La matrice dei dati Analisi Esplorativa

Aldo Solari

- 1 Tipologia di variabili
- 2 Valori mancanti
- 3 Valori anomali
- 4 Matrice dei dati
- **6** Diagramma di dispersione

I dati

I dati possono essere rappresentati con una tabella $n \times p$

- n osservazioni o unità statistiche: individui, aziende, etc.
- p variabili o misurazioni o caratteristiche: altezza, sesso, etc.

	Variabile 1		Variabile j		$Variabile\ p$
Unità statistica 1	x_{11}		x_{1j}		$\overline{x_{1p}}$
Unità statistica 2	x_{21}		x_{2j}		x_{2p}
• • •	• • •	• • •	• • •	• • •	• • •
Unità statistica i	x_{i1}	• • •	x_{ij}	• • •	x_{ip}
• • •	• • •		• • •	• • •	• • •
Unità statistica n	x_{n1}	• • •	x_{nj}	• • •	x_{np}

- n = numerosità dei dati
- p = dimensionalità dei dati

Esempio

n=10 individui e p=5 variabili:

	sesso	figli	occhi	salute	peso
1	Maschio	0	Azzurri	Molto Buona	68.04
2	Maschio	1	Neri	Molto Buona	72.57
3	Maschio	0	Marroni	Media	61.23
4	Maschio	0	Neri	Cattiva	63.50
5	Maschio	1	Azzurri	Buona	49.90
6	Femmina	0	Marroni	Buona	49.90
7	Femmina	2	Azzurri	Molto Buona	54.43
8	Femmina	0	Marroni	Media	54.43
9	Femmina	0	Neri	Media	47.63
10	Femmina	1	Neri	Buona	45.36

Outline

- 1 Tipologia di variabili
- 2 Valori mancanti
- 3 Valori anomali
- 4 Matrice dei dati
- 5 Diagramma di dispersione

Tipologia di variabili

Le variabili si suddividono in due tipologie:

Qualitative

- nominali (in R: Factor), se non esiste nessun ordinamento naturale tra le modalità ;
- ordinali (in R: Ord.factor), se esiste un ordinamento naturale tra le modalità.

Quantitative

- discrete (in R: integer), quando sono esprimibili da numeri interi
- continue (in R: numeric), quando sono esprimibili da numeri reali

Variabili Dicotomiche: quando le modalità sono solamente due

Tipologia di variabili

Outline

- 1 Tipologia di variabili
- 2 Valori mancanti
- 3 Valori anomali
- 4 Matrice dei dati
- 5 Diagramma di dispersione

Valori mancanti (missing values)

	sesso	figli	IQ	occhi	salute	peso
1	Maschio	0	120	Azzurri	Molto Buona	68.04
2	Maschio	1		Neri	Molto Buona	72.57
3	Maschio	0		Marroni	Media	61.23
4	Maschio	0	150	Neri	Cattiva	63.50
5	Maschio	1	92	Azzurri	Buona	49.90
6	Femmina	0	130	Marroni	Buona	49.90
7	Femmina			Azzurri	Molto Buona	54.43
8	Femmina	0		Marroni	Media	54.43
9	Femmina	0	84	Neri	Media	47.63
10	Femmina	1	70	Neri	Buona	45.36

NA

In R, i valori mancanti vengono codificati con NA (Not Available)

	sesso	figli	IQ	occhi	salute	peso
1	Maschio	0	120	Azzurri	Molto Buona	68.04
2	Maschio	1	NA	Neri	Molto Buona	72.57
3	Maschio	0	NA	Marroni	Media	61.23
4	Maschio	0	150	Neri	Cattiva	63.50
5	Maschio	1	92	Azzurri	Buona	49.90
6	Femmina	0	130	Marroni	Buona	49.90
7	Femmina	NA	NA	Azzurri	Molto Buona	54.43
8	Femmina	0	NA	Marroni	Media	54.43
9	Femmina	0	84	Neri	Media	47.63
10	Femmina	1	70	Neri	Buona	45.36

Problema: le tecniche di analisi multivariata che andremo a considerare prevedono osservazioni con tutti i valori presenti.

