Maud in Action: Applying Batch Analysis Codes

Shukun Li

ID: 115993668

ESM499

Under the guidance of Professor David Sprouster

3 May 2024

Introduction

Introduction to X-Ray Diffraction (XRD)

X-ray diffraction (XRD) is a powerful non-destructive test method used to analyze the crystal structure of materials by measuring the diffraction patterns of X-rays as they interact with a material, XRD can provide detailed information about the atomic or molecular structure of a material.

Basic Principle

The working principle of XRD is based on the phenomenon that X-rays interact with the atomic lattice in a material. When an X-ray beam hits a crystalline material, the X-rays are scattered by the atoms in the material. If the crystal has a regular lattice structure, the scattered X-rays will be intensified at specific angles, forming an interference pattern. This phenomenon follows Bragg's law ($n\lambda = 2d \sin\theta$), where λ is the wavelength of the X-rays, d is the lattice spacing, θ is half of the angles of incidence and reflection, and n is an integer.

Data Analysis

The data generated from the XRD experiment consisted mainly of the diffraction angle (2θ) and the corresponding intensity (I). These data were used to generate an XRD map showing the intensity distribution for different values of 2θ . Each peak in the map corresponds to a specific lattice plane, the position of the peaks $(2\theta \text{ values})$ provides information about the lattice spacing, and the shape and width of the peaks can reveal the crystal size, stress state, and other structural defects of the material. In addition, error analysis is essential to determine the reliability and accuracy of the data.

Fig1.1 XRD schematic diagram

Maud program

The precise crystallographic data analysis helps in understanding structural properties of materials. Maud is a software based on the Rietveld method that is very effective in refining diffraction data obtained from X-ray or neutron sources. The refinement includes structural parameters. Maud is used to make the fit with experimental data optimal, such as lattice constants, atomic positions, and thermal parameters that characterize properly the material under study.

However, each chi file often requires individual refinement based on the same par file to figure out subtle changes in sample characteristics or experimental conditions not reflected in the initial parameter file settings. This individual refinement process, while necessary to achieve high accuracy, is time-consuming and labor-intensive. It involves complex adjustments and reassessments of the fit between computed and observed data, often requiring considerable time and judgment.

Maud's feature allows processing multiple chi files using a single parameter file (par file) can prove very useful for situations where several experiments have been conducted under unchanged instrumental and experimental conditions. Researchers by making use of a uniform set of parameters ensure uniformity across different samples analyzed during comparative studies which are otherwise essential for keeping consistency when dealing with similar experiments conducted under similar conditions.

In this report, I will discuss the process of using Maud for batch analysis of chi files, focusing on the codes which are used to efficiently do batch analysis.

Software Requirements for XRD Data Batch Analysis

To effectively handle and analyze X-ray diffraction (XRD) data, several software tools and programming environments are essential. Here's a breakdown of the software requirements:

Strawberry Perl:

Strawberry Perl is a Perl environment for Windows that includes a Perl language interpreter, a compiler, and a large number of essential libraries and tools. It is particularly useful for scripting and automating data processing tasks. Perl scripts are often used for manipulating large datasets, formatting data, and interfacing with other software tools.

MAUD (Materials Analysis Using Diffraction):

MAUD operates on Java, thus requiring a compatible Java Runtime Environment (JRE).

Python Environment:

Essential Python libraries for XRD analysis include NumPy for numerical operations, Matplotlib for plotting, and SciPy for more advanced scientific computations.

Additional Scripts and Codes:

Analysis.pl	3/26/2024 4:37 PM	Perl program file	4 KB
📝 change_extension.py	4/29/2024 12:45 PM	Python File	1 KB
Errors.pl	3/26/2024 4:37 PM	Perl program file	3 KB
fileMake.pl	4/29/2024 12:41 PM	Perl program file	2 KB
📝 heatmap.py	2/14/2024 6:36 PM	Python File	2 KB
remove_first_line.py	4/29/2024 12:51 AM	Python File	1 KB

Fig 1.2 code

1. Analysis file

The main purpose of this code is to automate the processing of experimental data and save the results in a structured format to an Excel file for further analysis and reporting. By automating the process, a lot of time can be saved in manual data organization and human errors can be reduced.

2. Change extension

This file is used to change the file with the extension .xye to a chi file for maud for batch analysis.

3. Errors

The main purpose of this Perl code is to extract specific error information from a .par file and save this information to a text file.

4. fileMake file

The main purpose of this code is to automate the processing of .chi files and generate the required script files for batch analysis.

5. Remove first line file

Usually XRD data are present in the first line of text 2θ , INTENSITY and ERROR. This file is used to remove the first line of text to facilitate the processing of data in later lines.

Experiment Process

- 1. First, create a results folder and place the "Analysis.pl" program inside of it.
- 2. Place the initial .par file with the .chi files that you want to analyze, and name the file "initial.par". (Make sure that the .par file does not contain datasets)

xrd_C81b_20221201-151242_14fd07	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_C81b775C1100H_20221201-1513	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_C91b_20221201-145433_c7442c	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_C91b775C110H_20221201-14553	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodasrec_2_20221202-01543	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodasrec_20221201-150053	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodHT2_2_20221202-015643	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodHT3_2_20221202-015748	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodHT5_2_20221202-015857	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodHT6_2_20221202-020104	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodHT7_2_20221202-020310	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9Cr6H_20221201-150202_c238	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9Cr6HHT1_20221201-150512_b	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9Cr6HHT2_20221201-150617_a	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9Cr6HHT3_20221201-150721_0	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9Cr24H_20221201-150304_3de	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9CrC1_20221201-150825_de82	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9CrC2_20221201-150929_9058	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_Fe9CrC3_20221201-151033_0f47c	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_HchargedC91b_20221201-14574	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_HchargedFe9Cr24H_20221201-15	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_HchargedFe9CrC1_20221201-151	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_TDSDchargedC81b_20221201-14	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_TDSDchargedC91b_20221201-14	2/9/2024 4:07 PM	CHI 文件	147 KB
initial.par	2/16/2024 2:57 PM	PAR 文件	31 KB
Analysis.pl	3/1/2024 1:59 PM	Perl program file	4 KB
Errors.pl	3/1/2024 1:59 PM	Perl program file	3 KB
fileMake.pl	4/15/2024 12:39 PM	Perl program file	2 KB

Fig 2.1 chi files

Fig 2.2 no data in dataset

1. Place the "FileMake.pl" program into the same folder as the "initial.par" and the .chi files and run the program. The program will ask for the path to "initial.par". Copy paste the path into the program and remove the quotation marks around the path name. Make sure that the path has "/initial.par" at the end of it. This program will output "script.ins" and "names.txt" files. Place "names.txt" into the results folder.

Fig 2.3 FileMake.pl

script.ins	5/7/2024 2:02 AM	INS 文件	4 KB
names.txt	5/7/2024 1:59 AM	Text Document	2 KB

Fig 2.4 Script and names

4. Run the batch analysis with the script.ins file. To do this, go to the menu bar in MAUD and select the "special" dropdown. Then select "Refine in Batch". This will give a pop up window. Select the "script.ins" file. This will run the batch analysis and output a "results.txt" file. You can select the "interference" dropdown. Then select "console visible" to check the analysis process.

Fig 2.5 Refine in batch

名称 个	修改日期	类型	大小
Analysis.pl	3/1/2024 1:59 PM	Perl program file	4 KB
Errors.pl	3/1/2024 1:59 PM	Perl program file	3 KB
fileMake.pl	4/15/2024 12:39 PM	Perl program file	2 KB
initial.par	2/16/2024 2:57 PM	PAR 文件	31 KB
anames.txt	5/7/2024 1:59 AM	Text Document	2 KB
script.ins	5/7/2024 2:02 AM	INS 文件	4 KB
xrd_C81b_20221201-151242_14fd07_primary	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_C81b775C1100H_20221201-151347_0bde	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_C91b_20221201-145433_c7442c_primary	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_C91b775C110H_20221201-145535_b414c	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodasrec_2_20221202-015437_80429	2/9/2024 4:07 PM	CHI 文件	147 KB
xrd_CNArodasrec_20221201-150053_8d267e	2/9/2024 4:07 PM	CHI 文件	147 KB

Fig 2.5 Console visible

```
Generating Correlation matrix
Fe , weight %: 93.5009 +- 0.2099365
Cr23C6 , weight %: 6.38091 +- 1.134654
TaC , weight %: 0.118191935 +- 0.009699261
Refinement final output indices:
Global Rwp: 0.09300232
Global Rp: 0.077275865
Global Rwpnb (no background): 0.10505352
Global Rwpnbl (no bkg rescaled): 0.10206376
Global Rwpnb2 (no bkg rescaled^2): 0.10045679
Global Rpnb (no background): 0.09258289
Global Rpnbl (no bkg rescaled): 0.087455116
Global Rpnb2 (no bkg rescaled^2): 0.08459038
Total energy: 0.0
Refinement final output indices for single samples:
Sample Sample_x :
Sample Rwp: 0.09300232
Sample Rp: 0.077275865
Sample Rwpnb (no background): 0.10505352
Sample Rwpnbl (no bkg rescaled): 0.10206376
Sample Rwpnb2 (no bkg rescaled^2): 0.10045679
Sample Rpnb (no background): 0.09258289
Sample Rpnbl (no bkg rescaled): 0.087455116
Sample Rpnb2 (no bkg rescaled^2): 0.08459038
Sample energy: 0.0
Refinement final output indices for single datasets:
DataSet DataFileSet_x :
DataSet Rwp: 0.09300232
DataSet Rp: 0.077275865
DataSet Rwpnb (no background): 0.10505352
DataSet Rwpnbl (no bkg rescaled): 0.10206376
DataSet Rwpnb2 (no bkg rescaled^2): 0.10045679
DataSet Rpnb (no background): 0.09258289
DataSet Rpnbl (no bkg rescaled): 0.087455116
DataSet Ronb2 (no bkg rescaled^2): 0.08459038
Refinement final output indices for single spectra:
Datafile xrd_TDSDchargedC91b_20221201-145949_7f0012_primary-1_mean_tth.chi : Rwp: 0.09300232, Rp: 0.077
Time for computation was: 5643 millisecs.
```

Fig 2.6 batch analysis process

Fig 2.7 results

5. Run the error and Analysis file, and you will get an excel of the result and error. It should be noted that the analysis file default is for 3 phases to generate excel tables, for other quantities of phases, you need to modify the parameters to prevent excel sorting errors.

Fig 2.5 excel of output

The following parameters are output

Title - The title or identifier of the data set or sample.

Rwp(%) - Percentage of weighted profile factor, often used as a measure of how well X-ray powder diffraction data fits.

Phase_Name - The name of a specific phase in the sample.

Vol.(%) - The percentage of phase volume relative to the total sample volume.

error(%) - The percentage error associated with the volume percentage.

Wt.(%) - The weight percentage of the phase.

Cell_Par(Angstrom) - the cell parameter of the crystal in Ångström.

Size(Angstrom) - Grain size in Angstrom.

Microstrain - Microscopic strain, usually associated with lattice distortion.

GridX, GridY, GridZ - may indicate the position of the sample in some coordinate system or device.

Phase, Cell_Par Error, Crystal Size Error, Microstrain Error - Repeated list of phase names with errors in each parameter (cell parameter, grain size, microstrain).

6. Modify the analysis file based the amount of phases (take 2 and 3 phases as examples)

1. Modify the order of split

Fig 2.6 split code of 3 phases

Fig 2.7 split code of 2 phases

When expanding from processing data from two phases to three phases, it usually means that the number of data fields contained in each row increases, since each phase may have its own set of specific parameters. That's why when processing more phases in Perl code, you need to extract more columns from the data, i.e. adjust the range of the array index after the split function.

Here is an example, if each phase contains the following parameters:

Phase Name

Volume (%)

Error (%)

Weight (%)

Error (%)

Cell Parameter (Angstrom)

Size (Angstrom)

Microstrain

For two-phase data, you may need to extract to the 17th field of each row. And when increasing to three phases, each phase may add at least 8 fields (if the number of parameters of each phase is the same), so more fields need to be extracted to contain all the data of the third phase, which is the index The origin of 0.25.

2. Changing the write order of excel

```
$row = 0;
85
      my $countMod = 0;
86
      while (<fh>)
    □{
87
88
          print $ ;
89
          prow++ if (prountMod % 3 == 0);
          \ $worksheet->write($row, $col, "$_") if ($countMod % 3 == 0);
90
91
          $worksheet->write($row, $col+1, "$_") if ($countMod % 3 == 1);
          $worksheet->write($row, $col+2, "$_") if ($countMod % 3 == 2);
92
93
          $countMod++;
94
     L}
95
```

Fig 2.8 excel code of 3 phases

Here, whenever \$countMod is divisible by 3 (that is, 0, 3, 6, ...)), a new data point is written to the first position of the new row, and the row number \$row is incremented; then, as \$countMod increases, the next two data points fill the second (\$col+1) and third (\$col+2) positions of the row, respectively. In this way, every third data point fills three columns of a row.

```
86
    while (<fh>)
87
   □{
88
       print $ ;
89
       prow++ if (prountMod % 2 == 0);
       $worksheet->write($row, $col, "$") if ($countMod % 2 == 0);
90
       91
92
       $countMod++;
    L
93
94
95
    close (fh);
96
```

Fig 2.9 excel code of 2 phases

In this code, \$countMod controls the position of the rows and columns. If \$countMod is an even number (that is, 0, 2, 4, ...) is even (that is, 0, 2, 4, ...), the data is written to the first position (\$col) of the current row and the row number \$row is incremented in preparation for the next data point to be written. If \$countMod is an odd number (1, 3, 5, ...), then the data is written to the second position (\$col+1) in the same row. This means that every two data points fill two columns of a row.

3. Modify the numbers of phase names, unit cell parameter errors, grain size errors, and microstrain errors that need to be displayed.

The main function of this code is to read a text file (ListOfErrors.txt) containing error data and write the data into an Excel worksheet. The columns of each worksheet correspond to different error types, and the error data is written into the corresponding columns according to specific rules. The code mainly contains two parts: setting the column headers of the Excel worksheet and writing error data.

```
114
115
               $worksheet->write(0, $col, "Phase");
116
               $worksheet->write(0, $col+1, "Cell_Par Error");
               $worksheet->write(0, $col+2, "Crystal Size Error");
117
               $worksheet->write(0, $col+3, "Microstrain Error");
118
               $worksheet->write(0, $col+4, "Phase");
119
               $worksheet->write(0, $col+5, "Cell_Par Error");
120
               $worksheet->write(0, $col+6, "Crystal Size Error");
121
               $worksheet->write(0, $col+7, "Microstrain Error");
122
               $worksheet->write(0, $col+8, "Phase");
123
               $worksheet->write(0, $col+9, "Cell_Par Error");
124
               $worksheet->write(0, $col+10, "Crystal Size Error");
125
               $worksheet->write(0, $col+11, "Microstrain Error");
126
127
128
               #Add errors
129
130
               open(fh, "ListOfErrors.txt");
131
132
               $row = 0;
133
               my $countMod = 0;
134
               while (<fh>)
135
           □{
                         print $_;
136
137
                         prow++ if (prountMod % 12 == 0);
                         $worksheet->write($row, $col, "$_") if ($countMod % 12 == 0);
138
                         $worksheet->write($row, $col+1, "$_") if ($countMod % 12 == 1);
139
                         $worksheet->write($row, $col+2, "$_") if ($countMod % 12 == 2);
140
                         $worksheet->write($row, $col+3, "$_") if ($countMod % 12 == 3);
141
                         $worksheet->write($row, $col+4, "$_") if ($countMod % 12 == 4);
142
                         $worksheet->write($row, $col+5, "$_") if ($countMod % 12 == 5);
143
                         $worksheet->write($row, $col+6, "$_") if ($countMod % 12 == 6);
144
                         $\text{$worksheet->write($row, $col+7, "$_") if ($countMod \ 12 == 7);}
145
                         $\text{Sworksheet->write($row, $col+8, "$_") if ($countMod $ 12 == 8);}
146
                        $\text{$\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\formalfootnote{\
147
148
149
150
                         $countMod++;
151
152
153
               close(fh);
154
155
156
157
               $workbook->close;
```

Fig 3.1 code of listing errors of 3 phases

```
109
110
                   $col++;
111
                   $col++;
112
                   $col++;
113
114
                   $worksheet->write(0, $col, "Phase");
                 $worksheet->write(0, $col, Fnase');
$worksheet->write(0, $col+1, "Cell_Par Error");
$worksheet->write(0, $col+2, "Crystal Size Error");
$worksheet->write(0, $col+3, "Microstrain Error");
$worksheet->write(0, $col+4, "Phase");
$worksheet->write(0, $col+5, "Cell_Par Error");
$worksheet->write(0, $col+6, "Crystal Size Error");
$worksheet->write(0, $col+7, "Microstrain Error");
115
116
117
118
119
120
123
124
125
                   #Add errors
126
                   open(fh, "ListOfErrors.txt");
127
128
                   $row = 0;
129
                   my $countMod = 0;
130
                   while (<fh>)
               □ {
132
                              print $ ;
                               $row++ if ($countMod % 8 == 0);
133
                             $row++ if ($countMod % 8 == 0);
$worksheet->write($row, $col, "$_") if ($countMod % 8 == 0);
$worksheet->write($row, $col+1, "$_") if ($countMod % 8 == 1);
$worksheet->write($row, $col+2, "$_") if ($countMod % 8 == 2);
$worksheet->write($row, $col+2, "$_") if ($countMod % 8 == 2);
$worksheet->write($row, $col+3, "$_") if ($countMod % 8 == 3);
$worksheet->write($row, $col+4, "$_") if ($countMod % 8 == 4);
$worksheet->write($row, $col+5, "$_") if ($countMod % 8 == 5);
$worksheet->write($row, $col+6, "$_") if ($countMod % 8 == 6);
$worksheet->write($row, $col+7, "$_") if ($countMod % 8 == 7);
$countMod++:
134
135
136
137
138
139
140
141
142
                              $countMod++;
143
144
145
                   close(fh);
146
147
148
149
                  $workbook->close;
150
```

Fig 3.2 code of listing errors of 2 phases

For the 3 phases code, write one line for every 18 columns of data, and for the 4 phases code, write one line for every 24 columns of data.

The number of columns written is different: 18 columns for 3 phases and 24 columns for 4 phases.

