Generated on 2023-07-17 16:54:29 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW

### 1 HIGHREGIME

### 1.1 Optimisation problem

$$\max_{p \mid H_t, y \mid H_t, i \mid H_t} U H_t = -0.5 p \mid H_t^2 + \beta \left( p \mid H E_t \left[ U H_{t+1} \right] + \left( 1 - p \mid H \right) E_t \left[ U L_{t+1} \right] \right) - 0.5 \kappa \theta^{-1} y \mid H_t^2$$
(1.1)

s.t.:

$$p\!i\!H_{t-1} = \beta \left( p\!H p\!i\!H_t + p\!i\!L_t \left( 1 - p\!H \right) \right) + \kappa y\!H_{t-1} \quad \left( \lambda_t^{\mathrm{HIGHREGIME}^1} \right) \tag{1.2}$$

$$yH_{t-1} = pHyH_t + yL_t(1 - pH) - \sigma(iH_{t-1} - m_{t-1} - pHpiH_t - piL_t(1 - pH)) \quad \left(\lambda_t^{\text{HIGHREGIME}^2}\right)$$
(1.3)

#### 1.2 First order conditions

$$-p\mathbf{i}H_{t} + \beta pH\lambda_{t}^{\mathrm{HIGHREGIME}^{1}} - \beta pH\mathrm{E}_{t}\left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^{1}}\right] + pH\sigma\lambda_{t}^{\mathrm{HIGHREGIME}^{2}} = 0 \quad (p\mathbf{i}H_{t}) \tag{1.4}$$

$$pH\lambda_{t}^{\mathrm{HIGHREGIME^{2}}} + \beta pH\left(\kappa E_{t}\left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{1}}}\right] - E_{t}\left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{2}}}\right]\right) - \kappa\theta^{-1}yH_{t} = 0 \quad (yH_{t})$$
 (1.5)

$$-\beta p H \sigma \mathcal{E}_t \left[ \lambda_{t+1}^{\text{HIGHREGIME}^2} \right] = 0 \quad (iH_t)$$
 (1.6)

### 2 LOWREGIME

### 2.1 Optimisation problem

$$\max_{piL_{t}, yjL_{t}, iL_{t}} UL_{t} = -0.5piL_{t}^{2} + \beta \left(pLE_{t} \left[UL_{t+1}\right] + (1 - pL)E_{t} \left[UH_{t+1}\right]\right) - 0.5\kappa\theta^{-1}yL_{t}^{2}$$
(2.1)

c t

$$p\!i\!L_{t-1} = \beta \left( p\!Lp\!i\!L_t + p\!i\!H_t \left( 1 - p\!L \right) \right) + \kappa y\!L_{t-1} \quad \left( \lambda_t^{\text{LOWREGIME}^1} \right)$$

$$(2.2)$$

$$yL_{t-1} = pLyL_t + yH_t(1 - pL) - \sigma(iL_{t-1} - m_{t-1} - pLpiL_t - piH_t(1 - pL)) \quad \left(\lambda_t^{\text{LOWREGIME}^2}\right)$$
(2.3)

### 2.2 First order conditions

$$-p\!\!\!/L_t + \beta p\!\!\!/L \lambda_t^{\rm LOWREGIME^1} - \beta p\!\!\!/L E_t \left[ \lambda_{t+1}^{\rm LOWREGIME^1} \right] + p\!\!\!/L \sigma \lambda_t^{\rm LOWREGIME^2} = 0 \quad (p\!\!\!/L_t)$$

$$pL\lambda_{t}^{\text{LOWREGIME}^{2}} + \beta pL\left(\kappa E_{t}\left[\lambda_{t+1}^{\text{LOWREGIME}^{1}}\right] - E_{t}\left[\lambda_{t+1}^{\text{LOWREGIME}^{2}}\right]\right) - \kappa \theta^{-1}yL_{t} = 0 \quad (yL_{t})$$

$$(2.5)$$

$$-\beta pL\sigma E_t \left[ \lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \quad (iL_t)$$
 (2.6)

