Custom modelling of packed distillation column using DWSIM and Python

Devosmita Sen, 170020021

4th Year Undergraduate

Department of Chemical Engineering, IIT Bombay

Description:

This project aims to model a packed distillation column using Python and DWSIM. Given certain combinations of necessary input parameters, the column height and diameter is predicted.

Model equations:

1. Determination of the column height

The theoretical stage method (Concept of HETP) is used for calculating the height of column. [1,2,9,10]

The height of the packing is calculated by

H=HETP*n

where,

n=number of theoretical stages (determined by the McCabe-Thiele method)

HETP=height Equivalent of a Theoretical Plate

H=height of the packing

The value of the HETP can be determined by the modified Granville equation [3,11]

$$HETP = 28 \cdot d_p \cdot m_a \cdot \frac{V}{L} \cdot \left(\frac{H}{2.4}\right)^{1/3}$$

Where,

 d_p = diameter of the packing (m)

 m_a = average slope of the equilibrium curve

V= molar vapor flow rate (mol/s)

L= molar liquid flow rate (mol/s)

$$\mathbf{m_a} = \frac{\sum_{i=1}^{n} m_i}{n}$$

where m_i is the local slope of the equilibrium curve at theoretical plate i

2. Determination of column diameter [4,5]

$$\Delta p = \alpha (10^{\beta L'}) (\frac{G'^2}{\rho_G})$$

$$\frac{L'}{G'} \frac{lb/(s-ft^2)}{lb/(s-ft^2)} = \frac{L}{V} \frac{\frac{mol}{s}}{\frac{mol}{s}} \frac{(MW \text{ liquid } \frac{lb}{mol})}{(MW \text{ vapor } \frac{lb}{mol})}$$

$$Area = \frac{(V \frac{lbmol}{s})(M.W. vapor \frac{lb}{lbmol})}{G' \frac{lb}{sft^2}}$$

Diameter =
$$(\frac{4 \text{ Area}}{\pi})^{1/2}$$

Where,

 Δp : pressure drop across column

α,β: packing parameters

L': mass flow rate of liquid (lb/ft²s)

G': mass flow rate of vapor (lb/ft²s)

L: molar flow rate of liquid (lbmol/s)

V: molar flow rate of vapor (lbmol/s)

 ρ_G : density of gas (lb/ft³)

3. Mole balance:

$$F=D+B$$

$$Fz=D*x_D+B*x_B$$

Where,

F: molar feed flow rate

D: molar distillate flow rate

B: molar bottoms flow rate

D: molar distillate flow rate

x_D: mole fraction in distillate

x_B: mole fraction in bottoms

z: mole fraction in feed

4. Energy balance:

 $H_{D0}\!\!=\!\!(D_0^*\!(x_{D0}^*\!Cp_0\!\!+\!\!x_{D1}^*\!Cp_1)^*\!(T_{D0}\!\!-\!\!T_{F0})\!\!+\!\!H_{F0}^{})\!/D_0$

 $H_{B0}\!\!=\!\!(B_0^*\!(x_{B0}^*\!C_{p0}\!\!+\!x_{B1}^*\!Cp_1)^*\!(T_{B0}\!\!-\!T_{F0})\!\!+\!H_{F0})\!/B_0$

Where,

H: enthalpy

x: mole fraction

Cp: specific enthalpy

T: temperature

Subscript 0 indicates component 1

Subscript 1 indicates component 2

5. Equilibrium equations:

$$y = \frac{\alpha x}{1 + (\alpha - 1)x}$$

where α : relative volatility

6. Input choices:

1: distillate flow, x_D rate given

2: distillate flow rate, x_B given

3: bottoms flow rate, x_D given

4: bottoms flow rate, x_B given

5: flow split_dist, x_D given

6: flow split_dist, x_B given

7: flow split_bottom, x_D given

8: flow split_bottom, x_B given

Basic flow scheme of code:

User selects compounds

User specifies feed flow rate, composition and degree of saturation, diameter of packing, packing parameters, pressure drop accross column

