

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the participant : Suthar Dhruvi Dilipkumar

Title of the circuit: Priority Encoder

Theory/Description:

Parity encoder circuit basically convert 4 bit input data into binary representation.the operation of the parity encoder is such that if 2 or more inputs are 1 at a time then the input having highest priority will be take procedure.

Here x are Don't care conditions that means it can be either 0/1.

Truth table for the same is given below

Inputs				Outputs		
D	D_1	D_{ℓ}	D_3	X	у	V
0	0	0	0	X	X	0
·I	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

The simple circuit useing basic gates are as shown here,

So basic equation for the circuit will be

X = D2 + D3

Y = D3 + D1 D2

Z = D0 + D1 + D2 + D3

application of parity encoder: A common use of priority encoders is for interrupt controllers, to select the most critical out of multiple interrupt requests.

Circuit Diagram(s):

Results (Input, Output waveforms and/or Multimeter readings):

inputs:

Output:

Source/Reference(s): https://tams.informatik.uni-hamburg.de/