System of Linear Equations (Problem Sheet) EXERCISE A

- Using Gauss Elimination method, show that the following system of equations are 1. consistent and unique solution:
 - a) x + 2y = 5, 5x 3y = -1Ans: (1, 2)
 - b) 3x 2y = 5, 4x y = 10. Ans: (3, 2)
 - c) x+3y-2z=0, 2x-3y+z=1, 4x-3y+z=3. Ans: (1,1,2)
 - d) x+3y-z=-2,3x+2y-z=3,-6x-4y-2z=18. Ans: (1,-3,-6).
 - e) $x_1 2x_2 + 3x_3 = 10.2x_1 + 3x_2 2x_3 = 1, -x_1 2x_2 + 4x_3 = 13$. Ans: (1, 3, 5).
- 2. Examine whether the following system of equations are consistent. If so, solve the following system of equation using Gaussian elimination method if possible:
 - $x_1 x_2 + x_3 = 1$, $3x_1 + x_2 + 5x_3 = 11$, $4x_1 + 2x_2 + 7x_3 = 16$. a)

Ans: Consistent and Infinite solutions and $(x_1, x_2, x_3) = \left(\frac{6-3k}{2}, \frac{4-k}{2}, k\right), k \in \mathbb{R}$.

b) x + 3y + 4z = 8, 2x + y + 2z = 5, 5x + 2z = 7.

Ans: Consistent and Infinite solutions, and $(x, y, z) = \left(\frac{7-2k}{5}, \frac{11-6k}{5}, k\right), k \in \mathbb{R}$.

c) $x_1 + x_2 + x_3 = -3$, $3x_1 + x_2 - 2x_3 = -2$, $2x_1 + 4x_2 + 7x_3 = 7$.

Ans: Inconsistent i.e. No solutions.

d) $x_1+2x_2+3x_3=4$, $4x_1+5x_2+6x_3=-7$, $7x_1+8x_2+9x_3=10$.

Ans: Inconsistent i.e. No solutions

Solution of System of Equation by Gauss Jordan Matrix Inversion Method

Consider the following system of linear equation in 3 variables as

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = c_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = c_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = c_3$$

Then the above system of equations can be written as

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$
 or, $AX = C$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \quad \text{or, } AX = C$$
where, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and $C = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$.

If $|A| \neq 0$ then $X = A^{-1}C$ be the required solution.

To find A⁻¹, the augmented of matrix A with an identity matrix I is

$$[A:I] = \begin{pmatrix} a_{11} & a_{12} & a_{13} & : & 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & : & 0 & 1 & 0 \\ a_{31} & a_{32} & a_{33} & : & 0 & 0 & 1 \end{pmatrix}$$

If we reduce the above augmented matrix by using Gauss-Jordan method in the form

MDS Batch-2079/ HW Problem Sheet Prepared by Prof. Narayan Prasad Pahari/MDS 504: Math. for Data Science, on Unit-4:System of Linear Equations

$$\begin{pmatrix} 1 & 0 & 0 & : & a_{11} \text{'} & a_{12} \text{'} & a_{13} \text{'} \\ 0 & 1 & 0 & : & a_{21} \text{'} & a_{22} \text{'} & a_{23} \text{'} \\ 0 & 0 & 1 & : & a_{31} \text{'} & a_{32} \text{'} & a_{33} \text{'} \end{pmatrix}.$$

Then the right hand side of the augmented matrix will represent the inverse matrix of A i.e.

$$A^{-1} = \begin{pmatrix} a_{11}' & a_{12}' & a_{13}' \\ a_{21}' & a_{22}' & a_{23}' \\ a_{31}' & a_{32}' & a_{33}' \end{pmatrix}.$$

Consistency of a System of Linear Equations

A system of linear equations is said to be consistent if it admits a solution and inconsistent if it has no solution.

Two cases may arise:

If $|A| \neq 0$, then the linear system is consistent.

If |A| = 0, then the linear system is non-consistent or inconsistent.

EXERCISE B

1. Find the inverse of each of the following matrices using Gauss-Jordan method.

a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$

Solution:

Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$. The augment of the given matrix A with the unit matrix I is given by

$$[A:I] = \begin{pmatrix} 1 & 2 & : & 1 & 0 \\ 2 & 3 & : & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & : & 1 & 0 \\ 0 & -1 & : & -2 & 1 \end{pmatrix} R_2 \rightarrow R_2 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 2 & : & 1 & 0 \\ 0 & 1 & : & 2 & -1 \end{pmatrix} R_2 \rightarrow (-1) \cdot R_2$$

$$\sim \begin{pmatrix} 1 & 0 & : & -3 & 2 \\ 0 & 1 & : & 2 & -1 \end{pmatrix} R_1 \rightarrow R_1 - R_2$$
Hence $A^{-1} = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$.

