12.5: Lines & Planes in Space

Lines

The **vector equation** for line L through $P_0(x_0, y_0, z_0)$ parallel to vector \vec{v} :

$$ec{r}(t) = \overbrace{ec{r}_0}^{P_0} + t ec{v} \ \left(-\infty < t < \infty
ight)$$

The **standard parametrization** through $P_0(x_0,y_0,z_0)$ parallel to $ec{v}=v_1\mathbf{i}+v_2\mathbf{j}+v_3\mathbf{k}$:

$$egin{aligned} x(t) &= x_0 + t v_1 \ y(t) &= y_0 + t v_2 \ z(t) &= z_0 + t v_3 \end{aligned}$$

If is line, $-\infty < t < \infty$. If t is bounded, is line segment.

Distance from point to line

$$d = rac{\left\|\overrightarrow{PS} imes ec{v}
ight\|}{\left\|ec{v}
ight\|}$$

Planes

The **vector equation** for a plane through $P_0(x_0, y_0, z_0)$ with normal vector $\vec{n} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ is given by:

$$ec{n}\cdot(\overrightarrow{P_0P})=0$$

Component equation:

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

Angle between two planes

- Parallel planes have the same normal.
- Angle between two intersecting planes = acute angle between normals

$$\left(\cos heta=rac{|ec{n}_1\cdotec{n}_2|}{\|ec{n}_1\|\|ec{n}_2\|}
ight)$$

Distance from point to plane

$$d = \left\| \operatorname{proj}_{\hat{n}} \overrightarrow{PS}
ight\| = \overrightarrow{PS} \cdot \widehat{\hat{n}}$$

Use this to find distance between skew lines

• Given lines l_1,l_2 , find unit normal vector of the l_1l_2 plane, $\hat{m{n}}=rac{ec{l_1} imesec{l_2}}{\|ec{l_1} imesec{l_2}\|}$, and project \overrightarrow{PS} onto \hat{n}

Intersecting lines & planes

Lines

Lines l_1, l_2 can be...

- parallel
- intersecting
- · coincident: same line
- · skew: neither parallel nor intersecting

If the direction vectors are the same, the lines must be parallel or concident.

- Pick a point on l_1 . If it is on l_2 , the lines are coincident.
- Otherwise, the lines are parallel.

If the direction vectors are not the same, the lines must be skew or intersecting.

- Check if there are any intersecting points. If such a point exists, then the lines are intersecting.
- Otherwise, the lines are skew.

Planes

Two planes can be: parallel, intersecting, coincident

- If the planes' normals are parallel, the planes are parallel
- If the planes' normals are not parallel, the <u>cross product</u> gives direction vector for line of intersection of the planes

Line & Plane

To find the intersection point between a line and a plane, substitute the line equation into the plane equation.

If there's a valid point, then that is the intersecting point.

#module1 #week2