

A NOTE ON AN INVERSE SCATTERING PROBLEM FOR THE HELMHOLTZ EQUATION ON THE LINE

INGRID BELTITĂ

ABSTRACT. We consider the uniqueness in the inverse scattering problem for the equation

$$u'' + \frac{k^2}{c^2} u = 0,$$

on \mathbb{R} , where c is a real measurable function with $c(x) \geq c_m > 0$, $|c(x) - 1| \leq C\langle x \rangle^{-1-\delta}$ and $c' \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$.

1. INTRODUCTION

We consider the inverse scattering problem for the equation

$$(1.1) \quad -u'' - \frac{k^2}{c^2} u = 0$$

where c is a real measurable function satisfying

[H1] There exist $c_0 > 0$, $c_M > 0$ such $c_0 < c(x) \leq c_M$, a.e. $x \in \mathbb{R}$;

[H2] One has $|c(x) - 1| \leq C\langle x \rangle^{-1-\delta}$, a. e. $x \in \mathbb{R}$, with $\delta > 0$, and C is a positive constant independent of x .

Then for each $k \in \mathbb{R} \setminus \{0\}$ there exist unique solutions $u_1(x, k)$, $u_2(x, k)$ to the Helmholtz equation (1.1) such that

$$\begin{aligned} u_1(x, k) &\sim e^{ikx} && \text{when } x \rightarrow \infty, \\ u_2(x, k) &\sim e^{-ikx} && \text{when } x \rightarrow -\infty. \end{aligned}$$

Then $u_1(\cdot, k)$ and $\overline{u_1(\cdot, k)}$ (respectively $u_2(\cdot, k)$ and $\overline{u_2(\cdot, k)}$) are linearly independent solutions of (1.1), therefore

$$\begin{aligned} u_1(x, k) &\sim \frac{1}{T_2(k)} e^{ikx} + \frac{R_2(k)}{T_2(k)} e^{-ikx} && \text{when } x \rightarrow -\infty, \\ u_2(x, k) &\sim \frac{1}{T_1(k)} e^{-ikx} + \frac{R_1(k)}{T_1(k)} e^{ikx} && \text{when } x \rightarrow \infty, \end{aligned}$$

where $R_1(k)$, $R_2(k)$, $T_1(k)$ and $T_2(k)$ are complex constants determined by c and k . (See also the next section.)

The matrix

$$S(k) = \begin{pmatrix} T_1(k) & R_2(k) \\ R_1(k) & T_2(k) \end{pmatrix}$$

is the scattering matrix determined by c ; $R_1(k)$ and $R_2(k)$ are the reflexion coefficients, whereas $T_1(k)$ and $T_2(k)$ are the transmission coefficients. $S(k)$ is an unitary matrix, and thus $|R_j(k)| \leq 1$, $j = 1, 2$.

We shall assume that $R_2(k) = R_2(k; c)$ is known. Our aim here is to prove the uniqueness part of the inverse scattering problem, that is, to prove the next theorem.

Theorem 1.1. *The mapping*

$$\mathcal{R}: \{c: \mathbb{R} \rightarrow \mathbb{R}, \text{ measurable } | c \text{ satisfies [H1] and [H2], } c' \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})\} \rightarrow L^\infty(\mathbb{R});$$

$$\mathcal{R}(c) = R_2(k; c)$$

is injective.

The methods used in the Schrödinger case ([F], [DT], [M], [AKM], and the references thererein) are not available in this case, since the behaviour in k , $|k|$ large, of the solutions $u_1(x, k)$, $u_2(x, k)$ is no longer easy to control, at least when c is not assumed to be smooth enough. To compensate, we shall use tools from the theory of analytic functions on a half-plane and an estimate ([SyWG], [Br00]) for the reflexion coefficient associated to a function c which is constant on a half-axis and $c' \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.

The paper is organized as follows: In section 2 the construction of $u_1(x, k)$, $u_2(x, k)$ and of the scattering matrix is briefly presented, along with some of their properties. Section 3 deals with properties of the function $\frac{u'}{iku}$. The fact that $T_1(k)$ is uniquely determined by $R_2(k)$ is proved in section 4. Some further analysis of the behaviour in k of $u_1(x, k)$ is given in section 5. In all these sections only [H1] and [H2] are assumed to be satisfied. Finally, Theorem 1.1 is proved in section 6, under the additional assumption that $c' \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.

2. JOST SOLUTIONS AND THE SCATTERING MATRIX

2.1. Jost solutions. The scattering matrix is constructed by using special solutions of the Helmholtz equation. For $k \in \overline{\mathbb{C}^+}$ we consider the Jost solutions $(u_j)_{j=1,2}$ to the equation

$$(2.1) \quad u'' + \frac{k^2}{c^2}u = 0.$$

They satisfy $u_1(x, k) \sim e^{ikx}$ when $x \rightarrow \infty$, while $u_2(x, k) \sim e^{-ikx}$ when $x \rightarrow -\infty$.

The proof of the next theorem is similar to the proof of the analogous result in the Schrödinger case (see [DT]). We use the notation

$$(2.2) \quad q = 1 - \frac{1}{c^2}.$$

From [H1] and [H2] we see that

$$|q(x)| \leq C\langle x \rangle^{-1-\delta}, \quad a.e. x \in \mathbb{R}.$$

We also need the following functions

$$\gamma(x) = \int_x^\infty |q(y)| dy; \quad \eta(x) = \int_{-\infty}^x |q(y)| dy.$$

and set

$$(2.3) \quad \gamma_0 = \sup_{x \in \mathbb{R}} |q(x)|.$$

Theorem 2.1. *For every $k \in \overline{\mathbb{C}^+}$, there exist unique the solutions $u_1(x, k)$, $u_2(x, k)$ to the equation (2.1) such that:*

$$(2.4) \quad e^{-ikx} u_1(x, k) \rightarrow 1, \quad e^{ikx} u_2(x, k) \rightarrow 1,$$

when $x \rightarrow \infty$ and $x \rightarrow -\infty$, respectively.

The following estimates hold:

$$(2.5) \quad |u_1(x, k) - e^{ikx}| \leq |k| \gamma(x) e^{|k|\gamma(x)-x\operatorname{Im} k},$$

$$(2.6) \quad |u_2(x, k) - e^{-ikx}| \leq |k| \eta(x) e^{|k|\eta(x)+x\operatorname{Im} k},$$

$$(2.7) \quad |u'_1(x, k) - ik u_1(x, k)| \leq |k|^2 \gamma(x) \left(1 + |k| \|q\|_{L^1} e^{|k|\|q\|_{L^1}} \right) e^{-x\operatorname{Im} k};$$

$$(2.8) \quad |u'_2(x, k) + ik u_2(x, k)| \leq |k|^2 \eta(x) \left(1 + |k| \|q\|_{L^1} e^{|k|\|q\|_{L^1}} \right) e^{x\operatorname{Im} k};$$

$$(2.9) \quad \overline{u_1(x, k)} = u_1(x, -\bar{k}), \quad \overline{u_2(x, k)} = u_2(x, -\bar{k}).$$

When $x \in \mathbb{R}$ is fixed, the functions

$$\mathbb{C}^+ \ni k \mapsto u_j(x, k) \in \mathbb{C}, \quad \mathbb{C}^+ \ni k \mapsto u'_j(x, k) \in \mathbb{C},$$

$j = 1, 2$, are holomorphic and extend continuously at $\operatorname{Im} k = 0$.

