Trapping and Beamloading in hybrid Plasma Wakefield Accelerator schemes

Alexander Knetsch

29. November 2016

INHALTSVERZEICHNIS

[?] It is worth noting that the Debye Shielding assumes a thermalized plasma and is not the right idea of a plasma reaction to a rapid change in charge on a femtosecond timescale. The more appropriate figure of merit in that case is the depth an electromagnetic wave

with frequency ω can permeate the plasma fluid.

The transparency of a plasma to a electromagnetic wave can be calculated by applying the Maxwell equations ?? so that one gets the differenctial equation.

$$kP^{-1} = \frac{c}{\sqrt{wP^2 - \omega^2}} \stackrel{wp \gg \omega}{=} \frac{c}{wp}$$
 (0.1)

If one assumes now, that the wake fields are constant during the trapping process, then

$$H - v_{\phi} P_z = \text{const.} \tag{0.2}$$

$$\gamma mc^2 + \Psi - v_\phi p_z - v_\phi q A_z = \text{const.}$$
 (0.3)

$$\gamma + \frac{q\Phi}{mc^2} - v_\phi \frac{p_z}{mc^2} = \text{const.}$$
 (0.4)

$$\gamma - v_{\phi} \frac{p_z}{mc^2} \underbrace{\frac{q}{mc^2} (\Phi - v_{\phi} A_z)}_{\hat{\Psi}} = \text{const.}$$
 (0.5)

which is especially true for the hamiltonian.

$$\begin{split} \frac{d}{dt}H &= q(\frac{\partial \Phi}{\partial t} - \vec{v}\frac{\partial \vec{A}}{\partial t}) \\ &= -qv_{\phi}(\frac{\partial \Phi}{\partial z} - \vec{v}\frac{\partial \vec{A}}{\partial z}) \end{split}$$

The trapping of a single electron in PWFA happens in a short time (i.e. a short propagation distance) compared to the timescales on which the wakefield changes its shape. An example for a distance over which the wakefield is modified is the betatron length FORUMLA !!!. This gives the convenient possibility to treat the problem in a frame moving along with the phase velocity of the wake v_{ϕ} . Mathematically this can be done by finding a constant $C_{\rm H}$ with $\frac{dC_{\rm H}}{dt}=0$,

so that $\frac{d}{dt}(H-C_{\rm H})=0.$ W. Lu suggested in his thesis [citation needed !!!]

$$\begin{split} \frac{d}{dt}(H - v_{\phi}P_z) &= -qv_{\phi}(\frac{\partial\Phi}{\partial z} - \vec{v}\frac{\partial\vec{A}}{\partial z}) - qv_{\phi}(v_z\frac{\partial A_z}{\partial z} - \frac{\partial\Phi}{\partial z}) \\ &\approx qv_{\phi}(v_z\frac{\partial A_z}{\partial z} - v_z\frac{\partial A_z}{\partial z}) = 0 \end{split}$$

$$\begin{split} H - v_{\phi}P_z &= const.\\ \gamma mc^2 + q\Phi - v_{\phi}p_z - v_{\phi}qA_z &= const.\\ \gamma + \frac{q\Phi}{mc^2} - v_{\phi}\frac{p_z}{mc^2} - v_{\phi}q\frac{A_z}{mc^2} &= const\\ \gamma - v_{\phi}\frac{p_z}{mc^2} - \underbrace{\frac{q}{mc^2}(\Phi - v_{\phi}A_z)}_{\Psi} &= const.\\ - const. + \gamma + v_{\phi}\frac{p_z}{mc^2} &= \Psi \end{split}$$

$$\Psi_f - \Psi_i = \gamma_f - \gamma_i - v_\phi \frac{\gamma_f m v_f}{mc^2}$$

$$Q'(z) = \int_{-\infty}^{\infty} 1 - exp(W_{\text{ADK}}(z, t)) dt$$

