Supplementary materials

S1. Details of sampled populations

Table S1: details of sampled populations: region, population number (ID; see map main manuscript), given population name (Population name), X- and Y-coordinates (X, Y) in coordinate system Belgian Lambert 72 (epsg:31370), sample year(s) (Year) and number of samples (n).

Region	ID	Population name	Х	Υ	Year	n
Caratal	1	Mt St Frieux	-45055.836	147290.022	2018	19
Coastal France	2	Slack	-42871.872	169089.634	2018	20
Trance	3	Sangatte	-30478.698	186092.799	2018	20
	4	Westhoek Zuid	23274.352	197883.930	2018	12
	_		24222	100505.050	2020	9
	5	Cabour	24000.043	196525.259	2018	10
	6	Veurne	31418.656	196887.771	2018	20
	7	Tropiflora	24109.489	198094.010	2018 2020	20 9
	8	Westhoek vissersdorp	23467.294	199618.259	2020	20
	Ü	Westinger Vissersagip	23 107.23 1	133010.233	2020	3
	9	Westhoek NO	24120.869	199559.082	2018	22
					2020	8
	10	Westhoek Oost	24446.785	199084.816	2018	10
	11	Oosthoekduinen	26503.156	199039.926	2020 2018	8 19
	11	Oostiidekuuilleli	20303.130	199039.920	2018	10
	12	Belvedere	27469.461	199611.067	2018	10
					2020	8
	13	HB-Noord	29615.521	201772.772	2018	7
	4.4		20652.466	202000 447	2020	9
	14	HB-Doornpanne	29652.166	202069.447	2018 2020	10 7
Coastal	15	HB-Oost	29672.837	201505.012	2020	10
Flanders		2 0000	20072.007		2020	6
	16	HB-Pylyserlaan	29915.987	201394.673	2018	10
					2020	8
	17	Schipgatduinen	29945.549	202880.064	2018	12
	18	Witte Burg	30561.564	202010.765	2020 2018	4 12
	10	Witte Buig	30301.304	202010.703	2020	7
	19	Astridlaan	31560.066	203551.845	2018	17
					2020	7
	20	Plaatsduinen	32343.888	203286.675	2018	18
	21	O a atrua a malalusim a m	22404 252	202402.072	2020	9
	21	Oostvoordduinen	33104.253	202483.973	2018 2020	20 10
	22	Ter Yde West	32486.049	203868.703	2018	10
					2020	3
	23	Ter Yde IWVA	33151.347	203994.353	2018	10
					2020	9
	24	Karthuizerduinen	33449.436	204338.378	2018	9
	25	Simliduinen	33814.709	204776.506	2020 2018	9 20
	23	Similadirien	3301-7.703	204770.500	2020	7

	26	Sint-Laureins1	37336.964	207156.451	2020	9
	27	Sint-Laureins2	38042.734	207317.394	2020	7
	28	Warandeduinen Middelkerke	39485.855	208330.732	2020	7
	29	Raversijde1	41944.728	210035.728	2020	8
	30	Raversijde2	42218.098	210273.838	2020	10
	31	Raversijde3	42839.355	210691.179	2020	5
	32	Raversijde4	43074.002	210795.354	2020	5
	33	Fort Napoleon	50050.322	215428.560	2020	9
	34	Spanjaardduinen Oostende	51403.973	216230.489	2020	8
	35	Bredene	53808.105	217367.810	2020	10
	36	Duinbossen DeHaan	59600.497	221053.034	2020	12
	37	Zwinbosjes-grazed	77921.134	228387.482	2020	9
	38	Zwinbosjes	78243.444	228544.867	2018	20
					2020	15
	39	Vloethemveld-Noord	60996.017	205437.804	2020	9
	40	Vloethemveld-Zuid	61176.550	204480.049	2020	11
	41	Wetteren	117432.840	188634.139	2018	8
	42	Kortenhoeff-NL	149108.508	234460.777	2020 2020	20 10
	42	Kalmthout				12
	43 44	Averbode	154547.132	232375.786	2020 2020	9
	44	Arendschot	194424.342	192633.330 190406.561	2020	9
Inland	45 46		196699.590			
Flanders	46	Geel-Bel	199027.845	205395.375	2018 2020	20 11
	47	Kopberg	201751.857	204674.642	2020	21
	48	Keiheuvel	210274.429	208479.656	2020	10
	49	Hamont-Achel2	230347.333	220397.920	2020	8
	50	Hamont-Achel3	230584.834	220105.267	2020	9
	51	Hamont-Achel1	230612.992	220822.730	2020	10
Inland	52	Harchies	100876.462	127411.662	2021	19
Wallonia	53	Lagland	249207.562	38937.742	2021	20