Remark. If we set

$$m_1(x, k) = e^{-ixk} u_1(x, k), \quad m_2(x, k) = e^{-ixk} u_2(x, k)$$

then $m_1(x, k)$ and $m_2(x, k)$ solve the equations

$$(2.10) \quad m''_1(x, k) + 2ikm'_1(x, k) = k^2 q(x) m_1(x, k),$$

$$(2.11) \quad m''_2(x, k) - 2ikm'_2(x, k) = k^2 q(x) m_2(x, k),$$

respectively. The previous theorem gives also that

$$\begin{aligned} |m_1(x, k) - 1| &\leq |k| \gamma(x) e^{|k|\gamma(x)}, \\ |m_2(x, k) - 1| &\leq |k| \eta(x) e^{|k|\eta(x)}, \\ |m'_1(x, k)| &\leq |k|^2 \gamma(x) \left(1 + |k| \|q\|_{L^1} e^{|k|\|q\|_{L^1}} \right), \\ |m'_2(x, k)| &\leq |k|^2 \eta(x) \left(1 + |k| \|q\|_{L^1} e^{|k|\|q\|_{L^1}} \right) \end{aligned}$$

when $k \in \overline{\mathbb{C}^+}$ and $x \in \mathbb{R}$.

2.2. The scattering matrix. We denote by

$$[f, g]_x = f'(x)g(x) - f(x)g'(x)$$

the wronskian of f and g . If this quantity is constant on \mathbb{R} , it will be denoted simply by $[f, g]$.

Let $u_1(\cdot, k)$, $u_2(\cdot, k)$ be the solutions constructed in the previous subsection.

Consider $k \in \mathbb{R} \setminus \{0\}$. It follows from relations (2.5) and (2.7) Liouville's theorem that

$$(2.12) \quad \begin{aligned} [u_1(\cdot, k), u_1(\cdot, -k)] &= \lim_{x \rightarrow \infty} (u'_1(x, k)u_1(x, -k) - u_1(x, k)u'_1(x, -k)) \\ &= 2ik \neq 0. \end{aligned}$$

Consequently, if $k \in \mathbb{R} \setminus \{0\}$ and a is positive, then

$$(2.13) \quad |au'_1 \pm ik u_1|^2 = a^2|u'_1|^2 + k^2|u_1|^2 \pm 2k^2a.$$

We similarly get (from (2.6) and (2.8))

$$(2.14) \quad [u_2(\cdot, k), u_2(\cdot, -k)] = -2ik \neq 0,$$

$$(2.15) \quad |au'_2 \pm ik u_2|^2 = a^2|u'_2|^2 + k^2|u_2|^2 \mp 2k^2a.$$

We deduce from (2.9), that u_1 , \bar{u}_1 (u_2 , \bar{u}_2) are linearly independent solutions of (2.1). Using again (2.12) we see that there are some constants $T_1(k)$, $T_2(k)$, $R_1(k)$, $R_2(k)$ such that $1/T_j(k) \neq 0$, $j = 1, 2$ and

$$(2.16) \quad u_2(x, k) = \frac{R_1(k)}{T_1(k)}u_1(x, k) + \frac{1}{T_1(k)}u_1(x, -k),$$

$$(2.17) \quad u_1(x, k) = \frac{R_2(k)}{T_2(k)}u_2(x, k) + \frac{1}{T_2(k)}u_2(x, -k),$$

when $k \neq 0$ is real. $R_1(k)$, $R_2(k)$, $T_1(k)$, $T_2(k)$ are the scattering coefficients of c at energy k^2 . The first two quantities are the reflexion coefficients, while the other two are the transmission coefficients, and the matrix

$$S(k) = \begin{pmatrix} T_1(k) & R_2(k) \\ R_1(k) & T_2(k) \end{pmatrix}$$

is the scattering matrix.

The properties of u_1 and u_2 give more on the scattering coefficients. We see from (2.12), (2.14), (2.16) and (2.17) that

$$(2.18) \quad [u_1(x, k), u_2(x, k)] = \frac{2ik}{T_1(k)} = \frac{2ik}{T_2(k)},$$

$$(2.19) \quad [u_2(x, k), u_1(x, -k)] = 2ik \frac{R_1(k)}{T_1(k)},$$

$$(2.20) \quad [u_2(x, -k), u_1(x, k)] = 2ik \frac{R_2(k)}{T_2(k)}.$$

It follows from (2.18) and (2.15) that

$$(2.21) \quad T_1(k) = T_2(k) \stackrel{\text{not}}{=} T(k) \quad \text{and} \quad \overline{T(k)} = T(-k), \quad \text{when } k \in \mathbb{R},$$

and then from (2.19), (2.20), (2.21) and (2.9) it follows that

$$(2.22) \quad R_1(k)T(-k) + R_2(-k)T(k) = 0,$$

$$(2.23) \quad \overline{R_1(k)} = R_1(-k), \quad \overline{R_2(k)} = R_2(-k).$$

Remark. The function $2ik/T(k)$ can be analytically extended to \mathbb{C}^+ , taking (2.18) as a definition. It extends continuously to $\mathbb{R} \setminus \{0\}$, and it can not vanish in any point of $\overline{\mathbb{C}^+} \setminus \{0\}$, since there are no eigenvalues for the operator $-c(cu)''$ considered as a self-adjoint operator in $L^2(\mathbb{R})$ with domain $\{u \in L^2 \mid (cu)'' \in L^2\}$. We thus see that $T(k)$ can be extended as a holomorphic function to \mathbb{C}^+ , continuous on $\mathbb{R}^+ \setminus \{0\}$.

In (2.16) we replace $u_1(x, k)$ by its expression in (2.17) and use (2.22), (2.23). We get that

$$(2.24) \quad |T(k)|^2 + |R_2(k)|^2 = 1.$$

It follows similarly that

$$(2.25) \quad |T(k)|^2 + |R_1(k)|^2 = 1.$$

As a consequence, the matrix $S(k)$ is unitary and

$$(2.26) \quad |T(k)| \leq 1, \quad |R_1(k)| \leq 1, \quad |R_2(k)| \leq 1, \quad k \in \mathbb{R} \setminus \{0\}.$$

We need an estimate for $R_2(k)$ when k is in a neighbourhood of 0. We can easily obtain (see Ch. 2, §3 [DT]):

$$(2.27) \quad \frac{R_2(k)}{T(k)} = \frac{k}{2i} \int_{-\infty}^{+\infty} e^{2ikt} q(t) m_1(t, k) dt,$$

$$(2.28) \quad \frac{1}{T(k)} = 1 - \frac{k}{2i} \int_{-\infty}^{+\infty} q(t) m_1(t, k) dt.$$

when $k \in \mathbb{R} \setminus \{0\}$.

Lemma 2.2. (i) *The function $\mathbb{R} \setminus \{0\} \ni k \mapsto T(k) \in \mathbb{C}$ extends to a continuous function on $\overline{\mathbb{C}^+}$ with $T(0) = 1$.*

(ii) *The function $\mathbb{R} \setminus \{0\} \ni k \mapsto R_2(k) \in \mathbb{C}$ extends to a continuous function on \mathbb{R} , with $R_2(0) = 0$. Moreover*

$$(2.29) \quad |R_2(k)| \leq C|k|, \quad \text{when } k \in \mathbb{R},$$

$$(2.30) \quad \lim_{k \rightarrow 0} \frac{R_2(k)}{k} = \frac{1}{2i} \int_{-\infty}^{+\infty} q(t) dt,$$

with C a constant independent on k .

Proof. The first part of the proof follows from the remark above, relation (2.28), and Theorem 2.1.

It follows from (2.27) that $k \rightarrow R_2(k)/T(k)$ extends continuously \mathbb{R} , and since $k \rightarrow T(k)$ extends continuously on \mathbb{R} we get that $k \rightarrow R_2(k)$ has the same property. The remaining assertions of the statement are direct consequences of (2.27) and (2.28), taking into account that $|T(k)| \leq 1$ and (2.5) holds. \square

Lemma 2.3. *The equality*

$$(2.31) \quad 2\operatorname{Re}(T(k)m_1(x, k)m_2(x, k)) = |T(k)m_1(x, k)|^2 + |T(k)m_2(x, k)|^2.$$

holds for every $x \in \mathbb{R}$ and $k \in \mathbb{R}$.

