CAL3

Carsten Gips (FH Bielefeld)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

CAL3: Erweiterung von CAL2 für nicht-disjunkte Klassen

- 1) Anfangsschritt: $\alpha^{(0)} = *$ (totales Unwissen)
- 2) *n*-ter Lernschritt: Objekt *v* mit Klasse *k*
 - Rückweisung (Endknoten mit *): Ersetze * durch Vereinigungsklasse /k1/
 - Endknoten mit Vereinigungsklasse:
 - Zähler für k erhöhen, bzw.
 - k mit Anzahl 1 in Vereinigungsklasse einfügen

Falls nun die Summe aller Klassen am Endknoten größer/gleich S_1 (Statistikschwelle):

- Für **genau eine** Klasse gilt: $P(k|\tilde{x}) \ge S_2$: => Abschluss: Ersetze Vereinigungsklasse durch k (für immer!)
- Für **alle** Klassen gilt: $P(k|\tilde{x}) < S_2$:
 - => Differenzierung: Ersetze Vereinigungsklasse durch neuen Test: $\kappa \leftarrow x_{t+1}(*,\ldots,*,/k1/,*,\ldots,*)$

 x_{t+1} : nächstes Attribut, auf dem aktuellen Pfad \tilde{x} noch nicht verwendet Symbol k mit Anzahl 1 an Position i wenn $x_{t+1}(v) = i$

Beispiel mit CAL3

<i>x</i> ₁	<i>X</i> ₂	k
0	0	Α
0	1	В
0	1	Α
1	0	В
1	1	Α

•
$$S_1 = 4, S_2 = 0.7$$

Beispiel mit CAL3

<i>x</i> ₂	k
0	Λ
•	Α
1	В
1	Α
0	В
1	Α
	1 0

•
$$S_1 = 4, S_2 = 0.7$$

Tafelbeispiel CAL3

Ergebnis: $x_1(A, x_2(B, A))$

Trainingsfehler: $1/5 = 0.2 < 1 - S_2 = 1 - 0.7 = 0.3$

CAL3: Abbruchbedingungen und Parameter

Parameter:

- S₁: Statistikschwelle, problemabhängig wählen
- S_2 : $0.5 < S_2 \le 1.0$
- Klassifikationsfehler kleiner als $1 S_2$
 - kleiner Fehler => großer Baum
 - großer Fehler => kleiner Baum

Abbruch:

- Alle Trainingsobjekte richtig klassifiziert
 - => Kein Fehler in einem kompletten Durchlauf
- Alle Endknoten mit eindeutigen Klassensymbolen belegt
- Differenzierung nötig, aber alle Merkmale verbraucht
- Lernschrittzahl überschritten

Wrap-Up

- CAL3: Erweiterung von CAL2 für überlappende Klassen
 - Parameter S_1 (Anzahl Objekte bis Entscheidung), S_2 (Dominanz?)
 - Trainingsfehler wg. überlappender Klassen!

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.