Linear combination of random variable and Joint distribution

• 单位统一

$$Y = 0.001X_4 + X_5$$

Y是一个新的变量 (可以写成线性组合)

问题:线性组合 合在一起 是什么分布

• 线性组合 有系数

$$Y = c_1 X_1 + c_2 X_2 + \dots + c_p X_p$$

is a linear combination of X1,...Xp

- Properties
 - Mean

$$E(Y) = c_1 E(X_1) + c_2 E(X_2) + \dots + c_p E(X_p)$$

就是线性的

Variance

$$V(Y) = c_1^2 V(X_1) + c_2^2 V(X_2) + \dots + c_p^2 V(X_p) + 2 \sum_{i < j} \sum_{j < j} c_i c_j cov(X_i, X_j)$$

比较复杂 系数是平方 内含协方差 注意系数两倍(规定了i < i才有两倍(两两之间相关 如果独立则

平均数

任何分布,对变量X1...Xp做平均,假定E(Xi)=μ 都相等
 那么均值的均值E(x̄)=μ || x也是一个随机变量

每一个变量服从同一种分布,这个变量和其他变量都一样拥有同样的均值和方差

平均值的均值=任何一个变量的均值 平均值的方差=1/p任何一个变量的方差 离散度降低 $V(\bar{x})=\sigma^2/p$ eg 比较全班女生的个人平均体温

正态分布

• 如果Xi服从<mark>正态分布</mark>,均值和方差不相等,(互相独立,没有cov)

X1~n (1, 2)

X2~n (4, 5)

Xp~n (715, 1129)

正态分布的叠加依然是正态分布,可以通过 μ 和 σ 确定一个n dist 都是线性的

If
$$E(X_i) = \mu_i$$
 and $V(X_i) = \sigma_i^2$ for $i = 1, 2, ..., p$.

$$Y = c_1 X_1 + c_2 X_2 + \dots + c_p X_p$$

is a normal random variable with

$$\mu_Y = E(Y) = c_1 \mu_1 + c_2 \mu_2 + \dots + c_p \mu_p$$
and

$$\sigma_Y^2 = V(Y) = c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_p^2 \sigma_p^2$$

i.e. $Y \sim N(\mu_Y, \sigma_Y^2)$ as described above.

解题示例

X1~()

X2~()

X1⊥X2

Y=c1X1+c2X2

Y~()

计算ry

卡方分布

卡方分布Chi-square distribution , Xi服从 独立标准 正态分布 (iid, 独立同分布) , G=ΣXi²

If
$$G = \sum_{i=1}^{n} X_i^2$$

where
$$X_1, ..., X_n \sim N(0,1)$$

只有一个 参数 n (n≥1) ,称为degrees of freedom(df),记为 χ^2 _n

曲线下面积为1

basic concepts of statistics

Population> Sample(collection of all elements possessing common characteristics)

Sample< Population (a subset of the population)

eg 总体:糖尿病患者

未来可能出现的糖尿病患者也属于这个总体

eg2 总体: 2022年的糖尿病患者

100人=1个样本(不等于组织样本的样本ry)

实施了评价拿到黄金的人(总体)的调查,有180w人**参与**,约有1/4参与者(1份随机样本)得到随机化, 这180w人是1份样本

Sampling Methods

2.2 Sampling Methods

Sampling: the method or technique to take a sample from the population

随机抽样 (random sampling)

从有限总体中简单随机 抽样或从无限总体中随 机抽样。

分层抽样 (stratified sampling)

将总体单位按某种特征或 某种规则划分为不同的层 (Strata),然后从每一层中 随机抽取一定量的抽样单 位,组成样本。

整群抽样 (cluster sampling)

将总体划分成若干个群组, 抽样时直接随机抽取群组。 抽中群组中的所有抽样单 位即为样本。

系统抽样

(systematic sampling) 将总体中的个体按一定的 顺序排列,等分成n个部分。 在第一个部分内随机抽取1 个个体,然后等距离在其 他部分分别抽取1个个体, 组成样本。

概率抽样方法

方便抽样 (convenience sampling)

ı

ı

ı

ı

Ī

ı

ı

ı

ı

I

ı

ı

用总体中便于取得的一 些抽样单位作为样本

判断抽样 (judgement sampling)

由对研究总体非常了解 的人主观确定总体中他 认为最具代表性的个体 组成样本。

非概率抽样方法

在男女比例很悬殊的地方随机抽样可能是抽不到的

怎么听着像抽卡

这种情况一定(?)要分层

整群抽样 eg年级里抽一个班

系统抽样 eg抽一个宿舍楼(楼号) 床号 天然顺序

方便抽样 (主观)

