Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 6. Кривые в проективных пространствах

Мы определяли кривую в n-мерном проективном пространстве как подмножество в этом пространстве, которое можно задать набором из n-1 независимых полиномиальных уравнений в окрестности каждой ее точки. Как получить такое подмножество? Один из способов — отобразить кривую в пространство. Например, отображение

$$(u:v) \mapsto (u^3:u^2v:uv^2:v^3)$$

проективной прямой в проективное пространство $\mathbb{C}P^3$ задает в нем *скрученную кубику*. Скрученная кубика является алгебраической кривой: в окрестности каждой своей точки она задается двумя из трех уравнений $z_0z_3=z_1z_2, z_1^2=z_0z_2, z_2^2=z_1z_3$. В то же время, любые два из этих уравнений, помимо скрученной кубики, выделяют еще прямую. Например, первые два уравнения выделяют прямую $z_0=z_1=0$. Эта прямая пересекает скрученную кубику в точке (0:0:1).

Лекция 6. Кривые в проективных пространствах: степень кривой

Степень алгебраической кривой в проективном пространстве нельзя определить как степень задающего ее многочлена, поскольку кривую нельзя задать одним уравнением. Однако второе определение степени работает.

Лекция 6. Кривые в проективных пространствах: степень кривой

Степень алгебраической кривой в проективном пространстве нельзя определить как степень задающего ее многочлена, поскольку кривую нельзя задать одним уравнением. Однако второе определение степени работает.

Definition

Степенью кривой в проективном пространстве называется количество точек ее пересечения с общей гиперплоскостью.

Общая гиперплоскость пересекает кривую трансверсально, и кратность всех точек пересечения равна 1. Как и в плоском случае, количество точек пересечения с общей гиперплоскостью мы можем заменить количеством точек пересечения с произвольной гиперплоскостью, если будем учитывать их кратность.

Задача. Чему равна степень скрученной кубики?

Лекция 6. Алгебраические подмногообразия в проективных пространствах

Степень можно определить не только у кривой, но и у гладкого алгебраического подмногообразия любой размерности в проективном пространстве.

Definition

Подмножество $X\subset \mathbb{C}P^n$ называется *гладким алгебраическим подмногообразием коразмерности k*, если для любой его точки $x\in X$ существует такой набор из k однородных многочленов F_1,\ldots,F_k , что X в некоторой окрестности точки x задается набором уравнений $F_1=\cdots=F_k=0$ и дифференциалы dF_1,dF_2,\ldots,dF_k линейно независимы в точке x (а значит, и в некоторой ее окрестности).

Лекция 6. Алгебраические подмногообразия в проективных пространствах

Степень можно определить не только у кривой, но и у гладкого алгебраического подмногообразия любой размерности в проективном пространстве.

Definition

Подмножество $X\subset \mathbb{C}P^n$ называется *гладким алгебраическим подмногообразием коразмерности k*, если для любой его точки $x\in X$ существует такой набор из k однородных многочленов F_1,\ldots,F_k , что X в некоторой окрестности точки x задается набором уравнений $F_1=\cdots=F_k=0$ и дифференциалы dF_1,dF_2,\ldots,dF_k линейно независимы в точке x (а значит, и в некоторой ее окрестности).

Pазмерность гладкого алгебраического подмногообразия коразмерности k в $\mathbb{C}P^n$ равна n-k.

Лекция 6. Алгебраические подмногообразия в проективных пространствах: теорема Безу

Theorem (Теорема Безу)

Пусть F, G — однородные многочлены от четырех переменных и X — кривая, заданная уравнениями F = G = 0, причем в каждой ее точке дифференциалы dF и dG линейно независимы. Тогда степень кривой X равна произведению степеней многочленов F и G.

Разумеется, аналогичная теорема верна для гладких алгебраических многообразий, заданных трансверсальным пересечением произвольного набора гиперповерхностей в комплексном проективном пространстве произвольной размерности. Она носит (ко)гомологический характер. Кольцо когомологий $H^*(\mathbb{C}P^n,\mathbb{Z})$ порождено классом h гиперплоскости, причем $h^{n+1}=0$. Гиперповерхность степени d представляет класс когомологий $d\cdot h$, а алгебраическое подмногообразие X коразмерности k представляет класс когомологий $\deg X\cdot h^k$.

Теорема Безу означает, в частности, что скрученную кубику нельзя представить в виде трансверсального пересечения двух гиперповерхностей в $\mathbb{C}P^3$. Если бы это можно было сделать, то эти гиперповерхности должны были бы иметь степени 1 и 3, т.е. кубика лежала бы на плоскости, а это не так (она "скрученная").

Лекция 6. Род трансверсального пересечения двух квадрик

Трансверсальное пересечение достаточного количества гиперповерхностей — еще один способ задания кривых в проективных пространствах. Пусть

 $F(z_0,z_1,z_2,z_3)=z_0^2+z_1^2+z_2^2+z_3^2$, $G(z_0,z_1,z_2,z_3)=a_0z_0^2+a_1z_1^2+a_2z_2^2+a_3z_3^2$ — два однородных многочлена степени 2 от 4 переменных. Поверхность F=0 гладкая, и при общем значении параметров a_i поверхность G=0 тоже гладкая и пересекает поверхность F=0 трансверсально. Вычислим род кривой, являющейся пересечением этих поверхностей.

