COMPSCI 2GA3 Tutorial 6 Note

Note:

This note does NOT cover all the materials in Chapter 3 -- Only the ones rated to sample questions of this tutorial are included.

For any questions about the tutorials and courses, feel free to contact me. (Email: wangm235@mcmaster.ca)

GLHF:)

Mingzhe Wang

Decimal to binary

Given a fraction decimal number n and integer k, convert decimal number n into equivalent binary number up-to k precision after decimal point.

Examples:

```
Input: n = 2.47, k = 5
Output: 10.01111

Input: n = 6.986 k = 8
Output: 110.11111100
```

A) Convert the integral part of decimal to binary equivalent

- 1. Divide the decimal number by 2 and store remainders in array.
- 2. Divide the quotient by 2.
- 3. Repeat step 2 until we get the quotient equal to zero.
- 4. Equivalent binary number would be reverse of all remainders of step 1.

B) Convert the fractional part of decimal to binary equivalent

- 1. Multiply the fractional decimal number by 2.
- 2. Integral part of resultant decimal number will be first digit of fraction binary number.
- 3. Repeat step 1 using only fractional part of decimal number and then step 2.

C) Combine both integral and fractional part of binary number.

```
Let's take an example for n = 4.47 k = 3

Step 1: Conversion of 4 to binary
1. 4/2 : Remainder = 0 : Quotient = 2
2. 2/2 : Remainder = 0 : Quotient = 1
3. 1/2 : Remainder = 1 : Quotient = 0

So equivalent binary of integral part of decimal is 100.

Step 2: Conversion of .47 to binary
1. 0.47 * 2 = 0.94, Integral part: 0
2. 0.94 * 2 = 1.88, Integral part: 1
3. 0.88 * 2 = 1.76, Integral part: 1

So equivalent binary of fractional part of decimal is .011

Step 3: Combined the result of step 1 and 2.

Final answer can be written as:
100 + .011 = 100.011
```

(source: https://www.geeksforgeeks.org/convert-decimal-fraction-binary-number/?ref=rp)

Binary to decimal

Given an string of binary number **n**. Convert binary fractional **n** into it's decimal equivalent.

Examples:

```
Input: n = 110.101
Output: 6.625

Input: n = 101.1101
Output: 5.8125
```

A) Convert the integral part of binary to decimal equivalent

- 1. Multiply each digit separately from left side of radix point till the first digit by 2^0 , 2^1 , 2^2 ,... respectively.
- 2. Add all the result coming from step 1.
- 3. Equivalent integral decimal number would be the result obtained in step 2.

B) Convert the fractional part of binary to decimal equivalent

- 1. Divide each digit from right side of radix point till the end by 2^1 , 2^2 , 2^3 , ... respectively.
- 2. Add all the result coming from step 1.
- 3. Equivalent fractional decimal number would be the result obtained in step 2.

C) Add both integral and fractional part of decimal number.

```
Let's take an example for n = 110.101

Step 1: Conversion of 110 to decimal

=> 110<sub>2</sub> = (1*2<sup>2</sup>) + (1*2<sup>1</sup>) + (0*2<sup>0</sup>)
=> 110<sub>2</sub> = 4 + 2 + 0
=> 110<sub>2</sub> = 6

So equivalent decimal of binary integral is 6.

Step 2: Conversion of .101 to decimal
=> 0.101<sub>2</sub> = (1*1/2) + (0*1/2<sup>2</sup>) + (1*1/2<sup>3</sup>)
=> 0.101<sub>2</sub> = 1*0.5 + 0*0.25 + 1*0.125
=> 0.101<sub>2</sub> = 0.625
So equivalent decimal of binary fractional is 0.625

Step 3: Add result of step 1 and 2.
=> 6 + 0.625 = 6.625
```

(source: https://www.geeksforgeeks.org/convert-binary-fraction-decimal/)

Floating Point and IEEE 754 (from COMPSCI 4X03)

Fixed vs. floating point FP system Rounding Machine epsilon IEEE 754 Cancellations Floating-point number system cont.

