Teorema di Bolzano-Weierstrass 1

Ipotesi 1.1

1.2 Tesi

mente).

Successione a_n limitata (superiormente e inferior- Esistono INFINITE SOTTOSUCCESSIONI (relative alla successione iniziale) convergenti.

1.3 Dimostrazione

Chiamiamo A_0 l'insieme che contiene tutti i punti della successione. Eseguiamo la seguente procedura per k = 0.

- 1. Chiamiamo $[\alpha_k, \beta_k]$ i due estremi dell'intervallo della successione. Prendiamo il punto medio tra i due estremi, e chiamiamolo γ_k . Osserviamo che $\alpha_k \leq \gamma_k \leq \beta_k$, e che la dimensione d_k dell'intervallo $[\alpha_k, \gamma_k] = [\gamma_k, \beta_k]$ è la metà di
- 2. Creiamo due insiemi di punti della successione: uno con i punti tra $[\alpha_k, \gamma_k]$ e uno con i punti tra $[\gamma_k, \beta_k]$.
- 3. Almeno uno dei due insiemi ha un numero infinito di punti: prendiamolo, e chiamiamolo A_{k+1} .

Possiamo ripetere questa procedura un numero infinito di volte: possiamo notare che le dimensioni dell'intervallo $d_k = \left(\frac{d_0}{2^k}\right) \to 0$; dato che A_k contiene infiniti punti, possiamo creare una sottosuccessione che includa solo punti contenuti in A_k .

Essa sarà convergente per il teorema dei carabinieri ad un valore L tale che $\alpha_0 \leq \cdots \leq \alpha_k \leq L \leq \beta_k \leq C \leq \alpha_k \leq$ β_0 .

2 Polinomio di Taylor con resto di Peano

2.1 Definizioni preliminari

$$P_{n,x_0}(x) = \left(\sum_{m=0}^{n} \frac{f^{(m)}(x_0) * (x - x_0)^m}{m!}\right)$$

2.2 Ipotesi

2.3 Tesi

Funzione f(x): $]a, b[\to \mathbb{R},$ derivabile n volte in x_0 e n-1 volte in]a, b[. Punto $x_0 \in]a, b[$.

La funzione f(x) è APPROSSIMABILE nel punto x_0 con il polinomio $P_{n,x_0}(x) + o(x - x_0)^n$ di grado n.

2.4 Dimostrazione

Notiamo che $P_{n,x_0}^n(x_0) = f^{(n)}(x_0)$.

Proviamo a calcolare il seguente limite, che ci sarà utile nel prossimo passaggio:

$$\lim_{x \to x_0} \frac{f(x) - P_{n-1,x_0}(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f^{(1)}(x) - P_{n-1,x_0}^{(1)}(x)}{n * (x - x_0)^{n-1}} = \sum_{x \to x_0} \frac{f^{(n-1)}(x) - P_{n-1,x_0}^{(n-1)}(x)}{n! * (x - x_0)^1} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n! * (x - x_0)}$$

Ora siamo pronti a calcolare il limite con n invece che n-1:

$$\lim_{x \to x_0} \frac{f(x) - P_{n,x_0}(x)}{(x - x_0)^n}$$

Estraiamo un termine dal polinomio:

$$\lim_{x \to x_0} \frac{f(x) - P_{n-1,x_0}(x) - \frac{f^{(n)}(x_0) * (x - x_0)^n}{n!}}{(x - x_0)^n}$$

Raccogliamo termini in modo da formare il limite precedente:

$$\lim_{x \to x_0} \left(\frac{f(x) - P_{n-1,x_0}(x)}{(x - x_0)^n} - \frac{\frac{f^{(n)}(x_0) * (x - x_0)^n}{n!}}{(x - x_0)^n} \right)$$

Facciamo uscire dal limite le costanti:

$$-\frac{f^{(n)}(x_0)}{n!} + \lim_{x \to x_0} \frac{f(x) - P_{n-1,x_0}(x)}{(x - x_0)^n}$$

Per il limite precedente:

$$-\frac{f^{(n)}(x_0)}{n!} + \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{n! * (x - x_0)}$$

Raccogliamo $\frac{1}{n!}$:

$$\frac{1}{n!}(-f^{(n)}(x_0) + \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{(x - x_0)})$$

Abbiamo ottenuto un rapporto incrementale, il che significa che:

$$\frac{1}{n!}(-f^{(n)}(x_0) + f^{(n)}(x_0)) = 0$$

3 Teorema di esistenza degli zeri

3.1 Ipotesi

3.2 Tesi

Funzione $f(x):[a_0,b_0]\to\mathbb{R}$ continua. $f(a_0)=f(b_0)$.

