# Reimplementing and Improving in RaceID

Pei Lin, 66672977

School of Information Science and Technology ShanghaiTech University

May 14, 2019

- Introduction
- 2 Data
- Cluster
- 4 Dimension Reduction
- Parallel Programing
- 6 Acknowledgment

- Introduction
- 2 Data
- Cluster
- 4 Dimension Reduction
- Parallel Programing
- 6 Acknowledgment

### Introduction

Clustering analysis has been widely applied to single cell RNA-sequencing data to discover cell types and cell states.

RaceID is published in Nature 2014 using the data from mouse intestinal which helps to discover the rare cell type.

#### Introduction to RaceID

#### RaceID is programed by R and the workflow is summarized below:

RaceID Data filter -> Gap Statistic to find the best K-> Kmeans( in different distance metric)--> silhouette score to evaluate



# Introduction to My Work

#### What I have done:

- Reimplementing by Python.
- Improvement by other papers.
- Parallel programing.
- Work in another data set.

- Introduction
- 2 Data
- Cluster
- 4 Dimension Reduction
- Parallel Programing
- 6 Acknowledgment

# **Data Type**

#### From:

- 1.Single-cell messenger RNA sequencing reveals rare intestinal cell types. (origin dataset)
- 2.Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells.



# **Data Filtering & scaling**

For genes: expressed in most cells(housekeeping gene)

For cells: total expression is too low.

For scaling:

$$\frac{\textit{GeneExpression}}{\textit{Mean}} \rightarrow \log(\textit{GeneExpression})$$

- Introduction
- 2 Data
- Cluster
- 4 Dimension Reduction
- Parallel Programing
- 6 Acknowledgment

## **Kmeans**

For Kmeans algorithm is not a convex problem, one question is how to find K and choose the initial point.

K: Calinski-Harabasz method, gap statistic

Initial point: kmeans++ method (supported by python package: sklearn.cluster)

# **Gap Statistic**

Main idea is Monte Carlo method,

$$Gap_n(k) = E(logW^*) - logW$$



Because K-means is unsupervised learning, gap statistic is just a reference.

- Introduction
- 2 Data
- Cluster
- 4 Dimension Reduction
- Parallel Programing
- 6 Acknowledgment

### **PCA**

$$X = U\Sigma V^T$$

#### PCA works for linear data.



# **tSNE**

$$P_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_k \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_k \exp(-||y_i - y_k||^2)}$$

$$C = \sum_k KL(P_i||Q_i)$$

tSNE usd manifold model and keep the characteristics of neighboring domain.

# **tSNE**





- Introduction
- 2 Data
- Cluster
- 4 Dimension Reduction
- Parallel Programing
- 6 Acknowledgment

#### Multi-thread

Map reduce, Spark, Openmp are popular in parallel programing. Use 10 threads to accelerating the clustering

$$MeanSpeedUp = 49\%$$

Amdahl's Law

```
no parallel time has passed: 18.286089 paralleled time has passed: 8.904707000000002
```

In R, finish the same work needs 14.2576s

- Introduction
- 2 Data
- Cluster
- 4 Dimension Reduction
- Parallel Programing
- 6 Acknowledgment

### Reference

- [1]Single-cell messenger RNA sequencing reveals rare intestinal cell types, Dominic Gru, Anna Lyubimova, Lennart Kester
- [2]Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells, Liying Yan, Mingyu Yang, Hongshan Guo, Lu Yang
- [3]Estimating the number of clusters in a data set via gap statistic, Robert Tibshirani, Guenther Weather
- [4] Visualizing data using t-SNE, Laurens van der Maaten, Geoffery Hinton

Thank You.