

Réseaux de neurones récurrents pour la classification de séquences dans des flux audiovisuels parallèles

Mohamed BOUAZIZ

Soutenance de thèse, le 06 décembre 2017

Directeur de thèse :

Georges LINARÈS

Co-encadrants:

Mohamed MORCHID Richard DUFOUR

Contexte

Thèse Cifre

Entreprise EDD

- Gestion des ressources multimédias
 - 80 000 nouveaux documents quotidiens
 - des centaines de flux radio et TV
- Services de veille médiatique
 - Panoramas de l'actualité
 - Notification en temps réel des affaires sensibles

Laboratoire Informatique d'Avignon

- Traitement automatique du langage et de la parole
- Structuration de contenu

Contenu TV

Flux de données à différents niveaux de granularité

Données séquentielles

Suite chronologique d'événements

Données séquentielles

- Suite chronologique d'événements
- Relation pouvant exister entre les différents événements

Données séquentielles

- Suite chronologique d'événements
- Relation pouvant exister entre les différents événements
- Traitement automatisé ⇒ Méthodes adaptées aux séquences

Flux parallèles

Plusieurs flux peuvent être émis en parallèle

Flux parallèles

- Plusieurs flux peuvent être émis en parallèle
 - → événements asynchrones

Flux parallèles

- Plusieurs flux peuvent être émis en parallèle
 - → événements asynchrones
- Relations entre les flux (dépendance, concurrence...)

Motivation:

- Exploiter les relations entre les différents flux parallèles pour enrichir les connaissances sur un flux particulier
- Les approches actuelles adaptées aux séquences ne peuvent prendre en compte que des données séquentielles provenant d'un seul flux (monoflux)

Motivation:

- Exploiter les relations entre les différents flux parallèles pour enrichir les connaissances sur un flux particulier
- Les approches actuelles adaptées aux séquences ne peuvent prendre en compte que des données séquentielles provenant d'un seul flux (monoflux)

Objectif:

Concevoir des approches capables d'intégrer simultanément des données séquentielles provenant de plusieurs flux (multiflux)

- I. État de l'art : apprentissage automatique pour la classification de séquences
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

- I. État de l'art : apprentissage automatique pour la classification de séquences
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

- I. État de l'art : apprentissage automatique pour la classification de séquences
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

- I. État de l'art : apprentissage automatique pour la classification de séquences
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

- I. État de l'art : apprentissage automatique pour la classification de séquences
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

- I. État de l'art : apprentissage automatique pour la classification de séquences
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- **VII. Conclusions et perspectives**

- I. État de l'art : apprentissage automatique pour la classification de séquences
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

Méthodes « classiques »

- Entrée = caractéristiques prises en compte indépendamment les unes des autres
 - ⇒ Données séquentielles : liens entre les événements ignorés

Méthodes « classiques »

- Entrée = caractéristiques prises en compte indépendamment les unes des autres
 - ⇒ Données séquentielles : liens entre les événements ignorés
- ⇒ Nécessité d'une étape d'extraction de caractéristiques

Méthodes « adaptées aux séquences »

Capacité à modéliser les dépendances séquentielles

Méthodes « adaptées aux séquences »

Capacité à modéliser les dépendances séquentielles

Modèles à base de réseaux de neurones

- Utilisé pour :
 - La régression (approximation d'une valeur)
 - La classification (prédiction d'une classe)

Concepts de base : Perceptron Multicouches (MLP)

Couches cachées : représentations latentes des données

Concepts de base : Perceptron Multicouches (MLP)

- Couches cachées : représentations latentes des données
 - Apprentissage : rétropropagation du gradient

Réseaux de neurones récurrents (RNN)

- Suite de réseaux MLP
- ullet Sortie à l'instant t : $h_t = \mathcal{H}(\mathbf{W}_{xh}x_t + \mathbf{W}_{hh}h_{t-1} + b_h)$ $y_t = \mathbf{W}_{hy}h_t + b_y$
- ✓ Modélisation des relations latentes entre les événements

Réseaux de neurones récurrents (RNN)

- Suite de réseaux MLP
- ullet Sortie à l'instant t: $h_t = \mathcal{H}(\mathbf{W}_{xh}x_t + \mathbf{W}_{hh}h_{t-1} + b_h)$ $y_t = \mathbf{W}_{hy}h_t + b_y$
- √ Modélisation des relations latentes entre les événements
- X Séquences longues : « Dissipation du gradient »

