Title

Bence Mitlasóczki*and Benoît Scholtes[†] Rheinische-Friedrich-Wilhelms Universität Bonn

March 16, 2018

We adjusted some mirrors to get MOT. We did some measurements.

1 Introduction

2 Theory

Theory

Figure 1: A sample figure

3 Experimental setup

4 Procedure

5 Results

5.1 Laser beam diameter

Using a movable razor blade and a power meter, we measured the intensity as a function of the displacement of the blade along an axis perpendicular to the beam propagation direction. The results are collected in Table 1. Fitting a function of the form

$$f(x) = P + A \cdot \operatorname{erfc}(B \cdot x - C),$$

we found

$$P = 0.012 \pm 0.009$$

 $A = 0.735 \pm 0.007$
 $B = 4.942 \pm 0.133$

 $C = 198.039 \pm 5.317$

This results in a width

$$w = 0.2860 \text{ cm } \pm 0.0077 \text{ cm}$$

Position (cm)	Power (mW)
39.4 ± 0.05	1.58 ± 0.01
39.5 ± 0.05	1.57 ± 0.01
39.6 ± 0.05	1.52 ± 0.01
39.7 ± 0.05	1.40 ± 0.01
39.8 ± 0.05	1.07 ± 0.01
39.9 ± 0.05	0.62 ± 0.01
40.0 ± 0.05	0.25 ± 0.01
40.1 ± 0.05	0.10 ± 0.01
40.2 ± 0.05	0.04 ± 0.01
40.3 ± 0.05	0.01 ± 0.01
40.4 ± 0.05	0.00 ± 0.01

Table 1: Beam power as a function of position of the razor blade. Clearly visible

6 Conclusion

References

- ¹ C. Wieman, G. Flowers and S.Gilbert, Am. J. Phys. **63** (1995).
- 2 Unspecified Author, FP Experiment: Rubidium MOT (University of Bonn, 2014).

^{*}s6bemitl@uni-bonn.de

 $^{^{\}dagger}$ s6bescho@uni-bonn.de