DM549/DS(K)820/MM537/DM547

Lecture 8: More on Functions and Cardinality

Kevin Schewior Email: kevs@sdu.dk

University of Southern Denmark

September 30, 2024

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \rightarrow B$, call A the

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \rightarrow B$, call A the *domain* (definitionsmængden) of f, and call B the

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Definition (Definition 2.3.4)

Let $f: A \to B$ be a function. The *image* or *range* (værdimængden eller billedmængden) of f is

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Definition (Definition 2.3.4)

Let $f: A \rightarrow B$ be a function. The *image* or *range* (værdimængden eller billedmængden) of f is

$$Im(f) = \{f(x) \mid x \in A\} = \{y \in B \mid \exists x \in A : f(x) = y\},\$$

the set of all possible values f(x) for $x \in A$.

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Definition (Definition 2.3.4)

Let $f: A \rightarrow B$ be a function. The *image* or *range* (værdimængden eller billedmængden) of f is

$$Im(f) = \{f(x) \mid x \in A\} = \{y \in B \mid \exists x \in A : f(x) = y\},\$$

the set of all possible values f(x) for $x \in A$.

A function f is called...

■ injective

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Definition (Definition 2.3.4)

Let $f: A \rightarrow B$ be a function. The *image* or *range* (værdimængden eller billedmængden) of f is

$$Im(f) = \{f(x) \mid x \in A\} = \{y \in B \mid \exists x \in A : f(x) = y\},\$$

the set of all possible values f(x) for $x \in A$.

A function f is called...

- injective if each "y value" is "hit" by at most one "x value",
- surjective

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Definition (Definition 2.3.4)

Let $f: A \rightarrow B$ be a function. The *image* or *range* (værdimængden eller billedmængden) of f is

$$Im(f) = \{f(x) \mid x \in A\} = \{y \in B \mid \exists x \in A : f(x) = y\},\$$

the set of all possible values f(x) for $x \in A$.

A function f is called...

- injective if each "y value" is "hit" by at most one "x value",
- surjective if each "y value" is "hit" by at least one "x value",
- bijective

Definition (Definitions 2.3.1 and 2.3.2)

Let A and B be nonempty sets. A function (funktion) f from A to B, for each $x \in A$, assigns precisely one element $f(x) \in B$ to x.

We write $f: A \to B$, call A the *domain* (definitionsmængden) of f, and call B the *codomain* (sekundarmængden) of f.

Definition (Definition 2.3.4)

Let $f: A \rightarrow B$ be a function. The *image* or *range* (værdimængden eller billedmængden) of f is

$$Im(f) = \{f(x) \mid x \in A\} = \{y \in B \mid \exists x \in A : f(x) = y\},\$$

the set of all possible values f(x) for $x \in A$.

A function f is called...

- injective if each "y value" is "hit" by at most one "x value",
- surjective if each "y value" is "hit" by at least one "x value",
- bijective if each "y value" is "hit" by exactly "x value".

Inverting Functions

Definition (Definition 2.3.9)

Let $f: A \to B$ be bijective. The *inverse function* (den inverse funktion) of f is the unique function $f^{-1}: B \to A$ such that, for all $x \in A$,

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Inverting Functions

Definition (Definition 2.3.9)

Let $f:A\to B$ be bijective. The *inverse function* (den inverse funktion) of f is the unique function $f^{-1}:B\to A$ such that, for all $x\in A$,

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Remark:

- That means that, for $f: A \to B$ bijective and any $x \in A$ with f(x) = y,
 - $f^{-1}(f(x)) = x$ and
 - $f(f^{-1}(y)) = y.$

Inverting Functions

Definition (Definition 2.3.9)

Let $f: A \to B$ be bijective. The *inverse function* (den inverse funktion) of f is the unique function $f^{-1}: B \to A$ such that, for all $x \in A$,

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Remark:

- That means that, for $f: A \to B$ bijective and any $x \in A$ with f(x) = y,
 - $f^{-1}(f(x)) = x$ and
 - $f(f^{-1}(y)) = y.$
- There does not exist an inverse function of *f* (we also say that *f* is not invertible) if *f* is not a one-to-one correspondence.

