

Plan du cours :

- 1. Introduction : vocabulaire
- 2. Équations de transport
- 3. Équations de Navier-Stockes
- 4. Équation de Schrödinger
- 5. Systèmes linéaires symétriques

Référence générale : Evans

Table des matières

1	\mathbf{Intr}	roduction	5
	1.1	Motivations, exemples, éléments de classification	
	1.2	Notion d'estimation a priori	6
	1.3	Comment construire des solutions	10
		1.3.1 Cas linéaire	10
		1.3.2 Cas non linéaire	
		1.3.3 Solutions faibles, solutions fortes	11
2	Équ	nations de transport	13
	2.1	Équation sous forme – cas régulier	13
	2.2	Forme conservative – cas régulier	
	2.3	Extension à des données moins régulières	
	2.4	Théorème de Di Perna-Lions	
	2.5	Introduction aux lois de conservation scalaires	
		2.5.1 Solutions régulières	23
		2.5.2 Ondes de choc, ondes de raréfaction	
		2.5.3 Solutions entropiques	
3	ŕ~	nations de Navier-Stokes	27
J	3.1	Solutions de Leray	
	$\frac{3.1}{3.2}$	Solutions fortes en dimension 3	
	3.2	3.2.1 Préliminaires : système de Stokes avec terme source	
		3.2.2 Application d'un théorème de point fixe	
	3.3	Principe d'unicité fort-faible	
	ა.ა	Principe d'unicité fort-laible	31
4	Équ		41
	4.1	Résolution de l'équation linéaire (LS)	41
		4.1.1 Cas de données régulières : $u_0 \in \mathcal{S}(\mathbb{R}^N)$	41
		4.1.2 Existence et unicité des solutions dans $\mathcal{S}'(\mathbb{R}^N)$	43
	4.2	Cas de données dans $L^p(\mathbb{R}^N)$, $1 \leq p \leq 2$	
		4.2.1 Cas extrémaux $p=1$ et $p=2$	
		4.2.2 Le cas $p \in [1, 2]$	
		4.2.3 Estimations de Strichartz	
		4.2.4 Équation de Schrödinger linéaire avec un terme source	
	4.3	Équation de Schrödinger non linéaire	
		4.3.1 Préliminaires : invariances d'échelle	
		4.3.2 Estimations sur la nonlinéarité	51
		4.3.3 Théorème de point fixe	
		4.3.4 Lois de conservation pour l'équation de Schrödinger	54
5	Étu	de de deux phénomènes d'explosion	59
		Explosion dans l'équation de Schrödinger non linéaire focalisante	59
		Fountion de Kellen Corel	

Chapitre 1

Introduction

1.1 Motivations, exemples, éléments de classification

Les EDP d'évolutions modélisent l'évolution temporelle d'une grandeur physique, biologique, économique, géométrique...qui dépend aussi de l'espace.

Exemple: l'évolution de la température dans un milieu homogène, isotrope, sans source de chaleur:

$$\partial_t T - \Delta T = 0.$$

Problématique : Résoudre le problème de Cauchy :

$$\partial_t U + A[U] = 0 \tag{1.1}$$

où $U: \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}^d$ et A est un opérateur faisant intervenir U et ses dérivées spatiales (éventuellement non linéaire). On munit (1.1) d'une donnée initiale :

$$U_{1t=0} = U_0 (1.2)$$

avec $U_0: \mathbb{R}^N \to \mathbb{R}^d$. La donnée de (1.1) - (1.2) s'appelle problème de Cauchy.

La résolution de (1.1) - (1.2) se fait au sein d'un espace fonctionnel ad hoc (par exemple, un espace de Sobolev). L'identification des « bons » espaces fonctionnels est au cœur de la théorie.

Attention: L'existence et l'unicité n'ont pas forcément lieu dans les mêmes espaces.

Éléments de classification : Considérons une équation de la forme

$$A\partial_t^2 u + B\partial_t \partial_c u + C\partial_x^2 u + D\partial_t u + E\partial_x u + Fu = 0, \tag{1.3}$$

où A, B, C, D, E, F, sont des réels. Il s'agit d'une équation aux dérivées partielles linéaire à coefficients constants : il est naturel de chercher des solutions sous la forme

$$u(t,x) = ae^{\lambda t + kx}.$$

On obtient:

$$A\lambda^2 + B\lambda + Ck^2 + D\lambda + Ek + F = 0. \tag{1.4}$$

La nature de la courbe d'équation (1.4) dans le plan (λ, k) dépend du signe de $B^2 - 4AC$.

- Si $B^2 4AC < 0$, la courbe est une ellipse. On dit donc que l'équation (1.3) est une équation elliptique. Exemple : équation de Laplace $\partial_r^2 u + \partial_r^2 u = 0$.
- Si $B^2 4AC > 0$, la courbe est une hyperbole. L'équation (1.3) est donc dite hyperbolique. Exemple : équation des ondes $\partial_t^2 u - \partial_x^2 u = 0$.
- Si $B^2 4AC = 0$ et $A \neq 0, E \neq 0$ ou $C \neq 0, D \neq 0$, la courbe est une parabole. L'équation (1.3) est donc dite parabolique.

Exemple : équation de la chaleur $\partial_t u - \partial_x^2 u = 0$.

Dans ce cours, on n'étudiera pas les équations elliptiques.

Les équations hyperboliques et paraboliques ont des propriétés qualitatives très différentes :

- équations hyperboliques : propagation de l'information à vitesse finie, propagation des singularités ;
- équations paraboliques : propagation de l'information à vitesse infinie, effet régularisant.

Cette terminologie s'étend à des équations à coefficients non constants. Si l'on considère une EDP du type

$$A(t,x)\partial_t^2 u + B(t,x)\partial_t \partial_c u + C(t,x)\partial_x^2 u + D(t,x)\partial_t u + E(t,x)\partial_x u + F(t,x)u = 0.$$

On dira que l'équation est | elliptique hyperbolique si parabolique

$$\forall (t,x) \in \mathbb{R} \times \mathbb{R}, \qquad B(t,x)^2 - 4A(t,x)C(t,x) \mid \begin{array}{l} > 0 \\ < 0 \\ = 0 \end{array}$$

Attention : Une équation peut changer de type! Par exemple : $\partial_t^2 u + x \partial_x^2 u = 0$.

1.2 Notion d'estimation a priori

Souvent, dans l'étude d'une équation aux dérivées partielles, on adopte le schéma de preuve suivant :

1. On suppose qu'une solution de l'équation existe et on manipule l'équation pour trouver une borne sur u:

$$||u|| \leq C$$
,

la constante C ne dépendant que de l'équation (bornes sur les coefficients) et de la donnée initiale.

2. On construit une suite $(u_n)_{n\in\mathbb{N}}$ de solutions approchées de l'équation qui vérifient l'estimation a priori :

$$\forall n \in \mathbb{N}, \quad ||u_n|| \le C.$$

- 3. On utilise des propriétés de compacité (éventuellement faible) sur la suite $(u_n)_{n\in\mathbb{N}}$ de sorte que, à une sous-suite près, $u_n \to u$.
- 4. On cherche à passer à la limite dans l'équation vérifiée par u_n pour montrer que u est solution de l'équation de départ.

Attention: La dernière étape peut être hautement non triviale dans le cas d'une équation non linéaire.

Exemple : Soient Ω un ouvert borné régulier de \mathbb{R}^N et $c \in L^{\infty}(\mathbb{R}_+ \times \Omega)$ telle que $c(t, x) \geq 0$ pp. On considère l'équation

$$\begin{cases}
\partial_t u + c(t, x)u - \Delta u = 0 & t > 0, x \in \Omega \\
u_{1\partial\Omega} = 0 & u_{1t=0} = u_0 \in L^2(\Omega)
\end{cases}$$
(1.5)

On cherche à résoudre ce problème de Cauchy.

Estimation a priori : on suppose qu'il existe une solution u régulière de (1.5) et on multiplie (1.5a) par u. Par intégration par parties, on obtient, comme $u_{1\partial\Omega} = 0$,

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega}|u|^2 + \int_{\Omega}c(t,x)|u(t,x)|^2\mathrm{d}x + \int_{\Omega}|\nabla u|^2 = 0.$$

Comme $c(t, x) \ge 0$, on a donc l'estimation a priori :

$$\|u(t)\|_{L^{2}(\Omega)}^{2} + 2 \int_{0}^{t} \|\nabla u(t)\|_{L^{2}(\Omega)}^{2} \le \|u_{0}\|_{L^{2}(\Omega)}^{2}$$

$$\tag{1.6}$$

On cherche donc des solutions dans l'espace fonctionnel suivant :

$$E = L^{\infty}(\mathbb{R}_+, L^2(\Omega)) \cap L^2(\mathbb{R}_+, H_0^1(\Omega)).$$

Remarques:

— si $u \in E$, alors

$$c(t,x)u - \Delta u \in L^2(\mathbb{R}_+, H^{-1}(\Omega)),$$

donc on cherche des solutions de (1.5) dans E telles que $\partial_t u \in L^2(\mathbb{R}_+, H^{-1}(\Omega))$.

— on va même chercher $u \in \mathscr{C}(\mathbb{R}_+, L^2(\Omega))$.

Formulation variationnelle:

Définition 1.1

On dit que u est solution variationnelle de (1.5) si $u \in \mathscr{C}(\mathbb{R}_+, L^2(\Omega)) \cap L^2(\mathbb{R}_+, H^1_0(\Omega))$ et $u_{\mid t=0}u_0$, $\partial_t u \in L^2(\mathbb{R}_+, H^{-1}(\Omega))$ et $u_{\mid t=0}u_0$, $u \in L^2(\mathbb{R}_+, H^{-1}(\Omega))$

$$\begin{cases} \forall w \in H_0^1(\Omega), \text{ pour presque tout } t > 0 \\ \langle \partial_t u, w \rangle_{H^{-1}, H_0^1(\Omega)} + \int_{\Omega} c(t, x) u(t, x) w(x) dx + \int_{\Omega} \nabla u(t, x) \nabla w(x) dx = 0. \end{cases}$$

$$(1.7)$$

Dans ce qui suit, on va montrer l'existence d'une solution variationnelle de (1.5), autrement dit, d'une solution de (1.7). Pour cela, on utilise une *méthode de Galerkin*: on projette (1.7) sur un espace vectoriel de dimension finie bien choisi. Soit $(w_n)_{n\in\mathbb{N}}$ une base hilbertienne de $H_0^1(\Omega)$, orthonormée pour le produit scalaire $L^2(\Omega)$.

Remarque: On peut choisir une base de fonctions propres du Laplacien (théorème spectral).

Soit $E_n = \text{Vect}(w_0, \dots, w_n)$. On projette (1.7) sur E_n (au sens du produit scalaire L^2). Autrement dit, pour tout $n \geq 0$, on cherche une solution $u_n \in W^{1,\infty}(\mathbb{R}_+, E_n)$ telle que

$$\forall k \in [0, n], \qquad \langle \partial_t u_n, w_k \rangle + \int_{\Omega} c(t) u_n(t) w_k + \int_{\Omega} \nabla u_n(t) \nabla w_k = 0$$
(1.8)

et $u_n(t=0) = p_{E_n}(u_0)$.

Pour résoudre (1.8), on écrit

$$u_n(t) = \sum_{k=0}^{n} d_k^n(t) w_k$$

et on pose $D_n(t) = \begin{pmatrix} d_0^n(t) \\ \vdots \\ d_n^n(t) \end{pmatrix}$. L'équation (1.8) devient :

$$D'_n(t) + A_n(t)D_n(t) = 0 (1.9)$$

où
$$A_n(t) \in \mathcal{M}_{n+1}(\mathbb{R}), \ [A_n(t)]_{i,j} = \int_{\Omega} c(t)w_iw_j + \int_{\Omega} \nabla w_i \nabla w_j. \ \text{On a} \ D_n(t=0) = \begin{pmatrix} \int_{\Omega} u_0w_0 \\ \vdots \\ \int_{\Omega} u_0w_n \end{pmatrix}.$$

L'équation (1.9) est une équation différentielle linéaire, donc elle admet une unique solution globale, d'après le théorème de Cauchy-Lipschitz linéaire. Donc (1.8) admet une unique solution, pour tout $n \in \mathbb{N}$. De plus, u_n vérifie, pour presque tout t > 0,

$$\langle \partial_t u_n, u_n \rangle + \int_{\Omega} c(t)u_n^2 + \int_{\Omega} |\nabla u_n|^2 = 0.$$

Donc u_n vérifie l'estimation a priori (1.6).

Exercice: Montrer qu'il existe $u \in E$ tel que, à une sous-suite près,

$$u_n \rightharpoonup u \qquad w^* - L^{\infty}(\mathbb{R}_+, L^2(\Omega))$$

$$u_n \rightharpoonup u \qquad w - L^2(\mathbb{R}_+, H_0^1(\Omega))$$

$$\langle \partial_t, u_n, v \rangle_{H^{-1}, H_0^1} \rightharpoonup \langle \partial_t u, v \rangle \qquad w - L^2(\mathbb{R}_+), \ \forall v \in H_0^1(\Omega).$$

— D'après l'estimation a priori, on a :

$$\forall t > 0, \|u_n(t)\|_{L^2(\Omega)} \le \|u_0\|_{L^2(\Omega)}.$$

Ainsi, la suite (u_n) est bornée dans $L^{\infty}(\mathbb{R}_+, L^2(\Omega))$. Comme $L^1(\mathbb{R}_+, L^2(\Omega))$ est séparable, d'après le théorème de Banach-Alaoglu, quitte à extraire, (u_n) converge faiblement-* dans $L^{\infty}(\mathbb{R}_+, L^2(\Omega))$.

D'après l'estimation a priori, on a :

$$||u_n||_{L^2(\mathbb{R}_+, H_0^1(\Omega))}^2 = \int_0^{+\infty} ||\nabla u_n(t)||_{L^2(\Omega)}^2 dt \le ||u_0||_{L^2(\Omega)}^2.$$

Ainsi, la suite (u_n) est bornée dans $L^2(\mathbb{R}_+, H_0^1(\Omega))$. Comme cet espace est réflexif, quitte à extraire, (u_n) converge faiblement vers dans $L^2(\mathbb{R}_+, H_0^1(\Omega))$, notons u sa limite.

— Soit $v \in H_0^1(\Omega)$. Notons $v = v^1 + v^2$ sa décomposition dans la somme directe orthogonale (puisque E_n est de dimension finie)

$$H_0^1(\Omega) = E_n \oplus E_n^{\perp}$$
.

D'après (1.8), on a :

$$\left|_{H^{-1}}\langle \partial_t u_n(t), v^1 \rangle_{H_0^1} \right| \leq \|c\|_{L^{\infty}(\mathbb{R}_+ \times \Omega)} \|v^1\|_{L^2(\Omega)} \|u_n(t)\|_{L^2(\Omega)} + \left| \int_{\Omega} \nabla u_n(t) \cdot \nabla v^1 \right|.$$

Or, d'après l'inégalité de Poincaré,

$$\int_{0}^{+\infty} \|u_n(t)\|_{L^{2}(\Omega)} dt \le C \int_{0}^{+\infty} \|\nabla u_n(t)\|_{L^{2}(\Omega)}^{2} dt \le C \|u_0\|_{L^{2}(\Omega)}^{2}.$$

De plus, comme (w_k) est une base de fonctions propres du Laplacien, en notant $-\Delta w_k = \lambda_k w_k$, on a, pour $i, j \in \mathbb{N}$,

$$\int_{\Omega} \nabla w_i \cdot \nabla w_j = \lambda_i \int_{\Omega} w_i w_j = \lambda_i \delta_{ij}$$

donc, en notant $v^1 = \sum_{k=0}^n v_k^1 w_k$,

$$\int_{\Omega} \nabla u_n(t) \cdot \nabla v = \sum_{k=0}^{n} d_k^n(t) v_k \lambda_k$$

est borné dans $L^2(\mathbb{R}_+)$ d'après ce qui précède. Ainsi, $\left(H^{-1}\langle\partial_t u_n(t),v^1\rangle_{H_0^1}\right)$ est bornée dans $L^2(\mathbb{R}_+)$, qui est réflexif, donc, quitte à extraire, $\left(H^{-1}\langle\partial_t u_n,v^1\rangle_{H_0^1}\right)$ converge faiblement dans $L^2(\mathbb{R}_+)$, notons g_v sa limite..

Pourquoi est-ce que $_{H^{-1}}\langle \partial_t u_n, v^2 \rangle_{H^1_0} = 0$? En fait, on n'en a peut-être pas besoin puisqu'on n'applique cette convergence que pour des $v \in E_k$...

— Soit $v \in H_0^1(\Omega)$. Montrons que $g_v = \langle \partial_t u, v \rangle$. Pour tout $\varphi \in \mathcal{D}(\mathbb{R}_+^*)$, on a:

$$\int_{0}^{+\infty} \langle \partial_{t} u_{n}(t), \varphi(t) v \rangle_{H^{-1}, H_{0}^{1}} dt = -\int_{0}^{+\infty} \langle u_{n}(t), \varphi'(t) v \rangle_{H_{0}^{1}} dt \xrightarrow[n \to +\infty]{} -\int_{0}^{+\infty} \langle u(t), \varphi'(t) v \rangle_{H_{0}^{1}} dt = \int_{0}^{+\infty} \langle \partial_{t} u(t), \varphi(t) v \rangle_{H^{-1}, H_{0}^{1}} dt$$
et
$$\int_{0}^{+\infty} \langle \partial_{t} u_{n}(t), \varphi(t) v \rangle_{dt} \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} g_{v}(t) \varphi(t) dt$$

donc

$$\forall \varphi \in \mathcal{D}(\mathbb{R}_{+}^{*}), \qquad \int_{0}^{+\infty} \langle \partial_{t} u(t), v \rangle_{H^{-1}, H_{0}^{1}} \varphi(t) dt = \int_{0}^{+\infty} g_{v}(t) \varphi(t) dt$$

donc $\langle \partial_t u, v \rangle_{H^{-1}, H_0^1} = g_v$.

— De même, on a $u_n \to u$ faible-* dans $L^{\infty}(\mathbb{R}_+, L^2(\Omega))$.

Passage à la limite dans la formulation faible : Soit $\theta \in \mathscr{C}_c^1(\mathbb{R}_+)$. Alors, pour tout $n \in \mathbb{N}$ et pour tout $w \in E_k$ $(k \le n)$,

$$-\int_{0}^{\infty} \int_{\Omega} u_n(t,x)w(x)\theta'(t)dxdt - \int_{\Omega} p_{E_n}(u_0)w\theta(0) + \int_{0}^{\infty} \int_{\Omega} \theta(t)\left(c(t,x)u_n(t,x)w(x) + \nabla u_n(t,x) \cdot \nabla w(x)\right)dxdt = 0.$$
(1.10)

On fixe k (et w) et on passe à la limite $n \to +\infty$. On en déduit que (1.10) reste vraie quand on remplace u_n par u, puis pour n'importe quel $w \in H_0^1(\Omega)$.

Par ailleurs, pour tout $\theta \in \mathscr{C}^1_c(\mathbb{R}_+)$,

$$-\int_0^\infty \int_\Omega u(t,x)w(x)\theta'(t)dt - \int_\Omega u_0w\theta(0) = \int_0^\infty \theta(t)\langle \partial_t u, w \rangle_{H^{-1}, H_0^1} dt.$$

Finalement, on obtient,

$$\forall \theta \in \mathscr{C}_{c}^{1}(\mathbb{R}_{+}), \qquad \int_{0}^{\infty} \theta(t) \left\{ \langle \partial_{t} u, w \rangle_{H^{-1}, H_{0}^{1}} + \int c(t) u(t) w + \int \nabla u(t) \nabla w \right\} dt = 0.$$

On sait que la quantité entre accolades est dans $L^2(\mathbb{R}_+)$. On en déduit qu'elle est nulle pour presque tout t > 0 (et pour tout $w \in H_0^1$).

Selon moi, il y a un problème : dans l'avant dernière formule, il s'agit de u(0) et non de u_0 donc on ne peut pas conclure directement...

Continuité $u \in \mathcal{C}(\mathbb{R}_+, L^2(\Omega))$. Il s'agit d'un résultat général 1 :

$$u \in L^2(\mathbb{R}_+, H_0^1(\Omega)) \text{ et } \partial_t u \in L^2(\mathbb{R}_+, H^{-1}(\Omega)) \implies u \in \mathscr{C}(\mathbb{R}_+, L^2(\Omega)).$$

On étend u en posant u(t) = 0 pour tout t < 0 et on définit

$$u^{\varepsilon} = u * \rho_{\varepsilon}$$

où $(\rho_{\varepsilon})_{\varepsilon>0}\subset\mathcal{D}(\mathbb{R})$ est une suite régularisante. Montrons que $(u^{\varepsilon})_{\varepsilon>0}$ est de Cauchy dans $\mathscr{C}(\mathbb{R}_+,L^2(\Omega))$. Pour $\varepsilon,\delta>0$, on a :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| (u^{\varepsilon} - u^{\delta})(t) \right\|_{L^{2}(\Omega)}^{2} = 2 \langle (\partial_{t} u^{\varepsilon} - \partial_{t} u^{\delta})(t), (u^{\varepsilon} - u^{\delta})(t) \rangle_{L^{2}(\Omega)}$$

donc, pour tout $t, s \ge 0$,

$$\left\|(u^{\varepsilon}-u^{\delta})(t)\right\|_{L^{2}(\Omega)}^{2}=\left\|(u^{\varepsilon}-u^{\delta})(s)\right\|_{L^{2}(\Omega)}^{2}+2\int_{s}^{t}\langle(\partial_{t}u^{\varepsilon}-\partial_{t}u^{\delta})(\tau),(u^{\varepsilon}-u^{\delta})(\tau)\rangle_{L^{2}(\Omega)}\mathrm{d}\tau.$$

On sait que, comme $u \in L^2(\mathbb{R}, H^1_0(\Omega))$, on a $u^{\varepsilon} \to u$ dans $L^2(\mathbb{R}, H^1_0(\Omega))$ donc, quitte à extraire, pour presque tout $t \in \mathbb{R}$, on a $u^{\varepsilon}(t) \to u(t)$ dans $H^1_0(\Omega)$. Soit s > 0 tel que $u^{\varepsilon}(s) \to u(s)$ dans $H^1_0(\Omega)$. De plus, $\partial_t u^{\varepsilon} \to \partial_t u$ dans $L^2(\mathbb{R}_+, H^{-1}(\Omega))$. Alors,

$$\sup_{t\in\mathbb{R}_+}\left\|(u^\varepsilon-u^\delta)(t)\right\|_{L^2(\Omega)}^2\leq \left\|(u^\varepsilon-u^\delta)(s)\right\|_{L^2(\Omega)}^2+\int_0^\infty\left(\left\|(\partial_t u^\varepsilon-\partial_t u^\delta)(\tau)\right\|_{H^{-1}(\Omega)}^2+\left\|(u^\varepsilon-u^\delta)(\tau)\right\|_{H^1_0(\Omega)}^2\right)\mathrm{d}\tau\xrightarrow[\varepsilon,\delta\to 0]{}0.$$

Ainsi, (u^{ε}) converge dans $\mathscr{C}(\mathbb{R}_+, L^2(\Omega))$. Notons v sa limite. Comme $u^{\varepsilon}(t) \to u(t)$ pour presque tout $t \in \mathbb{R}$, on a v = u presque partout.

Passage à la limite : Soit $\varphi \in \mathcal{D}(\mathbb{R}_+)$. Soient $k \in \mathbb{N}$ et $w \in E_k$. Pour $n \geq k$, on a :

$$\int_{0}^{\infty} \varphi(t) \langle \partial_{t} u_{n}, w \rangle_{H^{-1}, H_{0}^{1}} dt + \int_{0}^{\infty} \int_{\Omega} \varphi(t) c(t, x) u_{n}(t, x) w(x) dx dt + \int_{0}^{\infty} \int_{\Omega} \varphi(t) \nabla u_{n}(t, x) \cdot \nabla w(x) dx dt = 0$$

$$(1.11)$$

donc, à la limite $n \to +\infty$, cette égalité est vraie en remplaçant u_n par u, puis pour n'importe quel $w \in H_0^1(\Omega)$.

$$\operatorname{pp} t > 0, \forall w \in H_0^1(\Omega), \qquad \langle \partial_t u, w \rangle_{H^{-1}, H_0^1} + \int_{\Omega} c(t, x) u(t, x) w(x) dx + \int_{\Omega} \nabla u(t, x) \cdot \nabla w(x) dx = 0. \tag{1.12}$$

De plus,

$$\int_0^{+\infty} \langle \partial_t u_n(t), \varphi(t) v \rangle_{H^{-1}, H_0^1} dt = -\int_0^{+\infty} \int_{\Omega} u_n(t, x) w(x) \varphi'(t) dx dt - \int_{\Omega} u_n(0, x) w(x) \varphi(0)$$

et de même en remplaçant u_n par u. Donc le passage à la limite dans la relation (1.11) donne aussi

$$-\int_{0}^{+\infty}\int_{\Omega}u(t,x)w(x)\varphi'(t)\mathrm{d}x\mathrm{d}t - \int_{\Omega}u_{0}(x)w(w)\varphi(0) + \int_{0}^{\infty}\int_{\Omega}\varphi(t)c(t,x)u(t,x)w(x)\mathrm{d}x\mathrm{d}t + \int_{0}^{\infty}\int_{\Omega}\varphi(t)\nabla u(t,x)\cdot\nabla w(x)\mathrm{d}x\mathrm{d}t = 0$$

soit

$$\int_0^{+\infty} \langle \partial_t u(t), \varphi(t) v \rangle_{H^{-1}, H_0^1} \mathrm{d}t + \int_\Omega (u(0, x) - u_0(x) w(x) \varphi(0) + \int_0^\infty \int_\Omega \varphi(t)(t, x) u(t, x) w(x) \mathrm{d}x \mathrm{d}t + \int_0^\infty \int_\Omega \varphi(t) \nabla u(t, x) \cdot \nabla w(x) \mathrm{d}x \mathrm{d}t = 0.$$

En comparant ceci à (1.11) exprimée avec u, on obtient :

$$\forall w \in H_0^1(\Omega), \forall \varphi \in \mathcal{D}(\mathbb{R}_+), \qquad \int_{\Omega} (u(0,x) - u_0(x)) w(x) \varphi(0) dx = 0$$

donc $u_{\downarrow t=0} = u_0$.

Bilan: Il existe une solution variationnelle de (1.5).

Unicité: laissé en exercice.

Il suffit de montrer que $u_0 = 0 \Rightarrow u = 0$. De (??), avec w = u(t), on obtient :

$$\langle \partial_t u(t), u(t) \rangle_{H^{-1}, H_0^1} + \int_{\Omega} c(t, x) |u(t, x)|^2 \mathrm{d}x + \int_{\Omega} |\nabla u(t, x)|^2 \mathrm{d}x = 0.$$

L'égalité

$$\langle \partial_t u(t, u(t)) \rangle_{H^{-1}, H_0^1} = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| u(t) \|_{L^2(\Omega)}^2$$

et la positivité des autres termes permettent alors de conclure

Montrons donc cette égalité. Avec les notations précédentes,

$$||u_{\varepsilon}(t)||_{L^{2}(\Omega)}^{2} = ||u^{\varepsilon}(s)||_{L^{2}(\Omega)}^{2} + 2\int_{s}^{t} \langle \partial_{t} u^{\varepsilon}(\tau), u^{\varepsilon}(\tau) \rangle_{L^{2}(\Omega)} d\tau.$$

On vérifie qu'à la limite :

$$\|u(t)\|_{L^2(\Omega)} = \|u(s)\|_{L^2(\Omega)} + 2\int_s^t \langle \partial_t u(\tau), u(\tau) \rangle \mathrm{d}\tau.$$

^{1.} je pense qu'on n'a pas encore $\partial_t u \in L^2(\mathbb{R}_+, H^{-1}(\Omega))$: voir Evans

1.3 Comment construire des solutions

1.3.1 Cas linéaire

1.3.1.1 Formule de représentation

Le cas le plus courant où cette stratégie s'applique est celui d'équations linéaires à coefficients constants dans l'espace entier. On peut passer en Fourier.

Exemple: $\partial_t u - \Delta u = 0, t > 0, x \in \mathbb{R}^N$. On passe en Fourier en x:

$$\partial_t \widehat{u}(t,\xi) + |\xi|^2 \widehat{u}(t,\xi) = 0.$$

Donc

$$\widehat{u}(t,\xi) = \widehat{u_0}(\xi)e^{-t|\xi|^2}.$$

Alors.

$$u(t,x) = K_t *_x u_0$$
 où $K_t = \mathcal{F}^{-1}(e^{-t|\xi|^2}) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^N} e^{ix\xi} e^{-t|\xi|^2} d\xi = \frac{1}{(2\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right).$

Autre cas dans lequel on a une formule de représentation : les équations de transport.

1.3.1.2 Formulation variationnelle + estimation a priori

Voir la section précédente.

1.3.2 Cas non linéaire

1.3.2.1 Application d'un théorème de point fixe

Théorème 1.2 (Picard)

Soient E un espace de Banach, $\phi: E \to \mathbb{E}$ une application r-lipschitzienne avec $r \in [0, 1[$. Alors ϕ admet un unique point fixe.

Théorème 1.3 (Cauchy-Lipschitz)

Soient E un espace de Banach, $F: \mathbb{R} \times E \to E$ une application continue, localement lipschitzienne en sa deuxième variable. Soit $x_0 \in E$ quelconque. Le problème de Cauchy

$$\begin{cases} x'(t) = F(t, x(t)) \\ x(0) = x_0 \end{cases}$$
 (1.13)

admet une unique solution locale : il existe $\delta > 0$ tel que (1.13) admette une unique solution dans $\mathscr{C}^1([-\delta,\delta],E)$.

Remarque: En général, on ne pourra pas appliquer d'emblée le théorème de Cauchy-Lipschitz car l'espace dans lequel on recherche des solutions n'est pas stable par F (problème de perte de dérivées). Par exemple, pour l'équation de la chaleur, si $u \in H_0^1(\Omega)$, alors $\Delta u \in H^{-1}(\Omega)$.

