P5 实验设计报告

18373085 张海渝

一. 数据通路

图 1: 数据通路(以此图为基础,之后会说明修改的地方)

二. 模块规格

1. GetNpc: (程序计数器)

序号	功能名称	方向	功能描述
1	npc[31:0]	I	为下一 PC 值
2	reset	I	复位信号
3	clk	I	时钟信号
4	En	I	使能信号
5	PC[31:0]	0	当前 D 寄存器之前的 PC 值

- 1. 如果 Reset 信号有效时,用选择器将 PC 值复位。
- 2. 解释 En 信号: 当需要暂停时,即 D 寄存器需要暂停的时候,需要对该模块不能向下传值,即保持 D 寄存器之前的 PC 值不被修改。

2. IM: (指令获取)

序号	功能名称	方向	功能描述	
1	add[9:0]	I	指令地址	
2	Instr	О	输出的机器码	

模块解释:

- 1. add[11:2]是当前 PC 值的第 6-2 位(因为 ROM 地址为 5 位,并且 PC 每次加 4,相当于 ROM 加 1)。
 - 2. 用\$readmemh 载入机器码。
 - 3. 用寄存器储存机器码。

```
module IM(
   input [9:0] add,
   output [31:0] Instr
   );
  reg [31:0] ROM [1023:0];
  initial begin
    $readmemh("code.txt",ROM);
  end
  assign Instr=ROM[add];
endmodule
```

图 2: IM 模块代码图

3. GRF: (通用寄存器组, 也称寄存器文件、寄存器堆)

序号	功能名称	方向	功能描述
1	pc[31]	I	当前 PC 值
2	A1[4:0]	I	机器码的第 25-21 位,寄存器编号
3	A2[4:0]	I	机器码的第 20-16 位,寄存器编号
4	A3[4:0]	I	需要改变的寄存器
5	WD3[31:0]	I	寄存器需要改变为的值
6	reset	I	同步复位信号
7	clk	I	时钟信号

8	WE	I	是否写入寄存器信号
9	RD1[31:0]	О	A1 寄存器中的值
10	RD2[31:0]	О	A2 寄存器中的值

- 1.0号寄存器始终为0,不改变。
- 2.一共有32个带有使能端的寄存器。
- 3.需要注意: 首先这一模块是在 D/E 级, 其次 PC 值并不是 D 级的 PC 值而是通过 W 级传输过来的值, WD3 以及 WE 都是通过 W 级传输过来的, 还需要注意 RD1,RD2 并不是准确值,即并不是准确的寄存器里面的值,后面会通过转发暂停机制实现准确。

```
reg [31:0] a [31:0];
integer i;
initial begin
   for(i=0;i<=31;i=i+1) begin
      a[i]=0;
   end
end
assign RD1=a[A1];
assign RD2=a[A2];
always@(posedge clk) begin
   if(reset==1) begin
      for(i=0;i<=31;i=i+1) a[i]<=0;
   end
   else begin
      if(WE==1) begin
         if(A3!=0) begin
            $display("%d@%h: $%d <= %h", $time, pc, A3,WD3);
            a[A3]<=WD3;
         end
      end
   end
end
```

图 3: GRF 模块部分代码

4.ALU: (算数逻辑单元)

序号	功能名称	方向	功能描述
1	A[31:0]	I	进行操作的第一个数
2	B[31:0]	I	进行操作的第二个数
3	ALUctr[2:0]	I	进行操作的方式

4	ALUresult[31:0]	О	计算后的结果
---	-----------------	---	--------

1. ALUctr=0: 输出 0 值

ALUctr=1: 加法

ALUctr=2: 减法

ALUctr=3: 或 (or) 操作

ALUctr=4:输出 B 的值

ALUctr=其他: 输出 0

2. 此模块存在于 E/M 级,需要注意其两个操作数的正确与否,需要通过 转发机制实现,会在后面详细说明。

```
module ALU(A,B,ALUctr,ALUresult);
  input [31:0] A;
  input [31:0] B;
  input [2:0] ALUctr;
  output reg [31:0] ALUresult;
  always@(*) begin
    if(ALUctr==0) ALUresult<=0;
    else if(ALUctr==1) ALUresult<=A+B;
    else if(ALUctr==2) ALUresult<=A-B;
    else if(ALUctr==3) ALUresult<=A|B;
    else if(ALUctr==4) ALUresult<=B;
    else ALUresult<=0;
  end
endmodule</pre>
```

