中国科学技术大学数学科学学院 2018~2019 学年第 2 学期考试试卷 A 卷

课程名	治称:	线性	:代数 A1	课	程代码:	001525	
开课院	系:	数学	数学科学学院		试形式:	闭卷	
姓名:		学号	:		专业:		
斯是	1 (10 分)	2 (10 分)	3 (15 分)	4 (15 分)	5/6 (20 分)	7/8 (30 分)	台分

题号	1 (10 分)	2 (10 分)	3 (15 分)	4 (15 分)	5/6 (20 分)	7/8 (30 分)	总分
得分							

说明:从5、6两题中选做一题,从7、8两题中选做一题,多做不得分.

- 1. 求所有实方阵 A 使得 $A^{2019} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
- 2. 设实方阵 A 的特征多项式 $\varphi_A(x) = x^{2019} + x + 1$. 求 A^2 的特征多项式.

3. 设
$$n$$
阶实方阵 $A = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & n \\ 3 & 3 & 3 & \cdots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & \cdots & n \end{pmatrix}$. 求 det A 和 A^{-1} .

- 4. 设n阶实方阵A与 A^{2019} 相抵. 证明: 存在可逆实方阵P,Q使得 $A = P\begin{pmatrix} Q & O \\ O & O \end{pmatrix} P^{-1}$.
- 5. 设n阶实方阵A的特征方阵xI A与 diag(($x^2 + x$)³,($x^2 x$)⁴, I_{n-2}) 模相抵.
 - (1) 求A的 Jordan 标准形.
- (2) 求 $\operatorname{rank}(I_n \otimes A A \otimes I_n)$.
- 6. 设 $\mathbf{R}^{2\times 2}$ 上的线性变换 $\mathscr{A}(X) = AX XA$, 其中 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (1) 求 ✗ 的所有特征值及其特征向量. (2) 求 ✗ 的最小多项式.
- 7. 设A,B都是n阶实方阵.
 - (1) 证明: 若 A,B 无公共特征值,则存在唯一的实方阵 X 使得 AX XB = I.
 - (2) 证明: A = B 正交相抵当且仅当 $A^T A = B^T B$ 正交相抵.
 - (3) 设P是正交方阵,求 $\|PA B\|_F$ 的最小值,其中 $\|X\|_F = \sqrt{\sum_{i,j} x_{ij}^2}$.
- 8. $\mbox{if } \alpha = 2^{\frac{1}{3}}, \ \ V = \{f(\alpha) \mid f \in \mathbf{Q}[x]\}.$
 - (1) 证明: V 在实数运算下构成**Q**上的线性空间,并且 $\{1,\alpha,\alpha^2\}$ 是V的基.
 - (2) 求 $\beta = 3\alpha^2 + 2\alpha + 1$ 在 V 的基 $\{1, \alpha^2 + 1, \alpha^2 + 3\alpha + 3\}$ 下的坐标.
 - (3) 求V上线性变换 $\mathcal{A}(v) = (\alpha + 1)v$ 的特征多项式.

参考答案

- 1. A的特征值 $\lambda, \overline{\lambda}$ 满足 $\lambda^{2019} = i$. 可设 $A = P\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} P^{-1}$, $\theta = \frac{(2k + \frac{1}{2})\pi}{2019}$, $k \in \mathbb{Z}$. 由 $A^{2019} = P\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} P^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, 得 $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.
- 2. 设 $\varphi_A(x) = (x \lambda_1) \cdots (x \lambda_{2019})$, $B = A^2$, 则 $\varphi_B(x) = (x \lambda_1^2) \cdots (x \lambda_{2019}^2)$. 由 $\varphi_B(x^2) = -\varphi_A(x)\varphi_A(-x) = x^{4038} + 2x^{2020} + x^2 1$, 得 $\varphi_B(x) = x^{2019} + 2x^{1010} + x 1$.
- 3. 读 $P = \begin{pmatrix} 1 & & & & \\ -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$, 则 $QPAP^TQ^T = \begin{pmatrix} n & & & \\ & & -I_{n-1} \end{pmatrix}$.

