# HR-Employee-Attrition

July 22, 2025

```
[101]: import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
       import matplotlib.ticker as mtick
       from sklearn.linear_model import LogisticRegression
       from sklearn.model_selection import train_test_split
       from sklearn.metrics import mean_absolute_error
[85]: df = pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
[86]:
      df.head()
[86]:
          Age Attrition
                             BusinessTravel DailyRate
                                                                     Department \
                              Travel_Rarely
       0
           41
                                                   1102
                                                                           Sales
                    Yes
       1
           49
                         Travel_Frequently
                                                         Research & Development
                     No
                                                   279
       2
           37
                    Yes
                              Travel_Rarely
                                                   1373
                                                         Research & Development
                         Travel_Frequently
                                                         Research & Development
       3
           33
                     No
                                                   1392
           27
                     No
                              Travel_Rarely
                                                    591
                                                         Research & Development
          DistanceFromHome
                             Education EducationField
                                                        EmployeeCount
                                                                        EmployeeNumber
       0
                                     2 Life Sciences
       1
                         8
                                     1 Life Sciences
                                                                                     2
       2
                                                 Other
                                                                                     4
       3
                          3
                                       Life Sciences
                                                                     1
                                                                                     5
                          2
                                                                                     7
       4
                                              Medical
             {\tt RelationshipSatisfaction~StandardHours~StockOptionLevel}
       0
                                                   80
                                                                       0
       1
                                                   80
                                                                       1
                                     2
       2
                                                   80
                                                                       0
       3
                                     3
                                                   80
                                                                       0
                                                   80
       4
                                                                       1
                             TrainingTimesLastYear WorkLifeBalance
                                                                      YearsAtCompany
          TotalWorkingYears
       0
                                                                                    6
       1
                          10
                                                   3
                                                                   3
                                                                                   10
                          7
                                                   3
                                                                   3
       2
                                                                                    0
```

| 3 | 8 | 3 | 3 | 8 |
|---|---|---|---|---|
| 4 | 6 | 3 | 3 | 2 |

|   | YearsInCurrentRole | YearsSinceLastPromotion | YearsWithCurrManager |
|---|--------------------|-------------------------|----------------------|
| C | 4                  | 0                       | 5                    |
| 1 | . 7                | 1                       | 7                    |
| 2 | . 0                | 0                       | 0                    |
| 3 | 7                  | 3                       | 0                    |
| 4 | . 2                | 2                       | 2                    |

[5 rows x 35 columns]

#### [87]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469

Data columns (total 35 columns):

| #  | Column                          | Non-Null Count | Dtype  |
|----|---------------------------------|----------------|--------|
|    | A                               | 1.470          |        |
| 0  | Age                             | 1470 non-null  | int64  |
| 1  | Attrition                       | 1470 non-null  | object |
| 2  | BusinessTravel                  | 1470 non-null  | object |
| 3  | DailyRate                       | 1470 non-null  | int64  |
| 4  | Department                      | 1470 non-null  | object |
| 5  | DistanceFromHome                | 1470 non-null  | int64  |
| 6  | Education                       | 1470 non-null  | int64  |
| 7  | EducationField                  | 1470 non-null  | object |
| 8  | EmployeeCount                   | 1470 non-null  | int64  |
| 9  | EmployeeNumber                  | 1470 non-null  | int64  |
| 10 | ${\tt EnvironmentSatisfaction}$ | 1470 non-null  | int64  |
| 11 | Gender                          | 1470 non-null  | object |
| 12 | HourlyRate                      | 1470 non-null  | int64  |
| 13 | JobInvolvement                  | 1470 non-null  | int64  |
| 14 | JobLevel                        | 1470 non-null  | int64  |
| 15 | JobRole                         | 1470 non-null  | object |
| 16 | JobSatisfaction                 | 1470 non-null  | int64  |
| 17 | MaritalStatus                   | 1470 non-null  | object |
| 18 | MonthlyIncome                   | 1470 non-null  | int64  |
| 19 | MonthlyRate                     | 1470 non-null  | int64  |
| 20 | NumCompaniesWorked              | 1470 non-null  | int64  |
| 21 | Over18                          | 1470 non-null  | object |
| 22 | OverTime                        | 1470 non-null  | object |
| 23 | PercentSalaryHike               | 1470 non-null  | int64  |
| 24 | PerformanceRating               | 1470 non-null  | int64  |
| 25 | RelationshipSatisfaction        | 1470 non-null  | int64  |
| 26 | StandardHours                   | 1470 non-null  | int64  |
| 27 | StockOptionLevel                | 1470 non-null  | int64  |
| 28 | TotalWorkingYears               | 1470 non-null  | int64  |