b) M=
$$\begin{pmatrix} 2 & -3 \\ -2 & 5 \end{pmatrix}$$
 Ans: M⁻¹= $\begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

c) B=
$$\begin{pmatrix} 2 & -3 \\ -2 & 5 \end{pmatrix}$$
 Ans: B⁻¹= $\begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

2. Find the inverse of the matrix using Gauss-Jordan method:

2

a) P=
$$\begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{pmatrix}$$

Solution:

Let
$$P = \begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{pmatrix}$$

Now, the augment of the matrix P with unit matrix I is given by

$$[P:I] = \begin{pmatrix} 1 & -2 & 3 & : & 1 & 0 & 0 \\ 0 & -1 & 4 & : & 0 & 1 & 0 \\ -2 & 2 & 1 & : & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 & : & 1 & 0 & 0 \\ 0 & -1 & 4 & : & 0 & 1 & 0 \\ 0 & -2 & 7 & : & 2 & 0 & 1 \end{pmatrix} R_3 \rightarrow R_3 + 2R_1$$

$$\sim \begin{pmatrix} 1 & -2 & 3 & : & 1 & 0 & 0 \\ 0 & 1 & -4 & : & 0 & -1 & 0 \\ 0 & -2 & 7 & : & 2 & 0 & 1 \end{pmatrix} R_2 \rightarrow (-1) \cdot R_2$$

$$\sim \begin{pmatrix} 1 & 0 & -5 & : & 1 & -2 & 0 \\ 0 & -1 & 4 & : & 0 & 1 & 0 \\ 0 & 0 & -1 & : & 2 & -2 & 1 \end{pmatrix} R_1 \rightarrow R_1 + 2R_2$$

$$R_3 \rightarrow R_3 + 2R_2$$

$$\sim \begin{pmatrix} 1 & 0 & -5 & : & 1 & -2 & 0 \\ 0 & -1 & 4 & : & 0 & 1 & 0 \\ 0 & 0 & 1 & : & -2 & 2 & -1 \end{pmatrix} R_3 \rightarrow (-1) \cdot R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & : & -9 & 8 & -5 \\ 0 & 1 & 0 & : & -9 & 8 & -5 \\ 0 & 1 & 0 & : & -2 & 2 & -1 \end{pmatrix} R_1 \rightarrow R_1 + 5R_3$$

$$R_1 \rightarrow R_1 + 5R_3$$

$$R_2 \rightarrow R_2 + 4R_3$$
Thus,
$$P^{-1} = \begin{pmatrix} -9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{pmatrix}.$$

b)
$$R = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix}$$
 Ans: $R^{-1} = \begin{pmatrix} 1 & -2 & 0 \\ -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & 1 & -\frac{1}{5} \end{pmatrix}$.

3. Solve the following system of equations using Gauss-Jordan inversion method:

(a)
$$2x + 3y = 12$$
, $4x + 5y = 22$

Solution:

Let
$$A = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$
, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ and $B = \begin{pmatrix} 12 \\ 22 \end{pmatrix}$.

First we find the inverse of the matrix using Gauss-Jordan method and use. Now, the augment of the coefficient matrix A with the unit matrix I is given by

MDS Batch-2079/ HW Problem Sheet Prepared by Prof. Narayan Prasad Pahari/MDS 504: Math. for Data Science, on Unit-4:System of Linear Equations

$$[A:I] = \begin{pmatrix} 2 & 3 & : & 1 & 0 \\ 4 & 5 & : & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{3}{2} & : & \frac{1}{2} & 0 \\ 4 & 5 & : & 0 & 1 \end{pmatrix} R_1 \rightarrow \frac{1}{2} R_1$$

$$\sim \begin{pmatrix} 1 & \frac{3}{2} & : & \frac{1}{2} & 0 \\ 0 & -1 & : & -2 & 1 \end{pmatrix} R_2 \rightarrow R_2 - 4R_1$$

$$\sim \begin{pmatrix} 1 & \frac{3}{2} & : & \frac{1}{2} & 0 \\ 0 & 1 & : & 2 & -1 \end{pmatrix} R_2 \rightarrow (-1) R_2$$

$$\sim \begin{pmatrix} 1 & 0 & : & -\frac{5}{2} & \frac{3}{2} \\ 0 & 1 & : & 2 & -1 \end{pmatrix} R_1 \rightarrow R_1 - \frac{3}{2} R_2$$
Therefore, $A^{-1} = \begin{pmatrix} -\frac{5}{2} & \frac{3}{2} \\ 2 & -1 \end{pmatrix}$

Hence, $X = A^{-1}B$ becomes

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{5}{2} & \frac{3}{2} \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 12 \\ 22 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
. $\therefore x = 3 \text{ and } y = 2$. **Ans.**

b)
$$3x_1 - x_2 = 5$$
, $8x_1 - 3x_2 = 14$.

Ans: $x_1 = 1$ and $x_2 = -2$.

