LTE

LTE

- LTE = Long Term Evolution
- **4**G
 - Successor of 3G UMTS and CDMA2000
 - More successful than competing standards, e.g. WiMAX
 - Technologies of LTE have also been "back-ported" to UMTS in HSPA+, for example multiple antennas (MIMO)
 - More correctly: 4G starting from release 8, before: 3.9G
- Performance (in release 8 and 9):
 - Up to 300 Mbit/s downlink, 75 Mbit/s uplink
 - Much faster than UMTS/HSPA+: 28Mbit/s
 - 5-20ms latency

LTE

- Performance in UMTS/HSPA+ reached its limits
 - Higher transfer rates would have required higher chip rate → shorter chip duration → more sensitive to multipath fading
 - Latency in UMTS still high, partially because of old design of the core network (GPRS based network)
- LTE: Complete redesign of radio <u>and</u> core
 - 1. Again, a completely new radio interface (OFDM)
 - Simplified IP-only network, with gateways to other networks (GSM, UMTS, CDMA2000,...).
 Only packet-switched, no circuit-switching.

Evolved Packet System (EPS)

Source: Alexander Schill. TU Dresden

- UE = User Equipment (MS in GSM)
- HSS = Home Subscriber Server (HLR in GSM)
- eNodeB = Evolved Node B (BSS in GSM)
- E-UTRAN = Evolved UTRAN
- EPC = Evolved Packet Core (Network). Completely IP based.

eNodeB

- eNodeB = "evolved" Node B
- Does the job of
 - GSM: BSS
 - UMTS: Node B + RNC

- eNodeB can directly communicate with each other
 - Interference coordination: UE reports signal measurements from neighbor cells to its eNodeB; the node can contact the eNodeB of those cells
 - Handover: eNodeB can decide and prepare handover (without involvement of an MSC in GSM)

LTE Radio Interface

LTE Frequencies

- LTE 800
 - 791-862 MHz
 - Frequency band originally used by TV stations
 - Divided into 5 MHz blocks assigned to different operators
- LTE 2600
 - 2500-2570 and 2620-2690 MHz
 - Again, blocks of 5 MHz
- In general, higher frequencies have a smaller propagation range.
 LTE 2600 is used in large cities with many (small) cells
- When GSM is switched off, LTE can also use the GSM frequencies (900 and 1800 MHz)

Frame structure

- Data is distributed over a large number of 15kHz subcarriers
- Sub-carriers are assigned in "resource blocks" of 12 carriers (=12×15kHz=180kHz) for 0.5ms (= 1 slot) to a UE
- 1 slot = 7 symbols
- 2 slots = subframe
- 10 subframes = 1 frame

Source: keysight.com

Duplexing with TDD

- TDD = Time Division Duplexing
 - Device switches between sending and receiving

- Attractive for operators when license fees for frequency bands are expensive. Used in China
- The ratio uplink to downlink subframes can be configured

Contiguration	3GPP release	Downlink to uplink switch point periodicity (ms)	Subframe number								Number of subframes / frame				
			0	1	2	3	4	5	6	7	8	9	D [DL]	U [UL]	S [SSF]
0	8	5	D	S	U	U	U	D	S	U	U	U	2	6	2
1	8	5	D	S	U	U	D	D	S	U	U	D	4	4	2
2	8	5	D	S	U	D	D	D	S	U	D	D	6	2	2
3	8	10	D	S	U	U	U	D	D	D	D	D	6	3	1
4	8	10	D	S	U	U	D	D	D	D	D	D	7	2	1
5	8	10	D	S	U	D	D	D	D	D	D	D	8	1	1
6	8	5	D	S	U	U	U	D	S	U	U	D	3	5	2

Duplexing with FDD

- FDD = Frequency Division Duplexing
 - Different frequencies for downlink and uplink
 - Less sensitive too timing variations than TDD (for example when user is moving in a car)
 - Mainly used in Europe, USA, Japan, South Korea

Example allocation of Uplink

 PUCCH = physical uplink control channel = control messages (channel quality info, ACKs, resource requests, ...)

LTE radio interface: Downlink

- LTE downlinks use OFDMA (Orthogonal Frequency Division Multiple Access)
- Data from the physical channels is modulated and then mapped to the 12 subcarriers of the resource block assigned to the UE

Source: keysight.com

LTE radio interface: Downlink (2)

- Advantage of OFDMA:
 - More robust against narrowband interferences that affect only a few subcarriers: Unlike UMTS, a disturbed subcarrier can be reconstructed because it is very narrow
 - Subcarriers can be modulated independently depending on channel conditions. Some subcarriers may carry higher bit rates than others.
 - Phase Shift Keying with 4 different shifts (QPSK)
 - 16/64 QAM (combination of amplitude and phase shift keying resulting in 16/64 different symbols)
- Disadvantage of OFDMA:
 - More coding work for the sender
 - High variation of power levels
 - → Requires expensive amplifiers

LTE radio interface: Uplink

- OFDMA is good for powerful base stations, but not for small+cheap mobile phones
- In LTE, the uplink uses SC-FDMA (Single Carrier FDMA)
 - Similar to OFDMA, but the 12 sub-carriers of the resource block are treated like one big carrier
 - Peak-To-Average-Power Ratio (PAPR) of the resulting signal is smaller than with OFDM → More energy-efficient, but uplink rate is lower than downlink rate

SC-FDMA

Source: keysight.com

LTE User Equipment Categories (Release 8+9)

Category		1	2	3	4	5				
Peak data	DL	10	50	100	150	300				
rate Mbit/s	UL	5	25	50	50	75				
RF bandwidth		20 MHz								
Modulation		QPSK, 16QAM		QPSK, 16QAM, 64QAM						
2 Rx diversity		Assumed in performance requirements								
2x2 MIMO		Not supported	Mandatory							
4x4 MIMO		Not supported	d	Mandatory 3						

Source: Alexander Schill. TU Dresden

LTE Advanced (LTE-A)

- Compatible with LTE
- Pico and Femto cells for crowded areas
- Carrier aggregation: bundling of frequency carriers
 - LTE: UE can use up to 20MHz
 - LTE-A: UE can use several 20MHz blocks (carriers)
- New categories (releases 10-13)
 - Cat 6: 300MBit/s down, 2x2 MIMO, max. 2 carriers
 - ...
 - Cat 17: 25000MBit/s down, 8x8 MIMO, max. 32 carriers (640 MHz)