Power	VM output. LCD driving voltage for commons.	3
VRS	Power	Monitor Voltage Regulator level, must be left open.	1

Configuration Pins	<u> </u>				
СР	ı	Set Booster stages. ("L"=4X; "H"=5X) CP pin set the default value of booster stages after reset , and booster stage can be changed by software instruction	1		
BR	ı	Set LCD bias ratio. ("L"=1/7; "H"=1/9) BR pin set the default value of bias ratio after reset , and bias ratio can be changed by software instruction	1		
TMX	ı	Mirror X: SEG bi-direction selection TMX connect to VSS: normal direction (SEG0→SEG101) TMX connect to VDD: reverse direction (SEG101→SEG0)	1		
TMY	Mirror Y: COM bi-direction selection TMY connect to VSS (TMY=0): normal direction				
Test Pin					
T0~T8	т	Do NOT use. Reserved for testing. Must be floating	9		
T11	Т	Do NOT use. Reserved for testing. Must be pull high	1		
T12	Т	Do NOT use. Reserved for testing. Must be pull low	1		

ST7576 I/O PIN ITO Resister Limitation

PIN Name	ITO Resister
PS[2:0], OSC, CP, BR, T11, T12	No Limitation
T0~T8, VRS, VDX2, TMX, TMY	Floating
VDD1, VDD2, VSS	<100Ω
V0(V0I, V0O, V0S), VG(VGI, VGO, VGS), XV0(XV0I, XV0O, XV0S), VM	<500Ω
A0, /WR, /RD, CSB, D7D0	<1ΚΩ
RESB	RESB<10KΩ

6. FUNCTIONS DESCRIPTION

MICROPROCESSOR INTERFACE

Chip Select Input

There is CSB pin for chip selection. The ST7576 can interface with an MPU when CSB is "L". When CSB is "H", these pins are set to any other combination, A0, /RD(E), and /WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel / Serial Interface

ST7576 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS [0:2] pin as shown in table 1.

Table 1. Parallel/Serial Interface Mode

PS2	PS1	PS0	State
"L"	"L"	"L"	4 Pin-SPI MPU interface
"H"	"L"	"L"	3 Pin-SPI MPU interface
"L"	"H"	"L"	8080-series parallel MPU interface
"H"	"H"	"L"	6800-series parallel MPU interface
"H"	"H"	"H"	I ² C interface

Parallel Interface

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS2 as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and WR(R/W) as shown in table 3.

Table 2. Microprocessor Selection for Parallel Interface

PS2	PS1	PS0	CSB	A0	/RD (E)	/WR (R/W)	D0 to D7	MPU bus
Н	Н	L	CSB	A0	E	R/W	D0 to D7	6800-series
L	Н	Ĺ	CSB	A0	/RD	/WR	D0 to D7	8080-series

Table 3. Parallel Data Transfer

Common	6800-	series	8080-	series				
40	Е	R/W	/RD	/WR	Description			
A0	(/RD)	(WR)	(E)	(R/W)				
Н	Н	Н	L	Н	Display data read out			
Н	Н	L	Н	L	Display data write			
L	Н	Н	L	Н	Register status read			
L	Н	Ĺ	Н	L	Writes to internal register (instruction)			

NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, /WR(R/W) as in case of 6800-series mode.

Serial Interface

Serial Mode	PS2	PS1	PS0	CSB	A0
4-line SPI interface	L	L	L	CSB	Used
3-line SPI interface	Н	L	L	CSB	Not Used Fix to "H"
I ² C interface	Н	Н	Н	Not Used Fix to "H"	Not Used Fix to "H"

PS2= "L", PS1= "L", PS0= "L": 4-line SPI interface

When the ST7576 is active (CSB="L"), serial data (D6) and serial clock (D7) inputs are enabled. When CSB is "High", the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication is controlled by the register selection pin (A0). The signals transferred on data bus will be display data when A0 is high and will be instruction when A0 is low. The read feature is not supported in this mode. Serial data on SDA (D6) is latched at the rising edge of serial clock on SCLK (D7). After the eighth serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access.