Mais on reproduira souvent la preuve du théorème de Cauchy-Lipschitz en cherchant un point fixe à l'application $\phi: u \in \mathcal{C}^1([-T,T],E) \mapsto v \in \mathcal{C}^1([-T,T],E)$, telle que

$$\forall t, \qquad v(t) = v_0 + \int_0^t F(s, u(s)) ds.$$

1.3.2.2 Approximation, estimations a priori, compacité

Voir la section précédente pour la stratégie générale.

 ${\bf Application:} \quad {\rm cf.\ chapitre\ 3,\ solutions\ de\ Leray\ de\ l'équation\ de\ Navier-Stokes.}$

$$\left\{ \begin{array}{l} \partial_t u + u \partial_x u - \partial_x^2 u = 0 \quad t > 0, x \in \mathbb{R} \\ u_{\mid t = 0} = u_0 \\ u : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R} \end{array} \right.$$

Estimation a priori : si u est régulière et décroît à l'infini :

$$\int_{\mathbb{R}} \partial_t u \, u = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} |u|^2$$

$$\int_{\mathbb{R}} u \partial_x u \, u = \frac{1}{3} \int_{\mathbb{R}} \partial_x (u^3) = 0$$

$$- \int_{\mathbb{R}} \partial_x^2 u \, u = \int_{\mathbb{R}} (\partial_x u)^2$$

donc on obtient l'estimation a priori :

$$\int_{\mathbb{R}} |u(t)|^2 + \int_0^t \int_{\mathbb{R}} |\partial_x u|^2 \le \int_{\mathbb{R}} |u_0|^2.$$

Approximation: On considère

$$E_n = \{ v \in L^2(\mathbb{R}), \, \widehat{v}(\xi) = 0 \text{ pp } \xi \text{ si } |\xi| \ge n \}.$$

On observe que si $v \in E_n$, alors $\partial_x^k v \in E_n$. En effet,

$$\widehat{\partial_x^k v}(\xi) = (i\xi)^k \widehat{v}(\xi) \in L^2(\mathbb{R})$$

puisque $\widehat{v}(\xi) = 0$ si $|\xi| \ge n$. En particulier, si $v \in E_n$, alors $v \in L^{\infty}(\mathbb{R})$. Donc si $v \in E_n$, $v \partial_x v - \partial_x^2 v \in L^2(\mathbb{R})$.

Pour tout $n \in \mathbb{N}$, on résout :

$$\partial_t u_n + \mathbb{P}_{E_n}(u\partial_x u_n - \partial_x^2 u_n) = 0.$$

On peut le faire en appliquant le théorème de Cauchy-Lipschitz dans E_n avec

$$F_n: \begin{array}{ccc} E_n & \to & E_n \\ v & \mapsto & -\mathbb{P}_{E_n}(v\partial_x v - \partial_x^2 v). \end{array}$$

Exercice: Montrer que F_n est Lipschitzienne.

La suite $(u_n)_{n\in\mathbb{N}}$ vérifie l'estimation a priori. Pour le passage à la limite : cf chapitre 3.

1.3.3 Solutions faibles, solutions fortes

Solutions faibles

Obtenues par estimation a priori et compacité dans de « gros » espaces fonctionnels.

Existence, mais pas unicité.

L'équation est vérifiée dans un sens faible (par exemple, dans \mathcal{D}').

Solutions fortes

Obtenues par une méthode de point fixe dans un espace à forte régularité.

Existence et unicité (hypothèse de petitesse).

L'équation est vérifiée dans un sens plus fort.

Principe d'unicité fort-faible : Si une solution forte existe, toute les solutions faibles (avec la même donnée initiale) coïncide avec elle.

Chapitre 2

Équations de transport

L'objet de ce chapitre est d'étudier des équations de la forme

$$\partial_t u(t,x) + b(t,x) \cdot \nabla_x u(t,x) = 0$$
 (équation de transport sous forme forte) (2.1)

ou

$$\partial_t u + \operatorname{div}_x(b(t,x)u(t,x)) = 0$$
 (équation de transport conservative) (2.2)

où $t > 0, x \in \mathbb{R}^N, u : \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}, b : \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}^N$ est un champ de vecteurs donné. On munit (2.1) ou (2.2) d'une donnée initiale $u_{1t=0} = u_0$.

2.1 Équation sous forme forme – cas régulier

Dans tout ce paragraphe, on suppose que $b \in \mathscr{C}^1(\mathbb{R}_+ \times \mathbb{R}^N, \mathbb{R}^N)$. On suppose également

$$\forall T > 0, \exists C_T > 0, \forall x \in \mathbb{R}^N, \forall t \in [0, T], \qquad ||b(t, x)|| \le C_T (1 + ||x||).$$
(2.3)

Définition 2.1

On appelle courbes caractéristiques les solutions de l'équation différentielle

$$\begin{cases} \dot{X}(t,y) = b(t,X(t,y)) \\ X(0,y) = y \in \mathbb{R}^N \end{cases}$$
 (2.4)

Sous l'hypothèse (2.3), les solutions de (2.4) sont globales. De plus, pour tout $t \ge 0$, l'application $y \in \mathbb{R}^N \mapsto X(t,y) \in \mathbb{R}^N$ est un \mathscr{C}^1 -difféomorphisme.

Théorème 2.2

Soit $b: \mathscr{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ vérifiant (2.3). Soit $u_0 \in \mathscr{C}^1(\mathbb{R}^N)$. Il existe une unique solution $u \in \mathscr{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ de (2.1). Celle-ci est donnée par la formule :

$$\forall t \ge 0, \forall y \in \mathbb{R}^N, \qquad u(t, X(t, y)) = u_0(y).$$

ightharpoonup On raisonne par équivalence. Soit $u\in\mathscr{C}^1(\mathbb{R}_+\times\mathbb{R}^N)$ quelconque.

$$u \text{ v\'erifie } (2.1) \iff \begin{cases} \partial_t u(t,x) + b(t,x) \cdot \nabla u(t,x) = 0 & \forall t,x \\ u(0,x) = u_0(x) & \forall x \end{cases}$$

$$\iff \begin{cases} \partial_t u(t,X(t,y)) + \overbrace{b(t,X(t,y))} \cdot \nabla u(t,X(t,y)) = 0 & \forall t,y \\ u(0,x) = u_0(x) & \forall x \end{cases}$$

$$\iff \begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} u(t,X(t,y)) = 0 & \forall t,y \\ u(0,X(0,y)) = u_0(y) & \forall y \end{cases}$$

$$\iff u(t,X(t,y)) = u_0(y) & \forall y,t$$

Proposition 2.3

1. Principe du maximum :

$$\forall t \ge 0, \qquad \|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \le \|u_0\|_{L^{\infty}(\mathbb{R}^N)}$$

(on a même égalité...)

2. Propagation de l'information à vitesse finie. Supposons que $b \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)$ pour fixer les idées. Soit $u_0 \in \mathscr{C}^1(\mathbb{R}^N)$ telle que supp $u_0 \subset B_R$ avec R > 0. Alors

$$\operatorname{supp} u(t) \subset B_{R+t||b||_{\infty}}$$

ightharpoonup Pour le 2, écrire $||X(t,y)-y|| \le ||b||_{\infty} t$.

2.2 Forme conservative – cas régulier

On suppose dans toute cette partie que $b \in \mathcal{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ et vérifie (2.3). On pose

$$J(t,y) = \exp\left(\int_0^t (\operatorname{div} b)(s, X(s,y)) ds\right).$$

Théorème 2.4 (Liouville)

On a:

$$\forall t \geq 0, \forall y \in \mathbb{R}^N, \qquad J(t,y) = \det\left(\frac{\partial X}{\partial y}(t,y)\right).$$

 \triangleright On traite le cas $b \in \mathcal{C}^k(\mathbb{R}_+ \times \mathbb{R}^N)$ pour $k \geq 2$. Alors $X \in \mathcal{C}^k(\mathbb{R}_+ \times \mathbb{R}^N)$ et on pose

$$\widetilde{J}(t,y) = \det\left(\frac{\partial X}{\partial y}(t,y)\right).$$

Alors, \widetilde{J} est de classe \mathscr{C}^{k-1} .

Soit $u \in \mathscr{C}_c^1(\mathbb{R}^N)$. Par définition de \widetilde{J} , pour tout $t \geq 0$, on a :

$$\int_{\mathbb{R}^N} u(X(t,y))\widetilde{J}(t,y)\mathrm{d}y = \int_{\mathbb{R}^N} u(y)\mathrm{d}y.$$

En dérivant par rapport à t, on obtient :

$$\int_{\mathbb{D}^N} \dot{X}(t,y) \cdot \nabla_x u(X(t,y)) \widetilde{J}(t,y) dy + \int_{\mathbb{D}^N} u(X(t,y)) \dot{\widetilde{J}}(t,y) dy = 0.$$

Or

$$\begin{split} \int_{\mathbb{R}^N} \dot{X}(t,y) \cdot \nabla_x u(X(t,y)) \widetilde{J}(t,y) \mathrm{d}y &= \int_{\mathbb{R}^N} b(t,X(t,y)) \cdot \nabla_x u(X(t,y)) \widetilde{J}(t,y) \mathrm{d}y \\ &= \int_{\mathbb{R}^N} b(t,x) \cdot \nabla_x u(x) \mathrm{d}x \\ &= -\int_{\mathbb{R}^N} (\mathrm{div}_x \, b)(t,x) u(x) \mathrm{d}x \\ &= -\int_{\mathbb{R}^N} (\mathrm{div}_x \, b)(t,X(t,y)) u(X(t,y)) \widetilde{J}(t,y) \mathrm{d}y. \end{split}$$

Ainsi, pour tout $u \in \mathscr{C}_c^1(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} u(X(t,y)) \left(\dot{\widetilde{J}}(t,y) - \operatorname{div}_x b(t,X(t,y)) \widetilde{J}(t,y) \right) dy = 0$$

donc

$$\forall t \ge 0, \forall y \in \mathbb{R}^N, \qquad \dot{\widetilde{J}}(t,y) = \operatorname{div}_x b(t,X(t,y))\widetilde{J}(t,y).$$

De plus $\widetilde{J}(0,y) = \det(I_n) = 1$ donc $\widetilde{J} = J$.

Théorème 2.5

Soient $u_0 \in \mathcal{C}^1(\mathbb{R}^N)$ et $b \in \mathcal{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ vérifiant (2.3). Alors il existe une unique solution $u \in \mathcal{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ de (2.2) qui est donnée par la formule :

$$\forall t \ge 0, \forall y \in \mathbb{R}^N, \qquad u(t, X(t, y))J(t, y) = u_0(y).$$

 \triangleright On raisonne par équivalence. Soit $u \in \mathcal{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$.

$$u \text{ v\'erifie } (2.2) \iff \begin{cases} \partial_t u(t,x) + b \cdot \nabla_x u(t,x) + (\operatorname{div} b) u(t,x) = 0 & \forall t,x \\ u(0,x) = u_0(x) & \forall x \end{cases}$$

$$\iff \begin{cases} \partial_t u(t,X(t,y)) J(t,y) + b(t,X(t,y)) \cdot \nabla_x u(t,X(t,y)) J(t,y) + \dot{J}(t,y) u(t,X(t,y)) = 0 & \forall t,y \\ u(0,y) = u_0(y) & \forall y \end{cases}$$

$$\iff \begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \{ u(t,X(t,y)) J(t,y) \} = 0 & \forall t,y \\ u(0,X(0,y) J(0,y) = u_0(y) & \forall y \end{cases}$$

d'où le résultat.

Proposition 2.6

1. Propagation à vitesse finie : $si b \in L^{\infty}(\mathbb{R}^N)$ et $si \operatorname{supp} u_0 \subset B_R$ avec R > 0, on a de nouveau $\operatorname{supp} u(t) \subset B_{R+t\|b\|_{\infty}}$.

2. Conservation de la masse (ou de la norme L^1) : si $u_0 \in L^1(\mathbb{R}^N)$ alors

$$\forall t \ge 0, \qquad \int_{\mathbb{R}^N} u(t,x) dx = \int_{\mathbb{R}^N} u(t,X(t,y)) J(t,y) dy = \int_{\mathbb{R}^N} u_0(y) dy.$$

De plus,

$$\forall t \ge 0, \qquad \int_{\mathbb{R}^N} |u(t,x)| dx = \int_{\mathbb{R}^N} |u_0(y)| dy.$$

2.3 Extension à des données moins régulières

Dans cette partie, on continue de supposer que $b \in \mathcal{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ et vérifie (2.3).

Théorème 2.7

Soit $u_0 \in L^{\infty}(\mathbb{R}^N)$. Alors il existe une unique solution $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N) \cap \mathscr{C}(\mathbb{R}_+, L^1_{loc})$ de l'équation (2.1) au sens des distributions.

 \triangleright — **Existence**: par approximation de la donnée initiale. Soit $u_0 \in L^{\infty}(\mathbb{R}^N)$. Il existe une suite $(u_0^n)_{n \in \mathbb{N}}$ telle que $u^n \in \mathscr{C}^1(\mathbb{R}^N) \ \forall n \in \mathbb{N}$ et

$$\forall n \in \mathbb{N}, \qquad \|u_n\|_{L^{\infty}} \le \|u_0\|_{L^{\infty}}$$

et

$$\forall R > 0, \qquad u_0^n \xrightarrow[n \to +\infty]{L^1(B_R)} u_0.$$

D'après la section 2.1, pour tout $n \in \mathbb{N}$, il existe une unique solution u_n de

$$\begin{cases} \partial_t u_n + b \cdot \nabla_x u_n = 0 \\ u_{n \mid t=0} = u_0^n \end{cases}$$

donnée par $\forall t \geq 0, \forall y \in \mathbb{R}^N, u_n(t, X(t, y)) = u_0^n(y)$

Propriétés de $(u_n)_{n\in\mathbb{N}}$:

- 1. $\forall n \in \mathbb{N}, \|u_n\|_{L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)} \le \|u_0^n\|_{\infty} \le \|u_0\|_{\infty}$.
- 2. $(u_n)_{n\in\mathbb{N}}$ est de Cauchy dans $\mathscr{C}([0,T],L^1(B_R))$ pour tout R>0. En effet, soient $R>0, T>0, n,p\in\mathbb{N}$. On a :

$$\int_{B_R} |u_n(t,x) - u_p(t,x)| dx = \int_{X(t)^{-1}(B_R)} |u_n(t,X(t,y)) - u_p(t,X(t,y))| J(t,y) dy$$

$$= \int_{X(t)^{-1}(B_R)} |u_0^n(y) - u_0^p(y)| J(t,y) \mathrm{d}y.$$

Or il existe $A_{T,R} > 0$ tel que $\forall t \in [0,T], X(t)^{-1}(B_R) \subset B_{A_{T,R}}$. Soit

$$M = \sup_{\substack{t \in [0,T]\\ y \in B_{A_{T,R}}}} J(t,y) < +\infty.$$

Alors,

$$\forall t \in [0, T], \qquad \int_{B_R} |u_n(t, x) - u_p(t, x)| dx \le M \|u_0^n - u_0^p\|_{L^1(B_{A_{T,R}})}$$

donc

$$||u_n - u_p||_{\mathscr{C}([0,T],L^1(B_R))} \le M ||u_0^n - u_0^p||_{L^1(B_{A_{T,R}})}.$$

Comme $u_0^n \to u_0$ dans $L^1(B_{A_{T,R}})$, $(u_0^n)_{n \in \mathbb{N}}$ est de Cauchy dans $L^1(A_{T,R})$ donc $(u_n)_{n \in \mathbb{N}}$ est de Cauchy dans $\mathscr{C}([0,T],L^1(B_R))$.

À extraction d'une sous-suite près, il existe $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N) \cap \mathscr{C}(\mathbb{R}_+, L^1_{\text{loc}})$ telle que

$$u_n \to u \, w^* - L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)$$
 et $u_n \to u \text{ dans } \mathscr{C}([0,T], L^1(B_R)), \, \forall T, R > 0.$

Soit $\varphi \in \mathscr{C}_c^{\infty}([0, +\infty[\times \mathbb{R}^N)])$. On a, pour tout $n \geq 0$,

$$\int_0^\infty \int_{\mathbb{R}^N} u_n(t,x) \left(\partial_t \varphi + \operatorname{div}_x(b\varphi)\right)(t,x) dt dx = -\int_{\mathbb{R}^N} u_0^n(x) \varphi(0,x) dx.$$

On passe à la limite quand $n \to +\infty$ en utilisant les propriétés précédentes.

— **Remarque**: À une sous-suite près, $u_n(t,x) \xrightarrow[n \to +\infty]{} u(t,x)$ presque partout en t,x, donc on peut passer à la limite presque partout dans la formule de représentation. On obtient que

pp.
$$t, y$$
 $u(t, X(t, y)) = u_0(y)$.

— Unicité: Il suffit de montrer que si u est solution au sens des distributions de (2.1) avec $u_0 = 0$ et $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N) \cap \mathscr{C}(\mathbb{R}_+, L^1_{loc})$ alors u = 0. Si u est solution au sens des distributions avec $u_0 = 0$ alors

$$\forall \varphi \in \mathscr{C}_{c}^{\infty}(\mathbb{R}_{+} \times \mathbb{R}^{N}), \qquad \int_{0}^{+\infty} \int_{\mathbb{R}^{N}} u(t, x) [\partial_{t} \varphi + \operatorname{div}(b\varphi)](t, x) dt dx = 0. \tag{2.5}$$

Soit T > 0. Montrons que

$$\forall \psi \in \mathscr{C}_c^1(\mathbb{R}^N), \qquad \int_{\mathbb{R}^N} u(T, x) \psi(x) dx = 0$$
 (2.6)

D'après la section 2.2, il existe une unique solution $\overline{\varphi} \in \mathscr{C}^1$ de

$$\begin{cases} \partial_t \overline{\varphi} + \operatorname{div}(b\overline{\varphi}) = 0 & \sup[0, T] \times \mathbb{R}^N \\ \overline{\varphi}(T, x) = \psi(x) & \forall x \in \mathbb{R}^N \end{cases}$$

Notons que dans (2.5), en régularisant par convolution, on peut prendre $\varphi \in \mathscr{C}_c^1(\mathbb{R}_+ \times \mathbb{R}^N)$. On aimerait prendre $\varphi = \overline{\varphi}$ dans (2.5) mais c'est impossible car $\overline{\varphi}$ n'est pas à support compact en temps. On tronque $\overline{\varphi}$. Soit $\varepsilon > 0$, on définit $\theta_{\varepsilon} \in \mathscr{C}_c^1(\mathbb{R}_+)$ telle que

$$\forall t \in [0, T], \ \theta_{\varepsilon}(t) = 1, \qquad \forall t \geq T + \varepsilon, \ \theta_{\varepsilon}(t) = 0 \qquad \forall t \geq 0, \ \theta'_{\varepsilon} \leq 0.$$

Soit $\varphi_{\varepsilon} = \overline{\varphi}\theta_{\varepsilon}$ de sorte que $\varphi_{\varepsilon} \in \mathscr{C}_{c}^{1}(\mathbb{R}_{+} \times \mathbb{R}^{N})$. On peut donc prendre φ_{ε} comme fonction test dans (2.5). Calculons

$$\partial_t \varphi_{\varepsilon} + \operatorname{div}(b\varphi_{\varepsilon}) = \theta_{\varepsilon} \underbrace{\left(\partial_t \overline{\varphi} + \operatorname{div}(b\overline{\varphi})\right)}_{=0} + \overline{\varphi} \partial_t \theta_{\varepsilon}$$

donc

$$\forall \varepsilon > 0, \qquad \int_0^\infty \int_{\mathbb{R}^N} \overline{\varphi}(t, x) u(t, x) \partial_t \theta_{\varepsilon}(t, x) dt dx = 0.$$

Or

$$\int_0^\infty \int_{\mathbb{R}^N} \overline{\varphi}(t,x) u(t,x) \partial_t \theta_{\varepsilon}(t,x) dt dx = \int_0^\infty \int_{\mathbb{R}^N} u(T,x) \psi(x) \partial_t \theta_{\varepsilon}(t) dt dx + \int_0^\infty \int_{\mathbb{R}^N} [u(t,x) \overline{\varphi} - u(T,x) \psi(x)] \partial_t \theta_{\varepsilon}(t) dt dx.$$

De plus,

$$\int_0^\infty \int_{\mathbb{R}^N} u(T, x) \psi(x) \partial_t \theta_{\varepsilon}(t) dt dx = -\int_{\mathbb{R}^N} u(T, x) \psi(x) dx +$$

et, si

$$\omega(\varepsilon) = \sup_{T \le t \le T + \varepsilon} \int_{\mathbb{R}^N} |u(t, x)\overline{\varphi}(t, x) - u(T, x)\psi(x)| dx,$$

comme $\overline{\varphi} \in \mathscr{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ à support compact en x, et comme $u \in \mathscr{C}(\mathbb{R}_+, L^1_{loc}(\mathbb{R}^N))$,

$$\omega(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0.$$

Alors,

$$\left| \int_{\mathbb{R}^N} u(T, x) \psi(x) dx \right| \leq \int_0^\infty \omega(\varepsilon) |\partial_t \theta_{\varepsilon}(t)| dt = \omega(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0.$$

Finalement,

$$\forall T > 0, \forall \psi \in \mathscr{C}^1_c(\mathbb{R}^N), \qquad \int_{\mathbb{R}^N} u(T, x) \psi(x) dx = 0.$$

Montrons que cela implique que u(T, x) = 0 pp. $x, \forall T > 0$

- Soit $\psi \in L^1(\mathbb{R}^N)$. Soit $\psi_n \in \mathscr{C}^1_c(\mathbb{R}^N)$ telle que $\psi_n \to \psi$ dans $L^1(\mathbb{R}^N)$. La relation (2.6) est vraie pour ψ_n et on passe à la limite car $u(T) \in L^{\infty}(\mathbb{R}^N)$. Donc (2.6) est vraie pour tout $\psi \in L^1(\mathbb{R}^N)$.
- Soit R > 0. On pose $\psi_R(x) = u(t,x)\mathbf{1}_{B_R}(x)$. En écrivant (2.6) pour ψ_R , on obtient

$$\int_{B_R} |u(T,x)|^2 \mathrm{d}x = 0$$

donc u(T, x) = 0 pp. $x, \forall T > 0$.

Théorème 2.8 (Forme conservative)

Soit $u_0 \in L^1(\mathbb{R}^N)$. Alors il existe une unique solution $u \in \mathscr{C}(\mathbb{R}_+, L^1(\mathbb{R}^N))$ de l'équation (2.2) au sens des distributions.

La preuve est laissée en exercice.

 \triangleright — **Existence**: Approximation de u_0 . Comme $u_0 \in L^1(\mathbb{R}^n)$, on peut construire par convolution une suite $(u_0^n) \in \mathscr{C}^1(\mathbb{R}^N)^{\mathbb{N}}$ telle que

1.
$$u_0^n \xrightarrow[n \to +\infty]{} u_0 \text{ dans } L^1(\mathbb{R}^N),$$

2. $\forall n \in \mathbb{N}, \|u_0^n\|_{L^1(\mathbb{R}^N)} \le \|u_0\|_{L^1(\mathbb{R}^N)}$ (par l'inégalité de Young).

Soit $n \in \mathbb{N}$. D'après la section 2.2, il existe une solution $u_n \in \mathscr{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ du problème

$$\left\{ \begin{array}{ll} \partial_t u_n + \operatorname{div}_x(bu_n) = 0 & \operatorname{sur} \, \mathbb{R}_+^* \times \mathbb{R}^N \\ u_{n \mid t = 0} = u_0^n & \operatorname{sur} \, \mathbb{R}^N \end{array} \right.$$

avec

$$\forall t \ge 0, \forall y \in \mathbb{R}^N, \qquad u_n(t, X, (t, y))J(t, y) = u_0^n(y)$$

et

$$\forall t \ge 0, \qquad \|u_n(t)\|_{L^1(\mathbb{R}^N)} = \|u_0^n\|_{L^1(\mathbb{R}^N)} \le \|u_0\|_{L^1(\mathbb{R}^N)}.$$

Montrons que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy dans $\mathscr{C}(\mathbb{R}_+,L^1(\mathbb{R}^N))$. Soit $n,p\in\mathbb{N}$. Par la formule de changement de variables, on a :

$$\forall t \geq 0, \qquad \|u_n(t) - u_p(t)\|_{L^1(\mathbb{R}^N)} = \int_{\mathbb{R}^N} |u_n(t, X(t, y)) - u_p(t, X(t, y))| |J(t, y)| dy = \int_{\mathbb{R}^N} |u_0^n(y) - u_0^p(y) dy = \|u_0^n - u_0^p\|_{L^1(\mathbb{R}^N)}.$$

Comme $(u_0^n)_{n\in\mathbb{N}}$ est de Cauchy dans $L^1(\mathbb{R}^N)$, on a donc montré que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy dans $\mathscr{C}(\mathbb{R}_+, L^1(\mathbb{R}^N))$. Notons $u\in\mathscr{C}(\mathbb{R}_+, L^1(\mathbb{R}^N))$ sa limite.

On peut alors passer à la limite $n \to +\infty$ dans :

$$\forall \varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N), \qquad \int_0^{\infty} \int_{\mathbb{R}^N} u_n(t,x) \left[\partial_t \varphi + b \cdot \nabla_x \varphi \right](t,x) dx dt = -\int_{\mathbb{R}^N} u_0^n(x) \varphi(0,x) dx.$$

En effet:

— Comme $\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)$, il existe T > 0 tel que

$$\int_{0}^{\infty} \int_{\mathbb{R}^{N}} u_{n}(t,x) \left[\partial_{t} \varphi + b \cdot \nabla_{x} \varphi\right](t,x) dx dt = \int_{0}^{T} \int_{\mathbb{R}^{N}} u_{n}(t,x) \left[\partial_{t} \varphi + b \cdot \nabla_{x} \varphi\right](t,x) dx dt.$$

De plus, comme $u_n \xrightarrow[n \to +\infty]{} u$ dans $\mathscr{C}(\mathbb{R}_+, L^1(\mathbb{R}^N))$, on a :

$$\sup_{t \in [0,T]} \left| \|u_n(t)\|_{L^1(\mathbb{R}^N)} - \|u(t)\|_{L^1(\mathbb{R}^N)} \right| \le \sup_{t \in [0,T]} \|u_n(t) - u(t)\|_{L^1(\mathbb{R}^N)} \xrightarrow[n \to +\infty]{} 0.$$

et donc de même $(\varphi \in L^{\infty}(\mathbb{R}_{+} \times \mathbb{R}^{N}))$ la suite de fonctions $\left(t \in \mathbb{R}_{+} \mapsto \int_{\mathbb{R}^{N}} u_{n}(t,x) \left[\partial_{t} \varphi + b \cdot \nabla_{x}\right](t,x) dx\right)$ converge uniformément sur le compact [0,T]. Alors

$$\int_{0}^{T}\int_{\mathbb{R}^{N}}u_{n}(t,x)\left[\partial_{t}\varphi+b\cdot\nabla_{x}\right](t,x)\mathrm{d}x\mathrm{d}t\xrightarrow[n\rightarrow+\infty]{}\int_{0}^{T}\int_{\mathbb{R}^{N}}u(t,x)\left[\partial_{t}\varphi+b\cdot\nabla_{x}\right](t,x)\mathrm{d}x\mathrm{d}t=\int_{0}^{\infty}\int_{\mathbb{R}^{N}}u(t,x)\left[\partial_{t}\varphi+b\cdot\nabla_{x}\right](t,x)\mathrm{d}x\mathrm{d}t$$

— Comme $u_0^n \xrightarrow[n \to +\infty]{} u_0$ dans $L^1(\mathbb{R}^N)$ et $\varphi(0,\cdot) \in L^\infty(\mathbb{R}^N)$, on a:

$$\int_{\mathbb{R}^N} u_0^n(x) \varphi(0, x) dx \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}^N} u_0(x) \varphi(0, x) dx.$$

Ainsi,

$$\int_{0}^{\infty} \int_{\mathbb{R}^{N}} u(t, x) \left[\partial_{t} \varphi + b \cdot \nabla_{x} \right](t, x) dx dt = - \int_{\mathbb{R}^{N}} u_{0}(x) \varphi(0, x) dx$$

ie. u est solution au sens des distributions.

