Advanced Probability

(2nd November, Friday)

Chapter 5. Weak Convergence

5.1. Definitions

Let E be a metric space. Whenever we are talking about a metric space, the σ -algebra is given by the Borel σ -algebra. Write $C_b(E)$ for the set of bounded continuous functions on E.

• Let $(\mu_n : n \in \mathbb{N})$ be a sequence of probability measures and let μ be another probability measure on E. We say that $\mu_n \to \mu$ weakly (as $n \to \infty$) if $\mu_n(f) \to \mu(f)$ for all $f \in C_b(\mathbb{R})$.

Theorem 5.1.1) The following are equivalent.

- (a) $\mu_n \to \mu$ weakly on E
- (b) $\liminf_{n\to\infty} \mu_n(U) \ge \mu(U)$ for all U open
- (c) $\limsup_{\mu(F)} \leq \mu(F)$ for all F closed.
- (d) $\mu_n(B) \to \mu(B)$ for all $B \in \mathcal{B}$ such that $\mu(\partial B) = 0$.(Boundary is the set of limit points of B that are not contained in B.)

proof) Exercise.

For an example, consider a sequence $(x_n)_n \subset \mathbb{R}$ such that $x_n \to 0$ as $n \to \infty$. We want to have $\delta_{x_n} \to \delta_0$. Indeed, this is true in the weak sense. However, the sequence has $\delta_{x_n}(\{0\}) = 0$ for all n, hence we should have inequality in condition (c).

We have a similar version of the theorem for the real line.

Proposition 5.1.2) Consider the case $E = \mathbb{R}$. TFAE

- (a) $\mu_n \to \mu$ weakly for some probability measure μ .
- (b) $F_n(x) \to F(x)$ for all $x \in \mathbb{R}$ such that $F(x^-) = F(x)$. (Here, $F(x) = \mu((\infty, x])$ is the **distribution** function of μ .) (Sometimes called convergence of distributions)
- (c) There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variables X_n, X on Ω such that $X_n \sim \mu_n$, $X \sim \mu$ and $X_n \to X$ almost surely.

proof) See probability and measure notes.

5.2. Prohorov's Theorem

When does a sequence of probability measures has a converging subsequence?

Let E be a metric space and $(\mu_n : n \in \mathbb{N})$ be a sequence of probability measures on E.

• We say that $(\mu_n)_n$ is **tight** if for all $\epsilon > 0$, there is a compact set $K \subset E$ such that

$$\mu_n(E \backslash K) \le \epsilon \quad \forall n \in \mathbb{N}$$

For example, the sequence $(\delta_n)_n$ is not tight.

Theorem 5.2.1) Let $(\mu_n : n \in \mathbb{N})$ be a sequence of probability measures on a metric space E and suppose that $(\mu_n : n \in \mathbb{N})$ is tight. Then there exists a subsequence $(n_k)_k \subset \mathbb{N}$ and probability measure μ on E such that $\mu_{n_k} \to \mu$ weakly as $k \to \infty$.

This gives a version of weakly sequential compactness of probability measures. We are only going to prove this for \mathbb{R} . This theorem is hard to prove in general.(e.g. there is a method using Monge-Kantorovich metric defined for Polish spaces. For this method, see "Topics in Optimal Transport", C.Villani, Ame.Soc.Math. For the general version, see the attached note)

proof for $E = \mathbb{R}$) By a diagonal argument and by passing to a subsequence, it suffices to consider the case where $F_n(x) \to g(x)$ as $n \to \infty$ for all $x \in \mathbb{Q}$ for some $g(x) \in [0,1]$, where F_n is the distribution function of F_n . Now $g : \mathbb{Q} \to [0,1]$ is non-decreasing so g has a non-decreasing extension $G : \mathbb{R} \to [0,1]$, i.e.

$$G(x) = \lim_{q \searrow x, q \in \mathbb{Q}} g(q)$$

which has only countably many discontinuities. (because there should be a rational number in each discontinuity). Now we must have

$$F_n(x) \to G(x) \quad \forall x \text{ s.t. } G \text{is continuous at } x$$

Set $F(x) = G(x^+)$, then F and G have same points of continuity, so $F_n(x) \to F(x)$ for all $x \in \mathbb{R}$.

We are only left to check that $G(x) \to 1$ as $x \to \infty$ using tightness condition.

Since $(\mu_n : n \in \mathbb{N})$ is tight, given $\epsilon > 0$, there exists $R < \infty$ such that $\mu_n(\mathbb{R} \setminus (-R, R)) \le \epsilon$ for all ϵ so $F_n(-R) \le \epsilon$, $F_n(R) \ge 1 - \epsilon$. So

$$F(x) \to 0$$
 as $x \to -\infty$
 $F(x) \to 1$ as $x \to \infty$

So F is distribution function. So there exists a probability measure μ such that $\mu((-\infty, x]) = F(x)$. Then $\mu_n \to \mu$ by **Prop 5.1.2.**

(End of proof) \square

5.3. Weak Convergence and Characteristic Functions

Take $E = \mathbb{R}^d$.

• For a probability measures mu on \mathbb{R}^d , define its **characteristic function** $\phi: \mathbb{R}^d \to \mathbb{C}$ by

$$\phi(u) = \int_{\mathbb{R}^d} e^{i\langle u, x \rangle} \mu(dx)$$

Lemma 5.3.1) Fix d = 1. For all $\lambda \in (0, \infty)$,

$$\mu(\mathbb{R}\setminus(-\lambda,\lambda)) \leq C\lambda \int_0^\lambda (1-\operatorname{Re}(\phi(u)))du$$

where $C = (1 - \sin(1))^{-1} < \infty$.

proof) Consider for $t \ge 1$. Let $A(t) = t^{-1} \int_0^t (1 - \cos v) dv$. Then

$$A(t) \ge A(0) = 1 - \sin(t)$$

(to see this, observe that A(t) is the average of $(1 - \cos(v))$ on interval (0, t) and divide the cases $|t| \le \pi/2$ and $|t| \ge \pi/2$)

So $Ct^{-1}\int_0^t (1-\cos(v))dv \ge 1$. Substitute v=uy, u=v/y,

$$Ct^{-1} \int_0^{t/y} (1 - \cos(uy))ydu \ge 1$$

Put $t/y = 1/\lambda$, $\lambda = y/t$, $t = y/\lambda \ge 1$ to see

$$C\lambda \int_0^{1/\lambda} (1 - \cos(uy)) du \ge 1$$

whenever $t = y/\lambda \ge 1$ (this was the assumption we started with). Now for general $y \in \mathbb{R}$, has

$$C\lambda \int_{0}^{1/\lambda} (1 - \cos(uy)) du \ge 1_{|y| \ge \lambda}$$

Now integrate with respect to μ and use Fubini.

$$\mu(\mathbb{R}\setminus(-\lambda,\lambda)) \le C\lambda \int_{\mathbb{R}} \int_{0}^{1/\lambda} (1-\cos(uy)) du \mu(dy)$$
$$= C\lambda \int_{0}^{1/\lambda} \int_{\mathbb{R}} (1-\cos(uy)) du \mu(dy)$$

(End of proof) \square

Theorem 5.3.2) Let μ_n, μ be probability measures on \mathbb{R}^d with characteristic functions ϕ_n, ϕ . Then the following are equivalent

- (a) $\mu_n \to \mu$ weakly on \mathbb{R}^d .
- (b) $\phi_n(u) \to \phi(u)$ for all $u \in \mathbb{R}^d$.

