Introduction to Algorithms

Search Structures and Hashing

Dictionary/Table

	Student ID	First Name	Last Name	GPA
<i>)</i>	0.	Joe	Johnson	3.5
	1	John	Jones	2.9
	2	Mike	Smith	4.0
	3	Jerry	Kennedy	3.4
	4	John	Lincoln	2.3
	5	Fred	Flinstone	3.5
	6	Wilma	Flinstone	3.2

Operation supported: search
Given a student ID find the record (entry)

Data Format

Keys Entry

What if the key is the ID number

• Well, we can still sort by the ids and apply binary search.

• If we have n students, we need O(n) space

And O(log n) search time

What if new students come and current students leave

- Dynamic dictionary
- Operations to support
 - Insert: add a new (key, entry) pair
 - Delete: remove a (key, entry) pair from the dictionary
 - Search: Given a key, find if it is in the dictionary, and if it is, return the data entry associated with the key

How should we implement a dynamic dictionary?

- How often are entries inserted and removed?
- How many of the possible key values are likely to be used?
- What is the likely pattern of searching for keys?

(Key, Entry) pair

• For searching purposes, it is best to store the key and the entry separately (even though the key's value may be inside the entry)

```
      key
      entry

      "Smith"
      "Smith", "124 Hawkers Lane", "9675846"

      (key,entry)
      "Yao"
      "Yao", "1 Apple Crescent", "0044 1970 622455"
```

Implementation 1: unsorted sequential array

- An array in which (key,entry)pair are stored consecutively in any order
- **insert**: add to the back of array; O(1)
- search: search through the keys one at a time, potentially all of the keys; O(n)
- remove: find + replace removed node with last node; O(n)

Implementation 2: sorted sequential array

- An array in which (key,entry) pair are stored consecutively, sorted by key
- insert: add in sorted order;O(n)
- find: binary search; $O(\log n)$
- remove: find, remove node and shuffle down; O(n)

Implementation 3: linked list (unsorted or sorted)

- (key,entry) pairs are again stored consecutively
- **insert**: add to front; O(1) or O(n) for a sorted list
- **find**: search through potentially all the keys, one at a time; O(n) *still O(n) for a sorted list*
- remove: find, remove using pointer alterations; O(n)

Direct Addressing

- Suppose:
 - The range of keys is 0..m-1 (Universe)
 - Keys are distinct
- The idea:
 - Set up an array T[0..m-1] in which

◆
$$T[i] = x$$
 if $x \in T$ and $key[x] = i$

◆
$$T[i]$$
 = NULL otherwise

Direct-address Table

• Direct addressing is a simple technique that works well when the universe of keys is small.

Assuming each key corresponds to a unique slot.

Direct-Address-Search(T,k)

return T[k]

Direct-Address-Insert(*T,x*)

return $T[key[x]] \leftarrow x$

Direct-Address-Delete(*T,x*)

return $T[key[x]] \leftarrow Nil$

O(1) time for all operations

The Problem With Direct Addressing

- Direct addressing works well when the range *m* of keys is relatively small
- But what if the keys are 32-bit integers?
 - Problem 1: direct-address table will have 2³² entries, more than 4 billion
 - Problem 2: even if memory is not an issue, the time to initialize the elements to NULL may be
- Solution: map keys to smaller range 0..*m*-1
- This mapping is called a hash function

Hash function

- A hash function determines the slot of the hash table where the key is placed.
- Previous example the hash function is the identity function
- We say that a record with key k hashes into slot h(k)

Next Problem

collision

Resolving Collisions

- How can we solve the problem of collisions?
- Solution 1: chaining
- Solution 2: open addressing

Chaining

 Chaining puts elements that hash to the same slot in a linked list:

Operations

Direct-Hash-Search(T,k)

Search for an element with key k in list T[h(k)] (running time is proportional to length of the list)

Direct-Hash-Insert(T,x) (worst case O(1))

Insert x at the head of the list T[h(key[x])]

Direct-Hash-Delete(T,x)

Delete x from the list T[h(key[x])]

(For singly linked list we might need to find the predecessor first. So the complexity is just like that of search)

Analysis of hashing with chaining

- Given a hash table with m slots and n elements
- The load factor $\alpha = n/m$
- The worst case behavior is when all n elements hash into the same location ($\theta(n)$ for searching)
- The average performance depends on how well the hash function distributes elements
- Assumption: **simple uniform hashing**: Any element is equally likely to hash into any of the *m* slot
- For any key h(k) can be computed in O(1)
- Two cases for a search:
 - The search is unsuccessful
 - The search is successful

Unsuccessful search

Theorem 11.1: In a hash table in which collisions are resolved by chaining, an unsuccessful search takes $\theta(1+\alpha)$, on the average, under the assumption of simple uniform hashing.