— **Unicité**: On considère u_0 . Soit $u \in \mathscr{C}(\mathbb{R}_+, L^1(\mathbb{R}^N))$ une solution de (2.2) au sens des distributions. Soient T > 0 et $\psi \in \mathscr{C}_c^1(\mathbb{R}^N)$. Montrons que

$$\int_{\mathbb{R}^N} u(T, x) \varphi(x) \mathrm{d}x = 0.$$

D'après la section 2.1, il existe $\overline{\varphi} \in \mathscr{C}^1(\mathbb{R}_+ \times \mathbb{R}^N)$ telle que

$$\begin{cases} \partial_t \overline{\varphi} + b \cdot \nabla_x \overline{\varphi} = 0 & \text{sur } \mathbb{R}_+^* \times \mathbb{R}^N \\ \overline{\varphi}(T, x) = \psi(x) & \forall x \in \mathbb{R}^N \end{cases}$$

Soit $\varepsilon > 0$. On considère $\theta_{\varepsilon} \in \mathscr{C}^1_c(\mathbb{R}_+)$ tel que

$$\forall t \leq T, \ \theta_{\varepsilon}(t) \leq 1, \qquad \forall t \geq T + \varepsilon, \ \theta_{\varepsilon}(t) = 0, \qquad \dot{\theta}_{\varepsilon} \leq 0.$$

Posons $\varphi_{\varepsilon} = \overline{\varphi}\theta_{\varepsilon}$. Alors $\varphi_{\varepsilon} \in \mathscr{C}^{1}_{c}(\mathbb{R}^{N})$ et, par un argument de densité on a, comme u est solution de (2.2) au sens des distributions :

$$\int_{0}^{\infty} \int_{\mathbb{R}^{N}} u(t,x) \left[\partial_{t} \varphi_{\varepsilon} + b \cdot \nabla_{x} \varphi_{\varepsilon} \right](t,x) \mathrm{d}x \mathrm{d}t = 0.$$

Or

$$\partial_t \varphi_\varepsilon + b \cdot \nabla_x \varphi_\varepsilon = \theta_\varepsilon \underbrace{(\partial_t \overline{\varphi} + b \cdot \nabla_x \overline{\varphi})} + \overline{\varphi} \dot{\theta}_\varepsilon$$

Dono

$$\forall \varepsilon > 0, \qquad 0 = \int_0^\infty \int_{\mathbb{R}^N} u(t,x) \overline{\varphi}(t,x) \dot{\theta}_\varepsilon(t) \mathrm{d}x \mathrm{d}t = \int_0^\infty \int_{\mathbb{R}^N} u(T,x) \psi(x) \dot{\theta}_\varepsilon(t) \mathrm{d}x \mathrm{d}t + \int_0^\infty \int_{\mathbb{R}^N} \left[u(t,x) \overline{\varphi}(t,x) - u(T,x) \psi(x) \right] \dot{\theta}_\varepsilon(t) \mathrm{d}x \mathrm{d}t.$$

Or

$$\int_0^\infty \int_{\mathbb{R}^N} u(T,x) \psi(x) \dot{\theta}_\varepsilon(t) \mathrm{d}x \mathrm{d}t = -\int_{\mathbb{R}^N} u(T,x) \psi(x) \mathrm{d}x$$

et, en notant

$$\omega(\varepsilon) = \sup_{T < t < T + \varepsilon} \int_{\mathbb{R}^N} |u(t, x)\overline{\varphi}(t, x) - u(T, x)\psi(x)| \, \mathrm{d}x,$$

on a:

$$\left| \int_0^\infty \int_{\mathbb{R}^N} \left[u(t,x) \overline{\varphi}(t,x) - u(T,x) \psi(x) \right] \dot{\theta}_\varepsilon(t) \mathrm{d}x \mathrm{d}t \right| \leq \int_0^\infty \omega(\varepsilon) |\dot{\theta_\varepsilon}(t)| \mathrm{d}t = \omega(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0$$

car $u \in \mathscr{C}(\mathbb{R}_+, L^1(\mathbb{R}^N))$ et $\overline{\varphi} \in \mathscr{C}_c^{\infty}$. On en déduit que

$$\forall T > 0, \forall \psi \in \mathscr{C}^1_c(\mathbb{R}^N), \qquad \int_{\mathbb{R}^N} u(T, x) \varphi(x) dx = 0$$

soit u = 0.

Propriété 2.9 (Propagation des singularités)

Soient $u_0 \in L^{\infty}(\mathbb{R}^N)$ et u l'unique solution de (2.1). On a vu que

$$u(t, X(t, y)) = u_0(y)$$
 pp. t, y

et les discontinuités de u_0 se retrouvent dans u. Si $u_0 = \mathbf{1}_A$ avec A ouvert de \mathbb{R}^N , alors

$$u(t) = \mathbf{1}_{X(t)^{-1}(A)}.$$

Il n'y a pas d'effet régularisant.

Cette propriété ainsi que la propagation à vitesse finie conduisent à classer les équations de transport parmi les équations hyperboliques.

Remarque: équations avec un terme source. Par exemple,

$$\begin{cases} \partial_t u + b \cdot \nabla_x u = f \\ u_{1t=0} = u_0 \end{cases}$$
 (2.7)

Comme l'équation est linéaire, on peut utiliser la formule de Duhamel. Pour l'équation (2.1), pour tout $\tau \geq \tau' \geq 0$, on peut définir, d'après le théorème précédent, un opérateur

$$S_f(\tau, \tau') : u_0 \in L^{\infty}(\mathbb{R}^N) \mapsto u(\tau) \in L^{\infty}(\mathbb{R}^N)$$

David Michel - 2017-2018 18 ENS Rennes - UPMC

où u est l'unique solution de (2.1) avec $u_{|t=\tau'|}=u_0$. Alors, pour tout $f\in L^{\infty}(\mathbb{R}_+\times\mathbb{R}^N)$, (2.7) admet une unique solution donnée par

$$u(t) = \mathcal{S}_f(t,0)u_0 + \int_0^t \mathcal{S}_f(t,s)f(s)ds.$$

Idem avec la forme conservative : si $S_c(\tau, \tau')$ est l'opérateur d'évolution associé à (2.2) entre τ' et τ , alors l'équation

$$\begin{cases} \partial_t u + \operatorname{div}(bu) = g \\ u_{1t=0} = u_0 \end{cases}$$
 (2.8)

admet une unique solution pour $g \in L^{\infty}(\mathbb{R}_+, L^1(\mathbb{R}^N))$ donnée par

$$u(t) = \mathcal{S}_c(t,0)u_0 + \int_0^t \mathcal{S}_c(t,s)g(s)\mathrm{d}s.$$

2.4 Théorème de Di Perna-Lions

Théorème 2.10

Soit $b \in W^{1,1}(\mathbb{R}^N)$ tel que div $b \in L^{\infty}(\mathbb{R}^N)$. Soit $u_0 \in L^{\infty}(\mathbb{R}^N)$. Alors l'équation (2.1) admet une unique solution au sens des distributions dans $L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)$.

> **Existence**: On prend une suite $(b_n)_{n\in\mathbb{N}}$ telle que b_n vérifie (2.3) pour tout n et $b_n\in\mathscr{C}^1(\mathbb{R}^N)$ et

$$\begin{cases} b_n \to b \text{ dans } W^{1,1}(\mathbb{R}^N) \\ \forall n \in \mathbb{N}, \|\operatorname{div} b_n\|_{L^{\infty}} \le \|\operatorname{div} b\|_{L^{\infty}} \end{cases}$$

Pour tout $n \in \mathbb{N}$, il existe une unique solution $u_n \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N) \cap \mathscr{C}(\mathbb{R}_+, L^1_{loc}(\mathbb{R}^N))$ de

$$\begin{cases} \partial_t u_n + b_n \cdot \nabla u_n = 0 \\ u_{n \mid t=0} = u_0 \end{cases}$$
 (2.9)

De plus,

$$\forall n \in \mathbb{N}, \qquad \|u_n\|_{L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)} \le \|u_0\|_{L^{\infty}},$$

donc il existe $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)$ et une suite $(n_k) \subset \mathbb{N}$ telles que

$$u_{n_k} \rightharpoonup u \qquad w^* - L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N).$$

Vérifions que l'on peut passer à la limite dans (2.9) au sens des distributions. On a :

$$\int_0^\infty \int_{\mathbb{R}^N} u_n(t,x) \left[\partial_t \varphi(t,x) + \operatorname{div}_x(b_n(x)\varphi(t,x)) \right] dt dx = -\int_{\mathbb{R}^N} u_0(x)\varphi(0,x) dx.$$

Traitons par exemple

$$\int_0^\infty \int_{\mathbb{R}^N} u_n(t,x) (\operatorname{div} b_n)(x) \varphi(t,x) \mathrm{d}t \mathrm{d}x = \underbrace{\int_0^{+\infty} \int_{\mathbb{R}^N} u_n(t,x) (\operatorname{div} b_n - \operatorname{div} b)(x) \varphi(t,x) \mathrm{d}x \mathrm{d}t}_{I} + \underbrace{\int_0^\infty \int_{\mathbb{R}^N} u_n(t,x) \operatorname{div} b(x) \varphi(t,x) \mathrm{d}x}_{I}.$$

On a:

$$|I| \le ||u_0||_{\infty} ||\operatorname{div} b_n - \operatorname{div} b||_{L^1} T ||\varphi||_{L^{\infty}}$$

où T est tel que $\varphi(t,x)=0$ si $t\geq T$. De plus,

$$J \xrightarrow[n \to +\infty]{} \int_0^\infty \int_{\mathbb{D}^N} u(t,x) \operatorname{div}_x b(x) \varphi(t,x) dx dt.$$

On en déduit que u est solution au sens des distributions de l'équation (2.1).

— Unicité : elle repose sur le lemme suivant.

Lemme 2.11

Soient $f \in L^{\infty}([0,T] \times \mathbb{R}^N)$ et $\varphi \in L^{\infty}([0,T] \times \mathbb{R}^N)$ une solution au sens des distributions dans $\mathscr{C}_c^{\infty}(\mathbb{R}_+^* \times \mathbb{R}^N)$ de

$$\partial_t \varphi + \operatorname{div}(b\varphi) = f.$$

Soient $\varepsilon > 0$, $\rho \in \mathscr{C}_c^{\infty}(]-\infty, 0[\times \mathbb{R}^N)$ avec $\int \rho = 1$ et

$$\rho_{\varepsilon}(t,x) = \frac{1}{\varepsilon^{N+1}} \rho\left(\frac{t}{\varepsilon},\frac{x}{\varepsilon}\right) \qquad \text{(noyau de régularisation)}$$

On pose $\varphi_{\varepsilon} = \varphi * \rho_{\varepsilon}$, $f_{\varepsilon} = f * \rho_{\varepsilon}$. Alors

$$\partial_t \varphi_{\varepsilon} + \operatorname{div}(b\varphi_{\varepsilon}) = f_{\varepsilon} + r_{\varepsilon}$$

et
$$||r_{\varepsilon}||_{L^{1}([0,T]\times\mathbb{R}^{N})} \xrightarrow[\varepsilon\to 0]{} 0 \ \forall T>0.$$

 \triangleright On a:

$$\begin{array}{rcl} r_{\varepsilon} &=& \mathrm{div}(b\varphi_{\varepsilon}) - \mathrm{div}(b\varphi) * \rho_{\varepsilon} \\ &=& (\mathrm{div}_{x}\,b)\varphi_{\varepsilon} + b \cdot \nabla_{x}\varphi_{\varepsilon} - (b\varphi) * \nabla \rho_{\varepsilon} \\ &=& (\mathrm{div}_{x})\varphi_{\varepsilon} + b \cdot (\varphi * \nabla \rho_{\varepsilon}) - (b\varphi) * \nabla \rho_{\varepsilon} \\ &=& (\mathrm{div}_{x}\,b)\varphi_{\varepsilon} + b(x) \cdot \int \varphi(s,y) \nabla \rho_{\varepsilon}(t-s,x-y) \mathrm{d}s \mathrm{d}y - \int b(y) \cdot \varphi(s,y) \nabla \rho_{\varepsilon}(t-s,x-y) \mathrm{d}s \mathrm{d}y \\ &=& (\mathrm{div}_{x}\,b)\varphi_{\varepsilon} + \sum_{i=1}^{N} \int (b_{i}(x) - b_{i}(y)) \varphi(s,y) \partial_{i}\rho_{\varepsilon}(t-s,x-y) \mathrm{d}s \mathrm{d}y. \end{array}$$

Or

$$b_i(x) - b_i(y) = (x - y) \cdot \int_0^1 \nabla b_i(\tau x + (1 - \tau)y) d\tau$$
 pp. x, y .

Donc

$$r_{\varepsilon} = (\operatorname{div}_{x} b)\varphi_{\varepsilon} + \sum_{i,j=1}^{N} \int_{0}^{\infty} \int_{\mathbb{R}^{N}} \int_{0}^{1} \varphi(s,y)(x_{j} - x_{j})\partial_{j}b_{i}(\tau x + (1 - \tau)y)\partial_{i}\rho_{\varepsilon}(t - s, x - y)d\tau ds dt.$$

Or

$$(x_j - y_j)\partial_i \rho_{\varepsilon}(t - s, x - y) = \frac{1}{\varepsilon^{N+1}} R_{ij}(t - s, x - y)$$

où $R_{ij}(t,x) = x_j \partial_i \rho(t,x)$. On a $R_{ij} \in \mathscr{C}_c^{\infty}(]-\infty, 0[\times \mathbb{R}^N)$ et $\int_{-\infty}^0 \int_{\mathbb{R}^N} R_{ij} = -\delta_{ij}$. Alors,

$$r_{\varepsilon} = \underbrace{(\operatorname{div}_{x} b)\varphi_{\varepsilon}}_{I} + \underbrace{\sum_{i,j=1}^{N} \int_{\mathbb{R} \times \mathbb{R}^{N}} \int_{0}^{1} \varphi(t - \varepsilon s, x - \varepsilon z) \partial_{j} b_{i}(y + \varepsilon \tau z) R_{ij}(s, z) d\tau ds dz}_{I}.$$

— Pour I, on écrit :

$$(\operatorname{div} b)\varphi_{\varepsilon} = (\operatorname{div} b)\varphi + (\operatorname{div} b)(\varphi_{\varepsilon} - \varphi).$$

Soit K un compact de \mathbb{R}^N quelconque. Alors

$$\begin{aligned} \|\operatorname{div} b(\varphi_{\varepsilon} - \varphi)\|_{L^{1}([0,T]\times\mathbb{R}^{N})} &= \|\operatorname{div} b(\varphi_{\varepsilon} - \varphi)\|_{L^{1}([0,T]\times K)} + \|\operatorname{div} b(\varphi_{\varepsilon} - \varphi)\|_{L^{1}([0,T]\times K^{c})} \\ &\leq \|\operatorname{div} b\|_{L^{\infty}} \|\varphi_{\varepsilon} - \varphi\|_{L^{1}([0,T]\times K)} + 2T \|\varphi\|_{L^{\infty}([0,T]\times\mathbb{R}^{N})} \|\operatorname{div} b\|_{L^{1}(K^{c})}. \end{aligned}$$

Soit $\delta > 0$. Comme div $b \in L^1(\mathbb{R}^N)$, il existe K_δ compact de \mathbb{R}^N tel que $\|\operatorname{div} b\|_{L^1(K^c)} \leq \delta$. Comme $\varphi_{\varepsilon} \to \varphi$ dans L^1_{loc} , il existe $\varepsilon_\delta > 0$ tel que

$$\varepsilon \le \varepsilon_{\delta} \implies \|\varepsilon_{\varepsilon} - \varphi\|_{L^{1}([0,T] \times K_{\delta})} \le \delta.$$

Ainsi, pour $\varepsilon \leq \varepsilon_{\delta}$,

$$\|(\operatorname{div} b)(\varphi_{\varepsilon} - \varphi)\|_{L^{1}([0,T] \times \mathbb{R}^{N})} \leq (\|\operatorname{div} b\|_{L^{\infty}} + 2T \|\varphi\|_{\infty})\delta$$

donc $I \xrightarrow[\varepsilon \to 0]{} (\operatorname{div} b) \varphi$ dans $L^1([0,T] \times \mathbb{R}^N)$.

— Pour II, on écrit :

$$II = \int_{\mathbb{R}^N} \int_{\mathbb{R}} \int_0^1 \sum_{i,j} \partial_j b_i(y + \tau(x - y)) \varphi(s, y) R_{ij}^{\varepsilon}(t - s, x - y)$$

avec
$$\mathbb{R}_{ij}^{\varepsilon} = \frac{1}{\varepsilon^{N+1}} R_{ij} \left(\frac{\cdot}{\varepsilon}\right)$$
. Donc

$$II = \underbrace{\int_{\mathbb{R}^N} \int_{\mathbb{R}} \sum_{i,j} \partial_j b_i(y) \varphi(s,y) R_{ij}^{\varepsilon}(t-s,x-y) \mathrm{d}s \mathrm{d}y}_{II_{\sigma}}$$

$$+\underbrace{\int_{\mathbb{R}^{N}}\int_{\mathbb{R}}\int_{0}^{1}\sum_{ij}(\partial_{j}b_{i}(y+\tau(x-y))-\partial_{j}b_{i}(y))\varphi(s,y)R_{ij}^{\varepsilon}(t-s,x-y)\mathrm{d}\tau\mathrm{d}s\mathrm{d}y}_{II_{b}}.$$

Or

$$II_a = \sum_{1 \le i, j \le N} (\partial_j b_i \varphi) * R_{ij}^{\varepsilon}.$$

Comme $\int R_{ij}^{\varepsilon} = -\delta_{ij}$ et comme $\partial_j b_i \varphi \in L^1$, on a :

$$II_a \xrightarrow[\varepsilon \to 0]{} - \sum_{i,j} \delta_{ij} \partial_j b_i \varphi = -(\operatorname{div} b) \varphi \quad \text{dans } L^1([0,T] \times \mathbb{R}^N).$$

Pour II_b , on introduit le module de continuité de ∇b dans L^1 : on pose, pour $\delta > 0$,

$$\omega(\nabla b; \delta) = \sup_{\substack{h \in \mathbb{R}^N \\ \|h\| \le \delta}} \|\nabla b(\cdot + h) - \nabla b\|_{L^1(\mathbb{R}^N)}.$$

On a:

$$\lim_{\delta \to 0} \omega(\nabla b; \delta) = 0.$$

Alors,

$$\int_{0}^{T} \int_{\mathbb{R}^{N}} |II_{b}| \leq \|\varphi\|_{\infty} \int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \int_{0}^{T} \int_{\mathbb{R}} \int_{0}^{1} |\partial_{j}b_{i}(y + \tau(x - y)) - \partial_{j}b_{i}(y)| \times |R_{ij}^{\varepsilon}(t - s, x - y)| d\tau ds dt dy dx$$

$$\leq \|\varphi\|_{\infty} \sum_{ij} \omega(\partial_{j}b_{i}; \varepsilon) \|R_{ij}^{\varepsilon}\|_{L^{1}(\mathbb{R} \times \mathbb{R}^{N})}$$

donc $II_b \xrightarrow[\varepsilon \to 0]{} 0$ dans $L^1([0,T] \times \mathbb{R}^N)$.

On a donc montré que $r^{\varepsilon} \xrightarrow[\varepsilon \to 0]{} 0$ dans $L^{1}([0,T] \times \mathbb{R}^{N})$.

On considère une solution au sens des distributions de

$$\begin{cases} \partial_t u + b \cdot \nabla_x u = 0 \\ u_{\mid t=0} = 0 \end{cases}$$

avec $u \in L^{\infty}([0,T] \times \mathbb{R}^N)$.

On commence par régulariser par convolution :

$$\partial_t u^{\varepsilon} + b \cdot \nabla_x u^{\varepsilon} = r^{\varepsilon} \tag{2.10}$$

avec $r_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} 0$ dans $L^1([0,T] \times \mathbb{R}^N)$. Cela s'obtient à partir du lemme en écrivant $b \cdot \nabla_x u = \operatorname{div}(bu) - (\operatorname{div} b)u$. Soient :

 $--\beta \in \mathscr{C}^1(\mathbb{R}; \mathbb{R}_+)$ telle que $\beta' \in L^\infty(\mathbb{R})$ et $\beta(0) = 0$. En particulier, il existe $C \in \mathbb{R}$, tel que $|\beta(x)| \leq C|x|$;

$$-R > 0, \ \phi \in \mathscr{C}_c^{\infty}(\mathbb{R}^N) \text{ avec } \varphi \equiv 1 \text{ sur } B_1 \text{ et supp } \phi \subset B_2, \ 0 \leq \phi \leq 1; \ \phi_R = \varphi\left(\frac{\cdot}{R}\right)$$

On multiplie (2.10) par $\beta'(u^{\varepsilon})$:

$$\partial_t \beta(u^{\varepsilon}) + b \cdot \nabla_x \beta(u^{\varepsilon}) = \beta'(u^{\varepsilon}) r^{\varepsilon}.$$

En multipliant par ϕ_R et en intégrant, on obtient :

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} \beta(u^{\varepsilon}) \phi_R - \int_{\mathbb{R}^N} \beta(u^{\varepsilon}) (\mathrm{div}\, b) \phi_R - \int_{\mathbb{R}^N} \beta(u^{\varepsilon}) b \cdot \nabla \phi_R = \int_{\mathbb{R}^N} \beta'(u^{\varepsilon}) r^{\varepsilon} \phi_R.$$

On en déduit que

$$\left|\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}\beta(u^\varepsilon)\phi_R\right|\leq \|u\|_{L^\infty}\left(\|\mathrm{div}\,b\|_{L^1}+\frac{\|\nabla\phi\|_{L^\infty}}{R}\,\|b\|_{L^1}\right)+C\,\|r^\varepsilon\|_{L^1(\mathbb{R}^N)}\,.$$

Donc $\int_{\mathbb{R}^N} \beta(u^{\varepsilon}) \phi_R$ est continue en temps, uniformément en ε . Comme $u^{\varepsilon} \to u$ dans $L^1_{loc}([0,T] \times \mathbb{R}^N)$, on en déduit que

—
$$\int_{\mathbb{R}^N} \beta(u) \phi_R$$
 est continue en temps;

$$--\int_{\mathbb{R}^N}\beta(u^\varepsilon)\phi_R\xrightarrow[\varepsilon\to 0]{}\int_{\mathbb{R}^N}\beta(u)\phi_R \text{ dans }\mathscr{C}([0,T]).$$

En particulier,

$$\int_{\mathbb{D}^N} \beta(u^{\varepsilon}(0)) \phi_R \xrightarrow[\varepsilon \to 0]{} 0.$$

Alors,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\mathbb{R}^N} \beta(u^{\varepsilon}) \phi_R \right) \leq \|\mathrm{div}\, b\|_{\infty} \int_{\mathbb{R}^N} \beta(u^{\varepsilon}) \phi_R + C \|u\|_{\infty} \|b\|_{L^1} \frac{1}{R} \|\nabla \phi\|_{\infty} + C \|r^{\varepsilon}\|_{L^1(\mathbb{R}^N)}$$

donc

$$\int_{\mathbb{R}^N} \beta(u^{\varepsilon}) \phi_R \leq C_T \left(\int_{\mathbb{R}^N} \beta(u^{\varepsilon}(0)) \phi_R + \|u\|_{\infty} \|b\|_{L^1} \frac{1}{R} \|\nabla \phi\|_{\infty} + \|r^{\varepsilon}\|_{L^1([0,T] \times \mathbb{R}^N)} \right)$$

avec C_T dépendant uniquement de T, b, β .

À R, β fixés, on fait tendre ε vers 0:

$$\int_{\mathbb{R}^{N}} \beta(u(t))\phi_{R} \leq \frac{C_{T}}{R} \|u\|_{\infty} \|b\|_{1} \|\nabla\phi\|_{\infty}.$$
(2.11)

À présent, on prend pour β une approximation de $|\cdot|$: (β_{δ}) $(\beta_{\delta}(x) = |x| \text{ pour } |x| > \delta)$. Pour tout $\delta > 0$, on peut écrire (2.11) avec une constante indépendante de δ . On passe à la limite quand $\delta \to 0$ (en exercice). On obtient :

$$\forall t \in [0,T], \qquad \int_{\mathbb{R}^N} |u(t)| \phi_R \leq \frac{C_T}{R} \left\| u \right\|_{\infty} \left\| b \right\|_1 \left\| \nabla \phi \right\|_{L^{\infty}}.$$

On passe à la limite quand $\mathbb{R} \to +\infty$:

$$\int_{\mathbb{R}^N} |u(t)| = 0$$

soit $u \equiv 0$.

Remarques:

- On aurait pu faire la même chose avec un terme source.
- De la même façon, on montre l'existence de solutions de l'équation conservative pour tout $u_0 \in L^1(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$, sous les mêmes hypothèses sur b, avec ou sans terme source (en exercice).

2.5 Introduction aux lois de conservation scalaires

Dans cette partie, on s'intéresse à des équations du type

$$\begin{cases} \partial_t u + \operatorname{div}_x(A(u)) = 0\\ u_{1t=0} = u_0 \in L^{\infty}(\mathbb{R}^N) \end{cases}$$
 (LCS)

où $A: \mathbb{R} \to \mathbb{R}^N$ (flux) telle que $A \in W^{1,\infty}(\mathbb{R})^N$.

David Michel - 2017-2018 22 ENS Rennes - UPMC

Questions:

- Théorie d'existence/unicité pour (LCS)?
- Solutions régulières? peu régulières?

Modélisation: Traffic routier. u est la densité de voitures, leur vitesse est

$$v(u) = \left(v_{\text{max}} - \overline{v}\frac{u}{\overline{u}}\right)_{+}$$

et A(u) = uv(u).

2.5.1 Solutions régulières

Dans ce paragraphe, on suppose que $A \in \mathscr{C}^2(\mathbb{R})^N$ et que $u_0 \in \mathscr{C}^1(\mathbb{R}^N)$. Si u est une solution \mathscr{C}^1 de (LCS) sur un intervalle [0,T], on peut écrire

$$\partial_t u + \underbrace{a(u(t,x))}_{b(t,x)} \cdot \nabla_x u = 0$$

où $a=A'\in \mathscr{C}^1(\mathbb{R})^N.$ On définit les caractéristiques associées à la solution :

$$\begin{cases} \dot{X}(t,y) = a(u(t,X(t,y))) \\ X(0,y) = y \end{cases}$$
 (2.12)

On sait que u est constante le long des caractéristiques :

$$\forall t \in [0, T], \forall y \in \mathbb{R}^N, \qquad u(t, X(t, y)) = u_0(y).$$

On remplace dans (2.12):

$$\dot{X}(t,y) = a(u_0(y)),$$

les caractéristiques sont des droites : $X(t,y) = y + ta \circ u_0(y)$. On obtient

$$\forall t \in [0, T], \forall y \in \mathbb{R}^N, \qquad u(t, y + ta \circ u_0(y)) = u_0(y). \tag{2.13}$$

On se demande donc quand est-ce que (2.13) définit (implicitement) une fonction \mathscr{C}^1 sur $[0,T]\times\mathbb{R}^N$.

Proposition 2.12

On prend $a \in \mathscr{C}^2(\mathbb{R})^N \cap W^{2,\infty}(\mathbb{R})^N$ et $u_0 \in \mathscr{C}^1(\mathbb{R}^N) \cap W^{1,\infty}(\mathbb{R}^N)$. Alors il existe T > 0 tel que l'équation (LCS) admette une unique solution \mathscr{C}^1 sur $[0, T] \times \mathbb{R}^N$.

▷ Il suffit de voir quand est-ce que l'application

$$\Phi_t: \begin{array}{ccc} \mathbb{R}^N & \to & \mathbb{R}^N \\ y & \mapsto & y + ta \circ u_0(y) \end{array}$$

est un \mathscr{C}^1 -difféomorphisme. On applique le théorème d'inversion globale :

- Φ_t est \mathscr{C}^1 comme composée d'applications \mathscr{C}^1 ;
- $(d\Phi_t)(y) = \mathrm{Id} + t d(a \circ u_0)(y)$. Si $t \|\nabla(a \circ u_0)\|_{L^{\infty}} < 1$, alors $d\Phi_t(y)$ est injective pour tout $y \in \mathbb{R}^N$;
- injectivité de Φ_t : soit $y, y' \in \mathbb{R}^N$ tels que $\Phi_t(y) = \Phi_t(y')$. Alors

$$y - y' = t(a \circ u_0(y') - a \circ u_0(y))$$

donc

$$||y - y'|| \le t ||\nabla(a \circ u_0)||_{\infty} ||y - y'||.$$

Si $t \|\nabla(a \circ u_0)\|_{\infty} < 1$, alors y = y', et Φ_t est injective.

Ainsi, Φ_t est un difféomorphisme si $t \in [0, T[$, où $T = \frac{1}{\|\nabla(a \circ u_0)\|_{\infty}}$.

Formation de singularités On prend N = 1 à partir de maintenant.

On suppose que $a \circ u_0$ est décroissante (par exemple a croissante et u_0 décroissante). Les caractéristiques issues de $y_$ et y_+ se croisent en (y_c, t_c) . Si la solution u était régulière (\mathscr{C}^1) jusqu'en t_c , on aurait :

$$u(t_c, y_c) = u^0(y_+) = u^0(y_-)$$

d'où une contradiction.

Il y a formation de chocs (discontinuités) en temps fini. Il faut donc avoir une théorie pour les solutions peu régulières.

Ondes de choc, ondes de raréfaction 2.5.2

On s'intéresse dans ce paragraphe au problème de Riemann :

$$\begin{cases} \partial_t u + \partial_x A(u) = 0 \\ u_{1t=0} = u_0 \end{cases}$$
 (R)

 $\text{avec } u_0(x) = \left\{ \begin{array}{ll} u_g & \text{si } x < 0 \\ u_d & \text{si } x > 0 \end{array} \right. \text{ où } u_g, u_d \in \mathbb{R}, \, u_g \neq u_d.$

Proposition 2.13

Il existe une solution de (R) au sens des distributions, donnée par

$$u(t,x) = \begin{cases} u_g & \text{si } x < \sigma t \\ u_d & \text{si } x > \sigma t \end{cases}$$

où $\sigma = \frac{A(u_g) - A(u_d)}{u_a - u_d}$ (vitesse du choc). Ceci est appelé relation de Rankine-Hugoniot.

On traire le cas $\sigma > 0$ et on laisse les autres cas en exercice.

On a:

$$u(t,x) = u_g \mathbf{1}_{x < \sigma_t} + u_d \mathbf{1}_{x > \sigma_t} = u_g \mathbf{1}_{\frac{x}{\sigma} < t} + u_d \mathbf{1}_{\frac{x}{\sigma} > t}.$$

Donc, pour tout $x \in \mathbb{R}$, au sens des distributions en t,

$$\partial_t u = u_g \delta \left(t = \frac{x}{\sigma} \right) - u_d \delta \left(t = \frac{x}{\sigma} \right)$$

De même,

$$A(u(t,x)) = A(u_g)\mathbf{1}_{x < \sigma t} + A(u_d)\mathbf{1}_{x > \sigma t}.$$

Donc, pour tout t > 0, au sens des distributions en x,

$$\partial_x A(u(t,x)) = -A(u_a)\delta(x=\sigma t) + A(u_d)\delta(x=\sigma t).$$

En exercice, on montre que pour tout $\sigma \neq 0$,

$$\delta\left(t = \frac{x}{\sigma}\right) = |\sigma|\delta(x = t\sigma)$$
 dans $\mathcal{D}'(\mathbb{R} \times \mathbb{R})$.

On remplace:

$$\partial_t u + \partial_x A(u) = \delta(x = \sigma t) \left[(A(u_d) - A(u_g)) - \sigma(u_g - u_d) \right].$$

Ainsi, u est solution de (R) dans $\mathcal{D}'(\mathbb{R} \times \mathbb{R})$ si, et seulement si,

$$\sigma = \frac{A(u_g) - A(u_d)}{u_d - u_g}.$$

Ondes de raréfaction

Proposition 2.14

On suppose que $A \in \mathscr{C}^2(\mathbb{R})$ et A strictement convexe (ie. a strictement croissante). On pose $\xi_g = a(u_g), \, \xi_d = a(u_d)$.

