Cas pratique ACP - Analyse de pays pour l'exportation de poissons

Données FAO 2016-2017 :

- bilans alimentaires relatifs aux poissons pélagiques
- PIB et populations

http://www.fao.org/faostat/fr/#data (http://www.fao.org/faostat/fr/#data)


```
Entrée [1]:
# pour evaluer temps de calcul
start_time <- Sys.time()</pre>
#Loading packages
library(dplyr)
library(data.table)
library(tidyr)
library(stringr)
library(FactoMineR)
library(factoextra)
library(missMDA)
library(corrplot)
library(gridExtra)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':
    between, first, last
Loading required package: ggplot2
Welcome! Want to learn more? See two factoextra-related books at https://go
```

Attaching package: 'gridExtra'

o.gl/ve3WBa (https://goo.gl/ve3WBa)

The following object is masked from 'package:dplyr':

combine

Entrée [2]:

```
# Fonctions pour notebook
# Parametrage pour Lecture des csv
read_csv <- function(path) {</pre>
    df <- fread(path, stringsAsFactors=FALSE, encoding="UTF-8")</pre>
    return(df)
}
# Formattage des chaines de caractères
form <- function(x) {</pre>
    x <- tolower(x)</pre>
    x <- str_replace_all(x, " - ", "_")</pre>
    x <- str_replace_all(x, "é", "e")
x <- str_replace_all(x, " ", "_")</pre>
    x <- str_replace_all(x, "\\(", "")</pre>
    x <- str_replace_all(x, "\\)",
    x <- str_replace_all(x, "/", "_")</pre>
    x <- str_replace_all(x, "\\.", "")
    x <- str_replace_all(x, "\\'", "")
    return(x)
}
# Nombre de doublons dans un dataframe
doublons <- function(df) {</pre>
    print(paste("Dimensions :", dim(df)[1], dim(df)[2], sep=" "))
    print(paste("Doublons : ", sum(duplicated(df))))
}
# Formattage noms de colonnes et contrôle doublons dataframe
check <- function(df) {</pre>
    names(df) <- form(names(df))</pre>
    doublons(df)
    return(df)
}
# Variation n et n-1
variation <- function(previous, present) {</pre>
    var <- if_else(previous == 0, 0, (present-previous)/previous)</pre>
    return(var)
}
```

1. Importation des données

Entrée [3]:

```
# Chargement données FAO 2017
ba <- read_csv("data/FAOSTAT_data_6-27-2021_BA_PP.csv")
pib <- read_csv("data/FAOSTAT_data_6-27-2021_SA_PIB.csv")
pop <- read_csv("data/FAOSTAT_data_6-27-2021_POP.csv")</pre>
```

1.1 Desciption des bilans alimentaires

Entrée [4]:

Données bases alimentaires
ba <- check(ba)
head(ba, 2)</pre>

[1] "Dimensions : 3962 14"

[1] "Doublons : 0"

A data.table: 2 × 14

code_domaine	domaine	code_zone_fao	zone	code_element	element	code_produit	
<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	
FBS	Nouveaux Bilans Alimentaire	202	Afrique du Sud	5511	Production	2763	P Peli
FBS	Nouveaux Bilans Alimentaire	202	Afrique du Sud	5511	Production	2763	P Peli
4							•

1.2 Description des PIB

Entrée [5]:

Données pib
pib <- check(pib)
head(pib, 2)</pre>

[1] "Dimensions : 372 15"

[1] "Doublons : 0"

A data.table: 2 × 15

code_doi	maine	domaine	code_zone_fao	zone	code_element	element	code_produit	
	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	
	FS	Données de la sécurité alimentaire	2	Afghanistan	6126	Valeur	22013	in
	FS	Données de la sécurité alimentaire	2	Afghanistan	6126	Valeur	22013	in
4								•

1.3 Description des populations

Entrée [6]:

```
# Donnée pop
pop <- check(pop)
head(pop, 2)</pre>
```

[1] "Dimensions : 474 15"

[1] "Doublons : 0"

A data.table: 2 × 15

code_domaine	domaine	code_zone_fao	zone	code_element	element	code_produit
<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	<chr></chr>	<int></int>
OA	Séries temporelles annuelles	2	Afghanistan	511	Population totale	3010
OA	Séries temporelles annuelles	2	Afghanistan	511	Population totale	3010
4						•

1.4 Exclusion zone doublon

Entrée [7]:

```
# Exclusion doublon chine 351
ba <- ba %>% filter(code_zone_fao != 351)
pib <- pib %>% filter(code_zone_fao != 351)
pop <- pop %>% filter(code_zone_fao != 351)
```

