Estructuras Algebraicas Segundo examen parcial	1 ^{er} Apellido:	5 de junio de 2015 Tiempo 2 h.
Departamento Matem. aplic. TIC ETS de Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Calificación:

- 1. (2 puntos) Sea (R, \oplus, \odot) un anillo.
 - a) Escribir las propiedades que debe cumplir un subconjunto $S \subseteq R$ para ser un subanillo.
 - b) Estudiar si $T = \{a + b\sqrt{6} : a, b \in \mathbb{Z}\}$ es un subanillo de $(\mathbb{R}, +, \cdot)$. ¿Es T un cuerpo?
- 2. (2 puntos) Sea (R, \oplus, \odot) un anillo.
 - a) Escribir las propiedades que debe cumplir un subconjunto $I \subseteq R$ para ser un ideal.

$$b) \ \ \text{Sea} \ A = \{ \left(\begin{array}{cc} x & 0 \\ z & t \end{array} \right) : x, z, t \in \mathbb{Z} \} \subset \mathbb{Z}^{2 \times 2} \quad \text{y sea} \quad I = \{ \left(\begin{array}{cc} a & 0 \\ c & 0 \end{array} \right) : a, c \in \mathbb{Z} \} \subset A.$$
 Estudiar si I es un ideal del anillo $(A, +, \cdot)$. ¿Es I un ideal de $(\mathbb{Z}^{2 \times 2}, +, \cdot)$?

- 3. (2 puntos)
 - a) Calcular $d \in \mathbb{Q}[x]$, máximo común divisor de los polinomios: $f = x^5 2x^4 + x^3 + x^2 2 \in \mathbb{Q}[x]$ y $g = x^3 x^2 + 2 \in \mathbb{Q}[x]$. Obtener polinomios $u, v \in \mathbb{Q}[x]$ tales que $d = u \cdot f + v \cdot g$.
 - b) Estudiar si los polinomios $f, g y d \in \mathbb{Q}[x]$ son irreducibles.
- 4. (2 puntos)
 - a) Demostrar que $\mathbb{Z}_3[x]/\langle x^3-x+1\rangle$ es un cuerpo. Indicar el número de elementos de dicho cuerpo.
 - $b) \ \ \text{Obtener el resultado la operación:} \ [2x^2+1]_{x^3-x+1}^{-1} \cdot [x^2+x+2]_{x^3-x+1}, \ \ \text{en el cuerpo} \ \mathbb{Z}_3[x]/\langle x^3-x+1\rangle.$
- 5. (2 puntos)
 - a) Demostrar que $\mathbb{Q}(\sqrt{7},i)$ es una extensión simple de $(\mathbb{Q},+,\cdot)$.
 - b) Obtener una base y el grado de extensión de $\mathbb{Q}(\sqrt{7},i)$ sobre \mathbb{Q}

Solución:

1. b) T es subanillo de $(\mathbb{R}, +, \cdot)$:

$$0 \in T \Rightarrow T \neq \emptyset$$

Sean $a_1 + b_1 \sqrt{6}, a_2 + b_2 \sqrt{6} \in T \implies$

$$(a_1 + b_1\sqrt{6}) + (a_2 + b_2\sqrt{6}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{6} \in T$$

$$(a_1 + b_1\sqrt{6}) \cdot (a_2 + b_2\sqrt{6}) = (a_1a_2 + 6b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{6} \in T$$

 $(T,+,\cdot)$ no es cuerpo porque no es anillo de división: $2 \in T - \{0\}$, pero $2^{-1} \notin T$

2. b) I es ideal del anillo $(A, +, \cdot)$:

$$0 \in I \Rightarrow I \neq \emptyset$$

$$\operatorname{Sean}\left(\begin{array}{cc}a_1 & 0\\c_1 & 0\end{array}\right),\left(\begin{array}{cc}a_2 & 0\\c_2 & 0\end{array}\right)\in I, \quad \left(\begin{array}{cc}x & 0\\z & t\end{array}\right)\in A\Rightarrow$$

$$\blacksquare \left(\begin{array}{cc} a_1 & 0 \\ c_1 & 0 \end{array}\right) + \left(\begin{array}{cc} a_2 & 0 \\ c_2 & 0 \end{array}\right) = \left(\begin{array}{cc} a_1 + a_2 & 0 \\ c_1 + c_2 & 0 \end{array}\right) \in I$$

$$\begin{array}{ccc}
\bullet & \begin{pmatrix} x & 0 \\ z & t \end{pmatrix} \cdot \begin{pmatrix} a_1 & 0 \\ c_1 & 0 \end{pmatrix} = \begin{pmatrix} xa_1 & 0 \\ za_1 + tc_1 & 0 \end{pmatrix} \in I \\
\begin{pmatrix} a_1 & 0 \\ c_1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x & 0 \\ z & t \end{pmatrix} = \begin{pmatrix} a_1x & 0 \\ c_1x & 0 \end{pmatrix} \in I
\end{array}$$

 $I \text{ no es ideal del anillo } (\mathbb{Z}^{2\times 2},+,\cdot) \colon \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \not \in I$

3. a)
$$d = x^2 - 2x + 2$$
, $u = -1$, $v = x^2 - x \in \mathbb{Q}[x]$

- b) d es irreducible por el criterio de Eisenstein para p=2. f y g son divisibles por d, luego son reducibles.
- 4. a) $x^3 x + 1$ es irreducible en $\mathbb{Z}_3[x]$ por no tener raíces en \mathbb{Z}_3 y ser de grado $3 \Rightarrow \mathbb{Z}_3[x]/\langle x^3 x + 1 \rangle$ es un cuerpo con $3^3 = 27$ elementos.

b)
$$[x^2-1]_{x^3-x+1}$$

5. a) Sea $\alpha = \sqrt{7} + i$. Veamos que $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{7}, i)$:

$$`\subseteq` \sqrt{7}, i \in \mathbb{Q}(\sqrt{7}, i) \Rightarrow \alpha = \sqrt{7} + i \in \mathbb{Q}(\sqrt{7}, i) \Rightarrow \qquad \mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{7}, i)$$

'⊇'
$$\alpha = \sqrt{7} + i$$
, $\alpha^2 = 6 + 2\sqrt{7}i$, $\alpha^3 = 4\sqrt{7} + 20i \in \mathbb{Q}(\alpha) \Rightarrow i = -\frac{1}{4}\alpha + \frac{1}{16}\alpha^3 \in \mathbb{Q}(\alpha)$
y $\sqrt{7} = \frac{20}{16}\alpha - \frac{1}{16}\alpha^3 \in \mathbb{Q}(\alpha) \Rightarrow \mathbb{Q}(\sqrt{7}, i) \subseteq \mathbb{Q}(\alpha)$

b)
$$B = \{1, \sqrt{7}, i, \sqrt{7}i\}, \qquad [\mathbb{Q}(\sqrt{7}, i) : \mathbb{Q}] = 4$$