24 ENS Rennes - UPMC David Michel - 2017-2018

Alors (R) admet une solution au sens des distributions lipschitzienne pour tout t > 0, donnée par

$$u(t,x) = \underline{u}\left(\frac{x}{t}\right)$$

οù

$$\underline{u} = \begin{cases} u_g & \text{si } \xi \leq \xi_g \\ a^{-1}(\xi) & \text{si } \xi \in [\xi_g, \xi_d] \\ u_d & \text{si } \xi \geq \xi_d \end{cases}$$

ightharpoonup On a, avec $\xi = \frac{x}{t}$,

$$\partial_t \left(\underline{u} \left(\frac{x}{t} \right) \right) = -\frac{x}{t^2} \underline{u}' \left(\frac{x}{t} \right) = -\frac{\xi}{t} \underline{u}'(\xi)$$

et

$$\partial_x \left(A \left(\underline{u} \left(\frac{x}{t} \right) \right) \right) = \frac{1}{t} (A \circ \underline{u})'(\xi) = \frac{1}{t} (a \circ \underline{u})(\xi) \underline{u}'(\xi).$$

On remplace :

$$\partial_t u + \partial_x A(u) = \frac{1}{t} \underline{u}'(\xi) \left[-\xi + a \circ \underline{u}(\xi) \right].$$

- Si $\xi < \xi_g$ ou $\xi > \xi_d$, alors $\underline{u}'(\xi) = 0$.
- Si $\xi \in]\xi_q, \xi_d[$ alors $\underline{u}(\xi) = a^{-1}(\xi)$ donc $a \circ \underline{u}(\xi) = \xi$ d'où $-\xi + a \circ \underline{u}(\xi) = 0$.

Représentations graphiques :

- Ondes de choc : solution à un instant $t \geq 0$, voir cahier,
- Ondes de raréfaction : voir cahier.

2.5.3 Solutions entropiques

Définition 2.15

Soient $A \in W^{1,\infty}(\mathbb{R})^N$ et $u_0 \in L^{\infty}(\mathbb{R}^N)$. On dit que u est une solution entropique de (LCS) si u est solution au sens des distributions de (LCS) et si pour toute fonction $S \in \mathscr{C}^2(\mathbb{R})$ convexe, on a :

$$\partial_t S(u) + \operatorname{div}_x(\eta^S(u)) \le 0$$
 dans $\mathcal{D}'(\mathbb{R}_+ \times \mathbb{R}^N)$

où η^S est défini par

$$(\eta^S)' = S'a.$$

Formellement,

$$\partial_t u + a(u) \cdot \nabla u = 0 \qquad \times S'(u)$$

si u est régulier :

$$\partial_t S(u) + \operatorname{div}_x(\eta^S(u)) = 0.$$

Physiquement, pour des solutions non régulières, on demande que de l'énergie soit dissipée lors des chocs.

Théorème 2.16 (Krouzkhov, '70s)

Soit $u_0 \in L^1 \cap L^\infty(\mathbb{R}^N)$. Alors il existe une unique solution entropique de (LCS). De plus, pour tout $v_0 \in L^1 \cap L^\infty(\mathbb{R}^N)$, si v est l'unique solution entropique ayant pour donnée initiale v_0 , on a, pour tout t > 0,

$$||u(t) - v(t)||_{L^1(\mathbb{R}^N)} \le ||u_0 - v_0||$$
 (Principe de contraction L^1)

Ce résultat fera l'objet d'un devoir maison.

Application (en exercice) On suppose que N=1 et que le flux A est strictement convexe. Alors :

- si $u_q < u_d$, l'onde de raréfaction est l'unique solution entropique;
- si $u_q > u_d$, l'onde de choc est l'unique solution entropique.

voir le dessin pour une intuition physique.

Chapitre 3

Équations de Navier-Stokes

Dans tout ce chapitre, on s'intéresse au système

$$\begin{cases}
\partial_t u + (u \cdot \nabla)u + \nabla p - \Delta u &= 0 & \text{dans } \mathbb{R}_+ \times \mathbb{R}^N \\
\text{div } u &= 0 & \text{dans } \mathbb{R}_+ \times \mathbb{R}^N \\
u_{1t=0} &= u_0 & \text{dans } \mathbb{R}^N
\end{cases}$$
(NS)

On considérera les cas N=2,3.

- $-u: \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}^N$, u(t,x) est la vitesse du fluide à l'instant t à la position x
- $p: \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}$, p(t,x) est la pression du fluide à l'instant t et à la position x.
- La première équation traduit la conservation de la quantité de mouvement
- La deuxième équation exprime l'incompressibilité.
- On prend $u_0 \in L^2(\mathbb{R}^N)$ avec div $u_0 = 0$.

Pour la modélisation, voir le cours de F. Béthuel, et le livre de Boyer et Fabrie.

Remarque sur la pression : On n'a pas d'équation d'évolution sur p. Formellement, si u est régulière, on a :

$$\Delta p = -\operatorname{div}((u \cdot \nabla)u).$$

On peut donc voir ∇p comme un opérateur (non linéaire, non local) appliqué à u.

Une autre vision consiste à considérer que ∇p est un multiplicateur de Lagrange associé à la contrainte div u=0 (formel aussi).

Questions:

- Existence globale de solutions faibles (solutions de Leray),
- Existence et unicité locales de solutions fortes (théorème de Fujita-Kato), globales si u_0 assez petit dans $H^{1/2}(\mathbb{R}^3)$,
- Principe d'unicité fort-faible.

Outils: Voir Bahouri, Chemin, Danchin, chapitre 1.

— Espaces $\dot{H}^s(\mathbb{R}^N)$, $0 \le s < \frac{N}{2}$: si $u \in \mathscr{C}_c^{\infty}(\mathbb{R}^N)$, on définit

$$\|u\|_{\dot{H}^s(\mathbb{R}^N)} = \left(\int_{\mathbb{R}^N} |\xi|^{2s} |\widehat{u}(\xi)|^2 \mathrm{d}\xi\right)^{1/2} \qquad \left(=\|\nabla^s u\|_{L^2(\mathbb{R}^N)} \text{ si } s \in \mathbb{N}\right)$$

et
$$\dot{H}^s(\mathbb{R}^N) = \overline{\mathscr{C}_c^{\infty}(\mathbb{R}^N)}^{\parallel . \parallel_{\dot{H}^s}}$$

— Injections de Sobolev : N > 2s

$$\dot{H}^s(\mathbb{R}^N) \hookrightarrow L^p(\mathbb{R}^N) \quad \text{avec } p = \frac{2N}{N - 2S}$$

l'injection est continue : $\exists C>0, \forall u\in \dot{H}^s(\mathbb{R}^N), \ \|u\|_{L^p(\mathbb{R}^N)}\leq C \ \|u\|_{\dot{H}^s(\mathbb{R}^N)}.$

— Inégalité de Gagliardo-Nirenberg : si $p \ge 2$ est tel que $\frac{1}{p} > \frac{1}{2} - \frac{1}{N}$, il existe C tel que

$$||u||_{L^p(\mathbb{R}^N)} \le C ||u||_{L^2(\mathbb{R}^N)}^{1-\sigma} ||u||_{\dot{H}^1(\mathbb{R}^N)}^{\sigma} \quad \text{avec } \sigma = \frac{N(p-2)}{2p}.$$

Inégalité d'énergie (estimation a priori) : On suppose qu'il existe une solution (u, p) régulière et décroissante à l'infini de (NS). On prend le produit scalaire de (NS a) avec u:

$$\int_{\mathbb{R}^N} \partial_t u \cdot u = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^N} |u|^2$$

$$\int_{\mathbb{R}^N} \nabla p \cdot u = -\int_{\mathbb{R}^N} p(\operatorname{div} u) = 0$$

$$-\int_{\mathbb{R}^N} \Delta u \cdot u = -\sum_{i=1}^N \int_{\mathbb{R}^N} \Delta u_i u_i = \int_{\mathbb{R}^N} \sum_{i=1}^N |\nabla u_i|^2 = \int_{\mathbb{R}^N} |\nabla u|^2$$

$$\int_{\mathbb{R}^N} ((u \cdot \nabla)u) \cdot u = \sum_{1 \le i,j \le N} \int_{\mathbb{R}^N} u_i \partial_i u_j u_j = \frac{1}{2} \sum_{i,j} \int_{\mathbb{R}^N} u_i \partial_i u_j^2 = -\frac{1}{2} \sum_{i,j} \int_{\mathbb{R}^N} u_j^2 \partial_i u_i = 0.$$

On obtient donc:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^N}|u|^2+\int_{\mathbb{R}^N}|\nabla u|^2=0.$$

Donc

$$||u(t)||_{L^{2}(\mathbb{R}^{N})}^{2} + 2 \int_{0}^{t} ||\nabla u||_{L^{2}(\mathbb{R}^{N})^{N}}^{2} = ||u_{0}||_{L^{2}(\mathbb{R}^{N})}.$$

On va donc chercher des solutions dans l'espace $L^{\infty}(\mathbb{R}_+, L^2(\mathbb{R}^N)) \cap L^2_{loc}(\mathbb{R}_+, H^1(\mathbb{R}^N))$.

Notation : Si u est régulière à divergence nulle, on a :

$$(u \cdot \nabla)u = \sum_{i=1}^{N} u_i \partial_i u = \sum_{i=1}^{N} \partial_i (u_i u) = \operatorname{div}(u \otimes u)$$

où $u \otimes u$ est la matrice $(u_i u_j)_{1 \leq i,j \leq N}$.

3.1 Solutions de Leray

Définition 3.1

Soient $u \in L^{\infty}(\mathbb{R}_+, L^2(\mathbb{R}^N))^N \cap L^2_{loc}(\mathbb{R}_+, H^1(\mathbb{R}^N))^N$ et $u_0 \in L^2(\mathbb{R}^N)$ tel que div $u_0 = 0$. On dit que u est une solution de Leray de (NS) si div u = 0 et si pour toute $\varphi \in \mathcal{C}^1_c(\mathbb{R}_+, H^1(\mathbb{R}^N))^N$ telle que div $\varphi = 0$, on a :

$$\int_0^\infty \int_{\mathbb{R}^N} u \cdot \partial_t \varphi + ((u \cdot \nabla)\varphi) \cdot u + \nabla u \cdot \nabla \varphi = -\int_{\mathbb{R}^N} \varphi_0 u_0.$$

Remarque : Vérifions que la définition a un sens. La seule difficulté vient du terme en $((u \cdot \nabla)\varphi) \cdot u$. Il faut donc vérifier que $\int_0^\infty \int_{\mathbb{R}^N} (u \cdot \nabla \varphi) \cdot u$ est bien définie. On a :

$$\int_{\mathbb{R}^{N}} \left| \left(u \cdot \nabla \varphi \right) \cdot u \right| \leq \left\| \nabla \varphi \right\|_{L^{2}} \left\| u \right\|_{L^{4}}^{2} \underset{\text{Gagliardo Nirenberg}}{\leq} C \left\| \nabla \varphi \right\|_{L^{2}} \left\| u \right\|_{\dot{H}^{1}}^{2\alpha} \left\| u \right\|_{\dot{H}^{1}}^{2(1-\alpha)}$$

où α est l'exposant de Gagliardo-Nirenberg $\alpha=1-\frac{N}{4}.$ Donc

$$\int_{0}^{\infty} \int_{\mathbb{R}^{N}} (u \cdot \nabla \varphi) \cdot u \leq C \left\| u \right\|_{L_{t}^{\infty}(L_{x}^{2})}^{2\alpha} \int_{0}^{\infty} \left\| \nabla \varphi(t) \right\|_{L^{2}} \left\| \nabla u \right\|_{L^{2}}^{2(1-\alpha)} \leq C \left\| u \right\|_{L_{t}^{\infty}(L_{x}^{2})} \left\| \nabla \varphi \right\|_{L_{t}^{1/\alpha}(L_{x}^{2})} \left\| \nabla u \right\|_{L_{t,x}^{2}}^{2(1-\alpha)}.$$

Théorème 3.2 (Leray, 1933)

Soit $u_0 \in L^2(\mathbb{R}^N)$ à divergence nulle. Alors il existe une solution de Leray $u \in L^\infty(\mathbb{R}_+, L^2(\mathbb{R}^N)) \cap L^2(\mathbb{R}_+, \dot{H}^1(\mathbb{R}^N)) \cap \mathcal{C}(\mathbb{R}_+, w\text{-}L^2(\mathbb{R}^N))$ des équations de Navier-Stokes (N=2,3). De plus, cette solution vérifie une inégalité locale d'éner-

gie : pour presque tout t > 0,

$$\|u(t)\|_{L^2}^2 + 2 \int_0^t \|\nabla u\|_{L^2}^2 \le \|u_0\|_{L^2}^2$$

et pour presque tous t > s > 0,

$$\|u(t)\|_{L^2}^2 + 2 \int_s^t \|\nabla u\|_{L^2}^2 \le \|u(s)\|_{L^2}^2.$$

Définition 3.3

 $u\in\mathcal{C}(\mathbb{R}_+,w\text{-}L^2(\mathbb{R}^N))\text{ signifie que pour toute }\varphi\in L^2(\mathbb{R}^N)^N,\ t\mapsto\int_{\mathbb{R}^N}u(t)\cdot\varphi\text{ est continue en temps.}$

La démonstration repose sur l'estimation d'énergie.

- 1. On construit une famille de solutions approchées, régulières, vérifiant l'inégalité d'énergie.
- 2. Compacité faible (grâce aux bornes d'énergie)
- 3. Gain en compacité forte (régularité)
- 4. Passage à la limite.

Quid de l'unicité? Pour N = 2, il y a unicité des solutions de Leray. Pour N = 3, c'est une question ouverte (en train d'être résolue), mais a priori il n'y a pas d'unicité.

Première étape : approximation de Friedrichs. On introduit les espaces et projecteurs suivants :

$$E = \left\{ u \in L^2(\mathbb{R}^N), \, \operatorname{div} u = 0 \right\}$$

 $(E \text{ est fermé dans } L^2)$

$$F_n = \{ u \in L^2(\mathbb{R}^N), \, \widehat{u}(\xi) = 0 \text{ si } |\xi| \ge n \}$$

 π : le projecteur orthogonal sur E (aussi appelé projecteur de Leray)

 P_n : le projecteur orthogonal sur F_n

Exercice : Soit $u \in L^2(\mathbb{R}^N)^N$ quelconque. Montrer les propriétés suivantes :

$$-\widehat{P_n u}(\xi) = \mathbf{1}_{|\xi| \le n} \widehat{u}(\xi);$$

$$- \widehat{\pi u}(\xi) = \widehat{u}(\xi) - \frac{\widehat{u}(\xi) \cdot \xi}{|\xi|^2} \xi = M(\xi) \widehat{u}(\xi) \text{ pp } \xi \in \mathbb{R}^N, \text{ avec } M(\xi) = \left(\delta_{ij} - \frac{\xi_i \xi_j}{|\xi|^2}\right)_{1 \leq i, j \leq N};$$

$$-P_n\pi=\pi P_n,\,\forall n\in\mathbb{N}.$$

— Si
$$p \in H^1(\mathbb{R}^N)$$
, alors $\pi(\nabla p) = 0$.

Si $u \in F_n$, alors $u \in H^s(\mathbb{R}^N)$ pour tout $s \geq 0$ et

$$||u||_{H^s} = \left(\int_{\mathbb{R}^N} (1+|\xi|^2)^s |\widehat{u}(\xi)|^2 d\xi\right)^{1/2} \le (1+n^2)^{s/2} ||u||_{L^2}.$$

On cherche à résoudre

$$\begin{cases}
\partial_t u_n + P_n \pi(\operatorname{div}(u_n \otimes u_n)) - \Delta u_n = 0 \\
u_{n+t=0} = P_n(u_0) \\
u_n(t) \in E \cap F_n, \, \forall t.
\end{cases}$$
(F)

Lemme 3.4

Soient $n \ge 1$ et $u_0 \in L^2(\mathbb{R}^N)^N$ tel que div $u_0 = 0$. Alors il existe $T_n > 0$ tel que (F) admet une unique solution $u_n \in \mathcal{C}^1([0, T_n[, F_n)])$. De plus, cette solution vérifie l'inégalité d'énergie :

$$\|u_n(t)\|_{L^2}^2 + 2 \int_0^t \|\nabla u_n\|_{L^2}^2 \le \|u_0\|_{L^2}^2$$
.

 \triangleright On applique le théorème de Cauchy-Lipschitz dans F_n . On considère l'application

$$A_n: \begin{array}{ccc} F_n & \to & F_n \\ u & \mapsto & \Delta u - P_n \pi(\operatorname{div}(u \otimes u)). \end{array}$$

 \mathcal{A}_n est localement lipschitzienne. En effet, si $u, v \in F_n$,

$$\|\Delta u - \Delta v\|_{L^2} = \|\Delta (u - v)\|_{L^2} \le (1 + n^2) \|u - v\|_{L^2}$$

et

$$||P_n\pi(\operatorname{div}(u\otimes u)) - P_n\pi(\operatorname{div}(v\otimes v))||_{L^2} \le (1+n^2)^{1/2} ||u\otimes u - v\otimes v||_{L^2}.$$

Or $u \otimes u - v \otimes v = (u - v) \otimes (u + v)$ done

$$\|u \otimes u - v \otimes v\|_{L^{2}} \leq (\|u\|_{L^{4}} + \|v\|_{L^{4}}) \|u - v\|_{L^{4}} \quad \underset{\text{G-N}}{\leq} \quad C \left(\|u\|_{L^{2}}^{\alpha} \|\nabla u\|_{L^{2}}^{1-\alpha} + \|v\|_{L^{2}}^{\alpha} \|\nabla v\|_{L^{2}}^{1-\alpha} \right) \|u - v\|_{L^{2}}^{\alpha} \|\nabla (u - v)\|_{L^{2}}^{1-\alpha} \\ \leq \quad C_{n}(\|u\|_{L^{2}} + \|v\|_{L^{2}}) \|u - v\|_{L^{2}}.$$

Ainsi, (F) admet une unique solution maximale $u_n \in \mathcal{C}^1([0, T_n[, F_n).$

Montrons que u_n est à divergence nulle. On a :

$$\begin{cases} \partial_t u_n - \mathcal{A}_n u_n = 0 \\ u_{n+t=0} = P_n u_0 \end{cases}$$

On applique (Id $-\pi$) à l'équation :

$$(\mathrm{Id} - \pi)\Delta u_n = \Delta(\mathrm{Id} - \pi)u_n$$
$$(\mathrm{Id} - \pi)\pi = \pi - \pi = 0$$

donc on obtient

$$\begin{cases} \partial_t (\mathrm{Id} - \pi) u_n - \Delta (\mathrm{Id} - \pi) u_n = 0\\ (\mathrm{Id} - \pi) u_{n \mid t=0} = P_n (u_0 - \pi u_0) = 0. \end{cases}$$

Donc $(\mathrm{Id} - \pi)u_n = 0$. Ainsi, $u_n(t) \in E, \forall t$.

Montrons que u_n vérifie l'inégalité d'énergie. Comme $u_n \in \mathcal{C}^1([0,T_n[,H^s(\mathbb{R}^N)) \ \forall s \geq 0, \text{ on a bien}$

$$\int_{\mathbb{R}^N} \partial_t u_n \cdot u_n = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u_n\|_{L^2}^2$$
$$-\int_{\mathbb{R}^N} \Delta u_n \cdot u_n = \int_{\mathbb{R}^N} |\nabla u_n|^2.$$

Il reste donc à traiter le terme convectif. Comme div $u_n = 0$, on a div $(u_n \otimes u_n) = (u_n \cdot \nabla)u_n$. Donc

$$\int_{\mathbb{R}^{N}} P_{n} \pi \left(\operatorname{div}(u_{n} \otimes u_{n}) \right) \cdot u_{n} = \int_{\mathbb{R}^{N}} \operatorname{div}(u_{n} \otimes u_{n}) \cdot u_{n}$$

$$= \int_{\mathbb{R}^{N}} (u_{n} \cdot \nabla) u_{n} \cdot u_{n}$$

$$= \frac{1}{2} \int_{\mathbb{R}^{N}} u_{n} \cdot \nabla |u_{n}|^{2}$$

$$= \underset{\text{utiliser un cut-off et les termes de bord tendent vers 0}}{= \underbrace{1}{2} \int_{\mathbb{R}^{N}} |u_{n}|^{2} \operatorname{div} u_{n}} \quad \operatorname{car} u_{n} \in H^{s}, \, \forall s, \, \operatorname{donc} u_{n} \in L^{p} \, \forall p \geq 2$$

$$= 0.$$

Donc, pour tout $t \geq 0$,

$$\|u_n(t)\|_{L^2}^2 + 2\int_0^t \|\nabla u_n\|_{L^2}^2 = \|P_n u_0\|_{L^2}^2 \le \|u_0\|_{L^2}^2.$$

Corollaire 3.5

On a
$$\forall n \in \mathbb{N}, T_n = +\infty$$
.

 \triangleright On a:

$$\sup_{t \in [0, T_n[} \|u_n(t)\|_{L^2} \le \|u_0\|_{L^2}$$

donc $T_n = +\infty$.

Deuxième étape : régularité en temps

Lemme 3.6

$$| \forall T > 0, \exists C_T > 0, \forall h \in]0, 1[, \forall n \in \mathbb{N} \int_0^T \int_{\mathbb{R}^N} |u_n(t+h) - u_n(t)|^2 \le C_T h^{\alpha} \text{ avec } \alpha = 1 - \frac{N}{4}.$$

⊳ On a:

$$u_n(t+h) - u_n(t) = \int_t^{t+h} \partial_s u_n(s) ds = \int_t^{t+h} (-P_n \pi(\operatorname{div}(u_n \otimes u_n)(s)) + \Delta u_n(s)) ds.$$

En en prenant le produit scalaire par $u_n(t+h) - u_n(t)$ et en intégrant sur \mathbb{R}^N , on obtient :

$$\int_0^T \int_{\mathbb{R}^N} |u_n(t+h) - u_n(t)|^2 = \underbrace{\int_0^T \int_{\mathbb{R}^N} \int_t^{t+h} (u_n \otimes u_n) : (\nabla u_n(t+h) - \nabla u_n(t)) \, \mathrm{d}s}_{\mathsf{T}} - \underbrace{\int_0^T \int_{\mathbb{R}^N} \int_t^{t+h} \nabla u_n(s) \cdot (\nabla u_n(t+h) - \nabla u_n(t)) \, \mathrm{d}s}_{\mathsf{T}}$$

Pour II:

$$|\text{II}| \le \int_0^T \int_t^{t+h} \|\nabla u_n(s)\|_{L^2} (\|\nabla u_n(t)\|_{L^2} + \|\nabla u_n(t+h)\|_{L^2}).$$

Or

$$\int_{t}^{t+h} \left\| \nabla u_{n}(s) \right\|_{L^{2}} \mathrm{d}s \leq \left(\int_{t}^{t+h} \left\| \nabla u_{n}(s) \right\|_{L^{2}}^{2} \right)^{1/2} \left(\int_{t}^{t+h} 1 \right)^{1/2} \leq h^{1/2} \left(\int_{0}^{T+1} \left\| \nabla u_{n}(s) \right\|_{L^{2}}^{2} \right)^{1/2} \leq h^{1/2} \frac{\left\| u_{0} \right\|_{L^{2}}}{\sqrt{2}}$$

Par ailleurs, par Cauchy-Schwarz et l'inégalité d'énergie,

$$\int_0^T (\|\nabla u_n(t)\|_{L^2} + \|\nabla u_n(t+h)\|_{L^2}) \, \mathrm{d}t \le 2\sqrt{T} \frac{\|u_0\|_{L^2}}{\sqrt{2}}.$$

Donc

$$|II| \le \sqrt{T} \|u_0\|_{L^2}^2 h^{1/2}$$

(le $h^1/2$ ne pose pas de problème par rapport au h^{α} qu'on obtient pour I). Pour I :

$$\int_{\mathbb{R}^{N}} \left| \left(u_{n}(s) \otimes u_{n}(s) \right) \left(\nabla u_{n}(t+h) - \nabla u_{n}(t) \right) \right| \leq \left(\left\| \nabla u_{n}(t+h) \right\|_{L^{2}} + \left\| \nabla u_{n}(t) \right\|_{L^{2}} \right) \left\| u_{n}(s) \right\|_{L^{4}}^{2} \\
\leq C \left(\left\| \nabla u_{n}(t+h) \right\|_{L^{2}} + \left\| \nabla u_{n} \right\|_{L^{2}} \right) \left\| u_{n}(s) \right\|_{L^{2}}^{2\alpha} \left\| \nabla u_{n}(s) \right\|_{L^{2}}^{2(1-\alpha)} \\
\leq C \left(\left\| \nabla u_{n}(t+h) \right\|_{L^{2}} + \left\| \nabla u_{n}(t) \right\|_{L^{2}} \right) \left\| u_{0} \right\|_{L^{2}}^{2\alpha} \left\| \nabla u_{n}(s) \right\|_{L^{2}}^{2(1-\alpha)} .$$

De plus,

$$\int_{t}^{t+h} \left\| \nabla u_{n}(s) \right\|_{L^{2}}^{2(1-\alpha)} \leq \left(\int_{t}^{t+h} 1^{1/\alpha} \right)^{\alpha} \left(\int_{t}^{t+h} \left\| \nabla u_{n}(s) \right\|_{L^{2}}^{2} \right)^{1-\alpha} \leq h^{\alpha} \left(\frac{\left\| u_{0} \right\|_{L^{2}}^{2}}{2} \right)^{1-\alpha}.$$

Donc

$$|I| \le C\sqrt{2T} \|u_0\|_{L^2} \|u_0\|_{L^2}^{2\alpha} h^{\alpha} \left(\frac{\|u_0\|_{L^2}^2}{2}\right)^{1-\alpha} \le C_T h^{\alpha}.$$

David Michel - 2017-2018 31 ENS Rennes - UPMC

Troisième étape : compacité forte

Lemme 3.7

Il existe s>0 tel que $(u_n)_{n\in\mathbb{N}}$ est bornée dans $H^s([0,T]\times B_R)$ pour tout R>0. Par conséquent, à extraction près, il existe $u\in L^\infty(L^2)\cap L^2(H^1)$ tel que $u_n\to u$ dans $L^2_{\mathrm{loc}}(\mathbb{R}_+\times\mathbb{R}^N)$ et $\nabla u_n\rightharpoonup \nabla u$ dans $w\text{-}L^2_{t,x}$.

⊳ On a:

$$||u_n||_{H^s([0,T]\times B_R)}^2 = ||u_n||_{L^2([0,T]\times B_R)}^2 + \int_{([0,T]\times B_R)^2} \frac{|u_n(t,x) - u_n(t',y)|^2}{(|t-t'| + |x-y|)^{1+N+2s}} dt dt' dx dy$$

Le premier terme est borné d'après les estimations d'énergie. Pour le second, on écrit

$$|u_n(t,x) - u_n(t',y)| \le |u_n(t,x) - u_n(t,y)| + |u_n(t,y) - u_n(t',y)|.$$

• On traite l'intégrale

$$A = \int_{[0,T]^2 \times B_R^2} \frac{|u_n(t,x) - u_n(t,y)|}{(|t-t'| + |x-y|)^{1+N+2s}} dt dt' dx dy.$$

On a:

$$\int_{0}^{T} \frac{\mathrm{d}t'}{(|t-t'|+|x-y|)^{1+N+2s}} \leq 2 \int_{0}^{T} \frac{\mathrm{d}\xi}{(\xi+|x-y|)^{1+N+2s}}$$

$$\leq 2 \int_{0}^{T} \frac{\mathrm{d}\xi}{(\xi+|x-y|)^{1+N+2s}}$$

$$\leq 2 \int_{0}^{T} \frac{\mathrm{d}\xi}{(\xi+|x-y|)^{1+N+2s}}$$

$$\leq C_{N,s} \frac{1}{|x-y|^{N+2s}}.$$

Ainsi,

$$A \leq C_{N,s} \int_0^T \int_{B_R^2} \frac{|u_n(t,x) - u_n(t,y)|^2}{|x - y|^{N+2s}} dx dy dy \leq C_{N,s} \int_0^T ||u_n(t)||^2_{H^s(B_R)} dt \leq C_{N,s} ||u_0||^2_{L^2} \text{ si } s \leq 1.$$

• On traite l'intégrale

$$B = \int_{[0,T]^2 \times B_R^2} \frac{|u_n(t,y) - u_n(t',y)|^2}{(|t - t'| + |x - y|)^{N+1+2s}} dt dt' dx dy.$$

Calculons:

$$\int_{B_R} \frac{\mathrm{d}x}{(|t-t'|+|x-y|)^{N+1+2s}} \underset{\xi = \frac{x-y}{|t-t'|}}{\leq} \frac{1}{|t-t'|^{1+2s}} \int_{B_{\frac{2R}{|t-t'|}}} \frac{\mathrm{d}\xi}{(1+|\xi|)^{N+1+2s}} \leq C_{N,s} \frac{1}{|t-t'|^{1+2s}}$$

en majorant par l'intégrale sur tout l'espace. Alors

$$B \leq C_{N,s} \int_{0}^{T} \int_{0}^{T} \int_{B_{R}} \frac{|u_{n}(t,y) - u_{n}(t',y)|^{2}}{|t - t'|^{1+2s}} dt dt' dy$$

$$\leq C_{N,s} \int_{0}^{T} \int_{0}^{T} \int_{B_{R}} \mathbf{1}_{|t - t'| \geq 1} |u_{n}(t,y) - u_{n}(t',y)|^{2} dt dt' dy$$

$$+ 2C_{N,s} \int_{0}^{T} \int_{0}^{T} \int_{B_{R}} \mathbf{1}_{0 \leq t' - t \leq 1} \frac{|u_{n}(t,y) - u_{n}(t',y)|^{2}}{|t - t'|^{1+2s}} dt dt' dy$$

$$\leq C_{N,s,T} ||u_{0}||_{L^{2}}^{2} + 2_{N,s} \int_{0}^{T} \int_{0}^{1} \int_{B_{R}} \frac{|u_{n}(t + h, y) - u_{n}(t, y)|^{2}}{h^{1+2s}} dt dh dy$$

D'après le lemme précédent,

$$B \le C_{N,s,T} \|u_0\|_{L^2}^2 + 2C \int_0^1 \frac{1}{h^{1+2s}} h^{\alpha} dh$$

On a une singularité intégrable si $\alpha > 2s$ ie. si $s < \frac{1}{2} \left(1 - \frac{N}{4} \right)$.