We will prove only for the case d = 1.

proof) It is clear that (a) implies (b). Suppose (b) holds. We prove via a 'compactness argument'. We aim to show that the sequence $(\mu_n)_n$ tight, and therefore has a converging subsequence, and show that the converging point is in fact μ .

Note that $\phi(0) = 1$ and ϕ is continuous. Given $\epsilon > 0$, there exists $\lambda < \infty$ such that

$$C\lambda \int_0^{1/\lambda} (1 - \operatorname{Re}(\phi(u))) du \le \epsilon/2$$

with $C = (1 - \sin(1))^{-1} < \infty$. By dominated convergence,

$$\int_0^{1/\lambda} (1 - \operatorname{Re}(\phi_n(u))) du \xrightarrow{n \to \infty} \int_0^{1/\lambda} (1 - \operatorname{Re}(\phi(u))) du$$

so for sufficiently large n, by **Lemma 5.3.1**,

$$\mu_n(\mathbb{R}\setminus(-\lambda,\lambda)) \le C\lambda \int_0^{1/\lambda} (1-\operatorname{Re}(\phi_n(u)))du \le \epsilon$$

Since ϵ was arbitrary, we see that $(\mu_n : n \in \mathbb{N})$ is tight. By Prohorov's theorem, we have a converging subsequence $\mu_{n_k} \to \nu$ for some probability measure ν .

Suppose for a contradiction that $\nu \neq \mu$. Therefore, there exists $\epsilon > 0$, and $f \in C_b(\mathbb{R}^n)$ such that

$$|\mu_{n_k}(f) - \mu(f)| \ge \epsilon \quad \forall k$$

By above argument, we have $\mu_{n_k} \to \nu$. But then, since e^{inx} is a bounded continuous function,

$$\int_{\mathbb{R}} e^{inx} \nu(dx) = \lim_{k \to \infty} \phi_{n_k}(n) = \phi(n)$$

which indicates $\mu = \nu$ by uniqueness of characteristic functions (see PM notes), a contradiction.

(End of proof) \square

In fact, the proof of the theorem implies a slightly stronger statement, which is less useful.

Theorem 5.3.3) (Lévy's continuity theorem for characteristic functions) Let $(\mu_n : n \in \mathbb{N})$ be a sequence of probability measures on \mathbb{R}^n with characteristic functions ϕ_n . Suppose $\phi_n(u) \to \phi(u)$ for all u for some function ϕ (not necessarily a characteristic function) such that ϕ is continuous at 0. Then ϕ is the characteristic function of some probability measure μ on \mathbb{R}^d and $\mu_n \to \mu$ weakly on \mathbb{R}^d .

6. Large Deviations

6.1. Cramérs theorem

Theorem 6.1.1) Let $(X_n : n \in \mathbb{N})$ be a sequence of integrable *i.i.d.* random variables in \mathbb{R} . Set $m = \mathbb{E}(X_1)$, $S_n = X_1 + \dots + X_n$. We know $S_n/n \to \delta_m$ in probability, so if $(m - \epsilon, m + \epsilon) \cap B = \phi$ then $\mathbb{P}(S_n/n \in B) \to 0$ as $n \to \infty$. Then in fact the convergence rate is given by $\sim \exp(-n\alpha(B))$ for some α . To be precise, for all $a \ge m = \mathbb{E}(X_1)$, as $n \to \infty$,

$$\frac{1}{n}\log \mathbb{P}(S_n \ge na) \to -\psi^*(a)$$

where ψ^* is the Legendre transform of the cumulant generating function $\psi(\lambda) = \log(\mathbb{E}(e^{\lambda X_1}))$, where Legendre transform is given by

$$\psi^*(x) = \sup_{\lambda \in \mathbb{R}} \{\lambda x - \psi(\lambda)\}\$$

In particular, for n sufficiently large and in case $\psi^*(a) < \infty$, we get

$$-\psi^*(a) - \epsilon \le \frac{1}{n} \log(\mathbb{P}(S_n \ge a)) \le -\psi^*(a) + \epsilon$$

and therefore

$$e^{-n(\psi^*(a)+\epsilon)} \le \mathbb{P}(S_n \ge na) \le e^{-n(\psi^*(a)-\epsilon)}.$$

Note: ψ is always a convex function, so ψ^* is also a convex function.

Examples:

(i) $X_1 \sim N(0,1)$, then $\mathbb{E}(e^{\lambda X_1}) = e^{\lambda^2/2}$, $\psi(\lambda) = \lambda^2/2$ and $\psi^*(x) = x^2/2$. Hence

$$\frac{1}{n}\log(\mathbb{P}(S_n \ge a)) \to -\frac{a^2}{2} \quad \forall a \ge 0$$

Can check this directly, using the fact that $S_n \sim N(0, n)$ in this case.

(ii) $X_1 \sim \text{Exp}(1)$, then

$$\mathbb{E}(e^{\lambda X_1}) = \int_0^\infty e^{\lambda x} e^{-x} dx = \begin{cases} \infty & \text{if } \lambda \ge 1\\ \frac{1}{1-\lambda} & \text{if } \lambda < 1 \end{cases}$$

so $\psi(\lambda) = -\log(1-\lambda)$ if $\lambda < 1$ and ∞ otherwise, and $\psi^*(x) = x - 1 - \log(x)$ for x > 0. Cramér's theorem implies that

$$\frac{1}{n}\log \mathbb{P}(S_n \ge na) \to -(a-1-\log(a)) \quad \forall a \ge 1$$

On the other hand, $\operatorname{Var}(X_1)=1<\infty,$ so $\frac{S_n-n}{\sqrt{n}}\to N(0,1)$ by CLT. So

$$\mathbb{P}(S_n \ge n + a\sqrt{n}) \to \int_a^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

so Cramér's theorem gives a result of a different flavour from CLT for distributions with bounded variation: while CLT provides a description for distribution near the average, Cramér gives an explanation of tail distribution of S_n .

preparation for proof of Cramér's theorem) Let $\mu(B) = \mathbb{P}(X_1 \in B)$. Exclude the easy case where $\mu = \delta_m$. Define for $\lambda \geq 0$ with $\psi(\lambda) < \infty$, the **tilted distribution** μ_{λ} by

$$\mu_{\lambda}(dx) \propto e^{\lambda x} \mu(dx)$$

For $K \geq m = \mathbb{E}(X_1)$, define the conditional distribution by

$$\mu_K(dx|x \le K) \propto 1_{\{x \le K\}} \mu(dx)$$

The CGF(cumulant generating function) of μ_K is then given by

$$\psi_K(\lambda) = \log(\mathbb{E}(e^{\lambda X_1} | X_1 \le K))$$

(7th November Wednesday)

(7th November, Wednesday)

We now start proving the following theorem.

