Design and Analysis of Algorithm

Department of Computer Science and Engineering National Institute of Technology Raipur

Pramod Mane

January 23, 2021

Outline

Algorithm Analysis
Solving Recurrence Equation

Outline

Algorithm Analysis
Solving Recurrence Equation

Solving the Recurrence Equation

We will introduce three methods of solving the recurrence equation:

- 1. The Substitution Method (Guess the solution & verify by Induction)
- 2. Iteration Method (unrolling and summing)
- 3. The Recursion-tree method
- 4. Master method

A substitution method is one, in which we guess a bound and then use mathematical induction to prove our guess correct. It is basically two step process:

- ▶ **Step1:** Guess the form of the Solution.
- ▶ **Step2:** Prove your guess is correct by using Mathematical Induction.

Example

$$T(n) = 2T(\frac{n}{2}) + n$$

Solution

Step 1: Let we guess the solution is T(n) = O(nlogn) or $T(n) \le c \cdot nlogn$.

Step 2: Now we use mathematical induction.

Here our guess does not hold for n = 1 because $T(n) \le c \cdot 1 log 1$.

That is, $T(n) \le 0$, which is contradiction with T(1) = 1.

Now for
$$n = 2$$
,

$$T(n) \le c \cdot 2log2$$

$$2T(\frac{2}{2})+2\leq c\cdot 2$$

$$2T(1)+2\leq c\cdot 2$$

$$0+2 \le c \cdot 2$$

 $2 \le c \cdot 2$ which is true. So $T(n) \le c \cdot nlogn$ is True for n = 2.

Induction step: Now assume it is true for n = fracn2.

That is,
$$T(\frac{n}{2}) \le c \cdot \frac{n}{2} log \frac{n}{2}$$

Now we have to show that it is true for n = n.

That is,
$$T(n) \leq c \cdot n \log n$$

We know that
$$T(n) \leq 2T(\lfloor \frac{n}{2} \rfloor) + n$$
.

$$\leq 2(c\lfloor \frac{n}{2}\rfloor log\lfloor \frac{n}{2}\rfloor) + n$$

$$\leq cnlog \left\lfloor \frac{n}{2} \right\rfloor + n \leq (cnlogn - cnlog2) + n$$

$$\leq$$
 cnlogn $-$ cn $+$ n

$$\leq$$
 cnlogn, for all $c \geq 1$

Thus,
$$T(n) = O(nlogn)$$

ITERATION METHOD (Unrolling and summing)

In this method we unroll (or substituting) the given recurrence back to itself until not getting a regular pattern (or series).

We generally follow the following steps to solve any recurrence:

- Expend the recurrence Express the expansion as a summation by plugging the recurrence back into itself until you see a pattern.
- ► Evaluate the summation by using the arithmetic or geometric summation formulae

Thank You!