Random Forest: Traffic Accidents Data Exploration

Brendan Callender Martin Hsu Kyle Lew

Goal

- Machine Learning: Random Forest Classification
- Data: Traffic Accident Data
- Questions: Based on traffic data, can we predict...
 - Collision severity?
 - Weather?
 - Collision type?

Data Description

- California Highway Patrol data
 - Provided by UC Berkeley

Dataset Example

90284372	2016	10/5/2016 9252	9/22/2016	1545	17869		4	2	9	3400	0	1	3	2	191 SR-99 S/B MACK RD	2640 S	N	A
90393042	2017	2/14/2017 9252	2/11/2017	915	19231		6	1	9	3400	0	2	4	1	72 MARTIN LL 43RD AVE	0	Y	Α
90625118	2017	12/22/2017 9260	12/18/2017	1028	19625		1	1	9	3400	0	2	4	2	307 GREENBA(MAIN AVE	2 N	N	A
90692594	2018	3/29/2018 9250	3/19/2018	733	17445		1	1	9	3400	0	2	4	1	12 ANTELOPE ANTELOPE	122 E	N	Α
91020587	2019	6/28/2019 9252	6/20/2019	1345	16070		4	1	7	3404	0	1	1	2	108 I-5 NB RICHARDS	682 S	N	Α
91271386	2020	12/11/2020 9252	7/10/2020	1826	21550		5	2	9	3400	0	3	5	2	74 MORNING HOPYARD	0	Y	Α
91517336	2021	7/12/2021 9250	7/6/2021	1716	17568		2	2	9	3400	0	1	1	2	184 MADISON MADISON	300 W	N	Α
8802969	2019	2/25/2019 3404	2/17/2019	1626	8162	2	7	5	7	3404	0	0	0	0 00C	EL CAMIN(PRINCETO	580 E	N	Α
9117330	2020	9/15/2020 3404	6/13/2020	1737	1053 P2		6	5	7	3404	0	0	0	0 02A	ALDER ST NORTH AV	93 S	N	Α
6617204	2014	12/21/2015 9250	7/31/2014	400	18785		4	3	9	3400	0	2	4	1	61 RIO LINDA ELKHORN	1108 S	N	Α
6308127	2013	5/30/2014 9252	12/9/2013	1750	18159		1	2	7	3404	0	1	3	2	192 RT 99 BROADWA	1056 S	N	Α
6038834	2013	2/12/2014 3400	3/5/2013	2159 0	3CSO RC		2	5	5	3490	0	0	0	0	5 MATHER F ROCKING	0	Y	Α
90308142	2016	11/1/2016 9250	8/19/2016	2019	18374		5	2	9	3400	0	2	4	1	21 AUBURN B MADISON	260 S	N	A
90365967	2016	6/2/2017 9250	12/23/2016	1805	16957		5	2	7	3404	0	1	3	2	152 SR-51 S/B SR-160	750 N	N	В
90433720	2017	4/13/2017 9252	3/26/2017	1620	19465		7	2	9	3400	0	2	4	1	72 FLORIN RC FRANKLIN	250 E	N	В
90812419	2018	9/13/2018 9250	9/7/2018	1245	15423		5	1	9	3400	0	2	4	1	24 MADISON DATE AVEN	40 W	N	Α
90957617	2019	3/29/2019 9250	3/18/2019	1735	20602		1	2	9	3400	0	3	5	2	40 BELL AVE IRMA WAY	100 S	N	Α
91425584	2021	3/11/2021 9252	3/5/2021	1915	20783		5	2	9	3400	0	2	4	2	73 STOCKTO! ORANGE A	639 N	N	Α
6032185	2013	2/10/2014 340H	3/26/2013	736	10111	5504	2	5	5	3450	0	0	0	0	5 ELKMONT IRON ROC	776 W	N	A
91561067	2021	9/2/2021 9250	8/26/2021	745	18116		4	1	9	3400	0	3	5	2	10 PALM AVEI HILLSDALE	219 W	N	Α
9242026	2021	4/13/2021 340H	3/24/2021	1639	10799	4104	3	5	5	3450	0	0	0	0	4 ELK GROVI BACKER RA	793 W	N	A
7196447	2016	3/15/2016 3404	3/1/2016	1346	8169		2	5	7	3404	0	0	0	0	20TH ST P ST	0	Y	Α
8051367	2016	6/2/2016 340H	5/27/2016	1806	10573	5401	5	5	5	3450	0	0	0	0	5 ELK GROVIEMERALD	85 E	N	Α
7018809	2014	6/28/2016 9250	11/1/2014	126	17317		6	3	5	3496	0	1	1	2	183 RT 80 WB WEST OF F	4752	N	В
5636445	2012	2/24/2014 9252	4/30/2012	1515	17917		1	2	7	3404	0	1	2	2	151 RT 50 STOCKTON	1584 E	N	Α
90132976	2016	3/9/2016 9252	3/2/2016	1440	18423		3	2	9	3400	0	2	4	1	71 FRUITRIDE MENDOCII	150 E	N	Α
90728175	2018	5/17/2018 9250	5/11/2018	2028	19572		5	2	9	3400	0	3	5	2	20 GREENBA(GARFIELD	760 W	N	Α
90763260	2018	7/5/2018 9252	6/23/2018	2222	20520		6	3	7	3404	0	1	3	2	193 SR-51 S/B MCKINLEY	370 N	N	Α
90952573	2019	3/25/2019 9260	3/18/2019	2105	18370		1	2	9	3400	0	3	5	2	1 KIEFER BL\BRADSHA\	0	Y	Α
91330385	2020	10/23/2020 9252	10/13/2020	1800	18730		2	2	7	3404	0	1	1	2	107 I-5 N/B SUTTERVIL	1200 S	N	Α
9204650	2020	2/13/2021 340H	12/26/2020	124	10754	5404	6	5	5	3450	0	0	0	0	5 ELK GROVIE STOCKTO	0	Y	C
9242987	2021	4/15/2021 3404	3/15/2021	1502	8107 P2		1	5	7	3404	0	0	0	0 02A	NORWOOI JESSIE AV	0	Y	Α
90006432	2015	10/19/2015 9250	7/22/2015	905	14845		3	1	9	3400	0	1	1	2	183 I-80 W/B T MADISON	5 E	N	A
8939395	2019	11/21/2019 3404	10/23/2019	650	304	6	3	5	7	3404	0	0	0	0 06C	14TH AV DON MERI	0	Y	Α
5493995	2012	7/13/2013 3496	2/20/2012	943	192	3	1	5	5	3496	0	0	0	0	3 GREENBACLONGFOR	75 W	N	Α