Proof. We write $u_1(x, k) = e^{ikx}m_1(x, k)$ and $u_2(x, k) = e^{-ikx}m_2(x, k)$. Then the equality (2.16) becomes

$$(2.32) \quad T(k)m_2(x, k) = R_1(k)e^{2ikx}m_1(x, k) + \overline{m_1(x, k)},$$

when $x \in \mathbb{R}$ and $k \in \mathbb{R}$. We have used that $\overline{m_1(x, k)} = m_1(x, -k)$ for k real. Thus

$$(2.33) \quad |T(k)m_2(x, k)|^2 = |m_1(x, k)|^2 + |R_1(k)m_1(x, k)|^2 + 2\operatorname{Re}(R_1(k)e^{-2ikx}m_1^2(x, k)).$$

On the other hand, multiplying (2.32) by $m_1(x, k)$ and then taking real parts it follows that

$$(2.34) \quad 2\operatorname{Re}(T(k)m_1(x, k)m_2(x, k)) = 2|m_1(x, k)|^2 + 2\operatorname{Re}(R_1(k)e^{-2ikx}m_1^2(x, k)).$$

Subtracting this equality from (2.33) we get

$$|T(k)m_2(x, k)|^2 - 2\operatorname{Re}(T(k)m_1(x, k)m_2(x, k)) = -|m_1(x, k)|^2 + |R_1(k)m_1(x, k)|^2.$$

Relation (2.31) is now a consequence of (2.25) \square

3. THE FUNCTIONS w AND r

We need the functions defined by

$$(3.1) \quad w(x, k) = \begin{cases} \frac{u'_1(x, k)}{iku_1(x, k)}, & \text{when } k \in \overline{\mathbb{C}}^+ \setminus \{0\}, \\ 1, & \text{when } k = 0 \end{cases}, \quad x \in \mathbb{R},$$

and

$$(3.2) \quad r(x, k) = \frac{1 - w(x, k)}{1 + w(x, k)}, \quad x \in \mathbb{R}, k \in \overline{\mathbb{C}}^+,$$

We first need to show that the definitions (3.2) and (3.1) make sense.

Lemma 3.1. *Let $k \in \overline{\mathbb{C}}^+$ be fixed. Then $u_1(x, k) \neq 0$ when $x \in \mathbb{R}$.*

Proof. We prove first that $u_1(x, k) \neq 0$. Assume $u_1(x_0, k) = 0$ for an $x_0 \in \mathbb{R}$ (x_0 may depend on k). When $k \in \mathbb{R} \setminus \{0\}$, this can not happen owing to (2.12) and (2.9). If $\text{Im } k \neq 0$, then $\frac{1}{c}u_1(\cdot, k)$ is an eigenfunction of H_D , corresponding to the eigenvalue k^2 , where $H_D f = -c(cf)''$ when $f \in D(H_D) = \{g \in L^2(x_0, \infty) \mid -c(cg)'' \in L^2(x_0, \infty), (cg)(x_0) = 0\}$. Thus, $k^2 \in \sigma(H_D)$, which contradicts the fact that $H_D \geq 0$. In view of (2.5), $u_1(x, 0) = 1$, for any x real, and this concludes the proof of the lemma. \square

The previous result allows us to define

$$(3.3) \quad w(x, k) = \frac{u'_1(x, k)}{\text{i}ku_1(x, k)}, \quad x \in \mathbb{R}, k \in \overline{\mathbb{C}^+} \setminus \{0\}.$$

In addition, we have (by (2.7), (2.5)),

$$\lim_{k \rightarrow 0} w(x, k) = \lim_{k \rightarrow 0} \frac{u'_1(x, k) - \text{i}ku_1(x, k)}{\text{i}ku_1(x, k)} + 1 = 1$$

Hence the function $w(\cdot, k)$ defined in (3.1) belongs to $L_{\text{loc}}^\infty(\mathbb{R}) \cap W_{\text{loc}}^{1,2}(\mathbb{R})$, and if $x \in \mathbb{R}$ is fixed, the function $\mathbb{C}^+ \mapsto w(x, k) \in \mathbb{C}$ is analytic and extends continuously to $\text{Im } k = 0$. (Thm. 2.1 and lemma 3.1). One can easily see that w satisfies

$$(3.4) \quad w'(x, k) = \frac{\text{i}k}{c^2(x)} - \text{i}kw^2(x, k).$$

It follows that $w'(\cdot, k)$ is locally bounded and w is absolutely continuous..

In a similar way we may define

$$(3.5) \quad w_-(x, k) = -\frac{u'_2(x, k)}{\text{i}ku_2(x, k)}, \quad \text{when } x \in \mathbb{R}, k \in \overline{\mathbb{C}^+} \setminus \{0\},$$

and it has properties similar to those of w .

The next lemma contains a simple computation which turns out to be important in the sequel.

Lemma 3.2. (a) When $k \in \mathbb{R}$, we have

$$(3.6) \quad \text{Re } w(x, k) = \frac{1}{|u_1(x, k)|^2}, \quad x \in \mathbb{R}.$$

(b) When $\text{Im } k > 0$, we have

$$(3.7) \quad \text{Re } w(x, k) = \frac{\text{Im } k}{|k^2| |u_1(x, k)|^2} \int_x^\infty \left(\frac{|k|^2 |u_1(y, k)|^2}{c^2(y)} + |u'_1(y, k)|^2 \right) dy$$

for $x \in \mathbb{R}$.

Thus $\text{Re } w(x, k) > 0$ when $x \in \mathbb{R}$ and $k \in \mathbb{C}$, $\text{Im } k \geq 0$.

Proof. (a) If $k \in \mathbb{R} \setminus \{0\}$, the equality (3.6) is a consequence of (2.9) and (2.12). The equality is obvious when $k = 0$, both sides being equal to 1.

(b) Assume now that $\operatorname{Im} k > 0$. We have

$$(3.8) \quad \operatorname{Re} w = \frac{1}{2i|k|^2|u_1|^2} (u'_1 \overline{u_1} \bar{k} - \overline{u'_1} u_1 k).$$

On the other hand, since u_1 solves (2.1) and u_1 and u'_1 decay exponentially when $x \rightarrow \infty$, we may write

$$\begin{aligned} (\overline{u_1} u'_1)(x, k) &= - \int_x^\infty \overline{u_1}(y, k) u''_1(y, k) dy - \int_x^\infty |u'_1(y, k)|^2 dy \\ &= \int_x^\infty \left(\frac{k^2 |u_1|^2(y, k)}{c^2(y)} - |u'_1(y, k)|^2 \right) dy. \end{aligned}$$

Using this formula in (3.8) we get (3.7). \square

Remark. One may prove similarly that

$$\operatorname{Re} w_-(x, k) > 0 \quad \text{on } \overline{\mathbb{C}}^+.$$

Corollary 3.3. Consider $x \in \mathbb{R}$ be arbitrary fixed. Then the function

$$\mathbb{R} \ni k \rightarrow \frac{1}{1+k^2} \operatorname{Re} \frac{1}{w(x, k) + w_-(x, k)} \in \mathbb{R}$$

is absolutely summable on \mathbb{R} .

Proof. This is a consequence of the fact that

$$\operatorname{Re} \frac{1}{w(x, k) + w_-(x, k)} > 0, \quad k \in \mathbb{C}^+,$$

$k \rightarrow (w(x, k) + w_-(x, k))^{-1}$ is holomorphic on C^+ and extends continuously to $\operatorname{Im} k = 0$. (See [AD].) \square

Proposition 3.4. When $x \in \mathbb{R}$ and $\kappa > 0$ one has

$$(3.9) \quad \frac{2}{2 + c_M^2 \gamma_0} \leq w(x, i\kappa) \leq 1 + \frac{1}{2} \gamma_0.$$

Remark. We notice that $w(x, i\kappa)$ is real when when $x \in \mathbb{R}$ and $\kappa > 0$ since $\overline{u_1(x, i\kappa)} = u_1(x, i\kappa)$. From lemma 3.2 we also see that $w(x, i\kappa)$ is positive.

