

# Mathematics Club Contingent Problem Set - 5



Challenge posed on: 12/07/2024

Challenge conquered by: 19/07/2024

## 1 Overview

• Topics focused: – Combinatorics

• Challengers: – Aprajithan

- Linear Algebra

- Arya

- Calculus

- Aravind

- Number Theory

## 2 Problems

### 1. Warm Up

- (a) Consider 3 real numbers x, y, z such that x+2y+z=6. Find the minimum value of  $x^2+2y^2+z^2$ .
- (b) Evaluate the following indefinite integral:

$$\int \frac{x^2 + n(n-1)}{(xsinx + ncosx)^2} dx$$

where n is a natural number.

- 2. A convergence test Can there exist a convergent series  $\sum a_n$  such that  $\sum \frac{1}{n^2 a_n}$  is also convergent?
- 3. The Cubic Polynomial The polynomial  $ax^3 + bx^2 + cx + d$  has integral coefficients a, b, c, d with ad odd and bc even. Prove that all the roots of this polynomial cannot be rational.
- 4. Time for an inequality Find the minimum value of k such that the following holds

$$2y(x-1) - x(y+1) \le k$$

Given that

$$(x-1)y^2 + 4xy - 4y + 5x - 16 = 0$$
$$xy^2 - 6xy + 10x - 28 = 0$$

5. **Determinant ?!** Consider two matrices A and B with positive entries having sizes  $3 \times 2$  and  $2 \times 3$  respectively. Find the value of det(BA), given that

$$AB = \begin{bmatrix} 9 & 12 & 15 \\ 19 & 26 & 33 \\ 29 & 40 & 51 \end{bmatrix}, \ det(BA) \neq 0$$

## 6. Catalan Frenzy!

(a) We define an increasing lattice path on a  $2 \times 2$  grid as a path where each step taken is of unit length and is either upwards or to the right. Find the number of increasing lattice paths from (k,0) to (n+k,n+k) such that you never cross the x=y line where  $k \geq 0$  and  $n \geq 1$  are integers.

- (b) Using the result from part (a), determine:
  - i. The number of rooted binary trees with  $n \geq 2$  leaves such that each node has either both its left and right children or no child at all (i.e. It is a leaf).
  - ii. The number of rain trees with n nodes. Where a rain tree is defined as follows
    - i. A rain tree with 1 node is just the root.
    - ii. A rain tree with n nodes consists of a root node and some smaller rain trees joined to the root node such that the total sum of the number of nodes in the joined rain trees is n-1 and that the order of their connection to the root node matters.

#### 7. Can you solve these?

- (a) Find all positive integer quadruples (x, y, z, w) satisfying  $x^2 + 6y^2 = z^2$  and  $6x^2 + y^2 = w^2$ .
- (b) Find all solutions in positive integers to  $x^8 + y^8 = z^6$ .
- 8. Done anything like this before, have you? We call a subset of a set neat if the arithmetic mean of the elements in the subset is an integer. Let  $a_n$  denote the number of neat subsets of the set of the first n even numbers. Prove that  $a_n n$  is always even.
- 9. NumberFizz The fizz of a number is defined as follows:
  - The fizz of a single digit number is the number itself.
  - The fizz of any other number is the same as the fizz of the sum of the digits of the number.
  - We denote the fizz of a number n by f(n).

Find  $\sum_{n=1}^{n=20} f_{p_n}(x)$  where  $p_n$  is the  $n^{th}$  prime number and  $f_p(x)$  is defined as

$$f_p(x) = \sum_{i=0}^{\infty} f(p^i)x^i, \quad x \in [0, 1]$$