\mathbf{Ymir}

Contents

Banach rings	5
1. Introduction	5
2. Semi-normed Abelian groups	5
3. Semi-normed rings	7
4. Banach rings	8
5. Semi-normed modules	14
6. Berkovich spectra	17
7. Open mapping theorem	21
8. Properties of Banach algebras over a field	23
9. Maximum spectra	25
10. Miscellany	28
Bibliography	29

Banach rings

1. Introduction

This section conerns the theory of Banach algebras. Our references are [Ber12] and [BGR84].

In this chapter, all rings are assumed to be commutative.

2. Semi-normed Abelian groups

Definition 2.1. Let A be an Abelian group. A *semi-norm* on A is a function $\| \bullet \| : A \to [0, \infty]$ satisfying

- (1) ||0|| = 0;
- (2) $||f g|| \le ||f|| + ||g||$ for all $f, g \in A$.

A semi-norm $\| \bullet \|$ on A is a *norm* if moreover the following conditions is satisfied:

(0) if
$$||f|| = 0$$
 for some $f \in A$, then $f = 0$.

We write

$$\ker \| \bullet \| = \{ a \in A : \|a\| = 0 \}.$$

A semi-norm $\| \bullet \|$ on A is non-Archimedean or ultra-metric if Condition (2) can be replaced by

(2')
$$||f - g|| \le \max\{||f||, ||g||\}$$
 for all $f, g \in A$.

Definition 2.2. A semi-normed Abelian group (resp. normed Abelian group) is a pair $(A, \| \bullet \|)$ consisting of an Abelian group A and a semi-norm (resp. norm) $\| \bullet \|$ on A. When $\| \bullet \|$ is clear from the context, we also say A is a semi-normed Abelian group (resp. normed Abelian group).

Definition 2.3. Let $(A, \| \bullet \|_A)$ be a semi-normed Abelian group and $B \subseteq A$ be a subgroup. Then we define the *quotient semi-norm* $\| \bullet \|_{A/B}$ on A/B as follows:

$$||a + B||_{A/B} := \inf\{||a + b||_A : b \in B\}$$

for all $a + B \in A/B$.

We define the $subgroup\ semi-norm$ on B as follows:

$$||b||_B = ||b||_A$$

for all $b \in B$.

Definition 2.4. Let A be an Abelian group and $\| \bullet \|$, $\| \bullet \|'$ be two seminorms on A. We say $\| \bullet \|$ and $\| \bullet \|'$ are *equivalent* if there is a constant C > 0 such that

$$C^{-1}||f|| \le ||f||' \le C||f||$$

for all $f \in A$.

Definition 2.5. Let $(A, \| \bullet \|_A)$, $(B, \| \bullet \|_B)$ be semi-normed Abelian groups. A homomorphism $\varphi : A \to B$ is said to be

- (1) bounded if there is a constant C > 0 such that $\|\varphi(f)\|_B \le C\|f\|_A$ for any $f \in A$;
- (2) admissible if the quotient semi-norm on $A/\ker \varphi$ is equivalent to the subspace semi-norm on $\operatorname{Im} \varphi$.

Observe that an admissible homomorphism is always bounded.

Next we study the topology defined by a semi-norm.

Lemma 2.6. Let $(A, \| \bullet \|)$ be a semi-normed Abelian group. Define

$$d(a,b) = ||a - b||$$

for $a, b \in A$. Then $\| \bullet \|$ is a pseudo-metric on A. This pseudo-metric is a metric if and only if $\| \bullet \|$ is a norm.

Let \hat{A} be the metric completion of A, then there is a norm $\| \bullet \|$ on \hat{A} inducing its metric. Moreover, the natural homomorphism $A \to \hat{A}$ is an isometric homomorphism with dense image.

PROOF. This is clear from the definitions.

We always endow A with the topology induced by the psuedo-metric d.

Proposition 2.7. Let $f: A \to B$ be a homomorphism between semi-normed Abelian groups. Assume that f is bounded, then it is continuous.

The converse is not true.

PROOF. Clear from the definition.

Proposition 2.8. Let $(A, \| \bullet \|)$ be a normed Abelian group and B be a subgroup of A. Assume that there is $\epsilon \in (0,1)$ such that for each $a \in A$, there is $b \in B$ such that

$$||a+b|| \le \epsilon ||a||.$$

Then B is dense in A.

PROOF. Assume to the contrary that there exists $a \in A$ so that

$$c := \inf_{b \in B} \|a - b\| > 0.$$

Choose $b_1 \in B$ so that

$$||a+b_1||<\epsilon^{-1}c.$$

By our hypothesis, there is $b_2 \in B$ such that

$$||a + b_1 + b_2|| \le \epsilon ||a + b_1|| < c.$$

This is a contradiction.

Definition 2.9. Let $(A, \| \bullet \|)$ be a semi-normed Abelian group. The normed Abelian group $(\hat{A}, \| \bullet \|)$ constructed in Lemma 2.6 is called the *completion* of $(A, \| \bullet \|)$.

3. Semi-normed rings

Definition 3.1. Let A be a ring. A *semi-norm* $\| \bullet \|$ on A is a semi-norm $\| \bullet \|$ on the underlying additive group satisfying the following extra properties:

- (3) ||1|| = 1;
- (4) for any $f, g \in A$, $||fg|| \le ||f|| \cdot ||g||$.

A semi-norm $\| \bullet \|$ on A is called *power-multiplicative* if $\| f \|^n = \| f^n \|$ for all $f \in A$ and $n \in \mathbb{N}$.

A semi-norm $\| \bullet \|$ on A is called *multiplicative* if $\| fg \| = \| f \| \| g \|$ for all $f, g \in A$.

Definition 3.2. A semi-normed ring (resp. normed ring) is a pair $(A, \| \bullet \|)$ consisting of a ring A and a semi-norm (resp. norm) $\| \bullet \|$ on A. When $\| \bullet \|$ is clear from the context, we also say A is a semi-normed ring (resp. normed ring).

Definition 3.3. Let $(A, \| \bullet \|)$ be a semi-normed ring. An element $a \in A$ is *multiplicative* if $a \notin \ker \| \bullet \|$ and for any $x \in A$,

$$||ax|| = ||a|| \cdot ||x||.$$

Definition 3.4. Let $(A, \| \bullet \|)$ be a normed ring. An element $a \in A$ is power-bounded if $\{|a^n| : n \in \mathbb{N}\}$ is bounded in \mathbb{R} . The set of power-bounded elements in A is denoted by \mathring{A} .

An element $a \in A$ is called topologically nilpotent if $a^n \to 0$ as $n \to \infty$. The set of topologically nilpotent elements in A is denoted by \check{A} .

Proposition 3.5. Let $(A, \| \bullet \|)$ be a non-Archimedean normed ring. Then \mathring{A} is a subring of A and \check{A} is an ideal in \mathring{A} . Moreover, \mathring{A} , \check{A} are open and closed in A.

PROOF. Choose $a, b \in \mathring{A}$, by definition, there is a constant C > 0 so that for any $n \in \mathbb{N}$,

$$||a^n|| < C, \quad ||b^n|| < C.$$

It follows that

$$||(ab)^n|| \le ||a^n|| \cdot ||b^n|| \le C^2$$

and

$$\|(a-b)^n\| \le \max_{i=0} \|a^i b^{n-i}\| \le C^2.$$

So \mathring{A} is a subring.

Next we show that \check{A} is an ideal in \mathring{A} . On the other hand, take $c \in \check{A}$, then

$$||(ac)^n|| < ||a^n|| \cdot ||c^n|| < C||c^n||$$

But $||c^n|| \to 0$ as $n \to \infty$, hence $ac \in \check{A}$.

On the other hand, consider $c, d \in \check{A}$, we need to show $c - d \in \check{A}$. Choose C > 0 so that

$$||a^n|| \le C, \quad ||b^n|| \le C$$

for all $n \in \mathbb{N}$. Fix $\epsilon > 0$, then there is $m \in \mathbb{N}$ so that for any $k \geq m$,

$$||a^k|| \le \epsilon C^{-1}, \quad ||b^k|| \le \epsilon C^{-1}.$$

In particular, for $k \geq 2m$, we have

$$\|(a-b)^k\| \le \max_{i=0,\dots,k} \|a^i\| \cdot \|b^{k-i}\| \le \epsilon.$$

It follows that $a - b \in \check{A}$. This proves that \check{A} is an ideal in \mathring{A} .

In order to see \check{A} is open and closed in A, observe that it is a subgroup of A, so it suffices to show that \check{A} is open in A. It suffices to show that

$$\{a \in A : ||a|| < 1\} \subseteq \check{A}.$$

But this is obvious, if ||a|| < 1, then $||a^n|| \le ||a||^n$ for all $n \in \mathbb{N}$, it follows that $a^n \to 0$ as $n \to \infty$, namely, $a \in \check{A}$.

As \mathring{A} is a subgroup of \mathring{A} , it follows that \mathring{A} is both open and closed. \square

Definition 3.6. Let $(A, \| \bullet \|)$ be a non-Archimedean normed ring. We define the reduction of A as $\tilde{A} = \mathring{A}/\check{A}$. The map $\mathring{A} \to \tilde{A}$ is called the reduction map. We usually denote the reduction map by $a \mapsto \tilde{a}$.

This definition makes sense thanks to Proposition 3.5.

Definition 3.7. Let A be a ring. A *semi-valuation* on A is a multiplicative seminorm on A. A semi-valuation on A is a *valuation* on A if its underlying semi-norm of Abelian groups is a norm.

Definition 3.8. A semi-valued ring (resp. valued ring) is a pair $(A, \| \bullet \|)$ consisting of a ring A and a semi-valuation (resp. valuation) $\| \bullet \|$ on A. When $\| \bullet \|$ is clear from the context, we also say A is a semi-valued ring (resp. valued ring).

A semi-valued ring (resp. valued ring) $(A, \| \bullet \|)$ is called a *semi-valued field* (resp. valued field) if A is a field.

4. Banach rings

Definition 4.1. A Banach ring is a normed ring that is complete with respect to the metric defined in Lemma 2.6.

