Лабораторная работа №8

Модель конкуренции двух фирм

Ишанова А.И. группа НФИбд-02-19

Содержание

1	Цель работы	4
2	Задание работы 2.0.1 Вариант 18	5 5
3	Теоретическое введение	8
4	Выполнение лабораторной работы	12
5	Вывод	16
6	Список литературы	17

List of Figures

4.1	Код программы для 1 случая (не учитываются социально-	
	психологические факторы)	12
4.2	График для 1 случая (не учитываются социально-психологические	
	факторы)	13
4.3	Код программы для 2 случая (учитываются социально-	
	психологические факторы)	14
4.4	График для 2 случая (учитываются социально-психологические	
	факторы)	15

1 Цель работы

Ознакомиться с моделью конкуренции фирм, реализовать модель в OpenModelica.

2 Задание работы

- 1. Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с введенной нормировкой для случая 1.
- 2. Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с введенной нормировкой для случая 2.

2.0.1 Вариант 18

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где
$$a_1=rac{p_{cr}}{ au_1^2\widetilde{p_1}^2Nq}, a_2=rac{p_{cr}}{ au_2^2\widetilde{p_2}^2Nq}, b=rac{p_{cr}}{ au_1^2\widetilde{p_1}^2 au_2^2\widetilde{p_2}^2Nq}, c_1=rac{p_{cr}-\widetilde{p_1}}{ au_1\widetilde{p_1}}, c_2=rac{p_{cr}-\widetilde{p_2}}{ au_2\widetilde{p_2}}$$
 Также введена нормировка $t=c_1\theta$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - (\frac{b}{c_1} + 0.0009)M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1=4.2, M_0^2=3.8, p_{cr}=11.4, N=26, q=1, \tau_1=14, \tau_2=22, \widetilde{p_1}=6.6, \widetilde{p_2}=4.5.$$

Замечание:

Значения $p_{cr},\widetilde{p_{1,2}},N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N – число потребителей производимого продукта.

au – длительность производственного цикла.

р – рыночная цена товара.

 \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции.

q – максимальная потребность одного человека в продукте в единицу времени. $heta = rac{t}{c_1}$ - безразмерное время.

1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без

- учета постоянных издержек и с введенной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с введенной нормировкой для случая 2.

3 Теоретическое введение

Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - M оборотные средства предприятия.
 - au длительность производственного цикла.
 - p рыночная цена товара.
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
 - δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу вре-

мени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k\frac{p}{S} = q(1 - \frac{p}{P_{cr}})$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = p_{cr} (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина p_{cr} = Sq/k. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса в форме выше является пороговой (то есть, Q(S/p) = 0 при $p \geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - \kappa$$

Уравнение для рыночной цены р представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением:

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

Из этого следует, что равновесное значение цены р равно:

$$p=p_{cr}(1-\frac{M\delta}{\tau\tilde{p}Nq})$$

Уравнение приобретает вид:

$$\frac{dM}{dt} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr}}{Nq} - \kappa$$

Уравнение имеет два стационарных решения, соответствующих условию dM/dt = 0:

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = \kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения M равны.

$$\widetilde{M_{+}}=Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \widetilde{M_{-}}=\kappa\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p}})$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M}_- неустойчиво, так, что при $M<\widetilde{M}_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит,

что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: δ = 1, а параметр τ будем считать временем цикла, с учётом сказанного.[1]

4 Выполнение лабораторной работы

1. Пишем код для первого случая. (fig. 4.1)

```
1 model rivalry1
 parameter Real M01 = 4.2;
 3 parameter Real M02 = 3.8;
 4 parameter Real pcr = 11.4;
 5 parameter Real N = 26;
 6 parameter Real q = 1;
 7 parameter Real thau1 = 14;
8 parameter Real thau2 = 22;
9 parameter Real p1 = 6.6;
10 parameter Real p2 = 4.5;
11
12 parameter Real a1 = pcr/(thau1^2*p1^2*N*q);
parameter Real a2 = pcr/(thau2^2*p2^2*N*q);
parameter Real b = pcr/(thau1^2*p1^2*thau2^2*p2^2*N*q);
parameter Real c1 = (pcr-p1)/(thau1*p1);
16 parameter Real c2 = (pcr-p2)/(thau2*p2);
17
18  Real M1(start = M01);
19 Real M2 (start = M02);
20
21 equation
der(M1) = M1 - b/c1*M1*M2 - a1/c1*M1^2;
23 der(M2) = c2/c1*M2 - b/c1*M1*M2 - a2/c1*M2^2;
24 end rivalry1;
```

Figure 4.1: Код программы для 1 случая (не учитываются социальнопсихологические факторы)

2. Компилируем и получаем график. (fig. 4.2)

Figure 4.2: График для 1 случая (не учитываются социально-психологические факторы)

3. Пишем код для второго случая.(fig. 4.3).

```
1 model rivalry2
 2 parameter Real M01 = 4.2;
   parameter Real M02 = 3.8;
 4 parameter Real pcr = 11.4;
 5 parameter Real N = 26;
   parameter Real q = 1;
   parameter Real thau1 = 14;
8 parameter Real thau2 = 22;
   parameter Real p1 = 6.6;
 9
10 parameter Real p2 = 4.5;
11
12
   parameter Real a1 = pcr/(thau1^2*p1^2*N*q);
   parameter Real a2 = pcr/(thau2^2*p2^2*N*q);
13
parameter Real b = pcr/(thau1^2*p1^2*thau2^2*p2^2*N*q);
15
   parameter Real c1 = (pcr-p1)/(thau1*p1);
16
   parameter Real c2 = (pcr-p2)/(thau2*p2);
17
18
   Real M1(start = M01);
19
   Real M2 (start = M02);
20
21
    equation
22
    der(M1) = M1 - (b/c1+0.0009)*M1*M2 - a1/c1*M1^2;
23
    der(M2) = c2/c1*M2 - b/c1*M1*M2 - a2/c1*M2^2;
24
    end rivalry2;
```

Figure 4.3: Код программы для 2 случая (учитываются социальнопсихологические факторы)

4. Компилируем и получаем график. (fig. 4.4)

Figure 4.4: График для 2 случая (учитываются социально-психологические факторы)

5 Вывод

В ходе выполнения данной работы мы познакомились с моделью конкуренции фирм, реализовали модели в случае, когда не учитываются социальнопсихологические факторы, и в случае, когда они учитываются. И получили два графика зависимости оборотных средст предприятий от нормированного времени.

6 Список литературы

1. Теоретические материалы курса.