- Une extension des RNN :
 - ✓ Modulation de la propagation de l'information
 - ✓ Séquences longues : prévenir la « dissipation du gradient »

- Une extension des RNN :
 - ✓ Modulation de la propagation de l'information
 - √ Séquences longues : prévenir la « dissipation du gradient »
- Couche cachée = cellule à mémoire

- Une extension des RNN :
 - ✓ Modulation de la propagation de l'information
 - √ Séquences longues : prévenir la « dissipation du gradient »
- Couche cachée = cellule à mémoire

- Une extension des RNN :
 - ✓ Modulation de la propagation de l'information
 - √ Séquences longues : prévenir la « dissipation du gradient »
- Couche cachée = cellule à mémoire

$$i_{t} = \sigma(\mathbf{W}_{xi}x_{t} + \mathbf{W}_{hi}h_{t-1} + \mathbf{W}_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(\mathbf{W}_{xf}x_{t} + \mathbf{W}_{hf}h_{t-1} + \mathbf{W}_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh(\mathbf{W}_{xc}x_{t} + \mathbf{W}_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(\mathbf{W}_{xo}x_{t} + \mathbf{W}_{ho}h_{t-1} + \mathbf{W}_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

- Une extension des RNN :
 - ✓ Modulation de la propagation de l'information
 - √ Séquences longues : prévenir la « dissipation du gradient »
- Couche cachée = cellule à mémoire

$$i_{t} = \sigma(\mathbf{W}_{xi}x_{t} + \mathbf{W}_{hi}h_{t-1} + \mathbf{W}_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(\mathbf{W}_{xf}x_{t} + \mathbf{W}_{hf}h_{t-1} + \mathbf{W}_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh(\mathbf{W}_{xc}x_{t} + \mathbf{W}_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(\mathbf{W}_{xo}x_{t} + \mathbf{W}_{ho}h_{t-1} + \mathbf{W}_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

- Une extension des RNN :
 - ✓ Modulation de la propagation de l'information
 - √ Séquences longues : prévenir la « dissipation du gradient »
- Couche cachée = cellule à mémoire

$$i_{t} = \sigma(\mathbf{W}_{xi}x_{t} + \mathbf{W}_{hi}h_{t-1} + \mathbf{W}_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(\mathbf{W}_{xf}x_{t} + \mathbf{W}_{hf}h_{t-1} + \mathbf{W}_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh(\mathbf{W}_{xc}x_{t} + \mathbf{W}_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(\mathbf{W}_{xo}x_{t} + \mathbf{W}_{ho}h_{t-1} + \mathbf{W}_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

I. État de l'art : apprentissage automatique pour la classification de séquences

Long Short-Term Memory (LSTM)

- Une extension des RNN :
 - ✓ Modulation de la propagation de l'information
 - √ Séquences longues : prévenir la « dissipation du gradient »
- Couche cachée = cellule à mémoire

$$i_{t} = \sigma(\mathbf{W}_{xi}x_{t} + \mathbf{W}_{hi}h_{t-1} + \mathbf{W}_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(\mathbf{W}_{xf}x_{t} + \mathbf{W}_{hf}h_{t-1} + \mathbf{W}_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh(\mathbf{W}_{xc}x_{t} + \mathbf{W}_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(\mathbf{W}_{xo}x_{t} + \mathbf{W}_{ho}h_{t-1} + \mathbf{W}_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

Plan

- I. État de l'art
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

Information du genre d'émission

- Utile pour la sélection et l'orientation de certains traitements automatiques
 - segmentation en thèmes (journaux télévisés, magazine de débat)
 - extraction de moments forts (émissions de sport ou de divertissement)

Information du genre d'émission

- Utile pour la sélection et l'orientation de certains traitements automatiques
 - segmentation en thèmes (journaux télévisés, magazine de débat)
 - extraction de moments forts (émissions de sport ou de divertissement)
- Contenue dans les guides de programmes, mais de mauvaise qualité
 - taxonomies ambiguës : Société, Politique, Animalier, Voyage
 - programmes incomplets (ex : programme de nuit)

Information du genre d'émission

- Utile pour la sélection et l'orientation de certains traitements automatiques
 - segmentation en thèmes (journaux télévisés, magazine de débat)
 - extraction de moments forts (émissions de sport ou de divertissement)
- Contenue dans les guides de programmes, mais de mauvaise qualité
 - taxonomies ambiguës : Société, Politique, Animalier, Voyage
 - programmes incomplets (ex : programme de nuit)

⇒ Prédire automatiquement le genre d'émission

Classification en genre à partir du contenu

- Indices visuels : fréquence des plans, détection d'objets...
- Indices acoustiques : taux de l'énergie, événements sonores...
- Indices linguistiques : mesure de confiance, TF-IDF...

