Acceso a Datos

Introducción y conceptos básicos

Índice

- 1. Objetivos
- 2. Programas y datos
- 3. Persistencia de datos
- 4. Sistema de persistencia
- 5. Almacenamiento de Datos
- 6. Acceso a datos con Iteradores
- 7. Control de accesos concurrentes y transiciones
- 8. Persistencia de datos

1.- Objetivos

- Conceptos nuevos:
 - Persistencia de datos
 - Formas de Almacenamiento
 - Mecanismos para trabajar con datos persistentes
- Repaso de los conceptos más importantes de la asignatura de BD (1)
- Repaso de colecciones de Datos en Java

2.- Programas y Datos

- Un programa "gestiona" información
 - Información => Conjunto de datos estructurados
- Existe multitud de formas de trabajar con datos, pero depende :
 - Del tipo de aplicación que tengamos
 - Del tipo de "procesador" que maneje los datos
 - PC, Tablet, Movil etc
- Tipos de almacenamiento
 - Almacenamiento primario o en memoria principal
 - Almacenamiento secundario o permanente

2.- Programas y Datos

Almacenamiento primario o en memoria principal

- Datos de acceso inmediato por parte de la aplicación
- Son volátiles : desaparecen cuando se apaga el equipo
- Su tamaño viene limitado por el espacio
- Velocidad de acceso alta

Almacenamiento Secundario o permanente

- Dispositivo físico donde se almacenan los datos de forma permanente
 - HD, memorias Flash
- Gran capacidad de almacenamiento
- Tiempos de acceso largos

3.- Persistencia de Datos

- Acciones de los programas sobre los datos:
 - Extraer datos:
 - Seleccionar un conjunto de información de un almacenamiento secundario
 - Colocarlo en memoria para que sea accesible por las aplicaciones
 - Crear/modificar datos
 - Los datos almacenados memoria principal son creados o modificados por las aplicaciones
 - Una vez manipulados se guardan en almacenamiento secundario.

3.- Persistencia de Datos

Almacenamiento de datos persistentes

- Gran volumen de datos => Se necesita gran capacidad
- Datos compartidos
- Soluciones: Almacenar datos en servidores
 - Servidores dedicados a la persistencia de datos para multiples aplicaciones
 - Ubicados en diferentes equipos
 - La comunicación se realiza a través de protocolos de red
 - Dispone de funciones de alto nivel para consultas

3.- Persistencia de Datos

4.- Sistemas de Persistencia de datos

- Los datos se almacenan en ficheros
- Los ficheros se almacenan dentro de un sistema de ficheros

4.- Sistemas de Persistencia de datos

- Sistema de ficheros:
 - Estructura jerárquica basada en el concepto de directorio
 - Directorio = Carpeta
 - Puede contener en su interior
 - Ficheros
 - Directorios

Importante:

 Tener en cuenta las necesidades futuras para poder seleccionar el tipo de almacenamiento secundario

5.- Almacenamiento de Datos

- Tipos:
 - 1. Ficheros
 - 2. Bases de datos SQL
 - Bases de datos Relacionales
 - 3. Bases de datos NoSQL
 - Documentos XML
 - Bases de datos de Objetos
 - Bases de datos NoSQL

5.1 Ficheros

- Secuencia de bytes
- Proporciona una organización secuencial de bytes
- Representan cualquier información

0100000001:	00	50	50	40	81	01	00	CO	19	00	00	00	20.	01	00	00	*	.POF
000000105:	OA	30	00	00	00.	00	04	04	09	30	co	00	04	00	00	EO	;	
0000000201:	00	00	00	OE:	09	00	04	DS.	03	00	00.	Off	04	00	OD	10	;	
000000030h:	114	20	00	OU.	12	00	04	0.2	DA.	do	00	Off	10	00	OD	00		
000000406:	Dit.	30	m	OD	14	m	114	04	114	on	00	00	114	100	no	00	;	
000000506:	18	00	00	00	25	00	04	04	09	00	00	Oil	04	00	00	00	:	
00000080h:	10	90	00	00	31	00	04	02	05	00.	00	00	08	00	00	00	:	
00000070h:	28	30	00	00	3E	00	04	04	09	00	00	0.0	04	00	00	DO.		
0100000806:	28	00	00	00	40	00	04	02	05	00	CO	00	18	00	00	00		1E
000000906:	20	00	00	00	50	00	04	04	04	00	00	00	04	00	00	00		,
000000m0h:	99	00	00	00	63	00	04	02	OA	00	00	00	80	00	0.0	TO	1	4
000000b0h:				00	42	4F	SE	54	41	92	40	45	00	43	41	54	1	8BOOTABLE.CAT
00000000ht	45	97	47	52	59	00	44	49	53	93	SF	49	44	00	44	49	j.	EGORY.DIRC_ID.DI
0200000001:	53	93	SF	45	55	40	42	45	52	00	44	45	53	40	SE.	54		SC NUMBER, DISC T
0000000e0h:	45	54	41	40	00	44	49	50	43	57	56	45	52	53	49	47	;	OTAL DISC VERSIO
000000f0h:	48	00	50	41	52	45	4E	04	+1	40	OF	40	95	56	45	40	;	N. PARENTAL LEVEL
000001005;	00	50	53	50	SF	53	59	53	59	95	40	SF.	55	45	53.	.00	;	. PSP SYSTEM VER.
00000110h:	53	95	47	49	47	48	OD.	54	49	54	40	45	110	00	OD.	00	;	REGION.TITLE
000001208:	111	30	m	OD	55	47	OD	ca	55	4C	45	53	30	30	37	30	;	OG HLKSOU70
000001306:	31	100	m	OU.	00	00	OU	100	01	00	100	00	01	00	00.	00	:	1
00000140h:	91	22	30	90														1.002.82
00000150b:	0.0	00	00	0.0	00	80	00	CO	4.0	69	6E	64	20	51	75	69	:	C. Kind Qui
00000160k:	74	30	00	00	00	00	00	CO	00	00	00	00	00	00	00	EO	:	2
00000170h:	00	00	00	00	80	03	00	00	00	00	00	00	00	00	00	00	:	
00000180h:	00	30	00	00	00	00	00	EO	00	00	00	00	00	00	0.0	00		
00000190h:	00	30	00	00	00	00	00	DO	00	00	00	00	00	00	00	00	1	
000001806:	00	00	00	00	DO.	00	00	00	00	00	00	00	00	00	00	DO	1	
000001606:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	TO	7	
0000014064	0.0	20	no.	on	TO	00	an.	co	07	an	00	OF	70	00	on.	TO.		

