Les fonctions réelles à variables réelles.

Analyse 1

Les fonctions réelles à variables réelles.

Analyse 1

Programme

1 Limites et continuité

2 Dérivabilité

3 Fonctions usuelles

N.Mrhardy 3 / 11

I désigne un intervalle non trivial de $\mathbb R$ (c'est à dire non vide et non réduit à un point) ou une réunion d'intervalles.

N.Mrhardy 4 / 111

I désigne un intervalle non trivial de \mathbb{R} (c'est à dire non vide et non réduit à un point) ou une réunion d'intervalles.

On appelle fonction numérique sur I, toute application $f: I \to \mathbb{R}$. L'élément y = f(x) est appelé l'image de x par f. L'ensemble $f(I) = \{f(x) \in \mathbb{R}/x \in I\}$ est appelé l'image de I par f.

On note par $\mathcal{F}(I,\mathbb{R})$ l'ensemble des fonctions numériques définie sur I.

I désigne un intervalle non trivial de \mathbb{R} (c'est à dire non vide et non réduit à un point) ou une réunion d'intervalles.

On appelle fonction numérique sur I, toute application $f: I \to \mathbb{R}$. L'élément y = f(x) est appelé l'image de x par f. L'ensemble $f(I) = \{f(x) \in \mathbb{R}/x \in I\}$ est appelé l'image de I par f.

On note par $\mathcal{F}(I,\mathbb{R})$ l'ensemble des fonctions numériques définie sur I.

Domaine de définition

On appelle domaine de définition de f l'ensemble noté D_f des réels x tel que f(x) soit définie

$$D_f = \{x \in \mathbb{R}/f(x) \text{ bien définie}\}$$

N.Mrhardy 4/1

I désigne un intervalle non trivial de $\mathbb R$ (c'est à dire non vide et non réduit à un point) ou une réunion d'intervalles.

On appelle fonction numérique sur I, toute application $f: I \to \mathbb{R}$. L'élément y = f(x) est appelé l'image de x par f. L'ensemble $f(I) = \{f(x) \in \mathbb{R}/x \in I\}$ est appelé l'image de I par f.

On note par $\mathcal{F}(I,\mathbb{R})$ l'ensemble des fonctions numériques définie sur I.

Exemple

- Si
$$f(x)=\sqrt{x^2-1}$$
 alors $D_f=\{x\in\mathbb{R}/|x|\geq 1\}=]-\infty,-1]\cup[1,+\infty[$

- Si
$$f(x) = \ln(x-1)$$
 alors $D_f = \{x \in \mathbb{R}/x > 1\} =]1, +\infty[$

- Si
$$f(x) = \ln |x - 1|$$
 alors $D_f = \{x \in \mathbb{R}/x \neq 1\} = \mathbb{R} \setminus \{1\}$

Opérations dans $\mathcal{F}(I,\mathbb{R})$

N.Mrhardy 5 / 111

Opérations dans $\mathcal{F}(I,\mathbb{R})$

Soient f et g dans $\mathcal{F}(I,\mathbb{R})$. On peut alors définir les fonctions suivantes :

• La somme de f et g est l'application $(f+g) \in \mathcal{F}(I,\mathbb{R})$ définit par :

$$\forall x \in I$$
, $(f+g)(x) = f(x) + g(x)$

• La multiplication de f par un réel α est l'application $(\alpha f) \in \mathcal{F}(I,\mathbb{R})$ définit par

$$\forall x \in I, \quad (\alpha f)(x) = \alpha f(x)$$

• Le produit de f et g est l'application $(fg) \in \mathcal{F}(I,\mathbb{R})$ définit par

$$\forall x \in I, \quad (fg)(x) = f(x)g(x)$$

• La valeur absolue de f est l'application $|f| \in \mathcal{F}(I,\mathbb{R})$ par

$$\forall x \in I, \quad |f|(x) = |f(x)|$$

N.Mrhardy 5 /

Opérations dans $\mathcal{F}(I,\mathbb{R})$

• Maximum, Minimum de f et g sont les deux applications $\sup(f,g),\inf(f,g)\in\mathcal{F}(\mathrm{I},\mathbb{R})$ définient pour $\forall x\in\mathrm{I},$ par

$$\sup(f,g)(x) = \sup(f(x),g(x)), \text{ et } \inf(f,g)(x) = \inf(f(x),g(x))$$

Remarque

On peut aussi étendre la relation d'ordre \leq sur $\mathbb R$ à $\mathcal F(I,\mathbb R)$ en posant,

$$f \le g \iff \forall x \in I, \quad f(x) \le g(x)$$

Soient $(f,g) \in \mathcal{F}(\mathrm{I},\mathbb{R})^2$. On a

$$|f| = \sup(f, -f), \quad \sup(f, g) = \frac{f + g + |f - g|}{2}, \quad \inf(f, g) = \frac{f + g - |f - g|}{2}$$

N.Mrhardy 6/1

Soit $f \in \mathcal{F}(I,\mathbb{R})$. On dit que f est :

- *Majorée* si et seulement si $\exists M \in \mathbb{R}, \quad \forall x \in I, \ f(x) \leq M$. Dans ce cas l'ensemble f(I) admet une borne supérieure dans \mathbb{R} , que l'on appelle borne supérieure de f et que l'on note : $\sup_{X \in \mathcal{X}} f$ ou encore $\sup_{X \in \mathcal{X}} f(x)$.
- *Minorée* si et seulement si $\exists m \in \mathbb{R}, \quad \forall x \in I, \ f(x) \geq m$. Dans ce cas l'ensemble f(I) admet une borne inférieure dans \mathbb{R} , que l'on appelle borne inférieure de f et que l'on note : $\inf_{x \in I} f$ ou encore $\inf_{x \in I} f(x)$.
- Bornée si elle est majorée et minorée. Dans ce cas l'ensemble $\{|f(x)|; x \in I\}$ possède une borne supérieure que l'on notera $\sup_{I} |f| = \|f\|_{\infty}$.

f est bornée si et seulement si $\exists A > 0; \ \forall x \in I; \ |f(x)| \le A$

N.Mrhardy 7 / 1

Soit $f \in \mathcal{F}(I,\mathbb{R})$. On dit que f est :

- *Majorée* si et seulement si $\exists M \in \mathbb{R}, \quad \forall x \in I, \ f(x) \leq M$. Dans ce cas l'ensemble f(I) admet une borne supérieure dans \mathbb{R} , que l'on appelle borne supérieure de f et que l'on note : $\sup_{X \in \mathcal{X}} f$ ou encore $\sup_{X \in \mathcal{X}} f(x)$.
- *Minorée* si et seulement si $\exists m \in \mathbb{R}, \quad \forall x \in I, \ f(x) \geq m$. Dans ce cas l'ensemble f(I) admet une borne inférieure dans \mathbb{R} , que l'on appelle borne inférieure de f et que l'on note : $\inf_{x \in I} f$ ou encore $\inf_{x \in I} f(x)$.
- Bornée si elle est majorée et minorée. Dans ce cas l'ensemble $\{|f(x)|; x \in I\}$ possède une borne supérieure que l'on notera $\sup_{I} |f| = \|f\|_{\infty}$.

- Toute combinaison linéaire de fonctions bornées est bornée.
- Tout produit de deux fonctions bornées est encore borné.

N.Mrhardy 7 / 1

N.Mrhardy 8 / 111

Définition

Soit $f \in \mathcal{F}(I, \mathbb{R})$

• La fonction f est dite croissante sur I si

$$\forall x_1, x_2 \in I$$
, on a $x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$.

• La fonction f est dite <u>décroissante</u> sur I si

$$\forall x_1, x_2 \in I$$
, on a $x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$.

 La fonction f est dite <u>monotone</u> sur I si elle est croissante ou décroissante sur I.

Lorsque les inégalités sont strictes on parle de fonction strictement croissante (resp. décroissante) ou bien strictement monotone.

- Soient $f, g \in \mathcal{F}(I, \mathbb{R})$
 - Si f et g sont croissantes alors f + g est croissante. En plus, si l'une d'elles est strictement croissante alors f + g est strictement croissante.

N.MRHARDY

- Soient $f, g \in \mathcal{F}(I, \mathbb{R})$
 - Si f et g sont croissantes alors f + g est croissante. En plus, si l'une d'elles est strictement croissante alors f + g est strictement croissante.
 - Si f et g sont définies positives et croissantes (resp. décroissantes) alors f.g est croissante (resp. décroissante).

- **1** Soient $f, g \in \mathcal{F}(I, \mathbb{R})$
 - Si f et g sont croissantes alors f + g est croissante. En plus, si l'une d'elles est strictement croissante alors f + g est strictement croissante.
 - Si f et g sont définies positives et croissantes (resp. décroissantes) alors f.g est croissante (resp. décroissante).
- Soient $f \in \mathcal{F}(I,\mathbb{R})$ et $g \in \mathcal{F}(J,\mathbb{R})$ avec $f(I) \subset J$ alors $g \circ f \in \mathcal{F}(I,\mathbb{R})$ et
 - Si f et g sont croissantes (resp. décroissantes) alors $g \circ f$ est croissante.

- Soient $f, g \in \mathcal{F}(I, \mathbb{R})$
 - Si f et g sont croissantes alors f + g est croissante. En plus, si l'une d'elles est strictement croissante alors f + g est strictement croissante.
 - Si f et g sont définies positives et croissantes (resp. décroissantes) alors f.g est croissante (resp. décroissante).
- Soient $f \in \mathcal{F}(I,\mathbb{R})$ et $g \in \mathcal{F}(J,\mathbb{R})$ avec $f(I) \subset J$ alors $g \circ f \in \mathcal{F}(I,\mathbb{R})$ et
 - Si f et g sont croissantes (resp. décroissantes) alors $g \circ f$ est croissante.
 - Si f est croissante (resp. décroissante) et g est décroissantes (resp. croissante) alors $g \circ f$ est décroissante.

- Soient $f, g \in \mathcal{F}(I, \mathbb{R})$
 - Si f et g sont croissantes alors f + g est croissante. En plus, si l'une d'elles est strictement croissante alors f + g est strictement croissante.
 - Si f et g sont définies positives et croissantes (resp. décroissantes) alors $f \cdot g$ est croissante (resp. décroissante).
- ② Soient $f \in \mathcal{F}(I,\mathbb{R})$ et $g \in \mathcal{F}(J,\mathbb{R})$ avec $f(I) \subset J$ alors $g \circ f \in \mathcal{F}(I,\mathbb{R})$ et
 - Si f et g sont croissantes (resp. décroissantes) alors $g \circ f$ est croissante.
 - Si f est croissante (resp. décroissante) et g est décroissantes (resp. croissante) alors $g \circ f$ est décroissante .

Preuve: Supposons par exemple f croissante sur I et g décroissante sur J. Soient $(x_1, x_2) \in I$ tels que $x_1 \le x_2$. Comme f est croissante, $f(x_1) \le f(x_2)$ et puisque g est décroissante, $g(f(x_1)) \ge g(f(x_2))$ et donc $g \circ f(x_1) \ge g \circ f(x_2)$.

N.Mrhardy 9 / 11

Exemple

① Les fonctions exp : $\mathbb{R} \longrightarrow \mathbb{R}$ et ln :]0, $+\infty$ [$\longrightarrow \mathbb{R}$ sont strictement croissantes.

N.Mrhardy 10 / 11:

Exemple

 $\textbf{ Les fonctions exp}: \mathbb{R} \longrightarrow \mathbb{R} \text{ et ln}:]0, +\infty[\longrightarrow \mathbb{R} \text{ sont strictement croissantes}.$

Exemple

- **1** Les fonctions exp : $\mathbb{R} \longrightarrow \mathbb{R}$ et ln : $]0, +\infty[\longrightarrow \mathbb{R}$ sont strictement croissantes.
- **3** La fonction $h: \begin{cases}]0, \frac{\pi}{2}[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x \tan(x)} \end{cases}$ est strictement décroissante. En effet ; il suffit d'ècrire $h = g \circ f$ avec
 - $g: x \longmapsto \frac{1}{x}$ qui est strictement décroissante. $f: x \longmapsto x \tan(x)$ qui est strictement croissante.

Exemple

- **1** Les fonctions exp : $\mathbb{R} \longrightarrow \mathbb{R}$ et $\ln :]0, +\infty[\longrightarrow \mathbb{R}$ sont strictement croissantes.
- **3** La fonction $h: \begin{cases}]0, \frac{\pi}{2}[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x \tan(x)} \end{cases}$ est strictement décroissante. En
 - effet ; il suffit d'ècrire $h = g \circ f$ avec
 - $g: x \longmapsto \frac{1}{x}$ qui est strictement décroissante. $f: x \longmapsto x \tan(x)$ qui est strictement croissante.
- **4** La fonction $|x|: \mathbb{R} \longrightarrow \mathbb{R}^+$ n'est pas monotone sur \mathbb{R} . Mais elle est croissante sur \mathbb{R}^+ .

Fonctions monotones sur un segment

Si $f: [a, b] \longrightarrow \mathbb{R}$ et monotone sur le segment [a, b] alors f est bornée.

<u>Preuve</u>: Supposons par exemple que f est décroissante alors Si $x \in [a, b] \iff a \le x \le b \iff f(b) \le f(x) \le f(a) \implies f$ est bornée.

N.Mrhardy 11 / 111

Fonctions monotones sur un segment

Si $f: [a, b] \longrightarrow \mathbb{R}$ et monotone sur le segment [a, b] alors f est bornée.

<u>Preuve</u>: Supposons par exemple que f est décroissante alors Si $x \in [a, b] \iff a \le x \le b \iff f(b) \le f(x) \le f(a) \implies f$ est bornée.

Attention!

Si f est monotone sur un intervalle ouvert, elle n'est pas nécessairement bornée.

Exemple

 $f(x) = \frac{1}{x}$ si $x \in]0,1]$, f est décroissante mais f n'est pas bornée.

N.Mrhardy 11 / 1

Propriétés de $\mathcal{F}(I,\mathbb{R})$: Parité

N.Mrhardy 12 / 111

Propriétés de $\mathcal{F}(I,\mathbb{R})$: Parité

On suppose f définie sur un domaine I symétrique par rapport à 0 (c'est-à-dire que si $x \in I$ alors $-x \in I$).

N.Mrhardy 12 / 11:

Propriétés de $\mathcal{F}(I,\mathbb{R})$: Parité

On suppose f définie sur un domaine I symétrique par rapport à 0 (c'est-à-dire que si $x \in I$ alors $-x \in I$).

- f est paire si et seulement si, $\forall x \in I : f(-x) = f(x)$. Dans ce cas la courbe représentative de f admet l'axe des ordonnées comme axe de symétrie.
- f est impaire si et seulement si, $\forall x \in I : f(-x) = -f(x)$. Dans ce cas la courbe représentative de f admet un centre de symétrie, l'origine du repère.

Propriétés de $\mathcal{F}(I,\mathbb{R})$: Parité

On suppose f définie sur un domaine I symétrique par rapport à 0 (c'est-à-dire que si $x \in I$ alors $-x \in I$).

- f est paire si et seulement si, $\forall x \in I : f(-x) = f(x)$. Dans ce cas la courbe représentative de f admet l'axe des ordonnées comme axe de symétrie.
- f est impaire si et seulement si, $\forall x \in I : f(-x) = -f(x)$. Dans ce cas la courbe représentative de f admet un centre de symétrie, l'origine du repère.

Exemple

- La fonction $x \mapsto \cos(x)$ est paire et la fonction $x \mapsto \sin(x)$ est impaire.
- La fonction $x \mapsto \ln(x)$ n'est ni paire ni impaire, son domaine de définition est $]0, +\infty[$.
- La fonction $x \mapsto e^x$ n'est ni paire ni impaire, son domaine de définition est \mathbb{R} .

N.Mrhardy 12 / 1

Propriétés de $\mathcal{F}(I,\mathbb{R})$: Périodicité

N.Mrhardy 13 / 111

Propriétés de $\mathcal{F}(I,\mathbb{R})$: Périodicité

Soit $f \in \mathcal{F}(I, \mathbb{R})$. f est dite T-périodique si

$$f(x+T) = f(x), \quad \forall x \in I/x + T \in I.$$

- Si T est une période pour f, tous les nombres de la forme kT, $k \in \mathbb{Z}$, sont aussi des périodes pour f.
- Pour construire le graphe d'une fonction *T*-périodique, il suffit de le construire sur un intervalle de longueur T. Le reste se déduit par des translations parallèles à l'axe des abscisses.

Propriétés de $\mathcal{F}(I,\mathbb{R})$: Périodicité

Soit $f \in \mathcal{F}(I,\mathbb{R})$. f est dite T-périodique si

$$f(x+T) = f(x), \quad \forall x \in I/x + T \in I.$$

- Si T est une période pour f, tous les nombres de la forme kT, $k \in \mathbb{Z}$, sont aussi des périodes pour f.
- Pour construire le graphe d'une fonction T-périodique, il suffit de le construire sur un intervalle de longueur T. Le reste se déduit par des translations parallèles à l'axe des abscisses.

Exemple

- Les fontions $x \longrightarrow \sin(x)$ et $x \longrightarrow \cos(x)$ sont 2π -périodiques.
- La fonction $x \longrightarrow \tan(x)$ est π -périodique.
- La fonction $x \longrightarrow E(x)$ est 1-périodique.

Point adhérent

Soit $I \subset \mathbb{R}$ une partie de \mathbb{R} . On dit qu'un réel x est adhérent à la partie A lorsque

$$\forall \eta > 0$$
 $\exists a \in I, tel que |x - a| \le \eta$

On note \overline{I} l'ensemble des points adhérents de la partie I.

Propriété vraie au voisinage d'un point

Soient f une fonction définie sur une partie I de $\mathbb R$ et $a\in \bar I$

- On dit que la fonction f est définie au voisinage du point a si et seulement s'il existe un voisinage V_a de a telle que V_a ⊂ I.
- On dit que f vérifie la propriété (\mathcal{P}) au voisinage du point a si et seulement s'il existe un voisinage $V_a \subset I$ de a tel que la restriction de f à V_a vérifie la propriété (\mathcal{P}) .

Soient $f \in \mathcal{F}(I,\mathbb{R})$, $x_0 \in \overline{I}$ (c-à-d un point de I ou une extrémité de I).

Limite finie en un point

On dit que la fonction f admet pour limite le réel ℓ en x_0 ssi :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - x_0| < \eta \implies |f(x) - \ell| < \varepsilon.$$

ceci est équivalent à dire

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \textbf{tel que} \quad \ x \in]x_0 - \eta, x_0 + \eta[\cap I \implies f(x) \in]\ell - \varepsilon, \ell + \varepsilon[$$

à l'aide des voisinages :

$$f(x) \underset{x \to x_0}{\longrightarrow} \ell \Longleftrightarrow \forall W \in \mathcal{V}_{\ell}, \quad \exists V \in \mathcal{V}_{x_0}, \quad f(V \cap I) \subset W$$

Le réel ℓ est appelé limite de f en x_0 . On note alors $\lim_{x \to x_0} f(x) = \ell$ ou encore $f(x) \xrightarrow[x \to x_0]{\ell} \ell$.

N.Mrhardy 15 / 111

Exemple

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = 2x - 1. En utilisant la définition, montrons que f tend vers 1 quand x tend vers 1, c-à-d

$$\forall \varepsilon > 0, \ \exists \eta(\varepsilon) > 0, \ \forall x \in I, \ |x - 1| < \eta \implies |f(x) - 1| < \varepsilon.$$

N.Mrhardy 16 / 111

Exemple

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = 2x - 1. En utilisant la définition, montrons que f tend vers 1 quand x tend vers 1, c-à-d

$$\forall \varepsilon > 0, \ \exists \eta(\varepsilon) > 0, \ \forall x \in I, \ |x - 1| < \eta \implies |f(x) - 1| < \varepsilon.$$

Or
$$\left(|f(x)-1|<\varepsilon\Longleftrightarrow|2x-2|<\varepsilon\Longleftrightarrow|x-1|<\frac{\varepsilon}{2}\right)$$

Exemple

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = 2x - 1. En utilisant la définition, montrons que f tend vers 1 quand x tend vers 1, c-à-d

$$\forall \varepsilon > 0, \ \exists \eta(\varepsilon) > 0, \ \forall x \in I, \ |x - 1| < \eta \implies |f(x) - 1| < \varepsilon.$$

Or
$$\left(|f(x)-1|<\varepsilon\Longleftrightarrow|2x-2|<\varepsilon\Longleftrightarrow|x-1|<\frac{\varepsilon}{2}\right)$$

Soit $\varepsilon > 0$. On pose $\eta = \frac{\varepsilon}{2}$, donc

$$|x-1| < \eta \implies |x-1| < \frac{\varepsilon}{2} \Longrightarrow |f(x)-1|$$

N.MRHARDY 16 / 111

Unicité de la limite

Si f admet une limite au point x_0 , alors cette limite est unique.

Unicité de la limite

Si f admet une limite au point x_0 , alors cette limite est unique.

Preuve: Supposons f admet deux limites ℓ_1 et ℓ_2 au point x_0 . Montrons que

$$\forall \varepsilon > 0, \ |\ell_1 - \ell_2| \le \varepsilon \quad (\Leftrightarrow |\ell_1 - \ell_2| \le |f(x) - \ell_1| + |f(x) - \ell_2| \le \varepsilon)$$

N.MRHARDY

Unicité de la limite

Si f admet une limite au point x_0 , alors cette limite est unique.

Preuve: Supposons f admet deux limites ℓ_1 et ℓ_2 au point x_0 . Montrons que

$$\forall \varepsilon > 0, \ |\ell_1 - \ell_2| \le \varepsilon \quad (\Leftrightarrow |\ell_1 - \ell_2| \le |f(x) - \ell_1| + |f(x) - \ell_2| \le \varepsilon)$$

Soit $\forall \varepsilon > 0$. On a, par définition :

$$\exists \eta_1 > 0, \; \text{tel que} \quad |x - x_0| \leq \eta_1 \; \Rightarrow \; |f(x) - \ell_1| \leq \frac{\varepsilon}{2}.$$

$$\exists \eta_2 > 0, \text{ tel que } \quad |x - x_0| \leq \eta_2 \ \Rightarrow \ |f(x) - \ell_2| \leq \frac{\varepsilon}{2}.$$

Unicité de la limite

Si f admet une limite au point x_0 , alors cette limite est unique.

Preuve: Supposons f admet deux limites ℓ_1 et ℓ_2 au point x_0 . Montrons que

$$\forall \varepsilon > 0, \ |\ell_1 - \ell_2| \le \varepsilon \quad (\Leftrightarrow |\ell_1 - \ell_2| \le |f(x) - \ell_1| + |f(x) - \ell_2| \le \varepsilon)$$

Soit $\forall \varepsilon > 0$. On a, par définition :

$$\exists \eta_1 > 0, \text{ tel que } \quad |x - x_0| \leq \eta_1 \ \Rightarrow \ |f(x) - \ell_1| \leq \frac{\varepsilon}{2}.$$

$$\exists \eta_2 > 0, \text{ tel que } \quad |x - x_0| \leq \eta_2 \ \Rightarrow \ |f(x) - \ell_2| \leq \frac{\varepsilon}{2}.$$

Posons $\eta = \min(\eta_1, \eta_2)$, alors si $|x - x_0| \le \eta$ on aura

$$|\ell_1 - \ell_2| \le |f(x) - \ell_1| + |f(x) - \ell_2| \le \varepsilon.$$

Comme ε est quelconque alors $\ell_1 = \ell_2$.