Esclusione di variabili incomplete

	sesso	filg/lj/	J/Q/	occhi	salute	peso
1	Maschio	,0/	1/2/0/	Azzurri	Molto Buona	68.04
2	Maschio	/ ¥	ŅΑ	Neri	Molto Buona	72.57
3	Maschio	Ŋ	MA	Marroni	Media	61.23
4	Maschio	Ŋ	1/5/0	Neri	Cattiva	63.50
5	Maschio	/ ¥	9/2/	Azzurri	Buona	49.90
6	Femmina	Ņ	1/30	Marroni	Buona	49.90
7	Femmina	ŊĄ	MA	Azzurri	Molto Buona	54.43
8	Femmina	Ŋ	NA	Marroni	Media	54.43
9	Femmina	Ŋ	84	Neri	Media	47.63
10	Femmina	/ }/	7/0/	Neri	Buona	45.36

Diminuisce la dimensionalità p dei nostri dati. Però le variabili escluse potrebbero essere proprio quelle di interesse per l'analisi

Esclusione di osservazioni incomplete

	sesso	figli	IQ	occhi	salute	peso
1	Maschio	0	120	Azzurri	Molto Buona	68.04
/2	Maschio	/ }/	M/A	Ν⁄ <i>φγ</i> ί/	MAKA/BUAHA	7/2/.5/7
3	Maschio	,Q	M/A	Marroni	Media	<i>61/.2</i> /3
4	Maschio	0	150	Neri	Cattiva	63.50
5	Maschio	1	92	Azzurri	Buona	49.90
6	Femmina	0	130	Marroni	Buona	49.90
7	F <i>ehhnini</i>	ŅΑ	/N/A	<i>A\z</i> z \u/r/r/i	Molto/Bugha	/5/ 4 /.4/3
8	Fehhnhind	,Q	/N/ / A	M/A/r/d/n/i/	Media	5 <u>4/4</u> 3
9	Femmina	0	84	Neri	Media	47.63
10	Femmina	1	70	Neri	Buona	45.36

Diminuisce la numerosità n dei nostri dati. Vi vengono in mente altri potenziali problemi?

WWII

- Quanto segue è realmente accaduto durante la seconda guerra mondiale
- Obiettivo: proteggere gli aerei da caccia degli alleati negli scontri con i caccia della Luftwaffe
- Un caccia (Savoia-Marchetti S.M.79) è un velivolo leggero e agile
- Per evitare l'abbattimento, questi aerei venivano corazzati con robuste lastre di ferro
- Problema: quante corazze e dove le mettiamo? Se un aereo non è corazzato, è facile da abbattere; se è troppo corazzato, è difficile da manovrare
- Per un aereo abbiamo 4 settori: (A) ali (B) alimentazione (C) fusoliera (D) motore. Possiamo mettere la corazza in un solo settore. Dove la mettiamo?
- Guardiamo i dati degli aerei

Savoia-Marchetti S.M.79

I dati

Tabella dei dati

Zona dell'aereo	Numero di colpi $/ dm^2$
Ali	0.167
Alimentazione	0.143
Fusoliera	0.161
Motore	0.103

Nota: la media delle densità di colpi (numero di colpi per decimetro quadrato) è calcolata escludendo i valori (aerei) mancanti

Grazie a questa tabella, lo statistico Abraham Wald fu in grado di posizionare la protezione nel punto più rischioso

Fonte: D. Hand (2019) Il tradimento dei numeri. I dark data e l'arte di nascondere la verità. Rizzoli

L'opinione di uno statistico

The armor doesn't go where the bullet holes are. It goes where the bullet holes aren't.

The observed holes showed where the planes were strongest; that's where the planes could be shot and still survive the flight home. The missing holes showed where the planes were weaker; that's where the planes that didn't make it back were hit.

Abraham Wald

Pensate di far visita ad un ospedale militare durante una guerra: vi aspettate di osservare più feriti alle gambe o alla testa?

Gli aerei mancanti (non a caso)

Valori mancanti (completamente) a caso

Si parla di valori mancanti (completamente) a caso se i valori mancanti sono un campione casuale dei $n \times p$ valori possibili.

