STOR 565 Homework

- 1. (Operations on convex functions that produce new convex functions.) Let $C \subseteq \mathbb{R}^d$ be a convex set and let $f_1, \ldots, f_n : C \to \mathbb{R}$ be convex functions. Use the definition of convexity to establish the following.
 - a. If a_1, \ldots, a_n are non-negative then $g(x) = \sum_{i=1}^n a_i f_i(x)$ is convex on C.
 - b. The function $g(x) = \max_{1 \le i \le n} f_i(x)$ is convex on C.
 - c. If $h : \mathbb{R} \to \mathbb{R}$ is convex and increasing then g(x) = h(f(x)) is convex on C. (Recall that h is increasing if $u \le v$ implies $h(u) \le h(v)$).
- 2. Use the second derivative condition to establish whether the following functions are convex or concave. In each case, sketch the function.
 - a. The function $f(x) = e^x$ on $(-\infty, \infty)$.
 - b. The function $f(x) = \sqrt{x}$ on $(0, \infty)$.
 - c. The function f(x) = 1/x on $(0, \infty)$.
 - d. The function $f(x) = \log x$ is on $(0, \infty)$.
- 3. Define the function $f(x) = x \log x$ for $x \in (0, \infty)$
 - a. Sketch the function f(x) and show that it is convex.
 - b. Find the minimum and argmin of f(x).
 - b. Let X > 0 be a random variable. What can you say about the relationship between $\mathbb{E}(X \log X)$ and $\mathbb{E}X \log \mathbb{E}X$?

4. Let P be a probability measure on a set \mathcal{X} . Recall that if A and B are subsets of \mathcal{X} and P(B) > 0, then the conditional probability of A given B is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Show the following.

- a. If A and B are disjoint then $P(A \cup B \mid C) = P(A \mid C) + P(B \mid C)$
- b. $P(A^c | B) = 1 P(A | B)$
- c. If $A \subseteq B$ then $P(A \mid C) \leq P(B \mid C)$
- 5. Let \mathcal{X} be a set and let A, B be subsets of \mathcal{X} . Recall that the indicator function of A is defined by

$$\mathbb{I}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \in A^c \end{cases}$$

- a. Show that $\mathbb{I}_{A^c} = 1 \mathbb{I}_A$.
- b. Show that $\mathbb{I}_A \mathbb{I}_B = \mathbb{I}_{B^c} \mathbb{I}_{A^c}$.
- c. Show that $\mathbb{I}_{A \cap B} = \mathbb{I}_A \mathbb{I}_B$.
- d. Let $u, v \in \{0, 1\}$. Show that $\mathbb{I}(u \neq v) = |\mathbb{I}(u = 1) \mathbb{I}(v = 1)|$. Hint: Consider separately the cases $\mathbb{I}(u \neq v) = 0$ and $\mathbb{I}(u \neq v) = 1$.
- 6. Let (X, Y) be a predictor-response pair with $X \in \mathcal{X}$ and $Y \in \{0, 1\}$. Suppose that \mathcal{X} is finite and that (X, Y) has joint probability mass function p(x, y).
 - a. Express the prior probabilities $\pi_0 = P(Y=0)$ and $\pi_1 = P(Y=1)$ in terms of p(x,y)
 - b. Express the class conditional pmf $p_0(x)$ of X given Y=0 in terms of p(x,y) and π
 - c. Express the class conditional pmf $p_1(x)$ of X given Y=1 in terms of p(x,y) and π
 - d. Show that the marginal pmf of X can be written as $p(x) = \pi_0 p_0(x) + \pi_1 p_1(x)$
 - e. Use Bayes rule to show that $\eta(x) := P(Y = 1 \mid X = x) = \pi_1 p_1(x)/p(x)$

- 7. Let (X,Y) be a discrete random pair with joint probability mass function p(x,y). Recall that $\mathbb{E}(Y|X) = \varphi(X)$ where $\varphi(x) = \sum_y y \, p(y|x)$. Establish the following.
 - a. If $Y \ge 0$ then $\mathbb{E}(Y|X) \ge 0$
 - b. $\mathbb{E}(aY + b|X) = a \mathbb{E}(Y|X) + b$
 - c. $\mathbb{E}\{\mathbb{E}(Y|X)\} = \mathbb{E}Y$
- 8. Let X, Y be non-negative random variables with joint density function $f(x, y) = y^{-1} e^{-x/y} e^{-y}$ for $x, y \ge 0$.
 - a. Find the marginal density f(y) of Y
 - b. Find the conditional density f(x|y) of X given Y = y
 - c. Find $\mathbb{E}[X \mid Y = y]$
 - d. Find $\mathbb{E}[X \mid Y]$