2. Création des variables

2.1 Extraction variable population 2017

Entrée [8]:

```
vars_pop <- pop %>%
  select(code_zone_fao, annee, valeur) %>%
  pivot_wider(id_cols=code_zone_fao, names_from = annee, names_prefix = "pop_", values_fr
  select(code_zone_fao, pop_2017)
head(vars_pop)
```

A tibble: 6 × 2

pop_2017	code_zone_fao	
<dbl></dbl>	<int></int>	
36296.113	2	
57009.756	202	
2884.169	3	
41389.189	4	
82658.409	79	
77.001	6	

2.2 Extraction variable PIB par habitant 2017

Entrée [9]:

```
### Variables PIB
vars_pib <- pib %>%
    select(code_zone_fao, annee, valeur) %>%
    pivot_wider(id_cols=code_zone_fao, names_from = annee, names_prefix = "pib_hab_", value select(code_zone_fao, pib_hab_2017)
head(vars_pib)
```

A tibble: 6 × 2

code	zone	fao	pib	hab	2017

<int></int>	<dbl></dbl>
2	2202.6
202	12703.4
3	13037.0
4	11550.5
79	53011.8
7	7310.9

2.3 Création des variables de bilans alimentaires

Elements disponibles par les bilans alimentaires :

Entrée [10]:

```
# Formattage des noms de variables
ba <- ba %>% mutate(element = form(element))

# Variables disponibles
ba %>% select(element) %>% unique()
```

A data.table: 13 × 1

element

<chr>

production

importations_quantite

variation_de_stock

_ _

exportations_quantite

disponibilite_interieure aliments_pour_animaux

autres_utilisations_non_alimentaire

nourriture

 $disponibilite_alimentaire_en_quantite_kg_personne_an$

disponibilite_alimentaire_kcal_personne_jour

disponibilite_de_proteines_en_quantite_g_personne_jour

disponibilite_de_matière_grasse_en_quantite_g_personne_jour

semences

Formule d'égalité des bilans alimentaires

Disponibilité = Utilisation

Disponibilité = Production + Importation - exportation - variation de stock

Utilisation = Nourriture + aliments animaux + autres utilisations + semences

2.3.1 Statistiques par habitant

Entrée [11]:

```
# Sélection des éléments de bilan
elts <- c("production",</pre>
          "importations_quantite",
          "exportations quantite",
          "nourriture")
# Chiffres ramenés par habitant kg/hab
vars_ba <- ba %>%
   filter(annee == 2017) %>%
   filter(element %in% elts) %>%
   mutate(element = sub("_\\w*", "", element)) %>%
   select(code_zone_fao, element, annee, valeur) %>%
   left_join(unique(select(vars_pop, code_zone_fao, pop_2017)), by = "code_zone_fao") %>%
   mutate(valeur=if_else(pop_2017==0, 0, valeur*1000/pop_2017)) %>%
   mutate(element=paste(element, "hab", sep="_")) %>%
   select(-pop_2017) %>%
   pivot_wider(id_cols=code_zone_fao, names_from = c(element, annee), values_from = valeur
# Nouvelles variables
print(names(vars_ba))
vars_ba %>% head()
```

- [1] "code_zone_fao" "production_hab_2017" "importations_hab_2017"
- [4] "exportations_hab_2017" "nourriture_hab_2017"

A tibble: 6 × 5

code_zone_fao production_hab_2017 importations_hab_2017 exportations_hab_2017 nourriture_

	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
	5.57237958	2.919500	6.0051125	202
	4.01502131	6.809587	0.5755557	3
	0.03334204	1.124931	1.6588873	4
	8.56379900	9.635801	1.5796336	79
	0.97327792	4.987798	10.6134918	7
	0.00000000	10.269738	0.6287595	8
>				4

2.3.2 Ajout Pib par habitant

Entrée [12]:

```
# Ajout nom du pays + pib par hab
df <- vars_ba %>%
    left_join(unique(select(ba, code_zone_fao, zone)), by="code_zone_fao") %>%
    relocate(zone) %>%
    left_join(unique(select(vars_pib, code_zone_fao, pib_hab_2017)), by="code_zone_fao") %>
    select(-code_zone_fao)
head(df)
```

A tibble: 6 × 6

zone	production_hab_2017	importations_hab_2017	exportations_hab_2017	nourriture_hab_
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<
Afrique du Sud	6.0051125	2.919500	5.57237958	2.91
Albanie	0.5755557	6.809587	4.01502131	3.30
Algérie	1.6588873	1.124931	0.03334204	2.75
Allemagne	1.5796336	9.635801	8.56379900	2.48
Angola	10.6134918	4.987798	0.97327792	12.50
Antigua- et- Barbuda	0.6287595	10.269738	0.00000000	10.79