Definition 4.2. A Banach ring $(A, \| \bullet \|_A)$ is uniform if $\| \bullet \|_A$ is power-multiplicative.

Definition 4.3. Let A be a semi-normed ring. There is an obvious ring structure on the completion \hat{A} of A defined in Definition 2.9. We call the resulting Banach ring the *completion* of A.

Proposition 4.4. Let $(A, \| \bullet \|)$ be a Banach ring and $f \in A$. Assume that $\| f \| < 1$, then 1 - f is invertible.

Proof. Define

$$g = \sum_{i=0}^{\infty} f^i.$$

From our assumption, the series converges and $g \in A$. It is elementary to check that g is the inverse of 1 - f.

In the non-Archimedean case, we have a stronger result:

Proposition 4.5. Let $(A, \| \bullet \|)$ be a non-Archimedean Banach ring and $f \in \mathring{A}$. Then 1 - f is invertible. Moreover, $(1 - f)^{-1}$ can be written as 1 + z for some $z \in \mathring{A}$.

Proof. Define

$$g = \sum_{i=0}^{\infty} f^i.$$

From our assumption, the series converges and $g \in A$. It is elementary to check that g is the inverse of 1 - f. Moreover, in view of Proposition 3.5 as for any $i \ge 1$, $f^i \in \check{A}$, the same holds for their sum, we conclude the final assertion.

Corollary 4.6. Let $(A, \| \bullet \|)$ be a Banach ring. Then the set of invertible elements in A is open.

PROOF. Let $x \in A$ be an invertible element. It suffices to show that for any $y \in A$, $|y| < 1/(||x^{-1}||)$, y + x is invertible. For this purpose, it suffices to show that $1 + x^{-1}y$ is invertible. But this follows from Proposition 4.4.

Corollary 4.7. Let A be a Banach ring and $\mathfrak m$ be a maximal ideal in A. Then $\mathfrak m$ is closed.

PROOF. The closure $\bar{\mathfrak{m}}$ is obviously an ideal in A. We need to show that $\mathfrak{m} \neq A$. Namely, 1 is not in the closure of \mathfrak{m} . But clearly, \mathfrak{m} is contained in the set of non-invertible elements, the latter being closed by Corollary 4.6. So we conclude. \square

Lemma 4.8. Let A be a non-Archimedean Banach ring. An element $a \in \mathring{A}$ is a unit in \mathring{A} if and only if \tilde{a} is a unit in \tilde{A} .

PROOF. The direct implication is trivial. Conversely, assume that $a \in \mathring{A}$ and there is an element $b \in \mathring{A}$ such that

$$\tilde{a}\tilde{b}=1$$
.

Then $1 - ab \in \mathring{A}$. It follows from Proposition 4.5 that ab is a unit in \mathring{A} and hence a is a unit in \mathring{A} .

Definition 4.9. Let $(A, \| \bullet \|)$ be a Banach ring. We define the *spectral radius* $\rho = \rho_A : A \to [0, \infty)$ as follows:

$$\rho(f) = \inf_{n \ge 1} ||f^n||^{1/n}, \quad f \in A.$$

Lemma 4.10. Let $(A, \| \bullet \|)$ be a Banach ring. Then for any $f \in A$, we have

$$\rho(f) = \lim_{n \to \infty} ||f^n||^{1/n}.$$

PROOF. This follows from the multiplicative version of Fekete's lemma. \Box

Example 4.11. The ring \mathbb{C} with its usual norm $| \bullet |$ is a Banach ring. In fact, $(\mathbb{C}, | \bullet |)$ is a complete valued field.

Example 4.12. Let $\{(A_i, \| \bullet \|_i)_{i \in I} \text{ be a family of Banach rings. We define their product <math>\prod_{i \in I} A_i$ as the following Banach ring: as a set it consists of all elements $f = (f_i)_{i \in I}$ with

$$||f|| := \sup_{i \in I} ||f_i||_i < \infty.$$

The norm is given by $\| \bullet \|$. It is easy to verify that $\prod_{i \in I} A_i$ is indeed a Banach ring.

Example 4.13. For any Banach ring $(A, \| \bullet \|)$, any $n \in \mathbb{N}$ and any $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_{>0}$, we define $A\langle r^{-1}z\rangle = A\langle r_1^{-1}z_1, \ldots, r_n^{-1}z_n\rangle$ as the subring of $A[[z_1, \ldots, z_n]]$ consisting of formal power series

$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} z^{\alpha}, \quad a_{\alpha} \in A$$

such that

$$||f||_r := \sum_{\alpha \in \mathbb{N}^n} ||a_\alpha|| r^\alpha < \infty.$$

We will verify in Proposition 4.14 that $(A\langle r^{-1}z\rangle, \|\bullet\|_r)$ is a Banach ring. When $r = (1, \ldots, 1)$, we omit r^{-1} from our notations.

Proposition 4.14. In the setting of Example 4.13, $(A\langle r^{-1}z\rangle, \|\bullet\|_r)$ is a Banach ring.

PROOF. By induction, we may assume that n = 1.

It is obvious that $\| \bullet \|_r$ is a norm on the undelrying Abelian group. To see that $\| \bullet \|_r$ is a norm on the ring $A\langle r^{-1}z\rangle$, we need to verify the condition in Definition 3.1. Condition (3) in Definition 3.1 is obvious. Let us consider Condition (4). Let

$$f = \sum_{i=0}^{\infty} a_i z^i, \quad g = \sum_{j=0}^{\infty} b_j z^j$$

be two elements in $A\langle r^{-1}z\rangle$. Then

$$fg = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} a_i b_j \right) z^k.$$

We compute

$$||fg||_r = \sum_{k=0}^{\infty} \left\| \sum_{i+j=k} a_i b_j \right\| r^k \le \sum_{k=0}^{\infty} \left(\sum_{i+j=k} ||a_i|| \cdot ||b_j|| \right) r^k = ||f||_r \cdot ||g||_r.$$

It remains to verify that $A\langle r^{-1}z\rangle$ is complete.

For this purpose, take a Cauchy sequence

$$f^b = \sum_{i=0}^{\infty} a_i^b z^i \in A\langle r^{-1}z\rangle$$

for $b \in \mathbb{N}$. Then for each i, the coefficients $(a_i^b)_b$ is a Cauchy sequence in A. Let a_i be the limit of a_i^b as $b \to \infty$ and set

$$f = \sum_{i=0}^{\infty} a_i z^i \in A[[z]].$$

We need to show that $f \in A\langle r^{-1}z\rangle$ and $f^b \to f$.

Fix a constant $\epsilon > 0$. There is $m = m(\epsilon) > 0$ such that for all $j \geq m$ and all $k \geq 0$, we have

$$\sum_{i=0}^{\infty} \|a_i^{j+k} - a_i^j\| r^i < \epsilon/2.$$

In particular, for any s > 0, we have

$$\sum_{i=0}^{s} \|a_i - a_i^j\| r^i \le \sum_{i=0}^{s} \|a_i - a_i^{j+k}\| r^i + \sum_{i=0}^{s} \|a_i^j - a_i^{j+k}\| r^i \le \sum_{i=0}^{s} \|a_i - a_i^{j+k}\| r^i + \epsilon/2.$$

When k is large enough, we can guarantee that

$$\sum_{i=0}^{s} \|a_i - a_i^{j+k}\| r^i < \epsilon/2.$$

So

$$\sum_{i=0}^{s} \|a_i - a_i^j\| r^i \le \epsilon.$$

Let $s \to \infty$, we find

$$||f - f^j||_r \le \sum_{i=0}^{\infty} ||a_i - a_i^j||_{r^i} \le \epsilon.$$

In particular, $||f||_r < \infty$ and $f^j \to f$ as $j \to \infty$.

Example 4.15. For any non-Archimedean Banach ring $(A, \| \bullet \|)$, any $n \in \mathbb{N}$ and any $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_{>0}$, we define $A\{r^{-1}T\} = A\{r_1^{-1}T_1, \ldots, r_n^{-1}T_n\}$ as the subring of $A[[T_1, \ldots, T_n]]$ consisting of formal power series

$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} T^{\alpha}, \quad a_{\alpha} \in A$$

such that $||a_{\alpha}||r^{\alpha} \to 0$ as $|\alpha| \to \infty$. We set

$$||f||_r := \max_{\alpha \in \mathbb{N}^n} ||a_\alpha|| r^\alpha.$$

We will verify in Proposition 4.16 that $(A\langle r^{-1}T\rangle, \|\bullet\|_r)$ is a Banach ring. The semi-norm $\|\bullet\|_r$ is called the *Gauss norm*.

Proposition 4.16. In the setting of Example 4.15, $(A\{r^{-1}T\}, \| \bullet \|_r)$ is a Banach ring.

Moreover, if the norm $\| \bullet \|$ on A is a valuation, so is $\| \bullet \|_r$.

The second part is usually known as the Gauss lemma.

PROOF. By induction on n, we may assume that n = 1.

The proof of the fact that $\| \bullet \|_r$ is a norm is similar to that of Proposition 4.14. We leave the details to the readers.

Next we argue that $(A\{r^{-1}T\}, \|\bullet\|_r)$ is complete. Take a Cauchy sequence

$$f^{b} = \sum_{i=0}^{\infty} a_{i}^{b} T^{i} \in A\{r^{-1}T\}$$

for $b \in \mathbb{N}$. As

$$||a_i^b - a_i^{b'}||r^i \le ||f^b - f^{b'}||_r$$

for any $i, b, b' \ge 0$, it follows that for any $i \ge 0$, $\{a_i^b\}_b$ is a Cauchy sequence. Let $a_i \in A$ be its limit and set

$$f = \sum_{i=0}^{\infty} a_i T^i \in A[[T]].$$

We need to show that $f \in A\{r^{-1}T\}$ and $f^b \to f$.

