Advance Computer Architecture and x86 ISA

University of Science and Technology of Hanoi

MS. LE Nhu Chu Hiep

Pipeline

How reduce the time for computing on data?

- Increase the clock frequency
- Parallel execution on several data

Parallel execution

Working on the chain

Pipeline

Assembly Line

Assembly line

- Task: building a car
- Composed of several sub-tasks
 - T1: Build the chase
 - T2: Place the seats
 - T3: Place the wheel
 - T4: Pose doors
 - T5: Paint
 - T6: Finish

Building chain

Issues

- Cost for this production technique
 - 1 worker: Non specialist, no optimally, able to do everything

- Time per car producing
 - o 6 UT (six unit time)

- Production Cadence
 - 1 new car each 6 time units

How to increase the production?

How to increase the production?

- Placing one worker for each elementary task
- Specialized worker, which is able to do one elementary thing
- Optimal work

Assembly line pipeline

Assembly line workers

- Cost for this production technique
 - 6 workers

- Time per car producing
 - 6 UT (six unit time)

- Production Cadence
 - 1 new car for each time unit

Instruction Pipeline

Definition

- An implementation technique
 - Multiple instructions are overlapped in execution
 - Takes advantage of parallelism that exists among the actions needed to execute an instruction
- Pipe stage / Pipe segment
 - Different steps are completing different parts of different instructions in parallel
- Processor cycle
 - Time required between moving an instruction one step down the pipeline

Definition

- The pipeline designer's goal
 - Balance the length of each pipeline stage
 - If the stages are perfectly balanced, then the time per instruction on the pipelined processor

Time per instruction on unpipelined machine
Number of pipe stages

- Pipelining yields a reduction in
 - The number of clock cycles per instruction (CPI)
 - It is not visible to the programmer

RISC Instruction Set: Remind?

What is the basics instruction types of a RISC ?

What is the implementation of a RISC?

RISC Instruction Set: Remind?

- What is the basics instruction types of a RISC?
 - Control Instructions
 - Treatment Instructions
 - Transfer Instructions
- What is the implementation of a RISC?
 - Instruction read cycle (RI)
 - Instruction decode/register fetch cycle (DI)
 - Execution/effective address cycle (EX)
 - Write-back cycle (WB)

RISC is well designed to fit to the implementation stages per each cycle

Pipeline example

- Instruction read cycle (RI)
- Instruction decode/register fetch cycle (DI)
- Execution/effective address cycle (EX)
- Write-back cycle (WB)

Pipeline example: non-pipeline

Pipeline example: with pipeline

- 1 instruction per cycle
- Clock frequency increases by factor 4
- Speedup = *4

Pipeline example: with pipeline (1)

Pipeline example: with pipeline (2)

Pipeline example: with pipeline (3)

	Temps/											
	1	2	3	4	5	6	7	8	9	10	11	
Instruction 1	Li	Di	Ex									
Instruction 2		Li	Di				0 0					
Instruction 3			Li									

Pipeline example: with pipeline (4)

	Temp											
	1	2	3	4	5	6	7	8	9	10	11	
Instruction 1	Li	Di	Ex	Rr								
Instruction 2		Li	Di	Ex							\$	
Instruction 3			Li	Di							-	
Instruction 4				Li								

Pipeline example: with pipeline (5)

	Temps/0											
	1	2	3	4	5	6	7	8	9	10	11	
Instruction 1	Li	Di	Ex	Rr								
Instruction 2		Li	Di	Ex	Rr							
Instruction 3			Li	Di	Ex							
Instruction 4		, ,		Li	Di							
Instruction 5					Li							

Pipeline example: with pipeline (6)

	1	2	3	4	5	6	7	8	9	10	11
	- E										
Instruction 1	Li	Di	Ex	Rr							
Instruction 2		Li	Di	Ex	Rr						
Instruction 3			Li	Di	Ex	Rr					
Instruction 4				Li	Di	Ex					
Instruction 5					Li	Di					
Instruction 6						Li					

Pipeline example: with pipeline (7)

	1	2	3	4	5	6	7	8	9	10	11
Instruction 1	Li	Di	Ex	Rr							
Instruction 2		Li	Di	Ex	Rr						
Instruction 3			Li	Di	Ex	Rr					
Instruction 4				Li	Di	Ex	Rr				
Instruction 5					Li	Di	Ex				
Instruction 6		0,				Li	Di				
Instruction 7							Li				

Data Computation Time

Data Computation Time

- Let F the computation to realized
- Let F = fn o fn-1 o o f2 o f1 the decomposition of F
- Let tn, tn-1,, t2 and t1 the times for the computation of each elementary part
- The time to compute one data is $Tps = \sum ti$
- The cadence of computation is: Cadence = max (ti)

Generalization

- Let TpsComp the computation time for the global treatment
- Let N the number of pipeline stages
- Let Tcycle the cycle time (cadence of computing)
 - Tcycle = TpsComp / N + Treg

Generalization (cont.)

- Let D the number of data to transform
- Let T(D) the time to transform D data
 - \circ T(D) = (D + N 1) * Tcycle
- The time to transform one data if given by
 - \circ T(D) / D = (D + N 1) * (TpsComp / N + Treg) / D
- If D go to infinity and D >> N then the transformation time per data is
 - T(D) / D = TpsComp / N + Treg
- If N go to infinity and D << N then the transformation time per data is
 - $\circ T(D) / D = N / D * Treg$

Generalization Example

Computation time performance

Thank you for you listening