7. Modify the code to increase the amount of output data

While processing ATR2_RR data, Mingxi discovered that my output only included the error rate for crystal size and not the actual crystal size. Thus, it seems some values are missing from my output. I found that in some special phases like Cohenite, there is more than one cell length that should be exported. This will take up three rows in Excel and cause the crystal size and Microstrain to not show up. I have changed the code to export the crystal size and Microstrain.

```
When I was checking the results, I found some weird issues:

1. In the IVAR output, all the crystal sizes of BCC are constant, which need to be refined (the fixed value is very large).

2. I can't find the crystal size for the cohenite in the ATR2_RR, but there is Crystal Size Error in the Excel file. I think he failed to export it during the analysis.

Can you send these to Shukun and ask him to fix these issues?

Thanks,

Mingxi
```

Fig 3.3 Mingxi's email

```
# Reading the file till FH reaches EOF
while(<fh>)
{
    #Cell Parameter (a) Error
    push (@cellParError1, $_) if (/_cell_length_a/i);
    #Cell Parameter (b) Error
    push (@cellParError2, $_) if (/_cell_length_b/i);
    #Cell Parameter (c) Error
    push (@cellParError3, $_) if (/_cell_length_c/i);
    #Crystal Size Error
    push (@crystalSizeError, $_) if (/_riet_par_cryst_size/i);
    #Microstrain Error
    push (@microstrainError, $_) if (/_riet_par_rs_microstrain/i);
    #Phase Names
    push (@phaseNames, $_) if (/_pd_phase_name/i);
}
```

Fig 3.4 Modified codes of error.pl

```
Sworksheet->write(0, $col, "Phase");
$worksheet->write(0, $col+1, "Cell Par Error");
$worksheet->write(0, $col+2, "Cell_Par Error");
$worksheet->write(0, $col+3, "Cell_Par Error");
$worksheet->write(0, $col+4, "Crystal Size Error");
$worksheet->write(0, $col+4, Crystal Size Effor);
$worksheet->write(0, $col+5, "Microstrain Error");
$worksheet->write(0, $col+6, "Phase");
$worksheet->write(0, $col+7, "Cell_Par Error");
$worksheet->write(0, $col+8, "Cell_Par Error");
$worksheet->write(0, $col+9, "Cell Par Error");
$worksheet->write(0, $col+10, "Crystal Size Error");
$worksheet >write(0, $col+11, "Microstrain Error");
$worksheet->write(0, $col+12, "Phase");
$worksheet->write(0, $col+13, "Cell_Par Error");
$worksheet->write(0, $col+14, "Cell_Par Error");
$worksheet->write(0, $col+15, "Cell_Par Error");
$worksheet->write(0, $col+16, "Crystal Size Error");
$worksheet->write(0, $col+17, "Microstrain Error");
 #Add errors
 open(fh, "ListOfErrors.txt");
 prow = 0;
my $countMod = 0;
while (<fh>)
              $row++ if ($countMod % 18 == 0);
$worksheet->write($row, $col, "$_") if ($countMod % 18 == 0);
$worksheet->write($row, $col+1, "$_") if ($countMod % 18 == 1);
$worksheet->write($row, $col+2, "$_") if ($countMod % 18 == 2);
$worksheet->write($row, $col+3, "$_") if ($countMod % 18 == 3);
$worksheet->write($row, $col+4, "$_") if ($countMod % 18 == 4);
$worksheet->write($row, $col+5, "$_") if ($countMod % 18 == 5);
$worksheet->write($row, $col+6, "$_") if ($countMod % 18 == 6);
$worksheet->write($row, $col+7, "$_") if ($countMod % 18 == 7);
$worksheet->write($row, $col+8, "$_") if ($countMod % 18 == 8);
$worksheet->write($row, $col+9, "$_") if ($countMod % 18 == 9);
$worksheet->write($row, $col+10, "$_") if ($countMod % 18 == 10);
$worksheet->write($row, $col+11, "$_") if ($countMod % 18 == 11);
                  prow++ if (prountMod % 18 == 0);
                 $worksheet->write($row, $col+11, "$_") if ($countMod % 18 == 11);
                $\text{Sworksheet->write($row, $\text{$col+11}, $\text{$s$_") if ($\text{$countMod $\circ 16 = 11)},}
$\text{$worksheet->write($\text{$row}, $\text{$col+12}, $\"$\scrip*_") if ($\text{$countMod $\circ 18 == 12)};
$\text{$worksheet->write($\text{$row}, $\text{$col+14}, $\"$\scrip*_") if ($\text{$countMod $\circ 18 == 14)};
$\text{$worksheet->write($\text{$row}, $\text{$col+15}, $\"$\scrip*_") if ($\text{$countMod $\circ 18 == 15)};
                 $\text{$\subseteq} \text{$\text{$\subseteq} \text{$\subseteq} \text{$\subseteq}
```

Fig 3.5 Modified codes of analysis.pl

Due to the fact that there are three crystal sizes in the Cohenite phase, namely lengths a, b, and c, the error output code should output errors for all three crystal sizes. In the analysis, two additional columns should be added for lengths b and c. This way, other data will not be overwritten.

Practical applications of batch

Professor David Sprouster and his lab member Mingxi Ouyang provided me with the XRD experimental data obtained during the beam time at BNL. First, I need to refine one par file from a set using MAUD to obtain a parameter file suitable for the entire dataset, and then proceed with batch analysis.

The results include: Title, Rwp(%), Vol.(%), error(%), Wt.(%), Cell_Par(Angstrom), size(Angstrom), MicrostrainGridX, GridY, GridZPhase, Cell_Par Error, Crystal Size Error, Microstrain Error.

Most of the Rwp values are as expected, and only a few files with Rwp values greater than 10 need manual refinement, significantly reducing the time required.

2.1.xlsx	4/29/2024 1:12 PM	Microsoft Excel	14 KB
output of ATR2_RR.xlsx	5/7/2024 7:09 PM	Microsoft Excel	43 KB
output of SUR.xlsx	5/7/2024 6:30 PM	Microsoft Excel	17 KB
output of UCSB.xlsx	5/7/2024 6:28 PM	Microsoft Excel	12 KB
output of IVAR.xlsx	5/7/2024 7:06 PM	Microsoft Excel	18 KB
output of lab6.xlsx	5/7/2024 2:30 AM	Microsoft Excel	13 KB
output (lattP) .xlsx	3/29/2024 5:32 PM	Microsoft Excel	20 KB

Fig 4.1 excel of output

Appendix (processed data)

1.practice sample

Title	Rwp(%)	Phase_Na	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell_Par(A	Cell_Par E	Size(Angs	Crystal Siz	Microstrai	Microstraii
xrd_C81b775C110	9.392324	Fe	98.745	0.221129	98.68851	0.221003	2.865568	1.18E-05	7328.17	252.6151	6.31E-07	0.002107
xrd_C81b_202212	6.70735	Fe	98.81806	0.159891	98.7736	0.15982	2.865804	9.72E-06	7400.131	272.719	0.000752	7.79E-06
xrd_C91b775C110	20.30855	Fe	65.59869	0.80483	63.70531	0.7816	2.863501	0.000159	259.2426	7.843919	0.001378	0.000181
xrd_C91b_202212	8.873663	Fe	89.04968	0.191335	89.9697	0.193312	2.864615	1.28E-05	7600.143	388.1084	0.000795	9.92E-06
xrd_CNArodasred	6.760999	Fe	98.61734	0.162519	98.59358	0.16248	2.86456	1E- 05	7364.653	278.1302	0.000769	8.02E-06
xrd_CNArodasred	7.139493	Fe	98.53096	0.170124	98.50681	0.170082	2.864501	1.06E-05	7131.78	78.79733	0.000761	5.59E-06
xrd_CNArodHT2_	7.039198	Fe	98.63562	0.167855	98.6161	0.167822	2.865082	1.09E-05	5368.933	73.18588	0.000878	5.69E-06
xrd_CNArodHT3_	7.964338	Fe	98.65448	0.190978	98.64394	0.190958	2.866796	1.27E-05	4774.683	150.4933	0.000984	8.94E-06
xrd_CNArodHT5_	7.489465	Fe	98.62665	0.17885	98.61459	0.178828	2.863944	1.17E-05	5157.585	48.50666	0.000892	5.65E-06
xrd_CNArodHT6_	9.081333	Fe	98.82456	0.219683	98.81316	0.219657	2.865103	1.53E-05		113.0224	0.001088	2.45E-06
xrd_CNArodHT7_	8.906178	Fe	98.4965	0.214535	98.48965	0.21452	2.865747	1.49E-05	4133.251	131.7053	0.001071	1.01E-05
xrd_Fe9Cr24H_20	34.28865	Fe	82.34287	1.228657	86.37273	1.288788	2.863251	0.000128	6866.437	4549.981	0.002121	9.24E-05
xrd_Fe9Cr6HHT1_	10.8235	Fe	93.95916	0.259033	93.58366	0.257997	2.863995	1.6E-05	2813.695	69.68212	3.02E-05	0.000267
xrd_Fe9Cr6HHT2_	7.001599	Fe	97.05624	0.157386	97.1583	0.157551	2.863721	8.62E-06	19237.75	1589.34	0.00029	1.45E-05
xrd_Fe9Cr6HHT3_	15.60402	Fe	85.20879	0.400645	84.25159	0.396144	2.863163	3.49E-05	798.5168	13.56587	0.000162	0.000145
xrd_Fe9Cr6H_202	29.17078	Fe	60.44066	1.082266	63.24398	1.132463	2.864358	0.000175	2260.015	678.5356	0.002437	0.000126
xrd_Fe9CrC1_202	5.566788	Fe	94.43043	0.12196	94.28955	0.121778	2.864189	7.12E-06	16760.82	945.8006	0.000549	6.98E-06
xrd_Fe9CrC2_202	5.563569	Fe	98.96261	0.127941	98.95274	0.127928	2.864335	6.88E-06	61083.68	12618.28	0.000434	7.92E-06
xrd_Fe9CrC3_202	6.777206	Fe	98.80991	0.154995	98.81039	0.154995	2.864465	8.16E-06	25993.52	2719.319	0.000315	1.24E-05
xrd_HchargedC91	12.01547	Fe	96.40823	0.277895	96.5609	0.278335	2.86486	1.71E-05	7496.536	513.3491	0.000797	1.33E-05
xrd_HchargedFe9	25.44747	Fe	99.85366	1.180116	99.84386	1.18	2.86393	0.000177	302.985	4.112784	0.000867	0.00021
xrd_HchargedFe9	5.684687	Fe	95.42757	0.126341	95.37085	0.126266	2.864598	7.27E-06	16784.22	1025.279	0.000532	7.28E-06
xrd_TDSDcharged	6.662031	Fe	98.14894	0.158575	98.10507	0.158504	2.86476	9.23E-06	4712.831	108.232	0.000476	1.05E-05

Fig 5.1.1 Fe phase

Title	Phase_Na	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell_Par(A	Cell_Par E	Size(Angs	Crystal Siz	Microstrai Microstra
xrd_C81b7	Cr23C6	1.189294	0.074058	1.179994	0.073479	10.59246	0.002568	480.6001	9.510381	6.87E-08
xrd_C81b_	Cr23C6	1.128946	0.056698	1.120544	0.056276	10.59242	0.001965	483.5636	29.26065	6.87E-08
xrd_C91b7	Cr23C6	34.09739	1.627989	35.70412	1.704703	10.29732	0.018135	32.89811	1.133356	6.87E-08
xrd_C91b_	Cr23C6	10.90505	4.986244	9.939043	4.544548	10.93237	0.125343	5.637865	1.726305	6.87E-08
xrd_CNArc	Cr23C6	1.347172	0.072519	1.33516	0.071872	10.59381	0.001522	599.8162	82.71778	6.87E-08
xrd_CNArc	Cr23C6	1.432446	0.056613	1.419686	0.056109	10.59355	0.001518	597.0839	14.09205	6.87E-08
xrd_CNArc	Cr23C6	1.33542	0.07652	1.325788	0.075968	10.58983	0.001668	551.286	73.43919	6.87E-08
xrd_CNArc	Cr23C6	1.326744	0.098979	1.318393	0.098356	10.59322	0.00267	351.4043	50.50392	6.87E-08
xrd_CNArc	Cr23C6	1.353717	0.092388	1.345995	0.091861	10.58053	0.002372	373.2871	49.51877	6.87E-08
xrd_CNArc	Cr23C6	1.155423	0.108598	1.146693	0.107777	10.59141	0.003086	421.3983	79.0613	6.87E-08
xrd_CNArc	Cr23C6	1.486176	0.098198	1.475612	0.0975	10.59236	0.003494	271.2017	19.28241	6.87E-08
xrd_Fe9Cr2	Cr23C6	17.65712	6.067045	13.62723	4.682362	11.69534	0.217142	17.4198	6.81197	6.87E-08
xrd_Fe9Cr	Cr23C6	6.039088	0.362875	6.412881	0.385336	10.33787	0.027884	24.84806	1.327235	6.87E-08
xrd_Fe9Cr	Cr23C6	2.942535	2.644962	2.839178	2.552057	10.69035	0.117775	10.97259	4.842371	6.87E-08
xrd_Fe9Cr	Cr23C6	14.77377	0.686495	15.714	0.730185	10.30413	0.013493	35.65185	2.696594	6.87E-08
xrd_Fe9Cr	Cr23C6	39.51277	20.41495	36.65866	18.94032	10.99453	0.203605	8.831887	3.501584	6.87E-08
xrd_Fe9Cr	Cr23C6	5.565053	0.709089	5.702773	0.726637	10.47078	0.035511	9.800203	1.055195	6.87E-08
xrd_Fe9Cr	Cr23C6	1.028855	0.043008	1.02611	0.042894	10.57131	0.000926	1125.938	185.4732	6.87E-08
xrd_Fe9Cr	Cr23C6	1.186574	0.044311	1.183101	0.044181	10.57307	0.001032	977.6549	96.43534	6.87E-08
xrd_Hchar	Cr23C6	3.55265	1.033094	3.360953	0.977349	10.76701	0.099547	14.47883	5.233013	6.87E-08
xrd_Hchar	Cr23C6	0.118403	0.777348	0.100328	0.658679	11.15992	0.199609	988.8042	14228.84	6.87E-08
xrd_Hchar	Cr23C6	4.571673	0.726518	4.627757	0.735431	10.51828	0.042247	10.13967	1.799624	6.87E-08

Fig 5.1.2 Cr23C6 phase

Title	Phase_Na	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell_Par(A	Cell_Par E	Size(Angst	Crystal Siz	Microstrai	Microstraii
xrd_C81b7	TaC	0.065707	0.004743	0.131503	0.009492	4.330315	0.001076	866.8947	5.908309	6E- 08	
xrd_C81b_	TaC	0.052997	0.003403	0.105858	0.006796	4.33368	0.000943	896.2904	54.53257	6E- 08	
xrd_C91b7	TaC	0.303914	0.028514	0.590567	0.055409	4.328291	0.001093	2881.938	721.4846	6E-08	
xrd_C91b_	TaC	0.045269	0.004157	0.091265	0.008381	4.333961	0.001479	676.3256	6.902868	6E- 08	
xrd_CNArd	TaC	0.035488	0.003736	0.071268	0.007502	4.324315	0.001742	643.889	89.84669	6E-08	
xrd_CNArd	TaC	0.036595	0.003669	0.073506	0.007369	4.323946	0.001676	713.5493	17.4006	6E-08	
xrd_CNArd	TaC	0.028959	0.003406	0.058114	0.006835	4.326204	0.001814	882.8383	118.9204	6E-08	
xrd_CNArd	TaC	0.018778	0.003346	0.037664	0.006712	4.329664	0.002559	1307.213	192.2153	6E- 08	
xrd_CNArd	TaC	0.019633	0.003206	0.03941	0.006435	4.324236	0.00232	1368.354	184.4101	6E- 08	
xrd_CNArd	TaC	0.020019	0.004022	0.040147	0.008066	4.327292	0.002934	1210.249	234.9728	6E- 08	
xrd_CNArd	TaC	0.017324	0.00363	0.034744	0.007281	4.328239	0.002869	1698.415	127.5394	6E-08	
xrd_Fe9Cr	TaC	1.64E-05	0.039939	3.46E-05	0.084171	4.322001	41.17613	811.8668	10913.24	6E- 08	
xrd_Fe9Cr	TaC	0.001755	0.004005	0.003464	0.007904	4.343197	0.030461	2990.514	643.1351	6E-08	
xrd_Fe9Cr	TaC	0.001226	0.002579	0.002518	0.005295	4.292996	0.021006	556.842	1446.661	6E-08	
xrd_Fe9Cr	TaC	0.01744	0.008927	0.034414	0.017615	4.331572	0.007736	1129.292	138.0708	6E-08	
xrd_Fe9Cr	TaC	0.046574	0.040342	0.097359	0.084333	4.331876	0.012223	1981.025	175.0983	6E-08	
xrd_Fe9Cr	TaC	0.00452	0.001576	0.007674	0.002676	4.570832	0.004932	5705.386	178.6832	6E-08	
xrd_Fe9Cr	TaC	0.008536	0.002199	0.02115	0.005449	4.0317	0.004917	495.8901	82.21453	6E-08	
xrd_Fe9Cr	TaC	0.003522	0.002664	0.006512	0.004925	4.44536	0.016676	494.6443	49.11882	6E-08	
xrd_Hchar	TaC	0.039117	0.006251	0.078151	0.012488	4.334841	0.001584	1904.621	1566.761	6E-08	
xrd_Hchar	TaC	0.027938	0.068944	0.055813	0.137732	4.331117	0.020496	2027.282	29073.26	6E- 08	
xrd_Hchar	TaC	0.000762	0.00163	0.001395	0.002985	4.459195	0.025831	2043.354	350.2063	6E- 08	
xrd_TDSD	TaC	0.044985	0.002817	0.089917	0.005631	4.331102	0.000755	2891.089	183.5705	6E-08	