S2. DNA-extraction and PCR protocol

DNA-extraction protocol for wing tips Bembix rostrata

Eppendorfs with samples dried to the air were put in liquid nitrogen for a few minutes and homogenized with a crusher. 50 μ L Chelex and 10 μ L proteinase K were added and the samples were incubated (56°C) overnight. The boiling and centrifuge steps were performed the next morning.

Day 1

- Put a wing tip in a 1.5mL ep, let it dry for several minutes in the open air (to let the ethanol evaporate)
- Put the ep for 5' in liquid nitrogen
- Crush the wing tip firmly with a crusher
- Pipet 50 μ L 6% Chelex InstaGene Matrix solution (Biorad) (while it is on the magnetiser) into the ep, while rinsing off the crusher
- Add 10 μL proteinase K (N600mAU/ml, Qiagen)
- Incubate overnight at 56°C (+ soft shaking)

Day 2

- Vortex (+ minicentrifuge) to get the drops of the lid
- 15' 99°C
- Vortex (+ minicentrifuge) to get the drops of the lid
- Centrifuge 3' at 14 000 rpm and store in the fridge awaiting PCR-amplification

PCR protocol

For the primer mix, a ratio of '3:1:3' 'Forward primer: Reverse primer (tailed): oligonucleotides dye (FAM, VIC, NED, PET)' is used (1μ M concentration). Table S2 gives the partition of primers into 3 pairs of multiplexes: for each series/plate of samples, 6 PCRs were run (6 multiplexes: 1.1, 1.2, 2.1, 2.2, 3.1, 3.2). These PCR products were diluted and pairwise combined (1.1+1.2, 2.1+2.2, 3.1+3.2) before sending the PCR products to the ABI analyzer.

We worked with a total volume in each well of a PCR-plate of 5 μ l:

- 2 μl Qiagen MultiPlex (Qiagen® Multiplex PCR kit cat. No. 206143)
- 2 μl microsatellite primer mix
- 1 μl of DNA

If the tissue material for the DNA extraction was very small, the 2 μ l of DNA was air dried by putting it on a block heater (37°C) for at least 5 hours. This way, the concentration of DNA was increased in the PCR-volume.

PCR conditions:

- 95°C for 15 min
- 35 cycles of

94°C for 30 sec 57°C for 90 sec 72°C for 60 sec

- 60°C for 30 min
- 4°C for ∞

Table S2: Partitioning of primers into 3 pairs multiplexes: 6 PCRs are run for each sample, but 3 PCRs products are used for the ABI analyzer.

1.1							2.1						3.1					
3 μL	F110	F16	F486	F9	F227	F57	3 μL	F76	F144	F234	F32	F35	6 μL	F12	F138	F161		
1 μL	R110	R16	R486	R9	R227	R57	1 μL	R76	R144	R234	R32	R35	2 μL	R12	R138	R161		
9 μL	6-FAM I	M13-22	L	VIC	M13-2	21	9 μL	6-FAN	и М13-2	1			3 μL	F329	F111			
Dilutio	Dilution post PCR: 2 x 6 μL VIC M13-21							1 μL	R329	R111								
							Dilution	post P	CR: 4x				12 μL	6-FAM	VIC M13-21			
										Dilution post PCR: 4x								
1.2							2.2				3.2							
6 μL	F403	F299					6 μL	F20					6 μL	F337				
2 μL	R403	R299					2 μL	R20					2 μL	R337				
3 μL	F116	F375	F467				3 μL	F437	F487	F298	F266	F153	3 μL	F196	F419	F480	F218	F307
1 μL	R116	R375	R467				1 μL	R437	R487	R298	R266	R153	1 μL	R196	R419	R480	R218	R307
12 μL	NED M1	L3 Mod	la				9 μL NED M13 Moda			6 μL	S μL NED M13 Moda							
9 μL	PET T7						12 μL	PET T	7				15 μL PET T7					
Dilutio	on post P	CR: 4x	•				Dilution	post F	PCR: 2x	•	•		Dilution post PCR: 3x				•	

