

Machine Learning - A.A. 2020-2021

Regressione Logistica in Pytorch, Valutazione di Regressione e Classificazione, Regolarizzazione e Momentum

Antonino Furnari - http://www.dmi.unict.it/~furnari/ - furnari@dmi.unict.it Giovanni Maria Farinella - http://www.dmi.unict.it/farinella/ - gfarinella@dmi.unict.it

1. Valutazione di un regressore lineare

Nello scorso laboratorio abbiamo visto come allenare un regressore lineare. Vediamo ora come valutarlo. Iniziamo caricando il dataset visto nello scorso laboratorio e suddividendolo in training e testing set:

```
In [1]: | from sklearn.datasets import load_boston
         import numpy as np
         import torch
        from torch import nn
         np.random.seed(123)
         torch.random.manual seed(123);
        boston = load boston()
        X = boston.data
         Y = boston.target
         idx = np.random.permutation(len(X))
         X = X[idx]
         Y = Y[idx]
        X training = torch.Tensor(X[50:])
         Y_training = torch.Tensor(Y[50:])
        X \text{ testing} = \text{torch.Tensor}(X[:50])
        Y_testing = torch.Tensor(Y[:50])
```

Definiamo l'oggetto LinearRegressor come visto nello scorso laboratorio:

Effettuiamo l'allenamento del regressore lineare come visto nello scorso laboratorio:

```
In [3]: from torch.utils.tensorboard import SummaryWriter
        lr = 0.01
        epochs = 300
        writer = SummaryWriter('logs/linear regressor 1')
        #normalizzazione dei dati
        means = X training.mean(0)
        stds = X training.std(0)
        X training norm = (X training-means)/stds
        X_testing_norm = (X_testing-means)/stds
        reg = LinearRegressor(13,1)
        criterion = nn.MSELoss()
        optimizer = torch.optim.SGD(reg.parameters(),lr=lr)
        for e in range(epochs):
            reg.train()
            output = reg(X_training_norm)
            1 = criterion(output.view(-1),Y training)
            writer.add scalar('loss/train', l.item(), global step=e)
            1.backward()
            optimizer.step()
            optimizer.zero_grad()
            req.eval()
            with torch.set grad enabled(False):
                y_test = reg(X_testing_norm)
                1 = criterion(y_test.view(-1),Y_testing)
                writer.add_scalar('loss/test', l.item(), global_step=e)
```

A questo punto possiamo utilizzare il modello per predire le etichette sia per il training che per il test set:

```
In [4]: preds_training = reg(X_training_norm)
preds_testing = reg(X_testing_norm)
```

Un modo semplice per valutare il modello consiste nel calcolare l'errore MSE. Definiamo una funzione e utilizziamola per calcolare l'errore di test:

```
In [5]: def MSE(predictions, gt):
    #inseriamo un assert per assicurarci che le due shape siano compatibili
    #questo serve ad evitare problemi indotti dal broadcasting
    assert predictions.shape == gt.shape
    return ((predictions-gt)**2).mean()

#quando chiamiamo il metodo MSE, facciamo un reshape delle predizioni in modo che d
    a shape [N x 1] diventino di shape [1]
    print("Mean Squared Error (MSE) di training: {:0.2f}".format(MSE(preds_training.vie w(-1),Y_training)))
    print("Mean Squared Error (MSE) di testing: {:0.2f}".format(MSE(preds_testing.view (-1),Y_testing)))

Mean Squared Error (MSE) di training: 20.52
Mean Squared Error (MSE) di testing: 44.04
```

L'unità di misura dell'errore MSE è la stessa unità dei dati al quadrato. Pertanto, dato che i target del dataset considerato si misurano in migliaia di dollari, l'errore riportato è in migliaia di dollari al quadrato. Se vogliamo avere un errore nella stessa unità di misura dei dati in ingresso, possiamo definire il Root Mean Squared Error (RMSE), ottenuto prendendo la radice quadrata di MSE:

```
In [6]: def RMSE(predictions, gt):
    assert predictions.shape == gt.shape
    return ((predictions-gt)**2).mean()**(1/2)

print("Root Mean Squared Error (RMSE) di training: {:0.2f}".format(RMSE(preds_training.view(-1),Y_training)))
print("Root Mean Squared Error (RMSE) di testing: {:0.2f}".format(RMSE(preds_testing.view(-1),Y_testing)))

Root Mean Squared Error (RMSE) di training: 4.53
Root Mean Squared Error (RMSE) di testing: 6.64
```

Gli errori adesso ci dicono quanto il modello sbaglia in media in "migliaia di errori".

Un ulteriore misura di errore generalmente utilizzata è il Mean Absolute Error (MAE), che consiste nel calcolare la media dei valori assoluti delle differenze tra valori predetti e valori di ground truth. Anche in questo caso l'unità di misura è la stessa dei valori di target. Implementiamo la misura di errore e calcoliamo errore su trainin e test set:

```
In [7]: def MAE(predictions, gt):
    assert predictions.shape == gt.shape
    return ((predictions-gt).abs()).mean()

print("Mean Absolute Error (MAE) di training: {:0.2f}".format(MAE(preds_training.view(-1),Y_training)))
print("Mean Absolute Error (MAE) di testing: {:0.2f}".format(MAE(preds_testing.view(-1),Y_testing)))

Mean Absolute Error (MAE) di training: 3.08
Mean Absolute Error (MAE) di testing: 4.31
```