Proposition

Soit $f \in \mathcal{F}(I,\mathbb{R})$, une fonction admettant une limite finie ℓ en $x_0 \in \overline{I}$. Alors il existe un voisinage V du point x_0 sur lequel la fonction f est **bornée**.

N.Mrhardy 18 / 11:

Proposition

Soit $f \in \mathcal{F}(I,\mathbb{R})$, une fonction admettant une limite finie ℓ en $x_0 \in \overline{I}$. Alors il existe un voisinage V du point x_0 sur lequel la fonction f est **bornée**.

Preuve: Remarquons d'abord que d'après l'inégalité triangulaire, on a

$$|f(x)| \le |f(x) - \ell| + |\ell|$$

Proposition

Soit $f \in \mathcal{F}(I,\mathbb{R})$, une fonction admettant une limite finie ℓ en $x_0 \in \overline{I}$. Alors il existe un voisinage V du point x_0 sur lequel la fonction f est **bornée**.

Preuve: Remarquons d'abord que d'après l'inégalité triangulaire, on a

$$|f(x)| \le |f(x) - \ell| + |\ell|$$

Prenons $\varepsilon=1$ dans la définition de la limite, il existe $\eta>0$ tel que

$$\forall x \in I, \quad |x - x_0| \le \eta \Longrightarrow |f(x) - \ell| < 1$$

Proposition

Soit $f \in \mathcal{F}(I,\mathbb{R})$, une fonction admettant une limite finie ℓ en $x_0 \in \overline{I}$. Alors il existe un voisinage V du point x_0 sur lequel la fonction f est **bornée**.

Preuve: Remarquons d'abord que d'après l'inégalité triangulaire, on a

$$|f(x)| \le |f(x) - \ell| + |\ell|$$

Prenons $\varepsilon=1$ dans la définition de la limite, il existe $\eta>0$ tel que

$$\forall x \in I, \quad |x - x_0| \le \eta \Longrightarrow |f(x) - \ell| < 1$$

Posons
$$V = |x_0 - \eta, x_0 + \eta| \in \mathcal{V}_{x_0}$$
 et $A = |\ell| + 1$. Donc

$$\forall x \in V \cap I, \quad |f(x)| \le 1 + \ell \Longrightarrow |f(x)| \le A$$

Caractérisation séquentielle

Soit $f \in \mathcal{F}(I,\mathbb{R})$. Les assertions suivantes sont équivalentes :

- (i) $\lim_{x \to x_0} f(x) = \ell$
- (ii) Pour toute suite $(x_n)_{n\geq 0}$ de points de I telle que $\lim_{n\longrightarrow +\infty} x_n=x_0$, on a $\lim_{n\longrightarrow +\infty} f(x_n)=\ell.$

Caractérisation séquentielle

Soit $f \in \mathcal{F}(I,\mathbb{R})$. Les assertions suivantes sont équivalentes :

- (i) $\lim_{x \to x_0} f(x) = \ell$
- (ii) Pour toute suite $(x_n)_{n\geq 0}$ de points de I telle que $\lim_{n\longrightarrow +\infty} x_n = x_0$, on a $\lim_{n\longrightarrow +\infty} f(x_n) = \ell$.

Preuve: (i) \Rightarrow (ii) : Soit ε > 0. Par définition :

$$\exists \eta > 0 \text{ tel que } |x - x_0| \le \eta \Rightarrow |f(x) - \ell| \le \varepsilon.$$

Comme $\lim_{n \to +\infty} x_n = x_0$, il existe un $N \ge 0$, tel que

$$\forall n > N$$
, $|x_n - x_0| < n \Longrightarrow |f(x_n) - \ell| < \varepsilon$.

$$\iff \forall n \geq N, |f(x_n) - \ell| \leq \varepsilon \implies \lim_{n \to +\infty} f(x_n) = \ell$$

Caractérisation séquentielle

Soit $f \in \mathcal{F}(I,\mathbb{R})$. Les assertions suivantes sont équivalentes :

- (i) $\lim_{x \to x_0} f(x) = \ell$
- (ii) Pour toute suite $(x_n)_{n\geq 0}$ de points de I telle que $\lim_{n\longrightarrow +\infty} x_n = x_0$, on a $\lim_{n\longrightarrow +\infty} f(x_n) = \ell$.

Preuve :(ii) \Rightarrow (i) : Par absurde, supposons que

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ (\exists x \in I, \ |x - x_0| < \eta) \quad \text{et} \quad |f(x) - \ell| > \varepsilon.$$

Pour tout $n \geq 1$, en prenant $\eta = \frac{1}{n}$, il existera un réel $x_n \in I$ et tel que $|x_n - x_0| < \frac{1}{n}$ et $|f(x_n) - \ell| > \varepsilon$.

La suite $(x_n)_{n\geq 1}^{"}$ ainsi construite converge vers x_0 cependant, ℓ n'est pas limite de la suite $(f(x_n)_{n\geq 1}$ ce contredit (ii).

Caractérisation séquentielle

Soit $f \in \mathcal{F}(I, \mathbb{R})$. Les assertions suivantes sont équivalentes :

- (i) $\lim_{x \to x_0} f(x) = \ell$
- (ii) Pour toute suite $(x_n)_{n\geq 0}$ de points de I telle que $\lim_{n\longrightarrow +\infty} x_n = x_0$, on a $\lim_{n\longrightarrow +\infty} f(x_n) = \ell$.

Exemple

La fonction $\mathbf{f}(\mathbf{x}) = \sin\left(\frac{1}{\mathbf{x}}\right)$, $\forall \mathbf{x} \in \mathbb{R}^*$ n'admet pas de limite au point 0. En effet, considérons les suites $x_n = \frac{1}{n\pi}$ et $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$. Elles convergent toutes les deux vers 0 lorsque n tend vers l'infini, mais on a $f(x_n) = 0$ et $f(y_n) = 1$. Comme les deux limites sont différentes donc f n'admet pas de limite au point 0.

Limite infinie en un point

- ① On dit que f tend vers $+\infty$ quand x tend vers x_0 et on notera $\lim_{x \longrightarrow x_0} f(x) = +\infty$ si l'une des propriétés équivalentes suivantes est vérifiée :
 - $\forall A \in \mathbb{R}(ou \ \mathbb{R}^+) \ \exists \eta > 0, \ \forall x \in I \quad (|x x_0| < \eta \ \Rightarrow \ f(x) > A).$
 - Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui converge vers x_0 , on a

$$\lim_{n \to +\infty} f(x_n) = +\infty.$$

Limite infinie en un point

- ① On dit que f tend vers $+\infty$ quand x tend vers x_0 et on notera $\lim_{x \longrightarrow x_0} f(x) = +\infty$ si l'une des propriétés équivalentes suivantes est vérifiée :
 - $\forall A \in \mathbb{R}(ou \ \mathbb{R}^+) \ \exists \eta > 0, \ \forall x \in I \quad (|x x_0| < \eta \ \Rightarrow \ f(x) > A).$
 - Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui converge vers x_0 , on a

$$\lim_{n \to +\infty} f(x_n) = +\infty.$$

- ② On dit que f tend vers $-\infty$ quand x tend vers x_0 et on note $\lim_{x \longrightarrow x_0} f(x) = -\infty$ si l'une des propriétés équivalentes suivantes est vérifiée :
 - $\forall B \in \mathbb{R} (ou \ \mathbb{R}^-) \ \exists \eta > 0, \ \forall x \in I \quad (|x x_0| < \eta \ \Rightarrow \ f(x) < B).$
 - Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui converge vers x_0 , on a

$$\lim_{n \to +\infty} f(x_n) = -\infty.$$

N.MRHARDY

Limite à l'infinie

- **3** Soit $f \in \mathcal{F}(I, \mathbb{R})$ avec $]a, +\infty[\subset I.$ On dit que f tend vers ℓ quand x tend vers $+\infty$ et on note $\lim_{x \longrightarrow +\infty} f(x) = \ell$ si l'une des propriétés équivalentes suivantes est vérifiée :
 - $\forall \varepsilon > 0 \ \exists \delta \in \mathbb{R}^+, \ \forall x \in I \ (x > \delta \Rightarrow |f(x) \ell| < \varepsilon).$
 - Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui diverge vers $+\infty$, on a $\lim_{n\longrightarrow +\infty} f(x_n) = \ell$.

N.Mrhardy 21 / 11:

Limite à l'infinie

- ① Soit $f \in \mathcal{F}(I, \mathbb{R})$ avec $a, +\infty \subset I$. On dit que f tend vers ℓ quand x tend vers $+\infty$ et on note $\lim_{x \longrightarrow +\infty} f(x) = \ell$ si l'une des propriétés équivalentes suivantes est vérifiée :
 - $\forall \varepsilon > 0 \ \exists \delta \in \mathbb{R}^+, \ \forall x \in I \ (x > \delta \Rightarrow |f(x) \ell| < \varepsilon)$.
 - Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui diverge vers $+\infty$, on a $\lim_{n \to +\infty} f(x_n) = \ell.$
- ② Soit $f \in \mathcal{F}(I,\mathbb{R})$ avec $]-\infty,a[\subset I]$. On dira que f tend vers ℓ quand x tend vers $-\infty$ et on note $\lim_{x \to -\infty} f(x) = \ell$ si l'une des propriétés équivalentes suivantes est vérifiée :
 - $\forall \varepsilon > 0 \ \exists \delta \in \mathbb{R}^-, \ \forall x \in I \ (x < \delta \Rightarrow |f(x) \ell| < \varepsilon).$
 - Pour toute suite $(x_n)_{n\in\mathbb{N}}$ de I qui diverge vers $-\infty$, on a

$$\lim_{n \to +\infty} f(x_n) = \ell.$$

N. Mrhardy

Remarque

En combinant les définitions précédentes, on peut facilement définir aussi les limites

$$\lim_{x \to \pm \infty} f(x) = \pm \infty.$$

Remarque

En combinant les définitions précédentes, on peut facilement définir aussi les limites

$$\lim_{x \to +\infty} f(x) = \pm \infty.$$

$Rappel: Limites\ classiques$

N.Mrhardy 22 /

Soit $f \in \mathcal{F}(I, \mathbb{R})$ avec $I =]a, x_0[\cup]x_0, b[$.

m N.Mrhardy $m 23 \ / \ 11$

Soit $f \in \mathcal{F}(I, \mathbb{R})$ avec $I =]a, x_0[\cup]x_0, b[$.

① On dit que f tend vers ℓ quand x tend vers x_0 à <u>droite</u> si

$$\forall \varepsilon > 0 \ \exists \eta > 0, \quad (x_0 < x < x_0 + \eta \Rightarrow |f(x) - \ell| < \varepsilon).$$

Cette limite est dite limite à droite de f en x_0 .

On note alors
$$\ell = \lim_{x \longrightarrow x_0^+} f(x)$$
 ou encore $\ell = \lim_{x \longrightarrow x_0, x > x_0} f(x)$

② On dit que f tend vers ℓ quand x tend vers x_0 à gauche si

$$\forall \varepsilon > 0 \ \exists \eta > 0, \quad (x_0 - \eta < x < x_0 \Rightarrow |f(x) - \ell| < \varepsilon).$$

Cette limite est dite limite à gauche de f en x_0 .

On note alors
$$\ell = \lim_{x \longrightarrow x_0^-} f(x)$$
 ou encore $\ell = \lim_{x \longrightarrow x_0, x < x_0} f(x)$

Soit $f \in \mathcal{F}(I, \mathbb{R})$ avec $I =]a, x_0[\cup]x_0, b[$.

1 On dit que f tend vers ℓ quand x tend vers x_0 à <u>droite</u> si

$$\forall \varepsilon > 0 \ \exists \eta > 0, \quad (x_0 < x < x_0 + \eta \Rightarrow |f(x) - \ell| < \varepsilon).$$

Cette limite est dite limite à droite de f en x_0 .

On note alors
$$\ell = \lim_{x \longrightarrow x_0^+} f(x)$$
 ou encore $\ell = \lim_{x \longrightarrow x_0, x > x_0} f(x)$

② On dit que f tend vers ℓ quand x tend vers x_0 à gauche si

$$\forall \varepsilon > 0 \ \exists \eta > 0, \quad (x_0 - \eta < x < x_0 \Rightarrow |f(x) - \ell| < \varepsilon).$$

Cette limite est dite limite à gauche de f en x_0 .

On note alors
$$\ell = \lim_{x \longrightarrow x_0^-} f(x)$$
 ou encore $\ell = \lim_{x \longrightarrow x_0, x < x_0} f(x)$

On a
$$\lim_{x \longrightarrow x_0} f(x) = \ell \Longleftrightarrow \lim_{x \longrightarrow x_0^-} f(x) = \lim_{x \longrightarrow x_0^+} f(x) = \ell.$$

N.Mrhardy 23 / 111

Exemple

1 Soit la fonction définie par $f: \mathbb{R}^* \longrightarrow \mathbb{R}$, $x \mapsto \frac{|x|}{x}$. Au point 0, on a

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x}{x} = 1, \quad \text{et} \quad \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

On déduit que la fonction f n'admet pas de limite en 0.

Exemple

① Soit la fonction définie par $f: \mathbb{R}^* \longrightarrow \mathbb{R}$, $x \mapsto \frac{|x|}{x}$. Au point 0, on a

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x}{x} = 1, \quad \text{et} \quad \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

On déduit que la fonction f n'admet pas de limite en 0.

2 Soit $f(x) = \frac{1}{x^3}$. Alors f n'admet pas de limite en 0 car

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x^3} = +\infty, \quad \text{et} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1}{x^3} = -\infty.$$

Exemple

① Soit la fonction définie par $f: \mathbb{R}^* \longrightarrow \mathbb{R}$, $x \mapsto \frac{|x|}{x}$. Au point 0, on a

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x}{x} = 1, \quad \text{et} \quad \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

On déduit que la fonction f n'admet pas de limite en 0.

Soit $f(x) = \frac{1}{x^3}$. Alors f n'admet pas de limite en 0 car

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x^3} = +\infty, \quad \text{et} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1}{x^3} = -\infty.$$

On peut facilement définir aussi les limites

$$\lim_{x \longrightarrow x_0^+} f(x) = \pm \infty \quad \text{et} \quad \lim_{x \longrightarrow x_0^-} f(x) = \pm \infty.$$

N.Mrhardy

Proposition

Soient f et g dans $\mathcal{F}(I,\mathbb{R})$ et $x_0 \in \overline{I}$. On suppose que

$$\lim_{x \longrightarrow x_0} f(x) = \ell_1 \in \mathbb{R} \quad \text{et} \quad \lim_{x \longrightarrow x_0} g(x) = \ell_2 \in \mathbb{R}.$$

Alors, on a

- $\lim_{x \longrightarrow x_0} (f+g)(x) = \ell_1 + \ell_2,$
- $\lim_{x \to x_0} (fg)(x) = \ell_1 \ell_2$, en particulier $\lim_{x \to x_0} \alpha f(x) = \alpha \ell_1$, $\forall \alpha \in \mathbb{R}$.
- $\lim_{x \longrightarrow x_0} |f| = |\ell_1|.$

Preuve :(1) On commence par écrire

$$|(f+g)(x)-(\ell_1+\ell_2)| \leq |f(x)-\ell_1|+|g(x)-\ell_2|$$

N.Mrhardy 26 / 111

Preuve :(1) On commence par écrire

$$|(f+g)(x)-(\ell_1+\ell_2)| \le |f(x)-\ell_1|+|g(x)-\ell_2|$$

Soit $\varepsilon > 0$. Puisque $f(x) \underset{x \to x_0}{\longrightarrow} \ell_1$,

$$\exists \eta_1 > 0 \text{ tel que } \forall x \in \mathrm{I}, |x - x_0| \leq \eta_1 \Longrightarrow |f(x) - \ell_1| < rac{arepsilon}{2}$$

De même, $g(x) \xrightarrow[x \to x_0]{} \ell_2$, alors

$$\exists \eta_2 > 0 \text{ tel que } \forall x \in \mathrm{I}, |x - x_0| \leq \eta_2 \Longrightarrow |g(x) - \ell_2| < \frac{\varepsilon}{2}$$

N.Mrhardy 26 / 111

Preuve :(1) On commence par écrire

$$|(f+g)(x)-(\ell_1+\ell_2)| \leq |f(x)-\ell_1|+|g(x)-\ell_2|$$

Soit $\varepsilon > 0$. Puisque $f(x) \xrightarrow[x \to x_0]{} \ell_1$,

$$\exists \eta_1 > 0 \text{ tel que } \forall x \in \mathrm{I}, |x-x_0| \leq \eta_1 \Longrightarrow |f(x)-\ell_1| < \frac{\varepsilon}{2}$$

De même, $g(x) \xrightarrow[x \to x_0]{} \ell_2$, alors

$$\exists \eta_2 > 0 \text{ tel que } \forall x \in I, |x - x_0| \le \eta_2 \Longrightarrow |g(x) - \ell_2| < \frac{\varepsilon}{2}$$

Posons $\eta = \min(\eta_1, \eta_2)$. Soit $x \in I$ tel que $|x - x_0| \le \eta$, on a bien

$$|(f+g)(x)-(\ell_1+\ell_2)|\leq |f(x)-\ell_1|+|g(x)-\ell_2|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

N.Mrhardy 26 / 111

(2) On commence par écrire

$$|(fg)(x) - \ell_1 \ell_2| = |f(x)[g(x) - \ell_2] + \ell_2[f(x) - \ell_1]| \le |f(x)||g(x) - \ell_2| + |\ell_2||f(x) - \ell_1|$$

N.Mrhardy 27 / 11

(2) On commence par écrire

$$|(fg)(x) - \ell_1 \ell_2| = |f(x)[g(x) - \ell_2] + \ell_2[f(x) - \ell_1]| \le |f(x)||g(x) - \ell_2| + |\ell_2||f(x) - \ell_1|$$

Soit $\varepsilon > 0$. Comme f admet une limite finie au point x_0 , elle est bornée sur un voisinage de x_0 donc il existe $\eta_3 > 0$ et M > 0 tel que

$$\forall x \in I, \quad |x - x_0| \le \eta_3 \Longrightarrow |f(x)| \le M.$$

N.Mrhardy 27 / 111

(2) On commence par écrire

$$|(fg)(x) - \ell_1 \ell_2| = |f(x)[g(x) - \ell_2] + \ell_2[f(x) - \ell_1]| \le |f(x)||g(x) - \ell_2| + |\ell_2||f(x) - \ell_1|$$

Soit $\varepsilon > 0$. Comme f admet une limite finie au point x_0 , elle est bornée sur un voisinage de x_0 donc il existe $\eta_3 > 0$ et M > 0 tel que

$$\forall x \in I, \quad |x - x_0| \le \eta_3 \Longrightarrow |f(x)| \le M.$$

Puisque
$$f(x) \underset{x \to x_0}{\longrightarrow} \ell_1$$
 $\exists \eta_1 > 0 \ \forall x \in I, |x - x_0| \le \eta_1 \Longrightarrow |f(x) - \ell_1| < \frac{\varepsilon}{|\ell_2| + M}$

27 / 111

(2) On commence par écrire

$$|(fg)(x) - \ell_1 \ell_2| = |f(x)[g(x) - \ell_2] + \ell_2[f(x) - \ell_1]| \le |f(x)||g(x) - \ell_2| + |\ell_2||f(x) - \ell_1|$$

Soit $\varepsilon > 0$. Comme f admet une limite finie au point x_0 , elle est bornée sur un voisinage de x_0 donc il existe $\eta_3 > 0$ et M > 0 tel que

$$\forall x \in I, \quad |x - x_0| \le \eta_3 \Longrightarrow |f(x)| \le M.$$

Puisque
$$f(x) \underset{x \to x_0}{\longrightarrow} \ell_1$$
 $\exists \eta_1 > 0 \ \forall x \in I, |x - x_0| \le \eta_1 \Longrightarrow |f(x) - \ell_1| < \frac{\varepsilon}{|\ell_2| + M}$
Puisque $g(x) \underset{x \to x_0}{\longrightarrow} \ell_2$, $\exists \eta_2 > 0 \ \forall x \in I, |x - x_0| \le \eta_2 \Longrightarrow |g(x) - \ell_2| < \frac{\varepsilon}{|\ell_2| + M}$

N.MRHARDY 27 / 111

(2) On commence par écrire

$$|(fg)(x) - \ell_1 \ell_2| = |f(x)[g(x) - \ell_2] + \ell_2[f(x) - \ell_1]| \le |f(x)||g(x) - \ell_2| + |\ell_2||f(x) - \ell_1|$$

Soit $\varepsilon > 0$. Comme f admet une limite finie au point x_0 , elle est bornée sur un voisinage de x_0 donc il existe $\eta_3 > 0$ et M > 0 tel que

$$\forall x \in I$$
, $|x - x_0| \le \eta_3 \Longrightarrow |f(x)| \le M$.

Puisque
$$f(x) \underset{x \to x_0}{\longrightarrow} \ell_1$$
 $\exists \eta_1 > 0 \ \forall x \in I, |x - x_0| \le \eta_1 \Longrightarrow |f(x) - \ell_1| < \frac{\varepsilon}{|\ell_2| + M}$
Puisque $g(x) \underset{x \to x_0}{\longrightarrow} \ell_2$, $\exists \eta_2 > 0 \ \forall x \in I, |x - x_0| \le \eta_2 \Longrightarrow |g(x) - \ell_2| < \frac{\varepsilon}{|\ell_2| + M}$

Posons $\eta = \min(\eta_1, \eta_2, \eta_3) > 0$. Soit $x \in I$ tel que $|x - x_0| \le \eta$, en remplaçant dans la majoration précédente,

$$|(fg)(x) - \ell_1 \ell_2| \le M \frac{\varepsilon}{|\ell_2| + M} + |\ell_2| \frac{\varepsilon}{|\ell_2| + M} = \varepsilon$$

N.Mrhardy 27 /

Opérations sur les limites

Soient $f,g: I \longrightarrow \mathbb{R}$ deux fonctions, $x_0 \in \overline{I}$, éventuellement infini. On suppose que $f(x) \underset{x \to x_0}{\longrightarrow} \ell \in \overline{\mathbb{R}}$ et $g(x) \underset{x \to x_0}{\longrightarrow} \ell' \in \overline{\mathbb{R}}$.

• Somme f + g

•	Proc	<u>luit</u>	f	×	g
---	------	-------------	---	---	---

$\ell \diagdown \ell'$	$-\infty$	\mathbb{R}	$+\infty$
$-\infty$	$-\infty$	$-\infty$	F.I
\mathbb{R}	$-\infty$	$\ell + \ell'$	$+\infty$
$+\infty$	F.I	$+\infty$	$+\infty$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$-\infty$ $+\infty$ $+\infty$ F.I $-\infty$ $-\infty$	_
	C
\mathbb{R}^{-*} $+\infty$ $\ell\ell'$ 0 $\ell\ell'$ $-\infty$	_ Э
[0] F.I 0 0 F.I	
	о Э
$+\infty$ $-\infty$ $-\infty$ $\mathbf{F.I}$ $+\infty$ $+\infty$	<u> </u>

avec F.I: Forme indéterminée.