低质量抽样-不能代表全体 虽然发了问卷,不是方便抽样,但抽到的全是经常刷主页的人

1电话很贵,所以抽样到的都是有钱人

Random sample

 $representative (has\ equal\ probability\ to\ be\ selected)\ ,\ independent\ ,\ implementation$

已知总体(出货率0.002%←这是一种分布X),可以 推断 其中一个元素(出货情况未知)的出货率是0.002%

只要在总体里就符合该情况

另一个手游x 出货率0.001%←另一种分布 x

sampling bias

parameter in population

未知但确定

meanµ

variance σ^2 standard deviation σ

Statistics

每个变量都是随机的所以 统计量T也是随机的

Examples of statistics $T = T(X_1, X_2, ..., X_n)$:

•
$$T = \overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$$
 sample mean

•
$$T = S^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2$$
 sample variance

•
$$T = S = sqrt(\frac{1}{n-1}\sum(X_i - \bar{X})^2)$$
 sample standard deviation

- $T = M_n$ sample median
- T ≡ 7
- Order statistics: $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$

T=I(X1 < X3)

indicator functionT=1, F=0

这也是一个统计量

•
$$T = S^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2$$
 sample variance

☆在这个情况下,如果µ是未知量,那么T不是统计量;如果µ是已知量,则T是统计量 如果能计算X bar 并用x bar估计µ,如果算式中为x bar,也是统计量,但原始是µ进入式子后就不是统计量

Sampling distributions抽样分布

aka统计量的分布首先需要是个统计量

抽样分布≠样本分布

抽样分布往往是一个联合分布

抽样分布是统计量的分布

统计量T_n,第一组样本称为X₁⁽¹⁾~X_n⁽¹⁾...第s组X₁^(s)

$$X_1^{(1)}, \dots, X_n^{(1)} \rightarrow T_n^{(1)} = T(X_1^{(1)}, \dots, X_n^{(1)})$$

 $X_1^{(2)}, \dots, X_n^{(2)} \rightarrow T_n^{(2)} = T(X_1^{(2)}, \dots, X_n^{(2)})$
 \vdots
 $X_1^{(s)}, \dots, X_n^{(s)} \rightarrow T_n^{(s)} = T(X_1^{(s)}, \dots, X_n^{(s)})$

在重复抽样的情况下,可以估计统计量的分布

sample size n

standard error 标准误(估计量)=对于方差的估计/√样本量

中位数不好算 均值使用比较广泛

一个同学测了365次体温 样本量很大 但不能代表所有人 数据可用性

抽样对象来自正态分布

iid 正态分布叠加 不正态+样本量小→根据实际情况 不正态+样本量大→CLT

central limit theorem

中心极限定理

连续型 任意分布 $\mu \sigma^2$

3.1 Central Limit Theorem (CLT)

23

Given that the distribution of a continuous variable in the underlying population has mean μ and standard deviation σ , the distribution of sample means computed for **samples of size** \mathbf{n} has three important properties:

- 1. The mean of the sampling distribution is identical to the population mean μ .
- 2. The standard deviation of the distribution of sample means is equal to σ/\sqrt{n} .
- 3. Provided that n is large enough, the shape of the sampling distribution is approximately normal.

http://www.lock5stat.com/StatKey/sampling 1 quant/sampling 1 quant.html

AN: approximately

conditions

independence

• sample size >30 (if not normal)

离散型

First, recall that a Binomial variable is just the sum of *n* Bernoulli variable:

$$S_n = \sum_{i=1}^n X_i$$

Notation:

$$S_n \sim \text{Binomial}(n,p)$$

 $X_i \sim \text{Bernoulli}(p) = \text{Binomial}(1, p) \text{ for } i = 1, ..., n$

Xi是bernoulli分布那么Sn是二项分布

In this case,

$$\hat{p} = \frac{S_n}{n} = \frac{\sum_{i=1} X_i}{n} = \bar{X}$$

 \hat{p} is a sample mean!

We can use the CLT when *n* is large.

????

在二项分布中,既然p hat是sample mean那么就可以用CLT

3.5 Binomial CLT

For a Bernoulli variable,

- $\mu = \text{mean} = p$
- $\sigma^2 = \text{variance} = p(1-p)$

•
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow \hat{p} \sim N(p, \frac{p(1-p)}{n})$$

随着n增加一开始是偏的其实

虽然CLT的使用条件是n>30,但因为此处p太小所以n=30的时候偏差也很大

3.5 Histograms of number of successes

Hollow histograms of samples from the binomial model where p = 0.10 and n = 10, 30, 100, and 300. What happens as n increases?

所以

When the sample size is large enough, the binomial distribution with parameters n and p can be approximated by the normal model with parameters $\mu = np$ and $\sigma = \sqrt{np(1-p)}$.

Currently recommended

np > 15 n(1-p) > 15

X~Bin (n=245, p=0.25)