1.
$$IG(y_i) = H(y_{out}) - H(y_{out} | y_i)$$

 $H(y) = \frac{2}{5} - \rho(y_1) \log_2 \left[\rho(y_i)\right]$

· [41>0,4]:

D	41	92	43	44	yout
N.S	0,45	1	0	2	C
K	0,52	0	0	0	B
na	0,58	2	1	2	c
ng	0,62	1	0	1	A
Kq	0,71	1	2	1	A
Mo	0,83	1	2	1	B
щ	0,90	2	1	2	8
1112	0,95	2	2	2	C

$$p(A) = \frac{3}{8} = \frac{1}{4}$$

$$p(B) = \frac{3}{8}$$

$$p(C) = \frac{3}{8}$$

•
$$H(y_{out}) = -\rho(A) \log_2[\rho(A)] - \rho(B) \log_2[\rho(B)] - \rho(C) \log_2[\rho(C)] =$$

$$= -\frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{8} \log_2(\frac{3}{8}) - \frac{3}{8} \log_2(\frac{3}{8}) = 1,561$$

• H(yout (y2) = p(0) H(yout | y2=0) + p(1) H(yout | y2=1) + p(2) H(yout | y2=2) =
$$= \frac{1}{8} \times 0 + \frac{1}{2} \left[-\frac{1}{2} log_2(\frac{1}{2}) - \frac{1}{4} log_2(\frac{1}{4}) - \frac{1}{4} log_2(\frac{1}{4}) \right] + \frac{3}{8} \left[-\frac{1}{3} log_2(\frac{1}{3}) - \frac{2}{3} log_2(\frac{2}{3}) \right] = 1.094$$

. H(yout 143) =
$$\rho(0)$$
 H(yout 143=0) + $\rho(1)$ H(yout 143=1) + $\rho(2)$ H(yout 143=2) = $\frac{3}{8} \left[\frac{1}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) \right] + \frac{1}{4} \times 1 + \frac{3}{8} \times \left[\frac{1}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) \right] = 1.439$

0,95

D	41	72	y ₃	y 4	yout	
45	0,45	1	0	2	C	
	0,58					$-\rho(B)=\frac{1}{4}$
	0,90				В	· p(c) = 3/4
						101-4

B A C B A 7

•
$$H(yout) = -p(A)\log_2[p(A)] - p(B)\log_2[p(B)] - p(C)\log_2[p(C)] =$$

$$= 0 - 4\log_2(\frac{1}{4}) - \frac{3}{4}\log_2(\frac{3}{4}) = 0.811$$
• $H(yout | y_2) = p(a)H(yout | y_2 = 0) + p(A)H(yout | y_2 = 1) + p(a)H(yout | y_2 = 2) =$

$$= 0 + \frac{1}{4}x_0 + \frac{3}{4}x_0[-\frac{1}{3}\log_2(\frac{3}{3}) - \frac{2}{3}\log_2(\frac{2}{3})] = 0.689$$

• H(yest
$$|y_2| = p(a)$$
 H(yest $|y_3| = 0) + p(1)$ H(yest $|y_3| = 1) + p(2)$ H(yest $|y_3| = 2) = \frac{1}{2}(a) + \frac{1}{2}(a) + \frac{1}{2}(a) = \frac{1}{2} = 0.5$

IG(y3) > IG(y2)

$$y_{3}=0: k_{5} \longrightarrow \mathbb{C}$$
 $y_{3}=1: k_{7}: k_{11}$
 $y_{3}=1: k_{12}: k_{11}$
 $y_{3}=1: k_{12}: k_{11}$
 $y_{3}=1: k_{12}: k_{11}$

D	yat (tree)	yest (predict)	
M	A	A	
1/2	B	В	v
hz.	C	c	~
44	A	Α	~
h5	C	c	V
No	В	В	~
47	C	8	X
uq	A	A	~
Kq	A	A	1
40	В	A	×
144	B	В	1
142	C	C	/

	1	Pairing	Corefusion	20 Hoters		
TRUE						
		A	B	C		
	A	4	1	0		
Pudat	3	0	3	1		
Pee	C	0	0	3		

$$A TP = 4$$
 $TN = 3 + 1 + 3 = 7$
 $TN = 3 + 1 + 3 = 7$
 $TN = 4 + 1 + 3 = 8$
 $TN = 0$
 $TN = 0$

P- PRECION R- PECALI

(A)
$$P = \frac{TP}{TP+FP} = \frac{4}{4+1} = \frac{4}{5}$$

(B) $P = \frac{TP}{TP+FP} = \frac{4}{4+1} = \frac{4}{5}$

(C) $P = \frac{TP}{TP+FP} = \frac{3}{3} = 1$
 $R = \frac{TP}{TP+TN} = \frac{4}{4} = 1$
 $R = \frac{TP}{TP+TN} = \frac{3}{4} = \frac{3}{4}$
 $R = \frac{TP}{TP+TN} = \frac{3}{4} = \frac{3}{4}$
 $R = \frac{TP}{TP+TN} = \frac{3}{4} = \frac{3}{4}$
 $R = \frac{TP}{TP+TN} = \frac{3}{3} = 1$
 $R = \frac{TP}{TP+TN} = \frac{3}{4} = \frac{1}{11} = \frac$

