TRƯỜNG ĐẠI HỌC AN GIANG KHOA CÔNG NGHỆ THÔNG TIN

PHÂN TÍCH THIẾT KẾ GIẢI THUẬT

Giảng viên phụ trách: NGUYỄN THÁI DƯ

Bổ túc kiến thức toán

Viết chương trình tính tổng các số tự nhiên từ 1 đến N. Với N nhập vào từ bàn phím.

Dãy số tự nhiên 1, 2, 3, 4, 5.....,n

$$S_{n=1+2+3+....+n}$$

Nguyễn Thái Dư - AGU

1

Nguyễn Thái Dư - AGU

2

Bổ túc kiến thức toán

Dãy số tự nhiên 1, 2, 3, 4, 5.....,n

$$S_{n=1+2+3+....+n} = \frac{n(n+1)}{2}$$

◆ Tính tổng:[(n+1) * n]/2 (số đầu cộng số cuối nhân số số hạng chia hai)

$$\sum_{i=1}^{n-1} (n-i) = (n-1) + (n-2) + \dots + (n-k-1) + \dots + 1 = \frac{n(n-1)}{2}$$

III. Dạng toán vận dụng công thức tính tổng các số hạng của dãy số cách đều.

- Đối với dạng này ở bậc học cao hơn như THPT các em sẽ có công thức tính theo cấp số cộng hoặc cấp số nhân, còn với lớp 6 các em dựa vào cơ sở lý thuyết sau:
- Để đếm được số hạng cầu 1 dãy số mà 2 số hạng liên tiếp cách đều nhau 1 số đơn vị ta dùng công thức:
- Số số hạng = [(số cuối số đầu):(khoảng cách)] + 1
- Đế tính Tổng các số hạng của một dãy mà 2 số hạng liên tiếp cách đều nhau 1 số đơn vị ta dùng công thức:

Tổng = [(số đầu + số cuối).(số số hạng)]:2

- * Ví dụ 1: Tính tổng: S = 1 + 3 + 5 + 7 + ... + 39
- ° Hướng dẫn:
- Số số hạng của S là: (39-1):2+1 = 19+1 = 20.
- S = [20.(39+1)]:2 = 10.40 = 400.
- * Ví dụ 2: Tính tổng: S = 2 + 5 + 8 + ... + 59
- ° Hướng dẫn:
- Số số hạng của S là:(59-2):3+1 = 19+1 = 20.
- S = [20.(59+2)]:2 = 10.61 = 610.

Chuỗi thông dung

Một số tính chất của hàm Log

♦ Cho a dương và a khác 1, b dương và số thực α thì:

$S = 1 + 2 + 3 + ... + n = n(n+1)/2 \approx n^2/2$

$$S = 1 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6 \approx n^3/3$$

$$S = 1 + a + a^{2} + a^{3} + ... + a^{n} = (a^{n+1} - 1)/(a-1)$$
Nếu $0 < a < 1$ thì
$$S \le 1/(1-a)$$
và khi $n \to \infty$ thì
$$S \text{ tiến về } 1/(1-a)$$

S = 1 + 1/2 + 1/3 + ... + 1/n =
$$\ln(n) + \gamma$$

Hằng số Euler $\gamma \approx 0.577215665$

$$S = 1 + 1/2 + 1/4 + 1/8 + ... + 1/2^{n} + ... \approx 2$$

$$\log_a b = \alpha \Leftrightarrow a^{\alpha} = b$$

Do $d \circ \log_a 1 = 0$; $\log_a a = 1$
 $\log_a a^b = b$, $\forall b \in R$
 $a^{\log_a b} = b$, $\forall b > 0$

5 Nguyễn Thái Dư - AGU Nguyễn Thái Dư - AGU

9. Luy thừa: a, b > 0

$a^{\alpha}.a^{\beta}.a^{\gamma} = a^{\alpha+\beta+\gamma}$		$\frac{a^{\alpha}}{b^{\alpha}} = \left(\frac{a}{b}\right)^{\alpha}$
$(a^{\alpha})^{\beta} = a^{\alpha\beta}$	$a^{\alpha}.b^{\alpha} = (a.b)^{\alpha}$	$a^{-\alpha} = \frac{1}{a^{\alpha}}$
$\sqrt[n]{a^k} = a^{\frac{k}{n}}$	$\sqrt[m]{\sqrt[n]{a^k}} = \sqrt[m,r]{a^k}$	$\sqrt[k]{a^k} = a^{\frac{k}{m,n}}$

10. Logarit: $0 < N_1, N_2, N$ và $0 < a, b \ne 1$ ta có

$log_a N = M \iff N = a^M$	$\log_a\left(\frac{N_1}{N_2}\right) = \log_a N_1 - \log_a N_2$
$log_a a^M = M$	$\log_a N^{\alpha} = \alpha \log_a N$
$a^{log_aN} = N$	$\log_{a^{\alpha}} N = \frac{1}{\alpha} \log_a N$
$N_1^{log_a N_2} = N_2^{log_a N_1}$	$log_a N = \frac{log_b N}{log_b a}$
$\log_a(N_1,N_2) = \log_a N_1 + \log_a N_2$	1

