Markov Decision Processes

- Markov Decision Processes (MDP)
- MDP solution methods
 - Value Iteration
 - Policy Iteration
 - Monte-Carlo Methods
- Extensions

Markov Decision Process (MDP)

- S = Finite set of states (|S| = n)
- A = Finite set of actions (|A| = m)
- $Pr(s_{t}, a, s_{t+1})$ = Transition function (τ)
 - At each time step the agent observes state $s_i \in S$ and chooses action $a \in A$
 - Represented by set of stochastic matrices (non-deterministic)
 - Also includes events occurrences not caused by the agent
- $R(s_{r}a, s_{r+1})$ = Reward/cost function
- Markov assumption
 - Current state s_t encapsulates all previous state and action history $h = (s_0, a_0, \dots s_{t-1}, a_{t-1})$
 - Optimal action only depends on the current state and action a_t (and in some cases resultant state s_{t+1})
 - Functions $Pr(s_p a, s_{t+1})$ and $R(s_p a, s_{t+1})$ not necessarily known to agent (model free reinforcement learning)

MDP (cont'd)

- Goal
 - Minimize costs
 - Maximize profits
 - Reach goal
- Solution is a policy (π*)
 - Defines the best action a_t to take from every state s_t to maximize future expected utility (reach goals)

Policies

- Nonstationary policy
 - $\pi: SxT \rightarrow A$
 - $\pi(s,t)$ is action to do at state s with t-stage-to-go
- Stationary Policy
 - $\pi: S \to A$
 - π(s) is action to do at state s (regardless of time) a universal plan
- Assumed properties
 - Full observability
 - History-independent
 - Deterministic action choice

Value of a Policy

- Value function V:S→R associates value with each state (sometimes SxT)
- $V_{\pi}(s)$ denotes value of policy at state s
 - Expected accumulated reward over horizon of interest
 - Note $V_{\pi}(s) := R(s)$: expected utility
- Common formulations of value:
 - Finite horizon n: total expected reward given π
 - Infinite horizon discounted
 - Infinite horizon average reward per time step

Finite Horizon Value Problems

- Utility (value) depends on stage-to-go
- $V_{\pi}^{k}(s)$ is k-stage-to-go value function for π

$$V_{\pi}^{k}(s) = E \left[\sum_{t=0}^{k} R^{t} | \pi, s \right]$$

- R^t is the reward received at stage t
- A single step problem would be:

$$\widehat{U}(s,a) = \sum_{s'} \Pr(s,a,s') R(s')$$

Successive Approximation via the Bellman Equation

• Successive approximation computes $V_{\pi}(s)$ by dynamic programming

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \sum_{s'} \Pr(s, \pi(s, k), s') \cdot V_{\pi}^{k-1}(s')$$
Policy: pick best action
$$\pi(s, k) = \max_{a} \Pr(s, a, s')$$

$$V^{k}$$

$$V^{k-1}$$

Value Iteration

 Markov property allows exploitation of Dynamic Programming (DP) for optimal policy construction

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

Actions: (NSEW)

Reward state is accepting (no leaving)

R=0	R=0	R=100
R=0	R=0	R=0

Markov property allows exploitation of DP for optimal policy construction

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

Actions: (NSEW)

Reward state is accepting (no leaving)

Pr(s,a,s') 0.8 for direction intended, 0.2 for unintended, (0.1,0.1) if 3 reachable states

	3	
$V_{\pi}^{0} = 0$	$V_{\pi}^{0}=0$	$V_{\pi}^{0}=100$
$V_{\pi}^{\ 0}\!\!=\!\!0$	$V_{\pi}^{\ 0}\!\!=\!\!0$	$V_{\pi}^{\ 0} = 0$

Value Iteration

Markov property allows exploitation of DP for optimal policy construction

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

Actions: (NSEW)

Reward state is accepting (no leaving)

$V_{\pi}^{-1}=0$	$V_{\pi}^{1} = 80$	$V_{\pi}^{-1}=100$
$V_{\pi}^{-1}=0$	$V_{\pi}^{-1}=0$	$V_{\pi}^{1} = 80$

Markov property allows exploitation of DP for optimal policy construction

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

Actions: (NSEW)

Reward state is accepting (no leaving)

Pr(s,a,s') 0.8 for direction intended, 0.2 for unintended, (0.1,0.1) if 3 reachable states

$V_{\pi}^{2}=64$	$V_{\pi}^{2}=80$	$V_{\pi}^{2}=100$
$V_{\pi}^{2}=0$	$V_{\pi}^{2}=72$	$V_{\pi}^{2}=80$

Value Iteration

Markov property allows exploitation of DP for optimal policy construction

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

Actions: (NSEW)

Reward state is accepting (no leaving)

$V_{\pi}^{3}=64$	V_{π}^{3} =93.6	$V_{\pi}^{3}=100$
V_{π}^{3} =70.4	$V_{\pi}^{3}=72$	V_{π}^{3} =94.4

Markov property allows exploitation of DP for optimal policy construction

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

Actions: (NSEW)

Reward state is accepting (no leaving)

Pr(s,a,s') 0.8 for direction intended, 0.2 for unintended, (0.1,0.1) if 3 reachable states

$V_{\pi}^{4} = 89$	$V_{\pi}^{4}=93.6$	$V_{\pi}^{4}=100$				
$V_{\pi}^{4} = 70.4$	V_{π}^{4} =91.9	$V_{\pi}^{4} = 94.4$				

Value Iteration

Markov property allows exploitation of DP for optimal policy construction

$$V_{\pi}^{0}(s) = R(s)$$

$$V_{\pi}^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

Actions: (NSEW)

Reward state is accepting (no leaving)

