Name:	Sort #:
Name.	SOLU #

Worksheet 18 Orthogonal Sets & Projections

MATH 2250, Fall 2018

1. Find the orthogonal projection of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and the origin.

2. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 . Then, express \mathbf{x} as a linear combination of the \mathbf{u}_i 's where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}; \quad \mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$$

3. Verify that

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}; \quad \mathbf{u}_2 = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$$

forms an orthogonal set. Then, find the orthogonal projection of $\mathbf{y}=\begin{bmatrix}6\\3\\-2\end{bmatrix}$ onto Span $\{\mathbf{u}_1,\mathbf{u}_2\}$.

4. Find the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}; \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}; \quad \mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$$