${\sf Kh\^olle~2-\'Equations~diff\'erentielles~et~projections}$

William Hergès¹

13 décembre 2024

Table des matières

1	Équations différentielles		
	1.1	Premier ordre	3
	1.2	Second ordre	4
2	Projection et symetrie		
	2.1	Propriétés utiles	5
		Est-ce une projection?	
Α	Corrections des équations différentielles		
	A.1	Premier ordre	7
	A.2	Deuxième ordre	8
В	Corrections des projections et symétries		
	B.1	Propriétés utiles	10
	B.2	Est-ce une projection?	10

On notera les exercicés créés par M. Kerner et M. Cote, deux professeurs à Henri-IV et à PSL, avec \dagger .

Équations différentielles

Dans cette section, on ne traitera que des équations différentielles résolubles, c'està-dire que a(t)=1 pour tout t dans D, un interval, où :

$$\forall t \in D, \quad a(t)y' + b(t)y = c(t)$$

avec y une fonction dérivable sur D et b, c deux fonctions définies sur D.

L'ensemble de définition D de E, une équation différentielle du premier ordre,

$$D = D_a \cap D_b \cap D_b$$

est $D=D_a\cap D_b\cap D_c$ où D_a est l'ensemble de définition de a (ici $\mathbb R$), D_b est celui de b et D_c celui de

On rappelera que résoudre correctement une équation différentielle, c'est donner sa solution homogène (souvent notée y_H), sa solution particulière (souvent noté y_P) et son ensemble de définition.

Définition 1

On dit qu'une équation différentielle est linéaire si ces cœfficiants sont constants.

Soit E une équation différentielle linéaire. Soient y_1 et y_2 deux solutions de E.

On a que toutes les équations de la forme $\lambda y_1 + \mu y_2$ (avec (λ, μ) dans \mathbb{R}^2) sont aussi solutions de E, d'où l'appelation linéaire!

1.1. Premier ordre

Exercice 1 - Pour commencer

Résoudre correctement le problème de Cauchy

(E):
$$y' + 4ty = 5\cos t \exp\{-2t^2\}$$
 \wedge $y(0) = 5$

Exercice 2 - Une moche devenant belle (\dagger)

Résoudre correctement le problème de Cauchy sur] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [

(E):
$$y' + 2(\tan t)y = 2 \land y(0) = 0$$

La solution de (E) devra être aussi simple que possible .

1.2. Second ordre

Exercice ${\bf 3}$ - Un cas un peu plus général (\dagger) Soit $m\in\mathbb{R}$. Résoudre l'équation différentielle

(E):
$$y'' + 2y' + (1-m)y = 0$$

Rappeler l'équation caractéristique de (E).

Exercice 4 - Solution évidente

Résoudre l'équation différentielle

$$(E): \quad y'' + 5y' - 4y = 2$$

Exercice 5 - Hors programme (\dagger)

Trouver la solution particulière de

(E):
$$y'' + 2y' + 2y = 3e^t \cos(2t)$$

La solution particulière sera de forme $\alpha\cos(2t)+\beta\sin(2t)$ avec α et β deux constantes à déterminer.

2. Projection et symetrie

Dans cette partie, on s'intéressera au cours n'étant pas au programme du CC3.

Soit f un endomorphisme linéaire (i.e. $f: X \to X$, où X est un objet mathématique). On note abusivement ff la composition de f par f, i.e.

$$ff = f \circ f$$

On utilisera aussi la notation des puissances pour ce type de composition. On a donc

$$pps = p^2s = p \circ p \circ s$$

Attention 1

Cette abus de notation ne rajoute en aucun cas la commutativité à la composition !

$$p^2s \neq psp \neq sp^2$$

2.1. Propriétés utiles

Exercice 1 - Une projection d'une projection reste la même projection

Cette exercice ne demande pas une démonstration formelle : vous n'avez pas accès aux outils formelles nécessaires pour démontrer cette propriété.

Montrer que p est une projection si, et seulement si, $p^2 = p$.

Exercice 2 - Une symétrie d'une symetrie annule la symétrie

Cette exercice ne demande pas une démonstration formelle : vous n'avez pas accès aux outils formelles nécessaires pour démontrer cette propriété.

Montrer que s est une symétrie si, et seulement si, $s^2 = \operatorname{Id}$ où Id est la fonction identitée $(x \longmapsto x)$.

