import pandas as pd
import seaborn as sns
from matplotlib import dates as mpl_date
import matplotlib.pyplot as plt

df= pd.read_csv("CPU.csv")

df.drop(columns=df.columns[0], axis=1, inplace=True)

df.head(10)

→		Time	Time_Elapsed	CPU_Precentage	
	0	04:18:35	0.101619	38.5	ılı
	1	04:18:35	0.303596	22.5	
	2	04:18:36	0.507279	19.5	
	3	04:18:36	0.708261	22.5	
	4	04:18:36	0.909353	17.5	
	5	04:18:36	1.110466	50.0	
	6	04:18:36	1.311423	27.5	
	7	04:18:37	1.513453	87.2	
	8	04:18:37	1.714719	83.7	
	9	04:18:37	1.923213	78.6	

df.describe()

→		Time_Elapsed	CPU_Precentage
	count	125501.000000	125501.000000
	mean	12970.533870	19.507065
	std	7479.023695	22.063576
	min	0.101619	2.400000
	25%	6502.351799	9.800000
	50%	12970.002852	12.200000
	75%	19454.696844	16.700000
	max	25921.115942	100.000000

```
dfH = []
dfm = []
dfs = []
for index, row in df.iterrows():
    timestamp = row['Time']
    H,m,s = timestamp.split(':')
    dfH.append(H)
    dfm.append(m)
    dfs.append(s)

df['H'] = dfH
df['m'] = dfm
df['s'] = dfs
print(type(df))
df
```

<<class 'pandas.core.frame.DataFrame'>

	Time	Time_Elapsed	CPU_Precentage	Н	m	S	
0	04:18:35	0.101619	38.5	04	18	35	ıl.
1	04:18:35	0.303596	22.5	04	18	35	+/
2	04:18:36	0.507279	19.5	04	18	36	
3	04:18:36	0.708261	22.5	04	18	36	
4	04:18:36	0.909353	17.5	04	18	36	
125496	11:30:35	25920.309742	7.5	11	30	35	
125497	11:30:36	25920.511587	10.0	11	30	36	
125498	11:30:36	25920.712685	15.4	11	30	36	
125499	11:30:36	25920.915095	15.0	11	30	36	
125500	11:30:36	25921.115942	7.7	11	30	36	

125501 rows × 6 columns

```
Time = []
for index, row in df.iterrows():
    Time.append(row['H']+':'+row['m']+':'+row['s'])

newDF = pd.DataFrame()
newDF['Time'] = Time
newDF['CPU_Precentage'] = df['CPU_Precentage']
newDF['Time'] = pd.to_datetime(newDF['Time'])
newDF
```

	Time	CPU_Precentage	
0	2024-06-22 04:18:35	38.5	ılı
1	2024-06-22 04:18:35	22.5	+/
2	2024-06-22 04:18:36	19.5	_
3	2024-06-22 04:18:36	22.5	
4	2024-06-22 04:18:36	17.5	
125496	2024-06-22 11:30:35	7.5	
125497	2024-06-22 11:30:36	10.0	
125498	2024-06-22 11:30:36	15.4	
125499	2024-06-22 11:30:36	15.0	
125500	2024-06-22 11:30:36	7.7	

125501 rows × 2 columns

!pip install pandasql

→ Collecting pandasql

Downloading pandasql-0.7.3.tar.gz (26 kB)

Preparing metadata (setup.py) ... done

Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (fro Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (fro Requirement already satisfied: sqlalchemy in /usr/local/lib/python3.10/dist-packages Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-package Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-package Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-package Requirement already satisfied: typing-extensions>=4.6.0 in /usr/local/lib/python3.10/dist-package Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (Building wheels for collected packages: pandasql

Building wheel for pandasql (setup.py) ... done

Created wheel for pandasql: filename=pandasql-0.7.3-py3-none-any.whl size=26771 sh Stored in directory: /root/.cache/pip/wheels/e9/bc/3a/8434bdcccf5779e72894a9b24fec

Successfully built pandasql

Installing collected packages: pandasql
Successfully installed pandasql-0.7.3

from pandasql import sqldf

```
sql = lambda q: sqldf(q, globals())
newDF = sqldf("SELECT * FROM newDF WHERE Time BETWEEN '2024-06-22 04:18:35 ' AND '2024-0
newDF
```


Langkah berikutnya:

Buat kode dengan newDF

Lihat plot yang direkomendasikan

CPU_Precentage

```
# @title CPU_Precentage
```

```
from matplotlib import pyplot as plt
newDF['CPU_Precentage'].plot(kind='hist', bins=20, title='CPU_Precentage')
plt.gca().spines[['top', 'right',]].set_visible(False)
```


→ Time vs CPU_Precentage

```
# @title Time vs CPU_Precentage

from matplotlib import pyplot as plt
import seaborn as sns

def _plot_series(series, series_name, series_index=0):
    palette = list(sns.palettes.mpl_palette('Dark2'))
    xs = series['Time']
    ys = series['CPU_Precentage']

    plt.plot(xs, ys, label=series_name, color=palette[series_index % len(palette)])

fig, ax = plt.subplots(figsize=(10, 5.2), layout='constrained')

df_sorted = newDF.sort_values('Time', ascending=True)
    _plot_series(df_sorted, '')

sns.despine(fig=fig, ax=ax)
    plt.xlabel('Time')
    _ = plt.ylabel('CPU_Precentage')
```


Time vs count()

```
# @title Time vs count()
from matplotlib import pyplot as plt
import seaborn as sns
def _plot_series(series, series_name, series_index=0):
 palette = list(sns.palettes.mpl_palette('Dark2'))
  counted = (series['Time']
                .value_counts()
              .reset_index(name='counts')
              .rename({'index': 'Time'}, axis=1)
              .sort values('Time', ascending=True))
 xs = counted['Time']
 ys = counted['counts']
 plt.plot(xs, ys, label=series_name, color=palette[series_index % len(palette)])
fig, ax = plt.subplots(figsize=(10, 5.2), layout='constrained')
df_sorted = newDF.sort_values('Time', ascending=True)
_plot_series(df_sorted, '')
sns.despine(fig=fig, ax=ax)
plt.xlabel('Time')
_ = plt.ylabel('count()')
```


CPU_Precentage

@title CPU_Precentage

from matplotlib import pyplot as plt
newDF['CPU_Precentage'].plot(kind='line', figsize=(8, 4), title='CPU_Precentage')
plt.gca().spines[['top', 'right']].set_visible(False)

100 -

CPU_Precentage