Министерство науки и высшего образования Российской Федерации

Санкт-Петербургский государственный электротехнический университет

«ЛЭТИ» им. В.И. Ульянова (Ленина)

Кафедра систем автоматического управления

Реферат

по дисциплине

«Нелинейное адаптивное управление в технических системах»

Студент группы 9492

Викторов А.Д.

Преподаватель

Путов В.В.

Санкт-Петербург

2024

Содержание

1	Вве	едение	4
3	Проблема управления при нарушении условий согласова-		,
	ния	[5
	2.1	Определение условий согласования	5
3	Метод робастного обхода интегратора		6
	3.1	Основные этапы метода	6
	3.2	Вывод устойчивости системы	7
4	Дву	ухшаговая итеративная процедура синтеза	8
	4.1	Первый шаг: оценка состояния системы	8
	4.2	Второй шаг: корректировка управления	8
5	Зак	тымиение	10

Аннотация

В данной работе рассматриваются методы управления нелинейными неопределенными объектами, когда нарушаются условия согласования системы. Основное внимание уделяется методу робастного обхода интегратора, а также синтезу управления на основе двухшаговой итеративной процедуры. Приведены основные подходы и решения, которые помогают обеспечить устойчивость системы и достичь заданных целей управления в условиях неопределенности. Описаны математические модели, необходимые для реализации данных методов, а также предложены примеры их применения.

1 Введение

Управление нелинейными неопределенными объектами представляет собой одну из наиболее сложных задач в теории автоматического управления. В реальных системах могут возникать различные неопределенности, связанные как с внешними воздействиями, так и с недостаточной информацией о динамике объекта. Особенно сложными становятся задачи управления, когда нарушаются условия согласования. Одним из подходов, позволяющих справиться с этими проблемами, является метод робастного обхода интегратора, который будет рассмотрен в данной работе.

2 Проблема управления при нарушении условий согласования

Для управления нелинейными системами требуется выполнение условий согласования, которые гарантируют возможность синтеза эффективного управления. Однако в реальных условиях данные предположения могут не выполняться. Это приводит к необходимости разработки методов, которые учитывают неопределенности и позволяют стабилизировать систему.

2.1 Определение условий согласования

Условия согласования определяют взаимосвязь между входами и выходами системы, которая обеспечивает возможность существования управляющего воздействия, стабилизирующего объект. Для нелинейной системы вида:

$$\dot{x} = f(x) + g(x)u,\tag{1}$$

где $x \in \mathbb{R}^n$ — вектор состояния, $u \in \mathbb{R}^m$ — вектор управления, f(x) и g(x) — нелинейные функции, описывающие динамику системы, условия согласования определяют, что система должна быть управляемой для всех x. Нарушение условий согласования может приводить к невозможности прямого применения методов линейной теории управления.

3 Метод робастного обхода интегратора

Метод робастного обхода интегратора основан на введении дополнительных коррекций в управление, которые позволяют компенсировать неопределенности и нарушения условий согласования. Этот подход особенно полезен в тех случаях, когда точная модель системы неизвестна или параметры системы изменяются во времени.

Рис. 1: Эквивалентное представление системы.

3.1 Основные этапы метода

Метод робастного обхода интегратора включает несколько ключевых шагов:

1. Формулировка задачи управления с учетом неопределенностей:

$$\dot{x} = f(x) + g(x)(u + \Delta u), \tag{2}$$

где Δu — робастная корректировка управления.

2. Определение структуры управления с применением робастных корректировок:

$$u = -Kx - \alpha(x), \tag{3}$$

где K — матрица обратной связи, а $\alpha(x)$ — корректирующая функция, компенсирующая влияние нелинейностей и неопределенностей.

3. Применение итеративных методов для поиска оптимального решения, где корректировка проводится до достижения приемлемого уровня устойчивости.

3.2 Вывод устойчивости системы

Для оценки устойчивости системы после применения робастного обхода интегратора используется функция Ляпунова V(x):

$$V(x) = \frac{1}{2}x^T P x,\tag{4}$$

где P — положительно определенная матрица. Производная функции Ляпунова должна удовлетворять условию:

$$\dot{V}(x) = x^T P \dot{x} \le -\alpha ||x||^2, \tag{5}$$

где $\alpha > 0$. Это условие гарантирует асимптотическую устойчивость системы.

4 Двухшаговая итеративная процедура синтеза

Одной из эффективных техник для синтеза управления в условиях неопределенности является двухшаговая итеративная процедура. В этой процедуре на первом этапе происходит начальная оценка параметров системы, а на втором этапе осуществляется корректировка управления с учетом полученных данных.

4.1 Первый шаг: оценка состояния системы

На первом этапе процедуры проводится анализ состояния системы и оценка параметров, которые могут быть подвержены неопределенности. Используется метод наблюдателя состояния, описываемый уравнением:

$$\hat{x} = f(\hat{x}) + g(\hat{x})u + L(y - \hat{y}),$$
 (6)

где \hat{x} — оценка состояния, y — измеряемый выход системы, L — матрица наблюдателя. Этот шаг позволяет приблизительно оценить поведение системы и определить начальные условия для дальнейшего синтеза управления.

4.2 Второй шаг: корректировка управления

На втором этапе управление корректируется с использованием робастных методов для минимизации влияния неопределенностей:

$$u_{k+1} = u_k + \Delta u_k, \tag{7}$$

где Δu_k — корректировка на k-м шаге, рассчитываемая на основе текущего состояния \hat{x}_k и оценок параметров. Процесс итеративно повторяется

до достижения заданного критерия устойчивости:

$$||x - \hat{x}|| < \varepsilon, \tag{8}$$

где ε — допустимая погрешность.

5 Заключение

Методы управления нелинейными неопределенными объектами требуют разработки сложных алгоритмов, которые учитывают неопределенности и нарушения согласования. Метод робастного обхода интегратора и двухшаговая итеративная процедура синтеза представляют собой эффективные подходы к решению данных задач, обеспечивая устойчивость и надежность управления в реальных системах. Эти методы находят применение в широком спектре задач, начиная от управления роботизированными системами и заканчивая управлением технологическими процессами, где важно учитывать изменяющиеся условия и неопределенность параметров.