Atividade: projeções ortogonais

Aluno(a):	Turma:	
Professor(a):		

PARTE 1

- [01] Verdadeiro ou falso? A projeção ortogonal de um segmento de reta nos planos xy, xz e yz é sempre um segmento de reta. Justifique sua resposta! Sugestão: estude os "Objetos de Estudo" do software da atividade!
- [02] Verdadeiro ou falso? Se dois objetos possuem as mesmas projeções ortogonais nos planos xy, xz e yz, então estes objetos são iguais. Justifique sua resposta! Sugestão: estude os "Objetos de Estudo" do software da atividade!
- [03] Verdadeiro ou falso? Se um segmento de reta tem comprimento *l*, então suas projeções ortogonais nos planos *xy*, *xz* e *yz*, também possuem comprimento *l*. Justifique sua resposta! Sugestão: estude os "Objetos de Estudo" do software da atividade!
- [04] No software da atividade, selecione a categoria "Objetos de Estudo" e, então, selecione a opção "Segmento de Reta". Denote por *L* o comprimento deste segmento. Se os Controles 2 e 3 da aba "Rotação" possuem valor 0 (zero), então o valor do "Controle 1" determina o ângulo (medido em graus) do segmento de reta com o plano *xy* (verifique!).
- (a) Nos controles da aba "Rotação", coloque "Controle 1" = 0, "Controle 2" = 0 e "Controle 3" = 0. Qual é o comprimento da projeção ortogonal do segmento de reta no plano *xy*?
- (b) Nos controles da aba "Rotação", coloque "Controle 1" = 45, "Controle 2" = 0 e "Controle 3" = 0. Qual é o comprimento da projeção ortogonal do segmento de reta no plano xy? E da projeção no plano yz? E da projeção no plano xz?
- (c) Nos controles da aba "Rotação", coloque "Controle 2" = 0 e "Controle 3" = 0. Qual é o comprimento da projeção ortogonal do segmento de reta no plano xy em função do valor do "Controle 1"?

PARTE 2

[01] No software da atividade, selecione a categoria "Curvas no Espaço" e, então, selecione a opção "Hélice Circular". Esta curva é obtida marcando-se, para cada t no intervalo $[0, 8\pi]$, os pontos no espaço com coordenadas

$$(x(t), y(t), z(t)) = (\cos(t), \sin(t), t).$$

Qual é a projeção ortogonal da hélice no plano xy? E no plano xz? E no plano yz? Justifique sua resposta! Dica: a partir das coordenadas que definem a curva, tente "eliminar" a variável t, obtendo equações só em termos de x, y ou z. Importante: ao fazer sua análise, certifique-se que os valores dos controles da aba "Rotação" são todos iguais a zero.

[02] No software da atividade, selecione a categoria "Curvas no Espaço" e, então, selecione a opção "Curva Interessante 1". Esta curva é obtida marcando-se, para cada *t* no intervalo [–1.2, 1.2], os pontos no espaço com coordenadas

$$(x(t), y(t), z(t)) = (t, t^2, -t^2).$$

Qual é a projeção ortogonal da Curva Interessante 1 no plano xy? E no plano xz? E no plano yz? Justifique sua resposta! Dica: a partir das coordenadas que definem a curva, tente "eliminar" a variável t, obtendo equações só em termos de x, y ou z. Importante: ao fazer sua análise, certifique-se que os valores dos controles da aba "Rotação" são todos iguais a zero.

[03] No software da atividade, selecione a categoria "Curvas no Espaço" e, então, selecione a opção "Curva Interessante 2". Esta curva é obtida marcando-se, para cada *t* no intervalo [-1.2, 1.2], os pontos no espaço com coordenadas

$$(x(t), y(t), z(t)) = (t, t^2, t^3).$$

Qual é a projeção ortogonal da Curva Interessante 2 no plano xy? E no plano xz? E no plano yz? Justifique sua resposta! Dica: a partir das coordenadas que definem a curva, tente "eliminar" a variável t, obtendo equações só em termos de x, y ou z. Importante: ao fazer sua análise, certifique-se que os valores dos controles da aba "Rotação" são todos iguais a zero.

