

ESP-WROOM-02 PCB 设计和模组摆放指南

1. 引言

ESP-WROOM-02 模组可以焊接到 PCB 底板上。为了使终端产品获得最佳的射频性能,请注意根据本指南合理设计模组及天线在底板上的摆放位置。

2. 天线摆放位置

ESP-WROOM-02 模组使用的是 2.4G Wi-Fi 频段的 MIFA 板载天线,增益为 2 dBi。图 1 展示了六种常见的天线摆放方式。以无底板的单独模块测得的射频参数为参考,其中方案 2 和方案 3 的测试结果最佳,方案 4、5 和 6 的测试结果欠佳。

Espressif Systems 1/7 2016.06

6.0mm

↑方案1: 单独模块,无底板

↑方案2: 天线在板框外 PCB ANTENNA MAIN-BOARD 6.0mm

↑方案3:天线沿板边放置且下方挖空

↑方案4:天线沿板边放置且下方均不铺铜

MAIN-BOARD

PCB ANTENNA

↑方案5: 天线板框内放置且下方挖空

↑方案6:天线在板框内(下方未净空)

图 1: ESP-WROOM-02 板载天线摆放方式

Espressif Systems 2/7 2016.06

3. 测试结果

以下为各种摆件方式下测得的 802.11n OFDM (MCS1-7) 不同信道的 Wi-Fi 功率以及 EVM 参数。其中 Power 越大表示发射出的功率越大, EVM 能全面衡量调制信号的幅度误差和相位误差, EVM 越小(绝对值越大),信号质量越好。

说明:

测试条件为 VBAT = 3.3V, 25°C。

图 2:各种摆件方式下测得的 Wi-Fi 功率

图 3:各种摆件方式下测得的 EVM 参数

表 1: 各种摆件方式下测得的射频参数(单位:dBm)

选项	信道	EVM	功率										
摆件方式		方案 1		方案 2		方案 3		方案 4		方案 5		方案 6	
802.11n OFDM (MCS7)	1	-30.8	13.96	-30.68	14.66	-31.55	13.65	-28.65	15.1	-27.84	14.4	-28.05	13.98
	6	-29.61	13.48	-30.41	13.55	-30.46	15.29	-28.43	14.53	-27.77	11.87	-27.72	10.54
	11	-30.93	12.96	-31.18	12.9	-30.4	15.55	-26.66	13.3	-28.03	10.3	-27.95	6.7
802.11n OFDM (MCS6)	1	-31.56	15.99	-31.29	16.17	-30.7	15.58	-23.85	17.03	-24.4	16.1	-22.83	15.79
	6	-29.97	15.24	-30.03	15.37	-28.72	17.17	-24.35	16.19	-23.68	13.77	-24.01	12.14
	11	-30.8	14.94	-29.47	14.91	-28.06	17.53	-22.73	14.96	-25	11.65	-24.92	8.07
802.11n OFDM (MCS5)	1	-30.87	17.02	-29.73	17.42	-29.94	16.56	-21.84	17.94	-21.31	17.22	-20.58	16.67
	6	-29.73	16.19	-28.17	16.6	-26.87	18.13	-21.36	17.34	-21.7	14.67	-21.72	13
	11	-29.73	15.89	-27.41	15.84	-24.91	18.49	-20.75	15.81	-21.52	12.86	-21.91	9.17
802.11n OFDM (MCS4)	1	-30.21	18.24	-26.16	18.59	-28.64	17.94	-18.19	19.33	-17.96	18.43	-17.1	17.83
	6	-28	17.66	-24.89	17.78	-24.22	19.59	-17.8	18.71	-18.11	15.94	-18.28	14.21
	11	-26.88	17.34	-24.42	17.04	-21.23	19.77	-17.52	16.98	-18.34	14.02	-19.33	10.12

选项	信道	EVM	功率										
摆件方式		方案 1		方案 2		方案 3		方案 4		方案 5		方案 6	
802.11n OFDM (MCS3)	1	-27.44	19.11	-23	19.44	-25.53	19.12	-16.43	20.1	-15.6	19.2	-15.33	18.48
	6	-25.77	18.55	-22.34	18.62	-20.83	20.82	-15.62	19.52	-16.1	16.69	-16.36	14.93
	11	-25.54	17.94	-21.59	17.86	-17.88	20.76	-15.35	17.91	-16.72	14.64	-17.04	10.83
802.11n OFDM (MCS2)	1	-27.49	18.91	-23.13	19.29	-25.55	18.98	-16.5	20	-15.72	19.06	-15.41	18.25
	6	-26.14	18.35	-22.37	18.47	-20.84	20.67	-15.71	19.42	-16.2	16.54	-16.36	14.67
	11	-25.54	17.77	-21.96	17.7	-18.16	20.6	-15.52	17.81	-16.93	14.39	-17.34	10.56
802.11n OFDM (MCS1)	1	-24.63	19.7	-19.71	20.37	-23.61	19.77	-14.89	20.62	-14.61	19.39	-13.84	18.69
	6	-24.32	19.02	-19.44	19.42	-18.74	21.41	-14.32	19.88	-14.54	17.13	-14.7	15.13
	11	-23.04	18.65	-19.02	18.55	-16.2	21.17	-14.07	18.31	-15.11	14.93	-15.57	11.03