Un altro modo per valuatare un regressore, consiste nel costruire una curva REC (Regression Error Curve). La curva riporta sull'asse delle x una serie di soglie di tolleranza e sull'asse delle y la percentuale degli elementi di test che presentano un errore inferiore o uguale alla soglia corrispondente. Inoltre, alla curva è spesso associata l'area sopra la curva (AOC) per offrire una misura dell'errore del metodo. Definiamo una funzione che calcoli tali valori:

```
In [8]:
        from matplotlib import pyplot as plt
        def rec curve(predictions, gt):
            assert predictions.shape == gt.shape
            #calcoliamo tutti gli errori mediante MAE
            errors = np.abs(np.array((predictions.detach()-gt)))
            #prendiamo i valori unici degli erorri e ordiniamoli
            tolerances = sorted(np.unique(errors))
            correct= [] #lista delle "accuracy" relative a ogni soglia
            for t in tolerances:
                correct.append((errors<=t).mean()) #frazione di elementi "correttamente" re</pre>
        gressi
            AUC = np.trapz(correct, tolerances) #area sotto la curva calcolata col metodo d
        ei trapezi
            tot_area = np.max(tolerances)*1 #area totale
            AOC = tot_area - AUC
            #restituiamo le soglie, la frazione di campioni correttamente regressi e l'area
        sopra la curva
            return tolerances, correct, AOC
```

Utilizziamo la funzione per calcolare la curva REC e plottiamola:

```
In [9]: boston_linear_regressor_rec = rec_curve(preds_testing.view(-1),Y_testing)
    plt.plot(boston_linear_regressor_rec[0], boston_linear_regressor_rec[1])
    plt.legend(['Boston Linear Regressor. AOC: %0.2f'%boston_linear_regressor_rec[2]])
    plt.grid()
    plt.show()
```


In pratica, le curve REC possono essere molto utili per confrontare le performance di due regressori diversi. Confrontiamo ad esempio le performance del regressore su training e test set:

```
In [10]: boston_linear_regressor_training_rec = rec_curve(preds_training.view(-1),Y_trainin
g)
    boston_linear_regressor_testing_rec = rec_curve(preds_testing.view(-1),Y_testing)
    plt.plot(boston_linear_regressor_training_rec[0], boston_linear_regressor_training_
    rec[1])
    plt.plot(boston_linear_regressor_testing_rec[0], boston_linear_regressor_testing_re
    c[1])
    plt.legend(['Boston_Linear_Regressor_[train]. AOC: %0.2f'%boston_linear_regressor_t
    raining_rec[2],'Boston_Linear_Regressor_[test]. AOC: %0.2f'%boston_linear_regressor
    _testing_rec[2]])
    plt.grid()
    plt.show()
```


2. Regressione Logistica in PyTorch

Abbiamo visto come allenare un regressore lineare utilizzando PyTorch. Vediamo adesso come implementare e allenare un regressore logistico. Consideriamo il dataset "Breast Cancer" contenuto in **scikit-learn**:

Il dataset contiene 569 osservazioni. Ognuna di esse contiene 30 attributi relativi a misurazioni di alcune proprietà dei nuclei delle cellule di un tessuto sotto analisi. Ogni osservazione può appartenere alla classe 1 (cancro presente) o alla classe 0 (cancro assente). Si veda https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) per maggiori informazioni.

Analogamente a quanto fatto nel caso del regressore lineare, vorremmo poter costruire un algoritmo che, dato un nuovo campione contenente le 30 osservazioni, lo classifichi come appartenente alla classe 0 o alla classe 1.

Potremmo pensare di allenare un classificatore lineare per predire i valori 0 o 1 dai dati, tuttavia avremmo un problema: anche se alleniamo il regressore usando solo valori target pari a 0 o 1, una volta allenato, il regressore sarebbe in grado di predire anche valori diversi da 0 o 1. In generale, ciò renderebbe poco chiaro come interpretare i valori predetti dal regressore.

Per poter trattare comunque il probelma con un problema di regressione, potremmo pensare di predire la **probabilità che la classe target sia pari a** 1. Le probabilità sono dei valori continui, che quindi risolverebbero in parte il problema discusso sopra. Tuttavia, le probabilità restano dei numeri compresi tra 0 e 1, mentre il regressore potrebbe predire valori arbitrari (es, 100).

Dobbiamo dunque effettuare una trasformazione dei valori di probabilità che restituisca valori continui e non compresi tra 0 e 1. Una trasformazione possibile si ottiene utilizzando la funzione **logit**:

$$logit(P) = ln(rac{P(1 \mid \mathbf{x})}{1 - P(1 \mid \mathbf{x})})$$

dove $P(1\mid\mathbf{x})$ è la probabilità che la classe relativa al campione \mathbf{x} sia 1 e, di conseguenza, $1-P(1\mid\mathbf{x})=P(0\mid\mathbf{x})$ indica la probabilità che la classe corretta sia 0. L'espressione $\frac{P(1\mid\mathbf{x})}{1-P(1\mid\mathbf{x})}$ è detta "odd" e assume sempre valori positivi e che tali valori possono essere sia minori di 1 (se $P(1|\mathbf{x})<0.5$), che maggiori di 1 (se $P(1|\mathbf{x})>0.5$), pertanto il dominio della funzione logit è l'insieme dei numeri reali. Un regressore lineare si presta dunque bene a predire questo genere di valori. Definiamo il nostro problema quindi come un problema di regressione lineare in cui vogliamo predire da ogni campione uno "score" z che poniamo uguale al logit:

$$z = logit(P) = ln(rac{P(1 \mid \mathbf{x})}{1 - P(1 \mid \mathbf{x})})$$

Il regressore sarà dunque definito come segue:

$$z = heta_0 + heta_1 x_1 + \ldots + heta_n x_n$$

Dove $\mathbf{x}=x_1,\ldots,x_n$ è il vettore in ingresso e θ_0,\ldots,θ_n sono i parametri del regressore logistico.

