Creating publication-ready Word tables in R

Sara Weston and Debbie Yee

12/09/2016

Has this happened to you?

You're working on a draft of a manuscript with your adviser, and one of her edits is something like, "Did we control for time of day? If not we should."

So you rerun the results in R (or whatever) and the coefficients and the standard errors and the t-values change. And you spend 2 hours updating the manuscript.

Has this happened to you?

And then you send it back, and her next edit is, "Oh, we also have to control for gender."

You scream into the void.

Oh, and then you find that you skipped a row, so all your numbers are off and have to be reentered.

Your time is valuable

You have better things to do than constantly re-update tables in manuscripts and posters and talks.

In fact, it's not worth your time to make any table by hand ever.

You are a human and you will make mistakes

No matter how smart you are, how careful you are, how much coffee you have had to drink, you *will* make mistakes when you create tables by hand.

Sorry, but them's the facts.

Have we mentioned that R is amazing?

You might not have heard that R can do anything.

Before today, you were thinking that anything meant any analyses. Or, if you were generous, any analyses and any graph.

Did you know that R can make your tables for you? Formatted, with stars and everything? And by tables, I mean descriptive tables, correlation matrices, summaries of regressions, summaries of mixed-effects models.

Packages you should download

- ▶ sjPlot
- stargazer

These packages are the key to saving time and saving face.

sjPlot

Benefits

- Easier to use
- Can format correlation matrices
- A greater variety of descriptive options
- Colors!
- Also includes functions to plot regression diagnostics and results

Cons

- Less customizable
- Standardization doesn't work

sjPlot

- descriptive tables
- contingency tables
- correlation matrices
- ▶ linear models

(These are just some of the table types.)

sjPlot

```
library(sjPlot)
data(iris)
head(iris)
```

##		Sepal.Length	${\tt Sepal.Width}$	Petal.Length	Petal.Width	Spec
##	1	5.1	3.5	1.4	0.2	set
##	2	4.9	3.0	1.4	0.2	set
##	3	4.7	3.2	1.3	0.2	set
##	4	4.6	3.1	1.5	0.2	set
##	5	5.0	3.6	1.4	0.2	set
##	6	5.4	3.9	1.7	0.4	set

If you type the following code into Rstudio, you will see what the table looks like in the Viewer window.

```
sjt.df(iris,
    file="sjt_des.doc") #CRUCIAL - save this as a
    #word document
```

Variable	vars	n	missings	missings (percentage)	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Sepal.Length	1	150	0	0	5.84	0.83	5.8	5.81	1.04	4.3	7.9	3.6	0.31	-0.61	0.07
Sepal.Width	2	150	0	0	3.06	0.44	3	3.04	0.44	2	4.4	2.4	0.31	0.14	0.04
Petal.Length	3	150	0	0	3.76	1.77	4.35	3.76	1.85	1	6.9	5.9	-0.27	-1.42	0.14
Petal.Width	4	150	0	0	1.2	0.76	1.3	1.18	1.04	0.1	2.5	2.4	-0.1	-1.36	0.06
Species*	5	150	0	0	2	0.82	2	2	1.48	1	3	2	0	-1.52	0.07
LongPetal	6	150	0	0	0.42	0.5	0	0.4	0	0	1	1	0.32	-1.91	0.04

Figure 1:

There are lots of ways you can customize the table.

Descriptive statistics

Variable	vars	n	missings	missings (percentage)	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Sepal.Length	1	150	0	0	5.84	0.83	5.8	5.81	1.04	4.3	7.9	3.6	0.31	-0.61	0.07
Sepal.Width	2	150	0	0	3.06	0.44	3	3.04	0.44	2	4.4	2.4	0.31	0.14	0.04
Petal.Length	3	150	0	0	3.76	1.77	4.35	3.76	1.85	1	6.9	5.9	-0.27	-1.42	0.14
Petal.Width	4	150	0	0	1.2	0.76	1.3	1.18	1.04	0.1	2.5	2.4	-0.1	-1.36	0.06
Species*	5	150	0	0	2	0.82	2	2	1.48	1	3	2	0	-1.52	0.07
LongPetal	6	150	0	0	0.42	0.5	0	0.4	0	0	1	1	0.32	-1.91	0.04