- ullet The string of base eta digits $d_0d_1\cdots d_{t-1}$ is called mantissa or significand
- $d_1d_2\cdots d_{t-1}$ is called fraction
- ullet A common way of expressing x is

$$\pm d_0.d_1 \cdots d_{t-1} \times \beta^e$$

• A FP number is normalized if d_0 is nonzero denormalized otherwise

Copyright © 2021 N. Nedialkov. All rights reserved.

Fixed vs. floating point FP system Rounding Machine epsilon IEEE 754 Cancellations Floating-point number system cont.

Example 1. Consider the FP (10, 3, -2, 2).

• Numbers are of the form

$$d_0.d_1d_2 \times 10^e$$
, $d_0 \neq 0$, $e \in [-2, 2]$

- largest positive number 9.99×10^2
- smallest positive normalized number 1.00×10^{-2}
- ullet smallest positive denormalized number $0.01 imes 10^{-2}$
- ullet denormalized numbers are e.g. 0.23×10^{-2} , 0.11×10^{-2}
- 0 is represented as 0.00×10^0

Copyright © 2021 N. Nedialkov. All rights reserved.

Fixed vs. floating point FP system Rounding Machine epsilon IEEE 754 Cancellations IEEE 754

- IEEE 754 standard for FP arithmetic (1985)
- IEEE 754-2008, IEEE 754-2019
- Most common (binary) single and double precision since 2008 half precision

	bits	t	L	U	$\epsilon_{\sf mach}$
single	32	24	-126	127	1.2×10^{-7}
double	64	53	-1022	1023	2.2×10^{-16}

	range	smallest		
		normalized	denormalized	
single	$\pm 3.4 \times 10^{38}$	$\pm 1.2 \times 10^{-38}$	$\pm 1.4 \times 10^{-45}$	
double	$\pm 1.8 \times 10^{308}$	$\pm2.2\times10^{-308}$	$\pm 4.9 \times 10^{-324}$	
		(These are $pprox$ values)		

Copyright © 2021 N. Nedialkov. All rights reserved.

Fixed vs. floating point FP system Rounding Machine epsilon IEEE 754 Cancellations IEEE 754 cont.

Double Precision IEEE 754 Floating-Point Standard

(From https:

//www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/)

- sign 0 positive, 1 negative
- exponent is biased
- ullet first bit of mantissa is not stored, sticky bit, assumed 1

Copyright © 2021 N. Nedialkov. All rights reserved.

Fixed vs. floating point FP system Rounding Machine epsilon IEEE 754 Cancellations

Go to page 5

IEEE 754 Cont.

Single precision

- Inf
 - sign: 0 for +Inf, 1 for -Inf
 biased exponent: all 1's, 255
 - o fraction: all 0's
- NaN
 - o sign: 0 or 1
 - $\circ~$ biased exponent: all 1's, 255 $\,$
 - o fraction: at least one 1
- 0
- \circ sign: 0 for +0, 1 for -0
- o biased exponent: all 0's
- o mantissa: all 0's
- FP numbers
 - o biased exponent: from 1 to 254, bias: 127
 - \circ actual exponent: 1 127 = -126 to 254 127 = 127

15/27

Copyright © 2021 N. Nedialkov. All rights reserved.

Fixed vs. floating point FP system Rounding Machine epsilon IEEE 754 Cancellations IEEE 754 cont.

Double precision

- bias 1023
- biased exponent: from 1 to 2046
- ullet actual exponent: from -1022 to 1023
- rest similar to single

Copyright © 2021 N. Nedialkov. All rights reserved.

16/27

One thing to remember

actual exponent = biased exponent - bias biased exponent = actual exponent + bias

HARD TO LEARN? NO WORRY. A PLAYGROUND FOR FLOATING POINT!

Don't forget to click "toggle details":) https://bartaz.github.io/ieee754-visualization/

1234.5678

toggle detail

Hardware Implementation

FP Adder Hardware

