Flatland Space Stations

Flatland is a country with \$n\$ cities, \$m\$ of which have space stations. Its cities (\$c\$) are numbered from \$0\$ to \$n-1\$, where \$i^{th}\$ city is referred to as \$c_{i}\$.

Between each $c_{i}\$ and $c_{i+1}\$ (where \$0 \leq i \lt n\$), there exists a bidirectional road \$1 \ km\$ long.

For example, if \$n=5\$ and cities \$c 0\$ and \$c 4\$ have space stations, Flatland would look like this:

For each city, determine its distance to the *nearest* space station and *print the maximum* of these distances.

Input Format

The first line consists of two space-separated integers, \$n\$ and \$m\$.

The second line contains m space-separated integers $c_0, c_1, ..., c_m-1$ denoting the index of each city having a space station. These values are *unordered* and unique.

Constraints

\$1 \le n \le 10^5\$ \$1 \le m \le n\$

Note: There will be at least \$1\$ city with a space station, and no city has more than one.

Output Format

Print an integer denoting the maximum distance that an astronaut in a Flatland city would need to travel to reach the nearest space station.

Sample Input 1:

5 2 0 4

Input Output 1:

2

Sample Input 2:

6 6 0 1 2 4 3 5

Input Output 2:

Explanation

Sample 1:

This sample corresponds to the example given in the problem statement above. The distance to the nearest space station for each city is listed below:

- \$c_0\$ has distance \$0 \ km\$, as it contains a space station.
- \$c_1\$ has distance \$1 \ km\$ to the space station in \$c_0\$.
- \$c_2\$ has distance \$2 \ km\$ to the space stations in \$c_1\$ and \$c_4\$.
- \$c_3\$ has distance \$1 \ km\$ to the space station in \$c_4\$.
- \$c_4\$ has distance \$0 \ km\$, as it contains a space station.

We then take $\max(0,1,2,1,0) = 2$, and print \$2\$ as our answer.

Sample 2:

In this sample, n = m so every city has space station and we print 0 as our answer.