Emergency Goods Distribution Model over Finite-Time Interval using Genetic Algorithm

Worameth Chinchuthakun Mahidol Wittayanusorn School

1. Introduction

- There are victims who didn't receive any donations.
- Manually distribution management is difficult to operate.
- Computer can be help to distribute donations without bias.

2. Problem Description

There are 3 important things the problem:

- Disaster area
- Demand of victims
- Donations

2.1 Disaster Area

- Node = Distribution center + Cities
- Edge = Connection between two nodes
- Weight = Time required to travel on edge

2.2 Demand of victims

2.3 Donations

2.3 Donations (cont'd)

2.4 Assumptions

- Every day distribution center receive donations.
- MUST distribute all received donations in same day.
- NOT know anything about donations received in the future.
- <u>CAN</u> reassign destination to donations during transportation stage.
- NOT consider transportation cost and vehicles.

2.5 Objective Function

 Every nodes has equal ratio between its cumulative utility value and its cumulative demand.

EXAMPLE

Node	Cumulative Utility Value	Cumulative Demand	Ratio
1	70	100	0.7
2	70,000	100,000	0.7
3	7	10	0.7

2.5 Objective Function (cont'd)

$$\min_{(x_1,x_2,\dots,x_n)\in(\mathbb{R}_0^+)^n} \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}}$$

$$p(t) = \lim_{(x \in \mathbb{M}_2^+) \dots, x_n)\in(\mathbb{R}_0^+)} \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}} \frac{p(t)}{n}$$

3. Genetic Algorithm (GA)

There are 3 main parts in GA:

- Chromosome Encoding System
- Fitness Function
- Implementation Detail

3.1 Chromosome Encoding System

- A chromosome is represented by an integer vector.
- For a vector x, x_i is destination of donation index i.

EXAMPLE

- 1st Donation go to 3rd Node
- 2nd Donation go to 1st Node
- 3rd Donation go to 3rd Node
- and so on

3.2 Fitness Function

$$Fitness(\bar{x}) = -\frac{1}{T} \sum_{t=1}^{T} p(t)$$

$$p(t) = \int_{\min(1, \frac{1}{D_{u}(t)})}^{0} \int_{E_{u}(t)}^{1} \left(R_{u}^{if}(t) \int_{t \in [t_{T(G)}(S_{u,1,1}, S_{u,1,2}, u)} \sum_{u \in V(G)} R_{u}(t) \right)^{2} \int_{\lim_{t \to \infty} \left(1, \frac{1}{D_{u}(t)} \sum_{j=1}^{|S_{u}|} b_{S_{u,j,1},S_{u,j,2}} \right)} \int_{if}^{1} \int_{t \in [t_{T(G)}(S_{u,|S_{u}|,1}, S_{u,|S_{u}|,2}, u)} R_{u}(t) \int_{u \in V(G)}^{2} R_{u}(t) \int_{u \in V(G)}^{2} \left(R_{u}^{i}(t) \int_{u \in V(G)}^{1} b_{S_{u,j,1},S_{u,j,2}} \right) \int_{u \in V(G)}^{2} \left(R_{u}^{i}(t) \int_{u \in V(G)}^{1} \left(R_{u}^{i}(t) \int_{u \in V(G)}^{1}$$

3.3 Implementation Detail

Genetic Operators

- K-Tournament Selection
- Uniform Crossover
- Random Resetting

Termination Criteria

- Maximum Evolutionary Generation
- Maximum Evolutionary Non-Improved Generation
- Found Optimal Strategy

Have you realized any problems?

You can reassign destination to donations during transportation stage.

3.4 Dynamic Length Chromosome Encoding System

- Chromosome at <u>different</u> time has <u>different</u> length.
- Chromosome the <u>same</u> time has the <u>same</u> length.
- $x_{t,j}$ is destination of donation index j that distribution center received at time t.

3.5 Population Re-Initialization

- Extend the existing chromosomes to encode new strategy.
- Every chromosome in the previous time is replicated before new gene additions.

4. Discussion

- Not enough donations
 - Node with demand more than average tend to receive more donations than less ones.
- Few nodes take time to reach
 - Algorithm tends to send donations to them first to deal with transportation duration.
- Few nodes with extremely high demand
 - Distribution center tends to ignore them. (not enough donations)
 - Algorithm can distribute donations well. (otherwise)

5. Future Work

Model can be improved in 3 issues:

- Dynamic Graph
- Dynamic Demand
- Financial Constraint

5.1 Dynamic Graph

- Node insertion
- Node deletion
- Edge insertion
- Edge deletion
- Weight modification
- Change distribution center

5.2 Dynamic Demand

$$D_{u}(t) = r_{u}t + z_{u}$$

$$\downarrow$$

$$D_{u}^{(k)}(t) = r_{u,k} (\max(0, t - T_{u,k} + 1))$$

$$+ \sum_{j=1}^{k} r_{u,j-1} (\max(0, \min(t, T_{u,j}) - T_{u,j-1})) + z_{u}$$

5.3 Financial Constraint

$$\min f = \frac{1}{T} \sum_{t=1}^{T} p(t) - C$$

where

$$C = \begin{cases} \lambda \log \left(\Phi - \sum_{t=1}^{T} c(t) \right) & \text{if } \Phi > \sum_{t=1}^{T} c(t) \\ -\infty & \text{if } \Phi \le \sum_{t=1}^{T} c(t) \end{cases}$$

Research Contribution

- From simulation, the proposed optimization model has high potential to be used to distribute donations.
- The dynamic length chromosome encoding system and population reinitialization step are innovative way to solve other optimization problems.