Sistemi Operativi Unità 1: Introduzione Introduzione ai Sistemi Operativi

Martino Trevisan
Università di Trieste
Dipartimento di Ingegneria e Architettura

Argomenti

- 1. Componenti di un sistema di elaborazione
- 2. Architettura di un sistema di elaborazione
- 3. Definizione di sistema operativo
- 4. Componenti di un sistema operativo
- 5. Definizioni relative ai sistemi operativi
- 6. Tipologie di sistemi operativi

Componenti di un sistema di elaborazione

Un sistema di elaborazione si può suddividere in quattro componenti:

Hardware

Fornisce le risorse fisiche: CPU, memoria, disco

Sistema Operativo

Gestisce l'accesso all'hardware da parte dei programmi

Programmi Applicativi

Eseguono i compiti desiderati dagli utenti o dal sistema

Utenti

Lanciano e usano programmi

- Composto da diverse unità
- Il bus mette in comunicazione le componenti del sistema

- La CPU esegue le istruzioni che preleva dalla memoria.
- Moduli fondamentali:
 - Arithmetic Logic Unit
 - Control Unit
 - Registri
- Tre fasi per eseguire ogni istruzione

- La Memoria fornisce un modo per salvare i dati.
- Un sistema ha vari tipi di memoria, con caratteristiche diverse
 - Organizzazione in una gerarchia di memoria

- Un sistema di elaborazione interagisce con l'esterno tramite dispositivi di Input/Output
 - Schermo
 - Tastiera
 - Mouse
 - Rete
 - Sensori
- Comunicano con la CPU tramite il bus

Definizione di sistema operativo

- Il compito dei sistemi operativi è:
 - Interagire con l'hardware
 - o Fornire all'utente un modello di computer più semplice

Definizione di sistema operativo

 In un certo senso, i sistemi operativi rendono gradevole ciò che ha un'interfaccia sgradevole

Definizione di sistema operativo

- Il sistema operativo si interfaccia con i dispositivi hardware
 - Tramite moduli software chiamati Driver
- Offre servizi alle applicazioni
 - Tramite API chiamate System Call
- Organizzato in moduli

- Un sistema di elaborazione è composto di diversi moduli
 - Che offrono servizi a utente
 - Ma interagiscono anche tra loro

• Gestore dei processi:

- Crea e gestisce i processi
 - Un processo è un programma in esecuzione.
- Trova le risorse di CPU e memoria necessarie all'esecuzione

Gestore della memoria:

- La memoria di un elaboratore è un unico vettore
- II SO gestisce:
 - L'allocazione di memoria ai processi e la condivisione della memoria tra programmi

Gestore dei dischi:

- La memorizzazione su disco è persistente
- Il SO organizza la memoria su disco in una struttura ad albero di directory e file

Gestore dei dispositivi di I/O:

- I dispositivi di I/O non sono gestiti direttamente dalle applicazioni
 - Sarebbe complicato e creerebbe problemi di funzionamento
- I SO utilizza i driver per pilotare i dispositivi
- La connessione di rete rappresenta un caso particolare di I/O.
 - Ha un trattamento speciale nei moderni SO

Gestore dei meccanismi di protezione:

- Nei SO ci sono tanti utenti con diversi permessi di accedere alle risorse
 - Per accedere a file, dispositivi, configurazione, ecc...
- I SO implementa le policy di accesso

- Altre componenti:
 - Sincronizzazione. Permette ai processi:
 - Di comunicare tra loro
 - Di sincronizzarsi tra loro
 - Virtualizzazione. Per supportare la creazione di macchine virtuali o simili (e.g., container)
 - Se il SO offre funzionalità per la virtualizzazione, le VM saranno molto più veloci perché possono avere accesso diretto ad (alcune) risorse

Kernel:

- Cuore del SO
- Include tutti i moduli visti in precedenza
 - Gestisce le operazioni fondamentali e a più basso livello
- Modulo software sempre in esecuzione
 - Con privilegi speciali
 - Tutte le altre applicazioni (di utente o di sistema) hanno privilegi minori
 - Si appoggiano al kernel
- Diverse tipologie di kernel
 - Monolitici: il kernel è un unico programma che esegue tutto il codice necessario
 - I più comuni
 - Micro-Kernel: cercano di delegare alle applicazioni più funzionalità possibile
 - A livelli stratificati: il kernel (e i programmi) sono organizzati in una gerarchia di processi a privilegi crescenti.