Combining Functions into New Functions

Definition (Definition 2.3.3)

Let $f:A\to B$ and $g:A\to B$ be functions. Then $(f+g):A\to B$ and $(f\cdot g):A\to B$ are functions with

$$(f+g)(x) = f(x) + g(x),$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

for all $x \in A$.

Combining Functions into New Functions

Definition (Definition 2.3.3)

Let $f: A \to B$ and $g: A \to B$ be functions. Then $(f+g): A \to B$ and $(f \cdot g): A \to B$ are functions with

$$(f+g)(x) = f(x) + g(x),$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

for all $x \in A$.

Definition (Definition 2.3.)

Let $f:A\to B$ and $g:B\to C$ be functions. Then the *composition* of g and f, $(g\circ f):A\to C$, is a function with

$$(g\circ f)(x)=g(f(x))$$

for all $x \in A$.

Combining Functions into New Functions

Definition (Definition 2.3.3)

Let $f: A \to B$ and $g: A \to B$ be functions. Then $(f+g): A \to B$ and $(f \cdot g): A \to B$ are functions with

$$(f+g)(x) = f(x) + g(x),$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

for all $x \in A$.

Definition (Definition 2.3.)

Let $f:A\to B$ and $g:B\to C$ be functions. Then the *composition* of g and f, $(g\circ f):A\to C$, is a function with

$$(g \circ f)(x) = g(f(x))$$

for all $x \in A$.

Remark: Note that the codomain of f has to match the domain of g.

Definition (Definition 2.3.6)

Let $f: A \to B$. If, for all $x_1, x_2 \in A$ with $x_1 < x_2$, it holds that

• $f(x_1) \le f(x_2)$, f is called increasing (voksende),

Definition (Definition 2.3.6)

Let $f: A \to B$. If, for all $x_1, x_2 \in A$ with $x_1 < x_2$, it holds that

- $f(x_1) \le f(x_2)$, f is called *increasing* (voksende),
- $f(x_1) < f(x_2)$, f is called *strictly increasing* (strengt voksende),

Definition (Definition 2.3.6)

Let $f: A \to B$. If, for all $x_1, x_2 \in A$ with $x_1 < x_2$, it holds that

- $f(x_1) \le f(x_2)$, f is called increasing (voksende),
- $f(x_1) < f(x_2)$, f is called *strictly increasing* (strengt voksende),
- $f(x_1) \ge f(x_2)$, f is called decreasing (aftagende),

Definition (Definition 2.3.6)

Let $f: A \to B$. If, for all $x_1, x_2 \in A$ with $x_1 < x_2$, it holds that

- $f(x_1) \le f(x_2)$, f is called *increasing* (voksende),
- $f(x_1) < f(x_2)$, f is called *strictly increasing* (strengt voksende),
- $f(x_1) \ge f(x_2)$, f is called decreasing (aftagende),
- $f(x_1) > f(x_2)$, f is called *strictly decreasing* (strengt aftagende).

Definition (Definition 2.3.6)

Let $f: A \to B$. If, for all $x_1, x_2 \in A$ with $x_1 < x_2$, it holds that

- $f(x_1) \le f(x_2)$, f is called *increasing* (voksende),
- $f(x_1) < f(x_2)$, f is called *strictly increasing* (strengt voksende),
- $f(x_1) \ge f(x_2)$, f is called decreasing (aftagende),
- $f(x_1) > f(x_2)$, f is called *strictly decreasing* (strengt aftagende).

If f is increasing or decreasing, it is called *monotone* (monoton).

Definition (Definition 2.3.6)

Let $f : A \rightarrow B$. If, for all $x_1, x_2 \in A$ with $x_1 < x_2$, it holds that

- $f(x_1) \le f(x_2)$, f is called *increasing* (voksende),
- $f(x_1) < f(x_2)$, f is called *strictly increasing* (strengt voksende),
- $f(x_1) \ge f(x_2)$, f is called decreasing (aftagende),
- $f(x_1) > f(x_2)$, f is called *strictly decreasing* (strengt aftagende).

If *f* is increasing or decreasing, it is called *monotone* (monoton).

Observe:

 \blacksquare A function f is injective if it is strictly increasing or strictly decreasing.