Fix $\epsilon > 0$. We can find $m = m(\epsilon) > 0$ such that for all $j \ge m$ and all $k \ge 0$,

$$||f^j - f^{j+k}||_r \le \epsilon.$$

It follows that $||a_i^j - a_i^{j+k}|| r^i \le \epsilon$ for all $i \ge 0$. Let $k \to \infty$, we find

$$||a_i^j - a_i||r^i \le \epsilon$$

for all $i \ge 0$. Fix $j \ge 0$, take i large enough so that $|a_i^j| r^i < \epsilon$. Then $||a_i|| r^i \le \epsilon$. So we find $f \in A\{r^{-1}T\}$. On the other hand,

$$||f - f^j||_r = \max_i ||a_i^j - a_i||_r^i \le \epsilon.$$

This proves that $f^j \to f$.

Now assume that $\| \bullet \|$ is a valuation, we verify that $\| \bullet \|_r$ is also a valuation. Again, we may assume that n = 1. Take two elements $f, g \in A\{r^{-1}T\}$:

$$f = \sum_{i=0}^{\infty} a_i T^i, \quad g = \sum_{j=0}^{\infty} b_j T^j.$$

As we have already shown $|fg|_r \leq |f|_r |g|_r$, it suffices to check the reverse inequality. For this purpose, choose the minimal indices i, j so that

$$||f||_r = ||a_i||r^i, \quad ||g||_r = ||b_j||r^j.$$

Write

$$fg = \sum_{k=0}^{\infty} \left(\sum_{p+q=k} a_p b_q \right) T^k.$$

Then we claim that

$$\left\| \sum_{p+q=k} a_p b_q \right\| r^k = \|f\|_r \|g\|_r$$

when k = i + j. This implies the desired inequality. Of course, we may assume that $a_i \neq 0$ and $b_j \neq 0$ as otherwise there is nothing to prove. To verify our claim, it suffices to observe that for $(p, q) \neq (i, j)$, r + s = i + j, say p < i and q > j, we have

$$||a_p b_q||r^k = ||a_p||r^p \cdot ||b_q||r^q < ||a_i||r^i \cdot ||b_j||r^j.$$

So

$$||a_p b_q|| < ||a_i b_j||.$$

Since the valuation on A is non-Archimedean, it follows that

$$\|\sum_{p+q=k} a_p b_q\| = \|a_i b_j\|.$$

Our claim follows.

Remark 4.17. More generally, it A is endowed with a semi-valuation $\| \bullet \|'$, then the same procedure and the same proof produces a semi-valuation on $A\{r^{-1}T\}$.

Proposition 4.18. Let A, B be a non-Archimedean Banach ring and $f: A \to B$ be a continuous homomorphism. Then for any $b \in \mathring{B}$, there is a unique continuous homomorphism $F: A\{T\} \to B$ extending f and sending T to b.

PROOF. From the continuity and the fact that A[T] is dense in $A\{T\}$, F is clearly unique. To prove the existence, we define F directly: consider $g = \sum_{i=0}^{\infty} a_i T^i \in A\{T\}$, we define

$$F(g) := \sum_{i=0}^{\infty} f(a_i) f^i.$$

As $f_i \in \mathring{A}$ and $a_i \to 0$, the right-hand side is well-defined. It is straightforward to check that F is a continuous homomorphism.

Proposition 4.19. For any non-Archimedean Banach ring $(A, \| \bullet \|)$, we have

$$(A\{T\})^{\circ} = \mathring{A}\{T\}, \quad (A\{T\})^{\check{}} = \check{A}\{T\}.$$

For the definitions of • and •, we refer to Definition 3.4.

PROOF. We first show that

$$\mathring{A}\{T\} \subseteq (A\{T\})^{\circ}.$$

Let $f \in \mathring{A}\{T\}$. We expand f as

$$f = \sum_{i=0}^{\infty} a_i T^i, \quad a_i \in \mathring{A}.$$

Then for each $i, j \in \mathbb{N}$, $||a_iT^i||_1^j = ||a_i||^j$. So for each $i \in \mathbb{N}$, $a_iT^i \in (A\{T\})^\circ$. By Proposition 3.5, it follows that $f \in (A\{T\})^\circ$.

Next we prove the reverse inclusion. Take $f \in (A\{T\})^{\circ}$, suppose by contrary that $f \notin \mathring{A}\{T\}$. Expand f as

$$f = \sum_{i=0}^{\infty} a_i T^i, \quad a_i \in A.$$

We can take a minimal $m \in \mathbb{N}$ so that $a_m \notin \mathring{A}$. Then $\sum_{i=0}^{m-1} a_i T^i \in \mathring{A}\{T\} \subseteq (A\{T\})^{\circ}$ by what we have proved. It follows that

$$g := f - \sum_{i=0}^{m-1} a_i T^i = \sum_{i=m}^{\infty} a_i T^i \in (A\{T\})^{\circ}.$$

Then it follows that

$$\|g^j\| \ge \|a_m^j\|$$

for any $j \in \mathbb{N}$. It follows that $a_m \in \mathring{A}$, which is a contradiction.

Next we show that

$$\check{A}\{T\} \subseteq (A\{T\})^{\check{}}.$$

Let $f \in \check{A}\{T\}$. We expand f as

$$f = \sum_{i=0}^{\infty} a_i T^i, \quad a_i \in \check{A}.$$

Then for each $i, j \in \mathbb{N}$, $||a_iT^i||_1^j = ||a_i||^j$. So for each $i \in \mathbb{N}$, $a_iT^i \in (A\{T\})$. By Proposition 3.5, it follows that $f \in (A\{T\})$.

Conversely, take $f \in (A\{T\})$, suppose by contrary that $f \notin \mathring{A}\{T\}$. Expand f as

$$f = \sum_{i=0}^{\infty} a_i T^i, \quad a_i \in A.$$

We can take a minimal $m \in \mathbb{N}$ so that $a_m \notin \check{A}$. Then $\sum_{i=0}^{m-1} a_i T^i \in \check{A}\{T\} \subseteq (A\{T\})^{\check{}}$ by what we have proved. It follows that

$$g := f - \sum_{i=0}^{m-1} a_i T^i = \sum_{i=m}^{\infty} a_i T^i \in (A\{T\})^{\check{}}.$$

Then it follows that

$$\|g^j\| \ge \|a_m^j\|$$

for any $j \in \mathbb{N}$. It follows that $a_m \in \mathring{A}$, which is a contradiction.

Corollary 4.20. For any non-Archimedean Banach ring $(A, \| \bullet \|)$, we have a canonical isomorphism

$$\widetilde{A\{T\}} \cong \widetilde{A}[T].$$

The natural map $A\{T\}^{\circ} \to \widetilde{A\{T\}}$ corresponds to a homomorphism $\mathring{A}\{T\} \to \widetilde{A}[T]$ extending the homomorphism $\mathring{A} \to \widetilde{A}$ and sending T to T.

PROOF. Let $f = \sum_{i=0}^{\infty} a_i T^i \in A\{T\}^{\circ}$. Then $a_i \in \mathring{A}$ by Proposition 4.19. But $\|a_i\| \to 0$ as $i \to \infty$, so $a_i \in \check{A}$ for almost all i. It follows that the image of f in $A\{T\}$ is the same as the image of an element from $\mathring{A}[T]$. On the other hand, for each $f \in \tilde{A}[T]$, we can expand $f = a_N T^N + \cdots + a_1 T^1 + a_0$ with $a_N \in \tilde{A}$. Lift each a_i to $b_i \in \mathring{A}$. Then the image of $b_N T^N + \cdots + b_1 T^1 + b_0$ under the reduction corresponds to f. The assertions follow.

Corollary 4.21. Let $(A, \| \bullet \|)$ be a non-Archimedean Banach ring. An element $f = \sum_{i=0}^{\infty} a_i T^i \in \mathring{A}\{T\}$ is a unit in $\mathring{A}\{T\}$ if and only if a_0 is a unit in \mathring{A} and $a_i \in \mathring{A}$ for all i > 0.

PROOF. By Proposition 4.16, we know that $A\{T\}$ is complete. By Lemma 4.8 and Proposition 4.19, f is a unit in $\mathring{A}\{T\}$ if and only if $\sum_{i=0}^{\infty} \tilde{a}_i T^i$ is a unit in $\tilde{A}[T]$. By Lemma 4.8 again, a_0 is a unit in A if and only if \tilde{a}_0 is a unit in \tilde{A} . So we are reduced to argue that units in $\tilde{A}[T]$ are exactly units in \tilde{A} . This follows from the general fact about units in polynomial rings over a reduced ring.

Lemma 4.22. Let A, B be Banach rings and $f,g:A\to B$ be bounded homomorphisms. Then the equalizer Eq(f,g) of f and g is a Banach subring of A.

If C is a Banach ring, A,B are moreover Banach C-algebras and f,g are moreover bounded homomorphism of Banach C-algebras, then $\operatorname{Eq}(f,g)$ is a Banach C-subalgebra of A.

PROOF. As an equalizer of ring homomorphisms, Eq(f,g) is a subring of A. We can realize $\text{Eq}(f,g) = \ker(f-g)$, so Eq(f-g) is a closed subring of A, hence a Banach subring with respect to the subspace norm.

The second assertion is proved similarly.

5. Semi-normed modules

Definition 5.1. Let $(A, \| \bullet \|_A)$ be a normed ring. A *semi-normed A-module* (resp. *normed A-module*) is a pair $(M, \| \bullet \|_M)$ consisting of a *A*-module M and a semi-norm (resp. norm) on the underlying Abelian group of M such that there is a constant C > 0 such that

$$||fm||_M \le C||f||_A||m||_M$$

for all $f \in A$ and $m \in M$. In case $\| \bullet \|_A$ is non-Archimedean, we require that $\| \bullet \|_M$ is also non-Archimedean.

We say the semi-normed A-module (resp. normed A-module) M is faithful if we can take C=1.

When $\| \bullet \|_M$ is clear from the context, we say M is a semi-normed A-module (resp. normed A-module).

An A-module homomorphism $\varphi:M\to N$ between two semi-normed A-modules M and N is bounded if the homomorphism of the underlying semi-normed Abelian groups is bounded in the sense of Definition 2.5.

A Banach A-module is a normed A-module which is complete with respect to the metric Lemma 2.6.

We denote by \mathcal{B} an_A the category of Banach A-modules with bounded A-module homomorphisms as morphisms.

