http://goo.gl/svgV0n

KYOTO UNIVERSITY

Statistical Machine Learning Theory Lecture 11 On-line Learning

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY

Topics:

Online learning algorithms and theoretical guarantees

- On-line learning problem
- Halving algorithm, its theoretical mistake bound, and its limitation
- Regret analysis as a performance measure of online learning algorithms
- Analyses of:
 - Follow-the-leader (FTL) and follow-the-regularized-leader (FTRL) algorithms
 - Online gradient descent algorithm
 - Perceptron algorithm

Most of the contents in this lecture are based on: Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2), 107-194.

On-line learning problem:

Learning to make periodical decisions

- In standard (batch) learning settings,
 - 1. Given training dataset $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$
 - 2. Make predictions for test dataset $\{\mathbf{x}^{(N+1)},...,\mathbf{x}^{(N+M)}\}$
 - 3. Get feedbacks (reward or loss)
- In online learning,
 - 1. At each round, make a prediction for an arriving data
 - 2. Get a feedback for the prediction
 - 3. Return to 1
 - Training and test are done with the same data

KYOTO UNIVERSITY

On-line learning applications:

Real-time modeling and prediction

- You continuously have to make decisions (and get feedbacks)
- (Somewhat ambitious) examples
 - -Weather forecasting
 - -Stock price prediction
- Sometimes considered as an efficient alternative to batch learning (for big data!)

4 Kyoto University

2

On-line learning problem formulation: Guaranteed strategy to minimize cumulative loss

- At each round t = 1, 2, ..., T
 - 1. Receive input $\mathbf{x}^{(t)} \in \mathcal{X}$
 - 2. Make prediction $p^{(t)} \in \mathcal{Y}$
- the environment chooses $y^{(t)}$
- 3. Observe true answer $y^{(t)} \in \mathcal{Y}$
- 4. Suffer loss $l(p^{(t)}, y^{(t)})$
- Our goal
 - –Find a prediction strategy to minimize cumulative loss $\sum_{t=1}^T lig(p^{(t)}$, $y^{(t)}ig)$
 - -Theoretical guarantees of the performance of the strategy

5 Kyoto University

A simple online learning problem example : Two-class classification with a finite set of predictors

- Consider an on-line two-class classification problem
 - At each round t = 1, 2, ..., T
 - 1. Receive input $\mathbf{x}^{(t)} \in \mathcal{X}$
 - 2. Make prediction $p^{(t)} \in \{+1, -1\}$
 - 3. Observe true answer $y^{(t)} \in \{+1, -1\}$
 - 4. Suffer loss $l(p^{(t)}, y^{(t)}) = 0$ (if $p^{(t)} = y^{(t)}$) or 1 (if $p^{(t)} \neq y^{(t)}$)
- Assumption:
 - 1. Finite hypotheses: A finite set of predictors \mathcal{H} ($|\mathcal{H}| < \infty$) is available
 - 2. Realizability: True answers are generated by some $h^* \in \mathcal{H}$

KYOTO UNIVERSITY

Halving algorithm:

Majority vote prediction with version space

- Initialization: $V_1 = \mathcal{H}$ (V_t is called a version space)
 - -maintains predictors consistent with past observations
- At each round t = 1, 2, ..., T
 - 1. Receive input $\mathbf{x}^{(t)} \in \mathcal{X}$
 - 2. Predict $p^{(t)} = \operatorname{argmax}_{p \in \{+1,-1\}} |\{h \in V_t | h(\mathbf{x}^{(t)}) = p\}|$
 - Take a majority vote with the current version space
 - 3. Observe true answer $y^{(t)} \in \{+1, -1\}$
 - 4. Update $V_{t+1} = \{ h \in V_t \mid h(\mathbf{x}^{(t)}) = y^{(t)} \}$
 - Correct hypotheses survive to next round

Kyoto University

Theoretical guarantee of the halving algorithm: Logarithmic mistake bound

- Halving algorithm makes at most $\log_2(|\mathcal{H}|)$ wrong predictions
- Proof:
 - —Whenever the algorithm makes a mistake, more than a half of the members in the current version space V_t make mistakes
 - Size of the next version space $|V_{t+1}| \leq \frac{|V_t|}{2}$
 - -After making M mistakes, $|V_t| \leq \frac{|\mathcal{H}|}{2^M}$

realizability assumption

- —Since at least one predictor survives, $1 \leq |V_t|$
- -Rearranging $1 \leq \frac{|\mathcal{H}|}{2^M}$ concludes the proof