• Inverse $\frac{1}{f}$

ℓ	$-\infty$	ℝ-*	{0^-}	$\{0^{+}\}$	\mathbb{R}^{+*}	$+\infty$
$\frac{1}{f}$	0	$\frac{1}{\ell}$	$-\infty$	$+\infty$	$\frac{1}{\ell}$	0

Opérations sur les limites

Théorème de composition des limites

Soient deux intervalles $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ et deux fonctions $f: I \longrightarrow \mathbb{R}$ et $g: J \longrightarrow \mathbb{R}$ telles que $f(I) \subset J$. Soient $x_0 \in \overline{I}$ et $\ell' \in \overline{J}$. On suppose que

$$\lim_{x \to x_0} f(x) = \ell' \quad et \quad \lim_{y \to \ell'} g(y) = \ell \in \overline{\mathbb{R}}$$

Alors

$$\lim_{x\to x_0}(g\circ f)(x)=\ell$$

Opérations sur les limites

Théorème de composition des limites

Soient deux intervalles $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ et deux fonctions $f: I \longrightarrow \mathbb{R}$ et $g: J \longrightarrow \mathbb{R}$ telles que $f(I) \subset J$. Soient $x_0 \in \overline{I}$ et $\ell' \in \overline{J}$. On suppose que

$$\lim_{x \to x_0} f(x) = \ell' \quad et \quad \lim_{y \to \ell'} g(y) = \ell \in \overline{\mathbb{R}}$$

Alors

$$\lim_{x\to x_0}(g\circ f)(x)=\ell$$

Preuve: Supposons x_0 et ℓ sont finis. Soit $\varepsilon > 0$. $g(y) \underset{y \to \ell'}{\longrightarrow} \ell \Longrightarrow \exists \alpha > 0 \ \forall y \in J, \ |y - \ell'| \le \alpha \Longrightarrow |g(y) - \ell| \le \varepsilon$

Opérations sur les limites

Théorème de composition des limites

Soient deux intervalles $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ et deux fonctions $f: I \longrightarrow \mathbb{R}$ et $g: J \longrightarrow \mathbb{R}$ telles que $f(I) \subset J$. Soient $x_0 \in \overline{I}$ et $\ell' \in \overline{J}$. On suppose que

$$\lim_{x \to x_0} f(x) = \ell' \quad et \quad \lim_{y \to \ell'} g(y) = \ell \in \overline{\mathbb{R}}$$

Alors

$$\lim_{x\to x_0}(g\circ f)(x)=\ell$$

Preuve: Supposons x_0 et ℓ sont finis. Soit $\varepsilon > 0$. $g(y) \underset{y \to \ell'}{\longrightarrow} \ell \Longrightarrow \exists \alpha > 0 \ \forall y \in J, \ |y - \ell'| \le \alpha \Longrightarrow |g(y) - \ell| \le \varepsilon$ et $f(x) \underset{x \to x_0}{\longrightarrow} \ell' \Longrightarrow \exists \eta > 0 \ \forall x \in I, \ |x - x_0| \le \eta \Longrightarrow |f(x) - \ell'| \le \alpha$

Opérations sur les limites

Théorème de composition des limites

Soient deux intervalles $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ et deux fonctions $f: I \longrightarrow \mathbb{R}$ et $g: J \longrightarrow \mathbb{R}$ telles que $f(I) \subset J$. Soient $x_0 \in \overline{I}$ et $\ell' \in \overline{J}$. On suppose que

$$\lim_{x \to x_0} f(x) = \ell' \quad et \quad \lim_{y \to \ell'} g(y) = \ell \in \overline{\mathbb{R}}$$

Alors

$$\lim_{x\to x_0}(g\circ f)(x)=\ell$$

Preuve: Supposons x_0 et ℓ sont finis. Soit $\varepsilon > 0$. $g(y) \underset{y \to \ell'}{\longrightarrow} \ell \Longrightarrow \exists \alpha > 0 \ \forall y \in J, \ |y - \ell'| \le \alpha \Longrightarrow |g(y) - \ell| \le \varepsilon$ et $f(x) \underset{x \to x_0}{\longrightarrow} \ell' \Longrightarrow \exists \eta > 0 \ \forall x \in I, \ |x - x_0| \le \eta \Longrightarrow |f(x) - \ell'| \le \alpha$ Soit $x \in I$ tel que $|x - x_0| \le \eta$. Comme $y = f(x) \in J$ et que $|f(x) - \ell'| \le \alpha$, on a $|g(f(x)) - \ell| < \varepsilon$ d'où $|(g \circ f)(x) - \ell| < \varepsilon$.

29 / 111

Limites et relation d'ordre

Théorème

Soit une fonction $f: I \longrightarrow \mathbb{R}$, un point $x_0 \in \overline{I}$ (éventuellement infini) et $k \in \mathbb{R}$. On suppose que $f(x) \xrightarrow[x \to x_0]{} \ell$ telle qu'il existe un voisinage V du point x_0 tel que $\forall x \in V \cap I, k \leq f(x)$ (resp. k < f(x)). Alors $k \leq \ell$.

N.MRHARDY 30 / 111

Limites et relation d'ordre

Théorème

Soit une fonction $f: I \longrightarrow \mathbb{R}$, un point $x_0 \in \overline{I}$ (éventuellement infini) et $k \in \mathbb{R}$. On suppose que $f(x) \underset{x \to x_0}{\longrightarrow} \ell$ telle qu'il existe un voisinage V du point x_0 tel que $\forall x \in V \cap I$, $k \leq f(x)$ (resp. k < f(x)). Alors $k \leq \ell$.

Preuve: Écrivons la démonstration dans le cas où x_0 est ℓ sont finis. Supposons par l'absurde que $\ell < k$ et posons $\varepsilon = k - \ell > 0$. Puisque $f(x) \underset{x \to x_0}{\longrightarrow} \ell$, il existe $\eta_1 > 0$ tel que

$$\forall x \in I, |x - x_0| \le \eta_1 \Longrightarrow |f(x) - \ell| < \varepsilon.$$

Puisque $V \in \mathcal{V}_{x_0}$, il existe $\eta_2 > 0$ tel que $]x_0 - \eta_2, x_0 + \eta_2[\subset V.$ Posons alors $\eta = \min(\eta_1, \eta_2)$. Soit $x \in I$ tel que $|x - x_0| \le \eta$ on aura d'une part $k \le f(x)$ et $|f(x) - \ell| < \varepsilon$ ceci entraine que

$$k \le f(x) < \ell + \varepsilon = \ell + (k - \ell) = k$$

ce qui est absurde.

N.Mrhardy

Limites et relation d'ordre

Théorème

Soit une fonction $f: I \longrightarrow \mathbb{R}$, un point $x_0 \in \overline{I}$ (éventuellement infini) et $k \in \mathbb{R}$. On suppose que $f(x) \underset{x \to x_0}{\longrightarrow} \ell$ telle qu'il existe un voisinage V du point x_0 tel que $\forall x \in V \cap I$, $k \leq f(x)$ (resp. k < f(x)). Alors $k \leq \ell$.

Corollaire

Soient deux fonctions $f,g: I \longrightarrow \mathbb{R}$, $x_0 \in I$ et $\ell_1, \ell_2 \in \mathbb{R}$ telles que

$$f(x) \underset{x \to x_0}{\longrightarrow} \ell_1 \text{ et } g(x) \underset{x \to x_0}{\longrightarrow} \ell_2$$

On suppose qu'il existe un voisinage V du point x_0 tel que $\forall x \in V \cap I$, $f(x) \leq g(x)$ (resp f(x) < g(x) alors

$$\ell_1 \leq \ell_2$$

N.Mrhardy 30 / 11:

Le principe d'encadrement

Soient f, g et h des fonctions réelles, définies sur un voisinage V d'un point $x_0 \in \overline{I}$.

• Si pour tout $x \in V$ on a $f(x) \le h(x) \le g(x)$ alors

$$\left(\lim_{x \longrightarrow x_0} f(x) = \lim_{x \longrightarrow x_0} g(x) = \ell\right) \implies \left(\lim_{x \longrightarrow x_0} h(x) = \ell\right).$$

② Si pour tout $x \in V$ on a $f(x) \le g(x)$ alors

(a)
$$\left(\lim_{x \to x_0} f(x) = +\infty\right) \Longrightarrow \left(\lim_{x \to x_0} g(x) = +\infty\right).$$

(b)
$$\left(\lim_{x \to x_0} g(x) = -\infty\right) \Longrightarrow \left(\lim_{x \to x_0} f(x) = -\infty\right).$$

Si $\lim_{x \to \infty} f(x) = 0$ et g(x) est bornée, alors $\lim_{x \to \infty} f(x)g(x) = 0$.

Le principe d'encadrement

Exemple

• $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ définie sur $\mathbb{R} \setminus \{0\}$. Alors $\lim_{x \to 0} f(x) = 0$. En effet on a

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$$
, et $\lim_{x \to 0} x^2 = \lim_{x \to 0} (-x^2) = 0$

on déduit, par le principe des gendarmes que $\lim_{x \to 0} f(x) = 0$.

Le principe d'encadrement

Exemple

• $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ définie sur $\mathbb{R} \setminus \{0\}$. Alors $\lim_{x \to 0} f(x) = 0$. En effet on a

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$$
, et $\lim_{x \to 0} x^2 = \lim_{x \to 0} (-x^2) = 0$

on déduit, par le principe des gendarmes que $\lim_{x\to 0} f(x) = 0$.

2 Calculons $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{E(e^x)}{x}$. On a $E(e^x) \ge e^x - 1$. En multipliant par $\frac{1}{x}$ qui est positif (au voisinage de $+\infty$) on obtient $\frac{E(e^x)}{v} \ge \frac{e^x}{v} - \frac{1}{v}$, et puisque $\lim_{x \to +\infty} \frac{e^x}{x} - \frac{1}{x} = +\infty$, on déduit que

$$\lim_{x \to +\infty} f(x) = +\infty.$$

N.MRHARDY 32 / 113

Théorème

Soient $(a, b) \in \mathbb{R}^2$ et I =]a, b[. Si une fonction $f : I \longrightarrow \mathbb{R}$ est croissante (respectivement *décroissante*), alors il y a deux possibilités.

- ① Si f est majorée, alors f admet une limite finie ℓ lorsque x tend vers b (resp a) et on a alors $\ell = \sup_{\mathbf{T}} f$.
- ② Si f n'est pas majorée, alors $f(x) \underset{x \to h}{\longrightarrow} +\infty$ (resp $f(x) \underset{x \to a}{\longrightarrow} +\infty$).

De même,

- **①** Si f est minorée, alors f admet une limite finie ℓ lorsque x tend vers a (resp b) et on a alors $\ell = \inf_{\mathbf{T}} f$.
- 2 Si f n'est pas minorée, alors $f(x) \xrightarrow[x \to a]{} -\infty$ (resp $f(x) \xrightarrow[x \to b]{} -\infty$).

N.Mrhardy 33 / 11

Preuve: Supposons f croissante et posons $\mathcal{E} = \{f(x); x \in]a, b[\}$. La partie $\mathcal{E} \subset \mathbb{R}$ est non vide.

N.Mrhardy 34 / 11:

Preuve: Supposons f croissante et posons $\mathcal{E} = \{f(x); x \in]a, b[\}$. La partie $\mathcal{E} \subset \mathbb{R}$ est non vide.

① Si la fonction f est majorée, alors la partie $\mathcal E$ est majorée et d'après la propriété de la borne supérieurs, elle possède une borne supérieure $\ell \in \mathbb R$. Montrons qu'alors $f(x) \underset{x \to b}{\longrightarrow} \ell$.

Soit $\varepsilon > 0$. D'après la caractérisation de la borne supérieure, il existe $y \in \mathcal{E}$ tel que $\ell - \varepsilon < y \le \ell$. Puisque $y \in \mathcal{E}$, il existe $x_0 \in]a, b[$ tel que $y = f(x_0)$. Posons $\eta = b - x_0 > 0$. Soit $x \in I$ tel que $|x - b| \le \eta$, on a $x_0 \le x \le b$. Puisque la fonction f est croissante, $f(x_0) \le f(x)$ et comme ℓ est un majorant de \mathcal{E} , on a également $f(x) \le \ell$. Finalement,

$$\ell - \varepsilon \le f(x_0) \le f(x) \le \ell < \ell + \varepsilon \Longrightarrow |f(x) - \ell| < \varepsilon$$

Preuve: Supposons f croissante et posons $\mathcal{E} = \{f(x); x \in]a, b[\}$. La partie $\mathcal{E} \subset \mathbb{R}$ est non vide.

Si la fonction f est majorée, alors la partie ε est majorée et d'après la propriété de la borne supérieurs, elle possède une borne supérieure ℓ ∈ ℝ. Montrons qu'alors f(x) → ℓ. Soit ε > 0. D'après la caractérisation de la borne supérieure, il existe y ∈ ε

Soit $\varepsilon > 0$. D'après la caractérisation de la borne supérieure, il existe $y \in \mathcal{E}$ tel que $\ell - \varepsilon < y \le \ell$. Puisque $y \in \mathcal{E}$, il existe $x_0 \in]a$, b[tel que $y = f(x_0)$. Posons $y = b - x_0 > 0$. Soit $x \in I$ tel que $|x - b| \le \eta$, on a $x_0 \le x \le b$. Puisque la fonction f est croissante, $f(x_0) \le f(x)$ et comme ℓ est un majorant de \mathcal{E} , on a également $f(x) \le \ell$. Finalement,

$$\ell - \varepsilon \le f(x_0) \le f(x) \le \ell < \ell + \varepsilon \Longrightarrow |f(x) - \ell| < \varepsilon$$

② Si la fonction f n'est pas majorée, montrons que $f(x) \underset{x \to b}{\longrightarrow} +\infty$. Soit A > 0. Puisque f n'est pas majorée, il existe $x_0 \in]a, b[$ tel que $A < f(x_0)$. Posons $\eta = b - x_0 > 0$. Soit $x \in I$ tel que $|x - b| \le \eta$. Puisque $x_0 \le x$ et que f est croissante, on a $A < f(x_0) \le f(x)$.

N.Mrhardy 34 / 11

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
, (b) $\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$, (c) $\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$

Réponse.

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
, (b) $\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$, (c) $\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$

Réponse.

(a) On écrit :

$$\frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \frac{2x}{x\left(\sqrt{1+x} + \sqrt{1-x}\right)} \xrightarrow[x \to 0]{} 1$$

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
, (b) $\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$, (c) $\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$
(d) $\lim_{x \to 0^+} E\left(\frac{1}{x}\right)$

Réponse.

 $\overline{(b)}$ On a au voisinage de $+\infty$

$$0 \le \left| \frac{x \cos(e^x)}{x^2 + 1} \right| \le \frac{|x|}{x^2 + 1} = \frac{x}{x^2 + 1}$$

et $\lim_{x \to +\infty} \frac{x}{x^2 + 1} = 0$, donc par le principe d'encadrement,

$$\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$$

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
, (b) $\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$, (c) $\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$
(d) $\lim_{x \to 0^+} E\left(\frac{1}{x}\right)$

Réponse.

(c) Il suffit d'écrire

$$\frac{x^{\ln x}}{(\ln x)^x} = \frac{e^{(\ln x)^2}}{e^{x \ln(\ln x)}} = e^{\left((\ln x)^2 - x \ln(\ln x)\right)} = e^{x \left(\frac{(\ln x)^2}{x} - \ln(\ln x)\right)}$$

Or

$$\frac{(\ln x)^2}{x} \underset{x \to +\infty}{\longrightarrow} 0 \ et \ \ln(\ln x) \underset{x \to +\infty}{\longrightarrow} +\infty$$

donc on en déduit

$$\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x} = 0$$

N.Mrhardy 35 / 111

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
, (b) $\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$, (c) $\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$

Réponse.

(d) On sait que

$$\frac{1}{x} - 1 < E\left(\frac{1}{x}\right) \le \frac{1}{x}$$

Comme $\frac{1}{x} - 1 \xrightarrow[x \to 0^+]{} + \infty$ et $\frac{1}{x} - 1 < E\left(\frac{1}{x}\right)$ alors par le principe d'encadrement,

$$\lim_{x \to 0^+} E\left(\frac{1}{x}\right) = +\infty$$

N.Mrhardy 35 / 111

② Soient $f \in \mathcal{F}(I,\mathbb{R})$ et $x_0 \in I$. On dit que la fonction f est $\underline{continue}$ au point x_0 si $\lim_{x \longrightarrow x_0} f(x) = f(x_0)$. i.e

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } |x - x_0| < \eta \implies |f(x) - f(x_0)| < \varepsilon$$

- ② On dit que f est continue sur I si elle est continue en tout point de I. On notera $\mathcal{C}(I,\mathbb{R})$ l'ensemble des fonctions continues en tout point de I.
- f est continue à droite en x_0 si $\lim_{x \longrightarrow x_0^+} f(x) = f(x_0)$.
- ② f est continue à gauche en x_0 si $\lim_{x \longrightarrow x_0^-} f(x) = f(x_0)$.

Exemple

1 la fonction f définie par $\mathbf{f}(\mathbf{x}) = \begin{cases} x^2 \sin(\frac{1}{x}) & \mathbf{si} & x \neq 0, \\ 0 & \mathbf{si} & x = 0 \end{cases}$ est continue au point 0 car $\lim_{x \to 0} x^2 \sin(\frac{1}{x}) = 0 = f(0)$

Exemple

- 1 la fonction f définie par $\mathbf{f}(\mathbf{x}) = \begin{cases} x^2 \sin(\frac{1}{x}) & \mathbf{si} & x \neq 0, \\ 0 & \mathbf{si} & x = 0 \end{cases}$ est continue au point 0 car $\lim_{x \to 0} x^2 \sin(\frac{1}{x}) = 0 = f(0)$
- La fonction f définie par : $\mathbf{f}(\mathbf{x}) = \begin{cases} 1 & \mathbf{si} & x > 0 \\ 0 & \mathbf{si} & x \leq 0 \end{cases}$ n'est pas continue en 0. En effet, au point $x_0 = 0$, on a $\lim_{x \to 0^-} f(x) = 0 = f(0)$ et $\lim_{x \to 0^+} f(x) = 1 \neq f(0)$ donc la fonction f est continue à gauche, mais elle ne l'est pas à droite.

N.Mrhardy 37 /

Exemple

- **1** la fonction f définie par $\mathbf{f}(\mathbf{x}) = \begin{cases} x^2 \sin(\frac{1}{x}) & \mathbf{si} & x \neq 0, \\ 0 & \mathbf{si} & x = 0 \end{cases}$ est continue au point 0 car $\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0 = f(0)$
- 2 La fonction f définie par : $\mathbf{f}(\mathbf{x}) = \begin{cases} 1 & \mathbf{si} & x > 0 \\ 0 & \mathbf{si} & x \le 0 \end{cases}$ n'est pas continue en 0. En effet, au point $x_0=0$, on a $\lim_{x\longrightarrow 0^-} f(x)=0=f(0)$ et $\lim_{x\longrightarrow 0^+} f(x)=1\neq f(0)$ donc la fonction f est continue à gauche, mais elle ne l'est pas à droite.
- En général toutes les fonctions usuelles sont continues en tout point de leur domaine de définition : x^n , $\sin x$, $\cos x$, $\ln x$, e^x ...

N.Mrhardy

Opérations sur les fonctions continues

Théorème

Soient $f, g \in \mathcal{F}(I, \mathbb{R})$ deux fonctions continues en x_0 alors

- Les fonctions |f|, f+g, fg et αf sont continues en x_0 .
- 2 Si de plus $g(x_0) \neq 0$ alors la fonction $\frac{f}{g}$ est continue en x_0 .

N.MRHARDY

Opérations sur les fonctions continues

Théorème

Soient $f, g \in \mathcal{F}(I, \mathbb{R})$ deux fonctions continues en x_0 alors

- **1** Les fonctions |f|, f+g, fg et αf sont continues en x_0 .
- 2 Si de plus $g(x_0) \neq 0$ alors la fonction $\frac{f}{g}$ est continue en x_0 .

Continuité de la composée de deux applications

Soient deux intervalles $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ et deux fonctions $f : I \longrightarrow \mathbb{R}$ et $g : J \longrightarrow \mathbb{R}$ telles que $f(I) \subset J$. On suppose que f est continue en x_0 et g est continue en $y_0 = f(x_0)$ alors $g \circ f$ est continue en x_0 .

De manière générale, si f est continue sur I et g est continue sur J. Alors $(g \circ f)$ est continue sur I.

N.Mrhardy 38 / 11

Exercice (TD). Montrer que la fonction f suivante :

$$f: x \mapsto \left\{ \begin{array}{ll} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{array} \right.$$

est discontinue en tout point de \mathbb{R} .

Réponse. Par absurde, On suppose qu'il existe $x \in \mathbb{R}$ telle que f est continue en x.

N.Mrhardy 39 / 111

Exercice (TD). Montrer que la fonction f suivante :

$$f: x \mapsto \left\{ \begin{array}{ll} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{array} \right.$$

est discontinue en tout point de \mathbb{R} .

Réponse. Par absurde, On suppose qu'il existe $x \in \mathbb{R}$ telle que f est continue en x. On sait

- ullet $\mathbb Q$ est dense dans $\mathbb R$ donc il existe $(a_n)_n\subset \mathbb Q$ telle que $\lim_{n o +\infty}a_n=x$
- $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} donc il existe $(b_n)_n\subset\mathbb{R}\setminus\mathbb{Q}$ telle que $\lim_{n\to+\infty}b_n=x$

N.Mrhardy 39 / 111

Exercice (TD). Montrer que la fonction f suivante :

$$f: x \mapsto \left\{ \begin{array}{ll} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{array} \right.$$

est discontinue en tout point de \mathbb{R} .

Réponse. Par absurde, On suppose qu'il existe $x \in \mathbb{R}$ telle que f est continue en x. On sait

- $\mathbb Q$ est dense dans $\mathbb R$ donc il existe $(a_n)_n\subset \mathbb Q$ telle que $\lim_{n\to +\infty}a_n=x$
- $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} donc il existe $(b_n)_n\subset\mathbb{R}\setminus\mathbb{Q}$ telle que $\lim_{n\to+\infty}b_n=x$

Comme f est continue en x, alors

$$1 = f(a_n) \underset{n \to +\infty}{\longrightarrow} f(x)$$

$$0 = f(b_n) \underset{n \to +\infty}{\longrightarrow} f(x)$$

$$\Longrightarrow 1 = f(x) = 0$$

Ce qui est absurde.

Prolongement par continuité

Si la fonction f n'est pas définie au point $x_0 \in \overline{I}$ et qu'elle admet en ce point une limite $\lim_{x \longrightarrow x_0} f(x) = \ell \in \mathbb{R}$, alors la fonction \widetilde{f} définie par :

$$\widetilde{f}(x) = \begin{cases} f(x) & si \ x \in I \setminus \{x_0\} \\ \ell & si \ x = x_0 \end{cases}$$

est continue au pt x_0 et appelée $\underbrace{prolongement\ par\ continuit\'e}_{}$ de f au pt x_0 .

Prolongement par continuité

Si la fonction f n'est pas définie au point $x_0 \in \overline{I}$ et qu'elle admet en ce point une limite $\lim_{x \longrightarrow x_0} f(x) = \ell \in \mathbb{R}$, alors la fonction \widetilde{f} définie par :

$$\widetilde{f}(x) = \begin{cases} f(x) & si \ x \in I \setminus \{x_0\} \\ \ell & si \ x = x_0 \end{cases}$$

est continue au pt x_0 et appelée $prolongement\ par\ continuit\'e$ de f au pt x_0 .

Exemple

On considère la fonction $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f(x) = \frac{\sin x}{x}$. Cette fonction est continue sur \mathbb{R}^* comme quotient de deux fonctions continues et $\lim_{x \longrightarrow 0} f(x) = 1$. Ainsi f est prolongeable par continuité en 0 et la fonction

$$\widetilde{f}(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0 \end{cases}$$
 est le prolongement par continuité de f en 0 .

$$f(x) = \sqrt{x} \cos\left(\frac{1}{x}\right) - \frac{1}{1-x}$$

Déterminer où elle est définie, où elle est continue, et la prolonger par continuité, quand c'est possible.