S3. List of primers

Table S3: Characteristics of the 33 microsatellites used in our study for *Bembix rostrata*. A full list of the newly developed (by AllGenetics®, A Coruña, Spain) remaining non-tested (and tested but discarded) microsatellite loci can be obtained from the contacting author. Annealing temperature used for all primers is 57°C. Five loci had a lot of stutter in the amplification profiles and were discarded from the analysis (AGBro486, -329, -196, -437, -298). Following abbreviations are used: the multiplex mix in which the marker was included (Primer Mix) and fluorescent label used (Label), the observed fragment length range (Size range), the number of alleles observed (No. alleles), observed and expected heterozygosity (Ho and He), if they are used in the genetic analyses after assumption testing (Used) and both primer sequences (F = forward, R = reverse).

Locus	Repeat motif	No repeats	Primer Mix	Label	Size range (bp)	No. of alleles	Но	He	Used	Primer sequences (5'-3')
AGBro110	AAG	7	1.1	FAM	95-124	7	0.58	0.6189	V	F: GCCATCACGTTTACAGCCAC
	7 10	·				•	0.00	0.0200	,	R: AGAGGTGGTAGTGCTGGAGA
AGBro16	AGGC	7	1.1	FAM	188-208	5	0.1437	0.1573	n	F: CTCCGCGTACTATTTCCGCT
						_				R: TAACAGCGTGGTTTCCGGAA
AGBro486	AG	11	1.1	FAM	366-414	/	/	/	n	F: ACAAACGTTTCACGGTACTTGT
							•	-		R: GGCAGGAGGACATCGTTGAT
AGBro9	AG	14	1.1	VIC	90-130	14	0.7089	0.8144	У	F: GAGTGAGAGGGAGGCAGAGA
									•	R: TACGTGCCTGAGGAAACGAC
AGBro227	AACG	6	1.1	VIC	144-180	8	0.3978	0.4198	У	F: CAAGCATGGCCAGTCTGTTT
										R: TGGCTACTGTGGGCTCACTA
AGBro57	AG	7	1.1	VIC	225-235	2	0.114	0.2806	n	F: GCACCGGGACACTGTCTTAT
										R: GGGTCACTCGATCGACGTTT
AGBro403	AACG	10	1.2	NED	122-180	12	0.6876	0.7435	У	F: TTATCCCGATCGCTTGGCAT
										R: GCTCGACGCTTCATCGATTAAC
AGBro116	AG	8	1.2	NED	213-235	5	0.4787	0.5597	У	F: CTCCTCTCCATACGACGCAC
										R: TTGGCAGTAGAACGAGGACC
AGBro375	ACAG	8	1.2	NED	267-279	3	0.3719	0.4279	У	F: CGAAGTTCCGCATTACCTTGC
										R: CCTGACAGGTGCTCACGTATT
AGBro299	AC	8	1.2	PET	100-123	5	0.4092	0.4418	У	F: GACGTAAGGGCGAAGAACGT
										R: GCATTCCGTGCGAGTGAATA
AGBro467	AAG	7	1.2	PET	158-202	11	0.6525	0.7317	У	F: GTCCAGAGAAGGTATGAGAGGG
										R: CGTGACGTAATATCCGGGCA
AGBro76	AAG	7	2.1	FAM	100-122	7	0.5356	0.5813	У	F: AATTGTGCCGAAACTTGGCC
										R: TCGTTGCAAGTGTCGTGACA
AGBro144	ACGG	7	2.1	FAM	152-192	8	0.6386	0.745	У	F: GCCGTTTATCCGTCCATCCA
										R: CCTCTCATATCGGTGCCTCC
AGBro234	AG	8	2.1	FAM	270-282	4	0.5425	0.605	У	F: CGTGCTCCACCCGAAATTCT
										R: CAGCTGCAGTTCGATGATCG

