

Very Large Space Optics for an Investigation of the Extreme Universe

Presented by Jim Adams
for the Super EUSO Collaboration*

*Eberhard Karls Universität Tübingen; MPI für Physik, München;
Universidad de Alcalá; APC (France); Swedish Institute of Space Physics; LIP (Portugal); Università di Genova; INAF (Palermo, Italy); INFN and INOA, (Florence, Italy); Università di Roma Tor Vergata; Università di Perugia; Observatoire de Neuchâtel; Skobeltsyn Institute; UNAM, Mexico; RIKEN, Japan; Univ. of Ala., Huntsville; Vanderbilt Univ.; Sp. Sci. Lab., UCB; UCLA; Univ. of Utah; NASA-MSFC and NASA-GSFC

Auger main anisotropy result

○ (cosmic rays); X (active galactic nuclei); blue shading (exposure)

Event Arrival Direction Reconstruction

Extreme Energy Cosmic Rays (EECRs)

- Energies extending to at least 50 Joules/particle
- Fluxes of 1 particle/(km²*century)

Shower Time Profile

Hybrid Ground-based Array

PIERRE
AUGER
OBSERVATORY

8/25/08

Fluorescence Detector

8/25/08

7

Independent analyses of stereo events

$E = 4.8 \cdot 10^{19} \text{ eV}$

E_{em} calculated by fitting a GH profile and integrating

Super-EUSO

•Free Flyer

•Variable orbit 1000 km

- $A_{aper}^{inst} \approx 2.4 \times 10^6 \text{ km}^2 \cdot \text{sr}$

- $\text{Life} \approx 5 \text{ yr}$

- $\eta_{cycle} \approx 10 \div 20 \%$

$$A_{exp} \approx (1.2 - 2.4) \times 10^6 \text{ km}^2 \text{ sr yr}$$

Tilted mode

(?) $A_{exp} \rightarrow 10^7 L$

Super EUSO Instrument Requirements

- Very large wide-angle telescope with high optical throughput and ~1 milliradian angular resolution
- High efficiency pixelated photo-detectors with single photon sensitivity
 - Photomultiplier tubes with ultra-bialkali photocathodes or
 - Silicon photomultipliers
- Optics Design Options
 - Reflective optics:
 - Schmidt or Maksutov optics
 - Convex focal surface
 - Refractive optics (the JEM-EUSO concept)
 - Very large and light-weight Fresnel lenses
 - Diffractive lens for chromatic correction
 - Antireflective coatings needed in either case

Photomultiplier Tubes

- Hamamatsu Ultra-Bialkali photocathodes
 - 40-45% Q.E. from 330-400 nm
 - Off the shelf (Hamamatsu)
 - Large inter-tube gaps on a convex surface
- Back-illuminated Silicon Photomultipliers
 - 90% Q.E. from 330-400 nm
 - Requires cooling
 - Developmental (Siemens)
 - Small inter-device gaps on a convex surface

Optics Design Concepts

Maksutov optical design with an f/# of 0.66, CAO at UAH, Huntsville

8/25/08

Schmidt design with an f/# of 0.7 and a 50° field of view, CNR- INOA, Firenze

12

Optics Throughput

Filters not considered so far!!

Refractive Optics

Shower Imaging and Reconstruction

Super-EUSO functions like a high-speed and wide angle video camera

- Frame rate: $\sim 3 \mu\text{sec}/\text{frame}$
- Pixel Size: $4 \times 4 \text{ mm}^2$ on the focal surface or $1 \times 1 \text{ km}^2$ on Earth
- Reconstruction in $1 \times 1 \times 1 \text{ km}^3$ voxels
- Arrival direction reconstruction to $< 0.2^\circ$
- Energy reconstructed from fitted intensity at shower maximum

For those events with a detected Cherenkov reflection at a known altitude:

- Shower profile versus atmospheric depth will be reconstructed.

Optics Manufacturing Requirements

- Surface Roughness
 - 20 nm RMS on refractive elements
 - 5 nm RMS on reflective elements
- Tilt errors
 - <0.5 milliradian
- Anti-reflective Coatings on refractive elements
 - >90% transmission in the 330-400 nm band

Super EUSO Spacecraft Concepts

• Figure 2 – Concept scheme of the optics deployment (Carlo Gavazzi Space).

• Figure 3 – The folded structure (from the OWL concept study, NASA, [10]).

• Figure 4 - The un-folded structure (from the OWL concept study, NASA, [10]).

These folding concepts were developed to fit Super-EUSO into an existing fairing.

ARES V Option

- Launch Super EUSO as a rigid unit
 - Spherical mirror constructed from regular hexagonal zones
 - Segmented corrector plate in the style of a lighthouse lens

Notional Design

Segmented Corrector Plate

Mirror constructed from
hexagonal spherical segments

Summary

- Super EUSO is needed to find out how the most energetic cosmic accelerators work and what they are accelerating?
- The Super-EUSO instrument must be a very large high-speed and wide-angle video camera in space.
- We are open to suggestions for improvements in design and also concepts for manufacturing such an instrument.

The End