PS2= "L", PS1= "L", PS0= "H": 3-line SPI interface

When ST7576 is active (CSB="L"), SDA-out, SDA-in and SCL inputs are enabled. When ST7576 is not active (CSB="H"), the internal 8-bit shift register and the 3-bit counter are reset. The A0 pin is not available in this mode. Before issuing serial data, an A0 bit is required to indicate the access is data or instruction. The read feature is not supported in this mode except ID code read feature. Serial data on SDA (D6) is latched at the rising edge of serial clock on SCLK (D7). After the eighth serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access.

PS2= "H", PS1= "H", PS0= "H": I2C Interface

The I²C interface receives and executes the commands sent via the I²C Interface. It also receives RAM data and sends it to the RAM.

The I²C Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.6.

START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.7.

SYSTEM CONFIGURATION

The system configuration is illustrated in Fig.8.

- Transmitter: the device, which sends the data to the bus
- Receiver: the device, which receives the data from the bus
- Master: the device, which initiates a transfer, generates clock signals and terminates a transfer
- Slave: the device addressed by a master
- Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message
- Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- Synchronization: procedure to synchronize the clock signals of two or more devices.

ACKNOWLEDGE

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. Acknowledgement on the I²C Interface is illustrated in Fig.9.

I²C Interface protocol

The ST7576 supports command, data write addressed slaves on the bus.

S

Start

Condition

Fig 9

SCL from

Master

Before any data is transmitted on the I^2C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (01111**00**,01111**01**, 01111**10** and 01111**11**) are reserved for the ST7576. The least significant bit of the slave address is set by connecting the input SA0 and SA1 to either logic 0 or logic 1 (V_{DD1}). The I^2C Interface protocol is illustrated in Fig.10.

Acknowledgement on the I²C Interface

Clock pulse for acknowledgement

The sequence is initiated with a START condition (S) from the I^2C Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I^2C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves.

A command word consists of a control byte, which defines Co and A0, and a data byte.

The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7576 device. If the A0 bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the bus master issues a STOP condition (P). If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master.

Data Transfer

The ST7576 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Fig. 11. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in Fig. 12. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.

DISPLAY DATA RAM (DDRAM)

The ST7576 contains a 66X102 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 66(8 pageX8 bit +1 pageX1 bit +1 pageX1 bit) X 102. There is a direct correspondence between X-address and column output number. It is 66-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines (0~63 COM) and 8th page with single line (D0)(64COM) and 9th page with a single line (D0)(COMS (ICOM). Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

Page Address Circuit

This circuit is for providing a Page Address to Display Data RAM. It incorporates 4-bit Page Address register changed by only the "Set Page" instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid.

Line Address Circuit

This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in Fig. 10. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 102-bit RAM data to the display data latch circuit. When icon is selected by setting icon page address, display data of icons are not scrolled because the MPU cannot access Line Address of icons.

ST7576

Column Address Circuit

Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM as shown in figure 16. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously.

ADDRESSING

Data is downloaded in bytes into the RAM matrix of ST7576. The display RAM has a matrix of 66 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101),Y 0 to 9 (1001) .Addresses outside these ranges are not allowed. In vertical addressing mode (V=1) the Y address increments after each byte. After the last Y address (Y = 8), Y wraps around to 0 and X increments to address the next column. In horizontal addressing mode (V=0) the X address increments after each byte. After the last X address(X = 101) X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y = 0)

Data structure

Data structure

Fig.16 Display Data RAM Map (66 COM)

Partial Display on LCD

The ST7576 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages.

Fig 17 Reference Example for Partial Display

Fig 18 Partial Display (Partial Display Duty=17, initial COM0=0)

-COM22 -COM23

-COM0 -COM1 -COM2 -COM3

Fig 19 Moving Display (Partial Display Duty=17, Initial COM0=8)

Liquid Crystal Driver Power Circuit

The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction.

External Power Components

7. RESET CIRCUIT

Setting RESB to "L" or Reset instruction can initialize internal function.

When RESB becomes "L", following procedure is occurred.

Page address: 0 Column address: 0

Display control: Display blank COM Scan Direction MY: 0 SEG Select Direction MX: 0

DO=0

Oscillator: OFF

Power down mode (PD = 1)

normal instruction set (H[1:0] = 00)

Display blank (E = D = 0)

Address counter X [6:0] = 0, Y [3:0] = 0

Bias system: depend on Hardware (BR) setting Booster stage: depend on Hardware (CP) setting

V0 is equal to 0; the HV generator is switched off (VOP [6:0] = 0)

After power-on, RAM data are undefined

While RESB is "L" or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at D0. After D0 becomes "L", any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used.