| 29 | ${\tt TrainingTimesLastYear}$   | 1470 | non-null | int64 |
|----|---------------------------------|------|----------|-------|
| 30 | WorkLifeBalance                 | 1470 | non-null | int64 |
| 31 | YearsAtCompany                  | 1470 | non-null | int64 |
| 32 | YearsInCurrentRole              | 1470 | non-null | int64 |
| 33 | ${\tt YearsSinceLastPromotion}$ | 1470 | non-null | int64 |
| 34 | YearsWithCurrManager            | 1470 | non-null | int64 |

dtypes: int64(26), object(9) memory usage: 402.1+ KB

## [88]: df.isnull().sum()

| [88]: | Age                      | 0 |
|-------|--------------------------|---|
|       | Attrition                | 0 |
|       | BusinessTravel           | 0 |
|       | DailyRate                | 0 |
|       | Department               | 0 |
|       | DistanceFromHome         | 0 |
|       | Education                | 0 |
|       | EducationField           | 0 |
|       | EmployeeCount            | 0 |
|       | EmployeeNumber           | 0 |
|       | EnvironmentSatisfaction  | 0 |
|       | Gender                   | 0 |
|       | HourlyRate               | 0 |
|       | JobInvolvement           | 0 |
|       | JobLevel                 | 0 |
|       | JobRole                  | 0 |
|       | JobSatisfaction          | 0 |
|       | MaritalStatus            | 0 |
|       | MonthlyIncome            | 0 |
|       | MonthlyRate              | 0 |
|       | NumCompaniesWorked       | 0 |
|       | Over18                   | 0 |
|       | OverTime                 | 0 |
|       | PercentSalaryHike        | 0 |
|       | PerformanceRating        | 0 |
|       | RelationshipSatisfaction | 0 |
|       | StandardHours            | 0 |
|       | StockOptionLevel         | 0 |
|       | TotalWorkingYears        | 0 |
|       | TrainingTimesLastYear    | 0 |
|       | WorkLifeBalance          | 0 |
|       | YearsAtCompany           | 0 |
|       | YearsInCurrentRole       | 0 |
|       | YearsSinceLastPromotion  | 0 |
|       | YearsWithCurrManager     | 0 |
|       | dtype: int64             |   |
|       |                          |   |

#### [89]: df.describe() [89]: DailyRate DistanceFromHome Education EmployeeCount Age 1470.000000 count 1470.000000 1470.000000 1470.000000 1470.0 36.923810 802.485714 9.192517 2.912925 1.0 mean 0.0 std 9.135373 403.509100 8.106864 1.024165 min 18.000000 1.000000 102.000000 1.000000 1.0 25% 30.000000 465.000000 2.000000 2.000000 1.0 50% 36.000000 802.000000 7.000000 3.000000 1.0 75% 43.000000 1157.000000 14.000000 4.000000 1.0 60.000000 1499.000000 29.000000 5.000000 1.0 maxJobInvolvement EmployeeNumber EnvironmentSatisfaction HourlyRate 1470.000000 1470.000000 1470.000000 1470.000000 count 1024.865306 2.721769 65.891156 2.729932 mean std 602.024335 1.093082 20.329428 0.711561 min 1.000000 1.000000 30.000000 1.000000 25% 491.250000 2.000000 48.000000 2.000000 50% 1020.500000 3.000000 66.000000 3.000000 75% 1555.750000 4.000000 83.750000 3.000000 2068.000000 4.000000 100.000000 4.000000 maxJobLevel RelationshipSatisfaction StandardHours 1470.000000 1470.000000 1470.0 count mean 2.063946 2.712245 80.0 std 1.106940 1.081209 0.0 min 1.000000 1.000000 80.0 25% 80.0 1.000000 2.000000 50% 80.0 2.000000 3.000000 75% 3.000000 4.000000 80.0 80.0 max 5.000000 4.000000 StockOptionLevel TotalWorkingYears TrainingTimesLastYear 1470.000000 1470.000000 1470.000000 count mean 0.793878 11.279592 2.799320 1.289271 std 0.852077 7.780782 0.000000 0.00000 min 0.000000 25% 0.000000 6.000000 2.000000 50% 1.000000 10.000000 3.000000 75% 1,000000 15,000000 3,000000 3.000000 6.000000 40.000000 max WorkLifeBalance YearsAtCompany YearsInCurrentRole 1470.000000 1470.000000 1470.000000 count 2.761224 7.008163 4.229252 mean 6.126525 3.623137 std 0.706476

