2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pagrindinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	C	В	В	A	D	C	В	C	В	D

II dalis

11	[-2; 3]	
12	12.1 $x = 1,5$ arba $\frac{3}{2}$, arba $1\frac{1}{2}$	12.2 -3 ; 7 arba $x = -3$; $x = 7$
13	13.1 40° arba $\frac{2\pi}{9}$	13.2 100° arba $\frac{5\pi}{9}$
14	180	
15	15.1 $(-\infty; -2)$, $(1; 6)$ arba $x \in (-\infty; -2)$ ir $x \in (1; 6)$ arba $x < -2$ ir $1 < x < 6$ arba $(-\infty; -2) \cup (1; 6)$	15.2 <i>x</i> = 1 <i>arba</i> 1
16	16.1 \overrightarrow{AC}	16.2 0
17	17.1 10 <i>arba</i> 10 m	17.2 11,8 <i>arba</i> 11,8 m

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
18		3	
18.1		2	
	$g'(x) = 3x^2 - 12x$	1	Už teisingą funkcijos išvestinę.
	$g'(x) = 3x^{2} - 12x,$ g'(2) = -12. Ats.: -12.	1	Už teisingą atsakymą.
	<i>Ats.</i> : −12.		
18.2		1	
	Ats.: $\frac{x^4}{4} - 2x^3 + C$.	1	Už teisingą atsakymą.

Pastaba. Jei mokinys vietoj C įrašo bet kokį realųjį skaičių, jam skiriamas 1 taškas.

[©] Nacionalinis egzaminų centras, 2015

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19	V	3	
	$2\sin x = -1,$		
	$\sin x = -\frac{1}{2},$		
	$x = (-1)^k \left(-30^\circ\right) + 180^\circ \cdot k \ arba$	1	Už teisingai išspręstą duotąją lygtį.
	$x = (-1)^k \cdot \left(-\frac{\pi}{6}\right) + \pi k, \ k \in \mathbf{Z},$		
	$k = 0$: $x = -30^{\circ}$,	1	
	$k = -1$: $x = 30^{\circ} - 180^{\circ} = -150^{\circ}$,	1	Už bent vieną teisingą sprendinį iš
	$k = 1$: $x = 30^{\circ} + 180^{\circ} = 210^{\circ}$,		intervalo [–180°; 360°].
	$k = 2$: $x = -30^{\circ} + 360^{\circ} = 330^{\circ}$,		
	$k = 3$: $x = 30^{\circ} + 540^{\circ} = 570^{\circ}$		
	(netinka),		
	$k = -2$: $x = -30^{\circ} - 360^{\circ} = -390^{\circ}$		
	(netinka).		
	Ats.: $x = -150^{\circ}; -30^{\circ}; 210^{\circ}; 330^{\circ} \ arba$		
	$x = -\frac{5\pi}{6}; -\frac{\pi}{6}; \frac{7\pi}{6}; \frac{11\pi}{6}.$	1	Už gautą teisingą atsakymą.