Рассмотрим проекцию кривой пересечения из точки (0:0:0:1), т.е. отображение $(z_0:z_1:z_2:z_3)\mapsto (z_0:z_1:z_2)$. Это отображение переводит пересечение квадрик в конику $a_0z_0^2+a_1z_1^2+a_2z_2^2=a_3(z_0^2+z_1^2+z_2^2)$ и является разветвленным накрытием кратности 2. У этого отображения 4 точки ветвления (все они простые).

Таким образом, накрывающая кривая имеет род 1. Поскольку условие нетрансверсальности пересечения выделяет в пространстве пар квадрик гиперповерхность, трансверсальное пересечение любых двух квадрик в проективном пространстве имеет род 1.

Лекция 6. Вложения и погружения алгебраических кривых

Еще один способ получения кривых в проективных пространствах — проектирование кривых, вложенных в какое-либо пространство, в пространство меньшей размерности. Любую гладкую кривую в проективном пространстве размерности больше 3 можно биголоморфно спроектировать в проективное пространство меньшей размерности.

Theorem (Whitney)

Всякую алгебраическую кривую можно вложить в $\mathbb{C}P^3$.

Доказательство. Пусть $C \subset \mathbb{C}P^n$ — гладкая алгебраическая кривая, $n \geq 4$. Рассмотрим многобразие в $\mathbb{C}P^n$, являющееся замыканием множества точек, лежащих на хордах кривой C, т.е. прямых, соединяющих пары ее точек. Это подмногообразие имеет размерность 3, а значит содержит не все точки пространства $\mathbb{C}P^n$. Поэтому есть точка, проектирование из которой осуществляет биголоморфное отображение кривой C в кривую в проективном пространстве меньшей размерности.

Лекция 6. Погружение комплексных кривых

Кривую в проективном пространстве $\mathbb{C}P^3$ можно спроектировать в кривую на плоскости, но эта проекция уже не обязательно будет биголоморфизмом.

Theorem

Пусть $C \subset \mathbb{C}P^3$ — гладкая алгебраическая кривая. Тогда в $\mathbb{C}P^3$ существует точка, образ проекции кривой C из которой — погруженная кривая.

Плоская кривая называется *погруженной* (или *нодальной*), если ее единственные особенности — точки двойного трансверсального самопересечения (*узлы, ноды*). **Доказательство.** Исключительными направлениями проектирования являются касательные к кривой C и тройные секущие. Замыкание множества точек, лежащих на этих прямых — двумерное алгебраическое подмногообразие в $\mathbb{C}P^3$, поэтому в пространстве есть точки, не лежащие на нем.

Гладкая кривая, невырожденное голоморфное отображение которой в нодальную плоскую кривую взаимно-однозначно на дополнении к множеству двойных точек, называется нормализацией этой нодальной кривой. Теорема означает, что всякая гладкая алгебраическая кривая является нормализацией некоторой нодальной плоской кривой.

Лекция 6. Род плоской нодальной кривой

При проектировании из общей точки степень кривой остается неизменной.

Theorem

Пусть δ — количество двойных точек плоской нодальной кривой степени d. Тогда род нормализации этой кривой равен $(d-1)(d-2)/2-\delta$.

Доказательство. Пусть нодальная кривая имеет в аффинной карте уравнение f=0, причем обе касательные к кривой в каждой двойной точке невертикальны. Эта кривая пересекается с кривой $\partial f/\partial y=0$ по d(d-1) точкам с учетом кратности. Каждая из δ двойных точек является точкой пересечения кратности 2 кривых f=0 и $\partial f/\partial y=0$ (по одной точке на каждой из ветвей). Поэтому на кривой f=0 имеется $d(d-1)-2\delta$ точек ветвления проекции на ось x. По формуле Римана–Гурвица

$$d(d-1)-2\delta = 2d + 2g - 2,$$

откуда

$$g=\frac{(d-1)(d-2)}{2}-\delta.$$

Лекция 6.

- Представьте рациональную нормальную кривую в $\mathbb{C}P^4$ в виде пересечения гиперповерхностей.
- Докажите, что при проектировании кривой в проективном пространстве, не лежащей ни в какой гиперплоскости, из общей точки кривой степень ее образа на 1 меньше степени кривой.

- Докажите, что никакие n+1 точек рациональной нормальной кривой не лежат в одной гиперплоскости. Докажите, что это единственная (с точностью до проективных преобразований) кривая с таким свойством.
- Докажите, что любая кривая степени 3 в проективном пространстве, не лежащая ни в какой гиперплоскости, переводится в скрученную кубику проективным преобразованием пространства.
- Докажите, что через любые n+3 точки в общем положении (т.е. таких, что ни через какие n+1 из них не проходит гиперплоскость) в n-мерном проективном пространстве проходит единственная рациональная нормальная кривая.

•

- Найдите размерность пространства плоских кривых степени 4 с одной двойной точкой.
- Оцените степень плоских кривых (с двойными точками), необходимую, чтобы представить любую кривую рода g.

•

•