相关分析

相关分析的意义

变量间的关系有两种类型:函数关系和相关关系。

• 函数关系是一一对应的确定关系

设有两个变量 $_x$ 和 $_y$,变量 $_y$ 完全依赖于 $_x$,则称 $_y$ 是 $_x$ 的函数,记为 $_{y=f(x)}$,其中 $_x$ 称为自变量, $_y$ 称为因变量。

• 相关关系

- 。 变量间确实存在、但数量上不固定的相互依存。这种关系不能用函数关系精确表达:
- 。一个变量的取值不能由另一个变量惟一地确定; 当变量 x 取某个值时, 与之相关的变量 y 的取值可能有若干个;
- 。 各观测点分布在一条直线或曲线周围.

相关关系的测定

相关图

相关图也称为散点图。一对数据对应坐标图上一个点,将成对的观察数据表现为坐标图的散点而形成的图。

python实现单个相关图

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

%matplotlib inline
```

```
data = pd.read_excel('./data/相关分析数据.xlsx', sheetname=1, index_col=0 ) data.head()
```

	hgrow	temp	rain	hsun	humi
1	0.01	4.2	17.0	54.5	81
2	0.50	7.4	10.8	73.8	79
3	1.50	10.0	17.4	84.7	75
4	10.80	16.1	19.7	137.0	75
5	13.00	21.1	248.7	149.6	77

```
data.plot.scatter(*data.columns[2:4])
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x16f9b91b5c0>
```



```
## 加入大小和颜色不同
data.plot.scatter(*data.columns[2:4], c=data.columns[0], s=data.iloc[:,0
```

<matplotlib.axes._subplots.AxesSubplot at 0x16f9bddeac8>


```
plt.scatter(data.iloc[:,2],data.iloc[:,3],c=data.iloc[:,0], s=data.iloc[
```

<matplotlib.collections.PathCollection at 0x16f9b9962e8>


```
data.plot.hexbin(*data.columns[2:4], C=data.columns[0], reduce_C_function
```

<matplotlib.axes._subplots.AxesSubplot at 0x16f9be84550>

相关矩阵图

```
from pandas.plotting import scatter_matrix
_ = scatter_matrix(data, alpha=1, figsize=(12, 12), diagonal='kde')
```



```
_ = scatter_matrix(data, alpha=1, figsize=(12, 12))
```


相关系数

Pearson相关系数

Pearson相关系数用来度量定距变量间的线性相关关系

$$\sigma = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E(X - EX)(Y - EY)}{\sqrt{E(X - EX)^2 E(Y - EY)^2}}$$
(1)

相关系数取值及其意义

- 1. r的取值范围是 [-1,1]
- 2. r < 0,为负线性相关; -r > 0 为正线性相关
- 3. |r|=1, 为完全相关
 - r=1, 为完全正相关
 - r=-1,为完全负正相关
 - r=0,不存在线性相关关系

相关系数的显著性检验——t 检验

检验的步骤为:

- 提出假设: H₀: ρ = 0; H₁: ρ ≠ 0
- 确定检验的统计量: $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t(n-2)$
- 计算检验统计量的值或 ₽值,确定显著性水平 α,并作出决策:
 - 若 $|t| > t_{0/2}$, 拒绝 H_0 (即总体线性相关显著)
 - 。 若 $|t| \leq t_{\alpha/2}$, 拒绝 H_0 (即总体线性相关不显著)

Spearman等级相关系数

Spearman等级相关系数用来度量定序变量间的线性相关关系

秩

将样本值从小到大排序,排列的序号称为相应数据的的秩,对相同的数据取序号的平均值作为秩

计算公式

设 (x_i, y_i) 的秩为 (U_i, V_i) , i = 1, 2, ..., n

$$r = 1 - \frac{6\sum_{i=1}^{n} D_i^2}{n(n^2 - 1)}, \ D_i = U_i - V_i$$
 (2)

性质

- 若两变量正相关性较强, 产趋近于1; 若两变量负相关性较强, 产趋近于 -1
- 若两变量相关性较弱, 产趋近于 0
- 若两变量完全正相关性,_{r=1}; 若两变量完全负相关性,_{r=-1}

Kendallt 相关系数

Kendallt 是用非参数方法来度量定序变量间的线性相关关系

一致

在样本 $(X_1, X_2, ..., X_n)$ 和 $(Y_1, Y_2, ..., Y_n)$ 中, 如果 $(X_i - X_i)(Y_i - Y_i) > 0$ 称 (X_i, Y_i) 与 (X_j, Y_j) 一致

计算

$$\tau = (U - V)\frac{2}{n(n-1)}\tag{3}$$

其中 亚为一致对数目, 亚为非一致对数目

python 计算相关系数

	hgrow	temp	rain	hsun	humi
hgrow	1.000000	0.983387	0.709370	0.704429	0.373573
temp	0.983387	1.000000	0.714821	0.690490	0.291983
rain	0.709370	0.714821	1.000000	0.701842	0.384326
hsun	0.704429	0.690490	0.701842	1.000000	-0.050938

humi	0.373573	0.291983	0.384326	-0.050938	1.000000	

Spearman 系数 data.corr(method='spearman')

	hgrow	temp	rain	hsun	humi
hgrow	1.000000	0.979021	0.839161	0.804196	0.402132
temp	0.979021	1.000000	0.818182	0.755245	0.412714
rain	0.839161	0.818182	1.000000	0.762238	0.342165
hsun	0.804196	0.755245	0.762238	1.000000	-0.095242
humi	0.402132	0.412714	0.342165	-0.095242	1.000000

Kendall tau 系数 data.corr(method='kendall')

	hgrow	temp	rain	hsun	humi
hgrow	1.000000	0.909091	0.636364	0.636364	0.330965
temp	0.909091	1.000000	0.606061	0.606061	0.299445
rain	0.636364	0.606061	1.000000	0.515152	0.267924
hsun	0.636364	0.606061	0.515152	1.000000	-0.047281
humi	0.330965	0.299445	0.267924	-0.047281	1.000000