### 3 EXOG

### 3.1 Identities

$$m_t = e^{\epsilon_t^{\mathbf{Z}} + \phi \log m_{t-1}} \tag{3.1}$$

## 4 Equilibrium relationships (after reduction)

$$-m_t + e^{\epsilon_t^2 + \phi \log m_{t-1}} = 0 \tag{4.1}$$

$$-piH_{t-1} + \beta (pHpiH_t + piL_t(1-pH)) + \kappa yH_{t-1} = 0$$
(4.2)

$$-piL_{t-1} + \beta (pLpiL_t + piH_t (1 - pL)) + \kappa yL_{t-1} = 0$$
(4.3)

$$pH\lambda_t^{\text{HIGHREGIME}^2} + \beta pH\left(\kappa E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2}\right]\right) - \kappa \theta^{-1} yH_t = 0$$
(4.4)

$$pL\lambda_t^{\text{LOWREGIME}^2} + \beta pL\left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right]\right) - \kappa \theta^{-1} yL_t = 0$$
(4.5)

$$-yH_{t-1} + pHyH_t - \sigma(iH_{t-1} - m_{t-1} - pHpiH_t - piL_t(1 - pH)) + yL_t(1 - pH) = 0$$

$$(4.6)$$

$$-yL_{t-1} + pLyL_t - \sigma(iL_{t-1} - m_{t-1} - pLpiL_t - piH_t(1 - pL)) + yH_t(1 - pL) = 0$$

$$(4.7)$$

$$-piH_t + \beta pH\lambda_t^{\text{HIGHREGIME}^1} - \beta pHE_t \left[ \lambda_{t+1}^{\text{HIGHREGIME}^1} \right] + pH\sigma\lambda_t^{\text{HIGHREGIME}^2} = 0$$
(4.8)

$$-piL_t + \beta pL\lambda_t^{\text{LOWREGIME}^1} - \beta pLE_t \left[ \lambda_{t+1}^{\text{LOWREGIME}^1} \right] + pL\sigma\lambda_t^{\text{LOWREGIME}^2} = 0$$
(4.9)

$$UH_{t} + 0.5piH_{t}^{2} - \beta \left(pHE_{t}\left[UH_{t+1}\right] + (1-pH)E_{t}\left[UL_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yH_{t}^{2} = 0$$

$$(4.10)$$

$$UL_{t} + 0.5piL_{t}^{2} - \beta \left(pLE_{t}\left[UL_{t+1}\right] + (1 - pL)E_{t}\left[UH_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yL_{t}^{2} = 0$$

$$(4.11)$$

$$-\beta p H \sigma \mathcal{E}_t \left[ \lambda_{t+1}^{\text{HIGHREGIME}^2} \right] = 0 \tag{4.12}$$

$$-\beta pL\sigma E_t \left[ \lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \tag{4.13}$$

 $\sim$ 

## 5 Steady state relationships (after reduction)

$$-m_{ss} + e^{\phi \log m_{ss}} = 0 \tag{5.1}$$

$$-pH_{ss} + \beta \left( pHpH_{ss} + pL_{ss} \left( 1 - pH \right) \right) + \kappa yH_{ss} = 0 \tag{5.2}$$

$$-pL_{ss} + \beta \left( pLpL_{ss} + pH_{ss} \left( 1 - pL \right) \right) + \kappa yH_{ss} = 0 \tag{5.3}$$

$$pH\lambda_{ss}^{\text{HIGHREGIME}^2} + \beta pH \left( -\lambda_{ss}^{\text{HIGHREGIME}^2} + \kappa \lambda_{ss}^{\text{HIGHREGIME}^1} \right) - \kappa \theta^{-1}yH_{ss} = 0 \tag{5.4}$$

$$pL\lambda_{ss}^{\text{LOWREGIME}^2} + \beta pL \left( -\lambda_{ss}^{\text{LOWREGIME}^2} + \kappa \lambda_{ss}^{\text{LOWREGIME}^1} \right) - \kappa \theta^{-1}yL_{ss} = 0 \tag{5.5}$$

