Fondamenti di Data Science e Machine Learning - Prof. G. Polese - Anno Accademico 2019/20 Prova Scritta (ore 10:00) 04/11/2020

Cognome e Nome:

Matricola:

Esercizio 1 (punti 5 su 30)

Disegnare un percettrone, eventualmente multilivello, con indicazione dei pesi e delle step function, che calcoli la funzione booleana A XOR B AND C.

Esercizio 2 (punti 5 su 30)

Data una tabella con 6 tuple. Si supponga che su un attributo X valgano le seguenti relazioni:

$$t_1[X] \approx t_2[X] = t_3[X] \neq t_4[X] = t_5[X] \neq t_6[X] = t_1[X]$$

$$t_1[Y] \neq t_2[Y] = t_3[Y] = t_4[Y] \approx t_5[Y] \neq t_6[Y] = t_1[Y]$$

dove il simbolo \approx indica che è possibile trovare una soglia ragionevole affinché due tuple siano simili, mentre ciò non vale per il simbolo \neq .

Dire se esiste una FD e/o una RFD X \rightarrow Y. Qualora valga una RFD che rilassi sull'extent, indicare il relativo g3 error.

Esercizio 3 (punti 6 su 30)

Data la seguente signature matrix:

Shingle	S_1	S_2	S_3	S ₄
0	1	0	1	1
1	0	1	1	0
2	1	0	0	1
3	0	1	0	0
4	1	1	0	0
5	0	0	0	1

- a) Calcolare la similarità di Jaccard tra ogni coppia di colonne;
- b) Calcolare la signature di minhash per ogni colonna usando le seguenti 3 funzioni hash:

$$h1(x) = (4x - 1) \mod 6$$
; $h2(x) = (2x + 3) \mod 6$; $h3(x) = (3x + 7) \mod 6$.

Mostrare l'evoluzione della matrice delle signature di minhash simulando l'esecuzione dell'algoritmo per il loro calcolo. Inoltre, calcolare le similarità di Jaccard tra tutte le coppie di signature di minhash.

Fondamenti di Data Science e Machine Learning - Prof. G. Polese - Anno Accademico 2019/20 Prova Scritta (ore 10:00) 04/11/2020

Esercizio 4 (punti 7 su 30)

Dati i seguenti punti in uno spazio bidimensionale:

$$(2,1)(1,2)(5,2)(4,3)(6,10)(10,1)(3,6)(3,4)(5,6)(6,1)(4,1)(6,6)$$

Mostrare i passi di un algoritmo di clustering gerarchico (mostrando ad ogni passo cluster e centroidi) per raggruppare i suddetti punti in 2 cluster, usando la funzione di distanza euclidea.

Esercizio 5 (punti 7 su 30)

Dato il seguente frammento di dataset:

Istanza	X 1	X 2	Х3	X4
i1	1	-2	-9	1
i2	-6	2	9	-2
i3	3	7	2	6
i4	4	-2	2	-6
i5	-4	2	-2	2

Verificare se esistono valori dei 5 pesi $\mathbf{w_i}$ e del termine di bias che facciano in modo che un classificatore SVM lineare restituisca la classe positiva sulle prime 2 istanze e quella negativa sulle ultime 3.