8. INSTRUCTION TABLE

INSTRUCTION	•		WR			C	OMMAI	ND BYT	E			DESCRIPTION
INSTRUCTION	A0	(R/W)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
H=0 or 1												
NOP	0	0	0	0	0	0	0	0	0	0	No operation	
Function set	0	0	0	0	1	0	0	PD	V	Н	Power-down; entry mode;	
Partial screen mode	0	0	0	0	1	0	1	Х	Х	PS	Partial screen enable	
Display part	0	0	0	0	1	1	1	DP2	DP1	DP0	Set display part for partial screen mode	
Write data	1	0	D_7	D_6	D_5	D_4	D_3	D ₂	D_1	D ₀	Write data to RAM	

INOTELICTION	40	WR			C	ОММА	ND BYT	Έ			DESCRIPTION	
INSTRUCTION	A0	(R/W)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
H=0												
Set V _{LCD} range	0	0	0	0	0	1	0	0	0	PRS	V _{LCD} range L/H select	
Display control	0	0	0	0	0	0	1	D	0	Е	Sets display configuration	
Set Y address of RAM	0	0	0	1	0	0	Y ₃	Y ₂	Y ₁	Y ₀	Sets Y address of RAM 0≦Y≦9	
Set X address of RAM	0	0	1	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀	Sets X address of RAM 0≤X≤101	
H=1												
Reserved	0	0	0	0	0	0	0	0	0	Х	Do not use	
Reserved	0	0	0	0	0	0	0	0	1	Х	Do not use	
Bias system	0	0	0	0	0	1	0	BS ₂	BS ₁	BS ₀	Sets bias system (BSx)	
Reserved	0	0	0	1	Х	Х	Х	Х	Х	Х	Do not use(reserved for test)	
Set V _{OP}	0	0	1	V _{OP6}	V _{OP5}	V _{OP4}	V _{OP3}	V _{OP2}	V _{OP1}	V _{OP0}	Write V _{OP} to register	

9. INSTRUCTION DESCRIPTION

Function Set

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	0	PD	V	Н

Flag	Description
	PD=0:chip is active
	PD=1:chip is in power down mode
PD	All LCD outputs at V _{SS} (display off), bias generator and V0 generator off, V _{OUT} can be
	disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data
	can be written.
- 11	H are used to select different instruction block
Н	Follow the instruction table

Partial screen mode

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	Χ	Х	PS

Flag	Description
	Full display mode or partial screen mode selection
PS	PS=0: Full display mode with MUX 1:66
	PS=1: Partial screen mode with MUX 1:17

Display part

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	1	DP2	DP1	DP0

Flag		Status		Des	cription
				Display common	DDRAM position
	0	0	0	Start from common 0	Start from page 0
	0 0 1		1	Start from common 8	Start from page 1
DP ₂ DP ₁ DP ₀	0	1	0	Start from common 16	Start from page 2
	0	1	1	Start from common 24	Start from page 3
	1	0	0	Start from common 32	Start from page 4
	1 0 1		Start from common 40	Start from page 5	

Read data

8-bit data of Display Data from the RAM location specified by the column address and page address can be read to the microprocessor.

-	۷0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
	1	1				Read	data			

Write data

8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
1	0				Write	data			

H="0"

Set VOP range

VOP range L/H select

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	0	0	PRS

PRS=0: VOP programming range LOW PRS=1: VOP programming range HIGH

Display Control

This bits D and E selects the display mode.

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	1	D	0	Е

Flag	Des	Description							
	D	Е	The bits D and E select the display mode.						
	0	0	Display blank						
D,E	1	0	Normal display						
	0	1	All display segments on						
	1	1	Inverse video mode						

Set Y address of RAM

Y [3:0] defines the Y address vector address of the display RAM.