Theorem 6.1.1) Let $(X_n : n \in \mathbb{N})$ be a sequence of integrable *i.i.d.* random variables in \mathbb{R} . Set $m = \mathbb{E}(X_1)$, $S_n = X_1 + \cdots + X_n$. Then for all $a \ge m = \mathbb{E}(X_1)$, as $n \to \infty$,

$$\frac{1}{n}\log \mathbb{P}(S_n \ge na) \to -\psi^*(a)$$

where $\psi(\lambda) = \log(\mathbb{E}(e^{\lambda X_1}))$, and $\psi^*(x) = \sup_{\lambda \in \mathbb{R}} {\{\lambda x - \psi(\lambda)\}}$.

proof) (Upper bound) For all $\lambda \geq 0$ and $n \geq 1$

$$\mathbb{P}(S_n \ge na) = \mathbb{P}(e^{\lambda S_n} \ge e^{\lambda na}) \le e^{-\lambda na} \mathbb{E}(e^{\lambda S_n}) = e^{-(\lambda a - \psi(\lambda))n}$$

so $\frac{1}{n}\log \mathbb{P}(S_n \geq na) \leq -(\lambda a - \psi(\lambda))$ and

$$\frac{1}{n}\log \mathbb{P}(S_n \ge na) \le -\psi^*(a)$$

(Lower bound) It remains to show the lower bound. That is, we aim to prove

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge na) \ge -\psi^*(a)$$

Consider first the case where $\mathbb{P}(X_1 \leq a) = 1$. Then

$$\mathbb{E}(e^{\lambda(X_1-a)}) \xrightarrow{\lambda \to \infty} \mathbb{P}(X_1=a)$$

Call $p = \mathbb{P}(X_1 = a)$, so $\lambda a - \psi(\lambda) \to -\log(p)$. So in particular,

$$\psi^*(a) \ge -\log(p)$$

Now $\mathbb{P}(S_n \geq na) = p^n$ so

$$\frac{1}{n}\log \mathbb{P}(S_n \ge na) = \log(p) \ge -\psi^*(a)$$

hence we can eliminate the case $\mathbb{P}(X_1 \leq a) = 1$.

Next consider the case $\psi(\lambda) < \infty$ for all $\lambda \geq 0$ and $\mathbb{P}(X_1 > a) > 0$. Fix $\epsilon > 0$ and set $b = a + \epsilon$, $c = a + 2\epsilon$, choosing ϵ small enough so $\mathbb{P}(X_1 > b) > 0$. Then there exists λ such that $\psi'(\lambda) = b$ where the differentiability and the existence is justified in the following proposition:

Proposition 6.1.2) Suppose X is integrable and not a.s. constant. Then

$$\psi_K(\lambda) = \log \mathbb{E}(e^{\lambda X_1} | X_1 \le K) < \infty \quad \forall K < \infty$$
and $\psi_K(\lambda) \nearrow \psi(\lambda)$ as $K \to \infty$

Moreover in the case $\psi(\lambda) < \infty$ for all $\lambda \geq 0$, ψ has a continuous derivative on $[0, \infty)$ and is C^2 on $(0, \infty)$ with

$$\psi'(\lambda) = \int_{\mathbb{R}} x \mu_{\lambda}(dx)$$
$$\psi''(\lambda) = \operatorname{Var}(\mu_{\lambda}) > 0$$

and ψ' is a homeomorphism from $[0, \infty)$ to $[m, \sup(\sup(\mu))$. **proof)** (Exercise)

Now we use the idea of tilting the probability measure. Define a new probability measure \mathbb{P}_{λ} by $d\mathbb{P}_{\lambda} = e^{\lambda S_n - n\psi(\lambda)}d\mathbb{P}$. Then observe that under \mathbb{P}_{λ} the random variables X_1, \dots, X_n are independent with distributions μ_{λ} and that $\mathbb{E}_{\lambda}(X_1) = b$. Consider the event

$$A_n = \left\{ \left| \frac{S_n}{n} - b \right| \le \epsilon \right\} = \left\{ (b - \epsilon)n = an \le S_n \le (b + \epsilon)n = cn \right\}$$

By the weak law of large numbers, $\mathbb{P}_{\lambda}(A_n) \to 1$. So

$$\mathbb{P}(S_n \ge na) \ge \mathbb{P}(A_n) = \mathbb{E}_{\lambda} \left(1_{A_n} e^{-\lambda S_n + \psi(\lambda)n} \right)$$
$$\ge e^{-\lambda cn + \psi(\lambda)n} \mathbb{P}_{\lambda}(A_n)$$

So

$$\frac{1}{n}\log \mathbb{P}(S_n \ge na) \ge -\lambda c + \psi(\lambda) + \frac{\log(\mathbb{P}_{\lambda}(A_n))}{n}$$

and

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge na) \ge -(\lambda c - \psi(\lambda)) \ge -\psi^*(c)$$

Now ψ^* is continuous at a (recall, ψ^* is a Legendre transform of a convex function so is convex, and therefore continuous. Or, see **Lemma 6.1.3**) and $\epsilon > 0$ is arbitrary so the desired lower bound follows on letting $\epsilon \to 0$.

Finally, consider the general case $\mathbb{P}(X_1 > a) > 0$ but allowing $\psi(\lambda) = \infty$ for some $\lambda \geq 0$. For K > a, we have $\mathbb{P}(X_1 > a | X_1 \leq K) > 0$ and $\psi_K(\lambda) < \infty$ for all $\lambda \geq 0$. So preceding argument shows

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}_K(S_n > na) \ge -\psi_K^*(a)$$

where \mathbb{P}_K is the probability measure given by

$$d\mathbb{P}_{K}^{(n)} \propto 1_{\{X_{1} \leq K, \cdots, X_{n} \leq K\}} d\mathbb{P}$$

(To see this, note, under \mathbb{P}_K , random variables $X_1, \dots X_n$ are independent with distribution $\mu(\cdot|x \leq K)$). But

$$\mathbb{P}(S_n \ge na) \ge \mathbb{P}(S_n \ge na | X_1 \le K, \cdots, X_n \le K) = \mathbb{P}_K(S_n \ge na)$$

and $\psi_K^*(a) \searrow \psi^*(a)$ as $K \to \infty$ (by **Lemma 6.1.3**) so we see

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge na) \ge -\psi_K^*(a) \nearrow -\psi^*(a)$$

(End of proof) \square

One different way to see that ψ^* is continuous at a is presented in the following lemma.