3. Revue des variables

Entrée [13]:

```
# Summary et NAs
summary(df)
paste("NAs :", sum(is.na(df)), sep=" ")
```

```
production_hab_2017 importations_hab_2017
    zone
                              0.0000
                                             : 0.0013
Length:174
                   Min.
                         :
                                       Min.
Class :character
                   1st Qu.:
                              0.6983
                                       1st Qu.:
                                                 1.1342
Mode :character
                   Median :
                             4.8348
                                       Median : 3.8531
                   Mean
                        : 61.2737
                                       Mean
                                            : 14.5683
                   3rd Qu.: 19.0965
                                       3rd Qu.: 8.5021
                   Max.
                          :1423.9600
                                       Max.
                                             :795.7020
                   NA's
                          :38
```

```
exportations hab 2017 nourriture hab 2017 pib hab 2017
                             : 0.00462
Min.
     :
           0.0000
                      Min.
                                          Min.
                                               :
                                                     912.8
                                          1st Qu.: 4858.0
1st Qu.:
           0.0242
                      1st Qu.: 1.93464
Median :
          0.3503
                      Median : 4.12544
                                          Median : 13037.0
Mean
      : 37.4344
                      Mean
                             : 7.29920
                                          Mean
                                               : 20067.8
                                          3rd Ou.: 28786.0
3rd Qu.:
           5.9367
                      3rd Qu.: 9.52194
       :2115.9949
                             :82.55406
                                                 :126918.0
Max.
                      Max.
                                          Max.
NA's
                                          NA's
                                                 :7
       :4
```

'NAs : 49'

3.1 Valeurs extremes et Polynésie Française

Entrée [14]:

A tibble: 5 × 6

zone	production_hab_2017	importations_hab_2017	exportations_hab_2017	nourriture_hab_
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<
Islande	1411.3932	104.547643	1455.1142	44.76
Kiribati	1391.3173	11.300128	777.1685	56.06
Maldives	284.7088	5.721170	180.2773	82.55
Saint-Kitts- et-Nevis	1423.9600	1.729273	0.0000	2.88
Seychelles	1386.4631	795.702047	2115.9949	34.53
4				•

A tibble: 1 × 6

zone	production_hab_2017	importations_hab_2017	exportations_hab_2017	nourriture_hab_2
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<(
Polynésie française	28.82993	8.656221	3.476976	26.40
4				>

3.2 Suppression des outliers pour améliorer le graphique de présentation

Entrée [15]:

```
# Calcul de seuil / écart type
seuil_outliers <- function(x, ecart_types=3) {
    seuil <- mean(x, na.rm=TRUE) + ecart_types * sd(x, na.rm=TRUE)
    return(seuil)
}</pre>
```

Seuil pour outliers à 3 écart type.

Entrée [16]:

```
# Seuils par colonnes
cols_numeric <- df %>% select_if(is.numeric) %>% colnames()

seuils <-df %>%
    select(all_of(cols_numeric)) %>%
    summarise_all(seuil_outliers, 3) %>%
    t() %>%
    as.data.frame() %>%
    add_rownames() %>%
    rename(var=rowname, seuil=V1)

seuils
```

Warning message:

```
"`add_rownames()` was deprecated in dplyr 1.0.0.
Please use `tibble::rownames_to_column()` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_warnings()` to see where this warning was generated."
```

A tibble: 5 × 2

var	seuil
<chr></chr>	<dbl></dbl>
production_hab_2017	778.9492
importations_hab_2017	209.1415
exportations_hab_2017	654.9046
nourriture_hab_2017	37.2680
pib_hab_2017	81919.7072

Entrée [17]:

```
# Filtrage des pays seuils
df_cleaned <- df

for (col in seuils$var) {
    seuil <- seuils %>% filter(var==col) %>% select(seuil) %>% as.numeric()
    df_cleaned <- df_cleaned %>% filter((!get(col) > seuil) | is.na(get(col)))
}
dim(df_cleaned)
```

166 · 6

Entrée [18]:

```
# Liste des pays exclus / outliers
df$zone[!df$zone %in% df_cleaned$zone]
```

```
'Chine - RAS de Macao' · 'Islande' · 'Kiribati' · 'Luxembourg' · 'Maldives' · 'Norvège' · 'Saint-Kitts-et-Nevis' · 'Seychelles'
```