Figure 2:

sjPlot - contingency table

First, create a new variable with me

```
iris$LongPetal <- ifelse(iris$Petal.Length > 4.5, 1, 0)
```

Now we can create a contingency table to see whether one species of flower is more likely to have long petals.

```
sjt.xtab(iris$Species, #rows
    iris$LongPetal, #columns
    file = "sjt_contingency.doc")
```

sjPlot - contingency table

Cracias	Long	Petal	Total				
Species	0	1	Total				
setosa	50	0	50				
versicolor	36	14	50				
virginica	1	49	50				
Total	87	63	150				
$X^2 = 104.598 \cdot df = 2 \cdot \Phi_c = .835 \cdot p < .001$							

Figure 3:

sjPlot - correlation matrix

Specify which variables you want to see in the correlation matrix using any method of subsetting or indexing you like.

sjPlot - correlation matrix

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length		-0.167*	0.882***	0.834***
Sepal.Width	-0.167*		-0.310***	-0.289***
Petal.Length	0.882***	-0.310***		0.938***
Petal.Width	0.834***	-0.289***	0.938***	

Figure 4:

Note: * = p < .05, ** = p < .01, *** = p < .001

sjPlot - correlation matrix

Note the defaults for this are the *spearman* method of calculating correlations and *list-wise* deletion. This is different from other functions you may be familiar with, which often default to the pearson method and pairwise deletion. This will be printed with the table, in case you forget.

sjPlot - correlation matrices

	Sepal.Length	Sepal. Width	Petal.Length	Petal.Width					
Sepal.Length		-0.118	0.872***	0.818***					
Sepal.Width	-0.118		-0.428***	-0.366***					
Petal.Length	0.872***	-0.428***		0.963***					
Petal.Width	0.818***	-0.366***	0.963***						
Computed correlation used pearson-method with pairwise-deletion.									

Figure 5:

a quick side note

One of the more useful but never discussed features of R is the ability to assign attributes to objects. Often you want your column names to be short (this helps keep code clean) but you also want to know exactly what the variable is. Also, you probably want to have some punctuation and spaces in the variable name. You can have both with attributes.

a quick side note

sjPlot will use the labels as column and row names.

	Age in years	Education	Reaction time
Age in years		-0.275	0.083
Education	-0.275		0.910*
Reaction time	0.083	0.910*	
Computed corre	elation used pears	on-method wii	th listwise-deletion.

Estimate a few linear models.

Put all models into one table simultaneously (just like you might in a manuscript).

		Petal.Length	ı		Petal.Length	ı		Petal.Length	
-	В	CI	p	В	CI	p	В	CI	p
(Intercept)	1.46	1.34 – 1.58	<.001	1.21	1.08 – 1.34	<.001	1.33	1.07 – 1.59	<.001
Species									
Speciesversicolor	2.80	2.63 - 2.97	<.001	1.70	1.34 - 2.06	<.001	0.45	-0.28 - 1.19	.227
Speciesvirginica	4.09	3.92 - 4.26	<.001	2.28	1.72 - 2.83	<.001	2.91	2.11 - 3.72	<.001
Petal.Width				1.02	0.72 - 1.32	<.001	0.55	-0.42 - 1.52	.267
Speciesversicolor:Petal.Width							1.32	0.23 - 2.42	.019
Speciesvirginica:Petal.Width							0.10	-0.94 - 1.14	.848
Observations		150			150			150	
R2 / adj. R2		.941 / .941			.955 / .954			.959 / .958	

Figure 7:

```
sjt.lm(mod1, mod2, mod3,
       pred.labels = c("Veriscolor", "Virginica",
                       "Petal Width",
                       "Versicolor x Petal Width",
                       "Virginica x Petal Width"),
       show.ci = F, show.se = T,
       depvar.labels = c("Petal Length",
                         "Petal Length",
                         "Petal Length"),
       file="sjt linear 2.doc")
```