Pastaba. Jei mokinys teisingai nubraižė $y = \sin x$ ir $y = -\frac{1}{2}$ (arba $y = 2\sin x$ ir y = -1) grafikų eskizus, jam skiriamas pirmas taškas.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20		7	
20.1		2	
	$\begin{cases} 4x - 5 > 0, \\ 2x + 3 > 0, \end{cases}$	1	Už užrašytą teisingą nelygybių sistemą.
	$\lfloor 2x+3>0,$		
	$\begin{cases} x > 1,25, \\ x > -1,5, \end{cases}$		
	x > -1,5,		
	<i>x</i> > 1,25.	1	Už teisingai išspręstą nelygybių sistemą.
20.2		5	
	$\log_{0,2}((4x-5)\cdot(2x+3)) \ge \log_{0,2}13,$	1	Už teisingai pritaikytą logaritmų savybę.
	$\log_{0,2}(8x^2 + 2x - 15) \ge \log_{0,2}13,$		
	$8x^2 + 2x - 15 \le 13,$	1	Už teisingai palygintus logaritmų
	$4x^2 + x - 14 = 0,$		argumentus.
	$x_1 = -2,$	1	Už gautus teisingus kvadratinės lygties
	$x_2 = 1,75.$		sprendinius.
	$ \begin{array}{ccc} + & - & + \\ \hline -2 & 1,75 & x \\ \hline -2 & 4///4 & \rightarrow \end{array} $	1	Už gautus teisingus nelygybės sprendinius.
	$ \begin{array}{cccc} -2 & 1,\overline{25} & 1,75 & x \\ Ats.: & x \in (1,25;1,75]. \end{array} $	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		7	
21.1		1	
	Ats.: $\frac{3}{4}$	1	Už teisingą atsakymą.
21.2		1	
	Ats.: $\frac{1}{4}$	1	Už teisingą atsakymą.
21.3		5	
	$\mathbf{P}(\text{visos spalvos skirtingos}) = \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{5}{12}.$	1	Už teisingą sandaugą $\frac{1}{4} \cdot \frac{1}{3} \cdot \frac{5}{12}$.
	$\cdot 3! = \frac{5}{24},$	1	Už apskaičiuotą teisingą įvykio, kad visos trys spalvos skirtingos, tikimybę.
	$\mathbf{P}(\text{visos spalvos vienodos}) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{5}{12} \cdot \frac{5}{12} \cdot \frac{5}{12} = \frac{1}{8},$ $\mathbf{P}(\text{visos spalvos vienodos}) = \frac{3}{24} < \frac{3}{24} < \frac{3}{4} \cdot \frac{1}{4} + \frac{5}{12} \cdot \frac{5}{12} \cdot \frac{5}{12} = \frac{1}{8},$	1 1	Už bent vieno vienspalvio trejeto tikimybės radimą. Už apskaičiuotą teisingą įvykio, kad visos trys spalvos vienodos, tikimybę.
		1	Už teisingą tikimybių palyginimą.