从上述图表可以看出:

- 方案 1、2 和 3 的射频性能比较接近。即天线在板框外,或者天线沿板边放置且下方挖空的摆件方式(PCB 天线两边距离底板两边至少 5.0 mm 以上)对于射频性能没有太大影响,与模组单独测试射频性能相当。
- 如果设计受限于必须将 PCB 天线放在底板上,请参考方案 4 的摆件方式,即天线沿板边放置且下方均不铺铜。此种方式射频性能会有一些损失。
- 方案 6 的射频性能最差。由于天线放在底板内,射频信号不能很好地辐射和接收。

4. 滤波和降噪

无线通信芯片的良好性能依赖于精确的时钟信号和稳定的电源供应。要确保最佳的供电性能,必须在 PCB 设计时采用滤波和降噪工艺。我们建议在 PCB 设计中遵循以下规则:

- **滤波电容**:可以使用滤波电容来消除电源噪声(低频噪声)。建议在靠近电源转换芯片的地方放置一个 10 uF 或以上的电容。要选择最合适的滤波电容,请参考电源转换芯片的数据手册。
- **旁路电**容: 旁路电容为电源轨的高频变化提供低阻抗的通路,对降噪起到关键作用。建议用户使用多个旁路电容。ESP-WROOM-02内部电源已添加了多个电容,因此外置一个 10 uF 以上的低 ESR 电容即可满足需求。请注意外置的电容必须尽量靠近模组的电源管脚放置。
- **关键走线**:为了避免误触发和故障的发生,PCB上的关键走线,例如复位线等,与其它信号线的距离必须在走线线宽的三倍以上。复位线走线最好靠近固定电压层,比如接地层。

• **走线线宽**:建议电源走线尽量宽些。ESP-WROOM-02 模组在满负荷运行的时候需要消耗大量的电流。

5. 外围信号走线

本手册所提到的信号走线是指任何连接至 ESP-WROOM-02 的数字外设的传输信号走线。ESP-WROOM-02 模组集成了高速外设接口,包括 HSPI 和 I2S。走线必须谨慎,以防止信号失真并保证信号的完整性。

- **串扰**:信号线距离过近可能会造成电感和电容耦合。建议信号线之间的距离至少为走线线宽的 两倍。
 - 对于关键的系统信号线,例如复位线和外部中断线,走线之间的距离则至少应为走线线宽的 三倍。
- **走线长度**:高频信号线必须尽量短以减少对其它走线的干扰并避免拾取噪声。数据总线上的走线长度最好一致。例如, SPI接口的 SCK、MOSI 和 MISO 走线应该尽量长度一致。
- **走线拐角**:为避免直角走线(尤其是对于时钟走线而言),可采用 135° 角或圆弧走线(如图 4 中上半部分所示),这样可以防止直角走线(如图 4 中下半部分所示)时产生信号反射。

Recommended trace routing

Not recommended

图 4: 走线拐角

- 过孔:高速时钟走线应尽量避免过孔。
- 返回路径:为了低 EMI 的设计,所有信号线的返回路径都应该尽可能地短。
- 开关噪声控制: ESP-WROOM-02 集成了高速 GPIO 和外设接口,这可能会产生严重的开关噪声。如果一些应用对于功耗和 EMI 特性要求较高,建议在数字 I/O 线上串联 10 ~ 100 欧姆的电阻。这样可以在开关电源时抑制过冲,并使信号变得平稳。串联电阻也能在一定程度上防止静电释放(ESD)。

6. 地层

- 推荐做法:为了减小 PCB 底板上的信号回流路径,高速信号线必须走在地层之上。这样可以使 PCB 辐射电磁干扰噪声降到最小。另外,最好在 PCB 板上使用面积较大且完整的地层。为了利于散热,必须将 ESP-WROOM-02 模组的焊盘连接到主板上。
- **双地层**:如果设计中包含模拟元件或模数转换器(ADC),则最好把数字地和模拟地分开。这样也会确保消除 ADC 输入噪声。但是请注意数字地和模拟地不能重叠或直接相连。数字地和模拟地都要有专门的走线连接到电源地。
- **分割地平面**: 地平面的分割不会造成严重的噪声或 EMI 现象。但是,在分割的、不相连的地平面上走线会形成大的回流路径,可能会产生 EMI 辐射干扰。

7. 总结

我们建议将模组沿 PCB 板边放置,天线在板框外或者沿板边放置且下方挖空。将 PCB 天线放在底板上也是允许的,只要天线下方不铺铜即可。要获得最佳的产品性能,请按照第 2 章中方案 2 和 3 来摆放模组。

良好的摆件和布线方式可以帮助用户使用 ESP-WROOM-02 模组进行稳定可靠、方便高效的系统设计。