df.head(15)

1. DOWNLOAD DATASET

2. LOAD DATASET

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df=pd.read_csv('penguins_size.csv')

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	Torgersen	39.10	18.7	181.0	3750.0	MALE
1	0	Torgersen	39.50	17.4	186.0	3800.0	FEMALE
2	0	Torgersen	40.30	18.0	195.0	3250.0	FEMALE
3	0	Torgersen	44.45	17.3	197.0	4050.0	MALE
4	0	Torgersen	36.70	19.3	193.0	3450.0	FEMALE
5	0	Torgersen	39.30	20.6	190.0	3650.0	MALE
6	0	Torgersen	38.90	17.8	181.0	3625.0	FEMALE
7	0	Torgersen	39.20	19.6	195.0	4675.0	MALE
8	0	Torgersen	34.10	18.1	193.0	3475.0	MALE
9	0	Torgersen	42.00	20.2	190.0	4250.0	MALE
10	0	Torgersen	37.80	17.1	186.0	3300.0	MALE
11	0	Torgersen	37.80	17.3	180.0	3700.0	MALE
12	0	Torgersen	41.10	17.6	182.0	3200.0	FEMALE
13	0	Torgersen	38.60	21.2	191.0	3800.0	MALE
14	0	Torgersen	34.60	21.1	198.0	4400.0	MALE

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 344 entries, 0 to 343 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	342 non-null	float64
3	culmen_depth_mm	342 non-null	float64
4	flipper_length_mm	342 non-null	float64
5	body_mass_g	342 non-null	float64
6	sex	334 non-null	object

dtypes: float64(4), object(3)

memory usage: 18.9+ KB

4. Perform descriptive statistics on the dataset.

df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	===
count	342.000000	342.000000	342.000000	342.000000	ıl.
mean	43.921930	17.151170	200.915205	4201.754386	
std	5.459584	1.974793	14.061714	801.954536	
min	32.100000	13.100000	172.000000	2700.000000	
25%	39.225000	15.600000	190.000000	3550.000000	
50%	44.450000	17.300000	197.000000	4050.000000	
75%	48.500000	18.700000	213.000000	4750.000000	
max	59.600000	21.500000	231.000000	6300.000000	

5. Check for Missing values and deal with them

```
df.isnull().sum()
```

species	0
island	0
culmen_length_mm	2
culmen_depth_mm	2
flipper_length_mm	2
body_mass_g	2
sex	10
dtype: int64	

df.isnull().sum()

species	0
island	0
culmen length mm	2
culmen_depth_mm	2
flipper_length_mm	2
body_mass_g	2
sex	10
dtype: int64	

check for skewness using distplot

```
sns.distplot(df['culmen_length_mm'])
```

<ipython-input-13-87f900721a46>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['culmen_length_mm'])
<Axes: xlabel='culmen_length_mm', ylabel='Density'>

sns.distplot(df['culmen depth mm'])

```
<ipython-input-15-9161f519b2fb>:1: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with sns.distplot(df['flipper_length_mm'])

<ipython-input-18-25d29e01b18c>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df['flipper_length_mm'])
<Axes: xlabel='flipper_length_mm', ylabel='Density'>
```


Since its kind of right skewed and not proper bell shape we use median

```
df['culmen_length_mm']=df['culmen_length_mm'].fillna(df['culmen_length_mm'].median())
df['culmen_depth_mm']=df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median())
df['flipper_length_mm']=df['flipper_length_mm'].fillna(df['flipper_length_mm'].median())
df['body_mass_g']=df['body_mass_g'].fillna(df['body_mass_g'].median())
```

df.isnull().sum()