```
## 使用scipy更全面,可以给出p值
## pearson 系数
from scipy.stats import stats
stats.pearsonr(data.iloc[:,0], data.iloc[:,1])
```

```
(0.9833870788122121, 9.6920927647153237e-09)
```

```
## Spearman 系数 stats.spearmanr(data.iloc[:,0], data.iloc[:,1])
```

SpearmanrResult(correlation=0.97902097902097918, pvalue=3.08980139854870

Kendall tau 系数 stats.kendalltau(data.iloc[:,0], data.iloc[:,1])

KendalltauResult(correlation=0.90909090909090905, pvalue=3.8826707883649

偏相关分析

在多要素所构成的系统中,先不考虑其它要素的影响,而单独研究两个要素之间的相互关系的密切程度,这称为偏相关。用以度量偏相关程度的统计量,称为偏相关系数。

3个要素的偏相关系数

$$r_{12\cdot3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{(1 - r_{13}^2(1 - r_{23}^2)}} \tag{4}$$

$$r_{13\cdot 2} = \frac{r_{13} - r_{12}r_{23}}{\sqrt{(1 - r_{12}^2(1 - r_{23}^2))}} \tag{5}$$

$$r_{23\cdot 1} = \frac{r_{23} - r_{12}r_{13}}{\sqrt{(1 - r_{12}^2(1 - r_{13}^2)}} \tag{6}$$

性质

- 偏相关系数分布的范围在-1到1之间;
- 偏相关系数的绝对值越大,表示其偏相关程度越大;

偏相关系数检验

- 假设: $H_0: \rho = 0; H_1: \rho \neq 0$
- 统计量: $t = \frac{r}{\sqrt{1-r^2}} \sqrt{n-m-2} \sim t(n-m-2)$, n 为样本数, m 为阶数 (控制变量个数)

python 实现偏相关系数

```
## 由于python没有现成的偏相关函数调用,故写了一个调用
import numpy as np
from scipy import stats, linalg
def partial_corr(C):
    Returns the sample linear partial correlation coefficients between pa
    for the remaining variables in C.
    Parameters
    C : array-like, shape (n, p)
       Array with the different variables. Each column of C is taken as a
    Returns
    P : array-like, shape (p, p)
       P[i, j] contains the partial correlation of C[:, i] and C[:, j] co
       for the remaining variables in C.
    C = np.asarray(C)
    C = np.column_stack([C, np.ones(C.shape[0])])
    p = C.shape[1]
    P_corr = np.zeros((p, p), dtype=np.float)
    for i in range(p-1):
       P_{corr[i, i]} = 1
       for j in range(i, p):
           idx = np.ones(p, dtype=np.bool)
           idx[i] = False
           idx[j] = False
           beta_i = linalg.lstsq(C[:, idx], C[:, j])[0]
           beta_j = linalg.lstsq(C[:, idx], C[:, i])[0]
           res_j = C[:, j] - C[:, idx].dot( beta_i)
           res_i = C[:, i] - C[:, idx].dot(beta_j)
           corr = stats.pearsonr(res_i, res_j)[0]
           P_corr[i, j] = corr
           P_corr[j, i] = corr
    return P_corr[:-1,:-1]
<
```

data2 = pd.read_excel('./data/相关分析数据.xlsx', sheetname='data10-03', in data2.head()

Company of the com

	hgrow	temp	rain	hsun	humi
1	0.01	4.2	17.0	54.5	81
2	0.50	7.4	10.8	73.8	79
_	4 50	100		o 1 =	

3	1.50	10.0	17.4	84.7	75
4	10.80	16.1	19.7	137.0	75
5	13.00	21.1	248.7	149.6	77

计算偏相关性

p = partial_corr(data)

data3 = pd.DataFrame(p, columns=data.columns, index=data.columns)

data3

	hgrow	temp	rain	hsun	humi
hgrow	1.000000	0.977408	-0.490567	0.631829	0.731011
temp	0.977408	1.000000	0.525396	-0.543962	-0.676731
rain	-0.490567	0.525396	1.000000	0.691587	0.647965
hsun	0.631829	-0.543962	0.691587	1.000000	-0.746468
humi	0.731011	-0.676731	0.647965	-0.746468	1.000000