Einführung in die Wahrscheinlichkeitstheortie

17. Dezember 2017

Inhaltsverzeichnis

0.1	0. Einführendes Beispiel	4
0.2	1. Modelierung von Zufallsexperimenten	4
	0.2.1 Ergebnisräume und Ereignisse	4
	0.2.2 Exkurs: Nützliche Formeln der Kombinatorik	

INHALTSVERZEICHNIS

Literatur: Sheldon Ross: Introduction to probability models.

0.1 0. Einführendes Beispiel

Münzexperiment Bei 50 aufeinanderfolgenden Würfen einer fairen Münze. Mit welcher Wahrscheinlichkeit erscheint im laufe der Würfe 5 mal hintereinander Zahl?

Antwort: die WSK beträgt ca. 0,55.

Dieses Bsp. zeigt:

4

- intuitive Schätzung ist oft weit von der tatsächlichen WSK entfernt.
- Pechsträhne bei Münzwürfen sehr häufig

0.2 1. Modelierung von Zufallsexperimenten

0.2.1 Ergebnisräume und Ereignisse

Ein Ergebnisraum (ER) ist eine Menge, die alle möglichen Ausgänge eines Zufallsexperiments umfasst. Bezeichnung: Ω .

Beispiele für Ereignisräume:

a) Zufallsexperiment ist ein einmaliger Münzwurf:

$$\Omega = \{K, Z\}$$

b) bei zweifachem Münzwurf:

$$\Omega = \{K,Z\}^2 = \{(K,K),(K,Z),(Z,K),(Z,Z)\}$$

"kartesisches Produkt"

c) einfacher Münzwurf:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

d) zweifacher Münzwurf:

$$\Omega = \{1, 2, 3, 4, 5, 6\}^2$$

e) erzielte Tore im einem Fußballspiel:

$$\Omega = \mathbb{N}_{>0} := \{0, 1, 2, ...\}$$

Vorerst: nur ER mit abzählbar vielen Elementen

Wir bezeichnen jede Teilmenge von Ω als ein Ereignis. Man sagt: Ein Ereignis $A \subset \Omega$ tritt ein, falls das Ergebnis des Zufallsexp. in A liegt.

Beispiele für Ereignisse:

a) Sei $\Omega = \{K, Z\}$ (zweifacher Münzwurf)

Ereignis in Worten	Ereignis als Teilmenge
1. Wurf ist Zahl	$\{(Z,K), (Z,Z)\}$
Höchstens ein Wurf ist Zahl	$\{(Z,K), (K,K), (K,Z)\}$

b) Sei $\Omega = \mathbb{Z}_{\geq 0}$ (Tore im Fußball)

Ereignis in Worten	Ereignis als Teilmenge
höchstens drei Tore	$\{0,1,2,3\}$
mindestens ein Tor gerade Anzahl an Toren	$\mathbb{Z}_{>0}$
gerade Anzahl an Toren	{0,2,4,6,}

Seien A,B zwei Ereignosse von Ω .

$$A \subset \Omega$$

$$B \subset \Omega$$

Neue Ereignisse: TABELLE

Ein Ereignis heißt Elementarereignis oder Ergebnis, falls das Ereignis nur ein Element enthält. Wir bezeichnen mit $\mathcal{P}(\Omega) := \{A : A \subset \Omega\}$ die Potenzmenge von Ω . $\mathcal{P}(\Omega)$ ist häufig sehr viel größer als der Ergebnisraum Ω .

1.2 Wahrscheinlichkeitsmaß (WM)

Definition 1.1 Sei $\Omega \neq \emptyset$ abzählbar. Das WSK-maß ist eine Abbildung $P : \mathcal{P}(\Omega)$.

$$P: \mathcal{P}(\Omega) \to [0;1]$$

mit zwei Eigenschaften. Eine Abbildung abbildung heißt WM, falls gilt:

