Tema 6: Teletráfico en redes de telecomunicaciones

May 3, 2023

RSTC
Redes y Servicios de Telecomunicación

(c) (*) (\$) (5) (5) This work is licensed under a "CC BY-NC-SA 4.0" license.

Contenido

- Sistema M/M/N
 - Cadena de Markov
 - Ecuaciones de equilibrio
 - Segunda distribución de Earlang
 - Distribución de Earlang-C
 - Métricas famosas

RSTC curso 2022-2023 Tema 6 May 3, 2023 2/18

Sistema M/M/N

Sistema M/M/N

Un sistema de cola única con $t_l \sim Exp(\lambda)$ y N servidores en paralelo con $t_s \sim Exp(\mu)$.

Sistema M/M/N: Cadena de Markov

Un sistema M/M/N es un proceso estocástico Markoviano¹.

Sus tasas de transición no son homogéneas $q_{i,j}=i\mu,\ i\leq N.$

¹El tiempo de estancia es exponencial no homogéneo. ←□→←@→←≧→←≧→ ≥ ∽०००

RSTC curso 2022-2023 Tema 6 May 3, 2023 5 / 18

Con i < N tenemos

$$\lambda \pi_{i-1} + (i+1)\mu \pi_{i+1} = \pi_i(\lambda + i\mu)$$

 $\text{pero con } i \geq N \text{ tenemos}$

$$\lambda \pi_{i-1} + N\mu \pi_{i+1} = \pi_i(\lambda + N\mu)$$

(ロ) (型) (注) (注) 注 り(())

Lema (Ecuaciones equilibrio M/M/N)

En régimen estacionario de un sistema M/M/N, la probabilidad de estar en el estado i es:

$$\pi_i = \begin{cases} \frac{I^i}{i!} \pi_0, & i \le N \\ \rho^i \frac{N^N}{N!} \pi_0, & i \ge N \end{cases}$$
 (1)

con $I=rac{\lambda}{\mu}$, $ho=rac{\lambda}{N\mu}$; y

$$\pi_0 = \left(\left(\sum_{i=0}^{N-1} \frac{I^i}{i!} \right) + \frac{I^N}{N!} \frac{1}{1-\rho} \right)^{-1} \tag{2}$$

Demostración:

• para $i \leq N$ se tiene:

sabiendo que $\pi_0\lambda=\pi_1\mu$ se tiene $\pi_1=I\pi_0$. Por tanto tenemos que

$$\lambda \pi_0 + 2\mu \pi_2 = \pi_1(\lambda + \mu) \Longleftrightarrow \pi_2 = \frac{I^2}{2} \pi_0$$
$$\lambda \pi_1 + 3\mu \pi_3 = \pi_2(\lambda + 2\mu) \Longleftrightarrow \pi_3 = \frac{I^3}{3!} \pi_0$$

 $\lambda \pi_{i-1} + (i+1)\mu \pi_{i+1} = \pi_i(\lambda + i\mu) \Longleftrightarrow \pi_i = \frac{I^i}{i!} \pi_0$

y deducimos $\pi_i = \frac{I}{i}\pi_{i-1}$.

←ロト ←団 ト ← 豆 ト ← 豆 ・ 夕 へ ○

Demostración:

• para $i \geq N$ se tiene:

$$\pi_{N-1}(\lambda + (N-1)\mu) = \pi_N N\mu + \pi_{N-2}\lambda$$

$$\pi_N = \frac{1}{N\mu} (\pi_{N-1}\lambda + \pi_{N-1}\mu(N-1) - \pi_{N-2}\lambda)$$

sustituyendo $\pi_{N-1} = \frac{I}{N-1}\pi_{N-2}$, sacamos la recursión

$$\pi_i = \frac{\lambda}{N\mu} \pi_{i-1}, \quad i \ge N$$

Demostración:

• para $i \geq N$ se tiene:

$$\pi_i = \frac{\lambda}{N\mu} \pi_{i-1}, \quad i \ge N$$

y si usamos $\pi_i = \frac{I^i}{i!} \pi_0$ con $i \leq N$ obtenemos:

$$\pi_{i} = \frac{I}{N} \pi_{i-1} = \frac{I^{2}}{N^{2}} \pi_{i-2} = \dots = \left(\frac{I}{N}\right)^{i-N} \pi_{N} = \left(\frac{I}{N}\right)^{i-N} \frac{I^{N}}{N!} \pi_{0}$$
$$= \rho^{i} \frac{N^{N}}{N!} \pi_{0}$$

Demostración:

• para i = 0 se tiene:

$$1 = \sum_{i=0}^{N-1} \pi_i + \sum_{i=N}^{\infty} \pi_i$$

$$= \sum_{i=0}^{N-1} \frac{I^i}{i!} \pi_0 + \sum_{i=N}^{\infty} \rho^i \frac{N^N}{N!} \pi_0$$

$$= \pi_0 \sum_{i=0}^{N-1} \frac{I^i}{i!} + \pi_0 \frac{N^N}{N!} \sum_{i=N}^{\infty} \rho^i$$

sabiendo que $\sum_{i=N}^{\infty} \rho^i = \frac{\rho^N}{1-\rho}$, sacamos

$$\pi_0 = \left(\left(\sum_{i=0}^{N-1} \frac{I^i}{i!} \right) + \frac{I^N}{N!} \frac{1}{1 - \rho} \right)^{-1}$$

Sistema M/M/N: Segunda distribución de Earlang

Definición (Segunda distribución de Earlang)

Popularmente, la probabilidad de que un M/M/N esté vacío

$$\pi_0 = \left(\left(\sum_{i=0}^{N-1} \frac{I^i}{i!} \right) + \frac{I^N}{N!} \frac{1}{1-\rho} \right)^{-1}$$

se conoce como la segunda distribución de Earlang, y a la razón I se le llaman "Earlangs".