Definition 5.2. Let A be a Banach ring and $(M, \| \bullet \|_M), (N, \|bullet\|_N)$ be two Banach A-modules. Define their *direct sum* as the Banach A-module $(M \oplus N, \| \bullet \|_{M \oplus N})$, where for $m \in M, n \in N$, we set

$$||(m,n)||_{M \oplus N} := \max\{||m||_M, ||n||_N\}.$$

This definition extends immediately to finite direct sums of Banach A-modules.

Definition 5.3. Let A be a Banach ring. A Banach A-module M is said to be *finite* if there is $n \in \mathbb{N}$ and an admissible epimorphism $A^n \to M$.

A morphism between finite A modules M and N is a morphism $M \to N$ in $\mathcal{B}\mathrm{an}_A$. We write $\mathcal{B}\mathrm{an}_A^f$ for the category of finite Banach A-modules.

Definition 5.4. Let A be a semi-normed ring and M be a semi-normed A-module. There is an obvious \hat{A} -module structure on the completion \hat{M} of A defined in Definition 2.9. We call the resulting Banach module the *completion* of M.

Definition 5.5. Let A be a non-Archimedean semi-normed ring. Consider semi-normed A-modules $(M, \| \bullet \|_M)$ and $(N, \| \bullet \|_N)$. We define the *tensor product* of $(M, \| \bullet \|_M)$ and $(N, \| \bullet \|_N)$ as the semi-normed A-module $(M \otimes N, \| \bullet \|_{M \otimes N})$, where

$$||x||_{M\otimes N} = \inf \max_{i} (||m_i||_M \cdot ||n_i||_N),$$

where the infimum is taken over all decompositions $x = \sum_{i} m_{i} \otimes n_{i}$.

Definition 5.6. Let A be a non-Archimedean Banach ring. Consider semi-normed A-modules M and M, we define the *complete tensor product* of M and N as the metric completion $M \hat{\otimes}_A N$ of the tensor product of M and N defined in Definition 5.5.

Theorem 5.7. Let $(A, \| \bullet \|_A)$ be a normed ring. Then \mathcal{B} an_A is a quasi-Abelian category.

PROOF. We first observe that \mathcal{B} an_A is preadditive, as for any $M, N \in \mathcal{B}$ an_A, $\operatorname{Hom}_{\mathcal{B}$ an_A}(M, N) can be given the group structure inherited from the Abelian group $\operatorname{Hom}_A(M, N)$. It is obvious that \mathcal{B} an_A is preadditive.

Next we show that finite biproducts exist in \mathcal{B} an_A. Given $(M, \| \bullet \|_M), (N, \| \bullet \|_N) \in \mathcal{B}$ an_A, we set

$$(5.1) (M, \| \bullet \|_M) \oplus (N, \| \bullet \|_N) := (M \oplus N, \| \bullet \|_{M \oplus N}),$$

where $\|(m,n)\|_{M\oplus N} := \|m\|_M + \|n\|_N$ for $m \in M$ and $n \in N$. It is easy to verify that this gives the biproduct in \mathcal{B} an_A.

We have shown that \mathcal{B} an_A is an additive category.

Next given a morphism $\varphi:(M,\|\bullet\|_M)\to (N,\|\bullet\|_N)$ in $\mathcal{B}\mathrm{an}_A$, we construct its kernel ($\ker\varphi,\|\bullet\|_{\ker\varphi}$) as the kernel of the underlying homomorphism of A-modules of φ endowed with the subgroup semi-norm induced from $\|\bullet\|_M$ as in Definition 2.3. It is easy to verify that ($\ker\varphi,\|\bullet\|_{\ker\varphi}$) is the kernel of φ in $\mathcal{B}\mathrm{an}_A$.

We can similarly construct the cokernels. To be more precise, let $\varphi : (M, \| \bullet \|_M) \to (N, \| \bullet \|_N)$ be a morphism in \mathcal{B} an_A, then the coker $\varphi = \{N/\overline{\varphi(M)}\}$ with quotient norm.

We have shown that \mathcal{B} an_A is a pre-Abelian category.

Observe that given a morphism $\varphi:(M,\|\bullet\|_M)\to (N,\|\bullet\|_N)$ in $\mathcal{B}\mathrm{an}_A$, its image is given by $\mathrm{Im}\,\varphi=\overline{\varphi(M)}$ with the subspace norm induced from N; its coimage is $M/\ker f$ with the residue norm. The morphism φ is admissible if the natural map

$$M/\ker f \to \overline{\varphi(M)}$$

is an isomorphism in \mathcal{B} an_A.

It remains to show that pull-backs preserve admissible epimorphisms and pushouts preserve admissible monomorphisms. We first handle the case of admissible epimorphisms. Consider a Cartesian square in \mathcal{B} an_A:

$$\begin{array}{ccc}
M & \stackrel{p}{\longrightarrow} & U \\
\downarrow^q & \square & \downarrow^f \\
V & \stackrel{g}{\longrightarrow} & W
\end{array}$$

with g being an admissible epimorphism. We need to show that p is also an admissible epimorphism, namely $U \cong M/\ker p$.

We define $\alpha: U \oplus V \to W$, $\alpha = (f, -g)$, then there is a natural isomorphism $j: M \to \ker \alpha$. Let us write $i: \ker \alpha \to U \oplus V$ the natural morphism. Then

$$q = \pi_V \circ i \circ j, \quad p = \pi_U \circ i \circ j,$$

where $\pi_U: U \oplus V \to U, \pi_V: U \oplus V \to V$ are the natural morphisms. We may assume that $M = \ker \alpha$ and j is the identity. Then it is obvious that p is surjective on the underlying sets. In order to compute the quotient norm on $M/\ker p$, we need a more explicit description of $\ker p \subseteq \ker \alpha$. We know that

$$\ker \alpha = \{(u, v) \in U \oplus V : f(u) = g(v)\}\$$

with the subspace norm induced from the product norm on $U \oplus V$ defined in (5.1). Then

$$\ker p = \{(u, v) \in U \oplus V : u = 0, q(v) = 0\}.$$

It follows that for $(u, v) \in \ker \alpha$,

$$\inf_{(u',v')\in\ker p}\|(u,v)+(u',v')\|_{U\oplus V}=\inf_{v'\in\ker g}(\|v+v'\|_V)+\|x\|_U,$$

where $\| \bullet \|_U$ and $\| \bullet \|_V$ denote the norms on U and V respectively. By our assumption that g is an admissible epimorphism, there is a constant C > 0 so that

$$\inf_{v' \in \ker q} (\|v + v'\|_V) \le C \|g(v)\|_W$$

for any $v \in V$. As f is bounded, we can also find a constant C' > 0 so that for any $(u, v) \in \ker \alpha$,

$$||g(v)||_W = ||f(u)||_W \le C' ||u||_U.$$

It follows that p is admissible epimorphism.

It remains to check that the pushforwards preserve admissible monomorphisms. Consider a co-Cartesian diagram

$$\begin{array}{ccc} W & \stackrel{g}{\longrightarrow} U \\ \downarrow^f & & \downarrow^q \\ V & \stackrel{p}{\longrightarrow} M \end{array}$$

with g being an admissible monomorphism. We need to show that p is an admissible monomorphism. This boils down to the following: p is injective with closed image

and the norms on p(V) obtained in the obvious ways are equivalent. As in the case of pull-backs, we may let $\alpha:W\to U\oplus V$ be the morphism (g,-f) and assume that $M=\operatorname{coker}\alpha$. It is then easy to see that p is injective. The proof that the two norms on p(V) are equivalent is parallel to the argument in the pull-back case, and we omit it.

It remains to verify that p(V) is closed in W. Consider the admissibly coexact sequence in $\mathcal{B}\mathrm{an}_A$:

$$W \xrightarrow{\alpha} U \oplus V \xrightarrow{\pi} M \to 0.$$

It is also admissibly coexact in the category of semi-normed A-modules. Include details later. Let $x_n \in V$ be a sequence so that $p(x_n) \to y \in M$. We may write $y = \pi(u, v)$ for some $(u, v) \in U \oplus V$. Then

$$\pi(-u, x_n - v) \to 0$$

as $n \to \infty$. From the strict coexact sequence, we can find a sequence $w_n \in W$ so that

$$(-u - g(w_n), x_n - v + f(w_n)) \to 0$$

as $n \to \infty$. Then $g(w_n) \to -u$ in U and hence there is $w \in W$ so that $w_n \to w \in W$ and g(w) = -u. But then $x_n \to x$ and p(x) = y.

Definition 5.8. Let $(A, \| \bullet \|_A)$ be a normed ring. A *Banach A-algebra* is a pair $(B, \| \bullet \|_B)$ such that $(B, \| \bullet \|_B)$ is a Banach A-module and $(B, \| \bullet \|_B)$ is a Banach ring.

A morphism of Banach A-algebras is a bounded A-algebra homomorphism. The category of Banach A-algebras is denoted by \mathcal{B} an \mathcal{A} lg $_A$.

Definition 5.9. Let A be a normed ring. A Banach A-algebra B is said to be *finite* if B is finite as a Banach A-module. A morphism of finite Banach A-algebras is a morphism in \mathcal{B} an \mathcal{A} lg $_A$. The category of finite Banach A-algebras is denoted by \mathcal{B} an \mathcal{A} lg $_A^f$.

6. Berkovich spectra

Definition 6.1. Let $(A, \| \bullet \|_A)$ be a Banach ring. A semi-norm $| \bullet |$ on A is bounded if there is a constant C > 0 such that for any $f \in A$, $|f| \le C \|f\|_A$.

We write $\operatorname{Sp} A$ for the set of bounded semi-valuations on A. We call $\operatorname{Sp} A$ the Berkovich spectrum of A.

We endow Sp A with the weakest topology such that for each $f \in A$, the map Sp $A \to \mathbb{R}_{\geq 0}$ sending $\| \bullet \|$ to $\| f \|$ is continuous.

It is sometimes preferable to denote an element $\| \bullet \|$ in Sp A by a single letter x. In this case, we write $|f(x)| = \|f\|$ for any $f \in A$.