- (W1) $P(\Omega) = 1$
- (W2) Sind $A_1, A_2, ...$ disjunkte Ereignisse (d. h. $A_i \cap A_j = \emptyset$, falls $i \neq j$)

$$P\left(\bigcup_{n=1}^{\infty}\right) = \sum_{n=1}^{\infty} P(A_n)$$

HIER FEHLT ETWAS

Man sagt P(A) ist die WSK des Ereignisses A. Beispiele für WSK-maße

- a) Modell des einmaligen Münzwurfes einer fairen Münze $\Omega = \{K, Z\}$ und P WM mit $P(\{K\}) = P(\{Z\}) = \frac{1}{2}$
- b) Modell eines fairen Würfelwurfs $\Omega = 1, 2, 3, 4, 5, 6$ und P WM mit $P(1) = P(2) = \dots = P(6) = \frac{1}{6}$
- c) La-Place-Experiment: alle Ergebnisse mind. Gleichwahrscheinlich (Verallgemeinerung von a) und b)). Sei Ω eine endliche Menge und P WM

$$P(A) := \frac{|A|}{|\Omega|}, A \in \mathcal{P}(\Omega)$$

|A|-Möglichkeit von A-Kardinalität: Anzahl der Elemente in A

Lemma / Satz 1.2 (Eigenschaften von WM) Sei $P: \mathcal{P}(\Omega) \to [0; 1]$ ein WM. Dann gilt:

- $(1) P(\emptyset) = 0$
- (2) $A_1,...,A_n$ disjunkt $\Rightarrow P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ (endliche Additivität)

Des Weiteren gilt für alle $A, B \in \mathcal{P}(\Omega)$.

- (3) $A \subset B \Rightarrow P(A) \leq P(B)$ (Monotonie
eigenschaft des WM)
- (4) $P(A^C) = 1 P(A)$
- (5) $P(A \setminus B) = P(A) P(A \cap B)$
- (6) $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Beweis

(1) Setzen $A_n := \emptyset$ für alle $n \ge 1$ Dann folgt aus (W2)

$$P(\emptyset) = P\left(\bigcup_{k=1}^{\infty}\right) = \sum_{n=1}^{\infty} P(A_n) = P(\emptyset) + P(\emptyset) + \dots$$

Da $P(\emptyset) \in [0; 1]$ muss $P(\emptyset) = 0$ gelten.

(2) Sei $A_1,...,A_n$ beliebige disjunkte Ereignbisse und $A_m \neq \emptyset$ für alle m > n. Dann folgt aus (W2) und (1)

$$P\left(\bigcup_{i=1}^{n} A_i\right) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = P(A_i) = \sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{n} P(A_i)$$

(3) Sei $A \subset B$. Dann ist disjunkte Vereinigung von A und $B \setminus A$. Wegen (2) gilt $P(B) = P(A) + \underbrace{P(B \setminus A)}_{} \geq P(A)$

- (4) Beachte: Ω ist disjunkte Vereinigung von A und A^C . Also wegen (2): $P(\Omega) = P(A) + P(A^C)$ Da $P(\Omega) = 1$, folgt $P(A^C) = 1 - P(A)$
- (4) $P(A \cup B) = P(A) + P(B) P(A \cap B)$

(5 & 6) ÜBUNG

Bemerkung: Sei Ω abzählung und P ein WM auf $\mathcal{P}(\Omega)$. Jedes Ereignis $A \subset \Omega$ ist abzählbare Vereinigung der Elementarereignisse $\{\omega\}$ mit $\omega \in A$. Also folgt aus (W2) und (2):

$$P(A) = \sum_{\omega \in A} P(\{\omega\}) \tag{1}$$

Ausblick: Man kann WM auf überabzählbaren ER definieren: Eigenschaften (1)-(6) gelten dann noch, aber Eigenschaft (1.1.) nicht mehr!

Beispiel 1.3 (Lange Sequenzen von Zahl-Würfen)

Ziel Methode, um Frage aus Kap. 0. zu beantworten.

Dazu: Wie groß ist die WSk, dass bei n Würfen einer fairen Münze höchstens x mal hintereinander Z (= Zahl) erscheint?

- \rightarrow müssen dafür ein Modell erstellen:
- Erhgebisraum
- WSK-Maß

 $\Omega=\{K,Z\}^{n-1}$ und P_n WM mit $P_n(\{\omega\})=\frac{1}{|\Omega_n|}=\frac{1}{2^n}$ $A_n=$ "Keine Z-Teilsequenz ist länger als x"²

$$a_n(x) := |A_n(X)|$$

Beachte: falls x >= n, dann ist $a_n(x) = 2^n$

Für später setzen wir $a_0(x) = 1^3$. Für festes x lässt sich $a_n(x)$ rekursiv in n berechnen.