Limitations of the current setting:

Adversarial environments do not allow mistake bounds

- The halving algorithm cannot enjoy the logarithmic bound
 - -when \mathcal{H} is an infinite set (e.g. $\mathbf{w} \in \mathbb{R}^D$)
 - —when the true predictor is not in ${\mathcal H}$
- Even worse when the environment is adversarial
 - The environment can decide the true answer after observing an algorithm's prediction
 - −Number of mistakes can be *T*

9 Kyoto University

Regret:

Relative performance in a particular class of predictors

- Adversarial environments can always make wrong predictions
 - -Impossible to guarantee mistake bounds
- Regret: relative performance in a particular class of predictors

$$\operatorname{Regret}_T(\mathcal{H}) = \sum_{t=1}^I l\big(p^{(t)}, y^{(t)}\big) - \min_{h \in \mathcal{H}} \sum_{t=1}^I l\big(h\big(\mathbf{x}^{(t)}\big), y^{(t)}\big)$$
 cumulative loss by the algorithm
$$\begin{bmatrix} \min \operatorname{minimum cumulative} \\ \operatorname{loss in} \mathcal{H} \end{bmatrix}$$

- $-h^*$ is the predictor achieving the minimum cumulative loss
- -Even with an adversarial environment, regret will not be large if all members of ${\mathcal H}$ perform poorly

10 Kyoto University

5

Regret bound:

Sublinear regret bound guarantees relative performance

• If
$$\operatorname{Regret}_T(\mathcal{H}) = o(T)$$
 (e.g. \sqrt{T}), $\frac{\operatorname{Regret}_T(\mathcal{H})}{T} \to 0$ as $T \to \infty$

—Your algorithm is asymptotically guaranteed to perform as well as the best predictor in \mathcal{H} !

$$\sum_{t=1}^T l\big(p^{(t)},y^{(t)}\big) \leq \min\nolimits_{h \in \mathcal{H}} \sum_{t=1}^T l\big(h\big(\mathbf{x}^{(t)}\big),y^{(t)}\big) + o(T)$$

11 Kyoto University

On-line learning problem formulation II: Online learning of general models with parameters

- Consider of a specific class of online learning problems
 - to design online learning algorithms of models with parameters (e.g. linear classifiers)
- At each round t = 1, 2, ..., T
 - 1. Submit a parameter vector $\mathbf{w}^{(t)} \in \mathcal{S}$ (e.g. \mathbb{R}^D)
 - 2. Receive a loss function $l^{(t)}: \mathcal{S} \to \mathbb{R}$
 - 3. Suffer loss $l^{(t)}(\mathbf{w}^{(t)})$
 - -Loss function $l^{(t)}$ can be different at each round
- Regret_T(S) = $\sum_{t=1}^{T} l^{(t)}(\mathbf{w}^{(t)}) \min_{\mathbf{w} \in S} \sum_{t=1}^{T} l^{(t)}(\mathbf{w})$

Some examples of loss function:

Convex and non-convex loss functions

- Convex loss functions
 - -Squared loss (Online regression)

$$l^{(t)}(\mathbf{w}^{(t)}) = l(\mathbf{w}^{(t)\mathsf{T}}\mathbf{x}^{(t)}, y^{(t)}) = (\mathbf{w}^{(t)\mathsf{T}}\mathbf{x}^{(t)} - y^{(t)})^2$$

-Linear function (Online linear optimization)

$$l^{(t)}(\mathbf{w}^{(t)}) = \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle$$

- Non-convex loss function
 - −0-1 loss (Online classification)

prediction is wrong

$$l^{(t)}(\mathbf{w}^{(t)}) = \mathbf{1}_{\left[y^{(t)}(\mathbf{w}^{(t)}, \mathbf{x}^{(t)}) \le 0\right]}$$

3 Kyoto University

Follow-the-leader:

An online algorithm with regret bound

- An online algorithm specifies $\mathbf{w}^{(t)}$
- ullet Follow-the-Leader (FTL) submits $oldsymbol{w}^{(t)}$ which has the minimum cumulative loss for the past rounds