Lemma 6.1.3) For all $a \ge m$, with $\mathbb{P}(X_1 > 0) > 0$ we have $\psi_K^*(a) \searrow \psi^*(a)$ as $K \to \infty$. Moreover in the case $\psi(\lambda) < \infty$ for all $\lambda \ge 0$, ψ^* is continuous at a and we have $\psi^*(a) = \lambda^* a - \psi(\lambda^*)$ where λ^* is uniquely determined by $\psi'(\lambda^*) = a$.

proof) Consider first the later case where $\psi(\lambda) < \infty$ for $\lambda \geq 0$. Then by **Proposition 6.1.2** wee see that

$$\psi^*(a) = \lambda^* a - \psi(\lambda^*)$$

where $a = \psi'(\lambda^*)$ and ψ^* is continuous at a with $\lambda^* = (\psi')^{-1}(a)$.

For the first part, note that ψ_K^* is non-increasing in K. For K sufficiently large, we have

$$\mathbb{P}(X_1 > a | X_1 \le K) > 0$$

and $a \ge m \ge m_K$ (where $m_K = \mathbb{E}(X_1 | \le X_1 \le K)$) and $\psi_K(\lambda) < \infty$ for all $\lambda \ge 0$, so we may apply the preceding argument to μ_K to see that

$$\psi_K^*(a) = \lambda_K^* a - \psi_K(\lambda_K^*)$$

where $\lambda_K^* \geq 0$ is determined by $\psi_K'(\lambda_K^*) = a$. Now $\psi_K'(\lambda)$ is non-decreasing in K and λ , so $\lambda_K^* \searrow \lambda^*$ for some $\lambda^* \geq 0$. Also $\psi_K'(\lambda) \geq m_K$ for all $\lambda \geq 0$ so

$$\psi_K(\lambda_K^*) \ge \psi_K(\lambda^*) + m_K(\lambda_K^* - \lambda^*)$$

Then

$$\psi_K^*(a) = \lambda_K^* a - \psi_K(\lambda_K^*) \le \lambda_K^* a - \psi_K(\lambda^*) - m_K(\lambda_K^* - \lambda^*) \to \lambda^* a - \psi(\lambda^*) \le \psi^*(a)$$

So $\psi_K^*(a) \searrow \psi^*(a)$ as $K \to \infty$ as claimed.

(End of proof) \square

7. Borwnian Motion

7.1. Definition

Let $(X_t)_{t\geq 0}$ is a random process in \mathbb{R}^d . We say $(X_t)_{t\geq 0}$ is a **Brownian motion** if:

- (i) For all $s,t\geq 0$, the random variable $X_{s+t}-X_s$ is Gaussian, of mean 0 and variance tI and is independent of $\mathcal{F}^X_s=\sigma(X_r:r\leq s)$
- (ii) for all $\omega \in \Omega$ the map $t \mapsto X_t(\omega) : [0, \infty) \to \mathbb{R}^d$ is continuous.

Condition (i) means that, for all $s \geq 0$, t > 0, all Borel sets $B \subset \mathbb{R}^d$ and all $A \in \mathcal{F}_s^X$,

$$\mathbb{P}(\{X_{s+t} - X_s \in B\} \cap A) = \mathbb{P}(A) \int_B (2\pi t)^{-\frac{d}{2}} e^{-|y|^2/2t} dy$$

Or, in terms of conditional expectation, (i) is equivalent to : for all $s, t \geq 0$ and all $f \in C_b(\mathbb{R}^d)$,

$$\mathbb{E}(f(X)_{s+t}|\mathcal{F}_s^X) = P_t f(X_x)$$
 a.s.

where P_t is the **heat semigroup**, i.e.

$$P_0 f(x) = \int_{\mathbb{R}^d} p(t, x, y) f(y) dy, \quad p(t, x, y) = (2\pi t)^{-\frac{d}{2}} e^{-|y-x|^2/2t}$$

If $X_0 = x$ then we call $(X_t)_{t \ge 0}$ a **Brownian motion starting from** x. In this case, condition (i) is equivalent following property: for all $t_1, \dots, t_n \ge 0$ with $t_1 < \dots < t_n$ and all $B \in \mathcal{B}(\mathbb{R}^{dn})$

$$\mathbb{P}((X_{t_1}, \cdots, X_{t_n}) \in \mathcal{B}) = \int_B \prod_{i=1}^n p(s_i, x_{i-1}, x_i) dx_i$$

where $t_0 = 0$, $x_0 = x$, $s_i = t_i - t_{i-1}$.

Given independent Brownian motions $(X_t^1)_{t\geq 0}, \dots, (X_t^d)_{t\geq 0}$ in \mathbb{R} starting from 0 and given $x=(x^1,\dots,x^d)\in\mathbb{R}^d$, the process $(x+(X_t^1,\dots,X_t^d))_{t\geq 0}$ is a Brownian motion in \mathbb{R}^d starting from x and we obtain all Brownian motion starting from x in \mathbb{R}^d in this way.

7.2. Wiener's theorem

Brownian motion was established as a mathematical object only after 1920's.

Let $W_d = C([0, \infty), \mathbb{R}^d)$, and $x_t : W_d \to \mathbb{R}^d$, $x_t(w) = w(t)$ be the coordinate functions. We may endow W_d with σ -algebra $W_d = \sigma(x_t : t \ge 0)$.

Given a continuous process $(X_t)_{t\geq 0}$ in \mathbb{R}^d on Ω , we can define

$$X: \Omega \to W_d, \quad X(\omega)(t) = X_t(\omega)$$

then X is W_d -measurable so X has a law on (W_d, W_d) .

Theorem 7.2.1.) (Wiener) For all $d \ge 1$ and $x \in \mathbb{R}^d$, there exist a unique probability measure μ_x on (W_d, W_d) such that $(x_t)_{t\ge 0}$ is a Brownian motion in \mathbb{R}^d staring from x. In particular, Brownian motion exists.

proof) Conditions (i) and (ii) determine the finite dimensional distributions of a Brownian motion and hence determine the law of any BM on (W_d, W_d) (with given starting point - hence such probability measure is unique.

Suppose we have a measure μ_0 on (W_1, W_1) such that $(x_t)_{t\geq 0} \sim \mathrm{BM}_0$ in \mathbb{R} . For $x \in \mathbb{R}$, $(x+x_t)_{t\geq 0} \sim \mathrm{BM}_x$ so could take μ_x as law of this process. Then for $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, the measure $\mu_{x_1} \otimes \dots \otimes \mu_{x_d}$ has required properties. So we only have to work in 1 dimension, starting at 0.

