Detecting Sensor Drift at Clayoquot Slope

Team 52 Hz Whales

Christopher Chiu

Vu Nguyen (Liam)

Shu Han

Zirui Li (Grace)

Zixuan Deng

Agenda

- Introduction
- Key Issues
- Methodology
- Proposed Solutions & Results
- Summary
- Conclusion
- Future Work

About Us

Christopher Chiu MADS

Zirui Li (Grace) MADS

Zixuan Deng MADS

Vu Nguyen (Liam)
MTIS

Shu Han MTIS

Introduction

- Stakeholder Ocean Networks Canada
- Problem Sensor drift in the Clayoqout Slope region
 - Conductivity, Temp, and Pressure

Image ref: https://www.oceannetworks.ca/

Introduction

- Cause Environmental and phsyical
 - Biofouling, Physical drift, Aging of components, Damaged, etc.

Target - Filter out the anomaly data

Key Issues

(Noise vs. Missing Data vs. Extreme Outliers)

Unclear ground truth labels

(QA/QC flags)

Multivariate
Time-Series dataset

(Conductivity, Pressure, and Temperature)

Methodology

- Prediction-based methods
 - LSTM
 - Prophet by Facebook
- Density-based methods
 - Local Outlier Factor from PyOD
- Proximity-based methods
 - KNN from sci-kit learn
 - Boxplots

Long Short-Term Memory (LSTM)

LSTM is commonly used for solving sequence prediction/detection problems, such as detecting and predicting anomaly in sales by finding patterns in stock markets' data. It is a special kind of Recurrent Neural Network (RNN).

LSTM Autoencoder

Result

Model: "sequential_8"

Layer (type)	Output	Shape	Param #
lstm_16 (LSTM)	(None,	128)	66560
dropout_16 (Dropout)	(None,	128)	0
repeat_vector_8 (RepeatVecto	(None,	7, 128)	0
lstm_17 (LSTM)	(None,	7, 128)	131584
dropout_17 (Dropout)	(None,	7, 128)	0
time_distributed_8 (TimeDist	(None,	7, 1)	129

Total params: 198,273 Trainable params: 198,273 Non-trainable params: 0

Temperature Feature

Data range: Jul 2011 - Nov 2015

Temperature

MAE Result

Test data: Dec 2014 - Nov 2015

Result

	Time	Temperature	loss	threshold	anomal
1248	2014-12-16	-0.035957	1.098296	0.65	Tru
1252	2014-12-20	0.713784	0.723746	0.65	Tru
1253	2014-12-21	0.652169	0.721569	0.65	Tru
1258	2014-12-26	-0.742521	0.827854	0.65	Tru
1259	2014-12-27	0.250214	0.841219	0.65	Tru
1262	2014-12-30	-0.121874	0.737595	0.65	Tru
1284	2015-01-21	0.303742	0.662332	0.65	Tru
1308	2015-02-14	-0.459072	0.705486	0.65	Tru
1309	2015-02-15	-0.428728	1.122368	0.65	Tru
1310	2015-02-16	-0.983811	1.035288	0.65	Tru
1311	2015-02-17	-1.595199	1.162947	0.65	Tru
1312	2015-02-18	-1.342025	1.307322	0.65	Tru
1313	2015-02-19	-0.384844	0.846507	0.65	Tru
1374	2015-04-21	-0.865907	0.745085	0.65	Tru
1381	2015-04-28	0.279864	0.685080	0.65	Tru
1406	2015-05-27	0.400806	0.717409	0.65	Tru
1455	2015-07-15	1.070477	0.695192	0.65	Tru
1459	2015-07-19	-0.029993	0.651793	0.65	Tru
1460	2015-07-20	0.005123	0.678336	0.65	Tru
1483	2015-08-12	-0.541803	1.141767	0.65	Tru
1484	2015-08-13	-0.981683	1.070405	0.65	Tru
1485	2015-08-14	-0.477323	1.126406	0.65	Tru
1486	2015-08-15	-0.722262	0.684163	0.65	Tru
1504	2015-09-02	-2.522310	0.668894	0.65	Tru
1505	2015-09-03	-1.969966	0.947878	0.65	Tru

Test data: Dec 2014 - Nov 2015

O UTIO DEXA

Prophet - Definition

FACEBOOK

Prophet is an open-source time series forecasting tool developed by Facebook. It is a procedure for **forecasting time series data** based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have **strong seasonal effects and several seasons of historical data**. Prophet is robust to missing data and shifts in the trend and typically handles outliers well [13]. Prophet allows analysts to create a forecasting task more conveniently and directly; it is user-friendly for non-programming users.

Prophet - Implementation

```
# Trian with Temperature data, change y with 'pressure y' when training Pressure Data
dict pro = { 'ds': ds array,
           'y': temp y
df = pd.DataFrame(dict_pro)
m = Prophet()
m.fit(df)
# Generate a prediction dataframe for next 172 days
future = m.make future dataframe(periods=172)
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat lower', 'yhat upper']]
# Plot the forecast diagram
fig = m.plot(forecast)
```


Prophet - Pressure Prediction

	ds	yhat	yhat_lower	yhat_upper
0	2011-07-12	1267.456168	1267.106491	1267.827591
1	2011-07-13	1267.465097	1267.106449	1267.811958
2	2011-07-14	1267.462862	1267.098548	1267.783808
3	2011-07-15	1267.463398	1267.116975	1267.808191
4	2011-07-16	1267.468520	1267.107512	1267.823624
1620	2015-12-27	1270.142201	1265.734685	1274.488440
1621	2015-12-28	1270.149851	1265.836505	1274.721739
1622	2015-12-29	1270.166057	1265.718876	1274.681745
1623	2015-12-30	1270.174610	1265.771354	1274.821504
1624	2015-12-31	1270.172119	1265.621072	1274.813690
1625 rd	ows × 4 colum	ns		

