Московский политехнический университет

Математические методы анализа данных

Лежнина Юлия Аркадьевна

План лекции 2

- Типы данных
- Выборки
- Меры среднего
- Меры вариативности
- Меры и типы переменных
- Формирование выборки
- Ошибки выборки
- Пропущенные данные
- Неопределенные данные

Матрица данных

Признак 1	Признак 2		Признак п
X11	X12	********	Xım
X ₂₁	X22		X _{2m}

Xm1	X _{m2}	**********	Xmm
	X ₁₁	X ₁₁ X ₁₂ X ₂₁	X ₁₁ X ₁₂

Шкалы типов данных

Пример матрицы данных

Nº	Населённый пункт	Семейное положение	Пол	Количество подчиненных	Доход	Удовлетворенность жизнью	
01	Областной центр	Вловец (влова)		-	13 000	Полностью удовлетворена	
02	Областной центр	Живёте вместе, но не зарегистрированы	ж	-	20 000	И да, и нет	
03	Областной центр	Состоите в зарегистрированном браке	ж		17 000	И да, и нет	
04	Областной центр	Разведены и в бране не состоите	ж	-	45 000	Скорее удовлетворена	
05	Областной центр	Никогда в браке не состояли	М	7-	25 000	Не очень удовлетворён	
06	Областной центр	Никогда в браке не состояли	м		30 000	Скорее удовлетворён	
07	Областной центр	Разведены и в браке не состоите	ж	30	35 000	Скорее удовлетворена	
08	Областной центр	Никогда в браке не состояли	м	-	30 000	Скорее удовлетворён	
09	Областной центр	Состоите в зарегистрированном браке	М	3	40 000	Скорее удовлетворён	
10	Областной центр	Состоите в зарегистрированном браке	ж	15	25 000	Скорее удовлетворена	

Данные: Российский мониторинг экономического положения и здоровья населения НИУ-ВШЭ (RLMS-HSE)», проводимый Национальным исследовательским университетом — Высшей школой экономики и ЗАО «Демоскоп»

Основные понятия математической статистики

ВЫБОРКА

• Последовательность независимых случайных величин x_1,x_2,...,x_n, соответствующих всем возможным результатам n статистических экспериментов и имеющих одинаковый закон распределения вероятностей со случайной величиной хi, называется выборкой объёма n, порождённой случайной величиной хi. Если хi — дискретная случайная величина, то выборкой объёма n называется любое подмножество n объектов генеральной совокупности объёма N, выбранное равновероятно среди всех таких подмножеств.

Основные понятия математической статистики

Пусть X_{1}, X_{2},...,X_{n} - конечная выборка из некоторого распределения, определённая на некотором вероятностном пространстве. Перенумеруем последовательность в порядке неубывания, так что

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n-1)} \leq x_{(n)}$$

Эта последовательность называется вариационным рядом. Вариационный ряд и его члены являются порядковыми статистиками. Случайная величина x(k) называется k-той порядковой статистикой исходной выборки.

Выборочная квантиль

$$X_{(1)} < X_{(2)} < X_{(3)} < ... < X_{(n)}$$

$$t_{\alpha} = X_{([\alpha \cdot n])}$$

 α — заданная вероятность

n — объём выборки

Случайная величина:

802, 851, 851, 863, 870, 870, 870, 894, 897, 899, 901, 905, 906, 906, 910, 914, 925, 936, 945, 952, 953, 978

$$\alpha$$
=0,9 => 1- α =0,1 n=22

$$[(1-\alpha)n] = [0,122] = 2$$

Меры центральной тенденции

• Арифметическое среднее
$$\bar{x}=rac{1}{n}\sum_{i=1}^n x_i=rac{1}{n}(x_1+\cdots+x_n).$$

• Рассмотрим два распределения объема N=20:

X1	10 000	20 000	30 000	40 000	50 000
n	7	5	3	3	2

$$\bar{x}$$
 = 24 000

Мода – наиболее часто встречающееся значение

X2	10 000	20 000	30 000	150 000
n	10	4	5	1

$$\bar{x}$$
 = 24 000

Мода

Бимодальное распределение

Мода – наиболее часто встречающееся значение

Медиана

- Распределения, для которых \bar{x} =24 000
- мода равна 10 000

X1	10 000	20 000	30 000	40 000	50 000
n	7	5	3	3	2

Медиана =15 000

X2	10 000	20 000	30 000	150 000
n	10	4	5	1

Медиана = 10 000

Меры вариативности

• Размах - расстояние между минимальным и максимальным значениями признака

X1	10 000	20 000	30 000	40 000	50 000
n	7	5	3	3	2

• равен 40 000

X2	10 000	20 000	30 000	150 000
n	10	4	5	1

• равен 140 000

Дисперсия и среднеквадратическое отклонение

• Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий:

• Смещённая
$$S_n^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i \right)^2$$
,

• Несмещённая или исправленная $S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$.

• Среднеквадратическое отклонение $S_0 = \sqrt{\frac{n}{n-1}S^2} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n \left(x_i - \bar{x}\right)^2}.$

Меры менее чувствительные к выбросам

• **Среднее абсолютное отклонение**, или просто среднее отклонение (англ. MAD, mean absolute deviation) — величина, используемая для оценки прогнозных функций

$$MAD = rac{1}{n} \sum_{i=1}^n |x_i - m(X)|$$

Межквартильный размах

• Межквартильный размах — это разница между 1-м и 3-м квартилями, т.е. между 25-м и 75-м процентилями. В него входят центральные 50% наблюдений в упорядоченном наборе, где 25% наблюдений находятся ниже центральной точки и 25% — выше.

Виды данных по объёму содержащейся в них информации

Типы шкал	Меры центра			Меры вариативности		
	Мода	Медиана	Среднее	Размах	MAD	СКО
Номинальные						
Порядковые						
Интервальные						
Интервальные с особенностями						

Формирование выборок

Выборка должна быть

- Репрезентативной
- Репрезентативны только случайные выборки

Случайные выборки

- Простая случайная выборка
- Механическая выборка
- Стратифицированная
- Гнездовая или кластерная

Неслучайные выборки

Могут использоваться:

- Метод снежного кома
- Квотная выборка

Необходимо избегать

• Доступная

Ошибки выборки

Ошибка выборки — отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.

Предельная ошибка выборки

Предельная ошибка — максимально возможное расхождение средних значений выборки и генеральной совокупности с заданной вероятностью.

$$P\{|\bar{X} - \mu| < \Delta_{\bar{X}}\} = p$$

$$\Delta_{\bar{x}} = t\sqrt{\frac{s^2 \left(1 - \frac{n}{N}\right)}{n}}$$

1 2 - дисперсия признака в выборочной совокупности

n- число единиц в выборке

N- объем генеральной совокупности

t- коэффициент доверия Стьюдента

Доверительный интервал — интервал, в который попадает неизвестный параметр с заданной вероятностью.

Объем выборки можно получить из формулы предельной ошибки

$$\bar{X} - \Delta_{\bar{X}} < \mu < \bar{X} + \Delta_{\bar{X}}$$

$$\mathbf{n} = \frac{t^2 s^2 N}{\Delta^2 N + t^2 s}$$

Пропущенные наблюдения

- Выявить причину в случае наличия систематических ошибок
- Исключить пропущенные наблюдения
- Заменить функцией от соседей
- Заменить похожими значениями

Неопределенные данные

- Ответы на вопрос «не знаю»
- Для порядковых шкал заменить самым старшим рангом.

!Порядковая шкала превратится в номинальную!