Processo:

- Programma in esecuzione
 - Con certi privilegi e risorse
- Accede alla CPU a turno con gli altri programmi
 - Il SO deve permettere che il suo stato sia conservato quando viene messo in pausa
 - Richiede salvataggio di registri di CPU
 - Ogni processo identificato da un numero detto PID
- Un processo può creare altri processi detti figli
 - Si dice che i processi sono organizzati in un Albero dei Processi

• Thread:

- Un processo raggruppa le risorse di un programma in esecuzione
- Un thread individual un flusso di esecuzione
- Un processo può avere al suo interno uno o più flussi in esecuzione
- Identificato da un identificatore detto TID

- System call:
 - Sono delle funzioni messe a disposizione dal SO alle applicazioni
 - o Offrono i servizi del SO per creare processi, accedere ai dischi, ecc...
 - Il kernel "serve" le richieste di System Call dei programmi
 - Da non confondere con le Funzioni di Libreria
 - Che sono moduli software che svolgono compiti comuni a più applicazioni
 - Sono software comuni con stessi privilegi di applicazione
 - Possono (ma non sempre) chiamare delle System Call

- System call:
 - Le system call sono funzioni C. Hanno aspetti diversi

POSIX su Linux

```
int read (int fd, void *buffer, size_t nbytes);
```

Win32/Win64 API su Windows

```
BOOL ReadFile (
   HANDLE fileHandle,
   LPVOID dataBuffer,
   DWORD numberOfByteToRead,
   LPDWORD numberOfByteRead,
   LPOVERLAPPED overlappedDataStructure
);
```

- System call:
 - Esempi di System Call comuni:
 - Gestione dei process: fork exec wait kill
 - Gestione dei file: open close read write
 - Nota: i SO operativi offrono anche molte funzioni di libreria
 - Alcune funzioni di libreria non necessitano di System Call
 - Calcolare la radice quadrata: double sqrt(double arg). Non necessita di una System Call
 - Scrivere su schermo: int printf(char *format, arg list ...). Formatta la stringa da scrivere e poi chiama la System Call write

- Kernel/User mode nella CPU:
 - Kernel Mode: Il kernel ha accesso completo all'hardware
 - Può accedere a ogni locazione di memoria e registro di dispositivo di I/O
 - Solo codice di ottima qualità. Gli errori sono potenzialmente distruttivi
 - User Mode: le applicazioni hanno posibilità limitate
 - Accedono a uno spazio di indirizzamento limitato (memoria virtuale)
 - Non possono accedere direttamente ai dispositivi di I/O
 - Necessaria cooperazione della CPU che implementa specifiche funzionalità
 - Le funzioni di libreria si eseguono in User Mode

• File System:

- Struttura che include un insieme di file e cartelle
- Organizzato secondo un albero

- Organizzazione dei path:
 - Root Directory: la radice di tutti le cartelle. Si identifica con / in Linux
 - Working Directory: directory dove un processo viene lanciato
 - Path Assoluto: inizia con / e identifica un percorso a partire dalla
 Root Directory
 - Path Relativo: non inizia con / ma con un nome. Identifica un path relativo alla Working Directory del processo

Bootloader:

- Il codice che carica in memoria il kernel al momento dell'accensione del sistema
- Contenuto in ROM/EEPROM

• Login:

 Autenticazione di un utente nel sistema, solitamente tramite username e password

Shell:

- Programma che legge comandi da tastiera, li esegue e ne stampa
 l'output
- Metodo di accesso tradizionale
- Non fa parte del kernel
 - Quando un sistema viene avviato, il kernel avvia sempre una shell o l'interfaccia grafica

Domande

Cosa é un processo?

- Un programma Un algoritmo Un programma in esecuzione
- Le System Call sono usate da:
- SO per interagire con l'hardWare
- Dai processi per interagire col SO
- Le Funzioni di Libreria vengono eseguite:
- In User Mode In Kernel Mode
- Il File System é organizzato come:
- Un Grafo contentente cicli
- Un Grafo NON contentente cicli