Una volta allenato il regressore, lo si può utilizzare per predire i valori $z = logit(\hat{P}(1|\mathbf{x}))$. Dunque si può ottenere la probabilità $P(1|\mathbf{x})$ utilizzando la funzione inversa della funzione logit, nota anche come **funzione logistica**:

$$\hat{P}(1|\mathbf{x}) = p = rac{1}{1+e^{-z}}$$

dove $\hat{P}(1|\mathbf{x})$ è la probabilità stimata che la classe del campione \mathbf{x} sia 1. Inoltre si ha:

$$\hat{P}(0|\mathbf{x}) = 1 - p = 1 - \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^z}$$

Per allenare il regressore logistico, definiamo una funzione di "loss" che assume valori alti quando le nostre predizioni sono sbagliate e valori bassi quando le predizioni sono corrette. La funzione di loss per un dato campione \mathbf{x} è definita come segue:

$$\mathcal{L}_{ heta}(z,y) = -ylog(p) - (1-y)log(1-p)$$

o alternativamente, in funzione di z:

$$\mathcal{L}_{ heta}(z,y) = -ylog(rac{1}{1+e^{-z}}) - (1-y)log(rac{1}{1+e^z})$$

Date le proprietà dei logaritmi, la funzione sopra si può scrivere come:

$$\mathcal{L}_{ heta}(z,y) = ylog(1+e^{-z}) + (1-y)log(1+e^{z})$$

dove z è lo score stimato, y rappresenta la classe corretta e L è una funzione differenziabile rispetto ai parametri β_i . In generale, la loss viene definita su un insieme di N campioni \mathbf{x}_i :

$$\mathcal{L}_{ heta}(z,y) = rac{1}{N} \sum_{i} -y_{i}log(p_{i}) - (1-y_{i})log(1-p_{i}) = rac{1}{N} \sum_{i} y_{i}log(1+e^{-z_{i}}) + (1-y_{i})log(1+e^{z_{i}})$$

In pratica, un **regressore logistico** si può vedere come un **regressore lineare** al quale output è stata applicata la **funzione logistica**. Vediamo come implementarlo. Impostiamo un seed per avere risultati ripetibili:

```
In [12]: import torch
import numpy as np
np.random.seed(1234)
torch.random.manual_seed(1234);
```

Otteniamo una permutazione casuale dei dati:

```
In [13]: idx = np.random.permutation(len(X))
```

Applichiamo la stessa permutazione a X e Y:

Suddividiamo il dataset in **training** e **testing** set indipendenti selezionando i primi 100 valori per formare il testing set. Trasformiamo inoltre gli array in tensori. In questo caso non dobbiamo specificare require_grads=True in quanto si tratta di osservazioni che non andremo a ottimizzare:

```
In [15]: X_training = torch.Tensor(X[100:])
Y_training = torch.Tensor(Y[100:])
X_testing = torch.Tensor(X[:100])
Y_testing = torch.Tensor(Y[:100])
```

Normalizziamo i dati per media e deviazione standard:

```
In [16]: X_mean = X_training.mean(0)
X_std = X_training.std(0)
X_training_norm = (X_training-X_mean)/X_std
X_testing_norm = (X_testing-X_mean)/X_std
```

Definiamo dunque un normale regressore della forma seguente per iniziare:

$$y(x) = \theta_0 + \theta_1 x_1 + \ldots + \theta_{30} x_{30}$$

Il modello dipenderà da 31 parametri. 30 sono relativi alle 30 feature in ingresso, mentre il trentunesimo rappresenta l'intercetta della retta di regressione. Possiamo costruire il regressore lineare usando nn.Linear:

```
In [17]: from torch import nn
linear_regressor = nn.Linear(30,1)
```

Proviamo ad applicare la funzione ai nostri dati:

Questi valori rappresentano i nostri score z, ovvero i **logit**. Verifichiamo che il range dei score non è compatibile con la definizione di probabilità:

```
In [19]: print(z.min())
    print(z.max())

tensor(-0.9687, grad_fn=<MinBackward1>)
    tensor(1.2384, grad_fn=<MaxBackward1>)
```

Per ottenere delle probabilità, dobbiamo applicare la funzione logistica. Definiamola:

```
In [20]: def logistic(z):
    return 1./(1+torch.exp(-z))
```

Applichiamo la funzione ai dati:

Possiamo verificare che i valori ottenuti siano delle probabilità valide, ovvero che siano compresi tra 0 e 1:

```
In [22]: print(p.min())
    print(p.max())

tensor(0.2751, grad_fn=<MinBackward1>)
    tensor(0.7753, grad_fn=<MaxBackward1>)
```

Pytorch mette a disposizione una implementazione della funzione logistica mediante l'oggetto nn.Sigmoid (la funzione logistica è detta anche sigmoide):

```
In [23]: sigmoid=nn.Sigmoid()
```