species	0
island	0
culmen_length_mm	0
culmen_depth_mm	0
flipper_length_mm	0
body_mass_g	0

```
10
    dtype: int64
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 344 entries, 0 to 343
    Data columns (total 7 columns):
     #
         Column
                          Non-Null Count Dtype
                          344 non-null
     0
         species
                                           object
                          344 non-null
     1
         island
                                          object
         culmen_length_mm 344 non-null
     2
                                           float64
     3
         culmen_depth_mm 344 non-null float64
     4
         flipper_length_mm 344 non-null float64
     5
         body_mass_g 344 non-null float64
     6
                            334 non-null object
    dtypes: float64(4), object(3)
    memory usage: 18.9+ KB
df['sex']=df['sex'].fillna(df['sex'].mode()[0])
df['sex']
    0
             MALE
           FEMALE
    1
    2
           FEMALE
    3
             MALE
    4
           FEMALE
            . . .
    339
            MALE
    340
           FEMALE
    341
            MALE
    342
           FEMALE
    343
             MALE
    Name: sex, Length: 344, dtype: object
df.isnull().sum()
                         0
    species
    island
    culmen length mm
    culmen_depth_mm
                         0
    flipper_length_mm
                         0
    body_mass_g
                         0
    sex
    dtype: int64
```

→ ALL NULL VALUES HAVE BEEN FIXED

3. Perform Below Visualizations: • Univariate Analysis • Bi- Variate Analysis • Multi-Variate Analysis

Univariate Analysis

```
sns.boxplot(df['culmen_depth_mm'])
```


sns.boxplot(df['culmen_length_mm'])

sns.boxplot(df['body_mass_g'])

sns.histplot(data=df['flipper_length_mm'])

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

		/ -	
#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	344 non-null	float64
3	culmen_depth_mm	344 non-null	float64
4	flipper_length_mm	344 non-null	float64
5	body_mass_g	344 non-null	float64
6	sex	344 non-null	object

dtypes: float64(4), object(3)

memory usage: 18.9+ KB

sns.histplot(data=df['body_mass_g'])

<Axes: xlabel='body_mass_g', ylabel='Count'>

Bivariate Analysis

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

_ 0. 0.	(, , , , , , , , , , , , , , , , , , ,		
#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	344 non-null	float64
3	culmen_depth_mm	344 non-null	float64
4	flipper_length_mm	344 non-null	float64
5	body_mass_g	344 non-null	float64
6	sex	344 non-null	object

dtypes: float64(4), object(3)
memory usage: 18.9+ KB

sns.scatterplot(x='species',y='culmen_length_mm',hue='sex',data=df)

<Axes: xlabel='species', ylabel='culmen_length_mm'>

sns.scatterplot(x='species',y='culmen_depth_mm',hue='sex',data=df)

sns.barplot(x=df['species'],y=df['culmen_length_mm'])

sns.barplot(x=df['species'],y=df['culmen_depth_mm'])

<Axes: xlabel='species', ylabel='culmen_depth_mm'>

sns.barplot(x=df['species'],y=df['flipper_length_mm'])

<Axes: xlabel='species', ylabel='flipper_length_mm'>

sns.jointplot(x='species',y='body_mass_g',data=df)

<seaborn.axisgrid.JointGrid at 0x79076d2cd3f0>

Multivariate Anlysis

sns.pairplot(data=df)

<ipython-input-39-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
 df.corr()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
culmen_length_mm	1.000000	-0.235000	0.655858	0.594925
culmen_depth_mm	-0.235000	1.000000	-0.583832	- 0.471942
flipper_length_mm	0.655858	-0.583832	1.000000	0.871221
body_mass_g	0.594925	-0.471942	0.871221	1.000000

sns.heatmap(data=df.corr(),annot=True)

0 ...

df.corr()

<ipython-input-41-aa355c3d392f>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
sns.heatmap(data=df.corr(),annot=True)

