Università di Pisa

Dipartimento di Informatica

Corso di Laurea Triennale in Informatica

Localizzazione Indoor Basata su Beacon Bluetooth a Bassa Potenza Attraverso Tecniche di Deep Learning

un progetto realizzato per Consorzio Metis e ASL Toscana

Relatori:
Prof. Gianluigi Ferrari

Presentata da: Marco Pampaloni

Sommario

Il problema della Localizzazione Indoor si è rivelato di particolare interesse pratico negli ultimi anni. Questa tesi mostra come moderne tecniche di Deep Learning possano risultare determinanti nella corretta risoluzione di tale problema.

L'approccio analizzato sfrutta una rete neurale convoluzionale (CNN) profonda: l'input del modello è caratterizzato da una serie temporale di segnali broadcast *Bluetooth Low Energy* (BLE) emessi da un insieme di Beacon disposti all'interno dell'edificio adibito alla Localizzazione Indoor, mentre l'output è una coppia di coordinate relative alla posizione all'interno dell'edificio stesso. Sono state inoltre utilizzate varie tecniche di *data augmentation* per produrre un dataset di grandi dimensioni sulla base dei campionamenti dei segnali effettuati in loco.

A seguito dell'addestramento, il modello utilizzato ha mostrato un errore medio assoluto (MAE) sul dataset di test pari a 30cm, esibendo una discreta affidabilità anche rispetto a variazioni significative dei segnali dovute al rumore ambientale. Un ensemble di modelli, ognuno addestrato con diversi iperparametri, ha permesso di ridurre l'errore medio fino a circa 26cm.

Il modello prodotto risulta eseguibile in tempo reale su dispositivi mobile con ridotte capacità computazionali, rendendolo particolarmente adatto alla così detta navigazione "blue-dot" all'interno di contesti Indoor. Tuttavia si evidenzia come la variazione dell'output del modello possa risultare in una navigazione poco fluida. Per arginare questo problema viene applicato un filtro di Kalman al modello e viene sfruttato il sensore inerziale dello smartphone per produrre un'euristica utile a individuare i movimenti dell'utente.

Indice

1	oduzione	4	
2	Loca	alizzazione Indoor	5
	2.1	Introduzione al problema	5
	2.2	Possibili soluzioni	5
	2.3	Beacon BLE	5
	2.4	RSSI e propagazione del segnale	5
	2.5	Variabilità e rumore di fondo: requisiti di usabilità	5
	2.6	Installazione dei Beacon e Acquisizione dei Dati	5
_	Dee	p Learning	6
	3.1	Neurone Artificiale: Perceptron	7
	3.2	Multi Layer Perceptron	7
	3.3	Attivazione: ReLU e Funzioni Sigmoidee	7
	3.4	Apprendimento: Metodo del Gradiente e BackPropagation	7
	3.5	Reti Neurali Convoluzionali	7
	3.6	Regolarizzazione	7
		3.6.1 Overfitting e Underfitting	7
		3.6.2 Regolarizzazione L2	7
		3.6.3 Dropout	7
	3.7	Dataset Augmentation e Preprocessing	7
		3.7.1 Jittering	7
		3.7.2 Ridimensionamento (Scaling)	7