Ainsi, il existe une constante C dépendant de $s, T, N, \|u_0\|_{L^2}$, R telle que, si $s < \frac{1}{2} \left(1 - \frac{N}{4}\right)$,

$$||u_n||_{H^s([0,T]\times B_R)} \le C.$$

Quatrième étape : passage à la limite On sait que

$$u_n \to u \text{ dans } L^2_{\text{loc}}(\mathbb{R}_+ \times \mathbb{R}^N),$$

 $u_n \rightharpoonup u \text{ dans } w^* - L^\infty(\mathbb{R}_+, L^2),$
 $\nabla u_n \rightharpoonup \nabla u \text{ dans } w - L^2(\mathbb{R}_+ \times \mathbb{R}^N).$

Lemme 3.8

u est une solution de Leray des équations de (NS) qui vérifie l'inégalité d'énergie.

 \triangleright Il faut montrer qu'on peut passer à la limite dans la formulation faible. Soit $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)$ telle que div $\varphi = 0$. Pour tout $n \in \mathbb{N}$, on a :

$$\int_0^\infty \int_{\mathbb{R}^N} (u_n \partial_t \varphi - P_n \pi(\operatorname{div}(u_n \otimes u_n)) \varphi - \nabla u_n \nabla \varphi) = -\int_{\mathbb{R}^N} P_n(u_0) \varphi.$$

Le seul terme compliqué est le terme quadratique.

$$-\int_0^\infty \int_{\mathbb{R}^N} P_n \pi(\operatorname{div}(u_n \otimes u_n)) \varphi = -\int_0^\infty \int_{\mathbb{R}^N} P_n(\operatorname{div}(u_n \otimes u_n)) \varphi = \int_0^\infty \int_{\mathbb{R}^N} u_n \otimes u_n (P_n \nabla \varphi).$$

Or $u_n \otimes u_n \to u \otimes u$ dans $L^1_{loc}([0,T] \times \mathbb{R}^N)$. De plus,

$$\|P_n \nabla \varphi - \nabla \varphi\|_{H^s} = \int_{\mathbb{R}^N} (1 + |\xi|^2)^s \mathbf{1}_{|\xi| \ge n} |\xi|^2 |\widehat{\varphi}(\xi)|^2 d\xi \le (1 + n^2)^{s - s'} \|\varphi\|_{H^{s'}}.$$

Si s' est suffisamment grand, on obtient $P_n \nabla \varphi \to \nabla \varphi$ dans L^{∞} $(s > \frac{N}{2})$.

On a donc, pour toute $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}_+ \times \mathbb{R}^N)$ telle que div $\varphi = 0$,

$$\int (u\partial_t \varphi + u \otimes u \nabla \varphi - \nabla u \cdot \nabla \varphi) = -\int u_0 \varphi_0.$$

Par densité et grâce aux bornes sur u, on étend cette égalité à $\varphi \in \mathcal{C}^1_c(\mathbb{R}_+, H^1(\mathbb{R}^N))$ et telle que div $\varphi = 0$. Donc u est une solution de Leray. En passant à la limite (faible) dans l'égalité d'énergie pour u_n , on en déduit que u vérifie l'inégalité d'énergie.

3.2 Solutions fortes en dimension 3

On va montrer dans cette partie le résultat suivant.

Théorème 3.9 (Fujita-Kato)

Soit $u_0 \in H^{1/2}(\mathbb{R}^3)$, à divergence nulle. Alors :

- 1. Il existe t>0 tel que l'équation (NS) admette une unique solution dans $L^4([0,T[,\dot{H}^1(\mathbb{R}^3))\cap L^\infty([0,T],\dot{L}^2)$. De plus, cette solution appartient à $\mathcal{C}([0,T[,\dot{H}^{1/2}(\mathbb{R}^3))$.
- 2. Il existe $\delta > 0$ tel que si $||u_0||_{\dot{H}^{1/2}} \leq \delta$, alors la solution est globale.

Exercice: Invariance par scaling. Montrer que si u est solution de (NS) alors pour $\lambda > 0$, $u_{\lambda}(t,x) = \lambda u(\lambda^2 t, \lambda x)$ est aussi solution.

Les théorèmes de type « existence globale à donnée petite » ne peuvent donc être vrais que dans des espaces invariants par scaling.

Montrer que les espaces $L^{\infty}(\mathbb{R}_+, \dot{H}^{1/2}(\mathbb{R}^3))$ et $L^4(\mathbb{R}_+, \dot{H}^1(\mathbb{R}^3))$ sont invariants par le scaling ci-dessus, et $\dot{H}^{1/2}(\mathbb{R}^3)$ est invariant par la transformation $u_0 \mapsto \lambda u_0(\lambda \cdot)$.

3.2.1 Préliminaires : système de Stokes avec terme source

Dans ce paragraphe, on étudie le système

$$\begin{cases} \partial_t u + \nabla p - \Delta u = f & \text{dans }]0, +\infty[\times \mathbb{R}^3 \\ \text{div } u = 0 & \text{dans }]0, +\infty[\times \mathbb{R}^3 \\ u_{1t=0} = u_0 \end{cases}$$
 (S)

Lemme 3.10

Soient T > 0, $f \in L^2([0,T], \dot{H}^{-1/2}(\mathbb{R}^3))$, $u_0 \in \dot{H}^{1/2}(\mathbb{R}^3)$. Alors le système (S) admet une unique solution $u \in \mathcal{C}([0,T], \dot{H}^{1/2}(\mathbb{R}^3)) \cap L^4([0,T], \dot{H}^1(\mathbb{R}^3))$.

De plus, il existe une constante C > 0 (indépendante de T) telle que

$$||u||_{L^4([0,T],\dot{H}^1)} \le C \left(||f||_{L^2_t(H_x^{-1/2})} + \omega(T;u_0) \right)$$

οù

$$\omega(T; u_0) = \left(\int_{\mathbb{R}^3} |\xi| |\widehat{u}_0(\xi)|^2 \left(1 - e^{-4T|\xi|^2} \right)^{1/2} d\xi \right)^{1/2}.$$

Remarque : $\omega(T; u_0) \leq ||u_0||_{\dot{H}^1/2}$ pour tous $u_0 \in \dot{H}^{1/2}(\mathbb{R}^3)$ et T > 0. De plus, d'après le théorème de convergence dominée,

$$\lim_{T \to 0} \omega(T; u_0) = 0.$$

Remarque : sur les espaces $\dot{H}^{-s}(\mathbb{R}^N)$ avec $0 < s < \frac{N}{2}$. Si $s \in \left[0, \frac{N}{2}\right]$,

$$f \in \dot{H}^s(\mathbb{R}^N) \qquad \Longleftrightarrow \qquad f \in \mathcal{S}'(\mathbb{R}^N) \text{ et } \int_{\mathbb{R}^N} |\xi|^{2s} |\widehat{f}(\xi)|^2 d\xi < +\infty.$$

$$g \in \dot{H}^{-s}(\mathbb{R}^N) \qquad \Longleftrightarrow \qquad g \in \mathcal{S}'(\mathbb{R}^N) \text{ et } \int_{\mathbb{R}^N} |\xi|^{-2s} |\widehat{g}(\xi)|^2 d\xi < +\infty.$$

Voir le livre de Bahouri - Chemin - Danchin.

ightharpoonup — S'il existe une solution, on a $u(t) \in \mathcal{S}'(\mathbb{R}^3)$ pour tout t. Donc on peut prendre la transformée de Fourier dans $\mathcal{S}'(\mathbb{R}^3)$. On obtient :

$$\partial_t \widehat{u}(\xi) + i\xi \widehat{p}(\xi) + |\xi|^2 \widehat{u}(\xi) = \widehat{f}(\xi)$$
 et $\xi \cdot \widehat{u}(\xi) = 0$.

On prend le produit scalaire de la première équation avec ξ :

$$i|\xi|^2\widehat{p}(t,\xi)=\xi\cdot\widehat{f}(\xi).$$

Donc pour presque tout $\xi \neq 0$,

$$\widehat{p}(t,\xi) = -i\frac{\xi}{|\xi|^2} \cdot \widehat{f}(t,\xi).$$

D'où

$$\partial_t \widehat{u}(t,\xi) + |\xi|^2 \widehat{u}(t,\xi) = M(\xi)\widehat{f}(\xi) \tag{SF}$$

où $M(\xi) = \left(\delta_{ij} - \frac{\xi_i \xi_j}{|\xi|^2}\right)_{ij}$. Remarque : $\forall \xi \in \mathbb{R}^3 \setminus \{0\}, \|M(\xi)\| \le C$.

(SF) est une équation différentielle linéaire. Sa solution est :

$$\widehat{u}(t,\xi) = e^{-t|\xi|^2} \widehat{u_0}(t,\xi) + \int_0^t e^{-(t-s)|\xi|^2} M(\xi) \widehat{f}(s,\xi) ds.$$
 (R)

- Existence : Soient $u_0 \in \dot{H}^{1/2}(\mathbb{R}^3)$ et $f \in L^2([0,T], \dot{H}^{-1/2}(\mathbb{R}^3))$. Vérifions que (R) définit bien une solution de (S) dans $\mathcal{C}([0,T], \dot{H}^{1/2}(\mathbb{R}^3))$. Soit $t \in [0,T]$,

$$||u(t)||_{\dot{H}^{1/2}}^2 = \int_{\mathbb{R}^3} |\widehat{u}(t,\xi)|^2 |\xi| d\xi \le 2 \int_{\mathbb{R}^3} |\xi| e^{-2t|\xi|^2} |\widehat{u}_0(\xi)|^2 d\xi + 2 \int_{\mathbb{R}^3} |\xi| \left(\int_0^t e^{-(t-s)|\xi|^2} |M(\xi)| |\widehat{f}(s,\xi)| ds \right)^2 d\xi.$$

Or, par Cauchy-Schwarz

$$\left(\int_0^t e^{-(t-s)|xi|^2} |\widehat{f}(s,\xi)| \mathrm{d}s\right)^2 \leq \left(\int_0^t e^{-2(t-s)|\xi|^2} \mathrm{d}s\right) \left(\int_0^t |\widehat{f}(s,\xi)|^2 \mathrm{d}s\right) = \frac{1-e^{-2t|\xi|^2}}{2|\xi|^2} \int_0^t |\widehat{f}(s,\xi)|^2 \mathrm{d}s.$$

Donc

$$\|u(t)\|_{\dot{H}^{1/2}}^2 \le 2 \|u_0\|_{\dot{H}^{1/2}}^2 + C \|f\|_{L^2([0,T],\dot{H}^{-1/2}(\mathbb{R}^3))}^2.$$

Ainsi $u \in L^{\infty}([0,T], \dot{H}^{1/2}(\mathbb{R}^3)).$

La continuité en temps est laissée en exercice (application du théorème de convergence dominée). Par ailleurs, u est bien solution de (S) puisque \hat{u} vérifie (SF) par construction.

- Unicité : deux possibilités :
- (a) On reprend les calculs préliminaires avec $u_0 = 0$ et f = 0. On trouve que $\hat{u} = 0$ donc u = 0.
- (b) On raisonne par dualité, en se servant de l'existence d'une solution du problème dual (en exercice, cf chapitre 2).
 - Montrons que $u \in L^4([0,T],\dot{H}^1(\mathbb{R}^3))$. On commence par montrer que $u \in \dot{H}^1(\mathbb{R}^3,L^4([0,T]))$, c'est-à-dire :

$$\int_{\mathbb{R}^3} |\xi|^2 \left(\int_0^T |\widehat{u}(t,\xi)|^4 \mathrm{d}t \right)^{1/2} \mathrm{d}\xi < +\infty.$$

On fixe ξ et on prend la norme $L^4([0,T])$ dans (R). On a :

$$\left\| e^{-t|\xi|^2} \right\|_{L^4([0,T])} = \left(\int_0^T e^{-4t|\xi|^2} dt \right)^{1/4} = \left(\frac{1 - e^{-4T|\xi|^2}}{4|\xi|^2} \right)^{1/4}.$$

De plus, on rappelle que

$$\|g * h\|_{L^r} \le \|g\|_{L^p} \|h\|_{L^q}$$
 avec $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.

On prend r = 4 et p = 2, donc $q = \frac{4}{3}$. Donc

$$\left\| \int_0^t e^{-(t-s)|\xi|^2} |M(\xi)| \widehat{f}(s,\xi) ds \right\|_{L^4([0,T])} \le C \left(\int_0^T |\widehat{f}(t,\xi)|^2 dt \right)^{1/2} \left(\int_0^T e^{-\frac{4}{3}t|\xi|^2} dt \right)^{3/4} \le C \left(\int_0^T |\widehat{f}(t,\xi)|^2 dt \right)^{1/2} \frac{1}{|\xi|^{3/2}}.$$

Alors,

$$||u||_{\dot{H}^{1}(\mathbb{R}^{3},L^{4}([0,T]))}^{2} \leq \int_{\mathbb{R}^{3}} |\xi|^{2} |\widehat{u_{0}}(\xi)|^{2} \frac{(1-e^{-4T|\xi|^{2}})^{1/2}}{|\xi|} d\xi + C \int_{\mathbb{R}^{3}} |\xi|^{2} \left(\int_{0}^{T} |\widehat{f}(t,\xi)|^{2} dt \right) \frac{1}{|\xi|^{3}} d\xi$$

$$\leq \omega(T, u_0)^2 + C \|f\|_{L^2([0,T], \dot{H}^{-1/2}(\mathbb{R}^3))}.$$

– Montrons que $\dot{H}^1(\mathbb{R}^3, L^4([0,T])) \hookrightarrow L^4([0,T], \dot{H}^1(\mathbb{R}^3))$. Soit $v \in \dot{H}^1(\mathbb{R}^3, L^4([0,T]))$. Alors

$$\begin{split} \|v\|_{L^{4}([0,T],\dot{H}^{1}(\mathbb{R}^{3}))}^{4} &= \int_{0}^{T} \|v(t)\|_{\dot{H}^{1}(\mathbb{R}^{3})}^{4} \, \mathrm{d}t \\ &= \int_{0}^{T} \left(\int_{\mathbb{R}^{3}} |\widehat{v}(t,\xi)|^{2} |\xi|^{2} \mathrm{d}\xi \right)^{2} \, \mathrm{d}t \\ &= \int_{0}^{T} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} |\xi|^{2} |\xi'|^{2} |\widehat{v}(t,\xi)|^{2} |\widehat{v}(t,\xi')|^{2} \mathrm{d}\xi \mathrm{d}\xi' \mathrm{d}t \\ &\leq \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} |\xi|^{2} |\xi'|^{2} \left(\int_{0}^{T} |\widehat{v}(t,\xi)|^{4} \mathrm{d}t \right)^{1/2} \left(\int_{0}^{T} |\widehat{v}(t,\xi')|^{4} \mathrm{d}t \right)^{1/2} \mathrm{d}\xi \mathrm{d}\xi' \\ &\leq \left(\int_{\mathbb{R}^{3}} |\xi|^{2} \left(\int_{0}^{T} |\widehat{v}(t,\xi)|^{4} \mathrm{d}t \right)^{1/2} \mathrm{d}\xi \right)^{2} \\ &\leq \|v\|_{\dot{H}^{1}(\mathbb{R}^{3},L^{4}([0,T]))}^{4} \, . \end{split}$$

3.2.2 Application d'un théorème de point fixe

On cherche à appliquer le lemme précédent à (NS) en prenant $f = -\operatorname{div}(u \otimes u)$. On note $E_T = L^4([0,T],\dot{H}^1(\mathbb{R}^3))$.

Lemme 3.11

1. Soit $w \in E_T$ à divergence nulle. On note $f = -\operatorname{div}(w \otimes w)$. Alors $f \in L^2([0,T],\dot{H}^{-1/2}(\mathbb{R}^3))$ et il existe une constante C telle que

$$||f||_{L^{2}([0,T],\dot{H}^{-1/2}(\mathbb{R}^{3}))} \leq C ||w||_{E_{T}}^{2}.$$

2. Soient $w_1, w_2 \in E_T$ à divergence nulle. On pose $f_i = -\operatorname{div}(w_i \otimes w_i)$ pour i = 1, 2. Alors

$$||f_1 - f_2||_{L^2([0,T],\dot{H}^{-1/2}(\mathbb{R}^3))} \le C ||w_1 - w_2||_{E_T} (||w_1||_{E_T} + ||w_2||_{E_T}).$$

Les constantes sont universelles et ne dépendent pas de T.

> On a l'injection de Sobolev

$$\dot{H}^{1/2} \hookrightarrow L^3(\mathbb{R}^3).$$

Par dualité,

$$L^{3/2} \hookrightarrow \dot{H}^{-1/2}(\mathbb{R}^3).$$

On fait donc les estimations en remplaçant $H^{-1/2}$ par $L^{3/2}$.

1. Pour presque tout $t \in [0, T]$,

$$\begin{split} \|f(t)\|_{\dot{H}^{-1/2}} & & \leq & C \, \|(w \cdot \nabla)w\|_{L^{3/2}} \\ & & \leq & C \, \|w(t)\|_{L^6} \, \|\nabla w\|_{L^2} \\ & & \leq & C \, \|w(t)\|_{L^6} \, \|\nabla w\|_{L^2} \\ & & \leq & C \, \|\nabla w(t)\|_{L^2}^2 \, . \end{split}$$

Donc

$$||f||_{L^2(\dot{H}^{-1/2})} \le C ||w||_{E_T}^2.$$

2. On écrit

$$f_1 - f_2 = -(w_1 \cdot \nabla)w_1 + (w_2 \cdot \nabla)w_2 = -((w_1 - w_2) \cdot \nabla)w_1 + (w_2 \cdot \nabla)(w_2 - w_1).$$

Donc

$$\begin{split} \|(f_1 - f_2)(t)\|_{L^{3/2}} & \leq C (\|w_1 - w_2\|_{L^6} \|\nabla w_1\|_{L^2} + \|w_2\|_{L^6} \|\nabla (w_2 - w_1)\|_{L^2}) \\ & \leq C \|(w_1 - w_2)(t)\|_{\dot{H}^1} (\|w_1(t)\|_{\dot{H}^1} + \|w_2(t)\|_{\dot{H}^1}) \,. \end{split}$$

D'où

$$||f_1 - f_2||_{L^2([0,T],\dot{H}^{-1/2})} \le C ||w_1 - w_2||_{E_T} (||w_1||_{E_T} + ||w_2||_{E_T}).$$

Soient T>0 et $u_0\in H^{1/2}(\mathbb{R}^3)$ à divergence nulle. On considère l'application

$$\Phi_T: \begin{array}{ccc} E_T^0 & \to & E_T^0 \\ w & \mapsto v \end{array}$$

où v est l'unique solution de (S) avec $f = -\operatorname{div}(w \otimes w)$, et $E_T^0 = \{u \in E_T, \operatorname{div} u = 0\}$. D'après les lemmes précédents, Φ_T est bien définie et on a les propriétés suivantes.

1. Il existe une constante $C_1 > 0$ telle que pour tout $w \in E_T$,

$$\|\Phi_T(w)\|_{E_T} \le C_1 \left(\omega(T; u_0) + \|w\|_{E_T}^2\right).$$

2. Il existe une constante $C_2 > 0$ telle que pour tous $w_1, w_2 \in E_T$,

$$\|\Phi_T(w_1) - \Phi_T(w_2)\|_{E_T} \le C_2 \|w_1 - w_2\|_{E_T} (\|w_1\|_{E_T} + \|w_2\|_{E_T}).$$

But: Trouver $\delta > 0$ tel que B_{δ} soit stable par Φ_T et tel que Φ_T soit contractante sur B_{δ} , où $B_{\delta} = \{w \in E_T, \|w\|_{E_T} \leq \delta\}$. Cela ne sera possible que si $\omega(T, u_0)$ est suffisamment petit.

— Stabilité. On veut que

$$C_1\left(\omega(T, u_0) + \delta^2\right) \le \delta.$$

Pour cela, il faut que l'ensemble $\left\{\delta^2 - \frac{1}{C_1}\delta + \omega(T, u_0) \le 0, \, \delta > 0\right\}$ soit non vide. Nécessairement,

$$\frac{1}{C_1^2} - 4\omega(T, u_0) > 0 \qquad \iff \qquad \omega(T, u_0) < \frac{1}{4C_1^2}.$$

Dans la suite, on prendra

$$\omega(T, u_0) \le C_0 < \frac{1}{4C_1^2}$$

et $\delta = 2C_1C_0$. Alors on a bien $4C_1^2C_0^2 - 2C_0 + C_0 = C_0(4C_1^2 - 1) < 0$.

— Φ_T contractante. Il suffit que $2\delta C_2 < 1$, c'est-à-dire, $4C_1C_0C_2 > 1$. On choisit

$$C_0 = \frac{1}{2} \min \left(\frac{1}{4C_1^2}, \frac{1}{4C_1C_2} \right)$$
 et $\delta = 2C_1C_0$.

Ainsi, avec les choix précédents, on a montré que si $\omega(T, u_0) \leq C_1$, alors $\Phi_T(B_\delta) \subset B_\delta$ et Φ_T est contractante sur B_δ . Comme E_T est complet, d'après le théorème de point fixe de Picard, Φ_T admet un unique point fixe dans E_T . Ce point fixe est solution de (NS).

- Si $||u_0||_{\dot{H}^{1/2}} \leq C_0$, on peut prendre $T = +\infty$: solution globale $(\omega(T, u_0) \leq ||u_0||_{\dot{H}^{1/2}})$.
- Si $u_0 \in H^{1/2}(\mathbb{R}^3)$ est quelconque, par continuité, il existe T > 0 tel que $\omega(T, u_0) \leq C_0$. On a alors existence et unicité d'une solution forte dans E_T .

Enfin, la continuité en temps est une conséquence de cette propriété pour le système de Stokes linéaire.

3.3 Principe d'unicité fort-faible

Théorème 3.12

1. Soit $u_0 \in H^{1/2}(\mathbb{R}^3)$ à divergence nulle. Soit $u \in L^{\infty}([0,T],L^2(\mathbb{R}^3)) \cap L^4([0,T],\dot{H}^1(\mathbb{R}^3))$ la solution forte construite à la section précédente. Alors, pour presque tout t > 0,

$$||u(t)||_{L^{2}(\mathbb{R}^{3})}^{2} + 2 \int_{0}^{t} ||\nabla u||_{L^{2}}^{2} = ||u_{0}||_{L^{2}(\mathbb{R}^{3})}^{2}.$$

2. Soient $u_0 \in H^{1/2}(\mathbb{R}^3)$, $v_0 \in L^2(\mathbb{R}^3)$ à divergence nulle. Soient u la solution forte associée à u_0 et v la solution de Leray associée à v_0 . Alors pour tout t > 0

$$||u(t) - v(t)||_{L^{2}(\mathbb{R}^{3})} \le ||u_{0} - v_{0}||_{L^{2}(\mathbb{R}^{3})} \exp\left(C \int_{0}^{T} ||u||_{\dot{H}^{1}}^{4}\right).$$

▶ 1. La propriété repose sur deux observations :

- (a) si $u \in L^4([0,T], \dot{H}^1) \cap L^{\infty}([0,T], L^2)$ alors $\operatorname{div}(u \otimes u) \in L^2([0,T], H^{-1})$;
- (b) considérons le système de Stokes (S) avec $u_0 \in L^2(\mathbb{R}^3)$ à divergence nulle, $f \in L^2([0,T], H^{-1})$, alors (S) admet une unique solution dans $\mathcal{C}([0,T], L^2) \cap L^2([0,T], H^1)$ et on a l'égalité d'énergie

$$\left\|u(t)\right\|_{L^{2}}^{2}+2\int_{0}^{t}\left\|\nabla u\right\|_{L^{2}}^{2}=\left\|u_{0}\right\|_{L^{2}}^{2}+\int_{0}^{t}\langle f(s),u(s)\rangle_{H^{-1},H^{1}}\mathrm{d}s.$$

Preuve de (a) Pour presque tout $t \in [0, T]$

$$\|\operatorname{div}(u \otimes u)(t)\|_{H^{-1}} \le \|u(t) \otimes u(t)\|_{L^{2}(\mathbb{R}^{3})} \|u(t)\|_{L^{4}(\mathbb{R}^{3})}^{2} \le \|u(t)\|_{L^{2}}^{1/2} \|u(t)\|_{L^{6}}^{3/2}$$

en interpolant, puis, par injection de Sobolev,

$$\|\operatorname{div}(u \otimes u)(t)\|_{H^1} \le C \|u(t)\|_{L^2}^{1/2} \|u(t)\|_{\dot{H}^1}^{3/2}.$$

Donc

$$\|\operatorname{div}(u\otimes u)(t)\|_{L^2_t(H^{-1}_x)} \leq C \|u\|_{L^\infty_t(L^2_x)}^{1/2} \left(\int_0^T \|u(t)\|_{\dot{H}^1}^3 \right)^{1/2} \leq C T^{1/8} \|u\|_{L^\infty_t(L^2_x)}^{1/2} \|u\|_{L^4_t(\dot{H}^1_x)}^{3/2}.$$

Preuve de (b) Pour l'existence et l'unicité : comme précédemment en s'appuyant sur la formule de représentation en Fourier

→ exercice.

Pour l'égalité d'énergie, on projette (S) sur $F_n = \{u \in L^2(\mathbb{R}^3), \, \widehat{u}(\xi) = 0 \text{ si } |\xi| \geq n\}$. On considère donc la solution u_n de

$$\begin{cases} \partial_t u_n - \Delta u_n = P_n \pi f \\ u_{n \mid t=0} = P_n u_0 \end{cases}$$
 (S_n)

Pour (S_n) , on a:

$$\frac{\mathrm{d}}{\mathrm{d}t} \|u_n\|_{L^2}^2 + 2 \|\nabla u_n\|_{L^2}^2 = \langle P_n \pi f, u_n \rangle$$

et

$$\langle P_n \pi f, u_n \rangle = \int_{|\xi| \le n} M(\xi) \widehat{f}(\xi) \overline{\widehat{u_n}(\xi)} d\xi.$$

On a:

$$|\langle P_n \pi f, u_n \rangle| \le ||f||_{H^{-1}} ||u_n||_{H^1} \le ||\nabla u_n||_{L^2} + ||f||_{H^{-1}}^2 + ||f||_{H^{-1}} ||u_n||_{L^2}$$

donc

$$\frac{\mathrm{d}}{\mathrm{d}t} \|u_n\|_{L^2}^2 + \|\nabla u_n\|_{L^2}^2 \le \|f\|_{H^{-1}}^2 + \|f\|_{H^{-1}} \|u_n\|_{L^2}.$$

On en déduit une borne uniforme sur u_n dans $L^{\infty}(L^2) \cap L^2(\dot{H}^1)$ (Grönwall). On peut passer à la limite dans l'équation par linéarité.

2. — Première preuve formelle (fausse). On a :

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla p - \Delta u = 0 \\ \partial_t v + (v \cdot \nabla)v + \nabla q - \Delta v = 0 \end{cases}$$

donc, en notant w = u - v et r = p - q,

$$\partial_t w + (w \cdot \nabla)u + (v \cdot \nabla)w + \nabla r - \Delta w = 0.$$

On prend le produit scalaire avec w (c'est là que se trouve le problème) et on intègre.

$$\int (v \cdot \nabla) w \cdot w = \frac{1}{2} \int (v \cdot \nabla) |w|^2 = -\frac{1}{2} \int |w|^2 \operatorname{div} v = 0$$
$$\left| \int (w \cdot \nabla u) \cdot w \right| \le \|\nabla u\|_{L^2} \|w\|_{L^4}^2 \le \|\nabla u\|_{L^2} \|w\|_{L^2}^{1/2} \|w\|_{L^6}^{3/2}$$

On a l'inégalité de Young : pour tout $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$

$$\forall a, b \ge 0, \qquad ab \le \frac{1}{n}a^p + \frac{1}{a}b^q.$$

On en déduit, avec $p = \frac{4}{3}$ et a proportionnel à $\|\nabla w\|_{L^2}^{3/2}$,

$$\left| \int (w \cdot \nabla u) \cdot w \right| \le C \|\nabla u\|_{L^{2}} \|w\|_{L^{2}}^{1/2} \|\nabla w\|_{L^{2}}^{3/2} \le \frac{1}{2} \|\nabla w\|_{L^{2}}^{2} + C \|w\|_{L^{2}}^{2} \|\nabla w\|_{L^{2}}^{4}.$$

Finalement,

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\|w\right\|_{L^{2}}^{2}+\left\|\nabla w\right\|_{L^{2}}^{2}\leq\frac{1}{2}\left\|\nabla w\right\|_{L^{2}}^{2}+C\left\|w\right\|_{L^{2}}^{2}\left\|\nabla u\right\|_{L^{2}}^{4}$$

D'après le lemme de Grönwall,

$$\|w\|_{L^2}^2 \le \|w_0\|_{L^2}^2 \exp\left(C \int_0^t \|\nabla u(s)\|_{L^2}^4 ds\right).$$

— Pour rendre la preuve rigoureuse, on va utiliser l'égalité d'énergie pour u, l'inégalité d'énergie pour v et une régularisation. Posons, pour t > 0,

$$\begin{split} \Delta(t) &= \|w(t)\|_{L^{2}}^{2} + 2\int_{0}^{t} \|\nabla w\|_{L^{2}}^{2} \\ &= \|u(t)\|_{L^{2}}^{2} + 2\int_{0}^{t} \|\nabla u\|_{L^{2}}^{2} + \|v(t)\|_{L^{2}}^{2} + 2\int_{0}^{t} \|\nabla v\|_{L^{2}}^{2} - 2\int_{\mathbb{R}^{3}} u(t) \cdot v(t) - 4\int_{0}^{t} \int_{\mathbb{R}^{3}} \nabla u \cdot \nabla v \\ &\leq \|u_{0}\|_{L^{2}}^{2} + \|v_{0}\|_{L^{2}}^{2} - 2\widetilde{\Delta}(t). \end{split}$$

avec

$$\widetilde{\Delta}(t) = \int_{\mathbb{R}^3} u(t) \cdot v(t) + 2 \int_0^t \int_{\mathbb{R}^3} \nabla u \cdot \nabla v.$$

L'idée est utiliser u (après régularisation) comme fonction test dans la formulation faible pour v. Alors, pour presque tout t > 0,

$$\int_{\mathbb{R}^3} u(t) \cdot v(t) - \int_0^t \int_{\mathbb{R}^3} v(s) \partial_s u(s) ds - \int_{\mathbb{R}^3} v_0 \cdot u_0 - \int_0^t \int_{\mathbb{R}^3} (v \otimes v) : \nabla u + \int_0^t \int_{\mathbb{R}^3} \nabla v \cdot \nabla u = 0.$$

Or

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} v(s) \partial_{s} u(s) ds = \int_{0}^{t} \int_{\mathbb{R}^{3}} v(s) \cdot (\Delta u(s) - \operatorname{div}(u \otimes u))$$

$$= - \int_{0}^{t} \int_{\mathbb{R}^{3}} \nabla v \cdot \nabla u + \int_{0}^{t} \int_{\mathbb{R}^{3}} \nabla v \cdot u \otimes u.$$

En rassemblant tous les termes, on arrive à

$$\widetilde{\Delta}(t) = \int_0^t \int_{\mathbb{R}^3} (u \otimes u) : \nabla v + \int_0^t \int_{\mathbb{R}^3} v \otimes v : \nabla u + \int v_0 u_0.$$

Lemme 3.13

Soient $\varphi, \psi \in H^1(\mathbb{R}^3)$ à divergence nulle. Alors $\int (\psi \otimes \varphi) : \nabla \varphi = 0$.