Proof. We set $v = v(\cdot, i\kappa) = w(\cdot, i\kappa) - 1$. We get then from (3.4) and (2.5) that

$$v(x, i\kappa) \rightarrow 0 \quad \text{when } x \rightarrow +\infty,$$

$$v' = \kappa q + \kappa v^2 + 2\kappa v \geq \kappa q + 2\kappa v.$$

It follows that

$$(3.10) \quad v(x, i\kappa) \leq - \int_x^\infty \kappa q(y) e^{-2\kappa(y-x)} dy \leq \frac{1}{2} \sup_{[x, \infty)} |q| \leq \frac{1}{2} \gamma_0,$$

hence

$$(3.11) \quad w(x, i\kappa) \leq 1 + \frac{1}{2} \gamma_0.$$

On the other hand we notice that $\tilde{w} = \tilde{w}(x, i\kappa) = \frac{1}{w(x, i\kappa)}$ ($w(x, i\kappa) > 0$) satisfies

$$\tilde{w}' = \frac{\kappa}{c^2} \tilde{w}^2 - \kappa,$$

and $\tilde{w}(x, i\kappa) \rightarrow 1$ when $x \rightarrow \infty$. We set $\tilde{v} = \tilde{w} - 1$ and get

$$\tilde{v}' = \frac{\kappa}{c^2} \tilde{v}^2 + \frac{2\kappa}{c^2} \tilde{v} - \kappa q \geq \frac{2\kappa}{c^2} \tilde{v} - \kappa q.$$

Thus

$$\begin{aligned} \tilde{v}(x, i\kappa) &\leq \int_x^\infty \kappa q(y) e^{-2\kappa \int_x^y \frac{1}{c^2(s)} ds} dy \\ &\leq \int_x^\infty \kappa |q(y)| e^{-2\kappa(y-x)/c_M^2} dy \\ &\leq \frac{1}{2} c_M^2 \gamma_0, \end{aligned}$$

and we obtain

$$(3.12) \quad \frac{1}{w} \leq 1 + \frac{1}{2} c_M^2 \gamma_0.$$

The inequality (3.9) follows directly from (3.11) and (3.12). \square

Lemma 3.5. *Let c_1 and c_2 be two measurable real functions obeying [H1] and [H2], and let q_1, q_2 and w_1, w_2 be the functions defined by (2.2), (3.3), corresponding to c_1 and c_2 , respectively. Then*

$$\|(w_1 - w_2)(\cdot, i\kappa)\|_{L^1(\mathbb{R})} \leq \frac{1}{\alpha} \|q_1 - q_2\|_{L^1(\mathbb{R})}, \quad \text{when } \kappa \geq 0,$$

where

$$\alpha = \frac{2}{2 + c_{M,1}^2 \gamma_{0,1}} + \frac{2}{2 + c_{M,2}^2 \gamma_{0,2}},$$

$c_{M,j}$ are the constant in [H1], corresponding to c_j , $j = 1, 2$, while $\gamma_{0,j} = \sup |q_j|$, $j = 1, 2$.

Proof. We see that $w_1(\cdot, i\kappa) - w_2(\cdot, i\kappa)$ satisfies

$$(w_1(\cdot, i\kappa) - w_2(\cdot, i\kappa))' = \kappa(q_2 - q_1) + \kappa(w_1(\cdot, i\kappa) - w_2(\cdot, i\kappa))(w_1(\cdot, i\kappa) + w_2(\cdot, i\kappa)),$$

$$w_1(x, i\kappa) - w_2(x, i\kappa) \rightarrow 0 \quad \text{when } x \rightarrow \infty.$$

Hence we get

$$(w_1 - w_2)(x, i\kappa) = \kappa \int_x^\infty (q_1 - q_2)(y) e^{-\kappa \int_x^y (w_1 + w_2)(s, i\kappa) ds} dy.$$

Proposition 3.4 ensures that

$$(w_1 + w_2)(s, i\kappa) \geq \alpha$$

hence

$$(w_1 - w_2)(x, i\kappa) \leq \kappa \int_x^\infty |(q_1 - q_2)(y)| e^{-\alpha \kappa(y-x)} dy.$$

We repeat this procedure for $(w_2 - w_1)(\cdot, i\kappa)$ and get

$$|(w_1 - w_2)(x, i\kappa)| \leq \kappa \int_x^\infty |(q_1 - q_2)(y)| e^{-\alpha\kappa(y-x)} dy.$$

We integrate this inequality with respect to x and obtain

$$\begin{aligned} \int_{\mathbb{R}} |(w_1 - w_2)(x, i\kappa)| dx &\leq \kappa \int_{\mathbb{R}} \int_0^\infty |(q_1 - q_2)(x+t)| e^{-\alpha\kappa t} dt dx \\ &= \frac{1}{\alpha} \|q_1 - q_2\|_{L^1(\mathbb{R})}, \end{aligned}$$

which completes the proof. \square

Lemma 3.1 ensures that $\operatorname{Re}(1 + w(x, k)) > 1$, therefore $r(x, k)$ may be defined by (3.2), and the function $r(\cdot, k)$ is continuous when $k \in \overline{\mathbb{C}^+}$ is fixed.

The basic properties of r are contained in the next proposition.

Proposition 3.6. *The function $r(\cdot, k)$ defined by (3.2) satisfies:*

- (i) $|r(\cdot, k)| < 1$ when $x \in \mathbb{R}$, $k \in \overline{\mathbb{C}^+}$.
- (ii) When $k \in \overline{\mathbb{C}^+}$ is fixed, $r(\cdot, k)$ belongs to the Sobolev space Sobolev $W^{1,\infty}(\mathbb{R})$ and

$$(3.13) \quad r' = -2ikr + \frac{ikq}{2}(1+r)^2$$

while

$$(3.14) \quad \lim_{x \rightarrow \infty} r(x, k) = 0 \quad \text{when } k \in \overline{\mathbb{C}^+},$$

$$(3.15) \quad \lim_{x \rightarrow -\infty} e^{2ikx} r(x, k) = R_2(k) \quad \text{when } k \in \mathbb{R}.$$

- (iii) If $x \in \mathbb{R}$ is arbitrarily fixed, the function $\mathbb{C}^+ \ni k \mapsto r(x, k) \in \mathbb{C}$ is holomorphic and extends continuously at $\operatorname{Im} k = 0$.

Proof. (i) The inequality is straightforward since

$$|r|^2 = \frac{(1 - \operatorname{Re} w)^2 + (\operatorname{Im} w)^2}{(1 + \operatorname{Re} w)^2 + (\operatorname{Im} w)^2},$$

and $\operatorname{Re} w > 0$ (Lemma 3.2).

(ii) We have

$$(3.16) \quad r' = -\frac{2}{(1+w)^2} w',$$

w' is locally bounded, $|1+w| > 1$, hence $r'(\cdot, k)$ is locally bounded. The relation (3.13) follows from (3.16) and form the equation for w' . Using (3.13) and the inequality (i), we see that $r(\cdot, k) \in W^{1,\infty}(\mathbb{R})$.

We now prove (3.14). We write

$$r(x, k) = \frac{ik u_1(x, k) - u'_1(x, k)}{ik u_1(x, k) + u'_1(x, k)},$$

and use (2.7) and (2.5).

Let $k \in \mathbb{R} \setminus \{0\}$ be fixed. We write $u_1(x, k)$ in terms of $u_2(x, k) = e^{-ikx} m_2(x, k)$, using (2.16) and get:

$$e^{2ikx} r(x, k) = \frac{2ik R_2(k) m_2(x, k) - R_2(k) m'_2(x, k) - \overline{m}'_2(x, k) e^{2ikx}}{2ik \overline{m}_2(x, k) + R_2(k) m'_2(x, k) e^{-2ikx} + \overline{m}'_2(x, k)}.$$

This gives (3.15), since $m_2(x, k) \rightarrow 1$ and $m'_2(x, k) \rightarrow 0$ when $x \rightarrow -\infty$ (see theorem 2.1). The equality (3.15) is obvious for $k = 0$, since $r(x, 0) = R_2(0) = 0$ for every x .