图 4: ALU 模块代码图

4. DM: (数据存储器)

序号	功能名称	方向	功能描述
1	addr[9:0]	I	进行操作的数据的地址
2	din[31:0]	Ι	数据
3	WE	I	控制是否 RAM 是否工作
4	Clk	Ι	时钟信号
5	Dout[31:0]	О	读出的数据
6	рс	I	当前 PC 值

模块解释:

1.此模块通过一组寄存器, 此模块在 M 级。

- 2.因为模块容量为 4kb, 所以进行操作的地址为 M/W 级 ALUoutM 计算结果的 11-2 位。且 PC 值为 M 级的 PC 值,会在前面进行传输下来。
 - 3.用 ans 代表当前 addr 的 32 位表达值。

```
module DM(pc,clk,reset,MemWrite,addr,din,dout);
  input [31:0] pc;
   input clk;
   input reset;
   input MemWrite;
   input [9:0] addr;
  input [31:0] din;
  output [31:0] dout;
   reg [31:0] a [1023:0];
   wire [31:0] ans;
   integer i;
   initial begin
     for(i=0;i<=1023;i=i+1) a[i]=0;
   assign dout=a[addr];
   assign ans={20'b0,addr[9:0],2'b0};
   always@(posedge clk) begin
      if(reset==1) begin
         for(i=0;i<=1023;i=i+1) a[i]<=0;
      else begin
         if(MemWrite==1) begin
            $display("%d@%h: *%h <= %h",$time,pc, ans,din);
            a[addr]<=din;
         end
      end
   end
endmodule
```

图 5: DM 模块代码图

6.EXT:(数据扩展器)

序号	功能名称	方向	功能描述
1	IMM[15:0]	I	进行扩展的数
2	ExtOp[1:0]	I	扩展的方式
3	ExtIMM[31:0]	О	扩展后的数据

模块解释:

1. ExtOp=0: 前 16 位 0 扩展

ExtOp=1: 符号扩展至 32 位

ExtOp=2: 后 16 位补 0 扩展

- 2. 用 ans (一个寄存器) 以及 for 循环的利用实现。
- 3. 此模块存在于 D/E 级, 会在 D/E 级

```
reg [31:0] ans;
   integer i;
   initial begin
  ans=0;
   end
   assign ExtIMM=ans;
   always@(*) begin
      if(ExtOp==0) begin
         for(i=31;i>=0;i=i-1) begin
            if(i>=16) begin
               ans[i]<=0;
            end
            else ans[i]<=IMM[i];</pre>
         end
      end
      else if(ExtOp==1) begin
         for(i=31;i>=0;i=i-1) begin
            if(i>=16) begin
               ans[i]<=IMM[15];
            end
            else ans[i]<=IMM[i];</pre>
         end
      end
      else if(ExtOp==2) begin
         for(i=31;i>=0;i=i-1) begin
            if(i>=16) begin
               ans[i]<=IMM[i-16];
            end
            else ans[i]<=0;
         end
      end
   end
endmodule
```

图 6: EXT 模块代码图

7. Control: (控制器)

序号	功能名称	方向	功能描述
1	opcode[5:0]	I	Special
2	funct[5:0]	I	Function
3	RegDst[1:0]	О	选择需要在 GRF 中写入数据的寄存器
4	ALUSrc	О	选择进行 ALU 操作的第二个操作数
5	MemtoReg[1:0]	О	选择存入 GRF 中寄存器的数据
6	RegWrite	О	是否在 GRF 中写入控制信号
7	MemWrite	О	DM 中的 RAM 使能端控制信号

8	nPC_sel[1:0]	О	选择下一 PC 值信号
9	ExtOp[1:0]	О	数据扩展方式
10	ALUctr[2:0]	О	ALU 进行操作的方式

- 1. 首先通过 opcode 与 funct 选择出此时进行操作的指令方式。
- 2.通过 if_else 语句实现控制信号的选择。
- 3. RegDst==2 时选择 31 号寄存器, MemtoReg==2 是选择 PC+8(因为延迟槽), 为了实现 jal 指令。

