多元函数积分学

Didnelpsun

目录

1 二重积分				1	1	
	1.1	交换积	只分次序	1	L	
		1.1.1	直角坐标系	1	L	
		1.1.2	极坐标系	1	L	
	1.2	极直互	互化	1	L	
	1.3	累次积	只分计算	2)	
		131	交换积分次序	9)	

1 二重积分

1.1 交换积分次序

1.1.1 直角坐标系

例题: 交换积分次序 $\int_0^1 \mathrm{d}x \int_0^{x^2} f(x,y) \, \mathrm{d}y + \int_1^3 \mathrm{d}x \int_0^{\frac{1}{2}(3-x)} f(x,y) \, \mathrm{d}y$ 。 解: 已知积分区域分为两个部分。将 X 型变为 Y 型。画出图形可以知道 $y \in (0,1)$,x 的上下限由 $y = x^2$ 和 $y = \frac{1}{2}(3-x)$ 转化为 \sqrt{y} 和 3-2y。 所以转换为 $\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^{3-2y} f(x,y) \, \mathrm{d}x$ 。

1.1.2 极坐标系

例题: 对 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 交换积分次序。

解:对于极坐标的积分次序交换需要利用直角坐标系来画图了解,特别是对于r的上下限。

对
$$\theta = \frac{\pi}{2}$$
 变为 y 轴, $y = -\frac{\pi}{4}$ 变为 $y = -x$ 。

对 $r = 2\cos\theta$ 变为 xy 的表达式, $r^2 = 2\cos\theta$, 即 $x^2 + y^2 = 2x$, $(x-1)^2 + y^2 = 1$.

所以所得到的 σ 为一个圆割去一个扇形。

交换积分次序后就需要以一个长度以极点为圆心

做圆,切割 σ 。

由 σ 可知取长度 $\sqrt{2}$ 可以切分。

所以 σ 可以分为左边的 σ_1 和右边的 σ_2 。

$$\sigma_1$$
 的 $r \in [0, \sqrt{2}]$, σ_2 的 $r \in [\sqrt{2}, 2]$ 。

$$\sigma_1$$
 的 θ 下限是 $y=-x$ 这条边,即 $\theta=-\frac{\pi}{4}$,上限是 $r=2\cos\theta$ 这个圆,则 $\theta=\arccos\frac{r}{2}$ 。

 σ_2 的 θ 界限都是是 $r=2\cos\theta$ 这个圆,但是上限是上半部分,此时 y>0,而下限是下半部分,此时 y<0,即上限 $r\cos$,所以下限为 $\theta=-\arccos\frac{r}{2}$ 。

综上交换积分次序结果为:

$$\int_0^{\sqrt{2}} r \, \mathrm{d}r \int_{-\frac{\pi}{4}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) \mathrm{d}\theta + \int_{\sqrt{2}}^2 r \, \mathrm{d}r \int_{-\arccos \frac{r}{2}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) \mathrm{d}\theta \, .$$

1.2 极直互化

例题:将 $I = \int_0^{\frac{\sqrt{2}}{2}R} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\frac{\sqrt{2}}{2}R}^R e^{-y^2} dy \int_0^{\sqrt{R^2-y^2}} e^{-x^2} dx$ 转换为 极坐标系并计算结果。

1.3 累次积分计算

二重积分若是累次积分形式出现,则计算可以使用上面两种方法简便运算。

1.3.1 交换积分次序

例题: