TD 1 : SÉRIES ENTIÈRES - DÉRIVABILITÉ COMPLEXE

Exercice 1. Règle d'Hadamard

Montrer que le rayon de convergence R de $\sum a_n z^n$ est donné par $\frac{1}{R} = \limsup \sqrt[n]{|a_n|}$.

Exercice 2. Changement d'origine

Montrer que si f est la somme d'une série entière de rayon de convergence R, et si $|z_0| < R$, alors $g: z \mapsto f(z_0 + z)$ est développable en série entière sur le disque $D(0, R - |z_0|)$.

Exercice 3. Formule de Cauchy

Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ la somme d'une série entière de rayon de convergence infini.

1. Montrer que pour tout r > 0,

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(re^{i\theta})}{r^n e^{in\theta}} d\theta.$$

- 2. On suppose qu'il existe R > 0 et $P \in \mathbb{R}_d[X]$ tels que pour |z| > R on ait |f(z)| < P(|z|). Montrer que f est un polynôme de degré au plus d.
- 3. En déduire que si, pour tout $z \in \mathbb{C}$, f vérifie f(z+1) = f(z) et f(z+i) = f(z), alors f est constante.

Exercice 4. Principe du maximum

Soit f la somme d'une série entière de rayon de convergence R. On dit que f admet un maximum local en a s'il existe r > 0 tel que $D(a, r) \subset D(0, R)$ et pour tout $z \in D(a, r), |f(z)| \leq |f(a)|$.

- 1. Montrer que si f est non constante, elle n'admet pas de maximum local.
- 2. En déduire le théorème de d'Alembert-Gauss (tout polynôme complexe non constant admet une racine).

Exercice 5. Principe des zéros isolés

Soit $(\alpha_k)_k$ une suite de nombres complexes convergeant vers 0. Trouver les séries entières f telles que $f(\alpha_k) = 0$ pour tout $k \in \mathbb{N}^*$.

Exercice 6. Fonction exponentielle

On définit la fonction exponentielle sur \mathbb{C} par : $\exp z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$.

- 1. a. Rappeler pourquoi exp est bien définie sur \mathbb{C} et vérifier : $\overline{\exp z} = \exp \overline{z}$.
 - b. En considérant $\exp(tz)$ comme une série entière en t, démontrer la relation :

$$\forall (z, z') \in \mathbb{C}^2, \ \exp(z + z') = \exp z \exp z'.$$

- c. En déduire : $|\exp(z)| = e^{Rez}$ et $(\exp(z))^{-1} = \exp(-z)$.
- 2. Soit $z_0 \in \mathbb{C}$. Montrer que $\frac{\exp(z) \exp(z_0)}{z z_0}$ admet une limite quand $z \xrightarrow{\neq} z_0$ et la calculer.
- 3. Dessiner l'image par exp d'une droite de partie réelle (resp. imaginaire) constante.

Exercice 7. Dérivabilité complexe

- 1. Montrer que la fonction $f: z \mapsto \bar{z}$ n'est \mathbb{C} -dérivable nulle part, mais que f vue comme une application sur \mathbb{R}^2 est différentiable partout.
- 2. En quels points $z \mapsto \bar{z}^2$ est-elle \mathbb{C} -dérivable?
- 3. Soit f une fonction holomorphe sur le disque D(0,r). Montrer que la fonction $z\mapsto f(\bar{z})$ est aussi holomorphe sur D(0,r). En quels point $z\mapsto f(z)$ est-elle C-dérivable?
- 4. Vérifier que la fonction $f(x,y) = \sqrt{|xy|}$ satisfait les équations de Cauchy-Riemann en 0 mais n'est pas \mathbb{C} -dérivable en 0.
- 5. Les fonctions $|z|^2$, $\frac{z^3}{\bar{z}}$ sont-elles différentiables sur leur domaine? holomorphes?
- 6. Trouver toutes les fonctions holomorphes sur $\mathbb C$ dont la partie réelle est donnée par $(x,y) \mapsto 2xy$.

Exercice 8. Caractérisations des fonctions holomorphes constantes

Soit f une fonction holomorphe sur un ouvert connexe non vide D de \mathbb{C} . Montrer que les quatre conditions suivantes sont équivalentes :

- i) f est constante;
- ii) Re f est constante;
- iii) Im f est constante; iv) |f| est constante.

Exercice 9. Fonctions harmoniques

Soit D un ouvert de \mathbb{R}^2 . Une fonction $u:D\to\mathbb{R}$ est harmonique si elle est de classe C^2 et vérifie $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$.

- 1. Soit f = u + iv une fonction holomorphe sur D. On suppose que f est de classe \mathcal{C}^2 . Montrer que u et v sont harmoniques sur D.
- 2. Démontrer que si la fonction u est harmonique sur D, la fonction f définie par $f(x,y) = \frac{\partial u}{\partial x}(x,y) - i\frac{\partial u}{\partial y}(x,y)$ est holomorphe sur D.