Fig 5.1.3 TaC phase

2. Second sets of data

	Rwp(%)	Phase Nan'	Vni (%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par Fri	Size(Anast	Crystal Size	Microstrain	Microstrain
Title xrd K1276	. , ,	Iron-alpha	, ,	0.576829	39.94726	0.571167	2.87554		2748.954			5.6E- 05
		Iron-alpha		0.438878	27.69234	0.433065	2.87513	0.000121	2582.078	322.2231	0.001035	5.43E- 05
		Iron-alpha		0.286852	36.34222	0.28391	2.87583	0.000121	2192.691	16.54635	0.000954	3.2E- 05
xrd K1321		Iron- alpha		0.444862	33.59604	0.440191	2.875578	0.000113	1876.14	146.1836	0.001014	5.01E- 05
		Iron-alpha		0.585004	36.75243	0.578977	2.876322	0.000118	2609.626	300.2583	0.000907	6.12E- 05
xrd K1327		Iron-alpha		0.384612	37.79364	0.38062	2.876254	8.68E- 05	1670.802	84.41656	0.000873	4.02E- 05
		Iron- alpha		0.334835	33.7505	0.331367	2.874703	0.000114	732.4085	26.78488	0.001637	
xrd Kl1 01		Iron- alpha		0.379532	31.82601	0.375343	2.877776	9.97E- 05	1233.502	59.16574	0.000873	4.99E- 05
		Iron-alpha		0.433449	37.52909	0.428821	2.877554	0.000111	1263.584	62.01959	0.001074	4.54E- 05
		Iron- alpha		0.432765	33.7892	0.428081	2.876432	0.000113	1313.719	75.77752	0.001113	
		Iron-alpha		0.470268	38.6371	0.4654	2.876765	0.000118	1259.977	61.75798	0.000861	4.94E- 05
		Iron- alpha		0.386705	38.65251	0.382618	2.875861	9.85E- 05	1242.341	52.02436	0.001079	3.96E- 05
		Iron-alpha		0.347542	30.63171	0.343595	2.876894	0.000102	1023.61	38.44283	0.001119	4.9E- 05
		Iron-alpha		0.452559	38.85008	0.447819	2.875298	0.000104	1208.168	40.53526	0.000775	3.97E- 06
		Iron- alpha		0.456851	33.14444	0.451826	2.877385	0.000119	1152.356	62.7091	0.000924	5.59E- 05
xrd Kl1 53		Iron-alpha		0.334159	30.69747	0.330389	2.878623	9.38E- 05	912.7029	31.5572	0.000962	4.93E- 05
		Iron-alpha		0.386135	35.22643	0.381962	2.877769	9.74E- 05	809.7889	24.22515	0.000785	6.06E- 05
		Iron-alpha		0.441288	40.30201	0.436809	2.875492	9.97E- 05	1220.72	48.24007	0.000896	4.83E- 05
		Iron- alpha		0.324298	38.83957	0.320959	2.876509	8.18E- 05	1550.277	64.61289	0.00111	3.1E- 05
		Iron-alpha		0.39263	29.85482	0.388188	2.874627	0.000113	1158.081	62.25256	0.001124	5.15E- 05
		Iron-alpha		0.322549	32.39347	0.318975	2.875523	8.52E- 05	1023.615	35.93336	0.00098	4.2E- 05
		Iron-alpha		0.472514		0.467491	2.876247	0.000127	1249.92	69.81088	0.001111	5.08E-05
		Iron-alpha		0.447981	34.80669	0.443225	2.879247	0.000122	1012.811	42.38529	0.001228	5.67E-05
xrd Kl2 20	8.943566	Iron- alpha	34.26008	0.339908	33.88292	0.336166	2.8744	8.75E-05	1189.749	48.48904	0.001025	3.98E-05
xrd Kl2 26	15.16319	Iron- alpha	38.3273	0.608106	37.9333	0.601855	2.875226	0.000163	1339.628	97.20384	0.001324	6.35E-05
xrd Kl2 27	12.12177	Iron-alpha	32.41587	0.45989	32.06504	0.454912	2.875068	0.000131	850.2044	47.22788	0.001063	6.72E-05
xrd Kl2 40	12.82829	Iron- alpha	38.66371	0.502008	38.27875	0.49701	2.877452	0.00013	1102.131	55.53396	0.001076	5.56E-05
xrd Kl2 43	10.71713	Iron-alpha	40.06318	0.42772	39.64923	0.423301	2.875744	0.000109	1303.243	61.87257	0.001201	4.14E- 05
xrd Kl2 49	12.72862	Iron-alpha	36.03932	0.479519	35.65044	0.474345	2.876674	0.000136	1076.219	58.15288	0.001383	5.42E-05
xrd Kl2 60	11.24747	Iron-alpha	33.36809	0.407024	32.94718	0.401889	2.877343	0.000111	1144.476	54.41108	0.000972	5.14E-05
xrd Kl2 63	9.356222	Iron-alpha	40.28653	0.377044	39.85843	0.373037	2.876542	9.05E-05	1261.876	50.57353	0.001063	3.74E-05
xrd Kl2 68	10.41379	Iron-alpha	39.61754	0.406794	39.19965	0.402503	2.877892	0.000105	1241.173	54.78254	0.001186	4E- 05
xrd Kl2 70	10.45001	Iron- alpha	33.64114	0.389021	33.26698	0.384695	2.876542	0.000102	1275.06	62.48771	0.000926	4.96E-05
xrd Kl2 78	9.928652	Iron-alpha	32.17584	0.356375	31.80318	0.352247	2.878018	9.53E-05	1215.575	55.88695	0.000954	4.46E-05
xrd Kl2 81	11.221	Iron-alpha	36.82135	0.430327	36.43228	0.42578	2.876111	0.000102	1515.189	75.46086	0.00093	4.83E-05
xrd Kl2 85	11.40008	Iron-alpha	31.42986	0.287079	31.07116	0.283803	2.877142	0.000117	1000.998	44.68419	0.000937	4.73E-05
xrd Kl2 88	9.374949	Iron-alpha	30.04227	0.317542	29.69738	0.313897	2.877165	9.57E-05	989.8413	40.13268	0.001096	4.49E-05
xrd Kl2 92	8.629328	Iron-alpha	30.81696	0.308266	30.42093	0.304305	2.877007	8.81E-05	979.6197	34.38751	0.000991	4.39E-05
xrd Kl2 99	15.0625	Iron-alpha	22.75192	0.328604	22.42871	0.323936	2.874481	0.000172	850.2331	56.57789	0.000859	8.99E-05
xrd Kl3 13	13.27522	Iron-alpha	31.16047	0.454311	30.75832	0.448448	2.879063	0.000134	1091.012	45.5665	0.001037	3.8E-06

Fig 5.2.1 Iron-alpha phase

Title	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par En	Size(Angst	Crystal Size	Microstrair	Microstrain
xrd K1276		59.65669	0.709441	60.05274	` '	3.603103	0.000151	5444.286	928.4957	0.000892	4.1E- 05
xrd K1314	Iron	71.93598	0.721161	72.30766	0.724887	3.600184	0.00014	4897.593	648.596	0.000994	3.36E-05
xrd K1318	Iron	63.28126	0.576895	63.65778	0.580328	3.603759	0.000121	4806.512	541.9581	0.000931	3.07E-05
xrd K1321	Iron	66.04746	0.650255	66.40396	0.653764	3.603804	0.00013	4008.176	413.4784	0.000867	3.43E- 05
xrd K1322	Iron	62.86498	0.778431	63.24757	0.783169	3.604153	0.00016	6065.97	1047.057	0.000899	4.19E-05
xrd K1327	Iron	61.80991	0.419435	62.20636	0.422125	3.603582	0.000102	2989.93	172.4582	0.000796	2.87E-05
xrd K1330	Iron	65.89622	0.516539	66.2495	0.519308	3.602922	0.00012	2788.915	161.1038	0.000888	2.81E-05
xrd Kl1 01	Iron	67.81879	0.567006	68.17399	0.569975	3.606097	0.000118	2421.112	139.1873	0.000995	2.94E- 05
xrd Kl1 10	Iron	62.06582	0.5749	62.47091	0.578652	3.604714	0.000136	1965.623	109.9396	0.001092	3.43E- 05
xrd Kl1 13	Iron	65.84107	0.615943	66.2108	0.619402	3.60422	0.000135	2165.192	131.26	0.001031	3.38E- 05
xrd Kl1 18	Iron	60.95877	0.598479	61.3629	0.602447	3.604	0.000131	1789.62	11.28436	0.000885	2.76E-05
xrd Kl1 31	Iron	60.93465	0.495853	61.34749	0.499212	3.602432	0.00012	1977.897	98.86723	0.001152	2.96E-05
xrd Kl1 35	Iron	69.01639	0.552263	69.36829	0.555079	3.604768	0.000123	2345.034	139.2827	0.001152	2.83E-05
xrd Kl1 37	Iron	60.73871	0.570201	61.14992	0.574061	3.601847	0.000123	1842.108	91.91372	0.000862	3.55E-05
xrd Kl1 50	Iron	66.48689	0.508186	66.85555	0.511004	3.605284	0.000143	1885.65	112.515	0.000857	4.17E-05
xrd Kl1 53	Iron	68.95218	0.517545	69.30253	0.520175	3.607045	0.000111	2148.679	98.53722	0.001025	2.74E- 05
xrd Kl1 57	Iron	64.38868	0.511473	64.77358	0.51453	3.605482	0.000114	1795.935	77.58254	0.000983	2.94E- 05
xrd Kl1 70	Iron	59.28472	0.523226	59.69799	0.526874	3.602243	0.000119	1907.976	97.69534	0.000966	3.22E- 05
xrd Kl1 73	Iron	60.75645	0.379085	61.16044	0.381605	3.603726	0.000101	2164.935	81.86411	0.001137	2.25E- 05
xrd Kl1 77	Iron	69.80357	0.501829	70.14519	0.504285	3.602227	0.000131	2469.527	152.7107	0.001035	3.08E-05
xrd Kl2 00	Iron	67.24358	0.360234	67.60653	0.362178	3.60303	0.0001	2383.824	109.7145	0.001004	2.52E- 05
xrd Kl2 05	Iron	63.33435	0.667102	63.72413	0.671207	3.603579	0.000158	2601.763	219.4494	0.001253	3.68E- 05
xrd Kl2 07	Iron	64.81984	0.602067	65.19331	0.605536	3.607826	0.000139	2016.601	117.0027	0.001082	3.34E- 05
xrd Kl2 20	Iron	65.73993	0.307004	66.11708	0.308765	3.601305	0.000101	2111.693	95.06806	0.000983	2.7E- 05
xrd Kl2 26	Iron	61.6727	0.778632	62.0667	0.783606	3.602446	0.000188	2921.222	335.7387	0.001217	4.33E- 05
xrd Kl2 27	Iron	67.58413	0.445796	67.93496	0.44811	3.603019	0.000144	2290.358	142.0412	0.00107	3.35E- 05
xrd Kl2 40	Iron	61.33629	0.492249	61.72125	0.495339	3.605763	0.000153	2344.748	184.5926	0.001097	3.85E- 05
xrd Kl2 43	Iron	59.93682	0.52905	60.35077	0.532704	3.602414	0.000134	2153.246	128.2493	0.001221	3.18E- 05
xrd Kl2 49	Iron	63.96068	0.668817	64.34956	0.672883	3.604009	0.000159	2817.469	252.8648	0.001219	3.61E- 05
xrd Kl2 60	Iron	66.63191	0.589995	67.05283	0.593722	3.602348	0.000131	1887.73	94.29763	0.00101	3.34E- 05
xrd Kl2 63		59.71347	0.463923	60.14157	0.467249	3.602743	0.000107	1900.495	84.27186	0.000965	2.9E- 05
xrd Kl2 68	Iron	60.38246	0.525509	60.80035	0.529146	3.604826	0.000131	1934.852	104.6848	0.001227	3.2E- 05
xrd Kl2 70	Iron	66.35886	0.546873	66.73303	0.549956	3.603968	0.000118	2859.263	186.959	0.001033	2.88E- 05
xrd Kl2 78		67.82417	0.409061	68.19682	0.411309	3.605431	0.000114	2407.002	134.5816	0.001018	2.95E- 05
xrd Kl2 81	Iron	63.17865	0.581013	63.56772	0.584591	3.603483	0.000123	2287.662	139.183	0.000955	3.29E- 05
xrd Kl2 85	Iron	68.57014	0.564094	68.92884	0.567045	3.604853	0.000137	2542.072	126.8281	0.001043	2.79E-05
xrd Kl2 88	Iron	69.95773	0.444598	70.30262	0.446789	3.60516	0.000109			0.001048	2.45E- 05
xrd Kl2 92	Iron	69.18304	0.464231	69.57907	0.466888	3.602346				0.001062	2.4E- 05
xrd Kl2 99	Iron	77.24809	0.782298	77.57129	0.785571	3.599375	0.000182	2281.114	132.6717	0.001086	3.53E- 05
xrd Kl3 13	Iron	68.83953	0.609809	69.24168	0.613371	3.604714	0.000151	2589.011	169.3771	0.001034	3.32E- 05
xrd Kl3 26	Iron	66.38842	0.390061	66.75933	0.39224	3.602937	0.000116	1917.408	85.17968	0.000943	2.9E- 05

Fig 5.2.2 Iron phase

3. To get Lattice Parameter for Second sets of data

Title	Rwp(%)	Phase_Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell_Par(A	Cell_Par Er	Size(Angstr	Crystal Size	Microstrain	Microstrain
xrd_K12761	11.143988		69.61401	0.6778659	69.2628		2.874631		2514.594	-		3.435E-05
xrd_K13142	11.986854	BCC	69.52602	0.7613442	69.13137	0.7570226	2.8743012	0.0001076	2220.7036	19.27733	0.0009891	3.402E-05
xrd_K13183	8.774734	BCC	72.77929	0.5599425	72.455536	0.5574516	2.8749435	7.583E-05	2017.3043	90.73508	0.0009304	2.885E-05
xrd_K13214	9.307289	BCC	73.77394	0.7579325	73.4635	0.7547431	2.8747213	7.988E-05	1772.1056	97.293724	0.0009548	3.589E-05
xrd_K13225	10.069211	BCC	69.47966	0.7373053	69.128586	0.7335798	2.8753548	8.123E-05	2300.8413	151.9213	0.0007868	3.774E-05
xrd_K1327	8.69538	BCC	73.72105	0.6673985	73.39272	0.6644262	2.875415	7.361E-05	1588.2815	67.71397	0.0008326	3.511E-05
xrd_K13306	8.721075	BCC	79.62748	0.7792826	79.37016	0.7767643	2.87374	9.502E-05	727.04834	23.184378	0.0016301	4.277E-05
xrd_KI1_01	7.33962	BCC	37.461372	0.3303666	37.078926	0.3269938	2.876837	6.917E-05	1226.3944	39.15806	0.0008165	3.395E-05
xrd_KI1_1(6.849005	BCC	36.19168	0.2627581	35.793472	0.259867	2.8766115	6.483E-05	1249.9081	36.13872	0.0009894	2.718E-05
xrd_KI1_13	7.787527	BCC	45.597923	0.3746589	45.190544	0.3713117	2.8754687	7.838E-05	1292.8395	45.616577	0.0010315	3.137E-05
xrd_KI1_18	10.455277	BCC	43.89388	0.4795421	43.471966	0.4749327	2.8760138	0.0001033	1240.0431	54.69159	0.0009926	4.048E-05
xrd_KI1_31	6.886564	BCC	39.814	0.2572766	39.398563	0.254592	2.8748934	6.758E-05	1214.8218	25.271837	0.0009992	9.575E-06
xrd_KI1_35	7.295691	BCC	41.00322	0.3428123	40.603504	0.3394705	2.8757844	6.813E-05	1240.102	42.53436	0.0009926	2.906E-05
xrd_KI1_37	8.409289	BCC	43.918514	0.401481	43.493763	0.3975982	2.8742917	7.5E-05	1200.4276	39.99376	0.0007059	4.013E-05
xrd_KI1_50	7.058265	BCC	38.917187	0.3191302	38.52302	0.3158979	2.8765287	6.447E-05	1130.4673	33.74621	0.0008722	3.13E-05
xrd_KI1_53			39.27796		38.89075	0.3809295	2.8775234		1239.9788	50.211697	0.0009926	3.661E-05
xrd_KI1_57	7.3141623	BCC	51.566685	0.442673	51.146095	0.4390625	2.876914		827.4964	20.3111	0.0007146	4.531E-05
xrd_KI1_70	7.519621	BCC	50.63849	0.4102134	50.21	0.4067423	2.8746068	7.051E-05	1200.9703	36.103436	0.0008239	3.384E-05
xrd_KI1_73	5.888843	BCC	37.06512	0.2237022	36.668816	0.2213104	2.8756437	5.598E-05	1498.3519	42.319736	0.001045	2.17E-05
xrd_KI1_77	7.712143	BCC	36.962364	0.3472165	36.584267	0.3436647	2.8736563	7.424E-05	1145.8485	41.434296	0.0010551	3.43E-05
xrd_KI2_00	6.505446	BCC	44.44302	0.3406892	44.035316	0.3375638	2.874611	6.207E-05	1015.4089	27.14319	0.0009322	3.099E-05
xrd_KI2_05	7.359008	BCC	39.112026	0.2198243	38.711166	0.2175713	2.8753214	8.403E-05	1240.1652	47.17476	0.0009927	3.513E-05
xrd_KI2_07			39.990395	0.3875626	39.59796	0.3837593	2.878366		1049.6467	37.537086	0.0012236	3.585E-05
xrd_KI2_20	6.7214584	BCC	43.83992	0.344348	43.426468	0.3411005	2.8735163	6.519E-05	1177.6354	36.328533	0.0009825	3.028E-05
xrd_KI2_2€	8.735613	BCC	49.69297	0.4446573	49.272808	0.4408976	2.8743002	8.738E-05	1257.1443	50.22112	0.0011767	3.388E-05
xrd_KI2_27	9.432569	BCC	42.350792	0.5054528	41.957214	0.5007555	2.874115	0.0001005	893.1579	34.81681	0.0011312	4.9E-05
xrd_KI2_40	6.7813034	BCC	39.33283	0.2975316	38.94322	0.2945844	2.8765907	6.547E-05	1081.9366	28.54771	0.0009617	2.924E-05
xrd_KI2_43	7.0584135	BCC	39.84692	0.2850457	39.43361	0.282089	2.8747613		1280.1307	38.540245	0.0011246	
xrd_KI2_49	8.364666	BCC	47.467377	0.4007561	47.044403	0.397185	2.8757513		1048.8154	35.686394	0.0012748	
xrd_KI2_60	8.30697		33.502544	0.2898662	33.079918	0.2862097	2.8764505		1117.3536	36.273262	0.0008824	
xrd_KI2_63	6.9223804	BCC	41.821373	0.3054179	41.387096	0.3022465	2.8757076		1228.4824	35.872986	0.0010034	2.801E-05
xrd_KI2_68			41.896015		41.470276	0.2523307	2.8769379	6.77E-05	1224.844	30.423737	0.0011152	
xrd_KI2_70			39.483624		39.083958	0.3144857	2.8754756		1253.8167	38.534256	0.0008507	
xrd_KI2_78			44.107414		43.684498	0.358216	2.8771856		1164.9799	34.815945	0.0008903	3.126E-05
xrd_KI2_81			39.112026		38.711166	0.2175713	2.8753214		1240.1652	47.17476	0.0009927	3.513E-05
xrd_KI2_85			40.905624	0.3007153	40.502148	0.2977492	2.876266		1073.2313	27.873861	0.0010104	
xrd_KI2_88			38.830914		38.446793	0.4141229	2.876126		1239.9946	55.30943	0.0009925	
xrd_KI2_92			40.302635		39.85442	0.3360781	2.8761241	7.41E-05	1040.8859	31.282272	0.0010089	
xrd_KI2_99			33.794308	0.705146	33.38095	0.696521	2.8735964		873.3327	57.52971	0.0009318	
xrd_KI3_13	7.771137	BCC	33.83067	0.3183189	33.41146	0.3143745	2.8780603	7.329E-05	1083.0637	35.606403	0.0008984	3.722E-05

