Assignment #2

Elements of Machine Learning

Saarland University - Winter Semester 2024/25

Rabin Adhikari 7072310 raad00002@stud.uni-saarland.de **Dhimitrios Duka** 7059153

dhdu00001@stud.uni-saarland.de

1 Problem 2 (Logistic Regression)

- 2 a) Deriving the gradient of the logistic regression loss function w.r.t. the coefficients β can be done
- з as follows:

$$\frac{\partial}{\partial \beta_{j}} \ell(\beta) = \frac{\partial}{\partial \beta_{j}} \sum_{i=1}^{n} \left[y_{i} \log p(x_{i}; \beta) + (1 - y_{i}) \log (1 - p(x_{i}; \beta)) \right]
= \sum_{i=1}^{n} \left[y_{i} \frac{\partial}{\partial \beta_{j}} \log p(x_{i}; \beta) + (1 - y_{i}) \frac{\partial}{\partial \beta_{j}} \log (1 - p(x_{i}; \beta)) \right]
= \sum_{i=1}^{n} \left[y_{i} \frac{\frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta)}{p(x_{i}; \beta)} + (1 - y_{i}) \frac{\frac{\partial}{\partial \beta_{j}} (1 - p(x_{i}; \beta))}{(1 - p(x_{i}; \beta))} \right]
= \sum_{i=1}^{n} \left[y_{i} \frac{\frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta)}{p(x_{i}; \beta)} - (1 - y_{i}) \frac{\frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta)}{(1 - p(x_{i}; \beta))} \right]
= \sum_{i=1}^{n} \left[\frac{y_{i}}{p(x_{i}; \beta)} \frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta) - \frac{1 - y_{i}}{(1 - p(x_{i}; \beta))} \frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta) \right]$$
(1)

- 4 b) During the training process, we aim to minimize the log loss function. The log loss function is
- 5 defined as follows:

$$\ell(\beta) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log p(x_i; \beta) + (1 - y_i) \log \left(1 - p(x_i; \beta) \right) \right]$$
 (2)

- 6 To better understand how the log loss function beahves, we will examine two distinct cases. In the
- 7 first case, we will consider the case where the true label is $y_i = 1$. In the second case, we will
- 8 consider the case where the true label is $y_i = 0$.
- 9 **Case 1:** $y_i = 1$
- In this case, the log loss function simplifies to:

$$\ell(\beta) = -\frac{1}{n} \sum_{i=1}^{n} \log p(x_i; \beta)$$
(3)

- In order for this term to be minimized, we need the values of $p(x_i; \beta)$ to be as close to 1 as possible.
- This means that the model should be confident that the input x_i belongs to class 1, thus aligning with
- the true label $y_i = 1$.
- 14 Case 2: $y_i = 0$
- 15 In this case, the log loss function simplifies to:

$$\ell(\beta) = -\frac{1}{n} \sum_{i=1}^{n} \log(1 - p(x_i; \beta))$$
 (4)

- In order for this term to be minimized, we need the values of $p(x_i; \beta)$ to be as close to 0 as possible.
- This means that the model should be confident that the input x_i belongs to class 0, thus aligning with
- the true label $y_i = 0$.
- 19 **c) i)** The outputs from the logistic regression model for the given data points are summarized in Table 20 1.

Table 1: Predictions for the given data points using the logistic regression model. GT: Ground Truth.

x_1	x_2	$p(x_i,\beta)$	Prediction	GT
1.0	2.0	0.182	0	0
2.0	3.0	0.378	0	0
3.0	4.0	0.622	1	0
4.0	5.0	0.818	1	1
5.0	6.0	0.924	1	1
6.0	7.0	0.971	1	1
7.0	8.0	0.989	1	1
8.0	9.0	0.996	1	1

- c) ii) Given the threshold of 0.5, the predictions for the given data points are summarized in Table 1.
- 22 The model missclassifies only one data point.