CLAIMS

25

1. A compound of formula Ia or Ib:

and salts, solvates, and chemically protected forms thereof, wherein:

the dotted lines indicate the optional presence of a double bond between C1 and C2 or C2 and C3;

 R^2 and R^3 are independently selected from -H, =0, $=CH_2$, -CN, -R,

OR, halo, =CH-R, O-SO₂-R, CO₂R and COR;

 R^6 and R^9 are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

where R and R' are independently selected from optionally substituted C_{1-12} alkyl, C_{3-20} heterocyclyl and C_{5-20} aryl groups;

15 R^A is selected from H, R, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

 ${\bf R^{10}}$ is a carbamate-based nitrogen protecting group; and ${\bf R^{11}}$ is an oxygen protecting group.

- 20 2. A compound according to claim 1, wherein R^{A} is independently selected from H, OR, SH, SR, NH₂, NHR, NRR' and halo.
 - 3. A compound according to either claim 1 or claim 2, wherein \mathbb{R}^{11} is THP or a silyl oxygen protecting group.

4. A compound according to any of the preceding claims, wherein \mathbb{R}^{10} is BOC or Troc.

- 5. A compound according to any one of the preceding claims, wherein R^9 is H.
- 6. A compound according to any one of the preceding claims, wherein \mathbb{R}^2 is \mathbb{R} .
 - 7. A compound according to any one of the preceding claims, wherein R^6 is selected from H, OH, OR, SH, NH_2 , nitro and halo.
- 10 8. A compound of formula IIIa or IIIb:

$$R^{15'}$$
 $R^{10'}$ $R^{9'}$ R^{10} R^{15} $R^{10'}$ $R^{10'}$

and salts and thereof, wherein:

the dotted lines indicate the optional presence of a double bond between C1 and C2 or C2 and C3;

15 R^2 and R^3 are independently selected from -H, =O, =CH₂, -CN, -R, OR, halo, =CH-R, O-SO₂-R, CO₂R and COR;

 R^6 , R^9 , R^{12} and R^{13} are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;

where R and R' are independently selected from optionally

substituted C_{1-12} alkyl, C_{3-20} heterocyclyl and C_{5-20} aryl groups; R^{10} is a carbamate-based nitrogen protecting group and R^{15} is either $O-R^{11}$, wherein R^{11} is an oxygen protecting group, or OH, or R^{10} and R^{15} together form a double bond between N10 and C11; and

WO 2005/085259

5

where R'' is a C_{3-12} alkylene group, which chain may be interrupted by one or more heteroatoms, e.g. O, S, NH, and/or aromatic rings, and each X is independently selected from O, S, or NH; and $R^{2'}$, $R^{3'}$, $R^{6'}$, $R^{9'}$, $R^{10'}$, $R^{12'}$, $R^{13'}$ and $R^{15'}$ are all independently selected from the same lists as previously defined for R^2 , R^3 , R^6 , R^9 , R^{10} , R^{12} , R^{13} and R^{15} respectively.

103

PCT/GB2005/000770

- A compound according to claim 8, wherein the dimers are 9. linked at the C8 position.
- 10 A compound according to claim 8, wherein the dimers are 10. linked at the C7 position.
- A compound according to either claim 9 or claim 10, wherein -11. X'-R''-X- of formula IIIa or IIIb is $-O-(CH_2)_n-O-$, where n is 3 to 15 12.
 - A compound according to claim 11, wherein n is 8 to 12. 12.
- A compound according to claim 12, wherein n is 8 to 11. 13. 20
 - A compound according to claim 13, wherein n is 8 to 10. 14
 - A compound according to claim 14, wherein n is 8 or 9. 15.
- 25 A compound according to any one of claims 8 to 15, wherein R15 16. is $O-R^{11}$ and R^{11} is THP or a silyl oxygen protecting group.
- A compound according to any one of claims 8 to 16, wherein R10 is BOC or Troc. 30
 - A compound according to any one of claims 8 to 15, wherein R10 and R^{15} together form a double bond between N10 and C11.