(c)
$$4x - 3y = -17$$
, $-6x + 5y = 27$

Ans:
$$x = -2$$
 and $y = 3$.

4. Solve the following system of equations using Matrix Inversion method:

(a)
$$x_1-2x_2-x_3=1$$
, $x_1-x_2+2x_3=9$, $2x_1-3x_2-x_3=4$.

Hint: Use
$$X = A^{-1}C$$
 and $A^{-1} = \frac{Adj. A}{|A|}$ Ans: $x_1 = 2, x_2 = -1$ and $x_3 = 3$.

(b)
$$3x + y + z = 15$$
, $x + y + z = 3$, $y - z = -1$.

Ans:
$$x = 6$$
, $y = -2$ and $z = -1$.

5. Solve the following system of equations using Gauss Jordan Matrix Inversion method:

4

(a) 9y - 5x = 3, x + y = 1, z + 2y = 2.

Solution:

Let
$$A = \begin{pmatrix} -5 & 9 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
, $C = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

So that AX = C and so $X = A^{-1}C$(i)

Now, the augment of the coefficient matrix A with the identity matrix I is

$$[A:I] = \begin{pmatrix} -5 & 9 & 0 & : & 1 & 0 & 0 \\ 1 & 0 & 1 & : & 0 & 1 & 0 \\ 0 & 2 & 1 & : & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{9}{5} & 0 & : & -\frac{1}{5} & 0 & 0 \\ 1 & 0 & 1 & : & 0 & 1 & 0 \\ 0 & 2 & 1 & : & 0 & 0 & 1 \end{pmatrix} R_1 \rightarrow \begin{pmatrix} -1 \\ 5 \end{pmatrix} R_1$$

MDS Batch-2079/ HW Problem Sheet Prepared by Prof. Narayan Prasad Pahari/MDS 504: Math. for Data Science, on Unit-4:System of Linear Equations

$$\begin{array}{c}
\begin{pmatrix}
1 - \frac{9}{5} & 0 & : -\frac{1}{5} & 0 & 0 \\
0 & \frac{9}{5} & 1 & : & \frac{1}{5} & 1 & 0 \\
0 & 2 & 1 & : & 0 & 0 & 1
\end{pmatrix}
 R_2 \rightarrow R_2 - R_1$$

$$\begin{pmatrix}
1 - \frac{9}{5} & 0 & : -\frac{1}{5} & 0 & 0 \\
0 & 1 & \frac{5}{9} & : & \frac{1}{9} & \frac{5}{9} & 0 \\
0 & 2 & 1 & : & 0 & 0 & 1
\end{pmatrix}
 R_2 \rightarrow \frac{5}{9} R_2$$

$$\begin{pmatrix}
1 & 0 & 1 & : & 0 & 1 & 0 \\
0 & 1 & \frac{5}{9} & : & \frac{1}{9} & \frac{5}{9} & 0 \\
0 & 0 & \frac{-1}{9} & : & -\frac{2}{9} - \frac{10}{9} & 1
\end{pmatrix}
 R_1 \rightarrow R_1 + \frac{9}{5} R_2
 R_3 \rightarrow R_3 - 2R_2$$

$$\begin{pmatrix}
1 & 0 & 1 & : & 0 & 1 & 0 \\
0 & 1 & \frac{5}{9} & : & \frac{1}{9} & \frac{5}{9} & 0 \\
0 & 0 & 1 & : & 2 & 10 & -9
\end{pmatrix}
 R_3 \rightarrow (-9) \cdot R_3$$

$$\begin{pmatrix}
1 & 0 & 0 & : & -2 & -9 & 9 \\
0 & 1 & 0 & : & -1 & -5 & 5 \\
0 & 0 & 1 & : & 2 & 10 & -9
\end{pmatrix}
 R_1 \rightarrow R_1 - R_3
 R_2 \rightarrow R_2 - \frac{5}{9} R_3$$
Hence, $A^{-1} = \begin{pmatrix}
-2 & -9 & 9 \\
-1 & -5 & 5 \\
2 & 10 & -9
\end{pmatrix}$

Now, $X = A^{-1} C$ gives

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 & -9 & 9 \\ -1 & -5 & 5 \\ 2 & 10 & -9 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -6 - 9 + 18 \\ -3 - 5 + 10 \\ 6 + 10 - 18 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$$

 \therefore x = 3, y = 2 and z = -2.

b)
$$4x_1+3x_2-5x_3=-1$$
, $3x_1+7x_2-x_3=8$, $x_1+x_2-x_3=0$

Ans: $x_1 = -5$, $x_2 = 3$ and $x_3 = -2$.

c)
$$x + y + z = 0$$
, $x - 2y + z = -3$, $x + 2y - z = 5$

Ans: x = 1, y = 1 and z = -2.

d)
$$x + 2y + z = 8,2x + 3y + 2z = 14, 3x + 2y + 2z = 13$$

Ans: x = 1, y = 2 and z = 3.