- Style éditorial ⇒ chronologie des genres d'émission
- Utiliser l'historique des genres des T dernières émissions diffusées pour prédire le genre de l'émission suivante

- Style éditorial ⇒ chronologie des genres d'émission
- Utiliser l'historique des genres des T dernières émissions diffusées pour prédire le genre de l'émission suivante
- Séquences monoflux ⇒ classification de séquences

- Relations entre les chaînes TV
 - → séquencement de genres dans les chaînes parallèles : des informations supplémentaires ?

- Relations entre les chaînes TV
 - → séquencement de genres dans les chaînes parallèles : des informations supplémentaires ?
- Prédiction du genre dans le cadre multiflux : exploitation des séquences parallèles

Taxonomie de genres :

- X Taxonomies existantes trop détaillées (INA, Médiamétrie...)
 - Taxonomie proposée : 11 genres distincts entre eux
 - ▶ Actualité
 - ►Météo
 - ► Dessin animé
 - **▶** Fiction
 - **▶** Documentaire
 - ► Téléachat

- ►Télé-réalité
- ► Musique
- ► Magazine
- **▶**Jeux
- ► Autres

Corpus d'historique de genres d'émission

- 4 chaînes françaises :
 - Chaîne principale : M6 (généraliste)
 - Chaînes parallèles :
 - ► TF1 (généraliste)
 - ► France 5 et TV5 Monde (semi-thématiques)

Corpus d'historique de genres d'émission

- 4 chaînes françaises :
 - Chaîne principale : M6 (généraliste)
 - Chaînes parallèles :
 - ► TF1 (généraliste)
 - ► France 5 et TV5 Monde (semi-thématiques)
- 3 années d'historique d'émissions :
 - 2013-2014 : **Apprentissage** (70%) + **Développement** (30%)
 - 2015 : **Test**

Corpus d'historique de genres d'émission

- 4 chaînes françaises :
 - Chaîne principale : M6 (généraliste)
 - Chaînes parallèles :
 - ► TF1 (généraliste)
 - ► France 5 et TV5 Monde (semi-thématiques)
- 3 années d'historique d'émissions :
 - 2013-2014 : **Apprentissage** (70%) + **Développement** (30%)
 - 2015 : **Test**

- Informations supplémentaires :
 - titre
 - résumé

horodatage (tranche horaire, jour de la semaine...)

Corpus d'historique de genres d'émission

Genres	Apprentissage	Développement	Test
Météo	2691	1153	1683
Fiction	1890	810	1444
Actualité	913	392	663
Magazine	981	421	451
Musique	461	197	330
Téléachat	421	180	307
Jeu	476	204	284
Dessin animé	361	155	205
Autres	277	119	129
Télé-réalité	83	36	76
Documentaire	29	13	14
Total	8583	3680	5586

Distribution des genres d'émission pour M6

Plan

- I. État de l'art
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

LSTM vs SVM

LSTM vs SVM

→ LSTM plus efficace et plus stable (21 % de gain relatif)

LSTM vs SVM

- → LSTM plus efficace et plus stable (21 % de gain relatif)
- → moins efficace avec les séquences courtes

Bilan

Méthode	Taux d'erreur (%)	Séquences longues
SVM _{M6}	30,4	X
LSTM _{M6}	23,95	✓

⇒ Méthodes adaptées aux séquences plus efficaces que les méthodes classiques

Représentations vectorielles de séquences (Sequence Embedding)

Valeurs produites par la couche cachée : représentations latentes

1. Apprentissage

2. Génération

- Valeurs produites par la couche cachée : représentations latentes
- ⇒ vecteurs de caractéristiques utilisables par des méthodes classiques

1. Apprentissage

2. Génération

Représentations vectorielles de séquences + SVM (SE-SVM)

→ Combinaison des avantages des SVM (historiques courts) et des LSTM (historiques longs)

Bilan

Méthode	Taux d'erreur (%)	Séquences longues
SVM _{M6}	30,4	X
LSTM _{M6}	23,95	✓
SE-SVM _{M6}	23,5	✓

Plan

- I. État de l'art
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

Formulation théorique

Parallel RNN (PRNN)

