### Homework 3

### **Instructions**

This homework contains 6 concepts and 9 programming questions. In MS word or a similar text editor, write down the problem number and your answer for each problem. Combine all answers for concept questions in a single PDF file. Export/print the Jupyter notebook as a PDF file including the code you implemented and the outputs of the program. Make sure all plots and outputs are visible in the PDF.

Combine all answers into a single PDF named and rewID\_hw3.pdf and submit it to Gradescope before the due date. Refer to the syllabus for late homework policy. Please assign each question a page by using the "Assign Questions and Pages" feature in Gradescope. Submissions to anywhere other than Gradescope will not be graded.

Here is a breakdown of the points for programming questions:

| Name     | Points |
|----------|--------|
| M3_HW1   | 20     |
| M3_HW2   | 20     |
| M3_HW3   | 20     |
| M3_L1_P1 | 5      |
| M3_L1_P2 | 5      |
| M3_L1_P3 | 5      |
| M3_L2_P1 | 5      |
| M3_L2_P2 | 5      |
| M3_L2_P3 | 5      |

# Problem 1 (3 Points)

- The sigmoid function is useful because

  1. It restricts the output between -1 and 1 (T/F)

  2. It has a probabilistic interpretation (T/F)

  3. It is easily differentiable (T/F)

## Problem 2 (2 Points)



Consider the level sets that correspond to different decision boundaries in the figure.

- 1) What are the bounds on the values of h?
- 2) What are the bounds on the values of g(h) where g(t) is the sigmoid function?

# Problem 3 (1 Points)

More L2 regularization always leads to better fitting models. (T/F)

## **Problem 4 (1 Points)**

Consider the following 4 class problem. A given test point x is evaluated by six binary classifiers with the following results:

A vs.  $B \rightarrow class A$ 

A vs.  $C \rightarrow class C$ 

A vs.  $D \rightarrow class D$ 

B vs.  $C \rightarrow class C$ 

B vs.  $D \rightarrow class D$ 

C vs.  $D \rightarrow class D$ 

What is the predicted class for the test point?

# Problem 5 (1 Points)

For what number of classes is the number of classifiers required for one-versus-one and one-versus-rest classifiers equal?

## Problem 6 (2 Points)



Consider the phase problem from the slides. There are three classes: solid, liquid, and vapor. We have four test points with ground truth labels shown below. We train two models that output the predictions below. By inspection, which model is best?