· [ete] demited the r data ede recter data ede et alle display i a ani										
	A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	0	0	Y_3	Y_2	Y ₁	Y_0

Y ₃	Y ₂	Y ₁	Y ₀	CONTENT	ALLOWED X-RANGE					
0	0	0	0	Page0 (display RAM)	0 to 101					
0	0	0	1	Page1 (display RAM)	0 to 101					
0	0	1	0	Page2 (display RAM)	0 to 101					
0	0	1	1	Page3 (display RAM)	0 to 101					
0	1	0	0	Page4 (display RAM)	0 to 101					
0	1	0	1	Page5 (display RAM)	0 to 101					
0	1	1	0	Page6 (display RAM)	0 to 101					
0	1	1	1	Page7 (display RAM)	0 to 101					
1	0	0	0	Page8 (display RAM)	0 to 101					
1	0	0	1	Page9 (display RAM)	0 to 101					

Set X address of RAM

The X address points to the columns. The range of X is 0...101.

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	X ₆	X_5	X_4	X ₃	X_2	X ₁	X_0

X ₆	X ₅	X_4	X ₃	X ₂	X ₁	X ₀	Column address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
:	:	•	:	:	:	•	:
1	1	0	0	0	1	0	98
1	1	0	0	0	1	1	99
1	1	0	0	1	0	0	100
1	1	0	0	1	0	1	101

H="1"

System Bias

Select LCD bias ratio of the voltage required for driving the LCD.

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	BS ₂	BS₁	BS₀

BS ₂	BS ₁	BS ₀	Bias	Recommend Duty
0	0	0	11	1:100
0	0	1	10	1:81
0	1	0	9	1:65/1:68
0	1	1	8	1:49
1	0	0	7	1/40:1/36
1	0	1	6	1/24
1	1	0	5	1:18/1:16
1	1	1	4	1:10/1:9/1:8

LCD bias voltage

Symbol	Bias voltage for 1/9 bias	
V0	V0	
V3	2/9 X V0	
V4	2/9 X V0	
VGND	VSS	
XV0	-V0	

Set VO value

I	A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	1	V_{OP6}	V_{OP5}	V_{OP4}	V_{OP3}	V_{OP2}	V_{OP1}	V_{OP0}

The operation voltage V_{LCD} can be set by software.

$$VOP=(a+V_{OPX} \cdot b)$$
 (1)

The maximum voltage that can be generated is depending on the VDD1 voltage and the display load current. Two overlapping VLCD ranges are selectable via the command "Booster control". For the LOW (PRS=0) range a=a1 and for the HIGH (PRS=1) range a=a2 with steps equal to "b" in both ranges. Note that the charge pump is turned off if VOP [6;0] and the bit PRS are all set to zero

* The Vop must be operated in the range of 4V to 9.5V for the normal or partial display mode application, so that customer have some range(<4V; >9.5V) to adjust contrast by themselves.

 SYMBOL
 VALUE
 UNIT

 a1
 2.94(PRS=0)
 V

 a2
 6.75(PRS=1)
 V

 b
 0.03
 V

Table 4 Typical values for parameter for the HV-Generator programming

10. COMMAND DESCRIPTION

Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits

Fig 22 Initializing with the Built-in Power Supply Circuits

11. LIMITING VALUES

In accordance with the Absolute Maximum Rating System; see notes 1 and 2.

Parameter	Symbol	Conditions	Unit
Power Supply Voltage	V _{DD1}	-0.3 ~ 3.6	V
Power supply voltage	V_{DD2}	-0.3 ~ 3.6	V
LCD Power supply voltage	V0	-0.3~15	V
LCD Power supply voltage	XV0-VG	-15~0.3	V
LCD Power driving voltage	VG, VM	-0.3 ~ VDD2	V
Operating temperature	TOPR	–30 to +85	°C
Storage temperature	TSTR	–65 to +150	°C

Fig 23

Notes

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.
- 3. Insure that the voltage levels of VG, VM, VSS, and XV0 are always such that

$$V0 \ge VDD2 \ge VG > VM > VSS \ge XV0$$

12. HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS devices").

13. DC CHARACTERISTICS

 V_{DD1} = 1.8V to 3.3V; V_{SS} = 0V; T_{amb} = -30°C to +85°C; unless otherwise specified.