Fig 5.3.3 BCC phase

Title	Phase	Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell_Par(A	Cell_Par Er	Size(Angstr	Crystal Size	Microstrain	Microstrain
xrd_K1276			30.38598	0.2637248	30.7372	0.2667731	3.6018825		4972.4355	-	0.0008461	2.256E-05
xrd_K1314	FCC		30.47398	0.2715758	30.868631	0.2750928	3.5990577	0.0001278	3547.0781	256.73862	0.0009219	2.883E-05
xrd_K1318	FCC		27.22071	0.1818873	27.544466	0.1840506	3.6025963	9.221E-05	3454.2617	123.24491	0.0008527	1.863E-05
xrd_K13214	FCC		26.226063	0.1895877	26.536503	0.1918318	3.602675	9.651E-05	3801.0828	272.1958	0.0008453	2.574E-05
xrd_K1322	FCC		30.520338	0.2356434	30.871416	0.238354	3.602846	0.0001023	5383.0415	275.40137	0.0008424	2.034E-05
xrd_K1327	FCC		26.278957	0.1820418	26.607277	0.1843162	3.6024692	8.893E-05	2906.2598	156.44452	0.000787	2.588E-05
xrd_K1330	FCC		20.372519	0.1412703	20.629837	0.1430546	3.6016808	0.0001029	2602.3247	116.7559	0.0008452	2.096E-05
xrd_KI1_0	FCC		62.53863	0.2952606	62.921074	0.2970662	3.6048772	8.384E-05	2379.0996	91.9107	0.0009717	2.068E-05
xrd_KI1_10	FCC		63.80832	0.3174101	64.20653	0.319391	3.6034813	8.299E-05	1971.546	55.251762	0.0010723	1.908E-05
xrd_KI1_13	FCC		54.40208	0.3360538	54.809456	0.3385703	3.603071	0.0001002	2493.4175	111.66615	0.0011803	2.172E-05
xrd_KI1_18	FCC		56.10612	0.4913999	56.528034	0.4950952	3.6028943	0.000141	2438.9856	154.99033	0.0012111	3.104E-05
xrd_KI1_3	FCC		60.186	0.3137762	60.601437	0.315942	3.6012294	8.513E-05	2331.6104	88.31836	0.0012084	1.898E-05
xrd_KI1_3	FCC		58.99678	0.3302099	59.396496	0.3324471	3.6033297	8.877E-05	2438.7986	97.56483	0.001211	1.945E-05
xrd_KI1_3	FCC		56.081486	0.3904015	56.506237	0.3933584	3.600601	9.149E-05	1802.9827	65.07248	0.0008121	2.717E-05
xrd_KI1_50	FCC		61.082817	0.350207	61.47698	0.3524669	3.604186	8.145E-05	1809.2928	54.345764	0.0008653	2.252E-05
xrd_KI1_53	FCC		60.72204	0.3892299	61.10925	0.3917119	3.6058512	0.0001067	2438.065	112.30045	0.0012107	2.234E-05
xrd_KI1_5	FCC		48.433315	0.2996886	48.853905	0.3022911	3.6043997	8.887E-05	1780.7772	59.150112	0.0009819	2.293E-05
xrd_KI1_70	FCC		49.36151	0.3157668	49.79	0.3185079	3.6011431	8.537E-05	2223.0176	95.53301	0.0010328	2.203E-05
xrd_KI1_73	FCC		62.93488	0.2756879	63.331184	0.2774239	3.6025789	7.141E-05	2138.4119	53.905113	0.0011386	1.558E-05
xrd_KI1_7	FCC		63.037636	0.3155385	63.415733	0.3174311	3.6010072	8.979E-05	2430.6914	98.00538	0.0010163	2.104E-05
xrd_KI2_00	FCC		55.556976	0.2932294	55.964684	0.2953812	3.6018846	7.44E-05	2258.272	72.79389	0.0009804	1.878E-05
xrd_KI2_0	FCC		60.887974	0.2786293	61.288834	0.2804636	3.602371	0.0001104	2438.9824	131.50914	0.0012111	2.567E-05
xrd_KI2_0	FCC		60.009605	0.2823741	60.40204	0.2842207	3.6067672	9.859E-05	2318.5637	108.36195	0.0011318	2.306E-05
xrd_KI2_20	FCC		56.16008	0.3128905	56.573532	0.315194	3.6001732	7.819E-05	2062.828	68.1749	0.0009775	1.984E-05
xrd_KI2_2	FCC		50.30703	0.334236	50.727192	0.3370275	3.6011581	0.0001094	2562.6333	137.01721	0.0011391	2.488E-05
xrd_KI2_2	FCC		57.64921	0.2891793	58.042786	0.2911535	3.6017277	0.0001142	2160.5337	104.57638	0.0010302	2.675E-05
xrd_KI2_40	FCC		60.667175	0.3409761	61.05678	0.3431658	3.604571	8.271E-05	2206.006	81.870544	0.0010741	2.014E-05
xrd_KI2_43	FCC		60.15308	0.3507154	60.56639	0.3531252	3.6011767	8.827E-05	2137.5732	83.22894	0.0012031	2.112E-05
xrd_KI2_49	FCC		52.532623	0.3416103	52.955597	0.3443608	3.602782	0.0001062	2458.0518	114.99891	0.0011585	2.295E-05
xrd_KI2_60	FCC		66.49746	0.4133114	66.92008	0.4159381	3.6011841	9.833E-05	1796.9614	60.14904	0.000976	2.436E-05
xrd_KI2_63	FCC		58.17863	0.3366149	58.612904	0.3391275	3.6016405	8.042E-05	1821.8783	56.76892	0.0009411	2.178E-05
xrd_KI2_68	FCC		58.103985	0.2915518	58.529724	0.2936881	3.6036148	8.68E-05	1906.5969	53.93831	0.0011952	1.906E-05
xrd_KI2_70	FCC		60.516376	0.3221389	60.916042	0.3242664	3.602693	8.332E-05	2789.1143	118.18493	0.0010093	1.925E-05
xrd_KI2_78	FCC		55.892586	0.2480889	56.315502	0.2499661	3.6043355	8.068E-05	2320.367	85.862465	0.001014	1.963E-05
xrd_KI2_8	FCC		60.887974	0.2786293	61.288834	0.2804636	3.602371	0.0001104	2438.9824	131.50914	0.0012111	2.567E-05
xrd_KI2_8			59.094376	0.2947238	59.497852	0.2967361	3.6037307	7.78E-05	2512.4968	86.61421	0.0010422	1.751E-05
xrd_KI2_88	FCC		61.16909	0.4240263	61.553207	0.426689	3.6041749	0.0001157	2438.7644	119.20583	0.001211	2.4E-05
xrd_KI2_92	FCC		59.697365	0.3148094	60.14558	0.3171731	3.6012156	8.691E-05	2373.095	89.10896	0.0010806	1.93E-05
xrd_KI2_99	FCC		66.20569	0.6365262	66.61905	0.6405003	3.5982096	0.0001726	2216.1206	119.39904	0.0010657	3.336E-05
xrd_KI3_13	FCC		66.169334	0.3941203	66.58854	0.3966172	3.6034951	8.949E-05	2456.6904	103.01489	0.001018	2.136E-05

Fig 5.3.4 FCC phase

4. Third set of data

Title	Rwp(%)	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(A	Cell Par Er	Size(Angst	Crystal Size	Microstrair	Microstrair	Phase Nar	Vol.(%)	error(%)	Wt.(%	error(%)	Cell Par(Ar	Cell Par Er	Size(Angst	Crystal Size	Microstrair	Microstrain	Error
xrd K127	6 16.3374	B Iron- alpha	40.83619	0.431433	40.43874	0.427234	2.876861	7.33E-05	2734.396	318.7264	0.000849	6.4E-05	Iron	59.16381	0.508235	59.56126	0.51165	3.604766	7.07E-05	5391.255	1006.548	0.000893	4.63E-05	
xrd K13°	4: 16.2785	3 Iron- alpha	30.74673	0.401202	30.35253	0.396059	2.876607	9.5E-05	2434.414	351.7281	0.000989	8.17E-05	Iron	69.25327	0.564103	69.64748	0.567314	3.601921	6.89E-05	4775.879	761.5571	0.000979	4.3E-05	
xrd K13	8 14.19612	2 Iron- alpha	38.89289	0.366705	38.50609	0.363058	2.877257	6.95E-05	2147.395	188.3181	0.00091	6.05E-05	Iron	61.10712	0.439258	61.49391	0.442038	3.605468	6.18E-05	5083.739	125.7208	0.000945	2.35E-05	
xrd K132	15.9975	9 Iron- alpha	35.93966	0.40848	35.57135	0.404294	2.877181	8.64E-05	1812.176	167.17	0.000911	7.81E-05	Iron	64.06033	0.515304	64.42866	0.518267	3.605698	6.91E-05	4110.045	121.5202	0.000872	2.59E-05	

Fig 5.4.1 Iron-alpha phase

5. ATR2_RR

T.1.	D (C.)	D	14-140		144 (0)		0.11.5. //	0.11.5	~-·/r	o · ~	
	Rwp(%)	Phase Na				error(%) 46,9456			Size(Angst		
LaB6 C R10ATR2 a	88.43797		34.21388 8.498858	33.97007 2.708637	47.28253 7.217593	46.9456 2.300291	3.60091 3.830606	0.010923 0.031109	604.8585 6.344948	1679.514 1.024619	1.52E- 08 1.52E- 08
R10unirr a			0.430038	0.039872	0.118572	0.039951	3.597692	0.006525	305.0967	20.69824	1.52E- 08
R11ATR2 a			0.720142	0.072472	0.724266	0.072887	3.595807	0.001881	176.7421	27.71878	1.52E- 08
R11unirr a			0.186312	0.035408	0.186853	0.035511	3.60292	0.002341	349.1002	129.0789	1.52E- 08
R13ATR2 a			0.704143	0.080814	0.707592	0.081209	3.595958	0.00213	177.8393	31.97101	1.52E- 08
R13unirr a	10.4106		0.71244	0.066906	0.715678	0.06721	3.597181	0.001599	208.7259	32.17065	1.52E- 08
R14ATR2 a	9.637147	Iron FCC	7.751358	2.823014	6.442057	2.346171	3.869752	0.033613	6.541453	1.286434	1.52E- 08
R14unirr a	9.094402	Iron FCC	0.133023	0.042579	0.132863	0.042528	3.607673	0.003874	352.9253	217.9313	1.52E- 08
R15ATR2 a			0.198721	0.06265	0.199074	0.062762	3.600695	0.005901	169.3152	79.91118	1.52E- 08
R15unirr a			0.158016	0.034275	0.158133	0.0343	3.604031	0.00265	350.7553	147.6084	1.52E- 08
R16ATR2 a			8.954893	2.072681	7.657438	1.772375	3.822886	0.02236	6.46605	0.801588	1.52E- 08
R16unirr a			2.856254	0.533555	2.676489	0.499974	3.686464	0.017667	13.28279	2.24875	1.52E- 08
R17ATR2 a			8.586639	2.246729	7.332339	1.918537	3.818952	0.025714	6.343308	0.877282	1.52E- 08
R17unirr a			0.332763	0.052279	0.333784	0.052439	3.599256	0.002597	212.164	54.61713	1.52E- 08
R18ATR2 a			1.000027 0.63014	0.113555	1.001785 0.630159	0.113755	3.602854 3.603398	0.004677 0.002416	61.03757 122.9532	8.525903 17.29245	1.52E- 08 1.52E- 08
R1ATR2 av			5.880473	2.841503	5.026995	2.429094	3.8147	0.002416	6.751036	1.813922	1.52E- 08
R1unirr av			5.624554	2.917412	4.850936	2.516142	3.802368	0.049128	6.961333	2.220222	1.52E- 08
R21ATR2 a			5.7734	1.893622	5.017088	1.645558	3.794543	0.031355	7.062332	1.342436	1.52E- 08
R21unirr a			0.2766	2.555838	0.27433	2.534864	3.617726	0.968025	6.259345	34.37314	1.52E- 08
R22ATR2 a			7.80206	2.6054	6.593522	2.201824	3.838786	0.03255	6.26212	1.094576	1.52E- 08
R22unirr a			0.0832	0.0344	0.082673	0.034182	3.612249	0.004995	360.9478	286.0501	1.52E- 08
R24ATR2 a	11.21678	Iron FCC	7.629416	3.139259	6.515906	2.681086	3.820705	0.041076	6.312927	1.373063	1.52E- 08
R24unirr a			2.228632	0.410024	2.110856	0.388356	3.67042	0.017652	14.21302	2.451721	1.52E- 08
R25ATR2 a			0.674727	0.067156	0.681847	0.067865	3.59741	0.001395	293.6075	53.23449	1.52E- 08
R25unirr a			0.771385	0.049415	0.777631	0.049815	3.596989	0.001183	308.8896	13.98309	1.52E- 08
R26ATR2 a			7.551526	2.018168	6.433507	1.719374	3.829349	0.026122	6.349771	0.894373	1.52E- 08
R26unirr a			7.320622	2.059379	6.140549	1.72741	3.842142	0.027474	6.235894	0.838228	1.52E- 08
R27ATR2 a			6.716641 3.505618	2.336315	5.822081 3.187917	2.025152	3.808502	0.033577	6.698806	1.28731	1.52E- 08
R28ATR2 a		Iron FCC	7.63859	0.959674 2.88214	6.458224	0.872703 2.436772	3.732061 3.83216	0.024364 0.036873	9.871014 6.342997	2.031575 1.256272	1.52E- 08 1.52E- 08
R28unirr a			1.957765	0.464682	1.874247	0.444859	3.656799	0.036673	17.31318	4.577708	1.52E- 08
R29ATR2 a			0.361657	0.065439	0.362429	0.065579	3.603467	0.003252	187.3963	52.76832	1.52E- 08
R29unirr a	12.2458		0.56547	0.064117	0.567726	0.064373	3.602377	0.001608	293.0572	60.37026	1.52E- 08
R2ATR2 av			0.351922	1.181487	0.282466	0.948307	3.882593	0.290428	12.6106	33.31802	1.52E- 08
R2unirr av			3.124015	1.277471	2.847474	1.164388	3.724433	0.040585	10.67139	3.919099	1.52E- 08
R30ATR2 a			5.59863	2.225233	4.819933	1.915732	3.809122	0.037729	6.97639	1.581051	1.52E- 08
R30unirr a	8.136072	Iron FCC	0.117413	0.036953	0.116536	0.036677	3.614395	0.003719	369.6944	228.5607	1.52E- 08
R31ATR2 a	8.173783	Iron FCC	0.093106	0.039599	0.092611	0.039388	3.610278	0.005435	315.6006	245.6965	1.52E- 08
R31unirr a		Iron FCC	0.101485	0.031287	0.100877	0.031099	3.612787	0.003628	370.4464	224.4151	1.52E- 08
R32ATR2 a			2.365843	0.282196	2.329609	0.277874	3.624564	0.011601	19.60922	2.644049	1.52E- 08
R32unirr a			0.552122	0.046033	0.554487	0.04623	3.598132	0.00122	266.6326	39.46589	1.52E- 08
R33ATR2 a			7.035912	2.036207	6.024995	1.743646	3.820796	0.02779	6.636388	1.056186	1.52E- 08
R33unirr a			5.234768	1.453627	4.559421	1.266091	3.78874	0.027365	7.544386	1.403221	1.52E- 08
R34ATR2 a R34unirr a			6.745786 6.323658	2.30298 2.725094	5.714679 5.34295	1.950965 2.302472	3.831552 3.8299	0.032878 0.040894	6.607324 6.797312	1.228162 1.62904	1.52E- 08 1.52E- 08
R35ATR2 a			0.32824	0.828613	0.256624	0.647824	3.915195	0.225431	12.99297	26.24775	1.52E- 08
R35unirr a			0.073508	0.054896	0.072861	0.054413	3.613777	0.008755	371.1879	543.4661	1.52E- 08
R36ATR2 a			5.265914	2.225821	4.592939	1.941365	3.79433	0.039593	7.350218	1.844484	1.52E- 08
R36unirr a			4.31931	1.631965	3.853903	1.45612	3.758603	0.036911	8.357078	2.673614	1.52E- 08
R37ATR2 a		Iron FCC	7.040986	3.487178	5.887421	2.915854	3.850449	0.048751	6.326866	1.640439	1.52E- 08
R37unirr a	14.37885	Iron FCC	0.430784	0.098741	0.430798	0.098745	3.601943	0.00435	172.0815	60.07499	1.52E- 08
R38ATR2 a	11.93981	Iron FCC	3.664233	1.322084	3.317456	1.196964	3.739579	0.032738	9.272917	2.579728	1.52E- 08
R38unrr av			1.642571	0.221641	1.617626	0.218275	3.627139	0.011002	26.61985	3.815252	1.52E- 08
R39ATR2 a			0.34499	0.787155	0.28145	0.642178	3.861658	0.196015	13.13991	24.0707	1.52E- 08
R39unirr a			0.080869	0.050647	0.080416	0.050363	3.612359	0.007441	363.159	442.0684	1.52E- 08
R40ATR2 a			6.718622	4.466842	5.674013	3.772339	3.837892	0.064325	6.520647	2.330392	1.52E- 08
R40unirr a			0.07794	0.038808	0.077368	0.038523	3.614973	0.006178	338.8531	318.1435	1.52E- 08
R41ATR2 a			6.554479	2.335168	5.560363	1.980994	3.829624	0.034199	6.690342	1.31353	1.52E- 08
R41unirr a R43ATR2 a			0.07281 6.137697	0.043227 1.907529	0.072261 5.232987	0.042901 1.626355	3.614699 3.822368	0.006997	371.4616 6.788152	433.596 1.175028	1.52E- 08 1.52E- 08
R43unirr a			0.077599	0.058727	0.07711	0.058357	3.613227	0.029661	365.6827	539.096	1.52E- 08
R44ATR2 a			7.018989	2.099906	5.931604	1.774588	3.838188	0.000374	6.361803	1.005909	1.52E- 08
R44unirr a			0.088256	0.04345	0.087749	0.0432	3.612402	0.006117	334.6056	308.1441	1.52E- 08
R47ATR2 a			7.097176	2.561488	6.049073	2.18321	3.824777	0.036342	6.478157	1.435228	1.52E- 08
R47unirr a			6.955436	2.697753	5.846806	2.267756	3.844189	0.037595	6.385311	1.305758	1.52E- 08
R48ATR2 a	7.488773	Iron FCC	6.819599	1.969675	5.841639	1.687215	3.815785	0.027019	6.761907	1.086942	1.52E- 08
R48unirr a			6.581237	1.912943	5.517272	1.603684	3.840838	0.027366	6.571311	1.036491	1.52E- 08
R49ATR2 a			6.44873	1.90877	5.559559	1.645583	3.804265	0.028472	6.828142	1.135384	1.52E- 08
R49unirr a			0.097207	0.041586	0.096994	0.041494	3.60815	0.005445	319.4862	251.3451	1.52E- 08
R4ATR2 av			0.33363	1.523678	0.270345	1.234661	3.86716	0.368228	14.94852	57.57951	1.52E- 08
R4unirr av			1.758749	0.303948	1.666639	0.288029	3.669233	0.015457	25.57459	4.694839	1.52E- 08
R50ATR2 a			0.116391	0.036171	0.115829	0.035996	3.612296	0.003781	349.1233	207.688	1.52E- 08
R50unirr a			0.12173	0.041769	0.121174	0.041579	3.611307	0.004059	368.3679	248.2463	1.52E- 08
R5ATR2 av			5.580596	2.194019 1.15518	4.841369 2.555087	1.903391	3.799278 3.709478	0.037729	7.036724 11.68865	1.595909	1.52E- 08
R5unirr av R6ATR2 av			2.77313 6.294044	3.305392	5.424549	2.848767	3.709478	0.037928 0.051439		4.104936 2.210762	1.52E- 08 1.52E- 08
R6unirr av			1.339824	0.133505	1.269031	0.126451	3.671081	0.051439	6.706383 39.75198		1.52E- 08 1.52E- 08
R8ATR2 av			3.770746	1.37991	3.409678	1.247777	3.739453	0.003888	9.298286	2.461952	1.52E- 08
R8unirr av			3.14519	1.441321	2.856842	1.309182	3.732494	0.032011	10.36257	3.634617	1.52E- 08
R9ATR2 av			3.869689	1.180461	3.513637	1.071846	3.734911	0.026875	9.586333	2.165543	1.52E- 08
R9unirr av			2.548295	0.644028	2.361157	0.596733	3.701699	0.023045	12.49954	2.702751	1.52E- 08
			6.037634	2.608009	5.200803	2.246532	3.809984	0.041089	6.969461	1.718548	1.52E- 08
RHAATR2							3.707829	0.032268			
		Iron FCC	1.572645	0.545163	1.445704	0.501158	3.101029	0.032200	15.8798	5.117399	1.52E- 08
RHAATR2 RHAunirr & RX10ATR2	12.94133		1.572645 6.768796	0.545163 2.862036	5.715004	2.416463	3.832696	0.032208	6.767135		1.52E- 08 1.52E- 08
RHAunirr a	12.94133 11.45402	Iron FCC								1.581862	

