Package 'CommonSplines'

May 12, 2018

Title Regression Spline and Smoothing Spline

Version 1.0.0
Imports MASS
Date 2018-05-11
Authors Xingchen LIU <e0225109@u.nus.edu>, Yuchen SHI <yuchenshinus@gmail.com>, Xiaozhou Yang <yang_xiaozhou@icloud.com></yang_xiaozhou@icloud.com></yuchenshinus@gmail.com></e0225109@u.nus.edu>
<pre>URL https://github.com/YuchenKid/CommonSplines</pre>
Description This is an R package that covers commonly seen nonparametric regression using spline-based methods. For regression spline, commonly seen basis functions are provided such as truncated power basis, natural cubic spline basis, and B-spline basis. For regularization, penalties on squared second-order derivative are provided, i.e., cubic smoothing spline. This package mainly refer to "Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, pp. 337-387). New York: Springer series in statistics," Chapter 5.
Depends R (>= $3.3.2$)
License Apache License 2.0
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
bs_basis 2 bs_knots 3 bs_predict 3 bs_train 4 cal_loo_cv_error 5 css_predict 6 css_train 7 generate_knots 8 ncs_basis 8 ncs_predict 9 ncs_train 9

2 bs_basis

		•	 •	•	•	 ٠	٠	•	 •	•	 •	•	•	 ٠	٠	•	٠	•	•	•	•	•	•	
pbs_predict	 		 																					
pbs_train .	 		 																					
place_knots	 		 																					

Index 16

bs_basis

Generate an evaluated basis matrix for B-splines

Description

#' This function generates B-spline basis. The B-splines are defined following the recursive formulas due to de Boor. Only univariate input can be used.

Usage

```
bs_basis(x, order, knots)
```

Arguments

x Predictor variable vector.

order The order of basis functions. order=degree+1

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots. It can be generated by bs_knots .

Value

Basis matrix evaluated at each x value.

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)
order<-4
knots<-bs_knots(x,real_knots=knots,order=order)
basis<-bs_basis(x,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)-order)){
   lines(x,basis[,i])
}</pre>
```

bs_knots 3

bs_knots	Add phantom knots for B-splines

Description

Add phantom knots for B-splines

Usage

```
bs_knots(x, df = NULL, real_knots = NULL, q = FALSE, order)
```

Arguments

x	Predictor variable vector.
df	Degrees of freedom. One can supply df rather than knots.
real_knots	The innerknots and boundary knots that define the spline. The knots can all be innerknots. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, real_knots are quantiles of x. When q=FALSE, real_knots are real values of x. Default is FALSE.
order	The order of basis functions. order=degree+1

Value

The knots used to construct the B-splines, including innerknots, boundary knots and phantom knots.

bs_predict	Prediction using regression spline with B-spline basis

Description

This function provides prediction at value of interest using regression spline with B-spline basis. The B-splines are generated by bs_basis and trained by the bs_train. The return value of bs_train can be used as an argument of bs_predict

Usage

```
bs_predict(x_test, order = NULL, knots = NULL, beta = NULL,
basis = NULL)
```

Arguments

x_test	The input values at which evaluations are required.
order	The order of basis functions. order=degree+1
knots	Breakpoints that define the spline. knots should be in terms of real-values of x and contain innner, boundary and phantom knots. It can be the return value of bs_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function bs_train. Instead of specify knots, order and beta,One can supply basis directly.

4 bs_train

Value

The evaluated output at x_test.

See Also

```
bs_basis, bs_train, bs_knots.
```

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
knots <- seq(0.1, 0.9, 0.01)
order<-4
basis<-bs_train(x,y,order,knots)

x_test<-seq(0, 1, 0.01)
fit<-bs_predict(x_test,basis=basis)
plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

bs_train

Train regression coefficients for B-splines.

Description

Train regression coefficients for B-splines.

Usage