Beispiel: jede Folge in $A_n(2)$ startet mit K,ZK oder ZZK. Beobachte: In $A_n(2)$ gibt es

- $a_n 1(2)$ Elemente, die mit K starten
- $a_n 2(2)$ Elemente, die mit ZK starten
- $a_n 3(2)$ Elemente, die mit ZZK starten

Also gilt für alle n >= 3:

$$a_n(2) = a_{n-1}(2) + a_{n-2}(2) + a_{n-3}(2)$$

Allgemein lässt sich zeigen:

$$x$$
) = $\sum_{j=0}^{x} a_{n-j-1}(x)$ für alle $n >= x+1$ (2)

Die gesuchte WSK ist

$$P_n(A_(x)) = \frac{a_n(x)}{2n} \tag{3}$$

Die Formeln (1.2) und (1.3) lassen sich gut implementieren⁴

Im Bsp. aus Kap. O ist die WSK des Komplementes von $A_{50}(4)$ gesucht. Numerische Berechnung:

$$P_50(A_{50}(4)^C) = 1 - P((A_{50}(4)) = 1 - \frac{a_{50}(4)}{2^50} \approx 0,55$$

¹endlich, damit abzählbar \rightarrow (1.1) anwendbar

 $^{^2}$ Wenn die Ereignisse in Worten knackig ausgedrückt werden können, kann und sollte man eine solche Umschreibung angeben.

³Rekursionsanfang

⁴vgl. Übungsblatt 2

0.2.2 Exkurs: Nützliche Formeln der Kombinatorik

Ziel: Formeln, die hilfreiche sind zu Bestimmung von Mächtigkeiten. Zur Illustration denken wir an eine Urne mit n gleichförmigen Kugeln, die mit 1 bis n durchnummeriert sind.

- 1. <u>Variationen</u> (alt. geordnete Stichproben) <u>mit Widerholung</u> Man zieht k mal mit Zurücklegen; Reihenfolge ist wichtig. Die Anzahl möglicher Ergebnisse: n^k
- 2. <u>Variationen ohne Wiederholung</u>

 <u>Man zieht k mal ohne Zurücklegen;</u> Reihenfolge ist wichtig.

Die Anzahl möglicher Ergebnisse:

$$n*(n+1)*...*(n-k+1)) = \frac{n!}{(n-k)!}$$

- 4. Kombinationen mit Wiederholung Man zieht k mal mit Zurücklegen, Reihenfolge ist egal. Die Anzahl möglicher Ergebnisse:

Begründung anhand eines Beispiels: Sei $\underbrace{n=5}_{\text{Farben}}$ und $\underbrace{k=3}_{\text{Z\"{u}ge}}$. Jede Kombination mit Wdh. entspricht einer

Folge mit Symbolen | und *.

HIER FEHLT NE MENGE

Anwendungsbeispiele in der W-Theorie

- 1. In der Übung sitzen 23 Studierende. Mit welcher WSK haben alle an unterschiedlichen Tagen Geburtstag=
 (Ohne Schaltjahr) n = 365; k = 23; mit Wiederholung
 - 1. Fall): Variationen Modell: Ω = Menge der Variationen mit Wdh., wobei n=365 und k=23. P ist WM mit $P(\{\omega\}) = \frac{1}{|\Omega|}$ (Laplace)

Beachte: $|\Omega|=365^{23}$ (a)) Das Ereignis älle an unterschiedlichen Tagen Geburtstagist A= Menge der Variationen ohne Wdh. Die gesuchte WSK ist

$$P(A) = \frac{|A|}{|\Omega|} = \underbrace{\frac{365!}{(365 - 23)!}}_{|A|} * \underbrace{\frac{1}{365^{23}}}_{|\Omega|} \approx 0,49$$

Fazit: Es ist wahrscheinlicher, dass 2 Studierende am selben Tag Geburtstag haben als, dass dies nicht der Fall ist!

2. Man zieht 2 mal ohne Zurücklegen aus einer Urne mit 7 Schwarzen und 5 weißen Kugeln. Mit welcher WSK zieht man 2 mal schwarz? 1. Trick: nichts hindert uns daran, uns die Kugeln nummeriert zu denken Für die Beantwortung denkt man sic die Kuggeln durchnummeriert. Die ersten 7 Kugeln sind schwarz, die letzten 5 weiß.

Modell: Ω = Menge der Kombinationen ohne Wiederholung mit n = 12, k = 2. P WM mit $P(\{\omega\} = \frac{1}{|\Omega|})$. Beachte: $|\Omega| = \dots = \frac{12!}{(12-2!2!)} = \underline{66}$ Das Ereignis "Beide Schwarz" ist $A = \{\{\omega_1, \omega_2\} : \omega_1, \omega_2 \in \{1, ..., 7\}$ und $\omega_1 \neq \omega_2\}$

Beachte: $|A| = \{\}$