La funzione ha lo stesso comportamento di quella definita da noi:

Definiamo adesso la funzione di loss a partire dai valori di probabilità:

Calcoliamo la loss per le predizioni appena ottenute:

```
In [26]: print(loss(p,Y_training.view(-1,1)))
tensor(0.6579, grad_fn=<MeanBackward0>)
```

La stessa funzione di loss è implementata mediante il modulo BCELoss (Binary Cross Entropy Loss):

```
In [27]: loss = nn.BCELoss()
```

Verifichiamo che la loss funzioni esattamente come quella da noi implementata:

```
In [28]: print(loss(p,Y_training.view(-1,1)))
tensor(0.6579, grad fn=<BinaryCrossEntropyBackward>)
```

Adesso abbiamo tutti gli ingredienti che ci servono per allenare il regressore logistico. Effettuiamo il training utilizzando lo schema visto nel caso della regressione lineare:

- 1. Normalizzare i dati in ingresso x;
- 2. Inizializzare i parametri θ in maniera opportuna;
- 3. Calcolare i logit $\hat{\mathbf{z}} = \sum_i (heta_i x_i) + heta_0$;
- 4. Calcolare le probabilità $p=rac{1}{1+e^{-z}};$
- 5. Calcolare il valore della loss $\mathcal{L}_{\theta}(p,y)$;
- 6. Calcolare il gradiente rispetto ai parametri θ della funzione di loss $\nabla_{\theta} \mathcal{L}_{\theta}(p,y)$;
- 7. Aggiornare i pesi θ secondo la regola: $\theta=\theta-\eta\nabla_{\theta}\mathcal{L}_{\theta}(p,y)$, dove η è il learning rate;
- 8. Ripetere i passi 3-7 fino a convergenza.

Domanda 1

Quali sono le differenze tra questa procedura di training e quella vista nel caso del regressore lineare?

Risposta 1

Prima di passare all'implementazione, definiamo un oggetto che effettui la regressione lineare:

```
In [29]: | class LogisticRegressor(nn.Module):
             def __init__(self, in_features):
                  """Costruisce un regressore logistico.
                          in_features: numero di feature in input (es. 30)"""
                 super(LogisticRegressor, self).__init__() #richiamo il costruttore della su
         perclasse
                  #questo passo è necessario per abilitare alcuni meccanismi automatici dei m
         oduli di PyTorch
                 self.linear = nn.Linear(in_features,1) #il regressore logistico restituisce
         probabilità
                  \#quindi\ il\ numero\ di\ feature\ di\ output\ \grave{e} "1"
                  self.logistic = nn.Sigmoid()
             def forward(self,x):
                  """Definisce come processare l'input x"""
                 logits = self.linear(x)
                 return self.logistic(logits)
```

Implmentiamo adesso la procedura di training impostando il learning rate a 0.1 e ottimizzando il modello per 500 epoche. Utilizzeremo tensorboard per tracciare la procedura di training:

```
In [30]: | from torch.utils.tensorboard import SummaryWriter
         writer = SummaryWriter('logs/logistic regressor')
         lr = 0.01
          epochs = 500
          # Passo 1: normalizzazione dei dati
          means = X_training.mean(0)
          stds = X_training.std(0)
          X_training_norm = (X_training-means)/stds
          X_testing_norm = (X_testing-means)/stds
          #Passo 2: inizializziamo il modello
          regressor = LogisticRegressor(30)
          loss = nn.BCELoss()
          sgd = torch.optim.SGD(regressor.parameters(), lr)
          for e in range(epochs):
             regressor.train()
              #Passo 3 & 4: calcoliamo le probabilità
              p = regressor(X_training_norm)
              #Passo 5: calcoliamo il valore della loss
              l = loss(p, Y training.view(-1,1))
              #Passo 6: calcoliamo il gradiente della loss rispetto a tutti i parametri
              1.backward()
              #facciamo log del valore della loss
              writer.add scalar('loss/train', l.item(), global step=e)
              #Passo 7: Aggiorniamo i pesi
              sgd.step()
              #azzeriamo i gradienti per evitare di accumularli
              sgd.zero_grad()
              #calcoliamo e facciamo log la loss di test:
              regressor.eval()
              \begin{tabular}{ll} \textbf{with} & \texttt{torch.set\_grad\_enabled}(\textbf{False}): \\ \end{tabular}
                  p = regressor(X_testing_norm)
                  l = loss(p, Y_testing.view(-1,1))
                  writer.add_scalar('loss/test', l.item(), global_step=e)
```

Domanda 2

Si evidenzino le differenze tra il codice mostrato sopra e quello visto nel caso del regressore lineare.

Su tensorboard si dovrebbe visualizzare un grafico del genere:

Domanda 3

Si osservi il grafico ottenuto. Possiamo dire che il modello è arrivato a convergenza? Avrebbe senso allenarlo per un numero minore di epoche? E per un numero maggiore?

