Biol-360 Bioinformatics

iClicker for Conditional Probability
Lec'33'iClicker'conditionalProbability

Quick definition of probability p

Example, Bio-360 students:

$$p = \frac{\text{3 Juniors}}{\text{50 Total students in Bio-360}} = \frac{6}{100} = 0.06 = 6\%$$

- Probability p is fraction of total
 - Can use raw fraction (0 to 1)
 - Can use percent (0% to 100%)
- In words: Probability is the frequency of an event
 - "If you pick a random student from Bio-360, the probability of finding a Junior is 0.06 or 6%"
 - "If you flip a coin, the probability of getting heads is 0.5 or 50%."

Disease frequency in population

Disease
 Healthy
 Total

$$10$$
 990
 $10 + 990 = 1000$

iClicker:

What is the probability of having the disease?

(A)
$$p = 10 = 10\%$$

(D)
$$p = 10 + 990 = 1000$$

What's the probability of being healthy?

Same data: Disease Healthy Total
$$10$$
 990 $10 + 990 = 1000$

iClicker: probability of being healthy?

$$(B) \quad p = 10 + 990 = 1000$$

C
$$p = \frac{10}{990} = 0.010101010101 = 1.0101010101\%$$

$$\bigcirc$$
 $p = 990$

Major medical breakthrough: Test for the disease

Numbers represent test results in 1000 patients.

	Disease	Healthy	Total
Test positive	8	99	107
Test negative	2	891	893
Total	10	990	1000

Ignoring testing, what's the probability of having the disease?

(A)
$$p = 8 + 2 = 10$$

$$C$$
 $p = \frac{10}{990} = 1.01\%$

$$p = \frac{8}{1000} = 0.8\%$$

Test isn't perfect: False Positive can happen

	Disease	Healthy	Total
Test positive	8	99	107
Test negative	2	891	893
Total	10	990	1000

How many False Positive in this table?

A

8

(c)

99

 (B)

2

(D) 891

You test positive, what's the probability of having the disease?

	Disease	Healthy	Total	
Test positive	8	99	107	Doctor says
Test negative	2	891	893	Doctor says
Total	10	990	1000	

test is positive. OMG!!!

Big Hint: Ignore the negative tests.

Ask: Of the positive tests, what proportion have the disease?

$$\frac{8}{8+90}$$

$$\frac{8}{2+99}$$

$$\bigcirc D = \frac{8}{99 + 891}$$

So why are there so many False Positive?

	Disease	Healthy	Total
Test positive	8	99	107
Test negative	2	891	893
Total	10	990	1000

• If you have the disease, test is **True Positive** in $\frac{8}{8+2} = \frac{8}{10} = 80\%$. Seems pretty good?

• If you are healthy, test is False Positive in $\frac{99}{8+99} = \frac{99}{107} = \frac{93\%!!!}{100}$

How do you reconcile these?

We've seen similar bioinformatics situations with False Positive

Searching PubMed:

- Similar to disease test.
- True Positive rate is pretty good:
 - · A good query finds many relevant documents
- False Positive count can be high
 - PubMed is huge ($\approx 27 \times 10^6$)
 - Suppose 1% of the documents incorrectly match query: $1\% \times (27 \times 10^6) = 270,000$ false positives!!

Searching with BLAST:

- We can get non-homologous sequences returned
- E-value tells us about sequence similarity and false positives

How's all this relate to E-values from BLAST?

	Homologous	Not homologous
BLAST hit	True Positives	E-value = estimate of False Positives with same or better alignment scores
BLAST negative	False Negatives	True Negatives

Discussion question:

How could we experimentally measure BLAST's True Positive and True Negative rates?

Another example: taking a school test

	Studied	Didn't study	Total
Passed	17	3	20
Failed	2	23	25
Total	19	26	45

What's the probability of passing?

What's the probability of passing if you study?

	Studied	Didn't study	Total
Passed	17	3	20
Failed	2	23	25
Total	19	26	45

If you study, what's the probability of passing? Hint: Only consider students who study.

$$\bigcirc \qquad p = \frac{17}{17 + 3}$$

If you passed, what's the probability that you studied?

	Studied	Didn't study	Total
Passed	17	3	20
Failed	2	23	25
Total	19	26	45

If you passed, what's the probability that you studied?

For folks who've studied conditional probability: Today's exercise is just another view of Bayes theorem

	Studied	Didn't study	Total
Passed	17	3	20
Failed	2	23	25
Total	19	26	45
$Pr(Studied \mid Passed) =$	Pr(Passed	Studied) Pr(Si Pr(Passed)	tudied)
=	$\frac{\left(\frac{17}{19}\right)\left(\frac{19}{45}\right)}{\left(\frac{20}{45}\right)} =$	$=\frac{\left(\frac{17}{19}\right)\left(\frac{19}{145}\right)}{\left(\frac{20}{145}\right)}=$	17 20
=	85%		