On en déduit que

$$\widetilde{\Delta}(t) = \int (w \cdot \nabla)uw + \int v_0 u_0.$$

Donc

$$\Delta(t) \le \|u_0 - v_0\|_{L^2} + C \int_0^t \|\nabla w\|_{L^2}^{3/2} \|w\|_{L^2}^{1/2} \|\nabla u\|_{L^2}.$$

La fin de la preuve est identique au calcul formel.

Chapitre 4

Équation de Schrödinger

On considère

$$\begin{cases}
i\partial_t u + \Delta u &= 0 & t \in \mathbb{R}, x \in \mathbb{R}^N \\
u_{1t=0} &= u_0
\end{cases}$$
(LS)

et

$$\begin{cases} i\partial_t u + \Delta u &= \kappa u |u|^2 & t \in \mathbb{R}, \ x \in \mathbb{R}^N \\ u_{1t=0} &= u_0 \end{cases}$$
 (NLS)

4.1 Résolution de l'équation linéaire (LS)

4.1.1 Cas de données régulières : $u_0 \in \mathcal{S}(\mathbb{R}^N)$

Idée : (LS) est une équation linéaire, à coefficients constants, posée dans \mathbb{R}^N : il est naturel de chercher une représentation en Fourier.

Soit $u \in \mathcal{C}^1(\mathbb{R}, \mathcal{S}(\mathbb{R}^N))$ une solution de (LS). On a, en passant en Fourier dans (LS) :

$$\left\{ \begin{array}{rcl} i\partial_t \widehat{u}(t,\xi) - |\xi|^2 \widehat{u}(t,\xi) & = & 0 \\ \widehat{u}(0,\xi) & = & \widehat{u_0}(\xi) \end{array} \right.$$

 donc

$$\widehat{u}(t,\xi) = \exp(-it|\xi|^2)\widehat{u_0}(\xi).$$

Si on revient dans l'espace physique : on pose $K(t) = \mathcal{F}^{-1}(\xi \mapsto \exp(-it|\xi|^2)) \in \mathcal{S}'(\mathbb{R}^N)$. Alors,

$$u(t,x) = K(t) *_{x} u_0.$$

Théorème 4.1

- a) Posons $K(t,x)=\frac{1}{(4i\pi t)^{N/2}}e^{\frac{i|x|^2}{4t}}$ pour $t\neq 0$ $(\sqrt{i}=e^{\frac{i\pi}{4}})$. Alors $\widehat{K}(t,\xi)=\exp(-it|\xi|^2)$ (au sens de la transformée de Fourier dans $\mathcal{S}'(\mathbb{R}^N)$).
- b) Soit $u_0 \in \mathcal{S}(\mathbb{R}^N)$. Pour t > 0, on pose $u(t, x) = K(t) * u_0(x)$. Alors $u \in \mathcal{C}^{\infty}(\mathbb{R}_+, \mathcal{S}(\mathbb{R}^N))$ et u est solution de (LS).
- \triangleright a) Soient t > 0 et $\varphi \in \mathcal{S}(\mathbb{R}^N)$. Par définition de la transformée de Fourier dans $\mathcal{S}'(\mathbb{R}^N)$, on a :

$$\begin{split} \langle \widehat{K}(t), \varphi \rangle &= \langle K(t), \widehat{\varphi} \rangle \\ &= \int_{\mathbb{R}^N} \frac{1}{(4i\pi t)^{N/2}} \exp\left(\frac{i|x|^2}{4t}\right) \widehat{\varphi}(x) \mathrm{d}x \\ &= \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \frac{1}{(4i\pi t)^{N/2}} \exp\left(\frac{i|x|^2}{4t} - \varepsilon |x|^2\right) \widehat{\varphi(x)} \mathrm{d}x \\ &= \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{1}{(4i\pi t)^{N/2}} \exp\left(\frac{i|x|^2}{4t} - \varepsilon |x|^2 - ix \cdot \xi\right) \varphi(\xi) \mathrm{d}x \mathrm{d}\xi \\ &= \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \frac{1}{(4i\pi t)^{N/2}} \varphi(\xi) \mathcal{F}\left(x \mapsto \exp\left(\frac{i|x|^2}{4t} - \varepsilon |x|^2\right)\right) \mathrm{d}\xi. \end{split}$$

Lemme 4.2

Soit $\alpha \in \mathbb{C}$ tel que $Re(\alpha) > 0$. Posons $f_{\alpha}(\xi) = \mathcal{F}\left(x \mapsto e^{-\alpha|x|^2}\right)(\xi) = \int_{\mathbb{R}^N} e^{-ix\cdot\xi - \alpha|x|^2} dx$. Alors

$$f_{\alpha}(\xi) = \left(\frac{\pi}{\alpha}\right)^{N/2} \exp\left(-\frac{|\xi|^2}{4\alpha}\right)$$

où $\sqrt{\alpha} \in \mathbb{C}$ est tel que $|\operatorname{Arg}(\sqrt{\alpha})| < \frac{\pi}{4}$.

 \triangleright On a:

$$f_{\alpha}(\xi) = \int_{\mathbb{R}^N} e^{-ix\cdot\xi - \alpha|x|^2} dx = \prod_{i=1}^N \int_{\mathbb{R}} e^{-ix_j\xi_j - \alpha|x_j|^2} dx_j.$$

On peut donc se ramener au cas N=1. Si N=1, on dérive $f_{\alpha}(\xi)$ par rapport à ξ :

$$f'_{\alpha}(\xi) = \int_{\mathbb{R}} -ixe^{-ix\xi - \alpha x^2} dx = \frac{i}{2\alpha} \int_{\mathbb{R}} i\xi e^{-\alpha x^2 - ix\xi} dx = \frac{-\xi}{2\alpha} f_{\alpha}(\xi).$$

Donc $f_{\alpha}(\xi)=f_{\alpha}(0)e^{-\frac{\xi^2}{4\alpha}}.$ Il reste à calculer $f_{\alpha}(0).$ On a :

$$f_{\alpha}(0) = \int_{\mathbb{R}} e^{-\alpha x^2} \mathrm{d}x.$$

- Première preuve : si on sait déjà que $f_{\alpha}(0) = \sqrt{\frac{\pi}{\alpha}}$ pour $\alpha \in \mathbb{R}_{+}^{*}$. On note \mathbb{C}_{+} le demi-plan complexe $\mathbb{C}_{+} = \{\alpha \in \mathbb{C}, \operatorname{Re}\alpha > 0\}$. Alors $\alpha \mapsto f_{\alpha}(0)$ et $\alpha \mapsto \sqrt{\frac{\pi}{\alpha}}$ sont deux fonctions holomorphes sur \mathbb{C}_{+} qui coïncident sur \mathbb{R}_{+}^{*} . Elles sont donc égales sur \mathbb{C}_{+} .
- Deuxième preuve : On calcule

$$f_{\alpha}(0)^{2} \underset{\text{Fubini}}{=} \int_{\mathbb{R}^{2}} e^{-\alpha(x_{1}^{2} + x_{2}^{2})} dx_{1} dx_{2} = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-\alpha r^{2}} r d\theta dr = 2\pi \int_{0}^{\infty} r e^{-\alpha r^{2}} dr = \frac{\pi}{\alpha}.$$

Si $\alpha \in \mathbb{R}_+^*$, alors $f_{\alpha}(0) > 0$ et donc $f_{\alpha}(0) = \sqrt{\frac{\pi}{\alpha}}$. Comme $\alpha \mapsto f_{\alpha}(0)$ est continue sur \mathbb{C}_+ , on trouve que $f_{\alpha}(0) = \sqrt{\frac{\pi}{\alpha}}$ pour tout $\alpha \in \mathbb{C}_+$ (avec la convention précédente).

On admet provisoirement le lemme, et on l'applique au calcul précédent avec $\alpha = \varepsilon - \frac{i}{4t}$. Alors,

$$\langle \widehat{K}(t), \varphi \rangle = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \frac{1}{(4i\pi t)^{N/2}} \varphi(\xi) \left(\frac{\pi}{\varepsilon - \frac{i}{4t}} \right)^{N/2} \exp\left(-\frac{|\xi|^2}{4\left(\varepsilon - \frac{i}{4t}\right)} \right) d\xi$$

$$= \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \frac{d\xi}{(4it\varepsilon + 1)^{N/2}} \varphi(\xi) \exp\left(\frac{-it|\xi|^2}{1 + 4it\varepsilon} \right)$$

$$\stackrel{=}{\underset{TCD}{=}} \int_{\mathbb{R}^N} \varphi(\xi) \exp(-it|\xi|^2) d\xi.$$

Donc $\widehat{K}(t,\xi) = \exp(-it|\xi|^2)$.

b) Soit $u_0 \in \mathcal{S}(\mathbb{R}^N)$. On pose

$$u(t,x) = K(t) * u_0(x) = \int_{\mathbb{R}^N} \frac{1}{(4i\pi t)^{N/2}} \exp\left(\frac{i|x-y|^2}{4t}\right) u_0(y) dy.$$

 $u\in\mathcal{C}^{\infty}(\mathbb{R}_{+}^{*})$ d'après le théorème de convergence dominée. En Fourier,

$$\widehat{u}(t,\xi) = \widehat{K}(t,\xi)\widehat{u_0}(\xi) = \exp\left(-it|\xi|^2\right)\widehat{u_0}(\xi).$$

En effet, on utilise le même argument qu'au a) : $u(t,x) = \lim_{\varepsilon \to 0} K_{\varepsilon}(t) * u_0$ où $K_{\varepsilon}(t,x) = K(t,x) \exp(-\varepsilon |x|^2)$. Donc $\widehat{u}(t,\xi) = \lim_{\varepsilon \to 0} \widehat{K_{\varepsilon}}(t,\xi) \widehat{u_0}(\xi) = \widehat{K}(t,\xi) \widehat{u_0}(\xi)$.

On voit facilement que $\widehat{u} \in \mathcal{C}^{\infty}(\mathbb{R}, \mathcal{S}(\mathbb{R}^N))$. Donc $u \in \mathcal{C}^{\infty}(\mathbb{R}, \mathcal{S}(\mathbb{R}^N))$.

Montrons que u vérifie (LS). Deux possibilités : soit on vérifie que \widehat{u} vérifie l'équation différentielle $i\partial_t \widehat{u} + |\xi|^2 \widehat{u} = 0$ et $\widehat{u}(0,\xi) = \widehat{u_0}(\xi)$; soit on vérifie que $i\partial_t K + \Delta K = 0$, t > 0, $x \in \mathbb{R}^N$ (en faisant le calcul) et que $\lim_{t \to 0} u(t,x) = u_0(x)$.

$ext{4.1.2}$ Existence et unicité des solutions dans $\mathcal{S}'(\mathbb{R}^N)$

Définition 4.3

Soit $u_0 \in \mathcal{S}'(\mathbb{R}^N)$. On dit que $u \in \mathcal{C}(\mathbb{R}_+, \mathcal{S}'(\mathbb{R}^N))$ est solution de (LS) si on a la propriété suivante : pour tout $\varphi \in \mathcal{S}(\mathbb{R}_+, \mathbb{R}^N)$, pour tout T > 0,

$$\langle u(T), \varphi(T) \rangle_{\mathcal{S}', \mathcal{S}} - \langle u_0, \varphi_0 \rangle_{\mathcal{S}', \mathcal{S}} = \int_0^T \langle u(t), (\partial_t \varphi - i\Delta \varphi)(t) \rangle_{\mathcal{S}', \mathcal{S}} dt.$$

Remarque: $u \in \mathcal{C}(\mathbb{R}, \mathcal{S}'(\mathbb{R}^N))$ signifie que $\forall \phi \in \mathcal{S}(\mathbb{R}^N)$, l'application $t \mapsto \langle u(t), \phi \rangle_{\mathcal{S}', \mathcal{S}}$ est continue.

Théorème 4.4

Soit $u_0 \in \mathcal{S}'(\mathbb{R}^N)$. Alors il existe une unique distribution $u \in \mathcal{C}(\mathbb{R}, \mathcal{S}'(\mathbb{R}^N))$ solution de (LS), qui est donnée par $u(t) = \mathcal{F}_{\mathcal{S}'}^{-1}\left("\xi \mapsto e^{-it|\xi|^2}\widehat{u_0}(\xi)"\right)$.

 $(u_0 \text{ est dans } \mathcal{S}' \text{ donc } e^{-it|\xi|^2} \times u_0 \text{ aussi})$

 \triangleright — Existence : Posons $u(t) = \mathcal{F}^{-1}(e^{-it|\cdot|^2}\widehat{u_0})$. Vérifions que u est solution.

— $u \in \mathcal{C}(\mathbb{R}, \mathcal{S}'(\mathbb{R}^N))$: soit $\phi \in \mathcal{S}(\mathbb{R}^N)$ quelconque.

$$\langle u(t), \widehat{\phi} \rangle = \langle \widehat{u}(t), \phi \rangle = \langle e^{-it|.|^2} \widehat{u_0}, \phi \rangle = \langle \widehat{u_0}, e^{-it|.|^2} \phi \rangle.$$

Comme $e - it|.|^2 \phi \in \mathcal{C}(\mathbb{R}, \mathcal{S}(\mathbb{R}^N)), t \mapsto \langle \widehat{u_0}, e^{-it|.|^2} \phi \rangle$ est continue.

— Soit $\varphi \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^N)$ quelconque, T > 0.

$$\begin{split} \langle u(T), \varphi(T) \rangle - \langle u_0, \varphi(0) \rangle - \int_0^T \langle u(t), \partial_t \varphi - i \Delta \varphi \rangle \, \mathrm{d}t &= \langle \widehat{u_0}, e^{-iT|.|^2} \widehat{\varphi}(T) \rangle - \langle \widehat{u_0}, \widehat{\varphi(0)} \rangle - \int_0^T \langle \widehat{u_0}, e^{-it|.|^2} (\partial_t \widehat{\varphi} - i |\xi|^2 \widehat{\varphi}) \rangle \mathrm{d}t \\ &= \langle \widehat{u_0}, e^{-iT|.|^2} \widehat{\varphi}(T) - \widehat{\varphi}(0) - \int_0^T e^{-it|.|^2} (\partial_t \widehat{\varphi} - i |\xi|^2 \widehat{\varphi}) \mathrm{d}t \rangle. \end{split}$$

Or
$$\int_0^T e^{-iT|\xi|^2} \partial_t \widehat{\varphi}(t) dt = \widehat{\varphi}(T) e^{2iT|\xi|^2} - \widehat{\varphi}(0) + i|\xi|^2 \int_0^T \widehat{\varphi}(t) e^{-it|\xi|^2} dt.$$
 Donc u est bien solution.

— Unicité. On raisonne par dualité. On suppose que $u \in \mathcal{C}(\mathbb{R}_+, \mathcal{S}')$ est solution avec $u_0 = 0$. Soit $\psi \in \mathcal{S}(\mathbb{R}^N)$ quelconque. On définit $\varphi \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^N)$ par

$$\widehat{\varphi}(t,\xi) = \widehat{\psi}(\xi)e^{i(T-t)|\xi|^2}\chi_T(t)$$

où $\chi_T \in \mathcal{C}_c^{\infty}(\mathbb{R})$, avec $\chi_T \equiv 1$ pour $t \in [0, T]$. Alors

$$\partial_t \widehat{\varphi} = -i|\xi|^2 \widehat{\varphi} \quad \text{sur } [0, T] \times \mathbb{R}^N$$

donc $\partial_t \varphi - i\Delta \varphi = 0$. Donc

$$\langle u(T), \psi \rangle = 0$$

(en prenant ϕ comme fonction test dans la définition). Comme ψ est quelconque, on obtient u(T) = 0, $\forall T > 0$, donc u = 0.

David Michel - 2017-2018 43 ENS Rennes - UPMC

Remarque : On peut faire la même chose avec t < 0 (en gardant la même formule de représentation en Fourier). La solution est donc définie sur \mathbb{R} .

Dans la suite, on notera S(t) ou $\exp(it\Delta)$ l'opérateur d'évolution associé à (LS). Autrement dit,

$$S(t): u_0 \mapsto u(t),$$

où u est la solution de (LS) associée à u_0 . On a vu que $S(t): \mathcal{S}(\mathbb{R}^N) \to \mathcal{S}(\mathbb{R}^N)$ et $S(t): \mathcal{S}'(\mathbb{R}^N) \to \mathcal{S}'(\mathbb{R}^N)$.

4.2 Cas de données dans $L^p(\mathbb{R}^N)$, $1 \leq p \leq 2$

Référence: T. Tao, Nonlinear dispersive equations, local and global analysis.

4.2.1 Cas extrémaux p = 1 et p = 2

Théorème 4.5

(i) Soit $u_0 \in L^2(\mathbb{R}^N)$ et soit $u(t) = S(t)u_0$. Alors $u \in \mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$ et

$$\forall t \in \mathbb{R}, \qquad ||u(t)||_{L^2(\mathbb{R}^N)} = ||u_0||_{L^2(\mathbb{R}^N)}.$$

(ii) Soit $u_0 \in L^1(\mathbb{R}^N)$ et soit $u(t) = S(t)u_0$. Alors $u(t) \in \mathcal{C}_0(\mathbb{R}^N)$ pour tout $t \neq 0$ et

$$\forall t > 0, \qquad \|u(t)\|_{L^{\infty}(\mathbb{R}^N)} \le \frac{1}{(4\pi|t|)^{N/2}} \|u_0\|_{L^1(\mathbb{R}^N)}.$$

On note $C_0(\mathbb{R}^N) = \{ u \in C(\mathbb{R}^N), \lim_{|x| \to +\infty} u(x) = 0 \}.$

Remarque: L'équation de Schrödinger modélise des phénomènes oscillants, en particulier en mécanique quantique. La solution u de (LS) ou de (NLS) est appelée fonction d'onde. Si on suppose que $||u_0||_{L^2} = 1$, alors $|u(t,x)|^2 dx$ et $|\widehat{u}(t,\xi)|^2 d\xi$ sont des densité de probabilité sur \mathbb{R}^N (à normalisation près...):

 $|u(t,x)|^2 dx$ est la probabilité de trouver une particule à l'instant t et à la position x à dx près $|\widehat{u}(t,\xi)|^2 d\xi$ est la probabilité de trouver une particule à l'instant t et avec l'impulsion ξ à $d\xi$ près.

 $\triangleright(\mathrm{i}) \text{ On sait que } u(t) = \mathcal{F}^{-1}(e^{-it|\xi|^2} \widehat{u_0}(\xi)) \text{ donc } u(t) \in L^2(\mathbb{R}^N) \text{ pour tout } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } t \in \mathbb{R} \text{ et } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } \widehat{u}(t,\xi) = e^{-it|\xi|^2} \widehat{u_0}(\xi) \text{ (au sens des } \widehat{u}(t,\xi))$

fonctions de L^2). Donc $\widehat{u} \in \mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$ (application du théorème de convergence dominée) donc $u \in \mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$. De plus,

$$\|\widehat{u}(t)\|_{L^2(\mathbb{R}^N)} = \|\widehat{u_0}\|_{L^2(\mathbb{R}^N)}$$

D'après l'identité de Plancherel, on a :

$$\forall t \in \mathbb{R}, \qquad \|u(t)\|_{L^2} = \|u_0\|_{L^2}.$$

(ii) Soit $u_0 \in L^1(\mathbb{R}^N)$. Soit $(u_0^n)_{n \in \mathbb{N}}$ une suite de $\mathcal{S}(\mathbb{R}^N)$ telle que $u_0^n \xrightarrow[n \to +\infty]{} u_0$ dans $L^1(\mathbb{R}^N)$. On définit $u(t) = S(t)u_0$ et $u_n(t) = S(t)u_0^n$.

Pour u_n , on a:

$$u_n(t) = \mathcal{F}^{-1}\left(e^{-it|\xi|^2}\widehat{u_0^n}(\xi)\right) = K(t) * u_0^n.$$

On a $\widehat{u_0^n} \xrightarrow[n \to +\infty]{} \widehat{u_0}$ dans $\mathcal{S}'(\mathbb{R}^N)$, donc $u_n(t) \xrightarrow[n \to +\infty]{} u(t)$ dans $\mathcal{S}'(\mathbb{R}^N)$ pour tout t. Par ailleurs, pour $t \neq 0$, $K(t) \in L^{\infty}(\mathbb{R}^N)$ et

$$|K(t)| \le \frac{1}{(4\pi|t|)^{N/2}}.$$

Donc pour tout $t \neq 0$, $u_n(t)$ est de Cauchy dans $L^{\infty}(\mathbb{R}^N)$. Donc $u_n(t)$ admet une limite dans $\mathcal{C}_0(\mathbb{R}^N)$. Par unicité de la limite dans $\mathcal{S}'(\mathbb{R}^N)$, cette limite est u(t). Donc $u(t) \in \mathcal{C}_0(\mathbb{R}^N)$ et $u(t) = K(t) * u_0$. En particulier, $||u(t)||_{L^{\infty}(\mathbb{R}^N)} \leq 1$

$$||K(t)||_{L^{\infty}} ||u_0||_{L^1} \le \frac{1}{(4\pi|t|)^{N/2}} ||u_0||_{L^1}.$$

Remarque : À ce stade, on a $S(t): L^2 \to L^2$ et $S(t): L^1 \to L^\infty$ (continûment).

Il est tentant d'intuiter que $S(t): L^p \to L^{p'}$. C'est vrai pour $p \in [1, 2]$, mais faux si p > 2.

Remarque: Si $u_0 \in H^s(\mathbb{R}^N)$, $s \ge 0$, alors $u(t) \in H^s(\mathbb{R}^N)$ pour tout $t \ge 0$, et $||u(t)||_{H^s} = ||u_0||_{H^s}$.

4.2.2 Le cas $p \in [1, 2]$

On va se servir du résultat d'interpolation général suivant.

Théorème 4.6

Soient (X_1, μ_1) et (X_2, μ_2) deux espaces mesurés. Soient $p_0, p_1, q_0, q_1 \in [1, +\infty]$. Soit A un opérateur linéaire tel que

$$A: L^{p_0}(X_1, \mu_1) \to L^{q_0}(X_2, \mu_2)$$

$$A: L^{p_1}(X_1, \mu_1) \to L^{q_1}(X_2, \mu_2)$$

continûment. Soit $\theta \in [0, 1]$. On pose

$$\left(\frac{1}{p_{\theta}}, \frac{1}{q_{\theta}}\right) = (1 - \theta) \left(\frac{1}{p_0}, \frac{1}{q_0}\right) + \theta \left(\frac{1}{p_1}, \frac{1}{q_1}\right).$$

Alors A envoie continûment $L^{p_{\theta}}(X_1, \mu_1)$ dans $L^{q_0}(X_2, \mu_2)$ et

$$||A||_{\mathcal{L}(L^{p_{\theta}}(X_1), L^{q_{\theta}}(X_2))} \le \mathcal{A}_0^{1-\theta} \mathcal{A}_1^{\theta}$$

où $A_i = ||A||_{\mathcal{L}(L^{p_i}(X_1), L^{q_i}(X_2))}.$

$$\left| \int_{X_2} (Af)(x_2)g(x_2) \mathrm{d}\mu_2(x_2) \right| \le \mathcal{A}_0^{1-\theta} \mathcal{A}_1^{\theta}$$

 $\text{(on utilise ici le fait que } \|F\|_{L^q(X)} = \sup_{\substack{G \in L^{q'}(X) \\ \|G\|_{q'} \leq 1}} \left| \int FG \mathrm{d}\mu \right| = \sup_{\substack{G \in L^1 \cap L^\infty(X) \\ \|G\|_{q'} \leq 1}} \left| \int FG \mathrm{d}\mu \right|.$

Soit $\Omega = \{z \in \mathbb{C}, \ 0 < \mathrm{Re}z < 1\}$. Pour $z \in \overline{\Omega}$, on définit

$$f_z(x_1) = \frac{f(x_1)}{|f(x_1)|} |f(x_1)|^{p_\theta(\frac{1-z}{p_0} + \frac{z}{p_1})}$$

et

$$g_z(x_1) = \frac{g(x_2)}{|g(x_2)|} |f(x_2)|^{q'_{\theta} \left(\frac{1-z}{q'_0} + \frac{z}{q'_1}\right)}.$$

Observations:

- $-z \mapsto f_z(x_1)$ (resp $z \mapsto g_z(x_2)$) est holomorphe dans Ω et continue dans $\overline{\Omega}$ pour presque tout $x_1 \in X_1$ (resp. $x_2 \in X_2$);
- si $z = \theta$, $f_{\theta} = f$ et $g_{\theta} = g$;
- si $z = x + iy \in \Omega$, $x \in]0,1[, y \in \mathbb{R}, |f_z(x_1)| = |f(x_1)|^{\frac{p_\theta}{p_x}}$.

Pour fixer les idées, supposons $p_0 < p_1$. Alors, $x \mapsto p_x$ est croissante.

Donc si $x \leq \theta$, $f_z \in L^1 \cap L^\infty$, et si $x > \theta$, $\frac{p_\theta}{p_x} > \frac{p_\theta}{p_1}$ donc $f_z \in L^{p_1}(X_1)$. Idem avec g_z . Dans tous les cas, la fonction

$$F(z) = \int_{X_2} (Af_z)(x_2)g_z(x_2)d\mu_2(x_2)$$

est bien définie. Elle est holomorphe dans Ω , bornée et continue sur $\overline{\Omega}$ (en exercice, propriétés des intégrales à paramètres). De plus, pour z = k + iy, avec $k \in \{0,1\}$, $y \in \mathbb{R}$, on a :

$$||f_z||_{L^{p_k}} = 1$$
 et $||g_z||_{L^{q'_k}} = 1$

donc $|F(z)| \leq A_k$.

À présent, définissons

$$\widetilde{F}(z) = F(z) \mathcal{A}_0^{z-1} \mathcal{A}_1^{-z}.$$

Alors, \widetilde{F} est holomorphe dans Ω , bornée et continue sur $\overline{\Omega}$ et $|\widetilde{F}(z)| \leq 1$, $\forall z \in \partial \Omega$. On applique le principe du maximum de Phragman-Lindelöf à \widetilde{F} : on en déduit que

$$\forall z \in \Omega, \qquad |\widetilde{F}(z)| \le 1.$$

En particulier, en prenant $z = \theta$, on obtient :

$$|F(\theta)| \leq \mathcal{A}_0^{1-\theta} \mathcal{A}_1^{\theta}$$
.

Puisque $f_{\theta} = f$ et $g_{\theta} = g$, on obtient le résultat voulu.

Corollaire 4.7

Soit $t \neq 0$ et soit $p \in [1,2]$. Alors $S(t): L^p(\mathbb{R}^N) \to L^{p'}(\mathbb{R}^N)$ et

$$||S(t)||_{\mathcal{L}(L^p,L^{p'})} \le \frac{1}{(4\pi|t|)^{N(\frac{1}{p}-\frac{1}{2})}}$$

 \triangleright On applique le théorème précédent avec $p_0=1,\,p_1=2,\,\frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{2}=1-\frac{\theta}{2},\,q_0=\infty,\,q_1=2,\,\frac{1}{q}=\frac{1}{p'}$:

$$||S(t)||_{\mathcal{L}(L^p,L^{p'})} \le \frac{1}{(4\pi|t|)^{N/2(1-\theta)}} 1^{\theta}.$$

On a bien $\frac{1-\theta}{2} = \frac{1}{p} - \frac{1}{2}$.

