Solutions to final exam in CRYPTOGRAPHY on 17 December 2003.

Problem 1

a) Unicity distance $N_0 = H(K)/D$

$$H(K) = \log_2(3^{64})$$

 $D = H_0 - H_\infty = H_0 - H(M)$
 $H_0 = \log_2 3$
 $H(M) = 3/2$
 $D = \log_2 3 - 3/2$

So, the unicity distance is $N_0 = \frac{H(K)}{D} = \frac{\log_2(3^{64})}{\log_2 3 - 3/2} \approx 1194$.

(5p)

b) Perfect secrecy $\Rightarrow I(H;C) = 0$. This is true for $l \ge 3$ because it is "one time pad" Vernem cipher (see the book).

Study l=2: For perfect secrecy $H(K) \geq H(M)$. But: $\begin{cases} H(K) &= l \cdot \log 3 \\ H(M) &= 3 \cdot 1.5 \end{cases} \Rightarrow \text{no perfect secrecy for } l \leq 2.$

(5p)

Problem 2

a) The sequence is s = (1, 0, 4, 3, 0, 3) over \mathbf{F}_5 . To find the shortest linear feedback shift register we use Massey's algorithm:

S_N	d	$C_1(z)$	C(z)	L	Shift Register	$C_0(z)$	d_0	e	N
_	_	1	1	0	←	1	1	1	0
1	1	1	$1 + 4z^{-1}$	1	-4	1	1	1	1
0	4	*	1	*	\leftarrow	*	*	2	2
4	4	1	$1 + z^{-2}$	2	1	1	4	1	3
3	3	*	$1 + 3z^{-1} + z^{-2}$	*	1 3 4 1	*	*	2	4
0	3	$1 + 3z^{-1} + z^{-2}$	$1 + 3z^{-1} + 4z^{-2}$	3	4 3	$1 + 3z^{-1} + z^{-2}$	3	1	5
3	0	*	*	*	4 3	*	*	2	6

So the final shift feedback register looks like that:

(5p)

b) The sequence is $s = [1, 0, 4, 3, 0, 3]^{\infty}$ over \mathbf{F}_5 .

$$S(z) = \frac{P(z)}{C(z)} = \frac{1 + 4z^{-2} + 3z^{-3} + 3z^{-5}}{1 - z^6}$$

Since gcd(P(z), C(z)) = 1, then the shortest linear feedback shift register is

(5p)

Problem 3

a) The "ciphertext" is given as the plaintext and one parity check symbol t.

$$P_I = \max_C P(C \text{ accepted })$$

Note that a ciphertext is accepted only if

$$t = k_1 + m_1 k_2 + m_2 k_2^2$$

holds. Suppose $C = (m_1, m_2, t)$. Then

$$P(C \text{ accepted}) = P(t = k_1 + m_1 k_2 + m_2 k_2^2) =$$

$$= \frac{\left(\begin{array}{c} \text{Number of choices of } (k_1, k_2) \text{ such that} \\ t = k_1 + m_1 k_2 + m_2 k_2^2 \text{ holds} \end{array}\right)}{\text{Total number of choices of } (k_1, k_2)} = \frac{3}{3^2} = \frac{1}{3}$$

Thus $P_I = \frac{1}{3}$.

Suppose $C = (m_1, m_2, t)$ was sent and it is replaced by $C' = (m'_1, m'_2, t')$. Then P(C' accepted | C observed) =

$$= \frac{\left(\text{ Number of keys } (k_1, k_2) \text{ for which } \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 \\ t' = k_1 + m_1' k_2 + m_2' k_2^2 \end{array} \right)}{\text{Number of keys } (k_1, k_2) \text{ for which } t = k_1 + m_1 k_2 + m_2 k_2^2} =$$

$$= \frac{\left| \left\{ (k_1, k_2) : \left\{ \begin{array}{l} t = k_1 + m_1 k_2 + m_2 k_2^2 \\ t' - t = (m'_1 - m_1) k_2 + (m'_2 - m_2) k_2^2 \end{array} \right\} \right|}{3} =$$

$$= \left[\begin{array}{c} \text{For each value of } k_2 \text{ there is an unique value of } k_1 \\ \text{such that first equation is true} \end{array} \right] =$$

$$= \frac{\left| \left\{ k_2 : t'' = k_2 m_1'' + k_2^2 m_2'' \right\} \right|}{3} =$$

$$= \left[\begin{array}{c} \text{According to the hint, the equation above has at most two solutions.} \\ \text{And for any } C \text{ we can select } C' \text{ such that we have two solutions.} \end{array} \right] =$$

$$= \frac{2}{3}.$$

Then $P_S = \sum f(C) \cdot P(C' \text{ accepted} | C \text{ observed}) = \frac{2}{3}$

(5p)

b) In the Shamir scheme (3,5) over \mathbf{F}_{97} the secret key $K=a_0$. We assume that $x_i=i$, then:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a_0 + a_1 x_1 + a_2 x_1^2 \\ a_0 + a_1 x_2 + a_2 x_2^2 \\ a_0 + a_1 x_3 + a_2 x_3^2 \end{pmatrix} = \begin{pmatrix} 44 \\ 73 \\ 28 \end{pmatrix},$$

which transforms to the linear system of equations

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 44 \\ 1 & 2 & 4 & 73 \\ 1 & 3 & 9 & 28 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 38 \\ 0 & 1 & 0 & 43 \\ 0 & 0 & 1 & 60 \end{array}\right).$$

Hence, the key K = 38.