5.1 Ficheros

- Tipos de ficheros:
 - Secuencial:
 - La información se almacena de forma secuencial
 - Registros son de longitud fija
 - Los registros compuestos de campos de longitud fija
 - Secuencia fija de registros

Luck Skywalker	4367809G
Légolas	2345687H
Kirck	9856678A

5.1 Ficheros

- Tipos de ficheros:
 - Indexados
 - Se crean ficheros índices
 - Formado por un campo ordenado y una posición del fichero de datos

Luck Skywalker	4367809G		Légolas	2
Légolas	2345687H		Luck Skywalker	1
Kirck	9856678A		Kirck	3

5.2 Bases de datos Relacionales

- Los datos se organizan en tablas
- Existen relaciones entre ellos
 - Lenguaje estándar : SQL
 - Conocidas como bases de datos SQL

5.4 Bases de datos NoSQL

- Almacenan la información como documento usando una estructura
 - JSON
 - XML
 - Manejan grandes volúmenes de datos
 - Desarrollo de metodogias agiles scrum
 - Volumen creciente de datos y dispositivos
 - Necesidades de gran escalabilidad

5.3 Documentos XML

- Un documento XML organiza la información de forma jerárquica
 - Forma de Árbol
 - Modelo DOM: representa el contenido del un documento XML árbol
 - Jerarquía de nodos

5.3 Documentos XML

- Un fichero de XML se almacena como fichero de texto
- Colecciones de ficheros XML: almacenamiento
 - Basada en directorios:
 - Jerarquía de árbol de directorios
 - Basada en Bases de datos
 - Jerarquía de colecciones

```
Company
    <?xml version="1.0"?>
2 - <Company>
                                                                   FirstName
                                                                              Tanmay
       <Employee>
           <FirstName>Tanmay</FirstName>
           <LastName>Patil</LastName>
           <ContactNo>1234567890</ContactNo>
                                                                              1234567890
           <Email>tanmaypatil@xyz.com</Email>
                                                                          tanmaypatil@xyz.com
           <Address>
                <City>Bangalore</City>
                                                                   Address
10
                <State>Karnataka</State>
11
                <Zip>560212</Zip>
                                                                                Bangalore
12
           </Address>
13
      </Employee>
                                                                                 Karnataka
14 </Company>
                                                                                560212
```


5.3 Bases de datos de Objetos

6.- Restricciones de Integridad

- Condiciones que se imponen a los datos y a las relaciones
 - Ejemplo
 - DNI longitud 9 dígitos y una letra
 - No incluir un producto que no existe en un pedido
- Funcionamiento básico:
 - Si no se cumplen las condiciones no se puede crear/modificar datos
 - Si no se cumplen las condiones no podremos realizar una operación

7.- Acceso a datos con iteradores

- Iteradores
 - Permiten el acceso a datos mediante una consulta a la base de datos
 - Limita el numero de datos que procesamos en una aplicación
 - Ejemplo
 - Una empresa de telecomunicaciones con miles de registros
 - Podemos tener diferentes tipos de almacenamiento
 - BD relacionales => acceso es fila a fila
 - BD XML => acceso es nodo a nodo
 - BD Objetos => acceso objeto a objeto
- Extraemos bloques de datos de la base de datos
- Iteradores: recorren el bloque dato a dato

8.- Control de accesos concurrentes y transiciones

- Acceso concurrente:
 - Muchos usuarios
 - Forma simultanea
 - Diferentes Operaciones (Lectura/Escritura)
- Evitar conflictos
- Arbitrar en el acceso a los datos
- Transición:
 - Conjunto de datos sobre los que aplicamos unas operaciones de forma
 - Conjunta
 - Aislada