2.2. Est-ce une projection?

Exercice 3 - Un cas particulier... (\dagger)

Soient p,q deux projections tels que pq=0. On pose r=p+q-qp. Montrez que r est une projection.

Exercice 4 - Du cas général (\dagger) Soient p,q deux projections. Montrez que p+q est une projection si, et seulement si, pq=qp=0.

A. Corrections des équations différentielles

A.1. Premier ordre

La rédaction sera bien détaillée que pour l'exercice 1 par flemme du correcteur.

Exercice 1 - Pour commencer

(E) est définie sur \mathbb{R} .

La solution homogène, y_H est de la forme $\lambda \exp\{-B(x)\}$ où $\lambda \in \mathbb{R}$ et $\forall x \in \mathbb{R}, B(x) = \int_{-\infty}^{x} b(x) dx$. $x \longmapsto 2x^2$ est une forme de B(x) valide. Alors

$$\forall t \in \mathbb{R}, \quad y_H(t) = \lambda \exp\left\{-2t^2\right\} \quad (\lambda \in \mathbb{R})$$

La solution particulière y_P est de forme $\lambda(t)\exp\left\{-B(x)\right\}$ où λ est une fonction dérivable définie sur $\mathbb R.$ On a donc que

$$\forall t \in \mathbb{R}, \quad \lambda'(t) \exp\left\{-2t^2\right\} = 5\cos t \exp\left\{-2t^2\right\}$$

Alors

$$\forall t \in \mathbb{R}, \quad \lambda(t) = 5\sin(t)$$

La solution générale est ainsi

$$\left\{ \forall t \in \mathbb{R}, t \longmapsto \lambda \exp\left\{-2t^2\right\} + 5\sin t | \lambda \in \mathbb{R} \right\}$$

D'après les conditions de Cauchy, y(0) = 5, donc

$$\lambda \exp \left\{ 0 \right\} + 5\sin t = 5 \iff \lambda = 5$$

La solution de ce problème de Cauchy est donc :

$$\{\forall t \in \mathbb{R}, t \longmapsto 5\left(\exp\left\{-2t^2\right\} + \sin t\right)\}$$

Exercice 2 - Une moche devenant belle (\dagger)

(E) est définie sur $D = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ d'après la consigne.

La solution homogène y_H est $t \longmapsto \lambda \exp \{2 \ln |\cos t|\}$ où $\lambda \in \mathbb{R}$.

La solution particulière y_P est $t\longmapsto \lambda(x)\exp\left\{2\ln|\cos t|\right\}$ où λ est dérivable sur D. D'où, pour tout t dans D,

$$\lambda'(t) \exp \left\{ 2 \ln |cost| \right\} = 2$$

$$\lambda'(t) \cos^2(t) = 2$$

$$\lambda'(t) = \frac{2}{\cos^2 t}$$

$$= 2 \tan'(t)$$

$$\lambda(t) = 2 \tan(t)$$

Alors

$$\forall t \in D$$
, $y_P(t) = 2\tan(t)\cos^2(t) = 2\sin(t)\cos(t) = \sin(2t)$

La solution générale est ainsi

$$\{\forall t \in D, t \longmapsto \lambda \cos^2(t) + \sin(2t)\}$$

D'après les conditions de Cauchy, y(0) = 0, donc

$$y(0) = \lambda \cos^2(0) + \sin(0) = 0 \iff \lambda = 0$$

La solution de ce problème de Cauchy est donc :

$$\{\forall t \in D, t \longmapsto \sin(2t)\}$$

A.2. Deuxième ordre

Exercice 3 - Un cas un peu plus général (†)

(E) est définie sur \mathbb{R} .

L'équation caractéristique de (E) est $r^2+2r+1-m$. Donc $\Delta=4m$.

Si
$$m>0$$
 On a $\Delta>0$. Ainsi $r_1=-1+\sqrt{m}$ et $-1-\sqrt{m}$.

L'ensemble solution de (E) est

$$\{\forall t \in \mathbb{R}, t \longmapsto \lambda \exp\{(-1 + \sqrt{m})t\} + \mu \exp\{(-1 - \sqrt{m})t\}, (\lambda, \mu) \in \mathbb{R}^2\}$$

Si
$$m=0$$
 On a $\Delta=0$. Ainsi $r_1=r_2=r-1$.