Variables Used

- All variables:
 - Day of Week
 - Intersection?
 - Weather
 - State Highway?
 - Tow Away?
 - Collision Severity
 - Party Count
 - Primary Collision Factor
 - Hit and Run
 - Type of Collision

- Road Surface
- Road Condition
- Lighting
- Pedestrian Accident?
- Bicycle Accident?
- Motorcycle Accident?
- Truck Accident?
- Alcohol Involved?

- Trying to predict
 - Collision Severity
 - Weather
 - Collision Type
- Use other variables to predict

Decision Trees

- Tree to classify observations according to categorical attributes
- Tree Structure
 - O Internal Node = attribute
 - Edges = specific values of an attribute
 - Leaf Node = classification decision

Implementing Decision Trees(C4.5)

- Recursive algorithm
- Choose tree splits based on entropy and information gain
 - Entropy how similar the class attributes are in a group
 - Information gain do attributes within splits become more similar after splitting the data?

C4.5 Code

- Base Cases
- Recursive Step

```
def makeBranch(v: String): Unit = {
   val T_v = C45(D_v, C_v, A_v, domain, threshold)
   branch.addToEdges(newEdge)
A_g_vals.foreach(v => makeBranch(v))
```


- Construct many Decision Trees
 - Voting to determine final predicted class
- Created using a subset of the data
 - Sample observations w replacement (rows)
 - Simple random sampling
 - Stratified sampling
 - Small subset of predictors (columns)

Random Forest Code

Model Evaluation

- Accuracy # correct overall
- For each category:
 - Precision Out of those predicted to be A, how many observed to be A
 - Recall Out of those observed to be A, how many predicted to be A
 - F1 Score harmonic mean of precision and recall
- Random Forest Parameters:
 - 50 Trees
 - 50 observations
 - 3 variables used
 - 0.1 Information Gain Threshold

Results: Collision Severity

- "Possible injury or complaint of pain" always predicted
 - Overrepresented

Predicting Collision Severity

Accuracy = 0.64

Table 1: Prediction Results for Collision Severity

Collision Severity	Precision	Recall	F1-Score
Fatal Injury	NA	0	NA
Suspected serious injury of severe injury	NA	0	NA
Suspected minor injury of visible injury	NA	0	NA
Possible injury of complain of pain	0.64	1	0.78

Results: Weather

- "Clear" always predicted
 - Overrepresented

Predicting Weather

Accuracy = 0.89

Table 2: Prediction Results for Weather

Weather	Precision	Recall	F1-Score	
Not Stated	NA	0	NA	
Clear	0.89	1	0.94	
Cloudy	NA	0	NA	
Raining	NA	0	NA	
Snowing	NA	0	NA	
Fog	NA	0	NA	
Other	NA	0	NA	
Wind	NA	0	NA	

Results: Collision Type

Better representation

Predicting Collision Type

Accuracy = 0.48

Table 3: Prediction Results for Collision Type

Collision Type	Precision	Recall	F1-Score		
Not Stated	NA	0	NA		
Head-On	NA	0	NA		
Sideswipe	NA	0	NA		
Rear End	0.44	0.90	0.59		
Broadside	0.54	0.66	0.59		
Hit Object	0.75	0.07	0.12		
Overturned	NA	0	NA		
Vehicle/Pedestrian	0.88	0	0		
Other	NA	0	NA		

Difficulties

- Data skewed towards one class
 - Results in always predicting one category
 - Low overall precision, recall
 - Better model might implement boosting
- Implementing C4.5 from ground up
 - Calculating entropy and information gain
 - Using RDD's instead of DataFrames

Thank You!