		Petal Lengt	h		Petal Lengt	th		Petal Lengt	h
_	В	std. Error	p	В	std. Error	р	В	std. Error	p
(Intercept)	1.46	0.06	<.001	1.21	0.07	<.001	1.33	0.13	<.001
Species									
Veriscolor	2.80	0.09	<.001	1.70	0.18	<.001	0.45	0.37	.227
Virginica	4.09	0.09	<.001	2.28	0.28	<.001	2.91	0.41	<.001
Petal Width				1.02	0.15	<.001	0.55	0.49	.267
Versicolor x Petal Width							1.32	0.56	.019
Virginica x Petal Width							0.10	0.52	.848
Observations		150			150			150	
R ² / adj. R ²	.941 / .941			.955 / .954			.959 / .958		

Figure 8:

But what if I'm predicting multiple outcomes with the same models? Go for it!

		Petal.Lengt	h		Petal.Lengt	th		Petal.Lengt	th		Sepal.Leng	gth		Sepal.Lengt	h		Sepal.Lengt	h
-	В	std. Error	р	В	std. Error	p	В	std. Error	p	В	std. Error	- p	В	std. Error	р	В	std. Error	р
(Intercept)	1.46	0.06	<.001	1.21	0.07	<.001	1.33	0.13	<.001	5.01	0.07	<.001	4.78	0.08	<.001	4.78	0.17	<.001
Species																		
Veriscolor	2.80	0.09	<.001	1.70	0.18	<.001	0.45	0.37	.227	0.93	0.10	<.001	-0.06	0.23	.794	-0.73	0.50	.141
Virginica	4.09	0.09	<.001	2.28	0.28	<.001	2.91	0.41	<.001	1.58	0.10	<.001	-0.05	0.36	.889	0.49	0.54	.362
Petal Width				1.02	0.15	<.001	0.55	0.49	.267				0.92	0.19	<.001	0.93	0.65	.154
Versicolor x Petal Width							1.32	0.56	.019							0.50	0.74	.501
Virginica x Petal Width							0.10	0.52	.848							-0.28	0.70	.688
Observations		150			150			150			150			150			150	
R2 / adj. R2		.941 / .941			.955 / .954	4		.959 / .95	8		.619 / .61	4		.669 / .663			.677 / .666	j

Figure 9:

sjPlot - more models

This package can handle general linear models (e.g., binary models, probit models). To create these tables, use the function sjt.glm.

Also, you can create summaries of mixed effects models using sjt.lmer and sjt.glmer.

stargazer

Pros

- more control over output
- can select which predictors you want in the table, more options for fit statistics
- can import different estiamtes for coefficients, standard errors, confidence intervals and p values (if you want to use odds ratios or adjusted pvalues)
- one function, no matter what you're tabling
- cleaner descriptive table
- works with Sweave and knitr

Cons

- more options = more complicated
- can't create formatted correlation tables
- more limited in terms of descriptives
- can't see output in viewer

stargazer - descriptives

stargazer - descriptive

Statistic	N	Mean	St. Dev.	Min	Max
Sepal.Length	150	5.843	0.828	4.300	7.900
Sepal.Width	150	3.057	0.436	2.000	4.400
Petal.Length	150	3.758	1.765	1.000	6.900
Petal.Width	150	1.199	0.762	0.100	2.500
LongPetal	150	0.420	0.495	0	1

stargazer - descriptives

stargazer - descriptive

Descriptive Statistics

Statistic	N	Mean	St. Dev.	Min	Max
Sepal.Length	150	5.84	0.83	4.30	7.90
Sepal.Width	150	3.06	0.44	2.00	4.40
Petal.Length	150	3.76	1.77	1.00	6.90
Petal.Width	150	1.20	0.76	0.10	2.50
LongPetal	150	0.42	0.50	0	1
-					

