- a) $A = \{(x, y) \in \mathbb{R}^2 : -1 < x < 1, -1 < y < 1\}.$
- b) $A = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}.$
- c) $A = \{(x, y) \in \mathbb{R}^2 : y > 0\}.$
- se pide
 - i) Determinar la frontera del conjunto A.
 - ii) Probar que el conjunto A es abierto
 - ii) Dado $X_0 \in A$, determinar un valor r > 0 tal que $B_r(X_0) \subset A$.

→ (N2,0)

i) a) $f_r(A) = \{(x,y) \in \mathbb{R}^2 : y = \pm 1, -1 < x < 1 \} \cup \{(x,y) \in \mathbb{R}^2 : x = \pm 1, -1 < y < 1 \}$ b) $f_r(A) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4 \}$ c) $f_r(A) = \{(x,y) \in \mathbb{R}^2 : y = 0 \}$

- ii) a) Anfr(A) = Ø -> A es abierto
 - b) $A \cap \{r(A) = \emptyset \Rightarrow A \in abjecto$
 - c) $A \cap fr(A) = \emptyset \implies A$ es abierto
- iii) X, = (x, y,) & A & R?
 - B.(X)CA

2.2 d) { (x,y) & [R?: x2+y2 >2, x>1, y < 1 }

- se pide:
- i) Representar el conjunto A de \mathbb{R}^2
- ii) Indicar si A es abierto, cerrado, acotado, compacto y convexo

dEs A abierto, es A cerraco?

Colculo $F_r(A) = \{(x,y) \in \mathbb{R}^2: y = 1, x \ge 1\} \cup \{(x,y) \in \mathbb{R}^2: x^2 + y^2 = 2, y \ge |1| \} \cup \{(x,y) \in \mathbb{R}^2: x = 1, y \le 1\}$ Calculo $A \cap F_r(A) = F_r(A) \implies A$ no es abierto ya que $A \cap F_r(A) \ne \emptyset$ $\implies A$ es cerrado ya que $A \cap F_r(A) = F_r(A)$

¿Es A acotado, es A compacto?

A no está acotado (>> no es compacto

¿Es A convexo? No, a=(1,1) y b=(1/2,0) & A pero at & A