The assertion in (iii) follows from the properties of w and from the fact that $\operatorname{Re} w > 0$. \square

4. THE TRANSMISSION COEFFICIENT

We shall prove here that $R_2(k)$, $k \in \mathbb{R}$, uniquely determines the transmission coefficient $T(k)$, $k \in \mathbb{R}$. We have seen (section 2) that $T(\cdot)$ extends holomorphically to \mathbb{C}^+ , is continuous on $\operatorname{Im} k = 0$ and $|T(k)| \leq 1$ when $k \in \mathbb{R}$.

We first obtain estimates for $T(k)$ when $k \in \overline{\mathbb{C}}^+$. The main result in this direction is contained in the next proposition.

Proposition 4.1. *Set $Q = 1 - \frac{1}{c}$. Then*

$$(4.1) \quad \left| T(k) e^{ik \int_{\mathbb{R}} Q} \right| \leq 1,$$

when $k \in \overline{\mathbb{C}}^+$.

To prove this proposition we need a lemma.

Lemma 4.2. *One has*

$$(4.2) \quad (2\kappa m_1(x, i\kappa) - m'_1(x, i\kappa)) e^{\kappa \int_x^\infty Q} \geq 2\kappa$$

when $x \in \mathbb{R}$ and $\kappa \geq 0$.

Proof. The estimate (4.2) is obvious for $\kappa = 0$, both sides being zero..

We fix $\kappa > 0$. Then since $w(x, i\kappa)$ is real and

$$w(x, i\kappa) = \frac{u'_1 u_1}{-\kappa u_1^2}(x, i\kappa) > 0,$$

we get $u'_1 u_1(x, i\kappa) < 0$. The function $u_1(x, i\kappa)$ does not vanish at any point of \mathbb{R} and is continuous, therefore it has constant sign on \mathbb{R} . Since $m_1(x, i\kappa) = e^{\kappa x} u_1(x, i\kappa) \rightarrow 1$ when $x \rightarrow \infty$, $u_1(x, i\kappa)$ must be

positive. Thus $u'_1(x, i\kappa) < 0$, and it follows that

$$m'_1(x, i\kappa) < \kappa m_1(x, ik).$$

We have that

$$u''_1(x, i\kappa) - \frac{\kappa^2}{c^2(x)} u_1(x, i\kappa) = 0,$$

and therefore if we set $v(x) = u'_1(x, i\kappa)u_1(x, \kappa)$, v satisfies

$$v' = \frac{\kappa^2}{c^2} u_1^2(\cdot, i\kappa) + (u'_1)^2(\cdot, i\kappa) \geq -2\frac{\kappa}{c} v.$$

Hence $ve^{2\kappa(x+\int_x^\infty Q)}$ is non-decreasing. We thus get that

$$v(x)e^{2\kappa(x+\int_x^\infty Q)} \leq \lim_{x \rightarrow \infty} (u'_1 u_1)(x, i\kappa) e^{2\kappa(x+\int_x^\infty Q)} = -\kappa,$$

that is,

$$(4.3) \quad -(u'_1 u_1)(x, i\kappa) e^{2\kappa(x+\int_x^\infty Q)} \geq \kappa.$$

In (4.3) we replace $u_1(x, i\kappa)$ by $m_1(x, i\kappa) = e^{\kappa x} u_1(x, i\kappa)$, and get

$$(4.4) \quad m_1(x, i\kappa)[\kappa m_1(x, i\kappa) - m'_1(x, i\kappa)]e^{2\kappa \int_x^\infty Q} \geq \kappa.$$

Since $m_1(x, i\kappa) > 0$, $\kappa m_1(x, i\kappa) - m'_1(x, i\kappa) > 0$ and by (4.4), we obtain

$$\begin{aligned} \frac{2\kappa m_1 - m'_1}{2\kappa}(x, i\kappa) &= \frac{\kappa m_1 - m'_1}{2\kappa}(x, i\kappa) + \frac{m_1}{2}(x, i\kappa) \\ &\geq \left[\frac{m_1(\kappa m_1 - m'_1)}{\kappa}(x, i\kappa) \right]^{1/2} \geq e^{-\kappa \int_x^\infty Q}, \end{aligned}$$

and this completes the proof. \square

Proof of Proposition 4.1. We show that $T(k) e^{ik \int_{\mathbb{R}} Q}$ has angular order less or equal to 1, and its absolute value is less than equal to 1 for $k \in \mathbb{R}$ (this is clear since $|T(k)| \leq 1$) and $k \in i\mathbb{R}^+$. The inequality in the statement is then a consequence of the Phragmén-Lindelöf principle.

From (2.4) and (2.10) we have that

$$\begin{aligned} \frac{1}{T(k)} &= \frac{1}{2ik} \left[2ik - k^2 \int_{-\infty}^{\infty} q(t) m_1(t, k) dt \right] \\ &= \lim_{x \rightarrow -\infty} \frac{m'_1 + 2ikm_1}{2ik}(x, k). \end{aligned}$$

We denote

$$f(x, k) = \frac{2ik}{m'_1 + 2ikm_1}(x, k).$$

It follows that

$$(4.5) \quad T(k) e^{\frac{ik \int Q}{\mathbb{R}}} = \lim_{x \rightarrow -\infty} f(x, k) e^{\frac{ik \int_x^\infty Q}{\mathbb{R}}}.$$

The equation (2.10) yields

$$(4.6) \quad \begin{aligned} f' &= -\frac{2ik(m_1'' + 2ikm_1')}{(m_1' + 2ikm_1)^2} \\ &= \frac{ikq}{2} \frac{2ikm_1}{(m_1' + 2ik)} \frac{2ik}{(m_1' + 2ik)} \\ &= \frac{ikq}{2}(r+1)f. \end{aligned}$$

The last equality has been consequence of the fact that $r+1 = \frac{2ikm_1}{(m_1' + 2ikm_1)}$.

Since $\lim_{x \rightarrow \infty} f(x, k) = 1$, we deduce from (4.6) that

$$f(x, k) = e^{-ik \int_x^\infty \frac{q}{2}(r+1)}.$$

Thus

$$(4.7) \quad T(k) e^{\frac{ik \int Q}{\mathbb{R}}} = e^{\frac{ik}{2} \int \mathbb{R} (Q^2(y) - q(y)r(y, k)) dy},$$

where we have made use of the fact that $q = 2Q - Q^2$.

The equality (4.7) and the fact that $|r(x, k)| < 1$ ensures that

$$\mathbb{C}^+ \ni k \rightarrow T(k) e^{\frac{ik \int Q}{\mathbb{R}}} := h(k) \in \mathbb{C}$$

angular order less or equal to 1. On the other hand h if $\kappa \geq 0$, $h(i\kappa)$ is positive (see (4.7), for instance), and (4.2) and (4.5) shows that $|h(i\kappa)| \leq 1$ when $\kappa \geq 0$. This finishes the proof. \square

The next theorem is the main result of this section.

Theorem 4.3. *For c satisfying [H1] and [H2], the transmission coefficient $(T(k))_{k \in \mathbb{R}}$ is uniquely determined by $(R_2(k))_{k \in \mathbb{R}}$.*

We shall need some lemmas.

Lemma 4.4. *We have*

$$(4.8) \quad \lim_{\kappa \rightarrow \infty} qr(\cdot, i\kappa) = Q^2$$

in $L^1(\mathbb{R})$.

Proof. (i) Assume first that $c \in C^\infty(\mathbb{R})$ and obeys [H1] and [H2]. We change coordinates

$$x(y) = \int_0^y \frac{1}{c(s)} ds$$

and write $v(x(y), k) = u_1(y, k)$ (u_1 as in section 2). Then

$$r(y, k) = \left(1 - \frac{1}{c(y)} \frac{v'(x(y), i\kappa)}{i\kappa v(x(y), i\kappa)}\right) \left(1 + \frac{1}{c(y)} \frac{v'(x(y), i\kappa)}{i\kappa v(x(y), i\kappa)}\right)^{-1}.$$

Since $c \in C^\infty$, $v'(x(y), i\kappa)/(i\kappa v(x(y), i\kappa))$ converges uniformly to 1 when $\kappa \rightarrow \infty$. (See [DT].) We get that, for y fixed,

$$\lim_{\kappa \rightarrow \infty} r(y, i\kappa) = \frac{c(y) - 1}{c(y) + 1}.$$

It follows that $q(x)r(x, i\kappa) \rightarrow Q^2(x)$ for every x , while (4.8) is a consequence of Lebesques's convergence theorem.