4.2.3 Estimations de Strichartz

Théorème 4.8 ($M\acute{e}thode\ TT^*$)

Soit $(U(t))_{t\in\mathbb{R}}$ une famille d'opérateurs bornée de $L^2(\mathbb{R}^N)$ tels qu'il existe $C_0, \sigma > 0$ tels que

$$\forall f \in L^1(\mathbb{R}^N), \forall t \neq t', \qquad \|U(t)U^*(t')f\|_{L^{\infty}} \leq \frac{C_0}{|t - t'|^{\sigma}} \|f\|_{L^1}.$$

Alors pour tout couple $(p,q) \in [2,+\infty]$ tels que

$$\frac{2}{p} + \frac{2\sigma}{q} = \sigma$$
 et $(q, \sigma) \neq (\infty, 1)$ et $2 ,$

il existe une constante $C_{p,q} > 0$ telle que pour tout $u_0 \in L^2(\mathbb{R}^N)$,

$$||U(t)u_0||_{L^p(\mathbb{R},L^q(\mathbb{R}^N))} \le C_{p,q} ||u_0||_{L^2}.$$

 $\rhd \quad \text{On d\'efinit } B = \Big\{ \varphi \in L^{p'}(\mathbb{R}, L^{q'}(\mathbb{R}^N)), \, \|\varphi\|_{L^{p'}(L^{q'})} \leq 1 \Big\}. \text{ Alors}$

$$||U(t)u_0||_{L^p(L^q)} = \sup_{\substack{\varphi \in B \\ \varphi \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^N)}} \left| \int_{\mathbb{R}_+ \times \mathbb{R}^N} (U(t)u_0)(x)\varphi(t,x) \, \mathrm{d}t \, \mathrm{d}x \right|$$

$$= \sup_{\substack{\varphi \in B \\ \varphi \in \mathcal{S}(\mathbb{R}^{N+1})}} \left| \int_{\mathbb{R}^N} u_0 \left(\int_{\mathbb{R}} U^*(t)\varphi(t,\cdot) \, \mathrm{d}t \right) \right|$$

$$\leq ||u_0||_{L^2(\mathbb{R}^N)} \sup_{\substack{\varphi \in B \cap \mathcal{S}(\mathbb{R}^{N+1})}} \left| \int_{\mathbb{R}} U^*(t)\varphi(t,\cdot) \, \mathrm{d}t \right|_{L^2}.$$

Or

$$\begin{split} \left\| \int_{\mathbb{R}} U^*(t) \varphi(t, \cdot) \, \mathrm{d}t \right\|_{L^2(\mathbb{R}^N)}^2 &= \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}} U^*(t) \varphi(t, x) \mathrm{d}t \right) \left(\overline{\int_{\mathbb{R}} U^*(t') \varphi(t', x) \mathrm{d}t'} \right) \mathrm{d}x \\ &= \int_{\mathbb{R} \times \mathbb{R}} \int_{\mathbb{R}^N} U^*(t) \varphi(t) \overline{U^*(t') \varphi(t')} \mathrm{d}t \mathrm{d}t' \\ &= \int_{\mathbb{R} \times \mathbb{R}} \int_{\mathbb{R}^N} U(t') U^*(t) \varphi(t) \overline{\varphi(t')} \mathrm{d}t \mathrm{d}t' \end{split}$$

On utilise le théorème d'interpolation du paragraphe précédent : on sait que

$$||U(t')U^*(t)||_{\mathcal{L}(L^2,L^2)} \le C$$

et

$$||U(t')U^*(t)||_{\mathcal{L}(L^1,L^\infty)} \le \frac{C_0}{|t-t'|^{\sigma}}.$$

On écrit

$$\frac{1}{q} = \frac{\theta}{2} + \frac{1-\theta}{\infty} \qquad \Longleftrightarrow \qquad \theta = \frac{2}{q}$$

$$\frac{1}{q'} = 1 - \frac{1}{q} = 1 - \frac{\theta}{2}.$$

On obtient

$$||U(t')U^*(t)||_{\mathcal{L}(L^{q'},L^q)} \le \frac{C^{\theta}C_0^{1-\theta}}{|t-t'|^{\sigma(1-\theta)}} \le \frac{C_{p,q}}{|t-t'|^{2/p}}$$

par définition de p. Donc

$$\left\| \int_{\mathbb{R}} U(t) \varphi(t) \mathrm{d}t \right\|_{L^{2}(\mathbb{R}^{N})}^{2} \leq \int_{\mathbb{R} \times \mathbb{R}} \frac{C_{p,q}}{|t - t'|^{p/2}} \left\| \varphi(t) \right\|_{L^{q'}} \left\| \varphi(t') \right\|_{L^{q'}} \mathrm{d}t \mathrm{d}t'.$$

Lemme 4.9 (Inégalité de Hardy-Littlewood, admis)

Soit $\alpha \in]0, d[, d \in \mathbb{N}^*$, soient $r_1, r_2 \in]1, +\infty[$ tels que $\frac{1}{r_1} + \frac{\alpha}{d} = 1 + \frac{1}{r_2}$. Alors il existe une constante C telle que

$$\forall f \in L^{r_1}(\mathbb{R}^d), \qquad \| |.|^{-\alpha} * f \|_{L^{r_2}(\mathbb{R}^d)} \le C \| f \|_{L^{r_1}(\mathbb{R}^d)}$$

On applique le lemme avec $d=1, \ \alpha=\frac{2}{p}, \ r_1=p'$ et $r_2=p.$ On en déduit que

$$\left\| \int U(t)\varphi(t) dt \right\|_{L^2(\mathbb{R}^N)}^2 \le C \left\| \varphi \right\|_{L^{p'}(L^{q'})}^2 \le C.$$

Corollaire 4.10

On note S(t) (ou $\exp(it\Delta)$) l'opérateur d'évolution de Schrödinger. Alors pour tout $(p,q) \in]2, +\infty[$ tel que $\frac{2}{p} + \frac{N}{q} = \frac{N}{2}$, on a, pour tout $u_0 \in L^2(\mathbb{R}^N)$,

$$||S(t)u_0||_{L^p(\mathbb{R},L^q(\mathbb{R}^N))} \le C_{p,q} ||u_0||_{L^2(\mathbb{R}^N)}.$$
 (estimations de Strichartz)

On applique le théorème précédent avec U(t) = S(t).

- S(t) est une isométrie dans $L^2(\mathbb{R}^N)$ pour tout $t \geq 0$
- $-S(t)^* = S(-t)$ et $S(t+t') = S(t)S(t'), \forall t, t' \in \mathbb{R}$. En effet, pour $u, v \in \mathcal{S}(\mathbb{R}^{\mathbb{N}})$,

$$\langle S(t)u,v\rangle = \int_{\mathbb{R}^N} S(t)u\overline{v} = \int_{\mathbb{R}^N} \widehat{S(t)u\overline{v}} = \int_{\mathbb{R}^N} e^{it|\xi|^2} \widehat{u}(\xi)\overline{\widehat{v}}(\xi)d\xi = \int_{\mathbb{R}^N} \widehat{u}(\xi)\overline{e^{-it|\xi|^2}}\widehat{v}(\xi)d\xi = \langle u,S(-t)v\rangle.$$

L'autre propriété est laissée en exercice.

David Michel - 2017-2018 47 ENS Rennes - UPMC Donc si $f \in L^1(\mathbb{R}^N)$, on a :

$$||S(t)^*S(t')f||_{L^{\infty}(\mathbb{R}^N)} = ||S(t'-t)f||_{L^{\infty}(\mathbb{R}^N)} \le C_0 \frac{1}{|t'-t|^{N/2}} ||f||_{L^1(\mathbb{R}^N)}.$$

On vérifie les hypothèses du théorème précédent avec $\sigma = \frac{N}{2}$.

Définition 4.11

Les couples d'exposants vérifiant $\frac{2}{p} + \frac{N}{q} = \frac{N}{2}$ sont dits admissibles. On choisira p > 2.

4.2.4 Équation de Schrödinger linéaire avec un terme source

Dans tout ce paragraphe, on considère l'équation

$$\begin{cases} i\partial_t u + \Delta u &= f \\ u_{1t=0} &= u_0 \end{cases}$$
 (LSNH)

On cherche des conditions sur f pour que ce problème admette une solution.

Commençons par considérer le cas où $f \in \mathcal{S}(\mathbb{R} \times \mathbb{R}^N)$. Alors, d'après la formule de Duhamel, on a :

$$u(t) = e^{it\Delta}u_0 + \int_0^t e^{i(t-s)\Delta}f(s)\mathrm{d}s.$$

Cette formule définit bien une unique solution dans $\mathcal{C}(\mathbb{R}, \mathcal{S}(\mathbb{R}^N))$. Il faut donc étudier les propriétés du terme $t \mapsto \int_0^t e^{i(t-s)\Delta} f(s) ds$.

Proposition 4.12

Soient $(p,q), (\overline{p}, \overline{q})$ deux couples d'exposants admissibles avec p>2 ou $\overline{p}>2$. Il existe $C_{p,q,\overline{p},\overline{q}}$ telle que

$$\forall T > 0, \forall f \in L^{\overline{p}}([0,T], L^{\overline{q}'}(\mathbb{R}^N)), \qquad \left\| \int_0^t e^{i(t-s)\Delta} f(s) ds \right\|_{L^p([0,T], L^q(\mathbb{R}^N))} \leq C_{p,q,\overline{p},\overline{q}} \|f\|_{L^{\overline{p}'}([0,T], L^{\overline{q}'}(\mathbb{R}^N))}.$$

Remarque : Il n'y a pas de relation entre (p,q) et $(\overline{p},\overline{q})$!

ightharpoonup Il suffit de considérer le cas $f\in\mathcal{S}(\mathbb{R}\times\mathbb{R}^N)$ par densité. On commence par évaluer

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) ds \right\|_{L^{\overline{p}}([0,T],L^{\overline{q}}(\mathbb{R}^N))} = \left\| \int_0^t e^{i(t-s)\Delta} \mathbf{1}_{s \in [0,T]} f(s) ds \right\|_{L^{\overline{p}}(L^{\overline{q}})}$$

$$\leq \left\| \int_0^t \left\| e^{i(t-s)\Delta} \mathbf{1}_{s \in [0,T]} f(s) \right\|_{L^{\overline{q}}(\mathbb{R}^N)} \right\|_{L^{\overline{p}}([0,T])}.$$

Or pour tout $u_0 \in \mathcal{S}(\mathbb{R}^N)$,

$$\left\| e^{i(t-s)\Delta} u_0 \right\|_{L^2} = \left\| u_0 \right\|_2$$

et

$$\left\|e^{i(t-s)\Delta}u_0\right\|_{L^\infty} \leq \frac{C_0}{|t-s|^{N/2}} \left\|u_0\right\|_{L^1}.$$

Par interpolation, on obtient

$$\left\|e^{i(t-s)\Delta}u_0\right\|_{L^{\overline{q}}} \leq \frac{C}{|t-s|^{\alpha}} \left\|u_0\right\|_{L^{\overline{q}'}}$$

avec
$$\alpha = N\left(\frac{1}{2} - \frac{1}{\overline{q}}\right) = \frac{2}{\overline{p}}$$
. Donc

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) \mathrm{d}s \right\|_{L^{\overline{p}}(L^{\overline{q}})} \leq C_{\overline{p},\overline{q}} \left\| \frac{1}{|.|^{2/\overline{p}}} * \|f\|_{L^{\overline{q}'}} \right\|_{L^{\overline{p}}([0,T])} \leq C_{\overline{p},\overline{q}} \, \|f\|_{L^{\overline{p}'}([0,T],L^{\overline{q}'}(\mathbb{R}^N))}$$

par l'inégalité de Hardy-Littlewood-Sobolev.

Donc, en particulier, par l'inégalité de Hölder,

$$\left| \int_0^T \int_{\mathbb{R}^N} \left(\int_0^t e^{i(t-s)\Delta} f(s) \mathrm{d}s \right) \overline{f(t)} \mathrm{d}t \right| \leq C_{\overline{p},\overline{q}} \left\| f \right\|_{L^{\overline{p}'}([0,T],L^{\overline{q}'}(\mathbb{R}^N))}^2.$$

Considérons

$$I = \int_0^T \int_{\mathbb{R}^N} \left(\int_0^t e^{i(t-s)\Delta} f(s) ds \right) \overline{f(t)} dt$$

$$= \int_0^T \int_{\mathbb{R}^N} \left(\int_0^t e^{-is\Delta} f(s) ds \right) \overline{e^{-it\Delta} f(t)} dt.$$

$$= \int_0^T \int_0^T \int_{\mathbb{R}^N} \mathbf{1}_{s < t} e^{-is\Delta} f(s) \overline{e^{-it\Delta} f(t)} dt ds$$

$$= \int_0^T \int_0^T \int_{\mathbb{R}^N} \mathbf{1}_{t < s} e^{-it\Delta} f(t) \overline{e^{-is\Delta} f(s)} dt ds$$

Donc

$$\overline{I} = \int_0^T \int_0^T \int_{\mathbb{R}^N} \mathbf{1}_{t < s} e^{-is\Delta} f(s) \overline{e^{-it\Delta} f(t)} \mathrm{d}t \mathrm{d}s.$$

D'où

$$2\operatorname{Re}(I) = I + \overline{I} = \int_0^T \int_0^T \int_{\mathbb{R}^N} e^{-is\Delta} f(s) \overline{e^{-it\Delta} f(t)} dt ds = \left\| \int_0^T e^{-is\Delta} f(s) ds \right\|_{L^2(\mathbb{R}^N)}^2.$$

Par conséquent,

$$\left\| \int_0^T e^{-is\Delta} f(s) \mathrm{d}s \right\|_{L^2(\mathbb{R}^N)} \le C_{\overline{p},\overline{q}} \|f\|_{L^{\overline{p}'}(L^{\overline{q}'})}.$$

D'après les inégalités de Strichartz du paragraphe 3, on a :

$$\left\| t \mapsto \int_0^T e^{i(t-s)\Delta} f(s) ds \right\|_{L^p([0,T],L^q(\mathbb{R}^N))} \le C_{p,q} \left\| \int_0^T e^{-is\Delta} f(s) ds \right\|_{L^2} \le C_{p,q,\overline{p},\overline{q}} \left\| f \right\|_{L^{\overline{p}'}([0,T],L^{\overline{q}'}(\mathbb{R}^N))}$$

Ce n'est pas fini, car on veut évaluer $\left\|t\mapsto \int_0^T \mathbf{1}_{s< t} e^{i(t-s)\Delta}f(s)\mathrm{d}s\right\|_{L^p(L^q)}$. On utilise le lemme suivant (admis).

Lemme 4.13 (Christ-Kiselev)

Soient X,Y deux espaces de Banach, I un intervalle de \mathbb{R} , $K \in \mathcal{C}(I \times I, \mathcal{L}(X,Y))$. Soit $r_1 < r_2$. On suppose que

$$\forall f \in L^{r_1}(I, X), \qquad \left\| \int_I K(t, s) f(s) ds \right\|_{L^{r_2}(I, Y)} \le C \|f\|_{L^{r_1}(I, X)}$$

alors

$$\left\| \int_{I} \mathbf{1}_{s < t} K(t, s) f(s) ds \right\|_{L^{r_2}(I, Y)} \le C \|f\|_{L^{r_1}(I, X)}.$$

On applique ce lemme avec $K(t,s)=e^{i(t-s)\Delta},\, X=L^{\overline{q}'}(\mathbb{R}^N),\, Y=L^q(\mathbb{R}^N),\, r_1=\overline{p}',\, r_2=p.$ On a toujours $r_1\leq 2\leq r_2.$ Le seul cas d'égalité est $p=\overline{p}=2$ qui est exclu.

Ces inégalité permettent d'avoir une théorie de Cauchy pour des termes sources dans $L^{\overline{p}'}_{loc}(L^{\overline{q}'}(\mathbb{R}^N))$. Remarquons par ailleurs que, comme dans le cas homogène, on sait définir des solutions dans \mathcal{S}' .

Définition 4.14

Soient $u_0 \in \mathcal{S}'(\mathbb{R}^N)$, $f \in \mathcal{C}(\mathbb{R}, \mathcal{S}'(\mathbb{R}^N))$ et $u \in \mathcal{C}(\mathbb{R}, \mathcal{S}'(\mathbb{R}^N))$. On dit que u est solution de (LSNH) si, pour tout

 $\phi \in \mathcal{S}(\mathbb{R}^{N+1})$, pour tout $T \in \mathbb{R}$, on a :

$$\langle u(T), \phi(T) \rangle - \langle u_0, \phi(0) \rangle = \int_0^T \langle u(t), (\partial_t \phi - i\Delta \phi)(t) \rangle dt + \int_0^T \langle f(t), \phi(t) \rangle dt.$$

Proposition 4.15

Pour tout $u_0 \in \mathcal{S}'(\mathbb{R}^N)$, pour tout $f \in \mathcal{C}(\mathbb{R}, \mathcal{S}'(\mathbb{R}^N))$, il existe une unique solution de (LSNH).

Preuve en exercice.

Bilan : Soient $u_0 \in L^2(\mathbb{R}^N)$ et $f \in L^{\overline{p}'}_{loc}(L^{\overline{q}'}(\mathbb{R}^N))$. Alors il existe une unique solution de (LSNH), qui vérifie

$$||u||_{L^p([-T,T],L^q(\mathbb{R}^N))} \le C_{p,q,\overline{p},\overline{q}} \left(||u_0||_{L^2(\mathbb{R}^N)} + ||f||_{L^{\overline{p}'}([-T,T],L^{\overline{q}'}(\mathbb{R}^N))} \right)$$

pour tout couple (p,q) admissible tel que p > 2.

On a même $u \in \mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$ (conséquence de la formule de Duhamel).

4.3 Équation de Schrödinger non linéaire

Dans toute cette partie, on considère l'équation

$$\begin{cases}
i\partial_t u + \Delta u &= \kappa |u|^a u \\
u_{1t=0} &= u_0
\end{cases}$$
(NLS)

avec $\kappa \in \mathbb{R}$ $(\kappa = \pm 1), a \geq 0.$

On va s'intéresser à la théorie de Cauchy pour cette équation.

La cas $\kappa > 0$ est dit défocalisant et le cas $\kappa < 0$ est dit focalisant.

4.3.1 Préliminaires : invariances d'échelle

4.3.1.1 Cas $L^2(\mathbb{R}^N)$

Soient $\lambda > 0$, $\alpha, \beta \in \mathbb{R}$. On pose

$$u_{\lambda}(t,x) = \lambda^{\alpha} u(\lambda^{\beta} t, \lambda x).$$

Regardons pour quels couples (α, β) l'équation (NLS) est invariante :

$$\lambda^{\alpha}\lambda^{\beta} = \lambda^{\alpha}\lambda^2 = \lambda^{\alpha(a+1)}$$

donc $\beta = 2 = \alpha a$, $\alpha = \frac{2}{a}$.

Bilan : (NLS) est invariante par le changement d'échelle $u(t,x) \to \lambda^{\frac{2}{a}} u(\lambda^2 t, \lambda x) =: u_{\lambda}(t,x), \ \lambda > 0.$

Cherchons pour quelles valeurs de a les espaces $L^p(L^q)$, avec (p,q) admissible, sont invariants par ce changement d'échelle.

$$||u_{\lambda}||_{L^{p}(L^{q})} = \lambda^{\frac{2}{a}} \lambda^{-\frac{N}{q} - \frac{2}{p}} ||u||_{L^{p}(L^{q})} = \lambda^{\frac{2}{a} - \frac{N}{2}} ||u||_{L^{p}(L^{q})}.$$

Donc les espaces $L^p(L^q)$ sont invariants si, et seulement si, $a = \frac{4}{N}$.

Définition 4.16

L'exposant $a = \frac{4}{N}$ est appelé exposant critique pour la théorie L^2 . C'est pour cet exposant uniquement qu'on peut espérer avoir des résultats d'existence globale à donnée petite.

4.3.1.2 Cas $H^1(\mathbb{R}^N)$

Remarque : si u est solution de (LSNH) avec u_0 et f, alors $\partial_i u$ est solution de (LSNH) avec $\partial_i u_0$ et $\partial_i f$, $1 \le i \le N$. Autrement dit, on a aussi

$$||u||_{L^p(W^{1,q})} < C\left(||u_0||_{H^1} + ||f||_{L^{\overline{p}'}(W^{1,\overline{q}'})}\right).$$

On peut donc regarder pour quelles valeur de a la norme $L^{\infty}(\mathbb{R}, \dot{H}^1)$ ou, plus généralement, $L^p(\mathbb{R}, \dot{W}^{1,q})$, est laissée invariante par le changement d'échelle.

$$||u_{\lambda}||_{L^{\infty}(\mathbb{R},\dot{H}^{1})} = \lambda^{\frac{2}{a}+1-\frac{N}{2}} ||u||_{L^{\infty}(\mathbb{R},\dot{H}^{1})}.$$

Donc la norme $L^{\infty}(\mathbb{R}, \dot{H}^1)$ est invariante si, et seulement si, $a = \frac{4}{N-2}$ (N > 2). On a droit à des nonlinéarités plus fortes.

Définition 4.17

L'exposant $a = \frac{4}{N-2}$ est appelé exposant critique pour la théorie H^1 .

Le but de cette partie est de montrer le théorème suivant.

Théorème 4.18

- 1. Théorie L^2 sous-critique. Soit $a \in \left[0, \frac{4}{N}\right[$. Soit $u_0 \in L^2(\mathbb{R}^N)$. Alors il existe T > 0, qui ne dépend que de $\|u_0\|_{L^2(\mathbb{R}^N)}$, tel que (NLS) admette une unique solution $u \in L^p([-T,T],L^q)$ pour tout couple admissible (p,q). De plus, $u \in \mathcal{C}(]-T,T[,L^2(\mathbb{R}^N))$.
- 2. Théorie L^2 critique. Soit $a = \frac{4}{N}$. Alors il existe $\delta_0 > 0$ tel que si $||u_0||_{L^2(\mathbb{R}^N)} \le \delta_0$, l'équation (NLS) admette une unique solution globale dans $L^p(\mathbb{R}, L^q(\mathbb{R}^N))$ pour tout (p,q) admissible. De plus, $u \in \mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$.
- 3. Théorie H^1 sous-critique : soit $a < \frac{4}{N-2}$. Soit $u_0 \in H^1(\mathbb{R}^N)$. Alors il existe T > 0, qui ne dépend que de $\|u_0\|_{H^1}$, tel que (NLS) admette une unique solution $u \in L^p([-T,T],H^1(\mathbb{R}^N))$.
- 4. Théorie H^1 critique : soit $a = \frac{4}{N-2}$. Alors il existe $\delta_0 > 0$ tel que si $||u_0||_{H^1(\mathbb{R}^N)} \le \delta_0$, l'équation (NLS) admet une unique solution globale dans $L^p(\mathbb{R}, H^1(\mathbb{R}^N))$.

Pour montrer ce théorème, on va appliquer un théorème de point fixe. Pour cela, on commence par regarder les propriétés de la nonlinéarité $f = \kappa |u|^a u$.

4.3.2 Estimations sur la nonlinéarité

Lemme 4.19

Soit $a \in \left[0, \frac{4}{N}\right]$. Soit $u \in \bigcap_{\substack{(p,q) \text{admissible}}} L^p([-T,T], L^q(\mathbb{R}^N))$. On pose $f = |u|^a u$. Alors il existe $\theta \in [0,1]$ avec $\theta = 0$ si, et

seulement si, $a = \frac{4}{N}$, tel que pour tous couples admissibles $(p_1, q_1), (p_2, q_2)$ avec $\frac{1}{q_1} + \frac{a}{q_2} \in \left[\frac{1}{2}, 1\right]$, pour tout (p, q) admissible tel que p > 2, on a :

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) ds \right\|_{L^p([-T,T],L^q)} \le CT^{\theta} \|u\|_{L^{p_1}([-T,T],L^{q_1})} \|u\|_{L^{p_2}([-T,T],L^{q_2})}^a.$$

De même, soit $u, v \in \bigcap_{\substack{(p,q) \\ \text{admissible}}} L^p([-T,T], L^q(\mathbb{R}^N))$. On pose $f = |u|^a u$ et $g = |v|^a v$. Alors

$$\left\| \int_0^t e^{i(t-s)\Delta} (f(s) - g(s)) ds \right\|_{L^p([-T,T],L^q(\mathbb{R}^N))} \le CT^{\theta} \|u - v\|_{L^{p_1}(L^{q_1})} \left(\|u\|_{L^{p_2}(L^{p_1})}^a + \|v\|_{L^{p_2}(L^{q_2})}^a \right).$$

▷ D'après le paragraphe 4.2.4, on a :

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) \mathrm{d}s \right\|_{L^p(L^q)} \le C \|f\|_{L^{\overline{p}'}(L^{\overline{q}'})} \le C \||u|^a u\|_{L^{\overline{p}'}(L^{\overline{q}'})} = C \|u\|_{L^{\overline{p}'}(a+1)(L^{\overline{q}'(a+1)})}^{a+1}.$$

On interpole $L^{\overline{q}'(a+1)}$ entre L^{q_1} et L^{q_2} . Pour cela, on choisit $\overline{q}'(a+1) \in [q_1, q_2]$ (on vérifiera à la fin que c'est bien possible). On écrit

$$\frac{1}{\bar{q}'(a+1)} = \frac{\gamma}{q_1} + \frac{1-\gamma}{q_2}.$$
 (*)

Alors

$$||u(t)||_{L^{\overline{q}'(a+1)}} \le ||u(t)||_{L^{q_1}}^{\gamma} ||u(t)||_{L^{q_2}}^{1-\gamma}.$$

Ensuite, on interpole $L^{\overline{p}'(a+1)}$ entre L^{p_1} et L^{q_1} + un reste.

$$\frac{1}{\overline{p}'} = \theta + \frac{(a+1)\gamma}{p_1} + \frac{(a+1)(1-\gamma)}{p_2}.$$
 (**)

On obtient

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) \mathrm{d}s \right\|_{L^p(L^q)} \le C T^{\theta} \|u\|_{L^{p_1}(L^{q_1})}^{\gamma(a+1)} \|u\|_{L^{p_2}(L^{q_2})}^{(1-\gamma)(a+1)}.$$

En utilisant $(*)\times N(a+1)$, $(**)\times 2$ et l'admissibilité de $(p_1,q_1),(p_2,q_2)(\overline{p},\overline{q})$, on obtient :

$$2\theta + (a+1)\gamma \frac{N}{2} + (a+1)(1-\gamma)\frac{N}{2} = \frac{N}{\overline{q}'} + \frac{2}{\overline{p}'}$$

donc

$$2\theta + (a+1)\frac{N}{2} = N + 2 - \frac{N}{2} = \frac{N}{2} + 2$$

soit

$$a\frac{N}{2} = 2(1 - \theta).$$

Donc $0 \le a \le \frac{4}{N} \Leftrightarrow \theta \in [0,1]$ et $\theta = 0 \Leftrightarrow a = \frac{4}{N}$. Si on veut avoir, $\gamma(a+1) = 1$, nécessairement,

$$\frac{1}{\overline{q}'} = \frac{1}{q_1} + \frac{a}{q_2}$$

ce qui est possible car $\frac{1}{q_1} + \frac{a}{q_2} \in \left[\frac{1}{2}, 1\right]$.

Pour la deuxième partie du lemme, on utilise le fait que

$$\forall u, v \in \mathbb{C}, \qquad ||u|^a u - |v|^a v| \le C_a |u - v|(|u|^a + |v|^a).$$

Ensuite, les estimations sont identiques.

Lemme 4.20 (estimations H^1)

Soit $u, v \in \bigcap_{\substack{(p,q) \text{admissible}}} L^p(W^{1,q})$ (donc en particulier $u, v \in L^{\infty}(H^1)$). Soit $a \in \left[\frac{4}{N}, \frac{4}{N-2}\right[$. Alors, pour tous couples

admissibles $(p,q), (p_1,q_1), (p_2,q_2)$, il existe $a' \in [0,a]$ tel que

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) ds \right\|_{L^p(W^{1,q})} \le C \|u\|_{L^{p_1}(W^{1,q_1})} \|u\|_{L^{p_2}(L^{q_2})}^{a-a'} \|u\|_{L^{\infty}(H^1)}^{a'}$$

et

$$\left\| \int_0^t e^{i(t-s)\Delta} (f(s) - g(s)) ds \right\|_{L^p(W^{1,q})} \le C \|u - v\|_{L^{p_1}(W^{1,q_1})} (\|u\|_X^a + \|v\|_X^a)$$

 $où \ \|u\|_X = \|u\|_{L^{p_2}(L^{q_2})} + \|u\|_{L^{\infty}(H^1)}.$

ightharpoonup On raisonne comme précédemment, en utilisant l'injection de Sobolev $H^1(\mathbb{R}^N) \subset L^p(\mathbb{R}^N) \ \forall p \in \left[2, \frac{2N}{N-2}\right] \ (\text{si } N > 2).$ Donc

$$\left\| \int_0^t e^{i(t-s)\Delta} f(s) \mathrm{d}s \right\|_{L^p(W^{1,q})} \le C \left\| f \right\|_{L^{\overline{p'}}(W^{1,\overline{q'}})}$$

et

$$|\nabla f| \le C_a |\nabla u| |u|^a$$
.

Or

$$\|\nabla u|u|^a\|_{L^{\overline{q}'}} \leq \|\nabla u\|_{L^{q_1}} \|u\|_{L^{\frac{2N}{N-2}}}^{a\gamma_2} \|u\|_{L^{q_2}}^{a(1-\gamma)}$$

avec

$$\frac{1}{q_1} + \gamma a \left(\frac{1}{2} - \frac{1}{N} \right) + \frac{(1 - \gamma)a}{q_2} = \frac{1}{\overline{q'}}.$$
 (*')

Puis,

$$\|\nabla u|u|^a\|_{L^{\overline{p}'}(L^{\overline{q}'})} \le CT^\theta \|u\|_{L^{\infty}(H^1)}^{a\gamma} \|u\|_{L^{p_1}(W^{1,q_1})} \|u\|_{L^{p_2}(L^{q_2})}^{a(1-\gamma)}$$

avec

$$\theta + \frac{a(1-\gamma)}{p_2} + \frac{1}{p_1} = \frac{1}{\overline{p'}}.$$
 (**')

En rassemblant (*') et (**') et en utilisant l'admissibilité de tous les couples, on obtient :

$$a\left(\frac{N}{2} - \gamma\right) = 2(1 - \theta)$$

 $\theta, \gamma \in [0,1]. \ \theta = 0, \gamma = 1 \Rightarrow a = \frac{4}{N-2}.$ On trouve $a \leq \frac{4}{N-2}.$

On peut prendre $\theta = 0$ à condition que $a \ge \frac{4}{N}$.