(5p)

Problem 4

a) We want to factor the RSA number $n = p \cdot q = 3844384501$, given that $3117761185^2 \equiv 1 \pmod{3844384501}$.

Note that: $(3117761185 - 1) \cdot (3117761185 + 1) \equiv 0 \pmod{n}$, then:

$$p = \gcd(3117761184, 3844384501) = 67801$$
$$q = \frac{n}{p} = 56701$$

(5p)

b) We want to prove that n=31803221 is not a prime number, given that $2^{n-9}\equiv 27696377 \pmod{n}$. By the little Fermat's theorem for any prime number p and $a\in \mathbb{Z}_p\Rightarrow a^{p-1}\equiv 1 \pmod{p}$.

By testing: $2^{n-9} \cdot 2^8 \equiv 27696377 \cdot 256 \equiv 29957450 \neq 1 \pmod{31803221}$. Hence, *n* is not a prime number!

(5p)

Problem 5

Given $p(\alpha) = \alpha^2 + \alpha + 2 = 0$ over \mathbf{F}_3 is the generating polynomial of the field \mathbf{F}_{3^2} , we want to find the cycle characteristic of the polynomial $q(x) = x^3 + (\alpha + 1)x^2 + (\alpha + 1)x + 1$

1. Make the table of powers α^k , to make futher calculations easy: $p(\alpha) = \alpha^2 + \alpha + 2 = 0 \Rightarrow \alpha^2 = -\alpha - 2 = 2\alpha + 1$

$$\alpha^{1} = \alpha \qquad \alpha^{5} = 2\alpha$$

$$\alpha^{2} = 2\alpha + 1 \quad \alpha^{6} = \alpha + 2$$

$$\alpha^{3} = 2\alpha + 2 \quad \alpha^{7} = \alpha + 1$$

$$\alpha^{4} = 2 \quad \alpha^{8} = 1$$

2. Factor $q(x) = (x+a)(x^2+bx+c)$ over \mathbf{F}_{3^2} , where $a,b,c \in \mathbf{F}_{3^2}$ – are some constants.

$$\begin{cases} a+b &= \alpha+1 \\ c+ab &= \alpha+1 \\ ac &= 1 \end{cases} \rightarrow \begin{cases} a=c=1 \\ b=\alpha \end{cases} \rightarrow q(x) = (x+1)(x^2+\alpha x+1),$$

where $(x^2 + \alpha x + 1)$ is irreducible, since $\begin{cases} ab = 1 \\ a + b = \alpha \end{cases}$ has no solutions in \mathbf{F}_{3^2} .

3. Find cycle characteristic for (x + 1) by division:

$$\frac{1+x}{1+2x|} = \frac{1+x}{1}$$

$$\frac{-(1+x)}{2x}$$

$$\frac{-(2x+2x^2)}{x^2} \Rightarrow T = 2$$

Thus, cycle characteristic is $1(1) \oplus 4(2)$.

4. Find cycle characteristic for $(x^2 + \alpha x + 1)$ through $T = \text{ord}(\beta = \text{RootOf}(x^2 + \alpha x + 1))$. The number of elements in the extension field $\mathbf{F}_{(3^2)^2}$ is $3^4 = 81$. Therefore, by the Lagrange's theorem, the order of β must divide $80 = 2^4 \cdot 5!$

$$\beta^{1} = x$$

$$\beta^{2} = -\alpha x - 1 = 2\alpha x + 2$$

$$\beta^{4} = (\beta^{2})^{2} = (2\alpha x + 2)^{2} = x + \alpha$$

$$\beta^{8} = (\beta^{4})^{2} = (x + \alpha)^{2} = \alpha x + 2\alpha$$

$$\beta^{16} = (\beta^{8})^{2} = (\alpha x + 2\alpha)^{2} = 2x$$

$$\beta^{5} = \beta^{4} \cdot \beta^{1} = (x + \alpha) \cdot x = 2$$

$$\beta^{10} = \beta^{8} \cdot \beta^{2} = (\alpha x + 2\alpha) \cdot (2\alpha x + 2) = 1(!)$$
... stop!

The order of β is T=10. Hence, the cycle characteristic is $1(1) \oplus 8(10)$.

5. Find the cycle characteristic for q(x) by multiplication: $(1(1) \oplus 4(2)) \otimes (1(1) \oplus 8(10)) = 1(1) \oplus 8(10) \oplus 4(2) \oplus 64(10) = 1(1) \oplus 4(2) \oplus 72(10)$