(ii) Assume now that c is a real measurable function that satisfies [H1] and [H2]. We set $c_\epsilon = 1 + (c - 1) * \varphi_\epsilon$, si $Q_\epsilon = 1 - c_\epsilon^{-2}$ where φ is a nonnegative smooth compactly supported function with $\int \varphi \, dx = 1$, and $\varphi_\epsilon(x) = \frac{1}{\epsilon} \varphi(\frac{x}{\epsilon})$. Then

$$\begin{aligned} c_\epsilon &\geq 1 + (c_0 - 1) \int \varphi_\epsilon(y) \, dy = c_0, \\ c_\epsilon &\leq 1 + (c_M - 1) \int \varphi_\epsilon(y) \, dy = c_M, \\ |q_\epsilon(x)| &\leq \frac{2}{c_0} \int |c(y) - 1| \, dy =: \gamma_1 \end{aligned}$$

and

$$\|q_\epsilon - q\|_{L^1} \leq \frac{1}{c_0^2} \|c_\epsilon - c\| \rightarrow 0 \quad \text{when } \epsilon \rightarrow 0.$$

We denote by w_ϵ and r_ϵ the functions defined as in (3.3) and (3.2) corresponding to c_ϵ . The, since $w_\epsilon(x, i\kappa) > 0$, $w(x, i\kappa) > 0$ and by lemma 3.5, it follows that there exists C independent of ϵ and κ (C may depend on c_0 , c_M , γ_0 and γ_1) such that

$$\int |r_\epsilon(x, i\kappa) - r(x, i\kappa)| \, dx \leq \int |w_\epsilon(x, i\kappa) - w(x, i\kappa)| \, dx \leq C \|q_\epsilon - q\|_{L^1}.$$

We obtain

$$\begin{aligned} \int |q(x)r(x, i\kappa) - Q^2(x)| \, dx &\leq \int |q(x)r(x, i\kappa) - q_\epsilon(x)r_\epsilon(x, i\kappa)| \, dx \\ &\quad + \int |Q_\epsilon^2(x) - Q^2(x)| \, dx + \int |Q_\epsilon^2(x) - q_\epsilon(x)r_\epsilon(x, i\kappa)| \, dx \\ &\leq C \|c - c_\epsilon\|_{L^1} + \int |Q_\epsilon^2 - q_\epsilon(x)r_\epsilon(x, i\kappa)| \, dx, \end{aligned}$$

C constant independent of κ . Let $\delta > 0$ be fixed. There exists $\epsilon_0 = \epsilon_0(\delta)$ with $C \|c - c_\epsilon\|_{L^1} \leq \delta/2$. On the other hand, the discussion in (i) shows that there exists $\kappa_0 = \kappa_0(\delta)$ such that if $\kappa \geq \kappa_0$ then

$$\int |Q_\epsilon^2 - q_\epsilon(x)r_\epsilon(x, i\kappa)| \, dx \leq \delta/2.$$

Hence, if $\kappa \geq \kappa_0 = \kappa_0(\delta)$, we have

$$\int |q(x)r(x, i\kappa) - Q^2(x)| \, dx \leq \delta.$$

Since δ has been arbitrarily chosen, this completes the proof of the lemma. \square

Lemma 4.5. *The quantity*

$$\int_{\mathbb{R}} Q(x) \, dx$$

is uniquely determined by the reflexion coefficient.

Proof. Consider $k \in \mathbb{R} \setminus \{0\}$ be fixed. We multiply the equation

$$r' = -2ikr + \frac{ikq}{2}(1+r)^2,$$

by \bar{r} , and the take real parts. We obtain

$$(1 - |r|^2)' = \frac{ikq}{2}(1 - |r|^2)(r - \bar{r}),$$

and since $\lim_{x \rightarrow \infty} |r(x, k)|^2 = 0$ this yields

$$(4.9) \quad 1 - |r(x, k)|^2 = e^{-\int_x^\infty \frac{ikq(y)}{2}(r - \bar{r})(y, k) \, dy}.$$

we let x to $-\infty$ in (4.9) and use (3.15). It follows that

$$(4.10) \quad 1 - |R_2(k)|^2 = e^{-\int_{\mathbb{R}} \frac{ikq(y)}{2}(r - \bar{r})(y, k) \, dy} \quad k \in \mathbb{R}.$$

Hence $k^2 \int_{\mathbb{R}} q \operatorname{Im}(r/k) \, dy$ is uniquely determined by $R_2(k)$ for $k \in \mathbb{R}$, and therefore $\int_{\mathbb{R}} q \operatorname{Im}(r/k) \, dy$ is also uniquely determined by $R_2(k)$.

Consider the harmonic function

$$h(k) = \int_{\mathbb{R}} q(y) \operatorname{Im}\left(\frac{r(y, k)}{k}\right) \, dy.$$

It is bounded and continuous on $\operatorname{Im} k \geq 0$. Hence (see [Koo]) h is uniquely determined by its values at $\{\operatorname{Im} k = 0\}$, therefore by $R_2(k)$. Because $r(x, i\kappa)$ is real when $\kappa \geq 0$, we have

$$h(i\kappa) = -\frac{1}{\kappa} \int_{\mathbb{R}} q(x) r(x, i\kappa) \, dx.$$

It follows that $\int q(x) r(x, i\kappa) \, dx$ is uniquely determined by $R_2(k)$. Lemma 4.4 gives now that $\int Q^2(x) \, dx$ is uniquely determined by $R_2(k)$.

The lemma is now a consequence of the equality $2Q = Q^2 + q$, and of the fact that $\int q(x) \, dx$ is uniquely given by the limit of $2iR(k)/k$ when $k \rightarrow 0$ (see lemma 2.2). \square

Proof of theorem 4.3. When $k \in \overline{\mathbb{C}}^+$ we denote

$$(4.11) \quad F(k) = T(k) e^{ik \int Q \, dx}.$$

We notice that $|F(k)|^2 = |T(k)|^2 = 1 - |R_2(k)|^2$ when k real, hence $|F(k)|$, $k \in \mathbb{R}$ is uniquely determined by $R_2(k)$. In addition F belongs to $H^\infty(\mathbb{C}^+)$ (proposition 4.1), is continuous on $\{\operatorname{Im} k = 0\}$ and has no

zeros. Moreover, it follows from (4.7) that

$$F(k) = \exp \left(-ik \int_{\mathbb{R}} q(y) \frac{r}{2}(y, k) dy + ik \int_{\mathbb{R}} \frac{Q(y)^2}{2} dy \right),$$

hence from lemma 4.4 we see that

$$\lim_{\kappa \rightarrow \infty} \frac{\log |F(i\kappa)|}{\kappa} = 0.$$

Then the factorization theorem of $H^\infty(\mathbb{C})$ functions (see [Koo]) gives that

$$(4.12) \quad F(z) = \gamma \Theta_F(z), \quad z \in \mathbb{C}^+,$$

where $\gamma \in \mathbb{C}$, $|\gamma| = 1$, and Θ_F is the exterior function corresponding to F ,

$$\Theta_F(z) = \exp \left(-\frac{i}{2\pi} \int_{\mathbb{R}} \left(\frac{1}{k-z} - \frac{k}{k^2+1} \right) \log |F(k)|^2 dk \right).$$

Since $|F(k)|^2 = |T(k)|^2 = 1 - |R(k)|^2$ when $k \in \mathbb{R}$, we may write

$$(4.13) \quad \Theta_F(z) = \exp \left(-\frac{i}{2\pi} \int_{\mathbb{R}} \left(\frac{1}{k-z} - \frac{k}{k^2+1} \right) \log |F(k)|^2 dk \right).$$

When k is real $|F(k)| = |T(k)|$, hence from (4.6) it follows that $\log |F(k)|^2/k$ is locally L^1 . We write

$$\begin{aligned} & \int_{\mathbb{R}} \left(\frac{1}{k-z} - \frac{k}{k^2+1} \right) \log |F(k)|^2 dk = \\ &= \int_{\mathbb{R}} \frac{zk+1}{(k-z)(k^2+1)} \log |F(k)|^2 dk \end{aligned}$$

and compute

$$\lim_{t \rightarrow 0} \int_{\mathbb{R}} \left(\frac{1}{k-it} - \frac{k}{k^2+1} \right) \log |F(k)|^2 dk = \int_{\mathbb{R}} \frac{1}{k(k^2+1)} \log |F(k)|^2 dk = 0,$$

where in the last equality we have used that the integrand is an odd function. (Recall that $\overline{T(k)} = T(-k)$ when k is real.) We thus obtain that $\Theta_F(0) = 1$.