Given a bounded homomorphism $\varphi:A\to B$ of Banach rings, we define $\operatorname{Sp}\varphi:\operatorname{Sp} B\to\operatorname{Sp} A$ as follows: given a bounded semi-valuation $\|\bullet\|$ on B, we define $\operatorname{Sp}\varphi(\|\bullet\|)$ as the bounded semi-valuation on A sending $f\in A$ to $\|\varphi(f)\|$.

Observe that there is a natural map of sets:

(6.1)
$$\operatorname{Sp} A \to \{\mathfrak{p} \in \operatorname{Spec} A : \mathfrak{p} \text{ is closed.}\}\$$

sending each bounded semi-valuation to its kernel. The fiber over a closed ideal $\mathfrak{p} \in \operatorname{Spec} A$ is identified with the set of bounded valuations on A/\mathfrak{p} . Here boundedness is with respect to the residue norm.

Remark 6.2. In the literature, it is more common to denote Sp A by $\mathcal{M}(A)$.

Lemma 6.3. Let $(A, \| \bullet \|_A)$ be a Banach ring. Then for any $x \in \operatorname{Sp} A$, we have

$$|f(x)| \le \rho(f) \le ||f||_A.$$

PROOF. Let $\| \bullet \|_x$ be the bounded semi-valuation corresponding to x. Then there is a constant C>0 such that

$$\| \bullet \|_x \le C \| \bullet \|_A$$
.

It follows that for any $n \in \mathbb{N}$,

$$||f||_x^n = ||f^n||_x \le C||f^n||_A.$$

Taking *n*-th root and letting $n \to \infty$, we find

$$||f||_x \leq \rho(f).$$

The inequality $\rho(f) \leq ||f||_A$ follows from the definition of ρ .

Example 6.4. If $(k, | \bullet |)$ is a complete valuation field, then Sp k is a single point $| \bullet |$.

To see this, let $\| \bullet \| \in \operatorname{Sp} k$, then by Lemma 6.3,

$$||f|| \le |f|$$

for any $f \in k$. If $f \neq 0$, the same inequality applied to f^{-1} implies that ||f|| = |f|. When f = 0, the equality is trivial.

Example 6.5. Let $\{K_i\}_{i\in I}$ be a family of complete valuation fields. Recall that $\prod_{i\in I} K_i$ is defined in Example 4.12. Then $\operatorname{Sp} \prod_{i\in I} K_i$ is homeomorphic to the Stone-Čech compactification of the discrete set I.

To see this, we first identify the set of proper closed ideals in $\prod_{i \in I} K_i$ with the set of filters on I.

We first introduce a notation: for each $J \subseteq I$, we write $a_J \in \prod_{i \in I} K_i$ for the element

$$a_{J,i} = \begin{cases} 0, & \text{if } i \in J; \\ 1, & \text{if } i \notin J. \end{cases}$$

Given a proper closed ideal $\mathfrak{a} \subseteq \prod_{i \in I} K_i$, we define a filter $\Phi_{\mathfrak{a}} = \{J \subseteq I : a_J \in \mathfrak{a}\}$. Conversely, given a filter Φ on I, we denote by \mathfrak{a}_{Φ} the closed ideal of $\prod_{i \in I} K_i$ generated by a_J for all $J \in \Phi$. These maps are inverse to each other and order preserving. In particular, the maximal ideals of $\prod_{i \in I} K_i$ are identified with ultrafilters of I by Corollary 4.7.

Next we show that all prime ideals of $\prod_{i\in I} K_i$ are maximal. In fact, take $\mathfrak{p}\in\operatorname{Spec}\prod_{i\in I} K_i$ and suppose that there is a maximal ideal \mathfrak{m} properly containing \mathfrak{p} . Let $J\in\Phi_{\mathfrak{m}}\setminus\Phi_{\mathfrak{p}}$ so that $a_J\in\mathfrak{m}\setminus\mathfrak{p}$. As $I\setminus J\not\in\Phi_{\mathfrak{m}}$, we have $a_{I\setminus J}\not\in\mathfrak{m}$. But $a_J\cdot a_{I\setminus J}=0$. This contradicts the fact that $a_J\not\in\mathfrak{p}$ and $a_{I\setminus J}\not\in\mathfrak{p}$.

So we have shown that as a set Spec $\prod_{i \in I} K_i$ is identified with the Stone–Čech compactification of I.

Next we show taht if $\mathfrak{m} \in \operatorname{Spec} \prod_{i \in I} K_i$, then the residue norm on $\prod_{i \in I} K_i/\mathfrak{m}$ is multiplicative. In fact, for each $f \in \prod_{i \in I} K_i$, we have

$$\|\pi(f)\|_{\prod_{i\in I}K_i/\mathfrak{m}}=\inf_{J\in\Phi_{\mathfrak{m}}}\sup_{i\in J}\|f\|.$$

Here $\pi: \prod_{i\in I} K_i \to \prod_{i\in I} K_i/\mathfrak{m}$ is the natural map and $\|\bullet\|$ denotes the norm on $\prod_{i\in I} K_i$ defined in Example 4.12. It follows immediately that the residue norm

on $\prod_{i\in I} K_i/\mathfrak{m}$ is multiplicative. In particular, by Example 6.4, $\operatorname{Sp}\prod_{i\in I} K_i$ and $\operatorname{Spec}\prod_{i\in I} K_i$ are identified as sets under the natural map (6.1).

It remains to identify the topologies. But this is easy: for any ultrafilter Φ on I, let $\mathfrak{m} = \mathfrak{m}_{\Phi}$, then $\|\pi(a_J)\| = 0$ for $J \in \Phi$ and $\|\pi(a_J)\| = 1$ otherwise.

Proposition 6.6. Let $\varphi: A \to B$ be a bounded homomorphism of Banach rings, then $\operatorname{Sp} \varphi: \operatorname{Sp} B \to \operatorname{Sp} A$ is continuous.

PROOF. For each $f \in A$, we define $\operatorname{ev}_f : \operatorname{Sp} A \to \mathbb{R}$ by sending $\| \bullet \|$ to $\| f \|$. It suffices to show that for any $f \in A$, the map $\operatorname{Sp} \varphi \circ \operatorname{ev}_f$ is continuous. But the composition is just the map sending $\| \bullet \| \in \operatorname{Sp} B$ to $\| \varphi(f) \|$. It is continuous by definition of the topology on $\operatorname{Sp} B$ as φ is bounded.

Definition 6.7. Let $(A, \| \bullet \|_A)$ be a Banach ring. For each $x \in \operatorname{Sp} A$ corresponding to a bounded semi-valuation $\| \bullet \|_x$ on A, there is a natural induced valuation on Frac ker $\| \bullet \|_x$. We write $\mathscr{H}(x)$ for the completion of Frac ker $\| \bullet \|_x$ with the induced valuation. The complete valuation field $\mathscr{H}(x)$ is called the *complete residue field* of A at x. We write $\chi_x : A \to \mathscr{H}(x)$ the canonical map.

We will write f(x) for the residue class of f in $\mathcal{H}(x)$.

Observe that for any $f \in A$, |f(x)| is exactly the valuation of f(x) with respect to the valuation on $\mathcal{H}(x)$.

Definition 6.8. Let A be a Banach ring. The *Gelfand transform* of A is the homomorphism

$$A \to \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x).$$

Here the product is defined in Example 4.12.

We will denote the Gelfand transform as $f \mapsto \hat{f} = (f(x))_{x \in \operatorname{Sp} A}$.

By Lemma 6.3, the Gelfand transform is well-defined.

Proposition 6.9. Let $(A, \| \bullet \|_A)$ be a Banach ring. Then the Gelfand transform

$$A \to \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x).$$

is bounded. In fact, the Gelfand transform is contractive.

PROOF. This follows simply from Lemma 6.3.

Proposition 6.10. Let $(A, \| \bullet \|)$ be a Banach ring. Then Sp A is empty if and only if A = 0.

PROOF. If A=0, Sp A is clearly empty. Conversely, suppose that Sp A is empty. Assume that $A\neq 0$. For any maximal ideal \mathfrak{m} , by Corollary 4.7, A/\mathfrak{m} is a Banach ring and Sp A/\mathfrak{m} is a subset of Sp A. So we may assume that A is a field. Let S be the set of bounded semi-norms on A. Then S is non-empty as $\|\bullet\| \in S$. By Zorn's lemma, we can take a minimal element $|\bullet| \in S$. Up to replacing A by the completion with respect to $|\bullet|$, we may assume that $|\bullet|$ is a norm on A. As A is a field, we may further assume that $|\bullet| = \|\bullet\|$.

We claim that $\| \bullet \|$ is multiplicative. As A is a field, it suffices to show that $\|f^{-1}\| = \|f\|^{-1}$ for any non-zero $f \in A$. We may assume that $\|f\|^{-1} < \|f^{-1}\|$.

Let r be a positive real number. Let $\varphi: A \to A\{r^{-1}T\}/(T-f)$ be the natural map. The map is injective as A is a field. We endow $A\{r^{-1}T\}/(T-f)$ with the quotient semi-norm induced by $\|\bullet\|_r$. We still denote this semi-norm by $\|\bullet\|_r$.

We claim that f - T is not invertible in $A\{r^{-1}T\}$ for the choice $r = ||f^{-1}||^{-1}$. From this, it follows that

$$\|\varphi(f)\|_r = \|T\|_r \le r < \|f\|.$$

The last step is our assumption. This contradicts our choice of $\| \bullet \|$.

In order to prove the claim, we need to show that $\| \bullet \|$ is power multiplicative first. Assuming this, it is obvious that

$$\sum_{i=0}^{\infty} |f^{-i}| r^i = \sum_{i=0}^{\infty} |f^{-1}|^i |f^{-1}|^{-i}$$

diverges.

