Capstone Project Car accident severity

By: Leandro Recova

August 29th, 2020

1Introduction and Business problem.

- The goal of this capstone project is to provide a machine learning model that can predict the severity of car accident based on a dataset provided by the course.
- Based on the information of previous accidents, weather condition, traffic jam, the model could provide the likelihood of an accident for a driver that might be driving along the road.
- This kind of warning would be very important so the driver can make decisions while driving in such conditions.
- This model could be integrated with a GPS software application that runs in the user application based on the trajectory followed by the driver.

2 - Dataset Description

- The dataset that will be used during this capstone project was provided in the week 1 of the course.
- It has a list of 38 fields described as listed in the table below.
- By analyzing the data, the dataset will have to go through a pre-processing problem since some columns still have blanks, inconsistency of data description (E.g. Y, N, 0, 1 values in the same column).
- Based on the fields presented in this dataset, we will have to go through a pre-processing of the fields, make sure we select the features that will have a impact in the model, and remove those columns that will not be necessarily for this project.
- We will use a logistic regression model to predict the severity of car accident based on this dataset.

3 -Methodology

- As mentioned in the previous section, the data was analyzed and we selected few features for this model. They are listed below:
- Location: Fields X and Y representing the longitude and latitude, respectively. We also renamed these fields during the data processing.
- Road Condition: Field Road Cond. We created an additional column called ROADCONDID to have a number associated with one of each type of conditions listed in the dataset.
- **Weather:** This is an important factor and we also categorized this field by associating a number with each of the conditions listed.
- **Light conditions**: Like the previous item, we also created a column called WeatherID to represent the particular category.
- **Speeding**: This field had multiple blanks and also a "Y" when speeding was flagged. We added fill it out the blanks with 0 and the "Y" field with 1 in a new column called SpeedingID.
- **Junction Type:** We categorized each of the junction types by creating a new column called JunctionTypeID.

3 - Methodology

• Table 1: Features used in the LR Regression model and its histograms.

Road Conditions	Weather	Light Conditions	Speeding	Junction Type	
Dry 0	Clear 0	Daylight 0	Unknown 0	Mid-Block (not related to	
Wet 1	Raining 1	Dark - Street Light	Y 1	tion) 0	
Unknown 2	Overcast 2	s On 1		At Intersection (interse	
Ice 3	Unknown 3	Unknown 2		ed) 1	
Snow/Slush 4	Snowing 4	Dusk 3		Mid-Block (but intersecti	
Other 5	Other 5	Dawn 4		d) 2	
Standing Water 6	Fog/Smog/Smoke 6	Dark - No Street Li		Driveway Junction 3	
Sand/Mud/Dirt 7	Sleet/Hail/Freezing	ghts 5		Unknown 4	
Oil 8	Rain 7	Dark - Street Light		At Intersection (but not 1	
	Blowing Sand/Dirt	s Off 6		intersection) 5	
	8	Other 7		Ramp Junction 6	
	Severe Crosswind 9	Dark - Unknown L			
	Partly Cloudy 10	ighting 8			
ROADCONDID	WEATHERID	UGHTCONDID	SPEEDINGID	JUNCTIONTYPEID	
120000			175000	80000	
100000	.00000	100000	150000		
80000	80000	80000	125000	60000	
	60000	60000	100000	40000	
60000		40000	75000 -	40000	
40000	40000	20000	50000	20000	
20000	20000	20000	25000		
0.0 25 50 7.5	0	0.0 2.5 5.0 7.5	0 00 05 10	0 1 2 3 4	
2.9 E.J 3.0 F.J	0 5 10		0.0 0.5 1.0		

3 -Methodology

- In most of the accidents, it is clear the road conditions dry, weather clear, light condition day light, not speeding, and junction types mid-block are the ones with most of the accidents.
- Once the categories have been defined, we created a panda dataframe called **finalDF** with the fields required for the logistic regression algorithm. Below is a snapshot of the first rows of the input data.

	SEVERITYCODE	LAT	LONG	PERSONCOUNT	VEHCOUNT	ROADCONDID	WEATHERID	LIGHTCONDID	SPEEDINGID	JUNCTIONTYPEID
0	1	47.703140	-122,323148	2	2	1.0	2.0	0.0	0.0	1.0
1	0	47.647172	-122.347294	2	2	1.0	1.0	1.0	0.0	0.0
2	0	47.607871	-122.334540	4	3	0.0	2.0	0.0	0.0	0.0
3	0	47.604803	-122.334803	3	3	0.0	0.0	0.0	0.0	0.0
4	1	47.545739	-122.306426	2	2	1.0	1.0	0.0	0.0	1.0
L										

4 – Results and Discussion

- We obtained a 70% precision of accuracy in estimating the severity code 1 and 42% for severity code 2.
- The model did not estimate well the severity code 2.
- One of the reasons could be the fact that there might be some human decisions in classifying the codes based on all factors used in this model.
- We also tried to play with different values of the regularization factor, but the results seem to be within the same values obtained above.

		precision	recall	f1-score	support
	0	0.70	1.00	0.82	32886
	1	0.42	0.01	0.01	14449
micro	avg	0.69	0.69	0.69	47335
macro		0.56	0.50	0.42	47335
weighted		0.61	0.69	0.57	47335

#Use the Jaccard Index.

from sklearn.metrics import jaccard_similarity_score
jaccard_similarity_score(y_test, yhat)

0.6940107742685117

4 – Results and Discussion

- We obtained a 70% precision of accuracy in estimating the severity code 1 and 42% for severity code 2.
- The model did not estimate well the severity code 2.
- One of the reasons could be the fact that there might be some human decisions in classifying the codes based on all factors used in this model.
- We also tried to play with different values of the regularization factor, but the results seem to be within the same values obtained above.

support	ision recall f1-score		precision	1	
32886	0.82	1.00	0.70	0	
14449	0.01	0.01	0.42	1	
47335	0.69	0.69	0.69	micro avg	
47335	0.42	0.50	0.56	macro avg	
47335	0.57	0.69	0.61	weighted avg	

#Use the Jaccard Index.
from sklearn.metrics import jaccard_similarity_score
jaccard_similarity_score(y_test, yhat)

0.6940107742685117

5 – Conclusions

- There was a significant time spent during the data preparation, choice of the features, categorizing the features that could have a more impact in the outcome prediction, and the choice of the method to evaluate the results.
- The logistic regression method was utilized since we had to estimate between two severity codes. We used the liblinear solver and obtained a jaccard index of 0.69 and a precision of 70% of severity code 1 and 42% for severity code 2. The estimation for severity code 2 was not the result expected, but, after analyzing the dataset, it seems there might be a human decision factor to decide when to choose these codes.
- The final recommendation left for the dataset owner would be to reevaluate how the codes 1 and are being assigned and if any human factor is used to decide between the severity of these codes. A evaluation of this method against future decisions would help to better classify these codes and provide a better prediction of accidents for insurance companies and drivers that might be driving in a high risk road.