4. npc_sel==0: 其他指令

npc_sel==1: beq

npc sel==2: jal or j

npc_sel==3: jr

5.此模块在 D/E 级操作,后面会将这些产生的控制信号,在后面需要的地方进行传输,保证正确性。

funct	100000	100010					
opcode	000000	000000	001101	100011	101011	000100	001111
	add	sub	ori	lw	SW	beq	lui
RegDst[1:0]	1	1	0	0	X	X	0
ALUScr	0	0	1	1	1	0	1
Memto [1:0]	0	0	0	1	X	X	0
RegWrite	1	1	1	1	0	0	1
MemWrite	0	0	0	0	1	0	0
nPC_sel[1:0]	0	0	0	0	0	1	0
ExtOp[1:0]	X	X	0	1	1	X	2
ALUctr[2:0]	1	2	3	1	1	2	4

图七:信号输出真值表 (Memto 代表 MemtoReg)

funct 001000

001000 000000		
---------------	--	--

opcode	000000	000000	000011	000010
	jr	nop	jal	j
RegDst[1:0]	0	0	2	0
ALUScr	0	0	0	0
Memto [1:0]	0	0	2	0
RegWrite	0	0	1	0
MemWrite	0	0	0	0
nPC_sel[1:0]	3	0	2	2
ExtOp[1:0]	0	0	0	0
ALUctr[2:0]	0	0	0	0
npc_sel3	1	0	1	0
npc_sel4	1	0	0	0

图七(续):信号输出真值表(Memto 代表 MemtoReg)

三. 流水线 CPU 各级传输及操作

1.D 级

- 1. 传输信号: InstrD (来自于 Instr@F) ,pc4D (pc4@F) ,pcD(pc@F)。
- 2. 使能端 En,当需要暂停的时候需要将 D 级寄存器锁住,不再传输,当 reset 的时候也需要将其锁住,以免使第一条指令工作多次。
 - 3. 此级进行 GRF 读取操作以及 EXT 扩展操作和 Control 的操作。
- 4. 还需要进行 B/J 类型指令跳转的选择,通过 npc_sel 进行选择,在上面已经解释了 npc_sel 的含义。
- 5.在进行 beq 指令的时候在这一级会进行一次比较,从而选择 npc_sel 的 终值。
 - 6.以后只用传输 Control 翻译出来的信号即可。

2.E 级

1.传输信号: A1E(A1D@D),A2E(A2D@D),A3E(A3D@D),
Data1E(Data1D@D),Data2E(Data2D@D),EXTIMME(EXTIMMD@D),RegDstE(RegDstD@D),ALUSrcE(ALUSrcD@D),MemtoRegE(MemtoRegD@D),RegWriteE(RegD),RegWriteE(RegD),RegWriteE(RegD),RegWriteE(RegD),RegWriteE(RegD),RegWriteE(RegD),RegWriteE(RegD),RegWriteE(Reg

 $gWriteD@D), MemWriteE(MemWriteD@D), ALUctrE(ALUctrD@D), opcodeE(opcodeD@D), functE(functD@D), pcE(pcD@D)_{o}$

- 2. 信号解释,其中 A1E,A2E,A3E 代表进行操作的寄存器编号,Data1E,Data2E 分别为 A1E,A2E 为转发以后的值(不一定为当前的准确值,因为可能在 D 级时这两个数据未被使用,于是可能在 E 级的转发器中更新)。其余的为 ControlD 控制信号传输。
 - 3. 此级进行操作的有 ALU 模块。
- 4. 需要注意在此级就选择出来了会进行回写的寄存器编号,命名为 WriteRegE。还需要注意在此级仍需转发,以免进行操作的数据为错误数据。

3.M 级

1. 传输信号:

- 2. 信号解释: WriteDataM 为向 DM 中写入的值, ALUoutM 为在 E 级中 ALU 中计算出来的值。其余的为控制信号传输。
 - 3. 此级需要进行操作的是 DM 模块。

4.W 级

1.传输信号:

ALUoutW(ALUoutM@M),DMoutW(DMoutM@M),pcW(pcM@M),MemtoRegW (MemtoRegM@M),RegWriteW(RegWriteM@M),opcodeW(opcodeM@M),functW (functM@M),WriteRegW(WriteRegM@M)。