-i.e.
$$\mathbf{w}^{(t)} = \operatorname{argmin}_{\mathbf{w} \in \mathcal{S}} \sum_{\tau=1}^{t-1} l^{(\tau)}(\mathbf{w})$$

decrease of $l^{(t)}$ by the update

KYOTO UNIVERSITY

• Lemma: ${}^{\forall}\mathbf{u}$,

$$\sum_{t=1}^{T} \left(l^{(t)}(\mathbf{w}^{(t)}) - l^{(t)}(\mathbf{u}) \right) \le \sum_{t=1}^{T} \left(l^{(t)}(\mathbf{w}^{(t)}) - l^{(t)}(\mathbf{w}^{(t+1)}) \right)$$

-This holds for $\mathbf{u} = \operatorname{argmin}_{\mathbf{w} \in \mathcal{S}} \sum_{t=1}^{T} l^{(t)}(\mathbf{w})$, so gives an upper bound of $\operatorname{Regret}_{T}(\mathcal{S})$

40)

Proof of the FTL lemma:

Proof by induction

- What we want to show ${}^\forall \mathbf{u}, \sum_{t=1}^T l^{(t)} (\mathbf{w}^{(t+1)}) \leq \sum_{t=1}^T l^{(t)} (\mathbf{u})$
- For T = 1, $l^{(1)}(\mathbf{w}^{(2)}) \le l^{(1)}(\mathbf{u})$ holds since $\mathbf{w}^{(2)}$ is determined so that $l^{(1)}$ is minimized
- Suppose the inequality holds for T-1, i.e. $\sum_{t=1}^{T-1} l^{(t)}(\mathbf{w}^{(t+1)}) \leq \sum_{t=1}^{T-1} l^{(t)}(\mathbf{u})$
- Adding $l^{(T)}(\mathbf{w}^{(t+1)})$ to both sides yields $\sum_{t=1}^{T} l^{(t)}(\mathbf{w}^{(t+1)}) \leq l^{(T)}(\mathbf{w}^{(T+1)}) + \sum_{t=1}^{T-1} l^{(t)}(\mathbf{u})$
- Since this holds even for $\mathbf{u} = \mathbf{w}^{(T+1)}$, $\mathbf{w}^{(T+1)}$ is taken to satisfy this

$$\sum_{t=1}^{T} l^{(t)} (\mathbf{w}^{(t+1)}) \le \sum_{t=1}^{T} l^{(t)} (\mathbf{w}^{(T+1)}) \le \sum_{t=1}^{T} l^{(t)} (\mathbf{u})$$

Kyoto University

Follow-the-regularized-leader:

An online algorithm with regret bound

- Too aggressive updates might increase regret of FTL
 - -Regret bound depends on the sum of decreases of $l^{(t)}$ so far
- Follow-the-Regularized-Leader (FTRL) performs "milder" updates

$$\mathbf{w}^{(t)} = \operatorname{argmin}_{\mathbf{w} \in \mathcal{S}} \sum_{\tau=1}^{t-1} l^{(\tau)}(\mathbf{w}) + R(\mathbf{w})$$

regularization term

Lemma:

$$\overset{\forall}{\mathbf{u}}, \quad \sum_{t=1}^{T} \left(l^{(t)} \left(\mathbf{w}^{(t)} \right) - l^{(t)} (\mathbf{u}) \right) \\
\leq R(\mathbf{u}) - R(\mathbf{w}^{(1)}) + \sum_{t=1}^{T} \left(l^{(t)} \left(\mathbf{w}^{(t)} \right) - l^{(t)} \left(\mathbf{w}^{(t+1)} \right) \right)$$

Proof of the FTRL lemma:

Reuse of the FTL lemma

- FTRL on $l^{(1)}$, $l^{(2)}$,... $\stackrel{\text{equivalent}}{\Longleftrightarrow}$ FTL on $l^{(0)} = R(\mathbf{w})$, $l^{(1)}$, $l^{(2)}$,...
 - -Since the FTL update is

$$\begin{aligned} \mathbf{w}^{(t)} &= \operatorname{argmin}_{\mathbf{w} \in \mathcal{S}} \sum_{\tau=0}^{t-1} l^{(\tau)}(\mathbf{w}) \\ &= \operatorname{argmin}_{\mathbf{w} \in \mathcal{S}} \sum_{\tau=1}^{t-1} l^{(\tau)}(\mathbf{w}) + R(\mathbf{w}) \end{aligned}$$