Define $\mathbb{D}_N = \{k2^{-N} : k \in \mathbb{Z}^+\}$ and $\mathbb{D} = \bigcup_{N \geq 0} \mathbb{D}_N$. There exists some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a family $(Y_t : t \in \mathbb{D})$ of independent N(0,1) random variables. First define for $t \in \mathbb{D}_0 = \mathbb{Z}^+$,

$$\xi_t = Y_1 + \dots + Y_t$$

Then $(\xi_n)_{n\in\mathbb{D}_0}$ is Gaussian and $(\xi_{t+1} - \xi_t : t \in \mathbb{D}_0)$ are independent and has distribution $\sim N(0,1)$. We define recursively $(\xi_t)_{t\in\mathbb{D}_N}$ as follows for $t\in\mathbb{D}_{N+1}\setminus\mathbb{D}_N$:

: set
$$r = t - 2^{-N-1}$$
, $s = t + 2^{-N-1} \in \mathbb{D}_{\mathbb{N}}$, set $Z_t = 2^{-\frac{N+2}{2}}Y_t$ and define $\xi_t = \frac{\xi_r + \xi_s}{2} + Z_t$.

We will show by induction that for all $N \geq 0$, $(\xi_{t+2^{-N}} - \xi_t : t \in \mathbb{D}_N)$ are independent, $\sim N(0, 2^{-N})$ random variables

: Suppose true for N. Take $t \in \mathbb{D}_{N+1} - \mathbb{D}_N$ and r, s as above. Then

$$\xi_t - \xi_r = \frac{\xi_s - \xi_r}{2} + Z_t, \quad \xi_s - \xi_t = \frac{\xi_s - \xi_r}{2} - Z_t$$

$$\operatorname{Var}\left(\frac{\xi_s - \xi_r}{2}\right) = \frac{1}{4}2^{-N}, \quad \operatorname{Var}(Z_t) = 2^{-N-2}$$

so

$$Var(\xi_t - \xi_r) = \frac{1}{4} 2^{-N} + 2^{-N-2} = 2^{-N-1} = Var(\xi_s - \xi_r)$$
$$cov(\xi_t - \xi_r, \xi_s - \xi_t) = 0$$

Also for any interval (u, v] disjoint from (r, s] with $u, v \in \mathbb{D}_{N+1}$,

$$cov(\xi_s - \xi_r, \xi_v - \xi_u) = cov(\xi_s - \xi_t, \xi_v - \xi_u) = 0$$

So the induction proceeds.

(12th November, Monday)

proof of Wiener's theorem continues) We constructed $(\xi_t: t \in \mathbb{D})$ such that for all $s, t \geq 0$, $\xi_{s+t} - \xi_s \sim N(0,t)$ and is independent of $\sigma(\xi_r: r \leq s, r \in \mathbb{D})$. Choose p > 2 and set $C_p = \mathbb{E}(|\xi_1|^p)$. Then $C_p < \infty$ and $\mathbb{E}(|\xi_t - \xi_s|^p) = C_p|t - s|^{p/2}$ so by Kolmogorov's lemma(**Theorem 4.2.1**), there exists a continuous process $(X_t)_{t\geq 0}$ such that $X_t = \xi_t$ a.s. for all $t \in \mathbb{D}$.

For $s \geq 0$, t > 0 and for any $A \in \mathcal{F}_s^X$ there exist sequence (s_n) in $[0, \infty)$, (t_n) in $(0, \infty)$ and $A_0 \in \sigma(\xi_r : r \leq s, r \in \mathbb{D})$. s.t. $s_n \to s$, $t_n \to t$ as $n \to \infty$ and $1_A = 1_{A_0}$ a.s. (to check this, consider $\{A \in \mathcal{F}_s : \text{this holds }\}$). Then for any $f \in C_b(\mathbb{R})$,

$$\mathbb{E}(f(X_{s_n+t_n} - X_{s_n})1_A) = \mathbb{E}(f(\xi_{s_n+t_n} - \xi_{s_n})1_{A_0})$$

$$= \mathbb{P}(A_0) \int_{\mathbb{R}} p(t_0, 0, y) f(y) dy$$

so letting $n \to \infty$ using bounded convergence theorem gives

$$\mathbb{E}(f(X_{t+s} - X_s)1_A) = \mathbb{P}(A) \int_{\mathbb{R}} p(t, 0, y) f(y) dy$$

so X is a Brownian motion as required.

(End of proof) \square

7.3. Symmetries of Brownian Motion

Proposition 7.3.1) Let $(X_t)_{t\geq 0}$ be a $\mathrm{BM}_0(\mathbb{R}^d)$ and let $\sigma\in(0,\infty)$ and $U\in O(d)$. Then the following processes are also $\mathrm{BM}_0(\mathbb{R}^d)$.

- (i) (Scaling property) $(\sigma X_{\sigma^{-2}t})_{t\geq 0}$,
- (ii) (Rotation invariance) $(UX_t)_{t>0}$.

In fact $BM_0(\mathbb{R}^d)$ is characterized among continuous Gaussian processes by its means and covariances,

$$\mathbb{E}(X_t) = 0$$
, $\operatorname{cov}(X_s^i, X_t^j) = \mathbb{E}(X_s^i X_t^j) = \delta_{ij}(s \wedge t)$

proof) Exercise.

7.4. Brownian Motion in a Given Filtration

Suppose given a filtration $(\mathcal{F}_t)_{t\geq 0}$ on $(\Omega, \mathcal{F}, \mathbb{P})$.

- We say that $(X_t)_{t\geq 0}$ is a $(\mathcal{F}_t)_{t\geq 0}$ -**BM** if
 - (a) X_t is \mathcal{F}_t -measurable,
 - (b) for all $s, t \ge 0$, the random variable $X_{s+t} X_s \sim N(0, tI)$ and is independent of \mathcal{F}_s ,
 - (c) for all $\omega \in \Omega$, the map $t \mapsto (X_t(\omega) : [0, \infty) \to \mathbb{R}^d)$ is continuous.

This implies that X is a BM in the old sense and any process X which is a BM in the old sense is an $(\mathcal{F}_t^X)_{t\geq 0}$ -BM.

