```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestRegressor

data = pd.read_csv("/content/DOGE-USD.csv")
data.head()
```

	Date	0pen	High	Low	Close	Adj Close	Volume	
0	2014-09-17	0.000293	0.000299	0.000260	0.000268	0.000268	1463600.0	11.
1	2014-09-18	0.000268	0.000325	0.000267	0.000298	0.000298	2215910.0	
2	2014-09-19	0.000298	0.000307	0.000275	0.000277	0.000277	883563.0	
3	2014-09-20	0.000276	0.000310	0.000267	0.000292	0.000292	993004.0	
4	2014-09-21	0.000293	0.000299	0.000284	0.000288	0.000288	539140.0	

data.corr()

data.describe()

<ipython-input-5-c44ded798807>:1: FutureWarning: The default value of numeric_only in Da
data.corr()

	Open	High	Low	Close	Adj Close	Volume
Open	1.000000	0.991422	0.990888	0.987341	0.987341	0.720185
High	0.991422	1.000000	0.983262	0.992906	0.992906	0.776438
Low	0.990888	0.983262	1.000000	0.992930	0.992930	0.702538
Close	0.987341	0.992906	0.992930	1.000000	1.000000	0.761184
Adj Close	0.987341	0.992906	0.992930	1.000000	1.000000	0.761184
Volume	0.720185	0.776438	0.702538	0.761184	0.761184	1.000000

```
data['Date'] = pd.to_datetime(data['Date'],
                            infer_datetime_format=True)
data.set_index('Date', inplace=True)
data.isnull().any()
     Open
                 True
     High
                 True
     Low
                 True
     Close
                 True
     Adj Close
                 True
     Volume
                 True
     dtype: bool
data.isnull().sum()
     0pen
                 4
     High
     Low
                 4
     Close
     Adj Close
     Volume
     dtype: int64
data = data.dropna()
```

	0pen	High	Low	Close	Adj Close	Volume	
count	2450.000000	2450.000000	2450.000000	2450.000000	2450.000000	2.450000e+03	11.
mean	0.011760	0.013060	0.010561	0.011913	0.011913	4.529887e+08	
std	0.058419	0.065913	0.051187	0.058960	0.058960	2.956758e+09	
min	0.000087	0.000089	0.000085	0.000087	0.000087	1.669500e+04	
25%	0.000225	0.000230	0.000221	0.000225	0.000225	2.362070e+05	
50%	0.002073	0.002118	0.002033	0.002078	0.002078	9.591144e+06	
75%	0.003030	0.003135	0.002905	0.003032	0.003032	5.587225e+07	
may	N 6979N1	N 737567	N 6N9169	N 69/1777	N 69/1777	6 0/10685±10	

```
plt.figure(figsize=(20, 7))
x = data.groupby('Date')['Close'].mean()
x.plot(linewidth=2.5, color='b')
plt.xlabel('Date')
plt.ylabel('Volume')
plt.title("Date vs Close of 2021")
```



```
data["gap"] = (data["High"] - data["Low"]) * data["Volume"]
data["y"] = data["High"] / data["Volume"]
data["z"] = data["Low"] / data["Volume"]
data["a"] = data["High"] / data["Low"]
data["b"] = (data["High"] / data["Low"]) * data["Volume"]
abs(data.corr()["Close"].sort_values(ascending=False))
                   1.000000
     Close
                   1.000000
     Adj Close
                   0.992930
     High
                   0.992906
                   0.987341
     0pen
     Volume
                   0.761184
     b
                   0.631466
                   0.586597
     gap
                   0.318396
                   0.130964
                   0.132074
     Name: Close, dtype: float64
data = data[["Close", "Volume", "gap", "a", "b"]]
data.head()
```

```
Close
                                Volume
            Date
      2014-09-17 0.000268 1463600.0 57.080400 1.150000 1.683140e+06
      9844 88 48 0 000000 0045040 0 400 500700 4 047000 0 607060~+06
df2 = data.tail(30)
train = df2[:11]
test = df2[-19:]
print(train.shape, test.shape)
      (11, 5) (19, 5)
from statsmodels.tsa.statespace.sarimax import SARIMAX
model = SARIMAX(endog=train["Close"], exog=train.drop(
    "Close", axis=1), order=(2, 1, 1))
results = model.fit()
print(results.summary())
      /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so i
        self. init dates(dates, freq)
      /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so i
       self._init_dates(dates, freq)
                                       SARIMAX Results
      ______
     Dep. Variable:
                                       Close No. Observations:
                            SARIMAX(2, 1, 1) Log Likelihood
     Model:
                                                                                     17.690
     Date:
                            Sat, 28 Oct 2023
                                                                                    -19.380
                                                  AIC
     Time:
                                    09:53:43 BIC
                                                                                    -16.959
     Sample:
                                   05-07-2021 HOIC
                                                                                    -22.036
                                 - 05-17-2021
     Covariance Type:
                                       opg
      ______
                   coef std err z P>|z| [0.025 0.975]
     Volume 4.076e-11 8.91e-12 4.575 0.000 2.33e-11 5.82e-11 gap 4.086e-11 2.15e-11 1.904 0.057 -1.19e-12 8.29e-11

    gap
    4.660e-11
    2.13e-11
    1.5e-12
    8.29e-11
    8.29e-11

    a
    0.0154
    5.2e-22
    2.96e+19
    0.000
    0.015
    0.015

    b
    -2.831e-11
    8.3e-12
    -3.411
    0.001
    -4.46e-11
    -1.2e-11

    ar.L1
    -0.6980
    6.92e-22
    -1.01e+21
    0.000
    -0.698
    -0.698

    ar.L2
    0.0809
    9.36e-23
    8.64e+20
    0.000
    0.081
    0.081

    ma.L1
    0.3214
    6.17e-22
    5.21e+20
    0.000
    0.321
    0.321

    sigma2
    0.0007
    8.48e-19
    8.42e+14
    0.000
    0.001
    0.001

      _____
                                               0.93 Jarque-Bera (JB):
     Ljung-Box (L1) (Q):
                                              0.34 Prob(JB):
      Prob(0):
                                                                                             0.62
     Prob(Q):
Heteroskedasticity (H):

Prob(H) (two-sided):

0.35 Skew:
Control (H):

0.41 Kurtosis:
                                                                                            -0.57
                                                                                             2.01
     Warnings:
      [1] Covariance matrix calculated using the outer product of gradients (complex-step).
      [2] Covariance matrix is singular or near-singular, with condition number 1.16e+38. Standard errors may be unstable.
      /usr/local/lib/python3.10/dist-packages/statsmodels/base/model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to con
        warnings.warn("Maximum Likelihood optimization failed to "
start = 11
end = 29
predictions = results.predict(
    start=start,
    end=end.
    exog=test.drop("Close", axis=1))
predictions
      2021-05-18 0.464149
      2021-05-19 -0.000145
      2021-05-20
                    0.475115
      2021-05-21
                    0.466248
      2021-05-22
                    0.462575
      2021-05-23
                     0.447174
      2021-05-24
                    0.466455
      2021-05-25
                     0.461902
      2021-05-26
                     0.444607
      2021-05-27
                     0.434197
```

```
2021-05-28
             0.440598
2021-05-29
             0.432421
2021-05-30
             0.428009
2021-05-31
             0.432570
2021-06-01
             0.460512
2021-06-02
             0.509979
2021-06-03
             0.478255
2021-06-04
             0.469062
             0.464898
2021-06-05
Freq: D, Name: predicted_mean, dtype: float64
```

test["Close"].plot(legend=True, figsize=(12, 6))
predictions.plot(label='TimeSeries', legend=True)

