

What is Problem?

Customer behavior and booking possibilities have been radically changed by online hotel reservation channels. Cancellations or no-shows cause a significant number of hotel reservations to be canceled. Cancellations can be caused by a variety of factors, such as scheduling conflicts, changes in plans, etc. In many cases, this is made easier by the possibility of doing so free or at a low cost, which is beneficial for hotel guests but less desirable and possibly revenue-diminishing for hotels

What is the data mining question asked to solve the problem?

As a Data Scientist, your job is to build a Machine Learning model to help the Hotel Owners better understand if the customer is going to honor the reservation or cancel it?

DataSet

The file contains the different attributes of customers' reservation details.

36275 Records 19 Colums

Number of adults

Number of Children

4

no_of_weekend_nights

Number of weekend nights (Saturday or Sunday) the guest stayed or booked to stay at the hotel

Attributes

5

no_of_week_nights

Number of week nights (Monday to Friday) the guest stayed or booked to stay at the hotel

type_of_meal_plan

Type of meal plan booked by the customer

7

required_car_parking_space

Does the customer require a car parking space? (0 - No, 1- Yes)

room_type_reserved

Type of room reserved by the customer. The values are ciphered (encoded) by INN Hotels.

9

lead_time

Number of days between the date of booking and the arrival date

Attributes

arrival_year

Year of arrival date

8

Date of the month

13

market_segment_type

Market segment designation.

repeated_guest

Is the customer a repeated quest? (0 - No, 1- Yes)

15

no_of_previous_cancellations

Number of previous bookings that were canceled by the customer prior to the current booking

Value

3

10

Other values (...

16

no_of_previous_bookings_not_canceled

Count

35463 228 112

> 80 65

> 60 36

> 24

23

19

165

Number of previous bookings not canceled by the customer prior to the current booking

17

avg_price_per_room

Average price per day of the reservation; prices of the rooms are dynamic. (in euros)

Attributes

18

no_of_special_requests

Total number of special requests made by the customer (e.g. high floor, view from the room, etc)

19

booking_status

Flag indicating if the booking was canceled or not.

How to *solve* the problem

- Analysis DataSet using EDA
- Perform the necessary actions according to each feature, such as conversion, deletion and combination
- Using techniques such as oversampling and clustering and remove outlier data
- Testing different models such as KNN, SVC, RandomForest, Bagging, LightGBM with setting hyperparameters to achieve the best accuracy

To evaluate the goodness of the model, we use metrics such as acuuracy_score, F1 score, precision score, recall score

Paying attention: because of data imbalance, except accuracy_score, we should also use another metrics.

How to evaluate

• Experiments : Data

Arrival_date

 According to the graph drawn and its relationship with the cancellation situation, because the graph is normal, it does not give us any specific information. So we need to remove this feature

Experiments : Data

No_of_week_and_weekend_nights

- Because these two graphs are normal. We are going to get more new information by combining these two features and making a new feature.
- If the nights of stay are higher than a certain limit, the possibility of cancellation of the reservation is also higher

• Experiments: Data

booking_status 2.5 - Not_Canceled Because these two graphs are Canceled normal. We are going to get more new information by combining these two features and making a new feature. • It is not necessary to examine each separately. Therefore, it is better to combine the two booking status - Not Canceled no of adults Canceled no of adults 1 no_of_children no_of_children

No_of_adults_and_children

• Experiments : Data

0.0

No_of_special_request

no of special requests

2

- according to the chart, because at point 0, the reservation and cancellation charts are similar, and at other points, the reservation and cancellation percentages are also similar, we can get better information by converting this chart to having a specific reservation.
- Convert this attributes to have_special_requests

Experiments : Data

Arrival_month

- It seems that this chart is also a normal chart, but it seems that in the last months of the year, the reservation status and non-cancellation is better. For further analysis, we convert the month chart to the season chart
- It seems that the number of reservations in the last months of the year was more than other months. Also, the number of canceled reservations in the last months is much less compared to other months

• Experiments: Data

Repeated_guest

- We have an additional feature called repeated_guest. Due to the existence of the following two features, we can get the value of the repeated_guest feature by combining these two. So we can remove the repeated_guest feature from the data
- According correlation chart between these three features and observing their relationship, combining these two features is not a mistake.

19

• Experiments : Data

Noise and outliers

- We have two continuous variables in the data. According to the histogram and boxplot diagram,
- Data hase outlier data

• Experiments: Data

Type_of_meal_plan

 We have an attribute called type_of_meal_plan that contains 4 unique values. Considering the small number of meal_plan_3, it can be considered economical, and by the way, after removing the outlier data, these values were removed from the dataset.