Proposition 7.4.1) Let $X = (X_t)_{t \geq 0}$ be a BM(\mathbb{R}^d) and let F be a bounded measurable function on W_d . Define

$$f(x) = \int F(\omega)\mu_x(d\omega), \quad x \in \mathbb{R}^d$$

Then f is measurable on \mathbb{R}^d and $\mathbb{E}(F(X)|\mathcal{F}_0) = f(X_0)$ a.s. (recall, μ_x is the law of BM_x)

proof) (Was an exercise.) First consider F of form $1_{A^{(a,\eta)}}$ where $A^{(a,\underline{\eta})} = \{g \in W_d : g(a) \geq (\eta_1, \dots, \eta_d)\} \subset W_d$. Then

$$\int A^{(a,\eta)}(\omega)\mu_x(d\omega) = \mathbb{P}(B^{(x)}(a) \ge \eta) = \int_{\eta_1}^{\infty} \cdots \int_{\eta_d}^{\infty} \frac{1}{(2\pi)^{d/2}} e^{-y^2/2} d^d y$$

where $B^{(x)}$ is a Brownian motion starting at x, so this is measurable. Also, we easily see that any finite intersection of sets $A^{(a,\eta)}$ if of form

$$B_{(\eta_1,\dots,\eta_m)}^{(a_1,\dots,a_m)} = \{g \in W_d : g(a_1) \ge \eta_1,\dots,g(a_1+\dots+a_m) \ge \eta_m\}$$

with $a_1, \cdots a_m \geq 0$ so

$$\int B_{(\eta_1, \dots, \eta_m)}^{(a_1, \dots, a_m)} \mu_x(d\omega) = \int A^{(a_1, \eta_1)}(\omega) \mu_x(d\omega) \prod_{k=2}^m \int A^{(a_k, \eta_k - \eta_{k-1})}(\omega) \mu_0(d\omega)$$

is measurable. We also see that $\mathbb{E}(F(X)|\mathcal{F}_0)=f(X_0)$ a.s. for each case $F=1_{A^{(a,\eta)}}$ or $F=1_{B^{(a_1,\cdots,a_m)}(\eta_1,\cdots,\eta_m)}$.

Now notice that the sets $(B_{(\eta_1,\cdots,\eta_m)}^{(a_1,\cdots,a_m)}: m \geq 1, a_j \geq 0, \eta_j \in \mathbb{R})$ forms a π -system generating the σ -algebra \mathcal{W}_d . Since any limit of measurable functions is measurable, and $\mathbb{E}(F_n(X)|\mathcal{F}_0) = f_n(X_0) \ \forall n, F_n \nearrow F$ implies $\mathbb{E}(F(X)|\mathcal{F}_0) = f(X_0)$, we see from monotone class theorem that the statement also holds for general bounded measurable functions F.

(End of proof) \square

7.5. Martingales of BM

Theorem 7.5.1) Let $(X_t)_{t\geq 0}$ be an $(\mathcal{F}_t)_{t\geq 0}$ -BM in \mathbb{R}^d and let $f\in C^2_b(\mathbb{R}^d)$. Define

$$M_t = f(X_t) - f(X_0) - \int_0^t \frac{1}{2} \Delta f(X_s) ds$$

Then $(M_t)_{t>0}$ is an $(\mathcal{F}_t)_{t>0}$ -martingale.

There are two ways for doing this. One is to use stochastic calculus, and the other is to do Markovian-way(which would be made clear soon). You will see the first method in Stochastic Calculus course next term, and we are going to prove this in the second way.

proof) It is clear that $(M_t)_{t\geq 0}$ is adapted and integrable. Consider for now the case $X_0 = x \in \mathbb{R}^d$. Set

$$m(x) = \mathbb{E}(M_t) = \int_{W_d} \left[f(\omega(t)) - f(\omega(0)) - \int_0^t \frac{1}{2} \Delta f(\omega(s)) ds \right] \mu_x(d\omega)$$

Fix $s \in (0, t]$. We have

$$M_t - M_s = f(X_t) - f(X_s) - \int_s^t \frac{1}{2} \Delta f(X_r) dr$$

so using Fubini,

$$\mathbb{E}(M_t - M_s) = \int_{\mathbb{R}^d} p(t, x, y) f(y) dy - \int p(s, x, y) f(y) dy - \int_s^t \int_{\mathbb{R}^d} p(r, x, y) \times \frac{1}{2} \Delta f(y) dy$$

But since p is a heat kernel, has $\frac{d}{dt}p = \frac{1}{2}\Delta p$ so

$$\int_{\mathbb{R}^d} p(r, x, y) \times \frac{1}{2} \Delta f(y) dy = \int_{\mathbb{R}} \frac{1}{2} \Delta_y p(r, x, y) f(y) dy$$
$$= \int_{\mathbb{R}} \frac{d}{dt} p(r, x, y) f(y) dy$$

and

$$\int_{s}^{t} \int_{\mathbb{R}^{d}} p(r, x, y) \times \frac{1}{2} \Delta f(y) dy dr = \int_{s}^{t} \int_{\mathbb{R}} \frac{d}{dt} p(r, x, y) f(y) dy dr$$
$$= \int_{\mathbb{R}^{d}} (p(t, x, y) - p(s, x, y)) dy$$

so $\mathbb{E}(M_t - M_s) = 0$. But $M_s \to 0$ a.s. as $s \to 0$ so by bounded convergence, $\mathbb{E}(M_s) \to 0$. Hence $m(x) = \mathbb{E}(M_t) = 0$ for all x.

Return to the case of general X_0 . By **Prop 7.4.1**,

$$\mathbb{E}(M_t|\mathcal{F}_0) = m(X_0) = 0 \quad \text{a.s.}$$

Now for any $s, t \geq 0$,

$$M_{s+t} - M_s = f(X_{s+t}) - f(X_s) - \frac{1}{2} \int_0^s \Delta f(X_{s+r}) dr$$

and $(X_{s+t})_{t\geq 0}$ is an $(\mathcal{F}_{s+t})_{t\geq 0}$ -BM. So we see that

$$\mathbb{E}(M_{s+t} - M_s | \mathcal{F}_s) = 0 \quad \text{a.s.}$$

as required.

(End of proof) \square

We are in fact apply the theorem in the case where the assumption $f \in C_b^2(\mathbb{R}^d)$ does not hold. We can actually relax this condition using almost the same proof, e.g. any f of polynomial growth rate would work.

Exercise: see how much we can relax $C_b^2(\mathbb{R}^d)$.

-Every step other than the integration by parts $\int_{\mathbb{R}^d} p(r,x,y) \times \frac{1}{2} \Delta f(y) dy = \int_{\mathbb{R}} \frac{1}{2} \Delta_y p(r,x,y) f(y) dy$ works without assumption that $f \in C_b^2(\mathbb{R}^d)$. Hence, it is enough to have $f \in W^{2,1}(\mathbb{R}^d)$ (the Sobolev space) with sub-exponential growth rate.

(14th November, Wednesday)

Examples: Let $(X_t^i)_{t>0}$, $i=1,\cdots,n$ be a BM.

- $f(x) = x^i$ then $\Delta f = 0$, so is a martingale.
- $f(x) = x^i x^j$ then $\Delta f = 0$, so is a martingale.
- $(X_t^i X_t^j \delta_i t)_{t>0}$ is a martingale.
- $\exp(\lambda X_t \frac{1}{2}\lambda^2 t)_{t>0}$ is a martingale.
- For all harmonic functions f bounded, $(f(X_t))_{t\geq 0}$ is a martingale.

