# Conversion of RE to FA

To convert the RE to FA, we are going to use a method called the subset method. This method is used to obtain FA from the given regular expression. This method is given below:

**Step 1:** Design a transition diagram for given regular expression, using NFA with  $\epsilon$  moves.

**Step 2:** Convert this NFA with  $\epsilon$  to NFA without  $\epsilon$ .

**Step 3:** Convert the obtained NFA to equivalent DFA.

## Example 1:

Design a FA from given regular expression  $10 + (0 + 11)0^* 1$ .

**Solution:** First we will construct the transition diagram for a given regular expression.

#### Step 1:

#### Step 2:



### Step 3:



Step 4:



Step 5:



Now we have got NFA without  $\epsilon$ . Now we will convert it into required DFA for that, we will first write a transition table for this NFA.

| State | 0  | 1        |
|-------|----|----------|
| →q0   | q3 | {q1, q2} |
| q1    | qf | ф        |
| q2    | ф  | q3       |
| q3    | q3 | qf       |
| *qf   | ф  | ф        |

The equivalent DFA will be:

| State    | 0    | 1        |
|----------|------|----------|
| →[q0]    | [q3] | [q1, q2] |
| [q1]     | [qf] | ф        |
| [q2]     | ф    | [q3]     |
| [q3]     | [q3] | [qf]     |
| [q1, q2] | [qf] | [qf]     |
| *[qf]    | ф    | ф        |

# Example 2:

Design a NFA from given regular expression 1 (1\* 01\* 01\*)\*.

**Solution:** The NFA for the given regular expression is as follows:

### Step 1:



Step 2:



### Step 3:



# Example 3:

Construct the FA for regular expression 0\*1 + 10.

#### **Solution:**

We will first construct FA for R = 0\*1 + 10 as follows:

## Step 1:



Step 2:



Step 3:



Step 4:

