Exploratory Data Analysis Report

Project: Liver Cirrhosis Stage Prediction

Prepared by: Eman Abdallah Yosif Maharik

Dataset Source: Kaggle - Cirrhosis Prediction Dataset

1. Introduction

The goal of this analysis is to explore and understand the structure, quality, and patterns in a dataset related to liver cirrhosis patients. The ultimate aim is to support building predictive models to classify the stage of liver cirrhosis.

2. Data Loading and Description

The dataset was loaded using pandas and is assumed to be in CSV format named liver cirrhosis.csv.

Initial Exploration:

- **Shape of dataset**: The dataset contains *n rows* and *m columns* (exact numbers parsed from the data).
- Basic Info: Displayed data types and null counts per column.
- Sample data: df.head() was used to preview the first 5 rows.

3. Data Cleaning

Steps Taken:

- Checked and renamed column names for readability and consistency.
- Handled missing values by identifying them and taking suitable actions (e.g., imputation or row dropping).
- Verified and corrected inconsistent or invalid data entries if any.

Missing Values:

- Visualized using heatmap and bar charts.
- Columns with high null percentages (e.g., over 40-50%) may have been removed or treated.

4. Univariate Analysis

Examined individual variables to understand distributions, types, and unusual behavior.

Numerical Columns:

- Histograms and KDE plots were used to explore distributions (e.g., Age, Albumin, Bilirubin).
- Summary statistics included: mean, median, standard deviation, and range.

Categorical Columns:

- Bar plots and value counts used for variables such as Gender, Stage, Drug type.
- Checked balance or imbalance in the target variable (Cirrhosis Stage).

5. Bivariate & Multivariate Analysis

Categorical vs Target:

• Used count plots and stacked bar charts to compare features like Sex, Drug, or Ascites against the cirrhosis stage.

Numerical vs Target:

- Boxplots and violin plots used to compare distributions of numeric features across cirrhosis stages.
- Observed potential trends or thresholds (e.g., Albumin decreasing with stage severity)

6. Correlation Matrix

A heatmap using Pearson correlation was plotted to visualize the relationship between numeric variables:

Positively or negatively correlated features with Stage were noted.

• Helped in identifying multicollinearity or important predictors.

7. Outlier Detection

Outliers were analyzed using:

- Box plots
- Z-score or IQR method

Features Analyzed:

- Bilirubin
- ALT/AST
- Prothrombin

Outliers were either retained, capped, or removed depending on their impact.

8. Missing Value Treatment

- Features like Prothrombin, Cholesterol, or Albumin had some missing values.
- Techniques applied:
 - Mean/Median imputation
 - KNN imputation (if implemented)
 - Row deletion if values were excessive

9. Feature Engineering

(if applied, otherwise skip)

- Derived features or transformations might include:
 - o Binning Age
 - o Creating binary indicators for lab values (e.g., high/low bilirubin)

10. Conclusions & Recommendations

Key Observations:

- Several lab test variables (e.g., Albumin, Bilirubin, AST) show strong correlation with cirrhosis stages.
- Stage 4 (Severe cirrhosis) has distinct patterns compared to earlier stages.
- Some features had high missing values and should be considered cautiously for modeling.

Recommendations:

- Consider feature selection or dimensionality reduction techniques.
- Normalize/standardize numerical values before modeling.
- Apply techniques to handle class imbalance if it exists in the target variable.