Réponse.

$$f(x) = \sqrt{x} \cos\left(\frac{1}{x}\right) - \frac{1}{1-x}$$

Déterminer où elle est définie, où elle est continue, et la prolonger par continuité, quand c'est possible.

Réponse.

On a

$$\begin{array}{ll} x \longmapsto \sqrt{x} & \text{d\'efinie et continue sur } \mathbb{R}^+ \\ x \longmapsto \cos(x) & \text{d\'efinie et continue sur } \mathbb{R} \\ x \longmapsto \frac{1}{x} & \text{d\'efinie et continue sur } \mathbb{R}^* \\ x \longmapsto \frac{1}{1-x} & \text{d\'efinie et continue sur } \mathbb{R} \setminus \{1\} \end{array}$$

Par opérations, la fonction f est définie et continue sur $\mathbb{R}^{+*}\setminus\{1\}$ i.e

$$D_f =]0, 1[\cup]1, +\infty[$$

$$f(x) = \sqrt{x} \cos\left(\frac{1}{x}\right) - \frac{1}{1-x}$$

Déterminer où elle est définie, où elle est continue, et la prolonger par continuité, quand c'est possible.

Réponse.

Au voisinage de 0 : On a

$$\underbrace{-\sqrt{x}}_{x \to 0} \le \sqrt{x} \cos\left(\frac{1}{x}\right) \le \underbrace{\sqrt{x}}_{x \to 0} \Longrightarrow \sqrt{x} \cos\left(\frac{1}{x}\right) \underset{x \to 0}{\longrightarrow} 0$$

et $\frac{1}{1-x} \underset{x \to 0}{\longrightarrow} 1$ donc $\lim_{x \to 0} f(x) = -1$. On déduit que f est prolongeable par continuité en 0. Son prolongement est la fonction

$$\widetilde{f}(x) = \begin{cases} f(x) & \text{si} \quad \mathbb{R}^{+*} \setminus \{1\}, \\ -1 & \text{si} \quad x = 0 \end{cases}$$

N.Mrhardy 41 /

$$f(x) = \sqrt{x} \cos\left(\frac{1}{x}\right) - \frac{1}{1-x}$$

Déterminer où elle est définie, où elle est continue, et la prolonger par continuité, quand c'est possible.

Réponse.

Au voisinage de 1 : On a

$$\frac{1}{1-x} \xrightarrow[x \to 1]{} \pm \infty$$

donc $\lim_{x\to 1} f(x) = \pm \infty$. On déduit que f n'est pas prolongeable par continuité en 1.

Les théorèmes fondamentaux Théorème du maximum

Une fonction f définie sur l'intervalle fermé borné [a,b] est continue sur [a,b] signifie qu'elle est continue en tout point de l'intervalle ouvert]a,b[et continue à droite en a $(\lim_{x\longrightarrow a^+} f(x)=f(a))$ et à gauche en b $(\lim_{x\longrightarrow b^-} f(x)=f(b))$.

Théorème du maximum

Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue alors f est bornée et atteint ses bornes càd si

$$\beta = \inf_{x \in [a,b]} f(x) \text{ et } \alpha = \sup_{x \in [a,b]} f(x)$$

alors

$$\exists x_1, x_2 \in [a, b]/ f(x_1) = \beta \text{ et } f(x_2) = \alpha$$

Exercice (TD). Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que : $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$. Montrer que f atteint son minimum. Réponse. On veut montrer que $\exists x_0 \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) \geq f(x_0)$

N.Mrhardy 43 / 11

Exercice (TD). Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que : $\lim_{\substack{x \to -\infty \\ x \to +\infty}} f(x) = \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = +\infty. \text{ Montrer que } f \text{ atteint son minimum.}$ Réponse. On veut montrer que $\exists x_0 \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) \geq f(x_0)$ On a

$$\forall A \in \mathbb{R}, \exists \delta_1 > 0 \text{ tel que } x > \delta_1 \Rightarrow f(x) > A$$

 $\forall A \in \mathbb{R}, \exists \delta_2 < 0 \text{ tel que } x < \delta_2 \Rightarrow f(x) > A$

N.Mrhardy 43 / 111

Exercice (TD). Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que : $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$. Montrer que f atteint son minimum. Réponse. On veut montrer que $\exists x_0 \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) \geq f(x_0)$

$$\forall A \in \mathbb{R}, \exists \delta_1 > 0 \text{ tel que } x > \delta_1 \Rightarrow f(x) > A$$

$$\forall A \in \mathbb{R}, \exists \delta_2 < 0 \text{ tel que } x < \delta_2 \Rightarrow f(x) > A$$

Or f est continue sur $[\delta_2, \delta_1]$ donc d'après le théorème de maximum, elle est bornée et atteint ses bornes. En particulier,

$$\exists x_0 \in [\delta_2, \delta_1], \ \forall x \in [\delta_2, \delta_1], \ f(x) \ge f(x_0)$$

Exercice (TD). Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que : $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty.$ Montrer que f atteint son minimum.

Réponse. On veut montrer que $\exists x_0 \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) \geq f(x_0)$

$$\forall A \in \mathbb{R}, \exists \delta_1 > 0 \text{ tel que } x > \delta_1 \Rightarrow f(x) > A$$

$$\forall A \in \mathbb{R}, \exists \delta_2 < 0 \text{ tel que } x < \delta_2 \Rightarrow f(x) > A$$

Or f est continue sur $[\delta_2, \delta_1]$ donc d'après le théorème de maximum, elle est bornée et atteint ses bornes. En particulier,

$$\exists x_0 \in [\delta_2, \delta_1], \ \forall x \in [\delta_2, \delta_1], \ f(x) \geq f(x_0)$$

Comme $0 \in [\delta_2, \delta_1]$, il suffit de choisir $A = f(0) \ge f(x_0)$. Alors si $x > \delta_1$ où $x < \delta_2$, on aura

$$f(x) > A = f(0) \ge f(x_0)$$

On conclut que

$$\forall x \in \mathbb{R}, \ f(x) \geq f(x_0)$$

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] tel que $f(a) \neq f(b)$. Alors, pour tout $c \in f(]a,b)[$, il existe un $x_0 \in]a,b[$ tel que $f(x_0) = c$.

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] tel que $f(a) \neq f(b)$. Alors, pour tout $c \in f(]a,b)[$, il existe un $x_0 \in]a,b[$ tel que $f(x_0) = c$.

Preuve: On supposer que f(a) < f(b) et soit $c \in]f(a), f(b)[$. Soit A l'ensemble

$$A = \{x \in [a, b], f(x) \le c\}.$$

A est non vide et majoré par b donc admet une borne supérieure $x_0 = \sup A$.

- Il existe une suite $(a_n)_{n\in\mathbb{N}}\subset A$ tell que $\lim_{n\longrightarrow +\infty}a_n=x_0$. Pour tout $n\in\mathbb{N}$, $a_n\in A$ et donc $f(a_n)\leq c$ et comme f est continue en x_0 , on a $\lim_{n\longrightarrow +\infty}f(a_n)=f(x_0)$ d'où $f(x_0)\leq c$.

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] tel que $f(a) \neq f(b)$. Alors, pour tout $c \in f(]a,b)[$, il existe un $x_0 \in]a,b[$ tel que $f(x_0) = c$.

Preuve: On supposer que f(a) < f(b) et soit $c \in]f(a), f(b)[$. Soit A l'ensemble

$$A = \{x \in [a, b], f(x) \le c\}.$$

A est non vide et majoré par b donc admet une borne supérieure $x_0 = \sup A$.

- Il existe une suite $(a_n)_{n\in\mathbb{N}}\subset A$ tell que $\lim_{n\longrightarrow +\infty}a_n=x_0$. Pour tout $n\in\mathbb{N}$, $a_n\in A$ et donc $f(a_n)\leq c$ et comme f est continue en x_0 , on a $\lim_{n\longrightarrow +\infty}f(a_n)=f(x_0)$ d'où $f(x_0)\leq c$.
- De plus, on a $x_0 < b$ car c < f(b) et donc pour tout $x \in]x_0, b[$, on a f(x) > c. Il en résulte alors que $\lim_{x \longrightarrow x_0^+} f(x) = f(x_0) \ge c$. Finalement, $f(x_0) = c$.

TVI :deuxième version

Soit f une fonction continue sur [a, b]. Si on a f(a)f(b) < 0 alors

$$\exists \alpha \in]a, b[$$
 tel que $f(\alpha) = 0$

Exemple

Montrons que le polynôme $P(x)=x^3-2x+2$ admet au moins une racine dans]-2,1[. On a la fonction $x\longrightarrow x^3-2x+2$ est continue sur [-2,1] et P(1)=1, P(2)=-2 donc P(1)P(2)<0 alors $\exists \alpha\in]-2,1[$ tel que $P(\alpha)=0$. On déduite que α est une racine du polynôme P.

TVI :deuxième version

Soit f une fonction continue sur [a, b]. Si on a f(a)f(b) < 0 alors

$$\exists \alpha \in]a, b[$$
 tel que $f(\alpha) = 0$

Corollaire 1

L'image d'un intervalle par une application continue est un intervalle.

Corollaire 2

L'image d'un segment par une application continue est un segment.

Exercice (TD). Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et telle que f(0)=f(1).

Montrer qu'il existe $\alpha \in \left]0, \frac{1}{2}\right[$ tel que

$$f(\alpha) = f\left(\alpha + \frac{1}{2}\right)$$

Exercice (TD). Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et telle que f(0) = f(1).

Montrer qu'il existe $\alpha \in \left]0, \frac{1}{2}\right[$ tel que

$$f(\alpha) = f\left(\alpha + \frac{1}{2}\right)$$

<u>Réponse.</u>Soit g la fonction définie sur $\left[0, \frac{1}{2}\right]$ par

$$g(x) = f(x) - f\left(x + \frac{1}{2}\right)$$

Exercice (TD). Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et telle que f(0) = f(1).

Montrer qu'il existe $\alpha \in \left]0, \frac{1}{2}\right[$ tel que

$$f(\alpha) = f\left(\alpha + \frac{1}{2}\right)$$

<u>Réponse.</u> Soit g la fonction définie sur $\left[0, \frac{1}{2}\right]$ par

$$g(x) = f(x) - f\left(x + \frac{1}{2}\right)$$

On a g est continue sur $\left[0, \frac{1}{2}\right]$ de plus

$$g(0) = f(0) - f\left(\frac{1}{2}\right), \quad \text{et} \quad g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - f(1) = f\left(\frac{1}{2}\right) - f(0) = -g(0)$$

Exercice (TD). Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et telle que f(0) = f(1).

Montrer qu'il existe $\alpha \in \left]0, \frac{1}{2}\right[$ tel que

$$f(\alpha) = f\left(\alpha + \frac{1}{2}\right)$$

<u>Réponse.</u>Soit g la fonction définie sur $\left[0,\frac{1}{2}\right]$ par

$$g(x) = f(x) - f\left(x + \frac{1}{2}\right)$$

On a g est continue sur $\left[0, \frac{1}{2}\right]$ de plus

$$g(0) = f(0) - f\left(\frac{1}{2}\right), \text{ et } g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - f(1) = f\left(\frac{1}{2}\right) - f(0) = -g(0)$$

donc $g(0)g\left(\frac{1}{2}\right)<0$, d'aprés **T.V.I** il existe $\alpha\in\left]0,\frac{1}{2}\right[$ tel que $g(\alpha)=0$, c-à-d

$$f(\alpha) = f\left(\alpha + \frac{1}{2}\right)$$

Les théorèmes fondamentaux Théorème de la bijection

Rappel

- Une fonction $f: I \longrightarrow J$ est bijective si $\forall y \in J, \exists ! x \in I, y = f(x)$
- Si f est bijective alors il exite une unique fonction $g: J \longrightarrow I$ qui vérifie $f \circ g = Id_{\mathrm{I}}$ et $g \circ f = Id_{\mathrm{I}}$. La fonction g est appelée la fonction réciproque de f et est notée f^{-1} .

Les théorèmes fondamentaux Théorème de la bijection

Rappel

- Une fonction $f: I \longrightarrow J$ est bijective si $\forall y \in J, \exists ! x \in I, y = f(x)$
- Si f est bijective alors il exite une unique fonction $g: J \longrightarrow I$ qui vérifie $f \circ g = Id_J$ et $g \circ f = Id_I$. La fonction g est appelée la fonction réciproque de f et est notée f^{-1} .

Soit $f \in \mathcal{F}(I, \mathbb{R})$. Si f est *continue et strictement monotone* sur I, alors elle est *bijective* de I sur J = f(I) et sa fonction réciproque $f^{-1} : J \longrightarrow I$ est continue strictement monotone de même type de monotonie que f.

$\overline{Remarque}$

Soit f une fonction bijective sur I. Le graphe de f^{-1} , dans un repère orthonormé, se déduit de celui de f par une symétrie d'axe par rapport à la première bissectrice (droite y = x)

Fonctions Lipschitziennes

Fonctions Lipschitziennes

• Soit un réel k > 0. On dit qu'une fonction $f : I \longrightarrow \mathbb{R}$ est k-lipschitzienne sur l'intervalle I si et seulement si

$$\forall (x,y) \in I^2, \ |f(x) - f(y)| \le k|x - y|$$

On note $\mathcal{L}(I)$ l'ensemble des fonctions lipschitziennes sur l'intervalle I.

- Si 0 < k < 1, et f est k-lipschitzienne, on dit que f est contractante.
- **1** Si $f, g \in \mathcal{L}(I)$, alors $\alpha f + \beta g \in \mathcal{L}(I)$.
- ② Si $f \in \mathcal{L}(I)$ et $g \in \mathcal{L}(J)$ avec $f(I) \subset J$, alors $(g \circ f) \in \mathcal{L}(I)$.
- **3** Soit $c \in I$, on note $I_1 = I \cap]-\infty, c]$ et $I_2 = I \cap [c, +\infty[$. Si f est lipschitzienne sur I_1 et sur I_2 , alors elle est lipschitzienne sur I.

$$f(x) = d(x, A) = \inf\{|z - x|, z \in A\}$$

Montrer que f est Lipschitzienne.

Réponse. Soit $x, y \in \mathbb{R}$ et $z \in A$. Par définition on a

$$f(x) \le |z-x| \le |z-y| + |y-x|$$

$$f(x) = d(x, A) = \inf\{|z - x|, z \in A\}$$

Montrer que f est Lipschitzienne.

Réponse. Soit $x, y \in \mathbb{R}$ et $z \in A$. Par définition on a

$$f(x) \le |z-x| \le |z-y| + |y-x|$$

$$\begin{array}{ll} \text{donc } \forall x,y \in \mathbb{R} \text{ et } z \in A, & |z-y| \geq f(x) - |y-x| \\ \text{c-\`{a}-d } f(x) - |y-x| \text{ est un minorant de } \{|z-y|, \ z \in A\}, \text{ alors} \end{array}$$

$$f(x) = d(x, A) = \inf\{|z - x|, z \in A\}$$

Montrer que f est Lipschitzienne.

Réponse. Soit $x, y \in \mathbb{R}$ et $z \in A$. Par définition on a

$$f(x) \le |z-x| \le |z-y| + |y-x|$$

donc $\forall x, y \in \mathbb{R}$ et $z \in A$, $|z - y| \ge f(x) - |y - x|$ c-à-d f(x) - |y - x| est un minorant de $\{|z - y|, z \in A\}$, alors

$$f(x) - |y - x| \le \inf\{|z - y|, z \in A\} = f(y)$$

ceci donne

$$f(x) - f(y) \le |y - x|$$

$$f(x) = d(x, A) = \inf\{|z - x|, z \in A\}$$

Montrer que f est Lipschitzienne.

Réponse. Soit $x, y \in \mathbb{R}$ et $z \in A$. Par définition on a

$$f(x) \le |z - x| \le |z - y| + |y - x|$$

 $\begin{array}{ll} \text{donc } \forall x,y \in \mathbb{R} \text{ et } z \in A, & |z-y| \geq f(x) - |y-x| \\ \text{c-\`{a}-d } f(x) - |y-x| \text{ est un minorant de } \{|z-y|, \ z \in A\}, \text{ alors} \end{array}$

$$f(x)-|y-x|\leq\inf\{|z-y|,z\in A\}=f(y)$$

ceci donne

$$f(x) - f(y) \le |y - x|$$

En échangeant les rôles de x et y on trouve

$$f(y) - f(x) \le |x - y| \Longrightarrow -|x - y| \le f(x) - f(y)$$

on déduit alors que

$$\forall x, y \in \mathbb{R}; \qquad |f(x) - f(y)| \le |y - x|$$

donc f est 1- lipschitzienne.

$$f(x) = d(x, A) = \inf\{|z - x|, z \in A\}$$

Montrer que f est Lipschitzienne.

Réponse. Soit $x, y \in \mathbb{R}$ et $z \in A$. Par définition on a

$$f(x) \le |z - x| \le |z - y| + |y - x|$$

 $\begin{array}{ll} \text{donc } \forall x,y \in \mathbb{R} \text{ et } z \in A, & |z-y| \geq f(x) - |y-x| \\ \text{c-\`{a}-d } f(x) - |y-x| \text{ est un minorant de } \{|z-y|, \ z \in A\}, \text{ alors} \end{array}$

$$f(x)-|y-x|\leq\inf\{|z-y|,z\in A\}=f(y)$$

ceci donne

$$f(x) - f(y) \le |y - x|$$

En échangeant les rôles de x et y on trouve

$$f(y) - f(x) \le |x - y| \Longrightarrow -|x - y| \le f(x) - f(y)$$

on déduit alors que

$$\forall x, y \in \mathbb{R}; \qquad |f(x) - f(y)| \le |y - x|$$

donc f est 1- lipschitzienne.

Fonctions uniformément continues

Soit une fonction $f: I \longrightarrow \mathbb{R}$ définie sur un intervalle I. On dit qu'elle est $uniform\'ement\ continue$ sur I lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0: \ \forall (x,y) \in I^2, \ |x-y| \leq \eta \Longrightarrow |f(x)-f(y)| \leq \varepsilon$$

Le nombre η est indépendant des réels (x, y) et s'appelle module d'uniforme continuité.

Fonctions uniformément continues

Soit une fonction $f: I \longrightarrow \mathbb{R}$ définie sur un intervalle I. On dit qu'elle est $uniform\'ement\ continue$ sur I lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0: \ \forall (x,y) \in I^2, \ |x-y| \leq \eta \Longrightarrow |f(x)-f(y)| \leq \varepsilon$$

Le nombre η est indépendant des réels (x, y) et s'appelle module d'uniforme continuité.

f Lipschitzienne sur $I\Longrightarrow f$ uniformément continue sur $I\Longrightarrow f$ continue sur I

Preuve:

Supposons f lispchitzienne sur I, il existe k > 0 tel que

$$\forall (x,y) \in I^2, |f(x) - f(y)| \le k|x - y|$$

Soit $\varepsilon > 0$. Posons $\eta = \frac{\varepsilon}{k} > 0$. Soient $(x, y) \in I^2$ tels que $|x - y| \le \eta$, on a

$$|f(x) - f(y)| \le k|x - y| \le k\eta = \varepsilon$$

Fonctions uniformément continues

Soit une fonction $f: I \longrightarrow \mathbb{R}$ définie sur un intervalle I. On dit qu'elle est $uniform\'ement\ continue$ sur I lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0: \ \forall (x,y) \in I^2, \ |x-y| \leq \eta \Longrightarrow |f(x)-f(y)| \leq \varepsilon$$

Le nombre η est indépendant des réels (x, y) et s'appelle module d'uniforme continuité.

f Lipschitzienne sur $I \Longrightarrow f$ uniformément continue sur $I \Longrightarrow f$ continue sur I

Preuve:

Supposons f uniformément continue sur I . Soit $x_0 \in I$, montrons que la fonction f est continue au point x_0 .

Soit $\varepsilon > 0$, Puisque f est uniformément continue sur I, il existe $\eta > 0$ tel que

$$\forall (x,y) \in I^2, |x-y| \le \eta \Longrightarrow |f(x)-f(y)| \le \varepsilon$$

Soit $x \in I$ tel que $|x - x_0| \le \eta$, on a bien $|f(x) - f(x_0)| \le \varepsilon$.

Théorème de Heine

Une fonction continue sur un $\operatorname{segment} [a,b]$ est uniformément continue sur [a,b] .

Preuve:

Théorème de Heine

Une fonction continue sur un segment [a, b] est uniformément continue sur [a, b].

Preuve:

Supposons par absurde, que :

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ \exists (x,y) \in [a,b]^2, |x-y| \le \eta \text{ et } |f(x)-f(y)| > \varepsilon$$

Soit $n \in N^*$, en prenant $\eta = \frac{1}{n}$, alors $\exists (x_n, y_n) \in [a, b]^2$ vérifiant

$$|x_n - y_n| \le \frac{1}{n}$$
 et $|f(x_n) - f(y_n)| > \varepsilon$

On construit ainsi deux suites (x_n) et (y_n) de points du segment [a,b]. Puisque la suite (x_n) est bornée, d'après le théorème de Bolzano-Weierstrass, on peut en extraire une suite convergente, $(x_{\varphi(n)})$ vers une limite $c \in [a,b]$. Puisque

$$|y_{\varphi(n)})-c| \leq |x_{\varphi(n)}-y_{\varphi(n)}|+|x_{\varphi(n)}-c| \leq \frac{1}{\varphi(n)}+|x_{\varphi(n)}-c| \leq \frac{1}{n}+|x_{\varphi(n)}-c| \underset{n \to +\infty}{\longrightarrow} 0$$

Théorème de Heine

Une fonction continue sur un segment [a, b] est uniformément continue sur [a, b].

Preuve:

$$|y_{\varphi(n)})-c| \leq |x_{\varphi(n)}-y_{\varphi(n)}|+|x_{\varphi(n)}-c| \leq \frac{1}{\varphi(n)}+|x_{\varphi(n)}-c| \leq \frac{1}{n}+|x_{\varphi(n)}-c| \xrightarrow[n \to +\infty]{} 0$$

Donc $y_{\varphi(n)}$) \xrightarrow{r} c. Or la La continuité de f au point c, donne

$$f(x_{\varphi(n)})) \underset{n \to +\infty}{\longrightarrow} f(c)$$
 et $f(y_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(c)$

Mais comme $\forall n \in \mathbb{N}$, $\varepsilon < |f(x_{\varphi(n)}) - f(y_{\varphi(n)})|$, par passage à la limite, on obtient que $0 < \varepsilon < |f(c) - f(c)| = 0$ ce qui est absurde.

Exercice (TD). Soit f continue sur \mathbb{R}^+ à valeurs dans \mathbb{R} admettant une limite réelle ℓ quand x tend vers $+\infty$. Montrer que f est uniformément continue sur \mathbb{R}^+ .