$$-yH_{ss} + pHyH_{ss} - \sigma \left( iH_{ss} - m_{ss} - pHpiH_{ss} - pL_{ss} \left( 1 - pH \right) \right) + yL_{ss} \left( 1 - pH \right) = 0 \tag{5.6}$$

$$-yL_{ss} + pLyL_{ss} - \sigma \left( iL_{ss} - m_{ss} - pLpL_{ss} - pH_{ss} \left( 1 - pL \right) \right) + yH_{ss} \left( 1 - pL \right) = 0 \tag{5.7}$$

$$-pH_{ss} + pH\sigma\lambda_{ss}^{\text{HIGHREGIME}^2} = 0 \tag{5.8}$$

$$-pL_{ss} + pL\sigma\lambda_{ss}^{\text{LOWREGIME}^2} = 0 \tag{5.9}$$

$$UH_{ss} + 0.5pL_{ss}^2 - \beta \left( pHUH_{ss} + UL_{ss} \left( 1 - pL \right) \right) + 0.5\kappa\theta^{-1}yL_{ss}^2 = 0 \tag{5.10}$$

$$UL_{ss} + 0.5pL_{ss}^2 - \beta \left( pLUL_{ss} + UH_{ss} \left( 1 - pL \right) \right) + 0.5\kappa\theta^{-1}yL_{ss}^2 = 0 \tag{5.12}$$

$$-\beta pH\sigma\lambda_{ss}^{\text{LOWREGIME}^2} = 0 \tag{5.13}$$

## 6 Parameter settings

ಬ

$$\beta = 0.99$$
 (6.1)  
 $\kappa = 0.2465$  (6.2)  
 $\phi = 0.95$  (6.3)  
 $pH = 0.99$  (6.4)  
 $pL = 0.99$  (6.5)  
 $\sigma = 1$  (6.6)  
 $\theta = 6$  (6.7)

## 7 Steady-state values

|                               | Steady-state value |
|-------------------------------|--------------------|
| iH                            | 1                  |
| iL                            | 1                  |
| $\lambda^{ m HIGHREGIME^1}$   | 0                  |
| $\lambda^{ m HIGHREGIME^2}$   | 0                  |
| $\lambda^{	ext{LOWREGIME}^1}$ | 0                  |
| $\lambda^{	ext{LOWREGIME}^2}$ | 0                  |
| $p\!i\!H$                     | 0                  |
| piL                           | 0                  |
| m                             | 1                  |
| $y\!H$                        | 0                  |
| yL                            | 0                  |
| UH                            | 0                  |
| UL                            | 0                  |

## 8 The solution of the 1st order perturbation

## Matrix P

|             | $iH_{t-1}$          | $iL_{t-1}$ | $piH_{t-1}$ | $p\!i\!L_{t-1}$ | $m_{t-1}$ | $yH_{t-1}$ | $yL_{t-1}$ |
|-------------|---------------------|------------|-------------|-----------------|-----------|------------|------------|
| $iH_t$      | /-1.9645            | 0.0223     | 5.8945      | -0.0721         | 2.8922    | -3.4174    | 0.0401     |
| $iL_t$      | 0.0223              | -1.9645    | -0.0721     | 5.8945          | 2.8922    | 0.0401     | -3.4174    |
| $piH_t$     | 0                   | 0          | 1.0204      | -0.0103         | 0         | -0.2515    | 0.0025     |
| $p\!i\!L_t$ | 0                   | 0          | -0.0103     | 1.0204          | 0         | 0.0025     | -0.2515    |
| $m_t$       | 0                   | 0          | 0           | 0               | 0.95      | 0          | 0          |
| $yH_t$      | 1.0102              | -0.0102    | -1.0204     | 0.0103          |           |            | -0.0127    |
| $yL_t$      | $\setminus -0.0102$ | 1.0102     | 0.0103      | -1.0204         | -1        | -0.0127    | 1.2617     |