0.000000

0.000000

min

1.000000

| 25% | 2.000000 | 3.000000  | 2.000000  |
|-----|----------|-----------|-----------|
| 50% | 3.000000 | 5.000000  | 3.000000  |
| 75% | 3.000000 | 9.000000  | 7.000000  |
| max | 4.000000 | 40.000000 | 18.000000 |

|       | ${\tt YearsSinceLastPromotion}$ | YearsWithCurrManager |
|-------|---------------------------------|----------------------|
| count | 1470.000000                     | 1470.000000          |
| mean  | 2.187755                        | 4.123129             |
| std   | 3.222430                        | 3.568136             |
| min   | 0.000000                        | 0.000000             |
| 25%   | 0.000000                        | 2.000000             |
| 50%   | 1.000000                        | 3.000000             |
| 75%   | 3.000000                        | 7.000000             |
| max   | 15.000000                       | 17.000000            |

[8 rows x 26 columns]

### 0.0.1 1. Attrition distribution

```
[78]: sns.countplot(data=df, x='Attrition')
  plt.title('Attrition Distribution')
  sns.despine(top=True, right=True)
  plt.show()
```



0.0.2 2. Attrition by 'BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus', 'OverTime' (Categorical Value)















0.0.3 3. Attrition by 'Age', 'DailyRate', 'DistanceFromHome', 'MonthlyIncome', 'YearsAtCompany', 'YearsSinceLastPromotion' (Numerical Value)













#### 0.0.4 4. Co-relation heatmap between numerical values

```
[35]: plt.figure(figsize=(14,10))
    sns.heatmap(df[num_cols].corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```



### 0.0.5 Train Test and Split

#### 0.0.6 Drop the unnecessary column

```
[90]: df.drop(columns=['EmployeeCount', 'EmployeeNumber'], inplace=True)
[91]: df['Attrition'] = df['Attrition'].map({'Yes': 1, 'No': 0})
```

```
0.0.7 Converting categorical value into numerical value (One-hot encode categorical features)
```

```
[92]: df = pd.get dummies(df, drop first=True)
[94]: X = df.drop('Attrition', axis = 1)
[95]: | y = df['Attrition']
[98]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,__
        ⇔stratify=y, random_state=42)
      0.0.8 Standardize for logistic regression
[99]: from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       X_train_scaled = scaler.fit_transform(X_train)
       X_test_scaled = scaler.transform(X_test)
      0.0.9 Logistic regression
[102]: lr_model = LogisticRegression()
[103]: | lr model
[103]: LogisticRegression()
      0.0.10 Fit the data into lr_model
[104]: lr_model.fit(X_train_scaled, y_train)
[104]: LogisticRegression()
[111]: y_pred_lr = lr_model.predict(X_test_scaled)
[112]: y_prob_lr = lr_model.predict_proba(X_test_scaled)[:, 1]
[120]: from sklearn.metrics import confusion_matrix, classification_report, __
        →roc_auc_score
       print("Logistic Regression")
       print(confusion_matrix(y_test, y_pred_lr))
       print(classification_report(y_test, y_pred_lr))
       print("Receiver Operating Characteristic Area Under the Curve")
       print("ROC AUC Score:", roc_auc_score(y_test, y_prob_lr))
      Logistic Regression
      ΓΓ119
              41
       Γ 17
              711
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.88      | 0.97   | 0.92     | 123     |
| 1            | 0.64      | 0.29   | 0.40     | 24      |
| accuracy     |           |        | 0.86     | 147     |
| macro avg    | 0.76      | 0.63   | 0.66     | 147     |
| weighted avg | 0.84      | 0.86   | 0.83     | 147     |

Receiver Operating Characteristic Area Under the Curve ROC AUC Score: 0.7872628726287262

0.0.11 Create a Series of coefficients sorted by absolute value (ascending for readability)

0.0.12 Bar graph showing which features affect the predictive model the most (i.e., feature importance).

```
[130]: # Prepare DataFrame for seaborn
       df_coefs = coefs.reset_index()
       df_coefs.columns = ['Feature', 'Coefficient']
       # Add a column for sign to use as hue
       df_coefs['Sign'] = df_coefs['Coefficient'].apply(lambda x: 'Positive' if x >= 0
        ⇔else 'Negative')
       plt.figure(figsize=(12, max(6, 0.3 * len(coefs))))
       sns.barplot(data=df_coefs, x='Coefficient', y='Feature', hue='Sign',__
        ⇔dodge=False,
                  palette={'Positive': 'blue', 'Negative': 'red'})
       plt.title('Logistic Regression Coefficients Colored by Sign')
       plt.xlabel('Coefficient Value')
       plt.ylabel('Feature')
       plt.legend([], [], frameon=False)
       plt.tight_layout()
       plt.show()
```



