Context free grammars - Gramatici independente de context. Automate stiva

April 2, 2019

$\{a^nb^n\}$ e regulat?

- ▶ Pt a fi limbaj regulat, ar trebui sa existe un automat finit care sa-l recunoasca.
- ▶ ar trebui sa tina minte cati a a citit, dar n nu este limitat
- dupa ce a citit a^m ar trebui sa fie intr-o stare ce specifica o multime de simboluri nonterminale din care sa fie derivate exact b^m . \Rightarrow pt fiecare m ar trebui sa fie o stare distinctica
- deci automatul ar trebui sa aiba evidenta unui numar nelimitat de posibilitati

acest lucru nu se poate face cu un numar finit de stari

- dar, nu tot ce pare a avea nevoie de memorie nelimitata, chiar are:
 - $ightharpoonup C = \{w | w \text{ are un numar egal de 0 si 1}\}$
 - ► $D = \{w | w \text{ are un numar egal de aparitii } 01 \text{ si } 10 \}$

$\{a^nb^n\}$ e regulat?

- ▶ Pt a fi limbaj regulat, ar trebui sa existe un automat finit care sa-l recunoasca.
- ar trebui sa tina minte cati a a citit, dar n nu este limitat
- ▶ dupa ce a citit a^m ar trebui sa fie intr-o stare ce specifica o multime de simboluri nonterminale din care sa fie derivate exact b^m . \Rightarrow pt fiecare m ar trebui sa fie o stare distinctica
- deci automatul ar trebui sa aiba evidenta unui numar nelimitat de posibilitati

acest lucru nu se poate face cu un numar finit de stari

- dar, nu tot ce pare a avea nevoie de memorie nelimitata, chiar are:
 - $ightharpoonup C = \{w | w \text{ are un numar egal de 0 si 1}\}$
 - ▶ $D = \{w | w \text{ are un numar egal de aparitii } 01 \text{ si } 10 \}$

 $D = \{w | w$ are un numar egal de aparitii 01 si 10 ca substringuri $\}$

$$D = \{0, 1, \varepsilon$$

$$w \ \text{daca incepe cu 0 se termina cu 0}$$

$$w \ \text{daca incepe cu 1 se termina cu 1} \}$$

? 101, 1010, 0110

$$1 + 0 + \varepsilon + 0(0 + 1)^*0 + 1(0 + 1)^*1$$

Gramatici independente de context. Context-free grammars

- ightharpoonup G = (T, N, Z, P) e independenta de context daca
- fiecare productie are forma

$$X \to \chi, X \in N, \chi \in V^*$$

Un limbaj care e definit de o gramatica independenta de context este limbaj independent de context.

Exista CFL care nu sunt Regular languages

Fie
$$G = (\{0,1\}, \{S\}, \{S \to 01 | 0S1\}, S)$$

 $\gt S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$

Arbore de parsare pentru 000111:

Limbajul parantezelor

Fie
$$G = (\{(,)\}, \{S\}, \{S \to SS|(S)|()\}, S)$$

- ▶ left-most derivation: $S \Rightarrow SS \Rightarrow (S)S \Rightarrow (())S \Rightarrow (())()$ Deci $S \Rightarrow^{L} (())()$
- ▶ right-most derivation: $S \Rightarrow S\mathbf{S} \Rightarrow \mathbf{S}() \Rightarrow (S)() \Rightarrow (())()$ Deci $S \Rightarrow^R (())()$

Gramatica ambigua - reamintire

O gramatica e ambigua daca exista un string in limbaj care e parsat in doi arbori de derivare.

Pentru $G = (\{(,)\}, \{S\}, \{S \to SS | (S) | ()\}, S)$ Derivarea ()()():

Ambiguitate

Fie $G_4 = (\{+,*,i\}, \{E\}, E, P)$ Doua derivari distincte stanga, doua derivari distincte dreapta

- ightharpoonup E
 ightharpoonup E
 ightharpoonup E + E
- ightharpoonup E
 ightharpoonup E
 ightharpoonup E * E
- ightharpoonup E
 ightharpoonup i

CFG pentru Engleza

- $ightharpoonup T = \{sleeps, saw, man, woman, telescope, the, with, at\}$
- $N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$

Vi	\rightarrow	eats
Vt	\rightarrow	saw
N	\rightarrow	man
N	\rightarrow	woman
N	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	at

S = sentence, VP = verb phrase, NP = noun phrase, PP = prepositional phrase, DT = determiner, Vi = intransitive verb, Vt = transitive verb, N = noun, IN = preposition

Arbore de derivare

Derivarea stanga:

 $S\Rightarrow$ **NP** $VP\Rightarrow$ **DT** N $VP\Rightarrow$ the **N** $VP\Rightarrow$ the man **VP** \Rightarrow the man **Vi** \Rightarrow the man eats

The man saw the woman with the telescope.