<Axes: >

6. Find the outliers and replace them outliers

면 당 면 F

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	344 non-null	float64
3	culmen_depth_mm	344 non-null	float64
4	flipper_length_mm	344 non-null	float64
5	body_mass_g	344 non-null	float64
6	sex	344 non-null	obiect

dtypes: float64(4), object(3)

memory usage: 18.9+ KB

sns.boxplot(data=df['culmen_length_mm'])

sns.boxplot(data=df['culmen_depth_mm'])

sns.boxplot(data=df['body_mass_g'])

NO OUTLIERS PRESENT

8. Check for Categorical columns and perform encoding.

```
# Import label encoder
from sklearn import preprocessing

# label_encoder object knows
# how to understand word labels.
label_encoder = preprocessing.LabelEncoder()

# Encode labels in column 'species'.
df['species']= label_encoder.fit_transform(df['species'])
df.tail(10)
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
334	2	Biscoe	46.20	14.1	217.0	4375.0	FEMALE	ılı
335	2	Biscoe	55.10	16.0	230.0	5850.0	MALE	

from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()

df['island']= label_encoder.fit_transform(df['island'])
df['island'].unique()

array([2, 0, 1])

df.head()

\blacksquare	sex	body_mass_g	flipper_length_mm	culmen_depth_mm	culmen_length_mm	island	species	
ıl.	MALE	3750.0	181.0	18.7	39.10	2	0	0
	FEMALE	3800.0	186.0	17.4	39.50	2	0	1
	FEMALE	3250.0	195.0	18.0	40.30	2	0	2
	MALE	4050.0	197.0	17.3	44.45	2	0	3
	FEMALE	3450.0	193.0	19.3	36.70	2	0	4

sns.histplot(data=df['island'])

<Axes: xlabel='island', ylabel='Count'>

sns.countplot(x='island',hue='species',data=df)

<Axes: xlabel='island', ylabel='count'>

sns.barplot(x='species',y='culmen_length_mm',hue='sex',data=df)

sns.barplot(x='species',y='culmen_depth_mm',hue='sex',data=df)

<Axes: xlabel='species', ylabel='culmen_depth_mm'>

sns.barplot(x='island',y='body_mass_g',hue='species',data=df)

sns.barplot(x='island',y='culmen_length_mm',hue='species',data=df)

sns.barplot(x='island',y='culmen_depth_mm',hue='species',data=df)

9. Split the data into dependent and independent variables.

X=df.drop('species',axis=1)
y=df['species']

X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	\blacksquare
0	2	39.10	18.7	181.0	3750.0	2	ılı
1	2	39.50	17.4	186.0	3800.0	1	
2	2	40.30	18.0	195.0	3250.0	1	
3	2	44.45	17.3	197.0	4050.0	2	
4	2	36.70	19.3	193.0	3450.0	1	

```
y.head()
```

- 0 0 1 0
- 2 0
- 3040

Name: species, dtype: int64

```
from sklearn import preprocessing
```

label_encoder = preprocessing.LabelEncoder()

df['sex']= label_encoder.fit_transform(df['sex'])
df['sex']

- 0 2 1 1 2 1 3 2 4 1 ...
- 340 1341 2
- 342 1 343 2

Name: sex, Length: 344, dtype: int64

- 10. Scaling the data
- 11. Split the data into training and testing
- 12. check the training and testing data shape

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_scaled= pd.DataFrame(sc.fit_transform(X),columns =X.columns)
X_scaled.head()
```

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	1.844076	-0.887622	0.787289	-1.420541	-0.564625	0.960230	ıl.
1	1.844076	-0.814037	0.126114	-1.063485	-0.502010	-1.017729	
2	1.844076	-0.666866	0.431272	-0.420786	-1.190773	-1.017729	
3	1.844076	0.096581	0.075255	-0.277964	-0.188936	0.960230	
4	1.844076	-1.329133	1.092447	-0.563608	-0.940314	-1.017729	

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X_scaled,y,test_size=0.2,random_state=42)
X_train.shape
```

(275, 6)

y_train.shape

(275,)

√ 0s completed at 10:06 PM