Esiste almeno un punto in cui f(x) = 0.

3.3 Dimostrazione

Notiamo che $f(a_0) * f(b_0) \le 0$ (ovvero è negativa, cioè hanno due segni diversi). Definiamo la seguente procedura:

- 1. Bisezioniamo l'intervallo $[a_n, b_n]$ in $[a_n, z_n]$ e $[z_n, b_n]$.
- 2. Almeno uno dei due intervalli è tale che $f(inizio) * f(fine) \le 0$ (negativo).
- 3. Prendiamo un intervallo per il quale il prodotto precedente è negativo, e chiamiamolo $[a_{n+1}, b_{n+1}]$.

Ripetendo infinite volte la procedura, partendo dall'intervallo $[a_0, b_0]$, otterremo un intervallo sempre più "verticalmente stretto" $[a_n, b_n]$.

Possiamo notare che $a_0 \le a_n \le b_n$, e che entrambe le successioni tendono allo stesso numero $a_n \to x$ e $b_n \to x$.

Calcoliamo nuovamente $f(a_n) * f(b_n)$: sappiamo che risulta essere ≤ 0 , ma possiamo sostituire il limite: $f(x) * f(x) \leq 0$.

Dunque, abbiamo che $f(x)^2 \le 0$, e quindi che $\exists x : f(x) = 0$.

4 Teorema di Weierstrass

4.1 Ipotesi

4.2 Tesi

Funzione $f(x):[a,b]\to\mathbb{R}$ continua.

f(x) assume entro [a,b] un VALORE MASSIMO e un VALORE MINIMO.

4.3 Dimostrazione per il massimo

Chiamiamo $M = \sup(f)$ l'estremo superiore della funzione f: vogliamo dimostrare che esso è anche il massimo, e che quindi il massimo esiste per la funzione.

Dobbiamo quindi Trovare un valore x tale che f(x) = M.

Creiamo una successione y_n che ci aiuti a trovare il valore di f(x):

- Se $M = +\infty$, allora $y_n = n$ (in modo che la successione $\to +\infty$).
- Se $M \neq +\infty$, allora $y_n = M \frac{1}{n}$ (in modo che la successione $\to M$).

Possiamo dire che $y_n < M$, ed essendo M il minimo dei maggioranti di f : [a, b]:

$$\forall n, \exists x_n : (y_n < f(x_n) \le M) \land (a < x_n \le b)$$

Passando al limite, per il teorema dei carabinieri abbiamo che $f(x_n) \to M$.

Inoltre, per il teorema di Bolzano-Weierstrass sappiamo che esiste una sottosuccessione convergente $x_{k_n} \to x$ di x_n .

Essendo la funzione continua, allora $x_{k_n} \to x \implies f(x_{k_n}) \to f(x)$.

Essendo però la sottosuccessione un'estratta, allora abbiamo anche che $f(x_{k_n}) \to M$.

Per il teorema dell'unicità del limite allora deduciamo che $M = f(x_{k_n})$, e quindi che $x_{k_n} = x$.

4.4 Dimostrazione per il minimo

La stessa cosa, ma con inf(f) = -sup(-f).

5 Teorema di Fermat

Ipotesi 5.1

5.2Tesi

Funzione $f(x): [a,b] \to \mathbb{R}$ derivabile in un punto $f'(x_0) = 0$. $x_0 \in [a, b[$. x_0 punto di estremo locale.

Dimostrazione per il minimo locale

Sappiamo che se x_0 è un **minimo locale**, esiste obbligatoriamente un intorno $I \subset [a, b]$ in cui $\forall x \in I, f(x_0) \le I$ f(x).

Possiamo provare a calcolare il suo rapporto incrementale: $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$. Notiamo che mentre il numeratore è sempre positivo, il denominatore cambia in base a se $x>x_0$.

Allora, $f'_{-}(x_0) \le 0$, e $f'_{+}(x_0) \ge 0$.

Essendo la funzione **derivabile**, e quindi $f'_{-}(x) = f'_{+}(x)$ l'unica possibilità è che $f(x_0) = 0$.

Dimostrazione per il massimo locale **5.4**

La stessa cosa, ma con -f.