Pastaba. Jei mokinys 21.1 dalyje gauna neteisingą atsakymą, tačiau 21.2 dalyje teisingai apskaičiuoja priešingo įvykio tikimybę, jam skiriamas 1 taškas.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		7	
22.1		1	
	$\angle AML = \alpha \Rightarrow \angle ALM = 120^{\circ} - \alpha.$ Tuomet $\angle CLK = 180^{\circ} - (120^{\circ} - \alpha) - 60^{\circ} = \alpha.$	1	Už teisingą pagrindimą, kad $\angle AML = \angle CLK$.
22.2		1	
	$\angle A = \angle C = 60^{\circ} \Rightarrow \angle ALM = \angle LKC$, $LM = LK \Rightarrow \Delta AML = \Delta CLK$ pagal lygią kraštinę ir du lygius kampus prie jos.	1	Už pagrindimą, kad trikampiai yra lygūs.
22.3		2	
	Jei $AM = x$, tai $LC = x \Rightarrow AL = 10 - x$, $\triangle AML$ taikome kosinusų teoremą: $y^2 = x^2 + (10 - x)^2 - $ $-2 \cdot x(10 - x) \cdot \cos 60^\circ$, $y = \sqrt{x^2 + 100 - 20x + x^2 - 10x + x^2} =$	1	Už teisingai užrašytą kosinusų teoremą.
	$= \sqrt{3x^2 - 30x + 100}.$	1	Už atliktus teisingus pertvarkymus.
22.4		3	
	$y' = \frac{6x - 30}{2\sqrt{3}x^2 - 30x + 100} =$ $= \frac{3x - 15}{\sqrt{3}x^2 - 30x + 100},$ $3x^2 - 30x + 100 > 0, \text{ su visomis}$ $x \text{ reikšmėmis,}$ $y' = 0,$ $3x - 15 = 0,$	1	Už teisingą funkcijos išvestinę.
	x=5.	1	Už apskaičiuotą teisingą kritinį tašką.
	$y'(x) \xrightarrow{-} + + + + + + + + + + + + + + + + + + +$	1	Už pagrindimą, kad kai $x = 5$, tai LM ilgis yra mažiausias.
	II būdas Nagrinėkime kraštinės $LM = y$ ilgio kvadratą $y^2 = 3x^2 - 30x + 100$, $0 \le x \le 10$, nes y įgyja mažiausią reikšmę, kai y^2	1	Už pasirinktą teisingą sprendimo būdą.
	reikšmė yra mažiausia. $x_{v} = \frac{30}{6} = 5.$ Kadangi parabolės šakos nukreiptos į viršų, tai y^{2} įgis mažiausią reikšmę, kai $x = 5$. Ats.: $x = 5$.	1	Už apskaičiuotą teisingą parabolės viršūnės abscisę. Už pagrindimą, kad kai $x = 5$, tai LM ilgis yra mažiausias.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		5	
	$x^2 + 1 = ax + 1,$		
	$x^2 - ax = 0,$		
	x(x-a)=0,		
	x = 0 arba $x = a$.	1	Už surastus teisingus rėžius.
	$S = \int_{0}^{a} (ax + 1 - x^{2} - 1) dx = \int_{0}^{a} (ax - x^{2}) dx =$	1	Už užrašytą teisingą apibrėžtinį integralą plotui apskaičiuoti.
	$=\left(\frac{ax^2}{2}-\frac{x^3}{3}\right)_0^a=$	1	Už teisingą pirmykštę funkciją.
	$=\frac{a^3}{6}=36,$	1	Už teisingą ploto išraišką per a.
	$a^{3} = 6^{2} \cdot 6,$ $a = 6.$ $Ats.: a = 6.$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24		3	
	I būdas		
	$k = \frac{1}{3},$		
	V – piramidės <i>SABCD</i> tūris,		
	V_1 – piramidės $SA_1B_1C_1D_1$ tūris,		
	$\frac{V_1}{V} = \frac{1}{27},$	1	Už teisingą tūrių santykį.
	$V_1 = 36\sqrt{2},$	1	Už apskaičiuotą teisingą V_1 .
	$V - V_1 = 972\sqrt{2} - 36\sqrt{2} = 936\sqrt{2} \text{ cm}^3.$	1	Už gautą teisingą atsakymą.
	II būdas		
	$V = \frac{a^3 \sqrt{2}}{6} \Rightarrow a = 18 \text{ cm},$	1	Už apskaičiuotą teisingą piramidės <i>SABCD</i> briaunos ilgį.
	$k = \frac{1}{3} \Rightarrow a_1 = 6 \text{ cm},$	1	Už gautą teisingą piramidės $SA_1B_1C_1D_1$ briaunos ilgį.
	$V_{nup,i} = \frac{1}{3} \cdot 6\sqrt{2} \left(18^2 + \sqrt{18^2 \cdot 6^2} + 6^2 \right) =$ $= 936\sqrt{2} \text{ cm}^3.$	1	Už apskaičiuotą teisingą nupjautinės piramidės tūrį.
	Ats.: $936\sqrt{2} \text{ cm}^3 \text{ arba } 936\sqrt{2}$.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25		3	
	I būdas		
	s_1 s_2		
	A B		
	v_1 – pirmojo dviratininko greitis,		
	v_2 – antrojo dviratininko greitis.		
	$\left(\frac{s_1}{s_1} - \frac{s_2}{s_2}\right)$	1	Už užrašytą bent vieną teisingą lygtį.
	$\frac{s_1}{v_1} = \frac{s_2}{v_2},$		ez azrasja, vena vieną teisingą ijgą.
	$\begin{cases} 36v_1 = s_2, \end{cases}$		
	$25v_2 = s_1,$	1	Už teisingą lygčių sistemą.
	$\frac{25v_2}{2} = \frac{36v_1}{2}$		
	$\frac{}{} = \frac{}{},$		
	$\left(\frac{v_2}{v_1}\right)^2 = \frac{36}{25} \Longrightarrow \frac{v_2}{v_1} = \frac{6}{5} \left(\frac{s_2}{s_1} = \frac{6}{5}\right),$		
	$t_1 = \frac{s_1}{v_1} = \frac{25v_2}{v_1} = \frac{25 \cdot 6}{5} = 30 \text{ min.}$	1	Už teisingą lygčių sistemos sprendimą.
	Ats.: 30 min. arba 30.		
	II būdas		
	v_1 – pirmojo dviratininko greitis,		
	v_2 – antrojo dviratininko greitis,		
	t – laikas iki susitikimo.		
	$\begin{cases} v_1 \cdot t = 25v_2, \\ v_2 \cdot t = 36v_1, \end{cases}$		
	$v_2 \cdot t = 36v_1,$	1	Už užrašytą bent vieną teisingą lygtį.
	$v_1 = \frac{25v_2}{t},$		
	$v_{1} = \frac{25v_{2}}{t},$ $v_{2} \cdot t = 36 \cdot \frac{25v_{2}}{t},$ $t^{2} = 25 \cdot 36,$	1	Už pasirinktą teisingą sistemos sprendimo būdą.
		1	LIĕ gauta taiginga ataslarma
	t = 30. Ats.: 30 min. arba 30.	1	Už gautą teisingą atsakymą.
	Ais 30 IIIII. aiva 30.		