$V_{\pi}^{5} = 89$	$V_{\pi}^{5}=98.1$	$V_{\pi}^{5}=100$
$V_{\pi}^{5} = 91.3$	V_{π}^{5} =91.9	$V_{\pi}^{5} = 98.4$

- Because of DP, optimal solution to k-1 stage can be used without modification as part of optimal solution to k-stage problem
- Because of finite horizon, policy is nonstationary
- In practice, Bellman backup computed using:

$$Q^{k}(s,a) = R(s) + \sum_{s'} \Pr(s,a,s') \cdot V^{k-1}(s'), \quad \forall a$$

$$V^{k}(s) = \max_{a} Q^{k}(s,a)$$

Complexity

- T iterations
- At each iteration |A| computations of $n \times n$ matrix time n-vector: $O(|A|n^3)$
- Total $O(T|A|n^3)$
- Can exploit sparsity of matrix: $O(|A|n^2)$

Discounted Infinite Horizon MDPs

- Total reward problematic
 - Many policies have infinite expected reward
 - Zero-cost absorbing state MDPs OK
- Solution: introduce a discount factor 0≤β≤1
 - Future rewards discounted by β per time step

$$V_{\pi}^{k}(s) = E \left[\sum_{t=0}^{k} \beta^{t} R^{t} \middle| \pi, s \right]$$

Value Iteration function:

$$V_{\pi}^{k}(s) = R(s) + \beta \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}^{k-1}(s')$$

• Stop when $||V^k - V^{k-1}|| \le \varepsilon$

Policy Iteration

- Idea: given a baseline policy, an improved policy can be computed using roll-out. The improved policy can be further improved by applying roll-out again. Repeat.
- Since there are a finite number of states and a finite number of actions, this will eventually terminate with a policy that cannot be further improved
- This is in fact an optimal policy.

Policy Iteration

 Given fixed policy, can compute its value exactly:

$$V_{\pi}(s) = R(s) + \beta \max_{a} \sum_{s'} \Pr(s, \pi(s), s') \cdot V_{\pi}(s')$$

- Policy iteration exploits this:
 - 1. Choose a random policy π
 - 2. Loop:
 - a. Evaluate V_{π}
 - b. For each s in S, set $\pi'(s) = \arg\max_{a} \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}(s)$
 - c. Replace π with π '

Until no improving action possible at any state

Policy Iteration

- Pick an arbitrary policy π
- Iterate:
 - Policy Evaluation: Solve for $\forall s \in S$

$$V(s) = \sum_{s' \in S} Pr(s, \pi(s, a), s') [R(s, \pi(s, a), s') + \gamma V(s')]$$

- Policy Improvement: For each $s \in S$
 - $\pi(s) = \max_{a} \sum_{s' \in S} Pr(s, \pi(s, a), s') [R(s, \pi(s, a), s') + \gamma V(s')]$
- Until π is unchanged

Policy Iteration Notes

- Convergence assured (Howard)
 - intuitively: no local maxima in value space, and each policy must improve value; since finite number of policies, will converge to optimal policy
- Gives exact value of optimal policy
- Each iteration: $O(|S|^3)$
- Total $O(|A||S|^2 + |S|^3)$
- Generally converges much faster than VI
 - each iteration more complex, but fewer iterations
 - Finite-time to convergence

Policy Iteration Example

- After 4 Iterations
- V(s)=

0	0	0	0	0	0	0	0	0	0
0	0.45	0.56	0.61	0.84	1.17	0.87	1.11	1.5411	0
0	0.61	0.71	0	0	1.54	0	0	2.16	0
0	0.78	0.93	0	0	2.16	2.59	3.02	3.03	0
0	0.98	1.21	0	2.03	2.74	3.26	3.84	3.91	0
0	1.23	1.58	1.90	2.44	2.95	3.54	4.56	5.03	0
0	1.18	1.50	1.78	2.09	2.28	0	5.38	6.51	0
0	1.02	1.29	1.52	1.76	1.77	0	6.74	8.49	0
0	0.76	1.02	1.20	1.37	1.30	0	8.01	10	0
0	0	0	0	0	0	0	0	0	0

Partially Observable Markov Decision Process (POMDP)

- Assumed that the state was known for each action
 - What about stochastic sending, and unobservable states (fog of war)?
- S = Finite set of states (|S| = n)
- A = Finite set of actions (|A| = m)
- $Pr(s_p a, s_{t+1})$ = Transition function (τ)
 - At each time step the agent observes state s_t∈S and chooses action a∈A
 - Represented by set of stochastic matrices (non-deterministic)
 - Also includes events occurrences not caused by the agent
- $R(s_t, a, s_{t+1})$ = Reward/cost function
- $O(\text{or }\Omega)$ = Finite set of observations
 - $Pr(a, s_{t+1}, o)$ = Observation transition function (if Ω this is O)

Decentralized-POMDP (DEC-POMDP)

- Decentralized-POMDP $\{I, S, \{A_i\}, \tau, \{\Omega_i\}, O, R\}$
 - Extends the POMDP to multiple agents
 - All agents have the same reward function
 - Have alternative observations and actions
- I = number of agents
- Joint actions and observations
 - $\vec{A} = \bigotimes_{i \in I} A_i$ is the set of joint actions, $\vec{a} = \langle a_1, ..., a_n \rangle$
 - $\vec{O} = \bigotimes_{i \in I} O_i$ is the set of joint observations, $\vec{o} = \langle o_1, ..., o_n \rangle$

Summary Markov Decision Processes

- Different Learning Problem: Learn policy for action selection that maximizes future reward
- Solution: Learn value function
- Two approaches:
 - Value Iteration
 - Policy Iteration