Item	Symbol	Condition	Condition				Units	Applicable
item	Symbol	Condition		Min.	Тур.	Max.	UIIIIS	Pin
Operating Voltage (1)	V_{DD1}			1.8		3.3	V	V_{DD1}
Operating Voltage (2)	V_{DD2}	(Relative to	elative to VSS) 2.		_	3.3	V	V_{DD2}
High-level Input Voltage	V _{IHC}		0			V_{DD1}	V	
Low-level Input Voltage	V _{ILC}		V		_	0.3 x V _{DD1}	V	
High-level Output Voltage	V _{OHC}	I _{OUT} =1mA; V _{DD1} =1.8V		0.8 x V _{DD1}	_	V_{DD1}	V	
Low-level Output Voltage	V _{OLC}	I _{OUT} =1mA;	I _{OUT} =1mA; V _{DD1} =1.8V		_	0.2 x V _{DD1}	V	
Input leakage current	Li			-1.0	_	1.0	μ A	
Output leakage current	I _{LO}			-3.0	_	3.0	μ A	
Liquid Crystal Driver ON	Ron	Ta = 25°C	Vop= 9.0 V ∆V=0.9V	_	0.7	_	ΚΩ	COMn
Resistance	ON	1 u - 20 0	VG = 2.0 V ∆V=0.2V	_	0.7	_		SEGn
Frame frequency	FR	FR default	(1,0,0)	71	75	79	Hz	

	Item Symbol		Condition		Rating	Units	Applicable Pin	
	пеш	Syllibol	Condition	Min.	Тур.	Max.	Units	Applicable Fill
ver	Positive power for	V0	(V0-XV0)	3		12	V	V0
l Power	common driver	VO	(٧٥-٨٧٥)	3		12	V	٧٥
Internal	Negative power for	XV0	(XV0-V0)	-3		-12	V	XV0
Int	common driver	740	(^\0-\0)	-3		-12	V	AVU

^{*}Recommand: LCD Vop range is 4V-9.5V

Dynamic consumption current: During Display, with Internal Power Supply ON, current consumed by whole IC (bare die).

Test pattern	Symbol	Condition		Rating		- Units	Notes
rest pattern	Symbol	Condition	Min.	Тур.	Max.	Units	Notes
Display Pattern SNOW (static)	Iss	$V_{DD} = 3.0 \text{ V},$ Booster X5 $V0 - V_{SS} = 9.0 \text{ V}$ Bias=1/9	ı	110	150	uA	
Power Down	I _{SS}	Ta = 25°C	_	0.7	10	uA	
Display Pattern SNOW (dynamic, 4-SPI)	Iss	V_{DD} = 3.0 V, Booster X5 $V0 - V_{SS}$ = 9.0 V Bias=1/9 Data write frequency: 1M Hz	ı			uA	

14. TIMING CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

(VDD = 3.3V , Ta =-30~85°C)

lta-m	Cianal	Come heal	Condition	Rat	ing	l lusita
Item	Signal	Symbol	Condition	Min.	Max. — — — — — — — 70	Units
Address hold time	40	tAH8		10	_	
Address setup time	A0	tAW8		80	_	
System cycle time	WR	tCYC8		350	_	
Enable L pulse width (WRITE)	WR	tCCLW		70	_	
Enable H pulse width (WRITE)	VVIC	tCCHW		50	_	
Enable L pulse width (READ)	RD	tCCLR		120	_	ns
Enable H pulse width (READ)	, KD	tCCHR		50		
WRITE Data setup time		tDS8		60	_	
WRITE Data hold time	D0 to D7	tDH8		10	_	
READ access time	D0 10 D7	tACC8	CL = 100 pF	_	70	
READ Output disable time		tOH8	CL = 100 pF	10	50	

(VDD = 2.8V , Ta =-30~85°C)

Itama	Ciamal	Comple of	Condition	Rat	ing	Units
Item	Signal	Symbol	Condition	Min.	Max. — — — — — — — — — — — — — — — — — — —	Units
Address hold time	40	tAH8		15	_	
Address setup time	A0	tAW8		120	_	
System cycle time	WR	tCYC8		450	_	
Enable L pulse width (WRITE)	WR	tCCLW		120	_	
Enable H pulse width (WRITE)	VVIX	tCCHW		100	_	
Enable L pulse width (READ)	RD	tCCLR		120	_	ns
Enable H pulse width (READ)	, KD	tCCHR		100	_	
WRITE Data setup time		tDS8		90	_	
WRITE Address hold time	D0 to D7	tDH8		15	_	
READ access time		tACC8	CL = 100 pF	_	140	
READ Output disable time		tOH8	CL = 100 pF	10	100	