N.Mrhardy 52 / 11:

$$\exists \eta > 0: \ \forall x, y \in [0, +\infty[, \ |x-y| \le \eta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

$$\exists \eta > 0: \ \forall x, y \in [0, +\infty[, \ |x-y| \le \eta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

On sait que

$$\exists \delta > 0, \ \forall x \geq \delta \Longrightarrow |f(x) - \ell| < \frac{\varepsilon}{3}$$

$$\exists \eta > 0: \ \forall x, y \in [0, +\infty[, \ |x-y| \le \eta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

On sait que

$$\exists \delta > 0, \ \forall x \geq \delta \Longrightarrow |f(x) - \ell| < \frac{\varepsilon}{3}$$

Soient $x, y \in [\delta, +\infty[$, on a alors

$$|f(x) - f(y)| \le |f(x) - \ell| + |f(y) - \ell| < \frac{2\varepsilon}{3}$$

$$\exists \eta > 0: \ \forall x, y \in [0, +\infty[, \ |x-y| \le \eta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

On sait que

$$\exists \delta > 0, \ \forall x \geq \delta \Longrightarrow |f(x) - \ell| < \frac{\varepsilon}{3}$$

Soient $x, y \in [\delta, +\infty[$, on a alors

$$|f(x) - f(y)| \le |f(x) - \ell| + |f(y) - \ell| < \frac{2\varepsilon}{3}$$

d'autre part, f est continue sur $[0,\delta]$ donc d'après le théorème de Heine, f est uniformément continue sur $[0,\delta]$, c-à-d

$$\exists \eta > 0: \ \forall x, y \in [0, \delta], \ |x - y| \le \eta \Longrightarrow |f(x) - f(y)| < \frac{\varepsilon}{3}$$

N.Mrhardy 53 / 11:

- Si $x,y \in [0,\delta]$ alors $|f(x) - f(y)| \le \frac{\varepsilon}{3} < \varepsilon$

N.Mrhardy 53 / 11:

- Si $x,y \in [0,\delta]$ alors $|f(x)-f(y)| \leq \frac{\varepsilon}{3} < \varepsilon$
- Si $x,y \in [\delta,+\infty[$ alors $|f(x)-f(y)| \leq \frac{2\varepsilon}{3} < \varepsilon$

- Si
$$x,y \in [0,\delta]$$
 alors $|f(x)-f(y)| \leq \frac{\varepsilon}{3} < \varepsilon$

- Si $x,y \in [\delta,+\infty[$ alors $|f(x)-f(y)| \leq \frac{2\varepsilon}{3} < \varepsilon$
- Si $0 \le x \le \delta \le y$ alors on aura $|\delta x| \le |x y| \le \eta$ et donc

$$|f(x)-f(\delta)|\leq \frac{\varepsilon}{3}<\varepsilon$$

- Si $x,y \in [0,\delta]$ alors $|f(x)-f(y)| \leq \frac{\varepsilon}{3} < \varepsilon$
- Si $x, y \in [\delta, +\infty[$ alors $|f(x) f(y)| \le \frac{2\varepsilon}{3} < \varepsilon$
- Si $0 \le x \le \delta \le y$ alors on aura $|\delta x| \le |x y| \le \eta$ et donc

$$|f(x) - f(\delta)| \le \frac{\varepsilon}{3} < \varepsilon$$

de plus $\delta, \gamma \in [\delta, +\infty[$ alors

$$|f(\delta) - f(y)| \le \frac{2\varepsilon}{3} < \varepsilon$$

d'où

$$|f(x)-f(y)| \le |f(x)-f(\delta)| + |f(\delta)-f(y)| < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon$$

- Si $x,y \in [0,\delta]$ alors $|f(x)-f(y)| \leq \frac{\varepsilon}{3} < \varepsilon$
- Si $x, y \in [\delta, +\infty[$ alors $|f(x) f(y)| \le \frac{2\varepsilon}{3} < \varepsilon$
- Si $0 \le x \le \delta \le y$ alors on aura $|\delta x| \le |x y| \le \eta$ et donc

$$|f(x)-f(\delta)|\leq \frac{\varepsilon}{3}<\varepsilon$$

de plus $\delta, y \in [\delta, +\infty[$ alors

$$|f(\delta)-f(y)|\leq \frac{2\varepsilon}{3}<\varepsilon$$

d'où

$$|f(x)-f(y)| \le |f(x)-f(\delta)| + |f(\delta)-f(y)| < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon$$

On a montré que $\forall x,y \in [0,+\infty[$ tels que $|x-y| \leq \eta$,

$$|f(x) - f(y)| < \varepsilon$$

On conclut que f uniformément continue sur \mathbb{R}^+ .

Programme

1 Limites et continuité

2 Dérivabilité

3 Fonctions usuelles

N.Mrhardy 54 / 11

Dérivée en un point

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in I$. On dit que f est <u>dérivable</u> au point x_0 si :

$$\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell \in \mathbb{R}$$

- Cette limite ℓ est appelée la dérivée de f en x_0 et est noté $f'(x_0)$.
- On dit que f est dérivable sur l'intervalle I si elle est dérivable en tout point de I. On notera $\mathcal{D}(I,\mathbb{R})$ l'ensemble des fonctions dérivable sur I.
- La fonction dérivée de f est définie sur I par : $x \mapsto f'(x)$.

Dérivée en un point

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in I$. On dit que f est <u>dérivable</u> au point x_0 si :

$$\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell \in \mathbb{R}$$

- Cette limite ℓ est appelée la dérivée de f en x_0 et est noté $f'(x_0)$.
- On dit que f est dérivable sur l'intervalle I si elle est dérivable en tout point de I. On notera $\mathcal{D}(I,\mathbb{R})$ l'ensemble des fonctions dérivable sur I.
- La fonction dérivée de f est définie sur I par : $x \mapsto f'(x)$.

En posant $h = x - x_0$ on peut écrire

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

Dérivée en un point

Interprétation géométrique

La quantité,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0},$$

est dite taux d'accroissement de f au voisinage de x_0 .

• Si f est dérivable en x_0 alors $\lim_{x \to x_0} T_{f,x_0} = f'(x_0)$. Dans ce cas $f'(x_0)$ est appelée le coefficient directeur (ou la pente) de la tangente en $(x_0, f(x_0))$, de plus l'équation de la tangente est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Si lim _{x→x₀} T_{f,x₀} = ±∞ alors f n'est pas dérivable en x₀ et la tangente à la courbe C_f, au point x₀, est une tangente verticale.

N.Mrhardy 56 / 11:

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{x x_0}}{x - x_0} = -\frac{1}{x x_0} \xrightarrow[x \to x_0]{} -\frac{1}{x_0^2}$$

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{x x_0}}{x - x_0} = -\frac{1}{x x_0} \xrightarrow{x \longrightarrow x_0} -\frac{1}{x_0^2}$$

donc f est dérivable en tout point de \mathbb{R}^* , de plus $f'(x) = -\frac{1}{x^2}$.

N.Mrhardy 57 / 111

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{x x_0}}{x - x_0} = -\frac{1}{x x_0} \xrightarrow{x \longrightarrow x_0} -\frac{1}{x_0^2}$$

donc f est dérivable en tout point de \mathbb{R}^* , de plus $f'(x) = -\frac{1}{2}$.

• La fonction $f(x) = \sin(x)$ est dérivable sur \mathbb{R} . En effet, soit $x_0 \in \mathbb{R}$, on a

N.MRHARDY

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{x x_0}}{x - x_0} = -\frac{1}{x x_0} \xrightarrow[x \to x_0]{} -\frac{1}{x_0^2}$$

donc f est dérivable en tout point de \mathbb{R}^* , de plus $f'(x) = -\frac{1}{x^2}$.

• La fonction $f(x) = \sin(x)$ est dérivable sur \mathbb{R} . En effet, soit $x_0 \in \mathbb{R}$, on a $T_{f,x_0} = \frac{\sin(x) - \sin(x_0)}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})\cos(\frac{x + x_0}{2})}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})}{x - x_0}\cos(\frac{x + x_0}{2})$

N.Mrhardy 57 / 11

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{xx_0}}{x - x_0} = -\frac{1}{xx_0} \xrightarrow[x \to x_0]{} -\frac{1}{x_0^2}$$

donc f est dérivable en tout point de \mathbb{R}^* , de plus $f'(x) = -\frac{1}{x^2}$.

• La fonction $f(x) = \sin(x)$ est dérivable sur \mathbb{R} . En effet, soit $x_0 \in \mathbb{R}$, on a $T_{f,x_0} = \frac{\sin(x) - \sin(x_0)}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})\cos(\frac{x + x_0}{2})}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})}{x - x_0}\cos(\frac{x + x_0}{2})$ Or $\lim_{x \longrightarrow x_0} \frac{\sin(\frac{x - x_0}{2})}{\frac{x - x_0}{2}} = \lim_{y \longrightarrow 0} \frac{\sin(y)}{y} = 1$ et $\lim_{x \longrightarrow x_0} \cos(\frac{x + x_0}{2}) = \cos(x_0)$ donc

N.Mrhardy 57 / 11

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{xx_0}}{x - x_0} = -\frac{1}{xx_0} \xrightarrow[x \to x_0]{} -\frac{1}{x_0^2}$$

donc f est dérivable en tout point de \mathbb{R}^* , de plus $f'(x) = -\frac{1}{x^2}$.

• La fonction $f(x) = \sin(x)$ est dérivable sur \mathbb{R} . En effet, soit $x_0 \in \mathbb{R}$, on a $T_{f,x_0} = \frac{\sin(x) - \sin(x_0)}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})\cos(\frac{x + x_0}{2})}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})}{x - x_0}\cos(\frac{x + x_0}{2})$ Or $\lim_{x \to x_0} \frac{\sin(\frac{x - x_0}{2})}{\frac{x - x_0}{2}} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1$ et $\lim_{x \to x_0} \cos(\frac{x + x_0}{2}) = \cos(x_0)$ donc

$$\frac{f(x) - f(x_0)}{x - x_0} \underset{x \longrightarrow x_0}{\longrightarrow} \cos(x_0)$$

N.Mrhardy 57 / 11:

• La fonction $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* . En effet, soit $x_0 \in \mathbb{R}^*$,

$$T_{f,x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{xx_0}}{x - x_0} = -\frac{1}{xx_0} \xrightarrow[x \to x_0]{} -\frac{1}{x_0^2}$$

donc f est dérivable en tout point de \mathbb{R}^* , de plus $f'(x) = -\frac{1}{x^2}$.

• La fonction $f(x) = \sin(x)$ est dérivable sur \mathbb{R} . En effet, soit $x_0 \in \mathbb{R}$, on a $T_{f,x_0} = \frac{\sin(x) - \sin(x_0)}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})\cos(\frac{x + x_0}{2})}{x - x_0} = \frac{2\sin(\frac{x - x_0}{2})}{x - x_0}\cos(\frac{x + x_0}{2})$ Or $\lim_{x \longrightarrow x_0} \frac{\sin(\frac{x-x_0}{2})}{\frac{x-x_0}{2}} = \lim_{y \longrightarrow 0} \frac{\sin(y)}{y} = 1$ et $\lim_{x \longrightarrow x_0} \cos(\frac{x+x_0}{2}) = \cos(x_0)$ donc

$$\frac{f(x)-f(x_0)}{x-x_0} \underset{x \longrightarrow x_0}{\longrightarrow} \cos(x_0)$$

On conclut f est dérivable en tout point de \mathbb{R} , de plus $f'(x) = \cos(x)$

N.MRHARDY

Dérivée à gauche, dérivée à droite

N.Mrhardy 58 / 111

Dérivée à gauche, dérivée à droite

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in I$.

• On dit que f est $d\acute{e}rivable$ à droite en x_0 si

$$\lim_{x \longrightarrow x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_d(x_0) \quad existe \ et \ finie.$$

On dit que f est dérivable à quuche en x_0 si

$$\lim_{x \longrightarrow x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) \quad \text{existe et finie} \ .$$

N.MRHARDY 58 / 111

Dérivée à gauche, dérivée à droite

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in I$.

• On dit que f est <u>dérivable à droite</u> en x₀ si

$$\lim_{x \longrightarrow x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_d(x_0) \quad existe \ et \ finie.$$

• On dit que f est $d\acute{e}rivable$ à gauche en x_0 si

$$\lim_{x \longrightarrow x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) \quad \text{existe et finie} \ .$$

La fonction f est dérivable en x_0 si et seulement si f est dérivable à droite et à gauche de x_0 et on a

$$f'_{g}(x_{0}) = f'_{d}(x_{0}) = f'(x_{0})$$

N.Mrhardy 58 /

Propriétés des fonctions dérivables Continuité

Condition nécessaire de dérivabilité

Soit $f \in \mathcal{F}(I, \mathbb{R})$

- Si la fonction f est dérivable en un point x_0 alors f est continue en x_0 .
- Si la fonction f est dérivable sur I alors f est continue sur I.

On a donc $\mathcal{D}(I,\mathbb{R})\subseteq\mathcal{C}(I,\mathbb{R})\subseteq\mathcal{F}(I,\mathbb{R})$

N.Mrhardy 59 / 111

Propriétés des fonctions dérivables Continuité

Condition nécessaire de dérivabilité

Soit $f \in \mathcal{F}(I, \mathbb{R})$

- Si la fonction f est dérivable en un point x_0 alors f est continue en x_0 .
- Si la fonction f est dérivable sur I alors f est continue sur I.

On a donc

$$\mathcal{D}(I,\mathbb{R})\subseteq\mathcal{C}(I,\mathbb{R})\subseteq\mathcal{F}(I,\mathbb{R})$$

La réciproque n'est pas toujours vraie. En effet la fonction $f: x \longrightarrow |x|$ est continue en 0, mais n'est pas dérivable en 0 car

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{|x|}{x} = 1 \quad \text{et} \quad \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{|x|}{x} = -1.$$

donc $f'_g(x_0) \neq f'_d(x_0)$ d'où f n'est pas dérivable en 0.

Propriétés des fonctions dérivables Continuité

Condition nécessaire de dérivabilité

Soit $f \in \mathcal{F}(I, \mathbb{R})$

- Si la fonction f est dérivable en un point x_0 alors f est continue en x_0 .
- Si la fonction f est dérivable sur I alors f est continue sur I.

On a donc

$$\mathcal{D}(I,\mathbb{R})\subseteq\mathcal{C}(I,\mathbb{R})\subseteq\mathcal{F}(I,\mathbb{R})$$

N.MRHARDY

$$f(x) = \begin{cases} \frac{\sin(\alpha x)}{x} & \text{si } x < 0\\ 1 & \text{si } x = 0\\ e^{\beta x} - x & \text{si } x > 0 \end{cases}$$

soit dérivable sur \mathbb{R} . Réponse.

$$f(x) = \begin{cases} \frac{\sin(\alpha x)}{x} & \text{si } x < 0\\ 1 & \text{si } x = 0\\ e^{\beta x} - x & \text{si } x > 0 \end{cases}$$

soit dérivable sur \mathbb{R} .

Réponse.

Les restrictions de f sur $]-\infty,0[$ et $]0,\infty[$ sont continues comme composée et somme de fonctions usuelles continues. Il suffit d'étudier la continuité au point 0.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin(\alpha x)}{x} = \alpha, \quad \text{et} \quad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} e^{\beta x} - x = 1$$

or f(0)=1 donc f est continue en 0 ssi $\alpha=1$. Pour que f soit dérivable il faut qu'elle soit continue donc $\alpha=1$.

$$f(x) = \begin{cases} \frac{\sin(\alpha x)}{x} & \text{si } x < 0\\ 1 & \text{si } x = 0\\ e^{\beta x} - x & \text{si } x > 0 \end{cases}$$

soit dérivable sur \mathbb{R} .

Réponse.

Si x < 0

$$f'(x) = \frac{x\cos(x) - \sin(x)}{x^2}$$

on applique la règle de l'Hôpital :

$$\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{-}} \frac{(x \cos(x) - \sin(x))'}{(x^{2})'} = \lim_{x \to 0} -\frac{\sin(x)}{2} = 0$$

$$\implies f'_{g}(0) = 0$$

N.Mrhardy 60 / 111

$$f(x) = \begin{cases} \frac{\sin(\alpha x)}{x} & \text{si } x < 0\\ 1 & \text{si } x = 0\\ e^{\beta x} - x & \text{si } x > 0 \end{cases}$$

soit dérivable sur \mathbb{R} .

Réponse.

Si x > 0

$$f'(x) = \beta e^{\beta x} - 1 \Longrightarrow \lim_{x \to 0^+} f'(x) = \beta - 1 = f'_d(0)$$

donc f est dérivable en 0 ssi

$$f'_d(0) = f'_g(0) \Longrightarrow \beta = 1$$

finalement f est continue et dérivable sur $\mathbb R$ ssi lpha=1 et eta=1

Propriétés des fonctions dérivables Extremum d'une fonction

Extremum global

- On dit que f admet un maximum (resp. minimum) en x_0 si et seulement si $\forall x \in I$, $f(x) \le f(x_0)$ (resp. $f(x) \ge f(x_0)$).
- ullet On dit que f admet un extremum si f admet un maximum ou un minimum .

$Extremum\ local$

- On dit que f admet un maximum local (resp. minimum local) en x_0 si et seulement si $\exists V$, voisinage de x_0 , tel que $\forall x \in V$, $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$).
- On dit que f admet un extremum local si f admet un maximum local ou un minimum local.

Propriétés des fonctions dérivables Extremum d'une fonction

Extremum global

- On dit que f admet un maximum (resp. minimum) en x_0 si et seulement si $\forall x \in I$, $f(x) \le f(x_0)$ (resp. $f(x) \ge f(x_0)$).
- ullet On dit que f admet un extremum si f admet un maximum ou un minimum .

$Extremum\ local$

- On dit que f admet un maximum local (resp. minimum local) en x_0 si et seulement si $\exists V$, voisinage de x_0 , tel que $\forall x \in V$, $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$).
- On dit que f admet un extremum local si f admet un maximum local ou un minimum local.

Remarque

Un extremum global est aussi un extremum local mais la réciproque est fausse.

N.Mrhardy 61 / 1

Soit I un intervalle ouvert. Si f admet un extemum local au point x_0 et si f est dérivable en x_0 alors $f'(x_0) = 0$. Dans ce cas, x_0 est appelé un point critique de f.

N.Mrhardy 62 / 11

Soit I un intervalle ouvert. Si f admet un extemum local au point x_0 et si f est dérivable en x_0 alors $f'(x_0) = 0$. Dans ce cas, x_0 est appelé un point critique de f.

Preuve: On suppose que x_0 est un maximum c-à-d $\forall x, \ f(x) \leq f(x_0)$. Si f est dérivable en x_0 alors on a $\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) = f'_d(x_0)$

N.Mrhardy 62 / 111

Soit I un intervalle ouvert. Si f admet un externum local au point x_0 et si f est dérivable en x_0 alors $f'(x_0) = 0$. Dans ce cas, x_0 est appelé un point critique de f.

Preuve: On suppose que x_0 est un maximum c-à-d $\forall x, f(x) \leq f(x_0)$. Si f est dérivable en x_0 alors on a $\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) = f'_d(x_0)$ or on a $f'_d(x_0) = \lim_{x \to x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \le 0$ et on a $f'_g(x_0) = \lim_{x \to x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0$ ce qui donne $f'(x_0) = 0$.

La réciproque est fause. Par exemple la fonction $f: x \in \mathbb{R} \longrightarrow x^3$ vérifie f'(0) = 0 mais n'admet pas d'exetremum au point 0.

N.MRHARDY 62 / 111

Soit I un intervalle ouvert. Si f admet un extemum local au point x_0 et si f est dérivable en x_0 alors $f'(x_0) = 0$. Dans ce cas, x_0 est appelé un point critique de f.

Preuve: On suppose que x_0 est un maximum c-à-d $\forall x, \ f(x) \leq f(x_0)$. Si f est dérivable en x_0 alors on a $\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) = f'_d(x_0)$ or on a $f'_d(x_0) = \lim_{x \longrightarrow x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \leq 0$ et on a $f'_g(x_0) = \lim_{x \longrightarrow x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \geq 0$

N.Mrhardy 62 / 11:

Soit I un intervalle ouvert. Si f admet un extemum local au point x_0 et si f est dérivable en x_0 alors $f'(x_0) = 0$. Dans ce cas, x_0 est appelé un point critique de f.

Preuve: On suppose que x_0 est un maximum c-à-d $\forall x, \ f(x) \leq f(x_0)$. Si f est dérivable en x_0 alors on a $\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) = f'_d(x_0)$ or on a $f'_d(x_0) = \lim_{x \longrightarrow x_0, x > x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \leq 0$ et on a $f'_g(x_0) = \lim_{x \longrightarrow x_0, x < x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \geq 0$ ce qui donne $f'(x_0) = 0.$

$\overline{Remarque}$

L'existence d'un extremum local n'entraine pas forcément la dérivabilité de f en ce point. En effet la fonction f(x) = |x| admet un minimum en 0, alors que f n'est pas dérivable en 0.