### Matrix Q

$$\begin{array}{c} \epsilon^{Z} \\ iH \\ iL \\ piH \\ piH \\ 0 \\ m \\ yL \\ 0 \\ 0 \\ \end{array}$$

### Matrix R

### Matrix S

$$\begin{array}{c} \epsilon^{\rm Z} \\ \lambda^{\rm HIGHREGIME^1} \\ \lambda^{\rm HIGHREGIME^2} \\ \lambda^{\rm LOWREGIME^1} \\ \lambda^{\rm LOWREGIME^2} \\ UH \\ UL \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

## 9 Model statistics

### 9.1 Basic statistics

|                               | Steady-state value | Std. dev. | Variance | Loglin |
|-------------------------------|--------------------|-----------|----------|--------|
| iH                            | 1                  | 0.1303    | 0.017    | Y      |
| iL                            | 1                  | 0.1303    | 0.017    | Y      |
| $\lambda^{ m HIGHREGIME^1}$   | 0                  | 0         | 0        | N      |
| $\lambda^{ m HIGHREGIME^2}$   | 0                  | 0         | 0        | N      |
| $\lambda^{	ext{LOWREGIME}^1}$ | 0                  | 0         | 0        | N      |
| $\lambda^{	ext{LOWREGIME}^2}$ | 0                  | 0         | 0        | N      |
| $p\!i\!H$                     | 0                  | 0         | 0        | N      |
| $p\!i\!L$                     | 0                  | 0         | 0        | N      |
| m                             | 1                  | 0.1303    | 0.017    | Y      |
| $y\!H$                        | 0                  | 0         | 0        | N      |
| yL                            | 0                  | 0         | 0        | N      |
| UH                            | 0                  | 0         | 0        | N      |
| UL                            | 0                  | 0         | 0        | N      |

### 9.2 Correlation matrix

|    | iΗ | iL | m |
|----|----|----|---|
| iН | 1  | 1  | 1 |
| iL |    | 1  | 1 |
| m  |    |    | 1 |

## 9.3 Cross correlations with the reference variable (iH)

|        | ` '                                  |            |            |            |            |            |        |            |            |            |            |            |
|--------|--------------------------------------|------------|------------|------------|------------|------------|--------|------------|------------|------------|------------|------------|
|        | $\sigma[\cdot]$ rel. to $\sigma[iH]$ | $iH_{t-5}$ | $iH_{t-4}$ | $iH_{t-3}$ | $iH_{t-2}$ | $iH_{t-1}$ | $iH_t$ | $iH_{t+1}$ | $iH_{t+2}$ | $iH_{t+3}$ | $iH_{t+4}$ | $iH_{t+5}$ |
| $iH_t$ | 1                                    | -0.016     | 0.11       | 0.271      | 0.471      | 0.713      | 1      | 0.713      | 0.471      | 0.271      | 0.11       | -0.016     |
| $iL_t$ | 1                                    | -0.016     | 0.11       | 0.271      | 0.471      | 0.713      | 1      | 0.713      | 0.471      | 0.271      | 0.11       | -0.016     |
| $m_t$  | 1                                    | -0.016     | 0.11       | 0.271      | 0.471      | 0.713      | 1      | 0.713      | 0.471      | 0.271      | 0.11       | -0.016     |

### 9.4 Autocorrelations

|    |       |       |       |      | Lag 5                      |
|----|-------|-------|-------|------|----------------------------|
| iH | 0.713 | 0.471 | 0.271 | 0.11 | -0.016                     |
| iL | 0.713 | 0.471 | 0.271 | 0.11 | -0.016                     |
| m  | 0.713 | 0.471 | 0.271 | 0.11 | -0.016<br>-0.016<br>-0.016 |

# 10 Impulse response functions





Figure 1: Impulse responses  $(\mathit{iH}, \mathit{iL}, \mathit{piH}, \mathit{piL}, \mathit{yH})$  to  $\epsilon^{\mathrm{Z}}$  shock

Figure 2: Impulse response (yL) to  $\epsilon^{\mathbb{Z}}$  shock