7.6. Strong Markov Property

Strong Markov Property of Brownian Motion would be particularly useful.

Theorem 7.6.1) Let $(X_t)_{t\geq 0}$ be an $(\mathcal{F}_t)_{t\geq 0}$ -BM and let T be a stopping time. Then conditioned on $\{T<\infty\}$, $(X_{T+t})_{t\geq 0}$ is an $(\mathcal{F}_{T+t})_{t\geq 0}$ -BM.

proof) Clearly on $\{T < \infty\}$, $(X_{T < t})_{t \ge 0}$ is continuous on $[0, \infty)$. Also on $\{T < \infty\}$, X_{T+t} is \mathcal{F}_{T+t} -measurable. Fix $s \ge 0$, t > 0, $f \in C_b(\mathbb{R}^d)$, $m, n \in \mathbb{N}$, $A \in \mathcal{F}_{T+s}$ with $A \subset \{T \le m\}$. For $k = 0, 1, \dots 2^n m$, set $t_k = k2^{-n}$ and $A_k = A \cap \{t_k - 2^{-n} < T \le t_k\}$. Note $A_k \in \mathcal{F}_{t_k+s}$ and $A_k = A \cap \{T_n = t_k\}$ where $T_n = 2^{-n} \lceil 2^n T \rceil$, so

$$\mathbb{E}(f(X_{T_n+s+t})1_{A_k}) = \mathbb{E}(f(X_{t_k+s+t})1_{A_k})$$

$$= \mathbb{E}(P_t f(X_{t_k+s})1_{A_k}) = \mathbb{E}(P_t f(X_{T_n+s})1_{A_k})$$

Now sum over k and let $n \to \infty$ using bounded convergence to obtain

$$\mathbb{E}(f(X_{T+s+t})1_A) = \mathbb{E}(P_t f(X_{T+s})1_A)$$

But m and A were arbitrary so this implies, on $\{T < \infty\}$,

$$\mathbb{E}(f(X_{T+t+s})|\mathcal{F}_{T+s}) = P_t f(X_{T+s}) \quad \text{a.s.}$$

as required.

(End of proof) \square

7.7. Properties of 1-d BM

Proposition 7.7.1) Let $(X_t)_{t\geq 0}$ be a $BM_0(\mathbb{R})$. Set $T_a=\inf\{t\geq 0: X_t=a\}$. Then

$$\mathbb{P}(T_a < \infty) = 1$$
 for all $a \in \mathbb{R}$ and $\mathbb{P}(T_{-a} \le T_b) = \frac{b}{a+b}$ $\forall a, b \ge 0$ and

Moreover T_a has a density f_a on $[0, \infty)$ given by

$$f_a(t) = \frac{1}{\sqrt{2\pi t^3}} e^{-a^2/2t} \quad t \ge 0$$

Moreover the following holds almost surely.

- (a) $X_t/t \to 0$ as $t \to \infty$.
- (b) $\inf_{t\geq 0} X_t = -\infty$, $\sup_{t\geq 0} X_t = \infty$.
- (c) for all $s \geq 0$, there exist $t, n \geq s$ such that $X_t < 0 < X_n$.
- (d) for all s > 0 there exist $t, n \in [0, s)$ such that $X_t < 0 < X_n$. **proof)** Exercise.

Theorem 7.7.2) Let $X \sim BM_0(\mathbb{R})$. Then the following properties hold almost surely:

- (a) for all $\alpha < 1/2$, $(X_t)_{t>0}$ is locally Hölder continuous of exponent α .
- (b) for all $\alpha > 1/2$ there is no non-trivial interval on which X is Hölder continuous of exponent α .

proof)

(a) For $s, t \ge 0$ with s < t, $X_t - X_s \sim (t - s)^{1/2} X_1$ so for all $p < \infty$,

$$\mathbb{E}(|X_t - X_s|^p) = (t - s)^{p/2} C_n$$

where $C_p = \mathbb{E}(|X_1|^p) < \infty$. Given $\alpha < 1/2$ we can find $p < \infty$ so that $\alpha + \frac{1}{p} < \frac{1}{2}$. Then by Kolmogorov's lemma there exist $K \in L^p(\mathbb{P})$ such that

$$|X_t - X_s| \le K|t - s|^{\alpha}$$
 for all $s, t \in [0, 1]$

So by scaling of BM, $(X_t)_{t\geq 0}$ is locally Hölder continuous of exponent α a.s.

Finally consider $\alpha_n \nearrow 1/2$, $\alpha_n < 1/2$ to see $(X_t)_{t \ge 0}$ is Hölder continuous of exponent α a.s. for all $\alpha < 1/2$.

(b) Let $m, n \in \mathbb{N}$ with $m \geq n$. For $s, t \in \mathbb{D}_n$, define

$$[X]_{s,t}^m = \sum_{\tau} (X_{\tau+2^{-m}} - X_{\tau})^2$$

where we sum over all $\tau \in \mathbb{D}_n$ with $\tau \in (s,t]$. The random variables $(X_{\tau+2^{-m}}-X_{\tau})^2$ are independent of mean 2^{-m} and variance 2^{-2m+1} (Here we need $\mathbb{E}(X_1^4)=3$, $\mathrm{Var}(X_1^2)=2$). So $\mathbb{E}([X]_{s,t}^m)=2^m(t-s)2^{-m}=t-s$ and $\mathrm{Var}([X]_{s,t})=2^m(t-s)2^{-2m+1}$. So $[X]_{s,t}^m \to t-s$ a.s.

Suppose X is Hölder α on [s,t] then for some constant K,

$$|X_{\tau+2^{-m}} - X_{\tau}|^2 \le K^2 (2^{-m})^{2\alpha}$$

so $[X]_{s,t}^m \leq 2^m(t-s)K^22^{-2m\alpha} \to 0$ as $m \to \infty$. So $(X_t)_{t\geq 0}$ is not Hölder α on [s,t], which contradicts with our earlier result.

(10) N 1 D:1)

(16th November, Friday)

7.8. Recurrence and Transience of Brownian Motion

The following theorem tells about recurrence and transience in different dimensions.

Theorem 7.8.1) Let $(X_t)_{t>0}$ is a $\mathbf{BM}_0(\mathbb{R}^d)$.