		3.7.3	Magnitude Warping	7		
		3.7.4	Permutazione di Sottoinsiemi (Subset Shuffling)	7		
		3.7.5	Deattivazione Selettiva	7		
4	Arcl	hitettui	ra Software	8		
	4.1	Tensor	Flow	9		
	4.2	Keras		9		
	4.3	Google	e Colab	9		
	4.4	Weigh	ts & Biases	9		
	4.5	Model	lo di Apprendimento	9		
		4.5.1	Input del Modello	9		
		4.5.2	Blocco Convoluzionale	9		
		4.5.3	Uso della Bussola e Output Ausiliario	9		
		4.5.4	Coefficiente di Memoria Residua e Input Ausiliario	9		
		4.5.5	Output del Modello	9		
	4.6	Addes	tramento del Modello	9		
	4.7	Ensem	bling	9		
	4.8	Compi	lazione e Deploy del Modello	9		
5	Applicazione Mobile					
	5.1	Flutter		10		
	5.2	Planin	netrie e Poligoni	10		
	5.3	Backer	nd TensorFlow	10		
		5.3.1	TensorFlow Lite	10		
		5.3.2	Implementazione del Bridge di Comunicazione	10		
	5.4	Stabili	zzazione del Modello	10		
		5.4.1	Utilizzo di Sensori Inerziali	10		
		5.4.2	Filtro di Kalman	10		
6	Con	clusion	ni :	11		
	6.1	Risulta	ıti Sperimentali	11		

	6.1.1	Metriche di Errore: MSE, MAE, MaxAE	11
6.2	Lavori futuri		
	6.2.1	Input a Lunghezza Variabile	11
	6.2.2	Reti Neurali Residuali	11
	6.2.3	Variational Autoencoder: Generazione di nuovi dati	11
	6.2.4	Transfer Learning	11
	6.2.5	Input Masking e Ricostruzione dei Segnali	11
	6.2.6	Transformers per Problemi di Regressione	11
	6.2.7	Simulatore BLE	11
	6.2.8	Posizionamento Magnetico	11

Introduzione

Localizzazione Indoor

- 2.1 Introduzione al problema
- 2.2 Possibili soluzioni
- 2.3 Beacon BLE
- 2.4 RSSI e propagazione del segnale
- 2.5 Variabilità e rumore di fondo: requisiti di usabilità
- 2.6 Installazione dei Beacon e Acquisizione dei Dati

Deep Learning

- 3.1 Neurone Artificiale: Perceptron
- 3.2 Multi Layer Perceptron
- 3.3 Attivazione: ReLU e Funzioni Sigmoidee
- 3.4 Apprendimento: Metodo del Gradiente e BackPropagation
- 3.5 Reti Neurali Convoluzionali
- 3.6 Regolarizzazione
- 3.6.1 Overfitting e Underfitting
- 3.6.2 Regolarizzazione L2
- 3.6.3 Dropout
- 3.7 Dataset Augmentation e Preprocessing
- 3.7.1 Jittering

Architettura Software

1 1	1 7	Гens	Orl	F1.	N N A 7
4.		lens	ar	P 1 (w

- 4.2 Keras
- 4.3 Google Colab
- 4.4 Weights & Biases
- 4.5 Modello di Apprendimento
- 4.5.1 Input del Modello
- 4.5.2 Blocco Convoluzionale
- 4.5.3 Uso della Bussola e Output Ausiliario
- 4.5.4 Coefficiente di Memoria Residua e Input Ausiliario
- 4.5.5 Output del Modello
- 4.6 Addestramento del Modello
- 4.7 Ensembling

Applicazione Mobile

- 5.1 Flutter
- 5.2 Planimetrie e Poligoni
- 5.3 Backend TensorFlow
- 5.3.1 TensorFlow Lite
- 5.3.2 Implementazione del Bridge di Comunicazione
- 5.4 Stabilizzazione del Modello
- 5.4.1 Utilizzo di Sensori Inerziali
- 5.4.2 Filtro di Kalman

Conclusioni

6.1	Risu	ltati	Spe	erim	ental	i

- 6.1.1 Metriche di Errore: MSE, MAE, MaxAE
- 6.2 Lavori futuri
- 6.2.1 Input a Lunghezza Variabile
- 6.2.2 Reti Neurali Residuali
- 6.2.3 Variational Autoencoder: Generazione di nuovi dati
- **6.2.4** Transfer Learning
- 6.2.5 Input Masking e Ricostruzione dei Segnali
- 6.2.6 Transformers per Problemi di Regressione
- 6.2.7 Simulatore BLE
- 6.2.8 Posizionamento Magnetico