Applying the previous FTL lemma, we have additional terms

$$l^{(0)}(\mathbf{u}) - l^{(0)}(\mathbf{w}^{(1)}) = R(\mathbf{u}) - R(\mathbf{w}^{(1)})$$

17 Kyoto University

Example of FTRL update:

Online linear optimization

- Assume:
 - -Linear loss function: $l^{(t)}(\mathbf{w}^{(t)}) = \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle$
 - -Standard L₂-regularization term: $R(\mathbf{w}) = \frac{1}{2n} ||\mathbf{w}||_2^2$
- FTRL update: $\mathbf{w}^{(t+1)} = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^d} \sum_{\tau=1}^t \langle \mathbf{w}, \mathbf{z}^{(\tau)} \rangle + \frac{1}{2\eta} \|\mathbf{w}\|_2^2$
 - i.e. $\mathbf{w}^{(t+1)} = -\eta \sum_{\tau=1}^{t} \mathbf{z}^{(\tau)} = \mathbf{w}^{(t)} \eta \mathbf{z}^{(t)}$
 - ullet With no regularization term, $\mathbf{w}^{(t+1)} = -\infty \cdot \mathrm{sign} ig(\sum_{ au=1}^t \mathbf{z}^{(au)} ig)$
 - suffers infinite loss

Regret bound for online linear optimization:

FTRL enjoys sublinear regret bound

■ Regret_T(S) ≤
$$\frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \sum_{t=1}^T (\langle \mathbf{w}^{(t)}, \mathbf{z}^{(t)} \rangle - \langle \mathbf{w}^{(t+1)}, \mathbf{z}^{(t)} \rangle)$$

= $\frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \sum_{t=1}^T \langle \mathbf{w}^{(t)} - \mathbf{w}^{(t+1)}, \mathbf{z}^{(t)} \rangle$
= $\frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \sum_{t=1}^T \langle \eta \mathbf{z}^{(t)}, \mathbf{z}^{(t)} \rangle = \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \eta \sum_{t=1}^T \|\mathbf{z}^{(t)}\|_2^2$

• Optimizing η , $\eta = \frac{\|\mathbf{w}^*\|_2^2}{L\sqrt{2T}}$, where $\frac{1}{T}\sum_{t=1}^T \left\|\mathbf{z}^{(t)}\right\|_2^2 \leq L$, gives a sublinear bound: Regret $_T(\mathcal{S}) \leq \|\mathbf{w}^*\|_2^2 L\sqrt{2T}$

19 Kyoto University

Doubling trick:

Getting rid of dependence of the regret bound on *T*

- Obtaining $O(\sqrt{2T})$ regret bound requires us to know the total number of rounds T; we would get rid the dependence
- Suppose we have an algorithm A with regret bound of $\alpha\sqrt{T}$
- Doubling trick:
 - -Make T double when the round reaches T
 - -i.e. for each epoch m=1,2,..., run A for $\tilde{T}=2^m$ rounds
- Total regret is bounded by

$$\sum_{m=1}^{\lceil \log_2 T \rceil} \alpha \sqrt{\tilde{T}} = \sum_{m=1}^{\lceil \log_2 T \rceil} \alpha \sqrt{2^m} \le \frac{\sqrt{2}}{\sqrt{2} - 1} \alpha \sqrt{T}$$

Online gradient descent:

Online learning algorithm with convex loss function

- Online gradient descent
 - -Hyper-parameter (learning rate): $\eta > 0$
 - -Initialization: $\mathbf{w}^{(t)} = \mathbf{0}$
- At each round t = 1, 2, ..., T
 - 1. Submit a parameter vector $\mathbf{w}^{(t)} \in \mathcal{S}$ (convex set e.g. \mathbb{R}^D)
 - 2. Receive a convex loss function $l^{(t)}: \mathcal{S} \to \mathbb{R}$ and suffer loss $l^{(t)}(\mathbf{w}^{(t)})$
 - 3. Update parameter $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \mathbf{z}^{(t)}$, where $\mathbf{z}^{(t)} \in \partial l^{(t)}(\mathbf{w}^{(t)})$ (subgradients)