In tale situazione non ci sono problemi se escludiamo le osservazioni che presentano almeno un valore mancante (tranne il fatto che diminuisce la numerosità n)

Outline

- 1 Tipologia di variabili
- 2 Valori mancanti
- 3 Valori anomali
- 4 Matrice dei dati
- 5 Diagramma di dispersione

Valori anomali (outliers)

Ogni insieme di valori ha un massimo e un minimo, però può capitare di osservare uno o più valori veramente anomali (outliers)

Valore anomalo (outlier)

E' un valore che si discosta dal baricentro della distribuzione più di quanto possa essere giustificato dalla variabilità dei dati.

Perchè sono valori anomali?

Ci possono essere diverse spiegazioni, ad esempio:

Errore di rilevazione

e.g. per la variabile altezza, ho imputato $18.4\ m$ invece di $1.84\ m$

Elevata variabilità intrinseca del fenomeno (code pesanti)

e.g. pensate alla variabile reddito

Valori provenienti da una distribuzione diversa (contaminazione)

e.g. pensate al peso per animali viventi e animali estinti (dinosauri)

Come si individuano i valori anomali?

Metodi basati sull'esplorazione grafica:

Per una singola variabile

• Diagramma a scatola con baffi (boxplot)

Per due variabili

- Diagramma di dispersione
- Bagplot

Diagramma a scatola con baffi (boxplot)

- Me, Q_1 e Q_3 sono la mediana, il primo e il terzo quartile
- $IQR = Q_3 Q_1$ è il *range* interquartile
- Il baffo a sinistra è il valore massimo tra Min e $Q_1 1.5 \cdot \mathrm{IQR}$
- Il baffo a destra è il valore minimo tra Max e $Q_3 + 1.5 \cdot \mathrm{IQR}$

Boxplot e valori anomali

Il diagramma a scatola e baffi (boxplot) identifica un valore anomalo (indicandolo con \circ) con la seguente regola:

Un valore x_i , i = 1, ..., n è anomalo se:

- $x_i < Q_1 1.5 \cdot IQR$ oppure se
- $x_i > Q_3 + 1.5 \cdot IQR$

Comando boxplot() con R

- Se la numerosità campionaria n è un numero dispari, la descrizione coincide con quella delle slides precedenti;
- Se invece la numerosità campionaria n è un numero pari, i valori di Q_1 e Q_3 che calcola il comando boxplot() potrebbero essere leggermente diversi dal primo e il terzo quartile
- Potete utilizzare il comando boxplot.stats() per ottenere i 5 valori che compongono il boxplot (Min, baffo sx, Me, baffo dx, Max)

Dati Animals

- Animals è un dataset presente nella libreria MASS
- Per una descrizione del dataset, digitare ?Animals
- Average brain and body weights for 28 species of land animals
- body : body weight in kg
- brain : brain weight in g
- ullet n=28 osservazioni misurate su p=2 variabili

Dati Animals

	body	brain
Mountain beaver	1.35	8.10
Cow	465.00	423.00
Grey wolf	36.33	119.50
Goat	27.66	115.00
Guinea pig	1.04	5.50
Dipliodocus	11700.00	50.00
Asian elephant	2547.00	4603.00
Donkey	187.10	419.00
Horse	521.00	655.00
Potar monkey	10.00	115.00
Cat	3.30	25.60
Giraffe	529.00	680.00
Gorilla	207.00	406.00
Human	62.00	1320.00
African elephant	6654.00	5712.00
Triceratops	9400.00	70.00
Rhesus monkey	6.80	179.00
Kangaroo	35.00	56.00
Golden hamster	0.12	1.00
Mouse	0.02	0.40
Rabbit	2.50	12.10
Sheep	55.50	175.00
Jaguar	100.00	157.00
Chimpanzee	52.16	440.00
Rat	0.28	1.90
Brachiosaurus	87000.00	154.50
Mole	0.12	3.00
Pig	192.00	180.00

Boxplot brain


```
library("MASS")
boxplot(Animals$brain)
boxplot.stats(Animals$brain)
$stats
[1]    0.40    18.85   137.00   421.00   680.00
$out
[1]    4603   1320   5712
```


Boxplot brain e body

Outlier bivariato

Bagplot = boxplot bivariato

Bagplot per dati unidimensionali

Outline

- 1 Tipologia di variabili
- 2 Valori mancanti
- 3 Valori anomali
- 4 Matrice dei dati
- 5 Diagramma di dispersione