```
bs_train(x, y, order, real_knots = NULL, df = NULL, q = FALSE)
```

Arguments

q

X	The input vector of training dataset.
У	The output vector of training dataset.
order	The order of B-spline functions. The default is order=4 for cubic B-splines.
real_knots	The innerknots and boundary knots that define the spline. Phantom knots should not be included. Phantom knots will be generated by bs_knots The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots.
4 t	Degrees of freedom. One can supply df rather than knots

df Degrees of freedom. One can supply df rather than knots.

A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, real_knots are quantiles of x. When q=FALSE, real_knots

are real values of x. Default is FALSE.

cal_loo_cv_error 5

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The B-spline basis matrix of dimension c(length(x), df). df = length(innerknots)

+ order.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

order The order of basis functions. order=degree+1

See Also

```
generate_knots, bs_knots.
```

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
knots <- seq(0, 1, 0.1)
order<-4

basis<-bs_train(x,y,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)+order)){
   lines(x,basis$basismatrix[,i])
}</pre>
```

cal_loo_cv_error

Calculte leave-one-out CV error

Description

Calculte leave-one-out CV error Calculte leave-one-out CV error

Usage

```
cal_loo_cv_error(y, f_hat, S)
cal_loo_cv_error(y, f_hat, S)
```

Arguments

У	response variable values
f_hat	fitted response variable values
S	smoother matrix
У	response variable values
f_hat	fitted response variable values
S	smoother matrix

recoonce variable values

6 css_predict

Value

leave-one-out cross-validation error

leave-one-out cross-validation error

css_predict

Prediction using smoothing spline with squared 2nd derivative penalty

Description

This function takes the coefficients trained by CubicSmoothingSpline.Train and evaluate the output at x_test

Usage

```
css_predict(x_test, knots = NULL, beta = NULL, basis = NULL)
```

Arguments

x_test	The input values at which evaluations are required.
knots	Breakpoints that define the spline. knots should be in terms of real-values of \boldsymbol{x} It can be the return value of generate_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function css_train. Instead of specify knots and beta,One can supply basis directly.

Value

The evaluated output at x_test.

```
x<-seq(0, 1, 0.0015)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
lambda<-0.001
basis<-css_train(x,y,lambda)

x_test<-seq(0, 1, 0.1)
fit<-css_predict(x_test=x_test,basis=basis)

plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

css_train 7

css_train	Train a smoothing spline with squared 2nd derivative penalty using natural cubic spline

Description

This function trains a smoothing spline with squared 2nd derivative penalty. It has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline.

Usage

```
css_train(x, y, lambda)
```

Arguments

X	The input vector of training dataset.
у	The output vector of training dataset
lambda	A fixed smoothing parameter.

Value

A list with the following components:

beta The coefficients of natural splines.

S The smoother matrix.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

References

"Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, pp. 337-387). New York: Springer series in statistics," Chapter 5.4.

```
x < -seq(0, 1, 0.001)

y < -x^3 * 3 - x^2 * 2 + x + exp(1) + rnorm(length(x), 0, 0.1)

plot(x,y)

lambda < -0.001

basis < -css\_train(x,y,lambda)

cat("the knots chosen are: ",basis$knots)
```

ncs_basis

generate_	knots
gciici att_	KIIO CO

Generate knots when real value is not specified.

Description

Generate knots when real value is not specified.

Usage

```
generate_knots(x_train, df = NULL, knots = NULL, q = FALSE)
```

Arguments

x_train	The input vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; generate_knots then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles or real valus of x . The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x.

Value

A vector of knots in terms of real values of x.

ncs	basis	:
IICS_	nasis	•

Generate an evaluated basis matrix for natural cubic splines

Description

Generate an evaluated basis matrix for natural cubic splines

Usage

```
ncs_basis(x, knots)
```

Arguments

x Predictor variable vector.

knots Knots location in terms of real values of x.

Value

Basis matrix evaluated at each x value.

ncs_predict 9

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)

basis<-ncs_basis(x,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots))){
   lines(x,basis[,i])
}</pre>
```

ncs_predict

Prediction using regression spline with natural cubic spline.