Fig 5.5.1 IronFCC phase

Title	Phase Nar	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par Eri	Size(Angst	Crystal Size	Microstrair	Microstrair
LaB6 C	IronBCC	58.68772	2.63E+08	2.312381		9.355441	32523578	5570.87	3.77E+10	3.918535	5629412
R10ATR2 a		88.54358		89.51473		2.868725	1.52E- 05	5194.108	231.3496	0.001105	1.3E- 05
			0.183204								
R10unirr a	IronBCC	98.39523	0.262466	97.17874	0.259221	2.869242	2.03E- 05	5803.411	374.8893	0.001313	1.58E- 05
R11ATR2 a	IronBCC	97.64824	0.235444	96.68916	0.233131	2.868855	1.78E- 05	4616.081	211.6754	0.001115	1.54E- 05
R11unirr a	IronBCC	98.00918	0.168156	97.29281	0.166927	2.869411	1.26E- 05	6036.722	239.3337	0.001135	1.05E- 05
R13ATR2 a		97.88922	0.255663	96.86658		2.868791	1.88E- 05	5316.85	300.5214	0.001047	1.72E- 05
R13unirr a	IronBCC	98.11274	0.237057	97.16632	0.23477	2.868657	1.78E- 05	5320.956	280.8567	0.001137	1.53E- 05
R14ATR2 a	IronBCC	87.92657	0.194974	89.61534	0.198719	2.869468	1.62E- 05	4971.512	214.3426	0.001058	1.43E- 05
R14unirr a	IronBCC.	97.6826	0.203667	96.92361	0.202084	2.869718	1.53E- 05	6037.419	302.2067	0.001147	1.29E- 05
R15ATR2 a		97.49038	0.207842	96.50855		2.86923	1.55E- 05	5653.921	279.5877	0.001108	1.36E- 05
R15unirr a	IronBCC	97.89443	0.163529	97.06725	0.162147	2.869329	1.24E- 05	6017.185	245.6277	0.001202	1.02E- 05
R16ATR2 a	IronBCC	88.42049	0.149741	89.42058	0.151434	2.8692	1.23E- 05	5088.282	169.8144	0.001055	1.09E- 05
R16unirr a		96.35409	0.221609	95.75464	0.22023	2.869192	1.67E- 05	6002.407	318.8999	0.001074	1.45E- 05
								4806.267			
R17ATR2 a		89.7506	0.15871	90.38426		2.868944	1.33E- 05		111.1907	0.001145	1.39E- 06
R17unirr a	IronBCC	98.2533	0.197304	97.27673	0.195343	2.869186	1.49E- 05	5872.872	272.8606	0.001166	1.22E- 05
R18ATR2 a	IronBCC	96.65999	0.200526	95.87646	0.198901	2.869036	1.53E- 05	4867.581	206.2225	0.001144	1.32E- 05
R18unirr a	IronBCC	97.73065	0.173761	96.8056		2.869129	1.3E- 05	5856.873	247.0386	0.001137	1.11E- 05
R1ATR2 av		91.40588	0.238772	91.87576	0.239999	2.868623	1.87E- 05	7257.553	512.7523	0.001049	1.63E- 05
R1unirr av	IronBCC	91.54739	0.264396	91.96815	0.265611	2.868311	2.06E- 05	6836.816	505.1675	0.001042	1.81E- 05
R21ATR2 a	IronBCC	91.2608	0.17845	91.752	0.17941	2.86888	1.4E- 05	8553.428	529.0798	0.001073	1.19E- 05
R21unirr a				96.21923		2.868548	2E- 05				1.69E- 05
		96.72758						9510.901	968.155	0.001104	
R22ATR2 a	IronBCC	88.6389	0.182591	89.70084	0.184779	2.869211	1.51E- 05	5670.378	260.9902	0.001131	1.27E- 05
R22unirr a	IronBCC	97.14577	0.168112	96.33173	0.166703	2.869019	1.28E- 05	6055.626	253.7834	0.001167	1.06E- 05
R24ATR2 a		89.48486	0.230942	90.28836		2.868583	1.91E- 05	5338.128	289.1807	0.001148	1.58E- 05
R24unirr a		96.53127	0.19804	95.74291	0.196423	2.868795	1.56E- 05	5429.937	250.4979	0.001274	1.22E- 05
R25ATR2 a	IronBCC	96.84116	0.28193	96.49706		2.868676	2.08E- 05	8257.243	720.4592	0.001077	1.8E- 05
R25unirr a	IronBCC	97.75409	0.284932	97.13936	0.28314	2.868644	2.09E- 05	8298.758	768.7808	0.001112	1.76E- 05
R26ATR2 a		88.4659	0.141426	89.59506		2.869128	1.18E- 05	6908.252	299.6855	0.001198	9.46E- 06
R26unirr a		90.14055	0.132607	90.77798		2.869215	1.1E- 05	6974.574	267.5828	0.001218	8.7E- 06
R27ATR2 a	IronBCC	90.46821	0.197628	91.73743	0.200401	2.868816	1.58E- 05	8680.271	601.2098	0.001119	1.29E- 05
R27unirr a	IronBCC	94.94804	0.203054	95.02438		2.869039	1.54E- 05	10722.79	899.2548	0.001121	1.25E- 05
R28ATR2 a		89.75315	0.199075	90.4447	0.200609	2.868726	1.67E- 05	5287.724	252.4327	0.001121	1.33E- 05
R28unirr a	IronBCC	96.61922	0.325795	95.81043		2.868557	2.49E- 05	5088.01	352.7035	0.001139	2.12E- 05
R29ATR2 a	IronBCC	98.4734	0.23422	97.80418	0.232628	2.868621	1.76E- 05	7128.697	324.5561	0.001163	1.94E- 06
R29unirr a		98.27934	0.27492	97.7157		2.868499	2.03E-05	6239.492	420.2184	0.001081	1.75E- 05
R2ATR2 av		97.47763	0.299278	97.01313		2.868424	2.14E- 05	7234.771	583.0788	0.00092	2.04E- 05
R2unirr av	IronBCC	94.9433	0.365923	94.75725	0.365206	2.868025	2.63E- 05	11670.95	1632.486	0.000879	2.55E- 05
R30ATR2 a	IronBCC	91.47242	0.202528	92.13045	0.203985	2.869218	1.59E- 05	6696.399	367.2553	0.00104	1.39E- 05
R30unirr a	IronBCC	97.7808	0.17986	97.02989		2.868944	1.35E- 05	6043.21	176.9246	0.001107	7.3E- 07
R31ATR2 a		97.81733	0.183223	96.90784	0.18152	2.869305	1.35E- 05	6024.992	265.5285	0.001057	1.2E- 05
R31unirr a	IronBCC	97.60022	0.152644	96.84733	0.151466	2.86913	1.16E- 05	6037.221	221.7726	0.001187	9.41E- 06
R32ATR2 a	IronBCC	97.16959	0.236207	96.44213	0.234438	2.869235	1.77E- 05	4491.124	226.3666	0.001048	1.58E- 05
R32unirr a		98.23395	0.184387	97.28169	0.1826	2.869211	1.39E- 05	5437.335	226.8971	0.001153	1.17E- 05
R33ATR2 a		89.53834	0.159493	90.53533		2.869148	1.3E- 05	7975.678	292.7699	0.001102	9.86E- 07
R33unirr a	IronBCC	92.26097	0.171418	92.5349	0.171927	2.868972	1.35E- 05	8724.844	504.0449	0.00114	1.09E- 05
R34ATR2 a	IronBCC	90.36605	0.179126	91.17266	0.180724	2.869005	1.44E- 05	7080.34	371.3357	0.001111	1.2E- 05
R34unirr a	IronBCC.	91.55435	0.219806	92.01894	0.220922	2.868901	1.74E- 05	8121.068	588.7581	0.001118	1.44E- 05
R35ATR2 a		96.52837	0.221244	95.93128		2.868645	1.65E- 05	6541.433	381.4973	0.001085	1.43E- 05
R35unirr a	IronBCC	97.48745	0.264664	96.60468	0.262267	2.868495	1.97E- 05	6047.829	259.2358	0.001042	1.86E- 06
R36ATR2 a	IronBCC	92.29153	0.228503	93.13386	0.230588	2.868681	1.77E- 05	8430.217	634.6747	0.001052	1.51E- 05
R36unirr a		93.96584	0.273218	94.30341	0.2742	2.868531	2.06E-05	8920.001	803.1874	0.001041	1.78E- 05
R37ATR2 a		89.5119		90.53068		2.868315	2.05E- 05	5709.546	352.4124	0.001131	1.71E- 05
R37unirr a	IronBCC	97.54585	0.326585	96.60378	0.323431	2.868158	2.44E- 05	5038.658	340.4809	0.001071	2.17E- 05
R38ATR2 a	IronBCC	94.73324	0.255808	94.96446	0.256433	2.869022	1.91E- 05	7347.177	523.1962	0.000993	1.7E- 05
R38unrr av		97.51719	0.244886	97.0482		2.868821	1.79E- 05	7668.287	559.0587	0.001058	1.56E- 05
R39ATR2 a		96.75398	0.213435	96.27011	0.212368	2.868719	1.58E- 05	6608.349	369.9258	0.001049	1.39E- 05
R39unirr a	ironBCC	97.68975	0.249485	96.99548	0.247712	2.868585	1.85E- 05	6066.27	359.1751	0.001067	1.61E- 05
R40ATR2 a	IronBCC	90.16435	0.341716	91.15739	0.345479	2.868801	2.73E- 05	6223.01	546.1966	0.001041	2.39E- 05
R40unirr a		97.64358	0.186116	96.96127	0.184815	2.868864	1.4E- 05	6083.671	263.482	0.001113	1.17E- 05
R41ATR2		90.51038	0.188627	91.33019		2.868771	1.5E- 05	6388.419	321.1722	0.001115	1.3E- 05
R41unirr a		97.74139	0.210939	96.98885		2.869143	1.56E- 05	6049.805	285.5108	0.001031	1.36E- 05
R43ATR2 a	IronBCC	90.80913	0.158355	91.55368	0.159654	2.868942	1.28E- 05	6582.398	286.2918	0.001115	1.06E- 05
R43unirr a	IronBCC	97.52561	0.28316	96.82108	0.281114	2.86871	2.12E- 05	6064.2	281.579	0.001063	3.26E-06
R44ATR2 a		89.7699	0.154226	90.82486		2.868957	1.26E- 05	6866.97	304.9299	0.001128	1.03E- 05
R44unirr a		97.71106	0.206399	96.98291	0.204861	2.868804	1.55E- 05	6093.774	305.4452	0.001125	1.31E- 05
R47ATR2 a	IronBCC	89.32002	0.201786	90.22142	0.203822	2.868645	1.63E- 05	6899.759	400.0985	0.001088	1.38E- 05
R47unirr a	IronBCC	89.40723	0.185644	90.41837	0.187744	2.868786	1.51E- 05	7111.168	396.5571	0.001116	1.26E- 05
R48ATR2 a		89.93304			0.152635			6370.286	0.96574		7.04E- 06
R48unirr a		90.89767		91.41333		2.869036	1.17E- 05	6584.457	270.8763	0.001192	9.45E- 06
R49ATR2 a	IronBCC	91.22357	0.166227	91.68525	0.167069	2.868921	1.34E- 05	6326.169	283.8962	0.001149	1.1E- 05
R49unirr a	IronBCC	97.5745	0.192277	96.84593	0.190841	2.868851	1.46E- 05	6012.076	286.4749	0.001177	1.21E- 05
R4ATR2 av		97.2119	0.49833	96.56061	0.494991	2.867962		6658.244	861.1743	0.001006	3.28E- 05
R4unirr av		97.15579		96.37207	0.32391	2.86825		7477.597	682.8929	0.000958	2.18E- 05
R50ATR2 a	IronBCC	97.67795		96.97343	0.172007	2.869377	1.3E- 05	6017.554	254.3434	0.001134	1.1E- 05
R50unirr a	IronBCC	98.09185	0.203085	97.35798	0.201566	2.869097	1.51E- 05	6033.281	296.8691	0.001125	1.29E- 05
R5ATR2 av		91.09282		91.77225		2.868872		10261.19		0.001023	1.38E- 05
R5unirr av		94.98483		94.66161		2.868191	2.58E- 05	12718.62		0.000955	2.35E- 05
R6ATR2 av	IronBCC	90.71064	0.288372	91.36359	0.290448	2.868301	2.23E- 05	8235.963	771.2131	0.000983	2.01E- 05
R6unirr av		97.29377		96.54092		2.868909	1.36E- 05	6613.182	321.406	0.001078	1.19E- 05
R8ATR2 av		93.04938	0.24846	93.19315		2.868599	1.87E- 05	11604.37	1298.609	0.001006	1.64E- 05
R8unirr av		93.59052		93.6889		2.868029		9516.982	1187.473	0.000955	2.33E- 05
R9ATR2 av	IronBCC	92.96291	0.231566	93.12945	0.231981	2.86883	1.74E- 05	9956.593	892.1992	0.000984	1.57E- 05
R9unirr av	IronBCC	95.40907	0.22948	94.96938	0.228422	2.868698	1.7E- 05	9553.978	805.3172	0.001025	1.49E- 05
RHAATR2									720.3088		
		90.56306		91.38752		2.868594	1.8E- 05	8785.729		0.000992	1.61E- 05
RHAunirr a		97.40799		96.6901		2.868557	2.11E- 05	6852.593		0.000993	1.92E- 05
RX10ATR2	IronBCC	92.30116	0.239118	92.93525	0.240761	2.868611	1.88E- 05	6180.371	367.0232	0.001069	1.59E- 05
RX10unirr		93,44262			0.344927			8241.114			2.26E- 05
. U. Juliil		55. AZUZ	0.0 /2000	JJE 120	0.0 MULT		L.O.L 00	JE . 1 14	JU. 71 UJ	0.00100	