Ce a vazut "the man"?

if then else grammar

```
ightharpoonup T = \{if, then, else, E1, E2, S1, S2, S3\}, N = \{stmt, expr\}
```

```
P=
stmt → if expr then stmt
stmt → if expr then stmt else stmt
stmt → S1 | S2 | S3
expr → E1 | E2
```


if then else - rezolvare ambiguitate

```
► T = {if, then, else, E1, E2, S1, S2, S3},
N = {stmt, matched_stmt, unmatched_stmt, expr}
```

```
▶ P=
stmt \rightarrow m\_stmt
\mid um\_stmt
m\_stmt \rightarrow if expr then m\_stmt else m\_stmt
\downarrow um\_stmt \rightarrow if expr then stmt
\mid if expr then m\_stmt else um\_stmt
stmt \rightarrow S1 | S2 | S3
expr \rightarrow E1 | E2
```

Intre un then si un else e permis doar matched_stmt.

m_stmt=matched_stmt (if cu ambele then si else),

um_stmt=unmatched_stmt

Letia and Chifu. 2.3, 2.3.1 Sipser - 2.1,2.2

Automat stiva. Push down automaton

- Niciun automat finit nu poate fi construit pt a recunoaste aⁿbⁿ sau limbajul parantezelor - structuri imbricate
- ► Se creste puterea automatelor finite prin adaugarea unei stive (stack) drept structura aditionala de memorie

- Daca gramaticile regulate sunt o subclasa a gramaticilor independente de context, de ce se dezvolta metode specifice gramaticilor regulate si nu se aplica pt acestea cele de la gramaticile independente?
- Datorita complexitatii analizei gramaticilor independente de context: gramaticile regulate sunt mai simplu de analizat

Idee: Push down automata: 00001111

- 1. citeste simboluri de la intrare
- 2. la fiecare 0 citit, impinge-l pe stiva
- 3. la fiecare 1 citit, scoate de pe stiva un 0
- 4. daca citirea stringului se termina cand stiva se goleste, accepta stringul. Daca stiva devine goala cand mai sunt 1 de citit sau s-a terminat sirul si in stiva inca mai sunt 0-uri, respinge stringul

NFA- Sipser 1.2 (optional)

Un automat finit nedeterminist este $(Q, \Sigma, \delta, q_0, F)$, unde:

- 1. Q este setul de stari
- 2. Σ un alfabet finint de intrare
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ este o functie de tranzitie
- 4. $q_0 \in Q$ este starea de start
- 5. $F \subseteq Q$ setul de stari finale

Definitie formala 1 a automatului stiva (Sipser)

Un automat stiva este $(Q, \Sigma, \Gamma, \delta, q_0, F)$, unde Q, Σ, Γ, F sunt seturi finite:

- 1. Q este setul de stari
- 2. Σ un alfabet de intrare
- 3. Γ este alfabetul stivei
- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ este o functie de tranzitie
- 5. $q_0 \in Q$ este starea de start
- 6. $F \subseteq Q$ setul de stari finale

PDA for 0^n1^n

Fie
$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$$
start \longrightarrow q_1 $\varepsilon, \varepsilon \to \$$ q_2 $0, \varepsilon \to 0$

$$\downarrow 1, 0 \to \varepsilon$$

$$q_4$$
 $\varepsilon, \$ \to \varepsilon$ q_3 $1, 0 \to \varepsilon$

PDA for?

Fie
$$M_1 = (Q, \{0, 1\}, \{\$, 0, 1\}, \delta, q_1, \{q_1, q_4\})$$
start \longrightarrow q_1 $\varepsilon, \varepsilon \to \$$ q_2 $0, \varepsilon \to 0$ $1, \varepsilon \to 1$ $\varepsilon, \varepsilon \to \varepsilon$ $0, 0 \to \varepsilon$

PDA for $\{ww^R|w\in\{0,1\}^*\}$

$$\begin{aligned} \mathbf{w}^R &= \mathbf{w} \text{ scris invers} \\ \text{Fie } M_1 &= (Q, \{0, 1\}, \{\$, 0, 1\}, \delta, q_1, \{q_1, q_4\}) \\ \text{start} &\longrightarrow \boxed{q_1} \underbrace{\varepsilon, \varepsilon \to \$}_{} \underbrace{q_2} \underbrace{0, \varepsilon \to 0}_{1, \varepsilon \to 1} \\ & \underbrace{\varepsilon, \varepsilon \to \varepsilon}_{} \underbrace{0, 0 \to \varepsilon}_{1, 1 \to \varepsilon} \end{aligned}$$

la fiecare pas, ghiceste daca a ajuns la mijlocul stringului sau nu

Gramatica palindrom par

▶ Palindrom: (T, N, P, A), P = $\{A \rightarrow 0A0|1A1$ $A \rightarrow \varepsilon \}$