Description

Prediction using regression spline with natural cubic spline.

Usage

```
ncs_predict(x_test, knots = NULL, beta = NULL, basis = NULL)
```

Arguments

x_test	The input values at which evaluations are required.
knots	Breakpoints that define the spline. knots should be in terms of real-values of x It can be the return value of generate_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function ncs_train. Instead of specify knots and beta,One can supply basis directly.

Value

 y_pred A vector of dimension length(x), the prediction vector evaluated at x_test values.

ncs_train

Train regression coefficients for natural cubic splines.

Description

Train regression coefficients for natural cubic splines.

Usage

```
ncs_train(x_train, y_train, df = NULL, knots = NULL, q = FALSE)
```

np_reg

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; $ncs()$ then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles of x or real values of x. The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x. Default is FALSE.

Value

A list of following components:

nknots Number of knots.

knots A vector of knot locations.

N Basis matrix evaluated at each x value.

betas Least square fit parameters.

Examples

```
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
x_test <- seq(1, 10, 0.1)
df <- 10
train_result <- ncs_train(x_train, y_train, df)
print(train_result$betas)
print(train_result$N[1:5,1:5])</pre>
```

np_reg

Nonparametric Regression using spline based methods

Description

This function provides regression using spline based methods. It finish both training procedure and predicting procedure. Only univariate input can be used.

Usage

```
np_reg(x_train, y_train, x_test, func = "bs", order = 4, df = NULL,
knots = NULL, lambda = 0.001, q = FALSE)
```

np_reg 11

Arguments

x_train The input vector of training dataset. y_train The output vector of training dataset. x_test The input values at which evaluations are required. func The name of regression functions. It can be "pbs" for power basis spline, "ncs" for natural cubic spline, "css" for cubic smoothing spline, "bs" for B-spline. Default is "bs". order The order that defines the spline. Default is 4. df Degrees of freedom. One can supply df rather than knots. knots The innerknots and boundary knots that define the spline. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots. lambda The smoothing parameter for css. Default is 0.001.

61

A boolean variable define whether knots provided are quantiles or real values.

When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots

provided are real values of x. Default is FALSE.

Value

q

y_pred A vector of dimension length(x), the prediction vector evaluated at x_test values.

See Also

generate_knots.

```
x_{train} \leftarrow seq(1, 10, 0.1)
y_{train} < cos(x_{train})^3 * 3 - sin(x_{train})^2 * 2 + x_{train} + exp(1) + rnorm(length(x_{train}), 0, 1)
plot(x_train,y_train)
title('Comparison of Different Degrees of Freedom')
x_{\text{test}} \leftarrow \text{seq}(1, 10, 0.1)
lines(x_test,cos(x_test)^3 * 3 - sin(x_test)^2 * 2 + x_test + exp(1),col="red")
df <- 2
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='blue')
df <- 4
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='green')
df <- 10
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='black')
legends <- c("Actual", "Prediction: 2 df", "Prediction: 4 df", "Prediction: 10 df")</pre>
legend('topleft', legend=legends, col=c('red', 'blue', 'green', 'black'), lty=1, cex=0.8)
```

pbs_predict

pbs_basis Evaluate basis functions as each x and return the evaluated basis matrix N	-
--	---

Description

Evaluate basis functions as each x and return the evaluated basis matrix N

Usage

```
pbs_basis(x, order, knots)
```

Arguments

x Predictor variable vector.

order The order that defines the power basis spline.

knots The innerknots and boundary knots that define the spline. The knots should be

real values of x. The knots can be generated by generate_knots.

Value

Basis matrix evaluated at each x value.