User inputs choice

User enters the values of variables according to the selected choice

The unknown variables (flowrate, enthalpy, are calculated from code)

The equivalent number of stages is calculated by the function 'McCabeThiele'

The height is calculated using correlation (Granville Equation)

The non-linear equation governing the vapour flux is solved using the function 'newtonRaphson' [12,13]

Corresponding area is calculated, which in turn gives the diameter of the column

Results:

<u>Distillation parameters:</u> F=1000 mol/s, z=0.4 Benzene-Toluene mixture

choice=1

D=405

x_D=0.98

Packing parameters:

 $\alpha = 0.52$

 $\beta = 0.16$

 $d_p=25 \text{ mm}$

Solver settings:

Flash algorithm: Nested loops (VLE)

Property package: Soave-Redlich-Kwong (SRK)

Flash specification: Pressure and Enthalpy

Results from simulation:

Equivalent number of stages = 22

Height of column = 7.777 m

Diameter of column = 2.430m

The code has been run over multiple testcases to validate its results. Some of the most crucial testcases, which helped to verify the correctness of the code and validate it, are presented here.

The components of distillation for the following testcases are –benzene and toluene. The pressure drop in the column is 0.5 inches of water per foot.

F (mol/s)	Z	Choic e	D (mol/s)	B (mol/s	Flow split- D	Flow split- B	x_D	x_B	α	β	$\frac{R_{\text{factor}}}{R} = \frac{R}{R_{min}}$	d _p (mm)	Equivalent number of stages	Height (m)	Diameter (m)	Comments
1000	0.4	1	405				0.98		0.52	0.16	1.2	25	22	7.78	2.43	Shows a general
1000	0.4	2	405					0.01	0.52	0.16	1.2	25	20	6.72	2.41	consistency w.r.t to
1000	0.4	3		600			0.98		0.52	0.16	1.2	25	20	6.79	2.42	typical values of
1000	0.4	4		600				0.01	0.52	0.16	1.2	25	22	7.83	2.43	height and diameter
1000	0.4	5			0.4		0.98		0.52	0.16	1.2	25	20	6.79	2.42	of distillation
1000	0.4	6			0.4			0.01	0.52	0.16	1.2	25	22	7.83	2.43	columns used in a
1000	0.4	7				0.6	0.98		0.52	0.16	1.2	25	20	6.79	2.42	small chemical
1000	0.4	8				0.6		0.01	0.52	0.16	1.2	25	22	7.83	2.43	plant [1,4,5]
3500	0.4	1	1400	0.97					0.52	0.16	1.5	17	15	2.78	4.84	Reference: [5] (motivated from Example problem 12.4-1, pg 368) These two testcases show the
3500	0.4	2	1400		0.02				0.52	0.16	1.5	17	15	2.78	4.84	consistency of the python code. The input values in the two testcases correspond to the same set of parameters, ie. D=1400, B=2100, x_D=0.97, x_B=0.02
1000	0.4	1	500	0.98							1.2	25	INVALID INPUT!			Component mole balance not satisfied
1000	0.4	1	400	0.62							1.2	25	IN	VALID INPUT	Slope of operating line of rectification section is negative, hence R _{min} is negative, Hence, this input is not valid.	
1000	0.5	1	500				0.99 99		0.52	0.16	1.5	25.4	35	15.9	2.73	When a very pure distillate is required, then the number of stages and thus the height if the column is high

Detailed explanation of the function 'McCabeThiele' [6,14,15]

This is the master function used for calculating the theoretical number of stages

It performs the McCabe-Thiele construction in order to calculate the number of stages

INPUTS:

PaVap :Vapour pressure of component a (more volatile)

PbVap :Vapour pressure of component b (less volatile)

R_factor : Amount Rmin is scaled by to obtain the actual reflux ratio

- xf :Feed composition
- xd :Distillate composition
- xb :Bottoms composition
- q :Liquid fraction of feed

OUTPUTS:

