PERFORMANCE TESTING

TEAM ID: PNT2022TMID49032

PROJECT TITLE: EXPLORATORY ANALYSIS OF RAINFALL

DATA IN INDIA FOR AGRICULTURE

CONFUSION MATRIX:

CLASSFICATION REPORT:

	precision	recall	f1-score	support	
No	1.00	1.00	1.00	90911	
Yes	1.00	1.00	1.00	25457	
accuracy			1.00	116368	
macro avg	1.00	1.00	1.00	116368	
weighted avg	1.00	1.00	1.00	116368	

HYPERPARAMETER TURNING:

Hyperparameter Tuning

```
In [47]: grid = {
         ---- "n_estimators": [10, 100, 200, 500, 1000, 1200],
         "max depth": [None, 5, 10, 20, 30],
         ──*"max_features": ["auto", "sqrt"],
          — "min samples split": [2, 4, 6],
          ─w"min_samples_leaf": [1, 2, 4],
         gs model = GridSearchCV(estimator=model, param grid=grid, cv=5)
         gs model.fit(X train, y train)
Out[48]: GridSearchCV(cv=5, estimator=RandomForestClassifier(n_jobs=1),
                      param grid={'max depth': [30], 'max features': ['auto', 'sqrt'],
                                  'min samples leaf': [1, 22],
                                  'min samples split': [2, 4],
                                  'n estimators': [50, 100, 200]})
```