 $(VDD = 1.8V, Ta = -30~85^{\circ}C)$

Item	Signal	Cymhol	Condition	Rat	ing	Units
item	Signal	Symbol	Condition	Min.	Max. — — — — — — — — — 240	Units
Address hold time	A0	tAH8		30	_	
Address setup time	AU	tAW8		150	_	
System cycle time	WR	tCYC8		550	_	
Enable L pulse width (WRITE)	WR	tCCLW		170	_	
Enable H pulse width (WRITE)	VVIK	tCCHW		150	_	
Enable L pulse width (READ)	RD	tCCLR		170	_	ns
Enable H pulse width (READ)	KD.	tCCHR		150		
WRITE Data setup time		tDS8		120	_	
WRITE Address hold time	D0 to D7	tDH8		30	_	
READ access time	D0 10 D1	tACC8	CL = 100 pF	_	240	
READ Output disable time		tOH8	CL = 100 pF	10	200	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≤ (tCYC8 – tCCLR – tCCHR) are specified.

^{*2} All timing is specified using 20% and 80% of VDD1 as the reference.

^{*3} tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.

System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)

(VDD = 3.3V , Ta =-30~85°C)

Item	Cianal	Symbol	Condition	Rating		Units
item	Signal	Symbol	Condition	Min.	Max. — — — — — 70 50	Units
Address hold time		tAH6		10	_	
Address setup time	A0	tAW6		80	_	
System cycle time		tCYC6		240	_	
Enable L pulse width (WRITE)	WR	tEWLW		70	_	
Enable H pulse width (WRITE)	VVK	tEWHW		50	_	
Enable L pulse width (READ)	RD	tEWLR		70	_	ns
Enable H pulse width (READ)	, KD	tEWHR		130		
WRITE Data setup time		tDS6		60	_	
WRITE Data hold time	D0 to D7	tDH6		10	_	
READ access time	D0 10 D7	tACC6	CL = 100 pF	_	70	
READ Output disable time		tOH6	CL = 100 pF	10	50	

(VDD = 2.8V, Ta =- $30\sim85$ °C)

ltown	Simpl	Comple of	Condition	Rati	ing	l luita
Item	Signal	Symbol	Condition	Min.	Max. — — — — — — — — —	Units
Address hold time		tAH6		15	_	
Address setup time	A0	tAW6		100	_	
System cycle time		tCYC6		340	_	
Enable L pulse width (WRITE)	WR	tEWLW		120	_	
Enable H pulse width (WRITE)	VVK	tEWHW		100	_	
Enable L pulse width (READ)	RD	tEWLR		120	_	ns
Enable H pulse width (READ)	, KD	tEWHR		100	_	
WRITE Data setup time		tDS6		120	_	
WRITE Address hold time	D0 to D7	tDH6		15	_	
READ access time	7 00 10 07	tACC6	CL = 100 pF	_	140	
READ Output disable time		tOH6	CL = 100 pF	10	100	

(VDD = 1.8V , Ta =-30~85°C)

Itom	Cianal	Cymbol	Condition	Rating		Units
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		30		
Address setup time	A0	tAW6		150	_	
System cycle time		tCYC6		440	_	
Enable L pulse width (WRITE)	WR	tEWLW		170	_	
Enable H pulse width (WRITE)	TVVK	tEWHW		150	_	
Enable L pulse width (READ)	-RD	tEWLR		170	_	ns
Enable H pulse width (READ)	לאט	tEWHR		150	_	
WRITE Data setup time		tDS6		180	_	
WRITE Data hold time	D0 to D7	tDH6		30	_	
READ access time	יט טו טטי	tACC6	CL = 100 pF		240	
READ Output disable time		tOH6	CL = 100 pF	10	200	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≤ (tCYC6 – tEWLR – tEWHR) are specified.

^{*2} All timing is specified using 20% and 80% of VDD1 as the reference.