Formulation théorique

Parallel RNN (PRNN)

$$h_t^N = \mathcal{H}(\mathbf{W}_{x^N h^N} x_t^N + \mathbf{W}_{h^N h^N} h_{t-1}^N + b_h^N)$$
....

$$h_{t}^{2} = \mathcal{H}(\mathbf{W}_{x^{2}h^{2}}x_{t}^{2} + \mathbf{W}_{h^{2}h^{2}}h_{t-1}^{2} + b_{h}^{2})$$

$$h_{t}^{1} = \mathcal{H}(\mathbf{W}_{x^{1}h^{1}}x_{t}^{1} + \mathbf{W}_{h^{1}h^{1}}h_{t-1}^{1} + b_{h}^{1})$$

$$y_{t} = \sum_{n=1}^{N} \mathbf{W}_{h^{n}y}h_{t}^{n} + b_{y}$$

Formulation théorique

- Parallel RNN (PRNN)

Formulation théorique

Parallel RNN (PRNN)

Formulation théorique

Parallel RNN (PRNN)

■ PLSTM = PRNN

en remplaçant H par la **fonction composite** du LSTM

Formulation théorique

Parallel RNN (PRNN)

■ PLSTM = PRNN

en remplaçant H par la **fonction composite** du LSTM

PLSTM vs LSTM

- → PLSTM : 20 % de gain relatif
- ⇒ efficace dans l'intégration des séquences parallèles.

n-gramme : combinaison de séquences parallèles

IV. LSTM Parallèles (PLSTM)

n-gramme : combinaison de séquences parallèles

IV. LSTM Parallèles (PLSTM)

PLSTM vs ngramme multiflux

- → nGram_{Multi}: ne peut pas tirer profit des séquences longues
- ⇒ PLSTM : efficacité confirmée

IV. LSTM Parallèles (PLSTM)

PLSTM vs ngramme multiflux

- → nGram_{Multi}: ne peut pas tirer profit des séquences longues
- ⇒ PLSTM : efficacité confirmée
- → difficultés avec les historiques courts

Bilan

Méthode	Taux d'erreur (%)	Séquences longues
SVM _{M6}	30,4	X
LSTM _{M6}	23,95	✓
SE-SVM _{M6}	23,5	✓
nGram _{Multi}	27,7	X
PLSTM	19	✓

Plan

- I. État de l'art
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

1. Apprentissage

Formulation théorique

2. Génération

Formulation théorique

- 2. Génération
- 3. Fusion

Formulation théorique

- 2. Génération
- 3. Fusion

MSE-SVM vs SE-SVM

- → MSE-SVM : 27 % de gain relatif
- ⇒ efficace dans l'intégration des séquences parallèles.

SVM : combinaison de séquences parallèles

MSE-SVM vs SVM multiflux

MSE-SVM vs SVM multiflux

- → SVM_{multi}: ne peut pas exploiter les séquences longues
- ⇒ MSE-SVM : efficacité confirmée

MSE-SVM vs SVM multiflux

- → SVM_{multi} : ne peut pas exploiter les séquences longues
- ⇒ MSE-SVM : efficacité confirmée
 - → difficultés avec les historiques courts

MSE-SVM vs PLSTM

→ MSE-SVM est légèrement meilleure (10 % de gain relatif)

MSE-SVM vs PLSTM

- → MSE-SVM est légèrement meilleure (10 % de gain relatif)
- → Pour les deux approches : difficulté avec les historiques courts (plus prononcée pour MSE-SVM)

Bilan

Méthode	Taux d'erreur (%)	Séquences longues
SVM _{M6}	30,4	X
LSTM _{M6}	23,95	✓
SE-SVM _{M6}	23,5	✓
nGram _{Multi}	27,7	X
PLSTM	19	
SVM _{Multi}	26,2	X
MSE-SVM	17	✓

Bilan

Méthode	Taux d'erreur (%)	Séquences longues
SVM _{M6}	30,4	X
LSTM _{M6}	23,95	✓
SE-SVM _{M6}	23,5	✓
nGram _{Multi}	27,7	X
PLSTM	19	
SVM _{Multi}	26,2	X
MSE-SVM	17	✓

Faiblesse: séquences courtes (manque de connaissances)

Plan

- I. État de l'art
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- VII. Conclusions et perspectives

