

Cairo University - Faculty of Engineering Computer Engineering Department CMP461 Big Data

BDA Project

Final Delivery Hotel Booking Demand

Submitted to:

Eng. Omar Samir

By:

Andrew Tawdros Hanna Sec: 1 BN: 14

Mark Medhat Abdou Sec: 2 BN: 12

Academic Year 2021-2022

1) Brief problem description

The cancellation rate for booking hotels online is high that creates discomfort for many hotels and create a desire to take precautions. Therefore, predicting reservations that can be cancelled will create a surplus value for hotels and hotels can take action to prevent these cancellations.

2) Project pipeline

3) Analysis and solution of the problem: a. Data pre-processing

• Get the structure of the data

```
| Stary | The control | Stary | Stary
```

Adjust the data types

```
# Adjust data type (Int -> Factor)
HotelBooking$is_repeated_guest <- as.factor(ifelse(HotelBooking$is_repeated_guest ==1, "Yes", "No"))
HotelBooking$arrival_date_year <- as.factor(HotelBooking$arrival_date_year)
HotelBooking$arrival_date_week_number <- as.factor(HotelBooking$arrival_date_week_number)
HotelBooking$arrival_date_day_of_month <- as.factor(HotelBooking$arrival_date_day_of_month)
HotelBooking$is_canceled=as.factor(HotelBooking$is_canceled)
```

Deal with missing values

<pre>> colSums(is.na(HotelBooking))</pre>	#(Column Children has 4 missin	ng value)
hotel	is_canceled	lead_time
0	0	0
arrival_date_year	arrival_date_month	arrival_date_week_number
0	0	0
arrival_date_day_of_month	stays_in_weekend_nights	stays_in_week_nights
0	0	0
adults	children	babies
0	4	0
meal	country	market_segment
	0	. 0
distribution_channel	is_repeated_guest	previous_cancellations
	. 0	0
previous_bookings_not_canceled	reserved_room_type	assigned_room_type
0	0	0
booking_changes	deposit_type	agent
0		0
company	days_in_waiting_list	customer_type
.0		0
adr	required_car_parking_spaces	total_of_special_requests
0	0	0
reservation_status	reservation_status_date	
0	()	

Drop some unnecessary columns

```
#Remove unwanted columns
drops <- c("company","country","adr_pp","company","reservation_status_date","agent","reservation_status")
HotelBooking<-HotelBooking[ , !(names(HotelBooking) %in% drops)]
```

b. Data visualization

• City hotels vs Resort hotels

• Number of arrival Date by Month

Number of city hotel and Resort Hotel cancelled or not cancelled

• Relation between Cancelled booking and Lead time

• No. of arrivals per year

• May and October have the highest waiting times; these months represent the times right before and after peak reservation months (respectively)

 Price of room types (which was cancelled) for each person per night

• Cancellation per months

c. Extracting insights from data

• The most arrival months are August and July

```
ArrivalDateMonth
            January
                     5929
                     8068
           February
              March 9794
              April 11089
                May 11791
               June 10939
               July 12661
             August 13873
          September 10508
10
            October 11160
           November
           December 6780
```

• Online market segment's cancellation is more

	`HotelBooking\$market_segment`	`length(is_canceled)`
	<chr></chr>	<int></int>
1	Aviation	237
2	Complementary	743
3	Corporate	<u>5</u> 295
4	Direct	<u>12</u> 605
5	Groups	<u>19</u> 811
6	Offline TA/TO	<u>24</u> 219
7	Online TA	<u>56</u> 476

• City Hotel Cancellation is more

Couples booking cancellation is more

```
# A tibble: 14 x 2
     HotelBooking$adults` `length(is_canceled)`
                                                   <int>
                            0
                                                     403
 1
 2
                            1
                                                   23027
                            2
                                                   89677
                                                    <u>6</u>201
 4
                            3
 5
                            4
                                                      62
                            5
                                                       2
 6
 7
                            6
                                                       1
 8
                           10
                                                       1
 9
                           20
10
                           26
                                                        2
11
                           27
                                                       1
12
                           40
13
                           50
                                                       1
14
                           55
                                                       1
```

• 'A' type room cancellation is higher

```
# A tibble: 10 x 2
   `HotelBooking$reserved_room_type` `length(is_canceled)`
                                                            <int>
                                                           85994
 2
   В
                                                            1114
 3
   C
                                                              932
 4
   D
                                                           19201
 5
   Ε
                                                             6535
 6 F
                                                             2897
   G
                                                             2094
 8 H
                                                              601
 9 L
                                                                6
10 P
                                                               12
```

• Time series as hotel is strongly dependant on seasonality

d. Model/Classifier training

- We have used two classifiers which are:
 - a. Logistic regression
 - b. Random Forest

Finally, Random Forest was considered

4) Results and Evaluation.

- Accuracy of Random Forest = 84.2%

5) Unsuccessful trials that were not included in the final solution.

- Logistic regression classifier with accuracy less than Random Forest = 83.3%

6) Any Enhancements and future work

Enhancements as:

- This dataset has 32 variables. So, using PCA to reduce dimension is a good next step.
- Tuning the parameters of Random Forest Classifier to get more efficient accuracy.
- Analyze logically more correlated variables to get better efficiency.

Future work as:

- Q1. when is the best time of year to book a hotel room?
- Q2. What if you want to predict whether or not a hotel is likely to receive a huge number of special requests?