LaBoard's Bowling Alley Simulation

By: Keaton LaBorde

Course: Data Modeling CSCI

B450

Date: 12/10/2024

Introduction

- + Simulation models the operations of a bowling alley on Hilton Head Island!
- + Goal is to model the financials of the bowling alley including these key elements:
 - Customer Flow
 - Lane Utilization
 - Revenue Generation
 - Employee Labor Costs
 - Seasonal Variations
 - Maintenance Times

Model Description

- More realistic M/M/c
- + M: Interarrival times follow Poisson distribution, M: Service times are exponentially distributed. C: Number of servers or lanes. Multi server queue with up to Number of Lanes. When a lane is occupied, the customer waits in a queue until a lane is available.
- + Key variables include:
 - Lane Count: Number of available lanes
 - Customer Count: Average number of customers per day
 - Game Duration & Maintenance: Time spent on each game and maintenance time after each game
 - Revenue Variables: Games, Food, and Beverage's sales
 - Employee Parameters: Number of employees, hourly wage, working hours
 - Fixed Peak Season: June through August and December, demand prices increase
 - Payment Options: Fixed 2-hour payment vs. per game

12					
13					
14					
15					
16	Number of Lanes	24	VIP Customer Probability	0.2	
17	Daily Customer Co	200	2-Hour Payment Revenue	20	
18	Average Game Dui	25	Per Game Payment Rate	7	
19	Average Maintena	7	Max Games Played	6	
20	Revenue per Game	25	Lane Maintenance Time	5	
21	Peak Start Time (n	1080	Number of Employees	5	
22	Peak End Time (m	1320	Hourly Wage	12	
23			Hours Worked per Day	14	
24					
25					
25 26 27					
27					
28					

Assumptions

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

FCFS Queue Discipline

Exponential Distribution for service times

Poisson Arrival Process

Employees work 14 hours without breaks

Simulation Process

- + Problem: Identified key business variables such as customer flow and lane maintenance
- + Writing the code: Used VBA for flexible simulation and inputs can be altered dynamically
- + Customer Flow Simulation: Random number generator used for customer arrivals, adjusted for peak seasons
- + Lane Management: Simulated lane availability, considering both maintenance and customer wait time
- + Revenue and Cost Calculations: Tracked Revenue from games and food, and employee labor costs
- + Reporting: Calculated daily net profit and accumulated totals for yearly revenue and costs

× Microsoft Excel Total Revenue for the Year: \$2188000 Total Employee Labor Cost for the Year: \$306600 Total Net Profit for the Year: \$1881400 OK Microsoft Excel \times Total Revenue for the Day: \$4469.77 Total Revenue for Games: \$1700 Food & Beverage Revenue: \$2769.77 Employee Labor Cost: \$840 Net Profit: \$3629.77 OK

Results and Visualisation

Days vs. DailyRevenue 10000 9000 8000 7000 3000 2000 DailyRevenue

Seasonal Impact on Revenue

- + Peak Season from June to August and December which increased Revenue 200%
- + More customers arrive and the average revenue per game increases

Breakdown of Revenue

- + Revenue can be affecting by time of day and season
- + Revenue Sources:

Game Revenue: Direct revenue from games played or 2-hours

Food & Beverage Revenue \$10 per customer

Challenges Encountered

- + Lane Management: Properly simulating lane availability while considering maintenance and customer wait times
- + Dynamic Revenue: Variability in revenue based on customer choices and peak season adjustments
- + Peak Season Simulation: Adjusting the model to account for customer demand and price increases during peak times

Conclusion

- + Simulation mostly models the operations of a bowling alley on Hilton Head Island
- + Potential Areas for improvement:
 - Adjust dynamic pricing based on customer demand and employee availability
 - Create employee schedules
 - Could be down times where no lanes are running

Thank you

Questions?