It remains to show that $\| \bullet \|$ is power multiplicative. Suppose that is $f \in A$ so that $\|f^n\| < \|f\|^n$ for some n > 1. We claim that f - T is not invertible in $A\{r^{-1}T\}$ for the choice $r = \|f^n\|^{1/n}$. From this,

$$\|\varphi(f)\|_r = \|T\|_r \le r < \|f\|.$$

This contradicts our choice of $\| \bullet \|$. The claim amounts to the divergence of

$$\sum_{i=0}^{\infty} ||f^{-i}|| r^i.$$

For a general $i \geq 0$, we write i = pn + q for $p, q \in \mathbb{N}$ and $q \leq n - 1$. Then $||f^i|| \leq ||f^n||^p ||f^q||$. So

$$\|f^{-i}\|r^i \ge \|f^i\|^{-1}\|f^n\|^{p+n^{-1}q} \ge \|f^n\|^{n^{-1}q}\|f^q\|^{-1}.$$

It therefore follows that $|f^{-i}|r^i$ admits a positive lower bound, and we conclude. \square

Corollary 6.11. Let A be a Banach ring. Then an element $f \in A$ is invertible if and only if $f(x) \neq 0$ for all $x \in \operatorname{Sp} A$.

PROOF. The direct implication is trivial. Assume that $f(x) \neq 0$ for all $x \in \operatorname{Sp} A$. We claim that $f \notin \mathfrak{m}$ for any maximal ideal \mathfrak{m} in A. From this, it follows that f is invertible in A

By Corollary 4.7, A/\mathfrak{m} is a Banach ring. It follows from Proposition 6.10 that there is a non-trival bounded semi-valuation on A/\mathfrak{m} , which lifts to a bounded semi-valuation on A.

Corollary 6.12. Let $(A, \| \bullet \|_A)$ be a Banach ring. Then for any $f \in A$, we have

$$\rho(f) = \sup_{x \in \operatorname{Sp} A} |f(x)|.$$

PROOF. We have already shown $\rho(f) \ge \sup_{x \in \operatorname{Sp} A} |f(x)|$ in Lemma 6.3. To verify the reverse inequality, take $f \in A$ and $r \in \mathbb{R}_{>0}$, it suffices to show that if |f(x)| < r for all $x \in \operatorname{Sp} A$, then $\rho(f) \le r$.

Consider the Banach ring $B = A\{rT\}$. By Lemma 6.3 again, $|T(x)| \le ||T||_{r^{-1}} = r^{-1}$ for all $x \in \operatorname{Sp} B$. Therefore, for any $x \in \operatorname{Sp} B$, |(fT)(x)| < 1. Hence, $(1 - x)^{-1}$

 $fT)(x) \neq 0$ for all $x \in \operatorname{Sp} B$. By Corollary 6.11, 1 - fT is invertible in B. But this happens exactly when

$$\sum_{i=0}^{\infty} \|f^i\|_A r^{-i}$$

is convergent. It follows that $\rho(f) \leq r$.

Theorem 6.13. Let $(A, \| \bullet \|)$ be a Banach ring. Then Sp A is a compact Hausdorff space.

PROOF. We first show that Sp A is Hausdorff. Take $x_1, x_2 \in A$, $x_1 \neq x_2$. In other words, we can find $f \in A$ so that $|f(x_1)| \neq |f(x_2)|$. We may assume that $|f(x_1)| < |f(x_2)|$. Take a real number r > 0 so that

$$|f(x_1)| < r < |f(x_2)|.$$

Then $\{x \in \operatorname{Sp} A : |f(x)| < r\}$ and $\{x \in \operatorname{Sp} A : |f(x)| > r\}$ are disjoint neighbourhoods of x_1 and x_2 .

Next we show that $\operatorname{Sp} A$ is compact. By Proposition 6.9 and Proposition 6.6, we can define a continuous map

$$\operatorname{Sp} \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x) \to \operatorname{Sp} A.$$

The map is clearly surjective: for any $x \in \operatorname{Sp} A$, the valuation on $\mathcal{H}(x)$ induces a semi-valuation on $\prod_{x \in \operatorname{Sp} A} \mathcal{H}(x)$, which is clearly bounded. The image of this semi-valuation in $\operatorname{Sp} A$ is just x.

So it suffices to show that $\operatorname{Sp} \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x)$ is compact. This follows from Example 6.5.

7. Open mapping theorem

Let $(k, | \bullet |)$ be a complete non-trivially valued field. All results in this section fail when k is trivially valued.

Proposition 7.1. Let A be a normed k-algebra and $f:(M, \| \bullet \|_M) \to (N, \| \bullet \|_N)$ be an A-homomorphism of normed A-modules. Then f is bounded if and only if f is continuous.

PROOF. The direct implication follows from Proposition 2.7. Assume that f is continuous. We may assume that A = k.

Assume that f is not bounded. Fix $a \in k$ with $|a| \in (0,1)$. This is possible as k is non-trivially valued. Then we can find a sequence $m_i \in M$ such that $||f(m_i)||_N > |a|^{-i}||m_i||_M$. Up to replace m_i by a scalar multiple, we may assume that $||m_i||_M \in [1,|a|^{-1})$: if $||m_i||_M \ge 1$, choose $n \in \mathbb{N}$ such that $|a|^{-n} \le ||m_i||_M < |a|^{-n-1}$, then replace m_i with $a^n m_i$. The case |x| < 1 is similar. Then $||f(a^i m_i)||_N > ||m_i||_M \ge 1$ while $||a^i m_i||_M < |a|^n |a|^{-1} \to 0$. This is a contradiction.

Theorem 7.2 (Open mapping theorem). Let $(V, \| \bullet \|_V), (W, \| \bullet \|_W)$ be Banach k-spaces and $L: V \to W$ be a bounded and surjective k-homomorphism. Then L is open.

PROOF. We write $V_0 = \{v \in V : ||v||_V < 1\}$. Similarly define W_0 .

Step 1. We claim that there is a constant C > 0 such that for all $w' \in W$, there is $v' \in V$ such that

$$||v'||_V \le C||w'||_W, \quad ||w' - L(v')||_W < 1/2.$$

As k is non-trivially valued, we can take $c \in k$ with $|c| \in (0,1)$, so

$$V = \bigcup_{n \in \mathbb{N}} c^n V_0.$$

As L is surjective, we have

$$W = \bigcup_{n \in \mathbb{N}} c^n L(V_0).$$

By Baire's category theorem, we may assume that $\overline{L(V_0)}$ has non-empty interior. Take $w \in W$ and r > 0 so that

$$\{w' \in W : ||w - w'||_W < r\} \subseteq \overline{L(V_0)}.$$

Take $d \in W_0$ and $c' \in k^{\times}$ so that |c'| < r, then $w + c'd \in \overline{L(V_0)}$. It follows that

$$c'd \in \overline{L(V_0)} + \overline{L(V_0)} \subseteq \overline{L(V_0) + L(V_0)} = \overline{L(V_0)}.$$

So

$$W_0 \subseteq \overline{L(c'^{-1}V_0)}.$$

It suffices to take $C = |c'^{-1}|$.

Step 2. Now given $w \in W_0$, we want to show that $w \in L(\{v \in V : ||v||_V < C\})$. This will finish the argument: as k is non-trivially valued, this implies that $L(V_0)$ contains an open neighbourhood of 0.

From Step 1, we can construct $v_1 \in V$ with $||v_1||_V < C$ and $||w - L(v_1)||_W < 1/2$. Repeat this process, we can $v_n \in V$ inductively so that

$$||v_n||_V < 2^{1-n}C, \quad ||w - L(v_1 + \dots + v_n)||_W < 2^{-n}.$$

We set $v = \sum_{i=1}^{\infty} v_i$. Then $v \in V$ and Av = w by continuity. Moreover,

$$||v||_V \le \max_n ||v_n||_V < C.$$

Corollary 7.3. Let A be a Banach k-algebra and M be a normed A-module. Assume that \hat{M} is a finite A-module, then M is complete.

PROOF. Take $x_1, \ldots, x_n \in \hat{M}$ so that $\pi: A^n \to \hat{M}$ sending (a_1, \ldots, a_n) to $\sum_{i=1}^n a_i x_i$ is surjective. By open mapping theorem Theorem 7.2, $\sum_{i=1}^n \check{A} x_i$ is a neighbourhood of 0 in \hat{M} . So

$$x_j \in M + \sum_{i=1}^n \check{A}x_i.$$

It follows from (a version of) Nakayama's lemma that $M = \hat{M}$.

Corollary 7.4. Let A be a Banach k-algebra and M be a Noetherian Banach A-module. Let N be a submodule of M. Then N is closed in M.

In particular, if A is Noetherian, then all ideals of A are closed.

PROOF. As M is noetherian, \bar{N} is a finite A-module. In particular, N is complete by Corollary 7.3. Hence, N is closed in M.

Corollary 7.5. A bounded epimorphism of Banach k-algebras $f: A \to B$ is admissible.

PROOF. Replacing A by $A/\ker f$, we may assume that f is bijective. It follows from Theorem 7.2 that f is a homeomorphism. The inverse of f is therefore continuous, and hence bounded by Proposition 7.1.

Corollary 7.6 (Closed graph theorem). Let $L: V \to W$ be a k-linear map between k-Banach spaces. The following are equivalent:

- (1) L is bounded.
- (2) The graph of L is closed.

Proof. $(1) \implies (2)$ is trivial.

Assume (2). Let $p_1: V \times W \to V$, $p_2: V \times W \to W$ be the natural projections and $q: G \to V$ the restriction of p_1 to the graph G of L. Observe that L is a closed subspace of $V \times W$, hence a Banach space. By open mapping theorem Theorem 7.2, q is an open mapping. In particular, the map $r: V \to G$ sending $v \in V$ to (v, Lv) is bounded. It follows that $L = p_2 \circ r$ is also bounded.

8. Properties of Banach algebras over a field

Let $(k, | \bullet |)$ be a complete non-trivially valued non-Archimedean valued field.

Proposition 8.1. Let A, B be Banach k-algebras and $\varphi : A \to B$ be a k-algebra homomorphism. Assume that there is a family $\{I_i\}$ of ideals in B satisfying

- (1) Each I_i is closed in B and each inverse image $\varphi^{-1}(I_i)$ is closed in A.
- (2) For each I_i , $\dim_k B/I_i$ is finite.
- $(3) \bigcap_{i \in I} I_i = 0.$

Then φ is continuous.

Observe that when A and B are both noetherian, Condition (1) is automatically satisfied.