^{*3} tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

SERIAL INTERFACE(4-Line Interface)

(VDD = 3.3V , Ta =-30~85°C)

Item	Signal	Symbol	Condition	Rati	Units	
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		120		
SCL "H" pulse width	-	tSHW		60		
SCL "L" pulse width		tSLW		60	_	
Address setup time	A0	tSAS		20		
Address hold time	AU	tSAH		90		ns
Data setup time	SI	tSDS		20		
Data hold time		tSDH		10	_	
CS-SCL time	CSB	tCSS		20	_	
CS-SCL time	COB	tCSH		120	_	

(VDD = 2.8V , Ta =-30~85°C)

Item	Signal	Symbol	Condition	Rating		Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		200	_	
SCL "H" pulse width	SCL	tSHW		100	_	
SCL "L" pulse width		tSLW		100	_	
Address setup time		tSAS		30	_	
Address hold time	A0	tSAH		120	_	ns
Data setup time	CI.	tSDS		30	_	
Data hold time	SI	tSDH		20	_	
CS-SCL time	CSB	tCSS		30	_	
CS-SCL time	CSB	tCSH		150	_	

(V_{DD}=1.8V,Ta=-30~85°€)

			Condition	Pot	in a	
Item	Signal	Symbol		Rating		Units
	J.g.i.a.		3311411411	Min.	Max.	
Serial Clock Period		tSCYC		280	_	
SCL "H" pulse width	SCL	tSHW		140	_	
SCL "L" pulse width		tSLW		140	_	
Address setup time	40	tSAS		50	_	
Address hold time	A0	tSAH		150	_	ns
Data setup time	SI	tSDS		50	_	
Data hold time	31	tSDH		50	_	
CS-SCL time	CSB	tCSS		40	_	
CS-SCL time	CSB	tCSH		180	_	1

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDD1 as the standard.

SERIAL INTERFACE (3-Line Interface)

(V_{DD}=3.3V,Ta=-30~85°C)

Item	Signal	Symbol	Condition	Rati	ng	Units
nem	Signal	Symbol	Condition	Min.	Max.	Oints
Serial Clock Period		tSCYC		120	_	
SCL "H" pulse width	-	tSHW		60	_	
SCL "L" pulse width		tSLW		60	_	
Data setup time	SI	tSDS		20	_	ns
Data hold time		tSDH		10	_	
CS-SCL time	CSB	tCSS		20	_	
CS-SCL time		tCSH		130	_	

(V_{DD}=2.8V,Ta=-30~85°C)

Item	Signal	Symbol	Condition	Rati	Units	
	Signal	Зуппоп	Condition	Min.	Ullits	
Serial Clock Period		tSCYC		180	_	
SCL "H" pulse width	SCL	tSHW		90	_	
SCL "L" pulse width		tSLW		90	_	
Data setup time	SI	tSDS		30	_	ns
Data hold time		tSDH		20	_	
CS-SCL time	CSB	tCSS		30	_	
CS-SCL time		tCSH		160	_	

(V_{DD}=1.8V,Ta=-30~85°C)

Item	Signal	Cumbal	Condition	Rati	ing	Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		240	_	
SCL "H" pulse width	SCL	tSHW		120	_	
SCL "L" pulse width		tSLW		120	_	
Data setup time		tSDS		60	_	ns
Data hold time	- SI	tSDH		50	_	
CS-SCL time	CSB	tCSS		40	_	
CS-SCL time		tCSH		190	_	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

SERIAL INTERFACE(I²C Interface)

(V_{DD}=3.3V,Ta=-30~85°C)

Item	Cianal	Comple of	Condition	Ra	ting	Units
item	Signal	Symbol	Condition	Min.	Max.	Units
SCL clock frequency	SCL	FSCLK		-	400	KHz
SCL clock low period	SCL	TLOW		1.3	-	us
SCL clock high period	SCL	THIGH		0.6	-	us
Data set-up time	SI	TSU;Data		100	-	ns
Data hold time	SI	THD;Data		0	0.9	us
SCL,SDA rise time	SCL	TR		20+0.1Cb	300	ns
SCL,SDA fall time	SCL	TF		20+0.1Cb	300	ns
Capacitive load represented by each bus line		Cb		-	400	pF
Setup time for a repeated START condition	SI	TSU;SUA		0.6	-	us
Start condition hold time	SI	THD;STA		0.6	-	us
Setup time for STOP condition		TSU;STO		0.6	-	us
Tolerable spike width on bus		TSW		-	50	ns
BUS free time between a STOP and START condition	SCL	TBUF		1.3		us

^{*2} All timing is specified using 20% and 80% of VDD1 as the standard.