Proof:

- Simple uniform hashing \Rightarrow any key k is equally likely to hash into any of the m slots.
- The average time to search for a given key *k* is the time it takes to search a given slot.
- The average length of each slot is $\alpha = n/m$: the load factor.
- The time it takes to compute h(k) is O(1).
- \Rightarrow Total time is $\theta(1+\alpha)$.

Successful Search

Theorem 11.2: In a hash table in which collisions are resolved by chaining, a successful search takes $\theta(1+\alpha/2)$, under the assumption of simple uniform hashing.

Proof:

- Simple uniform hashing \Rightarrow any key k is equally likely to hash into any of the m slots.
- Note Chained-Hash-Insert inserts a new element in the front of the list
- The expected number of elements visited during the search is 1 more than the number of elements of the list after the element is inserted

Successful Search

• Take the average over the *n* elements

$$\frac{1}{n}\sum_{i=1}^{n} \left(1 + \frac{i-1}{m}\right) = 1 + \frac{1}{nm}\sum_{i=1}^{n} (i-1)$$
 (1)

$$=1+\left(\frac{1}{nm}\right)\left(\frac{(n-1)}{2}n\right) \tag{2}$$

$$=1+\frac{\alpha}{2}-\frac{1}{2m}\tag{3}$$

• (i-1)/m is the expected length of the list to which i was added. The expected length of each list increases as more elements are added.

Analysis of Chaining

- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot
- Given *n* keys and *m* slots in the table, the *load factor* $\alpha = n/m = \text{average } \# \text{ keys per slot}$
- What will be the average cost of an unsuccessful search for a key? $O(1+\alpha)$
- What will be the average cost of a successful search? $O(1 + \alpha/2) = O(1 + \alpha)$

Choosing A Hash Function

- Choosing the hash function well is crucial
 - Bad hash function puts all elements in same slot
 - A good hash function:
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data
- Three popular methods:
 - Division method
 - Multiplication method
 - Universal hashing

The Division Method

- \bullet $h(k) = k \mod m$
 - In words: hash k into a table with m slots using the slot given by the remainder of k divided by m
- Elements with adjacent keys hashed to different slots:
 good
- If keys bear relation to *m*: bad
- In Practice: pick table size m = prime number not too close to a power of 2 (or 10)

The Multiplication Method

- For a constant A, 0 < A < 1:
- $h(k) = \lfloor m (kA \lfloor kA \rfloor) \rfloor$

- In practice: Fractional part of kA
 - Choose $m = 2^P$
 - Choose A not too close to 0 or 1
 - Knuth: Good choice for $A = (\sqrt{5} 1)/2$

Universal Hashing

- When attempting to foil an malicious adversary, randomize the algorithm
- Universal hashing: pick a hash function randomly when the algorithm begins
 - Guarantees good performance on average, no matter what keys adversary chooses
 - Need a family of hash functions to choose from
 - Think of quick-sort

Universal Hashing

- Let Γ be a (finite) collection of hash functions
 - \blacksquare ...that map a given universe U of keys...
 - \blacksquare ...into the range $\{0, 1, ..., m 1\}$.
- \bullet Γ is said to be *universal* if:
 - for each pair of distinct keys $x, y \in U$, the number of hash functions $h \in \Gamma$ for which h(x) = h(y) is $|\Gamma|/m$
 - In other words:
 - With a random hash function from Γ the chance of a collision between x and y is exactly 1/m $(x \neq y)$

Universal Hashing

• Theorem 11.3:

- \blacksquare Choose h from a universal family of hash functions
- Hash *n* keys into a table of *m* slots, $n \le m$
- Then the expected number of collisions involving a particular key x is less than 1
- Proof:
 - For each pair of keys y, z, let $c_{yx} = 1$ if y and z collide, 0 otherwise
 - $E[c_{yz}] = 1/m$ (by definition)
 - Let C_x be total number of collisions involving key x

$$\bullet \qquad E[C_x] = \sum_{\substack{y \in T \\ y \neq x}} E[c_{xy}] = \frac{n-1}{m}$$

• Since $n \le m$, we have $E[C_x] < 1$