PROOF. For each $i \in I$, we write $\pi_i : B \to B/I_i$ the projection. Let $\psi_i : A \to B/I_i$ denote $\pi_i \circ \varphi$. Let $\bar{\psi}_i : A/\ker \psi_i \to B/I_i$ the injective map induced by ψ_i . We know that $A/\ker \psi_i$ and B/I_i are both finite dimensional. We endow them with the residue norm. Then $\bar{\psi}_i$ is continuous. It follows that ψ_i is also continuous.

By the closed graph theorem Corollary 7.6, it suffices to verify the following claim: let $a_i \in A$ be a sequence with limit 0 and $\varphi(a_i) \to b \in B$, then b = 0. From the continuity of $\bar{\psi}_i$, we know that $b \in I_i$ for all $i \in I$, it follows that b = 0 by our assumption.

Lemma 8.2. Let A be a Noetherian k-Banach algebra and M,N be Banach A-modules, which are finite as A-modules. Let $f:M\to N$ be an A-linear map. Then f is bounded.

PROOF. Choose $n \in \mathbb{N}$ and an A-linear epimorphism $\pi : A^n \to M$. It is clear that π is bounded. Similarly, $\pi \circ f$ is also bounded. By open mapping theorem Theorem 7.2, π is open, so φ is continuous and hence bounded by Proposition 7.1. \square

Proposition 8.3. Let A be a Noetherian k-Banach algebra. Then any finite A-module M admits a complete A-module norm. Such norms are unique up to equivalence.

PROOF. The uniqueness follows from Lemma 8.2. As for the existence, take $n \in \mathbb{N}$ and an A-linear epimorphism $\pi : A^n \to M$. By Corollary 7.4, ker A^n is closed in A^n , it suffices to take the residue norm on M.

Proposition 8.4. Let $(A, \| \bullet \|_A)$ be a Noetherian k-Banach algebra and $\varphi : A \to B$ be a finite k-algebra homomorphism from A to a k-algebra B. Then B is Noetherian and admits a complete A-algebra norm such that φ is admissible. All complete k-algebra norms on B such that φ is bounded are equivalent.

PROOF. The uniqueness follows from Proposition 8.3.

As φ is finite, B is a finite A-module. So by Proposition 8.3, we can endow B with a complete A-module norm $|\bullet|$ such that φ is contractive.

We claim that there is a constant C > 0 such that

$$|xy| \le C|x| \cdot |y|$$

for all $x, y \in B$.

Assuming this claim, it suffices to define

$$||x|| := \sup_{y \in B, y \neq 0} \frac{|xy|}{|y|}$$

for $x \in B$.

It remains to establish the claim. Let b_1, \ldots, b_n be generators of B as an A-module. Let $C' = \max_{i,j=1,\ldots,n} |b_i b_j|$. Choose $\eta > 1$ such that for each $x \in B$, there is an equation

$$x = \sum_{j=1}^{n} \varphi(a_j)b_j, \quad \max_{j=1,\dots,n} ||a_j||_A \le \eta |x|.$$

The existence of η follows from the construction of $| \bullet |$ in Proposition 8.3. Let $C = C'\eta^2$. Then for any $x_1, x_2 \in B$, we write

$$x_i = \sum_{i=1}^{n} \varphi(a_{ij})b_j, \quad i = 1, 2.$$

We compute

$$|x_1x_2| \leq \max_{i,j=1,\dots,n} |\varphi(a_{1i})\varphi(a_{2j})b_ib_j| \leq C' \max_{i=1,\dots,n} |a_{1i}| \max_{j=1,\dots,n} |a_{2j}| \leq C|x_1| \cdot |x_2|.$$

Proposition 8.5. Let k be a complete valuation field and A be a Banach k-algebra. Let K be a finite normal extension of k.

(1) If K/k is separable (or equivalently Galois), we have a natural homeomorphism

$$\operatorname{Sp}(A \otimes_k K) / \operatorname{Gal}(K/k) \xrightarrow{\sim} \operatorname{Sp} A.$$

(2) If K/k is purely inseparable, we have a natural homeomorphism

$$\operatorname{Sp}(A \otimes_k K) \xrightarrow{\sim} \operatorname{Sp} A.$$

PROOF. In both cases, the inclusion $A \to A \otimes_k K$ induces a morphism

$$\operatorname{Sp}(A \otimes_k K) \to \operatorname{Sp} A.$$

In the first case, $\operatorname{Gal}(K/k)$ clearly acts on $\operatorname{Sp} A \otimes_k K$ preserving each fiber: given a bounded semi-valuation $\| \bullet \|_x$ on $A \otimes_k K$ corresponding to a point $x \in \operatorname{Sp}(A \otimes_k K)$

and $\sigma \in \operatorname{Gal}(K/k)$, then σx corresponds to the bounded semi-valuation $\| \bullet \|_{\sigma x}$ on $A \otimes_k K$ so that

$$||f||_{\sigma x} = ||\sigma^{-1}(f)||_x.$$

In particular, the maps in both cases are well-defined. We observe that the fiber of a point $x \in \operatorname{Sp} A$ under $\operatorname{Sp}(A \otimes_k K) \to \operatorname{Sp} A$ can be identified with the image of $\operatorname{Sp} \mathscr{H}(x) \otimes_k K$ in $\operatorname{Sp} A \otimes_k K$. Observe that $\operatorname{Sp} \mathscr{H}(x) \otimes_k K$ is just the set of maximal ideals When K/k is Galois, $\operatorname{Gal}(K/k)$ acts transitively. If K/k is purely inseparable, then $\mathscr{H}(x) \otimes_k K$ is a local ring.

Corollary 8.6. Let k be a complete valuation field and A be a Banach k-algebra. Then we have a canonical identification

$$\operatorname{Sp} A \hat{\otimes}_k \widehat{k^{\operatorname{alg}}} / \operatorname{Gal}(k^{\operatorname{sep}}/k) \xrightarrow{\sim} \operatorname{Sp} A.$$

PROOF. This follows from Proposition 8.5. Add details later.

Definition 8.7. Let A be a Banach k-algebra. A closed subset $\Gamma \subseteq \operatorname{Sp} A$ is called a boundary of A if for any $f \in A$,

$$\sup_{x \in \operatorname{Sp} A} |f(x)| = \sup_{x \in \Gamma} |f(x)|.$$

If there is a minimal boundary of A, we call it the *Shilov boundary* of A.

9. Maximum spectra

Let $(k, | \bullet |)$ a complete non-Archimedean valued field.

Definition 9.1. For any k-algebra A, we write

$$\operatorname{Spm}_k A := \{ \mathfrak{m} \in \operatorname{Spm} A : A/\mathfrak{m} \text{ is algebraic over } k \}.$$

For any $x \in \operatorname{Spm}_k A$ and any $f \in A$, we write f(x) for the residue of f in A/\mathfrak{m}_x , where \mathfrak{m}_x is the maximal ideal corresponding to x. We write |f(x)| for the valuation of f(x) with respect to the extended valuation induced from the given valuation on k.

Definition 9.2. Let A be a k-algebra. For each $f \in A$, we write $|f|_{\sup}$ for the supremum of |f(x)| for all $x \in \operatorname{Spm}_k A$ if $\operatorname{Spm}_k A$ is non-empty and 0 otherwise.

Definition 9.3. Let f be a monic polynomial in k[X], we expand $f = X^n + a_1 X^{n-1} + \cdots + a_n \in k[X]$, then we define $\sigma(f) := \max_{i=1,\ldots,n} |a_i|^{1/i}$.

Definition 9.4. Let L be a reduced integral k-algebra. We define the *spectral norm* $| \bullet |_{\text{sp}}$ on L as follows: given a non-zero $x \in L$, take a minimal polynomial $X^n + a_1 X^{n-1} + \cdots + a_n \in k[X]$ of x over k. Then we set

$$|x|_{\text{sp}} := \max_{i=1,\dots,n} |a_i|^{1/i}.$$

Proposition 9.5. Let f, g be monic polynomials in k[X], then

$$\sigma(fg) = \max{\{\sigma(f), \sigma(g)\}}.$$

PROOF. Replacing k by a finite extension, we may assume that f and g split into linear factors a_i and b_j . Then it is straightforward to show that

$$\sigma(f) = \prod_{i} a_{i}, \quad \sigma(g) = \prod_{j} b_{j}, \sigma(fg) = \prod_{i} a_{i} \cdot \prod_{j} b_{j}.$$

The assertion follows.

Proposition 9.6. Let L be a reduced integral k-algebra. Then $|\bullet|_{\text{sp}}$ is a power-multiplicative norm on L, and it extends the norm on k.

PROOF. It is clear that $|\bullet|_{\rm sp}$ extends the valuation on k. In order to show that $|\bullet|_{\rm sp}$ is a power-multiplicative norm on L, we may assume that L is finite dimensional over k. Then we can find finite field extensions L_1, \ldots, L_t of k such that $L = \bigoplus_{i=1}^t L_i$. By Proposition 9.5, we can immediately reduce to the case where L/k is a finite field extension. In this case, the result is well-known. Expand. \square

Proposition 9.7. Let L be a reduced integral k-algebra. For any $\mathfrak{p} \in \operatorname{Spec} L$, write $\pi_{\mathfrak{p}}: L \to L/\mathfrak{p}$ the residue map. Then for any $y \in L$,

$$|y|_{\mathrm{sp}} = \max_{\mathfrak{p} \in \mathrm{Spec} \, L} |\pi_{\mathfrak{p}}(y)|_{\mathrm{sp}}.$$

PROOF. Fix $y \in L$. For any $\mathfrak{p} \in \operatorname{Spec} L$, let $q_{\mathfrak{p}} \in k[X]$ be the minimal polynomial of $\pi_{\mathfrak{p}}(y)$ over k. Let $q \in k[X]$ be the minimal polynomial of y over k. Then clearly $q_{\mathfrak{p}}$ divides q for all $\mathfrak{p} \in \operatorname{Spec} L$. In particular, there are only finitely many different polynomials among $q_{\mathfrak{p}}$ ($\mathfrak{p} \in \operatorname{Spec} L$), say q_1, \ldots, q_r . Define $q' = q_1 \cdots q_r \in k[X]$. Then for $f \in k[X]$, f(y) = 0 if and only if $\pi_{\mathfrak{p}}(f(y)) = 0$ for all $\mathfrak{p} \in \operatorname{Spec} L$ as L is reduced. The latter condition is equivalent to that q'|f. It follows that q' = q. Now by Proposition 9.5,

$$|y|_{\mathrm{sp}} = \sigma(q) = \max_{i=1,\dots,r} \sigma(q_i) = \max_{\mathfrak{p} \in \mathrm{Spec}\ L} |\pi_{\mathfrak{p}}(y)|_{\mathrm{sp}}.$$

Proposition 9.8. Let $\varphi: B \to A$ be a homomorphism of commutative k-algebras. Then for any $f \in B$,

$$|\varphi(f)|_{\text{sup}} \leq |f|_{\text{sup}}$$
.