Writing (4.12) at $z = 0$ we easily get that $\gamma = 1$, since $F(0) = 1$ and $\Theta_F(0) = 1$.

It follows from (4.11), (4.12), (4.13) and the previous lemma that $T(k)$ is uniquely determined by $R_2(k)$. \square

5. FURTHER PROPERTIES OF $m_1(x, k)$.

We recall that a holomorphic function f on \mathbb{C}^+ is said to belong to the Smirnov class \mathcal{N}_+ if it can be represented in the form $f = h^{-1}g$, where $h, g \in H^\infty(\mathbb{C}^+)$ and h is exterior.

If $f \in \mathcal{N}_+$ then the boundary values

$$f(\lambda) \lim_{\varepsilon \rightarrow 0} f(\lambda + i\varepsilon)$$

exist almost everywhere $\lambda \in \mathbb{R}$, and f can be recovered by these boundary values, therefore one can identify f with its boundary values at $\text{Im } z = 0$. From the Smirnov maximum principle we also have that

$$L^2(\mathbb{R}) \cap \mathcal{N}_+ = H^2(\mathbb{C}^+).$$

(See [Koo].)

We use the notation

$$(5.1) \quad \tilde{T}(k) = T(k)e^{ik \int Q}.$$

We recall that \tilde{T} is an $H^\infty(\mathbb{C}^+)$ exterior function (see the proof of theorem 4.3).

Lemma 5.1. *Assume $x \in \mathbb{R}$ is fixed.*

a) *The function*

$$\mathbb{C}^+ \ni k \rightarrow m_1(x, k)e^{-ik \int_x^\infty Q} \in \mathbb{C}$$

belongs to the Smirnov class.

b) *The function*

$$\mathbb{C}^+ \ni k \rightarrow \frac{\tilde{T}(k)(m_1(x, k)e^{-ik \int_x^\infty Q} - 1)}{k} \in \mathbb{C}$$

belongs to the Hardy space $H^2(\mathbb{C}^+)$.

Proof. We first show that g given by

$$g(k) = m_1(x, k)e^{-ik \int_x^\infty Q}$$

belongs to the Smirnov class \mathcal{N}_+ .

For that, we notice that if $T_x(k)$ is the transmission coefficient associated to

$$c_x(y) = \begin{cases} c(y), & y \geq x \\ 1, & y < x \end{cases}$$

then (from (2.18))

$$\frac{2ik}{T_x(k)} = u'_1(x, k)e^{-ikx} + ike^{-ikx}u_1(x, k), \quad k \in \overline{\mathbb{C}}^+,$$

hence

$$2(T_x(k)u_1(x, k)e^{-ikx})^{-1} = w(x, k) + 1.$$

It follows that

$$T_x(k)m_1(x, k) = r(x, k) + 1 \quad \text{when } k \in \overline{\mathbb{C}}^+,$$

and thus

$$m_1(x, k)e^{-ik \int_x^\infty Q} = (1 + r(x, k))(T_x(k)e^{-ik \int_x^\infty Q})^{-1}$$

belongs to \mathcal{N}_+ since $1 + r(x, \cdot)$ is an $H^\infty(\mathbb{C}^+)$ function, while $T_x(k)e^{-ik\int_x^\infty Q}$ is an $H^\infty(\mathbb{C}^+)$ exterior function.

Since $T(k)e^{-ik\int Q}$ is $H^\infty(\mathbb{C}^+)$ and exterior we get that $f(k) = \tilde{T}(k)m_1(x, k)e^{-ik\int_x^\infty Q}$ belongs \mathcal{N}_+ .

By using Smirnov maximum principle and (2.5) we see that it suffices to show that $f/(i+k)$ is L^2 on \mathbb{R} . We notice that lemma 2.3 leads to

$$|f(k)/(i+k)|^2 \leq 2\operatorname{Re}(T(k)m_1(x, k)m_2(x, k))/(1+k^2).$$

On the other hand it follows from (2.18) that

$$\operatorname{Re}(T(k)m_1(x, k)m_2(x, k)) = \operatorname{Re}\left(\frac{1}{w(x, k) + w_-(x, k)}\right),$$

and this along with corollary 3.3 gives that $k \rightarrow \operatorname{Re}(T(k)m_1(x, k)m_2(x, k))/(1+k^2)$ is L^1 . We have obtained that $f/(i+k)$ is $L^2(\mathbb{R})$, which completes the proof. \square

6. THE UNIQUENESS

We prove here theorem 1.1.

Let $c: \mathbb{R} \rightarrow \mathbb{R}$ a real measurable function obeying [H1] and [H2] and satisfying also the additional assumption

$$(6.1) \quad c' \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}).$$

We need some results that are valid in this more particular case.

We consider the coordinate transform

$$y = \chi(x) = x + \int_x^\infty Q(y) dy, \quad Q = 1 - 1/c,$$

($\chi'(x) = 1/c(x)$ is positive and continuous.) If u is a solution to

$$(6.2) \quad u'' + \frac{k^2}{c^2}u = 0,$$

we set

$$(6.3) \quad v(y) = u(\chi^{-1}(y)).$$

Then

$$(6.4) \quad c(x)u'(x) = v'(\chi(x)),$$

and if $\mu(x) = 1/c(\chi^{-1}(y))$, then v solves the equation

$$\frac{1}{\mu}(\mu v')' + k^2v = 0.$$

It is easily seen that μ satisfies [H1], [H2] and $\mu' \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$.

If $u_1(x, k)$, $k \in \overline{\mathbb{C}}^+$ is the Jost solution constructed in section 2, then

$$v_1(y, k) = u_1(\chi^{-1}(y), k).$$

satisfies $v_1(x, k) - e^{ikx} \rightarrow 0$ when $x \rightarrow \infty$. We then may define

$$(6.5) \quad \rho(y, k) = \frac{1 - v'_1(y, k)/ikv_1(y, k)}{1 + v'_1(y, k)/ikv_1(y, k)}.$$

(See [Br00].)

The following important result is due to J. SYLVESTER (see, for instance, Theorem 6.2 [Br00]).

Theorem 6.1. *Assume that c is a real measurable function satisfying [H1], [H2] and (6.1). Then for the function ρ defined above one has that*

$$|\rho(x, k)| \leq 1 - e^{-\int_{\mathbb{R}} |\mu'/\mu| ds}$$

when $x, k \in \mathbb{R}$.

We write (6.5) at the point $\chi(x)$ and recall that (6.4) holds. We thus obtain

$$\rho(\chi(x), k) = \frac{iku_1(x, k) - c(x)u'_1(x, k)}{iku_1(x, k) + c(x)u'_1(x, k)}.$$

It follows from theorem 6.1 and (2.13) that there exists a constant $a < 1$ such that

$$(6.6) \quad k^2|u_1|^2 + c^2|u'_1| - 2k^2c \leq a(k^2|u_1|^2 + c^2|u'_1| + 2k^2c).$$

We get the following lemma.

