Accelerated Failure Time Model

Examples

Accelerated Failure Time (AFT) model

· AFT model assumes that

$$Y = \log(T) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \sigma \varepsilon.$$

• A different distribution of ε gives different regression model.

Distribution of $arepsilon$	Distribution of T
Extreme values	Weibull ($\sigma=1$ reduce to exponential)
Log-Gamma	Gamma
Logistic	Log-logistic
Normal	Log-normal

Exponential regression model

• The exponential model has the form

$$Y = \log(T) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \sigma \varepsilon,$$

- $-\sigma=0$
- $-\ \ \varepsilon \sim$ Standard extreme value distribution.
- What is the extreme value distribution?
 - If $T \sim Exp(1)$, then $\varepsilon = \log(T) \sim Standard \ EV$.
 - If $\varepsilon \sim Standard\ EV$, then $T = exp(\varepsilon) \sim Exp(1)$.
- Note that the extreme value random variable ε is not restricted to positive.

Standard extreme value distribution

Density of standard extreme value distribution $f(t) = \exp(t - \exp(t)).$

Exponential regression model

- The exponential model has the form
 - $Y = \log(T) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \sigma \varepsilon,$
 - $-\sigma=1$
 - $arepsilon \sim$ Standard extreme value distribution.
- The survival time
- $T\sim {\rm Exp}(\lambda)$ with constant hazard $\lambda=\exp\{-\beta_0-x^T\beta\}$. For the baseline survival time, $T_0\sim {\rm Exp}(\lambda_0)$ with constant hazard $\lambda_0=\exp\{-\beta_0\}$.

- Also a proportional hazard model

$$T_0 \sim \operatorname{Exp}(\lambda_0)$$
 with constant hazard $\lambda_0 =$ 0 a proportional hazard model
$$\frac{h(t|x)}{h_0(t)} = \frac{\exp[-\beta_0 - x^T \beta]}{\exp[-\beta_0]} = e^{-x^T \beta} = \frac{1}{\eta_x}$$
$$h_0(t) \text{ baseline hazard}$$
$$h(t|x) \text{ hazard function with covariate } x.$$
$$\eta_x = e^{x^T \beta}$$

Exponential regression model

Hazard functions

$$h(t \mid x) = h_0(t) \frac{1}{\eta_x}$$

Weibull regression model

- The Weibull regression model assumes that
 - $Y = \log(T) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \sigma \varepsilon$
 - $-\sigma$ is a unknown scale parameter
 - $\varepsilon\sim$ Extreme value distribution.
- Compared with Exponential regression, there is one additional unknown parameter σ .
- When σ =1, it reduces to Exponential regression.
- T~ Weibull (α, λ) with $\alpha = 1/\sigma, \lambda = \exp\{-\frac{\beta_0 + x^T \beta}{\sigma}\}$
- Again a proportional hazard model:

$$\frac{h(t|x)}{h_0(t)} = \frac{\alpha t^{\alpha-1} \exp\{-\frac{\beta_0 + x^T \beta}{\sigma}\}}{\alpha t^{\alpha-1} \exp\{-\frac{\beta_0}{\sigma}\}} = e^{-\frac{x^T \beta}{\sigma}}$$

Weibull regression model

Weibull regression model

In summary, the Weibull regression model has two interesting properties:

- $-h(t \mid \mathbf{x}) = h_0(t) \exp(-\mathbf{x}^T \boldsymbol{\beta} / \sigma)$: a proportion hazard model and covariates act multiplicatively on the hazard.
- $-T = T_0 \exp(\mathbf{x}^T \boldsymbol{\beta})$: an accelerated failure time model and covariates act multiplicatively on survival time.
- The Weibull model is the only one which yields both a proportional hazard model and an accelerated failure time model
- $\boldsymbol{-}$ The coefficients change signs in two models. why?

Summary

- Exponential and Weibull regression models
 - A popular parametric regression model
 - Both AFT model PH model
- Other parametric regression model such as log-logistic, log-normal and Gamma regressions.

_				
_				
_				