N.Mrhardy 62 / 111

Opérations sur les fonctions dérivables

Soient $f, g \in \mathcal{D}(I, \mathbb{R})$. Alors les fonctions $(f + g), (\alpha f)(\alpha \in \mathbb{R}), (f.g)$ et $\left(\frac{1}{\sigma}\right)(g\neq 0)$, sont des fonctions dérivables sur I et on a

- **1** (f + g)'(x) = f'(x) + g'(x).
- 3 (fg)'(x) = f'(x)g(x) + f(x)g'(x)
- de manière générale, on a

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

N.MRHARDY 63 / 111 **Preuve**: Soit $x_0 \in I$

(1) On a

$$\lim_{x \longrightarrow x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} + \frac{g(x) - g(x_0)}{x - x_0},$$

et donc

$$\lim_{x \longrightarrow x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = f'(x_0) + g'(x_0)$$

N.Mrhardy 64 / 111

Preuve: Soit $x_0 \in I$

(1) On a

$$\lim_{x \longrightarrow x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} + \frac{g(x) - g(x_0)}{x - x_0},$$

et donc

$$\lim_{x \longrightarrow x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = f'(x_0) + g'(x_0)$$

(2) On a

$$\lim_{x \longrightarrow x_0} \frac{(\alpha f)(x) - (\alpha f)(x_0)}{x - x_0} = \alpha \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \alpha f'(x_0),$$

N.Mrhardy 64 / 111

(3) On a

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

(3) On a

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$
$$= \frac{f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))}{x - x_0}$$

N.Mrhardy 65 / 111

(3) On a

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}
= \frac{f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))}{x - x_0}
= f(x)\frac{g(x) - g(x_0)}{x - x_0} + g(x_0)\frac{f(x) - f(x_0)}{x - x_0}$$

N.Mrhardy 65 / 1

(3) On a

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}
= \frac{f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))}{x - x_0}
= f(x)\frac{g(x) - g(x_0)}{x - x_0} + g(x_0)\frac{f(x) - f(x_0)}{x - x_0}$$

puisque f est **continue** en x_0 on a $\lim_{x \longrightarrow x_0} f(x) = f(x_0)$ et donc

$$\lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = f(x_0)g'(x_0) + g(x_0)f'(x_0)$$

N.Mrhardy 65 / 1

Preuve:

(3) On a

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}
= \frac{f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))}{x - x_0}
= f(x)\frac{g(x) - g(x_0)}{x - x_0} + g(x_0)\frac{f(x) - f(x_0)}{x - x_0}$$

puisque f est **continue** en x_0 on a $\lim_{x \to x_0} f(x) = f(x_0)$ et donc

$$\lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = f(x_0)g'(x_0) + g(x_0)f'(x_0)$$

(4) En utilisant encore le fait que f est **continue** en x_0 , on aura

$$\lim_{x \to x_0} \frac{\frac{1}{f(x)} - \frac{1}{f(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x_0) - f(x)}{(x - x_0)} \frac{1}{f(x_0)f(x)} = -\frac{f'(x_0)}{(f(x_0))^2}.$$

N.Mrhardy 65 /

Dérivée de la composée

Soient $f \in \mathcal{F}(I, \mathbb{R})$ et $g \in \mathcal{F}(J, \mathbb{R})$ deux fonctions et soit $x_0 \in I$ tel que $f(x_0) \in J$. Si f est dérivable en x_0 et g en $f(x_0)$ alors $g \circ f$ est dérivable en x_0 et on a

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

N.Mrhardy 66 / 111

Dérivée de la composée

Soient $f \in \mathcal{F}(I,\mathbb{R})$ et $g \in \mathcal{F}(J,\mathbb{R})$ deux fonctions et soit $x_0 \in I$ tel que $f(x_0) \in J$. Si f est dérivable en x_0 et g en $f(x_0)$ alors $g \circ f$ est dérivable en x_0 et on a

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Exemple

Calculons la dérivé de $h(x) = e^{\tan(x)}$ pour $x \in [0, \frac{\pi}{2}[$. D'abord, on écrit

$$h(x) = g \circ f(x)$$

Dérivée de la composée

Soient $f \in \mathcal{F}(I, \mathbb{R})$ et $g \in \mathcal{F}(J, \mathbb{R})$ deux fonctions et soit $x_0 \in I$ tel que $f(x_0) \in J$. Si f est dérivable en x_0 et g en $f(x_0)$ alors $g \circ f$ est dérivable en x_0 et on a

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Exemple

Calculons la dérivé de $h(x) = e^{\tan(x)}$ pour $x \in [0, \frac{\pi}{2}[$. D'abord, on écrit

$$h(x) = g \circ f(x)$$

avec
$$f(x) = \tan(x)$$
 et $g(x) = e^x$
Comme $f'(x) = 1 + \tan^2(x)$ et $g'(x) = e^x$
alors

$$h'(x) = (g \circ f)'(x) = f'(x)g'(f(x)) = (1 + \tan^2(x))e^{\tan(x)}$$

N.Mrhardy 66 / 11

Dérivée d'une fonction réciproque

Soit $f: I \longrightarrow J$ une fonction dérivable et bijective. Si pour $x_0 \in I$ on a $f'(x_0) \neq 0$ alors f^{-1} est dérivable au point $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

Dérivée d'une fonction réciproque

Soit $f: I \longrightarrow J$ une fonction dérivable et bijective. Si pour $x_0 \in I$ on a $f'(x_0) \neq 0$ alors f^{-1} est dérivable au point $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

Preuve: En posant y = f(x), on aura

$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}}.$$

Dérivée d'une fonction réciproque

Soit $f: I \longrightarrow J$ une fonction dérivable et bijective. Si pour $x_0 \in I$ on a $f'(x_0) \neq 0$ alors f^{-1} est dérivable au point $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

Preuve: En posant y = f(x), on aura

$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{\frac{f(x) - f(x_0)}{x - x^0}}.$$

Lorsque $y \longrightarrow y_0$, $x \longrightarrow x_0$ (f^{-1} étant **continue** en y_0) et puisque f est dérivable en x_0 et $f'(x_0) \neq 0$, et il en résulte que

$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{1}{\frac{f(x) - f(x_0)}{x - y_0}} = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

Théorème de Rolle

Soit f une fonction <u>continue</u> sur [a, b] et <u>dérivable</u> sur]a, b[telle que f(a) = f(b). Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

N.Mrhardy 68 / 111

Théorème de Rolle

Soit f une fonction <u>continue</u> sur [a, b] et <u>dérivable</u> sur [a, b] telle que f(a) = f(b). Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Preuve : f est continue sur [a,b] donc d'après le théorème de maximum f est bornée et atteint ses bornes donc

$$\exists c_1, c_2 \in [a, b]/ \ f(c_1) = m = \inf_{x \in [a, b]} f(x) \ \text{et} \ f(c_2) = M = \sup_{x \in [a, b]} f(x).$$

Théorème de Rolle

Soit f une fonction <u>continue</u> sur [a, b] et <u>dérivable</u> sur [a, b] telle que f(a) = f(b). Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Preuve : f est continue sur [a,b] donc d'après le théorème de maximum f est bornée et atteint ses bornes donc

$$\exists c_1, c_2 \in [a, b]/ \ f(c_1) = m = \inf_{x \in [a, b]} f(x) \ \text{et} \ f(c_2) = M = \sup_{x \in [a, b]} f(x).$$

• Si m = M, le minimum coïncide avec le maximum et donc f est constante sur [a, b] et par suite pour tout $c \in]a, b[, f'(c) = 0.$

Théorème de Rolle

Soit f une fonction <u>continue</u> sur [a, b] et <u>dérivable</u> sur]a, b[telle que f(a) = f(b). Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Preuve : f est continue sur [a,b] donc d'après le théorème de maximum f est bornée et atteint ses bornes donc

$$\exists c_1, c_2 \in [a, b]/ \ f(c_1) = m = \inf_{x \in [a, b]} f(x) \ \text{et} \ f(c_2) = M = \sup_{x \in [a, b]} f(x).$$

- Si m = M, le minimum coïncide avec le maximum et donc f est constante sur [a, b] et par suite pour tout $c \in]a, b[$, f'(c) = 0.
- Si $m \neq M$, la fonction f atteint son minimum en c_1 ,

Théorème de Rolle

Soit f une fonction continue sur [a, b] et dérivable sur]a, b[telle que f(a) = f(b). Alors.

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Preuve: f est continue sur [a, b] donc d'après le théorème de maximum f est bornée et atteint ses bornes donc

$$\exists c_1, c_2 \in [a, b]/ \ f(c_1) = m = \inf_{x \in [a, b]} f(x) \ \text{et} \ f(c_2) = M = \sup_{x \in [a, b]} f(x).$$

- Si m = M, le minimum coïncide avec le maximum et donc f est constante sur [a, b] et par suite pour tout $c \in]a, b[, f'(c) = 0.$
- Si $m \neq M$, la fonction f atteint son minimum en c_1 ,
 - si m = f(a) = f(b), comme f atteint son maximum en c_2 et $m \neq M$, alors $c_2 \in]a, b[$ et $f'(c_2) = 0$.

68 / 113

Théorème de Rolle

Soit f une fonction <u>continue</u> sur [a, b] et <u>dérivable</u> sur]a, b[telle que f(a) = f(b). Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Preuve : f est continue sur [a,b] donc d'après le théorème de maximum f est bornée et atteint ses bornes donc

$$\exists c_1, c_2 \in [a, b]/ \ f(c_1) = m = \inf_{x \in [a, b]} f(x) \ \text{et} \ f(c_2) = M = \sup_{x \in [a, b]} f(x).$$

- Si m = M, le minimum coïncide avec le maximum et donc f est constante sur [a, b] et par suite pour tout $c \in]a, b[$, f'(c) = 0.
- Si $m \neq M$, la fonction f atteint son minimum en c_1 ,
 - si m = f(a) = f(b), comme f atteint son maximum en c_2 et $m \neq M$, alors $c_2 \in]a, b[$ et $f'(c_2) = 0$.
 - sinon, $c_1 \in]a, b[$ et $f'(c_1) = 0$

Théorème des accroissements finis(TAF)

Soit $f \in \mathcal{F}([a,b],\mathbb{R})$ une fonction <u>continue</u> sur [a,b] et <u>dérivable</u> sur]a,b[. Alors il existe au moins un point $c \in]a,b[$ tel que

$$f(b) - f(a) = (b - a)f'(c).$$

N.Mrhardy 69 / 111

Théorème des accroissements finis(TAF)

Soit $f \in \mathcal{F}([a,b],\mathbb{R})$ une fonction <u>continue</u> sur [a,b] et <u>dérivable</u> sur]a,b[. Alors il existe au moins un point $c \in]a,b[$ tel que

$$f(b) - f(a) = (b - a)f'(c).$$

Preuve: On considère la fonction φ définie par

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

 φ est définie et continue sur [a,b] et dérivable sur]a,b[de plus $\varphi(a)=\varphi(b)=0$, donc d'après le théorème de Rolle, il existe $c\in]a,b[$ tel que $\varphi'(c)=0$. Or

$$\varphi'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \Longrightarrow f(b) - f(a) = (b - a)f'(c)$$

N.Mrhardy 69 / 111

Théorème des accroissements finis(TAF)

Soit $f \in \mathcal{F}([a,b],\mathbb{R})$ une fonction <u>continue</u> sur [a,b] et <u>dérivable</u> sur]a,b[. Alors il existe au moins un point $c \in]a,b[$ tel que

$$f(b) - f(a) = (b - a)f'(c).$$

Inégalité des accroissements finis

Soit f est continue sur [a, b] et dérivable sur [a, b[. Si f' est bornée sur [a, b[, c'est-à-dire, $\exists M > 0$ tel que, $\forall x \in]a, b[$, $|f'(x)| \leq M$, alors,,

$$|f(x)-f(y)| \leq M|x-y|$$
 pour tout $x,y \in [a,b]$

Exemple

 $\bullet \ \ \mathsf{Montrer} \ \mathsf{que} \qquad \ \frac{1}{3} < \mathsf{ln}(1,5) < \frac{1}{2}$

Exemple

• Montrer que $\frac{1}{3} < \ln(1,5) < \frac{1}{2}$ En effet, on a $\ln(1,5) = \ln(\frac{3}{2}) = \ln(3) - \ln(2)$. La fonction $x \mapsto \ln(x)$ est continue sur [2,3], dérivable sur]2,3[. D'après TAF, il existe un $c \in]2,3[$ tel que

$$\frac{\ln(3) - \ln(2)}{3 - 2} = \ln'(c) = \frac{1}{c}$$

Exemple

• Montrer que $\frac{1}{3} < \ln(1,5) < \frac{1}{2}$ En effet, on a $\ln(1,5) = \ln(\frac{3}{2}) = \ln(3) - \ln(2)$. La fonction $x \mapsto \ln(x)$ est continue sur [2,3], dérivable sur]2,3[. D'après TAF, il existe un $c \in]2,3[$ tel que

$$\frac{\ln(3) - \ln(2)}{3 - 2} = \ln'(c) = \frac{1}{c}$$

or $c \in]2,3[$ donc $\frac{1}{3} < \frac{1}{c} < \frac{1}{2}$ d'où le résultat souhaité.

Exemple

• Montrer que $\frac{1}{3} < \ln(1,5) < \frac{1}{2}$ En effet, on a $\ln(1,5) = \ln(\frac{3}{2}) = \ln(3) - \ln(2)$. La fonction $x \mapsto \ln(x)$ est continue sur [2,3], dérivable sur [2,3]. D'après TAF, il existe un $c \in]2,3[$ tel que

$$\frac{\ln(3) - \ln(2)}{3 - 2} = \ln'(c) = \frac{1}{c}$$

or $c \in]2,3[$ donc $\frac{1}{3} < \frac{1}{c} < \frac{1}{2}$ d'où le résultat souhaité.

• Montrer que $|\sin(x) - \sin(y)| \le |x - y|, \ \forall x, y \in \mathbb{R}$

Exemple

• Montrer que $\frac{1}{3} < \ln(1,5) < \frac{1}{2}$ En effet, on a $\ln(1,5) = \ln(\frac{3}{2}) = \ln(3) - \ln(2)$. La fonction $x \mapsto \ln(x)$ est continue sur [2,3], dérivable sur [2,3]. D'après TAF, il existe un $c \in]2,3[$ tel que

$$\frac{\ln(3) - \ln(2)}{3 - 2} = \ln'(c) = \frac{1}{c}$$

or $c \in]2,3[$ donc $\frac{1}{3} < \frac{1}{c} < \frac{1}{2}$ d'où le résultat souhaité.

• Montrer que $|\sin(x) - \sin(y)| \le |x - y|, \ \forall x, y \in \mathbb{R}$ En effet, on a pour tout $x, y \in \mathbb{R}$ (x < y), la fonction $t \mapsto \sin(t)$ est continue sur [x, y], dérivable sur [x, y] de dérivée

$$\sin'(t) = \cos(t) \Longrightarrow |\sin'(t)| = |\cos(t)| \le 1$$

D'après l'inégalité des accroissements finis on a $|\sin(x) - \sin(y)| \le |x - y|$

Exemple

Montrer que

N.Mrhardy 71 / 11:

Exemple

• Montrer que $e^x \le 1 + xe^x, \ \forall x > 0$

Exemple

• Montrer que $e^x \le 1 + xe^x$, $\forall x > 0$ En effet, on a pour tout x > 0, la fonction $t \mapsto e^t$ est continue sur [0, x], dérivable sur [0, x[. D'après TAF, il existe un $c \in]0, x[$ tel que

$$\frac{e^x - 1}{x} = e^c$$

or $c \in]0,x[$ donc

$$e^c < e^x \Longrightarrow \frac{e^x - 1}{x} < e^x$$

d'où le résultat souhaité.

Applications du T.A.F

Variations d'une fonction

Soit I un intervalle ouvert et $f \in \mathcal{F}(I,\mathbb{R})$ une fonction continue et dérivable sur I. Alors:

- **1** La fonction f est <u>croissante</u> sur I si et seulement si $\forall x \in I$, $f'(x) \ge 0$.
- 2 La fonction f est <u>décroissante</u> sur I si et seulement si $\forall x \in I$, $f'(x) \leq 0$.
- **3** La fonction f est *constante* sur I si et seulement si $\forall x \in I$, f'(x) = 0.

N.MRHARDY

Applications du T.A.F

Variations d'une fonction

Soit I un intervalle ouvert et $f \in \mathcal{F}(I,\mathbb{R})$ une fonction continue et dérivable sur I. Alors :

- **1** La fonction f est <u>croissante</u> sur I si et seulement si $\forall x \in I$, $f'(x) \ge 0$.
- **2** La fonction f est <u>décroissante</u> sur I si et seulement si $\forall x \in I, f'(x) \leq 0$.
- **3** La fonction f est <u>constante</u> sur I si et seulement si $\forall x \in I$, f'(x) = 0.

Preuve: (\Rightarrow) Si f est croissante alors pour tout $x \neq x_0$, on a

$$\frac{f(x)-f(x_0)}{x-x_0}\geq 0 \text{ et donc } f'(x_0)\geq 0.$$

(\Leftarrow) Supposons f' est positive sur I. Soient $x, y \in I$ avec $x \leq y$. En appliquant **TAF** à f sur [x, y], il existe $x_0 \in]x, y[$ tel que

$$f'(x_0) = \frac{f(y) - f(x)}{y - x} \ge 0 \Longrightarrow f(y) \ge f(x)$$

N.MRHARDY

Applications du T.A.F

Variations d'une fonction

Soit I un intervalle ouvert et $f \in \mathcal{F}(I,\mathbb{R})$ une fonction continue et dérivable sur I. Alors :

- **1** La fonction f est <u>croissante</u> sur I si et seulement si $\forall x \in I$, $f'(x) \ge 0$.
- **2** La fonction f est <u>décroissante</u> sur I si et seulement si $\forall x \in I, f'(x) \leq 0$.
- **3** La fonction f est <u>constante</u> sur I si et seulement si $\forall x \in I, f'(x) = 0$.

Remarque

Soit $f \in \mathcal{F}(I, \mathbb{R})$ une fonction continue et dérivable sur I.

- **1** Si $\forall x \in I$, f'(x) > 0 alors la fonction f est strictement croissante sur I.
- **2** Si $\forall x \in I$, f'(x) < 0 alors la fonction f est strictement décroissante sur I.

La réciproque est fausse. En effet, $f(x) = x^3$ est strictement croissante mais $f'(x) = 3x^2$ s'annulle au point 0.

N.Mrhardy 72

Exercice (TD). Soit la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3-x^2}{2} & \text{si } x \le 1\\ \frac{1}{x} & \text{si } x > 1 \end{cases}$$

Exercice (TD). Soit la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3-x^2}{2} & \text{si } x \le 1\\ \frac{1}{x} & \text{si } x > 1 \end{cases}$$

(1) Montrer qu'il existe $c \in]0,2[$ tel que f(2)-f(0)=2f'(c).

Réponse. Pour utiliser le **TAF**, on va d'abord montrer que f est continue et dérivable sur [0,2]. Par opérations, f continue est déruvable sur $\mathbb{R}\setminus\{1\}$. d'autre part

$$\lim_{x \to 1^{-}} f(x) = 1 = \lim_{x \to 1^{+}} f(x), \quad \text{et} \quad f(1) = 1$$

ce qui montre que f continue au pt 1.

Si
$$x < 1$$
 $f'(x) = -x \Longrightarrow \lim_{x \to 1^{-}} f'(x) = -1$

Si
$$x < 1$$
 $f'(x) = -x \Longrightarrow \lim_{x \to 1^{-}} f'(x) = -1$
Si $x > 1$ $f'(x) = \frac{-1}{x^{2}} \Longrightarrow \lim_{x \to 1^{+}} f'(x) = -1$

donc f est dérivable au point 1. On conclut que f est continue sur [0,2] et dérivable sur [0, 2[, d'après le **T.A.F**, il existe $c \in]0, 2[$ tel que f(2) - f(0) = 2f'(c).

N.MRHARDY 73 / 111 **Exercice (TD).** Soit la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3-x^2}{2} & \text{si } x \le 1\\ \frac{1}{x} & \text{si } x > 1 \end{cases}$$

(2) Déterminer les valeurs possible de c.

Réponse. On a

$$f(2) = \frac{1}{2}, \ f(0) = \frac{3}{2} \Longrightarrow f'(c) = -\frac{1}{2}$$

- Si $c \in]0,1[$, on aura $f'(c)=-c=-rac{1}{2}\Longrightarrow c=rac{1}{2}$
- Si $c \in]1,2[$, on aura $f'(c)=\frac{-1}{c^2}=-\frac{1}{2}\Longrightarrow c^2=2\Longrightarrow c=\pm\sqrt{2}$ or $-\sqrt{2}\notin]1,2[$ donc $c=\sqrt{2}\in]1,2[$.

il y a donc deux valeurs possibles $c = \sqrt{2}$ et $c = \frac{1}{2}$.

Théorème des accroissements finis généralisé

Soit $f,g\in\mathcal{F}([a,b],\mathbb{R})$ deux fonctions continues sur [a,b] et dérivables sur [a,b] telle que $g'(x)\neq 0 \quad \forall x\in]a,b[$. Alors il existe au moins un point $c\in]a,b[$ tel que

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Théorème des accroissements finis généralisé

Soit $f, g \in \mathcal{F}([a, b], \mathbb{R})$ deux fonctions continues sur [a, b] et dérivables sur [a, b] telle que $g'(x) \neq 0 \quad \forall x \in]a, b[$. Alors il existe au moins un point $c \in]a, b[$ tel que

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Preuve: On considère la fonction φ définie par

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)).$$

Cette fonction est continue sur [a,b] et dérivable sur]a,b[de plus $\varphi(a)=\varphi(b)=0$, donc d'après le théorème de Rolle, il existe $c\in]a,b[$ tel que $\varphi'(c)=0$. Or

$$\varphi'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}(g'(c)) = 0 \implies \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

N.Mrhardy 74 / 111

Application : La règle de l'Hôpital

Soient f,g deux fonctions continues sur $[x_0 - \varepsilon, x_0 + \varepsilon]$, $\varepsilon > 0$ et dérivables sur $[x_0 - \varepsilon, x_0 + \varepsilon[\setminus \{x_0\} \text{ tel que pour tout } x \in]x_0 - \varepsilon, x_0 + \varepsilon[\setminus \{x_0\}, g'(x) \neq 0.$

$$Si \lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R} \Longrightarrow \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \ell.$$

N.Mrhardy 75 / 11:

Application : La règle de l'Hôpital

Soient f,g deux fonctions continues sur $[x_0 - \varepsilon, x_0 + \varepsilon]$, $\varepsilon > 0$ et dérivables sur $[x_0 - \varepsilon, x_0 + \varepsilon[\setminus \{x_0\} \text{ tel que pour tout } x \in]x_0 - \varepsilon, x_0 + \varepsilon[\setminus \{x_0\}, g'(x) \neq 0.$

$$Si \quad \lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R} \Longrightarrow \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \ell.$$

Preuve: Soit $x \in]x_0 - \varepsilon, x_0 + \varepsilon[$, tel que $x > x_0$. f et g sont donc continues sur $[x_0, x]$ dérivables sur $]x_0, x[$ et d'après le **TAF généralisé** il existe un $c(x) \in]x_0, x[$ tel que

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c(x))}{g'(c(x))},$$

Application : La règle de l'Hôpital

Soient f,g deux fonctions continues sur $[x_0 - \varepsilon, x_0 + \varepsilon]$, $\varepsilon > 0$ et dérivables sur $[x_0 - \varepsilon, x_0 + \varepsilon[\setminus \{x_0\} \text{ tel que pour tout } x \in]x_0 - \varepsilon, x_0 + \varepsilon[\setminus \{x_0\}, g'(x) \neq 0.$

$$Si \quad \lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R} \Longrightarrow \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \ell.$$

Preuve: Soit $x \in]x_0 - \varepsilon, x_0 + \varepsilon[$, tel que $x > x_0$. f et g sont donc continues sur $[x_0, x]$ dérivables sur $]x_0, x[$ et d'après le **TAF généralisé** il existe un $c(x) \in]x_0, x[$ tel que

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c(x))}{g'(c(x))},$$

puisque $x_0 < c(x) < x$ alors, lorsque $x \longrightarrow x_0$, $c(x) \longrightarrow x_0$, il en résulte que

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f'(c(x))}{g'(c(x))} = \lim_{c(x) \to x_0} \frac{f'(c(x))}{g'(c(x))} = \ell.$$

N.Mrhardy 75 /

La règle de l'Hôpital

La règle de l'Hôpital en un point

Soient f,g deux fonctions continues sur un intervale ouvert I contenant x_0 . On suppose f et g dérivable sur $I/\{x_0\}$ et que $g'(x) \neq 0$ sur $I/\{x_0\}$. Si $\lim_{x \longrightarrow x_0} f(x) = \lim_{x \longrightarrow x_0} g(x) = 0$ ou $\lim_{x \longrightarrow x_0} f(x) = \lim_{x \longrightarrow x_0} g(x) = \infty$ alors

$$\lim_{x \longrightarrow x_0} \frac{f(x)}{g(x)} = \lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)}$$

La règle de l'Hôpital en un point

Soient f,g deux fonctions continues sur un intervale ouvert I contenant x_0 . On suppose f et g dérivable sur $I/\{x_0\}$ et que $g'(x) \neq 0$ sur $I/\{x_0\}$. Si $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$ ou $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty$ alors

$$\lim_{x \longrightarrow x_0} \frac{f(x)}{g(x)} = \lim_{x \longrightarrow x_0} \frac{f'(x)}{g'(x)}$$

Régle de l'Hôpital au point infini

Si f,g dérivables sur $]a,+\infty[$ (rep.] $-\infty,a[$) (a>0) tel que $g'(x)\neq 0$. On suppose en outre que $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} g(x) = 0(ou \infty)$ alors

$$\lim_{x \longrightarrow \pm \infty} \frac{f(x)}{g(x)} = \lim_{x \longrightarrow \pm \infty} \frac{f'(x)}{g'(x)}.$$

Exemples

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} \left(= \frac{0}{0}\right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{\cos x}{1} = 1$$

Exemples

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} \left(= \frac{0}{0}\right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{\cos x}{1} = 1$$

$$\bullet \lim_{x \longrightarrow 0} \frac{e^x - 1}{\sin x} \left(= \frac{0}{0}\right) \stackrel{R.H}{=} \lim_{x \longrightarrow 0} \frac{e^x}{\cos x} = 1$$

Exemples

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} \left(= \frac{0}{0} \right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{\cos x}{1} = 1$$

•
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} \left(= \frac{0}{0}\right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{e^x}{\cos x} = 1$$

•
$$\lim_{x \to 1} \frac{x \ln x - (x - 1)}{(x - 1)^2} \stackrel{R.H}{=} \lim_{x \to 1} \frac{\ln x + 1 - 1}{2(x - 1)} \stackrel{R.H}{=} \lim_{x \to 1} \frac{\frac{1}{x}}{2} = \frac{1}{2}.$$

N.MRHARDY

Exemples

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} \left(= \frac{0}{0} \right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{\cos x}{1} = 1$$

•
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} \left(= \frac{0}{0} \right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{e^x}{\cos x} = 1$$

•
$$\lim_{x \to 1} \frac{x \ln x - (x - 1)}{(x - 1)^2} \stackrel{R.H}{=} \lim_{x \to 1} \frac{\ln x + 1 - 1}{2(x - 1)} \stackrel{R.H}{=} \lim_{x \to 1} \frac{\frac{1}{x}}{2} = \frac{1}{2}.$$

•
$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \left(= \frac{\infty}{\infty} \right) \stackrel{R.H}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x \to 0^+} -x = 0$$

N.MRHARDY

Exemples

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} \left(= \frac{0}{0} \right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{\cos x}{1} = 1$$

•
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} \left(= \frac{0}{0} \right) \stackrel{R.H}{=} \lim_{x \to 0} \frac{e^x}{\cos x} = 1$$

•
$$\lim_{x \to 1} \frac{x \ln x - (x - 1)}{(x - 1)^2} \stackrel{R.H}{=} \lim_{x \to 1} \frac{\ln x + 1 - 1}{2(x - 1)} \stackrel{R.H}{=} \lim_{x \to 1} \frac{\frac{1}{x}}{2} = \frac{1}{2}.$$

•
$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \left(= \frac{\infty}{\infty} \right) \stackrel{R.H}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x \to 0^+} -x = 0$$

$$\bullet \lim_{x \to +\infty} (x)^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{1}{x} \ln(x)}$$

or
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} \stackrel{R.H}{=} \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = 0$$
 donc

$$\lim_{x \longrightarrow +\infty} (x)^{\frac{1}{x}} = 1$$

N.Mrhardy 77 /

Programme

1 Limites et continuité

2 Dérivabilité

3 Fonctions usuelles

✓ La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.