PROOF. Of course, we can assume that $\operatorname{Spm}_k A \neq \emptyset$. Let $x \in \operatorname{Spm}_k A$, then $\varphi^{-1}x \in \operatorname{Spm}_k B$. But for any $f \in B$, $|\varphi(f)(x)| = |f(\varphi^{-1}x)|$. We conclude. \square

Proposition 9.9. Let A be a k-algebra. Let \mathfrak{M} be the set of minimal prime ideals in A and let $\pi_{\mathfrak{p}}: A \to A/\mathfrak{p}$ be the canonical residue map for all $\mathfrak{p} \in \mathfrak{M}$. Then for any $f \in A$,

$$(9.1) |f|_{\sup} = \sup_{\mathfrak{p} \in \mathfrak{M}} |\pi_{\mathfrak{p}}(f)|_{\sup}.$$

In particular, if A be a reduced integral k-algebra. Then $|\bullet|_{\sup} = |\bullet|_{\sup}$ on A.

Proof. By Proposition 9.8,

$$\sup_{\mathfrak{p}\in\mathfrak{M}}|\pi_{\mathfrak{p}}(f)|_{\sup}\leq |f|_{\sup}.$$

In order to show the reverse inequality, let $x \in \operatorname{Spm}_k A$. Take $\mathfrak{p} \in \mathfrak{M}$ such that $x \supseteq \mathfrak{p}$. Clearly, $\pi_{\mathfrak{p}}(x) \in \operatorname{Spm}_k A/\mathfrak{p}$ and

$$|f(x)| = |\pi_{\mathfrak{p}}(f)(\pi_{\mathfrak{p}}(x))|.$$

In particular,

$$|f(x)| \le |\pi_{\mathfrak{p}}(f)|_{\sup} \le \sup_{\mathfrak{p} \in \mathfrak{M}} |\pi_{\mathfrak{p}}(f)|_{\sup}.$$

Take sup with respect to x, we conclude (9.1).

When A is a reduced and integral k-algebra, all prime ideals of A are minimal. The final assertion follows from Proposition 9.7.

Definition 9.10. Let A be a Banach k-algebra. We say that maximal modulus principle holds for A if for any $f \in A$, there is $x \in \operatorname{Spm}_k A$ such that $|f(x)| = |f|_{\sup}$.

Proposition 9.11. Let $\varphi: B \to A$ be an injective integral torsion-free homomorphism of Banach k-algebras. Assume that B is a normal integral domain.

(1) Fix $f \in A$. Let $f^n + \varphi(b_1)f^{n-1} + \cdots + \varphi(b_n) = 0$ be the minimal equation of f over A. Then

$$|f|_{\sup} = \max_{i=1,\dots,n} |b_i|_{\sup}^{1/i}.$$

- (2) Assume that maximal modulus principle holds for B, then it holds for A as well.
- (3) Suppose that $|bb'|_{\sup} = |b|_{\sup} |b'|_{\sup}$ for all $b, b' \in B$. Then $|\varphi(b)f|_{\sup} = |b|_{\sup} |f|_{\sup}$ for all $b \in B$ and $f \in A$.

PROOF. (1) We first show the inequality

$$|f|_{\sup} \le \max_{i=1,\dots,n} |b_i|_{\sup}^{1/i}.$$

Of course, we can assume that $\operatorname{Spm}_k A \neq \emptyset$. For all $x \in \operatorname{Spm}_k A$, we have

$$0 = f(x)^n + \varphi(b_1)f(x)^{n-1} + \dots + \varphi(b_n) = f(x)^n + b_1(\varphi^{-1}x)f(x)^{n-1} + \dots + b_n(\varphi^{-1}(x)).$$

Then we in fact have that

$$|f(x)| \le \max_{i=1,\dots,n} |b_i(\varphi^{-1}x)|_{\sup}^{1/i}.$$

Assume that to the contrary that

$$|f(x)|^i > |b_i(\varphi^{-1}x)|$$

for all $i = 1, \ldots, n$. Then

$$|b_i(\varphi^{-1}x)f(x)^{n-i}| < |f(x)|^n = |f(x)^n|.$$

It follows that

$$|b_1(\varphi^{-1}x)f(x)^{n-1} + \dots + b_n(\varphi^{-1}(x))| < |f(x)^n|.$$

This is a contradiction.

It remains to argue that

(9.2)
$$|f|_{\sup} \ge \max_{i=1,\dots,n} |b_i|_{\sup}^{1/i}.$$

Next let A' = B[f]. We argue that $A' \to A$ is an isometry with respect to $|\bullet|_{\sup}$. If $\operatorname{Spm}_k A'$ is empty, then the assertion follows from Proposition 9.8. Assume that $\operatorname{Spm}_m A'$ is non-empty. Take $y \in \operatorname{Spm}_k A'$. By [Stacks, Tag 00GQ], there is a maximal ideal $x \in \operatorname{Spm} A$ lying over y. As the induced map $A'/y \to A/x$ is integral, we find $x \in \operatorname{Spm}_k A$. So the map $\operatorname{Spm}_k A \to \operatorname{Spm}_k A'$ is surjective. If follows that $A' \to A$ is an isometry with respect to $|\bullet|_{\sup}$.

In order to argue (9.2), we may assume that A = B[f]. Let $q \in B[X]$ denote the minimal polynomial of f over A. Then A = B[X]/(q). Let $y \in \operatorname{Spm}_k B$, we write f_y for the residue class of f in A/yA and write $\overline{f_y}$ for the residue class in $(A/yA)^{\operatorname{red}}$. Similarly, let q_y denote the residue class of q in B/y[X]. As y is contained in some $\operatorname{Spm}_k A$, we see that

$$|f|_{\sup} = \sup_{y \in \operatorname{Spm}_k B} |f_y|_{\sup} = \sup_{y \in \operatorname{Spm}_k B} |\bar{f}_y|_{\sup}.$$

For $y \in \operatorname{Spm}_k B$, we decompose q_y into prime factors $q_1^{n_1} \cdots q_r^{n_r}$ in B/y[X]. Then

$$A/yA \cong B/y[X]/(q_y)$$

and

$$(A/yA)^{\mathrm{red}} \cong \bigoplus_{i=1}^r B/y[X]/(q_i).$$

We endow $\bigoplus_{i=1}^r B/y[X]/(q_i)$ with the spectral norm over B/y. If \bar{f}_i denotes the residue class of \bar{f}_y in $B/y[X]/(q_i)$, by Proposition 9.9 and Proposition 9.5,

$$|\bar{f}_y|_{\sup} = \max_{i=1,\dots,r} |\bar{f}_i|_{\sup} = \max_{i=1,\dots,r} \sigma(q_i) = \sigma(q_y).$$

Therefore,

$$|f|_{\sup} = \sup_{y \in \operatorname{Spm}_k B} \sigma(q_y) = \max_{i=1,\dots,n} |b_i|_{\sup}^{1/n}.$$

(2) Take a non-zero $f \in A$. Using the notations in (1), we can find $y \in \operatorname{Spm}_k B$ such that

$$|\bar{f}_y|_{\sup} = \sigma(q_y) = |f|_{\sup}.$$

As A/yA contains only finitely many maximal ideals, there is $x \in \operatorname{Spm}_k A$ such that $|\bar{f}_y|_{\sup} = |f(x)|$. So

$$|f|_{\sup} = |f(x)|.$$

(3) Consider $f \in A$ and let $f^n + b_1 f^{n-1} + \cdots + b_n = 0$ be its minimal integral equation over B. Then f is of degree n over Frac B as well, hence so is bf for any non-zero $b \in B$. So the minimal integral equation of bf is

$$(bf)^n + bb_1(bf)^{n-1} + \dots + b^n b_n = 0.$$

By (1), we compute

$$|bf|_{\sup} = \max_{i=1,\dots,n} |b^i b_i|_{\sup}^{1/i} = |b|_{\sup} \max_{i=1,\dots,n} |b_i|_{\sup}^{1/i} = |b|_{\sup} |f|_{\sup}.$$

Also, $|bf|_{\text{sup}} = |b|_{\text{sup}}|f|_{\text{sup}}$ is trivial for b = 0. We conclude.

10. Miscellany

Lemma 10.1. Let $(A, | \bullet |)$ be a valued integral domain such that \tilde{A} is Noetherian and N-2. Assume that $|A^{\times}|$ is a group. Let $(B, \| \bullet \|)$ be a faithfully normed A-algebra such that

- (1) $\| \bullet \|$ is power-multiplicative.
- (2) The A-rank of B is finite.
- (3) B is integral over A.

Then \tilde{B} is finite as \tilde{A} -module.

PROOF. We want to apply Proposition 6.1 in Commutative algebras to the canonical injection map $\psi: \tilde{A} \to \tilde{B}$. The map ψ is integral as \mathring{B} is integral over \mathring{A} . The conditions are easily verified. Add details.

Bibliography

- [Ber12] V. G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields. 33. American Mathematical Soc., 2012.
- [BGR84] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis. Vol. 261. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. A systematic approach to rigid analytic geometry. Springer-Verlag, Berlin, 1984, pp. xii+436. URL: https://doi.org/10.1007/978-3-642-52229-1.
- [Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2020.