n-Sample Test Classifier on Binary Outcomes of Stratified Randomized Experiments

MA 590 Special Topics: Causal Inference

Aukkawut Ammartayakun

Worcester Polytechinic Institute

27 February, 2023

Two-Sample Case

Two-Sample Case

Let say we have two group of data D: D_t and D_c . We want to test whether there is a difference between the two groups.

Classifier Two-Sample Test (Lopez-Paz and Oquab 2017)

- Combined two dataset into one dataset D.
- Split the dataset into training and testing set.
- Fit the classifier (like logistic regression) to the training set and predict the testing set.
- Calculate the empirical loss l_e of the classifier. If $|l_e 0.5| < \epsilon$, then $\bar{\tau} = 0$.

Generalization of *n*-Sample Case

Testing the Algorithm

```
set.seed(590)
# generate random multivariate gaussian data
n <- 1000
d <- 2
X <- matrix(rnorm(n*d), n, d)
y <- c(rep(0, n/2), rep(1, n/2))
c(c2st(X, y)$emp_loss, c2st(X,y)$pval)
[1] 0.570 0.294</pre>
```



```
set.seed(590)
# generate random multivariate gaussian data
n <- 1000
d <- 2
X <- matrix(rnorm(n*d), n, d)
y <- c(rep(0, n/2), rep(1, n/2))
c(c2st(X, y)*emp_loss, c2st(X,y)*pval)
[1] 0.570 0.294</pre>
```


It is the *impossible* classification problem. Thus, the result should be close to near-chance level.

```
set.seed(590)
# generate two dataset: two gaussians
n <- 5000
d <- 3
X0 <- matrix(rnorm(n*d, -1,0.8), n, d)
X1 <- matrix(rnorm(n*d, 1,1), n, d)
y <- c(rep(0, n), rep(1, n))
c(c2st(rbind(X0, X1), y)$emp_loss, c2st(rbind(X0, X1), y)$pval
</pre>
```

```
set.seed(590)
# generate two dataset: two gaussians
n <- 5000
d <- 3
X0 <- matrix(rnorm(n*d, -1,0.8), n, d)
X1 <- matrix(rnorm(n*d, 1,1), n, d)
y <- c(rep(0, n), rep(1, n))
c(c2st(rbind(X0, X1), y)$emp_loss, c2st(rbind(X0, X1), y)$pval)
</pre>
```

Test statistic diverges from near-chance level as there is an exist of "linear" decision boundary. The dimensionality problem in homogenity test is solved.

Question: Does changing from GLM to other models increases (widen the range of) the testing power, β ?

Comparison to Maximum Mean Discrepancy

Use C2ST on Causal Inference

• But, how can we use C2ST on causal inference?

Example:

Generalization of *n*-Sample Case

Possible Solution

- Combine both treatment and control group within each stratum into one dataset D_i^s .
- For each group, fit the classifier (like logistic regression) to the training set and predict the testing set.
- ullet Calculate the empirical loss l_e of the classifier. If $|l_e-0.5|<\epsilon$, then $ar{ au}_{
 m within}=0$
- ullet Find the way to infers $ar{ au}_{\mathsf{between}}$

References

References

Lopez-Paz, David, and Maxime Oquab. 2017. "Revisiting Classifier Two-Sample Tests." In *International Conference on Learning Representations*. https://openreview.net/forum?id=SJkXfE5xx.