Polyalphabetic Ciphers	
Vigenère Cipher	
Autokey Cipher	
Vernam Cipher	
Transposition Techniques	
Rail Fence Cipher	
Row Transposition Cipher	

Polyalphabetic Ciphers Vigenère Cipher Autokey Cipher Vernam Cipher Transposition Techniques Rail Fence Cipher Row Transposition Cipher

Polyalphabetic Ciphers

- □ A polyalphabetic cipher is any cipher based on substitution, using multiple substitution alphabets.
- polyalphabetic cipher techniques have the following features in common:
 - □A set of related monoalphabetic substitution rules is used.
 - □A key determines which particular rule is chosen for a given transformation.

Polyalphabetic Ciphers Encryption

☐ Assume

a	b	С	d	e	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	p	q	r	S	t	u	v	w	X	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

☐ Then We set these Rules:

Polyalphabetic Ciphers Encryption

- ☐ Then We set Key as Rules:
- 1) Shift the first letter three position to the right
- 2) Shift the second letter five position to the right
- 3) Shift the third letter seven position to the right

☐ Given Plaintext = security

Polyalphabetic Ciphers Encryption

☐ Given Plaintext = security

1) Divide Plaintext to three words

a	b	c	d	e	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	p	q	r	S	t	u	v	w	X	у	z
13	14	15	16	17	18	19	20	21	22	23	24	25

- 2) P= sec uri ty
- 3) C= VJJ XWP WD

Polyalphabetic Ciphers Decryption

- ☐ Then We set Key as Rules: (reverse)
- 1) Shift the first letter three position to the left
- 2) Shift the second letter five position to the left
- 3) Shift the third letter seven position to the left

☐ Given Ciphertext = VJJXWPWD

Polyalphabetic Ciphers Decryption

☐ Given C= VJJXWPWD

1) Divide Plaintext to three words as your rules number

a	b	С	d	e	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	p	q	r	S	t	u	v	w	X	у	z
13	14	15	16	17	18	19	20	21	22	23	24	25

- 2) C= VJJ XWP WD
- 3) C= SEC URI TY

Polyalphabetic Ciphers Vigenère Cipher Autokey Cipher Vernam Cipher **Transposition Techniques** Rail Fence Cipher Row Transposition Cipher

Vigenère Cipher

☐ The Vigenère cipher, was invented by a Frenchman, Blaise de Vigenère in the 16th century.

□ Vigenère cipher is a simple polyalphabetic cipher

Vigenère Cipher

- $\Box C_i = (P_i + K) \mod 26$
- $\square P_i = (C_i K) \mod 26$

□ Repeating key

 \square K=deceptive

P=we are discovered save yourself

key:

deceptivedeceptive

plaintext:

wearediscoveredsaveyourself

a	b	С	d	e	f	g	h	i	j	k	Î	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	p	q	r	s	t	u	v	w	X	y	z
13	14	15	16	17	18	19	20	21	22	23	24	25

key:

plaintext:

deceptivedeceptivedeceptive

wearediscoveredsaveyourself

key	3	4	2	4	15	19	8	21	4	3	4	2	4	15
plaintext	22	4	0	17	4	3	8	18	2	14	21	4	17	4
ciphertext	25	8	2	21	19	22	16	13	6	17	25	6	21	19

key	19	8	21	4	3	4	2	4	15	19	8	21	4
plaintext	3	18	0	21	4	24	14	20	17	18	4	11	5
ciphertext	22	0	21	25	7	2	16	24	6	11	12	6	9

☐ Result

key: deceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

□ The strength of Vigenère Cipher is that there are multiple ciphertext letters for each plaintext letter

decryption simply works in reverse

 $\square P_i = (C_i - K) \mod 26$

ciphertext: ZIC<u>VTWQNGRZGVTWAVZHCQYGLMGJ</u> key: deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

Polyalphabetic Ciphers Vigenère Cipher **Autokey Cipher** Vernam Cipher **Transposition Techniques** Rail Fence Cipher Row Transposition Cipher

Autokey Cipher

- □An autokey cipher (also known as the autoclave cipher) is a cipher which incorporates the message (the plaintext) into the key.
- $\square P = \{p_1, p_2, p_3, ..., p_n\}$
- $\square K = \{k_1, p_1, p_2, p_3, ..., p_{n-1}\}\$
- $\square C = \{c_1, c_2, c_3, ..., c_n\}$