AGBro32	AAGC	5	2.1	VIC	133-149	4	0.4853	0.4955	У	F: GCGGCTGGTATCTGATCCAA
		_			222.242		0.4.05	0.0400		R: CTAGCTGTCTGCCTACCTGC
AGBro35	AAG	5	2.1	VIC	229-240	2	0.1405	0.3423	n	F: AAGTTCTCACGAAACCGCCT
A C D 427	4.6	7	2.2	NED	104 110	,	,	,		R: GGGCCACCAGATTCTTACCC
AGBro437	AG	7	2.2	NED	104-110	/	/	/	n	F: CGATAGCAAGCACGAGG
ACDro 497	۸۵۵	12	2.2	NED	146 176	C	0.5101	0.6027	.,	R: GAGGGTAAACCACGAGGAGC
AGBro487	ACG	12	2.2	NED	146-176	6	0.5191	0.6037	У	F: GGGAGAGTTCGCGAAGGTAC R: CCTTCAGAAATGCTTGTCGTTGT
AGBro298	AG	10	2.2	NED	230-306	/	1	,	n	F: AGCTTGTTGGACGCGTAAGA
AGBI0296	AG	10	2.2	INED	230-300	/	/	/	n	R: GGCGATCGACATTTCAGTCA
AGBro20	AAT	6	2.2	PET	309-320	3	0.0759	0.1001	n	F: TCTGATTGGACCGTTCGTCG
AGBIOZU	AAT	0	2.2	PEI	309-320	3	0.0759	0.1001	n	R: ACGTGTCTGATCGTCGT
AGBro266	АТ	6	2.2	PET	112-122	4	0.3306	0.4099	V	F: CGCGAACATTAAGCACCGAA
AGBI0200	AI	U	2.2	FEI	112-122	4	0.5500	0.4033	У	R: ATACCGTCACGACAGAGCCA
AGBro153	AG	7	2.2	PET	160-170	4	0.4447	0.5075	У	F: TAGCTCAGCCTCTACCGACC
Addio133	Ad	,	2.2	1 61	100-170	7	0.4447	0.3073	У	R: TGAACGAGAACGGCGTACAG
AGBro161	AAAG	6	3.1	FAM	248-263	4	0.4679	0.556	У	F: TCGCCGTAAGACCTTCGTAC
7.0010101	7000	Ü	3.1	1741	240 203	7	0.4075	0.550	y	R: GGTATGCGGTCTTCCTGGTG
AGBro329	ACC	6	3.1	FAM	85-133	/	/	/	n	F: TCCCTCTTCGTTCCTCTCT
		-				,	,	,		R: CTCGGCGAAAGATAGCACGG
AGBro111	AG	8	3.1	FAM	162-184	9	0.5723	0.6913	n	F: TGTACCAATCCGGCCTTTGT
										R: AACGTACGGTGGATTAGCCG
AGBro12	AG	8	3.1	VIC	198-220	10	0.5872	0.6902	У	F: GTGCCGTAATTCGACGAACG
									•	R: ATCTCGTAACGTTCCTCGCC
AGBro138	AAG	6	3.1	VIC	95-112	3	0.1869	0.3075	n	F: ACTGCCGTACCTGTAGCTTC
										R: CTTTCACGCTTCGCACATGT
AGBro196	AG	14	3.2	NED	126-158	/	/	/	n	F: ATGGCGAAGGAAACGGTCTT
										R: CTCCCTCGCGTATTTCTCCT
AGBro419	AG	10	3.2	NED	248-264	6	0.398	0.5849	n	F: TGTGACCAGTGGTAACCCAT
										R: TGCACCCACTGTCCATATAGC
AGBro337	AGC	6	3.2	PET	113-130	5	0.3928	0.4102	У	F: CGACGGGACCCAATTCATCG
										R: ACCATCCTCTTTCTACCGCC
AGBro480	AAAGC	7	3.2	PET	163-183	4	0.5074	0.5932	У	F: TCGTTTACTGTCGCAAATGACC
										R: TTGCTTCTCTTCGCTCCACT
AGBro218	AG	6	3.2	PET	299-315	4	0.4393	0.4919	У	F: CAATACCGTCAACTCACCCGA
										R: CTGACACCTGACGGATAGCC
AGBro307	AAG	6	3.2	PET	220-236	4	0.3323	0.451	У	F: GTCGCAGCTGATAGCCAAGT
										R: ACGACTTATGTCCACGTGGA

S4. Genetic differentiation measures

Figures S1-2 are similar to figure 2 in the main manuscript with Nei's standardized genetic distance (D_s), but for the genetic differentiation measures F_{ST} (Weir and Cockerham 1984) and D (Jost 2008). Genetic differentiation measures were calculated with the R package diveRsity (Keenan et al. 2013). Unbiased confidence intervals of 95% were calculated from 1,000 bootstraps.

Tables S4-6 list the 10 populations with the highest genetic distances and differentiation values, which have the highest average differentiation from all other populations.

