PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-216871

(43)Date of publication of application: 29.08.1990

(51)Int.Cl.

H01L 29/784

(21)Application number: 01-037650

FUJI ELECTRIC CO LTD

(22)Date of filing:

17.02.1989

(72)Inventor: **FUJISAWA NAOTO**

(54) POWER MOSFET

(57)Abstract:

PURPOSE: To obtain a power MOSFET having a small ON resistance and a fast switching speed by forming an oxide film by a LOCOS method, forming the thickness of the thick oxide film to a specific value or less, and forming a dense oxide film thin on a channel forming part and thick on a region therebetween. CONSTITUTION: A channel layer 3 is covered with a mask of a nitride film, a drain layer 2 between the channel layers is etched, and a thick oxide film 53 is formed by high temperature oxidation. Then, the nitride film is removed, and a gate oxide film 51 is similarly formed by a high temperature oxidation. Thereafter, a gate electrodes 6 is formed of polysilicon, etc., and covered with a CVD oxide film 52 to insulate between the gate and a source. The formations of a source electrode 7 and a drain electrode 8 are similarly to a conventional method. If the thickness of the film 52 on the layer 2 is so limited as to become 4000Å or less in this MOSFET, when the thickness of the film 51 is 1000Å, for example, in 500V breakdown strength n-channel MOSFET, the rise of an ON resistance may be limited to approx. 10% as compared with the case that the thickness of the oxide film is uniform.

19日本国特許庁(JP) 10特許出願公開

② 公開特許公報(A) 平2-216871

30Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)8月29日

H 01 L 29/784

8422-5F H 01 L 29/78

3 2 1 G

審査請求 未請求 請求項の数 1 (全3頁)

会発明の名称 パワーMOSFET

②特 願 平1-37650

②出 願 平1(1989)2月17日

藤 沢 ⑩発 明 者

尚 登

神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会

社内

富士電機株式会社 の出 願 人

神奈川県川崎市川崎区田辺新田1番1号

個代 理 人 弁理士 山口 巖

1. 発明の名称 パワーMOSFET

2. 特許請求の範囲

1)半導体基板の第一導電形のドレイン層の表面部 に間隔を置いて二つの第二導電形のチャネル層を 有し、そのチャネル層の表面部にそれぞれ選択的 にソース層が形成され、チャネル層のドレイン層 とソース層の間の上には薄い酸化膜、チャネル層 相互間の上には厚い酸化膜を介してゲート電極が 設けられるものにおいて、酸化膜はLOCOS法 により形成され、厚い酸化製の厚さが4000人以下 であることを特徴とするパワーMOSFBT。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、半導体基板の表面上にMOS構造を 有し、その面にソース電極を基板の裏面にドレイ ン電極を有するパワーMOSFBTに関する。

(従来の技術)

パワーMOSFETの単一セルは第2図に示す ような構造を有し、N・層!の上に積層されたド レイン層2の表面部に間隔を置いてP形チャネル 眉3が形成され、さらにそのチャネル層3の衰菌 部に選択的にN゚ソース層4が形成されている。 このソース層もとN屋2の間のチャネル層にチャ ネル (Nチャネル) が生ずるように、その上にゲ - ト酸化膜51を介してポリシリコンなどからなる ゲート電極 6 が設けられ、その上を酸化膜 52が 獲 う。さらに、この酸化膜52を度い、ソース層 4 の 一部分とチャネル層3の一部分に接触するソース 電極了が形成されている。裏面側のN・層にはド レイン電極8が接触している。

(発明が解決しようとする課題)

このようなパワーMOSFETにはゲート電極 6 と半導体基板との間に酸化膜が存在するのでソ - ス電極 7 とゲート電極 6 の間およびドレイン電 揺 8 とゲート電程 6 の間に容量が存在し、資容量 が直列に、そして半導体基板内の接合容量と並列 にソース電極7とドレイン電極8の間に入る。パ ワーMOSPETのスイッチング速度は容量の充 放電速度で決まり、容量が高くなるとスイッチン

特開平2-216871 (2)

