ESAME DI MATEMATICA DISCRETA $\frac{21/01/2022}$

PRE-APPELLO DI GENNAIO

ISTRUZIONI,

leggere attentamente.

- (1) Tempo massimo: 2 ore.
- (2) Voto massimo: **30/30**.
- (3) È possibile ritirarsi dall'esame, ma non prima di un'ora dall'inizio.
- (4) Dove richiesto è necessario spiegare le risposte. Risposte corrette senza spiegazioni o con spiegazioni errate o incoerenti saranno valutate 0.
- (5) Si è ammessi all'orale con un punteggio di almeno 15/30.
- (6) Non è permessa nessuna forma di comunicazione con l'esterno o con gli altri partecipanti all'esame.
- (7) Per la consegna è necessario mandare per e-mail la prova all'indirizzo slapenta@unisa.it con oggetto "appello matematica discreta gennaio".
- (8) Buon lavoro!

Esercizio 1 (8 punti). Sia $A=\mathbb{N}\times\mathbb{N}$ e $R\subseteq A\times A$ data da

$$(a,b)R(c,d) \iff a+d=b+c$$

- (1) Dimostrare che R è una relazione di equivalenza su A.
- (2) Descrivere le classi di equivalenza di (1,1), (1,2) e (2,1).
- (3) Più in generale, descrivere le classi di equivalenza di (a, b) distinguendo i casi a < b e a > b.

Soluzione:

- Riflessività e simmetria sono banali. Per la transitività osserviamo che (a,b)R(c,d) e (c,d)R(e,f) implicano che a+d=b+c e c+f=d+e. Bisogna dimostrare che a+f=b+e. Si ha a+f+c=a+d+e=c+b+e, da cui segue a+f=b+e per la cancellatività della somma.
- Si ha $[(1,1)]_R = \{(a,a) \mid a \in \mathbb{N}\}; \text{ se } a > b, [(a,b)]_R = \{(n+k,n) \mid k=a-b, n \in \mathbb{N}\}; \text{ se } a < b, [(a,b)]_R = \{(n,n+k) \mid k=b-a, n \in \mathbb{N}\}.$

Esercizio 2 (7 punti). Trovare tutte le soluzioni del seguente sistema di equazioni congruenziali:

$$\begin{cases} x \equiv 5 \pmod{9} \\ x \equiv 3 \pmod{7} \end{cases}$$

Soluzione: La prima equazione ha soluzione generica s=5y+9, che imposta nella seconda equazione mi dà $5y \equiv -2 \pmod{7}$. Risolvendo quest'ultima si ottiene $y \equiv 6 \pmod{7}$ e da qui [59]₆₃ come insieme di tutte le possibili soluzioni del sistema.

Esercizio 3 (7 punti). Sia $G = \{e, a, b, c\}$ con

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, c = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Scrivere la tavola di moltiplicazione di (G, *), dove * è l'usuale prodotto tra matrici, e stabilire se (G, *) è un gruppo abeliano.

Soluzione: La tavola di moltiplicazione è

L'operazione è associativa per ogni terna di matrici, quindi lo è in particolare in G. L'elemento neutro appartiene a G, dalla tavola si vede che * è commutativa ristretta G. Inoltre, sempre guardando alla tavolta si vede anche che $a^{-1} = a$ e $b^{-1} = c$, quindi tutti gli elementi sono invertibili con inverso in G. Di conseguenza (G, *) è un gruppo abeliano.

Esercizio 4 (8 punti). Sia A una matrice $n \times n$ su un campo \mathbb{K} . Dimostrare che le matrici X $n \times n$ su \mathbb{K} tali che AX = XA formano uno spazio vettoriale su \mathbb{K} .

Soluzione: Sia $S = \{X \in M_n(\mathbb{K}) \mid AX = XA\}$. Sappiamo già che $M_n(\mathbb{K})$ è uno spazio vettoriale su \mathbb{K} , quindi è sufficiente verificare che S è chiuso per somma e prodotto scalare.

- (1) per ogni $X, Y \in S$, A(X+Y) = AX + AY = XA + YA = (X+Y)A, che implica $X+Y \in S$;
- (2) per ogni $\lambda \in \mathbb{K}$ e $X \in S$, $A(\lambda X) = \lambda(AX) = \lambda(XA) = (\lambda X)A$, che implica $\lambda X \in S$.