Fig 5.5.2 IronBCC phase

- DO O	Phase Nan													Microstrair Micros
aB6C	Cohenite	7.098396	103.5829	50.40509	735.5331 0.84407	5.11941	0.025628	6.729665	0.029476		0.025027	379.7914	385.769	0.0006
	Cohenite	2.957568 1.486429	0.763966 0.133531	3.26768 2.702683	0.84407	5.081672 5.083102	0.001244	6.753004 6.753318	0.002119	4.526094 4.524177	0.001045 0.0017	777.6503 354.8312	87.05393 4.075948	
	Cohenite	1.631621	0.340434	2.586578	0.539683	5.083977	0.001373	6.755092	0.003086	4.526914	0.0017	442.7789	38.17429	
	Cohenite	1.804511	0.139766	2.52034	0.19521	5.081863	0.001236	6.754699	0.002108	4.524071	0.001054	576.2302	26.5509	
	Cohenite	1.406634	0.921455	2.425833	1.589109	5.083728	0.001885	6.75574	0.003244	4.526999	0.001647	461.8989	44.70315	
13unirr a	Cohenite	1.174822	0.767824	2.118005	1.384257	5.083152	0.001738	6.754929	0.003002	4.525679	0.001518	504.0124	48.92641	0.0006
14ATR2 a	Cohenite	4.32207	0.451547	3.942602	0.411902	5.082007	0.001438	6.752007	0.002423	4.526146	0.001213	696.6456	80.16942	0.0006
	Cohenite	2.184378	0.217546	2.943532	0.293151	5.081907	0.001357	6.755138	0.002297	4.524039	0.001146	572.8704	48.06015	
	Cohenite	2.310906	0.217858	3.29237	0.310384	5.083084	0.001676	6.756108	0.00285	4.525316	0.001451	351.1277	22.1661	0.0006
	Cohenite	1.947556	0.140425	2.774625	0.20006	5.082779	0.001126	6.754606	0.001921	4.524407	0.000961	538.4324	34.30134	0.0006
	Cohenite	2.62462	0.220832	2.921986	0.245852	5.082114	0.001101	6.753325	0.001868	4.527329 4.526802	0.000927	795.1396	80.93329	
	Cohenite Cohenite	0.789654 1.662755	0.089892 0.157607	1.568874 2.283401	0.178597 0.216436	5.081358 5.082105	0.00155 0.001131	6.753477 6.752689	0.002676 0.001933	4.526802	0.001317 0.000958	751.4803 844.1793	104.8748 95.60936	
	Cohenite	1.413935	0.137807	2.389489	0.210430	5.082821	0.001131	6.754599	0.001933		0.000938	482.7097	21.78402	
	Cohenite	2.339984	0.933168	3.121755	1.244932	5.081771	0.001474	6.754783	0.002504	4.527108	0.001262	478.985	38.52083	
	Cohenite	1.639212	0.662052	2.564241	1.035657	5.082326	0.001257	6.754349	0.002136	4.525817	0.001076	489.4559	31.34858	
	Cohenite	2.713648	0.408983	3.097249	0.466796	5.082756	0.001521	6.750853	0.002577	4.526339	0.001256	834.4564	122.1313	
1unirr av	Cohenite	2.828057	0.403009	3.180919	0.453293	5.081928	0.001696	6.7508	0.00287	4.524882	0.001397	813.3064	130.0738	0.0006
	Cohenite	2.965797	0.332885	3.230917	0.362643	5.081534	0.001043	6.750786	0.001754	4.525244	0.00086	1063.093	132.8541	0.0006
	Cohenite	2.995828	1.429988	3.506441	1.673717	5.080277	0.001664	6.751094	0.002793	4.523298	0.001376	652.8857	85.39172	
	Cohenite	3.559037	0.684717	3.705635	0.71292	5.0816	0.001123	6.752489	0.001895	4.525905	0.000929	837.7635	93.04956	
	Cohenite	2.771026	0.197338	3.585605	0.255347	5.080536	0.000971	6.753723	0.001625	4.523341	0.000805	595.1788	36.75645	
	Cohenite	2.885718	0.35135	3.195734	0.389096	5.081957	0.00153	6.751317	0.002599	4.527031	0.001272	817.7138	119.7344	0.0006
	Cohenite Cohenite	1.240097 2.484109	0.100148 0.269657	2.146231 2.821098	0.173326 0.306238	5.080579 5.081883	0.001304	6.751818 6.753858	0.00224	4.526174 4.52719	0.001096 0.003066	638.7063 321.7015	64.20206 42.48435	
	Cohenite	1.474524	1.151609	2.821098	1.626836	5.081883	0.003474	6.754235	0.005851		0.003066	321.7015	33.58082	
	Cohenite	3.982567	0.299266	3.971428	0.298429	5.081658	0.003632	6.751611	0.00013	4.526135	0.000695	869.2568	72.41029	
	Cohenite	2.53883	0.278306	3.081475	0.337791	5.081645	0.000764	6.751443	0.001416	4.525193	0.000627	981.164	86.90692	
	Cohenite	2.815148	0.482489	2.440483	0.418275	5.081162	0.002096	6.750462	0.003548	4.525531	0.001761	811.9448	155.743	
	Cohenite	1.546346	0.645213	1.787709	0.745921	5.080838	0.002089	6.751133	0.003576	4.525153	0.00176	773.3062	149.0865	
28ATR2 a	Cohenite	2.608261	0.444272	3.097072	0.527533	5.082466	0.001297	6.751647	0.00221	4.526817	0.001079	777.0295	92.38123	0.0006
	Cohenite	1.423018	0.210088	2.315323	0.341824	5.081491	0.001931	6.751751	0.00331	4.526686	0.001622	792.8064	140.8735	
	Cohenite	1.164946	0.107183	1.83339	0.168684	5.081055	0.0031	6.753994	0.005222	4.526375	0.002701	326.2523	35.13912	
	Cohenite	1.155183	0.980609	1.716574	1.457162	5.081688	0.003301	6.753233	0.005688	4.528143	0.002915	420.5696	64.12461	0.0006
	Cohenite	2.170445	1.455873	2.704407	1.814039	5.082094	0.002254	6.753803	0.003866	4.526106	0.001879	589.3126	94.14689	
	Cohenite	1.932687 2.928949	0.683328 0.381708	2.395277 3.049623	0.846883 0.397435	5.080522 5.083075	0.002522 0.001359	6.75019 6.752273	0.00427 0.002304	4.524535 4.525769	0.002081 0.001125	916.8778 938.3881	261.6205 136.1929	0.0006 0.0006
	Cohenite	2.101786	0.381708	2.853575	0.397433	5.081859	0.001339	6.753538	0.002304	4.523769	0.0001123	620.955	47.51442	
	Cohenite	2.089563	0.177345	2.999556	0.24819	5.083019	0.001173	6.755933	0.001303	4.525177	0.000374	480.0144	30.89135	
	Cohenite	2.298292	0.130733	3.051791	0.173594	5.082435	0.000972	6.75408	0.001644	4.523991	0.000808	608.7639	25.31641	0.0006
	Cohenite	0.464559	0.051898	1.228262	0.137215	5.082169	0.001766	6.754981	0.003094	4.529458	0.001541	625.9174	71.31112	
	Cohenite	1.213927	0.19607	2.163822	0.349494	5.082807	0.00141	6.755632	0.002431	4.525731	0.001237	468.8846	34.08297	0.0006
33ATR2 a	Cohenite	3.42575	0.845737	3.439671	0.849173	5.082581	0.001006	6.751703	0.001668	4.526388	0.000832	998.5848	119.7811	0.0006
33unirr a	Cohenite	2.504263	0.273184	2.905674	0.316973	5.082006	0.001029	6.750471	0.001736	4.524967	0.000849	1022.023	125.1008	0.0006
	Cohenite	2.888158	0.339145	3.112658	0.365507	5.082542	0.00113	6.7516	0.001908	4.526233	0.000932	1018.2	132.6411	0.0006
	Cohenite	2.121995	0.30614	2.638115	0.3806	5.082246	0.001322	6.750373	0.002227	4.525024	0.001085	1161.407	183.0724	0.0006
	Cohenite	3.143384	1.178426	3.812093	1.429118	5.081418	0.001257	6.752301	0.002133	4.524743	0.001043	603.1287	54.10685	0.0006
	Cohenite	2.439044	0.279774	3.322464	0.381108	5.080633	0.001497	6.752909	0.002486	4.522959	0.001235	642.0615	64.22244	0.0006
	Cohenite Cohenite	2.442555 1.714843	0.566237 0.687668	2.273203 1.842683	0.526978 0.738933	5.081929 5.08115	0.002316	6.74976 6.749655	0.003928 0.005053	4.526139 4.525635	0.001938 0.002486	861.5547 789.898	195.8378 219.0292	
	Cohenite	3.447114	0.538948	3.581904	0.560022	5.082222	0.002550	6.750343	0.003635	4.525667	0.002480	867.2409	133.8662	
	Cohenite	2.023366	0.488225	2.965428	0.715539	5.082091	0.001997	6.752232	0.002020	4.524253	0.001201	581.9694	73.7516	
	Cohenite	1.602527	0.629519	1.718087	0.674914	5.08257	0.00284	6.749856	0.004855	4.527503	0.002409	837.7468	230.1009	
	Cohenite	0.840243	0.776873	1.334182	1.23356	5.080499	0.00272	6.752061	0.004682	4.529869	0.002335	599.8145	118.1455	0.0006
39ATR2 a	Cohenite	2.90103	1.134884	3.448442	1.349031	5.081499	0.00138	6.752707	0.002352	4.524947	0.001148	581.4122	54.9899	0.0006
39unirr a	Cohenite	2.229386	0.278039	2.924109	0.364681	5.08094	0.001623	6.752709	0.002744	4.523075	0.001352	626.2398	68.58447	0.0006
40ATR2	Cohenite	3.117032	0.701955	3.168596	0.713568	5.08222	0.002285	6.751172	0.003864	4.525351	0.001889	972.1236	243.8388	0.0006
	Cohenite	2.278482	0.174925	2.96136	0.227352	5.081753	0.001196	6.753503	0.002014	4.523758	0.000987	649.0098	36.88154	0.0006
	Cohenite	2.935137	0.332475	3.109443	0.35222	5.082084	0.001216	6.751196	0.002059	4.525428	0.001006	982.0174	121.4994	0.0006
	Cohenite	2.185801	0.173118	2.938885	0.232764	5.081938	0.001339	6.754469	0.002247	4.523945	0.001102	646.3174	20.14957	0.0006
	Cohenite	3.053171	0.30498	3.213335	0.320978	5.08216	0.001006	6.751436	0.001703	4.52558	0.000831	971.177	107.6833	
	Cohenite Cohenite	2.396783 3.211116	0.305496 0.314138	3.101805 3.243533	0.395358 0.317309	5.081684 5.082295	0.001759 0.00102	6.752909 6.751073	0.002934	4.523587 4.52548	0.001457 0.000843	659.5756 968.3218	78.23716 104.8478	0.0006 0.0006
	Cohenite	2.200686	0.20852	2.929341	0.317309	5.082295	0.00102	6.752647	0.001721	4.523535	0.000643	604.483	53.0504	0.0006
	Cohenite	3.582808	0.408223	3.72951	0.424938	5.081605	0.001331	6.751212	0.002283	4.525403	0.0001123	1013.318	128.4976	
	Cohenite	3.637327	0.363097	3.734832	0.37283	5.081898	0.001046	6.750442	0.001753	4.524619	0.000320	1046.419	114.8166	
	Cohenite	3.247356	0.258554	3.539233	0.281793	5.080645	0.000923	6.752585	0.001527	4.525762	0.000758	901.0515	83.9822	0.0006
	Cohenite	2.521096	0.58456	3.069395	0.711692	5.08084	0.000834	6.751781	0.00141	4.524654	0.000688	938.6602	89.38701	0.0006
	Cohenite	2.327695	0.354693	2.755189	0.419834	5.081305	0.001189	6.750821	0.002021	4.524517	0.000993	755.2575	80.01023	
	Cohenite	2.328293		3.057077		5.081575	0.001384	6.751925	0.002331	4.523055	0.001164	499.8345	36.79158	
	Cohenite	2.454473	1.042308	3.16905	1.345758	5.082739	0.003553	6.752704	0.006072	4.525928	0.002964	495.2897	101.6886	
	Cohenite	1.085464	0.263152	1.96129	0.475481	5.082365	0.002058	6.752831	0.003483	4.524869	0.001681	756.874	74.11127	0.0006
	Cohenite Cohenite	2.205664	0.177372 0.18813	2.910733 2.520849	0.234071	5.083787	0.001355	6.753369 6.751649	0.002284	4.524183 4.52348	0.001136 0.001242	470.5631 577.3059	30.05159 53.53493	
	Cohenite	1.786418 3.326586	1.103462	3.386385	0.265475 1.123298	5.083433 5.082395	0.001483	6.751649	0.002503 0.00206		0.001242	1032.324	159.8087	0.0006
	Cohenite	2.242045	0.659458	2.783303	0.81866	5.080599	0.001232	6.750903	0.00208	4.523934	0.001011		248.0777	0.0006
	Cohenite	2.995316	0.569931	3.211857	0.611133	5.080399	0.002073	6.750044	0.003482		0.001704		182.5128	
	Cohenite	1.366408	0.202528	2.190056	0.324609	5.082755	0.001733	6.753112	0.002073	4.52532	0.001473		67.64269	0.0006
	Cohenite	3.179879	0.428874	3.397171	0.458181	5.082101	0.001538	6.751558	0.002573	4.52633	0.001265	847.6716	126.3953	0.0006
	Cohenite	3.264289	0.57214	3.454263	0.605438	5.081995	0.002203	6.750536	0.003696	4.52506	0.001811	764.3619	147.5594	0.0006
	Cohenite	3.167399		3.356918	0.632654	5.082386	0.001482		0.002489	4.526905	0.001225		113.2725	
		2.042633	0.245626	2.669462	0.321001		0.001473		0.002478	4.524893	0.001214		104.8264	0.0006
9unirr av	Whente								0.002388	4.52527	0.00117			

6. ATR2_UCSB

Title	Rwp(%)	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par Er	Cell Par(Ar	Cell Par Er	Cell Par(Ar	Cell Par Er	Size(Anast	Crystal Size	Microstrair
17 LJ03-0	7.795087	Cohenite	2.16236	0.11884	2.109692	0.115946	5.083397	0.002228	6.761617	0.003865	4.530305	0.002037	589.0188	87.93825	0.0006
20 LJ BL-0	8.670251	Cohenite	2.213329	0.137082	2.159721	0.133761	5.083216	0.002403	6.761677	0.004148	4.529008	0.002189	594.6952	99.15333	0.0006
29 LG01-0	7.842006	Cohenite	2.393822	0.112527	2.334526	0.10974	5.086141	0.001582	6.764152	0.00276	4.529263	0.001386	968.8966	160.3861	0.0006
2 WA BL-	9.800974	Cohenite	1.289188	0.115564	1.256663	0.112649	5.085082	0.004109	6.769443	0.007302	4.526866	0.003612	716.5923	135.0675	0.0006
2 WA BL-	9.348998	Cohenite	1.31313	0.13808	1.279962	0.134592	5.084852	0.003974	6.769982	0.007104	4.526789	0.003527	663.9312	200.5627	0.0006
39 LD02-0	7.967835	Cohenite	2.982986	0.114319	2.907584	0.111429	5.084551	0.001827	6.767323	0.003168	4.531364	0.001675	537.1429	38.58313	0.0006
46 CM6 4	10.99331	Cohenite	2.997373	0.283617	2.794319	0.264404	4.88434	0.098305	6.970807	0.132595	4.798824	0.081327	29.81173	5.784958	0.0006
4 LI03-000	9.397326	Cohenite	2.567583	0.140662	2.504546	0.137208	5.08492	0.002159	6.76487	0.003785	4.52898	0.001942	590.994	84.60945	0.0006
54 LH03-0	8.939767	Cohenite	2.777543	0.127816	2.709093	0.124666	5.084552	0.00202	6.764121	0.003512	4.529341	0.001821	534.9096	40.11639	0.0006
56 LB BL-	11.74011	Cohenite	2.621104	0.19407	2.556192	0.189263	5.082641	0.003699	6.769517	0.006384	4.526504	0.003355	373.1933	58.9973	0.0006
57 LB03 C	7.502475	Cohenite	2.129057	0.089324	2.076217	0.087107	5.084166	0.001905	6.763409	0.003331	4.529123	0.001698	715.6819	28.94832	0.0006
57_WA03	8.569508	Cohenite	1.375154	0.11219	1.340952	0.109399	5.08383	0.003781	6.765619	0.006732	4.528116	0.003443	564.4184	96.06281	0.0006
65 LD BL-	7.982783	Cohenite	2.244108	0.0932	2.189992	0.090952	5.086031	0.001605	6.763192	0.002798	4.526753	0.001403	1030.916	66.93318	0.0006
75 LC03-0	7.972867	Cohenite	2.585973	0.133934	2.520244	0.130529	5.082065	0.002594	6.770213	0.004457	4.533255	0.002393	385.5774	43.33627	0.0006
LC LTTA E	9.397618	Cohenite	3.056326	0.183337	2.977069	0.178583	5.076948	0.004298	6.781518	0.006694	4.538769	0.00379	254.2131	29.78294	0.0006

Fig 5.6.1 Cohenite phase

Title	Phase Nan	Vol (%	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par Fr	Size(Anast	Microstrain	_
17 LJ03-00		0	00	0	00			350		
20 LJ BL-0		0	0	0	0			350		
29 LG01-0	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
2 WA BL-(IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
2 WA BL-(IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
39 LD02-0	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
46 CM6 4-	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
4 LI03-000	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
54 LH03-0	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
56 LB BL-(IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
57 LB03 C	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
57 WA03	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
65 LD BL-	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
75 LC03-0	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	
LC LTTA B	IronFCC	0	0	0	0	3.595892	0.001512	350	0.0006	

Fig 5.6.2 IronFCC phase

Title	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par Er	Size(Anast	Crystal Size	Microstrair	Microstrain
17 LJ03-00	FeBCC	97.6665	0.221077	97.68735	0.221125	2.869261	1.47E- 05	5311.605	156.2951	0.000783	1.76E- 06
20 LJ BL-0	FeBCC	97.6127	0.24744	97.63431	0.247494	2.869087	1.59E- 05	9011.473	647.3974	0.000773	1.38E- 05
29 LG01-0	FeBCC	97.47997	0.222571	97.51569	0.222652	2.869363	1.45E- 05	6446.494	299.0245	0.000773	1.25E- 05
2 WA BL-	FeBCC	98.62179	0.279803	98.63704	0.279847	2.869158	1.82E- 05	8589.531	620.9362	0.000773	1.54E- 05
2 WA BL-	FeBCC	98.59864	0.268356	98.61462	0.2684	2.869138	1.73E- 05	8735.075	646.1724	0.000773	1.49E- 05
39 LD02-0	FeBCC	96.85404	0.225977	96.89851	0.22608	2.86937	1.47E- 05	7417.309	397.0681	0.000735	1.3E- 05
46 CM6 4	FeBCC	96.90276	0.307707	97.08751	0.308293	2.870145	1.89E- 05	10539.75	1040.485	0.000661	1.76E-05
4 LI03-000	FeBCC	97.27788	0.26452	97.31181	0.264613	2.869407	1.69E- 05	5249.291	239.0317	0.000731	1.5E- 05
54 LH03-0	FeBCC	97.09734	0.250869	97.14227	0.250985	2.869108	1.6E- 05	7083.29	398.9583	0.000747	1.35E- 05
56 LB BL-0	FeBCC	97.27972	0.332591	97.32616	0.33275	2.86878	2.08E-05	12260.75	1612.039	0.000759	1.8E- 05
57 LB03 C	FeBCC	97.75945	0.211027	97.79125	0.211096	2.86885	1.38E- 05	6022	186.6065	0.000742	1.58E- 06
57 WA03	FeBCC	98.5381	0.244001	98.55529	0.244044	2.868978	1.59E- 05	5809.37	260.5651	0.000762	1.39E- 05
65 LD BL-	FeBCC	97.61305	0.224619	97.64069	0.224683	2.869399	1.45E- 05	6972.046	347.8688	0.000785	1.21E- 05
75 LC03-0	FeBCC	97.29898	0.226103	97.34303	0.226205	2.869578	1.47E- 05	5694.88	245.0187	0.000752	1.3E- 05
LC LTTA E	FeBCC	96.83926	0.271206	96.89913	0.271374	2.87071	1.76E-05	10700.52	1016.468	0.00085	1.44E- 05