These two differentiation measures give similar results as the pairwise Nei's standardized genetic distance used in the main manuscript: differentiation values are overall high among inland sampling sites, and low among coastal sites. Values are medium to high between coastal and inland regions.

Figure S1: graphical matrix representation of pairwise genetic differentiation measure F_{ST}: light blue are low, dark blue are mid, and dark green are high pairwise genetic differentiation values between populations. Grey areas are non-significant pairwise genetic differentiation values (0 was included in the 95% confidence intervals of 95% were calculated from 1,000 bootstraps). The x- and y-axes represent the population ID, subdivided in the four different regions. Genetic distances are symmetrical and consequently the matrix is mirrored along the diagonal. There is overall high genetic differentiation within the inland regions (right upper corner) and low genetic differentiation within the coastal regions (left lower corner). The genetic distances between coastal and inland regions are medium to high.

Figure S2: graphical matrix representation of pairwise genetic differentiation measure Jost's D: light blue are low, dark blue are mid, and dark green are high pairwise genetic differentiation values between populations. Grey areas are non-significant pairwise genetic differentiation values (0 was included in the 95% confidence intervals of 95% were calculated from 1,000 bootstraps). The x- and y-axes represent the population ID, subdivided in the four different regions. Genetic distances are symmetrical and consequently the matrix is mirrored along the diagonal. There is overall high genetic differentiation within the inland regions (right upper corner) and low genetic differentiation within the coastal regions (left lower corner). The genetic distances between coastal and inland regions are medium to high.

Table S4: the 10 populations with highest averaged Nei's distance values (Mean(D_s)). ID is population ID from figure 1 and table S1, SD(D_s) is the standard deviation of mean(D_s).

Region	Population name	ID	Mean(Ds)	SD(D _s)
Flanders-inland	Kortenhoeff-NL	42	0.291	0.069
Flanders-inland	Hamont-Achel2	49	0.257	0.075
Wallonia	Harchies	52	0.256	0.063
Flanders-inland	Keiheuvel	48	0.230	0.065
Flanders-inland	Wetteren	41	0.229	0.082
Wallonia	Lagland	53	0.215	0.065
Flanders-inland	Arendschot	45	0.207	0.069
Flanders-inland	Kalmthout	43	0.201	0.048
Flanders-inland	Hamont-Achel1	51	0.200	0.061
Flanders-inland	Halomt-Achel3	52	0.197	0.061

Table S5: the 10 populations with highest averaged F_{ST} values (Mean(F_{ST})). ID is population ID from table S1, $SD(F_{ST})$ is the standard deviation of mean(F_{ST}).

Region	Population	ID	Mean(F _{ST})	SD(F _{ST})
Flanders-inland	Kortenhoeff-NL	42	0.173	0.039
Wallonia	Harchies	52	0.171	0.035
Flanders-inland	Wetteren	41	0.161	0.049
Wallonia	Lagland	53	0.142	0.039
Flanders-inland	Hamont-Achel2	49	0.119	0.047
Flanders-inland	Keiheuvel	48	0.116	0.039
Flanders-inland	Kalmthout	43	0.106	0.029
Flanders-inland	Arendschot	45	0.101	0.043
Flanders-inland	Hamont-Achel1	51	0.1	0.04
Flanders-inland	Hamont-Achel3	50	0.098	0.043

Table S6: the 10 populations with highest averaged Jost's D values (Mean(D)). ID is population ID from table S1, SD(D) is the standard deviation of mean(D).

Region	Population	ID	Mean(D)	SD(D)	
Flanders-inland	Kortenhoeff-NL	42	0.119	0.028	
Wallonia	Harchies	52	0.116	0.028	
Wallonia	Lagland	53	0.097	0.029	
Flanders-inland	Wetteren	41	0.094	0.045	
Flanders-inland	Keiheuvel	48	0.079	0.030	
Flanders-inland	Hamont-Achel2	49	0.077	0.036	
Flanders-inland	Hamont-Achel1	51	0.073	0.032	
Flanders-inland	Kalmthout	43	0.070	0.019	
Flanders-inland	Hamont-Achel3	50	0.061	0.032	
Flanders-inland	Geel-Bel	46	0.061	0.026	

S5. Population level statistics

Population level statistics for all sampled population are given in table S6.

Table S7: population level statistics for all sampled populations (table S1). Following abbreviations are used: Region, population number (ID; see map main manuscript), given population name (Population name), number of samples (n), number of private alleles (NP), rarefied allelic richness (AR), expected heterozygosity (H_e), observed heterozygosity (H_o) and inbreeding coefficient (F_{IS}). Standard errors (SE) are given for AR, H_e, H_o and F_{IS}.