15

20

- 19. A compound according to any one of claims 8 to 18, wherein \mathbb{R}^9 is H.
- 20. A compound according to any one of claims 8 to 19, wherein \mathbb{R}^2 is \mathbb{R} .
 - 21. A compound according to any one of claims 8 to 20, wherein R^6 is selected from H, OH, OR, SH, NH₂, nitro and halo.
- 22. A compound according to any one of claims 8 to 21 for use in a method of therapy.
 - 23. A pharmaceutical composition containing a compound of any one of claims 8 to 21, and a pharmaceutically acceptable carrier or diluent.
 - 24. Use of a compound according to any one of claims 8 to 21 in the manufacture of a medicament for treating a proliferative disease.
 - 25. A method of treatment of a proliferative disease, comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of any one of claims 8 to 21.
- 25 26. A method of synthesising a compound of formula Ia or Ib:

from a compound of formula IIa or IIb respectively:

wherein:

the dotted lines indicate the optional presence of a double bond between C1 and C2 or C2 and C3;

R² and R³ are independently selected from -H, =O, =CH₂, -CN, -R, OR, halo, =CH-R, O-SO₂-R, CO₂R and COR;
R⁶ and R⁹ are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo;
where R and R' are independently selected from optionally
substituted C₁₋₁₂ alkyl, C₃₋₂₀ heterocyclyl and C₅₋₂₀ aryl groups;
R^A is selected from H, R, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn

and halo;

R¹⁰ is a carbamate-based nitrogen protecting group;

R¹¹ is an oxygen protecting group; and

15 R^{14} is an oxygen protecting group orthogonal to R^{11} .

27. A method according to claim 26, wherein \mathbb{R}^{14} is benzyl ether and \mathbb{R}^{A} is OMe or H.

- 28. A method according to either claim 26 or claim 27, wherein R¹¹ is THP or a silyl oxygen protecting group.
 - 29. A method of synthesising a compound of formula IIIa or IIIb:

or a solvate thereof, from a compound of formula Ia or Ib respectively:

5 wherein:

the dotted lines indicate the optional presence of a double bond between C1 and C2 or C2 and C3;

 R^2 and R^3 are independently selected from -H, =0, = CH_2 , -CN, -R, OR, halo, =CH-R, O-SO₂-R, CO₂R and COR;

 R^{6} , R^{9} , R^{12} and R^{13} are independently selected from H, R, OH, OR, SH, SR, NH₂, NHR, NRR', nitro, Me₃Sn and halo; where R and R' are independently selected from optionally substituted C_{1-12} alkyl, C_{3-20} heterocyclyl and C_{5-20} aryl groups;

RA is selected from H, R, OR, SH, SR, NH2, NHR, NRR', nitro, Me₃Sn and halo;

and halo;

R¹⁰ is a carbamate-based nitrogen protecting group and R¹⁵ is either O-R¹¹, wherein R¹¹ is an oxygen protecting group, or OH, or R¹⁰ and R¹⁵ together form a double bond between N10 and C11; and where R" is a C₃₋₁₂ alkylene group, and each X is independently selected from O, S, or NH; and

WO 2005/085259 PCT/GB2005/000770

107

 $R^{2'}$, $R^{3'}$, $R^{6'}$, $R^{9'}$, $R^{10'}$, $R^{12'}$, $R^{13'}$ and $R^{15'}$ are all independently selected from the same lists as previously defined for R^2 , R^3 , R^6 , R^9 , R^{10} , R^{12} , R^{13} and R^{15} respectively.

- 5 30. A method according to claim 29, comprising the step of either:
 - (a) reacting a compound of formula Ia or Ib with a compound having the formula Y-R"-Y' to yield a compound of formula IIIa or IIIb; or
- (b) (i) reacting a compound of formula Ia or Ib with a compound having the formula Y-R"-YProt, and
 - (ii) converting YProt in the reaction product from (i) to Y^{\prime} , and
- (iii) reacting the product from (ii) with a compound of formula II or IIIb; wherein:
 - Y, Y' are independently selected from OH, I, Br, Cl, mesylate or tosylate;
- YProt is a precursor to Y' or a chemically protected form of Y' having a protecting group that is orthogonal to R^{10} and R^{11} .
 - 31. A method according to claim 30, wherein Y and Y' are I.
- 32. A method according to claim 30, wherein Y is OH and YProt is O-benzyl.