1. Explain the differences between linear and non-linear data structures!

Ans

Data structure linear merupakan data structure yang objectnya digambarkan dalam satu garis lurus.

Data structure non-linear merupakan data structure yang objectnya tidak digambarkan dalam satu garis lurus.

2. Describe the following terminology in a tree: base root, key, edge, siblings, parent, child, and leaf!

Ans

Base root = node yang berada di paling atas sebuah tree

Key = value yang dimiliki oleh suatu node

Edge = garis yang menghubungkan node parent dengan node childnya.

Siblings = node-node yang memiliki parents yang sama

Parent = suatu node yang memiliki satu atau lebih anak

Child = anak node yang diturunkan oleh node lain.

Leaf = node yang tidak memiliki anak

3. Explain the following types of binary trees: full, complete, and perfect!

Ans

Full Binary Tree

Merupakan suatu binary tree yang setiap nodenya harus memiliki 2 anak atau sama sekali tidak ada anak.

Complete Binary Tree

Merupakan suatu binary tree di mana setiap level tree, terkecuali level paling bawahnya, harus mempunyai node sebanyak jumlah maksimumnya,

• Perfect Binary Tree

Merupakan suatu binary tree di mana setiap nodenya HARUS memiliki 2 anak dan semua leafnya berada di level yang sama.

4. What makes a tree balanced?
Ans :
Balance factor = height(root->left) - (root->right) <= 1
Sebuah tree dikatakan balanced apabila tree tersebut memiliki height O(log N), dimana N merupakan jumlah node dalam tree.
Selain itu, kita dapat mengetahui sebuah tree termasuk balanced atau tidak dengan cara melihat apakah selisih height dari subtree kiri dengan height dari subtree kanannya <= 1.
5. Explain the four properties of a binary tree!
Ans :
Untuk menghitung jumlah maksimum node pada level k -> 2 ^k
Untuk menghitung jumlah maksimum node untuk suatu binary tree dengan height H -> 2 ^{H+1} -1
Untuk mendapatkan minimum height suatu tree dengan node sebanyak N -> 2 log(N)
Untuk mendapatkan maximum height suatu tree dengan node sebanyak N -> N-1
Min level -> height yang bisa dibuat node-node agar bisa menjadi compact(sependek mungkin)
Max level -> height yg bisa dibuat node2 agar bisa sepanjang mungkin
6. Explain the intuition of implementing a binary tree using an array!
Ans :
Note: p merupakan index node yang sedang dicek(parent).
Root selalu berada di index 0.
Left child berada di index 2p+1
Right child berada di index 2p+2
Parent berada di index (p-1)/2
7. Explain the differences between inorder successor and inorder predecessor!
Ans :

Inorder successor merupakan node pengganti yang berada di satu posisi setelah elemen root saat node-node dalam tree disusun secara inorder(sorted).

Inordes predecessor merupakan node pengganti yang berada di posisi satu posisi di belakang elemen root saat node-node dalam tree disusun secara inorder(sorted).

8. Draw the following binary search tree step by step (14 pictures): - Insert 80, 30, 60, 50, 75 - Delete 60, 30, 75 - Insert 65, 30, 35 - Delete 80, 65, 35

Notes for number 8: for each picture, please write the balance factor of each node. Balance factor is defined as Balance Factor = |height of left subtree - height of right subtree|