See Also

```
generate_knots.
```

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)
order<-4
basis<-pbs_basis(x,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)+order)){
   lines(x,basis[,i])
}</pre>
```

pbs_predict

Prediction using regression spline with trancated power basis

Description

This function provides prediction at value of interest using regression spline with truncated power basis. The truncated power basis are generated by pbs_basis and trained by the pbs_train. The return value of pbs_train can be used as an argument of pbs_predict

pbs_train 13

Usage

```
pbs_predict(x_test, order = NULL, knots = NULL, beta = NULL,
    basis = NULL)
```

Arguments

x_test The input values at which evaluations are required.

order The order of basis functions. order=degree+1

knots Breakpoints that define the spline, in terms of real values of input. It can be the return value of generate_knots.

beta The coefficients of nonparametric regression.

basis The return value of function pbs_train. Instead of specify knots, order and beta,One can supply basis directly.

Value

The evaluated output at x_test.

See Also

```
pbs_basis, pbs_train, generate_knots.
```

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
knots <- c(min(t),2*pi*c(1/4,2/4,3/4),max(t))
order <- 4
basis <- pbs_train(t,y1,order,knots=knots)
fit<-pbs_predict(t,basis=basis)
y.hat <- fit
plot(t, y1, t="1")
lines(t, y.hat, col=2)</pre>
```

pbs_train

Regression using Power Basis spline

Description

This function provides regressions using Power Basis splines. The basis are defined as $1,x,x^2,...,x^m,(x-k1)^m-1)+,(x-k2)^m-1)+,...,(x-kn)^m-1)+$ where m is the order, k1, k2 and kn are n knots, '+' denotes the positive part.

Usage

```
pbs_train(x, y, order, df = NULL, knots = NULL, q = FALSE)
```

14 pbs_train

Arguments

X	The input vector of training dataset.
У	The output vector of training dataset.
order	The order that defines the spline.
df	Degrees of freedom. One can supply df rather than knots.
knots	The innerknots and boundary knots that define the spline. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x. Default is FALSE.
x_test	The input values at which evaluations are required.

Details

Only univariate input can be used.

Value

A list with the following components:

beta	The coefficients of nonparametric regression.
basis	The spline basis matrix of dimension $c(length(x), length(knots)+order)$
knots	The knots used to construct the power basis splines
order	The order of basis functions. order=degree+1

See Also

```
{\tt generate\_knots}.
```

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
knots <- c(min(t),2*pi*c(1/4,2/4,3/4),max(t))
order <- 4
basis <- pbs_train(t,y1,order,knots=knots)
cat("trained coeffecients for every spline are",basis$beta)</pre>
```

place_knots 15

place_knots	Find evenly spaced knots by quantile

Description

Knots found include boundary knots at 0th and 100th quantile.

Usage

```
place_knots(nknots, x)
```

Arguments

nknots Number of knots to be located.

x Data vector on which knots are placed.

Value

A named vector with knot quantiles and values.

sel_smoothing_para Select smoothing parameter based on leave-one-out CV error

Description

Select smoothing parameter based on leave-one-out CV error Select smoothing parameter based on leave-one-out CV error

Usage

```
sel_smoothing_para(x, y, cv_lambda)
sel_smoothing_para(x, y, cv_lambda)
```

Arguments

Χ	predictor variable
У	response variable

cv_lambda vector of candidate lambda values

x predictor variable.y response variable.

cv_lambda vector of candidate lambda values, must be between 0 and 1.

Value

lamdba value that minimizes leave-one-out CV error lamdba value that minimizes leave-one-out CV error.

Index

```
bs_basis, 2
bs\_knots, 3
bs_predict, 3
bs_train, 4
cal_loo_cv_error, 5
css_predict, 6
{\tt css\_train, 7}
{\tt generate\_knots}, \textcolor{red}{8}
\mathsf{ncs\_basis}, \textcolor{red}{8}
\mathsf{ncs\_predict}, \textcolor{red}{9}
\mathsf{ncs\_train}, \textcolor{red}{9}
\mathsf{np\_reg},\, \textcolor{red}{10}
\verb|pbs_basis|, 12|
pbs_predict, 12
pbs_train, 13
place_knots, 15
sel\_smoothing\_para, 15
```