4.3.3 Théorème de point fixe

4.3.3.1 Cas L^2 sous-critique $a < \frac{4}{N}$

Alors $\theta > 0$ dans le lemme précédent. Soit $q_2 \in]2, +\infty[$ tel que

$$\frac{1}{2} + \frac{a}{q_2} \in \left[\frac{1}{2}, 1 \right[$$

 $(q_1 = 2 \text{ dans le lemme précédent})$. On définit l'espace $X_T = L^{\infty}([-T,T], L^2(\mathbb{R}^N)) \cap L^{p_2}([-T,T], L^{q_2}(\mathbb{R}^N))$. Soit $u_0 \in L^2(\mathbb{R}^N)$. On définit l'application

$$\Phi: \begin{array}{ccc} X_T & \to & X_T \\ y & \mapsto & y \end{array}$$

où v est la solution de (LSNH) avec $f = \kappa |u|^a u$.

 Φ est bien définie d'après les lemmes qui précèdent. De plus, il existe des constantes $C_1, C_2 > 0, \theta > 0$ telles que

$$\forall u \in X_T, \quad \|\Phi(u)\|_{X_T} \le C_1 \left(\|u_0\|_{L^2} + T^{\theta} \|u\|_{X_T}^{a+1} \right)$$

et

$$\forall u, v \in X_T, \qquad \|\Phi(u) - \Phi(v)\|_{X_T} \le C_2 \|u - v\|_{X_T} (\|u\|_{X_T}^a + \|v\|_{X_T}^a)$$

car $\Phi(u) - \Phi(v)$ est solution de (LSNH) avec donnée initiale nulle et terme source $\kappa(|u|^a u - |v|^a v)$.

On va chercher une boule B de X_T telle que B est stable par Φ pour T assez petit et Φ est contractante sur B_1 . Prenons $B = \{u \in X_T, \|u\|_{X_T} \le 2C_1 \|u_0\|_{L^2}\}$. On va choisir T de telle sorte que

$$T^{\theta} \left(2C_1 \|u_0\|_{L^2}\right)^{a+1} \le \|u_0\|_{L^2}$$
 stabilité : $\Phi(B) \subset B$

et

$$\underbrace{C_2 T^\theta 2 \left(2 C_1 \left\|u_0\right\|_{L^2}\right)^a}_{L} < 1 \qquad \Phi \, L\text{-lipschitzienne avec} \,\, L < 1$$

Comme $\theta > 0$ (car $a < \frac{4}{N}$), on peut choisir T tel que ces deux conditions soient vérifiées. Pour un tel T, on a $\Phi(B) \subset B$ et Φ est L contractante sur B. Donc Φ admet un unique point fixe dans B. Ce point fixe est solution de (NLS).

Remarque : D'après la théorie linéaire, $u \in L^p([-T,T],L^q(\mathbb{R}^N))$ pour tout couple (p,q) admissible (car $f = \kappa |u|^a u \in L^{\overline{p}'}(L^{\overline{q}'})$).

4.3.3.2 Théorie L^2 critique

Les inégalités précédentes sont toujours vraies avec $\theta=0$. Donc en choisissant $\|u_0\|_{L^2}$ suffisamment petit, les conditions précédentes sur Φ sont vérifiées avec $T=+\infty$. On applique une point fixe dans X_{∞} et on obtient une solution globale.

4.3.4 Lois de conservation pour l'équation de Schrödinger

4.3.4.1 Calculs formels

Conservation de la masse : On considère

$$i\partial_t u + \Delta u = \kappa |u|^a u \qquad \times \overline{u} -i\partial_t \overline{u} + \Delta \overline{u} = \kappa |u|^a \overline{u} \qquad \times (-u)$$

En sommant et intégrant, on obtient :

$$i\frac{\mathrm{d}}{\mathrm{d}t}\int |u|^2 + \int \Delta u \cdot \overline{u} - \int \Delta \overline{u} \cdot u = 0.$$

Or

$$\int \Delta u \overline{u} = -\int \nabla u \cdot \nabla \overline{u} = -\int |\nabla u|^2 = \int \Delta \overline{u} u.$$

Donc

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| u \right\|_{L^2}^2 = 0.$$

AInsi,

$$\forall t \in I, \qquad \|u(t)\|_{L^2} = \|u_0\|_{L^2}$$

où I est l'intervalle de définition de u : la masse est conservée.

Conservation de l'énergie : Si $a \le \frac{4}{N-2}$ et si $u \in \mathcal{C}(I, H^1)$, on pose

$$E(u) = \frac{1}{2} \int |\nabla u|^2 + \frac{\kappa}{a+2} \int |u|^{a+2}.$$

Formellement, $E(u(t)) = E(u_0), \forall t \in I$.

En effet,

$$\begin{split} i\partial_t u + \Delta u &= \kappa |u|^a u & \times (\partial_t \overline{u}) \\ -i\partial_t \overline{u} + \Delta \overline{u} &= \kappa |u|^a \overline{u} & \times (\partial_t u) \end{split}$$

d'où

$$0 - \int \nabla u \partial_t \nabla \overline{u} - \int \nabla \overline{u} \partial_t \nabla u = \int \kappa |u|^a (u \partial_t \overline{u} + \overline{u} \partial_t u)$$

soit

$$\frac{\mathrm{d}}{\mathrm{d}t} \int |\nabla u|^2 + \kappa \underbrace{\int |u|^a \partial_t |u|^2}_{\frac{2}{2-2} \partial_t |u|^{a+2}}.$$

Donc

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \left(|\nabla u|^2 + \frac{2\kappa}{a+2} |u|^{a+2} \right) = 0.$$

4.3.4.2 Justification rigoureuse

Lemme 4.21

Soient $u_0 \in L^2(\mathbb{R}^N)$, T > 0, $f \in L^{p'}([-T,T],L^{q'}(\mathbb{R}^N))$ avec (p,q) admissible, p > 2. On considère la solution de (LSNH). Alors

$$\forall t \in [-T, T], \qquad \|u(t)\|_{L^2(\mathbb{R}^N)}^2 - \|u_0\|_{L^2(\mathbb{R}^N)}^2 = 2 \operatorname{Im} \int_0^t \int_{\mathbb{R}^N} f\overline{u}.$$

 $ightharpoonup -1^{\text{re}}$ étape : supposons que $u_0 \in \mathcal{S}(\mathbb{R}^N)$ et $f \in \mathcal{C}^{\infty}([-T,T],\mathcal{S}(\mathbb{R}^N))$. Dans ce cas, $u \in \mathcal{C}^{\infty}([-T,T],\mathcal{S}(\mathbb{R}^N))$. On reprend le calcul formel du paragraphe précédent :

$$\begin{split} i\partial_t u + \Delta u &= f & \times \overline{u} \\ -i\partial_t \overline{u} + \Delta \overline{u} &= \overline{f} & \times (-u) \end{split}$$

d'où

$$i\frac{\mathrm{d}}{\mathrm{d}t}\int |u|^2 + 0 = \int f\overline{u} - \int \overline{f}u$$

donc

$$\frac{\mathrm{d}}{\mathrm{d}t} \int |u|^2 = -i \left(\int f\overline{u} - \int \overline{f}u \right) = 2 \operatorname{Im} \int f\overline{u}.$$

 -2^{e} étape : approximation. Soient $u_0 \in L^2(\mathbb{R}^N)$, $f \in L^{p'}(L^{q'})$. Par densité, il existe des suites $(u_0^n)_{n \in \mathbb{N}}$, $(f^n)_{n \in \mathbb{N}}$ de $\mathcal{S}(\mathbb{R}^N)$ et $\mathcal{C}^{\infty}([-T,T],\mathcal{S}(\mathbb{R}^N))$ respectivement telles que $\|u_0-u_0^n\|_{L^2} \to 0$ et $\|f-f^n\|_{L^{p'}([-T,T],L^{q'})} \to 0$. Alors, d'après les estimations de Strichartz

$$||u-u^n||_{L^{\infty}([-T,T],L^2(\mathbb{R}^N))} \le ||u_0-u_0^n||_{L^2} + ||f-f^n||_{L^{p'}(L^{q'})}$$

et

$$||u-u^n||_{L^p([-T,T],L^q(\mathbb{R}^N))} \le ||u_0-u_0^n||_{L^2} + ||f-f^n||_{L^{p'}(L^{q'})}.$$

Donc on peut passer à la limite dans

$$\|u^n(t)\|_{L^2}^2 - \|u_0^n\|_{L^2}^2 = 2\operatorname{Im} \int_0^t \int_{\mathbb{R}^N} f^n \overline{u^n}.$$

Proposition 4.22

1. On suppose $a < \frac{4}{N}$. Soit $u_0 \in L^2(\mathbb{R}^N)$. On considère la solution u de (NLS) définie sur un intervalle I. Alors pour tout $t \in I$,

$$||u(t)||_{L^2} = ||u_0||_{L^2}$$
.

2. On suppose $a < \frac{4}{N-2}$. Soit $u_0 \in H^1(\mathbb{R}^N)$. On considère la solution $u \in \mathcal{C}(I, H^1)$ de (NLS). Alors, pour tout $t \in I$,

$$E(u(t)) = E(u_0).$$

Remarque : Si $a < \frac{4}{N-2}$ avec N > 2, alors $2 \le a+2 < \frac{2N}{N-2}$. Donc $H^1(\mathbb{R}^N) \hookrightarrow L^{a+2}(\mathbb{R}^N)$.

 \triangleright 1. On applique le lemme avec $f = \kappa |u|^a u$. Les estimations réalisées pour obtenir le théorème de point fixe montrent que $f \in L^{p'}_{loc}(I, L^{q'}(\mathbb{R}^N))$. Donc on a :

$$\|u(t)\|_{L^2}^2 - \|u_0\|_{L^2} = 2\operatorname{Im} \int_0^t \int_{\mathbb{R}^N} \kappa |u|^a \underbrace{u\overline{u}}_{-|u|^2} = 0$$

donc on a conservation de la masse.

David Michel -2017-2018 ENS Rennes - UPMC

2. On observe que ∇u est solution de

$$i\partial - t\nabla u + \Delta \nabla u = \kappa \nabla (|u|^a u).$$

On montre (en exercice) que si $v \in W^{1,q}(\mathbb{R}^N)$ avec $q \geq 2$,

$$\nabla(|u|^a u) = \left(1 + \frac{a}{2}\right) |u|^a \nabla u + \frac{a}{2} \underbrace{\frac{u}{\overline{u}} |u|^a}_{=0 \text{ si } u = 0} \overline{\nabla u}.$$

D'après les estimations des paragraphes précédents, $\nabla(|u|^a u) \in L^{p'}_{loc}(I, L^{q'}(\mathbb{R}^N))$. Donc on peut appliquer le lemme. On obtient :

$$\|\nabla u(t)\|_{L^{2}}^{2} - \|\nabla u_{0}\|_{L^{2}}^{2} = \underbrace{2\kappa\operatorname{Im}\int_{0}^{t}\int_{\mathbb{R}^{N}}\left(1 + \frac{a}{2}\right)|u|^{a}\nabla u \cdot \overline{\nabla u}}_{=0} + 2\kappa\operatorname{Im}\int_{0}^{t}\int_{\mathbb{R}^{N}}\frac{a}{2}\frac{u}{\overline{u}}|u|^{a}\nabla\overline{u} \cdot \nabla\overline{u}.$$

Pour $||u||_{L^{a+2}}$ on va appliquer une variant du lemme ci-dessus. Plus précisément, soit $(\rho_n)_{n\in\mathbb{N}}$ une suite dans $\mathcal{C}^{\infty}([-T,T],\mathcal{S}(\mathbb{R}^N))$ telle que $\rho_n\to |u|^a$ presque partout et $\rho_n\to |u|^a$ dans $L^{r_1}_{loc}(L^{r_2})$ avec $r_1,r_2\geq 1$. On peut supposer $\rho_n\geq 0$ sans perte de généralité. Soit $(u_0^n)_{n\in\mathbb{N}}$ une suite d'approximation de u_0 dans $\mathcal{S}(\mathbb{R}^N)$. On considère la solution de

$$\begin{cases} i\partial_t u^n + \Delta u^n &= \kappa \rho^n u^n \\ u^n|_{t=0} &= u_0^n \end{cases}$$

Alors $u^n \in \mathcal{C}^{\infty}([-T,T],H^2(\mathbb{R}^N))$. Après calcul, on trouve

$$\frac{\mathrm{d}}{\mathrm{d}t} \int |u^n|^{a+2} = -a \left(1 + \frac{a}{2}\right) \operatorname{Im} \int_{\mathbb{R}^N} \overline{\nabla u^n} \cdot \overline{\nabla u^n} \frac{u^n}{\overline{u^n}} |u^n|^a.$$

On intègre entre 0 et t et on passe à la limite quand $n \to +\infty$. On obtient :

$$\frac{\kappa}{a+2} \left(\|u(t)\|_{L^{a+2}}^{a+2} - \|u_0\|_{a+2}^{a+2} \right) = \frac{-a\kappa}{2} \operatorname{Im} \int_0^t \int_{\mathbb{R}^N} \overline{\nabla u} \cdot \overline{\nabla u} \frac{u}{\overline{u}} |u|^a.$$

En rassemblant les deux identités, on obtient :

$$\forall t \in I, \qquad E(u(t)) = E(u_0).$$

4.3.4.3 Conséquences

Théorème 4.23

1. Soient $a \in \left[0, \frac{4}{N}\right[, u_0 \in L^2(\mathbb{R}^N)$. Alors (NLS) admet une unique solution globale dans $\mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N)) \cap L^p_{\text{loc}}(\mathbb{R}, L^q(\mathbb{R}^N))$ pour tout (p, q) admissible. De plus, $\|u(t)\|_{L^2} = \|u_0\|_{L^2}$, $\forall t \in \mathbb{R}$.

2. Soit $a \in \left[0, \frac{4}{N-2}\right[, u_0 \in H^1(\mathbb{R}^N)$. On suppose $\kappa > 0$ (cas défocalisant). Alors (NLS) admet une unique solution globale dans $\mathcal{C}(\mathbb{R}, H^1(\mathbb{R}^N)) \cap L^p_{\text{loc}}(\mathbb{R}, W^{1,q}(\mathbb{R}^N))$ pour tout (p,q) admissible. De plus, $E(u(t)) = E(u_0)$, $\forall t \in \mathbb{R}$.

 \triangleright 1. D'après le paragraphe précédent, il existe $T_0 > 0$, ne dépendant que de $\|u_0\|_{L^2}$, tel que (NLS) admet une solution sur $[-T_0, T_0]$. De plus, $\forall t \in [-T_0, T_0], \|u(t)\|_{L^2} = \|u_0\|_{L^2}$.

On considère le problème de Cauchy en $\frac{T_0}{2}$. Puisque $\left\|u\left(\frac{T_0}{2}\right)\right\|_{L^2} = \|u_0\|_{L^2}$, on peut résoudre ce problème de Cauchy

sur $\left[-\frac{T_0}{2}, \frac{3T_0}{2}\right]$. Les solutions des deux problèmes de Cauchy (en 0 et $\frac{T_0}{2}$) coincident sur $[0, T_0]$ par unicité. En itérant ce procédé, on construit une solution sur \mathbb{R} .

Remarque : A priori, la solution ainsi construite n'est pas dans $L^p(\mathbb{R}, L^q(\mathbb{R}^N))$ pour $p < +\infty$: le théorème de point fixe assure simplement que la solution vérifie

$$\sup_{T \in \mathbb{R}} \|u\|_{L^p([T, T+T_0], L^q(\mathbb{R}^N))} < +\infty.$$

2. Comme au 1, il existe $T_0>0$, ne dépendant que de $\|u_0\|_{H^1}$, tel que (NLS) admet une solution sur $[-T_0,T_0]$. De plus, $\|u(t)\|_{L^2}=\|u\|_{L^2}, \ \forall t\in [-T_0,T_0]$ et $E(u(t))=E(u_0), \ \forall t\in [-T_0,T_0]$. En particulier, puisque $\kappa>0$, on obtient

$$\forall t \in [-T_0, T_0], \qquad \underbrace{\|u(t)\|_{H^1} \le \|u_0\|_{L^2} + (2E(u_0))^{1/2}}_{\mathscr{E}_0}.$$

On considère le problème de Cauchy en $\frac{T_0}{2}$, que l'on résout sur un intervalle $\left[\frac{T_0}{2} - T_1, \frac{T_0}{2} + T_1\right]$ avec $T_1 > 0$ qui ne dépend que de \mathscr{E}_0 . On itère comme au 1, et on résout l'équation sur \mathbb{R} . La même remarque que précédemment s'applique.

Chapitre 5

Étude de deux phénomènes d'explosion

Dans les chapitres précédents, on a résolu le problème de Cauchy pour plusieurs EDP. Mais une fois cette étape franchie, il reste beaucoup de choses à faire. On peut s'intéresser au comportement qualitatif des solutions :

- comportement en temps grand;
- stabilité de solutions particulières (stationnaires ou non);
- analyse asymptotique des équations en présence de petits paramètres :
 - homogénéisation;
 - limite semi-classique;
 - viscosité évanescente (pénalisation singulière), par exemple $\partial tu + a \cdot \nabla u \varepsilon \Delta u = 0$ (équation parabolique, $\varepsilon > 0$) et quand $\varepsilon = 0$: $\partial_t u + a \cdot \nabla u = 0$ (transport, « hyperbolique »);
- explosion : objet du présent chapitre. Nous allons étudier deux exemples : NLS focalisant et l'équation de Keller-Segel.

5.1 Explosion dans l'équation de Schrödinger non linéaire focalisante

Dans toute cette partie, on étudie

$$\begin{cases}
i\partial_t u + \Delta u &= -|u|^a u \\
u_{\mid t=0} &= u_0 \in H^1
\end{cases}$$
(NLS)

On rappelle que si $a < \frac{4}{N}$, (NLS) admet une unique solution globale dans $\mathcal{C}(\mathbb{R}, L^2(\mathbb{R}^N))$.

Exercice: Montrer que si $a < \frac{4}{N}$, alors pour tout $v \in H^1(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} |v|^{a+2} \le C \|\nabla v\|_{L^2}^{\frac{aN}{2}} \|u\|_{L^2}^{2+a\frac{2-N}{2}}$$
 (Inégalité de Gagliardo-Nirenberg-Sobolev)

En déduire que si u est solution de (NLS) avec une donnée initiale $u_0 \in H^1(\mathbb{R}^N)$, alors $\sup_{t \in I} \|u(t)\|_{H^1} < +\infty$, où I est l'intervalle de définition. Conclure que $I = \mathbb{R}$.

Il n'y a pas d'explosion dans le cas focalisant si $a < \frac{4}{N}$.

Théorème 5.1 (Critère de Glassey)

Soit $a \ge \frac{4}{N}$ et soit $u \in \mathcal{C}(I, H^1)$ une solution de (NLS) telle que

$$\forall t \in I, \qquad \int |x|^2 |u(t,x)|^2 dx < +\infty.$$

Alors, pour tout $t \in I$, on a:

$$\frac{d^2}{dt^2} \int |x|^2 |u(t,x)|^2 dx = 16E(u_0) + \frac{4(4-Na)}{a+2} \int |u|^{a+2}.$$
 (Viriel)

En particulier, si $E(u_0) < 0$, alors les solutions explosent en temps fini.

▷ Calcul formel.

$$\frac{\mathrm{d}}{\mathrm{d}t} \int |x|^2 |u(t,x)|^2 \mathrm{d}x = 2\mathrm{Re} \int |x|^2 \partial_t u \overline{u}$$

$$= 2\mathrm{Re} \int |x|^2 \overline{u} \left(i\Delta u + i|u|^a u\right)$$

$$= -2\mathrm{Re} \int i|x|^2 \nabla u \overline{\nabla u} - 4\mathrm{Re} \left(i \int \nabla u \cdot x \overline{u}\right)$$

$$= 4\mathrm{Im} \int \nabla u \cdot x \overline{u}.$$

D'où

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \int |x|^2 |u(t,x)|^2 \mathrm{d}x = 4 \operatorname{Im} \int \nabla \partial_t u \cdot x \overline{u} + 4 \operatorname{Im} \int \nabla u \cdot x \partial_t \overline{u}$$

$$= -4 \operatorname{Im} \int \partial_t u \left(N \overline{u} + x \cdot \nabla \overline{u} \right) + 4 \operatorname{Im} \int x \cdot \nabla u \partial_t \overline{u}$$

$$= -8 \operatorname{Im} \left(\int \partial_t u x \cdot \nabla \overline{u} - 4N \int \partial_t u \overline{u} \right)$$

On a:

$$\operatorname{Im} \int \partial_t u x \cdot \nabla \overline{u} = \operatorname{Im} \left(\int i \Delta u + i |u|^a u x \cdot \nabla \overline{u} \right)$$
$$= -\operatorname{Im} \left(i \int \nabla u \nabla (x \cdot \nabla \overline{u}) \right) + \operatorname{Im} \left(i \int |u|^a u x \cdot \nabla \overline{u} \right).$$

Or

$$\nabla u \cdot \nabla (x \cdot \nabla \overline{u}) = \sum_{i,j} \partial_i u \partial_i (x_j \partial_j \overline{u}) = \sum_i \partial_i u \partial_i \overline{u} + \sum_{i,j} x_j \partial_i u \partial_i \partial_j \overline{u}.$$

Donc

$$\operatorname{Im}\left(i\int\nabla u\nabla(x\cdot\nabla\overline{u}\right) = \operatorname{Re}\int\nabla u\nabla(x\cdot\nabla\overline{u})$$

$$= \int |\nabla u|^2 + \frac{1}{2}\sum_{i,j}\int x_j(\partial_i u\partial_i\partial_j\overline{u} + \partial_i\overline{u}\partial_i\partial_j u)$$

$$= \int |\nabla u|^2 + \frac{1}{2}\int\sum_j x_j\partial_j|\nabla u|^2$$

$$= \int |\nabla u|^2 - \frac{N}{2}\int |\nabla u|^2$$

$$= -\frac{N-2}{2}\int |\nabla u|^2.$$

De même,

$$\operatorname{Im}\left(i\int |u|^{a}ux \cdot \nabla \overline{u}\right) = \operatorname{Re}\left(\int |u|^{a}ux \cdot \nabla \overline{u}\right)$$
$$= \frac{1}{2}\int |u|^{a}x \cdot \underbrace{\left(u\nabla \overline{u} + \overline{u}\nabla u\right)}_{\nabla |u|^{2}}$$
$$= \frac{1}{a+2}\int \nabla |u|^{a+2} \cdot x.$$

Ainsi,

$$\operatorname{Im}\left(\int \partial_t u \, x \cdot \nabla \overline{u}\right) = \frac{N-1}{2} \int |\nabla u|^2 - \frac{N}{a+2} \int |u|^{a+2}.$$

Par ailleurs,

$$\operatorname{Im} \int \partial_t u \,\overline{u} = \operatorname{Im} \left(\int \overline{u} \left(i\Delta u + i|u|^a u \right) \right)$$
$$= \operatorname{Re} \left(-\int |\nabla u|^2 + \int |u|^{a+2} \right).$$

Donc

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \int |x|^2 |u(t,x)|^2 &= -4(N-2) \int |\nabla u|^2 + \frac{8N}{a+2} \int |u|^{a+2} + 4N \int |\nabla u|^2 - 4N \int |u|^{a+2} \\ &= 8 \int |\nabla u|^2 + \frac{-4Na}{a+2} \int |u|^{a+2} \\ &= 16E(u) + \frac{16-4Na}{a+2} \int |u|^{a+2} \\ &= 16E(u_0) + \frac{4(4-Na)}{a+2} \int |u|^{a+2}. \end{split}$$

Supposons que $E(u_0) < 0$ et $a \ge \frac{4}{N}$. Alors, sur l'intervalle de définition de la solution,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \int |x|^2 |u(t,x)|^2 \mathrm{d}x \le E(u_0) < 0.$$

Raisonnons par l'absurde et supposons que sup $I=+\infty$. Alors il existe T>0 tel que $\int |x|^2 |u(T,x)|^2 dx < 0$: absurde.

Pour rendre ce calcul rigoureux, on prend un poids $|x|^2\chi_R(x)$ avec $\chi_R = \chi\left(\frac{\cdot}{R}\right)$ avec $\chi \equiv 1$ sur B_1 , supp $\chi \subset B_2$, $\chi \in \mathcal{C}_c^{\infty}(\mathbb{R}^N)$. On reprend tous les calculs et on fait tendre R vers $+\infty$ en se servant des propriétés d'intégrabilité de u. \square Ainsi, $||u(t)|| \to +\infty$ aux bornes de l'intervalle de définition.

Pour aller plus loin: F. Merle et P. Raphaël, classification des profils d'explosion.

5.2 Équation de Keller-Segel

Références: Dolbeault et Perthame (CRAS), Jüger et Luckhaus, etc.

On considère le système d'équations

$$\begin{cases}
\partial_t n + \operatorname{div}(n\nabla c) - \Delta n &= 0 \quad t \ge 0, x \in \mathbb{R}^N \\
-\Delta c &= n \\
n_{1t=0} &= n_0
\end{cases}$$
(KS)

n est une densité de cellules, c est une concentration d'une quantité chimique, appelée chemo-attractant, émise par les cellules elles-mêmes.

Attention: cette équation est non linéaire.

Proposition 5.2

Si $n_0 \ge 0$ et $n_0 \in L^1(\mathbb{R}^N)$ alors, si $n \in \mathcal{C}(\mathbb{R}_+, L^1(\mathbb{R}^N))$ est solution de (KS), on a $n(t) \ge 0$, $\forall t$ (principe du maximum) et

$$\int_{\mathbb{D}^N} n(t) = \int_{\mathbb{D}^N} n_0 = m_0$$

(conservation de la masse).

Remarque: Si N=2, $L^1(\mathbb{R}^2)$ est un espace critique pour (KS).

Théorème 5.3

On suppose que N=2.

1. Soit n une solution de (KS) au sens des distributions, telle que

$$\forall t \in I, \qquad \int |x|^2 n(t,x) dx < +\infty$$

et

$$\int_{\mathbb{R}^2} \frac{1+|x|}{|x-y|} n(t,y) dt \in L^\infty_{\mathrm{loc}}(I,L^\infty(\mathbb{R}^2)).$$

Alors,

$$\frac{d}{dt} \int |x|^2 n(t,x) dx = 4m_0 \left(1 - \frac{m_0}{8\pi}\right).$$

En particulier, si $m_0 > 8\pi$, il y a explosion en temps fini.

2. On suppose $m_0 < 8\pi$. On pose

$$E(n) = \int_{\mathbb{R}^2} \left(n \log n - \frac{1}{2} nc \right).$$

On suppose que $|E(n_0)| < +\infty$ et que $\int |x|^2 n_0(x) dx < +\infty$. Alors (KS) admet une solution globale faible, et E(n) est décroissante en temps.

 \rhd 1. On rappelle que

$$\nabla c(t,x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x-y}{|x-y|^2} n(t,y) dy$$

(solution fondamentale du laplacien en dimension 2). Donc

$$\frac{\mathrm{d}}{\mathrm{d}t} \int |x|^2 n(t,x) \mathrm{d}x = \int |x|^2 \left(\Delta n - \operatorname{div}(n\nabla c)\right) \mathrm{d}x$$

$$= \int n\Delta |x|^2 \mathrm{d}x + 2 \int x \cdot \nabla c \, n(t,x) \mathrm{d}x$$

$$= 4m_0 - \frac{1}{\pi} \iint c \cdot \frac{x-y}{|x-y|^2} n(t,x) n(t,y) \mathrm{d}x \mathrm{d}y$$

$$= 4m_0 - \frac{1}{2\pi} \iint (x-y) \cdot \frac{x-y}{|x-y|^2} n(t,x) n(t,y) \mathrm{d}x \mathrm{d}y$$

$$= 4m_0 - \frac{m_0^2}{2\pi}$$

$$= 4m_0 \left(1 - \frac{m_0}{8\pi}\right).$$

2. On considère l'énergie libre :

$$E(n) = \int n \log n - \frac{1}{2} \int nc = \int n \log n + \frac{1}{4\pi} \iint n(x)n(y) \log |x - y| \mathrm{d}x \mathrm{d}y.$$

Lemme 5.4

Si $n \in \mathcal{C}(\mathbb{R}_+, L^1)$ est telle que $n(1+|x|^2)$ et $n \log n$ sont bornées dans $L^\infty_{\mathrm{loc}}(\mathbb{R}_+, L^1)$ et $\nabla \sqrt{n} \in L^1_{\mathrm{loc}}(L^2)$, $\nabla c \in L^\infty_{\mathrm{loc}}(\mathbb{R}_+ \times \mathbb{R}^2)$, alors

$$\frac{d}{dt}E(n(t)) = -\int_{\mathbb{R}^2} n|\nabla \log n - \nabla c|^2 \le 0.$$

Lemme 5.5 (Inégalité de Sobolev logarithmique)

Soit
$$f \in L^1(\mathbb{R}^2)$$
 telle que $f \ge 0$, $f \log f$, $f(1+|x|^2) \in L^1$. On pose $m = \int f$. Alors
$$\frac{m}{2} \int f \log f + \iint f(x) f(y) \log |x-y| \ge C(m).$$

On en déduit que si n est solution de (KS) avec la régularité ad hoc, alors

$$\int n \log n \le E(n_0) - \frac{1}{4\pi} \iint n(x)n(y) \log |x - y| \le E(n_0) - \frac{1}{4\pi} C(n_0) + \frac{m_0}{8\pi} \int n \log n.$$

Donc

$$\left(1 - \frac{m_0}{8\pi}\right) \int n \log n \le E(m_0) - \frac{1}{4\pi}C(m_0).$$

Ensuite, on se sert de cette estimation a priori pour construire des solutions :

- on régularise le noyau en remplaçant ∇c par $\rho_{\varepsilon} * n$ où ρ_{ε} régularise $-\frac{1}{2\pi} \frac{x-y}{|x-y|^2}$
- on construit des solutions de

$$\partial_t n^{\varepsilon} + \operatorname{div}(n^{\varepsilon} \rho_{\varepsilon} * n^{\varepsilon}) - \Delta u^{\varepsilon} = 0$$

à l'aide d'un point fixe.

- On vérifie que la suite de solutions satisfait des estimations d'énergie.
- On utilise la borne uniforme sur $\int n^{\varepsilon} \log n^{\varepsilon}$ pour de l'équi-intégrabilité, et donc de la compacité L^1 .
- On passe à la limite $\varepsilon \to 0$.

On obtient une solution faible.