Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 28 giugno 2018

Il parametro b è uguale a:

(il resto della divisione del proprio numero di matricola per 4)+2.

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (9 punti)

a) Sia $L: \mathbb{R}^4 \to \mathbb{R}^3$ una applicazione lineare non nulla e sia $\mathbf{w} \neq \underline{0}$ un vettore appartenente all'immagine di L. Si stabilisca quali dei seguenti sottoinsiemi di \mathbb{R}^4 sono sottospazi di \mathbb{R}^4 , specificando se sono chiusi rispetto alla somma tra vettori o al prodotto per uno scalare.

$$U = \{ \mathbf{v} \in \mathbb{R}^4 \mid L(\mathbf{v}) = \mathbf{w} \}$$

$$V = \{ \mathbf{v} \in \mathbb{R}^4 \mid L(\mathbf{v}) \in \langle \mathbf{w} \rangle \}$$

$$Z = \{ \mathbf{v} \in \mathbb{R}^4 \mid L(\mathbf{v}) \notin \langle \mathbf{w} \rangle \}$$

b) Sia $A = \{x^2 - x + 7, x^2 + 7, 5x, x - 7, 4x^2 + 28, -9x\}$. Si determini, se possibile, un sottoinsieme di A che sia una base di $\mathbb{R}_2[x]$. Si motivi la risposta.

Esercizio 2. (9 punti) Sia $T_k: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(x_1, x_2, x_3) = (bx_1 + kx_2, kx_1 + 5x_2 + x_3, (1 - b)x_1 + 4x_2 + x_3).$$

- a) Si stabilisca per quali valori di k si ha che T_k non è iniettiva e scelto un tale valore a di k, si determini una base del nucleo di T_a e, se possibile, si determinino 2 vettori linearmente indipendenti che non appartengono all'immagine di T_a .
- b) Posto k = 0 si determini, se possibile, una applicazione lineare $G : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $T_0 \circ G$ sia l'identità di \mathbb{R}^3 .
- c) Sia $\mathcal{B} = \{\mathbf{e}_1 3\mathbf{e}_2, b\mathbf{e}_2 \mathbf{e}_3, \mathbf{e}_2\}$ un'altra base di \mathbb{R}^3 . Posto k = 0, si determini la matrice $A_{\mathcal{B},\mathcal{C}}$ associata a T_0 rispetto alla base \mathcal{B} nel dominio e alla base canonica \mathcal{C} di \mathbb{R}^3 nel codominio.

Esercizio 3. (8 punti) Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$F(\mathbf{e}_1) = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, F(\mathbf{e}_2) = b\mathbf{e}_1 + b\mathbf{e}_2 + b\mathbf{e}_3,$$

$$F(\mathbf{e}_3) = -\mathbf{e}_1 - \mathbf{e}_2 - \mathbf{e}_3$$

e sia A la matrice associata a F rispetto alla base canonica.

- a) Si stabilisca se $3\mathbf{e}_1 + 3\mathbf{e}_2 + 3\mathbf{e}_3$ è un autovettore di F.
- b) Si stabilisca se esiste una base \mathcal{B} di \mathbb{R}^3 tale che la matrice $A_{\mathcal{B},\mathcal{B}}$ associata a F rispetto alla base \mathcal{B} nel dominio e nel codominio sia diagonale e in caso affermativo, si determinio \mathcal{B} e $A_{\mathcal{B},\mathcal{B}}$.
- c) Si determinino, se possibile, due matrici distinte P_1 e P_2 tali che $P_1^{-1}AP_1=P_2^{-1}AP_2$ sia una matrice diagonale.

Esercizio 4. (4 punti)

Si determinino tutte le soluzioni intere della congruenza:

$$93x \equiv_{226} -3b$$
.