

Review of Machine Learning

What is Machine Learning?

Machine learning allows computers to learn and infer from data.

Types of Machine Learning

Supervised

data points have known outcome

Unsupervised

data points have unknown outcome

Types of Supervised Learning

Regression

data points have continuous outcome

Classification

data points have categorical outcome

Machine Learning Vocabulary

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)
- Example: a single data point within the data (one row)
- Label: the target value for a single data point

Machine Learning Vocabulary (Synonyms)

- Target: Response, Output, Dependent Variable, Labels
- Features: Predictors, Input, Independent Variables, Attributes
- Example: Observation, Record, Instance, Datapoint, Row
- Label: Answer, y-value, Category

Supervised Learning Overview

Regression: Numeric Answers

Classification: Categorical Answers

Classification: Categorical Answers

Two Types of Classification Predictions

- Hard Prediction: Predict a single category for each instance.
- Probability Prediction: Assign a probability distribution across the classes to each instance.

Metrics for Classification

- Hard Prediction: Accuracy, Precision, Recall (Sensitivity),
 Specificity, F1 Score
- Probability Prediction: Log-loss (aka Cross-Entropy), Brier
 Score, AUC (ROC), Precision-Recall Curves

Metrics for Regression

Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Mean Absolute Deviation

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Fitting Training and Test Data

fit the model

measure performance

- predict label with model
- compare with actual value
- measure error

How Well Does the Model Generalize?

Underfitting vs Overfitting

Bias/Variance Tradeoff

Questions?

METIS