- (a) For d = 1, $\mathbb{P}(\{t \ge 0 : X_t = 0\})$ is unbounded) = 1. (Point recurrent)
- (b) For d=2, and all $\epsilon>0$, $\mathbb{P}(X_t=0 \text{ for some } t>0)=0 \text{ but } \mathbb{P}(\{t\geq 0: |X_t|\leq \epsilon\} \text{ is unbounded})=1$. (Neighbourhood recurrent, but not recurrent)
- (c) For $d \geq 3$, $\mathbb{P}(|X_t| \to \infty \text{ as } t \to \infty) = 1$. (Transient)

proof)

- (a) Is direct from **Prop 7.7.1** (b)
- (b) Note that $x \mapsto \log |x|$ is harmonic in $\mathbb{R}^2 \setminus \{0\}$. Let $(X_t)_{t>0} \sim \mathrm{BM}_x(\mathbb{R}^2)$. For $\epsilon > 0$, set

$$p_0(x) = \mathbb{P}(X_t = 0 \text{ for some } t > 0), \quad p_{\epsilon}(x) = \mathbb{P}(|X_t| \le \epsilon \text{ for some } t > 0)$$

Consider the case |x| = 1. For a < 1 < b, there is a function $f \in C_b^2(\mathbb{R}^2)$ such that $f(x) = \log |x|$ for $|x| \in [a, b]$. Also consider the martingale (a martingale by **Theorem 7.5.1**)

$$M_t = f(X_t) - f(X_0) - \int_0^t \frac{1}{2} \Delta f(X_s) ds$$

and the stopping time

$$T = \inf\{t \ge 0 : |X_t| \in \{a, b\}\}\$$

Note that $\mathbb{P}(T<\infty)=1$. Also for $t\leq T$, $M_t=\log |X_t|$ so M is bounded up to T. So optional

stopping theorem applies to show

$$0 = \mathbb{E}(M_0) = \mathbb{E}(M_T) = \mathbb{E}(\log |X_t|) = p \log a + (1 - b) \log b$$

where $p = p(a, b) = \mathbb{P}(|X_T| = a)$. Consider the limit $a \to 0$, then $\log a \to -\infty$, so $p \to 0$. Hence for |x| = 1, $p_0(x) = \lim_{b \to \infty} \lim_{a \to 0} p(a, b) = 0$. By scaling, we see $p_0(x) = 0$ for all $x \neq 0$.

In the case
$$x=0,$$
 for $n\in\mathbb{N},$ by Markov property,

$$\mathbb{P}(|X_t| = 0 \text{ for some } t \ge \frac{1}{n}) = \int_{\mathbb{R}^2} p(\frac{1}{n}, 0, y) p_0(y) dy = 0$$

Let $n \to \infty$ to see $p_0(0) = 0$.

For |x|=1, let $b\to\infty$ with $a=\epsilon$ fixed. Since $\log b\to\infty$, $p(a,b)\to 1$ so

$$p_{\epsilon}(x) = \lim_{b \to \infty} p(\epsilon, b) = 1.$$

By scaling $p_{\epsilon}(x) = 1$ for all $x \neq 0$.

If x = 0, for $n \in \mathbb{N}$, by Markov property

$$\mathbb{P}(|X_t| \le \epsilon \text{ for some } t \ge n) = \int_{\mathbb{R}^2} p(n, x, y) p_{\epsilon}(y) dy = 1$$

Hence $\mathbb{P}(\{t \geq 0, |X_t| \leq \epsilon\} \text{ is unbounded }) = 1.$

(c) It will suffice to consider case d=3 and to show for all $N\in\mathbb{N}$ that

$$\mathbb{P}(\{t \geq 0 : |X_t| \leq N\} \text{ is unbounded}) = 0$$

We repeat the argument from (b) with 1/|x| in place of $\log(|x|)$ - in d=3, 1/|x| is the harmonic function on $\mathbb{R}^3\setminus\{0\}$ - to obtain

$$\frac{p}{a} + \frac{1-p}{b} = 1$$

for $p = \mathbb{P}(|X_T| = a)$ and $(X_T)_{t \geq 0} \sim \mathrm{BM}_x(\mathbb{R}^3), \, |x| = 1.$ Let $b \to \infty$ to see

$$\lim_{b \to \infty} p(a, b) = \mathbb{P}(|X_t| \le a \text{ for some } t \ge 0) = a$$

By scaling, for |x| = N + 1,

$$\mathbb{P}(|X_t| \le N \text{ for some } t \ge 0) = \frac{N}{N+1}$$

Set $T_0 = 0$ and for $k \ge 1$,

$$S_k = \inf\{t \ge T_{k-1} : |X_t| = N+1\}, \quad T_k = \inf\{t \ge S_k : |X_t| = N\}$$

Then

$$\mathbb{P}(T_k < \infty) \le \frac{N}{N+1} \mathbb{P}(T_{k-1} < \infty) \le \left(\frac{N}{N+1}\right)^k \to 0$$

by strong Markov property and induction. Set $K = \sup\{k : T_k < \infty\}$. Then $K < \infty$ a.s. Now for all $k \ge 1$, on $\{T_{k-1} < \infty\}$, has $S_k < \infty$ a.s. Hence $S_{K+1} < \infty$ a.s. But on $\{S_{K+1} \le \infty\}$, has $|X_t| > N$ for all $t \ge S_{K+1}$ hence $\mathbb{P}(\{t \ge 0 : |X_t| \le N\})$ is unbounded $S_{K+1} \le \infty$.

(End of proof) \square

7.9. Brownian Motion and the Dirichlet Problem

Let D be a connected open set in \mathbb{R}^d . Write ∂D for the boundary. Let $c: D \to [0, \infty), f: \partial D \to [0, \infty)$ be measurable functions. For $x \in \overline{D}$, let $(X_t)_{t \geq 0}$ be a Brownian motion starting at x.

Define the expected total cost by

$$\phi(x) = \mathbb{E}\Big(\int_0^T c(X_t)dt + f(X_T)1_{t < \infty}\Big)$$

where $T = \inf\{t \geq 0 : X_t \notin D\}$. By a

By a solution of the Dirichlet problem (in D with data c and f), we mean a function $\psi \in C(\overline{D}) \cap C^2(D)$ such that

$$\begin{cases} -\frac{1}{2}\Delta\psi = c & \text{in } D\\ \psi = f & \text{on } \partial D \end{cases}$$

Suppose $\psi \in C_b^2(\mathbb{R}^d)$ restrict to a solution of Dirichlet problem on D. Consider the martingale (as in **Theorem 7.5.1**)

$$M_t = \psi(X_t) - \psi(X_0) - \int_0^t \frac{1}{2} \Delta \psi(X_s) ds$$

Suppose we could justify optional stopping theorem at T and suppose $T<\infty$ a.s. Then

$$0 = \mathbb{E}(M_0) = \mathbb{E}(M_T) = \mathbb{E}(\phi(X_T)) - \psi(x) - \mathbb{E}(\int_0^T \frac{1}{2} \Delta \psi(X_s) ds)$$

so

$$\psi(x) = \mathbb{E}(f(X_T)) + \mathbb{E}(\int_0^T c(X_s)ds) = \phi(x)$$

We will spend time in exploring the condition in which this holds.