1) Se arrojan simultáneamente n dados, cada uno con k caras numeradas de 1 a k. Queremos calcular todas las maneras posibles de conseguir la suma total $s \in \mathbb{N}$ con una sola tirada. Consideramos que los dados son distinguibles, es decir que si n=2 y k=2, entonces existen 2 posibilidades que suman s=3: 1 en el primer dado y 2 en el segundo y viceversa. a) Definir en forma recursiva la función $f: \mathbb{N}^2 \to \mathbb{N}$ tal que f(n,s) devuelve la cantidad de formas de conseguir la suma s con n dados de k caras. b) Demostrar que f tiene la propiedad de superposición de subproblemas. c) Definir un algoritmo top-down para calcular f(n,s) indicando claramente las estructuras de datos utilizadas y la complejidad resultante. d) Escribir el (pseudo-)código del algoritmo top-down resultante. **Aprobación:** definir y justificar correctamente f, indicando cómo se computa f(n,s) en tiempo $O(nk\min\{s,nk\}).$

$$\begin{cases}
0 & \text{Si}(i=0 \land S\neq 0) \lor S > iK \\
F(i,S) = \begin{cases}
1 & \text{Si}(i=0 \land S\neq 0) \lor S > iK \\
Si(i=0 \land S\neq 0) \lor S > iK
\end{cases}$$

$$\begin{cases}
\sum_{d=1}^{K} F(i-1,S-d) & \text{Si}(n=0) \\
0 & \text{Si}(i=0 \land S\neq 0) \lor S > iK
\end{cases}$$

El llamado f(n,s) retorna la solución.

Un estado (i, s) modela que hay i dados por tirar, y que tenemos que sumar s entre todos los i dados.

Si 5 > ik retornamos O porque no hay forma de sumar s aún tirando el valor máximo K con los i dados.

También retornamos o si no hay más dados para tirar (i=0) y necesitamos sumar algún valor distinto de o (s\neq 0).

Si i=0 y s=0 estamos en un caso base exitoso. Retornamos
1 pues en efecto sumamos O si tiramos o dados.

En el caso recursivo modelamos haber tirado cada uno de los K posibles valores con el i-ésimo dado.

#Estados: O(ns)

#Llamados: O(K") Hay K llamados por cada uno de los n dados.

Calcular 1 estado: O(K) Hay K sumas.

A priori calcular todos los estados sería O(NSK). Pero como definimos la guarda S>iK, cuando i=n en el primer llamado a la función, si S>NK ya podemos retornar o sin calcular ningún otro estado.

				'	nk,ys					
donde	S & n	K. Co	ılcular	todos	los es	tados	es c	nk	min & S,	, nk 5
Hass s.	1005005	ادنون الم	o veop	lama.s	cuando:	nk m	m & S. nk	Z //	k n	
11009 30	pei posi	0.07. 6	9,00	7871003	Sucriso :	1173 1771	77,11	```	-1\ .	
M[1n]	[1 MIN {	s,nkz.] < T							
f(i,s)	:									
it	(i=0 x	\ \$ \to) ~ 5;	>iK:	return o)				
if	i=0 ^	5 = 0	: retu	רא ו						
71	M[i][s] = T:								
	140									
	for de	-1 to	K:							
	۲+	-f(i-1	, 5-4)							
	MEiJES] < r								
te!	turn M	[2][4]								