[04] No software da atividade, selecione a categoria "Curvas no Espaço" e, então, selecione a opção "Curva de Viviani". Esta curva é obtida marcando-se, para cada t no intervalo $[0, 2\pi]$, os pontos no espaço com coordenadas

$$(x(t), y(t), z(t)) = (\cos^2(t), \cos(t) \sin(t), \sin(t)).$$

Qual é a projeção ortogonal da Curva de Viviani no plano xy? E no plano xz? Justifique sua resposta! Dica: a partir das coordenadas que definem a curva, tente "eliminar" a variável t, obtendo equações só em termos de x, y ou z. Importante: ao fazer sua análise, certifique-se que os valores dos controles da aba "Rotação" são todos iguais a zero.

PARTE 3

[01] (**Poliedros Equiprojetivos**) A projeção ortogonal de um *poliedro convexo* no plano *xy* é um polígono convexo. Se você girar o poliedro, sua sombra (projeção ortogonal) neste plano também mudará (faça algumas experiências com o *software* da atividade). Dizemos que o poliedro está em uma *posição regular* com relação ao plano *xy* se, depois de girá-lo, nenhuma de suas faces é paralela ao eixo *z*. Por exemplo, o cubo *não está* em posição regular com relação ao plano *xy* nas Figuras (a) e (b) a seguir. Na Figura (c) ele está em posição regular.

Dizemos então que um *poliedro convexo* é *equiprojetivo* se existe um número natural *k* tal que, para toda posição regular do poliedro convexo com relação ao plano *xy*, sua sombra neste plano é um polígono de *k* lados.

(a) Dê valores para os controles "Controle 1", "Controle 2" e "Controle 3" (disponíveis na aba "Rotação" do software da atividade) que colocam cada poliedro especificado em posição *não regular*. Observação: para fornecer um valor com mais casas decimais, digite o número no campo de entrada do controle (use um ponto "." ao invés de uma vírgula "," para números decimais) e, então, pressione a tecla "ENTER".

Posição Não Regular				
Categoria	Poliedro	Valor do Controle 1	Valor do Controle 2	Valor do Controle 3
Sólidos Platônicos	Cubo			
Sólidos Platônicos	Tetraedro			
Sólidos Platônicos	Octaedro			
Sólidos Platônicos	Dodecaedro			
Prismas	Regular de Base Pentagonal			
Prismas	Regular de Base Triangular			

(b) Dê valores para os controles "Controle 1", "Controle 2" e "Controle 3" (disponíveis na aba "Rotação" do software da atividade) que colocam cada poliedro especificado em posição *regular*.

Posição Regular				
Categoria	Poliedro	Valor do Controle 1	Valor do Controle 2	Valor do Controle 3
Sólidos Platônicos	Cubo			
Sólidos Platônicos	Tetraedro			
Sólidos Platônicos	Octaedro			
Sólidos Platônicos	Dodecaedro			
Prismas	Regular de Base Pentagonal			
Prismas	Regular de Base Triangular			

(c) O tetraedro é um poliedro equiprojetivo? E o octaedro? E o dodecaedro? E o icosaedro? Justifique sua resposta! Em caso negativo, forneça valores para os controles da aba "Rotação" que coloque o poliedro em posições regulares com sombras no plano xy com número de lados diferentes.

(d) Os poliedros listados a seguir são equiprojetivos. Colocando-os em (qualquer) posição regular, determine o número de lados (que é constante!) de sua sombra no plano xy.

Poliedros Equiprojetivos				
Categoria	Poliedro	Número de Lados da Sombra no Plano <i>xy</i>		
Sólidos Platônicos	Cubo			
Prismas	Oblíquo de Base Triangular			
Prismas	Oblíquo de Base Quadrangular			
Prismas	Oblíquo de Base Pentagonal			
Prismas	Oblíquo de Base Hexagonal			
Sólidos de Catalan	Dodecaedro Rômbico			
Sólidos de Catalan	Triacontaedro Rômbico			

PARTE 4

- [01] No software da atividade, selecione a categoria "Objetos de Estudo" e, então, selecione a opção "Quadrado". Clique na aba "Rotação" e use os três controles deslizantes para girá-lo. Como você posicionaria este quadrado para que sua projeção ortogonal no plano xy tenha área máxima? E área mínima?
- [02] No software da atividade, selecione a categoria "Sólidos Platônicos" e, então, selecione a opção "Cubo". Clique na aba "Rotação" e use os três controles deslizantes para girá-lo. Como você posicionaria este cubo para que sua projeção ortogonal no plano xy tenha área máxima? E área mínima?