グ速度が遅くなるから、高周波スイッチングの場 合は容量の低減が必要である。しかしチャネル形 成部の上の酸化膜厚を厚くするとオン抵抗が高く なるというトレードオフの関係がある。この関係 を打破するため、第3回に示すように、ゲート電 極 6 を逆 U 字状にしチャネル形成部の上以外に酸 化膜の厚い部分53を形成する。あるいは第4回の ようにゲート電極6を二つに分けその間を厚い酸 化膜53で埋める。しかし第3回に示す方法も第4 図に示す方法も厚い酸化膜53を買いゲート酸化膜 51成膜後CVD法により堆積させねばならず、級 密で厚さの精度の高い酸化膜が得られず、オン抵 抗が高くなりがちである。

本発明の目的は、上述の欠点を除去し、緻密な 酸化酸でチャネル形成部上は薄くその間の領域で は厚い酸化酸を形成し、オン抵抗が小さくスイッ チング速度の速いパワーMOSFETを提供する ことにある.

(課題を解決するための手段)

上述の目的を達成するために、本発明は、半導

ネル層3の上を変化膜のマスクで覆い、チャネル 層間のドレイン階2をエッチングしたのち高温酸 化により厚い酸化膜53を形成する。 変化膜マスク はこの高温酸化学圏気中で十分な耐性をもつ。酸 化膜53の膜厚は加熱時間および温度により調整す る。次いで変化膜を除去し、同様に高温酸化でゲ ート酸化膜51を形成する。その後ポリシリコンな とでゲート電極6を形成し、その上をゲート。ソ - ス間絶疑のための C V D 酸化 駅 52 で 渡う。 ソー ス電極で、ドレイン電極8の形成は従来と同様で ある。このMOSFETでドレイン層 2 の上の酸 化酸53の厚さか4000A以下になるように限定する と、例えば500 V耐圧のnチャネルMOSPET でゲート酸化膜51の厚さを1000人とした場合、第 2回のように酸化膜の厚さが一様である場合に比 してオン抵抗の上昇を1割程度に留めることがで き、かつソース・ドレイン電極間の容量を《新程 度下げられることが計算の上で明らかである。

(発明の効果)

本発明によれば、酸化膜の形成にLOCOS法

体基板の第一課電形のドレイン層の要面部に間隔 を置いて二つの第二導電形のチャネル層を有し、 そのチャネル層の裏面部にそれぞれ選択的にソー ス層が形成され、チャネル層のドレイン層とソー ス層の間の上には薄い酸化膜、チャネル層相互間 の上には厚い酸化酸を介してゲート電極が設けら れるパワーMOSFETにおいて、酸化膜はLO COS法により形成され、厚い酸化酸の厚さが 4000人以下であるものとする。

(作用)

LOCOS独によって酸化膜を形成するので、 ドレイン層の上に形成される厚い皴化膜も緻密で 厚さの精度が高く、その厚さを4000人以下と規定 することによりオン抵抗の上昇を抑え、かつドレ イン電極とゲート電極間の容量を適度に小さくす ることができる。

(実施例)

第1回は本発明の一実施例のNチャネルパワー MOSFETを示し、第2回、第3回と共通の部 分は同一の符号が付されている。この場合はチャ

を用いることにより、ドレイン層とゲート電極の 間の酸化膜を緻密でかつ4000人以下の所定の厚さ に制御することができ、オン抵抗の上昇を抑制し てソース・ドレイン電極間容量を低減し、スイッ チング速度の違いMOSFETを得ることができ る。もちろん、PチャネルパワーMOSFETに おいても同様の効果が得られる。

4. 図面の簡単な説明

第1回は本発明の一実施例のパワーMOSFE Tの単一セルの断面図、第2回は従来のパワーM OSFETの単一セルの新聞図、第3図,第4図 はそれぞれ異なる従来のパワーMOSFETの単 ーセルの断面図である。

2:ドレイン層、3:チャネル層、4:ソース 層、51: ゲート酸化膜、52: 被度酸化膜、53: 厚 い酸化膜、6:ゲート電極、1:ソース電極、 8:ドレイン電極。

特開平2-216871 (3)

