Discrete Math for Computing

- Primes
- What is a prime number?

Positive integers that have exactly two different positive integer factors are called primes

- A positive integer p > 1 is called prime
 if the only positive factors of p are 1 and p
- A positive integer > 1 and is not prime is called composite

- Example: Is integer 5 prime?
- Yes
- Because its only positive factors are 1 and 5

- What about integer 9?
- No
- Because it is divisible by 3

- The Fundamental Theorem of Arithmetic
- Every positive integer > 1
 - can be written uniquely as a prime
 - or as the product of two or more primes
 - where the prime factors are written
 - in order of non-decreasing size

- Example: What is the prime factorization of 100, 641, 999, and 1024

$$= 2.2.5.5 = 2^2.5^2$$

$$= 641$$

$$= 3.3.3.37 = 3^3.37$$

024

$$= 2.2.2.2.2.2.2.2.2 = 2^{10}$$

- If n is a composite integer, then n has a prime factor less than or equal to \sqrt{n} .
- Example Show that 101 is prime.
- The square root of is ≈ 10.05. The primes ≤
 10.05 are 2, 3, 5, and 7. But 101 is not evenly
 divisible by 2, 3, 5, or 7. Thus, 101 must itself be
 a prime number.

Distribution of Primes

- Mathematicians have been interested in the distribution of prime numbers among the positive integers
- In the nineteenth century, the *prime number* theorem was proved which gives an asymptotic estimate for the number of primes not exceeding x.

Distribution of Primes

The Prime Number Theorem

The ratio of the number of primes not exceeding x and x/ln x approaches 1 as x grows without bound If a random number nearby some large number N is selected,

the chance of it being prime is about 1 / ln(N), where ln(N) denotes the natural logarithm of N

Distribution of Primes

The Prime Number Theorem

Example:

Near N = 10,000

about one in every ln(10000) = 9 numbers is prime

Near N = 1,000,000,000

one in every ln(1000000000) = 21 numbers is prime

The average gap between prime numbers near N is roughly In(N)

- Claims about Primes
- Marin Mersenne France
- In 1644, claimed that 2^p -1 (Mersenne Primes) is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 is composite for all other primes less than 257
- Took over 300 years to disprove him
 Not prime for p = 67, 257
 Prime for p = 61, 87, 107

- Do you know what is the largest known prime number?
- The 49th Mersenne prime, 2^p 1

Twin Prime Conjecture

Conjectures about Primes – Even though primes have been studied extensively for centuries, many conjectures about them are unresolved

- Twin primes are primes that differ by 2
 3 and 5, 5 and 7, 11 and 13
- Twin Prime Conjecture asserts that there are infinitely many twin primes
- What is the world's record for twin primes (early 2006)?
- 16,869,987,339,975.2^{171,960} ± 1
 numbers with 51,779 digits

- Greatest Common Divisors
- Let a and b be integers, a ≠ 0, b ≠ 0
- Greatest Common Divisor
 - The largest integer d such that d | a and d | b
- Denoted by gcd(a, b)
- To find the gcd of two integers, find all the positive common integers of both integers
- Take the largest divisor

- Example: What is the greatest common divisor of 24 and 36?
- The positive common divisors of 24 and 36 are:
- 1, 2, 3, 4, 6, and 12
 - \therefore gcd(24, 36) = 12

What is the greatest common divisor of 5 and 7?

There are no positive common divisors other than 1

$$\therefore$$
 gcd(5, 7) = 1

- Two integers a and b are relatively prime if their greatest common divisor is 1
 Example: Integers 5 and 7
- The integers a₁, a₂, ..., an are pairwise relatively prime

if $gcd(a_i, a_i) = 1$ whenever $1 \le i < j \le n$

- Example: Determine whether the integers 10, 17, and
 21 are pairwise relatively prime.
- \blacksquare gcd(10, 17) = 1
- $\gcd(17, 21) = 1$
- \blacksquare gcd(10, 21) = 1

Integers 10, 17, and 21 are pairwise relatively prime

Example: Are 10, 19, 24 pairwise relatively prime?

$$gcd(10, 19) = 1$$

$$gcd(19, 24) = 1$$

$$gcd(10, 24) = 2$$

Since gcd(10, 24) = 2, these numbers are *not* pairwise relatively prime.

