Affinoid algebras

1 The first properties

Definition 1. Let \mathbf{k} be a non-archimedean field. A banach \mathbf{k} -algebra A is called a *affinoid* \mathbf{k} -algebra if there exists an admissible surjective homomorphism

$$\varphi: \mathbf{k}\{r_1^{-1}T_1, \dots, r_n^{-1}T_n\} \twoheadrightarrow A$$

for some $n \in \mathbb{N}$ and $r_1, \dots, r_n \in \mathbb{R}_{>0}$.

If one can choose $r_1 = \cdots = r_n = 1$, then we say that A is a *strict affinoid* **k**-algebra.

Definition 2. Let \mathbf{k} be a non-archimedean field. We define the *ring of restricted Laurent series* over \mathbf{k} as

$$\mathbf{K}_r = \mathbf{L}_{\mathbf{k},r} = \left\{ \sum_{n \in \mathbb{Z}} a_n T^n : a_n \in \mathbf{k}, \lim_{|n| \to \infty} |a_n| r^n = 0 \right\}$$

equipped with the norm

$$||f|| = \sup_{n \in \mathbb{Z}} |a_n| r^n.$$

Yang: Is \mathbf{K}_r always a field? Yang: Do we have $\mathbf{L}_{\mathbf{k},r} = \operatorname{Frac}(\mathbf{k}\{T/r\})$?

Proposition 3. Let **k** be a non-archimedean field. If $r \notin \sqrt{|\mathbf{k}^{\times}|}$, then \mathbf{K}_r is a complete non-archimedean field with non-trivial absolute value extending that of **k**.

Proposition 4. Let A be an affinoid k-algebra. Then A is noetherian, and every ideal of A is closed.

Proposition 5. Let A be an affinoid **k**-algebra. Then there exists a constant C > 0 and N > 0 such that for all $f \in A$ and $n \geq N$, we have

$$||f^n|| \le C\rho(f)^n.$$

Proposition 6. Let A be an affinoid \mathbf{k} -algebra. If and only if $\rho(f) \in \sqrt{|\mathbf{k}|}$ for all $f \in A$, then A is strict. Yang: To be complete.

2 finite banach module

There are three different categories of finite modules over an affinoid algebra A:

- The category $Banmod_A$ of finite banach A-modules with A-linear maps as morphisms.
- The category \mathbf{Banmod}_A^b of finite banach A-modules with bounded A-linear maps as morphisms.
- The category \mod_A of finite A-modules with all A-linear maps as morphisms.

Date: October 25, 2025, Author: Tianle Yang, My Homepage

2

Theorem 7. Let *A* be an affinoid **k**-algebra. Then the category of finite banach *A*-modules with bounded *A*-linear maps as morphisms is equivalent to the category of finite *A*-modules with *A*-linear maps as morphisms. Yang: To be revised.

For simplicity, we will just write \mod_A to denote the category of finite banach A-modules with bounded A-linear maps as morphisms.

Appendix