Autokey Cipher

$$\square C_i = (P_i + K_i) \mod 26$$

$$\square P_i = (C_i - K_i) \mod 26$$

a	b	c	d	e	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12

												Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Autokey Cipher Encryption

 $\square K=m$

P=attack	is	too	ay
100000000000000000000000000000000000000			

t	а	c	k	i	S	t	0	d	а	y
19	0	2	10	8	18	19	14	3	0	24
19	19	0	2	10	8	18	19	14	3	0
12	19	2	12	18	0	11	7	17	3	24
m	t	c	m	s	а	1	h	r	d	y
	19 19	19 0 19 19 12 19	19 0 2 19 19 0 12 19 2	19 0 2 10 19 19 0 2 12 19 2 12	19 0 2 10 8 19 19 0 2 10 12 19 2 12 18	19 0 2 10 8 18 19 19 0 2 10 8 12 19 2 12 18 0	19 0 2 10 8 18 19 19 19 0 2 10 8 18 12 19 2 12 18 0 11	19 0 2 10 8 18 19 14 19 19 0 2 10 8 18 19 12 19 2 12 18 0 11 7	19 0 2 10 8 18 19 14 3 19 19 0 2 10 8 18 19 14 12 19 2 12 18 0 11 7 17	19 0 2 10 8 18 19 14 3 0 19 19 0 2 10 8 18 19 14 3 12 19 2 12 18 0 11 7 17 3

□ C=mtmtcmsalhrdy

Ciphertext

C Value

Key

P Value

Plaintext

m

t

a

c

S

S

t

m

k

Polyalphabetic Ciphers Vigenère Cipher Autokey Cipher Vernam Cipher **Transposition Techniques** Rail Fence Cipher **Row Transposition Cipher**

Vernam Cipher

□ Vernam Cipher was introduced by an AT&T engineer named Gilbert Vernam in 1918.

☐ The ultimate defense against such a cryptanalysis is to choose a keyword that is as long as the plaintext and has no statistical relationship to it.

Vernam Cipher

Vernam Cipher

☐ Encryption

$$> C = P XOR K$$

Decryption

$$\triangleright P = C XOR K$$

Vernam Cipher Encryption

- □ P=11100011101010101101
- □ K=1001010101

- □ P=11100011101010101101
- □ K=10010101011001010101
- □ C=011101101100111111000

Vernam Cipher Decryption

- □ C=011101101100111111000
- □ K=10010101011001010101
- □ P=11100011101010101101

Polyalphabetic Ciphers Vigenère Cipher Autokey Cipher Vernam Cipher **Transposition Techniques** Rail Fence Cipher **Row Transposition Cipher**

Transposition Ciphers

The clear text message would be encoded using a key of 3.

Use a rail fence cipher and a key of 3.

The clear text message would appear as follows.

Transposition Techniques

□ Transposition Techniques performing some sort of permutation on the plaintext letters (reorder the position of letters in plaintext).

- □ Types:
 - Rail Fence Cipher
 - Row Transposition Cipher

Polyalphabetic Ciphers Vigenère Cipher Autokey Cipher Vernam Cipher **Transposition Techniques** Rail Fence Cipher **Row Transposition Cipher**

Rail Fence Cipher Encryption

- ☐ P= meet me after the toga party
- □ K=2

1)
$$p = \begin{bmatrix} m & e & ma & t & r & h & t & g & p & r & y \\ e & t & e & f & e & t & e & o & a & a & t \end{bmatrix}$$

2) C=mematrhtgpryetefeteoaat

Rail rence Cipner Decryption

- ☐ C=mematrhtgpryetefeteoaat
- □ K=2

1)
$$C = \begin{bmatrix} m & e & ma & t & r & h & t & g & p & r & y \\ e & t & e & f & e & t & e & o & a & a & t \end{bmatrix}$$

2) P= meetmeafterthetogaparty

Polyalphabetic Ciphers Vigenère Cipher Autokey Cipher Vernam Cipher **Transposition Techniques** Rail Fence Cipher **Row Transposition Cipher**

Row Transposition Cipher Encryption

- ☐ P= attack postponed until two am
- ☐ K= 4312567

$$\Box \ C = \begin{pmatrix} 4 & 3 & 1 & 2 & 5 & 6 & 7 \\ a & t & t & a & c & k & p \\ o & s & t & p & o & n & e \\ d & u & n & t & i & l & t \\ w & o & a & m & x & x & x \end{pmatrix} = ttnaaptmtsuoaodwcoixknlxpetx$$

Row Transposition Cipher Decryption

$$\Box$$
 C= ttnaaptmtsuoaodwcoixknlxpetx = Len(C)=28

$$\Box P = \begin{pmatrix} 4 & 3 & 1 & 2 & 5 & 6 & 7 \\ a & t & t & a & c & k & p \\ o & s & t & p & o & n & e \\ d & u & n & t & i & l & t \\ w & o & a & m & x & x & x \end{pmatrix} = attackpostponeduntiltwoamxxx$$

Task 1

□ As shown in Figure below, use Multiplicative Cipher to encrypt "enemy attack tonight" with key = 4.

Task2

☐ As shown in Figure below, use Affine Cipher to encrypt "enemy attack tonight" with key pair (4,3).