N.Mrhardy 79 / 11:

- ✓ La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.
- ✓ Sa restriction sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est une fonction *continue et strictement croissante* et prend ses valeurs dans [-1,1] et donc bijective.

- ✓ La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.
- ✓ Sa restriction sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est une fonction *continue et strictement croissante* et prend ses valeurs dans [-1,1] et donc bijective.
- ✓ Sa fonction réciproque appelée Arcsinus, et notée arcsin, est définie par arcsin : $[-1,1] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

- ✓ La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.
- ✓ Sa restriction sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est une fonction *continue et strictement croissante* et prend ses valeurs dans [-1,1] et donc bijective.
- ✓ Sa fonction réciproque appelée Arcsinus, et notée arcsin, est définie par arcsin : $[-1,1] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- ✓ La fonction arcsin est aussi continue et strictement croissante sur [-1,1].

- ✓ La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.
- ✓ Sa restriction sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est une fonction *continue et strictement croissante* et prend ses valeurs dans [-1,1] et donc bijective.
- ✓ Sa fonction réciproque appelée Arcsinus, et notée arcsin, est définie par arcsin : $[-1,1] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- ✓ La fonction arcsin est aussi continue et strictement croissante sur [-1, 1].

De plus, on a
$$y = \sin(x), x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \iff x = \arcsin(y), y \in [-1, 1]$$

- ✓ La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.
- ✓ Sa restriction sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est une fonction *continue et strictement croissante* et prend ses valeurs dans [-1,1] et donc bijective.
- ✓ Sa fonction réciproque appelée Arcsinus, et notée arcsin, est définie par arcsin : $[-1,1] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- ✓ La fonction arcsin est aussi continue et strictement croissante sur [-1,1].

De plus, on a $y = \sin(x), x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \iff x = \arcsin(y), y \in [-1, 1]$ Autrement dit

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad \arcsin(\sin x) = x$$

 $\forall y \in [-1, 1], \quad \sin(\arcsin y) = y$

Fonction Arcsinus

- ✓ La fonction sinus est définie et continue sur \mathbb{R} , impaire et 2π -périodique.
- ✓ Sa restriction sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est une fonction *continue et strictement croissante* et prend ses valeurs dans [-1,1] et donc bijective.
- ✓ Sa fonction réciproque appelée Arcsinus, et notée arcsin, est définie par arcsin : $[-1,1] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- ✓ La fonction arcsin est aussi continue et strictement croissante sur [-1,1].

De plus, on a $y = \sin(x), x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \iff x = \arcsin(y), y \in [-1, 1]$ Autrement dit

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad \arcsin(\sin x) = x$$

 $\forall y \in [-1, 1], \quad \sin(\arcsin y) = y$

Attention, cela est valable seulement pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Par exemple,

$$\arcsin(\sin \pi) = \arcsin(0) = 0 \neq \pi.$$

✓ Comme la fonction sinus est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annulle pas sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ alors la fonction arcsinus est dérivable sur]-1,1[et on a,

$$(\arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[.$$

✓ Comme la fonction sinus est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annulle pas sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ alors la fonction arcsinus est dérivable sur]-1,1[et on a,

$$(\arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[.$$

En effet ; si on pose
$$f(x)=\sin(x)$$
 alors $\forall x\in]-1,1[$
$$(\arcsin)'(x)=\frac{1}{f'(f^{-1}(x))}=\frac{1}{\cos(\arcsin(x))}$$

✓ Comme la fonction sinus est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annulle pas sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ alors la fonction arcsinus est dérivable sur]-1,1[et on a,

$$(\arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[.$$

En effet; si on pose $f(x) = \sin(x)$ alors $\forall x \in]-1,1[$

$$(\arcsin)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}$$

or on sait que

$$\cos^2(\arcsin(x)) = 1 - \sin^2(\arcsin(x))$$

✓ Comme la fonction sinus est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annulle pas sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ alors la fonction arcsinus est dérivable sur]-1,1[et on a,

$$(\arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[.$$

En effet; si on pose $f(x) = \sin(x)$ alors $\forall x \in]-1,1[$

$$(\arcsin)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}$$

or on sait que

$$\cos^2(\arcsin(x)) = 1 - \sin^2(\arcsin(x))$$

comme la fonction $x \longmapsto \cos(x)$ est positive sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ alors

✓ Comme la fonction sinus est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annulle pas sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ alors la fonction arcsinus est dérivable sur]-1,1[et on a,

$$(\arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}, \ \forall x \in]-1,1[.$$

En effet; si on pose $f(x) = \sin(x)$ alors $\forall x \in]-1,1[$

$$(\arcsin)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}$$

or on sait que

$$\cos^2(\arcsin(x)) = 1 - \sin^2(\arcsin(x))$$

comme la fonction $x \longmapsto \cos(x)$ est positive sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ alors

$$\implies \cos(\arcsin(x)) = \sqrt{1 - \sin^2(\arcsin(x))} = \sqrt{1 - x^2}$$

Le graphe de arcsinus s'obtient par symétrie par rapport à la première bissectrice de la courbe de la restriction à $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ de la fonction sinus

 $\arcsin 2x = \arcsin x\sqrt{3} + \arcsin x$

$$\arcsin 2x = \arcsin x \sqrt{3} + \arcsin x$$

Réponse. D'abord cet équation est pour tout x vérifiant

$$-1 \le 2x \le 1$$
, $-1 \le x\sqrt{3} \le 1$, $-1 \le x \le 1 \Longrightarrow x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

$$\arcsin 2x = \arcsin x \sqrt{3} + \arcsin x$$

Réponse. D'abord cet équation est pour tout x vérifiant

$$-1 \le 2x \le 1$$
, $-1 \le x\sqrt{3} \le 1$, $-1 \le x \le 1 \Longrightarrow x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

comme $\forall t \in [-1,1]$, $\cos(\arcsin t) = \sqrt{1-t^2}$ alors en appliquant \sin de deux côtés de l'équation, on trouve

$$2x = x\sqrt{3}\sqrt{1 - x^2} + x\sqrt{1 - 3x^2}$$

donc x = 0 où si $x \neq 0$,

$$\arcsin 2x = \arcsin x \sqrt{3} + \arcsin x$$

Réponse. D'abord cet équation est pour tout x vérifiant

$$-1 \le 2x \le 1$$
, $-1 \le x\sqrt{3} \le 1$, $-1 \le x \le 1 \Longrightarrow x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

comme $\forall t \in [-1,1]$, $\cos(\arcsin t) = \sqrt{1-t^2}$ alors en appliquant \sin de deux côtés de l'équation, on trouve

$$2x = x\sqrt{3}\sqrt{1 - x^2} + x\sqrt{1 - 3x^2}$$

donc x = 0 où si $x \neq 0$,

$$\iff 2 - \sqrt{3}\sqrt{1 - x^2} = \sqrt{1 - 3x^2}$$

$$\iff 6 - 4\sqrt{3}\sqrt{1 - x^2} = 0 \iff 1 - x^2 = \frac{3}{4}$$

$$\iff x^2 = \frac{1}{4} \iff x = \pm \frac{1}{2}$$

$$\arcsin 2x = \arcsin x \sqrt{3} + \arcsin x$$

Réponse. D'abord cet équation est pour tout x vérifiant

$$-1 \le 2x \le 1$$
, $-1 \le x\sqrt{3} \le 1$, $-1 \le x \le 1 \Longrightarrow x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

comme $\forall t \in [-1,1]$, $\cos(\arcsin t) = \sqrt{1-t^2}$ alors en appliquant \sin de deux côtés de l'équation, on trouve

$$2x = x\sqrt{3}\sqrt{1 - x^2} + x\sqrt{1 - 3x^2}$$

donc x = 0 où si $x \neq 0$,

$$\iff 2 - \sqrt{3}\sqrt{1 - x^2} = \sqrt{1 - 3x^2}$$

$$\iff 6 - 4\sqrt{3}\sqrt{1 - x^2} = 0 \iff 1 - x^2 = \frac{3}{4}$$

$$\iff x^2 = \frac{1}{4} \iff x = \pm \frac{1}{2}$$

On conclut que l'ensemble de solutions est $S = \left\{-\frac{1}{2},0,\frac{1}{2}\right\}$

- ✓ La fonction cosinus est définie et continue sur \mathbb{R} , paire et périodique de période 2π .
- ✓ Sa restriction sur $[0, \pi]$ est une fonction *continue et strictement décroissante* et prend ses valeurs sur [-1,1].
- ✓ Donc la fonction $\cos:[0,\pi] \longrightarrow [-1,1]$ *est bijective*. On peut donc définir sa fonction réciproque appelée Arccosinus et notée

$$\arccos: [-1,1] \longrightarrow [0,\pi]$$

 \checkmark Ainsi la fonction arccos est continue et strictement décroissante sur [-1,1].

De plus, on a

$$y = \cos(x), x \in [0, \pi] \iff x = \arccos(y), y \in [-1, 1]$$

Autrement dit

$$\forall x \in [0, \pi],$$
 $\operatorname{arccos}(\cos x) = x$
 $\forall y \in [-1, 1],$ $\operatorname{cos}(\operatorname{arccos} y) = y$

Attention, cela est valable seulement pour tout $x \in [0, \pi]$. Par exemple,

$$arccos(cos 2\pi) = arccos(1) = 0 \neq 2\pi$$
.

✓ Comme la fonction f(x) = cos(x) est dérivable sur $[0, \pi]$ et sa dérivée ne s'annulle pas sur $]0, \pi[$ alors sa fonction réciproque $f^{-1}(x) = arccos(x)$ est dérivable sur]-1, 1[et on a,

$$(\arccos)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{-\sin(\arccos(x))} = \frac{-1}{\sqrt{1-x^2}}.$$

Exercice (TD). Simplifier l'expression :

$$F(x) = \arccos(1 - 2x^2),$$

Réponse. F est définie pour tout x vérifiant

$$-1 \le 1 - 2x^2 \le 1 \Longleftrightarrow x \in [-1, 1]$$

Exercice (TD). Simplifier l'expression :

$$F(x) = \arccos(1 - 2x^2),$$

Réponse. F est définie pour tout x vérifiant

$$-1 \le 1 - 2x^2 \le 1 \Longleftrightarrow x \in [-1, 1]$$

Si on pose $x = \sin \alpha$ alors $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ et

$$1-2\alpha^2=\left(1-\sin^2\alpha\right)-\sin^2\alpha=\cos^2\alpha-\sin^2\alpha=\cos(2\alpha)$$

Exercice (TD). Simplifier l'expression :

$$F(x) = \arccos(1 - 2x^2),$$

Réponse. F est définie pour tout x vérifiant

$$-1 \le 1 - 2x^2 \le 1 \Longleftrightarrow x \in [-1, 1]$$

Si on pose $x = \sin \alpha$ alors $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ et

$$1 - 2\alpha^2 = (1 - \sin^2 \alpha) - \sin^2 \alpha = \cos^2 \alpha - \sin^2 \alpha = \cos(2\alpha)$$

donc $F(x) = \arccos(\cos(2\alpha))$ ce qui donne

$$\begin{cases}
Si \ \alpha \in \left[0, \frac{\pi}{2}\right] & \Rightarrow \alpha \in [0, \pi] & \Rightarrow F(x) = 2\alpha \\
Si \ \alpha \in \left[-\frac{\pi}{2}, 0\right] & \Rightarrow \alpha \in [-\pi, 0] & \Rightarrow F(x) = -2\alpha
\end{cases}$$

Exercice (TD). Simplifier l'expression :

$$F(x) = \arccos(1 - 2x^2),$$

Réponse. F est définie pour tout x vérifiant

$$-1 \le 1 - 2x^2 \le 1 \Longleftrightarrow x \in [-1, 1]$$

Si on pose $x = \sin \alpha$ alors $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ et

$$1 - 2\alpha^2 = (1 - \sin^2 \alpha) - \sin^2 \alpha = \cos^2 \alpha - \sin^2 \alpha = \cos(2\alpha)$$

donc $F(x) = \arccos(\cos(2\alpha))$ ce qui donne

$$\begin{cases}
Si \ \alpha \in \left[0, \frac{\pi}{2}\right] & \Rightarrow \alpha \in [0, \pi] & \Rightarrow F(x) = 2\alpha \\
Si \ \alpha \in \left[-\frac{\pi}{2}, 0\right] & \Rightarrow \alpha \in [-\pi, 0] & \Rightarrow F(x) = -2\alpha
\end{cases}$$

comme $\alpha = \arcsin x$ alors

$$F(x) = \begin{cases} 2 \arcsin x & \text{si } x \in [0, 1] \\ -2 \arcsin x & \text{si } x \in [-1, 0] \end{cases} = 2 |\arcsin x| \text{ si } x \in [-1, 1]$$

Fonctions circulaires réciproques Fonction Arctangente

- ✓ La fonction tangente est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. Elle est continue, impaire et π -périodique.
- ✓ Sa restriction sur] $-\frac{\pi}{2}, \frac{\pi}{2}$ [est une fonction *continue et strictement croissante* et prend ses valeurs sur \mathbb{R} .
- ✓ Donc la fonction tan :] $-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow \mathbb{R} \ est \ bijective$. On peut donc définir sa fonction réciproque appelée Arctangente et notée

$$\arctan: \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

 \checkmark Ainsi la fonction arctan est continue et strictement croissante sur \mathbb{R} .

De plus, on a

$$y = \tan(x), \ x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff x = \arctan(y), \ y \in \mathbb{R}$$

87 / 111

Fonction Arctangente

D'où pour tout $y \in \mathbb{R}$

$$tan(arctan y) = y$$
.

et pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$,

$$\arctan(\tan x) = x.$$

✓ Comme la fonction $f(x) = \tan(x)$ est dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et sa dérivée ne s'annulle pas sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ alors sa fonction réciproque $f^{-1}(x) = \arctan(x)$ est dérivables sur $\mathbb R$ et on a pour tout $x \in \mathbb R$,

$$(\arctan)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}.$$

N.Mrhardy

Fonctions circulaires réciproques Fonction Arctangente

Propriétés

$$\forall x \in [-1, 1]; \quad \operatorname{arccos}(x) + \operatorname{arccos}(-x) = \pi$$

$$\forall x \in [-1, 1]; \quad \operatorname{arcsin}(x) + \operatorname{arccos}(x) = \frac{\pi}{2}$$

$$\forall x \in]0, +\infty[; \quad \operatorname{arctan}(x) + \operatorname{arctan}(\frac{1}{x}) = \frac{\pi}{2}$$

$$\forall x \in]-\infty, 0[; \quad \operatorname{arctan}(x) + \operatorname{arctan}(\frac{1}{x}) = \frac{-\pi}{2}$$

Fonctions circulaires réciproques

Propri'et'es

$$\forall x \in [-1, 1]; \quad \arccos(x) + \arccos(-x) = \pi$$

$$\forall x \in [-1, 1]; \quad \arcsin(x) + \arccos(x) = \frac{\pi}{2}$$

$$\forall x \in]0, +\infty[; \quad \arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$$

$$\forall x \in]-\infty, 0[; \quad \arctan(x) + \arctan(\frac{1}{x}) = \frac{-\pi}{2}$$

Preuve: On pose $f(x) = \arctan(x) + \arctan(\frac{1}{x})$.

Fonctions circulaires réciproques

Propriétés

$$\forall x \in [-1, 1]; \quad \operatorname{arccos}(x) + \operatorname{arccos}(-x) = \pi$$

$$\forall x \in [-1, 1]; \quad \operatorname{arcsin}(x) + \operatorname{arccos}(x) = \frac{\pi}{2}$$

$$\forall x \in]0, +\infty[; \quad \operatorname{arctan}(x) + \operatorname{arctan}(\frac{1}{x}) = \frac{\pi}{2}$$

$$\forall x \in]-\infty, 0[; \quad \operatorname{arctan}(x) + \operatorname{arctan}(\frac{1}{x}) = \frac{-\pi}{2}$$

Preuve: On pose $f(x) = \arctan(x) + \arctan(\frac{1}{x})$. On a f continue et dérivable sur $]0, +\infty[$ de plus

$$f'(x) = \frac{1}{1+x^2} + \frac{-1}{x^2} \frac{1}{1+\frac{1}{x^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

N.Mrhardy 90 / 1

Fonctions circulaires réciproques

Propriétés

$$\forall x \in [-1, 1]; \quad \operatorname{arccos}(x) + \operatorname{arccos}(-x) = \pi$$

$$\forall x \in [-1, 1]; \quad \operatorname{arcsin}(x) + \operatorname{arccos}(x) = \frac{\pi}{2}$$

$$\forall x \in]0, +\infty[; \quad \operatorname{arctan}(x) + \operatorname{arctan}(\frac{1}{x}) = \frac{\pi}{2}$$

$$\forall x \in]-\infty, 0[; \quad \operatorname{arctan}(x) + \operatorname{arctan}(\frac{1}{x}) = \frac{-\pi}{2}$$

Preuve: On pose $f(x) = \arctan(x) + \arctan(\frac{1}{x})$. On a f continue et dérivable sur $]0, +\infty[$ de plus

$$f'(x) = \frac{1}{1+x^2} + \frac{-1}{x^2} \frac{1}{1+\frac{1}{x^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

donc pour tout $x \in]0, +\infty[$, f(x) = c, en faisant tendre x vers $+\infty$, on trouve

$$c = \lim_{x \to +\infty} f(x) = \frac{\pi}{2}$$

• Montrer que pour tout x > 0, on a :

$$\arctan\left(rac{1}{2x^2}
ight) = \arctan\left(rac{x}{x+1}
ight) - \arctan\left(rac{x-1}{x}
ight).$$

N.Mrhardy 91 / 11

• Montrer que pour tout x > 0, on a :

$$\arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right).$$

Réponse. On pose

$$f(x) = \arctan\left(\frac{1}{2x^2}\right) - \arctan\left(\frac{x}{x+1}\right) + \arctan\left(\frac{x-1}{x}\right).$$

N.Mrhardy 91 / 1

Montrer que pour tout x > 0, on a :

$$\arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right).$$

Réponse. On pose

$$f(x) = \arctan\left(\frac{1}{2x^2}\right) - \arctan\left(\frac{x}{x+1}\right) + \arctan\left(\frac{x-1}{x}\right).$$

on a f continue dérivable sur \mathbb{R}^{+*} et

$$f'(x) = \frac{-4x}{4x^4 + 1} - \frac{1}{(x+1)^2 + x^2} + \frac{1}{(x-1)^2 + x^2}$$

$$= \frac{-4x}{4x^4 + 1} - \frac{1}{(2x^2 + 1) + 2x} + \frac{1}{(2x^2 + 1) - 2x}$$

$$= \frac{-4x}{4x^4 + 1} + \frac{4x}{(2x^2 + 1)^2 - 4x^2} = \frac{-4x}{4x^4 + 1} + \frac{4x}{4x^4 + 1} = 0$$

• Montrer que pour tout x > 0, on a :

$$\arctan\left(\frac{1}{2x^2}\right) = \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right).$$

Réponse. On pose

$$f(x) = \arctan\left(\frac{1}{2x^2}\right) - \arctan\left(\frac{x}{x+1}\right) + \arctan\left(\frac{x-1}{x}\right).$$

on a f continue dérivable sur \mathbb{R}^{+*} et

$$f'(x) = \frac{-4x}{4x^4 + 1} - \frac{1}{(x+1)^2 + x^2} + \frac{1}{(x-1)^2 + x^2}$$

$$= \frac{-4x}{4x^4 + 1} - \frac{1}{(2x^2 + 1) + 2x} + \frac{1}{(2x^2 + 1) - 2x}$$

$$= \frac{-4x}{4x^4 + 1} + \frac{4x}{(2x^2 + 1)^2 - 4x^2} = \frac{-4x}{4x^4 + 1} + \frac{4x}{4x^4 + 1} = 0$$

donc $f'(x)=0, \ \forall x>0$, d'où $f(x)=c, \ \forall x>0$. Or pour x=1, on a $f(1)=0 \Longrightarrow c=0$ ce qui donne

$$f(x) = 0, \quad \forall x > 0$$

N.Mrhardy 91 /

• En déduire une expression de :

$$S_n = \sum_{k=1}^n \arctan\left(rac{1}{2k^2}
ight) \quad ext{et calculer} \quad \lim_{n o +\infty} S_n.$$

N.Mrhardy 92 / 11:

• En déduire une expression de :

$$S_n = \sum_{k=1}^n \arctan\left(rac{1}{2k^2}
ight)$$
 et calculer $\lim_{n o +\infty} S_n$.