Z1 Kyoto University

[Supplement]:

Subgradient

■ A function $f \colon S$ (convex set) $\to \mathbb{R}$ is a convex function iff $\forall \mathbf{u} \in S$, there exists \mathbf{z} such that

$$\forall \mathbf{u} \in S, f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \mathbf{z} \rangle$$

- **z** is called a *subgradient* of f at \mathbf{w} , and denote the set of subgradients by $\partial f(\mathbf{w})$
- If f is differentiable at \mathbf{w} , $\partial f(\mathbf{w})$ has only a single element $\nabla l(\mathbf{w})$ called gradient

Regret bound of online gradient descent: OGD also enjoys sublinear regret bound

Lemma: Regret bound of online gradient descent is

$$\operatorname{Regret}_{T}(\mathcal{S}) \leq \frac{1}{2\eta} \|\mathbf{w}^{*}\|_{2}^{2} + \eta \sum_{t=1}^{T} \|\mathbf{z}^{(t)}\|_{2}^{2}$$

$$\operatorname{optimal} \mathbf{w} \quad \operatorname{norm of subgradient}$$

- Optimizing η , $\eta = \frac{\|\mathbf{w}^*\|_2^2}{L\sqrt{2T}}$, where $\frac{1}{T}\sum_{t=1}^T \|\mathbf{z}^{(t)}\|_2^2 \leq L$, we have a sublinear bound: Regret_T(\mathcal{S}) $\leq \|\mathbf{w}^*\|_2^2 L\sqrt{2T}$
- Same results as those for regret bounds for online linear optimization

23 Kyoto University

Proof of regret bound of online gradient descent: Reduction to online linear optimization

optimal **w**

- For convex loss l, $l(\mathbf{w}^*) \ge l(\mathbf{w}) + \langle \mathbf{w}^* \mathbf{w}, \mathbf{z} \rangle, \mathbf{z} \in \partial l(\mathbf{w}) \Rightarrow l(\mathbf{w}) l(\mathbf{w}^*) \le \langle \mathbf{w} \mathbf{w}^*, \mathbf{z} \rangle$
- Regret is bounded above

$$\operatorname{Regret}_{T}(\mathcal{S}) = \sum_{t=1}^{T} \left(l^{(t)} (\mathbf{w}^{(t)}) - l^{(t)} (\mathbf{w}^{*}) \right) \leq \sum_{t=1}^{T} \left(\left\langle \mathbf{w}^{(t)}, \mathbf{z}^{(t)} \right\rangle - \left\langle \mathbf{w}^{*}, \mathbf{z}^{(t)} \right\rangle \right)$$

- This is exactly what we bounded in the online linear optimization using FTRL
- OGD is equivalent to FTRL by taking $\mathbf{z}^{(t)} \in \partial l^{(t)}(\mathbf{w}^{(t)})$, results in the same regret bounds as those of FTRL
 - -Remember the FTRL update: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \mathbf{z}^{(t)}$

Convex surrogate:

Regret bound for non-convex loss

- Our analysis relied on the convexity of $l^{(t)}$; what if it is not?
- ullet Consider a convex upper bound $\hat{l}^{(t)}$ such that $l^{(t)} \leq \hat{l}^{(t)}$
- Running the online gradient descent using $\hat{l}^{(t)}$ gives regret bound $\sum_{t=1}^{T} \left(\hat{l}^{(t)} (\mathbf{w}^{(t)}) \hat{l}^{(t)} (\mathbf{w}^*) \right) \leq \|\mathbf{w}^*\|_2^2 L \sqrt{2T}$
- ullet Combined with $l^{(t)}ig(\mathbf{w}^{(t)}ig) \leq \hat{l}^{(t)}ig(\mathbf{w}^{(t)}ig)$, we get

$$\sum_{t=1}^{T} l^{(t)}(\mathbf{w}^{(t)}) \le \sum_{t=1}^{T} \hat{l}^{(t)}(\mathbf{w}^*) + \|\mathbf{w}^*\|_2^2 L\sqrt{2T}$$