Ejemplo: si tenemos tasas $\lambda=10$ y $\mu=2$; los Earlangs $I=\frac{\lambda}{\mu}=5$ me dicen que necesito >5 servidores; y con N=7 tenemos

$$\pi_0 = \left(\left(\sum_{i=0}^6 \frac{5^i}{i!} \right) + \frac{5^7}{7!} \frac{1}{1 - \frac{5}{7}} \right)^{-1} \simeq 0.006$$

RSTC curso 2022-2023 Tema 6 May 3, 2023 12 / 18

Sistema M/M/N: Distribución de Earlang-C

Lema (Earlang-C)

La probabilidad de esperar en un sistema M/M/N viene dada por la distribución Earlang-C:

$$E_C(N, I) = \mathbb{P}(N(t) \ge N) = \frac{I^N}{N!} \frac{1}{1 - \rho} \pi_0$$
 (3)

Demostración:

$$\mathbb{P}(N(t) \ge N) = \sum_{i=N}^{\infty} \pi_i = \sum_{i=N}^{\infty} \rho^i \frac{N^N}{N!} \pi_0 = \frac{N^N}{N!} \frac{\rho^N}{1 - \rho} \pi_0 \tag{4}$$

RSTC curso 2022-2023 Tema 6 May 3, 2023 13 / 18

Lema (Número medio en cola M/M/N)

En un sistema M/M/N el número medio de usuarios encolados es

$$\mathbb{E}[Q(t)] = \frac{\rho}{1 - \rho} E_C(N, I) \tag{5}$$

Demostración:

$$\mathbb{E}[Q(t)] = \sum_{i=N}^{\infty} (i-N)\pi_N = \sum_{i=N}^{\infty} \rho^i \frac{N^N}{N!} \pi_0(i-N) = \frac{N^N}{N!} \pi_0 \sum_{i=N}^{\infty} (i-N)\rho^i$$

$$= \frac{N^N}{N!} \pi_0 \left[\sum_{i=N}^{\infty} i\rho^i - N \sum_{i=N}^{\infty} \rho^i \right] = \frac{N^N}{N!} \pi_0 \left[\frac{\rho^{N+1}}{(1-\rho)^2} \right]$$

$$= \frac{\rho}{1-\rho} E_C(N, I)$$

RSTC curso 2022-2023 Tema 6 May 3, 2023 14 / 18

Ejemplo: sea un sistema con una carga de $I=\frac{\lambda}{\mu}=3$ Earlangs, ¿cuántos servidores N hay que poner para que, en media, haya menos de 10 usuarios encolados?

$$N : \mathbb{E}[Q(t)] = \frac{\rho}{1 - \rho} E_C(N, I) = \frac{\frac{3}{N}}{1 - \frac{3}{N}} \frac{N^N}{N!} \frac{\left(\frac{3}{N}\right)^N}{1 - \frac{3}{N}} \pi_0$$
$$= \frac{N^N}{N!} \frac{\left(\frac{3}{N}\right)^{N+1}}{\left(1 - \frac{3}{N}\right)^2} \left(\left(\sum_{i=0}^{N-1} \frac{3^i}{i!}\right) + \frac{3^N}{N!} \frac{1}{1 - \frac{3}{N}}\right)^{-1} < 10$$

RSTC curso 2022-2023 Tema 6 May 3, 2023 15 / 18

Ejemplo (cont.): vemos que con una intensidad de I=3 Earlangs necesitamos N>3 para que $\mathbb{E}[Q(t)]\leq 10$.

RSTC curso 2022-2023 Tema 6 May 3, 2023 16 / J

Lema (Número medio usuarios en M/M/N)

En un sistema M/M/N el tiempo medio de usuarios en el sistema es

$$\mathbb{E}[N(t)] = \mathbb{E}[Q(t)] + I \tag{6}$$

Demostración: con Little sabemos $\mathbb{E}[W(t)] = \frac{1}{\lambda}\mathbb{E}[Q(t)]$, y también sabemos que

$$\mathbb{E}[T(t)] = \mathbb{E}[W(t)] + \mathbb{E}[t_s] = \frac{1}{\lambda}\mathbb{E}[Q(t)] + \frac{1}{\mu}$$

y usando Little de nuevo $\left(\mathbb{E}[N(t)] = \mathbb{E}[T(t)]\lambda\right)$ llegamos a

$$\mathbb{E}[N(t)] = \mathbb{E}[Q(t)] + I$$

4 □ ト 4 @ ト 4 差 ト 差 め 9 ○ ○

Referencias I