Trường Đai học Bách Khoa Hà Nôi

Đề thi tuyển chọn hệ Kỹ sư tài năng và Chất lượng cao năm 2006

Môn thi : **Toán**

 $Th \partial i \ qian \ l \grave{a}m \ b \grave{a}i : 120 \ ph \acute{u}t^1$

Bài 1:

Phương trình : $x^3 - ax^2 + 4 = 0$, (trong đó a là tham số), có bao nhiêu nghiệm ? **Bài 2:**

Cho dãy số $\{u_n\}$ xác định như sau : $u_0 \in \mathbb{R}$ và

$$u_{n+1} = u_n + \int_0^1 |t - u_n| dt \qquad \forall n \in \mathbb{N}$$

1/ Chứng minh rằng : Đó là một dãy số tăng và nếu $u_0 \ge 1$ thì :

$$u_{n+1} = 2u_n - \frac{1}{2}$$

Từ đó chứng minh rằng

$$\lim_{n\to\infty}u_n=+\infty$$

2/ Chứng minh rằng nếu $0 \le u_0 < 1$ hay nếu $u_0 < 0$ thì $\lim_{n \to \infty} u_n = +\infty$.

Bài 3:

Với mọi n nguyên dương, đặt $I_n = \int_0^1 x^n ln(1+x^2) dx$

- $1/ \text{ Tính } \lim_{n\to\infty} I_n$.
- 2/ Giả sử $c \in (0,1)$. Đặt $A_n = \int_0^c x^n ln(1+x^2) dx$, $B_n = \int_c^1 x^n ln(1+x^2) dx$. Chứng minh rằng $\lim_{n\to\infty} \frac{A_n}{B_n} = 0$.

Bài 4:

1/ Tìm những hàm số f(x) xác định trên $\mathbb R$ liên tục tại 0 sao cho :

$$f(2x) = f(x) \qquad \forall x \in \mathbb{R}$$

2/ Tìm những hàm số g(x) xác định trên \mathbb{R} , có đạo hàm tại 0, sao cho :

$$g(2x) = 2g(x) \qquad \forall x \in \mathbb{R}$$

Bài 5:

x và y là hai đường thẳng chéo nhau. A và B là hai điểm cố định trên x. CD là đoạn thẳng có chiều dài l cho trước trượt trên y. Tìm vị trí của CD sao cho diện tích toàn phần của tứ diện ABCD là nhỏ nhất.

 $^{^1}$ Tài liệu được soạn thảo lại bằng LATEX $2_{\mathcal{E}}$ bởi **Phạm duy Hiệp**