直観主義論理は有限多値論理でない

齊藤 哲平

November 25, 2023

概要

命題直観主義論理は有限多値論理として特徴づけられないこと

- 1. 直観主義論理(復習)
- 2. 有限多值論理(復習)
- 3. 前者は後者として特徴づけられないことの証明 (Salehi, 2021) 以下、命題論理の語彙 √, ∧, ¬, → で考える。

0 0 0 0 0

直観主義論理

妥当性[X]からAへの推論は妥当である」はクリプキモデルで定義

直観主義論理

妥当性 [X] から A への推論は妥当である」はクリプキモデルで定義

以下の性質をメインの証明で使う。pとqを異なる原子論理式とする。

- $\circ (p o p) \lor q$ は妥当である。
- $\circ p \rightarrow q$ は妥当でない。

直観主義論理

妥当性 [X] から A への推論は妥当である」はクリプキモデルで定義

以下の性質をメインの証明で使う。 $p \ge q$ を異なる原子論理式とする。

- $\circ (p \rightarrow p) \lor q$ は妥当である。
- $\circ p \rightarrow q$ は妥当でない。

命題 (選言特性)

直観主義論理では $A \lor B$ が妥当ならば A または B が妥当である。

一般の有限多値論理

Definition

以下の3つ組 $(V, D, \{f_{\lor}, f_{\land}, f_{\rightarrow}, f_{\neg}\})$ を有限多値論理のモデル という。

- 真理値の有限集合 V
- 。 指定値 $D \subseteq V$
- 。 真理値表 $f_{\vee}, f_{\wedge}, f_{\rightarrow}: V \times V \rightarrow V$ と $f_{\neg}: V \rightarrow V$

一般の有限多値論理

Definition

以下の3つ組 $(V, D, \{f_{\lor}, f_{\land}, f_{\rightarrow}, f_{\neg}\})$ を有限多値論理のモデル という。

- 真理値の有限集合 V
- \circ 指定値 $D \subset V$
- 。 <u>真理値表</u> $f_{\lor}, f_{\land}, f_{\rightarrow}: V \times V \rightarrow V$ と $f_{\lnot}: V \rightarrow V$

すべての付置 v について $v(A) \in D$ のとき、A は 妥当 であるという。

一般の有限多値論理

Definition

以下の3つ組 $(V, D, \{f_{\lor}, f_{\land}, f_{\rightarrow}, f_{\neg}\})$ を有限多値論理のモデル という。

- 真理値の有限集合 V
- 。 指定値 D ⊂ V
- 。 真理値表 $f_{\vee}, f_{\wedge}, f_{\rightarrow}: V \times V \rightarrow V$ と $f_{\neg}: V \rightarrow V$

すべての付置 v について $v(A) \in D$ のとき、A は <u>妥当</u> であるという。妥当 な論理式全体の集合を(|V| 値)有限多値論理 と呼ぶ。

0 0 0 0 0

以下、「妥当な論理式の集合」のことを「論理」と言ったりする。

Definition

論理 L が選言について可換 であるとは、 $A \lor B \lor B \lor A$ の妥当性が同値であることである。

以下、「妥当な論理式の集合」のことを「論理」と言ったりする。

Definition

論理 L が選言について可換 であるとは、 $A \lor B と B \lor A$ の妥当性が同値であることである。また、L が選言について結合的 であるとは、 $A \lor (B \lor C)$ と $(A \lor B) \lor C$ の妥当性が同値であることである。

以下、「妥当な論理式の集合」のことを「論理」と言ったりする。

Definition

論理 L が選言について可換 であるとは、 $A \lor B \lor B \lor A$ の妥当性が同値であることである。また、L が選言について結合的 であるとは、 $A \lor (B \lor C) \lor (A \lor B) \lor C$ の妥当性が同値であることである。そのような論理において

$$\bigvee_{1 \leqslant i < j \leqslant n} (p_i \to p_j)$$

は以下の略記とする。

$$(p_1 \rightarrow p_2) \lor (p_1 \rightarrow p_3) \lor \cdots \lor (p_{n-1} \rightarrow p_n)$$

以下、「妥当な論理式の集合」のことを「論理」と言ったりする。

Definition

論理 L が選言について可換 であるとは、 $A \lor B \lor B \lor A$ の妥当性が同値であることである。また、L が選言について結合的 であるとは、 $A \lor (B \lor C) \lor (A \lor B) \lor C$ の妥当性が同値であることである。そのような論理において

$$\bigvee_{1 \leqslant i < j \leqslant n} (p_i \to p_j)$$

は以下の略記とする。

$$(p_1 \rightarrow p_2) \lor (p_1 \rightarrow p_3) \lor \cdots \lor (p_{n-1} \rightarrow p_n)$$