Entrée [19]:

```
summary(df_cleaned)
```

```
production hab 2017 importations hab 2017
    zone
                       : 0.0000
                                               0.00135
Length:166
                                     Min.
                                           :
                  Min.
                                      1st Qu.:
                                               0.99644
Class :character
                  1st Qu.:
                            0.6849
Mode :character
                                     Median : 3.63413
                  Median : 4.1319
                  Mean
                        : 17.5300
                                     Mean
                                           : 8.40583
                                      3rd Qu.: 8.43792
                  3rd Qu.: 17.0285
                         :292.8661
                                     Max.
                                            :171.87561
                  Max.
                  NA's
                         :36
exportations_hab_2017 nourriture_hab_2017 pib_hab_2017
Min. : 0.00000
                     Min.
                            : 0.00462
                                        Min.
                                              : 912.8
1st Qu.:
         0.02336
                     1st Qu.: 1.44212
                                        1st Qu.: 4785.4
Median : 0.34255
                     Median : 4.01171
                                        Median :12584.1
      : 10.15632
                            : 6.24340
Mean
                     Mean
                                        Mean
                                               :18366.3
3rd Qu.: 4.75481
                     3rd Qu.: 8.75136
                                        3rd Ou.:27563.0
Max. :151.19662
                     Max. :36.85655
                                               :78128.2
                                        Max.
NA's
      :4
                                        NA's
                                               :7
```

4. ACP et graphiques

ACP via Factominer et factoextra : http://www.sthda.com/french/articles/38-methodes-des-composantes-principales-avec-r-l-essentiel/
http://www.sthda.com/french/articles/38-methodes-des-composantes-principales-dans-r-guide-pratique/73-acp-analyse-en-composantes-principales-avec-r-l-essentiel/)

Préparation des données pour ACP

Entrée [20]:

```
# Données pour ACP
# Nommage des lignes avec colonne pays
base <- as.data.frame(df_cleaned)
zones <- base$zone
row.names(base) <- zones

#suppression colonne pays
base <- base[,-1]</pre>
```

4.1 Calcul ACP avec centrage réduction des variables

Entrée [21]:

```
# Calcul PCA avec centrage-réduction
res.pca <- PCA(base, scale.unit=TRUE, graph = FALSE, ncp=Inf)</pre>
```

Warning message in PCA(base, scale.unit = TRUE, graph = FALSE, ncp = Inf): "Missing values are imputed by the mean of the variable: you should use the imputePCA function of the missMDA package"

4.2 Tableaux de description des axes ACP

Entrée [22]:

```
#Affichage des valeurs propres avec la variance cumulée
print("Variance")
t(get_eigenvalue(res.pca))[2:3,]

var <- get_pca_var(res.pca)

# Coordonnées des axes
#head(var$coord)

# Cos2: qualité de répresentation
print("Cos2: qualité de répresentation")
head(var$cos2)

# Contributions aux composantes principales
print("Contributions aux composantes principales")
head(var$contrib)</pre>
```

[1] "Variance"

A matrix: 2 × 5 of type dbl

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
variance.percent	37.47551	23.95815	17.07276	13.95276	7.54082
cumulative.variance.percent	37.47551	61.43366	78.50642	92.45918	100.00000

[1] "Cos2: qualité de répresentation"

A matrix: 5 × 5 of type dbl

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
production_hab_2017	0.23750719	0.503176322	0.081488061	0.09345174	0.084376684
importations_hab_2017	0.53412029	0.154681923	0.008723609	0.18593991	0.116534262
exportations_hab_2017	0.65234661	0.067954002	0.041098792	0.07043043	0.168170165
nourriture_hab_2017	0.35412875	0.009653999	0.445694598	0.18417223	0.006350416
pib_hab_2017	0.09567266	0.462441490	0.276632694	0.16364367	0.001609491

[1] "Contributions aux composantes principales"

A matrix: 5 × 5 of type dbl

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
production_hab_2017	12.675328	42.0045974	9.545977	13.39545	22.3786485
importations_hab_2017	28.505031	12.9126742	1.021933	26.65278	30.9075819
exportations_hab_2017	34.814555	5.6727242	4.814547	10.09556	44.6026179
nourriture_hab_2017	18.899209	0.8059051	52.211210	26.39940	1.6842773
pib_hab_2017	5.105876	38.6040991	32.406333	23.45682	0.4268744

4.3 Variance par axes ACP

Entrée [23]:

```
# Parametre sortie graph
options(repr.plot.width=10, repr.plot.height=10)
theme_format <- theme(text=element_text(size=20))

# Variance par axe
fviz_eig(res.pca, addlabels = TRUE, ylim = c(0, 50)) + theme_format</pre>
```