PDA for $\{a^i b^j c^k | i, j, k \ge 0, i = j \text{ sau } i = k\}$

ghiceste daca e acelasi numar de a si b sau a si c

$$\{vbw|v,w\in\{a,b\}^*,|v|=|w|\}$$

$$M = (Q, \{a, b\}, \{\$, S\}, \delta, q_1, \{q_4\})$$

$$\{vbw|v, w \in \{a, b\}^*, |v| = |w|\}$$

$$M = (Q, \{a, b\}, \{\$, S\}, \delta, q_1, \{q_4\})$$

$$\text{start} \longrightarrow \boxed{q_1} \xrightarrow{\varepsilon, \varepsilon \to \$} \boxed{q_2} \xrightarrow{a, \varepsilon \to S} b, \varepsilon \to S$$

$$\downarrow b, \varepsilon \to \varepsilon$$

$$\downarrow q_4 \xrightarrow{\varepsilon, \$ \to \varepsilon} \boxed{q_3} \xrightarrow{a, S \to \varepsilon} b, S \to \varepsilon$$

Exemplu Gramatica independenta de context

▶ Palindrom: (T, N, P, A), P = $\{A \rightarrow 0A0 | 1A1$ $A \rightarrow \varepsilon \}$

Acelasi numar de 0 si 1: ($\{0,1\},\{A\},P,A$), P= $\{A \to 0A1A|1A0A$ $A \to \varepsilon\}$

Automat finit - reamintire

Automat finit (finite automaton, finite state acceptor):

$$A = (T, Q, R, q_0, F)$$

- Q set nevid setul starilor interne
- ▶ $(T \cup Q, R)$ sistem de rescriere; $T \cap Q = \emptyset$
- ▶ $q_0 \in Q$ starea initiala
- $ightharpoonup F \subseteq Q$ stari finale
- ▶ fiecare element din R are forma $qt \rightarrow q'$, $q, q' \in Q, t \in T$

$$L(A) = \{ \tau \in T^* | q_0 \tau \Rightarrow^* q, q \in F \}$$

Automat stiva - definitie sistem de rescriere

Automat stiva

$$A = (T, Q, R, q_0, F, S, s_0)$$

, unde:

- Q set nevid setul starilor interne
- ▶ $(T \cup Q \cup S, R)$ sistem de rescriere; $T \cap Q = \emptyset$
- ▶ $q_0 \in Q$ starea initiala
- ▶ $s_0 \in S \cup \{\varepsilon\}$ simboluri stiva, s_0 continutul initial al stivei
- $ightharpoonup F \subseteq Q$ stari finale
- ▶ fiecare element din R are forma $\sigma q t \tau \rightarrow \sigma' q' \tau$, $\sigma, \sigma' \in S^*, \ q, q' \in Q, t \in T \cup \varepsilon, \tau \in T^*$

Daca automatul e la configuratia $s_1...s_nq\tau$ intr-o derivare, automatul e in starea q, τ este partea necitita din input, $s_1,...,s_n$ este continutul pe stiva, s_n in varf.

Limbaj acceptat

Daca automatul e la configuratia $s_1...s_nq\tau$ intr-o derivare, automatul e in starea q, τ este partea necitita din input, $s_1,...,s_n$ este continutul pe stiva, s_n in varf.

$$L(A) = \{\tau | s_0 q_0 \tau \# \Rightarrow^* q \#, q \in F, \tau \in T^*\}$$

$0^{n}1^{n}$

$$M_1 = (\{0,1\}, \{q_2,q_3\}, R, q_2, \{q_3\}, \{0,1\}, \varepsilon), R = \{$$

- 1. $\varepsilon q_2 0 \rightarrow 0 q_2$
- 2. $0q_21 \rightarrow \varepsilon q_3$
- 3. $0q_31$ → εq_3 }

$$??\varepsilon q_20011 \Rightarrow^* q_3$$

Pe stiva pot fi alte simboluri decat cele din alfabetul de intrare.

CFG - PDA

Pentru fiecare gramatica independenta de context G exista un automat stiva A a.i. L(A)=L(G).

Kahoot

Care din urmatoarele afirmatii sunt adevarate pt gramatica

$$G = (\{(,)\}, \{S\}, \{S \to SS | (S) | ()\}, S)$$

- 1. $S \Rightarrow^L ()S$
- 2. $S \Rightarrow^R ()S$
- 3. $S \Rightarrow^* (())(S)$
- 4. ()) nu e generat de gramatica

Pentru fragmentul dintr-un automat stiva *A*, care afirmatii sunt adevarate?

- 1. daca la intrare este c, starea este q_6 , in varful stivei este a; A va ramane in q_6
- 2. din q_5 in q_6 A trece fara a citi niciun simbol de la intrare si fara a modifica stiva
- 3. tranzitia din q_5 in q_6 are loc doar daca se poate scoate din stiva a si la intrare nu conteaza
- 4. daca la intrare este b, starea este q_5 ; automatul va ramane cu siguranta in q_5

Pentru automatul din figura, ce este posibil sa avem in stiva?

- 1. oricat de multi de p, dar doar p
- 2. oricat de multi de r, dar doar r
- 3. orice combinatie de p si r
- 4. secvente de pr

Pentru automatul din figura, daca in stiva la un moment dat avem 0, care afirmatie e adevarata

- 1. daca A este in q3 si la intrare este 0, ramane in q3
- 2. stringul acceptat incepe cu 0 si se termina cu 1
- 3. va fi acceptat stringul care incepe cu 1 si se termin cu 0
- 4. daca A este in q2 si la intrare este 0, trece in q3