古典論理や直観主義論理は選言について可換かつ結合的である。

Lemma

選言について可換かつ結合的なn値有限多値論理Lにおいて

$$A = \bigvee_{1 \le i < j \le n+1} (p_i \to p_j)$$

は妥当。

Lemma

選言について可換かつ結合的な n 値有限多値論理 L において

$$A = \bigvee_{1 \le i < j \le n+1} (p_i \to p_j)$$

は妥当。ただし p_1,\ldots,p_{n+1} は異なる原子論理式で、またLで(p o p)ee q は妥当であるとする。

Lemma

選言について可換かつ結合的な n 値有限多値論理 L において

$$A = \bigvee_{1 \le i < j \le n+1} (p_i \to p_j)$$

は妥当。ただし p_1,\dots,p_{n+1} は異なる原子論理式で、また L で(p o p)ee q は妥当 であるとする。

証明.

鳩の巣原理より、任意の付置 v について $v(p_i) = v(p_j)$ なる i < j が存在する。

Lemma

選言について可換かつ結合的な n 値有限多値論理 L において

$$A = \bigvee_{1 \le i < j \le n+1} (p_i \to p_j)$$

は妥当。ただし p_1,\dots,p_{n+1} は異なる原子論理式で、また L で $(p o p) \lor q$ は妥当 であるとする。

証明.

鳩の巣原理より、任意の付置 v について $v(p_i) = v(p_j)$ なる i < j が存在する。A から $p_i \rightarrow p_j$ を取り除いた論理式を B とすると、

Lemma

選言について可換かつ結合的なn 値有限多値論理L において

$$A = \bigvee_{1 \le i < j \le n+1} (p_i \to p_j)$$

は妥当。ただし p_1,\dots,p_{n+1} は異なる原子論理式で、また L で $(p o p) \lor q$ は妥当 であるとする。

証明.

鳩の巣原理より、任意の付置 v について $v(p_i)=v(p_j)$ なる i < j が存在する。A から $p_i \to p_j$ を取り除いた論理式を B とすると、仮定より $v((p_i \to p_j) \lor B) \in D$ で、

Lemma

選言について可換かつ結合的なn 値有限多値論理L において

$$A = \bigvee_{1 \le i < j \le n+1} (p_i \to p_j)$$

は妥当。ただし p_1,\dots,p_{n+1} は異なる原子論理式で、また L で $(p o p) \lor q$ は妥当 であるとする。

証明.

鳩の巣原理より、任意の付置 v について $v(p_i)=v(p_j)$ なる i < j が存在する。A から $p_i \to p_j$ を取り除いた論理式を B とすると、仮定より $v((p_i \to p_j) \lor B) \in D$ で、可換性と結合性より $v(A) \in D$ となる。

命題

任意の自然数 n について、直観主義論理は n 値論理ではない。

命題

任意の自然数 n について、直観主義論理は n 値論理ではない。

証明.

直観主義論理がn値論理であったとすると、先程の補題から

$$\bigvee_{1 \leqslant i < j \leqslant n+1} (p_i \to p_j)$$

が妥当。

命題

任意の自然数 n について、直観主義論理は n 値論理ではない。

証明.

直観主義論理がn値論理であったとすると、先程の補題から

$$\bigvee_{1 \leqslant i < j \leqslant n+1} (p_i \to p_j)$$

が妥当。一方で選言特性からある i < j について $p_i \rightarrow p_j$ が妥当である から矛盾。

参考: 大西論理学での証明

命題

直観主義論理は三値論理ではない。

参考: 大西論理学での証明

命題

直観主義論理は三値論理ではない。

証明のようなもの.

直観主義論理が三値論理だったとする。

$$(p_1 \leftrightarrow p_2) \lor (p_1 \leftrightarrow p_3) \lor (p_1 \leftrightarrow p_4) \lor (p_2 \leftrightarrow p_3) \lor (p_2 \leftrightarrow p_4) \lor (p_3 \leftrightarrow p_4)$$

は、三値論理においては鳩の巣原理から妥当なはずである。

参考: 大西論理学での証明

命題

直観主義論理は三値論理ではない。

証明のようなもの.

直観主義論理が三値論理だったとする。

$$(p_1 \leftrightarrow p_2) \lor (p_1 \leftrightarrow p_3) \lor (p_1 \leftrightarrow p_4)$$
$$\lor (p_2 \leftrightarrow p_3) \lor (p_2 \leftrightarrow p_4) \lor (p_3 \leftrightarrow p_4)$$

は、三値論理においては鳩の巣原理から妥当なはずである。

一方で直観主義論理の選言特性からある $p_i\leftrightarrow p_j$ が妥当になり矛盾。

00000