Historical Samples Range: 2011-07-12 to 2015-07-12

Prediction Range: 2015-07-12 to 2015-12-31

Prophet - Temperature Prediction

	ds	yhat	yhat_lower	yhat_upper
0	2011-07-12	3.012963	2.967109	3.056031
1	2011-07-13	3.011066	2.967106	3.052671
2	2011-07-14	3.005131	2.959509	3.046324
3	2011-07-15	3.004860	2.962892	3.047780
4	2011-07-16	3.001371	2.959074	3.041897
1620	2015-12-27	2.929596	2.817314	3.044462
1621	2015-12-28	2.930403	2.821874	3.049795
1622	2015-12-29	2.932580	2.818375	3.046258
1623	2015-12-30	2.934303	2.823418	3.048223
1624	2015-12-31	2.932194	2.813871	3.048678
1625 rows × 4 columns				

Historical Samples Range: 2011-07-12 to 2015-07-12

Prediction Range: 2015-07-12 to 2015-12-31

Local Outlier Factors

"The local outlier factor is based on a concept of a local density, where locality is given by k nearest neighbors, whose distance is used to estimate the density. By comparing the local density of an object to the local densities of its neighbors, one can identify regions of similar density, and points that have a substantially lower density than their neighbors. These are considered to be outliers" [14]

LOF - Pressure Prediction

LOF - Temperature Prediction

Bonus approaches

- KNN tried but failed
- Boxplot

Summary

	Pros	Cons
LSTM	- Good for time series data analysis - Fast	- Hard to define "abnormaly". High rate of false positive
Prophet	 Designed for analyzing time series data, accurate and fast Robust to handle missing data and outliers Easy to implement 	 Incorrect prediction if when using small historical dataset Only linear model and logistic growth model available Hard to prepare the environment. It requires Python >= 3.7; Linux or macOS system; x86-64 CPU and C++ compiler: gcc >= 9.0 or clang >= 10.0
LOF University of Victoria	- Unsupervised model- Good at detecting outliers based on a local neighbourhood	Large Computational OverheadRequires strong assumptionsHard to evaluate results

Conclusion

After implementing 3 approaches and comparing the results, we get these conclusions:

- Both LSTM and Prophet are better solutions.
- Prophet is the easiest one to implement.
- Prophet can handle collective outliers.

Future Work

- For the consideration of training time, we are using 1/60 of data, this could be improved when having enough time and more powerful machine for training.
- Have a more detailed check with ground truth, figure out the performance of our model and try to improve it.
- The definition for anomaly data is ambigious.
- LSTM could improve to use interactive thresh hold

References

- [1] "Introduction to clayoquot slope," https://www. oceannetworks.ca/introduction-clayoquot-slope, 2013, Accessed: 2021-04-30.
- [2] Dilumie Abeysirigunawardena, Marlene Jeffries, Michael G Morley, Alice OV Bui, and Maia Hoeberechts, "Data quality control and quality assurance practices for ocean networks canada observatories," in OCEANS 2015-MTS/IEEE Washington. IEEE, 2015, pp. 1–8.
- [3] S. Bacon, L. R. Centurioni, and W. J. Gould, "The evaluation of salinity measurements from palace floats," Journal of Atmospheric and Oceanic Technology, vol. 18, no. 7, pp. 1258 1266, 2001.
- [4] Eugine Kang, "Long short-term memory (Istm): Concept," https://medium.com/@kangeugine/ long-short-term-memory-lstm-concept-cb3283934359, Accessed: 2021-04-30.
- [5] Sagar Sharma, "Activation functions in neural networks," https://towardsdatascience.com/ activation-functions-neural-networks-1cbd9f8d91d6, Accessed: 2021-04-30.
- [6] Xuguang Liu, "A real-time detection method for abnormal data of internet of things sensors based on mobile edge computing," https://www.hindawi.com/journals/mpe/2021/6655346/, Accessed: 2021-04-30.
- [7] Mohammad Esmalifalak, "Anomaly detection with knn," https://www.youtube.com/watch?v=RwmttGrJs08, Accessed: 2021-04-30.
- [8] Mahbubul Alam, "k-nearest neighbors (knn) for anomaly detection," https://towardsdatascience.com/ k-nearest-neighbors-knn-for-anomaly-detection-fdf8ee160d13, Accessed: 2021-04-30.
- [9] Mayank Tripathi, "Knowing all about outliers in machine learning," https:// datascience.foundation/sciencewhitepaper/ knowing-all-about-outliers-in-machine-learning, Accessed: 2021-04-30
- [10] Naysan Saran, "Interquartile range (iqr) to detect outliers," https://naysan.ca/2020/06/28/ interquartile-range-iqr-to-detect-outliers/, Accessed: 2021-04-30.
- [11] "Box plot diagram to identify outliers," https://www.whatissixsigma.net/ box-plot-diagram-to-identify-outliers/, Accessed: 2021-04-30.
- [12] "1.5. box plots," https://learnche.org/pid/ data-visualization/box-plots, Accessed: 2021-04-30.
- [13] "Prophet", "https://facebook.github.io/prophet/"
- [14] "Local Outlier Factor", "https://en.wikipedia.org/wiki/Local_outlier_factor"

Thank you for listening! (***) **Questions?**