15. RESET TIMING

 $(VDD = 3.3V , Ta = -30 to 85^{\circ}C)$

Item	Cianal	Cumbal	Condition		Rating		
	Signal	Symbol	Condition	Min. Typ.		Max.	Units
Reset time		tR		_	_	1.5	us
Reset "L" pulse width	RESB	tRW		1.5	_	_	us

(VDD = 2.8V, Ta = -30 to $85^{\circ}C$)

Item	Signal	Symbol	Condition		Rating	Max. 2.0	Units
	Signal	Symbol	Condition	Min.	Тур.	Max.	
Reset time		tR		_	_	2.0	us
Reset "L" pulse width	RESB	tRW		2.0	_	_	us

 $(VDD = 1.8V, Ta = -30 \text{ to } 85^{\circ}C)$

Item	Signal	Symbol	Condition		Rating		Units
	Signal	Symbol	Condition	Min.	Тур.	Max.	Units
Reset time		tR		_	_	3.0	us
Reset "L" pulse width	RESB	tRW		3.0			us

APPLICATION NOTE

ST7576

Resolution: 66(65COM+ICON)*102(SEG) OSC: VDD1 Interface: 6800 series T11:VDD1 Internal analog circuit **T12:VSS Internal OSC** PS0: VSS **Booster: X5** PS1: VDD1 Bias ratio default: 1/9 PS2: VDD1 (bias ratio can be changed by instruction) CP: VDD1 C=1.0 uF **BR: VDD1**

TMY=VSS

Resolution: 66(65COM+ICON)*102(SEG) OSC: VDD1 Interface: 8080 T11:VDD1 Internal analog circuit **T12:VSS Internal OSC** PS0: VSS Booster: X5 PS1: VDD1 Bias ratio default: 1/9 PS2:VSS (bias ratio can be changed by instruction) CP: VDD1 C=1.0 uF BR: VDD1

TMY:VSS

Resolution: 66(65COM+ICON)*102(SEG) OSC: VDD1 Interface:4-line T11:VDD1 Internal analog circuit **T12:VSS Internal OSC** PS0: VSS **Booster: X5** PS1:VSS Bias ratio default: 1/9 PS2:VSS (bias ratio can be changed by instruction) CP: VDD1 C=1.0 uF **BR: VDD1**

TMY:VSS

Resolution: 66(65COM+ICON)*102(SEG) OSC: VDD1 Interface:3-line T11:VDD1 Internal analog circuit **T12:VSS Internal OSC** PS0: VSS **Booster: X5** PS1:VSS Bias ratio default: 1/9 PS2:VDD1 (bias ratio can be changed by instruction) CP: VDD1 C=1.0 uF BR: VDD1

TMY:VSS

Resolution: 66(65COM+ICON)*102(SEG) OSC: VDD1 Interface:I2C T11:VDD1 Internal analog circuit **T12:VSS Internal OSC** PS0:VDD1 **Booster: X5** PS1:VDD1 Bias ratio default: 1/9 PS2:VDD1 (bias ratio can be changed by instruction) CP: VDD1 C=1.0 uF BR: VDD1 SA[1:0]=(0,0) TMY:VSS

Reference to ITO Layout

	ST7576 Serial Specification Revision History							
Version	Date	Description						
		1 All layer change						
0.6a	2006/05/10	2 Fig arrange						
0.0a	2000/05/10	3 Add reference to ITO layout						
		4 Test pin size is reduced						
0.6b	2006/05/24	P11						
0.6c	2006/06/01	To remove the capacitor between V0 and XV0						
0.6d	2006/06/19	Modify function set						
		P1 : Voltage converter ; display supply voltage range						
	2006/08/14	P16: VSS1, VSS2						
0.7a		P17: Mode0, Mode1=>T11,T12						
		P34 : limit Vop application range						
		P36-P47: take off TBD						
0.7b	2006/10/05	Remove external V0						
0.76	2000/10/05	Modify P37 DC characteristic						
0.7c	2006/12/15	Modify P3						
		Modify display supply voltage range at P1						
		Modify VDX2O pin description at P16						
1.0	2007/01/25	Modify TEN to X in instruction table at P30						
1.0	2007/01/25	Modify V0, XV0 limit value to 15V at P36						
		Modify Max value of internal of DC characteristic at P37						