2. 其中需要选择出回写的值,记即在 ALUoutW, DMoutW, pcW+8 中进行选择出最后的值。(因为延迟槽所以需要 pcW+8)。选择出来值为 ResultW。

四. 转发与暂停机制的实现

1.转发机制:

1.实现的方法:暴力转发。即在每一级中找到需要的更新转发的值,找到在后面需要转发过来的值,用一个选择器进行选择,其中转发需要的条件是满足

寄存器编号一样且不为 0. 并且此时得到了该周期的值。

2.需要转发的地方: D 级的 GRF 出来的 RD1,RD2 值,这是因为这是读出了其中两个寄存器的值,当进行 beq 的值的时候需要在 D 级就进行比较,所以需要最新的值。RD1 转发以后的值记为 Data1D,RD2 转发以后的值记为 Data2D,按照数据通路可知转发来自于本身的值 (RD1),E 级的 EXIMME, M 级的 ALUoutM 以及 W 级的 ResultW。用 ForwardAD, ForwardBD 代表选择信号。E 级的Data1E,Data2E 需要转发,转发至本身的值 (Data1E), M 级的 ALUoutM 以及 W 级的 ResultW,用 ForwardAE,ForwarBE 表示选择信号。

```
module Forward_unit_2(WriteRegM, RegWriteM, WriteRegW, RegWriteW, A, Forward);
   input [4:0] WriteRegM;
   input [4:0] WriteRegW;
   input RegWriteW;
   input [4:0] A;
   output reg [1:0] Forward;

always@(*) begin
   if(RegWriteM==1&&WriteRegM==A&&A!=0) Forward<=1;
   else if(RegWriteW==1&&WriteRegW==A&&A!=0)Forward<=2;
   else Forward<=0;
end</pre>
```

图 7: Forward 选择信号示意图

2.暂停机制:

- 1.暂停机制是为了解决转发机制解决不了的问题。
- 2.首先用 Tuse 代表该条指令在进入 D 级以后的第几个周期需要用到寄存器中的值, Tnew 代表在流水线中的 E,M 级中需要几个周期才能得到最新的值 (比如 beq 的 Tuse 等于 0, E 级的 lw 等于 2)。
- 3. 当 Tuse<后面的任何一级的 Tnew 时需要暂停,暂停时进行的操作为 E 级注入一个空操作, D 级停止传输,pc 停止传输。

	Tuse-A1	Tuse-A2	E-Tnew	M-Tnew
addu	1	1	1	0
subu	1	1	1	0
ori	1	1	1	0
lw	1		2	1
SW	1	1	0	0

beq	0	0		
lui			0	0
jal			2	1
jr	0			

```
wire [1:0] Tuse rs, Tuse rt;
(opcodeD==35)?1:
                (opcodeD==43)?1:
(opcodeD==4)?0:
                (opcodeD==0&&functD==8)?0:
                2:
assign Tuse_rt=(opcodeD==0&&functD==33)?1:
                (opcodeD==0&&functD==35)?1:
                (opcodeD==43)?2:
                (opcodeD==4) ?0:
                2:
wire [1:0] Tnew E;
assign Tnew_E=(opcodeE==0&&functE==33)?1:
                (opcodeE==0&&functE==35)?1:
                (opcodeE==13)?1:
                (opcodeE==35) ?2:
                (opcodeE==3) ?2:
                0;
wire [1:0] Tnew_M;
assign Tnew_M=(opcodeM==35)?1:
               (opcodeM==3)?1:
                0;
assign stall=(AlD==WriteRegE&&RegWriteE==1&&Tuse rs<Tnew E)|
              (AlD==WriteRegM&&RegWriteM==1&&Tuse_rs<Tnew_M) |
              (A2D==WriteRegE&&RegWriteE==1&&Tuse_rt<Tnew_E) |
(A2D==WriteRegM&&RegWriteM==1&&Tuse_rt<Tnew_M);
```

图 8: Tuse, Tnew 代码

五. 测试代码: (思考题)

1.R 型指令 (addu 为例):

