(Minden feladat 10 pontot ér, indoklás nélküli eredményközlést nem fogadunk el, a dolgozat idő tartama 90 perc.)

- 1. a) Mi $(\mathbf{a} + 3\mathbf{b})(3\mathbf{a} \mathbf{b})$ értéke, ha \mathbf{a} és \mathbf{b} merőleges vektorok és $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$?
- b) Milyen λ valós számra lesz $\mathbf{a} + 4\mathbf{b}$ párhuzamos $2\mathbf{a} + \lambda \mathbf{b}$ -vel, ha \mathbf{a} és \mathbf{b} nem párhuzamosak?
- MO. a) Tudjuk, hogy $\mathbf{ab} = 0$, mivel \mathbf{a} és \mathbf{b} merőlegesek, továbbá minden \mathbf{v} vektorra $\mathbf{v}^2 = |\mathbf{v}|^2$. Így $(\mathbf{a} + 3\mathbf{b})(3\mathbf{a} \mathbf{b}) = 3\mathbf{a}^2 \mathbf{ab} + 9\mathbf{ab} 3\mathbf{b}^2 = 3|\mathbf{a}|^2 3|\mathbf{b}|^2 = 3(4-9) = -15$.
- b) $\mathbf{a} + 4\mathbf{b} \parallel 2\mathbf{a} + \lambda \mathbf{b}$ pontosan akkor, ha $(\mathbf{a} + 4\mathbf{b}) \times (2\mathbf{a} + \lambda \mathbf{b}) = \mathbf{0} \rightsquigarrow \mathbf{a} \times 2\mathbf{a} + \mathbf{a} \times \lambda \mathbf{b} + 4\mathbf{b} \times 2\mathbf{a} + 4\mathbf{b} \times \lambda \mathbf{b} = \mathbf{0}$ $\Rightarrow 2\mathbf{a} \times \mathbf{a} + \lambda \mathbf{a} \times \mathbf{b} + 8\mathbf{b} \times \mathbf{a} + 4\lambda \mathbf{b} \times \mathbf{b} = \mathbf{0} \implies \lambda \mathbf{a} \times \mathbf{b} + 8\mathbf{b} \times \mathbf{a} = \mathbf{0}$, hiszen $\mathbf{a} \parallel \mathbf{a}$ miatt $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ és ugyanígy \mathbf{b} -re, $\Rightarrow (\lambda - 8)\mathbf{a} \times \mathbf{b} = \mathbf{0} \implies \lambda = 8$, hiszen $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$.
- **2.** Adja meg annak az f egyenesnek az egyenletét, amelyik merőlegesen metszi az $s_1: x+y+z=1$ és $s_2: x-y+z=1$ egyenletű síkok metszésvonalát és áthalad az P(0,1,1) ponton!
- **MO.** Legyen $m=s_1\cap s_2$ a síkok metszésvonala. Azok az egyenesek, amik a P-n áthaladnak és merőlegesek m-re (ami f egy-egy tulajdonsága) a P-n áthaladó síkban vannak, legyen ez s. Így tudjuk, hogy $f\subseteq s$. De f harmadik tulajdonsága, hogy metszi m-et, így f az s és az m metszéspontján is áthalad a P-n kívül. f-et tehát így írhatjuk vel. Kivonjuk s_1 -et s_2 -ből, ez megadja m egyenletét: 2y=0, azaz y=0, $x=t\in \mathbf{R}$ legyen a tetszőlegesen választott változó, majd ezeket az s_1 -be behelyettesítve és z-t kiszámolva, a metszésvonal egyenlete: x=t,y=0,z=1-t. Az s sík normálvektora éppen $\mathbf{v}_m=(1,0,-1)$, s egyenlete pedig: $S_3:x-z+1=0$. Az $\{M\}=s\cap m$ metszéspontot úgy számoljuk ki, hogy s és m egyenleteit egy egyenletredszerként megoldjuk. Ez (0,0,1) lesz. Ezen és P-n áthaladó egyenes: $f\parallel P-M=(0,1,0)$ és $P=(0,1,1)\in f$, azaz f:x=0,y=1+t,z=0.
- 3. Oldjuk meg az alábbi egyenleteket!