	Dependent variable:				
	Petal.Length				
	(1)	(2)	(3)		
Speciesversicolor	2.798***	1.698***	0.454		
	(0.086)	(0.181)	(0.374)		
Speciesvirginica	4.090***	2.277***	2.913***		
	(0.086)	(0.281)	(0.406)		
Petal.Width		1.019***	0.546		
		(0.152)	(0.490)		
Speciesversicolor:Petal.Widt	h		1.323**		
•			(0.555)		
Speciesvirginica:Petal.Width	ı		0.101		
,			(0.525)		
Constant	1.462***	1.211***	1.328***		
	(0.061)	(0.065)	(0.131)		
Observations	150	150	150		
R ²	0.941	0.955	0.959		
Adjusted R ²	0.941	0.954	0.958		
Residual Std. Error	0.430 (df = 147)	0.378 (df = 146)	0.361 (df = 144)		
F Statistic	1,180.161*** (df = 2; 147)	1,035.992*** (df = 3; 146)			
Note:			'p"p"p<0.01		

Figure 12:

```
stargazer(mod1, mod2, mod3, mod4, mod5, mod6,
          type="html",
          out="star linear 2.doc",
          intercept.bottom = F,
          intercept.top = T,
          ci = T, digits=2,
          notes = "This is a caption.",
          model.names = T,
          single.row = T,
          covariate.labels = c("Constant", "Veriscolor",
                                "Virginica", "Petal Width",
                                "Versicolor x Petal Width",
                                "Virginica x Petal Width"))
```

	Dependent variable:						
	Petal.Length OLS			Sepal.Length			
				OLS			
	(1)	(2)	(3)	(4)	(5)	(6)	
Constant	1.46*** (1.34, 1.58)	1.21*** (1.08, 1.34)	1.33*** (1.07, 1.58)	5.01*** (4.86, 5.15)	4.78*** (4.62, 4.94)	4.78*** (4.44, 5.12)	
Veriscolor	2.80*** (2.63, 2.97)	1.70*** (1.34, 2.05)	0.45 (-0.28, 1.19)	0.93*** (0.73, 1.13)	-0.06 (-0.51, 0.39)	-0.73 (-1.70, 0.24)	
Virginica	4.09*** (3.92, 4.26)	2.28*** (1.73, 2.83)	2.91*** (2.12, 3.71)	1.58*** (1.38, 1.78)	-0.05 (-0.75, 0.65)	0.49 (-0.56, 1.55)	
Petal Width		1.02*** (0.72, 1.32)	0.55 (-0.41, 1.51)		0.92*** (0.54, 1.30)	0.93 (-0.34, 2.20)	
Versicolor x Petal Width			1.32** (0.23, 2.41)			0.50 (-0.95, 1.94)	
Virginica x Petal Width			0.10 (-0.93, 1.13)			-0.28 (-1.64, 1.08)	
Observations	150	150	150	150	150	150	
\mathbb{R}^2	0.94	0.96	0.96	0.62	0.67	0.68	
Adjusted R ²	0.94	0.95	0.96	0.61	0.66	0.67	
Residual Std. Error	0.43 (df = 147)	0.38 (df = 146)	0.36 (df = 144)	0.51 (df = 147)	0.48 (df = 146)	0.48 (df = 144)	
F Statistic	1,180.16*** (df = 2; 147)	1,035.99*** (df = 3; 146) 681.92*** (df = 5; 144)	119.26*** (df = 2; 147)) 98.53*** (df = 3; 146)	60.31*** (df = 5; 144	

Note:

p p p<0.01 This is a caption.

Figure 13:

stargazer - general linear model

C	Length	LongPetal	
_		LongPetal	
	OLS		
(1)	(2)	(3)	
1.46***	1.21***	-22.77	
(0.06)	(0.07)	(2,387.15)	
2.80***	1.70***	11.34	
(0.09)	(0.18)	(2,387.15)	
4.09***	2.28***	13.05	
(0.09)	(0.28)	(2,387.15)	
	1.02***	7.61***	
	(0.15)	(2.35)	
150	150	150	
		150	
0.94	0.93	-26.31	
		60.63	
0.43 (df = 147)	0.38 (df = 146)	00.03	
		46)	
	(0.06) 2.80*** (0.09) 4.09*** (0.09) 150 0.94 0.94 0.43 (df = 147)	(0.06) (0.07) 2.80*** 1.70*** (0.09) (0.18) 4.09*** 2.28*** (0.09) (0.28) 1.02*** (0.15) 150 150 0.94 0.96 0.94 0.95	

Figure 14: