Solution 3: Dynamic Programming

Answer 1

- a) The base case is: P(n)=0 if n=0
- b) Since v_i is in the optimal solution, we need to select this coin and the remaining value becomes n- v_i . Thus, we have the following relationship:

$$P(n) = 1 + P(n - v_i)$$

c) Since we do not know what v_i is and we need to obtain the optimal solution of P(n), we should select the smallest optimal value of the sub-problems $P(n-v_i)$ in order to combine the optimal value of problem P(n). We have:

$$P(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 + \min_{n \ge v_i} P(n - v_i) & \text{if } n > 0 \end{cases}$$

Answer 2

The table c is shown in Table 1. One LCS is (0, 1, 0, 1, 0, 1), which has the length 6.

Table 1: Table c										
	i	0	1	2	3	4	5	6	7	8
j		x[i]	1	0	0	1	0	1	0	1
0	y[j]	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
2	1	0	1	1	1	2	2	2	2	2
3	0	0	1	2	2	2	3	3	3	3
4	1	0	1	2	2	3	3↑	4	4	4
5	1	0	1	2	2	3	3	4	4	5
6	0	0	1	2	3	3	4	4	5	5
7	1	0	1	2	3	4	4	5	5 ↑	6
8	1	0	1	2	3	4	4	5	5	6
9	0	0	1	2	3	4	5	5	6	6

	Table 1: Table c											
	i	0	1	2	3	4	5	6	7	8		
j		x[i]	1	0	0	1	0	1	0	1		
0	y[j]	0	0	0	0	0	0	0	0	0		
1	0	0	0	1	1	1	1	1	1	1		
2	1	0	1	1	1	2	2	2	2	2		
3	0	0	1	2	2	2	3	3	3	3		
4	1	0	1	2	2	3	3	4	4	4		
5	1	0	1	2	2	3 🕇	3	4	4	5		
6	0	0	1	2	3	3	4	4	5	5		
7	1	0	1	2	3	4	4	5	5 ↑	6		
8	1	0	1	2	3	4	4	5	5	6		
9	0	0	1	2	3	4	5	5	-6	6 ‡		
			1	0		1	0	1	0			

Answer 3

(a) $Base\ Case: \left\{ \begin{array}{l} c[x][0] = 0 & , \ 0 \leq x \leq n+1 \\ c[x][n+1] = 0 \ , \ 0 \leq x \leq n+1 \\ c[0][y] = 0 & , \ 0 \leq y \leq n+1 \\ c[n+1][y] = 0 \ , \ 0 \leq y \leq n+1 \end{array} \right.$

The base case is used to prevent the out-of-range cases, i.e., the checker cannot move to the diagonal right-above (left-above) square if it is already in the rightmost (leftmost) column.

Recursive Case:

$$c[x][y] = max\{c[x-1][y-1], c[x][y-1], c[x+1][y-1]\} + p[x][y], 1 \le x, y \le n$$

(b) From the recursive case of c[x][y], it depends on c[x-1][y-1], c[x][y-1], c[x+1][y-1], therefore, the algorithm should fill the table c from the bottom edge to the top edge.

Refer to Algorithm 1.

21 return maxAmount

```
Algorithm 1: CheckerBoard(p[0..n+1])
```

```
1 create two new tables c[0..n+1][0..n+1] and s[1..n][1..n]
 2 for x \leftarrow 0 to n+1 do
    c[x][0] \leftarrow 0
    c[x][n+1] \leftarrow 0
 5 for y \leftarrow 0 to n+1 do
    c[0][y] \leftarrow 0
    |c[n+1][y] \leftarrow 0
 s for y \leftarrow 1 to n do
       for x \leftarrow 1 to n do
 9
10
           if c[x-1][y-1] > c[x][y-1] and c[x-1][y-1] > c[x+1][y-1] then
11
           // c[x-1][y-1] is the largest x^* \leftarrow x-1
12
           if c[x+1][y-1] > c[x][y-1] and c[x+1][y-1] > c[x-1][y-1] then
13
           // c[x+1][y-1] is the largest
            x^{\star} \leftarrow x + 1
14
            c[x][y] \leftarrow c[x^\star][y-1] + p[x][y] \\ s[x][y] \leftarrow x^\star - x 
15
16
   // scan the first row of the array c and get the maximum amount
17 maxAmount \leftarrow 0
18 for x \leftarrow 1 to n do
       if c[x][n] > maxAmount then
         maxAmount \leftarrow c[x][n]
20
```

(c) Figure 2 shows the contents of the table c and s. Here we only show the squares with $x, y \ge 1$.

Figure 2: Checker Board Example

Following the array s, we can construct the path. If s[x][y] = z, then the previous square is (x+z,y-1). We start from the square with the maximum amount, i.e., (4,4). Because s[4][4] = -1, the previous square is (3,3). Then check s[3][3] = -1, then the previous square is (2,2). Similarly, we check s[2][2] = 0, then refer to (2,1). Thus, the path is $(2,1) \to (2,2) \to (3,3) \to (4,4)$.