STATISTICS

(SESSION-6)

COVARIANCE:

- Co means two.
- In generally variance means ,How data varies

$$ightharpoonup$$
 Variance = $\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \overline{x})^2$

- Variance Explained about data variance in column itself.
- For example, we have age data available.

How age is varying is explained by age variance.

AGE	SALARY
20	20000
25	25000
30	30000
35	35000
40	40000
45	45000
50	50000

Here , we observe that how a variable is changing means varying according to the another variable.

- In data we have columns, This columns also called as Features.

- For Example, We have age Vs salary

How salary is varying according to the age is, This is given by Covariance.

➤ Variance = single column

Variance (x) =
$$\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \overline{x})^2$$

CoVariance (x,x) =
$$\frac{1}{N}$$
x $\sum_{i=1}^{N} (x_i - \overline{x}) * (x_i - \overline{x})$

CoVariance (x,y) =
$$\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \overline{x}) * (y_i - \overline{y})$$

Step – 1 : Calculate the mean of Age (\bar{x}) and Income (\bar{y})

Step – 2 : $(x_i - \bar{x})$ Subtract each value of Age from mean of Age

 ${\it Step-3:} (y_i-\overline{y)} \, {\it Subtract each value of Income from mean of Income}$

Step – 4 : Multiply $(x_i - \bar{x})(y_i - \bar{y})$

Step - 5: Addition

Age	Income	$(x_i - \bar{x})$	$(y_i - \overline{y})$	$(x_i-\bar{x})(y_i-\bar{y})$
20	20000	20-35 = -15	-15000	225000
25	25000	25-35 = -10	-10000	100000
30	30000	30-35 = -5	-5000	25000
35	35000	35-35 = 0	0	0
40	40000	40-35 = 5	5000	25000
45	45000	45-35 = 10	10000	100000
50	50000	50-35 = 15	15000	225000
Age $(\bar{x}) = 35$	Income (\bar{y}) =			700000
	35000			= 100000

By seeing the covariance values we can say that both are positively related or negative

Negative correlation

positive correlation

no relation

Plot name : Scatter plot

> Graph between two numerical variables

COVARIANCE MATRIX:

Let us Assume,

We have Age and Salary

$$\begin{bmatrix} v(A) & cov(A,S) \\ cov(S,A) & v(S) \end{bmatrix}$$

- There are two columns :
- 1. Age
- 2. Salary
- let us know,

How many combinations possible

0 and 1

00 01 10 11

Age and Salary has 4 Combinations.

- Age with Salary: Covariance

- Age with Age : Variance

- Salary with Age: Covariance

- Salary with Salary : Variance

Variance(x) = covariance(x,x) = 1

Covariance(x,y) = Covariance(y,x)

- If covariance has positive value, then that means the two variables are positively correlated.
- If covariance has negative value, then that means the two variables are negatively correlated.
- If covariance has zero value, then that means the two variables has no relation.
- Covariance Provides only whether the variables has relation or not.
- It will not provide how much percentage the variables are related with each other.
- Covariance can be anything from information to information.

$$\begin{bmatrix} 25 & 5 \\ 5 & 30 \end{bmatrix}$$
 \rightarrow covariance value is Positive So, Positive relation.

$$\begin{bmatrix} 25 & -5 \\ -5 & 30 \end{bmatrix}$$
 \rightarrow covariance value is Negative So, Negative relation.

$$\begin{bmatrix} 25 & 0 \\ 0 & 30 \end{bmatrix}$$
 \rightarrow covariance value is Zero So , No relation.

Negative correlation

Positive correlation

No correlation

Plot name : Scatter plot

> Graph between two numerical variables.

CORRELATION COEFFICIENT (r):

We already know that, Covariance will provide that there is a relation or not, But it will not provide the amount of relation.

- Correlation will provide the Amount of relation.
- It will Explain how two variables related to each other.

In order to get the percentage of relationship we will use :

Pearson correlation coefficient

- It is denoted by 'r'
- r varies from -1 to 1
- r = -1 to 0 means Negative relation
- r = 0 means no relation
- r = 1 means Positive relation

For Example:

- If r = 0.7
 - ➤ There is a 70% Positive relation between Age and Salary
- If r = -0.7
 - There is a 70% Negative relation between Age and Salary
- If r = 0
 - There is a no relation between Age and Salary

$$r = \frac{cov(x,y)}{\sigma_x * \sigma_y}$$

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

- Features or Variables are having No relation.
- No relation also called as Independent each other.
- Independence also called as Perpendicular each other.
- Perpendicular is also called as Orthogonal each other.
- Orthogonal is also called as 90 Degrees phase shift.

$$\begin{bmatrix} 5 & 20 \\ 20 & 10 \end{bmatrix} \qquad \begin{bmatrix} 5 & -20 \\ -20 & 10 \end{bmatrix} \qquad \begin{bmatrix} 5 & 0 \\ 0 & 10 \end{bmatrix}$$
 (1) (2) (3) Positive negative no relation