Meal Plan 1	27835				
Not Select	5130				
Meal Plan 2	3305				
Meal Plan 3	5				

Experiments : Data

No_of_nights

- By drawing graphs as a percentage, you can understand that the more the number of days of stay exceeds a certain limit, the higher the probability of cancellation of that reservation. Therefore, the number of days of stay has a direct relationship with the increase in the probability of cancellation.
- Before combining these two features, the accuracy was checked because of , accuracy did not differ much, we combined these two features

• Experiments : Data

Lead_time

• According to the diagram, if the time to arrive the hotel (lead_time) is higher than a certain limit, the possibility of cancellation of the reservation will increase.

• Experiments : Data

- Now we use correlation functions to check and select features. The diagram below shows the relationship between the nominal variables and the target variable. As it is clear, the market_segment_type feature has the most impact.
- It seems that better information cannot be obtained from this chart. Therefore, we also check other variables.

• Experiments: Data

- The diagram below shows the relationship between non-nominal variables and the target variable. As it is known, the features no_of_special_request and arrival_year have the most impact.
- We checked the arrival_year variable, which did not give us specific results.

• Experiments : Data

- The diagram below shows the relationship between continues variables and the target variable.
- these two variables have a direct effect on the target variable

	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken
Model	Accuracy	Dulanced Accuracy	NOUNCE	11 00010	Time Taken
RandomForestClassifier	0.89	0.87	0.87	0.89	1.77
XGBClassifier	0.89	0.86	0.86	0.89	2.23
BaggingClassifier	0.88	0.86	0.86	88.0	0.46
ExtraTreesClassifier	0.88	0.86	0.86	0.88	1.51
LGBMClassifier	0.88	0.86	0.86	0.88	0.32
DecisionTreeClassifier	0.86	0.84	0.84	0.86	0.09
LabelPropagation	0.85	0.83	0.83	0.85	21.54
Label Spreading	0.85	0.83	0.83	0.85	42.55
ExtraTreeClassifier	0.85	0.83	0.83	0.85	0.04
KNeighborsClassifier	0.85	0.83	0.83	0.85	1.68
SVC	0.84	0.79	0.79	0.84	23.76
AdaBoostClassifier	0.82	0.78	0.78	0.81	0.67
LogisticRegression	0.81	0.76	0.76	0.80	0.09
NearestCentroid	0.76	0.75	0.75	0.77	0.03
NuSVC	0.81	0.75	0.75	0.80	35.28
CalibratedClassifierCV	0.80	0.75	0.75	0.80	4.78
LinearSVC	0.80	0.75	0.75	0.80	1.27
LinearDiscriminantAnalysis	0.80	0.74	0.74	0.79	0.18
RidgeClassifier	0.80	0.73	0.73	0.79	0.06
RidgeClassifierCV	0.80	0.73	0.73	0.79	0.07
Perceptron	0.73	0.72	0.72	0.73	0.06
SGDClassifier	0.78	0.70	0.70	0.77	0.10
BernoulliNB	0.76	0.70	0.70	0.75	0.12
QuadraticDiscriminantAnalysis	0.58	0.67	0.67	0.58	0.05
PassiveAggressiveClassifier	0.77	0.67	0.67	0.74	0.13
GaussianNB	0.53	0.64	0.64	0.52	0.04
DummyClassifier	0.68	0.50	0.50	0.54	0.04

- Finding the best classifiers using LazyPredict package
- Tree-Based models perform well on the dataset
- In Contrast models like Naïve Bayse tha are less resistance to the imbalance of datasets, tend to have more errors.

KNN

SVM

Random Forest

• Experiments : Modeling LGBM

Bagging

Results

Results

Suggestion

04

Suggestion

- Deducting an amount from the room rent as a penalty for canceling the reservation.
- Failure to provide services to those who have canceled more than a certain number of reservations
- Not allowing hotel reservations for the next 100 days. If such a reservation is made, it is not possible to cancel it
- Talk to customers who are about to cancel their reservations and give them better offers.
- Offering discounts to loyal customers
- Creating a national reservation network that hotels can introduce these customers to that hotel if the customers want to change the hotel.

Reference

- https://www.kaggle.com/code/eslamfouad/hotel-reservations-dataset-customers-statistics/
- https://www.kaggle.com/code/gabrielcord/cancellation-prediction-model-99-accuracy
- https://www.kaggle.com/code/kylegraupe/how-to-test-27-binary-classifiers-take-a-look/notebook
- https://www.kaggle.com/code/jcaliz/ps-s03e07-a-complete-eda/notebook
- https://www.kaggle.com/code/christophertimmons/random-forest-97-accuracy-score
- https://www.kaggle.com/code/the314arham/eda-bunch-of-models-optuna-lgbm-92-acc

Thank you for your attention

Do you have any questions?

Mehdi Ghasemi Ali Ziaei Jazi Spring 1402