Fig 5.6.3 FeBCC phase

Title	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par Eri	Cell Par(Ar	Cell Par En	Cell Par(Ar	Cell Par En	Size(Angst	Microstrain
17 LJ03-0	(Mo2 C	0.171139	0.014531	0.202963	0.017233	4.719903	0.006104	5.995471	0.007856	5.140561	0.007344	440	0.0006
20 LJ BL-(Mo2 C	0.173968	0.016373	0.205974	0.019385	4.719304	0.006709	5.998488	0.008754	5.146325	0.008176	440	0.0006
29 LG01-0	Mo2 C	0.126208	0.014282	0.149789	0.016951	4.720515	0.008515	6.006322	0.009773	5.128103	0.009736	440	0.0006
2 WA BL-	Mo2 C	0.089024	0.017592	0.106296	0.021005	4.717308	0.015852	6.006918	0.016679	5.098071	0.016878	440	0.0006
2 WA BL-	Mo2 C	0.088231	0.016843	0.105418	0.020124	4.717496	0.015243	6.005738	0.01605	5.095454	0.016189	440	0.0006
39 LD02-0	Mo2 C	0.162977	0.015408	0.193913	0.018333	4.725704	0.006903	5.993928	0.008202	5.120747	0.007963	440	0.0006
46 CM6 4	-Mo2 C	0.09987	0.018854	0.118172	0.022308	4.727306	0.013221	5.999779	0.017828	5.154021	0.016429	440	0.0006
4 LI03-00	(Mo2 C	0.154545	0.016769	0.183638	0.019926	4.71936	0.007836	6.001204	0.009372	5.127822	0.009122	440	0.0006
54 LH03-0	Mo2 C	0.125121	0.015572	0.148634	0.018498	4.719276	0.009045	6.00067	0.01074	5.12876	0.010507	440	0.0006
56 LB BL-	(Mo2 C	0.099174	0.020361	0.117642	0.024153	4.719899	0.015108	5.996992	0.018694	5.136855	0.017987	440	0.0006
57 LB03 C	Mo2 C	0.111485	0.013221	0.132529	0.015717	4.719774	0.008963	6.001011	0.010224	5.122181	0.010215	440	0.0006
57 WA03	Mo2 C	0.086746	0.014857	0.103754	0.01777	4.716742	0.013588	5.998852	0.014544	5.095938	0.014779	440	0.0006
65 LD BL-	Mo2 C	0.142843	0.014356	0.169313	0.017016	4.721108	0.007441	6.009987	0.008543	5.13073	0.008536	440	0.0006
75 LC03- (Mo2 C	0.115048	0.013979	0.136729	0.016614	4.722246	0.008921	5.990715	0.011341	5.134223	0.010575	440	0.0006
LC LTTA E	Mo2 C	0.104406	0.018076	0.123802	0.021434	4.750299	0.013205	5.983356	0.016291	5.128618	0.014952	440	0.0006

Fig 5.6.4 Mo2 C phase

7. IVAR

Title	Rwp(%)	Phase Nar	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell_Par Er	Cell_Par(Ar	Cell_Par En	Cell_Par(Ar	Cell Par Er	Size(Angst	Crystal Size	Microstrair
CM6 BL-0	9.972408	Cohenite	2.453713	0.332475	2.286017	0.309752	5.141396	0.129092	6.423576	0.130335	4.930219	0.108531	28.79873	6.642446	0.0006
G1 CM6-0	10.44902	Cohenite	1.776782	0.135593	1.730876	0.132089	5.079815	0.001898	6.76345	0.003396	4.52566	0.00166	2068.848	848.1854	0.0006
G1 LC-00	11.73923	Cohenite	2.879709	0.192949	2.810064	0.188282	5.07727	0.003064	6.755584	0.005258	4.524302	0.002812	440.3367	56.58534	0.0006
G1 LC-00	10.93884	Cohenite	2.46628	0.158058	2.406073	0.1542	5.077607	0.002322	6.758634	0.004021	4.524469	0.002117	694.0988	110.2397	0.0006
G1 LG-00	11.18281	Cohenite	2.936149	0.192252	2.86385	0.187518	5.077306	0.003143	6.757652	0.005276	4.52413	0.002721	397.7869	52.19357	0.0006
G3 LD-00	11.88992	Cohenite	2.874108	0.1822	2.802476	0.177659	5.077761	0.002231	6.757479	0.003839	4.525876	0.00207	671.6979	106.2394	0.0006
G4 LD-00	10.93964	Cohenite	2.790181	0.155191	2.720897	0.151338	5.078661	0.00172	6.75705	0.002977	4.524799	0.001577	934.056	167.8112	0.0006
G5- LC- 00	9.239042	Cohenite	2.449502	0.152967	2.38983	0.149241	5.078688	0.002542	6.756707	0.004347	4.524506	0.002281	483.8819	65.0704	0.0006
G5- LD- 00	11.37246	Cohenite	2.786884	0.171565	2.718015	0.167326	5.079422	0.002141	6.758711	0.003675	4.526172	0.00197	691.3212	110.425	0.0006
G5- LI- 000	11.16555	Cohenite	2.656917	0.156082	2.59327	0.152343	5.079186	0.001821	6.758538	0.003125	4.52336	0.001598	938.0076	175.408	0.0006
LC BL-000	10.65018	Cohenite	2.571573	0.273881	2.38147	0.253634	5.14068	0.103871	6.398226	0.108137	4.981812	0.08601	31.76699	4.335451	0.0006
LC BL 2-0	11.73645	Cohenite	2.270615	0.179969	2.219403	0.17591	5.074072	0.003186	6.754298	0.005381	4.521563	0.002848	551.3137	92.35787	0.0006
LD_BL- 000	8.550262	Cohenite	3.112983	0.114178	3.043305	0.111622	5.075306	0.001997	6.754783	0.003329	4.519644	0.001784	445.4847	13.74319	0.0006
LD GI-000	8.380768	Cohenite	3.26337	0.127622	3.182532	0.124461	5.079652	0.001419	6.758678	0.002453	4.524051	0.001299	652.3146	66.4063	0.0006
LG BL- 000	11.08884	Cohenite	2.671887	0.161948	2.61292	0.158374	5.07402	0.002161	6.752553	0.003623	4.519416	0.001855	733.1491	113.7154	0.0006
LH BL- 000	12.78932	Cohenite	2.985992	0.193763	2.918065	0.189355	5.076349	0.002639	6.75406	0.004469	4.521167	0.002312	560.3477	82.47805	0.0006
LH GI-000	13.12088	Cohenite	3.378699	0.20548	3.296596	0.200487	5.077915	0.003029	6.759023	0.005168	4.521874	0.002725	398.082	50.93759	0.0006
LI_BL-000	10.95567	Cohenite	2.145929	0.113836	2.099857	0.111392	5.073543	0.001808	6.752327	0.003063	4.519659	0.001535	1634.117	115.4694	0.0006
LI GI-0000	9.181023	Cohenite	2.922153	0.134072	2.85041	0.13078	5.079286	0.001638	6.759422	0.002823	4.52302	0.001448	669.121	81.53873	0.0006
T14 LD-00	10.5703	Cohenite	2.615005	0.159586	2.551034	0.155682	5.079173	0.001718	6.753934	0.002918	4.524178	0.001523	1131.65	255.7995	0.0006
T15 LD-00	9.911072	Cohenite	2.680381	0.142368	2.614272	0.138856	5.079382	0.001591	6.754108	0.002697	4.524458	0.001404	1028.258	190.3458	0.0006
T18 CM6-	11.33362	Cohenite	1.03015	0.145726	1.003908	0.142014	5.076772	0.003949	6.759182	0.007047	4.528179	0.003511	1156.689	617.1799	0.0006
TU- CM6-	11.2144	Cohenite	1.608006	0.169091	1.565898	0.164664	5.078021	0.003958	6.763126	0.007047	4.530047	0.003708	553.2911	135.5062	0.0006
TU- LC- 00	9.469064	Cohenite	2.807836	0.156459	2.739708	0.152663	5.077829	0.002384	6.753647	0.004065	4.525137	0.002192	459.0519	53.97079	0.0006
TU- LD- 00	10.62121	Cohenite	3.511091	0.172965	3.423211	0.168636	5.079738	0.002226	6.76133	0.003808	4.526642	0.002076	438.5153	45.90926	0.0006
TU- LG- 00	12.34168	Cohenite	2.890317	0.19277	2.820244	0.188097	5.077342	0.002544	6.756624	0.004321	4.52387	0.002253	556.8157	84.23528	0.0006
TU- LH- 00	12.94281	Cohenite	3.076162	0.208099	3.002169	0.203094	5.077645	0.002664	6.757405	0.00458	4.523828	0.002414	525.0357	83.99679	0.0006
TU- LI- 000	9.934315	Cohenite	3.001685	0.159485	2.928871	0.155617	5.078376	0.002061	6.757638	0.003536	4.524488	0.001872	551.9439	64.26849	0.0006

Fig 5.7.1 Cohenite phase

Title	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par En	Size(Anast	Microstrain
CM6 BL-0	IronFCC	0.19519	0.035617	0.199304	0.036368	3.588476	0.002932	350	0.0006
G1 CM6-0	IronFCC	0.132285	0.034283	0.133471	0.03459	3.60099	0.004507	350	0.0006
G1 LC-000	IronFCC	0.223858	0.04219	0.226827	0.042749	3.595559	0.003161	350	0.0006
G1_LC-000	IronFCC	0.24245	0.038079	0.244906	0.038464	3.59966	0.002668	350	0.0006
G1 LG-000	IronFCC	0.084618	0.03723	0.082096	0.036121	3.647776	0.007547	350	0.0006
G3 LD-000	IronFCC	0.716645	0.049018	0.726788	0.049711	3.594468	0.001086	350	0.0006
G4 LD-000	IronFCC	0.652029	0.0436	0.661125	0.044208	3.594672	0.00107	350	0.0006
G5- LC- 000	IronFCC	0.289358	0.032749	0.291584	0.033001	3.602544	0.001912	350	0.0006
G5- LD- 000	IronFCC	0.623011	0.045328	0.630134	0.045847	3.598637	0.001165	350	0.0006
G5- LI- 000	IronFCC	0.134034	0.035704	0.134984	0.035958	3.603901	0.004608	350	0.0006
LC BL- 000	IronFCC	0.242419	0.038394	0.247555	0.039207	3.588716	0.002497	350	0.0006
LC BL 2-00	IronFCC	0.341997	0.042864	0.345895	0.043352	3.598063	0.002111	350	0.0006
LD BL-000	IronFCC	0.336416	0.030368	0.340935	0.030775	3.595733	0.001507	350	0.0006
LD GI-000	IronFCC	0.470921	0.031627	0.476572	0.032007	3.597379	0.001107	350	0.0006
LG BL-000	IronFCC	0.08304	0.03539	0.083422	0.035553	3.605861	0.007536	350	0.0006
LH BL-000	IronFCC	0.122164	0.042098	0.123353	0.042508	3.600185	0.005948	350	0.0006
LH GI-000	IronFCC	0.099136	0.041317	0.099839	0.04161	3.602862	0.007093	350	0.0006
LI BL-0000	IronFCC	0.111831	0.033066	0.106552	0.031505	3.670729	0.005645	350	0.0006
LI GI-0000	IronFCC	0.114876	0.028542	0.115523	0.028703	3.605001	0.0043	350	0.0006
T14 LD-00	IronFCC	0.550614	0.042597	0.556751	0.043072	3.597849	0.001277	350	0.0006
T15 LD- 00	IronFCC	0.428678	0.037403	0.433686	0.03784	3.597121	0.001453	350	0.0006
T18 CM6-	IronFCC	0.091176	0.034508	0.091091	0.034475	3.612475	0.006691	350	0.0006
TU- CM6- 0	IronFCC	0.387786	0.040853	0.393405	0.041445	3.594686	0.001724	350	0.0006
TU- LC- 000	IronFCC	0.257793	0.03342	0.260579	0.033781	3.598381	0.002184	350	0.0006
TU- LD- 000	IronFCC	0.538801	0.040798	0.546063	0.041348	3.596491	0.001224	350	0.0006
TU- LG- 000	IronFCC	0.095243	0.039518	0.092542	0.038398	3.64619	0.00705	350	0.0006
TU- LH- 000	IronFCC	0.082389	0.042269	0.08303	0.042598	3.60252	0.00869	350	0.0006
TU- LI- 000	IronFCC	0.088414	0.032241	0.089064	0.032478	3.603165	0.006375	350	0.0006

Fig 5.7.2 IronFCC phase

Title	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell_Par(Ar	Cell_Par Er	Size(Angst	Crystal Size	Microstrair	Microstrain	Error
CM6 BL-0	FeBCC	97.27712	0.274653	97.42718	0.275077	2.866575	1.53E-05	45222.91	12302.1	0.000923	9.18E-06	
G1 CM6-0	FeBCC	97.95403	0.286423	97.97292	0.286478	2.866434	1.4E-05	23872972	14818105	0.000477	1.06E-05	
G1 LC-000	FeBCC	96.79449	0.321381	96.84155	0.321538	2.865895	1.7E-05	45092.58	5711.793	0.00073	9.68E-06	
G1_LC-000	FeBCC	97.1714	0.297931	97.20546	0.298036	2.866332	1.54E-05	482845	95782.75	0.000677	8.94E-06	
G1 LG-000	FeBCC	96.87962	0.304897	96.93608	0.305075	2.865636	1.73E-05	49393.74	6448.256	0.000925	8.58E-06	
G3 LD-000	FeBCC	96.24731	0.322344	96.2771	0.322444	2.866033	1.63E-05	72600.93	11648.54	0.00057	2.62E-06	
G4 LD-000	FeBCC	96.39538	0.295253	96.4239	0.29534	2.866017	1.49E-05	571246	103146.7	0.000586	9.51E-06	
G5- LC- 00(FeBCC	97.13605	0.252663	97.16989	0.252751	2.866323	1.4E- 05	42207.96	5593.139	0.000851	7.62E-06	
G5- LD- 00	FeBCC	96.43071	0.307893	96.46124	0.307991	2.866782	1.55E-05	85447	13493.68	0.000553	1.03E-05	
G5- LI- 000	FeBCC	97.07774	0.302769	97.11488	0.302885	2.866798	1.52E-05	154157.4	28894.47	0.000581	9.8E-06	
LC BL-000	FeBCC	97.11193	0.292426	97.28334	0.292942	2.866658	1.58E-05	287389.8	519827.3	0.000837	1.11E- 05	
LC BL 2-0	FeBCC	97.26147	0.32192	97.28501	0.321998	2.866361	1.78E-05	55189.55	9113.381	0.000817	9.65E-06	
LD BL-000	FeBCC	96.37636	0.229918	96.40887	0.229995	2.866333	1.3E- 05	43161.76	1453.609	0.000871	6.39E-06	
LD GI-000	FeBCC	96.10948	0.226257	96.15449	0.226363	2.86617	1.17E-05	202215.1	39397.45	0.000631	7.08E-06	
LG BL-000	FeBCC	97.12192	0.302183	97.1573	0.302293	2.866007	1.69E-05	6594772	3883650	0.000853	8.58E-06	
LH BL- 000	FeBCC	96.76936	0.347207	96.8131	0.347364	2.866282	1.89E-05	2700412	1802641	0.000825	9.75E-06	
LH GI-000	FeBCC	96.41653	0.352755	96.4781	0.352981	2.865731	2.03E-05	112833.3	14799.49	0.000976	9.35E-06	
LI BL-0000	FeBCC	97.60101	0.299363	97.62579	0.299439	2.866628	1.68E-05	43493.02	19.66302	0.000854	8.64E-06	
LI GI-0000	FeBCC	96.84122	0.247408	96.88913	0.24753	2.866179	1.31E-05	125167.5	15384.93	0.000735	7.16E-06	
T14 LD-00	FeBCC	96.68384	0.290022	96.71333	0.290111	2.865894	1.59E-05	157329.8	35641.34	0.000789	8.6E-06	
T15 LD-00	FeBCC	96.70802	0.269658	96.73525	0.269734	2.865843	1.44E-05	586735.5	109652.3	0.000719	8.12E-06	
T18 CM6-	FeBCC	98.71938	0.310688	98.71636	0.310678	2.866359	1.53E-05	1111835	4357732	0.000555	1.11E-05	
TU- CM6- (FeBCC	97.86812	0.30603	97.87904	0.306064	2.866711	1.5E- 05	1034329	7351312	0.000534	1.32E- 05	
TU- LC- 000	FeBCC	96.82156	0.258555	96.86515	0.258672	2.86586	1.39E-05	40364.75	7251.483	0.000755	8.72E-06	
TU- LD- 00	FeBCC	95.79959	0.285706	95.85107	0.285859	2.86679	1.43E- 05	47482.56	4866.003	0.000546	9.51E-06	
TU- LG- 00	FeBCC	96.897	0.334265	96.9464	0.334435	2.865884	1.68E-05	48107.26	7061.552	0.000586	1.09E-05	
TU- LH- 00	FeBCC	96.72917	0.352858	96.78008	0.353044	2.866213	1.8E- 05	52470.64	7871.244	0.000628	1.11E- 05	
TU- LI- 000	FeBCC	96.78632	0.270351	96.83403	0.270484	2.866355	1.37E- 05	41278.29	4907.174	0.000575	9.14E-06	

