1

Assignment 13

Ayush Kumar

Download latex-tikz codes from

https://github.com/ayushkesh

1 Problem

Let R[x] denote the vector space of all real polynomial. Let $\mathbf{D} : \mathbf{R}[\mathbf{x}] \to \mathbf{R}[\mathbf{x}]$ denote the map $\mathbf{D}f = \frac{df}{dx}, \forall f$ then,

- 1) **D** is one-one.
- 2) **D** is onto.
- 3) There exist $E : \mathbf{R}[\mathbf{x}] \to \mathbf{R}[\mathbf{x}]$ so that $D(E(f)) = f, \forall f$.
- 4) There exist $E : \mathbf{R}[\mathbf{x}] \to \mathbf{R}[\mathbf{x}]$ so that $E(D(f)) = f, \forall f$.

2 EXPLANATION

See Table 4

Given	Let $\mathbf{D}: \mathbf{R}[\mathbf{x}] \to \mathbf{R}[\mathbf{x}]$ denote the map $\mathbf{D}f = \frac{df}{dx}, \forall f$	
Statement 1	D is one-one.	
	D is not one-one because	(2.0.1)
	$f_1 \neq f_2$	(2.0.2)
	$\implies Df_1 = Df_2.$	(2.0.3)
	Take f_1 =x then f_2 = x+1	(2.0.4)
	False Statement	
Statement 2	D is onto.	
	D is not onto because	(2.0.5)
	$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}' \end{cases}$	(2.0.6)
	False Statement	
Statement 3	There exist $E : \mathbb{R}[x] \to \mathbb{R}[x]$ so that $D(E(f)) = f, \forall f$.	
	Not True because,	(2.0.7)
	Every integrable operator is not differentiable.	(2.0.8)
	False Statement	
Statement 4	There exist $E : \mathbf{R}[\mathbf{x}] \to \mathbf{R}[\mathbf{x}]$ so that $E(D(f)) = f, \forall f$.	
	\exists an integrable operator such that $E(D(f)) = f, \forall f$ (2.0.9)	
	True Statement	

TABLE 4: Explanation