$(a)^0 = 1; (a \neq 0)$	$\log_a 1 = 0(0 < a \ne 1)$	
$(a)^1 = a$	$\log_a a = 1(0 \le a \ne 1)$	
$(a)^{-\alpha} = \frac{1}{a^{\alpha}}$	$\log_a a^\alpha = \alpha(0 \le a \ne 1)$	-
$(a)^{\alpha}.(a)^{\beta} = (a)^{\alpha+\beta}$	$\log_{a^n} a = \frac{1}{\alpha} (0 \le a \ne 1)$	
$\frac{(a)^{\alpha}}{(a)^{\beta}} = (a)^{\alpha - \beta}$	$\log_a b^\alpha = \alpha . \log_a b;$ $(a, b > 0, a \neq 1)$	
$(a)^{\alpha}.(b)^{\alpha} = (ab)^{\alpha}$	$\log_{a^{\beta}} b = \frac{1}{\beta} . \log_{a} b$	
$\frac{(a)^{\alpha}}{(b)^{\alpha}} = \left(\frac{a}{b}\right)^{\alpha}; (b \neq 0)$	$\log_{\alpha^{\beta}} b^{\alpha} = \frac{\alpha}{\beta} . \log_{\alpha} b$	
$(a)^{\frac{\alpha}{\beta}} = \sqrt[\beta]{(a)^{\alpha}} (\beta \in \mathbb{N}^*)$	$\log_a b + \log_a c$ $= \log_a (b.c)$	
$(a)^{\alpha} = b$	$\log_a b - \log_a c$	
$\Rightarrow \alpha = \log_a b$	$=\log_a\left(\frac{b}{c}\right)$	
$(a^{\alpha})^{\beta} = a^{\alpha.\beta}$	$\log_a b = \frac{1}{\log_b a}$	

7

Tổng của chuỗi số

♦ 1.2 Đinh nghĩa 2:

◆ Tổng n hữu hạn số hạng đầu của chuỗi gọi là tổng riêng phần thứ n của chuỗi (sequence of nartial sum)

$$S_n = u_1 + u_2 + u_3 + \dots + u_n = \sum_{i=1}^n u_i$$

- Nếu $\lim_{n\to\infty} S_n = \pm \infty$ hoặc không tồn tại ta nói chuỗi phân kỳ (divergent)

Thí du 1.2.1:

Nếu |q| < 1 thì
$$S_n \underset{n \to \infty}{\to} \frac{1}{1-q}$$
 , do đó chuỗi hôi tụ và có tổng bằng $\frac{1}{1-q}$

Xét chuỗi cấp số nhân: $\sum_{n=0}^{\infty} q^n$ (geometric series)

Nếu q> 1 thì S_n không có giới hạn hữu hạn, do đó chuỗi phân kỳ.

Ta có: $S_n=1+q+\ldots+q^n$

Nếu q = -1 thì
$$S_n=1-1+1-1+\dots$$
 do đó $S_n=\left\{ \begin{array}{ll} 0 \\ 1 \end{array} \right.$

Nếu q =1 ta có: $S_n = n \Rightarrow \lim S_n = +\infty$

Nếu q =1 ta có:
$$S_n=n\Rightarrow\lim_{n\to\infty}S_n=+\infty$$

$$S_n=\sum_{k=0}^{n-1}q^k=\frac{q^n}{q-1}-\frac{1}{q-1} \qquad \text{Vậy }S_n \qquad \text{không có giới hạn và chuỗi đã cho phân kỳ.}$$
 Vậy chuỗi phân kỳ.

9

Tổng của chuỗi số

Nếu |**q**| < **1** thì $S_n \to \frac{1}{1-a}$, do đó chuỗi hội tụ và có tổng bằng $\frac{1}{1-a}$

Nếu q> 1 thì S_n không có giới hạn hữu hạn, do đó chuỗi phân kỳ.

Nếu q = -1 thì
$$S_n=1-1+1-1+\dots$$
 do đó $S_n=\left\{ \begin{array}{ll} 0 \\ 1 \end{array} \right.$

không có giới han và chuỗi đã cho phân kỳ.

Tổng của chuỗi số

Thí dụ 1.2.1:

Xét chuỗi cấp số nhân:
$$\sum\limits_{n=0}^{\infty}q^n$$
 (geometric series)

Ta có:
$$S_n = 1 + q + ... + q^n$$

Nếu q =1 ta có:
$$S_n = n \Rightarrow \lim_{n \to \infty} S_n = +\infty$$

Vậy chuỗi phân kỳ.
$$S_n = \sum\limits_{k=0}^{n-1} q^k = rac{q^n}{q-1} - rac{1}{q-1}$$

10 Nguyễn Thái Dư - AGU