L'ensemble solution de (E) est

$$\{\forall t \in \mathbb{R}, t \longmapsto (\lambda + \mu t)e^{-t}\}, (\lambda, \mu) \in \mathbb{R}^2$$

Si
$$m < 0$$
 On a $\Delta < 0$. Ainsi $r = -1 + i\sqrt{m}$ et $\bar{r} = -1 - i\sqrt{m}$.

L'ensemble solution de (E) est

$$\left\{\forall t\in\mathbb{R},t\longmapsto e^{-t}\left(\lambda\cos\sqrt{-m}+\mu\sin\sqrt{-m}\right),(\lambda,\mu)\in\mathbb{R}^2\right\}$$

Exercice 4 - Solution évidente

(E) est définie sur \mathbb{R} .

L'équation caractéristique de (E) est $r^2+5r-4=0$. Donc $\Delta=41$.

On a

$$\forall t \in \mathbb{R}, \quad y_H(t) = \lambda \exp\left\{\frac{-5 - \sqrt{41}}{2}t\right\} + \mu \exp\left\{\frac{-5 + \sqrt{41}}{2}t\right\}$$

où λ et μ sont des constantes réelles.

Comme le second membre est constant, on a que $y_P(t)=-0.5$ pour tout $t\in\mathbb{R}$. Pour s'en convaincre, il suffit de réinjecter y_P dans (E).

Ainsi, l'ensemble solution est

$$\left\{ \forall t \in \mathbb{R}, t \longmapsto \lambda \exp\left\{\frac{-5 - \sqrt{41}}{2}t\right\} + \mu \exp\left\{\frac{-5 + \sqrt{41}}{2}t\right\} - 0.5, (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Exercice 5 - Hors programme (\dagger)

B. Corrections des projections et symétries

B.1. Propriétés utiles

Exercice 1 - Une projection d'une projection reste une projection

Soit p une projection telle que p(x+y)=x pour tout $(x,y)\in\mathbb{R}^2$. On a que $p^2(x)=p(p(x+y))=p(x)=x$. La propriété est donc vérifiée pour p.

Graphiquement, cette propriété est évidente : si on projette M sur une axe donnant ainsi M_x , alors reprojetter M_x sur ce même axe ne change pas M_x .

Si vous voulez la démonstration formelle, envoyez moi un mail

Exercice 2 - Une symétrie d'une symetrie annule la symétrie

Soit s une symétrie telle que s(x+y)=x-y pour tout $(x,y)\in\mathbb{R}^2$. On a que s(s(x-y))=s(x-y)=x+y. La propriété est donc vérifiée pour s.

Graphiquement, cette propriété est aussi évidente : si on prend le symétrique de M noté M' par rapport à un axe puis si on reprend le symétrique de M' par rapport au même axe, on obtient M.

Si vous voulez la démonstration formelle, envoyez moi un mail

B.2. Est-ce une projection?

Exercice 3 - Un cas particulier... (\dagger)

On a

$$r^{2} = (p + q - qp)(p + q - qp)$$

$$= p^{2} + pq - pqp + qp + q^{2} - q^{2}p - qp^{2} - pqp + qpqp$$

$$= p + 0 - 0p + qp + q - 2qp - 0p + 0$$

$$= p + q - qp$$

$$= r$$

D'après l'exercice 1, on a que r est bien une projection.

Exercice 4 - Du cas général (†)

On procède par double implication ici.

 \implies On suppose que p+q est une projection. Donc

$$(p+q)^2 = p+q$$
 \iff $p^2 + pq + qp + q^2 = p+q$ \iff $pq+qp=0$

En composant par p à droite, on a :

$$p^2q + pqp = 0 \quad \iff \quad pq = -pqp$$

En composant par p à gauche, on a :

$$pqp + qp^2 = 0 \quad \iff \quad qp = -pqp$$

Donc

$$pq = qp = -pqp \quad \land \quad pq + qp = 0$$

Ce qui nous donne bien que pq=qp=0.

 $\begin{tabular}{|c|c|c|c|c|}\hline \longleftarrow & \label{eq:constraints} \end{tabular}$ On suppose que pq=qp=0. Donc

$$(p+q)^2 = p^2 + qp + qp + q^2$$
$$= p+q$$

Ce qui nous donne bien que p+q est une projection.