Exercícios - Cálculo IV - Aula 9 - Semana 19/10 - 23/10 Séries de Taylor

Vimos que se uma série de potências converge e tem raio de convergência $R \neq 0$ então ela descreve uma função infinitamente derivável. Mas e a recíproca, isto é, dada uma função, é possível escrevê-la como uma série de potências?

Primeiramente, se a função é dada por uma série de potências, seus coeficientes são da seguinte forma:

Teorema 1 Seja
$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
 com raio de convergência $R \neq 0$. Então
$$c_n = \frac{f^{(n)}(x_0)}{n!}$$
 para $n = 0, 1, 2, 3, \ldots$

Seja I um intervalo aberto da reta e $x_0 \in I$. Se $f: I \to R$ é uma função infinitamente derivável em I (de classe C^{∞}) definimos a série de Taylor de f em torno de x_0 por:

$$s(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Em particular, se $x_0 = 0$, a série

$$s(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

é denominada (por alguns autores) série de Maclaurin de f.

Assim se uma função é dada por uma série de potências (em x_0), esta série é a série de Taylor da função (em x_0). Além disso, toda função de classe C^{∞} tem série de Taylor, mas nem toda tal função coincide com sua série de Taylor. A questão é que dada uma função de classe C^{∞} só existe uma série de Taylor em torno de x_0 mas duas funções diferentes podem ter a mesma série de Taylor em torno de x_0 .

Exemplo 1 As seguintes séries de Taylor (Maclaurin) convergem para todo $x \in \mathbb{R}$ e coincidem com as funções (exemplos importantes):

$$(a) e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

(b) $sen x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. (sen $x \notin uma\ função\ ímpar\ e\ só\ aparecem$ expoentes ímpares na sua série de Maclaurin.)

(c) Derivando a série de Taylor (Maclaurin) de sen x obtemos: $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$. ($\cos x$ é uma função par e só aparecem expoentes pares na sua série de Maclaurin.)

Exemplo 2 Na aula do Prof. Cláudio Possani, ele mostrou o seguinte exemplo de uma função cuja série de Maclaurin não coincide com ela:

$$f(x) = \begin{cases} e^{-1/x^2} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

Tente calcular as derivadas de f na origem (você terá que fazer pela definição de derivada). As derivadas de f de todas as ordens, na origem, são zero. Logo s(x) = 0, mas a função não é nula.

Sejam I um intervalo aberto da reta e $f:I\to R$ uma função infinitamente derivável em I. Denominamos o polinômio de Taylor de f de ordem k em $x_0\in I$, como sendo

$$P_{k,x_0}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k.$$

O resto de Taylor, ou erro, é dado por $R_{k,x_0}(x) = f(x) - P_{k,x_0}(x)$.

Teorema 2 (Fórmula de Lagrange para o resto de Taylor) Considere I um intervalo aberto da reta e $f: I \to R$ uma função infinitamente derivável em I. Seja $x_0 \in I$. Então para cada k e $x \in I$ existe \bar{x} entre x e x_0 tal que

$$R_{k,x_0}(x) = \frac{f^{(k+1)}(\bar{x})(x-x_0)^{k+1}}{(k+1)!}$$

Exemplo 3 Seja $f: I \to \mathbb{R}$ de classe C^{∞} e $x_0 \in I$. Se existir um número real positivo M tal que $|f^{(k)}(x)| < M$ para todo k e todo $x \in I$, então s(x) = f(x), ou seja, f(x) é a soma da série de Taylor de f em torno de x_0 . De fato:

$$|f(x) - P_{k,x_0}(x)| = |R_{k,x_0}(x)| = \left| \frac{f^{(k+1)}(\bar{x})(x - x_0)^{k+1}}{(k+1)!} \right| < M \frac{|x - x_0|^{k+1}}{(k+1)!} \to 0$$

quando $k \to \infty$, lembrando que $P_{k,x_0}(x)$ é a soma parcial da série de Taylor.

Decorre deste fato que
$$f(x) = sen x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} pois |f^{(k)}(x)| \le 1$$

1.

Exercício 1 Determine a expansão em série de Maclaurin de cada uma das seguintes funções (sugestão: toda série de potências que converge a uma função num intervalo centrado em x = 0 deve ser a série de Taylor dessa função):

$$a)\cos\sqrt{x}$$
 $b) sen x^2$ $c) x^2 e^x$

Exercício 2 Em cada caso estabeleça a série de Taylor no ponto x_0 indicado:

- a) f(x) = sen x, $x_0 = \pi/4$.
- $b)f(x) = 1/x, x_0 = 2.$
- c) $f(x) = e^x$, $x_0 = -3$.

Exercício 3 Determine uma série para $\ln x$ em potências de x-1.

Exercício 4 Obtenha o desenvolvimento em série de potências de $f(x) = \sqrt{1+x}$ em torno de 0 e indique o raio de convergência.