20.08.2021

Digital Image Processing (CSE/ECE 478)

Lecture-2: Digital Imaging Fundamentals

Sucipta Banerjee

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Announcements

- Teaching Assistants TBA
- Tutorial hours: Saturday 4.00p 6.00p

Elements of Visual Perception

• Often, consumers of Image Processing are humans.

Important to understand basic workings of human visual system.

The Human Eye

The Retina

- The retina lines the entire backside portion.
- Discrete light receptors are distributed over the surface of the retina:
 - cones (6-7 million per eye)
 - rods (75-150 million per eye)

FIGURE 2.1 Simplified diagram of a cro section of the human eye.

Cones

- Located in the fovea
- Sensitive to color
- Each cone connected to its own nerve end.
- Sensitive to bright-light: photopic vision

diagram of a cross section of the

Rods

- Provide general, overall picture of the field of view
- Not involved in color vision.
- Several rods are connected to a single nerve.
- Sensitive to low illumination levels (*scotopic* vision).

FIGURE 2.1 Simplified diagram of a cross section of the human eye.

Receptor Distribution

rods and cones in

- Radially symmetric about the fovea.
- Cones are most dense in the center of the fovea
- Rods increase in density from the center to approximately 20% off axis and then decrease.

The Fovea

- Circular (1.5 mm diameter)
 - can be assumed to be a square sensor array (1.5 mm x 1.5 mm).

Density of cones

- 150,000 elements/mm² ~ 337,000
- A CCD imaging chip of medium resolution needs 5 mm x 5 mm for this number of elements

FIGURE 2.1 Simplified diagram of a cross section of the human eye.

Image Formation in the Eye

• Eye lens (compared to an optical lens) is flexible.

- Lens controlled by fibers of ciliary body
 - To focus on distant objects, it gets flatter (and vice versa)
 - Focal length varies from 14-17 mm

Brightness adaptation

- Dynamic range of human visual system (HVS)
 - $-10^{-6} \sim 10^{4}$

• But HVS cannot accomplish this range **simultaneously**

Brightness discrimination

- Weber ratio (the experiment) $\Delta I_c/I$
 - I: the background illumination
 - ΔI_c : the increment of illumination
 - Small Weber ratio → good discrimination
 - Larger Weber ratio → poor discrimination

https://www.youtube.com/watch?v=hWT_LO8U7uE

https://www.youtube.com/watch?v=wVhiezByMSU: an audio example

Psychovisual effects

- The perceived brightness is not a simple function of intensity
 - Mach band pattern
 - Simultaneous contrast

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Distance from left edge

Digital Image Acquisition

How images are acquired

Image Sampling and Quantization

How images end up in digital form

Image Sensing and Acquisition

a b

FIGURE 2.12

- (a) Single imaging sensor.
- (b) Line sensor.
- (c) Array sensor.

Image Sensing and Acquisition

How does a scanner work: https://www.youtube.com/watch?v=OpBDTjw9yho

Image Sensing and Acquisition

a b

FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

Light as a particle stream

- Energy carried by light
 - Not wave-like
 - Discrete (Quantized) particles = Photons

Photo-electric effect

Photoelectric effect

Cross-section of typical smartphone camera

Photo-electric effect in cameras

CMOS photo-electric sensor

Light → Color

CMOS sensitive to "light", not "color"

Relatively more green filters. Why?

Human color receptor relative sensitivity

https://petapixel.com/2016/03/30/people-can-see-100-times-colors/

How do we get color now ?

Demosaicing

Image Acquisition: Summary

Demosaicing

Digital Image Acquisition

How images are acquired

Image Sampling and Quantization-

How images end up in digital form

Signal

"Function that conveys information about the behavior or attributes of some phenomenon" (Wikipedia)

Analog vs. Digital signal (2-D signal)

2-D Image 'signal' = f(x,y)A function of discretized space

Image acquisition process

Image courtesy: Gonzalez and Woods

Cross-section of typical smartphone camera

Physical Characteristics Active image area size 24.6 (H) x 13.8 (V) mm Total number photosites 4206 (H) x 2340 (V) Number photosites for active image 3840 (H) x 2160 (V) Color filter array (with microlens) **RGB Bayer** Size of photosite (microns) 6.4 (H) x 6.4 µm Pixel pitch 6.4 µm 3.3v / 1.8v Power supply Power consumption 950mW

Resolution (of the sensor)

Same sensor size, but # of sensor pixels/mm varies

Small number of CCD pixels

Large number of CCD pixels

https://av.jpn.support.panasonic.com/support/global/cs/dsc/knowhow/knowhow26.html

Video resolution example

Settings in YouTube

Aspect Ratios

Key Terms

Standard Video Qualities: Standard combinations of aspect ratio and video resolution

Video Quality	4:3 Aspect Ratio Resolution	16:9 Aspect Ratio Resolution
360p	480 x 360	640 x 360
480p	640 x 480	854 x 480
720p	Not generally used	1280 x 720
1080p	Not generally used	1920 x 1280

Sampling = Spatial Quantization

 256×256 32×32 16×16

Image acquisition process

Image acquisition process

Intensity Quantization

Summary

Sampling

 256×256

 32×32

 16×16

Quantization

8 bits per pixel

4 bits per pixel

2 bits per pixel

1 bit per pixel

Image as a 3D surface

Quantization

- In Hardware (# of voltage levels, # of bits)
- In Software (raw → JPEG)

Summary: HVS

0 13 25 38 51 64 76 89 102 115 128 140 153 166 179 191 204 217 229 242 255

AShlight

Summary: Image Acquisition

Demosaicing

Image acquisition process

Summary: Image Sampling and Quantization Sampling f(t) 256 × 256 32×32 16×16 Quantization f(t) 8 bits per pixel 4 bits per pixel 2 bits per pixel 1 bit per pixel

References

- Gonzalez and Woods (2.1,2.3-2.4)
 - Problems : 2.1 2.10

Optional Reading

- https://www.edmundoptics.com/resources/application-notes/imaging/camera-resolution-for-improvedimaging-system-performance/
- http://www.andor.com/learning-academy/ccd-spatial-resolution-understanding-spatial-resolution
- http://av.jpn.support.panasonic.com/support/global/cs/dsc/knowhow/knowhow26.html
- http://www.vision-doctor.com/en/camera-technology-basics/sensor-and-pixel-sizes.html
- https://nostalgicmedia.com/pages/resolution-scanning-dpi-ppi
- http://www.ubergizmo.com/what-is/ppi-pixels-per-inch/