Definition (Definition 2.3.6)

Let $f : A \rightarrow B$. If, for all $x_1, x_2 \in A$ with $x_1 < x_2$, it holds that

- $f(x_1) \le f(x_2)$, f is called increasing (voksende),
- $f(x_1) < f(x_2)$, f is called *strictly increasing* (strengt voksende),
- $f(x_1) \ge f(x_2)$, f is called decreasing (aftagende),
- $f(x_1) > f(x_2)$, f is called *strictly decreasing* (strengt aftagende).

If f is increasing or decreasing, it is called *monotone* (monoton).

Observe:

- \blacksquare A function f is injective if it is strictly increasing or strictly decreasing.
- A continuous function *f* is injective iff it is strictly increasing or strictly decreasing.

A Quiz

Go to pollev.com/kevs

Cardinality of Sets in General

Cardinality of Sets in General

Definition (Definition 2.5.1)

Two sets A, B have the same cardinality if there exists a bijection from A to B.

Cardinality of Sets in General

Definition (Definition 2.5.1)

Two sets A, B have the same *cardinality* if there exists a bijection from A to B.

Note: This is consistent with the definition of cardinality we have learned for finite sets.

Definition (Definition 2.5.3)

The cardinality of \mathbb{Z}^+ is called \aleph_0 . A set A is called

• countable if it is finite or has cardinality \aleph_0 ,

Definition (Definition 2.5.3)

The cardinality of \mathbb{Z}^+ is called \aleph_0 . A set A is called

- countable if it is finite or has cardinality \aleph_0 ,
- countably infinite if it has cardinality \aleph_0 ,

Definition (Definition 2.5.3)

The cardinality of \mathbb{Z}^+ is called \aleph_0 . A set A is called

- countable if it is finite or has cardinality \aleph_0 ,
- countably infinite if it has cardinality \aleph_0 ,
- uncountable if it is not countable.

Definition (Definition 2.5.3)

The cardinality of \mathbb{Z}^+ is called \aleph_0 . A set A is called

- countable if it is finite or has cardinality \aleph_0 ,
- countably infinite if it has cardinality \aleph_0 ,
- uncountable if it is not countable.

Note: The next-larger cardinalities after \aleph_0 are called $\aleph_1, \aleph_2, \ldots$, but we will not work with them.

Proposition (only proof sketch, cf. Example 2.5.1)

Let $S \subseteq \mathbb{Z}^+$ be an infinite set. Then

$$|S|=\aleph_0.$$

Proposition (only proof sketch, cf. Example 2.5.1)

Let $S \subseteq \mathbb{Z}^+$ be an infinite set. Then

$$|S| = \aleph_0$$
.

Proposition (only proof sketch, cf. Example 2.5.2)

Let S be a finite set. Then

$$|\mathbb{Z}^+ \cup S| = \aleph_0.$$

Proposition (only proof sketch, cf. Example 2.5.1)

Let $S \subseteq \mathbb{Z}^+$ be an infinite set. Then

$$|S| = \aleph_0$$
.

Proposition (only proof sketch, cf. Example 2.5.2)

Let S be a finite set. Then

$$|\mathbb{Z}^+ \cup \mathcal{S}| = \aleph_0.$$

Proposition (only proof sketch, cf. Theorem 2.5.1)

Let S be a finite set. Then

$$|\mathbb{Z}^+ \times S| = \aleph_0.$$

Proposition (Example 2.5.3)

It holds that $|\mathbb{Z}| = \aleph_0$.

The Cardinality of $\mathbb Q$

The Cardinality of $\mathbb Q$

Theorem (Example 2.5.4)

It holds that $|\mathbb{Q}^+| = \aleph_0$.

The Cardinality of $\mathbb Q$

Theorem (Example 2.5.4)

It holds that $|\mathbb{Q}^+| = \aleph_0$.

Corollary

It holds that $|\mathbb{Q}| = \aleph_0$.

A Joke

A Joke

Person A: So it is possible to count all integers?

A Joke

Person A: So it is possible to count all integers? Person B: \aleph_O .

DM549/DS(K)820/MM537/DM547. Lecture 8