Region	ID	Population name	n	NP	AR ± SE	H _e ± SE	H₀ ± SE	F _{IS} ± SE
_	1	Mt St Frieux	19	1	2.523 ± 0.153	0.547 ± 0.037	0.559 ± 0.041	-0.022 ± 0.026
France- Picardie	2	Slack	20	1	2.605 ± 0.141	0.587 ± 0.031	0.585 ± 0.038	0.003 ± 0.035
Picardie	3	Sangatte	20	0	2.630 ± 0.160	0.588 ± 0.029	0.555 ± 0.033	0.057 ± 0.027
	4	Westhoek Zuid	21	0	2.623 ± 0.148	0.584 ± 0.032	0.520 ± 0.035	0.105 ± 0.042
	5	Cabour	10	0	2.769 ± 0.160	0.63 ± 0.028	0.619 ± 0.033	0.004 ± 0.046
	6	Veurne	20	0	2.570 ± 0.145	0.586 ± 0.03	0.498 ± 0.032	0.149 ± 0.028
	7	Tropiflora	29	1	2.628 ± 0.157	0.575 ± 0.036	0.535 ± 0.038	0.072 ± 0.032
	8	Westhoek vissersdorp	23	0	2.511 ± 0.138	0.563 ± 0.03	0.494 ± 0.036	0.126 ± 0.036
	9	Westhoek NO	30	1	2.657 ± 0.162	0.594 ± 0.032	0.547 ± 0.034	0.083 ± 0.021
	10	Westhoek Oost	18	0	2.647 ± 0.162	0.587 ± 0.034	0.558 ± 0.048	0.054 ± 0.057
	11	Oosthoekduinen	29	0	2.711 ± 0.154	0.613 ± 0.028	0.584 ± 0.034	0.047 ± 0.040
	12	Belvedere	18	0	2.670 ± 0.147	0.604 ± 0.029	0.515 ± 0.038	0.151 ± 0.042
	13	HB-Noord	16	0	2.686 ± 0.164	0.594 ± 0.039	0.545 ± 0.051	0.110 ± 0.054
	14	HB-Doornpanne	17	0	2.659 ± 0.154	0.589 ± 0.036	0.501 ± 0.033	0.137 ± 0.035
	15	HB-Oost	16	1	2.725 ± 0.156	0.617 ± 0.028	0.576 ± 0.030	0.057 ± 0.041
	16	HB-Pylyserlaan	18	0	2.661 ± 0.16	0.595 ± 0.033	0.551 ± 0.045	0.087 ± 0.049
	17	Schipgatduinen	16	0	2.478 ± 0.16	0.539 ± 0.037	0.490 ± 0.030	0.063 ± 0.040
	18	Witte Burg	19	0	2.629 ± 0.142	0.599 ± 0.028	0.577 ± 0.024	0.023 ± 0.036
	19	Astridlaan	24	0	2.688 ± 0.153	0.603 ± 0.030	0.555 ± 0.034	0.071 ± 0.046
-landers-	20	Plaatsduinen	27	0	2.630 ± 0.147	0.590 ± 0.030	0.513 ± 0.036	0.140 ± 0.035
coast	21	Oostvoordduinen	30	0	2.634 ± 0.136	0.594 ± 0.027	0.580 ± 0.033	0.021 ± 0.039
	22	Ter Yde West	13	0	2.614 ± 0.147	0.595 ± 0.029	0.582 ± 0.036	0.005 ± 0.058
	23	Ter Yde IWVA	19	0	2.581 ± 0.13	0.582 ± 0.027	0.576 ± 0.027	-0.009 ± 0.04
	24	Karthuizerduinen	18	0	2.614 ± 0.147	0.585 ± 0.031	0.503 ± 0.036	0.136 ± 0.052
	25	Simliduinen	27	0	2.621 ± 0.143	0.590 ± 0.030	0.560 ± 0.024	0.032 ± 0.030
	26	Sint-Laureins1	9	0	2.655 ± 0.163	0.602 ± 0.033	0.502 ± 0.036	0.141 ± 0.065
	27	Sint-Laureins2	7	0	2.842 ± 0.176	0.64 ± 0.036	0.528 ± 0.049	0.173 ± 0.060
	28	Warandeduinen Middelkerke	7	0	2.718 ± 0.148	0.612 ± 0.034	0.517 ± 0.042	0.125 ± 0.070
	29	Raversijde1	8	0	2.634 ± 0.162	0.597 ± 0.042	0.369 ± 0.045	0.361 ± 0.069
	30	Raversijde2	10	0	2.576 ± 0.136	0.597 ± 0.03	0.470 ± 0.038	0.211 ± 0.054
	31	Raversijde3	5	0	2.442 ± 0.18	0.529 ± 0.058	0.395 ± 0.05	0.201 ± 0.072
	32	Raversijde4	5	0	2.724 ± 0.188	0.616 ± 0.036	0.604 ± 0.059	0.018 ± 0.084
	33	Fort Napoleon	9	0	2.502 ± 0.139	0.556 ± 0.036	0.517 ± 0.041	0.053 ± 0.064
	34	Oostende	8	0	2.696 ± 0.161	0.617 ± 0.035	0.451 ± 0.042	0.264 ± 0.055
	35	Bredene	10	1	2.513 ± 0.157	0.576 ± 0.034	0.364 ± 0.044	0.359 ± 0.069
	36	Duinbossen DeHaan	12	0	2.575 ± 0.134	0.603 ± 0.027	0.403 ± 0.034	0.333 ± 0.050