Matrice X

$$X_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nj} & \cdots & x_{np} \end{bmatrix}$$

Medie e varianze

• Media per la *j*-sima variabile

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, \qquad j = 1, \dots, p$$

• Varianza per la *j*-sima variabile

$$s_j^2 = \frac{1}{n} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \qquad j = 1, \dots, p$$

Covarianze e correlazioni

ullet Covarianza tra la j-sima e la k-sima variabile

$$s_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k), \qquad j = 1, \dots, p, \ k = 1, \dots, p$$

Si noti che $s_{jk} = s_{kj}$ e che $s_{jj} = s_j^2$

• Correlazione tra la j-sima e la k-sima variabile

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}}\sqrt{s_{kk}}}, \qquad j = 1, \dots, p, \ k = 1, \dots, p$$

Si noti che $-1 \le r_{ik} \le 1$

Vettore delle medie

$$\bar{x}_{p \times 1} = \begin{bmatrix} \bar{x}_1 \\ \dots \\ \bar{x}_j \\ \dots \\ \bar{x}_p \end{bmatrix}$$

Matrice di varianze/covarianze

$$S_{p \times p} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1j} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2j} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ s_{j1} & s_{j2} & \cdots & s_{jj} & \cdots & s_{jp} \\ \vdots & \vdots & \cdots & \vdots & \ddots & \ddots \\ s_{p1} & s_{p2} & \cdots & s_{pj} & \cdots & s_{pp} \end{bmatrix}$$

Matrice di correlazione

$$R = \begin{bmatrix} 1 & r_{12} & \cdots & r_{1j} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2j} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ r_{j1} & r_{j2} & \cdots & 1 & \cdots & r_{jp} \\ \vdots & \vdots & \cdots & \vdots & \ddots & \cdots \\ r_{p1} & r_{p2} & \cdots & r_{pj} & \cdots & 1 \end{bmatrix}$$

Esempio

Variabile 1 (prezzo in Dollari per libro): 42 52 48 58 Variabile 2 (numero di libri venduti): 4 5 4 3

Matrice X

$$X_{4\times2} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix} = \begin{bmatrix} 42 & 4 \\ 52 & 5 \\ 48 & 4 \\ 58 & 3 \end{bmatrix}$$

Vettore delle medie

$$\bar{x}_{2\times 1} = \left[\begin{array}{c} \bar{x}_1 \\ \bar{x}_2 \end{array} \right] = \left[\begin{array}{c} 50 \\ 4 \end{array} \right]$$

Matrice di varianze/covarianze

$$S_{2\times 2} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} = \begin{bmatrix} 34 & -1.5 \\ -1.5 & 0.5 \end{bmatrix}$$

Matrice di correlazione

$$R_{2\times 2} = \begin{bmatrix} 1 & r_{12} \\ r_{21} & 1 \end{bmatrix} = \begin{bmatrix} 1 & -0.36 \\ -0.36 & 1 \end{bmatrix}$$

Outline

- 1 Tipologia di variabili
- 2 Valori mancanti
- 3 Valori anomali
- 4 Matrice dei dati
- **5** Diagramma di dispersione

Dati

Medie: $\bar{x}_1 = 4.2$, $\bar{x}_2 = 6.2$

Varianze: $s_{11} = 4.2$, $s_{22} = 0.56$

Covarianza: $s_{12} = 3.70$

Correlazione: $r_{12} = 0.95$

Diagramma di dispersione

Dati

Medie: $\bar{x}_1 = 4.2$, $\bar{x}_2 = 6.2$

Varianze: $s_{11} = 4.20$, $s_{22} = 0.56$

Covarianza $s_{12} = -3.01$

Correlazione $r_{12} = -0.78$

Diagramma di dispersione

Indovina la correlazione

Guess the correlation

Relazione quadratica

$$x_{1i} = -1 + 2\frac{(i-1)}{(n-1)}$$

 $x_{2i} = x_{1i}^2, \quad i = 1, \dots, n$

Relazione quadratica

Per n=20:

$$r_{12} \approx 0$$

Correlazione = relazione LINEARE

Animals: diagramma di dispersione

Animals: trasformazione logaritmica

Animals: escludendo 3 osservazioni anomale

