Biostats and Big Data 2 Lecture 13

Lecture 13 Tests for counting

What we learned...

- Sampling distribution
- Standard error of the mean
- Confidence interval
- One-sample t-test
- Paired t-test
- Independent samples t-test
- Resampling (bootstrap, permutation tests)

Tests for counting

https://www.youtube.com/playlist?list=PLXCuLG6zw7mKzyUxZDs06SOtWP8fjJF98

Binomial tests

- Hypothesis: questions like, has the Facebook users who update their status daily increased since last month?
- **Null hypothesis:** null because it assumes no changes, thus p = 30.8%
- Alternative hypothesis: H_{Δ} : p > 30.8%
- We observed a new \hat{p} from 200 respondents.

- Then, $z = \frac{0.362 0.308}{0.033} = 1.6364$
- p = 0.0509 (one-tail)

Chi-square tests

Births	Sign			
23	Aries			
20	Taurus			
18	Gemini			
23	Cancer			
20	Leo			
19	Virgo			
18	Libra			
21	Scorpio			
19	Sagittarius			
22	Capricorn			
24	Aquarius			
29	Pisces			

Birth totals by sign for 256 Fortune 400 executives.

Example: zodiac signs of 256 heads of the largest 400 companies

- If the zodiac signs cannot predict the future, we should expect 1/12 counts for each category.
- How closely do the observed numbers of births per sign fit this simple "null" model?
- "Goodness-of-fit" test

Goodness-of-fit tests

- Procedure:
 - First, observed value minus expected value for each cell: similar to residuals
 - The residual values can be positive and negative, so we need to square them.
 - We divide the residuals by the expected counts.
 - $\sum \frac{(Obs Exp)^2}{Exp}$
 - How well the theory (expected values) fits the data: goodness-of-fit
- It follows the chi-square (χ^2) distribution.

•
$$\chi^2 = \sum \frac{(Obs - Exp)^2}{Exp}$$

- This family of models also depends on the degrees of freedom.
- In the chi-square test, df = n 1, where n is the number of categories, not the sample size.

Chi-Square P-values

- The chi-square should be used only for testing hypotheses, not for constructing confidence intervals.
- We can do only one-sided test (by squaring the differences, we made all the deviations positive).
- There's no direction to the rejection of the null model. All we know is that it doesn't fit.

df = 5

• The mode is at $\chi^2 = df - 2$, and its mean is at df.

Trouble with Goodness-of-fit tests

- Goodness-of-fit: How well does the theory fit the data?
- The only null hypothesis available (H₀: the theory is true)
 - We can only reject or fail to reject the null hypothesis.
 - We can never confirm the theory is true.
- It is also difficult to know what is the alternative.
 - The theory can be wrong in many ways.
- Thus, there is no way to prove that a favored model is true, with goodness-of-fit tests.
 - Alternative: model comparison

Chi-square test of Homogeneity

- Testing whether the proportions are same across multiple groups
- two-way table

Post-graduation activities of the class of 2006 for several colleges of a large university

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed	379	305	243	125	1052
Grad School	186	238	202	96	722
Other	104	123	37	58	322
Total	669	666	482	279	2096

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed Grad School Other	56.7% 27.8 15.5	45.8% 35.7 18.5	50.4% 41.9 7.7	44.8% 34.4 20.8	50.2 34.4 15.4
Total	100	100	100	100	100

Expected values for the '06 graduates

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed	335.777	334.271	241.920	140.032	1052
Grad School Other	230.448 102.776	229.414 102.315	166.032 74.048	96.106 42.862	722 322
Total	669	666	482	279	2096

Chi-square test of Homogeneity

•
$$\chi^2 = \sum \frac{(Obs - Exp)^2}{Exp}$$

- The example of the agriculture school $\frac{(Obs Exp)^2}{Exp} = \frac{(379 335.777)^2}{335.777} = 5.564$
- And summing these across all the schools,

$$\chi^2 = \sum \frac{(Obs - Exp)^2}{Exp} = 54.51$$

- Degrees of freedom:
 - (R-1)(C-1), where R: the number of rows, C: the number of columns

Chi-square test of independence

Race effects on police vehicle search

		Race				
		Black	White	Other	Total	
Search	No Yes	787 813	594 293	27 19	1408 1125	
	Total	1600	887	46	2533	

- Are police search and race independent? or have relationship?
- Contingency table
- From L09:
 - "Independence: the occurrence of A does not change the probability of B, $P(\mathbf{B}|\mathbf{A}) = P(\mathbf{B})$ "
- The calculation is identical to the homogeneity test.
- What's different?
 - Independence test: Two categorical variables measured on a single population
 - Homogeneity test: a single categorical variable independently measured on two or more populations
 - Independence test's question: "Are the variables independent?"
 - Homogeneity test: "Are the groups homogeneous?"