	37	Zwinbosjes-grazed	9	0	2.448 ± 0.151	0.544 ± 0.045	0.481 ± 0.048	0.098 ± 0.054
	38	Zwinbosjes	35	0	2.551 ± 0.152	0.567 ± 0.035	0.504 ± 0.034	0.108 ± 0.022
	39	Vloethemveld-	9	0	2.412 ± 0.13	0.528 ± 0.040	0.458 ± 0.037	0.102 ± 0.047
		Noord						
	40	Vloethemveld-Zuid	11	0	2.535 ± 0.153	0.555 ± 0.042	0.483 ± 0.042	0.123 ± 0.038
·	41	Wetteren	28	0	2.127 ± 0.129	0.443 ± 0.046	0.446 ± 0.049	0.005 ± 0.030
	42	Kortenhoeff-NL	10	0	2.178 ± 0.14	0.446 ± 0.046	0.392 ± 0.044	0.091 ± 0.048
	43	Kalmthout	12	0	2.387 ± 0.151	0.518 ± 0.042	0.432 ± 0.042	0.171 ± 0.054
	44	Averbode	9	0	2.607 ± 0.177	0.579 ± 0.044	0.466 ± 0.049	0.182 ± 0.065
	45	Arendschot	9	0	2.355 ± 0.148	0.523 ± 0.042	0.435 ± 0.043	0.106 ± 0.078
Flanders- inland	46	Geel-Bel	31	1	2.525 ± 0.143	0.547 ± 0.036	0.510 ± 0.039	0.071 ± 0.040
IIIIaiiu	47	Kopberg	21	0	2.433 ± 0.145	0.522 ± 0.039	0.431 ± 0.049	0.220 ± 0.062
	48	Keiheuvel	10	0	2.433 ± 0.148	0.528 ± 0.038	0.479 ± 0.045	0.079 ± 0.064
	49	Hamont-Achel2	8	0	2.379 ± 0.142	0.545 ± 0.042	0.486 ± 0.053	0.114 ± 0.060
	50	Hamont-Achel3	9	0	2.306 ± 0.112	0.523 ± 0.033	0.521 ± 0.038	-0.010 ± 0.055
	51	Hamont-Achel1	10	0	2.35 ± 0.123	0.532 ± 0.032	0.540 ± 0.042	-0.025 ± 0.055
\\/allania	52	Harchies	19	2	2.114 ± 0.134	0.433 ± 0.049	0.336 ± 0.040	0.217 ± 0.051
Wallonia	53	Lagland	20	1	2.154 ± 0.124	0.450 ± 0.037	0.330 ± 0.041	0.269 ± 0.057

S6. DAPC scatterplots

Coastal and inland regions separately

Figure S3: DAPC scatterplots for coastal (A) and inland (B) regions separately. Numbers are population IDs and are centered in the point cloud of each population.

S7. Derived dispersal kernel

Figure S4: histogram of pairwise distances of genetic connections based on assignment tests, depicting an indirectly derived dispersal kernel. Colors depict source population with coastal Flanders and coastal France combined together in the coastal region.