

1,024K x 32 Static RAM Module

Features

- High-density 32-megabit SRAM module
- 32-bit Standard Footprint supports densities from 16K x 32 through 1M x 32
- High-speed CMOS SRAMs
 Access time of 25 ns
- Low active power
 6.6W (max.) at 25 ns
- 72 pins
- Available in ZIP, SIMM, or angled SIMM format

Functional Description

The CYM1851 is a high-performance 32-megabit static RAM module organized as 1,024K words by 32 bits. This module is constructed from eight 1,024K x 4 SRAMs in SOJ packages mounted on an epoxy laminate substrate. Four chip selects are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

The CYM1851 is designed for use with standard 72-pin SIMM sockets. The pin-

out is downward compatible with the 64-pin JEDEC ZIP/SIMM module family (CYM1821, CYM1831, CYM1836, and CYM1841). Thus, a single motherboard design can be used to accommodate memory depth ranging from 16K words (CYM1821) to 1,024K words (CYM1851).

Presence detect pins $(PD_0 - PD_3)$ are used to identify module memory density in applications where modules with alternate word depths can be interchanged.

Selection Guide

	1851-25	1851-30	1851-35
Maximum Access Time (ns)	25	30	35
Maximum Operating Current (mA)	1200	1200	960
Maximum Standby Current (mA)	480	480	480

Cypress Semiconductor Corporation

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Voltage Applied to Outputs

in High Z State -0.5V to +V_{CC}

DC Input Voltage -0.5V to +7.0V

Operating Range

Range	Ambient Temperature	$\mathbf{v}_{\mathbf{cc}}$
Commercial	0°C to +70°C	$5V \pm 10\%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{\rm CC}$ = Min., $I_{\rm OH}$ = -4.0 mA	2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V
V_{IL}	Input LOW Voltage		-0.5	0.8	V
I_{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-10	+10	μΑ
I_{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-10	+10	μΑ
I_{CC}	V _{CC} Operating Supply Current	$\frac{V_{CC}}{CS_N} = Max., I_{OUT} = 0 \text{ mA},$		1200	mA
I_{SB1}	Automatic CS Power-Down Current ^[1]	Max. V_{CC} , $\overline{CS} \ge V_{IH}$, Min. Duty Cycle = 100%		480	mA
I_{SB2}	Automatic CS Power-Down Current ^[1]	$\begin{array}{l} \text{Max. V}_{\text{CC}}, \overline{\text{CS}} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \text{or V}_{\text{IN}} \leq 0.2\text{V} \end{array}$		80	mA

Capacitance^[2]

Спристинес					
Parameter	Description	Test Conditions	Max.	Unit	
C _{INA}	Input Capacitance ($\overline{WE}, \overline{OE}, A_{0-19}$)	$T_A = 25^{\circ}\text{C}, f = 1 \text{ MHz}, $ $V_{CC} = 5.0\text{V}$	80	pF	
C_{INB}	Input Capacitance (CS)	VCC = 3.0 V	20	pF	
C_{OUT}	Output Capacitance		20	pF	

Notes

2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O
$$\frac{167\Omega}{}$$
 O 1.73V

^{1.} A pull-up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Switching Characteristics Over the Operating Range^[3]

		1851	1851-25		1851-30		1851-35	
Parameter	nmeter Description Min. Max.		Min.	Max.	Min.	Max.	Unit	
READ CYCLE	•	•						
t _{RC}	Read Cycle Time	25		30		35		ns
t _{AA}	Address to Data Valid		25		30		35	ns
t _{OHA}	Data Hold from Address Change	5		5		5		ns
t _{ACS}	CS LOW to Data Valid		25		30		35	ns
t _{DOE}	OE LOW to Data Valid		15		20		25	ns
$t_{ m LZOE}$	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z		12		12		12	ns
t _{LZCS}	CS LOW to Low Z ^[4]	10		10		10		ns
t _{HZCS}	CS HIGH to High Z ^[4, 5]		12		12		12	ns
t _{PD}	CS HIGH to Power-Down		25		30		35	ns
WRITE CYCL	E [6]	•	•	•	•	•	•	•
t _{WC}	Write Cycle Time	25		30		35		ns
t _{SCS}	CS LOW to Write End	20		25		30		ns
t _{AW}	Address Set-Up to Write End	20		25		30		ns
t _{HA}	Address Hold from Write End	3		3		3		ns
t _{SA}	Address Set-Up to Write Start	2		2		2		ns
t _{PWE}	WE Pulse Width	20		25		30		ns
t_{SD}	Data Set-Up to Write End	15		15		20		ns
t _{HD}	Data Hold from Write End	2		2		2		ns
t _{LZWE}	WE HIGH to Low Z	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[5]	0	12	0	12	0	12	ns

Notes:

- 3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{\rm OL}/I_{\rm OH}$ and 30-pF load capacitance.
- 4. At any given temperature and voltage condition, $t_{\rm HZCS}$ is less than $t_{\rm LZCS}$ for any given device. These parameters are guaranteed and not 100% tested.
- 5. t_{HZCS} and t_{HZWE} are specified with $C_L = 5 \, pF$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \, mV$ from steady-state voltage.
- 6. The internal write time of the memory is defined by the overlap of $\overline{\text{CS}}$ LOW and $\overline{\text{WE}}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1^[7, 8]

1851-5

Switching Waveforms (continued)

Read Cycle No. 2^[7, 9]

Write Cycle No. 1 (WE Controlled)^[6]

- Notes: 7. WE is HIGH for read cycle.
- 8. Device is continuously selected, $\overline{CS} = V_{IL}$, and $\overline{OE} = V_{IL}$.
- 9. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 (CS Controlled)[6, 10]

Note:

10. If $\overline{\text{CS}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Truth Table

CS	WE	ŌĒ	Inputs/Output	Mode
Н	X	X	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read
L	L	X	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
25	CYM1851PM-25C	PM04	72-Pin Plastic SIMM Module	Commercial
	CYM1851PN-25C	PN04	72-Pin Plastic Angled SIMM Module	
	CYM1851PZ-25C	PZ09	72-Pin Plastic ZIP Module	
30	CYM1851PM-30C	PM04	72-Pin Plastic SIMM Module	Commercial
	CYM1851PN-30C	PN04	72-Pin Plastic Angled SIMM Module	
	CYM1851PZ-30C	PZ09	72-Pin Plastic ZIP Module	
35	CYM1851PM-35C	PM04	72-Pin Plastic SIMM Module	Commercial
	CYM1851PN-35C	PN04	72-Pin Plastic Angled SIMM Module	
	CYM1851PZ-35C	PZ09	72-Pin Plastic ZIP Module	

Document #: 38-M-00052-A

Package Diagrams

72-Pin Plastic SIMM Module PM04

72-Pin Plastic Angled SIMM Module PN04

72-Pin Plastic ZIP Module PZ09

[©] Cypress Semiconductor Corporation, 1992. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.