Lemma 6.2. *Assume c satisfies [H1], [H2] and (6.1). Then there exists a constant $M > 0$ with*

$$(6.7) \quad |m_1(x, k)e^{-ik \int_x^\infty Q}| \leq M$$

when $x \in \mathbb{R}$ and $k \in \overline{\mathbb{C}}^+$.

Proof. When $k \in \mathbb{R}$,

$$|m_1(x, k)e^{-ik \int_x^\infty Q}| = |m_1(x, k)| = |u_1(x, k)|$$

for every x , and (6.7) follows (6.6). The lemma follows from 5.1 and the Smirnov maximum principle. \square

Corollary 6.3. *Assume c satisfies [H1], [H2] and (6.1). Then the function*

$$\mathbb{C}^+ \ni k \rightarrow \frac{m_1(x, k)e^{-ik \int_x^\infty Q} - 1}{k} \in \mathbb{C}$$

belongs to the Hardy space $H^2(\mathbb{C}^+)$.

Proof. The statement follows from the previous lemma and (2.5). \square

Proof of theorem 1.1. Let c_1 and c_2 be two functions that satisfy [H1], [H2] and (6.1) and such that

$$R_2(k; c_1) = R_2(k; c_2) = R_2(k) \quad k \in \mathbb{R}.$$

Then

$$T(k; c_1) = T(k, c_2) = T(k) \text{ and } \int_{\mathbb{R}} Q_1 \, ds = \int_{\mathbb{R}} Q_2 \, ds.$$

(See theorem 4.3 and lemma 4.5.)

We denote by $u_{1,1}(x, k)$, $u_{2,1}(x, k)$ the Jost solutions corresponding to c_1 and by $u_{2,1}(x, k)$, $u_{2,2}(x, k)$ those corresponding to c_2 . We write $u_{1,j}(x, k) = e^{ikx} m_{1,j}(x, k)$, $u_{2,j}(x, k) = e^{-ikx} m_{2,j}(x, k)$, $j = 1, 2$. With this notation (2.17) becomes

$$(6.8) \quad T(k)m_{1,j}(x, k) = R_2(k)e^{-2ikx}m_{2,j}(x, k) + \overline{m_{2,j}(x, k)}, \quad j = 1, 2$$

when k is real. We set

$$\tilde{T}(k) = e^{ik \int Q_1} T(k) = e^{ik \int Q_2} T(k), \quad \tilde{m}_{1,j} = e^{-ik \int_x^\infty Q_j} m_{1,j}, \quad \tilde{m}_{2,j} = e^{-ik \int_{-\infty}^x Q_j} m_{2,j}.$$

We multiply (6.8) by $e^{ik \int Q}$ and get

$$(6.9) \quad \tilde{T}(k)\tilde{m}_{1,j}(x, k) = R_2(k)e^{-2ik(x - \int_{-\infty}^x Q_j)} \tilde{m}_{2,j}(x, k) + \overline{\tilde{m}_{2,j}(x, k)}, \quad j = 1, 2.$$

We change coordinates

$$y = \chi_j(x) = x - \int_{-\infty}^x Q_j(s) \, ds$$

and denote

$$M_{j,l}(y) = \tilde{m}_{j,l}(\chi_l^{-1}(y)), \quad j, l = 1, 2.$$

Then (6.9) can be written as

$$(6.10) \quad \tilde{T}(k)M_{1,j}(y, k) = R_2(k)e^{-2iky}M_{2,j}(y, k) + \overline{M_{2,j}(y, k)}, \quad j = 1, 2.$$

If

$$M_1(y, k) = \frac{1}{k}(M_{1,1}(y, k) - M_{1,2}(y, k)), \quad M_2(y, k) = \frac{1}{k}(M_{2,1}(y, k) - M_{2,2}(y, k)),$$

it follows that

$$(6.11) \quad \tilde{T}(k)M_1(y, k) = R_2(k)e^{-2ikx}M_2(y, k) + \overline{M_2(y, k)}.$$

We multiply this relation by $M_2(y, k)$ and get

$$(6.12) \quad \tilde{T}(k)M_1(y, k)M_2(y, k) = R_2(k)e^{-2ikx}M_2^2(y, k) + |M_2(y, k)|^2.$$

It follows from corollary 6.3 and from lemma 5.1 that $\tilde{T}(\cdot)M_1(y, \cdot)M_2(y, \cdot)$ belongs to $H^1(\mathbb{C}^+)$, therefore

$$(6.13) \quad \int_{\mathbb{R}} \tilde{T}(k)M_1(y, k)M_2(x, k) \, dk = 0.$$

On the other hand, we easily get from (6.10) (proceeding as in the proof of lemma 2.3) that

$$(6.14) \quad \operatorname{Re} \tilde{T}(k) M_1(y, k) M_2(x, k) = \frac{1}{2} (|\tilde{T}(k) M_1(y, k)|^2 + |\tilde{T}(k) M_2(y, k)|^2),$$

when k is real. Hence (6.13), (6.14) and the fact that $M_1(y, \cdot)$, $M_2(y, \cdot)$ are holomorphic yield

$$M_1(y, k) = 0, \quad M_2(y, k) = 0 \quad \text{when } y \in \mathbb{R} \text{ and } k \in \overline{\mathbb{C}}^+.$$

Therefore

$$m_{j,1}(\chi_1^{-1}(y), k) = m_{j,2}(\chi_2^{-1}(y), k) \quad \text{when } y \in \mathbb{R} \text{ and } k \in \overline{\mathbb{C}}^+, j=1, 2.$$

We let k go to zero in $(m_{2,j}(\chi_j^{-1}(y), k) - 1)/k$. We get that

$$\int_{-\infty}^{\chi_1^{-1}(y)} Q_1(s) ds = \int_{-\infty}^{\chi_2^{-1}(y)} Q_2(s) ds$$

for every y . We change variable $s = \chi_1^{-1}(t)$ in the integral in left hand side and $s = \chi_2^{-1}(t)$ in the integral in the right hand side and then take derivative with respect to y . We obtain that

$$c_1(\chi_1^{-1}(y)) = c_2(\chi_2^{-1}(y))$$

for every y , that is $\chi'_1(y) = \chi'_2(y)$ almost everywhere, and this equality is nothing else than

$$\frac{1}{c_1(y)} = \frac{1}{c_2(y)},$$

and the proof of the theorem is complete. \square

REFERENCES

- [AKM] T. Aktosun, M. Klaus, C. van der Mee, Inverse scattering in one-dimensional media. *Integral Eq. Op. Theory* **30** (1990), 279-316
- [AD] N. Aronszajn, W.F. Donoghe, On exponential representation of analytic functions in the upper half-plane with positive imaginary part. *J. Anal. Mathématique* **5** (1956-1957), 321-388
- [Be] C. Bennewitz, A new proof of the Borg-Marchenko theorem. *Comm. Math. Phys.* **218** (2001), 131-132
- [Br99] B. L. Browning, *Time and Frequency Domain Scattering for One-Dimensional Wave Equation*. Thesis, University of Washington, 1999.
- [Br00] B. L. Browning, Time and frequency domain scattering for one-dimensional wave equation. *Inverse Problems* **16** (2000), 1377-1403.
- [CR] Y. Chen, V. Rokhlin, On the inverse scattering problem for the Helmholtz equation in one dimension. *Inverse Problems* **8**, 365-391.
- [DT] P. Deift, E. Trubowitz, Inverse scattering on the line. *Comm. Pure Appl. Math.* **32** (1979), 121-251.
- [F] L. D. Faddeev, The inverse problem in the quantum theory of scattering. *Uspehi Mat. Nauk.* **14** (1959), 72-104.
- [Koo] P. Koosis *Introduction to H_p spaces*. Lecture Notes of the London Math. Soc. **40** Cambridge Univ. Press. (1980).
- [M] A. Melin, Operator methods for the inverse scattering on the real line. *Comm. Part. Diff. Eq.* **10** (1985), 677-766.
- [SyWG] J. Sylvester, T. Winebrenner, F. Gyles-Colwell, Layer stripping for the Helmholtz equation *SIAM J. Appl. Math.* **50** (1996), 736-754.