Equivalent number of stages, actual reflux ratio

Basic flow-scheme: [6,7,8,16,17]

- 1. Getting equilibrium data
- 2. Finding where the q-line intersects the equilibrium curve (by solving quadratic)
- 3. Find out where q line intersects the operating line
- 4. Step down the stages through the rectification section, update the number of steps as soon as one step is complete
- 5. Step down the stages through the stripping section
- 6. Note: steps 4 and 5 get reversed if the bottoms composition is specified
- 7. Continue stepping until the desired concentration is achieved

References

- 1. Che.utah.edu. 2020. [online] Available at:
- https://www.che.utah.edu/~ring/Design%20I/Articles/distillation%20design.pdf [Accessed 5 December 2020].
- 2. Ceng.tu.edu.iq. 2020. [online] Available at:
- https://ceng.tu.edu.iq/ched/images/lectures/chem-

lec/st4/c1/EQUIPMENT_DESIGN_LECTURE_25%20mass%20transfer%20equipment%203.pd f> [Accessed 5 December 2020].

- 3. Kkft.bme.hu. 2020. [online] Available at:
- http://kkft.bme.hu/attachments/article/101/packed.pdf [Accessed 5 December 2020].
- 4. Wankat, P. C., 2012. Separation Process Engineering, 3rd ed., Prentice Hall. Chapter 10, 16
- 5. Cussler, E. L., 2007. *Diffusion mass transfer in fluid systems*, 3rd ed., Cambridge University Press, Chapter 10, 12, 13
- 6. GitHub. 2020. *Tomrsavage/Mccabethiele*. [online] Available at: https://github.com/TomRSavage/McCabeThiele> [Accessed 5 December 2020].

- 7. Tbc-python.fossee.in. 2020. *Chapter11*. [online] Available at: [Accessed 5 December 2020].
- 8. Mathias, P., 2020. *Reactions And Separations*. [online] Pdfs.semanticscholar.org. Available at: https://pdfs.semanticscholar.org/cd70/fc914e8f13ca3e2f7e6789b2b117ee3b9782.pdf [Accessed 5 December 2020].
- 9. Slideshare.net. 2020. *Design Of Packed Columns*. [online] Available at: https://www.slideshare.net/alsyourih/design-of-packed-columns> [Accessed 5 December 2020].
- 10. Neutrium.net. 2020. *Distillation Fundamentals | Neutrium*. [online] Available at: https://neutrium.net/unit-operations/distillation-fundamentals/ [Accessed 5 December 2020].
- 11. Orlando Jr., A., Medina, L., Mendes, M. and Nicolaiewsky, E., 2009. HETP evaluation of structured packing distillation column. *Brazilian Journal of Chemical Engineering*, 26(3), pp.619-633.
- 12. 2020. [online] Available at: https://www.extremeoptimization.com/QuickStart/IronPython/NonlinearSystems.aspx [Accessed 5 December 2020].
- 13. GeeksforGeeks. 2020. *Program For Newton Raphson Method Geeksforgeeks*. [online] Available at: https://www.geeksforgeeks.org/program-for-newton-raphson-method/ [Accessed 5 December 2020].
- 14. Neutrium.net. 2020. *Distillation Fundamentals | Neutrium*. [online] Available at: https://neutrium.net/unit-operations/distillation-fundamentals/ [Accessed 5 December 2020].
- 15. Chemicalbook.com. 2020. *Benzene | 71-43-2*. [online] Available at: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB6854153.htm [Accessed 5 December 2020].
- 16. Demonstrations.wolfram.com. 2020. Enthalpy-Concentration Plot For A Benzene-Toluene Binary Mixture Wolfram Demonstrations Project. [online] Available at: https://demonstrations.wolfram.com/EnthalpyConcentrationPlotForABenzeneTolueneBinaryMixture/ [Accessed 5 December 2020].
- 17. Dwsim.inforside.com.br. 2020. [online] Available at: http://dwsim.inforside.com.br/docs/crossplatform/help/unitops.htm [Accessed 5 December 2020].