- To find greatest common divisor of two integers use the prime factorization of these integers.
- For any two integers 'a' and 'b', a ≠ 0, b ≠ 0

a =
$$p_1^{a1} p_2^{a2} ... p_n^{an}$$
, b = $p_1^{b1} p_2^{b2} ... p_n^{bn}$

each exponent is a nonnegative integer, all primes are included

The gcd(a,b) =
$$p_1^{\min(a1,b1)} p_2^{\min(a2,b2)} ... p_n^{\min(an,bn)}$$

min(x, y) = the minimum of two numbers x and y

- Find gcd(120, 500).
- Let's solve this in two ways. First method:
- The positive divisors of 120 are: 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60
- The positive divisors of 500 are: 2, 4, 5, 10, 20, 25, 50, 100, 125, 250
- The common divisors of 120 and 150 are: 2, 4, 5, 10, and 20
- The greatest common divisor is 20

- Find gcd(120, 500).
- \blacksquare 120 = 2³.3.5
- $-500 = 2^2.5^3$
- gcd(120, 500)
 - $= 2^{\min(3, 2)}3^{\min(1,0)}5^{\min(1, 3)}$
 - $= 2^2 3^0 5^1 = 20$

- Least Common Multiple
- Let a and b be integers, a ≠ 0, b ≠ 0
- Least common multiple
 - The smallest integer 'd' divisible by both 'a' and 'b'
- Denoted by lcm(a, b)

Least Common Multiple

Example: What is the lcm of 6 and 15?

Certainly 90 (6 x 15) is divisible by both 6 and 15

but is there a smaller number divisible by both?

Yes: 30

- To find least common multiple of two integers use the prime factorization of these integers.
- For any two integers 'a' and 'b', a ≠ 0, b ≠ 0

a =
$$p_1^{a1} p_2^{a2} ... p_n^{an}$$
, b = $p_1^{b1} p_2^{b2} ... p_n^{bn}$

each exponent is a nonnegative integer, all primes are included

The lcm(a,b) =
$$p_1^{\max(a1,b1)} p_2^{\max(a2,b2)} ... p_n^{\max(an,bn)}$$

max(x, y) = the maximum of two numbers x and y

- Example: What is the least common multiple of 2³3⁵7² and 2⁴3³?
- $lcm(2^33^57^2, 2^43^3)$
 - $= 2^{\max(3, 4)}3^{\max(5, 3)}7^{\max(2, 0)}$
 - $= 2^4 3^5 7^2$

Relationship between gcd and lcm

If a and b are positive integers, then
 ab = gcd(a,b) • lcm(a,b)

Example:

```
gcd(120, 500) • lcm(120, 500)
```

- = 20 3000
- = 60000
- **= 120 500**

Integers and Algorithms

- The Euclidean Algorithm
- More efficient greatest common divisor
- Time consuming to find prime factorization
- Greek mathematician Euclid, ancient times Let a = bq + r, where a, b, q, r are integers. gcd(a, b) = gcd(b, r)
 - where 'r' is the last nonzero remainder O(logb) divisions

Euclidean Algorithm

• The Euclidean algorithm is an efficient method for computing the greatest common divisor of two integers. It is based on the idea that gcd(a,b) is equal to gcd(a,c) when a > b and c is the remainder when a is divided by b.

Example: Find gcd(91, 287):

•
$$287 = 91 \cdot 3 + 14$$

Divide 287 by 91

•
$$91 = 14 \cdot 6 + 7$$

Divide 91 by 14

•
$$14 = 7 \cdot 2 + 0$$

Divide 14 by 7

Stopping condition

$$gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = 7$$

Integers and Algorithms

ALGORITHM: The Euclidean Algorithm procedure gcd(a, b: positive integers) x := ay := bwhile $y \neq 0$ begin $r := x \mod y$ x := yy := rend {gcd(a, b) is x}

Integers and Algorithms

 Example: Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

gcds as Linear Combinations

Bézout's Theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb.

Definition: If a and b are positive integers, then integers s and t such that gcd(a,b) = sa + tb are called $B \not e zout$ coefficients of a and b. The equation gcd(a,b) = sa + tb is called $B \not e zout's$ identity.

 By Bézout's Theorem, the gcd of integers a and b can be expressed in the form sa + tb where s and t are integers. This is a linear combination with integer coefficients of a and b.

$$gcd(6,14) = (-2)\cdot 6 + 1\cdot 14$$

Finding gcds as Linear Combinations

Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution: First use the Euclidean algorithm to show gcd(252,198) = 18

- i. 252 = 1.198 + 54ii. 198 = 3.54 + 36iii. 54 = 1.36 + 18iv. 36 = 2.18
- Now working backwards, from iii and i above
 - 18 = 54 1.36
 - 36 = 198 3.54
- Substituting the 2nd equation into the 1st yields:
 - $18 = 54 1 \cdot (198 3.54) = 4.54 1.198$
- Substituting 54 = 252 1.198 (from i)) yields:
 - $18 = 4 \cdot (252 1 \cdot 198) 1 \cdot 198 = 4 \cdot 252 5 \cdot 198$
- This method illustrated above is a two pass method. It first uses the Euclidean algorithm to find the gcd and then works backwards to express the gcd as a linear combination of the original two integers.