Risposta 3

Adesso otteniamo le predizioni per il test set utilizzando il modello finale e calcoliamo la relativa loss:

```
In [31]: #iniziamo calcolando le predizioni del modello dati i pesi allenati
p_test = regressor(X_testing_norm)
#calcoliamo il valore della loss
print(loss(p_test, Y_testing.view(-1,1)))
```

tensor(0.1860, grad_fn=<BinaryCrossEntropyBackward>)

L'output del regressore logistico consiste in probabilità. Per ottenere le etichette ("0" o "1"), sogliamo le probabilità. Tutti gli elementi per i quali abbiamo predetto probabilità maggiore o uguale a 0.5 saranno di classe 1, mentre gli altri saranno di classe 0:

Adesso abbiamo le etichette predette dal modello. Per capire "quanto" il modello funziona, possiamo confrontare queste predizioni con i valori di ground truth. Iniziamo con una semplice misura di valutazione, l'accuracy, che conta la frazione di elementi per i quali è stata predetta la corretta etichetta:

```
In [33]: def accuracy(pred,gt):
    """Calcola l'accuracy date le predizioni pred
    e le etichette di ground truth gt"""
    correct = pred.view(-1).byte()==gt.view(-1).byte()
    #conterrà true in corrispondenza degli elementi per i quali è stata predetta la classe corretta
    #inseriamo "view(-1)" per essere sicuri di lavorare con array monodimensionali
    return float(correct.sum())/len(correct)#conta il numero di predizioni corrette
e divide per il numero totale di predizioni
```

Domanda 3

Si discuta la funzione accuracy . Perché richiamiamo il metodo .byte sui due tensori?

Risposta 3

Calcoliamo dunque le accuracy di training e di test:

```
In [34]: print("Accuracy di training: {:0.2f}".format(accuracy(pred_training,Y_training)))
    print("Accuracy di test: {:0.2f}".format(accuracy(pred_testing,Y_testing)))
    Accuracy di training: 0.97
    Accuracy di test: 0.93
```


Domanda 4

Perché il classificatore funziona meglio sul training set che sul test set?

L'accuracy è una misura di performance molto intuitiva per un classificatore. Un valore prossimo a 1 indica che tutti gli elementi sono stati classificati correttamente, mentre un valore prossimo a zero indica che nessun elemento è stato classificato correttamente.

Domanda 5

Un classificatore ottiene una accuracy pari a $0.91~\rm su$ un dataset di $189~\rm elementi$. Quanti elementi sono stati classificati correttamente? Quanti elementi non sono stati classificati correttamente?

Risposta 5

E' spesso utile monitorare come l'accuracy di training e test cambiano durante l'allenamento di un modello, in maniera analoga a quanto visto nel caso della loss. Modifichiamo il codice di training visto prima per plottare anche accuracy di training e test mediante tensorboard:

```
In [35]: from torch.utils.tensorboard import SummaryWriter
         writer = SummaryWriter('logs/logistic regressor 2')
         lr = 0.01
         epochs = 500
         means = X_training.mean(0)
         stds = X_training.std(0)
         X_training_norm = (X_training-means)/stds
         X_testing_norm = (X_testing-means)/stds
         regressor = LogisticRegressor(30)
         loss = nn.BCELoss()
         sgd = torch.optim.SGD(regressor.parameters(), lr)
         for e in range(epochs):
            regressor.train()
            p = regressor(X_training_norm)
             l = loss(p, Y_training.view(-1,1))
             1.backward()
             writer.add_scalar('loss/train',l.item(),global_step=e)
             sgd.step()
             sgd.zero_grad()
             writer.add_scalar('accuracy/train',accuracy(p>=0.5,Y_training),global_step=e)
             regressor.eval()
             with torch.set_grad_enabled(False):
                 p = regressor(X testing norm)
                 l = loss(p, Y testing.view(-1,1))
                 writer.add scalar('loss/test',l.item(),global step=e)
                 #calcoliamo e facciamo log dell'accuracy di training a partire dalle prediz
         ioni
                 writer.add_scalar('accuracy/test',accuracy(p>=0.5,Y_testing),global_step=e)
```

In tensorboard si dovrebbe a questo punto visualizzare un grafico del genere:

loss

Domanda 6

Accuracy e loss sono concordi? A cosa è dovuta la discretizzazione della curva di accuracy? Perché quella di loss non è altrettanto discretizzata?

Risposta 6

2.1 Stabilità Numerica

Finora abbiamo utilizzato la loss:

$$\mathcal{L}_{ heta}(z,y) = rac{1}{N} \sum_{i} -y_i log(p_i) - (1-y_i) log(1-p_i)$$

dove:

$$p_i=rac{1}{1+e^{-z_i}}$$

Questa loss può essere numericamente instabile in quanto, per valori di z_i molto bassi, e^{-z_i} sarà un numero molto alto e di conseguenza p_i sarà molto piccolo. Se il valore di p_i scende al di sotto della precisione della macchina (cioè va in underflow), esso verrà arrotondato a zero. A questo punto, all'interno della funzione di loss \mathcal{L} , il valore $y_i \log(p_i)$ restituirà un nan se $y_i = 0$.

