Exercise 6.9. Prove that the four vectors $|sing\rangle$, $|T_1\rangle$, $|T_2\rangle$, and $|T_3\rangle$ are eigenvectors of $\vec{\sigma} \cdot \vec{\tau}$. What are their eigenvalues?

Recall that

$$\vec{\sigma} \cdot \vec{\tau} = \sigma_x \tau_x + \sigma_y \tau_y + \sigma_z \tau_z$$

Let A and B be the sets

$$A = \{|uu\rangle, |ud\rangle, |du\rangle, |dd\rangle\}$$
$$B = \{|sing\rangle, |T_1\rangle, |T_2\rangle, |T_3\rangle\}$$

By Table 1 on page 350, the vectors in A are eigenvectors of spin operators σ and τ . By closure of Table 1, the vectors in A are also eigenvectors of compositions of σ and τ . Since the vectors in B are linear combinations of the vectors in A, by linearity the vectors in B must also be eigenvectors of σ and τ . Finally, by linearity of the $\vec{\sigma} \cdot \vec{\tau}$ operator, the vectors in A and B must be eigenvectors of $\vec{\sigma} \cdot \vec{\tau}$.

By Table 1 we obtain the following eigenvalues.