$$z^6 - (i-1)z^3 - i = 0$$

- **MO.** $w = z^3$, $w^2 (i 1)w i = 0$, a Viete-formulákkal: $-(i 1) = -(w_1 + w_2)$, $-i = w_1 w_2$, tehát $\Rightarrow w_1 = i$, $w_2 = -1$. Ezekből kell köbgyököt vonni: $z_{1,2,3} = \sqrt[3]{i} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$, $\cos(\frac{\pi}{6} + i\sin\frac{\pi}{6}) + i\sin(\frac{\pi}{6} + i\sin\frac{\pi}{6}) + i\sin(\frac{\pi}{6}$
- 4. Számítsuk ki az alábbi határéttékeket!

a)
$$\lim_{x \to 0} \frac{e^{3x^2} - 1}{x}$$
, b) $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$

MO. a)
$$\frac{e^{3x^2} - 1}{x^3} = \frac{e^{3x^2} - 1}{3x^2} \cdot \frac{3x^2}{x^3} = \frac{e^{3x^2} - 1}{3x^2} \cdot \frac{3}{x}$$

ennek a határértéke nem létezik a 0-ban, mert

$$\frac{e^{3x^2} - 1}{3x^2} \xrightarrow[x \to 0]{} 1$$

de közben $\lim_{x\to 0\pm}\frac{3}{x}=\pm\infty$, azaz $\lim_{x\to 0\pm}\frac{3}{x}$ nem létezik.

b)
$$\frac{x^2 - 9}{x - 3} = \frac{(x + 3)(x - 3)}{x - 3} = x + 3 \xrightarrow[x \to 3]{} 6$$

5. Hol és milyen szakadása van az alábbi függvényeknek?

a)
$$f(x) = \frac{\ln(1+x^2)}{x^3-x^2}$$
, b) $g(x) = \frac{e^{-1/x^2}+x}{x+1}$

MO. a)
$$\frac{\ln(1+x^2)}{x^3-x^2} = \frac{\ln(1+x^2)}{x^2(x-1)} = \frac{\ln(1+x^2)}{x^2} \cdot \frac{1}{(x-1)}$$

tehát szakása van x = 0-ban és x = 1-ben. 0-ban a hatérték:

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{x^2} \cdot \frac{1}{(x-1)} = 1 \cdot (-1)$$

azaz létezik és véges, a bal és jobb oldali hatérték így megegyezik, csak 0-ban nincs a függvény értelmezve, így ott elsőfajú, megszüntethető szakadás van. 1-ben

$$\lim_{x\to 1\pm} \frac{\ln(1+x^2)}{x^2} \cdot \frac{1}{(x-1)} = \frac{\ln 2}{1} \cdot (\mp \infty)$$

vagyis végtelen, azaz másodfajú ott a szakadás és végetelen típusú.

- **6.** Melyik igaz?
- a) $z + \overline{z}$ mindig valós, ha $z \in \mathbb{C}$.
- b) Ha ab = 0, akkor a ill. b legalább egyike nulla.
- c) Ha $\lim_{x\to 0} f(x) = 0$, akkor f(0) = 0.

MO. a) Igaz,
$$z + \overline{z} = a + bi + a - bi = 2a \in \mathbf{R}$$

- b) Hamis, mert pl. ij = 0, de közben se i, se j (a koordinátaegységvektorok) nem nullák.
- c) Hamis, pl. $f(x) = \frac{\sin(x^2)}{x} = \frac{\sin(x^2)}{x^2}x = 1 \cdot 0 = 0$, de f(0) nincs értelmezve.