Per evitare questi problemi, in genere si utilizza la loss definita a partire dai logit:

$$\mathcal{L}_{ heta}(z,y) = rac{1}{N} \sum_{i} y_i log(1+e^{-z_i}) + (1-y_i) log(1+e^{z_i})$$

Notiamo che questa loss non soffre dei problemi discussi sopra. Per valori molto bassi di z_i , infatti e^{-z_i} non comparirà, mentre il termine $1+e^{-z_i}$ sarà almeno pari a 1 (per cui potremo sempre calcolarne il logaritmo. Possiamo dunque effettuare la procedura di training evitando di calcolare esplicitamente le probabilità e applicando la seconda loss direttamente ai logit z_i . Definiamo la loss:

```
In [36]: def loss2(z,y):
    return (y*torch.log(1+torch.exp(-z))+(1-y)*torch.log(1+torch.exp(z))).mean()
```

La loss vista sopra va applicata direttamente ai logit, mentre il nostro modello restituisce direttamente probabilità. Modifichiamo il modello per restituire i logit invece delle probabilità:

```
In [37]: class LogisticRegressor(nn.Module):
    def __init__(self, in_features):
        super(LogisticRegressor, self).__init__()
        self.linear = nn.Linear(in_features,1)

def forward(self,x):
    logits = self.linear(x)
    return logits
```

Se vogliamo ottenere delle probabilità in fase di test, dobbiamo trasformarle manualmente mediante la funziona logistica:

```
In [38]: regressor=LogisticRegressor(30)
    logistic = nn.Sigmoid()

#logits
    z = regressor(X_training_norm)
    print(z.min(),z.max())

#probabilità
    p = logistic(p)
    print(p.min(),p.max())

tensor(-2.5596, grad_fn=<MinBackwardl>) tensor(1.4102, grad_fn=<MaxBackwardl>)
    tensor(0.5000) tensor(0.7306)
```

In pratica, la loss definita in precedenza come loss2 viene implementata da Pytorch mediante il modulo nn.BCEWithLogitsLoss. Verifichiamo che le due loss restituiscano gli stessi risultati:

La procedura di training diventa dunque la seguente:

- 1. Normalizzare i dati in ingresso x;
- 2. Inizializzare i parametri θ in maniera opportuna;
- 3. Calcolare i logit $\hat{\mathbf{z}} = \sum_{i} (\theta_i x_i) + \theta_0$;
- 4. Calcolare il valore della loss $\mathcal{L}_{\theta}(z,y)$;
- 5. Calcolare il gradiente rispetto ai parametri θ della funzione di loss $\nabla_{\theta} \mathcal{L}_{\theta}(z,y)$;
- 6. Aggiornare i pesi θ secondo la regola: $\theta = \theta \eta \nabla_{\theta} \mathcal{L}_{\theta}(z, y)$, dove η è il learning rate;
- 7. Ripetere i passi 3-6 fino a convergenza.

Modifichiamo il codice precedente per effettuare il training utilizzando la nuova loss:

```
In [40]: from torch.utils.tensorboard import SummaryWriter
         writer = SummaryWriter('logs/logistic regressor 3')
         lr = 0.01
         epochs = 500
         means = X training.mean(0)
         stds = X_training.std(0)
         X training norm = (X training-means)/stds
         X testing norm = (X testing-means)/stds
         regressor = LogisticRegressor(30)
         #inseriamo qui la nuova loss
         loss = nn.BCEWithLogitsLoss()
         sgd = torch.optim.SGD(regressor.parameters(), lr)
         for e in range (epochs):
             regressor.train()
             z = regressor(X_training_norm)
             l = loss(z, Y training.view(-1,1))
             1.backward()
             writer.add scalar('loss/train', l.item(), global step=e)
             sgd.step()
             sgd.zero_grad()
             #calcoliamo le probabilità
             p=logistic(z)
             writer.add_scalar('accuracy/train',accuracy(p>=0.5,Y_training),global step=e)
             regressor.eval()
             with torch.set grad enabled(False):
                 z = regressor(X_testing_norm)
                 l = loss(z, Y testing.view(-1,1))
                 writer.add_scalar('loss/test',l.item(),global_step=e)
                 #calcoliamo le probabilità
                 p=logistic(z)
                 writer.add_scalar('accuracy/test',accuracy(p>=0.5,Y_testing),global_step=e)
```

In tensorboard si dovrebbe a questo punto visualizzare un grafico del genere:

Calcoliamo accuracy di training e di testing:

2.2 Valutazione del regressore logistico

La libreria **scikit-learn** mette a disposizione diverse misure di valutazione, tra cui l'accuracy, che finora abbiamo implementato manualmente. Prima di vedere qualche esempio, otteniamo le predizioni di training e testing:

```
In [42]: preds_training = logistic(regressor(X_training_norm))>=0.5
preds_testing = logistic(regressor(X_testing_norm))>=0.5
```

2.2.1 Accuracy

Possiamo calcolare l'accuracy del classificatore mediante la funzione accuracy_score utilizzando la funzione messa a disposizione da scikit-learn:

```
In [43]: from sklearn.metrics import accuracy_score
    acc_training = accuracy_score(Y_training,preds_training)
    acc_testing = accuracy_score(Y_testing,preds_testing)

print("Accuracy di training: {:0.2f}".format(acc_training))
print("Accuracy di test: {:0.2f}".format(acc_testing))

Accuracy di training: 0.97
Accuracy di test: 0.93
```

2.2.2 Matrice di Confusione

Scikit-Learn mette a disposizione anche altre misure di valutazione. Vediamo ad esempio la matrice di confusione:

```
In [44]: from sklearn.metrics import confusion_matrix
cm_training = confusion_matrix(Y_training,preds_training)
cm_testing = confusion_matrix(Y_testing,preds_testing)
print(cm_training)
print(cm_testing)
[[169 6]
[ 6 288]]
[[32 5]
[ 2 61]]
```

L'elemento di indici i,j indica il numero di elementi appartenenti alla classe i che è stato classificato come appartenente alla classe j. La matrice di confusione ci da qualche indicazione in più su "dove" si trovano gli errori. Possiamo normalizzare la matrice di confusione per ottenere dei numeri in percentuale come segue:

