Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ НИУ «МЭИ» (ФГБОУ ВО «НИУ МЭИ»)

Институт радиотехники и электроники им. В.А. Котельникова Кафедра Формирования и обработки радиосигналов

Лабораторная работа №5 по курсу «Формирование колебаний и сигналов для медицинских приборов» «Фазовая автоподстройка частоты»

Группа: ЭР-17-21

Студенты: Готман Н.Р

Дугушкин А.С.

Преподаватель: Плутешко А.В.

Содержание

Об	работка результатов измерений	. 3
1.	Построение характеристики ФД $E_{\phi \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$. 3
2.	Построение характеристики управления частотой ГУН $f_{\it \Gamma \it Y \it H} \left(E_{\it ynp} \right)$	4
3.	Величины, определяющие поведение кольца ФАПЧ	. 5
4.	Оценка величины γ для конфигураций кольца ФАПЧ	. 6
4	4.1. Положение 4	. 8
4	4.2. Положение 6	. 9
5.	Временные зависимости переходных процессов $E_{\phi \! / \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	10
Вы	воды	11
ПР	ИЛОЖЕНИЕ А	12

Обработка результатов измерений

Сняли осциллограмму $E_{\phi J} \left(t \right)$

Рисунок 1 — Зависимость напряжения $E_{\phi J}$ от времени

2. Построение характеристики управления частотой ГУН $f_{{\it \Gamma V\!H}} \big(E_{{\it уnp}} \big)$

Построим зависимость используя данные снятые во время выполнения лабораторной работы.

Таблица 1 – Характеристика управления частотой ГУН

$f_{ m on}$,МГц	$f_{\scriptscriptstyle \Gamma m YH}$,М Γ ц	$E_{ m ynp},~{ m B}$
7.1	113.6	0.15
7.2	115	0.53
7.3	117	0.93
7.4	118	1.3
7.5	119	1.63
7.6	120	1.95
7.7	124	2.41
7.8	125	2.6
7.9	127	2.9
8	128	3.2
8.1	129	3.5
8.2	130	3.8
8.3	132	4.1
8.4	135	4.4
8.5	137	4.8

Рисунок 3 — Зависимость частоты колебаний ГУН от E_{ynp}

3. Величины, определяющие поведение кольца ФАПЧ

Заполним таблицу используя полученный график $f_{\mbox{\tiny ГУН}}(E_{\mbox{\tiny Упр}})$

$$K_{\Gamma \text{YH}} = \frac{f_{\Gamma \text{YH2}} - f_{\Gamma \text{YH2}}}{E_{\text{ynp2}} - E_{\text{ynp1}}} \tag{1}$$

$$K_{\text{\tiny \Gamma YH}} = \frac{125 - 124}{2.41 - 2.6} = 5.3 \, \frac{\text{M}\Gamma\text{u}}{\text{B}}$$
 (2)

$$K_{\Phi \text{Д}} = \frac{E_{\text{п}}}{\pi} = \frac{4.8}{\pi} = 1.53 \frac{\text{B}}{\text{рад}}$$
 (3)

$$T_{\Phi \Lambda \Pi^{\mathrm{H}}} = \frac{P}{2\pi K_{\Gamma \mathrm{YH}} K_{\Phi \mathrm{J}}} = 0.316 \text{ мкс}$$
 (4)

Сведем результаты расчетов в таблицу

Таблица 2 – Величины, определяющие поведение кольца ФАПЧ

$K_{\Phi \mathrm{Д}},rac{\mathrm{B}}{\mathrm{ра}\mathrm{Д}}$	$K_{\text{\tiny ГУН}}, \ \frac{\text{М}\Gamma\text{\tiny Ц}}{\text{B}}$	$T_{\Phi m A\Pi \Psi}$, мкс
1.53	5.3	0.316

4. Оценка величины γ для конфигураций кольца ФАПЧ

Сняли осциллограммы $E_{\phi_{\overline{J}}}(t)$ в двух разных положениях переключателя поля RC-ФИЛЬТР

$$\gamma = \frac{\Pi_{_{3ax}}}{\Pi_{_{CUH}}} \tag{5}$$

$$\Pi_{\text{\tiny CUH}} = \frac{1}{4T_{\Phi \text{\tiny A}\Pi \text{\tiny Ψ}}}$$
(6)

$$\Pi_{\text{\tiny CUH}} = \frac{1}{4 \cdot 0.316} = 789.5 \,\kappa \Gamma u \tag{7}$$

$$\Pi_{\text{3ax}} = \frac{\left|\Delta_{\text{3ax}}\right|}{2\pi T_{\text{ФАПЧ}}}$$
(8)

Найдем $\left|\Delta_{_{\mathrm{3ax}}}\right|$ по графикам полученным в пункте 5.4 лабораторной работы

Рисунок 6-3ависимость $\Delta(t)$ для положения переключателя 4

Рисунок 7 — Зависимость $\Delta(t)$ для положения переключателя 6

4.1.Положение 4

$$\Pi_{\text{3ax}} = \frac{0.89}{2\pi \cdot 0.316} = 447.3 \,\kappa \Gamma u \tag{9}$$

$$\gamma = \frac{447.3}{789.5} = 0.57\tag{10}$$

Рассчитаем теоретическое значения используя пункт 1.3.3

$$T_{\Phi HY} = R_1 C_i = 300 \cdot 2200 \cdot 10^{-12} = 0.66 \text{ MCK}$$
 (11)

$$\tau_4 = \frac{T_4}{T_{\Phi \Lambda \Pi \Psi}} = \frac{0.66}{0.316} = 2.1 \text{ MCK}$$
 (12)

4.2.Положение 6

$$\Pi_{\text{\tiny 3ax}} = \frac{0.47}{2\pi \cdot 0.316} = 236.2 \,\kappa \Gamma u \tag{13}$$

$$\gamma = \frac{236.2}{789.5} = 0.29\tag{14}$$

$$T_{\Phi HY} = R_1 C_i = 300 \cdot 6800 \cdot 10^{-12} = 2.04 \text{ MCK}$$
 (15)

$$\tau_6 = \frac{T_6}{T_{\text{matty}}} = \frac{2.04}{0.316} = 6.44 \tag{16}$$

Сведем полученные значения в таблицу

Таблица 3 – Рассчитанные и теоретические значения ү

і (номер положения	Рассчитанное значение	Теоретическое
переключателя)	γ	значение ү
4	0.57	0.58
6	0.29	0.34

Рисунок 8 – Переходные процессы для 2 положения переключателя

Рисунок 9 – Переходные процессы для 4 положения переключателя

Рисунок 10 – Переходные процессы для 6 положения переключателя

Выводы

Как видно из рисунка 3 зависимость частоты колебаний ГУН от E_{vnp} линейная.

Наличие ФНЧ в схеме привело к уменьшению полосы захвата, при этом как видно из графиков 4 и 5 увеличение емкости приводит к увеличению длительности переходных процессов, что приводит к еще большему уменьшению полосы захвата, а следовательно ухудшению работы всей системы.

Расчет относительного значения полосы захвата совпал с теоретическими значениями, что доказывает правильность выполнения лабораторной работы.

приложение а

Рисунок 11 – Переходные процессы при +375 кГц

Рисунок 12 – Переходные процессы при -375 кГц

Рисунок 13 — $E_{\phi Z}(t)$ при изменении +Dity

Рисунок 14 — $E_{\phi \chi}(t)$ во время измерения полосы захвата