测试类型	前序指令	冲突位置	冲突寄存器	测试序列	解决方法
R-M-RS	subu	Е	rs	subu \$1,\$2,\$3	转发
TO THE	Saca		15	addu \$4,\$1,\$2	
R-M-RT	subu	Е	rt	subu \$1,\$2,\$3	转发
1X-1V1-1X1	Subu	L	11	addu \$4,\$2,\$1	
R-W-RS	subu	Е	rs	subu \$1,\$2,\$3	转发
IX-W-IXS	Subu	L	15	nop	
				addu \$4,\$1,\$2	
R-W-RT	subu	Е	rt	subu \$1,\$2,\$3	转发
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Subu	L	11	nop	
				addu \$4,\$2,\$1	
I-M-RS	ori	Е	ro	ori \$1,\$0,0x1111	转发
1-1/1-1/2	011		rs	addu \$3,\$1,\$2	

		1	1		LL 115
I-M-RT	ori	Е	rt	ori \$1,\$0,0x1111 addu \$3,\$2,\$1	转发
LWDC	:	Г		ori \$1,\$0,0x1111	转发
I-W-RS	ori	Е	rs	nop	
				addu \$3,\$1,\$2	
LWDT	:	Б	4	ori \$1,\$0,0x1111	转发
I-W-RT	ori	Е	rt	nop	
				addu \$3,\$2,\$1	
LD-W-RS	lw	Е	ra	lw \$1,0(\$2)	转发
LD-W-KS	l w		rs	nop	
				addu \$3,\$1,\$2	
LD-W-RT	lw	E	rt	lw \$1,0(\$2)	转发
LD-W-KI	1 VV		11	nop	
				addu \$3,\$2,\$1	
LD-M-RS	lw	Е	rs	lw \$1,0(\$2)	暂停
LD W KS	1 44	1	15	addu \$3,\$1,\$2	
LD-M-RT	lw	E	rt	lw \$1,0(\$2)	暂停
LD W KI	1 ۷۷		11	addu \$3,\$1,\$2	
LD-E-RS	lw	D	rs	lw \$1,0(\$2)	暂停
ED E RO	1 **		15	addu \$3,\$1,\$2	
LD-E-RT	lw	D	rt	lw \$1,0(\$2)	暂停
	111		1,0	addu \$3,\$1,\$2	11.45
JAL-M-RS	jal	D	rs	jal dfs	转发
	Jui			nop	
				dfs:	
				addu \$1,\$31,\$0	++ 4>
JAL-M-RT	jal	D	rt	jal dfs	转发
	,			nop	
				dfs:	
				addu \$1,\$0,\$31	 转发
JAL-W-RS	jal	D	rs	jal dfs	科及
				nop dfs:	
				nop	
				addu \$1,\$31,\$0	
				jal dfs	 转发
JAL-W-RT	jal	D	rt	nop	7412
				dfs:	
				nop	
				addu \$1,\$0,\$31	
		ı	1		

2.I 型指令 (ori 为例):

│ 测试类型 │ 前序指令 │ 冲突位置 │ 冲突寄存器 │ 测试序列 │ │ 解决方法
--

R-M-RS	subu	E	rs	subu \$1,\$2,\$3	转发
IN INI INS	Subu	L	15	ori \$4,\$1,0x1111	
R-W-RS	subu	E	rs	subu \$1,\$2,\$3	转发
IX-W-IXS	Subu		15	nop	
				ori \$4,\$1,0x1111	
I-M-RS	ori	Е	***	ori \$1,\$0,0x1110	转发
1-101-105	011		rs	ori \$2,\$1,0x1111	
I-W-RS	ori.	Е	***	ori \$1,\$0,0x1110	转发
1-W-K5	ori		rs	nop	
				ori \$3,\$1,0x1111	
I D W DC	1	Б		lw \$1,0(\$2)	转发
LD-W-RS	lw	Е	rs	nop	
				ori \$3,\$1,0x0	
IDMDC	1	D		lw \$1,0(\$2)	暂停
LD-M-RS	lw	D	rs	nop	
				ori \$3,\$1,\$2	
IDEDC	1	D		lw \$1,0(\$2)	暂停
LD-E-RS	lw	D	rs	ori \$3,\$1,\$2	
IAI M DC	1.1	D		jal dfs	转发
JAL-M-RS	jal	D	rs	nop	
				dfs:	
				ori \$1,\$31,0x0	
IAI W.D.C	:-1	Ъ		jal dfs	转发
JAL-W-RS	jal	D	rs	nop	
				dfs:	
				nop	
				ori \$1,\$31,0x0	