1. Apprentissage

1. Apprentissage

1. Apprentissage

1. Apprentissage

2. Génération

1. Apprentissage

2. Génération

3. Fusion

1. Apprentissage

2. Génération

3. Fusion

Les AMSE unicontextuelles

Les AMSE unicontextuelles

- Amélioration plus visible avec les historiques courts (jusqu'à 30 % de gain relatif)

Les AMSE unicontextuelles

- Amélioration plus visible avec les historiques courts (jusqu'à 30 % de gain relatif)

Les AMSE unicontextuelles

- Amélioration plus visible avec les historiques courts (jusqu'à 30 % de gain relatif)
- Peu d'amélioration avec les séquences longues (4 % de gain relatif)

Les AMSE bicontextuelles

Les AMSE bicontextuelles

- Amélioration avec les historiques courts (jusqu'à 23 % de gain relatif)

104

Les AMSE bicontextuelles

- Amélioration avec les historiques courts (jusqu'à 23 % de gain relatif)

105

Les AMSE bicontextuelles

- Amélioration avec les historiques courts (jusqu'à 23 % de gain relatif)
- Stagnation précoce (pas d'amélioration avec les séquences longues)
- ⇒ les historiques longs incorporent déjà les informations contextuelles.

Bilan

Méthode	Taux d'erreur (%)	Séquences longues
SVM _{M6}	30,4	X
LSTM _{M6}	23,95	✓
SE-SVM _{M6}	23,5	✓
nGram _{Multi}	27,7	×
PLSTM	19	✓
SVM _{Multi}	26,2	X
MSE-SVM	17	
AMSE-SVM ^{am/pm+WD}	16,6	<u>-</u>

Bilan

Méthode	Taux d'erreur (%)	Séquences longues
SVM _{M6}	30,4	X
LSTM _{M6}	23,95	✓
SE-SVM _{M6}	23,5	✓
nGram _{Multi}	27,7	X
PLSTM	19	
SVM _{Multi}	26,2	X
MSE-SVM	17	✓
AMSE-SVM ^{am/pm+WD}	16,6	<u>±</u>

Contribution : séquences courtes

Plan

- I. État de l'art
- II. Tâche et cadre expérimental
- III. Classification de séquences provenant d'un seul flux
- IV. LSTM Parallèles (PLSTM)
- V. Représentations vectorielles de séquences parallèles + SVM (MSE-SVM)
- VI. MSE-SVM: ajout d'informations issues du contexte (AMSE-SVM)
- **VII. Conclusions et perspectives**

Conclusions

 Motivation : Exploitation des données séquentielles multiflux

- Motivation : Exploitation des données séquentielles multiflux
- Conception d'un cadre expérimental adapté
- 2 propositions principales
 - PLSTM: extension du modèle LSTM
 - MSE-SVM: « combinaison » des modèles LSTM et SVM

- Motivation : Exploitation des données séquentielles multiflux
- Conception d'un cadre expérimental adapté
- 2 propositions principales
 - PLSTM: extension du modèle LSTM
 - MSE-SVM: « combinaison » des modèles LSTM et SVM
- Efficacité dans l'intégration des séquences parallèles
- Capacité à tirer profit des séquences longues

- Motivation : Exploitation des données séquentielles multiflux
- Conception d'un cadre expérimental adapté
- 2 propositions principales
 - PLSTM: extension du modèle LSTM
 - MSE-SVM: « combinaison » des modèles LSTM et SVM
- Efficacité dans l'intégration des séquences parallèles
- Capacité à tirer profit des séquences longues
- X Difficultés avec les séquences courtes

Conclusions

- Solution : extension de l'approche MSE-SVM
 - ⇒ AMSE-SVM

√ Apport principal : séquences courtes

- Solution : extension de l'approche MSE-SVM
 - **⇒ AMSE-SVM**

- ✓ Apport principal : séquences courtes
- X Avec les informations contextuelles choisies : pas d'amélioration sur les séquences longues

Perspectives

 Utilisation d'autres informations contextuelles : caractéristiques intrinsèques d'une émission (nom, durée, thème général...)

Prédiction de la suite des genres des émissions suivantes : Encodeur-Décodeur multiflux ?

Prédiction simultanée pour tous les flux donnés en entrée

Perspectives

 Conditionner les couches LSTM des flux parallèles selon la sortie de la couche LSTM du flux principal.

- Application dans d'autres contextes de prédiction d'événements
 - Prévisions météorologiques
 - Évolution des actions des sociétés cotées en bourse

Merci pour votre attention