6 Teorema di Rolle

6.1 Ipotesi

Funzione f(x) tale che

- sia continua in [a, b]
- sia derivabile in [a, b]
- f(a) = f(b)

6.2 Tesi

 $\exists x_0: f'(x_0) = 0$ (ovvero la funzione è COSTANTE o ha ALMENO UN PUNTO STAZIONARIO)

6.3 Dimostrazione

Se la funzione è **continua**, allora per il teorema di Weierstrass sappiamo che ha almeno un punto di massimo x_M e uno di minimo x_m in [a, b].

Se i valori di entrambi i due punti coincidono con f(a)=f(b), allora la funzione è COSTANTE.

Se almeno uno dei due valori è diverso da f(a) = f(b), allora per il teorema di Fermat $f'(x_0) = 0$.

7 Teorema di Cauchy

7.1 Ipotesi

7.2 Tesi

$$\exists c : ((f(a) - f(b))g'(c) = (g(a) - g(b))f'(c))$$

Funzioni f(x) e g(x) tale che

- siano **continue** in [a, b]
- siano **derivabili** in [a, b]

7.3 Dimostrazione

Creiamo una funzione w tale che w(x) = (f(a) - f(b))g(x) - (g(a) - g(b))f(x).

Essendo formata dalla differenza di due funzioni continue, è anche essa continua.

Essendo formata dalla differenza di due funzioni derivabili, è anche essa derivabile.

Sostituendo, notiamo che w(a) = w(b).

Allora, per il teorema di Rolle, sappiamo che ha un punto stazionario c tale che w'(c) = 0.

Con w'(c) = 0, abbiamo che $\exists c : ((f(a) - f(b))g'(c) = (g(a) - g(b))f'(c)).$

7.4 Significato geometrico

Il significato geometrico del teorema di Cauchy è che presa una qualsiasi curva, essa ha almeno un punto in cui la pendenza è uguale alla pendenza della retta tra i punti a e b.

8 Teorema di Lagrange

8.1 Ipotesi

Funzione f(x) tale che

- sia continua in [a, b]
- sia derivabile in [a, b]

8.3 Dimostrazione

Il Teorema di Cauchy, con g(x) = x.

8.2 Tesi

$$\exists c : f'(c) = \frac{f(b) - f(a)}{b - a}$$

Teorema della media integrale 9

9.1**Ipotesi** 9.2Tesi

1. Funzione f(x) integrabile in [a, b]

1. $inf(f) \le \frac{1}{b-a} \int_a^b f(x) \le sup(f)$

2. Funzione f(x) continua

2. $\exists z : (\frac{1}{b-a} \int_a^b f(x) = f(z))$

9.3 Dimostrazione

Per la definizione di integrale, inf(f) < f(x) < sup(f), quindi anche $inf(f) < \frac{1}{b-a} \int_a^b f(x) < sup(f)$. Se la funzione è anche **continua**, allora per *Weierstrass* esistono un massimo M e un minimo m. Allora, $\forall x, m \leq f(x) \leq M$.

Ma per la definizione di integrale, $m=\int_a^b m dx \leq \int_a^b f(x) dx \leq \int_a^b M dx = M$. E in particolare, $m\leq \frac{1}{b-a}\int_a^b f(x) dx \leq M$.

Teorema fondamentale del calcolo integrale 10

10.1 **Ipotesi**

10.2 Tesi

Funzione f(x) integrabile in [a, b]Funzione G(x):]a,b[**primitiva** di f(x)

$$\int_{a}^{b} f(x)dx = G(b) - G(a) = [G(x)]_{a}^{b}$$

10.3 Dimostrazione

Prolunghiamo la primitiva G(x) per continuità:

- $G(a^+) = \lim_{x \to a^+} f(x)$
- $G(b^-) = \lim_{x \to b^-} f(x)$

La primitiva ora è continua in [a, b].

Possiamo allora partizionarla in un numero infinito di intervalli $[a, x_i] = \cdots = [x_j, b]$.

Per il teorema di Lagrange, \forall partizione "n" [c,d], $\exists z : G(d_n) - G(c_n) = G'(z_n)(d_n - c_n) = f(z_n)(d_n - c_n)$. Allora, possiamo dire che $G(b) - G(a) = \sum_{j=0}^{n} f(z_j)(d_j - c_j) = S_j$.

Abbiamo dunque una somma di Cauchy-Riemann, e possiamo dire che $G(b)-G(a)=\int_a^b f(x).$

11 Secondo teorema fondamentale del calcolo integrale

11.1 Ipotesi

11.2 Tesi

Funzione f(x) integrabile. Funzione $F(x) = \int_{x_0}^x f(x) dx$ Funzione F(x) Continua f(x) continua \Longrightarrow F'(x) = f(x)