Forecasting interictal epileptiform discharges using a convolutional neural network

Jamie Norris^{1,2}, Karl Friston¹, Richard Rosch^{1,3}, Gerald Cooray⁴, Martin Tisdall^{5,6}

¹ Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL

² Institute of Health Informatics, UCL

³ MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London

⁴ Department of Neurophysiology, Great Ormond Street Hospital for Children, London, UK

⁵ Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK

⁶ UCL Great Ormond Street Institute of Child Health, UCL

Background

- Epilepsy surgery is an important treatment option in patients with drug resistant epilepsy.
- Presurgical evaluation includes intracranial EEG and single pulse electrical stimulation (SPES).
- Responses to SPES are variable and may be brain state dependent.
- Interictal epileptiform discharges (IEDs) may be markers of brain states relevant to epilepsy.

Research Aim

To develop a machine learning classifier that forecasts IED frequency and spread.

Data

- SEEG recordings from >100 paediatric patients at Great Ormond Street Hospital.
- Each recording is ~5 days long at high temporal resolution (>1kHz sampling rate).
- More than 100 SEEG contacts each.

Labelling

Threshold-based IED detector applied to dataset.

2. Split the data into fixed-length segments labelled with the number of IEDs in the following segment.

y = 7

3. Formulate as a classification task: does the following segment have more IEDs than a patient-specific threshold?

thresh = 5y = True

Convolutional neural networks (CNNs)

- Initial investigation: 1D-CNNs applied to each channel.
- Extend to multi-channel 2D-CNNs to forecast additional IED features such as location and spread.

Preliminary analysis

- Two datasets created by applying the IED detector to a subset of data (1 patient, 1 hour, 12 channels).
- The datasets differ in segment length (1 second vs 10 seconds).
- For both segment lengths, more upcoming IEDs ⇒ higher power at lower frequencies.

Preliminary results

- 1D-CNN trained on each dataset for classification.
- 4 convolutional layers, max-pooling, batch normalisation and early stopping.

Discussion

- A 1D-CNN can forecast high IED frequency with reasonable accuracy using single-channel data.
- Classification performance is higher using 10 second segments, though likely not statistically significant.
- So far focus has been on one brain region in one patient: model generalisability is therefore unknown.

Next steps

- Incorporate additional features: power spectral density, antiseizure medication status, features of previous IEDs, sleep status, etc.
- Extend to multi-channel data using 2D-CNNs to focus on the 'where' as well as the 'when'.
- Train across patients and see if a model that can generalise is possible, or if patient-specific classifiers are needed.

ROC curves for 1D-CNN classifiers

