Android Virtualization 을 통한 loT(Internet of Things) 구현

삼성 소프트웨어 멤버십 23-2기

윤재석 / 장정규 / 최현빈

Why?

What?

3
How?

Wish

Internet of Things (IoT)

모든 것을 연결하는 사물 인터넷의 모든 것

The Internet of Things (IoT) is a scenario in which objects, animals or people are provided with unique identifiers and the ability to automatically transfer data over a network without requiring human-to-human or human-to-computer interaction. IoT has evolved from the convergence of wireless technologies, micro-electromechanical systems (MEMS) and the Internet.

Professor, Jake

Characteristic of Korean

그 로 교체 주기

어플리케이션 설치 및 세팅

> 카카오톡 단톡방 초대 요청

연락처 옮기기

사진 등 어서"가 데이터 옮기기

What?

System Architecture

Client

Android Virtual Device

Android Virtual Device(AVD)

실제 Device가 아닌, PC에서 Android를 이용할 수 있도록 해주는 일종의 Emulator 'Cloud Phone' 에서는 AVD를 이용하여 Client에 똑같은 화면을 뿌려줄 것이다.

Using AVD from Command Line

- Create: android create avd n <name> -t <targetID>
- Move: android move avd n <name>
- Update : android update avd –n <name>
- Delete: android delete avd –n <name>

How Control?

-> By Android Debug Bridge

Android Debug Bridge

Android Debug Bridge(ADB)

안드로이드 개발자용 도구로서, 안드로이드 디버그에 관련된 모든 행동을 할 수 있다. 이 Utility를 사용하여 AVD에 명령을 내리게 한다.

How Control?

-> By Command Prompt with adb shell adb –s <serialNumber> <command>

Example

```
파일(E) 편집(E) 보기(V) 터미널(I) 도움말(H)

:~$ adb -s emulator-5554 install ~/HangulKeyboard.apk

1930 KB/s (180657 bytes in 0.091s)

pkg: /data/local/tmp/HangulKeyboard.apk
```

Cloud Phone Service

- FrameBuffer 데이터를 받아 SurfaceView를 이용, 사용자에게 인터페이스 제공
- SurfaceView를 통해 입력되는 터치 이벤트를 서버로 전달
- Hardware Key를 통해 입력되는 이벤트를 서버로 전달
- GPS Sensor 추출
- Gyroscope Sensor 추출
- Camera Data 추출
- Battery Data 추출

FLOW

AVD Server

AVD

AVD

AVD

AVD

FrameBuffer Data

Sensor Data Touch Event Key Event

GPS Sensor

- LocationManager Class를 이용하여 GPS Sensor 값을 추출 후, 가상화 서버로 전달
- 서버는 전송된 값을 가상화 장치에 적용

- 전송될 값
 - Logitude Value(경도)
 - Latitude Value(위도)
 - Altitude Value(고도)

Ex) geo fix -121.45356 46.51119 4392

Gyroscope Sensor

• Rotation Vector (x, y, z 기울기 벡터)

z

• Gyroscope (x, y, z 가속도)

Others

SCREEN_OFF BroadcastReceiver 이용하여
 이용상태 파악

• BatteryManager Class를 이용하여 배터리 상태 파악

0 0

ABOUT

Implementation
Of Camera

Camera.PreviewCallback

클라이언트의 카메라를 통해서 촬영된 이미지 정보를 받기 위해서 이용하는 인터페이스로, 바이너리 배열형태로 데이터가 떨어진다. 해당 데이터는 YCbCr 형식인데 JPEG으로 압축하여 미묘한 손실은 있지만 빠른 속도로 처리할 수 있도록 구현할 것이다.

Filter Driver

필터드라이버는 이미 상용화되어 있는 드라이버에 전달되는 I/O 요청을 가로채어 기존의 드라이버가 제공하는 기능을 보완하거나 새로운 기능을 추가할 수 있는 기회를 제공하는 드라이버이다.

AVStream

Filter Driver

WDM

Schedule

윤재석	1주	2주	3주	4주	5주	6주	7주	8주
AVD 웹캠 연동								
임시 테스트용 서버 구축								
임시 테스트용 클라이언트 제작								
이미지 압축 및 전송 구현				l				
필터 디바이스 드라이버 설계 및 구현								
AVStream 분석 및 구현								
가상 웹캠 디바이스 테스트								
AVD와 클라이언트 연동								
통합 및 테스트								

Schedule

장정규	1주	2주	3주	4주	5주	6주	7주	8주
프레임 버퍼 추출								
프레임 버퍼 압축 및 전달								
Cloud Phone 프레임워크 구현								
Cloud Phone 서비스 구현								
GPS, 자이로센서 정보 전달								
가속도센서 정보 전달								
Battery Data 추출 및 전달 구현								
Hardware 키 맵핑 구현								
Touch Event 전달 구현								
예외처리 (전화)								
통합 및 테스트								

Schedule

최현빈	1주	2주	3주	4주	5주	6주	7주	8주
서버 설계 및 구축								
디비 설계 및 구축								
로그인 프로세스 구현								
프로토콜 설계								
AVD 생성 로직 설계								
AVD 생성 로직 구현			l					
ADB 메시징 처리 설계								
ADB 메시징 처리 구현								
센서 값 호환 적용								
통합 및 테스트								

Evaluation

평가요소	평가비율
Cloud Phone 가상 디바이스 생성 및 실행	30%
Cloud Phone 프레임워크 구현	20%
Cloud Phone 센서 구현	10%
Cloud Phone 카메라 메커니즘 구현	20%
통합 완성도	10%

THANK YOU Cloud Phone