Réponse. D'après la question précédente; on peut écrire

$$S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right) = \sum_{k=1}^n \arctan\left(\frac{k}{k+1}\right) - \arctan\left(\frac{k-1}{k}\right).$$

N.Mrhardy 92 / 111

En déduire une expression de :

$$S_n = \sum_{k=1}^n \operatorname{arctan}\left(rac{1}{2k^2}
ight) \quad ext{et calculer} \quad \lim_{n o +\infty} S_n.$$

Réponse. D'après la question précédente; on peut écrire

$$S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right) = \sum_{k=1}^n \arctan\left(\frac{k}{k+1}\right) - \arctan\left(\frac{k-1}{k}\right).$$

donc

$$S_n = \arctan\left(\frac{1}{2}\right) - \arctan\left(0\right) + \arctan\left(\frac{2}{3}\right) - \arctan\left(\frac{1}{2}\right)$$

$$\dots + \arctan\left(\frac{n}{n+1}\right) - \arctan\left(\frac{n-1}{n}\right)$$

N.MRHARDY 92 / 111

• En déduire une expression de :

$$S_n = \sum_{k=1}^n \arctan\left(rac{1}{2k^2}
ight) \quad ext{et calculer} \quad \lim_{n o +\infty} S_n.$$

Réponse. D'après la question précédente; on peut écrire

$$S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right) = \sum_{k=1}^n \arctan\left(\frac{k}{k+1}\right) - \arctan\left(\frac{k-1}{k}\right).$$

donc

$$S_n = \arctan\left(\frac{1}{2}\right) - \arctan\left(0\right) + \arctan\left(\frac{2}{3}\right) - \arctan\left(\frac{1}{2}\right)$$

$$\dots + \arctan\left(\frac{n}{n+1}\right) - \arctan\left(\frac{n-1}{n}\right)$$

d'où, en simplifiant, on obtient

$$S_n = \arctan\left(\frac{n}{n+1}\right) \Longrightarrow \lim_{n \to +\infty} S_n = \frac{\pi}{4}$$

N.Mrhardy 92 /

Fonctions hyperboliques

Cosinus hyperbolique/sinus hyperbolique

Définition

On appelle cosinus hyperbolique noté (cosh ou ch) et sinus hyperbolique noté (sinh ou sh) les fonctions définies sur \mathbb{R} respectivement par

$$\cosh x = \frac{e^x + e^{-x}}{2}, \ \sinh x = \frac{e^x - e^{-x}}{2}$$

Fonctions hyperboliques

Cosinus hyperbolique/sinus hyperbolique

D'efinition

On appelle cosinus hyperbolique noté (cosh ou ch) et sinus hyperbolique noté (sinh ou sh) les fonctions définies sur $\mathbb R$ respectivement par

$$\cosh x = \frac{e^x + e^{-x}}{2}, \ \sinh x = \frac{e^x - e^{-x}}{2}$$

La fonction sinh est impaire et la fonction cosh est paire. Elles sont liées par les relations : $\forall x \in \mathbb{R}$

- $cosh(x) + sinh(x) = e^x$ et $cosh(x) sinh(x) = e^{-x}$
- $\cosh^2 x \sinh^2 x = e^x e^{-x}$ et donc

$$\cosh^2 x - \sinh^2 x = 1$$

Sinus hyperbolique

• La fonction sinh est dérivable sur $\mathbb R$ avec, pour tout $x \in \mathbb R$

$$\sinh'(x) = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = \cosh(x)$$

- Comme $\cosh(x) > 0$ pour tout x alors la fonction sinh est strictement croissante sur \mathbb{R} et s'annule en 0, donc elle est strictement négative sur \mathbb{R}_{+}^{*} et strictement positive sur \mathbb{R}_{+}^{*} .
- De plus on a : $\lim_{x \to \pm \infty} \sinh(x) = \lim_{x \to \pm \infty} \frac{e^x e^{-x}}{2} = \pm \infty$

N. MRHARDY

Sinus hyperbolique

N.Mrhardy 95 / 111

Cosinus hyperbolique

• La fonctions cosh est dérivable sur $\mathbb R$ avec, pour tout $x \in \mathbb R$

$$\cosh'(x) = \sinh(x)$$

- La fonction cosh est strictement croissante sur \mathbb{R}_+^* et strictement décroissante sur \mathbb{R}_+^* .
- De plus on a : $\lim_{x \to \pm \infty} \cosh(x) = \lim_{x \to \pm \infty} \frac{e^x + e^{-x}}{2} = +\infty$ et $\forall x \in \mathbb{R}, \cosh x \ge 1$.

Cosinus hyperbolique

N.Mrhardy 97 / 111

On appelle **tangente hyperbolique** notée tanh (ou th) la fonction définie sur \mathbb{R} sinh x $e^{x} - e^{-x}$

par
$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

N.Mrhardy 98 / 11

On appelle **tangente hyperbolique** notée tanh (ou th) la fonction définie sur \mathbb{R} par $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$

• La fonction tanh est impaire, continue et dérivable sur $\mathbb R$ de plus on a,

$$\tanh'(x) = \frac{\cosh^2(x) - \sinh^2(x)}{\cosh^2(x)} = \frac{1}{\cosh^2(x)} = 1 - \tanh^2(x); \quad \forall x \in \mathbb{R}$$

Par conséquent, th est strictement croissante sur $\mathbb R$ et s'annule en 0.

•
$$\lim_{x \to +\infty} \tanh x = \lim_{x \to +\infty} \frac{e^x}{e^x} \left(\frac{1 - e^{-2x}}{1 + e^{-2x}} \right) = 1$$
•
$$\lim_{x \to -\infty} \tanh x = \lim_{x \to -\infty} \frac{e^{-x}}{e^{-x}} \left(\frac{e^{2x} - 1}{e^{2x} + 1} \right) = -1$$

On appelle **tangente hyperbolique** notée tanh (ou th) la fonction définie sur \mathbb{R} par $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$

• La fonction tanh est impaire, continue et dérivable sur $\mathbb R$ de plus on a,

$$\tanh'(x) = \frac{\cosh^2(x) - \sinh^2(x)}{\cosh^2(x)} = \frac{1}{\cosh^2(x)} = 1 - \tanh^2(x); \quad \forall x \in \mathbb{R}$$

Par conséquent, th est strictement croissante sur $\mathbb R$ et s'annule en 0.

Elle admet donc en $\pm \infty$ une asymptote horizontale d'équation $y=\pm 1$.

X	$-\infty$	0	$+\infty$
th(x)			1
	-1		

N.Mrhardy 98 / 11

N.Mrhardy 99 / 111

N.Mrhardy 100 / 11

$$\sqrt{\sinh(x+y)} = \sinh x \cosh y + \cosh x \sinh y,$$

$$\sqrt{\sinh(x-y)} = \sinh x \cosh y - \cosh x \sinh y,$$

$$\sqrt{\cosh(x+y)} = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sqrt{\cosh(x-y)} = \cosh x \cosh y - \sinh x \sinh y,$$

$$\sqrt{\cosh(2x)} = 2\cosh^2 x - 1, \quad \sqrt{\sinh(2x)} = 2\cosh x \sinh x$$

$$\sqrt{\tanh(x\pm y)} = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}. \quad \sqrt{\tanh(2x)} = \frac{2\tanh x}{1 + \tanh^2 x}.$$

Preuve: On a par définition :

$$\sinh x \cosh y = \left(\frac{e^{x} - e^{-x}}{2}\right) \left(\frac{e^{y} + e^{-y}}{2}\right) = \frac{e^{x+y} - e^{-(x+y)} + e^{x-y} - e^{y-x}}{4}$$

N. Mrhardy

Preuve : On a par définition :

$$\sinh x \cosh y = \left(\frac{e^{x} - e^{-x}}{2}\right) \left(\frac{e^{y} + e^{-y}}{2}\right) = \frac{e^{x+y} - e^{-(x+y)} + e^{x-y} - e^{y-x}}{4}$$

$$\det \text{ même } \cosh x \sinh y = \frac{e^{x+y} - e^{-(x+y)} - e^{x-y} + e^{y-x}}{4}$$

N.Mrhardy 100 / 1

Preuve: On a par définition :

$$\sinh x \cosh y = \left(\frac{e^{x} - e^{-x}}{2}\right) \left(\frac{e^{y} + e^{-y}}{2}\right) = \frac{e^{x+y} - e^{-(x+y)} + e^{x-y} - e^{y-x}}{4}$$
de même
$$\cosh x \sinh y = \frac{e^{x+y} - e^{-(x+y)} - e^{x-y} + e^{y-x}}{4}$$
En sommant,
$$\sinh x \cosh y + \cosh x \sinh y = \frac{2e^{x+y} - 2e^{-(x+y)}}{4} = \sinh(x+y)$$

N.Mrhardy 100 / 1

Fonctions hyperboliques réciproques Fonction argument sinus hyperbolique

✓ La fonction sinh est une fonction *continue et strictement croissante* donc réalise une bijection de $\mathbb R$ vers $\mathbb R$. Sa bijection réciproque est appelée argument sinus hyperbolique et notée arg sinh. On a donc

$$x = \operatorname{arg\,sinh}(y) \Longleftrightarrow y = \sinh(x), \forall x, y \in \mathbb{R}$$

N.Mrhardy 101 / 111

Fonction argument sinus hyperbolique

✓ La fonction sinh est une fonction *continue et strictement croissante* donc réalise une bijection de $\mathbb R$ vers $\mathbb R$. Sa bijection réciproque est appelée argument sinus hyperbolique et notée arg sinh. On a donc

$$x = \operatorname{arg\,sinh}(y) \Longleftrightarrow y = \sinh(x), \forall x, y \in \mathbb{R}$$

✓ La fonction \sinh est dérivable $\sup \mathbb{R}$ et sa dérivée ne s'annulle pas $\sup \mathbb{R}$ alors sa fonction réciproque $\arg \sinh x$ est aussi dérivable $\sup \mathbb{R}$ et on a

$$(\operatorname{arg\,sinh})'(x) = \frac{1}{\sqrt{1+x^2}}, \quad \forall x \in \mathbb{R}$$

Fonction argument sinus hyperbolique

✓ La fonction sinh est une fonction continue et strictement croissante donc réalise une bijection de $\mathbb R$ vers $\mathbb R$. Sa bijection réciproque est appelée argument sinus hyperbolique et notée arg sinh. On a donc

$$x = \operatorname{arg\,sinh}(y) \Longleftrightarrow y = \sinh(x), \forall x, y \in \mathbb{R}$$

✓ La fonction \sinh est dérivable $\sup \mathbb{R}$ et sa dérivée ne s'annulle pas $\sup \mathbb{R}$ alors sa fonction réciproque $\arg \sinh x$ est aussi dérivable $\sup \mathbb{R}$ et on a

$$(\arg\sinh)'(x) = \frac{1}{\sqrt{1+x^2}}, \quad \forall x \in \mathbb{R}$$

En effet, si on note $f(x) = \sinh(x)$ alors

$$(\arg\sinh)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cosh(\arg\sinh x)}$$

Fonction argument sinus hyperbolique

✓ La fonction sinh est une fonction *continue et strictement croissante* donc réalise une bijection de $\mathbb R$ vers $\mathbb R$. Sa bijection réciproque est appelée argument sinus hyperbolique et notée arg sinh. On a donc

$$x = \operatorname{arg\,sinh}(y) \Longleftrightarrow y = \sinh(x), \forall x, y \in \mathbb{R}$$

✓ La fonction sinh est dérivable sur $\mathbb R$ et sa dérivée ne s'annulle pas sur $\mathbb R$ alors sa fonction réciproque arg sinh x est aussi dérivable sur $\mathbb R$ et on a

$$(\arg\sinh)'(x) = \frac{1}{\sqrt{1+x^2}}, \quad \forall x \in \mathbb{R}$$

En effet, si on note $f(x) = \sinh(x)$ alors

$$(\arg\sinh)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cosh(\arg\sinh x)}$$

or $\cosh^2(\arg\sinh x) - \sinh^2(\arg\sinh x) = 1 \Longrightarrow \cosh(\arg\sinh x) = \sqrt{1+x^2}$

Fonctions hyperboliques réciproques Fonction argument sinus hyperbolique

Exercice (TD). Simplifier l'expression :

sinh(2 arg sinh x)

N.Mrhardy 103 / 113

Exercice (TD). Simplifier l'expression :

sinh(2 arg sinh x)

Réponse. On a

sinh(2 arg sinh x) = 2 sinh(arg sinh x) cosh(arg sinh x)

N.Mrhardy 103 / 11

Exercice (TD). Simplifier l'expression :

Réponse. On a

$$sinh(2 arg sinh x) = 2 sinh(arg sinh x) cosh(arg sinh x)$$

Or
$$\sinh(\arg\sinh x) = x$$
 et $\cosh(\arg\sinh x) = \sqrt{1 + \sinh^2(\arg\sinh x)} = \sqrt{1 + x^2}$ donc
$$\sinh(2\arg\sinh x) = 2x\sqrt{1 + xx^2}$$

N.Mrhardy 103 / 11:

Fonctions hyperboliques réciproques Fonction argument cosinus hyperbolique

✓ La fonction cosh est une fonction *continue et strictement croissante* donc réalise une bijection de $[0, +\infty[$ vers $[1, +\infty[$. Sa bijection réciproque est appelée argument cosinus hyperbolique et notée arg cosh. On a donc

$$x = \operatorname{arg} \cosh(y), \ \forall y \in [1, +\infty[\iff y = \cosh(x), \forall x \in [0, +\infty[$$

N.Mrhardy 104 / 11

Fonction argument cosinus hyperbolique

✓ La fonction cosh est une fonction *continue et strictement croissante* donc réalise une bijection de $[0, +\infty[$ vers $[1, +\infty[$. Sa bijection réciproque est appelée argument cosinus hyperbolique et notée arg cosh. On a donc

$$x = \operatorname{arg} \cosh(y), \ \forall y \in [1, +\infty[\iff y = \cosh(x), \forall x \in [0, +\infty[$$

✓ La fonction cosh est dérivable sur $[0, +\infty[$ et sa dérivée ne s'annulle pas sur $]0, +\infty[$; alors sa fonction réciproque arg cosh x est dérivable sur $]1, +\infty[$ et on a

$$(\operatorname{arg cosh})'(x) = \frac{1}{\sqrt{x^2 - 1}}, \quad \forall x \in]1, +\infty[$$

N.Mrhardy 104 / 11

Fonctions hyperboliques réciproques Fonction argument cosinus hyperbolique

N.Mrhardy 105 / 11

Fonction argument tangente hyperbolique

✓ La fonction tanh est une fonction continue et strictement croissante donc réalise une bijection de \mathbb{R} vers]-1,1[. Sa bijection réciproque, appelée argument tangente hyperbolique et notée arg tanh. On a donc

$$x = \operatorname{argtanh}(y), \ \forall y \in]-1,1[\Longleftrightarrow y = \operatorname{tanh}(x), \forall x \in \mathbb{R}$$

✓ La fonction tanh est dérivable sur $\mathbb R$ et sa dérivée ne s'annulle pas sur $\mathbb R$ alors sa fonction réciproque arg tanh est dérivable sur]-1,1[et on a

$$(\arg \tanh)'(x) = \frac{1}{1-x^2}, \quad \forall x \in]-1,1[$$

Fonctions hyperboliques réciproques Fonction argument tangente hyperbolique

$$arg \tanh x = arg \cosh \frac{1}{x}$$

Réponse. L'équation est bien définie pour tout x vérifiant,

$$x \in]-1,1[, \frac{1}{x} \in [1,+\infty[\text{ et } x \neq 0 \Longleftrightarrow x \in]0,1[$$

$$arg \tanh x = arg \cosh \frac{1}{x}$$

Réponse. L'équation est bien définie pour tout x vérifiant,

$$x \in]-1,1[, \frac{1}{x} \in [1,+\infty[\text{ et } x \neq 0 \iff x \in]0,1[$$

En appliquant la fonction cosh des deux côté de l'équation on trouve

$$\cosh\left(\arg\cosh\frac{1}{x}\right)=\cosh\left(\arg\tanh x\right)$$

$$\arg\tanh x = \arg\cosh\frac{1}{x}$$

Réponse. L'équation est bien définie pour tout x vérifiant,

$$x \in]-1,1[, \frac{1}{x} \in [1,+\infty[\text{ et } x \neq 0 \Longleftrightarrow x \in]0,1[$$

En appliquant la fonction cosh des deux côté de l'équation on trouve

$$\cosh\left(\arg\cosh\frac{1}{x}\right) = \cosh\left(\arg\tanh x\right)$$

or on a
$$\cosh^2(t) = \frac{1}{1 - \tanh^2(t)}$$

$$\arg\tanh x = \arg\cosh\frac{1}{x}$$

Réponse. L'équation est bien définie pour tout x vérifiant,

$$x \in]-1,1[, \frac{1}{x} \in [1,+\infty[\text{ et } x \neq 0 \Longleftrightarrow x \in]0,1[$$

En appliquant la fonction cosh des deux côté de l'équation on trouve

$$\cosh\left(\arg\cosh\frac{1}{x}\right)=\cosh\left(\arg\tanh x\right)$$

or on a
$$\cosh^2(t) = \frac{1}{1 - \tanh^2(t)}$$
 donc

$$\frac{1}{x} = \frac{1}{\sqrt{1 - \tanh^2\left(\operatorname{arg}\tanh x\right)}} \Longleftrightarrow \frac{1}{x} = \frac{1}{\sqrt{1 - x^2}}$$

$$\arg\tanh x = \arg\cosh\frac{1}{x}$$

Réponse. L'équation est bien définie pour tout x vérifiant,

$$x \in]-1,1[, \frac{1}{x} \in [1,+\infty[\text{ et } x \neq 0 \Longleftrightarrow x \in]0,1[$$

En appliquant la fonction cosh des deux côté de l'équation on trouve

$$\cosh\left(\arg\cosh\frac{1}{x}\right)=\cosh\left(\arg\tanh x\right)$$

or on a
$$\cosh^2(t) = \frac{1}{1 - \tanh^2(t)}$$
 donc

$$\frac{1}{x} = \frac{1}{\sqrt{1 - \tanh^2\left(\operatorname{arg}\tanh x\right)}} \Longleftrightarrow \frac{1}{x} = \frac{1}{\sqrt{1 - x^2}}$$

ce qui donne
$$x^2 = 1 - x^2 \Longleftrightarrow x = \pm \frac{\sqrt{2}}{2}$$

$$\arg \tanh x = \arg \cosh \frac{1}{x}$$

Réponse. L'équation est bien définie pour tout x vérifiant,

$$x \in]-1,1[, \frac{1}{x} \in [1,+\infty[\text{ et } x \neq 0 \Longleftrightarrow x \in]0,1[$$

En appliquant la fonction cosh des deux côté de l'équation on trouve

$$\cosh\left(\arg\cosh\frac{1}{x}\right)=\cosh\left(\arg\tanh x\right)$$

or on a
$$\cosh^2(t) = \frac{1}{1 - \tanh^2(t)}$$
 donc

$$\frac{1}{x} = \frac{1}{\sqrt{1 - \tanh^2(\arg\tanh x)}} \Longleftrightarrow \frac{1}{x} = \frac{1}{\sqrt{1 - x^2}}$$

ce qui donne
$$x^2 = 1 - x^2 \Longleftrightarrow x = \pm \frac{\sqrt{2}}{2}$$

l'ensemble de solutions est donc $S = \left\{ \frac{\sqrt{2}}{2} \right\}$

Fonctions hyperboliques réciproques Expression logarithmique

✓ Pour tout
$$x \in [1, +\infty[$$
,
$$\label{eq:argcosh} \arg \cosh x = \ln(x + \sqrt{x^2 - 1}).$$

Expression logarithmique

✓ Pour tout
$$x \in [1, +\infty[$$
,

$$\arg\cosh x = \ln(x + \sqrt{x^2 - 1}).$$

En effet, soit $x \in [1, +\infty[$. Posons $t = \arg \cosh x$. On a $x = \cosh t$ et $t \ge 0$.

N.Mrhardy 109 / 11:

Expression logarithmique

✓ Pour tout $x \in [1, +\infty[$,

$$\arg\cosh x = \ln(x + \sqrt{x^2 - 1}).$$

En effet, soit $x \in [1, +\infty[$. Posons $t = \arg \cosh x$. On a $x = \cosh t$ et $t \ge 0$. Comme $\cosh^2 t - \sinh^2 t = 1$, il en résulte que $\sinh t = \sqrt{x^2 - 1}$.

Expression logarithmique

✓ Pour tout $x \in [1, +\infty[$,

$$\arg\cosh x = \ln(x + \sqrt{x^2 - 1}).$$

En effet, soit $x \in [1, +\infty[$. Posons $t = \arg \cosh x$. On a $x = \cosh t$ et $t \ge 0$. Comme $\cosh^2 t - \sinh^2 t = 1$, il en résulte que $\sinh t = \sqrt{x^2 - 1}$. Par conséquent,

$$e^t = \cosh t + \sinh t = x + \sqrt{x^2 - 1}$$
 et $t = \ln(x + \sqrt{x^2 - 1})$.

Expression logarithmique

✓ Pour tout $x \in [1, +\infty[$,

$$\arg\cosh x = \ln(x + \sqrt{x^2 - 1}).$$

En effet, soit $x \in [1, +\infty[$. Posons $t = \arg \cosh x$. On a $x = \cosh t$ et $t \ge 0$. Comme $\cosh^2 t - \sinh^2 t = 1$, il en résulte que $\sinh t = \sqrt{x^2 - 1}$. Par conséquent,

$$e^t = \cosh t + \sinh t = x + \sqrt{x^2 - 1}$$
 et $t = \ln(x + \sqrt{x^2 - 1})$.

✓ Pour tout $x \in \mathbb{R}$.

$$\arg \sinh x = \ln(x + \sqrt{1 + x^2}).$$

Expression logarithmique

✓ Pour tout $x \in [1, +\infty[$,

$$\arg\cosh x = \ln(x + \sqrt{x^2 - 1}).$$

En effet, soit $x \in [1, +\infty[$. Posons $t = \arg \cosh x$. On a $x = \cosh t$ et $t \ge 0$. Comme $\cosh^2 t - \sinh^2 t = 1$, il en résulte que $\sinh t = \sqrt{x^2 - 1}$. Par conséquent,

$$e^t = \cosh t + \sinh t = x + \sqrt{x^2 - 1}$$
 et $t = \ln(x + \sqrt{x^2 - 1})$.

✓ Pour tout $x \in \mathbb{R}$,

$$\arg \sinh x = \ln(x + \sqrt{1 + x^2}).$$

✓ Pour tout $x \in]-1,1[$,

$$\operatorname{arg\,tanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

$$f(x) = \operatorname{arg\,sinh}\left(\frac{x^2 - 1}{2x}\right)$$

$$f(x) = \arg \sinh \left(\frac{x^2 - 1}{2x} \right)$$

Donner l'expression de f en fonction de la fonction ln.

En effet, on sait que pour tout $x \in \mathbb{R}$

$$\arg\sinh(x) = \ln(x + \sqrt{1 + x^2})$$

donc

$$f(x) = \ln\left(\frac{x^2 - 1}{2x} + \sqrt{1 + \left(\frac{x^2 - 1}{2x}\right)^2}\right) = \ln\left(\frac{x^2 - 1}{2x} + \frac{x^2 + 1}{2|x|}\right)$$

$$f(x) = \arg \sinh \left(\frac{x^2 - 1}{2x} \right)$$

• Etudier la continuité et la dérivabilité de f

En effet, on $x \longrightarrow \arg \sinh(x)$ est continue dérivable sur \mathbb{R} et $x \longrightarrow \frac{x^2-1}{2x}$ est continue dérivable sur \mathbb{R}^* donc f est continue dérivable sur \mathbb{R}^* .

$$f(x) = \arg \sinh \left(\frac{x^2 - 1}{2x} \right)$$

• Calculer la dérivée de f. En déduire l'expression de f obtenu dans la première question.

En effet, soit $x \in \mathbb{R}^*$

$$f'(x) = \frac{x^2 + 1}{2x^2} \frac{1}{\sqrt{1 + \left(\frac{x^2 - 1}{2x}\right)^2}} = \frac{x^2 + 1}{2x^2} \frac{2|x|}{x^2 + 1} = \frac{1}{|x|}$$

donc si x > 0

$$f'(x) = \frac{1}{x} \Longrightarrow f(x) = \ln(x)$$

si x < 0

$$f'(x) = \frac{-1}{x} \Longrightarrow f(x) = -\ln(-x)$$

Il est facile de vérifier que c'est la même expression trouvé dans la première question.

Fin

N.Mrhardy 111 / 111