3.LD 型指令 (lw 为例):

测试类型	前序指令	冲突位置	冲突寄存器	测试序列	解决方法
R-M-RS	subu	Е	rs	subu \$1,\$2,\$3 lw \$4,0(\$1)	转发
R-W-RS	subu	Е	rs	subu \$1,\$2,\$3 nop lw \$4,0(\$1)	转发
I-M-RS	ori	Е	rs	ori \$1,\$0,0x1110 lw \$4,0(\$1)	转发
I-W-RS	ori	Е	rs	ori \$1,\$0,0x1110 nop lw \$4,0(\$1)	转发
LD-W-RS	lw	Е	rs	lw \$1,0(\$2) nop lw \$4,0(\$1)	转发

LD-M-RS	lw	D	rs	lw \$1,0(\$2)	转发
	1 **		15	nop	
				lw \$4,0(\$1)	
LD-E-RS	lw	D	ro	lw \$1,0(\$2)	暂停
LD-L-KS	1 W	ע	rs	lw \$4,0(\$1)	
JAL-M-RS	jal	D	ra	jal dfs	转发
JAL-M-KS	Jai	ן ע	rs	nop	
				dfs:	
				lw \$4,0(\$31)	
JAL-W-RS	jal	D	ra	jal dfs	转发
JAL-W-NS	Jai	ן ט	rs	nop	
				dfs:	
				nop	
				lw \$4,0(\$31)	

4.Store 型指令(sw 为例):

测试类型	前序指令	冲突位置	冲突寄存器	测试序列	解决方法
R-M-RS	subu	Е	rs	subu \$1,\$2,\$3	转发
K-WI-KS	Suou	L	15	sw \$4,0(\$1)	
R-M-RT	subu	Е	rt	subu \$1,\$2,\$3	转发
TO IVI ICI	3404		10	sw \$1,0(\$0)	
R-W-RS	subu	Е	rs	subu \$1,\$2,\$3	转发
I W KS	Subu		15	nop	
				sw \$4,0(\$1)	
R-W-RS	subu	Е	rt	subu \$1,\$2,\$3	转发
I W KS	Subu		10	nop	
				sw \$1,0(\$0)	
I-M-RS	ori	Е	rs	ori \$1,\$0,0x1110	转发
1-101-105	OH	L	15	sw \$4,0(\$1)	
I-W-RS	ori	E	rs	ori \$1,\$0,0x1110	转发
1- W-K5	OH	L	15	nop	
				sw \$4,0(\$1)	
I-M-RT	ori	Е	rt	ori \$1,\$0,0x1110	转发
1-1V1-1C1	OH	L	11	sw \$1,0(\$0)	
I-W-RT	ori	E	rt	ori \$1,\$0,0x1110	转发
1- W-K1	011	L	11	nop	
				sw \$1,0(\$0)	
LD-W-RS	lw	Е	ra	lw \$1,0(\$2)	转发
LD-W-K2	1W		rs	nop	
				sw \$4,0(\$1)	
LD-W-RT	lw	Е	rt	lw \$1,0(\$2)	转发
LD-W-VI	1W		1 l	nop	
				sw \$1,0(\$0)	

LD-M-RS	lw	D	rs	lw \$1,0(\$2)	转发
				nop	
				sw \$4,0(\$1)	
LD-M-RT	lw	D	rt	lw \$1,0(\$2)	转发
	1 * *		10	nop	
				sw \$1,0(\$0)	
LD-E-RS	lw	D	ro	lw \$1,0(\$2)	暂停
LD-E-KS	1W	ט	rs	sw \$4,0(\$1)	
LD-E-RT	lw	D	ret.	lw \$1,0(\$2)	转发
LD-E-KI	IW	D	rt	sw \$1,0(\$0)	
JAL-M-RS	iol	D	ra	jal dfs	转发
JAL-M-KS	jal	ע	rs	nop	
				dfs:	
				sw \$4,0(\$31)	
JAL-W-RS	jal	D	ra	jal dfs	转发
JAL-W-KS	Jai	ע	rs	nop	
				dfs:	
				nop	
				sw \$4,0(\$31)	