Fig 5.7.1 FeBCC phase

8. IVAR

Title	Rwp(%)	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell_Par(Ar	Cell_Par Er	Cell_Par(Ar	Cell_Par Er	Cell_Par(Ar	Cell_Par Er	Size(Angst	Crystal Size	Microstrair
73W irr-00	14.11833	Cohenite	1.901764	0.142273	1.851034	0.138478	5.084081	0.00286	6.766594	0.00512	4.5292	0.002499	838.136	29.89569	0.0006
73W unirr-	14.46931	Cohenite	2.030576	0.168195	1.975941	0.16367	5.084245	0.002877	6.766494	0.005159	4.528743	0.002532	891.3002	111.8639	0.0006
A18 irr-00	12.55747	Cohenite	2.039786	0.20691	1.988226	0.20168	5.085685	0.002183	6.763302	0.003902	4.530192	0.001939	1593.722	690.8076	0.0006
A24 unirr-	10.98259	Cohenite	2.714376	0.178587	2.642149	0.173835	5.085083	0.002067	6.765498	0.003669	4.530192	0.001889	664.236	119.9469	0.0006
B12_irr-000	12.26779	Cohenite	1.534357	0.129472	1.49491	0.126144	5.084071	0.002414	6.764436	0.004312	4.530264	0.002104	1298.897	247.9037	0.0006
B29 unirr-(12.72506	Cohenite	1.921229	0.169556	1.872157	0.165225	5.083669	0.002453	6.765604	0.004372	4.529666	0.002137	1227.236	284.8504	0.0006
C33 unirr-	11.61628	Cohenite	1.75259	0.156493	1.707515	0.152468	5.084376	0.002103	6.764809	0.003759	4.530156	0.001839	1566.791	527.2354	0.0006
CM6 AT u	10.0003	Cohenite	2.494138	0.17381	2.425925	0.169056	5.084172	0.002572	6.76919	0.00458	4.530124	0.002317	479.9352	65.35973	0.0006
CM6 irr-00	13.89357	Cohenite	2.69177	0.235357	2.615734	0.228708	5.085381	0.002777	6.776758	0.005088	4.531472	0.002533	646.1892	131.5467	0.0006
CM6 SR ui	11.89757	Cohenite	1.776698	0.195173	1.723971	0.189381	5.083901	0.003963	6.786595	0.007225	4.530118	0.00351	533.0895	110.206	0.0006
E21 irr-000	11.0005	Cohenite	1.589799	0.127495	1.54977	0.124284	5.084189	0.002238	6.763617	0.00401	4.53077	0.001958	1304.547	310.8173	0.0006
JRQ irr-00	13.25865	Cohenite	3.054376	0.160979	2.97869	0.15699	5.084836	0.001485	6.764638	0.002616	4.527932	0.001294	1820.653	237.6449	0.0006
JRQ unirr-	11.33476	Cohenite	2.988246	0.179366	2.912751	0.174835	5.085165	0.001398	6.765629	0.002465	4.52777	0.001222	1318.301	301.8437	0.0006
LC irr- 0000	13.9814	Cohenite	2.753352	0.22183	2.681431	0.216035	5.08572	0.002406	6.770494	0.004311	4.532492	0.002108	869.4312	161.1121	0.0006
LC unirr-0	11.86409	Cohenite	2.698568	0.181972	2.625412	0.177039	5.086199	0.002058	6.770337	0.003602	4.531009	0.001819	781.5314	128.4764	0.0006
LD irr-000	7.695387	Cohenite	2.489778	0.101554	2.422605	0.098815	5.08349	0.001242	6.76978	0.002235	4.53149	0.001128	732.5626	77.90269	0.0006
LD_unirr-0	11.59395	Cohenite	3.335273	0.196224	3.244198	0.190866	5.084631	0.00184	6.774103	0.003274	4.528318	0.001661	677.9495	102.8758	0.0006
Midland in	13.72625	Cohenite	3.531272	0.203581	3.446054	0.198668	5.083787	0.00144	6.763733	0.002517	4.526938	0.001253	1754.256	419.139	0.0006
Midland ui	12.91583	Cohenite	1.887537	0.178404	1.837285	0.173654	5.083887	0.002523	6.76763	0.00451	4.529136	0.002201	907.9564	226.6233	0.0006
palisadesH	12.30508	Cohenite	2.748487	0.185682	2.680664	0.1811	5.084128	0.001748	6.764522	0.003082	4.529308	0.00153	1095.939	217.7065	0.0006
palisadesLl	13.05171	Cohenite	2.506706	0.183868	2.450016	0.179709	5.084119	0.001592	6.763968	0.002795	4.528945	0.001361	1785.7	628.9857	0.0006
palisades ı	14.03116	Cohenite	2.215252	0.210817	2.160173	0.205575	5.084158	0.002037	6.767001	0.003624	4.527706	0.001775	1819.172	781.7628	0.0006
plate02 irr	14.51115	Cohenite	4.256295	0.260763	4.153862	0.254488	5.084388	0.001504	6.762904	0.002611	4.526924	0.001309	1392.066	320.2523	0.0006
plate02 un	13.51451	Cohenite	3.838765	0.231907	3.743207	0.226134	5.083995	0.001509	6.764585	0.002635	4.526294	0.001309	1329.626	279.7284	0.0006
r Si stand-	35.33973	Cohenite	3.265445	0.488967	3.168989	0.474523	5.101447	0.008931	6.753752	0.012063	4.536305	0.008577	354.5758	94.31886	0.0006

Fig 5.8.1 Cohenite phase

Title	Phase Nan	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par En	Size(Angst	Crystal Size	Microstrair Microstrain
73W irr- 00	IronFCC	0.792567	0.200953	0.784437	0.198892	3.625627	0.024091	33.34214	8.085213	0.0006
73W_unirr-	IronFCC	0.880483	0.145305	0.879371	0.145121	3.614322	0.010616	56.53729	7.092994	0.0006
A18 irr- 00	IronFCC	2.758	0.443867	2.651346	0.426702	3.662811	0.019082	18.72423	3.265506	0.0006
A24_unirr-	IronFCC	0.62061	0.072185	0.62846	0.073098	3.598466	0.001669	260.0735	49.82457	0.0006
B12 irr- 00	IronFCC	1.605248	0.264001	1.558552	0.256321	3.65002	0.015194	25.60642	4.53352	0.0006
B29_unirr-	IronFCC	2.121944	0.356896	2.059436	0.346383	3.650645	0.017457	22.83223	3.911824	0.0006
C33 unirr-	IronFCC	1.853018	0.187526	1.795119	0.181667	3.652825	0.016157	24.08022	1.010888	0.0006
CM6 AT u	IronFCC	0.623855	0.064799	0.629528	0.065388	3.602196	0.001421	264.5134	42.15848	0.0006
CM6 irr- 00	IronFCC	0.485934	0.077263	0.493106	0.078403	3.596353	0.001761	394.2745	114.3179	0.0006
CM6 SR u	IronFCC	0.780651	0.093367	0.784377	0.093812	3.607493	0.002081	187.0466	31.99719	0.0006
E21_irr- 00	IronFCC	1.782518	0.274838	1.720131	0.265219	3.658137	0.014965	23.94204	4.123379	0.0006
JRQ irr-00	IronFCC	2.521186	0.453094	2.424968	0.435802	3.662218	0.023422	17.40589	3.29239	0.0006
JRQ unirr-	IronFCC	2.012013	0.190596	1.961129	0.185776	3.645633	0.014903	23.6608	0.856651	0.0006
LC irr- 000	IronFCC	1.958521	0.389149	1.898278	0.377179	3.653683	0.021013	23.16971	4.206359	0.0006
LC unirr- 0	IronFCC	1.926711	0.099504	1.936052	0.099986	3.608477	0.00256	80.73908	2.122505	0.0006
LD irr- 000	IronFCC	0.624527	0.03716	0.632617	0.037641	3.598376	0.000927	264.5841	23.64151	0.0006
LD unirr-0	IronFCC	1.252644	0.073898	1.269364	0.074884	3.597702	0.000761	318.0057	34.46827	0.0006
Midland in	IronFCC	2.448234	0.431415	2.342441	0.412772	3.668775	0.0203	21.20631	3.873587	0.0006
Midland u	IronFCC	0.893776	0.194662	0.886034	0.192976	3.623866	0.013	43.50968	10.32229	0.0006
palisadesH	IronFCC	2.646744	0.480566	2.549135	0.462843	3.660898	0.022856	16.29429	2.868118	0.0006
palisadesL	IronFCC	3.269902	1.063985	3.000373	0.976284	3.722914	0.0387	14.45141	3.61168	0.0006
palisades i	IronFCC	2.154549	0.385581	2.07351	0.371078	3.661616	0.021522	20.56774	4.247987	0.0006
plate02 irr	IronFCC	3.056023	0.590829	2.955535	0.571402	3.655739	0.023765	17.74099	3.736303	0.0006
plate02 un	IronFCC	2.09035	0.306737	2.044922	0.300071	3.640808	0.013363	30.37917	4.792404	0.0006
r Si stand-	IronFCC	0.752976	0.168332	0.761961	0.170341	3.599087	0.001942	728.9987	425.3477	0.0006

Fig 5.8.1 IronFCC phase

Title	Dhoos Non	\ /o.l /0A	0 m 0 m (0 A	ΛΛ/+ /ΩΛ	orro r/0A	Call Dor/Ar	Call Day Ev	Ci-o/Anact	Countral City	Mioroatroir	Miorostroin
Title	Phase Nan	٠, ,	error(%)	Wt.(%)	error(%)					Microstrair	
73W irr- 00		96.91159	0.28794			2.868084		9259.302	620.7771	0.000663	1.26E- 05
73W unirr-		96.60684	0.292903	96.55244		2.868021	1.6E- 05	11936.34	1034.528	0.000731	1.21E- 05
A18 irr- 00	FeBCC	94.93775	0.247209	95.03793	0.24747	2.868198	1.35E- 05	10889.96	757.9489	0.000691	1.07E- 05
A24 unirr-	FeBCC	96.24673	0.221159	96.21899	0.221095	2.868372	1.21E- 05	15269.25	1354.916	0.000798	8.86E-06
B12 irr- 00	FeBCC	96.60712	0.249114	96.63705	0.249191	2.868359	1.35E- 05	10947.27	777.0232	0.000718	1.06E-05
B29 unirr-	FeBCC	95.64853	0.254319	95.69221	0.254435	2.868346	1.36E- 05	11944.39	928.4625	0.000654	1.12E- 05
C33 unirr-	FeBCC	96.10723	0.233193	96.14716	0.23329	2.868336	1.25E- 05	9771.738	583.3389	0.000688	9.88E-06
CM6_AT_u	FeBCC	96.30586	0.199815	96.19659	0.199588	2.86879	1.11E- 05	13272	931.9816	0.000798	8.18E-06
CM6 irr- 00	FeBCC	96.27805	0.283707	96.18639	0.283437	2.869313	1.64E- 05	4222.01	149.0562	0.000739	1.35E-05
CM6 SR u	FeBCC	96.94343	0.241412	96.85003	0.24118	2.868739	1.36E- 05	5554.726	205.1524	0.000757	1.03E-05
E21 irr-00	FeBCC	96.37157	0.220481	96.41887	0.22059	2.868719	1.23E- 05	8617.334	434.5476	0.000782	9.23E-06
JRQ irr-00	FeBCC	94.11028	0.260598	94.21278	0.260882	2.868206	1.4E- 05	10368.76	726.2972	0.000612	1.18E- 05
JRQ unirr-	FeBCC	94.66318	0.224798	94.71542	0.224922	2.868412	1.22E- 05	10114.39	607.5198	0.000673	9.89E-06
LC irr- 000	FeBCC	94.92852	0.28031	94.98182	0.280468	2.86935	1.64E- 05	4491.174	166.1456	0.000756	1.31E- 05
LC unirr- 0	FeBCC	95.03916	0.23674	95.02765	0.236712	2.868787	1.32E- 05	8630.569	478.4434	0.000724	1.05E-05
LD irr- 000	FeBCC	96.49103	0.157494	96.46099	0.157445	2.86861	9.17E-06	4040.544	74.9661	0.000748	7.47E-06
LD unirr-0	FeBCC	94.91814	0.232365	94.88063	0.232273	2.868524	1.3E- 05	6658.395	286.137	0.000712	1.06E-05
Midland ir	FeBCC	93.73175	0.269897	93.8585	0.270262	2.868054	1.46E- 05	8807.778	555.6088	0.00061	1.27E-05
Midland u	FeBCC	96.84274	0.262908	96.81558	0.262834	2.868204	1.42E- 05	10541.98	758.6147	0.000692	1.15E- 05
palisades	FeBCC	94.34151	0.241512	94.44894	0.241788	2.868401	1.3E- 05	14538.88	1293.612	0.000641	1.07E-05
palisadesL	FeBCC	94.13644	0.258148	94.42075	0.258927	2.868467	1.37E- 05	12475.63	1033.979	0.00062	1.16E- 05
palisades		95.3508	0.279909	95.42564		2.868573	1.45E- 05	10720.86	821.6654	0.000584	1.28E- 05
plate02 irr		92.36256	0.280501	92.49381	0.2809	2.868046	1.51E- 05	11509.12	957.2092	0.00059	1.32E- 05
plate02 ur		93.67631	0.265317	93.73069		2.868069	1.44E- 05	8216.076	479.177	0.000609	1.26E- 05
r Si stand-		95.47167	0.861672	95.40276			5.08E- 05	5238.65	666.8734		3.85E- 05
i G stand-	ICECC	55.71 101	0.001072		0.00103		J.UUL- UJ	5250.05	000.07.54	0.000133	J.UJL- UJ

Fig 5.8.2 FeBCC phase

Title	Phase	Nar	Vol.(%)	error(%)	Wt.(%)	error(%)	Cell Par(Ar	Cell Par En	Cell Par(Ar	Cell Par Er	Cell Par(Ar	Cell Par Er	Size(Angst	Crystal Size	Microstrair I	Microstrain
73W irr-0	(Mo2	С	0.394077	0.056404	0.482882	0.069114	4.74701	0.033567	6.025727	0.034168	4.913426	0.038749	80.57708	8.923497	0.0006	
73W_unir	-Mo2	С	0.482095	0.058839	0.592254	0.072283	4.730861	0.021637	6.025806	0.021951	4.915912	0.023624	104.9152	18.43669	0.0006	
A18 irr- 0	0 Mo2	С	0.264457	0.051977	0.322499	0.063385	4.739862	0.016523	6.049985	0.017224	4.932016	0.016936	207.4642	41.8583	0.0006	
A24 unirr	- Mo2	С	0.418289	0.04117	0.510407	0.050237	4.729061	0.013435	6.061373	0.014041	4.925238	0.014197	141.4857	19.81125	0.0006	
B12 irr-00	Mo2	С	0.253274	0.039002	0.30949	0.047659	4.751856	0.02166	6.026301	0.021671	4.926024	0.022579	141.1615	6.158085	0.0006	
B29 unirr-	Mo2	С	0.308302	0.057134	0.376199	0.069716	4.755556	0.023906	6.030224	0.023916	4.926621	0.024996	128.3717	25.44393	0.0006	
C33 unirr-	Mo2	С	0.28716	0.045647	0.350204	0.055668	4.742201	0.015064	6.048599	0.015471	4.927997	0.015567	183.5207	42.93107	0.0006	
CM6 AT t	Mo2	С	0.576156	0.085638	0.747952	0.111173	4.56324	0.056038	5.751724	0.191786	5.053951	0.161345	30.48982	5.97522	0.0006	
CM6 irr-0	(Mo2	С	0.54425	0.087444	0.704768	0.113234	4.592979	0.050178	5.889878	0.064957	4.919308	0.075244	40.0761	15.10935	0.0006	
CM6_SR (ııMo2	С	0.499227	0.074591	0.641623	0.095866	4.533896	0.042542	5.841552	2.925745	5.059471	2.537466	46.95969	9.246252	0.0006	
E21 irr-00	Mo2	С	0.256113	0.043166	0.311234	0.052456	4.784776	0.022782	6.003157	0.023108	4.940989	0.023978	137.068	14.01805	0.0006	
JRQ irr-00	Mo2	С	0.314166	0.054115	0.383561	0.066068	4.734431	0.013486	6.0642	0.014365	4.920617	0.013665	199.4302	43.58983	0.0006	
JRQ unirr-	Mo2	С	0.336563	0.039976	0.410701	0.048782	4.733694	0.012586	6.05595	0.013136	4.928959	0.012822	184.8751	24.20045	0.0006	
LC irr- 000	Mo2	С	0.359607	0.058909	0.438473	0.071829	4.762777	0.026917	6.011668	0.027582	4.943749	0.028756	118.7541	5.572075	0.0006	
LC unirr- (Mo2	С	0.335556	0.04045	0.410891	0.049532	4.723789	0.013133	6.040904	0.013869	4.933112	0.013965	175.0454	28.15654	0.0006	
LD irr-000	Mo2	С	0.39467	0.023849	0.48379	0.029234	4.728432	0.009959	6.027176	0.010272	4.932394	0.010767	119.1844	8.654235	0.0006	
LD unirr- (Mo2	С	0.493936	0.050949	0.605809	0.062488	4.720982	0.017682	6.052391	0.017928	4.915995	0.019545	110.6872	15.936	0.0006	
Midland i	rıMo2	С	0.288747	0.058024	0.353007	0.070937	4.739543	0.014775	6.045345	0.015392	4.92446	0.014911	229.6667	56.16398	0.0006	
Midland u	ııMo2	С	0.375953	0.054724	0.461103	0.067119	4.736946	0.029658	6.027289	0.030077	4.918758	0.033768	85.46558	15.10397	0.0006	
palisadesl	HMo2	С	0.263259	0.053499	0.321264	0.065287	4.74243	0.020113	6.052502	0.020498	4.925275	0.020559	161.5052	34.42282	0.0006	
palisadesl	∟Mo2	C	0.08695	0.71596	0.128867	1.06111	4.977287	1.203438	8.453995	1.802025	2.771824	0.892904	9.467252	5.083415	0.0006	
palisades	ιMo2	С	0.279399	0.061273	0.340679	0.074712	4.743206	0.017253	6.058166	0.017755	4.923073	0.017684	202.4315	59.1192	0.0006	
plate02 ir	r Mo2	С	0.325116	0.067847	0.396791	0.082804	4.728125	0.014226	6.079154	0.015421	4.917592	0.014698	253.0837	56.20894	0.0006	
plate02 u	nMo2	С	0.394579	0.058778	0.481183	0.071678	4.724726	0.011428	6.077901	0.012496	4.922067	0.011856	224.2865	50.33977	0.0006	
r_Si_stand	- Mo2	C	0.509912	0.20886	0.666294	0.272914	4.758947	0.101923	5.840516	0.10424	4.742403	0.117437	66.15743	39.37952	0.0006	

Fig 5.8.3 Mo2 C phase

Acknowledgments

I would like to express my deepest gratitude to Professor David Sprouster for his invaluable guidance and support throughout this project. I am also very grateful to Mingxi Ouyang, Nicholas Olynik, and Akhil Kolanti for their assistance and support with data collection. Special thanks to Anthony Zhu for his code support. Through this project, I have gained a thorough understanding of XRD refinement techniques and learned how to use the MAUD program for batch analysis with code.