故 det
$$A = (-1)^{n-1} n$$
 , $A^{-1} = (QP)^T \begin{pmatrix} \frac{1}{n} \\ -I_{n-1} \end{pmatrix} QP = \begin{pmatrix} -1 & 1 \\ 1 & -2 & 1 \\ & 1 & \ddots & \ddots \\ & & \ddots & -2 & 1 \\ & & 1 & \frac{1-n}{n} \end{pmatrix}$.

- 4. $A = P_1 \begin{pmatrix} Q & R \\ O & O \end{pmatrix} P_1^{-1}$, 其中(Q R)行满秩,Q是方阵. 由 $A^{2019} = P_1 \begin{pmatrix} Q^{2019} & Q^{2018}R \\ O & O \end{pmatrix} P_1^{-1}$ 与 A 相抵,得 $(Q^{2019} Q^{2018}R)$ 行满秩,Q可逆. 故 $A = P \begin{pmatrix} Q & O \\ O & O \end{pmatrix} P^{-1}$, $P = P_1 \begin{pmatrix} I & -Q^{-1}R \\ O & I \end{pmatrix}$.
- 5. n=14. xI-A与 diag($(x+1)^3$, $(x-1)^4$, x^3 , x^4 , I_{10}) 模相抵.
 - (1) A 的 Jordan 标准形为 $diag(J_3(-1), J_4(1), J_4(0), J_3(0))$.
 - (2) $\operatorname{rank}(I_n \otimes A A \otimes I_n) = \operatorname{rank}((A+I)^3, (A-I)^4, A^4, A^3) + 140 = 176$.
- 6. \mathscr{A} : $\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$ \mapsto $\begin{pmatrix} x_3 & x_4 x_1 \\ 0 & -x_3 \end{pmatrix}$ 在 $\mathbf{R}^{2 \times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下矩阵 $A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$
 - (1) $\varphi_A(x) = x^4$,特征值 0 的特征向量 $X = \begin{pmatrix} x_1 & x_2 \\ 0 & x_1 \end{pmatrix}$, $x_1, x_2 \in \mathbf{R}$ 不全为 0.
 - (2) $A^2 \neq 0$, $A^3 = 0 \Rightarrow d_A(x) = x^3$.
- 7. (1) A,B 无公共特征值 $\Rightarrow \varphi_B(A)$ 可逆. AX XB = I 有唯一解 $\Leftrightarrow AX XB = O$ 有唯一解. $AX = XB \Rightarrow \varphi_B(A)X = X\varphi_B(B) = O \Rightarrow X = O$.
 - (2) $A^T A$ 的奇异值 = $A^T A$ 的特征值 = A 的奇异值的平方.
 - (3) $\|PA B\|_F^2 = \|A\|_F^2 + \|B\|_F^2 2\operatorname{tr}(PAB^T)$. 设 $U\Sigma V$ 是 AB^T 的奇异值分解. 当 $P = V^T U^T$ 时, $\operatorname{tr}(PAB^T) = \operatorname{tr}(VPU\Sigma)$ 取得最大值 $\operatorname{tr}\Sigma$, $\|PA B\|_F$ 取得最小值 $\sqrt{\|A\|_F^2 + \|B\|_F^2} 2\operatorname{tr}\Sigma$.
- 8. (1) 易验证 $V = \{a + b\alpha + c\alpha^2 \mid a, b, c \in \mathbf{Q}\}$ 构成 \mathbf{Q} 上的线性空间.由 $x^3 = 2$ 在 \mathbf{Q} 中无解,得 $p = x^3 2$ 在 $\mathbf{Q}[x]$ 中不可约. 若 $\{1, \alpha, \alpha^2\}$ 线性相关,则存在非零多项式 $f \in \mathbf{Q}_3[x]$ 使得 $f(\alpha) = 0$,与 p 不可约矛盾.因此, $\{1, \alpha, \alpha^2\}$ 线性无关,构成V 的基.
 - (2) $\beta = -\frac{10}{3} + \frac{7}{3}(\alpha^2 + 1) + \frac{2}{3}(\alpha^2 + 3\alpha + 3)$. $故 \beta$ 的坐标是 $(-\frac{10}{3}, \frac{7}{3}, \frac{2}{3})$.
 - (3) $\mathscr{A}(1 \quad \alpha \quad \alpha^2) = (1 \quad \alpha \quad \alpha^2) \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. $\varphi_{\mathscr{A}}(x) = (x-1)^3 2$.