2.2.3 Precision e Recall

Precision e Recall possono essere calcolate utilizzando le apposite funzioni precision_score e recall_score di scikit-learn:

```
In [46]: from sklearn.metrics import precision_score, recall_score
    scores_training = precision_score(Y_training, preds_training)
    scores_testing = recall_score(Y_testing,preds_testing)
    print(scores_training)
    print(scores_testing)

0.9795918367346939
0.9682539682539683
```

2.2.4 F_1 score

Lo score F_1 permette di valutare le performance del classificatore classe per classe. Ciò avviene suddividendo il problema di classificazione multiclasse in K problemi di classificazione binaria (un po' come avviene quando si allena un classificatore one-vs-all). Per ogni classe vengono dunque calcolate precision e recall. Lo score F_1 viene ottenuto per ogni classe calcolando una media pesata tra precision e recall:

$$F_1 = 2rac{precision \cdot recall}{precision + recall}$$

Possiamo calcolare gli score F_1 come segue:

```
In [47]: from sklearn.metrics import f1_score
    scores_training = f1_score(Y_training,preds_training, average=None)
    scores_testing = f1_score(Y_testing,preds_testing, average=None)
    print(scores_training)
    print(scores_testing)

[0.96571429 0.97959184]
    [0.90140845 0.94573643]
```

I tre punteggi indicano le performance del classificatore per ogni classe. E' pratica comune calcolare il "mean F_1 score" (mF_1) come la media dei punteggi relativi alle singole classi per ottenere un indicatore generale di performance:

```
In [48]: print(scores_training.mean())
    print(scores_testing.mean())

    0.9726530612244897
    0.9235724424063763
```


Domanda 7

Cosa ci dicono in più i due score F1 rispetto all'accuracy da sola? In quale delle due classi il classificatore è "pià bravo"?

Risposta 7

3 Regolarizzazione e Momentum

Fino a questo momento abbiamo utilizzato ciò che viene in gergo chiamato "vanilla gradient descent", ovvero la versione più semplice dell'algoritmo della discesa del gradiente. E' tuttavia possibile applicare delle modifiche per migliorare la generalizzazione o velocizzare l'apprendimento. Iniziamo vedendo come applicare una tecnica di regolarizzazione basata su "weight decay".

3.1 Regolarizzazione mediante weight decay

La tecnica del weight decay implementa la regolarizzazione L2 in una rete neurale. Se \mathbf{W} sono i parametri del modello e $E(\mathbf{W})$ è la sua loss, è possibile definire la loss regolarizzata sommando una penalità sulla norma dei pesi \mathbf{W} :

$$ilde{E}(\mathbf{W}) = E(\mathbf{W}) + rac{\lambda}{2} ||\mathbf{W}||^2$$

dove λ è il coefficiente di regolarizzazione e regola l'influenza della penalità.

La discesa del gradiente viene applicata alla loss regolarizzata aggiornando il parametro i-esimo come segue:

$$w_i = w_i - \eta rac{\partial E}{\partial w_i} - \eta \lambda w_i$$

dove η è il learning rate e il termine $\eta \lambda w_i$ deriva dalla penalità.

In pratica, l'applicazione della regola di aggiornamento dei pesi vista sopra fa "decadere" esponenzialmente (da cui il termine "weight decay") il valore dei pesi che ricevono gradienti nulli. Ciò impedisce che i pesi crescano a dismisura durante il training.

Il weight decay viene gestito implicitamente dagli optimizer di PyTorch. Ad esempio, nel caso dell'optimizer SGD, basta specificare un valore per il parametro weight decay:

```
SGD(model.parameters(),lr, weight_decay = 0.001)
```

Modifichiamo il codice di training inserendo il weight decay:

```
In [49]: | from torch.utils.tensorboard import SummaryWriter
         writer = SummaryWriter('logs/logistic regressor 4')
         lr = 0.01
         epochs = 500
         means = X_training.mean(0)
         stds = X_training.std(0)
         X_training_norm = (X_training-means)/stds
         X testing norm = (X testing-means)/stds
         regressor = LogisticRegressor(30)
         loss = nn.BCEWithLogitsLoss()
         #specifichiamo il weight decay
         sgd = torch.optim.SGD(regressor.parameters(), lr, weight decay=0.001)
         for e in range(epochs):
            regressor.train()
             z = regressor(X_training_norm)
             l = loss(z, Y_training.view(-1,1))
             1.backward()
             writer.add scalar('loss/train', l.item(), global step=e)
             sgd.step()
             sgd.zero grad()
             p = logistic(z)
             writer.add scalar('accuracy/train',accuracy(p>=0.5,Y training),global step=e)
             regressor.eval()
             with torch.set grad enabled(False):
                 z = regressor(X testing norm)
                 l = loss(z, Y_testing.view(-1,1))
                 writer.add scalar('loss/test',l.item(),global step=e)
                 p = logistic(z)
                 writer.add_scalar('accuracy/test',accuracy(p>=0.5,Y_testing),global_step=e)
```

Calcoliamo accuracy di training e test:

```
In [50]: print("Accuracy di training: {:0.2f}".format(accuracy(logistic(regressor(X_training _norm))>=0.5,Y_training)))
    print("Accuracy di test: {:0.2f}".format(accuracy(logistic(regressor(X_testing_nor m))>=0.5,Y_testing)))

Accuracy di training: 0.97
Accuracy di test: 0.92
```

3.2 Momentum

Il momentum in genere permette di accelerare l'apprendimento. Per utilizzare il momentum è sufficiente specificare un parametro momentum al momento della costruzione dell'optimizer. Ad esempio:

```
SGD (model.parameters(), lr, weight decay = 0.001, momentum=0.9)
```

Proviamo ad effettuare l'allenamento con momentum:

```
In [51]: from torch.utils.tensorboard import SummaryWriter
         writer = SummaryWriter('logs/logistic regressor 5')
         lr = 0.01
         epochs = 500
         means = X_training.mean(0)
         stds = X_training.std(0)
         X_training_norm = (X_training-means)/stds
         X_testing_norm = (X_testing-means)/stds
         regressor = LogisticRegressor(30)
         loss = nn.BCEWithLogitsLoss()
         #specifichiamo il momentum
         sgd = torch.optim.SGD(regressor.parameters(), lr, weight decay=0.001, momentum=0.9)
         for e in range(epochs):
            regressor.train()
             z = regressor(X_training_norm)
             l = loss(z, Y_training.view(-1,1))
             1.backward()
             writer.add scalar('loss/train', l.item(), global step=e)
             sgd.step()
             sgd.zero grad()
             p = logistic(z)
             writer.add_scalar('accuracy/train',accuracy(p>=0.5,Y_training),global_step=e)
             regressor.eval()
             with torch.set grad enabled(False):
                 z = regressor(X testing norm)
                 l = loss(z, Y_testing.view(-1,1))
                 writer.add_scalar('loss/test',l.item(),global_step=e)
                 p = logistic(z)
                 writer.add_scalar('accuracy/test',accuracy(p>=0.5,Y_testing),global_step=e)
```

Otterremo un grafico del genere:

Domanda 8

Si confrontino su tensorboard il grafico visto sopra con i precedenti. Quali sono le principali differenze?

Risposta 8

Valutiamo accuracy di training e di test:

Accuracy di training: 0.99 Accuracy di test: 0.96

Esercizi

Esercizio 1

Si costruisca un regressore polinomiale per risolvere il problema di regressione visto nello scorso laboratorio. Si confrontino le performance del regressore ottenuto con quello lineare mediante MSE, RMSE e curve REC.

Esercizio 2

Si alleni un regressore lineare sul dataset Boston utilizzando weight decay e momentum. Si provino diverse combinazioni di parametri. Si confrontino le performance dei regressori ottenuti sul test set mediante curve REC.

Esercizio 3

Si risolva il problema di classificazione binaria visto in questo laboratorio mediante un semplice regressore lineare. Si confrontino le performance del classificatore ottenuto con quelle dei classificatori logistici visti in questo laboratorio. Quale metodo raggiunge risultati migliori?

Esercizio 4

Si consideri il dataset degli iris di Fisher (http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html). Si tratta di un dataset contenenti 4 misurazioni relativi a 3 specie di fiori diverse. Si costruisca un classificatore multiclasse utilizzando il criterio "one-vs-all". Ognuno dei classificatori richiesti dal criterio "one-vs-all" va implementato come un classificatore logistico a se stante.

Esercizio 5

Si riveda l'esercizio 2 dello scorso laboratorio: per semplificare l'utilizzo del modello, si cotruisca una classe Regressore con i seguenti metodi:

- Costruttore: prende in input il numero di osservazioni D e un parametro logistic che indica se il regressore è logistico o lineare. Il costruttore inizializza il modello di regressione opportuno;
- ullet Metodo ${ t fit}$: prende in input i dati X e le etichette Y per effettuare il training. Il metodo prende

in input anche i parametri \mbox{lr} e epochs che indicano il learning rate e il numero di epoche. I valori di default per questi due parametri sono rispettivamente 0.01 e 1000. Il metodo \mbox{fit} calcola medie e deviazioni standard di X e conserva tali valori per usi futuri, normalizza i dati X ed effettua l'allenamento del modello. Ad ogni epoca, viene stampato il valore della loss;

- Metodo predict : prende in input i dati X. Il metodo normalizza i dati X utilizzando le medie e le deviazioni standard precedentemente salvate, poi predice e restituisce le etichette predette dal modello sui dati X;
- Metodo score: prende in input i dati X e le etichette Y. Il metodo utilizza predict per predire le etichette a partire
 dai dati X, poi calcola e restituisce il valore della loss (nel caso del regressore lineare) o l'accuracy (nel caso del
 regressore logistico) calcolata utilizzando le etichette predette e le etichette fornite Y;

E' possibile inserire altri metodi privati (devono iniziare per _ , ad esempio _loss) per rendere la computazione modulare. Si faccia uso dell'API ad oggetti di PyTorch.

Utilizzare l'oggetto per:

- Allenare un modello di regressione lineare per risolvere il problema di regressione visto nello scorso laboratorio;
- Calcolare la loss di training mediante il metodo score;
- Predire le etichette di test mediante il metodo predict;
- Calcolare la loss di test mediante il metodo score.
- Allenare un modello di regressione logistica per risolvere il problema di classificazione visto in questo laboratorio;
- Calcolare l'accuracy di training mediante il metodo score;
- Calcolare l'accurayc di test test mediante il metodo score .

References

• Documentazione di PyTorch. http://pytorch.org/docs/stable/index.html