Coursework 3

Ivan Kirev

Problem 1. Let points A, B, and C be represented by the position vectors \vec{a}, \vec{b} , and \vec{c} , respectively. Further, let A_1, B_1 , and C_1 be the midpoints of BC, AC, and AB, respectively.

By definition, the centroid of a polygon is $\overrightarrow{C} = (\vec{a_1} + \vec{a_2} + ... + \vec{a_n})/n$, where $\vec{a_i}$ are the vertices of the polygon. So if G is the centroid of $\triangle ABC$, then

$$\overrightarrow{G} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3}.$$

By considering the position vectors \vec{a}, \vec{b} , and \vec{c} , we can see that

$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$

$$\overrightarrow{BC} = \vec{c} - \vec{b}$$

$$\overrightarrow{CA} = \vec{a} - \vec{c}.$$

Since A_1, B_1 , and C_1 are the midpoints of BC, AC, and AB, respectively, we find that

$$\overrightarrow{AC_1} = \frac{\overrightarrow{b} - \overrightarrow{a}}{2}$$

$$\overrightarrow{BA_1} = \frac{\overrightarrow{c} - \overrightarrow{b}}{2}$$

$$\overrightarrow{CB_1} = \frac{\overrightarrow{a} - \overrightarrow{c}}{2}.$$

Using vector addition we can see that

$$\overrightarrow{A}_1 = \overrightarrow{b} + \frac{\overrightarrow{c} - \overrightarrow{b}}{2} = \frac{\overrightarrow{c} + \overrightarrow{b}}{2}$$

$$\overrightarrow{B}_1 = \overrightarrow{c} + \frac{\overrightarrow{a} - \overrightarrow{c}}{2} = \frac{\overrightarrow{a} + \overrightarrow{c}}{2}$$

$$\overrightarrow{C}_1 = \overrightarrow{a} + \frac{\overrightarrow{b} - \overrightarrow{a}}{2} = \frac{\overrightarrow{b} + \overrightarrow{a}}{2}.$$

Now to prove that the three medians are congruent at the centroid, we will show that point G with position vector $\vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$ lies on each of the three medians. To prove that G lies on AA_1 , we must show that $\overrightarrow{AG} = \lambda \overrightarrow{AA_1}$ for some scalar λ .

$$\overrightarrow{AG} = \overrightarrow{g} - \overrightarrow{a} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3} - \overrightarrow{a} = \frac{\overrightarrow{b} + \overrightarrow{c} - 2\overrightarrow{a}}{3}$$

$$\overrightarrow{AA_1} = \overrightarrow{A_1} - \overrightarrow{A} = \frac{\overrightarrow{c} + \overrightarrow{b}}{2} - \overrightarrow{a} = \frac{\overrightarrow{c} + \overrightarrow{b} - 2\overrightarrow{a}}{2}.$$

Therefore $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AA_1}$, so point G lies on AA_1 and furthermore, it divides the segment in ratio 2:1.

Similarly, we can show that G lies on BB_1 and CC_1 as well. We can now conclude that the three medians are congruent at G because it is a point on all three line segments, no two of which lie on a straight line.

(c)

We have that $\vec{a} = (1, 2), \vec{b} = (2, -1), \text{ and } \vec{c} = (0, 3).$ Then

$$\vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} = \frac{1}{3}((1+2+0), (2+(-1)+3)) = (1, \frac{4}{3}).$$

Therefore the centroid G has coordinates $(1, \frac{4}{3})$.

3