8.- Control de accesos concurrentes y transiciones

• DEF:

- Una secuencia de operaciones de lectura y actualización de datos que forman una unidad lógica y se ejecutan como un todo
- Conjunto de operaciones sobre un bloque de datos ejecutadas de forma indivisible o atómica
- Los datos siempre deben ser :
 - Consistentes
 - Actualizados
 - Correctos
- Importante:
 - Sincronizacion en operaciones Lectura/escritura y transiciones

8.- Control de accesos concurrentes y transiciones

- Caracteristicas (ACID)
 - Atomic (atómica)
 - Debe ejecutarse completamente y sin errores
 - Si hay error, los datos deben de volver a su valor anterior
 - Consistent (consistente)
 - Se deben respetar todas las restricciones de integridad durante las operaciones
 - Isolated (aislada)
 - Cada transición se ejecuta de forma aislada
 - Las transiciones son "serializables", se ejecuta una detrás de otra de forma secuencial
 - Si una transición depende de otra podemos encontrarnos con interbloqueo
 - Durable (duradera)
 - Una vez ejecutadas todas las operaciones, se confirman los cambios y se guardan de forma permanente

9.- Persistencia en los datos de ficheros

- Fichero:
 - Secuencia de bytes que contiene información, posee un nombre y una ubicación dentro de un directorio del sistema de almacenamiento de ficheros
 - Solo los usaremos en aplicaciones
 - Pocos datos
 - Poco volumen
 - Rendimiento escaso
 - No permite acceso a varios usuarios
- El uso de ficheros no es productivo

10.- Persistencia de datos en bases de datos relacionales

- Bases de datos relacionales son las mas usadas
 - Modelo relacional:
 - Estructura básica: tabla
 - Lenguaje SQL
 - Creamos tabals
 - Establecemos relaciones
 - Imponemos restricciones
 - Formas normales: relaciones de dependencias y claves candidatas
 - (1FN) claves candidatas no son multivaluados
 - (2FN) campo no principal depende de forma completa de la clave
 - (3FN) Ningún campo no principal depende transitivamente de una clave candidata
 - (Boyce-Cod) Todo campo depende de la clave candidata

10.- Persistencia de datos en bases de datos relacionales

- SQL lenguaje de alto nivel
 - Permite especificar consultas para obtener datos
 - El propio sistema las gestiona
- Bases de datos actuales son:
 - Escalables
 - Permiten gestionar pequeños y grandes volúmenes de datos
 - Permiten operaciones sobre bloques de datos
 - Gestionan transiciones
 - Mecanismos de recuperación y copia ante fallos

11.- Persistencia de datos de XML en bases de datos relacionales

- XML : formato de datos muy utilziado
- Mecanismo SQL/XML
 - Tipos de datos XML
 - Permite extraer datos:
 - Tablas
 - Ficheros XML
- XML-enabled o bases de datos capacitadas para XML

12.- Persistencia de objetos en bases de datos relacionales

- Dificultad de representar un objeto en un modelo relacional
 - Complejidad en los objetos
 - Desfase entre objeto modelo relacional
 - Problemas con la persistencia

12.- Persistencia de objetos en bases de datos relacionales

- Soluciones:
 - Bases de datos Objeto relacionales
 - Bases de datos relacionales con capacidad de manejar objetos
 - Oracle
 - PostgreSQL
 - Correspondencia Objeto relacional
 - Mapean objetos relacionales
 - Solución mas flexible
 - Hibernate

13.- Persistencia de bases de datos en bases de datos de objetos

- Bases de datos orientadas a objetos permiten guardar directamente los objetos en la base de datos.
- Su uso es limitado
 - No existe un modelo formal y aceptado
 - Falta de estandares

14.- Persistencia de datos en bases de datos XML Nativas

- Bases de datos nativas de XML están diseñadas y optimizadas para trabajar con XML
 - Consultas: Xpath y Xquery
 - Actualizaciones (Extensión de Xquery)
 - Transformaciones (XSL)
 - Validación (XML Schema y DTD)
- Xquery for java : implemetnacion del API estándar para bases de datos XML
- No soportan transiciones:
 - El almacenamiento de los datos es en documentos enteros

15.- Persistencia de datos en cases de datos NoSQL

- BD NoSQL:
 - Nacen de la necesidad de gestionar grandes volúmenes de datos (Big Data)
 - Deben permitir el acceso ágil y rápido a gran volumen de datos
- Denominados BD NoSQL cuando no cumple:
 - Almacenamiento en forma de tablas
 - SQL como lenguaje
 - Soporte de restricciones de integridad y transiciones
- Características:
 - Almacenamiento a través de estructuras flexibles
 - Arrays asociados, mapas, documentos json,
 - No usan SQL como lenguaje de consultas
 - Lenguajes propios que especifican que conseguir no como)
 - Transiciones y persistencia
 - BASE (Basic availability, soft state eventual consistency)
 - Disponibilidad básica
 - Estado flexible
 - Consistencia en tiempo

