Univariate Verfahren

WS 2023-24

DI Emil Marinov | DI David Bechtolf

Übersicht

1.	Häufigkeitsverteilungen	3 – 12
2.	Lageparameter	13 – 18
3.	Streuparameter	19 – 26

Absolute Häufigkeitsverteilung

Messwerte:

$$x_1, x_2, \ldots, x_n$$

verschiedene Ausprägungen:

$$a_1, a_2, \ldots, a_k \ (k \le n)$$

absolute Häufigkeit h(a_j): wie oft kommt ein Wert a_i vor

Beispiel:

Messwerte: 1, 3, 3, 4, 4, 4, 5, 5, 6, 10

n = 10 Messwerte

$$x_1 = 1, x_2 = 3, x_3 = 3, \dots$$

k = 6 verschiedene Werte

$$a_1 = 1, a_2 = 3, a_3 = 4, \dots$$

absolute Häufigkeiten

$$h(1) = 1, h(3) = 2, h(4) = 3, ...$$

Relative Häufigkeitsverteilung

Messwerte:

$$x_1, x_2, \ldots, x_n$$

verschiedene Ausprägungen:

$$a_1, a_2, ..., a_k \ (k \le n)$$

relative Häufigkeit f(a_i):

prozentueller Anteil
$$f(a_j) = \frac{h(a_j)}{n}$$

Beispiel:

Messwerte: 1, 3, 3, 4, 4, 4, 5, 5, 6, 10

relative Häufigkeiten

$$f(1) = \frac{1}{10} = 0.1$$
$$f(3) = \frac{2}{10} = 0.2$$

Grafische Darstellung

Säulendiagramm

Balkendiagramm

Kreisdiagramm

Kumulierte Häufigkeitsverteilung

kumulierte absolute Häufigkeit H(x): Anzahl der Beobachtungen, die den Wert x nicht überschreiten

Beispiel:

Messwerte: 1, 3, 3, 4, 4, 4, 5, 5, 6, 10

a_i	$h(a_i)$	$H(a_i)$
1	1	1
3	2	3
4	3	6
5	2	8
6	1	9
10	1	10

Kumulierte Häufigkeitsverteilung

kumulierte relative Häufigkeit (empirische Verteilungsfunktion) F(x): Anteil der Beobachtungen, die den Wert x nicht überschreiten

Beispiel:

Messwerte: 1, 3, 3, 4, 4, 4, 5, 5, 6, 10

a_i	$f(a_i)$	$F(a_i)$
1	0.1	0.1
3	0.2	0.3
4	0.3	0.6
5	0.2	0.8
6	0.1	0.9
10	0.1	1

Grafische Darstellung von kumulierten Häufigkeiten

Stufenfunktion

Klassifizierte Häufigkeitsverteilung

- bei sehr vielen verschiedenen
 Merkmalswerten werden die Werte in Klassen gruppiert
- bei numerischen Merkmalen(stetig oder diskret mit vielen verschiedenen Werten)

Beispiel:

Messwerte (n = k = 26)

195.35 264.74 271.00 278.15 302.95 312.66 315.69 371.35 399.83 415.31 424.21 461.00 474.82 523.00 556.86 580.00 581.43 638.00 644.05 650.00 657.53 727.03 731.56 816.38 930.00 1000.00

Klasse	h	f
]0, 200]	1	0.0385
]200, 400]	8	0.308
]400, 600]	8	0.308
]600, 800]	6	0.231
]800, 1000]	3	0.115

Grafische Darstellung von klassifizierten Häufigkeiten

Histogramm

Kontrollfragen	
Thema	Häufigkeitsverteilungen
Aufgaben	In einer Produktion wurden in den letzten beiden Wochen folgende Anzahl an Ausschussteilen produziert: 5, 3, 2, 1, 5, 4, 10, 2, 1, 2 Erstellen Sie eine Tabelle mit • absoluten Häufigkeiten • relativen Häufigkeiten • kumulierten absoluten Häufigkeiten • kumulierten relativen Häufigkeiten

Maßzahlen von Verteilungen

Lageparameter

- beschreiben das Zentrum einer Verteilung durch einen numerischen Wert
- Wahl der Maßzahl ist vom Kontext und vom Skalenniveau des Merkmals abhängig

Streuparameter

 beschreiben die Streuung einer Verteilung durch einen numerischen Wert

Arithmetisches Mittel

Berechnung:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{k} a_i h_i = \sum_{i=1}^{k} a_i f_i$$

- Skalenniveau: metrisch
- empfindlich gegen Ausreißer
- Berechnung bei klassifizierten Daten: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} m_i h_i$ (m_i ... Klassenmitte)

Beispiel

Messwerte:

Arithmetisches Mittel:

$$\bar{x} = \frac{1}{10}(1+3+3+4+4+4+...+10) = 4.5$$

$$\bar{x} = \frac{1}{10}(1+2\cdot3+3\cdot4+2\cdot5+6+10) = 4.5$$

Median x_{med}

- liegt in der Mitte der geordneten Stichprobe
- Skalenniveau: ordinal oder metrisch
- nicht empfindlich gegen Ausreißer
- mindestens 50% der Daten sind kleiner oder gleich dem Median
- mindestens 50% der Daten sind größer oder gleich dem Median

Beispiel

Messwerte:

1, 3, 3, 4, 4, 4, 5, 5, 6, 10

Median: $x_{med} = 4$

Messwerte:

1, 3, 3, 4, 4, 5, 5, 5, 6, 10

Median: $x_{med} = 4.5$

Modus x_{mod}

- häufigster Merkmalswert einer Stichprobe
- jedes Skalenniveau möglich
- nicht immer eindeutig
- nicht empfindlich gegen Ausreißer

Beispiel

Messwerte:

1, 3, 3, 4, 4, 4, 5, 5, 6, 10

Modus:

$$x_{mod} = 4$$

Kontrollfragen	
Thema	Lageparameter
Aufgaben	In einer Produktion wurden in den letzten beiden Wochen folgende Anzahl an Ausschussteilen produziert: 5, 3, 2, 1, 5, 4, 10, 2, 1, 2 Bestimmen Sie folgende Lageparameter • Modus • Median • arithmetisches Mittel
	Welchen Lageparameter halten Sie für diese Aufgabe am geeignetsten?

Quantile

- p-Quantil x_p :

Merkmalswert, für den mindestens ein Anteil p kleiner oder gleich x_p und mindestens ein Anteil 1-p größer oder gleich x_p ist.

- spezielle Quantile:
 - > 25%-Quantil x_{0.25}: 1. Quartil, unteres Quantil
 - > 50%-Quantil x_{0.5}: 2. Quartil, Median
 - > 75%-Quantil x_{0.75}: 3. Quartil, oberes Quartil
- Interquartilsabstand IQR (interquartile range):

$$IQR = X_{0.75} - X_{0.25}$$

Beispiel

Messwerte:

1, 3, 3, 4, 4, 4, 5, 5, 6, 10

Quantile:

$$x_{0.25} = 3$$

$$x_{0.5} = 4$$

$$x_{0.5} = 4 x_{0.75} = 5$$

Fünf-Punkte-Zusammenfassung

- Minimum x_{min}
- unteres Quartil x_{0.25}
- Median x_{0.5}
- oberes Quartil x_{0.75}
- Maximum x_{max}

Grafische Darstellung als Box-Whisker-Plot

Spannweite

Differenz zwischen Maximum und Minimum

$$R = x_{max} - x_{min}$$

Skalenniveau: metrisch

Varianz

mittlere quadratische Abweichung vom Mittelwert

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

Skalenniveau: metrisch

Standardabweichung

Wurzel aus der Varianz

$$\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

- Skalenniveau: metrisch
- empirische Standardabweichung:

$$\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Variationskoeffizient

Maß für relative Streuung

$$v_{x} = \frac{\sigma_{x}}{\bar{x}}$$

- dimensionslose Größe
- Skalenniveau: metrisch
- geeignet für den Vergleich von Streuungen bei unterschiedlichen Merkmalen

Beispiel

Messwerte:

1, 3, 3, 4, 4, 4, 5, 5, 6, 10

- Mittelwert: $\bar{x} = 4.5$
- Spannweite: R = 10 1 = 9
- Varianz: $\sigma_x^2 = \frac{1}{10}(12.25 + 2 \cdot 2.25 + 3 \cdot 0.25 + 2 \cdot 0.25 + 2.25 + 30.25) = 5.05$
- Standardabweichung: $\sigma_x = \sqrt{5.05} = 2.25$
- Variationskoeffizient: $v_{\chi} = \frac{2.25}{4.5} = 0.5$

a_i	$h(a_i)$	$(a_i-\overline{x})^2$
1	1	12.25
3	2	2.25
4	3	0.25
5	2	0.25
6	1	2.25
10	1	30.25

Kontrollfragen	
Thema	Streuparameter
Aufgaben	In einer Produktion wurden in den letzten beiden Wochen folgende Anzahl an Ausschussteilen produziert: 5, 3, 2, 1, 5, 4, 10, 2, 1, 2 Bestimmen Sie folgende Streuparameter • Varianz • Standardabweichung • Variationskoeffizient