TD 12 - Points fixes

Rappels du TD 11

- □ Un ordre partiel a un minimum \bot (resp. un maximum \top) ssi $\bigvee \emptyset = \bot$ (resp. $\bigwedge \emptyset = \top$) existe.
- \Box Un ordre partiel est un **treillis borné** ssi toute partie finie (y compris \emptyset) a une borne supérieure et une borne inférieure.
- □ Un ordre partiel est un **treillis complet** ssi toute partie a une borne supérieure (et de façon equivalente, ssi toute partie a une borne inférieure).
- □ Théorème de Knaster Tarski : Soit (E, \leq) un treillis complet et $f: E \to E$ une fonction monotone. Alors l'ensemble $P_f \neq \emptyset$ des points fixes de f forme un treillis complet. Son plus petit élément est la borne inférieure de l'ensemble des pré-points fixes de f et son plus grand est la borne supérieure de l'ensemble des post-points fixes de f.

Rappel des éfinitions

- Une chaine dans un ordre partiel est une partie non vide.
- ▶ Un ordre partiel est complet si toute chaine a une borne supérieure.
- \triangleright Un ordre partiel est **pointé** s'il a un minimum (noté \bot).
- \triangleright Un ordre partiel est un ω -cpo s'il est complet et pointé.
- ▶ Une fonction est **continue** si elle commute avec les sups des chaines.
- \triangleright Une fonction f est **stricte** si $f(\bigvee \emptyset) = \bigvee \emptyset$.

Exercice 1.

Points fixes dans les ω -cpos

- **1.** Soit (E, \leq) un ω -cpo et $f: E \to E$ une fonction continue. Vérifier que pour tout $x \in E$, post-point fixe $(f(x) \geq x)$ de f, l'ensemble $X = \{f^n(x) \mid n \in \mathbb{N} \}$ est une chaine de E. Que peut-on dire de $\bigvee X$?
- **2.** Montrer que dans un ω -cpo, toute fonction continue a un point fixe et préciser quel est le plus petit.

Exercice 2.

- **1.** Soit X un ensemble. Construire un ω -cpo (X_{\perp}, \preceq) tel que : (i) $X \subseteq X_{\perp}$ et (ii) pour toute fonction partielle $f: X \to D$ vers un ordre partiel (D, \leq) , il existe une extension continue $h: X_{\perp} \to D$ de f. On note alors f_{\perp} son unique extension continue stricte.
- **2.** Soit D et E deux ω -cpos et soit $[D \to E]$ l'ensemble des fonctions continues entre D et E. Munir cet ensemble d'un ordre pour en faire un ω -cpo et préciser quelle est la borne supérieure d'une chaîne dans cet ω -cpo.

Soit Σ un ensemble et $I = [\Sigma_{\perp} \to \Sigma_{\perp}]$ l'ensemble des fonctions continues dans le ω -cpo Σ_{\perp} (cf question 1.).

- **3.** Rappeler quel est l'ordre sur *I*.
- **4.** Pour toute fonction $f \in I$, on définit la fonctionnelle $\gamma[f]: I \to I$ par :

$$\forall x \in \Sigma_{\perp}, \ \gamma[f](g)(x) = egin{cases} \bot & \text{si } f(x) = \bot \\ g \circ f(x) & \text{sinon.} \end{cases}$$

Montrer que $\gamma = \gamma[f]$ est (*i*) monotone et (*ii*) continue.

5. Soient $F:I\to I$ et $G:I\to I$ deux fonctions continues et soit $t:\Sigma_\perp\to\mathbb{B}_\perp$. On définit la fonction $\delta[F,G,t]:I\to I$ suivante :

$$\forall f \in I, \ \forall x \in \Sigma_{\perp}, \ \delta[F,G,t](f)(x) = \begin{cases} \bot & \text{si } t(x) = \bot \\ F(f)(x) & \text{si } t(x) = 1 \\ G(f)(x) & \text{si } t(x) = 0. \end{cases}$$

Montrer que $\delta = \delta[F, G, t]$ est continue.

Exercice 3.

- **1.** Les fonctions de dénotation des expressions (arithmétiques et booléennes) de **IMP**, vues comme des fonctions à deux arguments $(\mathcal{A}[\![\,\cdot\,]\!]: \mathbf{Aexp} \to \Sigma \to \mathbb{N} \ \text{et} \ \mathcal{B}[\![\,\cdot\,]\!]: \mathbf{Aexp} \to \Sigma \to \mathbb{B})$ sont a priori des fonctions partielles. Proposer une solution pour les rendre totales.
- **2.** En faire de même pour les fonctions de dénotation des commandes ($\mathcal{C}[\![\cdot]\!]: \mathbf{Com} \to \Sigma \to \Sigma$)
- 3. Donner la fonction de dénotation d'une commande while.
- **4.** Etendre la la fonctionnelle suivante pour en faire un fonction continue $\tau_{\perp}: (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}) \to (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp})$. Montrer que τ_{\perp} a un point fixe, préciser quel est le plus petit et en donner quelques *approximations*.

$$\tau(f): \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ & & \\ x & \mapsto & \begin{cases} x-10 & \text{si } x > 100 \\ f^2(x+11) & \text{sinon.} \\ \end{array} \right.$$