HOMEWORK 2 – Q1

MINGLANG XIE z5228006 1. Given positive integers M and n compute M^n using only $O(\log(n))$ many multiplications. (15 pts)

Solution:

There are two ways to solve this question.

1. We first divide M^n into two parts, then we have $M^n = M^{\left(\frac{n}{2}\right)^2}$. We solve it recursively, then we have $M*M=M^2, M^4=(M^2)^2=M*M*M*$ $M, and ((M^2)^2)^2=M*M*...*$ $M \ (there \ are \ 8 \ multiplications)$, but we only need $log_2(8)=3$ multiplications to get a answer that need 8 multiplications. Thus, we can compute M^2 using only $O(\log(n))$ many multiplications. However, if n is a odd number, we have $M^n=M*(M^{n-1})$, we need

more M into the finally answer we compute (which is M^{n-1}), it also using only $(\log(n) + 1) = O(\log(n))$ many multiplications.

to do the same thing with M^{n-1} , and multiple one

2. We can write M^n in binary as $M^n = 2^{k1} + 2^{k2} + 2^{k3} \dots 2^{km}$ where $k1 > k2 > k3 > \dots km$ and $k1 = \log_2 n$; then $M^n = M^{2^{k1}} M^{2^{k2}} M^{2^{k3}} \dots M^{2^{km}}$. This involves at most $log_2(n)$ multiplications. So it is enough to compute all of M^{2^j} for all $1 \le j \le log_2(n)$ with at

most $log_2(n)$ multiplications. To do that, use repeated squaring, as show below:

```
result = 1;
base = 2;
while (b != 0){
    if (b&1 > 0){
        result *= base;
    }
    base *= base;
    b >>= 1;
}
return result
```