4.4 Graphe des variables sur plan principal ACP

Entrée [24]:

Tableau des corrélation variables / axes ACP

Entrée [25]:

```
# Parametre sortie graph
options(repr.plot.width=10, repr.plot.height=10)
theme_format <- theme(text=element_text(size=20))

#Tableau des corrélations entre les axes de l'ACP et les variables
corrplot(var$cos2, is.corr=FALSE)</pre>
```


4.5 Graphe des pays sur plan principal ACP

Entrée [26]:

```
# Parametre sortie graph
options(repr.plot.width=10, repr.plot.height=10)
theme_format <- theme(text=element_text(size=20))

#Graphe des individus avec affichage des individus les mieux projetés sur les 2 axes
#options(ggrepel.max.overlaps=100)
ind1 <- fviz_pca_ind(res.pca, repel=TRUE)
ind1</pre>
```

Warning message:

"ggrepel: 147 unlabeled data points (too many overlaps). Consider increasing max.overlaps"

Variables et pays sur même graphique

Entrée [27]:

```
# Parametre sortie graph
options(repr.plot.width=20, repr.plot.height=10)
theme_format <- theme(text=element_text(size=20))
grid.arrange(var1, ind1, ncol=2, nrow=1)</pre>
```

Warning message:

"ggrepel: 152 unlabeled data points (too many overlaps). Consider increasing max.overlaps"

5. Classification hierarchique

Entrée [28]:

```
# Calcul de la classification hiérarchique en composantes principales
n_clust <- 6
res.hcpc <- HCPC(res.pca, nb.clust = n_clust, graph = FALSE)</pre>
```

5.1 Gains d'inertie

Entrée [29]:

```
# Parametre sortie graph
options(repr.plot.width=15, repr.plot.height=8)

# Affichage des gain d'inertie inter-classse lors de l'ajout d'une classe
plot(x=res.hcpc, choice="bar")
```


5.2 Dendogramme et niveau de coupe

Entrée [30]:

```
# Parametre sortie graph
options(repr.plot.width=15, repr.plot.height=10)
theme_format <- theme(text=element_text(size=20))
fviz_dend(res.hcpc, rect=TRUE) + theme_format</pre>
```

```
Warning message:
```

"`guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> = "non
e")` instead."

Cluster Dendrogram

5.3 Projection du résultat de classification sur plan ACP

Entrée [31]:

```
# Calcul PCA avec centrage-réduction des données avec la variable cluster en plus quali_pos = dim(res.hcpc$data.clust)[2]
res.pca2 <- PCA(res.hcpc$data.clust, scale.unit=TRUE, graph = FALSE, ncp=Inf, quali.sup=qua
```

Entrée [32]:

Too few points to calculate an ellipse

Too few points to calculate an ellipse

Warning message:

"ggrepel: 149 unlabeled data points (too many overlaps). Consider increasing max.overlaps"

Entrée [33]:

```
# pour evaluer temps de calcul
end_time <- Sys.time()
end_time - start_time</pre>
```

Time difference of 15.3755 secs

6. Analyse des résutats de l'ACP et la CAH

6.1 Problèmes

Variables importations et exportations sur le même axe (corrélation ?)

- Classification finale non concluante : principaux groupes qui se chevauchent (centres de gravité trop proches)
- · Outliers résiduels malgré le filtrage initial
- · Autres:?

6.2 Solutions possibles:

- Manque de dissociation entre importations et exportations sur les axes ACP ⇒ créations de variables plus spécifiques (ex. ratios..) à la problématique (features engineering)
- Nombreux outliers dans le jeu de données ⇒ Transformation de variables pour une meilleure compatiblité avec les modèles (preprocessing)
- · Autres:?

feature engineering : création de variables (caractéristiques) pour que l'information du jeu de données soit exploitable pour le modèle. (ex: texte, images..)

6.3 Pistes améliorations :

- Création de nouvelles variables pour améliorer la classification : boucles entre features engineering

 modélisation
- Rendre l'analyse **ACP dynamique** en incluant la temporalité, avec création d'invidus sous forme de paires **(pays, année)**, permet de voir l'évolution d'un pays sur plan principal
- Possibilité de spécialiser les axes ACP via des ACP intermédiaires propre à un domaine (démographie, économie, développement, envirronemental, ...) puis ACP finale sur un ou plusieurs axes de chaque ACP, cette approche permet de prendre plus de variables au départ
- · Autres:?