5.B 型指令 (beq 为例):

测试类型	前序指令	冲突位置	冲突寄存器	测试序列	解决方法
R-E-RS	subu	D	rs	subu \$1,\$2,\$3	暂停
K-L-K5	Suou	D	15	beq \$1,\$2,loop	
R-E-RT	subu	D	rt	subu \$1,\$2,\$3	暂停
K L KI	Subu		10	beq \$2,\$1,loop	
R-M-RS	subu	D	rs	subu \$1,\$2,\$3	转发
I IVI IVS	Subu		13	nop	
				beq \$1,\$2,loop	
R-M-RT	subu	D	rt	subu \$1,\$2,\$3	转发
IX-IVI-IXI	Subu		10	nop	
				beq \$2,\$1,loop	
I-E-RS	ori	D	rs	ori \$1,\$2,0x1111	暂停
I-L-NS	OH	D	13	beq \$1,\$2,loop	
I-E-RT	ori	D	rt	ori \$1,\$2,0x1111	暂停
I-L-K1	OH	D	11	beq \$2,\$1,loop	
I-M-RS	ori	D	rs	ori \$1,\$2,0x1111	转发
I-IVI-ICS	011		13	nop	
				beq \$1,\$2,loop	
I-M-RT	ori	D	rt	ori \$1,\$2,0x1111	转发
1-141-171	011		11	nop	
				beq \$2,\$1,loop	
LD-E-RS	lw	D	rs	lw \$1,0(\$2)	暂停
LD-E-KS	1 vv		15	beq \$1,\$2,loop	

				lw \$1,0(\$2)	暂停
LD-E-RT	lw	D	rt	beq \$2,\$1,loop	
	_	D	rs	lw \$1,0(\$2)	¥ 暂停
LD-M-RS	lw			nop	
				beq \$1,\$2,loop	
IDMDT	lw	D	rt	lw \$1,0(\$2)	暂停
LD-M-RT				nop	
				beq \$2,\$1,loop	
IDWDC	lw	D	rs	lw \$1,0(\$2)	转发
LD-W-RS				nop	
				nop	
				beq \$1,\$2,loop	
LD-W-RT	lw	D	rt	lw \$1,0(\$2)	转发
LD-W-KI				nop	
				nop	
				beq \$2,\$1,loop	
JAL-M-RS	jal	D	rs	jal dfs	暂停
JALL-WI-KS				nop	
				dfs:	
				beq \$4,\$31,loop	
JAL-M-RT	jal	D	rt	jal dfs	暂停
				nop	
				dfs:	
				beq \$31,\$4,loop	11.45
JAL-W-RS	jal	D	rs	jal dfs	转发
				nop	
				dfs:	
				nop	
				beq \$4,\$31,loop	++ 11
JAL-W-RT	jal	D	rt	jal dfs	转发
				nop	
				dfs:	
				nop	
				beq \$31,\$4,loop	

6.jr 指令:

测试类型	前序指令	冲突位置	冲突寄存器	测试序列	解决方法
R-E-RS	subu	D	rs	subu \$1,\$2,\$3 jr \$1	暂停
R-M-RS	subu	D	rs	subu \$1,\$2,\$3 nop jr \$1	转发
I-E-RS	ori	D	rs	ori \$1,\$2,0x1111 jr \$1	暂停

I-M-RS	ori	D	rs	ori \$1,\$2,0x1111	转发
1-101-105				nop	
				jr \$1	
LD-E-RS	lw	D	rs	lw \$1,0(\$2)	暂停
				jr \$1	
LD-M-RS	1,,,,	lw D rs	ra	lw \$1,0(\$2)	暂停
LD-M-KS	1W		15	nop	
				jr \$1	
LD-W-RS	lw	D	rs	lw \$1,0(\$2)	转发
LD-W-KS	IW			nop	
				nop	
				jr \$1	
JAL-M-RS	I M DC iol D	D	rs	jal dfs	暂停
JAL-M-KS	jal	ט		nop	
				dfs:	
				jr \$31	
IAI W DC	AL-W-RS jal D	D	rs	jal dfs	转发
JAL-W-NS		ע		nop	
				dfs:	
				nop	
				jr \$31	