25 Kyoto University

Perceptron algorithm:

Online classification learning with mistake bound

Perceptron update:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0\right]}$$

Non-convex loss function 0-1 loss (Online classification)

$$l^{(t)}(\mathbf{w}^{(t)}) = 1_{\left[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0\right]}$$

■ Lemma: If there exists \mathbf{w}^* such that $\forall t, y^{(t)} \langle \mathbf{w}^*, \mathbf{x}^{(t)} \rangle \geq 1$, mistake bound of perceptron is

where
$$\|\mathbf{x}^{(t)}\|_2^2 \le R^2$$

$$\max_{\substack{\mathbf{x} \le 2R^2 \\ \text{number of} \\ \text{mistakes}}} m \le 2R^2 \|\mathbf{w}^*\|_2^2,$$

Perceptron algorithm:

Equivalent to ODG with surrogate loss

- Define convex surrogate $\hat{l}^{(t)}$ as $\hat{l}^{(t)} = 1 y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle$ if the perceptron makes a mistake, and $\hat{l}^{(t)} = 0$ if not
- ullet Online gradient descent with $\hat{l}^{(t)}$ is equivalent to perceptron

$$\begin{aligned} -\mathsf{OGD:} & \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0\right]} \\ &= \eta \sum_{t=1}^T y^{(t)} \mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)} \langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle \leq 0\right]} \end{aligned}$$

$$-\text{Perceptron:} \begin{array}{c} \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y^{(t)}\mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)}\left\langle\mathbf{w}^{(t)},\mathbf{x}^{(t)}\right\rangle \leq 0\right]} \\ = \sum_{t=1}^{T} y^{(t)}\mathbf{x}^{(t)} \cdot \mathbf{1}_{\left[y^{(t)}\left\langle\mathbf{w}^{(t)},\mathbf{x}^{(t)}\right\rangle \leq 0\right]} \end{array} \begin{array}{c} \text{no effect on prediction} \end{array}$$

-We can take arbitrary η since $\operatorname{sign}(\langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle) = \operatorname{sign}(\langle \eta \mathbf{w}^{(t)}, \mathbf{x}^{(t)} \rangle)$

Kyoto University

Proof of perceptron mistake bound (1/2): Use regret bound of OGD with surrogate loss

ullet Online gradient descent with $\hat{l}^{(t)}$ gives

$$\operatorname{Regret}_{T}(\mathcal{S}) \leq \frac{1}{2\eta} \|\mathbf{w}^{*}\|_{2}^{2} + \eta \sum_{t=1}^{T} \|y^{(t)}\mathbf{x}^{(t)}\|_{2}^{2} \cdot 1_{[y^{(t)}\langle \mathbf{w}^{(t)}, \mathbf{x}^{(t)}\rangle \leq 0]}$$

On the other hand,

Regret_T(S) =
$$\sum_{t=1}^{T} \left(\hat{l}^{(t)}(\mathbf{w}^{(t)}) - \hat{l}^{(t)}(\mathbf{w}^*) \right) \ge m$$

$$\begin{split} -\operatorname{since} & \sum_{t} \hat{l}^{(t)}\left(\mathbf{w}^{(t)}\right) \geq \sum_{t} l^{(t)}\left(\mathbf{w}^{(t)}\right) = m, \\ & \operatorname{and} \sum_{t=1}^{T} \hat{l}^{(t)}(\mathbf{w}^{*}) = 0 \text{ (since } \forall t, y^{(t)} \big\langle \mathbf{w}^{*}, \ \mathbf{x}^{(t)} \big\rangle \geq 1) \end{split}$$

• Connecting the two inequalities yields $m \leq \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \eta m R^2$

Proof of perceptron mistake bound (2/2): Optimize the bound

- We have $m \le \frac{1}{2\eta} \|\mathbf{w}^*\|_2^2 + \eta m R^2$
- Minimizing the r.h.s. finds $\eta = \frac{\|\mathbf{w}^*\|_2}{R\sqrt{2m}}$, which results in $m \le R\sqrt{2m} \|\mathbf{w}^*\|_2$
 - -Remember we do not have to determine η actually
- $\blacksquare m \le 2R^2 \|\mathbf{w}^*\|_2^2$